Ukázka možných písemkových příkladů — Algebra I (2019/2020)

Všechny odpovědi musí být řádně zdůvodněny!

- 1. Pro algebru $\mathcal{A} = A(\alpha_i; i \in I)$ definujte pojem kongruence na \mathcal{A} . Uvažujme symetrickou grupu $S_3(\circ)$ a označme H její podgrupu generovanou transpozicí (1 2). Je rmod H kongruence grupy $S_3(\circ)$?
- **2.** Nechť K je konečné těleso o 16 prvcích a L je konečné těleso o 8 prvcích. Existuje prostý okruhový homomorfismus $\psi:L\to K$?
- **3.** Mějme polynomy $p=x^4-10x^2+9$ a $q=x^2+x-6$. Víme, že ideál $p\mathbb{R}[x]+q\mathbb{R}[x]$ je hlavní ideál okruhu $\mathbb{R}[x]$. Najděte $f\in\mathbb{R}[x]$ takový, že $p\mathbb{R}[x]+q\mathbb{R}[x]=f\mathbb{R}[x]$. (Připomeňme, že pro ideály I,J je $I+J=\{i+j;\ i\in I,j\in J\}$.)
- **4.** Zformulujte a dokažte Lagrangeovu větu pro grupy. (Pomocná tvrzení, která užíváte, pouze zformulujte bez důkazu.)
- **5.** Ukažte, že pro okruh $R(+,-,0,\cdot,1)$, kde platí $(\forall a \in R) \ a \cdot a = a$, je již nutně a = -a pro každé $a \in R$.
- **6.** Spočtěte poslední dvě cifry čísla $37^{38^{39}}$. Nápověda: ve vhodné chvíli může pomoci spočítat zbytky po dělení 20, resp. 25.