B.Tech IV Sem-Short Test ST1- Theory of Automata and Formal Languages

Your email address (ashish.kumar.co19@nsut.ac.in) will be recorded when you submit this form. Not you? Switch account

Answer the following questions	
Number of tuples in Finite Automata	1 point
O 4	
5	
O 6	
infinite	
	Clear selection

Which of the following strings are accepted by the given DFA?

1 point

- 011
- 0001
- 000
- None

Clear selection

Given the language $L = \{ab, aa, baa\}$, which of the following strings are in 1 point L^* ? 1. abaabaaabaa 2. aaaabaaaa 3. baaaaabaaaab 4. baaaaabaa

- 1,3,4
- 1,2,4
- 2,3,4
- 1,2,3

Convert the following Non-Deterministic Finite Automata (NFA) (Figure 1) to 1 point Deterministic Finite Automata (DFA)

Figure 1

Deterministic Finite Automata (DFA)

Figure 2

Deterministic Finite Automata (DFA)

Figure 3

- Ocrrect DFA is given in Figure 2
- Correct DFA is given in Figure 3
- Both Figure 2 and 3 are incorrect
- None of the above

NFA is 'non-deterministic' because	Į
undetermined result	
The choice of path is non-deterministic	
Next state is non-deterministic	
onone of the above	
Clear selection	
Minimum number of states in DFA which accepts a language whose 2nd 1 point last symbol is 0 over inputs 0,1 is:	t
O 2	
3	
O 4	
O 5	
Clear selection	
The password to the person account is "CLASS". The total number of states 1 point required using DFA would be	t
14 states	
6 states	
12 states	
Cannot be created using DFA	
Clear selection	

The number of states required to recognize an octal number divisible by 3 1 point are

- 3
- 5
- 8
- \bigcirc 6

Clear selection

Consider the following FA and select the correct option

1 point

- this is NFA and can accept the string 0100
- this is DFA and can accept the string 0100
- this is NFA and can accept the string 01011
- this is DFA and can accept the string 01011

The Regular expression for the machine having following transitions is: q1 1 point on 0 moves to q1, q1 on 1 moves to {q1,q2}, q2 on 0 or 1 moves to q3, no transitions are given from q3. q1 is starting state and q3 is final state.

- (0+1)*1*(0+1)*
- (0+1)*1*(0+1)
- (0+1)*1(0+1)
- None of the above

Clear selection

Consider the following FA, choose the correct answer

1 point

- This is an NFA
- This is a DFA accepting {0,1}* accepting 01110
- This is a DFA accepting {0,1}* accepting 10001
- This is a DFA accepting {0,1}* accepting 11111

Which among the following is true? (a) $RR^*=R^*$ (b) Epsilon + $RR^*=R^*$ (c) 1 point $(P^*Q^*)^*=(P+Q)^*$

- Only a
- Only b
- a and b
- b and c
- none of the above is true

Clear selection

Consider the following FA, if state q2 is also made a final state, then this FA 1 point accepts

- O1110 and 00001
- 10001 and 10000
- O110 but not 0111101
- none of the above

Consider the following FA, choose the correct answer

1 point

- this FA accepts a string with an even number of 0's
- this FA accepts a string with an odd number of 0's
- this FA accepts a string with 01 as substring
- none of the above

A copy of your responses will be emailed to ashish.kumar.co19@nsut.ac.in.

Back Submit

Never submit passwords through Google Forms.

This form was created inside of Netaji Subhas University of Technology. Report Abuse

Google Forms