Name: Ruizhe Zhang

Batch code: LISUM10: 30 May - 30 Aug 2022

Submission date: 06/14/2022

Submitted to: Canvas (GitHub URL)

Step 1: Data Choosing

In order to understand how to use Flask better, I select the dataset showing NBA players' points, rebounds, assists and salary (shown in the files as "NBA.csv"), trying to predict NBA player's salary based on his performance:

	Α	В	С	D	E	F	G	Н
1	pts	rbd	ast	salary				
2	17.6	5	6.7	41.4				
3	27.2	7.9	7	41.4				
4	34.3	6.6	7.5	41.3				
5	25.3	7.8	10.2	39.2				
6	21.5	5.7	3.9					
7	14.4	3.2	4.4	34.5				
8	19.6	6.9	3.2	34.4				
9	19.9	6.7	6	34.4				
10	20.4	3.9	4.8	34.4				
11	27.1	7.1	4.9					
242	6	2.3	0.9					
243	6.9	2	2.5					
244		2.2	1.4	2.3				
245		2.2	8.0					
246		2	1.7	2.3				
247	3.6	2.3	0.5	2.2				
248	8.7	4.9	1.2	2.2				
249	8.8	2.1	2.4	2.1				
250	9.3	1.9	1.9	2.1				
251	3.7	2.6	0.4	2				
252		1.9	1.2	2				
253		4.5	1	2				
254								

Step 2: Saving the model using model.py (code shown below)

```
# Importing the libraries
      import numpy as np
      import pandas as pd
      import pickle
     dataset = pd.read_csv('NBA.csv')
     X = dataset.iloc[:, :3]
     y = dataset.iloc[:, -1]
      from sklearn.linear_model import LinearRegression
      regressor = LinearRegression()
      #Fitting model with trainig data
     regressor.fit(X, y)
      # Saving model to disk
     pickle.dump(regressor, open('model.pkl','wb'))
21
      model = pickle.load(open('model.pkl','rb'))
     print(model.predict([[36, 9, 12]]))
```

Step 3: Changing data type and prediction_text in app.py

```
import numpy as np
from flask import Flask, request, render_template
import pickle
app = Flask(__name__)
model = pickle.load(open('model.pkl', 'rb'))
@app.route('/')
def home():
   return render_template('index.html')
@app.route('/predict',methods=['POST'])
def predict():
    For rendering results on HTML GUI
    int_features = [float(x) for x in request.form.values()]
    final_features = [np.array(int_features)]
    prediction = model.predict(final_features)
    output = round(prediction[0], 2)
    return render_template('index.html', prediction_text='The salary of the player should be $ {} million'.format(output))
if name == " main ":
   app.run(debug=True)
```

Step 4: Making changes to the HTML template (index.html)

(Only the title and placeholders were changed in order to prevent unexpected errors)

Step 5: Deploying the model on flask

```
Microsoft Windows [版本 10.0.22000.739]
(c) Microsoft Corporation。保留所有权利。

D:\Flask-Deployment>python app.py
* Serving Flask app 'app' (lazy loading)
* Environment: production
WARNING: This is a development server. Do not use it in a production deployment.
Use a production WSGI server instead.
* Debug mode: on
* Running on http://127.0.0.1:5000 (Press CTRL+C to quit)
* Restarting with stat
* Debugger is active!

* Debugger PIN: 772-791-613
```

Step 6: Opening the running app and type in random data to predict:

