

Algorithms and Data Structures 2 CS 1501

Fall 2022

Sherif Khattab

ksm73@pitt.edu

(Slides are adapted from Dr. Ramirez's and Dr. Farnan's CS1501 slides.)

Announcements

- Upcoming Deadlines
 - Lab 9 and Homework 9: next Monday 11/21 @ 11:59 pm
 - Assignment 3: Monday 11/28 Friday 12/9 @ 11:59 pm
 - Assignment 4: Friday 12/9 @ 11:59 pm

Previous lecture

- Weighted Shortest Paths problem
 - Dijkstra's shortest paths algorithm
 - Bellman-Ford's shortest paths algorithm

This Lecture

Dynamic Programming

Dijkstra's example with negative edge weights

	Distance	Parent
0	0	
1	10	0
2	5	0

Incorrect!

Analysis of Dijkstra's algorithm

Dijkstra's is correct only when all edge weights >= 0

Bellman-Ford's algorithm

- Set a distance value of Double.POSITIVE_INFINITY for all vertices
- Initialize a FIFO Q
- distance[start] = 0
- add start to Q
- While Q is not empty:
 - O cur = pop a vertex from Q
 - O For each non-parent neighbor x of cur:
 - Compute distance from start to x through cur
 - distance[cur] + weight of edge between cur and x
 - if computed distance < distance[x]</p>
 - Update distance[x]
 - add x to Q if not already there

Bellman-Ford's example with negative edge weights

Analysis of Bellman-Ford's algorithm

Bellman-Ford's is correct even when there are negative edge weights in the graph but what about negative cycles?

O a negative cycle is a cycle with a negative total weight

Bellman-Ford's example with a negative cycle

Bellman-Ford's algorithm

- Set a distance value of Double.POSITIVE_INFINITY for all vertices
- Initialize a FIFO Q
- distance[start] = 0
- add start to Q
- While Q is not empty and no negative cycle has been detected:
 - O cur = pop a vertex from Q
 - O For each non-parent neighbor x of cur:
 - Compute distance from start to x through cur
 - distance[cur] + weight of edge between cur and x
 - if computed distance < distance[x]</p>
 - Update distance[x]
 - add x to Q if not already there
 - check for a negative cycle in the current Spanning Tree every v edges

Let's change focus into a different type of problems

• We will get back to graphs after the break!

Consider the change making problem

- What is the minimum number of coins needed to make up a given value k?
- If you were working as a cashier, what would your algorithm be to solve this problem?

This is a greedy algorithm

- At each step, the algorithm makes the choice that seems to be best at the moment
- Have we seen greedy algorithms already this term?
 - O Yes!
 - Building Huffman trees
 - Nearest neighbor approach to travelling salesman

... But wait ...

- Nearest neighbor doesn't solve travelling salesman
 - O Does not produce an optimal result
- Does our change making algorithm solve the change making problem?
 - O For US currency...
 - O But what about a currency composed of pennies (1 cent), thrickels (3 cents), and fourters (4 cents)?
 - What denominations would it pick for k=6?

So what changed about the problem?

- For greedy algorithms to produce optimal results, problems must have two properties:
 - Optimal substructure
 - Optimal solution to a subproblem leads to an optimal solution to the overall problem
 - The greedy choice property
 - Globally optimal solutions can be assembled from locally optimal choices
- Why is optimal substructure not enough?

Finding all subproblems solutions can be inefficient

Consider computing the Fibonacci sequence:

```
int fib(n) {
    if (n == 0) { return 0 };
    else if (n == 1) { return 1 };
    else {
        return fib(n - 1) + fib(n - 2);
    }
}
```

• What does the call tree for n = 5 look like?

fib(5)

How do we improve?

