LINGUAGENS FORMAIS E AUTÔMATOS --- LINGUAGEM LIVRE DE CONTEXTO ---

Introdução

É possível simplificar alguns tipos de produções sem reduzir o poder de geração de GLCs

A simplificação será utilizada em compiladores para otimizar a análise sintática

Três passos básicos:

- Eliminar produções inúteis
- Eliminar produções vazias
- Eliminar produções unidade

Uma variável pode ser inútil por duas razões:

1) A variável nunca é alcançada

$$S \to A$$

$$A \rightarrow aA \mid \varepsilon$$

$$B \rightarrow bA$$

 ${\it B}$ nunca será alcançada

Uma variável pode ser inútil por <u>duas</u> razões:

1) A variável nunca é alcançada

$$S \to A$$

$$A \rightarrow aA \mid \varepsilon$$

$$B \rightarrow bA$$

 ${\it B}$ nunca será alcançada

2) Não consegue derivar uma cadeia (somente de terminais)

$$S \rightarrow aSb \mid \varepsilon \mid A$$

$$A \rightarrow aA$$

Se S derivar em A nunca alcançada uma sentença

Exemplo

$$S \rightarrow ABC \mid b$$

$$A \rightarrow a$$

$$B \rightarrow b$$

$$C \rightarrow cC$$

Se derivarmos $S\Rightarrow ABC$ nunca mais nos livraremos do C, logo C é inútil, e pode-se retirar a produção que a contém

Resultando em:

$$S \rightarrow ABC \mid b$$

$$A \rightarrow a$$

$$B \rightarrow b$$

$$C \rightarrow cC$$

Exemplo

$$S \rightarrow ABC \mid b$$

$$A \rightarrow a$$

$$B \rightarrow b$$

$$C \rightarrow cC$$

Se derivarmos $S\Rightarrow ABC$ nunca mais nos livraremos do C, logo C é inútil, e pode-se retirar a produção que a contém

$$S \rightarrow b$$

$$A \rightarrow a$$

$$B \rightarrow b$$

Como agora A e B são inalcançáveis, fica somente:

$$S \rightarrow b$$

Exemplo (2)

$$S \rightarrow aS \mid A \mid C$$

$$A \rightarrow a$$

$$B \rightarrow aa$$

$$C \rightarrow aCb$$

Se derivarmos $S \Rightarrow C$ nunca mais nos livraremos do C, por causa da regra $C \rightarrow aCb$, logo C é inútil, e pode ser retirada

Resultando em:

$$S \rightarrow aS|A$$

$$A \rightarrow a$$

$$B \rightarrow aa$$

Exemplo (2)

$$S \rightarrow aS \mid A \mid C$$

$$A \rightarrow a$$

$$B \rightarrow aa$$

$$C \rightarrow aCb$$

Se derivarmos $S\Rightarrow C$ nunca mais nos livraremos do C, por causa da regra $C\to aCb$, logo C é inútil, e pode ser retirada

Resultando em:

$$S \rightarrow aS|A$$

$$A \rightarrow a$$

$$B \rightarrow aa$$

a regra $B \rightarrow aa$ nunca será atingida

Exemplo (2)

$$S \rightarrow aS \mid A \mid C$$

$$A \rightarrow a$$

$$B \rightarrow aa$$

$$C \rightarrow aCb$$

Se derivarmos $S \Rightarrow C$ nunca mais nos livraremos do C, por causa da regra $C \rightarrow aCb$, logo C é inútil, e pode ser retirada

Portanto, a simplificação ficará assim:

$$S \rightarrow aS \mid A$$

$$A \rightarrow a$$

Algoritmo:

- 1) Criar um conjunto dos símbolos úteis
- 2) Retirar os símbolos inalcançáveis

Eliminar produções inúteis :: criando conjunto de símbolos úteis

Inicia o conjunto $V = \emptyset$

se A gera terminal diretamente então

adiciona A em V

se B gera terminal indiretamente então

adiciona B em V

Ex: $A \rightarrow a$

Ex: $B \rightarrow bcA$

Eliminar produções inúteis :: retirar símbolos inalcançáveis

Para retirar os símbolos inalcançáveis, vamos utilizar o autômato. Suponha que após a primeira etapa o resultado foi:

$$S \rightarrow C$$

$$A \rightarrow a$$

$$B \rightarrow bcA$$

$$C \rightarrow c$$

Eliminar produções inúteis :: retirar símbolos inalcançáveis

Para retirar os símbolos inalcançáveis, vamos utilizar o autômato. Suponha que após a primeira etapa o resultado foi:

$$S \rightarrow C$$

$$A \rightarrow a$$

$$B \rightarrow bcA$$

$$C \rightarrow c$$

Neste caso, percebe-se que os estados B e A são inalcançáveis

Eliminar produções inúteis :: retirar símbolos inalcançáveis

Que resulta em:

$$S \rightarrow C$$

$$C \rightarrow c$$

Que pode ser otimizado para:

