KECERDASAN BUATAN

Fitri Nuraeni, M.Kom

S-1 Teknik Informatika

Insitut Teknologi Garut

2024

AGENDA

Ol Kilas Balik Materi

O2 Kelompok Belajar

L7: Mahasiswa mampu menjelaskan metode *planning* pada kecedasan buatan (C2, A3, P3)

KILAS BALIK MATERI

L1 - L6

KILAS BALIK MATERI: L1-L6

LO	Sub-Capaian Pembelajaran Mata Kuliah (Sub-CPMK)
L1	Mahasiswa mampu menjelaskan definisi kecedasan buatan , serta menunjukan pemanfaatannya pada berbagai bidang (C2, A3)
L2	Mahasiswa mampu membedakan kinerja berbagai algoritma <i>searching</i> baik blind seacrh maupun heuristic search (C2, A1)
L3	Mahasiswa mampu menggunakan algoritma <i>searching</i> untuk menyelesaian masalah pencarian pada model graph dan tree dengan tepat (C3,A2,P3)
L4	Mahasiswa mampu menjelaskan aturan logika pada konsep reasoning (C2,A1)
L5	Mahasiswa mampu membedakan berbagai metode <i>reasoning</i> dalam perancangan sistem cerdas (C2,A2)
L6	Mahasiswa mampu menerapkan aturan logika dan teknik <i>reasoning</i> untuk menyelesaikan masalah sederhana secara logis dan sistematis (C3,A4,P3)

SUB-CPMK SELANJUTNYA: L7-L13

LO	Sub-Capaian Pembelajaran Mata Kuliah (Sub-CPMK)
L7	Mahasiswa mampu menjelaskan metode <i>planning</i> pada kecedasan buatan (C2, A3,P3)
L8	Mahasiswa mampu menjelaskan konsep <i>learning</i> pada kecerdasan buatan (C2,A1)
L9	Mahasiswa mampu menjelaskan berbagai algoritma metode <i>learning</i> pada perancangan sistem cerdas dengan tepat (C2,A2)
L10	Mahasiswa mampu menggunakan metode <i>learning</i> dalam menyelesaikan masalah dengan tepat (C3,A4,P3)
L11	Mahasiswa mampu menganalisis penerapan konsep kecerdasan buatan dari hasil penelitian yang sudah ada secara sistematis (C4,A3)
L12	Mahasiswa mampu mengevaluasi penerapan konsep kecerdasan buatan dari hasil penelitian yang sudah ada dengan berpikir kritis (C5,A4)
L13	Mahasiswa mampu merancang penerapan konsep kecerdasan buatan dalam bentuk proposal penelitian secara sistematis dan inovatif (C6, A5,P3)

KONSEP PLANNING

SUB-CPMK

L7:
Mahasiswa
mampu
menjelaskan
metode
planning
pada
kecedasan
buatan
(C2, A3, P3)

Ketepatan menerangkan metode planning pada kecedasan buatan

Ketepatan menerangkan penerapan metode planning pada suatu sistem cerdas

KONSEP "PLANNING" DALAM AI

- o "Plan", memiliki 4 definisi, yaitu:
 - o Ide atau metode yang telah dipikirkan secara detail sebelum menyelesaikan suatu pekerjaan
 - o Diagram atau peta detail tentang bagian-bagian penting suatu kta, Gedung, mesin, dsb
 - o Cara penyusunan suatu benda, contoh susunan tempat duduk
 - o Penyusunan keuangan sehingga seseorang bisa mendapatkan keuntungan
- o "Planning", didefinisikan sebagai aksi atau proses membuat plans untuk sesuatu.
- o "Planning" adalah suatu metode penyelesaian masalah dengan cara memecahkan masalah ke dalam sub-sub masalah yang lebih kecil, menyelesaikan sub-sub masalah satu demi satu, kemudian menggabungkan solusi-solusi dari sub-sub masalah tersebut menjadi sebuah solusi lengkap dengan tetap mengingat dan menangani interaksi yang terdapat pada sub-sub masalah tersebut.

IMPLEMENTASI PLANNING DALAM KECERDASAN BUATAN

o Link Video:

https://www.youtube.com/watch?v=6Gfl77mb9TQ

MASALAH DUNIA BLOK

- o Begini masalahnya:
 - o Terdapat meja tempat beberapa blok ditempatkan.
 - o Beberapa blok mungkin tertumpuk atau tidak ditumpuk di blok lain.
 - o Terdapat lengan robot untuk mengambil atau meletakkan balok.
 - Lengan robot hanya dapat memindahkan satu balok pada satu waktu, dan tidak boleh ada balok lain yang ditumpuk di atas balok yang akan digerakkan oleh lengan robot.
- o Tujuannya adalah mengubah konfigurasi blok dari **Kondisi Awal** ke **Kondisi Tujuan**, yang keduanya telah ditentukan dalam diagram di samping.
- o Terdapat rangkaian operator yang dapat mengubah kondisi awal ke kondisi tujuan disebut **Rencana Penyelesaian**

