第二章 整数规划

第一节 整数规划问题的提出

- 线性规划最优解可能是整数,也可能不是整数.
- 实际问题当中有相当多的问题要求最优解必须 是整数。
- 例如,所求解的是完成某任务需用的人数,购买机器的台数,设备维修的次数等.
- ■对于线性规划问题,如果增加全部变量为整数的要求,就构成了线性整数规划问题.如果部分变量要求是整数,则称为混合整数规划问题.如果变量仅取0和1,则称为0-1整数规划问题.

整数规划---线性整数规划

分枝定界法

- 割平面法
- 分配问题的解法
- 隐枚举法 (0-1整数规划)

第二节 分枝定界法

例2-1
$$\max_{s.t.} Z = x_1 + x_2$$
 $\max_{s.t.} Z = x_1 + x_2$ $\max_{s.t.} Z = x_1 + x_2$ $(2-1)$ $\leftarrow 2x_1 + x_2 \le \frac{1}{3}$ 件随规划 $\leftarrow 2x_1 + x_2 \le \frac{1}{3}$ $\leftarrow x_1, x_2 \ge 0$,整数

分枝定界法的思想:

先不考虑整数条件,即先求相应的伴随规划的最优 解,若得到的是整数解,则问题得到解决.否则将原问 题分成几个分枝问题. 对于每个分枝问题求相应伴随 规划的最优解, 若是整数解, 问题得到解决. 否则将它 分枝再解,直到求出最优整数解为止.

大規模
$$\max_{s.t.} Z = x_1 + x_2$$

$$x_1 + \frac{9}{14}x_2 \le \frac{51}{14}$$

$$(2-1)' - 2x_1 + x_2 \le \frac{1}{3}$$

$$x_1, x_2 \ge 0$$

求解 (2-1)',得最优解: $A \begin{cases} x_1 = 3/2 \\ x_2 = 10/3 \end{cases}$, $Z = \frac{29}{6}$

分枝定界法:

在 (2-1)' 的最优解A中,选择一个非整数变量,例如 $x_1 = 3/2$,则 (2-1) 的最优解中, x_1 应满足: $x_1 \le 1$ 或 $x_1 \ge 2$ (: $1 < x_1 < 2$ 不符合整数条件)

伴随规划
$$\max_{s.t.} Z = x_1 + x_2$$
 $x_1 + \frac{9}{14} x_2 \le \frac{51}{14}$ $z_2 = \frac{10}{3} C(1, \frac{7}{3})$ $z_3 = \frac{29}{6}$ $z_1 + x_2 \le \frac{1}{3}$ $z_2 = \frac{10}{3} C(1, \frac{7}{3})$ $z_3 = \frac{41}{9}$ $z_4 = \frac{10}{9}$ $z_4 = \frac{10}{3} C(1, \frac{7}{3})$ $z_4 = \frac{41}{9}$ $z_4 = \frac{10}{9}$ $z_4 = \frac{10}{$

$$\max_{s.t.} Z = x_1 + x_2$$

$$x_1 + \frac{9}{14}x_2 \le \frac{51}{14}$$

$$-2x_1 + x_2 \le \frac{1}{3}$$

$$x_1 \ge 2 \quad x_2 \ge 0$$

$$\max_{s.t.} Z = x_1 + x_2$$

$$x_1 + \frac{9}{14} x_2 \le \frac{51}{14}$$

$$(2-3)' \begin{cases} x_1 + \frac{9}{14} x_2 \le \frac{51}{14} \\ -2x_1 + x_2 \le \frac{1}{3} \\ 0 \le x_1 \le 1 \quad x_2 \ge 0 \end{cases}$$

则 (2-1) 的最优解中, x_1 应满足: $x_1 \le 1$ 或 $x_1 \ge 2$

分枝定界法的迭代原理

分枝问题(求整数解)

求解其伴随规划的最优解(单纯形法)

整数解

该分枝不需要再分枝

判断该整数解是否最优

若目标值>其它分枝最优值,则是最优整数解,终止.

