How Computers Work

Lecture 4

Computer Arithmetic

What are we going to learn today?

- How to build the Arithmetic/Logical Unit
 - Integer adder and multiplier architectures
 - $-\ Time/Space/Cost\ Trade-offs$

A Wild and Crazy Idea:

- Arithmetic / Logic Unit is describable by a table:
 - ergo, we can implement it with a memory:

Ripple-carry N-bit adder:

Problem: It's Slow!

How Computers Work Lecture 4 Page 7

What is Co as a function of Ci, A, B?

$$Co = \overline{Ci}AB + Ci\overline{AB} + CiA\overline{B} + CiAB$$

But What is Co really?

C _i	Α	В	S C _o	
0	0	0	0 0	
0	0	1	1 0	
0	1	0	1 0	
0	1	1	0 1	
1	0	0	1 0	
1	0	1	0 1	
1	1	0	0 1	
1	1	1	1 1	

Co = 1 if 2 or more inputs are 1!

The Karnaugh Map

Characteristics:

- 1: Unit-Distance Input Labels
- 2: Wrap-Around

$$\begin{array}{c|c|c} & & A & | \\ \hline C_i & 0 & 0 & 1 & 0 \\ \hline & 0 & 1 & 1 & 1 \\ \hline & & | & B \\ \hline \end{array}$$

$$Co = \overline{Ci}AB + Ci\overline{AB} + CiA\overline{B} + CiAB$$

How Computers Work Lecture 4 Page 15

Q: What is Cout?

A: (A and Ci) or (A and B) or (B and Ci)

A: (A Ci) + (A B) + (B Ci)

A: A Ci + A B + B Ci

Tree Structure

N-input TREE has O(log(n)) levels...

Signal propagation takes O(log(n)) gate delays. O(n) gates.

How Computers Work Lecture 4 Page 19

An Idea!

• Speed things up by doing as much work as possible on A & B Inputs **before** the carry arrives:

?

How Fast Can an Adder Get?

- Input Sensitivity Analysis: Ultimately, some bits of the answer are dependent on all bits of the inputs.
- Given an infinite number of bounded fanin gates, what is the minimum growth of t_{pd} vs. the number of inputs (n)?
 - Answer: O(log(n))

Any more tricks to go faster?

- What about changing the Encoding of the inputs (i.e. base 4 !!!!!!!)
 - O(log(n)) limitation still there, but converting to a higher radix, doing the computation, then going back to binary CAN be faster than doing it naively in binary.
- How about analog computing?
 - Works, but watch out for noise.
- How about parallel computing?
 - Works, but watch out for cost.
- How about pipelined computing?
 - Q: What's a pipelined computer?
 - A: You're going to find out real soon.

How Computers Work Lecture 4 Page 27

Summary

- Today's Lecture:
 - How to build the *A*rithmetic/*L*ogical *U*nit
 - $-\ Time/Space/Cost\ Trade-offs$
- Recitation
 - $-\ K\mbox{-maps}$ and sum-of-products form
 - Multipliers