

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Departamento Acadêmico de Elétrica – DAELE

PARTE III

Timer A - Básico

Fonte: MSP430x2xx Family Users Guide

Prof. Dr. Fábio L. Bertotti

INTRODUÇÃO

TEMPORIZADORES

- Princípio Geral de funcionamento

INTRODUÇÃO

TEMPORIZADORES

- MODO COMPARAÇÃO

 CÁLCULO de TEMPO para INTERRUÇÃO:

Timer A

Características

- Temporizador/Contador de 16 bits
- 4 Modos de operação:
 - Contador
 - Captura
 - Comparação
 - PWM
- 3 registradores de Captura/Comparação (MSP430G2553)

Prof. Dr. Fábio L. Bertotti

Timer A

MSP430G2553

MÓDULOS

Prof. Dr. Fábio L. Bertotti

- Configurados na FUNÇÃO COMPARAÇÃO ou CAPTURA
- Exemplo: Módulo X configurado na função COMPARAÇÃO:

Timer A: Contador e Módulos

- INTERRUPÇÕES Módulos 1, 2 e Contador
 - TAxIV (Timer_A Interrupt Vector Register)

TAIV Contents	Interrupt Source	Interrupt Flag	Interrupt Priority	TAXCCIFG1 -> IRQ CPU RTI
00h	No interrupt pending			TAMEO . I III III III III III III III III II
02h	Capture/compare 1	TACCR1 CCIFG	Highest	Contador
04h	Capture/compare 2 ⁽¹⁾	TACCR2 CCIFG		
06h	Reserved			
08h	Reserved			
0Ah	Timer overflow	TAIFG		TAxCCIFG0→ IRQ OD RTI
0Ch	Reserved			TAXCCIE0→ CPU → Mod.0
0Eh	Reserved		Lowest	

Prof. Dr. Fábio L. Bertotti

Timer A

- EXEMPLO 1: Modo UP
- Timer A configurado para gerar interrupções a cada 1s e na RTI mudar o estado do LED Vermelho (P1.0), usando como fonte de clock o sinal ACLK, proveniente de LFXT1 (cristal de 32.768 Hz).

Prof. Dr. Fáblo L. Bertotti

Timer A

MSP430G2553 — Timer0

Exemplo 1 - Timer A

1º Passo: Criação de função para as configurações iniciais.

Exemplo 1 - Timer A

• 2º Passo: Criação de função para as configurações das Portas de I/O.

TOI. Dr. Pablo L. Bertotti

Exemplo 1 - Timer A

• 3º Passo: Encontrar valor para TAOCCRO

$$Base\ de\ tempo$$

$$t_b = \frac{FDIV}{ACLK} \hspace{1cm} \mbox{Fonte de\ Clock}$$

$$TACCR0 = \frac{tempo}{t_b} = \frac{tempo. ACLK}{FDIV} - 1$$

Prof. Dr. Fábio L. Bertotti

Exemplo 1 - Timer A

4º Passo: Configurar TAOCTL

Prof. Dr. Fábio L. Bertotti

Exemplo 1 - Timer A

• 4º Passo: Configurar TAOCTL

Prof. Dr. Fábio L. Bertotti

Exemplo 1 - Timer A

4º Passo: Configurar TAOCTL

Exemplo 1 - Timer A

Exemplo 1 - Timer A

• 5º Passo: Configurar TAOCCTLO

TAOCCTLO = CCIE;

Prof. Dr. Fábio L. Bertotti

Exemplo 1 - Timer A

· Início do código

Prof. Dr. Fábio L. Bertotti

Exemplo 1 - Timer A

Configurações iniciais do TimerO A

```
void ini_TAO(void){

// TAClk = ACLK = 32768 Hz, Modo UP, Interrup. a cada ls

TAOCTL = TASSELO + MCO;

TAOCCTLO = CCIE;

TAOCCRO = 32767;
}
```

Prof. Dr. Fábio L. Bertott

Timer A

- Exercício 1
 - Implemente um relógio usando o Timer0 A.
 - Use o sinal ACLK como fonte de clock.
 - Na RTI do Módulo 0 atualize as variáveis de tempo SEGUNDO, MINUTO e HORA.
 - Monitore as variáveis no Code Composer.

