Міністерство освіти і науки України Національний технічний університет України "Київський політехнічний інститут імені Ігоря Сікорського" Фізико-технічний інститут

«Методи обчислень»

Лабораторна робота №5 Варіант 2

«Інтерполяція»

Виконала:

студентка групи ФБ-95 Гурджия Валерія Вахтангівна

Завдання

Відрізок інтерполяції розбити не менш ніж на 10 вузлів. Використовуючи аналітичне задання функції, визначене варіантом, побудувати таблицю значень функції у вузлах на відповідному відрізку інтерполяції (табл.5.1). Побудувати за таблично заданою функцією:

- інтерполяційний поліном Р (х) п у формі Ньютона або Лагранжа;
- здійснити інтерполяцію сплайнами (другого чи третього порядку);
- побудувати графік похибки інтерполяції.

Примітка. У даному практикумі функція, яка інтерполюється, задана аналітично, отже, похибку інтерполяції можна визначити безпосередньо як максимум різниць між значеннями точної функції та інтерполюючої функції у ряді точок (точки не повинні співпадати із вузлами інтерполяції).

№ вар.	Функція	Відрізок інтерполювання
2	$x^2 \cos x$	$[-\pi/2,\pi]$

Знайдемо вузли інтерполяції

X	f
-1,5708	0
-1,0472	0,5483
-0,5236	0,2374
0	0
0,5236	0,2374
1,0472	0,5483
1,5708	0
2,0944	-2,1932
2,6180	-5,9356
3,1416	-9,8696

Інтерполяція Сплайнами

(Пораховано вручну)

$$S = a + b(x - x_0) + c(x - x_0)^2 + d(x - x_0)^3$$

$$\begin{cases} S_0 = a_0 + b_0(x - x_0) + c_0(x - x_0)^2 + d_0(x - x_0)^3 \\ S_1 = a_0 + b_0(x - x_1) + c_1(x - x_1)^2 + d_1(x - x_1)^3 \\ S_2 = a_2 + b_2(x - x_2) + c_2(x - x_2)^2 + d_2(x - x_2)^3 \\ S_3 = a_3 + b_3(x - x_3) + c_3(x - x_3)^2 + d_3(x - x_3)^3 \\ S_4 = a_4 + b_4(x - x_4) + c_4(x - x_4)^2 + d_4(x - x_4)^3 \\ S_5 = a_5 + b_5(x - x_5) + c_5(x - x_5)^2 + d_5(x - x_5)^3 \\ S_6 = a_6 + b_6(x - x_6) + c_6(x - x_6)^2 + d_6(x - x_6)^3 \\ S_7 = a_7 + b_7(x - x_7) + c_7(x - x_7)^2 + d_7(x - x_7)^3 \\ S_8 = a_8 + b_8(x - x_8) + c_8(x - x_8)^2 + d_8(x - x_8)^3 \end{cases}$$

$$\begin{cases} S_0 = a_0 + b_0(x + 1,5708) + c_0(x + 1,5708)^2 + d_0(x + 1,5708)^3 \\ S_1 = a_1 + b_1(x + 1,0472) + c_1(x + 1,0472)^2 + d_1(x + 1,0472)^3 \\ S_2 = a_2 + b_2(x + 0,5236) + c_2(x + 0,5236)^2 + d_2(x + 0,5236)^3 \\ S_3 = a_3 + b_3(x - 0) + c_3(x - 0)^2 + d_3(x - 0)^3 \\ S_4 = a_4 + b_4(x - 0,5236) + c_4(x - 0,5236)^2 + d_4(x - 0,5236)^3 \\ S_5 = a_5 + b_5(x - 1,0472) + c_5(x - 1,0472)^2 + d_5(x - 1,0472)^3 \\ S_6 = a_6 + b_6(x - 1,5708) + c_6(x - 1,5708)^2 + d_6(x - 1,5708)^3 \\ S_7 = a_7 + b_7(x - 2,0944) + c_7(x - 2,0944)^2 + d_7(x - 2,0944)^3 \\ S_8 = a_8 + b_8(x - 2,6180) + c_8(x - 2,6180)^2 + d_8(x - 2,6180)^3 \end{cases}$$

	J	_
Nº	X	Υ
0	-1,5708	0
1	-1,0472	0,5483
2	-0,5236	0,2374
3	0	0
4	0,5236	0,2374
5	1,0472	0,5483
6	1,5708	0
7	2,0944	-2,1932
8	2,618	-5,9356
9	3,1416	-9,8696

 $0 = a_0 + b_0(-1,5708 + 1,5708) + c_0(-1,5708 + 1,5708)^2 + d_0(-1,5708 + 1,5708)^3$

$$0.5483 = a_0 + b_0(-1.0472 + 1.5708) + c_0(-1.0472 + 1.5708)^2 + d_0(-1.0472 + 1.5708)^3$$

$$a_0 = 0$$

 $a_0 + b_0(0,5236) + c_0(0,2742) + d_0(0,1435) = 0,5483$

	U	_
Nº	X	Υ
0	-1,5708	0
1	-1,0472	0,5483
2	-0,5236	0,2374
3	0	0
4	0,5236	0,2374
5	1,0472	0,5483
6	1,5708	0
7	2,0944	-2,1932
8	2,618	-5,9356
9	3,1416	-9,8696

$$0,5483 = a_1 + b_1(-1,0472 + 1,0472) + c_1(-1,0472 + 1,0472)^2 + d_1(-1,0472 + 1,0472)^3$$

