Firewalls

Firewalls

- ☐ Firewall decides what to let in to internal network and/or what to let out
- □ **Access control** for the network

Firewall as Secretary

- ☐ A firewall is like a **secretary**
- ☐ To meet with an executive
 - O First contact the secretary
 - O Secretary decides if meeting is important
 - O So, secretary filters out many requests
- You want to meet chair of CS department?
 - O Secretary does some filtering
- ☐ You want to meet POTUS?
 - O Secretary does lots of filtering

Firewall Terminology

- No standard firewall terminology
- ☐ Types of firewalls
 - O Packet filter works at network layer
 - O Stateful packet filter transport layer
 - O Application proxy application layer
- Lots of other terms often used
 - O E.g., "deep packet inspection"

Packet Filter

- Operates at network layer
- Can filters based on...
 - O Source IP address
 - O Destination IP address
 - O Source Port
 - O Destination Port
 - O Flag bits (SYN, ACK, etc.)
 - O Egress or ingress

Packet Filter

- □ Advantages?
 - O Speed
- Disadvantages?
 - O No concept of state
 - O Cannot see TCP connections
 - O Blind to application data

Packet Filter

- Configured via Access Control Lists (ACLs)
 - O Different meaning than at start of Chapter 8

Action	Source IP	Dest IP	Source Port	Dest Port	Protocol	Flag Bits
Allow	Inside	Outside	Any	80	HTTP	Any
Allow	Outside	Inside	80	> 1023	HTTP	АСК
Deny	All	All	All	All	All	All

- Q: Intention?
- A: Restrict traffic to Web browsing

TCP ACK Scan

- ☐ Attacker scans for open ports thru firewall
 - O Port scanning often first step in network attack
- Attacker sends packet with ACK bit set, without prior 3way handshake
 - O Violates TCP/IP protocol
 - O ACK packet pass thru packet filter firewall
 - O Appears to be part of an ongoing connection
 - O RST sent by recipient of such packet

TCP ACK Scan

- Attacker knows port 1209 open thru firewall
- A stateful packet filter can prevent this
 - O Since scans not part of established connections

Stateful Packet Filter

- Adds state to packet filter
- Operates at transport layer
- Remembers TCP connections, flag bits, etc.
- Can even remember UDP packets (e.g., DNS requests)

Stateful Packet Filter

- Advantages?
 - O Can do everything a packet filter can do plus...
 - O Keep track of ongoing connections (e.g., prevents TCP ACK scan)
- Disadvantages?
 - O Cannot see application data
 - O Slower than packet filtering

Application Proxy

- A proxy is something that acts on your behalf
- Application proxy looks at incoming application data
- Verifies that data is safe before letting it in

Application Proxy

- Advantages?
 - Ocomplete view of connections and applications data
 - O Filter bad data at application layer (viruses, Word macros)
- Disadvantages?
 - O Speed

Application Proxy

- Creates a new packet before sending it thru to internal network
- Attacker must talk to proxy and convince it to forward message
- Proxy has complete view of connection
- Can prevent some scans stateful packet filter cannot next slides

Firewalk

- ☐ Tool to scan for open ports thru firewall
- Attacker knows IP address of firewall and IP address of one system inside firewall
 - $^{\rm O}$ Set TTL to 1 more than number of hops to firewall, and set destination port to N
- If firewall allows data on port N thru firewall, get **time exceeded** error message
 - Otherwise, no response

Firewalk and Proxy Firewall

- ☐ This will **not** work thru an application proxy (why?)
- The proxy creates a new packet, destroys old TTL

Deep Packet Inspection

- ☐ Many buzzwords used for firewalls
 - One example: deep packet inspection
- What could this mean?
- Look into packets, but don't really "process" the packets
 - O Like an application proxy, but faster

Firewalls and Defense in Depth

☐ Typical network security architecture

Intrusion Detection Systems

Intrusion Prevention

- Want to keep bad guys out
- ☐ Intrusion prevention is a traditional focus of computer security
 - O Authentication is to prevent intrusions
 - O Firewalls a form of intrusion prevention
 - O Virus defenses aimed at intrusion prevention
 - O Like locking the door on your car

Intrusion Detection

- In spite of intrusion prevention, bad guys will sometime get in
- ☐ Intrusion detection systems (IDS)
 - O Detect attacks in progress (or soon after)
 - O Look for unusual or suspicious activity
- ☐ IDS evolved from log file analysis
- ☐ IDS is currently a **hot** research topic
- ☐ How to respond when intrusion detected?
 - O We don't deal with this topic here...

