

<u>Help</u>

konainniaz 🗸

Problem 1	
1/1 point (graded)	
In \mathbb{R}^2 , what is the unit vector corresponding to the x_1 -direction?	
$\bigcirc (0,0)$	
(1,0)	
O (0, 1)	
O (1, 1)	
Submit	
Problem 2	
1/1 point (graded)	
What is the unit vector in the same direction as $(3, 2, 2, 2, 2)$?	
\bigcirc (1.5, 1, 1, 1, 1)	
(1, 0.67, 0.67, 0.67, 0.67)	
(0.6, 0.4, 0.4, 0.4, 0.4)	
\bigcirc (0.5, 0.33, 0.33, 0.33, 0.33)	
Submit	
Problem 3	
1/1 point (graded) What is the projection of the vector $(3, 5, -9)$ onto the direction $(0.6, -0.8, 0)$?	
-2.2	
Submit	

Problem Sets due Jul 26, 2022 23:00 PKT Completed

Problems 1-6 correspond to "Linear Projections"

\bullet (0.8, $-$ 0.6)	
(-0.6, -0.8)	
(-0.8, 0.6)	
(0.8, 0.6)	
~	
Submit	
roblem 5	
1 point (graded) Vhat is the (unit) d	irection along which the projection of $(4, -3)$ is smallest?
(0.8, -0.6)	
(-0.6, -0.8)	
• (-0.8, 0.6)	
(0.8, 0.6)	
✓	
Submit	
Problem 6	
	ector \boldsymbol{x} onto direction \boldsymbol{u} is exactly zero. Which of the following statements is elect all that apply.
\checkmark u is orthogona	al to x .
u is in the opp	posite direction to x .
u is at right ar	igles to x .
☐ It is not possi	ble to have a projection of zero.
✓	

Problems 7-8 correspond to "Principal component analysis I: one-dimensional projection"

Problem 4

Problem 7

4/4 points (graded)

A three-dimensional data set has covariance matrix

$$\Sigma = \begin{pmatrix} 4 & 2 & -3 \\ 2 & 9 & 0 \\ -3 & 0 & 9 \end{pmatrix}.$$

a)	What i	s the	variance	of t	he d	lata i	in t	he x_1 -	directi	on?
----	--------	-------	----------	------	------	--------	------	------------	---------	-----

4	~
---	---

b) What is the correlation between x_1 and x_3 ?

-0.5

c) What is the variance in the direction (0, -1, 0)?

d) What is the variance in the direction of (1, 1, 0)?

Submit

Problem 8

1/1 point (graded)

Which of the following covariance matrices has the property that the variance is the same in any direction? Select all that apply.

✓ The all-zeros matrix.
☐ The all-ones matrix.
✓ The identity matrix.
Any diagonal matrix.

Submit

D	rn	h	lem	Q
	W	U	ш	\supset

8/8 points (graded)

Let $u_1,u_2\in\mathbb{R}^d$ be two vectors with $\|u_1\|=\|u_2\|=1$ and $u_1\cdot u_2=0$. Define U to be the matrix whose columns are u_1 and u_2 .

What are the dimensions of the following matrices?

of Columns =

b) U^T

of Rows =

of Columns

c) UU^T

of Rows =

of Columns =

d) $u_1 u_1^T$

of Rows =

of Columns =

d Submit

Problem 10

1/1 point (graded)

Continuing from the previous problem, let $u_1, u_2 \in \mathbb{R}^d$ be two vectors with $\|u_1\| = \|u_2\| = 1$ and $u_1 \cdot u_2 = 0$, and define U to be the matrix whose columns are u_1 and u_2 .

Which of the following linear transformations sends points $x \in \mathbb{R}^d$ to their (two-dimensional) projections onto directions u_1 and u_2 ? Select all that apply.

 $\searrow x \mapsto (u_1 \cdot x, u_2 \cdot x)$

 $\checkmark x \mapsto U^T x$

~

Submit

Problem 11

2/2 points (graded)

For a particular four-dimensional data set, the top two eigenvectors of the covariance matrix are:

$$\frac{1}{2} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \quad \frac{1}{2} \begin{pmatrix} -1 \\ 1 \\ -1 \\ 1 \end{pmatrix}.$$

a) What is the PCA projection of point (2, 4, 2, 6) into two dimensions? Write it in the form (a, b).