$$0,2374 = a_1 + b_1(-0,5236 + 1,0472) + c_1(-0,5236 + 1,0472)^2 + d_1(-0,5236 + 1,0472)^3$$

$$a_1 = 0.5483$$

 $a_1 + b_1(0.5236) + c_1(0.2742) + d_1(0.1435) = 0.2374$

		_
Nº	Χ	Υ
0	-1,5708	0
1	-1,0472	0,5483
2	-0,5236	0,2374
3	0	0
4	0,5236	0,2374
5	1,0472	0,5483
6	1,5708	0
7	2,0944	-2,1932
8	2,618	-5,9356
9	3,1416	-9,8696

$$0,2374 = a_2 + b_2(-0,5236 + 0,5236) + c_2(-0,5236 + 0,5236)^2 + d_2(-0,5236 + 0,5236)^3$$

$$0 = a_2 + b_2(0 + 0,5236) + c_2(0 + 0,5236)^2 + d_2(0 + 0,5236)^3$$

$$a_2 = 0.2374$$

 $a_2 + b_2(0.5236) + c_2(0.2742) + d_2(0.1435) = 0$

	_	_
Nº	X	Υ
0	-1,5708	0
1	-1,0472	0,5483
2	-0,5236	0,2374
3	0	0
4	0,5236	0,2374
5	1,0472	0,5483
6	1,5708	0
7	2,0944	-2,1932
8	2,618	-5,9356
9	3,1416	-9,8696

$$0 = a_3 + b_3(0 - 0) + c_3(0 - 0)^2 + d_3(0 - 0)^3$$

0,2374 = $a_3 + b_3(0,5236 - 0) + c_3(0,5236 - 0)^2 + d_3(0,5236 - 0)^3$

$$a_3 = 0$$

 $a_3 + b_3(0,5236) + c_3(0,2742) + d_3(0,1435) = 0,2374$

/ 1	-	_
Nº	X	Υ
0	-1,5708	0
1	-1,0472	0,5483
2	-0,5236	0,2374
3	0	0
4	0,5236	0,2374
5	1,0472	0,5483
6	1,5708	0
7	2,0944	-2,1932
8	2,618	-5,9356
9	3,1416	-9,8696

$$0,2374 = a_4 + b_4(0,5236 - 0,5236) + c_4(0,5236 - 0,5236)^2 + d_4(0,5236 - 0,5236)^3$$

$$0,5483 = a_4 + b_4(1,0472 - 0,5236) + c_4(1,0472 - 0,5236)^2 + d_4(1,0472 - 0,5236)^3$$

$$a_4 = 0.2374$$

 $a_4 + b_4(0.5236) + c_4(0.2742) + d_4(0.1435) = 0.5483$

_ ^	U	_
Nº	Χ	Υ
0	-1,5708	0
1	-1,0472	0,5483
2	-0,5236	0,2374
3	0	0
4	0,5236	0,2374
5	1,0472	0,5483
6	1,5708	0
7	2,0944	-2,1932
8	2,618	-5,9356
9	3,1416	-9,8696

$$0.5483 = a_5 + b_5(1.0472 - 1.0472) + c_5(1.0472 - 1.0472)^2 + d_5(1.0472 - 1.0472)^3$$

$$0 = a_5 + b_5(1.5708 - 1.0472) + c_5(1.5708 - 1.0472)^2 + d_5(1.5708 - 1.0472)^3$$

$$a_5 = 0.5483$$

 $a_5 + b_5(0.5236) + c_5(0.2742) + d_5(0.1435) = 0$

Nº	X	Y
0	-1,5708	0
1	-1,0472	0,5483
2	-0,5236	0,2374
3	0	0
4	0,5236	0,2374
5	1,0472	0,5483
6	1,5708	0
7	2,0944	-2,1932
8	2,618	-5,9356
9	3,1416	-9,8696

$$0 = a_6 + b_6(1,5708 - 1,5708) + c_6(1,5708 - 1,5708)^2 + d_6(1,5708 - 1,5708)^3 -2,1932 = a_6 + b_6(2,0944 - 1,5708) + c_6(2,0944 - 1,5708)^2 + d_6(2,0944 - 1,5708)^3$$

$$a_6 = 0$$

 $a_6 + b_6(0,5236) + c_6(0,2742) + d_6(0,1435) = -2,1932$

		_
Nº	X	Υ
0	-1,5708	0
1	-1,0472	0,5483
2	-0,5236	0,2374
3	0	0
4	0,5236	0,2374
5	1,0472	0,5483
6	1,5708	0
7	2,0944	-2,1932
8	2,618	-5,9356
9	3,1416	-9,8696

$$-2,1932 = a_7 + b_7(2,0944 - 2,0944) + c_7(2,0944 - 2,0944)^2 + d_7(2,0944 - 2,0944)^3$$

$$-5,9356 = a_7 + b_7(2,618 - 2,0944) + c_7(2,618 - 2,0944)^2 + d_7(2,618 - 2,0944)^3$$

$$a_7 = -2,1932$$

 $a_7 + b_7(0,5236) + c_7(0,2742) + d_7(0,1435) = -5,9356$

	_	_
Nº	X	Υ
0	-1,5708	0
1	-1,0472	0,5483
2	-0,5236	0,2374
3	0	0
4	0,5236	0,2374
5	1,0472	0,5483
6	1,5708	0
7	2,0944	-2,1932
8	2,618	-5,9356
9	3,1416	-9,8696

