Date: Jan 19 Made by Eric

Definitions and Theorems

Theorem 1. Let G and G' be two groups, and $\phi: G \to G'$ be a homomorphism with kernel K.

There is an isomorphism $\mu: G/K \to \phi[G]$ such that $\phi(x) = \mu(Kx)$

Proof. Let Kx = Ky

$$Kx = Ky \implies xy^{-1} \in K \implies \phi(xy^{-1}) = 1 \implies \phi(x) = \phi(y)$$

$$\mu(Kx) = \phi(x) = \phi(y) = \mu(Ky)$$

 μ is well defined.

$$\forall Kx, Ky \in G/K, \mu(Kx)\mu(Ky) = \phi(x)\phi(y) = \phi(xy) = \mu((Kx)(Ky))$$

 μ is at least a homomorphism.

$$\forall \phi(x) \in \phi[G], \mu(Kx) = \phi(x)$$

$$\mu(Kx) = \mu(Ky) \implies \phi(x) = \phi(y) \implies \phi(xy^{-1}) = 1 \implies xy^{-1} \in K, \implies Kx = Ky$$

 μ is an isomorphism.

Theorem 2. Let N be a normal subgroup of a group G. Let ϕ be a map from the set of normal subgroups of G containing N to the set of normal subgroup of G/N be defined by $\phi(L) = \{Nl | l \in L\}$ is one-to-one and onto.

Proof.

We claims (i) ϕ indeed maps the normal subgroup of G containing N to the normal subgroup of G/N

Let
$$N \subseteq M \trianglelefteq G$$

$$\phi(M) = \{Nm|m \in M\}$$

 $\forall Nm_1, Nm_2 \in \{Nm|m \in M\}, (Nm_1)(Nm_2) = Nm_1m_2 \in \{Nm|m \in M\},$ since M is a subgroup itself.

 $\{Nm|m\in M\}$ is closed under.

$$1 \in M \implies N \in \{Nm|m \in M\}$$

Identity is included in $\{Nm|m \in M\}$

$$\forall N m_1 \in \{Nm | m \in M\}, m_1^{-1} \in M \implies N m_1^{-1} \in setNm | m \in M$$

Inverses are included in $\{Nm|m \in M\}$

 $\{Nm|m\in M\}$ is at least a subgroup.

$$\forall Nx \in G/N, \forall Nm_1 \in \{Nm|m \in M\}, xm_1x^{-1} \in M \implies (Nx)(Nm_1)(Nx^{-1}) \in \{Nm|m \in M\}$$

 $\{Nm|m\in M\}$ is a normal subgroup.

Claim (i) is proven.

Now we embark on to prove ϕ is one-to-one and onto.

Let
$$K \leq G/N$$

$$K = \{Na, Nb, \dots\}$$

We claim that (ii) $\bigcup K$ is a normal subgroup containing N

 $\forall x, y \in \bigcup K, (Nx)(Ny) \in K$, since K is a subgroup itself.

$$(Nx)(Ny) \in K \implies Nxy \in K \implies xy \in \bigcup K$$

 $\bigcup K$ is closed under.

$$1 \in N \subseteq \bigcup K$$

Identity is included in $\bigcup K$

$$\forall x \in \bigcup K, Nx^{-1} \in K \implies x^{-1} \in \bigcup K$$

Inverses are included in $\bigcup K$

 $\bigcup K$ is at least a subgroup.

 $\forall x \in G, y \in \bigcup K, (Nx)(Ny)(Nx)^{-1} \in K$, since K it self is a normal subgroup.

So
$$Nxyx^{-1} \in K \implies xyx^{-1} \in \bigcup K$$

 $\bigcup K$ is a normal subgroup.

$$N \in K \implies N \subseteq \bigcup K$$

Claim (ii) is proven.

We claim (iii)
$$\phi(|JK) = K$$

$$\phi(\bigcup K) = \{Nx | x \in \bigcup K\}$$

$$\forall x \in \bigcup K, Nx \in K \implies \{Ny|y \in \bigcup K\} \subseteq K$$

$$\forall Nx \in K, x \in Nx \subseteq \bigcup K \implies K \subseteq \{Nx | x \in \bigcup K\}$$

$$\phi(\bigcup K) = \{Nx | x \in \bigcup K\} = K$$

Claim (iii) is proven.

So, ϕ is at least onto.

Let H, R be two normal subgroups of G containing N.

