- **24.** Suponer $\mathbf{x}_0 \in \mathbb{R}^n$ y $0 \le r_1 < r_2$. Demostrar que existe una función de clase C^1 $f \colon \mathbb{R}^n \to \mathbb{R}$ tal que $f(\mathbf{x}) = 0$ para $\|\mathbf{x} \mathbf{x}_0\| \ge r_2; 0 < f(\mathbf{x}) < 1$ para $r_1 < \|\mathbf{x} \mathbf{x}_0\| < r_2;$ y $f(\mathbf{x}) = 1$ para $\|\mathbf{x} \mathbf{x}_0\| \le r_1$. [SUGERENCIA: aplicar un polinomio cúbico que verifique $g(r_1^2) = 1$ y $g(r_2^2) = g'(r_2^2) = g'(r_1^2) = 0$ a $\|\mathbf{x} \mathbf{x}_0\|^2$ cuando $r_1 < \|\mathbf{x} \mathbf{x}_0\| < r_2$.]
- **25.** Hallar una aplicación de clase C^1 $f: \mathbb{R}^3 \to \mathbb{R}^3$ que transforme el vector $\mathbf{i} + \mathbf{j} + \mathbf{k}$ que parte del origen en el vector $\mathbf{i} \mathbf{j}$ con origen en (1, 1, 0) y el vector \mathbf{k} que sale de (1, 1, 0) en el vector $\mathbf{k} \mathbf{i}$ que sale del origen.
- **26.** ¿Qué es incorrecto en el siguiente argumento? Supóngase que w=f(x,y,z) y z=g(x,y). Por la regla de la cadena,

$$\frac{\partial w}{\partial x} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial x} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial x} + \frac{\partial w}{\partial z} \frac{\partial z}{\partial x} = \frac{\partial w}{\partial x} + \frac{\partial w}{\partial z} \frac{\partial z}{\partial x}.$$

Por tanto, $0 = (\partial w/\partial z)(\partial z/\partial x)$, y entonces $\partial w/\partial z = 0$ o $\partial z/\partial x = 0$, lo que, en general, es absurdo.

- **27.** Demostrar las reglas (III) y (IV) del Teorema 10. (SUGERENCIA: utilizar los mismos trucos de sumar y restar que en el caso de una variable y del Teorema 8.)
- **28.** Demostrar que $h: \mathbb{R}^n \to \mathbb{R}^m$ es diferenciable si y solo si cada una de las m componentes $h_i: \mathbb{R}^n \to \mathbb{R}$ es diferenciable. SUGERENCIA: utilizar la función de proyección de coordenadas y la regla de la cadena para obtener una de las implicaciones y para obtener la otra tener en cuenta que

$$\left[\frac{\|h(\mathbf{x}) - h(\mathbf{x}_0) - \mathbf{D}h(\mathbf{x}_0)(\mathbf{x} - \mathbf{x}_0)\|}{\|\mathbf{x} - \mathbf{x}_0\|}\right]^2$$

$$= \frac{\sum_{i=1}^m [h_i(\mathbf{x}) - h_i(\mathbf{x}_0) - \mathbf{D}h_i(\mathbf{x}_0)(\mathbf{x} - \mathbf{x}_0)]^2}{\|\mathbf{x} - \mathbf{x}_0\|^2}$$

29. Utilizar la regla de la cadena y la derivación bajo el signo de integral, en concreto,

$$\frac{d}{dx} \int_{a}^{b} f(x, y) \, dy = \int_{a}^{b} \frac{\partial f}{\partial x}(x, y) \, dy,$$

para demostrar que

$$\frac{d}{dx} \int_0^x f(x,y) \, dy = f(x,x) + \int_0^x \frac{\partial f}{\partial x}(x,y) \, dy.$$

30. ¿Para qué enteros p > 0 es la función

$$f(x) = \begin{cases} x^p \sin(1/x) & x \neq 0 \\ 0 & x = 0 \end{cases}$$

diferenciable? ¿Para qué valores de p es la derivada continua?

- **31.** Supóngase que $f: \mathbb{R}^n \to \mathbb{R}$ y $g: \mathbb{R}^n \to \mathbb{R}^m$ son diferenciables. Demostrar que la función producto $h(\mathbf{x}) = f(\mathbf{x})g(\mathbf{x})$ de \mathbb{R}^n en \mathbb{R}^m es diferenciable y que si \mathbf{x}_0 e \mathbf{y} están en \mathbb{R}^n , entonces $[\mathbf{D}h(\mathbf{x}_0)]\mathbf{y} = f(\mathbf{x}_0)\{[\mathbf{D}g(\mathbf{x}_0)]\mathbf{y}\} + \{[\mathbf{D}f(\mathbf{x}_0)]\mathbf{y}\}g(\mathbf{x}_0)$.
- **32.** Sean $g(u,v)=(e^u,u+\sin v)$ y f(x,y,z)=(xy,yz). Calcular $\mathbf{D}(g\circ f)$ en (0,1,0) utilizando la regla de la cadena.
- **33.** Sean $f: \mathbb{R}^4 \to \mathbb{R}$ y $\mathbf{c}(t): \mathbb{R} \to \mathbb{R}^4$. Suponer que $\nabla f(1, 1, \pi, e^6) = (0, 1, 3, -7)$, $\mathbf{c}(\pi) = (1, 1, \pi, e^6)$, y que $\mathbf{c}'(\pi) = (19, 11, 0, 1)$. Hallar $\frac{d(f \circ \mathbf{c})}{dt}$ cuando $t = \pi$.
- **34.** Supóngase que $f: \mathbb{R}^n \to \mathbb{R}^m$ y que $g: \mathbb{R}^p \to \mathbb{R}^q$.
 - (a) ¿Qué condición deben cumplir los números n, m, p y q para que $f \circ g$ tenga sentido?
 - (b) ¿Qué condición deben cumplir los números n, m, p y q for $g \circ f$ tenga sentido?
 - (c) ¿Cuándo tiene sentido $f \circ f$?
- **35.** Si z = f(x y), utilizar la regla de la cadena para demostrar que $\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 0$.
- **36.** Sean $w = x^2 + y^2 + z^2$, x = uv, $y = u\cos v$, $z = u\sin v$. Utilizar la regla de la cadena para hallar $\frac{\partial w}{\partial u}$ cuando (u, v) = (1, 0).