$$S \rightarrow c$$

 $A \rightarrow a$

Considere a GLC abaixo

$$S \rightarrow aS \mid A \mid C$$

$$A \rightarrow a$$

$$B \rightarrow aaD$$

$$C \rightarrow aCD$$

$$D \rightarrow bdD \mid \varepsilon$$

Terminais diretos

Adiciona A em V porque $A \rightarrow a$

Considere a GLC abaixo

$$S \rightarrow aS \mid A \mid C$$

$$A \rightarrow a$$

$$B \rightarrow aaD$$

$$C \rightarrow aCD$$

$$D \rightarrow bdD \mid \varepsilon$$

$$A \rightarrow a$$

$$D \rightarrow bdD \mid \varepsilon$$

Terminais diretos

Adiciona A em V porque $A \rightarrow a$

Adiciona D em V porque $D \to \varepsilon$

Considere a GLC abaixo

$$S \rightarrow aS \mid A \mid C$$

$$A \rightarrow a$$

$$B \rightarrow aaD$$

$$C \rightarrow aCD$$

$$D \rightarrow bdD \mid \varepsilon$$

$$A \rightarrow a$$

$$D \rightarrow bdD \mid \varepsilon$$

$$S \rightarrow aS \mid A \mid C$$

Terminais diretos

Adiciona A em V porque $A \rightarrow a$

Adiciona D em V porque $D \to \varepsilon$

Terminais indiretos

S vai entrar porque, como $S \rightarrow A$, e A já está em V

Considere a GLC abaixo

$$S \rightarrow aS \mid A \mid C$$

$$A \rightarrow a$$

$$B \rightarrow aaD$$

$$C \rightarrow aCD$$

$$D \rightarrow bdD \mid \varepsilon$$

$$A \rightarrow a$$

$$D \rightarrow bdD \mid \varepsilon$$

$$S \rightarrow aS \mid A \mid C$$

$$B \rightarrow aaD$$

Terminais diretos

Adiciona A em V porque $A \rightarrow a$

Adiciona D em V porque $D \to \varepsilon$

Terminais indiretos

S vai entrar porque, como $S \rightarrow A$, e A já está em V

B vai entrar porque, como $B \rightarrow aaD$, e D já está em V

O resultado é:

$$S \rightarrow aS|A$$

$$A \rightarrow a$$

$$B \rightarrow aaD$$

$$D \rightarrow bdD \mid \varepsilon$$

Agora vamos eliminar os estados inalcançáveis


```
O resultado é: S \to aS \mid A A \to a Ou S \to aS \mid a Que gera a linguagem L(G) = \{a^n \mid n \geq 1\}
```

Três passos básicos:

- Eliminar produções inúteis
- □ Eliminar produções vazias
- Eliminar produções unidade

Três passos básicos:

- Eliminar produções inúteis
- Eliminar produções vazias
- Eliminar produções unidade
- O algoritmo é dividido em três etapas:
- Criar um conjunto das variáveis que contenham produções vazias
- Aplicar o método de retirada das produções vazias
- Verificar se ainda é necessário incluir a palavra vazia

Eliminar produções vazias :: variáveis que contenham produções vazias

Criar um conjunto das variáveis que contenham produções vazias

As produções vazias pode ser diretamente ou indiretamente

Variáveis com esta característica são chamadas de anuláveis

$$A \to \varepsilon$$
 ou

$$A \to \varepsilon \in B \to A$$

A é anulável de forma **direta**; B é anulável de forma **indireta**

Eliminar produções vazias :: eliminação das produções vazias

Aplicar o método de eliminar as produções vazias no conjunto de variáveis anuláveis criadas anteriormente

Suponha o conjunto abaixo de variáveis anuláveis:

$$C \rightarrow AB \mid Aa \mid c$$

$$A \rightarrow a \mid \varepsilon$$

$$B \to b \mid \varepsilon$$

Se A e B são anuláveis, C também é. Criaremos uma nova produção C de tal forma que ela não seja mais anulável...

:: eliminação das produções vazias

Exemplo:

$$C \rightarrow AB \mid Aa \mid c$$

O processo consiste em:

$$C \rightarrow A\varepsilon$$
 Para $B = \varepsilon$

$$C \rightarrow \varepsilon B$$
 Para $A = \varepsilon$

$$C \to \varepsilon \varepsilon$$
 Para $A = \varepsilon$ e $B = \varepsilon$

$$C \rightarrow \varepsilon a$$
 Para $A = \varepsilon$

Logo, a nova GLC será:

$$C \rightarrow AB \mid Aa \mid c \mid A \mid B \mid a$$

$$A \rightarrow a$$

$$B \rightarrow b$$

Eliminar produções vazias $:: Verificar a necessidade de incluir <math>\varepsilon$

Devemos verificar se a gramática aceita a palavra vazia. Caso ela aceite, acrescentamos ${\mathcal E}$ na variável inicial

Antes, a GLC aceitava a cadeia vazia? Sim

$$C \rightarrow AB \mid Aa \mid c$$

$$A \rightarrow a \mid \varepsilon$$

$$B \to b \mid \varepsilon$$

Logo, a nova GLC será:

$$C \rightarrow AB \mid Aa \mid c \mid A \mid B \mid a \mid \varepsilon$$

$$A \rightarrow a$$

$$B \rightarrow b$$

Eliminar produções vazias $:: Verificar a necessidade de incluir <math>\varepsilon$

