Approches Quantiques pour une nouvelle recherche opérationnelle ?!

Les TPs du mercredi (Grover)

Eric Bourreau
Université de Montpellier

Philippe Lacomme (LIMOS)

ulien Rodriguez Imran Meghazi (Master Université de Montpellier)

Grover et les problèmes combinatoires

$$Max \sum_{i=1}^{n} c_i x_i$$

$$s.c \sum_{i=1}^{n} a_{ij} x_i \le b_j j = 1,..., m$$

$$et x_i \in \{0,1\}$$

- Ingrédients requis pour résoudre un problème combinatoire
 - Booléens ou Entiers (représentation binaire sur des QuBits)
 - Graphe (structure de données, modélisation)
 - Somme (sous forme d'opérateur)
 - Contraintes (sous la forme d'un Oracle)
 - Recherche de solution (opérateur de Grover) optimale

Exercices

- Exercice 1 Savoir coder ses opérateurs
 - Application : Somme Quantique, comparateur
- Exercice 2 Savoir encoder un Oracle
 - Application : 3-SAT (avec des booléens)
- Exercice 3 Encoder un problème de minimisation sur un graphe
 - Application : Problème de Coloration (avec des entiers)

Exercice 1 – encoder ses opérateurs

- Nous savons encoder l'opération SOMME sur des entiers
 - Addition comme à l'école (en BASE 2)
 - sur 1 QuBit
 - sur 2 QuBits
 - sur n Qubits
- Nous allons encoder l'opération SOUSTRACTION
- Nous allons encoder l'opération INFERIEUR (pour pouvoir minimiser)

$$f(x) < k$$
?

Représenter des entiers (simultanément)

Exemple: 3 qubits, 8 états

- Un registre de 3 QuBits s'écrit $|q_2q_1q_0\rangle$ (représentation binaire d'un entier)
- Chaque Qubit superpose l'état |0> et |1> équitablement (porte H)
- La lecture des 3 QuBits (portes grises) fournit aléatoirement un chiffre entre 0 et 7
- L'exécution 1000 fois de ce circuit fournit une distribution de probabilités

Remarque: 40 QuBits peuvent « stocker » un Tera d'états.

Encoder l'addition binaire (adder)

- Des entier A,B représentés sur des registres de taille max($\log_2(A)$ et $\log_2(B)$) $A = a_n 2^n + a_{n-1} 2^{n-1} + ... + a_2 2^2 + a_1 2^1 + a_0 2^0$
- Somme entre deux entiers comme à l'école : A+B=S (c=carry, retenue en anglais)

Porte Cnot Porte de Toffoli

Exercice 1 – encoder ses opérateurs (TODO)

- Exécuter l'opération SOMME sur des entiers
 - sur 1 QuBit (vérifier que la table de vérité fonctionne)
 - sur 2 QuBits (superposer les QuBits de A et B en entrée)
 - Que se passe t'il sur les états des QuBits résultats (combien d'états) ?
 - Que se passe t'il sur les probabilités des états résultats ?
- Déduire comment encoder l'opération SOUSTRACTION
 - indice: La Soustraction est l'inverse de l'Addition
- Encoder l'opération INFERIEUR ' $f(x) \le k$?'
 - indice : $f(x) \le k f(x) k \le 0$

Correction Somme

Additionnons 2 registres A et B (stockés sur 2 QuBits) dans S (3 QuBits)

 $A = |q4q0\rangle$ $B = |q5q1\rangle$ $S = |q6q3q2\rangle$

400

200

000

001

010

011

100

101

110

- Il « manque » l'état 111 Les probabilités correspondent à la convolution des deux
- lois de probabilité uniforme ... en 0(10)

Indices Bibliographiques

- Circuit itéré de la somme (et bien plus)
 - « Quantum Networks for Elementary Arithmetic Operations », Vedral et al, Physical Review 95
- Circuit optimisé de la somme
 - Steven Cuccaro, Thomas Draper, Samuel Kutin, and David Moulton. A new quantum ripple-carry addition circuit. 11 2004. 15
 - (a,b) => (a,a+b)+1 carry
- Circuit de la soustraction
 - Circuit de la somme de droite à gauche
 - (a,b) => (a,b-a)

- Circuit de la comparaison
 - À partir de la soustraction, on test le résultat du carry : 0 si b≥a et 1 sinon, on inverse le carry (car on cherche le booleen a<b) puis on refait l'addition
 - (a,b) => (a,b-a)+carry=>(a,b)+carry « a < b »

Algorithme de Grover

• Lov Grover (Bell Labs) propose un algorithme qui permet de trouver un élément dans une table de taille N non triée en \sqrt{N}

- 3 étapes
 - Initialisation sur n qubits des 2^n =N états possibles
 - Demander à un oracle (U_{ω}) de définir l'élément à trouver
 - Révéler où est l'élément