METODE PENYELESAIAN DUNIA BALOK

Metode *Planning* yang popular dan sudah pernah diuji pada Dunia Balok

- Goal Stack Planning
- Constrait Posting

Pemecahan masalah dengan menggunakan planning pada umumnya bersifat:

- Goal directed, yaitu pencarian solusi dilakukan dari goal-state sampai ke initial-state yang akan dicapai
- Dependency Directed Backtracking, ketika menemukan jalan buntu

Suatu sistem *planning* pada umumnya perlu memiliki kemampuan

- Memilih operator
- Mengaplikasikan operatorMendeteksi ketika suatu solusi telah tercapai
- Mendeteksi jalan-jalan buntu
- Mendeteksi ketika solusi yang hampir benar telah dicapai dan melakukan teknik khusus untuk membuat solusi tersebut menjadi benar

PENGAPLIKASIAN OPERATOR PADA PLANNING

Untuk menghindari pencatatan kondisi keseluruhan di setiap titik persimpangan dalam pencarian solusi, pengaplikasian operator memerlukan tiga daftar predikat untuk mendeskripsikan perubahan kondisi (**Daftar PAD**), yaitu:

Pre-condition

 Predikat-predikat yang harus bernilai benar sebelum pengaplikasian operator

Add

 Predikat-predikat yang bernilai benar setelah pengaplikasian suatu operator

Delete

 Predikat-predikat yang bernilai salah setelah pengaplikasian suatu operator

KARAKTERISTIK MASALAH DUNIA BALOK

Memiliki sebuah permukaan datar tempat menyimpan balok, umumnya disebut meja 2

Memiliki sejumlah balok kotak yang berukuran sama 3

Memiliki sebuah lengan robot yang dapat memanipulasi balok

PREDIKAT-PREDIKAT KONDISI BALOK

ON(A, B)

- Balok A menempel diatas Balok B
- $\forall x [\exists y \ ON(x, y)] \rightarrow \neg HOLDING(x) \land \neg HOLDING(y) \land \neg ON(y, x) \land [\neg \exists z \ ON(x, z) \lor ON(y, z)]$

ONTABLE(A)

- Balok A berada diatas permukaan meja
- $\forall x \ ONTABLE(x) \rightarrow \neg HOLDING(x) \land [\neg \exists y \ ON(x,y)]$

CLEAR(A)

- Tidak ada balok yang sedang menempel diatas Balok A
- $\forall x \ CLEAR(x) \rightarrow \neg \exists y \ ON(y, x)$

PREDIKAT-PREDIKAT UNTUK LENGAN ROBOT

HOLDING(A)

- Lengan robot sedang memegang balok A
- $\exists x \ HOLDING(x) \rightarrow \neg ARMEMPITY \land \neg ONTABLE(x) \land [\neg \exists y \ ON(x,y) \lor ON(y,x)]$

ARMEMPITY

- Lengan robot tidak sedang memegang balok
- $ARMEMPITY \rightarrow \neg \exists x \ HOLDING(x)$

CONTOH STATE

OPERATOR UNTUK LENGAN ROBOT

Operator	Hal yang dilakukan	P	A	D
STACK(A, B)	Meletakan balok A pada balok B	HOLDING(A) $\land CLEAR(B)$	ON(A, B) $\land ARMEMPTY$	HOLDING(A) $\land CLEAR(B)$
UNSTACK(A, B)	Mengangkat balok A yang menempel diatas balok B	ON(A, B) $\land CLEAR(A)$ $\land ARMEMPTY$	HOLDING(A) $\land CLEAR(B)$	ON(A, B) $\land ARMEMPTY$
PICKUP(A)	Mengangkat balok A dari permukaan meja	ONTABLE(A) $\land CLEAR(A)$ $\land ARMEMPTY$	HOLDING(A)	ONTABLE(A) $\land ARMEMPTY$
PUTDOWN(A)	Meletakan balok A di permukaan meja	HOLDING(A)	ONTABLE(A) $\land ARMEMPTY$	HOLDING(A)

GOAL STACK PLANNING (GSP)

KARAKTERISTIK GSP

- o Untuk menyelesaikan suatu masalah GSP menggunakan sebuah *stack* (tumpukan) untuk menampung keadaan-keadaan, baik *goal-state* maupun keadaan lainnya yang mungkin terjadi selama proses pencarian solusi, dan operator-operator yang telah diajukan untuk memenuhi keadaan-keadaan tersebut.
- o Algoritma GSP:
 - 1. Tempatkan seluruh kondisi *goal-state* pada *stack* paling bawah
 - 2. Masukan setiap kondisi *goal-state* yang belum tercapai ke dalam sebuah *stack*
 - 3. Loop
 - a) Keluarkan kondisi yang sudah tercapai dari dalam *stack*
 - b) Ganti kondisi yang belum tercapai dengan operator sesuai
 - c) Pindahkan operator yang bisa diaplikasikan ke dalam rencana penyelesaian
 - d) Cek apakah *current-state* sama dengan *goal-state*
 - *e) IF current-state = goal-state THEN sukses ENDIF*
 - 4. END Loop