Devemos verificar se a gramática aceita a palavra vazia. Caso ela aceite, acrescentamos ε na variável inicial

$$C \rightarrow AB \mid Aa \mid D$$

$$A \rightarrow a \mid \varepsilon$$

$$B \rightarrow b \mid \varepsilon$$

$$D \rightarrow d \mid \varepsilon$$

A gramática acima aceita a cadeia vazia e portanto, requer $\mathcal E$ na variável inicial

:: Exemplo

```
S \rightarrow AB
A \rightarrow aAA \mid \varepsilon
                                                                Conjunto de anuláveis \{A, B, S\}
B \rightarrow bBB \mid \varepsilon
A \rightarrow aAA \mid \varepsilon
A \rightarrow aA\varepsilon
                                    para A = \varepsilon
                                     para A = \varepsilon
A \rightarrow a \varepsilon A
                                     para A = \varepsilon e A = \varepsilon
A \rightarrow a\varepsilon\varepsilon
Logo, a nova produção será
A \rightarrow aAA \mid aA \mid a
```

Eliminar produções vazias :: Exemplo

 $B \rightarrow bBB \mid bB \mid b$

```
S 	oup AB
A 	oup aAA \mid \varepsilon Conjunto de anuláveis \{A, B, S\}
B 	oup bBB \mid \varepsilon
B 	oup bBB \mid \varepsilon
B 	oup bB\varepsilon para B = \varepsilon
B 	oup b\varepsilon para B = \varepsilon
B 	oup b\varepsilon para B = \varepsilon
Logo, a nova produção será
```

:: Exemplo

```
S \rightarrow AB
A \rightarrow aAA \mid \varepsilon
                                                          Conjunto de anuláveis \{A, B, S\}
B \rightarrow bBB \mid \varepsilon
S \rightarrow AB
S \to \varepsilon B
                                 para A = \varepsilon
S \to A\varepsilon
                                 para B = \varepsilon
S \to \varepsilon \varepsilon
                                 para A = \varepsilon e B = \varepsilon (S é anulável)
Logo, a nova produção será
S \rightarrow AB \mid A \mid B
```

Eliminar produções vazias :: Exemplo

A gramática que era assim:

$$S \to AB$$

$$A \rightarrow aAA \mid \varepsilon$$

$$B \rightarrow bBB \mid \varepsilon$$

Agora será assim:

$$S \rightarrow AB \mid A \mid B$$

$$A \rightarrow aAA \mid aA \mid a$$

$$B \rightarrow bBB \mid bB \mid b$$

Como a linguagem aceitava a cadeia vazia, a nova gramática é:

$$S \rightarrow AB \mid A \mid B \mid \varepsilon$$

$$A \rightarrow aAA \mid aA \mid a$$

$$B \rightarrow bBB \mid bB \mid b$$

Eliminar produção unidade

Eliminar produção unidade

O nome vem do fato da produção não alterar o comprimento, mas somente o nome. Por exemplo: $A \to B$

Propriedade: $A \rightarrow B$, $B \rightarrow C \implies A \rightarrow C$

Outra notação: (A, B) é o mesmo que $A \rightarrow B$

O algoritmo é simples. Para cada par unidade (A, B), tais que:

$$B \rightarrow y_1 | y_2 | y_3 | \cdots$$
 onde $\{y_1, y_2, y_3, \cdots\}$ são terminais

Adiciono

$$A \rightarrow y_1 | y_2 | y_3 | \cdots$$

Eliminar produção unidade :: Exemplo

Considere a seguinte gramática:

$$S \rightarrow Aa \mid B$$

 $B \rightarrow A \mid bb$
 $A \rightarrow a \mid bc \mid B$

Quem são os pares unidades?

Por transitividade

Eliminar produção unidade :: Exemplo

Analisando cada par unidade: (S, B)

B produz só símbolos terminais? Sim. $B\to bb$, neste caso, eu incluo a regra $S\to bb$

Analisando cada par unidade: (A, B)

B produz só símbolos terminais? Sim. $B\to bb$, neste caso, eu incluo a regra $A\to bb$

Analisando cada par unidade: (B, A)

A produz só símbolos terminais? Sim. $A \rightarrow a|bc$, neste caso, eu incluo a regra $B \rightarrow a|bc$

Analisando cada par unidade: (S, A)

A produz só símbolos terminais? Sim. $A \rightarrow a|bc$, neste caso, eu incluo a regra $S \rightarrow a|bc$

Eliminar produção unidade :: Exemplo

A gramática que era:

$$S \rightarrow Aa \mid B$$

$$B \rightarrow A \mid bb$$

$$A \rightarrow a \mid bc \mid B$$

Agora ficou:

$$S \rightarrow Aa|bb|a|bc$$

$$B \rightarrow bb|a|bc$$

$$A \rightarrow a|bc|bb$$

