# 第七章进阶题 优秀作业

### 7.7

| 求不等价的染色 | = {e, ±%, 180°                                                                                        | }            |                    |                 |                                           | even       |
|---------|-------------------------------------------------------------------------------------------------------|--------------|--------------------|-----------------|-------------------------------------------|------------|
|         | $ab$ : $e=(1)-(n^2)$ 1                                                                                |              |                    |                 |                                           |            |
| 19      | $10'': (4)^{\frac{n^2}{4}}(1)^{\frac{n^2}{2}}$                                                        | MER C        | (95)=C(-85)= [2]   | /棋盘上包           | 1415.14A-4                                | 而开。P\$3中心点 |
| 185     | 5° (2) [2] (1) 1/2                                                                                    | 11至改 C       | (185)= [前]         | /               | 2                                         |            |
| B R     | lo": (4) <sup>23</sup> (1) <sup>n/2</sup><br>5° (2) <sup>T空</sup> (1) <sup>n/2</sup><br>olya走水 有 核效 N | 1= 161 Zmc4) | = 4 (1.2"+ 2.2[#]+ | 1:2 = 옷 2"      | 2+2 <sup>8-1</sup> +2 <sup>8-2</sup> N    | าซึ่ง      |
| 2       | 0<br>1449:不是张旭                                                                                        | f. G         |                    | 2 <sup>n±</sup> | +2 <sup>\$-\$</sup> +2 <sup>\$-\$</sup> n | <b>考</b> . |
|         |                                                                                                       |              |                    | •               |                                           |            |
| - > ≥J. |                                                                                                       |              |                    |                 |                                           |            |
| 7.7爾;   |                                                                                                       |              |                    |                 |                                           |            |
| 77爾;    |                                                                                                       |              |                    |                 |                                           |            |
| 7.7爾;   |                                                                                                       |              |                    |                 |                                           |            |
| 77爾;    |                                                                                                       |              |                    |                 |                                           |            |
| 77解:    |                                                                                                       |              |                    |                 |                                           |            |

田 Pólya 远星,n析如, 
$$L = \frac{1}{4} \left[ 2^{n^2} + 2x \frac{n^2}{2} + 2^{\frac{n^2}{2}} \right] = 2^{n^2 2} + 2^{\frac{n^2}{2}} + 2^{\frac{n^2}{2}}$$
n 为的如  $L = \frac{1}{4} \left[ 2^{n^2} + 2x \frac{n^2}{2} + 2^{\frac{n^2}{2}} \right] = 2^{n^2 2} + 2^{\frac{n^2}{2}} + 2^{\frac{n^2}{2}}$ 

- 7.8. 将正六而体的各棱的中点相连,切掉八个角,得到一个新的多而体.
- (1) 水该多面体的面数、顶点数、棱数;
- (2) 使用红、黄、蓝 3 种颜色对该多面体的面染色。要求 4 个面为红色、4 个面为黄色、其余面为蓝色,并且所有红色面形状均相同、所有黄色面形状也均相同。允许旋转,求不等价的染色方案数;
- (3) 用火柴搭建该多而体,允许旋转,求不等价的方案数.



| (1) 厚油作分                                                                                                                                                                                                                                                                                                                            |        | -个三新移面,台         | 的介面对应 1个正                                | 名形面.                              |                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------|------------------------------------------|-----------------------------------|--------------------|
| △ 面数 ← ≥ {                                                                                                                                                                                                                                                                                                                          | 8+6=14 |                  |                                          |                                   | ( )                |
|                                                                                                                                                                                                                                                                                                                                     |        | 棱/卤新棱            | 对应 1 存地点                                 |                                   | ST= 14             |
| 1. 桂熟 e= 3×8=24                                                                                                                                                                                                                                                                                                                     |        |                  |                                          | JV= 12                            |                    |
| 由欧拉连理V+f-e=2 , 19に放 v=e-f+2=24-NP+2=12 le=24                                                                                                                                                                                                                                                                                        |        |                  |                                          |                                   |                    |
| 12)                                                                                                                                                                                                                                                                                                                                 | •      | 8*4              | 颜色ルタン                                    | 6× <>                             | <b>颜色 x 5 y</b>    |
| 不动                                                                                                                                                                                                                                                                                                                                  | 17     | (1)8             | (U+V)8                                   | (1) <sup>6</sup>                  | (x+y) <sup>6</sup> |
| >◆松鞋切る                                                                                                                                                                                                                                                                                                                              | 2434   | (4)2             | $(\omega^{\varphi} + \nu^{\varphi})^{2}$ | (1) <sup>2</sup> (4) <sup>1</sup> | (n+y) ] (x4+y4)    |
| >分批较180度                                                                                                                                                                                                                                                                                                                            | 34     | (T) 10           | $(\alpha^2 + \nu^2)^{\phi}$              | $(1)^{2}(2)^{2}$                  | (200y)2(2242)2     |
| □ 域(数)的克                                                                                                                                                                                                                                                                                                                            | 64     | (≥) <sup>4</sup> | (u2+v2)4                                 | (2)3                              | (X2+y2)3           |
| A マタンを上りつる                                                                                                                                                                                                                                                                                                                          | 2×49   | (1) (3)          | (un)2(wn)2                               | (3)2                              | (×3.44), ),        |
| $P_{1}(G_{1}) = \frac{1}{24} \left[ (u+v)^{8} + 6(u^{4}+v^{4})^{2} + 3(u^{2}+v^{2})^{4} + 8(u+v)^{2}(u^{2}+v^{2})^{2} \right]$ $P_{2}(G_{1}) = \frac{1}{24} \left[ (u+v)^{8} (x+y)^{6} + 6(u^{4}+v^{4})^{2} (x+y)^{2} (x^{4}+y^{4}) + 3(u^{2}+v^{2})^{4} (x^{2}+y^{2})^{3} + 8(u+v)^{2}(u^{2}+v^{2})^{2} (x^{2}+y^{2})^{2} \right]$ |        |                  |                                          |                                   |                    |