Prof. Dr. Fábio L. Bertotti

Exemplo 1 - Timer A

6º Passo: RTI do TimerO A

Prof. Dr. Fábio L. Bertol

Processamento de chaves

Técnica Debouncer

Fonte: MSP430x2xx Family Users Guide

Prof. Dr. Fábio L. Bertotti bertotti@utfpr.edu.br

Processamento de Chave

· Chave Eletromecânica

Prof. Dr. Fábio L. Bertotti

Processamento de Chave

Δ: 1.01ms @: -508μs

M 100μs Ch1 \

Efeito BOUNCE

Prof. Dr. Fábio L. Berto

Processamento de Chave

· Efeito na saída do schimidt trigger da Porta

Prof. Dr. Fábio L. Bertotti

Processamento de Chave

Processamento de Chave

• Debounce: ANÁLISE

Prof. Dr. Fábio L. Bertotti

EXEMPLO 2 - Debouncer

- Debouncer: Implementação de debouncer para a chave 52
 - Cada vez que S2 for pressionada, o estado do led vermelho deve ser alterado.
 - Usar Timer0 A para temporizar £ (5 ms)
 - Clock: SMCLK ~ 2 MHz
 - RTI da Porta 1?
 - RTI do M0 do Timer0 A ?
 - Desenvolvimento de código no Code Composer.

EXEMPLO 2 - Debouncer

• 1º Passo: Criação de função para as config. iniciais...

```
void ini_ucon(void) {
    WOTCTL = WOTFW | WOTHOLD;

// Configuraces do BCS

// MCLK = LOCILK - 16 HHz

// ACLK = LPYTICLK = 32768 Hz

// SMCLK = DOCCLK / 8 - 2 HHZ

DOCCTL = CALDCO_16MHZ;

BCSCTL1 = CALBCO_16MHZ;

BCSCTL2 = DIVSO + DIVSI;

BCSCTL3 = KCAPO + XCAPI;

while(GCSCTL3 & LEXTIOF);

__enable_interrupt();

}
```

Prof. Dr. Fábio L. Bertotti

EXEMPLO 2 - Debouncer

• 2º Passo: Criação de função para as configurações das Portas de I/O.

```
void ini_P1_P2(void) {

// BIT3 como entrada e os demais como saids

plorR = BIT0 + BIT1 + BIT2 + BIT4 + BIT5 + BIT6 + BIT7;

plrEN - BIT3; // Resistor do BIT3 habilitado.

plorT - BIT3; // Resistor de pull-up para BIT3,

// os demais como saida em nivel logico baixo.

pliES - BIT3; // Interrupcao por borda de descida.

pliFG - 0; // Limpa as flags da Pi, evitando que uma

// interrupcao coerra de forma indevida.

pliE - BIT3; // Interrupcao do BIT3 da Pi habilitada.

p2DIR - OXFF; // P2: Todos oa bits como saida em nivel baixo.

p20UT - 0X00; // Pinos 18 e 19 com função nativa (XIN/XOUT).

}
```

EXEMPLO 2 - Debouncer

· 3º Passo: Inicialização do TimerO A

Prof. Dr. Fábio L. Bertott

EXEMPLO 2 - Debouncer

4º Passo: RTI da Porta 1

Prof. Dr. Fábio L. Bertotti

EXEMPLO 2 - Debouncer

5º Passo: RTI do M0 do Timer0 A

Prof. Dr. Fábio L. Bertotti

```
// RTI do MO do Timer0
#pragma vector=TIMERO_AO_VECTOR
__interrupt void RTI_do MO_do_TimerO(void) {
    // Flag de int. é limpa automaticamente
    TAOCTL 6- ~MCO; // Fars o TimerO -> vai para modo STOP

    if( (~FIN) & BIT3) { // Verifica se tecla realmente foi pressionada
        FlOUT ^= BITO; // Tecla press. -> alterna estado do Led VM
    }

    PlIFG &= ~BIT3; // Obrigatorio limpar flag aqui!

    PlIE |= BIT3; // Habilita int. do BIT3 da Pl
}
```

