— Plano de Ensino 2025.1 —

Código	DCC638
Disciplina	Introdução à Lógica Computacional
Professor	Haniel Barbosa
Horário	2a/4a 14:55-16:35 (EC)
Horário	2a/4a 17:00-18:40 (TC/CC)
Sala	Sala 2009, ICEx

Programa.

Aula	Data	Conteúdo
	10/03 (Seg)	Recepção dos calouros
_	12/03 (Qua)	Recepção dos calouros
1	17/03 (Seg)	Introdução ao curso & Lógica Proposicional (Parte 1)
$\stackrel{-}{2}$	19/03 (Qua)	Lógica Proposicional (Parte 2)
3	24/03 (Seg)	Lógica Proposicional (Parte 3)
4	26/03 (Qua)	Resolução de problemas via SAT
5	31/03 (Seg)	Lógica de Predicados (Parte 1)
6	02/04 (Qua)	Lógica de Predicados (Parte 2)
7	07/04 (Seg)	Lógica de Predicados (Parte 3)
8	09/04 (Qua)	Demonstrações e Regras de Inferência (Parte 1)
9	14/04 (Seg)	Demonstrações e Regras de Inferência (Parte 2)
10	16/04 (Qua)	Demonstrações: Dedução Natural
_	21/04 (Seg)	Feriado: Tiradentes
11	23/04 (Qua)	Reserva/Revisão
12	26/04 (Sab)	Prova 1
13	$28/04 \; (Seg)$	Métodos de Demonstração (Parte 1)
14	$30/04 \; (Qua)$	Métodos de Demonstração (Parte 2)
15	05/05 (Seg)	Teoria dos Conjuntos (Parte 1)
16	$07/05 \; (Qua)$	Teoria dos Conjuntos (Parte 2)
17	$12/05 \; (Seg)$	Funções e Sequências
18	$14/05 \; (Qua)$	Cardinalidade de Conjuntos
19	$19/05 \; (Seg)$	Indução matemática
20	$21/05 \; (Qua)$	Indução forte e boa ordenação
21	$26/05 \; (Seg)$	Definições recursivas e Indução Estrutural
22	$28/05 \; (Qua)$	Reserva/Revisão
23	31/05 (Sab)	Prova 2
24	$02/06 \; (Seg)$	Algoritmos recursivos
25	$04/06 \; (Qua)$	Álgebra Booleana (Parte 1)
26	$09/06 \; (Seg)$	Álgebra Booleana (Parte 2)
27	$11/06 \; (Qua)$	Circuitos Lógicos (Parte 1)
28	$16/06 \; (Seg)$	Circuitos Lógicos (Parte 2)
29	$18/06 \; (Qua)$	Reserva/Revisão
30	21/06 (Sab)	Prova 3
_	$23/06 \; (Seg)$	Prova substitutiva
_	25/06 (Qua)	Sem aula
	$30/06 \; (Seg)$	Exame Especial

Bibliografia.

- Matemática Discreta e Suas Aplicações (6a Edição). Kenneth H. Rosen McGraw Hill (2009)
- How to Prove It: A Structured Approach. Daniel J. Velleman. 2nd Edition. Cambridge. University Press.

Material de apoio. https://hanielb.github.io/2025.1-ilc/

Avaliações.

Prova 1	30	26/04
Prova 2	30	31/05
Prova 3	30	21/06
Listas de exercício	10	