CPE 310: Numerical Analysis for Engineers Chapter 1: Solving Nonlinear Equations

Ahmed Tamrawi

An important problem in applied mathematics is to: "solve f(x) = 0" where f(x) is a function of x

The values of x that make f(x) = 0 are called the **roots of the equation** or **zeros of** f

The problem is known as **root finding** or **zero finding**

"1-D Nonlinear Equation"

We are concerned about solving single nonlinear equation in one unknown, where

$$f \colon \mathbb{R} \to \mathbb{R}$$

Solution is **scalar** x for which f(x) = 0

Example: $f(x) = 3x + \sin x - e^x$ for which x = 0.3604 is one approximate solution

These lectures describe some of the many methods for solving f(x) = 0 by **numerical procedures** where f(x) is <u>single nonlinear equation</u> in **one unknown**

Interval Halving (Bisection)

Secant Method

Newton's Method

Fixed-Point Iteration Method

False-Position Method

Linear Interpolation Methods

Interval Halving (Bisection) Method

Interval Halving (Bisection) Method

Ancient but effective method for finding a zero of f(x)

It **begins with two values** for x that **bracket** a root

It determines that they do bracket a root because f(x) **changes signs** at these two x-values

if f(x) is **continuous**, there **must be** at least one root between the values

A plot of f(x) is useful to know where to start

INPUT

- x_1 and x_2 such that $f(x_1)f(x_2) < 0$
- tol: the specified tolerance value

REPEAT

SET
$$x_3 = \frac{(x_1 + x_2)}{2}$$

IF $f(x_3)f(x_1) < 0$ THEN
SET $x_2 = x_3$
ELSE
SET $x_1 = x_3$
UNTIL $(|x_1 - x_2| < \text{tol})$ OR $f(x_3) = 0$

"Maximum Error"

NOTES

- The final value of x_3 approximates the root, and it is in error by not more than $\frac{|x_1-x_2|}{2}$
- The algorithm may produce a **false root** if f(x) is discontinuous on $[x_1, x_2]$

- **INPUT** x_1 and x_2 such that $f(x_1)f(x_2) < 0$ tol: the specified tolerance value

REPEAT

SET
$$x_3 = \frac{(x_1 + x_2)}{2}$$

IF $f(x_3)f(x_1) < 0$ THEN

SET $x_2 = x_3$

ELSE

SET $x_1 = x_3$

UNTIL $(|x_1 - x_2| < \text{tol})$ OR $f(x_3) = 0$

$$f(x) = 3x + \sin x - e^x = 0$$

$$x_1 = 0, x_2 = 1$$
 such that $f(0)f(1) < 0$
tol = $1E - 3$ **OR** (0.001)

lter	x_1	x_2	x_3	$f(x_1)$	$f(x_2)$	$f(x_3)$	Max Error	Actual Error	Absolute Error
1	0.00000	1.00000		-1.00000	1.12320				

- **INPUT** x_1 and x_2 such that $f(x_1)f(x_2) < 0$ tol: the specified tolerance value

REPEAT

SET
$$x_3 = \frac{(x_1 + x_2)}{2}$$

IF $f(x_3)f(x_1) < 0$ THEN

SET $x_2 = x_3$

ELSE

SET $x_1 = x_3$

UNTIL $(|x_1 - x_2| < \text{tol})$ OR $f(x_3) = 0$

$$f(x) = 3x + \sin x - e^x = 0$$

Actual x = .36042170296032440136932951583028

$$x_1 = 0, x_2 = 1$$
 such that $f(0)f(1) < 0$
tol = $1E - 3$ **OR** (0.001)

lter	x_1	x_2	x_3	$f(x_1)$	$f(x_2)$	$f(x_3)$	Max Error	Actual Error	Absolute Error
1	0.00000	1.00000	0.50000	-1.00000	1.12320	0.33070	0.50000	-0.13958	0.13958
2	0.00000	0.50000		-1.00000	0.33070				

- **INPUT** x_1 and x_2 such that $f(x_1)f(x_2) < 0$ tol: the specified tolerance value

REPEAT

SET
$$x_3 = \frac{(x_1 + x_2)}{2}$$

IF $f(x_3)f(x_1) < 0$ THEN

SET $x_2 = x_3$

ELSE

SET $x_1 = x_3$

UNTIL $(|x_1 - x_2| < \text{tol})$ OR $f(x_3) = 0$

$$f(x) = 3x + \sin x - e^x = 0$$

Actual x = .36042170296032440136932951583028

$$x_1 = 0, x_2 = 1$$
 such that $f(0)f(1) < 0$
tol = $1E - 3$ **OR** (0.001)

lter	x_1	x_2	x_3	$f(x_1)$	$f(x_2)$	$f(x_3)$	Max Error	Actual Error	Absolute Error
1	0.00000	1.00000	0.50000	-1.00000	1.12320	0.33070	0.50000	-0.13958	0.13958
2	0.00000	0.50000	0.25000	-1.00000	0.33070	-0.28662	0.25000	0.11042	0.11042
3	0.25000	0.50000		-0.28662	0.33070				

- **INPUT** x_1 and x_2 such that $f(x_1)f(x_2) < 0$ tol: the specified tolerance value

REPEAT

SET
$$x_3 = \frac{(x_1 + x_2)}{2}$$

IF $f(x_3)f(x_1) < 0$ THEN

SET $x_2 = x_3$

ELSE

SET $x_1 = x_3$

UNTIL $(|x_1 - x_2| < \text{tol})$ OR $f(x_3) = 0$

$$f(x) = 3x + \sin x - e^x = 0$$

Actual x = .36042170296032440136932951583028

$$x_1 = 0, x_2 = 1$$
 such that $f(0)f(1) < 0$
tol = $1E - 3$ **OR** (0.001)

lter	x_1	x_2	x_3	$f(x_1)$	$f(x_2)$	$f(x_3)$	Max Error	Actual Error	Absolute Error
1	0.00000	1.00000	0.50000	-1.00000	1.12320	0.33070	0.50000	-0.13958	0.13958
2	0.00000	0.50000	0.25000	-1.00000	0.33070	-0.28662	0.25000	0.11042	0.11042
3	0.25000	0.50000	0.37500	-0.28662	0.33070	0.03628	0.12500	-0.01458	0.01458
4	0.25000	0.37500	0.31250	-0.28662	0.03628	-0.12190	0.06250	0.04792	0.04792
5	0.31250	0.37500	0.34375	-0.12190	0.03628	-0.04196	0.03125	0.01667	0.01667
6	0.34375	0.37500	0.35938	-0.04196	0.03628	-0.00262	0.01563	0.00105	0.00105
7	0.35938	0.37500	0.36719	-0.00262	0.03628	0.01689	0.00781	-0.00677	0.00677
8	0.35938	0.36719	0.36328	-0.00262	0.01689	0.00715	0.00391	-0.00286	0.00286
9	0.35938	0.36328	0.36133	-0.00262	0.00715	0.00227	0.00195	-0.00092	0.00092
10	0.35938	0.36133	0.36035	-0.00262	0.00227	-0.00018	0.00098	0.00007	0.00007
11	0.36035	0.36133	0.36084	-0.00018	0.00227	0.00105	0.00049	-0.00042	0.00042