| ① 当常地和爱到面物A 时 声额台 PiCG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | )中山切りま数。           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| ① 当常如色如变色的面构为 $\Delta$ 时, 含霉数 $\Delta$ $P_{i}$ $C_{i}$ $M_{i}$ | [70+/2+18+36+16]=7 |

②童条红色纷纷为□,菱色为△购

启蒙数为 P2(G)中 U4V4 x4y1 的亲权。

$$\mathcal{N}^{\frac{1}{2}} = \frac{1}{24} \left[ \left( \frac{8}{4} \right) \left( \frac{6}{4} \right) + 6 \left( \frac{2}{1} \right) \left( \frac{2}{2} \right) \left( \frac{1}{1} \right) + 3 \left( \frac{4}{1} \right) \left[ \left( \frac{2}{2} \right) \left( \frac{2}{1} \right) + \left( \frac{1}{0} \right) \left( \frac{2}{2} \right) \right] + 6 \left( \frac{4}{1} \right) \left( \frac{3}{2} \right) + 8 \left( \frac{2}{1} \right) \left( \frac{2}{1} \right) \cdot 0 \right]$$

③ 贵族红色的面为 △,麦色节 口明,情况与 ②对称。

编50000,不多价的方章数为7+51×2=109

| (3)      |      | 24%核               | 浙季没有辅军过程,因为                             |
|----------|------|--------------------|-----------------------------------------|
| 不动       | 17   | (1) <sup>249</sup> | 图名技两侧不对称                                |
| ◆◆松鞋奶店   | 2434 | (4)*= (4)6         | • • • • • • • • • • • • • • • • • • • • |
| ◆◆本報180度 | 34   | (2)"               |                                         |
| ⊗⊗1城無約2  | 64   | (2)12              |                                         |
| △▽私乳土から. | 2×49 | (3)8               |                                         |

不笃作名意数 N=立(24+6·26+9·22+8·28)=700688

婚价:不是银班

## 78 解:N 顶点为正流面体的孩中点,顶端 v=12 面为 6个正知知切样的角的8个截面面如f=14 由映近现,被30 e= wf-2=24



以 说 6个正的人面为 Si. Sz...., S6. 8个三角形面为 T. Tz......Ts

考虑该多面好似对动群,面似置换表示

①不动旋引 17距 (Si)···(Si)(Ti)···(Ti)

不动能: )正初面 4和2蓝 两两面4黄4蓝 不动国家 CCCCC

> 正初面 4黄 2蓝 三角形面 45/4蓝 石动 图象 Co Co Co(4)=2170

沙亚新面 6盖 三角形面 4黄4红 石动 图象 C

②正动的面面中心科士的\* 243个置换

可持某了置换。(Si)(Si)(SiSiSiSi)(Ti Ti Ti Ti)(Ti Ti Ti)

黎 ) 亚洲面 4亿2基 瑜砂面4黄锰, 不动图察 1×2

» 正洲面 4黄 2萬 三角形面 4574蓝, 不动图察 1×2 C(Pr)=6

为正确面 6盖 新酚 4黄约、石油醇、1×2

② 正流沟面面中心环 180° 3个置换 对子某个置换(S<sub>1</sub>)(S<sub>2</sub>)(S<sub>2</sub>S<sub>4</sub>)(S<sub>3</sub>S<sub>4</sub>)(T<sub>1</sub>T<sub>3</sub>)(T<sub>2</sub>T<sub>4</sub>)(T<sub>2</sub>T<sub>3</sub>)(T<sub>6</sub>T<sub>9</sub>)

