MA4270 Data Modelling and Computation

Final Examination Helpsheet

AY2023/24 Semester 2 · Prepared by Tian Xiao @snoidetx

Perceptron

Classification Problems: To learn a classifier f_{θ} that classifies labels.

- Dataset: $\mathcal{D} = \{(\mathbf{x}_t, y_t)\}_{t=1}^n$ where $\mathbf{x}_t \in \mathbb{R}^d$ and $y_t \in \{-1, +1\}$. Classifier: $f_{\boldsymbol{\theta}} : \mathbb{R}^d \to \{-1, +1\}$.
- $\qquad \qquad \triangleright \text{ Linear classifier: } f_{\pmb{\theta}} = \text{sign } (\pmb{\theta}^{\top} \mathbf{x}).$ $\bullet \text{ Training error: } \hat{E}(\pmb{\theta}) = \frac{1}{n} \sum_{t=1}^{n} \text{Loss}(y_t, f_{\pmb{\theta}}(\mathbf{x}_t)).$
 - $\triangleright \text{ 0-1 loss: } \operatorname{Loss}(y, \hat{y}) = \ell(y, \hat{y}) = \mathbf{1}\{\hat{y} \neq y\} = \begin{cases} 1 & \hat{y} \neq y \\ 0 & \text{otherwise} \end{cases}$
 - \triangleright Linear separable: $\exists \boldsymbol{\theta} \ [\hat{E}(\boldsymbol{\theta}) = 0].$

The Perceptron Algorithm:

- ① Initialize $\boldsymbol{\theta}^{(0)}$ to some value (e.g., $\mathbf{0}$), and initialize index k to 0.
- 2 Repeatedly perform the following:
 - \triangleright Select the next example (\mathbf{x}_t, y_t) from the training set and check whether $\boldsymbol{\theta}^{(k)}$ classifies it correctly.
 - ▷ If it is incorrect (i.e., $y_t \left(\boldsymbol{\theta}^{(k)} \right)^{\top} \mathbf{x}_t < 0$), set $\boldsymbol{\theta}^{(k+1)} \leftarrow \boldsymbol{\theta}^{(k)} + y_t \mathbf{x}_t$ and increment $k \leftarrow k+1$.
- Assumptions:
 - ① Inputs are bounded: $\exists R \in (0, \infty) \ \forall \mathbf{x}_t \in \mathcal{D} \ [\|\mathbf{x}_t\| \leq R].$
 - ② Linearly separable: $\exists \boldsymbol{\theta}^* \ \exists \gamma > 0 \ [\min_t y_t (\boldsymbol{\theta}^*)^\top \mathbf{x}_t \geq \gamma].$
- Convergence. Under the initial vector $\boldsymbol{\theta}^{(0)} = \mathbf{0}$, for any dataset \mathcal{D} satisfying the above assumptions, the perceptron algorithm produces a vector $\hat{\boldsymbol{\theta}}^{(k)}$ classifying every example correctly after at most $k_{\max} =$ $\frac{R^2 \|\boldsymbol{\theta}^*\|^2}{2}$ mistakes (and hence update steps).

Proof. Let
$$R = \max \|\mathbf{x}_t\|$$
, $\gamma = \min y_t(\boldsymbol{\theta}^*)^{\top} \mathbf{x}_t$ for $t = 1, 2, \dots, n$.

$$(\mathbf{0}^*)^{\top} \mathbf{\theta}^{(k)} = (\mathbf{0}^*)^{\top} (\mathbf{0}^{(k-1)} + y_t \mathbf{x}_t) \geq (\mathbf{0}^*)^{\top} \mathbf{\theta}^{(k-1)} + \gamma.$$
 So

- $\begin{aligned} & (\boldsymbol{\theta}^*)^{\top} \boldsymbol{\theta}^{(k)} \geq k \gamma \\ & \|\boldsymbol{\theta}^{(k)}\|_{2}^{2} = \|\boldsymbol{\theta}^{(k-1)}\|_{2}^{2} + 2 \langle \boldsymbol{\theta}^{(k-1)}, y_{t} \mathbf{x}_{t} \rangle + \|\mathbf{x}_{t}\|_{2}^{2} \leq \|\boldsymbol{\theta}^{(k-1)}\|_{2}^{2} + \|\mathbf{x}_{t}\|_{2}^{2}. \end{aligned}$ So $\|\boldsymbol{\theta}^{(k)}\|^2 \le kR^2$.
- ③ By Cauchy-Schwarz inequality $\langle \mathbf{v}, \mathbf{w} \rangle \leq \|\mathbf{v}\| \cdot \|\mathbf{w}\|$, we have $1 \geq \frac{\langle \boldsymbol{\theta}^{(k)}, \boldsymbol{\theta}^* \rangle}{\|\boldsymbol{\theta}^{(k)}\| \cdot \|\boldsymbol{\theta}^*\|} \geq \frac{k\gamma}{\sqrt{kR^2\|\boldsymbol{\theta}^*\|}}$, hence $k \leq \frac{R^2\|\boldsymbol{\theta}^*\|^2}{\gamma^2}$.
- Margin: Let $\gamma = \min_{t=1,2,\dots,n} y_t \boldsymbol{\theta}^\top \mathbf{x}_t$. The quantity $\gamma_{\text{geom}} = \frac{\gamma}{\|\boldsymbol{\theta}\|}$ is the smallest distance from any example \mathbf{x}_t to the decision boundary specified by $\boldsymbol{\theta}$.

