DM 19 Un corrigé.

Partie I : Non complétude de Q

- 1°) D'après la définition d'une suite de Cauchy, avec $\varepsilon = 1$, il existe $N \in \mathbb{N}$ tel que, pour tout $p, q \ge N$, $|u_p - u_q| \le 1$. En particulier, pour tout $p \ge N$, $|u_p - u_N| \le 1$, puis d'après le corollaire de l'inégalité triangulaire, connu sur \mathbb{Q} , $|u_p| \leq 1 + |u_N|$. Posons $M = \max(1 + |u_N|, \max_{0 \le i \le N} |u_i|)$. Alors, pour tout $p \in \mathbb{N}$, $|u_p| \le M$, donc la suite (u_n) est bornée.
- 2°) $\mathbb{Q}^{\mathbb{N}}$ est un \mathbb{Q} -espace vectoriel d'après le cours, donc il suffit de montrer que l'ensemble S des suites de Cauchy de $\mathbb{Q}^{\mathbb{N}}$ en est un \mathbb{Q} -sous-espace vectoriel.

Il est clair que la suite constamment nulle est de Cauchy, donc $S \neq \emptyset$.

Soit (u_n) et (v_n) deux suites de Cauchy de rationnels et soit $\alpha \in \mathbb{Q}$.

Posons $(w_n) = \alpha(u_n) + (v_n) = (\alpha u_n + v_n).$

Soit $\varepsilon \in \mathbb{Q}_+^*$. Il existe $N_1, N_2 \in \mathbb{N}$ tels que, pour tout $p, q \geq N_1, |u_p - u_q| \leq \frac{\varepsilon}{1 + |\alpha|}$

et pour tout $p, q \ge N_2$, $|v_p - v_q| \le \frac{\varepsilon}{1 + |\alpha|}$.

Posons
$$N = \max(N_1, N_2)$$
. Soit $p, q \in \mathbb{N}$ tels que $p, q \geq N$. Alors $|w_p - w_q| \leq |\alpha| |u_p - u_q| + |v_p - v_q| \leq (1 + |\alpha|) \frac{\varepsilon}{1 + |\alpha|} = \varepsilon$.

Ceci prouve que $(w_n) \in S$, donc S est non vide et stable par combinaison linéaire, ce qu'il fallait démontrer.

- **3°)** Soit $\varepsilon \in \mathbb{Q}_+^*$. Posons $\varepsilon = \frac{p}{N}$, avec $p, N \in \mathbb{N}^*$. Soit $n \ge N$. Alors $\left| \frac{1}{n} 0 \right| = \frac{1}{n} \le \frac{1}{N} \le \frac{p}{N} = \varepsilon$, donc $\frac{1}{n} \xrightarrow[n \to +\infty]{} 0$.
- 4°) Soit $\varepsilon \in \mathbb{Q}_+^*$. Il existe $N \in \mathbb{N}$ tel que, pour tout $n \geq N$, $|u_n \ell| \leq \frac{\varepsilon}{2}$. Soit $p, q \geq N$. $|u_p u_q| = |(u_p \ell) (u_q \ell)| \leq |u_p \ell| + |u_q \ell| \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$. Ainsi, (u_n) est une suite de Cauchy de $\mathbb{Q}^{\mathbb{N}}$.

Remarque. La notation " $\ell = \lim_{n \to +\infty} u_n$ " n'est acceptable que s'il y a unicité de la limite, ce que nous allons démontrer. On suppose donc que $u_n \underset{n \to +\infty}{\longrightarrow} \ell$ et $u_n \underset{n \to +\infty}{\longrightarrow} \ell'$ et

il s'agit de montrer que $\ell = \ell'$. Ainsi, la limite ℓ lorsqu'elle existe ne dépend que de la suite (u_n) et on peut noter $\ell = \lim_{n \to +\infty} u_n$.

Supposons que $\ell \neq \ell'$ et posons $\varepsilon = \frac{|\ell - \ell'|}{2} \in \mathbb{Q}_+^*$. Il existe $N, N' \in \mathbb{N}$ tels que, pour tout $n \geq N$, $|u_n - \ell| \leq \frac{\varepsilon}{2}$ et pour tout $n \geq N'$, $|u_n - \ell'| \leq \frac{\varepsilon}{2}$. Avec $n = \max(N, N')$, on obtient $|\ell - \ell'| = |(u_n - \ell) - (u_n - \ell')| \le |u_n - \ell| + |u_n - \ell'| \le \varepsilon$, donc $|\ell - \ell'| \le \frac{|\ell - \ell'|}{2}$, or $|\ell - \ell'| \in \mathbb{Q}_+^*$, donc $1 \le \frac{1}{2}$ ce qui est faux. Ainsi, $\ell = \ell'$.

5°) a) Il est clair que la suite identiquement nulle converge vers 0, donc $\mathcal{C} \neq \emptyset$. Soit $(u_n), (v_n) \in \mathcal{C}$ et $\alpha \in \mathbb{Q}$. Notons $\ell = \lim_{n \to +\infty} u_n$ et $\ell' = \lim_{n \to +\infty} v_n$.

