Performance evaluation of parallel sorting algorithms on large data sets

Nicola Desogus, Paolo Giangrandi, Fabio Luporini November 22, 2010

Contents

1	State of the art	2
2	Parallel sorting algorithms	2
3	Structuring the framework	2
	3.1 Design choices	2
	3.2 Data generation	2
	3.3 Performance evaluation	2
	3.4 API	2
4	Test environment	2
	4.1 MPI cost model	2
5	Description and performance evaluation of the algorithms	2
	5.1 Mergesort	2
	5.2 Quicksort	2
	5.3 Bucketsort	2
	5.4 Samplesort	2
	5.5 Bitonicsort	2
	5.6 Load-Balanced Mergesort	2
	5.7 K-Way Mergesort	2
6	Comparing the algorithms: analysis of the results	2
7	Conclusions and future works	2

- 1 State of the art
- 2 Parallel sorting algorithms
- 3 Structuring the framework
- 3.1 Design choices
- 3.2 Data generation
- 3.3 Performance evaluation
- 3.4 API
- 4 Test environment
- 4.1 MPI cost model
- 5 Description and performance evaluation of the algorithms
- 5.1 Mergesort
- 5.2 Quicksort
- 5.3 Bucketsort
- 5.4 Samplesort
- 5.5 Bitonicsort
- 5.6 Load-Balanced Mergesort
- 5.7 K-Way Mergesort
- 6 Comparing the algorithms: analysis of the results
- 7 Conclusions and future works