Contrôle de physique N°1

Durée: 1 heure 15 minutes.

	2 2	
NOM:		Groupe
PRENOM:		

Indication: effectuer tout calcul d'abord algébriquement et passer ensuite à l'application numérique.

1.

Un chariot de masse $M=200\,\mathrm{kg}$ peut rouler sans frottement le long d'une droite inclinée d'un angle $\alpha=30\,^\circ$. Un passager de masse $m=80\,\mathrm{kg}$ se tient sur le chariot, debout sur une balance. Ses semelles l'empêchent de glisser. Quel est le poids indiqué par la balance ?

Indication: étudier d'abord le système formé du chariot et du passager.

4 pts

Un récipient est formé d'un cylindre vertical de section $S=150\,\mathrm{cm^2}$, sans couvercle, et d'une bouteille horizontale de volume $V=37\,\ell$ communiquant avec le cylindre comme indiqué sur le dessin de gauche.

Un piston de masse $m=100\,\mathrm{kg}$, pouvant glisser sans frottement dans le cylindre, enferme un gaz dans le cylindre et dans la bouteille à température $T_0=27.5\,^{\circ}\mathrm{C}$ (dessin de droite). Le nombre de moles enfermées dans le cylindre est $n_c=0.5\,\mathrm{mol}$ et la pression du gaz enfermé dans la bouteille vaut $p=1.6\,\mathrm{atm}$.

- (a) Calculer le nombre de moles enfermées dans la bouteille.
- (b) Calculer la distance entre le piston et le fond du cylindre.
- (c) On éleve alors la température du gaz à $T_1 = 100\,^{\circ}\text{C}$ et le piston monte audessus du point A. Calculer la nouvelle distance entre le piston et le fond du cylindre.

Application numérique: prendre $g=10\,\mathrm{m\,s^{-2}}$ et $R=8.31\,\mathrm{J\,K^{-1}\,mol^{-1}}.$

3 pts

3.

Dans un plan vertical, une masse est posée sur deux ressorts identiques de constante k et de longueur au repos ℓ_0 . Les points de fixation des ressorts au sol sont distants de c.

Quelle doit être la masse pour que l'angle formé par les deux ressorts soit un angle droit ?

3 pts