Introduction to bioinformatics (NGS data analysis)

Alexander Jueterbock

June 2016

Got your sequencing data - now, what to do with it?

- File size: several Gb
- Number of lines: >1,000,000

```
@MO2443:17:000000000-ABPBW:1:1101:12675:1533 1:N:0:1
TCGATAATTCTTACTTTCTCTCTGGTCTGAGCGTTTCACATCAACGACAAGCTCGA
TTTTTTTTTTTTTTTTT
8B6-@-,CFFED9CFAE@@C6;@,CFEEF9<@6FGGF9F<CC,,CB,@::8CF,6+
,,3733>>00,,,3880,,8*,773333,3,333738,*,,,,,76,,2,,2
0*).1.))(0*)***
@MO2443:17:000000000-ABPBW:1:1101:18658:1535 1:N:0:1
TCCCTAATTCTCTGTCTTCAAATTTTCCTTCTAAATCGTCCCTCGTTTCTACCT
TTTTCTTCTTTTTCT
-<<9-@CCEF9CE-<,,,,,;,,<C,=,6,C9,C<=C,,,;,86C,6:C,,,;<;,,
,,,,5,5:,,9++4,,,:,,,,,,,,38,853,5,,3,,7,,,6,,,,,7,,,,
+0.()+++)11.*)*
                                    4 日 ) 4 間 ) 4 目 ) 4 目 ) 目
```

 Background
 Primary analysis
 Secondary analysis
 Tertiary analysis
 Plan
 References

 ●0000
 000000000000000
 00000000
 0
 0
 0

Before library preparation

What you need to know to steer your way through the analysis

- Research question
 - Identify adaptive genes
 - *De novo* genome assembly
 - Population genetic structure
 - Phylogenetic relation
- Experimental design
 - Number of individuals
 - Treatment of samples (e.g. heat stress)
- Sample collection
 - Samples degraded (e.g. stored in Formalin)
 - Tissue (reproductive, vegetative)

Library preparation

- DNA-seq, RNA-seq, Bis-Seq, Chip-Seq...
 - RNA reads (which lack introns) require splice-aware mappers.
 - Bis-seq changes GC ratio (bisulphite converts cytosine to uracil, but leaves 5-methylcytosine unaffected)
 - Chip-Seq enriches binding-sites of DNA-associated proteins
- Pooled samples?
 - Demultiplexing
 - Remove barcodes
- Adapter sequences that have to be trimmed off?
- Targeted coverage

Single- or Paired end sequencing, read length

Background

00000

Library fragment

Adapter
Flowcell/bead binding sequences
Amplification primers
Sequencing primers

Barcodes

Adapter Flowcell/bead binding sequences Amplification primers Sequencing primers

Barcodes

Single- or paired-end sequencing, read length - why does it matter

Expected read lengths and sequencing qualities for common sequencing platforms

Platform	Max. length	Reads/run	Consideration
Illumina	2×150	5 billion	
HiSeq series			
Illumina	2x300	25 million	
MiSeq series			
Illumina			
NextSeq series	2×150	400 million	
Roche 454	700	0.7 million	High error rate

Primary analysis

- Demultiplexing
- Adapter trimming
- Quality control

AATTANNNNNNNNNNNNNN	File 1
AGTCGNNNNNNNNNNNNNNN	File 2
AGTCGNNNNNNNNNNNNNNN	File 2
GCCATNNNNNNNNNNNNNNN	File 3
AATTANNNNNNNNNNNNNN	File 1
GCCATNNNNNNNNNNNNNNN	File 3
AGTCGNNNNNNNNNNNNNN	File 2

Trimmig: Adapter removal

Background

Mostly 3'adapters disturb assembly and alignment

GATTTGGGGTTCAANNNNNNNATTAGTATCGAT

GATTTGGGGTTCAANNNNNNNATTAGTATCGAT

TTGGGGTTCAANNNNNNNATTAGTATCGAT

GATTTGGGGTTCAANNNNNNNNNNNATTAGTATCGAT

ATTTGGGGTTCAANNNNNNNATTAGTATCGAT

GATTTGGGGTTCAANNNNNNNNNNNATTAGTATCGAT

Fastq file - 4 lines for each read

```
@HWI-ST141_0365:2:1101:2983:2114#TTAGGC/1
GATTTGGGGTTCAAATTAGTATCGATCAAATAGTAAATCCATTTGTTCAACTC
+
!''*((((***+))%%%++)(%%%%).1***-+*''))**55CCF>>>>>CC
```

- sequence id (specifications can differ slightly between sequencing platforms)
 - = @=instrument name : flowcell lane : tile number: flowcell x coordinate : flowcell y coordinates : #barcode sequence: pair number for paired-end sequencing
- 2 sequence

- 3 + optionally followed by sequence identifier again
- 4 quality scores

Trimmig of low-quality bases

- Trim bases with a Phred quality score <20
- $Quality = -10 * log_{10}P$

Phred Score	Probability of incorrect base	Base call accuracy
10	1 in 10	90%
20	1 in 100	99%
30	1 in 1000	99.9%

Fastq file contains both sequence reads and base quality scores

```
Fastq file

@SEQ_ID

GATTTGGGGTTCAAATTAGTATCGATCAAATAGTAAATCCATTTGTTCAACTC
+
!''**(((***+))%%++)(%%%%).1***-+*''))**55CCF>>>>>CC

Fasta file

>SEQ_ID

GATTTGGGGTTCAAATTAGTATCGATCAAATAGTAAATCCATTTGTTCAACTC
```

Base qualities are encoded in ascii format

Background

ASCII stands for American Standard Code for Information Interchange. An ASCII code is the numerical representation for a character.

