#### Санкт-Петербургский политехнический университет имени Петра Великого

### Физико-механический институт Высшая школа прикладной математики и физики

### Интервальный анализ Отчёт по лабораторным работам $\mathbb{N}^1$ и $\mathbb{N}^2$

Выполнил:

Студент: Габдушев Рушан Группа: 5040102/30201

Принял:

к. ф.-м. н., доцент Баженов Александр Николаевич

# Содержание

| 1 Постановка задачи |                                                           |            |  |
|---------------------|-----------------------------------------------------------|------------|--|
| 2                   | Теория         2.1 Первый метод: нахождение $argmax(Tol)$ | <b>4</b> 4 |  |
| 3                   | Реализация           3.1 Построение коридора совместности | <b>6</b>   |  |
| 4                   | Результаты                                                | 7          |  |
| 5                   | Обсуждение                                                | 14         |  |
| 6                   | Синтетический пример                                      | 15         |  |
| 7                   | Приложения                                                | 16         |  |

# Список иллюстраций

| 1  | Структурная схема калибровки DRS4                                                                                                                                       | 4  |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 2  | Иллюстрация построения коридора совместности по вершинам множества допустимых значений. Калибровочная прямая полученная вторым методом, обозначена красным цветом. Тви- |    |
|    | · · · · · · · · · · · · · · · · · · ·                                                                                                                                   |    |
|    | ны обозначены серым и синим цветом. прямые в вершинах –                                                                                                                 | -  |
| 3  | зелёным                                                                                                                                                                 | 8  |
| 4  | Калибровочная прямая полученная первым методом для датчика (1, 24)                                                                                                      | 8  |
| 5  | Калибровочная прямая полученная первым методом для датчика (2, 72)                                                                                                      | 9  |
| 6  | Разность между данными и калибровочной прямой для первого метода и датчика $(0, 0)$ . Голубым цветом обозначен новый                                                    |    |
|    | интервал, зеленым исходный                                                                                                                                              | 9  |
| 7  | Разность между данными и калибровочной прямой для первого метода и датчика (1, 24). Голубым цветом обозначен новый                                                      |    |
|    | интервал, зеленым исходный                                                                                                                                              | 10 |
| 8  | Разность между данными и калибровочной прямой для перво-                                                                                                                |    |
|    | го метода и датчика (2, 72). Голубым цветом обозначен новый                                                                                                             |    |
|    | интервал, зеленым исходный                                                                                                                                              | 10 |
| 9  | Калибровочная прямая полученная вторым методом для датчика $(0,0)$ , обозначена красным цветом. Твины обозначены сети.                                                  |    |
|    | рым и синим цветом. Корридоры совместности $Tol$ и $Uni$ обо-                                                                                                           | 11 |
| 10 | значены голубым и светло-серым цветом                                                                                                                                   | 11 |
| 10 | Калибровочная прямая полученная вторым методом для датчика (1, 24), обозначена красным цветом. Твины обозначены                                                         |    |
|    | серым и синим цветом. Корридоры совместности $Tol$ и $Uni$ обо-                                                                                                         | 11 |
| 11 | значены голубым и светло-серым цветом                                                                                                                                   | 11 |
| 11 | чика (2, 72), обозначена красным цветом. Твины обозначены                                                                                                               |    |
|    | серым и синим цветом. Корридоры совместности $Tol$ и $Uni$ обо-                                                                                                         |    |
|    | значены голубым и светло-серым цветом                                                                                                                                   | 19 |
| 12 | Увеличенное изображение из Рис.10                                                                                                                                       |    |
| 13 | Tol, Uni и $argmaxTol$ для датчика $(0,0)$                                                                                                                              |    |
| 14 | $Tol,\ Uni$ и $argmaxTol$ для датчика $(0,\ 0)$                                                                                                                         |    |
| 15 | $Tol,\ Uni$ и $argmaxTol$ для датчика $(2,72)$                                                                                                                          |    |
| 16 | Калибровочная прямая полученная вторым методом для сме-                                                                                                                 |    |
|    | щения 0.0, обозначена красным цветом                                                                                                                                    | 15 |
| 17 | Калибровочная прямая полученная вторым методом для сме-                                                                                                                 |    |
|    | щения 0.15, обозначена красным цветом.                                                                                                                                  | 15 |
|    |                                                                                                                                                                         |    |

| 18 | Калибровочная прямая полученная вторым методом для сме- |    |
|----|---------------------------------------------------------|----|
|    | щения 0.25, обозначена красным цветом                   | 16 |

