Symmetric encryption
Block vs Stream ciphers
Feistel Cipher
DES
Bringing it all together
Post-sessional work
References

Week 4: Symmetric Encryption

Dr. Qublai K. Ali Mirza

University of Gloucestershire qalimirza@glos.ac.uk

Overview

- Symmetric encryption
- 2 Block vs Stream ciphers
- 3 Feistel Cipher
- 4 DES
- 6 Bringing it all together
- 6 Post-sessional work

Symmetric encryption

Figure: Symmetric encryption overview, from [2]

Block vs Stream ciphers

- Stream ciphers
 - Encrypt a stream of plaintext one byte at a time
 - Performs XOR operation between each plaintext and key bits
 - E.g., Vernam cipher, Vigenère cipher
- Block ciphers
 - Encrypt a *block* of plaintext at a time
 - Block size typically start at 64 bits
 - E.g., DES, AES

Overview

- Based on invertible product cipher
- Input broken down into two halves
- Based on round function of right half and subkey
- Consists of multiple operations consisting of:
 - Performing substitution on the left half of data
 - Permutation operation through swapping halves

Claude Shannon's Diffusion & Confusion

- Based on the principle that a cryptography system must be resilient against statistical attacks
- Diffusion
 - Making the relationship between the *plaintext* and the ciphertext as complex as possible
 - Achieved through permutation
- Confusion
 - Making the relationship between the ciphertext and the encryption key as complex as possible
 - Achieved through substitution

Operation

Figure: Fiestel Network, adapted from Fig. 3.5 of [5]

Properties

- Block size
 - Number of input blocks used
- Key size
 - Length of the encryption key used
- Number of rounds
 - Number of left/right rounding operations used
- Subkey generation
- Round function

Data Encryption Standard

- One of the most widely used encryption algorithms around
- Developed by IBM researchers led by Horst Fiestel
- Adopted in 1977 by the then National Bureau of Standards (now NIST) as FIPS 46
- Designed to be implemented in both hardware and software

DES Features

- Block cipher
- Features the use of the Fiestel cipher algorithm
- Block size: 64 bits (for both input and output)
- Same size for key, but only 56-bits used
 - Remaining 8-bits used for error-checking
- Number of possible key combination then becomes: 2⁵⁶

Operation

- Involves the transformation of plaintext using 16 rounds
- Each transformation round features the use of Fiestel cipher
- 64 bit input first broken into two 32-bit chunks
- Consists of substitution and permutation operations

Operation overview

Figure: DES Operation, from [3]

Initial and Final Permutations

- Features the use of permutation boxes (*P-Boxes*)
- Designed to achieve Shannon's Confusion rule
- Keyless
- Each of the permutations takes a 64-bit input and permutes (changing the order) them according to a predefined rule.

Initial and Final Permutations

(a)	Initial	Permutation	(IP)

58	50	42	34	26	18	10	2
58 60 62 64 57 59 61 63	52	44	36	28	20	12	4
62	54	46	38	30	22	14	6
64	56	48	40	32	24	16	8
57	49	41	33	25	17	9	1
59	51	43	35	27	19	11	3
61	53	45	37	29	21	13	5
63	55	47	39	31	23	15	7

(b) Inverse Initial Permutation (IP-1)

40	8	48	16	56	24	64	32
39	7	47	15	55	23	63	31
38	6	46	14	54	22	62	30
37	5	45	13	53	21	61	29
36	4	44	12	52	20	60	28
35	3	43	11	51	19	59	27
34	2	42	10	50	18	58	26
33	1	41	9	49	17	57	25

Figure: Initial and Final Permutations in DES

Initial and Final Permutations

- Initial Permutation
 - Used right at the beginning of a DES round
 - Reorders the input data bits
 - Even bits to the left half, Odd bits to the right
- Final Permutation
 - Used right at the end of a DES round
 - Switches the left and right halves
 - Also referred to as "switchers"

DES Round Structure

- 64-bit input is first divided into two left and right halves of 32-bit
- Feistel cipher is applied on both halves using:

$$L_i = R_{i-1}$$

$$R_i = L_{i-1} \oplus F(R_{i-1}, K_i)$$

DES Round Structure

- Each round of DES consists of 3 stages, namely
 - Expansion of right half using D-box
 - ② Bit substitution using S-boxes
 - Final permutation using 32-bit permutation matrix P

Detailed DES operation

Figure: DES round detailed, from [4]

Bit expansion using D-box

- The right half of the 64 bit input R_{i-1} is 32-bit
- However the input key K_i is 48 bit
- The expansion of R_{i-1} is done using D-Box
- XOR operation is then done on the expanded R_{i-1} and K_i , before being passed into S-boxes

D-box

32	01	02	03	04	05
04	05	06	07	08	09
08	09	10	11	12	13
12	13	14	15	16	17
16	17	18	19	20	21
20	21	22	23	24	25
24	25	26	27	28	29
28	29	31	31	32	01

Figure: D-box expansion table

Bit substitution using S-boxes

- Designed to achieve confusion
- Involves the use of 8 S-boxes
 - Each S-box uses a unique table to perform bit substitution
- Each S-box accepts 6 input bits and produces 4 outputs
 - The first and last bits refer to the table row
 - The middle 4 bits refer to the table column

Figure: S-boxes overview, from [4]

Stage-level permutation

- Before passing onto the next round, permutation is performed on the S-box output
- It is done using a unique permutation table, similar in principle to the permutation stage at the beginning

Strengths

- Avalanche Effect
 - A small change in plaintext P needs to result in significant change in the resulting ciphertext
- Use of a 56-bit key
 - ullet Allows for approximately 7.2 imes 10¹⁶ keys
- Use of the same algorithm for both encryption and decryption

Limitations

- Susceptible against brute-force and linear cryptanalysis attacks
- S-boxes can produce the same output for two different inputs
- Possible to predict through complementary encryption

Bringing it together

- Today we looked at symmetric encryption
- We also looked at stream and block ciphers
- We looked at DES and how it works
- Next week: Symmetric encryption: AES

Post-sessional work

- Using Subsection 1.3 of [1] (available on *Moodle*) as a starting point, write a critical review of the different block cipher modes of operation.
- Upload your completed work to *Moodle* before next *Monday*.

References

- Debrup Chakraborty and Francisco Rodríguez Henríquez. "Block cipher modes of operation from a hardware implementation perspective". In: *Cryptographic Engineering*. Springer, 2009, pp. 321–363.
- Data Confidentiality. https://msdn.microsoft.com/en-us/library/ff650720.aspx. Accessed: 2018-01-17.
- Data Encryption Standard. https://www.tutorialspoint.com/cryptography/data_encryption_standard.htm. Accessed: 2018-01-20.
- Data Encryption Standard (DES). http://highered.
 mheducation.com/sites/dl/free/007070208x/877405/
 Chapter_06_Data_Encription_Standard.pdf. Accessing the standard and the standa

Symmetric encryption
Block vs Stream ciphers
Feistel Cipher
DES
Bringing it all together
Post-sessional work
References

Q & A

