Assignment 5

- 1. Multi-class classification
 - One-vs-Rest (sklearn.multiclass.OneVsRestClassifier)
 - N-classes:
 - N binary classifiers
 - N-split of the training set, each includes all data points but divided into class i v.s. others)
 - Prediction: argmax of scores produced by a bunch of binary classifiers
 - One-vs-One (sklearn.multiclass.OneVsOneClassifier)
 - N classes:
 - $\binom{N}{2}$ binary classifiers
 - $lacksquare \binom{N}{2}$ split of the training set, each includes only data points with the label i and j
 - Prediction:
 - majority votes
 - Or the class with the most sum score is taken as the class label
 - o Compare:
 - the number of classifiers?
 - data used for training each classifier?
 - what if there is a specific class dominates the training set (i.e. imbalanced classes)?
 - lacktriangle when N is large, what will be the greatest issues for the two algorithms respectively?
- 2. SGD & BGD & mini-BGD

Suppose the size of the training set is N

- Number of data points used in each iteration?
- Fluctuation? Who converges faster?
- Flexibility? Who's more likely to get stuck at a certain local minimum?

How to make the search for the minima more efficient?

Momentum: record the parameter update history

(ref: https://optimization.cbe.cornell.edu/index.php?title=Momentum)

- Method: include some amount (controlled by a hyperparameter) into the update equation.
 - common choices of the hyperparameter: 0.8, 0.9, 0.99...
 - q: what if the hyperparameter equals zero?
- Algorithm:
 - lacksquare without momentum: $w_{t+1} = w_t \lambda rac{\partial L}{\partial w_t}$
 - with momentum:

$$v_{t+1} = \beta v_t + rac{\partial L}{\partial w_t}$$
 $w_{t+1} = w_t - \lambda v_{t+1}$

or
$$\Delta w_{t+1} = -\lambda \sum_{k=1}^t (eta^{t-k}
abla w_k)$$

where β is the hyperparameter that controls the 'amount' of history (momentum constant)

Discussion Questions

- 1. k-fold cross-validation
 - 1. Compare (A)) 100-Folds (B) 5×20 repeated K-Fold validation, over the parameter grid of C = [0.1, 1, 10, 100]
 - 1. Do the two methods fit the model for the same number of times?
 - 2. For a dataset of 100 datapoints. Do the two methods have the same size of the training dataset?
 - 3. bias and variance of the fit of the model?
 - 4. bias and variance of the estimate of test error?
- 2. Gradient Descent

$$f(w) = (w-2)^2 + 1 (1)$$

- 1. Compute the gradient of f(w) with respect to w.
- 2. State the weight update rule used in gradient descent.
- 3. Starting with initial weight $w_0 = 0$, run gradient descent for the following function for 5 iterations. Use learning rate $\alpha = 3, 0.2, 0.01$.
- 4. Compare and contrast $\frac{\partial f(w)}{\partial w}$ after 5 iterations using the three different learning rates. What can you infer from these values? Which learning rate should we select as the best one?

3. SGD v.s. BGD v.s. mini-BGD

- 1. If I want perfect repeatability of the descent path given the same initial point, which GD method should I use? Why?
- 2. If I want the best memory efficiency during model training, which GD method should I use? Why?