Posons $(w_n) = \alpha(u_n) + (v_n) = (\alpha u_n + v_n).$

Soit $\varepsilon \in \mathbb{Q}_+^*$. Il existe $N_1, N_2 \in \mathbb{N}$ tels que, pour tout $n \geq N_1$, $|u_n - \ell| \leq \frac{\varepsilon}{1 + |\alpha|}$

et pour tout $n \ge N_2$, $|v_n - \ell'| \le \frac{\varepsilon}{1 + |\alpha|}$.

Posons $N = \max(N_1, N_2)$. Soit $n \ge N$. Alors

$$|w_n - (\alpha \ell + \ell')| \le |\alpha| |u_n - \ell| + |v_n - \ell'| \le (1 + |\alpha|) \frac{\varepsilon}{1 + |\alpha|} = \varepsilon$$

 $|w_n - (\alpha \ell + \ell')| \le |\alpha| |u_n - \ell| + |v_n - \ell'| \le (1 + |\alpha|) \frac{\varepsilon}{1 + |\alpha|} = \varepsilon.$ Ceci prouve que $(w_n) \in \mathcal{C}$ (avec $w_n \underset{n \to +\infty}{\longrightarrow} \alpha \ell + \ell'$), donc \mathcal{C} est non vide et stable par combinaison linéaire, ce qu'il fallait démontrer.

- b) La question précédente prouve en particulier que
- $f(\alpha(u_n) + (v_n)) = \alpha \ell + \ell' = \alpha f((u_n)) + f((v_n)),$ donc f est une application linéaire de \mathcal{C} dans le corps \mathbb{Q} , or \mathcal{C} est un \mathbb{Q} -espace vectoriel, donc f est une forme linéaire. $\mathbf{c})$
- \diamond Montrons que "\leq" est une relation d'ordre sur $\mathbb{Q}^{\mathbb{N}}$.
 - Soit $(u_n) \in \mathbb{Q}^{\mathbb{N}}$. Pour tout $n \in \mathbb{N}$, $u_n \leq u_n$, donc $(u_n) \leq (u_n)$, ce qui prouve la réflexivité.
 - Soit $(u_n), (v_n) \in \mathbb{Q}^{\mathbb{N}}$ telles que $(u_n) \leq (v_n)$ et $(v_n) \leq (u_n)$. Ainsi, pour tout $n \in \mathbb{N}$, $u_n \leq v_n$ et $v_n \leq u_n$, donc $u_n = v_n$. On en déduit que $(u_n) = (v_n)$, donc " \leq " est une relation antisymétrique sur $\mathbb{Q}^{\mathbb{N}}$.
 - Soit $(u_n), (v_n), (w_n) \in \mathbb{Q}^{\mathbb{N}}$ telles que $(u_n) \leq (v_n)$ et $(v_n) \leq (w_n)$. Ainsi, pour tout $n \in \mathbb{N}$, $u_n \leq v_n$ et $v_n \leq w_n$, donc $u_n \leq w_n$. On en déduit que $(u_n) \leq (w_n)$, donc " \leq " est une relation transitive sur $\mathbb{Q}^{\mathbb{N}}$.

En conclusion, " \leq " est une relation d'ordre sur $\mathbb{Q}^{\mathbb{N}}$.

- \diamond Posons $u_0 = 0$, $u_1 = 1$, $v_0 = 1$, $v_1 = 0$ et pour tout $n \ge 2$, $u_n = v_n = 0$.
- $u_0 < v_0$, donc $\neg((u_n) \ge (v_n))$. $u_1 > v_1$, donc $\neg((u_n) \le (v_n))$. Ainsi les deux suites (u_n) et (v_n) ne sont pas comparables. Ceci prouve que " \leq " est une relation d'ordre partielle sur $\mathbb{Q}^{\mathbb{N}}$.
- \diamond Soit $(u_n), (v_n) \in \mathcal{C}$ telles que, pour tout $n \in \mathbb{N}$, $u_n \leq v_n$. Notons $\ell = \lim_{n \to +\infty} u_n$ et $\ell' = \lim_{n \to +\infty} v_n$. Pour montrer que f est croissante, il suffit de montrer que $\ell \leq \ell'$.

Posons $w_n = v_n - u_n$: pour tout $n \in \mathbb{N}$, $w_n \ge 0$ et d'après la question b), $w_n \xrightarrow[n \to +\infty]{} \ell' - \ell$.

Soit $\varepsilon \in \mathbb{Q}_+^*$. Il existe $N \in \mathbb{N}$ tel que, pour tout $n \geq N$, $|w_n - (\ell' - \ell)| \leq \varepsilon$. En particulier, $w_N - \ell' + \ell \le \varepsilon$, donc $\ell' - \ell \ge w_N - \varepsilon \ge -\varepsilon$, car $w_N \ge 0$.

