SOME TWO-DIMENSIONAL INCLUSION PROBLEMS IN ELASTICITY

BY

Om Parkash Kapoor, M.A.

THESIS

Submitted for the award of the Degree of

DOCTOR OF PHILOSOPHY

Indian Institute of Technology, Kanpur.

March 1966

NIDTH-1866-D-KAP-SONI.

CENTRAL LIBRASIA 19915

19 JUN 1972

ACKNOWLEDGEMENT

I acknowledge with gratitude the valuable advice and guidance of my superviser,

Professor R. D. Bhargava, who introduced me to the subject.

Om Parkach Kaform (O. P. KAPOOR)

CERTIFICATE

This is to certify that the thesis entitled 'Some Two-Dimensional Inclusion Problems in Elasticity' that is being submitted by Shri O. P. Kapoor, M. A. for the award of the Degree of Doctor of Philosophy to the Indian Institute of Technology, Kanpur is a record of bonafide research work carried out by him under my supervision and guidance. The thesis has reached the standard fulfilling the requirements of the regulations to the Degree. The results embodied in this thesis have not been submitted to any other University or Institute for the award of any degree or diploma.

(R. D. BHARGAVA)

R.D. Bhayanz

Professor of Mathematics
Indian Institute of Technology, Kanpur.

CONTENTS

					Page
Introduction		• • •	• • •	• • •	i - viii
List of	Symbols	* * *	• • •	• • •	ix
Chapter					
I	Inclusion P	roblem and Point	-Force.	• • •	1
II	Rectangular	Inclusion.	• • •	• • •	9
III	Triangular :	Inclusion.	• • •	• • •	18
IV	Circular In	clusion in a Hal:	f Plane.	• • •	25
٧	Rectangular Elastic Med	Inclusion in a sium.	Semi-infinite	• • •	40
VI	Inhomogenei Boundary.	ty and a Point-Fo	orce on the	• • •	57
VII		clusion with Diffuli		* * *	65
IIIV	A Circular	Hole and a Point	Force	• • •	71
IX	Circular Inclusion in the Presence of a Circular Hole			• • •	76
X	Inhomogenei	ty and a Point-Fe	orce in the Ma	atrix.	90
XI		clusion in the Par Inhomogeneity		•••	101
XII	Two Deformi	ng Inhomogeneiti	es	• • •	117
Figur	es ···	• • •	•••	• • •	132
Tables		• • •	•••	• • •	159
Ribii	o orranher				197

INTRODUCTION

This thesis is concerned with the 'inclusion problems' in the infinitesimal theory of elasticity. Briefly the problem may be stated as follows:

A region (the 'inclusion') in an isotropic elastic medium undergoes a permanent change of form which, in the absence of the elastic constraints imposed by the surrounding material (the matrix'), would be a prescribed uniform strain. Find the elastic field in the matrix and inclusion. The inclusion may or may not have the same elastic properties as those of the matrix. If the properties are different, the inclusion will be termed as 'inhomogeneity'. Such dimensional changes in the inclusion could arise due to thermal effects, plastic flow or phase transformation, thereby generating a

system of locked-up accommodation stresses.

For a wide review and possible applications the article 'Elastic Inclusions and Inhomogeneities' by J. D. Eshelby in Progress in Solid Mechanics, Vol. II ((5)), may be referred to. However, it may be stated that the applications of such problems can be found to such diverse fields as engineering, physics and even atomic physics. The engineering applications of the theory of cavities may be read from 'Stress concentration around holes', (Pergamon Press, 1961) by G.N. Savin, or from 'Kerbspannungslehre', (Springer-Verlag, Berlin, 1958) by H. Neuber. As regards applications to physical problems, one finds its use in the theory of martensite transformations, the theory of cracks, etc. Recently much attention is being paid to determine the elastic constants Ciikl, Siikl, of polycrystalline aggregates, where actual constants vary from grain to grain. The results have also been used in predictions of macroscopic elastic moduli of two phase composites. Hashin((8)), Hershey((9)), Hill((10)) - ((12)), Budiansky((21)) and various other workers have tried to work out such problems.

The applications cited are essentially macroscopic. Elastic inclusions have also been found to be useful models of lattice defects in crystals. It is not at all obvious that a model of this type will be of any use in discussing the lattice defects and yet calculations are being made upon such hypothesis. Dundurs and Mura ((22)) have investigated the behaviour of an edge dislocation present in the matrix with a circular inclusion. Dundurs and Sendeckyj ((23)) have

studied a similar problem in which the dislocation is present inside the circular inclusion.

A simple problem of spherical inclusion in an infinite isotropic elastic medium was first studied by G. Frenkel ((7)), and then by Mott and Nabarro ((24)), and Nabarro ((25-26)), in connection with their theory of precipitation hardening in alloys. No progress could be made for next fifteen years or so. A systematic study for ellipsoidal inclusion was given by Eshelby ((4, 5)), where he made use of what may be described as 'point-force technique'. Three-dimensional inclusions which are more realistic are found to be intractable except in the simplest case. The two-dimensional problem is comparatively simpler to deal with, because of the application of complex variable method. A complex variable formulation to the inclusion problem was given by Bhargava and Jaswon ((6)). The problem, as far as it is related to elliptic inclusion of the same material as that of the matrix, was solved by them. If the elliptic inclusion material is different from that of the matrix (yet isotropic) the problem is still solvable, as was done by Bhargava and Radhakrishna ((13, 14)). Then a great stride was made by taking the inclusion and the matrix of different orthotropic materials ((15)). This was possible by what may be described as the application of energy principles to inclusion problems. Willis ((20)) has given the solution to the problem of an elliptic inclusion in a cubic material.

This thesis may be regarded as a continuation of such two-dimensional problems. It appears necessary to remark at this stage, that the previous

work has been upon elliptic inclusions in two-dimensions and ellipsoidal inclusions in three dimensions. It is not surprising, because of the fact that integrals involved are comparatively easily tractable in these cases. In the former case, the integrals are suitable Cauchy's integrals; in the latter the theory of ellipsoidal harmonics can be employed. For shapes other than elliptic, one has to be extremely careful, because of multivalued integrals which may be involved. In this thesis we have given the solutions to the rectangular and triangular inclusions.

In all the solutions so far, the matrix was supposed to be infinite in all directions. What happens if the matrix is semiinfinite, is yet another important class of problems, which has not been attempted so far, as far as is known to the author. It seems to have important applications in engineering, geophysics, metallurgy, etc. Damage to structures resulting from swelling of clay soils has been well documented over years. These problems have risen in connection with both undisturbed and compacted clays used as a foundation for structural frames and for slabs. In most instances, the damage has been attributed to vertical component of swelling and also the horizontal component. The swelling usually is due to the variation of moisture content of clays. A similar situation could arise where piles have been constructed in a soil mass. The simple model of homogeneous, isotropic elastic material which has been assumed in this thesis may be a simplification of the soil mass which is inelastic continuum. But this does yield a first approximation to the situations.

Another class of solutions refers to the interaction of inclusions and cavities in an otherwise infinite medium. It is hardly necessary to describe the importance of such problems in engineering structures, where the presence of a hole may considerably weaken the structure, because of extreme stress concentration, if the hole is too near the inclusion. In the atomic model the case where there may be a vacancy in the presence of misfit atoms may be discussed with the help of above model. Another class of problems refers to the interaction of the elastic fields of two inhomogeneities which are present near each other in the infinite medium. A few problems of these types have been included here. It appears to be the first attempt when three regionstwo inhomogeneities and the matrix; or one hole, one inclusion and the matrix; or one inhomogeneity, one inclusion and the matrix are considered.

Before we begin to describe what has been done in each chapter, it seems necessary to state that the solution to the 'inclusion problem' by the point-force technique, hinges upon the evaluation of the elastic fields due to point-forces. This is known in simple two-dimensional and three-dimensional cases, and has been made use of at appropriate places, where we have taken the results from standard texts. However, if the holes or inhomogeneities are present in an infinite medium and a point-force is applied to the material, what is the elastic field everywhere? These are problems of considerable importance in the theory of elasticity. We have solved a few problems and included them here.

First Chapter of this thesis explains the 'inclusion problem' and the 'point-force technique'. The original work starts from the second Chapter.

In Chapters II and III the problems of a rectangular and a triangular inclusion are solved. Ordinarily problems involving such regions are solved by means of conformal maps which in effect round off the corners and slightly deviate the sides from their straightness. But here we are able to dispense with such a technique and give exact analytical solutions which hold good even in neighbourhood of the corners.

Chapters IV and V deal with inclusion problems in semi-infinite medium. In Chapter IV a circular inclusion is taken up and in Chapter V a rectangular inclusion with a side parallel to the leading edge is considered. It is found that the edge effect is confined to a small region around the inclusions and when the distance of the inclusion is four to five times the radius of circular inclusion, or the length of the rectangular inclusion, the solutions differ slightly from those for the infinite case, the error being of the order of about two in hundred.

In Chapter VI the effect of a concentrated force which is applied at a point of the boundary of a circular inhomogeneity has been evaluated in terms of complex potential functions. In Chapter VII the case of a deforming inhomogeneity of rather a general type is considered. The results of Chapter VI have been utilised. Eshelby ((5)) has also suggested a method of solving such a problem. But his method was found to be quite cumbersome. The method developed here is direct and simpler. In Chapter VIII the complex functions yielding the effect of a concentrated force applied at any point of the elastic medium containing a cavity have been obtained and these results are applied in Chapter IX to solve the inclusion problem in the presence of a cavity. The results

could be applied in the theory of cracks which has played a part in Griffith's treatment of rupture (see for example, Sneddon ((29))).

In Chapter X the effect of a concentrated force acting at any point of a medium containing an inhomogeneity has been found out in terms of complex potentials. In Chapter XI the problem of an inclusion undergoing dimensional changes in the presence of a circular inhomogeneity has been dealt with. Some numerical work was done which has been included in the form of tables and figures at the end.

In the last Chapter the problem of two deforming inhomogeneities has been solved through an interesting process of superposition. This is the first time, when two inhomogeneities have been considered with elastic constants differing from the surroundings. Even though the solution is obtained in a surprisingly simple manner, the problem is the most important one in this thesis. Moreover the superposition technique used here can have very wide applications. It has lead us to feel strongly that the problem of simultaneous presence of any number of inclusions reasonably placed in the complex plane can be solved by the repeated application of the process indicated in the last Chapter.

The work presented in the Chapters II, III and VIII to XI is based on the following papers which have been published or are under publication.

1. Two-dimensional Rectangular inclusion.
(Under publication in Proc. Nat. Inst. Sci. India.)

- Two-dimensional trinngular inclusions in an elastic infinite medium.
 (Bulletin de l' Academic Polonaise des Sciences, Vol. XI, No. 7, 1963).
- Circular inclusion in an infinite elastic medium with a circular hole.
 (Proc. Camb. Phil. Soc. (1964), 60, 675).
- 4. Circular Inclusion in an infinite elastic medium with a circular inhomogeneity. (Proc. Camb. Phil. Soc. (1966), 62, 113).

In addition, the contents of the last Chapter have been communicated to the Proc. Cambridge Philos. Soc. by Prof. J. G. Oldroyd and of Chapter IV to Proc. Nat. Inst. Sci. India , by Prof. R.S. Verma.

LIST OF SYMBOLS

x, y, 2, 0

Two-dimensional coordinate axes

u, u; u, up

Displacement components

Tx, Ty, Txy; Tx, Te, Txy-- Stress components

 e_{xx}, e_{yy}, e_{xy} Strain Components

Poisson's ratio

A, M

Lame's constants

 $\alpha = \frac{3-9}{1+9}$

for plane stress case

d= 3-42

for plane strain case

i= V=1

Subscript i

denotes that subscripted quantity

pertains to inclusion

Subscript ih

denotes that the subscripted quantity

pertains to inhomogeneity

Subscript m

denotes that the subscripted quantity

pertains to matrix

Bar

denotes the complex conjugate

Prime

denotes differentiation with respect to

the argument

CHAPTERI

INCLUSION PROBLEM AND POINT-FORCE

A large category of problems of the theory of elasticity which are important for practical applications and at the same time admit of considerable simplification in the mathematical aspect of the solution are two-dimensional problems. The mathematical formulation and the basic results are available in many books, e.g. ((1)), ((2)) and ((3)). The figures in the double parenthesis shall mean the reference numbers in the bibliography (page 196). The results which we shall need in this thesis are included below for ready reference as well as for familiarity with the notation.

The fundamental problem of plane elasticity in the absence of body forces is to solve the biharmonic equation

under appropriate boundary conditions. The Airy's function U is related to the stresses by the equations

Alternatively in terms of complex variable formalism, the main problem is to find two complex functions $\varphi(z)$ and $\psi(z)$ of the complex variable z = z + i y, satisfying appropriate boundary conditions. They are related to the stress and displacement components in the following way:

$$\sigma_{z} + \sigma_{g} = 4Rl \ \varphi'(z)$$

$$\sigma_{g} - \sigma_{z} + 2i \sigma_{xy} = A \left[\overline{z} \varphi''(z) + \psi'(z) \right]$$
(1)

and

$$2\mu(u+i\omega) = \propto \phi(z) - z \phi(z) - \psi(z)$$
 (2)

where $\alpha = 3-4\nu$ for plane strain case and $\alpha = \frac{3-\nu}{1+\nu}$ for generalised plane stress case.

Corresponding to a given state of stress of a body, the complex functions $\phi_{(Z)}$ and $\psi_{(Z)}$ change with a change in the coordinate system. If the origin of plane is shifted to a point z_0 without rotation of axes and if $\phi_{(Z)}$ and $\psi_{(Z)}$ are the functions in the new system, corresponding to $\phi_{(Z)}$ and $\psi_{(Z)}$ in the old system, it can be shown that

$$\Phi(z) = \Phi(z-z_0), \qquad (3)$$

$$\Psi(z) = \Psi(z-z_0) - \overline{z}_0 \, \phi'(z-z_0).$$
 (4)

It is seen that the function $\psi(z)$ is not invariant for a translation of the axes i.e., the values for the old functions cannot be derived by simply replacing Z by $Z-Z_0$ in $\psi(Z)$. In contrast, the function $\phi(Z)$ is invariant. The effect of rotating the axes, leaving the origin fixed, and turningt the axes through an angle is given by the following equations

$$\Phi(z) = \Phi(ze)e^{i\theta}, \qquad (5)$$

$$\psi_{i}(z) = \psi(z e^{-i\theta}) e^{-i\theta}. \tag{6}$$

Now we state the inclusion problem: A region (the inclusion) of a homogeneous, isotropic elastic body tends to undergo a change of form which in the absence of the surrounding material (the matrix) would be a prescribed homogeneous strain. Owing to the elastic constraints of the matrix locked up accommodation stresses develop in the system.

Determination of the stresses and the equilibrium configuration is the inclusion problem. Let us use the term ' free-inclusion' for the free-surface configuration which could be attained by the inclusion, if the matrix were not there.

Unlike inclusions of simple shapes namely sphere or a circle, the equilibrium boundary of the general inclusion becomes an unknown of the

problem. Thus, for instance when the inclusion and the free-inclusion are similarly situated rectangles, the equilibrium boundary is not a similar rectangle, not even a rectangle (fig. 5, p. 135). Generally speaking, to calculate the correct shape using direct procedures presents a difficult mathematical problem. However, very powerful indirect attack on such problems, based on the concept of the point-force, has been introduced by J.D. Eshelby ((4)). Even though his argument is a purely heuristic one, it has yielded very good results as has been illustrated in the works of Eshelby ((4, 5)), Jaswon and Bhargava ((6)), Bhargava and Sharma ((17, 18)) and Willis ((20)).

In brief the idea is explained int the following sequence of imaginary cutting, straining and welding operations.

Cut out the inclusion from the medium. Allow it to attain the free-state configuration. No wit can no longer be fitted without strain into the cavity from which it was taken. Apply surface tractions to the surface of the free-inclusion so as to reduce it to its original size. At this stage there will be a stress field present in the inclusion. We shall call this field 'the constrained- stress field' for future reference. Put it back in the cavity, maintaining the tractions. Weld the material together across the surface. At this stage no stresses appear in the matrix. A distribution of point-forces is now applied over the boundary, equal and opposite to the impressed surface tractions. In the absence of the matrix these point-forces, superposed on the tractions, would have the effect of restoring the inclusion to its free state dimensions. However, owing to the elastic

constraints of the matrix, this superposition produces an equilibrium configuration. In other words the effect of the deforming inclusion, so to say, is to bring into play a distribution of point-forces on its surface.

Thus, if we know by some means the stress-strain field associated with a single concentrated force applied at a point of the medium, the cumulative effect of the distribution of the point-forces on a surface can be obtained by the process of integration. The stress and strain fields in the matrix due to the inclusion will be the same as due to the point-forces distribution. In the inclusion, however, the stress field is obtained by superposing the stress field due to the forces, on the stress field already present there due to the impressed tractions.

Eshelby ((4)) solved the problem of an ellipsoidal inclusion by this method. The problem of a force acting at a point in an infinite elastic medium was first discussed by Lord Kelvin. A force (X,Y,Z), acting at (x,y,z), produces a displacement (u,v,w) at (x,y,z) given by the formulae

$$u = \frac{\lambda + \mu}{8\pi \mu(\lambda + 2\mu)} \left[\frac{\lambda + 3\mu}{\lambda + \mu} \frac{\chi}{d} + (z - x_i) \left\{ \frac{\chi(z - x_i) + \chi(z - z_i)}{d^3} + \frac{\chi(z - z_i)}{d^3} \right\} \right],$$

where $d^2 = \sum (x - x_i)^2$; $u_i \omega$ have similar expressions.

For two-dimensional problems the expression for displacement at a point (x, y) due to a concentrated force acting at the point (x_1, y_1) is

where $\alpha = 3-4\nu$ for plane strain and $\alpha = \frac{3-\nu}{1+\nu}$ for plane stress. There is a similar expression for ν .

The complex functions $\phi(z)$ and $\psi(z)$, due to a concentrated force is given, say, in ((2,3)). A point force $P = P_1 + iP_2$ acting at the point f of an unbounded body has the following derivatives of the complex functions $\phi(z)$ and $\psi(z)$ associated with it:

$$\phi'(z) = \frac{-P}{2\pi(\alpha+1)} \frac{1}{z-\gamma}, \qquad (7)$$

$$\psi(z) = \frac{\alpha \overline{P}}{2\pi(\alpha+1)} \frac{1}{z-\overline{f}} - \frac{\overline{f}P}{2\pi(\alpha+1)} \frac{1}{(z-\overline{f})^2}, \quad (8)$$

where \overline{P} is the conjugate of P.

The cumulative effect of a distribution of point-forces acting along an arc γ of an infinite isotropic elastic medium can be obtained by integration of the individual effects of the concentrated forces. Thus, if $P(\gamma)$ is the distribution of forces given as a function of point γ on γ , then

$$\phi'(z) = -\frac{1}{2\pi(\alpha+1)} \int \frac{Pds}{z-s}, \qquad (9)$$

$$\Psi'(z) = \frac{\alpha}{2\pi(\alpha+1)} \int_{\gamma} \frac{\overline{P}ds}{z-\gamma} - \int_{\gamma} \frac{\overline{S}Pds}{2\pi(\alpha+1)(z-\gamma)^{2}}.$$
 (10)

As an illustrative example we take a circular inclusion of unit radius which tends to expand to a size $1+\delta$, where δ is small so that the linear theory is applicable. In the presence of the matrix an intermediate size will be the equilibrium size. The point-force layer generated can be shown to be as given below:

Pas =
$$(P_1 + iP_2)ds = -2i(\lambda + \mu)\delta df$$

 $Pas = (P_1 - iP_2)ds = 2i(\lambda + \mu)\delta df$

The cumulative effect will be given by the integrals (9) and (10) where y is now a unit circle. Evaluating the integrals we obtain

$$\phi'(z) = \frac{2(\lambda + \mu)\delta}{\alpha + 1}, \qquad (11)$$

$$\Psi(z) = 0, \tag{12}$$

for z in the inclusion, and

$$\phi'(z) = 0, \tag{13}$$

$$\psi'(z) = \frac{\alpha - 1}{\alpha + 1} \left(\chi + \mu \right) \frac{2\delta}{z^2} , \qquad (14)$$

for Z in the matrix.

The stresses and displacements in the matrix can be found directly from (13) and (14) with the help of (1) and (2). But in the inclusion (11) and (12) give only a part of the stress field. The constrained-stress field given by

$$\sigma_z = -2(\gamma + \mu)\delta,$$

$$\sigma_{\bar{z}} = -2(\gamma + \mu)\delta,$$

must be added to it to obtain the net stresses in the inclusion.

Continuity of normal and tangential stresses across the boundary yields a check on the analysis.

CHAPTER II

RECTANGULAR INCLUSION

We now consider the following problem. A rectangular hole of sides 2a, 2b is cut out of an infinite isotropic elastic medium, and a rectangular inclusion of sides $2a(1+\delta_1)$, $2b(1+\delta_2)$ is forced symmetrically into the cavity. Here δ_1 , δ_2 are small quantities within the limit of elastic strain. What will be the equilibrium size and shape of the inclusion, and the accompanying stress-strain field?

Following the method proposed by Eshelby, we first reduce the inclusion from its free dimensions to the dimensions of the hole. This is effected by impressing upon it a displacement field

$$u^{\circ} = -\delta_{1}x, \qquad v^{\circ} = -\delta_{2}y \tag{15}$$

It can be seen that this transforms, to the first order, the rectangle

$$x = \pm 2a(1+\delta_1),$$

$$y = \pm 2b(1+\delta_2),$$

into the rectangle

$$x = \pm 2a$$

Corresponding to (15) there exists a strain field

$$e_{xx}^{\circ} = -\delta_1$$
, $e_{yy}^{\circ} = -\delta_2$, $e_{xy}^{\circ} = 0$ (16)

and a stress field

$$\sigma_{x}^{\circ} = -\left[\beta(\delta_{1} + \delta_{2}) + 2\mu \delta_{1} \right],
\sigma_{y}^{\circ} = -\left[\beta(\delta_{1} + \delta_{2}) + 2\mu \delta_{2} \right],
\sigma_{xy}^{\circ} = 0.$$
(17)

On the boundary the surface traction components

$$T_{i}^{\circ} = \sigma_{x}^{\circ} \cos(x, n) + T_{xy} \cos(y, n),$$

$$T_{2}^{\circ} = T_{xy} \cos(x, n) + T_{y}^{\circ} \cos(y, n),$$

$$(18)$$

are required per unit length, at a point where the outward normal to the boundary has direction cosines cos (x, n), cos (y, n). The opposing point-force components are

$$P_1 = -T_1^{\circ}$$
 and $P_2 = -T_2^{\circ}$. (19)

We write the boundary conditions (18) in another fashion as follows

$$T_1^{\circ} = \sigma_x^{\circ} \frac{dy}{ds} - T_{2}(y) \frac{dx}{ds},$$

$$T_2^{\circ} = T_{2}(y) \frac{dy}{ds} - T_{2}(y) \frac{dx}{ds}.$$
(20)

Also, if 1 = x+iy signifies a boundary point,

$$\frac{ds}{ds} = \frac{1}{2} \left(\frac{ds}{ds} + \frac{d\overline{s}}{ds} \right), \qquad \frac{d\overline{s}}{ds} = \frac{dz}{ds} - \frac{idy}{ds}.$$

Whence

$$\frac{dx}{ds} = \frac{1}{2} \left(\frac{ds}{ds} + \frac{d\overline{s}}{ds} \right), \qquad \frac{dy}{ds} = \frac{-i}{2} \left(\frac{ds}{ds} - \frac{d\overline{s}}{ds} \right). \tag{21}$$

Accordingly from (19), (20) and (21),

$$(P_1 - iP_2)dS = -\frac{i}{2} \left((\sigma_x^2 + \sigma_y^2) d\bar{f} - (\sigma_x^2 - \sigma_y^2) d\bar{f} \right) + (T_{xy}^2 d\bar{f}).$$
 (22)

We have obtained equations (22) a little painstakingly because we shall consistantly need them in the following chapters also. It may be noticed that the analysis from (18) to (22) does not depend upon the shape of the boundary. Thus the point-force distribution is given by

Substituting for Pas and Pas in (9) and (10), the complex functions are as follows

$$\phi'(z) = \frac{1}{2\pi(\alpha+1)} \left[-\frac{i}{2} (\sigma_x^0 + \sigma_y^0) \int_{\gamma} \frac{dy}{z-y} + \frac{i}{2} (\sigma_x^0 - \sigma_y^0) \int_{\gamma} \frac{dy}{z-y} \right],$$

$$\psi'(z) = \frac{1}{2\pi(\alpha+1)} \left[\frac{i\alpha}{2} \left(\sigma_x^{\circ} - \sigma_y^{\circ} \right) \int_{\gamma} \frac{d\varsigma}{z-\varsigma} - \frac{i\alpha(\sigma_x^{\circ} - \sigma_y^{\circ})}{2} \int_{\gamma} \frac{d\varsigma}{z-\varsigma} \right]$$

$$-\frac{i}{2}(\sigma_{x}^{\circ}+\sigma_{y}^{\circ})\int_{(Z-y)^{2}}^{\overline{y}dy}+\frac{i}{2}(\sigma_{x}^{\circ}-\sigma_{y}^{\circ})\int_{y}^{\overline{y}d\overline{y}}\frac{\overline{y}d\overline{y}}{(Z-y)^{2}}$$

where γ is now the rectangle. The integrals can be evaluated by splitting each integral into four integrals, each in turn along one side of the rectangle. Care has to be taken to evaluate the integrals, as they involve multivalued functions. The resulting values of the functions $\phi'(z)$ and $\psi'(z)$ are

where $x_1 = x + a$, $x_2 = x - a$, $y_1 = y + b$ and $y_2 = y - b$. The angles θ_1 , θ_2 , θ_3 , θ_4 are angles subtended by sides AB, BC, CD and DA respectively at the point z. An angle will be positive or negative according as it is traced anti-clockwise or clockwise. This has to ascertained from the Fig. 1 p. 132. Obviously

$$\theta_1 + \theta_2 \pm \theta_3 + \theta_4 = 0$$
, for z in the matrix,
= 2π , for z in the inclusion.

Differentiating (23) with respect to s we obtain

$$\phi''(z) = \frac{\sigma_{x} - \sigma_{y}^{2}}{z^{\pi}(\alpha+1)} \left[\frac{2\alpha \times y_{2} - i\alpha(\alpha^{2} - x^{2} + y_{2}^{2})}{(x_{1}^{2} + y_{1}^{2})(x_{2}^{2} + y_{2}^{2})} - \frac{b(b^{2} - y^{2} + x_{1}^{2}) - 2ibx_{1}y_{2}}{(x_{1}^{2} + y_{1}^{2})(x_{1}^{2} + y_{2}^{2})} + \frac{i\alpha(\alpha^{2} - x^{2} + y_{1}^{2}) - 2\alpha \times y_{1}}{(x_{1}^{2} + y_{1}^{2})(x_{2}^{2} + y_{1}^{2})} - \frac{2ibx_{2}y - b(b^{2} - y^{2} + x_{2}^{2})}{(x_{1}^{2} + y_{1}^{2})(x_{2}^{2} + y_{1}^{2})} \right]$$

$$(25)$$

The stresses in the matrix are directly given by substituting the values of $\phi'(z)$, $\phi''(z)$ and $\psi'(z)$ in (1). However for inclusion we must add to the stress field the constrained-stress field given by (17). Hence the stress field in the inclusion is given by

$$(\sigma_{x} + \sigma_{y}) = \frac{\alpha - 1}{\alpha + 1} (\sigma_{x}^{\circ} + \sigma_{y}^{\circ}) + \frac{\sigma_{x}^{\circ} - \sigma_{y}^{\circ}}{\pi(\alpha + 1)} (\theta_{1} + \theta_{3} - \theta_{2} - \theta_{4})$$

$$(\sigma_{\chi} - \sigma_{\chi} + 2i T_{\chi \chi})_{i} = \frac{-2(\sigma_{\chi}^{2} - \sigma_{\chi}^{2})}{\alpha + 1} - \frac{(\sigma_{\chi}^{2} + \sigma_{\chi}^{2})(\alpha - 1)}{2\pi(\alpha + 1)} \left(\theta_{i} - \theta_{2} + \theta_{3} - \theta_{\zeta}\right)$$

$$-\frac{i(\sigma_{x}^{2}+\sigma_{y}^{2})}{2\pi}\frac{\alpha-1}{\alpha+1}\int_{0}^{2\pi}\frac{(x_{1}^{2}+y_{1}^{2})(x_{2}^{2}+y_{1}^{2})}{(x_{1}^{2}+y_{2}^{2})(x_{2}^{2}+y_{1}^{2})}$$

$$-\frac{\sigma_{x}^{2}-\sigma_{y}^{2}}{2\pi(\alpha+1)}\left[(\overline{z}+2ib)\left(\frac{-2\alpha x\,y_{1}+i\alpha\left(\alpha^{2}-x^{2}+y_{1}^{2}\right)}{(x_{1}^{2}+y_{1}^{2})(x_{2}^{2}+y_{2}^{2})}\right)$$

$$+(\overline{z}-2a)\left(\frac{b(b^{2}-y^{2}+x_{1}^{2})-2b\,y\,x_{1}}{(x_{1}^{2}+y_{1}^{2})(x_{1}^{2}+y_{1}^{2})}+(\overline{z}-2ib)\left(\frac{2\alpha x\,y_{1}-i\alpha\left(\alpha^{2}-x^{2}+y_{1}^{2}\right)}{(x_{1}^{2}+y_{1}^{2})(x_{1}^{2}+y_{1}^{2})}\right)$$

$$+(\overline{z}+2a)\left(\frac{-b(b^{2}-\overline{y}^{2}+x_{1}^{2})+2ib\,x_{2}}{(x_{2}^{2}+y_{1}^{2})(x_{1}^{2}+y_{1}^{2})}\right).$$

It can be readily checked that the normal and tangential stress components are continuous across the boundary, proving thus, that the analysis is correct. On the other hand hoop stress is discontinuous which it should be on physical grounds. The jump in the hoop stress as we cross the boundary is

$$\frac{2(\lambda+\mu)(\delta_1+\delta_2)(\lambda-1)}{\alpha+1}+\frac{(\mu(\delta_1-\delta_2))}{\alpha+1}$$

An important particular case can be derived when $\delta_1 = \delta_2$ which means that the initial stress field in the inclusion is uniform. In the matrix the stress field is

$$(\sigma_{x} + \sigma_{x})_{m} = 0,$$

$$(\sigma_{y} - \sigma_{x} + 2i \pi_{x}y)_{m} = -\frac{\sigma_{x}^{\circ}}{\pi} \frac{\alpha - 1}{\alpha + 1} \left[\theta_{1} - \theta_{2} + \theta_{3} - \theta_{4} + i \log \frac{(x_{1}^{2} + y_{1}^{2})(x_{1}^{2} + y_{1}^{2})}{(x_{1}^{2} + y_{1}^{2})(x_{2}^{2} + y_{1}^{2})} \right].$$
(26)

It is at once seen that the stress field in the matrix is free from

dilatation and is only of distortion. It is of interest to observe the variation of the stresses $\sigma_{\rm X}$ and $\sigma_{\rm g}$ on the boundary. In Fig. 2, 3, p. 132,133, we have drawn the graphs of $\sigma_{\rm Z}$ / $\sigma_{\rm Z}$ ° and $\sigma_{\rm g}$ / $\sigma_{\rm Z}$ ° for different values of α/b , taking Poisson's ratio $\nu = 1/3$ in plane stress case.

As regards the stresses in the inclusion (for $\delta_1 = \delta_2$), the stress field is given

$$\begin{split} (\sigma_{x} + \sigma_{y})_{i} &= 2\sigma_{x}^{\circ} \frac{\alpha - 1}{\alpha + 1}, \\ (\sigma_{y} - \sigma_{x} + 2i \tau_{xy})_{i} &= -\frac{\sigma_{x}^{\circ}}{\pi} \frac{\alpha - 1}{\alpha + 1} \left[(\theta_{1} - \theta_{2} + \theta_{3} - \theta_{4}) + i \log \frac{(\chi_{1}^{2} + \chi_{1}^{2})(\chi_{2}^{2} + \chi_{1}^{2})}{(\chi_{1}^{2} + \chi_{2}^{2})(\chi_{2}^{2} + \chi_{1}^{2})} \right]. \end{split}$$

The maximum shearing stress in the matrix is given by

Numerical evaluation of the expression can easily be made from (26). Lines of constant shearing stress have been drawn for plane stress case taking p=1/3 for different values of a/b in Fig. 4, p. 134. Clearly the shearing stress is highly concentrated near the corners and in fact it tends to infinity at the corners. It may be explained by observing that at points very near the corners, the shearing stress is sufficiently large to produce plastic deformations and that linear theory cannot be applied to the region very near the corners. It can also be seen that shearing stresses are dominant on

the narrow sides of the rectangle. Similar results are seen in the case of an elliptic inclusion. When a/b=10, the lines of shearing stress are substantially the same as in the case of an ellipse with axial ratio equal to 10. The later were drawn for the case an elliptic inclusion from ((6)).

As regards the displacement field, we integrate (23) and (24) with respect to z and obtain

$$\begin{split} & \phi(z) = -\frac{\sigma_{x}^{2} + \sigma_{y}^{2}}{4\pi(\alpha + 1)} \left(\theta_{1} + \theta_{2} + \theta_{3} + \theta_{4} \right) Z - \frac{\sigma_{x}^{2} - \sigma_{y}^{2}}{4\pi(\alpha - 1)} \\ & \times \left[\gamma l_{y} \frac{(x_{1}^{2} + y_{1}^{2})(x_{1}^{2} + y_{1}^{2})}{(x_{1}^{2} + y_{1}^{2})(x_{1}^{2} + y_{1}^{2})} + b log \frac{(x_{1}^{2} + y_{1}^{2})(x_{1}^{2} + y_{1}^{2})}{(x_{1}^{2} + y_{1}^{2})(x_{2}^{2} + y_{1}^{2})} \\ & - x \left(\theta_{1} - \theta_{2} + \theta_{3} - \theta_{4} \right) + 2a \left(\theta_{2} - \theta_{4} \right) \\ & + i \left\{ x log \frac{(x_{1}^{2} + y_{1}^{2})(x_{1}^{2} + y_{1}^{2})}{(x_{1}^{2} + y_{1}^{2})(x_{1}^{2} + y_{1}^{2})} + a log \frac{(x_{1}^{2} + y_{1}^{2})(x_{1}^{2} + y_{1}^{2})}{(x_{1}^{2} + y_{1}^{2})(x_{2}^{2} + y_{1}^{2})} \\ & - y \left(\theta_{1} - \theta_{2} + \theta_{3} - \theta_{4} \right) + 2b \left(\theta_{1} - \theta_{3} \right) \right\} \right], \\ \psi(z) &= \frac{\sigma_{x}^{2} - \sigma_{y}^{2}}{4\pi} \frac{\alpha - 1}{\alpha + 1} \left[y log \frac{(x_{1}^{2} + y_{1}^{2})(x_{1}^{2} + y_{1}^{2})}{(x_{1}^{2} + y_{1}^{2})(x_{2}^{2} + y_{1}^{2})} - x \left(\theta_{1} - \theta_{2} + \theta_{3} - \theta_{4} \right) \right. \\ & + b log \frac{(x_{1}^{2} + y_{1}^{2})(x_{1}^{2} + y_{1}^{2})}{(x_{2}^{2} + y_{1}^{2})(x_{2}^{2} + y_{1}^{2})} - x \left(\theta_{1} - \theta_{2} + \theta_{3} - \theta_{4} \right) \end{split}$$

$$+ 2a(\theta_{2} - \theta_{4}) + i \left\{ \times \log \frac{(x_{1}^{2} + y_{1}^{2})(x_{2}^{2} + y_{1}^{2})}{(x_{1}^{2} + y_{1}^{2})(x_{2}^{2} + y_{1}^{2})} + a \log \frac{(x_{2}^{2} + y_{2}^{2})(x_{1}^{2} + y_{2}^{2})}{(x_{1}^{2} + y_{1}^{2})(x_{2}^{2} + y_{1}^{2})} - y(\theta_{1} - \theta_{2} + \theta_{3} - \theta_{4}) + 2b(\theta_{1} - \theta_{3}) \right\}$$

$$+ \frac{\sigma_{X}^{2} - \sigma_{Y}^{2}}{(x_{1}^{2} + y_{1}^{2})(x_{2}^{2} + y_{1}^{2})} \left\{ b \log \frac{(x_{1}^{2} + y_{1}^{2})(x_{1}^{2} + y_{1}^{2})}{(x_{2}^{2} + y_{2}^{2})(x_{2}^{2} + y_{1}^{2})} - 2a(\theta_{2} - \theta_{4}) + 2b(\theta_{1} - \theta_{3}) \right\}$$

$$+ i \left\{ a \log \frac{(x_{1}^{2} + y_{1}^{2})(x_{2}^{2} + y_{1}^{2})}{(x_{1}^{2} + y_{1}^{2})(x_{2}^{2} + y_{1}^{2})} + 2b(\theta_{1} - \theta_{3}) \right\}$$

The displacements are obtained by substituting the above functions along with $\Phi'(z)$ given in (23) in (2). In particular the displacements of the internal boundary of the matrix can be evaluated. Regarding the inclusion, it had two displacements— one when it is reduced to the size of the whole and second when it deforms due to the application of the layer of point-forces. It can be easily shown that the later is continuous, and has the same value at the boundary, as the whole in the matrix. Numerical values for the displacements in the case $\delta_1 = \delta_2 = \delta$ were obtained in terms of δ . In Fig. 5,p 135, we have drawn schematically the equilibrium shapes of inclusions for which a/b = 1, 2, and 10, for the case of plane stress taking $\mathcal{D} = 1/3$.

CHAPTER III

TRIANGULAR INCLUSION

In this chapter the problem of a triangular inclusion is solved. The method adopted is essentially the same as in the case of a rectangular inclusion in the previous chapter.

Choosing the coordinate system suitably, the corners of the constrained inclusion triangle may be labelled as A(0,0), B(a,0) and C(b,c), Fig. 6, p. 136 . The homogeneous deformation which the inclusion would undergo if it were free, may be prescribed as

$$u = \delta_{1} \left(x - \frac{a+b}{3} \right) + \delta_{3} \left(y - \frac{c}{3} \right),$$

$$v = \delta_{3} \left(x - \frac{a+b}{3} \right) + \delta_{2} \left(y - \frac{c}{3} \right),$$
(27)

where δ_1 , δ_2 and δ_3 are of the order of permissible strains in linear theory. If the above deformation is opposed, a constant

stress field given by

$$\nabla \hat{x}^{\circ} = -\left\{ \lambda \left(\delta_{1} + \delta_{2} \right) + 2 \mu \delta_{1} \right\},
\nabla \hat{y}^{\circ} = -\left\{ \lambda \left(\delta_{1} + \delta_{2} \right) + 2 \mu \delta_{2} \right\},
\nabla \hat{y}^{\circ} = -2 \mu \delta_{3},$$
(28)

is developed in the inclusion. The point-force layer for this may be obtained on similar lines as the equation (22)

$$Pds = \frac{1}{2}i\{(\sigma_{x}^{2} + \sigma_{y}^{2})d_{y}^{2} + (\sigma_{y}^{2} - \sigma_{x}^{2} + 2iT_{xy})d_{y}^{2}\},$$

$$Pds = -\frac{1}{2}i\{(\sigma_{x}^{2} + \sigma_{y}^{2})d_{y}^{2} + (\sigma_{y}^{2} - \sigma_{x}^{2} - 2iT_{xy}^{2})d_{y}^{2}\}.$$
(29)

Now γ is the contour of the triangle. Substituting (29) in equations (9, 10) we shall have the complex functions in the form of integrals. They are evaluated by splitting each integral into three integrals, each one along one side of the boundary. If the radius vector joining a fixed point (either in the matrix or in the inclusion) to a moving point on the boundary, traces an angle in the anticlockwise direction, the angle will be positive, but negative otherwise. Thus if Θ_1 , Θ_2 , Θ_3 are angles subtended by sides AB, BC, and CA respectively, at any point z, Fig. 6 p. 136, the complex functions are

$$\phi'(z) = -\frac{\sigma_{x} + \sigma_{y}^{*}}{4\pi \cdot (\omega + 1)} \left(\frac{\sigma_{x}^{*} - \sigma_{x}^{*} + 2i \cdot (\pi_{y}^{*})}{4\pi \cdot (\omega + 1)} \right)$$

$$\times \left[\frac{1}{2} \log \frac{x_{1}^{2} + y_{2}^{2}}{x^{2} + y_{1}^{2}} + i\theta_{1} \right]$$

$$+ \frac{b - a - ic}{b - a + ic} \left(\frac{1}{2} \log \frac{x_{2}^{2} + y_{1}^{2}}{x_{1}^{2} + y_{2}^{2}} + i\theta_{2} \right)$$

$$+ \frac{b - ic}{b + ic} \left(\frac{1}{2} \log \frac{x_{2}^{2} + y_{1}^{2}}{x_{1}^{2} + y_{2}^{2}} + i\theta_{3} \right), \qquad (30)$$

Where
$$x_1 = x - a$$
, $x_2 = x - b$, $y_1 = y - c$.

$$\psi'(z) = -\alpha \left(\frac{\sigma_{3}^{\circ} - \sigma_{x}^{\circ} - 2i \, \Im_{x}^{\circ} y}{4\pi \, (\alpha + 1)} \right) \left(\theta_{1} + \theta_{2} + \theta_{3} \right) \\
+ \frac{i \left(\sigma_{x}^{\circ} + \sigma_{3}^{\circ} \right)}{4\pi} \frac{\alpha - 1}{\alpha + 1} \left[\frac{1}{2} \log \frac{x_{1}^{2} + y_{1}^{2}}{x_{2}^{2} + y_{1}^{2}} + i \theta_{1} \right] \\
+ \frac{b - \alpha - ic}{b - \alpha + ic} \left(\frac{1}{2} \log \frac{x_{2}^{2} + y_{1}^{2}}{x_{1}^{2} + y_{2}^{2}} + i \theta_{2} \right) \\
+ \frac{b - ic}{b + ic} \left(\frac{1}{2} \log \frac{x_{1}^{2} + y_{1}^{2}}{x_{1}^{2} + y_{1}^{2}} + i \theta_{3} \right) \right] \\
- \frac{i \left(\sigma_{x}^{\circ} + \sigma_{3}^{\circ} \right)}{4\pi (\alpha + 1)} \left[Z \left(\frac{\alpha \, (x_{1}^{2} - y_{1}^{2} - \alpha x) + i y (\alpha_{1}^{2} - 2\alpha x)}{(x_{1}^{2} + y_{1}^{2}) (x_{1}^{2} + y_{2}^{2})} \right) \\
+ \left(\frac{2i \alpha c}{b - \alpha + ic} + \frac{b - \dot{\alpha} - ic}{b - \alpha + ic} Z \right) \left\{ \frac{-\alpha x x_{1} + b x x_{2}}{b - \alpha + ic} \right. \\
+ \alpha y_{1}^{2} - c^{2} x_{1} + 2 c y_{1}^{2} - \alpha^{2}b + \alpha b^{2} + i (y_{1}^{2} + y_{2}^{2}) \right\}$$

$$-\frac{ya^{2}+yc^{2}-2bxy+2axy-cy^{2}+cx^{2}+ca^{2}-2acx)}{(x_{2}^{2}+y_{1}^{2})(x_{1}^{2}+y^{2})}$$

$$+\frac{b-ic}{b+ic} \left\{ \frac{-bxx_{2}+c^{2}x-2exy+by^{2}}{b+ic} \right\}$$

$$+\frac{i(cyy_{1}-yb^{2}+2bxy-ex^{2})}{(x_{2}^{2}+y_{1}^{2})(x^{2}+y^{2})}$$

$$-\frac{i(\sigma_{1}^{2}-\sigma_{2}^{2}+u'(\tau_{2}^{2}))}{4\pi(\alpha+1)}\left[\frac{1}{2}\log\frac{x^{2}+y^{2}}{x^{2}+y^{2}}+i\theta_{1}\right]$$

$$+\left(\frac{b-a-ic}{b-a+ic}\right)^{2}\left\{\frac{1}{2}\log\frac{x^{2}+y^{2}}{x_{1}^{2}+y^{2}}+i\theta_{2}\right\}$$

$$+\left(\frac{b-ic}{b+ic}\right)^{2}\left\{\frac{1}{2}\log\frac{x^{2}+y^{2}}{x_{1}^{2}+y^{2}}+i\theta_{3}\right\}$$

$$+Z\left\{\frac{a(xx_{1}-y^{2})+i\gamma(a^{2}-2ax)}{(x^{2}+y^{2})(x_{1}^{2}+y^{2})}\right\}$$

$$+\left\{\frac{2iac(b-a-ic)}{(b-a+ic)^{2}}+\left(\frac{b-a-ic}{b-a+ic}\right)^{2}Z\right\}$$

$$\times\left(\frac{-axx_{1}+bxx_{2}+ay^{2}-c^{2}x_{1}+2cyx_{1}}{-a^{2}b+ab^{2}+i(y^{2}-y^{2}+y^{2})}\right)$$

$$+\frac{a^{2}b+ab^{2}+i(y^{2}-y^{2}+z^{2}+z^{2}-2acx)}{(x_{2}^{2}+y_{1}^{2})(x_{1}^{2}+y^{2})}$$

$$+\frac{b-ic}{b+ic}^{2}Z\left(\frac{-bxx_{2}+c^{2}x-2cxy+by^{2}}{-2acxy+c^{2}x-2cxy+by^{2}}\right)$$

$$+\frac{i(cyy_{1}-y_{1}^{2}+y_{1}^{2})(x_{1}^{2}+y^{2})}{(x_{2}^{2}+y_{1}^{2})(x_{1}^{2}+y^{2})}$$

$$+\frac{i(cyy_{1}-y_{1}^{2}+y_{1}^{2})(x_{1}^{2}+y^{2})}{(x_{2}^{2}+y_{1}^{2})(x_{1}^{2}+y^{2})}$$

$$(51)$$

It may be remembered that

$$\theta_1 + \theta_2 + \theta_3 = 2\pi$$
, if z lies inside the inclusion,
= 0, if z lies in the matrix.

Differentiating (30) with respect to z, we get

$$\phi''(z) = \frac{i(\sigma_y^0 - \sigma_x^0 + 2i\sigma_{xy}^0)}{4\pi(\alpha + 1)} \left[\frac{\alpha(x \times_1 - y^2) + iy(\alpha^2 - 2\alpha x)}{(x_1^2 + y^2)(x_1^2 + y^2)} + \frac{b - a - ic}{b - a + ic} \left(\frac{-\alpha x \times_1 + b \times x_2 + ay^2 - c^2 \times_1 + 2c \times_1 y}{-\alpha^2 b + ab^2 + i(yb^2 + yc^2 + 2a \times y - cy^2)} - \frac{-y\alpha^2 + yc^2 - 2b \times y - cy^2 + cx^2 - cx^2 - 2a \times c}{(x_2^2 + y_1^2)^2(x_1^2 + y^2)} + \frac{b - ic}{b + ic} \left(\frac{-b \times x_2 + c^2 \times - 2c \times y + b y^2}{+c(x_2^2 - yb^2 - yc^2 + 2b \times y - cx^2)} \right) - \frac{(32)}{(x_2^2 + y_1^2)(x_2^2 + y_2^2)} \right].$$

The stress field in the matrix is obtained directly by substituting (30), (31) and (32) in (1). However, for the stresses in the inclusion we have to add the initial stresses (28) to those given by the complex function and (1). It can be easily verified that the normal and tangential stresses are continuous in each side of the triangle.