CONTOH 1

Current State

• $onTable(A) \land onTable(B) \land on(C, D) \land onTable(D)$

STACK

• $on(A, B) \land on(B, C) \land$ $on(C, D) \land onTable(D)$

Current State

• $onTable(A) \land onTable(B) \land on(C,D) \land onTable(D)$

STACK

- on(A, B)
- on(B,C)
- $on(A, B) \land on(B, C) \land$ $on(C, D) \land onTable(D)$

C D

Current State

• $onTable(A) \land onTable(B) \land on(C, D) \land onTable(D)$

STACK

- onTable(A)
- clear(A)
- armEmpty
- $onTable(A) \land clear(A) \land armEmpty$
- pickUp(A)
- *clear(B)*
- $clear(B) \land holding(A)$
- stack(A,B)
- on(B,C)
- $on(A, B) \land on(B, C) \land on(C, D) \land onTable(D)$

Current State

• $onTable(A) \land onTable(B) \land on(C, D) \land onTable(D)$

STACK

- *clear*(*A*)
- armEmpty
- $onTable(A) \land clear(A) \land armEmpty$
- pickUp(A)
- *clear(B)*
- $clear(B) \land holding(A)$
- stack(A,B)
- *on*(*B*, *C*)
- $on(A, B) \land on(B, C) \land on(C, D) \land onTable(D)$

Current State

• $onTable(A) \land onTable(B) \land on(C,D) \land onTable(D)$

STACK

- armEmpty
- $onTable(A) \land clear(A) \land armEmpty$

- pickUp(A)
- *clear(B)*
- $clear(B) \land holding(A)$
- stack(A,B)
- on(B,C)
- $on(A,B) \land on(B,C) \land on(C,D) \land onTable(D)$

Current State

• $onTable(A) \land onTable(B) \land on(C,D) \land onTable(D)$

STACK

- $onTable(A) \land clear(A) \land armEmpty$
- pickUp(A)
- clear(B)
- $clear(B) \land holding(A)$
- stack(A,B)
- on(B,C)
- $on(A, B) \land on(B, C) \land on(C, D) \land onTable(D)$

Current State

• $onTable(B) \land on(C,D) \land onTable(D)$

STACK

- pickUp(A)
- *clear(B)*
- $clear(B) \land holding(A)$
- stack(A,B)
- on(B,C)
- $on(A, B) \land on(B, C) \land$ $on(C, D) \land onTable(D)$

Current State

• $holding(A) \land onTable(B) \land on(C, D) \land onTable(D)$

STACK

- *clear(B)*
- $clear(B) \land holding(A)$
- stack(A,B)
- on(B, C)
- $on(A, B) \land on(B, C) \land$ $on(C, D) \land onTable(D)$

Current State

• $holding(A) \land onTable(B) \land on(C, D) \land onTable(D)$

STACK

- *clear(B)*
- $clear(B) \land holding(A)$
- stack(A,B)
- on(B, C)
- $on(A, B) \land on(B, C) \land$ $on(C, D) \land onTable(D)$

Current State

• $holding(A) \land onTable(B) \land on(C, D) \land onTable(D)$

STACK

- $clear(B) \land holding(A)$
- stack(A,B)
- *on*(*B*, *C*)
- $on(A, B) \land on(B, C) \land$ $on(C, D) \land onTable(D)$

Current State

• $on(A, B) \land onTable(B) \land on(C, D) \land onTable(D)$

- stack(A,B)
- on(B,C)
- $on(A, B) \land on(B, C) \land$ $on(C, D) \land onTable(D)$

A C
B D

Current State

• $on(A, B) \land onTable(B) \land on(C, D) \land onTable(D)$

STACK

- on(B, C)
- $on(A, B) \land on(B, C) \land$ $on(C, D) \land onTable(D)$

A C

Current State

• $on(A, B) \land onTable(B) \land on(C, D) \land onTable(D)$

STACK

- holding(B)
- *clear(C)*
- $clear(C) \land holding(B)$
- stack(B,C)
- $on(A, B) \land on(B, C) \land$ $on(C, D) \land onTable(D)$

Current State

• $on(A, B) \land onTable(B) \land on(C, D) \land onTable(D)$

STACK

- onTable(B)
- clear(B)
- armEmpty
- $onTable(B) \land clear(B) \land armEmpty$
- pickUp(B)
- *clear(C)*
- $clear(C) \land holding(B)$
- stack(B,C)
- $on(A, B) \land on(B, C) \land on(C, D) \land onTable(D)$

Current State

• $on(A, B) \land onTable(B) \land on(C, D) \land onTable(D)$

STACK

- *clear(B)*
- armEmpty
- $onTable(B) \land clear(B) \land armEmpty$

- pickUp(B)
- *clear(C)*
- $clear(C) \land holding(B)$
- stack(B,C)
- $on(A,B) \land on(B,C) \land on(C,D) \land onTable(D)$

