TU/E, 2MBA70

Solutions to problems for Measure and Probability Theory

Pim van der Hoorn and Oliver Tse Version 0.5 August 27, 2025

Chapter 2: Measurable spaces (sigma-algebras and measures)

Problem 2.6 (23 points) Let \mathcal{O} denote the open sets in \mathbb{R} .

- (a) (2 points) Note that the interval (a,b) is open for any $a < b \in \mathbb{R}$. Hence $\mathcal{A}_1 \subset \mathcal{A}_1' \subset \mathcal{O}$ and thus by Lemma 2.1.5 we have that $\sigma(\mathcal{A}_1) \subset \sigma(\mathcal{A}_1') \subset \sigma(\mathcal{O}) = \mathcal{B}_{\mathbb{R}}$.
- (b) (2 points) The inclusion \supset is trivial. So assume that $x \in O$. Then by definition there exist an r > 0 such that the ball $B_x(r) \subset O$. But $B_x(r) = (x r, x + r) \in \mathcal{A}_1$ so $x \in \bigcup_{I \in \mathcal{A}, I \subset O} I$.
- (c) (3 points) Take $O \in \mathcal{O}$. If we can show that $O \in \sigma(\mathcal{A})$ then $\mathcal{B}_{\mathbb{R}} = \sigma(\mathcal{O}) \subset \sigma(\mathcal{A})$. The result then follows from 1.
 - From 2 it follows that O is a union over a subset collection of interval (a,b) where $a,b \in \mathbb{Q}$. Since \mathbb{Q} is countable, the collection $\{(a,b): a < b \in \mathbb{Q}\}$ is also countable and hence $O = \bigcup_{I \in A} \bigcup_{I \in \mathcal{Q}} I \in \sigma(\mathcal{A})$, from which it follows that $\mathcal{B}_{\mathbb{R}} \subset \sigma(\mathcal{A})$.
- (d) (1 point) This follows immediately from 1 and 3 since these imply that $\mathcal{B}_{\mathbb{R}} = \sigma(\mathcal{A}_1) \subset \sigma(\mathcal{A}'_1) \subset \mathcal{B}_{\mathbb{R}}$.
- (e) (3 points) The inclusion \subset is trivial, since $(a,b] \subset (a+b+1/j)$ for any $j \in \mathbb{N}$. For the other inclusion we argue by contradiction. Suppose that $x \in \bigcap_{j \in \mathbb{N}} (a,b+1/j)$ but $x \notin (a,b]$. Then x > b and hence there exists a $j \in \mathbb{N}$ such that (b-x) > 1/j. But this implies that $x \notin (a,b+1/j)$ which is a contradiction. So we conclude that $(a,b] \supset \bigcap_{j \in \mathbb{N}} (a,b+1/j)$.
- (f) (3 points) This time the inclusion \supset is trivial since $(a,b-1/j]\subset (a,b)$ for every $j\in\mathbb{N}$. For the other inclusion suppose that $x\in(a,b)$. Then there exists a r>0 such that the interval $(x-r,x+r)\subset (a,b)$. In particular, this implies that b-(x+r)>0. Now take any $j\in\mathbb{N}$ such that j>1/(b-(x+r)). Then b-x>r+1/j which implies that $(x-r,x+r)\subset (x-r,b-1/j]$ and hence $x\in\bigcup_{j\in\mathbb{N}}(a,b-1/j]$.
- (g) (4 points) It is clear that $\mathcal{A}_2 \subset \mathcal{A}_2'$. By 5 it follows that any interval (a,b] can be obtained as a countable intersection of intervals of the form (a,b+1/j). By 4 $\mathcal{B}_{\mathbb{R}} = \sigma(\mathcal{A}_1')$ which by Lemma 2.1.2 contains $\bigcap_{j \in \mathbb{N}} (a,b+1/j) = (a,b]$. So we conclude that any interval $(a,b] \in \mathcal{B}_{\mathbb{R}}$ from which it now follows that

$$\sigma(\mathcal{A}_2) \subset \sigma(\mathcal{A}_2') \subset \sigma(\mathcal{A}_1') = \mathcal{B}_{\mathbb{R}}.$$

For the other inclusion we consider a set (a,b) with $a,b\in\mathbb{Q}$. Then by 6 we have that $(a,b)=\bigcup_{j\in\mathbb{N}}(a,b-1/j]$ where the later is a countable union of sets (c,d] with $c,d\in\mathbb{Q}$ which must be in $\sigma(\mathcal{A}_2)$ by definition of a σ -algebra. Hence, any interval $(a,b)\in\sigma(\mathcal{A}_2)$ and we thus conclude, using 3, that

$$\mathcal{B}_{\mathbb{R}} = \sigma(\mathcal{A}_1) \subset \sigma(\mathcal{A}_2) \subset \sigma(\mathcal{A}_2') \subset \sigma(\mathcal{A}_1') = \mathcal{B}_{\mathbb{R}},$$

which implies the result.

- (h) (2 points) Step 1 is to show that any interval [a,b) can be obtained as a countable intersection of intervals (a-1/j,b). From this we can conclude that any set [a,b) must be in $\mathcal{B}_{\mathbb{R}}$ proving inclusions \subset .
 - For the other inclusions we have to show that any interval (a,b) can be obtained as a countable union of intervals [a+1/j,b), which implies that (a,b) must be in the σ -algebra generated by [a,b).
- (i) (3 points) The main tool is to show that each of the intervals $(-\infty, a], (-\infty, a), (a, \infty)$ and $[a, \infty)$ can be obtained by taking any allowed set operation for σ -algebras, i.e. countable unions/intersections and finite complements. This will help use prove the \subset inclusions.

Then we show that any set of the form (a,b), [a,b) or (a,b] can also be obtained through countable unions/intersections and finite complements of intervals of the forms $(-\infty,a]$, $(-\infty,a), (a,\infty)$ and $[a,\infty)$. These will then yield the \supset inclusions and finish the proof.

Problem 2.9

First note that if $\mu(A \cap B) = \infty$ then by property 2 we have that also $\mu(A)$, $\mu(B)$ and $\mu(A \cup B) = \infty$ and hence the result holds trivially. So assume now that $\mu(A \cap B) < \infty$. Since

$$A \cup B = (A \setminus (A \cap B)) \cup (B \setminus (A \cap B)) \cup (A \cap B),$$

it follows from property 1 that

$$\mu(A \cup B) = \mu(A \setminus (A \cap B)) + \mu(A \cap B) + \mu(B \setminus (A \cap B)).$$

Adding $\mu(A \cap B) < \infty$ to both side we get

$$\mu(A \cup B) + \mu(A \cap B) = \mu(A \setminus (A \cap B)) + \mu(A \cap B) + \mu(B \setminus (A \cap B)) + \mu(A \cap B)$$
$$= \mu(A) + \mu(B),$$

where the last line follows from applying property 3 twice.

Problem 2.11

The idea is to construct a family of disjoint sets $(E_i)_{i\in\mathbb{N}}$ with the following properties:

- 1. $E_i \subset A_i$, and
- 2. $\bigcup_{i \in \mathbb{N}} E_i = \bigcup_{i \in \mathbb{N}} A_i$.

