# Mathematics for Machine Learning

Vazgen Mikayelyan

September 12, 2020



V. Mikayelyan Math for ML September 12, 2020 2 / 16

Let  $f_n: X \to \mathbb{R}, n \in \mathbb{N}$  be a sequence of functions.

Let  $f_n: X \to \mathbb{R}, n \in \mathbb{N}$  be a sequence of functions.

### **Definition**

We will say that  $f_n$  converges to f everywhere on X, if

$$\lim_{n\to\infty} f_n\left(x\right) = f\left(x\right) \text{ for all } x\in X.$$



Let  $f_n: X \to \mathbb{R}, n \in \mathbb{N}$  be a sequence of functions.

### Definition

We will say that  $f_n$  converges to f everywhere on X, if  $\lim_{n\to\infty}f_n\left(x\right)=f\left(x\right)$  for all  $x\in X$ .

### **Definition**

We will say that  $f_n$  converges to f uniformly on X, if for all  $\varepsilon > 0$  there exists  $n_0 \in \mathbb{N}$  such that for all  $n \geq n_0$  holds  $|f_n(x) - f(x)| < \varepsilon$  for all  $x \in X$ . We will write  $f_n(x) \rightrightarrows f(x), x \in X$ .

2/16

Let  $f_n: X \to \mathbb{R}, n \in \mathbb{N}$  be a sequence of functions.

### Definition

We will say that  $f_n$  converges to f everywhere on X, if  $\lim_{n\to\infty}f_n\left(x\right)=f\left(x\right)$  for all  $x\in X$ .

### **Definition**

We will say that  $f_n$  converges to f uniformly on X, if for all  $\varepsilon > 0$  there exists  $n_0 \in \mathbb{N}$  such that for all  $n \geq n_0$  holds  $|f_n(x) - f(x)| < \varepsilon$  for all  $x \in X$ . We will write  $f_n(x) \Rightarrow f(x), x \in X$ .

#### Theorem

 $f_n$  converges uniformly on X if and only if for all  $\varepsilon>0$  there exists  $n_0\in\mathbb{N}$  such that for all  $n\geq n_0$ ,  $m\in\mathbb{N}$  holds  $|f_{n+m}\left(x\right)-f_n\left(x\right)|<\varepsilon$  for all  $x\in X$ .

V. Mikayelyan Math for ML September 12, 2020 3 / 16

Let  $u_n: X \to \mathbb{R}, n \in \mathbb{N}$  be a sequence of functions.

Let  $u_n: X \to \mathbb{R}, n \in \mathbb{N}$  be a sequence of functions.

## Definition

We will say that the series  $\sum_{n=1}^{\infty} u_n(x)$  converges to f everywhere on X, if

the sequence  $f_{n}\left(x\right)=\sum u_{k}\left(x\right)$  converges to f everywhere on X.

3/16

Let  $u_n:X\to\mathbb{R},n\in\mathbb{N}$  be a sequence of functions.

## Definition

We will say that the series  $\sum_{n=1}^{\infty}u_{n}\left(x\right)$  converges to f everywhere on X, if the sequence  $f_{n}\left(x\right)=\sum_{n=1}^{\infty}u_{k}\left(x\right)$  converges to f everywhere on X.

### **Definition**

We will say that the series  $\sum_{n=1}^{\infty}u_{n}\left( x\right)$  converges to f uniformly on X, if

the sequence  $f_{n}\left(x\right)=\sum_{k=1}u_{k}\left(x\right)$  converges to f uniformly on X.

(□) (□) (필) (필) (필)
(□) (□)

### Theorem

If there exists a sequence of real numbers  $\lambda_n$  such that  $|u_n\left(x\right)|\leq \lambda_n$  for all  $x\in X$  and  $n\in\mathbb{N}$  and  $\sum_{n=1}^\infty \lambda_n<+\infty$ , then  $\sum_{n=1}^\infty u_n\left(x\right)$  is uniformly convergent.

