Linear correlation and linear regression

Continuous outcome (means)

Outcome Variable	Are the observations independent or correlated?		Alternatives if the normality
	independent	correlated	assumption is violated (and small sample size):
Continuous (e.g. pain scale, cognitive function)	Ttest: compares means between two independent groups	Paired ttest: compares means between two related groups (e.g., the same subjects before and after)	Non-parametric statistics Wilcoxon sign-rank test: non- parametric alternative to the paired ttest
	ANOVA: compares means between more than two independent groups Pearson's correlation	Repeated-measures ANOVA: compares changes over time in the means of two or more groups (repeated measurements)	Wilcoxon sum-rank test (=Mann-Whitney U test): non- parametric alternative to the ttest
	coefficient (linear correlation) : shows linear correlation between two continuous	Mixed models/GEE modeling: multivariate regression techniques to compare changes over time between two or more groups; gives rate of change over time	Kruskal-Wallis test: non- parametric alternative to ANOVA
	Linear regression: multivariate regression technique used when the outcome is continuous; gives slopes		Spearman rank correlation coefficient: non-parametric alternative to Pearson's correlation coefficient

Recall: Covariance

$$cov (x, y) = \frac{\sum_{i=1}^{n} (x_i - \overline{X})(y_i - \overline{Y})}{n-1}$$

Interpreting Covariance

```
cov(X,Y) > 0 \longrightarrowX and Y are positively correlated cov(X,Y) < 0 \longrightarrowX and Y are inversely correlated cov(X,Y) = 0 \longrightarrowX and Y are independent
```

Correlation coefficient

Pearson's Correlation Coefficient is standardized covariance (unitless):

$$r = \frac{\text{cov } \text{ariance } (x, y)}{\sqrt{\text{var } x} \sqrt{\text{var } y}}$$

Correlation

- Measures the relative strength of the linear relationship between two variables
- Unit-less
- Ranges between –1 and 1
- The closer to -1, the stronger the negative linear relationship
- The closer to 1, the stronger the positive linear relationship
- The closer to 0, the weaker any positive linear relationship

Scatter Plots of Data with Various Correlation Coefficients

Linear Correlation

Linear Correlation

Calculating by hand...

$$\hat{r} = \frac{\text{cov ariance } (x, y)}{\sqrt{\text{var } x} \sqrt{\text{var } y}} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2} \sqrt{\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}} \sqrt{\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}}}$$

Simpler calculation formula...

Distribution of the correlation coefficient:

$$SE(\hat{r}) = \sqrt{\frac{1 - r^2}{n - 2}}$$

The sample correlation coefficient follows a T-distribution with n-2 degrees of freedom (since you have to estimate the standard error).

*note, like a proportion, the variance of the correlation coefficient depends on the correlation coefficient itself -> substitute in estimated r

Continuous outcome (means)

Outcome Variable	Are the observations independent or correlated?		Alternatives if the normality		
	independent	correlated	assumption is violated (and small sample size):		
Continuous (e.g. pain scale, cognitive function)	Ttest: compares means between two independent groups	Paired ttest: compares means between two related groups (e.g., the same subjects before and after)	Non-parametric statistics Wilcoxon sign-rank test: non- parametric alternative to the paired ttest		
	ANOVA: compares means between more than two independent groups	Repeated-measures ANOVA: compares changes over time in the means of two or more groups (repeated measurements)	Wilcoxon sum-rank test (=Mann-Whitney U test): non- parametric alternative to the ttest		
	Pearson's correlation coefficient (linear correlation) : shows linear correlation between two continuous variables	Mixed models/GEE modeling: multivariate regression techniques to compare changes over time between two or more groups; gives rate of change over time	Kruskal-Wallis test: non- parametric alternative to ANOVA		
	Linear regression: multivariate regression technique used when the outcome is continuous; gives slopes		Spearman rank correlation coefficient: non-parametric alternative to Pearson's correlation coefficient		

Linear regression

In correlation, the two variables are treated as equals. In regression, one variable is considered independent (=predictor) variable (X) and the other the dependent (=outcome) variable Y.