否则,其它分枝问题继续分枝,得整数解,比较目标值,得到最优整数解。

最优解

,分枝 —— 比较分枝问题最优值 决定先分哪一枝

'非整数解

【不用分枝 (已判明该分枝中不可能有整数最优解)

$$\max_{s.t.} Z = x_1 + x_2$$

$$x_1 + \frac{9}{14} x_2 \le \frac{51}{14}$$

$$(2-2)' \begin{cases} x_1 + \frac{9}{14} x_2 \le \frac{1}{14} \\ -2x_1 + x_2 \le \frac{1}{3} \end{cases}$$

$$x_1 \ge 2 \quad x_2 \ge 0$$

在
$$(2-2)'$$
 的最优解 B 中, $x_2 = 23/9 = 2\frac{5}{9}$,

则(2-2)的最优解中 $,x_2$ 应满足 $,x_2 \le 2$ 或 $x_2 \ge 3$

$$\max_{s.t.} Z = x_1 + x_2$$

$$\begin{cases} x_1 + \frac{9}{14}x_2 \le \frac{51}{14} \\ -2x_1 + x_2 \le \frac{1}{3} \\ (求整数解) \quad x_1 \ge 2 \quad x_2 \ge 0 \\ 分枝问题: \quad x_2 \le 2 \end{cases}$$

$$\max_{s.t.} Z = x_1 + x_2$$

$$\max_{s.t.} Z = x_1 + x_2$$

$$x_1 + \frac{9}{14}x_2 \le \frac{51}{14}$$

$$x_2 \le 2 \overrightarrow{D} x_2 \ge 3$$

$$\max_{s.t.} Z = x_1 + x_2$$

$$x_1 + \frac{9}{14}x_2 \le \frac{51}{14}$$

$$x_2 \le 2 \overrightarrow{D} x_2 \ge 3$$

$$\max_{s.t.} Z = x_1 + x_2$$

$$x_1 + \frac{9}{14}x_2 \le \frac{51}{14} \quad \because S_5 = \cancel{\Sigma} \cancel{\xi}$$

$$x_1 \ge 2 \quad 0 \le x_2 \le 2$$

$$x_1 \ge 2 \quad x_2 \ge 3$$

(:: 2 < x, < 3不符合整数条件) \bigcirc 整数规划2-2

$$\max_{s.t.} Z = x_1 + x_2$$

$$\begin{cases} x_1 + \frac{9}{14} x_2 \le \frac{51}{14} \\ -2x_1 + x_2 \le \frac{1}{3} \\ x_1 \ge 2, x_2 \ge 0 \end{cases}$$

$$\max_{s.t.} Z = x_1 + x_2$$

$$x_1 + \frac{9}{14} x_2 \le \frac{51}{14}$$

$$(2-4)' \begin{cases} -2x_1 + x_2 \le \frac{1}{3} \\ x_1 \ge 2 & 0 \le x_2 \le 2 \end{cases}$$

$$Z = \frac{10}{3} C(1, \frac{3}{3}) \qquad Z = \frac{29}{6}$$

$$Z = \frac{10}{3} C(1, \frac{7}{3}) \qquad B(2, \frac{23}{9}) Z = \frac{41}{9}$$

$$S_{3} \qquad S_{4} \qquad Z = \frac{61}{14}$$

$$x_{2} \leq 2 \overline{\mathbb{R}} x_{2} \geq 3$$

$$\therefore Z = \frac{61}{14} > Z = \frac{10}{3}$$

$$\max_{s.t.} Z = x_1 + x_2$$

$$x_1 + \frac{9}{14} x_2 \le \frac{51}{14}$$

$$(2-4)' \begin{cases} -2x_1 + x_2 \le \frac{1}{3} \\ x_1 \ge 2 & 0 \le x_2 \le 2 \end{cases}$$

$$Z = \frac{10}{3} C(1, \frac{3}{2}, \frac{10}{3}) \quad Z = \frac{29}{6}$$

$$Z = \frac{10}{3} C(1, \frac{7}{3}) \quad B(2, \frac{23}{9}) \quad Z = \frac{41}{9}$$

$$C(1, \frac{7}{3}) \quad D(\frac{33}{14}, 2)$$

$$C(1, \frac{7}{3}) \quad Z = \frac{61}{14}$$

$$C(1, \frac{7}{3}) \quad Z = \frac{61}{14}$$

在
$$(2-4)'$$
的最优解 D 中, $x_1 = 33/14 = 2\frac{5}{14}$,

则 (2-4) 的最优解中, x_1 应满足: $x_1 \le 2$ 或 $x_1 \ge 3$

 $(:2 < x_1 < 3$ 不符合整数条件)

$$\max_{s.t.} Z = x_1 + x_2$$

$$x_1 + \frac{9}{14} x_2 \le \frac{51}{14}$$

$$-2x_1 + x_2 \le \frac{1}{3}$$

$$x_1 \ge 2 \ 0 \le x_2 \le 2$$

$$Z = \frac{10}{3} C(1, \frac{7}{3})$$

$$Z = \frac{10}{6}$$

$$Z = \frac{10}{3} C(1, \frac{7}{3})$$

$$Z = \frac{41}{9}$$

$$D(\frac{33}{14}, 2)$$

$$Z = \frac{61}{14}$$

$$Z = \frac{61}{14}$$

$$Z = \frac{61}{14}$$

在
$$(2-4)'$$
的最优解 D 中, $x_1 = 33/14 = 2\frac{5}{14}$,

则 (2-4) 的最优解中, x_1 应满足: $x_1 \leq 2$ 或 $x_1 \geq 3$

 $(:2 < x_1 < 3$ 不符合整数条件)

