Biao Jia

✓ biao@cs.unc.edu github.com/rmglife in linkedin.com/in/biaojia

EDUCATION

UNC at Chapel Hill

Computer Science Department PhD Candidate Expected Grad. May 2021 Advised by Dinesh Manocha

Tsinghua University

Computer Science and Technology Department BS in Computer Science Grad. Jul 2014

SKILLS

Languages:

Python, C++, Java, Go, Matlab Frameworks: OpenCV, Tensorflow, ROS, Tesseract, skLearn Tools: Git, Vim

COURSEWORK

Deep Neural Network 3D Computer Vision Motion Planning Computer Graphics Natural Language Processing Parallel Computing

RESEARCH INTERESTS

Motion Planning Machine Learning Computer Vision Natural Language Processing

02.21.2018

EXPERIENCE

University of North Carolina at Chapel Hill Aug 2016 – present Research Assistant Chapel Hill, NC

- Researched on the multi-agent motion planning with arbitrarily-shaped obstacles.
- Human intention prediction based motion planning for robots.

City University of Hong Kong, MBE

Jun 2017 – Aug 2017 Hong Kong

Research Assistant

• Built a application for learning manipulation of highly deformable objects like cloth using ABB YuMi.

Landscape Mobile Tech Co., Ltd.

Jun 2014 - May 2015

Algorithm Engineer

Beijing, China

- Designed algorithms for two iOS apps: Sight and Screenshots.
- Built a mobile application classifier using image features.
- Built an OCR system for screenshots based on tesseract.

PROJECTS

Manipulating Highly Deformable Materials Using a Visual Feedback Dictionary

first author, ICRA 2018 accepted arxiv https://arxiv.org/abs/1710.06947 video https://www.youtube.com/watch?v=AVNZy05KrPc

Generating Realtime Motion Plans from Attribute-Based Natural **Language Instructions Using Dynamic Constraint Mapping**

https://arxiv.org/abs/1707.02387

submitted to ICRA 2018

We present an algorithm for combining NLP and realtime robot motion planning to automatically generate safe robot movements.

Resolution-Complete Multi-agent Motion Planning with Arbitrarily-Shaped Obstacles

submitted to AAAI 2017

We highlight its performance on challenging 2D benchmarks and highlight the benefits over prior methods.

Pedestrian Segmentation after Detection

Diploma Project, 2014

A computing-efficient method to compute the segmentation using superpixel segmentation, probabilistic model and sparse coding.