TP : Mathématiques statistiques et Apprentissage

Régression linéaire

26 mars 2021

Partie Théorique

$$\hat{\beta}_n((y_i, x_i^{(1)}, \dots, x_i^{(1)})_{i \in \{1, \dots, n\}}) = \operatorname{argmin}_{\beta \in \mathbb{R}^d} ||y - x\beta||^2.$$

1. Donner le modèle statistique associé à (1) dans le cas où x est supposé déterministe et aléatoire.

Réponse:

• Si x est déterministe : on peut prendre $\mathcal{M} = (\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n), \{Q_{\epsilon}\epsilon \in \mathbb{R}^n\})$ avec Q_{ϵ} est la densité de la variable aléatoire ϵ .

Exemple : Le modèle linéaire gaussien $Y = X\beta + \epsilon$ tel que :

- $-\epsilon \sim \mathcal{N}(0, \sigma^2 I_n)$ est un vecteur de n réalisations indépendantes d'une v.a.r normale de moyenne 0 et de variance σ^2 inconnue.
- -X est une matrice (n, d) de rang d.
- $-\beta$ est inconnu de \mathbb{R}^d .

Donc on peut prendre $\mathcal{M}_1 = (\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n), \{\mathcal{N}(0, \sigma^2 I_n), \sigma > 0\})$ ou $\mathcal{M}_2 = (\mathbb{R}, \mathcal{B}(\mathbb{R}), \{\mathcal{N}(0, \sigma^2), \sigma > 0\})^{\otimes n}$ le modèle *n*-échantillons.

• Si x est aléatoire : $\mathcal{M} = (\mathbb{R}^n \times \mathbb{R}^n, \mathcal{B}(\mathbb{R}^n) \otimes \mathcal{B}(\mathbb{R}^n)), \{Q_{\epsilon} \epsilon \in \mathbb{R}^n\} \otimes \{P_x, x \in \mathbb{R}^n\})$ avec Q_{ϵ} et P_x les densités respectives des variables ϵ et de x.

2. Montrer que si $\epsilon \sim \mathcal{N}(0, \sigma^2 I_N)$ alors $\hat{\beta}_n$ est l'estimateur du maximum de vraisemblance du modèle où l'on suppose que x est déterministe.

Dans ce cas, on a $Y \sim \mathcal{N}(x\beta, \sigma^2 I_n)$. Soit donc $L(\beta, \sigma) = \frac{1}{\sqrt{2\pi^n}} \times \frac{1}{\sigma^n} e^{-\frac{\|y-x\beta\|^2}{2\sigma^2}}$ la fonction de vraisemblance correspondant à $Y = x\beta + \epsilon$. Donc la fonction log-vraisemblance est donnée par :

$$l(\beta, \sigma) = -\frac{n}{2}\log(2\pi) - n\log(\sigma) - \frac{1}{2\sigma^2}||y - x\beta||^2.$$

On cherche

$$(\hat{\beta}_{MV}, \hat{\sigma}_{MV}) = \operatorname{argmax}_{\beta \in \mathbb{R}^d, \sigma > 0} l(y, \sigma) = \operatorname{argmin}_{\beta \in \mathbb{R}^d, \sigma > 0} - l(y, \sigma) = \operatorname{argmin}_{\beta \in \mathbb{R}^d, \sigma > 0} n \log(\sigma) + \frac{1}{2} \log(\sigma) + \frac{1}{2}$$

Donc si σ ne fait pas partie des paramètres à estimer, alors on voit que l'on retombe sur l'estimateur $\hat{\beta}_n$ des moindres carrés, donc ils sont équivalents.

- On estime $\hat{\beta}_{MV}$:

l est lisse donc $\hat{\beta}_{MV}$ est extrémum de $\beta \to l(\beta, \sigma)$ ssi il est extrémum de $\beta \to ||y - x\beta||$ une fonction convexe non bornée, donc ssi est un minimum GLOBAL de $\beta \to l(\beta, \sigma)$.

Puisque ce minimum existe $(\hat{\beta}_n)$, $\hat{\beta}_{MV}$ existe donc et il coïncide donc avec $\hat{\beta}_n$ l'estimateur de moindre carrée.