### Theorem

If there exists a sequence of real numbers  $\lambda_n$  such that  $|u_n\left(x\right)|\leq \lambda_n$  for all  $x\in X$  and  $n\in\mathbb{N}$  and  $\sum_{n=1}^\infty \lambda_n<+\infty$ , then  $\sum_{n=1}^\infty u_n\left(x\right)$  is uniformly convergent.

## Example

Prove that the series  $\sum_{n=1}^{\infty} \frac{\sin nx}{1+n^2}$  is uniformly convergent on  $\mathbb{R}$ .

4 / 16

## Theorem.

If  $f_n \in C(X)$ ,  $n \in \mathbb{N}$  and  $f_n(x) \rightrightarrows f(x)$ ,  $x \in X$ , then  $f \in C(X)$ .

V. Mikayelyan Math for ML September 12, 2020 5 / 16

### Theorem

If  $f_n \in C(X)$ ,  $n \in \mathbb{N}$  and  $f_n(x) \rightrightarrows f(x)$ ,  $x \in X$ , then  $f \in C(X)$ .

### Theorem

If  $f_n\left(x\right) \rightrightarrows f\left(x\right), x \in X$  and  $\lim_{x \to a} f_n\left(x\right) = c_n$  for all  $n \in \mathbb{N}$ , then there exists finite limits  $\lim_{n \to \infty} c_n = c$  and  $\lim_{x \to a} f\left(x\right) = c$ . In other words

$$\lim_{x \to a} \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \lim_{x \to a} f_n(x).$$

5 / 16

### Theorem

If 
$$f_{n}\in C\left[a,b\right], n\in\mathbb{N}$$
 and  $f_{n}\left(x\right)\rightrightarrows f\left(x\right), x\in\left[a,b\right]$ , then

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \int_{a}^{b} f_n(x) dx$$



### Theorem

If  $f_{n}\in C\left[a,b\right],n\in\mathbb{N}$  and  $f_{n}\left(x\right)\rightrightarrows f\left(x\right),x\in\left[a,b\right]$ , then

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \int_{a}^{b} f_n(x) dx$$

### Theorem

If  $f'_n \in C[a,b]$ ,  $n \in \mathbb{N}$ ,  $f_n(x) \to f(x)$ ,  $x \in [a,b]$  and  $f'_n(x) \rightrightarrows g(x)$ ,  $x \in [a,b]$ , then f'(x) = g(x).

6/16

### Theorem

If  $f_n \in C[a,b]$ ,  $n \in \mathbb{N}$  and  $f_n(x) \rightrightarrows f(x)$ ,  $x \in [a,b]$ , then

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \int_{a}^{b} f_n(x) dx$$

### **Theorem**

If  $f'_n \in C[a,b]$ ,  $n \in \mathbb{N}$ ,  $f_n(x) \to f(x)$ ,  $x \in [a,b]$  and  $f'_n(x) \rightrightarrows g(x)$ ,  $x \in [a,b]$ , then f'(x) = g(x).

### Theorem

If  $f \in C[a,b]$ , then there exists a sequence of polynomials  $P_n$ , such that

$$P_n(x) \rightrightarrows f(x), x \in [a, b].$$

## Definition

Power series are the series of the form  $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ .

## **Definition**

Power series are the series of the form  $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ .

### Theorem

If 
$$R = \frac{1}{\overline{\lim_{n \to \infty} \sqrt[n]{|a_n|}}}$$
, then the series  $\sum_{n=0}^{\infty} a_n x^n$  is convergent if  $|x| < R$  and is divergent for  $|x| > R$ .

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

### **Definition**

Power series are the series of the form  $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ .

#### Theorem

If 
$$R = \frac{1}{\displaystyle \varlimsup_{n \to \infty} \sqrt[n]{|a_n|}}$$
, then the series  $\displaystyle \sum_{n=0}^{\infty} a_n x^n$  is convergent if  $|x| < R$  and

is divergent for |x| > R.