 $|0.36035 - 0.36133| < 0.001 \implies 0.00098 < 0.001$

Tolerance Met

INPUT

- x_1 and x_2 such that $f(x_1)f(x_2) < 0$
- tol: the specified tolerance value

REPEAT

SET
$$x_3 = \frac{(x_1 + x_2)}{2}$$

IF $f(x_3)f(x_1) < 0$ THEN
SET $x_2 = x_3$
ELSE
SET $x_1 = x_3$
UNTIL $(|x_1 - x_2| < \text{tol})$ OR $f(x_3) = 0$

Simple and **guaranteed** to work if:

- 1. f(x) is **continuous** in $[x_1, x_2]$; and
- 2. The values x_1 and x_2 actually bracket a root

Needed iterations to achieve a **specified accuracy** is known in advance

Error after
$$n$$
 iterations $< |\frac{x_2 - x_1}{2^n}|$

Plotting the function helps defining the bracket

Good for initial guess for other root finding algorithms

Slow Convergence compared to other techniques we will see next

Other methods require less number of iterations

Some earlier iteration may result on a closer approximation than later ones

lter	<i>x</i> ₁	x_2	x_3	$f(x_1)$	$f(x_2)$	$f(x_3)$	Max Error	Actual Error	Absolute Error		
1	0.00000	1.00000	0.50000	-1.00000	1.12320	0.33070	0.50000	-0.13958	0.13958		
2	0.00000	0.50000	0.25000	-1.00000	0.33070	-0.28662	0.25000	0.11042	0.11042		
3	0.25000	0.50000	0.37500	-0.28662	0.33070	0.03628	0.12500	-0.01458	0.01458		
4	0.25000	0.37500	0.31250	-0.28662	0.03628	-0.12190	0.06250	0.04792	0.04792		
5	0.31250	0.37500	0.34375	-0.12190	0.03628	-0.04196	0.03125	0.01667	0.01667	← C	los
6	0.34375	0.37500	0.35938	-0.04196	0.03628	-0.00262	0.01563	0.00105	0.00105	← Ft	urt
7	0.35938	0.37500	0.36719	-0.00262	0.03628	0.01689	0.00781	-0.00677	0.00677		
8	0.35938	0.36719	0.36328	-0.00262	0.01689	0.00715	0.00391	-0.00286	0.00286		
9	0.35938	0.36328	0.36133	-0.00262	0.00715	0.00227	0.00195	-0.00092	0.00092		
10	0.35938	0.36133	0.36035	-0.00262	0.00227	-0.00018	0.00098	0.00007	0.00007	← C	los
11	0.36035	0.36133	0.36084	-0.00018	0.00227	0.00105	0.00049	-0.00042	0.00042	← Fu	urt

When there are multiple roots, **interval halving may not be applicable**, because the function <u>may not change sign</u> at points on either side of the roots.

We may be able to find the roots by working with f'(x), which will be zero at a multiple root.

Example:

$$f(x) = x^2 - 2x + 1 = 0$$
, in bracket [0, 2]

Bisection Method - Animation

http://mathfaculty.fullerton.edu/mathews/a2001/Animations/RootFinding/BisectionMethod/BisectionMethod.html

Linear Interpolation Methods

Most functions can be approximated by a straight line over a small interval

Secant Method

In geometry, a **secant of a curve** is a line that *intersects two points* on the curve

It **begins with two values** for x that are **near** the root

The two values maybe on the **same side** from the root or on **opposite side**

if f(x) is **linear**, the secant intersects the x-axis at the root exactly

A plot of f(x) is useful to know where to start

$$\frac{(x_0 - x_2)}{f(x_0)} = \frac{(x_0 - x_1)}{f(x_0) - f(x_1)}$$

$$\frac{(x_0 - x_2)}{f(x_0)} = \frac{(x_0 - x_1)}{f(x_0) - f(x_1)}$$

$$x_2 = x_0 - f(x_0) \frac{(x_0 - x_1)}{f(x_0) - f(x_1)}$$

- **INPUT** x_0 and x_1 that are **near** the root tol: the specified tolerance value

IF
$$|f(x_0)| < |f(x_1)|$$
 THEN

SWAP x_0 with x_1

REPEAT

SET $x_2 = x_0 - f(x_0) \frac{x_0 - x_1}{f(x_0) - f(x_1)}$

SET $x_0 = x_1$

SET $x_1 = x_2$

UNTIL $(|f(x_2)| < tol)$

NOTES

- Another stopping "termination" criteria is when the pair of points being used are sufficiently close together: "UNTIL $(|x_0 - x_1| < \text{tol})$ "
- The algorithm may **fail** if f(x) is not continuous.

- **INPUT** x_0 and x_1 that are **near** the root tol: the specified tolerance value

IF $|f(x_0)| < |f(x_1)|$ **THEN SWAP** x_0 with x_1

REPEAT

SET
$$x_2 = x_0 - f(x_0) \frac{x_0 - x_1}{f(x_0) - f(x_1)}$$

SET
$$x_0 = x_1$$

SET
$$x_1 = x_2$$

UNTIL $(|f(x_2)| < \text{tol})$

$$f(x) = 3x + \sin x - e^x = 0$$

$$x_0 = 1 x_1 = 0$$

tol = $1E - 7$ **OR** (0.0000001)

lter	x_0	x_1	x_2	$f(x_0)$	$f(x_1)$	$f(x_2)$	Actual Error
1	1.000000	0.000000		1.12320	-1.00000		

- **INPUT** x_0 and x_1 that are **near** the root tol: the specified tolerance value

