МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М. В. ЛОМОНОСОВА

Механико-математический факультет Кафедра теоретической механики и мехатроники

Отчёт о проведённой работе по предмету «Численные методы и практика на ЭВМ»

Выполнил:

студент 422 группы кафедры теоретической механики и мехатроники Сергеев Никита Александрович

Содержание

1.	Постановка задачи	1
2.	Формализация задачи	1
3.	Система необходимых условий оптимальности	1
4.	Аномальный случай и исследование задачи	2
5.	Краевая задача	3
6.	Численное решение методом стрельбы	3
7.	Тест решения задачи Коши: гармонический осциллятор	4

1. Постановка задачи

Рассмотрим задачу оптимального управления:

$$\begin{cases} \int_{0}^{T} (\ddot{x}^{2} \cos(\alpha x) - \dot{x}^{2}) dt \to \infty, \\ |\ddot{x}| \le 24, \\ x(0) = 11, \\ \dot{x}(T) = x(T) = 0, \\ \alpha = \{0.0; 0.001; 0.01; 0.1\}, \end{cases}$$

где Т - известная константа, параметр задачи.

Требуется формализовать задачу как задачу оптимального управления, принципом максимума Понтрягина свести задачу к краевой задаче, численно решить полученную краевую задачу методом стрельбы и обосновать точность полученных результатов, проверить полученные экстремали Понтрягина на оптимальность при различных значениях параметра $\alpha = \{0.0; 0.001; 0.01; 0.01\}$.

2. Формализация задачи

Формализуем задачу как задачу оптимального управления. Для этого обозначим $\dot{x} = y, \, \ddot{x} = u.$ Тогда исходная система (1) перепишется в виде:

$$\begin{cases} \dot{x} = y, \\ \dot{y} = u, \\ u \in \mathbb{R}, \\ x(0) = 11, \\ x(T) = 0, \\ y(T) = 0, \\ |u| \le 24, \\ \alpha = \{0.0; 0.001; 0.01; 0.1\}, \\ T = const = 4, \\ B_0 = \int_0^T (u^2 \cos(\alpha x) - y^2) dt \to \infty. \end{cases}$$

3. Система необходимых условий оптимальности

Выпишем функции Лагранжа и Понтрягина:

$$\mathcal{L} = \int\limits_0^T L \; dt + l \; ,$$
 лагранжиан — $L = \lambda_0 (u^2 \cos(\alpha x) - y^2) + p_x (\dot{x} - y) + p_y (\dot{y} - u) \; ,$ терминант — $l = \lambda_1 (x(0) - 11) + \lambda_2 x(T) + \lambda_3 y(T) \; ,$ гамильтониан — $H = p_x y + p_y u - \lambda_0 (u^2 \cos(\alpha x) - y^2) \; .$

Применим к задаче оптимального управления (2) принцип максимума Понтрягина. Необходимые условия оптимальности:

1) уравнения Эйлера-Лагранжа (сопряжённая система уравнений, условие стационарности по $\binom{x}{y}$), $\binom{\dot{p}_x}{\dot{p}_y} = -\left(\begin{array}{c} \frac{\partial H}{\partial x} \\ \frac{\partial H}{\partial u} \end{array}\right)$:

$$\begin{cases} \dot{p}_x = -\alpha \lambda_0 u^2 \sin(\alpha x), \\ \dot{p}_y = -p_x - 2\lambda_0 y; \end{cases}$$

2) условие оптимальности по управлению, $u = \arg \operatorname{abs} \max_{|u| < 24} H(u)$:

$$u = \arg \operatorname{abs} \max_{|u| \le 24} \left(p_y u - \lambda_0 \left(u^2 \cos(\alpha x) \right) \right)$$

 $\Box\cos(\alpha x)>0$: $u=\frac{p_y}{2\lambda_0\cos(\alpha x)}$, при $\lambda_0\neq 0$, так как парабола $H=-u^2\cos(\alpha x)\lambda_0+p_yu$ с ветвями, направленными вниз $(\lambda_0\geq 0)$, достигает максимума в вершине, при указанном значении аргумента u;

 $\Box\cos(\alpha x)<0$: $u=\begin{bmatrix}24\\-24\end{bmatrix}$, при $\lambda_0\neq 0$, так как парабола $H=-u^2\cos(\alpha x)\lambda_0+p_yu$ с ветвями, направленными вверх $(\lambda_0\geq 0)$, достигает максимума в одном из концов;

$$\Box \cos(\alpha x) = 0$$
: $u = \forall \beta : |\beta| \le 24, \beta \in \mathbb{R}$;

3) условия трансверсальности по $\binom{x}{y}$, $p_x(t_k) = (-1)^k \frac{\partial l}{\partial x(t_k)}$, $p_y(t_k) = (-1)^k \frac{\partial l}{\partial y(t_k)}$, где $k=0;1,\,t_0=0,\,t_1=T$:

$$p_y(0) = 0$$

 $p_x(0) = \lambda_1, p_x(T) = -\lambda_2, p_y(T) = -\lambda_3;$

- 4) условия стационарности по t_k : нет, так как в задаче t_k известные константы;
- 5) условия дополняющей нежёсткости: нет, так как в задаче отсутствуют условия вида «меньше или равно»;
- 6) условие неотрицательности: $\lambda_0 \ge 0$;
- 7) условие нормировки (множители Лагранжа могут быть выбраны с точностью до положительного множителя);
- 8) НЕРОН (множители Лагранжа Не Равны Одновременно Нулю).

