HOMEWORK 1 Approximate Average

Due date:

Overview

這次作業一的主要目的為複習 Verilog 語言和熟悉開發環境,請實作出近似平均數(Approximate Average)

Homework Description

Please design a computational system whose transfer function is defined as follows. A series of 8-bit positive integer is generated as the input of the computational system by the test bench. The output value Y is a 10-bit positive integer, which is calculated according to equations (1), (2), (3) and (4).

$$X_{avg_i} = \left| \frac{\sum_{i=j}^{j+n-1} X_i}{n} \right| \dots (1)$$

,where Xi is the value of the ith input data and j>=1.

, n = 9 in this homework

$$XS = \{X_j, X_{j+1}, X_{j+2}, \dots, X_{j+n-1}\}.$$
 (2)

$$X_{appr_{j}} = \begin{cases} X_{appr_{j}} = X_{avg_{j}}, if \ X_{avg_{j}} \in XS \\ X_{i} | (X_{i} \in XS) \ and \ \left(X_{i} < X_{avg_{j}}\right) and \ \left(X_{avg_{j}} - X_{i} \ is \ minimal\right) \ , if \ X_{avg_{j}} \notin XS \end{cases} \dots \dots (3)$$

,where X_{appr_i} is the value of the jth approximate average

$$Y_{j} = \left| \frac{\sum_{i=j}^{j+n-1} (X_{i} + X_{appr_{j}})}{n-1} \right|(4)$$

,where Y_i is the value of the jth output data.

The computational system produces the output sequence according to the given input sequence. Each input and output data in the respective sequence is indexed. This index, in terms of hardware, is the relative time when the input data is given or the output data is ready. Thinking as a hardware designer, the approximate average is chosen from the last n input data which should be stored in the system. The system should be able to calculate the integral part of the real average of the last n input data first. And then if the integral part of the real average equals to any one of the last n input data, the approximate average is simply the integral part. Else the approximate average is the one which is one of the last n input data whose value is smaller than and closest to the integral part of the real average. The above descriptions stated the desired operations as those defined by equations (1), (2), and (3).

After the approximate average is obtained, the output value can be calculated according to equation (4). First, the last n input value is added by the corresponding approximate average. And then they are summed up and divided by n-l. The output value is the quotient after division.

For example, assume that n=4, $X_i=3$, $X_i=24$, $X_i=16$, $X_i=8$, and $X_i=3$. After the first 5 input items are given, the system should store them and calculate the output value. The average of the first 4 input values is 12(only the integral part is left). Since it is not in the set of $\{X_1, X_2, X_3, X_4\}$, the system selects one from $\{X_1, X_2, X_3, X_4\}$ as the approximate average whose value is smaller than 12 and close to 12. In this case, the approximate average is 8. So the first output value is calculated n as

$$[[(3+8)+(24+8)+(16+8)+(8+8)]/[(4-1)]] = 27.$$

Similar to those described above, when the 5th input data item is given, the system should store X_2 , X_3 , X_4 and X_5 and calculate the corresponding output value. The 2nd output value should be the same as the first one because the values stored in the system is the same.

Design Specifications

a. Block Overview

b. I/O Interface

Signal Name	I/O	width	Description		
clk	I	1	clock for the computational system		
reset	Ι	1	reset the state of the computational system when it asserts		
X	I	8	input data of the computational system		
Y	О	10	computed output		

c. Timing Diagrams

d. File Description

File Name	Description				
CS.v	RTL code for using Verilog				
testfixture.v	Test bench for verifying design				
in.dat	Input patterns				
out golden.dat	Golden output patterns				

Scoring

a. Functional Simulation (pre-sim) [100%]

All of the result should be generated correctly, and you will get the following message in ModleSim simulation. You can turn off the timing check in presim only??.

Appendix

(Hexadecimal number)

Index i	Xi	X_{avg_j}	X_{appr_j}		Yj	Index j
1	8f					
2	0b					
3	5d					
4	20					
5	f3					
6	3e					
7	e5					
8	03					
9	0c	5c	3e	056a	00ad	1
10	74	59	3e	054f	00a9	2
11	79	65	5d	06d4	00da	3
12	01	5b	3e	0561	00ac	4
13	30	5c	3e	0571	00ae	5
14	2e	46	3e	04ac	0095	6
15	a4	52	30	0494	0092	7
16	76	45	30	0425	0084	8
17	84	54	30	04a6	0094	9
18	51	5b	51	0614	00c2	10
19	d6	66	51	0676	00ce	11
20	70	65	51	066d	00cd	12
21	35	6b	51	06a1	00d4	13
22	10	68	51	0681	00d0	14
23	23	66	51	0676	00ce	15
24	e7	6e	51	06b9	00d7	16
25	3b	67	51	067e	00cf	17
26	6d	65	51	0667	00cc	18
27	34	61	3b	0584	00b0	19
28	61	54	3b	050f	00a1	20
29	89	57	3b	0528	00a5	21
30	bf	67	61	0708	00e1	22
31	dc	74	6d	0840	0108	23
32	d3	91	89	09ec	013d	24
33	9c	88	6d	08a5	0114	25
34	8f	92	8f	0a2b	0145	26

(Decimal number)

Index i	Xi	X_{avg_j}	X_{appr_j}		Yj	Index j
1	143					
2	11					
3	93					
4	32					
5	243					
6	62					
7	229					
8	3					
9	12	92	62	1386	173	1
10	116	89	62	1359	169	2
11	121	101	93	1748	218	3
12	1	91	62	1377	172	4
13	48	92	62	1393	174	5
14	46	70	62	1196	149	6
15	167	82	48	1172	146	7
16	118	69	48	1061	132	8
17	132	84	48	1190	148	9
18	81	91	81	1556	194	10
19	214	102	81	1654	206	11
20	112	101	81	1645	205	12
21	53	107	81	1697	212	13
22	16	104	81	1665	208	14
23	35	102	81	1654	206	15
24	231	110	81	1721	215	16
25	59	103	81	1662	207	17
26	109	101	81	1639	204	18
27	52	97	59	1412	176	19
28	97	84	59	1295	161	20
29	137	87	59	1320	165	21
30	191	103	97	1800	225	22
31	220	125	109	2112	264	23
32	211	145	137	2540	317	24
33	156	136	109	2213	276	25
34	143	146	143	2603	325	26

General rules for deliverables

- You need to complete this homework INDIVIDUALLY. You can discuss the homework with other students, but you need to do the homework by yourself. You should not copy anything from someone else, and you should not distribute your homework to someone else. If you violate any of these rules, you will get NEGATIVE scores, or even fail this course directly
- When submitting your homework, compress all files into a single **zip** file, and upload the compressed file to Moodle.
 - Please follow the file hierarchy shown in Figure 1.

F740XXXXX (your id) (folder)
src(folder) * Store your source code
report.docx (project report. The report template is already included. Follow the
template to complete the report.)

Figure 1. File hierarchy for homework submission

- Important! DO NOT submit your homework in the last minute. Late submission is not accepted.
- You should finish all the requirements (shown below) in this homework and Project report.
- If your code can not be recompiled by TA successfully using modelsim, you will receive NO credit.
- Verilog and SystemVerilog generators aren't allowed in this course.