The interesting case of pure dilatation ($\delta_l=\delta_L$, $\delta_3=0$) is studied further. In this case the stress field in the inclusion is given by

$$(\sigma_{x} + \sigma_{y})_{i} = (\sigma_{x} + \sigma_{y}^{0})_{i} \xrightarrow{\alpha-1}$$

$$(\sigma_{3} - \sigma_{x} + 2i \tau_{xy})_{i} = \frac{\sigma_{x}^{2} + \sigma_{3}^{2}}{4\pi} \frac{\alpha - 1}{\alpha + 1} \left[\frac{c(b - a)}{(b - a)^{2} + c^{2}} \frac{ds}{\alpha + 1} \right]$$

$$+ \frac{bc}{b^{2} + c^{2}} \log \frac{x^{2} + y^{2}}{x^{2} + y^{2}} - \Theta_{1} + \frac{(b - a)^{2} - c^{2}}{(b - a)^{2} + c^{2}} G_{2}$$

$$+ \frac{b^{2} - c^{2}}{b^{2} + c^{2}} \Theta_{3} + i \left\{ \log \frac{x^{2} + y^{2}}{x^{2} + y^{2}} + \frac{b^{2} - c^{2}}{b^{2} + c^{2}} \log \frac{x^{2} + y^{2}}{x^{2} + y^{2}} + \frac{(b - a)^{2} + c^{2}}{(b - a)^{2} + c^{2}} \log \frac{x^{2} + y^{2}}{x^{2} + y^{2}} + \frac{(b - a)^{2} + c^{2}}{(b - a)^{2} + c^{2}} \Theta_{2} + \frac{4bc}{b^{2} + c^{2}} \Theta_{3} \right\} \right]$$

Lines of maximum shearing stress in the inclusion have been drawn in Fig.7, p. 137 , for a few particular cases. The maximum shearing stress is highly concentrated near the corners as expected.

Integrating (30) and (31) with respect to z

$$\phi(z) = -\frac{\sigma_{x}^{\circ} + \sigma_{y}^{\circ}}{4\pi(\alpha+1)} \left(\theta_{1} + \theta_{2} + \theta_{3} \right) Z$$

$$-\frac{i}{4\pi(\alpha+1)} \left(\frac{\sigma_{y}^{\circ} - \sigma_{x}^{\circ} + \pi i \tau_{xy}}{4\pi(\alpha+1)} \right) \left[\frac{1}{2} \log \frac{x_{1}^{\circ} + y_{1}^{\circ}}{x_{1}^{\circ} + y_{1}^{\circ}} + i\theta_{1} \right]$$

$$+ \left(\frac{2 i \alpha c}{b - \alpha + i c} + \frac{b - \alpha - i c}{b - \alpha + i c} Z \right) \left(\frac{1}{2} \log \frac{x_{1}^{\circ} + y_{1}^{\circ}}{x_{1}^{\circ} + y_{2}^{\circ}} + i\theta_{2} \right)$$

$$+ \frac{b - i c}{b + i c} Z \left(\frac{1}{2} \log \frac{x_{1}^{\circ} + y_{1}^{\circ}}{x_{1}^{\circ} + y_{2}^{\circ}} + i\theta_{3} \right) \right]$$

$$+ \frac{b - i c}{b + i c} Z \left(\frac{1}{2} \log \frac{x_{1}^{\circ} + y_{2}^{\circ}}{x_{1}^{\circ} + y_{2}^{\circ}} + i\theta_{3} \right)$$

$$(33)$$

$$\Psi(z) = \frac{\sigma_{y}^{\circ} - \sigma_{x}^{\circ} + 2i f_{x}^{\circ}}{4\pi} \frac{\alpha}{\alpha + i} \left(\theta_{1} + \theta_{2} + \theta_{3} \right) Z$$

$$+ \frac{i \left(\sigma_{x}^{\circ} + \sigma_{y}^{\circ} \right)}{4\pi} \frac{\alpha - i}{\alpha + i} \left[Z \left(\frac{1}{2} \log \frac{x_{1}^{2} + y_{1}^{2}}{x_{1}^{2} + y_{2}^{2}} + i \theta_{1} \right) \right.$$

$$+ \left(\frac{3i\alpha c}{b - a + ic} + \left(\frac{b - a - ic}{b - a + ic} \right) Z \right) \left(\frac{1}{2} \log \frac{x_{2}^{2} + y_{1}^{2}}{x_{1}^{2} + y_{2}^{2}} + i \theta_{2} \right)$$

$$+ \frac{b - ic}{b + ic} Z \left(\frac{1}{2} \log \frac{x_{1}^{2} + y_{2}^{2}}{x_{2}^{2} + y_{1}^{2}} + i \theta_{3} \right) \right]$$

$$+ \frac{i \left(\sigma_{y}^{\circ} - \sigma_{x}^{\circ} + 2i f_{xy}^{\circ} \right)}{4\pi \left(\alpha + 1 \right)} \left[Z \left(\frac{1}{2} \log \frac{x_{1}^{2} + y_{2}^{2}}{x_{2}^{2} + y_{2}^{2}} + i \theta_{1} \right)$$

$$+ \left(\frac{2i\alpha c \left(b - a - ic \right)}{\left(b - a + ic \right)^{2}} + \left(\frac{b - a - ic}{b - a + ic} \right)^{2} Z \right)$$

$$+ \left(\frac{b - ic}{b + ic} \right)^{2} Z \left(\frac{1}{2} \log \frac{x_{1}^{2} + y_{2}^{2}}{x_{1}^{2} + y_{2}^{2}} + i \theta_{3} \right) \right].$$
(34)

The displacement fields in the inclusion and the matrix can be obtained through the complex potentials and the equation (2). For the particular case of pure dilation equilibrium shapes for a few cases have been drawn in Fig. 8, p. 137.

CHAPTER IV

CIRCULAR INCLUSION IN A HALF PLANE

An isolated force P is acting at the point γ of an elastic isotropic medium which is supposed occupying the upper half of the complex plane. Green and Zerna ((3)) have given the complex functions $\phi_{(Z)}$ and $\psi_{(Z)}$ which give the stress-displacement fields due to the point-force P. They were modified to a form suited to us and are given below.

$$\Phi'(z) = \frac{-P}{2\pi(\alpha+i)} \left(\frac{1}{z-\bar{y}} + \frac{\alpha}{z-\bar{y}} \right) + \frac{P}{2\pi(\alpha+i)} \left(\frac{1}{z-\bar{y}} + \frac{\bar{y}-z}{(z-\bar{y})^2} \right), \tag{35}$$

$$\psi'(z) = \frac{\bar{P}}{2\bar{\pi}(\alpha+1)} \left\{ \frac{\alpha}{z-y} + \frac{3z-y}{(z-\bar{y})^2} - \frac{2z(z-y)}{(z-\bar{y})^3} \right\} + \frac{\bar{P}}{2\bar{\pi}(\alpha+1)} \left\{ \frac{-\bar{y}}{(z-y)^2} + \frac{\alpha}{z-\bar{y}} - \frac{\alpha z}{(z-\bar{y})^2} \right\}, \quad (36)$$

where \vec{P} is complex conjugate of P; $\alpha = (3-\nu)/(1+\nu)$ for plane stress case and $\alpha = 3-4\nu$ for plane strain case. Thus, when there is a continuous layer of point-forces acting along an arc γ of the half plane, the cumulative effect will be given by

$$\phi'(z) = \frac{1}{2\pi(\alpha+1)} \left\{ \int_{\gamma}^{-Pds} \frac{-Pds}{z-\overline{y}} - \int_{\gamma}^{-\frac{\alpha}{2}} \frac{\alpha Pds}{z-\overline{y}} + \int_{\gamma}^{-\frac{\overline{P}ds}{\overline{z}-\overline{y}}} - \int_{\gamma}^{-\frac{\overline{P}(z-\overline{y})ds}{(z-\overline{y})^{2}} \right\}, \quad (37)$$

$$\psi'(z) = \left\{ \int_{\gamma}^{\alpha} \frac{Pds}{z-5} + \int_{\gamma}^{\alpha} \frac{P(3z-5)ds}{(z-5)^{2}} - \int_{\gamma}^{\alpha} \frac{2Pz(z-5)}{(z-5)^{3}} - \int_{\gamma}^{\alpha} \frac{P\overline{s}ds}{(z-5)^{2}} + \int_{\gamma}^{\alpha} \frac{Pds}{(z-5)^{2}} - \int_{\gamma}^{\alpha} \frac{z\alpha Pds}{(z-5)^{2}} \right\}$$
(38)

Let us now consider the case of a circular inclusion of radius unity and its centre at a distance ℓ from the leading edge. $(z-i\ell)(z+i\ell)\leq \ell$ can be taken to represent the inclusion, y - axis

passing through the centre as shown in the Fig. 9, p. 138 . Complex potentials, stresses and displacements obtained due to a layer of point-forces will be marked with subscripts i and — according as they refer to the inclusion or to the matrix.

The inclusion in the absence of the matrix tends to undergo the displacements characterised by

$$u = \delta_{1}x + \delta_{3}(x-\ell),$$
 $v = \delta_{2}(y-\ell) + \delta_{3}x,$
(39)

whence the homogeneous strains are

$$e_{xx} = \delta_1$$
, $e_{xy} = \delta_3$, and $e_{yy} = \delta_2$.

First we shall consider the case of principal strains (δ_3 =0). In the later part of this chapter, the case of pure shear will be dealt with. If the deformations (39) are opposed, the stress field generated in the inclusion will be

$$\sigma_{\chi}^{\circ} = -\{ \lambda(\delta_{1}+\delta_{2}) + 2 \mu \delta_{1} \},
\sigma_{\chi}^{\circ} = -\{ \lambda(\delta_{1}+\delta_{2}) + 2 \mu \delta_{2} \},
\tau_{\chi \chi} = -2 \mu \delta_{3} = 0$$
(40)

The point-force distribution which comes into play on the boundary $(z-i\ell)(z+i\ell)$ in this case as found from (40) and (32), will be

$$Pds = -i(\lambda + \mu)(\delta_1 + \delta_2)dy + i\mu(\delta_1 - \delta_2)d\bar{y},$$

$$Pds = -i\mu(\delta_1 - \delta_2)dy + i(\mu + \lambda)(\delta_1 + \delta_2)d\bar{y}.$$
(41)

We substitute these expressions in (35) and (36) and evaluate the

contour integrals. It may be noted that ' is the inclusion boundary where we have the following relations

$$\bar{S} = \frac{1}{S - i\ell} - i\ell$$
 and $d\bar{S} = \frac{1}{(S - i\ell)^2} dS$

These relations are given because they are used in the integration. The expressions look simpler, if the substitutions $z_1 = z + i\ell = \lambda_1 e^{i\theta_1}$, are made. Thus,

$$\phi_{i}'(z) = \frac{(\lambda + \lambda)(S_{1} + \delta_{2})}{\omega + 1} - \frac{(\lambda + \lambda)(S_{1} + S_{2})(\omega - 1)}{\omega + 1} - \frac{1}{Z_{i}^{2}} + \frac{\lambda(S_{1} - S_{2})}{\omega + 1} \left(-\frac{1}{Z_{i}^{2}} + \frac{\lambda(i)!}{Z_{i}^{3}} + \frac{3}{Z_{i}^{4}} \right),$$
(42)

$$\Psi_{i}'(z) = \frac{(\lambda + \mu)(\delta_{1} + \delta_{2})(\alpha - 1)}{\alpha + 1} \left(\frac{-1}{Z^{2}} + \frac{2i\ell}{Z^{3}} \right) - \frac{\mu(\delta_{1} - \delta_{2})}{\alpha + 1} \left(\alpha - \frac{10i\ell}{Z^{3}} - \frac{12\ell^{2}}{Z^{4}} - \frac{9}{Z^{4}} + \frac{12i\ell}{Z^{5}} \right)$$

$$= \frac{43}{\alpha + 1} \left(\alpha - \frac{10i\ell}{Z^{3}} - \frac{12\ell^{2}}{Z^{4}} - \frac{9}{Z^{4}} + \frac{12i\ell}{Z^{5}} \right)$$

$$\Phi_{n}'(z) = -\frac{(\lambda + \mu)(\delta_{1} + \delta_{2})(\omega - 1)}{\omega + 1} \frac{1}{Z_{1}^{2}} + \frac{\mu(\delta_{1} - \delta_{2})}{\omega + 1} \left(-\frac{1}{Z_{1}^{2}} - \frac{1}{Z_{2}^{2}} + \frac{4ib}{Z_{3}^{3}} + \frac{3}{Z_{1}^{6}} \right), \quad (44)$$

$$\Psi_{m}'(z) = \frac{(\lambda + \mu)(\delta_{1} + \delta_{2})(\alpha - 1)}{\alpha + 1} \left(\frac{1}{Z^{2}} - \frac{1}{Z^{2}} + \frac{2i\ell}{Z_{3}^{3}} \right) \\
- \frac{\mu(\delta_{1} - \delta_{2})}{\alpha + 1} \left(\frac{3}{Z^{4}} - \frac{2i\ell}{Z^{3}} - \frac{10i\ell}{Z^{3}} \right) \\
- \frac{12\ell^{2}}{Z^{4}} + \frac{12i\ell}{Z^{5}} - \frac{9}{Z^{4}} \right) \tag{45}$$

The stress field may be found from the above potentials by means of (1). But it must be emphasized that the inclusion had an initial stress field given by (40) and this must be added to the one got from the functions $\phi_i'(z)$ and $\psi_i'(z)$. Before proceeding further we can verify that the normal and tangential stresses are continuous across the inclusion boundary, of course, on the edge y = 0 the normal and tangential stresses vanish, as they should.

Stresses in the cartesian form are given below :

$$(\sigma_{\chi})_{i} = -\frac{(\gamma_{i} + \lambda_{i})(S_{i} + S_{2})(\alpha - 1)}{\alpha + 1} \left\{ 1 + (\chi^{2} - y_{i}^{2}) \frac{1}{A_{i}^{2}} + 4l(3y_{i} + \chi^{2} - y_{i}^{3}) \frac{1}{A_{i}^{6}} + 2(\chi^{4} - 6\chi^{2}y_{i}^{2} + y_{i}^{4}) \frac{1}{A_{i}^{6}} \right\}$$

$$-\frac{h(S_{i} - S_{2})}{\alpha + 1} \left\{ 1 + 2(\chi^{2} - y_{i}^{2}) \frac{1}{A_{i}^{4}} + 4l(3y_{i} + \chi^{2} - y_{i}^{3}) \frac{1}{A_{i}^{6}} + (2A_{i}^{2} + 24l^{2} + 3)(\chi^{4} - 6\chi^{2}y_{i}^{2} + y_{i}^{4}) \frac{1}{A_{i}^{8}} - 12(A_{i}^{2} + 24l^{2} + 3)(Sy_{i} + y_{i}^{5} - 10\chi^{2}y_{i}^{3}) \frac{1}{A_{i}^{10}} - 12(\chi^{6} - 15\chi^{4}y_{i}^{2} + 15\chi^{2}y_{i}^{4} - y_{i}^{6}) \frac{1}{A_{i}^{10}} \right\},$$

$$(x_{3})_{i} = -(x_{1}+x_{1})(\delta_{1}+\delta_{2})(\alpha-1) \left\{-1+(x_{1}^{2}-y_{1}^{2})\frac{3}{x_{1}^{4}}\right\}$$

$$-(3y_{1}+x_{1}^{2}-y_{1}^{3})\frac{4\ell}{x_{1}^{6}} - 2(x_{1}^{4}-6x_{1}^{2}y_{1}^{2}+y_{1}^{4})\frac{1}{x_{1}^{4}}$$

$$+\frac{\lambda(\delta_{1}-\delta_{2})}{\alpha+1} \left\{1-2(x_{1}^{2}-y_{1}^{2})\frac{1}{x_{1}^{4}}\right\}$$

$$+20\frac{\ell}{x_{1}^{6}}(3y_{1}x_{1}^{2}-y_{1}^{3})$$

$$+(2x_{1}^{2}+15+24\ell^{2})(x_{1}^{4}-6x_{1}^{2}y_{1}^{2}+y_{1}^{4})\frac{1}{x_{1}^{6}}$$

$$-12\ell(x_{1}^{2}+2)(5y_{1}x_{1}^{4}-10x_{1}^{2}y_{1}^{3}+y_{1}^{5})\frac{1}{x_{1}^{6}}$$

$$-12\ell(x_{1}^{2}+2)(5y_{1}x_{1}^{4}-10x_{1}^{2}y_{1}^{3}+y_{1}^{5})\frac{1}{x_{1}^{6}}$$

$$\frac{(1xy)_{i}}{\chi_{i}} = \frac{(2x+4)(5i+52)(x-1)}{x+1} \times \left\{ \frac{2y_{i}}{\lambda_{i}^{4}} + \frac{4l}{\lambda_{i}^{6}} (x^{2}-3y_{i}^{2}) + \frac{8}{\lambda_{i}^{6}} (y_{i}^{3}-x^{2}y_{i}) \right\} + \frac{4l}{\lambda_{i}^{6}} (x^{2}-3y_{i}^{2}) + \frac{6}{\lambda_{i}^{6}} (3y_{i}^{3}+10y_{i}^{3}x_{i}^{2}+3y_{i}^{5}) + \frac{6}{\lambda_{i}^{6}} (3y_{i}^{3}+10y_{i}^{3}x_{i}^{2}+3y_{i}^{6}) + \frac{6}{\lambda_{i}^{6}} (3y_{i}^{3}+10y_{i}^{3}x_{i}^{2}+3y_{i}^{6}) + \frac{6}{\lambda_{i}^{6}} (3y_{i}^{3}+10y_{i}^{2}+3y_{i}^{6}) + \frac{6}{\lambda_{i}^{6}} (3y_{i}^{3}+10y_{i}^{2}+3y_{i}^{6}) + \frac{6}{\lambda_{i}^{6}} (3y_{i}^{3}+10y_{i}^{2}+3y_{i}^{6}) + \frac{6}{\lambda_{i}^{6}} (3y_{i}^{3}+10y_{i}^{2}+3y_{i}^{6}) + \frac{6}{\lambda_{i}^{6}} (3y_{i}^{3}+10y_{i}^{6}+10y_{i}^{6}+10y_{i}^{6}+10y_{i}^{6}+10y_{i}^{6}+10y_{i}^{6}+10y_{i}^{6}+10y_{i}^{6}+10y_{i}^{6}+10y_{i}^{6}+10y_{i}^{6}+10y_{i}^{6}+10y_{i}^{6}+10y_{i}^{6}+10y_{i}^{6}+10y_{i}^{6}+10y_{i}^{6}+10y_{i}^{6}+$$

where

$$y_1 = y + \ell$$
, $y_2 = y - \ell$, $x_1^2 = x^2 + y_1^2$, $x_2^2 = x^2 + y^2$ and $x_3^2 = x^2 + y^2$.

The stresses in the matrix are directly obtained by the potentials $\phi_n'(z)$ and $\psi_n'(z)$. They are

$$\begin{split} &(\sigma_{\mathbf{x}})_{m} = -\frac{(\lambda + h_{1})(\delta_{1} + \delta_{2})(\lambda - 1)}{\lambda + 1} \left\{ \frac{x^{2} - y^{1}}{\lambda_{1}^{2}} + \frac{x^{2} - y^{1}}{\lambda_{2}^{2}} \right. \\ &+ \frac{4\ell}{\lambda_{1}^{4}} \left(3y_{1}x^{2} - y_{3}^{3} \right) + \frac{2}{\lambda_{1}^{4}} \left(x^{4} - 6x^{2}y_{1}^{2} + y_{1}^{4} \right) \right\} \\ &- \frac{h_{1}(\delta_{1} - \delta_{2})}{\lambda_{1}^{4}} \left\{ \frac{2}{\lambda_{1}^{4}} \left(x^{2} - y_{2}^{2} \right) + \frac{2}{\lambda_{1}^{4}} \left(x^{2} - y_{1}^{2} \right) + \frac{4\ell}{\lambda_{1}^{4}} \left(3y_{1}x^{2} - y_{1}^{3} \right) + \left(2x_{1}^{2} + 3 + 24\ell^{2} \right) \left(x^{4} - 6x^{2}y_{1}^{2} + y_{1}^{4} \right) \right. \\ &+ \frac{(2x_{2}^{2} - 3)}{\lambda_{1}^{2}} \left(x^{4} - 6x^{2}y_{2}^{2} + y_{2}^{4} \right) \\ &- \frac{12\ell}{\lambda_{1}^{4}} \left(x^{4} - 6x^{2}y_{1}^{2} + y_{2}^{4} \right) \\ &- \frac{12\ell}{\lambda_{1}^{4}} \left(x^{4} - 15y_{1}^{2}x^{4} + 15x^{2}y_{1}^{4} - y_{1}^{6} \right) \right\}, \\ &\left(\sigma_{0}^{2} \right)_{nm} = - \frac{(2+h_{1})(\delta_{1} + \delta_{2})(\alpha - 1)}{\alpha + 1} \left\{ \left(x^{2} - y_{1}^{2} \right) + \frac{2}{\lambda_{1}^{4}} \left(x^{4} - 6x^{2}y_{1}^{2} + y_{1}^{4} \right) \right\} \\ &+ \frac{4\ell}{\lambda_{1}^{4}} \left(3y_{1}^{2}x - y_{1}^{2} \right) + \frac{2}{\lambda_{1}^{4}} \left(x^{4} - 6x^{2}y_{1}^{2} + y_{1}^{4} \right) \right\} \\ &+ \frac{4\ell}{\lambda_{1}^{4}} \left(3y_{1}^{2}x - y_{1}^{2} \right) + \frac{2}{\lambda_{1}^{4}} \left(x^{4} - 6x^{2}y_{1}^{2} + y_{1}^{4} \right) \right\} \\ &+ \frac{2\ell}{\lambda_{1}^{4}} \left(3y_{1}^{2}x - y_{1}^{2} \right) + \frac{2}{\lambda_{1}^{4}} \left(x^{4} - 6x^{2}y_{1}^{2} + y_{1}^{4} \right) \right\} \\ &+ \frac{2\ell}{\lambda_{1}^{4}} \left(3y_{1}^{2}x - y_{1}^{3} \right) + \left(2x_{1}^{2} + y_{1}^{4} \right) \frac{1}{\lambda_{1}^{4}} \\ &+ \frac{2\ell}{\lambda_{1}^{4}} \left(3y_{1}^{2}x^{2} - y_{1}^{3} \right) + \left(2x_{1}^{2} + y_{1}^{4} \right) \right\} \\ &+ \frac{2\ell}{\lambda_{1}^{4}} \left(3y_{1}^{2}x^{2} - y_{1}^{3} \right) + \left(2x_{1}^{2} + y_{1}^{4} \right) \frac{1}{\lambda_{1}^{4}} \\ &+ \frac{2\ell}{\lambda_{1}^{4}} \left(3y_{1}^{2}x^{2} - y_{1}^{3} \right) + \left(2x_{1}^{2} + y_{1}^{4} \right) \right] \\ &+ \frac{2\ell}{\lambda_{1}^{4}} \left(3y_{1}^{2}x^{2} - y_{1}^{3} \right) + \left(2x_{1}^{2} + y_{1}^{4} \right) \frac{1}{\lambda_{1}^{4}} \\ &+ \frac{2\ell}{\lambda_{1}^{4}} \left(3y_{1}^{2}x^{2} - y_{1}^{3} \right) + \left(2x_{1}^{2} + y_{1}^{4} \right) \frac{1}{\lambda_{1}^{4}} \\ &+ \frac{2\ell}{\lambda_{1}^{4}} \left(3y_{1}^{2}x^{2} - y_{1}^{3} \right) + \left(2x_{1}^{2} + y_{1}^{4} \right) \frac{1}{\lambda_{1}^{4}} \\ &+ \frac{2\ell}{\lambda_{1}^{4}} \left(3y_{1}^{2}x^{2} - y_{1}^{3} \right) + \left(2x_{1}^{2} + y_{1}^{4} \right) \frac{1}{\lambda_{1}^{4}} \\ &+ \frac{2\ell}{\lambda_{1}^$$

$$(T_{xy})_{m} = \frac{(\lambda + \mu)(\delta_{1} + \delta_{2})(\alpha - 1)}{\alpha + 1} \left\{ \frac{2y_{1}}{\lambda_{1}^{4}} - \frac{2y_{2}}{\lambda_{2}^{4}} + \frac{4\ell}{\lambda_{1}^{6}} (x^{2} - 3y_{1}^{2}) + \frac{8}{\lambda_{1}^{6}} (y_{1}^{3} - y_{1}x^{2}) \right\} + \frac{4\mu(\delta_{1} - \delta_{2})}{\alpha + 1} \left\{ (2\lambda_{2}^{2} - 3)(y_{2}^{3} - x^{3}y_{2}) \frac{1}{\lambda_{2}^{8}} - \frac{12\ell}{\lambda_{1}^{6}} (\lambda_{1}^{2} + 2)(x^{4} - 10x^{2}y_{1}^{2} + 5y_{1}^{4}) + \frac{1}{\lambda_{1}^{8}} (y_{1}^{3} - x^{2}y_{1}) \right\}$$

$$\times (2\lambda_{1}^{2} + 24\ell^{2} + 9) + \frac{3\ell}{\lambda_{1}^{6}} (x^{2} - 3y_{1}^{2}) + \frac{6}{\lambda_{1}^{6}} (3y_{1}x^{4} - 10x^{2}y_{1}^{3} + 3y_{1}^{5}) \right\}.$$

The hoop stress $\sigma_{\tilde{\chi}}$ on the edge can be found from the expression for $(\sigma_{\tilde{\chi}})_{\infty}$ given above by putting y=0.

$$(\sigma_{x})_{m} \Big|_{z=6} = \frac{-\frac{4(\delta_{1}+\delta_{2})(\lambda+\mu)(\alpha-1)}{\alpha+1}}{\frac{\alpha+1}{\alpha+1}} \frac{x^{2}-\ell^{2}}{\frac{\alpha+1}{\alpha+1}}$$

$$+ \frac{4\lambda(\delta_{1}-\delta_{2})}{\alpha+1} \Big\{ -\frac{2}{\lambda^{4}} (x^{2}-\ell^{2})$$

$$+ \frac{4\ell^{2}}{\lambda^{6}} (3x^{2}-\ell^{2}) + \frac{3}{\lambda^{8}} (x^{4}-6x^{2}\ell^{2}+\ell^{4}) \Big\}.$$

The normal and tangential stresses continuously transmitted by the bond on the boundary of the inclusion are given below:

$$(\sigma_{m})_{R_{2}=1} = -\frac{(\lambda + \lambda)(\delta_{1} + \delta_{2})(\alpha - 1)}{\alpha + 1} \left\{ 1 + \frac{2}{R_{1}^{2}} \cos 2\theta_{1} + \frac{2R}{R_{1}^{2}} \cos (2\theta_{2} - 2\theta_{1}) + \frac{2R}{R_{1}^{2}} \cos (2\theta_{2} - 2\theta_{1}) - \frac{1}{R_{1}^{2}} \cos (2\theta_{2} - 2\theta_{1}) - \frac{2R}{R_{1}^{2}} \sin (2\theta_{2} - 3\theta_{1}) \right\} - \frac{\lambda(\delta_{1} - \delta_{2})}{\alpha + 1} \left\{ \cos 2\theta_{1} - \frac{8R}{R_{1}^{2}} \sin 3\theta_{1} - \frac{6}{R_{1}^{2}} \cos 4\theta_{1} + \frac{2}{R_{1}^{2}} \cos 2\theta_{1} - \frac{8R}{R_{1}^{2}} \sin 3\theta_{1} - \frac{6}{R_{1}^{2}} \cos 4\theta_{1} + \frac{2}{R_{1}^{2}} \cos 2\theta_{1} - \frac{8R}{R_{1}^{2}} \sin 3\theta_{1} - \frac{6}{R_{1}^{2}} \cos 4\theta_{1} + \frac{2}{R_{1}^{2}} \cos 2\theta_{1} - \frac{8R}{R_{1}^{2}} \sin 3\theta_{1} - \frac{6}{R_{1}^{2}} \cos 4\theta_{1} + \frac{2}{R_{1}^{2}} \cos 2\theta_{1} - \frac{8R}{R_{1}^{2}} \sin 3\theta_{1} - \frac{6}{R_{1}^{2}} \cos 4\theta_{1} + \frac{2}{R_{1}^{2}} \cos 2\theta_{1} - \frac{8R}{R_{1}^{2}} \sin 3\theta_{1} - \frac{6}{R_{1}^{2}} \cos 4\theta_{1} + \frac{2}{R_{1}^{2}} \cos 2\theta_{1} - \frac{8R}{R_{1}^{2}} \sin 3\theta_{1} - \frac{6}{R_{1}^{2}} \cos 4\theta_{1} + \frac{2}{R_{1}^{2}} \cos 2\theta_{1} - \frac{8R}{R_{1}^{2}} \sin 3\theta_{1} - \frac{6}{R_{1}^{2}} \cos 4\theta_{1} + \frac{2}{R_{1}^{2}} \cos 2\theta_{1} - \frac{8R}{R_{1}^{2}} \sin 3\theta_{1} - \frac{6}{R_{1}^{2}} \cos 4\theta_{1} + \frac{2}{R_{1}^{2}} \cos 2\theta_{1} - \frac{2}{R_{1}^{2}} \cos 2\theta_{1} + \frac{2}{R_{1}^{2}} \cos 2\theta_{1} - \frac{2}{R_{1}^{2}} \cos 2\theta_{1} - \frac{2}{R_{1}^{2}} \cos 2\theta_{1} - \frac{2}{R_{1}^{2}} \cos 2\theta_{1} + \frac{2}{R_{1}^{2}} \cos 2\theta_{1} - \frac{2}{R_{1}^{2}} \cos 2\theta_{1} - \frac{2}{R_{1}^{2}} \cos 2\theta_{1} + \frac{2}{R_{1}^{2}} \cos 2\theta_{1} - \frac{2}{R_{1}^{2}} \cos 2\theta_{1} + \frac{2}{R_{1}^{2}} \cos 2\theta_{1} - \frac{2}{R_{1}^{2}} \cos 2\theta_{1} + \frac{2}{R_{1}^{2$$

$$+\frac{21}{2^{\frac{3}{4}}}\cos(2\theta_{2}-3\theta_{1}-\theta)+\frac{12l^{\frac{3}{4}}}{2^{\frac{3}{4}}}\sin(2\theta_{2}-4\theta_{1}-\theta)-\frac{10l}{2^{\frac{3}{4}}}\sin(2\theta_{2}-3\theta_{1})$$

$$+\frac{3(3+4l^{2})}{2^{\frac{3}{4}}}\cos(2\theta_{2}-4\theta_{1})+\frac{12l}{2^{\frac{5}{4}}}\sin(2\theta_{2}-5\theta_{1})$$

$$\frac{(T_{ns})}{\Lambda_{2}^{-1}} = \frac{(\lambda + \lambda)(\delta_{1} + \delta_{2})(\lambda - 1)}{\lambda + 1} \left\{ \frac{2\Lambda}{\Lambda_{3}^{-3}} \sin(2\theta_{2} - 3\theta_{1} - \theta) - \frac{1}{\Lambda_{2}^{-2}} \sin(2\theta_{2} - 2\theta_{1}) \right\} + \frac{2\ell}{\Lambda_{3}^{-3}} \cos(2\theta_{2} - 3\theta_{1}) \left\{ + \frac{2\ell}{\Lambda_{3}^{-3}} \cos(2\theta_{2} - 3\theta_{1}) \right\} + \frac{12\ell\Lambda}{\Lambda_{3}^{-3}} \cos(2\theta_{2} - 3\theta_{1} - \theta) - \frac{12\ell\Lambda}{\Lambda_{3}^{-3}} \cos(2\theta_{2} - 3\theta_{1}) \right\} - \frac{12\ell}{\Lambda_{3}^{-5}} \sin(2\theta_{2} - 5\theta_{1} - \theta) + \frac{10\ell}{\Lambda_{3}^{-3}} \cos(2\theta_{2} - 3\theta_{1}) + \frac{3(3 + 4\ell^{2})}{\Lambda_{3}^{-4}} \sin(2\theta_{2} - 4\theta_{1}) - \frac{12\ell}{\Lambda_{3}^{-5}} \cos(2\theta_{2} - 5\theta_{1}) \right\}.$$

The hoop stress is discontinuous across the boundary:

$$(\sigma_{5})_{i} \Big|_{\lambda_{2}=1} = \frac{-(\lambda+\lambda)(\delta_{1}+\delta_{2})(\omega-1)}{\omega+1} \Big\{ 1 + \frac{\lambda}{\lambda_{1}^{2}} \cos 2\theta_{1} + \frac{1}{\lambda_{1}^{2}} \cos (2\theta_{2}-2\theta_{1}) \\ - \frac{2\lambda}{\lambda_{1}^{3}} \cos (2\theta_{2}-3\theta_{1}-\theta) + \frac{2\ell}{\lambda_{1}^{3}} \sin (2\theta_{2}-3\theta_{1}) \Big\} \\ + \frac{\lambda(\delta_{1}-\delta_{2})}{\omega+1} \Big\{ \cos 2\theta_{2} - \frac{\lambda}{\lambda_{1}^{2}} \cos 2\theta_{1} + \frac{8\ell}{\lambda_{1}^{3}} \sin 3\theta_{1} \\ + \frac{\delta}{\lambda_{1}^{4}} \cos 4\theta_{1} + \frac{2\lambda}{\lambda_{1}^{3}} \cos (2\theta_{2}-3\theta_{1}-\theta) + \frac{12\ell\lambda}{\lambda_{1}^{4}} \sin (2\theta_{2}-4\theta_{1}-\theta) \\ - \frac{10\ell}{\lambda_{1}^{3}} \sin (2\theta_{2}-3\theta_{1}) + \frac{3}{\lambda_{1}^{4}} (3+4\ell^{2}) \cos (2\theta_{2}-4\theta_{1}) \\ - \frac{12\lambda}{\lambda_{1}^{5}} \cos (2\theta_{2}-5\theta_{1}-\theta) + \frac{12\ell}{\lambda_{1}^{5}} \sin (2\theta_{2}-5\theta_{1}) \Big\}$$

$$\begin{aligned} & \left| \frac{(3)_{m}}{\Delta_{z}^{2}} \right| = \frac{(\lambda + \mu)(\delta_{1} + \delta_{2})(\lambda - 1)}{\lambda + 1} \left\{ 1 - \frac{2}{\lambda_{z}^{2}} \cos 2\theta_{1} + \frac{1}{2} \cos (2\theta_{2} - 2\theta_{1}) \right. \\ & + \frac{2\lambda}{\lambda_{z}^{3}} \cos (2\theta_{2} - 3\theta_{1} - \theta) - \frac{2\ell}{\lambda_{z}^{3}} \sin (2\theta_{2} - 3\theta_{1}) \right\} \\ & + \frac{\mu(\delta_{1} - \delta_{2})}{\lambda + 1} \left\{ -3 \cos 2\theta_{2} - \frac{2}{\lambda_{z}^{2}} \cos 2\theta_{1} + \frac{8\ell}{\lambda_{z}^{3}} \sin 3\theta_{1} \right. \\ & + \frac{6}{\lambda_{z}^{4}} \cos 4\theta_{1} + \frac{2\lambda}{\lambda_{z}^{3}} \cos (2\theta_{2} - 3\theta_{1} - \theta) - 10 \frac{\ell}{\lambda_{z}^{4}} \sin (2\theta_{2} - 3\theta_{1}) \\ & + \frac{12\ell\lambda}{\lambda_{z}^{4}} \sin (2\theta_{2} - 4\theta_{1} - \theta) - \frac{12\lambda}{\lambda_{z}^{5}} \cos (2\theta_{2} - 5\theta_{1} - \theta) \\ & + \frac{12\ell}{\lambda_{z}^{5}} \sin (2\theta_{2} - 4\theta_{1} - \theta) - \frac{12\lambda}{\lambda_{z}^{5}} \cos (2\theta_{2} - 5\theta_{1} - \theta) \\ & + \frac{12\ell}{\lambda_{z}^{5}} \sin (2\theta_{2} - 5\theta_{1}) + \frac{3}{\lambda_{z}^{5}} \sin (2\theta_{2} - 4\theta_{1}) \right\}. \end{aligned}$$

In Table 1, we have given the values of normal, tangential and hoop stresses along the boundary of the inclusion for various values of distance ℓ . In Figs.16-23, p. 141-144, these have been graphically shown for the case when $\ell=1.5$.

The stresses between the points A and B, Fig. 9 p. 138, will be of greater interest from practical point of view. The stress field near the inclusion and the leading edge was evaluated, for plane stress case taking Poisson's ratio equal to 1/3. Fig.11-12 p. 139 shows the variation of stresses at B with the variation of the parameter ℓ . It is observed that, when this parameter is more than 5, the stresses in the matrix would differ from those in a similar region of an infinite plate, with an inclusion embedded in it, by about five percent. And therefore, for all practical purposes, for ℓ greater

than five, the model may be taken to be a circular inclusion in an infinite medium. It is also seen that when the inclusion is almost touching the edge, the tangential stress on the inclusion boundary is maximum at the points D and E, Fig. 9 p. 138, where e_2 almost equals -65° and 245° . More over the hoop stress σ_5 at the point B is greater in the case when $\delta_1 = \delta$, $\delta_2 = 0$, than that in the case when $\delta_1 = 0$, $\delta_2 = 0$. In Fig. 13 p. 140 the variation of hoop stress σ_3 at the point A of the leading edge has been shown.

The case of pure shear can be dealt with in a similar fashion. In this case we have in equation (39) $\delta_1 = 0$, $\delta_2 = 0$ and $\delta_3 \neq 0$. The relevant complex potential functions are given below.

$$\phi_{i}^{\prime}(z) = \frac{2\lambda \delta_{3}}{2+1} \left(\frac{i}{z^{2}} + \frac{4\ell}{z^{3}} - \frac{3i}{z^{4}} \right),$$
 (46)

$$\Psi'(z) = \frac{2 h \delta_3}{2 + 1} \left(i \propto + \frac{10\ell}{Z_3} - \frac{12i\ell^2}{Z_4^4} - \frac{9i}{Z_4^4} - \frac{12\ell}{Z_5^5} \right),$$
 (47)

$$\Phi_{m}^{1}(z) = \frac{2\mu\delta_{3}}{\alpha+1} \left(\frac{\dot{z}}{z_{1}^{2}} - \frac{\dot{z}}{z_{2}^{2}} + \frac{4\ell}{z_{3}^{3}} - \frac{3\dot{z}}{z_{1}^{4}} \right), \tag{48}$$

$$\frac{4(2)}{\sqrt{2}} = \frac{2h \delta_3}{\sqrt{2}} \left(\frac{-32}{2^{\frac{1}{3}}} - \frac{2\ell}{2^{\frac{3}{3}}} + \frac{10\ell}{2^{\frac{3}{3}}} \right) \\
\frac{2h}{\sqrt{2}} = \frac{2h \delta_3}{\sqrt{2}} \left(\frac{-32}{2^{\frac{3}{3}}} - \frac{2\ell}{2^{\frac{3}{3}}} - \frac{10\ell}{2^{\frac{3}{3}}} \right) \\
\frac{9i}{2^{\frac{3}{4}}} = \frac{12i\ell^2}{2^{\frac{3}{4}}} - \frac{12i\ell^2}{2^{\frac{3}{3}}} - \frac{12i\ell^2}{2^{\frac{3}{3}}} \right)$$
(49)

Once the displacement fields in the matrix and in the inclusion are known, we may determine the equilibrium shape of the inclusion from one of them. Of course, when we talk of displacement field in the inclusion we mean the displacement field measured relatively to the stage at which the inclusion has been reduced to the dimensions of the hole.

In the case of principal strains, integrating the expressions (42), (43), (44) and (45) of p. 28, we obtain

$$\psi_{i}(z) = \frac{(\lambda + \mu)(\delta_{i} + \delta_{2})(\alpha - 1)}{\alpha + 1} \left(\frac{1}{Z_{i}} - \frac{i\ell}{Z_{i}^{2}} \right) \\
+ \frac{i\ell(\lambda + \mu)(\delta_{i} + \delta_{2})}{\alpha + 1} - \frac{\lambda(\delta_{i} - \delta_{2})}{\alpha + 1} \\
\times \left(\alpha z_{i} + \frac{si\ell}{Z_{i}^{2}} + \frac{4\ell^{2}}{Z_{i}^{3}} + \frac{3}{Z_{i}^{3}} - \frac{3i\ell}{Z_{i}^{4}} \right), \tag{51}$$

$$\varphi_{m}(z) = \frac{(2+\omega)(\delta_{1}+\delta_{2})(\omega-1)}{\omega+1} \frac{1}{Z_{1}} + \frac{\omega(\delta_{1}-\delta_{2})}{\omega+1} \left(\frac{1}{Z_{1}} + \frac{1}{Z_{2}} - \frac{2i\ell}{Z_{1}^{2}} - \frac{1}{Z_{1}^{3}}\right),$$
(52)

$$\Psi'_{n}(z) = \frac{(\lambda + \lambda)(\delta_{1} + \delta_{2})(\lambda - 1)}{\lambda + 1} \left(\frac{1}{Z_{1}} - \frac{1}{Z_{2}} - \frac{il}{Z_{1}^{2}} \right)$$

$$- \frac{\lambda(\delta_{1} - \delta_{2})}{\lambda + 1} \left\{ \frac{5il}{Z_{1}^{2}} + \frac{4l^{2}}{Z_{3}^{3}} + \frac{3}{Z_{3}^{3}} - \frac{3il}{Z_{1}^{4}} + \frac{il}{Z_{2}^{2}} - \frac{1}{Z_{2}^{3}} \right\}.$$
(53)

The displacement fields both in the inclusion and the matrix are given directly by the potential functions and the equation (2). In cartesian form

$$(2 \mu u)_{i} = \frac{(\lambda + \mu)(\delta_{i} + \delta_{2})(\lambda - 1)}{\lambda + 1} \times \left(1 - \frac{1}{2^{2}_{i}}\right) + \frac{\lambda}{2^{2}_{i}} + \frac{4 \ell y_{i}}{2^{4}_{i}} + \frac{(\lambda^{2} - 3y_{i}^{2}) \frac{1}{2^{4}_{i}}}{\lambda^{4}_{i}} + \frac{\lambda \mu \chi(\delta_{i} - \delta_{2})}{\lambda^{4}_{i}} \left\{ 1 + \frac{1}{2^{2}_{i}} - \frac{4 \ell y_{i}}{2^{4}_{i}} - (\lambda^{2} - 3y_{i}^{2}) \frac{1}{2^{6}_{i}} \right\} + \frac{\mu(\delta_{i} - \delta_{2})\chi}{\lambda + 1} \left\{ \frac{12 \ell y_{i}}{2^{4}_{i}} + (\lambda^{2} + 3 + 8\ell^{2}) \times (\chi^{2} - 3y_{i}^{2}) \frac{1}{2^{6}_{i}} - \frac{8 \ell}{2^{8}_{i}} (3 + 2\lambda^{2}_{i}) (y_{i} \chi^{2} - y_{i}^{3}) - \frac{3}{2^{8}_{i}} (\chi^{4} - 10\chi^{2}y_{i}^{2} + 5 y_{i}^{4}) \right\},$$

$$\begin{array}{l} \left(2 \mu v_{i}\right)_{i} = \frac{\left(2 + \mu_{i}\right) \left(\delta_{i} + \delta_{2}\right) \left(d - 1\right)}{d + 1} \left\{ y_{1} - \frac{y_{1}}{\lambda_{1}^{2}} - \frac{d y_{1}}{\lambda_{1}^{2}} - \frac{d y_{1}}{\lambda_{1}^{2}} \right\} \\ - \frac{2\ell}{\lambda_{1}^{4}} \left(x^{2} - y_{1}^{2}\right) + \frac{1}{\lambda_{1}^{4}} \left(3y_{1}x^{2} - y_{1}^{2}\right) \right\} \\ + \frac{d\mu_{1}\left(\delta_{1} - \delta_{2}\right)}{d + 1} \left\{ y_{2} + \frac{y_{1}}{\lambda_{1}^{2}} + \frac{2\ell}{\lambda_{1}^{4}} \left(x^{2} - y_{1}^{2}\right) - \frac{3}{\lambda_{1}^{4}} \left(3y_{1}x^{2} - y_{1}^{3}\right) \right\} + \frac{\mu_{1}\left(\delta_{1} - \delta_{2}\right)}{d + 1} \left\{ -\frac{6\ell}{\lambda_{1}^{4}} + \frac{1}{\lambda_{1}^{4}} \left(3y_{1}x^{2} - y_{1}^{3}\right) \left(\lambda_{1}^{2} + 3 + 8\ell^{2}\right) - \frac{8\ell}{\lambda_{1}^{4}} \left(3 + 2\lambda_{1}^{2}\right) \left(y_{1}x^{3} - y_{1}^{3}x\right) - \frac{3}{\lambda_{1}^{3}} \left(5y_{1}x^{4} - 10x^{2}y_{1}^{3} + y_{1}^{5}\right) \right\}, \\ \left(2 \mu u_{1}\right)_{n_{1}} = \frac{\left(2 + \mu_{1}\right)\left(\delta_{1} + \delta_{2}\right)\left(d - 1\right)}{d + 1} \times \left\{ \frac{\alpha}{\lambda_{1}^{2}} - \frac{1}{\lambda_{1}^{2}} + \frac{1}{\lambda_{2}^{2}} \left(x^{2} - 3y_{1}^{2}\right)\left(\lambda_{1}^{2} + 3 + 8\ell^{2}\right) + \frac{1}{\lambda_{2}^{2}} \left(\lambda_{2}^{2} - 1\right)\left(x^{2} - 3y_{1}^{2}\right) - \frac{8\ell}{\lambda_{1}^{2}} \left(3 + 2\lambda_{1}^{2}\right) \\ \times \left(y_{1}x^{2} - y_{1}^{3}\right) - \frac{3}{\lambda_{1}^{3}} \left(x^{4} - 10x^{2}y_{1}^{2} + 5y_{1}^{4}\right)\right\}, \end{array}$$

$$\left(2 \times 4 \right)_{N} = \frac{(\lambda + \lambda) (\delta_{1} + \delta_{2})(\alpha - 1)}{\alpha + 1} \left\{ \frac{-\alpha y_{1}}{\lambda_{1}^{2}} - \frac{y_{1}}{\lambda_{1}^{2}} + \frac{y_{2}}{\lambda_{2}^{2}} \right.$$

$$\left. - \frac{2\ell}{s_{1}^{4}} (x^{2} - y_{1}^{2}) + (3y_{1}x^{2} - y_{1}^{3}) \frac{1}{\lambda_{1}^{4}} \right\} + \frac{\alpha \mathcal{M}(\delta_{1} - \delta_{2})}{\alpha + 1}$$

$$\times \left\{ \frac{-y_{1}}{\lambda_{1}^{2}} - \frac{y_{2}}{\lambda_{2}^{2}} - \frac{2\ell}{\lambda_{1}^{4}} (x^{2} - y_{1}^{2}) + (3y_{1}x^{2} - y_{1}^{3}) \frac{1}{\lambda_{1}^{6}} \right\}$$

$$+ \frac{\mathcal{M}(\delta_{1} - \delta_{2})}{\alpha + 1} \left\{ - \frac{6\ell}{\lambda_{1}^{4}} (x^{2} - y_{1}^{2}) + \frac{1}{\lambda_{1}^{6}} (3y_{1}x^{2} - y_{1}^{3}) \right.$$

$$\times (\lambda_{1}^{2} + 3 + 8\ell^{2}) + \frac{(\lambda_{2}^{2} - 1)}{\lambda_{1}^{6}} (3y_{2}x^{2} - y_{1}^{3}) - \frac{8\ell}{s_{1}^{6}} (3 + 2s_{1}^{2})$$

$$\times (y_{1}x^{3} - y_{1}^{3}x) - \frac{3}{\lambda_{1}^{8}} (5y_{1}x^{4} - 10x^{2}y_{1}^{3} + y_{1}^{5}) \right\}.$$