$$-5.9356 = a_8 + b_8(2.618 - 2.618) + c_8(2.618 - 2.618)^2 + d_8(2.618 - 2.618)^3$$

$$-9.8696 = a_8 + b_8(3.1416 - 2.618) + c_8(3.1416 - 2.618)^2 + d_8(3.1416 - 2.618)^3$$

$$a_8 = -5,9356$$

 $a_8 + b_8(0,5236) + c_8(0,2742) + d_8(0,1435) = -9,8696$

Знаходимо першу та другу похідні кожного сплайну

$$\begin{cases} S_0' = b_0 + 2c_0(x + 1,5708) & + 3d_0(x + 1,5708)^2 \\ S_1' = b_1 + 2c_1(x + 1,0472) & + 3d_1(x + 1,0472)^2 \\ S_2' = b_2 + 2c_2(x + 0,5236) & + 3d_2(x + 0,5236)^2 \\ S_3' = b_3 + 2c_3(x - 0) & + 3d_3(x - 0)^2 \end{cases}$$

$$\begin{cases} S_4' = b_4 + 2c_4(x - 0,5236) & + 3d_4(x - 0,5236)^2 \\ S_5' = b_5 + 2c_5(x - 1,0472) & + 3d_5(x - 1,0472)^2 \\ S_6' = b_6 + 2c_6(x - 1,5708) & + 3d_6(x - 1,5708)^2 \\ S_7' = b_7 + 2c_7(x - 2,0944) & + 3d_7(x - 2,0944)^2 \\ S_8' = b_8 + 2c_8(x - 2,6180) & + 3d_8(x - 2,618)^2 \end{cases}$$

$$\begin{cases} S_0'' = 2c_0 + 6d_1(x+1,5708) \\ S_1'' = 2c_1 + 6d_1(x+1,0472) \\ S_2' = 2c_2 + 6d_2(x+0,5236) \\ S_3' = 2c_3 + 6d_3(x-0) \\ S_4'' = 2c_4 + 6d_4(x-0,5236) \\ S_5'' = 2c_5 + 6d_5(x-1,0472) \\ S_6'' = 2c_6 + 6d_6(x-1,5708) \\ S_7'' = 2c_7 + 6d_7(x-2,0944) \\ S_8'' = 2c_8 + 6d_8(x-2,6180) \end{cases}$$

$$S_0' = S_1'$$

 $S_0'' = S_1''$

$$b_0 + 2c_0(-1,0472 + 1,5708) + 3d_0(-1,0472x + 1,5708)^2$$

$$= b_1 + 2c_1(-1,0472 + 1,0472) + 3d_1(-1,0472 + 1,0472)^2$$

$$2c_0 + 6d_1(-1,0472 + 1,5708) = 2c_1 + 6d_1(-1,0472 + 1,0472)$$

$$b_0 + 2c_0(0.5236) + 3d_0(0.2742) - b_1 = 0$$

 $2c_0 + 6d_1(0.5236) - 2c_1 = 0$

$$S_1' = S_2'$$

 $S_1'' = S_2''$

$$b_1 + 2c_1(-0.5236 + 1.0472) + 3d_1(-0.5236 + 1.0472)^2$$

$$= b_2 + 2c_2(-0.5236 + 0.5236) + 3d_2(-0.5236 + 0.5236)^2$$

$$2c_1 + 6d_1(-0.5236 + 1.0472) = 2c_2 + 6d_2(-0.5236 + 0.5236)$$

$$b_1 + 2c_1(0,5236) + 3d_1(0,2742) - b_2 = 0$$

 $2c_1 + 6d_1(0,5236) - 2c_2 = 0$

$$S_2' = S_3'$$

 $S_2'' = S_3''$

$$b_2 + 2c_2(0 + 0.5236) + 3d_2(0 + 0.5236)^2 = b_3 + 2c_3(0 - 0) + 3d_3(0 - 0)^2$$

