Estados de la materia

Es necesario entregar o retirar calor del sistema para que ocurra el cambio de estado

Los procesos de cambio de estado ocurren a temperatura constante.

Para los cambios
$$s\'olido o l\'iquido$$
 y de $l\'iquido o vapor$,

$$Q_{\text{fusion}} = m L_f$$

$$Q_{\text{vaporización}} = m L_{v}$$

L_f y L_v son **calores latentes** de fusión y de vaporización

- Los cambios de estado ocurren a determinadas temperaturas, T_t y T_v , llamadas temperaturas de fusión y de vaporización, respectivamente.
- La cantidad de energía necesaria para provocar un cambio de fase depende de la cantidad de sustancia involucrada.

Estados de la materia

Latent Heats of Fusion and Vaporization										
Substance	Melting Point (°C)	Latent Heat of Fusion (J/kg)	Boiling Point (°C)	Latent Heat of Vaporization (J/kg)						
Helium	- 269.65	5.23×10^{3}	- 268.93	2.09×10^{4}						
Nitrogen	-209.97	2.55×10^{4}	-195.81	2.01×10^{5}						
Oxygen	-218.79	1.38×10^{4}	-182.97	2.13×10^{5}						
Ethyl alcohol	-114	1.04×10^{5}	78	8.54×10^{5}						
Water	0.00	3.33×10^{5}	100.00	2.26×10^{6}						
Sulfur	119	3.81×10^{4}	444.60	3.26×10^{5}						
Lead	327.3	2.45×10^{4}	1 750	8.70×10^{5}						
Aluminum	660	3.97×10^{5}	2 450	1.14×10^{7}						
Silver	960.80	8.82×10^{4}	2 193	2.33×10^{6}						
Gold	1 063.00	6.44×10^{4}	2 660	1.58×10^{6}						
Copper	1 083	1.34×10^{5}	1 187	5.06×10^{6}						

- Durante un cambio de fase hay cambios en la energía interna pero no hay cambios en la temperatura.
- Los cambios en la energía interna están relacionados con la modificación de las energías potencial intermolecular e intramolecular (romper o crear enlaces entre los átomos).

Proceso de cambio de fase

Diagrama *T-V* para el proceso de calentar agua a presión contante

Curva de saturación líquido-vapor del agua y Tabla de valores respectiva.

300

8588

Ejercicio

¿Cuánto calor debe ser absorbido por una masa de hielo de 720 g a -10°C para obtener esa cantidad de agua a 15°C?

El proceso de calentamiento comprende tres etapas:

- Se debe elevar la temperatura del hielo hasta el punto de fusión, $T_f = 0^{\circ}$ C.
- ② Se necesita energía para que se produzca el cambio de fase sólido → líquido.
- Se debe elevar la temperatura del agua hasta la temperatura deseada.

$$Q_1=m_{ extit{hielo}}\,c_{ extit{hielo}}\,\Delta T$$
 $Q_1=0.720\, ext{kg} imes2220\, ext{J/kg}\, ext{K} imes[0^oC-(-10^oC)]$ $Q_1=15984\, ext{J}$

Ejercicio

$$Q_2 = m_{ extit{hielo}} \, L_{ extit{fusión}}$$
 $Q_2 = 0.720 \, ext{kg} imes 333 ext{kJ/kg} = 239.76 \, ext{kJ}$

$$Q_3=m_{agua}\,c_{agua}\,\Delta au$$
 $Q_3=0,720\, ext{kg} imes4190\, ext{J/kg} ext{ K}\, ext{J/kg} ext{ K} imes[15^oC-0^oC]$ $Q_3=45252\, ext{J}$

$$Q_{total}=Q_1+Q_2+Q_3$$
 $Q_{total}=15984\,\mathrm{J}+239{,}76\,\mathrm{kJ}+45252\,\mathrm{J}pprox300\,\mathrm{kJ}$

Diagramas de fase

Calidad ó Título

Durante la vaporización, las propiedades del sistema dependen de las proporciones de líquido y de vapor que hay en la mezcla de fases.

Se define la calidad ó título como

$$x \equiv \frac{m_{vapor}}{m_{total}} = \frac{m_{vapor}}{m_{liquido} + m_{vapor}} = \frac{m_g}{m_f + m_g}$$

Este factor tiene sentido sólo para mezclas saturadas.