### Theorem

If 
$$R > 0$$
 then  $\sum_{n=0}^{\infty} a_n x^n \in C(-R, R)$ .

- (ロ) (個) (注) (注) ( 注) の((

7/16

### Theorem

If 
$$R \in (0,\infty)$$
 and the series  $\sum_{n=0}^{\infty} a_n R^n$  is convergent then the series

$$\sum_{n=0}^{\infty} a_n x^n \text{ is uniformly convergent on } [0, R].$$



V. Mikayelyan Math for ML September 12, 2020 8 / 16

### Theorem

If 
$$f\left(x\right)=\sum a_{n}x^{n}$$
 and  $R>0$ , then  $f\in\mathcal{R}\left[0,a\right]$  for all  $a\in\left(0,R\right)$  and

$$\int_{0}^{a} f(x) dx = \sum_{n=0}^{\infty} \frac{a_n}{n+1} a^{n+1}$$

V. Mikayelyan Math for ML September 12, 2020 9 / 16

### Theorem

If 
$$f\left(x\right)=\sum_{a}a_{n}x^{n}$$
 and  $R>0$ , then  $f\in\mathcal{R}\left[0,a\right]$  for all  $a\in\left(0,R\right)$  and

$$\int_{0}^{a} f(x) dx = \sum_{n=0}^{\infty} \frac{a_n}{n+1} a^{n+1}$$

### Theorem

If 
$$f\left(x\right)=\sum a_{n}x^{n}$$
 and  $R>0$ , then  $f$  is differentiable in  $\left(-R,R\right)$  and

$$f'(x) = \sum_{n=1}^{\infty} n a_n x^{n-1}$$

V. Mikayelyan Math for ML September 12, 2020 10/16

### **Definition**

A sequence of random variables  $X_n$  converges in distribution to X, if their CDFs  $F_n$  converge to the CDF of X (F) at any point of continuity of F.

10 / 16

### **Definition**

A sequence of random variables  $X_n$  converges in distribution to X, if their CDFs  $F_n$  converge to the CDF of X (F) at any point of continuity of F.

### **Definition**

A sequence of random variables  $X_n$  converges to X almost surely, if

$$\mathbb{P}\left(\lim_{n\to\infty} X_n = X\right) = 1.$$

10 / 16

### Definition

A sequence of random variables  $X_n$  converges in probability to X, if for any  $\varepsilon>0$ 

$$\lim_{n\to\infty} \mathbb{P}\left(|X_n - X| \ge \varepsilon\right) = 0.$$

11 / 16

### Definition

A sequence of random variables  $X_n$  converges in probability to X, if for any  $\varepsilon > 0$ 

$$\lim_{n \to \infty} \mathbb{P}\left(|X_n - X| \ge \varepsilon\right) = 0.$$

### **Definition**

A sequence of random variables  $X_n$  converges to X in the r-th mean (r>0), if  $\mathbb{E}[|X_n|^r]<+\infty$  for all  $n\in\mathbb{N}$ ,  $\mathbb{E}[|X|^r]<+\infty$  and

$$\lim_{n \to \infty} \mathbb{E}\left[\left|X_n - X\right|^r\right] = 0.$$

V. Mikayelyan Math for ML 11 / 16

Let  $X_n$  be a exponential random variable with parameter n, i.e. CDF of  $X_n$  is

$$F_{n}(x) = \begin{cases} 1 - e^{-nx}, & \text{if } x \ge 0, \\ 0, & \text{if } x < 0. \end{cases}$$

V. Mikayelyan Math for ML September 12, 2020 12 / 16

Let  $X_n$  be a exponential random variable with parameter n, i.e. CDF of  $X_n$  is

$$F_n(x) = \begin{cases} 1 - e^{-nx}, & \text{if } x \ge 0, \\ 0, & \text{if } x < 0. \end{cases}$$