Current State

• $on(A, B) \land onTable(B) \land on(C, D) \land onTable(D)$

STACK

- on(A, B)
- clear(A)
- armEmpty
- $on(A, B) \land clear(A) \land armEmpty$
- unstack(A,B)
- armEmpty
- $onTable(B) \land clear(B) \land armEmpty$
- pickUp(B)
- clear(C)
- $clear(C) \land holding(B)$
- stack(B,C)
- $on(A, B) \land on(B, C) \land on(C, D) \land onTable(D)$

Current State

• $on(A, B) \land onTable(B) \land on(C, D) \land onTable(D)$

STACK

- $on(A, B) \land clear(A) \land armEmpty$
- unstack(A,B)
- armEmpty
- $onTable(B) \land clear(B) \land armEmpty$ on(B, C)
- pickUp(B)
- clear(C)
- $clear(C) \land holding(B)$
- stack(B,C)
- $on(A,B) \land on(B,C) \land on(C,D) \land onTable(D)$

Current State

• $holding(A) \land clear(B) \land onTable(B) \land on(C,D) \land onTable(D)$

STACK

- unstack(A,B)
- armEmpty
- $onTable(B) \land clear(B) \land armEmpty$
- pickUp(B)
- *clear(C)*
- $clear(C) \land holding(B)$
- stack(B,C)
- $on(A,B) \land on(B,C) \land on(C,D) \land onTable(D)$

on(B,C)

Current State

• $holding(A) \land clear(B) \land onTable(B) \land on(C,D) \land onTable(D)$

STACK

- armEmpty
- $onTable(B) \land clear(B) \land armEmpty$
- pickUp(B)
- *clear(C)*
- $clear(C) \land holding(B)$
- stack(B,C)
- $on(A, B) \land on(B, C) \land on(C, D) \land onTable(D)$

-on(B,C)

Current State

• $holding(A) \land clear(B) \land onTable(B) \land on(C,D) \land onTable(D)$

STACK

- armEmpty
- $onTable(B) \land clear(B) \land armEmpty$
- pickUp(B)
- *clear(C)*
- $clear(C) \land holding(B)$
- stack(B,C)
- $on(A, B) \land on(B, C) \land on(C, D) \land onTable(D)$

-on(B,C)

Current State

• $holding(A) \land clear(B) \land onTable(B) \land on(C,D) \land onTable(D)$

STACK

- holding(A)
- putDown(A)
- $onTable(B) \land clear(B) \land armEmpty$
- pickUp(B)
- *clear(C)*
- $clear(C) \land holding(B)$
- stack(B,C)
- $on(A,B) \land on(B,C) \land on(C,D) \land onTable(D)$

on(B,C)

Current State

• $holding(A) \land clear(B) \land onTable(B) \land on(C,D) \land onTable(D)$

STACK

- putDown(A)
- $onTable(B) \land clear(B) \land armEmpty$
- pickUp(B)
- *clear(C)*
- $clear(C) \land holding(B)$
- stack(B,C)
- $on(A, B) \land on(B, C) \land on(C, D) \land onTable(D)$

on(B,C)

Current State

• $onTable(A) \land armEmpty \land clear(B) \land onTable(B) \land on(C,D) \land onTable(D)$

STACK

- $onTable(B) \land clear(B) \land armEmpty$
- pickUp(B)
- *clear(C)*
- $clear(C) \land holding(B)$
- stack(B,C)
- $on(A, B) \land on(B, C) \land$ $on(C, D) \land onTable(D)$

on(B,C)

A

В

D

Current State

• $onTable(A) \land armEmpty \land clear(B) \land onTable(B) \land on(C,D) \land onTable(D)$

STACK

- pickUp(B)
- *clear(C)*
- $clear(C) \land holding(B)$

on(B,C)

- stack(B,C)
- $on(A, B) \land on(B, C) \land$ $on(C, D) \land onTable(D)$

______С В ______

Current State

• $onTable(A) \land holding(B) \land on(C,D) \land onTable(D)$

STACK

- *clear(C)*
- $clear(C) \land holding(B)$
- stack(B,C)
- $on(A, B) \land on(B, C) \land$ $on(C, D) \land onTable(D)$

-on(B,C)

Current State

• $onTable(A) \land holding(B) \land on(C, D) \land onTable(D)$

STACK

- $clear(C) \land holding(B)$
- stack(B,C)
- $on(A, B) \land on(B, C) \land$ $on(C, D) \land onTable(D)$

-on(B,C)

Current State

• $onTable(A) \land holding(B) \land on(C, D) \land onTable(D)$

STACK

- stack(B,C)
- $on(A, B) \land on(B, C) \land$ $on(C, D) \land onTable(D)$

B C D

Current State

• $onTable(A) \land on(B,C) \land on(C,D) \land onTable(D)$

STACK

• $on(A, B) \land on(B, C) \land$ $on(C, D) \land onTable(D)$

Current State

• $onTable(A) \land on(B,C) \land on(C,D) \land onTable(D)$

STACK

• $on(A, B) \land on(B, C) \land$ $on(C, D) \land onTable(D)$

Current State

• $onTable(A) \land on(B,C) \land on(C,D) \land onTable(D)$

STACK

- on(A, B)
- $on(A, B) \land on(B, C) \land$ $on(C, D) \land onTable(D)$

Current State

• $onTable(A) \land on(B,C) \land on(C,D) \land onTable(D)$

STACK

- holding(A)
- *clear(B)*
- $clear(B) \land holding(A)$
- *stack(A,B)*
- $on(A, B) \land on(B, C) \land$ $on(C, D) \land onTable(D)$

on(A, B)

