1. 已知 $\frac{\arctan x}{x}$ 是可微函数 f(x) 的一个原函数,则 $\int x f'(x) dx$ 等于_____.

(a)
$$\frac{1}{1+x^2} - \frac{\arctan x}{x} + C$$

(b)
$$\frac{1}{1+x^2} - \frac{2 \arctan x}{x} + C$$

(c)
$$\frac{\arctan x}{x} - \frac{1}{1+x^2} + C$$

(d)
$$\frac{2 \arctan x}{x} - \frac{1}{1+x^2} + C$$

答案: (b)

- 2. 下面哪个命题是正确的:
- (a) 若 f 在 [a,b] 上有跳跃间断点,则 f 在 [a,b] 上一定没有原函数;
- (b) 若 f 在 [a,b] 上有可去间断点, 则 f 在 [a,b] 上一定没有原函数;
- (c) 若 f 在 [a,b] 上有定义, 且 f 在 a 的右极限不存在,则 f 在 [a,b] 上一定没有原函数;
- (d) 黎曼函数在 [0,1] 上有原函数.

答案: (a,b)

- 5. 下列陈述正确的是
- (A) f 在区间 [a,b] 上可积蕴含 f^2 在区间 [a,b] 上可积
- (B) f^2 在区间 [a,b] 上可积蕴含 f 在区间 [a,b] 上可积
- (C) f 在区间 [a,b] 上可积蕴含 f^3 在区间 [a,b] 上可积
- (D) f^3 在区间 [a,b] 上可积蕴含 f 在区间 [a,b] 上可积

6. 计算
$$\lim_{n \to \infty} \frac{\pi}{n} \sum_{k=1}^{n} \cos(\frac{k\pi}{2n}) =$$

答案: 2

7. 计算
$$\int_0^2 \frac{e^x}{e^{x-1} + e^{1-x}} dx =$$

答案:
$$e$$
8. 计算 $\lim_{n \to \infty} \int_0^1 \frac{x^n \sin x}{1 + e^{x^2}} dx = \underline{\hspace{1cm}}$

答案: 0

9. 计算
$$\lim_{x \to 0} \int_0^x \frac{e^{-(tx)^2} - 1}{x^5} dt = \underline{\hspace{1cm}}$$

(A)
$$-\frac{1}{6}$$

(B)
$$-\frac{1}{5}$$

- (C) $-\frac{1}{4}$
- (D) $-\frac{1}{3}$

答案: D

10. 计算 $\int_0^1 (x - \frac{1}{2})^2 \sin[(x - \frac{1}{2})\pi] dx =$ ______

答案: 0

- 3. 设 f(x) 在区间 [0,1] 上连续, $\int_0^1 f(x) \, dx = \frac{1}{2}$, 则下列断言正确的是_____
- (A) 一定存在 $a \in (0,1)$, 使得 $\int_0^a f(x) dx = a$
- (B) 一定存在 $a \in [0,1]$, 使得 f(a) = 1
- (C) 对任意 $c \in (0, \frac{1}{2})$, 一定存在 $a \in [0, 1]$ 使得 $\int_0^a f(x) dx = c$
- (D) 一定存在 $a \in (0,1)$, 使得 $f(a) = \frac{1}{2}$
- (E) 一定存在 $a \in (0,1)$, 使得 f(a) = a

答案: C, D, E

- 4. 设 f 在 [0,1] 上可积,则下列断言正确的是
- (A) 若对于无理点 $x \in [0,1]$, 有 f(x) = 0,则 $\int_0^1 f(x) dx = 0$
- (B) 若 f(x) 非负,且有无穷多个 $x \in [0,1]$,使得 f(x) > 0,则 $\int_0^1 f(x) \, dx > 0$
- (C) 若 $\int_0^1 f(x)\,dx>0$,则存在一个子区间 $[a,b]\subset[0,1]$, 使得 f(x)>0 对所有 $x\in[a,b]$ 成立
- (D) 若 f(x) 非负, 且 $\int_0^1 f(x) dx = 0$, 则有无穷多个 $x \in [0,1]$, 使得 f(x) = 0

答案: A, C, D. 反证法 + 定积分定义来理解 C, D