JEGYZŐKÖNYV KLASSZIKUS FIZIKA LABORATÓRIUM

07. MÉRÉS - MÁGNESES SZUSZCEPTIBILITÁS MÉRÉSE

• Mérést végezte : Brindza Mátyás

 \bullet Mérést végző Neptun-azonosítója: Z2R8XS

• Jegyzőkönyv leadásának időpontja : 2021.08.31.

A mérés célja:

A mérés célja az egyes minták mágneses szuszceptibilitásának mérése, illetve közbelső lépésként a Hall-szonda kalibrálása.

Mérőeszkzök:

- 1-es jelzésű próbatekercs
- 14-es jelzésű minta
- üres üveg
- víz
- Hall-szonda
- Voltméter
- Analitikai mérleg
- Fluxusmérő
- Elektromágnes
- Áramgenerátor

A mérés elméleti háttere:

Az anyagok külső mágneses tér hatására polarizálódnak, **m** mágneses dipól momentum alakul ki bennük. Ennek egységnyi térfogatra eső része, a mágnesezettség arányos a mágneses térerősséggel:

$$\mathbf{M} = \frac{\mathbf{m}}{V} = \kappa \cdot \mu_0 \cdot \mathbf{H}$$

ahol κ a szuszceptibilitás és μ_0 a vákum permeabilitása.

A B mágneses indukció és a H közti összefüggéssel definiálható μ_r relatív permeabilitás, mint:

$$\mathbf{B} = \mu_r \cdot \mu_0 \cdot \mathbf{H} = \mu_0 \cdot H + \mathbf{M}$$

Tehát

$$\mu_r = 1 + \kappa$$

Az anyagok megkülönböztetketők szuszceptibilitásuk szerint, mint:

- $Paramágneses \ anyag : \kappa \ kicsi, pozitív szám; M és H megegyező irányúak$
- $Diamágneses\ anyag: \kappa$ kicsi, negatív szám; \mathbf{M} és \mathbf{H} ellentétes irányúak
- Ferromágneses anyag : κ nagy, pozitív szám és függ H-tól

A mérés rövid leírása:

A kis szuszceptibilitások mérésére alkalmas Gouy-módszerrel járunk el. A mintát inhomogén térbe helyezve Hall-szondával mérjük a mágneses indukció nagyságát, valamint a rá ható erőt analitikai mérleg segítségével. A mintát úgy helyezzük bele a térbe, hogy egyik végén $H_y(x_1)$ legyen a tér, a másikon $H_y(x_0) \approx 0$. Ekkora a mintára ható erő:

$$F = \frac{(\kappa - \kappa_0) \cdot A \cdot \mu_0 \cdot H_y^2}{2} = \frac{(\kappa - \kappa_0) \cdot A \cdot B_y^2}{2}$$

ahol $\kappa_0 = 3.77 \cdot 10^{-7}$ a levegő szuszceptibilitása és A a minta keresztmetszete. Az erőt a mágneses indukció függvényében ábrázolva egyenes illeszthető, mely meredekségéből meghatározható a szuszceptibilitás.

A térerősséget Hall-szondával mérjük, melyet hitelesíteni kell a minták vizsgálata előtt. Tudjuk, hogy a Hall-effektus

$$U_H = \frac{R_H}{d} \cdot I_H \cdot B$$

ahol R_H a Hall-állandó, I_H a Hall-áram és d a félvezető sapka vastagsága.

Hitelesítéskor megadjuk az $U_H(B)$ függvényt, melyből következtetni lehet a mágneses indukcióra. Fontos, hogy végig állandó áramerősséggel dolgozzunk. Az adott n menetszámú mérőtekercset a térbe helyezzük úgy, hogy felülete merőleges legyen az erővonalakra. Ezután a tekercset kihuzzuk egészen addig, ahol már zérusnak tekinthető a térerősség. E mozdulatsor alatt a fluxus folyamatosan változik, ezzel $U = \frac{d\Phi}{dt}$ feszültséget indukálva. A fluxusmérő felintegrálja az egész mozdulatot. A mágneses indukciót az alábbi módon származtathatjuk ebből.

$$B = \frac{\Delta\Phi}{n \cdot \bar{F}}$$

ahol \bar{F} az átlagos menetfelület.

Ha tehát ezek fényében egyenest illesztünk az $F(B^2$ összefüggésre, κ kifejezhető, mint az egyenes m meredeksége:

$$\kappa = \kappa_0 + \frac{2 \cdot \mu_0 \cdot m}{A}$$

Mérési adatok és kiértékelés

Hall-szonda

Az 1-es jelzésű próbatekercs paraméterei:

• A menetszám : N = 194

 \bullet A menet külső sugara : $r_k = 4.8mm \pm 0.05mm$

 \bullet A menet belső sugara : $r_b = 3.05mm \pm 0.05mm$

A próbatekercs átlagos menetfelülete:

$$\bar{F} = \frac{\pi}{3} \cdot (r_k^2 + r_b^2 + r_k \cdot r_b) = 49.199959 \pm 0.25 mm^2$$

I_{coil} [A]	I_{Hall} [mA]	U_{Hall} [mV]	$\Delta\Phi \ [mV\cdot s]$
0.03	4.964	0.02	-0.040604
0.537	4.965	0.123	-0.160763
1.045	4.972	0.221	-0.290802
1.551	4.968	0.327	-0.393753
2.059	4.97	0.432	-0.564071
2.57	4.975	0.533	-0.630411
3.074	4.969	0.629	-0.745778
3.583	4.968	0.723	-0.840611
4.093	4.976	0.806	-0.951433

A hitelesítés során felvett adatok

Innen a B adatsor meghatározható a tekercs paraméterei és a fluxus segítségével.