 $2c_2 + 6d_2(0 + 0.5236) = 2c_3 + 6d_3(0 - 0)$

$$b_2 + 2c_2(0,5236) + 3d_2(0,2742) - b_3 = 0$$

 $2c_2 + 6d_2(0,5236) - 2c_3 = 0$

$$S_3' = S_4'$$

 $S_3'' = S_4''$

$$b_3 + 2c_3(0,5236 - 0) + 3d_3(0,5236 - 0)^2$$

$$= b_4 + 2c_4(0,5236 - 0,5236) + 3d_4(0,5236 - 0,5236)^2$$

$$2c_3 + 6d_3(0,5236 - 0) = 2c_4 + 6d_4(0,5236 - 0,5236)$$

$$b_3 + 2c_3(0,5236) + 3d_3(0,2742) - b_4 = 0$$

 $2c_3 + 6d_3(0,5236) - 2c_4 = 0$

$$S_4' = S_5'$$

 $S_4'' = S_5''$

$$b_4 + 2c_4(1,0472 - 0,5236) + 3d_4(1,0472 - 0,5236)^2$$

$$= b_5 + 2c_5(1,0472 - 1,0472) + 3d_5(1,0472 - 1,0472)^2$$

$$2c_4 + 6d_4(1,0472 - 0,5236) = 2c_5 + 6d_5(1,0472 - 1,0472)$$

$$b_4 + 2c_4(0,5236) + 3d_4(0,2742) - b_5 = 0$$

$$2c_4 + 6d_4(0,5236) - 2c_5 = 0$$

$$S_5' = S_6'$$

 $S_5'' = S_6''$

$$b_5 + 2c_5(1,5708 - 1,0472) + 3d_5(1,5708 - 1,0472)^2$$

= $b_6 + 2c_6(1,5708 - 1,5708) + 3d_6(1,5708 - 1,5708)^2$

$$2c_5 + 6d_5(1,5708 - 1,0472) = 2c_6 + 6d_6(1,5708 - 1,5708)$$

$$b_5 + 2c_5(0,5236) + 3d_5(0,2742) - b_6 = 0$$

 $2c_5 + 6d_5(0,5236) - 2c_6 = 0$

$$S_6' = S_7'$$

 $S_6'' = S_7''$

$$b_6 + 2c_6(2,0944 - 1,5708) + 3d_6(2,0944 - 1,5708)^2$$

$$= b_7 + 2c_7(2,0944 - 2,0944) + 3d_7(2,0944 - 2,0944)^2$$

$$2c_6 + 6d_6(2,0944 - 1,5708) = 2c_7 + 6d_7(2,0944 - 2,0944)$$

$$b_6 + 2c_6(0,5236) + 3d_6(0,2742) - b_7 = 0$$

 $2c_6 + 6d_6(0,5236) - 2c_7 = 0$

$$S_7' = S_8'$$

$$S_7'' = S_8''$$

$$b_7 + 2c_7(2,618 - 2,0944) + 3d_7(2,618 - 2,0944)^2$$

$$= b_8 + 2c_8(2,618 - 2,6180) + 3d_8(2,618 - 2,6180)^2$$

$$2c_7 + 6d_7(2,618 - 2,0944) = 2c_8 + 6d_8(2,618 - 2,6180)$$

$$b_7 + 2c_7(0,5236) + 3d_7(0,2742) - b_8 = 0$$

 $2c_7 + 6d_7(0,5236) - 2c_8 = 0$

Задамо поведінку сплайнів у початковій та кінцевій точках

Nº	X	Y
0	-1,5708	0
1	-1,0472	0,5483
2	-0,5236	0,2374
3	0	0
4	0,5236	0,2374
5	1,0472	0,5483
6	1,5708	0
7	2,0944	-2,1932
8	2,618	-5,9356
9	3,1416	-9,8696

$$S_0'' = 0$$

 $2c_0 + 6d_1(-1,5708 + 1,5708) = 0$
 $c_0 = 0$

$$S_8'' = 0$$

 $2c_8 + 6d_8(3,1416 - 2,6180) = 0$
 $2c_8 + d_8(3,1416) = 0$

Отримуємо такі рівняння:

```
a_0 = 0
a_1 = 0.5483
a_2 = 0.2374
a_3 = 0
a_4 = 0.2374
a_5 = 0.5483
a_6 = 0
a_7 = -2.1932
a_8 = -5.9356
c_0 = 0
```

```
b_0(0.5236) + d_0(0.1435) = 0.5483
b_1(0.5236) + c_1(0.2742) + d_1(0.1435) = -0.3109
b_2(0.5236) + c_2(0.2742) + d_2(0.1435) = -0.2374
b_3(0.5236) + c_3(0.2742) + d_3(0.1435) = 0.2374
b_4(0.5236) + c_4(0.2742) + d_4(0.1435) = 0.2374
b_5(0.5236) + c_5(0.2742) + d_5(0.1435) = -0.5483
b_6(0,5236) + c_6(0,2742) + d_6(0,1435) = -2,1932
b_7(0,5236) + c_7(0,2742) + d_7(0,1435) = -3,7424
b_8(0.5236) + c_8(0.2742) + d_8(0.1435) = -3.934
b_0 + d_0(0.8226) - b_1 = 0
d_0(3,1416) - 2c_1 = 0
b_1 + c_1(1,0472) + d_1(0,8226) - b_2 = 0
2c_1 + d_1(3,1416) - 2c_2 = 0
b_2 + c_2(1,0472) + d_2(0,8226) - b_3 = 0
2c_2 + d_2(3,1416) - 2c_3 = 0
b_3 + c_3(1,0472) + d_3(0,8226) - b_4 = 0
2c_3 + d_3(3,1416) - 2c_4 = 0
b_4 + c_4(1,0472) + d_4(0,8226) - b_5 = 0
2c_4 + d_4(3,1416) - 2c_5 = 0
b_5 + c_5(1,0472) + d_5(0,8226) - b_6 = 0
2c_5 + d_5(3,1416) - 2c_6 = 0
b_6 + c_6(1,0472) + d_6(0,8226) - b_7 = 0
2c_6 + d_6(3,1416) - 2c_7 = 0
b_7 + c_7(1,0472) + d_7(0,8226) - b_8 = 0
2c_7 + d_7(3,1416) - 2c_8 = 0
2c_8 + d_8(3,1416) = 0
```

Коефіцієнти СЛАР:

