

education

Department of Education FREE STATE PROVINCE

PREPARATORY EXAMINATION VOORBEREIDENDE EKSAMEN

GRADE/GRAAD 12

MATHEMATICS P1 WISKUNDE V1

SEPTEMBER 2021

MARKS/PUNTE: 150

MARKING GUIDELINES

NASIENRIGLYNE

These marking guidelines consists of 19 pages. Hierdie nasienriglyne bestaan uit 19 bladsye.

NOTE:

- If a candidate answered a question TWICE, mark only the FIRST attempt.
- If a candidate has crossed out an attempt to answer a question and did not redo it, mark the crossed-out version.
- Consistent accuracy applies in ALL aspects of the marking memorandum. Stop marking at the second calculation error.
- Assuming answers/values in order to solve a problem is NOT acceptable.

NOTA:

- As 'n kandidaat 'n vraag TWEE KEER beantwoord, sien slegs die EERSTE poging na.
- As 'n kandidaat 'n antwoord van 'n vraag doodtrek en nie oordoen nie, sien die doodgetrekte poging na.
- Volgehoue akkuraatheid word in ALLE aspekte van die nasienriglyne toegepas. Hou op nasien by die tweede berekeningsfout.
- Om antwoorde/waardes te aanvaar om 'n probleem op te los, word NIE toegelaat NIE.

			1
1.1.1	$\begin{cases} x^2 - 4x - 21 = 0\\ (x - 7)(x + 3) = 0 \end{cases}$	✓ factors	
	(x-7)(x+3) = 0 x = 7 or/of	$\checkmark x = 7$	
	-	$\checkmark x = -3$	
			(3)
1.1.2	$\begin{cases} x(5x-1) = 3 \\ 5x^2 - x - 3 = 0 \end{cases}$		
	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	✓ standard form	
	$x = \frac{-(-1) \pm \sqrt{(-1)^2 - 4(5)(-3)}}{2(5)}$	✓ substitution into correct formula	
	$=\frac{1\pm\sqrt{61}}{10}$		
	10	$\sqrt{x} = 0.88 \sqrt{x} = -0.68$	
	x = 0.88 or/of x = -0.68	x = 0.88 $x = -0.08$	(4)
	OR/OF	OR/OF	
	$5x^2 - x - 3 = 0$	✓ standard form	
	$5x^{2} - x - 3 = 0$ $x^{2} - \frac{1}{5}x + \frac{1}{100} = \frac{3}{5} + \frac{1}{100}$ $\left(x - \frac{1}{10}\right)^{2} = \frac{61}{100}$	2 1 1 3 1	
	$\begin{bmatrix} & 5 & 100 & 5 & 100 \\ & 1 & 1 & 61 \end{bmatrix}$	$\sqrt{x^2 - \frac{1}{5}x + \frac{1}{100}} = \frac{3}{5} + \frac{1}{100}$	
	$\left(\frac{x - \overline{10}}{10} \right) = \frac{1}{100}$		
	$x - \frac{1}{10} = \frac{\pm\sqrt{61}}{10}$		
	$x = \frac{1 \pm \sqrt{61}}{10}$		
	$\begin{vmatrix} x & 10 \\ x = 0.88 & or/of \ x = -0.638 \end{vmatrix}$		
		$\sqrt{x} = 0.88$ $\sqrt{x} = -0.68$:
110	2 2		(4)
1.1.5	$\begin{cases} 2x^2 - 9x + 4 \ge 0 \\ (2x - 1)(x - 4) \ge 0 \end{cases}$	✓ factors	
	$x \le \frac{1}{2}$ or f $x \ge 4$	✓✓ answers (combo marks)	
	2	undivided (tolker and the	(3)
1.1.4	$3^{x+1} - 3^{x-1} - 24 = 0$	√ 2x(2 2-1) 24	
	$3^{x}(3-3^{-1})=24$	$\sqrt{3^x(3-3^{-1})} = 24$	
	$3^{x}\left(\frac{8}{3}\right) = 24$	$\sqrt{3^x \left(\frac{8}{3}\right)} = 24$ $\sqrt{3^x} = 3^2$	
	$3^x = 3^2$	$\sqrt{3^x} = 3^2$	
	$\therefore x=2$	✓ answer	
			(4)

