线代必背 10 页纸一考研数学 777

公式的总结没有尽头,过于详细或过于简略都不是最佳选择;本篇背诵宝典不是书本中定理概念的堆砌, 而是删去过于常用和简单的公式和过于书面严谨的定理表达,真正选择考试的核心精华必记结论,才能 成为大家上考场前的必背 10 页纸。更为详细的题型总结、方法归纳、细致讲解请回归线代专题课讲义。

目 录

一、 行列式、伴随、逆的公	式		
二、 2 阶矩阵的伴随——主	对调,副反号,	得伴随	1
三、 $\mathbf{a}_{ij} = \mathbf{A}_{ij}$ 结论			1
			2
			2
			2
			2
			3
九、 秩 1 矩阵 A= αβ ^T			3
十、 列满秩、行满秩结论			3
			3
			5
十三、 AB=O , AB=C, AB=I	E 结论		6
十四、 AB=BA 总结			6
十五、 方程组解的判定			7
			7
			7
			8
			8
二十、 反对称矩阵 A ^T =-A			8
$=+-$, A^{-1} , A^{T} , A^{*} , $(A+kE)$)的特征值与特征	正向量	8
二十二、 判断 A 是否可以相	似对角化/判断 A	A、B 相似	8
二十三、 普通矩阵与实对称	矩阵		9
二十四、 施密特正交化			9
二十五、 相似 合同 等价			9
二十六、 二次型 keywords			10
			10
			10
二十九、二次型的几何应用	(数一)		10

一、行列式、伴随、逆的公式

1.行列式	
	4.分 加 尽则 ————————————————————————————————————
$\left kA \right = k^n \left A \right $	$(\mathbf{A}\mathbf{B})^{T} = \mathbf{B}^{T}\mathbf{A}^{T}$
$\left A^* \right = \left A \right ^{n-1}$	$(AB)^* = B^*A^*$
$ _{d^{-1}} - \frac{1}{d^{-1}} $	$(AB)^{-1} = B^{-1}A^{-1}$
$\left A^{-1} \right = \frac{1}{ A }$	
2.伴随矩阵	5.换位思考
$\mathbf{A}^* = \mathbf{A} \mathbf{A}^{-1}$	$(A^*)^{-1} = (A^{-1})^*$
$AA^* = A E$	$(\mathbf{A}^{-1})^{\mathrm{T}} = (\mathbf{A}^{\mathrm{T}})^{-1}$
$\left(kA\right)^* = k^{n-1}A^*$	$(\mathbf{A}^{T})^* = (\mathbf{A}^*)^{T}$
$\left \left(\mathbf{A}^* \right)^* = \left \mathbf{A} \right ^{\mathbf{n} - 2} \mathbf{A}$	
3.逆矩阵	6.加法拆开
$A^{-1} = \frac{A^*}{ A }$	$(\mathbf{A} + \mathbf{B})^{T} = \mathbf{A}^{T} + \mathbf{B}^{T}$
, ,	(A+B)*=不能拆开
$(kA)^{-1} = \frac{1}{k}A^{-1}$	(A+B) ⁻¹ =不能拆开
$(A^n)^{-1} = (A^{-1})^n$	
<mark>7.k 家族</mark>	-///
$\left kA = k^n A \right $	
$(kA)^T = kA^T$	
$(kA)^{-1} = \frac{1}{k}A^{-1}$	
$\left \left(kA \right)^* = k^{n-1}A^* \right $	

二、2 阶矩阵的伴随——主对调,副反号,得伴随

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \qquad A^* = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \qquad A^{-1} = \frac{1}{|A|} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

(注意:主对调 副反号口诀得到的是伴随,不是逆,逆矩阵还需乘 $\frac{1}{|\mathbf{A}|}$)

三、 $\mathbf{a}_{ij} = \mathbf{A}_{ij}$ 结论

设 A 是 3 阶非零矩阵,则 $a_{ij} = A_{ij} \Leftrightarrow A^T = A^* \Leftrightarrow A^T A = E\left(A$ 正交) $\Rightarrow |A| = 1$

$$a_{ii} = -A_{ii} \Leftrightarrow A^T = -A^* \Leftrightarrow A^T A = E(A \pm \cancel{\Sigma}) \Rightarrow |A| = -1$$

