

Answer

It is given that *: $\mathbf{R} \times \mathbf{R} \rightarrow$ and o: $\mathbf{R} \times \mathbf{R} \rightarrow \mathbf{R}$ isdefined as

$$a*b = |a-b|$$
 and $a \circ b = a$, $\Box a$, $b \in \mathbf{R}$.

For $a, b \in \mathbf{R}$, we have:

$$a*b=|a-b|$$

$$b*a = |b-a| = |-(a-b)| = |a-b|$$

$$a * b = b * a$$

.. The operation * is commutative.

It can be observed that,

$$(1*2)*3 = (|1-2|)*3 = 1*3 = |1-3| = 2$$

$$1*(2*3) = 1*(|2-3|) = 1*1 = |1-1| = 0$$

$$(1*2)*3 \neq 1*(2*3)$$
 (where 1, 2, 3 \in \mathbb{R})

:The operation * is not associative.

Now, consider the operation o:

It can be observed that 1 o 2 = 1 and 2 o 1 = 2.

$$\therefore 1 \circ 2 \neq 2 \circ 1 \text{ (where } 1, 2 \in \mathbf{R})$$

:The operation o is not commutative.

Let $a, b, c \in \mathbf{R}$. Then, we have:

$$(a \circ b) \circ c = a \circ c = a$$

$$a \circ (b \circ c) = a \circ b = a$$

$$\Rightarrow a \circ b) \circ c = a \circ (b \circ c)$$

 $\boldsymbol{\cdot}\boldsymbol{\cdot}$ The operation o is associative.

Now, let $a, b, c \in \mathbf{R}$, then we have:

$$a * (b \circ c) = a * b = |a - b|$$

$$(a * b) \circ (a * c) = (|a-b|) \circ (|a-c|) = |a-b|$$

Hence,
$$a * (b \circ c) = (a * b) \circ (a * c)$$
.

Now,

$$1 \circ (2 * 3) = 1 \circ (|2-3|) = 1 \circ 1 = 1$$

$$(1 \circ 2) * (1 \circ 3) = 1 * 1 = |l-l| = 0$$

$$\therefore$$
1 o (2 * 3) \neq (1 o 2) * (1 o 3) (where 1, 2, 3 \in **R**)

 $\dot{\cdot}$ The operation o does not distribute over *.

Question 13:

Given a non-empty set X, let *: $P(X) \times P(X) \to P(X)$ be defined as $A * B = (A - B) \cup (B - A)$, $\square A$, $B \in P(X)$. Show that the empty set Φ is the identity for the operation * and all the elements A of P(X) are invertible with $A^{-1} = A$. (Hint: $(A - \Phi) \cup (\Phi - A) = A$ and $(A - A) \cup (A - A) = A * A = \Phi$).

Answer

It is given that *: $P(X) \times P(X) \rightarrow P(X)$ is defined as

$$A*B=(A-B)\cup(B-A)\;\square\;A,\,B\in\mathsf{P}(X).$$

Let $A \in P(X)$. Then, we have:

$$A * \varPhi = (A - \varPhi) \cup (\varPhi - A) = A \cup \varPhi = A$$

$$\Phi * A = (\Phi - A) \cup (A - \Phi) = \Phi \cup A = A$$

$$A * \Phi = A = \Phi * A. \square A \in P(X)$$

Thus, ϕ is the identity element for the given operation*.

Now, an element $A \in P(X)$ will be invertible if there exists $B \in P(X)$ such that

 $A * B = \Phi = B * A$. (As Φ is the identity element)

Now, we observed that
$$A*A = (A-A) \cup (A-A) = \phi \cup \phi = \phi \ \forall A \in P(X)$$
.

Hence, all the elements A of P(X) are invertible with $A^{-1} = A$.

Question 14:

Define a binary operation *on the set $\{0, 1, 2, 3, 4, 5\}$ as

$$a*b = \begin{cases} a+b, & \text{if } a+b < 6 \\ a+b-6 & \text{if } a+b \ge 6 \end{cases}$$

Show that zero is the identity for this operation and each element $a \neq 0$ of the set is

invertible with b - a being the inverse of a.

Answer

Let $X = \{0, 1, 2, 3, 4, 5\}.$

The operation * on X is defined as:

$$a*b = \begin{cases} a+b & \text{if } a+b < 6\\ a+b-6 & \text{if } a+b \ge 6 \end{cases}$$

An element $e \in X$ is the identity element for the operation *, if $a*e = a = e*a \ \forall a \in X$.

For $a \in X$, we observed that:

$$a*0 = a+0 = a$$
 $\left[a \in X \Rightarrow a+0 < 6\right]$
 $0*a = 0+a = a$ $\left[a \in X \Rightarrow 0+a < 6\right]$

$$\therefore a*0=a=0*a \ \forall a\in X$$

Thus, 0 is the identity element for the given operation *.

An element $a \in X$ is invertible if there exists $b \in X$ such that a * b = 0 = b * a.

i.e.,
$$\begin{cases} a+b=0=b+a, & \text{if } a+b<6\\ a+b-6=0=b+a-6, & \text{if } a+b\geq 6 \end{cases}$$

i.e.,

a = -b or b = 6 - a

But, $X = \{0, 1, 2, 3, 4, 5\}$ and $a, b \in X$. Then, $a \neq -b$.

..b = 6 - a is the inverse of $a \square a \in X$.

Hence, the inverse of an element $a \in X$, $a \ne 0$ is 6 - a i.e., $a^{-1} = 6 - a$.

Question 15:

Let $A = \{-1, 0, 1, 2\}$, $B = \{-4, -2, 0, 2\}$ and $f, g: A \rightarrow B$ be functions defined by $f(x) = \{-1, 0, 1, 2\}$.

$$g\left(x\right)=2\left|x-\frac{1}{2}\right|-1,\;x\in A$$
 . Are f and g equal?

