CSI - 3105 Design & Analysis of Algorithms Course 15

Jean-Lou De Carufel

Fall 2019

§5.3 Longest Common Subsequence

We have two sequences:

$$X = (a, b, c, b, d, a, b)$$

 $Y = (b, d, c, a, b, a).$

§5.3 Longest Common Subsequence

We have two sequences:

$$X = (a, \underline{b}, \underline{c}, b, \underline{d}, a, \underline{b})$$

$$Y = (b, d, c, a, b, a).$$

The sequence Z = (b, c, d, b) is a subsequence of X, but not of Y.

§5.3 Longest Common Subsequence

We have two sequences:

$$X = (a, b, c, b, d, a, b)$$

 $Y = (b, d, c, a, b, a).$

The sequence Z = (b, c, d, b) is a subsequence of X, but not of Y.

LCS(X, Y) is the longest common subsequence of X and Y:

$$(b, c, b, a)$$
 or (b, d, a, b) .

Both have length 4.

Problem:

Input: Sequences

- $X = (x_1, x_2, ..., x_m)$
- $Y = (y_1, y_2, ..., y_n)$

Output: A longest sequence that is a subsequence of X and a subsequence of Y, i.e., Z = LCS(X, Y).

$$X = (x_1, x_2, ..., x_m)$$
 $Y = (y_1, y_2, ..., y_n)$

$$Z = (z_1, z_2, ..., z_k) = LCS(X, Y)$$

$$X = (x_1, x_2, ..., x_m)$$
 $Y = (y_1, y_2, ..., y_n)$

$$Z = (z_1, z_2, ..., z_k) = LCS(X, Y)$$

Case 1:
$$x_m = y_n$$

$$X = (x_1, x_2, ..., x_m)$$
 $Y = (y_1, y_2, ..., y_n)$

$$Z = (z_1, z_2, ..., z_k) = LCS(X, Y)$$

Case 1:
$$x_m = y_n$$

Then
$$z_k = x_m = y_n$$
 and

$$(z_1, z_2, ..., z_{k-1}) = LCS(x_1x_2 \cdots x_{m-1}, y_1y_2 \cdots y_{n-1})$$

$$X = (x_1, x_2, ..., x_m)$$
 $Y = (y_1, y_2, ..., y_n)$

$$Z = (z_1, z_2, ..., z_k) = LCS(X, Y)$$

Case 1:
$$x_m = y_n$$

Then $z_k = x_m = y_n$ and

$$(z_1, z_2, ..., z_{k-1}) = LCS(x_1x_2 \cdots x_{m-1}, y_1y_2 \cdots y_{n-1})$$

Case 2:
$$x_m \neq y_n$$

$$X = (x_1, x_2, ..., x_m)$$
 $Y = (y_1, y_2, ..., y_n)$

Consider

$$Z = (z_1, z_2, ..., z_k) = LCS(X, Y)$$

Case 1: $x_m = y_n$ Then $z_k = x_m = y_n$ and

$$(z_1, z_2, ..., z_{k-1}) = LCS(x_1x_2 \cdots x_{m-1}, y_1y_2 \cdots y_{n-1})$$

Case 2: $x_m \neq y_n$ Then $z_k \neq x_m$ or $z_k \neq y_n$ (or both).

$$X = (x_1, x_2, ..., x_m)$$
 $Y = (y_1, y_2, ..., y_n)$

Consider

$$Z = (z_1, z_2, ..., z_k) = LCS(X, Y)$$

Case 1:
$$x_m = y_n$$

Then $z_k = x_m = y_n$ and
$$(z_1, z_2, ..., z_{k-1}) = LCS(x_1 x_2 \cdots x_{m-1}, y_1 y_2 \cdots y_{n-1})$$

$$(2_1, 2_2, ..., 2_{k-1}) = 266(x_1x_2 - x_{m-1}, y_1y_2 - y_{n-1})$$

Case 2:
$$x_m \neq y_n$$

Then $z_k \neq x_m$ or $z_k \neq y_n$ (or both).
Case 2 a): $z_k \neq x_m$

$$(z_1, z_2, ..., z_k) = LCS(x_1x_2 \cdots x_{m-1}, y_1y_2 \cdots y_n)$$

$$X = (x_1, x_2, ..., x_m)$$
 $Y = (y_1, y_2, ..., y_n)$

Consider

$$Z = (z_1, z_2, ..., z_k) = LCS(X, Y)$$

Case 1:
$$x_m = y_n$$

Then $z_k = x_m = y_n$ and

$$(z_1, z_2, ..., z_{k-1}) = LCS(x_1x_2 \cdots x_{m-1}, y_1y_2 \cdots y_{n-1})$$

Case 2:
$$x_m \neq y_n$$

Then $z_k \neq x_m$ or $z_k \neq y_n$ (or both).

Case 2 a):
$$z_k \neq x_m$$

$$(z_1, z_2, ..., z_k) = LCS(x_1x_2 \cdots x_{m-1}, y_1y_2 \cdots y_n)$$

Case 2 b):
$$z_k \neq y_n$$

$$(z_1, z_2, ..., z_k) = LCS(x_1x_2 \cdots x_m, y_1y_2 \cdots y_{n-1})$$

But we do not know if we are in Case 2 a) or 2 b).

If $x_m \neq y_n$, then $(z_1, z_2, ..., z_k)$ is the longest of

$$LCS(x_1x_2\cdots x_{m-1},y_1y_2\cdots y_n)$$

and

$$LCS(x_1x_2\cdots x_m, y_1y_2\cdots y_{n-1}).$$

For $0 \le i \le m$ and $0 \le j \le n$, define

$$c(i,j) = \text{length of } LCS(x_1x_2 \cdots x_i, y_1y_2 \cdots y_j).$$

We want to compute c(m, n).

6 / 19

For $0 \le i \le m$ and $0 \le j \le n$, define

$$c(i,j) = \text{length of } LCS(x_1x_2 \cdots x_i, y_1y_2 \cdots y_j).$$

We want to compute c(m, n).

Recurrence:

• If
$$i = 0$$
 or $j = 0$, $c(i, j) = 0$.

For $0 \le i \le m$ and $0 \le j \le n$, define

$$c(i,j) = \text{length of } LCS(x_1x_2 \cdots x_i, y_1y_2 \cdots y_j).$$

We want to compute c(m, n).

Recurrence:

- If i = 0 or j = 0, c(i, j) = 0.
- If $i \geq 1$, $j \geq 1$ and $x_i = y_j$,

$$c(i,j) = 1 + c(i-1,j-1)$$

For $0 \le i \le m$ and $0 \le i \le n$, define

$$c(i,j) = \text{length of } LCS(x_1x_2 \cdots x_i, y_1y_2 \cdots y_j).$$

We want to compute c(m, n).