Ainsi, pour tout $\varepsilon \in \mathbb{Q}_+^*$, $\ell - \ell' \le \varepsilon$.

si $\ell - \ell' > 0$, alors en posant $\varepsilon = \frac{\ell - \ell'}{2}$, on a $\ell - \ell' > \varepsilon$, donc $\ell - \ell' \le 0$, ce qu'il fallait démontrer.

 6°)

 \diamond Lemme 1: Pour tout $k \in \mathbb{N}, 2^k \geq k+1$.

En effet, d'après la formule du binôme de Newton, pour tout $k \in \mathbb{N}$,

$$2^k = \sum_{h=0}^k \binom{k}{h} \ge \sum_{h=0}^k 1 = k+1.$$

 $\diamond \quad Lemme \ 2 : \text{Pour tout } k \in \mathbb{N}^*, \ k! \ge 2^{k-1}.$

En effet, soit $k \in \mathbb{N}^*$. Alors $k! = \prod_{h=2}^k h \ge \prod_{h=2}^k 2 = 2^{k-1}$. \diamond Soit $\varepsilon \in \mathbb{Q}_+^*$. D'après la question 3, $\frac{1}{n} \underset{n \to +\infty}{\longrightarrow} 0$, donc il existe $N \in \mathbb{N}^*$ tel que, pour

tout $n \ge N$, $\frac{1}{n} \le \varepsilon$. Soit $p,q \ge N$. On veut montrer que $|s_q - s_p| \le \varepsilon$. Sans perte de généralité, on peut

Alors $s_q - s_p = \sum_{k=p+1}^{q} \frac{(-1)^k}{k!}$, donc par inégalité triangulaire, $|s_q - s_p| \le \sum_{k=p+1}^{q} \frac{1}{k!}$, puis

d'après le lemme 2, $|s_q - s_p| \le \sum_{k=n+1}^q \frac{1}{2^{k-1}} = \frac{(\frac12)^p - (\frac12)^q}{1 - \frac12} \le \frac{1}{2^{p-1}} \le \frac1p$ d'après le lemme

1. Or $p \geq N$, donc $\frac{1}{p} \leq \varepsilon$. Ainsi, $|s_q - s_p| \leq \varepsilon$. Ceci démontre que (s_n) est une suite de Cauchy de rationnels.

Soit $n \in \mathbb{N}$. $s_{2n+3} - s_{2n+1} = -\frac{1}{(2n+3)!} + \frac{1}{(2n+2)!} \ge 0$, donc la suite (s_{2n+1}) est croissante.

Fixons $n \in \mathbb{N}$. Pour tout $p \geq n$, $s_{2p+1} \geq s_{2n+1}$, or en passant aux " ε ", on peut montrer que $s_{2p+1} \xrightarrow[p \to +\infty]{a} \frac{a}{b}$, donc d'après la question 5.c, $\frac{a}{b} \ge s_{2n+1}$.

De plus, $s_{2n+1} \geq s_1 = 0$, donc pour tout $n \in \mathbb{N}$, $0 \leq s_{2n+1} \leq \frac{a}{h}$.

De même, on montre que la suite (s_{2n}) est décroissante, donc que, pour tout $n \in \mathbb{N}$, $s_{2n} \geq \frac{a}{b}$.

En multipliant ces inégalités par (2n)!b, on obtient

$$(2n)!s_{2n}b - \frac{b}{2n+1} \le (2n)!a \le (2n)!s_{2n}b$$
, or $(2n)!s_{2n}b = \sum_{k=0}^{2n} \frac{(-1)^k(2n)!b}{k!} \in \mathbb{Z}$, et

 $(2n)!a \in \mathbb{Z}$, donc dès que $\left|\frac{b}{2n+1}\right| < 1$, $(2n)!a = (2n)!s_{2n}b$. Ceci prouve que la suite (s_{2n}) est constante à partir d'un certain rang.

C'est faux car $s_{2n} - s_{2n+2} = \frac{1}{(2n+1)!} - \frac{1}{(2n+2)!} > 0$. Ainsi la suite de Cauchy (s_n) ne converge pas dans \mathbb{Q} .

Partie II : définition du corps des réels

9°)

 \diamond Soit $(u_n), (v_n) \in \mathcal{S}$. Il s'agit de montrer que $(u_n v_n)$ est une suite de Cauchy.

D'après la question 1, il existe $M_1, M_2 \in \mathbb{Q}_+$ tels que,

pour tout $n \in \mathbb{N}$, $|u_n| \leq M_1$ et $|v_n| \leq M_2$.

Soit $\varepsilon \in \mathbb{Q}_+^*$. Il existe $N_1, N_2 \in \mathbb{N}$ tels que, pour tout $p, q \ge N_1, |u_p - u_q| \le \frac{\varepsilon}{2(M_2 + 1)}$

et pour tout $p, q \ge N_2$, $|v_p - v_q| \le \frac{\varepsilon}{2(M_1 + 1)}$.

