PROBLEMAS DE MICROONDAS: PARÁMETROS S Y ANÁLISIS DE CIRCUITOS DE MICROONDAS

PROBLEMA 1

Calcular la matriz S del siguiente cuadripolo:

PROBLEMA 2

Determine la matriz de parámetros ABCD de los siguientes cuadripolos:

- Una impedancia de valor Z en serie.
- Una admitancia de valor Y en paralelo.
- Un tramo de línea sin pérdidas de longitud l, impedancia característica Z_0 y constante de fase β .
- Un transformador de relación de transformación N:1 (este transformador es el circuito equivalente de una transición en un circuito de microondas)
- Una red en Π con las siguientes admitancias en cada uno de los brazos: Y_1 e Y_2 en los brazos paralelos e Y_3 en el brazo serie.
- Una red en T con las siguientes impedancias en cada uno de los brazos: Z_1 e Z_2 en los brazos series y Z_3 en el brazo paralelo.

PROBLEMA 3

Se ha medido la matriz de parámetros S de un cuadripolo resultando en

$$[S] = \begin{bmatrix} 0.1_{0^{\circ}} & 0.8_{90^{\circ}} \\ 0.8_{90^{\circ}} & 0.2_{0^{\circ}} \end{bmatrix}$$

Se pregunta: ¿Es la red recíproca y/o sin pérdidas? Si se cierra el puerto 2 por un cortocircuito, ¿cuáles son las pérdidas de retorno en el terminal 1 del cuadripolo cerrado?

PROBLEMA 4 (septiembre 2003)

La matriz de parámetros S de un cuadripolo tiene la siguiente expresión:

$$[S] = \begin{bmatrix} \cos \tau \cdot \exp(j\phi_1) & \sin \tau \cdot \exp(j\phi_2) \\ \sin \tau \cdot \exp(j\phi_3) & \cos \tau \cdot \exp(j\phi_2 + \phi_3 - \phi_1) \end{bmatrix}$$

con $\tau, \phi_2, \phi_3, \phi_1$ reales y arbitrarios.

- a) Indique las propiedades físicas del cuadripolo, demostrándolas
- b) Escriba la expresión más sencilla de la matriz S para un girador (desfasador NO RECÍPROCO ideal de 180°)
- c) Calcule la impedancia de entrada del cuadripolo en el caso de que sea recíproco y si $\Gamma_L = s_{22}^*$

PROBLEMA 5

El modo TE_{11} en una guía rectangular de dimensiones a y b (anchura y altura) se obtiene a partir de la siguiente componente longitudinal:

$$h_z = C\cos\left(\frac{\pi x}{a}\right) \cdot \cos\left(\frac{\pi y}{b}\right)$$

Determine las expresiones de los voltajes y corrientes equivalentes (V^+ e I^+) para los casos en que Z_c coincide con la impedancia del modo TE_{11} y para cuando Z_c =1

PROBLEMA 6

Demuestre que si se conectan dos cuadripolos en cascada con matrices de parámetros S, S^A y S^B , resulta que el cuadripolo total resultante tiene por parámetros s_{21} :

$$s_{21} = \frac{s_{21}^A \cdot s_{21}^B}{1 - s_{22}^A \cdot s_{11}^B}$$

PROBLEMA 7

Encuentre la matriz de parámetros S respecto de 50 Ω de un circuito de adaptación simétrico y sin pérdidas que adapte una impedancia de 100 Ω a 50 Ω (se supone el circuito pasivo, lineal e isótropo).

PROBLEMA 8

Demuestre que con un atenuador variable y un tramo de línea de transmisión de impedancia Z_o terminado en un cortocircuito desplazable, es posible obtener cualquier impedancia de carga. Obtenga la longitud de una línea con una permitividad relativa eficaz de 2.8 a la frecuencia de 6 GHz y la atenuación en dB para obtener una impedancia de entrada de 300+j110.

PROBLEMA 9

La figura representa un cuadripolo del que se conocen sus parámetros S referidos a Z_o. Exprese en función de dichos parámetros y del generador:

- a) Potencia entregada a $Z_L=Z_o$.
- b) ¿Se obtiene la máxima potencia en esta situación?
- c) Si la respuesta en b) es negativa, calcule la ganancia de transducción y la impedancia de carga que hace máxima dicha potencia.
- d) Si s_{12} =0, ¿cuál sería la ganancia de transducción si se adapta la entrada del cuadripolo con una red sin pérdidas y se mantiene la Z_L óptima?

PROBLEMA 10 (examen febrero 2002)

El objetivo de este ejercicio es caracterizar un determinado circuito de microondas y la realización de un balance energético en el mismo.