4. Аномальный случай и исследование задачи

Исследуем возможность аномального случая $\lambda_0=0$. При $\lambda_0=0$ получим систему дифференциальных уравнений:

$$\begin{cases} \dot{x} = y, \\ \dot{y} = u, \\ \dot{p}_x = 0, \\ \dot{p}_y = -p_x; \end{cases}$$

Отсюда получаем, $p_x(t)=c, \dot{p}_y(t)=-c$. Так же из условия 2) оптимальности по управлению имеем $p_y\equiv 0$, а значит $\lambda_0=\lambda_1=\lambda_2=\lambda_3=0$, что противоречит условию 8) HEPOH.

В силу условия 7) можно выбрать $\lambda_0={}^{1\!/}_2,$ тогда обозначим $\cos(\alpha x)=g(\alpha,x)$ и управление преобразуется в $u=\begin{bmatrix} p_y/g(\alpha,x) & g(\alpha,x)>0,\\ 24 & g(\alpha,x)<0,\\ \forall \beta:|\beta|\leq 24, \beta\in\mathbb{R} & g(\alpha,x)=0; \end{bmatrix}$

5. Краевая задача

Таким образом, на основе принципа максимума Понтрягина задача оптимального управления сводится к краевой задаче. Итого имеем:

$$\begin{cases} \dot{x} = y, \\ \dot{y} = u, \\ \dot{p}_x = -\frac{\alpha}{2}u^2\sin(\alpha x), \\ \dot{p}_y = -p_x - y; \\ x(0) = 11, \qquad x(T) = 0, \\ p_y(0) = 0, \qquad y(T) = 0, \\ T \equiv 4, \qquad \alpha = \{0.0; 0.001; 0.01; 0.1\}. \end{cases}$$

6. Численное решение методом стрельбы

Краевая задача решается численно методом стрельбы. В качестве параметров пристрелки выбираются недостающие для решения задачи Коши значения при t=0: $\alpha_1=y(0),\ \alpha_2=p_x(0).$ Задав эти значения каким-либо образом и решив задачу Коши на отрезке $[0;\ T]$, получим соответствующие выбранному значению $\vec{\alpha}:=\{\alpha_1;\ \alpha_2\}$ функции $x(\cdot)[\vec{\alpha}],\ y(\cdot)[\vec{\alpha}],\ p_x(\cdot)[\vec{\alpha}],\ p_y(\cdot)[\vec{\alpha}],\ u,$ в частности, значения $x(T)[\vec{\alpha}],\ y(T)[\vec{\alpha}].$ Задача Коши для системы дифференциальных уравнений, начальных условий в 0 момент времени и условий $y(0)=\alpha_1,\ p_x(0)=\alpha_2$ решается численно явным методом Рунге-Кутты 8-го порядка, основанным на расчётных формулах Фельберга с автоматическим выбором шага (то есть с контролем относительной локальной погрешности на шаге по правилу Рунге). Для решения краевой задачи необходимо подобрать значения $\alpha_1,\ \alpha_2$ так, чтобы выполнились условия: $x(T)[\vec{\alpha}]=0,$ $y(T)[\vec{\alpha}]=0.$

Соответственно вектор-функцией невязок будет функция $X(\vec{\alpha}) = \begin{pmatrix} x(T)[\vec{\alpha}] \\ y(T)[\vec{\alpha}] \end{pmatrix}$. Таким образом, в результате выбора вычислительной схемы метода стрельбы, решение краевой задачи свелось к реше- нию системы двух алгебраических уравнений от двух неизвестных. Корень $\vec{\alpha}$ системы алгебраических уравнений $X(\vec{\alpha}) = 0$ находится методом Ньютона с модификацией Исаева-Сонина. Решение линейной системы уравнений внутри

модифицированного метода Ньютона осуществляется методом Гаусса с выбором главного элемента по столбцу, с повторным пересчётом.

Схема численного решения краевой задачи методом стрельбы выбрана таким образом, что при отсутствии ошибок в программной реализации решения задачи Коши, найденный методом Ньютона корень будет правильным (без учёта погрешности численного интегрирования), даже если внутри метода Ньютона есть какие-то ишибки. Напротив, ошибка в решении задачи Коши делает бесполезным полученный результат, даже если всё остальное запрограммировано правильно и методу Ньютона удалось найти корень.

Исходя из этого крайне важен следующий тест части программы, решающей задачу Коши, на системе дифференциальных уравнений с известным аналитическим решением.

7. Тест решения задачи Коши: гармонический осциллятор