EXEMPLO 2 - Debouncer

· 6º Passo: Programa Principal

```
#include <msp430.h>

void ini_ucon(void);
void ini_F1_F2(void);
void ini_Timer0(void);

void main(void) {
    ini_ucon();
    ini_P1_P2();
    ini_Timer0();

    do {
        // Loop infinito
    } while (1);
}

Prof. Dr. Fabio L. Bertotti
```

- Efetue a Leitura de um Encoder
 - O encoder provê os seguintes sinais A (Ch A) e B (Ch B) ao microcontrolador, cujos sinais são conectados em 2 pinos da Porta 1 (P1.6 e P1.7) do microcontrolador MSP430G2553. A cada passo do encoder no sentido horário/anti-horário uma variável deve ser incrementada/decrementada de uma unidade.

Prof. Dr. Fábio L. Bertotti

Leitura de Teclado 4x4

• Dicas para Leitura de Teclado tipo Matriz 4x4 com Debouncer

Deef De Fébre I Destent

Teclado Matricial

· Conexão do teclado e display de 7 segmentos

Prof. Dr. Fábio L. Bertott

Teclado Matricial

Opção 1:

P2.4-P2.7 - entradas com resistor de PULL-UP

Interrupção por borda de DESCID

P2.0-P2.3 — Saidas em nível ALTO

Opção 2:

P2.4-P2.7 - entradas com resistor de PULL-DOWN
 Internacião por borda de SUBIDA

Prof. Dr. Fábio L. Bertotti

Teclado Matricial

Processo de Leitura

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

Tecnologico há mois de No. Cursos Superiores de Engenharia Elétrica e Engenharia de Computação

TIMER A

Geração de Sinais PWM

Fonte: MSP430x2xx Family Users Guide

Prof. Dr. Fábio L. Bertotti bertotti@utfpr.edu.br

Timer A PWM - Conceito Sv ON Duty Cycle - analogWrite(0) ON Duty Cycle - analogWrite(19) Sv ON Duty Cycle - analogWrite(127) Sv ON Duty Cycle - analogWrite(191) Sv ON Duty Cycle - analogWrite(191)

Modos de Saída

Timer A

· Modos de Saída

Modo OUTMODX Func.

	2	010	Resetar	resetado quando	TAR = TACCR0
OFF	FFFh				
TAC	CR0 -				
IAC	CITO		\sim		/
TAC	CR1 -			/	
			- 1		- 1
			- 1		
	0h				
	-			_	
					Output Mode 2:Toggle/Reset
		1			
r. Fábio L.	. Bertotti				U U

Descrição

Inverter/ OUTx é invertido quando TAR = TACCR1 e é

Timer A

Descrição

· Modos de Saída

Modo OUTMODX Func.

	3	011	Setar/ Resetar	OUTx é Setado quando	uando TAR = TACCR1 e é TAR = TACCR0
OF	FFFFh				
TA	CCR0 -				
TA	CCR1		/		
	0h				
	-		L		Output Mode 3: Set/Reset
Prof. Dr. Fábio	L. Bertotti				UTFF

Timer A

Modos de Saída

10

Modos de Saída

Modo	OUTMODX	Func.	Descrição
5	101	Resetar	OUTx é Resetada quando TAR = TACCR1 OBS: OUTx permanece resetado até que outro modo seja selecionado