例2-1
$$\max_{s.t.} Z = x_1 + x_2$$

$$\begin{cases} x_1 + \frac{9}{14}x_2 \le \frac{51}{14} \\ 2x_1 + x_2 \le \frac{1}{3} \\ x_1, x_2 \ge 0, 整数 \end{cases}$$

$$Z = \frac{10}{3} C(1, \frac{7}{3})$$

$$Z = \frac{10}{3} C(1, \frac{7}{3})$$

$$E(2, \frac{23}{9}) Z = \frac{41}{9}$$

$$D(\frac{33}{14}, 2)$$

$$F(3, 1) Z = \frac{61}{14}$$

$$Z = \frac{61}{14}$$

$$0 \quad 1 \quad 2 \quad 3 \quad X_1$$

$$\therefore Z = \frac{10}{3} < Z = 4 \therefore (2-3)'$$
 不必再分枝。

所以E(2,2)和F(3,1)是原问题(2-1)的整数最优解。

分枝定界法的迭代原理

分枝问题(求整数解)

求解其伴随规划的最优解(单纯形法)

整数解

该分枝不需要再分枝

判断该整数解是否最优

若目标值>其它分枝最优值,则是最优整数解,终止.

否则,其它分枝问题继续分枝,得整数解,比较目标值,得到最优整数解。

最优解

,分枝 ——比较分枝问题最优 值决定先分哪一枝

非整数解

不用分枝 (已判明该分枝中不可能有整数最优解)

整数规划---线性整数规划

✓ 分枝定界法割平面法

例2-2
$$\max_{s.t.} Z = x_1 + x_2$$
 $\max_{s.t.} Z = x_1 + x_2$ $\max_{s.t.} Z = x_1 + x_2$ 件随规划 $\begin{cases} -x_1 + x_2 \le 1 \\ 3x_1 + x_2 \le 4 \end{cases}$ $\begin{cases} 3x_1 + x_2 \le 4 \\ x_1, x_2 \ge 0, 整数 \end{cases}$ $\begin{cases} 3x_1 + x_2 \le 4 \end{cases}$

割平面法的思想:

割平面法也是通过解伴随规划的方法来解整数规划的.如果伴随规划的最优解不是整数解,则增加线性约束(割平面),切掉可行域中不含整数解的部分域,在新的约束条件下再解伴随规划.不断重复这个过程,直到伴随规划的最优解是整数解为止.经过割平面对可行域的不断切割,最优整数解最终成为新可行域的顶点.

例2-2
$$\max_{s.t.} Z = x_1 + x_2$$
 $\max_{s.t.} Z = x_1 + x_2$ $\max_{s.t.} Z = x_1 + x_2$ 件随规划 $-x_1 + x_2 \le 1$ $3x_1 + x_2 \le 4$ $3x_1 + x_2 \le 0$

求解(2-8)′, 得最优解:

S有4个整数解:

(1,0), (0,1), (0,0), (1,1)

最优整数解: (1,1), Z=2

例2-2
$$\max_{s.t.} Z = x_1 + x_2$$
 $\max_{s.t.} Z = x_1 + x_2$ $\max_{s.t.} Z = x_1 + x_2$ $(2-8)$ $\begin{cases} -x_1 + x_2 \le 1 & \text{things} \\ 3x_1 + x_2 \le 4 \\ x_1, x_2 \ge 0, \text{整数} \end{cases}$ $\begin{cases} 3x_1 + x_2 \le 4 & \text{things} \\ x_1, x_2 \ge 0 \end{cases}$

希望能找到一条象*CD*那样的直线(割平面)切割*S*,切掉无整数解的三角形*ACD*,使得*C*是新可行域的顶点。在此域上解伴随规划,使其最优解恰是*C*点。

问题:如何构造割平面?

