Coursing Spherical conductor

Coursing Course that holds a point charge

(5)

-> In side the carity, E # 0

 \rightarrow outside the carrity but inside the conductor $\vec{E} = 0$

Course law: $\Phi \vec{E} \cdot \vec{\Delta} = \frac{8e^{-e}}{e_0}$ $= -e^{-e}$ $= -e^{-e}$ $= -e^{-e}$ v = = -0

For points outside the conductor:

 $\vec{E} = \frac{1}{4\pi \kappa} \sqrt{2} \hat{x}$

-> charge o' uniformly distributed over the outer surface.

=) Trinciple of Paraday eage (grounded)

Capacitar:	\(\frac{1}{4}\text{8}\)			
~ Two con	Luctores	with e	changes	484-8
Bath equi				
ν =	= V + - V	E con b	E. dî Lo Ev e difficul e is roi	elvating tip
(x) We know,	E & B			
	$C = \frac{2}{8}$		2,76 m	Lond. Mper
_s called		ci terce	carn)	

Depends on rizer, shapes and networking of the two conductors.

· For a single conductor: (with the charge of) L> we can think of the 'necomd conductor' with me change of a radius which is infinity.

Commonds the conductor in question) Ex: Parallel plate espacitor! E (due to one of this plater) = \frac{1}{6} \frac{8}{A} \hat{n} As Area of the plate Is -> Total charge on the plate 2 > Separation of the two plater. Potential difference, $v = \frac{8}{\epsilon_0 A} d$ capacitance, c = Ato A Mork dans to change up a capacitor to -s we are remaring electrons from one plate and adding them to the other. Sey, it some point of time, we have on the ponitive plate a change = + V -> Potential difference = = =

To order to bring change ds' from the to

The plane: $dw = \sqrt{2} ds' = \frac{\sqrt{2}}{2} ds'$ Hence, $w = \sqrt{\frac{2}{2}} ds' = \frac{\sqrt{2}}{2} ds'$ Total and

orank dane