Amendments to the Claims:

The following listing of claims will replace all prior versions, and listings, of claims in the application:

1. (Currently Amended) An image generation system comprising:

a memory which stores a program and data for image generating; and
at least one processor which is connected to the memory and performs
processing for image generating,

the processor performing:

depth cueing only for an object positioned within a depth cueing <u>areavolume</u> such that the color of the object being more distant from a viewpoint is made closer to a target color, the depth cueing <u>areavolume</u> being defined as a partial subset of a viewing volume based on a position of the viewpoint and includes a backward clipping plane of the viewing volume;

varying an alpha (α) value of the object on condition that the object is positioned within the depth cueing <u>areavolume</u> so that the object being more distant from the viewpoint becomes more transparent;

varying a depth cueing value for each vertex of the object based on a Z-value for each vertex of the object;

varying the alpha value for each vertex of the object based on the Z-value for each vertex of the object;

sorting objects within the depth cueing areavolume so that the objects are drawn in succession starting from an object nearest to the viewpoint; and

drawing an image viewable from a virtual camera in an object space in drawing order determined by the sorting processing while performing hidden-surface erasing based on a Z-buffer process for the objects within the depth cueing areavolume,

wherein the processor performs processing so that the depth cueing value increases based on an increase in the Z-value, the depth cueing value being a parameter for determining the strength of the depth cueing effect that results in the color of the object being brought closer to the target color as the Z-value increases.

- (Previously Presented) The image generation system as defined in claim 1,
 the processor further performing:
 drawing a most distant background including a color different from the target
 color.
 - 3-9. (Canceled)
- 10. (Currently Amended) An image generation system comprising:

 a memory which stores a program and data for image generating; and
 at least one processor which is connected to the memory and performs
 processing for image generating,

the processor performing:

varying an alpha (α) value of an object depending on the distance between the object and a viewpoint only when the object is positioned within a depth cueing areavolume, the depth cueing areavolume being defined as a partial subset of a viewing volume based on a position of the viewpoint and includes a backward clipping plane of the viewing volume;

sorting objects within the depth cueing areavolume so that the objects are drawn in succession starting from an object nearest to the viewpoint; and

drawing an image viewable from a virtual camera in an object space in drawing order determined by the sorting processing while performing hidden-surface erasing based on a Z-buffer process for the objects within the depth cueing areavolume,

wherein the processor performs processing so that a depth cueing value

increases based on an increase in the Z-value, the depth cueing value being a parameter for determining the strength of the depth cueing effect that results in the color of the object being brought closer to the target color as the Z-value increases.

11. (Currently Amended) A computer readable information storage medium encoded with a computer program, the computer program comprising a processing routine for implementing:

depth cueing only for an object positioned within a depth cueing <u>areavolume</u> such that the color of the object being more distant from a viewpoint is made closer to a target color, the depth cueing <u>areavolume</u> being defined as a partial subset of a viewing volume based on a position of the viewpoint and includes a backward clipping plane of the viewing volume;

varying an alpha (α) value of the object on condition that the object is positioned within the depth cueing areavolume so that the object being more distant from the viewpoint becomes more transparent;

varying a depth cueing value for each vertex of the object based on a Z-value for each vertex of the object;

varying the alpha value for each vertex of the object based on the Z-value for each vertex of the object;

sorting objects within the depth cueing areavolume so that the objects are drawn in succession starting from an object nearest to the viewpoint; and

drawing an image viewable from a virtual camera in an object space in drawing order determined by the sorting processing while performing hidden-surface erasing based on a Z-buffer process for the objects within the depth cueing areavolume,

wherein the processing routine performs processing so that the depth cueing value increases based on an increase in the Z-value, the depth cueing value being a parameter

for determining the strength of the depth cueing effect that results in the color of the object being brought closer to the target color as the Z-value increases.

12. (Previously Presented) The computer readable information storage medium as defined in claim 11, further comprising a processing routine for implementing:

drawing a most distant background including a color different from the target color.

13-19. (Canceled)

20. (Currently Amended) A computer readable information storage medium encoded with a computer program, the computer program comprising a processing routine for implementing:

varying an alpha (α) value of an object depending on the distance between the object and a viewpoint only when the object is positioned within a depth cueing areavolume, the depth cueing areavolume being defined as a partial subset of a viewing volume based on a position of the viewpoint and includes a backward clipping plane of the viewing volume;

sorting objects within the depth cueing areavolume so that the objects are drawn in succession starting from an object nearest to the viewpoint; and

drawing an image viewable from a virtual camera in an object space in drawing order determined by the sorting processing while performing hidden-surface erasing based on a Z-buffer process for the objects within the depth cueing areavolume,

wherein the processing routine performs processing so that the depth cueing value increases based on an increase in the Z-value, the depth cueing value being a parameter for determining the strength of the depth cueing effect that results in the color of the object being brought closer to the target color as the Z-value increases.

21. (Currently Amended) An image generation method, performed by an image generation system having a processor, comprising:

depth cueing only for an object positioned within a depth cueing <u>areavolume</u> such that the color of the object being more distant from a viewpoint is made closer to a target color, the depth cueing <u>areavolume</u> being defined as a partial subset of a viewing volume based on a position of the viewpoint and includes a backward clipping plane of the viewing volume;

varying an alpha (α) value of the object on condition that the object is positioned within the depth cueing <u>areavolume</u> so that the object being more distant from the viewpoint becomes more transparent;

varying a depth cueing value for each vertex of the object based on a Z-value for each vertex of the object;

varying the alpha value for each vertex of the object based on the Z-value for each vertex of the object;

sorting objects within the depth cueing area so that the objects are drawn in succession starting from an object nearest to the viewpoint; and

drawing an image viewable from a virtual camera in an object space in drawing order determined by the sorting processing while performing hidden-surface erasing based on a Z-buffer process for the objects within the depth cueing areavolume,

wherein the depth cueing value increases based on an increase in the Z-value, the depth cueing value being a parameter for determining the strength of the depth cueing effect that results in the color of the object being brought closer to the target color as the Z-value increases, and the depth cueing, sorting and drawing steps are performed by the processor.

22. (Original) The image generation method as defined in claim 21, further comprising:

drawing a most distant background including a color different from the target

color.

23-26. (Canceled)

27. (Currently Amended) An image generation method, performed by an image generation system having a processor, comprising:

varying an alpha (α) value of an object depending on the distance between the object and a viewpoint only when the object is positioned within a depth cueing areavolume, the depth cueing areavolume being defined as a partial subset of a viewing volume based on a position of the viewpoint and includes a backward clipping plane of the viewing volume;

sorting objects within the depth cueing areavolume so that the objects is drawn sequentially from an object nearest to the viewpoint; and

drawing an image viewable from virtual camera in an object space in drawing order determined by the sorting processing while performing hidden-surface erasing based on Z-buffer process for the objects within the depth cueing areavolume,

wherein the depth cueing value increases based on an increase in the Z-value, the depth cueing value being a parameter for determining the strength of the depth cueing effect that results in the color of the object being brought closer to the target color as the Z-value increases, and the varying and drawing steps are performed by the processor.

28-33. (Canceled)