Commité de suivi

Étude de l'interaction dipolaire entre centres NV

- Le centre NV et sa géométrie
- Interaction dipolaire et modification du T1
- Relaxation croisée et observation de nouveaux défauts

Enjeux de mon travail

- Compréhension de l'interaction dipolaire entre centres NV : fluctuateurs, double quantums
- Utilisation de l'interaction dipolaire : Relaxations croisées, magnétométrie
- Liens avec la spin-mécanique

Le centre NV

Défaut de spin1, fluoresce à 637 nm

Spin polarisable optiquement (équivalent 0.6K)

Lecture optique de spin

Propriétés pour des ensembles à 300K: T1= 5 ms - 100 μ s T2 (largeur ESR) = 1 MHz - 10 MHz

Le centre NV : Structure à 8 niveaux

Le centre NV : structure à 3 niveaux

Le centre NV : Géométrie

ESR et dégénérescence (1)

0 dégénérescences

1 dégénérescence

ESR et dégénérescence (2)

2 dégénérescences

4 dégénérescences

Dépendance angulaire des dégénérescences

Carte expérimentale

Modification du T1 par interaction dipolaire

Origine des fluctuateurs : paire NV-/N+?

Différence entre 4-Degenerancy et champ nul : double quantums

Termes en |0+><-0| en plus dans le hamiltonien dipolaire : exaltation de l'interaction dipolaire

Scan selon 100 : recherche des double quantums

Feature 1:13C first shell

Feature 2: VH-

Conclusion

- 3e feature : war1?
- DEER sur le VH-
- Couple magnétique et relaxation croisée
- Suspension dans un liquide/à un fil