《高等微积分1》第七次作业

- 1 设 f 在 **R** 上有各个高阶导数. 证明: 如果 f(x) = 0 有 n 个不同的零点,则对 $1 \le k \le (n-1)$, $f^{(k)}(x) = 0$ 至少有 (n-k) 个不同的零点.
- 2 设 0 < x < y. 证明:
 - (1) 当 $\alpha > 1$ 或者 $\alpha < 0$ 时,有 $\alpha x^{\alpha-1}(y-x) < y^{\alpha} x^{\alpha} < \alpha y^{\alpha-1}(y-x)$.
 - (2) 当 $0 < \alpha < 1$ 时, 有 $\alpha y^{\alpha-1}(y-x) < y^{\alpha} x^{\alpha} < \alpha x^{\alpha-1}(y-x)$.
 - $(3) \ \frac{y-x}{y} < \ln \frac{y}{x} < \frac{y-x}{x}.$
- 3 设 $f: \mathbf{R} \to \mathbf{R}$ 在 \mathbf{R} 上处处有 n 阶导数. 已知 $\lim_{x \to +\infty} f^{(n)}(x) = A$, 计算极限 $\lim_{x \to +\infty} \frac{f(x)}{x^n}.$
- 4 定义函数 $f:(-1,+\infty)\to \mathbf{R}$ 为

$$f(x) = \begin{cases} (1+x)^{1/x}, & \text{mean } x \neq 0 \\ e, & \text{mean } x = 0. \end{cases}$$

其中 $e = \lim_{n \to \infty} (1 + \frac{1}{n})^n$. 计算 f'(0), f''(0).

- 5 求 $\tan x$ 在 x = 0 处的带皮亚诺余项的 5 阶泰勒公式.
- 6 求 $\arcsin x$ 在 x = 0 处的带皮亚诺余项的 n 阶泰勒公式.
- 7 设 $f(x) = \arctan x$. 对于正整数 n, 求 $f^{(n)}(0)$.