Funcions elementals

- Lineal, afí i quadràtica
- Exponencial i Logaritme
- Valor absolut
- Trigonomètriques

PREVI: Lineal, afí i quadràtica

Funció lineal: y= mx

Funció afí: y= mx + n

Funció quadràtica:

$$- \underline{V} = \underline{S} X^2 + \underline{D} X + \underline{C}$$

Funció Exponencial (a>0)

Exponencial

$$2^4 = 2 \cdot 2 \cdot 2 \cdot 2$$
, $3^2 = 3 \cdot 3$
 $3^{1/2} = \sqrt{3}$, $5^{3/4} = \sqrt[4]{5^3}$

 $a > 0 \Rightarrow a^x$ es calcula aproximant x per trencats

Exemple:
$$1{,}345 = \frac{1345}{1000} \Rightarrow a^{1{,}345} = \sqrt[1000]{a^{1345}}$$

<u>Gràfica</u>

$$f(x) = a^x$$

Dom $f = (-\infty, \infty)$; Im $f = (0, \infty)$

Funció Logaritme (a>0)

Logaritme

 $a^x = y \Rightarrow \log_a y = x$ (inversa de l'exponencial)

log₂ 16

És l'exponent que li hem de posar a 2 per obtenir 16

$$\log_2 16 = 4$$

log₃ 9

És l'exponent que li hem de posar a 3 per obtenir 9

$$f(x) = log_a x$$

Gràfica

Dom $f = (0, \infty)$; Im $f = (-\infty, \infty)$

a=10: logaritme decimal $\log x$

a=e: logaritme neperià $\ln x$ o bé, $\perp x$

Propietats: exponencial vs logaritme

Propietats: exponencial vs logaritme

$$\begin{array}{ll} a^0 = 1 & \log_a 1 = 0 \\ a^{x+y} = a^x \cdot a^y & \log_a uv = \log_a u + \log_a v \\ a^{-y} = 1/a^y & \log_a 1/v = -\log_a v \\ a^{x \cdot y} = (a^x)^y & \log_a u^v = v \cdot \log_a u \end{array}$$

$$(a \cdot b)^x = a^x \cdot b^x$$
 $\log_a x = \log_b x / \log_b a$ $a^{\log_a x} = x$ $\log_a a^x = x$ $a^x > 0 \, \forall x$ $\log_a x \text{ no } \exists \text{ si } x \leq 0$

<u>Gràfica</u>

Funció valor absolut

$$|x| = \begin{cases} x & \text{si } x \ge 0 \\ -x & \text{si } x \le 0 \end{cases}$$

Exemples

Gràfica 1. V.absolut de f.afí

Gràfica 2. V.absolut de f.quadràtica

Propietats

$$\begin{aligned} |x| &= |-x| \\ |x| &= 0 \Leftrightarrow x = 0 \\ |x| &= c \Rightarrow x = \pm c \\ |x| &= |y| \Rightarrow x = \pm y \\ |x| &\le c \Leftrightarrow -c \le x \le c \text{ i } |x| < c \Leftrightarrow -c < x < c \\ |x+y| &\le |x|+|y| \end{aligned}$$

Radiant. Equivalència en graus (sexagesimals)

L'angle, l'arc del qual mesura el mateix que el radi

$$1 \text{volta} = 360^{\circ} = 2\pi \text{rad}$$

$$360^{\circ} = 2\pi, \quad 90^{\circ} = \frac{\pi}{2}, \quad 60^{\circ} = \frac{\pi}{3}$$

$$180^{\circ} = \pi$$
, $45^{\circ} = \frac{\pi}{4}$, $30^{\circ} = \frac{\pi}{6}$

Aproximadament: 1rad = 57.29°

Raons trigonomètriques

$$\cos^2\alpha + \sin^2\alpha = 1$$

$$\tan\alpha = \frac{\sin\alpha}{\cos\alpha}$$

 $1 + \tan^2 \alpha = \frac{1}{\cos^2 \alpha}$

Altres raons trigonomètriques

$$\operatorname{cosec} \alpha = \frac{1}{\sin \alpha}, \quad \operatorname{sec} \alpha = \frac{1}{\cos \alpha}$$

$$\cot \alpha = \frac{1}{\tan \alpha}$$

Raons trigonomètriques d'angles del 1r quadrant

	0	$\pi/6$	$\pi/4$	$\pi/3$	$\pi/2$
$\sin lpha$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\cos \alpha$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
an lpha	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	∞

Reducció al primer quadrant

$$\cos(\pi - \alpha) = -\cos\alpha \qquad \sin(\pi - \alpha) = \sin\alpha$$
$$\cos(\pi + \alpha) = -\cos\alpha \qquad \sin(\pi + \alpha) = -\sin\alpha$$
$$\cos(-\alpha) = \cos\alpha \qquad \sin(-\alpha) = -\sin\alpha$$

Funcions trigonomètriques

Funció sinus/cosinus

Dom $f = \mathbb{R}$, Im f = [-1, 1]Periòdica,(2π) Contínua i derivable

Funció tangent

Dom
$$f=\mathbb{R}\setminus\{(2k+1)\frac{\pi}{2}\}$$
, Im $f=\mathbb{R}$
Periòdica,(π)
Discon. asimptòtica en $\mathbb{R}\setminus\{(2k+1)\frac{\pi}{2}\}$

Funcions trigonomètriques inverses