If such a sequence exists then we have

$$\begin{split} \mu(\bigcup_{i\in\mathbb{N}}A_i) &= \mu(\bigcup_{i\in\mathbb{N}}E_i) & \text{by 2} \\ &= \sum_{i=1}^\infty \mu(A_i) & \text{because } E_i \text{ are disjoint and } \mu \text{ is } \sigma\text{-additive} \\ &\leq \sum_{i=1}^\infty \mu(A_i) & \text{by 1 and monotone property of } \mu. \end{split}$$

So we are left to construct the required family of sets $(E_i)_{i\in\mathbb{N}}$. The following set will do:

$$E_1 = A_1 \quad E_i = A_i \setminus \bigcup_{k \le i}^i A_k \text{ for all } i > 1.$$

Note that by definition the set E_i are pair-wise disjoint and property 1 holds. Finally, property 2 holds since $\bigcup_{i=1}^k E_i = \bigcup_{i=1}^k A_i$ holds for all $k \ge 1$.

Problem 2.12

- (a) We first make the following observations about \mathcal{N} :
 - ▶ because $\mu(\emptyset) = 0$ it holds that $\emptyset \in \mathcal{N}$,
 - ▶ if $N, M \in \mathcal{N}$ then $N \setminus M \in \mathcal{N}$ since $N \setminus M \subset N$, and
 - ▶ if $(N_i)_{i\geq 1}$ is a family of sets in \mathcal{N} then so is $\bigcup_{i\geq 1} N_i$.

From the first point it follows that $\emptyset = \emptyset \cup \emptyset \in \overline{\mathcal{F}}$ and $\Omega = \Omega \cup \emptyset \in \overline{\mathcal{F}}$.

Furthermore, if $A, B \in \mathcal{F}$ and $N, M \in \mathcal{N}$, then by the second point and because $A \setminus B \in \mathcal{F}$,

$$(A \cup N) \setminus (B \cup M) = (A \setminus B) \cup (N \setminus M) \in \overline{\mathcal{F}}.$$

Finally, let $(A_i \cup N_i)_{i>1}$ be a collection of sets in \mathcal{N} . Then using the third point we get

$$\bigcup_{i\geq 1}A_i\cup N_i=\bigcup_{i\geq 1}A_i\cup\bigcup_{i\geq 1}N_i\in\overline{\mathcal{F}}.$$

(b) From the definition we immediately get that $\mu(\emptyset) = 0$. Now, let $(A_i \cup N_i)_{i \geq 1}$ be a collection of disjoint sets in \mathcal{N} . Then

$$\bar{\mu}(\bigcup_{i\geq 1} A_i \cup N_i) = \bar{\mu}(\bigcup_{i\geq 1} A_i \cup \bigcup_{i\geq 1} N_i) = \mu(\bigcup_{i\geq 1} A_i) = \sum_{i\geq 1} \mu(A_i) = \sum_{i\geq 1} \bar{\mu}(A_i \cup N_i).$$

- (c) This follows from the fact that $\bar{\mu}|_{\mathcal{F}}(A) = \bar{\mu}(A \cup \emptyset) = \mu(A)$.
- (d) Suppose that $N \subset \Omega$ is a null set for $\overline{\mathcal{F}}$. Then there exists an $A \cup M \in \overline{\mathcal{F}}$ such that $N \subset A \cup M$ and $\overline{\mu}(A \cup M) = \mu(A) = 0$. However, since $M \in \mathcal{N}$, there must also exist a $B \in \mathcal{F}$ with $M \subset B$ and $\mu(B) = 0$. But this implies that $N \subset A \cup B \in \mathcal{F}$ which implies that $N \in \mathcal{N}$. Therefore, since $N = \emptyset \cup N$ it follows that $N \in \overline{\mathcal{F}}$ and hence every null set is part of the σ -algebra.

Chapter 3: Measurable functions

Problem 3.2

(a) First we note that $f^{-1}(\emptyset) = \emptyset \in \mathcal{F}$ and $f^{-1}(E) = \Omega \in \mathcal{F}$. So $\emptyset, E \in \mathcal{H}$. Next, let $B \in \mathcal{H}$. Then

$$f^{-1}(E \setminus B) = \Omega \setminus f^{-1}(B) \in \mathcal{F},$$

since by definition $f^{-1}(B) \in \mathcal{F}$. So $E \setminus B \in \mathcal{H}$.

Finally, if $(B_i)_{i\in\mathbb{N}}$ is a sequence of sets in \mathcal{H} , then

$$f^{-1}\left(\bigcup_{i=1}^{\infty} B_i\right) = \bigcup_{i=1}^{\infty} f^{-1}(B_i) \in \mathcal{F},$$

which shows that $\bigcup_{i=1}^{\infty} B_i \in \mathcal{H}$, completing the proof that \mathcal{H} is a σ -algebra.

(b) By construction $A \subseteq \mathcal{H}$. It therefore follows from Lemma 2.5 that $\mathcal{G} = \sigma(A) \subseteq \mathcal{H}$. But this then implies that $f^{-1}(B) \in \mathcal{F}$ for each $B \in \mathcal{G}$ which means that f is $(\mathcal{F}, \mathcal{G})$ -measurable.

Problem 3.3 " \subset " By definition, the product σ -algebra $\mathcal{F}_1 \otimes \mathcal{F}_2$ is defined as the σ -algebra generated by the collection

$$\mathcal{A} := \Big\{ A \times B \subset \Omega_1 \times \Omega_2 : A \in \mathcal{F}_1, B \in \mathcal{F}_2 \Big\}.$$

Since $A \times B = (A \times \Omega_2) \cap (\Omega_1 \times B)$, we have that

$$A \times B = \pi_1^{-1}(A) \cap \pi_2^{-1}(B) \in \sigma(\pi_1, \pi_2).$$

"⊃" Let $C \in \{\pi_i^{-1}(A) : i = 1, 2, A \in \mathcal{F}_1\}$. Then there exist sets $A \in \mathcal{F}_1$ or $B \in \mathcal{F}_2$ such that $C = \pi_1^{-1}(A) = A \times \Omega_2$ or $C = \pi_2^{-1}(B) = \Omega_1 \times B$. Either way, since $\Omega_1 \in \mathcal{F}_1$ and $\Omega_2 \in \mathcal{F}_2$, we have that $C \in \mathcal{A}$.

Problem 3.4 It is clear that $f_{\#}\mu(\emptyset) = \mu(f^{-1}(\emptyset)) = \mu(\emptyset) = 0$. Suppose a sequence of mutually disjoint sets $B_i \in \mathcal{G}$, $i \in \mathbb{N}$, is given. Then,

$$f_{\#}\mu\left(\bigcup_{i=1}^{\infty}B_{i}\right) = \mu\left(f^{-1}\left(\bigcup_{i=1}^{\infty}B_{i}\right)\right) = \mu\left(\bigcup_{i=1}^{\infty}f^{-1}(B_{i})\right) = \sum_{i=1}^{\infty}f_{\#}\mu(B_{i}).$$

Problem 3.6

(a) By Proposition 2.8, we know that $\mathcal{B}_{\mathbb{R}}$ is generated by intervals of the form $(-\infty, a]$ with $a \in \mathbb{Q}$. As a consequence, $\mathcal{B}_{\mathbb{R}}$ is also generated by intervals of the form $(a, +\infty)$ with $a \in \mathbb{Q}$. Therefore, by Lemma 3.1.4, it suffices to show that the set

$$\{\omega \in \Omega : f(\omega) + g(\omega) \in (a, +\infty)\}$$

is measurable for every $a \in \mathbb{Q}$. For brevity, we write $\{f + g > a\}$. The trick is to express this set as a countable union of sets of which we already know are measurable.