【余子式】 M_{ij} : $|\mathbf{A}|$ 中去掉第i行 第j列元素后的n-1阶子式

【代数余子式】 $A_{ij}: A_{ij} = (-1)^{i+j} M_{ij}$

四、初等矩阵的逆与行列式

	矩阵	意义	逆	行列式
对调	\mathbf{E}_{ij}	交换第 i 行与第 j 行(或交换第 i 列与第 j 列)	$\left(\mathbf{E}_{ij}\right)^{-1} = \mathbf{E}_{ij}$	$\left \mathbf{E}_{i,j}\right = -1$
倍乘	$\mathbf{E}_{i}(k)$	第 i 行(或第 i 列)乘以非零常数 k	$\left(\mathbf{E}_{i}(k)\right)^{-1} = \mathbf{E}_{i}\left(\frac{1}{k}\right)$	$\left \mathbf{E}_{i}(k)\right = k$
倍加	$\mathbf{E}_{ij}(k)$	第 i 行的 k 倍加到第 j 行(或第 j 列的 k 倍加到第 i 列)	$\left(\mathbf{E}_{ij}(k)\right)^{-1} = \mathbf{E}_{ij}(-k)$	$\left \mathbf{E}_{ij}(k)\right = 1$

注: 常见讲义对于 $\mathbf{E}_{ij}(c)$ 的解释有所不同,第 i 行的 k 倍加到第 j 行与第 j 行的 k 倍加到第 i 行均可,只是一个记号,但需记住,当你选定一种记法,就须"从一而终"。

五、初等行变换

初等行变换不改变列向量组的线性关系

初等列变换不改变行向量组的线性关系

初等行变换, A与B的行向量组等价

六、A可逆

A_{nxn}可逆

- $(1)|A|\neq 0$
- ②r(A)=n (A 满秩)
- ③Ax=0 只有零解
- ④Ax=β有唯一解
- ⑤A 的特征值没有 0
- ⑥A 与单位矩阵等价
- ⑦A 可仅经过初等行变换化为 E
- ⑧A 可仅经过初等列变换化为 E
- ⑨A 可以分解为若干个初等矩阵的乘积

七、矩阵的秩

越乘越小

(2) r $(A, B) \geqslant$ r (A)

越拼越大

 $3 r (A \pm B) \leq r (A) + r (B)$

分开加最大

4 r (A) =r (A^T) =r (AA^T) =r (A^TA)

乘转置不变秩

⑤ 若 AB=0,则 r(A)+r(B)≤n

n 为 A 的列数, B 的行数

⑥ 若 P,Q 可逆,则 r (PAQ) =r (A)

乘可逆阵不变秩

[进阶!] 左乘列满秩,不变秩 右乘行满秩,不变秩

r (PA) =r (A) 要求 P 列满秩

r (AB) =r (A) 要求 B 行满秩

【两条路径】①r (AB) ≤r (A) ≤r (A, B) ≤r (A) +r (B)

 $2r (A \pm B) \leq r (A, B) \leq r (A) + r (B)$

八、r(A)与r(A*)

$$\mathbf{r} (A^*) = \begin{cases} n & r(A) = n \\ 1 & r(A) = n-1 \\ 0 & r(A) < n-1 \end{cases}$$

九、秩 1 矩阵 $\mathbf{A} = \alpha \beta^{\mathrm{T}} = \left(\begin{array}{c} \\ \\ \end{array} \right) \left(\begin{array}{c} \\ \end{array} \right)$

- (1) 特征值: 0, 0, ..., 0, 迹
- (2) 特征向量: 迹对应的特征向量是 α (A的一列)
- (3) 可以相似对角化条件⇔ tr (A) ≠0
- (4) n 次幂: An=[tr(A)]ⁿ⁻¹A
- (5) 1 列乘 1 行: 抄第一列, 看倍数

十、列满秩、行满秩结论

1.A _{mxn} 列满秩	(1)[秩] (2)[左乘列满秩] (3)[左消去律] (4)[齐次] (5)[同解] (6)[三秩相等]	r(A) = n,A的列向量组线性无关 左乘列满秩,不变秩 $r(AB) = r(B)$ 若 $AB = AC$,则 $B = C$ AX = 0 仅有零解 ABX = 0 与 $BX = 0$ 同解 $r(B) = r(AB) = r\binom{B}{AB}$
	(7)[行组等价]	B 的行向量组与 AB 的行向量组等价
2.A _{mxn} 行满秩	(1) [秩]	r(A)=m,A的行向量组线性无关
	(2) [右乘行满秩]	右乘行满秩,不变秩 r(BA)=r(B)
	(3)[右消去律]	若 BA=CA,则 B=C
	(4)[非齐] (4)[同解]	$Ax=b$ 有解 $m=r(A) \le r(A, b) \le m$ $A^TB^Tx=0 与 B^Tx=0 同解$
	() [1 4)/01]	И П V_0 → П V_0 I ЛШ.

