Задача 1 (Молярная теплоемкость)

Посчитать молярную теплоемкость газа для изохорного, изобарного, изотермического и адиабатного процессов.

Ombem:
$$C_V = \frac{i}{2}R$$
 $C_p = \left(\frac{i+2}{2}\right)R$ $C_T \to \infty$ $C_Q \to 0$

Задача 2 (Формула Майера)

Пусть C_p — молярная теплоёмкость идеального газа в изобарном процессе, C_V — молярная теплоёмкость этого же газа в изохорном процессе. Докажите, что $C_p - C_V = R$, где R — газовая постоянная.

Задача 3 (Экспериментальное определение показателя адиабаты)

Экспериментально определить отношение теплоёмкостей газа при постоянном давлении и постоянном объёме $\gamma \equiv \frac{C_p}{C_V}$ можно следующим методом. Определённое количество молей газа ν , начальные значения объёма и давления которого равны V_0 и p_0 , нагревают дважды с помощью спирали, по которой пропускают один и тот же ток в течение одинакового времени: сначала — при постоянном объёме, причём конечное давление составляет p, затем — при постоянном давлении, причём конечный объём составляет V^* .

- 1. Найдите по этим данным γ , считая газ идеальным.
- 2. Найдите число атомов в молекулах этого идеального газа.

Omsem:
$$\gamma = \frac{V_0(p-p_0)}{p_0(V^*-V_0)}$$
 $i = \frac{2 p_0(V^*-V_0)}{pV_0-p_0V^*}$

Задача 4 (Работа, внутренняя энергия и теплоемкость)

Один моль идеального газа нагревают при таких условиях, что давление газа пропорционально его объему:

$$p = \alpha V$$

где α — постоянная.

- 1. Найдите работу газа, если известна начальная температура T_1 и конечная температура T_2 .
- 2. Найдите изменение внутренней энергии
- 3. Найдите теплоемкость газа в этом процессе.

Omsem:
$$A = \frac{1}{2}\nu R(T_2 - T_1)$$
 $\Delta U = \frac{i}{2}\nu R(T_2 - T_1)$ $C = \frac{R}{2}(1+i)$

Задача 5 (КПД) Вычислите КПД цикла, изображённого на рисунке. Рабочим телом служит идеальный одноатомный газ.

Ответ:
$$\eta = \frac{4}{23}$$

$\begin{array}{c} p \\ 2p_0 \\ \hline p_0 \\ \hline V_0 \\ \hline 3V_0 \\ \hline V \end{array}$

Задача 6 (Перестроить процесс)

Над ν молями идеального газа совершают циклический процесс, изображённый на рисунке. Температуры газа в состояниях 1 и 2 равны T_1 и T_2 соответственно. На участке 3–4 газу сообщили количество теплоты Q. В процессе 1–2 давление растёт пропорционально квадратному корню из абсолютной температуры.

- 1. Перестроить процесс в координатах p(V)
- 2. Найдите работу, совершённую газом за цикл.

Ответ:
$$A = Q - \frac{vR}{2}(T_2 - T_1)$$

Краткая теоретическая сводка

Лекция 4	
Основное уравнение МКТ	$p = \frac{1}{3} m n \overline{v^2}$
Закон Дальтона для давления смеси газов	$p = p_1 + p_2 + \dots$
Постоянные Больцмана, число Авогадро и универсальная газовая постоянная	$N_A = 6 \cdot 10^{23} \frac{1}{\text{моль}}$ $k = 1.38 \cdot 10^{-23} \frac{\text{Дж}}{\text{К}}$ $R = k \cdot N_A = 8.31 \frac{\text{Дж}}{\text{К} \cdot \text{моль}}$
Уравнение Менделеева-Клапейрона (уравнение состояния ид. газа)	$pV = \nu RT$
Абсолютная температура. Связь с кинетической энергией.	$T = t(^{\circ}C) + 273$ $\overline{E_{\kappa}} = \frac{i}{2}kT$
Нормальные условия	1. $p = p_{\text{атм}} = 10^5 \Pi \text{а}$ 2. $T = 273 \text{K}$
Изотермический процесс $(T = const, v = const)$	pV = const
Изобарный процесс $(p = const, v = const)$	$\frac{V}{T} = const$
Изохорный процесс $(V = const, v = const)$	$\frac{p}{T} = const$

Лекция 5	
Внутренняя энергия идеального газа	$U = \overline{E_{\kappa}} \cdot N$ $U = \frac{i}{2}kT \cdot N = \frac{i}{2}\nu RT = \frac{i}{2}pV$
Нулевое начало термодинамики	С течением времени в любой системе $T o const \ p o const \ V o const$
Теплоемкость (обычная, удельная(массовая), молярная)	$C \equiv \frac{Q}{\Delta T}$ $C_m \equiv \frac{Q}{m \Delta T}$ $C_\mu \equiv \frac{Q}{v \Delta T}$ $\Delta T \rightarrow 0$

Молярную теплоемкость в термодинамике обычно обозначают просто С вместо С ,,)

μ	
Первое начало термодинамики	$Q = A + \Delta U$
Работа	A = S(под графиком p от V)
Количество теплоты	$Q = u \cdot S ig($ под графиком \mathcal{C}_μ от $T ig)$
кпд	$\eta \equiv rac{A_{ ext{полн}}}{Q_{ ext{получ}}} = rac{Q_{ ext{получ}} - \left Q_{ ext{отд}} ight }{Q_{ ext{получ}}}$