2 ТЕОРИЯ 4

### 1 Постановка задачи

Проводится исследование из области солнечной энергетики. Чип быстрой аналоговой памяти PSI DRS4 имеет 8 каналов, каждый из которых содержит 1024 ячейки. Они включают конденсаторы для хранения значения заряда и электронные ключи для записи сигналов и считывания напряжений через АЦП (аналого-цифровой преобразователь). Ячейки объединяются в кольцевые буферы. При подаче сигнала синхронизации запись напряжений на конденсаторы прекращается, а номер ячейки (в которую была сделана последняя запись) запоминается.



Рис. 1: Структурная схема калибровки DRS4

Ставится задача калибровки данного чипа. Для этого в чип подается заранее известное напряжение X и считывается полученные значения Y. Для каждого отдельного напряжения X, эта операция повторяется 100 раз. Затем, исходя из предположения что

$$Y = \beta_0 X + \beta_1 \tag{1}$$

выполняется линейная регрессия и находятся коэффициенты  $\beta_0, \, \beta_1.$ 

### 2 Теория

### 2.1 Первый метод: нахождение argmax(Tol).

Поскольку показания датчиков обладают погрешностью, полученные данные на самом деле следует рассматривать как интервалы, центр которых совпадает со считанными показаниями, а радиус равен  $\varepsilon$ , в данном случае 1/16535.

В связи с тем, что показания независимы, мы можем рассмотреть произвольную ячейку из всех 8\*1024 ячеек. Тогда, для данной ячейки мы имеем 100\*11 пар значений, где x координата соответствует поданному напряжению и лежит в границах [-0.5, 0.5], а y координата представляет собой интервал

2 ТЕОРИЯ 5

с wid=2/16535. Для того, чтобы найти точечную оценку коэффициентов калибровки, воспользуемся распознающим функционалом Tol

$$Tol(x) = Tol(x, A, b) = \min_{1 \le i \le m} \{ rad(b_i) - | mid(b_i) - \sum_{j=1}^{n} a_{ij} x_j | \}$$
 (2)

 $\Gamma$ де A - матрица вида:

$$A = \begin{pmatrix} x_0 & 1 \\ \dots \\ x_m & 1 \end{pmatrix} \tag{3}$$

b - интервальный вектор

$$b = \begin{pmatrix} [y_0 - \epsilon, y_0 + \epsilon] \\ \dots \\ [y_m - \epsilon, y_m + \epsilon] \end{pmatrix}$$

$$\tag{4}$$

Особенностью данного функционала является то, что допусковое множество решений системы Ax=b можно описать как

$$\{ x \in \mathbb{R}^n \mid Tol(x, A, b) \geqslant 0 \}$$
 (5)

Таким образом, если  $Tol(argmax(Tol), A, B) \geqslant 0$ , то система совместная и argmax(Tol) можно считать результатом регрессии (а значит это вектор содержащий  $\beta_0\beta_1$ ).

Однако, зачастую, система не является совместной. В таком случае следует рассмотреть множество  $Tol_i$ 

$$Tol_i(x, A, b) = rad(b_i) - |mid(b_i) - \sum_{j=1}^n a_{ij}x_j|, 1 \le i \le m$$
 (6)

Можно заметить, что если существует i для которого  $Tol_i < 0$ , то Tol < 0. При этом, для того чтобы  $Tol_i \ge 0$  был достаточно большим.

Таким образом, в случае отсутствия совместности, следует пройтись по строчкам матрицы и элементам b. Если для них  $Tol_i < 0$ , то стоит "расширить" интервал в правой части, чтобы добиться  $Tol_i = 0$ . Тогда очевидно, что Tol(argmax(Tol), A, B) будет равен 0, а argmax(Tol) будет искомыми коэффициентами калибровки.