Posons $N = \max(N_1, N_2)$. Soit $p, q \ge N$. $|u_p v_p - u_q v_q| = |u_p v_p - u_p v_q + u_p v_q - u_q v_q|$ $\le |u_p||v_p - v_q| + |v_q||u_p - u_q|$ $\le M_1 \frac{\varepsilon}{2(M_1 + 1)} + M_2 \frac{\varepsilon}{2(M_2 + 1)}$ $< \varepsilon, \text{ ce qu'il fallait démontrer.}$

- \diamond Montrons que \mathcal{S} est une \mathbb{Q} -algèbre commutative (sans considérer comme connu le fait que $\mathbb{Q}^{\mathbb{N}}$ est une \mathbb{Q} -algèbre commutative).
 - Pour tout $(u_n), (v_n) \in \mathcal{S}, (u_n) \times (v_n) = (u_n v_n) = (v_n) \times (u_n),$ donc le produit est commutatif.
 - Posons $\mathbf{1} = (1)_{n \in \mathbb{N}}$. On vérifie que pour tout $(u_n) \in \mathcal{S}$, $(u_n) \times \mathbf{1} = (u_n)$, donc $\mathbf{1}$ est élément neutre.
 - Pour tout $(u_n), (v_n), (w_n) \in \mathcal{S}$, $((u_n) \times (v_n)) \times (w_n) = (u_n \times v_n \times w_n) = (u_n) \times ((v_n) \times (w_n))$, donc le produit est associatif.
 - Avec les mêmes notations, $((u_n) + (v_n)) \times (w_n) = (u_n w_n + v_n w_n) = (u_n) \times (w_n) + (v_n) \times (w_n)$, donc le produit est distributif par rapport à l'addition.

On a déjà vu que S est un sous-espace vectoriel, donc un sous-groupe de $\mathbb{Q}^{\mathbb{N}}$, donc ce qui précède montre que c'est un anneau.

De plus, pour tout $(u_n), (v_n) \in \mathcal{S}$, pour tout $\alpha \in \mathbb{Q}$,

 $\alpha.((u_n) \times (v_n)) = (\alpha u_n v_n) = (\alpha.(u_n)) \times (v_n) = (u_n) \times (\alpha.(v_n)), \text{ donc } \mathcal{S} \text{ est bien une } \mathbb{Q}$ -algèbre commutative.

 10°) I = Ker(f), donc I est un sous-espace vectoriel de \mathcal{C} , donc de \mathcal{S} .

En particulier, I est non vide et stable pour l'addition.

Soit $(u_n) \in I$ et $(v_n) \in \mathcal{S}$. D'après la question 1, il existe $M \in \mathbb{Q}_+$ tel que, pour tout $n \in \mathbb{N}$, $|v_n| \leq M$. Ainsi, $|u_n v_n| \leq M |u_n|$: en passant aux epsilons, on montre aisément que $u_n v_n \xrightarrow[n \to +\infty]{} 0$, donc $(u_n) \times (v_n) \in I$.

Ceci démontre que I est un idéal de l'anneau S.

11°) a)

- J est un sous-espace vectoriel de A, donc $0 \in J$. Ainsi, pour tout $a \in A$, $a-a \in J$ et a R a. Ceci prouve que R est réflexive.
- Soit $a, b \in A$ tels que a R b. Ainsi, $b a \in J$, or J est un sous-espace vectoriel de A, donc $a b \in J$ et b R a. Ceci prouve que R est symétrique.
- Soit $a, b, c \in A$ tels que a R b et b R c. Ainsi, $b a \in J$ et $c b \in J$, or J est stable pour l'addition, donc $c a = (c b) + (b a) \in J$ et a R c. Ceci prouve que R est transitive.

En conclusion, R est bien une relation d'équivalence.

Soit $a \in A$. Pour tout $b \in A$, $b \in \overline{a} \iff b - a \in J \iff b \in a + J$, donc $\overline{a} = a + J = \{a + j \mid j \in J\}$.

b)

- \diamond Il faut d'abord montrer que ces trois lois sont correctement définies, c'est-à-dire que, pour tout $a, b \in A$ et $\alpha \in \mathbb{Q}$, les quantités $\overline{a+b}$, $\overline{a \times b}$ et $\overline{\alpha.a}$ ne dépendent que α , \overline{a} et \overline{b} . Soit $a', b' \in A$ tels que $\overline{a} = \overline{a'}$ et $\overline{b} = \overline{b'}$.
 - $\alpha a \alpha a' = \alpha(a a') \in J$ car $a a' \in J$ et J est un sous-espace vectoriel. Ainsi, $\overline{\alpha a} = \overline{\alpha a'}$. Ceci prouve que $\overline{\alpha a}$ ne dépend que de α et de \overline{a} .
 - De même, $(a+b)-(a'+b')=(a-a')+(b-b')\in J$, donc $\overline{a+b}=\overline{a'+b'}$.
 - Enfin, $(ab) (a'b') = ab ab' + ab' a'b' = a(b b') + (a a')b' \in J$, car J est un idéal de A, donc $\overline{ab} = \overline{a'b'}$.
- \diamond Montrons que A/J est une \mathbb{Q} -algèbre commutative.