(2, 2)

 $\bigcirc (2,3)$

(7, 3)

(4, 6)

~

b) What is the reconstruction, from this projection, to a point in the original four-dimensional space? Write it in the form (a, b, c, d)

(2, 5, 2, 5)
\bigcirc (2, 1, 2, 2)
\bigcirc (4, 2, 2, 2)
\bigcirc (2, 6, 2, 4)
Submit
Problems 12-14 correspond to "Linear algebra V: eigenvalues and eigenvectors"
Problem 12
2/2 points (graded)
Consider the 2 × 2 matrix $M = \begin{pmatrix} 5 & 1 \\ 1 & 5 \end{pmatrix}$.
a) One of its eigenvectors is $\frac{1}{\sqrt{2}} \binom{1}{1}$. What is the corresponding eigenvalue?
6
b) Its other eigenvector is $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$. What is the corresponding eigenvalue?
4
Submit
Problem 13
6/6 points (graded)
A 2×2 matrix M has eigenvalues 10 and 5.
a) What are the eigenvalues of $2M$ (that is, each entry of M is multiplied by 2)?
Larger eigenvalue =
20
Smaller eigenvalue =
10

b) What are the eigenvalues of $M+3I$, where I is the 2×2 identity matrix?
Larger eigenvalue =
13
Smaller eigenvalue =
8
c) What are the eigenvalues of $M^2 = MM$?
Larger eigenvalue =
100
Smaller eigenvalue =
25
Submit
Problem 14
7/7 points (graded) A certain three-dimensional data set has covariance matrix
$\begin{pmatrix} 5 & -3 & 0 \\ -3 & 5 & 0 \\ 0 & 0 & 4 \end{pmatrix}$
a) Consider the direction $u=(1,1,1)/\sqrt{3}$. What is variance of the projection of the data onto direction u ?
8/3
b) Which of the following are eigenvectors of the covariance matrix? Select all that apply.
$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$

$\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$
$\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$
$\frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1\\0 \end{pmatrix}$
$\frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$
$\frac{1}{\sqrt{2}} \begin{pmatrix} 1\\ -1\\ 0 \end{pmatrix}$
c) Find the eigenvalues of the covariance matrix. List them in decreasing order.
8
4
2
d) Suppose we used principal component analysis (PCA) to project points into <i>two</i> dimensions. What would be the resulting two-dimensional projection of the point $x=(\sqrt{2},-3\sqrt{2},2)$?
$\bigcirc (1,0)$
(4, 2)
(1,4)
O (4, 1)