In fact, we will show that

$$\{f+g>a\}=\bigcup_{t\in\mathbb{O}}\Big(\{f>t\}\cap\{g>a-t\}\Big).$$

We first show the inclusion ' \subset '. If $\omega \in \Omega$ is such that

$$f(\omega) + g(\omega) > a$$
,

then

$$f(\omega) > a - g(\omega),$$

so there exists some $t \in \mathbb{Q}$ such that

$$f(\omega) > t > a - g(\omega),$$

and thus $f(\omega) > t$ and $g(\omega) > a - t$. So in that case

$$\omega \in \bigcup_{t \in \mathbb{O}} \Big(\{f > t\} \cap \{g > a - t\} \Big).$$

Now we will show the inclusion ' \supset '. Let $\omega \in \Omega$ be such that $f(\omega) > t$ and $g(\omega) > a - t$. Then, by adding the inequalities, we know that $f(\omega) + g(\omega) > a$.

(b) The constant function $f(\omega) = a$ is measurable since

$$f^{-1}(B) = f^{-1}(B \cap \{a\}) \cup f^{-1}(B \setminus \{a\}) = \Omega \cup \emptyset = \Omega \in \mathcal{F} \qquad \forall B \in \mathcal{B}_{\mathbb{R}}.$$

- (c) Similar to the proof of Point (2) of Proposition 3.2.12.
- (d) Let $g(\omega) \neq 0$ for all $\omega \in \Omega$. Then, since g is measurable, we have that

$$\begin{aligned} \{1/g > a\} &= \{g < 1/a, \ g > 0\} \cup \{g > 1/a, \ g < 0\} \\ &= \Big(\{g < 1/a\} \cap \{g > 0\} \Big) \cup \Big(\{g > 1/a\} \cap \{g < 0\} \Big) \in \mathcal{F}, \end{aligned}$$

thus implying that 1/g is measurable.

(e) The previous part of this exercise together with point (4) of Proposition 3.12 yields Point (5) of Proposition 3.12.

Problem 3.7 From (3.6), we have for any $a \in \mathbb{R}$,

$$\left\{\sup_{n\geq 1} f_n > a\right\} = \bigcup_{n\geq 1} \left\{f_n > a\right\} \in \mathcal{F},$$

Since \mathcal{F} is a σ -algebra and f_n is measurable for all $n \geq 1$, i.e., $\{f_n > a\} \in \mathcal{F}$ for all $n \geq 1$.

Problem 3.8

(a) Note that

$$f_M = M\mathbf{1}_{\{f>M\}} + f\mathbf{1}_{\{|f|< M\}} - M\mathbf{1}_{\{f<-M\}}.$$

Since the sets

$$\{f \ge M\}, \{f \le -M\}, \{|f| < M\}$$
 are \mathcal{F} -measurable,

their corresponding indicator functions are $(\mathcal{F}, \mathcal{B}_{\mathbb{R}})$ -measurable. Since f_M is the sum of products of $(\mathcal{F}, \mathcal{B}_{\mathbb{R}})$ -measurable functions, we conclude that f_M is also $(\mathcal{F}, \mathcal{B}_{\mathbb{R}})$ -measurable.

(b) It is easy to see that f_M converges pointwise to f as $M \to \infty$, i.e.,

$$\lim_{M \to \infty} f_M(\omega) = f(\omega) \qquad \forall \, \omega \in \Omega.$$

Indeed, if $\omega\Omega$ is such that $f(\omega) = +\infty$, then

$$\lim_{M \to \infty} f_M(\omega) = \lim_{M \to \infty} M = +\infty = f(\omega),$$

and similarly for $\omega \in \Omega$ for which $f(\omega) = -\infty$. On the other hand, for any $\omega \in \Omega$ with $f(\omega) \in \mathbb{R}$, there is some $N_0(\omega) \in \mathbb{N}$ such that $f_N(\omega) = f(\omega)$ for all $N \geq N_0(\omega)$, and hence,

$$\lim_{M\to\infty} f_M(\omega) = f(\omega).$$

Since f is the limit of a sequence of $(\mathcal{F}, \mathcal{B}_{\mathbb{R}})$ -measurable functions, we conclude from Lemma 3.2.13 that f is $(\mathcal{F}, \mathcal{B}_{\mathbb{R}})$ -measurable.

Chapter 4: The Lebesgue Integral

Problem 4.2

Problem 4.3

- (a) The fact that the sets are disjoint is immediate from the definition. Measurability follows from Lemma 3.11
- (b) Let us fix a $\omega \in \Omega$. Then if $f(\omega) = +\infty$ we get that $f_n(\omega) = 2^n$ holds for all $n \ge 1$ and hence $\lim_{n \to \infty} f_n(\omega) = +\infty = f(\omega)$. So assume that $f(\omega) < +\infty$. Then there exists an $M \in \mathbb{N}$ such that $f(\omega) < M$. Hence, for all $n \ge M$ we have that

$$||f_n(\omega) - f(\omega)|| = f(\omega) - f_n(\omega) \le 2^{-n},$$

which implies that $\lim_{n\to\infty} f_n(\omega) = f(\omega)$.

(c) Fix $n \ge 1$ and $\omega \in \Omega$. Clearly, if $f(\omega) = +\infty$ then $f_n(\omega) = 2^n < +\infty = f(\omega)$.

(d) Fix $\omega \in \Omega$ such that $f(\omega) < +\infty$ and $\omega \in A_k^n$ for some $0 \le k < N_n = n2^n$. Note that $k2^{-n} \le f(\omega) < (k+1)2^{-n}$ holds and this interval can be split into two intervals as follows:

$$[k2^{-n}, (k+1)2^{-n}) = [(2k)2^{-(n+1)}, (2k+1)2^{-(n+1)}) \cup [(2k+1)2^{-(n+1)}, (2k+2)2^{-(n+1)}).$$

Hence, we conclude that either $\omega \in A_{2k}^{n+1}$ or $\omega \in A_{2k+1}^{n+1}$. In both case we get that

$$f_n(\omega) = k2^{-n} = 2kn^{-(n+1)} \le f_{n+1}(\omega).$$

(e) Now let us consider the case where $\omega \in A_k^n$ with $k=n2^n$, so that $n \leq f(\omega) < +\infty$. Then, if $f(\omega) \geq n+1$ it follows that $f_n(\omega) = n < n+1 = f_{n+1}(\omega)$. If, on the other hand, $n \leq f(\omega) < n+1$ there exists an $2n \ 2^n \leq \ell \leq (2n+2) \ 2^n$ such that $\omega \in A_\ell^{n+1}$, which then implies that

$$f_n(\omega) = n = (2n2^n) 2^{-(n+1)} \le f_{n+1}(\omega).$$

Problem 4.5

(a) First suppose $f = \sum_{i=1}^N a_i \mathbbm{1}_{A_i}$ is a simple function. Then $f \mathbbm{1}_B = \sum_{i=1}^N a_i \mathbbm{1}_{A_i \cap B}$ is also a simple function and thus

$$\int_{B} f \, d\mu = \int_{\Omega} f \mathbb{1}_{B} \, d\mu = \sum_{i=1}^{N} a_{i} \mu(A_{i} \cap B) \le \mu(B) \sum_{i=1}^{N} a_{i} \mu(A_{i}) = 0.$$

Now let f be a non-negative function and $g \le f$ be a simple function. Then $g1_B \le f1_B$ and thus by Definition 4.7

$$\int_{B} f \, \mathrm{d}\mu = \int_{\Omega} f \mathbb{1}_{B} \, \mathrm{d}\mu \ge \int_{\Omega} g \mathbb{1}_{B} \, \mathrm{d}\mu = 0,$$

which implies the result.

