

Journal of Statistical Software

MMMMMM YYYY, Volume VV, Issue II.

http://www.jstatsoft.org/

Tidy Data

Hadley Wickham RStudio

Lecture 6-1: Tidy data II

Dr. James Chen, Animal Data Scientist, School of Animal Sciences

Tidying Messy Datasets

The five most common problems with messy datasets

- Column headers are values, not variable names.
- Multiple variables are stored in one column.

Week

6 - 2

- Variables are stored in both rows and columns.
- Multiple types of observational units are stored in the same table.
- A single observational unit is stored in multiple tables.

Global Historical Climatology Network (GHCN)

Site: MX000017004; YYYY: years; MM: months; ZZZZ: {TMIN, TMAX, PRECIPITATION}

Site+YYYYMMZZZZ

Day X (1 ~ 30 or 31)

0 1				i 5504TM 5504PR		1 150 0	2 150 0	3 160 0	4 150 0	5 160 0	6 160 0	7 160 0	8 160 0	9 160 0	
2 3	MX000 MX000	00170 00170	004195 004195	505TM 505TM	AX IN	310 200	310 160	310 160	300 150	300 150	300 150	310 160	310 160	310 170	•••
4	MX000	00170	004195	505PR		0	0	0	0	0	0	0	0	0	•••
994 995				004TM		0	147	147	150	136	0	157	0	0	•••
995 996	MX00	00170	004199	004PR 005TM	AX	0 0	0 350	0 362	0 348	23 337	0 0	0 240	0 0	0 0	•••
997 998				005TM		168 0	168 0	167 0	167 0	170 61	0 0	132 254	132 20	0 0	•••
	22	23	24	25	26	2	7 2	8 2	9 3	0 3	1				
0	170	170	170	180	190	19	0 17	0 18	0 16	0	0 0				
1	0 330	0 340	0 350	330	0 310	31		0 31	0 30	0 29	ō .				
3 4	170 0	190 0	190 0	190 0	180 0			0 17 0 5		0 16 0 4					
 994						•••			0 15		0				
995 996	0	0 297	0	0	0		0	0	0	0	0				
997	144	136	0 136	155	0 155		0	0 16	6 17	9 16	9				
998	0	89	0	0	0		0	0	0	0 :	3				
[999	rows	x 32	coli	ımns l											

Global Climate Network Temperature Stations

Extract information from a complex string

Split by positional indexing

Columns to unpivot

0 1 2 3 4 994 995 996	MX00 MX00 MX00 MX00 MX00	00170 00170 00170 00170 00170 00170	04195 04195 04195 04199 04199 04199	504TM 504PR 505TM 505TM 505PR 004PR 005TM	CP AX IN CP IN CP AX	200	2 150 310 160 0 147 0 350	3 160 310 160 0 147 0 362	150 300 150 0 150 348	5 160 300 150 0 136 23 337	6 160 300 150 0	7 160 310 160 0 157 0 240	8 160 310 160 0 0	9 160 310 170 0 0	
997 998				005TM 005PR 25		168 0 27	168 0 28	167 0 3 29	167 0 9 30	170 61 0 31	0	132 254	132 20	0	•••
0 1 2	170 0 330	170 0 340	170 0 350	180 0 330	190 0 310	190 0 310	170 320	0 180 0 (0 310	0 160 0 0	0 (6 (0 29(0 0 0				
3 4	170 0	190 0	190 0	190 0	180 0					0 160 0 40					
994 995 996 997 998	 0 0 0 144 0	297 136 89	 0 0 136 0	0 0 0 155 0	155 0	0) (0 (0 (0 16	0 15: 0 (0 (5 17:	7 (0 (0 336	0 0 6				
[999	rows	x 32	colu	mns]											

site	year	month	variable
MX000017004	1955	4	TMIN
MX000017004	1955	4	PRCP
MX000017004	1955	5	TMAX
MX000017004	1955	5	TMIN
MX000017004	1955	5	PRCP
MX000017004	1990		TMIN
MX000017004	1990	4	PRCP
MX000017004	1990	5	TMAX
MX000017004	1990	5	TMIN
MX000017004	1990	5	PRCP

Use df.melt() to turn multiple columns to one variable

id_vars

Original data

value_vars

Molten data

	site	year	month	varia	able	1	2	3	4	5	6	7	8	9
MX0000:	L7004	1955	4	1	TMIN :	150	150	160	150	160	160	160	160	160
MX00001	L7004	1955	4	F	PRCP	0	0	0	0	0	0	0	0	0
MX00001	L7004	1955	5	1	TMAX :	310	310	310	300	300	300	310	310	310
MX0000:		1955	5			200	160	160	150	150	150	160	160	170
MX0000:		1955	5		PRCP	0	0	0	0	0	0	0	0	0
	•••	•••			•••	•••	•••	•••	•••	•••	•••	•••	•••	•••
MX00003		1990	4	1	ΓMIN	0	147	147	150	136	0	157	0	0
MX0000		1990	4		PRCP	ŏ	- 0	- 0	0	23	ŏ	- 0	ŏ	ŏ
MX0000		1990	5		ГМАХ	ŏ	35 0	362	348	337	ŏ	240	ŏ	ŏ
MX0000		1990	5			168	168	167	167	170	ŏ	132	132	ŏ
MX0000		1990	5		PRCP	0	0	0	0	61	ŏ	254	20	ŏ
11110000	., ,,,,	-//			1,01	Ť	Ŭ	·	·	V-		201		ŭ
22	23	3	24	25	26	27	28	3 2	9 3	0 3	31			
170	170			180	190	190					0			
0	0		Ő	0	Ő	0			0	6	Õ			
330	340			330	310	310								
170	190			190	180	160								
- 0			Ő	0	0						46			
			.0)		0 15		0			
ŏ	è		ŏ	ő	ő	ě				ø	ŏ			
ŏ	297		ŏ	ŏ	ő	ě				0 33				
144	136			15Š	155	ě		16						
- 0	89		٠ 0	0	0	ä				ó Ì	3			