十一、分块矩阵

1.行列式	$\begin{vmatrix} A & C \\ O & B \end{vmatrix} = \begin{vmatrix} A & 0 \\ C & B \end{vmatrix} = A B \qquad (A: m \ \% \ B: n \ \%)$
	$\begin{vmatrix} 0 & A \\ B & C \end{vmatrix} = \begin{vmatrix} C & A \\ B & 0 \end{vmatrix} = (-1)^{mn} A B $
	$\begin{pmatrix} \mathbf{A} \\ \mathbf{B} \end{pmatrix}^{T} = (\mathbf{A}^{T}, \mathbf{B}^{T})$
"大转小也转"	$ \begin{pmatrix} A & B \\ C & D \end{pmatrix}^{T} = \begin{pmatrix} A^{T} & C^{T} \\ B^{T} & D^{T} \end{pmatrix} $
3.逆	$ \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}^{-1} = \begin{pmatrix} A^{-1} & 0 \\ 0 & B^{-1} \end{pmatrix} $ 记忆: 主对角线: 不用换序,直接添逆

	$\begin{pmatrix} A & C \\ 0 & B \end{pmatrix}^{-1} = \begin{pmatrix} A^{-1} & -A^{-1}CB^{-1} \\ 0 & B^{-1} \end{pmatrix} 同行在左,同列在右,再添负号$ $\begin{pmatrix} A & 0 \\ C & B \end{pmatrix}^{-1} = \begin{pmatrix} A^{-1} & 0 \\ -B^{-1}CA^{-1} & B^{-1} \end{pmatrix}$
	$\begin{pmatrix} C & A \\ B & 0 \end{pmatrix}^{-1} = \begin{pmatrix} 0 & B^{-1} \\ A^{-1} & -A^{-1}CB^{-1} \end{pmatrix}$ $\begin{pmatrix} 0 & A \\ B & C \end{pmatrix}^{-1} = \begin{pmatrix} -B^{-1}CA^{-1} & B^{-1} \\ A^{-1} & 0 \end{pmatrix}$
	$ \begin{pmatrix} a_1 & 0 & 0 \\ 0 & a_2 & 0 \\ 0 & 0 & a_3 \end{pmatrix}^{-1} = \begin{pmatrix} \frac{1}{a_1} & 0 & 0 \\ 0 & \frac{1}{a_2} & 0 \\ 0 & 0 & \frac{1}{a_3} \end{pmatrix} $
	$ \begin{pmatrix} 0 & 0 & a_1 \\ 0 & a_2 & 0 \\ a_3 & 0 & 0 \end{pmatrix}^{-1} = \begin{pmatrix} 0 & 0 & \frac{1}{a_3} \\ 0 & \frac{1}{a_2} & 0 \\ \frac{1}{a_1} & 0 & 0 \end{pmatrix} (a_i \text{ (λ ξ ξ $)}) $
	$r \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix} = r (A) + r (B)$ $r \begin{pmatrix} 0 & A \\ B & 0 \end{pmatrix} = r (A) + r (B)$
4.秩	$r \begin{pmatrix} A & 0 \\ C & B \end{pmatrix} \ge r (A) + r (B)$ $r \begin{pmatrix} A & C \\ 0 & B \end{pmatrix} \ge r (A) + r (B)$
	若 A 可逆,则 $r \begin{pmatrix} A & 0 \\ C & B \end{pmatrix} = r$ (A) $+r$ (B) (因为 n 个线性无关的 n 维向量可以表示任何一个 n 维向量)

十二、线性相关性总结

线性相关

线性无关

⇔ 存在一组不全为 0 的数,使得 $k_1a_1+k_2a_2+\cdots+k_sa_s=0$ 成立 ⇔ 当且仅当 k 全为 0 时使得 $k_1a_1+k_2a_2+\cdots+k_sa_s=0$ 成立

