# MarshalkoMV 29112024-141936

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

**Даны** значения s-параметров:

| Freq | $s_{11}$ |        | $s_{21}$ |      | $s_{12}$ |      | $s_{22}$ |        |
|------|----------|--------|----------|------|----------|------|----------|--------|
| GHz  | MAG      | ANG    | MAG      | ANG  | MAG      | ANG  | MAG      | ANG    |
| 1.1  | 0.346    | -161.8 | 11.790   | 89.8 | 0.042    | 67.1 | 0.303    | -65.9  |
| 1.4  | 0.358    | -170.8 | 9.244    | 83.6 | 0.051    | 66.7 | 0.250    | -73.2  |
| 1.7  | 0.366    | -178.0 | 7.524    | 78.6 | 0.060    | 65.9 | 0.211    | -80.4  |
| 2.0  | 0.372    | 176.3  | 6.319    | 74.0 | 0.069    | 64.8 | 0.186    | -88.5  |
| 2.6  | 0.383    | 167.5  | 4.815    | 66.9 | 0.087    | 62.4 | 0.162    | -102.9 |
| 3.5  | 0.393    | 156.3  | 3.544    | 57.2 | 0.115    | 57.7 | 0.151    | -118.9 |
| 5.0  | 0.410    | 141.9  | 2.491    | 42.4 | 0.160    | 48.3 | 0.131    | -139.8 |
| 6.5  | 0.435    | 127.0  | 1.934    | 28.0 | 0.201    | 38.0 | 0.098    | -175.7 |
| 8.0  | 0.497    | 113.8  | 1.563    | 13.8 | 0.238    | 27.1 | 0.125    | 128.5  |

и частоты  $f_{\scriptscriptstyle \rm H}=1.4$  ГГц,  $f_{\scriptscriptstyle \rm B}=8$  ГГц.

**Найти** усиление на  $f_{\scriptscriptstyle \mathrm{B}}.$ 

- 1) 3.9 дБ
- 2) 19.3 дБ
- 3) 7.8 дБ
- 4) 9.7 дБ

**Найти** точку (см. рисунок 1), соответствующую коэффициенту отражения от нормированного импеданса  $z=1.12\text{-}2.57\mathrm{i}$  .



Рисунок 1 – Точки  $s_i$  на s-плоскости

В качестве ОТВЕТА указать индекс выбранной точки.

**Даны** значения s-параметров:

| Freq | $s_{11}$ |        | $s_{21}$ |      | $s_{12}$ |      | $s_{22}$ |        |
|------|----------|--------|----------|------|----------|------|----------|--------|
| GHz  | MAG      | ANG    | MAG      | ANG  | MAG      | ANG  | MAG      | ANG    |
| 1.8  | 0.350    | -179.0 | 7.456    | 77.7 | 0.060    | 67.1 | 0.225    | -71.8  |
| 1.9  | 0.352    | 178.5  | 7.048    | 75.7 | 0.064    | 66.6 | 0.215    | -73.7  |
| 2.0  | 0.354    | 177.1  | 6.620    | 74.5 | 0.066    | 66.1 | 0.207    | -76.1  |
| 2.2  | 0.360    | 173.8  | 6.033    | 72.1 | 0.072    | 65.5 | 0.194    | -80.2  |
| 2.4  | 0.359    | 170.7  | 5.465    | 69.5 | 0.078    | 64.4 | 0.185    | -84.2  |
| 2.6  | 0.364    | 168.0  | 5.044    | 67.3 | 0.084    | 63.6 | 0.176    | -88.0  |
| 2.8  | 0.366    | 165.1  | 4.673    | 64.9 | 0.090    | 62.5 | 0.171    | -91.5  |
| 3.0  | 0.369    | 162.4  | 4.344    | 62.9 | 0.096    | 61.6 | 0.167    | -95.0  |
| 3.5  | 0.375    | 156.7  | 3.707    | 57.7 | 0.110    | 58.9 | 0.159    | -102.4 |
| 4.0  | 0.380    | 151.1  | 3.239    | 52.7 | 0.125    | 55.9 | 0.154    | -108.8 |
| 4.5  | 0.388    | 146.3  | 2.880    | 47.8 | 0.140    | 52.8 | 0.145    | -114.6 |

и частоты  $f_{\mbox{\tiny H}}=2.4$  ГГц,  $f_{\mbox{\tiny B}}=4$  ГГц.