Soit $a, b, c \in A$ et $\alpha, \beta \in \mathbb{Q}$.

- Montrons que (A/J, +) est un groupe commutatiff :
 - $\overline{a} + \overline{b} = \overline{a+b} = \overline{b} + \overline{a}$, donc l'addition est commutative.
 - $\overline{a} + \overline{0} = \overline{a}$, donc $\overline{0}$ est élément neutre pour l'addition.
 - $\overline{a} + (\overline{b} + \overline{c}) = \overline{a + b + c} = (\overline{a} + \overline{b}) + \overline{c}$, donc l'addition est associative.
 - $\overline{a} + \overline{a} = \overline{0}$, donc \overline{a} est le symétrique de \overline{a} .
- Montrons que $(A/J, +, \times)$ est un anneau commutatif :
 - $\overline{a} \times \overline{b} = \overline{ab} = \overline{b} \times \overline{a}$, donc la multiplication est commutative.
 - $\overline{a} \times (\overline{b} \times \overline{c}) = \overline{a \times b \times c} = (\overline{a} \times \overline{b}) \times \overline{c}$, donc la multiplication est associative.
 - $\overline{1} \times \overline{a} = \overline{a}$, donc $\overline{1}$ est neutre pour la multiplication.
 - $\overline{a} \times (\overline{b} + \overline{c}) = \overline{ab + ac} = (\overline{a} \times \overline{b}) + (\overline{a} \times \overline{c})$, donc la multiplication est distributive par rapport à l'addition.
- Montrons que (A/J, +, .) est un \mathbb{Q} -espace vectoriel :
 - $-1.\overline{a}=\overline{a}$;
 - $-\alpha.(\overline{a}+\overline{b})=(\alpha.\overline{a})+(\alpha.\overline{b});$
 - $(\alpha + \beta).\overline{a} = (\alpha.\overline{a}) + (\beta.\overline{a});$
 - $--(\alpha\beta).\overline{a} = \alpha.(\beta.\overline{a}).$
- Montrons que $(A/J, +, \times, .)$ est une \mathbb{Q} -algèbre : $\alpha.(\overline{a} \times \overline{b}) = (\alpha \overline{a}) \times \overline{b} = \overline{a} \times (\alpha.\overline{b}).$
- **12°)** a) On a $\neg (\forall \varepsilon \in \mathbb{Q}_+^*, \exists N \in \mathbb{N}, \forall n \geq N, |u_n| \leq \varepsilon), \text{ donc}$

il existe $\varepsilon \in \mathbb{Q}_+^*$ tel que pour tout $N \in \mathbb{N}$, il existe $n \geq N$ tel que $|u_n| > \varepsilon$.

De plus, (u_n) est une suite de Cauchy de rationnels, donc il existe $n_0 \in \mathbb{N}$ tel que, pour tout $p, q \ge n_0, |u_p - u_q| \le \frac{\varepsilon}{2}$.

Avec $N = n_0$, il existe $n_1 \ge n_0$ tel que $|u_{n_1}| > \varepsilon$.

Alors, pour tout $n \geq n_0$, $\varepsilon \leq |u_{n_1}| \leq |u_{n_1} - u_n| + |u_n| \leq \frac{\varepsilon}{2} + |u_n|$, donc pour tout $n \ge n_0$, $|u_n| \ge \frac{\varepsilon}{2}$. Ainsi, $\alpha = \frac{\varepsilon}{2}$ convient.

- **b)** Soit $\varepsilon \in \mathbb{Q}_+^*$. Il existe $N \geq n_0$ tel que, pour tout $p, q \geq N$, $|x_p x_q| \leq \alpha^2 \varepsilon$. Soit $p, q \ge N$. $|y_p - y_q| = \frac{|x_p - x_q|}{|x_n x_q|} \le \frac{|x_p - x_q|}{\alpha^2} \le \varepsilon$, donc $(y_n) \in \mathcal{S}$.
- 13°) \mathbb{R} est un anneau commutatif non réduit à $\{0\}$, donc il suffit de montrer que, pour tout $x \in \mathbb{R} \setminus \{0\}$, il existe $y \in \mathbb{R}$ tel que xy = 1.

Soit $x \in \mathbb{R} \setminus \{0\}$. Il existe $(x_n) \in \mathcal{S}$ tel que $x = (x_n)$. $x \neq 0$, donc $(x_n) \notin I$. Alors d'après la question 12.a, il existe $\alpha \in \mathbb{Q}_+^*$ et $n_0 \in \mathbb{N}$ tels que, pour tout $n \geq n_0$, $\alpha \leq |x_n|$.

Considérons alors la suite (y_n) définie en question 12.b. $(y_n) \in \mathcal{S}$, donc on peut poser $y = (y_n) \in \mathbb{R}$.