Memoization

```
int[] F = new int[n+1];
  F[0] = 0;
  F[1] = 1;
  for(int i = 2; i <= n; i++) { F[i] = -1 };
int dp_fib(x) {
         if (F[x] == -1) {
               F[x] = dp_fib(x-1) + dp_fib(x-2);
         return F[x];
```

Note that we can also do this bottom-up

```
int bottomup_fib(n) {
   if (n == 0)
       return 0;
   int[] F = new int[n+1];
   F[0] = 0;
   F[1] = 1;
   for(int i = 2; i <= n; i++) {
       F[i] = F[i-1] + F[i-2];
   return F[n];
```

Can we improve this bottom-up approach?

```
int improve bottomup fib(n) {
   int prev = 0;
   int cur = 1;
   int new;
   for (int i = 0; i < n; i++) {
         new = prev + cur;
         prev = cur;
         cur = new;
   return cur;
```

Where can we apply dynamic programming?

- To problems with two properties:
 - O Optimal substructure
 - Optimal solution to a subproblem leads to an optimal solution to the overall problem
 - Overlapping subproblems
 - Naively, we would need to recompute the same subproblem multiple times

Problem of the Day Part 3: The unbounded knapsack problem

• Given a knapsack that can hold a weight limit L, and a set of n types items that each has a weight (w_i) and value (v_i), what is the maximum value we can fit in the knapsack if we assume we have unbounded copies of each item?

Recursive Solution

Recursive Solution

Bottom-up Solution

weight: 6 3 4 2

value: 30 14 16 9

Size:	0	1	2	3	4	5	6	7	8	9	10
Max val:	0	0	9	14	18	23	30	32	39	44	48

Bottom-up solution

```
K[0] = 0
for (1 = 1; 1 <= L; 1++) {
      int max = 0;
      for (i = 0; i < n; i++) {
             if (w_i \le 1 \&\& v_i + K[1 - w_i]) > max) {
                     \max = v_i + K[1 - w_i];
      K[1] = max;
}
```

What would have happened with a greedy approach?

- At each step, the algorithm makes the choice that seems to be best at the moment
- Have we seen greedy algorithms already this term?
 - O Yes!
 - Building Huffman trees
 - Prim's, Kruskal's MST
 - Dijkstra's Single-Source Shortest Paths

The greedy algorithm

- Try adding as many copies of highest value per pound item as possible:
 - O Water: 30/6 = 5
 - O Rope: 14/3 = 4.66
 - \bigcirc Flashlight: 16/4 = 4
 - O Moonpie: 9/2 = 4.5
- Highest value per pound item? Water
 - O Can fit 1 with 4 space left over
- Next highest value per pound item? Rope
 - O Can fit 1 with 1 space left over
- No room for anything else
- Total value in the 10 lb knapsack?
 - O 44
 - Bogus!

But why doesn't the greedy algorithm work for this problem?

- For greedy algorithms to produce optimal results, problems must have two properties:
 - O Optimal substructure
 - Optimal solution to a subproblem leads to an optimal solution to the overall problem
 - The greedy choice property
 - Globally optimal solutions can be assembled from locally optimal choices
- Why is optimal substructure not enough?

The bottom-up approach is called dynamic programming!

- Applies to problems with two properties:
 - O Optimal substructure
 - Optimal solution to a subproblem leads to an optimal solution to the overall problem
 - Overlapping subproblems
 - Naively, we would need to recompute the same subproblem multiple times
- Greedy Choice Property is not required

Dynamic Programming Example 1: The 0/1 knapsack problem

• What if we have a finite set of items that each has a weight and

value?

- O Two choices for each item:
 - Goes in the knapsack
 - Is left out

Recursive solution

```
int knapSack(int[] wt, int[] val, int L, int n) {
   if (n == 0 || L == 0) { return 0 };
   if (wt[n-1] > L) {
       return knapSack(wt, val, L, n-1)
   }
   else {
       return max( val[n-1] + knapSack(wt, val, L-wt[n-1], n-1),
                            knapSack(wt, val, L, n-1)
                           );
```

