Embeddings

Diplomatura en Ciencia de Datos, Aprendizaje Automático y sus Aplicaciones FaMAF-UNC agosto 2018

Qué es un embedding (proyección)

X Label

Qué es un embedding

Y un videíto sobre el kernel trick

https://www.youtube.com/watch?v=3liCbRZPrZA

Tipos de embeddings

Técnicas populares dentro de la familia de los embeddings

- Selección de características → supervisado o no supervisado
- Agrupamiento de características → supervisado o no supervisado
- Principal Component Analysis
- Latent Dirichlet Allocation
- The kernel trick → un espacio de mayor dimensionalidad!
- Neural embeddings

Objetivos de los embeddings

- En lugar de elegir un subconjunto de características, crear nuevas
- Sin tener en cuenta etiquetas de clase
- Proyectar a menos dimensiones preservando la mayor cantidad de información posible → minimizando el error cuadrado de reconstruir los datos originales

Para qué sirven?

- Reducción de dimensionalidad
- Reducir overfitting
- Generalización
- Acercamiento a las causas latentes

Qué perdemos?

- Información
- Interpretabilidad

Selección de Características

Kernel Trick

Principal Component Analysis

Minimiza el error cuadrado de reconstruir los datos originales

Minimum RMS error

Principal vectors are orthogonal

Principal Component Analysis

Principal Component Analysis

retrieval inf. brain lung

Reducción de dimensionalidad

Reducción de dimensionalidad

$$\begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 2 & 2 & 2 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 5 & 5 & 5 & 0 & 0 \\ 0 & 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 0.18 \\ 0.36 \\ 0.18 \\ 0.90 \\ 0 \\ 0 \end{bmatrix}$$

0.58 0.58 0.58 0

Clustering

- Se obtienen clusters de objetos
- Se sustituye cada objeto por su cluster

Embeddings neuronales

- Entrenar una red neuronal con una tarea de pretexto para la que tenemos muchos ejemplos naturalmente
 - Predecir una palabra dado su contexto, o un contexto dada una palabra
 - Reconstruir una imagen
- Eliminar la capa de predicción de la red
- La capa anterior a la de predicción es la nueva caracterización de los objetos
 - Menos características → acercándonos a las causas latentes!
- Se usa la red para convertir los objetos del espacio original al espacio de embeddings
- Es relativamente barato de obtener
- Ahora podemos caracterizar datos supervisados con información poblacional de grandes cantidades de datos no supervisados

Embeddings neuronales

Gensim (word2vec, doc2vec, y toda la familia)

<u>Fastext</u>

prod2vec

T-sne

https://shuaiw.github.io/2016/12/22/topic-modeling-and-tsne-visualzation.html

https://distill.pub/2016/misread-tsne/