TEMPLATE FOR THE UMB MASTERS THESIS

A Thesis Presented by Student Name

Submitted to the Office of Graduate Studies, University of Massachusetts Boston, in partial fulfillment of the requirements for the degree of

Master of Science

December 2013

Computer Science Program

© 2013 by Student Name All rights reserved

TEMPLATE FOR THE UMB MASTERS THESIS

A Thesis Presented by Student Name

Approved as to styl	e and content by:	
First Last, Assistan Chairperson of Con		
First Last, Professo Member	r	
First Last, Assistan Member	t Professor	
	First Last, Program Director Computer Science Program	
	First Last, Chairperson Computer Science Department	

ABSTRACT

TEMPLATE FOR THE UMB MASTERS THESIS

December 2013

Student Name, B.S., University of Massachusetts Boston M.S., University of Massachusetts Boston

Directed by Assistant Professor First Last

The abstract is written here

TABLE OF CONTENTS

1	INTRODUC	CTION	-
	1.0.1	Here is a subsection	-
2	ANOTHER	CHAPTER	4
	2.0.2	Some method	4
3	TABLES		

LIST OF TABLES

3.1	The complexity	of the	algorithms	presented.		•	•				•	,	3

LIST OF FIGURES

1.1 A description of the figure	2	1
---------------------------------	---	---

CHAPTER 1

INTRODUCTION

This is a sample chapter and here is a citation! [?].

Now a list!

- An item in the list
- Another item!

1.0.1 Here is a subsection

Lets talk about Figure 1.1. It's shown somewhere in this paper and it will appear on the list of figures. We can also talk about Subfigure 1.1(a)

Figure 1.1: A description of the figure

CHAPTER 2

ANOTHER CHAPTER

We can also do some math!

$$fitness = F1 = \frac{2}{\frac{1}{recall} + \frac{1}{precision}}$$

And then talk about it in line: $precision = \frac{true positives}{true positives + false positives}$

2.0.2 Some method

There is a method presented in Algorithm 2.0.1, it is identified by reference.

Algorithm 2.0.1: Perform Random Crossover $v \bigotimes u$

Input: v: Feature Subset Vector

u: Feature Subset Vector

Output: z : Feature Subset Vector

1 for $0 \le i < number of possible features do$

if
$$0.5 < Random(0,1)$$
 then

$$\mathbf{3} \qquad \qquad z[i] \leftarrow v[i]$$

4 else

CHAPTER 3

TABLES

Lets make a table that will show up on the list of tables. Shown in Table 3.1

Method	Complexity
GRS	$O(ic\Gamma)$
WRS	$O(ic\Gamma^2)$
WRSAS	$O(ic\Gamma^2)$
SCCS	$O(i'rc\Gamma^2)$

Table 3.1: The complexity of the algorithms presented.

Acknowledgment

This research was supported in part by \dots