In the case of pure shear only the complex functions required for evaluating the displacement fields from (2), have been listed below.

$$\begin{aligned} & \phi_{i}(z) = \frac{2\mu\delta_{3}}{\alpha+1} \left(\frac{-\dot{i}}{Z_{i}} - \frac{2\ell}{Z_{i}^{2}} + \frac{\dot{i}}{Z_{i}^{3}} \right), \\ & \psi_{i}(z) = \frac{2\mu\delta_{3}}{\alpha+1} \left(\dot{\alpha}Z_{2} - \frac{5\ell}{Z_{i}^{2}} + \frac{4i\ell^{2}}{Z_{i}^{3}} + \frac{3\ell}{Z_{i}^{3}} + \frac{3\ell}{Z_{i}^{4}} \right), \\ & \phi_{m}(z) = \frac{2\mu\delta_{3}}{\alpha+1} \left(-\frac{\dot{i}}{Z_{i}} + \frac{\dot{i}}{Z_{2}} - \frac{2\ell}{Z_{i}^{2}} + \frac{\dot{i}}{Z_{i}^{3}} \right), \\ & \psi_{m}(z) = \frac{2\mu\delta_{3}}{\alpha+1} \left(-\frac{5\ell}{Z_{i}} + \frac{4i\ell^{2}}{Z_{i}^{2}} + \frac{3i\ell}{Z_{i}^{3}} + \frac{3\ell}{Z_{i}^{3}} \right), \\ & + \frac{3\ell}{Z_{i}^{4}} + \frac{\ell}{Z_{i}^{2}} + \frac{2i\ell^{2}}{Z_{i}^{3}} \right). \end{aligned}$$

CHAPTER V

RECTANGULAR INCLUSION IN A SEMI-INFINITE ELASTIC MEDIUM

In the analysis of this chapter we have evaluated the stress fields for a rectangular inclusion in a semi-infinite medium. The size of the rectangule is 2a x 2b. Its centre is at a distance c from the leading edge. The coordinate axes and the configuration are made clear in Fig. 24, p. 145. The inclusion tends to undergo the following deformation in the absence of the matrix.

$$u = \delta_1 x + \delta_3 (\gamma - c),$$
 $v = \delta_3 x + \delta_2 (\gamma - c).$

If this deformation is opposed, the following stresses develop in the inclusion:

It will be convenient to deal with principal strains and pure shear cases separately. For principal strain we shall assume that $S_{3-0} \ . \ \ \text{The case of shear} \ \ \text{will be taken up later on}.$

The point-force layer developed can be calculated from (54) and (32). Thus

$$Pds = -i(\lambda + \mu)(\delta_1 + \delta_2)d\beta + i\mu(\delta_1 - \delta_2)d\beta$$
,
 $Pds = i(\lambda + \mu)(\delta_1 + \delta_2)d\beta - i\mu(\delta_1 - \delta_2)d\beta$.

substituting these expressions in (35) and (36) and taking */ to be the rectangular boundary of the inclusion, one can obtain the complex potential functions for the principal strains case. The integrals can be evaluated by a similar process as in the case of rectangular inclusion of chapter V. Each integral is split in four integrals one each along a side of the rectangle. In this way the integrals reduce to ordinary Riemann integrals. Care of course has to be taken since multivalued functions are involved. The results of integration and further simplification are that

$$\phi'(z) = \frac{(\lambda + \mu)(\delta_1 + \delta_2)}{\pi((\lambda + 1))} \left\{ \frac{1}{2} (\theta_1 + \theta_2 + \theta_3 + \theta_4) \right\}$$

$$+ \frac{1 - \lambda}{2} (\theta_1' - \theta_2' + \theta_3' - \theta_4')$$

$$+ \frac{\lambda(\lambda - 1)}{2} \log \frac{(\chi_1^2 + \chi_1^2)(\chi_1^2 + \chi_2^2)}{(\chi_1^2 + \chi_1^2)(\chi_2^2 + \chi_2^2)} \right\}$$

$$+ \frac{\mu(\delta_1 - \delta_2)}{\lambda + 1} \left\{ \frac{1}{2} (\theta_1 - \theta_2 + \theta_3 - \theta_4 + \theta_1' - \theta_2' + \theta_3' - \theta_4') \right\}$$

$$+ \frac{2\chi_1(c + b)}{\chi_1^2 + \chi_1^2} + \frac{2\chi_2(c - b)}{\chi_2^2 + \chi_2^2} - \frac{2\chi_1(c - b)}{\chi_1^2 + \chi_2^2}$$

$$- \frac{2\chi_2(c + b)}{\chi_2^2 + \chi_1^2} + \frac{\lambda}{2} \left\{ \frac{1}{2} \log_{\frac{\lambda}{2}} \frac{(\chi_1^2 + \chi_3^2)(\chi_1^2 + \chi_4^2)}{(\chi_1^2 + \chi_2^2)(\chi_1^2 + \chi_1^2)} \right\}$$

$$+ \frac{1}{2} \log_{\frac{\lambda}{2}} \frac{(\chi_1^2 + \chi_1^2)(\chi_2^2 + \chi_2^2)}{(\chi_1^2 + \chi_2^2)(\chi_1^2 + \chi_1^2)}$$

$$- \frac{\chi_1^2 + \chi_1^2}{\chi_2^2 + \chi_1^2} + \frac{\chi_1^2 + \chi_1^2}{\chi_1^2 + \chi_1^2}$$

$$+ \frac{\chi_1^2 + \chi_2^2 \chi_1}{\chi_2^2 + \chi_2^2} - \frac{\chi_1^2 + \chi_2^2 \chi_1}{\chi_1^2 + \chi_2^2} \right\}$$

(55)

$$\psi'(z) = \frac{(\lambda + \mu)(\delta_{1} + \delta_{2})}{\alpha + 1} \left\{ \frac{1 - \alpha}{2} (\theta_{1} - \theta_{2} + \theta_{3}) - \theta_{4} - \theta_{1}' + \theta_{2}' - \theta_{3}' + \theta_{4}' \right\} + \frac{x_{2}y_{1} - xy_{3} + y_{1}x - x_{1}y - \alpha(yx_{1} - xy_{1})}{x_{1}^{2} + y_{1}^{2}}$$

$$+ \frac{-x_{1}y_{1} + x_{1}y_{4} + (1+\alpha)(3x_{1} - xy_{2})}{x_{1}^{2} + y_{1}^{2}}$$

$$+ \frac{x_{1}y_{2} - x_{2}y_{4} - (1+\alpha)(3x_{2} - xy_{2})}{x_{2}^{2} + y_{2}^{2}}$$

$$+ \frac{x_{2}y_{3} + (1+\alpha)(3x_{2} - xy_{3})}{x_{2}^{2} + y_{1}^{2}}$$

$$+ \frac{x_{2}y_{3} + (1+\alpha)(3x_{2} - xy_{3})}{x_{2}^{2} + y_{1}^{2}}$$

$$+ \frac{x_{1}x_{2} + x_{2}y_{3} + (1+\alpha)(3x_{2} - xy_{3})}{(x_{1}^{2} + y_{2}^{2})(x_{1}^{2} + y_{2}^{2})(x_{1}^{2} + y_{2}^{2})}$$

$$- \frac{x_{1}x_{2} + y_{1}y_{3} + (1+\alpha)(3x_{2} + y_{3}^{2})(x_{1}^{2} + y_{2}^{2})}{x_{1}^{2} + y_{1}^{2}}$$

$$+ \frac{x_{1}x_{2} + y_{2}y_{4} + (1+\alpha)(3x_{2} + y_{3}^{2})}{x_{1}^{2} + y_{2}^{2}}$$

$$+ \frac{x_{1}x_{2} + y_{2}y_{4} + (1+\alpha)(3x_{2} + y_{3}^{2})}{x_{1}^{2} + y_{2}^{2}}$$

$$+ \frac{x_{1}x_{2} + y_{2}y_{4} + (1+\alpha)(3x_{2} + y_{3}^{2})}{x_{1}^{2} + y_{2}^{2}}$$

$$+ \frac{x_{1}x_{2} + y_{2}y_{4} + (1+\alpha)(3x_{2} + y_{3}^{2})}{x_{1}^{2} + y_{2}^{2}}$$

$$+ \frac{x_{1}x_{2} + y_{2}y_{4} + (1+\alpha)(3x_{2} + y_{3}^{2})}{x_{1}^{2} + y_{2}^{2}}$$

$$+ \frac{x_{1}x_{2} + y_{2}y_{4} + (1+\alpha)(3x_{2} + y_{3}^{2})}{x_{1}^{2} + y_{2}^{2}}$$

$$+ \frac{y_{1}(2x + x_{2}) - x_{2}(2y + y_{3}^{2})}{x_{1}^{2} + y_{2}^{2}}$$

$$+ \frac{y_{1}(2x + x_{2}) - x_{2}(2y + y_{3}^{2})}{x_{1}^{2} + y_{2}^{2}}$$

$$+ \frac{y_{1}(2x + x_{2}) - x_{2}(2y + y_{3}^{2})}{x_{1}^{2} + y_{2}^{2}}$$

$$- \frac{y_{1}(2x + x_{2}) - x_{2}(2y + y_{3}^{2})}{x_{1}^{2} + y_{2}^{2}}$$

$$- \frac{y_{1}(2x + x_{2}) - x_{2}(2y + y_{3}^{2})}{x_{1}^{2} + y_{2}^{2}}$$

$$- \frac{y_{1}(2x + x_{2}) - x_{2}(2y + y_{3}^{2})}{x_{1}^{2} + y_{2}^{2}}$$

$$- \frac{y_{1}(2x + x_{2}) - x_{2}(2y + y_{3}^{2})}{x_{1}^{2} + y_{2}^{2}}$$

$$- \frac{y_{1}(2x + x_{2}) - x_{2}(2y + y_{3}^{2})}{x_{1}^{2} + y_{2}^{2}}$$

$$+ \frac{2x_{1}y_{1}(xx_{1} - yy_{1}) - (x_{1}^{2} - y_{1}^{2})(x_{1}y_{1} + xy_{1})}{(x_{1}^{2} + y_{1}^{2})^{2}}$$

$$- \frac{2x_{1}y_{1}(xx_{2} - yy_{3}) - (x_{1}^{2} - y_{1}^{2})(x_{1}y_{1} + xy_{3})}{(x_{1}^{2} + y_{1}^{2})^{2}}$$

$$+ \frac{2x_{1}y_{1}(xx_{1} - yy_{3}) - (x_{1}^{2} - y_{1}^{2})(x_{1}y_{1} + xy_{3})}{(x_{1}^{2} + y_{1}^{2})^{2}}$$

$$- \frac{2x_{1}y_{2}(x_{1}x_{1} - yy_{3}) - (x_{1}^{2} - y_{1}^{2})(x_{1}y_{1} + xy_{4})}{(x_{1}^{2} + y_{1}^{2})^{2}} + \frac{ay_{3} + x_{2}^{2}(c+b)}{x_{2}^{2} + y_{3}^{2}}$$

$$- \frac{ay_{4} + x_{4}(c-b)}{x_{1}^{2} + y_{4}^{2}} + \frac{ay_{3} - x_{1}(c+b)}{x_{1}^{2} + y_{3}^{2}} - \frac{ay_{4} - x_{1}(c-b)}{y_{4}^{2} + x_{1}^{2}}$$

$$+ \frac{x_{1}(2x + x_{1}) + y_{1}(2y_{1} + y_{3})}{x_{1}^{2} + y_{3}^{2}} - \frac{x_{1}(2x + x_{1}) + y_{1}(2y_{1} + y_{4})}{x_{1}^{2} + y_{3}^{2}} + \frac{x_{1}(2x + x_{1}) + y_{1}(2y_{1} + y_{4})}{(x_{1}^{2} + y_{3}^{2})}$$

$$+ \frac{1}{2} \int_{0}^{2} \frac{(x_{1}^{2} + y_{3}^{2})(x_{1}^{2} + y_{4}^{2})}{(x_{1}^{2} + y_{4}^{2})} + \frac{(x_{2}^{2} - y_{1}^{2})(x_{2} + xy_{3})}{(x_{1}^{2} + y_{3}^{2})^{2}}$$

$$+ \frac{1}{2} \int_{0}^{2} \frac{(x_{1}^{2} + y_{3}^{2})(x_{1}^{2} + y_{4}^{2})}{(x_{1}^{2} + y_{4}^{2})} + \frac{(x_{2}^{2} - y_{3}^{2})(x_{2} + xy_{3}^{2})}{(x_{1}^{2} + y_{3}^{2})^{2}}$$

$$+ \frac{(x_{1}^{2} - y_{1}^{2})(x_{1}x_{1} - y_{3}^{2}) + x_{1}^{2}y_{3}}{(x_{1}^{2} + y_{3}^{2})^{2}}$$

$$+ \frac{(x_{1}^{2} - y_{1}^{2})(x_{1}x_{1} - y_{3}^{2}) + x_{1}^{2}y_{3}}{(x_{1}^{2} + y_{4}^{2})^{2}}$$

$$+ \frac{(x_{1}^{2} - y_{1}^{2})(x_{1}x_{1} - y_{3}^{2}) + x_{1}^{2}y_{3}}{(x_{1}^{2} + y_{4}^{2})^{2}}$$

$$+ \frac{(x_{1}^{2} - y_{1}^{2})(x_{1}x_{1} - y_{3}^{2}) - \frac{(x_{1}^{2} + y_{4}^{2})}{(x_{1}^{2} + y_{4}^{2})^{2}}}{(x_{1}^{2} + y_{4}^{2})^{2}}$$

$$+ \frac{ax_{1} - y_{3}(c + b)}{x_{1}^{2} + y_{3}^{2}} - \frac{ax_{1} + y_{1}(c - b)}{x_{1}^{2} + y_{4}^{2}}$$

$$+ \frac{ax_{1} + y_{3}(c + b)}{x_{1}^{2} + y_{3}^{2}} - \frac{ax_{1} + y_{1}(c - b)}{x_{1}^{2} + y_{4}^{2}}$$

$$+ \frac{ax_{1} + y_{3}(c + b)}{x_{1}^{2} + y_{3}^{2}} - \frac{ax_{1} + y_{1}(c - b)}{x_{1}^{2} + y_{4}^{2}}$$

$$+ \frac{ax_{1} + y_{2}(c - b)}{x_{1}^{2} + y_{2}^{2}} -$$

where the following abbreviations have been used.

$$x_1 = x + a$$
, $x_2 = x - a$, $y_1 = y + c + b$, $y_2 = y + c - b$, and $y_4 = y - c + b$.

The angles θ_1 , θ_2 , θ_3 and θ_4 are angles subtended by the sides AB, BC, CD and DA respectively at the point z. An angle will be positive or negative according as it is traced anti-clockwise or clockwise. The angles θ_1' , θ_2' , θ_3' and θ_4' are angles subtended by the sides A'B', B'C', C'D' and D'A' of the image rectangle Fig. 24, p. 145. To determine the sign one has to again see whether it is traced anti-clockwise or clockwise.

Differentiating (55) with respect to z we obtain

$$+ \frac{4_{1}}{(x_{2}^{2} - y_{1}^{2}) - 2x_{2}^{2}y_{2}}{(x_{2}^{2} + y_{2}^{2})^{2}}$$

$$+ \frac{-4_{3}(x_{2}^{2} - y_{1}^{2}) + 2x_{2}^{2}y_{1}}{(x_{2}^{2} + y_{1}^{2})^{2}}$$

$$+ \frac{3_{3}(x_{1}^{2} - y_{1}^{2}) - 2x_{1}^{2}y_{1}}{(x_{1}^{2} + y_{1}^{2})^{2}}$$

$$+ \frac{-y_{4}(x_{1}^{2} - y_{2}^{2}) + 2x_{1}^{2}y_{2}}{(x_{1}^{2} + y_{2}^{2})^{2}}$$

$$+ \frac{1}{x_{1}^{2} + y_{1}^{2}} + \frac{2x_{2}}{x_{2}^{2} + y_{1}^{2}} - \frac{2x_{1}}{x_{1}^{2} + y_{2}^{2}}$$

$$+ \frac{2x_{1}}{x_{1}^{2} + y_{1}^{2}} + \frac{2x_{2}}{x_{2}^{2} + y_{2}^{2}} - \frac{x_{2}}{x_{2}^{2} + y_{2}^{2}}$$

$$+ \frac{2x_{1}}{x_{1}^{2} + y_{1}^{2}} + \frac{x_{2}}{x_{2}^{2} + y_{2}^{2}} - \frac{x_{2}}{x_{2}^{2} + y_{2}^{2}}$$

$$+ \frac{x_{1}}{x_{1}^{2} + y_{1}^{2}} - \frac{x_{2}(x_{2}^{2} - y_{2}^{2}) + 2x_{2}y_{2}y_{4}}{(x_{2}^{2} + y_{2}^{2})^{2}}$$

$$- \frac{x_{1}}{x_{1}^{2} + y_{1}^{2}} + \frac{x_{1}(x_{1}^{2} - y_{2}^{2}) + 2y_{4} + x_{1}y_{2}}{(x_{1}^{2} + y_{2}^{2})^{2}}$$

$$- \frac{x_{1}}{x_{1}^{2} + y_{1}^{2}} + \frac{x_{1}(x_{1}^{2} - y_{2}^{2}) + 2y_{3} + x_{1}y_{1}}{(x_{1}^{2} + y_{2}^{2})^{2}}$$

$$+ \frac{x_{2}(x_{2}^{2} - y_{1}^{2}) + 2y_{3} + x_{1}y_{1}}{(x_{1}^{2} + y_{2}^{2})^{2}}$$

$$+ \frac{x_{2}(x_{2}^{2} - y_{1}^{2}) + 2y_{3} + x_{1}y_{1}}{(x_{1}^{2} + y_{2}^{2})^{2}}$$

$$+ \frac{x_{2}(x_{2}^{2} - y_{1}^{2}) + 2y_{3} + x_{1}y_{1}}{(x_{1}^{2} + y_{2}^{2})^{2}}$$

$$+ \frac{x_{2}(x_{2}^{2} - y_{1}^{2}) + 2y_{3} + x_{1}y_{1}}{(x_{1}^{2} + y_{2}^{2})^{2}}$$

Stresses in the matrix are determined directly from the functions $\phi'(z)$, $\phi''(z)$ and $\psi'(z)$ with the help of (1). At points of the inclusion these functions give only a part of the stresses. One has to add to them the stresses given in the equations (54) with $\delta_3 = 0$. The analysis can be given a check by verifying that the normal and shearing stresses are continuous across the boundary. Stresses in the matrix can be found from the following:

$$\frac{\sigma_{x} + \sigma_{3}}{2} = \frac{(x+\mu)(\delta_{1} + \delta_{2})(1-d)}{\pi(\alpha+1)} \left(\theta_{1}' - \theta_{2}' + \theta_{3}' - \theta_{4}' \right) \\
+ \frac{\mu(\delta_{1} - \delta_{2})}{\pi(\alpha-1)} \left\{ \theta_{1} - \theta_{2} + \theta_{3} - \theta_{4} + \theta_{1}' - \theta_{2}' + \theta_{3}' - \theta_{4}' + \theta_{3}$$

$$\frac{\sigma_{3} - \sigma_{x}}{\pi} = \frac{(\lambda + \mu)(\delta_{1} + \delta_{2})}{\pi(\alpha + 1)} \left[2(\alpha - 1) \left\{ \frac{3x_{2}}{x_{2}^{2} + y_{1}^{2}} - \frac{3x_{2}}{x_{2}^{2} + y_{1}^{2}} - \frac{3x_{2}}{x_{2}^{2} + y_{1}^{2}} + \frac{3x_{1}}{x_{1}^{2} + y_{2}^{2}} - \frac{x_{1}3}{x_{1}^{2} + y_{1}^{2}} \right] + \frac{1 - \alpha}{2} \left(\theta_{1} - \theta_{2} + \theta_{3} - \theta_{4} - \theta_{1}' + \theta_{2}' - \theta_{3}' + \theta_{4}' \right) \right] + \frac{\mu C \delta_{1} - \delta_{2}}{\pi(\alpha + 1)} \left[\frac{2x_{2}}{x_{2}^{2} + y_{2}^{2}} \right]$$

$$\frac{2x_{1}(3+3)}{x_{1}^{2}+y_{1}^{2}} + \frac{2x_{1}(3+3)}{x_{1}^{2}+y_{1}^{2}} - \frac{2x_{1}(3+3)}{x_{1}^{2}+y_{2}^{2}}$$

$$\frac{2x_{2}y(x_{2}^{2}-y_{2}^{2})+4x_{2}y_{2}y_{4}y}{(x_{2}^{2}+y_{2}^{2})^{2}}$$

$$+ \frac{2x_{2}y(x_{2}^{2}-y_{1}^{2})+4x_{2}y_{3}y_{3}}{(x_{2}^{2}+y_{1}^{2})^{2}}$$

$$- \frac{2x_{1}y(x_{1}^{2}-y_{1}^{2})+4x_{1}y_{3}y_{1}y_{3}}{(x_{1}^{2}+y_{1}^{2})^{2}}$$

$$+ \frac{2yx_{1}(x_{1}^{2}-y_{1}^{2})+4x_{1}y_{2}y_{4}}{(x_{1}^{2}+y_{2}^{2})^{2}}$$

$$+ \frac{2x_{2}y_{4}}{x_{1}^{2}+y_{4}^{2}} - \frac{2x_{2}y_{3}}{y_{3}^{2}+x_{2}^{2}} + \frac{2x_{1}y_{3}}{x_{1}^{2}+y_{3}^{2}}$$

$$- \frac{2x_{1}y_{4}}{x_{1}^{2}+y_{4}^{2}} \Big],$$

The case of shear when $\delta_1 = \delta_2 = 0$ and $\delta_3 \neq 0$ is dealt with in a similar fashion. The results are given below:

$$\begin{split} \varphi'(z) &= \frac{2 \pi \delta_{3}}{\pi (\alpha + 1)} \left\{ \frac{1}{2} \operatorname{Leg} \frac{(x_{2}^{2} + y_{3}^{2})(x_{1}^{2} + y_{1}^{2})}{(x_{1}^{2} + y_{3}^{2})(x_{2}^{2} + y_{3}^{2})} + \frac{1}{2} \operatorname{Leg} \frac{(x_{1}^{2} + y_{3}^{2})(x_{1}^{2} + y_{3}^{2})}{(x_{1}^{2} + y_{3}^{2})(x_{2}^{2} + y_{3}^{2})} - \frac{x_{1}^{2} + y_{1}^{2} \delta_{3}}{x_{2}^{2} + y_{1}^{2}} + \frac{1}{2} \operatorname{Leg} \frac{(x_{1}^{2} + y_{3}^{2})(x_{2}^{2} + y_{3}^{2})}{(x_{1}^{2} + y_{3}^{2})(x_{2}^{2} + y_{3}^{2})} + \frac{x_{1}^{2} + y_{1}^{2} \delta_{3}}{x_{1}^{2} + y_{2}^{2}} + \frac{x_{1}^{2} + y_{1}^{2} \delta_{3}}{x_{1}^{2} + y_{3}^{2}} \right\} \\ &+ \frac{2 \pi \delta_{3} i}{\pi (\alpha + 1)} \left\{ -\frac{1}{2} \left(\theta_{1} - \theta_{2} + \theta_{3} - \theta_{4} - \theta_{1}^{2} + \frac{x_{1}^{2} + y_{3}^{2}}{x_{1}^{2} + y_{1}^{2}} + \frac{x_{1}^{2} (y_{1} - y_{3})}{x_{1}^{2} + y_{1}^{2}} \right\} \right\} \\ &+ \frac{2 \pi \delta_{3} i}{\pi (\alpha + 1)} \left\{ -\frac{1}{2} \left(\theta_{1} - \theta_{2} + \theta_{3} - \theta_{4} - \theta_{1}^{2} + \frac{x_{1}^{2} (y_{1} - y_{3})}{x_{1}^{2} + y_{1}^{2}} + \frac{x_{1}^{2} (y_{1} - y_{3})}{x_{1}^{2} + y_{1}^{2}} \right\} \right\} \\ &+ \frac{2 \pi \delta_{3} i}{x_{2}^{2} + y_{4}^{2}} - \frac{x_{1}^{2} (y_{2} - y_{4})}{x_{1}^{2} + y_{1}^{2}} + \frac{x_{1}^{2} (y_{1} - y_{3})}{x_{1}^{2} + y_{1}^{2}} \right\} \\ &+ \frac{2 \pi \delta_{3}}{\pi (\alpha + 1)} \left\{ \frac{2 \pi \epsilon_{1}}{x_{1}^{2} + y_{2}^{2}} - \frac{2 \pi \epsilon_{2}}{x_{1}^{2} + y_{1}^{2}} + \frac{2 \pi \epsilon_{3}}{x_{1}^{2} + y_{1}^{2}} + \frac{2 \pi \epsilon_{3}}{x_{1}^{2} + y_{1}^{2}} \right\} \\ &- \frac{2 \pi \epsilon_{1}}{x_{1}^{2} + y_{2}^{2}} - \frac{\pi \epsilon_{2}}{x_{1}^{2} + y_{2}^{2}} + \frac{2 \pi \epsilon_{3}}{x_{1}^{2} + y_{1}^{2}} + \frac{2 \pi \epsilon_{3}}{x_{1}^{2} + y_{1}^{2}} \right\} \\ &+ \frac{\pi \epsilon_{1}^{2} + y_{2}^{2}}{x_{1}^{2} + y_{3}^{2}} - \frac{\pi \epsilon_{2}^{2} + y_{2}^{2}}{x_{1}^{2} + y_{2}^{2}} + \frac{2 \pi \epsilon_{3}^{2}}{x_{1}^{2} + y_{2}^{2}} \right\} \\ &+ \frac{\pi \epsilon_{1}^{2} + y_{2}^{2}}{x_{1}^{2} + y_{3}^{2}} - \frac{\pi \epsilon_{2}^{2} + y_{1}^{2}}{x_{1}^{2} + y_{2}^{2}} + \frac{2 \pi \epsilon_{3}^{2}}{x_{1}^{2} + y_{2}^{2}} \right\} \\ &+ \frac{\pi \epsilon_{1}^{2} + y_{2}^{2}}{x_{1}^{2} + y_{2}^{2}} - \frac{\pi \epsilon_{2}^{2} + y_{2}^{2}}{x_{1}^{2} + y_{2}^{2}} + \frac{\pi \epsilon_{3}^{2}}{x_{1}^{2} + y_{2}^{2}} \right\} \\ &+ \frac{\pi \epsilon_{1}^{2} + y_{2}^{2}}{x_{1}^{2} + y_{2}^{2}} - \frac{\pi \epsilon_{2}^{2} + y_{2}^{2}}{x_{1}^{2} + y_{2}^{2}} + \frac{\pi \epsilon_{3}^{2}}{x_{1}^{2} + y_{2}^{$$

$$-\frac{x_{1}(x_{1}^{2}+y_{1}^{2})+2x_{1}y_{1}y_{3}}{(x_{1}^{2}+y_{1}^{2})^{2}} + \frac{x_{1}(x_{1}^{2}+y_{2}^{2})+2y_{2}y_{2}x_{1}}{(x_{1}^{2}+y_{1}^{2})^{2}}$$

$$+\frac{1}{2}\left\{\frac{2y_{1}}{x_{1}^{2}+y_{1}^{2}} - \frac{2y_{2}}{x_{1}^{2}+y_{2}^{2}} + \frac{2y_{2}}{x_{1}^{2}+y_{2}^{2}} + \frac{2y_{2}}{x_{1}^{2}+y_{2}^{2}} - \frac{2y_{1}}{x_{1}^{2}+y_{1}^{2}} + \frac{y_{2}}{x_{1}^{2}+y_{2}^{2}} + \frac{y_{3}}{x_{1}^{2}+y_{2}^{2}} - \frac{y_{4}(x_{2}^{2}-y_{1}^{2})-2x_{1}^{2}y_{2}}{(x_{1}^{2}+y_{1}^{2})^{2}} - \frac{y_{4}(x_{2}^{2}-y_{1}^{2})-2x_{1}^{2}y_{1}}{(x_{1}^{2}+y_{1}^{2})^{2}} + \frac{y_{3}(x_{2}^{2}-y_{1}^{2})-2x_{1}^{2}y_{1}}{(x_{1}^{2}+y_{2}^{2})^{2}} - \frac{y_{3}(x_{1}^{2}-y_{1}^{2})-2x_{1}^{2}y_{1}}{(x_{1}^{2}+y_{1}^{2})^{2}} + \frac{y_{4}(x_{1}^{2}-y_{1}^{2})-2x_{1}^{2}y_{1}}{(x_{1}^{2}+y_{2}^{2})^{2}} \right],$$

$$\Psi'(z) = \frac{g_{1}g_{3}}{K(x+1)} \left\{\frac{x_{2}(2x+x_{2})+y_{1}(2y+y_{3})}{(x_{1}^{2}+y_{1}^{2})} - \frac{x_{2}(2x+x_{2})+y_{1}(2y+y_{3})}{(x_{2}^{2}+y_{2}^{2})} + \frac{x_{1}(2x+x_{1})+y_{2}(2y+y_{3})}{(x_{1}^{2}+y_{2}^{2})} + \frac{x_{1}(2x+x_{1})+y_{2}(2y+y_{3})}{(x_{1}^{2}+y_{2}^{2})} + \frac{x_{1}(2x+x_{1})+y_{2}(2y+y_{3})}{(x_{1}^{2}+y_{2}^{2})}$$

$$\frac{x_{1}(2x+x_{1})+y_{1}(2y+y_{3})}{x_{1}^{2}+y_{1}^{2}}$$

$$\frac{x_{1}^{2}+y_{1}^{2}}{(x_{2}^{2}+y_{1}^{2})^{2}}$$

$$+\frac{(x_{2}^{2}-y_{2}^{2})(x_{2}x-y_{3})+2y_{1}x_{2}(x_{2}y+x_{3}y)}{(x_{2}^{2}+y_{2}^{2})^{2}}$$

$$+\frac{(x_{2}^{2}-y_{2}^{2})(x_{2}x-y_{3})+2x_{1}y_{1}+x_{2}y_{2}(x_{1}y+x_{3}y)}{(x_{1}^{2}+y_{2}^{2})^{2}}$$

$$+\frac{(x_{1}^{2}-y_{1}^{2})(x_{1}x-y_{3}y)+2y_{1}x_{1}(x_{1}y+x_{3}y)}{(x_{1}^{2}+y_{2}^{2})^{2}}$$

$$+\frac{(x_{1}^{2}-y_{1}^{2})(x_{1}x-y_{3}y)+2y_{1}x_{1}(x_{1}y+x_{3}y)}{(x_{1}^{2}+y_{2}^{2})^{2}}$$

$$+\frac{(x_{1}^{2}-y_{1}^{2})(x_{1}x-y_{3}y)+2y_{1}x_{1}(x_{1}y+x_{3}y)}{(x_{1}^{2}+y_{2}^{2})^{2}}$$

$$+\frac{(x_{1}^{2}-y_{1}^{2})(x_{1}x-y_{3}y)+2y_{1}x_{1}(x_{1}y+x_{3}y)}{(x_{1}^{2}+y_{2}^{2})^{2}}$$

$$+\frac{(x_{1}^{2}-y_{1}^{2})(x_{1}x-y_{3}y)+2y_{1}x_{1}(x_{1}y+x_{3}y)}{(x_{1}^{2}+y_{2}^{2})^{2}}$$

$$+\frac{(x_{1}^{2}-y_{1}^{2})(x_{1}x-y_{3}y)+2y_{1}x_{1}(x_{1}y+x_{3}y)}{(x_{1}^{2}+y_{2}^{2})^{2}}$$

$$+\frac{(x_{1}^{2}-y_{1}^{2})(x_{1}x-y_{3}y)+2y_{1}x_{1}(x_{1}y+x_{3}y)}{(x_{1}^{2}+y_{2}^{2})^{2}}$$

$$+\frac{(x_{1}^{2}-y_{1}^{2})(x_{1}x-y_{3}y)+2y_{1}x_{1}(x_{1}y+x_{3}y)}{(x_{1}^{2}+y_{2}^{2})^{2}}$$

$$+\frac{(x_{1}^{2}-y_{1}^{2})(x_{1}x-y_{1}y)+2x_{1}x_{1}(x_{1}y+x_{2}y)}{(x_{1}^{2}+x_{2}^{2})^{2}}$$

$$+\frac{(x_{1}^{2}-y_{1}^{2})(x_{1}x-y_{1}y)+2x_{1}x_{1}(x_{1}y+x_{2}y)}{(x_{1}^{2}+x_{2}^{2})^{2}}$$

$$+\frac{(x_{1}^{2}-y_{1}^{2})(x_{1}x-y_{1}y)+2x_{1}x_{1}(x_{1}y+x_{2}y)}{(x_{1}^{2}+x_{2}^{2})^{2}}$$

$$+\frac{(x_{1}^{2}-y_{1}^{2})(x_{1}x-y_{1}y)+2x_{1}x_{1}(x_{1}y+x_{2}y)}{(x_{1}^{2}+x_{2}^{2})^{2}}$$

$$+\frac{(x_{1}^{2}-y_{1}^{2})(x_{1}x-y_{1}y)+2x_{1}x_{1}(x_{1}y+x_{2}y)}{(x_{1}^{2}+x_{2}^{2})^{2}}$$

$$+\frac{(x_{1}^{2}-y_{1}^{2})(x_{1}x-y_{1}y)+2x_{1}x_{1}(x_{1}x+x_{2}y)}{(x_{1}^{2}+x_{2}^{2})^{2}}$$

$$+\frac{(x_{1}^{2}-y_{1}^{2})(x_{1}x-y_{1}y)+2x_{1}x_{1}(x_{1}x+x_{2}y)}{(x_{1}^{2}+x_{2}^{2})^{2}}$$

$$+\frac{(x_{1}^{2}-y_{1}^{2})(x_{1}x-y_{1}y)+2x_{1}x_{1}(x_{1}x+x_{2}y)}{(x_{1}^{2}+x_{2}^{2})^{2}}$$

$$+\frac{(x_{1}^{2}-y_{1}^{2})(x_{1}x-y_{1}y)+2x_{1}x_{1}(x_{1}x+x_{2}y)}{(x_{1}^{2}+x_{2}^{2})^{2}}$$

$$+\frac{(x_{1}^{2}-y_{1}^{2})(x_{1}^{2}+x_{2}^{2})}{(x_{1}^{2}+x_{2}^{2})^{2}}$$

$$+\frac{(x_$$

$$+ \frac{(2x + x_{2}) y_{2} - (2y + y_{4}) x_{2}}{x_{2}^{2} + y_{2}^{2}}$$

$$+ \frac{(2x + x_{1}) y_{1} - (2y + y_{3}) x_{1}}{x_{1}^{2} + y_{1}^{2}}$$

$$+ \frac{(2x + x_{1}) y_{1} - (2y + y_{3}) x_{1}}{x_{1}^{2} + y_{1}^{2}}$$

$$+ \frac{(2x + x_{1}) y_{1} - (2y + y_{3}) x_{1}}{(x_{1}^{2} + y_{1}^{2})^{2}}$$

$$+ \frac{(2x + x_{1}) y_{1} - (x_{2}^{2} - y_{1}^{2}) (x_{2}y + x_{3}y_{4})}{(x_{2}^{2} + y_{1}^{2})^{2}}$$

$$+ \frac{(2x + x_{1}) y_{1} - (x_{1}^{2} - y_{1}^{2}) (x_{1}y + x_{3}y_{3})}{(x_{1}^{2} + y_{1}^{2})^{2}}$$

$$+ \frac{(2x + x_{1}) y_{1} - (x_{1}^{2} - y_{1}^{2}) (x_{1}y + x_{3}y_{4})}{(x_{1}^{2} + y_{1}^{2})^{2}}$$

$$+ \frac{(2x + x_{1}) y_{1} - (x_{1}^{2} - y_{1}^{2}) (x_{1}y + x_{3}y_{4})}{(x_{1}^{2} + y_{1}^{2})^{2}}$$

$$+ \frac{(2x + x_{1}) y_{1} - (x_{1}^{2} - y_{1}^{2}) (x_{2}y + x_{3}y_{4})}{(x_{1}^{2} + y_{1}^{2})^{2}}$$

$$+ \frac{(2x + x_{1}) y_{1} - (x_{1}^{2} - y_{1}^{2}) (x_{2}y + x_{3}y_{4})}{(x_{1}^{2} + y_{1}^{2})^{2}}$$

$$+ \frac{(2x + x_{1}) y_{1} - (x_{1}^{2} - y_{1}^{2}) (x_{2}y + x_{3}y_{4})}{(x_{1}^{2} + y_{1}^{2})^{2}}$$

$$+ \frac{(2x + x_{1}) y_{1} - (x_{1}^{2} - y_{1}^{2}) (x_{2}y + x_{3}y_{4})}{(x_{1}^{2} + y_{1}^{2})^{2}}$$

$$+ \frac{(2x + x_{1}) y_{1} - (x_{1}^{2} - y_{1}^{2}) (x_{1}^{2} + x_{2}^{2})}{(x_{1}^{2} + y_{1}^{2})^{2}}$$

$$+ \frac{(2x + x_{1}) y_{1} - (x_{1}^{2} - y_{1}^{2}) (x_{1}^{2} + x_{2}^{2})}{(x_{1}^{2} + y_{1}^{2})^{2}}$$

The stresses at points of the matrix are given by

$$\frac{\sigma_{x} + \sigma_{y}}{\pi} = \frac{2\pi\delta_{3}}{\pi(x+1)} \left[\log \frac{(x_{1}^{2} + y_{1}^{2})(x_{2}^{2} + y_{1}^{2})(x_{2}^{2} + y_{3}^{2})(x_{1}^{2} + y_{4}^{2})}{(x_{2}^{2} + y_{1}^{2})(x_{2}^{2} + y_{3}^{2})(x_{1}^{2} + y_{3}^{2})} \right] \\
= \frac{2(x_{2}^{2} + 3y_{3})}{x_{2}^{2} + y_{2}^{2}} + \frac{2(x_{2}^{2} + y_{2}^{2})(x_{1}^{2} + y_{3}^{2})}{x_{2}^{2} + y_{2}^{2}} \\
= \frac{2(x_{1}^{2} + 3y_{3})}{x_{1}^{2} + y_{2}^{2}} + \frac{2(x_{1}^{2} + y_{1}^{2}y_{3})}{x_{1}^{2} + y_{2}^{2}} \\
= \frac{2(x_{1}^{2} + 3y_{2}^{2})}{x_{1}^{2} + y_{2}^{2}} + \frac{2(x_{1}^{2} + y_{1}^{2}y_{3})}{x_{1}^{2} + y_{2}^{2}},$$

$$\frac{7y-7x}{2} = \frac{2 \times 5}{\pi(x+1)} \left[\frac{x_{2}^{2} + 4y_{1}y + 4y_{3}}{x_{2}^{2} + 4y_{1}^{2}} - \frac{x_{2}^{2} + 4y_{4} + 4y_{4}}{x_{2}^{2} + 4y_{2}^{2}} \right] \\
+ \frac{x_{1}^{2} + 4y_{2}^{2} + 4y_{4}}{x_{1}^{2} + 4y_{2}^{2}} - \frac{x_{1}^{2} + 4y_{4}^{2} + 4y_{3}^{2}}{x_{1}^{2} + 4y_{1}^{2}} \\
- \frac{(x_{2}^{2} - y_{2}^{2})}{x_{1}^{2} + y_{2}^{2}} - \frac{(x_{2}^{2} + y_{2}^{2})^{2}}{(x_{2}^{2} + y_{2}^{2})^{2}} \\
+ \frac{2yy_{3}(x_{2}^{2} - y_{1}^{2}) - 4yy_{1}x_{2}^{2}}{(x_{2}^{2} + y_{1}^{2})^{2}} \\
- \frac{2yy_{3}(x_{1}^{2} - y_{1}^{2}) - 4yy_{1}x_{1}^{2}}{(x_{1}^{2} + y_{1}^{2})^{2}} \\
+ \frac{2yy_{4}(x_{1}^{2} - y_{2}^{2}) - 4x_{1}^{2}yy_{2}}{(x_{1}^{2} + y_{2}^{2})^{2}} - \frac{x_{2}^{2} - y_{4}^{2}}{x_{2}^{2} + y_{4}^{2}} \\
+ \frac{x_{2}^{2} - y_{3}^{2}}{x_{2}^{2} + y_{3}^{2}} - \frac{x_{1}^{2} - y_{3}^{2}}{x_{1}^{2} + y_{3}^{2}} + \frac{x_{1}^{2} - y_{4}^{2}}{x_{1}^{2} + y_{4}^{2}} \right],$$

The stresses at points inside the inclusion could be found a similar way, keeping in mind the initial stresses present in it given by (54) with $\delta_1 = \delta_2 = 0$.

Numerical work was done on the IBM 1620 computor. Lines of maximum shearing stress were drawn in the matrix for three sizes of the rectangle viz., 1 x 1, 2 x 1 and 10x 1 with distance c of the centre of the rectangle equal to 1, for the cases $\delta_1 = \delta_2 = \delta$ and $\delta_1 = -\delta_2 = \delta$. They are shown in Figs. 28-30 p. 147-149.

The non-vanishing component of stress σ_X along the leading edge y=0 was also computed for these cases and also for pure shear case $\delta_1=\delta_2=0$, $\delta_3\neq0$. They are shown in the Figs. 25-27 p. 145,146.

CHAPTER VI

INHOMOGENEITY AND A POINT-FORCE ON THE BOUNDARY

Hitherto a point-force was acting in an otherwise homogeneous medium and we have used the complex potential functions associated with it. Expressions for these were available in the references ((2)) and ((3)). These expressions were useful for the solutions of the problems dealt with in earlier chapters. With a view to solve other problems. It is necessary to find the point-force effects for some more cases. This itself may henceforth be taken as an auxiliary, but an important problem in elasticity. We propose to find out the solution to the following problem:

A circular inhomogeneity of an elastic material present in an otherwise infinite, homogeneous, isotropic elastic medium called matrix. The elastic properties of the matrix are different from those of the inhomogeneity. A perfect bond is assumed to exist always between the inhomogeneity and the matrix. The centre of inhomogeneity may be taken to be the origin. A point-force P acts at a point 7 on their common boundary. The configuration is given in Fig. 14 p. 140.

It is required to find the state of stress and strain in the medium.

Let the radius of the inhomogeneity be α , so that the region $z \ \overline{z} \le a^2$ of the complex plane represents it and the remaining portion of the plane represents the matrix. To distinguish between the points of the boundary and other points we take σ to be the boundary value of z. The equation of the boundary is therefore $\sigma \overline{\sigma} = a^2$. The following conditions must be satisfied by the final solution.

- a) The normal and tangential stress should be continuous across the boundary.
- b) The stresses should vanish at infinity.
- c) The displacements at the boundary should be continuous and should be single-valued.
- d) On physical grounds, at large distances the inhomogeneity should not affect the elastic fields of the matrix.

The construction of the potential functions is achieved in the following way. Assume the forms of the functions as under

$$\sigma_{z} - i \tau_{z0} = \phi(z) + \phi(z) - e^{2i\theta} \left\{ \overline{z} \phi(z) + \psi(z) \right\},$$
 (63)

where Θ is the vectorial angle. Using (58 - 62), (63) gives the following equation

$$\left[(F-\xi)(2a^{2}-F\xi-G\xi) + \sigma(\xi-\xi)^{2} \right] (PE-PA-P)$$

$$+ \vec{P}(\vec{E}-1-\vec{A})(\sigma-\xi)(2a^{2}-\sigma\xi-F\xi) + \left\{ \frac{1}{\sigma}(2PF+2K^{2}) + \frac{1}{\sigma^{2}}(2PF+2K^{2}) +$$

Using $\neg \neg \neg \neg \neg \neg$, the left hand side of the above equation can be put in the form of a polynomial in \neg . Equating to zero the coefficients of various powers of \neg , we get a set of seven linear equations in the various constants. It may be seen that only five are independent and are given below.

$$PK + \frac{PK}{a^{2}} = 0,$$

$$-P(E-1-A) + (\frac{JP}{BP-BP})^{3} = 0,$$

$$E-A+F-I-1 = 0,$$

$$F-I-G+C-\alpha_{m} = 0,$$

$$(JP-BP-BP)^{2} + (PT+PH-DP) = 0.$$

Since the displacements are continuous across the boundary, therefore

$$(u+iv)_{ih} = (u+iu)_{m} = (64)$$

or

$$\frac{1}{\mu_{ik}} \left\{ \alpha_{ik} \varphi_{ik}(\sigma) - \sigma \varphi_{ik}(\sigma) - \psi_{i\sigma} \right\} = \frac{1}{\mu_{ik}} \left\{ \alpha_{ik} \varphi_{i\sigma}(\sigma) - \varphi_{i\sigma}(\sigma) - \psi_{i\sigma} \right\}. \tag{65}$$

Using equation (58 - 61), equation (65) would yield the following equation

where $e^{-\frac{M_{ch}}{M_{max}}}$. The symbol e^{β} becomes a non-dimensional parameter and gives the ratio of rigidity moduli of the inhomogeneity and the matrix. The terms containing logarithm and the remaining terms would vanish amongst themselves. The condition of vanishing of logarithmic terms yields the following two equations

The condition of vanishing of the remaining terms gives two more equations which are as follows:

The restrictions that displacements be single valued in the matrix yields the equation

Finally from the last condition we get the following equations :

and

The set twelve equations listed above for eleven constants A,B,, K consistant. For case, we write $\gamma_i = \frac{(1-\beta)}{(\beta - \alpha_i + 1)}$,

$$A = \nu_{2}-1,$$

$$B = \frac{\nu_{2}-1}{2\alpha^{2}P} \left\{ \frac{P_{3}+P_{5}}{2\beta+\alpha_{16}-1} + \frac{P_{5}-P_{5}}{\alpha_{12}+1} \right\},$$

$$C = (1-\nu_{1})\alpha_{m}, \quad D = \frac{P}{P} = (1-\nu_{2}),$$

$$E = -\nu_{1}\alpha_{m}, \quad F = \nu_{1}\alpha_{m}, \quad G = \nu_{2} = -I$$

$$H = \frac{P}{P} = \nu_{1}\alpha_{m}, \quad K = -\nu_{1}\alpha_{m} = \frac{\nu_{2}}{P}$$

$$J = -\frac{1}{P} \left\{ P_{5}^{*} \left(\nu_{1}\alpha_{m} + \nu_{2} \right) + \left(\frac{P_{5}+P_{5}}{P} \right) \left(\nu_{2}-1 \right) \left(1-\beta \right) \right\}.$$

$$2P + \alpha_{12}-1$$

Thus the effect of an isolated force P acting on a fixed point g of the boundary $g = a^2$ of the inhomogeneity is given by the following functions:

$$\frac{\varphi_{ch}(z)}{2\pi(x_{n+1})} \left\{ (\nu_{2}-1) \log_{2}(z-\frac{1}{2}) - \frac{(\nu_{2}-1)(p-1)^{2}}{2^{\frac{1}{2}}} \right\} \\
- \frac{(\nu_{2}-1)(p-1)^{2}}{2^{\frac{1}{2}}} \left\{ \frac{(\nu_{2}-1)(p-1)(p+\lambda_{ch})}{(2p+\lambda_{ch}-1)(\lambda_{ch}+1)} \right\}, (66) \\
+ \frac{p}{2\pi(x_{n+1})} \left\{ (1-\nu_{1}) \alpha_{n} \log_{2}(z-\frac{1}{2}) \right\} \\
+ \frac{p}{2\pi(x_{n+1})} \left\{ (1-\nu_{2}) \frac{p}{p} (z-\frac{1}{2})^{-1} \right\}, (67) \\
+ \frac{p}{2\pi(x_{n+1})} \left\{ (1-\nu_{2}) \frac{p}{p} (z-\frac{1}{2})^{-1} \right\}, (68) \\
+ \frac{p}{2\pi(x_{n+1})} \left\{ (\nu_{2}+\lambda_{n}) \log_{2}(z-\frac{1}{2}) + \nu_{1}\lambda_{n} \log_{2}z \right\}, (68) \\
+ \frac{(\nu_{2}-1)(p-1)}{2(p+\lambda_{ch}-1)} \left\{ z^{-1} \right\} + \frac{p}{2\pi(x_{n}+1)} \left\{ (1+\nu_{1}\lambda_{n}) \times \frac{p}{p} (z-\frac{1}{p})^{-1} - \left(\nu_{1}\alpha_{n} + \nu_{2} - \frac{(\nu_{2}-1)(p-1)}{2(p+\lambda_{ch}-1)} \right) \times \frac{p}{p} (z-\frac{1}{p})^{-1} - \left(\nu_{1}\alpha_{n} + \nu_{2} - \frac{(\nu_{2}-1)(p-1)}{2(p+\lambda_{ch}-1)} \right)$$

The effect of a concentrated force acting on the boundary when there is a cavity may easily be obtained by simply setting $\beta = 0$, $p_1 = p_2 = 1$. Various other results may be obtained, e.g. if the inhomogeneity and the matrix are of the same materials, one obtains the results for the case of a point-force acting in an infinite two dimensional medium by

putting (-1), (-1), (-1), (-1), (-1), (-1), and (-1), (-1). Some of these particular cases have been dealt with in the books on elasticity theory ((2)) and ((3)). In the next chapter the results of this chapter are used for solving the problem of circular inclusion whose elastic constants differ from those of the matrix. This problem has been done by many authors ((16)). Eshelby also indicated a method of solving the inhomogeneity problems as particular cases of inclusion problem, but the argument is very complicated. The purpose of solving this known problem is to indicate a direct method of solving such problems by using the results of this chapter.

