SONY

Vision and Sensing Application SDK モデル学習 機能仕様書

Copyright 2023 Sony Semiconductor Solutions Corporation

Version 0.2.0 2023 - 1 - 30

AITRIOS™、およびそのロゴは、ソニーグループ株式会社またはその関連会社の登録商標または商標です。

目次

1. 更新履歴	1
2. 用語・略語	2
3. 参照資料	3
4. 想定ユースケース	4
5. 機能概要、アルゴリズム	5
6. 操作性仕様、画面仕様	8
7. 目標性能	14
8. 制限事項	15
9. その他特記事項	16
10. 未決定事項	17

1. 更新履歴

Date	What/Why
2023/01/30	初版作成

2. 用語・略語

Terms/Abbreviations	Meaning
MCT	モデルを量子化するためのオープンソースソフト ウェア
Keras	AIモデルのフォーマットの一種
TFLite	TensorFlow Liteのこと AIモデルのフォーマットの一種
イテレーション	(1回あたりの)学習

3. 参照資料

- Reference/Related documents (関連資料)
 - Model Compression Toolkit (MCT)
 - https://github.com/sony/model_optimization

4. 想定ユースケース

• 転移学習を実行したい 学習の過程で、推論実行し精度を確認したい

5. 機能概要、アルゴリズム

Functional Overview

- SDKにて下記のフローでImage ClassificationのAIモデル(Keras)を転移学習できる
- 転移学習したAIモデルで推論実行し、推論実行結果の統計値(Top1 accuracy)を取得できる
- SDKにてサポートするAIモデルは、MCTの supported-features に準拠する
- SDKにてサポートする画像フォーマットはJPEGとする
- フロー概要

凡例

処理/ユーザーの行動

- フロー詳細
 - 1. 転移学習のベースとなるAIモデルを用意
 - 転移学習のベースとなるAIモデル(Keras)を用意する
 - 2. 転移学習のデータセットを用意
 - 転移学習するためのデータセット画像とそのlabel情報を用意する
 - 3. 転移学習実行向け設定ファイル作成・編集
 - 設定ファイルconfiguration.jsonを作成、編集してNotebook実行時の設定を行う
 - 4. Notebook編集
 - ベースとなるAIモデルがTop(output)レイヤーを含んでいる場合は、Notebook内の remove_top_layer_if_needed()の実装を修正する
 - 5. 転移学習と評価を実行
 - 転移学習を実行し、推論評価するNotebookを実行する

6. 操作性仕様、画面仕様

How to start each function

- 1. SDK環境を立ち上げ、Topの README.md をプレビュー表示する
- 2. SDK環境Topの README.md に含まれるハイパーリンクから、 tutorials ディレクトリの README.md にジャンプする
- 3. tutorials ディレクトリの README.md に含まれるハイパーリンクから、 3_prepare_model ディレクトリの README.md にジャンプする
- 4. **3_prepare_model** ディレクトリの **README.md** に含まれるハイパーリンクから、 **develop_on_sdk** ディレクトリの **README.md** にジャンプする
- 5. **develop_on_sdk** ディレクトリの **README.md** に含まれるハイパーリンクから、 **1_train_model** ディレクトリの **README.md** にジャンプする
- 6. 1_train_model ディレクトリの README.md に含まれるハイパーリンクから、image_classification ディレクトリの README.md にジャンプする
- 7. image_classification ディレクトリの各ファイルから各機能に遷移する

転移学習のベースとなるAIモデルを用意

- 1. 転移学習のベースとなるAIモデル(Keras)を用意する
 - 。 転移学習のベースとなるAIモデル(Keras)を、SDK実行環境に格納する

転移学習のデータセットを用意

- 1. 転移学習のためのデータセット画像とlabel情報を用意する
 - 。 ImageNet 1.0形式のフォルダ構成 のアノテーションデータを転移学習用と評価用の2つのフォルダで作成し、SDK実行環境に格納する
 - tutorials/_common/datasetフォルダ内に格納する場合は、下記のように格納する

```
tutorials/
L _common
 <sup>L</sup> dataset
     + training/ (1)
        ト 画像の分類名/
           └ 画像ファイル
        ├ 画像の分類名/
           └ 画像ファイル
        - · · · ·
      - validation/ (2)
        ├ 画像の分類名/
           └ 画像ファイル
        ├ 画像の分類名/
           └ 画像ファイル
         . . . .
     L labels.json (3)
```

- (1) 転移学習時に使用するデータセット
- (2) 転移学習後の評価時に使用するデータセット
- (3) label情報ファイル
- label情報ファイルのフォーマットは下記のようにlabel名とそのid値が記載されたjsonファイルとする

```
{"daisy": 0, "dandelion": 1, "roses": 2, "sunflowers": 3, "tulips": 4}
```