例2-2
$$\max_{s.t.} Z = x_1 + x_2$$

$$(2-8) \begin{cases} -x_1 + x_2 \le 1 \\ 3x_1 + x_2 \le 4 \\ x_1, x_2 \ge 0, 整数 \end{cases}$$

(2-9)'的最优表为

在引入松弛变量之前, 先将约束条件中各变量的系数及右端项化为整数

		x_1	\mathcal{X}_2	中名	变量
	$-\frac{5}{2}$	0	0	$-\frac{1}{2}$	$-\frac{1}{2}$
\mathcal{X}_2	7/ /4	0	1	3/ /4	1/ /4`
x_1	3/ /4	1	0	_1/4	1/ /4

不是整数解

$$x_{1} = \frac{3}{4} + \frac{1}{4}u_{1} - \frac{1}{4}u_{2}$$

$$x_{2} = \frac{7}{4} - \frac{3}{4}u_{1} - \frac{1}{4}u_{2}$$

例2-2
$$\max_{s.t.} Z = x_1 + x_2$$

 $(2-8)$ $\begin{cases} -x_1 + x_2 \le 1 \\ 3x_1 + x_2 \le 4 \\ x_1, x_2 \ge 0, 整数 \end{cases}$

$$x_{1} = \frac{3}{4} + \frac{1}{4}u_{1} - \frac{1}{4}u_{2}$$

$$x_{2} = \frac{7}{4} - \frac{3}{4}u_{1} - \frac{1}{4}u_{2}$$

这两个式子可用于构造"割平面"

在(2-9)的约束方程中, x_1,x_2 的系数是整数,右端常数项也是整数,所以若 x_1,x_2 取整数,则 u_1,u_2 也一定是整数。

例2-2
$$\max_{\substack{s.t. \\ -x_1+x_2 \le 1}} Z = x_1 + x_2$$
 $\max_{\substack{s.t. \\ x_1, x_2 \ge 0}} Z = x_1 + x_2$ $\max_{\substack{s.t. \\ x_1, x_2 \ge 0}} Z = x_1 + x_2$ $\max_{\substack{s.t. \\ x_1, x_2 \ge 0}} Z = x_1 + x_2 = x_1 + x_2$ $\max_{\substack{s.t. \\ x_1, x_2 \ge 0}} Z = x_1 + x_2 =$

例2-2
$$\max_{s.t.} Z = x_1 + x_2$$

$$(2-8) \begin{cases} -x_1 + x_2 \le 1 \\ 3x_1 + x_2 \le 4 \\ x_1, x_2 \ge 0, 整数 \end{cases}$$

$$\max_{\substack{s.t.\\ -x_1+x_2+u_1=1\\ 3x_1+x_2+u_2=4\\ u_1,u_2\geq 0,\\ x_1,x_2\geq 0, 整数}$$

$$x_1 = \frac{3}{4} + \frac{1}{4}u_1 - \frac{1}{4}u_2 \longrightarrow 2x_1 + x_2 \le 3$$

$$x_1 = \frac{3}{4} + \frac{1}{4}u_1 - \frac{1}{4}u_2 \longrightarrow 2x_1 + x_2 \le 3$$

$$x_2 = \frac{3}{4} + \frac{1}{4}u_1 - \frac{1}{4}u_2 \longrightarrow 2x_1 + x_2 \le 3$$

BC将S中 $2x_1 + x_2 > 3(u_1 + 3u_2 < 1)$ 的区域 $\triangle ABC$ 割掉,但割掉的区 域内不包含S的整数点。

$$2x_1 + x_2 \le 3$$

$$2x_1 + x_2 \le 3 \qquad u_1 + 3u_2 \ge 1$$

例2-2
$$\max_{s.t.} Z = x_1 + x_2$$

$$(2-8) \begin{cases} -x_1 + x_2 \le 1 \\ 3x_1 + x_2 \le 4 \end{cases}$$

$$x_1, x_2 \ge 0, 整数$$

$$x_1 = \frac{3}{4} + \frac{1}{4}u_1 - \frac{1}{4}u_2 \longrightarrow x_1 = \frac{3}{4} + \frac{1}{4}(u_1 + 3u_2) - u_2 < \frac{3}{4} + \frac{1}{4} - u_2$$

BC将S中 $2x_1 + x_2 > 3(u_1 + 3u_2 < 1)$ 的区域 ΔABC 割掉,但割掉的区域内不包含S的整数点。

证明:

