Experimento realizado com diversos classificadores. A Clusterização do sinal foi feita utilizando *Kmeans*, de acordo com o proposto por Wang et al. (2008). Para os teste iniciais, a escolha dos sensores também foi a mesma proposta por Wang et al. (2008).

A segmentação do sinal, para definição das classes foi utilizada a mesma proposta por Tamilselvan and Wang (2013), que consite em: as 50 últimas amostras no sinal correspondem ao estado de falha (HS-4), as amostras entre 51 e 125, distas da falha são o estado de degradação eminente (HS-3). As amostras entre 126 e 200 são consideras estados de transição (HS-2), na qual há pouca diferença entre a condição normal e de falha eminente. A partir da amostras 201, é considera região normal, de regime permanente (HS-1).

Para rodar os experimentos, todos os classificadores foram submetidos a mesma divisão do conjunto de dados, usando 10-fold $cross\ validation$. Os resultas são no conjunto sugerido para treinamento e parametrização, o FD005-train. Não foram usados os conjuntos de teste ou validação disponibilizados.

Os hiperâmetros selecionados para os classificadores foram:

- KNN: Distância: euclidiana; Vizinhos: 5;
- Random Forest: Número de estimadores: 10; Número máximo de profundidade: N/A; Número máximo de ramificações: N/A; Meta-algorithm: bagging;
- Perceptron LMS: $\eta=1$; Número de épocas: 1000; Tolerancia do erro: 10^{-4} ;
- Perceptron SGD: $\eta_0=0.005$; Número de épocas: 1000; Tolerancia do erro: 10^{-4} ; Regularização: L_2 ; $\alpha:0.0001$;
- MLP: Função de ativação: tanh; η₀ = 0.001; Tolerancia do erro: 10⁻⁵;
 Algoritmo de treinamento: testes com ADAM e L-BFGS; Foi utilizado random search para definição do número de neurônios entre 2 e 1000;

Table 1: Results from all classifiers, on the subset of data from Operationa Condition 1. Features are the sensors reading just as reported by Wang et al. (2008)

Classifier	Acc - Train (%)	Acc (%) - Test
KNN	69.71 ± 0.34	55.18±1.87
Random Forest	$98.51 {\pm} 1.06$	58.01 ± 1.72
Gaussian Naive-Bayes	$61.87 {\pm} 0.23$	$61.55 {\pm} 2.13$
Gaussian Linear discriminant	$62.42{\pm}1.06$	$62.35{\pm}1.25$
Gaussian Quadratic discriminant	$38.95 {\pm} 9.71$	$39.39{\pm}10.07$
Perceptron - LMS	$45.61{\pm}7.07$	45.07 ± 6.98
Perceptron - SGD	56.83 ± 3.44	56.30 ± 3.73
MLP	63.18 ± 0.29	62.70 ± 1.45
Reports on literature		
Ramasso (2009) - HMM - Nota 1	-	69.25
Ramasso and Gouriveau (2010) - HMM + Fuzzy - Nota 2	-	66.25
Zhao et al. (2011) - SVM - Nota 3	-	90
Tamilselvan and Wang (2013) - DBN	-	90.72

Nota 1: Utiliza uma versão mais simplista do conjunto de dado com uma condição operacional e dois tipos de falha.

Nota 2: O Autor não explica com clareza como chegou ao pontos para segmentação do sinal. Entretanto em um de seus trabalhos anteriores (Ramasso (2009)), o autor utilizou Gaussian Mixture Models (GMM) para segmentar os sinais. Supôs-se que a segmentação utilizada foi a mesma.

Nota 3: O Autor não explica quais condições operacionais utilizou. Foram utilizados limites para definições das classes diferente de Tamilselvan and Wang (2013). O artigo é pobre ao explicar detalhes de preprocessamento dos dados. O autor não reporta quais sensores utilizou como atributos.