Support Vector Machine (SVM)

Maximum Margin Classifier: $\min_{\mathbf{a}} \frac{1}{2} ||\mathbf{\theta}||^2 \text{ s.t. } \forall t \ [y_t \mathbf{\theta}^\top \mathbf{x}_t \ge 1] \text{ (unique)}.$

- SVM with offset: $\min_{\boldsymbol{\theta}, \theta_0} \frac{1}{2} \|\boldsymbol{\theta}\|^2$ s.t. $\forall t \ [y_t (\boldsymbol{\theta}^\top \mathbf{x}_t + \theta_0) \ge 1]$.
 - \triangleright Support vectors: On margin $(y_t (\boldsymbol{\theta}^{\top} \mathbf{x}_t + \theta_0) = 1)$.
- Soft-margin SVM: $\min_{\boldsymbol{\theta}, \theta_0, \zeta} \frac{1}{2} \|\boldsymbol{\theta}\|^2 + C \sum_{t=1}^n \zeta_t \text{ s.t. } \forall t \left[y_t \left(\boldsymbol{\theta}^\top \mathbf{x}_t + \theta_0 \right) \ge 1 \zeta_t \right]$. **Kernel:** A measure of similarity. $\triangleright \boldsymbol{\zeta} = (\zeta_1, \zeta_2, \cdots, \zeta_n) \ge \mathbf{0}$ is called *slack variables*. \triangleright Support vectors: On margin/within margin/misclassified. Kernel matrix: A function k *semidefinite* (PSD) kernel if ① it is symmetric, i.e., $k(\mathbf{x})$
- Hinge-loss formulation: $\min_{\boldsymbol{\theta}, \theta_0} \frac{1}{2} \|\boldsymbol{\theta}\|^2 + C \sum_{t=1}^n \left[1 y_t \left(\boldsymbol{\theta}^\top \mathbf{x}_t + \theta_0 \right) \right]_+.$ $\triangleright \text{ Hinge loss: } z \to [1 z]_+ = \max\{0, 1 z\}.$

 - \triangleright Interpretation: Total hinge loss with regularization term $\frac{1}{2} \|\boldsymbol{\theta}\|^2$.

Logistic Regression

Logistic Likelihood Model: $\Pr(y \mid \mathbf{x}) = \frac{1}{1 + \exp(-y(\boldsymbol{\theta}^{\top}\mathbf{x} + \theta_0))}$

- $g(z) = \frac{1}{1+e^{-z}} \in (0,1)$ assigns likelihood to points.
 - Scaling the dataset by c > 1 pushes prediction closer to 0 or 1. Linear classifier chooses the label that is more likely under the logistic model.
- ► Log-odds $\log \frac{\Pr(y=1|\mathbf{x})}{\Pr(y=-1|\mathbf{x})}$ is a linear function $\langle \boldsymbol{\theta}, \mathbf{x} \rangle + \theta_0$ of inputs.

 Maximum likelihood estimate (MLE) of parameters:

$$\begin{aligned} & (\hat{\boldsymbol{\theta}}, \hat{\boldsymbol{\theta}}_0) = \arg \max_{\boldsymbol{\theta}, \boldsymbol{\theta}_0} \prod_{t=1}^n \Pr(y_t \mid \mathbf{x}_t; \boldsymbol{\theta}, \boldsymbol{\theta}_0) & \text{(likelihood)} \\ & = \arg \max_{\boldsymbol{\theta}, \boldsymbol{\theta}_0} \prod_{t=1}^n \frac{1}{1 + \exp(-y_t(\boldsymbol{\theta}^\top \mathbf{x}_t + \boldsymbol{\theta}_0))} & \text{(likelihood)} \\ & = \arg \max_{\boldsymbol{\theta}, \boldsymbol{\theta}_0} \prod_{t=1}^n \log \frac{1}{1 + \exp(-y_t(\boldsymbol{\theta}^\top \mathbf{x}_t + \boldsymbol{\theta}_0))} & \text{(log-likelihood)} \\ & = \arg \min_{\boldsymbol{\theta}, \boldsymbol{\theta}_0} \sum_{t=1}^n \log \left(1 + \exp\left(-y_t(\boldsymbol{\theta}^\top \mathbf{x}_t + \boldsymbol{\theta}_0)\right)\right). \end{aligned}$$