(b) Suppose $f \leq g$ are non-negative functions and observe that if h is a simple function such that $h \leq f$ then also $h \leq g$. Therefore we get

$$\int_{\Omega} f \, \mathrm{d}\mu = \sup_{h \le f} \left\{ \int_{\Omega} h \, \mathrm{d}\mu \right\} \le \sup_{h \le g} \left\{ \int_{\Omega} h \, \mathrm{d}\mu \right\} = \int_{\Omega} g \, \mathrm{d}\mu.$$

(c) Suppose that h is a simple function. Then αh is also simple and it immediately follows that $\int_{\Omega} (\alpha h) d\mu = \alpha \int_{\Omega} h d\mu$. Now let f be non-negative. Then $h \leq f \iff \alpha h \leq \alpha f$

and $h \le \alpha f \iff \alpha^{-1}h \le f$. Thus by Definition 4.7 we have

$$\alpha \int_{\Omega} f \, \mathrm{d}\mu = \alpha \sup_{h \le f} \left\{ \int_{\Omega} h \, \mathrm{d}\mu \right\}$$

$$= \sup_{h \le f} \alpha \left\{ \int_{\Omega} h \, \mathrm{d}\mu \right\}$$

$$= \sup_{h \le f} \left\{ \int_{\Omega} (\alpha h) \, \mathrm{d}\mu \right\}$$

$$= \sup_{\alpha^{-1}h \le f} \left\{ \int_{\Omega} h \, \mathrm{d}\mu \right\}$$

$$= \sup_{h \le \alpha f} \left\{ \int_{\Omega} (\alpha h) \, \mathrm{d}\mu \right\} = \int_{\Omega} (\alpha f) \, \mathrm{d}\mu.$$

Problem 4.8

(a) By definition, we have that $\nu_f(\Omega) = \int_{\Omega} f d\mu = 1$. Now let $(A_n)_{n \in \mathbb{N}}$ be a family of mutually disjoint measurable sets. Then we have that the sequence

$$g_n:=\sum_{i=1}^n f\, \mathbf{1}_{A_i}=f\, \mathbf{1}_{\bigcup_{i=1}^n A_i}\, \longrightarrow\, g:=f\, \mathbf{1}_{\bigcup_{i\in\mathbb{N}} A_i}$$
 pointwise monotonically.

By MCT, we then have that

$$\nu_f\left(\bigcup_{i\in\mathbb{N}}A_i\right) = \int_{\bigcup_{i\in\mathbb{N}}A_i} f\,\mathrm{d}\mu = \lim_{n\to\infty}\int_{\bigcup_{i=1}^nA_i} f\,\mathrm{d}\mu = \lim_{n\to\infty}\sum_{i=1}^n\int_{A_i} f\,\mathrm{d}\mu = \sum_{i\in\mathbb{N}}\nu_f(A_i),$$

thus showing that ν_f is a probability measure on (Ω, \mathcal{F}) .

(b) Following the hint, we start by considering nonnegative simple functions g. Suppose $g = \sum_{i=1}^{n} a_i \mathbf{1}_{A_i}$ for $a_i \in \mathbb{R}$ and $A_i \in \mathcal{F}$ mutually disjoint. Then,

$$\int_{\Omega} g \, d\nu_f = \sum_{i=1}^{n} a_i = \nu_f(A_i) = \sum_{i=1}^{n} a_i \int_{A_i} f \, d\mu = \int_{\Omega} g f \, d\mu.$$

Now let g be a nonnegative measurable function and $[g]_n$ be a sequence of nonnegative simple functions that converge pointwise monotonically to g. Then MCT yields

$$\int_{\Omega} g \, \mathrm{d}\nu_f = \lim_{n \to \infty} \int_{\Omega} [g]_n \, \mathrm{d}\nu_f = \lim_{n \to \infty} \int_{\Omega} [g]_n f \, \mathrm{d}\mu = \int_{\Omega} g f \, \mathrm{d}\mu,$$

where we used the fact that $[g]_n f$ converges pointwise monotonically to gf.

(c) Let g be measurable. Then $g=g^+-g^-$, where g^\pm are nonnegative measurable functions. Since f is nonnegative, we have that $(fg)^\pm=fg^\pm$. Due to (b), we deduce

$$\int_{\Omega} g^{\pm} d\nu_f = \int_{\Omega} g^{\pm} f d\mu = \int_{\Omega} (gf)^{\pm} d\mu.$$

Hence, g^{\pm} is ν_f -integrable if and only if $(gf)^{\pm}$ is μ -integrable. Consequently, g is ν_f -integrable if and only if gf is μ -integrable, since

$$\int_{\Omega} |g| \, \mathrm{d}\nu_f = \int_{\Omega} g^+ \, \mathrm{d}\nu_f + \int_{\Omega} g^- \, \mathrm{d}\nu_f = \int_{\Omega} g^+ f \, \mathrm{d}\mu + \int_{\Omega} g^- f \, \mathrm{d}\mu = \int_{\Omega} |gf| \, \mathrm{d}\mu.$$

Problem 4.9

(\Rightarrow) Let f be μ -integrable. Then both $|f|\mathbf{1}_{\{|f|< n\}}$ and $|f|\mathbf{1}_{\{|f|\geq n\}}$ are integrable, due to the monotonicity of the integral. By linearity of the integral,

$$\int_{\Omega} |f| \mathbf{1}_{\{|f| \ge n\}} d\mu = \int_{\Omega} |f| d\mu - \int_{\Omega} |f| \mathbf{1}_{\{|f| < n\}} d\mu.$$

Since the sequence $g_n := |f| \mathbf{1}_{\{|f| < n\}} \ge 0$ converges pointwise monotonically to |f|, we can apply MCT to obtain

$$\lim_{n \to \infty} \int_{\Omega} |f| \mathbf{1}_{\{|f| < n\}} \, dd\mu = \int_{\Omega} |f| \, \mathrm{d}\mu.$$

Hence.

$$\lim_{n\to\infty}\int_{\Omega}|f|\mathbf{1}_{\{|f|\geq n\}}\,\mathrm{d}\mu=\int_{\Omega}|f|\,\mathrm{d}\mu-\lim_{n\to\infty}\int_{\Omega}|f|\mathbf{1}_{\{|f|< n\}}\,\mathrm{d}\mu=0.$$

(\Leftarrow) By assumption, there is some $N \ge 1$ such that

$$\int_{\Omega} |f| \mathbf{1}_{\{|f| \ge N\}} \, \mathrm{d}\mu \le 1.$$

By linearity of the integral,

$$\int_{\Omega} |f| \, \mathrm{d}\mu = \int_{\Omega} |f| \mathbf{1}_{\{|f| < N\}} \, \mathrm{d}\mu + \int_{\Omega} |f| \mathbf{1}_{\{|f| \ge N\}} \, \mathrm{d}\mu \le N\mu \big(\{|f| < N\} \big) + 1.$$

Since μ is a finite measure, the right-hand side is finite, implying that f is μ -integrable.

