Chapter 8 Multidimensional Arrays

Motivations

Thus far, you have used one-dimensional arrays to model linear collections of elements. You can use a two-dimensional array to represent a matrix or a table. For example, the following table that describes the distances between the cities can be represented using a two-dimensional array.

Distance Table (in miles)

	Chicago	Boston	New York	Atlanta	Miami	Dallas	Houston
Chicago	0	983	787	714	1375	967	1087
Boston	983	0	214	1102	1763	1723	1842
New York	787	214	0	888	1549	1548	1627
Atlanta	714	1102	888	0	661	781	810
Miami	1375	1763	1549	661	0	1426	1187
Dallas	967	1723	1548	781	1426	0	239
Houston	1087	1842	1627	810	1187	239	0

Motivations

```
double[][] distances = {
    {0, 983, 787, 714, 1375, 967, 1087},
    {983, 0, 214, 1102, 1763, 1723, 1842},
    {787, 214, 0, 888, 1549, 1548, 1627},
    {714, 1102, 888, 0, 661, 781, 810},
    {1375, 1763, 1549, 661, 0, 1426, 1187},
    {967, 1723, 1548, 781, 1426, 0, 239},
    {1087, 1842, 1627, 810, 1187, 239, 0},
};
```

Objectives

- □ To give examples of representing data using two-dimensional arrays (§8.1).
- □ To declare variables for two-dimensional arrays, create arrays, and access array elements in a two-dimensional array using row and column indexes (§8.2).
- □ To program common operations for two-dimensional arrays (displaying arrays, summing all elements, finding the minimum and maximum elements, and random shuffling) (§8.3).
- □ To pass two-dimensional arrays to methods (§8.4).
- □ To write a program for grading multiple-choice questions using two -dimensional arrays (§8.5).
- \Box To solve the closest-pair problem using two-dimensional arrays (§8.6).
- □ To check a Sudoku solution using two-dimensional arrays (§8.7).
- \Box To use multidimensional arrays (§8.8).

Declare/Create Two-dimensional Arrays

```
// Declare array ref var
dataType[][] refVar;
// Create array and assign its reference to variable
refVar = new dataType[10][10];
// Combine declaration and creation in one statement
dataType[][] refVar = new dataType[10][10];
// Alternative syntax
dataType refVar[][] = new dataType[10][10];
```

Declaring Variables of Two -dimensional Arrays and Creating Two-dimensional Arrays

```
int[][] matrix = new int[10][10];
or
int matrix[][] = new int[10][10];
matrix[0][0] = 3;

for (int i = 0; i < matrix.length; i++)
   for (int j = 0; j < matrix[i].length; j++)
      matrix[i][j] = (int) (Math.random() * 1000);

double[][] x;</pre>
```

Two-dimensional Array Illustration

Declaring, Creating, and Initializing Using Shorthand Notations

You can also use an array initializer to declare, create and initialize a two-dimensional array. For example,

```
int[][] array = {
    {1, 2, 3},
    {4, 5, 6},
    {7, 8, 9},
    {10, 11, 12}
};
```

Same as

```
int[][] array = new int[4][3];
array[0][0] = 1; array[0][1] = 2; array[0][2] = 3;
array[1][0] = 4; array[1][1] = 5; array[1][2] = 6;
array[2][0] = 7; array[2][1] = 8; array[2][2] = 9;
array[3][0] = 10; array[3][1] = 11; array[3][2] = 12;
```

Lengths of Two-dimensional Arrays

int[][] x = new int[3][4];

Lengths of Two-dimensional Arrays, cont.

array[4].length ArrayIndexOutOfBoundsException

Ragged Arrays

Each row in a two-dimensional array is itself an array. So, the rows can have different lengths. Such an array is known as *a ragged array*. For example,

```
int[][] matrix = {
    {1, 2, 3, 4, 5},
    {2, 3, 4, 5},
    {3, 4, 5},
    {4, 5},
    {5}
```

matrix.length is 5
matrix[0].length is 5
matrix[1].length is 4
matrix[2].length is 3
matrix[3].length is 2
matrix[4].length is 1

Ragged Arrays, cont.

