STORE SALES FORECASTING

Agenda

- Problem Statement
- Approach
- Data Exploration
- Feature Creation
- Modeling
- Outcome
- Next Steps

Problem Statement

What would be the daily sales for 2 weeks ahead by store and product family?

What is the short-term impact of promotions on sales?

Help the store manager plan for stock replenishment and minimize loss of perishable products

What is in the data

- Daily unit sales data of 33 product families across 54 stores of Favorita in Ecuador
- Daily oil prices
- Number of products on promotion for a given product family
- Holiday/events metadata
- Store attributes city, state, store type, store cluster
- Major earthquake in April'16

Data Source: Grocery Store Sales, Kaggle

Approach

Exploratory Data Analysis

- Understand data granularity and distribution by visualizing the data
- Identify irregularities and motive of feature creation remove some irregularities, or control them by adding dummy variables

Feature Engineering

- Potential causal relationships, such as increased sales of a product in nearby stores when it is out of stock in other store
- Attributes of related products may boost sales of other products
- Use events data intelligently to not include all the available events while modeling

Evaluation

- Time series cross validation (rolling forecast) to evaluate performance of a model
- Root mean squared log error (RMSLE) metric to measure goodness of a model

Modeling technique

- Seasonal ARIMA with regressors
- Structural additive decomposing with stl function to deseasonalize, and then use auto.arima to fit non-seasonal ARIMA model
- Additional modeling techniques such as DeepAR* to be explored

Data Exploration - summary

- The train data includes 4.6 years of daily sales data for 33 product families sold in 54 stores, totaling 1,782 combinations
- 31% of the sales records in the training data are zero, not necessarily no sales, can be missing data
- Sales information abnormally low for almost every store, product on 1st January, possible
 data collection issue
- Top 4 stores (store number 44, 45, 47, 3) account for 20% of the overall sales*
- Top 2 product families (GROCERY I and BEVERAGES) account for 50% of overall sales*
- Some products had irregular or zero sales in initial period of the data
- Earthquake in April 2016 had a significant impact on sales, positive for some, negative for some
- Promotion information available April 2014 onward
- 100 unique event descriptions available, too many for a single model, may be irrelevant for some products

^{*}Unit sales across product families are not summable, but there is no other information available to identify 'important' stores, or products

EDA - Visuals

Daily Sales of Bev & Grocery-I for top-2 stores

Beverage sales has irregular level shift Grocery sales increases around Xmas

Daily Sales of Liquor across all stores

Daily Sales of Cleaning & Grocery-I for selected stores

Store #25 has some missing sales around Sep'16 Store #52 is possibly a new store

Sales of School & Office Supplies

Sales align very well with numbers of products on promotion

Daily Sales of Celebration & Home Care across all stores

Irregular sales till May 2015

Total number of products on promotion across product family

Info on numbers of products on promotion available from April'14

Daily Oil Price

Feature Engineering

- Truncate irregular/0 sales during initial periods for each product
- Dummy variable to flag 1st January of every year
- Dummy variable to flag Sunday for Liquor family till 8-May-2016
- Ratio of current store promotion with the average number of promotions in the same state-city where the store belongs to
- Top-2 correlated products' promotion information as cross-product information while modeling the given product's sales
 - For example, BABY CARE has top-2 correlated products as HOME CARE & BEVERAGES; test promotion information of HOME CARE & BEVERAGES while modeling the sales of BABY CARE
- Algorithmically extract important events in terms of high (or low) sales compared to the sales when there were no events
 - Test only important events relevant for given model using one-hot encoding approach

Promotion vs Sales

Promo responsiveness in selected product families

Store type A & D has different responsiveness than others in some families

Sales distribution by event type

- 'Holiday' type of event includes 1st January
- Some product families are very sensitive to holidays/ events

Finding Casual Relationships

- Most product families' sales are strongly correlated with some other family.
- The top-2 correlated (in absolute sense) products' promotion information will be used across-product information while modeling the given product's sales.

Modeling

Focusing on the **Grocery-I product** family for the top grossing store (#44) to start with a univariate time-series analysis.

Some observations

- There is noticeable trend, we may have to difference the data.
- It is 7 period seasonal as the ACF spikes in the gap of 7 lags.
- ACF hints a seasonal differencing might also be necessary as decay rate is not fast enough.
- ACF also suggests we may have to use some MA order 2
- PACF decayed faster than ACF, possibly there is no need of seasonal AR, only a regular AR will be sufficient.

