We claim:

CLAIMS

- 1 1. A battery latch comprising:
- 2 a body portion;
- at least one resilient spring member integral to and extending from the body
- 4 portion;
- at least one protruding member integral to and extending from the body portion,
- 6 the at least one resilient spring member biasing the at least one protruding member to an
- 7 extended position.
- 1 2. The battery latch of claim 1 wherein the at least one protruding member extends at
- 2 least partially into a battery compartment of a housing when the battery latch is installed
- 3 in the housing when the at least one protruding member is in the extended position.
- 1 3. The battery latch of claim 1 wherein the at least one protruding member extends at
- 2 least partially into at least on recess in a battery compartment of a housing when the
- battery latch is installed in a battery pack when the at least one protruding member is in
- 4 the extended position and when the battery pack is installed in the battery compartment of
- 5 the housing.
- 1 4. The battery latch of claim 1 further comprising a slide button removably coupled
- 2 to the body portion that allows the body portion to slide against a biasing force of the at
- 3 least one resilient spring member.

- 1 5. The battery latch of claim 1 wherein the slide button comprises at least one
- 2 retaining portion that may be coupled to the battery latch by sliding the at least one
- 3 retaining portion into an opening in the battery latch until the at least one retaining
- 4 portion clicks to coupled the slide button to the body portion.

7.

1

I	o. A nousing for a portable electronic device comprising:	
2	first and second rails in the interior of the housing;	
3	an end stop in the interior of the housing;	
4	a battery compartment defined by a recess in the housing;	
5	a battery latch dimensioned to slide between the first and second rails, the batte	ery
6	latch including at least one resilient spring member integral to the battery latch, the at	
7	least one resilient spring member being placed against the end stop to provide a spring	,
8	bias that causes the battery latch to slide to an extended position, the battery latch	
9	including at least one protruding member that extends at least partially into the battery	
10	compartment when the battery latch is in the extended position; and	
11	a slide button coupled to the battery latch and accessible on the outside of the	
12	housing, the slide button allowing a user to slide the slide button and thereby move the	<u> </u>
13	battery latch to a retracted position that removes the at least one protruding member from	om
14	the battery compartment.	

- The housing of claim 6 wherein the at least one protruding member includes a 2 geometric surface that allows a battery pack to be installed into the battery compartment 3 by pressing the battery pack into the battery compartment, the force of pressing the
- 4 battery pack overcoming the biasing force of the at least one resilient spring member to move the at least one protruding member to the retracted position. 5
- 8. The housing of claim 7 wherein the geometric surface comprises a beveled 1 2 surface.
- 1 9. The housing of claim 7 wherein the geometric surface comprises a curved surface.

- 1 10. The housing of claim 6 wherein the battery latch returns to the extended position
- 2 with the at least one protruding members in at least one corresponding recess in the
- 3 battery pack when the battery pack is fully seated in the battery compartment.

Ì	11.	A batt	ery pack	comprising

- 2 first and second rails in the interior of the battery pack;
- an end stop in the interior of the battery pack;
- 4 a battery latch dimensioned to slide between the first and second rails, the battery
- 5 latch including at least one resilient spring member integral to the battery latch, the at
- 6 least one resilient spring member being placed against the end stop to provide a spring
- 7 bias that causes the battery latch to slide to an extended position, the battery latch
- 8 including at least one protruding member that extends at least partially out of the battery
- 9 pack when the battery latch is in the extended position; and
- a slide button coupled to the battery latch and accessible on the outside of the
- battery pack, the slide button allowing a user to slide the slide button and thereby move
- the battery latch to a retracted position that retracts the at least one protruding member
- into the battery pack.
 - 1 12. The battery pack of claim 11 wherein the at least one protruding member includes
 - 2 a geometric surface that allows the battery pack to be installed into a battery compartment
 - 3 of a housing by pressing the battery pack into the battery compartment, the force of
 - 4 pressing the battery pack overcoming the biasing force of the at least one resilient spring
 - 5 member to move the at least one protruding member to the retracted position.
 - 1 13. The battery pack of claim 12 wherein the geometric surface comprises a beveled
 - 2 surface.
 - 1 14. The battery pack of claim 12 wherein the geometric surface comprises a curved
 - 2 surface.

- 1 15. The battery pack of claim 11 wherein the battery latch returns to the extended
- 2 position with the at least one protruding members in at least one corresponding recess in a
- 3 housing when the battery pack is fully seated in a battery compartment within the
- 4 housing.