Recurrence:

- If i = 0 or j = 0, c(i, j) = 0.
- If i > 1, j > 1 and $x_i = y_i$,

$$c(i,j) = 1 + c(i-1,j-1)$$

• If $i \geq 1$, $j \geq 1$ and $x_i \neq y_i$,

$$c(i,j) = \max\{c(i-1,j), c(i,j-1)\}\$$

4 D > 4 D > 4 E > 4 E > E 9 Q P

Step 3: Solve the Recurrence Bottom-Up

Fill in the matrix c(i,j) for $0 \le i \le m$ and $0 \le j \le n$.

First row:

$$c(0,0) = c(0,1) = \dots = c(0,n) = 0$$

First column:

$$c(0,0) = c(1,0) = \dots = c(m,0) = 0$$

Then fill in the matrix, row by row, in each row from left to right.

Algorithm

Algorithm Longest Common Subsequence

```
1: for i = 0 to m do
      c(i,0) = 0
 3: end for
 4: for j = 0 to n do
    c(0, i) = 0
 5:
 6: end for
 7: for i = 1 to m do
       for i = 1 to n do
 8:
 9:
          if x_i = y_i then
10:
             c(i, j) = 1 + c(i - 1, j - 1)
11:
         else
             c(i, j) = \max\{c(i - 1, j), c(i, j - 1)\}\
12:
13:
          end if
14:
       end for
15: end for
16: return c(m, n)
```

$$X = ABCBDAB$$

$$Y = BDCABA$$

$$c(i,j) = \begin{cases} 0 & i = 0 \text{ or } j = 0 \\ 1 + c(i-1,j-1) & i \geq 1, j \geq 1 \text{ and } x_i = y_j \\ \max\{c(i,j-1), c(i-1,j)\} & i \geq 1, j \geq 1 \text{ and } x_i \neq y_j \end{cases}$$

$$\frac{j \mid 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6}{0 \quad x_i \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0}$$

$$\frac{1}{1} \quad A \quad 0$$

$$2 \quad B \quad 0$$

$$3 \quad C \quad 0$$

$$4 \quad B \quad 0$$

$$5 \quad D \quad 0$$

$$6 \quad A \quad 0$$

$$7 \quad B \quad 0$$

$$\begin{array}{lll} X & = & ABCBDAB \\ Y & = & BDCABA \\ c(i,j) & = & \begin{cases} 0 & i = 0 \ \text{or} \ j = 0 \\ 1 + c(i-1,j-1) & i \geq 1, j \geq 1 \ \text{and} \ x_i = y_j \\ \max\{c(i,j-1),c(i-1,j)\} & i \geq 1, j \geq 1 \ \text{and} \ x_i \neq y_j \end{cases} \\ & \begin{array}{llll} j & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\ i & y_j & B & D & C & A & B & A \\ \hline 0 & x_i & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & A & 0 & 0 & 0 \\ 2 & B & 0 & & & \\ 3 & C & 0 & & & \\ 4 & B & 0 & & \\ 5 & D & 0 & & \\ 6 & A & 0 & & \\ 7 & B & 0 & & & \\ \end{array}$$

$$\begin{array}{lll} X & = & ABCBDAB \\ Y & = & BDCABA \\ & c(i,j) & = & \begin{cases} 0 & i = 0 \ \text{or} \ j = 0 \\ 1 + c(i-1,j-1) & i \geq 1, j \geq 1 \ \text{and} \ x_i = y_j \\ \max\{c(i,j-1),c(i-1,j)\} & i \geq 1, j \geq 1 \ \text{and} \ x_i \neq y_j \end{cases} \\ & \frac{j & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\ i & y_j & B & D & C & A & B & A \\ \hline 0 & x_i & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & A & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2 & B & 0 & & & & \\ 3 & C & 0 & & & & \\ 4 & B & 0 & & & \\ 5 & D & 0 & & & \\ 6 & A & 0 & & & \\ 7 & B & 0 & & & \end{cases}$$

$$\begin{array}{lll} X & = & ABCBDAB \\ Y & = & BDCABA \\ c(i,j) & = & \begin{cases} 0 & i = 0 \ \text{or} \ j = 0 \\ 1 + c(i-1,j-1) & i \geq 1, j \geq 1 \ \text{and} \ x_i = y_j \\ \max\{c(i,j-1),c(i-1,j)\} & i \geq 1, j \geq 1 \ \text{and} \ x_i \neq y_j \end{cases} \\ & \frac{j & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\ \frac{i}{0} & y_j & B & D & C & A & B & A \\ \hline 0 & x_i & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & A & 0 & 0 & 0 & 0 & 0 & 0 \\ 2 & B & 0 & & & & \\ 3 & C & 0 & & & & \\ 4 & B & 0 & & & \\ 5 & D & 0 & & & \\ 6 & A & 0 & & & \\ 7 & B & 0 & & & \\ \end{array}$$

$$\begin{array}{lll} X & = & ABCBDAB \\ Y & = & BDCABA \\ c(i,j) & = & \begin{cases} 0 & i = 0 \ \text{or} \ j = 0 \\ 1 + c(i-1,j-1) & i \geq 1, j \geq 1 \ \text{and} \ x_i = y_j \\ \max\{c(i,j-1),c(i-1,j)\} & i \geq 1, j \geq 1 \ \text{and} \ x_i \neq y_j \end{cases} \\ & \frac{j & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\ \frac{i}{0} & y_j & B & D & C & A & B & A \\ \hline 0 & x_i & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & A & 0 & 0 & 0 & 0 & 1 \\ 2 & B & 0 & & & \\ 3 & C & 0 & & & \\ 4 & B & 0 & & \\ 5 & D & 0 & & \\ 6 & A & 0 & & \\ 7 & B & 0 & & & \\ \end{array}$$

$$\begin{array}{lll} X & = & ABCBDAB \\ Y & = & BDCABA \\ c(i,j) & = & \begin{cases} 0 & i = 0 \ \text{or} \ j = 0 \\ 1 + c(i-1,j-1) & i \geq 1, j \geq 1 \ \text{and} \ x_i = y_j \\ \max\{c(i,j-1),c(i-1,j)\} & i \geq 1, j \geq 1 \ \text{and} \ x_i \neq y_j \end{cases} \\ & \frac{j & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\ \frac{i}{0} & y_j & B & D & C & A & B & A \\ \hline 0 & x_i & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & A & 0 & 0 & 0 & 0 & 1 & 1 \\ 2 & B & 0 & & & & \\ 3 & C & 0 & & & & \\ 4 & B & 0 & & & \\ 5 & D & 0 & & & \\ 6 & A & 0 & & & \\ 7 & B & 0 & & & \\ \end{array}$$

