Matemáticas 4 - TP1

Matías Pierobón

27 de agosto de 2018

```
1. a) z \in \mathbb{Z} \leftrightarrow 2z \in \mathbb{Z}: Falso - (\exists x) (x = \frac{1}{2}) \mid (x \notin \mathbb{Z}) \land (2x \in \mathbb{Z})
b) z \in \mathbb{Z} \leftrightarrow -z \in \mathbb{N}: Falso - (\exists x) (x = 1) \mid (x \in \mathbb{Z}) \land (-x \notin \mathbb{N})
c) z \in \mathbb{Z} \leftrightarrow z^2 \in \mathbb{Z}: Verdadero
```

d)
$$z \in \mathbb{Z} \leftrightarrow z^2 = 1 \in \mathbb{Z}$$
: Falso - $(\exists x) (x = 2) \mid (x \in \mathbb{Z}) \land (x^2 = 4 \neq 1)$

e)
$$z \in \mathbb{N} \leftrightarrow z^2 \in \mathbb{N}$$
: Verdadero

$$f) \ z \in \mathbb{N} \leftrightarrow -z \notin \mathbb{N}$$
: Falso - $(\exists x) \left(x = \frac{1}{2}\right) \mid (-x \notin \mathbb{N}) \land (x \notin \mathbb{N})$

$$z \in \mathbb{N} \leftrightarrow 2z \in \mathbb{N}$$
: Falso - $(\exists x) (x = \frac{1}{2}) \mid (x \notin \mathbb{N}) \land (2x \in \mathbb{N})$

h)
$$z \in \mathbb{N} \leftrightarrow z+1 > 0$$
: Falso - $(\exists x) \left(x = \frac{1}{2}\right) \mid (x \notin \mathbb{N}) \land (x+1 > 0)$

2. a)
$$\{ z \in \mathbb{Z} \mid z = 2x + 1 \text{ para } -5 \le x \le 4 \}$$

 $\{ z \in \mathbb{Z} \mid z = 2x - 1 \text{ para } -4 \le x \le 5 \}$

$$\begin{array}{l} b) \ \{ \ z \in \mathbb{Z} \mid z = 4x + 3 \ \mathbf{para} \ -3 \leq x \leq 1 \} \\ \{ \ z \in \mathbb{Z} \mid z = 4x - 3 \ \mathbf{para} \ -1 \leq x \leq 3 \} \end{array}$$

$$\begin{array}{l} c) \ (\exists m \in \mathbb{Z}) \, (\exists t \in \mathbb{Z}) \, (4m+1=4t+3) \; ? \\ (\exists m \in \mathbb{Z}) \, (\exists t \in \mathbb{Z}) \, \left(m=\frac{2t+1}{2}\right) \; ? \\ (\forall t \in \mathbb{Z}) \, (2t+1 \; \operatorname{es \; impar}) \\ \therefore \, (\nexists m \in \mathbb{Z}) \, (\exists t \in \mathbb{Z}) \, (4m+1=4t+3) \end{array}$$

No hay números enteros que puedan escribirse de las dos formas

d) Supongo que
$$(\exists m \in \mathbb{Z})$$
 $(m \text{ es par } \land m \text{ es impar})$
Sea $k \in \mathbb{Z}$ cualquiera, $m = 2k + 1$ (por ser impar)
Como m es par, $2|m$. Es decir $(\exists t \in \mathbb{Z})$ $(m = 2 * t)$
 $2k + 1 = 2t$
 $t = k + \frac{1}{2}$
Como $\frac{1}{2} \notin \mathbb{Z} \to t \notin \mathbb{Z}$
 $t \in \mathbb{Z} \land t \notin \mathbb{Z}$
 $t \in \mathbb{Z} \land t \notin \mathbb{Z}$
 $t \in \mathbb{Z} \land t \notin \mathbb{Z}$