

Mechatronics

ME 2984

"When you want to know how things really work, study them when they're coming apart" - William Gibson

ADMINISTRIVIA

What is Mechatronics?

The combination of Mechanical and Electrical design of a system

 Integration of sensors can involve electrical and mechanical accommodations

Sensors

- Sensors are how a robot perceives the world
 - Much wider range of information available than human senses
 - Data is not perfect
 - Must be translated into machine readable information
 - Must be processed, people are a lot better at it

Analog vs Digital

Video Credit: Warner Bros

Analog vs Digital

- Analog sensors provide continuous valued data
 - Not less "advanced" than digital
 - Can be very robust
 - Signals must be converted to digital for computers

Analog vs Digital

Image Credit: Bugra

A to D

- Resolution
 - Determines how finely you define the signal

 You must also scale for sensor range

A to D

- Update rate
 - Tied to "bandwidth"
 - How fast does information change?

Image Credit: Doris Jean Wagner

What the Heck is \sqrt{Hz} ?

- Sensor Selection can be hard
- Data sheets don't spell out what you need to know
 - The same sensor type may have different fields
 - Everyone is selling something (Literally)

Datasheet: Analog Devices

Where do I plug this in?

Image Credit: Element

Powering Your System

All power to the shields

Season 3, Episode 15 - Yesterday's
 Enterprise. It begins more or less exactly at the 2:45 til end of episode mark.

Powering Your System

- Systems are powered by a "bus"
 - Often you need multiple buses
 - Common power buses are 3.3, 5, 12, 24
 and 48V

- Separate Motors and Sensors!
- Don't mix Voltages!!

Powering Your System

Exploding consoles that still work

Video Credit: Youtube

Your Sensors

- How they work
- How they fail

Image Credits: Dagu & Sparkfun

Encoders

- Measure position of rotating joint
 - Can determine Velocity and Acceleration through differentiation, in theory
 - Errors Accumulate Rapidly

Incremental Encoders

- Signal order
 determines direction of
 rotation
- KHAN uses 1000 ticks/3rev

Quadrature

IR Distance Sensor

- Input 5 VDC
- Output 0.4V to 2.8V
- Range 15cm to150cm

Image Credit: Sparkfun

What's My Output Look Like?

What's My Output Look Like?

Image Credit: Sharp

Software Integration

 Translating data will be automated by KHAN's software (You will write some of it)

 Often a driver or ROS package for this will exist

Noise

- You cannot assume perfect data
- Errors in the signal are referred to as noise
- Can be reduced, but not eliminated

Image Credit: Electronics for Beginners

What Does All This Tell You?

- Adding a sensor to a robot can be much more complicated than just bolting it on
- The best sensor may not be the highest performing
- Good system design up front can save a lot of heartache

Assignment 1

- Due at 11:55 Tonight
- Upload video to Scholar Dropbox
- Submit assignment as well
- If you can't get everything working show what you have installed, and what problems you're experiencing

QUESTIONS?