

스마트교통 빅데이터 분석

VDS 데이터 분석을 위한 딥러닝 모델 실습

VDS 데이터 분석을 위한 딥러닝 모델 실습

LAB 04

₩ 교통 데이터 가저오기 VDS

```
import pandas as pd
[4] from pandas import datetime
def parser(x):
         return datetime.strptime(x, '%Y-%m-%d %H:%M')
[6] df = pd.read_csv('./daejeon_vds16.csv', date_parser=parser)
[7] df.head()
               Date ToVol SmVol MeVol LaVol Speed Occ.Rate
      0 2017-04-02 0:00 43 34
                            9 0 50.3
                                          1.90
```

1 2017-04-02 0:05 45 32 13 0 58.9

1.84

df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 8064 entries, 0 to 8063 Data columns (total 7 columns): # Non-Null Count Dtype Column Date 8064 non-null object 8064 non-null int64 ToVol SmVol 8064 non-null int64 MeVol 8064 non-null int64 LaVol 8064 non-null int64 Speed 8064 non-null float64 Occ.Rate 8064 non-null float64 dtypes: float64(2), int64(4), object(1) memory usage: 441.1+ KB

df.describe()

	ToVol	SmVol	MeVol	LaVol	Speed	Occ.Rate	
count	8064.000000	8064.000000	8064.000000	8064.000000	8064.000000	8064.000000	
mean	110.459945	79.353299	29.948537	1.158110	49.327431	6.166941	
std	63.954451	46.802106	19.081136	1.530192	7.921856	6.739946	
min	6.000000	2.000000	0.000000	0.000000	9.100000	0.230000	
25%	50.000000	35.000000	13.000000	0.000000	44.900000	2.140000	
50%	122.000000	87.000000	29.000000	1.000000	48.500000	5.550000	
75 %	155.000000	111.000000	44.000000	2.000000	54.200000	7.290000	
max	338.000000	250.000000	145.000000	16.000000	87.800000	82.100000	


```
[12] def get_score(v):
    if v < 20:
        score = 'Jam'
    elif v < 40:
        score = 'Slow'
    else :
        score = 'Normal'
    return score
</pre>
```

df["label"] = df["Speed"].apply(lambda v: get_score(v))
df

₽	Date		ToVol SmVol	MeVol LaVol	Speed	Occ.Rate	label	1		
	0	2017-04-02 0:00	43	34	9	0	50.3	1.90	Normal	
	1	2017-04-02 0:05	45	32	13	0	58.9	1 84	Normal	

** 라벨을 위해 'label'의 텍스트는 범주형 혹은 숫자로 인코딩 해야한다

```
[] df['label'].unique()
array(['Normal', 'Slow', 'Jam'], dtype=object)

[] #feature_cols = ['ToVol', 'SmVol', 'Speed', 'Occ.Rate']
    #feature_cols = ['ToVol', 'SmVol', 'LaVol', 'MeVol']
    feature_cols = ['ToVol', 'Occ.Rate']
    target_col = 'label'
    X = df[feature_cols]
    y = df[target_col]
```


₽		ToVol	Occ.Rate	1
	0	43	1.90	
	1	45	1.84	
	2	46	1.87	
	3	45	1.72	
	4	27	1.12	

[] y.head()

- 0 Normal
 1 Normal
- 2 Normal
- 3 Normal
- 4 Normal

Name: label, dtype: object

2) 출력용 라벨을 머신러닝 텍스트를 숫자로 바꾸자

```
class_dic = {'Jam':0, 'Slow':1, 'Normal':2}
y_ohc = y.apply(lambda z: class_dic[z])
```

```
[] y_ohc.head()
```

```
0 2
1 2
2 2
3 2
4 2
```

Name: label, dtype: int64


```
[22] from sklearn.model_selection import train_test_split
    X_train, X_test, y_train, y_test = train_test_split(X, y_ohc,
                                test_size=0.20, random_state=30)
```

```
[23] print(X_train.shape, y_train.shape)
    print(X_test.shape, y_test.shape)
```

```
(6451, 2) (6451,)
(1613, 2) (1613,)
```

```
[24] from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()

X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
```

- [25] from sklearn.model_selection import train_test_split

```
[27] print(X_train.shape, y_train.shape)
    print(X_test.shape, y_test.shape)
```

(6451, 2) (6451,) (1613, 2) (1613,) [35] X_train.head(5)