$$X = ABCBDAB$$

$$Y = BDCABA$$

$$c(i,j) = \begin{cases} 0 & i = 0 \text{ or } j = 0 \\ 1 + c(i-1,j-1) & i \ge 1, j \ge 1 \text{ and } x_i = y_j \\ \max\{c(i,j-1), c(i-1,j)\} & i \ge 1, j \ge 1 \text{ and } x_i \ne y_j \end{cases}$$

$$\frac{j \mid 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6}{0 \quad x_i \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0}$$

$$\frac{1}{1} \quad A \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$$

$$\frac{1}{1} \quad A \quad 0 \quad 0 \quad 0 \quad 0 \quad 1 \quad 1 \quad 1$$

$$\frac{2}{2} \quad B \quad 0$$

$$\frac{3}{3} \quad C \quad 0$$

$$\frac{4}{3} \quad B \quad 0$$

$$\frac{5}{3} \quad D \quad 0$$

$$\frac{6}{3} \quad A \quad 0$$

$$\frac{7}{3} \quad B \quad 0$$

9 / 19

$$\begin{array}{lll} X & = & ABCBDAB \\ Y & = & BDCABA \\ c(i,j) & = & \begin{cases} 0 & i = 0 \ \text{or} \ j = 0 \\ 1 + c(i-1,j-1) & i \geq 1, j \geq 1 \ \text{and} \ x_i = y_j \\ \max\{c(i,j-1),c(i-1,j)\} & i \geq 1, j \geq 1 \ \text{and} \ x_i \neq y_j \end{cases} \\ & \frac{j & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\ i & y_j & B & D & C & A & B & A \\ \hline 0 & x_i & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & A & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 2 & B & 0 & 1 & & & & \\ 3 & C & 0 & & & & & \\ 4 & B & 0 & & & & \\ 5 & D & 0 & & & & \\ 6 & A & 0 & & & & \\ 7 & B & 0 & & & & \\ \end{array}$$

$$\begin{array}{lll} X & = & ABCBDAB \\ Y & = & BDCABA \\ \hline c(i,j) & = & \begin{cases} 0 & i = 0 \ \text{or} \ j = 0 \\ 1 + c(i-1,j-1) & i \geq 1, j \geq 1 \ \text{and} \ x_i = y_j \\ \max\{c(i,j-1),c(i-1,j)\} & i \geq 1, j \geq 1 \ \text{and} \ x_i \neq y_j \end{cases} \\ \hline \begin{array}{llll} j & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\ \hline i & y_j & B & D & C & A & B & A \\ \hline 0 & x_i & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & A & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 2 & B & 0 & 1 & 1 & 1 \\ 3 & C & 0 & & & & & \\ 4 & B & 0 & & & & \\ 5 & D & 0 & & & & \\ 6 & A & 0 & & & & \\ 7 & B & 0 & & & & \\ \end{array}$$

$$\begin{array}{lll} X & = & ABCBDAB \\ Y & = & BDCABA \\ c(i,j) & = & \begin{cases} 0 & i = 0 \ \text{or} \ j = 0 \\ 1 + c(i-1,j-1) & i \geq 1, j \geq 1 \ \text{and} \ x_i = y_j \\ \max\{c(i,j-1),c(i-1,j)\} & i \geq 1, j \geq 1 \ \text{and} \ x_i \neq y_j \end{cases} \\ & \frac{j & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\ \frac{i}{y_j} & B & D & C & A & B & A \\ \hline 0 & x_i & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & A & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 2 & B & 0 & 1 & 1 & 1 & 1 \\ 3 & C & 0 & & & & & \\ 4 & B & 0 & & & & \\ 5 & D & 0 & & & & \\ 6 & A & 0 & & & & \\ 7 & B & 0 & & & & \\ \end{array}$$

$$\begin{array}{lll} X & = & ABCBDAB \\ Y & = & BDCABA \\ c(i,j) & = & \begin{cases} 0 & i = 0 \ \text{or} \ j = 0 \\ 1 + c(i-1,j-1) & i \geq 1, j \geq 1 \ \text{and} \ x_i = y_j \\ \max\{c(i,j-1),c(i-1,j)\} & i \geq 1, j \geq 1 \ \text{and} \ x_i \neq y_j \end{cases} \\ & \frac{j & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\ \frac{i}{y_j} & B & D & C & A & B & A \\ \hline 0 & x_i & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & A & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 2 & B & 0 & 1 & 1 & 1 & 1 \\ 3 & C & 0 & & & & & \\ 4 & B & 0 & & & & \\ 5 & D & 0 & & & & \\ 6 & A & 0 & & & & \\ 7 & B & 0 & & & & \\ \end{array}$$

$$\begin{array}{lll} X & = & ABCBDAB \\ Y & = & BDCABA \\ \hline c(i,j) & = & \begin{cases} 0 & i = 0 \ \text{or} \ j = 0 \\ 1+c(i-1,j-1) & i \geq 1, j \geq 1 \ \text{and} \ x_i = y_j \\ \max\{c(i,j-1),c(i-1,j)\} & i \geq 1, j \geq 1 \ \text{and} \ x_i \neq y_j \end{cases} \\ \hline \frac{j & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\ \hline i & y_j & B & D & C & A & B & A \\ \hline 0 & x_i & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & A & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 2 & B & 0 & 1 & 1 & 1 & 1 & 2 \\ 3 & C & 0 & & & & & \\ 4 & B & 0 & & & & \\ 5 & D & 0 & & & & \\ 6 & A & 0 & & & & \\ 7 & B & 0 & & & & \\ \end{array}$$

$$X = ABCBDAB$$

$$Y = BDCABA$$

$$c(i,j) = \begin{cases} 0 & i = 0 \text{ or } j = 0 \\ 1 + c(i-1,j-1) & i \geq 1, j \geq 1 \text{ and } x_i = y_j \\ \max\{c(i,j-1), c(i-1,j)\} & i \geq 1, j \geq 1 \text{ and } x_i \neq y_j \end{cases}$$

$$\frac{j \mid 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6}{i \quad y_j \quad B \quad D \quad C \quad A \quad B \quad A}$$

$$\frac{i \quad y_j \quad B \quad D \quad C \quad A \quad B \quad A}{0 \quad x_i \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0}$$

$$\frac{1 \quad A \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 1 \quad 1 \quad 1}{2 \quad B \quad 0 \quad 1 \quad 1 \quad 1 \quad 2 \quad 2}$$