		-	-	-		-		-			-			-	-	_		-		-	_						
Nº	b0	d0	b1	c1	d1	b2	c2	d2	b3	c3	d3	b4	c4	d4	b5	c5	d5	b6	c6	d6	b7	c7	d7	b8	c8	d8	
1	0,5236	0,1435	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,5483
2	0	0	0,5236	0,2742	0,1435	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-0,3109
3	0	0	0	0	0	0,5236	0,2742	0,1435	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-0,2374
4	0	0	0	0	0	0	0	0	0,5236	0,2742	0,1435	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,2374
5	0	0	0	0	0	0	0	0	0	0	0	0,5236	0,2742	0,1435	0	0	0	0	0	0	0	0	0	0	0	0	0,2374
6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,5236	0,2742	0,1435	0	0	0	0	0	0	0	0	0	-0,5483
7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,5236	0,2742	0,1435	0	0	0	0	0	0	-2,1932
8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,5236	0,2742	0,1435	0	0	0	-3,7424
9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,5236	0,2742	0,1435	-3,934
10	1	0,8226	-1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11	0	3,1416	0	-2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12	0	0	1	1,0472	0,8226	-1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13	0	0	0	2	3,1416	0	-2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14	0	0	0	0	0	1	1,0472	0,8226	-1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15	0	0	0	0	0	0	2	3,1416	0	-2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16	0	0	0	0	0	0	0	0	1	1.0472	0,8226	-1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17	0	0	0	0	0	0	0	0	0	2	3,1416	0	-2	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18	0	0	0	0	0	0	0	0	0	0	0	1	1,0472	0,8226	-1	0	0	0	0	0	0	0	0	0	0	0	0
19	0	0	0	0	0	0	0	0	0	0	0	0	2	3,1416	0	-2	0	0	0	0	0	0	0	0	0	0	0
20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1,0472	0,8226	-1	0	0	0	0	0	0	0	0	0
21	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	3,1416	0	-2	0	0	0	0	0	0	0	0
22	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1.0472	0.8226	-1	0	0	0	0	0	0
23	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	3,1416	0	-2	0	0	0	0	0
24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1,0472	0,8226	-1	0	0	0
25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	3,1416	0	-2	0	0
26	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	3,1416	0
_				-		-																				-,-110	