What is "Linear"?

- Remember this:
- *Y=mX+B?*

What's Slope?

A slope of 2 means that every 1-unit change in X yields a 2-unit change in Y.

Prediction

If you know something about X, this knowledge helps you predict something about Y. (Sound familiar? ...sound like conditional probabilities?)

Regression equation...

Expected value of y at a given level of x=

$$E(y_i/x_i) = \alpha + \beta x_i$$

Predicted value for an individual...

$$\hat{\mathbf{y}}_{\mathsf{i}} =$$

$$\alpha + \beta * x_i$$

 $\alpha + \beta * x_i + random error_i$

Fixed exactly on the line

Follows a normal distribution

Assumptions (or the fine print)

- Linear regression assumes that...
 - 1. The relationship between X and Y is linear
 - 2. Y is distributed normally at each value of X
 - 3. The variance of Y at every value of X is the same (homogeneity of variances)
 - 4. The observations are independent

The standard error of Y given X is the average variability around the regression line at any given value of X. It is assumed to be equal at all values of X.

Regression Picture

$$\sum_{i=1}^{n} (y_i - \overline{y})^2 = \sum_{i=1}^{n} (\hat{y}_i - \overline{y})^2 + \sum_{i=1}^{n} (\hat{y}_i - y_i)$$

 A^2

Total squared distance of observations from naïve mean of y Variability due to x (regression) Total variation

 B^2

Distance from regression line to naïve mean of y

estimation gave us the line (β) that minimized

Variance around the regression line Additional variability not

explained by x—what least squares method aims to minimize

Recall example: cognitive function and vitamin D

- Hypothetical data loosely based on [1]; cross-sectional study of 100 middleaged and older European men.
 - Cognitive function is measured by the Digit Symbol Substitution Test (DSST).

Distribution of vitamin D

Distribution of DSST

Four hypothetical datasets

- I generated four hypothetical datasets, with increasing TRUE slopes (between vit D and DSST):
 - **0**
 - 0.5 points per 10 nmol/L
 - 1.0 points per 10 nmol/L
 - 1.5 points per 10 nmol/L

Dataset 1: no relationship

Dataset 3: weak to moderate relationship

Dataset 4: moderate relationship

Regression equation:

 $E(Y_i) = 28 + 0*vit$ D_i (in 10 nmol/L)

Note how the line is a little deceptive; it draws your eye, making the relationship appear stronger than it really is!

Regression equation:

$$E(Y_i) = 26 + 0.5*vit$$

D_i (in 10 nmol/L)

Regression equation:

$$E(Y_i) = 22 + 1.0*vit$$

Regression equation:

 $E(Y_i) = 20 + 1.5*vit D_i$ (in 10 nmol/L)

Note: all the lines go through the point (63, 28)!

Estimating the intercept and slope: least squares estimation

** Least Squares Estimation

A little calculus....

What are we trying to estimate? β , the slope, from

What's the constraint? We are trying to minimize the squared distance (hence the "least squares") between the observations themselves and the predicted values, or (also called the "residuals", or left-over unexplained variability)

Difference_i = $y_i - (\beta x + a)$ Difference_i² = $(y_i - (\beta x + a))^2$

Find the β that gives the minimum own of the account differences. How do not movimize a function? Take the derivative; set $d = \frac{n}{n}$

the derivative; set
$$\frac{d}{d\beta} \sum_{i=1}^{n} (y_i - (\beta x_i + \alpha))^2 = 2(\sum_{i=1}^{n} (y_i - \beta x_i - \alpha)(-x_i))$$

$$2(\sum_{i=1}^{n}(-y_{i}x_{i}+\beta x_{i}^{2}+\alpha x_{i}))=0...$$

From here takes a little math trickery to solve for β ...

Resulting formulas...