Prof. Dr. Fábio L. Bertotti

Timer A

· Modos de Saída

Modo	OUTMODX	Func.	Descrição
6	110	Inverter/ Setar	OUTx é Invertido quando TAR = TACCR1 e Setado quando TAR = TACCR0

Prof. Dr. Fábio L. Bertotti

Timer A

Modos de Saída

Modo	OUTMODX	Func.	Descrição
7	111	Resetar/ Setar	OUTx é Resetado quando TAR = TACCR1 e Setado quando TAR = TACCR0

Prof. Dr. Fábio L. Bertotti

Timer A

EXEMPLO 3

- O Timer0 A do microcontrolador MSP430G2553 deve ser configurado no Modo PWM para controlar a luminosidade do LED Verde. Um sinal PWM com frequência de 100 Hz e com largura de pulso ajustável e 0 a 100% deve ser gerado. Cada vez que S2 for pressionada a razão cíclica deve ser aumentada de 25%, partindo de 0 a 100%.
 - 1º Passo: Idem ao exemplo 1 e 2
 - 2º Passo: Configuração portas I/O

Timer A: PWM EXEMPLO 3

MSP430G2553

Timer A: PWM EXEMPLO 3

P1.6 do MSP430G2553

Table	19. Port P1	(P1.5 to	P1.7)	Pin F	Functions
		-	ONTRO	DITE	AND BICHA

	PIN NAME			CONTROL BITS AND SIGNALS ⁽¹⁾						
	(P1.x)	×	FUNCTION	P1DIR.x	P1SEL.x	P1SEL2.x	ADC10AE.x INCH.x=1 ⁽²⁾	JTAG Mode	CAPD.y	
Ì	P1.6/		P1.x (I/O)	I: 0; O: 1	0	0	0	0	0	
	TA0.1/		TA0.1	1	1	0	0	0	0	
Т	UCB0SOMI/		UCB0SOMI	from USCI	1	1	0	0	0	
	UCB0SCL/		UCB0SCL	from USCI	1	1	0	0	0	
	A6 ⁽²⁾ /	6	A6	X	X	X	1 (y = 6)	0	0	
	CA6		CA6	X	X	X	0	0	1 (y = 6)	
	TDI/TCLK/		TDI/TCLK	x	X	х	0	1	0	
	Pin Osc		Capacitive sensing	x	0	1	0	0	0	

Timer A: PWM

EXEMPLO 3

• 2º Passo: Configuração portas I/O

```
void ini_P1_P2(void) {
    // BIT3 come entrada e os demais come saida

PIDIR = BIT0 + BIT1 + BIT2 + BIT4 + BIT5 + BIT6 + BIT7;

PIREM = BIT3; // Resistor do BIT3 de P1 habilitado

P10UT = BIT3; // Resistor de pull-up para BIT3, os demais come saida
    // em nivel logice baixo

P1SEL |= BIT6; // saida de sinal PMM no pino associado a TA0.1

P1IES = BIT3; // Interrupcao por borda de descida

P1IFG = 0; // limpa as flags da P1, evitando que uma interrupcao
    // coorra de forma indevida

P1IE = BIT3; // Interrupcao do BIT3 da P1 habilitada

P2ORT = 0xFF; // P2: Todos os bits come saida em nivel baixo, exceto os
P2OUT = 0x00; // pinos 18 e 19, onde mentem-se as funções XIN e XOUT
```

Timer A: PWM

EXEMPLO 3

· 3º Passo: Configurar TA0CTL

Prof. Dr. Fábio L. Bertotti

Timer A: PWM

EXEMPLO 3

· 3º Passo: Configurar TA0CTL

Prof. Dr. Fábio L. Bertotti

Timer A: PWM EXEMPLO 3

· 4º Passo: Configurar TA0CCTL1

Timer A: PWM EXEMPLO 3

4º Passo: Configurar TA0CCTL1

Timer A: PWM EXEMPLO 3

• 4º Passo: Configurar TA0CCTL1

Timer A: PWM EXEMPLO 3

- 5º Passo: Calcular os valores para TA0CCR0 e TA0CCR1
 - TA0CCR0 = ?
 - TA0CCR1 = ?