Let
$$\phi(H) = \phi(R)$$

$$\forall h \in H, Nh \in \phi(H) = \phi(R) \implies Nh = Nr, \exists r \in R \implies hr^{-1} \in N \subseteq R \implies h \in R$$

WOLG,
$$\forall r \in R, r \in H$$

$$R = H$$

 ϕ is indeed one-to-one.

Definition 1. Let A and B be two subgroup of G.

$$AB = \{ab | a \in A, b \in B\}$$

Theorem 3. Let G be a group in which H is a subgroup and N is a normal subgroup. NH is a group.

Proof.
$$\forall n_1h_1, n_2h_2 \in NH, n_1h_1n_2h_2 = n_1(h_1n_2)h_2 = n_1(n_3h_1)h_2, \exists n_3 \in N \implies n_1h_1n_2h_2 = (n_1n_3)(h_1h_2) \in NH$$

NH is closed under.

$$1 = 11 \in NH$$

Identity is included in NH

Let $n_1h_1 \in NH$

Pick $n_2 = h_1^{-1} n_1^{-1} h_1 \in N$

 $n_2 h_1^{-1} \in NH$

 $n_1 h_1 n_2 h_1^{-1} = n_1 h_1 h_1^{-1} n_1^{-1} h_1 h_1^{-1} = 1$

Inverses are included in NH

Theorem 4. Let G be a group in which H is a subgroup and N is a normal subgroup. $N \subseteq NH$ and $H \cap N \subseteq H$

Proof. Because $NH \subseteq G$, so $\forall nh \in NH, (nh)N = N(nh)$

Let $U = H \cap N$

Let $h \in H$, $u \in U \subseteq H$

 $huh^{-1} \in H$

Because $u \in N$, so $huh^{-1} \in N$

So $huh^{-1} \in U$

Theorem 5. Let G be a group in which H is a subgroup and N is a normal subgroup.

 $(HN)/N \simeq H/(H \cap N)$

Proof. Let $U = H \cap N$

Let $\phi: (HN)/N \simeq H/(H \cap N)$ be defined by $\phi((hn)N) = hU$

 $\forall (h_1 n_1) N, (h_2 n_2) N \in (HN) / N, \phi((h_1 n_1) N) \phi((h_2 n_2) N) = (h_1 U) (h_2 U) = (h_1 h_2) U = \phi((h_1 h_2 n_1 n_2) N) = \phi((h_1 h_2) N (h_2 n_2) N)$

 ϕ is at least a homomorphism.

 $\forall hU \in H/(H \cap N), \phi((h1)N) = hU$

 ϕ is onto.

Let $\phi((h_1n_1)N) = \phi((h_2n_2)N)$

so $h_1 = h_2$

$$h_1 = h_2 \implies (h_1 n_1) N = h_1 N = h_2 N = (h_2 n_2) N$$

 ϕ is one-to-one.

Theorem 6. Let G be a group in which H and K are two normal subgroup, where $K \leq H$.

$$(H/K) \leq (G/K)$$

Proof.
$$\forall hK \in H/K, \forall gK \in G/K, ghg^{-1} \in H \implies (gK)(hK)(g^{-1}K) \in H/K$$

Theorem 7. Let G be a group in which H and K are two normal subgroup, where $K \leq H$.

$$G/H \simeq (G/K)/(H/K)$$

Proof. Let
$$U = H/K$$

Let
$$\phi: G/H \to (G/K)/(H/K)$$
 be defined by $\phi(gH) = (gK)U$

$$\forall g_1 H, g_2 H \in G/H, \phi(g_1 H)\phi(g_2 H) = (g_1 K)U(g_2 K)U = ((g_1 K)(g_2)K)U = (g_1 g_2 K)U = \phi(g_1 g_2 H) = \phi((g_1 H)(g_2 H))$$

 ϕ is at least a homomorphism.

$$\forall (gK)U \in (G/K)/(H/K), \phi(gH) = (gK)U$$

 ϕ is onto.

Let
$$\phi(g_1H) = \phi(g_2H)$$

So
$$(g_1K)U = (g_2K)U$$

So
$$((g_1K)(g_2K)^{-1})U = U$$

$$U = ((g_1K)(g_2K)^{-1})U = ((g_1K)(g_2^{-1}K))U = (g_1g_2^{-1}K)U$$

So
$$g_1 g_2^{-1} K \in U = H/K$$

So
$$g_1g_2^{-1}K = hK, \exists h \in H$$

Because $K \subseteq H$, so $g_1g_2^{-1}K = hK, \exists h \in H \implies g_1g_2^{-1} \in H \implies g_1H = g_2H$

 ϕ is one-to-one.