IF $|f(x_0)| < |f(x_1)|$ **THEN SWAP** x_0 with x_1

REPEAT

SET
$$x_2 = x_0 - f(x_0) \frac{x_0 - x_1}{f(x_0) - f(x_1)}$$

SET
$$x_0 = x_1$$

SET
$$x_1 = x_2$$

UNTIL $(|f(x_2)| < \text{tol})$

$$f(x) = 3x + \sin x - e^x = 0$$

$$x_0 = 1 x_1 = 0$$

tol = $1E - 7$ **OR** (0.000001)

lter	x_0	x_1	x_2	$f(x_0)$	$f(x_1)$	$f(x_2)$	Actual Error
1	1.00000	0.00000	0.4709896	1.12320	-1.000000	0.2651588	-0.110567
2	0.00000	0.4709896		-1.000000	0.2651588		

- **INPUT** x_0 and x_1 that are **near** the root tol: the specified tolerance value

IF $|f(x_0)| < |f(x_1)|$ **THEN SWAP** x_0 with x_1

REPEAT

SET
$$x_2 = x_0 - f(x_0) \frac{x_0 - x_1}{f(x_0) - f(x_1)}$$

SET
$$x_0 = x_1$$

SET
$$x_1 = x_2$$

UNTIL $(|f(x_2)| < \text{tol})$

$$f(x) = 3x + \sin x - e^x = 0$$

$$x_0 = 1 x_1 = 0$$

tol = $1E - 7$ **OR** (0.000001)

lter	x_0	x_1	x_2	$f(x_0)$	$f(x_1)$	$f(x_2)$	Actual Error
1	1.00000	0.00000	0.4709896	1.12320	-1.000000	0.2651588	-0.110567
2	0.00000	0.4709896	0.3722771	-1.000000	0.2651588	0.0295336	-0.011849
3	0.4709896	0.3722771		0.2651588	0.0295336		

- **INPUT** x_0 and x_1 that are **near** the root tol: the specified tolerance value

IF $|f(x_0)| < |f(x_1)|$ **THEN**

SWAP x_0 with x_1

REPEAT

SET
$$x_2 = x_0 - f(x_0) \frac{x_0 - x_1}{f(x_0) - f(x_1)}$$

SET $x_0 = x_1$

SET $x_1 = x_2$

UNTIL $(|f(x_2)| < \text{tol})$

$$f(x) = 3x + \sin x - e^x = 0$$

 $x_{\text{Actual}} = 0.36042170296032440136932951583028$

$$x_0 = 1 x_1 = 0$$

tol = $1E - 7$ **OR** (0.0000001)

lter	x_0	x_1	x_2	$f(x_0)$	$f(x_1)$	$f(x_2)$	Actual Error
1	1.00000	0.00000	0.4709896	1.12320	-1.000000	0.2651588	-0.110567
2	0.00000	0.4709896	0.3722771	-1.000000	0.2651588	0.0295336	-0.011849
3	0.4709896	0.3722771	0.3599043	0.2651588	0.0295336	-0.001294	0.000517
4	0.3722771	0.3599043	0.3604239	0.0295336	-0.001294	0.0000552	-0.000002
5	0.3599043	0.3604239	0.3604217	-0.001294	0.0000552	0.00000003	0.000000002

Tolerance Met

$$|f(x_2)| < 1E - 7$$

If the function is far from linear near the root, the successive iterates can fly off to points far from the root

The **bad choice** of x_0 and x_1 or **duplicating a previous result**, may result on an **endless loop**, thus, never reaching an answer

Secant Method - Animation

http://mathfaculty.fullerton.edu/mathews/a2001/Animations/RootFinding/SecantMethod/SecantMethod.html

Linear Interpolation Methods

Most functions can be approximated by a straight line over a small interval

False-Position Method

"Regula Falsi" Method

False-Position Method

Problem of Secant Method

If the function is far from linear near the root, the successive iterates can fly off to points far from the root

False-Position **begins with two values** for x that **bracket** a root

Ensure that the root is bracketed between the two starting values and remains between the successive pairs.

$$\frac{(x_0 - x_2)}{f(x_0)} = \frac{(x_0 - x_1)}{f(x_0) - f(x_1)}$$

$$x_2 = x_0 - f(x_0) \frac{(x_0 - x_1)}{f(x_0) - f(x_1)}$$

Similar to bisection except the next iterate is taken at the intersection of a line between the pair of x-values and the x-axis rather than at the midpoint

Faster than Bisection but more complicated

False-Position (regula falsi) Method

INPUT

- x_0 and x_1 that **bracket a root** such that $f(x_0)$ and $f(x_1)$ are of opposite sign
- tol: the specified tolerance value

REPEAT

SET
$$x_2 = x_0 - f(x_0) \frac{x_0 - x_1}{f(x_0) - f(x_1)}$$

IF $f(x_2)$ is of opposite sign to $f(x_0)$ THEN
SET $x_1 = x_2$
ELSE
SET $x_0 = x_1$
UNTIL $(|f(x_2)| < tol)$

NOTES

- Another stopping "termination" criteria is when the pair of points being used are sufficiently close together: "UNTIL $(|x_0 x_1| < tol)$ "
- The algorithm may **fail** if f(x) is not continuous.

False-Position (regula falsi) Method

INPUT

- x_0 and x_1 that **bracket a root** such that $f(x_0)$ and $f(x_1)$ are of opposite sign
- tol: the specified tolerance value

REPEAT

SET
$$x_2 = x_0 - f(x_0) \frac{x_0 - x_1}{f(x_0) - f(x_1)}$$

IF $f(x_2)$ is of opposite sign to $f(x_0)$ THEN
SET $x_1 = x_2$
ELSE
SET $x_0 = x_1$
UNTIL $(|f(x_2)| < \text{tol})$

$$f(x) = 3x + \sin x - e^x = 0$$

$$x_0 = 1 x_1 = 0$$

tol = $1E - 4$ **OR** (0.0001)

lter	x_0	x_1	x_2	$f(x_0)$	$f(x_1)$	$f(x_2)$	Actual Error
1	0.000000	1.000000		-1.000000	1.12320		

INPUT

- x_0 and x_1 that **bracket a root** such that $f(x_0)$ and $f(x_1)$ are of opposite sign
- tol: the specified tolerance value

