University of Dhaka Department of Computer Science and Engineering 3rd Year 2nd Semester B.Sc.(Hons.) Final Examination, 2017 CSE 3203: Finite Language, Automata and Computation : 60 Time: 3 F

Fı	ıll N	Marks: 60 Time: 3 Hours	
		(Answer any Four (4) of the following Questions)	
1.		Prove or disprove each of the following statements: i. If L_1 is context free and L_2 is not context free then L_1L_2 is not context free. ii. If L_1 is context free and L_2 is not context free then L_1L_2 is context free.	2+2
	b)	For each language L below choose the most restrictive class it belongs to and give justification for your answer. i. $L = \{xw \mid x, w \in \{a, b\}^* \ and \mid x \mid = w \}$ (Choose among regular, context free or TM-decidable) ii. $L = \{a^i b^j c^k d^l \mid i+j+k+l \ is \ a \ multiple \ of \ 13\}$	3+3+5
		(Choose among regular, context free or TM-decidable) wis a string kis an odd number larger than 2	
		iii. $L = \left\{ \langle w, M_1, M_2, \dots, M_k \rangle \middle each M_i is a TM and the majority \right\}$	
		of the M's accepts w	
		(Choose among TM-Decidable, TM-recognizable, not TM-recognizable.	4+4
2.	a)	Convert the following grammar in CNF and use CYK algorithm to determine whether $ababb$ is a string in the language of the grammar (S is the start symbol). $S \rightarrow ASA \mid aB$ $A \rightarrow B \mid S$	
		$B \to b \mid \varepsilon$	7
	b)	Formally prove that all strings that the following grammar generates have even length. (S is the start symbol) $S \rightarrow SB \mid aa$ $B \rightarrow bSBb \mid ab$	
3.		Consider the following language L over $\Sigma = \{0, 1, \#\}$. $L = \{x \# y \mid x, y \in \{0,1\}^+ \text{ and } y \text{ is the binary number equal to } x+1\}$ Hence, $1110\#11111 \in L$, and $111\#1101 \notin L$. Prove that L is not regular.	6
	b)	Give informal description of a PDA that recognizes the following language: "The set of strings over the language {a, b} with more a's than b's	4
	c)	Give a context free grammar that generates the following language. Also, give informal description of the language generated by each variable you have used in the grammar. $\{w\#x \mid w^R \text{ is a substring of } x \text{ for } w, x \in \{0, 1\}^*\}$	5
		{w#x w" is a substitute of wife and a substi	2+
4.	a)	Define ambiguous grammar. Show that the following two grammars are ambiguous. i. S ->ep SS (S) $\qquad \qquad P = E$ ii. S \rightarrow aFbS aFbSeS ϵ	1.5+ 1.5
		$F \rightarrow f$ Rewrite the grammars so that they are not ambiguous.	
		Design CFG in the following cases: i. All binary strings that are palindrome, such as: 11, 101, 0110 etc. ii. $\{a^mb^n : m \ge n\}$	2+2
	c)	Identify the following languages as regular, non-regular, state the reasons. i. $\{\omega = xy : x, y \in \{a, b\}^*\}$ and y contains x as a substring} ii. $\{\omega = x\} : x \in \{a, b\}^*$ and $i \ge 0\}$ γ . iii. $\{\omega = \{a, b\}^* : \omega$ has more a than b}	3
		iii. $\{\omega = \{a, b\}^T : \omega \text{ has more a than } b\}$	

d) Write regular expressions for the following languages.

i. The set of strings whose number of 1's is divisible by six.

ii. All strings that do not contain the substring 11.

5. a) Let, $\Sigma = \{T, F, p, q, \sim, \land, \lor\}$. The set of well formed Boolean formulas (WFF) is a language over Σ defined inductively as follows:

T, F, p and q are elements of WFF

If x is in WFF, then so is $\sim x$

If x and y are in WFF, then $x \wedge y$ and $x \vee y$ are in WFF

Design a DFA with at most 3 states that recognizes WFF.

Construct a regular expression for the language WFF. ii.

b) Consider the following DFA, M

2.5+ 4.5

3

The language Suffix(M, q) is the collection of all words accepted if q were the initial state of DFA M. For each state of M, describe Suffix(M, q) using regular

ii. For any language L and any string x, let suffix language of L with respect to x is defined as $suffix(L, x) = \{ y \in \Sigma^* \mid xy \in L \}$; i.e. suffix(L, x) is the collection of strings y which when prefixed by string x, result in a string in L. For each of the following values of x, describe suffix(L, x).

a.
$$x = \epsilon$$

b. $x = 0$

c.
$$x = 10$$

Write a formal definition of pushdown automation.

Using pumping lemma show that the languages consisting of all strings with equal number of 0's and 1's (not in any particular order) is not a regular language.

Compare a nondeterministic finite automation and pushdown automation.

3

Show the contents of the stack in each step for the following PDA, when the input is c) "011110".

0, Z0 /0 Z0

1. Z0/1Z0

0,0/00 0,1/01

1.0/10

0.0/ & 1.1/2