The 0/1 knapsack dynamic programming solution

i∖l	0	1	2	3	4	5	6	7	8	9	10					
0											,					
1								(r	(max) value when							
2					-			a	only the first <i>i</i> items are available and							
3								only / lbs remain in the knapsack								
4																

i∖l	0	1	2	3	4	5	6	7	8	9	10		
0	0	0	0	0	0	0	0	0	0	0	0		
1	0							(r	<i>[i][l]</i> is nax) v	alue v	vhen		
2	0				-			only the first <i>i</i> items are available and					
3	0								niy <i>I</i> it ne kna		ain in		
4	0												

i∖l	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0					
2	0										
3	0										
4	0										

i∖l	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	30	30	30	30	30
2	0										
3	0										
4	0										

i\l	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	30	30	30	30	30
2	0	0	0								
3	0										
4	0										

i\l	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	30	30	30	30	30
2	0	0	0	14	14	14	30	30	30	44	44
3	0										
4	0										

i\l	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	30	30	30	30	30
2	0	0	0	14	14	14	30	30	30	44	44
3	0	0	0	0	16						
4	0										

i\l	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	30	30	30	30	30
2	0	0	0	14	14	14	30	30	30	44	44
3	0	0	0	0	16	16	30	30	30	44	46
4	0										

i\l	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	30	30	30	30	30
2	0	0	0	14	14	14	30	30	30	44	44
3	0	0	0	0	16	16	30	30	30	44	46
4	0	0									

i\l	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	30	30	30	30	30
2	0	0	0	14	14	14	30	30	30	44	44
3	0	0	0	0	16	16	30	30	30	44	46
4	0	0	9	9	16	16	30	30	39	44	46

```
int knapSack(int wt[], int val[], int L, int n) {
   int[][] K = new int[n+1][L+1];
   for (int i = 0; i <= n; i++) {
       for (int l = 0; l <= L; l++) {
           if (i==0 | | 1==0) \{ K[i][1] = 0 \};
           else if (wt[i-1] > 1) \{ K[i][1] = K[i-1][1] \};
           else {
               K[i][1] = max(val[i-1] + K[i-1][1-wt[i-1]],
                                          K[i-1][1]);
   return K[n][L];
```

To review...

- Questions to ask in finding dynamic programming solutions:
 - O Does the problem have optimal substructure?
 - Can solve the problem by splitting it into smaller problems?
 - Can you identify subproblems that build up to a solution?
 - O Does the problem have overlapping subproblems?
 - Where would you find yourself recomputing values?
 - How can you save and reuse these values?

Dynamic Programming Example 2: Subset sum

• Given a set of non-negative integers S and a value k, is there a subset of S that sums to exactly k?

Subset sum calls

Subset sum recursive solution

```
boolean SSS(int set[], int sum, int n) {
   if (sum == 0)
         return true;
   if (sum != 0 && n == 0)
         return false;
   if (set[n-1] > sum)
         return SSS(set, sum, n-1);
   return SSS(set, sum, n-1)
          || SSS(set, sum-set[n-1], n-1);
}
```

What would a dynamic programming table look like?

Subset sum bottom-up dynamic programming

```
boolean SSS(int set[], int sum, int n) {
    boolean[][] subset = new boolean[sum+1][n+1];
    for (int i = 0; i <= n; i++) subset[0][i] = true;
    for (int i = 1; i \le sum; i++) subset[i][0] = false;
   for (int i = 1; i <= sum; i++) {
      for (int j = 1; j <= n; j++) {
             subset[i][j] = subset[i][j-1];
             if (i >= set[j-1])
                    subset[i][j] ||= subset[i - set[j-1]][j-1];
   return subset[sum][n];
```

Example 3: Change making problem

Consider a currency with n different denominations of coins d_1 , d_2 , ..., d_n . What is the minimum number of coins needed to make up a given value k?

Solution Attempt

If you were working as a cashier, what would your algorithm be to solve this problem?

... But wait ...

- Does our greedy change making algorithm solve the change making problem?
 - O For US currency...
 - O But what about a currency composed of pennies (1 cent), thrickels (3 cents), and fourters (4 cents)?
 - \blacksquare What denominations would it pick for k=6?

So, how can we solve the change making problem optimally?

We will see a dynamic programming algorithm in the recitation of this week.