FDA Submission

Your Name: Dieter Verbeemen

Name of your Device: The Chest X-Rays Pneumonia Notifier

Algorithm Description

1. General Information

Intended Use Statement: Notify (help) radiologist detect pneumonia

Indications for Use:

• The image must be a X-ray

- The X-ray image must be a DICOM file
- The X-ray image must be taken from the chest
- The X-ray image must be taken in the AP or PA position
- The patient, man or women should be between 1 and 90 years old

Device Limitations:

• Any modern computer with a standard CPU, although a GPU is advised

Clinical Impact of Performance:

- The best use for this model is to prioritize the worklist.
- The model has a low precision and a higher recall.
 - (Recall) This means if we have 100 patients with pneumonia,
 Then we can properly classify these 100 patients as a positive event.
 (without classifying them too much as no pneumonia).
 - Unfortunately, the precision is not very high. This means that we will also classify healthy patients as pneumonia.
 - However, if we want to prioritize our worklist then we should prioritize our ill patients above the healthy patients (recall). But it isn't harmful to classify a healthy person with pneumonia.

2. Algorithm Design and Function

DICOM Checking Steps:

- Modality must be "DX"
- Body part examined must be "CHEST"
- Patient Position must be "PA" or "AP"

Preprocessing Steps:

- Image is normalized between 0 and 1
- Image is reshaped to a 224 x 224 image
- Image is repeated across 3 channels

CNN Architecture:

Model: "sequential"

Layer (type)	Output Shape	Param #	
model (Model)	(None , 7, 7, 512)	14714688	
flatten (Flatten)	(None, 25088)	0	
dropout (Dropout)	(None, 25088)	0	
dense (Dense)	(None, 1024)	25691136	
dropout_1 (Dropout)	(None, 1024)	0	
dense_1 (Dense)	(None, 512)	524800	
dropout_2 (Dropout)	(None, 512)	0	
dense_2 (Dense)	(None, 256)	131328	
dropout_3 (Dropout)	(None , 256)	0	
dense_3 (Dense)	(None, 1)	257	

Total params: 41,062,209 Trainable params: 28,707,329 Non-trainable params: 12,354,880

Model info:

- The model contains out of 2 parts:
 - Part 1) A pre-trained <u>VGG16 model</u>:
 - A 16 layer pre-trained convolutional neural network based on imagenet.
 The weights are not trainable.
 - Part 2) Four dense layers, each with its own dropout layer

3. Algorithm Training

Parameters:

- Types of augmentation used during training
 - Rescale: pixel_value / 255
 - Horizontal flips: True,
 - Vertical flip: False,
 - Height shift range: 0.1,
 - Width shift range: 0.1,
 - Rotation range: 20,
 - Shear range: 0.1,
 - Zoom range: 0.1

Batch size: 64Optimizer: Adam

Optimizer learning rate: 0.0003

- Layers of pre-existing architecture that were frozen: First 16 layers of a VGG model
- Layers of pre-existing architecture that were fine-tuned: None
- Layers added to pre-existing architecture: Flatten, Dense and Dropout layers

Final Threshold and Explanation:

Threshold: 0.37415F1 Score: 0.46824

The final threshold of 0.37415 was based on the highest F1-Score of 0.46824. Based on this paper: CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning,

the average radiologist had a F1 Score of 0.387. This means that our model achieved a better F-1 score than the average radiologist. (*Please note that we have no information about who these radiologists were and whether they are representative of all radiologists...*)

4. Databases

Dataset: NIH Chest X-ray Dataset

- Amount of Chest, X-ray images: 112.120
- Meta data:
 - Image Index
 - Finding Labels
 - Follow-up
 - Patient ID
 - Patient Age
 - Patient Gender
 - View Position
 - Original Image Size
 - Original Image Pixel Spacing
- Amount of images with Pneumonia: 1431 (1.28%)
- Amount of images without Pneumonia: 110689 (98.72%)

Description of Training Dataset:

1145 images (80%) which contained Pneumonia will be used in the training dataset.

- Amount of Chest, X-ray images: 2290
 - Images containing pneumonia: 1145 (50%)
 - Images without pneumonia: 1145 (50%)

Description of Validation Dataset: The remaining 286 images (20%) which contained Pneumonia will be used in the validation dataset.

- Images containing pneumonia: 286 (25%)
- Images without pneumonia: 858 (75%)

5. Ground Truth

- ChestX-ray dataset comprises 112,120 frontal-view X-ray images of 30,805 unique patients with the text-mined fourteen disease image labels (where each image can have multilabels)
- The disease labels were created using Natural Language Processing (NLP) to mine the associated radiological reports
- The labels are expected to be >90% accurate and suitable for weakly-supervised learning
- The data includes 14 common thoracic pathologies:
 - Atelectasis
 - Consolidation
 - Infiltration
 - Pneumothorax

- Edema
- Emphysema
- Fibrosis
- Effusion
- Pneumonia
- Pleural thickening
- Cardiomegaly
- Nodule
- Mass
- Hernia

For more info: https://www.kaggle.com/nih-chest-xrays/data

6. FDA Validation Plan

Patient Population Description for FDA Validation Dataset:

- The patient can be men or women
- The recommended age is between 1 and 90 years old
- Chest X-Ray image must be taken in the AP or PA position
- Chest X-Ray image must be in DICOM format

Ground Truth Acquisition Methodology:

Silver Standard: Validation by 4 different radiologists

Algorithm Performance Standard:

• The algorithm's F1 score should be more than that of average radiologist (0.387)