1 Model Framework

We are interested in models with asymptotically power-law decay of the mutual information measure with respect to the distance between the tokens in the sequence. So far so good. But what does it *actually* mean?

The tokens, represented by random variables X_t , are elements of a finite alphabet Σ . The distance between X_t and $X_{t+\tau}$ is τ , and for every t and every τ we want to bound

$$I(X_t, X_{t+\tau}) \in \Omega(\tau^{-\alpha}), \ I(X_t, X_{t+\tau}) \in \mathcal{O}(\tau^{-\beta})$$
,

for some fixed $\alpha, \beta \in \mathbb{R}_{>0}$. The first condition is the important one, while the latter ensures that $I(X_t, X_{t+\tau}) \xrightarrow{\tau \to \infty} 0$. We also may replace the latter condition by this one.

This was straight forward. The challenging part is to define what a model is. In the case of Markov chains this seems trivial: We define a finite set of parameters (the transition probabilities), and we get a model over Σ^* , that is for every $n \in \mathbb{N}$ the model defines a probability measure over Σ^n . Thus, the first conclusion is every model S must define a probability measure over Σ^n for every $n \in \mathbb{N}$.

As a first formalization, S is a function $S:(n,w)\mapsto [0,1],$ for $n\in\mathbb{N},\ w\in\Sigma^n$ s.t. $\sum_{w\in\Sigma^n}S(n,w)=1.$

But really, we want to restrain S in order to have reasonable time and space complexity, and to ensure the model is reasonable, which means that the language of $S_n(w)$ should look similar to $S_{n+d}(w)$, whatever this might mean, where we used the notation $S_n(w) \equiv S(n,w)$. We also write w_i for X_i . Really, w is a 1-indexed String of X_i .

We present one strict definition for this *similarity* in the following definition:

Definition 1.1. We say S is well-behaved iff for every $n \in \mathbb{N}$, $w \in \Sigma^{n+1}$ it holds true that

$$\sum_{w_{n+1} \in \Sigma} S_{n+1}(w) = S_n(w_{-(n+1)}) \quad .$$

Remark 1.1. Markov chains and hidden Markov models are well-behaved.

Lemma 1.1. For every $d \in \mathbb{N}$, let $I := [n+d] \setminus [n] = \{n+1, \dots, n+d\}$. Then, if S is well-behaved, we have for every $w \in \Sigma^{n+d}$:

$$\sum_{w_I \in \Sigma^d} S_{n+d}(w) = S_n(w_{-I}) \quad .$$

Proof. We use induction over d. The base case follows directly from the definition of S being well-behaved. Thus, assume the claim holds for some d := k.

Then we have

$$\begin{split} \sum_{w_I \in \Sigma^{k+1}} S_{n+k+1}(w) &= \sum_{w_{I \backslash \{k+1\}} \in \Sigma^k} \sum_{w_{k+1} \in \Sigma} S_{n+k+1}(w) \\ &= \sum_{S \text{ well-defined}} \sum_{w_{I \backslash \{k+1\}} \in \Sigma^k} S_{n+k}(w_{-\{k+1\}}) \\ &= \sum_{\text{induction hypothesis}} S_n(w_{-I}) \quad , \end{split}$$

which concludes the induction step.

Definition 1.2 (Induced Well-Behaved Model). Based on the model S, we can construct the *induced well-behaved* model S^* by defining S_n^* recursively as

 $\bullet \ S_1^* \coloneqq S_1 \ ,$

•
$$S_{n+1}^*(w) := S_n^*(w_{-\{n+1\}}) \frac{S_{n+1}(w)}{\sum_{w_{n+1} \in \Sigma} S_{n+1}(w)}$$
.

Remark 1.2. If
$$\frac{S_{n+1}(w)}{\sum_{w_{n+1} \in \Sigma} S_{n+1}(w)} = \frac{0}{0}$$
, we might set $\frac{S_{n+1}(w)}{\sum_{w_{n+1} \in \Sigma} S_{n+1}(w)} := \frac{1}{|\Sigma|}$.