Problem 4.10

Observe that $\Omega = \bigcup_{n \in \mathbb{N}} \{|f| > n\}.$

We then get that

$$\sum_{n=1}^{\infty} \int_{\{|f|>n\}} |f| \,\mathrm{d}\mu = \int_{\Omega} |f| \,\mathrm{d}\mu < \infty.$$

This implies that for some N and all $n \ge N$: $\int_{\{|f| > n\}} |f| d\mu < 1/n$ or else the sum cannot be finite.

Now let $\varepsilon > 0$, take $M > \max\{N, 2/\varepsilon\}$ and $\delta = \varepsilon/(2M)$. Then

$$\int_{A} |f| \, \mathrm{d}\mu = \int_{A} |f| \mathbf{1}_{|f| \le M} \, \mathrm{d}\mu + \int_{A} |f| \mathbf{1}_{|f| > M} \, \mathrm{d}\mu$$
$$\le M\mu(A) + \frac{1}{M} \le M\delta + \frac{1}{M} < \varepsilon.$$

Chapter 5: Product spaces and Lebesgue integration

Problem 5.2

(a) Note that $A_1 \times A_2 \subset \mathcal{F}_1 \times \mathcal{F}_2$, and hence

$$\sigma(\mathcal{A}_1 \times \mathcal{A}_2) \subset \mathcal{F}_1 \otimes \mathcal{F}_2.$$

(b) Let $B \in \mathcal{A}_2$. Then we have that

$$\Omega_1 \times B = \bigcup_{n \ge 1} A_n \times B \in \sigma(A_1 \times A_2)$$

since $A_n \times B \in \sigma(A_1 \times A_2)$ for all $n \geq 1$. So $\Omega_1 \in \Sigma$

For the second property, let $C \in \Sigma$ and note that $C^c \times B = (\Omega_1 \times B) \setminus (C \times B)$. Since both these sets are in $\sigma(A_1 \times A_2)$ it follows that $C^c \times B \in \sigma(A_1 \times A_2)$ and hence $C^c \in \Sigma$.

Finally consider a countable sequence $(C_n)_{n\geq 1}$ of sets in Σ . Then for any $B\in\mathcal{A}_2$

$$\left(\bigcup_{n\geq 1} C_n\right) \times B = \bigcup_{n\geq 1} (C_n \times B) \in \sigma(A_1 \times A_2),$$

since each $C_n \times B \in \sigma(A_1 \times A_2)$.

- (c) Note that $A_1 \subset \Sigma_1 \subset \mathcal{F}_1$. From which it follows that $\Sigma_1 = \mathcal{F}_1$. But then, from the definition of Σ_1 we have that $\mathcal{F}_1 \times \mathcal{A}_2 \subset \sigma(\mathcal{A}_1 \times \mathcal{A}_2)$.
- (d) We can show in a similar fashion that

$$\Sigma_2 := \{ C \in \mathcal{F}_2 : B \times C \in \sigma(\mathcal{A}_1 \times \mathcal{A}_2) \, \forall B \in \mathcal{A}_1 \}.$$

is a σ -algebra on Ω_2 , from which we conclude that $\mathcal{A}_1 \times \mathcal{F}_2 \subset \sigma(\mathcal{A}_1 \times \mathcal{A}_2)$.

(e) take any $A \in \mathcal{F}_1$ and $B \in \mathcal{F}_2$. Then

$$A \times B = (A \times \Omega_2) \cap (\Omega_1 \times B) = \bigcup_{n,m \ge 1} (A \times B_m) \cap (A_n \times B) \in \sigma(A_1 \times A_2).$$

From this we conclude that $\mathcal{F}_1 \times \mathcal{F}_2 \subset \sigma(\mathcal{A}_1 \times \mathcal{A}_2)$, which finishes the proof.

Problem 5.2

(a) Let $t_0 \in (a,b)$ be fixed. It suffices to check the continuity result for arbitrary sequences $(t_n)_{n\geq 1} \subset (a,b)$ such that $t_n \to t_0$ as $n \to \infty$. Fix such a sequence and define $g_n(\omega) := f(\omega,t_n)$ for all $\omega \in \Omega$ and $n\geq 1$. Since $\lim_{t\to t_0} f(\omega,t) = f(\omega,t_0)$ for all $\omega \in \Omega$, we deduce that $\lim_{n\to\infty} g_n(\omega) = f(\omega,t_0)$ for every $\omega \in \Omega$. Moreover, by assumption $|g_n| \leq g$ for all $n\geq 1$ and g is integrable. By the Dominated Convergence Theorem

$$\lim_{n \to \infty} \int_{\Omega} g_n(\omega) \, \mu(\mathrm{d}\omega) = \int_{\Omega} f(\omega, t_0) \, \mu(\mathrm{d}\omega).$$

As the chosen sequence was arbitrary, we deduce that $\lim_{t\to t_0} F(t) = F(t_0)$.

(b) If $t \mapsto f(\omega, t)$ is continuous on (a, b) for all $\omega \in \Omega$ then $\lim_{t \to t_0} f(\omega, t) = f(\omega, t_0)$ at every $t_0 \in (a, b)$ for all $\omega \in \Omega$. In particular, (a) applies, showing that $\lim_{t \to t_0} F(t) = F(t_0)$ for every $t_0 \in (a, b)$, i.e., F is continuous on (a, b).

Problem 5.3

(1) We start by showing that $(\partial f/\partial t)(\cdot,t)$ is measurable. Let $(t_n)_{n\geq 1}\subset (a,b)$ be an arbitrary sequence with $t_n\neq t$ and $t_n\to t$ for $n\to\infty$. We set

$$g_n(\omega) = \frac{f(\omega, t_n) - f(\omega, t)}{t_n - t}.$$

Clearly, g_n is measurable for every $n \geq 1$. Moreover, $\lim_{n \to \infty} g_n(\omega) = (\partial f/\partial t)(\omega, t)$ by the definition of the derivative. Since $(\partial f/\partial t)(\cdot, t)$ is the pointwise limit of a sequence of measurable functions, it is also measurable. Clearly, $(\partial f/\partial t)(\cdot, t)$ is integrable since

$$\int_{\Omega} |(\partial f/\partial t)(\omega, t)| \, \mu(\mathrm{d}\omega) \le \int_{\Omega} g \, \mathrm{d}\mu < +\infty.$$

(2) Let $t_0 \in (a, b)$ and suppose w.l.o.g. $t_0 < t$. Since $t \mapsto f(\omega, t)$ is differentiable on (a, b) for all $\omega \in \Omega$, the Mean Value Theorem gives

$$\frac{f(\omega,t)-f(\omega,t_0)}{t-t_0}=(\partial f/\partial t)(\omega,\tau)\qquad \text{ for some }\tau\in(t_0,t).$$

Taking the modulus on both sides, we obtain

$$\left|\frac{f(\omega,t)-f(\omega,t_0)}{t-t_0}\right| \le |(\partial f/\partial t)(\omega,\tau)| \le g(\omega) \qquad \text{for all } \omega \in \Omega.$$

(3) We now have all the ingredients needed to apply the DCT, which yields

$$\lim_{n \to \infty} \frac{F(t_n) - F(t)}{t_n - t} = \lim_{n \to \infty} \int_{\Omega} g_n \, \mathrm{d}\mu = \int_{\Omega} (\partial f / \partial t)(\omega, t) \, \mu(\mathrm{d}\omega).$$

