Egzamin maturalny maj 2009

MATEMATYKA POZIOM ROZSZERZONY

KLUCZ PUNKTOWANIA ODPOWIEDZI

Zadanie 1.

a)

Wiadomości i rozumienie	Wykorzystanie pojęcia wartości argumentu i wartości funkcji.	0-1
-------------------------	--	-----

Zdający otrzymuje 1 punkt, jeśli obliczy wartość funkcji f dla x = 2009.

<u>Poprawna odpowiedź</u>: $f(2009) = 2008 \cdot 2009 + 2009 = 2009^2$

Tworzenie informacji Int	erpretowanie otrzymanych wyników.	0-1
--------------------------	-----------------------------------	-----

Zdający otrzymuje 1 punkt, jeśli zapisze wniosek.

Poprawna odpowiedź: Punkt P należy do wykresu funkcji f.

b)

I I Worzenie informacii	Rysowanie w układzie współrzędnych zbioru opisanego układem warunków.	0–2
-------------------------	---	-----

Zdający otrzymuje 2 punkty, jeśli narysuje bezbłędnie zbiór opisany w zadaniu. <u>Poprawna odpowiedź:</u>

Zdający otrzymuje 1 punkt, jeśli narysuje proste o równaniach $y = -\frac{1}{2}x + 1$, $y = -\frac{1}{2}x - 2$ i na tym zakończy lub popełni błędy w zaznaczaniu opisanego zbioru.

Zadanie 2.

١			
	Korzystanie z informacji	Zapisanie wielomianu, który przy dzieleniu przez dany dwumian daje wskazany iloraz i daną resztę.	0–1

Zdający otrzymuje 1 punkt, jeśli zapisze wielomian W(x) w postaci wynikającej z warunków zadania.

Poprawna odpowiedź: $W(x) = (x-1)(8x^2 + 4x - 14) - 5$

Matematyka – poziom rozszerzony Klucz punktowania odpowiedzi

Wiadomości i rozumienie	Wykonywanie działań na wielomianach.	0-1
-------------------------	--------------------------------------	-----

Zdający otrzymuje 1 punkt, jeśli uporządkuje wielomian W(x).

Poprawna odpowiedź: $W(x) = 8x^3 - 4x^2 - 18x + 9$.

Korzystanie z informacji	Wyznaczanie pierwiastków wielomianu.	0–2
--------------------------	--------------------------------------	-----

Zdający otrzymuje 2 punkty, jeśli obliczy pierwiastki wielomianu W(x).

<u>Poprawna odpowiedź</u>: $x_1 = -1,5$, $x_2 = 0,5$, $x_3 = 1,5$.

Zdający otrzymuje 1 punkt, jeśli zapisze wielomian W(x) w postaci iloczynu czynnika stopnia pierwszego i czynnika stopnia drugiego, np. $W(x) = (2x-1)(4x^2-9)$ i na tym zakończy rozwiązanie lub popełni błędy w wyznaczaniu pierwiastków wielomianu.

Zadanie 3.

a)

Wiadomości i rozumienie	Wykorzystanie definicji funkcji wykładniczej.	0-1

Zdający otrzymuje 1 punkt, jeśli obliczy wartość podstawy a.

Poprawna odpowiedź: $a = \sqrt{3}$.

b)

Korzystanie z informacji	Rysowanie wykresu funkcji typu $y = f(x)-b $.	0–2
--------------------------	---	-----

Zdający otrzymuje 2 punkty, jeśli narysuje wykres funkcji g(x) = |f(x)-2|.

Poprawna odpowiedź:

Zdający otrzymuje 1 punkt, jeśli narysuje tylko wykres funkcji y = f(x) - 2 i na tym poprzestanie lub popełni błędy przy dalszym przekształcaniu wykresu.

Tworzenie informacji	Interpretowanie liczby rozwiązań równania z parametrem.	0-1
----------------------	---	-----

Zdający otrzymuje 1 punkt, jeśli poda wszystkie wartości parametru m, dla których równanie g(x) = m ma dokładnie jedno rozwiązanie.