$$\frac{3 \quad C \quad 0}{4 \quad B \quad 0}$$

$$\frac{4 \quad B \quad 0}{5 \quad D \quad 0}$$

$$\frac{6 \quad A \quad 0}{7 \quad B \quad 0}$$

$$\begin{array}{lll} X & = & ABCBDAB \\ Y & = & BDCABA \\ \hline c(i,j) & = & \begin{cases} 0 & i = 0 \ \text{or} \ j = 0 \\ 1 + c(i-1,j-1) & i \geq 1, j \geq 1 \ \text{and} \ x_i = y_j \\ \max\{c(i,j-1),c(i-1,j)\} & i \geq 1, j \geq 1 \ \text{and} \ x_i \neq y_j \end{cases} \\ \hline \begin{array}{llll} j & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\ \hline i & y_j & B & D & C & A & B & A \\ \hline 0 & x_i & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & A & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 2 & B & 0 & 1 & 1 & 1 & 1 & 2 & 2 \\ 3 & C & 0 & 1 & & & & & \\ 4 & B & 0 & & & & & & \\ 5 & D & 0 & & & & & & \\ 6 & A & 0 & & & & & & \\ 7 & B & 0 & & & & & & \\ \end{array}$$

$$\begin{array}{lll} X & = & ABCBDAB \\ Y & = & BDCABA \\ \hline c(i,j) & = & \begin{cases} 0 & i = 0 \ \text{or} \ j = 0 \\ 1+c(i-1,j-1) & i \geq 1, j \geq 1 \ \text{and} \ x_i = y_j \\ \max\{c(i,j-1),c(i-1,j)\} & i \geq 1, j \geq 1 \ \text{and} \ x_i \neq y_j \end{cases} \\ \hline \frac{j & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\ \hline i & y_j & B & D & C & A & B & A \\ \hline 0 & x_i & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & A & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 2 & B & 0 & 1 & 1 & 1 & 1 & 2 & 2 \\ 3 & C & 0 & 1 & 1 & 1 & 1 & 2 & 2 \\ 3 & C & 0 & 1 & 1 & 1 & 1 & 2 & 2 \\ \hline 3 & C & 0 & 1 & 1 & 1 & 1 & 2 & 2 \\ \hline 3 & C & 0 & 1 & 1 & 1 & 1 & 2 & 2 \\ \hline 6 & A & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 7 & B & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline \end{array}$$

$$X = ABCBDAB$$

$$Y = BDCABA$$

$$c(i,j) = \begin{cases} 0 & i = 0 \text{ or } j = 0 \\ 1 + c(i-1,j-1) & i \ge 1, j \ge 1 \text{ and } x_i = y_j \\ \max\{c(i,j-1), c(i-1,j)\} & i \ge 1, j \ge 1 \text{ and } x_i \ne y_j \end{cases}$$

$$\frac{j \mid 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6}{0 \quad x_i \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0}$$

$$\frac{1}{1} \quad A \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 1 \quad 1 \quad 1$$

$$2 \quad B \quad 0 \quad 1 \quad 1 \quad 1 \quad 1 \quad 2 \quad 2$$

$$3 \quad C \quad 0 \quad 1 \quad 1 \quad 2$$

$$4 \quad B \quad 0$$

$$5 \quad D \quad 0$$

$$6 \quad A \quad 0$$

$$7 \quad B \quad 0$$

	j	0	1 <i>B</i>	2 D	3	4	5	6
i		Уj	В	D	C	Α	В	Α
0	Xi	0	0	0	0	0	0	0
1	Α	0	0	0	0	1	1	1
2	В	0	1	1	1	1	2	2
3	C	0	1	1	2	2		
4	В	0						
5	D	0						
6	Α	0						
7	В	0						

$$\begin{array}{lll} X & = & ABCBDAB \\ Y & = & BDCABA \\ & c(i,j) & = & \begin{cases} 0 & i = 0 \ \text{or} \ j = 0 \\ 1 + c(i-1,j-1) & i \geq 1, j \geq 1 \ \text{and} \ x_i = y_j \\ \max\{c(i,j-1),c(i-1,j)\} & i \geq 1, j \geq 1 \ \text{and} \ x_i \neq y_j \end{cases}$$

$$\begin{array}{lll} X & = & ABCBDAB \\ Y & = & BDCABA \\ & c(i,j) & = & \begin{cases} 0 & i = 0 \ \text{or} \ j = 0 \\ 1 + c(i-1,j-1) & i \geq 1, j \geq 1 \ \text{and} \ x_i = y_j \\ \max\{c(i,j-1),c(i-1,j)\} & i \geq 1, j \geq 1 \ \text{and} \ x_i \neq y_j \end{cases}$$

$$\begin{array}{lll} X & = & ABCBDAB \\ Y & = & BDCABA \\ & c(i,j) & = & \begin{cases} 0 & i = 0 \ \text{or} \ j = 0 \\ 1 + c(i-1,j-1) & i \geq 1, j \geq 1 \ \text{and} \ x_i = y_j \\ \max\{c(i,j-1),c(i-1,j)\} & i \geq 1, j \geq 1 \ \text{and} \ x_i \neq y_j \end{cases}$$

$$\begin{array}{lll} X & = & ABCBDAB \\ Y & = & BDCABA \\ c(i,j) & = & \begin{cases} 0 & i = 0 \ \text{or} \ j = 0 \\ 1 + c(i-1,j-1) & i \geq 1, j \geq 1 \ \text{and} \ x_i = y_j \\ \max\{c(i,j-1),c(i-1,j)\} & i \geq 1, j \geq 1 \ \text{and} \ x_i \neq y_j \end{cases}$$

	i	0	1	2	3	4	5	6
i	J	Уј	В	D	Ċ	A	В	Ä
0	Xi	0	0	0	0	0	0	0
1	Α	0	0	0	0	1	1	1
2	В	0	1	1	1	1	2	2
3	C	0	1	1	2	2	2	2
4	В	0	1	1	2			
5	D	0						
6	Α	0						
7	В	0						

$$\begin{array}{lll} X & = & ABCBDAB \\ Y & = & BDCABA \\ & c(i,j) & = & \begin{cases} 0 & i = 0 \text{ or } j = 0 \\ 1 + c(i-1,j-1) & i \geq 1, j \geq 1 \text{ and } x_i = y_j \\ \max\{c(i,j-1),c(i-1,j)\} & i \geq 1, j \geq 1 \text{ and } x_i \neq y_j \end{cases}$$

	j	0	1	2	3	4	5	6
i		Уj	В	D	C	Α	В	Α
0	Xi	0	0	0	0	0	0	0
1	Α	0	0	0	0	1	1	1
2	В	0	1	1	1	1	2	2
3	C	0	1	1	2	2	2	2
4	В	0	1	1	2	2		
5	D	0						
6	Α	0						
7	В	0						

$$\begin{array}{lll} X & = & ABCBDAB \\ Y & = & BDCABA \\ & c(i,j) & = & \begin{cases} 0 & i = 0 \text{ or } j = 0 \\ 1 + c(i-1,j-1) & i \geq 1, j \geq 1 \text{ and } x_i = y_j \\ \max\{c(i,j-1),c(i-1,j)\} & i \geq 1, j \geq 1 \text{ and } x_i \neq y_j \end{cases}$$

