	Cognome	Nome	_		
	Matricola	Numero di CFU Fila 1			
	Università degli Studi di Bologna, Corso di Laurea in Informatica Esame di LOGICA PER L'INFORMATICA (9 CFU), 16/01/2024 Utilizzare i riquadri bianchi per le risposte. Se strettamente necessario, si può allegare un foglio protocollo in coda con ulteriore testo, indicando in alto nome, cognome, fila e matricola.				
L1 (5 pt	L1 (5 punti). Dimostrare in teoria degli insiemi che $\forall A, B.((\forall C.C \cap A \subseteq B) \Rightarrow A \subseteq B)$. Ogni passaggio deve abbreviare uno o più passi di deduzione naturale al prim'ordine. Esplicitare l'enunciato di tutti gli assiomi utilizzati.				
	Assioma dell'intersezione binaria: $\forall A, B, X.(X \in A \cap B)$ Teorema: $\forall A, B.((\forall C.C \cap A \subseteq B) \Rightarrow A \subseteq B)$ Dimostrazione: siano A, B insiemi t.c. $\forall C.C \cap A \subseteq C \cap A \Rightarrow X \in B$ (H). Dobbiamo dimostrare $A \subseteq C \cap A \Rightarrow X \in B$ (H). Dobbiamo dimostrare $A \subseteq C \cap A \Rightarrow X \in B$ (H). Dobbiamo dell'intersezione binaria si ha $X \in A \cap A$. Quindi, per	B o, equivalentemente, $\forall C, X.(X \in B)$ o, equivalentemente, $\forall Y.(Y \in A)$ dimostrare $Y \in B$. Da K e l'assioma			

L2 (5 punti).	Dimostrare in deduzione naturale per la logica al prim'ordine il seguente enunciato.	Preferire
	una prova intuizionista a una classica ove possibile.	

$$\forall n, m.(P(f(n), m) \Rightarrow \exists z.P(n, f(z))), \quad \forall m.P(f(m), f(m)) \vdash \exists z.P(m, z)$$

$$\frac{ \forall n, m.P(f(n), m) \Rightarrow \exists z.P(n, f(z))}{\forall x.P(f(m), x) \Rightarrow \exists z.P(m, f(z))} \, \forall_e \\ \frac{ \forall x.P(f(m), x) \Rightarrow \exists z.P(m, f(z))}{P(f(m), f(m)) \Rightarrow e} \, \forall_e \\ \frac{ \exists z.P(m, f(z))}{\exists z.P(m, z)} \, \exists_i \\ \exists z.P(m, z)$$

Cognome	Nome	
Matricola	Numero di CFU	Fila 1

Università degli Studi di Bologna, Corso di Laurea in Informatica Esame di LOGICA PER L'INFORMATICA (9 CFU), 16/01/2024

Utilizzare i riquadri bianchi per le risposte. Se strettamente necessario, si può allegare un foglio protocollo in coda con ulteriore testo, indicando in alto nome, cognome, fila e matricola.

L3 (5 punti). Si consideri il seguente ragionamento:

Se la Ferragni non è in buona fede, allora è stata mal consigliata o il pandoro è stato una truffa. La Ferragni è in buona fede se è stata mal consigliata. La Ferragni non dovrà pagare una multa salata o il pandoro è stato una truffa. Se il pandoro è stato una truffa o la Ferragni dovrà pagare una multa salata, allora il danno economico sarà ingente. Quindi la Ferragni è in buona fede o il danno economico sarà ingente.

Verificare la correttezza del ragionamento utilizzando la deduzione naturale per la logica proposizionale. Preferire una prova intuizionista se possibile.

$$\neg A \Rightarrow B \lor C$$
, $B \Rightarrow A$, $\neg E \lor C$, $C \lor E \Rightarrow D \vdash A \lor D$

(Cognome	Nome	
ľ	Matricola	Numero di CFU	_ Fila 1
	Università degli Studi di Bologna, Con Esame di LOGICA PER L'INFORMA Utilizzare i riquadri bianchi per le risposte. Se strettamente de coda con ulteriore testo, indicando in alto nome, cognome, fila	ATICA (9 CFU), 16/01/20 necessario, si può allegare un fogli	024
L4 (5 punti). Considerate la seguente sintassi per liste di nun associativo a destra.	neri naturali: $L ::= [] \mid \mathbb{N} ::$	L dove "::" è
	Considerate il seguente predicato $Only_0$, definito paturali, che è logicamente equivalente a \top sse la l		
	$Only_0([]) = \top$ $Only_0(n::l) = n$	$= 0 \wedge Only_0(l)$	
(a) Definire per ricorsione strutturale una funzione $sum(l)$ che calcola la son numeri naturali della lista l . Esempio: $sum(2::0::1::3::0::[]) = 6$			mma di tutti i
	(b) Dimostrare per induzione strutturale che $\forall l$ prova intuizionista a una classica ove possibi Nello svolgere l'esercizio potete utilizzare conaturali, le proprietà dell'uguaglianza e il le $\forall n, m.(n+m=0 \iff n=0 \land m=0).$	ile. ome date l'operazione di som	ma fra numeri

(a) Parte di ricorsione strutturale:

$$sum([]) = 0$$

$$sum(n::l) = n + sum(l)$$

(b) Parte di induzione strutturale:

Teorema: $\forall l.(Only_0(l) \iff sum(l) = 0).$

Dimostrazione: procediamo per induzione strutturale su l per dimostrare $Only_0(l) \iff sum(0) = 0$

