TELECOM COMPANY CUSTOMER CHURN

Began the project by importing all the necessary libraries and importing the raw dataset.

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from scipy import stats
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
from sklearn.ensemble import RandomForestClassifier
import xgboost as xgb
from sklearn.metrics import classification_report, roc_auc_score
from sklearn.metrics import confusion_matrix
from sklearn.metrics import roc_curve
df = pd.read csv(r"C:\Users\PC\Desktop\TelecomProject\CustomerChurnRawData.csv")
df.head()
  customerID gender SeniorCitizen Partner Dependents tenure PhoneService MultipleLines InternetService OnlineSecurity ... DeviceProtection TechSupport St
        7590-
                                                                                No phone
                                                   No
                                                                                                    DSL
                                                                                                                   No ...
                                                                                                                                                    No
              Female
                                 0
                                                            1
                                                                         No
                                                                                                                                       No
       VHVEG
                                                                                   service
        5575-
                                                                                                    DSL
                Male
                                 0
                                                           34
                                                                                                                                       Yes
                                       No
                                                   No
                                                                         Yes
                                                                                      No
                                                                                                                   Yes ...
                                                                                                                                                    No
      GNVDE
        3668-
                Male
                                 0
                                                   No
                                                            2
                                                                        Yes
                                                                                      No
                                                                                                    DSL
                                                                                                                                       No
                                       No
                                                                                                                   Yes ...
                                                                                                                                                    No
       QPYBK
```

No phone

DSL

No

7795-

CFOCW

DATA CLEANING.

Began the data cleaning process by checking and clearing duplicates and null values, then changing data types which needed changing.

DATA CLEANING

EXPLORATORY DATA ANALYSIS

While exploring the data, I carried out the following.

1. Checked the distribution of monthly charges using a histogram.

```
### Checking the distribution of Monthly Charges on the customers using a Histogram

plt.figure(figsize=(10, 5))
sns.histplot(df["MonthlyCharges"], kde=True)
plt.title("Distribution of Monthly Charges")
plt.xlabel("Monthly Charges")
plt.ylabel("Frequency")
plt.show()
```


2. Checked the distribution of customer tenure.

```
### Checking the distribution of Customer Tenure with the Telco Company using a histogram

plt.figure(figsize=(10, 5))
sns.histplot(df['tenure'], kde=True)
plt.title("Distribution of Tenure")
plt.xlabel("Tenure")
plt.ylabel("Frequency")
plt.show()
```


3. A count plot of contract type with the highest churn rates.

```
### Churn Rate per Contract Type

plt.figure(figsize=(8, 5))
sns.countplot(x=df['Contract'], hue=df['Churn'])
plt.title('Churn Rate by Contract Type')
plt.xlabel('Contract Type')
plt.ylabel('Count')
plt.legend(title='Churn', labels=['No', 'Yes'])
plt.show()
```

Churn Rate by Contract Type

2. A correlation matrix for tenure, monthly charges, and total charges.

```
### Correlation Heatmap of Tenure, MonthlyCharges, and TotalCharges

correlation_matrix = df[['tenure', 'MonthlyCharges', 'TotalCharges']].corr()

plt.figure(figsize=(8, 5))
sns.heatmap(correlation_matrix, cmap='coolwarm', annot=True, fmt='.2f')
plt.title('Correlation Heatmap')
plt.show()
```


Feature Engineering.

Began the feature engineering process by gouping tenures and also grouping charges per month.

Feature Engineering

```
### Confirming that the entire dataframe does not contain nulls
df.isnull().sum().sum()
### Grouping the tenure based on duration
def tenure_group(tenure):
   if tenure <= 12:
       return '0-1 Year'
   elif tenure <=24:
       return '1-2 Years'
   elif tenure <=48:
       return '2-4 Years'
       return '4+ Years'
df['TenureGroup'] = df['tenure'].apply(tenure_group)
C:\Users\PC\AppData\Local\Temp\ipykernel_9360\3011640385.py:14: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
df['TenureGroup'] = df['tenure'].apply(tenure_group)
### Creating a Charge Per Month Column
df['ChargePerMonth'] = df['TotalCharges'] / (df['tenure'] + 1)
```

This was followed by getting the total services used by each customer, performing one-hot encoding on several columns, and dropping columns which won't be used for predictive analysis.

