Problem Set 3

Name: Mudunuri Sri Sai Sarat Chandra Varma

Class Id: 14

Information Retrieval (Text Mining) with TF-IDF Consider the following three short documents

Doc #1:

The researchers will focus on computational phenotyping and will produce disease prediction models from machine learning and statistical tools.

Doc #2:

The researchers will develop tools that use Bayesian statistical information to generate causal models from large and complex phenotyping datasets.

Doc #3:

The researchers will build a computational information engine that uses machine learning to combine gene function and gene interaction information from disparate genomic data sources.

Question 1:

a) First remove stop words and punctuation; detect manually multi-word terms (using N-Gram or POS Tagging/Chunking); parse manually the documents and select the terms from the given 3 documents and created the dictionary (list of terms).

Answer:

Doc #1:

The researchers will focus on computational phenotyping and will produce disease prediction models from machine learning and statistical tools.

After removing stop words and punctuation:

The researchers focus computational phenotyping produce disease prediction models machine learning statistical tools

Doc #2:

The researchers will develop tools that use Bayesian statistical information to generate causal models from large and complex phenotyping datasets.

After removing stop words and punctuation:

The researchers develop tools Bayesian statistical information generate causal models large complex phenotyping datasets

Doc #3:

The researchers will build a computational information engine that uses machine learning to combine gene function and gene interaction information from disparate genomic data sources.

After removing stop words and punctuation:

The researchers build computational information engine uses machine learning combine gene function gene interaction information disparate genomic data sources

Multi-Word terms in three documents combined:

the - 3
researchers - 3
information - 3
machine - 2
gene - 2
tools - 2
statistical - 2
learning - 2
models - 2
phenotyping - 2
computational - 2

Dictionary D = {the, researchers, information, machine, gene, tools, statistical, learning, models, phenotyping, computational}

Question 2:

b) Create the document vectors by computing TF-IDF weights. Show how to compute the TF-IDF weights for terms. For each form of weighting list the document vectors in the following format:

Answer:

Doc #1:

The researchers focus computational phenotyping produce disease prediction models machine learning statistical tools

TF(Term Frequency) – Doc1:

TF(t) = (Number of times term t appears in a document) / (Total number of terms in the document)

Total number of terms in the document = 13

Term frequency for 'the' -1/13 = 0.0769

Term frequency for 'researchers' - 1/13 = 0.0769

Term frequency for 'focus' -1/13 = 0.0769

Term frequency for 'computational' -1/13 = 0.0769

Term frequency for 'phenotyping' -1/13 = 0.0769

Term frequency for 'produce' -1/13 = 0.0769

Term frequency for 'disease' -1/13 = 0.0769

Term frequency for 'prediction' -1/13 = 0.0769

Term frequency for 'models' -1/13 = 0.0769

Term frequency for 'machine' -1/13 = 0.0769

Term frequency for 'learning' -1/13 = 0.0769

Term frequency for 'statistical' - 1/13 = 0.0769

Term frequency for 'tools' -1/13 = 0.0769

Doc #2:

The researchers develop tools Bayesian statistical information generate causal models large complex phenotyping datasets

TF(Term Frequency) - Doc2:

TF(t) = (Number of times term t appears in a document) / (Total number of terms in the document)

Total number of terms in the document = 14

Term frequency for **'the'** - 1/14 = 0.07142

Term frequency for 'researchers' - 1/14 = 0.07142

Term frequency for 'develop' -1/14 = 0.07142

Term frequency for 'tools' -1/14 = 0.07142

Term frequency for 'Bayesian' -1/14 = 0.07142

Term frequency for 'statistical' -1/14 = 0.07142

Term frequency for 'information' -1/14 = 0.07142

Term frequency for 'generate' -1/14 = 0.07142

Term frequency for 'causal' - 1/14 = 0.07142

Term frequency for 'models' -1/14 = 0.07142

Term frequency for 'large' -1/14 = 0.07142

Term frequency for 'complex' - 1/14 = 0.07142

Term frequency for 'phenotyping' -1/14 = 0.07142

Term frequency for 'datasets' -1/14 = 0.07142

Doc #3:

The researchers build computational information engine uses machine learning combine gene function gene interaction information disparate genomic data sources

TF(Term Frequency) – Doc3:

TF(t) = (Number of times term t appears in a document) / (Total number of terms in the document)

Total number of terms in the document = 19

Term frequency for **'the'** - 1/19 = 0.05263

Term frequency for 'researchers' -1/19 = 0.05263

Term frequency for 'build' -1/19 = 0.05263

Term frequency for 'computational' -1/19 = 0.05263

Term frequency for 'information' -2/13 = 0.10526

Term frequency for 'engine' -1/19 = 0.05263

Term frequency for 'uses' -1/19 = 0.05263

Term frequency for 'machine' -1/19 = 0.05263

Term frequency for 'learning' -1/19 = 0.05263

Term frequency for 'combine' -1/19 = 0.05263

Term frequency for 'gene' -2/13 = 0.10526

Term frequency for 'function' -1/19 = 0.05263

Term frequency for 'interaction' -1/19 = 0.05263

Term frequency for 'disparate' -1/19 = 0.05263

Term frequency for 'genomic' -1/19 = 0.05263

Term frequency for 'data' - 1/19 = 0.05263

Term frequency for 'sources' -1/19 = 0.05263

Inverse Document Frequency:

Total number of documents = 3

IDF(t) = log_e(Total number of documents / Number of documents with term t in it)

```
IDF for 'the' -\log_e(3/3) = 0
```

