Amendments to the Claims:

The listing of claims will replace all prior versions, and listings, of claims in the application:

Fax:248-689-4071

Listing of Claims:

1 (Currently amended). A product comprising: a block copolymer for use as a solid polymer electrolyte, said block copolymer having at least first and second segments, the first segments being provided with acidic substituents for proton transport and the second segments having substantially no acidic substituents and serving for the mechanical integrity of the solid polymer electrolyte, and wherein said first segments have the general formula

____in which:

Y represents $-O - - S - - CO - - SO_2 - - C(CH_3)_2 - OT - C(CF_3)_2 - diphenyl methylene, diphenyl silicon, or fluorenyl,$

end groups Z represent a halogen (F, Cl, Br, I), -NO2 or - OH,

O represents $-SO_3H_1 - SO_3^-M^+$, $-COOH_1 - COO^-M^+$, $-PO_3H_2 - PO_3H^-M^+$, or

- PO₃²⁻2M⁺ where M is a metal such as Na or K,

with m being preferably between 5 and 200,

with the bridges Y between sequential aromatic rings when m > 1 being the same or different and being selected from any of the above atoms or groups listed for Y, and

with Q not having to be present in every aromatic ring.

- A block copolymer in accordance with product as set forth in claim 1, wherein said
 first segments are hydrophilic segments and said second segments are hydrophobic
 segments.
- 3. (Canceled).
- 4. (Canceled).
- 5. (Cancelled).
- 6 (Currently amended). An ion-conductive-membrane in accordance with claim 3 A product as set forth in claim 1, wherein said second segments have the general formula

in which:

X represents -O -, -S -, -CO -, $-SO_2$ -, $-C(CH_3)_2$ -, $-C(CF_3)_2$ -, diphenyl methylene, diphenyl silicon, fluorenyl or a bond directly to the next aromatic ring,

the end groups G represent a halogen (F, Cl, Br, I), -NO₂ or - OH, with the number of repeating units n of an aromatic ring constituting a second segment forming a hydrophobic block preferably lying in the range from 5 to 200, and

with the bridges X between sequential aromatic rings being the same or different and being selected from any of the above atoms or groups listed for X.

7 (Currently amended). An ion-conductive membrane in accordance with claim 5 A product as set forth in claim 3, wherein said second segments have the general formula

in which:

X represents -O-, -S-, -CO-, $-SO_2-$, $-C(CH_3)_2-$, $-C(CF_3)_2-$, diphenyl methylene, diphenyl silicon, fluorenyl or a bond directly to the next aromatic ring,

the end groups G represent a halogen (F, Cl, Br, I), -NO₂ or - OH, with the number of repeating units n of an aromatic ring constituting a second segment forming a hydrophobic block preferably lying in the range from 5 to 200, and

with the bridges X between sequential aromatic rings being the same or different and being selected from any of the above atoms or groups listed for X.

- 8 (Currently amended). An ion-conductive membrane in accordance with A product as set forth in claim 5, wherein at least one additional segment is present of the same general composition as the aforesaid first segments, but with different atoms or groups Y or Q and with the atoms or groups Y being in any desired rational sequence.
- 9 (Currently amended). An ion-conductive membrane in accordance with A product as set forth in claims 6, wherein at least one additional segment is present of the same general composition as the aforesaid second segments, but with different atoms or groups X and with the atoms or groups X being in any desired rational sequence.

- 10 (Currently amended). An ion conductive membrane in accordance with claim 6 and having A product as set forth in claim 6 wherein the membrane has a microphase separated morphology, for example in the form of spheres, cylinders or lamellae, or of ordered bi-continuous double diamond structures.
- 11 (Currently amended). An ion conductive membrane in accordance with claim 6 in which A product as set forth in claim 6 wherein the second segments have a molar mass from 5×10^2 to 5×10^5 (g/mol).
- 12 (Currently amended). An ion conductive membrane in accordance with A product
 as set forth in claim 3, wherein said second segments are hydrophobic blocks
 substantially consisting of a main chain of aromatic rings or aromatic rings and
 bridging groups having no sulfonic acid groups in said main chain.
- 13 (Currently amended). A method of manufacturing a block-copolymer for use as a solid polymer electrolyte, said block copolymer-having at least first and second segments, the first segments being provided with acidic substituents for proton transport and the second segments having substantially no acidic substituents and serving for the mechanical integrity of the solid polymer-electrolyte, the method comprising the stops of:
 - a) synthesizing an end functionalised oligomer (block) consisting of a plurality of said second segments, said second segments having the general formula