	ToVol	Occ.Rate	7
1503	58	2.96	
6340	20	1.09	
6164	85	3.56	
4215	152	6.33	
3404	121	5.97	

```
import tensorflow as tf
from tensorflow import keras

from tensorflow.keras import Sequential, optimizers
from tensorflow.keras.layers import Flatten, Dense, Softmax
```

```
model = keras.Sequential([
    keras.layers.Dense(64, activation = 'relu', input_shape=[2]),
    keras.layers.Dense(64, activation = 'relu'),
    keras.layers.Dense(32, activation = 'relu'),
    keras.layers.Dense(3, activation = 'softmax')
])
```


[37]

model.summary()

Model: "sequential"

Layer (type)	Output	Shape	Param #
dense (Dense)	(None,	64)	192
dense_1 (Dense)	(None,	64)	4160
dense_2 (Dense)	(None,	32)	2080
dense_3 (Dense)	(None,	3)	99

Total params: 6,531 Trainable params: 6,531 Non-trainable params: 0

분류 문제는 분류의 정확도를 봐야하며, 회귀 문제는 오차(비용함수)로 'loss'를 설정한다.

```
51/51 - 0s - loss: 0.1058 - accuracy: 0.9609 - val_loss: 0.0954 - val_accuracy: 0.9659 - 121ms/epoch - 2ms/step Epoch 65/100  
51/51 - 0s - loss: 0.0956 - accuracy: 0.9650 - val_loss: 0.0984 - val_accuracy: 0.9634 - 116ms/epoch - 2ms/step Epoch 66/100
```


- model.evaluate(X_test, y_test)
- [0.09600767493247986, 0.9634221792221069]
- [33] history.history.keys()

dict_keys(['loss', 'accuracy', 'val_loss', 'val_accuracy'])

6) DNN 딥러닝 모델을 이용한 VDS 데이터 분석

Model: "sequential"

Layer (type)	Output Shape	Param #
dense (Dense)	(None, 64)	192
dense_1 (Dense)	(None, 64)	4160
dense_2 (Dense)	(None, 32)	2080
dense_3 (Dense)	(None, 3)	99
=========	==========	========

Total params: 6,531

Trainable params: 6,531 Non-trainable params: 0

```
[43] import numpy as np
```

[44] acc_dnn = history.history['accuracy'][np.argmin(history.history['loss'])]
 print('The accuracy of the Deep Learning is:', acc_dnn)

The accuracy of the Deep Learning is: 0.965741753578186

훈련과정에서 loss 함수 수렴 정도 확인

plt.plot(history.history['loss'])

[<matplotlib.lines.Line2D at 0x7fa59ada6f50>]

훈련과정에서 accuracy 수렴 정도 확인

6) DNN 딥러닝 모델을 이용한 VDS 데이터 분석


```
%matplotlib inline
import matplotlib.pyplot as plt
fig, loss_ax = plt.subplots()
acc_ax = loss_ax.twinx()
loss_ax.plot(history.history['loss'],'y',label='train loss')
loss_ax.plot(history.history['val_loss'],'r',label='val loss')
acc_ax.plot(history.history['accuracy'],'b',label='train acc')
acc_ax.plot(history.history['val_accuracy'],'g',label='val acc')
loss_ax.set_xlabel('epoch')
loss_ax.set_ylabel('loss')
acc_ax.set_ylabel('accuracy')
loss_ax.legend(loc='center right')
acc_ax.legend(loc='center')
plt.show()
```

6) DNN 딥러닝 모델을 이용한 VDS 데이터 분석

Out [67]:

		Model	Score
	5	Deep Learning	0.969927
	1	Support Vector Machines	0.967142
3	3	K-Nearest Neighbours	0.967142
	2	Random Forest	0.961562
	4	Decision Tree	0.961562
	0	Logistic Regression	0.960322

딥러닝 기초

선형회귀 소개 및 실습

회귀의 목적합수로는 무엇을 사용하는가?

