Amendments to the Claims:

Please cancel claim 16 and amend claim 15 as follows:

1. (Previously Amended) Compounds having the structure of Formula I:

and their pharmaceutically acceptable salts, pharmaceutically acceptable enantiomers, diastereomers, or N-oxides, wherein Ar represents an aryl or a heteroaryl ring having 1-2 hetero atoms selected from the group consisting of oxygen, sulphur and nitrogen atoms, the aryl or heteroaryl rings may be unsubstituted or substituted by one to three substituents independently selected from lower alkyl (C_1 - C_4), lower perhaloalkyl (C_1 - C_4), cyano, hydroxy, nitro, halogen (e.g. F, Cl, Br, I), lower alkoxy (C_1 - C_4), lower perhalo- alkoxy (C_1 - C_4), unsubstituted amino, N-lower alkylamino (C_1 - C_4) or N-lower alkylamino carbonyl (C_1 - C_4);

 R_1 represents a hydrogen, hydroxy, hydroxymethyl, amino, alkoxy, carbamoyl or halogen (e.g. fluorine, chlorine, bromine and iodine);

R₂ represents alkyl, C₃-C₇ cycloalkyl ring in which any 1-4 hydrogen atoms are substituted with halogen (e.g. F, Cl, Br, I), carbamoyl or lower alkyl;

W represents (CH₂)_p, where p represents 0 to 1;

X represents an oxygen, sulphur, NR or no atom wherein R represents hydrogen or C₁-C₆ alkyl;

Y represents CHR₅CO wherein R₅ represents hydrogen, methyl or (CH₂)q wherein q represents 0 to 4:

R₃ represents hydrogen, lower alkyl or CO₂C(CH₃)₃;

R₆ and R₇ are independently selected from H, lower alkyl, COOH, CONH₂, NH₂, CH₂NH₂; and R_4 represents C_1 - C_{15} saturated or unsaturated aliphatic hydrocarbon (straight chain or branched) in which any 1 to 6 hydrogen atoms may be substituted with the group independently selected from halogen, arylalkyl, arylalkenyl, heteroarylalkyl or heteroarylalkenyl having 1 to 2 hetero atoms selected from the group consisting of nitrogen, oxygen and sulphur atoms with an option that any 1 to 3 hydrogen atoms on an aryl or heteroaryl ring in said arylalkyl, arylalkenyl, heteroarylalkenyl group may be substituted with lower alkyl (C_1 - C_4), lower perhalo alkyl (C_1 - C_4), cyano, hydroxy, nitro, lower alkoxycarbonyl, halogen, lower alkoxy (C_1 - C_4), lower perhaloalkoxy (C_1 - C_4), unsubstituted amino, N-lower alkylamino (C_1 - C_4), or N-lower alkylamino carbonyl (C_1 - C_4).

 (Previously Amended) A compound according to claim 1 having the structure of Formula II and its pharmaceutically acceptable salts, pharmaceutically acceptable enantiomers, diastereomers, or N-oxides, wherein

Ar, R1, R2, W, X, Y, R3 and R4 are as defined for formula I.

$$Ar \xrightarrow{R_1} W \xrightarrow{C} X \xrightarrow{Y} N \xrightarrow{E} N \xrightarrow{R_2} N \xrightarrow{R_3} \xrightarrow{E}$$

Formula II

 (Previously Amended) A compound according to claim 1 having the structure of Formula III and its pharmaceutically acceptable salts, pharmaceutically acceptable enantiomers, diastereomers, or N-oxides, wherein Ar, R₁, R₂, R₃ and R₄ are as defined for Formula I

Formula III

4. (Previously Amended) A compound according to claim 1 having the structure of Formula IV and its pharmaceutically acceptable salts, enantiomers, diastereomers, or Noxides, wherein R_3 and R_4 are as defined for Formula I, and s represents 1 to 2, R_9 is H or F and R_{10} is F.