CHAPTER VII

CIRCULAR INCLUSION WITH DIFFERENT ELASTIC MODULI

The mathematical model of the problem considered in this chapter is as follows. The circular inhomogeneity of chapter VI tends to undergo a deformation which would be uniform in the absence of the matrix. If this tendency is opposed the following system of stresses would develop in the inclusion. It may be noted that we are using the subscripts it and to distinguish quantities pertaining to the inhomogeneity and the matrix respectively.

$$\sigma_{x}^{\circ} = -\left\{ \lambda_{ik}(\delta_{1} + \delta_{2}) + 2 M_{ik} \delta_{1} \right\},
\sigma_{y}^{\circ} = -\left\{ \lambda_{ik}(\delta_{1} + \delta_{2}) + 2 M_{ik} \delta_{2} \right\},
\sigma_{xy}^{\circ} = -\left\{ 2 M_{ik} \delta_{3} \right\}.$$
(70)

The point-force layer generated by the deforming inclusion is given by

Pds =
$$-i(\lambda_{i_{1}} + u_{i_{1}})(S_{i_{1}} + S_{2})dS_{i_{2}} + i M_{i_{1}}(S_{i_{1}} - S_{2} - 2iS_{3})dS_{i_{3}},$$

$$Pds = i(\lambda_{i_{1}} + u_{i_{1}})(S_{i_{1}} + S_{2})dS_{i_{2}} - i M_{i_{1}}(S_{i_{1}} - S_{2} + 2iS_{3})dS_{i_{3}},$$
(71)

The effect of single point force P acting at a point f of the boundary $f(f) = x^2$ was found in chapter VI, equations (66 - 69). Thus for a continuous distribution of point-forces given by equation (71), it is easily seen that the following relations giving the cumulative effect of the distribution are true.

$$\frac{\varphi_{ck}(z) = -\frac{i(\nu_2 - 1)(\lambda ch + \mu_{ch})(\delta_1 + \delta_2)}{2\pi(\alpha_m + 1)} \int_{\gamma} (z - y)^{-1} dy \\
+ \frac{i(\mu_c (\nu_2 - 1)(\delta_1 - \delta_2 + 2c\delta_3))}{2\pi(\alpha_m + 1)} \int_{\gamma} (z - y)^{-1} dy \\
+ \frac{i(\nu_c - 1)(\beta_1 - 1)^2(\lambda ch + \mu_{ch})(\delta_1 + \delta_2)}{2\pi\alpha^2(\alpha_{ch} + 1)(\alpha_m + 1)(2\beta_1 + \alpha_{ch} - 1)} \int_{\gamma} dy \\
- \frac{i(\nu_2 - 1)(\beta_1 - 1)^2(\mu_{ch}(\delta_1 - \delta_2 - 2c\delta_3))}{(\alpha_{ch} + 1)(2\beta_1 + \alpha_{ch} - 1)(\alpha_{ch} + 1)(2\beta_1 + \alpha_{ch} - 1)} \int_{\gamma} dy \\
+ \frac{i(\nu_2 - 1)(\beta_1 - 1)(\beta_1 + \alpha_{ch})(\lambda ch + \mu_{ch})(\delta_1 + \delta_2)}{2\pi\alpha^2(\alpha_m + 1)(2\beta_1 + \alpha_{ch} - 1)(\alpha_{ch} + 1)} \int_{\gamma} y dy \\
- \frac{i(\nu_c (\nu_2 - 1)(\beta_1 - 1)(\beta_1 + \alpha_{ch})(\alpha_{ch} + 1)}{2\pi\alpha^2(\alpha_m + 1)(\alpha_{ch} + 1)} \int_{\gamma} y dy \\
- \frac{i(\nu_c (\nu_2 - 1)(\beta_1 - 1)(\beta_1 + \alpha_{ch})(\delta_1 - \delta_2 - \nu_c \delta_3)}{2\pi\alpha^2(\alpha_m + 1)(2\beta_1 + \alpha_{ch} - 1)(\alpha_{ch} + 1)} \int_{\gamma} y dy$$

$$\begin{aligned} \psi_{0}(z) &= \frac{i(\lambda_{0}(z)+\lambda_{0}(z))(z+\delta_{0})(z-\nu_{1})\alpha_{0}}{2\pi(\alpha_{0}+1)} \int_{z}^{z} (z-y)^{2} dy \\ &= \frac{i(\lambda_{0}(z)+\sum_{1}-2(z))(z-\nu_{1})\alpha_{0}}{2\pi(\alpha_{0}+1)} \int_{y}^{z} (z-y)^{2} dy \\ &+ \frac{i(\lambda_{0}(z)+\lambda_{0}(z)+\sum_{1}(z-\nu_{1})}{2\pi(\alpha_{0}+1)} \int_{y}^{z} (z-y)^{2} dy \\ &- \frac{i(\lambda_{0}(z)+\lambda_{0}(z)+\lambda_{0}(z)+\lambda_{0}(z)}{2\pi(\alpha_{0}+1)} \int_{y}^{z} (z-y)^{2} dy \\ &= \frac{i(\lambda_{0}(z)+\lambda_{0}(z)+\lambda_{0}(z)+\lambda_{0}(z)+\lambda_{0}(z)}{2\pi(\alpha_{0}+1)} \int_{y}^{z} (z-y)^{2} dy \\ &= \frac{i(\lambda_{0}(z)+\lambda_{0}(z)+\lambda_{0}(z)+\lambda_{0}(z)}{2\pi(\alpha_{0}+1)} \int_{y}^{z} (z-y)^{2} dy \\ &+ \frac{i(\lambda_{0}(z)+\lambda_{0}(z)+\lambda_{0}(z)+\lambda_{0}(z)+\lambda_{0}(z)}{2\pi(\alpha_{0}+1)} \int_{y}^{z} (z-y)^{2} dy \\ &= \frac{i(\lambda_{0}(z)+\lambda_{0}(z)+\lambda_{0}(z)+\lambda_{0}(z)+\lambda_{0}(z)}{2\pi(\alpha_{0}+1)} \int_{y}^{z} (z-y)^{2} dy \\ &+ \frac{i(\lambda_{0}(z)+\lambda_{0}(z)+\lambda_{0}(z)+\lambda_{0}(z)+\lambda_{0}(z)}{2\pi(\alpha_{0}+1)} \int_{y}^{z} z^{2} dy \\ &+ \frac{i(\lambda_{0}(z)+\lambda_{0}(z)+\lambda_{0}(z)+\lambda_{0}(z)+\lambda_{0}(z)+\lambda_{0}(z)}{2\pi(\alpha_{0}+1)} \int_{y}^{z} z^{2} dy \\ &+ \frac{i(\lambda_{0}(z)+\lambda_{0}(z)+\lambda_{0}(z)+\lambda_{0}(z)+\lambda_{0}(z)}{2\pi(\alpha_{0}+1)} \int_{y}^{z} z^{2} dy \\ &+ \frac{i(\lambda_{0}(z)+\lambda_{0}(z)+\lambda_{0}(z)+\lambda_{0}(z)+\lambda_{0}(z)+\lambda_{0}(z)}{2\pi(\alpha_{0}+1)} \int_{y}^{z} z^{2} dy \\ &+ \frac{i(\lambda_{0}(z)+\lambda_{0}(z)+\lambda_{0}(z)+\lambda_{0}(z)+\lambda_{0}(z)+\lambda_{0}(z)+\lambda_{0}(z)}{2\pi(\alpha_{0}+1)} \int_{y}^{z} z^{2} dy \\ &+ \frac{i(\lambda_{0}(z)+\lambda_{0}(z)+\lambda_{0}(z)+\lambda_{0}(z)+\lambda_{0}(z)+\lambda_{0}(z)+\lambda_{0}(z)+\lambda_{0}(z)+\lambda_{0}(z)+\lambda_{0}(z)+\lambda_{0}(z)+\lambda_{0}(z)+\lambda_{0}(z)+\lambda_{0}(z)+\lambda_{0}(z)+\lambda_{0}(z)+\lambda_{0}(z)+\lambda_{0}(z)+\lambda_{0}(z)+\lambda_{$$

$$+ \frac{i(\lambda_{i}c_{k} + M_{i}c_{k})(S_{i} + S_{2})(1 + \nu_{i}d_{m})}{2\pi(\alpha_{m}+1)} \int_{T}^{S} (z-y)^{-2}dy$$

$$- \frac{iM_{i}c_{k}(S_{i}-S_{2} + z_{i}S_{3})(1 + \nu_{i}d_{m})}{2\pi(\alpha_{m}+1)} \int_{T}^{S} (z-y)^{-2}dy$$

$$- \frac{i(\lambda_{i}c_{k} + M_{i}c_{k})(S_{i}+S_{2})}{2\pi(\alpha_{m}+1)} \left(\nu_{i}\alpha_{m} + \nu_{2} + \frac{(\nu_{2}-1)(\beta-1)}{2\beta+\alpha_{i}c_{k}-1}\right) \int_{T}^{S} z^{-2}dy$$

$$+ \frac{iM_{i}c_{k}(S_{i}-S_{2} + 2iS_{3})}{2\pi(\alpha_{m}+1)} \left(\nu_{i}\alpha_{m} + \nu_{2} + \frac{(\nu_{2}-1)(\beta-1)}{2\beta+\alpha_{i}c_{k}-1}\right) \int_{T}^{S} z^{2}dy$$

$$- \frac{i\nu_{i}\alpha_{m}(S_{i}+S_{2})(\gamma_{i}c_{k}+M_{i}c_{k})}{2\pi(\alpha_{m}+1)} \int_{T}^{S} z^{-3}dy$$

$$+ \frac{i\nu_{i}\alpha_{m}(S_{i}+S_{2})(\gamma_{i}c_{k}+M_{i}c_{k})}{2\pi(\alpha_{m}+1)} \int_{T}^{S} z^{-3}dy$$

$$+ \frac{i\nu_{i}\alpha_{m}(S_{i}+S_{2})(\gamma_{i}c_{k}+M_{i}c_{k})}{2\pi(\alpha_{m}+1)} \int_{T}^{S} z^{-3}dy$$

where γ is the contour of the inclusion. The integrals can be evaluated by making use of the relations $\overline{\zeta} = \frac{\alpha^2}{\gamma}$ and $d\overline{\zeta} = -\frac{\alpha^2}{\zeta^2}d\gamma$ on γ , wherever necessary. The resulting potentials are given below.

$$\phi_{ik}'(z) = \frac{\beta}{2\beta + \alpha_{ik} - 1} \left(\lambda_{ik} + M_{ik}\right) \left(\delta_1 + \delta_2\right), \tag{72}$$

$$\Phi_{m}(z) = -\frac{1+\nu_{1}\alpha_{m}}{\alpha_{m+1}} \text{ Mih } \frac{\alpha^{2}}{z^{2}} (\xi_{1} - \xi_{2} + zi \xi_{3}),$$
 (74)

$$\Psi_{m}'(z) = \frac{\alpha i k - 1}{2\beta + \alpha i k - 1} \left(\lambda i k + M_{ik} \right) \left(\delta_{i} + \delta_{2} \right) \frac{\alpha^{2}}{Z^{2}} \\
- \frac{M_{ik} \left(1 + \nu_{i} \alpha_{m} \right) \left(\delta_{i} - \delta_{2} + \nu i \delta_{3} \right) \frac{3 \alpha^{4}}{Z^{4}}}{\alpha m + 1} \cdot (75)$$

The stress field inside and outside the inclusion can be evaluated from the appropriate functions by means of relations (1). It must however be remembered that the inhomogeneity had a constrained-stress field given by (70) and it must be added to the stress field obtained from these functions. Continuity of normal and shearing stresses can be verified at this stage. The stress components in polar form are given below.

$$\begin{array}{l} (\overline{\tau}_{k})_{ik} = \frac{1-\alpha_{ik}}{2\beta+\alpha_{ik}-1} & (2i\beta+\beta_{k})(2\beta+\beta_{k}) - \frac{1+\alpha_{ik}}{\alpha_{m+1}} & \lambda_{ik} \\ \times & (5i-\delta_{k}) & \cos 2\theta - \frac{1+\alpha_{ik}}{\alpha_{m+1}} & \lambda_{ik} & 2\delta_{3} \sin 2\theta \\ \times & (3i-\delta_{k}) & \cos 2\theta - \frac{1+\alpha_{ik}}{\alpha_{m+1}} & \lambda_{ik} & (5i-\delta_{k}) \cos 2\theta \\ + 2\lambda_{ik} & \delta_{3} & \sin 2\theta & (\frac{1+\alpha_{ik}}{\alpha_{m+1}}) \\ + 2\lambda_{ik} & \delta_{3} & \sin 2\theta & (\frac{1+\alpha_{ik}}{\alpha_{m+1}}) \\ \times & (\lambda_{ik})_{ik} = \frac{1+\alpha_{ik}}{\alpha_{m+1}} & \lambda_{ik} & (\delta_{i}-\delta_{k}) & \sin 2\theta - \frac{1+\alpha_{ik}}{\alpha_{m+1}} & 2\lambda_{ik} & \cos 2\theta \\ \times & (\alpha_{m+1}) & \lambda_{ik} & (\alpha_{ik}+\beta_{ik}) & (\delta_{i}+\delta_{k}) & \frac{\alpha_{i}}{\alpha_{m+1}} & \frac{1+\alpha_{ik}}{\alpha_{m+1}} & \lambda_{ik} & (\delta_{i}-\delta_{k}) \\ \times & (\alpha_{m+1}) & \lambda_{ik} & (\alpha_{m+1}) & \lambda_{ik} & (\alpha_{m+1}) & \lambda_{ik} & (\alpha_{m+1}) \\ \times & (\alpha_{m+1}) & \lambda_{ik} & (\alpha_{m+1}) & \lambda_{ik} & (\alpha_{m+1}) & \lambda_{ik} & (\alpha_{m+1}) \\ \times & (\alpha_{m+1}) & \lambda_{ik} & (\alpha_{m+1}) & \lambda_{ik} & (\alpha_{m+1}) & \lambda_{ik} & (\alpha_{m+1}) \\ \times & (\alpha_{m+1}) & \lambda_{ik} & (\alpha_{m+1}) & \lambda_{ik} & (\alpha_{m+1}) & \lambda_{ik} & (\alpha_{m+1}) \\ \times & (\alpha_{m+1}) & \lambda_{ik} & (\alpha_{m+1}) & \lambda_{ik} & (\alpha_{m+1}) & \lambda_{ik} & (\alpha_{m+1}) & \lambda_{ik} \\ \times & (\alpha_{m+1}) & \lambda_{ik} & (\alpha_{m+1}) & \lambda_{ik} & (\alpha_{m+1}) & \lambda_{ik} & (\alpha_{m+1}) & \lambda_{ik} \\ \times & (\alpha_{m+1}) & \lambda_{ik} & (\alpha_{m+1}) & \lambda_{ik} & (\alpha_{m+1}) & \lambda_{ik} & (\alpha_{m+1}) & \lambda_{ik} \\ \times & (\alpha_{m+1}) & \lambda_{ik} & (\alpha_{m+1}) & \lambda_{ik} & (\alpha_{m+1}) & \lambda_{ik} & (\alpha_{m+1}) & \lambda_{ik} \\ \times & (\alpha_{m+1}) & \lambda_{ik} & (\alpha_{m+1}) & \lambda_{ik} & (\alpha_{m+1}) & \lambda_{ik} & (\alpha_{m+1}) & \lambda_{ik} \\ \times & (\alpha_{m+1}) & \lambda_{ik} & (\alpha_{m+1}) & \lambda_{ik} & (\alpha_{m+1}) & \lambda_{ik} & (\alpha_{m+1}) & \lambda_{ik} \\ \times & (\alpha_{m+1}) & \lambda_{ik} & (\alpha_{m+1}) & \lambda_{ik} & (\alpha_{m+1}) & \lambda_{ik} & (\alpha_{m+1}) & \lambda_{ik} \\ \times & (\alpha_{m+1}) & \lambda_{ik} & (\alpha_{m+1}) & \lambda_{ik} & (\alpha_{m+1}) & \lambda_{ik} & (\alpha_{m+1}) & \lambda_{ik} \\ \times & (\alpha_{m+1}) & \lambda_{ik} & (\alpha_{m+1}) & \lambda_{ik} & (\alpha_{m+1}) & \lambda_{ik} & (\alpha_{m+1}) & \lambda_{ik} \\ \times & (\alpha_{m+1}) & \lambda_{ik} & (\alpha_{m+1}) & \lambda_{ik} & (\alpha_{m+1}) & \lambda_{ik} \\ \times & (\alpha_{m+1}) & \lambda_{ik} & (\alpha_{m+1}) & \lambda_{ik} & (\alpha_{m+1}) & \lambda_{ik} \\ \times & (\alpha_{m+1}) & \lambda_{ik} & (\alpha_{m+1}) & \lambda_{ik} & (\alpha_{m+1}) & \lambda_{ik} \\ \times & (\alpha_{m+1}) & \lambda_{ik} & (\alpha_{m+1}) & \lambda_{ik} & (\alpha_{m+1}) & \lambda_{ik} \\ \times & (\alpha_{m+1}) & \lambda_{ik} & (\alpha_{m+1}) & \lambda_{ik} & (\alpha_{m+1}) & \lambda_{ik} \\ \times &$$

The results obtained in this chapter agree with those obtained by other writers ((16)).

Integration of the functions given in (72 - 75) with respect to z yields

$$\Psi_{ih}(z) = \frac{(p_1 - 1) \, d_m}{d_{ih}} \, \mu_{ih} \, (\delta_1 - \delta_2 - 2i\delta_3) \, Z \,, \tag{77}$$

$$\frac{V_{m}(z)}{z\beta+\alpha ck-1} = \frac{1-\alpha ck}{z\beta+\alpha ck-1} \left(\frac{\gamma_{ck}+M_{ck}}{\gamma_{ck}}\right) \left(\frac{S_1+S_2}{z}\right) \frac{\alpha^2}{z} + M_{ck} \left(\frac{1+\nu_1\alpha_m}{\alpha_m+1}\right) \left(\frac{S_1-S_2}{z}+2cS_3\right) \frac{\alpha^4}{z^3}.$$
(79)

The displacement field inside and outside can be evaluated from appropriate potentials with the help of (2). The displacements on the boundary can be seen to be

CHAPTER VIII

A CIRCULAR HOLE AND A POINT-FORCE

In this Chapter another important problem is considered. This relates to the case, when there is a circular hole in the body. A concentrated force is applied at a point of the body. The elastic field generated by its action is to be found out. Choosing the coordinate system with origin at the centre of the hole, (Fig. 15 p. 140) we have $z\bar{z}=a^2$ as the equation of the boundary of the hole.

Assume the forms of the complex functions which describe the effect of the concentrated force P acting at the point γ as under:

$$\phi(z) = \frac{P}{2\pi(\alpha+1)} \left\{ -\log(z-5) - \alpha \log(z-\frac{\alpha^2}{5}) + A(z-\frac{\alpha^2}{5})^{-1} + \alpha \log z \right\}, \quad (80)$$

$$Y(z) = \frac{P}{2\pi(d+1)} \left\{ \propto \log(z-g) + \frac{g}{g} \frac{P}{P}(z-g)^{-1} + \log(z-\frac{a^{2}}{g}) + B(z-\frac{a^{2}}{g})^{-1} + C(z-\frac{a^{2}}{g})^{-2} - \log_{2} z + Dz^{-1} + Ez^{-2} \right\},$$
(81)

where \bar{P} is the complex conjugate of \bar{P} . Here we have introduced the unknown constants A,B,C,D and E. This choice gives a proper singularity at the point γ of action of the concentrated force. The unknown constants have to be determined using appropriate boundary conditions. Thus vanishing of normal and shearing stresses on the free edge of the hole implies that

We use the relation (63) viz.,

Substituting the values of $\phi(z)$ and $\psi'(z)$ from (80) and (81), the above equation leads to

$$-P(\sigma-g)^{-1} + \bar{g} P \propto (\bar{\sigma}-\bar{g})^{-1} - P \wedge \bar{g}^{2} + 2P \propto -\bar{P}(\bar{\sigma}-\bar{g})^{-1} + \bar{P} \propto g^{2} + \bar{g} P \propto g^{2} + \bar{g}$$

The left side of this equation may be put in the form of a polynomial in σ . On equating the coefficients of various powers of σ to zero, we obtain the following equations

$$PC + PSB = 0,$$

$$PE + Pxa^{2} = 0,$$

$$Pa^{4}y + x Pb^{2}a^{2}y - PAb^{4} + DPa^{2}y^{2} = 0,$$

$$PS^{3} - \overline{AP} \xrightarrow{b^{4}} + \overline{PB}S^{2} + D\overline{PS}^{2} = 0,$$

$$PA = S^{3} + \overline{PA} + S^{2} + \overline{PB}S^{2}y^{2} = 0,$$

$$-P(a^{2} + b^{2})(a^{2} + b^{2}a) + PAb^{2}S = 0,$$

$$-P(a^{2} + b^{2})(a^{2} + b^{2}a) + PAb^{2}S = 0,$$

$$-(S + 4x^{2}S^{2})PA + SPAa^{2} - S^{2}\overline{PA}$$

$$+ DP(a^{2} + b^{4} + 4b^{2}) + \overline{PT}b^{4} = 0,$$

$$+ 4b^{2}\overline{FPX} + Sa^{2}\overline{FP} + b^{2}\overline{FP} = 0,$$

where b= 191, += b/a.

Solving this set of equations we obtain

$$A = \frac{\overline{P}}{P} \frac{+^{2}-1}{a^{2}+6} \quad p^{3}, \quad B = \frac{P}{P} \propto \overline{g} - \frac{+^{2}-1}{2^{2}} \quad g,$$

$$C = \frac{+^{2}-1}{2^{2}+6} \quad p^{2} \quad D = \frac{+^{2}-1}{2^{2}} \quad P = \frac{\overline{g}}{2^{2}} \quad p^{2} \quad g,$$

$$E = -\frac{P}{\overline{P}} \propto a^{2}.$$

Thus, for an isolated point-force P acting at the point γ , the complex potentials are

$$\Phi(z) = \frac{P}{2\pi(x+1)} \left\{ -\log(z-p) - x\log(z-\frac{a^2}{5}) + x\log z \right\} + \frac{P}{2\pi(x+1)} \frac{t^2-1}{a^2+6} y^3 \left(z-\frac{a^2}{5}\right)^{-1},$$
 (82)

$$\frac{P(z)}{2\pi(x+1)} \left\{ x \log(z-y) + \log(z-\frac{a^{2}}{y}) - \log z - \frac{b^{2}}{y^{2}} \right\} - \left\{ (z-\frac{a^{2}}{y})^{-1} + \frac{b^{2}}{y^{2}} \right\} \left\{ (z-\frac{a^{2}}{y})^{-2} + \frac{b^{2}}{y^{2}} \right\} + \frac{p}{2} \left\{ (z-\frac{a^{2}}{y})^{-1} + \frac{p}{2} \left\{ (z-\frac{a^{2}}{y})^{-1} + \frac{b^{2}}{y^{2}} \right\} \right\} \left\{ x \right\} \left\{ (z-\frac{a^{2}}{y})^{-1} + \frac{p}{2} \left((z-\frac{a^{2}}{y})^{-1} - x \right) \right\} = \frac{p}{2} \left\{ (z-\frac{a^{2}}{y})^{-1} + \frac{p}{2} \left((z-\frac{a^{2}}{y})^{-1} - x \right) \right\} \left\{ x \right\} \left\{ (z-\frac{a^{2}}{y})^{-1} + \frac{p}{2} \left((z-\frac{a^{2}}{y})^{-1} - x \right) \right\} \right\} (83)$$

From (82) and (83) we get by simple differentiation

$$\Phi'(z) = \frac{P}{2\pi(\alpha+1)} \left\{ (g-z)^{-1} - \alpha(z-\frac{a^{2}}{g})^{-1} + \alpha z^{-1} \right\}$$

$$-\frac{P}{2\pi(\alpha+1)} \int_{0}^{3} \frac{r^{2}-1}{a^{2}r^{6}} \left(z-\frac{a^{2}}{g} \right)^{-2}, \qquad (84)$$

$$\Psi'(z) = \frac{P}{2\pi(\alpha+1)} \left\{ \alpha(z-g)^{-1} + (z-\frac{a^{2}}{g})^{-1} - z^{-1} + \frac{r^{2}-1}{r^{2}} \right\}$$

$$\times (z-\frac{a^{2}}{g})^{-2} - 2 \int_{0}^{2} \frac{r^{2}-1}{r^{4}} \left(z-\frac{a^{2}}{g} \right)^{-3} - \frac{r^{2}-1}{r^{2}} \int_{0}^{2} \frac{r^{2}-1}{r^{2}} \left(z-\frac{a^{2}}{g} \right)^{-2} + \frac{P}{2\pi(\alpha+1)} \int_{0}^{2} -P(z-r)^{-2} - \alpha f(z-\frac{a^{2}}{g})^{-2} \right\}$$

$$+ \alpha \int_{0}^{2} z^{-2} + \frac{1}{2} z^{-2} + 2\alpha \alpha^{2} z^{-3} \int_{0}^{2} \frac{r^{2}-1}{r^{2}} \left(z-\frac{a^{2}}{r^{2}} \right)^{-2}$$

$$+ \alpha \int_{0}^{2} z^{-2} + \frac{1}{2} z^{-2} + 2\alpha \alpha^{2} z^{-3} \int_{0}^{2} \frac{r^{2}-1}{r^{2}} \left(z-\frac{a^{2}}{r^{2}} \right)^{-2}$$

The associated elastic fields can be readily obtained with the help of (1). It shall not be done here, because that will be going beyond the main stream of this thesis, viz. inclusion problems. The results obtained above will be used in the next chapter, where we deal with an inclusion in the presence of a hole.

It can be readily seen that the cumulative effect of a continuous distribution of point-forces acting along any finite curve in elastic plane, in place of a single isolated force at y, could be described by the functions

$$\phi'(z) = \frac{1}{2\pi(\alpha+1)} \left\{ \int_{\gamma} P(y-z)^{-1} ds + \int_{\gamma} \alpha P z^{-1} ds \right\}$$

$$- \int_{\gamma} \alpha P(z - \frac{\alpha z}{p})^{-1} ds - \int_{\gamma} P \frac{\gamma^{2}-1}{\alpha^{2}\gamma^{6}} \int_{\gamma}^{3} (z - \frac{\alpha z}{p})^{-2} ds \right\},$$

$$(86)$$

$$\psi'(z) = \frac{1}{2\pi(\alpha+1)} \left\{ \int_{\gamma} \alpha P(z-y)^{-1} ds + \int_{\gamma} P(z - \frac{\alpha^{2}}{p})^{-1} ds - \int_{\gamma} z^{-1} P ds + \int_{\gamma} P \frac{\gamma^{2}-1}{\gamma^{2}} \int_{\gamma}^{3} (z - \frac{\alpha^{2}}{p})^{-2} ds - \int_{\gamma} P \frac{\gamma^{2}-1}{\gamma^{2}} \int_{\gamma}^{3} (z - \frac{\alpha^{2}}{p})^{-2} ds - \int_{\gamma} P \int_{\gamma}^{3} (z - \frac{\alpha^{2}}{p})^{-2} ds - \int_{\gamma} P \int_{\gamma}^{3} (z - \frac{\alpha^{2}}{p})^{-2} ds + \int_{\gamma} \alpha P \int_{\gamma}^{3} z^{-2} ds + \int_{\gamma}^{3} \alpha P \int_{\gamma}^{3} z^{-2} ds + \int_{$$

where γ is the curve, ds is its differential arc length and g any point on it.

CHAPTER IX

CIRCULAR INCLUSION IN THE PRESENCE OF A CIRCULAR HOLE

A circular region in an infinite medium containing a circular cavity tends to undergo dimensional changes. The cavity and the inclusion do not over lap. The presence of the hole is expected to greatly perturb the elastic fields in the region of physical interest, especially when it is comparitively close to the inclusion.

Choosing the reference system in accordance with Fig. 10 p. 138 it is easy to keep in mind that $z \bar{z} \le a^2$ and $(z-\ell)(\bar{z}-\ell)\le 1$ represent the hole with centre at the origin and radius a and the inclusion with centre at ℓ (real) and radius unity. The remaining portion of the complex plane represents the matrix.

The inclusion in the absence of the matrix, would undergo a displacement characterised by the components

As before if the above displacement is opposed, then the stress system developed in the inclusion region is

and the point-force distribution generated along the contour calculated from (88) and (22) is given by

Pds =
$$-i(\lambda+\mu)(\delta_1+\delta_2)d\xi+i\mu(\delta_1-\delta_2+2i\delta_3)d\xi$$

and
$$\overline{P}ds = i(\lambda+\mu)(\delta_1+\delta_2)d\overline{\xi}-i\mu(\delta_1-\delta_2-2i\delta_3)d\xi$$

Substituting these in the integrals (86), (87) and taking γ to be the boundary $(\gamma - \ell)(\overline{\gamma} - \ell) = 1$, we evaluate the integrals. Also there are the relations $\overline{\gamma} = \ell + (\gamma - \ell)^{-1}$ and $dd\overline{\gamma} = -(\gamma - \ell)^{-2} d\gamma$ on γ . The expressions become particularly simple after the substitutions

and

Suffixes 2 and m will be used to distinguish quantities pertaining to the inclusion and the matrix respectively. The result

of integration is that

$$\psi_{c}(z) = \frac{\alpha - 1}{\alpha + 1} (\lambda + \mu) (\delta_{1} + \delta_{2}) \left(\frac{2a^{2}}{2z^{3}} - \frac{1}{z_{1}^{2}} + \frac{1}{z^{2}} \right) \\
- \frac{\mu}{\lambda + 1} (\delta_{1} - \delta_{2} - 2i\delta_{3}) \left\{ \lambda + \frac{a^{2}}{2z^{2}} + \frac{2a^{4}}{2z^{2}} + \frac{2a^{4}}{2z^{3}} + (2a^{2} - 2\ell^{2} + 3) \frac{3a^{4}}{2z^{4}} + \frac{12a^{6}}{2z^{5}} \right\} \\
- \frac{\mu}{\lambda + 1} (\delta_{1} - \delta_{2} + 2i\delta_{3}) \frac{a^{2}}{2z^{2}}, \qquad (91)$$

$$\Phi_{m}^{\prime}(z) = \frac{\alpha - 1}{\alpha + 1} \left(\lambda + \mu \right) \left(\delta_{1} + \delta_{2} \right) \frac{a^{2}}{\ell^{2} z^{2}} - \frac{\mu}{\alpha + 1} \left(\delta_{1} - \delta_{2} + 2i \delta_{3} \right) \frac{1}{Z^{2}} - \frac{\mu}{\alpha + 1} \left(\delta_{1} - \delta_{2} - 2i \delta_{3} \right) \left[(3a^{2} - 2\ell^{2} + 3) \frac{a^{2}}{\ell^{4} z^{2}} + (a^{2} - \ell^{2} + 3) \frac{2a^{4}}{\ell^{5} z^{3}} + \frac{3a^{6}}{\ell^{6} z^{4}} \right],$$

$$\psi_{m}^{\prime}(z) = (\lambda + \lambda) (\delta_{1} + \delta_{2}) \frac{d-1}{d+1} \left\{ \frac{1}{Z_{2}^{2}} + \frac{2a^{2}}{\ell z_{1}^{3}} + \frac{1}{Z^{2}} - \frac{1}{Z_{2}^{2}} \right\} \\
- \frac{\lambda}{d+1} \left\{ \delta_{1} - \delta_{2} - 2i\delta_{3} \right\} \left\{ \frac{a^{2}}{\ell^{2}z^{2}} + \frac{2a^{4}}{\ell^{3}z_{3}^{3}} + (2a^{2} - 2\ell^{2} + 3) \frac{3a^{4}}{\ell^{4}z_{4}^{4}} + \frac{12a^{6}}{\ell^{5}z_{5}^{5}} \right\} \\
- \frac{\lambda}{d+1} \left(\delta_{1} - \delta_{2} + 2i\delta_{3} \right) \left(\frac{a^{2}}{\ell^{2}z^{2}} + \frac{2\ell}{Z_{3}^{3}} + \frac{3}{Z_{4}^{4}} \right). \tag{93}$$

The stresses in the matrix are obtained directly from $\Phi'_{m}(z)$ and $\Psi'_{m}(z)$ by using the equation (1), but the inclusion had an initial stress field given by (88), therefore it has to be added to the one obtained from $\Phi'_{i}(z)$ and $\Psi'_{i}(z)$ given above. Moreover at this stage it can be verified that the boundary conditions on the stresses both at the hole $\sigma \bar{\sigma} = a^{2}$ and at the inclusion boundary $(\S-\ell)(\bar{\gamma}-\ell)=1$, are satisfied.

Following are the expressions for stresses in cartesian form in the case of $\delta_3=o$. We use the abbreviations

$$x_1 = x - \frac{a^2}{\ell}, \quad x_2 = x - \ell, \quad \lambda_1^2 = x_1^2 + y^2,$$

$$\lambda_2^2 = x_2^2 + y^2, \quad \lambda_3^2 = x_1^2 + y^2;$$

$$(\sigma_{\overline{x}})_{i} = (\lambda + \lambda_{1}) (S_{i} + S_{2}) \frac{\alpha + 1}{\alpha + i} \left\{ 1 + \frac{1}{N_{i}^{2}} (x_{i}^{2} - y^{2}) (\frac{2\alpha^{2}}{4^{2}} + 1) \right.$$

$$- \frac{2\alpha^{2}}{\ell^{3}N_{i}^{6}} (\ell^{2} - \alpha^{2}) (x_{i}^{3} - 3x_{i}y^{2}) + \frac{2\alpha^{2}}{\ell^{2}N_{i}^{6}} (x_{i}^{4} - 6x_{i}^{2}y^{2} + y^{4})$$

$$- \frac{1}{N_{i}^{4}} (x^{2} - y^{2})^{2} - \frac{M(S_{i} - S_{2})}{\alpha + 1} \right\} 1 + \frac{x_{i}^{2} - y^{2}}{N_{i}^{4}}$$

$$\times \left(\frac{6\alpha^{4}}{\ell^{4}} - \frac{4\alpha^{2}}{\ell^{2}} + \frac{6\alpha^{2}}{\ell^{4}} \right) + \frac{2\alpha^{4}}{\ell^{5}N_{i}^{6}} (6 + 2\alpha^{2} - 3\ell^{2})$$

$$\times \left(\frac{x_{i}^{3} - 3x_{i}y^{2}}{\ell^{4}} \right) + \left(6\alpha^{2}N^{2} + 6\lambda^{2}L^{2} - 4\lambda^{2}L^{4} \right)$$

$$- 9\alpha^{2}\ell^{2} - 8\alpha^{4}\ell^{2} + 6\alpha^{2}\ell^{4} + 6\alpha^{4} \right) \frac{\alpha^{2}}{\ell^{6}N_{i}^{8}}$$

$$- \left(N_{i}^{2} + 2\lambda^{2} + 6\lambda^{2} + 6\alpha^{2} \right) \left(x_{i}^{5} - 10 \times N_{i}^{3} y^{2} + 5x_{i}y^{4} \right) \frac{2\alpha^{4}}{\ell^{5}N_{i}^{10}}$$

$$- \frac{2\alpha^{2}}{N^{4}\ell^{2}} (x^{2} - y^{2})^{2} \right\},$$

$$(y)_{i} = (\lambda + \lambda_{1})(S_{i} + S_{2}) \frac{\alpha - 1}{\alpha + 1} \left\{ -1 + (\frac{2\alpha^{2}}{\ell^{2}} - 1)(\chi_{i}^{2} - y^{2}) \frac{1}{\chi_{i}^{2}} + \frac{2\alpha^{2}}{\ell^{3}}(\ell^{2} - \alpha^{2})(\chi_{i}^{3} - 3\chi_{i}y^{2}) + \frac{\chi^{2} - y^{2}}{\ell^{4}} - \frac{2\alpha^{2}}{\ell^{2}}(\chi_{i}^{4} - 6\chi_{i}^{2}y^{2} + y^{4}) \right\} - \frac{\lambda_{1}}{\alpha + 1}(S_{i} - S_{2})$$

$$\times \left\{ -1 + (\chi_{i}^{2} - y^{2})(\frac{6\alpha^{4}}{\ell^{4}} - \frac{4\alpha^{2}}{\ell^{2}} + \frac{6\alpha^{2}}{\ell^{4}}) \frac{1}{\chi_{i}^{4}} + (6 + 2\alpha^{2} - \ell^{2})(\chi_{i}^{3} - 3\chi_{i}y^{2}) \frac{2\alpha^{4}}{\ell^{5}} + (4\ell^{4}\ell^{2} - 6\alpha^{2}\chi^{2}\ell^{2} - 6\alpha^{2}\ell^{2} + 9\alpha^{2}\ell^{2} + 8\alpha^{4}\ell^{2} - 6\alpha^{2}\ell^{4} + 6\alpha^{4})(\chi_{i}^{4} - 6\chi_{i}^{2}y^{2} + y^{4}) \frac{\alpha^{2}}{\ell^{6}\chi^{8}} + (\ell^{2}\chi_{i}^{2} - 6\chi^{2} + 6\alpha^{2})(\chi_{i}^{5} - (6\chi_{i}^{3}y^{2} + 5\chi_{i}y^{4}) \frac{2\alpha^{4}}{\ell^{5}\chi^{6}} + (\chi^{2} - y^{2}) \frac{2\alpha^{2}}{\ell^{2}\chi^{4}} \right\},$$

$$(\sqrt{3}xy)_{i} = 2(\lambda+M)(5_{1}+5_{2})\frac{\alpha-1}{\alpha+1}y_{1}(2^{2}-\alpha^{2})(y_{1}-3x_{1}^{2})\frac{\alpha^{2}}{2^{3}}x_{1}^{6}$$

$$+(x_{1}^{3}-x_{1}y_{2})\frac{4\alpha^{2}}{2^{2}}x_{1}^{6}+\frac{x_{1}}{\alpha_{1}^{4}}-\frac{x_{1}}{x_{1}^{4}}$$

$$-\frac{2M}{\alpha+1}(5_{1}-5_{2})y_{1}(y_{2}-3x_{1}^{2})\frac{\alpha^{4}}{2^{3}}x_{1}^{6}$$

$$+(6\alpha^{2}2^{2}-\alpha^{2}+6x^{2}2^{2}-4x^{2}2^{4}-9x^{2}2^{2}$$

$$-8x^{4}2^{2}+6x^{2}2^{4})(x_{1}^{3}-x_{1}y_{2})\frac{2\alpha^{2}}{2^{6}}x_{1}^{6}$$

$$-(2^{2}x_{1}^{2}-6x^{2}-12x^{2})(5x_{1}^{4}-10x_{1}^{2}y_{2}+y_{1}^{4})$$

$$\times \frac{\alpha^{4}}{2^{5}}x_{1}^{6}-\frac{2\alpha^{2}x}{2^{2}}x_{1}^{2}$$

 $(x_{1})_{m} = (\lambda + \mu)(\xi_{1} + \xi_{2}) \frac{\alpha - 1}{\alpha + 1} \left\{ (2\alpha^{2} + \ell^{2})(x_{1}^{2} - y^{2}) \frac{1}{\ell^{2}x_{1}^{4}} - (\ell^{2} - \alpha^{2})(x_{1}^{3} - 3x_{1}y^{2}) \frac{2\alpha^{2}}{\ell^{3}x_{1}^{6}} + (x_{1}^{4} - 6x_{1}^{2}y^{2} + y^{4}) \frac{2\alpha}{\ell^{2}x_{1}^{6}} - (x_{2}^{2} - y^{2}) \frac{1}{\ell^{4}} - (x_{2}^{2} - y^{2}) \frac{1}{\ell^{4}} \right\} + (3\alpha^{2} - 2\ell^{2} + 3)$ $\times (x_{1}^{2} - y^{2}) \frac{2\alpha^{2}}{\alpha + 1} + (6 + 2\alpha^{2} - 3\ell^{2})(x_{1}^{3} - 3x_{1}y^{2}) \frac{2\alpha^{4}}{\ell^{5}x_{1}^{6}} + (6\alpha^{4} + 6\alpha^{2}x_{1}^{2} + 4\ell^{4} - 4\ell^{2}\ell^{4} - 4\ell^{2}\ell^{4$

 $(y)_{m} = (\lambda + \lambda)(S_{1} + S_{2}) \frac{\lambda - 1}{\lambda + 1} \left\{ (2a^{2} - e^{2})(x_{1}^{2} - y^{2}) \frac{1}{x_{1}^{4}e^{2}} \right.$ $+ (e^{2} - a^{2})(x_{1}^{3} - 3x_{1}y^{2}) \frac{a^{2}}{e^{2}x_{1}^{6}} - (x_{1}^{4} - 6x_{1}^{2}y_{1}^{2} + y^{4}) \frac{2a^{2}}{e^{2}x_{1}^{6}}$ $+ (x_{1}^{2} - y^{2}) \frac{1}{x_{1}^{4}} - (x^{2} - y^{2}) \frac{1}{x_{1}^{4}} \right\}$ $- \frac{\lambda(S_{1} - S_{2})}{a + 1} \left\{ 2(x_{1}^{2} - y^{2}) \frac{1}{x_{1}^{4}} + (3a^{2} - 2e^{2} + 3) \right\}$ $\times (x_{1}^{2} - y^{2}) \frac{2a^{2}}{a + 1} + (6 + 2a^{2} - e^{2})(x_{1}^{3} - 3x_{1}y^{2}) \frac{a^{4}}{e^{5}x_{1}^{6}}$ $+ (6a^{4} - 6a^{2}x_{1}x_{1}^{2} - 6x_{1}^{2}x_{1}^{2} + 4x_{1}^{2}x_{1}^{6} + qa^{2}e^{2} + 6x_{1}^{2}x_{1}^{6} + 6a^{2}x_{1}^{2}x_{1}^{2} - 6a^{2}x_{1}^{2}x_{1}^{2} + 5x_{1}^{2}x_{1}^{6} + 7x_{1}^{2}x_{1}^{6} + 7$

$$(T_{2}y)_{m} = 2(\chi + \chi)(\xi_{1} + \xi_{2}) \frac{\chi-1}{\chi+1} y \left\{ (\ell^{2} - \alpha^{2})(\chi^{2} - 3\chi^{2}) \frac{\alpha^{2}}{\ell^{2}\chi^{6}} + \frac{4\alpha^{2}}{\ell^{2}\chi^{6}}(\chi^{3}_{1} - y^{2}\chi_{1}) - \frac{\chi_{2}}{\chi^{2}_{2}} + \frac{\chi_{1}}{\chi^{4}_{1}} - \frac{\chi}{\chi^{4}_{1}} \right\}$$

$$- \frac{2\chi(\xi_{1} - \xi_{2})}{\chi+1} y \left\{ \frac{\alpha^{4}}{\ell^{6}\chi^{6}}(\alpha^{4} - 3\chi^{2}_{1}) + 2(6\alpha^{2}\ell^{2}\chi^{2} + 6\alpha^{2}\ell^{2}\chi^{2}) + (6\chi^{2}\ell^{2} - 4\chi^{2}\ell^{4} - 9\alpha^{2}\ell^{2} - 8\alpha^{4}\ell^{2} + 6\alpha^{2}\ell^{2}) \right\}$$

$$\times (\chi^{3}_{1} - \chi^{2}\chi^{2}) \frac{\alpha^{2}}{\ell^{6}\chi^{6}_{1}} - (\chi^{2}\ell^{2} - 6\chi^{2} + 6\alpha^{2}\ell^{2})$$

$$\times (\xi\chi^{4}_{1} - 10\chi^{2}\chi^{2} + \chi^{4}) \frac{1}{\chi^{10}_{1}} + \frac{\ell}{\ell^{2}}(\chi^{2} - 3\chi^{2}_{2})$$

$$- \frac{6}{\chi^{2}_{1}}(\chi^{3}_{1} - \chi^{2}\chi_{2}) - \frac{2\chi\alpha^{2}}{\ell^{2}\chi^{4}} \right\}.$$

Hoop stress at the free boundary of the hole is of particular interest. Since normal stress is zero on the boundary, hoop stress may be found from the formula

Putting

$$Z_1 = \lambda_1 \stackrel{\circ}{e}^1$$
, $Z_2 = \lambda_2 \stackrel{\circ}{e}^2$ and $Z_2 = \lambda_2 \stackrel{\circ}{e}^3$.

we have

$$\frac{4(\delta_{1}+\delta_{2})(\lambda+\mu)}{\alpha+1} \frac{\alpha-1}{4^{2}} \frac{\alpha^{2}}{4^{2}} \cos 2\theta_{1}$$

$$-\frac{4\mu(\delta_{1}-\delta_{2})}{\alpha+1} \left\{ \frac{1}{4^{2}} + \frac{2\alpha^{2}}{4^{3}} \cos \theta_{1} + \frac{4\alpha^{2}-2\ell^{2}+3}{4^{3}} \frac{\alpha^{2}}{4^{4}} \cos 2\theta_{1} + (\alpha^{2}-\ell^{2}+3) \frac{\alpha^{2}}{4^{5}} \cos 2\theta_{1}$$

$$+(\alpha^{2}-\ell^{2}+3) \frac{2\alpha^{4}}{4^{5}} \cos 3\theta_{1} + \frac{3\alpha^{6}}{4^{6}} \cos 4\theta_{1}$$