- in which:

X represents O, S, CO, SO₂, C(CH₃)₂, C(CF₃)₂,

diphenyl methylene, diphenyl silicon, fluorenyl or a bond directly to the

next aromatic ring and

the end groups G represent a halogen (F, Cl, Br, I), NO₂ or OH,

with the number of repeating units n of an aromatic ring constituting a

second segment forming a hydrophobic block preferably lying in the range

second segment forming a hydrophobic block preferably lying in the range from 5 to 200 and with the bridges X between sequential aromatic rings being the same or different and being selected from any of the above atoms or groups listed for X, and

b) — synthesis of a block copolymer by reacting the product of step a) with a monomer, or a mixture of monomers, suitable for forming said first segments, said monomer or monomers being selected from the group consisting of bisphenols, aromatic diffuorides, aromatic dichlorides, aromatic dibromides, aromatic diiodides, and aromatic dinitro-compounds, and any desired combinations thereof, said members of said group having an acid substituent at least some of the phenyl rings

A product comprising: a block copolymer for use as a solid polymer electrolyte, said block copolymer having at least first and second segments, the first segments being provided with acidic substituents for proton transport and the second segments having substantially no acidic substituents and serving for the mechanical integrity of the solid polymer electrolyte, and wherein said second segments have the general formula

in which:

- X represents $-O - S - CO - SO_2 - C(CH_3)_2 - C(CF_3)_2 - diphenyl methylene, diphenyl silicon, or fluorenyl,$
 - the end groups G represent a halogen (F, Cl, Br, I), -NO2 or OH,
 - with the number of repeating units n of an aromatic ring constituting a second segment forming a hydrophobic block preferably lying in the range from 5 to 200, and
 - with the bridges X between sequential aromatic rings being the same or different and being selected from any of the above atoms or groups listed for X.
- 14 (Currently amended). A-method of manufacturing a block copolymer for use as a solid polymer electrolyte, said block copolymer having at least first and second segments, the first segments being provided with acidic substituents for proton transport and the second segments having substantially no acidic substituents and serving for the mechanical integrity of the solid polymer electrolyte, the method comprising the steps of:
 - a) synthesizing an end-functionalised oligomer (block) consisting of a plurality of said second segments, said second segments having the general formula

----in-which:

X-represents O , S , CO -, SO₂ -, C(CH₃)₂ -, C(CF₃)₃ ,

diphenyl methylene, diphenyl silicon, fluorenyl or a bond directly to the

next-aromatic ring and

the end groups G represent a halogen (F, Cl, Br, I), NO2 or OH

> with the number of repeating units n of an aromatic ring constituting a second segment forming a hydrophobic block preferably lying in the range from 5 to 200 and with the bridges X between sequential aromatic rings being the same or

Fax:248-689-4071

different and being selected from any of the above atoms or groups listed for X.

synthesising an end-functionalised oligomer (block) consisting of a plurality of first segments having the general formula

in which:

Y represents O, S, CO, SO_2 , $C(CH_2)_2$, or $C(CF_2)_2$, diphenyl methylene, diphenyl silicon, fluorenyl or a bond directly to the next aromatic ring,

the end groups Z represent a halogen (F, Cl, Br, I). NO2 or OH. O represents SO₃H, -SO₃-M⁺, COOH, -COO-M⁺, PO₃H₂

-PO₃H-M+, or -PO₃-2M+ where M is a metal such as Na or K,

with m-being preferably between 5 and 200,

with the bridges Y between sequential aromatic rings when m > 1 being the same or different and being selected from any of the above atoms or groups listed for Y,

with Q not having to be present in every aromatic ring and with G and Z being selected as partners capable of a coupling reaction, and reacting the products of steps a) and b) to form the block copolymer A product comprising: a block copolymer for use as a solid polymer electrolyte.

