Übung zu Deep Learning, SoSe 21

Tutorial 02: Mathematical Background

Pavlo Mospan and Anastasia Karsten

24.04.2021

1 Linear Algebra

1.1 Multiple Transpositions

Task: Simplify $(A^T)^T$. Justify your solution for instance using the index notation of matrices!

Solution: The transpose of a matrix is an operator which flips a matrix over its diagonal; that is, it switches the row (i) and column (j) indices of the matrix: $A_{ij} = (A^T)_{ji}$

The (j,i)-entry of A^T is the (i,j)-entry of A, so the (i,j)-entry of $(A^T)^T$ is the (j,i)-entry of A^T , which is the (i,j)-entry of A. Thus all entries of $(A^T)^T$ coincide with the corresponding entries of A.

So, the transpose of A is A, i.e. $(A^T)^T = A$

1.2 Transposing a Matrix Product 2

Task: Show that $(AB)^T = B^T A^T$ for a matrices $A \in R^{m \times n}$ and $B \in R^{n \times p}$. What can be said about the dimensions of $(AB)^T$?

Solution:

Option 1: If
$$A = \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix}$$
 and $B = \begin{vmatrix} 1 & 0 \\ 2 & -1 \end{vmatrix}$, then the product $(AB) = \begin{vmatrix} 5 & -2 \\ 11 & -4 \end{vmatrix}$.

And the transpose of (AB) is:
$$(AB)^T = \begin{vmatrix} 5 & 11 \\ -2 & -4 \end{vmatrix}$$
.

If we take the transpose of A and B separately and multiply A with B, then we have:

$$B^{T}A^{T} = \begin{vmatrix} 1 & 2 \\ 0 & -1 \end{vmatrix} \begin{vmatrix} 1 & 3 \\ 2 & 4 \end{vmatrix} = \begin{vmatrix} 5 & 11 \\ -2 & -4 \end{vmatrix}$$
. So, $(AB)^{T} = B^{T}A^{T}$

Option 2: We can show, that $((AB)_{ij})^T = (\sum_{l=1}^n a_{il}b_{lj})^T = \sum_{l=1}^n b_{jl}a_{li}$

Answer to the second question: Dimensions of $(AB)^T \in \mathbb{R}^{p \times m}$

1.3 Brackets in Matrix Multiplications

Task 1: How many operations (additions or multiplications of scalars) does a trivial implementation of a matrix multiplication AB with $A \in R^{m \times n}$ and $B \in R^{n \times p}$ need?

Solution: Multiplications: n * m * p. Additions: (n-1) * (m * p)

Task 2: How many operations does (AB)C with $A \in R^{16\times 2}$, $B \in R^{2\times 4}$ and $C \in R^{4\times 8}$ need? Use the associative property of the matrix multiplication to find the fastest solution.

Solution: Associative property of the matrix multiplication : (AB)C = A(BC)

Let's calculate for (AB)C.

MULT:
$$AB = 2 * 16 * 4 = 128$$
. $(AB)C = 4 * 16 * 8 = 512$. MULT Total: **640**

ADD:
$$AB = 16 * 4 = 64$$
. $(AB)C = 3 * 16 * 8 = 384$. ADD Total: **448**

Let's calculate for A(BC).

MULT:
$$BC = 4 * 2 * 8 = 64$$
. $A(BC) = 2 * 16 * 8 = 256$. MULT Total: **320**

ADD:
$$BC = 3 * 2 * 8 = 48$$
. $A(BC) = 16 * 8 = 128$. ADD Total: 176

The fastest solution will take 320 multiplications, 176 additions

2 Differential Calculus

2.1 Quotient Rule

Task: Derive the Quotient rule

$$f(x) = \frac{g(x)}{h(x)} \to \frac{d}{dx}f(x) = \frac{h(x)\frac{d}{dx}g(x) - g(x)\frac{d}{dx}h(x)}{h(x)^2}$$

using the chain rule and the product rule of differentiation.

Solution:

$$\frac{d}{dx}\frac{g(x)}{h(x)} = \frac{d}{dx}(g(x)h(x)^{-1})$$

$$= \frac{d}{dx}g(x)h(x)^{-1} + g(x)(-1)h(x)^{-2}\frac{d}{dx}h(x)$$

$$= \frac{\frac{d}{dx}g(x)}{h(x)} - \frac{g(x)\frac{d}{dx}h(x)}{h(x)^2}$$

$$= \frac{\frac{d}{dx}g(x)h(x)}{h(x)^2} - \frac{g(x)\frac{d}{dx}h(x)}{h(x)^2}$$

$$= \frac{\frac{d}{dx}g(x)h(x) - g(x)\frac{d}{dx}h(x)}{h(x)^2}$$

$$= \frac{\frac{d}{dx}g(x)h(x) - g(x)\frac{d}{dx}h(x)}{h(x)^2}$$

2.2 Derivative of the Sigmoid Function

Task: Derive the so-called sigmoid function

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

and express the derivative in terms of $\sigma(x)$.

$$\frac{d}{dx}\sigma(x) = \frac{d}{dx}\left(\frac{1}{1+e^{-x}}\right)$$

$$= \frac{(1+e^{-x})\frac{d}{dx}(1) - (1)\frac{d}{dx}(1+e^{-x})}{(1+e^{-x})^2}$$

$$= \frac{(1+e^{-x})(0) - (1)(-e^{-x})}{(1+e^{-x})^2}$$

$$= \frac{e^{-x}}{(1+e^{-x})^2}$$

$$= \frac{-1+1+e^{-x}}{(1+e^{-x})^2}$$

$$= \frac{1+e^{-x}}{(1+e^{-x})^2} - \frac{1}{(1+e^{-x})^2}$$

$$= \frac{1}{(1+e^{-x})} - \frac{1}{(1+e^{-x})^2}$$

$$= \frac{1}{(1+e^{-x})}(1-\frac{1}{(1+e^{-x})})$$

$$= \sigma(x)(1-\sigma(x))$$

2.3 Applying Gradients

Task: Calculate the gradient of the function

$$f(x) = x_1 + x_2$$

For a given point **a**, by how much does the value of **f** change, if we change **a** by a magnitude of $\varepsilon(0 < \varepsilon \ll 1)$ in the direction of the gradient, i.e., calculate

$$\Delta = f(\mathbf{a} + \epsilon) - f(\mathbf{a})$$

with

$$\epsilon = \varepsilon \frac{\nabla f(x)|_{x=a}}{\|\nabla f(x)|_{x=a}\|_2}$$

Compare this to a change of **a** with magnitude of ε in the direction of x_1 or x_2 . How can the difference be explained qualitatively?

Solution: Let's find out ϵ :

 $\nabla f(x)|_{x=a}$ is a vector of first order partial derivatives : $\nabla f(x) = \left[\frac{df}{dx_1}; \frac{df}{dx_2}\right] = [1;1]$ $\|\nabla f(x)|_{x=a}\|_2$ is l^2 norm of a vector of 1st order partial derivatives $\Rightarrow \|\nabla f(x)\|_2 = \sqrt{2}$ So, $\epsilon = \varepsilon \frac{(1;1)}{\sqrt{2}} = \varepsilon \frac{1}{\sqrt{2}}$

Thereof

$$\Delta = f(\mathbf{a} + \varepsilon \frac{1}{\sqrt{2}}) - f(\mathbf{a})$$

 Δ is changes by the magnitude of ε