IDF for 'researchers' –
$$\log e(3/3) = 0$$

IDF for 'focus' –
$$\log e(3/1) = 1.09$$

IDF for 'computational'
$$-\log_e(3/2) = 0.40$$

IDF for 'phenotyping' –
$$log e(3/2) = 0.40$$

IDF for 'produce' –
$$log e(3/1) = 1.09$$

IDF for 'disease' –
$$\log e(3/1) = 1.09$$

IDF for 'prediction'
$$-\log_e(3/3) = 0$$

IDF for 'models'
$$-\log_{e}(3/1) = 1.09$$

IDF for 'machine' –
$$\log e(3/2) = 0.40$$

IDF for 'learning' –
$$\log e(3/2) = 0.40$$

IDF for 'statistical'
$$-\log_e(3/2) = 0.40$$

IDF for 'tools' –
$$\log e(3/1) = 1.09$$

IDF for 'develop'
$$-\log_e(3/1) = 1.09$$

IDF for 'Bayesian' –
$$\log e(3/1) = 1.09$$

IDF for 'information' –
$$log e(3/2) = 0.40$$

IDF for **'generate'**
$$-\log e(3/1) = 1.09$$

IDF for 'causal' –
$$\log_{-}e(3/1) = 1.09$$

IDF for 'large' –
$$\log e(3/1) = 1.09$$

IDF for 'complex'
$$-\log_e(3/1) = 1.09$$

IDF for 'datasets' –
$$\log e(3/1) = 1.09$$

IDF for **'build'**
$$-\log_e(3/1) = 1.09$$

IDF for **'engine'** –
$$\log e(3/1) = 1.09$$

IDF for 'uses'
$$-\log_{e}(3/1) = 1.09$$

IDF for 'combine' –
$$\log e(3/1) = 1.09$$

IDF for 'gene'
$$-\log_{e}(3/2) = 0.40$$

IDF for 'function'
$$-\log_e(3/1) = 1.09$$

IDF for 'interaction' –
$$\log e(3/1) = 1.09$$

IDF for 'disparate'
$$- \log e(3/1) = 1.09$$

IDF for 'genomic' –
$$\log e(3/1) = 1.09$$

IDF for 'data' –
$$\log e(3/1) = 1.09$$

IDF for 'sources' –
$$\log e(3/1) = 1.09$$

Term Weights:

Term Weight = TF * IDF

```
Term Weight for 'the' - 0
Term Weight for 'researchers' – 0
Term Weight for 'focus' -0.0769 * 1.09 = 0.083
Term Weight for 'computational' -0.0769 * 0.40 = 0.030
Term Weight for 'phenotyping' -0.0769 * 0.40 = 0.030
Term Weight for 'produce' -0.0769 * 1.09 = 0.083
Term Weight for 'disease' 0.0769 * 1.09 = 0.083
Term Weight for 'prediction' -0.0769 * 0 = 0
Term Weight for 'models' -0.0769 * 1.09 = 0.083
Term Weight for 'machine' -0.0769 * 0.40 = 0.030
Term Weight for 'learning' -0.0769 * 0.40 = 0.030
Term Weight for 'statistical' -0.0769 * 0.40 = 0.030
Term Weight for 'tools' - 0.0769 * 1.09 = 0.083
Term Weight for 'develop' -0.07142 * 1.09 = 0.077
Term Weight for 'Bayesian' -0.07142 * 1.09 = 0.077
Term Weight for 'information' -0.07142 * 0.40 = 0.028
Term Weight for 'generate' -0.07142 * 1.09 = 0.077
Term Weight for 'causal' -0.07142 * 1.09 = 0.077
Term Weight for 'large' -0.07142 * 1.09 = 0.077
Term Weight for 'complex' -0.07142 * 1.09 = 0.077
Term Weight for 'datasets' -0.07142 * 1.09 = 0.077
Term Weight for 'build' -0.05263 * 1.09 = 0.057
Term Weight for 'engine' -0.05263 * 1.09 = 0.057
Term Weight for 'uses' -0.05263 * 1.09 = 0.057
Term Weight for 'combine' -0.05263 * 1.09 = 0.057
Term Weight for 'gene' -0.05263 * 0.40 = 0.021
Term Weight for 'function' -0.05263 * 1.09 = 0.057
Term Weight for 'interaction' -0.05263 * 1.09 = 0.057
Term Weight for 'disparate' -0.05263 * 1.09 = 0.057
Term Weight for 'genomic' -0.05263 * 1.09 = 0.057
Term Weight for 'data' - 0.05263 * 1.09 = 0.057
Term Weight for 'sources' -0.05263 * 1.09 = 0.057
```

Document Vector:

Term	Doc1	Doc2	Doc3
the	1	1	1
Researchers	1	1	1
Focus	1	0	0
Computational	1	0	1
Phenotyping	1	1	0
Produce	1	0	0
Disease	1	0	0
Prediction	1	0	0
Models	1	0	0
Machine	1	0	1
Learning	1	0	1
Statistical	1	1	0
Tools	1	0	0
Develop	0	1	0
Bayesian	0	1	0
Information	0	1	0
Generate	0	1	0
Causal	0	1	0
Large	0	1	0
Complex	0	1	0
Datasets	0	1	0
Build	0	0	1
Engine	0	0	1
uses	0	0	1
Combine	0	0	1
Gene	0	0	1
Function	0	0	1
Interaction	0	0	1
Disparate	0	0	1
genomic	0	0	1
Data	0	0	1
sources	0	0	1