As regards normal and tangential stresses continuously transmitted across $(\zeta-\ell)(\zeta-\ell)=1$ by the bond are given by

$$| (\sigma_{n}) |_{Z=\frac{\pi}{2}} = \frac{(\lambda+h)(5)+5_{2})(\alpha-1)}{\alpha+1} \left\{ -1 + \frac{2\alpha^{2}}{4^{2}x_{1}^{2}} \cos 2\theta_{1} \right.$$

$$+ \frac{2\alpha^{2}x_{1}}{4^{2}x_{1}^{2}} \cos (2\theta_{2}-3\theta_{1}-\theta) - \frac{2\alpha^{2}}{4^{2}x_{1}^{2}} \cos (2\theta_{2}-3\theta_{1}).$$

$$+ \frac{1}{4^{2}} \cos (2\theta_{2}-2\theta_{1}) - \frac{1}{4} \cos (2\theta_{2}-2\theta) \right\}$$

$$- \frac{\mu(5,-5_{2})}{\alpha+1} \left\{ \cos (2\theta_{1}-2\theta_{1}) + 2(3\alpha^{2}-2\theta^{2}+3) \frac{\alpha^{2}}{4^{2}x_{1}^{2}} \cos 2\theta_{1} \right.$$

$$+ \frac{2\alpha^{2}}{4^{2}x_{1}^{2}} \cos (2\theta_{1}-2\theta) - \frac{2\alpha^{4}}{4^{2}x_{1}^{2}} \cos (2\theta_{2}-3\theta_{1})$$

$$- \frac{2\alpha^{4}}{4^{2}x_{1}^{2}} \cos (2\theta_{2}-3\theta_{1}) + \frac{12\alpha^{4}x_{1}}{4^{2}x_{1}^{2}} \cos (2\theta_{2}-3\theta_{1})$$

$$- \frac{12\alpha^{6}}{4^{2}x_{1}^{2}} \cos (2\theta_{2}-5\theta_{1}) + \frac{12\alpha^{4}x_{1}}{4^{2}x_{1}^{2}} \cos (2\theta_{2}-3\theta_{1})$$

$$+ \frac{12\alpha^{4}}{4^{2}x_{1}^{2}} \cos (2\theta_{2}-3\theta_{1}) + \frac{12\alpha^{4}x_{1}}{4^{2}x_{1}^{2}} \cos (2\theta_{2}-3\theta_{1})$$

$$+ \frac{12\alpha^{4}}{4^{2}x_{1}^{2}} \cos (2\theta_{2}-4\theta_{1}-\theta)$$

$$+ \frac{12\alpha^{4}}{4^{2}x_{1}^{2}} \sin (2\theta_{2}-3\theta_{1}) - \frac{1}{4^{2}x_{1}^{2}} \sin (2\theta_{2}-3\theta_{1})$$

$$- \frac{1}{4^{2}x_{1}^{2}} \sin (2\theta_{2}-3\theta_{1}) - \frac{1}{4^{2}x_{1}^{2}} \sin (2\theta_{2}-3\theta_{1})$$

$$+ \frac{12\alpha^{4}}{4^{2}x_{1}^{2}} \sin (2\theta_{2}-2\theta_{1}-\theta)$$

$$+ \frac{12\alpha^{4}x_{1}^{2}}{4^{2}x_{1}^{2}} \sin (2\theta_{2}-5\theta_{1}-\theta)$$

$$+ \frac{12\alpha^{4}x_{1}^{2}}{4^{2}x_{1}^{2}} \sin (2\theta_{2}-5\theta_{1}-\theta)$$

$$-\frac{12a^{6}}{8545} \sin \left(2\theta_{2}-5\theta_{1}\right)$$

$$+2\left(3a^{2}-2\ell^{2}+3\right)\frac{a^{2}4}{\ell^{4}43} \sin \left(2\theta_{2}-3\theta_{1}-\theta\right)$$

$$+6\left(a^{2}-\ell^{2}+3\right)\frac{a^{4}4}{\ell^{5}4} \sin \left(2\theta_{2}-4\theta_{1}-\theta\right)^{2}$$

The hoop stress in the inclusion on its boundary is

$$\begin{array}{c|c} (\nabla S)_{i} & = & (\lambda + \lambda)(\delta_{1} + \delta_{2})(\Delta - 1) \left\{ -1 + \frac{2\alpha^{2}}{\ell^{2}x_{i}^{2}} \cos 2\theta_{1} \\ -\frac{2\alpha^{2}\lambda}{\ell^{2}x_{i}^{2}} \cos (2\theta_{2} - 3\theta_{1} - \theta_{1}) - \frac{1}{2} \cos (2\theta_{2} - 2\theta_{1}) \\ +\frac{2\alpha^{2}\lambda}{\ell^{2}x_{i}^{2}} \cos (2\theta_{2} - 3\theta_{1}) + \frac{1}{2} \cos (2\theta_{2} - 2\theta_{1}) \right\} \\ & -\frac{\lambda(\delta_{1} - \delta_{2})}{\ell^{2}x_{i}^{2}} \left\{ -\cos 2\theta_{2} + 6\frac{\alpha^{4}}{\ell^{4}x_{i}^{4}} \cos 4\theta_{1} \\ & +4(\alpha^{2} - \ell^{2} + 3)\frac{\alpha^{4}}{\ell^{5}x_{i}^{3}} \cos 3\theta_{i} + 2(3\alpha^{2} - 2\ell^{2}) \right\} \\ & \times \frac{\alpha^{2}}{\ell^{4}x_{i}^{2}} \cos 2\theta_{i} + 2\alpha^{2} - \cos (2\theta_{2} - 2\theta_{1}) \\ & +\frac{2\alpha^{4}}{\ell^{3}x_{i}^{3}} \cos (2\theta_{2} - 3\theta_{i}) + 12\frac{\alpha^{6}}{\ell^{5}x_{i}^{5}} \cos (2\theta_{2} - 5\theta_{1}) \\ & +\frac{2\alpha^{4}\lambda}{\ell^{5}x_{i}^{5}} \cos (2\theta_{2} - 5\theta_{1} - \theta_{1}) - 2(\alpha^{2} - \ell^{2} + 3) \\ & \times \frac{\alpha^{4}\lambda}{\ell^{5}x_{i}^{5}} \cos (2\theta_{2} - 4\theta_{1} - \theta_{1}) \\ & +\frac{3\alpha^{4}}{\ell^{4}x_{i}^{4}} \cos (2\alpha^{2} - 2\ell^{2} + 3) \cos (2\theta_{2} - 4\theta_{1}) \\ & -6(\alpha^{2} - \ell^{2} + 3) \frac{\alpha^{4}\lambda}{\ell^{5}x_{i}^{4}} \cos (2\theta_{2} - 4\theta_{1} - \theta_{1}) \right\}, \end{array}$$

The value of $(\sqrt{5})_m$ can be found easily. It may be seen that the jump in the hoop stress across the boundary is given by

$$|(S)_{i}|_{z=S} = -2(x+h)(S_{1}+S_{2})\frac{\alpha-1}{\alpha+1}$$

$$+ \frac{4h(S_{1}-S_{2})}{\alpha+1} \cos 2\theta_{2}.$$

Integration of (90), (91), (92) and (93) with respect to a leads to the following functions

$$\frac{\partial_{1}(z)}{\partial_{1}(z)} = \frac{(\lambda + \mu)(\delta_{1} + \delta_{2})}{\alpha + 1} \frac{z_{2}}{\alpha + 1} = \frac{(\lambda + \mu)(\delta_{1} + \delta_{2})}{\alpha + 1} \frac{\alpha^{2}}{\ell^{2}z_{1}} + \frac{\lambda}{(\alpha^{2} - \ell^{2} + 3)} \frac{\alpha^{4}}{\ell^{6}z_{2}^{3}} + \frac{(\alpha^{2} - \ell^{2} + 3)\alpha^{4}}{\ell^{5}z_{1}^{2}} + \frac{(3\alpha^{2} - 2\ell^{2} + 3)}{\ell^{4}z_{1}^{2}} \frac{\alpha^{2}}{\ell^{4}z_{1}^{2}},$$
(94)

$$\Psi_{i}(z) = -\frac{\alpha-1}{\alpha+1} (\lambda + \mu) (\delta_{i} + \delta_{2}) \left\{ \frac{a^{2}}{ez^{2}} - \frac{1}{z_{i}} + \frac{1}{z} \right\} \\
- \frac{(\lambda + \mu)(\delta_{i} + \delta_{2})e_{+}}{\alpha + 1} \frac{M(\delta_{i} - \delta_{2} - 2i\delta_{3})}{\alpha + 1} \\
\times \left\{ -\alpha z_{2} + \frac{a^{4}}{l^{3}z^{2}} + (2a^{2} - 2l^{2} + 3) \frac{a^{4}}{l^{4}z^{3}} + \frac{3a^{6}}{l^{5}z^{2}} + \frac{a^{2}}{l^{2}z} \right\} + \frac{M(\delta_{i} - \delta_{2} + 2i\delta_{3})}{\alpha + 1} \frac{a^{2}}{l^{2}z}, (95)$$

$$\Phi_{m}(z) = -\frac{\alpha-1}{\alpha+1} (\lambda + \mu) (\delta_{1} + \delta_{2}) \frac{a^{2}}{\ell^{2} z_{1}^{2}} + \frac{\mu}{\alpha+1} (\delta_{1} - \delta_{2} - 2i\delta_{3})
\times \left\{ \frac{a^{2}}{\ell^{4} z_{1}^{2}} (3a^{2} - 2\ell^{2} + 3) + \frac{a^{4}}{\ell^{5} z_{1}^{2}} (a^{2} - \ell^{2} + 3) + \frac{a^{6}}{\ell^{6} z_{1}^{3}} \right\}
+ \frac{\mu}{\alpha+1} (\delta_{1} - \delta_{2} + 2i\delta_{3}) \frac{1}{z_{2}},$$
(96)

$$\psi_{N}(z) = -\frac{d-1}{d+1} (\lambda + N) (S_{1} + S_{2}) \left(\frac{a^{2}}{\ell z_{1}} - \frac{1}{Z} + \frac{1}{Z} + \frac{1}{Z_{2}} \right)
+ \frac{N}{d+1} (S_{1} - S_{2} - 2iS_{3}) \left\{ \frac{a^{4}}{\ell s_{2}^{2}} + (2a^{2} - 2\ell^{2} + 3) \frac{a^{4}}{\ell^{4} Z_{1}^{3}} \right.
+ \frac{3a^{6}}{\ell^{5} Z_{1}^{4}} + \frac{a^{2}}{\ell^{2} Z_{2}} \right\} + \frac{N}{d+1} (S_{1} - S_{2} + 2iS_{3})
\times \left(\frac{a^{2}}{\ell^{2} Z_{1}} + \frac{\ell}{Z_{2}^{3}} + \frac{1}{Z_{3}^{3}} \right).$$
(97)

The displacement fields can now be obtained from these functions and the equation (2). In cartesian form the displacements are given below for the case when $\mathcal{E}_3=o$.

$$(2 \mu u)_{i} = (\lambda + \mu) (\delta_{1} + \delta_{2}) \frac{x-1}{x+1} \left\{ x_{2} + \frac{\pi c}{2^{2}} - \frac{x}{2^{2}} - \frac{x}{2^{2}} - \frac{x}{2^{2}} - \frac{x}{2^{2}} + \frac{a^{2}}{\ell^{2} 2^{2}} + \frac{a^{2}}{\ell^{3} 2^{4}} (\ell^{2} - a^{2}) (x_{1}^{2} - y^{2}) - \frac{a^{2}}{\ell^{2} 2^{4}} (x_{1}^{3} - 3x_{1}y^{2}) \right\} + \frac{\mu d}{x+1} (\delta_{1} - \delta_{2})$$

$$\times \left\{ x_{2} + (3a^{2} - 2\ell^{2} + 3) \frac{a^{2} x_{1}}{\ell^{4} 2^{2}} + \frac{a^{6}}{\ell^{6} 2^{6}} (x_{1}^{3} - 3x_{1}y^{2}) + (3 + a^{2} - \ell^{2}) \frac{a^{4}}{\ell^{5} 2^{4}} (x_{1}^{2} - y^{2}) \right\} + \frac{a^{6}}{\ell^{6} 2^{6}} (x_{1}^{3} - 3x_{1}y^{2}) + (3 + a^{2} - \ell^{2}) \frac{a^{4}}{\ell^{5} 2^{4}} (x_{1}^{2} - y^{2}) \right\} + \frac{a^{6}}{\ell^{6} 2^{6}} (x_{1}^{3} - 3x_{1}y^{2}) + (3 + a^{2} - \ell^{2}) \frac{a^{4}}{\ell^{5} 2^{4}} (x_{1}^{2} - y^{2}) \right\} + \frac{a^{6}}{\ell^{6} 2^{6}} (x_{1}^{3} - 3x_{1}y^{2}) + (3 + a^{2} - \ell^{2}) \frac{a^{4}}{\ell^{5} 2^{4}} (x_{1}^{2} - y^{2}) \right\} + \frac{a^{6}}{\ell^{6} 2^{6}} (x_{1}^{3} - 3x_{1}y^{2}) + \frac{a^{4}}{\ell^{5} 2^{4}} (x_{1}^{2} - y^{2}) \right\} + \frac{a^{6}}{\ell^{6} 2^{6}} (x_{1}^{3} - 3x_{1}y^{2}) + \frac{a^{6}}{\ell^{6}} (x_{1}^{3} -$$

$$+ \frac{M(S_1, S_2)}{R+1} \left\{ 3(a^2 - \ell^2 + 1) \frac{a^4}{\ell^5 L_1^4} (x_1^2 - y^2) \right.$$

$$+ 3a^2 \ell^2 \lambda_1^2 - 2 \ell_1^2 \ell^4 + 3\ell^2 \ell_1^2 + 2a^6 - 4\ell^2 a^4 + 6a^4$$

$$- 5a^2 \ell^2 + 2a^2 \ell^4 \right) \frac{a^2}{\ell^6 L_1^6} (x_1^3 - 3x_1 y^2)$$

$$+ \frac{a^4}{\ell^7 L_1^6} (x_1^4 - 2 \ell^4 L_1^2 + 6 \ell^4 L_1^2 + 3a^6 - 3a^2 \ell^2)$$

$$\times (x_1^4 - 6 x_1^2 y^2 + y^4) + \frac{3a^6}{\ell^6 L_1^6} (x_1^5 - 10x_1^3 + 5x_1 y^4)$$

$$- \frac{2a^3 x}{\ell^2 L^4} \right\}$$

$$(2 M^4)_i = (3 + M) (S_1 + S_2) (\frac{a - 4}{4}) y \left\{ 1 + \frac{1}{2^2} - \frac{1}{4^2} + \frac{a^2}{\ell^4 L_1^6} + \frac{2a^4}{\ell^4 L_1^6} (\ell^2 - a^2) x_1 - \frac{a^2}{\ell^4 L_1^6} (3x_1^2 - y^2) \right\}$$

$$- \frac{x M}{x + 1} (S_1 - S_2) y \left\{ 1 + (3a^2 - 2\ell^2 + 3) \frac{a^2}{\ell^4 L_1^6} + \frac{2a^4 x_1}{\ell^5 L_1^6} (a^2 + 3 - \ell^2) + \frac{a6}{\ell^6 L_1^6} (3x_1^2 - y^2) \right\}$$

$$+ \frac{4}{x + 1} (S_1 - S_2) \left\{ \frac{6a^4 x_1}{\ell^5 L_1} (a^2 - \ell^2 + 1) + \frac{a^6}{\ell^6 L_1^6} (3x_1^2 - y^2) \right\}$$

$$+ \frac{4a^4}{\ell^6 L_1^6} (3a^2 \ell^2 L_1^2 - 2L^2 \ell^4 L_1^2) (3x_1^2 + y^2)$$

$$+ \frac{4a^4}{\ell^7 L_1^8} (2a^2 \ell^2 L_1^2 - 2L^4 \ell^4 L_1^2) (3x_1^2 + y^2)$$

$$+ \frac{4a^4}{\ell^7 L_1^8} (2a^2 \ell^2 L_1^2 - 2\ell^4 L_1^2 + 6\ell^2 L$$

$$+ 3a^{4} - 3a^{2}\ell^{2}) \left(x_{i}^{3} - y^{2}x_{i}\right) - \frac{2a^{2}}{\ell^{2}\ell^{2}}$$

$$+ \frac{3a^{6}}{\ell^{6}\ell^{8}} \left(5x_{i}^{4} - 10y^{2}x_{i}^{2} + y^{4}\right)\right)$$

$$+ \frac{3a^{6}}{\ell^{6}\ell^{8}} \left(5x_{i}^{4} - 10y^{2}x_{i}^{2} + y^{4}\right)$$

$$+ \frac{3a^{2}}{\ell^{2}\ell^{4}} + (\ell^{2}-\ell^{2}) \frac{a-1}{a+1} \left\{\frac{x}{\ell^{2}} - \frac{x}{\ell^{2}\ell^{4}} - \frac{x}{\ell^$$

$$(2212)_{32} = (2+1)(5_1+5_2) \frac{x-1}{x+1} y \left\{ \frac{1}{4^2} + \frac{1}{4^2} - \frac{1}{4^2} + \frac{1}{4^2} + \frac{1}{4^2} - \frac{1}{4^2} + \frac{1}{4$$

CHAPTER X

INHOMOGENEITY AND A POINT-FORCE IN THE MATRIX

In this chapter we shall obtain the complex functions for the problem of a point-force acting at a point of the elastic medium which contains a circular inhomogeneity, the point of application of the force is of course outside the inhomogeneity. In chapter VI the concentrated force was applied to a point of the boundary of the inhomogeneity. Here that restriction is not there. The procedure for obtaining the potential functions is similar.

Let y be the point of application of the force P. |Y| = bya, where a is the radius of the inhomogeneity whose equation in the z - plane is $Z \ge a^2$. Let us assume the complex functions in the following form:

$$\Phi_{m}^{(z)} = \frac{P}{a\pi(\alpha_{m}+1)} \left\{ -\log(z-\zeta) + A(z-\frac{\alpha^{2}}{\zeta}) + B(z-\frac{\alpha^{2}}{\zeta}) + C\log z \right\}$$
 (98)

$$\psi_{m}(z) = \frac{P}{2T(\alpha_{m}+1)} \left\{ x_{m} \log(z-y) + \frac{P}{P} (z-y)^{-1} + D \log(z-\frac{a^{2}}{y}) + E(z-\frac{a^{2}}{y})^{-1} + F(z-\frac{a^{2}}{y})^{-2} + G \log z + H z^{-1} + I z^{-2} \right\}, \tag{99}$$

where suffixes to and me have been used as before to distinguish quantities pertaining to the inhomogeneity and the matrix respectively. The symbols A,B,C,, Redenote complex constants to be determined from the same boundary conditions listed on page 58 of chapter VI.

The continuity of normal and shearing stresses on the boundary means that

We have, as before, the relation

$$\sigma_{z} - i \Gamma_{z,0} = \phi'(z) + \overline{\phi'(z)} + e^{i\theta} \{ \overline{z} \phi''(z) + \psi'(z) \}$$
 (103)

On substitution from (98) to (101) in (103) and then using (102), we get

$$-Pr_{1}^{-1} - PA_{5}^{5} r_{2}^{-1} - PB_{5}^{-2} r_{2}^{-2} + PC_{5}^{-1} - Pr_{2}^{-1}$$

$$-PA_{5}^{5} r_{1}^{-1} - PB_{5}^{-2} r_{2}^{-2} r_{2}^{-2} + PC_{5}^{-2} - Pr_{5}^{-2}$$

$$+ PA_{5}^{5} r_{2}^{-2} + 2PB_{5}^{3} r_{2}^{-3} + PC_{5}^{-1}$$

$$-PX_{5}^{5} r_{2}^{-1} + Pr_{5}^{2} r_{1}^{-1} + Pr_{5}^{2} r_{1}^{-2} r_{3}^{5} + PD_{5}^{5} r_{2}^{-2} + PE_{5}^{5} r_{2}^{-2}$$

$$-2PF_{5}^{5} r_{3}^{3} r_{2}^{-3} - PG_{5}^{-1} + PF_{5}^{2} r_{2}^{-1} + PF_{5}^{2} r_{2}^{-1}$$

$$+ PK_{5}^{-2} + PL_{5}^{2} - PJ_{5}^{-1} - PJ_{5}^{-1} + PK_{5}^{2} r_{2}^{-1} - PL_{5}^{2}$$

$$-2PM_{5}^{5} r_{2}^{-1} - PJ_{5}^{5} r_{2}^{-1} + PK_{5}^{5} r_{2}^{-2} - PL_{5}^{5}$$

$$+PN_{5}^{2} r_{1}^{-1} - PR_{5}^{5} r_{2}^{-1} - PR_{5}^{5} r_{2}^{1$$

where $\sigma_1 = \sigma - \gamma$ and $\sigma_2 = \overline{\sigma} - \overline{\gamma}$. The left-hand side equation can be put in the form of a polynomial in σ . On equating the coefficients of various powers of σ to zero we get a set of nine equations

$$F = \frac{P}{P} \overline{S} B,$$

$$R = \frac{P}{P} \frac{a^2}{S} K,$$

$$PC + I \overline{P}_{\alpha L} - 2 \overline{P} \overline{M} a^{L} = 0,$$

$$U - I + \overline{H} - L - \alpha_{m} = 0,$$

$$\frac{P(\bar{J}+1)\bar{F} + (a^{L}+2b^{2})\bar{S}}{PP} = \frac{DP}{a^{L}} - (2a^{L}+b^{L})\bar{F} = \frac{PN}{a^{L}} - P\bar{F} = \frac{b^{L}}{a^{L}} + \frac{P\bar{S}^{3}}{a^{L}} - P\bar{S} = \frac{P}{a^{L}} + \frac{P\bar{S}^{3}}{a^{L}} - P\bar{S} = \frac{P}{a^{L}} + \frac{P\bar{S}^{3}}{a^{L}} - \frac{P\bar{S}^{3}}{a^{L}} + \frac{P\bar{S}^{3}}{a^{L}} - \frac{P\bar{S}^{3}}{a^{L}} - \frac{P\bar{S}^{3}}{a^{L}} - \frac{P\bar{S}^{3}}{a^{L}} - \frac{P\bar{S}^{3}}{a^{L}} - \frac{P\bar{S}^{3}}{a^{L}} + \frac{P\bar{S}^{3}}{a^{L}} - \frac{P\bar{S}^{3}}{a^{L}} + \frac{P\bar{S}^{3}}{a^{L}} - \frac{P\bar{S}^$$

$$-2(a^{2}+b^{2}) a^{2}P(5+1) + a^{2}g^{2}P\bar{A}$$

$$+2APb^{2}(a^{2}+b^{2}) - P(\bar{5}+1) a^{2}g^{2}$$

$$+2PBb^{2}\bar{g} + 2PBb^{2}\bar{g} - 2PKa^{4}$$

$$-2PKa^{2}\bar{g} - 2(\underline{HP} - PL - PL) a^{2}g(a^{2}+b^{2})$$

$$+\bar{P}a^{2}g^{2}(\bar{c}-\bar{g}) = 0,$$

$$P(J+1)a^{4}g - APb^{2}a^{2}g - PBb^{4}$$

+ $PKa^{4} + (HP ar - PL - PE)a^{4}g^{2} = 0.$

The condition that displacements are continuous across $\sigma = a$

In other words

$$\frac{1}{\mu} \left\{ \propto_{m} \overline{\varphi_{i,c}(\sigma)} - \overline{\varphi_{i,c}(\sigma)} - \psi_{i,c}(\sigma) \right\} = \frac{1}{\mu_{i,c}} \left\{ \propto_{i,c} \overline{\varphi_{i,c}(\sigma)} - \overline{\varphi_{i,c}(\sigma)} - \psi_{i,c}(\sigma) \right\}. \tag{104}$$

On substitution from (98) to (101), the above equation leads to

$$\begin{array}{l}
\beta \left[\alpha_{m} \overline{P} \left\{ -\log \sigma_{2} + \overline{A} \log \left(\overline{\sigma} - \underline{a}^{2} \right) + \overline{B} \left(\overline{\sigma} - \underline{a}^{2} \right)^{-1} + \overline{C} \log \overline{\sigma} \right\} \\
- \overline{P} \left\{ -\sigma_{1}^{-1} + A \left(\sigma - \frac{\overline{a}^{2}}{\overline{p}} \right)^{-1} - \overline{B} \left(\sigma - \underline{a}^{2} \right)^{-2} + C \sigma^{-1} \right\} \\
- \overline{P} \left\{ x_{m} \log \sigma_{1} + \overline{S} \frac{P}{\overline{p}} \sigma_{1}^{-1} + D \log \left(\sigma - \underline{a}^{2} \right) + E \left(\sigma - \underline{a}^{2} \right)^{-1} + F \left(\sigma - \underline{a}^{2} \right)^{-2} + G \log \sigma + H \sigma^{-1} + I \sigma^{-2} \right\} \\
= \alpha_{1} \alpha_{1} \overline{P} \left\{ \overline{T} \log \sigma_{2} + \overline{K} \sigma_{2}^{-1} + \overline{L} \sigma + \overline{M} \overline{\sigma}^{-2} \right\} \\
- \overline{P} \left\{ \overline{T} \sigma_{1}^{-1} - \overline{K} \sigma_{1}^{-2} + \overline{L} + 2 M \sigma \right\} \\
- \overline{P} \left\{ N \log \sigma_{1} + \Omega \sigma_{1}^{-1} + \overline{K} \sigma_{1}^{-2} + \overline{L} \right\},
\end{array}$$

where 3 = xih/hm.

The vanishing of the logarithmic terms separately yields a set of three equations

$$\alpha_{m} \overline{A} + \alpha_{m} \overline{C} + D + G = 0,$$

$$- \beta \alpha_{m} \overline{C} - \beta G + N + \alpha_{i} \epsilon_{n} \overline{J} = 0,$$

$$- \beta D - 2\beta \alpha_{m} + \beta \alpha_{m} \overline{A} + N - \alpha_{i} \epsilon_{n} \overline{J} = 0.$$

The other terms (after putting them in the form of a polynomial in
and equating to zero the coefficients of various powers of
)
yields a set of five equations

$$K - \frac{\beta x_{ik}}{\alpha^{ik}} \frac{b^{2}}{a^{2}} B = 0,$$

$$\beta a^{2}PC + \beta IP + \alpha_{ik} PM a^{4} = 0,$$

$$PK \frac{a^{4}}{\beta} + \beta a^{4}P + PJ a^{4} - \beta PA a^{2}b^{2}$$

$$-\beta PB \beta b^{2} + (\beta PH + \alpha_{ik} PL - PL) a^{4}\beta = 0,$$

$$-2P\beta a^{2}\beta - a^{2}PJ\beta - PK a^{2}\beta + PB a^{2} + PBAa^{2}\beta$$

$$-\beta PB a^{2}\beta - \beta PE b^{2} - (\beta PH + \alpha_{ik} PL - PL) (a^{2} + b^{2}) a^{2} = 0,$$

$$\beta PE \beta + \alpha_{ik} PK \beta + \beta P\beta^{2} - PB \beta$$

$$-\beta \alpha_{ik} PB \beta + (\beta PH + \alpha_{ik} PL - PL) a^{2}\beta = 0.$$

The application of the last boundary condition yields two equations

$$A + C = 0,$$

$$D + G = 0.$$

The condition of displacements being single-valued yields one equation

The set of twenty equations was found to be consistent. The values of the constants are given below:

$$A = -\nu_{1} d_{m}, \qquad C = \nu_{1} d_{m},$$

$$B = \frac{P}{P} \frac{\gamma^{2} - 1}{\gamma^{6}} \frac{y^{3}}{a^{2}}, \qquad D = \nu_{2},$$

$$C = \frac{P}{P} \frac{\gamma_{1} d_{m} y}{\gamma^{6}} - \nu_{1} \frac{\gamma^{2} 1}{\gamma^{2}} y, \qquad G = -\nu_{2},$$

$$\frac{1}{2\pi}(z) = \frac{P}{2\pi(\alpha_{m}+1)} \left\{ \alpha_{m} \log(z-\beta) + \frac{\nu_{2} \log(z-\alpha_{1}^{2})}{\frac{2}{5}} \right\} \\
- \nu_{1} \frac{\tau^{2}-1}{\tau^{2}} S(z-\frac{\alpha_{1}^{2}}{5})^{-1} + \frac{\tau^{2}-1}{\tau^{4}} \nu_{1} S^{2}(z-\frac{\alpha_{1}^{2}}{5})^{-2} \\
- \nu_{2} \log z + \nu_{1} \frac{\tau^{2}-1}{\tau^{2}} S^{2} + \frac{(\nu_{2}-1)(\beta-1)}{2\beta+\alpha_{1}\alpha_{1}-1} \frac{SZ^{-1}}{\tau^{2}} \right\} \\
+ \frac{P}{2\pi(\alpha_{m}+1)} \left\{ \frac{F}{F}(z-5)^{-1} + \nu_{1} \alpha_{m} \frac{F}{F}(z-\frac{\alpha_{1}^{2}}{5})^{-1} \\
- \nu_{1} \alpha_{m} \frac{F}{F} Z^{-1} - \nu_{2} \frac{FZ^{-1}}{\tau^{2}} - \nu_{1} \alpha_{m} \alpha^{2} Z^{-2} \\
+ \frac{(\nu_{2}-1)(\beta-1)}{2\beta+\alpha_{1}\alpha_{1}-1} \frac{F}{F} Z^{-1} \right\}, \tag{106}$$

$$\Phi_{ch}(z) = \frac{P}{2\pi(\alpha_{m}+1)} \left\{ (p_{2}-1) \log(z-5) + \frac{(p_{2}-1)(\beta-1)}{2+2\alpha_{2}} \right\} z$$

$$\times \left(\frac{1}{(2\beta+d;\alpha-1)} - \frac{1}{\alpha;\alpha+1} \right) + \frac{P}{2\pi(\alpha_{m}+1)}$$

$$\times S^{2} \frac{(p_{2}-1)(\beta-1)}{2+2\alpha_{2}} \left(\frac{1}{2\beta+d;\alpha-1} + \frac{1}{\alpha;\alpha+1} \right), \quad (107)$$

$$\frac{P}{2\pi(\alpha_{m}+1)} \left(1-\nu_{1}\right) \alpha_{m} \log \left(z-g\right) \\
+ \frac{P}{2\pi(\alpha_{m}+1)} \overline{g}\left(z-g\right)^{-1} \frac{(1-\nu_{1})\nu^{2}+(\nu_{1}-\nu_{2})}{\nu^{2}} \tag{108}$$

The knowledge of these complex potentials enables one to determine the elastic fields everywhere in the matrix and the inhomogeneity.

If there is a continuous distribution of point-forces along any curve not intersecting the boundary of the inhomogeneity, the complex potentials may be obtained by simple integration along the curve. Thus for example, it may be seen that

$$\frac{\Phi_{ch}'(z) = \frac{1}{2\pi(\omega_{m}+1)} \left[\int_{\gamma} P(\nu_{2}-1) (z-p)^{-1} ds + \int_{\gamma} \frac{P(\nu_{2}-1)(\beta-1)}{2\alpha^{2}} \left(\frac{1}{2\beta+\omega_{ch}-1} - \frac{1}{\omega_{ch}+1} \right) \frac{3}{3} ds + \int_{\gamma} \frac{P(\nu_{2}-1)(\beta-1)}{2\alpha^{2}} \left(\frac{1}{2\beta+\omega_{ch}-1} + \frac{1}{\omega_{ch}+1} \right) \right] (111)$$

$$\Psi_{ch}^{'}(z) = \frac{1}{2\pi(d_{m}+1)} \left\{ \int_{z}^{\infty} P(1-\nu_{1}) d_{m}(z-s)^{-1} ds - \int_{z}^{\infty} P\left\{ \frac{(1-\nu_{1})+^{2}+(\nu_{1}-\nu_{2})}{+^{2}} \right\} \int_{z}^{\infty} (z-s)^{-2} ds \right\},$$
(112)

where γ is the curve and α is differential arc length along it. ρ is the distribution of point-force layer. These results shall be used in the next chapter.

CHAPTER XI

CIRCULAR INCLUSION IN THE PRESENCE OF A CIRCULAR INHOMOGENETTY

In chapter IX the solution was given for a circular inclusion deforming in the presence of a cavity. In this chapter a different model is taken. Here in place of a cavity we have an inhomogeneity with elastic constants different from those of the matrix. Of course, a perfect bond between the different materials is assumed, implying thereby the continuity of the normal and shearing stresses across the common boundary.

we choose the reference frame in accordance with Figure 10, p. 138. The origin lies at the centre of the inhomogeneity of radius a. The centre of the inclusion lies on the x-axis at a

distance ℓ (ℓ 7 a+1) from the origin, 1 being the radius of the inclusion. Thus $z\bar{z} \leq a^2$ and $(z-\ell)(\bar{z}-\ell) \leq 1$ represent the inhomogeneity and the inclusion regions respectively. The remaining part of the z-plane is the matrix.

The inclusion region $(z-\ell)(\bar{z}-\ell)$ 4 tends to undergo a displacement characterised by

$$U = \delta_1(x-l) + \delta_3 y$$
,
 $V = \delta_3(x-l) + \delta_2 y$

Therefore the point-force layer obtained from

$$\sigma_{x}^{\circ} = -\left\{ \lambda_{m}(S_{1}+S_{2}) + 2\mu_{m}S_{1}\right\},
\sigma_{\theta}^{\circ} = -\left\{ \lambda_{m}(S_{1}+S_{2}) + 2\mu_{m}S_{2}\right\},
\tau_{xy}^{\circ} = -2\mu_{m}S_{3},$$
(113)

and the formulae (22), are given by

Pds =
$$-i (\lambda_{m} + \mu_{m})_{\lambda} d\xi + i (\mu_{m} (\delta_{1} - \delta_{2} + 2i\delta_{3}) d\xi$$
,
Pds = $i (\lambda_{m} + \mu_{m}) (\delta_{1} + \delta_{2}) d\xi - i \mu_{m} (\delta_{1} - \delta_{2} - 2i\delta_{3}) d\xi$, (114)

where λ_m , λ_m are Lame's constants of the material of the inclusion or matrix. It may be emphasised here that the inclusion and the matrix are formed the same elastic material. We substitute (114) in (109) - (112) and evaluate the contour integrals. Note that $\tau = \frac{151}{a}$. The expressions simplify after substituting

$$Z_1 = Z - \frac{\alpha^2}{\ell},$$

$$Z_2 = Z - \ell.$$

The details of integration are again not given here. Henceforth a

third region (the inclusion) comes into picture, suffix i has been attached to quantities pertaining to it. Thus

$$\psi_{ih}(z) = \frac{\alpha_{n-1}}{\alpha_{m+1}} (1-\nu_{1}) (\lambda_{m} + \mu_{m}) (\delta_{1} + \delta_{2}) \frac{1}{Z_{2}^{2}} \\
+ \frac{\mu_{m}}{\alpha_{m+1}} (\nu_{1} - \nu_{2}) (\delta_{1} - \delta_{2} + 2i\delta_{3}) (\frac{a^{2}}{\ell^{2}Z_{2}^{2}} - \frac{2a^{2}}{\ell Z_{2}^{3}}) \\
- \frac{\mu_{m}}{\alpha_{m+1}} (1-\nu_{1}) (\delta_{1} - \delta_{2} + 2i\delta_{3}) (\frac{2\ell}{Z_{2}^{3}} + \frac{3}{Z_{2}^{4}}),$$
(116)

$$\Psi_{m}'(z) = \frac{\alpha_{m-1}(\lambda_{m} + \mu_{m})(\delta_{1} + \delta_{2})\left(\frac{1}{Z_{2}^{2}} + \frac{2\alpha^{2}\nu_{1}}{2z^{3}} + \frac{\nu_{1}}{Z^{2}} - \frac{\nu_{1}}{Z^{2}}\right)}{\frac{\lambda_{m}}{\alpha_{m+1}}(\delta_{1} - \delta_{2} - 2i\delta_{3})\left[(\nu_{2} - \nu_{1})\frac{\alpha^{2}}{2z^{2}} + \frac{2\alpha^{4}\nu_{1}}{2z^{3}} + \frac{12\alpha^{6}\nu_{1}}{2z^{3}} + \frac{12\alpha^{6}\nu_{1}}{2z^{5}}\right]} + (2\alpha^{2} - 2\ell^{2} + 3)\frac{3\alpha^{4}\nu_{1}}{\ell^{4}z^{4}} + \left\{\nu_{1} - \frac{(\nu_{2} - 1)(\beta - 1)}{2\beta + \alpha_{1}}\right\}\frac{\alpha^{2}}{\ell^{2}z^{2}}\right] - \frac{\mu_{m}}{\alpha_{m+1}}(\delta_{1} - \delta_{2} + 2i\delta_{3})\left[\frac{2\ell}{z^{3}} + \frac{3}{z^{4}} + \frac{3}{2}\nu_{1} + \frac{3}{2}\nu_{1}\right]}{2\beta + \alpha_{1}} + \left\{\nu_{2} - \frac{(\nu_{2} - 1)(\beta - 1)}{2\beta + \alpha_{1}}\right\}\frac{\alpha^{2}}{\ell^{2}z^{2}}, \tag{118}$$

$$\frac{\Phi_{i}(z) = \frac{(\lambda_{m} + \mu_{m})(\delta_{i} + \delta_{2})}{\Delta_{m} + 1} + \frac{\alpha_{m} - 1}{\Delta_{m} + 1} (\delta_{i} + \delta_{2})(\lambda_{m} + \mu_{m}) \frac{a^{2} \gamma_{i}}{\ell^{2} Z^{2}} \\
- \frac{\gamma_{i} \mu_{m}}{\Delta_{m} + 1} (\delta_{i} - \delta_{2} - 2i \delta_{3}) \left[(3a^{2} - 2\ell^{2} + 3) \frac{\alpha^{2}}{\ell^{4} Z_{i}^{2}} + 2(a^{2} - \ell^{2} + 3) \frac{\alpha^{4}}{\ell^{5} Z_{i}^{3}} + \frac{3a^{6}}{\ell^{6} Z_{i}^{4}} \right],$$
(119)

$$\begin{split} \Psi_{i}'(z) &= \frac{\alpha_{m-1}}{\alpha_{m+1}} \left(\gamma_{m} + \mu_{m} \right) \left(\delta_{i} + \delta_{2} \right) \nu_{i} \left(\frac{2\alpha^{2}}{\ell z_{i}^{3}} + \frac{1}{z^{2}} - \frac{1}{z_{i}^{2}} \right) \\ &- \frac{\mu_{m}}{\alpha_{m+1}} \left(\delta_{1} - \delta_{2} - 2i\delta_{3} \right) \left[\alpha_{m} + \left(\nu_{2} - \nu_{i} \right) \frac{\alpha^{2}}{\ell^{2} z_{i}^{2}} + \frac{2\alpha^{4} \nu_{i}}{\ell^{3} z_{i}^{3}} \right. \\ &+ \frac{12\alpha^{6} \nu_{i}}{\ell^{5} z_{i}^{5}} + \left(2\alpha^{2} - 2\ell^{2} + 3 \right) \frac{3\alpha^{4} \nu_{i}}{\ell^{4} z_{i}^{4}} + \left\{ \nu_{i} - \frac{\left(\nu_{2} - 1 \right) \left(\beta - 1 \right)}{2\beta + \alpha_{i} \mu_{i} - 1} \right\} \frac{\alpha^{2}}{\ell^{2} z_{i}^{2}} \\ &- \left[\frac{\mu_{m}}{\alpha_{m+1}} \left(\delta_{1} - \delta_{2} + 2i\delta_{3} \right) \right\} \nu_{2} - \frac{\left(\nu_{2} - 1 \right) \left(\beta - 1 \right)}{2\beta + \alpha_{i} \mu_{i} - 1} \right] \frac{\alpha^{2}}{\ell^{2} z_{i}^{2}} \right]. \end{split}$$

(120)

The complex functions $\phi_{i}(z)$, $\psi_{i}(z)$, $\phi_{i}(z)$, and $\psi_{i}(z)$ with the equation (1) directly give the stress fields in the inhomogeneity and the matrix. But $\phi_{i}(z)$ and $\psi_{i}(z)$ with (1) give only a part of the stress field in the inclusion. The already existing stress field given by (113) must be added to it. A check on the analysis is provided by verifying that the normal and the shearing stresses are continuous across the boundaries, both of the inclusion and the inhomogeneity. This has been done. Since all the boundary conditions, the conditions of regularity at infinity, equilibrium equations, continuity equations etc. are satisfied, the solution given here is the solution.

The stresses on the edges of the inclusion and the inhomogeneity are of special interest. The explicit expressions for them are given below. Writing

$$Z = \chi e^{i\theta}$$
, $Z_1 = \chi_1 e^{i\theta_1}$ and $Z_2 = \chi_2 e^{i\theta_2}$

the normal and tangential stresses along the inclusion boundary are

$$\begin{split} & \left(\mathcal{T}_{m}\right)_{12=1} = \frac{\alpha_{m-1}}{\alpha_{m+1}} \left(\lambda_{m} + \mu_{m}\right) \left(S_{1} + S_{2}\right) \left[-1 + \mathcal{P}_{1} \left\{\frac{2a^{2}}{\ell^{2} \chi_{1}^{2}} \cos 2\theta_{1}\right\} \right. \\ & \left. + \frac{1}{2 \ell^{2}} \cos \left(2\theta_{2} - 2\theta_{1}\right) - \frac{1}{2^{2}} \cos \left(2\theta_{2} - 2\theta_{1}\right) - \frac{2a^{2}}{\ell^{2} \ell^{2}} \cos \left(2\theta_{2} - 3\theta_{1}\right) \right. \\ & \left. + \frac{2a^{2}}{\ell^{2} \ell^{2}} \cos \left(2\theta_{2} - 3\theta_{1} - \theta_{1}\right) \right\} - \frac{\mu_{m}}{\alpha_{m+1}} \left(S_{1} + S_{2}\right) \times \end{split}$$

$$x \left[\cos 2\theta_{2} + \frac{6a^{4}\nu_{1}}{\ell^{4}\chi_{1}^{4}} \cos 4\theta_{1} + \frac{4a^{4}\nu_{1}}{\ell^{5}\chi_{1}^{3}} (a^{2} - \ell^{2}\chi_{3}^{2}) \cos 3\theta_{1} \right.$$

$$+ \frac{2a^{2}\nu_{1}}{\ell^{4}\chi_{1}^{4}} (2a^{2} - 2\ell^{2} + 3) \cos 2\theta_{1} - \frac{2a^{4}\nu_{1}}{\ell^{3}\chi_{1}^{3}} \cos (2\theta_{2} - 3\theta_{1})$$

$$- \frac{3a^{4}\nu_{1}}{\ell^{4}\chi_{1}^{4}} (2a^{2} - 2\ell^{2} + 3) \cos (2\theta_{2} - 4\theta_{1}) - \frac{12a^{4}\nu_{1}}{\ell^{5}\chi_{1}^{5}} \cos (2\theta_{2} - 3\theta_{1})$$

$$- (\nu_{2} - \nu_{1}) \frac{a^{2}}{\ell^{5}\chi_{1}^{4}} \cos (2\theta_{2} - 2\theta_{1}) - (\nu_{1} + \nu_{2}) \frac{a^{2}}{\ell^{5}\chi_{1}^{5}} \cos (2\theta_{2} - 2\theta_{1})$$

$$+ \frac{2(\beta - 1)(\nu_{2} - 1)}{\ell^{3}\chi_{1}^{4}} \frac{a^{2}}{\ell^{5}\chi_{1}^{4}} \cos (2\theta_{2} - 2\theta_{1}) + \frac{2a^{2}\chi\nu_{1}}{\ell^{4}\chi_{1}^{3}} (3a^{2} - 2\ell^{2}\chi_{3})$$

$$\times \cos (2\theta_{2} - \theta - 3\theta_{1}) + \frac{6a^{4}\nu_{1}}{\ell^{5}\chi_{1}^{4}} (a^{2} - \ell^{2} + 3) \cos (2\theta_{2} - \theta - 4\theta_{1})$$

$$+ \frac{12a^{6}\nu_{1}\chi_{1}}{\ell^{6}\chi_{1}^{5}} \cos (2\theta_{2} - \theta - 5\theta_{1}) + \frac{2M_{m}\delta_{3}}{\ell^{5}\chi_{1}^{5}} - \sin 2\theta_{2}$$

$$+ \frac{6a^{4}\nu_{1}}{\ell^{6}\chi_{1}^{5}} \cos 4\theta_{1} + \frac{4a^{4}\nu_{1}}{\ell^{5}\chi_{1}^{3}} (a^{2} - \ell^{2}\chi_{3}) \sin 3\theta_{1} + 2a^{2}\nu_{1}$$

$$\times (3a^{2} - 2\ell^{2}\chi_{3}) \sin 4\theta_{1} + \frac{4a^{4}\nu_{1}}{\ell^{5}\chi_{1}^{3}} \sin (2\theta_{2} - 2\theta_{1}) + \frac{3\nu_{1}a^{4}}{\ell^{5}\chi_{1}^{5}}$$

$$\times (3a^{2} - 2\ell^{2}\chi_{3}) \sin 2\theta_{1} + \frac{4a^{4}\nu_{1}}{\ell^{5}\chi_{1}^{3}} \sin (2\theta_{2} - 2\theta_{1}) + \frac{3\nu_{1}a^{4}}{\ell^{5}\chi_{1}^{5}}$$

$$\times (2a^{2} - 2\ell^{2}\chi_{3}) \sin (2\theta_{1} + \frac{4a^{4}\nu_{1}}{\ell^{5}\chi_{1}^{3}} \sin (2\theta_{2} - 2\theta_{1}) + \frac{3\nu_{1}a^{4}}{\ell^{5}\chi_{1}^{5}} \sin (2\theta_{2} - 5\theta_{1})$$

$$+ (\nu_{2} - \nu_{1}) \frac{a^{2}}{\ell^{2}\chi_{1}^{5}} \sin (2\theta_{2} - 2\theta_{1}) + (\nu_{1} - \nu_{2}) \frac{a^{4}}{\ell^{5}\chi_{1}^{5}} \sin (2\theta_{2} - 5\theta_{1})$$

$$+ (\nu_{2} - \nu_{1}) \frac{a^{2}}{\ell^{2}\chi_{1}^{5}} \sin (2\theta_{2} - 2\theta_{1}) + (\nu_{1} - \nu_{2}) \frac{a^{4}}{\ell^{5}\chi_{1}^{5}} \sin (2\theta_{2} - 5\theta_{1})$$

$$+ (\nu_{2} - \nu_{1}) \frac{a^{2}}{\ell^{2}\chi_{1}^{5}} \sin (2\theta_{2} - 2\theta_{1}) + (\nu_{1} - \nu_{2}) \frac{a^{4}}{\ell^{5}\chi_{1}^{5}} \sin (2\theta_{2} - 2\theta_{1})$$

$$+ (\nu_{2} - \nu_{1}) \frac{a^{2}}{\ell^{5}\chi_{1}^{5}} \sin (2\theta_{2} - 2\theta_{1}) + (\nu_{1} - \nu_{2}) \frac{a^{4}}{\ell^{5}\chi_{1}^{5}} \sin (2\theta_{2} - 2\theta_{1})$$

$$\begin{array}{l} -\frac{2a^{2}}{(2+1)^{2}} \left(3a^{2}+3-2\ell^{2}\right) \sin\left(2\theta_{2}-\theta-3\theta_{1}\right) -\frac{6a^{4}\eta_{1}\eta_{1}}{(5^{2})^{4}} \left(a^{2}-\ell^{2}+3\right) \\ \times \sin\left(2\theta_{1}-4\theta_{1}-\theta\right) -\frac{12a^{6}\eta_{1}\eta_{2}}{(645^{6})} \sin\left(2\theta_{2}-\theta-5\theta_{1}\right) \right], \\ \\ \left(\left(\int_{-\infty}^{\infty}\right)^{2} \left(1 + \frac{2a^{2}\eta_{1}}{(2+1)^{2}} + \frac{2a^{2}\eta_{1}}{(2+1)^{2}} + \frac{2a^{2}\eta_{1}}{(2+1)^{2}} \sin\left(2\theta_{2}-3\theta_{1}\right) + \frac{\eta_{1}}{(2+1)^{2}} \sin\left(2\theta_{2}-2\theta\right) \\ -\frac{2\eta_{1}}{(2+1)^{2}} \sin\left(2\theta_{2}-2\theta_{1}\right) + \frac{\eta_{1}}{(2+1)^{2}} \sin\left(2\theta_{2}-2\theta\right) \\ -\frac{2\eta_{1}\eta_{1}}{(2+1)^{2}} \sin\left(2\theta_{2}-2\theta_{1}\right) - \frac{2\eta_{1}\eta_{1}}{(2+1)^{2}} \sin\left(2\theta_{2}-2\theta\right) \\ +\frac{2(\eta_{2}-\eta_{1})}{(2+1)^{2}} \sin\left(2\theta_{2}-2\theta_{1}\right) - \frac{2\eta_{1}\eta_{1}}{(2+\eta_{1})^{2}} \sin\left(2\theta_{2}-2\theta\right) \\ -\frac{2\eta_{1}\eta_{1}}{(2+\eta_{1})^{2}} \sin\left(2\theta_{2}-2\theta\right) - \frac{3a^{4}\eta_{1}}{(2+\eta_{1})^{2}} \sin\left(2\theta_{2}-2\ell^{2}+3\right) \\ \times \sin\left(2\theta_{2}-4\theta_{1}\right) - \frac{12a^{6}\eta_{1}}{(2+\eta_{1})^{2}} \sin\left(2\theta_{2}-\theta-3\theta_{1}\right) \\ +\frac{2a^{2}\eta_{1}\eta_{1}}{(2+\eta_{1})^{2}} \left(3a^{2}+3-2\ell^{2}\right) \sin\left(2\theta_{2}-\theta-3\theta_{1}\right) \\ +\frac{2a^{2}\eta_{1}\eta_{1}}{(2+\eta_{1})^{2}} \left(3a^{2}+3-2\ell^{2}\right) \sin\left(2\theta_{2}-\theta-3\theta_{1}\right) + \frac{12a^{6}\eta_{1}\eta_{1}}{(2+\eta_{1})^{2}} \sin\left(2\theta_{2}-\theta-3\theta_{1}\right) \\ +\frac{2a^{2}\eta_{1}\eta_{1}}{(2+\eta_{1})^{2}} \left(a^{2}-\ell^{2}+3\right) \sin\left(2\theta_{2}-4\theta_{1}-\theta\right) + \frac{12a^{6}\eta_{1}\eta_{1}}{\ell^{2}\eta_{1}^{2}} \cos\left(2\theta_{2}-\theta-3\theta_{1}\right) \\ +\frac{2a^{4}\eta_{1}}{(2+\eta_{1})^{2}} \cos\left(2\theta_{2}-3\theta_{1}\right) + \frac{2a^{4}\eta_{1}\eta_{1}}{(2+\eta_{1})^{2}} \cos\left(2\theta_{2}-2\theta\right) \\ +\frac{2a^{4}\eta_{1}}{\ell^{2}\eta_{1}^{2}} \cos\left(2\theta_{2}-3\theta_{1}\right) + \frac{3a^{4}\eta_{1}}{\ell^{2}\eta_{1}^{2}} \left(2a^{2}-2\ell^{2}+3\right) \cos\left(2\theta_{2}-2\theta\right) \\ +\frac{2a^{4}\eta_{1}}{\ell^{2}\eta_{1}^{2}} \cos\left(2\theta_{2}-3\theta_{1}\right) + \frac{3a^{4}\eta_{1}\eta_{1}}{\ell^{2}\eta_{1}^{2}} \left(2a^{2}-2\ell^{2}+3\right) \cos\left(2\theta_{2}-4\theta_{1}\right) \end{array}$$