Slope (beta coefficient) =
$$\hat{\beta} = \frac{Cov(x, y)}{Var(x)}$$

Intercept= Calculate :
$$\hat{\alpha} = \overline{y} - \hat{\beta}x$$

Regression line always goes through the point: $(\overline{x}, \overline{y})$

Relationship with correlation

$$\hat{r} = \hat{\beta} \frac{SD}{SD}_{x}$$

$$SD_{y}$$

In correlation, the two variables are treated as equals. In regression, one variable is considered independent (=predictor) variable (X) and the other the dependent (=outcome) variable Y.

Example: dataset 4

Significance testing...

Slope

Distribution of slope $\sim T_{n-2}(\beta, s.e.(\hat{\beta}))$

$$H_0$$
: $\beta_1 = 0$ (no linear relationship)

 H_1 : $\beta_1 \boxtimes 0$ (linear relationship does exist)

$$T_{n-2} = \frac{\hat{\beta} - 0}{s.e.(\hat{\beta})}$$

Formula for the standard error of beta (you will not have to calculate by hand!):

$$S_{\hat{\beta}} = \sqrt{\frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{n-2}} = \sqrt{\frac{S_{y/x}^2}{SS_x}}$$

where SS
$$_{x}=\sum_{i=1}^{n}(x_{i}-\overline{x})^{2}$$
 and $\hat{y}_{i}=\hat{\alpha}+\hat{\beta}x_{i}$

Example: dataset 4

- Standard error (beta) = 0.03
- $T_{98} = 0.15/0.03 = 5, p<.0001$

95% Confidence interval = 0.09 to 0.21

Residual Analysis: check assumptions

$$e_{i}=Y_{i}-\hat{Y_{i}}$$

- The residual for observation i, e_i, is the difference between its observed and predicted value
- Check the assumptions of regression by examining the residuals
 - Examine for linearity assumption
 - Examine for constant variance for all levels of X (homoscedasticity)
 - Evaluate normal distribution assumption
 - Evaluate independence assumption
- Graphical Analysis of Residuals
 - Can plot residuals vs. X

Predicted values...

$$\hat{y}_{i} = 20 + 1.5 x_{i}$$

For Vitamin D = 95 nmol/L (or 9.5 in 10 nmol/L):

$$\hat{y}_{i} = 20 + 1.5(9.5) = 34$$

Residual = observed - predicted

$$y_{i} = 48$$

$$\hat{y}_{i} = 34$$

$$y_{i} - \hat{y}_{i} = 14$$

Residual Analysis for Linearity

•Slide from: Statistics for Managers Using Microsoft® Excel 4th Edition, 2004 Prentice-Hall

Residual Analysis for Homoscedasticity

Residual Analysis for Independence

Residual plot, dataset 4

Multiple linear regression...

- What if age is a confounder here?
 - Older men have lower vitamin D
 - Older men have poorer cognition
- "Adjust" for age by putting age in the model:
 - DSST score = intercept + slope₁xvitamin D
 + slope₂ xage

2 predictors: age and vit D...

Different 3D view...

Fit a plane rather than a line...

On the plane, the slope for vitamin D is the same at every age; thus, the slope for vitamin D represents the effect of vitamin D when age is held constant.

Equation of the "Best fit" plane...

- DSST score = 53 + 0.0039xvitamin D (in 10 nmol/L) 0.46 xage (in years)
- P-value for vitamin D >>.05
- P-value for age <.0001</p>
- Thus, relationship with vitamin D was due to confounding by age!

Multiple Linear Regression

More than one predictor...

$$E(y) = \alpha + \beta_1 *X + \beta_2 *W + \beta_3 *Z...$$

Each regression coefficient is the amount of change in the outcome variable that would be expected per one-unit change of the predictor, if all other variables in the model were held constant.

- Control for confounders
- Test for interactions between predictors (effect modification)
- Improve predictions

A ttest is linear regression!