Prof. Dr. Fábio L. Bertotti

Timer A: PWM EXEMPLO 3

Configurações do TA0

Prof. Dr. Fábio L. Bertotti

```
void ini_TAO_PWM(void) {

    // Fonte de clock: ACLK = 32768 Hz
    // Fator Div.: 1
    // Modo UP sem geracao de int.
    TAOCTL = TASSELO + MCO;

    // Modo Reset/set
    // Saida inicializada em nivel alto
    TAOCCTL1 = OUTMODO + OUTMOD1 + OUTMOD2 + OUT;

    TAOCCRO = 327;    // Para periodo de 10 ms

    TAOCCR1 = 0;    // razao ciclica de 0 % - led apagado }
}
```

Timer A: PWM EXEMPLO 3

· Configurações do TA1 - Debouncer

```
void ini_TAl_Debouncer(void) {
    // Fonte de clock: SMCLK = 2 MHz
    // Fator Div.: 1
    // Modo Parado (inicial).
    TALCTL = TASSEL1;

TALCCTLO = CCIE;
    TALCCRO = 10000; // Para tempo de 5 ms
}
```

Prof. Dr. Fábio L. Bertotti

Timer A: PWM EXEMPLO 3

· 6º Passo: RTI da Porta 1

```
#pragma vector=PORT1_VECTOR
__interrupt void P1_RTI(void) {

P1IFG &= ~BIT3; // Limpa flag - Opcional

P1IE &= ~BIT3; // Desabilita int. do BIT3 da P1

// Timerl A configurado para o Debouncer de S2

TALCTL |= MCO; // Inicia temporizador - TA1
}
```

Prof. Dr. Fábio L. Bertotti

Timer A: PWM EXEMPLO 3

· 7º Passo: RTI do Timer 1

Prof. Dr. Fábio L. Bertotti

Timer A: PWM EXEMPLO 3

• 8º Passo: Código Principal

```
#include <msp430.h>

void config_ini(void);  // Frototipos das funcces
void ini_Fl_PZ(void);
void ini_TAD_FMY(void);
void main(void) {
    config_ini();
    ini_Fl_P2();
    ini_TAD_FMY();
    ini_TAl_Debouncer();

    do{
        _BIS_SR(LFMO_bits + GIE); // Entra no LFMO
    }
}while(1);
}
Prof. Dr FABO L Bernott
```

- · Sinais PWM alinhados a BORDA
 - Problema: 2 ou mais comutações ao mesmo instante
 - Maior Interferência CONDUZIDA e IRADIADA!
 - Major oscilação da tensão de alimentação!
 - Efeitos significativo em sistemas com potência elevada...

Timer A - PWM

- · Sinais PWM alinhados ao CENTRO (do ciclo de contagem)
 - MODOS DE SAÍDA que podem ser usados para gerar PWM alinhado ao centro
 - Modo 2: Inverter/Resetar
 - Modo 6: Inverter/Setar

Timer A - PWM

- EXEMPLO 4
- Use o Timer1 A do microcontrolador MSP430G2553 para gerar os sinais PWM s, e s, alinhados a BORDA e ao CENTRO, com frequência de 204 Hz e razões cíclicas RC, de 50% e RC, de 80%. Cada vez que S2 for pressionada deve-se alternar entre PWM alinhado a BORDA e ao CENTRO.
 - 1º Passo: Função para inicialização do uCON
 - 2º Passo: Função para inicialização das portas de I/O
 - 3º Passo: Função para configuração do Timer1 para PWM alinhado a BORDA
 - 4º Passo: Função para configuração do Timer1 para PWM alinhado ao CENTRO
 - 5º Passo: Função de inicialização do Timer0 para o debouncer de S2
 - · 6º Passo: RTI da Porta 1
 - 7º Passo: RTI do Módulo 0 do Timer0