 $=1-u_2 \le 1$ 即割去的部分 $x_1 < 1$ 且 $x_2 > 1$ (同理可证) 所以割去的部分不含 任何整数解。

 $\max Z = x_1 + x_2$ 典式

 $\begin{cases} 3x_1 + x_2 + u_2 = 4 \\ u_1, u_2 \ge 0, \end{cases} (2-9)$

 $x_1, x_2 \geq 0$,整数

 $\frac{s.t.}{-}x_1 + x_2 + u_1 = 1$

例2-2
$$\max_{s.t.} Z = x_1 + x_2$$

$$(2-8) \begin{cases} -x_1 + x_2 \le 1 \\ 3x_1 + x_2 \le 4 \end{cases}$$

$$x_1, x_2 \ge 0, 整数$$

$$x_{1}, x_{2} \ge 0, \text{ for } x_{1}, x_{2} \ge 0, \text$$

BC将S中 $2x_1 + x_2 > 3(u_1 + 3u_2 < 1)$ 的区域 ΔABC 割掉,但割掉的区域内不包含S的整数点。

割去的部分 $x_1 < 1$ 且 $x_2 > 1$

例2-2
$$\max_{s.t.} Z = x_1 + x_2$$

$$(2-8) \begin{cases} -x_1 + x_2 \le 1 \\ 3x_1 + x_2 \le 4 \\ x_1, x_2 \ge 0, 整数$$

$$\max_{\substack{s.t.\\ x_1+x_2+u_1=1\\ 3x_1+x_2+u_2=4\\ u_1,u_2\geq 0,\\ x_1,x_2\geq 0, 整数}$$

$$\max_{s.t.} Z = x_1 + x_2$$

$$-x_1 + x_2 \le 1$$

$$(2-14) \begin{cases} 3x_1 + x_2 \le 4 \\ 2x_1 + x_2 \le 3 \\ x_1, x_2 \ge 0, 整数$$

(2-15)比(2-9)多了一个约束,为求 (2-15)'的最优解,可用灵敏度分析中增加约束的方法。将新约束加到 (2-9)'的最优表中,用对偶单纯形法迭代一次即可求出 (2-15)'的最优表。

例2-2
$$\max_{s.t.} Z = x_1 + x_2$$

$$(2-8) \begin{cases} -x_1 + x_2 \le 1 \\ 3x_1 + x_2 \le 4 \\ x_1, x_2 \ge 0, 整数 \end{cases}$$

(2-9)'的最优表为

		x_1	\mathcal{X}_2	u_1	u_2
	$-\frac{5}{2}$	0	0	$-\frac{1}{2}$	$-\frac{1}{2}$
X_2	7/4	0	1	3/ ₄	1/4
x_1	3/ /4	1	0	_1/4	1/ /4

例2-2
$$\max_{s.t.} Z = x_1 + x_2$$

$$(2-8) \begin{cases} -x_1 + x_2 \le 1 \\ 3x_1 + x_2 \le 4 \\ x_1, x_2 \ge 0, 整数 \end{cases}$$

(2-9)'的最优表为

$$\max_{s.t.} Z = x_1 + x_2$$

$$-x_1 + x_2 + u_1 = 1$$

$$3x_1 + x_2 + u_2 = 4$$

$$2x_1 + x_2 + u_3 = 3$$

$$u_1, u_2, u_3 \ge 0,$$

$$x_1, x_2 \ge 0,$$

$$x_1, x_2 \ge 0,$$

$$(2-15)$$

例2-2
$$\max_{s.t.} Z = x_1 + x_2$$

$$(2-8) \begin{cases} -x_1 + x_2 \le 1 \\ 3x_1 + x_2 \le 4 \\ x_1, x_2 \ge 0, 整数 \end{cases}$$

$$\max_{s.t.} Z = x_1 + x_2$$

$$-x_1 + x_2 + u_1 = 1$$

$$3x_1 + x_2 + u_2 = 4$$

$$2x_1 + x_2 + u_3 = 3$$

$$u_1, u_2, u_3 \ge 0,$$

$$x_1, x_2 \ge 0,$$

$$x_1, x_2 \ge 0,$$

$$(2-15)$$

例2-2
$$\max_{s.t.} Z = x_1 + x_2$$

$$(2-8) \begin{cases} -x_1 + x_2 \le 1 \\ 3x_1 + x_2 \le 4 \\ x_1, x_2 \ge 0, 整数 \end{cases}$$

$$\max_{\substack{s.t.\\ x_1+x_2+u_1=1\\ 3x_1+x_2+u_2=4(2-9)\\ u_1,u_2\geq 0,\\ x_1,x_2\geq 0, 整数}$$