# 2.2 Второй метод: нахождение оценки при помощи твинной арифметики.

У описанного первого метода есть два основных недостатка. Во-первых, "расширение" интервалов в правой части приводит к сильной погрешности на практике, так как интервалы "расширяются" обе стороны: как в сторону регрессионной прямой, так и от неё. Во-вторых, результатом данного метода будет лишь точечная оценка. В качестве альтернативы, предлагается другой метод, основанный на использовании твинной арифметики.

Для начала, рассмотрим имеющиеся у нас данные. В первом методе мы брали все пары  $(x_i, [y_i - \epsilon y_i + \epsilon])$  и работали со всеми интервалами, однако сейчас, мы разделим значения  $y_i$  в группы по 100 значений в зависимости от соответствующего им  $x_i$ . Тогда мы получим для каждого различного  $x_i$  набор из значений, по которым мы можем построить боксплот Тьюки. По боксплоту определим внешнюю и внутреннюю оценку, и построим для каждого  $x_j$  твин  $[[y_j^{in}, \overline{y_j^{in}}], [y_j^{ex}, \overline{y_j^{ex}}]]$ .

Затем, снова построим распознающий функционал Tol, но теперь

$$A = \begin{pmatrix} x_0 & 1 \\ x_0 & 1 \\ x_0 & 1 \\ x_0 & 1 \\ x_1 & 1 \end{pmatrix} b = \begin{pmatrix} [\underline{y_0^{in}}, \overline{y_0^{in}}] \\ [\underline{y_0^{ex}}, \overline{y_0^{in}}] \\ [\underline{y_0^{in}}, \overline{y_0^{ex}}] \\ [\underline{y_0^{ex}}, \overline{y_0^{ex}}] \\ [\underline{y_1^{in}}, \overline{y_1^{in}}] \\ \dots \end{pmatrix}$$
(7)

В случае если Tol(argmax(Tol)) = 0 мы так же возвращаем argmax(Tol) В случае если Tol(argmax(Tol)) > 0 мы можем найти множество значений  $(\beta_0, \beta_1)$  при которых Tol > 0 и вернуть его

В случае если Tol(argmax(Tol)) < 0 нам снова требуется бороться с отсутствием совместности.

Для этого снова рассмотрим  $Tol_i$ , однако, вместо изменения правой части, будем просто убирать соответствующую строку из A и b. В силу того что у нас на каждую пару  $(x_j, y_j)$  создается 4 уравнения, при удалении описанным способом несовместных уравнений, уравнений останется больше, чем при первом способе. А значит решение будет точнее. При этом, в результате данной операции, возможна ситуация, когда Tol(argmax(Tol)) > 0.

### 3 Реализация

Данная работа реализована на языке программирования Python 3.10 с использованием пакетов matplotlib и intvalpy. Код данного отчёта подготовлен с использованием онлайн редактора Overleaf и компилятора pdflatex.

### 3.1 Построение коридора совместности

После интерполяции вторым методом мы получаем множество допустимых значений для  $(\beta_0, \beta_1)$ , при которых система совместна, в виде выпук-

лого многоугольника с вершинами  $\{v_0,\ldots,v_k\}$  где  $v_p=(\beta_{p0},\beta_{p1})$ . Для визуализации образуемого коридора совместности найдём для каждого отрезка  $[x_i,x_{i+1}]$  нижнюю и верхнюю ограничивающую прямую из множества допустимых. Для этого вычислим  $\overline{p_i}=argmax_{1\leqslant p\leqslant k}\{\beta_{p0}\frac{(x_i+x_{i+1})}{2}+\beta_{p1}\}$  и  $\underline{p_i}=argmin_{1\leqslant p\leqslant k}\{\beta_{p0}\frac{(x_i+x_{i+1})}{2}+\beta_{p1}\}$  – индексы верхней и нижней ограничивающих прямых на отрезке  $[x_i,x_{i+1}]$ .