• Regularization: $\min_{\boldsymbol{\theta}, \theta_0} \frac{1}{2} \|\boldsymbol{\theta}\|^2 + C \sum_{t=1}^n \log \left(1 + \exp\left(-y_t \left(\boldsymbol{\theta}^\top \mathbf{x}_t + \theta_0\right)\right)\right).$

- \triangleright Logistic loss: $z \to \log (1 + e^{-z})$.
- \triangleright Interpretation: Total logistic loss with regularization term $\frac{1}{2} \|\boldsymbol{\theta}\|^2$.
- Softmax function (multiclass): $\Pr(y = c \mid \mathbf{x}) = \frac{\exp(\boldsymbol{\theta}_c^{\top} \mathbf{x} + \theta_{0,c})}{\sum\limits_{c'=1}^{M} \exp(\boldsymbol{\theta}_{c'}^{\top} \mathbf{x} + \theta_{0,c'})}$. > When M = 2, we recover logistic model by setting $(\boldsymbol{\theta}_c, \theta_{0,c}) = \frac{\exp(\boldsymbol{\theta}_c^{\top} \mathbf{x} + \theta_{0,c'})}{\exp(\boldsymbol{\theta}_c^{\top} \mathbf{x} + \theta_{0,c'})}$.
 - $(\mathbf{0},0)$ for one of the two classes.

Linear Regression

- Least squares estimate (LSE): $\hat{\mathbf{\Theta}} = (\mathbf{X}^{\top}\mathbf{X})^{-}$
 - \triangleright Unique solution if $\mathbf{X}^{\top}\mathbf{X}$ is invertible.
- Gaussian model: $y_t = (\boldsymbol{\theta}^*)^\top \mathbf{x}_t + \theta_0^* + z_t$, where $z_t \sim \mathcal{N}(0, \sigma^2)$.
 - ightharpoons Gaussian PDF: $\mathcal{N}(z; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(z-\mu)^2}{2\sigma^2}\right)$.
 - $\triangleright \Pr(y \mid \mathbf{x}) = \mathcal{N}(y; (\boldsymbol{\theta}^*)^\top \mathbf{x} + \theta_0^*, \sigma^2)$ $\triangleright \text{ Log-likelihood:}$

$$\log \prod_{t=1}^{n} \Pr(y_t \mid \mathbf{x}_t) = \text{const.} - \frac{n}{2} \log \sigma^2 - \frac{1}{2\sigma^2} \sum_{t=1}^{n} \left(y_t - \boldsymbol{\theta}^\top \mathbf{x}_t - \theta_0 \right)^2.$$

- $\triangleright \text{ MLE of } \boldsymbol{\theta} \text{ and } \theta_0 \colon \left(\hat{\boldsymbol{\theta}}, \hat{\theta}_0 \right) = \operatorname*{arg\,min}_{\boldsymbol{\theta}, \theta_0} \sum_{t=1}^n \left(y_t \boldsymbol{\theta}^\top \mathbf{x}_t \theta_0 \right)^2.$
- * σ^2 is assumed to be known. * MLE of σ^2 : $\hat{\sigma}^2 = \frac{1}{n} \sum_{t=1}^{n} \left(y_t \hat{\boldsymbol{\theta}}^\top \mathbf{x}_t \hat{\theta}_0 \right)^2$. Gaussian model in matrix form: $\mathbf{y} = \mathbf{X}\mathbf{\Theta}^* + \mathbf{z}$. > LSE: $\hat{\mathbf{\Theta}} = \mathbf{\Theta}^* + \left(\mathbf{X}^\top \mathbf{X} \right)^{-1} \mathbf{X}^\top \mathbf{z}$.
- - - * No bias: $\mathbb{E}[\hat{\boldsymbol{\Theta}}] = \boldsymbol{\Theta}^*$.
 - * Covariance: $Cov[\hat{\boldsymbol{\Theta}}] = \sigma^2 (\mathbf{X}^\top \mathbf{X})^{-1}$.
- Ridge regression: $(\hat{\boldsymbol{\theta}}, \hat{\theta}_0) = \underset{\boldsymbol{\theta}, \theta_0}{\operatorname{arg min}} \sum_{t=1}^n (y_t \boldsymbol{\theta}^\top \mathbf{x}_t \theta_0)^2 + \lambda \sum_{j=1}^d \theta_j^2$.
 - $\triangleright \text{ Closed-form solution (w/o offset): } \hat{\boldsymbol{\theta}} = \left(\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I}\right)^{-1}\mathbf{X}^{\top}\mathbf{y}.$
 - * $\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I}$ is always invertible when $\lambda > 0$.
 - \triangleright Assuming no offset θ_0 :
 - * Bias: $\mathbb{E}[\hat{\boldsymbol{\theta}}] \boldsymbol{\theta}^* = -\lambda \left(\mathbf{X}^\top \mathbf{X} + \lambda \mathbf{I} \right)^{-1} \boldsymbol{\theta}^*$.
 - * Covariance: $\sigma^2 \left(\left(\mathbf{X}^\top \mathbf{X} + \lambda \mathbf{I} \right)^{-1} \lambda \left(\mathbf{X}^\top \mathbf{X} + \lambda \mathbf{I} \right)^{-2} \right)$.