\ /

Problem 15 If point (graded) If is a 2×2 real-valued symmetric matrix with eigenvalues $\lambda_1 = 6, \lambda_2 = 1$ and corresponding eigenvectors $u_1 = \frac{1}{\sqrt{5}} \binom{2}{1}, u_2 = \frac{1}{\sqrt{5}} \binom{-1}{2}.$ What is M ? $\binom{1}{1} \binom{1}{2}$ $\binom{4}{2} \binom{2}{2} \binom{1}{1}$ $\binom{5}{2} \binom{2}{2}$ Submit Problem 16 If point (graded) For a certain data set in d -dimensional space, the covariance matrix has the following interesting property: there are k positive eigenvalues and the rest are zero (where $k < d$). What can we conclude property: there are k positive eigenvalues and the rest are zero (where $k < d$). What can we conclude	e) Now suppose we use the projection in (d) to reconstruct a point \hat{x} in the original three-dimensio space. What is the Euclidean distance between x and \hat{x} , that is, $\ x - \hat{x}\ $?
Problems 15-17 correspond to "Linear algebra VI: spectral decomposition" Problem 15 If point (graded) W is a 2×2 real-valued symmetric matrix with eigenvalues $\lambda_1 = 6, \lambda_2 = 1$ and corresponding eigenvectors $u_1 = \frac{1}{\sqrt{5}} \binom{2}{1}, u_2 = \frac{1}{\sqrt{5}} \binom{-1}{2}.$ What is M ? O\begin{pmatrix} 4 & 2 \\ 2 & 1 \end{pmatrix} O\begin{pmatrix} 3 & 1 \\ 1 & 2 \end{pmatrix} O\begin{pmatrix} 5 & 2 \\ 2 & 2 \\ 2 & 2 \end{pmatrix} O\begin{pmatrix} 5 & 2 \\ 2 & 2	2
Problem 15 If point (graded) Wis a 2 × 2 real-valued symmetric matrix with eigenvalues $\lambda_1 = 6, \lambda_2 = 1$ and corresponding eigenvectors $u_1 = \frac{1}{\sqrt{5}} \binom{2}{1}, u_2 = \frac{1}{\sqrt{5}} \binom{-1}{2}.$ What is M ? $\binom{1}{1} \frac{1}{2}$ $\binom{4}{2} \frac{2}{2} \frac{1}{1}$ $\binom{5}{2} \frac{2}{2}$ Submit Problem 16 If point (graded) For a certain data set in d -dimensional space, the covariance matrix has the following interesting property: there are k positive eigenvalues and the rest are zero (where $k < d$). What can we conclude rom this? Select all that apply.	Submit
If point (graded) M is a 2×2 real-valued symmetric matrix with eigenvalues $\lambda_1 = 6, \lambda_2 = 1$ and corresponding eigenvectors $u_1 = \frac{1}{\sqrt{5}} \binom{2}{1}, u_2 = \frac{1}{\sqrt{5}} \binom{-1}{2}.$ What is M ? $\binom{1}{1} \binom{1}{2}$ $\binom{4}{2} \binom{2}{2} \binom{1}{1}$ $\binom{3}{1} \binom{1}{2}$ $\binom{5}{2} \binom{2}{2}$ Submit Problem 16 If point (graded) For a certain data set in d -dimensional space, the covariance matrix has the following interesting property: there are k positive eigenvalues and the rest are zero (where $k < d$). What can we conclude from this? Select all that apply.	Problems 15-17 correspond to "Linear algebra VI: spectral decomposition"
What is M? \[\begin{align*} \begin{align*} \left(\frac{1}{1} & 2 \right) \\ \begin{align*} \left(\frac{3}{1} & 1 \right) \\ \begin{align*} \left(\frac{5}{2} & 2 \right) \\ \end{align*} \] Submit Problem 16 If point (graded) For a certain data set in d-dimensional space, the covariance matrix has the following interesting property: there are k positive eigenvalues and the rest are zero (where k < d). What can we conclude from this? Select all that apply.	Problem 15 1/1 point (graded) M is a 2×2 real-valued symmetric matrix with eigenvalues $\lambda_1 = 6, \lambda_2 = 1$ and corresponding eigenvectors
(1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	$u_1 = \frac{1}{\sqrt{5}} \binom{2}{1}, u_2 = \frac{1}{\sqrt{5}} \binom{-1}{2}.$
$\begin{pmatrix} 4 & 2 \\ 2 & 1 \end{pmatrix}$ $\begin{pmatrix} 3 & 1 \\ 1 & 2 \end{pmatrix}$ $\begin{pmatrix} 5 & 2 \\ 2 & 2 \end{pmatrix}$ \checkmark Submit Problem 16 If point (graded) For a certain data set in <i>d</i> -dimensional space, the covariance matrix has the following interesting property: there are <i>k</i> positive eigenvalues and the rest are zero (where $k < d$). What can we conclude from this? Select all that apply.	What is <i>M</i> ?
	$ \bigcirc \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} $
Submit Problem 16 1/1 point (graded) For a certain data set in d -dimensional space, the covariance matrix has the following interesting property: there are k positive eigenvalues and the rest are zero (where $k < d$). What can we conclude from this? Select all that apply.	$ \bigcirc \begin{pmatrix} 4 & 2 \\ 2 & 1 \end{pmatrix} $
Submit Problem 16 I/1 point (graded) For a certain data set in d -dimensional space, the covariance matrix has the following interesting property: there are k positive eigenvalues and the rest are zero (where $k < d$). What can we conclude from this? Select all that apply.	$ \bigcirc \begin{pmatrix} 3 & 1 \\ 1 & 2 \end{pmatrix} $
Problem 16 I/1 point (graded) For a certain data set in d -dimensional space, the covariance matrix has the following interesting property: there are k positive eigenvalues and the rest are zero (where $k < d$). What can we conclude from this? Select all that apply.	
Problem 16 I/1 point (graded) For a certain data set in d -dimensional space, the covariance matrix has the following interesting property: there are k positive eigenvalues and the rest are zero (where $k < d$). What can we conclude from this? Select all that apply.	✓
I/1 point (graded) For a certain data set in d -dimensional space, the covariance matrix has the following interesting property: there are k positive eigenvalues and the rest are zero (where $k < d$). What can we conclude from this? Select all that apply.	Submit
For a certain data set in d -dimensional space, the covariance matrix has the following interesting property: there are k positive eigenvalues and the rest are zero (where $k < d$). What can we conclude from this? Select all that apply.	Problem 16
$\ \square$ Each of the data points has at most k nonzero coordinates.	1/1 point (graded) For a certain data set in d -dimensional space, the covariance matrix has the following interesting property: there are k positive eigenvalues and the rest are zero (where $k < d$). What can we conclude from this? Select all that apply.
	$\ \square$ Each of the data points has at most k nonzero coordinates.

ightharpoonup The data can be perfectly reconstructed from their PCA projection onto k dimensions.

lacksquare Each data point can be expressed as a linear combination of the top k eigenvectors.
\square It is possible to discard $d-k$ of the coordinates without losing any of the variance in the data.
Submit
Problem 17
/1 point (graded) λ data set in \mathbb{R}^d has a covariance matrix with eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_d$. Under which of the ollowing conditions is PCA most likely to be effective as a form of dimensionality reduction? Select that apply.
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
\checkmark When most of the λ_i are close to zero.
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
$\label{eq:when the sequence lambda} $ When the sequence $\lambda_1, \lambda_2, \ldots$ is rapidly decreasing.
Submit
<pre>< Previous</pre> <pre>Next ></pre>

About

<u>Affiliates</u>

edX for Business

Open edX

Careers

News

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Connect

Blog

Contact Us

Help Center

Media Kit

© 2022 edX LLC. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>