Current State

• $onTable(A) \land on(B,C) \land on(C,D) \land onTable(D)$

STACK

- holding(A)
- *clear(B)*
- $clear(B) \land holding(A)$
- stack(A,B)
- $on(A, B) \land on(B, C) \land$ $on(C, D) \land onTable(D)$

on(A, B)

Current State

• $onTable(A) \land on(B,C) \land on(C,D) \land onTable(D)$

STACK

- onTable(A)
- clear(A)
- armEmpty
- $onTable(A) \land clear(A) \land armEmpty$

-on(A,B)

- pickUp(A)
- *clear(B)*
- $clear(B) \land holding(A)$
- stack(A,B)
- $on(A, B) \land on(B, C) \land on(C, D) \land onTable(D)$

Current State

• $onTable(A) \land on(B,C) \land on(C,D) \land onTable(D)$

STACK

- $onTable(A) \land clear(A) \land \neg$ armEmpty
- pickUp(A)
- *clear(B)*
- $clear(B) \land holding(A)$
- stack(A,B)
- $on(A, B) \land on(B, C) \land$ $on(C, D) \land onTable(D)$

con(A, B)

Current State

• $onTable(A) \land on(B,C) \land on(C,D) \land onTable(D)$

STACK

- pickUp(A)
- *clear(B)*
- $clear(B) \land holding(A)$
- stack(A,B)
- $on(A, B) \land on(B, C) \land$ $on(C, D) \land onTable(D)$

-on(A, B)

Current State

• $holding(A) \land on(B,C) \land on(C,D) \land onTable(D)$

STACK

- *clear(B)*
- $clear(B) \land holding(A)$
- stack(A,B)
- $on(A, B) \land on(B, C) \land$ $on(C, D) \land onTable(D)$

on(A, B)

Current State

• $holding(A) \land on(B,C) \land on(C,D) \land onTable(D)$

STACK

- *clear(B)*
- $clear(B) \land holding(A)$
- stack(A,B)
- $on(A, B) \land on(B, C) \land$ $on(C, D) \land onTable(D)$

on(A, B)

Current State

• $holding(A) \land on(B,C) \land on(C,D) \land onTable(D)$

STACK

- $clear(B) \land holding(A)$
- stack(A,B)
- $on(A, B) \land on(B, C) \land$ $on(C, D) \land onTable(D)$

-on(A, B)

Current State

• $holding(A) \land on(B,C) \land on(C,D) \land onTable(D)$

STACK

- *stack(A,B)*
- $on(A, B) \land on(B, C) \land$ $on(C, D) \land onTable(D)$

Current State

• $on(A) \land on(B,C) \land on(C,D) \land onTable(D)$

STACK

- *stack(A,B)*
- $on(A, B) \land on(B, C) \land$ $on(C, D) \land onTable(D)$

CONTOH MASALAH

 $ON(B,A) \land$ $ONTABLE(A) \land$ $ONTABLE(C) \land$ $ONTABLE(D) \land$ ARMEMPTY

 $ON(C,A) \land$ $ONTABLE(A) \land$ $ON(B,D) \land$ ONTABLE(D)

- o Stack
 - \circ $ON(C,A) \wedge ONTABLE(A) \wedge ON(B,D) \wedge ONTABLE(D)$

- o Current-State
 - \circ $ON(B,A) \wedge ONTABLE(A) \wedge$ $ONTABLE(C) \wedge ONTABLE(D) \wedge$ ARMEMPTY

- o Stack
 - $\circ ON(C,A)$
 - \circ ON(B,D)
 - \circ $ON(C,A) \wedge ONTABLE(A) \wedge ON(B,D) \wedge ONTABLE(D)$

- o Current-State
 - \circ ON(B,A) \wedge ONTABLE(A) \wedge ONTABLE(C) \wedge ONTABLE(D) \wedge ARMEMPTY

o Stack

memenuhi?

- $\circ ON(C,A)$
- \circ ON(B,D)
- \circ $ON(C,A) \wedge ONTABLE(A) \wedge ON(B,D) \wedge ONTABLE(D)$

→ o Current-State

 \circ ON(B,A) \wedge ONTABLE(A) \wedge ONTABLE(C) \wedge ONTABLE(D) \wedge ARMEMPTY

o Stack

memenuhi?X

- $\circ ON(C,A)$
- \circ ON(B,D)
- \circ $ON(C,A) \wedge ONTABLE(A) \wedge ON(B,D) \wedge ONTABLE(D)$

o Current-State

 \circ $ON(B,A) \wedge ONTABLE(A) \wedge$ $ONTABLE(C) \wedge ONTABLE(D) \wedge$ ARMEMPTY