A hitelesítés során felvett adatok és a rájuk illesztett egyenes

Az illesztés eredménye:

$$m = -119.976121 \frac{mT}{mV} \pm 2.495427 \frac{mT}{mV}$$

I_{coil} [A]	I_{Hall} [mA]	U_{Hall} [mV]
1.044	2.996	0.134
1.048	3.492	0.156
1.043	3.984	0.178
1.042	4.479	0.2
1.044	4.964	0.222
1.045	5.462	0.244
1.04	5.951	0.265
1.045	6.439	0.287
1.045	6.928	0.309

A beépített szonda R_h/d paraméteréhez szükséges adatok

$$b = -2.917645mT \pm 1.236578mT$$

A fentiekben meghatároztuk a B(U) függvényt. Így most az $U_H=\frac{R_H}{d}\cdot I_H\cdot B$ összefüggés segítségével:

$$\frac{R_H}{d} = -0.001601335 \frac{mV}{mA \cdot mT} \pm 0.00075336861 \frac{mV}{mA \cdot mT}$$

14-es jelzésű minta szuszceptibilitása

14-es jelzésű minta hatszor mért átmérő-értékeinek átlaga : 7.725 $mm\pm0.015mm$ Innen a keresztmetszete: $A_{Al}=4.68691262\cdot10^{-5}m^2\pm1.820160\cdot10^{-7}m^2$

I_{Hall} [mA]	U_{Hall} [mV]	m [g]
0.023	0.019	-0.0001
0.534	0.118	0.0003
1.04	0.222	0.0016
1.549	0.326	0.0036
2.059	0.431	0.0063
2.567	0.532	0.0096
3.021	0.617	0.0129
3.581	0.72	0.0174
4.09	0.804	0.0216

A 14-es jelzésű minta szuszceptibilitás mérése

Az erő, mint a mágneses indukció négyzetének függvénye

Az illesztés eredménye:

$$m = 0.02175615 \frac{N}{T^2} \pm 6.19561 \cdot 10^{-5} \frac{N}{T^2}$$

$$b = -2.80878 \cdot 10^{-6} N \pm 3.12453 \cdot 10^{-7} N$$

Így a szuszceptibilitás:

$$\kappa = \kappa_0 + \frac{2 \cdot \mu_0 \cdot m}{A} = 0.001167012 \pm 0.00012409$$

Az üres üveg szuszceptibilitása

Az üveg hatszor mért átmérő-értékeinek átlaga : $6.02667mm\pm0.03333mm$ Innen a keresztmetszete: $A_{Al}=2.8526219799\cdot10^{-5}m^2\pm5.1846378\cdot10^{-7}m^2$

I_{Hall} [mA]	U_{Hall} [mV]	m [g]
0.026	0.021	0.0
0.535	0.117	-0.0001
1.043	0.22	-0.0003
1.55	0.325	-0.0008
2.062	0.428	-0.0014
2.571	0.529	-0.0022
2.977	0.607	-0.0029
3.583	0.718	-0.0041
4.092	0.801	-0.0052

Az üres üveg szuszceptibilitásának mérése

Az erő, mint a mágneses indukció négyzetének függvénye

Az illesztés eredménye:

$$m = -0.005229391 \frac{N}{T^2} \pm 6.491833 \cdot 10^{-5} 5 \frac{N}{T^2}$$

$$b = 1.084907436 \cdot 10^{-6} N \pm 3.238398712 \cdot 10^{-7} N$$

Így a szuszceptibilitás:

$$\kappa = \kappa_0 + \frac{2 \cdot \mu_0 \cdot m}{A} = -0.00046035329 \pm 0.00013035512$$

A vízzel telt üveg szuszceptibilitása

I_{Hall} [mA]	U_{Hall} [mV]	m [g]
0.03	0.018	0.0
0.538	0.115	-0.0003
1.042	0.222	-0.0009
1.554	0.325	-0.002
2.06	0.427	-0.0034
2.57	0.533	-0.0053
2.994	0.616	-0.0072
3.585	0.717	-0.0097
4.095	0.801	-0.0121

A vízzel teli üveg szuszceptibilitásának mérése

Az erő, mint a mágneses indukció négyzetének függvénye

Az illesztés eredménye:

$$m = -0.012179246 \frac{N}{T^2} \pm 8.484124403 \cdot 10^{-5} \frac{N}{T^2}$$
$$b = 1.368126501 \cdot 10^{-6} N \pm 4.251938698 \cdot 10^{-7} N$$

Így a szuszceptibilitás:

$$\kappa = \kappa_0 + \frac{2 \cdot \mu_0 \cdot m}{A} = -0.001072663 \pm 0.0001702009$$

Diszkusszió

Megkaptuk, hogy az alumínium paramágneses anyag, az üveg pedig diamágneses. A víz is diamágnesessége is stimmel, mivel az üres üvegnél kapott κ nagyobb, mint a vízzel teli üvegnél kapott.

A relatív hibákat tekintve csak az illesztéseknél volt nagyobb baj, de ott is csak a konstans paraméternél - amiből semmit sem szártmaztattunk. A mérés alapvetően sikeresnek mondható.

Felhasznált irodalom

[1] Böhönyey - Havancsák - Huhn: Mérések a klasszikus fizika laboratóriumban, szerkesztette: Havancsák Károly, ELTE Eötvös Kiadó, Budapest, 2003.