said block copolymer having at least first and second segments, the first segments

being provided with acidic substituents for proton transport and the second segments having substantially no acidic substituents and serving for the mechanical integrity of the solid polymer electrolyte, and wherein said first segments have the general formula

in which:

Y represents $-O - -S - -CO - -SO_2 - -C(CF_3)_2 - -$ diphenyl silicon, or fluorenyl,

end groups Z represent a halogen (F, Cl, Br, I), -NO2 or - OH,

O represents -SO₃H₁ - SO₃M⁺, -COOH, -COO⁻M⁺, -PO₃H₂ - PO₃H⁻M⁺, or

- PO₃²⁻2M⁺ where M is a metal such as Na or K,

with m being preferably between 5 and 200.

with the bridges Y between sequential aromatic rings when m > 1 being the same or different and being selected from any of the above atoms or groups listed for Y, and with O not having to be present in every aromatic ring.

ting,

15 (Currently amended). A method of preparing an ion conductive membrane from a block copolymer made in accordance with the method of claim 13, the method comprising the steps of:

a) transforming the acid groups of the block copolymer to acid halide groups,

b) casting a film from a solution of the acid halide form of the block copolymer of step a) onto a substrate and

e) transforming the acid halide groups into the corresponding acid groups, whereby said membrane is formed

A product as set forth in claim 14, wherein said second segments have the general formula

in which:

X represents $-O - -S - -CO - -SO_2 - -C(CH_3)_2 - -C(CF_3)_2 - -C(CF$

the end groups G represent a halogen (F, Cl, Br, I), -NO₂ or - OH, with the number of repeating units n of an aromatic ring constituting a second segment forming a hydrophobic block preferably lying in the range from 5 to 200, and

with the bridges X between sequential aromatic rings being the same or different and being selected from any of the above atoms or groups listed for X.

16 (Currently amended).

A method in accordance with claim 15, wherein acid groups
present in the block copolymer are in the form of a salt
A product as set forth in claim 13, wherein said first segments have the general formula

in which:

O represents -SO₃H₁ - SO₃M⁺, -COOH₁ - COO⁻M⁺, -PO₃H₂ - PO₃H⁻M⁺, or

- PO₃²⁻2M^{*} where M is a metal such as Na or K,

with m being preferably between 5 and 200,

with the bridges Y between sequential aromatic rings when m > 1 being the same or different and being selected from any of the above atoms or groups listed for Y, and with Q not having to be present in every aromatic ring.

Claims 17-21. (Canceled).

22 (Currently amended). A method in accordance with claim 20, wherein the acid groups present in the block copolymer are present in their acid form.
A product as set forth in claim 25, wherein said first segments have the general formula

in which:

- Y represents $-O_{-}$, $-S_{-}$, $-CO_{-}$, $-SO_{2}_{-}$, $-C(CH_{3})_{2}_{-}$, or $-C(CF_{3})_{2}_{-}$, diphenyl methylene, diphenyl silicon, fluorenyl or a bond directly to the next aromatic ring, end groups Z represent a halogen (F, Cl, Br, I), $-NO_{2}$ or $-OH_{-}$, O represents $-SO_{3}H_{-} SO_{3}^{-}M^{+}$, $-COOH_{-} COO^{-}M^{+}$, $-PO_{3}H_{2}$, $-PO_{3}H^{-}M^{+}$, or $-PO_{3}^{-2}2M^{+}$ where M is a metal such as Na or K, with m being preferably between 5 and 200, with the bridges Y between sequential aromatic rings when m > 1 being the same or different and being selected from any of the above atoms or groups listed for Y, and
- 23 (Currently amended). A method in accordance with claim 20, wherein the transformation into the acid halide form is a transformation into an acid chloride form and is effected by the use of thionyl chloride, phosphoryl chloride or exalyl chloride

with O not having to be present in every aromatic ring.