- 5. (Previously Amended) A compound selected from the group consisting of
 - (2S)-(1 \propto , 5 \propto , 6 \propto)-6-N-[3-benzyl-3- azabicyclo[3.1.0]-hexyl]-2-[(1R or 1S)-3-oxocyclohexyl]-2-hydroxy-2-phenylacetamide;
 - (2S)-(1∝, 5∝, 6∞)-6-N-[3-benzyl-3-azabicyclo[3.1.0]-hexyl]-2[(1R or 1S, 3R or 3S)-3-(fluorocyclohexyl]-2-hydroxy-2-phenylacetamide;
 - (2S)- $(1\alpha, 5\alpha, 6\alpha)$ -6-N-[3-benzyl-3-azabicyclo[3.1.0]-hexyl]-2-[(1R or 1S, 3R or 3S)-3-fluorocyclopentyl]-2-hydroxy-2-phenylacetamide;
 - (2S)- $(1\alpha, 5\alpha, 6\alpha)$ -6-N-[3-benzyl-3-azabicyclo[3.1.0]-hexyl]-2-2[(1R or 1S)-3, 3-difluorocyclohexyl]-2-hydroxy-2-phenylacetamide;
 - (2S)-(1 α , 5 α , 6 α)-6-N-[3-benzyl-3-azabicyclo[3.1.0]-hexyl]-2-[(1R or 1S)-3,3-difluorocyclopentyl]-2-hydroxy-2-phenylacetamide;
 - (2R)- $(1\alpha, 5\alpha, 6\alpha)$ -6-N-[3-benzyl-3-azabicyclo[3.1.0]-hexyl]-2-[(1R or 1S)-3,3-difluorocyclopentyl]-2-hydroxy-2-phenylacetamide;
 - (2S)- $(1\alpha, 5\alpha, 6\alpha)$ -6-N-[3-(2-(3,4-methylenedioxyphenyl)ethyl]-3-azabicyclo[3.1.0]-hexyl]-2-[(1R or 1S)-3, 3-difluorocyclohexyl]-2-hydroxy-2-phenylacetamide;
 - (2S)- $(1\alpha, 5\alpha, 6\alpha)$ -6-N-[3-(2-(3, 4-methylenedioxyphenyl)ethyl]-3-azabicyclo[3.1.0]-hexyl]-2-[(1R or 1S)-3, 3-difluorocyclopentyl]-2-hydroxy-2-phenylacetamide;
 - (2R)- $(1\alpha, 5\alpha, 6\alpha)$ -6-N-[3-(2-(3,4-methylenedioxyphenyl)ethyl]-3-azabicyclo[3.1.0]-hexyl]-2-[(1R or 1S)-3, 3-difluorocyclopentyl]-2-hydroxy-2-phenylacetamide;

- (2S)-(1α, 5α, 6α)-6-N-[3-(2-(3, 4-methylenedioxyphenyl)ethyl]-3-azabicyclo[3.1.0]-hexyl]-2-[(1R or 1S, 3R or 3S)-3-fluorocyclohexyl]-2-hydroxy-2-phenylacetamide;
- (2S)-(1α, 5α, 6α)-6-N-[3-(2-(3, 4-methylenedioxyphenyl)ethyl]-3-azabicyclo[3.1.0]-hexyl]-2-[(1R or 1S, 3R or 3S)-3-fluorocyclopentyl]-2-hydroxy-2-phenylacetamide;
- (2S)- $(1\alpha, 5\alpha, 6\alpha)$ -6-N-[3-(4-methyl-3-pentenyl)-3-azabicyclo[3.1.0]-hexyl]-2-[(1R or 1S)-3, 3-difluorocyclohexyl]-2-hydroxy-2-phenylacetamide;
- (2S)-(1\alpha, 5\alpha, 6\alpha)-6-N-[3-(4-methyl-3-pentenyl)-3-azabicyclo[3.1.0]-hexyl]-2-[(1R or 1S)-3, 3-difluorocyclopentyl]-2-hydroxy-2-phenylacetamide;
- (2R)- $(1\alpha, 5\alpha, 6\alpha)$ -6-N-[3-(4-methyl-3-pentenyl)-3-azabicyclo[3.1.0]-hexyl]-2-[(1R or 1S)-3, 3-difluorocyclopentyl]-2-hydroxy-2-phenylacetamide;
- (2S)- $(1\alpha, 5\alpha, 6\alpha)$ -6-N-[3-(4-methyl-3-pentenyl)-3-azabicyclo[3.1.0]-hexyl]-2-[(1R or 1S, 3R or 3S)-3-fluorocyclohexyl]-2-hydroxy-2-phenylacetamide; and
- (2S)-(1 α , 5 α , 6 α)-6-N-[3-(4-methyl-3-pentenyl)-3-azabicyclo[3.1.0]-hexyl]-2-[(1R or 1S, 3R or 3S)-3-fluorocyclopentyl]-2-hydroxy-2-phenylacetamide.
- (Previously Amended) A pharmaceutical composition comprising a therapeutically
 effective amount of a compound as defined in any one of claims 1-5 together with
 pharmaceutically acceptable carriers, excipients or diluents.
- 7. (Previously Amended) A method for treatment of an animal or a human suffering from a disease or disorder of the respiratory, urinary and gastrointestinal systems, wherein the disease or disorder is urinary incontinence, lower urinary tract symptoms (LUTS), bronchial asthma, chronic obstructive pulmonary disorders (COPD), pulmonary fibrosis, irritable bowel syndrome, obesity, diabetes and gastrointestinal hyperkinesis, comprising administering to said animal or human, a therapeutically effective amount of a compound having the structure of Formula I.