- Divide vitamin D into two groups:
 - Insufficient vitamin D (<50 nmol/L)
 - Sufficient vitamin D (>=50 nmol/L), reference group
- We can evaluate these data with a ttest or a linear regression...

$$T_{98} = \frac{40 - 32.5 = 7.5}{\sqrt{\frac{10.8^2}{54} + \frac{10.8^2}{46}}} = 3.46; \ p = .0008$$

As a linear regression...

ANOVA is linear regression!

- Divide vitamin D into three groups:
 - Deficient (<25 nmol/L)
 - Insufficient (>=25 and <50 nmol/L)</p>
 - Sufficient (>=50 nmol/L), reference group

DSST= α (=value for sufficient) + $\beta_{\text{insufficient}}$ *(1 if insufficient) + β_2 *(1 if deficient)

This is called "dummy coding"—where multiple binary variables are created to represent being in each category (or not) of a categorical variable

The picture...

Results...

Parameter Estimates

```
Parameter
                            Standard
Variable
                   Estimate
                                 Error t Value Pr > Itl
Intercept
                 40.07407
                               1.47817
                                                   < 0001
deficient
                  -9.87407
                              3.73950
                                          -2.64
                                                  0.0096
insufficient
                     -6.87963
                                  2 33719
                                             -2 94
                                                     0.0041
```

Interpretation:

- The deficient group has a mean DSST 9.87 points lower than the reference (sufficient) group.
- The insufficient group has a mean DSST 6.87 points lower than the reference (sufficient) group.

Other types of multivariate regression

- Multiple linear regression is for normally distributed outcomes
- Logistic regression is for binary outcomes
- Cox proportional hazards regression is used when time-to-event is the outcome

Common multivariate regression models.

Outcome (dependent variable)	Example outcome variable	Appropriate multivariate regression model	Example equation	What do the coefficients give you?
Continuous	Blood pressure	Linear regression	blood pressure (mmHg) = $\alpha + \beta$ salt*salt consumption (tsp/day) + β age*age (years) + β smoker*ever smoker (yes=1/no=0)	slopes—tells you how much the outcome variable increases for every 1-unit increase in each predictor.
Binary	High blood pressure (yes/no)	Logistic regression	In (odds of high blood pressure) = $\alpha + \beta$ salt*salt consumption (tsp/day) + β age*age (years) + β smoker*ever smoker (yes=1/no=0)	odds ratios—tells you how much the odds of the outcome increase for every 1-unit increase in each predictor.
Time-to-event	Time-to- death	Cox regression	In (rate of death) = $\alpha + \beta$ salt*salt consumption (tsp/day) + β age*age (years) + β smoker*ever smoker (yes=1/no=0)	hazard ratios—tells you how much the rate of the outcome increases for every 1-unit increase in each predictor.

Multivariate regression pitfalls

- Multi-collinearity
- Residual confounding
- Overfitting

Multicollinearity

 Multicollinearity arises when two variables that measure the same thing or similar things (e.g., weight and BMI) are both included in a multiple regression model; they will, in effect, cancel each other out and generally destroy your model.

 Model building and diagnostics are tricky business!

Residual confounding

- You cannot completely wipe out confounding simply by adjusting for variables in multiple regression unless variables are measured with zero error (which is usually impossible).
- Example: meat eating and mortality

Men who eat a lot of meat are unhealthier for many reasons!

Table 1. Selected Age-Adjusted Characteristics of the National Institutes of Health-AARP Cohort by Red Meat Quintile Category's