Processing Two-Dimensional Arrays

See the examples in the text.

- 1. (Initializing arrays with input values)
- 2. (Printing arrays)
- 3. (Summing all elements)
- 4. (Summing all elements by column)
- 5. (Which row has the largest sum)
- 6. (Finding the smallest index of the largest element)
- 7. (Random shuffling)

Initializing arrays with input values

```
java.util.Scanner input = new Scanner(System.in);
System.out.println("Enter " + matrix.length + " rows and " +
    matrix[0].length + " columns: ");
for (int row = 0; row < matrix.length; row++) {
    for (int column = 0; column < matrix[row].length; column++) {
        matrix[row][column] = input.nextInt();
    }
}</pre>
```

Initializing arrays with random values

```
for (int row = 0; row < matrix.length; row++) {
  for (int column = 0; column < matrix[row].length; column++) {
    matrix[row][column] = (int)(Math.random() * 100);
  }
}</pre>
```

Printing arrays

```
for (int row = 0; row < matrix.length; row++) {
  for (int column = 0; column < matrix[row].length; column++) {
    System.out.print(matrix[row][column] + " ");
  }
  System.out.println();
}</pre>
```

Summing all elements

```
int total = 0;
for (int row = 0; row < matrix.length; row++) {
  for (int column = 0; column < matrix[row].length; column++) {
    total += matrix[row][column];
  }
}</pre>
```

Summing elements by column

Random shuffling

```
for (int i = 0; i < matrix.length; i++) {
 for (int j = 0; j < matrix[i].length; j++) {
  int i1 = (int)(Math.random() * matrix.length);
  int j1 = (int)(Math.random() * matrix[i].length);
  // Swap matrix[i][j] with matrix[i1][j1]
  int temp = matrix[i][j];
  matrix[i][j] = matrix[i1][j1];
  matrix[i1][i1] = temp;
```

Passing Tow-Dimensional Arrays to Methods

<u>PassTwoDimensionalArray</u>

Problem: Grading Multiple -Choice Test

Students' answer

		0	1	2	3	4	5	6	7	8	9
Student	0	Α	В	Α	C	C	D	Ε	Ε	Α	D
Student	1	D	В	Α	В	C	Α	Ε	Ε	Α	D
Student	2	Ε	D	D	Α	C	В	Ε	Ε	Α	D
Student	3	C	В	Α	Ε	D	C	Ε	Ε	Α	D
Student	4	Α	В	D	C	C	D	Ε	Ε	Α	D
Student	5	В	В	Ε	C	C	D	Ε	Ε	Α	D
Student	6	В	В	Α	C	C	D	Ε	Ε	Α	D
Student	7	Ε	В	Ε	C	C	D	Е	Ε	A	D

Objective: write a program that grades multiple-choice test.

Key to the Questions:

0 1 2 3 4 5 6 7 8 9

Key D B D C C D A E A D

<u>GradeExam</u>

Problem: Finding Two Points Nearest to Each Other

<u>FindNearestPoints</u>

What is Sudoku?

5	3			7			
6			1	9	5		
	9	8				6	
8				6			3
4			8		3		1
7				2			6
	6						
			4	1	9		5
				8		7	9

Every row contains the numbers 1 to 9

5	3			7			
6			1	9	5		
	9	8				6	
8				6			3
4			8		3		1
7				2			6
	6						
			4	1	9		5
				8		7	9

	5	3	1	6	7	O	0	7	2	
	5	5	-7	U	/	O	J	i	<u> </u>	
	6	7	2	1	9	5	3	4	8	
•	1	9	8	3	4	2	<u>5</u>	6	7	
•	8	5	9	7	6	1	4	2	3	
		2	<u>/</u>	0	5		7	<u>2</u>		
•	4	<u> </u>	0	8)	3	/	9	1	
	7	Ĭ	3	9	2	4	8	<u>5</u>	6	
	9	6	1	5	3	7	2	8	4	
	2	8	7	4	1	9	6	<u>3</u>	5	
-	3	4	5	2	8	6	1	7	9	

Every column contains the numbers 1 to 9

5	3			7			
6			1	9	5		
	9	8				6	
8				6			3
4			8		3		1
7				2			6
	6						
			4	1	9		5
	·			8		7	9