$$Ar \xrightarrow{R_1} W \xrightarrow{C} X \xrightarrow{Y} \xrightarrow{R_3} \xrightarrow{\stackrel{H}{=}} \xrightarrow{R_5} \xrightarrow{R_5}$$

and its pharmaceutically acceptable salts, pharmaceutically acceptable enantiomers, diastereomers, or N-oxides, wherein

Ar represents an aryl or a heteroaryl ring having 1-2 hetero atoms selected from the group consisting of oxygen, sulphur and nitrogen atoms, the aryl or heteroaryl rings may be unsubstituted or substituted by one to three substituents independently selected from lower alkyl (C_1 - C_4), lower perhaloalkyl (C_1 - C_4), cyano, hydroxy, nitro, halogen (e.g. F, Cl, Br, I), lower alkoxy (C_1 - C_4), lower perhalo- alkoxy (C_1 - C_4), unsubstituted amino, N-lower alkylamino (C_1 - C_4) or N-lower alkylamino carbonyl (C_1 - C_4);

 R_1 represents a hydrogen, hydroxy, hydroxymethyl, amino, alkoxy, carbamoyl or halogen (e.g. fluorine, chlorine, bromine and iodine);

R₂ represents alkyl, C₃-C₇ cycloalkyl ring in which any 1-4 hydrogen atoms are substituted with halogen (e.g. F, Cl, Br, I), carbamoyl or lower alkyl;

W represents (CH₂)_p, where p represents 0 to 1;

X represents an oxygen, sulphur, NR or no atom wherein R represents hydrogen or C₁-C₆ alkyl;

Y represents CHR_3CO wherein R_5 represents hydrogen, methyl or $(CH_2)q$ wherein q represents 0 to 4;

R₃ represents hydrogen, lower alkyl or CO₂C(CH₃)₃;

 R_6 and R_7 are independently selected from H, lower alkyl, COOH, CONH₂, NH₂, CH₂NH₂; and

 R_4 represents C_1 - C_{15} saturated or unsaturated aliphatic hydrocarbon (straight chain or branched) in which any 1 to 6 hydrogen atoms may be substituted with the group independently selected from halogen, arylalkyl, arylalkenyl, heteroarylalkyl or heteroarylalkenyl having 1 to 2 hetero atoms selected from the group consisting of nitrogen, oxygen and sulphur atoms with an option that any 1 to 3 hydrogen atoms on an aryl or heteroaryl ring in said arylalkyl, arylalkenyl, heteroarylalkenyl group may be substituted with lower alkyl (C_1 - C_4), lower perhalo alkyl (C_1 - C_4), cyano, hydroxy, nitro, lower

alkoxycarbonyl, halogen, lower alkoxy (C_1-C_4) , lower perhaloalkoxy (C_1-C_4) , unsubstituted amino, N-lower alkylamino (C_1-C_4) , N-lower alkylamino carbonyl (C_1-C_4) .

8. (Previously Amended) The method according to claim 7 for treatment of an animal or a human suffering from a disease or disorder of the respiratory, urinary and gastrointestinal systems, wherein the disease or disorder is urinary incontinence, lower urinary tract symptoms (LUTS), bronchial asthma, chronic obstructive pulmonary disorders (COPD), pulmonary fibrosis, irritable bowel syndrome, obesity, diabetes and gastrointestina hyperkinesis, comprising administering to said animal or human, a therapeutically effective amount of a compound having the structure of Formula II and its pharmaceutically acceptable salts, pharmaceutically acceptable s enantiomers, diastereomers, or N-oxides, wherein Ar, R₁, R₂, W, X, Y, R₃ and R₄ are as defined for Formula I.