← Superposition

← Intrication

← Mesure

Exercice 2 – démo d'encodage d'un oracle (3-SAT)

- Une formule SAT est une formule logique constituée avec des booléens (appelés littéraux) dans une expression CNF (Conjonctive Normal Form): un ensemble de ET (Λ) et de OU (V)
- Les opérations nécessaires sont la négation (¬), Λ et V sachant que : $(x_0 \ V \ x_1) == \neg \ (\neg x_0 \ \Lambda \ \neg x_1)$
- Une formule 3-SAT est construite avec des clauses disjonctives (V) avec seulement 3 variables connectées entre elles par des conjonctions (∧)
- Exemple : $f = (x_0 \lor x_1 \lor \neg x_2) \land (\neg x_0 \lor \neg x_1 \lor \neg x_2) \land (\neg x_0 \lor x_1 \lor x_2)$
- Le but est de trouver les valeurs VRAI ou FAUSSE de chaque littéral x_i telle que la formule soit toujours VRAIE.
- On peut réécrire $f = \neg(\neg x_0 \land \neg x_1 \land x_2) \land \neg(x_0 \land x_1 \land x_2) \land \neg(x_0 \land \neg x_1 \land \neg x_2)$
- Nous possédons la porte NOT grâce à ____ et la porte ET avec CNOT et CCNOT

3-SAT Quantique avec Grover

Initialisation

chaque x_i est représenté par un quBit donc les valeurs VRAI (1) ou/et FAUX (0) sont superposées

Exercice 2 – 3-SAT et les itérations

- 3-SAT
 - Superposer tous les états possible des littéraux
 - 1 booléen = 1 Qubit, déclarer les QuBits représentants les variables
 - Encoder la formule SAT
 - chaque clause = 1 nouveau Qubit résultat
 - La formule global = 1 QuBit final
 - Ajouter l'opérateur de Grover (qui révèle la/les solutions SAT, ie QuBit final = 1)
- TODO : Tester différente valeur d'itérations. Que se passe t'il ?

Description d'une clause (disjonction)

• Clause 0 : on intrique le résultat du grand ET dans un nouveau qubit auxilliaire c_0

•
$$c_0 = (\neg x_0 \land \neg x_1 \land x_2)$$

• On ajoute un nouveau qubit ancilla pour stocker temporairement le résultat du ET

Description de la conjonction

- $f = \neg(c_0) \land \neg(c_1) \land \neg(c_2)$
- On ajoute des X devant chaque clause
- On utilise anc₀ pour stocker les résultat intermédiaire du ET
- On stocke le résultat des 3 clauses dans un nouveau quBit anc₁

Vue d'ensemble 3-SAT

1/3

Vue d'ensemble 3-SAT

Résultat

$$f = (x_0 \lor x_1 \lor \neg x_2) \land (\neg x_0 \lor \neg x_1 \lor \neg x_2) \land (\neg x_0 \lor x_1 \lor x_2)$$

- Les 5 états probables sont effectivement les solutions de la formule 3-SAT
- On ne trouve pas une mais toutes les solutions
- Cela coute $O(\sqrt{2^n})$ en temps

Attention ! le vecteur se lit $|x_2x_1x_0\rangle$

Du simulateur aux machines physiques

Expérimentation : retour sur terre

3-SAT

40 portes unaire 94 portes binaires/ternaires transpilées en 185/375

===

Profondeur:

 $185/3 \simeq 60$ $375/9 \simeq 40$

===

(99,95%)⁶⁰³. (98,5%)⁴⁰⁹=0,4%

Exercice 3 – encoder un problème (coloration)

- Représenter un problème sous forme de graphe
 - Construction d'un emploi du temps
 - Un coloration du graphe des conflits fourni un planning
- Superposition
 - Variables de décision (couleur sur 2 QuBits)
 - H²ⁿ
- Oracle (intrication)
 - Contraintes à satisfaire (opérateur 'différent')
 - Fonction de coût à minimiser (opérateur '≤')
- Opérateur de Grover (révélateur)
- Itérer
- Mesurer

https://www.youtube.com/watch?v=CUe7LC3CdH8&ab_channel =%C3%80lad%C3%A9couvertedesgraphes

Circuit Quantique pour la coloration avec Grover

Exercice 3 - TODO

- Encoder l'opérateur 'neq' (not_equal) dans utils.py
 - (≠ **←→** not =)
 - (Deux nombres égaux le sont bit à bit)
 - Tester l'égalité de 2 bits
 - Cnot X

Opérateur *equal*0011 0011 0011
0101 + 0110 × 1001

- Encoder les contraintes dans color.py
 - Pour toute arête la couleur des nœuds adjacents est différentes (SAT)
 - Chaque couleur est bornée par le nombre chromatique (cost function à minimiser)
- Exécuter (plusieurs fois)