$$R_{d^1,d^2,\ldots,d^p} = \Pr\left\{\bigcup_{\text{all } \left(d^1,d^2,\ldots,d^p\right)\text{-MP }X} \{Y \in \Omega \mid Y \geq X\}\right\} = \Pr\{B_1 \cup B_2 \cup \cdots \cup B_r\}.$$

Hence, the multicommodity reliability can be calculated by applying the inclusion-exclusion method [8–11]. Note that $\Pr\{Y \geq X\} = \Pr\{y_1 \geq x_1\} \times \Pr\{y_2 \geq x_2\} \times \cdots \times \Pr\{y_n \geq x_n\}$ by Assumption 4.

4. NUMERICAL EXAMPLES

Two numerical examples are presented to illustrate the proposed procedure.

4.1. Example 1

The network and its arc-data are given in Figure 2 and Table 1, respectively. In this example, p=2, n=4, and $(C_1,C_2,C_3,C_4)=(2,3,3,2)$. All (d^1,d^2) -MPs for $(d^1,d^2)=(2,2)$ and the multicommodity reliability $R_{2,2}$ can be derived as follows.

STEP 1. There are four MPs: $P_1 = \{a_1, a_3\}, P_2 = \{a_1, a_4\}, P_3 = \{a_2, a_3\}, P_2 = \{a_2, a_4\}.$

STEP 2. Generate all flow vectors $F=(f_1^1,f_2^1,f_3^1,f_4^1,f_1^2,f_2^2,f_3^2,f_4^2)$ of the following integer-programming by applying the implicit enumeration method:

Figure 2. A simple network for Example 1.

Table 1. The arc data of Example 1.

Arc	Capacity	Probability	α_i^1	α_i^2
a_1	0	0.05	1	1
	1	0.10		
	2	0.85		
a ₂	0	0.05	1	1.5
	1	0.10		
	2	0.15		
	3	0.70		
a_3	0	0.05	1	2
	1	0.05		
	2	0.10		
	3	0.80		
a 4	0	0.05	1	0.5
	1	0.15		
	2	0.80		