Московский Авиационный Институт (национальный исследовательский университет)

«Метод конечных разностей во временной области (FDTD)»

Поглощающие граничные условия

Поглощающие граничные условия с использованием полностью согласованного слоя (Perfect Matched Layer - PML)

Геометрия решаемой задачи

Коэффициент отражения

Для плоской волны, падающей по нормали:

$$\dot{\Gamma} = \frac{\dot{E}_{\text{orp}}}{\dot{E}_{\text{пад}}} = \frac{\dot{W}_{2} - \dot{W}_{1}}{\dot{W}_{2} + \dot{W}_{1}}$$

Волновое сопротивление в среде с потерями

$$\dot{W} = \sqrt{\frac{\mu \mu_0 \left(1 - i \frac{\sigma_m}{\omega \mu \mu_0}\right)}{\epsilon \epsilon_0 \left(1 - i \frac{\sigma}{\omega \epsilon_0}\right)}} = W_0 \sqrt{\frac{\mu \left(1 - i \frac{\sigma_m}{\omega \mu \mu_0}\right)}{\epsilon \left(1 - i \frac{\sigma}{\omega \epsilon_0}\right)}}$$

Волновое сопротивление в среде с потерями

$$\dot{W} = \sqrt{\frac{\mu \mu_0 \left(1 - i \frac{\sigma_m}{\omega \mu \mu_0}\right)}{\epsilon \epsilon_0 \left(1 - i \frac{\sigma}{\omega \epsilon_0}\right)}} = W_0 \sqrt{\frac{\mu \left(1 - i \frac{\sigma_m}{\omega \mu \mu_0}\right)}{\epsilon \left(1 - i \frac{\sigma}{\omega \epsilon_0}\right)}}$$

Если
$$\frac{\sigma_m}{\mu\mu_0} = \frac{\sigma}{\epsilon\epsilon_0}$$
, то $W = W_0 \sqrt{\frac{\mu}{\epsilon}}$

Реализация поглощающих граничных условий

$$loss_m = \frac{\sigma_m \Delta_t}{2\mu \mu_0}$$

$$loss_e = \frac{\sigma \Delta_t}{2 \varepsilon \varepsilon_0}$$

Если

$$\frac{\sigma_m}{\omega\mu\mu_0} = \frac{\sigma}{\omega\,\epsilon\,\epsilon_0}$$
, to

$$\frac{\sigma_m \Delta_t}{2\mu \mu_0} = \frac{\sigma \Delta_t}{2\epsilon \epsilon_0}$$
 или $loss_m = loss_e$

Реализация поглощающих граничных условий

$$loss_e = loss_m = loss = \frac{\sigma_m \Delta_t}{2 \mu \mu_0} = \frac{\sigma \Delta_t}{2 \varepsilon \varepsilon_0} = 0.02$$

$$C_{E_z E} = \frac{1 - loss}{1 + loss}$$

$$C_{E_zH} = \frac{W_0/\varepsilon}{1 + loss}$$

$$C_{H_{y}E} = \frac{1/W_0}{1 + loss}$$

$$C_{H_yH} = \frac{1 - loss}{1 + loss}$$

Демонстрация граничных условий с использованием PML (fdtd_pml.py)

Погрешность из-за дискретной сетки

Погрешность из-за дискретной сетки

Демонстрация граничных условий с использованием PML (fdtd_pml_2.py)

Демонстрация граничных условий с использованием многослойного PML (fdtd_pml_3.py)

Демонстрация граничных условий с использованием PML с плавным увеличением потерь (fdtd_pml_4.py)

