H5Spark

H5Spark: Bridging the I/O Gap between Spark and Scientific Data Formats on HPC Systems

Jialin Liu, Evan Racah, Quincey Koziol, Richard Shane Canon, Alex Gittens, Lisa Gerhardt, Suren Byna, Mike F. Ringenburg, Prabhat

Jalnliu@lbl.gov

National Energy Research Scientific Computing Center(NERSC)

H5Spark: Outline

- Introduction, Spark
- Motivation
- H5Spark Design
- H5Spark Evaluation
- H5Spark Future

H5Spark: Big Data Analytics, Spark

- Apache Spark is an open source cluster computing framework
 - Developed at UCB AMPLab, 2014 v1.0, 2016 v2.0
 - Actively developed, 1000+ contributors in 2015
 - Productive programming interface
 - 6 vs 28 lines of code compare to hadoop mapreduce
 - Implicit data parallelism
 - Fault-tolerance
- Spark for Data-intensive Computing
 - Streaming processing
 - SQL
 - Machine learning, MLlib
 - Graph processing

H5Spark: Porting Spark onto HPC

- Advantages of Porting Spark onto HPC
 - A more productive API for data-intensive computing
 - Relieve the users from concurrency control, communication and memory management with traditional MPI model.
 - Embarrassingly parallel computing, data.map(f)
 - Fault tolerance, recompute()

- But Scientific Data Formats in HPC not Supported
 - HDF5/ netCDF are among the top 5 libraries at NERSC, 2015
 - 750+ unique users @NERSC, million of users worldwide
 - 1987, NCSA&UIUC. NASA send HDF-EOS to 2.4 millions end users
 - Hierarchical data organization
 - Parallel I/O

H5Spark: Data in Spark

- RDD: Resilient Distributed Datasets
 - Read-only, partitioned collection of records in Spark
 - RDD can contain any type of Python/Java/Scala objects
 - Fault Tolerant
- Transformations on RDD
 - Filter, map, join, etc
- Actions on RDD
 - Reduce, collect, etc
- Spark operations are lazy
- RDD allows in-memory processing
 - rdd.cache() or rdd.persist()
 - Good for iterative or interactive processing

H5Spark: Data in Spark

H5Spark: Data in HDF5

Hierarchical Data Format v5

H5Spark: Support HDF5 in Spark

- What does Spark have in reading various data formats?
 - Textfile, sc.textFile()
 - Parquet, sc.read.parquet()

- Json, sc.read.json()
- HDF5, sc.read.hdf5()
- Challenges: Functionality and Performance
 - How to transform an HDF5 dataset into an RDD?
 - How to utilize the HDF5 I/O libraries in Spark?
 - How to enable parallel I/O on HPC?
 - What is the impact of Lustre striping?
 - What is the effect of caching on IO in Spark?

H5Spark: Software Overview

- Scala/Python implementation
 - Spark favors Scala and Python
 - H5Spark uses HDF5 java library
 - Underneath is HDF5 C posix library
 - No MPIIO support
- H5Spark as a standalone package
 - Users can load it in their Spark applications
 - H5Spark module on Cori
 - sbt package----> h5spark_2.10-1.0.jar
- Open source
 - Github: https://github.com/valiantljk/h5spark

1.8.14

H5Spark: Design

- **RDD Seeder**
- Metadata Analyzer
- Hyperslab Partitioner
- **RDD Constructor**

H5Spark: From HDF5 to RDD

Input:

HDF5 File Path:	f
Dataset Name:	V
SparkContext:	SC
*Spark Partition:	р

^{*}Spark **Partition** determines the degree of parallelism = **MPI processes** +OpenMP

p > num of cores

Output: RDD: r

Under the Hood: reading HDF5 into RDD

- Adjust partitions p=p > dim[sid]? dim[sid]:p

— Determine hyperslab offset[i]=dim[sid]/p * i

- Seed RDD $r_seed = sc.parallelize(offset, p)$

Perform parallel I/O r_seed.flatmap(h5read(f,v))

H5Spark: How to Use

H5Spark APIs

Input: sc, f, v, p				
Functions	Output			
h5read	A RDD of double array			
h5read_point	A RDD of (key, value) pair			
h5read_vec	A RDD of vector			
h5read_irow	A RDD of indexed row			
H5read_imat	A RDD of indexed row matrix			

Correspond to Spark MLlib interface

import org.apache.spark.mllib.linalg

DataType: Vector, labeled point, matrix, indexedrowmatrix, etc

H5Spark: How to Use

Sample codes, H5Spark vs MPI

```
1. val sc = new SparkContext()
```

2. val rdd = h5read (sc, f, v, p)