Since $t \in (a, b)$ and the sequence $(t_n)_{n \ge 1}$ was arbitrary, we conclude that F is differentiable on (a, b) with

$$F'(t) = \int_{\Omega} (\partial f/\partial t)(\omega, t) \,\mu(\mathrm{d}\omega).$$

Problem 5.3

(a) Note that the integrand $f_n(x)=\frac{1+nx^2}{(1+x^2)^n}$ is continuous on [0,1] and non-negative. Hence, the Riemann integral and Lebesgue integral coincide, i.e.,

$$\int_0^1 f_n(x) \, \mathrm{d}x = \int_{[0,1]} f_n \, \mathrm{d}\lambda.$$

Observe that we have the following pointwise limit

$$\lim_{n \to \infty} f_n(x) = \begin{cases} 1 & \text{if } x = 0, \\ 0 & \text{if } x \in (0, 1], \end{cases}$$

i.e., $\lim_{n\to\infty} f_n = 0$ λ -almost everywhere. Moreover, $f_n(x) \leq 1$ for every $x \in [0,1]$ and $n \geq 1$. Since the constant function $g \equiv 1$ is λ -integrable on [0,1], it is a valid dominator. Hence, the DCT gives

$$\lim_{n \to \infty} \int_0^1 f_n(x) \, dx = \lim_{n \to \infty} \int_{[0,1]} f_n \, d\lambda = \int_{[0,1]} \lim_{n \to \infty} f_n \, d\lambda = 0$$

(b) For the purpose of convergence, we consider $n \geq 3$. Note that the integrand $f_n(x) = \frac{x^{n-2}}{1+x^n}\cos\left(\frac{\pi x}{n}\right)$ is continuous on $(0,+\infty)$ with pointwise limit

$$\lim_{n \to \infty} f_n(x) = \begin{cases} 0 & \text{if } x \in (0, 1), \\ 1/2 & \text{if } x = 1, \\ 1/x^2 & \text{if } x > 1, \end{cases}$$

Setting the function

$$g(x) = \begin{cases} 1 & \text{for } x \in (0, 1), \\ \frac{1}{x^2} & \text{for } x \ge 1, \end{cases}$$

we see that $f_n \leq g$ λ -almost everywhere in $(0, +\infty)$ and for all $n \geq 3$. Indeed, for $x \geq 1$, we obtain

$$|f_n(x)| \le \left| \frac{x^{n-2}}{1+x^n} \cos\left(\frac{\pi x}{n}\right) \right| \le \frac{x^{n-2}}{1+x^n} \le \frac{x^{n-2}}{x^n} = \frac{1}{x^2},$$

while for $x \in (0, 1)$, we have

$$|f_n(x)| \le \left| \frac{x^{n-2}}{1+x^n} \cos\left(\frac{\pi x}{n}\right) \right| \le \frac{x^{n-2}}{1+x^n} \le 1.$$

Notice that g is non-negative and λ -integrable on $(0, +\infty)$. Indeed, using the MCT,

$$\int_{(0,+\infty)} g \, \mathrm{d}\lambda = \int_{(0,1)} g \, \mathrm{d}\lambda + \int_{(1,+\infty)} g \, \mathrm{d}\lambda = 1 + \lim_{n \to \infty} \int_{(1,n)} g \, \mathrm{d}\lambda$$
$$= 1 + \lim_{n \to \infty} \int_{1}^{n} \frac{1}{x^{2}} \, \mathrm{d}x = 1 + \lim_{n \to \infty} \left(1 - \frac{1}{n}\right) = 2 < +\infty.$$

To conclude, we apply DCT to deduce that the limit is 1.

Problem 5.4

The proof follows verbatim to the proof of the Dominated Convergence Theorem.

Problem 5.7

Let F_n denote the cdf of $Y_n = ||X_n - X||$ and F_0 denote the cdf of 0. By Definition 5.2.9 and Lemma 5.2.8 we have that $X_n \stackrel{\mathbb{P}}{\to} X$ if and only if $F_n(t) \to F_0(t)$ for all continuity points t of F_0 . This is equivalent to showing that $1 - F_n(t) \to 1 - F_0(t)$, where

$$1 - F_0(t) = \begin{cases} 0 & \text{if } t \ge 0\\ 1 & \text{else.} \end{cases}$$

Now note that the only discontinuity point of F_0 is 0. Moreover, $1 - F_n(t) = 0 = F_0(t)$ for all t < 0. Hence it follows that $X_n \stackrel{\mathbb{P}}{\to} X$ if and only if $1 - F_n(t) \to 0$ for all t > 0, which is what we needed to show.

Problem 5.8

(a) For this let $h_t(x) = \mathbf{1}_{(-\infty,t]}$ and note that

$$F_n(t) = (X_n)_{\#} \mathbb{P}_n((-\infty, x]) = \int_{\mathbb{R}} \mathbb{1}_{(-\infty, t]} d(X_n)_{\#} \mathbb{P}_n = \int_{\mathbb{R}} h_t d\mu_n.$$

and similarly $F(t) = \int_{\mathbb{R}} h_t \, \mathrm{d}\mu$

(b) The function h is discontinuous only at t, i.e. $C_h = \mathbb{R} \setminus \{t\}$. Moreover, for any $\varepsilon > 0$

$$\mu((t-\varepsilon,t+\varepsilon)) = \mu((t-\varepsilon,t]) + \mu((t,t+\varepsilon)) = F(t) - F(t-\varepsilon) + F(t+\varepsilon) - F(t).$$

Since F is continuous at t, the right hand side goes to zero as $\varepsilon \to 0$. Therefore

$$\mu(\lbrace t \rbrace) = \lim_{\varepsilon \to 0} \mu((t - \varepsilon, t + \varepsilon)) = 0,$$

which implies that $\mu(\mathcal{C}_h) = 1$.

- (c) The result follows by applying condition (2) in Theorem 5.2.7.
- (d) Let $\varepsilon > 0$, pick such a δ and partition the interval [-K, K] into $L_{\delta} := \left\lceil \frac{4K}{\delta} \right\rceil$ intervals $I_{\ell} = (a_{\ell}, b_{\ell}]$ of equal length, which is $\leq \delta/2 < \delta$. Now we define the simple function

$$\hat{g} := \sum_{\ell=1}^{L} h(b_{\ell}) \mathbb{1}_{I_{\ell}},$$

(e) Let M=L, $\beta_\ell=\sum_{t=1}^\ell h(b_t)$ and $t_\ell=b_\ell.$ Then

$$\hat{g} := \sum_{\ell=1}^{L} \beta_{\ell} \mathbf{1}_{(-\infty, b_{\ell}]}.$$

(f) Using the representation in (e) we get

$$\lim_{n \to \infty} \mathbb{E}[\hat{g}(X_n)] = \lim_{n \to \infty} \sum_{\ell=1}^{L} \beta_{\ell} \int_{\mathbb{R}} \mathbf{1}_{X_n^{-1}((-\infty,b_{\ell}])} d\mathbb{P}$$

$$= \lim_{n \to \infty} \sum_{\ell=1}^{L} \beta_{\ell}(X_n)_{\#} \mathbb{P}((-\infty,b_{\ell}])$$

