Theorem 8.20

For every integer $k \geq 1$, the complete graph K_{2k} can be factored into k-1 Hamiltonian cycles and a 1-factor.

Proof:

Since the result is true for k=1 and k=2, we assume that $k\geq 3$. Let $G=K_{2k}$, where $V(G)=\{v_0,v_1,\ldots,v_{2k-1}\}$. Let v_1,v_2,\ldots,v_{2k-1} be the vertices of a regular (2k-1)-gon and place v_0 in the center of the (2k-1)-gon. Join each two vertices of G by a straight line segment. Let G_1 be the spanning subgraph of G whose edges consist of (1) v_0v_1 and v_0v_{k+1} , (2) all edges parallel to v_0v_1 and (3) all edges parallel to v_0v_{k+1} . Then $G_1=C_{2k}$. For $1\leq i\leq k-1$, let G_i be the spanning subgraph of G whose edges consist of (1) v_0v_i and v_0v_{k+i} , (2) all edges parallel to v_0v_i and (3) all edges parallel to v_0v_{k+i} . Then $G_i=C_{2k}$ for each $i(1\leq i\leq k-1)$ and every edge of G belongs to some subgraph $G_i(1\leq i\leq k-1)$ except for the edges $v_1v_{2k-1}, v_2v_{2k-2}, \ldots, v_{k-1}v_{k+1}$ and v_ov_k , which are the edges of a 1-factor G_k of G. Thus G can be factored into G_1, G_2, \ldots, G_k .