

A COMPARATIVE STUDY ON FACIAL RECOGNITION BETWEEN
CONVOLUTIONAL NEURAL NETWORK AND RECURRENT NEURAL NETWORK PERFORMANCE

JASPER R. SUNGA

## Background of the Study

Hassle on Attendance Checking

Alternatives





## Background of the Study

- Smartphone Camera Quality
- Face Detection Technological Advancements

#### Problem

Privacy

Database for Face Recognition

or Any Recognition Algorithms





#### Solution

Compare the better Neural Network to Use Given Constraints

- No global database
- Training will be done concurrently with the lecture.

## Objectives

Compare CNN and RNN performance given

No pre-existing data set

Limited data set





## Objectives

CNN - Well-known for image classification

RNN - Event prediction, but sometimes

Used in face recognition





## Objectives

- Create face data set per day for the models to train
- Split pictures from data set for testing accuracy per day
- Analyze CNN and RNN models' performance

Image Input

Face Detection

Training and Recognition

Recognition Results







Met



#### Poses:

- Facing directly to the camera
- 2. Facing 30 degrees to the left
- 3. Facing 30 degrees to the right
- 4. Facing 30 degrees to the upward
- 5. Facing 30 degrees to the downward
- 6. Facing 30 degrees to the upper-right
- 7. Facing 30 degrees to the lower-right
- 8. Facing 30 degrees to the upper-left
- 9. Facing 30 degrees to the lower-left
- 10. Any angle determined by the subject

#### **Detected Faces**



airah.png a



aya.png



janine.png



kat.png



ludwig.png



nadine.png

#### Augmented Faces



airah15899 97525\_0\_ 3745.png



aya 1589997 541\_0\_ 1881.png



janine1589 997560\_0\_ 3739.png



kat1589997 571\_0\_ 2778.png



ludwig1589 997577\_0\_ 1967.png



nadine1589 997582\_0\_ 2329.png

10 images per day, 6 classes

10 data augmentation methods

600 images per day



#### **CNN Architecture**

- 3 Convolutional Layers
  - 64 input nodes
  - 3x3 window size
  - Rectified Linear
  - Pooling of 2x2 pool size
- Dense Layer
  - Softmax Activation

#### **RNN Architecture**

- 2 Long Short Term Memory layer
  - 64 input nodes
  - o 30% Dropout
- Dense Layer
  - Softmax Activation

#### Training Method

- 1000 epochs
- Batch Size 16
- Early Stopping monitoring Val Loss
  - Patience of 8
- 10% Validation Split









```
Currently testing: janine
[1.0257115e-09 1.8587325e-07 7.5598693e-01 2.4401288e-01 4.6671472e-13
2.6252200e-15]
janine1590429625_0_7168.png is 0.7559869% sure that it is janine
```















## **Confusion Matrix**

## RNN Day 1 Result

|        | Airah | Aya | Janine | Kat | Ludwig | Nadine |
|--------|-------|-----|--------|-----|--------|--------|
| Airah  | 0     | 0   | 0      | 5   | 0      | 5      |
| Aya    | 0     | 1   | 1      | 2   | 0      | 6      |
| Janine | 0     | 4   | 0      | 6   | 0      | 0      |
| Kat    | 0     | 1   | 0      | 9   | 0      | 0      |
| Ludwig | 0     | 0   | 0      | 5   | 0      | 5      |
| Nadine | 0     | 0   | 0      | 6   | 0      | 4      |

#### **Confusion Matrix**

#### RNN Day 4 Result

|        | Airah | Aya | Janine | Kat | Ludwig | Nadine |
|--------|-------|-----|--------|-----|--------|--------|
| Airah  | 0     | 9   | 1      | 0   | 0      | 0      |
| Aya    | 0     | 5   | 2      | 0   | 1      | 0      |
| Janine | 0     | 7   | 0      | 0   | 3      | 0      |
| Kat    | 0     | 6   | 0      | 0   | 4      | 0      |
| Ludwig | 0     | 6   | 1      | 0   | 3      | 0      |
| Nadine | 0     | 9   | 1      | 0   | 0      | 0      |

### **CNN Attendance Results**

|       | Airah | Aya | Janine | Kat | Ludwig | Nadine |
|-------|-------|-----|--------|-----|--------|--------|
| Day 1 | 1     | 0.1 | 0.2    | 0.5 | 0      | 0.7    |
| Day 2 | 1     | 0   | 1      | 0.5 | 0.6    | 0.7    |
| Day 3 | 0.8   | 0.8 | 0      | 0.3 | 0.7    | 0.5    |
| Day 4 | 0.7   | 0.5 | 0.6    | 0.2 | 0.7    | 0.8    |
| Day 5 | 0.3   | 0.2 | 0.8    | 0.9 | 0.7    | 1      |
| Day 6 | 0.4   | 0.5 | 0.5    | 0.8 | 0.6    | 1      |
| Day 7 | 0.3   | 0.9 | 0.7    | 0.5 | 1      | 0.8    |
| Day 8 | 0.5   | 0.4 | 0.5    | 0.9 | 0.5    | 1      |

### RNN Attendance Results

|       | Airah | Aya | Janine | Kat | Ludwig | Nadine |
|-------|-------|-----|--------|-----|--------|--------|
| Day 1 | 0.6   | 0   | 0      | 0   | 0      | 0.2    |
| Day 2 | 0     | 0   | 0.3    | 0   | 0      | 0.8    |
| Day 3 | 0.7   | 0   | 0.1    | 0   | 0.1    | 0.5    |
| Day 4 | 0     | 0.6 | 0      | 0   | 0.8    | 0      |
| Day 5 | 0     | 0.1 | 0.6    | 0   | 0      | 0.2    |
| Day 6 | 0     | 0.4 | 0.3    | 0   | 0      | 0.2    |
| Day 7 | 1     | 0   | 0      | 0   | 0.1    | 0      |
| Day 8 | 0.9   | 0.3 | 0      | 0   | 1      | 0      |

## **Out of Class Pictures**













airah.png

aya.png

janine.png

kat.png

ludwig.png

nadine.png

|         | CNN          | RNN          |
|---------|--------------|--------------|
| Airah   | 0.3333333333 | 1            |
| Aya     | 0.3333333333 | 0            |
| Janine  | 0            | 0            |
| Kat     | 0            | 0            |
| Ludwig  | 0.666666667  | 0            |
| Nadine  | 0            | 0            |
| Overall | 0.222222222  | 0.1666666667 |

#### Discussion

- CNN outperforms RNN in image classification
- Both CNN and RNN provided insufficient accuracy rate
- RNN is not feasible for the use-case scenario at hand
- CNN may reach at least 90% accuracy on testing beyond day 8

#### Conclusion

- Attendance checking of CNN and RNN per person shows false absences
- CNN may reach 90% after day 8 but it is not worth skipping 8 meetings of attendance
- RNN predicted only one to two persons completely thus not feasible
- CNN model at hand is not optimal for the scenario but cannot be concluded as not feasible

#### Recommendation

- Further testing of CNN with different number of layers, nodes, etc.
- Number of pictures taken per lecture
- Different poses with a higher degree of freedom
- Video input instead of still images

Thank You!