Durante la vaporización, la mezcla puede pensarse como una combinación de dos subsistemas: *líquido saturado* y *vapor saturado*, cuyas propiedades son conocidas pero no se conoce la cantidad de masa en uno y otro subsistema.

$$0 \le x \le 1$$

Calidad ó Título

Consideremos un tanque, de volumen V, que contiene la mezcla de líquido y vapor saturados.

Sean V_f y V_g los volúmenes que ocupan el líquido saturado y el vapor saturado, respectivamente,

$$V=V_f+V_g=m_{total}\,
u_{avg} \longrightarrow m_{total}\,
u_{avg}=m_f\,
u_f+m_g\,
u_g$$
 $m_f=m_{total}-m_g \longrightarrow m_{total}\,
u_{avg}=(m_{total}-m_g)\,
u_f+m_g\,
u_g$

$$u_{avg} = (1 - x) \nu_f + x \nu_g = V_f + x \nu_{fg}$$

$$\nu_{fg} = \nu_g - \nu_f$$

$$X = \frac{\nu_{avg} - \nu_f}{\nu_{fg}}$$

Factor de compresibilidad

Es una medida de la desviación del comportamiento de los gases reales respecto del comportamiento del gas ideal.

$$Z \equiv \frac{P \, \nu}{\mathcal{R} \, \mathsf{T}}$$

$$\nu = \frac{V}{m} \quad \text{(volumen específico)}$$

$$\mathcal{R} = \frac{R}{M}$$

$$P \, \nu = Z \, \mathcal{R} \, \mathsf{T}$$

$$Z \equiv \frac{\nu_{real}}{\nu_{ideal}}$$

Más significativa en las regiones de saturación y del punto crítico

Principio de estados correspondientes

A una *T* y una *P* dadas, diferentes gases se comportan muy distinto uno de otro.

Sin embargo, si normalizamos la presión y temperatura por los valores críticos de cada gas, el comportamiento es muy similar.

 P_R y T_R son la presión y la temperatura reduidas

Ejemplo

Determinar el volumen específico del vapor de agua sobrecalentado a 10 MPa y 400°C, usando la ecuación de gases ideales y la carta de compresibilidad generalizada. Determinar el error cometido en cada caso.

Ecuaciones de estado de gases no ideales

Los gases reales tienen comportamientos distintos a los ideales. En algunos casos la desviación puede ser importante y se han propuesto modificaciones que toman en cuenta que

- las moléculas interaccionan entre sí; la interacción es fuertemente repulsiva a corta distancia, se hace ligeramente atractiva a distancias intermedias y desaparece a distancias grandes.
- la repulsión mutua entre moléculas tiene el efecto de excluir a las moléculas vecinas de una cierta zona alrededor de cada molécula. Así, una parte del espacio total deja de estar disponible para las moléculas en su movimiento aleatorio. En la ecuación de estado, se hace necesario restar este volumen de exclusión del volumen del recipiente.

Una de las modificaciones, muy conocida y particularmente útil, es la ecuación de estado de Van der Waals.

Ecuación de estado de Van der Waals

$$\left(\mathbf{P}+\mathbf{a}/\mathbf{v}^{2}
ight)\left(\mathbf{v}-\mathbf{b}
ight)=\mathbf{R}\,\mathbf{T}$$
 $\mathbf{v}=\mathbf{V}/\mathbf{n}$

La constante **b** toma en cuenta que las moléculas tienen un **volumen finito**.

El término a/v^2 toma en cuenta que cuando una molécula se aproxima a la pared del recipiente, es tirada hacia atrás por las moléculas que la rodean con una fuerza que es proporcional a la densidad de moléculas.

a y b son parámetros determinados experimentalmente y varían de un gas a otro.

