# CS1026 – Digital Logic Design

A slow introduction to the Quine-McCluskey Algorithm I

Shane Sheehan 1

<sup>1</sup>ADAPT Trinity College Dublin

January 22, 2017

# Today's Overview

# Quine-McCluskey [Majumder et al., 2015] I

- An exact algorithm which finds a minimum-cost sum-of-products implementation of a Boolean function
- This lecture partially introduces the method

# Quine-McCluskey [Majumder et al., 2015] II

#### Steps of the Quine-McCluskey algorithm:

- 1 Generate Prime Implicants
- 2 Construct Prime Implicant Table
- 3 Reduce Prime Implicant Table
  - Remove Essential Prime Implicants
  - 2 Row Dominance
  - 3 Column Dominance
- Solve Prime Implicant Table

### Row Dominance I

Consider the following Karnaugh map of a 4-input Boolean function:  $F(A, B, C, D) = \sum m(1, 2, 3, 5, 7) + \sum d(0, 6, 9, 13)$ 

#### Row Dominance II

#### The Karnaugh-Map!



Karnaugh map with set of prime implicants: illustrating "row dominance"

$$F(A, B, C, D) = \sum m(1, 2, 3, 5, 7) + \sum d(0, 6, 9, 13)$$

### Row Dominance III



- We have 4 prime implicants: A'B', C'D, A'D and A'C.
- None denotes an essential prime implicant

#### Row Dominance IV



#### Our task:

- Pick a minimum subset of these implicants..
- ..to cover the 5 ON-set min-terms

## Row Dominance V

The prime implicant table for the Karnaugh map:

|   | A'B'    | C'D   | A'D       | A'C     |
|---|---------|-------|-----------|---------|
|   | (1,2,3) | (1,5) | (1,3,5,7) | (2,3,7) |
| 1 | Χ       | Χ     | X         |         |
| 2 | Χ       |       |           | Χ       |
| 3 | Χ       |       | Χ         | Χ       |
| 5 |         | X     | Χ         |         |
| 7 |         |       | Χ         | Χ       |

- 4 prime implicants listed as columns
- 5 ON-set min-terms are listed as rows

## Row Dominance VI

|   | A'B'    | C'D   | A'D       | A'C     |
|---|---------|-------|-----------|---------|
|   | (1,2,3) | (1,5) | (1,3,5,7) | (2,3,7) |
| 1 | Χ       | Χ     | Χ         |         |
| 2 | Χ       |       |           | Χ       |
| 3 | Χ       |       | Χ         | Χ       |
| 5 |         | X     | Χ         |         |
| 7 |         |       | Χ         | Χ       |

- Row 2 covered by two of these three columns: A'B' and A'C
- Row 7 also covered by two of these three columns: A'D and A'C

#### Row Dominance VII

|   | A'B'    | C'D   | A'D       | A'C     |
|---|---------|-------|-----------|---------|
|   | (1,2,3) | (1,5) | (1,3,5,7) | (2,3,7) |
| 1 | Χ       | Χ     | Х         |         |
| 2 | Χ       |       |           | Χ       |
| 3 | Χ       |       | Χ         | Χ       |
| 5 |         | Χ     | Χ         |         |
| 7 |         |       | Χ         | Χ       |

- Any prime implicant which contains row 2 also contains row 3
- Any prime implicant which contains row 7 also contains row 3

We can ignore the covering of row 3: we cover row 2 or row 7!

### Row Dominance VIII

|   | A'B'    | C'D   | A'D       | A'C     |
|---|---------|-------|-----------|---------|
|   | (1,2,3) | (1,5) | (1,3,5,7) | (2,3,7) |
| 1 | Χ       | Χ     | X         |         |
| 2 | Χ       |       |           | X       |
| 3 | Χ       |       | Χ         | Χ       |
| 5 |         | X     | Χ         |         |
| 7 |         |       | Χ         | Χ       |

- Row 3 row dominates row 2
- Row 3 row dominates row 7

The situation is now the reverse of column dominance: we cross out the dominating (larger) row

#### Row Dominance IX

|   | A'B'    | C'D   | A'D       | A'C     |
|---|---------|-------|-----------|---------|
|   | (1,2,3) | (1,5) | (1,3,5,7) | (2,3,7) |
| 1 | Χ       | Χ     | X         |         |
| 2 | Χ       |       |           | X       |
| 3 | Χ       |       | Χ         | Χ       |
| 5 |         | Χ     | Χ         |         |
| 7 |         |       | Χ         | X       |

#### In this case..

- We can cross row 3 crossed out
- We no longer need to worry about it

#### Row Dominance X

|   | A'B'    | C'D   | A'D       | A'C     |
|---|---------|-------|-----------|---------|
|   | (1,2,3) | (1,5) | (1,3,5,7) | (2,3,7) |
| 1 | Χ       | Χ     | Χ         |         |
| 2 | Χ       |       |           | Χ       |
| 3 | Χ       |       | Χ         | Χ       |
| 5 |         | Χ     | Χ         |         |
| 7 |         |       | X         | X       |

#### But also..

- Row 1 dominates row 5
- We can cross row 1 out!

## Row Dominance XI

|   | A'B'    | C'D   | A'D       | A'C     |
|---|---------|-------|-----------|---------|
|   | (1,2,3) | (1,5) | (1,3,5,7) | (2,3,7) |
| 1 | Χ       | Χ     | Χ         |         |
| 2 | Χ       |       |           | Χ       |
| 3 | Χ       |       | Χ         | Χ       |
| 5 |         | Χ     | Χ         |         |
| 7 |         |       | X         | X       |

#### But why?

Row 1 covered by row 5

## Does this really replace Karnaugh Maps?

So far we have just used Karnaugh Maps to help us find prime implicants

 K-Maps good at this for functions with less than 5 Boolean values

#### However.. let's minimise:

```
F(A, B, C, D, E, F, G, H, I, J) = 
\sum m(61, 63, 125, 127, 450, 593, 595, 625, 627, 721, 723, 753, 755, 874, 875, 878, 879, 957, 959, 1021, 1023)
```

```
emmm.. help! :'(
```

#### We need a better method..

.. To find prime implicants

#### Abstract Method

- 1 List Min-terms (sorted by number of 1's)
- Combine Pairs of Min-terms
- 3 Combine Pairs of Products

## Putting it all together

Next time.. time for more tips about the lab! (zzzzz...)

## Any Problems?

- Ask!
- E-Mail: sheehas1@scss.tcd.ie

# References (Homework) I



Majumder, A., Chowdhury, B., Mondai, A. J., and Jain, K. (2015).

Investigation on quine mccluskey method: A decimal manipulation based novel approach for the minimization of boolean function.

In Electronic Design, Computer Networks & Automated Verification (EDCAV), 2015 International Conference on, pages 18–22. IEEE.