site MX000017004	year 1955	month 4	variable TMIN	day 1	value 150
MX000017004	1955	4	PRCP	1	0
MX000017004	1955	5	TMAX	1	310
MX000017004	1955	5	TMIN	1	200
MX000017004	1955	5	PRCP	1	0
•••	•••	•••	•••	•••	•••
MX000017004	1990	4	TMIN	31	0
MX000017004	1990	4	PRCP	31	0
MX000017004	1990	5	TMAX	31	336
MX000017004	1990	5	TMIN	31	169
MX000017004	1990	5	PRCP	31	3

We still need to put this variable back to columns

Use pd.pivot() to put variable values back to separate columns (variables)

	index	CC	values		
site MX000017004	year 1955	4	riable TMIN PRCP	day 1	value 150
MX000017004 MX000017004 MX000017004 MX000017004	1955 1955 1955 1955	4 5 5 5	TMAX TMIN PRCP	1 1 1 1	0 310 200 0
MX000017004 MX000017004 MX000017004	1990 1990 1990	 4 4 5	TMIN PRCP TMAX	31 31 31	 0 0 336
MX000017004 MX000017004	1990 1990	5 5	TMIN PRCP	31 31	169 3

Use pd.pivot() to put variable values back to separate columns (variables)

```
data3 = data2.pivot(index = ["site", "year", "month", "day"],
                              columns = "variable", values="value")
                    Tidied data
            index
                                                                     index
                                                                                  columns
                                                                                                 values
                                               TMIN
       site
                                PRCP
                    month
                           day
                                        TMAX
              year
                                                                                                value
                                                                            month variable
                                                                site
                                                                                            day
                                                                      year
MX000017004
             1955
                                              200.0
                                       310.0
                                                         MX000017004
                                                                      1955
                                                                                      TMIN
                                                                                                   150
                                       310.0
MX000017004
             1955
                                 0.0
                                              160.0
                                                         MX000017004
                                                                      1955
                                                                                      PRCP
MX000017004
             1955
                                       310.0
                                              160.0
                                                         MX000017004
                                                                      1955
                                                                                      TMAX
                                                                                                   310
MX000017004
             1955
                                       300.0
                                              150.0
                                                         MX000017004
                                                                                                   200
                                                                      1955
                                                                                      TMIN
             1955
                                 0.0
                                       300.0
MX000017004
                                              150.0
                                                         MX000017004
                                                                      1955
                                                                                      PRCP
MX000017004
             1990
                            27
                                         0.0
                                                                                             31
                                 0.0
                                                0.0
                                                        MX000017004
                                                                      1990
                                                                                      TMIN
                                                         MX000017004
                                                                      1990
MX000017004
             1990
                            28
                                         0.0
                                                0.0
                                                                                      PRCP
                                                                                             31
                                 0.0
                                                                                      TMAX
                                                                                                   336
                                                         MX000017004
                                                                      1990
MX000017004
             1990
                                         0.0
                                              166.0
                                 0.0
                                                                      1990
                                                                                      TMIN
                                                                                             31
                                                                                                   169
                                                         MX000017004
MX000017004
             1990
                            30
                                 0.0
                                              1/9.0
                                                                                      PRCP
                                                                                             31
                                                        MX000017004
                                                                      1990
MX000017004
                                              169.0/
             1990
                            31
                                 3.0
                                       336.0
```

Billboard dataset revisit

Let's revisit the billboard dataset that we worked in the second type of messy data. Although we have tidied the dataset, we can still see many repeated values in the data. For example, if we only check records of the song "Maria, Maria", we can see that multiple columns, such as artist.inverted and track, were repeated for each week.

track				artist.inverted			year	
endent Women Part I	Indep		l	ıy's Child	esti	De	2000	0
Maria, Maria			ı	Santana			2000	1
I Knew I Loved You	I Knew I Loved						2000	2
Music			ı	Madonna			2000	3
(All I Want Is You)	r Baby	over	Come On	Christina	era,	Aguile	2000	4
Cherchez LaGhost	Cherchez LaGhost						2000	24087
Freakin' It				Smith, Will			2000	24088
Kernkraft 400			ı	ie Nation	Zoml		2000	24089
Got Beef			}	idaz, The	East	ı	2000	24090
Toca's Miracle			ı	Fragma			2000	24091
ank	veek r	ced w	date.peak	e.entered	date	genre	time	
8.0	1 7	/00	11/18/	9/23/00		Rock	03:38	0
5.0	1 1	/00	4/8/	2/12/00		Rock	04:18	1
1.0	1 7	/00	1/29/	10/23/99		Rock	04:07	2
1.0	1 4	/00	9/16/	8/12/00		Rock	03:45	3
7.0	1 5	/00	10/14/	8/5/00		Rock	03:38	4
NaN	76 1	/00	8/5/	8/5/00		R&B	03:04	24087
NaN	76 1	/00	2/12/	2/12/00		Rap	03:58	24088
NaN	76 I	00	9/2/	9/2/00		Rock	03:30	24089
NaN	76 1	00	7/1/	7/1/00		Rap	03:58	24090
NaN	76 1	/aa	10/28/	10/28/00		R&B	03:22	24091