- a) Se pretende caracterizar una discontinuidad en un circuito de microondas. Las medidas han demostrado que el circuito equivalente de la figura 2.1 (recíproco y sin pérdidas) representa dicha discontinuidad. También se sabe que el parámetro s_{11} medido respecto a una impedancia de 50 ohmios vale $0.62_{29.7^{\circ}}$. Determine el valor de la reactancia X, la relación del transformador y el resto de los parámetros S del circuito correspondiente de la discontinuidad. (20 minutos)
- b) Se dispone de un generador de tensión (definido por V_g y Z_g , figura 2.2) que origina una onda de potencia b_g (definida como aquella onda de potencia que el generador excitaría en una línea de transmisión indefinida de impedancia Z_o =50 ohm). Obtenga el valor de b_g en función del voltaje del generador en circuito abierto y de la impedancia del generador Z_g . (10 minutos)
- c) Dicho generador se conecta al cuadripolo del apartado a. Determine el valor de la potencia consumida en una carga Z_L en función de las ondas de potencia b_g , ${\boldsymbol a}$ y ${\boldsymbol b}$ (donde ${\boldsymbol a}$ y ${\boldsymbol b}$ son los vectores de las ondas de potencia de entrada y salida del cuadripolo) y de los correspondientes coeficientes de reflexión de generador Γ_g y Γ_L respectivamente. Aplicación para $V_g{=}10$ V, $Z_g{=}$ $Z_L{=}$ 60 ohm (15 minutos)

Figura 2.1. Figura 2.2

PROBLEMA 11 (examen septiembre 2006)

Se dispone de un cuadripolo no disipativo y recíproco del que se ha medido su matriz de parámetros S referida a Z_0 =50 Ω . Se sabe que el parámetro s_{21} vale b y que se encuentra adaptado por la puerta 1. Se pide:

- Determine la matriz de parámetros S respecto a la impedancia referida de 50Ω .
- Se desea calcular la matriz de parámetros S de dicho cuadripolo referidos a impedancias de referencia de entrada y salida Z_{01} =75 Ω y Z_{02} =100 Ω , respectivamente. Obtenga las expresiones de los parámetros s_{11} y s_{22} de la matriz de parámetros S referidos a las nuevas impedancias.
- Obtenga los parámetros de transmisión s_{21} y s_{12} del cuadripolo respecto a Z_{01} y Z_{02} .

PROBLEMA 12 (examen)

Se ha obtenido la matriz de parámetros S de un cuadripolo referida a $Z_0 = 50$:

$$[S] = \begin{bmatrix} 0.5_{180^{\circ}} & 0.08_{30^{\circ}} \\ 2.5_{70^{\circ}} & 0.8_{-100^{\circ}} \end{bmatrix}$$

Se desea calcular la matriz de parámetros S de dicho cuadripolo referida a impedancias de referencia de entrada y salida $Z_{01} = 75$ y $Z_{02} = 100$, respectivamente.

¿Cuál es el coeficiente s₁₁ de la matriz de parámetros S del cuadripolo referida a las nuevas impedancias?

PROBLEMA 13

Considere un circuito de 2 puertas formado por dos tramos de línea de impedancia característica Z_0 conectados entre sí por un tramo de línea de impedancia característica $Z_1 \neq Z_0$ y longitud l.

Sabiendo que todas las líneas son sin pérdidas, razone si es posible que $s_{ii}^{Z_0} = 0$ (i = 1, 2) para algún valor de l. En caso afirmativo indique el valor o valores de l que hacen $s_{ii}^{Z_0} = 0$ (i = 1, 2)

PROBLEMA 14

Considere las matrices de parámetros S siguientes referidas a Z₀=50 ohm.

$$[S_A] = -\frac{j}{\sqrt{2}} \begin{bmatrix} 0 & 1 & 1\\ 1 & 0 & 0\\ 1 & 0 & 0 \end{bmatrix}, [S_B] = \begin{bmatrix} 0.5j & 0\\ 4 & 0.5j \end{bmatrix}$$

- a) Para cada una de las matrices anteriores, razone sobre los siguientes aspectos de los circuitos a que representen
 - a. ¿es un circuito recíproco?
 - b. ¿es un circuito sin pérdidas (no disipativo)?
 - c. ¿es un circuito pasivo?
- b) Calcule los parámetros S del circuito completo de la figura siguiente que hace uso de los circuitos del apartado a.

PROBLEMA 15

Considere la siguiente matriz de parámetros de dispersión de un circuito de microondas de 3 puertos:

$$[S_A] = \begin{bmatrix} 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{2} & \frac{1}{2} \\ -\frac{1}{\sqrt{2}} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

- a) ¿Es una red recíproca?, ¿sin pérdidas?, ¿pasiva? Justifique la respuesta
- b) Considere el circuito anterior, cargados todos sus puertos con la impedancia de referencia Z_0 . Suponiendo una potencia incidente de 1 mw en el puerto 1, exprese en dBm los valores de las potencias salientes en todos los demás puertos.
- c) Considere otra vez la red anterior con las mismas condiciones de carga. Suponga que se excita el puerto 2 con una onda incidente a_2 de potencia 1 mw y el puerto 3 con otra onda $a_3=2$ a_2 . Calcular la potencia que fluye desde el puerto 1 (en dBm)