1. Problem

From a very large population, a small sample of measurements was taken.

Please calculate the average absolute deviation using the following formula:

$$\mathsf{AAD} = \frac{\sum |x - \bar{x}|}{n}$$

Solution

We fill out the table column by column.

_			
	X	$X - \bar{X}$	$ x-ar{x} $
	129	-3.5	3.5
	131	-1.5	1.5
	142	9.5	9.5
	128	-4.5	4.5
:	======	======	=======
	$\sum x = 530$		$\sum x - \bar{x} = 19$
	$\bar{x} = 132.5$		

We are ready for the formula.

$$s = \frac{\sum |x - \bar{x}|}{n}$$

$$=\frac{19}{4}$$

2. Problem

From a very large population, a small sample of measurements was taken.

Please calculate the (Bessel corrected) sample standard deviation using the following formula:

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$

Solution

We fill out the table column by column.

X	$X - \bar{X}$	$(x-\bar{x})^2$
138	1.5	2.25
132	-4.5	20.25
138	1.5	2.25
138	1.5	2.25
=======	=======	=======
$\sum x = 546$ $\bar{x} = 136.5$		$\sum (x - \bar{x})^2 = 27$

We are ready for the formula.

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$
$$= \sqrt{\frac{27}{4 - 1}}$$
$$= \sqrt{9}$$
$$= \boxed{3}$$