Bias-Variance Tradeoff: Decomposition of MSE:

$$\mathbb{E}[\|\hat{\mathbf{\Theta}} - \mathbf{\Theta}^*\|^2] = \|\mathbb{E}[\hat{\mathbf{\Theta}}] - \mathbf{\Theta}^*\|^2 + \mathbb{E}[\|\hat{\mathbf{\Theta}} - \mathbb{E}[\hat{\mathbf{\Theta}}]\|^2].$$
bias variance

Proof. Let $\boldsymbol{\mu} = \mathbb{E}[\hat{\boldsymbol{\Theta}}]$.

- ② variance = $\mathbb{E}[\|\hat{\boldsymbol{\Theta}}\|^2 2\langle\hat{\boldsymbol{\Theta}}, \boldsymbol{\mu}\rangle + \|\boldsymbol{\mu}\|^2] = \mathbb{E}[\|\hat{\boldsymbol{\Theta}}\|^2] 2\langle\mathbb{E}[\hat{\boldsymbol{\theta}}], \boldsymbol{\mu}\rangle + \|\boldsymbol{\mu}\|^2 =$ $\mathbb{E}[\|\hat{\mathbf{\Theta}}\|^2] - \|\boldsymbol{\mu}\|^2$.
- 3 bias + variance = $\mathbb{E}[\|\hat{\mathbf{\Theta}}\|^2] 2\langle \boldsymbol{\mu}, \mathbf{\Theta}^* \rangle + \|\mathbf{\Theta}^*\|^2 = LHS$.

Kernel Method

- Kernel matrix: A function $k:\mathbb{R}^d\times\mathbb{R}^d\to\mathbb{R}$ is said to be a positive semidefinite (PSD) kernel if
 - ① it is symmetric, i.e., $k(\mathbf{x}, \mathbf{x}') = k(\mathbf{x}', \mathbf{x})$;
 - ② the following kernel matrix is always PSD:

$$\mathbf{K} = \begin{bmatrix} k(\mathbf{x}_1, \mathbf{x}_1) & \cdots & k(\mathbf{x}_1, \mathbf{x}_m) \\ \vdots & \ddots & \vdots \\ k(\mathbf{x}_m, \mathbf{x}_1) & \cdots & k(\mathbf{x}_m, \mathbf{x}_m) \end{bmatrix}$$

- \triangleright Polynomial kernel: $k(\mathbf{x}, \mathbf{x}') = (1 + \langle \mathbf{x}, \mathbf{x}' \rangle)^p$.
- \triangleright RBF kernel: $k(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{1}{2}\|\mathbf{x} \mathbf{x}'\|^2\right)$.
- k is a PSD kernel iff it equals an inner product $\langle \phi(\mathbf{x}), \phi(\mathbf{x}') \rangle$ for some
- (possibly infinite dimensional) mapping ϕ . Construction: If k_1 , k_2 are kernels, then the following are kernels:
 - ① $k(\mathbf{x}, \mathbf{x}') = f(\mathbf{x})k_1(\mathbf{x}, \mathbf{x}')f(\mathbf{x}')$ for some function f;
 - $(2) k(\mathbf{x}, \mathbf{x}') = k_1(\mathbf{x}, \mathbf{x}') + k_2(\mathbf{x}, \mathbf{x}');$
 - $(3) k(\mathbf{x}, \mathbf{x}') = k_1(\mathbf{x}, \mathbf{x}') k_2(\mathbf{x}, \mathbf{x}').$

Kernel Trick: Replace $\langle \mathbf{x}, \mathbf{x}' \rangle$ by $k(\mathbf{x}, \mathbf{x}')$.

- Possible when algorithm depends on only inputs' inner products. Dual \to Kernel SVM: $\alpha>0$ support vectors; $\alpha=C$ violation.