Repeated information

Original data

	year	ar	tist.inverted	tracl						
0	2000	De	stiny's Child		Ind	ependen ^a	t Women Part I			
1	2000		Santana		Maria, Maria					
2	2000		Savage Garden		I Knew I Loved You					
3	2000		Madonna				Music			
4	2000	Aguile	ra, Christina	Come On Ov	er Bab	y (All :	I Want Is You)			
24087	2000	Gho	stface Killah			Che	erchez LaGhost			
24088	2000		Smith, Will				Freakin' It			
24089	2000		Zombie Nation				Kernkraft 400			
24090	2000		astsidaz, The				Got Beef			
24091	2000	_	Fragma				Toca's Miracle			
		So	ng Data							
	time		date.entered	date.peaked	week	rank				
0	03:38			11/18/00	1	78.0				
1	04:18	Rock	2/12/00	4/8/00	1	15.0				
2	04:07		10/23/99	1/29/00	1	71.0				
3	03:45		8/12/00	9/16/00	1					
4	03:38	Rock	8/5/00	10/14/00	Ra	ank				
24087	03:04	R&B	8/5/00	8/5/00	76	ata				
24088	03:58	Rap	2/12/00	2/12/00	76	NaN				
24089	03:30	Rock	9/2/00	9/2/00	76	NaN				
24090	03:58	Rap	7/1/00	7/1/00	76	NaN				
24091	03:22		10/28/00	10/28/00	76	NaN				
2,002	00122	rtub	20, 20, 00	10, 20, 00						

We need two separate datasets

The query for one specific song

data.d	query("track	== 'Mar	ia, I	Maria''	')			
	year artist	invert	ed		track	time	genre	date.entered
1	2000	Santa			Maria		_	
318	2000	Santa			Maria			
635	2000	Santa			Maria			
952	2000	Santai			Maria			
1269	2000	Santai	na I	Maria,	Maria	04:18	Rock	2/12/00
			• •			• • • •		
22508	2000	Santai	na I	Maria,	Maria	04:18	Rock	2/12/00
22825	2000	Santai	na I	Maria,	Maria	04:18	Rock	2/12/00
23142	2000	Santai	na I	Maria,	Maria	04:18	Rock	2/12/00
23459	2000	Santai	na I	Maria,	Maria	04:18	Rock	2/12/00
23776	2000	Santai	na I	Maria,	Maria	04:18	Rock	2/12/00
	date.peaked	week	rank					
1	4/8/00	1	15.0					
318	4/8/00	2	8.0					
635	4/8/00	3	6.0					
952	4/8/00	4	5.0					
1269	4/8/00	5	2.0					
	., 0, 00							
22508	4/8/00	72	NaN					
22825	4/8/00	73	NaN					
23142	4/8/00	74	NaN					
23459	4/8/00	75 76	NaN					
23776	4/8/00	76	NaN					

04:07

03:45

03:38

03:04

03:58

03:30

03:58

03:22

Rock

Rock

Rock

R&B

Rap

Rock

Rap

R&B

Obtain an unique ID for each song

10/23/99

8/12/00

8/5/00

8/5/00

2/12/00

9/2/00

7/1/00

10/28/00

index	year	artist.inv	erted					track		
0	2000	Destiny's	Child				Indep	pendent Women Part I		
1	2000	Sa	ntana			Maria, Ma				
2	2000	Savage 0	Garden					I Knew I Loved You		
3	2000	Ma	adonna	Mus						
4	2000	Aguilera, Chri	stina	Come	0n	0ver	Baby	(All I Want Is You)		
312	2000	Ghostface k	(illah					Cherchez LaGhost		
313	2000	Smith,	Will					Freakin' It		
314	2000	Zombie N	lation					Kernkraft 400		
315	2000	Eastsidaz	, The					Got Beef		
316	2000	F	ragma					Toca's Miracle		
time	genre	date.entered da	ate.peal	ked						
03:38	Rock	9/23/00	11/18	/00						
04:18	Rock	2/12/00	4/8	/00						

1/29/00

9/16/00

10/14/00

8/5/00

2/12/00

9/2/00

7/1/00

10/28/00

Subset only the columns that contain song information

Drop duplicated rows (like we saw earlier from the song "Maria, Maria"

Use df.reset_index() to obtain unique IDs

pd.merge() to add "index" to the original data frame by the key columns

pandas.merge(left, right, how='inner', on=None, left_on=None, right_on=None,
left_index=False, right_index=False, sort=False, suffixes=('_x', '_y'),
copy=True, indicator=False, validate=None)

Parameters: left : DataFrame

right: DataFrame or named Series

Object to merge with.

on: label or list

Column or index level names to join on. These must be found in both DataFrames If *on* is None and not merging on indexes then this defaults to the intersection of the columns in both DataFrames.