Рис. 2: Иллюстрация построения коридора совместности по вершинам множества допустимых значений. Калибровочная прямая полученная вторым методом, обозначена красным цветом. Твины обозначены серым и синим цветом. прямые в вершинах — зелёным.

### 4 Результаты

Для рассмотрения значений, каждому датчику в чипе были даны координаты в зависимости от номера канала и ячейки. Таким образом, датчик получивший данные из канала  $j(1\leqslant j\leqslant 8)$  и находящийся в ячейке  $i(1\leqslant j\leqslant 1024)$  будет иметь координаты i,j. Рассматриваются данные для датчиков

- С координатами (0, 0)
- С координатами (1, 24)
- С координатами (2, 72)



Рис. 3: Калибровочная прямая полученная первым методом для датчика (0,0)



Рис. 4: Калибровочная прямая полученная первым методом для датчика (1, 24)



Рис. 5: Калибровочная прямая полученная первым методом для датчика (2, 72)



Рис. 6: Разность между данными и калибровочной прямой для первого метода и датчика (0, 0). Голубым цветом обозначен новый интервал, зеленым исходный



Рис. 7: Разность между данными и калибровочной прямой для первого метода и датчика  $(1,\,24)$ . Голубым цветом обозначен новый интервал, зеленым исходный



Рис. 8: Разность между данными и калибровочной прямой для первого метода и датчика (2,72). Голубым цветом обозначен новый интервал, зеленым исходный



Рис. 9: Калибровочная прямая полученная вторым методом для датчика (0, 0), обозначена красным цветом. Твины обозначены серым и синим цветом. Корридоры совместности Tol и Uni обозначены голубым и светло-серым цветом.



Рис. 10: Калибровочная прямая полученная вторым методом для датчика (1, 24), обозначена красным цветом. Твины обозначены серым и синим цветом. Корридоры совместности Tol и Uni обозначены голубым и светло-серым цветом.



Рис. 11: Калибровочная прямая полученная вторым методом для датчика (2, 72), обозначена красным цветом. Твины обозначены серым и синим цветом. Корридоры совместности Tol и Uni обозначены голубым и светло-серым цветом.



Рис. 12: Увеличенное изображение из Рис.10.



Рис. 13: Tol, Uni и argmaxTol для датчика (0, 0).



Рис. 14: Tol, Uni и argmaxTol для датчика (1, 24).



Рис. 15: Tol, Uni и argmaxTol для датчика (2, 72).

| Координаты датчика | Метод | $\beta_0$ | $\beta_1$ | Количество модифицированных |
|--------------------|-------|-----------|-----------|-----------------------------|
| (0, 0)             | 1     | 0.801     | 0.008     | 1085                        |
| (0, 0)             | 2     | 0.802     | 0.006     | 12                          |
| (1, 24)            | 1     | 0.812     | 0.01      | 1095                        |
| (1, 24)            | 2     | 0.792     | 0.015     | 8                           |
| (2, 72)            | 1     | 0.811     | 0.01      | 1091                        |
| (2, 72)            | 2     | 0.805     | 0.006     | 6                           |

Таблица 1: Численные результаты

## 5 Обсуждение

Исходя из представленных графиков, можно судить о том, что все описанные в теории этапы выполнены правильно. Также можно заметить что результаты полученные методами 1 и 2 являются близкими, но не совпадают. По количеству модифицированных значений в 4 можно заметить что датчик с координатами (2,72) имеет наименьшее число выбросов из рассматриваемых, а датчик с координатами (0,0) имеет наибольшее число выбросов из рассматриваемых.

## 6 Синтетический пример



Рис. 16: Калибровочная прямая полученная вторым методом для смещения 0.0, обозначена красным цветом.



Рис. 17: Калибровочная прямая полученная вторым методом для смещения 0.15, обозначена красным цветом.



Рис. 18: Калибровочная прямая полученная вторым методом для смещения 0.25, обозначена красным цветом.

# 7 Приложения

Репозиторий с кодом программы: https://github.com/maloxit/interval2