Table 2: Results from all classifiers, on the subset of data from Operationa Condition 2. Features are the sensors reading just as reported by Wang et al. (2008)

Classifier	Acc - Train (%)	Acc (%) - Test
KNN	69.10 ± 0.54	55.10±0.99
Random Forest	$98.42 {\pm} 2.03$	$56.34{\pm}1.36$
Gaussian Naive-Bayes	$60.15 {\pm} 0.23$	56.74 ± 2.12
Gaussian Linear discriminant	$63.15{\pm}1.06$	$62.93{\pm}1.36$
Gaussian Quadratic discriminant	35.54 ± 7.71	$29.46{\pm}10.59$
Perceptron - LMS	54.74 ± 3.04	$54.95{\pm}6.79$
Perceptron - SGD	53.83 ± 3.12	54.76 ± 6.30
MLP	62.90 ± 0.27	62.06±0.12
Reports on literature		
Ramasso (2009) - HMM - Nota 1	-	69.25
Ramasso and Gouriveau (2010) - HMM + Fuzzy - Nota 2	-	66.25
Zhao et al. (2011) - SVM - Nota 3	-	90
Tamilselvan and Wang (2013) - DBN	-	95.80

Table 3: Matriz de confusão da MLP para o conjunto formado pelo regime 1 e pelos sensores sugeridos por Wang et al. (2008).

Labala		Prediction	ıs	
Labels	HS-1	HS-2	HS-3	HS-4
HS-1	1.6%	24.06%	74.06%	0.27%
HS-2	0.92%	18.55%	79.95%	0.58%
HS-3	0.53%	5.71%	86.21%	7.55%
HS-4	0.0%	0.0%	23.62%	76.38%

${\it 0.1. Using different sensors}$

Table 4: Results from all classifiers on the test subset of data from Operationa Condition 1. Features are the readins from sensors [1,2,3,6,8,10,11,12,13,14,19,20]

Classifier	Acc after (%)	Acc before (%)
KNN	57.90 ± 0.27	55.10 ± 0.99
Random Forest	60.51 ± 2.03	$56.34{\pm}1.36$
Gaussian Naive-Bayes	58.28 ± 3.23	56.74 ± 2.12
Gaussian Linear discriminant	$63.61{\pm}1.33$	$62.93{\pm}1.36$
Gaussian Quadratic discriminant	$61.39{\pm}2.23$	$29.46{\pm}10.59$
Perceptron - LMS	$56.40{\pm}6.25$	$54.95{\pm}6.79$
Perceptron - SGD	$56.48{\pm}2.81$	54.76 ± 6.30
MLP	63.70 ± 0.20	62.06 ± 0.12
Reports on literature		
Ramasso (2009) - HMM - Nota 1	-	69.25
Ramasso and Gouriveau (2010) - HMM + Fuzzy - Nota 2	-	66.25
Zhao et al. (2011) - SVM - Nota 3	-	90
Tamilselvan and Wang (2013) - DBN	-	95.80

Table 5: Matriz de confusão da MLP para o conjunto formado pelo regime 1 e pelos sensores [1,2,3,6,8,10,11,12,13,14,19,20]

Labels		Predictions	3	
Labels	HS-1	HS-2	HS-3	HS-4
HS-1	3.16%	38.05%	58.79%	0%
HS-2	3.84%	26.37%	69.79%	0%
HS-3	0.74%	9.88%	83.55%	5.82%
HS-4	0.0%	0.0%	18.07%	81.93%

References

- Ramasso E. Contribution of belief functions to hidden markov models with an application to fault diagnosis. In: Machine Learning for Signal Processing, 2009. MLSP 2009. IEEE International Workshop on. IEEE; 2009. p. 1–6.
- Ramasso E, Gouriveau R. Prognostics in switching systems: Evidential markovian classification of real-time neuro-fuzzy predictions. In: Prognostics and Health Management Conference, 2010. PHM'10. IEEE; 2010. p. 1–10.
- Tamilselvan P, Wang P. Failure diagnosis using deep belief learning based health state classification. Reliability Engineering & System Safety 2013;115:124–35.
- Wang T, Yu J, Siegel D, Lee J. A similarity-based prognostics approach for remaining useful life estimation of engineered systems. In: Prognostics and Health Management, 2008. PHM 2008. International Conference on. IEEE; 2008. p. 1–6.
- Zhao D, Georgescu R, Willett P. Comparison of data reduction techniques based on svm classifier and svr performance. In: Signal and Data Processing of Small Targets 2011. International Society for Optics and Photonics; volume 8137; 2011. p. 81370X.