MAE-275 Design Example

WBy A 2 rad/sec

WASHOUT

TABLE A-5

A. GEOMETRICAL AND INERTIAL PARAMETERS FOR THE DC-8

Note: Data are for body-fixed stability axes

s = 2600 ft 2 , b = 142.3 ft , c = 23 ft , γ_0 = 0 deg

·	FLIGHT CONDITION				
	8001 APPROACH	8602 HOLDING	8003 CRUISE	8004 V _{NE}	
h (ft)	0	15,000	33,000	33,000	
м (—)	0.219	0.443	0.84	0.88	
a (ft/sec)	. 1117	1058	982	982 .	
ρ (slugs/ft ³)	0.002378	0.001496	0.000795	0.000795	
V _{To} (ft/sec)	243.5	468.2	824.2	863.46	
$\bar{q} = \rho V^2/2 \ (1b/ft^2)$	71.02	163.97	270.0	296.36	
W (1b)	190,000	190,000	230,000	230,000	
m (slugs)	5900	5900	7143	7143	
I _x (slug-ft ²)	3,090,000	3,110,000	3,770,000	3,770,000	
Iy (slug-ft ²)	2,940,000	2,940,000	3,560,000	3,560,000	
I _z (slug-ft ²)	5,580,000	5,880,000	7,130,000	7,130,000	
I _{xz} (slug-ft ²)	28,000	-64,500	45,000	53,700	
xc.g./c	0.15	0.15	0.15	0.15	
θ _O (deg)	0	0	0	0	
U _o (ft/sec)	243.5	468.2	824.2	863.46	
Wo (ft/sec)	0	0	0	0	
$\delta_{ extbf{F}}$ (deg)	35	0	o .	0	

D. LATERAL DIMENSIONAL DERIVATIVES FOR THE DC-8

Note: Data are for body-fixed stability axes

	FLIGHT CONDITION				
	8001	8002	8003	8004	
h (ft)	0	15,000	33,000	33,000	
M (-)	0.219	0.443	0.84	0.88	
Y _V (1/sec)	-0.1113	-0.1008	-0.0868	-0.0931	
Y_{β} [(ft/sec ²)/rad]	-27.1	47.2	-71.5	-80.4	
Y_{δ_a} [(ft/sec ²)/rad]	0	0	0	0	
Υδ* [(1/sec)/rad]	0	0	0	0	
Y_{δ_r} [(ft/sec ²)/rad]	5.79	13.48	18.33	20.12	
Yor [(1/sec)/rad]	0.0238	0.0288	0.0222	0.0233	
Iβ (1/sec ²)	-1.335	-2.68	4.43	-5.05	
Lp (1/sec)	-0.95	-1.233	-1.18	-1.289	
Lr (1/sec)	0.612	0.391	0.336	0.35	
Lδa (1/sec ²)	-0.726	-1.62	-2.11	-2.3	
${ m L}_{\delta_{f r}}$ (1/sec ²)	0.1848	0.374	0.559	0.63	
I_{β}^{\bullet} (1/sec ²)	-1.328	-2.71	-4.41	-5.02	
L'p (1/sec)	-0.951	-1.232	-1.181	-1.29	
L' (1/sec)	0.509	0.397	0.334	0.346	
L_{δ_a} (1/sec ²)	-0.726	-1.62	-2.11	-2.3	
$L_{\delta_{\mathbf{r}}}$ (1/sec ²)	0.1813	0.392	0.549	0.612	
N_{β} (1/sec ²)	0.763	1.271	2.17	2.47	
N_p (1/sec)	-0.1192	-0.048	-0.01294	-0.00744	
N_r (1/sec)	-0.268	-0.252	-0.23	-0.252	
$N\delta_a$ (1/sec ²)	-0.0496	-0.0365	-0.0519	-0.0615	
N_{δ_r} (1/sec ²)	-0.39	-0.86	-1.168	-1.282	
N_{β} (1/sec ²)	0.757	1.301	2.14	2.43	
$N_{\mathbf{p}}^{\mathbf{r}}$ (1/sec)	-0.124	-0.0346	-0.0204	-0.01715	
Nr (1/sec)	-0.265	-0.257	-0.228	-0.25	
N_{δ_a} (1/sec ²)	-0.0532	-0.01875	-0.0652	-0.0788	
$N_{\delta_{\mathbf{r}}}$ (1/sec ²)	-0.389	-0.864	-0.01164	-1.277	

» A

A =

-0.1000	0	-468.2000	32.2000	0
-0.0058	-1.2320	0.3970	0	0
0.0028	-0.0346	-0.2570	0	0
0	1.0000	0	0	0
0	0	1.0000	0	0

» B

B =

 $u = \int \Delta s_{\alpha}$

C --

» C

» D

D =

0 0 0 0 0 0

>>


```
>> zpk(phi_phie)
```

Zero/pole/gain:

not real

8.5265e-014 (s+8.391e005) (s+1) (s^2 + 0.3615s + 1.359) (s^2 - 8.391e005s + 7.04e011)

(s+20) (s+1.329) (s+0.006784) $(s^2 + 0.2533s + 1.433)$ $(s^2 + 28.28s + 400)$

 $\frac{d}{de}$

$$m = C$$

Bode Diagram

Bode Diagram

>> zpk(r_re)

Zero/pole/gain:

$$(s^2 + 7.924s + 93.43) (s^2 + 40.64s + 563.7)$$

 $(s+0.9442) (s+0.5) (s^2 + 0.3768s + 1.39) (s^2 + 7.955s + 92.87)$

 $(s^2 + 40.59s + 562.4) (s^2 + 28.28s + 400)$

$$m = 1$$

r-loop with 4-loop closed

I: from Bode

$$N = 2 - P$$

$$P = 0$$

>> zpk(gfinal)

Zero/pole/gain:

$$5.6843e-014$$
 (s+9.605e005) (s+1.71) (s+1) (s² + 0.797s + 0.4449)

$$(s^2 + 26.63s + 357.3)$$
 $(s^2 - 9.605e005s + 9.225e011)$

$$(s+20)$$
 $(s+1.713)$ $(s+1.364)$ $(s+0.005584)$ $(s^2 + 0.6389s + 0.5537)$

$$(s^2 + 26.65s + 357.6) (s^2 + 28.28s + 400)$$

5/2/11 1:07 PM

MATLAB Command Window

1 of 1

>> zpk(phi phie)

Zero/pole/gain:

not rea

8.5265e-014 (s+8.391e005) (s+1) (s^2 + 0.3615s + 1.359) (s^2 - 8.391e005s + 7.04e011)

$$(s+20)$$
 $(s+1.329)$ $(s+0.006784)$ $(s^2 + 0.2533s + 1.433)$ $(s^2 + 28.28s + 400)$

N = 6

$$m = 0$$

Bode Diagram

P-loop gain margin = 8,5 dB

4-100p phase-margin = 180-130 = 500

r-loop gain-margin = 26.8dB

r-loop Phase margin = 111°