Poprawna odpowiedź: $m \in \{0\} \cup \{2, +\infty\}$.

Zadanie 4.

Korzystanie z informacji	Wykorzystanie definicji ciągu arytmetycznego.	0-1
--------------------------	---	-----

Zdający otrzymuje 1 punkt, jeśli rozpozna, że ciąg liczb monet wkładanych do skarbca przez kolejne dni przez skarbnika jest arytmetyczny.

<u>Poprawna odpowiedź</u>: Liczby monet wkładanych przez kolejne dni przez skarbnika tworzą ciąg arytmetyczny o pierwszym wyrazie równym 25 i różnicy równej 2.

Tworzenie informacji	Zdający podaje opis matematyczny sytuacji w postaci funkcji.	0-1
----------------------	--	-----

Zdający otrzymuje 1 punkt, jeśli zapisze wzór na M(n) – liczbę monet w n–tym dniu po południu.

Poprawna odpowiedź:
$$M(n) = k + \frac{25 + [25 + (n-1)2]}{2} \cdot n - 50n = n^2 - 26n + k$$
.

Korzystanie z informacji	Formułowanie wniosków wynikających z postaci badanego wyrażenia.	0–2
--------------------------	--	-----

Zdający otrzymuje 2 punkty, jeśli zapisze warunek wystarczający na to, aby w skarbcu zawsze były monety i wyznaczy najmniejszą liczbę k.

<u>Poprawna odpowiedź</u>: np. $M(n) = (n-13)^2 + k - 169 > 0$, więc najmniejszą liczbą k jest 170 albo $\Delta < 0$ (bo $n_w \in N$) czyli $26^2 - 4k < 0$, stąd k > 169, więc najmniejszą liczbą k jest 170.

Zdający otrzymuje 1 punkt, jeśli zapisze tylko warunek wystarczający na to, aby w skarbcu zawsze były monety i na tym zakończy rozwiązanie lub popełni błędy przy wyznaczaniu najmniejszej liczby *k*.

<u>Poprawna odpowiedź</u>: np. $M(n) = (n-13)^2 + k - 169 > 0$ lub $\Delta < 0$, bo $n_w \in N$, stąd $26^2 - 4k < 0$.

Korzystanie z informacji	Posługiwanie się definicją i własnościami funkcji kwadratowej.	0-1	
--------------------------	--	-----	--

Zdający otrzymuje 1 punkt, jeśli obliczy, w którym dniu w skarbcu była najmniejsza liczba monet.

Poprawna odpowiedź: n = 13.

Zadanie 5.

Korzystanie z informacji	Wykonywanie działań na potęgach o wykładnikach rzeczywistych.	0–3
--------------------------	---	-----

Zdający otrzymuje 3 punkty, jeśli wykaże równość $B = 9\sqrt{A}$.

Zdający otrzymuje 2 punkty, jeśli poprawnie zastosuje wzór na iloczyn potęg o tych samych podstawach i wzór na potęgę potęgi i na tym zakończy.

Poprawna odpowiedź:

$$B = 3^{2\sqrt{2}+3} = 3^{2\sqrt{2}+1+2} = 3^2 \cdot 3^{\left(4\sqrt{2}+2\right)\cdot\frac{1}{2}} = 3^2 \cdot \left(3^{4\sqrt{2}+2}\right)^{\frac{1}{2}}, \text{ o ile dowód równości jest prowadzony od jej lewej strony do prawej albo}$$

 $9\sqrt{A} = 3^2 \cdot \left(3^{4\sqrt{2}+2}\right)^{\frac{1}{2}} = 3^{2+\left(4\sqrt{2}+2\right)\cdot\frac{1}{2}}$, o ile dowód równości jest prowadzony od jej prawej strony do lewej.

