

Find the value of v_{O1} in V.

Find the value of v_{O2} in V.

0.4665

0.4665

1.8

1.8

Homework 5.2

Homework due Aug 16, 2022 23:59 +06 Completed

☐ Bookmark this page

HW 5.2.1

6.0/6.0 points (graded)

In the above circuit use this following information.

The cutin or threshold voltage of the transistors $V_{BE}\left(cutin\right)=0.5V$.

In saturation, transistors have $V_{BE}=0.8V$ and $V_{CE}=0.1V$.

In forward active mode, transistors have $V_{BE}\left(ON
ight)=0.7V$.

The forward common emitter current gain of the transistors β_F is very high. Therefore, you can ignore the base current.

Determine the value of R_{C2} in $k\Omega$ such that the minimum value of $v_{O2}=-1V$.

Determine the value of R_{C1} in $k\Omega$ such that the minimum value of $v_{O1}=0V$ when $v_{I}=1V$.

Determine the value of v_I in mV so $i_{C2}=0.30mA$ and $i_{C1}=0.20mA$. Hint: Use the exponential relationship of base emitter voltage with the emitter current.

-10.50154 -10.50154

Homework 5.3

Homework due Aug 16, 2022 23:59 +06 Completed

☐ Bookmark this page

HW 5.3.1

6.0/6.0 points (graded)

In the above circuit use this following information.

The cutin or threshold voltage of the transistors $V_{BE}\left(cutin\right)=0.5V$.

In saturation, transistors have $V_{BE}=0.8V$ and $V_{CE}=0.1V$.

In forward active mode, transistors have $V_{BE}\left(ON\right)=0.7V$.

The forward common emitter current gain of the transistors β_F is very high. Therefore, you can ignore the base current.

Let $V^-=-3.3V$. The reference voltage is to be $V_R=-1.0V$ and the currents are to

be
$$i_1 = i_2 = i_5 = 0.5 mA$$
.

Find the value of R_1 in $k\Omega$.

Find the value of R_2 in $k\Omega$.

Find the value of R_5 in $k\Omega$.

Homework 5.4

Homework due Aug 16, 2022 23:59 +06 Completed

☐ Bookmark this page

HW 5.4.1

6.0/6.0 points (graded)

In the above circuit use this following information.

The cutin or threshold voltage of the transistors $V_{BE}\left(cutin\right)=0.5V$.

In saturation, transistors have $V_{BE}=0.8V$ and $V_{CE}=0.1V$.

In forward active mode, transistors have $V_{BE}\left(ON\right)=0.7V$.

The forward common emitter current gain of the transistors $eta_F=50$.

Do not ignore the base current. Write the answer upto 5 decimal points.

If the fanout for the situation described in the figure is limited to N = 35, find the new value of v_{OR} in V.

-0.72437 **✓**-0.72437

Homework 5.5 Homework due Aug 16, 2022 23:59 +06 Completed ☐ Bookmark this page HW 5.5.1 4.0/4.0 points (graded) $V_{CC} = 3.7 \text{ V}$ $\begin{cases} R_{C2} = \\ 0.24 \text{ k}\Omega \end{cases} \begin{cases} R_3 = \\ 0.67 \text{ k}\Omega \end{cases}$ $\begin{cases} R_{C1} = \\ 0.21 \text{ k}\Omega \end{cases}$ Q_1 Q_R v010 v_X ϕV_R -0 v₀₂ v_Y $R_2 = 1.7 \text{ k}\Omega$ $\begin{cases} R_4 = \\ 1.33 \text{ k}\Omega \end{cases}$ $\geq 1.7 \,\mathrm{k}\Omega$ $R_E = 0.80 \text{ k}\Omega$ In the above circuit use this following information. The cutin or threshold voltage of the transistors $V_{BE}\left(cutin ight)=0.5V$. In saturation, transistors have $V_{BE}=0.8V$ and $V_{CE}=0.1V$. In forward active mode, transistors have $V_{BE}\left(ON\right)=0.7V$. The forward common emitter current gain of the transistors β_F is very high. Therefore, you can ignore the base current. Find the value of i_{R_3} that in current through R_3 resistor in mA. 1.5 1.5 Find the value of V_R in V. 2.695 2.695 Show answer Save Submit You have used 1 of 4 attempts HW 5.5.2 8.0/8.0 points (graded) Assume $v_x = v_y = \operatorname{Logic} 1$. What is the Logic 1 value of v_{O2} in V? 3 3 What is the Logic 1 value of v_x in V? 3 3 What is the Logic 1 value of v_y in V? 3 3 Find the current i_{R_E} in mA. 2.875 2.875 Find the current $i_{R_{C1}}$ in mA. 2.875 2.875 Find the voltage V_{B3} in V. 3.09625 3.09625 What is the Logic 0 value of v_{O1} in V? 2.396 2.396 Find the power dissipation in mW. Ignore all base currents. 27.932 27.932 Save Show answer Submit You have used 2 of 6 attempts HW 5.5.3 8.0/8.0 points (graded) Assume $v_x=v_y=\operatorname{Logic} 0$. What is the Logic 1 value of v_{O1} in V? 3 3 What is the Logic 0 value of v_x in V? 2.396 2.396 What is the Logic 0 value of v_y in V? 2.396 2.396

Find the current i_{R_E} in mA.

2.49375 2.49375

Find the current $i_{R_{C1}}$ in mA.

0

Find the current $i_{R_{C2}}$ in mA.

2.49375 Find the voltage V_{B4} in V_{\cdot}

3.1015 \checkmark 3.1015 \checkmark What is the Logic 0 value of v_{O2} in V?

26.5529

2.4015

Find the power dissipation in mW. Ignore all base currents.

Save Show answer