Ecuación de estado de Van der Waals

Molécula	<i>a</i> (Pa⋅m ⁶ /mol ²)	b (m³/mol)
He	0.003455	2.37·10 ⁻⁵
Aire	0.1358	3.64·10 ⁻⁵
H ₂	0.02472	2.66·10 ⁻⁵
N ₂	0.14084	3.91·10 ⁻⁵
O ₂	0.137802	3.18·10 ⁻⁵
CO ₂	0.3592	4.267·10 ⁻⁵
H₂O	0.55323	3.05·10 ⁻⁵

Tablas termodinámicas

- Para la mayoría de las sustancias, las relaciones entre las propiedades termodinámicas son muy complejas para ser expresadas por simples ecuaciones.
- Algunas propiedades termodinámicas pueden medirse fácilmente pero otras son calculadas usando relaciones entre ellas y con propiedades medidas.
- Los resultados de estas mediciones y cálculos son presentados en forma de tablas.
- Para cada sustancia, existe su tabla termodinámica.
- Veremos varios ejemplos usando las tablas de vapor para mostrar el uso de las tablas termodinámicas.

Tablas termodinámicas - H₂O

Propiedades del agua saturada (líquido – vapor) Tabla de Temperatura Tabla A – 1

Temp.	Presión	Volumen E	Específico	En	ergía Inte			Entalpía			Entropía	
T	P	Liq Sat.	Vap. Sat.	Liq Sat.	Evap.	Vap. Sat.	Liq Sat.	Evap.	Vap. Sat.	Liq Sat.	Evap.	Vap. Sat.
		vf	vg	uf	ufg	ug	hf	hfg	hg	sf	sfg	Sg
°C °	KPa	m ³ /kg	m³/kg	KJ/Kg	KJ/Kg	KJ/Kg	KJ/Kg	KJ/Kg	KJ/Kg	KJ/(Kg ºK)	KJ/(Kg °K)	KJ/(Kg °K)
0.01	0.6113	0.001000	206.14	0	2375.3	2375.3	0.01	2501.3	2501.4	0	9.1562	9.1562
5	0.8721	0.001000	147.12	20.97	2361.3	2382.3	20.98	2489.6	2510.6	0.0761	8.9496	9.0257
10	1.2276	0.001000	106.38	42.00	2347.2	2389.2	42.01	2477.7	2519.8	0.1510	8.7498	8.9008
15	1.7051	0.001001	77.93	62.99	2333.1	2396.1	62.99	2465.9	2528.9	0.2245	8.5569	8.7814
20	2.339	0.001002	57.79	83.95	2319.0	2402.9	83.96	2454.1	2538.1	0.2966	8.3706	8.6672
25	3.169	0.001003	43.36	104.88	2304.9	2409.8	104.89	2442.3	2547.2	0.3674	8.1905	8.5580
30	4.246	0.001004	32.89	125.78	2290.8	2416.6	125.79	2430.5	2556.3	0.4369	8.0164	8.4533
35	5.628	0.001006	25.22	146.67	2276.7	2423.4	146.68	2418.6	2565.3	0.5053	7.8478	8.3531
40	7.384	0.001008	19.52	167.56	2262.6	2430.1	167.57	2406.7	2574.3	0.5725	7.6845	8.2570
45	9.593	0.001010	15.26	188.44	2248.4	2436.8	188.45	2394.8	2583.2	0.6387	7.5261	8.1648

Propiedades del agua saturada (líquido – vapor) Tabla de Presión Tabla A - 2

Presión	Temp.	Volumen I	Específico	En	ergía Inte			Entalpía			Entropía	
P	Т	Liq Sat.	Vap. Sat.	Liq Sat.	Evap.	Vap. Sat.	Liq Sat.	Evap.	Vap. Sat.	Liq Sat.	Evap.	Vap. Sat.
		vf	vg	uf	ufg	ug	hf	hfg	hg	sf	sfg	sg
KPa	°C	m ³ /kg	m ³ /kg	KJ/Kg	KJ/Kg	KJ/Kg	KJ/Kg	KJ/Kg	KJ/Kg	KJ/(Kg °K)	KJ/(Kg °K)	KJ/(Kg °K)
0.6113	0.01	0.001000	206.14	0	2375.3	2375.3	0.01	2501.3	2501.4	0	9.1562	9.1562
1.0	6.98	0.001000	129.21	29.30	2355.7	2385.0	29.30	2484.9	2514.2	0.1059	8.8697	8.9756
1.5	13.03	0.001001	87.98	54.71	2338.6	2393.3	54.71	2470.6	2525.3	0.1957	8.6322	8.8279
2.0	17.50	0.001001	67.00	73.48	2326.0	2399.5	73.48	2460.0	2533.5	0.2607	8.4629	8.7237
2.5	21.08	0.001002	54.25	88.48	2315.9	2404.4	88.49	2451.6	2540.0	0.3120	8.3311	8.6432
3.0	24.08	0.001003	45.67	101.04	2307.5	2408.5	101.05	2444.5	2545.5	0.3545	8.2231	8.5776
4.0	28.96	0.001004	34.80	121.45	2293.7	2415.2	121.46	2432.9	2554.4	0.4226	8.0520	8.4746
5.0	32.88	0.001005	28.19	137.81	2282.7	2420.5	137.82	2423.7	2561.5	0.4764	7.9187	8.3951
7.5	40.29	0.001008	19.24	168.78	2261.7	2430.5	168.79	2406.0	2574.8	0.5764	7.6750	8.2515
10	45.81	0.001010	14.67	191.82	2246.1	2437.9	191.83	2392.8	2584.7	0.6493	7.5009	8.1502