Then for all  $\varepsilon > 0$  we obtain

$$\lim_{n\to\infty} \mathbb{P}\left(|X_n| \ge \varepsilon\right) =$$



12 / 16

Let  $X_n$  be a exponential random variable with parameter n, i.e. CDF of  $X_n$  is

$$F_n(x) = \begin{cases} 1 - e^{-nx}, & \text{if } x \ge 0, \\ 0, & \text{if } x < 0. \end{cases}$$

Then for all  $\varepsilon > 0$  we obtain

$$\lim_{n\to\infty}\mathbb{P}\left(\left|X_{n}\right|\geq\varepsilon\right)=\lim_{n\to\infty}\left(1-F_{n}\left(\varepsilon\right)\right)=$$



12 / 16

Let  $X_n$  be a exponential random variable with parameter n, i.e. CDF of  $X_n$  is

$$F_n(x) = \begin{cases} 1 - e^{-nx}, & \text{if } x \ge 0, \\ 0, & \text{if } x < 0. \end{cases}$$

Then for all  $\varepsilon > 0$  we obtain

$$\lim_{n\to\infty}\mathbb{P}\left(\left|X_{n}\right|\geq\varepsilon\right)=\lim_{n\to\infty}\left(1-F_{n}\left(\varepsilon\right)\right)=\lim_{n\to\infty}e^{-n\varepsilon}=$$



V. Mikayelyan Math for ML September 12, 2020 12 / 16

Let  $X_n$  be a exponential random variable with parameter n, i.e. CDF of  $X_n$  is

$$F_n(x) = \begin{cases} 1 - e^{-nx}, & \text{if } x \ge 0, \\ 0, & \text{if } x < 0. \end{cases}$$

Then for all  $\varepsilon > 0$  we obtain

$$\lim_{n\to\infty} \mathbb{P}\left(|X_n| \ge \varepsilon\right) = \lim_{n\to\infty} \left(1 - F_n\left(\varepsilon\right)\right) = \lim_{n\to\infty} e^{-n\varepsilon} = 0.$$

12 / 16

Let  $X_n$  be a exponential random variable with parameter n, i.e. CDF of  $X_n$  is

$$F_n(x) = \begin{cases} 1 - e^{-nx}, & \text{if } x \ge 0, \\ 0, & \text{if } x < 0. \end{cases}$$

Then for all  $\varepsilon > 0$  we obtain

$$\lim_{n\to\infty} \mathbb{P}\left(|X_n| \ge \varepsilon\right) = \lim_{n\to\infty} \left(1 - F_n\left(\varepsilon\right)\right) = \lim_{n\to\infty} e^{-n\varepsilon} = 0.$$

So  $X_n \xrightarrow{\mathbb{P}} 0$ .



V. Mikayelyan Math for ML September 12, 2020 12/16

## Theorem

If  $X_n \xrightarrow{(r)} X$ , then  $X_n \xrightarrow{\mathbb{P}} X$ .

13 / 16

## Theorem

If  $X_n \xrightarrow{(r)} X$ , then  $X_n \xrightarrow{\mathbb{P}} X$ .

## Theorem

If  $X_n \xrightarrow{a.s.} X$ , then  $X_n \xrightarrow{\mathbb{P}} X$ .

13 / 16

# Convergence of Random Variables

#### Theorem

If  $X_n \xrightarrow{(r)} X$ , then  $X_n \xrightarrow{\mathbb{P}} X$ .

#### Theorem

If  $X_n \xrightarrow{a.s.} X$ , then  $X_n \xrightarrow{\mathbb{P}} X$ .

#### Theorem

If  $X_n \xrightarrow{\mathbb{P}} X$  then there exists  $k_n \in \mathbb{N}$  such that  $X_{k_n} \xrightarrow{a.s.} X$ .

# Convergence of Random Variables

#### Theorem

If  $X_n \xrightarrow{(r)} X$ , then  $X_n \xrightarrow{\mathbb{P}} X$ .

#### Theorem

If  $X_n \xrightarrow{a.s.} X$ , then  $X_n \xrightarrow{\mathbb{P}} X$ .

