QUALIFYING PRACTICE EXAM

Problem 1 (Spring'04). Show that the sets

$$S_1 = \Big\{ f \in L_2[0,1] : \int_0^1 (1-x^2)f(x) \, dx > 0 \Big\},$$

and

$$S_2 = \left\{ f \in L_2[0,1] : \int_0^1 (1 - 2x^3) f(\sin x) \, dx > 0 \right\}$$

are open in $L_2[0,1]$, and respectively $L_3[0,1]$.

Problem 2 (Fall'05). Let (X, \mathcal{F}, μ) be a measure space and let $f_k \colon X \to \mathbb{R}$ be a sequence of measurable functions on it satisfying:

$$\int_{X} |f_k|^2 d\mu \le M \text{ for all } k,$$

$$\int_{X} f_j f_k d\mu = 0 \text{ for all } j \ne k,$$

where M is a finite constant independent of k. For each $n \in \mathbb{N}$ set $S_n = \sum_{k=1}^n f_k$. Prove that

$$\lim_{n} \frac{S_{n^2}}{n^{\alpha}} = 0 \text{ a.e.}$$

for all $\alpha > 3/2$.

Problem 3 (Fall'05). Let $f: [0,1] \to \mathbb{R}$ be Lebesgue measurable with f > 0 a.e. Let $\{E_n\}$ be a sequence of measurable sets in [0,1] with the property that

$$\lim_{n} \int_{E_n} f(x) \, dx = 0.$$

Prove that $\lim_n m(E_n) = 0$.

Problem 4 (Spring'06). Let $A \subset \mathbb{R}^n$ be a Lebesgue measurable set with positive and finite measure. Let ξ_A be the characteristic function of A.

(i) Prove that the function $\phi(x) = \int_{\mathbb{R}^n} \xi_A(y) \, \xi_A(x+y) \, dy$ is continuous.

(ii) Use (i) to show that the set

$$A - A = \{x \in \mathbb{R}^n : x = y_1 - y_2; y_1, y_2 \in A\}$$

contains a neighborhood of the origin.

Problem 5 (Fall'06). For f a measurable, real vallued function on \mathbb{R}^+ , let

$$T(f)(x) = \int_{1}^{\infty} \frac{f(u)}{1 + x^{2} + u^{1/2}} du$$

whenever the function appearing in the integrand is integrable with respect to u. Let 1 < q < 2 be fixed.

- (i) Prove that T(f)(x) is defined for all $x \in \mathbb{R}$ if $f \in L_q(\mathbb{R}^+)$.
- (ii) Prove that there is a constant C_q , independent of f, x and y, such that for all x and y,

$$|T(f)(x) - T(f)(y)| \le C_q |x^2 - y^2| ||f||_q.$$

(iii) Let $K \subset \mathbb{R}$ be compact and let C(K) be the set of continuous functions g on K with norm

$$||g|| = \sup_{x \in K} |g(x)|.$$

Show that the set $S = \{T(f)\big|_K : \|f\|_q \le 1\}$ has compact closure in C(K).

Problem 6 (Spring'07). Let $f \in L_1(\mathbb{R})$. Consider the function $F(x) = \int_{\mathbb{R}} e^{ixt} f(t) dt$.

- (i) Show that $F \in L_{\infty}(\mathbb{R})$ and that F is continuous at every $x \in \mathbb{R}$. Moreover, if $|t|^k f(t) \in L_{\infty}(\mathbb{R})$ for all $k \geq 1$, show that F is infinitely differentiable, i.e. $F \in C^{\infty}(\mathbb{R})$.
- (ii) Suppose f is continuous as well as in $L_1(\mathbb{R})$. Show that $\lim_{|x|\to\infty} F(X) = 0$.