

- 问题描述
 八分法画圆

圆的扫描转换

圆的扫描转换

简化问题:只考虑圆心在原点的圆

圆的扫描转换

那么对于任意圆呢?

圆的扫描转换

那么对于任意圆呢?

圆的扫描转换

那么对于任意圆呢?

圆的对称性分析

简化问题:只考虑圆心在原点的圆

圆的对称性分析

简化问题:只考虑圆心在原点的圆

八分法画圆的由来

八分法画圆的由来

简化问题:只需要画出一个八分之一段圆弧即可

八分法画圆的由来

简化问题:只需要画出一个八分之一段圆弧即可

2 八

八分法画圆

八分法画圆的问题描述

绘出圆心在原点,半径为整数R的圆 $x^2+y^2=R^2$

基本思想:绘制出下图中八分之一段圆弧,利用对称的方法绘制出另外七段。

八分法画圆

方法一:利用简单方程

基本思想:利用函数方程,直接离散计算。

圆的函数方程为: $x^2+y^2=R^2$

$$y = \sqrt{R^2 - x^2} \qquad x = \sqrt{R^2 - y^2}$$

具体怎么离散化,要看最大位移方向!

八分法画圆

方法一:利用简单方程

基本思想:利用函数方程,直接离散计算。

要离散化,必须知道最大位移方向!

八分画圆法

方法一:利用简单方程

基本思想:利用函数方程,直接离散计算。

$$y = \sqrt{R^2 - x^2}$$

$$x_{i+1}=x_i+1$$
 $x \in [0, R/\sqrt{2}]$

$$y_{i+1} = \sqrt{R^2 - x_{i+1}^2}$$

八分画圆法

方法一:利用简单方程

基本思想:利用函数方程,直接离散计算。

$$y = \sqrt{R^2 - x^2}$$

$$x_{i+1} = x_i + 1$$
 $x \in [0, R/\sqrt{2}]$

$$y_{i+1} = \sqrt{R^2 - x_{i+1}^2}$$

八分法画圆

方法二:利用极坐标方程

基本思想:利用极坐标方程,直接离散计算。

$$x = R \cos \theta$$

圆的极坐标方程为:
 $y = R \sin \theta$

其中:
$$\theta \in \left[0, \frac{\pi}{4}\right]$$

八分法画圆

方法二:利用极坐标方程

基本思想:利用极坐标方程,直接离散计算。

离散计算的方法:

$$x_{i+1}$$
 = round ($R\cos\theta_{i+1}$)

$$y_{i+1} = round (Rsin\theta_{i+1})$$

八分法画圆

方法二:利用极坐标方程

基本思想:利用极坐标方程,直接离散计算。

离散计算的方法:

$$x_{i+1}$$
 = round ($R\cos\theta_{i+1}$)

$$y_{i+1} = round (Rsin\theta_{i+1})$$

八分法画圆

方法二:利用极坐标方程

基本思想:利用极坐标方程,直接离散计算。

步长选择对圆弧效果的影响: $\theta_{i+1} = \theta_i + \Delta \theta$

2 八分法画圆

方法一:利用简单方程

$$x_{i+1}=x_i+1$$
 $x \in [0, R/\sqrt{2}]$

$$y_{i+1} = \sqrt{R^2 - x_{i+1}^2}$$

乘方、开方

方法二:利用极坐标方程

$$\theta_{i+1} = \theta_i + \Delta \theta$$

$$x_{i+1}$$
 = round ($R\cos\theta_{i+1}$)

$$y_{i+1} = round (Rsin\theta_{i+1})$$

三角函数