#### Theorem

If  $X_n \xrightarrow{\mathbb{P}} X$  then there exists  $k_n \in \mathbb{N}$  such that  $X_{k_n} \xrightarrow{a.s.} X$ .

#### Theorem

If  $X_n \stackrel{\mathbb{P}}{\to} X$ , then  $X_n \stackrel{D}{\to} X$ .

13 / 16

# Convergence of Random Variables

#### Theorem

If  $X_n \xrightarrow{(r)} X$ , then  $X_n \xrightarrow{\mathbb{P}} X$ .

#### Theorem

If  $X_n \xrightarrow{a.s.} X$ , then  $X_n \xrightarrow{\mathbb{P}} X$ .

#### **Theorem**

If  $X_n \xrightarrow{\mathbb{P}} X$  then there exists  $k_n \in \mathbb{N}$  such that  $X_{k_n} \xrightarrow{a.s.} X$ .

#### Theorem

If  $X_n \xrightarrow{\mathbb{P}} X$ , then  $X_n \xrightarrow{D} X$ .

#### Theorem

 $X_n \xrightarrow{\mathbb{P}} c \text{ iff } X_n \xrightarrow{D} c.$ 

Let  $\Omega = [0,1]$ , P is the Lebesgue measure and  $\mathcal F$  is the  $\sigma$ -algebra of all measurable sets.

V. Mikayelyan Math for ML September 12, 2020 14 / 16

Let  $\Omega=[0,1]$ , P is the Lebesgue measure and  ${\mathcal F}$  is the  $\sigma$ -algebra of all measurable sets. Denote

$$X_n(\omega) = \begin{cases} e^n, & \text{if } 0 \le \omega \le \frac{1}{n}, \\ 0, & \text{if } \frac{1}{n} < \omega \le 1. \end{cases}$$



14 / 16

Let  $\Omega=[0,1]$ , P is the Lebesgue measure and  ${\mathcal F}$  is the  $\sigma$ -algebra of all measurable sets. Denote

$$X_n(\omega) = \begin{cases} e^n, & \text{if } 0 \le \omega \le \frac{1}{n}, \\ 0, & \text{if } \frac{1}{n} < \omega \le 1. \end{cases}$$

For any  $\omega \in (0,1]$  there exists  $n_0 \in \mathbb{N}$  such that  $X_n(\omega) = 0$  for  $n \geq n_0$ .



14 / 16

Let  $\Omega=[0,1]$ , P is the Lebesgue measure and  ${\mathcal F}$  is the  $\sigma$ -algebra of all measurable sets. Denote

$$X_n(\omega) = \begin{cases} e^n, & \text{if } 0 \le \omega \le \frac{1}{n}, \\ 0, & \text{if } \frac{1}{n} < \omega \le 1. \end{cases}$$

For any  $\omega \in (0,1]$  there exists  $n_0 \in \mathbb{N}$  such that  $X_n\left(\omega\right) = 0$  for  $n \geq n_0$ . Therefore  $X_n\left(\omega\right) \to 0$ , for all  $\omega \in (0,1]$ , i.e  $X_n \xrightarrow{a.s.} 0$ .



14 / 16

Let  $\Omega=[0,1]$ , P is the Lebesgue measure and  ${\mathcal F}$  is the  $\sigma$ -algebra of all measurable sets. Denote

$$X_n(\omega) = \begin{cases} e^n, & \text{if } 0 \le \omega \le \frac{1}{n}, \\ 0, & \text{if } \frac{1}{n} < \omega \le 1. \end{cases}$$

For any  $\omega \in (0,1]$  there exists  $n_0 \in \mathbb{N}$  such that  $X_n\left(\omega\right) = 0$  for  $n \geq n_0$ . Therefore  $X_n\left(\omega\right) \to 0$ , for all  $\omega \in (0,1]$ , i.e  $X_n \xrightarrow{a.s.} 0$ . For any  $\varepsilon > 0$  we have

$$\mathbb{P}(X_n \ge \varepsilon) \le \frac{1}{n}, n \in \mathbb{N},$$



14 / 16

Let  $\Omega=[0,1]$ , P is the Lebesgue measure and  ${\mathcal F}$  is the  $\sigma$ -algebra of all measurable sets. Denote

$$X_n(\omega) = \begin{cases} e^n, & \text{if } 0 \le \omega \le \frac{1}{n}, \\ 0, & \text{if } \frac{1}{n} < \omega \le 1. \end{cases}$$