(P)
$$\min_{\boldsymbol{\theta}, \boldsymbol{\theta}_{0}, \boldsymbol{\zeta}} \quad \frac{1}{2} \|\boldsymbol{\theta}\|^{2} + C \sum_{i=1}^{n} \zeta_{t}$$
s.t. $y_{t}(\boldsymbol{\theta}^{\top} \mathbf{x}_{t} + \theta_{0}) \geq 1 - \zeta_{t};$

$$\zeta_{t} \geq 0, \forall t.$$
(D)
$$\max_{\boldsymbol{\alpha}} \quad \sum_{t=1}^{n} \alpha_{t} - \frac{1}{2} \sum_{s=1}^{n} \sum_{t=1}^{n} \alpha_{s} \alpha_{t} y_{s} y_{t} \mathbf{x}_{s}^{\top} \mathbf{x}_{t}$$
s.t. $\alpha_{t} \in [0, C], \forall t;$

$$\sum_{t=1}^{n} \alpha_{t} y_{t} = 0.$$

Gradient-Based Optimization

Gradient Descent: W.r.t. $f(\mathbf{x})$, $\mathbf{x}_{\text{next}} = \mathbf{x} - \eta \cdot \nabla f(\mathbf{x})$.

- Stochastic gradient descent (SGD): $\mathbf{x}_{\text{next}} = \mathbf{x} \eta \cdot \nabla f_i(\mathbf{x})$.
- Mini-batch SGD: $\mathbf{x}_{\text{next}} = \mathbf{x} \eta \cdot \frac{1}{|\mathcal{I}|} \sum_{i \in \mathcal{I}} \nabla f_i(\mathbf{x}).$

Subgradient-Based Optimization: Non-differentiable convex functions.

- Subgradient: $\partial f(\mathbf{x}) = \{ \mathbf{g} \in \mathbb{R}^d : f(\mathbf{x}') \ge f(\mathbf{x}) + \langle \mathbf{g}, \mathbf{x}' \mathbf{x} \rangle, \forall \mathbf{x}' \}.$ $\triangleright f(x) = |x|: \partial = \{1\} \text{ at } x > 0; \{-1\} \text{ at } x < 0; [-1, 1] \text{ at } x = 0.$
- Subgradient method: x_{next} = x − η ⋅ g, g ∈ ∂f(x).
 Convergence. Assume that f is convex, minimizer x* exists, Lipschitz condition ($\|\mathbf{g}\| \leq M, \forall \mathbf{g}, \mathbf{x}$) holds, initialization $\mathbf{x}^{(1)}$ satisfies $\|\mathbf{x}^{(1)} - \mathbf{x}^*\| \leq R$ for some finite R. Using subgradient method with any sequence of step sizes $\{\eta_k\}_{k=1}^{\infty}$ satisfying $\lim_{k\to\infty}\eta_k=0$ and $\sum_{k=1}^\infty\eta_k=\infty,$ we have as $k\to\infty$

$$\min_{k=1,\cdots,K} f\left(\mathbf{x}^{(k)}\right) \to f(\mathbf{x}^*).$$

* Choosing $\eta_k = \frac{\eta_0}{\sqrt{k}}$, we yield a convergence rate of $O(\frac{\log k}{\sqrt{k}})$.

$$\begin{split} & \underline{Proof.} \text{ How close the } (k+1)\text{-th iterate is to } \mathbf{x}^*? \\ & \frac{1}{2} \left\| \mathbf{x}^{(k+1)} - \mathbf{x}^* \right\|^2 = \frac{1}{2} \left\| \mathbf{x}^{(k)} - \eta_k \mathbf{g}^{(k)} - \mathbf{x}^* \right\|^2 \\ & = \frac{1}{2} \left\| \mathbf{x}^{(k)} - \mathbf{x}^* \right\|^2 - \eta_k \mathbf{g}^{(k)} \top \left(\mathbf{x}^{(k)} - \mathbf{x}^* \right) + \frac{\eta_k^2}{2} \left\| \mathbf{g}^{(k)} \right\|^2 \\ & \leq \frac{1}{2} \left\| \mathbf{x}^{(k)} - \mathbf{x}^* \right\|^2 - \eta_k \left(f \left(\mathbf{x}^{(k)} \right) - f \left(\mathbf{x}^* \right) \right) + \frac{\eta_k^2}{2} \left\| \mathbf{g}^{(k)} \right\|^2. \end{split}$$

Rearranging and summing from k = 1 to K:

$$\sum_{k=1}^{K} \eta_{k} \left(f\left(\mathbf{x}^{(k)}\right) - f\left(\mathbf{x}^{*}\right) \right) \leq \frac{1}{2} \left\| \mathbf{x}^{(1)} - \mathbf{x}^{*} \right\|^{2} - \frac{1}{2} \left\| \mathbf{x}^{(K+1)} - \mathbf{x}^{*} \right\|^{2} + \sum_{k=1}^{K} \frac{\eta_{k}^{2}}{2} \left\| \mathbf{g}^{(k)} \right\|^{2}$$

$$\leq \frac{1}{2} \left\| \mathbf{x}^{(1)} - \mathbf{x}^{*} \right\|^{2} + \sum_{k=1}^{K} \frac{\eta_{k}^{2}}{2} \left\| \mathbf{g}^{(k)} \right\|^{2}$$

$$\leq \frac{1}{2} R^{2} + \frac{1}{2} M^{2} \sum_{k=1}^{K} \eta_{k}^{2}.$$

$$\sum_{k=1,\cdots,K}^{K} f\left(\mathbf{x}^{(k)}\right) - f\left(\mathbf{x}^{*}\right) \leq \frac{\frac{1}{2} R^{2} + \frac{1}{2} M^{2} \sum_{k=1}^{K} \eta_{k}^{2}}{\sum_{k=1}^{K} \eta_{k}^{2}} \to 0 \text{ as } K \to \infty.$$

Projected Gradient-Based Optimization: Constrained problems.