1.2	$y + 2x = 2$ and/en $y^2 - 3yx = -2x^2$		
1.2	y + 2x = 2 and en y = 3yx = -2x $y = 2 - 2x$		
	$\int_{0}^{\infty} y^2 - 3yx = -2x^2$	$\bigvee y = 2 - 2x$	
	$(2-2x)^2 - 3x(2-2x) = -2x^2$	✓ substitution	
	$4 - 8x + 4x^2 - 6x + 6x^2 = -2x^2$:
	$12x^2 - 14x + 4 = 0$		
	$6x^2 - 7x + 2 = 0$		
	(3x-2)(2x-1) = 0	✓ standard form	
	$\therefore x = \frac{2}{3} or / of x = \frac{1}{2}$	✓ both <i>x</i> values	
	$\therefore y = 2 - 2\left(\frac{2}{3}\right) or / of y = 2 - 2\left(\frac{1}{2}\right)$	v both a values	
	$y = \frac{2}{3} \qquad \qquad y = 1$	✓ both y values	(5)
1.3	$(\sqrt[4]{\sqrt{20} - \sqrt{D_x(4x)}})(\sqrt[4]{\sqrt{20} + \sqrt{D_x(4x)}})$		
	$= \left(\sqrt[4]{\sqrt{20} - \sqrt{4}}\right) \left(\sqrt[4]{\sqrt{20} + \sqrt{4}}\right)$	$ \sqrt{\left(\sqrt[4]{\sqrt{20}-\sqrt{4}}\right)\left(\sqrt[4]{\sqrt{20}+\sqrt{4}}\right)} $	
and the feet of th	$= \left(\sqrt[4]{\sqrt{20} - 2}\right) \left(\sqrt[4]{\sqrt{20} + 2}\right)$	$\checkmark \left(\sqrt[4]{\sqrt{20}-2}\right)\left(\sqrt[4]{\sqrt{20}+2}\right)$	
	$=\sqrt[4]{20-4}$	✓ 1 √20 - 4	
:	$=\sqrt[4]{16}$	✓ answer	
	=2	,	4)
		[2:	
		L	

2.1.1	-22; -12; -6; -4; 10 6 2 -2 - 4 - 4 - 4 The next two terms are/die volgende twee terme is -6 and/en - 12	✓ -6 ✓ -10
2.1.2	2a = -4 3(-2) + b = 10 -2 + 16 + c = -22 ∴ $a = -2$ ∴ $b = 16$ ∴ $c = -36$	
	$T_n = -2n^2 + 16n - 36$ Answer only: Full marks/ Slegs antwoord: Volpunte	$\checkmark T_n = -2n^2 + 16n - 36 \tag{4}$
2.1.3	$T_n = -2n^2 + 16n - 36$ $n = -\frac{b}{2a}$	
	$= -\frac{16}{2(-2)}$ Answer only: Full marks/ Slegs antwoord: Volpunte	✓ substitution ✓ answer (2)
	OR/OF	OR/OF
	$T'_{n} = -4n + 16$ 0 = -4n + 16	$\checkmark 0 = -4n + 16$ $\checkmark \text{ answer}$ (2)
2.2.1	$\therefore n = 4$ $d = -6$	
2.2.1		✓ answer (1)
2.2.2	$T_n = 27 - 6(n+1)$ -117 = 27 - 6(n+1) 6n = 138	\checkmark -117 = 27 - 6(n+1)
	∴ n = 23	✓ answer (2)
2.3.1	$5+9+13+$ $S_n = \frac{n}{2} [2a + (n-1)d]$	
	$S_n = \frac{n}{2} [2(5) + (n-1)4]$ $= \frac{n}{2} [10 + 4n - 4]$	✓Substitution into the correct formula
	$S_n = 2n^2 + 3n$	✓ answer (2)

2.3.2	S 22 + 2	
2.3.2	$S_n = 2n^2 + 3n$	
	$\therefore S_{n-6} = 2(n-6)^2 + 3(n-6)$	
	$=2n^2-24n+72+3n-18$	$\checkmark S_{n-6} = 2(n-6)^2 + 3(n-6)$
	$=2n^2 - 21n + 54$	$\checkmark S_{n-6} = 2n^2 - 2\ln + 54$
	OR/OF	(2)
	$S_{n-6} = S_n - 906$	OR/OF
		$\checkmark S_{n-6} = S_n - 906$
	$=2n^2+3n-906$	$\checkmark S_{n-6} = 2n^2 + 3n - 906$
		(2)
2.3.3	$906 = S_n - S_{n-6}$	✓ setting up the equation
	$906 = 2n^2 + 3n - (2n^2 - 21n + 54)$	✓ substitution
	906 = 24n - 54	
	960 = 24n	\checkmark simplification (960 = 24n)
	n = 40	✓ answer
		(4)
		[19]