Zdający otrzymuje 1 punkt, jeśli poprawnie zastosuje jedynie wzór na iloczyn potęg o tych samych podstawach albo tylko wzór na potęgę potęgi i na tym zakończy. Poprawna odpowiedź:

$$B = 3^{2\sqrt{2}+3} = 3^2 \cdot 3^{2\sqrt{2}+1}$$
 lub $B = \dots = 3^2 \cdot 3^{\left(4\sqrt{2}+2\right)\cdot\frac{1}{2}} = 3^2 \cdot \left(3^{4\sqrt{2}+2}\right)^{\frac{1}{2}}$, o ile dowód równości jest prowadzony od jej lewej strony do prawej albo

$$9\sqrt{A} = 3^2 \cdot \left(3^{4\sqrt{2}+2}\right)^{\frac{1}{2}} = 3^2 \cdot 3^{\left(4\sqrt{2}+2\right) \cdot \frac{1}{2}}$$
 lub $9\sqrt{A} = \dots = 3^2 \cdot \left(3^{4\sqrt{2}+2}\right)^{\frac{1}{2}} = 3^{2+\left(4\sqrt{2}+1\right)\frac{1}{2}}$, o ile dowód równości jest prowadzony od jej prawej strony do lewej.

Zadanie 6.

Korzystanie z informacji	Posługiwanie się definicją logarytmu.	0–1
--------------------------	---------------------------------------	-----

Zdający otrzymuje 1 punkt, jeśli wykorzysta definicję logarytmu i zapisze wszystkie warunki określające dziedzinę funkcji f.

<u>Poprawna odpowiedź</u>: $9 - x^2 > 0$, $2\cos x > 0$, $2\cos x \neq 1$.

Wiadomości i rozumienie	Rozwiązywanie nierówności kwadratowej.	0–1	
-------------------------	--	-----	--

Zdający otrzymuje 1 punkt, jeśli rozwiąże nierówność kwadratową. Poprawna odpowiedź: $x \in (-3, 3)$.

Korzystanie z informacji	Odczytywanie z wykresu odpowiedniej funkcji zbioru rozwiązań nierówności trygonometrycznej w przedziale ograniczonym.	0–2
--------------------------	---	-----

Zdający otrzymuje 2 punkty, jeśli poda zbiór rozwiązań nierówności $\cos x > 0$ i $\cos x \neq \frac{1}{2}$ w przedziale (-3, 3).

Poprawna odpowiedź:
$$x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$
 i $x \neq -\frac{\pi}{3}$ i $x \neq \frac{\pi}{3}$.

Zdający otrzymuje 1 punkt, jeśli poda zbiór rozwiązań tylko jednej z nierówności.

Korzystanie z informacji	Zapisanie części wspólnej zbiorów w postaci sumy przedziałów liczbowych.	0-1
--------------------------	--	-----

Zdający otrzymuje 1 punkt, jeśli zapisze dziedzinę funkcji f.

Poprawna odpowiedź:
$$D_f = \left(-\frac{\pi}{2}, -\frac{\pi}{3}\right) \cup \left(-\frac{\pi}{3}, \frac{\pi}{3}\right) \cup \left(\frac{\pi}{3}, \frac{\pi}{2}\right)$$
.

Zadanie 7.

Korzystanie z informacji	Stosowanie własności ciągu geometrycznego.	0-1
--------------------------	--	-----

Zdający otrzymuje 1 punkt, jeśli wykorzysta własność ciągu geometrycznego i zapisze równanie opisujące warunki zadania.

Poprawna odpowiedź: $(x+3)^2 = (x-3)(6x+2)$.

Wiadomości i rozumienie	Rozwiązywanie równania kwadratowego.	0-1
-------------------------	--------------------------------------	-----

Zdający otrzymuje 1 punkt, jeśli rozwiąże równanie kwadratowe.

<u>Poprawna odpowiedź</u>: $x = -\frac{3}{5}$ lub x = 5.

Tworzenie informacji	Wybór ciągu spełniającego warunki zadania.	0-1
----------------------	--	-----

Zdający otrzymuje 1 punkt, jeśli wybierze odpowiednią wartość x, tak aby wszystkie wyrazy ciągu były dodatnie.

Poprawna odpowiedź: x = 5.