Tablas termodinámicas - H₂O

Propiedades de vapor sobrecalentado Tabla A – 3

Р	P = 0.10 MPa (99.63 °C)									
v m³/kg	u KJ/Kg	h KJ/Kg	s KJ/(KgºK)							
1.6940	2506.1	2675.5	7.3594							
1.6958	2506.7	2676.2	7.3614							
1.9364	2582.8	2776.4	7.6134							
2.172	2658.1	2875.3	7.8343							
2.406	2733.7	2974.3	8.0333							
2.639	2810.4	3074.3	8.2158							
3.103	2967.9	3278.2	8.5435							
3.565	3131.6	3488.1	8.8342							
4.028	3301.9	3704.7	9.0976							
4.490	3479.2	3928.2	9.3398							
4.952	3663.5	4158.6	9.5652							
5.414	3854.8	4396.1	9.7767							
5.875	4052.8	4640.3	9.9764							
6.337	4257.3	4891.0	10.1659							
6.799	4467.7	5147.6	10.3463							
7.260	4683.5	5409.5	10.5183							

Propiedades de líquido comprimido Tabla A – 4

P = 15 MPa (342.24 °C)										
V	u	h	S							
m³/kg	KJ/Kg	KJ/Kg	KJ/(KgºK)							
0.0016581	1585.6	1610.5	3.6848							
0.0009928	0.15	15.05	0.0004							
0.0009950	83.06	97.99	0.2934							
0.0010013	165.76	180.78	0.5666							
0.0010105	248.51	263.67	0.8232							
0.0010222	331.48	346.81	1.0656							
0.0010361	414.74	430.28	1.2955							
0.0010522	498.40	514.19	1.5145							
0.0010707	582.66	598.72	1.7242							
0.0010918	667.71	684.09	1.9260							
0.0011159	753.76	770.50	2.1210							
0.0011433	841.0	858.2	2.3104							
0.0011748	929.9	947.5	2.4953							
0.0012114	1020.8	1039.0	2.6771							
0.0012550	1114.6	1133.4	2.8576							
0.0013084	1212.5	1232.1	3.0393							
0.0013770	1316.6	1337.3	3.2260							
0.0014724	1431.1	1453.2	3.4247							
0.0016311	1567.5	1591.9	3.6546							

Entalpía

Al mirar las tablas notamos dos nuevas magnitudes: **entalpía** y **entropía**.

En distintos tipos de procesos, se encuentra la combinación de propiedades $u+P\nu$, siendo u y ν la energía interna y el volumen específicos. Esta combinación se define como **entalpía**,

$$h \equiv U + PV$$
 ó $H \equiv U + PV$

$$dH = dU + PdV + VdP = \delta Q - PdV + VdP + PdV$$

$$dH = \delta Q + V dP$$

 h_f es la entalpía del líquido saturado, h_g es la entalpía del vapor saturado y h_{fg} es el cambio de entalpía durante la vaporización.

Uso de las tablas termodinámicas - Ejemplo I

Un tanque contiene 50 kg de agua líquida saturada a 90°C. Determinar la presión en el tanque y el volumen del mismo.