- On estime $\hat{\sigma}_{MV}$:

Comme l est assez lisse et donc admet des dérivées partielles on a :

$$\frac{\partial l(\hat{\beta}_{MV}, \sigma)}{\partial \sigma} = -\frac{n}{\sigma} + \frac{1}{\sigma^3} \|y - x\hat{\beta}_{MV}\|^2$$

s'annule au point $\hat{\sigma}_n$ tel que :

$$\hat{\sigma}_n^2 = \frac{1}{n} \|y - x\hat{\beta}_{MV}\|^2.$$

Une étude de variation de la fonction $\sigma \to l(y, \sigma)$ montre qu'elle est croissante sur $]0, \hat{\sigma}_n]$ et décroissante sur $[\hat{\sigma}_n, +\infty[$ donc on déduit que : $\hat{\sigma}_n = \hat{\sigma}_{MV}$ avec

$$\hat{\sigma}_n^2 = \hat{\sigma}_{MV}^2 = \frac{1}{n} ||y - x\hat{\beta}_{MV}||^2.$$

On a trouvé donc $(\hat{\beta}_{MV}, \hat{\sigma}_{MV}) = \operatorname{argmax}_{\beta \in \mathbb{R}^d, \sigma > 0} l(y, \sigma) = (\hat{\beta}_n, \frac{1}{n} || y - x \hat{\beta}_n ||^2).$

Par suite l'estimateur $\hat{\beta}_n$ est l'estimateur du maximum de vraisemblance.

3. Montrer que l'estimateur est toujours bien défini.

 $F = x(\mathbb{R}^d)$ est un sous-espace vectoriel d'espace euclidien \mathbb{R}^n en tant qu'image d'un espace vectoriel par une application linéaire. Puisque tout espace vectoriel de dimension finie est fermé (et convexe aussi), la projection de tout point y de \mathbb{R}^n sur F existe et est unique, et elle est définie par l'unique point $p_F(y) \in F$ tel que $||y - p_F(y)|| = \inf_{z \in F} ||y - z||$.

L'application x est par définition surjective de \mathbb{R}^d à F, donc il existe $\hat{\beta}_n((y_i, x_i^{(1)}, \dots, x_i^{(1)})_{i \in \{1, \dots, n\}})$ unique tel que $x\hat{\beta}_n((y_i, x_i^{(1)}, \dots, x_i^{(1)})_{i \in \{1, \dots, n\}}) = p_F(y)$.

Et qui vérifie donc,

$$\hat{\beta}_n((y_i, x_i^{(1)}, \dots, x_i^{(1)})_{i \in \{1, \dots, n\}}) = \operatorname{argmin}_{\beta \in \mathbb{R}^d} ||y - x\beta||^2.$$

4. Montrer que si $d \leq n$, alors x est injective si et seulement si $x^T x$ est inversible.

Supposons $d \leq n$:

- Si x est injective : la matrice x^Tx est positive car $y^Tx^Txy = \|xy\|^2 \ge 0$. Et puisque x est injective alors $\text{Ker}(x) = \{0\}$. Par suite, x^Tx est définie positive. Et puisqu'elle est symétrique, donc par le théorème spectral, x^Tx est diagonalisable ayant ses valeurs propres toutes strictement positives.
 - En particulier $det(x^Tx) \neq 0$, donc x^Tx est inversible.
- Si $x^T x$ est inversible : supposons qu'il existe y non nul tel que xy = 0, alors $x^T xy = 0$, ce qui est impossible car $x^T x$ est inversible (en particulier injective). Donc, x est injective.
- 5. Pour $z \in \mathbb{R}^d$, on pose $f(z) = \|y xz\|^2$. On a f est différentiable et

$$f(z+h) = f(\beta) - 2\langle y - xz, xh \rangle + \|xh\|^2 = f(\beta) - 2\langle x^T(y-xz), h \rangle + o(h).$$

Donc, $\nabla f(z) = 2x^T(xz-y)$. f est fonction convexe comme composition des fonctions convexes, donc atteint son minimum global en $\hat{\beta}_n$, donc $\nabla f(\hat{\beta}_n) = 2x^T(x\hat{\beta}_n - y) = 0$.

Par suite, sous l'hypothèse que x est injective, on a x^Tx est inversible et par suite :

 $\hat{\beta}_n = (x^T x)^{-1} x^T y.$

6. On est dans le cas où x est déterministe.

- On a $\epsilon \sim \mathcal{N}(0,\sigma^2),$ donc comme $Y=x\beta+\epsilon,$ $Y\sim \mathcal{N}(x\beta,\sigma^2)$ par suite .

$$\hat{\beta}_n(Y) = (x^T x)^{-1} x^T Y \sim \mathcal{N}((x^T x)^{-1} x^T x \beta, \sigma^2((x^T x)^{-1} x^T) ((x^T x)^{-1} x^T)^T).$$