Justify your answer. (Hint: One may note that two function $f: A \to B$ and $g: A \to B$ such that $f(a) = g(a) \square a \in A$, are called equal functions).

Answer

It is given that $A = \{-1, 0, 1, 2\}, B = \{-4, -2, 0, 2\}.$

Also, it is given that $f, g: A \rightarrow B$ are defined by $f(x) = x^2 - x$, $x \in A$ and

$$g(x) = 2 \left| x - \frac{1}{2} \right| - 1, \ x \in A$$

It is observed that:

$$f(-1) = (-1)^2 - (-1) = 1 + 1 = 2$$

$$g(-1) = 2\left|(-1) - \frac{1}{2}\right| - 1 = 2\left(\frac{3}{2}\right) - 1 = 3 - 1 = 2$$

$$\Rightarrow f(-1) = g(-1)$$

$$f(0) = (0)^2 - 0 = 0$$

$$g(0) = 2\left|0 - \frac{1}{2}\right| - 1 = 2\left(\frac{1}{2}\right) - 1 = 1 - 1 = 0$$

$$\Rightarrow f(0) = g(0)$$

$$f(1)=(1)^2-1=1-1=0$$

$$g(1) = 2\left|1 - \frac{1}{2}\right| - 1 = 2\left(\frac{1}{2}\right) - 1 = 1 - 1 = 0$$

$$\Rightarrow f(1) = g(1)$$

$$f(2)=(2)^2-2=4-2=2$$

$$g(2) = 2 \left| 2 - \frac{1}{2} \right| - 1 = 2 \left(\frac{3}{2} \right) - 1 = 3 - 1 = 2$$

$$\Rightarrow f(2) = g(2)$$

$$\therefore f(a) = g(a) \ \forall a \in A$$

Hence, the functions f and g are equal.

Question 16:

Let $A = \{1, 2, 3\}$. Then number of relations containing (1, 2) and (1, 3) which are reflexive and symmetric but not transitive is

Answer

The given set is $A = \{1, 2, 3\}$.

The smallest relation containing (1, 2) and (1, 3) which is reflexive and symmetric, but not transitive is given by:

$$R = \{(1, 1), (2, 2), (3, 3), (1, 2), (1, 3), (2, 1), (3, 1)\}$$

This is because relation R is reflexive as (1, 1), (2, 2), $(3, 3) \in R$.

Relation R is symmetric since (1, 2), (2, 1) \in R and (1, 3), (3, 1) \in R.

But relation R is not transitive as (3, 1), $(1, 2) \in R$, but $(3, 2) \notin R$.

Now, if we add any two pairs (3, 2) and (2, 3) (or both) to relation R, then relation R will become transitive.

Hence, the total number of desired relations is one.

The correct answer is A.

```
Question 17:
```

Let $A = \{1, 2, 3\}$. Then number of equivalence relations containing (1, 2) is

(A) 1 (B) 2 (C) 3 (D) 4

It is given that $A = \{1, 2, 3\}.$

The smallest equivalence relation containing (1, 2) is given by,

$$R_1 = \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 1)\}$$

Now, we are left with only four pairs i.e., (2, 3), (3, 2), (1, 3), and (3, 1).

If we odd any one pair [say (2, 3)] to R_1 , then for symmetry we must add (3, 2). Also,

for transitivity we are required to add (1, 3) and (3, 1).

Hence, the only equivalence relation (bigger than R_1) is the universal relation.

This shows that the total number of equivalence relations containing (1, 2) is two.

The correct answer is B.

Question 18:

Let $f: \mathbf{R} \to \mathbf{R}$ be the Signum Function defined as

$$f(x) = \begin{cases} 1, & x > 0 \\ 0, & x = 0 \\ -1, & x < 0 \end{cases}$$

and $g: \mathbf{R} \to \mathbf{R}$ be the Greatest Integer Function given by g(x) = [x], where [x] is greatest integer less than or equal to x. Then does fog and gof coincide in (0, 1]?

Answer

It is given that,

$$f\left(x\right) = \begin{cases} 1, & x > 0 \\ 0, & x = 0 \\ -1, & x < 0 \end{cases}$$
 f: $\mathbf{R} \to \mathbf{R}$ is defined as

Also, $g: \mathbf{R} \to \mathbf{R}$ is defined as g(x) = [x], where [x] is the greatest integer less than or equal to x.

Now, let $x \in (0, 1]$.

Then, we have:

[x] = 1 if x = 1 and [x] = 0 if 0 < x < 1.

$$\therefore f \circ g(x) = f(g(x)) = f([x]) = \begin{cases} f(1), & \text{if } x = 1 \\ f(0), & \text{if } x \in (0, 1) \end{cases} = \begin{cases} 1, & \text{if } x = 1 \\ 0, & \text{if } x \in (0, 1) \end{cases}$$

$$gof(x) = g(f(x))$$

$$= g(1) [x > 0]$$

$$= [1] = 1$$

Thus, when $x \in (0, 1)$, we have fog(x) = 0 and gof(x) = 1.

Hence, fog and gof do not coincide in (0, 1].

Question 19:

Number of binary operations on the set $\{a,\,b\}$ are

(A) 10 (B) 16 (C) 20 (D) 8

Answer

A binary operation * on $\{a,b\}$ is a function from $\{a,b\} \times \{a,b\} \rightarrow \{a,b\}$

i.e., * is a function from $\{(a,a),\,(a,b),\,(b,a),\,(b,b)\} \rightarrow \{a,b\}.$

Hence, the total number of binary operations on the set $\{a, b\}$ is 2^4 i.e., 16.

The correct answer is B.

********* END *******