Left (original table)

year	artist.inverted	track
2000	Destiny's Child	Independent Women Part I
2000	Santana	Maria, Maria
2000	Savage Garden	I Knew I Loved You
2000	Madonna	Music
2000	Aguilera, Christina	Come On Over Baby (All I Want Is You)
2000	Ghostface Killah	Cherchez LaGhost
2000	Smith, Will	Freakin' It
2000	Zombie Nation	Kernkraft 400
2000	Eastsidaz, The	Got Beef
2000	Fragma	Toca's Miracle

time	genre	date.entered	date.peaked	week	rank
03:38	Rock	9/23/00	11/18/00	1	78.0
04:18	Rock	2/12/00	4/8/00	1	15.0
04:07	Rock	10/23/99	1/29/00	1	71.0
03:45	Rock	8/12/00	9/16/00	1	41.0
03:38	Rock	8/5/00	10/14/00	1	57.0
03:04	R&B	8/5/00	8/5/00	76	NaN
03:58	Rap	2/12/00	2/12/00	76	NaN
03:30	Rock	9/2/00	9/2/00	76	NaN
03:58	Rap	7/1/00	7/1/00	76	NaN
03:22	R&B	10/28/00	10/28/00	76	NaN

Right (song table with index)

index	year	artist.inverted	track
0	2000	Destiny's Child	Independent Women Part I
1	2000	Santana	Maria, Maria
2	2000	Savage Garden	I Knew I Loved You
3	2000	Madonna	Music
4	2000	Aguilera, Christina	Come On Over Baby (All I Want Is You)
312	2000	Ghostface Killah	Cherchez LaGhost
313	2000	Smith, Will	Freakin' It
314	2000	Zombie Nation	Kernkraft 400
315	2000	Eastsidaz, The	Got Beef
316	2000	Fragma	Toca's Miracle

time	genre	date.entered	date.peaked
03:38	Rock	9/23/00	11/18/00
04:18	Rock	2/12/00	4/8/00
04:07	Rock	10/23/99	1/29/00
03:45	Rock	8/12/00	9/16/00
03:38	Rock	8/5/00	10/14/00
03:04	R&B	8/5/00	8/5/00
03:58	Rap	2/12/00	2/12/00
03:30	Rock	9/2/00	9/2/00
03:58	Rap	7/1/00	7/1/00
03:22	R&B	10/28/00	10/28/00

Key columns (The 'on' argument)

Added information (Index)

pd.merge() to add "index" to the original data frame by the key columns

pandas.merge(left, right, how='inner', on=None, left_on=None, right_on=None,
left_index=False, right_index=False, sort=False, suffixes=('_x', '_y'),
copy=True, indicator=False, validate=None)

Merged table (song)

	index	year	artist.inverted	track	time	genre
0	0	2000	Destiny's Child	Independent Women Part I	03:38	Rock
1	0	2000	Destiny's Child	Independent Women Part I	03:38	Rock
2	0	2000	Destiny's Child	Independent Women Part I	03:38	Rock
3	0	2000	Destiny's Child	Independent Women Part I	03:38	Rock
4	0	2000	Destiny's Child	Independent Women Part I	03:38	Rock
24087	316	2000	Fragma	Toca's Miracle	03:22	R&B
24088	316	2000	Fragma	Toca's Miracle	03:22	R&B
24089	316	2000	Fragma	Toca's Miracle	03:22	R&B
24090	316	2000	Fragma	Toca's Miracle	03:22	R&B
24091	316	2000	Fragma	Toca's Miracle	03:22	R&B

	date.entered	date.peaked	week rank
0	9/23/00	11/18/00	1 78.0
1	9/23/00	11/18/00	2 63.0
2	9/23/00	11/18/00	3 49.0
3	9/23/00	11/18/00	4 33.0
4	9/23/00	11/18/00	Dropped
			Commis
24087	10/28/00	10/28/00	Columns
24087 24088	10/28/00 10/28/00		73 NaN
		10/28/00	72 NaN
24088	10/28/00	10/28/00 10/28/00	72 NaN 73 NaN

Subset table (rank)

	index	week	rank
0	0	1	78.0
1	0	2	63.0
2	0	3	49.0
3	0	4	33.0
4	0	5	23.0
24087	316	72	NaN
24088	316	73	NaN
24089	316	74	NaN
24090	316	75	NaN
24091	316	76	NaN
[24092	rows x	3 col	umns]

Parameters: left : DataFrame

right: DataFrame or named Series

on: label or list

Column or index level names to join on. These must be found in both DataFrames If on is None and not merging on indexes then this defaults to the intersection of the columns in both DataFrames.

Object to merge with.

Key columns (The 'on' argument)

Added information (Index)

We can compare the number of values we need before and after the transformation.

```
size_original = data.size
size_new = data_rank.size + data_song.size

print("The number of elements (number of rows times number of columns) in data is ", size_original)
print("New data has ", size_new, "elements")
print("Compression ratio is ", size_new / size_original)
```

```
The number of elements (number of rows times number of columns) in data is

New data has 74812 elements

Compression ratio is 0.34502923976608185
```

Tidying the table can save data storage by > 65%

A Single Observational Unit Is Stored in Multiple Tables

This is a case where a single observational unit is stored in multiple tables organized by different variables. In this example, we will work on the babynames dataset. This dataset consists of multiple files, each of which contains the baby names and their proportions. The files are organized by year and gender in a format of babynames_yyyy_xxx.csv, where yyyy is the year and xxx is the gender (i.e., boy or girl).