```
art com Berennour 1 - art rocatona Bes 1 / fart cenare 1 . 1/
   ### Creating a column for the total number of services used by a single customer
   service_cols = ['PhoneService', 'InternetService', 'OnlineSecurity', 'OnlineBackup', 'DeviceProtection', 'TechSupport', 'StreamingTV', 'Strea
  df['TotalServices'] = df[service_cols].apply(lambda x: sum(x == 'Yes'), axis=1)
   C:\Users\PC\AppData\Local\Temp\ipykernel_9360\2763743354.py:5: SettingWithCopyWarning:
   A value is trying to be set on a copy of a slice from a DataFrame.
   Try using .loc[row_indexer,col_indexer] = value instead
   See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
    df['TotalServices'] = df[service_cols].apply(lambda x: sum(x == 'Yes'), axis=1)
   ### One-Hot Encoding for Nominal Categories
  df = pd.get_dummies(df, columns=['Contract', 'PaymentMethod', 'InternetService'], drop_first=True)
   ### Label Encoding for Tenure Group, which is an Ordinal Category
  le = LabelEncoder()
   df['TenureGroup'] = le.fit_transform(df['TenureGroup'])
  # Removing unwanted columns so as to start creating predictive models
  df = df.drop(columns=['SeniorCitizen', 'Partner', 'Dependents', 'PhoneService', 'MultipleLines', 'OnlineSecurity', 'OnlineBackup', 'DeviceProtection', 'T
```

PREDICTIVE ANALYSIS.

Splitting the training and testing data in 80% and 20% respectively, and performing logistic regression, random forest, and XGBoost.

```
### Splitting Data into Train & Test Sets

x = df.drop(columns=['Churn', 'customerID'])
y = df['Churn']

# Splitting data (80% training, 20% testing)
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42)
# Display dataset sizes
print('Training set size:', x_train.shape)
print('Testing set size:', x_test.shape)
```

```
## Logistic Regression

# training the model

log_model = LogisticRegression(max_iter=1000)

log_model.fit(x_train, y_train)

# making predictions

y_pred_log = log_model.predict(x_test)

# evaluating accuracy

accuracy_log = accuracy_score(y_test, y_pred_log)

print("Logistic Regression Accuracy:", accuracy_log)

Logistic Regression Accuracy: 0.7917555081734187
```

```
## Random Forest Classifier to handle Complex Relationships

# Train the model

rf_model = RandomForestClassifier(n_estimators=100, random_state=42)

rf_model.fit(x_train, y_train)

# make predictions

y_pred_rf = rf_model.predict(x_test)

# evaluate accuracy

accuracy_rf = accuracy_score(y_test, y_pred_rf)

print("Random Forest Accuracy:", accuracy_rf)
```

Random Forest Accuracy: 0.7512437810945274

```
## XGBoost (Optimized Gradient Boosting Model)
## Train the model

xgb_model = xgb.XGBClassifier(use_label_encoder=False, eval_metric='logloss', random_state=42)
xgb_model.fit(x_train, y_train)

## make predictions

y_pred_xgb = xgb_model.predict(x_test)

## evaluate accuracy

accuracy_xgb = accuracy_score(y_test, y_pred_xgb)
print("XGBoost Accuracy:", accuracy_xgb)

C:\Users\PC\AppData\Roaming\Python\Python312\site-packages\xgboost\core.py:158: UserWarning: [22:07:44] WARNING: C:\buildkite-agent\builds\buildkite-winows-cpu-autoscaling-group-i-08cbc0333d8d4aae1-1\xgboost\xgboost-ci-windows\src\learner.cc:740:
Parameters: { "use_label_encoder" } are not used.

warnings.warn(smsg, UserWarning)
XGBoost Accuracy: 0.7704335465529495
```

Performed Feature Importance on Random Forest and XGBoost due to the nature of the dataset, and converted the results of feature importance and predictions to CSV.

```
### Feature Importance of Random Forest
rf_importance = rf_model.feature_importances_
feature_names = x.columns
# Convert to DataFrame
importance_df = pd.DataFrame({'Feature': feature_names, 'Importance': rf_importance})
importance_df = importance_df.sort_values(by='Importance', ascending=False)
importance_df.to_excel('RF_feature_importance.xlsx', index=False)
### Feature Importance from XGBoost
xgb_importance = pd.DataFrame({'Feature': x.columns, 'Importance': xgb_model.feature_importances_})
xgb_importance = xgb_importance.sort_values(by='Importance', ascending=False)
xgb_importance.to_excel('xgb_feature_importance.xlsx', index=False)
# Save dataset with churn predictions
df_test_results = x_test.copy()
df test results['ActualChurn'] = y test
df_test_results['PredictedChurn'] = y_pred_xgb # Best Model
df_test_results.to_excel('churn_predictions.xlsx', index=False)
print("Churn predictions saved for Tableau")
print(df_test_results)
```

Churn predictions saved for Tableau