Prof. Dr. Fábio L. Bertotti

Timer A - PWM

1º Passo: Função para inicialização do uCON

Timer A - PWM

• 1º Passo: Função para inicialização do uCON

```
void ini uCon(void) {
        WDTCTL = WDTPW | WDTHOLD; // Para o watchdog timer
        DCOCTL = CALDCO 8MHZ;
        BCSCTL1 = CALBC1 8MHZ;
                                                /* CONFIGURAÇÃO do BCS
        BCSCTL2 = DIVS0 + DIVS1;
                                                * -> Sinais de saída do BCS:
        BCSCTL3 = XCAP0 + XCAP1;
                                                      MCLK -> 8 MHz
                                                      SMCLK -> 1 MHz
                                                      ACLK -> 32768 Hz
        while ( BCSCTL3 & LFXT1OF);
                                                * -> Osciladores do BCS
                                                * VLO - Nao utilizado
         enable interrupt();
                                                * XT2 - Nao esta presente
                                                    LFXT1 - xtal 32k
                                                * DCO ~ 8 MHz
Prof. Dr. Fábio L. Bertotti
```

Timer A - PWM

2º Passo: Inicialização das Portas 1 e 2

2º Passo: Inicialização das Portas 1 e 2

Table 20. Port P2 (P2.0 to P2.5) Pin Functions

PIN NAME		FUNCTION	CONTROL BITS AND SIGNALS(1)			
(P2.x)	×	FUNCTION	P2DIR.x	P2SEL.x	P2SEL2.x	
P2.0/	П	P2.x (I/O)	I: 0; O: 1	0	0	
TA1.0/		Timer1_A3.CCI0A	0	1	0	
	ľ°	Timer1_A3.TA0	1	1	0	
Pin Osc		Capacitive sensing	×	0	1	
P2.1/	Т	P2.x (I/O)	I: 0; O: 1	0	0	
TA1.1/	L.	Timer1_A3.CCI1A	0	1	0	
	Ι.	Timer1_A3.TA1	1	1	0	
Pin Osc		Capacitive sensing	×	0	1	
P2.2/	П	P2.x (I/O)	I: 0; O: 1	0	0	
TA1.1/	2	Timer1_A3.CCI1B	0	1	0	
	ľ	Timer1_A3.TA1	1	1	0	
Pin Osc		Capacitive sensing	×	0	1	
P2.3/	П	P2.x (I/O)	I: 0; O: 1	0	0	
TA1.0/	3	Timer1_A3.CCI0B	0	1	0	
	*	Timer1_A3.TA0	1	1	0	
Pin Osc		Capacitive sensing	x	0	1	
P2.4/	П	P2.x (I/O)	I: 0; O: 1	0	0	
TA1.2/	١.	Timer1_A3.CCI2A	0	1	0	
	Γ.	Timer1_A3.TA2	1	1	0	
Pin Osc	Т	Capacitive sensing	X	0	1	

Prof. Dr. Fábio L. Bertotti

Timer A - PWM

2º Passo: Inicialização das Portas 1 e 2

```
void ini_P1_P2(void) {
    P1DIR = ~BIT3;
                            /* CONFIGURAÇÕES da PORTA 1
                            * -> P1.3 - S2: Entrada com resistor de pull-up
    P1OUT = BIT3;
                             * e int. por borda de descida.
    P1REN = BIT3;
                            * -> P1.x - N.C.: Saidas em nível baixo.
    P1IES = BIT3;
    P1IFG = 0;
                            * CONFIGURACCÕES da PORTA 2
    P1IE = BIT3;
                            * -> Pino 9 (P2.1) -> TA1.1
                            * -> Pino 12 (P2.4) -> TA1.2
    P2DIR = 0xFF;
                            * -> Pinos 18 e 19: mantém funções XIN e XOUT
                            * -> Demais pinos como saída em nível baixo.
   P2OUT = 0;
    P2SEL |= BIT1 + BIT4;
```

