Khai thác dữ liệu & Khai phá tri thức Data Mining & Knowledge Discovery

Bài 3. Tiền xử lý dữ liệu

Mã MH: 505043

TS. HOÀNG Anh

Nội dung

- Tiền xử lý dữ liệu: Tổng quan
 - Chất lượng dữ liệu/ Data Quality
 - Các nhiệm vụ cơ bản
- Làm sạch dữ liệu/ Data Cleaning
- Tích hợp dữ liệu/ Data Integration
- Giảm dữ liệu/ Data Reduction
- Chuyển đổi dữ liệu/ Data Transformation
- Tổng kết

Tại sao phải tiền xử lý dữ liệu?

- Đo lường chất lượng dữ liệu:
 - Độ chính xác/ Accuracy: correct or wrong, accurate or not
 - Độ hoàn thiện/ Completeness: not recorded, unavailable, ...
 - Tính nhất quán/ Consistency: some modified but some not, dangling, ...
 - Tính kịp thời/ Timeliness: timely update?
 - Độ tin cậy/ Believability: how trustable the data are correct?
 - Khả năng diễn giải/ Interpretability: how easily the data can be understood?

Nhiệm vụ cơ bản

Làm sạch dữ liệu/ Data cleaning

■ Fill in missing values, smooth noisy data, identify or remove outliers, and resolve inconsistencies

■ Tích hợp dữ liệu/ Data integration

• Integration of multiple databases, data cubes, or files

Giảm dữ liệu/ Data reduction

- Dimensionality reduction
- Numerosity reduction
- Data compression

Chuyển đổi dữ liệu/ Data transformation and data discretization

- Normalization
- Concept hierarchy generation

1. Làm sạch dữ liệu

- Dữ liệu thực tế thường "<mark>bẩn</mark>": Lots of potentially incorrect data, e.g., instrument faulty, human or computer error, transmission error
 - Chưa hoàn thiện/ incomplete: lacking attribute values, lacking certain attributes of interest, or containing only aggregate data
 - e.g., *Occupation*="" (missing data)
 - Nhiễu/ noisy: containing noise, errors, or outliers
 - e.g., *Salary*="-10" (an error)
 - Không nhất quán/ inconsistent: containing discrepancies in codes or names, e.g.,
 - *Age*="42", *Birthday*="03/07/2010"
 - Was rating "1, 2, 3", now rating "A, B, C"
 - discrepancy between duplicate records
 - <u>Cô ý/ Intentional</u> (e.g., *disguised missing* data)
 - Jan. 1 as everyone's birthday?

1.1 Dữ liệu chưa hoàn thiện

- Dữ liệu không có sẵn
 - E.g., many tuples have no recorded value for several attributes, such as customer income in sales data
- Lý do dữ liệu chưa hoàn thiện
 - equipment malfunction
 - inconsistent with other recorded data and thus deleted
 - data not entered due to misunderstanding
 - certain data may not be considered important at the time of entry
 - not register history or changes of the data
- Có thể "suy luận" được dữ liệu bị thiếu/ missing data

1.1 Cách xử lý dữ liệu bị thiếu?

- Bo qua/ Ignore the tuple: usually done when class label is missing (when doing classification)—not effective when the % of missing values per attribute varies considerably
- Diền vào thủ công: tedious + infeasible?
- Diền vào tự động:
 - a global constant : e.g., "unknown", a new class?!
 - the attribute mean
 - the attribute mean for all samples belonging to the same class:
 smarter
 - the most probable value: inference-based such as Bayesian formula or decision tree

1.2 Dữ liệu <mark>nhiễu</mark>

- Nhiễu/ Noise: random error or variance in a measured variable
- Lý do dữ liệu bị nhiễu
 - faulty data collection instruments
 - data entry problems
 - data transmission problems
 - technology limitation
 - inconsistency in naming convention
- Các vấn đề khác
 - duplicate records
 - incomplete data
 - inconsistent data

1.2 Cách xử lý dữ liệu nhiễu?

- Phân hoạch/ Binning
 - first sort data and partition into (equal-frequency) bins
 - then one can smooth by bin means, smooth by bin median, smooth by bin boundaries, etc.
- Hôi qui/ Regression
 - smooth by fitting the data into regression functions
- Gom cum/ Clustering
 - detect and remove outliers
- Kết hợp kiểm tra máy tính và con người
 - detect suspicious values and check by human (e.g., deal with possible outliers)