REPEAT

SET
$$x_2 = x_0 - f(x_0) \frac{x_0 - x_1}{f(x_0) - f(x_1)}$$

IF $f(x_2)$ is of opposite sign to $f(x_0)$ THEN
SET $x_1 = x_2$
ELSE
SET $x_0 = x_1$
UNTIL $(|f(x_2)| < \text{tol})$

$$f(x) = 3x + \sin x - e^x = 0$$

$$x_0 = 1 x_1 = 0$$

tol = $1E - 4$ **OR** (0.0001)

lter	x_0	x_1	x_2	$f(x_0)$	$f(x_1)$	$f(x_2)$	Actual Error
1	0.000000	1.000000	0.4709896	-1.000000	1.12320	0.2651588	-0.110567
2	0.000000	0.4709896		-1.000000	0.2651588		

INPUT

- x_0 and x_1 that **bracket a root** such that $f(x_0)$ and $f(x_1)$ are of opposite sign
- tol: the specified tolerance value

REPEAT

SET
$$x_2 = x_0 - f(x_0) \frac{x_0 - x_1}{f(x_0) - f(x_1)}$$

IF $f(x_2)$ is of opposite sign to $f(x_0)$ THEN
SET $x_1 = x_2$
ELSE
SET $x_0 = x_1$
UNTIL $(|f(x_2)| < \text{tol})$

$$f(x) = 3x + \sin x - e^x = 0$$

$$x_0 = 1 x_1 = 0$$

tol = $1E - 4$ **OR** (0.0001)

lter	x_0	x_1	x_2	$f(x_0)$	$f(x_1)$	$f(x_2)$	Actual Error
1	0.000000	1.000000	0.4709896	-1.000000	1.12320	0.2651588	-0.110567
2	0.000000	0.4709896	0.3722771	-1.000000	0.2651588	0.0295336	-0.011849
3	0.000000	0.3722771		-1.000000	0.0295336		

INPUT

- x_0 and x_1 that **bracket a root** such that $f(x_0)$ and $f(x_1)$ are of opposite sign
- tol: the specified tolerance value

REPEAT

SET
$$x_2 = x_0 - f(x_0) \frac{x_0 - x_1}{f(x_0) - f(x_1)}$$

IF $f(x_2)$ is of opposite sign to $f(x_0)$ THEN
SET $x_1 = x_2$
ELSE
SET $x_0 = x_1$
UNTIL $(|f(x_2)| < \text{tol})$

$$f(x) = 3x + \sin x - e^x = 0$$

$$x_0 = 1 x_1 = 0$$

tol = $1E - 4$ **OR** (0.0001)

lter	x_0	x_1	x_2	$f(x_0)$	$f(x_1)$	$f(x_2)$	Actual Error
1	0.000000	1.000000	0.4709896	-1.000000	1.12320	0.2651588	-0.110567
2	0.000000	0.4709896	0.3722771	-1.000000	0.2651588	0.0295336	-0.011849
3	0.000000	0.3722771	0.361598	-1.000000	0.0295336	0.002941	-0.0011760

INPUT

- x_0 and x_1 that **bracket a root** such that $f(x_0)$ and $f(x_1)$ are of opposite sign
- tol: the specified tolerance value

REPEAT

SET
$$x_2 = x_0 - f(x_0) \frac{x_0 - x_1}{f(x_0) - f(x_1)}$$

IF $f(x_2)$ is of opposite sign to $f(x_0)$ THEN
SET $x_1 = x_2$
ELSE
SET $x_0 = x_1$
UNTIL $(|f(x_2)| < \text{tol})$

$$f(x) = 3x + \sin x - e^x = 0$$

$$x_0 = 1 x_1 = 0$$

tol = $1E - 4$ **OR** (0.0001)

lter	x_0	x_1	x_2	$f(x_0)$	$f(x_1)$	$f(x_2)$	Actual Error
1	0.000000	1.000000	0.4709896	-1.000000	1.12320	0.2651588	-0.110567
2	0.000000	0.4709896	0.3722771	-1.000000	0.2651588	0.0295336	-0.011849
3	0.000000	0.3722771	0.36159774	-1.000000	0.0295336	0.002941	-0.0011760
4	0.000000	0.36159774	0.36053740	-1.000000	0.002941	0.00028944	-0.0001157
5	0.000000	0.36053740	0.36043307	-1.000000	0.00028944	0.00002845	0.00001373

INPUT

- x_0 and x_1 that **bracket a root** such that $f(x_0)$ and $f(x_1)$ are of opposite sign
- tol: the specified tolerance value

REPEAT

UNTIL $(|f(x_2)| < \text{tol})$

SET
$$x_2 = x_0 - f(x_0) \frac{x_0 - x_1}{f(x_0) - f(x_1)}$$

IF $f(x_2)$ is of opposite sign to $f(x_0)$ THEN
SET $x_1 = x_2$
ELSE
SET $x_0 = x_1$

$$f(x) = 3x + \sin x - e^x = 0$$

 $x_{\text{Actual}} = 0.36042170296032440136932951583028$

$$x_0 = 1 x_1 = 0$$

tol = $1E - 4$ **OR** (0.0001)

lter	x_0	x_1	x_2	$f(x_0)$	$f(x_1)$	$f(x_2)$	Actual Error
1	0.000000	1.000000	0.4709896	-1.000000	1.12320	0.2651588	-0.110567
2	0.000000	0.4709896	0.3722771	-1.000000	0.2651588	0.0295336	-0.011849
3	0.000000	0.3722771	0.36159774	-1.000000	0.0295336	0.002941	-0.0011760
4	0.000000	0.36159774	0.36053740	-1.000000	0.002941	0.00028944	-0.0001157
5	0.000000	0.36053740	0.36043307	-1.000000	0.00028944	0.00002845	0.00001373

Tolerance Met

$$|f(x_2)| < 1E - 4$$

INPUT

- x_0 and x_1 that **bracket a root** such that $f(x_0)$ and $f(x_1)$ are of opposite sign
- tol: the specified tolerance value

REPEAT

SET
$$x_2 = x_0 - f(x_0) \frac{x_0 - x_1}{f(x_0) - f(x_1)}$$

IF $f(x_2)$ is of opposite sign to $f(x_0)$ THEN
SET $x_1 = x_2$
ELSE
SET $x_0 = x_1$
UNTIL $(|f(x_2)| < \text{tol})$

$$f(x) = 3x + \sin x - e^x = 0$$

 $x_{\text{Actual}} = 0.36042170296032440136932951583028$

$$x_0 = 1 x_1 = 0$$

tol = $1E - 5$ **OR** (0.00001)

lter	x_0	x_1	x_2	$f(x_0)$	$f(x_1)$	$f(x_2)$	Actual Error
1	0.000000	1.000000	0.4709896	-1.000000	1.12320	0.2651588	-0.110567
2	0.000000	0.4709896	0.3722771	-1.000000	0.2651588	0.0295336	-0.011849
3	0.000000	0.3722771	0.36159774	-1.000000	0.0295336	0.002941	-0.0011760
4	0.000000	0.36159774	0.36053740	-1.000000	0.002941	0.00028944	-0.0001157
5	0.000000	0.36053740	0.36043307	-1.000000	0.00028944	0.00002845	0.00001373

False Position converges to the root <u>from only one side</u>, slowing it down, especially if that end of the interval is farther from the root.