• Projected gradient descent: $\mathbf{x}_{next} = \Pi_{\mathcal{C}} (\mathbf{x} - \eta \cdot \mathbf{g})$. \triangleright Projected to the closest point in feasible set \mathcal{C} .

Boosting

Decision Stump: $h(\mathbf{x}, \boldsymbol{\theta}) = h(\mathbf{x}, \{s, k, \theta_0\}) = \text{sign}(s(x_k - \theta_0)).$

• Choose $s \in \{1, -1\}$ s.t. h is $> \frac{1}{2}$ correct.

AdaBoost: Weighted aggregation of simple models (decision stumps).

- Exponential loss: $(y, f(\mathbf{x})) \to \exp(-yf(\mathbf{x}))$.
- ① Initialize $w_0(t) = 1/n$ for $t = 1, \dots, n$.
- ② For $m=1,\cdots,M$ do
 - \triangleright Choose the next base learner $h(\cdot, \hat{\theta}_m)$ as

$$\hat{\theta}_m = \underset{\boldsymbol{\theta}}{\operatorname{arg min}} \sum_{t: u_t \neq h(\mathbf{x}_t, \boldsymbol{\theta})} w_{m-1}(t).$$

- $\hat{\theta}_m = \arg\min_{\boldsymbol{\theta}} \sum_{t: y_t \neq h(\mathbf{x}_t, \boldsymbol{\theta})} w_{m-1}(t).$ $\triangleright \text{ Set } \hat{\alpha}_m = \frac{1}{2} \log \frac{1-\hat{\epsilon}_m}{\hat{\epsilon}_m}, \text{ where } \hat{\epsilon}_m = \sum_{t: y_t \neq h(\mathbf{x}_t, \hat{\theta}_m)} w_{m-1}(t).$ $\triangleright \text{ Update the weights and normalize by } Z_m:$

$$\begin{split} w_m(t) &= \frac{1}{Z_m} w_{m-1}(t) e^{-y_t h(\mathbf{x}_t, \hat{\boldsymbol{\theta}}_m) \hat{\boldsymbol{\alpha}}_m}; \\ Z_m &= \sum_{t=1}^n w_{m-1}(t) e^{-y_t h(\mathbf{x}_t, \hat{\boldsymbol{\theta}}_m) \hat{\boldsymbol{\alpha}}_m}. \\ \underline{M} \end{split}$$

- 3 Output $f_M(\mathbf{x}) = \sum_{m=1}^{M} \hat{\alpha}_m h(\mathbf{x}, \hat{\boldsymbol{\theta}}_m)$ w.r.t. classifier sign $(f_M(\mathbf{x}))$.
- Sum of weight w of wrongly classified examples is 1/2.
- Convergence. After M iterations, the training error satisfies

$$\frac{1}{n} \sum_{t=1}^{n} \mathbf{1} \{ y_t f_M(\mathbf{x}_t) \le 0 \} \le \exp\left(-2 \sum_{m=1}^{M} \left(\frac{1}{2} - \hat{\epsilon}_m\right)^2\right)$$

In particular, if $\hat{\epsilon}_m \leq \frac{1}{2} - \gamma$ for all m and some $\gamma > 0$, then $\frac{1}{n} \sum_{t=1}^{n} \mathbf{1} \{ y_t f_M(\mathbf{x}_t) \leq 0 \} \leq \exp\left(-2M\gamma^2\right).$

$$\begin{split} &\frac{1}{n}\sum_{t=1}^n\mathbf{1}\{y_tf_M(\mathbf{x}_t)\leq 0\}\leq \frac{1}{n}\sum_{t=1}^ne^{-y_tf_M(\mathbf{x}_t)}=\prod_{m=1}^MZ_m.\\ &Z_m=\sum_{t:y_t\neq h(\mathbf{x}_t,\boldsymbol{\theta})}e^{\hat{\alpha}m}\,w_{m-1}(t)+\sum_{t:y_t=h(\mathbf{x}_t,\boldsymbol{\theta})}e^{-\hat{\alpha}m}\,w_{m-1}(t)\\ &=e^{\hat{\alpha}m}\,\hat{\epsilon}_m+e^{-\hat{\alpha}m}\,(1-\hat{\epsilon}_m)\\ &=\sqrt{\frac{1-\hat{\epsilon}_m}{\hat{\epsilon}_m}}\hat{\epsilon}_m+\sqrt{\frac{\hat{\epsilon}_m}{1-\hat{\epsilon}_m}}(1-\hat{\epsilon}_m)\\ &=2\sqrt{\hat{\epsilon}_m(1-\hat{\epsilon}_m)}=\sqrt{1-(1-2\hat{\epsilon}_m)^2}\leq e^{-\frac{1}{2}(1-2\hat{\epsilon}_m)^2}. \end{split}$$