Prof. Dr. Fábio L. Bertotti

Timer A - PWM

- 3º Passo: Configuração do Timer1 para PWM alinhado a BORDA
- Registrador TA1CTL

TA1CTL = TASSEL1 +

Prof. Dr. Fábio L. Bertotti

Timer A - PWM

- 3º Passo: Configuração do Timer1 para PWM alinhado a BORDA
- Registrador TA1CTL

Timer A - PWM

- 3º Passo: Configuração do Timer1 para PWM alinhado a BORDA
- Registrador TA1CCTL1

Prof. Dr. Fábio L. Bertotti

Timer A - PWM

- 3º Passo: Configuração do Timer1 para PWM alinhado a BORDA
- Registrador TA1CCTL1

- 3º Passo: Configuração do Timer1 para PWM alinhado a BORDA
- Registrador TA1CCTL1

TA1CCTL1 = OUTMOD0 + OUTMOD1 + OUTMOD2 + OUT;

Prof. Dr. Fábio L. Bertotti

Timer A - PWM

- 3º Passo: Configuração do Timer1 para PWM alinhado a BORDA
 - Registrador TA1CCTL2

Timer A - PWM

- 3º Passo: Configuração do Timer1 para PWM alinhado a BORDA
 - Registrador TA1CCTL2

TA1CCTL2 = OUTMOD0 + OUTMOD1 + OUTMOD2

Timer A - PWM

- 3º Passo: Configuração do Timer1 para PWM alinhado a BORDA
- Registrador TA1CCTL2

CCI Bit 3 Capture/compare input. The selected input signal can be read by this bit.

Output. For output mode 0, this bit directly controls the state of the output. OUT Bit 2 Output high Capture overflow. This bit indicates a capture overflow occurred. COV must be reset with software No capture overflow occurred Capture overflow occurred CCIFG No interrupt pending Interrupt pending

TA1CCTL2 = OUTMOD0 + OUTMOD1 + OUTMOD2 + OUT;

Prof. Dr. Fábio L. Bertotti

Timer A - PWM

- 3º Passo: Configuração do Timer1 para PWM alinhado a BORDA
 - Registrador TA1CCR0
 - Freq. PWM: 204 Hz ... TA1CCR0 = (1.000.000 / 204) 1 = 4.901
 - Registrador TA1CCR1
 - RC S_A = 50 % ... TA1CCR1 = (4902*0,5) 1 = 2.450
 - Registrador TA1CCR2
 - RC S_B = 80 % ... TA1CCR2 = (4902*0,8) 1 ≈ 3.921

Prof. Dr. Fábio L. Bertotti

Timer A - PWM

• 3º Passo: Configuração do Timer1 para PWM alinhado a BORDA

```
void ini Timer1 PWM Borda(void) {
    TAICTL = TASSEL1 + MC0;
   TA1CCTL1 = OUTMOD0 + OUTMOD1 + OUTMOD2 + OUT;
   TA1CCTL2 = OUTMOD0 + OUTMOD1 + OUTMOD2 + OUT;
   TA1CCR0 = 4901;
    TA1CCR1 = 2450;
    TA1CCR2 = 3921;
```

- 4º Passo: Configuração do Timer1 para PWM alinhado ao CENTRO
- Registrador TA1CTL

TAICTL = TASSEL1 +

Prof. Dr. Fábio L. Bertotti

Timer A - PWM

- 4º Passo: Configuração do Timer1 para PWM alinhado ao CENTRO
- Registrador TA1CTL

Prof. Dr. Fábio L. Bertotti

Timer A - PWM

- 4º Passo: Configuração do Timer 1 para PWM alinhado ao CENTRO
- Registrador TA1CCTL1