+
$$12\frac{a^{2}v_{1}}{\ell^{5}A^{5}}$$
 Cos $(20_{2}-50_{1})$ + $\frac{2a^{2}v_{1}v_{1}}{\ell^{4}A^{3}}$ (3 $a^{2}-2\ell^{2}+3$)

× Cos $(20_{2}-8-30_{1})$ - $6a^{4}xv_{1}$ ($a^{2}-\ell^{2}+3$)

× Cos $(20_{2}-8-40_{1})$ - $12a^{2}v_{1}v_{1}$ Cos $(20_{2}-8-50_{1})$

The hoop stress on the inclusion boundary is given by

$$\begin{bmatrix} (\sigma_{5})_{\lambda_{2}=1} \end{bmatrix}_{i} = (\lambda_{m} + \mu_{m}) (\delta_{1} + \delta_{2}) \frac{\alpha_{m} - 1}{\alpha_{m} + 1} \begin{bmatrix} -1 + 2\alpha^{2} \nu_{1} \cos 2\theta_{1} \\ \frac{2^{2} c^{2}}{4^{2} c^{2}} \end{bmatrix}$$

$$- \frac{\nu_{1}}{3^{2}} \cos (2\theta_{2} - 2\theta_{1}) + \frac{\nu_{1}}{4^{2}} \cos (2\theta_{2} - 2\theta_{1})$$

$$+ \frac{2\alpha^{2} \nu_{1}}{4^{2} c^{2}} \cos (2\theta_{2} - 3\theta_{1}) - \frac{2\alpha^{2} c^{2} \nu_{1}}{4^{2} c^{2}} \cos (2\theta_{2} - \theta_{2} - 3\theta_{1}) \end{bmatrix}$$

$$- \frac{\lambda_{m} (\delta_{1} - \delta_{2})}{\alpha_{m} + 1} \begin{bmatrix} -\cos 2\theta_{2} + 6\frac{\alpha^{6} \nu_{1}}{4^{6} c^{4}} \cos 4\theta_{1} \\ -\cos 2\theta_{2} + 6\frac{\alpha^{6} \nu_{1}}{4^{6} c^{4}} \cos 4\theta_{1} \end{bmatrix}$$

$$+ \frac{4\alpha^{4} \nu_{1}}{4^{5} c^{2}} \begin{bmatrix} (\alpha^{2} - \ell^{2} + 3) \cos 3\theta_{1} + 2\alpha^{2} \nu_{1} \\ -2\alpha^{2} \nu_{1} \cos 2\theta_{1} + 2\alpha^{4} \nu_{1} \\ -2\alpha^{4} \nu_{1} \cos 2\theta_{1} + 2\alpha^{4} \nu_{1} \cos 2\theta_{1} \end{bmatrix}$$

$$\times \cos (2\theta_{2} - 3\theta_{1}) + \frac{3\nu_{1} c^{4}}{4^{6} c^{4}} (2\alpha^{2} - 2\ell^{2} + 3)$$

$$\times \cos (2\theta_{2} - 3\theta_{1}) + \frac{3\nu_{1} c^{4}}{4^{6} c^{4}} (2\alpha^{2} - 2\ell^{2} + 3)$$

$$\times \cos (2\theta_{2} - 4\theta_{1}) + \frac{12\alpha^{6} \nu_{1}}{4^{2} c^{4}} \cos (2\theta_{2} - 5\theta_{1})$$

$$+ (\nu_{2} - \nu_{1}) \frac{\alpha^{2}}{4^{2} c^{2}} \cos (2\theta_{2} - 2\theta_{1})$$

$$+ \begin{cases} y_1 + y_2 - \frac{2(y_2 - 1)(\beta - 1)}{2(\beta + \alpha_{1}\alpha_{1} - 1)} \end{cases} \frac{a^{2}}{2^{1}\alpha_{1}\alpha_{2}} \cos(2\theta_{2} - 2\theta)$$

$$- \frac{2a^{2}\alpha_{2}y_{1}}{2^{4}\alpha_{1}^{3}} (3a^{2} - 2\ell^{2} + 3) \cos(2\theta_{2} - \theta - 3\theta_{1}) - \frac{6a^{4}y_{1}}{\ell^{5}\alpha_{1}^{4}}$$

$$\times (a^{1} - \ell^{2} + 3) \cos(2\theta_{2} - \theta - 4\theta_{1}) - \frac{12a^{6}y_{1}}{\ell^{6}\alpha_{1}^{5}} \cos(2\theta_{2} - \theta - 5\theta_{1})$$

$$+ \frac{2a^{4}y_{1}}{\alpha_{m} + 1} \left[\sin^{2}2\theta_{2} + \frac{6a^{4}y_{1}}{\ell^{6}\alpha_{1}^{4}} \sin^{4}4\theta_{1} + \frac{4y_{1}a^{4}}{\ell^{5}\alpha_{1}^{3}} (a^{2} - \ell^{2} + 3) \sin^{3}\theta_{1} \right]$$

$$+ \frac{2a^{2}y_{1}}{\ell^{4}\alpha_{1}^{2}} (3a^{2} - 2\ell^{2} + 3) \sin^{2}2\theta_{1} - \frac{2a^{4}y_{1}}{\ell^{3}\alpha_{1}^{3}} \sin(2\theta_{2} - 3\theta_{1})$$

$$- \frac{3a^{4}y_{1}}{\ell^{4}\alpha_{1}^{3}} (2a^{2} - 2\ell^{2} + 3) \sin^{2}2\theta_{1} - \frac{2a^{4}y_{1}}{\ell^{3}\alpha_{1}^{3}} \sin(2\theta_{2} - 4\theta_{1})$$

$$- \frac{12a^{6}y_{1}}{\ell^{5}\alpha_{1}^{5}} \sin^{2}2\theta_{2} - 5\theta_{1} - (y_{2} - y_{1}) \frac{a^{2}}{\ell^{2}\alpha_{1}^{2}} \sin^{2}2\theta_{2} - 2\theta_{1}$$

$$- (y_{1} - y_{2}) \frac{a^{2}}{\ell^{2}\alpha_{1}^{2}} \sin^{2}2\theta_{2} - 2\theta_{1} + \frac{2y_{1}a^{2}\alpha_{1}}{\ell^{4}\alpha_{1}^{3}} (3a^{2} - 2\ell^{2} + 3)$$

$$\times \sin^{2}2\theta_{2} - \theta - 3\theta_{1} + \frac{6a^{4}y_{1}\alpha_{1}}{\ell^{4}\alpha_{1}^{4}} (a^{2} - \ell^{2} + 3) \sin^{2}2\theta_{2} - \theta - 4\theta_{1}$$

$$+ \frac{12a^{6}y_{1}\alpha_{1}}{\ell^{6}\alpha_{1}^{5}} \sin^{2}2\theta_{2} - \theta - 5\theta_{1}$$

$$= \frac{12a^{6}y_{1}\alpha_{1}}{\ell^{6}\alpha_{1}^{5}} \sin^{2}2\theta_{2} - \theta - 5\theta_{1}$$

$$+ \frac{12a^{6}y_{1}\alpha_{1}}{\ell^{6}\alpha_{1}^{5}} \sin^{2}2\theta_{2} - \theta - 5\theta_{1}$$

The jump in hoop stress across the boundary of the inclusion is

The ratio of hoop stresses at the point B (Fig. 10 p. 138) of the inclusion boundary calculated from inside and from the matrix is given by

$$\frac{1 - \frac{2a^{2}\nu_{1}(\ell^{2} - a^{2})}{(\ell^{2} - \ell - a^{2})^{3}},$$

$$1 + \frac{2a^{2}\nu_{1}(\ell^{2} - a^{2})}{(\ell^{2} - \ell - a^{2})^{3}}$$

for the case $\delta_{i} = \delta_{i} = \delta_{i} = 0$. The continuous normal and the tangential stresses across the boundary of the inhomogeneity are given by

$$(\mathcal{D}_{N})_{2=a} = -(\lambda_{m} + \mu_{m})(\delta_{1} + \delta_{2})(\frac{d_{m} - 1}{d_{m} + 1}) \frac{1}{\delta_{2}^{2}} \cos(2\theta - 2\theta_{2})$$

$$- \frac{\mu_{m}(\delta_{1} - \delta_{2})}{\alpha_{m} + 1} \left[\frac{2(\mathcal{D}_{2} - 1)(\beta_{-1})}{2\beta_{1} + d_{ck} - 1} \frac{1}{\ell^{2}} - \frac{2(\mathcal{D}_{2} - 1)\cos 2\theta_{2}}{\delta_{2}^{2}} \right]$$

$$- 2(\mathcal{D}_{2} - 1)\frac{\alpha}{\delta_{2}^{3}} \cos(\theta - 3\theta_{2}) - 2(1 - \mathcal{D}_{1}) \frac{d}{\delta_{2}} \cos(2\theta - 3\theta_{2})$$

$$+ (\mathcal{D}_{1} - \mathcal{D}_{2})\frac{\alpha^{2}}{\ell^{2}\delta_{2}^{2}} \cos(2\theta - 2\theta_{2}) - 2(\mathcal{D}_{1} - \mathcal{D}_{2}) \frac{\alpha^{2}}{\ell^{2}\delta_{2}^{3}} \cos(2\theta - 3\theta_{2})$$

$$+ (\mathcal{D}_{1} - \mathcal{D}_{2})\frac{\alpha^{2}}{\ell^{2}\delta_{2}^{2}} \cos(2\theta - 2\theta_{2}) - 2(\mathcal{D}_{1} - \mathcal{D}_{2}) \frac{\alpha^{2}}{\ell^{2}\delta_{2}^{3}} \cos(2\theta - 3\theta_{2})$$

$$-3(1-\upsilon_{1})\frac{1}{2\frac{\upsilon_{1}}{2}}\cos(2\theta-4\theta_{2})+\frac{2\mu_{m}S_{3}}{2(\upsilon_{2}-4)}\frac{2(\upsilon_{2}-4)}{2(\upsilon_{2}-4)}\sin2\theta_{2}$$

$$-2(\upsilon_{2}-4)\frac{\alpha^{2}}{2(2}(\theta-3\theta_{2})+(\upsilon_{1}-\upsilon_{2})\frac{\alpha^{2}}{2(2(2-4))}\sin(2\theta-2\theta_{2})$$

$$-2(\upsilon_{1}-\upsilon_{2})\frac{\alpha^{2}}{2(2(2-2))}\sin(2\theta-3\theta_{2})-2(1-\upsilon_{1})\frac{2}{2(2(2-2))}$$

$$\times \sin(2\theta-3\theta_{2})-3(1-\upsilon_{1})\frac{1}{2(2(2\theta-4\theta_{2}))}\sin(2\theta-4\theta_{2})$$

$$\times \sin(2\theta-3\theta_{2})-3(1-\upsilon_{1})\frac{1}{2(2(2\theta-4\theta_{2}))}\sin(2\theta-4\theta_{2})$$

$$\frac{(\nabla_{AB})_{2=a}}{2=a} = \frac{(\lambda_{m+1} + \mu_{m})(\delta_{1} + \delta_{2})}{(\lambda_{m+1} + \mu_{m})(\delta_{1} + \delta_{2})} \frac{1}{2^{\frac{1}{2}}} \sin(2\theta - 2\theta_{2})$$

$$- \frac{(\lambda_{m}(\delta_{1} - \delta_{2}))}{(\lambda_{m+1} + \mu_{m})} \frac{1}{2^{\frac{1}{2}}} \sin(2\theta - 3\theta_{2})$$

$$- ((\lambda_{1} - \lambda_{2})) \frac{1}{2^{\frac{1}{2}}} \sin(2\theta - 2\theta_{2}) - \frac{2a^{\frac{1}{2}}}{2a^{\frac{1}{2}}} \sin(2\theta - 3\theta_{2})$$

$$+ (1 - \lambda_{1}) \frac{1}{2^{\frac{1}{2}}} \sin(2\theta - 3\theta_{2}) + \frac{3}{2^{\frac{1}{2}}} \sin(2\theta - 4\theta_{2})$$

$$+ (1 - \lambda_{1}) \frac{1}{2^{\frac{1}{2}}} \cos(2\theta - 2\theta_{2}) - \frac{1}{2^{\frac{1}{2}}} \cos(2\theta - 3\theta_{2})$$

$$\times \left\{ \frac{a^{\frac{1}{2}}}{2^{\frac{1}{2}}} \cos(2\theta - 2\theta_{2}) - \frac{1}{2^{\frac{1}{2}}} \cos(2\theta - 3\theta_{2}) \right\}$$

$$+ (1 - \lambda_{1}) \left\{ \frac{1}{2^{\frac{1}{2}}} \cos(2\theta - 2\theta_{2}) - \frac{3}{2^{\frac{1}{2}}} \cos(2\theta - 4\theta_{2}) \right\}$$

$$+ (1 - \lambda_{1}) \left\{ \frac{1}{2^{\frac{1}{2}}} \cos(2\theta - 2\theta_{2}) - \frac{3}{2^{\frac{1}{2}}} \cos(2\theta - 4\theta_{2}) \right\}$$

the hoop stress on the inhomogeneity boundary is

$$\begin{bmatrix} (\sigma_0) \\ \lambda = a \end{bmatrix}_{ik} = (\lambda_{m+1} \lambda_{m}) (S_1 + S_2) \frac{\lambda_{m-1}}{\lambda_{m+1}} \frac{1 - \nu_1}{\lambda_{m}^2} \cos (2\theta - 2\theta_2)$$

$$- \frac{\lambda_{m}(S_1 - S_2)}{\lambda_{m+1}} \begin{bmatrix} \frac{2(\nu_2 - 1)(\beta - 1)}{2(\beta + \lambda_{ik} - 4)} \\ - \frac{2(\nu_2 - 1)}{\lambda_{m+1}^2} \begin{bmatrix} \frac{\cos 2\theta_2}{\lambda_{m+1}^2} - \frac{\alpha}{\lambda_{m+1}^3} \cos (\theta - 3\theta_2) \end{bmatrix}$$

$$- (\nu_1 - \nu_2) \begin{bmatrix} \frac{\alpha^2}{\ell^2 \lambda_{m+1}^2} \cos (2\theta - 2\theta_2) - \frac{2\alpha^2}{\ell^2 \lambda_{m}^3} \cos (2\theta - 3\theta_2) \end{bmatrix}$$

$$+ (-\nu_1) \begin{bmatrix} \frac{2\ell}{\lambda_{m}^3} \cos (2\theta - 3\theta_2) + \frac{3}{\lambda_{m+1}^4} \cos (2\theta - 3\theta_2) \end{bmatrix}$$

$$+ \frac{2\lambda_{m}S_3}{\alpha_{m+1}} \begin{bmatrix} \frac{2(\nu_2 - 1)}{\lambda_{m+1}^2} \sin (2\theta - 3\theta_2) + \frac{\alpha}{\lambda_{m+1}^3} \sin (\theta - 3\theta_2) \end{bmatrix}$$

$$- (\nu_1 - \nu_2) \begin{bmatrix} \frac{\alpha^2}{\ell^2 \lambda_{m+1}^2} \sin (2\theta - 2\theta_2) - \frac{2\alpha^2}{\ell^2 \lambda_{m+1}^3} \sin (2\theta - 3\theta_2) \end{bmatrix}$$

$$+ (1 - \nu_1) \begin{bmatrix} \frac{2\ell}{\ell^2 \lambda_{m+1}^2} \sin (2\theta - 3\theta_2) + \frac{3}{\lambda_{m+1}^3} \sin (2\theta - 3\theta_2) \end{bmatrix}$$

$$+ (1 - \nu_1) \begin{bmatrix} \frac{2\ell}{\ell^2 \lambda_{m+1}^2} \sin (2\theta - 3\theta_2) + \frac{3}{\lambda_{m+1}^3} \sin (2\theta - 4\theta_2) \end{bmatrix}$$

and

$$\begin{split} \left[(\sigma_0)_{\lambda=a} \right]_{m} &= \frac{d_{m-1}}{d_{m+1}} \left(\lambda_m + \mu_m \right) \left(\delta_1 + \delta_2 \right) \left[\frac{4a^2 \nu_1}{\ell^2 a_{1}^2} \cos 2\theta_1 \right. \\ &+ \frac{1-\nu_1}{2^2} \cos \left(2\theta - 2\theta_2 \right) \right] - \frac{\mu_m \left(\delta_1 - \delta_2 \right)}{d_{m+1}} \\ &\times \left[\frac{4}{\lambda_2^2} \cos 2\theta_2 + 2(\nu_2 - 1) \right] \left\{ \frac{2\cos 2\theta_2}{2^2} \right. \\ &+ \frac{a}{2^2} \cos \left(\theta - 3\theta_2 \right) \right\} - \left(\nu_1 - \nu_2 \right) \left\{ \frac{a^2}{\ell^2 a_{1}^2} \cos \left(2\theta - 3\theta_2 \right) \right\} \end{split}$$

$$\begin{split} &-\frac{2a^{2}}{4\lambda_{2}^{3}}\cos\left(2\theta-3\theta_{2}\right)^{2}_{1}+\left(1-\nu_{1}\right)\left\{\frac{2\ell}{\lambda_{2}^{3}}\cos\left(2\theta-3\theta_{2}\right)+\frac{3}{24}\cos\left(2\theta-4\theta_{2}\right)\right\} \\ &-\frac{2(\nu_{2}-4)}{\ell^{2}(2\beta+d_{1}k-1)}+\frac{4(3a^{2}-2\ell^{2}+3)\frac{\nu_{1}a^{2}}{\ell^{4}\lambda_{1}^{2}}\cos2\theta_{1}+\frac{8a^{4}\cdot\rho_{1}}{\ell^{5}\lambda_{1}^{3}}\left(a^{2}-\ell^{2}+3\right)\cos3\theta_{1} \\ &+\frac{12a^{6}\nu_{1}\cos4\theta_{1}}{\ell^{6}\lambda_{1}^{4}}\cos4\theta_{1}\right]-\frac{24L\sqrt{8}3}{24L\sqrt{2}}\left\{\frac{4S\sin2\theta_{2}}{\lambda_{2}^{2}}+2\left(\nu_{2}-1\right)\left\{\frac{S\sin2\theta_{2}}{\lambda_{2}^{2}}\right\} \\ &-\frac{2a}{4^{3}}S\sin\left(\theta-3\theta_{2}\right)^{2}_{1}+\left(\nu_{1}-\nu_{2}\right)\left\{\frac{a^{2}}{\ell^{2}\lambda_{2}^{2}}\sin\left(2\theta-2\theta_{2}\right)-\frac{2a^{2}}{\ell^{3}\lambda_{2}^{2}}\sin\left(2\theta-3\theta_{2}\right)^{2}_{1}\right\} \\ &-\left(1-\nu_{1}\right)\left\{\frac{2\ell}{\lambda_{2}^{3}}\sin\left(2\theta-3\theta_{2}\right)+\frac{3}{2}\sin\left(2\theta-4\theta_{2}\right)^{2}_{2}-4\left(3a^{2}-2\ell^{2}+3\right)\right\} \\ &\times\frac{a^{4}\nu_{1}}{\ell^{4}\lambda_{1}^{2}}\sin2\theta_{1}-8\left(a^{2}-\ell^{2}+3\right)\frac{a^{4}\nu_{1}}{\ell^{5}\lambda_{1}^{3}}\sin3\theta_{1}-\frac{12a^{6}\nu_{1}}{\ell^{6}\lambda_{1}^{4}}\sin4\theta_{1}\right]. \end{split}$$

The ratio of hoop stresses at the point A (Fig. 10 p. 13%) of the boundary of inhomogeneity calculated from inside and outside is given by $(\delta_1 = \delta_2, \delta_3 = 0)$

$$\frac{1-\nu_1}{(\ell-a)^2}\left(\frac{4\nu_1}{\ell^2}+\frac{(1-\nu_1)}{(\ell-a)^2}\right)$$

Integrating the equations (131) - (136) and fixing the constants of integration in such a way that the displacements remain continuous across the boundaries, both of the inclusion and the inhomogeneity, we obtain

$$\frac{\Phi_{ch}(z) = -\frac{M_{m}(\delta_{1} - \delta_{2} + 2i\delta_{3})(\nu_{2} - 1)}{\omega_{m} + 1} \left\{ \frac{1}{z_{2}^{2}} + \frac{(3 - 1)z}{2\ell^{2}(z_{1}^{2} + \alpha_{i} - 1)} - \frac{M_{m}(\delta_{1} - \delta_{2} - 2i\delta_{3})}{2\ell^{2}(\alpha_{ch} + 1)} - \frac{M_{m}(\delta_{1} - \delta_{2} - 2i\delta_{3})}{\omega_{m} + 1} \frac{(\nu_{2} - 1)(\beta - 1)z}{2\ell^{2}} \times \left\{ \frac{1}{z_{1}^{2} + \alpha_{ch} - 1} + \frac{1}{\alpha_{i} + 1} \right\},$$
(121)

$$\begin{split} \Psi_{ch}(z) &= \frac{\alpha_{m-1}}{\alpha_{m+1}} \left(S_{1} + S_{2} \right) \left(\gamma_{m} + \mu_{m} \right) \left(\frac{D_{2} - 1}{Z_{2}} - \frac{B \alpha_{m} v_{1}}{\ell} \right) \\ &+ \frac{\mu_{m} \left(S_{1} - S_{2} + 2 c S_{3} \right)}{\alpha_{m+1}} \left((\nu_{2} - \nu_{1}) \left(-\frac{\alpha^{2}}{\ell^{2} Z_{2}} - \frac{\alpha^{2}}{\ell^{2} Z_{2}} \right) \\ &+ \frac{(1 - \nu_{1}) \left(\frac{\ell}{Z_{2}} + \frac{1}{Z_{3}^{3}} \right) + \frac{B \alpha_{m} v_{1}}{\ell^{3}} \left(2\alpha^{2} - \ell^{2} + 1 \right) \right]}{\alpha_{m} \left(S_{1} - S_{2} - 2iS_{3} \right)} \quad \frac{B \nu_{2}}{\alpha_{m} + 1} \end{split}$$

(122)

$$\frac{\Phi(z)}{(2z)} = -\frac{\nu_1 \frac{d_m - 1}{d_m + 1} (\lambda_m + 1 \frac{d_m}{d_m}) (\delta_1 + \delta_2) \frac{a^2}{\ell^2 z_1}}{\frac{d_m (\delta_1 - \delta_2 - 2i\delta_3)}{d_m + 1} \left[\frac{a^2 \nu_1}{\ell^4 z_1} (3a^2 - 2\ell^2 + 3) + \frac{a^6 \nu_1}{\ell^6 z_1^3} + \frac{a^4 \nu_1}{\ell^5 z_1^2} (a^2 - \ell^2 + 3) \right] + \frac{\mu_m (\delta_1 - \delta_2 + 2i\delta_3)}{d_m + 1} \frac{1}{z_2},$$

(123)

$$\Psi_{m}(z) = -\frac{\alpha_{m-1}}{\alpha_{m+1}} (\lambda_{m} + \mu_{m}) (\delta_{1} + \delta_{2}) \left(\frac{\nu_{1} \alpha^{2}}{\ell z_{1}^{2}} - \frac{\nu_{1}}{z_{1}} + \frac{\nu_{1}}{z} + \frac{1}{z^{2}} \right) \\
+ \frac{\mu_{m} (\delta_{1} - \delta_{2} - 2i\delta_{3})}{\alpha_{m+1}} \left[(\nu_{2} - \nu_{1}) \frac{\alpha^{2}}{\ell^{2} z_{1}} + \frac{\alpha^{4} \nu_{1}}{\ell^{3} z_{1}^{2}} + \frac{\alpha^{4} \nu_{1}}{\ell^{3} z_{1}^{2}} + \frac{3\alpha^{6} \nu_{1}}{\ell^{4} z_{1}^{3}} + \frac{3\alpha^{6} \nu_{1}}{\ell^{6} z_{1}^{4}} + \left\{ \nu_{1} - \frac{(\nu_{2} - \nu_{1})(\beta - 1)}{2\beta + \alpha_{1} k_{1} - 1} \right\} \frac{\alpha^{1}}{\ell^{2} z_{1}^{2}} \\
+ \frac{\mu_{m} (\delta_{1} - \delta_{2} + 2i\delta_{3})}{\alpha_{m+1}} \left[\left\{ \nu_{2} - \frac{(\nu_{2} - 1)(\beta - 1)}{2\beta + \alpha_{1} k_{1} - 1} \right\} \frac{\alpha^{2}}{\ell^{2} z_{2}} + \frac{1}{z_{2}^{2}} + \frac{1}{z_{2}^{2}} \right], \tag{124}$$

$$\phi_{i}(z) = \frac{(\lambda_{m+M_{m}})(\delta_{1}+\delta_{2})}{\lambda_{m+1}} \frac{z}{z} - \frac{(\lambda_{m}+M_{m})(\delta_{1}+\delta_{2})}{\lambda_{m+1}} \frac{\lambda_{m-1}}{\lambda_{2}} \frac{a^{2}v_{1}}{\lambda_{2}} + \frac{a^{2}v_{1}}{\lambda_{m+1}} \frac{a^{2}v_{1}}{\lambda_{2}} + \frac{a^{2}v_{1}}{\lambda_{m+1}} \frac{a^{2}v_{1}}{\lambda_{2}} + \frac{a^{2}v_{1}}{\lambda_{m+1}} \frac{a^{2}v_{1}}{\lambda_{2}} + \frac{a^{2}v_{1}}{\lambda_{m+1}} \frac{a^{2}v_{1}}{\lambda_{2}} + \frac{a^{2}v_{1}}{\lambda_{2}} \frac{a^{2}v_{1}}{\lambda_{2}} \frac{a^{2}v_{1}}{\lambda_{2}} + \frac{a^{2}v_{1}}{\lambda_{2}} \frac{a^{2}v_{1}}{\lambda_{2}} \frac{a^{2}v_{1}}{\lambda_{2}} + \frac{a^{2}v_{1}}{\lambda_{2}} \frac{a^{2}v_{1}}{\lambda$$

(126)

The displacements at points of the three regions are obtained from their respective potential functions with the help of (2,0). Numerical calculations were carried out for stresses at the boundaries of the inclusion in the case of generalised plane stress taking (Poisson's ratio 1/3), $\delta_3=0$. Table 2 gives values of various stresses at points of the boundary of inhomogeneity for different values of the parameters β_2 , distance ℓ and then inclusion radius α

At the point A the variation of all the stress components has been plotted in Figs. 34-36 p. 151-152.

Table 3 contains values of stress components at points of the inclusion boundary for various cases. Figs. 31-33 p. 150-151 show the behaviour of different stress components at the point B with changes in the parameters β_{1} and ℓ .

CHAPTER XII

TWO DEFORMING INHOMOGENEITIES

In the last chapter of this thesis we propose to give the solution of the problem of two deforming inhomogeneities. This involves two regions in the medium which have a tendency to undergo dimensional changes simultaneously. So far there was only one such region. The elastic constants of these regions could be different from the remaining surrounding material. The solution is obtained by making use of the results of two of the earlier chapters by an interesting use of the technique of superposition.

Choosing the reference frame as before the two inhomogeneities have the equations $z\bar{z} \in a^{2}$ and $(z-\ell)(\bar{z}-\ell) \leq 1$ (Fig. 37 p./55) and the remaining portion of the complex plane represents the matrix.

For convenience, the three regions will be called regions 1, 2, and 3 respectively (Fig. 37 p. 153). Let the dimensional changes which the two inhomogeneities might have undergone in the absence of the matrix be given in terms of the cartesian components by the following equations

$$u = \delta_1 x + \delta_3 y$$
, $v = \delta_3 x + \delta_2 y$, (127)

for inhomogeneity 1;

$$u = \delta_{4}(x-\ell) + \delta_{6}y,$$

$$v = \delta_{6}(x-\ell) + \delta_{5}y,$$
(128)

for inhomogeneity 2,

In this chapter it appears to be necessary to reiterate that the words inclusion and inhomogeneity are to be used in a definitive sense. Inclusion is a material region which has the same elastic properties as the matrix, while the inhomogeneity is one which may have different elastic properties. The solutions of the following problems obtained in earlier chapters form the starting point of the solution of the present problem.

- (i) The problem of an oversize circular inclusion in an infinite medium containing an inhomogeneity which does not tend to undergo a deformation (chapter XI).
- (ii) In an elastic infinite medium an inhomogeneity tends to undergo a deformation (Chapter VII).

In Fig. 38 p. 154, a flow chart is given indicating the process which leads to the solution. This helps in understanding and visualising the procedure.

In the first step we solve the following problem: Region 2 is occupied by an inclusion which tends to undergo a deformation characterised by (128) and the region 1 contains an inhomogeneity which tends to undergo a deformation characterised by (127). It is required to determine the complex functions which would give the stresses in the system.

The solution is obtained by direct superposition of the results of (i) and (ii) mentioned above and given in equations (115) = (120) and (72) = (75), replacing of course δ_1 , δ_2 , δ_3 in (115) = (120) by δ_4 , δ_5 and δ_6 in that order. The complex functions obtained are given below. The subscripts indicate the region which they pertain to $(z_1 = z - a^2/\ell)$, $z_2 = z - \ell$, $z_3 = z - \ell + a^2/\ell$

$$\psi_{i}(z) = \frac{\alpha_{w} v_{i+1}}{\alpha_{w+1}} \operatorname{hich}(\delta_{i} - \delta_{z} - 2i\delta_{3}) + \frac{\alpha_{w-1}}{\alpha_{w+1}} (1-v_{i}) (n_{w} + h_{w})
\times (\delta_{u} + \delta_{s}) \frac{1}{Z_{z}^{2}} + (v_{i} - v_{z}) \frac{\mu_{w}}{\alpha_{w+1}} (\delta_{u} - \delta_{s} + 2i\delta_{i})
\times (\frac{\alpha^{2}}{Z_{z}^{2}} - \frac{2\alpha^{2}}{Z_{z}^{2}}) - (1-v_{i}) \mu_{w}(\delta_{u} - \delta_{s} + 2i\delta_{i})
\times (\frac{2\ell}{Z_{z}^{3}} + \frac{3}{Z_{u}^{2}}),$$
(130)

$$\frac{\Phi_{z}'(z) = -\frac{1+\nu_{1}\alpha_{m}}{\alpha_{m}+1} \frac{a^{2}}{z^{2}} \mathcal{M}_{ch}(\delta_{1}-\delta_{2}+2i\delta_{3})$$

$$-\frac{\alpha_{m}-1}{2(\alpha_{m}+1)} (\lambda_{m}+\mathcal{M}_{m})(\delta_{4}+\delta_{5}) - \frac{a^{2}\nu_{1}}{\ell^{2}z_{1}^{2}} (\lambda_{m}+\mathcal{M}_{m})(\delta_{4}+\delta_{5}) \frac{\alpha_{m}-1}{\alpha_{m}+1}$$

$$-\frac{\nu_{1}\mathcal{M}_{m}}{\alpha_{m}+1} (\delta_{4}-\delta_{5}-2i\delta_{6}) \left[(3a^{2}-2\ell^{2}+3) \frac{a^{2}}{\ell^{4}z_{1}^{2}} + 2(a^{2}-\ell^{2}+3) \frac{a^{4}}{\ell^{5}z_{1}^{3}} + \frac{3a^{6}}{\ell^{6}z_{1}^{4}} \right],$$

$$(131)$$

$$\frac{1}{2} \frac{\psi_{2}'(z)}{z^{5} + d_{ck} - 4} = \frac{a^{2}}{z^{2}} \left(\lambda_{ck} + \mathcal{U}_{ck} \right) \left(\delta_{1} + \delta_{2} \right) - \frac{1 + \nu_{1} x_{m}}{\alpha_{m} + 1} \\
\times \frac{3 a^{4} \mathcal{U}_{ck}}{z^{4}} \left(\delta_{1} - \delta_{2} + z_{1} \delta_{3} \right) + \frac{\alpha_{m} - 1}{\alpha_{m} + 1} \left(\lambda_{m} + \mathcal{U}_{m} \right) \left(\delta_{4} + \delta_{5} \right) \\
\times \frac{2a^{4} \mathcal{U}_{ck}}{2a^{2}} + \frac{1}{z^{2}} - \frac{1}{z^{2}} \right) - \frac{\mathcal{U}_{m}}{\alpha_{m} + 1} \left(\delta_{4} - \delta_{5} - z_{1} \delta_{6} \right) \\
\times \left[-1 + (\nu_{2} - \nu_{1}) \frac{a^{2}}{2^{2} z^{2}} + \left\{ \nu_{1} - \frac{(\nu_{2} - 1) (\beta_{-1})}{2\beta_{1} + \beta_{1k} - 1} \right\} \frac{a^{2}}{\ell^{2} z^{2}} + \frac{2a^{4} \nu_{1}}{\ell^{3} z^{3}} + 3 \left(2a^{2} - 2\ell^{2} + 3 \right) \frac{a^{4} \nu_{1}}{\ell^{4} z^{4}} + \frac{12a^{6} \nu_{1}}{\ell^{5} z^{5}} \right] \\
- \frac{\mathcal{U}_{m}}{\alpha_{m} + 1} \left(\delta_{4} - \delta_{5} + z_{1} \delta_{6} \right) \left\{ \nu_{2} - \frac{(\nu_{2} - 1) (\beta_{-1})}{2\beta_{1} + \alpha_{1k} - 1} \right\} \frac{a^{2}}{\ell^{2} z^{2}} , \tag{132}$$

$$\frac{1}{\phi_{3}^{2}(z)} = -\frac{1+\nu_{1}\alpha_{m}}{\alpha_{m}+1} \mu_{ch} \left(\delta_{1}-\delta_{2}+2i\delta_{3}\right) \frac{\alpha^{2}}{z^{2}} + \nu_{1} \frac{\alpha^{2}}{\ell^{2}z_{1}^{2}} \frac{\alpha_{m}-1}{\alpha_{m}+1} \left(\lambda_{m}+\mu_{m}\right) \left(\delta_{4}+\delta_{5}\right) \\
-\frac{\mu_{m}}{\alpha_{m}+1} \left(\delta_{4}-\delta_{5}+2i\delta_{6}\right) \frac{1}{Z_{2}^{2}} - \frac{\nu_{1}\alpha_{m}}{\alpha_{m}+1} \left(\delta_{4}-\delta_{5}-2i\delta_{6}\right) \\
\times \left[\left(3\alpha^{2}-2\ell^{2}+3\right) \frac{\alpha^{2}}{\ell^{4}z_{1}^{2}} + 2\left(\alpha^{2}-\ell^{2}+3\right) \frac{\alpha^{4}}{\ell^{5}z_{1}^{3}} + \frac{3\alpha^{6}}{\ell^{4}z_{4}^{4}} \right] \tag{133}$$

$$\frac{1}{4} \frac{1}{3} (z) = \frac{\alpha_{ik-1}}{2\beta + \alpha_{ik} + 1} \left(\lambda_{ik} + \mu_{ik} \right) \left(\delta_{1} + \delta_{2} \right) \frac{a^{2}}{z^{2}} - \frac{\left(1 + \nu_{1} \alpha_{m} \right)}{\alpha_{m} + 1} \mu_{ik} \left(\delta_{1} - \delta_{2} + 2i \delta_{3} \right) \frac{3a^{4}}{z^{4}} + \frac{\alpha_{m} - 1}{\alpha_{m} + 1} \left(\lambda_{m} + \mu_{m} \right) \left(\delta_{1} + \delta_{5} \right) \left(\frac{1}{Z_{2}^{2}} + \frac{2a^{2} \nu_{1}}{\ell z_{1}^{3}} - \frac{\nu_{1}}{Z_{1}^{2}} + \frac{\nu_{1}}{z^{2}} \right) \\
- \frac{\mu_{m}}{\alpha_{m} + 1} \left(\delta_{1} - \delta_{5} - 2i \delta_{6} \right) \left(\nu_{2} - \nu_{1} \right) \frac{a^{2}}{\ell^{2} z_{1}^{2}} + \left\{ \nu_{1} - \frac{\left(\nu_{2} - 1\right) \left(\beta - 1\right)}{2\beta + \alpha_{ik} - 1} \right\} \frac{a^{2}}{\ell^{2} z^{2}} + \frac{2a^{2} \nu_{1}}{\ell^{3} z_{1}^{3}} + \left(2a^{2} - 2\ell^{2} + 3 \right) \frac{3a^{4} \nu_{1}}{\ell^{4} z_{1}^{4}} + \frac{12a^{6} \nu_{1}}{\ell^{5} z_{5}^{5}} \right] \\
- \frac{\mu_{m}}{\alpha_{m} + 1} \left(\delta_{1} - \delta_{5} + 2i \delta_{6} \right) \left[\left\{ \nu_{2} - \frac{\left(\nu_{2} - 1\right) \left(\beta - 1\right)}{2\beta + \alpha_{ik} - 1} \right\} \frac{a^{2}}{\ell^{2} z^{2}} + \frac{2\ell}{z_{2}^{3}} + \frac{3}{z_{1}^{4}} \right] . \tag{134}$$

It should be noted that these functions directly give the stress fields in their respective regions. We have added the initially existing fields if any.

In the second step we solve the following problem: Region 2 is occupied by an inhomogeneity which tends to undergo a deformation given by (128). The region 1 is occupied by an inclusion which tends to undergo a deformation given by (127). Complex functions for the elastic fields developed are to be determined.

The solution is obtained from the functions (129) = (134) given above. This can be done by a suitable transformation of the coordinate system- shift the origin to (ℓ,o) which is the centre of the region 2, and then rotate through an angle 180° . This is to be followed by an interchange of the roles of $\delta_1, \delta_2, \delta_3$ with δ_4, δ_5 and δ_6 and making the radii of inhomogeneity and the inclusion 1 and a respectively. The formulae (3) = (6) are used to obtain the complex functions in the new coordinate system from the old ones. The results are given below: $(Z_1 = Z_1 - a^2/e, Z_2 = Z_2 - \ell, Z_3 = Z_1 - (\ell - a^2/e))$:

$$\begin{split} & \frac{2}{\varphi_{1}^{\prime}(z)} = -\frac{1+\nu_{1}\alpha_{m}}{\alpha_{m}+1} \, \mathcal{U}_{1} \lambda_{1} \left(\delta_{4}-\delta_{5}+2i\delta_{6}\right) \frac{1}{Z_{2}^{2}} - \frac{\alpha_{m}-1}{2(\alpha_{m}+1)} \left(\lambda_{m}+\mu_{m}\right) \left(\delta_{1}+\delta_{2}\right) \\ & + \nu_{1} \, \frac{\alpha_{m}-1}{\alpha_{m}+1} \left(\lambda_{m}+\mu_{m}\right) \left(\delta_{1}+\delta_{2}\right) \frac{\alpha^{2}}{\ell^{2}Z_{3}^{2}} - \frac{\nu_{1}\mu_{m}}{\alpha_{m}+1} \left(\delta_{1}-\delta_{2}-2i\delta_{3}\right) \\ & \times \left[(3-2\ell^{2}+3\alpha^{2}) \frac{\alpha^{4}}{\ell^{4}Z_{3}^{2}} + 2\left(1-\ell^{2}+3\alpha^{2}\right) \frac{\alpha^{2}}{\ell^{5}Z_{3}^{2}} + \frac{3\alpha^{4}}{\ell^{6}Z_{3}^{4}} \right], \end{split}$$

(135)

$$\begin{split} & \frac{1}{2\rho + \lambda_{1} k_{-1}} \frac{1}{Z_{2}^{2}} \left(\lambda_{1} k_{1} + \lambda_{1} k_{1} \right) \left(\delta_{1} + \delta_{2} \right) - \frac{1 + \nu_{1} \lambda_{m}}{\lambda_{m} + 1} \, \lambda_{1} k_{1} k_{2} \\ & \times \left(\delta_{4} - \delta_{5} + 2i \delta_{6} \right) \left(\frac{3}{Z_{4}} + \frac{2\ell}{Z_{2}^{3}} \right) + \frac{\lambda_{m-1}}{\lambda_{m+1}} \left(\lambda_{m} + \lambda_{m} \right) \left(\delta_{1} + \delta_{2} \right) \\ & \times \nu_{1} \left(\frac{\alpha^{2}}{Z_{2}^{2}} - \frac{\alpha^{2}}{Z_{2}^{3}} \right) - \frac{\lambda_{m}}{\lambda_{m+1}} \left(\delta_{1} - \delta_{2} - 2i \delta_{3} \right) \left[-1 + (\nu_{2} - \nu_{1}) \frac{\alpha^{2}}{\ell^{2} Z_{3}^{2}} \right. \\ & + \left(\nu_{1} - \frac{(\nu_{2} - 1)(\beta - 1)}{2\beta + \alpha_{1} k_{1} - 1} \right) \frac{\alpha^{2}}{\ell^{2} Z_{2}^{2}} + \left(2 - 2\ell^{2} + 3\alpha^{2} \right) \frac{2\alpha^{2} \nu_{1}}{\ell^{3} Z_{3}^{3}} \\ & + \left(4 - 4\ell^{2} + 9\alpha^{2} \right) \frac{3\alpha^{2} \nu_{1}}{\ell^{4} Z_{3}^{4}} - \frac{\lambda_{m}}{\lambda_{m+1}} \left(\delta_{1} - \delta_{2} + 2i \delta_{3} \right) \\ & \times \left\{ \nu_{2} - \frac{(\nu_{2} - 1)(\beta - 1)}{2\beta + \alpha_{1} k_{1} - 1} \right\} \frac{\alpha^{2}}{\ell^{2} Z_{2}^{2}} \, , \end{split}$$

$$\frac{2\phi_{2}'(z)}{2\beta+\alpha_{ch}-1} = \frac{1-\alpha_{ch}}{2\beta+\alpha_{ch}-1} \left(\frac{\lambda_{ch}+\mu_{ch}}{\lambda_{ch}} \right) \left(\frac{\delta_{4}+\delta_{5}}{\lambda_{m}+1} + \frac{\mu_{m}}{\alpha_{m}+1} \left(\frac{\delta_{1}-\delta_{2}+2i\delta_{3}}{\lambda_{m}+1} \right) \right) \\
\times \left(\frac{\alpha^{2}}{2} - \frac{(\beta-1)\alpha^{2}}{2\ell^{2}(2\beta+\alpha_{ch}-1)} \right) \\
- \frac{\mu_{m}}{\alpha_{m}+1} \left(\frac{\delta_{1}-\delta_{2}-2i\delta_{3}}{2\ell^{2}(2\beta+\alpha_{ch}-1)} - \frac{\alpha^{2}}{2\ell^{2}(2\beta+\alpha_{ch}-1)} \right) \tag{137}$$

$$\frac{\lambda_{2}(z)}{\lambda_{2}(z)} = \frac{\lambda_{m} \nu_{1} + 1}{\lambda_{m} + 1} \frac{\mu_{1} \lambda_{1} \left(\delta_{1} - \delta_{2} - 2i\delta_{6}\right) + \frac{\lambda_{m} - 1}{\lambda_{m} + 1} \left(1 - \nu_{1}\right)}{\lambda_{m} + 1} \\
\times \left(\lambda_{m} + \mu_{m}\right) \left(\delta_{1} + \delta_{2}\right) \frac{\alpha^{2}}{z^{2}} + \left(\nu_{1} - \nu_{2}\right) \frac{\mu_{m}}{\lambda_{m} + 1} \left(\delta_{1} - \delta_{2} + 2i\delta_{3}\right) \\
\times \left(\frac{\alpha^{2}}{\ell^{2} z^{2}} + \frac{2\alpha^{2}}{\ell z^{3}}\right) - \frac{\mu_{m}}{\lambda_{m} + 1} \left(\delta_{1} - \delta_{2} + 2i\delta_{3}\right) \\
\times \left\{\frac{2\ell \alpha^{2}}{2^{3}} \left(\nu_{1} - \nu_{2}\right) + \frac{3(1 - \nu_{1}) \alpha^{4}}{z^{4}}\right\}, \quad (138)$$

$$\frac{2\phi_{3}(z) = -\frac{1+\nu_{1}\alpha_{m}}{\alpha_{m}+1} \mathcal{M}_{ch}(\delta_{4}-\delta_{5}-+2i\delta_{6}) \frac{1}{z_{2}^{2}} + \frac{\alpha_{m}-1}{\alpha_{m}+1} (\lambda_{m}+\mathcal{M}_{m})(\delta_{1}+\delta_{2}) \frac{a^{2}}{\ell^{2}z_{3}^{2}} - \frac{\mathcal{M}_{m}}{\alpha_{m}+1} (\delta_{1}-\delta_{2}+2i\delta_{3}) \frac{a^{2}}{z^{2}} - \frac{\nu_{1}\mathcal{M}_{m}}{\alpha_{m}+1} (\delta_{1}-\delta_{2}-2i\delta_{3}) \times \left[(3-2\ell^{2}+3a^{2}) \frac{a^{2}}{\ell^{4}z_{3}^{2}} - 2(1-\ell^{2}+3a^{2}) \frac{a^{2}}{\ell^{5}z_{3}^{2}} + \frac{3a^{4}}{\ell^{6}z_{3}^{4}} \right], (139)$$

$$\frac{2}{\sqrt{3}(z)} = \frac{d \cdot h - 1}{2 \cdot \beta + d \cdot k - 1} \left(\frac{1}{2 \cdot k} + M_{ik} \right) \left(\frac{1}{5 \cdot 4} + \frac{1}{2 \cdot k} - \frac{1}{2 \cdot k} + M_{ik} \right) \left(\frac{1}{5 \cdot 4} + \frac{1}{2 \cdot k} - \frac{1}{2 \cdot k} - \frac{1}{2 \cdot k} + \frac{1}{2 \cdot k} \right) + \left(\frac{1}{2 \cdot k} + M_{ik} \right) \left(\frac{1}{5 \cdot 4} + \frac{1}{5 \cdot k} - \frac{1}{2 \cdot k} + \frac{1}{2 \cdot k} \right) + \left(\frac{1}{2 \cdot k} + \frac{1}{2 \cdot k} - \frac{1}{2 \cdot k} - \frac{1}{2 \cdot k} \right) \left(\frac{1}{5 \cdot 4} - \frac{1}{2 \cdot k} - \frac{1}{2 \cdot k} - \frac{1}{2 \cdot k} \right) \left(\frac{1}{5 \cdot 4} - \frac{1}{2 \cdot k} - \frac{1}{2 \cdot k} - \frac{1}{2 \cdot k} \right) \left(\frac{1}{5 \cdot 4} - \frac{1}{2 \cdot k} - \frac{1}{2 \cdot k} - \frac{1}{2 \cdot k} \right) \left(\frac{1}{5 \cdot 4} - \frac{1}{2 \cdot k} \right) \left(\frac{1}{5 \cdot 4} - \frac{1}{2 \cdot k} - \frac{1$$