染色 》正新面4针2蓝 雨形面4黄蜡,不动图察 Cs.Cd

》的新面4黄2草 环形面454盘,不动图察 公公

为正初面 6盖 一角形面4黄4和,不动图察 1×ci

② 正知订配区线(原文配件设中可设中) 到 180° 6个置换 可产某个置换(S, S6)(S~S3)(S4S5)(T, Tc)(T, Te)(T, T6)(T, T7)

G(B)=42

② ≥痢的面面中心肠液体可角线)科±120° 2×4个置换 可子某个置换(S, S, S<sub>5</sub>)(S, S, S<sub>6</sub>)(T<sub>6</sub>)(T<sub>6</sub>)(T, T<sub>6</sub> T<sub>6</sub>)(T, T, T<sub>7</sub>)

海1=(1×2170+6×6+3×47+6×47+8×4)×4=109种

B) 经核心着色

考虑该多面例似取动群,核似置换起永

- ①不动旋到 17强度 U)<sup>24</sup>
- ②正海河面中心科士的\* 243个置换 (4)6
- ②正确面面中心科180°3个置换 (2)12
- 田 正知汀底连线(原油体设中环境中) 科180° 6个置换 (2)1°
- ③ ≥角的面面中心场动体可角线)引±120° 2×4个置换 (3)8

京都  $L = (2^{2^{10}} + 6 \times 2^{6} + 3 \times 2^{17} + 6 \times 2^{17} + 8 \times 2^{8}) \times \frac{1}{24} = 700688$ 

確認5/5 碰程度5/5

该大题综合性较强,三道小题各种阿里,第2小题时状态强细心,对孩上很适合作为进价题

## 7.9解.参数44%

考虑正方体的驱动群 24个小脑部的了现象

①不动施到 17强硬 UIT

②面面中心科士的。 2~3个置换 (4)6 面面中 一 有种解 侧面 豆豆豆 4种 面面中心科 180° 3个置换 (4)6 面面中 豆面种解 侧面 囝 日 4种

② 对角线加致 ±120° 2×47置换 (3)° 可指中 三 有种酶

流報 L= (4"+6×4"+3×4"+6×4"+8×4")×1==

確接4/5 运程度5/1 该额偷偷方面这一设方比较有新秀 带来的不动方穿到双其更多的于4杂色、对流流中

**7.9.** 现有一个  $2 \times 2 \times 2$  正方体, 其每个面均划分为  $4 \wedge 1 \times 1$  小正方形. 有 24 张相同的 1×1 大小的肖像画,将其贴到正方体表面上的每个小正方形上,允许旋转,求不等价的方 案数.

### 解. 每张肖像画的方向有 4 种可能性。正方体 24 个小正方形面的置换群分类:

不动:  $(1)^{24}$ , 有 1 个, 共有 1 ×  $4^{24}$  个方案。

面面中心转  $\pm 90^{\circ}$ :  $(4)^{6}$ , 有 6 个, 共有 6 ×  $4^{6}$  个方案。

面面中心转  $180^\circ$ :  $(2)^{12}$ , 有 3 个, 共有  $3 \times 4^{12}$  个方案。

**棱中对棱中转**  $180^{\circ}$ :  $(2)^{12}$ ,有 6 个,共有  $6 \times 4^{12}$  个方案。

对角线为轴转  $\pm 120^{\circ}$ : (3)8, 有 8 个, 共有 8 × 48 个方案。

该置换群的阶数为 24。

此时由**波利亚定理**可知,共有  $(1 imes 4^{24} + 6 imes 4^6 + 3 imes 4^{12} + 6 imes 4^{12} + 8 imes$  $4^{8}$ )/24 种不等价的方案数。

**主要思路** 是讨论24个小正方形面的置换情况,这里我认为肖像画的意思就是不会存 在转动后相同的图像(否则如果只说图像,可能需要分情况讨论)。

**个人感受:** 感觉这道题目难度适中,是在正方体基础上衍生的,但是确实怕踩坑, 而且没什么验证的方法。但如果思路没错的话,这道题应该算适中的计算题。

7.10. 现有一个包含 5 个节点的无向完全图,各节点之间没有区别。使用 3 种颜色对各条 边进行染色, 求不等价的染色方案数. |e(Ko1|= 60 |G| = 5! = 120(1)<sup>6</sup> 不动 1 10 冯及(5-2)=3组电别效。(2)3(1)4 2是强度 10 7  $(3)^{2}(3)^{1}(1)^{1} = (3)^{3}(1)^{1}$ 3点编排 102=20 く两個D2 GG=15 (2) (2) (1) = (2) (1) 6 不動編 物-15=30 (4) 1(4) 1(2) 3 42 3mp 504=45 5 = 44 5 D+B 2 Co G= 20 (1) (3) (6) 1 不够解 44-20=24 (5) N= 120[3'0+ 10.37+20.34+15.36+20.33+20.33+24.3] = 792 到克茨啊: 4点锅排中不到解成 2個2点锅排的置换,老1颗在点置股后有一个玩点不变, 刘凌三的写价麦大小为4,剩下写价麦大小为2. 64: p=(4725) Een = { en, ex, ez, ez} 评价:有点抽象 Een = fen, en)