Рахуємо методом оберненої матриці

					1			1	1																
2,4211	-0,6481	0,1735	-0,0464	0,0124	-0,0033	0,0009	-0,0002	0,0000	-0,2677	-0,0405	0,0717	0,0108	-0,0192	-0,0029	0,0051	0,0008	-0,0014	-0,0002	0,0004	0,0001	-0,0001	0,0000	0,0000	0,0000	0,0000
-1,8655	2,3649	-0,6331	0,1695	-0,0454	0,0121	-0,0032	0,0009	-0,0002	0,9768	0,1478	-0,2615	-0,0396	0,0700	0,0106	-0,0187	-0,0028	0,0050	0,0008	-0,0013	-0,0002	0,0004	0,0001	-0,0001	0,0000	0,0000
0,8866	1,2972	-0,3473	0,0930	-0,0249	0,0067	-0,0018	0,0005	-0,0001	-0,4642	0,0811	-0,1434	-0,0217	0,0384	0,0058	-0,0103	-0,0016	0,0028	0,0004	-0,0007	-0,0001	0,0002	0,0000	0,0000	0,0000	0,0000
-2,9303	3,7148	-0,9944	0,2662	-0,0713	0,0191	-0,0051	0,0013	-0,0003	1,5343	-0,2679	-0,4107	-0,0621	0,1100	0,0166	-0,0294	-0,0045	0,0079	0,0012	-0,0021	-0,0003	0,0006	0,0001	-0,0001	0,0000	0,0000
2,3644	-4,8629	3,1673	-0,8479	0,2270	-0,0608	0,0162	-0,0043	0,0009	-1,2380	0,2162	1,3082	0,1979	-0,3502	-0,0530	0,0937	0,0142	-0,0251	-0,0038	0,0067	0,0010	-0,0018	-0,0003	0,0004	0,0001	0,0000
-0,2371	1,1871	1,2168	-0,3257	0,0872	-0,0233	0,0062	-0,0016	0,0003	0,1241	-0,0217	-0,4974	0,0760	-0,1345	-0,0204	0,0360	0,0054	-0,0096	-0,0015	0,0026	0,0004	-0,0007	-0,0001	0,0002	0,0000	0,0000
0,7837	-3,9238	3,9807	-1,0656	0,2853	-0,0764	0,0204	-0,0054	0,0011	-0,4104	0,0716	1,6442	-0,2513	-0,4401	-0,0666	0,1178	0,0178	-0,0315	-0,0048	0,0084	0,0013	-0,0022	-0,0003	0,0006	0,0001	0,0000
-0,6324	3,1661	-5,0775	3,2247	-0,8633	0,2311	-0,0618	0,0162	-0,0032	0,3311	-0,0578	-1,3267	0,2028	1,3319	0,2015	-0,3566	-0,0539	0,0954	0,0144	-0,0255	-0,0039	0,0068	0,0010	-0,0017	-0,0003	0,0001
0,0634	-0,3175	1,2087	1,2110	-0,3242	0,0868	-0,0232	0,0061	-0,0012	-0,0332	0,0058	0,1330	-0,0203	-0,4998	0,0757	-0,1339	-0,0203	0,0358	0,0054	-0,0096	-0,0015	0,0026	0,0004	-0,0006	-0,0001	0,0001
-0,2096	1,0494	-3,9950	3,9998	-1,0707	0,2866	-0,0766	0,0201	-0,0040	0,1097	-0,0192	-0,4397	0,0672	1,6520	-0,2501	-0,4422	-0,0669	0,1184	0,0179	-0,0317	-0,0048	0,0084	0,0013	-0,0021	-0,0004	0,0002
0,1691	-0,8468	3,2235	-5,0929	3,2288	-0,8643	0,2311	-0,0608	0,0121	-0,0886	0,0155	0,3548	-0,0542	-1,3330	0,2018	1,3336	0,2017	-0,3570	-0,0540	0,0955	0,0145	-0,0255	-0,0039	0,0064	0,0011	-0,0006
-0,0170	0,0849	-0,3233	1,2102	1,2106	-0,3240	0,0866	-0,0228	0,0046	0,0089	-0,0016	-0,0356	0,0054	0,1337	-0,0202	-0,5000	0,0756	-0,1338	-0,0202	0,0358	0,0054	-0,0095	-0,0015	0,0024	0,0004	-0,0002
0,0561	-0,2807	1,0684	-4,0001	4,0011	-1,0710	0,2863	-0,0753	0,0150	-0,0294	0,0051	0,1176	-0,0180	-0,4418	0,0669	1,6526	-0,2500	-0,4424	-0,0669	0,1184	0,0179	-0,0315	-0,0048	0,0079	0,0014	-0,0007
-0,0452	0,2265	-0,8621	3,2276	-5,0939	3,2288	-0,8633	0,2270	-0,0454	0,0237	-0,0041	-0,0949	0,0145	0,3565	-0,0540	-1,3334	0,2017	1,3337	0,2018	-0,3569	-0,0540	0,0951	0,0145	-0,0238	-0,0041	0,0021
0,0045	-0,0227	0,0865	-0,3237	1,2103	1,2104	-0,3236	0,0851	-0,0170	-0,0024	0,0004	0,0095	-0,0015	-0,0358	0,0054	0,1337	-0,0202	-0,5000	0,0756	-0,1338	-0,0203	0,0356	0,0054	-0,0089	-0,0016	0,0008
-0,0150	0,0751	-0,2857	1,0698	-4,0003	4,0009	-1,0697	0,2812	-0,0562	0,0078	-0,0014	-0,0315	0,0048	0,1182	-0,0179	-0,4420	0,0669	1,6526	-0,2500	-0,4422	-0,0669	0,1178	0,0180	-0,0294	-0,0051	0,0026
0,0121	-0,0606	0,2305	-0,8631	3,2276	-5,0929	3,2247	-0,8479	0,1695	-0,0063	0,0011	0,0254	-0,0039	-0,0953	0,0144	0,3566	-0,0539	-1,3334	0,2017	1,3333	0,2018	-0,3552	-0,0543	0,0887	0,0155	-0,0077
-0,0012	0,0061	-0,0231	0,0866	-0,3238	1,2108	1,2089	-0,3179	0,0635	0,0006	-0,0001	-0,0025	0,0004	0,0096	-0,0014	-0,0358	0,0054	0,1338	-0,0202	-0,5002	0,0757	-0,1332	-0,0204	0,0333	0,0058	-0,0029
0,0040	-0,0201	0,0764	-0,2860	1,0695	-3,9990	3,9958	-1,0506	0,2100	-0,0021	0,0004	0,0084	-0,0013	-0,0316	0,0048	0,1182	-0,0179	-0,4418	0,0668	1,6520	-0,2499	-0,4401	-0,0673	0,1100	0,0192	-0,0096
-0,0032	0,0162	-0,0616	0,2305	-0,8621	3,2235	-5,0775	3,1673	-0,6331	0,0017	-0,0003	-0,0068	0,0010	0,0255	-0,0039	-0,0952	0,0144	0,3561	-0,0539	-1,3317	0,2014	1,3269	0,2028	-0,3315	-0,0579	0,0289
0,0003	-0,0016	0,0062	-0,0233	0,0870	-0,3254	1,2165	1,1874	-0,2373	-0,0002	0,0000	0,0007	-0,0001	-0,0026	0,0004	0,0096	-0,0015	-0,0359	0,0054	0,1344	-0,0203	-0,5026	0,0760	-0,1243	-0,0217	0,0108
-0,0011	0,0053	-0,0203	0,0761	-0,2847	1,0644	-3,9800	3,9246	-0,7845	0,0006	-0,0001	-0,0022	0,0003	0,0084	-0,0013	-0,0315	0,0048	0,1176	-0,0178	-0,4397	0,0665	1,6442	-0,2487	-0,4107	-0,0717	0,0358
0,0008	-0,0042	0,0162	-0,0606	0,2265	-0,8468	3,1661	-4,8629	2,3649	-0,0004	0,0001	0,0018	-0,0003	-0,0067	0,0010	0,0250	-0,0038	-0,0936	0,0142	0,3498	-0,0529	-1,3079	0,1979	1,2383	0,2162	-0,1080
-0,0001	0,0005	-0,0018	0,0066	-0,0248	0,0928	-0,3469	1,2970	0,8866	0,0000	0,0000	-0,0002	0,0000	0,0007	-0,0001	-0,0027	0,0004	0,0102	-0,0016	-0,0383	0,0058	0,1433	-0,0217	-0,5358	0,0811	-0,0405
0,0003	-0,0013	0,0051	-0,0190	0,0710	-0,2657	0,9933	-3,7140	2,9303	-0,0001	0,0000	0,0006	-0,0001	-0,0021	0,0003	0,0078	-0,0012	-0,0294	0,0044	0,1097	-0,0166	-0,4104	0,0621	1,5343	-0,2321	-0,1338
-0,0002	0,0008	-0,0032	0,0121	-0,0452	0,1691	-0,6324	2,3644	-1,8655	0,0001	0,0000	-0,0004	0,0001	0,0013	-0,0002	-0,0050	0,0008	0,0187	-0,0028	-0,0699	0,0106	0,2612	-0,0395	-0,9768	0,1478	0,4035

Множимо матрицю на колонку вільних коефіцієнтів.

