Travail pratique nº 1

Traitements élémentaires dans le domaine spatial

Instructions

- Les travaux pratiques peuvent être effectués seul ou par équipe de deux *maximum*. La composition de chaque équipe doit être indiquée au professeur au plus tard lors de la séance.
- Le compte rendu doit comporter une réponse concise mais complète à chacune des questions, accompagnée au besoin des courbes, figures et images appropriées.
- Le compte rendu peut prendre deux formes : soit un fichier pdf accompagné des scripts et fonctions Matlab que vous avez développés, soit un document (pdf ou html) généré à l'aide des fonctionnalités de publication de Matlab (menu "File / Publish" de l'éditeur Matlab). Dans tous les cas, l'ensemble des fichiers doit être placé dans une unique archive zip.
- Le compte rendu doit être remis au plus tard 7 jours après la séance en utilisant l'outil approprié disponible sur le site web du cours.
- Le travail doit être remis par un seul des membres du groupe. Si tel n'est pas le cas, la version la plus récente du travail remis est prise en compte.

1 Introduction

L'objet de ce travail pratique est de mettre en pratique certains des traitements élémentaires dans le domaine spatial qui ont été présentés en cours, tout en permettant une familiarisation avec Matlab et sa boîte à outils de traitement d'images. Trois points seront abordés : les transformations géométriques; le débruitage par filtrage dans le domaine spatial; l'amélioration d'images par manipulation d'histogramme et masque flou.

Les fonctions Matlab et les données à utiliser pour effectuer ce travail pratique se trouvent dans l'archive TP1.zip disponible sur le site web du cours.

2 Transformations géométriques

L'interpolation est un élément central de toute transformation géométrique d'image. L'objet de cette question est de mettre en œuvre une forme élémentaire d'interpolation et de l'utiliser dans une transformation géométrique particulièrement simple : le changement d'échelle d'une image.

2.1 Fonction de changement d'échelle

Développez une fonction Matlab définie comme suit :

```
function ims = mae_ppv(im, sc)
%
% Fonction effectuant le changement d'échelle de l'image im selon le
% facteur sc, interpolation par plus proche voisin.
%
% Paramètres d'entrée :
% im : image (niveaux de gris) d'un type reconnu par Matlab. Tableau 2D
% sc : paramètre de changement d'échelle. Réel strictement positif
%
% Paramètre de sortie :
% ims : image à la nouvelle échelle, de même type que im
%
```

Indiquez précisément :

- la manière dont vous définissez les coordonnées du centre de chaque pixel d'une image;
- chacune des étapes vous permettant de passer de l'image im à l'image ims

Remarque – Dans la fonction mae_ppv que vous développerez, vous ne devez pas utiliser les fonctions d'interpolation de Matlab. Par contre, vous pouvez vous inspirer de la fonction mae_bil.

2.2 Effet de l'interpolation

Pour mettre en évidence l'effet de l'interpolation, utilisez la fonction que vous avez développée pour changer l'échelle de l'image Barbara.tif d'un facteur inférieur à un, puis pour la ramener à son échelle initiale. Effectuez les mêmes opération avec la fonction mae_bil de l'archive TP1.zip, qui utilise une interpolation bilinéaire. Qu'observez-vous?

3 Débruitage par filtrage spatial

Le fichier IRM_genou.tif de l'archive TP1.zip contient l'image d'un genou obtenue en imagerie par résonance magnétique (IRM). Cette image est dégradée par un bruit relativement important. Le but de cette question est de mettre en œuvre et de comparer plusieurs filtres spatiaux, linéaires ou non.

Développez et mettez en œuvre les filtres suivants :

- 1. moyennage simple sur un masque carré de côté 3, 5 ou 7 pixels;
- 2. moyennage pondéré sur un masque carré de côté 3, 5 ou 7 pixels;
- 3. filtrage médian sur un masque carré de côté 3, 5 ou 7 pixels.

L'image filtrée doit être de même type et avoir la même taille que l'image de départ.

Comparez empiriquement les résultats, en vous basant notamment sur le bruit résiduel et la netteté des contours des images filtrées. Vous pouvez au besoin vous appuyer sur leur histogramme.

4 Amélioration d'images

Le fichier Lune.tif contient une image de la lune de médiocre qualité, tant du point de vue de la distribution des niveaux de gris que de la netteté. Le but de cette question est donc d'appliquer une succession de traitements pour améliorer la qualité de cette image.

4.1 Transformations portant sur l'intensité

En vous basant sur l'histogramme, effectuez une ou plusieurs transformations portant sur l'intensité de l'image pour en améliorer le contraste et l'aspect visuel.

Note: il n'est pas conseillé de procéder à l'égalisation de l'histogramme.

4.2 Affinage de l'image

Appliquez à l'image obtenue à la question 4.1 un rehaussement par masquage flou généralisé. Faites varier la taille du filtre adoucisseur et le coefficient de rehaussement. Qu'observez vous?

4.3 Égalisation d'histogramme

Appliquez une égalisation d'histogramme à une image visuellement satisfaisante obtenue à la question 4.2. Qu'observez-vous? Expliquez.

A Quelques fonctions Matlab utiles pour la manipulation d'images

Lecture – écriture	
imfinfo	Information about graphics file
imread	Read image from graphics file
imwrite	Write image to graphics file
Conversion entre types d'images	
im2bw	Convert image to binary image, based on threshold
im2double	Convert image to double precision
im2int16	Convert image to 16-bit signed integers
im2single	Convert image to single precision
im2uint16	Convert image to 16-bit unsigned integers
im2uint8	Convert image to 8-bit unsigned integers
mat2gray	Convert matrix to grayscale image
Affichage d'images et de leurs propriétés	
imshow	Display image
imageinfo	Image Information tool
impixelinfo	Pixel Information tool
imhist	Display histogram of image data
Transformations géométriques	
padarray	Pad array
imtransform	Apply 2-D spatial transformation to image
maket form	Create spatial transformation structure (TFORM)
Transformations portant sur l'intensité	
histeq	Enhance contrast using histogram equalization
medfilt2	2-D median filtering
conv2	2-D convolution
filter2	2-D linear filtering