Let's bbserve the file naming pattern first

```
os.listdir("tidy_6_babynames")
                                                 We can try to open one of them to inspect the data.
                                                  pd.read_csv(os.path.join("tidy_6_babynames", "babynames_1887_boy.csv"))
['babynames_1887_boy.csv',
 'babynames_1897_boy.csv',
 'babynames_1959_girl.csv',
                                                               percent
                                                         name
                                                         John 0.074181
 'babynames_1958_girl.csv',
                                                                             No gender or year info
                                                      William
                                                              0.068344
 'babynames_1946_boy.csv',
                                                        James 0.043617
                                                                             in the table itself
 'babynames_1956_boy.csv',
                                                       George 0.039190
 'babynames_1982_girl.csv',
                                                              0.036875
 'babynames_1931_boy.csv',
                                                              0.000046
                                                  995
                                                       Jessee
                                                                             Need to extract the info
                                                              0.000046
                                                  996
 'babynames_1921_boy.csv',
                                                  997
                                                        Jodie 0.000046
 'babynames_1974_girl.csv',
                                                                             from the filename
                                                         Lars 0.000046
 'babynames_1975_girl.csv',
                                                      Laurel 0.000046
 'babynames_1988_boy.csv',
 'babynames_1998_boy.csv']
                                                  [1000 rows x 2 columns]
```

A Single Observational Unit Is Stored in Multiple Tables

You will find that there is no year or gender information in the file, we need to extract them from the file name. Let's start with a single file to experiment the extraction process.

```
filename = "babynames_1887_boy.csv"
year = re.findall(r"\d+", filename)[0]
gender = re.findall(r"[a-z]+\.", filename)[0].replace(".", "")
data = pd.read_csv(os.path.join("tidy_6_babynames", filename))
data["year"] = year
data["gender"] = gender
data
Try to understand the code
```

```
percent year gender
        name
              0.074181
                         1887
        John
                                  boy
     William
              0.068344
                         1887
                                  boy
              0.043617
                         1887
       James
                                  boy
             0.039190
                         1887
      George
                                  boy
     Charles
              0.036875
                         1887
                                  boy
                    . . .
                          . . .
                                  . . .
              0.000046
995
                         1887
      Jessee
                                  boy
996
              0.000046
       Jewel
                         1887
                                  boy
997
       Jodie 0.000046
                         1887
                                  boy
              0.000046
                         1887
998
                                  boy
              0.000046
                         1887
999
      Laurel
                                  boy
[1000 rows x 4 columns]
```

Obtained from the **filename**

A Single Observational Unit Is Stored in Multiple Tables

Now, we can iteratively extract needed information from each file and store them into one csv file. We can create an empty file with only the header defined.

Next, let's test the extraction process on the first five files. Try to define constant variables instead of hard-coding the values every time.

```
DIR_DATA = "tidy_6_babynames"
ls_files = os.listdir(DIR_DATA)
for filename in ls_files:
    year = re.findall(r"\d+", filename)[0]
    gender = re.findall(r"[a-z]+\.", filename)[0].replace(".", "")
    data = pd.read_csv(os.path.join(DIR_DATA, filename))
    data["year"] = year
    data["gender"] = gender
    data.to_csv(FILE_OUT, mode="a", header=False, index=False)
```

Case Study - How To Use a Tidy Dataset?

We will use a case study to illustrate the advantages of tidying data. The dataset tidy_X.csv contains the individual-level mortality from Mexico.

The columns include the following:

- sex: the gender of the deceased
- age: the age of the deceased
- yod: the year of death
- mod : the month of death
- dod: the day of death
- hod: the hour of death
- cod : the cause of death

```
data = pd.read_csv("tidy_X.csv")
data
```

	sex	age	yod	mod	dod	hod	cod
0	1	90	2008	1	7	20	F17
1	1	72	2008	1	13	14	I05
2	1	49	2008	1	12	20	K65
3	2	79	2008	1	20	10	I38
4	1	15	2008	1	1	15	N18
528323	1	1	2008	10	6	12	P22
528324	2	20	2008	10	18	20	Q24
528325	2	3	2008	11	11	19	P22
528326	1	24	2008	9	25	12	P22
528327	1	2	2008	9	22	16	P26
[528328	rows	x 7	column	s]			

The goal is to find causes of death with unusual temporal patterns within a day.

Case Study - Inspect the Data

Data

```
data = pd.read_csv("tidy_X.csv")
data
```

	sex	age	yod	mod	dod	hod	cod	
0	1	90	2008	1	7	20	F17	
1	1	72	2008	1	13	14	I05	
2	1	49	2008	1	12	20	K65	
3	2	79	2008	1	20	10	I38	
4	1	15	2008	1	1	15	N18	
528323	1	1	2008	10	6	12	P22	
528324	2	20	2008	10	18	20	Q24	
528325	2	3	2008	11	11	19	P22	
528326	1	24	2008	9	25	12	P22	
528327	1	2	2008	9	22	16	P26	
[528328	rows	x 7	column	s]				