Formula II

9. (Previously Amended) The method according to claim 7 for treatment of an animal or a human suffering from a disease or disorder of the respiratory, urinary and gastrointestinal systems, wherein the disease or disorder is urinary incontinence, lower urinary tract symptoms (LUTS), bronchial asthma, chronic obstructive pulmonary disorders (COPD), pulmonary fibrosis, irritable bowel syndrome, obesity, diabetes and gastrointestina hyperkinesis, comprising administering to said animal or human, a therapeutically effective amount of a compound having the structure of Formula III and its pharmaceutically acceptable salts, pharmaceutically acceptable enantiomers, diastereomers, or N-oxides, wherein Ar, R₁, R₂, R₃ and R₄ are as defined for Formula I.

$$Ar \xrightarrow{R_1} C \xrightarrow{N_1 \dots N_r} N - R_4$$

Formula – III

10. (Previously Amended) The method according to claim 7 for treatment of an animal or a human suffering from a disease or disorder of the respiratory, urinary and gastrointestinal systems, wherein the disease or disorder is urinary incontinence, lower urinary tract symptoms (LUTS), bronchial asthma, chronic obstructive pulmonary disorders (COPD), pulmonary fibrosis, irritable bowel syndrome, obesity, diabetes and gastrointestina hyperkinesis, comprising administering to said animal or human, a therapeutically effective amount of a compound having the structure of Formula-IV and its pharmaceutically acceptable salts, pharmaceutically acceptable enantiomers, diastereomers, or N-oxides, wherein R₁ and R₄ are as defined for Formula I, s represents 1 to 2, R₉=H or F, and R₁₀=F.

- 11.-14. (Previously Cancelled)
- 14. (Previously Cancelled)
- 15. (Currently Amended) The method for treatment or prophylaxis of an animal or a human suffering from a disease or disorder of the respiratory, urinary and gastrointestinal systems, wherein the disease or disorder is <u>selected from urinary incontinence</u>, lower urinary <u>tract symptoms (LUTS)</u>, bronchial asthma, chronic obstructive pulmonary disorders (COPD), pulmonary fibrosis, irritable bowel syndrome, obesity, diabetes and gastrointestina

hyperkinesis mediated through muscarinic receptors, comprising administering to said animal or human, a therapeutically effective amount of the pharmaceutical composition according to claim 6.

- 16. (Cancelled)
- 17. (Previously Amended) A process of preparing compounds of Formula I,

and their pharmaceutically acceptable salts, pharmaceutically acceptable enantiomers, diastereomers, or N-oxides, wherein Ar represents an aryl or a heteroaryl ring having 1-2 hetero atoms selected from the group consisting of oxygen, sulphur and nitrogen atoms, the aryl or heteroaryl rings may be unsubstituted or substituted by one to three substituents independently selected from lower alkyl (C₁-C₄), lower perhaloalkyl (C₁-C₄), cyano, hydroxy, nitro, halogen (e.g. F, Cl, Br, I), lower alkoxy (C₁-C₄), lower perhalo- alkoxy (C₁-C₄), unsubstituted amino, N-lower alkylamino (C₁-C₄) or N-lower alkylamino carbonyl (C₁-C₄);

 R_1 represents a hydrogen, hydroxy, hydroxymethyl, amino, alkoxy, carbamoyl or halogen (e.g. fluorine, chlorine, bromine and iodine);

R₂ represents alkyl, C₃-C₇ cycloalkyl ring in which any 1-4 hydrogen atoms are substituted with halogen (e.g. F, Cl, Br, I), carbamoyl or lower alkyl;

- W represents (CH₂)_p, where p represents 0 to 1;
- X represents an oxygen, sulphur, NR or no atom wherein R represents hydrogen or C₁-C₆ alkyl;
- Y represents CHR₅CO wherein R₅ represents hydrogen, methyl or (CH₂)q wherein q represents 0 to 4;

R₃ represents hydrogen, lower alkyl or CO₂C(CH₃)₃;