	Korzystanie z informacji	Stosowanie definicji ciągu geometrycznego.	0-1
--	--------------------------	--	-----

Zdający otrzymuje 1 punkt, jeśli obliczy iloraz ciągu.

Poprawna odpowiedź: q = 4.

I I Worzenie informacii I	Oszacowanie ilorazu sumy 19-tu przez sumę 20-tu początkowych wyrazów ciągu geometrycznego.	0–2
---------------------------	--	-----

Zdający otrzymuje 2 punkty, jeśli oszacuje iloraz.

<u>Poprawna odpowiedź</u>: np. Przekształcając równoważnie nierówność $\frac{4^{19}-1}{4^{20}-1} < \frac{1}{4}$ dostaje kolejno: $4(4^{19}-1) < 4^{20}-1$, $4^{20}-4 < 4^{20}-1$, -3 < 0, co jest prawdą. To kończy dowód. Zdający otrzymuje 1 punkt, jeśli wykorzysta wzór na sumę n początkowych wyrazów ciągu geometrycznego i zapisze iloraz $\frac{S_{19}}{S_{20}}$ w postaci umożliwiającej oszacowanie.

Poprawna odpowiedź: $\frac{S_{19}}{S_{20}} = \frac{4^{19} - 1}{4^{20} - 1}$.

Zadanie 8.

Tworzenie informacji	Podanie opisu matematycznego danej sytuacji problemowej.	0–2
----------------------	--	-----

Zdający otrzymuje 2 punkty, jeśli zapisze zależność między promieniami okręgów.

Poprawna odpowiedź: $R + r = (R - r)\sqrt{2}$.

Zdający otrzymuje 1 punkt, jeśli zapisze długość przeciwprostokątnej trójkąta prostokątnego równoramiennego ABC w zależności od R i r i na tym zakończy rozwiązanie lub w dalszej części popełni błędy.

Poprawna odpowiedź: |AB| = R + r.

Tworzenie informacji Przetwarzanie informacji do postaci ułatwiającej rozwiązanie problemu. 0–	-2
--	----

Zdający otrzymuje 2 punkty, jeśli obliczy stosunek promieni większego i mniejszego okręgu. Poprawna odpowiedź: $\frac{R}{r}=3+2\sqrt{2}$.

Zdający otrzymuje 1 punkt, jeśli przekształci zależność $R+r=(R-r)\sqrt{2}$ do postaci umożliwiającej obliczenie stosunku promieni i na tym zakończy rozwiązanie.

Poprawna odpowiedź: np.
$$r(1+\sqrt{2})=R(\sqrt{2}-1)$$
 lub $(\frac{R}{r}-1)\sqrt{2}=\frac{R}{r}+1$,

$$1 \text{ lub } 1 + \frac{r}{R} = \left(1 - \frac{r}{R}\right)\sqrt{2} .$$

Zadanie 9.

Wiadomości i rozumienie Wyznaczanie środka i promienia okręgu. 0–1	Wiadomości i rozumienie
--	-------------------------

Zdający otrzymuje 1 punkt, jeśli narysuje w układzie współrzędnych opisany w zadaniu okrąg i zaznaczy dany punkt A.

Korzystanie z informacji

Zdający otrzymuje 1 punkt, jeśli zapisze równanie szukanej rodziny stycznych. Poprawna odpowiedź: y = ax - 1 lub ax - y - 1 = 0.

Tworzenie informacji	Analizowanie wzajemnego położenia prostej i okręgu.	0-1
----------------------	---	-----

Zdający otrzymuje 1 punkt, jeśli zapisze warunek styczności prostej k o równaniu y = ax - 1 i danego okręgu.

<u>Poprawna odpowiedź</u>: Odległość środka okręgu S od prostej k jest równa promieniowi okręgu.

Tworzenie informacji	Stosowanie wzoru na odległość punktu od prostej.	0-1

Zdający otrzymuje 1 punkt, jeśli zapisze równanie z niewiadomą a.