Data types

data.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 528328 entries, 0 to 528327 Data columns (total 7 columns): Column Non-Null Count Dtype 528328 non-null int64 sex 528328 non-null int64 age 528328 non-null int64 yod 528328 non-null int64 mod dod 528328 non-null int64 528328 non-null int64 hod 528328 non-null object dtypes: int64(6), object(1) memory usage: 28.2+ MB

Distributions

data.describe()

	sex	age	yod	mod
count	528328.000000	528328.000000	528328.000000	528328.000000
	1.443461	61.246593	2007.950735	6.490457
mean				
std	0.496794	24.611694	2.881578	3.554002
min	1.000000	1.000000	0.000000	0.000000
25%	1.000000	48.000000	2008.000000	3.000000
50%	1.000000	67.000000	2008.000000	6.000000
75%	2.000000	80.000000	2008.000000	10.000000
max	2.000000	99.000000	2008.000000	12.000000
	dod	hod		
count	528328.000000	528328.000000		
mean	15.738475	11.701500		
std	8.826922	6.763691		
min	0.000000	0.000000		
25%	8.000000	6.000000		
50%	16.000000	12.000000		
75%	23.000000	17.000000		
max	31.000000	23.000000		

Data

```
data = pd.read_csv("tidy_X.csv")
data
```

[528328 rows x 7 columns]

```
hod
                         mod
                              dod
             age
                   yod
                                        cod
        sex
                  2008
                                    20
                                        F17
                  2008
                                    14
                                        I05
2
                  2008
                               12
                                    20
                                        K65
                  2008
                               20
                                    10
                                        I38
                                        N18
                  2008
                                    12
                                        P22
528323
                  2008
                          10
528324
                  2008
                               18
                                    20
                                        Q24
                          10
528325
                  2008
                          11
                               11
                                    19
                                        P22
528326
                                    12
                                        P22
                  2008
528327
                  2008
                               22
                                    16
                                        P26
```

6.2 Count the number of deaths in each hour

2008

2 2008

412156

502497

We need to tidy the data by hod and cod to get the number of deaths in each hour. Before we do that, we can use df.query() to check what result we will get. For example, there should be five records of hod=0, and cod=A06.

Then use df.groupby() to group the data by hod and cod and aggregate the data by size to count the number of deaths. We should see "5" in the freq_by_hodcod column as we queried above.

0 A06

0 A06

```
data_grp = data.groupby(["hod", "cod"]).agg(freq_by_hodcod=("hod", "size")).reset_index()
data_grp
```

data_grp

	hod	cod	freq_by_hodcod
0	0	A02	1
1	0	A04	6
2	0	A06	5
3	0	A09	87
4	0	A15	7
16171	23	Y34	28
16172	23	Y57	3
16173	23	Y83	7
16174	23	Y86	16
16175	23	Y89	5
[16176	rows	x 3	columns]

6.3 The proportion of deaths in each cause by hour

Now, let's continue with the data_grp to compute proportion of deaths of each cod given hod. We need to determine the denominator of the proportion first. The denominator is the total number of deaths in each cod across all hod.

Again, we can use df.query() to preview what we will get.

```
hod cod freq_by_hodcod
5257 8 A03 1
5922 9 A03 1
6611 10 A03 1
8014 12 A03 1
11503 17 A03 1
12204 18 A03 1
14210 21 A03 1
```

Then use df.groupby() to group the data by cod and aggregate the data by sum to get the total number of deaths in each cod.

```
sum_cod = data_grp.groupby(["cod"]).agg(sum_by_cod=("freq_by_hodcod", "sum")).reset_index()
sum_cod
```

```
sum_by_cod
      cod
     A01
                  51
     A02
                  62
      A03
      A04
                 144
                  20
1192 Y85
1193 Y86
                 363
1194 Y87
1195 Y88
1196 Y89
                  39
[1197 rows x 2 columns]
```

data_grp2

```
data_grp2 = pd.merge(data_grp, sum_cod)
data_grp2
```

	hod	cod	freq_by_hodcod	sum_by_cod
0	0	A02	1	62
1	1	A02	3	62
2	2	A02	9	62
3	3	A02	1	62
4	4	A02	3	62
16171	22	Y52	2	2
16172	23	D24	1	1
16173	23	N88	1	1
16174	23	067	1	1
16175	23	V33	1	1
[16176	rows	x 4	columns]	

Then, with the columns freq_by_hodcod as the numerator and sum_cod as the denominator, we can compute the proportion of deaths in each hod given cod.

```
data_grp2["prop_by_hodcod"] = data_grp2["freq_by_hodcod"] / data_grp2["sum_by_cod"]
data_grp2
```

	hod	cod	freq_by_hodcod	sum_by_cod	prop_by_hodcod
0	0	A02	1	62	0.016129
1	1	A02	3	62	0.048387
2	2	A02	9	62	0.145161
3	3	A02	1	62	0.016129
4	4	A02	3	62	0.048387
16171	22	Y52	2	2	1.000000
16172	23	D24	1	1	1.000000
16173	23	N88	1	1	1.000000
16174	23	067	1	1	1.000000
16175	23	V33	1	1	1.000000

[16176 rows x 5 columns]

data_grp2

	hod	cod	freq_by_hodcod	sum_by_cod	prop_by_hodcod
0	0	A02	1	62	0.016129
1	1	A02	3	62	0.048387
2	2	A02	9	62	0.145161
3	3	A02	1	62	0.016129
4	4	A02	3	62	0.048387
16171	22	Y52	2	2	1.000000
16172	23	D24	1	1	1.000000
16173	23	N88	1	1	1.000000
16174	23	067	1	1	1.000000
16175	23	V33	1	1	1.000000
		_			
[16176	rows	x 5	columns]		

