NTIN071 A&G: TUTORIAL 9 – PUSHDOWN AUTOMATA

Teaching goals: The student is able to

- state the formal definition of a PDA, acceptance by empty stack and by final state
- construct a pushdown automaton for a given language
- convert between acceptance by empty stack and acceptance by final state
- convert a context-free grammar into a pushdown automaton
- convert a pushdown automaton into a context-free grammar

IN-CLASS PROBLEMS

Problem 1 (PDA Construction). Design a pushdown automaton recognizing the given language. For (a), (b), (c), accept by empty stack; for (d), (e), (f) by final state.

- (a) $L = \{ww^R \mid w \in \{0, 1\}^*\}$
- (b) $L = \{w \in \{(,)\}^* \mid w \text{ is correctly parenthesized}\}$
- (c) $L = \{a^i b^j c^k \mid i = j \text{ or } j = k\}$
- (d) $L = \{a^{2n}b^{3n} \mid n \ge 0\}$
- (e) $L = \{w \in \{0, 1\}^* \mid |w|_0 = |w|_1\}$
- (f) $L = \{u2v \mid u, v \in \{0, 1\}^* \text{ and } |u| \neq |v|\}$

Problem 2 (Final State vs. Empty Stack). Convert selected pushdown automata constructed in the previous problem from final state acceptance to empty stack acceptance, and vice versa. (Try both conversions.)

Problem 3 (CFG to PDA Conversion). For a given grammar G, construct a PDA A such that L(G) = N(A). Additionally, for a given word $w \in L(G)$, find the leftmost derivation from G and simulate the computation of A (write the accepting sequence of configurations).

(a) $G = (\{S, T, X\}, \{a, b\}, \mathcal{P}, S)$ with the following rules, w = aaaabbb

$$\mathcal{P} = \{ S \to aTXb, \\ T \to XTS \mid \epsilon, \\ X \to a \mid b \}$$

(b) $G = (\{S, T, X\}, \{(,), *, +, 1\}, P, S)$ with the following rules, w = 1 + 1 * (1 + 1)

$$P = \{S \rightarrow S + T \mid T,$$
$$T \rightarrow T * X \mid X,$$
$$X \rightarrow 1 \mid (S)\}$$

Problem 4 (PDA to CFG Conversion). Convert the pushdown automata from Problem 1 (a), (b) into context-free grammars. For a reasonably long word w accepted by the given automaton, find the leftmost derivation of this word in the constructed grammar.

EXTRA PRACTICE AND THINKING

Problem 5 (Bonus: Context-Sensitive Grammar). Consider $G = (\{S, A, B, C\}, \{a, b, c\}, S, P)$, where:

$$P = \{S \rightarrow aSBC \mid aBC, B \rightarrow BBC, C \rightarrow CC, CB \rightarrow BC, \\ aB \rightarrow ab, bB \rightarrow bb, bC \rightarrow bc, cC \rightarrow cc\}$$

What language does it generate? Is grammar G context-sensitive? If not, find an equivalent context-sensitive grammar.

Problem 6 (PDA Construction). Design pushdown automata for the following languages. (They may accept by final state or empty stack; for some, construct both; for others, try converting between these two acceptance methods.)

(a)
$$L = \{w \mid w \in \{0, 1\}^*, |w|_1 \ge 3\}$$

(b)
$$L = \{w \in \{0, 1\}^* \mid w = w^R\}$$

(c)
$$L = \{a^i b^j c^k \mid i + j = k\}$$

(d)
$$L = \{w \in \{(,),[,]\}^* \mid w \text{ is correctly parenthesized}\}$$