Name: Student ID:

Analog Electronics

Homework # 2

Due date:

Problem 1:

For the PMOS differential amplifier shown in Figure 1, let $V_{tp}=-0.8\ V$ and $k_p'W/L=6\ mA/V^2$. Neglect channel-length modulation.

- a) For $v_{G1}=v_{G2}=0\ V$, find $|V_{OV}|$ and V_{SG} for each of Q_1 and Q_2 . Also find V_S,V_{D1} , and V_{D2} .
- b) If the current source requires a minimum voltage of $0.5\ V$, find the input common-mode range.

Figure 1

Problem 2:

Draw the differential half-circuit for the differential amplifier shown in Figure 2 and use it to derive an expression for the differential gain $A_d = v_{od}/v_{id}$ in terms of g_m , R_d , and R_S . Neglect the Early effect. What is the gain with $R_S = 0$? What is the value of R_S (in terms of $1/g_m$) that reduces the gain to half this value?

Figure 2

Problem 3:

An npn differential amplifier has I=0.5~mA, $V_{CC}=3~V$, $V_{EE}=-3~V$, and $R_C=4~k\Omega$ utilizes BJTs with $\beta=100$ and $v_{BE}=0.7~V~if~i_C=1~mA$. Assuming that the bias current is obtained by a simple current source that requires a minimum of 0.4~V for proper operation. Also, all transistors require a minimum v_{CE} of 0.2~V for operation in the active mode.

- a) Find the common-mode range.
- b) The differential input signal v_{id} is applied in a *complementary* (or *balanced*) manner. Draw the differential half-circuit and calculate $A_d = v_{od}/v_{id}$