3. *sc.stop()*

H5Spark Parallel Read

```
MPI_Init(&argc, &argv);
     MPI Comm size(comm, &mpi size);
     MPI Comm rank(comm, &mpi rank);
     hid t fapl = H5Pcreate(H5P_FILE_ACCESS);
    H5Pset_fapl_mpio(fapl, comm, info);
     file= H5Fopen(f, H5F_ACC_RDONLY, fapl);
     dataset= H5Dopen(file, v, H5P DEFAULT);
    hid_t dataspace = H5Dget_space(
     hsize t offset[rank];
                                        Parallelism
hsize t count[rank];
11. hsize_t rest = dims_out[0] % m
12. if(mpi rank != (mpi size -1)){
      count[0] = dims out[0]/mpi size;
13.
14. }else{
      count[0] = dims_out[0]/mpi_size + rest;
16. }
17. offset[0] = dims_out[0]/mpi_size * mpi_rank;
18. for(i=1; i<rank; i++){
     offset[i] = 0;
     count[i] = dims_out[i];
21.
    hid t hyperid=H5Sselect hyperslab(dataspace,
23.
                 H5S SELECT SET, offset, NULL, count, NULL);
24. hsize t rankmemsize=1;
25. for(i=0; i<rank; i++) rankmemsize*=count[i];
26. hid_t memspace = H5Screate_simple(rank,count,NULL);
27. double * data t=(double *)malloc(sizeof(double)*rankmemsize);
    H5Dread(dataset, H5T NATIVE DOUBLE, memspace,
29.
         dataspace, H5P_DEFAULT, data_t);
    MPI_Finalize()
```


About the System

- Cori, Phase 1, Cray XC40 supercomputer, 1600 compute nodes, 248
 Lustre OSTs
- Each compute node has 32 cores with 128 GB RAM in total. The peak
 I/O bandwidth is 700GB/s.

Experimental Setup

- PCA on 2.2 TB global ocean temperature data, 16 TB CAM5 atmosphere data.
- 2.2TB, 16 TB, HDF5 format, Double precision
- Number of nodes: 45, 90, 135, 1600
- Stripe counts: 1, 8, 24, 72, 144, 248

CAM5, 16TB, Finding the principal causes of variability in large scale 3D fields.

- Scaling/Profiling H5Spark with Lustre Striping
 - 45 nodes, 1440 cores, 3000 partitions, 2.2TB data, 1MB stripe size

Spark Tasks Launch Delay and GC Cost

Launch Delay(s) GC Cost(s)

120

90

8 24 72 144 248

Number of OSTs

I/O Bandwidth with Lustre Striping

H5Spark Tasks Launching Delay

OST should be another factor in Spark's scheduling besides CPU/Memory

- Scaling H5Spark with Partitions
 - 45 nodes, 2.2TB

The number of partitions can be tuned, based on the workloads and resources

- Scaling H5Spark with Executors and/or Partitions
 - 2.2TB, 45,95,135 nodes

Lesson: Increase the number of Executors and Partitions at the same time

H5Spark has been tested at full scale on Cori phase 1

Tests	Size(TB)	I/O(s)	B/W(GB/s)	OSTs	Executors	Partitions
135 nodes	2.2	37	59.7	144	135	9000
Full scale	16	120	136.5	144	1522	52100

H5Spark Python vs Scala

Version	I/O(s)	B/W(GB/s)	Speedup	Mem(GB)	Ratio
Python	162	13.65	1	479	1
Scala	90	24.56	1.8	2210	4.61

Scala is faster than Python

H5Spark vs MPI-IO

Partitions are also increased

MPI scales well with OSTs
H5Spark scales well with Nodes (while MPI saturates the I/O)
Again: Storage on HPC is an important scheduling factor

- H5Spark@LBNL vs SciSpark@NASA
 - https://github.com/SciSpark/SciSpark
 - https://github.com/valiantljk/h5spark

15-Jun-15

Architecture of SciSpark

H5Spark: Conclusion & Future Work

H5Spark:

- An efficient HDF5 file loader for Spark
- Users can now use Spark perform big data analysis on HDF5 data
- H5Spark gets closer to MPIIO

H5Spark Future

- Spark I/O finer profiling/ lazy evaluation
- Parallel write/filter
- Storage-aware scheduling

H5Spark

Thanks SciSpark Team Thank Douglas Jacobsen@NERSC, Jey Kottaalam@Amplab

