CLAIMS

We claim:

5

15

- 1. A solid support having a metallic surface comprising:
 - a) blocking moieties, having at least first and second ends, attached at said first end to said metallic surface;
 - b) at least one modified nucleic acid, comprising a linker moiety having a first and a second end, wherein said first end of said linker moiety is attached to said solid support and said second end is attached to a nucleic acid.
- 2. A solid support having a metallic surface comprising a covalently immobilized monolayer, wherein a subset of the molecules forming said monolayer are covalently linked to nucleic acid.
 - 3. A solid support having a metallic surface comprising:
 - a) blocking moieties, comprising at least first and second ends, attached at said first end to said metallic surface via a sulfur linkage; and b) modified nucleic acids, comprising a linker moiety having a first and a second end, wherein said first end of said linker moiety is attached to said metallic surface via a sulfur linkage, and said second end is attached to a nucleic acid.
- 4. A solid support having a metallic surface comprising:
 - a) blocking moieties having the formula comprising:

$$SCM \leftarrow \begin{matrix} \begin{matrix} R_1 \\ \\ C \end{matrix} \\ \begin{matrix} R_2 \end{matrix} X$$

wherein

SCM is a sulfur-containing moiety, wherein said sulfur containing moiety is attached to said metallic surface;

R₁ and R₂ are independently selected from the group consisting of hydrogen and substituent groups;

n is an integer from 3 to 50; and

X is a terminal group; and

b) modified nucleic acids having the formula comprising:

$$SCM \xrightarrow{R_1} nucleic acid$$

$$R_2$$

wherein

SCM is a sulfur-containing moiety, wherein said sulfur containing moiety is attached to said metallic surface;

 R_1 and R_2 are independently selected from the group consisting of hydrogen and substituent groups; and n is an integer from 3 to 50.

5. A solid support having a metallic surface comprising a mixed monolayer of:

a) blocking moieties having the formula comprising:

$$SCM \leftarrow \begin{matrix} R_1 \\ C \\ R_2 \end{matrix} X$$

wherein

SCM is a sulfur-containing moiety, wherein said sulfur containing moiety is attached to said metallic surface;

R₁ and R₂ are independently selected from the group consisting of hydrogen and substituent groups;

n is an integer from 3 to 50; and

X is a terminal group; and

b) modified nucleic

acids having the formula

$$SCM \xrightarrow{\begin{array}{c} R_1 \\ C \\ R_2 \end{array}} nucleic acid$$

.

20

10

5

5

20

wherein

SCM is a sulfur-containing moiety, wherein said sulfur containing moiety is attached to said metallic surface;

R₁ and R₂ are independently selected from the group consisting of hydrogen and substituent groups; and n is an integer from 3 to 50.

- 6. A solid support according to claim 4 wherein said support comprises gold.
- 7. A solid support according to claim 4 wherein n is 16.

Į

- 8. A solid support according to claim 4 wherein said blocking moieties are all the same.
 - 9. A solid support according to claim 4 wherein at least two of said blocking moieties are different.
 - 10. A solid support according to claim 4 wherein said linker moieties and said blocking moieties are the same.
- 11. A solid support according to claim 4 wherein at least one of said linker moieties and at least one of said blocking moieites are different.
 - 12. A method of hybridizing probe nucleic acid to target nucleic acid, comprising adding target nucleic acid to a solid support having a metallic surface comprising:
 - a) blocking moieties having the formula comprising:

5

$$SCM \left(\begin{array}{c} R_1 \\ C \\ R_2 \end{array} \right) X$$

wherein

SCM is a sulfur-containing moiety, wherein said sulfur containing moiety is attached to said metallic surface;

 R_1 and R_2 are independently selected from the group consisting of hydrogen and substituent groups;

n is an integer from 3 to 50; and

X is a terminal group; and

b) modified nucleic acids having the formula comprising:

$$SCM \xrightarrow{R_1} n$$
nucleic acid
$$R_2$$

wherein

SCM is a sulfur-containing moiety, wherein said sulfur containing

moiety is attached to said metallic surface;

R₁ and R₂ are independently selected from the group consisting of hydrogen and substituent groups;

nucleic acid is said probe nucleic acid; and

n is an integer from 3 to 50.

under conditions where said probe nucleic acid and said target nucleic acid will hybridize to form a hybridization complex.

- 13. The method according to claim 11, further comprising:
 - c) detecting said hybridization complex.
- 14. The method of claim 12, wherein said target nucleic acid is labelled, and said detecting is done by detecting the presence of said label.