Clase 6: Modelos lineales

Responsable: Carlos Enrique Lezama Jacinto

EST-25134, Primavera 2021 Dr. Alfredo Garbuno Iñigo Febrero 2, 2021

1. Predictores lineales

En primer lugar, nos enfocaremos en predictores lineales¹ puesto que son fáciles de interpretar y se ajustan razonablemente bien a los datos de entrenamiento. Además, son muy intuitivos y presentan las bases para modelos más complejos.

Algunos de los modelos y algortimos que estudiaremos en las próximas clases son:

Modelos	Algoritmos	Tarea
Semiespacios	Programación lineal (LP), perceptrones	Clasificación
Regresión lineal	Mínimos cuadrados	Regresión
Regresión logística	Métodos iterativos	Clasificación

Definición 1.1 (Clase de transformaciones afines). Definimos la clase de transformaciones afines como:

$$L_p = \{h_{\boldsymbol{w},b} : \boldsymbol{w} \in \mathbb{R}^p, b \in \mathbb{R}\},\$$

donde

$$h_{\boldsymbol{w},b}(\boldsymbol{x}) = \langle \boldsymbol{w}, \boldsymbol{x} \rangle + b = \left(\sum_{i=1}^{p} w_i x_i\right) + b.$$

Las clases que veremos a continuación son composiciones de una función $\varphi : \mathbb{R} \to \mathcal{Y}$ con L_p . En un caso de *clasificación binaria*, podemos proponer:

$$\varphi(h(x)) = \begin{cases} 1, & h(x) > 0 \\ 0, & \text{en otros casos} \end{cases}$$

Por otro lado, para problemas de regresión, nuestra φ fácilmente puede ser la función identidad, i.e. $\varphi(h(x)) = h(x)$.

1.1. Modelo de semiespacios

Definición 1.2 (Clase de semiespacios). La clase de semiespacios, diseñada para problemas de clasificación binaria con $\mathcal{X} = \mathbb{R}^p$ y $\mathcal{Y} = \{-1, +1\}$, la definimos como:

$$HS_p = \operatorname{sgn} \circ L_p = \{\operatorname{sgn}(\langle \boldsymbol{w}, \boldsymbol{x} \rangle) : \boldsymbol{w} \in \mathbb{R}^p\}.$$

¹Inicialmente, utilizaremos la *minimización de riesgo empírico* (ERM, por sus siglas en inglés) como método de aprendizaje preferido.

Dada la definición anterior, podemos considerar las siguientes tres situaciones:

- 1. Casos separables al asumir que se cumple la hipótesis de realizabilidad.
- 2. Casos no-separables en un sentido agnóstico.
- 3. Cuando una función lineal no es suficiente y necesitamos una transformación no lineal.

1.1.1. Programación lineal

Los programas lineales son problemas que pueden expresarse como la maximización de una función lineal sujeta a restricciones lineales. Es decir,

$$\max_{oldsymbol{w} \in \mathbb{R}_p} \qquad \langle oldsymbol{u}, oldsymbol{w}
angle$$
sujeto a $Aoldsymbol{w} \geq oldsymbol{v}$

Observación 1.3. Sea $S = \left\{ \left(\boldsymbol{x}^{(i)}, y^{(i)} \right) \right\}_{i=1}^m$ un conjunto de entrenamiento. Al asumir el caso 1, existe $\boldsymbol{w} \in \mathbb{R}^p$ tal que

$$y_i \langle \boldsymbol{w}, \boldsymbol{x}^{(i)} \rangle \ge 1, \quad \forall i = 1, \dots, m,$$

y \boldsymbol{w} es un predictor ERM.

Por la observación anterior, si definimos $A \in \mathbb{R}^{m \times p}$ tal que $A_{i,j} = y^{(i)} x_j^{(i)}$, entonces podemos escribir $A \mathbf{w} \geq \mathbf{v}$.

1.1.2. Algoritmo de perceptrones

Este algortimo iterativo construye una secuencia de vectores $\boldsymbol{w}^{(1)}, \boldsymbol{w}^{(2)}, \ldots$ Inicialmente, establecemos $\boldsymbol{w}^{(1)} = \bar{0}$ (vector de ceros). En la iteración t, el Perceptrón encuentra un ejemplo i mal etiquetado por $\boldsymbol{w}^{(t)}$, es decir, $y^{(i)}\langle \boldsymbol{w}^{(t)}, \boldsymbol{x}^{(i)} \rangle < 0$. Entonces, el Perceptrón actualiza $\boldsymbol{w}^{(t+1)} = \boldsymbol{w}^{(t)} + y^{(i)}\boldsymbol{x}^{(i)}$. Recordemos que nuestro objetivo es tener $y^{(i)}\langle \boldsymbol{w}, \boldsymbol{x}^{(i)} \rangle > 0$ para toda i. Nótese que

$$y^{(i)}\langle \boldsymbol{w}^{(t+1)}, \boldsymbol{x}^{(i)} \rangle = y^{(i)}\langle \boldsymbol{w}^{(t)} + y^{(i)}\boldsymbol{x}^{(i)}, \boldsymbol{x}^{(i)} \rangle = y^{(i)}\langle \boldsymbol{w}^{(t)}, \boldsymbol{x}^{(i)} \rangle + \|\boldsymbol{w}^{(i)}\|^{2}.$$

Teorema 1.4. Al asumir $\left\{\left(x^{(i)},y^{(i)}\right)\right\}_{i=1}^m$ separables, y sean $B=\min\left\{\|\boldsymbol{w}\|:y^{(i)}\langle\boldsymbol{w},\boldsymbol{x}^{(i)}\rangle\geq 1\right\}$, y $R=\max_i\left\{\|\boldsymbol{x}^{(i)}\|\right\}$. Entonces, el algortimo de perceptrones se detiene a lo más $(RB)^2$ iteraciones después y devuelve $\boldsymbol{w}^{(t)}$ tal que $y^{(i)}\langle\boldsymbol{w}^{(t)},\boldsymbol{x}^{(i)}\rangle>0$.

Demostración. Bastante larga para estas notas.

Agradecimientos

Este *template* se ha adaptado y traducido del provisto en la clase ACM 204 (Otoño 2017) por el profesor Joel Tropp.