Curso de Engenharia de Computação Sistemas Operacionais

Sistemas de Arquivo - Parte IV

Slides da disciplina Sistemas Operacionais Curso de Engenharia de Computação Instituto Mauá de Tecnologia – Escola de Engenharia Mauá Prof. Marco Antonio Furlan de Souza

- Tamanho de bloco
 - Escrever os bytes de um arquivo de modo contíguo no disco possui desvantagens;
 - Então um arquivo é "fatiado" em blocos de tamanho fixo decisão: qual deve ser o tamanho desses blocos?
 - Blocos grandes desperdiçam espaço em disco (principalmente se houver uma grande quantidade de arquivos pequenos);
 - Blocos pequenos levam a uma grande quantidade de operações de rotação e posicionamento no disco – atrasam as operações de disco.

Tamanho de bloco

Porcentagem de arquivos menores que um tamanho dado

Length	VU 1984	VU 2005	Web
1	1.79	1.38	6.67
2	1.88	1.53	7.67
4	2.01	1.65	8.33
8	2.31	1.80	11.30
16	3.32	2.15	11.46
32	5.13	3.15	12.33
64	8.71	4.98	26.10
128	14.73	8.03	28.49
256	23.09	13.29	32.10
512	34.44	20.62	39.94
1 KB	48.05	30.91	47.82
2 KB	60.87	46.09	59.44
4 KB	75.31	59.13	70.64
8 KB	84.97	69.96	79.69

Length	VU 1984	VU 2005	Web
16 KB	92.53	78.92	86.79
32 KB	97.21	85.87	91.65
64 KB	99.18	90.84	94.80
128 KB	99.84	93.73	96.93
256 KB	99.96	96.12	98.48
512 KB	100.00	97.73	98.99
1 MB	100.00	98.87	99.62
2 MB	100.00	99.44	99.80
4 MB	100.00	99.71	99.87
8 MB	100.00	99.86	99.94
16 MB	100.00	99.94	99.97
32 MB	100.00	99.97	99.99
64 MB	100.00	99.99	99.99
128 MB	100.00	99.99	100.00

1 KB

4 KB

Data rate x Block Size Tamanho de bloco Disk Space Utilization x Block Size File Size = 4KB 100% 60 50 80% Data rate (MB/sec) 40 60% 30 40% 20 20% 10

64 KB

16 KB

256 KB

1MB

Gerenciando blocos livres

 Método 1: Lista ligada de blocos de disco – cada slot de bloco armazena o número de bloco de disco livre.

Por exemplo, com tamanho de bloco de 1KB e 32 bits para identificar um bloco no disco, é necessário 1024x8/32 = 256 slots (mas um é utilizado para encadear a lista)
Basta um bloco na memória: os demais podem ser lidos/escritos em demanda do disco.

5/16

Gerenciando blocos livres

 Método 2: Utilizar bitmap – um disco com n blocos requer um bitmap com n bits – blocos livres são marcados com 1 no bitmap.

Por exemplo, um disco de 1TB é necessário um bitmap de 1bilhão de bits – requer 130000 blocos de 1KB para armazenar.

Quotas de disco

 Utilizado pelo administrador para limitar o tamanho de bloco e de arquivo dos usuários – requer informações adicionais associadas a um arquivo aberto:

Open file table Quota table Soft block limit Attributes disk addresses Hard block limit User = 8Current # of blocks Quota Quota pointer # Block warnings left record Soft file limit for user 8 Hard file limit Current # of files # File warnings left

- Backups do sistema de arquivos
 - Backups são utilizados para:
 - Recuperar de desastres;
 - Recuperar de estupidezas...
 - Estratégias:
 - Usar o conceito de "lixeira";
 - Executar uma cópia do sistema.

- Backups do sistema de arquivos
 - Problemas com cópias de backup
 - É um processo lento escolher que arquivos devem ser feitos backup e que tipo de mídia (segurança);
 - Backup incremental: é mais rápido cria-se um backup inicial, grande e então se adicionam e se atualizam apenas novos e modificados arquivos – mas é mais complicado de gerir;
 - Uso de compressão de dados: economiza espaço, mas um erro na compressão pode levar à perda de uma parte significativa dos dados;
 - É complicado fazer o backup de um sistema de arquivos ativo o que fazer com arquivos que são modificados durante o backup?
 - Proteção: como proteger o backup?

- Backups do sistema de arquivos
 - Abordagens de gravação (dump)
 - Físico: gravam-se todos os blocos do disco a partir do bloco zero, em ordem, em um disco de saída. É rápido, mas não deixa escolher diretórios ou arquivos e, além disso, copia blocos vazios e também blocos ruins (se houver);
 - Lógico: inicia-se em um ou mais diretórios e então procede-se à cópia de modo recursivo. No UNIX, este processo copia todos os caminhos inteiros de arquivos modificados ou adicionados e utiliza um esquema de bitmaps para marcar essas modificações.

Consistência do sistema de arquivos

- Para lidar com inconsistências (blocos que não foram gravados e estão "soltos" no sistema após um crash), existem programas que tentam verificar e possivelmente consertar esses problemas;
- Exemplo: o programa fsck do UNIX/Linux busca por inconsistências em arquivos e blocos utiliza duas tabelas em uma ele marca, após seguir os i-nodes de um arquivo, qual bloco estava em uso; na outra ele segue uma lista ligada ou bitmap de blocos livres. Em um sistema consistente, o número 1 aparecerá em uma tabela ou em outra.

Consistência do sistema de arquivos

Exemplo

Figure 4-27. File-system states. (a) Consistent. (b) Missing block. (c) Duplicate block in free list. (d) Duplicate data block.

- Desempenho do sistema de arquivos
 - Caching
 - Consiste em manter uma lista de blocos de arquivo mais utilizados em um cache;
 - A utilização de uma tabela de hash acelera a localização no cache:

- Desempenho do sistema de arquivos
 - Leitura de bloco adiantada
 - Consiste em adiantar blocos que poderão ser necessários e já armazená-los no cache;
 - Redução do movimento do braço do disco
 - Tentar armazenar blocos que poderão ser lidos na sequência no mesmo cilindro – no caso do UNIX/Linux, armazenar i-nodes nos cilindros do meio é melhor:

- Desempenho do sistema de arquivos
 - Desfragmentação de discos
 - Após a utilização do sistema de arquivos, é comum aparecer espaços resultantes de sua manipulação que são inúteis para alocar arquivos de tamanho maior, resultando no espalhamento do arquivo e consequentemente uma perda de desempenho;
 - A desfragmentação consiste em reunir esses espaços (movendo blocos de arquivos) criando regiões contíguas de blocos.

Referências bibliográficas

TANENBAUM, Andrew S. **Sistemas operacionais modernos**. 3. ed. São Paulo: Pearson, 2013. 653 p.