1	16.	A combination of a housing and a battery pack,
2		(A) the housing comprising:
3		(A1) first and second rails in the interior of the housing;
4		(A2) an end stop in the interior of the housing;
5		(A3) a battery compartment defined by a recess in the housing;
6		(A4) a battery latch dimensioned to slide between the first and second
7		rails, the battery latch including at least one resilient spring member integral to the
8		battery latch, the at least one resilient spring member being placed against the end
9		stop to provide a spring bias that causes the battery latch to slide to an extended
10		position, the battery latch including at least one protruding member that extends at
11		least partially into the battery compartment when the battery latch is in the
12		extended position;
13		(A5) a slide button coupled to the battery latch and accessible on the
14		outside of the housing, the slide button allowing a user to slide the slide button
15		and thereby move the battery latch to a retracted position that removes the at least
16		one protruding member from the battery compartment;
17		(A6) at least one battery pack retainer recess;
18		(B) the battery pack comprising:
19		(B1) an enclosure having at least a portion dimensioned to fit within the
20		battery compartment;
21		(B2) the portion of the enclosure including at least one extending portion
22		that is configured to go in the at least one battery pack retainer recess of the
23		housing when the battery pack is installed in the housing; and
24		(B3) the portion of the enclosure including at least one recess that aligns
25		with and receives the at least one protruding member when the battery pack is
26		installed in the housing.

1

1	17. A method for removably coupling a battery pack to a housing	of a portable
2	electronic device, the method comprising the steps of:	
3	(A) providing a battery latch within the housing, the battery la	atch comprising:
4	(A1) a body portion;	
5	(A2) at least one resilient spring member integral to ar	nd extending from
6	the body portion;	
7	(A3) at least one protruding member that extends at least	ast partially into a
8	battery compartment defined in the housing, the at least one re	esilient spring
9	member biasing the at least one protruding member into the b	attery compartment;
10	(B) installing a battery pack into the battery compartment, the	battery pack
11	comprising at least one recess that receives the at least one protruding	g member when the
12	battery pack is installed in the battery compartment of the housing, th	e battery pack being
13	installed by pressing the battery pack against the at least one protruding	ng member, thereby
14	forcing the at least one protruding member against the bias of the at le	east one resilient
15	spring member until the battery latch slides to a retracted position, all	owing the battery
16	pack to move past the at least one protruding members until the at lea	st one protruding
17	member is biased into the at least one recess of the battery pack when	the battery pack is
18	fully seated in the battery compartment of the housing.	

- 18. The method of claim 17 further comprising the step of:
- 2 (C) removing the battery pack from the battery compartment by sliding a slide 3 button coupled to the battery latch until the at least one protruding member is in the 4 retracted position and removing the battery pack from the battery compartment while 5 holding the slide button in a position so that the battery latch is in the retracted position.

1	19.	A method for assembling a battery latch and a slide button into a housing,
2		(A) the battery latch comprising:
3		(A1) a body portion;
4		(A2) at least one resilient spring member integral to and extending from
5		the body portion; and
6		(A3) at least one protruding member integral to and extending from the
7		body portion that extends at least partially into a battery compartment of a housing
8		when the battery latch is installed in the housing, the at least one resilient spring
9		member biasing the at least one protruding member into the battery compartment;
10		(B) the slide button comprising:
11		(B1) at least one retaining portion that is configured to be inserted into an
12		opening in the battery latch;
13		(C) the housing comprising:
14		(C1) first and second rails in the interior of the housing;
15		(C2) an end stop in the interior of the housing;
16		(C3) a battery compartment defined by a recess in the housing;
17		(C4) the battery latch being dimensioned to slide between the first and
18		second rails, the battery latch including at least one resilient spring member
19		integral to the battery latch, the at least one resilient spring member being placed
20		against the end stop to provide a spring bias that causes the battery latch to slide to
21		an extended position, the battery latch including at least one protruding member
22		that extends at least partially into the battery compartment when the battery latch
23		is in the extended position, the battery latch further including at least one opening;
24		and
25		(C5) an elongated slot, a portion of the elongated slot overlying the at least
26		one opening of the battery latch.

(claim 19 continued)

27	(D) wherein the method comprises the steps of:
28	(D1) sliding the body portion under the first and second rails;
29	(D2) placing end portions of the resilient spring members against the end
30	stop;
31	(D3) placing the retaining portions of the slide button through the
32	elongated slot in the housing and into the opening in the battery latch until the at
33	least one retaining portion clicks to coupled the slide button to the body portion
34	through the elongated slot in the housing.
