How to give a talk?

Florian Rabe

University Erlangen-Nuremberg

2019

The following presents several versions of the same slide from one of my talks. Think about how the formating (but not the content) change between slides in a way that improves the slide.

Example: Final Preparation of a Slide

MathML vs. TPTP: Logical Similarities

If we abstract from

- concrete syntax
- intended purpose
- user community
- ► tool support

the languages are quite similar:

 MathML

- MathML objects: constants, variables, application, arbitrary binding
- ▶ all operators introduced/specified in content dictionaries

- ▶ TPTP formulas: constants, variables, application, built-in binders $\forall \exists \lambda \Pi \Sigma$
 - logic-related operators built-in, specified in various language references no fixed type systems, no fixed calculus
 - ▶ other operators introduced/specified in TPTP files

MathML vs. TPTP: Logical Similarities

If we abstract from

- concrete syntax
- intended purpose
- user community
- ▶ tool support

the languages are quite similar:

MathML

- ▶ MathML objects: constants, variables, application, arbitrary binding
- ▶ all operators introduced/specified in content dictionaries

- ▶ TPTP formulas: constants, variables, application, built-in binders $\forall \exists \lambda \Pi \Sigma$
- ► logic-related operators built-in, specified in various language references no fixed type systems, no fixed calculus
- other operators introduced/specified in TPTP files

MathML vs. TPTP: Logical Similarities

If we abstract from

- concrete syntax
- intended purpose
- user community
- tool support

the languages are quite similar:

MathML

- constants, variables, application, arbitrary binding
- all operators introduced/specified in content dictionaries

- ightharpoonup constants, variables, application, built-in binders $\forall \exists \lambda \Pi \Sigma$
- most operators introduced/specified in TPTP files
- built-in logic-related operators, specified in various language references
 no fixed type systems, no fixed calculus

MathML vs. TPTP: Logical Similarities

If we abstract from

- concrete syntax
- intended purpose
- user community
- tool support

the languages are quite similar:

MathML

- constants, variables, application, arbitrary binding
- all operators introduced/specified in content dictionaries

- ► constant, variables, application, built-in binders $\forall \exists \lambda \Pi \Sigma$
- most operators introduced/specified in TPTP files
- built-in logic-related operators, specified in various language references no fixed type systems, no fixed calculus

```
: Example: Final Preparation of a Slide
```

MathML vs. TPTP: Logical Similarities

If we abstract from

- concrete syntax
- intended purpose
- user community
- ► tool support

the languages are quite similar:

MathML

- constants, variables, application, arbitrary binding
- all operators introduced/specified in content dictionaries

- ► constant, variables, application, built-in binders $\forall \exists \lambda \Pi \Sigma$
 - most operators introduced/specified in TPTP files
 - built-in logic-related operators
 - semantics left open no fixed type systems, no fixed calculus
 - ▶ specified in various language references fof, tff, thf, thf1, . . .

MathML vs. TPTP: Logical Similarities

Languages are quite similar if we abstract from

concrete syntax

user community

intended purpose

tool support

MathML

- constants, variables, application, arbitrary binding
- all operators introduced/specified in content dictionaries

- **>** constant, variables, application, built-in binders $\forall \exists \lambda \Pi \Sigma$
- most operators introduced/specified in TPTP files
- built-in logic-related operators
 - ► semantics left open no fixed type systems, no fixed calculus
 - ► various dialects fof, tff, thf, thf1, ...