- o Stack
 - $\circ ON(C,A)$
 - \circ ON(B, D)
 - \circ $ON(C,A) \wedge ONTABLE(A) \wedge ON(B,D) \wedge ONTABLE(D)$

- o Current-State
 - \circ $ON(B,A) \wedge ONTABLE(A) \wedge$ $ONTABLE(C) \wedge ONTABLE(D) \wedge$ ARMEMPTY

- o Stack
 - \circ *CLEAR*(*A*)
 - \circ *HOLDING(C)*
 - \circ CLEAR(A) \land HOLDING(C)
 - \circ STACK(C, A)
 - \circ ON(B,D)
 - \circ $ON(C,A) \wedge ONTABLE(A) \wedge ON(B,D) \wedge ONTABLE(D)$

- o Current-State
- $\bigcirc ON(B,A) \land ONTABLE(A) \land \\ ONTABLE(C) \land ONTABLE(D) \land \\ ON(C,A) \land ARMEMPTY$

o Stack

memenuhi?

→ ○ Current-State

- \circ *CLEAR*(A)
- \circ *HOLDING(C)*
- \circ CLEAR(A) \land HOLDING(C)
- \circ STACK(C, A)
- \circ ON(B,D)
- \circ $ON(C,A) \wedge ONTABLE(A) \wedge ON(B,D) \wedge ONTABLE(D)$

 \circ ON(B,A) \wedge ONTABLE(A) \wedge ONTABLE(C) \wedge ONTABLE(D) \wedge ARMEMPTY

o Stack

- \circ CLEAR(A)
- \circ *HOLDING(C)*
- \circ CLEAR(A) \land HOLDING(C)
- \circ STACK(C, A)
- \circ ON(B,D)
- \circ $ON(C,A) \wedge ONTABLE(A) \wedge ON(B,D) \wedge ONTABLE(D)$

 \circ ON(B,A) \wedge ONTABLE(A) \wedge ONTABLE(C) \wedge ONTABLE(D) \wedge ARMEMPTY

- o Stack
 - \circ ON(B,A)
 - \circ CLEAR(B)
 - o ARMEMPTY
 - \circ $ON(B,A) \wedge CLEAR(B) \wedge ARMEMPITY$
 - \circ *UNSTACK*(B, A)
 - \circ *HOLDING(C)*
 - \circ CLEAR(A) \land HOLDING(C)
 - \circ STACK(C, A)
 - $\circ ON(B,D)$
 - \circ $ON(C,A) \wedge ONTABLE(A) \wedge ON(B,D) \wedge ONTABLE(D)$

- o Current-State
- $\bigcirc ON(B,A) \land ONTABLE(A) \land \\ CLEAR(A) \bigcirc ONTABLE(C) \land ONTABLE(D) \land \\ ARMEMPTY$

- o Stack
 - \circ ON(B,A)
 - \circ CLEAR(B)
 - ARMEMPTY
 - \circ $ON(B,A) \wedge CLEAR(B) \wedge ARMEMPITY$
 - \circ **UNSTACK**(**B**, **A**)
 - \circ *HOLDING(C)*
 - \circ CLEAR(A) \land HOLDING(C)
 - \circ STACK(C, A)
 - $\circ ON(B,D)$
 - \circ $ON(C,A) \wedge ONTABLE(A) \wedge ON(B,D) \wedge ONTABLE(D)$

- o Current-State
 - \circ ON(B,A) \wedge ONTABLE(A) \wedge ONTABLE(C) \wedge ONTABLE(D) \wedge ARMEMPTY

- o Stack
 - \circ ON(B,A)
 - \circ CLEAR(B)
 - ARMEMPTY
 - \circ $ON(B,A) \wedge CLEAR(B) \wedge ARMEMPITY$
 - \circ *UNSTACK*(B, A)
 - \circ *HOLDING(C)*
 - \circ CLEAR(A) \land HOLDING(C)
 - \circ STACK(C, A)
 - $\circ ON(B,D)$
 - \circ $ON(C,A) \wedge ONTABLE(A) \wedge ON(B,D) \wedge ONTABLE(D)$

- o Current-State
 - \circ ONTABLE(A) \wedge ONTABLE(C) \wedge ONTABLE(D) \wedge HOLDING(B)

- o Stack
 - \circ *HOLDING(C)*
 - \circ CLEAR(A) \land HOLDING(C)
 - \circ STACK(C, A)
 - \circ ON(B,D)
 - \circ $ON(C,A) \wedge ONTABLE(A) \wedge ON(B,D) \wedge ONTABLE(D)$

- o Current-State
 - \circ ONTABLE(A) \wedge ONTABLE(C) \wedge ONTABLE(D) \wedge HOLDING(B)

- o Stack
 - \circ *HOLDING(C)*
 - \circ CLEAR(A) \land HOLDING(C)
 - \circ STACK(C, A)
 - \circ ON(B,D)
 - \circ $ON(C,A) \wedge ONTABLE(A) \wedge ON(B,D) \wedge ONTABLE(D)$

o Current-State

 \circ ONTABLE(A) \wedge ONTABLE(C) \wedge ONTABLE(D) \wedge HOLDING(B)