In the next step we solve the following problem: Two inclusions occupy regions 1 and 2. They tend to undergo deformations given by

The complex functions which describe the effect of these inclusions can be obtained from (124) = (134) by equating the constants of region 1 and 2 with those of 3. Thus have

$${}^{3}\varphi_{1}'(z) = \frac{\lambda_{m} + \mu_{m}}{2(d_{m}+1)} \left(\xi_{1} + \xi_{2} \right) \left(1 - d_{m} \right) - \frac{\mu_{m}}{\alpha_{m}+1} \left(\xi_{4} - \delta_{5} + 2i \xi_{6} \right) \frac{1}{Z_{2}^{2}}, \quad (141)$$

$$\frac{3}{4}(z) = \frac{\lambda_{m}}{\alpha_{m+1}} (\delta_{1} - \delta_{2} - 2i\delta_{3}) + \frac{\alpha_{m-1}}{\alpha_{m+1}} (\lambda_{m} + \lambda_{m})(\delta_{4} + \delta_{5}) \frac{1}{Z_{2}^{2}} - \frac{\lambda_{m}}{\alpha_{m+1}} (\delta_{4} - \delta_{5} - 2i\delta_{6}) \left(\frac{2\ell}{Z_{2}^{3}} + \frac{3}{Z_{2}^{4}}\right), \tag{142}$$

$$\frac{3\phi_{2}'(z) = -\frac{\mu_{m}}{\omega_{m+1}} \left(\delta_{1} - \delta_{2} + 2i\delta_{5} \right) \frac{a^{2}}{z^{2}} + \frac{1 - \alpha_{m}}{2(\alpha_{m} + 1)} \left(\delta_{4} + \delta_{5} \right) \left(\lambda_{m} + \mu_{m} \right),$$
(143)

$$\frac{3}{4}\sqrt{(z)} = \frac{\alpha_{m-1}}{\alpha_{m+1}} \frac{\alpha^{2}}{Z^{2}} (\lambda_{m} + \lambda_{m}) (\delta_{1} + \delta_{2})$$

$$- \frac{\lambda_{m}}{\alpha_{m+1}} (\delta_{1} - \delta_{2} + 2i \delta_{3}) \frac{3\alpha^{4}}{Z^{4}}$$

$$+ \frac{\lambda_{m}}{\alpha_{m+1}} (\delta_{4} - \delta_{5} - 2i \delta_{6}),$$
(144)

$$\frac{3\phi_{3}'(z)}{d_{3}(z)} = -\frac{\mu_{m}}{d_{m}+1} \left\{ (\delta_{1} - \delta_{2} + 2i\delta_{3}) \frac{a^{2}}{z^{2}} + (\delta_{4} - \delta_{5} + 2i\delta_{6}) \frac{a^{2}}{z^{2}} \right\},$$
(145)

$$\frac{3\psi_{3}(z) = \frac{\alpha_{m-1}(\lambda_{m}+\mu_{m})(\delta_{1}+\delta_{2})}{\alpha_{m+1}} \frac{\alpha^{2}}{z^{2}} \\
-\frac{4\alpha_{m}}{\alpha_{m+1}} (\delta_{1}-\delta_{2}+2i\delta_{3}) \frac{3\alpha^{4}}{z^{4}} \\
+\frac{\alpha_{m-1}}{\alpha_{m+1}} (\lambda_{m}+\mu_{m})(\delta_{4}+\delta_{5}) \frac{1}{z_{2}^{2}} \\
-\frac{\mu_{m}}{\alpha_{m+1}} (\delta_{4}-\delta_{5}+2i\delta_{6}) \left(\frac{2\ell}{z_{3}^{3}}+\frac{3}{z_{4}^{4}}\right). \tag{146}$$

We are now in a position to obtain the solution of the problem of this chapter i.e. the problem of two deforming inhomogeneities. Following the flow chart on page 154 we obtain the desired functions in the following manner.

$$\frac{d\varphi'(z)}{dz} = \frac{d\varphi'(z)}{dz} + \frac{2}{\varphi'(z)} - \frac{3}{\varphi'(z)}$$

$$= \frac{1 - \alpha_{10}}{2(2\beta + \alpha_{10} - 1)} \frac{(u_{10} + \lambda_{10})(\delta_{1} + \delta_{2})}{(2\beta + \alpha_{10} - 1)(\beta - 1)} + \frac{u_{10}}{\alpha_{10} + 1} \frac{(\delta_{1} - \delta_{5} + 2i\delta_{6})}{2^{2}} \frac{d^{2}}{dx_{10} + 1}$$

$$\times \left\{ \frac{p_{2}}{Z_{2}^{2}} - \frac{(p_{2} - 1)(\beta - 1)}{(2\beta + \alpha_{10} - 1)(2\beta^{2})} \right\} - \frac{1 + 2i\alpha_{10}}{\alpha_{10} + 1} \frac{u_{10}}{\alpha_{10} + 1} \frac{d^{2}}{\alpha_{10} + 1} \frac{Z_{2}^{2}}{Z_{2}^{2}}$$

$$- \frac{u_{10}}{\alpha_{10}} \left(\delta_{1} - \delta_{5} - 2i\delta_{6} \right) \frac{(p_{2} - 1)(\beta - 1)}{2(2\beta + \alpha_{10} - 1)} + \frac{p_{1}(\alpha_{10} - 1)}{\alpha_{10} + 1}$$

$$\times \left[(\delta_{1} + \delta_{2}) \frac{a^{2}}{2^{2}} - \frac{p_{1}u_{10}}{\alpha_{10} + 1} \left(\delta_{1} - \delta_{2} - 2i\delta_{3} \right) \right]$$

$$\times \left[(3 - 2\ell^{2} + 3a^{2}) \frac{a^{2}}{\ell^{4}Z_{3}^{2}} - (1 - \ell^{2} + 3a^{2}) \frac{2a^{2}}{\ell^{5}Z_{3}^{3}} + \frac{3a^{4}}{\ell^{6}Z_{3}^{4}} \right],$$
(147)

$$\begin{split} & \Psi_{1}^{\prime}(z) = \frac{1}{2} \Psi_{1}^{\prime}(z) + \frac{2}{2} \Psi_{1}^{\prime}(z) - \frac{3}{2} \Psi_{1}^{\prime}(z) \\ & = \frac{\alpha_{m} \nu_{1} + 1}{\alpha_{m} + 1} \mathcal{M}_{ch} \left(\delta_{1} - \delta_{2} - 2i\delta_{3} \right) - \frac{\alpha_{m} - 1}{\alpha_{m} + 1} \left(\lambda_{m} + \mathcal{M}_{m} \right) \\ & \times \left(\delta_{4} + \delta_{5} \right) \frac{\nu_{1}}{Z_{2}^{2}} + \left(\nu_{1} - \nu_{2} \right) \frac{\mathcal{M}_{m}}{\alpha_{m} + 1} \left(\delta_{4} - \delta_{5} + 2i\delta_{6} \right) \\ & \times \left(\frac{a^{2}}{\ell^{2} Z_{2}^{2}} - \frac{2a^{2}}{\ell^{2} Z_{2}^{3}} \right) + \frac{\mathcal{M}_{m}}{\alpha_{m} + 1} \left(\delta_{4} - \delta_{5} + 2i\delta_{6} \right) \frac{\nu_{1}}{2} \left(\frac{2\ell}{Z_{2}^{3}} + \frac{3}{Z_{2}^{4}} \right) \\ & + \frac{\alpha_{ch} - 1}{2\beta + \alpha_{ch} - 1} \left(\delta_{4} + \delta_{5} \right) \frac{1}{Z_{2}^{2}} - \frac{1 + \nu_{1}\alpha_{m}}{\alpha_{m} + 1} \mathcal{M}_{ch} \left(\delta_{4} - \delta_{5} - 2i\delta_{6} \right) \\ & \times \left(\frac{3}{Z_{2}^{4}} + \frac{2\ell}{Z_{3}^{3}} \right) + \frac{\alpha_{m} - 1}{\alpha_{m} + 1} \left(\lambda_{m} + \mathcal{M}_{m} \right) \left(\delta_{1} + \delta_{2} \right) \nu_{1} \left(\frac{a^{2}}{Z_{2}^{2}} - \frac{a^{2}}{Z_{3}^{2}} \right) \\ & - \frac{\mathcal{M}_{m}}{\alpha_{m} + 1} \left(\delta_{1} - \delta_{2} - 2i\delta_{3} \right) \left[\left(\nu_{2} - \nu_{1} \right) \frac{a^{2}}{\ell^{2} Z_{3}^{2}} \right] \end{split}$$

$$+ \left\{ \nu_{1} - \frac{(\nu_{2} - 1)(\beta - 1)}{2\beta + \alpha; k - 1} \right\} \frac{a^{2}}{\ell^{2} z_{2}^{2}} + 2(2 - 2\ell^{2} + 3a^{2}) \frac{a^{2} \nu_{1}}{\ell^{3} z_{3}^{3}} - \frac{9a^{4} \nu_{1}}{\ell^{4} z_{3}^{4}} \right]$$

$$- \frac{\mu_{m}}{\alpha_{m} + 1} \left(\delta_{1} - \delta_{2} + 2i\delta_{3} \right) \left\{ \nu_{2} - \frac{(\nu_{2} - 1)(\beta - 1)}{2\beta + \alpha; k - 1} \right\} \frac{a^{2}}{\ell^{2} z_{2}^{2}}$$

$$(148)$$

$$\frac{4\phi'_{2}(z)}{\phi'_{2}(z)} + \frac{2\phi'_{2}(z) - \frac{3}{2}\phi'_{2}(z)}$$

$$= \frac{1 - die}{2(2\beta + \alpha_{ih} - 4)} \left(\frac{\lambda_{ih} + \mu_{ih}}{\lambda_{ih}}\right) \left(\delta_{ij} + \delta_{5}\right) + \frac{\mu_{im}}{\alpha_{m} + 1} \left(\delta_{i} - \delta_{2} + 2i\delta_{3}\right)$$

$$\times \left\{\frac{\nu_{2}\alpha^{2}}{z^{2}} - \frac{\alpha^{2}(\nu_{2} - 1)(\beta - 1)}{2\ell^{2}(2\beta + \alpha_{ih} - 4)}\right\} - \frac{\mu_{im}}{\alpha_{m} + 1} \left(\delta_{i} - \delta_{2} - 2i\delta_{3}\right)$$

$$\times \frac{\alpha^{2}(\nu_{2} - 1)(\beta - 1)}{2\ell^{2}(2\beta + \alpha_{ih} - 4)} - \frac{1 + \nu_{i}\alpha_{m}}{\alpha_{m} + 1} \mu_{ih} \left(\delta_{i} - \delta_{2} + 2i\delta_{3}\right) \frac{\alpha^{2}}{z^{2}}$$

$$+ \frac{\alpha_{m} - 1}{\alpha_{m} + 1} \nu_{i} \left(\frac{\lambda_{m} + \mu_{m}}{\alpha_{m} + 1}\right) \left(\frac{\delta_{i} + \delta_{5}}{\alpha_{m} + 1}\right) \frac{\alpha^{2}}{\ell^{2} z_{i}^{2}}$$

$$- \frac{\nu_{i}\mu_{m}}{\alpha_{m} + 1} \left(\delta_{i} - \delta_{5} - 2i\delta_{6}\right) \left(\frac{\lambda_{m} + \mu_{m}}{\alpha_{m} + 1}\right) \frac{\alpha^{2}}{\ell^{2} z_{i}^{2}}$$

$$+ 2\left(\alpha^{2} - \ell^{2} + 3\right) \frac{\alpha^{4}}{\ell^{5} z_{i}^{3}} + \frac{3\alpha^{6}}{\ell^{6} z_{i}^{4}}\right], \tag{149}$$

$$\frac{4}{4}(z) = \frac{1}{4}(z) + \frac{2}{4}(z) - \frac{3}{4}(z)$$

$$= \frac{\alpha \cdot k - 1}{2\beta + \alpha \cdot k - 1} (\lambda \cdot k + \mu \cdot k) (\delta_1 + \delta_2) \frac{\alpha^2}{Z^2} - \frac{1 + \nu_1 \alpha_m}{\alpha_m + 1}$$

$$\times \text{Mich}(\delta_1 - \delta_2 + 2i\delta_3) \frac{3\alpha^4}{Z^4} + \frac{\alpha_m - 1}{\alpha_m + 1} (\lambda_m + \mu_m) (\delta_4 + \delta_5)$$

$$\times \frac{3}{4}(\frac{2\alpha^2}{4z^3} + \frac{1}{Z^2} - \frac{1}{Z^2}) - \frac{\mu_m}{\alpha_m + 1} (\delta_4 - \delta_5 - 2i\delta_6) \times$$

$$\begin{array}{l}
X \left[(\nu_{L} - \nu_{1}) \frac{d^{L}}{\ell^{2} z_{1}^{L}} + \left\{ \nu_{1} - \frac{(\nu_{2} - 1)(\beta - 1)}{2\beta + \alpha_{\ell k_{\ell} - 1}} \right\} \frac{d^{L}}{\ell^{2} z_{1}^{L}} + \frac{2a^{k} \nu_{\ell}}{\ell^{2} z_{2}^{3}} \right. \\
+ 3 \left(2a^{k} - 2e^{k} + 3 \right) \frac{a^{k} \nu_{\ell}}{\ell^{k} z_{1}^{4}} + 12 \frac{a^{\ell} \nu_{\ell}}{\ell^{2} z_{2}^{5}} - \frac{M_{ma}}{\alpha_{m+1}} \left(\delta_{k} - \delta_{s} + 2i \delta_{k} \right) \\
X \left\{ \nu_{k} - \frac{(\nu_{k} - 1)(\beta - 1)}{2\beta + \alpha_{\ell k_{\ell} - 1}} \right\} \frac{a^{L}}{\ell^{2} z_{2}^{L}} + \frac{\alpha_{m} \nu_{\ell} + 1}{\alpha_{m} + 1} M_{i,k} \left(\delta_{k} - \delta_{s} - 2i \delta_{k} \right) \\
- \frac{\alpha_{m-1}}{\alpha_{m+1}} \mathcal{D}_{1} \left(\lambda_{m} + M_{m} \right) \left(\delta_{\ell} + \delta_{k} \right) \frac{a^{L}}{2^{L}} \\
+ \left(\nu_{\ell} - \nu_{2} \right) \frac{M_{m}}{\alpha_{m+1}} \left(\delta_{\ell} - \delta_{2} + 2i \delta_{3} \right) \left(\frac{a^{k}}{\ell^{2} z_{2}^{L}} + \frac{2a^{k}}{\ell^{2} z_{3}^{3}} \right) \\
- \frac{M_{m}}{\alpha_{m+1}} \left(\delta_{\ell} - \delta_{2} + 2i \delta_{3} \right) \left\{ 2e \left(\nu_{\ell} - \nu_{2} \right) \frac{a^{k}}{z^{2}} - \frac{3\nu_{\ell} a^{k}}{\ell^{2} z_{3}^{3}} \right\} \\
- \frac{1 + \nu_{\ell} \alpha_{m}}{\alpha_{m+1}} M_{i,k} \left(\delta_{\ell} - \delta_{2} + 2i \delta_{3} \right) \frac{a^{k}}{z^{2}} + \frac{\alpha_{m-1}}{\alpha_{m+1}} \mathcal{D}_{1} \left(\lambda_{m} + M_{m} \right) \\
X \left(\delta_{k} + \delta_{s} \right) \frac{a^{k}}{\ell^{2} z_{2}^{2}} - \frac{3\nu_{\ell} M_{m}}{\alpha_{m+1}} \left(\delta_{k} - \delta_{s} - 2i \delta_{k} \right) \left\{ \left(3a^{k} - 2e^{k} + 3 \right) \frac{a^{k}}{\ell^{k} z_{2}^{2}} + 2\left(a^{k} - \ell^{2} + 3 \right) \frac{a^{k}}{\ell^{2} z_{2}^{2}} + \frac{2a^{k}}{\ell^{2} z_{2}^{2}} \right\} \\
- \frac{1 + \nu_{\ell} \alpha_{m}}{\alpha_{m+1}} M_{i,k} \left(\delta_{k} - \delta_{s} + 2i \delta_{k} \right) \left\{ \left(3a^{k} - 2e^{k} + 3 \right) \frac{a^{k}}{\ell^{k} z_{2}^{2}} + 2\left(a^{k} - \ell^{2} + 3 \right) \frac{a^{k}}{\ell^{2} z_{2}^{2}} \right\} \\
- \frac{1 + \nu_{\ell} \alpha_{m}}{\alpha_{m+1}} M_{i,k} \left(\delta_{k} - \delta_{s} + 2i \delta_{k} \right) \left\{ \frac{1}{2^{k}} \frac{2}{z_{2}^{2}} \right\} \\
- \frac{1 + \nu_{\ell} \alpha_{m}}{\alpha_{m+1}} \left(\lambda_{m} + M_{m} \right) \left(\delta_{1} + \delta_{2} \right) \frac{a^{k}}{\ell^{2} z_{2}^{2}} \right\} \\
- \frac{1 + \nu_{\ell} \alpha_{m}}{\alpha_{m+1}} \left(\lambda_{m} + M_{m} \right) \left(\delta_{1} + \delta_{2} \right) \frac{a^{k}}{\ell^{2} z_{2}^{2}} \\
- \frac{1 + \nu_{\ell} \alpha_{m}}{\alpha_{m+1}} \left(\lambda_{m} + M_{m} \right) \left(\delta_{1} + \delta_{2} \right) \frac{a^{k}}{\ell^{2} z_{2}^{2}} \\
- \frac{1 + \nu_{\ell} \alpha_{m}}{\alpha_{m+1}} \left(\lambda_{m} + M_{m} \right) \left(\delta_{1} + \delta_{2} \right) \frac{a^{k}}{\ell^{2} z_{2}^{2}} \\
- \frac{1 + \nu_{\ell} \alpha_{m}}{\alpha_{m+1}} \left(\lambda_{m} + M_{m} \right) \left(\delta_{1} + \delta_{2} \right) \frac{a^{k}}{\ell^{2} z_{2}^{2}} \\
- \frac{1 + \nu_{\ell} \alpha_{m}}{\alpha_{m+1}} \left$$

$$\begin{split} &\frac{4}{4}\sqrt[4](z) = \frac{1}{4}\sqrt[4](z) + \frac{1}{4}\sqrt[4](z) - \frac{3}{4}\sqrt[4](z) \\ &= \frac{2(1-1)}{2\beta+4c_{11}-4} \left(\frac{3}{4}c_{11} + \frac{4}{4}c_{11}\right) \left\{ \left(\frac{5}{4}+\frac{5}{4}c_{1}\right) \frac{a^{1}}{2^{1}} + \left(\frac{5}{4}+\frac{5}{8}c_{1}\right) \frac{1}{2^{3}} \right\} \\ &- \frac{1+\frac{2}{4}\frac{4}{4}c_{11}}{4c_{11}+4} \frac{4c_{11}}{2^{1}} \left(\frac{5}{4}-\frac{5}{2}+2i\frac{5}{3}\right) \frac{3a^{1}}{2^{1}} + \left(\frac{3}{4}c_{11}+\frac{4}{4}c_{11}\right) \left(\frac{5}{4}+\frac{5}{8}c_{1}\right) \\ &\times \left[\left(\frac{2}{2}-2\right)\frac{a^{1}}{2} + \frac{1}{2}\frac{2}{2} - \frac{2}{2}\frac{1}{2}\right) - \frac{4l_{11}}{4c_{11}+4} \left(\frac{5}{4}-\frac{5}{8}-2i\frac{5}{8}\right) \right] \\ &\times \left[\left(\frac{2}{2}-2\right)\frac{a^{1}}{2^{2}} + \frac{1}{2}\frac{2}{4}-\frac{2}{2}\frac{a^{1}}{2}\right) - \frac{4l_{11}}{4c_{11}+4} \left(\frac{5}{4}-2c_{11}+\frac{2}{4}\frac{a^{1}}{2}\right) + \frac{2c_{11}}{4c_{11}+4} \left(\frac{5}{4}-2c_{11}+\frac{2}{4}\frac{a^{1}}{2}\right) - \frac{4l_{11}}{4c_{11}+4} \left(\frac{5}{4}-\frac{5}{8}+2i\frac{5}{8}\right) \left(\frac{3}{2}\frac{2}{4} + \frac{2d^{3}}{2}\right) - \frac{4l_{11}}{4c_{11}+4} \left(\frac{5}{4}-\frac{4}{2}-2i\frac{5}{8}\right) \left(\frac{3}{4}-2\frac{1}{2}-\frac{a^{1}}{2}\right) - \frac{4l_{11}}{4c_{11}+4} \left(\frac{5}{4}-\frac{2}{2}-2i\frac{5}{3}\right) \left(\frac{2}{4}-2i\frac{3}{2}\right) - \frac{4l_{11}}{4c_{11}+4} \left(\frac{5}{4}-\frac{5}{2}-2i\frac{5}{3}\right) \left(\frac{2}{4}-2i\frac{3}{2}\right) - \frac{4l_{11}}{4c_{11}+4} \left(\frac{5}{4}-\frac{5}{2}-2i\frac{5}{3}\right) \left(\frac{2}{4}-2i\frac{3}{2}\right) - \frac{4l_{11}}{4c_{11}+4} \left(\frac{5}{4}-\frac{5}{2}+2i\frac{5}{3}\right) \left(\frac{2}{4}-2i\frac{3}{2}\right) - \frac{4l_{11}}{4c_{11}+4} \left(\frac{5}{4}-\frac{5}{2}+2i\frac{5}{3}\right) \left(\frac{2}{4}-2i\frac{3}{4}\right) - \frac{4l_{11}}{4c_{11}+4} \left(\frac{5}{4}-\frac{5}{2}+2i\frac{5}{3}\right) \left(\frac{2}{4}-2i\frac{3}{4}\right) - \frac{4l_{11}}{4c_{11}+4} \left(\frac{5}{4}-\frac{5}{2}+2i\frac{5}{3}\right) \left(\frac{2}{4}-2i\frac{3}{4}\right) - \frac{4l_{11}}{4c_{11}+4} \left(\frac{5}{4}-\frac{5}{4}+2i\frac{5}{3}\right) \left(\frac{2}{4}-2i\frac{3}{4}\right) - \frac{4l_{11}}{4c_{11}+4} \left(\frac{5}{4}-\frac{5}{4}+2i\frac{5}{3}\right) \left(\frac{2}{4}-2i\frac{3}{4}\right) - \frac{4l_{11}}{4c_{11}+4} \left(\frac{5}{4}-\frac{5}{4}+2i\frac{5}{3}\right) \left(\frac{2}{4}-2i\frac{3}{4}\right) - \frac{4l_{11}}{4c_{11}+4} \left(\frac{5}{4}-\frac{5}{4}+2i\frac{5}{3}\right) \left(\frac{5}{4}-2i\frac{5}{4}\right) - \frac{4l_{11}}{4c_{11}+4} \left(\frac{5}{4}-\frac{5}{4}+2i\frac{5}{3}\right) \left(\frac{5}{4}-2i\frac{5}{4}\right) - \frac{4l_{11}}{4c_{11}+4} \left(\frac{5}{4}-\frac{5}{4}+2i\frac{5}{3}\right) \left(\frac{5}{4}-2i\frac{5}{4}\right) - \frac{4l_{11}}{4c_{11}+4} \left(\frac{5}{4}-\frac{5}{4}-2i\frac{5}{4}\right) - \frac{4l_{11}}{4c_{11}+4} \left(\frac{5}{4}-\frac{5}{4}-2i\frac{5}{4}\right) - \frac{4l_{11}}{4c_{11}+4} \left(\frac{5}{4}-\frac{5}{4}-2i\frac{5}{4}\right) - \frac{4l_{$$

It may be worthwhile to point out that the solution to the problem of single inhomogeneity alone fails to yield the solution to the problem of two inhomogeneities through the process of superposition. The reason is as follows. Let us suppose that a deforming inhomogeneity is present at region 1, and region 2 and 3 are of the same material. The solution of such a problem is known and is given in chapter VIII. Next suppose a deforming inhomogeneity is now present at region 2, and region 1 and 3 are of the same material. The solution is known from the solution mentioned in the first case by merely shifting the origin. Therefore, for superposition to work, one has to make the added assumption that the region 1, 2 and 3 are of the same material. In other words simple superposition can yield result for two inclusions only and in fact for any number of inclusions.

The stress distribution in the various regions can now be obtained in the routine fashion. The expressions are not included here. It may be pointed out here that a check on the analysis can be made at each step by verifying that the normal and tangential stresses across the boundaries $z\bar{z}=a^{\perp}$ and $(z-\ell)(\bar{z}-\ell)=1$ are continuous. The hoop stress is discontinuous as it should be. Some numerical work done on the IBM 1620 computer. A few figures (Figs. $39-\frac{1}{2}6$ p. 155-157-a) have been included showing the variation of normal shearing and hoop stress on the boundary of the region 1 for plane stress case with the following data.

din = dm = 2, (ν= 1); β= 1,1,2; a=1, l=3; δη=δι, δς=δε, δς=δε=ο.

Table 4 contains the numbers from which the figures were drawn.

For the displacement fields, one can find out the functions $\psi_{1}(z)$, $\psi_{2}(z)$, $\psi_{2}(z)$, $\psi_{3}(z)$ and $\psi_{3}(z)$ by integrating the corresponding functions in equations (147) - (151) with respect to z.

Figure 1. Rectangular inclusion and coordinate system.

Figure 2. Variation of

FIGURE 3. Shearing stress along the boundary.

Figure 4. Lines of maximum shearing stress around the inclusion.

Figure 7. Lines of maximum shearing stress inside the triangular inclusion, $\delta_1 = \delta_2$, $\delta_3 = 0$.

Figure 8. Schematic drawing of the equilibrium shape.

Figure 9. Circular inclusion in semi-infinite medium and coordinate system.

Figure 10. Inclusion in the presence of a hole; coordinate system.

Figure 11. Normal stress at the point B.

Figure 12. Hoop stress at the point B (matrix).

Figure 13. Hoop stress %/45 at the point A(Fig. 9)

Figure 14. Inhomogeneity and point-force.

Figure 15. Hole and the point-force.

Figure 16. Normal stress $\sigma_n / \mu \delta$; $\delta_i = \delta_2 = \delta$

Figure 17. Normal stress $\sigma_{N}/\mu\delta$; $\delta_{1}=-\delta_{2}=\delta$

Figure 18. Hoop stress out-side, $\delta_1 = \delta_2 = \delta$

Figure 19. Hoop stress outside, $\delta_1 = -\delta_2 = \delta$

Figure 20. Hoop stress inside $(\sigma_5)_i / \mu \delta_i = \delta_z = \delta$.

Figure 21. Hoop stress inside $(\sigma_5)_i / u\delta$; $\delta_i = -\delta_2 = \delta$.

Figure 23. Tangential stress $T_{ns}/\mu \delta$; $\delta_{i} = \delta_{i} = \delta$

Figure 24. Rectangular inclusion in semi-infinite medium and coordinate system.

Figure 25. Hoon often

Figure 26. Hoop stress along the leading edge for the case of 1 x 2 rectangle, C = 1.

Figure 27. Hoop stress along the leading edge

Figure 31. Normal stress at the point B (Fig. 10), for various values of \$\beta\$ and \$\ell\$.

Hilfum	ಾ	5	The remains our	1	00
:	,	netrous menosembro	ng ata sa ng ata sa	W	Z.

Figure 33. Hoop stress at the point B (Fig. 10), for various values of $\frac{\mu_{ch}}{\mu_{m}}$ and ℓ .

FIG 37 COORDINATE SYSTEM AND CONFIGURATION.

SUPERPOSITION OF FLOW CHART OF THE PROCESS F1G. 38

FIG. 39 NORMAL STRESS -/μm · 6,= δ,----, β=0.5; ____, β=1; ___, β=2.

FIG. 40. NORMAL STRESS %/ Mm .6,=-82.____,(3=0.5;

FIG. 41. HOOP STRESS σ/μ_m INSIDE. $\delta_1 = \delta_2$. _____, $\beta = 0.5$; _____ $\beta = 1$; _____ $\beta = 2$;

FIG. 42 HOOP STRESS %/ μ_m OUTSIDE. $\delta_1 = \delta_2$. ____, $\beta = 0.5$, ____, $\beta = 2$.

FIG. 44 HOOP STRESS G/M OUTSIDE. $\delta_1 = -\delta_2$. (3 =0.5

FIG. 45 TANGENTIAL STRESS $\tau_{\pi\theta}/\mu$ $\delta_i = \delta_2$, $\beta = 0.5$;

FIG 46. TANGENTIAL STRESS T_{10}/μ $\delta_{i}^{-}-\delta_{2}$, $\beta=0.5$;

NORMAL STRESS, on/MS

•	<u>=6.0</u>	
0,	8,=82=8	5,=-82=8
0	-1.9534185	.63251183
30	-1,9634450	.31431533
60	-1.9804145	32924347
90	-1.9858317	65823219
120	-1.9781953	33661209
150	-1.9673999	.31675344
180	-1-9626764	-64472356

TABLE 1: Stresses along the boundary of the circular inclusion in a semi-infinite medium of Chapter IV; (Plane stress case; Poisson's ratio = 1/3).

		-	-					
	~	**	-	14	-	1	. ~	-
180 -1 5525000	-		0	\times	~	~	^	m
180 -1.5625000	_	-		\circ	_	_	~	$\mathbf{\circ}$
	-	-	-	-	-	-	Withins	-

	L-1	
92	81=82=8	81=-62=8
0	•0000000	0.000000
30	2222479	05545433
60	-1.3333338	00000037
90	-1.4080001	5691/343
120	-1.2944609	 39 7 92990
150	-1.2124390	.20816741
180	-1.1851852	.52674899

	(ms/us) TANGENTIAL	STRESS
02	2 2 2 3	51=-52=6
	L=6.Ů	
30 60 90 120 150 180	•00000004 ••01284196 ••00925718 •00450301 •0133188 •01068989 •00000002	00000168 55771959 56407905 00581983 .56129003 .56512355 .00000173
	L=2.5	4-
30 60 90 120 150 180	•00000027 •06789536 ••01739338 •05461993 •07575651 •04956887 •00000013	00000120 45116158 54425026 06104342 .50251391 .53289006 .00000165
	L=2.0	
30 60 90 120 150 180	•0000039 •0891454 •00157684 •09769997 •11333795 •06971236 •00000016	00000081 38811610 55599883 09925505 .47633662 .52143959 .00000164
	. L=1.5	
30 60 90 102 150 180	•00000031 •05951186 •08584518 •19199998 •18053698 •10275957 •00000022	00000044 30772521 60180876 16095999 .44354766 .50916007 .00000163
	L=1	
30 60 90 120 150 180	.00001064 .81880762 .38490006 .38399996 .29288318 .15342512	•00000347 •21755106 •64150∪40 •22528001 •41957220 •50334140 •00000161

(031	M8) HOOP	STRESS INSIDE
92	81=82=8	51=-52=8
	L=(5 • 0
0 30 60 90 120 150	-1.9804658 -1.9724100 -1.9601136 -1.9597569 -1.9713362 -1.9844903 -1.9899864	65801103 33823443 .30863017 .64120849 .32191159 33020824 65779496
	L=	2.5
0 30 60 90 120 150 180	-1.8125000 -1.7730650 -1.7502429 -1.8038235 -1.8830853 -1.9420516 -1.9629629	6406249941178555 .18055353 .57098320 .314904883044683762294242
	L=	2.0
0 30 60 90 120 150	-1.6296297 -1.5956136 -1.6149295 -1.7268473 -1.8464527 -1.9253416 -1.9520000	65843613 48436951 .11363576 .55625716 .326108 26657544 60415999
	L=	:1.5
0 30 60 90 120 150	-1.0000000 -1.1476636 -1.3848397 -1.624000 -1.8029129 -1.9049591 -1.9375000	79166674 62896080 .04309775 .56858643 .36008898 25347925 57291676
	L:	= 1
0 30 60 90 120 150	4.0000000 2647276 -1.3333338 -1.6320000 -1.8075801 -1.8982268 -1.9259260	

(05/1		STRESS OUTSIDE
Θ2	81=82=8	81=-82=8
	L=6	6. 0
0 30 60 90 120 150	2.0195342 2.0275900 2.0398864 2.0402431 2.0286638 2.0155097 2.0100136	2.00865560 .99509490 1.02450490 2.02545820 1.01142390 1.00312070 2.00887170
	L=:	2.5
0 30 60 90 120 150 180	2.1875000 2.2269350 2.2497571 2.1961765 2.1169147 2.0579484 2.0370371	2.02604170 .92154380 1.15278150 2.09568340 1.01843060 1.02886060 2.04372420
	L=	2.0 .
0 30 60 90 120 150 160	2.3703703 2.4043864 2.3850705 2.2731527 2.1535473 2.0745584 2.0480000	2.00823050 .84895980 1.21969930 2.11040950 1.00722740 1.04675550 2.06250670
	L=	1.5
0 30 60 90 120 150 180	3.0000000 2.8523364 2.6151603 2.3760000 2.1970871 2.0950409 2.0625000	1.87499980 .70436854 1.29023730 2.09808020 97324650 1.07984970 2.09374990
	L=	1
0 30 60 90 120 150 160 180	8.0000000 3.7352724 2.6666662 2.3680000 2.1924199 2.1017732 2.0740740 0.0000000	2.66666660 .46478701 1.33333440 2.03776010 90874990 1.131359 2.13991770 00000176

TABLE 2: Stresses along the inhomogeneity boundary (Chapter XI), for a few values of radius a of the inhomogeneity and the distance 1 between the centres of the inclusion and the inhomogeneity: (Plane stress case, Poisson's ratio = 1/3).

NORMAL STRESS $(\frac{\sigma_n}{u})$; $\beta = \infty$

-		21020000	Mus	$-); (3 = \infty)$	
_	9	8,=82=8	61=6=-62	· 81=8,82=0	8,=0,82=8
			:		
a = 1 1 = 2.25	120 120	-1.920 .234 .780 .331 031 224	-4.333 -2.073 692 601 619	#919 •044 •0134 •0325	1.206 1.153 .736 .466 .293
	180 120	-•224 -•284	~•6∠6 ~•6∠/		.200
a = 1 1 = 3	30 60 90 120 150 180	750 039 .397 .239 .008 138 187	-1.951 -1.083 459 401 424 436 439	-1.350 561 030 080 207 287 313	.600 .522 .428 .320 .216 .148
a = 1 1 = 4	30 60 90 120 150 180	333 061 .195 .155 .020 083 120	900 579 278 241 267 286	616 320 041 042 123 185 206	.283 .259 .236 .198 .144 .101
a = 1 1 = 6	30 60 90 120 150 180	120 036 .071 .076 .017 039 061	327 239 131 110 129 148 154	223 138 629 016 055 093 107	.103 .101 .101 .093 .073 .054
a = 2 1 = 4	30 60 90 120 150 180	-1.333 245 .781 .622 .081 333 480	-3.157 -2.357 -1.324 -1.033 -1.051 -1.096 -1.113	-2.245 -1.301 271 205 485 715 796	.912 1.055 1.053 .828 .566 .381
a = .5 1 = 2	30 60 90 120 150	750 .147 .250 .089 015 067	-1.999 482 156 173 182 184	-1.374 167 .046 041 099 126	.624 .315 .203 .131 .083

	0	KRNAL S	61=-52=5	$\frac{1}{5} = \frac{3}{5}$	8,=0/822
A = 4	30	-1.645	-2.828	-2.237	.591
a = 1 1 = 2.25		•200 •668	-1.330	564	.765
± = 2.27	90	.284	449 446	•109	•559
	120	026	480	081 253	• 365 • 226
	150	192	491	341	•149
	180	243.	493	368	•149 •125
		, L. T. J.			• 1 4 2
•		642	-1.344	993	•350
a = 1	30 .	033	698	366	.332
1 = 3	60	.341	277	.031	.309
1-3	90	.205	277	035	.241
	120	.007	315	153	.161
•	150	119	333	226	.107
•	180	160	33/	, ~• 249	0.088
			•		,
·	•	285	632	429	.173
a = 1	30	052	383	217	.165
1 = 4	6 U	.167	165	0.0	.166
_ 4	90	133	158	012	.146
•	120	.017	193	087	.105
	150	071	214	143	-071
•	180	102	221	162	.059
	•				
		102	233	168	.065
a = 1	-30	051	163	097	•065
1 = 6	60	.061	079	008	~070
	9 0 ·	.065	069	~ # COI	.C57
	120	.015	~ + O 9 O	037	-053
	150	030	109	071	037
	180	052	115	083	٥٥٤١ ،
, n					0.50
	0.0	642	-1.360	-1.001	
	.30	.126	276	~ .0/4	,201
1 = 4	60	. 214	-J101 -J134	≥056 :028	. 105
	9.0 140	077 - 015	·		
	120 15.	- USB	···· 347	- 102	3044
•	150 160	071	48	- 109	
	100	~ 00 / 4		010,	30
		-1,142	-20149	-1.646	503ء
-	25	-,210	-1.566	- 888	.678
a = .5	65	.669	844	1087	.756.
1 = 2	9.	, 533 686	- 694	- 080	614
	44.	, 069	- · 751	د 44 و - ٠	.413
	ようし	-,286	816	551	.265
	_dC	- 411	855	643	.212
	 +	•	•		

HORMAL STRESS (The); $\beta = \frac{1}{3}$

			- Colores Colo	•	
***************************************	9	6, = 5 = 5	8=6=-62	وحدورة عدة	δ1=0, δ2=δ
_	0	 768	8 47	 .8∪7	•039
a = 1	30	.095	382	144	. 238
1 = 2.25	60	.312 .	133	•089	.222
	90	.132	171	019	.152
	120	U12	197	104	•092
	150	- .089	205	147	.057
	180	llb	206	160	• 0 46
	•	300	~• 452	376	•076
==1	30	015	202	109	.093
1 = 3	60	.15.9	067	•045	.113
	90	.095	094	0.0	.095
	120	.003	121	֥059	.062
	150	055	133	094	.039
	180	075	136	105	.0±0
					•
*		133	240	177	.043
1	30	044	118	071	046
1 = 4	6 0	.070	~ ,≈∪⊅8 ·	· • 0,19	. U58
	9 U	.06z	048	.006	 √55°
	120	₃ 008	֥071	031	• 0 3 9
•	150	→ . () 2 5	003	V58	. 025
	180	~ 4040	 -∪87	067	.(19
		048	- ≠Üδ≥	- 65	.017
a = 1	зò	014	05>	- -053	.019
1 = 6	60.	, UŽ8	~,019	· UU4	· (124
	90	.050	01b	. ترن غ	e 1. 24
	120	.∪07	- ⊾co	· . 012	.019
	150	15	U4L	028	12
, ´.	180	-,024	044	U34	10
	, • •	- , 300	446	~ ,373 ·	.073
	s O	.059	- (055		57
a = 2	65	,100	0دن	4 ذان و	ەن.
1 = 4	9.	رَّدُ()ر	- ,055.	009	30.45
	14:	06	362	-,024	~027
		- 1027	و وان د سرر	-,045	.018
	_8.	د رر -	-4005	÷ .048	.~015
			•		
		وور. ـ	700	-,619	4∪86
a = .5	ی د	- v9a	489	- 245	ر195
1 = 2	6.	,312	-,208	J036	. 275
	9	,249	-,221	.clo.	. 235
	120	.032	276	-5121	.154
	150	135	514	-,264	* 50 90

NORMAL STRESS $(\frac{\sigma_{2}}{\mu_{m}})$; $\beta = 1$

			Mm 8	
0	8, =82 = 8	81=-82=8	8,=5, 8,=0	8,=0,82=
a = 1 3 1 = 2.25 6 9 12 15 18	0 .221 U020 O149	-1.740 803 275 311 347 358 360	-1.510 323 .122 045 184 254 275	.230 .479 .397 .266 .163 .104
a = 1 3 1 = 3 6 9 12 15 18	0 .265 0 .159 0 .005 0092	874 423 155 181 220 237 242	687 224 .054 010 107 165 183	.187 .198 .210 .170 .113 .072
a = 1 30 1 = 4 60 120 150 180	0 .130 0 .103 0 .013 0055	419239090098131151156	320 140 .019 .002 059 103 118	.098 .099 .110 .101 .072 .047
a = 1 30 1 = 6 60 90 120 150 180	0 .047 0 .051 0 .011 0026	156104044040060075080	118 064 .001 .005 024 050 060	.038 .040 .046 .046 .035 .024
2 3 (1 = 4 6 (9 (1 2 (1 5 (1 8 (1 8 (1 8 (1 8 (1 8 (1 8 (1 8	0 •166 0 •059 0 -•010 0 -•045	874 143 062 097 107 109	687 022 .052 018 058 077 082	•187 •121 •114 •078 •048 •032 •027
a = .5 30 1 = 2 60 91 121 150 18	0520 0415 0054 0222	-1.382 983 505 440 514 570 588	-1.135 573 .007 012 229 396 454	.246 .409 .513 .427 .284 .174

-.335

-.565

120

-.115

-.450

TANGENTIAL STRESS ($\frac{\chi_0}{u_m \delta}$); $\beta = 3$

				Umb	(-)
	8	8,=82=8	81=-82=81	8,=8,8,=0	8,=0,82=8
a = 1 1 = 2.25	30 60 90 120 150 180	0.000 1.170 .086 314 308 171 0.000	0.000 .056 265 253 153 069 0.000	0.0 .613 089 284 230 120	•000 •556 •175 •030 •077 •051 •000
a = 1 1 = 3	30 60 90 120 150 180	0.000 .534 .136 154 197 120 0.000	0.000 .194 084 160 117 057 0.000	0.0 .364 .025 157 157 088	•000 •169 •110 •003 -•040 -•031 •000
a = 1 1 = 4	30 60 90 120 150 180	0.000 .249 .105 071 121 080 0.000	0.000 .133 003 085 079 042 0.000	0.0 .191 .051 078 1 061 0.0	•000 •058 •054 •007 •020 -•018 •000
a = 1 1 = 6	30 60 90 120 150 180	0.000 .091 .055 022 057 042 0.000	0.000 .057 .018 030 040 025 0.000	0.0 .074 .036 026 049 033 0.0	.000 .016 .018 .003 008 008
a = 2 1 = 4	30 60 90 120 150	0.000 .398 0.000 102 090 049 0.000	0.000 .047 132 089 047 020	0.0 .223 066 096 069 034 0.0	.000 .175 .066 006 021 014 .000
a = .5 1 = 2	30 60 90 120 150 180	0.000 .999 .421 284 484 320 0.000	0.000 .231 027 254 250 139 0.000	0.0 .615 .197 269 367 230	•000 •384 •224 -•015 -•116 -•090 •000

TANGENTIAL STRESS ($\frac{\gamma_{NB}}{\mu_{NB}\delta}$); $\beta = \frac{1}{3}$

			Man o 1 1	(- 73
8	8, = 52 = 8	61=8=-82	81=8,82=0	8,=0,82=8
a = 1 30 1 = 2.25 60 90 120 150 180	0.000 .546 .040 146 143 080 0.000	0.000 .107 066 084 052 023 0.000	0.0 .326 013 115 098 051	.000 .219 .053 031 045 028
a = 1 30 1 = 3 60 90 120 150 180	0.000 .249 .063 072 092 056 0.000	0.000 .116 015 058 044 022 0.000	0.0 .182 .024 065 068 039	.000 .066 .039 006 023 016
a = 1 30 1 = 4 60 90 120 150 180	0.000 .116 .049 033 056 037 0.000	0.000 .070 .008 032 032 017 0.000	0.0 .093 .028 032 044 027	•000 •022 •020 0•000 -•012 -•009 •000
a = 1 30 00 1 = 6 90 120 150 180	0.000 .042 .025 010 026 019 0.000	0.000 .028 .011 011 017 010 0.000	0.0 .035 .018 011 022 015 0.0	•000 •006 •007 0•000 -•004 -•004 •000
a = 2 30 1 = 4 60 90 120 150 180	0.000 .186 0.000 048 042 022 0.000	0.000 .055 042 030 016 006	0.0 .120 021 039 029 014 0.0	.000 .065 .021 008 013 008
a = .5 30 1 = 2 60 90 120 150 180	0.000 .466 .196 132 226 149	•141 •026 -•088 -•097 -•055	0.0 .304 .111 110 161 102 0.0	.000 .162 .085 022 064 046

		101	interpretation and a second		
	61	6,=82=81	8,=-82=8	81=8,82=01	8,=0,8=8
a = 1 l =2.2	30 5 60 90 120 150 180	0.000 .910 .067 244 239 133 0.000	0.000 .122 150 164 100 045 0.000	0.0 .516 041 204 170 089	•000 •393 •108 -•040 -•069 -•044 •000
a = 1 1 = 3	30 60 90 120 150 180	0.000 .415 .106 120 153 093 0.000	0.000 .176 042 108 081 040 0.000	0.0 .295 .031 114 117 066 0.0	•000 •119 •074 -•005 -•035 -•026 •000
a = 1 1 = 4	30 60 90 120 150	0.000 .194 .081 055 094 062 0.000	0.000 .111 .006 059 057 031 0.000	0 • 0 • 153 • 044 - • 057 - • 075 - • 046 0 • 0	•000 •041 •037 •002 -•018 -•015 •000
a = 1 1 = 6	30 60 90 120 150 180	0.000 .071 .043 017 044 033 0.000	0.000 .046 .016 021 029 018 0.000	0.0 .058 .030 019 037 025	•000 •012 •013 •001 -•007 -•007
a = 2 1 = 4	30 60 90 120 150	0.000 .310 0.000 080 070 038 0.000	0.000 .068 084 059 031 013	0.0 .189 042 069 050 025	•000 •120 •042 ••010 ••019 ••012 •000
a = .5 1 = 2	30 60 90 120 150	G.000 .777 .327 221 377 249 0.000	0.000 .212 .016 168 176 099 0.000	0.0 .495 .172 195 276 174	.000 .282 .155 026 100 075