There is a way to avoid this result, called modified linear interpolation

False-Position Method- Animation

http://mathfaculty.fullerton.edu/mathews/a2001/Animations/RootFinding/RegulaFalsi/RegulaFalsi.html

Linear approximation of the function using tangent line over small interval

One of the most widely used methods of solving equations

Based on a linear approximation of the function using a **tangent** to the curve

Starting from a single initial estimate, x_0 that is **not too far** from a root

Move along **the tangent** to its **intersection with the x-axis**, and take that as the next approximation

Continue until either the successive x-values are sufficiently close or the value of the function is sufficiently near zero

Slope of Tangent at $f(x_0)$ is equal to the derivative of curve at x_0

$$\tan \theta = f'(x_0) = \frac{f(x_0)}{x_0 - x_1}$$

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

INPUT

- x_0 reasonably close to the root
- tol1: the specified tolerance value for difference between successive *x*-values.
- to12: the specified tolerance value for how close $f(x_1)$ to zero.

```
COMPUTE f(x_0), f'(x_0)

SET x_1 = x_0

IF (f(x_0) \neq 0) AND (f'(x_0) \neq 0) THEN

REPEAT

SET x_0 = x_1

SET x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}

UNTIL (|x_1 - x_0| < \text{toll}) \text{OR}(|f(x_1)| < \text{tol2})
```

NOTES

• The method may converge to a root different from the expected one or diverge if the starting value is not close enough to the root.

INPUT

- x_0 reasonably close to the root
- tol1: the specified tolerance value for difference between successive x-values.
- tol2: the specified tolerance value for how close $f(x_1)$ to zero.

COMPUTE
$$f(x_0), f'(x_0)$$

SET $x_1 = x_0$
IF $(f(x_0) \neq 0)$ AND $(f'(x_0) \neq 0)$ THEN
REPEAT
SET $x_0 = x_1$
SET $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$
UNTIL $(|x_1 - x_0| < \text{toll}) \text{OR}(|f(x_1)| < \text{tol2})$

$$f(x) = 3x + \sin x - e^x = 0$$

 $x_{\text{Actual}} = 0.36042170296032440136932951583028$

We begin with $x_0 = 0.0$

$$tol1 = 1E - 5$$
 OR (0.00001)

$$tol2 = 1E - 5$$
OR (0.00001)

INPUT

- x_0 reasonably close to the root
- tol1: the specified tolerance value for difference between successive x-values.
- to12: the specified tolerance value for how close $f(x_1)$ to zero.

COMPUTE
$$f(x_0), f'(x_0)$$

SET $x_1 = x_0$
IF $(f(x_0) \neq 0)$ AND $(f'(x_0) \neq 0)$ THEN
REPEAT
SET $x_0 = x_1$
SET $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$
UNTIL $(|x_1 - x_0| < \text{toll}) \text{OR}(|f(x_1)| < \text{tol2})$

$$f(x) = 3x + \sin x - e^x = 0$$

We begin with
$$x_0 = 0.0$$

$$tol1 = 1E - 5$$
 OR (0.00001)

tol2 =
$$1E - 5$$
 OR (0.00001)

$$f(x) = 3x + \sin x - e^x$$

$$f'(x) = 3 + \cos x - e^x$$

INPUT

- x_0 reasonably close to the root
- tol1: the specified tolerance value for difference between successive *x*-values.
- to 12: the specified tolerance value for how close $f(x_1)$ to zero.

COMPUTE
$$f(x_0), f'(x_0)$$

SET $x_1 = x_0$
IF $(f(x_0) \neq 0)$ AND $(f'(x_0) \neq 0)$ THEN
REPEAT
SET $x_0 = x_1$
SET $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$
UNTIL $(|x_1 - x_0| < \text{toll}) \text{OR}(|f(x_1)| < \text{tol2})$

$$f(x) = 3x + \sin x - e^x = 0$$

 $x_{\text{Actual}} = 0.36042170296032440136932951583028$

We begin with $x_0 = 0.0$

$$tol1 = 1E - 5 \text{ OR } (0.00001)$$

tol2 =
$$1E - 5$$
 OR (0.00001)

$$f(x) = 3x + \sin x - e^x$$

$$f'(x) = 3 + \cos x - e^x$$

$$x_0 = 0.0, x_1 = 0.0$$

$$f(x_0) = -1.0, f'(x_0) = 3.0$$

INPUT

- x_0 reasonably close to the root
- tol1: the specified tolerance value for difference between successive x-values.
- to12: the specified tolerance value for how close $f(x_1)$ to zero.

COMPUTE
$$f(x_0), f'(x_0)$$

SET $x_1 = x_0$
IF $(f(x_0) \neq 0)$ AND $(f'(x_0) \neq 0)$ THEN
REPEAT
SET $x_0 = x_1$
SET $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$
UNTIL $(|x_1 - x_0| < \text{toll}) \text{OR}(|f(x_1)| < \text{tol2})$

$$f(x) = 3x + \sin x - e^x = 0$$

 $x_{\text{Actual}} = 0.36042170296032440136932951583028$

We begin with $x_0 = 0.0$

$$tol1 = 1E - 5$$
 OR (0.00001)

$$tol2 = 1E - 5$$
OR (0.00001)

$$f(x) = 3x + \sin x - e^x$$

$$x_0 = 0.0, x_1 = 0.0$$

$$f'(x) = 3 + \cos x - e^x$$

$$f(x_0) = -1.0, f'(x_0) = 3.0$$

Iteration 1:
$$x_0 = 0.0$$
, $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = 0.0 - \frac{-1.0}{3.0} = 0.33333$

|0.33333 - 0.0| < 0.00001 **OR** |-0.068418| < 0.00001

INPUT

- x_0 reasonably close to the root
- tol1: the specified tolerance value for difference between successive x-values.
- tol2: the specified tolerance value for how close $f(x_1)$ to zero.