Lemma 1.2. The induced well-behaved model S^* is indeed well-behaved. Proof. We have:

$$\begin{split} \sum_{w_{n+1} \in \Sigma} S_{n+1}^*(w) &= \sum_{w_{n+1} \in \Sigma} S_n^*(w_{-\{n+1\}}) \frac{S_{n+1}(w)}{\sum_{w_{n+1} \in \Sigma} S_{n+1}(w)} \\ &= \frac{S_n^*(w_{-\{n+1\}})}{\sum_{w_{n+1} \in \Sigma} S_{n+1}(w)} \sum_{w_{n+1} \in \Sigma} S_{n+1}(w) \\ &\stackrel{\checkmark}{=} S_n^*(w_{-\{n+1\}}) \quad . \end{split}$$

Now, we want to look at how we might restrict our model $(S_n)_{n\in\mathbb{N}} \equiv S$. One approach might be to define a model structure for every $n\in\mathbb{N}$ with finite parameters $\boldsymbol{\theta}_n$, thus $S_n\in\{S_n(\boldsymbol{\theta}_n):\boldsymbol{\theta}_n\in\Theta_n\}=:\mathcal{S}_n$. We write $S_{n,\boldsymbol{\theta}_n}$ for S_n with parameters $\boldsymbol{\theta}_n$. Hence, $(S_n)_{n\in\mathbb{N}}$ is completely defined by $(\mathcal{S}_n,\boldsymbol{\theta}_n)_{n\in\mathbb{N}}$. We call $\mathcal{S}(n)\equiv\mathcal{S}_n$ the model space.

Definition 1.3. We say $(S_n)_{n\in\mathbb{N}}$ is a family of models over the model space S iff $S_n \in S_n$ for every $n \in \mathbb{N}$. As a shorthand, we write $S \in S$.

For our model S, we want power-law decay in the mutual information with respect to τ between any two variables X_t , $X_{t+\tau}$, i.e. it has to hold for every t and every S_n . But what does this actually mean?

Definition 1.4. We define $i_{S_n}(\tau)$ and $I_{S_n}(\tau)$ to be the minimal and maximal mutual information between any two variables of S_n with distance τ . Formally, let $X_t, X_{t+\tau}$ $(t+\tau \leq n)$ be random variables with distributions defined by S_n . Then:

- $i_{S_n}(\tau) := \min_{t \in [n-\tau]} I(X_t, X_{t+\tau})$,
- $I_{S_n}(\tau) \coloneqq \max_{t \in [n-\tau]} I(X_t, X_{t+\tau})$.

Definition 1.5 (Power-Law Behavior of a Model). A model S has lower bound power-law behavior iff there exist constants $c, \alpha \in \mathbb{R}_{>0}$ s.t. for every $n \in \mathbb{N}$ it holds true that $i_{S_n}(\tau) \geq c\tau^{-\alpha}$. Similarly, S has upper bound power-law behavior iff there exist constants $c', \alpha' \in \mathbb{R}_{>0}$ s.t. for every $n \in \mathbb{N}$ it holds true that $I_{S_n}(\tau) \leq c'\tau^{-\alpha'}$. Furthermore, S has decaying behavior iff for every $n \in \mathbb{N}$ we have $I_{S_{n+\tau}}(\tau) \xrightarrow{\tau \to \infty} 0$. Lastly, S has power-law behavior iff it has lower and upper bound power-law behavior (alternatively decaying behavior instead of upper bound power-law behavior).

Definition 1.6 (Not Needed). We define $\overline{i_{S_n}}$ and $\overline{I_{S_n}}$ to be the minimal and maximal mutual information between any two variables of S_n with arbitrary distance τ . Formally, let X_i, X_j $(1 \le i < j \le n)$ be random variables with distributions defined by S_n . Then:

- $\overline{i_{S_n}} := \min_{(i,j) \in [n]^2, i < j} I(X_i, X_j) = \min_{\tau \in [n-1]} i_{S_n}(\tau)$,
- $\overline{I_{S_n}} := \max_{(i,j) \in [n]^2, i < j} I(X_i, X_j) = \max_{\tau \in [n-1]} I_{S_n}(\tau)$.

Corollary 1.1 (Power-Law Behavior for Well-Behaved Models). For a well-behaved model S^* we can replace "for every $n \in \mathbb{N}$ " in definition 1.5 with "for $n \to \infty$ " thanks to lemma 1.1.