For any  $\omega \in (0,1]$  there exists  $n_0 \in \mathbb{N}$  such that  $X_n\left(\omega\right) = 0$  for  $n \geq n_0$ . Therefore  $X_n\left(\omega\right) \to 0$ , for all  $\omega \in (0,1]$ , i.e  $X_n \xrightarrow{a.s.} 0$ . For any  $\varepsilon > 0$  we have

$$\mathbb{P}(X_n \ge \varepsilon) \le \frac{1}{n}, n \in \mathbb{N},$$

therefore  $X_n \xrightarrow{\mathbb{P}} 0$ .



V. Mikayelyan Math for ML September 12, 2020 14/16

Let  $\Omega=[0,1]$ , P is the Lebesgue measure and  ${\mathcal F}$  is the  $\sigma$ -algebra of all measurable sets. Denote

$$X_n(\omega) = \begin{cases} e^n, & \text{if } 0 \le \omega \le \frac{1}{n}, \\ 0, & \text{if } \frac{1}{n} < \omega \le 1. \end{cases}$$

For any  $\omega \in (0,1]$  there exists  $n_0 \in \mathbb{N}$  such that  $X_n\left(\omega\right) = 0$  for  $n \geq n_0$ . Therefore  $X_n\left(\omega\right) \to 0$ , for all  $\omega \in (0,1]$ , i.e  $X_n \xrightarrow{a.s.} 0$ . For any  $\varepsilon > 0$  we have

$$\mathbb{P}(X_n \ge \varepsilon) \le \frac{1}{n}, n \in \mathbb{N},$$

therefore  $X_n \xrightarrow{\mathbb{P}} 0$ . Note that

$$\mathbb{E}\left[|X_n|^r\right] = \frac{e^{rn}}{n} \to +\infty, r > 0.$$



14 / 16

Let  $\Omega=[0,1]$ , P is the Lebesgue measure and  $\mathcal F$  is the  $\sigma$ -algebra of all measurable sets. Denote

$$X_n\left(\omega\right) = \begin{cases} e^n, & \text{if } 0 \le \omega \le \frac{1}{n}, \\ 0, & \text{if } \frac{1}{n} < \omega \le 1. \end{cases}$$

For any  $\omega \in (0,1]$  there exists  $n_0 \in \mathbb{N}$  such that  $X_n\left(\omega\right) = 0$  for  $n \geq n_0$ . Therefore  $X_n\left(\omega\right) \to 0$ , for all  $\omega \in (0,1]$ , i.e  $X_n \xrightarrow{a.s.} 0$ . For any  $\varepsilon > 0$  we have

$$\mathbb{P}(X_n \ge \varepsilon) \le \frac{1}{n}, n \in \mathbb{N},$$

therefore  $X_n \xrightarrow{\mathbb{P}} 0$ . Note that

$$\mathbb{E}\left[|X_n|^r\right] = \frac{e^{rn}}{n} \to +\infty, r > 0.$$

therefore  $X_n \xrightarrow{(r)} 0$ .

14 / 16

Let  $(\Omega, \mathcal{F}, \mathbb{P})$  is some probability space, such that  $\mathbb{P}(A) = \mathbb{P}(\overline{A}) = 0.5$  for some  $A \in \mathcal{F}$ .



15 / 16

Let  $(\Omega, \mathcal{F}, \mathbb{P})$  is some probability space, such that  $\mathbb{P}(A) = \mathbb{P}(\overline{A}) = 0.5$  for some  $A \in \mathcal{F}$ . Denote

$$X_n(\omega) = \begin{cases} 1, & \text{if } \omega \in A, \\ -1, & \text{if } \omega \in \overline{A} \end{cases}$$

and  $X = -X_1$ .