회귀(Regression) 소개(1)

• 회귀의 역사

- ✔ 영국의 통계학자 갈톤(Galton)의 유전적 특성중에 부모와 자식의 키 관계
- ✔ "사람의 키는 평균 키로 회귀(Regression)하려는 경향을 가진다는 자연의 법칙이 있다"
- ✓ 회귀 분석은 데이터 값이 평균과 같은 일정한 값으로 돌아가려는 경향을 이용한 통계학 기법

• 지도학습은 2가지 유형으로 나눔

- ✓ 회귀는 연속적인 숫자 값
- ✔ 분류는 예측값이 카테고리와 같은 이산형 클래스 값

• 선형회귀

- ✔ 실제 값과 예측 값의 차이를 최소화하는 직선형 회귀선을 최적화하는 방식
- ✔ 단순 선형회귀는 1개의 독립변수, 1개의 종속변수.
- ✓ 예) 주택 가격이 주택의 크기로만 결정된다고 해보면,

Sir Francis Galton (1822 ~ 1911)

• 대부분 알고리즘은 블랙박스처럼 사용 가능, 하지만, 기본적인 모델이 작동하는 방식을 이해해야 함

• 단순 선형회귀를 통한 회귀의 이해 : 단순 선형회귀는 1개의 독립변수, 1개의 종속변수

최적의 회귀 모델은 전체 데이터의 잔차(오차) 합이 최소가 되는 모델을 만드는 것임!

• 경사 하강법 (Gradient Descent)

학습률

$$w = w - \eta \sum_{i=1}^{N} \sum_{i=1}^{N} (\text{real}_i - \text{pred}_i)$$
্ তান্তি চিন্তা যা কিন্তু চিন্তা যা কিন্তা যা কিন্তু চিন্তা যা

• 로컬미니멈의 위험

- ✔ 로지스틱 회귀 또한 경사 하강법을 사용하여 가중치를 찾아내지만, 비용 함수로는 평균 제곱 오차를 사용하지 않습니다.
- ✔ 이유는 시그모이드 함수에 비용 함수를 평균 제곱 오차로 하여 그래프를 그리면 다음과 비슷한 형태가 되기 때문입니다.

- 어떤 학생의 공부 시간에 따라서 얻은 점수 데이터
- 예측을 위한 선형 가설을 세우자

$$H(x) = Wx + b$$

hours(x)	score(y)
2	25
3	50
4	42
5	61

• 옵티마이저(Optimizer) 또는 최적화 알고리즘

✔ 머신 러닝 학습은 결국 비용 함수를 최소화하는 가중치, 편향을 찾기 위한 작업을 수행

$$w_{\text{updated}} \approx w - \alpha \cdot \frac{\partial \text{cost}}{\partial w}$$

$$W, b \rightarrow minimize \ cost(W, b)$$

선형회귀 실습

Lab1: 케라스로 구현하는 선형 회귀

- 케라스로 모델을 만드는 기본적인 형식
- model = keras.models.Sequential()
 - ✔ Seauential로 모델을 이라는 이름을 만들고
- model.add(keras.layers.Dense(1, input_dim=1))
 - ✔ add를 통해서 필요한 사항을 추가해 나간다.
 - ✓ 첫 인자 1은 출력의 차원
 - ✓ 두 번째 인자 input_dim은 입력의 차원을 정의

```
[2] import tensorflow as tf
   import numpy as np
   print(tf.__version__)
   2.8.0
```

[3] from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense from tensorflow keras import optimizers

```
[4] X=np.array([1,2,3,4,5,6,7,8,9])
  # 공부하는 시간
   y=np.array([12,25,50,42,61, 67, 79, 85, 90])
   # 각 공부하는 시간에 맵핑되는 성적
```

```
KiSTi 한국과학기술정보연구원
www.kist.n.kr
```

```
[5] model = Sequential()

model.add(Dense(1, input_dim=1, activation='linear'))

[6] # sgd는 경사 하강법을 의미.
#학습률(learning rate, lr)은 0.01.
sgd = optimizers.SGD(lr=0.01)

/usr/local/lib/python3.7/dist-packages/keras/optimizer_v2/gradient_descent.py:102:
super(SGD, self).__init__(name, **kwargs)
```


회귀에서

- 손실함수는 오차 MSE을 주로 사용한다.
- [기 # 손실 함수(Loss function)은 평균제곱오차 mse를 사용합니다. model.compile(optimizer=sgd ,loss='mse',metrics=['mse'])
- [8] # 주어진 X와 y데이터에 대해서 오차를 최소화하는 작업을 300번 시도합니다. history=model.fit(X,y, batch_size=1, epochs=30, shuffle=False)

%matplotlib inline

```
import matplotlib.pyplot as plt
```

```
plt.plot(X, model.predict(X), 'b', X,y, 'k.')
```



```
epochs = range(1, len(history.history['mse']) + 1)
plt.plot(epochs, history.history['loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train'], loc='upper left')
plt.show()
```


비선형회귀 실습

케라스로 구현하는 비선형 회귀

로지스틱 회귀(Logistic Regression)