COMPUTE
$$f(x_0), f'(x_0)$$

SET $x_1 = x_0$
IF $(f(x_0) \neq 0)$ AND $(f'(x_0) \neq 0)$ THEN
REPEAT
SET $x_0 = x_1$
SET $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$
UNTIL $(|x_1 - x_0| < \text{tol1}) \text{OR}(|f(x_1)| < \text{tol2})$

$$f(x) = 3x + \sin x - e^x = 0$$

 $x_{\text{Actual}} = 0.36042170296032440136932951583028$

We begin with $x_0 = 0.0$

$$tol1 = 1E - 5$$
 OR (0.00001)

$$tol2 = 1E - 5$$
OR (0.00001)

$$f(x) = 3x + \sin x - e^x$$

$$f'(x) = 3 + \cos x - e^x$$

$$x_0 = 0.0, x_1 = 0.0$$

$$f'(x) = 3 + \cos x - e^x$$
 $f(x_0) = -1.0, f'(x_0) = 3.0$

Iteration 1:
$$x_0 = 0.0$$
, $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = 0.0 - \frac{-1.0}{3.0} = 0.33333$

Iteration 2:
$$x_1 = 0.33333$$
, $x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = 0.33333 - \frac{-0.068418}{2.54934} = 0.36017$

|0.36017 - 0.33333| < 0.00001 **OR** |-0.0006279| < 0.00001

INPUT

- x_0 reasonably close to the root
- tol1: the specified tolerance value for difference between successive x-values.
- tol2: the specified tolerance value for how close $f(x_1)$ to zero.

COMPUTE
$$f(x_0), f'(x_0)$$

SET $x_1 = x_0$
IF $(f(x_0) \neq 0)$ AND $(f'(x_0) \neq 0)$ THEN
REPEAT
SET $x_0 = x_1$
SET $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$
UNTIL $(|x_1 - x_0| < \text{tol1}) \text{OR}(|f(x_1)| < \text{tol2})$

$$f(x) = 3x + \sin x - e^x = 0$$

 $x_{\text{Actual}} = 0.36042170296032440136932951583028$

We begin with $x_0 = 0.0$

tol1 = 1E - 5 OR (0.00001)

tol2 = 1E - 5**OR** (0.00001)

$$f(x) = 3x + \sin x - e^x$$

$$x_0 = 0.0, x_1 = 0.0$$

$$f'(x) = 3 + \cos x - e^x$$

$$f'(x) = 3 + \cos x - e^x$$
 $f(x_0) = -1.0, f'(x_0) = 3.0$

Iteration 1:
$$x_0 = 0.0$$
, $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = 0.0 - \frac{-1.0}{3.0} = 0.33333$

Iteration 2:
$$x_1 = 0.33333, x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = 0.333333 - \frac{-0.068418}{2.54934} = 0.36017$$

Iteration 3:
$$x_2 = 0.36017$$
, $x_3 = x_2 - \frac{f(x_2)}{f'(x_2)} = 0.36017 - \frac{-0.0006279}{2.50226} = 0.3604217$

|0.3604217 - 0.36017| < 0.00001 OR |-0.00000005| < 0.00001

INPUT

- x_0 reasonably close to the root
- tol1: the specified tolerance value for difference between successive x-values.
- to12: the specified tolerance value for how close $f(x_1)$ to zero.

COMPUTE
$$f(x_0), f'(x_0)$$

SET $x_1 = x_0$
IF $(f(x_0) \neq 0)$ AND $(f'(x_0) \neq 0)$ THEN
REPEAT
SET $x_0 = x_1$
SET $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$
UNTIL $(|x_1 - x_0| < \text{toll}) \text{OR}(|f(x_1)| < \text{tol2})$

$f(x) = 3x + \sin x - e^x = 0$

 $x_{\text{Actual}} = 0.36042170296032440136932951583028$

We begin with $x_0 = 0.0$

tol1 = 1E - 5 OR (0.00001)

tol2 = 1E - 5**OR** (0.00001)

$$f(x) = 3x + \sin x - e^x$$

$$x_0 = 0.0, x_1 = 0.0$$

$$f'(x) = 3 + \cos x - e^x$$

$$f'(x) = 3 + \cos x - e^x$$
 $f(x_0) = -1.0, f'(x_0) = 3.0$

Iteration 1:
$$x_0 = 0.0$$
, $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = 0.0 - \frac{-1.0}{3.0} = 0.33333$

Iteration 2:
$$x_1 = 0.33333, x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = 0.333333 - \frac{-0.068418}{2.54934} = 0.36017$$

Iteration 3:
$$x_2 = 0.36017$$
, $x_3 = x_2 - \frac{f(x_2)}{f'(x_2)} = 0.36017 - \frac{-0.0006279}{2.50226} = 0.3604217$

|0.3604217 - 0.36017| < 0.00001 OR |-0.00000005| < 0.00001

Actual Error = $x_{Actual} - x_3 = 0.000000002960324$

Absolute Error = $|x_{Actual} - x_3| = 0.000000002960324$

Newton's algorithm is widely used because, at least in the near neighborhood of a root, it is more rapidly convergent than any of the methods discussed so far

The number of decimal places of accuracy **nearly doubles** at each iteration

There is the need for two function evaluations at each step f(x) and f'(x) and we must obtain the derivative function at the start

Finding f'(x) may be difficult. Computer algebra systems can be a real help

In some cases Newton's method will not converge

The **bad choice** of x_0 may never lead us to reach an answer; we are stuck in an **infinite loop**

Reaching **local minimum or local maximum** of the function, **the answer will fly off to infinity**

$$f'(x_0) = 0$$

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Relating Newton's to Other Methods

Linear Interpolation Methods

$$x_2 = x_0 - f(x_0) \frac{(x_0 - x_1)}{f(x_0) - f(x_1)}$$

$$x_2 = x_0 - \frac{f(x_0)}{\frac{f(x_0) - f(x_1)}{(x_0 - x_1)}}$$

The denominator of the fraction is an approximation of the derivative at x_0

Newton's Method

$$x_2 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

$$x_1 = x_0 + h$$

$$f'(x_0) = \lim_{(x_1 - x_0) \to 0} \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

$$x_2 = x_0 - \frac{f(x_0)}{\lim_{(x_1 - x_0) \to 0} \frac{f(x_1) - f(x_0)}{x_1 - x_0}}$$

Secant method looks like Newton's and its good to use when the derivative is not easy to achieve

Secant Method

$$x_2 = x_0 - f(x_0) \frac{(x_0 - x_1)}{f(x_0) - f(x_1)}$$

Newton's Method

$$x_2 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

Newton's method works with complex roots if we give it a complex value for the starting value x_0

INPUT

- x_0 reasonably close to the root
- tol1: the specified tolerance value for difference between successive *x*-values.
- tol2: the specified tolerance value for how close $f(x_1)$ to zero.