 $R_{\rm 6}$ and $R_{\rm 7}$ are independently selected from H, lower alkyl, COOH, CONH2, NH2, CH2NH2; and

 R_4 represents C_1 - C_{15} saturated or unsaturated aliphatic hydrocarbon (straight chain or branched) in which any 1 to 6 hydrogen atoms may be substituted with the group independently selected from halogen, arylalkyl, arylalkenyl, heteroarylalkyl or heteroarylalkenyl having 1 to 2 hetero atoms selected from the group consisting of nitrogen, oxygen and sulphur atoms with an option that any 1 to 3 hydrogen atoms on an aryl or heteroaryl ring in said arylalkyl, arylalkenyl, heteroarylalkenyl group may be substituted with lower alkyl $(C_1$ - C_4), lower perhalo alkyl $(C_1$ - C_4), cyano, hydroxy, nitro, lower alkoxycarbonyl, halogen, lower alkoxy $(C_1$ - C_4), lower perhaloalkoxy $(C_1$ - C_4), unsubstituted amino, N-lower alkylamino $(C_1$ - C_4), N-lower alkylamino carbonyl $(C_1$ - C_4), comprising

(a) condensing a compound of Formula VI with a compound of Formula V

wherein Ar, R_1 , R_2 , W, X, Y, R_3 , R_6 and R_7 are as defined earlier for Formula I, to give a protected compound of Formula VII wherein Ar, R_1 ,

 R_2 , W, X, Y, R_3 , R_6 and R_7 are as defined earlier and P is a protecting group for an amino group.

Formula VII

deprotecting the compound of Formula VII in the presence of a deprotecting agent to give an unprotected compound of Formula VIII wherein Ar, R_1 , R_2 , R_3 , W, X, Y, R_3 , R_6 and R_7 are as defined earlier, and

Formula VIII

- (b) N-alkylated or benzylated the compound of Formula VIII with a suitable alkylating or benzylating agent to give compounds of Formula I wherein Ar, R₁, R₂, W, X, Y, R₃, R₄, R₆ and R₇ are as defined earlier.
- 18.-26. (Previously Cancelled)
- 27. (Previously Amended) A process of preparing compounds of Formula IV,

and their pharmaceutically acceptable salts, pharmaceutically acceptable enantiomers, diastereomers, or N-oxides, wherein R_3 represents hydrogen, lower alkyl or $CO_2C(CH_3)_3$; R_4 represents C_1 - C_1_5 saturated or unsaturated aliphatic hydrocarbon (straight chain or branched) in which any 1 to 6 hydrogen atoms may be substituted with the group independently selected from halogen, arylalkyl, arylalkenyl, heteroarylalkyl or heteroarylalkenyl having 1 to 2 hetero atoms selected from the group consisting of nitrogen, oxygen and sulphur atoms with an option that any 1 to 3 hydrogen atoms on an aryl or heteroaryl ring in said arylalkyl, arylalkenyl, heteroarylalkenyl group may be substituted with lower alkyl $(C_1$ - C_4), lower perhalo alkyl $(C_1$ - C_4), eyano, hydroxy, nitro, lower alkoxycarbonyl, halogen, lower alkoxy

 (C_1-C_4) , lower perhaloalkoxy (C_1-C_4) , unsubstituted amino, N-lower alkylamino (C_1-C_4) , N-lower alkylamino carbonyl (C_1-C_4) ; s represents 1 to 2, R_9 is H or F and R_{10} is F, comprising

(a) condensing a compound of Formula IX with a compound of Formula X

wherein R_3 and R_4 are as defined earlier for Formula I, s represents 1 to 2, R_9 is H or F and R_{10} is F, to give a protected compound of Formula XI wherein R_3 , R_4 , s, R_9 and R_{10} are as defined earlier and P is a protecting group for an amino group,

$$\begin{array}{c|c} OH & H \\ \hline \\ C & N \\ I & I \\$$

Formula XI

(b) deprotecting the compound of Formula XI in the presence of a deprotecting agent to give an unprotected compound of Formula XII wherein R₃, R₄, s, R₉ and R₁₀ are as defined earlier, and

Formula XII

- (c) N-alkylated or benzylated the compound of Formula XII with a suitable alkylating or benzylating agent to give compounds of Formula IV wherein R₃, R₄, s, R₉ and R₁₀ are as defined earlier.
- 28-36. (Previously Cancelled)