Intrusion Detection Systems

- Who is likely intruder?
 - O May be outsider who got thru firewall
 - ⁰ May be evil insider
- What do intruders do?
 - O Launch well-known attacks
 - O Launch variations on well-known attacks
 - O Launch new/little-known attacks
 - O "Borrow" system resources
 - O Use compromised system to attack others. etc.

IDS

- ☐ Intrusion detection approaches
 - O Signature-based IDS
 - O Anomaly-based IDS
- ☐ Intrusion detection architectures
 - O Host-based IDS
 - Network-based IDS
- Any IDS can be classified as above
 - O In spite of marketing claims to the contrary!

Host-Based IDS

- Monitor activities on hosts for
 - ⁰ Known attacks
 - O Suspicious behavior
- Designed to detect attacks such as
 - ⁰ Buffer overflow
 - O Escalation of privilege, ...
- Little or no view of network activities

Network-Based IDS

- ☐ Monitor activity on the network for...
 - ⁰ Known attacks
 - O Suspicious network activity
- Designed to detect attacks such as
 - O Denial of service
 - Network probes
 - ⁰ Malformed packets, etc.
- Some overlap with firewall
- Little or no view of host-base attacks
- Can have both host and network IDS

Signature Detection Example

- Failed login attempts may indicate password cracking attack
- □ IDS could use the rule "N failed login attempts in M seconds" as signature
- If N or more failed login attempts in M seconds, IDS warns of attack
- Note that such a warning is specific
 - O Admin knows what attack is suspected
 - O Easy to verify attack (or false alarm)

Signature Detection

- □ Suppose IDS warns whenever N or more failed logins in M seconds
 - O Set N and M so false alarms not common
 - O Can do this based on "normal" behavior
- □ But, if Trudy knows the signature, she can try N **■**1 logins every M seconds...
- Then signature detection slows down Trudy, but might not stop her

Signature Detection

- Many techniques used to make signature detection more robust
- Goal is to detect "almost" signatures
- For example, if "about" N login attempts in "about" M seconds
 - ⁰ Warn of possible password cracking attempt
 - O What are reasonable values for "about"?
 - O Can use statistical analysis, heuristics, etc.
 - O Must not increase false alarm rate too much

Signature Detection

- Advantages of signature detection
 - O Simple
 - O Detect known attacks
 - O Know which attack at time of detection
 - O Efficient (if reasonable number of signatures)
- Disadvantages of signature detection
 - O Signature files must be kept up to date
 - ⁰ Number of signatures may become large
 - O Can only detect known attacks
 - O Variation on known attack may not be detected

Anomaly Detection

- Anomaly detection systems look for unusual or abnormal behavior
- ☐ There are (at least) two challenges
 - What is normal for this system?
 - O How "far" from normal is abnormal?
- No avoiding statistics here!
 - 0 mean defines normal
 - O variance gives distance from normal to abnormal

How to Measure Normal?

- ☐ How to measure normal?
 - O Must measure during "representative" behavior
 - O Must not measure during an attack...
 - o ... or else attack will seem normal!
 - O Normal is statistical mean
 - O Must also compute variance to have any reasonable idea of abnormal

How to Measure Abnormal?