⇔至少有1个向量,可以由其余向量线性表示 ⇔任何1个向量,都不可由其余向量线性表示

 $\Leftrightarrow r(a_1, a_2, \cdots a_s) < s$ $\Leftrightarrow r(a_1, a_2, \cdots a_s) = s$

⇔方程组 Ax = 0 有非零解 ⇔方程组 Ax = 0 仅有零解

 $\Leftrightarrow (a_1, a_2, \dots, a_s) \begin{pmatrix} x_1 \\ \vdots \\ x_s \end{pmatrix} = 0 仅有零解$

线性表示

 β 可由 a_1,a_2,a_3 线性表示

 $\Leftrightarrow \beta = k_1 a_1 + k_2 a_2 + k_3 a_3$

若 $r(a_1,a_2,...,a_n) \neq r(a_1,a_2,...,a_n,\beta) \Leftrightarrow Ax = \beta$ 无解 \Leftrightarrow 不能表示

⇔ 非齐次方程组 $Ax = \beta$ 有解

线

性

 $\Leftrightarrow r(a_1, a_2, ..., a_s) = r(a_1, a_2, ..., a_s, \beta)$

无关, 子集也无关

无关, 拉长也无关

无关,加1个相关,那么加的能被唯一表示

无关,加1个不能被表示,全都无关 性

相关,再加几个也相关

个数>维数,一定相关

相 相关,缩短也相关

以少表多,多必相关 关

3个无关的3维向量一定可以表示任意一个三维向量

若 β 可以被 a_1,a_2,a_3 表示 $\Rightarrow r(a_1,a_2,a_3,\beta) = r(a_1,a_2,a_3)$

若 β 不可以被 a_1, a_2, a_3 表示 $\Rightarrow r(a_1, a_2, a_3, \beta) = r(a_1, a_2, a_3) + 1$

若向量组(I)可以由(II)表示 $\Rightarrow r(I) \le r(II)$ (谁厉害谁秩大)

十三、AB=0 , AB=C, AB=E 结论

AB=0

- $(1)r(A)+r(B) \leq n$
- ②B 的列向量均是 AX=0 的解
- ③A 有特征值: 0; 有特征向量: B 的非零列向量
- ④若 A, B 非零矩阵, A 列相关, B 行相关

AB=C

- ①AB 的列向量可由 A 的列向量线性表示
- ②AB 的行向量可由 B 的行向量线性表示
- ③BA 的列向量可由 B 的列向量线性表示
- ④BA 的行向量可由 A 的行向量线性表示
- ⑤若 A 可逆,则 B 的行与 AB 的行等价
- ⑥若 B 可逆,则 A 的列与 AB 的列等价
- $\bigcirc r(A) = r(A, AB)$

- ⑨若 A 列满秩,则 ABx=0 与 Bx=0 同解
- ⑩若 B 行满秩,则 BTATx=0 与 ATx=0 同解

AB=E

①A 行满秩, B 列满秩

十四、AB=BA 总结

AB 与 BA

①AB 与 BA 有相同的特征值

A_{mxn}, B_{nxm}, AB 与 BA 的非零特征值相同(重数都一样)

A_{nxn}, B_{nxn}, AB 与 BA 的特征值完全相同(重数也一样)

- ②AB 与 BA 的迹相同 (无需方阵)
- ③AB与BA不一定相似,但若A或B有一个可逆,则AB~BA
- ④AB 与 BA 的秩不一定相同

n 阶方阵 A,B 满足 AB=aA+bB(ab≠0),则

- ①AB=BA
- 2r(A) = r(B)
- ③A,B的特征向量相同

n 阶方阵 AB=BA, A 与 B 有公共的特征向量

十五、方程组解的判定

设A是 $m \times n$ 矩阵

① 齐次
$$\mathbf{A}\mathbf{x} = \mathbf{0}$$

 $\left\{ \begin{array}{l} \Box \mathbf{x} \otimes r(\mathbf{A}) = n, \\ \mathbf{x} \otimes r(\mathbf{A}) < n. \end{array} \right.$