$$\begin{array}{lll} X & = & ABCBDAB \\ Y & = & BDCABA \\ & c(i,j) & = & \begin{cases} 0 & i = 0 \ \text{or} \ j = 0 \\ 1 + c(i-1,j-1) & i \geq 1, j \geq 1 \ \text{and} \ x_i = y_j \\ \max\{c(i,j-1),c(i-1,j)\} & i \geq 1, j \geq 1 \ \text{and} \ x_i \neq y_j \end{cases}$$

i	j	0 <i>y</i> i	1 <i>B</i>	2 D	3 <i>C</i>	4 <i>A</i>	5 <i>B</i>	6 <i>A</i>
0	Xi	0	0	0	0	0	0	0
1	Α	0	0	0	0	1	1	1
2	В	0	1	1	1	1	2	2
3	C	0	1	1	2	2	2	2
4	В	0	1	1	2	2	3	3
5	D	0						
6	Α	0						
7	В	0						

$$\begin{array}{lll} X & = & ABCBDAB \\ Y & = & BDCABA \\ & c(i,j) & = & \begin{cases} 0 & i = 0 \text{ or } j = 0 \\ 1 + c(i-1,j-1) & i \geq 1, j \geq 1 \text{ and } x_i = y_j \\ \max\{c(i,j-1),c(i-1,j)\} & i \geq 1, j \geq 1 \text{ and } x_i \neq y_j \end{cases}$$

$$\begin{array}{lll} X & = & ABCBDAB \\ Y & = & BDCABA \\ & c(i,j) & = & \begin{cases} 0 & i = 0 \text{ or } j = 0 \\ 1 + c(i-1,j-1) & i \geq 1, j \geq 1 \text{ and } x_i = y_j \\ \max\{c(i,j-1),c(i-1,j)\} & i \geq 1, j \geq 1 \text{ and } x_i \neq y_j \end{cases}$$

$$\begin{array}{lll} X & = & ABCBDAB \\ Y & = & BDCABA \\ & c(i,j) & = & \begin{cases} 0 & i = 0 \text{ or } j = 0 \\ 1 + c(i-1,j-1) & i \geq 1, j \geq 1 \text{ and } x_i = y_j \\ \max\{c(i,j-1),c(i-1,j)\} & i \geq 1, j \geq 1 \text{ and } x_i \neq y_j \end{cases}$$

$$\begin{array}{lll} X & = & ABCBDAB \\ Y & = & BDCABA \\ & c(i,j) & = & \begin{cases} 0 & i = 0 \text{ or } j = 0 \\ 1 + c(i-1,j-1) & i \geq 1, j \geq 1 \text{ and } x_i = y_j \\ \max\{c(i,j-1),c(i-1,j)\} & i \geq 1, j \geq 1 \text{ and } x_i \neq y_j \end{cases}$$

	j	0	1	2	3	4	5	6
I		Уj	В	D	С	Α	В	Α
0	Xį	0	0	0	0	0	0	0
1	Α	0	0	0	0	1	1	1
2	В	0	1	1	1	1	2	2
3	C	0	1	1	2	2	2	2
4	В	0	1	1	2	2	3	3
5	D	0	1	2	2	2		
6	Α	0						
7	В	0						

$$\begin{array}{lll} X & = & ABCBDAB \\ Y & = & BDCABA \\ & c(i,j) & = & \begin{cases} 0 & i = 0 \text{ or } j = 0 \\ 1 + c(i-1,j-1) & i \geq 1, j \geq 1 \text{ and } x_i = y_j \\ \max\{c(i,j-1),c(i-1,j)\} & i \geq 1, j \geq 1 \text{ and } x_i \neq y_j \end{cases}$$

i	j	0 <i>y</i> i	1 <i>B</i>	2 D	3 <i>C</i>	4 <i>A</i>	5 <i>B</i>	6 <i>A</i>
0	Xi	0	0	0	0	0	0	0
1	Α	0	0	0	0	1	1	1
2	В	0	1	1	1	1	2	2
3	C	0	1	1	2	2	2	2
4	В	0	1	1	2	2	3	3
5	D	0	1	2	2	2	3	
6	Α	0						
7	В	0						

$$\begin{array}{lll} X & = & ABCBDAB \\ Y & = & BDCABA \\ & c(i,j) & = & \begin{cases} 0 & i = 0 \text{ or } j = 0 \\ 1 + c(i-1,j-1) & i \geq 1, j \geq 1 \text{ and } x_i = y_j \\ \max\{c(i,j-1),c(i-1,j)\} & i \geq 1, j \geq 1 \text{ and } x_i \neq y_j \end{cases}$$

$$\begin{array}{lll} X & = & ABCBDAB \\ Y & = & BDCABA \\ & c(i,j) & = & \begin{cases} 0 & i = 0 \text{ or } j = 0 \\ 1 + c(i-1,j-1) & i \geq 1, j \geq 1 \text{ and } x_i = y_j \\ \max\{c(i,j-1),c(i-1,j)\} & i \geq 1, j \geq 1 \text{ and } x_i \neq y_j \end{cases}$$

	j	0	1	2	3	4	5	6
i		Уj	В	D	C	Α	В	Α
0	Xi	0	0	0	0	0	0	0
1	Α	0	0	0	0	1	1	1
2	В	0	1	1	1	1	2	2
3	C	0	1	1	2	2	2	2
4	В	0	1	1	2	2	3	3
5	D	0	1	2	2	2	3	3
6	Α	0	1					
7	В	0						

$$\begin{array}{lll} X & = & ABCBDAB \\ Y & = & BDCABA \\ & c(i,j) & = & \begin{cases} 0 & i = 0 \text{ or } j = 0 \\ 1 + c(i-1,j-1) & i \geq 1, j \geq 1 \text{ and } x_i = y_j \\ \max\{c(i,j-1),c(i-1,j)\} & i \geq 1, j \geq 1 \text{ and } x_i \neq y_j \end{cases}$$

	j	0	1	2	3	4	5	6
i		Уj	В	D	C	Α	В	Α
0	Xi	0	0	0	0	0	0	0
1	Α	0	0	0	0	1	1	1
2	В	0	1	1	1	1	2	2
3	C	0	1	1	2	2	2	2
4	В	0	1	1	2	2	3	3
5	D	0	1	2	2	2	3	3
6	Α	0	1	2	2			
7	В	0						

	j	0	1	2	3	4	5	6
i		Уj	В	D	C	Α	В	Α
0	Xi	0	0	0	0	0	0	0
1	Α	0	0	0	0	1	1	1
2	В	0	1	1	1	1	2	2
3	C	0	1	1	2	2	2	2
4	В	0	1	1	2	2	3	3
5	D	0	1	2	2	2	3	3
6	Α	0	1	2	2	3		
7	В	0						