**Найти** неравномерность усиления в полосе  $f_{\text{\tiny H}}...f_{\text{\tiny B}}$ , используя рисунок 2.



Рисунок 2 – Частотная характеристика усиления

- 1) 2.3 дБ
- 2) 4.5 дБ
- 3) 8.3 дБ
- 4) 1 дБ

**Даны** значения s-параметров:

| Freq | $s_{11}$ |        | $s_{21}$ |       | $s_{12}$ |      | $s_{22}$ |        |
|------|----------|--------|----------|-------|----------|------|----------|--------|
| GHz  | MAG      | ANG    | MAG      | ANG   | MAG      | ANG  | MAG      | ANG    |
| 1.0  | 0.520    | -110.9 | 25.458   | 110.7 | 0.026    | 52.1 | 0.535    | -56.9  |
| 2.1  | 0.478    | -153.8 | 13.250   | 84.8  | 0.037    | 50.9 | 0.314    | -79.8  |
| 3.2  | 0.483    | -175.4 | 8.691    | 69.9  | 0.049    | 51.6 | 0.256    | -98.9  |
| 4.3  | 0.496    | 170.1  | 6.452    | 57.8  | 0.063    | 50.5 | 0.234    | -110.7 |
| 5.4  | 0.503    | 159.3  | 5.055    | 46.8  | 0.078    | 48.1 | 0.209    | -121.6 |
| 6.5  | 0.519    | 146.6  | 4.214    | 35.5  | 0.092    | 42.5 | 0.186    | -138.4 |
| 8.6  | 0.601    | 127.5  | 3.048    | 14.5  | 0.120    | 31.7 | 0.151    | 157.8  |

**Найти** точку (см. рисунок 3), соответствующую  $s_{22}$  на частоте 4.3 ГГц.



Рисунок 3 — Кривые  $s_{11}$  и  $s_{22}$ 

- 1) A
- 2) B
- 3) C
- 4) D

**Задан** двухполюсник на рисунке 4, причём R1 = 252.6 Ом.



Рисунок 4 – Двухполюсник

**Найти** полуокружность (см. рисунок 5), описываемую коэффициентом отражения от этого двухполюсника в среде с волновым сопротивлением 50 Ом при изменении частоты от 0 до  $\infty$ .



Рисунок 5 — Полуокружности  $\Gamma_i$  на s-плоскости

В качестве ОТВЕТА указать индекс выбранной полуокружности.

#### **Даны** значения s-параметров:

| Freq | $s_{11}$ |       | $s_{21}$ |      | $s_{12}$ |      | $s_{22}$ |        |
|------|----------|-------|----------|------|----------|------|----------|--------|
| GHz  | MAG      | ANG   | MAG      | ANG  | MAG      | ANG  | MAG      | ANG    |
| 7.6  | 0.546    | 133.0 | 3.643    | 24.7 | 0.108    | 40.5 | 0.123    | -160.8 |
| 7.8  | 0.557    | 131.5 | 3.545    | 22.7 | 0.112    | 39.3 | 0.119    | -169.1 |
| 8.0  | 0.568    | 130.1 | 3.451    | 20.6 | 0.115    | 38.1 | 0.117    | -177.7 |
| 8.2  | 0.578    | 128.6 | 3.343    | 18.6 | 0.118    | 36.5 | 0.122    | 172.2  |
| 8.4  | 0.588    | 127.1 | 3.238    | 16.5 | 0.120    | 34.9 | 0.131    | 163.1  |
| 8.6  | 0.597    | 125.7 | 3.137    | 14.6 | 0.122    | 33.5 | 0.142    | 154.5  |
| 8.8  | 0.604    | 124.4 | 3.038    | 12.8 | 0.124    | 32.1 | 0.155    | 146.3  |
| 9.0  | 0.612    | 123.1 | 2.942    | 11.0 | 0.126    | 30.7 | 0.170    | 139.5  |
| 9.2  | 0.621    | 121.8 | 2.859    | 9.8  | 0.128    | 29.4 | 0.190    | 133.7  |
| 9.4  | 0.630    | 120.4 | 2.776    | 8.5  | 0.129    | 28.0 | 0.210    | 129.1  |
| 9.6  | 0.643    | 118.9 | 2.702    | 6.9  | 0.131    | 26.8 | 0.235    | 125.5  |

и частоты  $f_{\scriptscriptstyle {
m H}}=8.4$   $\Gamma\Gamma$ ц,  $f_{\scriptscriptstyle {
m B}}=9.2$   $\Gamma\Gamma$ ц. **Найти** модуль  $s_{22}$  в дБ на частоте  $f_{\scriptscriptstyle {
m H}}.$ 

- 1) 10.2 дБ
- 2) -18.4 дБ
- 3) -4.6 дБ
- 4) -17.7 дБ