- Caso []: dobbiamo dimostrare $Only_0([]) \iff sum([]) = 0$ o, equivalentemente, $\top \iff 0 = 0$. Ovvio per la proprietà riflessiva dell'uguaglianza.
- Caso n::l: per ipotesi induttiva $Only_0(l) \iff sum(l) = 0$ (II). Dobbiamo dimostrare $Only_0(n::l) \iff sum(n::l) = 0$ o, equivalentemente, $n = 0 \land Only_0(l) \iff n + sum(l) = 0$. Dimostriamo entrambe le direzioni:
 - Dimostriamo $n=0 \land Only_0(l) \Rightarrow n+sum(l)=0$. Supponiamo n=0 (H1) e $Only_0(l)$ (H2). Da II e H2 si ha sum(l)=0. Quindi, per L e H1, si ha n+sum(l)=0
 - Dimostriamo $n + sum(l) = 0 \Rightarrow n = 0 \land Only_0(l)$. Supponiamo n + sum(l) = 0 da cui, per il lemma L, n = 0 (H1) e sum(l) = 0 (H2). Da II e H2 si ha $Only_0(l)$. Quindi, per L, si ha $n = 0 \land Only_0(l)$

Qed.

	Cognome	Nome	
	Matricola	Numero di CFU	Fila 1
	Università degli Studi di Bologna, Co Esame di LOGICA PER L'INFORMA Utilizzare i riquadri bianchi per le risposte. Se strettamente coda con ulteriore testo, indicando in alto nome, cognome, file	ATICA (9 CFU), 16/01/202 necessario, si può allegare un foglio p	4
A5 (2 pu	nti). Considera il gruppo $(\mathbb{Z}_3, +, 0,^{-1})$ degli interi mo esempio $1+2=0$ e $2+2=1$. Il teorema di Cay sottogruppo \mathbb{X} di $(Perm(\mathbb{Z}_3), \circ, id,^{-1})$, il gruppo	ley dice che questo gruppo é iso	abbiamo ad morfo ad ur
	(a) Scrivi la definizione della permutazione che l'isor	norfismo associa all'elemento 1 d	di \mathbb{Z}_3 .
	(b) Scrivi la definizione di una permutazione (un ele	mento di $Perm(\mathbb{Z}_3)$) che non fa	parte di \mathbb{X} .
	• La permutazione definita come segue $0\mapsto 1 1\mapsto 2 2$ • Ad esempio la permutazione π definita come $0\mapsto 0 1\mapsto 2 2$		
A6 (2 pu	nti). Sia $(X, \circ, e, ^{-1})$ un gruppo, con operazione binari $^{-1}$. Dimostra che $a \circ b = a \circ c$ implica $b = c$. Esp teoria dei gruppi che vengono utilizzati nella dim	plicitare l'enunciato di tutti gli a	assiomi della
	Visto che $a \circ b = a \circ c$, abbiamo $a^{-1} \circ (a \circ b) = a$ $(a^{-1} \circ a) \circ b = (a^{-1} \circ a) \circ c$. Usando l'assioma $a^{-1} \circ$ Infine, usando l'assioma per l'elemento neutro e , abbia	$a = e$, ne consegue che $e \circ b =$	$di \circ, e \circ c.$

A7 (6 punti). Per ciascuno dei seguenti enunciati, indica se é vero o falso. Se falso, scrivi un controesempio.

	Linguaggio	V	· F (scrivi controesempio)
(a)	$(\mathbb{R}, \times, 0)$ forma un monoide.		
(b)	$(\mathbb{N}, min, 0, ^*)$, dove $min(n, m)$ é il piú piccolo tra n ed m , e $n^* = n$, forma un gruppo.		
(c)	Considera il monoide $(\mathbb{L}, ++, [])$ dove \mathbb{L} é l'insieme di liste di numeri naturali, $++$ é la concatenazione di liste, e $[]$ é la lista vuota. La funzione $f: \mathbb{L} \to \mathbb{L}$ definita come $f(l) = 0 :: l$ é un morfismo di monoidi da $(\mathbb{L}, ++, [])$ a $(\mathbb{L}, ++, [])$.		
(d)	$(5\mathbb{N}\cap 3\mathbb{N},+,0)$, dove $5\mathbb{N}$ é l'insieme dei multipli di 5 in \mathbb{N} , $3\mathbb{N}$ é l'insieme dei multipli di 3 in \mathbb{N} , e $5\mathbb{N}\cap 3\mathbb{N}$ é la loro intersezione, forma un monoide.		
(e)	Il magma $(\mathbb{R}_+, +)$, dove \mathbb{R}_+ é l'insieme dei numeri reali positivi (maggiori di 0) e + é l'addizione, puó essere esteso ad un monoide.		
(f)	$(\mathcal{P}(X), \cup, \emptyset, \cap)$, dove $\mathcal{P}(X)$ é l'insieme dei sottoinsiemi di un dato insieme X , é un semianello.		

- (a) No, 0 non é l'elemento neutro per \times .
- (b) No perché $min(n,n^{\star})=min(n,n)=n$ é diverso da 0 per $n\neq 0.$
- (c) No, ad esempio f([1,2]++[1])=[0,1,2,1] ma f([1,2])++f([1])=[0,1,2,0,1].
- (d) Si.
- (e) No perché per ogni coppia di reali $r_1, r_2 > 0, r_1 + r_2 > r_1$, quindi non c'é elemento neutro.
- (f) Si