Merge

Add 'prop_by_hod' based on 'hod'

6.4 The proportion of deaths in each hour

Next, to know if a cause of death has unusual temporal patterns, we need to compare the proportion of deaths in each hour with the proportion of deaths in each hour across all causes of death. We can use the data_grp to compute the sum of deaths in each hour first.

```
sum_hod = data_grp2.groupby(["hod"]).agg(sum_by_hod=("freq_by_hodcod", "sum")).reset_index()
sum_hod
     hod sum_by_hod
                 20072
                                                                                     sum_hod["prop_by_hod"] = sum_hod["sum_by_hod"] / sum_hod["sum"]
                                  sum_hod["sum"] = sum_hod["sum_by_hod"].sum()
                 20248
                                                                                      sum_hod = sum_hod.loc[:, ["hod", "sum_by_hod", "prop_by_hod"]]
                                  sum_hod
                 18806
                                                                                      sum_hod
                 19532
                                          sum_by_hod
                 20069
                                                                                              sum_by_hod prop_by_hod
                                               20072
                                                     528328
                 21883
                                                                                                   20072
                                                                                                            0.037992
                                               20248
                                                     528328
                                                                                                  20248
                                                                                                            0.038325
                 23536
                                                     528328
                                               18806
                                                                                                            0.035595
                                                                                                  18806
                 21619
                                               19532 528328
                                                                                                   19532
                                                                                                            0.036969
                                                     528328
                                               20069
                 21713
                                                                                                            0.037986
                                                                                                  20069
                                               21883 528328
                                                                                                  21883
                                                                                                            0.041419
                 22223
                                                     528328
                                               23536
                                                                                                  23536
                                                                                                            0.044548
                 24093
10
      10
                                               21619 528328
                                                                                                            0.040920
                                                                                                  21619
                                               21713 528328
      11
                 23627
                                                                                                  21713
                                                                                                            0.041098
                                       9
                                               22223 528328
      12
                                                                                                  22223
                                                                                                            0.042063
                 23172
                                  10
                                      10
                                               24093 528328
                                                                                          10
                                                                                      10
                                                                                                  24093
                                                                                                            0.045602
      13
                 23058
                                  11
                                      11
                                               23627 528328
                                                                                         11
                                                                                                  23627
                                                                                                            0.044720
                                  12
                                      12
                                               23172 528328
                 22786
                                                                                      12
                                                                                          12
                                                                                                  23172
                                                                                                            0.043859
                                  13
                                      13
                                               23058 528328
                                                                                      13
                                                                                          13
                                                                                                  23058
                                                                                                            0.043643
      15
                 23047
                                  14
                                      14
                                               22786 528328
                                                                                          14
                                                                                                  22786
                                                                                                            0.043129
      16
                 23622
                                  15
                                      15
                                               23047 528328
                                                                                      15
                                                                                          15
                                                                                                  23047
                                                                                                            0.043623
                                  16
                                      16
                                               23622 528328
                 23395
      17
                                                                                      16
                                                                                          16
                                                                                                  23622
                                                                                                            0.044711
                                  17
                                      17
                                               23395 528328
                                                                                         17
                                                                                                  23395
                                                                                                            0.044281
                 24093
                                  18
                                      18
                                               24093 528328
                                                                                          18
                                                                                      18
                                                                                                  24093
                                                                                                            0.045602
      19
                 22681
                                  19
                                      19
                                               22681 528328
                                                                                      19
                                                                                         19
                                                                                                  22681
                                                                                                            0.042930
                 22702
                                                                                                  22702
                                                                                                            0.042970
                                               20813 528328
                                      21
                                                                                                  20813
                                                                                                            0.039394
                 20813
                                      22
                                               20298 528328
                                                                                                  20298
                                                                                                            0.038419
                 20298
                                  23
                                      23
                                               21240 528328
                                                                                                            0.040202
                                                                                                  21240
     23
                 21240
```

we can then compute the proportion by hod

Case Study - Calculate the Deviation Between Exp. And Obs.

data_grp3

	hod	cod	freq_by_hodcod	sum_by_cod	prop_by_hodcod	sum_by_hod
0	0	A02	1	62	0.016129	20072
1	0	A04	6	144	0.041667	20072
2	0	A06	5	88	0.056818	20072
3	0	A09	87	3111	0.027965	20072
4	0	A15	7	209	0.033493	20072
16171	23	N95	1	2	0.500000	21240
16172	23	D24	1	1	1.000000	21240
16173	23	N88	1	1	1.000000	21240
16174	23	067	1	1	1.000000	21240
16175	23	V33	1	1	1.000000	21240
prop_by_hod		od		Observed		
0	0	.0379	92			
1	0	.0379	92			
2	0	.0379	92			
3	0	.0379	92			
4	0	.0379	92			

Expected (Average)

. . .

0.040202

0.040202

0.040202

0.040202

0.040202

...