$$= \lim_{n \to \infty} \sum_{\ell=1}^{L} \beta_{\ell} F_n(b_{\ell})$$

$$= \sum_{\ell=1}^{L} F(b_{\ell}) = \mathbb{E}[\hat{g}(X)].$$

(g) Using the representation of \hat{g} in (d) we note that $||x-y|| < \varepsilon$ for all $x, y \in I_{\ell}$. This then implies that $||g(x) - \hat{g}(y)|| \le \varepsilon$ from which it follows that

$$\begin{split} \|\mathbb{E}[g(X_n)] - \mathbb{E}[g(X)]\| &\leq \|\mathbb{E}[g(X_n)] - \mathbb{E}[\hat{g}(X_n)]\| + \|\mathbb{E}[g(X)] - \mathbb{E}[\hat{g}(X)]\| \\ &+ \|\mathbb{E}[\hat{g}(X_n)] - \mathbb{E}[\hat{g}(X)]\| \\ &\leq 2\varepsilon + \|\mathbb{E}[\hat{g}(X_n)] - \mathbb{E}[\hat{g}(X)]\|. \end{split}$$

We have shown in (f) that the last term goes to zero as $n \to \infty$. Since ε was arbitrary we conclude that (??) holds.

(h) This now follows from Theorem 5.2.7 (3).

Problem 5.9 Suppose that $X_n \stackrel{\text{a.s.}}{\to} X$. Then by Lemma 5.2.16 this is equivalent to $\mathbb{P}(\|X_n - X\| > \varepsilon \text{ i.o.}) = 0$ for all $\varepsilon > 0$.

For now fix an $\varepsilon > 0$ and write $A_n := \{ \|X_n - X\| > \varepsilon \}$. Recall that

$${A_n \text{ i.o.}} = \bigcap_{k=1}^{\infty} \bigcup_{k>n} A_n$$

and note two things:

- (a) The sets $B_k := \bigcup_{n \ge k} A_n$ are non-increasing, i.e. $B_k \supset B_{k+1}$, and
- (b) $\mathbb{P}(A_k) \leq \mathbb{P}(\bigcup_{n \geq k} A_n) = \mathbb{P}(B_k)$.

We then have that:

$$\begin{array}{ll} 0 = \mathbb{P}(\{A_n \text{ i.o.}\}) & \text{by assumption} \\ &= \mathbb{P}(\bigcap_{k=1}^{\infty} B_k) & \text{by Lemma 5.2.16} \\ &= \lim_{k \to \infty} \mathbb{P}(B_k) & \text{by continuity form above (Proposition 2.2.15)} \\ &\geq \lim_{k \to \infty} \mathbb{P}(A_k) & \text{by (b)}. \end{array}$$

Probability I: The basics

Problem 6.3

(a) For the probability space, take $\Omega = [0, 1]$, $\mathcal{F} = \mathcal{B}_{[0,1]}$ and $\mathbb{P} = \lambda$ the Lebesgue measure restricted to [0, 1].

Observe that the function $H_{\gamma}(z)$ is continuous and hence has an inverse $g_{\gamma}(y) = \gamma \tan(\pi(y-1/2))$ on [0,1].

So the function $Y[0,1] \to \mathbb{R}$ defined by $Y(x) = g_{\gamma}(x)$ has the correct distribution as

$$\mathbb{P}(Y^{-1}((-\infty,t])) = \mathbb{P}(g_{\gamma}^{-1}((-\infty,t])) = \lambda(H_{\gamma}((-\infty,t])) = H_{\gamma}(t).$$

- (b) Note that g_{γ} is continuous on [0,1] and hence measurable.
- (c) For any $t \ge 0$, the cdf of the Poisson random variable is given by

$$F_{\lambda}(t) = \sum_{n=0}^{\lceil t \rceil} f_{\lambda}(n),$$

where $\lceil t \rceil$ is the ceiling of t, i.e. the smallest integer $k \geq t$.

(d) For the probability space, we again take $\Omega = [0, 1]$, $\mathcal{F} = \mathcal{B}_{[0,1]}$ and $\mathbb{P} = \lambda$ the Lebesgue measure restricted to [0, 1].

Now for any $y \in [0,1]$ let k := k(y) be such that

$$\sum_{n=1}^{k} f_{\lambda}(n) \ge y \quad \text{and} \quad \sum_{n=1}^{k-1} f_{\lambda}(n) < y,$$

where the last sum is interpreted as -1 if k = 0.

Now define $X(y) = k(y) : [0,1] \to \mathbb{R}$. Then $k(y) \le t$ if and only if $y \le F_{\lambda}(t)$ and hence

$$X^{-1}((-\infty,t]) = \{ y \in [0,1] \, : \, k(y) \in (0,t] \} = \{ y \in [0,1] \, : \, y \in (0,F_{\lambda}(t)] \},$$

from which it follows that

$$\mathbb{P}(X^{-1}((-\infty,t])) = \lambda((0,F_{\lambda}(t)]) = F_{\lambda}(t).$$

(e) It follows from the above computation that $X^{-1}((-\infty,t])=\{y\in[0,1]:y\in(0,F_\lambda(t)]\}$. Since the latter is a measurable set we conclude that $X^{-1}((-\infty,t])$ is measurable for all t and since these generate the Borel σ -algebra X is measurable.

(f) for any $\ell \in \mathbb{N}$ define the sets $A_{\ell} = (n-1-1/\ell), n-1+1/\ell]$. Then A_{ℓ} is a decreasing set with $\lim_{\ell \to \infty} A_{\ell} = \{n\}$. Moreover, $A_{\ell} = (-\infty, n-1+1/\ell] \setminus (-\infty, n-1-1/\ell]$ and $\mathbb{P}(A_1) < \infty$. It now follows from continuity from above and (d) that

$$X_{\#}\mathbb{P}(\{n\}) = \lim_{\ell \to \infty} X_{\#}\mathbb{P}(A_{\ell})$$

$$= \lim_{\ell \to \infty} X_{\#}\mathbb{P}((-\infty, n - 1 + 1/\ell]) - X_{\#}\mathbb{P}((-\infty, n - 1 - 1/\ell])$$

$$= F_{\lambda}(n - 1 + 1/\ell) - F_{\lambda}(n - 1 - 1/\ell)$$

$$= \sum_{k=0}^{n} f_{\lambda}(k) - \sum_{k=0}^{n-1} f_{\lambda}(k) = f_{\lambda}(n).$$

Problem 6.2

Problem 6.4 From Theorem 6.5.9, we find for any $\varepsilon > 0$ a continuous and bounded function $g \in L^1(\Omega, \mu)$ such that

$$||f - g||_1 < \frac{\varepsilon}{2}.$$

Let M>0 and set $g_M:=\varphi_M g$, where is a continuous function with compact support satisfying $0\leq \varphi_M\leq 1$, $\varphi_M\equiv 1$ on $\overline{B_M}$ and $\varphi_M\equiv 0$ on B_{M+1}^c . Notice that

$$\int_{\mathbb{R}^d} |g - g_M| \,\mathrm{d}\mu = \int_{B_M^c} g \,\mathrm{d}\mu \le \|g\|_{\sup} \mu(B_M^c).$$

