Basic MATLAB Operations

References

MATLAB for Engineers by Holly Moore 5th Edition

MATLAB opening window

Basic calculations

```
Editor - /home/aditya/function calculations
   function calculations × +
   % function calc
   5^2
   cos(pi)
Command Window
 >> 5^2
  cos(pi)
  ans =
      25
  ans =
      - 1
```

How to create an array of elements?

Explicit method

```
C = [1 2 3 4; 10 20 30 40; 5 10 15 20]

C =

1 2 3 4

10 20 30 40

5 10 15 20
```

Implicit method:

Ex:
$$b = 1:5$$
 or $b = [1:5]$

Above command returns a row matrix

$$b = 12345$$

(Default increment is 1)

• Ex: c = 1:2:5

Above command returns a row matrix

$$c = 135$$

(Indicates the increment between the values 1 & 5 by a factor of 2)

Arrays

Plot Function

- X=[1,2,3,4,5]; y=[10,20,30,40,50];
- To create a graph, use the plot command: plot(x,y)

Matrices in MATLAB

$$A = [5] \quad B = [2 \ 5] \quad C = \begin{bmatrix} 1 & 2 \\ 5 & 7 \end{bmatrix}$$

Arithmatic operations between two scalars

Operation	Algebraic Syntax	MATLAB® Syntax
Addition	a + b	a + b
Subtraction	a - b	a – b
Multiplication	$a \times b$	a * b
Division	$\frac{a}{b}$ or $a \div b$	a / b
Exponentiation	a^b	a^b

Scalar operations

```
Command Window
New to MATLAB? See resources for Getting Started.
 >> a=1+2
 a =
 >> b=12
 b =
    12
 x =
    15
 >> x=x+1
        Use of Assignment operator
    16
```

Order of operations

In all mathematical calculations, it is important to understand the order in which operations are performed. MATLAB® follows the standard algebraic rules for the order of operation:

- First perform calculations inside parentheses, working from the innermost set to the outermost.
- Next, perform exponentiation operations.
- Then perform multiplication and division operations, working from left to right.
- Finally, perform addition and subtraction operations, working from left to right.

Array operations

• **linspace** command: spacing between elements

```
Syntax: d = linspace(1,10,3)

Where 1 = initial value

10 = Final value

3 = Total number of values

Output: d = 1 5.5 10
```

Matrix multiplication

Command Window

New to MATLAB? See resources for Getting Started.

```
>> a=[1 2 3]
 >> b=[4 5 6]
  b =
           5
                6
 >> c=a*transpose(b) — Matrix multiplication
 c =
     32
                     ▶ Element by Element multiplication
 c =
        10 18
           Element by Element division
 >> d=a./b
  d =
     0.2500 0.4000
                     0.5000
                        Exponentiation
      1 32 729
f_{\underline{x}} >>
```

Script M-files

 An M-file is an ASCII text file which can be edited and created with MATLAB Editor. To open the editing window, choose

Approaches to Executing a Script M-File from the Command Window

MATLAB® Command	Comments
myscript run myscript	Type the file name, for example myscript . The .m file extension is assumed. Use the run command with the file name.
run('myscript')	Use the functional form of the run command.

Built-In functions

abs(x)	Finds the absolute value of x .	abs(-3) ans = 3
sqrt(x)	Finds the square root of x .	sqrt(85) ans = 9.2195
nthroot(x,n)	Finds the real <i>n</i> th root of x . This function will not return complex results. Thus,	nthroot(-2, 3) ans =
	(-2)^(1/3)	-1.2599
	does not return the same result, yet both answers are legitimate third roots of -2 .	(-2)^(1/3)
		ans = 0.6300 + 1.0911i
sign(x)	Returns a value of -1 if \mathbf{x} is less than zero, a value of 0 if \mathbf{x} equals zero, and a value of $+1$ if \mathbf{x} is greater than zero.	sign(-8) ans = -1
rem(x,y)	Computes the remainder of x/y .	rem(25,4) ans = 1
exp(x)	Computes the value of e^x , where e is the base for natural logarithms, or approximately 2.7183.	exp(10) ans = 2.2026e + 004
log(x)	Computes $ln(x)$, the natural logarithm of x (to the base e).	log(10) ans = 2.3026
log10(x)	Computes $log_{10}(\mathbf{x})$, the common logarithm of \mathbf{x} (to the base 10).	log10(10) ans = 1

Example:

Command Window

New to MATLAB? See resources for Getting Started.

```
>> x=[4 9 16];
>> b=sqrt(x)
b =
2 3 4
>> d=[1 2 3;4 5 6]
d =
1 2 3
4 5 6
>> f=size(d)
f =
2 3
```

Roots function:

Command Window

New to MATLAB? See resources for Getting Started.

```
>> % Roots of the equation x^3 -6*(x^2)+11*x-6
>> k=[1 -6 11 -6];
>> x=roots(k)

x =

3.0000
2.0000
1.0000
```