Wyższa Szkoła Informatyki Stosowanej i Zarządzania

Grupa ID06IO1

ALGORYTMY PRZETWARZANIA OBRAZÓW

Aplikacja zbiorcza (ćwiczenia laboratoryjne i projekt)

Tytuł projektu

Udoskonalenie oprogramowania przygotowanego na zajęciach przez implementację nowego narzędzia do tworzenia histogramu 2D

Autor: Yevhen Matko

Prowadzący: mgr inż. Łukasz Roszkowiak, prof. IBIB PAN

Spis treści

1. Wprow	adzenie	3
1.1. Wy	magania systemowe	3
1.2. Wy	korzystane narzędzia	3
1.2.1.	Główne Biblioteki:	3
1.3. Uru	ıchomienie	3
2. Interfej	s programu	3
2.1. Głó	wne okno	3
2.1.1.	Pasek menu	3
2.2. Okr	าo obrazu	3
3. Menu g	główne	4
3.1. File	9	4
3.1.1.	Open	4
	Duplicate	
3.1.3.	Save original	5
3.1.4.	Save compressed	6
3.2. lma	ige	7
3.2.1.	To RGB	7
3.2.2.	RGB to Gray	7
3.2.3.	RGB to HSV	7
3.2.4.	RGB to LAB	8
3.2.5.	Split channels	8
3.2.6.	Stretching	
3.2.7.	Selective streching	g
3.2.8.	Equalization	
3.3. Ana	alyze	11
	Histogram	
	Plot Profile	
3.4. Pro	ocess	13
)	
4 Histogram 2D		

1. Wprowadzenie

Program pozwala na obróbkę obrazów metodami jednopunktowymi jedno i dwuargumentowymi, metodami sąsiedztwa, morfologii matematycznej, segmentacji, klasyfikacji oraz tworzenia histogramu 2D.

1.1. Wymagania systemowe

- · System operacyjny: Windows 10
- Miejsce na dysku twardym:70 MB

1.2. Wykorzystane narzędzia

- Język programowania C# 7.3
- IDE Visual Studio 2022

1.2.1. Główne Biblioteki:

- OpenCV 4.6.0.5131
- ScottPlot 4.1.62

1.3. Uruchomienie

Aby uruchomić program, należy kliknąć dwukrotnie lewym przyciskiem myszy na program wykonywalny "Image editor.exe" w folderze programu.

2. Interfejs programu

2.1. Główne okno

2.1.1. Pasek menu

Pasek menu stanowi główną część programu, który pozwala na korzystanie z jego funkcjonalności. Są tam umieszczone wszystkie funkcje programu. Niektóre funkcje są też dostępne z poziomu paska narzędziowego.

2.2. Okno obrazu

Domyślnie wyświetla obraz w jego realnym rozmiarze

3. Menu główne

3.1. File

3.1.1. Open

Opcja *File*→Open, znajdująca się w menu głównym programu, otwiera obraz.

Po naciśnięciu pojawi się okno otwierania plików, za pomocą którego należy odszukać na dysku wybrany plik z obrazem. Po wybraniu pliku wciśnięcie przycisku *Otwór*z spowoduje zamknięcie okna oraz otwarcie obrazu.

Program może wczytywać obrazy w następujących formatach:

- BMP
- JPEG
- JPG
- PNG
- TIFF
- TIF

3.1.2. Duplicate

Opcja *File→Duplicate* tworzy kopie ostatniego obrazu.

3.1.3. Save original

Opcja *File→Save original* zapisuje aktualnie wybrany obraz na dysku we wskazanym miejscu.

Po naciśnięciu pojawi się okno do zapisywania. W tym oknie należy wpisać nazwę pliku oraz można wybrać jego rozszerzenie. Naciśnij *Zapisz*, aby zapisać plik.

Jeżeli rozszerzenie pliku nie zostało podane, to domyślnie będzie zapisany z rozszerzeniem .bmp

3.1.4. Save compressed

Opcja *File→Save compressed* po kompresji zapisuje aktualnie wybrany obraz na dysku we wskazanym miejscu(wartość kompresji podaje użytkownik).

3.2. Image

3.2.1. To RGB

Opcja *Image*→*To RGB* pozwala wrócić do obrazy RGB, które przed tym był konwertowany do LAB lub HSV.

3.2.2. RGB to Gray

Opcja *Image→RGB to Gray* pozwala obraz RGB konwertować do obrazu szaroodcieniowego

3.2.3. RGB to HSV

Opcja Image→RGB to HSV pozwala obraz RGB konwertować do obrazu HSV.

3.2.4. RGB to LAB

Opcja *Image*→ *RGB to HSV* pozwala obraz RGB konwertować do obrazu LAB.

3.2.5. Split channels

Opcja *Image→Split channels* pozwala rozłożyć trzech-kanałowy obraz na trzy oddzielne obrazy.

3.2.6. Stretching

Opcja *Image*→*Stretching* Operacja rozciągania histogramu od 0 do 255.

3.2.7. Selective streching

Opcja *Image*→ *Selective stretching* Operacja rozciągania histogramu. Pozwala ustalić zakres rozciągania.

3.2.8. Equalization

Opcja *Image→Equalization* Operacja wyrównania histogramu przez equalizację.

3.3. Analyze

3.3.1. Histogram

Opcja *Analyze→Histogram* wyświetla histogram wybranego obrazu w nowym okienku:

Po wciśnięciu pojawi się histogram.

Także naciśnięcie przycisku "Histogram Table" spowoduje pokazanie histogramu w formie tablicy.

3.3.2. Plot Profile

Opcja *Analyze→Plot Profile* wyświetla linię profilu dla wybranego obrazu w nowym okienku: najpierw musisz wybrać dwa punkty na obrazie, a następnie przycisnąć "Plot Profile"

3.4. Process

Opcja *Process* pokazuje wszystkie operacji punktowe, logiczne oraz dwuargumentowe.

3.5. Info

Opcja Info wyświetla informację o programie.

Po wciśnięciu zostaje wyświetlone okienko:

4. Histogram 2D

Tytuł projektu:

Implementacja operacji tworzenia histogramu dwuwymiarowego z obrazu kolorowanego bazującego na kanałach oraz rekonstrukcji obrazów z histogramu.

Mój program pobiera obrazy RGB i konwertuje je do formatu LAB. Bierze się pod uwagę tylko dwa kanały, A i B. Algorytm przechodzi przez każdy piksel kanału A i zlicza liczbę pikseli o wartości X, które zmieniły swoją wartość w tym samym pikselu na wartość Y. (X i Y są współrzędne tablicy)

Następnie można wybrać wartości w tabeli, aby utworzyć nowy obraz.

