Subject: Digital Logic

Minimization

DPP-02

1. For the given Boolean function f(A, B, C) =

$$\sum_{m} (0,1,5,6)$$

Simplified output will be

- (a) $A\overline{B} + B\overline{C} + AB\overline{C}$
- (b) $\overline{A}\overline{B} + \overline{B}\overline{C} + AB\overline{C}$
- (c) $A\overline{B} + \overline{B}\overline{C} + \overline{A}\overline{B}C$
- (d) $\overline{A}\overline{B} + \overline{B}\overline{C} + AB\overline{C}$
- 2. For the given Boolean function $f(A, B, C) = \sum_{x \in A} f(x, x)$

 $\sum_{m} (1,3,6,7) + \sum_{m} d(0,2)$ simplified output will be

- (a) A + B
- (b) B + C
- (c) $\bar{A} + B$
- (d) $\bar{A}C + AB$
- 3. What is the other canonical form of the given function

f (A, B, C) =
$$\sum_{m}$$
 (0,1,2,3,4,5,6,7)

- (a) $f(A,B,C) = \Pi_M(0,1,2,3,4,5,6,7)$
- (b) $f(A, B, C) = \Pi_M(0, 2, 4, 7)$
- (c) $f(A,B,C) = \Pi_M(1,2,4,7)$
- (d) Does not exist
- **4.** The product of all the maxterms of a givne Boolean function is always equal to ______?
 - (a) 0
 - (b) 1
 - (c) 2
 - (d) Complement of the function

5. The simplified SOP form of the k-map is

wx yz	z 00	01	11	10
00	1	1	x	1
01	0	0	0	0
11	0	0	0	0
4	1			1
10	1	Х	X	1

- (a) $\overline{x}\overline{z} + \overline{w}\overline{x}\overline{y}$
- (b) \overline{x}
- (c) $\overline{w} \overline{x} + w x$
- (d) $\overline{x} \overline{z}$
- **6.** The Boolean function f(A, B, C, D) =

 \sum_{m} (5,7,9,11,13,15) is independent of variables

- (a) A
- (b) C
- (c) B
- (d) B and C
- 7. The simplified Boolean function is

AB	C 00	01	11	10
0	1	0	1	0
1	0	1	0	1

- (a) $A \oplus B \oplus C$
- $(b) \quad A \oplus B \odot C$
- $(c) \quad A \odot B \odot C$
- (d) $A \odot B \oplus C$

- The simplified Boolean expression f(w, x, y, z) = $\sum\nolimits_{m}\! \left(0,2,5,9,15\right) \! + \! \sum\nolimits_{d}\! \left(6,7,8,10,12,13\right)$
 - (a) $\overline{x}\overline{z} + w\overline{y} + xz$ (b) $\overline{x}\overline{z} + w\overline{y} + x\overline{z}$

 - (c) $x \overline{z} + w \overline{y} + \overline{x} z$ (d) $\overline{x} \overline{z} + \overline{w} \overline{y} + x z$
- The minimum number of NAND gate required to simplify k-map

A	C 00	01	11	10
0	1	1	0	0
1	0	0	1	1

- (a) 4
- (b) 5
- (b) 3
- (d) 9

10. The simplified expression of k-map is independent of variables

ABO	00	01	11	10
0	1	1	1	1
1	1	1	1	1

- (a) A
- (b) B
- (c) C
- (d) A, B and C

Answer Key

- 1. (b)
- 2. (c)
- 3. (d)
- **4.** (a)
- 5. (b)
- 6. (b)

- 7. (b, d)
- 8. (a)
- 9. (b)
- **10.** (d)

Hints and Solutions

1. (b)

Given:
$$f(A, B, C) = \sum_{m} (0,1,5,6)$$

3 variable k-map

The simplified output expression f(A, B, C) =

$$\bar{A}\bar{B} + \bar{B}C + AB\bar{C}$$

2. (c)

Given:
$$f(A, B, C) = \sum_{m} (1,3,6,7) + \sum_{d} (0,2)$$

3-variable k-map

$$\therefore$$
 $(A,B,C) = \overline{A} + B$

3. (d)

Given:
$$f(A,B,C) = \sum_{m} (0,1,2,3,4,5,6,7)$$

In these functions are min terms are covering.

The relation between min terms and max terms is

$$x_j = \overline{x}_j$$

: Hence max term does not exist

4. (a)

The product of all the max terms is always zero.

5. **(b)**

Given: k-map

yz					
wx	00	01	11	10	
00	1	1	х	1	
01	0	0	0	0	
11	0	0	0	0	
10	1	Х	Х	1	

$$f(w,x,y,z) = \overline{x}$$

6. (b)

k-map of 4-variables

$\setminus C$	D			
AB	00	01	11	10
00	0	0	0	0
01	0	1	1	0
11	0	1	1	0
10	0	1	1	0

$$f(A, B, C, D) = BD + AD$$

 \therefore function is independent of C.

7. (b, d)

A^{B}	C 00	01	11	10
0	1	0	1	0
1	0	1	0	1

$$f(A,B,C) = \overline{A}\overline{B}\overline{C} + \overline{A}BC + A\overline{B}C + AB\overline{C}$$

$$f(A,B,C) = \overline{A}(B \odot C) + A(B \oplus C)$$

$$f(A,B,C) = \overline{A}(\overline{B \odot C}) + A(B \oplus C)$$

$$f(A,B,C) = \overline{A}(B \odot C) + A(\overline{B \oplus C})$$

$$f(A,B,C) = A \oplus B \odot C \text{ or } A \odot B \oplus C$$

8. (a)

$$f(w,x,y,z) = \overline{x} \overline{z} + w \overline{y} + xz$$

9. (b)

ABO	00	01	11	10
0	1	1	0	0
1	0	0	1	1

$$f(A,B,C) = \overline{A}\overline{B} + AB$$

$$f(A,B,C)=A\odot B$$

Hence 5 NAND gate required

10. (d)

ABO	00	01	11	10	
0	1	1	1	1	
1	1	1	1	1	

$$f(A, B, C) = 1$$

Hence independent of A, B and C.

Any issue with DPP, please report by clicking here: https://forms.gle/t2SzQVvQcs638c4r5
For more questions, kindly visit the library section: Link for web: https://smart.link/sdfez8ejd80if