Pour tout $n \ge n_0$, $x_n y_n = 1$, donc $x_n y_n \xrightarrow[n \to +\infty]{} 1$. Ainsi, $(x_n y_n - 1)_{n \in \mathbb{N}} \in I$, ce qui peut s'écrire $(x_n) \times (y_n) - 1 = 0$ ou encore xy = 1. Ainsi, \mathbb{R} est bien un corps.

Pour tout $x \in \mathbb{Q}$, $j(x) = (x)_{n \in \mathbb{N}}$, où $(x)_{n \in \mathbb{N}}$ désigne la suite constante égale à x, qui est bien de Cauchy, car convergente dans \mathbb{Q} . On vérifie aisément que, pour tout $x, y \in \mathbb{Q}$, pour tout $\alpha \in \mathbb{Q}$, $j(1) = (1)_{n \in \mathbb{N}} = 1_{\mathbb{R}}$, $j(x+y) = (x+y)_{n \in \mathbb{N}} = j(x) + j(y)$, $j(\alpha.x) = \alpha j(x)$ et $j(xy) = j(x) \times j(y)$, donc j est un morphisme de \mathbb{Q} -algèbres.

Soit $x \in Ker(j)$. Ainsi $(x)_{n \in \mathbb{N}} = 0$, donc $(x)_{n \in \mathbb{N}} \in I$, puis x = 0. Ceci prouve que j est injective.

Partie III : l'ordre naturel sur \mathbb{R}

Il faut montrer que la propriété

" $\exists \alpha \in \mathbb{Q}_+^*$, $\exists n_0 \in \mathbb{N}$, $\forall n \geq n_0$, $x_n \geq \alpha$ " ne dépend que de x et non de la suite (x_n) . On suppose donc que cette propriété est vraie et que $x=(x_n)=(y_n)$, où $(x_n),(y_n)\in\mathcal{S}$. Il s'agit de montrer la même propriété pour la suite (y_n) .

 $\overline{(x_n)} = \overline{(y_n)}$, donc $x_n - y_n \underset{n \to +\infty}{\longrightarrow} 0$. Ainsi, il existe $N' \in \mathbb{N}$ tel que, pour tout $n \geq N'$, $|x_n - y_n| \le \frac{\alpha}{2}$. Posons $N = \max(N', n_0)$. Pour tout $n \ge N$,

 $y_n = x_n + (y_n - x_n) \ge \alpha - |x_n - y_n| \ge \alpha - \frac{\alpha}{2} = \frac{\alpha}{2}$, ce qu'il fallait démontrer.

16°)

- \leq est clairement réflexive : pour tout $x \in \mathbb{R}, x \leq x$.
- Soit $x, y \in \mathbb{R}$ tels que $x \leq y$ et $y \leq x$. Supposons que $x \neq y$. Alors x y et y xsont tous deux strictement positifs. Or il existe $(z_n) \in \mathcal{S}$ telle que $x - y = (z_n)$. On sait alors que $y - x = (-z_n)$, donc il existe $n_0, n_1 \in \mathbb{N}$ et $\alpha_1, \alpha_2 \in \mathbb{Q}_+^*$ tels que, pour tout $n \ge n_0$, $z_n \ge \alpha_1$ et pour tout $n \ge n_2$, $-z_n \ge \alpha_2$.

Posons $n_2 = \max(n_0, n_1)$. Alors $z_{n_2} > 0$ (dans \mathbb{Q}) et $-z_{n_2} > 0$. C'est impossible $\operatorname{car} \leq_{\mathbb{Q}} \operatorname{est} \text{ une relation d'ordre sur } \mathbb{Q}.$

Ainsi, x = y et $\leq_{\mathbb{R}}$ est antisymétrique.

— Soit $x, y, z \in \mathbb{R}$ tels que $x \leq y$ et $y \leq z$.

Si x = y ou y = z, il est alors évident que $x \le z$.

Supposons maintenant que $x \neq y$ et $y \neq z$.

Alors y - x et z - y sont strictement positifs.

Il existe $(x_n), (y_n), (z_n) \in \mathcal{S}$ telles que $x = \overline{(x_n)}, y = \overline{(y_n)}$ et $z = \overline{(z_n)}$.

Il existe $\alpha, \beta \in \mathbb{Q}_+^*$ et $p, q \in \mathbb{N}$ tels que, pour tout $n \geq p, y_n - x_n \geq \alpha$ et pour tout $n \ge q$, $z_n - y_n \ge \beta$.

Alors, pour tout $n \ge \max(p, q)$, $z_n - x_n = (z_n - y_n) + (y_n - x_n) \ge \alpha + \beta$, ce qui prouve que z-x est strictement positif, donc que $x \leq z$.

Ceci démontre que < est transitive.

En conclusion, $\leq_{\mathbb{R}}$ est bien une relation d'ordre.