Datos de la tabla termodinámica

T (°C)	P _{sat} (kPa)	V _f (m³/kg)	V _g (m³/kg)
90	70.183	0.001036	2.3593

$$P = P_{sat @ 90^{\circ}C} = 70.183 \text{ kPa}$$

$$\nu = \nu_{f \, @ \, 90^{\circ} C} = 0.001036 \; \mathrm{m}^{3}/\mathrm{kg}$$

$$V = m_{H_2O} \, \nu_{f \, @ \, 90^{\circ}C} = 0.0518 \; \mathrm{m}^3$$

Uso de las tablas termodinámicas - Ejemplo II

Un tanque rígido contiene 10 kg de agua a 90°C; 8 kg están en estado líquido y 2 kg en estado de vapor. ¿Cuál es la presión del tanque? y ¿cuál es el volumen del tanque?

Datos de la tabla termodinámica

T (°C)	P _{sat} (kPa)	V _f (m³/kg)	$V_{\rm g}$ (m 3 /kg)
90	70.183	0.001036	2.3593

$$P_{sat @ 90^{\circ}C} = 70.183 \text{ kPa}$$

$$V_{total} = m_{liq} \nu_f + m_{vap} \nu_g$$

 $V_{total} = 4.73 \text{ m}^3$

Uso de las tablas termodinámicas - Ejemplo III

Una masa de 200 gr de agua líquida saturada es totalmente vaporizada a presión constante de 100 kPa. Determine el cambio de volumen y la cantidad de energía transferida al agua.

Datos de la tabla termodinámica

Presión	Temp.	Volumen Específico		Energía Interna		Entalpía			Entropía			
P	T .	Liq Sat.	Vap. Sat.	Liq Sat.	Evap.	Vap. Sat.	Liq Sat.	Evap.	Vap. Sat.	Liq Sat.	Evap.	Vap. Sat.
		νf	vg	uf	ufg	ug	hf	hfg	hg	sf	sfg	sg
KPa	°C	m ³ /kg	m³/kg	KJ/Kg	K.//Kg	KJ/Kg	KJ/Kg	KJ/Kg	KJ/Kg	KJ/(Kg *K)	KJ/(Kg 46)	KJ/(Kg 4K)
100	99.63	0.001043	1.694	417.36	2088.7	2506.1	417.46	2258.0	2675.5	1.3026	6.0568	7.3594

$$u_{fg} = \nu_g - \nu_f = 1.6931 \text{ m}^3$$

$$\Delta V = m_{H_2O} \nu_{fg} = 0.3386 \text{ m}^3$$

$$h_{fg} =$$
 2258 J/kg $E_{transf} = m_{H_2O} \, h_{fg} =$ 451.6 kJ

Uso de las tablas termodinámicas - Ejemplo IV

Un cilindro con un pistón sin roce, que opera a presión constante, contiene 100 gr de vapor de agua saturado a 400 kPa. Se permite que el sistema intercambie calor con el medio, hasta que agua líquida ocupa la mitad del volumen original. Encontrar el trabajo realizado en el proceso. Representar el proceso en diagramas $P-\nu$ y $T-\nu$.

El proceso es a P constante, $W = P_{sat} \Delta V$.

$$V_{inicial} = m_{vapor} \, \nu_{g@400kPa} = 0.04625 \, \text{m}^3$$

$$V_{final} = V_{inicial}/2 = 0.023125 \text{ m}^3$$

$$V_{final} = V_{inicial}/2 = 0.023125 \text{ fm}^3$$

 $\Delta V = -V_{inicial}/2$

W = -9.25 kJ

Calor específico ... otra vez

La cantidad de calor requerido para que una unidad de masa aumente su temperatura en un grado.

Por la 1ra. Ley,
$$\delta Q = dU + \delta W = dU + PdV = dH - V dP$$

En procesos a volumen constante, $\delta Q = dU \quad \rightarrow \quad c_V = \frac{\partial u}{\partial T}|_{\nu}$.

En procesos a presión constante, $\delta Q = dH \rightarrow c_p = \frac{\partial h}{\partial T}|_P$.

$$c_{
ho} = c_{
ho}(T)$$
 y $c_{
ho} = c_{
ho}(T)$ $c_{
ho}(T) - c_{
ho}(T) = \mathcal{R}$