$$\max_{s.t.} Z = x_1 + x_2$$

$$x_1 + x_2 + u_1 = 1$$

$$3x_1 + x_2 + u_2 = 4$$

$$2x_1 + x_2 + u_3 = 3$$

$$u_1, u_2, u_3 \ge 0,$$

$$x_1, x_2 \ge 0,$$

$$x_1, x_2 \ge 0,$$

$$(2-15)$$

例2-2
$$\max_{s.t.} Z = x_1 + x_2$$

$$(2-8) \begin{cases} -x_1 + x_2 \le 1 \\ 3x_1 + x_2 \le 4 \\ x_1, x_2 \ge 0, 整数 \end{cases}$$

$$\max_{s.t.} Z = x_1 + x_2$$

$$x_1 + x_2 + u_1 = 1$$

$$3x_1 + x_2 + u_2 = 4$$

$$2x_1 + x_2 + u_3 = 3$$

$$u_1, u_2, u_3 \ge 0,$$

$$x_1, x_2 \ge 0,$$

$$x_1, x_2 \ge 0,$$

$$(2-15)$$

例2-2
$$\max_{s.t.} Z = x_1 + x_2$$

$$(2-8) \begin{cases} -x_1 + x_2 \le 1 \\ 3x_1 + x_2 \le 4 \\ x_1, x_2 \ge 0, 整数 \end{cases}$$

$$\max_{s.t.} Z = x_1 + x_2$$

$$x_1 + x_2 + u_1 = 1$$

$$3x_1 + x_2 + u_2 = 4$$

$$2x_1 + x_2 + u_3 = 3$$

$$u_1, u_2, u_3 \ge 0,$$

$$x_1, x_2 \ge 0,$$

$$x_1, x_2 \ge 0,$$

$$(2-15)$$

例2-2
$$\max_{s.t.} Z = x_1 + x_2$$

$$(2-8) \begin{cases} -x_1 + x_2 \le 1 \\ 3x_1 + x_2 \le 4 \\ x_1, x_2 \ge 0, 整数 \end{cases}$$

(2-15)' 最优表

$$\max_{s.t.} Z = x_1 + x_2$$

$$x_1 + x_2 + u_1 = 1$$

$$3x_1 + x_2 + u_2 = 4$$

$$2x_1 + x_2 + u_3 = 3$$

$$u_1, u_2, u_3 \ge 0,$$

$$x_1, x_2 \ge 0,$$

$$x_1, x_2 \ge 0,$$

$$(2-15)$$

(2-15)'的最优解 $B(\frac{2}{3},\frac{5}{3})$ 一不是整数解, 再做割平面

$$Z = \frac{7}{3}$$

$$(2-15)'$$
 最优表

		x_1	\mathcal{X}_2	u_1	u_2	u_3
	$-\frac{7}{3}$	0	0	$-\frac{1}{3}$	0	$-\frac{2}{3}$
X_2	5/ /3	0	1	2/ /3	0	1/3
x_1	2/ /3	1	0	_1/3	0	1/ /3
u_2	1/ /3	0	0	1/3	1	$-\frac{4}{3}$

做割平面:
$$x_2 = \frac{5}{3} - \frac{2}{3}u_1 - \frac{1}{3}u_3$$

$$x_{2} + u_{1} + u_{3} = \frac{5}{3} + \frac{1}{3}u_{1} + \frac{2}{3}u_{3} \ge 2 \longrightarrow \frac{1}{3}u_{1} + \frac{2}{3}u_{3} \ge \frac{1}{3}$$

$$(2-15)'$$
 最优表

		x_1	\mathcal{X}_2	u_1	u_2	
	$-\frac{7}{3}$	0	0	$-\frac{1}{3}$	0	$\frac{-2}{3}$
X_2	5/ /3	0	1	2/ /3	0	1/ /3
x_1	2/ /3	1	0	$-\frac{1}{3}$	0	1/ /3
u_2	1/ /3	0	0	1/3	1	$-\frac{4}{3}$

