LADR Done Right

johnsmith0x3f

August 29, 2024

Chapter 1

Inner Product Spaces

1.A Inner Products and Norms

Exercise 5 Suppose $T \in \mathcal{L}(V)$ is such that $||Tv|| \leq ||v||$ for every $v \in V$. Prove that $T - \sqrt{2}I$ is invertible.

Proof. Suppose V is finite-dimensional. For all $u \in \operatorname{null}(T - \sqrt{2}I)$, we have $Tu = \sqrt{2}u$, and hence $||Tu|| = ||\sqrt{2}u|| = \sqrt{2}||u||$. Since $||tv|| \le ||v||$, this implies that u = 0.

Exercise 6 Suppose $u, v \in \mathcal{L}(V)$. Prove that $\langle u, v \rangle = 0$ if and only if

$$||u|| \leqslant ||u + av||$$

for all $a \in \mathbf{F}$.

Solution. If $\langle u, v \rangle = 0$, then

$$||u + av||^2 - ||u||^2 = ||av||^2 \geqslant 0.$$

by the Pythagorean Theorem.

If $||u|| \le ||u + av||$ for all $a \in \mathbb{F}$, then

$$0 \leqslant \|u + av\|^2 - \|u\|^2 = \overline{a}\langle u, v \rangle + a\overline{\langle u, v \rangle} + |a|^2 \|v\|^2.$$

Letting $a = -\frac{\langle u, v \rangle}{\|v\|^2}$ yields $\langle u, v \rangle = 0$.

Exercise 8 Suppose $u,v\in V$ and $\|u\|=\|v\|=1$ and $\langle u,v\rangle=1$. Prove that u=v.

2

Proof. Note that

$$||u - v||^2 = \langle u - v, u - v \rangle = ||u||^2 - \langle u, v \rangle - \langle v, u \rangle + ||v||^2 = 0.$$

Hence u - v = 0 by definiteness.

Exercise 11 Prove that

$$16 \leqslant (a+b+c+d)\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}\right)$$

for all positive numbers a, b, c, d.

Proof. Let $u=\left(\sqrt{a},\sqrt{b},\sqrt{c},\sqrt{d}\right),v=\left(\frac{1}{\sqrt{a}},\frac{1}{\sqrt{b}},\frac{1}{\sqrt{c}},\frac{1}{\sqrt{d}}\right)$. Then it follows directly from the Cauchy-Schuarz Inequality.

Exercise 17 Prove or disprove: there is an inner product on \mathbb{R}^2 such that the associated norm is given by

$$||(x,y)|| = \max\{x,y\}$$

for all $(x,y) \in \mathbf{R}^2$.

Counterexample. Let u = (0, 1), v = (1, 0). Then 6.22 fails.