- o Stack
 - \circ ONTABLE(C)
 - \circ CLEAR(C)
 - o ARMEMPTY
 - \circ ONTABLE(C) \wedge CLEAR(C) \wedge ARMEMPTY
 - \circ *PICKUP(C)*
 - \circ CLEAR(A) \land HOLDING(C)
 - \circ STACK(C, A)
 - \circ ON(B,D)
 - \circ $ON(C,A) \wedge ONTABLE(A) \wedge ON(B,D) \wedge ONTABLE(D)$

- o Current-State
- $\circ ONTABLE(A) \wedge ONTABLE(C) \wedge \\ONTABLE(D) \wedge HOLDING(B)$ HOLDING(C)

- o Stack
 - \circ ONTABLE(C)
 - \circ CLEAR(C)
 - o ARMEMPTY
 - \circ ONTABLE(C) \wedge CLEAR(C) \wedge ARMEMPTY
 - \circ *PICKUP(C)*
 - \circ CLEAR(A) \land HOLDING(C)
 - \circ STACK(C, A)
 - \circ ON(B,D)
 - \circ $ON(C,A) \wedge ONTABLE(A) \wedge ON(B,D) \wedge ONTABLE(D)$

- o Current-State
 - \circ ONTABLE(A) \wedge ONTABLE(C) \wedge ONTABLE(D) \wedge HOLDING(B)

- o Stack
 - \circ CLEAR(D)
 - \circ *HOLDING*(*B*)
 - \circ CLEAR(B) \wedge HOLDING(B)
 - \circ STACK(B, D)
 - \circ ONTABLE(C) \wedge CLEAR(C) \wedge ARMEMPTY
 - \circ **PICKUP(C)**
 - \circ CLEAR(A) \wedge HOLDING(C)
 - \circ STACK(C, A)
 - $\circ ON(B,D)$
 - \circ $ON(C,A) \wedge ONTABLE(A) \wedge ON(B,D) \wedge ONTABLE(D)$

- o Current-State
 - \circ ONTABLE(A) \wedge ONTABLE(C) \wedge ONTABLE(D) \wedge HOLDING(B)

- o Stack
 - \circ CLEAR(D)
 - \circ *HOLDING*(*B*)
 - \circ CLEAR(B) \wedge HOLDING(B)
 - \circ STACK(B, D)
 - \circ ONTABLE(C) \wedge CLEAR(C) \wedge ARMEMPTY
 - \circ **PICKUP(C)**
 - \circ CLEAR(A) \wedge HOLDING(C)
 - \circ STACK(C, A)
 - \circ ON(B,D)
 - \circ $ON(C,A) \wedge ONTABLE(A) \wedge ON(B,D) \wedge ONTABLE(D)$

- o Current-State
 - \circ ONTABLE(A) \wedge ONTABLE(C) \wedge ONTABLE(D) \wedge HOLDING(B)

- o Stack
 - \circ *HOLDING*(*B*)
 - \circ CLEAR(B) \wedge HOLDING(B)
 - \circ STACK(B, D)
 - \circ ONTABLE(C) \wedge CLEAR(C) \wedge ARMEMPTY
 - \circ **PICKUP(C)**
 - \circ CLEAR(A) \land HOLDING(C)
 - \circ STACK(C, A)
 - \circ ON(B,D)
 - \circ $ON(C,A) \wedge ONTABLE(A) \wedge ON(B,D) \wedge ONTABLE(D)$

- o Current-State
 - \circ ONTABLE(A) \wedge ONTABLE(C) \wedge ONTABLE(D) \wedge HOLDING(B)

- o Stack
 - \circ CLEAR(B) \wedge HOLDING(B)
 - \circ STACK(B, D)
 - \circ ONTABLE(C) \wedge CLEAR(C) \wedge ARMEMPTY
 - \circ **PICKUP(C)**
 - \circ CLEAR(A) \land HOLDING(C)
 - \circ STACK(C, A)
 - \circ ON(B,D)
 - \circ $ON(C,A) \wedge ONTABLE(A) \wedge ON(B,D) \wedge ONTABLE(D)$

- o Current-State
 - \circ ONTABLE(A) \wedge ONTABLE(C) \wedge ONTABLE(D) \wedge HOLDING(B)

- o Stack
 - \circ STACK(B, D)
 - \circ ONTABLE(C) \wedge CLEAR(C) \wedge ARMEMPTY
 - \circ **PICKUP(C)**
 - \circ CLEAR(A) \wedge HOLDING(C)
 - \circ STACK(C, A)
 - \circ ON(B,D)
 - \circ $ON(C,A) \wedge ONTABLE(A) \wedge ON(B,D) \wedge ONTABLE(D)$

- o Current-State
 - \circ ONTABLE(A) \wedge ONTABLE(C) \wedge ONTABLE(D) \wedge ON(B, D)

- o Stack
 - \circ ONTABLE(C) \wedge CLEAR(C) \wedge ARMEMPTY
 - \circ *PICKUP(C)*
 - \circ CLEAR(A) \wedge HOLDING(C)
 - \circ STACK(C, A)
 - $\circ ON(B,D)$
 - \circ $ON(C,A) \wedge ONTABLE(A) \wedge ON(B,D) \wedge ONTABLE(D)$