3.1	$T_n > \frac{3}{16384}$	
	$a.r^{n-1} > \frac{3}{16384}$	
	$3\left(\frac{1}{2}\right)^{n-1} > \frac{3}{16384}$ $\left(\frac{1}{2}\right)^{n-1} > \left(\frac{1}{2}\right)^{14} \text{or/of} 2^{-n+1} > 2^{-14}$ $\therefore n - 1 < 14 \qquad \qquad \therefore -n+1 > -14$ $n < 15 \qquad \qquad n < 15$	 ✓ substituting into the correct formula ✓ method/same base ✓ calculating n
	$\therefore n = 14 \qquad \qquad \therefore n = 14$	✓ answer
	OR/OF	(4)
	$1; 2; 4; \dots \\ ar^{n-1} < 16384$	
	$\begin{vmatrix} 1.2^{n-1} < 16384 \\ 2^{n-1} < 2^{14} \end{vmatrix}$	✓ substituting into the correct formula
	$\therefore n-1 < 14$ $n < 15$	✓ method/2"-1 < 2 ¹⁴
	$\therefore n = 14$	✓ calculating n ✓ answer (4)
3.2	$\sum_{n=1}^{30} 3 \left(\frac{1}{2}\right)^{n-1} = 3 + \frac{3}{2} + \frac{3}{4} + \dots$ $\sum_{k=1}^{\infty} 27 p^k = 27 p + 27 p^2 + 27 p^3 + \dots$	✓ Both expansions
	$\frac{a}{1-r} = \frac{a(1-r^n)}{1-r}$	✓ Substitution into S_{∞} formula
	$\frac{27p}{1-p} = \frac{3\left(1 - \left(\frac{1}{2}\right)^{30}\right)}{1 - \frac{1}{2}}$	✓ Substitution into S_n formula
	$\frac{27p}{1-p} = 6$	✓ simplification: $\frac{27p}{1-p} = 6$
	$27p = 6 - 6p$ $\therefore p = \frac{2}{11}$	✓ answer (5)
		[9]

4.1	Y-intercept/-snypunt: (0;16)	✓ y intercept: (0; 16)
	, ,	(1)
4.2	X-intercept/-snypunt:	
	$0 = -2x^2 - 4x + 16$	$\int \mathbf{v} y = 0$
	$0 = x^2 + 2x - 8$	
	0 = (x+4)(x-2)	
	$\therefore x = -4 or/of x = 2$	✓ both <i>x</i> values
		(2)
4.3	b	✓ method
	$x = -\frac{b}{2a}$	incined
	(-4)	$\checkmark x = -1$
	$x = -\frac{(-4)}{2(-2)} = -1$	
	$f(-1) = -2(-1)^2 - 4(-1) + 16$	
	f(-1) = 18	
	Turning point/draaipunt:(-1; 18)	Touring point (1.10)
	OR/OF	Turning point $:(-1;18)$
		(3)
	$\int f'(x) = 2x + 2$	OR/OF
	0 = 2x + 2	✓ method
	$\therefore x = -1$	
	$f(-1) = -2(-1)^2 - 4(-1) + 16$	$\checkmark x = -1$
	f(-1) = 18	
	Turning point/draaipunt(-1;18)	
		✓
		Turning point $:(-1;18)$
		(3)
4.4	(-1;18) y	
	(1)	
	(0;16)	
		✓ shape
	f/	
		/ word wintencents
		$\checkmark x$ and y intercepts
		✓ turning point
	${\sqrt{(-4;0)}}$ 0 $(2;0)$ \xrightarrow{x}	
	/(-4;0) 0 (2;0)	(3)
,		