Hoop stress inside $(\frac{(\sigma_{\overline{a}})_{ig}}{\mathcal{L}_{ig}})$; $\ell^{g} = \infty$

_				J'mo	<u> </u>
	0	81=82=8	181=-82=8	81=8,82=0	8,=0,82=8
a = 1 1 =2.25	30 60 90 120 150 180	1.920 234 780 331 .031 .224 .284	•003 •021 •209 •507 •620 •653 •660	.961 106 285 .087 .325 .439	.958 127 495 419 294 214 188
a = 1 1 = 3	30 60 90 120 150 180	.750 .039 397 239 008 .138	•395 •036 •005 •205 •324 •371 •384	.572 .037 196 017 .157 .255 .285	•177 •001 -•201 -•222 -•166 -•116 -•098
a = 1 1 = 4	30 60 90 120 150 180	.333 .061 195 155 020 .083 .120	•261 •074 ••016 •075 •164 •209 •222	.297 .067 105 039 .071 .146	•035 -•006 -•089 -•115 -•092 -•063 -•051
a = 1 1 = 6	30 60 90 120 150 180	•120 •036 -•071 -•076 -•017 •039 •061	.118 .056 003 .016 .061 .092	.119 .046 037 029 .021 .065 .081	0.000 009 034 046 039 026 020
a = 2 1 = 4	30 60 90 120 150 180	.750 147 250 089 .015 .067	.249 145 .072 .183 .208 .212	.499 146 088 .046 .111 .140	.250 0.000 161 136 096 072 064
a = .5 1 = 2	30 60 90 120 150 180	1.333 .245 781 622 081 .333	•372 •636 •787	.967 .291 316 125 .277 .560	•365 -•046 -•464 -•497 -•359 -•226 -•176

HOPP STRESS INSIDE $(\frac{(\sigma_6)ih}{4m6}); \beta = \frac{1}{3}$

•					Marco	(,)
-		0	81=82=8	81=5= - 5_	8, 28, 82=0	8,=0,82=8
a = 1 =2	-	30 60 90 120 150	.768093312132 .012 .089 .113	.025 113 139 044 005 .005	•396 •103 •225 •088 •003 •047 •060	•371 •009 ••086 ••043 •009 •042 •052
a = 1 =		30 60 90 120 150 180	.300 .015 159 095 003 .055 .075	•115 -•061 -•111 -•047 -•006 •010 •014	•207 •022 •135 •071 •005 •032 •044	•092 •038 •023 •024 •001 •022 •030
a == 1 ==		30 60 90 120 150 180	.133 .024 078 062 008 .033 .048	.065 018 067 039 008 .008	.099 .003 073 050 008 .020	.033 .021 005 011 0.000 .012 .017
a = 1 =	1 6	30 60 90 120 150 180	.048 .014 028 030 007 .015 .024	•025 -•001 -•028 -•022 -•006 •004 •008	.036 .006 028 026 006 .010	•011 •008 0•000 -•003 0•000 •005 •007
a == 1 ==		30 60 90 120 150 180	.300 059 100 035 .006 .027	•132 -•098 -•045 -•007 •001 •002 •003	.216 078 072 021 .003 .014	•083 •019 -•027 -•014 •002 •012 •015
a = 1 =	· •5 · 2	30 60 90 120	.533 .098 312 249 032	.083 056 186 129 039	.308 .020 249 189 036	.224 .077 062 059 .003

Hoop stress inside $(\frac{\sqrt{3})i\omega}{\omega_m \delta}$; $\beta = 1$

				70.400	
	Ð	81 = 82 = 8	$\delta_1 = -\delta_2 = \delta$	181=8,82=0	181=0, 82=81
a = 1 1 = 2.25	30 60 90 120 150 180	1.280 156 520 221 .020 .149 .189	.034 143 149 .016 .084 .104	.657 149 334 102 .052 .127 .148	.622 006 185 118 031 .022 .040
a = 1 : 1 = 3	30 60 90 120 150 180	•500 •026 -•265 -•159 -•005 •092 •125	.208 073 143 031 .039 .068	• 354 • • 023 • • 204 • • 095 • 016 • 080 • 1	.145 .050 060 064 022 .012
a = 1 1 = 4	30 60 90 120 150 180	.222 .040 130 103 013 .055 .080	.123 012 090 039 .013 .041	.172 .014 110 071 0.0 .048 .065	•049 •026 ••019 ••031 •013 •006 •014
a = 1 1 = 6	30 60 90 120 150 180	.080 .024 047 051 011 .026 .040	•050 •006 -•037 -•027 0•000 •019 •026	• 065 • 015 • 042 • 039 • 005 • 022 • 033	.014 .008 005 011 006 .003
a = 2 1 = 4	30 60 90 120 150 180	.500 098 166 059 .010 .045	•208 -•148 -•048 •017 •032 •035	.354 123 107 021 .021 .040 .045	.145 .025 059 038 011 .004
		.888 .163 520 415 054 .222 .320	•197 -•023 -•220 -•113 •042 •134 •162	.543 .070 370 264 005 .178 .241	.345 .093 150 151 048 .044

	0	81=82=8	8,=-8==8	8,=+8,8,=0	8,=0, 82=8
	***************************************		Accommon and a state of the second and a second accommon and a second accommon and a second accommon and a second accommon accomm	have a second and the	The state of the s
		639	1.968	.664	-1.304
a = 1	30	.078	1.203	•640	562
1 = 2.25	60	•260	•617	438	178
	90	•110	•389	• 249	139
	120	010	•319	.154	164
	150	074	•299	.112	187
	180	094	• 295	. 1	.195
				-	• = 1 - 2
		249	•682	•216	466
1	30	013	•633	•310	323
a = 1	60	.132	• 445	• 289	156
1 = 3	90	•080	• 292	.186	106
	120	•002	•221	.112	109
	150	046	•193	.073	120
	180	062	•186	.062	124
	100	•002		8002	• 1 4
		111	•292	• 090	201
a = 1	30	020	•310	.144	165
1 = 4	60	.065	•270	.167	102
	90	•051	•196	.124	072
	120	•006	•146	.676	069
	150	027	.122	• 047	075
	180	040	•115	.037	077
		039	•104	•032	 072
a = 1	30	012	.116	• 052	064
1 = 6	60	.023	.120	•071	048
1 = 0	90	.025	• 099	.062	037
	120	•005	•076	•041	035
	150	013	•061	.024	037
	180	020	• 057	•018	038
		249	.666	• 208	458
a = 2	30	• 049	• 424	.236	187
1 = 4	60	•083	•170	.126	043
1 - 4	90	•030	•102	•066	036
	120	005	•088	.041	046
	150	022	•086	•032	054
	180	027	•086	.029	057
		444	1.317	•436	881
a = .5	30	081	1.227	•572	654
1 = 2	60	.260	1.010	.635	374
	90	•207	•762	• 485	277
	120	•027	•592	.309	282
	150	111	•507	•197	309
	180	160	• 482	.161	321

	•	НООР	STRESS OUTS	IDE $\left(\frac{(\sigma_{\theta})_m}{8\mu_m}\right)$; B= # 3
- Company	9	81 = 82 = 8	$\delta_1 = -\delta_2 = \delta$	8, = 8, 8,=0	8,=0,82=8
a = 1 1 =2.25	30 60 90 120 150 180	•182 -•022 -•074 -•031 •002 •021 •027	•745 •427 •225 •198 •196 •195	.464 .202 .075 .083 .099 .108	281 224 149 115 096 087 084
a = 1 l = 3	30 60 90 120 150 180	.071 .003 037 022 0.000 .013 .017	.333 .227 .141 .124 .122 .121	.202 .115 .051 .050 .060 .067	131 112 089 073 061 054 051
a = 1 l = 4	30 60 90 120 150 180	.031 .005 018 014 001 .007	•158 •121 •083 •073 •073 •074	• 094 • 063 • 032 • 029 • 035 • 041 • 042	063 057 050 044 037 033 031
a = 1 1 = 6	30 60 90 120 150 180	.011 .003 006 007 001 .003	• 059 • 050 • 037 • 034 • 034 • 035 • 036	.035 .026 .015 .013 .016 .019	024 023 022 020 018 016 015
a = 2 1 = 4	30 60 90 120 150 180	.071 014 023 008 .001 .006	.313 .117 .062 .059 .059 .059	•192 •051 •019 •025 •030 •033 •033	120 065 042 034 029 026 025
a = .5 1 = 2	30 60 90 120 150	007 .031	•590 •489 •353 •302 •292 •292	.358 .256 .139 .121 .142 .162	231 233 213 180 150 130 123

HOOP STRESS OUTSIDE $(\frac{(\sigma_3)_{4a}}{\mu_{aa}}); \beta = \frac{1}{3}$

				lim 8	1 /3
	0	81=52=81	81=8=-82	8,=8,82=0	8,=0,82=8
a = 1 1=2.25	30 60 90 120 150	2.815 343 -1.144 486 .045 .329 .416	332 626 570 188 036 .008	1.241 484 857 337 .004 .169	1.574 .141 286 148 .041 .160 .199
a = 1 1 = 3	30 60 90 120 150 180	1.099 .057 583 352 013 .203 .274	.266 332 460 203 042 .022 .038	.683 137 521 277 027 .113 .156	.416 .195 061 074 .014 .090
a = 1 1 = 4	30 60 90 120 150 180	.488 .089 286 228 029 .122 .176	.173 118 281 164 044 .018 .037	.331 014 284 196 037 .070	•157 •104 -•002 -•031 •007 •051 •069
a = 1 1 = 6	30 60 90 120 150 180	•175 •053 -•105 -•112 -•026 •057 •089	.070 025 119 095 033 .009 .024	.123 .014 112 103 029 .033 .057	.052 .039 .006 008 .003 .023
a = 2 l = 4	30 60 90 120 150 180	1.099 216 366 132 .022 .099 .122	•313 -•424 -•180 -•031 •002 •008 •009	.706 320 273 081 .012 .053	•393 •104 ••092 ••050 •009 •045 •056
a = . 1 = 2	(^	1.955 .359 -1.145 913 119 .489 .704	•044 -•418 -•815 -•558 -•205 •001 •063	•999 •029 •980 •735 -162 •245 •383	• 2 4 4

		HOOD CODE	ESS OUTSIDE	(PS) on	B= \$1
The second secon	e T	CONTRACTOR OF THE PROPERTY OF	CALL STREET, SALES OF STREET, SALES STREET,	8,=8,82=0	8,=0,8,=8
= 1 = 2.25	30 60	1.280 156 520	.034 143 149	•657 -•149 -•334	•622 -•006 -•185
	90 120 150	221 .020 .149	•016 •084 •104	102 .052 .127	118 031 .022
	180	•189	•108	•148	•040
ı = 1	30 60	•500 •026 -•265	•208 -•073 -•143	•354 -•023	•145 •050
. = 3	90	159	031	204 095	-•060 -•064
	120 150 180	005 .092 .125	•039 •068 •075	.016 .080 .1	022 .012 .024
= 1	30	• 222 • 040	•123	•172	•049
- 4	60	130	012 090	•014 -•110	•026 -•019
	90 120	103 013	039 .013	071 0.0	031 .013
	150 180	•055 •080	•041 •050	•048 •065	•006 •014
= 1	30	•080 •024	• 050 • 006	•065 •015	•014 •008
. = 6	60 90	047 051	037 027	042 039	005 011
	120 150	011 .026	0.000 .019	-•005 •022	006 .003
	180	• 040	•026	.033	•007
a = 2	30	•500 -•098	•208 -•148	•354 -•123	•145 •025
_ 4	-60 90	166 059	-•048 •017	107 021	059 038
	120 150	.010 .045	•032 •035	•021 •040	011 .004
,	180	.055	•035	• 045	•010
a = .5	30	.888 .163	•197 -•023	•543 •070	•345 •093
1 = 2	60 90	520 415	220 113	370 264	150 151
	120 150		•042	005 .178	-•048 •044
	180	.320	•162	.241	•078

HOOP STRESS OUTSIDE $(\frac{(\sigma_{\mathcal{G}})_m}{\delta \omega_m}); \quad (^3 = 0)$

***************************************				dre m	
And in the Control of	0	81=82=8	61=-62=6	8,= 8, 82=0	8,= 8, 82= 8
å = 1 1 =2.25	30 60 90 120 150 180	5.119 624 -2.081 884 .083 .599 .757	390 -1.101 -1.123 459 189 109 093	2.364 863 -1.602 671 053 .244 .331	2.755 .238 478 212 .136 .354 .425
a = 1 1 = 3	30 60 90 120 150	1.999 .105 -1.061 640 023 .370 .499	•537 ••591 ••870 ••423 ••139 ••023 •005	1.268 243 965 531 081 .173 .252	.731 .348 095 108 .057 .197 .247
	30 .60 90 120 150	.888 .163 520 415 054 .222 .320	.327 215 528 326 111 .001 .033	.608 026 524 370 082 .111 .176	•280 •189 •003 -•044 •028 •110 •143
	30 60 90 120 150	.319 .097 191 204 047 .104 .163	•126 ••048 ••223 ••183 ••073 •005 •031	.223 .024 207 193 060 .054 .097	.096 .072 .015 010 .012 .049
	30 60 90 120 150	1.999 393 666 240 .040 .180 .222	•666 -•762 -•361 -•097 -•036 -•025 -•024	1.333 577 513 168 .002 .077	.666 .184 152 071 .038 .103
	30 60 90 120 150	3.555 .653 -2.082 -1.660 217 .890 1.280	•123 ••760 ••1•547 ••1•119 ••496 ••129 ••018	1.839 053 -1.815 -1.389 357 .380 .630	1.716 .706 267 270 .139 .510

TABLE 3: Stresses along the inclusion boundary in the presence of an inhomogeneity (Chapter XI), for a few values of radius a of the inhomogeneity and the distance 1 between the centres of the inclusion and the inhomogeneity: (Plane stress case; Poisson's ratio = 1/3).

			NORMAJ	L STRESS ((Pin) Um 5);	[³ = ∞
	621	51=82=51	81=8, 82=0	81 = - 82 = 8	8,=0,82=8	
a = 1 1 =2.25	00 30 90 90 150 130	-1.799 -1.799 -1.05 -1.39 -1.962 -1.962	-1.150 994 690 576 662 -1.172 247	501 189 .425 .685 .245 382 003	646 005 -1.115 -1.262 -1.107 769 244	
a = 1 1 = 3	30. 50 90 120 150 180	-1.934 -1.936 -1.944 -1.967 -2.007 -1.943 -1.716	-1.245 -1.005 770 634 040 -1.109 -1.071	556 234 .404 .697 .327 276 426	688 650 -1.174 -1.332 -1.167 634	
a = 1 1 = 4	30 60 90 120 150 180	-1.977 -1.979 -1.984 -1.993 -2.001 -1.976 -1.936	-1.296 -1.132 807 652 926 -1.134 -1.262	615 266 369 688 348 291 588	681 846 -1.176 -1.341 -1.175 842 674	
a = 1 1 = 6	30 60 90 120 150	-1.995 -1.995 -1.997 -1.999 -1.999 -1.990	-1.323 -1.157 826 661 822 -1.157 -1.319	651 319 345 675 342 319 648	671 638 -1.171 -1.337 -1.171 637 671	
a. = 2 1 = 4	30 30 90 120 150	-1.776 -1.682 -1.904 -1.950 -1.996 -1.597	-1.037 092 019 534 755 933 022	197 .097 .665 .981 .486 006 047	039 989 -1.264 -1.415 -1.242 927 774	
a = .5 1 = 2	30 00 90 120 150	-1.939 -1.939 -1.949 -1.949 -1.994 -2.039 -1 4:34	-1.279 -1.116 790 637 344 -1.204	620 293 .360 .675 .305 369	659 323 -1.150 -1.312 -1.149 834	

***************************************					٧	
	02	8=82=8	&= 8, 82= 0	8,=-82=8	81=0/82=8	
a = 1 l=2.	30 25 50 90 120 150 10	-2.100 -2.100 -2.097 -2.000 -2.015 -2.010 -2.754	-1.426 -1.255 907 710 804 -1.133 -1.965	755 411 .262 .659 .405 247 -1.176	672 044 -1.109 -1.369 -1.210 085 708	
a = 1 1 = 3	"	-2.032 -2.031 -2.027 -2.016 -1.996 -2.028 -2.142	-1.377 -1.208 865 681 927 -1.194 -1.470	- 722 - 304 - 297 - 652 - 341 - 359 - 790	555 623 -1.162 -1.334 -1.168 034 671	
8 = 1 =		-2.011 -2.010 -2.007 -2.003 -1.999 -2.011 -2.031	-1.351 -1.183 846 673 836 -1.182 -1.369	692 356 .315 .656 .326 354 707	659 826 -1.161 -1.329 -1.162 528 662	
a = 1 =		-2.002 -2.002 -2.001 -2.000 -2.000 -2.002 -2.004	-1.338 -1.171 836 669 835 -1.171 -1.340	674 340 .327 .662 .328 340 676	664 830 -1.164 -1.331 -1.164 831 664	
a == 1 ==		-2.061 -2.050 -2.047 -2.024 -2.000 -2.069 -2.201	-1.484 -1.305 940 729 63 -1.282 -1.606	906 553 .166 .566 .273 494 -1.011	577 752 -1.107 -1.295 -1.137 787 595	
	2 00 100 150 1:0	-0.030 -0.030 -0.029 -0.035 -1.000 -1.000 -1.2.0	-1.360 -1.197 655 661 826 -1.146 -1.560	690 353 .319 .662 .350 303	669 039 -1.174 -1.343 -1.176 036 722	

				Mand	
	02	8 = 8 = 8	δ1=δ, δ2=0·	8 = 5 x = 5 ;	81=0,82=8
	30 2•25 0 90 120 150 100	-2.057 -2.057 -2.055 -2.045 -2.010 -2.430	-1.386 -1.216 691 691 -1.154 -1.674	716 376 305 662 360 298 917	670 -1.160 -1.353 -1.180 856 756
	1 30 3 60 90 120 150 160	-2.018 -2.018 -2.015 -2.009 -1.997 -2.016 -2.081	-1.350 -1.190 051 675 030 -1.182 -1.410	690 362 .312 .650 336 340 739	660 828 -1.164 -1.333 -1.167 833 670
a = 1 =	4 . 1 1	-2.005 -2.005 -2.004 -2.001 -1.999 -2.006 -2.018	-1.343 -1.176 840 670 035 -1.175 -1.353	601 346 322 660 329 345 609	662 629 -1.163 -1.331 -1.164 530 664
a = 1 =		-2.001 -2.001 -2.000 -2.000 -2.000 -2.001 -2.002	-1.336 -1.169 666 666 -1.169 -1.337	671 337 .329 .634 .330 337 671	665 831 -1.165 -1.332 -1.165 665
a =2 1 =4		-2.035 -2.033 -2.027 -2.014 -2.000 -2.039 -2.115	-1.410 -1.245 894 703 352 -1.232 -1.405	802 457 .23 .607 .295 426 655	616 737 -1.132 -1.310 -1.147 606 629
a=. l=		-2.017 -2.017 -2.016 -2.014 -2.001 -1.97 -2.161	-1.348 -1.101 645 674 729 -1.154 -1.450	600 344 325 342 320 759	660 836 -1.171 -1.339 -1.171 634 700

	_		•	Mario); [= 1
	0,	81=82=6	8,28,82=0	81=-82=8	81=0,82=8
a = 1 1 =2.	30 25 0 90 120 150	-1.919 -1.922 -1.935 -1.964 -1.396	-1.259 -1.097 775 630 346 -1.172 883	599 274 .370 .674 .294 360 380	659 622 -1.146 -1.305 -1.141 12 507
a = 1 1 = 3	30 -0 90 120 150	-1.973 -1.974 -1.977 -1.907 -2.003 -1.977 -1.086	-1.295 -1.133 600 654 134 -1.144 -1.227	- 622 - 293 - 361 - 676 - 330 - 310 - 569	675 640 -1.169 -1.332 -1.166 650
a = 1 l = 4	30 60 90 120 150 180	-1.991 -1.991 -1.993 -1.997 -2.000 -1.990 -1.974	-1.318 -1.153 022 661 830 -1.153 -1.304	646 314 347 .675 339 316 635	672 038 -1.170 -1.336 -1.169 836 659
	30 60 90 120 150 160	-1.998 -1.998 -1.999 -1.999 -1.996 -1.996	-1.329 -1.162 830 664 831 -1.162 -1.327	660 327 .330 .570 .336 327 659	688 635 -1.168 -1.335 -1.35 668
		-1.950 -1.953 -1.961 -1.999 -1.945 -1.93	-1.214 -1.056 757 614 003 -1.073 -1.126	478 160 .468 .751 .392 202 414	736 396 -1.213 -1.365 -1.195 770 711
a = .5 1 = 2	30	-1.975 -1.975 -1.975 -1.977 -1.997 -1.773	-1.311 -1.146 654 637 -1.156	648 317 344 670 321 543	863 229 -1.100 -1.325 -1.159 33 615

TANGENTIAL STRESS (4ms); P = 00

	6			TIAL STRESS		P = 80
	02	81=82=0	8,=8,82=0	81=-82=8	8,=0,82=8	
a = 1 l =2.		0.000 034 022 157 335 .077	0.000 -256 -217 -123 -444 -151 0.000	0.000 547 516 053 350 0.000	0.000 291 299 034 .201 .229	
a = 1 1 = 3	30 500 900 1200 1500 180	0:000 013 034 051 030 090	0.000 .272 .256 043 300 201 0.000	0.000 .561 .547 636 567 493 0.000	0.000 209 291 007 .270 .292 0.000	· - ,
a = 1 l = 4	30 90 120 150 10	0.000 005 012 013 0.000 .025 0.000	0.000 -202 -276 012 266 262 0.000	0.000 .570 .565 010 573 552 0.000	0.000 200 200 200 001 .207 .209 0.000	
a = 1 1 = 6	30 60 90 120 150 160	0.000 001 002 001 .001 .004	0.000 267 266 - 001 - 267 - 264 0.000	0.000 .575 .574 001 575 573 0.000	0.000 208 208 0.000 .268 .288 0.000	
a = 2 l = 4	30 90 110 150	0.000 033 000 000 023 023 030	0.000 .257 .229 070 302 150 0.000	0.000 .541 .524 059 511 449 0.000	0.000 291 295 011 .270 .290 0.000	
a =.5 1 = 2	30 0 50 110 180	0.000 010 025 050 01	0.000 -273 -205 041 344 224	0.000 .567 .555 032 60 504	0.000 263 290 000 .263 .276	

		•			mo	
	82	81=82=8	$\delta_1 = \delta_2$ $\delta_2 = 0$	8,=-82=8	6,=0,82=	8
1 = 1 1 =2.6		0.000 034 032 157 335 .077 0.000	0.000 .200 .207 040 379 332 0.000	0.000 595 313 059 522 742 0.000	0.000 315 349 103 143 410 0.000	
a =1 1 =3	30 30 20 120 150 10	0.000 016 034 051 030 .090	0.000 204 279 015 301 266 0.000	0.000 .5.53 .020 572 625 0.000	0.000 301 314 035 .270 .359 0.000	
a =1 1 =4	30 50 90 120 150 170	0.000 006 012 013 0.000 .026 0.000	0.000 .267 .265 004 289 282 0.000	0.000 .530 .533 .005 579 590 0.000	0.000 293 293 009 009 .300 0.000	
a = 1 1 = 6		0.000 001 002 001 .001 .004 0.000	0.000 .283 .287 0.000 288 287 0.000	0.000 .57 .57 0.000 57 579 0.000	0.000 209 290 001 .209 .291 0.000	
a = 1	2 30 4 50 150 150	0.000 033 065 073 073	0.000 .201 .272 022 301 260 0:000	0.000 .595 .611 .037 57 	0.000 314 339 060 .277 0:000	
a == 1 ==		0.808 025 050 051 .050	0.000 -201 016 380 686	0.000 507 -017 -559 -020 0.000	0.080 307 034 239 334 0.000	

TANGENTIAL STRESS ($\frac{q_{ms}}{\mu_{us}\delta}$); $\beta = \frac{1}{3}$

•	02	8 5 5		OTIGOD	Mus);	(=	43
o- 1	Maria Commission of the Commis	5,=52=5	61=8,82=01	8,=-82=8	18,=0,82=8		
	30 50 90 120 150 150	0.090 032 157 335 .077 0.000	0.998 .257 063 392 209 0.000	0.909 -597 -030 550 656 0.000	0.998 339 094 .157 .367 0.000		
1	30 20 90 90 50	0.000 016 034 051 030 .090	0.000 .282 .275 020 302 256 0.000	0.000 -582 -586 -011 574 604 0.000	0.000 299 310 031 .271 .347 0.000		,
1 = 4 1 2= 1 1= 6	30 90 90 50 30 90 90 90 90 90	0.000 006 012 013 0.000 .026 0.000 001 002 001 .004 0.000	0.000 286 284 005 288 279 0.000 0.000 286 287 0.000	0.000 .579 .570 .003 570 0.000 0.000 0.577 0.000 578 0.000	0.000 296 299 .305 0.000 0.000 299 290 001 .289 .291		
1=4 6	0	0.000 033 066 082 023 .132 0.000	0.000 .276 .264 031 300 245 0.000	0.000 .586 .595 .019 577 623 0.000	0.000 310 330 051 .276 .377 0.000		
a=.5 3 1= 2 G	0 0 0 0 0 0	0.000 010 025 050 01 .045 0.000	0.000 .204 .279 020 324 276 0.000	0.000 .5%0 .5%3 .009 5%7 600	0.000 295 304 030 .243 .324 0.000		

		TANGE	NTLAL STRESS	(In 8);	3=1
	182	S1 = 52 = 5	81=+8,82=0	61=-62=6	5,=0,82=8
a = 1 l = 2	4.0	•000 -•034 -•082 -•157 -•235 •077 0•000	0.000 .265 .234 097 422 206 0.000	0.000 .564 .551 037 609 491 0.000	0.0 299 317 060 .186 .284
a = 1 l = 3	-	.000 016 034 051 030 .090	0.000 .277 .265 033 306 225 0.000	0.000 .571 .565 014 581 542 0.000	0.0 293 3 018 .275 .316
a = 1 l = 4	- 0	•000 •006 •012 •013 0•000 •026 0•000	0.000 .284 .280 009 287 270 0.000	0.000 .574 .572 004 575 567 0.000	C•0 -•290 -•292 -•004 •288 •296 C•0
a = 1 1 = 6		.000 001 002 001 .001 .004	0.000 .287 .286 001 287 285 0.000	0.000 .576 .576 0.000 576 575 0.000	C.0 289 289 C.0 .289 .290 C.0
a = 3 1 = 4		•000 •033 •066 •082 •023 •132 0•000	0.000 .266 .244 053 301 195 0.000	0.000 .565 .555 024 578 522 0.000	0.0 299 310 029 .277 .327
a = l =	-	.000 010 025 050 081 .048	0.000 .281 .271 031 335 249 0.000	0.000 .573 .568 013 589 547 0.000	0.0 291 297 018 .254 .297

_		HOOP S	TRESS INSIDE	((03);	- (B = 80
and the same of th	02	81=82=8	51=8, 82=0	81=-82=8	81=0/82=8
a = 1 l = 2.2	30 5 60 90 120 150 180	-2.000 -2.000 -1.997 -1.963 -1.780 -1.258 -1.072	642 815 -1.153 -1.294 984 317 227	•714 •370 •309 •624 •189 •622 •617	-1.357 -1.185 843 669 795 940 845
a = 1 1 = 3	30 60 90 120 150 180	-1.999 -1.996 -1.984 -1.949 -1.874 -1.838 -1.964	637 804 -1.133 -1.276 -1.050 694 642	•723 •387 •283 •603 •226 •450 •679	-1.361 -1.191 850 673 823 -1.144 -1.321
a = 1 1 = 4	30 60 90 120 150 180	-1.999 -1.997 -1.991 -1.977 -1.959 -1.968 -1.997	651 816 -1.145 -1.301 -1.120 795 654	•697 •364 -•300 -•626 -•281 •377 •687	-1.348 -1.181 845 675 839 -1.172 -1.342
a = 1 1 = 6	30 60 90 120 150 180	-1.999 -1.999 -1.997 -1.994 -1.992 -1.996 -1.999	661 827 -1.159 -1.323 -1.155 825 661	•677 •344 •321 •652 •318 •345 •676	-1.338 -1.171 838 671 837 -1.171 -1.338
a = 2 1 = 4	30 60 90 120 150 180	-1.998 -1.990 -1.959 -1.889 -1.777 -1.765 -1.902	478652995 -1.137886523465	1.041 .684 030 384 .004 .719 .972	-1.519 -1.337964752891 -1.242 -1.437
a = . 5 1 = 2	30 60 90 120 150 180	-2.000 -2.000 -1.999 -1.988 -1.924 -1.722 -1.912	664 832 -1.165 -1.320 -1.100 632 656	.671 .335 331 652 277 .456 .599	-1.335 -1.167 833 668 823 -1.089 -1.256

HOOP STRESS INSIDE $(\frac{(63)^2}{4m6})$; $\beta = 3$

-				I'm 8	1
-	82	61-82-8	6,28, 82=0	$\delta_1 = -\delta_2 = \delta$	
				1 0/ 02=0	81=0/82=8
a = 1		-1.999 -1.999	675 839	•649 •320	-1.324 -1.160
1 = 2	• 25 60	-2.001	-1.170	340	830
	90 120	-2.018	-1.354	690	663
	150	-2.109 -2.370	-1.271	433	837
	180	-2.463	-1.121	•127	-1.249
		24405	797	•869	-1.666
		-2.000	680	•639	_1 210
a = 1	30	-2.001	846	•307	-1.319 -1.154
1 = 3	60	-2.007	-1.182	357	824
	90 120	-2.025	-1.362	699	662
	150	-2.062 -2.080	-1.227	391	835
	180	-2.080 -2.018	903	•272	-1.176
		74010	672	•672	-1.345
		-2.000	-•674	•651	-1.325
a = 1 $1 = 4$	30	-2.001	841	•318	-1.159
4	60	-2.004	-1.177	349	827
	90 120	-2.011 -2.020	-1.349	687	662
	150	-2.020	-1.190	359	830
		2.019	852	•311	-1.163
	180	-2.001	672	•657	-1.329
0 - 1	3.0	-2.000	669	.661	-1.330
a = 1 1 = 6	30 60	-2.000 -2.001	836	•327	-1.164
0	90	-2.001	-1.170 -1.338	339	830
	120	-2.003	-1.172	673 341	664
	150	-2:001	837	•327	831 -1.164
	180	-2.000	669	•661	-1.331
		-2.000	758	• 484	-1.242
a = 2	30 60	-2.004	921	•162	-1.083
1 = 4	60 90	-2.020 -2.055	-1.251	483	768
	120	-2.111	-1.434 -1.315	814	620
	150	-2.117	989	519 .138	 795
	180	-2.048	750	• 548	-1.127 -1.298
		•	-		1.270
n - 5		-1.999	667	•664	-1.332
a = .5 $1 = 2$	30	-1.999	833	•332	-1.166
	60 90	-2.000	-1.167	333	833
	120	-2.005 -2.037	-1.339 -1.201	 674	665
	150	-2.138	-1.201 936	-∙364 •265	~• 836
	180	-2.043	662	• 265 • 719	-1.202 -1.381
			\$ U U E	• 1 ⊥ J	-T. 20T

HOOP STRESS INSIDE $(\frac{(65)}{\mu_{m}})$; $\beta = \frac{1}{3}$

				10.000	
-	02	61 = 52 = 8	δ1= δ, δ2= 0	8,=-82=8	8,=0,82=8
a = 1 1 =2.25	30 60 90 120 150	-1.999 -1.999 -2.000 -2.010 -2.062 -2.211 -2.264	672 837 -1.169 -1.345 -1.223 991 761	•655 •324 -•338 -•679 -•384 •229 •741	-1.327 -1.162 831 665 839 -1.220 -1.503
a = 1 l = 3	30 60 90 120 150 180	-2.000 -2.000 -2.004 -2.014 -2.035 -2.046 -2.010	674 841 -1.175 -1.349 -1.200 873 671	•650 •318 -•347 -•685 -•365 •299 •667	-1.325 -1.159 828 664 835 -1.172 -1.338
a = 1 1 = 4	30 60 90 120 150 180	-2.000 -2.000 -2.002 -2.006 -2.011 -2.009 -2.000	671 838 -1.172 -1.342 -1.179 844 669	•657 •324 -•342 -•678 -•348 •320 •661	-1.328 -1.162 829 664 831 -1.164 -1.330
a = 1 1 = 6	30 60 90 120 150 180	-2.000 -2.000 -2.000 -2.001 -2.002 -2.001 -2.000	668 834 -1.168 -1.336 -1.169 835 668	.663 .330 336 670 337 .329 .663	-1.331 -1.165 831 665 832 -1.165 -1.332
a = 2 1 = 4	30 60 90 120 150 180	-2.000 -2.002 -2.011 -2.031 -2.063 -2.066 -2.027	719884 -1.215 -1.390 -1.249922718	•561 •234 ••419 ••749 ••435 •222 •591	-1.280 -1.118 795 640 813 -1.144 -1.309
a = .5 l = 2	30 60 90 120 150 180	-1.999 -1.999 -2.000 -2.003 -2.021 -2.079 -2.024	667833 -1.166 -1.337 -1.185891666	.665 .332 333 670 350 .295 .692	-1.332 -1.166 833 666 835 -1.187 -1.358

***************************************	02	51=52=8	8,28,82=0	$\delta_1 = -\delta_2 = \delta$	8,=0,82=
a = 1 1 =2.25	30 60 90 120 150 180	-2.000 -2.000 -1.999 -1.985 -1.912 -1.703 -1.629	657 826 -1.161 -1.317 -1.092 623 501	•684 •347 324 649 272 •456 •626	-1.342 -1.173 837 667 819 -1.079 -1.127
a = 1 1 =3	30 60 90 120 150	-1.999 -1.998 -1.993 -1.979 -1.949 -1.935 -1.985	655 822 -1.153 -1.310 -1.119 777 657	•689 •354 -•313 -•641 -•289 •380 •670	-1.344 -1.176 840 669 829 -1.157 -1.327
a = 1 1 = 4	30 60 90 120 150 180	-1.999 -1.999 -1.996 -1.990 -1.983 -1.987 -1.998	660 826 -1.158 -1.320 -1.148 818 661	.679 .345 320 650 312 .350 .674	-1.339 -1.172 838 670 835 -1.169 -1.336
a = 1 1 = 6	30 60 90 120 150 180	-1.999 -1.999 -1.998 -1.997 -1.997 -1.998 -1.999	664 831 -1.163 -1.329 -1.162 830 664	.670 .337 328 660 327 .338 .670	-1.335 -1.168 835 668 834 -1.168
a= 2 l= 4	4.0	-1.999 -1.996 -1.983 -1.955 -1.910 -1.906	591 761 -1.098 -1.254 -1.053 709 588	•816 •473 -•212 -•553 -•196 •487 •785	
a = 1 =	.5 30 2 60 90 120 150	-2.000 -2.000 -1.999 -1.995 -1.969	833 -1.166 -1.328 -1.140	.334 332 666 316	-1.167 833 667 829

HOOP STRESS OUTSIDE $(\frac{(\sigma_5)_m}{\mu_m \delta})$; $\beta = \infty$

		•		umo	
	02	5, 252=5	8,=8,82=0	8,=-82=8	5,=0,82=8
a = 1 1 =2.25	30 60 90 120 150	1.999 1.999 2.002 2.036 2.219 2.741 2.927	.023 .518 1.512 2.039 1.681 1.015 .438	.047 .037 .023 .041 .143 .289	1.976 1.481 .489 002 .537 1.726 2.488
a = 1 1 = 3	30 60 90 120 150	2.000 2.003 2.015 2.050 2.125 2.161 2.036	.028 .528 1.532 2.056 1.616 .639 .024	•057 •053 •050 •063 •106 •116 •012	1.971 1.474 .482 006 .509 1.522 2.011
a = 1 1 = 4	30 60 90 120 150	2.000 2.002 2.008 2.022 2.040 2.031 2.002	.015 .516 1.520 2.031 1.546 .537	•031 •031 •033 •040 •051 •043 •021	1.984 1.485 .487 008 .494 1.493 1.990
a = 1 1 = 6	30 60 90 120 150 180	2.000 2.000 2.002 2.005 2.007 2.003 2.000	•005 •505 1•507 2•009 1•511 •508 •004	•010 •010 •012 •014 •015 •012 •009	1.994 1.494 .495 004 .495 1.495 1.995
a = 2 1 = 4	30 60 90 120 150 180	2.001 2.009 2.040 2.110 2.222 2.234 2.097	.188 .680 1.671 2.196 1.780 .810 .201	.375 .351 .302 .281 .338 .386	1.813 1.329 .368 085 .442 1.424 1.895
a =.5 1 = 2	30 60 90 120 150 180	1.999 1.999 2.000 2.011 2.075 2.277 2.087	.002 .500 1.501 2.013 1.565 .700	.005 .002 .001 .014 .056 .122	1.997 1.498 .499 001 .509 1.577 2.077

		HOOP	STRESS OUTSI	DE ((5),	P = 3
-	02	5, = 52 = 5	81=8,82=0	81=-82=8	δ1=0, δ2=δ
a = 1 1 = 2.25	30 60 90 120 150	2.000 2.000 1.998 1.981 1.890 1.629 1.536	008 .493 1.495 1.978 1.394 .211 130	017 012 007 023 100 205 .202	2.008 1.506 .503 .002 .495 1.417 1.666
a = 1 1 = 3	30 60 90 120 150 180	1.999 1.998 1.992 1.974 1.937 1.919	013 .486 1.483 1.970 1.439 .429 006	027 025 024 033 058 060	2.013 1.512 .508 .004 .497 1.489 1.988
a = 1 1 = 4	30 60 90 120 150 180	1.999 1.998 1.995 1.988 1.979 1.984 1.998	007 .491 1.489 1.983 1.476 .481 005	015 015 016 020 026 021 009	2.007 1.507 .506 .004 .503 1.503 2.003
a = 1 1 = 6	30 ° 60 90 120 150 180	1.999 1.999 1.998 1.997 1.996 1.998	002 .497 1.496 1.995 1.494 .495 002	005 005 006 007 006 006	2.002 1.502 .502 .002 .502 1.502 2.002
a = 2 l = 4	30 60 90 120 150 180	1.999 1.995 1.979 1.944 1.888 1.882 1.951	091 .411 1.414 1.898 1.351 .344 083	181 171 150 148 185 194 118	2.090 1.583 .565 .046 .537 1.538 2.034
a = .5 1 = 2	30 60 90 120 180	2.000 2.000 1.999 1.994 1.962	001 .499 1.499 1.993 1.465	002 0.000 0.000 007 030 .052	2.001 1.5 .5 0.0 .496 1.951

		HOOP ST	RESS OUTSIDE	((05)m;	P = 1/3
	02	81=82=8	8=8,82=0	8,=-8==8	
a = 1 1 = 2.25	30 60 90 120 150 180	2.000 2.000 1.999 1.989 1.937 1.788 1.735	-•005 •495 1•497 1•988 1•443 •342 -•094	011 008 005 012 050 103 -075	5, = 0, 52 = 8 2.005 1.504 .502 .001 .494 1.445 1.830
a = 1 l = 3	30 60 90 120 150 180	1.999 1.999 1.995 1.985 1.964 1.953 1.989	-•007 •492 1•490 1•983 1•465 •459 -•004	015 014 014 018 032 034 0.000	2.007 1.507 .504 .002 .498 1.493 1.994
a = 1 1 = 4	30 60 90 120 150 180	1.999 1.999 1.997 1.993 1.988 1.990 1.999	004 .495 1.494 1.990 1.486 .489 003	008 008 009 011 015 012 005	2.004 1.504 .503 .002 .501 1.501 2.002
a = 1 1 = 6	30 60 90 120 150 180	1.999 1.999 1.999 1.998 1.997	-•001 •498 1•497 1•997 1•496 •497 -•001	-•003 -•003 -•004 -•004 -•003 -•002	2.001 1.501 .501 .001 .501 1.501 2.001
a = 2 l = 4	30 60 90 120 150 180	1.999 1.997 1.988 1.968 1.936 1.933	052 .449 1.451 1.942 1.416 .411 051	105 098 086 082 102 110 075	2.052 1.548 .537 .025 .519 1.522 2.023
a = .5 1 = 2	30 60 90 120 150 180	2.000 2.000 1.999 1.996 1.978 1.920 1.975	0.000 .499 1.499 1.996 1.480 .441	001 0.000 0.000 004 016 037	2.0 1.5 .5 0.0 .497 1.479

HOOP STRESS OUTSIDE (05/ms); 6= 1

•				×	
	θ,	δ ₁ = δ ₂ = δ	5=8,8=0	δ1=- 82= 8	8,=0,82=8
a = 1 1 =2.	30 25 60 90 120 150 180	1.999 1.999 2.000 2.014 2.087 2.296 2.370	.009 .506 1.504 2.015 1.574 .709	.018 .014 .008 .017 .060 .122	1.990 1.492 .495 001 .513 1.586 2.205
a = 1 1 = 3	30 60 90 120 150 180	2.000 2.001 2.006 2.020 2.050 2.064 2.014	.011 .511 1.513 2.022 1.546 .555	•022 •021 •020 •025 •043 •046 •003	1.988 1.489 .493 002 .503 1.508 2.005
a = 1 1 = 4	30 60 90 120 150 180	2.000 2.000 2.003 2.009 2.016 2.012 2.001	•006 •506 1•508 2•012 1•518 •515 •004	•012 •012 •013 •016 •020 •017 •008	1.993 1.494 .495 003 .497 1.497
a = 1 1 = 6	30 60 90 120 150 180	2.000 2.000 2.001 2.002 2.002 2.001 2.000	•002 •502 1•502 2•003 1•504 •503 •001	• 004 • 004 • 005 • 006 • 005 • 003	1.997 1.497 .498 001 .498 1.498 1.998
a = 2 1 = 4	30 60 90 120 150 180	2.000 2.003 2.016 2.044 2.089 2.093 2.038	•075 •572 1•568 2•078 1•613 •624 •078	•149 •140 •120 •113 •137 •154 •118	1.925 1.431 .447 034 .475 1.469
a = . 1 = 2		1.999 1.999 2.000 2.004 2.030 2.111 2.034	•001 •500 1•500 2•005 1•526 •580 •003	•002 0•000 0•000 •005 •022 •049 028	1.998 1.499 .499 6.0 .503 1.530 2.031

TABLE 4: Stresses along the boundary of region 1, in the case of two equal inhomogeneities of unit radius deforming equally (Chapter XII), the distance between their centres being three units; (Plane stress case, Poisson's ratio = 1/3).

سوالية والمقارضة ويتعادم المواقعة والمواقعة وا	The state of the s	Λ.	LORMAL STRE	SS (The second)	1
9	5=52=7	7 = : 5		B= 1 - 51=1	5.5.5.2	1 213-323
9	-1.678	411	-2.499	986	-3.156	-1.454
30	-1.499	228	-2.026	342	-2.448	443
60 90	-1.369 -1.411	•257 •500	-1.734	•426	-2.027	.558
120	-1.483	• 245	-1.840 -1.994	•662 •263	-2.182 -2.492	.794 .283
150	-1.530	254	-2.092	429	-2.542	562
180	-1.546	504	-2.124	769	-2.588	974
		Нос	P STRESS	INSIDE		
	-1.241	.531	-1.500	•763	-1.707	91ء.
30 60	-1.446 -1.601	.301	-1.973 -2.265	•176	-2.395	• 049
90	-1.567	232 490	-2.159	526 733	-2.796 -2.634	758 915
120	-1.499	236	-2.005	324	-2.411	379
150	-1.452	• 268	-1.907	.373	-2.270	.472
180	-1.437	.519	-1.875	•714	-2.225	.885
3 9 		НОС	OP STRESS	OUTSIDE		
	2.868	-1.352	.499	-2.458	-1.395	-3.368
30	.417	-1.123	.026	-1.571	286	-1.937
90	694	1.163	159	1.754	.267	2.233
120	•054	•605	005	.857	053	1.064
150	•539 •699	760 -1.464	•092 •124	-1.101 -2.091	264 334	-1.370 -2.588
100	•099	-1.404	•124	Z • U 9 I	554	-2.500
The state of the s		TAI	NGENTIAL S	STRESS		
	•000	0.000	1 0.000	0.0	•000	0.000
30	.185	• 488	•415	.753	.599	. 965
60	•060	•413	•106	•535	.142	. 525
90 120	047 068	038 458	120 153	108 659	178 222	175 828
150	042	456 444	093	617	134	760
180	0.000	0.000	0.000	0.0	•000	0.000

BIBLIOGRAPHY

1.	Sokolnikoff, I.S.	Mathematical Theory of Elasticity, McGraw-Hill, 1956.
2.	Muskhilishvili, N.I.	Some Basic Problems of the Mathe- matical Theory of Elasticity, P. Noordhoff Ltd., 1953.
3.	Green, A.E. and Zerna, W.	Theoretical Elasticity, Oxford, 1960.
4.	Eshelby, J. D.	Proc. Roy. Soc. A, 241, (1957) 376.
5•	Eshelby, J. D.	Progress in Solid Mechanics (Edited by I.N. Sneddon and R. Hill), Vol.2, Chapter III (North-Holland Pub.Co., Amesterdam).
6.	Jaswon, M. A. and Bhargava, R. D.	Proc. Camb. Phil. Soc. <u>57</u> (1961) 669.
7.	Frenkel, J.	Kinetic Theory of Liquids, Oxford, 1946
8.	Hashin, Z.	J. Mech. Phys. Solids, Vol. 13, (1965) 119.
9.	Hershey, A. V.	J. App. Mech. 21 , (1954) 236.
10.	Hill, R.	J. Mech. Phys. Solids, 13 (1965)89.
11.	and ventors and order and department of the second	J. Mech. Phys. Solids, 13 (1965) 189
12.	AND THE RESIDENCE OF THE PARTY	J. Mech. Phys. Solids, 13 (1965) 213
13.	Bhargava, R. D. and Radhakrishna, H. C.	Proc. Camb. Phil. Soc. 59 (1963) 811.
14		Proc. Camb. Phil. Soc. 59 (1963) 821
15.		J. Phys. Soc. Japan, 19 (1964) 756.

16.	Bhargava, R. D.	App. Sci. Res. A, 11 (1961) 80.
17.	Bhargava, R. D. and Sharma, C. B.	J. Phys. Soc. Japan, 19 (1964) 756.
18.		Bulletin de l'Academic Polonaise des Sciences, 12 No.12 (1964) 557.
19.	Lord Kelvin	Cambridge and Dublin Math.J., 1848.
20.	Willis, J. R.	Quar. J. Mech. & Appl. Maths. 16 (1965) 157.
21.	Budiansky, B.	J. Mech. Phys. Solids, 13 (1965) 223.
22.	Dundurs, J. and Mura, T.	J. Mech. Phys. Solids, <u>12</u> (1964) 177.
23.	Dundurs, J. and Sendeckyj, G. P.	J. Mech. Phys. Solids, <u>13</u> (1965) 141.
24.	Mott, N. F. and Nabarro, F. R. N.	Proc. Phy. Soc., <u>52</u> (1940) 86.
25.	Nabarro, F. R. N.	Proc. Phy. Soc., <u>52</u> (1940) 90.
26.		Proc. Roy. Soc., 175 (1940) 519.
27.	Savin, G. N.	Stress Concentration Around Holes, Pergamon Press, 1961.
28.	Neuber, H.	Kerbspannungslehre', Springer-Verlag, Berlin, 1958.
29.	Sneddon, I. N.	Fourier Transforms, McGraw-Hill Book Company, New York, 1951.