A APPENDIX

Infinite horizon discounted LQR. Given a deterministic discretetime linear system as in (6) and a quadratic γ -discounted cost function (1), the optimal policy is (see e.g., [4, Chapter 4.3])

$$\pi^{\star}(x) = K^{\star}(x - x^{\star}), \quad K^{\star} = -\gamma (R_{Y} + \gamma B^{\top} P B)^{-1} B^{\top} P A, \quad (12)$$

where K^* is the discounted optimal gain and P is the unique positive solution of the discounted Discrete-time Algebraic Riccati Equation (DARE)

$$P = Q_Y + \gamma A^{\top} (P - \gamma P B (R_Y + \gamma B^{\top} P B)^{-1} B^{\top} P) A. \tag{13}$$

From [6, Section 3], the value functions for the discounted LQR problem under the optimal controller are

$$\mathbf{J}^{\star}(x) = x^{\top} P x, \qquad \mathbf{Q}^{\star}(x, u) = z^{\top} H z, \tag{14}$$

with $z := \operatorname{col}(x, u) \in \mathbb{R}^{n+m}$ and H given by

$$H = \begin{pmatrix} Q_{\gamma} + \gamma A^{\top} P A & \gamma A^{\top} P B \\ \gamma B^{\top} P A & R_{\gamma} + \gamma B^{\top} P B \end{pmatrix}.$$

Table 4: Pendulum swing-up environment parameters

Parameters	Training	Corrupted		
pole mass m	1	1.2		
pole length l	1	1		
gravity acceleration g	9.81	9.81		
episode max length T	200	1000		
input bounds	[-2,2]	[-2,2]		
noise w	0	$w \sim \mathcal{N}(0, 0.1)$		
disturbance d	0	$0.2\sin(\frac{2\pi}{100}t)$		
steady-state threshold to	_	500		

Table 6: Inverted pendulum swing-up environment parameters

Parameters	Training	Corrupted			
cart mass m _c	10.47	10.47			
pole mass m_p	5	6.53			
pole length l_p	0.6	0.8			
rail bounds l_r	[-1,1]	[-1,1]			
episode max length T	1000	1000			
input bounds	[-100,100]	[-100,100]			
noise w	0	$w \sim \mathcal{N}(0, 0.173)$			
disturbance d	0	$20\sin(\frac{2\pi}{50}t)$			
steady-state threshold t_0	-	500			

Table 7: Double inverted pendulum swing-up environment parameters

Parameters	Training	Corrupted			
cart mass m _c	10	10			
first pole mass m_{p1}	1	1			
second pole mass m_{p2}	1	1.2			
first pole length l_{p1}	0.6	0.6			
second pole length l_{p2}	0.6	0.7			
rail bounds l_r	[-2,2]	[-2,2]			
episode max length T	1000	2000			
input bounds	[-200,200]	[-200,200]			
noise w	0	$w \sim \mathcal{N}(0, 0.173)$			
disturbance d	0	$20\sin(\frac{2\pi}{100}t)$			
steady-state threshold t_0	-	1500			

Table 5: Hyperparameters. Ir: learning rate, af: activation function, NN: hidden layer sizes

	PSU			IPSU		DIPSU			
	lr	af	NN	lr	af	NN	lr	af	NN
DDPG	0.001	ReLU	400,300	0.001	ReLU	400,300	0.0001	ReLU	400,300
LAS-DDPG	0.001	ReLU	400,300	0.001	ReLU	400,300	0.0001	Tanh	400,300
PPO	0.003	Tanh	64,64	0.00025	Tanh	256,256	0.0001	Tanh	64,64
LAS-PPO	0.003	Tanh	64,64	0.00025	Tanh	256,256	0.0001	Tanh	64,64
TD3	0.001	ReLU	400,300	0.001	ReLU	400,300	0.0006	ReLU	400,300
LAS-TD3	0.001	ReLU	400,300	0.001	ReLU	400,300	0.0002	Tanh	256,256
SAC	0.001	ReLU	256,256	0.001	ReLU	256,256	0.001	ReLU	256,256
LAS-SAC	0.001	ReLU	256,256	0.001	ReLU	256,256	0.0001	Tanh	256,256