Отримали значення коефіцієнтів.

b0	1,480307
d0	-1,58041
b1	0,180263
c1	-2,4825
d1	1,919281
b2	-0,84061
c2	0,532303
d2	0,395738
b3	0,042347
с3	1,153927
d3	-0,70508
b4	0,670737
c4	0,046381
d4	-0,88164
b5	-0,00593
c5	-1,3385
d5	-1,24165
b6	-2,42899
с6	-3,28889
d6	-0,13634
b7	-5,98527
с7	-3,50305
d7	2,453145
b8	-7,63571
c8	0,350348
d8	-0,22304

	a0	0	a1	0,5483	a2	0,2374	a3	0	a4	0,2374	a5	0,5483	a6	0	a7	-2,1932	a8	-5,9356
	b0	1,480307	b1	0,180263	b2	-0,84061	b3	0,042347	b4	0,670737	b5	-0,00593	b6	-2,42899	b7	-5,98527	b8	-7,63571
	c0	0	c1	-2,4825	c2	0,532303	c3	1,153927	c4	0,046381	c5	-1,3385	c6	-3,28889	c7	-3,50305	c8	0,350348
	d0	-1,58041	d1	1,919281	d2	0,395738	d3	-0,70508	d4	-0,88164	d5	-1,24165	d6	-0,13634	d7	2,453145	d8	-0,22304
_				-		-		-		-		-		-		-		

Побудуємо графік сплайнів

Х	Υ
-1,5708	0,0000
-1,3963	0,2499
-1,2218	0,4494
-1,0472	0,5483
-0,8727	0,5144
-0,6982	0,3904
-0,5236	0,2374
-0,3492	0,1091
-0,1746	0,0257
0,0000	0,0000
0,1744	0,0387
0,3490	0,1254
0,5236	0,2374
0,6981	0,3512
0,8726	0,4397
1,0472	0,5483
1,2217	0,4999
1,3962	0,3304
1,5708	0,0000
1,7453	-0,5247
1,9198	-1,2541
2,0944	-2,1932
2,2689	-3,3313
2,4434	-4,6045
2,6180	-5,9356
2,7925	-7,2585
2,9671	-8,5680
3,1416	-9,8696

Графік похибки

Інтерполяційний поліном у формі Ньютона

(Пораховано програматиично)

NEWTON POLINOM: + 1.51085e - 16 + 1.0472(x - -1.5708) + -1.56699(x - -1.5708)(x - -1.0472) + 1.08287(x - -1.5708)(x - -1.0472)(x - -0.523599) + -0.294514(x - -1.5708)(x - -1.0472)(x - -0.523599)(x - 2.22045e - 16) + -0.0574944(x - -1.5708)(x - -1.0472)(x - -0.523599)(x - -2.22045e - 16)(x - 0.523599)(x - 1.0472)(x - -0.523599)(x - -2.22045e - 16)(x - 0.523599)(x - 1.0472)(x - -0.523599)(x - -2.22045e - 16)(x - 0.523599)(x - 1.0472)(x - 1.5708)(x - -1.5708)(x - -1.0472)(x - 1.5708)(x - -1.0472)(x - 1.5708)(x - -1.0472)(x - 1.5708)(x - -1.0472)(x - 1.5708)(x - -1.0472)(x - -1.5708)(x - -1.0472)(x - -1.0472)(x

