İnsan Görme Sistemi

20 mm çap,

Lens: %70 su, sarı renkli (sarı yoğunluğu yaşa göre artar), aşırı bulutlanmada katarak ortaya çıkar, görülen ışığın %8 ini, küçük dalga boylarını, infrared ve ultravioleyi emer.

Cornea, Sclera : Dış zar

Retina: İç zar. Nesne görüntüsü, retina üzerine serpiştirilmiş algılayıcılar (rods, cons) üzerinde oluşur.

Choroid: Gözü besleyen kan damar ağı.

Retina

Fig. 1. Human retina as seen through an opthalmoscope.

Retina

Fig. 2. Simple diagram of the organization of the retina.

Rods & Cones : Photoreceptors

Photon: Temel ışık parçacığıdır. Elektromanyetik taşıyıcıdır.

Rods: Düşük ışık seviyelerindeki görmeden sorumludur (stopic vision). Gece görüşü neredeyse tamamen rod ile gerçekleşir. Con'lardan daha hassastır ve renk algılamasına sahip değildir. Nesne geometrisinin algılanmasını sağlar.

Cones: Yüksek ışık seviyelerinde aktiftir. Nesne renk algılayıcısıdır. Düşük – Orta – Yüksek dalga boyu algılayıcı olarak üç tipe sahiptir.

Her bir Cone sinir hücresine direk bağlıyken, rodelar gruplar halinde bağlanır.

Retina üzerindeki Rod ve Cone dağılımları

Fovea merkezli bir dağılım vardır.

Her bir gözde yaklaşık 4.5 milyon **cone** ve 90 milyon **rod** bulunmaktadır.

Cone alanından bir görüntü

- Yaklaşık %65'i kırmızı, %33ü yeşil, %2 mavi renk algılayıcıya sahiptir.
- Mavi algılayıcının sayısı az olmasına karşılık, duyarlılığı en yüksektir.

Renk algılama (color sensing/perception)

Receptor Spectral Sensitivity

Renk algılama (color sensing/perception)

Renk algılama (color sensing/perception)

Beynin renk uzayı dönüşümü

İnsan beyni **RGB** bilgisini **LHS** (**HSV-sonraki slayt**) ye dönüştürür.

HSV - Hue, Saturation, Value

- Hue (Renk tonu -özü): Rengin baskın dalga uzunluğunu belirler, örneğin sarı, mavi, yeşil, vb. Açısal bir değerdir 0° - 360°.
- Saturation (Doygunluk): Rengin "canlılığını" belirler. Yüksek doygunluk canlı renklere neden olurken, düşük olasılık rengin gri tonlarına yaklaşmasına neden olur.
- Value (Parlaklık) : Rengin aydınlığını yani içindeki beyaz oranını belirler.

RGB→HSV

RGB→HSV

$$c = r + g + b$$

$$v_0 = \frac{1}{3}c$$
, veya $v_0 = \|\mathbf{v}_0\| = \frac{\sqrt{3}}{3}c$,

$$s_0 = \sqrt{\left(r_0 - \frac{1}{3}c\right)^2 + \left(g_0 - \frac{1}{3}c\right)^2 + \left(b_0 - \frac{1}{3}c\right)^2},$$

$$h_0 = \cos^{-1} \left(\frac{\mathbf{s}_0 \cdot \mathbf{x}}{\|\mathbf{s}_0\| \|\mathbf{x}\|} \right).$$

 s_0 genellikle (0,1) aralığına normalize edilir ve h_0 ise (0,2 π) aralığına kaydırılır.

HSV- H bandı

orijinal

hue + 180°

HSV- S bandı

orijinal

saturation + %50

saturation - %50