4.5	Range/waardeversameling: $y \in (-\infty; 18]$	✓✓ answer
		(2)
	OR/OF	OR/OF
	$y \le 18$	√√ answer
		(2)

r		
5.1	$f(x) = \left(\frac{1}{2}\right)^x$	
	$f(x) = \left(\frac{1}{2}\right)^{x}$ $x = \left(\frac{1}{2}\right)^{y}$	$\checkmark x = \left(\frac{1}{2}\right)^{v}$
		(2) ✓ answer
	$\therefore y = \log_{\frac{1}{2}} x$	(2)
5.2	$x \in R, x > 0$ or/of $x \in (0; \infty)$	✓ answer (1)
5.3		
	$ \begin{array}{c} $	✓ shape and asymptote $x = 0$
		$\checkmark x \text{ intercept}$ (2)
5.4	h(x) = x + 3 $1 = x + 3$	Substitution: $1 = x + 3$
	$\therefore x = -2$	✓ answer:
	B(-2;1)	B(-2;1) (2)
5.5	$g(x) = \frac{a}{x+2} + 1$	✓ substitute
	x+2	p = 2 and $q = 1$
	$0 = \frac{a}{0+2} + 1$	
	$-1=\frac{a}{2}$	\checkmark substitute (0;0)
	$\therefore a = -2$	\checkmark $a = -2$ \checkmark answer:
	$g(x) = \frac{-2}{x+2} + 1$	$g(x) = \frac{-2}{x+2} + 1$
5.6	$k(x) = \frac{-2}{x-1} + 2$	(4) ✓ +2
5.6	$n(x) - \frac{1}{x-1} + 2$	√ -1
5.7.1	$-2 < x \le 0$	(2) ✓ critical values
		✓ notation
		(2)

11

Grade/Graad12 Prep. Exam./Voorb. Eksam. Marking Guidelines/Nasienriglyne

5.7.2	$x \in R; x \neq -2$	✓ ✓ answer	
			(2)
		[17]

6.1	One x value is associated with two y values/Een x-waarde word met twee y-waardes geassosieer. OR/OF	✓ ✓ answerOR/OF✓ ✓ answer	
	Vertical line test cuts the graph twice/Vertikale lyntoets sny die grafiek twee keer.		(2)
6.2	$x \le 0$ or/of $x \ge 0$	$\begin{array}{c c} \checkmark & x \le 0 \\ \checkmark & x \ge 0 \end{array}$	(2)
6.3	$y = \sqrt{\frac{x}{2}}$ $x = \sqrt{\frac{y}{2}}$ $x^2 = \frac{y}{2}$ $y = 2x^2$ $\therefore \frac{dy}{dx} = 4x$	$\checkmark x = \sqrt{\frac{y}{2}}$ $\checkmark y = 2x^2$	
		$\checkmark y = 2x^2$ $\checkmark \frac{dy}{dx} = 4x$	(3) [7]

		· · · · · · · · · · · · · · · · · · ·
7.1	$1 + i_{eff} = \left(1 + \frac{i_{nom}}{n}\right)^n$	(auhatitution into the
	$1 + i_{eff} = \left(1 + \frac{0.12}{2}\right)^2$	✓ substitution into the correct formula ✓ answer
	$\therefore i_{eff} = 12,36\%$	(2)
7.2	$A = P(1 - i)^{n}$ $\frac{P}{2} = P(1 - 0.07)^{n}$ $\frac{1}{2} = (0.93)^{n}$	✓ substitution into the correct formula
	$n = log_{0,93} \frac{1}{2}$	✓ correct use of logs
	n = 9.55 years/jare	00,,000 0110 82
		✓ answer
7.3.1	$A = P(1+i)^n$	(3)
		$i = \frac{0,095}{4}$ and $n = 48$
	$A = R250 \ 000 \left(1 + \frac{0,095}{4}\right)^{48}$	✓ substitution into the correct formula
	A = R771 343,67	✓ answer
	· ·	(3)
7.3.2	Home loan/ $Huislening = R2 920 000 - R771 343,67$ = R2 148 656,33	✓ answer (1)
7.3.3	$i = \frac{0,103}{12}$ and/en $n = 240$ $P = \frac{x[1 - (1+i)^{-n}]}{x}$	$\checkmark i = \frac{0.103}{12} \text{ and } n = 240$
The state of the s	$x \left[1 - \left(1 + \frac{0,103}{12} \right)^{-240} \right]$	✓ substitution into the correct formula
	$\frac{0,103}{1}$	Coffect formula
	$\therefore x = R21 \ 163,87$	✓ answer (3)
	$F = \frac{x\left[\left(1+i\right)^{n}-1\right]}{i}$	OR/OF $ i = \frac{0.103}{12} \text{ and } n = 240 $
	$R2148656,33\left(1+\frac{0,103}{12}\right)^{240} = \frac{x\left[\left(1+\frac{0,103}{12}\right)^{240}-1\right]}{\frac{0,103}{12}}$	✓ substitution into the correct formula
	$\therefore x = R21 \ 163,87$	✓ answer (3)