Làm sạch dữ liệu là một quá trình

- Phát hiện sai lệch dữ liệu/ Data discrepancy detection
 - Use metadata (e.g., domain, range, dependency, distribution)
 - Check field overloading
 - Check uniqueness rule, consecutive rule and null rule
 - Use commercial tools
 - Data scrubbing: use simple domain knowledge (e.g., postal code, spell-check) to detect errors and make corrections
 - Data auditing: by analyzing data to discover rules and relationship to detect violators (e.g., correlation and clustering to find outliers)
- Di chuyển và tích hợp dữ liệu/ Data migration and integration
 - Data migration tools: allow transformations to be specified
 - ETL (Extraction/Transformation/Loading) tools: allow users to specify transformations through a graphical user interface
- Tích hợp hai quá trình/ Integration of the two processes
 - Iterative and interactive (e.g., Potter's Wheels)

2. Tích hợp dữ liệu

- Tích hợp dữ liệu/ Data integration:
 - Combines data from multiple sources into a coherent store
- **Luọc đồ tích họp**/ Schema integration: e.g., A.cust-id ≡ B.cust-#
 - Integrate metadata from different sources
- Vấn đề nhận dạng thực thể/ Entity identification problem:
 - Identify real world entities from multiple data sources, e.g., Bill Clinton =
 William Clinton
- Phát hiện và giải quyết các giá trị dữ liệu xung đột
 - For the same real-world entity, attribute values from different sources are different
 - Possible reasons: different representations, different scales, e.g., metric vs.
 British units

Xử lý dữ liệu trùng lặp trong quá trình tích hợp

- Dữ liệu xảy ra trùng lặp khi được tích hợp từ nhiều nguồn
 - Object identification: The same attribute or object may have different names in different databases
 - Derivable data: One attribute may be a "derived" attribute in another table, e.g., annual revenue
- Tham số trùng lặp có thể được phát hiện bằng phân tích tương quan/ correlation analysis and covariance analysis
- Careful integration of the data from multiple sources may help reduce/avoid redundancies and inconsistencies and improve mining speed and quality

2.1 Phân tích tương quan (Nominal Data)

■ X² (chi-square) test

$$\chi^2 = \sum \frac{(Observed - Expected)^2}{Expected}$$

- The larger the X^2 value, the more likely the variables are related
- The cells that contribute the most to the X^2 value are those whose actual count is very different from the expected count
- Tương quan không bao hàm quan hệ nhân quả
 - # of hospitals and # of car-theft in a city are correlated
 - Both are causally linked to the third variable: population

Chi-Square Calculation: Ví dụ

	Play chess	Not play chess	Sum (row)
Like science fiction	250(90)	200(360)	450
Not like science fiction	50(210)	1000(840)	1050
Sum(col.)	300	1200	1500

• X² (chi-square) calculation (numbers in parenthesis are expected counts calculated based on the data distribution in the two categories)

$$\chi^2 = \frac{(250 - 90)^2}{90} + \frac{(50 - 210)^2}{210} + \frac{(200 - 360)^2}{360} + \frac{(1000 - 840)^2}{840} = 507.93$$

 It shows that like_science_fiction and play_chess are correlated in the group

2.1 Phân tích tương quan (Numeric Data)

 Hệ số tương quan (also called Pearson's product moment coefficient)

$$r_{A,B} = \frac{\sum_{i=1}^{n} (a_i - \overline{A})(b_i - \overline{B})}{(n-1)\sigma_A \sigma_B} = \frac{\sum_{i=1}^{n} (a_i b_i) - n \overline{A} \overline{B}}{(n-1)\sigma_A \sigma_B}$$

where n is the number of tuples, \overline{A} and \overline{B} are the respective means of A and B, σ_A and σ_B are the respective standard deviation of A and B, and $\Sigma(a_ib_i)$ is the sum of the AB cross-product.

- If $r_{A,B} > 0$, A and B are positively correlated (A's values increase as B's). The higher, the stronger correlation.
- $r_{A,B} = 0$: independent; $r_{AB} < 0$: negatively correlated

Đánh giá trực quan mối tương quan

Scatter plots showing the similarity from -1 to 1.