- Soit $x, y \in \mathbb{Q}$ avec x < y. Posons $\alpha = y x \in \mathbb{Q}_+^*$ et $n_0 = 0$. Ainsi, pour tout $n \ge n_0$, $y - x \ge \alpha$, donc $\overline{(y - x)_{n \in \mathbb{N}}}$ est un réel strictement positif, or il s'agit de j(y-x) = j(y) - j(x). Ainsi, j(x) < j(y) et j est bien croissante.
- Par récurrence, on montre facilement que, pour tout $n \in \mathbb{N}$, $\varphi(n) \geq n$. \diamond Soit $\varepsilon \in \mathbb{Q}_+^*$, il existe $N \in \mathbb{N}$ tel que, pour tout $p, q \geq N, |x_p - x_q| \leq \varepsilon$.

Soit $p, q \ge N$. Alors $\varphi(p) \ge p \ge N$ et $\varphi(q) \ge N$, donc $|x_{\varphi(p)} - x_{\varphi(q)}| \le \varepsilon$, ce qui prouve que $(x_{\varphi(n)}) \in \mathcal{S}$.

 \diamond Soit $\varepsilon \in \mathbb{Q}_+^*$, il existe $N \in \mathbb{N}$ tel que, pour tout $p, q \geq N, |x_p - x_q| \leq \varepsilon$. Soit $n \geq N$, alors $\varphi(n) \geq N$, donc $|x_n - x_{\varphi(n)}| \leq \varepsilon$, ce qu'il fallait démontrer.

19°)

 \diamond Posons $x = (x_n)$, où $(x_n) \in \mathcal{S}$.

Soit $\varepsilon \in \mathbb{Q}_+^*$. Il existe $N \in \mathbb{N}$ tel que, pour tout $p, q \geq N$, $|x_p - x_q| \leq \frac{\varepsilon}{2}$. x n'est pas strictement positif, donc il existe $n_1 \geq N$ tel que $x_{n_1} < \frac{\varepsilon}{2}$. De même, -xn'est pas strictement positif, donc il existe $n_2 \geq N$ tel que $-x_{n_2} < \frac{\varepsilon}{2}$.

Soit $n \geq N$. On a $|x_n - x_{n_1}| \leq \frac{\varepsilon}{2}$ et $|x_n - x_{n_2}| \leq \frac{\varepsilon}{2}$, donc $x_n = (x_n - x_{n_1}) + x_{n_1} \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$ et $-x_n = (-x_n + x_{n_2}) - x_{n_2} \le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$. Ainsi, pour tout $n \ge N$, $|x_n| \le \varepsilon$. Ceci prouve que $x_n \xrightarrow[n \to +\infty]{} 0$, dans \mathbb{Q} , donc que x = 0.

- \diamond Soit $x,y \in \mathbb{R}$. Supposons que $\neg(x \leq y)$ et $\neg(y \leq x)$. Alors $x \neq y, y x$ n'est pas strictement positif et x-y n'est pas strictement positif. C'est impossible d'après le point précédent, donc l'ordre construit sur \mathbb{R} est total.
- a) Soit $x, y, z \in \mathbb{R}$ tels que $x \leq y$.

Ainsi, y-x est soit nul, soit un réel strictement positif. Or y-x=(y+z)-(x+z)(d'après les règles de calcul dans le corps \mathbb{R}), donc (y+z)-(x+z) est soit nul, soit un réel strictement positif. Par définition de l'inégalité sur \mathbb{R} , on en déduit que $x + z \le y + z$.

b) Soit $x, y \in \mathbb{R}$ tels que $x \geq 0$ et $y \geq 0$. Posons $x = \overline{(x_n)}$ et $y = \overline{(y_n)}$, où $(x_n), (y_n) \in \mathcal{S}$. Si x = 0 ou y = 0, alors xy = 0.

Supposons maintenant que x > 0 et y > 0. Par définition, il existe $n_0, n_1 \in \mathbb{N}$ et $\alpha_0, \alpha_1 \in \mathbb{Q}_+^*$ tels que, pour tout $n \ge n_0, x_n \ge \alpha_0$ et pour tout $n \ge n_1, y_n \ge \alpha_1$. Alors, d'après les propriétés supposées connues de $\le_{\mathbb{Q}}$, pour tout $n \ge \max(n_0, n_1)$, $x_n y_n \ge \alpha_0 \alpha_1$. Or $\alpha_0 \alpha_1 \in \mathbb{Q}_+^*$, donc $xy = \overline{(x_n y_n)}$ est un réel strictement positif.

21°) Soit $x, y \in \mathbb{R}$ tels que x < y. Il existe $(x_n), (y_n) \in \mathcal{S}$ telles que $x = \overline{(x_n)}$ et $y = \overline{(y_n)}$.

