跨语言的语音转换

Zhizheng Wu

https://drwuz.com/

The Chinese University of Hong Kong, Shenzhen

Why do we need voice conversion? Voice dubbing case

Voice dubbing in a different language

The original movie actor may not speak different languages

A native voice actor is needed

 However the voice timber between the native voice actor and the original movie actor is different

XVC: Cross-Lingual Voice Conversion

Voice Conversion: State of the Art

Toom ID	Task 1		Task 2			
Team ID	VC model	Vocoder	VC model	Vocoder		
T01	PPG-VC (Tacotron)	Parallel WaveGAN	N/A	N/A		
T02	PPG-VC (Tacotron)	WaveGlow	PPG-VC (Tacotron)	WaveGlow		
T03	AutoVC	WaveRNN	AutoVC	WaveRNN		
T04	VQVAE	WaveNet	N/A	N/A		
T05	N/A	N/A	PPG-VC (IAF)	WORLD & WaveGlow		
T06	StarGAN	WORLD	StarGAN	WORLD		
T07	NAUTILUS (Jointly trained TTS VC)	WaveNet	NAUTILUS (Jointly trained TTS VC)	WaveNet		
T08	VTLN + Spectral differential	WORLD	VTLN + Spectral differential	WORLD		
T09	AutoVC	Parallel WaveGAN	AutoVC	Parallel WaveGAN		
T10	ASR-TTS (Transformer) / PPG-VC (LSTM)	WaveNet	PPG-VC (LSTM)	WaveNet		
T11	PPG-VC (LSTM)	WaveNet	PPG-VC (LSTM)	WaveNet		
T12	ADAGAN	AHOcoder	ADAGAN	AHOcoder		
T13	PPG-VC (Tacotron)	WaveNet	PPG-VC (Tacotron)	WaveNet		
T14	One shot VC	NSF	N/A	N/A		
T15	N/A	N/A	AutoVC	MelGAN		
T16	CycleVAE	Parallel WaveGAN	CycleVAE	Parallel WaveGAN		
T17	Cotatron	MelGAN	N/A	N/A		
T19	VQVAE	Parallel WaveGAN	VQVAE	Parallel WaveGAN		
T20	VQVAE	Parallel WaveGAN	VQVAE	Parallel WaveGAN		
T21	CycleGAN	MelGAN	N/A	N/A		
T22	ASR-TTS (Transformer)	Parallel WaveGAN	ASR-TTS (Transformer)	Parallel WaveGAN		
T23	Transformer VC (Jointly trained TTS VC)	Parallel WaveGAN	CycleVAE	WaveNet		
T24	PPG-VC (Tacotron)	LPCNet	PPG-VC (Tacotron)	LPCNet		
T25	PPG-VC (CBHG)	WaveRNN	PPG-VC (CBHG)	WaveRNN		
T26	One shot VC	Griffin-Lim	One shot VC	Griffin-Lim		
T27	ASR-TTS (Transformer)	Parallel WaveGAN	PPG-VC / ASR-TTS (Transformer)	Parallel WaveGAN		
T28	Tacotron	WaveRNN	Tacotron	WaveRNN		
T29	PPG-VC (CBHG)	LPCNet	PPG-VC (CBHG)	LPCNet		
T31	Multi-speaker Parrotron	WaveGlow	Multi-speaker Parrotron	WaveGlow		
T32	ASR-TTS (Tacotron)	WaveRNN	ASR-TTS (Tacotron)	WaveRNN		
T33	ASR-TTS (Tacotron)	Parallel WaveGAN	PPG-VC (Transformer)	Parallel WaveGAN		

Voice Conversion: State of the Art

Zhao, Y., Huang, W.C., Tian, X., Yamagishi, J., Das, R.K., Kinnunen, T., Ling, Z. and Toda, T., 2020. Voice conversion challenge 2020: Intra-lingual semi-parallel and cross-lingual voice conversion. ISCA Joint Workshop for the Blizzard Challenge and Voice Conversion Challenge 2020

Opportunities in Cross-Lingual Voice Conversion

Speech Intelligibility: Objective Measure

Word Error Rate (WER): The lower the better

VCC2020 top systems

	Source	T10	T13	T25	T29	Average
Intra-Lingual	13.79	11.26	18.69	20.19	23.33	18.37
Cross-Lingual	13.79	15.11	22.99	24.68	31.48	23.57

In-house system

	Voice Conversion	ENG WER (%)	MAN CER (%)	Average
_	Source	14.61	12.11	13.36
N	Intra-Lingual	24.01	21.68	22.85
	Cross-Lingual	35.66	29.87	32.77

https://cloud.google.com/speech-to-text

Speech Intelligibility: Subjective Measure

Subjective preference test: VCC 2020 top 4 systems

- 20 listeners, each evaluated 20 pairs

Speech Intelligibility: Subjective Measure

Subjective preference test: In-house XVC system

Yi Zhou, Zhizheng Wu, Xiaohai Tian, Haizhou Li, "Optimization of Cross-Lingual Voice Conversion with Linguistics Losses to Reduce Foreign Accents", submitted to IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING

XVC Speech Intelligibility

XVC system

Yi Zhou, Zhizheng Wu, Xiaohai Tian, Haizhou Li, "Optimization of Cross-Lingual Voice Conversion with Linguistics Losses to Reduce Foreign Accents", submitted to IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING

XVC system with linguistic loss

Yi Zhou, Zhizheng Wu, Xiaohai Tian, Haizhou Li, "Optimization of Cross-Lingual Voice Conversion with Linguistics Losses to Reduce Foreign Accents", submitted to IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING

XVC system with linguistic loss

Yi Zhou, Zhizheng Wu, Xiaohai Tian, Haizhou Li, "Optimization of Cross-Lingual Voice Conversion with Linguistics Losses to Reduce Foreign Accents", submitted to IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING

- BNF extractors
 - English: 460-hour Librispeech
 - Mandarin: 1,238 hours of speech
 - AIDataTang, AISHELL-1, MagicData, PrimeWords, ST-CMDS, and THCHS-30
- ASR systems
 - English: 460-hour Librispeech
 - WER: 10.12%
 - Mandarin: 151-hour AISHELL-1
 - CER: 5.72%

- Speaker embedding: 256 dimension
 - Pre-trained on the AISHELL-2 database [59]
 - Fine-tuned with English and Mandarin speech data from 100 speakers
- XVC system
 - 50 English speakers are randomly selected from the VCTK database
 - 50 Mandarin speakers from Data-Baker Mandarin Corpus
 - Each speaker has 150 utterances

- XVC system
 - 4 bilingual speakers (MF2, MF4, MM1, MM2) from the EMIME database for testing
 - Each speaker 20 English utterances and 20 Mandarin utterances

Source-Target Speaker Pairing
MF2 → MM2 (Female → Male)
MF4 → MF2 (Female → Female)
MM1 → MF4 (Male → Female)
MM2 → MM1 (Male → Male)

- XVC system
 - BNF2Wav: Baseline system which take bottleneck feature as input and predict waveform directly
 - BNF2Wav-BNF-ASR(F0): Bottleneck feature and F0 as input. Using both BNF and ASR losses

	Experimental System		Config	guration			MCD			RMSE		WE	CR/CER	$\overline{(\%)}$
Experimental System		Input	Output	BNF Loss	ASR Loss	ENG	MAN	Avg	ENG	MAN	Avg	ENG	MAN	Avg
	Natural Source Speech N.A.			8.71	8.94	8.83	18.08	19.93	19.01	8.21	3.75	5.98		
1)	BNF2Wav	BNF	Wav	×	×	8.77	9.01	8.89	13.24	13.41	13.33	21.66	17.83	19.75
2)	BNF2Wav(F0)	$BNF \bigoplus F0$	Wav	×	×	8.69	8.81	8.75	13.19	13.17	13.18	21.68	17.77	19.73
3)	BNF2Mel-BNF	BNF	Mel	\checkmark	×	8.71	8.78	8.75	12.73	12.89	12.81	15.46	10.01	12.74
4)	BNF2Wav-BNF	BNF	Wav	\checkmark	×	7.85	7.96	7.91	12.52	12.40	12.46	12.10	9.98	11.04
5)	BNF2Wav-ASR	BNF	Wav	×	\checkmark	8.66	8.63	8.65	12.55	12.61	12.58	11.06	9.25	10.16
6)	BNF2Wav-BNF-ASR	BNF	Wav	\checkmark	\checkmark	8.01	8.24	8.13	12.46	12.38	12.42	11.33	9.02	10.18
7)	BNF2Wav-BNF-ASR(F0)	$BNF \bigoplus F0$	Wav	\checkmark	\checkmark	7.96	7.99	7.98	12.49	12.31	12.40	11.28	9.13	10.21

Subjective test

- Speech quality MUSHRA
 - 20 listeners, each listen to 20 samples

Subjective test

- Speaker similarity
 - 20 listeners, each listen to 20 samples

1) BNF2Wav 2) BNF2Wav(F0) 3) BNF2Mel-BNF 4) BNF2Wav-BNF 5) BNF2Wav-ASR 6) BNF2Wav-BNF-ASR 7) BNF2Wav-BNF-ASR(F0)

Samples

	Female-Female	Female-Male	Male-Male	Male-Female
Source				
Target				
Baseline				
Proposed				

Summary

• There are opportunities in state-of-the-art XVC systems, especially intelligibility

With additional linguistic loss, the converted samples are more intelligible

The speech quality is also improved