$$\frac{1}{3}u_{1} + \frac{2}{3}u_{3} \ge \frac{1}{3}$$

$$u_{1} + 2u_{3} \ge 1$$

$$\max_{s.t.} Z = x_{1} + x_{2}$$

$$-x_{1} + x_{2} + u_{1} = 1$$

$$3x_{1} + x_{2} + u_{2} = 4$$

$$2x_{1} + x_{2} + u_{3} = 3$$

$$u_{1}, u_{2}, u_{3} \ge 0,$$

$$x_{1}, x_{2} \ge 0,$$

$$x_{1}, x_{2} \ge 0,$$

$$(2-15)$$

做割平面:
$$x_2 = \frac{5}{3} - \frac{2}{3}u_1 - \frac{1}{3}u_3$$

$$u_1 + 2u_3 \ge 1 \longrightarrow (1 + x_1 - x_2) + 2(3 - 2x_1 - x_2) \ge 1$$

(2-15)' 最优表

		x_1	\mathcal{X}_2	u_1	u_2	u_3
	$-\frac{7}{3}$	0	0	$-\frac{1}{3}$	0	$\frac{-2}{3}$
X_2	5/ /3	0	1	2/ /3	0	1/ /3
x_1	2/ /3	1	0	$-\frac{1}{3}$	0	1/ /3
u_2	1/ /3	0	0	1/3	1	$-\frac{4}{3}$

$$x_1 + x_2 \le 2$$
 $x_1 + x_2 = 2$ 割平面

$$\max_{s.t.} Z = x_1 + x_2$$

$$-x_1 + x_2 + u_1 = 1$$

$$3x_1 + x_2 + u_2 = 4$$

$$2x_1 + x_2 + u_3 = 3$$

$$u_1, u_2, u_3 \ge 0,$$

$$x_1, x_2 \ge 0,$$

$$x_1, x_2 \ge 0,$$

$$(2-15)$$

例2-2
$$\max_{s.t.} Z = x_1 + x_2$$

 $(2-8)$ $\begin{cases} -x_1 + x_2 \le 1 \\ 3x_1 + x_2 \le 4 \\ x_1, x_2 \ge 0, 整数 \end{cases}$
 $\max_{s.t.} Z = x_1 + x_2$
 $\begin{cases} -x_1 + x_2 \le 1 \\ 3x_1 + x_2 \le 1 \\ 3x_1 + x_2 \le 4 \\ 2x_1 + x_2 \le 3 \\ x_1, x_2 \ge 0, 整数 \end{cases}$

$$\max_{s.t.} Z = x_1 + x_2$$

$$-x_1 + x_2 \le 1$$

$$3x_1 + x_2 \le 4$$

$$2x_1 + x_2 \le 3$$

$$x_1 + x_2 \le 2$$

$$x_1, x_2 \ge 0, 整数$$

$$\max_{s.t.} Z = x_1 + x_2$$

$$(2-19) \begin{cases} -x_1 + x_2 \le 1 \\ 3x_1 + x_2 \le 4 \\ 2x_1 + x_2 \le 3 \end{cases}$$

$$x_1 + x_2 \le 2$$

$$x_1, x_2 \ge 0, 整数$$

$$\max_{s.t} Z = x_1 + x_2$$

$$3x_1 + x_2 + u_1 = 1$$

$$3x_1 + x_2 + u_2 = 4$$

$$2x_1 + x_2 + u_3 = 3$$

$$x_1 + x_2 + u_4 = 2$$

$$u_1, u_2, u_3 \ge 0,$$

$$x_1, x_2 \ge 0,$$
整数

$$\max_{\substack{s.t. \\ -x_1 + x_2 + u_1 = 1 \\ 3x_1 + x_2 + u_2 = 4 \\ 2x_1 + x_2 + u_3 = 3 \\ u_1, u_2, u_3 \ge 0, \\ x_1, x_2 \ge 0, 整数$$

 $(2-20)_{<}$

(2-15)' 最优表

		x_1		u_1	u_2 u_3	
	_7/3	0	0	-1/ 3	$0 -\frac{2}{3}$	0
X_2	5/ /3	0	1	2/	$0 \frac{1}{3}$	0
x_1	2/ /3	1	0	-1/ 3	$0 \frac{1}{3}$	0
u_2	1/ /3 2	0	0	1/ /3 0	$ \begin{array}{ccc} 1 & -\frac{4}{3} \\ 0 & 0 \end{array} $	
u_4	2	1	1	Ő	0 0	1

 $\max_{s.t.} Z = x_1 + x_2$ $-x_1 + x_2 + u_1 = 1$ $3x_1 + x_2 + u_2 = 4$ $2x_1 + x_2 + u_3 = 3$ $x_1 + x_2 + u_4 = 2$ $u_1, u_2, u_3 \ge 0$ $x_1, x_2 \ge 0$, 整数

$$\max_{s.t.} Z = x_1 + x_2$$

$$-x_1 + x_2 + u_1 = 1$$

$$3x_1 + x_2 + u_2 = 4$$

$$2x_1 + x_2 + u_3 = 3$$

					`		$x_1 + x_2 + u_4 = 2$ $u_1, u_2, u_3 \ge 0$, $x_1, x_2 \ge 0$, 整数
	x_1	\mathcal{X}_2	u_1	u_2	u_3	\mathcal{U}_4	$u_1, u_2, u_3 \ge 0,$ $x_1, x_2 \ge 0.$ 整数
_7/2	0	0	_1/2	0	_2/2	0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