Combine the two equations above and prove our theorem:

$$\frac{1}{n} \sum_{t=1}^{n} \mathbf{1} \{ y_t f_M(\mathbf{x}_t) \leq 0 \} \leq \prod_{m=1}^{M} Z_m \leq \prod_{m=1}^{M} e^{-\frac{1}{2} (1 - 2\hat{\epsilon}_m)^2} = e^{-2 \sum_{m=1}^{M} (\frac{1}{2} - \hat{\epsilon}_m)^2}.$$

Statistical Learning Theory

Hoeffding's Inequality: Let $Z = X_1 + \cdots + X_n$, where $X_i \in [a_i, b_i]$: $\Pr\left[\frac{1}{n}|Z - \mathbb{E}[Z]| > \epsilon\right] \le 2\exp\left(\frac{2n\epsilon^2}{\frac{1}{n}\sum\limits_{i=1}^{n}(b_i - a_i)^2}\right).$ Empirical Risk Minimization:

- True risk: $R(f) = \mathbb{E}[\ell(y, f(\mathbf{x}))].$
- Empirical risk: $R_n(f) = \frac{1}{n} \sum_{i=1}^n \ell(y_i, \mathbf{x}_i)$. Test err R(f) = train err $R_n(f)$ + generalization err $(R(f) R_n(f))$.

PAC Learning: Given a loss function $\ell(\cdot,\cdot)$, a function class \mathcal{F} is said to be PAC-learnable if there exists an algorithm $\mathcal{A}(\mathcal{D}_n)$ and a function $\bar{n}(\epsilon, \delta)$ such that for any distribution $P_{\mathbf{X}Y}$ used to generate \mathcal{D}_n and any $\epsilon, \delta \in (0,1)$, if $n > \bar{n}(\epsilon, \delta)$, the following holds with probability at least $1 - \delta$:

 $R(f) \le \min_{f \in \mathcal{T}} R(f) + \epsilon.$

- The probability 1δ corresponds to probably correct.
- ② The error ϵ corresponds to approximately correct.
- **Thm.** For any bounded loss function $\ell(y, f(\mathbf{x})) \in [0, 1]$, any finite function class \mathcal{F} is PAC-learnable with sample complexity

$$\bar{n}(\epsilon, \delta) = \frac{2}{\epsilon^2} \log \frac{2|\mathcal{F}|}{\delta}.$$

Proof. By Hoeffding's inequality

$$\Pr[|R(f) - R_n(f)| \ge \epsilon_0] \le 2e^{-2n\epsilon_0^2}$$

Apply the union bound $\Pr[A_1 \cup \cdots \cup A_m] \leq \sum_{i=1}^m \Pr[A_i]$:

$$\Pr\left[\bigcup_{f\in\mathcal{F}}\{|R(f)-R_n(f)|\geq\epsilon_0\}\right]\leq 2|\mathcal{F}|e^{-2n\epsilon_0^2}.$$

Setting RHS as δ , we get $n = \frac{1}{2\epsilon_{\delta}^2} \log \frac{2|\mathcal{F}|}{\delta}$, or $\epsilon_0 = \sqrt{\frac{1}{2n} \log \frac{2|\mathcal{F}|}{\delta}}$.

Let $f^* = \arg\min_{f \in \mathcal{F}} R(f)$. With probability $1 - \delta$,

$$\begin{split} R(f_{\text{erm}} - R(f^*) &= R(f_{\text{erm}}) - R_n(f_{\text{erm}}) + R_n(f_{\text{erm}}) - R_n(f^*) + \\ &\quad R_n(f^*) - R(f^*) \\ &\leq \epsilon_0 + 0 + \epsilon_0 = 2\epsilon_0. \end{split}$$

Setting $\epsilon_0 = \epsilon/2$ and $\bar{n}(\epsilon, \delta) = \frac{2}{\epsilon^2} \log \frac{2|\mathcal{F}|}{\delta}$, we have proven.

$$|R(f) - R_n(f)| \le \frac{1}{2n} \log \frac{2|\mathcal{F}|}{\delta}$$

• Growth function: Given any n unlabelled data, how many different assignments of labels can functions in $\mathcal F$ make?

$$S_n(\mathcal{F}) = \sup_{\mathbf{x}_1, \dots, \mathbf{x}_n} |\{(f(\mathbf{x}_1), \dots, f(\mathbf{x}_n)) : f \in \mathcal{F}\}|.$$

- VC-dimension: Largest k such that $S_k(\mathcal{F}) = 2^k$ (can be ∞).
 - \triangleright If \mathcal{F} can provide 2^k different assignments to a set of k points $\mathbf{x}_1, \cdots, \mathbf{x}_k$, we say these k points are shattered by \mathcal{F} .

