Intro to Dynamics

Dynamics Techniques

Euler-Lagrange

- Energy Based
- Derived from D'Alembert's Principle Virtual Work

Newton-Euler

- Based on Newtonian Mechanics
 - Every action has an equal and opposite reaction.
 - Rate of change of the linear momentum = force
 - Rate of change of the angular momentum = torque

Particle Dynamics

Particle Dynamics

Draw FBD:

F_{ext} = External force, up direction

 $F_g = m^*g = gravitational force$

$$m\ddot{y} = f - mg$$

$$\ddot{y} = \frac{1}{m}f - g$$

Kinetic Energy:

$$K = \frac{1}{2}m\dot{y}^2$$

Write 'm*a' in terms of Kinetic Energy:

$$m\ddot{y} = \frac{d}{dt}(m\dot{y}) = \frac{d}{dt}\frac{\partial}{\partial \dot{y}}\left(\frac{1}{2}m\dot{y}^2\right) = \frac{d}{dt}\frac{\partial K}{\partial \dot{y}}$$

Write 'm*g' in terms of Potential Energy:

Potential Energy:

$$P = mgy$$

Write 'm*g' in terms of Potential Energy:

$$mg = \frac{\partial P}{\partial y}$$

Dynamics Techniques

Euler-Lagrange

- Energy Based
- Derived from D'Alembert's Principle Virtual Work

Newton-Euler

- Based on Newtonian Mechanics
 - Every action has an equal and opposite reaction.
 - Rate of change of the linear momentum = force
 - Rate of change of the angular momentum = torque

K & P terms:

$$m\ddot{y} = \frac{d}{dt} \frac{\partial K}{\partial \dot{y}} \qquad mg = \frac{\partial P}{\partial y}$$
Combining K & P:
$$f = \frac{d}{dt} \frac{\partial K}{\partial \dot{y}} + \frac{\partial P}{\partial y}$$

Define the Lagrangian:

$$L = K - P$$

Euler-Lagrange Equation

One mass example:

Euler-Lagrange Equation

$$\frac{d}{dt} \frac{\partial L}{\partial \dot{y}} - \frac{\partial L}{\partial y} = f$$

For the one mass example:

$$L = K - P = \frac{1}{2}m\dot{y}^2 - mgy$$

$$f = \frac{d}{dt}\frac{\partial\left(\frac{1}{2}m\dot{y}^2 - mgy\right)}{\partial\dot{y}} - \frac{\partial\left(\frac{1}{2}m\dot{y}^2 - mgy\right)}{\partial y}$$

$$= \frac{d}{dt}(m\dot{y}) + mg$$

$$= m\ddot{y} + mg$$

Using Newton's 2nd Law (Rotational form):

Using Newton's 2nd Law (Rotational form):

$$lpha = \frac{\tau}{I}$$
 $I = m_1 l_1^2$
 $\alpha = \ddot{\theta}_1$
 $\tau = \text{External Torque}$

$$\ddot{\theta}_1 = \frac{1}{m_1 l_1^2} \tau_1$$

$$\ddot{ heta}_1 = \frac{ au_1}{m_1 l_1^2}$$

$$au = u_{motor} + au_{disturbance}$$

$$Y_{J:u} = Y_{g/n} + Y_{fic}$$

$$= -m_1 g I_1 (_1 - B, \dot{\theta}, \dot{\theta},$$

$$\ddot{\theta_1} = \frac{\tau_1}{m_1 l_1^2}$$

$$\tau = u_{motor} + \tau_{disturbance}$$

$$\tau_{\rm dist} = \tau_{\rm gravity} + \tau_{\rm friction}$$

$$\tau_{dist} = -m_1 g l_1 \cos(\theta_1) - B_1 \dot{\theta}_1$$

Eqn. of motion:

$$\ddot{\theta}_{1} = \frac{1}{m_{1}l_{1}^{2}} \left(u - m_{1}gl_{1}\cos(\theta_{1}) - B_{1}\dot{\theta}_{1} \right)$$

Example Moments of Inertia

Object	Axis of Rotation		Moment of Inertia	
Solid Disk	Central axis of disk	R	$\frac{1}{2}MR^2$	
Thin Rod	Axis through mid point		$\frac{1}{12}ML^2$	
Thin Rod	Axis at one end	L	$\frac{1}{3}ML^2$	
		J	See table	on myW

Example Moments of Inertia

1-Link Arm Kinematics

$$x_1 = l_1 \cos(\theta_1)$$
$$y_1 = l_1 \sin(\theta_1)$$

$$\dot{x}_1 = (-l_1 \sin(\theta_1))\dot{\theta}_1$$
$$\dot{y}_1 = (l_1 \cos(\theta_1))\dot{\theta}_1$$

$$\dot{\vec{x}}_1 = \begin{bmatrix} \dot{x}_1 \\ \dot{y}_1 \end{bmatrix} = \begin{bmatrix} -l_1 \dot{\theta}_1 \sin(\theta_1) \\ l_1 \dot{\theta}_1 \cos(\theta_1) \end{bmatrix}$$