- 로지스틱 회귀 개요
 - ✓ 일상 속 많은 문제 중에서는 두 개의 선택지 중에서 정답을 고르는 문제가 많다.
 - ✓ 예를 들어 시험을 봤는데 이 시험 점수가 합격인지 불합격인지가 궁금할 수도 있고,
 - ✔ 어떤 메일을 받았을 때 이게 정상 메일인지 스팸 메일인지를 분류하는 문제
- 둘 중 하나를 결정하는 문제를 이진 분류(Binary Classification)라고 합니다.
 - ✔ 이런 문제를 풀기 위한 알고리즘으로 로지스틱 회귀(Logistic Regression)가 있다.

시그모이드 함수(Sigmoid function)

$$H(X) = \frac{1}{1 + e^{-(Wx + b)}} = \operatorname{sigmoid}(Wx + b) = \sigma(Wx + b)$$

$$# x + 0.5$$

$$# x + 1.5$$

목적 함수(objective function)

$$J(W) = \frac{1}{n} \sum_{i=1}^{n} cost (H(x^{(i)}), y^{(i)})$$

$$H(X) = \frac{1}{1 + e^{-(Wx+b)}} = \sigma(Wx + b)$$

• 크로스 엔트로피 함수 (Cross Entropy)

✓ 로지스틱 회귀에서 찾아낸 비용함수를 말한다

if
$$y = 1 \rightarrow cost(H(x), y) = -log(H(x))$$

if
$$y = 0 \to \cos(H(x), y) = -\log(1 - H(x))$$

이진 분류(Binary Classification)

- 예제: 학생들이 시험 성적에 따라서 합격, 불합격이 기재된 데이터가 있다고 가정
 - ✔시험 성적이 x라면, 합불 결과는 y입니다.
 - ✔이 시험의 커트라인은 공개되지 않았는데 이 데이터로부터 특정 점수를 얻었을 때의 합격, 불합격 여부를 판정


```
[1] import numpy as np
[2] from tensorflow.keras.models import Sequential
   from tensorflow.keras.layers import Dense
   from tensorflow.keras import optimizers
[3] X=np.array([-50, -40, -30, -20, -10, -5, 0, 5, 10, 20, 30, 40, 50])
   y=np.array([0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1])
[4] model=Sequential()
[5] model.add(Dense(1, input_dim=1, activation='sigmoid'))
```


[6] sgd=optimizers.SGD(lr=0.01)

/usr/local/lib/python3.7/dist-packages/keras/optimizer_v2/gradient_descent.py:102: UserWarning: The super(SGD, self).__init__(name, **kwargs)

- 회귀의 손실함수는 오차(MSE)를 사용해야 하지만, 로지스틱은 특별히 Accuracy를 자주 쓴다.
- # 옵티마이저는 경사하강법 sgd를 사용합니다. # 손실 함수(Loss function)는 binary_crossentropy를 사용합니다. history = model.fit(X,y, epochs=20, shuffle=False)

- import matplotlib.pyplot as plt %matplotlib inline
- plt.plot(X, model.predict(X), 'b', X,y, 'k.')
- [<matplotlib.lines.Line2D at 0x7f1c7c723950>, <matplotlib.lines.Line2D at 0x7f1c7af7da10>]


```
epochs = range(1,
                  len(history.history['binary_accuracy']) + 1)
plt.plot(epochs, history.history['binary_accuracy'])
plt.title('model Accuracy')
plt.ylabel('binary_accuracy')
plt.xlabel('epoch')
                                                                      model Accuracy
plt.legend(['train'])
                                                   0.92
plt.show()
                                                   0.90
                                                   0.88
                                                 accuracy
                                                   0.86
                                                   0.84
                                                   0.82
                                                   0.80
                                                   0.78
                                                                                             train
                                                               20
                                                                       40
                                                                               60
                                                                                       80
                                                                                              100
```

epoch

활성함수 실습

Softmax, Tanh(x), RuLU 등 만들어 보자

def step(x):
 return np.array(x > 0, dtype=np.int)

def sigmoid(x):
 return 1/(1+np.exp(-x))

def relu(x):
 return np.maximum(0, x)

def leaky_relu(x):
 return np.maximum(a*x, x)

y = np.exp(x) / np.sum(np.exp(x))

$$p_i = \frac{e^{z_i}}{\sum_{j=1}^k e^{z_j}}$$
 for $i = 1, 2, ...k$