$$\begin{array}{lll} X & = & ABCBDAB \\ Y & = & BDCABA \\ & c(i,j) & = & \begin{cases} 0 & i = 0 \text{ or } j = 0 \\ 1 + c(i-1,j-1) & i \geq 1, j \geq 1 \text{ and } x_i = y_j \\ \max\{c(i,j-1),c(i-1,j)\} & i \geq 1, j \geq 1 \text{ and } x_i \neq y_j \end{cases}$$

	j	0	1	2	3	4	5	6
i		Уj	В	D	C	Α	В	Α
0	Xi	0	0	0	0	0	0	0
1	Α	0	0	0	0	1	1	1
2	В	0	1	1	1	1	2	2
3	C	0	1	1	2	2	2	2
4	В	0	1	1	2	2	3	3
5	D	0	1	2	2	2	3	3
6	Α	0	1	2	2	3	3	
7	В	0						

$$\begin{array}{lll} X & = & ABCBDAB \\ Y & = & BDCABA \\ & c(i,j) & = & \begin{cases} 0 & i = 0 \text{ or } j = 0 \\ 1 + c(i-1,j-1) & i \geq 1, j \geq 1 \text{ and } x_i = y_j \\ \max\{c(i,j-1),c(i-1,j)\} & i \geq 1, j \geq 1 \text{ and } x_i \neq y_j \end{cases}$$

	j	0	1	2	3	4	5	6
i		Уj	В	D	С	Α	В	Α
0	Xi	0	0	0	0	0	0	0
1	Α	0	0	0	0	1	1	1
2	В	0	1	1	1	1	2	2
3	C	0	1	1	2	2	2	2
4	В	0	1	1	2	2	3	3
5	D	0	1	2	2	2	3	3
6	Α	0	1	2	2	3	3	4
7	В	0						

$$\begin{array}{lll} X & = & ABCBDAB \\ Y & = & BDCABA \\ & c(i,j) & = & \begin{cases} 0 & i = 0 \text{ or } j = 0 \\ 1 + c(i-1,j-1) & i \geq 1, j \geq 1 \text{ and } x_i = y_j \\ \max\{c(i,j-1),c(i-1,j)\} & i \geq 1, j \geq 1 \text{ and } x_i \neq y_j \end{cases}$$

	j	0	1	2	3	4	5	6
i		Уj	1 <i>B</i>	D	C	Α	В	Α
0	Xi	0	0	0	0	0	0	0
1	Α	0	0	0	0	1	1	1
2	В	0	1	1	1	1	2	2
3	C	0	1	1	2	2	2	2
4	В	0	1	1	2	2	3	3
5	D	0	1	2	2	2	3	3
6	Α	0	1	2	2	3	3	4
7	В	0	1					

$$\begin{array}{lll} X & = & ABCBDAB \\ Y & = & BDCABA \\ & c(i,j) & = & \begin{cases} 0 & i = 0 \text{ or } j = 0 \\ 1 + c(i-1,j-1) & i \geq 1, j \geq 1 \text{ and } x_i = y_j \\ \max\{c(i,j-1),c(i-1,j)\} & i \geq 1, j \geq 1 \text{ and } x_i \neq y_j \end{cases}$$

	j	0	1	2	3	4	5	6
i		Уj	В	D	C	Α	В	Α
0	Xi	0	0	0	0	0	0	0
1	Α	0	0	0	0	1	1	1
2	В	0	1	1	1	1	2	2
3	C	0	1	1	2	2	2	2
4	В	0	1	1	2	2	3	3
5	D	0	1	2	2	2	3	3
6	Α	0	1	2	2	3	3	4
7	В	0	1	2				

$$\begin{array}{lll} X & = & ABCBDAB \\ Y & = & BDCABA \\ & c(i,j) & = & \begin{cases} 0 & i = 0 \text{ or } j = 0 \\ 1 + c(i-1,j-1) & i \geq 1, j \geq 1 \text{ and } x_i = y_j \\ \max\{c(i,j-1),c(i-1,j)\} & i \geq 1, j \geq 1 \text{ and } x_i \neq y_j \end{cases}$$

	j	0	1	2	3	4	5	6
i		Уj	В	D	C	Α	В	Α
0	Xi	0	0	0	0	0	0	0
1	Α	0	0	0	0	1	1	1
2	В	0	1	1	1	1	2	2
3	C	0	1	1	2	2	2	2
4	В	0	1	1	2	2	3	3
5	D	0	1	2	2	2	3	3
6	Α	0	1	2	2	3	3	4
7	В	0	1	2	2			

$$\begin{array}{lll} X & = & ABCBDAB \\ Y & = & BDCABA \\ & c(i,j) & = & \begin{cases} 0 & i = 0 \text{ or } j = 0 \\ 1 + c(i-1,j-1) & i \geq 1, j \geq 1 \text{ and } x_i = y_j \\ \max\{c(i,j-1),c(i-1,j)\} & i \geq 1, j \geq 1 \text{ and } x_i \neq y_j \end{cases}$$

	j	0	1	2	3	4	5	6
i		Уj	В	D	C	Α	В	Α
0	Xi	0	0	0	0	0	0	0
1	Α	0	0	0	0	1	1	1
2	В	0	1	1	1	1	2	2
3	C	0	1	1	2	2	2	2
4	В	0	1	1	2	2	3	3
5	D	0	1	2	2	2	3	3
6	Α	0	1	2	2	3	3	4
7	В	0	1	2	2	3		

$$\begin{array}{lll} X & = & ABCBDAB \\ Y & = & BDCABA \\ & c(i,j) & = & \begin{cases} 0 & i = 0 \text{ or } j = 0 \\ 1 + c(i-1,j-1) & i \geq 1, j \geq 1 \text{ and } x_i = y_j \\ \max\{c(i,j-1),c(i-1,j)\} & i \geq 1, j \geq 1 \text{ and } x_i \neq y_j \end{cases}$$

		۱ ۸	1	2	2	1	_	6
	J	U	T	2	3	4	5	•
i		Уj	В	D	C	Α	В	Α
0	Xi	0	0	0	0	0	0	0
1	Α	0	0	0	0	1	1	1
2	В	0	1	1	1	1	2	2
3	C	0	1	1	2	2	2	2
4	В	0	1	1	2	2	3	3
5	D	0	1	2	2	2	3	3
6	Α	0	1	2	2	3	3	4
7	В	0	1	2	2	3	4	

$$\begin{array}{lll} X & = & ABCBDAB \\ Y & = & BDCABA \\ & c(i,j) & = & \begin{cases} 0 & i = 0 \text{ or } j = 0 \\ 1 + c(i-1,j-1) & i \geq 1, j \geq 1 \text{ and } x_i = y_j \\ \max\{c(i,j-1),c(i-1,j)\} & i \geq 1, j \geq 1 \text{ and } x_i \neq y_j \end{cases}$$

	j	0	1	2	3	4	5	6
i		Уj	В	D	С	Α	В	Α
0	Xi	0	0	0	0	0	0	0
1	Α	0	0	0	0	1	1	1
2	В	0	1	1	1	1	2	2
3	C	0	1	1	2	2	2	2
4	В	0	1	1	2	2	3	3
5	D	0	1	2	2	2	3	3
6	Α	0	1	2	2	3	3	4
7	В	0	1	2	2	3	4	4