CVATでアノテーションを行ったデータセットをエクスポートしSDK実行環境に格納する方法は、CVAT画像アノテーション 機能仕様書 を参照。

<u>転移学習実行向け設定ファイル作成・編集</u>

1. 実行ディレクトリに設定ファイル(configuration. json)を作成し、編集する

i 原則としてシンボリックリンクのフォルダパス、ファイルパスは使用不可。

Configuration	Meaning	Range	Remarks
source_keras_model	転移学習のベースとなるAIモデル(Keras) パス。KerasのSavedModel形式のフォルダまたはh5形式のファイルを指定する	絶対パスまたは Notebook(*.ipynb)から の相対パス	未指定の場合、Keras 標準のMobileNetV2の AIモデルを使用する動 作となる
dataset_training_d ir	転移学習の入力用デー タセット画像パス。 ImageNet 1.0形式のフ ォルダ を指定する	絶対パスまたは Notebook(*.ipynb)から の相対パス	
dataset_validation _dir	転移学習後の評価用デ ータセット画像パス。 ImageNet 1.0形式のフ ォルダ を指定する	絶対パスまたは Notebook(*.ipynb)から の相対パス	
batch_size	転移学習の入力用デー タセットと評価用デー タセットのバッチサイ ズ	1以上(2のn乗を推奨)	
input_tensor_size	AIモデルの入力テンソ ルのサイズ(画像の一辺 のピクセル数)	AIモデルの入力テンソ ルに準拠	
epochs	転移学習時のepoch数	1以上	
output_dir	転移学習したAIモデル の出力先となるディレ クトリ	絶対パスまたは Notebook(*.ipynb)から の相対パス	

Configuration	Meaning	Range	Remarks
evaluate_result_di r	推論実行結果の統計情 報を保存するディレク トリ	絶対パスまたは Notebook(*.ipynb)から の相対パス	

Notebook編集

- 1. 実行ディレクトリの転移学習実行用Notebook(*.ipynb)を開く
- 2. ベースとなるAIモデルがTop(output)レイヤーを含んでいる場合は、Notebook内のremove_top_layer_if_needed()の実装を修正する

転移学習と評価を実行

- 1. 実行ディレクトリの転移学習実行用Notebook(*.ipynb)を開き、その中のPythonスクリプトを実行する
 - 。 その後下記の動作をする
 - 実行ディレクトリのconfiguration.json存在をチェックする
 - エラー発生時はその内容を表示し、中断する
 - configuration.json source_keras_model 、dataset_training_dir の存在をチェックする
 - エラー発生時はその内容を表示し、中断する
 - configuration.json の下記の内容を読み取り、TensorFlowへ必要な設定を行い、転移学習する
 - configuration.json source_keras_model
 - configuration.json dataset_training_dir
 - configuration.json input_tensor_size
 - configuration.json epochs
 - TensorFlowなどの外製ソフトでエラー発生時は、外製ソフトが出力するエラーを表示 し、中断する
 - configuration.json output_dir に、KerasのSavedModel形式のAIモデルを出力する
 - output_dir で指定するディレクトリがなければ作成し、そこに出力する
 - 学習中はNotebookに下記のような表示をする(epochs が10の場合)

- configuration.json dataset_validation_dir の存在をチェックする
 - エラー発生時はその内容を表示し、中断する

- configuration.json の下記の内容を読み取り、TensorFlowへ必要な設定を行う
 - configuration.json dataset_validation_dir
 - configuration.json output_dir
 - configuration.json evaluate_result_dir
- 転移学習したAIモデルで推論実行し、統計情報を表示する
- 統計情報を、evaluate_result_dir 配下に results.json ファイルとして保存する
- TensorFlowなどの外製ソフトでエラー発生時は、外製ソフトが出力するエラーを表示 し、中断する
- AIモデルの推論実行中はTensorFlowライブラリによるログを表示する
- 処理中でもNotebook Cell機能のStop Cell Executionで中断できる

7. 目標性能

- SDKの環境構築完了後、追加のインストール手順なしに、転移学習を実行できること
- UIの応答時間が1.2秒以内であること
- 処理に5秒以上かかる場合は、処理中の表現を逐次更新表示できること

8. 制限事項

• データセットのサイズによってはCodespacesのMachine Typeが4-coreでも転移学習時にメモリ不足でエラーになるため、その場合は8-core以上のMachine Typeを選択する必要がある

9. その他特記事項

- MCT(model-compression-toolkit)、TensorFlowのバージョン確認方法について
 - 。 SDK環境のルートフォルダにある requirements.txt を参照する

10. 未決定事項

• なし