② 非齐次
$$\mathbf{A}\mathbf{x} = \mathbf{b}$$

$$\begin{cases} \mathbb{T}\mathbf{f}\mathbf{x} \Leftrightarrow r(\mathbf{A}) \neq r(\mathbf{A}, \mathbf{b}), \\ \\ \mathbf{f}\mathbf{f}\mathbf{x} \Leftrightarrow r(\mathbf{A}) = r(\mathbf{A}, \mathbf{b}) \end{cases} \begin{pmatrix} \mathbf{u} - \mathbf{f}\mathbf{x} \Leftrightarrow r(\mathbf{A}) = r(\mathbf{A}, \mathbf{b}) = n, \\ \\ \mathbb{T}\mathbf{x} \otimes \mathbf{x} \end{cases}$$

十六、同解

若 Ax = 0 与 Bx = 0 同解

- ①【初等行变换】 A 经过初等行变换变成 B
- ②【行向量组等价】 A 的行与 B 的行等价
- ③【三秩相等】 r(A)=r(B)=r(A/B)
- ④【均是解】 Ax=0 的解均是 Bx=0 的解, Bx=0 的解均是 Ax=0 的解
- ⑤【1 解+1 秩】 Ax=0 的解均是 Bx=0 的解,且 r(A)=r(B)
- ⑥【左行右列】 存在可逆矩阵 P,使得 PA = B

若 $Ax = \beta$ 与 $Bx = \gamma$ 同解

- ①【初等行变换】 $(A \mid \beta)$ 经过初等行变换变成 $(B \mid \gamma)$
- ②【行向量组等价】 $(A \mid \beta)$ 的行与 $(B \mid \gamma)$ 的行等价
- ③【三秩相等】 $r(A \mid \beta) = r(B \mid \gamma) = r\begin{pmatrix} A \mid \beta \\ B \mid \gamma \end{pmatrix}$
- ④【同解+公共解】 Ax=0 与 Bx=0 同解且 $Ax=\beta$ 与 $Bx=\gamma$ 有公共解

十七、若 Ax=0 的解均是 Bx=0 的解

- (1)r (A) \geqslant r (B)
- ②B 的行向量组可由 A 的行向量组表示

③
$$Ax=0$$
与 $\begin{pmatrix} A \\ B \end{pmatrix}$ $x=0$ 同解

$$(4) r(A) = r \binom{A}{B}$$

十八、同解方程组

①Ax=0 与 A^TAx=0 同解

$$A^T A \xrightarrow{free h} A$$

②ATx=0 和 AATx=0 也同解

③若 P 列满秩,则 PBx=0 与 Bx=0 同解

十九、正交矩阵

- (1) 定义: AA^T=E / A^TA=E (定义)
- (2) 性质: A⁻¹=A^T (充要)

|A| 只能是±1

|λ| 只能是±1

(3) 重要: 两两正交——任2行(列)内积为0 单位向量——行(列)向量模长为1

二十、反对称矩阵 AT=-A

- (1) $a_{ij} = -a_{ji}$
- (2)主对角线元素都是0
- (3)奇数阶反对称矩阵 A=0

二十一、 $A^{-1}, A^{T}, A^{*}, (A+kE)$ 的特征值与特征向量

A	A^{T}	A^{-1}	A^*	A^n	A+kE	f (A)	$P^{-1}AP$
λ	λ	$\frac{1}{\lambda}$	$\frac{ A }{\lambda}$	λ^n	λ+k	f (λ)	λ
α	/	α	α	α	α	α	$P^{-1}\alpha$

若 A 的特征向量是 α , B=P⁻¹AP,则 B 的特征向量是___ $P^{-1}\alpha$ _

若 B 的特征向量是 α , A=PBP⁻¹,则 A 的特征向量是_____**P** α ___

二十二、判断 A 是否可以相似对角化/判断 A、B 相似

二十三、普通矩阵与实对称矩阵

		普通矩阵	实对称矩阵
1	【特征向量】	普通矩阵不同特征值对应的特征向量	实对称矩阵不同特征值对应的特征
		线性无关	向量相互正交
2	【对角化】	普通矩阵不一定可以相似对角化	实对称矩阵一定可以相似对角化
3	【对角化】	普通矩阵一般用可逆矩阵 P 对角化	实对称矩阵可以用正交矩阵 Q 对角
		(若可相似对角化)	化
4	【特征值】	普通矩阵的特征值可能是虚数	实对称矩阵的特征值一定是实数
5	【设问方式】	求可逆矩阵 P ,使得 $P^{-1}AP = \Lambda$	求正交矩阵 Q ,使得 $Q^{-1}AQ = \Lambda$
		(用可逆矩阵相似对角化)	(用正交矩阵相似对角化)
6	【求解步骤】	【求可逆矩阵 P 步骤】	【求正交矩阵Q步骤】
		①求特征值 λ₁, λ₂, λ₃	①求特征值礼,礼,礼,
		②求特征向量 $\alpha_1, \alpha_2, \alpha_3$	②求特征向量 $\alpha_1, \alpha_2, \alpha_3$
		③拼起来 $P = (\alpha_1, \alpha_2, \alpha_3)$	③正交化
			④单位化 η_1,η_2,η_3
		***	⑤拼起来 $Q = (\eta_1, \eta_2, \eta_3)$