101401212121212121

$$\begin{array}{lll} X & = & ABCBDAB \\ Y & = & BDCABA \\ & c(i,j) & = & \begin{cases} 0 & i = 0 \ \text{or} \ j = 0 \\ 1 + c(i-1,j-1) & i \geq 1, j \geq 1 \ \text{and} \ x_i = y_j \\ \max\{c(i,j-1),c(i-1,j)\} & i \geq 1, j \geq 1 \ \text{and} \ x_i \neq y_j \end{cases}$$

	j	0	1	2	3	4	5	6
i		Уj	В	D	C	Α	В	Α
0	Xį	0	0	0	0	0	0	0
1	Α	0	0	0	0	1	1	1
2	В	0	1	1	1	1	2	2
3	C	0	1	1	2	2	2	2
4	В	0	1	1	2	2	3	3
5	D	0	1	2	2	2	3	3
6	Α	0	1	2	2	3	3	4
7	В	0	1	2	2	3	4	4

$$\begin{array}{lll} X & = & ABCBDAB \\ Y & = & BDCABA \\ & c(i,j) & = & \begin{cases} 0 & i = 0 \ \text{or} \ j = 0 \\ 1 + c(i-1,j-1) & i \geq 1, j \geq 1 \ \text{and} \ x_i = y_j \\ \max\{c(i,j-1),c(i-1,j)\} & i \geq 1, j \geq 1 \ \text{and} \ x_i \neq y_j \end{cases}$$

	j	0	1	2	3	4	5	6
i	-	Уj	В	D	C	Α	В	Α
0	Xi	0	0	0	0	0	0	0
1	Α	0	0	0	0	1	1	1
2	В	0	1	1	1	1	2	2
3	С	0	1	1	2	2	2	2
4	В	0	1	1	2	2	3	3
5	D	0	1	2	2	2	3	3
6	Α	0	1	2	2	3	3	4
7	В	0	1	2	2	3	4	4

$$\begin{array}{lll} X & = & ABCBDAB \\ Y & = & BDCABA \\ & c(i,j) & = & \begin{cases} 0 & i = 0 \text{ or } j = 0 \\ 1 + c(i-1,j-1) & i \geq 1, j \geq 1 \text{ and } x_i = y_j \\ \max\{c(i,j-1),c(i-1,j)\} & i \geq 1, j \geq 1 \text{ and } x_i \neq y_j \end{cases}$$

$$\begin{array}{lll} X & = & ABCBDAB \\ Y & = & BDCABA \\ & c(i,j) & = & \begin{cases} 0 & i = 0 \text{ or } j = 0 \\ 1 + c(i-1,j-1) & i \geq 1, j \geq 1 \text{ and } x_i = y_j \\ \max\{c(i,j-1),c(i-1,j)\} & i \geq 1, j \geq 1 \text{ and } x_i \neq y_j \end{cases}$$

$$\begin{array}{lll} X & = & ABCBDAB \\ Y & = & BDCABA \\ & c(i,j) & = & \begin{cases} 0 & i = 0 \text{ or } j = 0 \\ 1 + c(i-1,j-1) & i \geq 1, j \geq 1 \text{ and } x_i = y_j \\ \max\{c(i,j-1),c(i-1,j)\} & i \geq 1, j \geq 1 \text{ and } x_i \neq y_j \end{cases}$$

$$\begin{array}{lll} X & = & ABCBDAB \\ Y & = & BDCABA \\ & c(i,j) & = & \begin{cases} 0 & i = 0 \ \text{or} \ j = 0 \\ 1 + c(i-1,j-1) & i \geq 1, j \geq 1 \ \text{and} \ x_i = y_j \\ \max\{c(i,j-1),c(i-1,j)\} & i \geq 1, j \geq 1 \ \text{and} \ x_i \neq y_j \end{cases}$$

	j	0	1	2	3	4	5	6
i		Уj	В	D	C	Α	В	Α
0	Xi	0	0	0	0	0	0	0
1	Α	0	0	0	0	1	1	1
2	В	0	1	1	1	1	2	2
3	C	0	1	1	2	2	2	2
4	В	0	1	1	2	2	3	3
5	D	0	1	2	2	2	3	3
6	Α	0	1	2	2	3	3	4
7	В	0	1	2	2	3	4	4

$$\begin{array}{lll} X & = & ABCBDAB \\ Y & = & BDCABA \\ & c(i,j) & = & \begin{cases} 0 & i = 0 \ \text{or} \ j = 0 \\ 1 + c(i-1,j-1) & i \geq 1, j \geq 1 \ \text{and} \ x_i = y_j \\ \max\{c(i,j-1),c(i-1,j)\} & i \geq 1, j \geq 1 \ \text{and} \ x_i \neq y_j \end{cases}$$

	j	0	1	2	3	4	5	6
i		Уj	В	D	C	Α	В	Α
0	Xi	0	0	0	0	0	0	0
1	Α	0	0	0	0	1	1	1
2	В	0	1	1	1	1	2	2
3	С	0	1	1	2	2	2	2
4	В	0	1	1	2	2	3	3
5	D	0	1	2	2	2	3	3
6	Α	0	1	2	2	3	3	4
7	В	0	1	2	2	3	4	4

$$\begin{array}{lll} X & = & ABCBDAB \\ Y & = & BDCABA \\ & c(i,j) & = & \begin{cases} 0 & i = 0 \text{ or } j = 0 \\ 1 + c(i-1,j-1) & i \geq 1, j \geq 1 \text{ and } x_i = y_j \\ \max\{c(i,j-1),c(i-1,j)\} & i \geq 1, j \geq 1 \text{ and } x_i \neq y_j \end{cases}$$

$$\begin{array}{lll} X & = & ABCBDAB \\ Y & = & BDCABA \\ & c(i,j) & = & \begin{cases} 0 & i = 0 \ \text{or} \ j = 0 \\ 1 + c(i-1,j-1) & i \geq 1, j \geq 1 \ \text{and} \ x_i = y_j \\ \max\{c(i,j-1),c(i-1,j)\} & i \geq 1, j \geq 1 \ \text{and} \ x_i \neq y_j \end{cases}$$

	j	0	1	2	3	4	5	6
i		Уj	В	D	C	Α	В	Α
0	Xi	0	0	0	0	0	0	0
1	Α	0	0	0	0	1	1	1
2	В	0	1	1	1	1	2	2
3	C	0	1	1	2	2	2	2
4	В	0	1	1	2	2	3	3
5	D	0	1	2	2	2	3	3
6	Α	0	1	2	2	3	3	4
7	В	0	1	2	2	3	4	4

$$\begin{array}{lll} X & = & ABCBDAB \\ Y & = & BDCABA \\ & c(i,j) & = & \begin{cases} 0 & i = 0 \text{ or } j = 0 \\ 1 + c(i-1,j-1) & i \geq 1, j \geq 1 \text{ and } x_i = y_j \\ \max\{c(i,j-1),c(i-1,j)\} & i \geq 1, j \geq 1 \text{ and } x_i \neq y_j \end{cases}$$

Running time: O(m n)

Space: O(m n)

But if we only want to compute C(m, n), we only need the current row and the previous row. Hence,

Space: O(m+n).