Turong quan (viewed as linear relationship)

- Tương quan đo lường mối quan hệ tuyến tính giữa các đối tượng.
- Để tính toán tương quan: 1) chuẩn hóa các đối tượng dữ liệu, A và B; 2) tính tích vô hướng

$$a'_{k} = (a_{k} - mean(A)) / std(A)$$

$$b'_k = (b_k - mean(B)) / std(B)$$

$$correlation(A, B) = A' \bullet B'$$

2.2 Hiệp phương sai/ covariance (Numeric Data)

Hiệp phương sai tương tự như tương quan

$$Cov(A,B) = E((A-\bar{A})(B-\bar{B})) = \frac{\sum_{i=1}^{n}(a_i-\bar{A})(b_i-\bar{B})}{n}$$
 Hệ số tương quan $r_{A,B} = \frac{Cov(A,B)}{\sigma_A\sigma_B}$

where n is the number of tuples, \overline{A} and \overline{B} are the respective mean or **expected** values of A and B, σ_A and σ_B are the respective standard deviation of A and B.

- **Positive covariance**: If $Cov_{A,B} > 0$, then A and B both tend to be larger than their expected values.
- Negative covariance: If $Cov_{A,B} < 0$ then if A is larger than its expected value, B is likely to be smaller than its expected value.
- **Independence**: $Cov_{A,B} = 0$ but the converse is not true:
 - Some pairs of random variables may have a covariance of 0 but are not independent. Only under some additional assumptions (e.g., the data follow multivariate normal distributions) does a covariance of 0 imply independence

Co-Variance: Ví dụ

$$Cov(A, B) = E((A - \bar{A})(B - \bar{B})) = \frac{\sum_{i=1}^{n} (a_i - \bar{A})(b_i - \bar{B})}{n}$$

It can be simplified in computation as

$$Cov(A, B) = E(A \cdot B) - \bar{A}\bar{B}$$

- Suppose two stocks A and B have the following values in one week: (2, 5),
 (3, 8), (5, 10), (4, 11), (6, 14).
- Question: If the stocks are affected by the same industry trends, will their prices rise or fall together?
 - E(A) = (2+3+5+4+6)/5 = 20/5 = 4
 - E(B) = (5 + 8 + 10 + 11 + 14)/5 = 48/5 = 9.6
 - $Cov(A,B) = (2 \times 5 + 3 \times 8 + 5 \times 10 + 4 \times 11 + 6 \times 14)/5 4 \times 9.6 = 4$
- Thus, A and B rise together since Cov(A, B) > 0.

3. Chiến lược "giảm" dữ liệu

- Giảm dữ liệu/ Data reduction: Biểu diễn rút gọn của tập dữ liệu gốc, nhưng vẫn đảm bảo kết quả phân tích tương đồng.
- Why data reduction? A database/data warehouse may store terabytes of data. Complex data analysis may take a very long time to run on the complete data set.
- Chiến lược "giảm" dữ liệu
 - Giảm chiều/ Dimensionality reduction, e.g., remove unimportant attributes
 - Wavelet transforms
 - Principal Components Analysis (PCA)
 - Feature subset selection, feature creation
 - Giảm số lượng/ Numerosity reduction (some simply call it: Data Reduction)
 - Regression and Log-Linear Models
 - Histograms, clustering, sampling
 - Data cube aggregation
 - Nén dữ liệu/ Data compression

3.1 Giảm chiều dữ liệu

Chiều dữ liệu

- When dimensionality increases, data becomes increasingly sparse
- Density and distance between points, which is critical to clustering, outlier analysis, becomes less meaningful
- The possible combinations of subspaces will grow exponentially

Giảm chiều dữ liệu

- Avoid the curse of dimensionality
- Help eliminate irrelevant features and reduce noise
- Reduce time and space required in data mining
- Allow easier visualization

Kỹ thuật giảm chiều dữ liệu

- Wavelet transforms
- Principal Component Analysis/ PCA
- Supervised and nonlinear techniques (e.g., feature selection)

Ánh xạ dữ liệu sang không gian mới

- Fourier transform
- Wavelet transform

Two Sine Waves

Two Sine Waves + Noise

Frequency

Biến đổi Wavelet là gì?