PACF: Grocery-I, Store #44

Modeling flow of biggest store-family

Sales without transformation

- Initially built univariate model on sales
- Started with auto.arima
- Tuned the order to get clean residuals
- Added all the chosen xreg

With transformation

- EDA showed log-log relation between promotion & sales
- Now fit the same model spec (+xreg) on log1p(sales)

Sales without transformation

Model type	Order	AIC	- I place the best with the superior of the su
auto.arima (all significant)	(1,1,2) (0,0,2) 7	31,645.7	0 35 100 150 200 25 Tires ACF of Residuals
Manually tuned (all significant)	(1,0,2) (0,1,1) 7	31,236.2	* I
Manually tuned + xreg (~5 insignificant out of ~20)	(1,0,2) (0,1,1) 7	30,995.6	p values for Ljung-Sox statistic

Sales with log transformation

Forecast for one model – Grocery I, Store #44

Forecast from manual tuned model fitted on log1p(sales)

Compare models using cross-validation

- Stress testing of auto-tuned models to check their performance
- They seem comparable with manually tuned model


```
Evaluation - Comparison

## [1] "Order of manual model (p,d,q, P,D,Q, freq):1|8|2|6|1|1|7"
## [1] "Order of auto model (p,d,q, P,D,Q, freq): 1|8|2|1|1|2|7"
## [1] "AIC of manual model: -473.663455889885"
## [1] "AIC of auto model: -478.238854757517"
## [1] "CV RMSLE of manual model: 8.121935129482284"
## [1] "CV RMSLE of auto model: 8.121884984254953"

• The CV RMSLE of manually identified model spec and auto ones are similar,
• Manual has slightly better AIC and is a simpler model with less seasonal ARIMA parameters.
```

Evaluation – Manual Model

RMSLE (RMSE on log of sales gives RMSLE on original sales series) using time series cross validation.

Boxplot of RMSLE of each rolling window during CV: manual trained

Evaluation – Auto Model

RMSLE (RMSE on log of sales gives RMSLE on original sales series) using time series cross validation.

Boxplot of RMSLE of each rolling window during CV: auto trained

Evaluation - Comparison

```
## [1] "Order of manual model (p,d,q, P,D,Q, freq):1|0|2|0|1|1|7"
## [1] "Order of auto model (p,d,q, P,D,Q, freq): 1|0|2|1|1|2|7"
## [1] "AIC of manual model: -473.663455008985"
## [1] "AIC of auto model: -470.238854757517"
## [1] "CV RMSLE of manual model: 0.121935129402284"
## [1] "CV RMSLE of auto model: 0.121804904254953"
```

- The CV RMSLE of manually identified model spec and auto ones are similar,
- Manual has slightly better AIC and is a simpler model with less seasonal ARIMA parameters.

Final modeling approach on full data

- It took significant time for the cross validation with pure auto.arima where seasonal parameters are also estimated
- Try `forecast::stlm` which uses automated version of `stl` (forecast::mstl) to find the optimal `s.window` and then fits auto.arima without seasonal parameters
- `stlm` resulted CV RMSLE as 0.1240 compared to pure auto.arima's 0.1218
- Run time was ~80% less for Grocery-I store #44 sales data modeling
- `stlm` with ARIMA turns out to be a great time saver with decent model performance
- For simplicity, ignored checking for variable significance
- Resulted in Kaggle public score of RMSLE on Kaggle test data as 0.41544
 - Ranked at 75 (top 10%) at the time of submission out of ~750 submissions
 - Top score on Kaggle was about 0.37949 at the time of submission.

Next steps

DeepAR implementation on experimental basis

- Major plus point: single model as opposed to ~1,780 individual models the auto.arima approach had
- Run time for DeepAR for 100 epochs was about 1 hour compared to auto.arima on full data was about 6.5 hours
- RMSLE score 0.54295 on Kaggle test data with DeepAR worse than auto.arima
- It needs hyperparameter tuning with cross validation to get better result

Possible improvements

- Apply some meaningful logic to do imputation of intermittent 0 sales as there are notable cases like that, which
 are possibly some data issue
- Impact of earthquake on some products that faced sudden increase/decrease in sale before attaining normalcy.

 Some kind of geometric series could have been created to measure effect of gradually coming back to normal level
- Optimal model selection criteria in auto.arima could have been changed to BIC instead of AIC values as we have ~4.5 years of daily data (~1500 time points)