二十四、施密特正交化

$$\left\{egin{aligned} oldsymbol{eta}_1 &= oldsymbol{lpha}_1, \ oldsymbol{eta}_2 &= oldsymbol{lpha}_2 - rac{(oldsymbol{lpha}_2, oldsymbol{eta}_1)}{(oldsymbol{eta}_1, oldsymbol{eta}_1)} oldsymbol{eta}_1, \ oldsymbol{eta}_3 &= oldsymbol{lpha}_3 - rac{(oldsymbol{lpha}_3, oldsymbol{eta}_1)}{(oldsymbol{eta}_1, oldsymbol{eta}_1)} oldsymbol{eta}_1 - rac{(oldsymbol{lpha}_3, oldsymbol{eta}_2)}{(oldsymbol{eta}_2, oldsymbol{eta}_2)} oldsymbol{eta}_2 \end{array}
ight.$$

二十五、相似 合同 等价

1.相似: A, B 均为 n 阶方阵, 存在可逆矩阵 P, 使得 $P^{-1}AP = B$

2.合同: A,B 均为 n 阶方阵, 存在可逆矩阵 C, 使得 $C^TAC = B$

3.等价: A,B 是两个同型矩阵,若 A 经过有限次<mark>初等变换</mark>化为 B ,称矩阵 A 与矩阵 B 等价的充要条件: ①同型秩相等

② A 经过有限次初等变换化为 B

③存在可逆矩阵 P, Q, 使得 PAQ = B

相似一定等价

合同一定等价

普通矩阵相似与合同没关系

实对称矩阵相似一定合同

实对称矩阵相似一定合同

实对称矩阵只能与实对称矩阵合同

实对称矩阵相似的充要条件:特征值相同

实对称矩阵合同的充要条件:正负惯性指数相同(特征值正负)

二十六、二次型 keywords

可逆的线性变换==合同==特征值正负个数相同==有相同的规范形正交变换==合同且相似==特征值相同==有相同的标准形

求标准形==法①正交变换法—标准形的系数是特征值 法②配方法 —标准形的系数往往不是特征值

求规范形/求正负惯性指数==法①求特征值,看正负 法②配方法,看平方项前正负

告知标准形(正交变换)===告诉特征值 告知标准形(配方法)====告诉特征值正负 告知规范形/正负惯性指数===告诉特征值正负

二次型最值:最大值= $x^Tx \cdot \lambda_{max}$

最小值= $x^{T}x \cdot \lambda_{min}$

二十七、二次型设问

相似对角化: 存在可逆矩阵 P ,使得 $P^{-1}AP = \Lambda$

正交相似对角化:存在正交矩阵 P,使得 $P^{T}AP = \Lambda$

合同对角化: 存在可逆矩阵 P , 使得 $P^{T}AP = \Lambda$

二十八、正定二次型

二次型 $x^T Ax$ 正定 $\Leftrightarrow A$ 的

- (1) \Leftrightarrow 对任意 $x \neq 0$. 都有 $x^T Ax > 0$
- (2) ⇔ 特征值全为正
- (3) \Leftrightarrow 正惯性指数 p = n = r(A)
- (4) ⇔ 与<mark>单位矩阵 E</mark> 合同,P^TAP=E
- (5) \Leftrightarrow 存在可逆矩阵 P, 使得 $A = P^T P$.
- (6) ⇔ 顺序主子式全大于 0
- (7) ⇒ 主对角线元素 $a_{ii} > 0(i = 1, 2, \dots, n)$. (必要条件)

二十九、二次型的几何应用(数一)

特征值 礼,礼,礼,正负	$f\left(x_1, x_2, x_3\right) = 1$
3 E	椭球面
2正1负	单叶双曲面
1正2负	双叶双曲面
2正1零	椭圆柱面
1正1负1零	双曲柱面