- Phân tách dữ liệu thành các dãi băng tần con khác nhau
 - Applicable to n-dimensional signals
- Dữ liệu được chuyển đổi, duy trì khoảng cách giữa các đối tượng, ở các mức độ phân giải khác nhau
- Cho phép các cụm/nhóm dễ phân biệt hơn
- Được sử dụng để nén ảnh

Biến đổi Wavelet

- Discrete wavelet transform (DWT) for linear signal processing, multi-resolution analysis
- Compressed approximation: store only a small fraction of the strongest of the wavelet coefficients
- Similar to discrete Fourier transform (DFT), but better lossy compression, localized in space
- Phương pháp:
 - Length, L, must be an integer power of 2 (padding with 0's, when necessary)
 - Each transform has 2 functions: smoothing, difference
 - Applies to pairs of data, resulting in two set of data of length L/2
 - Applies two functions recursively, until reaches the desired length

Wavelet Decomposition

- Wavelets: A math tool for space-efficient hierarchical decomposition of functions
- S = [2, 2, 0, 2, 3, 5, 4, 4] can be transformed to $S_{\wedge} = [2^{3}/_{4}, -1^{1}/_{4}, \frac{1}{_{2}}, 0, 0, -1, -1, 0]$
- Compression: many small detail coefficients can be replaced by 0's, and only the significant coefficients are retained

Resolution	Averages	Detail Coefficients
8	[2, 2, 0, 2, 3, 5, 4, 4]	
4	[2,1,4,4]	$[0,\ -1,\ -1,\ 0]$
2	$[1\frac{1}{2}, 4]$	$[\frac{1}{2}, 0]$
1	$[ilde{2}rac{3}{4}]$	$[-1\frac{1}{4}]$

Hệ số Haar Wavelet

Lý do cần biến đổi Wavelet?

- Use hat-shape filters
 - Emphasize region where points cluster
 - Suppress weaker information in their boundaries
- Effective removal of outliers
 - Insensitive to noise, insensitive to input order
- Multi-resolution
 - Detect arbitrary shaped clusters at different scales
- Efficient
 - Complexity O(N)
- Only applicable to low dimensional data

Phân tích thành phần chính (PCA)

- Find a projection that captures the largest amount of variation in data
- The original data are projected onto a much smaller space, resulting in dimensionality reduction. We find the eigenvectors of the covariance matrix, and these eigenvectors define the new space

Phân tích thành phần chính (Các bước)

- Given N data vectors from n-dimensions, find $k \le n$ orthogonal vectors (principal components) that can be best used to represent data
 - Normalize input data: Each attribute falls within the same range
 - Compute *k* orthonormal (unit) vectors, i.e., *principal components*
 - Each input data (vector) is a linear combination of the *k* principal component vectors
 - The principal components are sorted in order of decreasing "significance" or strength
 - Since the components are sorted, the size of the data can be reduced by eliminating the *weak components*, i.e., those with low variance (i.e., using the strongest principal components, it is possible to reconstruct a good approximation of the original data)
- Works for numeric data only

Lựa chọn tập con các thuộc tính

- Another way to reduce dimensionality of data
- Redundant attributes
 - Duplicate much or all of the information contained in one or more other attributes
 - E.g., purchase price of a product and the amount of sales tax paid
- Irrelevant attributes
 - Contain no information that is useful for the data mining task at hand
 - E.g., students' ID is often irrelevant to the task of predicting students' GPA

Tìm kiếm theo kinh nghiệm trong lựa chọn thuộc tính

- There are 2^d possible attribute combinations of d attributes
- Typical heuristic attribute selection methods:
 - Best single attribute under the attribute independence assumption: choose by significance tests
 - Best step-wise feature selection:
 - The best single-attribute is picked first
 - Then next best attribute condition to the first, ...
 - Step-wise attribute elimination:
 - Repeatedly eliminate the worst attribute
 - Best combined attribute selection and elimination
 - Optimal branch and bound:
 - Use attribute elimination and backtracking

Tạo thuộc tính mới (Feature Generation)

- Create new attributes (features) that can capture the important information in a data set more effectively than the original ones
- Three general methodologies
 - Attribute extraction
 - Domain-specific
 - Mapping data to new space (see: data reduction)
 - E.g., Fourier transformation, wavelet transformation, manifold approaches (not covered)
 - Attribute construction
 - Combining features (see: discriminative frequent patterns in Chapter 7)
 - Data discretization

3.2 Giảm số lượng dữ liệu

- Reduce data volume by choosing alternative, smaller forms of data representation
- Parametric methods (e.g., regression)
 - Assume the data fits some model, estimate model parameters, store only the parameters, and discard the data (except possible outliers)
 - Ex.: Log-linear models—obtain value at a point in *m*-D space as the product on appropriate marginal subspaces
- Non-parametric methods
 - Do not assume models
 - Major families: histograms, clustering, sampling, ...

