PART A

I measured I_S of a p-n being 1N4148 using the following formula (n=1.752 and $V_T = kT/q$):

$$I_D = I_S(e^{\frac{V_D}{nV_T}} - 1)$$

Figure 1: Circuit and Simulated Values

Here the formula gives $I_S = 2.44$ nA, implying a 3.17% error percentage from the desired 2.52 nA.

PART B

In Part B, a differential temperature sensor was designed as in Figure 2.

Figure 2: Designed Differential Temperature Sensor

Here, Vcc = 12V, and (Vcc-2)/4=2.5V. This value is satisfied with the desired 0.3V error difference as in the following figures and Table 1.

Figure 3: Temperature is 18°C

Figure 4: Temperature is 28°C

Figure 5: Temperature is 23°C

18°C	23°C	28°C
2.557V	2.557V	2.557V

Table 1: Change of Output Voltage with Change of Temperature

The following are the behavior of Vout and Diode Voltage. Vout increases 1.078V as temperature increases 1°C as in Figure 6, and Diode Voltage increases at 5 degrees above room temperature in the desired 0.1V range as in Figure 7.

Figure 6: Vout, Increase of 1.078V

Figure 7: Increase of LED Voltage at 28°C in 0.1V Range

The following is the Diptrace Schematic's PDF file that includes a component list.