A product as set forth in claim 27, wherein said first segments have the general formula

in which:

Y represents - O -, -S -, -CO -, -SO₂ -, -C(CH₃)₂ -, or -C(CF₃)₂ -, diphenyl methylene, diphenyl silicon, fluorenyl or a bond directly to the next aromatic ring,

end groups Z represent a halogen (F. Cl, Br, I), -NO2 or - OH,

O represents -SO₃H, -SO₃-M⁺, -COOH, -COO-M⁺, -PO₃H₂ - PO₃H^{*}M⁺, or

- PO₃²⁻2M⁺ where M is a metal such as Na or K,

with m being preferably between 5 and 200,

with the bridges Y between sequential aromatic rings when m > 1 being the same or
different and being selected from any of the above atoms or groups listed for Y, and
with Q not having to be present in every aromatic ring.

24 (Currently amended). A method in accordance with claim 20, wherein the transformation into the acid halide is a transformation into an acid chloride form and is effected using thionyl chloride as a solvent

A product as set forth in claim 26, wherein said second segments have the general formula

in which:

X represents $-O_{-}$, $-S_{-}$, $-CO_{-}$, $-SO_{2}_{-}$, $-C(CH_{3})_{2}_{-}$, $-C(CF_{3})_{2}_{-}$, diphenyl methylene, diphenyl silicon, fluorenyl or a bond directly to the next aromatic ring.

the end groups G represent a halogen (F, Cl, Br, I), -NO₂ or - OH,

with the number of repeating units n of an aromatic ring constituting a second

segment forming a hydrophobic block preferably lying in the range from 5 to 200,
and

with the bridges X between sequential aromatic rings being the same or different and being selected from any of the above atoms or groups listed for X.

25 (New). A product comprising: a block copolymer for use as a solid polymer electrolyte, said block copolymer having at least first and second segments, the first segments being provided with acidic substituents for proton transport and the second segments having substantially no acidic substituents and serving for the

> mechanical integrity of the solid polymer electrolyte, and wherein said second segments have the general formula

Fax:248-689-4071

in which:

X represents -O -, -S -, -CO -, $-SO_2$ -, $-C(CF_3)_2$ -, diphenyl silicon, or fluorenyl,

the end groups G represent a halogen (F, Cl, Br, I), -NO2 or - OH, with the number of repeating units n of an aromatic ring constituting a second segment forming a hydrophobic block preferably lying in the range from 5 to 200, and

with the bridges X between sequential aromatic rings being the same or different and being selected from any of the above atoms or groups listed for X.

26 (New). A product comprising: a block copolymer for use as a solid polymer electrolyte, said block copolymer having at least first and second segments, the first segments being provided with acidic substituents for proton transport and the second segments having substantially no acidic substituents and serving for the mechanical integrity of the solid polymer electrolyte, and wherein said first segments have the general formula

in which:

Y represents $-O - - S - or - SO_2 - ...$

Fax: 248-689-4071

end groups Z represent a halogen (F, Cl, Br, I), -NO₂ or - OH,

Q represents $-SO_3H$, $-SO_3^-M^+$, -COOH, $-COO^-M^+$, $-PO_3H_2$, $-PO_3H^-M^+$, or

- PO₃²⁻2M⁺ where M is a metal such as Na or K,

with m being preferably between 5 and 200,

with the bridges Y between sequential aromatic rings when m > 1 being the same or different and being selected from any of the above atoms or groups listed for Y, and with Q not having to be present in every aromatic ring.

27 (New). A product comprising: a block copolymer for use as a solid polymer electrolyte, said block copolymer having at least first and second segments, the first segments being provided with acidic substituents for proton transport and the second segments having substantially no acidic substituents and serving for the mechanical integrity of the solid polymer electrolyte, and wherein said second segments have the general formula

$$G$$
 X
 n
 G

in which:

Y represents $-O -, -S -, or -SO_2 -,$ end groups Z represent a halogen (F, Cl, Br, I), -NO₂ or - OH,

P.17

U.S. Appln. No. 10/768,507 Page 16

> Q represents $-SO_3H$, $-SO_3^-M^+$, -COOH, $-COO^-M^+$, $-PO_3H_2$, $-PO_3H^-M^+$, or $-PO_3^{2-}2M^+$ where M is a metal such as Na or K, with m being preferably between 5 and 200, with the bridges Y between sequential aromatic rings when m > 1/being the same or different and being selected from any of the above atoms or groups listed for Y, and with Q not having to be present in every aromatic ring.

Fax:248-689-4071