			[14]
	= R2 930 672,47	the tributer	(2)
7.3.4	Interest/ $Rente = R21 \ 163,87 \times 240$ -R2 148 656,33	✓ method ✓ answer	

8.1	$f(x) = -\frac{3}{x}$	
	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $= \lim_{h \to 0} \frac{-\frac{3}{x+h} - \left(-\frac{3}{x}\right)}{h}$ $= \lim_{h \to 0} \frac{-3x + 3(x+h)}{x(x+h)} \div h$ $= \lim_{h \to 0} \frac{3h}{x^2 + xh} \times \frac{1}{h}$ $= \frac{3}{x^2}$	✓ substitution: $ \frac{3}{x+h} - \left(-\frac{3}{x}\right) $ $ h $ ✓ expression with LCD: $ \lim_{h \to 0} \frac{-3x + 3(x+h)}{x(x+h)} \div h $ ✓ simplify: $ \lim_{h \to 0} \frac{3h}{x^2 + xh} \times \frac{1}{h} $ ✓ answer (4)
8.2.1	$D_x [(3x^3 - 2)^2]$ = $D_x [9x^6 - 12x^3 + 4]$ = $54x^5 - 36x^2$	✓ expansion ✓ $54x^5$ ✓ $-36x^2$ (3)
8.2.2	$y = 2x^{3} - \frac{4}{x} + 4\sqrt[3]{x}$ $y = 2x^{3} - 4x^{-1} + 4x^{\frac{1}{3}}$ $\frac{dy}{dx} = 6x^{2} + 4x^{-2} + \frac{4}{3}x^{-\frac{2}{3}}$	$\checkmark 4x^{\frac{1}{3}}$ $\checkmark 6x^{2}$ $\checkmark + 4x^{-2}$ $\checkmark + \frac{4}{3}x^{-\frac{2}{3}}$
		(4)

8.3	$y = -2x + \frac{4}{3}$ $\therefore m = -2$	
	Gradient of tangent/Gradient van raaklyn: $f'(x) = \frac{1}{2}$ $y = 2(1-x)^2 = 2x^2 - 4x + 2$ $4x - 4 = \frac{1}{2}$	✓ gradient of tangent: $f'(x) = \frac{1}{2}$ $✓ 4x - 4 = \frac{1}{2}$
	$\therefore x = \frac{9}{8}$ $\therefore y = \frac{1}{32}$	✓ x value ✓ coordinates: $\left(\frac{9}{8}; \frac{1}{32}\right)$
	Coordinates/Koördinate: $\left(\frac{9}{8}; \frac{1}{32}\right)$	(4)
		[15]

9.1	$y = a(x-1)^{2}(x-3)$ $6 = a(0-1)^{2}(0-3)$ $6 = -3a$ $a = -2$ $y = -2(x-1)^{2}(x-3)$ $y = -2(x^{2}-2x+1)(x-3)$ $y = -2(x^{3}-5x^{2}+7x-3)$ $y = -2x^{3}+10x^{2}-14x+6$	✓ subst. $x_1 = 1$ and/en $x_2 = 3$ ✓ subst. $A(0;6)$ ✓ $-3a = 6$ ✓ $y = -2(x-1)^2(x-3)$
	∴ $a = -2$; $b = 10$; $c = -14$ and $d = 6$	$y = -2(x^3 - 5x^2 + 7x - 3)$ (5)
9.2	$y = -2x^3 + 10x^2 - 14x + 6$ $f'(x) = -6x^2 + 20x - 14$	$\int f'(x) = -6x^2 + 20x - 14$
	f''(x) = -12x + 20 $0 = -12x + 20$	$\checkmark f''(x) = 0$
	$\therefore x = \frac{20}{12} = \frac{5}{3}$	✓ answer (3)
9.3.1	$f'(x) = -6x^2 + 20x - 14$	
	$0 = -6x^{2} + 20x - 14$ $0 = 3x^{2} - 10x + 7$	$\checkmark f'(x) = 0$
	$0 = (x-1)(3x-7)$ $x = 1 \text{or} x = \frac{7}{3}$	✓ factors ✓ both x values
	$1 < x < \frac{7}{3}$	✓✓ answer (combo mark)
- Printer	Accept/Aanvaar: $1 \le x \le \frac{7}{3}$	(5)
9.3.2	Turning point/ <i>Draaipunt</i> $C\left(\frac{7}{3}; \frac{64}{27}\right)$	$\checkmark C\left(\frac{7}{3}, \frac{64}{27}\right)$
	$\therefore 0 < k < \frac{64}{27}$	√√ answer (combo mark) (3)
		[16]
	<u> </u>	