COMPUTE
$$f(x_0), f'(x_0)$$

SET $x_1 = x_0$
IF $(f(x_0) \neq 0)$ AND $(f'(x_0) \neq 0)$ THEN
REPEAT
SET $x_0 = x_1$
SET $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$
UNTIL $(|x_1 - x_0| < \text{toll}) \text{OR}(|f(x_1)| < \text{tol2})$

$$f(x) = x^3 + 2x^2 - x + 5 = 0$$

 $x_{\text{Actual}} = -2.9259, 0.46293 \pm 1.22254i$

We begin with $x_0 = 1 + i$

tol1 =
$$1E - 4$$
 OR (0.0001)

tol2 =
$$1E - 4$$
 OR (0.0001)

INPUT

- x_0 reasonably close to the root
- tol1: the specified tolerance value for difference between successive x-values.
- to12: the specified tolerance value for how close $f(x_1)$ to zero.

COMPUTE
$$f(x_0), f'(x_0)$$

SET $x_1 = x_0$
IF $(f(x_0) \neq 0)$ AND $(f'(x_0) \neq 0)$ THEN
REPEAT
SET $x_0 = x_1$
SET $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$
UNTIL $(|x_1 - x_0| < \text{toll}) \text{OR}(|f(x_1)| < \text{tol2})$

$$f(x) = x^3 + 2x^2 - x + 5 = 0$$

 $x_{\text{Actual}} = -2.9259, 0.46293 \pm 1.22254i$

We begin with
$$x_0 = 1 + i$$

tol1 =
$$1E - 4$$
 OR (0.0001)

tol2 =
$$1E - 4$$
 OR (0.0001)

$$f(x) = x^3 + 2x^2 - x + 5$$

$$f'(x) = 3x^2 + 4x - 1$$

$$x_0 = 1 + i, x_1 = 1 + i$$

$$f'(x) = 3x^2 + 4x - 1$$
 $f(x_0) = 2 + 5i, f'(x_0) = 3 + 10i$

INPUT

- x_0 reasonably close to the root
- tol1: the specified tolerance value for difference between successive x-values.
- to12: the specified tolerance value for how close $f(x_1)$ to zero.

COMPUTE
$$f(x_0), f'(x_0)$$

SET $x_1 = x_0$
IF $(f(x_0) \neq 0)$ AND $(f'(x_0) \neq 0)$ THEN
REPEAT
SET $x_0 = x_1$
SET $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$
UNTIL $(|x_1 - x_0| < \text{toll}) \text{OR}(|f(x_1)| < \text{tol2})$

$$f(x) = x^3 + 2x^2 - x + 5 = 0$$

 $x_{\text{Actual}} = -2.9259, 0.46293 \pm 1.22254i$

We begin with $x_0 = 1 + i$

$$tol1 = 1E - 4 OR (0.0001)$$

tol2 = 1E - 4 OR (0.0001)

$$f(x) = x^3 + 2x^2 - x + 5$$

$$3x^2 + 4x - 1$$

$$x_0 = 1 + i, x_1 = 1 + i$$

$$f'(x) = 3x^2 + 4x - 1$$
 $f(x_0) = 2 + 5i, f'(x_0) = 3 + 10i$

Iteration 1:
$$x_0 = 1 + i$$
, $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = (1 + i) - \frac{2 + 5i}{3 + 10i} = 0.486238 + 1.04587i$

INPUT

- x_0 reasonably close to the root
- tol1: the specified tolerance value for difference between successive x-values.
- tol2: the specified tolerance value for how close $f(x_1)$ to zero.

COMPUTE
$$f(x_0), f'(x_0)$$

SET $x_1 = x_0$
IF $(f(x_0) \neq 0)$ AND $(f'(x_0) \neq 0)$ THEN
REPEAT
SET $x_0 = x_1$
SET $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$
UNTIL $(|x_1 - x_0| < \text{toll}) \text{OR}(|f(x_1)| < \text{tol2})$

$$f(x) = x^3 + 2x^2 - x + 5 = 0$$

 $x_{\text{Actual}} = -2.9259, 0.46293 \pm 1.22254i$

We begin with $x_0 = 1 + i$

tol1 = 1E - 4 OR (0.0001)

tol2 = 1E - 4 OR (0.0001)

$$f(x) = x^3 + 2x^2 - x + 5$$

$$f'(x) = 3x^2 + 4x - 1$$

$$x_0 = 1 + i, x_1 = 1 + i$$

$$f'(x) = 3x^2 + 4x - 1$$
 $f(x_0) = 2 + 5i, f'(x_0) = 3 + 10i$

Iteration 1:
$$x_0 = 1 + i$$
, $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = (1 + i) - \frac{2 + 5i}{3 + 10i} = 0.486238 + 1.04587i$

Iteration 2:
$$x_1 = 0.486238 + 1.04587i$$
, $x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} =$

$$= 0.486238 + 1.04587i - \frac{0.519354 - 0.402202i}{-1.62730 + 7.23473i}$$

$$= 0.448139 + 1.23665i$$

INPUT

- x_0 reasonably close to the root
- tol1: the specified tolerance value for difference between successive x-values.
- to12: the specified tolerance value for how close $f(x_1)$ to zero.