Parametric Data Reduction: Regression and Log-Linear Models

Linear regression

- Data modeled to fit a straight line
- Often uses the least-square method to fit the line

Multiple regression

 Allows a response variable Y to be modeled as a linear function of multidimensional feature vector

Log-linear model

Approximates discrete multidimensional probability distributions

Phân tích hồi qui

- Regression analysis: A collective name for techniques for the modeling and analysis of numerical data consisting of values of a dependent variable (also called response variable or measurement) and of one or more independent variables (aka. explanatory variables or predictors)
- The parameters are estimated so as to give a"best fit" of the data
- Most commonly the best fit is evaluated by using the *least squares method*, but other criteria have also been used

 Used for prediction (including forecasting of time-series data), inference, hypothesis testing, and modeling of causal relationships

Regress Analysis and Log-Linear Models

- Linear regression: Y = wX + b
 - Two regression coefficients, w and b, specify the line and are to be estimated by using the data at hand
 - Using the least squares criterion to the known values of $Y_1, Y_2, ..., X_1, X_2, ...$
- Multiple regression: $Y = b_0 + b_1 X_1 + b_2 X_2$
 - Many nonlinear functions can be transformed into the above
- Log-linear models:
 - Approximate discrete multidimensional probability distributions
 - Estimate the probability of each point (tuple) in a multi-dimensional space for a set of discretized attributes, based on a smaller subset of dimensional combinations
 - Useful for dimensionality reduction and data smoothing

Đồ thị Histogram

- Divide data into buckets and store average (sum) for each bucket
- Partitioning rules:
 - Equal-width: equal bucket range
 - Equal-frequency (or equaldepth)

Gom cum

- Partition data set into clusters based on similarity, and store cluster representation (e.g., centroid and diameter) only
- Can be very effective if data is clustered but not if data is "smeared"
- Can have hierarchical clustering and be stored in multidimensional index tree structures
- There are many choices of clustering definitions and clustering algorithms
- Cluster analysis will be studied in depth in Chapter 10

Lấy mẫu/ Sampling

- Sampling: obtaining a small sample s to represent the whole data set N
- Allow a mining algorithm to run in complexity that is potentially sub-linear to the size of the data
- Key principle: Choose a representative subset of the data
 - Simple random sampling may have very poor performance in the presence of skew
 - Develop adaptive sampling methods, e.g., stratified sampling:
- Note: Sampling may not reduce database I/Os (page at a time)

Các kiểu lấy mẫu

Simple random sampling

There is an equal probability of selecting any particular item

Sampling without replacement

Once an object is selected, it is removed from the population

Sampling with replacement

A selected object is not removed from the population

Stratified sampling:

- Partition the data set, and draw samples from each partition (proportionally, i.e., approximately the same percentage of the data)
- Used in conjunction with skewed data

Sampling: With or without Replacement

Lấy mẫu: Cluster or Stratified Sampling

Raw Data

Cluster/Stratified Sample

Tổng hợp dữ liệu khối

- The lowest level of a data cube (base cuboid)
 - The aggregated data for an individual entity of interest
 - E.g., a customer in a phone calling data warehouse
- Multiple levels of aggregation in data cubes
 - Further reduce the size of data to deal with
- Reference appropriate levels
 - Use the smallest representation which is enough to solve the task
- Queries regarding aggregated information should be answered using data cube, when possible

3.3 Nén dữ liệu

- String compression
 - There are extensive theories and well-tuned algorithms
 - Typically lossless, but only limited manipulation is possible without expansion
- Audio/video compression
 - Typically, lossy compression, with progressive refinement
 - Sometimes small fragments of signal can be reconstructed without reconstructing the whole
- Time sequence is not audio
 - Typically, short and vary slowly with time
- Dimensionality and numerosity reduction may also be considered as forms of data compression