Il s'agit de montrer qu'il existe $\beta \in \mathbb{Q}$ tel que $x = \overline{(x_n)} < \beta = j(\beta) = \overline{(\beta)_{n \in \mathbb{N}}}$ et $\overline{(\beta)} < y = \overline{(y_n)}$, c'est-à-dire qu'il existe $\beta \in \mathbb{Q}$, $\gamma \in \mathbb{Q}_+^*$ et $N \in \mathbb{N}$ tels que, pour tout $n \geq N$, $\gamma \leq \beta - x_n$ et $\gamma \leq y_n - \beta$.

x < y, donc il existe $\alpha \in \mathbb{Q}_+^*$ et $n_0 \in \mathbb{N}$ tels que, pour tout $n \ge n_0$, $\alpha \le y_n - x_n$.

De plus, (x_n) et (y_n) sont des suites de Cauchy, donc il existe $N \ge n_0$ tel que, pour tout $p, q \ge N$, $|x_p - x_q| \le \frac{\alpha}{4}$ et $|y_p - y_q| \le \frac{\alpha}{4}$.

Soit $n \ge N$. $|x_n - x_N| \le \frac{\alpha}{4}$, donc $x_n \le x_N + \frac{\alpha}{4}$.

De même, $|y_N - y_n| \leq \frac{\alpha}{4}$, donc $y_n \geq y_N - \frac{\alpha}{4}$, mais $y_N \geq x_N + \alpha$, donc $y_n \geq x_N + 3\frac{\alpha}{4}$. Ainsi, pour tout $n \geq N$, $x_n \leq x_N + \frac{\alpha}{4} \leq x_N + 3\frac{\alpha}{4} \leq y_n$, donc si l'on pose $\beta = x_N + \frac{\alpha}{2} \in \mathbb{Q}$, pour tout $n \geq N$, $\frac{\alpha}{4} \leq \beta - x_n$ et $\frac{\alpha}{4} \leq y_n - \beta$, ce qu'il fallait démontrer.

22°) Soit $x \in \mathbb{R}$.

- \diamond Existence: Notons $A = \{n \in \mathbb{Z} \mid n \leq x\}.$
 - x-1 < x, donc d'après la question précédente, il existe $\alpha \in \mathbb{Q}$ tel que $x-1 < \alpha < x$. Posons $n = \lfloor \alpha \rfloor$ (la partie entière des rationnels est supposée connue conformément à l'énoncé). Alors $n \in \mathbb{Z}$ et $n \le \alpha < x$, donc $n \in A$. On a prouvé que A est une partie non vide de \mathbb{Z} .
 - x < x + 1, donc il existe $\beta \in \mathbb{Q}$ tel que $x < \beta < x + 1$. Si $n \in A$, alors $n \le \beta$, donc $n \le |\beta|$. Ceci prouve que A est majorée dans \mathbb{Z} .
 - Dans le cours "logique et vocabulaire ensembliste" (page 43), on a prouvé en utilisant uniquement \mathbb{N} et la construction de \mathbb{Z} , que toute partie non vide majorée de \mathbb{Z} possède un maximum. On peut donc poser $n = \max(A) \in \mathbb{Z}$.
 - $n \in A$, donc $n \le x$ et $n + 1 \notin A$, donc n + 1 > x, ce qui prouve l'existence.
- \diamond *Unicité*: Supposons qu'il existe $n, m \in \mathbb{Z}$ tels que $n \leq x < n+1$ et $m \leq x < m+1$. Alors $n \leq x < m+1$ et $m \leq x < n+1$, or m, n, m+1 et n+1 sont des entiers, donc $n \leq m$ et $m \leq n$. Ainsi, n=m ce qui montre l'unicité.
- 23°) Soit $x, y \in \mathbb{R}$ tels que x > 0 et y > 0. Posons $n = \left\lfloor \frac{y}{x} \right\rfloor + 1$: d'après la question précédente, $n > \frac{y}{x} > 0$, donc $n \in \mathbb{N}^*$. De plus, $n > \frac{y}{x}$ et x > 0, donc nx > y.

Partie IV : complétude de \mathbb{R}

Pour achever complètement la construction de \mathbb{R} , il y a encore un peu de travail, qui aurait pu constituer une quatrième partie. Voici le travail à faire :

En posant, pour tout $x \in \mathbb{R}$, |x| = x si $x \ge 0$ et |x| = -x si $x \le 0$, on définit la valeur absolue de tout réel. Il est facile de montrer que, pour tout $x, y \in \mathbb{R}$, $|x| = 0 \iff x = 0$, $|xy| = |x| \times |y|$, $|x|^2 = x^2$, $|x + y| \le |x| + |y|$ et $||x| - |y|| \le |x - y|$.

On peut alors définir les notions usuelles de suites convergentes de réels et de suites de Cauchy de réels.

On peut alors montrer que \mathbb{R} est complet, c'est-à-dire que toute suite de Cauchy de \mathbb{R} est convergente, puis en déduire la propriété de la borne supérieure, ce qui achève la construction de \mathbb{R} .

Le lecteur intéressé pourra consulter sur l'internet par exemple l'article d'Abdellah Bechata "Construction des nombres réels".