Data Structures

Lecture 15 **Graph Basics**

Graph - A superset of Trees

→ V := Set of vertices (nodes)

→ E := Set of edges

Graph - A superset of Trees

Undirected Graph

 $V = {A, B, C, D, E, F}$

E = { {A,E}, {A,C}, {A,F}, {B,C}, {B,D}, {B,E}, {C,F}, {D,F} }

Directed Graph

 $V = {A, B, C, D, E, F}$

E = { {A,B}, {B,C}, {C,E}, {D,B}, {E,D}, {E,F} }

Unweighted Graph

Weighted Graph

Edges: Basic unit connecting vertices

Adjacent Vertices: Vertices sharing an edge

$$Adj(A) = \{E, C, F\}$$

Adjacent Vertices: Vertices sharing an edge

$$Adj(A) = \{B\}$$

$$Adj(B) = \{C\}$$

$$Adj(E) = \{D, F\}$$

Outgoing Edges: directed edges starting from a vertex

Incoming Edges: directed edges reaching a vertex

Degree: Total number of edges connected to a vertex

$$deg(B) = 3$$

$$deg(C) = 3$$

$$deg(D) = 2$$

$$deg(E) = 2$$

$$deg(F) = 3$$

In Degree: total number of incoming edges to a vertex

Indeg(A) = 0

Indeg(B) = 2

Indeg(C) = 1

Out Degree: total number of outgoing edges from a vertex

Outdeg(A) = 1

Outdeg(E) = 2

Outdeg(F) = 0

Degree: Indegree + Outdegree

$$deg(A) = 1$$

$$deg(E) = 3$$

$$deg(F) = 1$$

Source Vertex: A vertex with in-degree zero

Sink Vertex: A vertex with out-degree zero

Parallel Edges: Multiple edges between the same pair of vertices

Self Loop: Edge between a vertex and itself

Path: sequence of vertices where each adjacent pair is connected by an edge

Path(A, F) A → B → C → E → F

Path(D, A)
No path

Cycle: closed path where the first and last vertices are the same

$$B \rightarrow C \rightarrow E \rightarrow D \rightarrow B$$

Connected Graph: Has a path between every pair of vertices

Connected Graph: Has a path between every pair of vertices

Sparse Graph: number of edges is considerably less than the maximum number of edges

Dense Graph: number of edges is close to the maximum number of edges

Graph - Representation - Adjacency List

Graph - Representation - Adjacency Matrix

	1	2	3	4	5
1	0	1	0	1	0
2	1	0	1	1	0
3	0	1	0	0	1
4	1	1	0	0	1
5	0	0	1	1	0

Graph - Representation - Adjacency List

Graph - Representation - Adjacency Matrix

	1	2	3	4	5
1	0	1	0	0	0
2	0	0	0	1	0
3	1	1	0	0	0
4	`1	0	0	0	1
5	0	0	1	0	0

What to do for Weighted Graph's Adjacency List Representation?

Store Tuples like <Vertice, Weight> Instead of only Vertice

What to do for Weighted Graph's Adjacency List Representation?

Create an Edge Class with all the necessary attributes and use them as the nodes of the linked list.

What to do for Weighted Graph's Adjacency List Representation?

Create an Edge Class with all the necessary attributes and use them as the nodes of the linked list.

```
Class Edge {
    int ep1
    int ep2
    Int weight
}
```

What to do for Weighted Graph's Adjacency Matrix Representation?

Store Weight in the Matrix Entry Instead of 0 or 1