16171

16172

16173

16174

16175

6.5 Deviation from the expected proportion

Finally, we can compute the deviation from the expected proportion (prop_by_hod)

```
data_grp3["diff_prop"] = (data_grp3["prop_by_hodcod"] - data_grp3["prop_by_hod"])**2
data_grp3.head()
```

```
freq_by_hodcod sum_by_cod prop_by_hodcod
                                                      sum_by_hod
                                                                  prop_by_hod \
hod
                                         0.016129
     A02
                                                        20072
                                                                   0.037992
                                         0.041667
                                                                   0.037992
     A04
                                                        20072
                                 144
     A06
                                         0.056818
                                                        20072
                                                                   0.037992
                      87
     A09
                                3111
                                         0.027965
                                                        20072
                                                                   0.037992
    A15
                                 209
                                         0.033493
                                                         20072
                                                                   0.037992
diff_prop
0.000478
0.000014
0.000354
0.000101
0.000020
```

Case Study - Calculate the Deviation Between Exp. And Obs.

data_grp3

```
freq_by_hodcod sum_by_cod prop_by_hodcod
                                                                prop_by_hod
                                                    sum_by_hod
    cod
                                       0.016129
                                                                0.037992
    A02
                                                      20072
                                                                0.037992
    A04
                                       0.041667
                                                      20072
                               144
                                                                0.037992
    A06
                                       0.056818
                                                      20072
    A09
                                       0.027965
                                                      20072
                                                                0.037992
                               3111
 0 A15
                                209
                                       0.033493
                                                      20072
                                                                0.037992
                                                               Expected
                                     Observed
diff_prop
0.000478
                                                               (Average)
0.000014
0.000354
0.000101
0.000020
```

Deviation

And we can follow the same process as the tidy paper to get the distance from the expected proportion.

```
devi = data_grp3.groupby(["cod"]).agg(n=("freq_by_hodcod", lambda x: x.sum()),
                                      dist=("diff_prop", lambda x: x.mean())).reset_index()
devi = devi.query("n > 50")
devi
                    dist
      cod
               0.000958
     A01
                0.000733
     A02
                0.000185
      A04
                 0.000360
                0.000030
     Y33
                 0.000627
                 0.000068
     Y34
     Y57
                 0.000284
     Y83
                0.000203
     Y86
            363 0.000094
1193
[450 rows x 3 columns]
```

devi

	cod	n	dist
0	A01	51	0.000958
1	A02	62	0.000733
3	A04	144	0.000185
5	A06	88	0.000360
8	A09	3111	0.000030
1172	Y33	60	0.000627
1173	Y34	780	0.000068
1183	Y57	111	0.000284
1190	Y83	174	0.000203
1193	Y86	363	0.000094
[450	rows	x 3 co	lumns]

Linear

Log-transformed

```
ggplot(devi, aes(x = 'n', y = 'dist')) + geom_point()+\
scale_x_log10() +\
scale_y_log10() +\
geom_smooth(method = "lm")
                             outliers
  1e-5 -
```

1e3

1e2

Case Study - Find the Residuals

6.6 Use a residual plot to find unusual temporal patterns

We can use how well the data fit a linear model to find unusual temporal patterns. We need statsmodels to fit a linear model. As we learned from the previous visualization, the data are linearly related when the variables are log-transformed. Hence, we can directly fit a linear model on the log-transformed data.

```
# fit a linear model
import statsmodels.api as sm
import numpy as np
# log transformation
devi["log_n"] = np.log(devi["n"])
devi["log_dist"] = np.log(devi["dist"])
# fit a linear model
model = sm.OLS.from_formula("log_dist ~ log_n", data=devi)
result = model.fit()
result.summary()
```

OLS Regression Results

Dep. Variable:	log_dist	R-squared:	0.751
Model:	OLS	Adj. R-squared:	0.750
Method:	Least Squares	F-statistic:	1348.
Date:	Mon, 20 Feb 2023	Prob (F-statistic):	3.74e-137
Time:	17:54:58	Log-Likelihood:	-436.72
No. Observations:	450	AIC:	877.4
Df Residuals:	448	BIC:	885.7
Df Model:	1		
Covariance Type:	nonrobust		

Log-transformed

```
ggplot(devi, aes(x = 'n', y = 'dist')) + geom_point()+\
scale_x_log10() +\
geom_smooth(method = "lm")
Outliers

le-3 - **Residuals**
```

1e-5 -

le2

le4

le3

Case Study - Find the Residuals


```
dist
                             log_dist
                                          resid
cod
      51 0.000958 3.931826 -6.950290 0.290330
A02
      62 0.000733 4.127134 -7.218939 0.178910
     144 0.000185 4.969813 -8.596625 -0.520395
          0.000360 4.477337 -7.929282 -0.249510
                   8.042699 -10.422575
                   4.094345
                            -7.373953 -0.002500
          0.000627
                   6.659294 -9.596346 -0.160034
     111 0.000284 4.709530 -8.165902 -0.299207
     174 0.000203 5.159055 -8.501431 -0.272856
     363 0.000094 5.894403 -9.270435 -0.449883
```

```
ggplot(devi, aes(x = 'log_n', y = 'resid')) + geom_point() + geom_hline(yintercept = 1.5)
```


outliers

Log-transformed

```
ggplot(devi, aes(x = 'n', y = 'dist')) + geom_point()+\
scale_x_log10() +\
scale_y_log10() +\
geom_smooth(method = "lm")
```


Each dot represents a COD

Case Study - Visualization of the Outliers

