Билет № 8. Теорема Больцано-Вейерштрасса.

Любая ограниченная последовательность имеет хотя бы 1 конечный частичный предел.

Доказательство. Пусть $\{x_n\}$ - ограничена. Значит, $\exists M>0: |x_n|\leq M \ \forall n\in\mathbb{N}$ (*)

Возьмем отрезок $I_0 = [-M, M]$. Поделим отрезок пополам и выберем ту половину, где содержатся значения бесконечного количества элементов последовательности $\{x_n\}$. Такая обязательно найдется, т.к. иначе на всем I_0 было бы конечное число элементов, а это противоречит (*). Если такая половина не одна, возьмем любую.

Пусть была выбрана I_1 . Предположим, что при некотором $k \in \mathbb{N}$ построена последовательность вложенных отрезков $I_0 \supset I_1 \supset \cdots \supset I_k$, причем $l(I_j) = \frac{l(I_0)}{2^j}$. При этом в каждом отрезке содержатся значения бесконечного количества элементов $\{x_n\}$.

Поделим I_k пополам, выберем половину, где содержатся значения беск. числа элементов последовательности. Получим I_{k+1} .

Итого: построена последовательность вложенных стягивающихся отрезков: $\frac{l(I_0)}{2^n} \leq \frac{l(I_0)}{n} \ \forall n \in \mathbb{N}$. $I_0 \supset I_1 \supset \cdots \supset I_n$. По теореме Кантора пересечение всех отрезков непусто, при этом $\forall k \in \mathbb{N}$ на k-том отрезке содержатся значения беск числа элементов последовательности. Покажем, что пересечение всех отрезков, равное c, - частичный предел.

Фиксируем произвольное $\varepsilon > 0$. Т.к. $\frac{l(I_0)}{k} \to 0$, когда $k \to \infty$, то $\exists k' \colon l(k') = \frac{l(I_0)}{2^{k'}} \le \frac{l(I_0)}{k'} < \varepsilon$. но $c \in I_{k'}$, который вложен в ε -окрестность точки c. (т.к. мы предположили, что его длина меньше ε)

Но т.к. по построению $I_{k'}$ содержит значения бесконечного количества элементов последовательности $\{x_n\}$, то и ε -окрестность точки c - тоже. Но ε был выбран произвольно. Значит, по критерию ЧП: c - ЧП.

Теорема. Если $\{x_n\}$ не ограничена сверху, то $+\infty$ - ее частичный предел. Если не ограничена снизу, то $-\infty$ - ее частичный предел.

Доказательство: $\{x_n\}$ не огр сверху $\Leftrightarrow \forall \varepsilon > 0 \ \exists N(\varepsilon) \colon x_{N(\varepsilon)} > \frac{1}{\varepsilon}$. Ключевой момент: $\forall N \in \mathbb{N} \ \{y_n\} = \{N+x_n\}$ - не ограниченная сверху последовательность, т.к. x_n не ограничена снизу и мы сдвинули последовательность на конечное число номеров. $\Leftrightarrow \forall \varepsilon > 0 \ \exists N(\varepsilon) \in \mathbb{N} \colon x_{N+N(\varepsilon)} > \frac{1}{\varepsilon}$. Следовательно, $\forall \varepsilon > 0, \ \forall N \in \mathbb{N} \ \exists n(\varepsilon, N) \geq N \colon x_n > \frac{1}{\varepsilon}$. по критерию частичного предела $+\infty$ является частичным пределом $\{x_n\}$.

Следствие (Обобщенная теорема Больцано-Вейерштрассе) Любая числовая последовательность имеет хотя бы один частичный предел в $\overline{\mathbb{R}}$.