Poprawna odpowiedź:
$$\frac{|a \cdot (-2) - 3 - 1|}{\sqrt{a^2 + 1}} = 2.$$

Tworzenie informacji	Wyciąganie wniosku i zapisanie równania prostej.	0-1
----------------------	--	-----

Zdający otrzymuje 1 punkt, jeśli zapisze równanie szukanej stycznej.

Poprawna odpowiedź:
$$y = -\frac{3}{4}x - 1$$
.

Zadanie 10.

Tworzenie informacji	Analizowanie sytuacji i budowanie jej modelu matematycznego.	0–2
----------------------	--	-----

Zdający otrzymuje 2 punkty, jeśli zapisze liczbę wszystkich zdarzeń elementarnych oraz liczby zdarzeń elementarnych sprzyjających zdarzeniu A w tym samym modelu.

Poprawna odpowiedź:
$$|\Omega| = {4n \choose 2} = 2n \cdot (4n-1), |A| = {n \choose 1} {3n \choose 1} = n \cdot 3n$$

lub $|\Omega| = 4n \cdot (4n-1)$, $|A| = 2 \cdot n \cdot 3n$ gdzie n – liczba kul czarnych, 3n – liczba kul białych, dla $n \ge 1$.

Zdający otrzymuje 1 punkt, jeśli zapisze tylko liczbę wszystkich zdarzeń elementarnych i na tym zakończy rozwiązanie.

Zdający otrzymuje 1 punkt, jeśli zapisze prawdopodobieństwo zdarzenia A w postaci wyrażenia wymiernego.

Poprawna odpowiedź:
$$P(A) = \frac{3n}{2(4n-1)}$$
.

Tworzenie informacji	Analizowanie sytuacji i budowanie jej modelu matematycznego.	0–1
----------------------	--	-----

Zdający otrzymuje 1 punkt, jeśli rozwiąże nierówność $\frac{3n}{2(4n-1)} > \frac{9}{22}$ i poda liczbę kul w urnie.

Poprawna odpowiedź: W urnie są 4 kule albo jest 8 kul.

Zadanie 11.

Korzystanie z informacji

Zdający otrzymuje 1 punkt, jeśli obliczy cosinusa kąta między krawędzią boczną a krawędzią podstawy ostrosłupa.

<u>Poprawna odpowiedź</u>: $\cos \alpha = \frac{1}{4}$.

Tworzenie informacji	Narysowanie przekroju ostrosłupa płaszczyzną.	0-1	
----------------------	---	-----	--

Zdający otrzymuje 1 punkt, jeśli zaznaczy właściwy przekrój na rysunku.

Poprawna odpowiedź:

Korzystanie z informacji	Zastosowanie twierdzenia cosinusów.	0–3
--------------------------	-------------------------------------	-----

Zdający otrzymuje 3 punkty, jeśli obliczy wysokość opuszczoną na podstawę AB w trójkącie równoramiennym ABF (szukanym przekroju).

Poprawna odpowiedź: $h_p = \frac{a\sqrt{5}}{2}$.

Zdający otrzymuje 2 punkty, jeśli obliczy długość ramienia trójkąta równoramiennego *ABF* i na tym zakończy rozwiązanie.

Poprawna odpowiedź: $|AF| = |BF| = \frac{a\sqrt{6}}{2}$.

Zdający otrzymuje 1 punkt, jeśli zastosuje twierdzenie cosinusów i zapisze równanie z niewiadomą x, gdzie x = |BF| i na tym zakończy rozwiązanie lub w dalszej części popełni błędy.

Poprawna odpowiedź: $x^2 = a^2 + a^2 - 2 \cdot a \cdot a \cdot \frac{1}{4}$.

Korzystanie z informacji	Obliczanie pola przekroju ostrosłupa	0-1
--------------------------	--------------------------------------	-----

Zdający otrzymuje 1 punkt, jeśli obliczy pole przekroju.

Poprawna odpowiedź:
$$P_p = \frac{a^2 \sqrt{5}}{4}$$
.

Za prawidłowe rozwiązanie każdego z zadań inną metodą niż przedstawiona w kluczu punktowania przyznajemy maksymalną liczbę punktów.