Nén dữ liệu/ Data Compression

4. Chuyển đổi dữ liệu

- Hàm ánh xạ toàn bộ tập giá trị của một thuộc tính đã cho (không gian củ) sang tập giá trị thay thế mới (không gian mới).
- Phương pháp/ Methods
 - Làm mịn/ Smoothing: Remove noise from data
 - Attribute/feature construction
 - New attributes constructed from the given ones
 - Tổng hợp/ Aggregation: Summarization, data cube construction
 - Chuẩn hóa/ Normalization: Scaled to fall within a smaller, specified range
 - min-max normalization
 - z-score normalization
 - normalization by decimal scaling
 - Ròi rac hóa/ Discretization: Concept hierarchy climbing

Chuẩn hóa/ Normalization

■ **Min-max normalization**: to [new_min_A, new_max_A]

$$v' = \frac{v - min_A}{max_A - min_A} (new _ max_A - new _ min_A) + new _ min_A$$

- Ex. Let income range \$12,000 to \$98,000 normalized to [0.0, 1.0]. Then \$73,000 is mapped to $\frac{73,600-12,000}{98,000-12,000}(1.0-0)+0=0.716$
- **Z-score normalization** (μ : mean, σ : standard deviation):

$$v' = \frac{v - \mu_A}{\sigma_A}$$

- Ex. Let $\mu = 54,000$, $\sigma = 16,000$. Then $\frac{73,600-54,000}{16,000} = 1.225$
- Normalization by decimal scaling

$$v' = \frac{v}{10^{j}}$$
 Where j is the smallest integer such that Max(|v'|) < 1

Rời rạc hóa

- Three types of attributes
 - Nominal—values from an unordered set, e.g., color, profession
 - Ordinal—values from an ordered set, e.g., military or academic rank
 - Numeric—real numbers, e.g., integer or real numbers
- Discretization: Divide the range of a continuous attribute into intervals
 - Interval labels can then be used to replace actual data values
 - Reduce data size by discretization
 - Supervised vs. unsupervised
 - Split (top-down) vs. merge (bottom-up)
 - Discretization can be performed recursively on an attribute
 - Prepare for further analysis, e.g., classification

Phương pháp rời rạc hóa dữ liệu

- Tất cả các phương pháp có thể được áp dụng đệ qui
 - Binning
 - Top-down split, unsupervised
 - Histogram analysis
 - Top-down split, unsupervised
 - Clustering analysis (unsupervised, top-down split or bottomup merge)
 - Decision-tree analysis (supervised, top-down split)
 - Correlation (e.g., χ^2) analysis (unsupervised, bottom-up merge)

Rời rạc đơn giản: Binning

- Equal-width (distance) partitioning
 - Divides the range into N intervals of equal size: uniform grid
 - if A and B are the lowest and highest values of the attribute, the width of intervals will be: W = (B A)/N.
 - The most straightforward, but outliers may dominate presentation
 - Skewed data is not handled well
- Equal-depth (frequency) partitioning
 - Divides the range into N intervals, each containing approximately same number of samples
 - Good data scaling
 - Managing categorical attributes can be tricky

Phương pháp Binning làm mịn dữ liệu

- Sắp xếp giá (in dollars): 4, 8, 9, 15, 21, 21, 24, 25, 26, 28, 29, 34
- * Partition into equal-frequency (equi-depth) bins:
 - Bin 1: 4, 8, 9, 15
 - Bin 2: 21, 21, 24, 25
 - Bin 3: 26, 28, 29, 34
- * Smoothing by **bin means**:
 - Bin 1: 9, 9, 9, 9
 - Bin 2: 23, 23, 23, 23
 - Bin 3: 29, 29, 29, 29
- * Smoothing by **bin boundaries**:
 - Bin 1: 4, 4, 4, 15
 - Bin 2: 21, 21, 25, 25
 - Bin 3: 26, 26, 26, 34

Rời rạc không sử dụng nhãn lớp (Binning vs. Clustering)

Equal frequency (binning)

K-means clustering leads to better results

Rời rạc dựa theo phân loại và phân tích tương quan

- Phân loại (e.g., cây quyết định/ decision tree analysis)
 - Supervised: Given class labels, e.g., cancerous vs. benign
 - Using *entropy* to determine split point (discretization point)
 - Top-down, recursive split
 - Details to be covered in Chapter 7
- Phân tích tương quan (e.g., Chi-merge: χ^2 -based discretization)
 - Supervised: use class information
 - Bottom-up merge: find the best neighboring intervals (those having similar distributions of classes, i.e., low χ^2 values) to merge
 - Merge performed recursively, until a predefined stopping condition

