Homework 2

Group 74

79730 João Silva

95598 João Câmara

João Silva worked on Question 1, and João Câmara worked on Questions 2 and 3.

Question 1

1.1) Resulting matrix of $QK^T \in \mathbb{R}^{L \times L}$, with each element requiring D additions, therefore $O(L^2D)$. Softmax applied on the resulting matrix is $O(L^2)$ for calculating row sums overall, and likewise for exponentiating and dividing each element of said matrix. Softmax $(QK^T)V \in \mathbb{R}^{L \times D}$, with each element requiring L additions, therefore $O(L^2D)$. Final time complexity is then $O(L^2D + 2L^2 + L^2D)$, or simply, in the context of very long sequences $(L \gg D)$, $O(L^2)$. This quadratic growth means that it is computationally too costly to train the model given long enough sequences.

1.2)
$$\exp(q^T k) \approx 1 + \sum_{i=1}^D q_i \, k_i + \frac{1}{2} \left(\sum_{i=1}^D q_i \, k_i \right)^2$$
, by Cauchy-Schwarz inequality, $\leq 1 + \sum_{i=1}^D q_i \, k_i + \frac{1}{2} \sum_{i=1}^D (q_i k_i)^2 = 1 + \sum_{i=1}^D q_i \, k_i + \frac{1}{2} \sum_{i=1}^D q_i^2 \, k_i^2$.

Using the sum of squares as an approximation: $\exp(q^T k) \approx 1 + \sum_{i=1}^D q_i \, k_i + \frac{1}{2} \sum_{i=1}^D q_i^2 \, k_i^2 = \phi(q)^T \phi(k)$, where $\phi(q)^T = \left[1, \, q_1, \, \dots, \, q_D, \, \frac{1}{\sqrt{2}} q_1^2, \, \dots, \, \frac{1}{\sqrt{2}} q_D^2\right], \, \phi(k)^T = \left[1, \, k_1, \, \dots, \, k_D, \, \frac{1}{\sqrt{2}} k_1^2, \, \dots, \, \frac{1}{\sqrt{2}} k_D^2\right]$

Therefore, $M=2\times D+1$. Generally (including $K\geq 3$), using the same approximation, the dimensionality is given by $M=(K-1)\times D+1$.

1.3) $Z \approx D^{-1}\Phi(Q)\Phi(K)^TV \approx D^{-1}\exp(QK^T)V \approx Diag(v)^{-1}\exp(QK^T)V$ using 1.2). Where $v = \exp(QK^T)\,1_L \in \mathbb{R}^L$ is the vector containing the row sums of exponentiated elements of QK^T . Assuming every sum is different than 0, $Diag(v)^{-1}$ is then the diagonal matrix whose diagonal values are $\frac{1}{v_i}$, $1 \leq i \leq L$, and $Diag(v)^{-1}\exp(QK^T)$ effectively approximates

Softmax(QK^T), and, therefore, $Z = Softmax(QK^T)V \approx D^{-1}\Phi(Q)\Phi(K)^{-1}V$.

1.4) Worst case is still $O(L^2)$.

Question 2

2.1) Best learning rate is 0.01.

2.3) (Implemented) The performance difference is due to the use of pooling layers, which effectively reduce the number of parameters of the network.

Question 3

Implemented but has bugs.