$$V_{1}^{2} = \overset{\cdot}{X}_{1} \cdot \overset{\cdot}{X}_{1}^{2}$$

$$= \overset{\cdot}{X}_{1}^{2} \cdot \overset{\cdot}{X}_{1}^{2}$$

$$= \overset{\cdot}{X}_{1}^{2} \cdot \overset{\cdot}{Q}_{1}^{2}$$

$$\dot{\vec{x}}_1 = \begin{bmatrix} \dot{x}_1 \\ \dot{y}_1 \end{bmatrix} = \begin{bmatrix} -l_1 \dot{\theta}_1 \sin(\theta_1) \\ l_1 \dot{\theta}_1 \cos(\theta_1) \end{bmatrix}$$

$$v_1^2 = \dot{\vec{x}}_1 \bullet \dot{\vec{x}}_1$$
 Dot Product
 $= \dot{x}_1^2 + \dot{y}_1^2$
 $= \dots$
 $= l_1^2 \dot{\theta}_1^2$

Link 1 Energy Equations:

$$K_{Rot} = \frac{1}{2}I\omega^2$$

$$K_1 = \frac{1}{2} m_1 l_1^2 \dot{\theta}_1^2$$

$$P_1 = m_1 g l_1 \sin(\theta_1)$$

1-Link Arm Lagrangian

$$L = K_1 - P_1$$

$$K_1 = \frac{1}{2} m_1 l_1^2 \dot{\theta}_1^2$$

$$P_1 = m_1 g l_1 \sin(\theta_1)$$

1-Link Arm Lagrangian

$$L = K_1 - P_1$$

$$K_1 = \frac{1}{2} m_1 l_1^2 \dot{\theta}_1^2$$

$$P_1 = m_1 g l_1 \sin(\theta_1)$$

$$L = \frac{1}{2} m_1 l_1^2 \dot{\theta}_1^2 - m_1 g l_1 \sin(\theta_1)$$

Lagrange's Equation

Scalar Form:

$$\tau = \frac{d}{dt} \frac{\partial L}{\partial \dot{\theta}} - \frac{\partial L}{\partial \theta}$$

Lagrange's Equation Link 1 Components

$$L = \frac{1}{2} m_1 l_1^2 \dot{\theta}_1^2 - m_1 g l_1 \sin(\theta_1)$$

JL.

Typical 3 steps

Lagrange's Equation Link 1 Components

$$L = \frac{1}{2} m_1 l_1^2 \dot{\theta}_1^2 - m_1 g l_1 \sin(\theta_1)$$

$$\frac{2L}{3\dot{\theta}_1} = m_1 l_1^3 \dot{\theta}_1$$

Lagrange's Equation Link 1 Components

$$L = \frac{1}{2} m_1 l_1^2 \dot{\theta}_1^2 - m_1 g l_1 \sin(\theta_1)$$

$$\frac{\partial L}{\partial \dot{\theta}_1} = m_1 l_1^2 \dot{\theta}_1$$

$$\frac{d}{dt} \frac{\partial L}{\partial \dot{\theta}_1} = m_1 l_1^2 \ddot{\theta}_1$$

$$\frac{\partial L}{\partial \theta_1} = -m_1 g l_1 \cos(\theta_1)$$

$$\tau_1 = \frac{d}{dt} \frac{\partial L}{\partial \dot{\theta}_1} - \frac{\partial L}{\partial \theta_1}$$

$$\tau_1 = \frac{d}{dt} \frac{\partial L}{\partial \dot{\theta}_1} - \frac{\partial L}{\partial \theta_1}$$

Plug in:

$$\tau_1 = m_1 l_1^2 \ddot{\theta}_1 + m_1 g l_1 \cos(\theta_1)$$

$$\tau_1 = m_1 l_1^2 \ddot{\theta}_1 + m_1 g l_1 \cos(\theta_1)$$

Solve for equation of motion:

$$\tau_1 = m_1 l_1^2 \ddot{\theta}_1 + m_1 g l_1 \cos(\theta_1)$$

Solve for equation of motion:

$$\ddot{\theta}_{1} = \frac{1}{m_{1}l_{1}^{2}} \left[\tau_{1} - m_{1}gl_{1}\cos(\theta_{1}) \right]$$

$$\tau_{1} = m_{1}l_{1}^{2}\dot{\theta}_{1} + m_{1}gl_{1}\cos(\theta_{1})$$

$$\uparrow_{C(1)|M_{1}} \qquad M_{1} \qquad \gamma_{1} = U_{1} - B_{1}\dot{\theta}_{1}$$

$$eun \quad \partial f \quad \text{with:}$$

$$\dot{\theta}_{1} = \frac{1}{m_{1}l_{1}^{2}}\left(U_{1} - B_{1}\dot{\theta}_{1} - M_{1}\mathcal{I}_{1}l_{1}\right)$$

$$\tau_1 = m_1 l_1^2 \ddot{\theta}_1 + m_1 g l_1 \cos(\theta_1)$$

$$\text{Replace:}$$

$$Tau = u - B^* theta_d$$

Solve for equation of motion:

$$\ddot{\theta}_{1} = \frac{1}{m_{1}l_{1}^{2}} \left[u_{1} - B\dot{\theta}_{1} - m_{1}gl_{1}\cos(\theta_{1}) \right]$$

Matlab Example

Simple Single Link Arm Model

test_SingArm_Dyn.m Single_Link_Arm_Model_Dynamics_Only.mdl