Since μ is finite, the continuity from above of μ gives $\lim_{M\to\infty}\mu(B_M^c)=0$. Hence, we find some $M=M_\varepsilon>0$ such that

$$\int_{\mathbb{R}^d} |g - g_M| \, \mathrm{d}\mu < \frac{\varepsilon}{2}.$$

Altogether, we've found some g_M such that

$$||f - g_M||_1 \le ||f - g||_1 + ||g - g_M|| < \varepsilon.$$

Chapter 5: Convergence of integrals and functions

Chapter 6: L^p -spaces

Chapter 7: Fubini-Tonelli

Problem 7.4

One direction is easy. Assume that X_1 and X_2 are independent according to Definition 7.1.4. Now take any $a,b\in\mathbb{R}$ and note that $A_1:=X_1^{-1}((-\infty,a])\in\sigma(X_1)$ and $A_2:=X_2^{-1}((-\infty,b])\in\sigma(X_2)$. Then by the definition of independence we have that

$$\mathbb{P}(X_1 \le a, X_2 \le b) = \mathbb{P}(A_1 \cap A_2) = \mathbb{P}(A_1)\mathbb{P}(A_2) = \mathbb{P}(X_1 \le a)\mathbb{P}(X_2 \le b).$$

So let us focus now on the other direction. Assume that for all $a, b \in \mathbb{R}$

$$\mathbb{P}(X_1 \le a, X_2 \le b) = \mathbb{P}(X_1 \le a)\mathbb{P}(X_2 \le b).$$

We now have to show that X_1 and X_2 are independent according to Definition 7.1.4. First note that since the family $(-\infty, a] \times (-\infty, b]$ generate the 2-dimensional Borel σ -algebra we have, using Theorem 2.2.17, that

$$\mathbb{P}(X_1 \in B_1, X_2 \in B_2) = \mathbb{P}(X_1 \in B_1)\mathbb{P}(X_2 \in B_2)$$

for all $B_1, B_2 \in \mathcal{B}_{\mathbb{R}}$.

Now fix a set $B_2 \in \mathcal{B}_{\mathbb{R}}$, set $A_2 := X_2^{-1}(B_2) \in \sigma(X_2)$, and define the following two measures on the space $(\Omega, \sigma(X_1))$

$$\mu_1(A) = \mathbb{P}(A \cap A_2)$$
 and $\mu_2(A) = \mathbb{P}(A)\mathbb{P}(A_2)$.

Let $a \in \mathbb{R}$ and consider the set $A_1 := X_1^{-1}((-\infty, a]) \in \sigma(X_1)$. Then, by our assumption we have that

$$\mu_1(A_1) = \mathbb{P}(A_1 \cap A_2) = \mathbb{P}(X_1 \le a, X_2 \in B_2) = \mathbb{P}(X_1 \le a)\mathbb{P}(X_2 \in B_2) = \mathbb{P}(A_1)\mathbb{P}(A_2) = \mu_2(A_1).$$

In other words, the measures μ_1, μ_2 coincide on the set $\{X_1^{-1}((-\infty, a]) : a \in \mathbb{R}\}$. Since the set $(-\infty, a]$ generate $\mathcal{B}_{\mathbb{R}}$ it follows that

$$\sigma(X_1) = \sigma(\{X_1^{-1}((-\infty, a]) : a \in \mathbb{R}\}).$$

In addition, this set satisfies the conditions of Theorem 2.2.17 and hence we conclude that $\mu_1(A) = \mu_2(A)$ for all $A \in \sigma(X_1)$.

We can repeat this argument for the two measures on $(\Omega, \sigma(X_2))$

$$\nu_1(A) = \mathbb{P}(A_1 \cap A)$$
 and $\nu_2(A) = \mathbb{P}(A_1)\mathbb{P}(A)$,

where $A_1 \in \{X_1^{-1}((-\infty, a]) : a \in \mathbb{R}\}$ is fixed.

From this we conclude that for any $A_1 \in \sigma(X_1)$ and $A_2 \in \sigma(X_2)$

$$\mathbb{P}(A_1 \cap A_2) = \mathbb{P}(A_1)\mathbb{P}(A_2)$$

and hence X_1 and X_2 are independent.

Chapter 8: Radon-Nikodym

Problem 8.2 First note that since f - g is \mathcal{H} -measurable, we have that $\{f \geq g\}, \{f < g\} \in \mathcal{H}$. We then write

$$\int_{\Omega} \|f - g\| d\mathbb{P} = \int_{f \ge g} (f - g) d\mathbb{P} - \int_{f < g} (f - g) d\mathbb{P}.$$

Since $\int_B f d\mathbb{P} = \int_B g d\mathbb{P}$ holds for all $B \in \mathcal{H}$ both integrals on the right hand side are zero.

Problem 8.4

(a) By definition we have that

$$\int_{B} \mathbb{E}[X|\mathcal{H}] \, d\mathbb{P} = \int_{B} X \, d\mathbb{P},$$

holds for all $B \in \mathcal{H}$. Since by assumption both $\mathbb{E}[X|\mathcal{H}]$ and X are \mathcal{H} -measurable, the result follows from problem 8.2.

(b) Note that $a\mathbb{E}[X|\mathcal{H}]$ is \mathcal{H} -measurable. Moreover,

$$\int_{B} a\mathbb{E}[X|\mathcal{H}] d\mathbb{P} = a \int_{B} \mathbb{E}[X|\mathcal{H}] d\mathbb{P} = a \int_{B} X d\mathbb{P} = \int_{B} aX d\mathbb{P}.$$

This proves the claim.

(c) Similarly to the previous point, we first note that since $\mathbb{E}[X|\mathcal{H}]$ and $\mathbb{E}[Y|\mathcal{H}]$ are \mathcal{H} -measurable so is $\mathbb{E}[X|\mathcal{H}] + \mathbb{E}[Y|\mathcal{H}]$. The result then follows because

$$\begin{split} \int_{B} \mathbb{E}[X|\mathcal{H}] + \mathbb{E}[Y|\mathcal{H}] \, \mathrm{d}\mathbb{P} &= \int_{B} \mathbb{E}[X|\mathcal{H}] \, \mathrm{d}\mathbb{P} + \int_{B} \mathbb{E}[Y|\mathcal{H}] \, \mathrm{d}\mathbb{P} \\ &= \int_{B} X \, \mathrm{d}\mathbb{P} + \int_{B} Y \, \mathrm{d}\mathbb{P} = \int_{B} X + Y \, \mathrm{d}\mathbb{P}. \end{split}$$

(d) First we observe that for any $B \in \mathcal{H}$

$$\int_B \mathbb{E}[X|\mathcal{H}] \, \mathrm{d}\mathbb{P} = \int_B X \, \mathrm{d}\mathbb{P} \le \int_B Y \, \mathrm{d}\mathbb{P} = \int_B \mathbb{E}[Y|\mathcal{H}] \, \mathrm{d}\mathbb{P}.$$

Now consider the event $A:=\{\mathbb{E}[X|\mathcal{H}]>\mathbb{E}[Y|\mathcal{H}]\}\in\mathcal{H}$. If this event has non-zero measure then it would follow that

$$\int_{A} \mathbb{E}[X|\mathcal{H}] d\mathbb{P} > \int_{A} \mathbb{E}[Y|\mathcal{H}] d\mathbb{P},$$

which is a contradiction. Hence we conclude that $\mathbb{E}[X|\mathcal{H}] \leq \mathbb{E}[Y|\mathcal{H}]$ holds \mathbb{P} -almost everywhere.