**7.10.** 现有一个包含 5 个节点的无向完全图,各节点之间没有区别.使用 3 种颜色对各条边进行染色,求不等价的染色方案数.

#### 解. 5 节点无向完全图中,点的全置换对应对称群 $S_5$ 。

#### 5 个节点的无向完全图的顶点置换与对应边置换:

| 顶点           | 边                 | 个数   | 3 染色方案数          |
|--------------|-------------------|------|------------------|
| $(1)^5$      | $(1)^{10}$        | 1个   | $1 	imes 3^{10}$ |
| $(1)^3(2)^1$ | $(1)^4(2)^3$      | 10 个 | $10 	imes 3^7$   |
| $(1)^1(2)^2$ | $(1)^2(2)^4$      | 15 个 | $15	imes3^6$     |
| $(1)^2(3)^1$ | $(1)^1(3)^3$      | 20 个 | $20 	imes 3^4$   |
| $(1)^1(4)^1$ | $(2)^1(4)^2$      | 30 ↑ | $30 	imes 3^3$   |
| $(2)^1(3)^1$ | $(1)^1(3)^1(6)^1$ | 20 个 | $20 	imes 3^3$   |

 $(5)^{1}$ 

 $(5)^2$ 

24 个

 $24 \times 3^2$ 

该置换群的阶数为 120。

此时由**波利亚定理**可知,共有  $(1\times3^{10}+10\times3^7+15\times3^6+20\times3^4+30\times3^3+20\times3^3+24\times3^2)/120=792$  种不等价的方案数。

#### 7.11

7.11. 現有一个1×1×2的小應方,表面有10个色訣、该應方的两个1×1×1小块间由 较納连接,可以旋转;同时整个魔方也可在空间中任意旋转。使用2种颜色对此魔方的每 个色块染色,每种颜色分别恰好染5个色块,求不等价的染色方案数。



## 翁: 上下兩次份置不支对,超超较轻轴 有44种量效,而上下两次翻转标也的44种量效,

圆比 (G)= 4×4×2= 32

当上下两收值盈翻转后,无沈轻软如何较,每个面部离开3层失Q位置,

比时 孟孜仍 缩吩%酶中不充在长感为主要循环孟孜,并由上世分解 知也孑孓有 (3).(5) 3号融长感动 缩环孟孜。

因此在母孩中的 x5 y6 a0 新教教的 0, 故不一一到出

(我看考虑 染色后, 先上下两面 颜色不闪, 叫不是此麦盆孜兹不动气;若上下晒颜色都为x,

M M面上下名4个面中x的个数以不同(0·3的12), 也不是不确意、, 放此基础不存在不动意。)

克莫敦为 PCG)→ n5ys 的分数

3

## 7川耶:设西种颜色为 G, Cv, 经架工厂面

考虑上下2个小块(如哪中月.13)的架()色的情况(潮)下M面染()

- DA: ING B: OxCI 游和1
- ② A:4×G B: 1×G 旅口22





DA: 3×C1 B: 2×C1 海到32



A:映上2×C1.1×C1.0×C,编写作于碳0.0.0 总族知为 L= 1+2²+3²=14

確該4/5 运程度3/5 该题加采用 pólya通路证公部带疑,面站的路影如则还同年

## 7.12

7.12解: 考虑证证体的对动群,面的显换程系 面个物店有4种方面可贴(认为2边到180°压会和5室合)

| <b>①不动始到</b>  | 叶强硬    | u)°      |     |
|---------------|--------|----------|-----|
| ② 正流的面面中心科生化  | 243个置换 | (1)2(4)1 | 无动骤 |
| ② 正洲面面中心科180° | 3个置换   | (≥)³     | 无动骤 |
| ● 夜中下破中 取180° | 6个置换   | (5)3     | 无动图 |
| ② 对角线加到土化。    | 24个置换  | 13)2     | 无动图 |

済知 l= (4×6!)·1 = 172880

職3/5 路程度4/5 该题7维不高.是Polya题PM互通图 7.12 每个贴纸都有 4个方向,相当于24杂色,且 4颜色-组,每组恰好用 1种,写成母函数形式后发现只有不动置换 (1)6 对结果有贡献,对应系数为 $_{1}$   $_{2}$   $_{3}$   $_{4}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$   $_{5}$ 

评价 也可以固定 2 后 贴其它的,此时不能旋转,共 5! x 45 种,对于此题 是最方便的解法