Every 3×3 box contains the numbers 1 to 9

5	3			7			
6			1	9	5		
	9	8				6	
8				6			3
4			8		3		1
7				2			6
	6						
			4	1	9		5
				8		7	9

5	3	4	<u>6</u>	7	8	9	1	2
6	7	2	1	9	5	<u>3</u>	4	8
1	9	8	<u>3</u>	<u>4</u>	<u>2</u>	<u>5</u>	6	7
8	<u>5</u>	9	7	6	1	4	2	3
4	2	6	8	<u>5</u>	3	7	9	1
7	1	3	9	2	4	8	5	6
9	6	1	5	3	7	2	8	4
2	8	7	4	1	9	<u>6</u>	<u>3</u>	5
3	4	5	2	8	6	1	7	9

Checking Whether a Solution Is Correct

5	3			7			
6			1	9	5		
	9	8				6	
8				6			3
4			8		3		1
7				2			6
	6						
			4	1	9		5
				8		7	9

5	3	<mark>4</mark>	<u>6</u>	7	8	<mark>9</mark>	1	<u>2</u>
6	7	2	1	9	5	<u>3</u>	4	8
1	9	8	<mark>3</mark>	4	2	<mark>5</mark>	6	7
8	<u>5</u>	9	7	6	1	<mark>4</mark>	<u>2</u>	3
4	2	<u>6</u>	8	<u>5</u>	3	7	9	1
7	1	<u>3</u>	9	2	4	8	<u>5</u>	6
9	6	1	<u>5</u>	<u>3</u>	<mark>7</mark>	2	8	4
2	8	7	4	1	9	<u>6</u>	<u>3</u>	5
3	4	<u>5</u>	2	8	<u>6</u>	1	7	9

CheckSudokuSolution

Multidimensional Arrays

Occasionally, you will need to represent n-dimensional data structures. In Java, you can create n-dimensional arrays for any integer n.

The way to declare two-dimensional array variables and create two-dimensional arrays can be generalized to declare n-dimensional array variables and create n-dimensional arrays for n >= 3.

Multidimensional Arrays

Problem: Calculating Total Scores

Objective: write a program that calculates the total score for students in a class. Suppose the scores are stored in a three-dimensional array named <u>scores</u>. The first index in <u>scores</u> refers to a student, the second refers to an exam, and the third refers to the part of the exam. Suppose there are 7 students, 5 exams, and each exam has two parts-the multiple-choice part and the programming part. So, <u>scores[i][j][0]</u> represents the score on the multiple-choice part for the <u>i</u>'s student on the <u>i</u>'s exam. Your program displays the total score for each student.

Problem: Weather Information

Suppose a meteorology station records the temperature and humidity at each hour of every day and stores the data for the past ten days in a text file named weather.txt. Each line of the file consists of four numbers that indicate the day, hour, temperature, and humidity. Your task is to write a program that calculates the average daily temperature and humidity for the 10 days.

```
1 1 76.4 0.92
1 2 77.7 0.93
...
10 23 97.7 0.71
10 24 98.7 0.74
```

```
10 24 98.7 0.74
1 2 77.7 0.93
...
10 23 97.7 0.71
1 1 76.4 0.92
```

<u>Weather</u>

Problem: Guessing Birthday

Listing 4.3, GuessBirthday.java, gives a program that guesses a birthday. The program can be simplified by storing the numbers in five sets in a three-dimensional array, and it prompts the user for the answers using a loop.

GuessBirthdayUsingArray

编程练习题 11.13 交

8.27 (列排序)

使用下面的方法实现二维数组的列排序。返回一个新的数组,并且原数组保持不变。

public static double[][] sortColumns(double[][] m)

编写一个测试程序,提示用户输入一个3×3的double值的矩阵,显示一个新的每列排好序的矩阵。

下面是一个运行示例。

编程练习题 11.13 交

数独求解(九宫格)

输入描述:

输入9行,每行为空格隔开的9个数字,为0的地方就是需要填充的。

输出描述:

输出九行,每行九个空格隔开的数字,为解出的答案。