# Analiza odchodzenia klientów

#### Bartosz Chądzyński & Michał Turek

2023-05-05

### Wstęp

### Preprocessing

#### Wykresy

Zacznijmy od analizy wykresów. Na początek zmienne ciągłe. Na wykresie 1 i 3 widzimy, że zmienne te są w znacząco różnych skalach, więc prawdopodobnie potrzebna będzie normalizacja. Natomiast na wykresie 2 i 4 widać, że każda ze zmiennych ma istotnie różny rozkład, gdy pogrupujemy ją ze względu na Churn.

% latex table generated in R 4.2.1 by x table 1.8-4 package % Fri May 5 21:15:05 2023

|                | V1          | V2             | V3               | V4             | V5             | V6           |
|----------------|-------------|----------------|------------------|----------------|----------------|--------------|
| tenure         | Min.: 1.00  | 1st Qu.: 9.00  | Median :29.00    | Mean :32.42    | 3rd Qu.:55.00  | Max. :72.00  |
| MonthlyCharges | Min.: 18.25 | 1st Qu.: 35.59 | Median: 70.35    | Mean: 64.80    | 3rd Qu.: 89.86 | Max. :118.75 |
| TotalCharges   | Min.: 18.8  | 1st Qu.: 401.4 | Median $:1397.5$ | Mean $:2283.3$ | 3rd Qu.:3794.7 | Max. :8684.8 |

Z kolei na 5 widzimy, że w niektórych przypadkach są duże różnice w ilości obserwacji z każdej kategorii, jeśli chodzi o daną zmienną. W szczególności takimi zmiennymi są *PhoneService*, czy *MultipleLines*.



Figure 1: Boxploty zmiennych ciągłych



Figure 2: Boxploty zmiennych ciągłych z podziałem ze względu na Churn



Figure 3: Estymator jądrowy gęśtości



Figure 4: Estymator jądrowy gęśtości z podziałem ze względu na Churn



Figure 5: Wykres ilości obserwacji z podziałem na kategorie zmiennych  $\overset{\cdot}{6}$ 

#### Interpretacja Wyników

W naszych danych jest zaledwie 11 obserwacji z brakującymi danymi (na 7033 łącznie). Zatem zasadne jest pominięcie ich w trakcie analizy danych. Nie stosujemy żadnej imputacji. Ilość danych może być obciążająca dla niektórych modeli. Jeśli będą występowały problemy ze złożonością obliczeniową, to dla konkretnego modelu będziemy decydować o przeprowadzeniu analizy dla ewentualnego podzbioru danych.

W tabeli poniżej mamy macierz korelacji zmiennych ciągłych. Jak widać istnieje mocna korelacja pomiędzy tym jak długo klient korzysta/korzystał z usług, a kwotą jaką zapłacił za usługi. Nie powinno to dziwić. Na razie jednak nie decydujemy się na wyrzucenie którejś ze zmiennych, ponieważ zarówno czas jak i koszt może być istotny w kontekście odchodzenia klientów. Te dwie rzeczy nie muszą być ze sobą powiązane w pełni. Może być tak, że odchodzą głównie nowi klienci, niezależnie od tego ile płacą. Albo może być tak, że odchodzą klienci, którzy zapłacili rachunki powyżej pewnej sumy, niekoniecznie będący długo/krótko stażem.

|                | tenure | MonthlyCharges | TotalCharges |
|----------------|--------|----------------|--------------|
| tenure         | 1.00   | 0.25           | 0.83         |
| MonthlyCharges | 0.25   | 1.00           | 0.65         |
| TotalCharges   | 0.83   | 0.65           | 1.00         |

Najprawdopodbniej potrzebne będzie wykonanie transformacji danych, w szczególności normalizacji. Natomiast jeśli chodzi o obserwacje odstające, to nie ma ich za dużo. Pojawiają się licznie w przypadku zmiennej TotalCharges pogrupowanej ze względu na Churn. Widać, że jest tendencja, aby odchodzący klienci należej do jednej z dwóch grup. Są albo nowymi klientami, albo klientami z dużym stażem. Ta druga grupa jest na wykresie pudełkowym interpertowana jako obserwacje odstające. W rzeczywistości należy to interpretować tak, że rozkład tej zmiennej jest dwumodalny,nie będziemy stosować technik mających na celu ignorowanie lub zmniejszenie wpływu tych obserwacji, znacząco odbiegających od reszty.

### Klasyfikacja

#### Regresja Liniowa

Zacznijmy od metod, w których bierzemy pod uwagę jedynie zmienne ciągłe. Na początek regresja liniowa.

|   | 0   | 1   |
|---|-----|-----|
| 0 | 968 | 220 |
| 1 | 64  | 153 |

Table 1: Confusion matrix at threshold = 1.52

#### Regresja Logistyczna

|   | 0   | 1   |
|---|-----|-----|
| 0 | 942 | 163 |
| 1 | 90  | 210 |

Table 2: Confusion matrix at threshold = 0.52



Figure 6: Skuteczność predykcji dla poszczególnych punktów odcięcia



Figure 7: wartości współczynników w modelu regresji logistycznej



Figure 8: Skuteczność predykcji dla poszczególnych punktów odcięcia



Figure 9: wartości współczynników w modelu regresji logistycznej



Figure 10: Skuteczność predykcji dla poszczególnych wartości k

|   | 0   | 1   |
|---|-----|-----|
| 0 | 778 | 254 |
| 1 | 90  | 283 |

Table 3: Confusion matrix

|   | 0   | 1   |
|---|-----|-----|
| 0 | 917 | 115 |
| 1 | 158 | 215 |

Table 4: Confusion matrix for k=48

### Algorytm Naiwnego Bayesa

### Algorytm k sąsiadów

## Drzewo decyzyjne



 $\begin{array}{c|cccc}
 & 0 & 1 \\
\hline
 0 & 934 & 98 \\
 1 & 201 & 172
\end{array}$ 

Table 5: Confusion matrix