	Red Meat Intake Quintile, g/1000 kcal				
Characteristic	Q1	Q2	Q3	Q4	Q5
Men (n=3	22 263)				
Meat intake	•				
Red meat, g/1000 kcal	9.3	21.4	31.5	43.1	68.1
White meat, g/1000 kcal	36.6	32.2	30.7	30.4	30.9
Processed meat, g/1000 kcal	5.1	7.8	10.3	13.3	19.4
Age, y	62.8	62.8	62.5	62.3	61.7
Race, %					
Non-Hispanic white	88.6	91.8	93.1	94.0	94.1
Non-Hispanic black	4.2	3.2	2.7	2.2	1.9
Hispanic/Asian/Pacific Islander/American Indian/Alaskan native/unknown	7.2	5.0	4.2	3.8	4.0
Positive family history of cancer,%	47.0	47.7	48.4	48.6	47.8
Currently married, %	80.8	84.4	86.1	86.7	85.6
BMI	25.9	26.7	27.1	27.6	28.3
Smoking history, % ^b					
Never smoker	34.4	30.5	28.8	27.6	25.4
Former smoker	56.5	58.1	57.5	57.1	55.8
Current smoker or having quit <1 y prior	4.9	7.6	9.9	11.4	14.8
Education, college graduate or postgraduate, %	53.0	47.3	45.1	42.3	39.1
Vigorous physical activity ≥5 times/wk, %	30.7	23.6	20.5	18.6	16.3
Dietary intake					
Energy, kcal/d	1899	1955	1998	2038	2116
Fruit, servings/1000 kcal	2.3	1.8	1.6	1.4	1.1
Vegetables, servings/1000 kcal	2.4	2.1	2.0	2.0	1.9
Alcohol, g/d	20.2	20.4	17.6	15.3	12.5
Total fat, g/1000 kcal	25.8	30.5	33.5	35.9	39.4
Saturated fat, g/1000 kcal	7.6	9.4	10.5	11.3	12.7
Fiber, g/1000 kcal	13.2	11.0	10.2	9.6	8.8
Vitamin supplement use ≥1/mo Juhard RI Leitzmann MF Schatzkin Δ Meat intake an	67.3	62.1	59.1	55.8	52.0

Sinha R, Cross AJ, Graubard Bl, Leitzmann MF, Schatzkin A. Meat intake and mortality: a prospective study of over half a million people. Arch

Mortality risks...

Table 2. Multivariate Analysis for Red, White, and Processed Meat Intake and Total and Cause-Specific Mortality in Men in the National Institutes of Health–AARP Diet and Health Study^a

Modelity in Man			Quintile			P Value	
Mortality in Men (n=322 263)	Q1	Q2	Q3	Q4	Q5	for Trend	
		Red Meat Int	take ^b				
All mortality							
Deaths	6437	7835	9366	10 988	13350		
Basic model ^c	1 [Reference]	1.07 (1.03-1.10)	1.17 (1.13-1.21)	1.27 (1.23-1.31)	1.48 (1.43-1.52)	<.001	
Adjusted model ^d	1 [Reference]	1.06 (1.03-1.10)	1.14 (1.10-1.18)	1.21 (1.17-1.25)	1.31 (1.27-1.35)	<.001	
Cancer mortality							
Deaths	2136	2701	3309	3839	4448		
Basic model ^c	1 [Reference]	1.10 (1.04-1.17)	1.23 (1.16-1.29)	1.31 (1.24-1.39)	1.44 (1.37-1.52)	< .001	
Adjusted model ^d	1 [Reference]	1.05 (0.99-1.11)	1.13 (1.07-1.20)	1.18 (1.12-1.25)	1.22 (1.16-1.29)	<.001	
CVD mortality							
Deaths	1997	2304	2703	3256	3961		
Basic model ^c	1 [Reference]	1.02 (0.96-1.08)	1.10 (1.04-1.17)	1.24 (1.17-1.31)	1.44 (1.37-1.52)	< .001	
Adjusted model ^d	1 [Reference]	0.99 (0.96-1.09)	1.08 (1.02-1.15)	1.18 (1.12-1.26)	1.27 (1.20-1.35)	<.001	
Mortality from injuries and sudden deaths							
Deaths	184	216	228	280	343		
Basic model ^c	1 [Reference]	1.02 (0.84-1.24)	0.97 (0.80-1.18)	1.09 (0.90-1.31)	1.24 (1.03-1.49)	.01	
Adjusted model ^d	1 [Reference]	1.06 (0.86-1.29)	1.01 (0.83-1.24)	1.14 (0.94-1.39)	1.26 (1.04-1.54)	.008	
All other deaths			7				
Deaths	1268	1636	1971	2239	2962		
Basic model ^c	1 [Reference]	1.13 (1.05-1.22)	1.25 (1.17-1.35)	1.33 (1.24-1.42)	1 68 (1.57-1.80)	<.001	
Adjusted model ^d	1 [Reference]	1.17 (1.09-1.26)	1.28 (1.19-1.38)	1.34 (1.25-1.44)	1.58 (1.47-1.70)	<.001	