Похибка

Код програми

```
#include <iostream>
#include <cmath>
#include <vector>
#include <string>
#include <iomanip>
#define PI 3.14159265358979323846
using namespace std;
vector<double> knots(double start, double end, int amount) {
    vector<double> knots;
    double step = (end - start) / (amount - 1);
    for (double i = start; i <= end; i += step)</pre>
        knots.push back(i);
    return knots;
}
vector<double> values(vector<double> knots) {
    vector<double> values;
    for (int i = 0; i < knots.size(); i++)</pre>
        double y = pow(knots[i],2)*cos(knots[i]);
        //double y = knots[i] * sqrt(knots[i]);
        values.push_back(y);
    return values;
}
vector<double> Newton(vector<double> knots, vector<double> values) {
    vector<double> a;
    a.push_back(values[0]);
    for (int i = 1; i < knots.size(); i++)</pre>
       double werh = (values[i] - a[0]);
        for (int j = 1; j < i; j++)
        {
            double n = 1;
            for (int k = 0; k < j; k++)
                n *= knots[i] - knots[k];
            }
            werh -= a[j] * n;
        double nis = 1;
        for (int j = 0; j < i; j++)
            nis *= (knots[i] - knots[j]);
        a.push_back(werh / nis);
    }
    for (int i = 0; i < knots.size(); i++)</pre>
        cout << " + " << a[i];
        double n = 1;
        for (int j = 0; j < i; j++)
        {
```

```
cout << "*(" << "x" << " - " << knots[j] << ")";</pre>
        }
    }
    cout << endl;</pre>
    return a;
}
vector<double> valuesNewton(vector<double> knots, vector<double> a, vector<double> X) {
    vector<double> values;
    for (auto x : X) {
        double N = 0;
        for (int i = 0; i < knots.size(); i++)</pre>
             double n = 1;
             for (int j = 0; j < i; j++)
                 n *= x - knots[j];
             N += a[i] * n;
        values.push_back(N);
    }
    return values;
}
int main()
    int n = 10;
                    // с какой точностью выводить число
    vector<double> knot = knots(-PI/2, PI, 10);
    vector<double> value = values(knot);
    cout << "\nKNOTS:\t\tVALUES:\n";</pre>
    for (int i = 0; i < knot.size(); i++)</pre>
        cout << fixed << setprecision(n) << knot[i] << "\t\t";</pre>
        cout << fixed << setprecision(n) << value[i] << "\n";</pre>
    }
    // Інтерполяційний поліном у формі Ньютона
    cout << "\nNEWTON POLINOM:\n";</pre>
    vector<double> NewtonPolinom = Newton(knot, value);
    vector<double> X = knot;
    vector<double> Y = valuesNewton(knot, NewtonPolinom, X);
    cout << "\n X:\t\t Y:\n";</pre>
    for (int i = 0; i < X.size(); i++)</pre>
    {
         cout << X[i] << "\t\t";</pre>
         cout << Y[i] << "\n";</pre>
    }
    // Значення похибки інтерполяційного поліному у формі Ньютона
    X = knots(-PI / 2, PI, 35);
    cout << "\n\nNEWTON POHIBKA:\n";
cout << " values\t\t\t epsilon\n";</pre>
    vector<double> f = values(X);
```

```
vector<double> newton = valuesNewton(knot, NewtonPolinom, X);
for (int i = 0; i < X.size(); i++)
{
    double E = abs(newton[i]-f[i]);
    cout << X[i] << "\t\t";
    cout << E << "\n";
}
return 0;
}</pre>
```

```
Microsoft Visual Studio Debug Console
                                                    0.0000000000
                                                    0.2374257816
0.00000000000
  -0.5235987756
                                                    0.2374257816
0.5483113556
  0.5235987756
  1.0471975512
 1.5707963268
2.0943951024
                                                    0.0000000000
                                                     -2.1932454225
                                                     -5.9356445393
-9.8696044011
  3.1415926536
  NEWTON POLINOM:
NEMTON POLINOM: + 0.00000000000 + 1.0471975512^*(x - -1.5707963268) + -1.5669872981^*(x - -1.5707963268)^*(x - -1.0471975512) + 1.0828659740^*(x - -1.5707963268)^*(x - -1.0471975512)^*(x - -0.5235987756) + -0.2945136545^*(x - -1.5707963268)^*(x - -1.0471975512)^*(x - -0.5235987756)^*(x - -0.0000000000) + -0.0574943558^*(x - -1.5707963268)^*(x - -1.0471975512)^*(x - -0.5235987756)^*(x - -0.0000000000) + -0.0574943558^*(x - -1.5707963268)^*(x - -1.0471975512)^*(x - -0.5235987756)^*(x - -0.00000000000)^*(x - 0.5235987756)^*(x - 1.0471975512)^*(x - -0.5235987756)^*(x - -1.0471975512)^*(x - -0.00000000000)^*(x - 0.5235987756)^*(x - 1.0471975512)^*(x - 1.5707963268)^*(x - -1.5707963268)^*(x - -1.0471975512)^*(x - -0.00000000000)^*(x - 0.5235987756)^*(x - 1.0471975512)^*(x - 1.5707963268)^*(x - 2.0943951024) + 0.0001429304^*(x - 1.5707963268)^*(x - -1.0471975512)^*(x - 1.0471975512)^*(x - 1.0471975512)^*(x - 1.5707963268)^*(x - 2.0943951024) + 0.0001429304^*(x - 1.5707963268)^*(x - 2.0471975512)^*(x - 1.0471975512)^*(x - 1.0471975512)^*(x - 1.0471975512)^*(x - 1.5707963268)^*(x - 2.0943951024)^*(x - 2.0943951024)^*(x - 2.6179938780)
   1.5707963268
                                                    0.0000000000
  -0.5235987756
                                                     0.2374257816
  3.5235987756
                                                     0.2374257816
                                                     0.5483113556
 1.5707963268
                                                     0.0000000000
 2.6179938780
3.1415926536
                                                     -5.9356445393
-9.8696044011
 NEWTON POHIBKA:
   values
1.5707963268
   1.4321966509
                                                    0.0010680450
   1.1549972991
                                                    0.0002747057
   1.0163976232
                                                     0.0000517442
   0.8777979473
                                                    0.0001557030
   0.6005985955
                                                    0.0000394030
   0.3233992438
                                                    0.0000463234
   0.0461998920
                                                    0.0000087275
                                                    0.0000227166
    .2309994598
    .5081988116
                                                    0.0000017313
    .6467984875
.7853981634
                                                    0.0000169991
                                                    0.0000113513
    .0625975152
                                                    0.0000015832
                                                    0.0000143288
0.0000189867
     3397968670
     4783965429
    .6169962188
                                                    0.0000066607
    .7555958947
.8941955705
                                                    0.0000255648
0.0000322335
                                                    0.0000156164
0.0000249468
    .0327952464
                                                    0.0000723304
0.0000894524
     3099945982
     4485942741
    . 5871939500
                                                    0.0000282830
     8643933018
                                                    0.0003846813
                                                    0.0004996679
```