Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа	M32021	К работе допущен	
Студент	Жуйков / Лопатенко	Работа выполнена	20.02.2023
Преподаватель	Тимофеева Э.О.	Отчет принят	

Рабочий протокол и отчет по лабораторной работе №5.10

Опыт Франка-Герца с неоном. Подтверждение неинтерполируемости теории Бора

1. Цель работы:

Изучить опыт Франка-Герца и обозначить границы теории Бора и квантовой механики.

2. Задачи, решаемые при выполнении работы:

- 1. Обосновать проблемы классической теории на молекулярных системах выше водорода;
- 2. Ознакомиться с методикой построения ВАХ газоразрядных приборов;
- 3. Экспериментально определить энергию возбуждения атома неона.

3. Объект исследования:

ВАХ трубки, заполненной неоном, в составе установки опыта Франка-Герца.

4. Метод экспериментального исследования:

Снятие показаний с экрана цифрового осциллографа, чтение ВАХ.

5. Рабочие формулы и исходные данные:

- 1) Формула Бальмера: $\overline{\nu}_0(\frac{1}{n^2}) = R \cdot (\frac{1}{m^2} \frac{1}{n^2})$, где m = 2, $n \in [3, 4, 5...]$
- 2) Постоянная Ридберга в СИ: $R = \frac{me^4}{8ch^3\epsilon_0^2}$
- 3) Энергия возбуждения атома неона: $E_{_{{\rm BO36}}}=\Delta U_{_{m}}$

6. Измерительные приборы:

№	Наименование	Измерение	$\Delta_{_{ extbf{H}}}$
1	Электронный вольтметр	сеточное напряжение	0.05 B
2	Электронный амперметр	сила тока в цепи анода	0.01 A

7. Схема установки:

установка состоит из трех функциональных частей: блока управления, осциллографа и разрядной трубки, наполненной неоном. В разрядной трубке расположена система четырех плоскопараллельных электродов: оксидированный катод косвенного подогрева, два сетчатых электрода и анод. При этом электрод при катоде служит для экранирования прикатодной эмиссионной области и уменьшения влияния пространственного заряда на вид ВАХ, а сеточный электрод при аноде создает задерживающую разность потенциалов.

8. Результаты прямых измерений и их обработки:

Таблица 1. Протокол результатов по ВАХ

$U_{A_{max}}=$ 80,0 B; $U_{F}=$ 6,6 B; $U_{G}=$ 8,9 B; $U_{E}=$ 4,0 B				
Nº	<i>U_m</i> , B	$\Delta U_{m}=U_{m}-U_{m-1}$, B		
Максимумы ВАХ				
1	5,0	19,0		
2	22,0	17,0		
3	42,0	20,0		
Минимумы ВАХ				
1	9,0	19,0		
2	29,0	18,0		
3	47,0	18,0		
$E_{_{ m BO36}} = 19,0 \pm 0,9$				

10. Расчет погрешностей измерений:

$$\Delta E_{_{\mathrm{BO36}}} = \sqrt{\frac{1}{(n-1)n} \cdot \sum\limits_{i=1}^{n} \left(\Delta U_{max_{_i}} - < \Delta U_{max}>\right)\right)^2} = 0,8819~\mathrm{B}$$
 (для разностей максимумов)

11. Графики:

График 1. Вольтамперная характеристика для газоразрядной трубки с неоном.

12. Выводы и анализ результатов работы:

В ходе выполнения работы разобраны основные аспекты теории строения атомов. Интересно, что значение для энергии возбуждения неона больше схоже с табличным значением для энергии ионизации неона. Очевидно, что энергия возбуждения должна оказаться меньше энергии ионизации, так как возбуждение отвечает лишь за переход электрона с одного энергетического уровня на другой скачком, а ионизация соответствует преодолению сильного взаимодействия и вылет электрона из подконтрольных орбиталей атома, что в теории описывается понятием недостаточного отрицательного заряда, то есть дыркой.