- ☐ Abnormal is relative to some "normal"
 - O Abnormal indicates possible attack
- Statistical discrimination techniques include
 - ⁰ Bayesian statistics
 - O Linear discriminant analysis (LDA)
 - O Quadratic discriminant analysis (QDA)
 - O Neural nets, hidden Markov models (HMMs), etc.
- Fancy modeling techniques also used
 - ⁰ Artificial intelligence
 - O Artificial immune system principles
 - ⁰ Many, many, many others

- □ *Spse* we monitor use of three commands: open, read, close
- Under normal use we observe Alice: open, read, close, open, open, read, close, ...
- Of the six possible ordered pairs, we see four pairs are normal for Alice,
 - (open,read), (read,close), (close,open), (open,open)
- Can we use this to identify unusual activity?

- We monitor use of the three commands open, read, close
- ☐ If the ratio of abnormal to normal pairs is "too high", warn of possible attack
- Could improve this approach by
 - O Also use expected frequency of each pair
 - O Use more than two consecutive commands
 - O Include more commands/behavior in the model
 - More sophisticated statistical discrimination

Over time, Alice has accessed file F_n at rate H_n

Recently,	"Alice" has
accessed F	n at rate A n

H _o	H ₁	H_2	H_3
.10	.40	.40	.10

A_0	A_1	A_2	A_3
.10	.40	.30	.20

- ☐ Is this normal use for Alice?
- We compute $S = (H_0 A_0)^2 + (H_1 A_1)^2 + ... + (H_3 A_3)^2 = .02$
 - $^{\circ}$ We consider S < 0.1 to be normal, so this is normal
- How to account for use that varies over time?

- To allow "normal" to adapt to new use, we update averages: $H_n = 0.2A_n + 0.8H_n$
- ☐ And we now have

H _o	H ₁	H ₂	H_3
.10	.40	.38	.12

The updated long term average is

H _o	H ₁	H_2	H_3
.10	.40	.38	.12

Suppose new observed rates...

A_0	A_1	A_2	A_3
.10	.30	.30	.30

- ☐ Is this normal use?
- Compute $S = (H_0 A_0)^2 + ... + (H_3 A_3)^2 = .0488$
 - O Since S = .0488 < 0.1 we consider this normal
- \square And we again update the long term averages:

$$H_n = 0.2A_n + 0.8H_n$$

☐ The starting averages were:

After 2 iterations,
averages are:

H _o	H ₁	H_2	H_3
.10	.40	.40	.10

H _o	H ₁	H ₂	H ₃
.10	.38	.36	.15
.10		4	6

- Statistics slowly evolve to match behavior
- ☐ This reduces false alarms for SA
- But also opens an avenue for attack...
 - O Suppose Trudy always wants to access F_3
 - O Can she convince IDS this is normal for Alice?

- ☐ To make this approach more robust, must incorporate the variance
- □ Can also combine N stats S_i as, say,

$$T = (S_1 + S_2 + S_3 + ... + S_N) / N$$

to obtain a more complete view of "normal"

- Similar (but more sophisticated) approach is used in an IDS known as NIDES
- □ NIDES combines anomaly & signature IDS

Anomaly Detection Issues

- □ Systems constantly evolve and so must IDS
 - O Static system would place huge burden on admin
 - O But evolving IDS makes it possible for attacker to (slowly) convince IDS that an attack is normal
 - O Attacker may win simply by "going slow"
- ☐ What does "abnormal" really mean?
 - O Indicates there may be an attack
 - O Might not be any specific info about "attack"
 - O How to respond to such vague information?
 - O In contrast, signature detection is very specific

Anomaly Detection

- Advantages?
 - O Chance of detecting unknown attacks
- Disadvantages?
 - O Cannot use anomaly detection alone...
 - 0 ...must be used with signature detection
 - O Reliability is unclear
 - O May be subject to attack
 - O Anomaly detection indicates "something unusual", but lacks specific info on possible attack

Anomaly Detection: The Bottom Line

- Anomaly-based IDS is active research topic
- Many security experts have high hopes for its ultimate success
- Often cited as key future security technology
- Hackers are not convinced!
 - O Title of a talk at Defcon: "Why Anomaly-based IDS is an Attacker's Best Friend"
- Anomaly detection is difficult and tricky
- As hard as AI?