Donc,

$$\hat{\beta}_n(Y) \sim \mathcal{N}(\beta, \sigma^2(x^T x)^{-1}).$$

- $\hat{\epsilon}_n(Y) = Y - x\hat{\beta}_n = [I_n - x(x^Tx)^{-1}x^T]Y$, donc comme $Y \sim \mathcal{N}(x\beta, \sigma^2)$, on déduit que

$$\hat{\epsilon}_n(Y) \sim \mathcal{N}([I_n - x(x^T x)^{-1} x^T] x \beta, \sigma^2 [I_n - x(x^T x)^{-1} x^T] [I_n - x(x^T x)^{-1} x^T]^T).$$

D'où:

$$\hat{\epsilon}_n(Y) \sim \mathcal{N}(0, \sigma^2[I_n - x(x^T x)^{-1} x^T]).$$

7. En déduire un estimateur non biaisé de β et de σ^2 .

- $\hat{\beta}_n(Y) \sim \mathcal{N}(\beta, \sigma^2(x^T x)^{-1})$ est un estimateur linéaire non biaisé de β .

- $\hat{\gamma}_n = (x^T x)(\hat{\beta}_n - \beta)(\hat{\beta}_n - \beta)^T$ est un estimateur non biaisé de $\sigma^2 I_n$. En effet.

$$E[\hat{\gamma}_n] = E[(x^T x)(\hat{\beta}_n - \beta)(\hat{\beta}_n - \beta)^T] = (x^T x) \operatorname{cov}(\hat{\beta}_n) = (x^T x) \sigma^2 (x^T x)^{-1} = \sigma^2 I_n.$$

Soit $(E_{i,j})_{1 \le i,j \le n}$ la base canonique de $M_{n,n}(\mathbb{R})$. On a $\forall i, 1 \le i \le n$,

$$\hat{\gamma}_n.E_{i,i} = \hat{\alpha}_{i,n}E_{i,i}$$
 (on a de plus, $\hat{\alpha}_{i,n} = \text{Tr}(\hat{\gamma}_n E_{i,i})$).

$$E[\hat{\gamma}_n.E_{i,i}] = E[\hat{\alpha}_{i,n}]E_{i,i} = \sigma^2 I_n.E_{i,i} = \sigma^2 E_{i,i}.$$

Par suite $E[\hat{\alpha}_{i,n}] = \sigma^2$, donc $\hat{\alpha}_{i,n} = \text{Tr}(\hat{\gamma}_n E_{i,i})$ est un estimateur non biaisé de σ^2 .

Et ceci $\forall i, 1 \leq i \leq n$, on obtient donc n estimateurs non biaisés de σ^2 .

8. On a $\operatorname{cov}(\tilde{\beta}_A) = \sigma^2 A A^T$ est symétrique comme matrice de covariance, et $\operatorname{cov}(\hat{\beta}_n) = \sigma^2 (x^T x)^{-1}$ est symétrique car c'est une matrice de covariance (ou comme inverse d'une matrice symétrique réelle).

Donc $R = \text{cov}(\tilde{\beta}_A) - \text{cov}(\hat{\beta}_n) = \sigma^2[AA^T - (x^Tx)^{-1}]$, une matrice symétrique.

Montrons que R est positive :

On pose $K = A - (x^T x)^{-1} x^T$.

$$KK^T = [A - (x^Tx)^{-1}x^T][A - (x^Tx)^{-1}x^T]^T = AA^T - Ax(x^Tx)^{-1} - (x^Tx)^{-1}x^TA^T + (x^Tx)^{-1}x^Tx(x^Tx)^{-1}x^TA^T + (x^Tx)^{-1}x^Tx^T + (x^Tx)^{-1}x^T + ($$

Comme l'estimateur $\tilde{\beta}_A$ est non biaisé, donc on a Ax=I, la matrice identité. Par suite :

$$\sigma^2 K K^T = \sigma^2 [AA^T - (x^T x)^{-1} - (x^T x)^{-1} + (x^T x)^{-1}] = R.$$

R est donc positive, car pour tout vecteur colonne y on a $\langle y, Ry \rangle = y^T R y = \sigma^2 y^T K K^T y = \sigma^2 ||K^T y||^2 \ge 0$.

Remarque: R est symétrique positive, donc en tant que formes quadratiques on a $cov(\tilde{\beta}_A) \ge cov(\hat{\beta}_n)$.

Donc sous condition que x est injective, l'estimateur de moindre carrés est le meilleur estimateur linéaire non biaisé, et il présente une (co)variance minimale.