10.1	Length/Lengte $2BC = 100-3x$	(
	Length/Lengte BC = $\frac{100 - 3x}{2}$	$\checkmark 2BC = 100 - 3x$
	$=50-\frac{3}{2}x$	
	Area/Oppervlakte = AB.BC	
	$A(x) = x\left(50 - \frac{3}{2}x\right)$ $= 50x - \frac{3}{2}x^2$	✓ Substitution in the area
	$-50x - \frac{3}{2}x^2$	formula.
	2	(2)
10.2	A'(x) = 50 - 3x	$\checkmark A'(x) = 50 - 3x$ $\checkmark A'(x) = 0$ $\checkmark x = \frac{50}{3}$
	0 = 50 - 3x	
	50	$\checkmark A'(x) = 0$
	$\therefore x = \frac{50}{3}m$	50
	$AB = \frac{50}{2}m$	$\sqrt{x} = \frac{50}{3}$
	3	(3)
		[5]

	P(female and green eyes)/vrou met groen oë	
11.1.1		✓ answer
	$=\frac{147}{540}=\frac{49}{180}=0,27$	(1)
11.1.2	For independent events/Vir onafhanklike gebeure: P(female and green eyes/vroulik en groen oë) = P(female/vroulik) x P(green eyes/groen oë) P(female and green eyes/vroulik en groen oë) = 0,27 P(female/vrou/lik) x P(green eyes/groen oë) = $\frac{240}{540} \times \frac{330}{540} = \frac{22}{81} = 0,27$ The events are independent, and the learner is correct/Die gebeure is onafhanklik, en die leerder is reg.	✓ rule for independent events ✓ P(female and green eyes) = 0,27 ✓ $\frac{240}{540} \times \frac{330}{540} = \frac{22}{81} = 0,27$ ✓ conclusion (4)
	OR/OF	OR/OF
	For independent events/Vir onafhanklike gebeure: P(male and green eyes/manlik en groen oë) = P(male/manlik) x P(green eyes/groen oë) P(male and green eyes/manlik en groen oë)) $= \frac{183}{540} = \frac{61}{180} = 0,34$ P(male/manlik)) x P(green eyes/groen oë) $= \frac{300}{540} \times \frac{330}{540} = \frac{55}{162} = 0,34$ The events are independent, and the learner is correct/Die gebeure is onafhanklik, en die leerder is reg.	✓ rule for independent events ✓ P(male and green eyes) = 0,34 ✓ = $\frac{300}{540} \times \frac{330}{540} = \frac{55}{162} = 0,34$ ✓ conclusion (4)
11.2	$P(E \text{ and } / \text{ en } F) = P(E) \times P(F)$	
	$\frac{1}{3} = x \times y$ $xy = \frac{1}{3}$	$\checkmark xy = \frac{1}{3}$
	P(E or / of F) = P(E) + P(F) - P(E and / en F) $\frac{9}{10} = x + y - \frac{1}{3}$	$\checkmark \frac{9}{10} = x + y - \frac{1}{3}$
	$\frac{9}{10} = \frac{1}{3y} + y - \frac{1}{3}$	$\sqrt{\frac{9}{10}} = \frac{1}{3y} + y - \frac{1}{3}$
	$27y = 10 + 30y^2 - 10y$ $37y = 30y^2 + 10$	(3)
11.3.1	13! = 6227020800	√√ answer
		(2)

	√	1!	
	✓	604 800	
			(4)
			[14]

TOTAL/TOTAAL: 150