Tạo phân cấp khái niệm

- **Concept hierarchy** organizes concepts (i.e., attribute values) hierarchically and is usually associated with each dimension in a data warehouse
- Concept hierarchies facilitate <u>drilling and rolling</u> in data warehouses to view data in multiple granularity
- Concept hierarchy formation: Recursively reduce the data by collecting and replacing low level concepts (such as numeric values for *age*) by higher level concepts (such as *youth*, *adult*, or *senior*)
- Concept hierarchies can be explicitly specified by domain experts and/or data warehouse designers
- Concept hierarchy can be automatically formed for both numeric and nominal data. For numeric data, use discretization methods shown.

Tạo khái niệm phân cấp với dữ liệu định danh

- Đặc tả thứ tự một phần/toàn bộ các thuộc tính một cách rỏ ràng ở cấp lược đồ (scheme) bởi người dùng hoặc chuyên gia
 - *street* < *city* < *state* < *country*
- Đặc tả cấu trúc phân cấp cho một tập hợp các giá trị bằng cách nhóm dữ liệu rỏ ràng
 - {Urbana, Champaign, Chicago} < Illinois
- Đặc tả chỉ một phần đặc trưng
 - E.g., only *street* < *city*, not others
- Tự động tạo phân cấp dựa trên phân tích số giá trị khác nhau trên mỗi thuộc tính
 - E.g., for a set of attributes: {*street, city, state, country*}

Tự động tạo khái niệm phân cấp

- Một số phân cấp được tạo tự động dựa trên phân tích số các giá trị khác nhau trên mỗi đặc tính trong dữ liệu
 - The attribute with the most distinct values is placed at the lowest level of the hierarchy
 - Exceptions, e.g., weekday, month, quarter, year

Tổng kết

- Chất lượng dữ liệu? accuracy, completeness, consistency, timeliness, believability, interpretability
- Làm sạch dữ liệu: missing/noisy values, outliers
- Tích hợp dữ liệu từ nhiều nguồn khác nhau:
 - Entity identification problem
 - Remove redundancies
 - Detect inconsistencies
- Giảm dữ liệu
 - Dimensionality reduction
 - Numerosity reduction
 - Data compression
- Chuyển đổi và rời rạc hóa dữ liệu
 - Normalization
 - Concept hierarchy generation

Tham khảo/ References

- D. P. Ballou and G. K. Tayi. Enhancing data quality in data warehouse environments. Comm. of ACM, 42:73-78, 1999
- A. Bruce, D. Donoho, and H.-Y. Gao. Wavelet analysis. *IEEE Spectrum*, Oct 1996
- T. Dasu and T. Johnson. Exploratory Data Mining and Data Cleaning. John Wiley, 2003
- J. Devore and R. Peck. *Statistics: The Exploration and Analysis of Data*. Duxbury Press, 1997.
- H. Galhardas, D. Florescu, D. Shasha, E. Simon, and C.-A. Saita. Declarative data cleaning: Language, model, and algorithms. *VLDB'01*
- M. Hua and J. Pei. Cleaning disguised missing data: A heuristic approach. *KDD'07*
- H. V. Jagadish, et al., Special Issue on Data Reduction Techniques. Bulletin of the Technical Committee on Data Engineering, 20(4), Dec. 1997
- H. Liu and H. Motoda (eds.). Feature Extraction, Construction, and Selection: A Data Mining Perspective. Kluwer Academic, 1998
- J. E. Olson. *Data Quality: The Accuracy Dimension*. Morgan Kaufmann, 2003
- D. Pyle. Data Preparation for Data Mining. Morgan Kaufmann, 1999
- V. Raman and J. Hellerstein. Potters Wheel: An Interactive Framework for Data Cleaning and Transformation, VLDB'2001
- T. Redman. Data Quality: The Field Guide. Digital Press (Elsevier), 2001
- R. Wang, V. Storey, and C. Firth. A framework for analysis of data quality research. IEEE Trans. Knowledge and Data Engineering, 7:623-640, 1995