Sinha R, Cross AJ, Graubard BI, Leitzmann MF, Schatzkin A. Meat intake and mortality: a prospective study of over half a million people. *Arch Intern Med* 2009:169:562-71

- In multivariate modeling, you can get highly significant but meaningless results if you put too many predictors in the model.
- The model is fit perfectly to the quirks of your particular sample, but has no predictive ability in a new sample.

Overfitting: class data example

 I asked SAS to automatically find predictors of optimism in our class dataset. Here's the resulting linear regression model:

Parameter Standard Variable Estimate Error Type II SS F Value Pr > F				
Intercept	11.80175	2.98341 11.96067 15.65 0.001	1	
exercise	-0.29106	0.09798 6.74569 8.83 0.0117		
sleep	-1.91592	0.39494 17.98818 23.53 0.0004		
obama	1.73993	0.24352 39.01944 51.05 <.000		
Clinton	-0.83128	0.17066 18.13489 23.73 0.0004		
mathLove	0.45653	0.10668 13.99925 18.32 0.00		

If something seems to good to be true...

```
Clinton, univariate:
                     Parameter Standard
                                    Error t Value Pr > |t|
  Variable
           Label
                   DF Estimate
  Intercept Intercept 1 5.43688
                                  2.13476
                                            2.55
                                                    0.0188
                        0.24973
                                  0.27111
   Clinton
           Clinton
                                            0.92
                                                  0.3675
```

Sleep, Univariate:
Parameter Standard
Variable Label DF Estimate Error t Value Pr > |t|
Intercept Intercept 1 8.30817 4.36984 1.90 0.0711

.22

0.8270

Exercise, Univariate: Parameter Standard Variable Label DF Estimate Error t Value Pr > |t| 6.65189 0.89153 7.46 <.0001 Intercept Intercept 0.19161 exercise exercise 0.20709 0.93 0.3658

More univariate models...

Obama,	Un	iiva	ria	ite:
Obuiliu,	\mathbf{O}	11 Y G		

Parameter Standard

Variable Label DF Estimate Error t Value Pr > |t|

Intercept Intercept 1 0.82107 2.43137 0.34 0.7389

obama obama 1 0.87276 0.31973 2.73 0.0126

Compare with multivariate result; p<.0001

Love of Math, univariate:

Parameter Standard

Variable Label DF Estimate Error t Value Pr > |t|

Intercept Intercept 1 3.70270 1.25302 2.96 0.0076

mathLove mathLove 1 0.59459 0.19225 3.09 0.0055

Compare with multivariate result; p=.0011

Overfitting

Pure noise variables still produce good R^2 values if the model is overfitted. The distribution of R^2 values from a series of simulated regression models containing only noise variables.

(Figure 1 from: Babyak, MA. What You See May Not Be What You Get: A Brief, Nontechnical Introduction to Overfitting in Regression-Type Models. *Psychosomatic Medicine* 66:411-421 (2004).)