- o Current-State
 - \circ ONTABLE(A) \wedge ONTABLE(C) \wedge ONTABLE(D) \wedge ON(B, D)

- o Stack
 - \circ **PICKUP(C)**
 - \circ CLEAR(A) \land HOLDING(C)
 - \circ STACK(C, A)
 - \circ ON(B,D)
 - \circ $ON(C,A) \wedge ONTABLE(A) \wedge ON(B,D) \wedge ONTABLE(D)$

- o Current-State
 - \circ ONTABLE(A) \wedge ONTABLE(C) \wedge ONTABLE(D) \wedge ON(B, D)

- o Stack
 - \circ CLEAR(A) \land HOLDING(C)
 - \circ STACK(C, A)
 - \circ ON(B,D)
 - \circ $ON(C,A) \wedge ONTABLE(A) \wedge ON(B,D) \wedge ONTABLE(D)$

- o Current-State
 - \circ ONTABLE(A) \wedge HOLDING(C) \wedge ONTABLE(D) \wedge ON(B, D)

- o Stack
 - \circ CLEAR(A) \land HOLDING(C)
 - \circ STACK(C, A)
 - \circ ON(B,D)
 - \circ $ON(C,A) \wedge ONTABLE(A) \wedge ON(B,D) \wedge ONTABLE(D)$

- o Current-State
 - \circ ONTABLE(A) \wedge HOLDING(C) \wedge ONTABLE(D) \wedge ON(B, D)

- o Stack
 - \circ STACK(C, A)
 - \circ ON(B,D)
 - \circ $ON(C,A) \wedge ONTABLE(A) \wedge ON(B,D) \wedge ONTABLE(D)$

- o Current-State
 - \circ ONTABLE(A) \wedge HOLDING(C) \wedge ONTABLE(D) \wedge ON(B, D)

- o Stack
 - \circ ON(B,D)
 - \circ $ON(C,A) \wedge ONTABLE(A) \wedge ON(B,D) \wedge ONTABLE(D)$

- o Current-State
 - \circ ONTABLE(A) \wedge ON(C, A) \wedge ONTABLE(D) \wedge ON(B, D)

- o Stack
 - \circ ON(B,D)
 - \circ $ON(C,A) \wedge ONTABLE(A) \wedge ON(B,D) \wedge ONTABLE(D)$

- o Current-State
 - \circ ONTABLE(A) \wedge ON(C,A) \wedge ONTABLE(D) \wedge ON(B,D)

- o Stack
 - \circ $ON(C,A) \wedge ONTABLE(A) \wedge ON(B,D) \wedge ONTABLE(D)$

- o Current-State
 - \circ ONTABLE(A) \wedge ON(C,A) \wedge ONTABLE(D) \wedge ON(B,D)

- o Stack
 - \circ $ON(C,A) \wedge ONTABLE(A) \wedge ON(B,D) \wedge ONTABLE(D)$

- o Current-State
 - \circ ONTABLE(A) \wedge ON(C,A) \wedge ONTABLE(D) \wedge ON(B,D)

1. UNSTACK(B,A)

2.

- 1. UNSTACK(B,A)
- 2. STACK(B, D)

4/26/2023

- 1. UNSTACK(B,A)
- 2. STACK(B, D)
- 3. PICKUP(C)

- 1. UNSTACK(B,A)
- 2. STACK(B, D)
- 3. PICKUP(C)
- 4. STACK(C, A)

DISKUSI KELOMPOK

ce

DISKUSI KELOMPOK

- o Carilah materi, diskusikan dan susunlah jawaban untuk pertanyaan berikut:
 - 1. Dalam banyak kasus, mengapa *Goal-Stack-Planning* (GSP) menghasilkan solusi yang efisiensinya lebih rendah dibandingkan solusi yang dihasilkan *Constraint-Posting* (CP)?
 - 2. Mengapa metode CP disebut juga sebagai non-linear planning?
 - 3. Pada banyak masalah, metode CP bisa menghasilkan solusi yang lebih efisien daripada GSP. Tetapi dari segi pemrogramannya CP lebih sulit diimplementasikan. Mengapa demikian?
 - 4. Untuk kasus masalah-1 pada pembahasan sebelumnya, bagaimanakah langkah penyelesaian jika menggunakan metode CP?

TUGAS 07

ce

s.d. 17 Mei 2024 Pkl 23.30 WIB

IKUTI INTRUKSI DIBAWAH INI:

- o Pastikan anda telah mempelajari pokok bahasan L7, kemudian selesaikan soal Diskusi Kelompok pada slide materi ini.
- o Hasil pembelajaran susun dalam sebuah laporan yang memuat data:
 - o Nama, kelas, sumber referensi, dan uraian hasil diskusi kelompok, simpan dalam bentuk word/ pdf;
 - o Beri nama file: Tugas07_Kelas_NIM.
- o Submit file laporan ke LMS.

L8: KONSEP LEARNING