COMPUTE
$$f(x_0), f'(x_0)$$

SET $x_1 = x_0$
IF $(f(x_0) \neq 0)$ AND $(f'(x_0) \neq 0)$ THEN
REPEAT
SET $x_0 = x_1$
SET $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$
UNTIL $(|x_1 - x_0| < \text{tol1}) \text{OR}(|f(x_1)| < \text{tol2})$

$$f(x) = x^3 + 2x^2 - x + 5 = 0$$

 $x_{\text{Actual}} = -2.9259, 0.46293 \pm 1.22254i$

We begin with $x_0 = 1 + i$

tol1 = 1E - 4 OR (0.0001)

tol2 = 1E - 4 OR (0.0001)

$$f(x) = x^3 + 2x^2 - x + 5$$

$$f'(x) = 3x^2 + 4x - 1$$

$$x_0 = 1 + i, x_1 = 1 + i$$

$$f'(x) = 3x^2 + 4x - 1$$
 $f(x_0) = 2 + 5i, f'(x_0) = 3 + 10i$

Iteration 1:
$$x_0 = 1 + i$$
, $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = (1 + i) - \frac{2 + 5i}{3 + 10i} = 0.486238 + 1.04587i$

Iteration 2:
$$x_1 = 0.486238 + 1.04587i$$
, $x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} =$

$$= 0.486238 + 1.04587i - \frac{0.519354 - 0.402202i}{-1.62730 + 7.23473i}$$

$$= 0.448139 + 1.23665i$$

Iteration 3:
$$x_2 = 0.448139 + 1.23665i$$
, $x_3 = x_2 - \frac{f(x_2)}{f'(x_2)} =$

$$= 0.448139 + 1.23665i - \frac{-0.0711105 - 0.166035i}{-3.19287 + 8.27175i}$$

$$= 0.462720 + 1.22242i$$

Newton's Method-Animation

http://mathfaculty.fullerton.edu/mathews/a2001/Animations/RootFinding/NewtonMethod/NewtonMethod.html

Fixed-Point Iteration Method

Fixed-Point Iteration Method

A very useful way to get a root of a given f(x)

We rearrange f(x) into an **equivalent** form x = g(x)

If
$$r$$
 is a root of $f(x)$,
then $f(r) = r - g(r) = 0 \implies r = g(r)$

r is a fixed-point for function g

$$x_{n+1} = g(x_n)$$
 $n = 0,1,2,3,...$

For given equation f(x) = 0, there may be **many equivalent** fixed-point problems x = g(x) with different choice of g(x)

$$f(x) = x^2 - 2x - 3 = 0$$

$$g_1(x) = \sqrt{2x + 3}$$

$$g_2(x) = \frac{3}{x-2}$$

- **INPUT** x_1 reasonably close to the root tol: the specified tolerance value

```
REARRANGE f(x) INTO x = g(x)
SET x_2 = x_1
REPEAT
     SET x_1 = x_2
     SET x_2 = g(x_1)
     UNTIL (|x_1 - x_0| < \text{tol})
```

NOTES

- The method may converge to a root different from the expected one or diverge.
- Different rearrangements will converge at different rates.

- x_1 reasonably close to the root
- tol: the specified tolerance value

```
REARRANGE f(x) INTO x = g(x)
SET x_2 = x_1
REPEAT
     SET x_1 = x_2
     SET x_2 = g(x_1)
     UNTIL (|x_1 - x_0| < \text{tol})
```

$$f(x) = x^2 - 2x - 3 = 0$$

 $x_{\text{Actual}} = -1,3$

$$g_1(x) = \sqrt{2x + 3}$$

We begin with $x_0 = 4$

tol =
$$1E - 4$$
 OR (0.0001)

$$x_{n+1} = g(x_n)$$

$$x_0 = 4$$
,
 $x_1 = \sqrt{2(4) + 3} = \sqrt{11} = 3.31663$
 $x_2 = \sqrt{2(3.31663) + 3} = \sqrt{9.63325} = 3.10375$
 $x_3 = \sqrt{2(3.10375) + 3} = \sqrt{9.20750} = 3.03439$
 $x_4 = \sqrt{2(3.31663) + 3} = \sqrt{9.06877} = 3.01144$
 $x_5 = \sqrt{2(3.01144) + 3} = \sqrt{9.02288} = 3.00381$
 $x_6 = \sqrt{2(3.00381) + 3} = \sqrt{9.00762} = 3.00127$
 $x_7 = \sqrt{2(3.00127) + 3} = \sqrt{9.00254} = 3.00042$
 $x_8 = \sqrt{2(3.00042) + 3} = \sqrt{9.00084} = 3.00013$
 $x_9 = \sqrt{2(3.00013) + 3} = \sqrt{9.00026} = 3.00004$

- x_1 reasonably close to the root
- input x_1 reasonably size x_2 to 1: the specified tolerance value

```
REARRANGE f(x) INTO x = g(x)
SET x_2 = x_1
REPEAT
     SET x_1 = x_2
     SET x_2 = g(x_1)
     UNTIL (|x_1 - x_0| < \text{tol})
```

$$f(x) = x^2 - 2x - 3 = 0$$

 $x_{\text{Actual}} = -1,3$

$$g_2(x) = \frac{3}{x - 2}$$

We begin with $x_0 = 4$

tol =
$$1E - 4$$
 OR (0.0001)

$$x_0 = 4,$$
 $x_1 = 1.5$
 $x_2 = -6$
 $x_3 = -0.375$
 $x_4 = -1.263158$
 $x_5 = -0.919355$
 $x_6 = -1.02762$
 $x_7 = -0.990876$
 $x_8 = -1.00305$

- x_1 reasonably close to the root
- input x_1 reasonably size x_2 to 1: the specified tolerance value

REARRANGE f(x) **INTO** x = g(x)**SET** $x_2 = x_1$ REPEAT **SET** $x_1 = x_2$ **SET** $x_2 = g(x_1)$ **UNTIL** $(|x_1 - x_0| < \text{tol})$

$$f(x) = x^2 - 2x - 3 = 0$$

 $x_{\text{Actual}} = -1,3$

$$g_3(x) = \frac{x^2 - 3}{2}$$

We begin with $x_0 = 4$ tol = 1E - 4 OR (0.0001)

$$x_0 = 4,$$

 $x_1 = 6.5$
 $x_2 = 19.625$
 $x_3 = 191.070$

Diverges

How it works?

Start on the x-axis at the initial x_0 , go vertically to the curve g(x), then horizontally to the line y=x, then vertically to the curve, and again horizontally to the line.

Repeat this process until the points on the curve **converge** to a fixed point or else **diverge**

How it works?

The different behaviors depend on whether the **slope of the curve** is greater, less, or of opposite sign to the slope of the line

0 < Slope of Curve < 1

-1 < Slope of Curve < 0

|Slope of Curve| ≥ 1

Converges

monotonic convergence

Converges

oscillatory convergence

Diverges

Fixed-Point Iteration - Animation

http://mathfaculty.fullerton.edu/mathews/a2001/Animations/RootFinding/FixedPoint/FixedPoint.html