Review of statistical tests

The following table gives the appropriate choice of a statistical test or measure of association for various types of data (outcome variables and predictor variables) by study design.
e.g., blood pressure= pounds + age + treatment

Continuous outcome

Continuous predictors

Binary predictor

Types of variables	s to be analyzed	Statistical procedure				
Predictor variable/s	Outcome variable	or measure of association				
<u>C</u>	Cross-sectional/case-control studies					
Binary (two groups) Binary	Continuous Ranks/ordinal	T-test Wilcoxon rank-sum test				
Categorical (>2 groups) Continuous Multivariate	Continuous Continuous	ANOVA Simple linear regression				
(categorical and continuous)	Continuous	Multiple linear regression				
Categorical	Categorical	Chi-square test (or Fisher's exact)				
Binary	Binary	Odds ratio, risk ratio				
Multivariate	Binary Cohort Studies/Clinical	Logistic regression Trials				
Binary	Binary	Risk ratio				

Time-to-event Kaplan-Meier/ log-rank test Categorical

Cox-proportional hazards Multivariate Time-to-event regression, hazard ratio

Continuous Repeated measures ANOVA Categorical

Multivariate **Continuous** Mixed models; GEE modeling

Alternative summary: statistics for various types of outcome data

	Are the observation correlated?		
Outcome Variable	independent	correlated	Assumptions
Continuous (e.g. pain scale, cognitive function)	Ttest ANOVA Linear correlation Linear regression	Paired ttest Repeated-measures ANOVA Mixed models/GEE modeling	Outcome is normally distributed (important for small samples). Outcome and predictor have a linear relationship.
Binary or categorical (e.g. fracture yes/no)	Difference in proportions Relative risks Chi-square test Logistic regression	McNemar's test Conditional logistic regression GEE modeling	Chi-square test assumes sufficient numbers in each cell (>=5)
Time-to-event (e.g. time to fracture)	Kaplan-Meier statistics Cox regression	n/a	Cox regression assumes proportional hazards between groups

Continuous outcome (means); HRP 259/HRP 262

Outcome Variable	Are the observations independ	Alternatives if the normality	
	independent	correlated	assumption is violated (and small sample size):
Continuous (e.g. pain scale, cognitive	Ttest: compares means between two independent groups	Paired ttest: compares means between two related groups (e.g., the same subjects before and after)	Non-parametric statistics Wilcoxon sign-rank test: non- parametric alternative to the paired ttest
function)	ANOVA: compares means between more than two independent groups Pearson's correlation	Repeated-measures ANOVA: compares changes over time in the means of two or more groups (repeated measurements)	Wilcoxon sum-rank test (=Mann-Whitney U test): non- parametric alternative to the ttest
	coefficient (linear correlation) : shows linear correlation between two continuous variables	Mixed models/GEE modeling: multivariate regression techniques to compare changes	Kruskal-Wallis test: non- parametric alternative to ANOVA Spearman rank correlation
	Linear regression: multivariate regression technique used when the outcome is continuous; gives slopes	over time between two or more groups; gives rate of change over time	coefficient: non-parametric alternative to Pearson's correlation coefficient

Binary or categorical outcomes (proportions); HRP 259/HRP 261

Outcome	Are the observations	Alternative to the chisquare test if sparse	
Variable	independent	correlated	cells:
Binary or categorical (e.g. fracture, yes/no)	Chi-square test: compares proportions between two or more groups	McNemar's chi-square test: compares binary outcome between correlated groups (e.g., before and after)	Fisher's exact test: compares proportions between independent groups when there are sparse data (some cells <5).
y 63/110)	Relative risks: odds ratios or risk ratios Logistic regression: multivariate technique used	Conditional logistic regression: multivariate regression technique for a binary outcome when groups are correlated (e.g., matched data)	McNemar's exact test: compares proportions between correlated groups when there are sparse data (some cells <5).
	when outcome is binary; gives multivariate-adjusted odds ratios	GEE modeling: multivariate regression technique for a binary outcome when groups are correlated (e.g., repeated measures)	

Time-to-event outcome (survival data); HRP 262

Outcome Variable	independent correlated		Modifications to Cox regression if proportional- hazards is violated:	
Time-to- event (e.g., time to fracture)	Kaplan-Meier statistics: estimates survival functions for each group (usually displayed graphically); compares survival functions with log-rank test	n/a (already over time)	Time-dependent predictors or time- dependent hazard ratios (tricky!)	
	Cox regression: Multivariate technique for time-to-event data; gives multivariate-adjusted hazard ratios			