Prof. Dr. Fábio L. Bertotti

1111012 11100221

Timer A - PWM

- 4º Passo: Configuração do Timer1 para PWM alinhado ao CENTRO
- Registrador TA1CCTL1

Prof. Dr. Fábio L. Bertotti

Timer A - PWM

- 4º Passo: Configuração do Timer1 para PWM alinhado ao CENTRO
- Registrador TA1CCTL1

TA1CCTL1 = OUTMOD1 + OUT;
Prof. Dr. Fáblo L. Bertotti

Timer A - PWM

4º Passo: Configuração do Timer1 para PWM alinhado ao CENTRO

• 4º Passo: Configuração do Timer1 para PWM alinhado ao CENTRO

- Registrador TA1CCTL2

1 Interrupt pending

TA1CCTL2 = OUTMOD1 + OUT;

Timer A - PWM

- 4º Passo: Configuração do Timer1 para PWM alinhado ao CENTRO
- Registrador TA1CCR0
 - Freq. PWM: 204 Hz .:. TA1CCR0 = (1.000.000 / 204) /2 1 = 2.450
- Registrador TA1CCR1
 - RC S_A = 50 % ... TA1CCR1 = (4902*0,5)/2-1 = 1.224
- Registrador TA1CCR2
 - RC S_B = 80 % ... TA1CCR2 = (4902*0,8) / 2 1 ≈ 1.960

Prof. Dr. Fábio L. Bertotti

Timer A - PWM

• 4º Passo: Configuração do Timer1 para PWM alinhado ao CENTRO

void ini_Timer1_PWM_Centro(void) {
 TAICTL = TASSEL1 + MCO + MC1;

 TAICCTL1 = OUTMOD1 + OUT;

 TAICCTL2 = OUTMOD1 + OUT;

 TAICCR0 = 2450;

 TAICCR1 = 1224;

 TAICCR2 = 1960;
}

Timer A - PWM

- 5º Passo: de inicialização do TimerO para o debouncer de S2
 - Registrador TA0CTL

Prof. Dr. Fábio L. Bertotti

Timer A - PWM

- 5º Passo: de inicialização do TimerO para o debouncer de S2
 - Registrador TA0CTL (contador inicialmente PARADO)

Prof. Dr. Fábio L. Bertotti

Timer A - PWM

• 5º Passo: de inicialização do TimerO para o debouncer de S2

- 5º Passo: de inicialização do TimerO para o debouncer de S2
- Registrador TA0CCR0
 - Tempo debouncer = 5 ms
 - TA0CCR0 = 1.000.000 * 0,005 = 5.000

```
void ini_TA0_Debouncer(void) {
   TA0CTL = TASSEL1;
   TA0CCTL0 = CCIE;
   TA0CCR0 = 5000;
}
```

Timer A - PWM

6º Passo: RTI da Porta 1

```
#pragma vector=PORTI_VECTOR
_interrupt void RTI_da_Porta_1(void){
    PliFG &= ~BIT3;
    PliE &= ~BIT3;
    TAOCTL |= MCO;
}
```

Prof. Dr. Fábio L. Bertott

Timer A - PWM

EXERCÍCIO PWM

Prof. Dr. Fábio L. Bertotti

- Use o Timer1 A do microcontrolador MSP430G2553 para gerar um sinal senoidal com frequência de 60 Hz a partir de um sinal PWM.
 - 1º Passo: Função para inicialização do uCON;
 - 2º Passo: Função para inicialização das portas de I/O;
 - 3º Passo: Função para inicialização do Timer1 para PWM;
 - 4º Passo: Criação de um vetor com valores de ajuste de TA1CCR1 a partir da resposta de uma senoide;
 - 5º Passo: RTI do Módulo 1 do Timer1 para atualização do sinal PWM de acordo com valores de referência de amplitude de uma senoide.

FIM

Timer A - PWM

7º Passo: RTI do Módulo 0 do Timer 0