		$\boldsymbol{\lambda}_1$	$\boldsymbol{\lambda}_2$	\boldsymbol{u}_1	u_2 u_3	u_4
	$-\frac{7}{3}$	0	0	$-\frac{1}{3}$	$0 -\frac{2}{3}$	0
x_2	5/ /3	0	1	2/ /3	$0 \frac{1}{3}$	0
$\begin{bmatrix} x_2 \\ x_1 \\ u_2 \end{bmatrix}$	2/ /3	1	0	-1/ 3	$0 \frac{1}{3}$	0
	1/	0	0	1/3	$1 -\frac{4}{3}$	0
\mathcal{U}_4	4/3	0	1	1/3	0 - 1/3	1

$$(2-20)_{-}$$

 $\max Z = x_1 + x_2$ $-x_1^{s_1t} + x_2 + u_1 = 1$ $3x_1 + x_2 + u_2 = 4$ $2x_1 + x_2 + u_3 = 3$ $x_1 + x_2 + u_4 = 2$ $u_1, u_2, u_3 \ge 0$ $x_1, x_2 \ge 0$ $x_1, x_2 \ge 0$ $x_1, x_2 \ge 0$

		x_1	\mathcal{X}_2	_	u_2 u_3	
	$-\frac{7}{3}$	0	0	$-\frac{1}{3}$	$0 -\frac{2}{3}$	0
X_2	5/ /3	0	1	2/	$0 \frac{1}{3}$	0
u_1	2/ /3	1	0	$-\frac{1}{3}$	$0 \frac{1}{3}$	0
u_2	1/3	0	0	1/ /3 _1/	$1 - \frac{4}{3}$	0
u_4	_1/3	0	0		$0 - \frac{2}{3}$	1

最优解 C(1,1) Z=2

(2-20)'最优表

		x_1	\mathcal{X}_2	u_1	u_2	u_3	\mathcal{U}_4
	-2	0	0	0	0	0	-1
x_2	1	0	1	0	0	-1	2
\mathcal{X}_1	1	1	0	0	0	1	-1
u_2	0	0	0	0	1	- 2	1
u_1	1	0	0	1	0	2	– 3

 $\max_{s.t.} Z = x_1 + x_2$ $-x_1 + x_2 + u_1 = 1$ $3x_1 + x_2 + u_2 = 4$ $2x_1 + x_2 + u_3 = 3$ $x_1 + x_2 + u_4 = 2$ $u_1, u_2, u_3 \ge 0$ $x_1, x_2 \ge 0$, 整数

(2-20)

例2-2
$$\max_{s.t.} Z = x_1 + x_2$$

$$(2-8) \begin{cases} -x_1 + x_2 \le 1 \\ 3x_1 + x_2 \le 4 \\ x_1, x_2 \ge 0, 整数 \end{cases}$$

$$\max_{s.t.} Z = x_1 + x_2$$

$$(2-14) \begin{cases} 3x_1 + x_2 \le 1 \\ 3x_1 + x_2 \le 4 \\ 2x_1 + x_2 \le 3 \\ x_1, x_2 \ge 0, 整数 \end{cases}$$
解 $(2-19)'$ 得最优解 $C(1,1)$ $Z = 2$

$$\max_{\substack{s.t. \\ -x_1 + x_2 \le 1 \\ 3x_1 + x_2 \le 4 \\ 2x_1 + x_2 \le 3 \\ x_1 + x_2 \le 2 \\ x_1, x_2 \ge 0, 整数$$

割平面法的迭代步骤:

线性整数规划(S) — 求其伴随规划的最优解

线性整数规划(S')

整数解 ——原问题的最优整数解,迭代终止

最优解

1. 建立割平面方程

非整数解-

2. 将割平面方程相应的约束加入原线性整数规划,得到较小可行域上的线性整数规划,且S'中与S中的整数解相同.

整数规划---线性整数规划

- ✔ 分枝定界法
- ✓ 割平面法
 - 分配问题的解法

作业: P125 2(1)(2) 3(1)(2)

作业: P109 2(1)(2) 3(1)(2)