*
$$S_n(\mathcal{F})$$

$$\begin{cases} = 2^n & n \le d_{\text{VC}} \\ \le (\frac{d_{\text{VC}}e}{n})^{d_{\text{VC}}} & n > d_{\text{VC}} \end{cases}$$

Sauer's lemma: $S_n(\mathcal{F}) \leq \sum_{i=0}^{d_{\text{VC}}} \binom{n}{i}$.

* $S_n(\mathcal{F}) \begin{cases} = 2^n & n \leq d_{\text{VC}}; \\ \leq (\frac{d_{\text{VC}}e}{n})^{d_{\text{VC}}} & n > d_{\text{VC}}. \end{cases}$ Define If $d_{\text{VC}}(\mathcal{F}) < \infty$, then \mathcal{F} is PAC-learnable under 0-1 loss with sample complexity $\bar{n}(\epsilon, \delta) = C \cdot (d_{VC} + \log \frac{1}{\delta})/(\epsilon^2)$ for some constant C. If $d_{\text{VC}} = \infty$, then \mathcal{F} is not PAC-learnable.

Unsupervised Learning

K-Means Clustering: Repeat the following 2 steps:

1 Assign each point to the nearest cluster center:

$$\mathcal{D}_{j} = \{\mathbf{x} \in \mathcal{D} : j = \operatorname*{arg\,min}_{j'=1,\cdots,K} \|\mathbf{x} - \boldsymbol{\mu}_{j'}\|^{2} \}.$$

② Update cluster center to the average of points in that cluster:

$$\mu_j = \frac{1}{|\mathcal{D}_j|} \sum_{\mathbf{x} \in \mathcal{D}_j} \mathbf{x}.$$

• The objective $\sum_{j=1}^K \sum_{\mathbf{x} \in \mathcal{D}_j} \|\mathbf{x} - \boldsymbol{\mu}_j\|^2$ is monotone non-increasing.

Maximum Likelihood Estimate:

$$\hat{\theta} = \arg \max_{\boldsymbol{\theta}} \prod_{t=1}^{n} \Pr(\mathbf{x}_{t}; \boldsymbol{\theta}) = \arg \max_{\boldsymbol{\theta}} \sum_{t=1}^{n} \log \Pr(\mathbf{x}_{t}; \boldsymbol{\theta}).$$

Appendix

Matrix Properties:

PSD	$\forall \mathbf{x} \in \mathbb{R}^n \ [\mathbf{x}^\top \mathbf{A} \mathbf{x} \ge 0]$	$\forall \lambda \ [\lambda \geq 0]$	⇔ convex
PD	$\forall \mathbf{x} \neq 0 \begin{bmatrix} \mathbf{x}^{\top} \mathbf{A} \mathbf{x} > 0 \end{bmatrix}$	$\forall \lambda \ [\lambda > 0]$	\Rightarrow strictly convex
NSD	$\forall \mathbf{x} \in \mathbb{R}^n \left[\mathbf{x}^\top \mathbf{A} \mathbf{x} \le 0 \right]$	$\forall \lambda \ [\lambda \leq 0]$	\Leftrightarrow concave
ND	$\forall \mathbf{x} \neq 0 \left[\mathbf{x}^{\top} \mathbf{A} \mathbf{x} < 0 \right]$	$\forall \lambda \left[\lambda < 0 \right]$	\Rightarrow strictly concave
ID	none of the above	$\lambda_1 > 0; \lambda_2 < 0$	\Rightarrow neither nor

- $\mathbf{X}^{\top}\mathbf{X}$ is symmetric and PSD; $\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I}$ is PD. Eig($\mathbf{A} + \mathbf{I}$) = Eig(\mathbf{A}) + 1. PSD + PD = PD. Product of eigenvalues is equal to determinant.
- Trace: ① linear $(\operatorname{Tr}(\mathbb{E}[\mathbf{A}]) = \mathbb{E}[\operatorname{Tr}(\mathbf{A})]);$ ② $\mathbf{u}^{\top}\mathbf{v} = \operatorname{Tr}(\mathbf{u}^{\top}\mathbf{v}) = \operatorname{Tr}(\mathbf{v}^{\top}\mathbf{u}).$ • Derivative: $\nabla_{\mathbf{x}} \| \mathbf{A} \mathbf{x} + \mathbf{b} \|^2 = 2 \mathbf{A}^{\top} (\mathbf{A} \mathbf{x} + \mathbf{b}).$