In general, when we solve a problem using dynamic programming, we go through the following steps:

In general, when we solve a problem using dynamic programming, we go through the following steps:

Step 1: Understand the structure of the optimal solution. Show that there is an optimal substructure: an optimal solution "contains" optimal solutions for subproblems (which are smaller problems).

In general, when we solve a problem using dynamic programming, we go through the following steps:

- Step 1: Understand the structure of the optimal solution. Show that there is an optimal substructure: an optimal solution "contains" optimal solutions for subproblems (which are smaller problems).
- Step 2: Set up a recurrence for the optimal solution. We know from Step 1 that an optimal solution can be obtained from optimal solutions for subproblems. Use this to derive recurrence relations.

In general, when we solve a problem using dynamic programming, we go through the following steps:

- Step 1: Understand the structure of the optimal solution. Show that there is an optimal substructure: an optimal solution "contains" optimal solutions for subproblems (which are smaller problems).
- Step 2: Set up a recurrence for the optimal solution. We know from Step 1 that an optimal solution can be obtained from optimal solutions for subproblems. Use this to derive recurrence relations.
- Step 3: Solve the recurrence bottom-up. First solve the smallest subproblems (usually the base case of the recurrence). Then solve the second smallest subproblems. Then solve the third smallest subproblems, etc.

In general, when we solve a problem using dynamic programming, we go through the following steps:

- Step 1: Understand the structure of the optimal solution. Show that there is an optimal substructure: an optimal solution "contains" optimal solutions for subproblems (which are smaller problems).
- Step 2: Set up a recurrence for the optimal solution. We know from Step 1 that an optimal solution can be obtained from optimal solutions for subproblems. Use this to derive recurrence relations.
- Step 3: Solve the recurrence bottom-up. First solve the smallest subproblems (usually the base case of the recurrence). Then solve the second smallest subproblems. Then solve the third smallest subproblems, etc.

Do not use a recursive algorithm!

A subsequence of a given sequence is *palindromic* if it is the same whether it is read from left to right, or from right to left. For instance, the sequence

$$A, C, G, T, G, T, C, A, A, A, A, T, C, G$$

has many palindromic subsequences, including A, C, G, C, A and A, A, A, A. On the other hand, the subsequence A, C, T is not palindromic.

A subsequence of a given sequence is *palindromic* if it is the same whether it is read from left to right, or from right to left. For instance, the sequence

$$A, C, G, T, G, T, C, A, A, A, A, T, C, G$$

has many palindromic subsequences, including A, C, G, C, A and A, A, A, A. On the other hand, the subsequence A, C, T is not palindromic.

Question: Design a deterministic algorithm to solve the following problem using dynamic programming.

input: A sequence $X = (x_1, x_2, ..., x_n)$.

output: A longest palindromic subsequence of X.

What do you think of the following solution?

- Let *Reverse*(*X*) be the sequence *X* in reverse order.
- Return LCS(X, Reverse(X)).

§5.5 All-Pairs Shortest Paths

Let G = (V, E) be a directed graph, where $V = \{1, 2, ..., n\}$. Each edge (i, j) has a weight wt(i, j) > 0.

For all i and j, compute the weight of a shortest path in G from i to j, which we denote by $\delta_G(i,j)$.

Step 1: Structure of the Optimal Solution

Consider the shortest path from i to j, and assume this path has at least one interior vertex. Let k be the largest interior vertex.

shortest path from i to k, all interior vertices are $\leq k-1$ shortest path from k to j, all interior vertices are $\leq k-1$

Step 2: Set Up a recurrence for the Optimal Solution

For

$$1 \le i \le n$$
 $1 \le j \le n$ $0 \le k \le n$,

let dist(i, j, k) be the length of a shortest path from i to j, all of whose interior vertices are $\leq k$.

Step 2: Set Up a recurrence for the Optimal Solution

For

$$1 \le i \le n$$
 $1 \le j \le n$ $0 \le k \le n$,

let dist(i, j, k) be the length of a shortest path from i to j, all of whose interior vertices are $\leq k$.

We want to compute

$$dist(i,j,n) = \delta_G(i,j)$$

for all $1 \le i \le n$, $1 \le j \le n$.

◆ロト ◆個ト ◆差ト ◆差ト 差 めらゆ

Recurrence:

• For $1 \le i \le n$, dist(i, i, 0) = 0.

Recurrence:

- For $1 \le i \le n$, dist(i, i, 0) = 0.
- For $1 \le i \le n$, $1 \le j \le n$, $i \ne j$,

$$dist(i, j, 0) = \begin{cases} wt(i, j) & \text{if } (i, j) \text{ is an edge,} \\ \infty & \text{otherwise.} \end{cases}$$

Recurrence:

- For $1 \le i \le n$, dist(i, i, 0) = 0.
- For $1 \le i \le n$, $1 \le j \le n$, $i \ne j$,

$$dist(i, j, 0) = \begin{cases} wt(i, j) & \text{if } (i, j) \text{ is an edge,} \\ \infty & \text{otherwise.} \end{cases}$$

• For $1 \le i \le n$, $1 \le j \le n$, $1 \le k \le n$,

$$dist(i,j,k) = \min \left\{ dist(i,j,k-1), dist(i,k,k-1) + dist(k,j,k-1) \right\}.$$

Step 3: Solve the Recurrence Bottom-Up

Algorithm Floyd-Warshall

```
1: for i = 1 to n do
 2:
        for j = 1 to n do
 3:
           if i = j then
               dist(i, i, 0) = 0
 4:
 5:
           else
 6:
               dist(i, j, 0) = \infty
 7:
           end if
 8.
        end for
 9: end for
10: for all edges (i, j) do
11:
        dist(i, j, 0) = wt(i, j)
12: end for
13. for k = 1 to n do
14.
        for i = 1 to n do
15:
           for j = 1 to n do
16:
               dist(i, j, k) = min \{ dist(i, j, k - 1), dist(i, k, k - 1) + dist(k, j, k - 1) \}
17:
           end for
18:
        end for
19: end for
```

Running time: $O(n^3)$