15 / 16

Let  $(\Omega, \mathcal{F}, \mathbb{P})$  is some probability space, such that  $\mathbb{P}(A) = \mathbb{P}(\overline{A}) = 0.5$  for some  $A \in \mathcal{F}$ . Denote

$$X_n(\omega) = \begin{cases} 1, & \text{if } \omega \in A, \\ -1, & \text{if } \omega \in \overline{A} \end{cases}$$

and  $X = -X_1$ . It is not difficult to see that

$$F_n(x) = F(x) = \begin{cases} 0, & \text{if } x < -1, \\ 0.5, & \text{if } x \in [-1, 1), \\ 1, & \text{if } x \ge 1. \end{cases}$$



V. Mikayelyan Math for ML S

15 / 1<u>6</u>

Let  $(\Omega, \mathcal{F}, \mathbb{P})$  is some probability space, such that  $\mathbb{P}(A) = \mathbb{P}(\overline{A}) = 0.5$  for some  $A \in \mathcal{F}$ . Denote

$$X_n(\omega) = \begin{cases} 1, & \text{if } \omega \in A, \\ -1, & \text{if } \omega \in \overline{A} \end{cases}$$

and  $X = -X_1$ . It is not difficult to see that

$$F_n(x) = F(x) = \begin{cases} 0, & \text{if } x < -1, \\ 0.5, & \text{if } x \in [-1, 1), \\ 1, & \text{if } x \ge 1. \end{cases}$$

However  $|X_n - X| = 2$ .



V. Mikayelyan Math for ML Sept

15 / 16

Let  $(\Omega, \mathcal{F}, \mathbb{P})$  is some probability space, such that  $\mathbb{P}(A) = \mathbb{P}(\overline{A}) = 0.5$  for some  $A \in \mathcal{F}$ . Denote

$$X_n(\omega) = \begin{cases} 1, & \text{if } \omega \in A, \\ -1, & \text{if } \omega \in \overline{A} \end{cases}$$

and  $X = -X_1$ . It is not difficult to see that

$$F_n(x) = F(x) = \begin{cases} 0, & \text{if } x < -1, \\ 0.5, & \text{if } x \in [-1, 1), \\ 1, & \text{if } x \ge 1. \end{cases}$$

However  $|X_n - X| = 2$ . So  $X_n \xrightarrow{D} X$ , but  $X_n \not\xrightarrow{\mathbb{P}} X$ .



15 / 16

# The Weak Law of Large Numbers

V. Mikayelyan Math for ML September 12, 2020 16 /

## The Weak Law of Large Numbers

#### Markov's theorem

Let  $X_n$  be a sequence of random variables, each having a finite mean  $(\mathbb{E}\left[X_k\right]=a_k)$  and variance. If

$$\lim_{n \to \infty} \frac{1}{n^2} Var\left(\sum_{k=1}^n X_k\right) = 0, \text{ then } \frac{1}{n} \sum_{k=1}^n (X_k - a_k) \xrightarrow{\mathbb{P}} 0.$$

16 / 16

## The Weak Law of Large Numbers

#### Markov's theorem

Let  $X_n$  be a sequence of random variables, each having a finite mean  $(\mathbb{E}\left[X_k\right]=a_k)$  and variance. If

$$\lim_{n \to \infty} \frac{1}{n^2} Var\left(\sum_{k=1}^n X_k\right) = 0, \text{ then } \frac{1}{n} \sum_{k=1}^n (X_k - a_k) \xrightarrow{\mathbb{P}} 0.$$

#### Corollary

If  $X_n$  is a sequence of independent and identically distributed random variables, each having a finite mean  $(\mathbb{E}[X_1] = a)$  and variance, then

$$\frac{1}{n} \sum_{k=1}^{n} X_k \xrightarrow{\mathbb{P}} a.$$

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q Q

16 / 16