Dec	Нх	Oct	Cha	r	Dec	Нх	Oct	Html	Chr	Dec	Нх	Oct	Html	Chr	Dec	: Hx	Oct	Html Cr	nr
0	0	000	NUL	(null)	32	20	040		Space	64	40	100	@	0	96	60	140	`	*
1	1	001	SOH	(start of heading)	33	21	041	6#33;	1	65	41	101	a#65;	A	97	61	141	6#97;	a
2	2	002	STX	(start of text)	34	22	042	6#34;	"	66	42	102	a#66;	В	98	62	142	6#98;	b
3	3	003	ETX	(end of text)				6#35;					a#67;					6#99;	C
4	4	004	EOT	(end of transmission)				6#36;					D					d	
5				(enquiry)	37	25	045	6#37;	*				E					6#101;	
6				(acknowledge)	38	26	046	6#38;	6				6#70;					6#102;	
7	7	007	BEL	(bell)				6#39;					6#71;					6#103;	
8	8	010	BS	(backspace)				6#40;					6#72;					6#104;	
9	9	011	TAB	(horizontal tab)	41	29	051	6#41;)	73	49	111	6#73;	I	105	69	151	6#105;	i
10	A	012	LF	(NL line feed, new line)	42	2A	052	6#42;	*	74	4A	112	6#74;	J	106	6A	152	a#106;	j
11	В	013	VT	(vertical tab)	43	2B	053	6#43;	+	75	4B	113	6#75;	K	107	6B	153	6#107;	k
12	С	014	FF	(NP form feed, new page)	44	20	054	6#44;	,	76	4C	114	6#76;	L	108	6C	154	6#108;	1
13	D	015	CR	(carriage return)	45	2D	055	6#45;	- '	77	4D	115	6#77;	M	109	6D	155	6#109;	m
14	Ε	016	SO	(shift out)	46	2E	056	6#46;		78	4E	116	6#78;	N	110	6E	156	6#110;	n
15	F	017	SI	(shift in)	47	2F	057	6#47;	/	79	4F	117	6#79;	0	111	6F	157	6#111;	0
16	10	020	DLE	(data link escape)	48	30	060	6#48;	0	80	50	120	6#80;	P	112	70	160	6#112;	p
17	11	021	DC1	(device control 1)	49	31	061	6#49;	1	81	51	121	6#81;	Q	113	71	161	6#113;	q
18	12	022	DC2	(device control 2)	50	32	062	6#50;	2	82	52	122	6#82;	R	114	72	162	6#114;	r
19	13	023	DC3	(device control 3)	51	33	063	6#51;	3	83	53	123	6#83;	S	115	73	163	6#115;	8
20	14	024	DC4	(device control 4)	52	34	064	6#52;	4	84	54	124	6#84;	T	116	74	164	a#116;	t
21	15	025	NAK	(negative acknowledge)	53	35	065	6#53;	5	85	55	125	6#85;	U	117	75	165	6#117;	u
22	16	026	SYN	(synchronous idle)	54	36	066	6#54;	6	86	56	126	V	٧	118	76	166	6#118;	v
23	17	027	ETB	(end of trans. block)	55	37	067	6#55;	7	87	57	127	6#87;	W	119	77	167	6#119;	w
24	18	030	CAN	(cancel)	56	38	070	6#56;	8	88	58	130	X	Х	120	78	170	6#120;	x
25	19	031	EM	(end of medium)	57	39	071	6#57;	9	89	59	131	6#89;	Y	121	79	171	6#121;	Y
26	1A	032	SUB	(substitute)	58	ЗА	072	6#58;	:	90	5A	132	6#90;	Z	122	7A	172	6#122;	Z
27	1B	033	ESC	(escape)	59	ЗВ	073	6#59;	;	91	5B	133	6#91;	- [123	7B	173	6#123;	-{
28	1C	034	FS	(file separator)	60	3C	074	a#60;	<	92	5C	134	6#92;	A.	124	7C	174	6#124;	-1
29	1D	035	GS	(group separator)	61	ЗD	075	a#61;	-	93	5D	135	6#93;	1	125	7D	175	6#125;)
30	1E	036	RS	(record separator)	62	ЗE	076	6#62;	>	94	5E	136	6#94;	À	126	7E	176	a#126;	
31	1F	037	US	(unit separator)	63	ЗF	077	?	2	95	5F	137	@#95;	_	127	7F	177		DEL
													٠.				I aak	un Tables	

Base qualities are encoded in ascii format

Background

ASCII stands for American Standard Code for Information Interchange. An ASCII code is the numerical representation for a character.

<u>Dec</u>	Нх	Oct	Html	Chr
32	20	n4n	a#32;	Space
			6#33;	_
			 4 ;	
			#	
36	24	044	\$	ş
37	25	045	%	윻

ASCII encodings of sequencing platforms

Background

```
!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^ `abcdefghijk
33
              59
                                       104
    0.2......41
        Phred+33,
                raw reads typically (0, 40)
S - Sanger
X - Solexa
          Solexa+64, raw reads typically (-5, 40)
I - Illumina 1.3+ Phred+64, raw reads typically (0, 40)
J - Illumina 1.5+ Phred+64, raw reads typically (3, 40)
  with 0=unused, 1=unused, 2=Read Segment Quality Control Indicator (bold)
  (Note: See discussion above).
L - Illumina 1.8+ Phred+33, raw reads typically (0, 41)
```

Figure: Quality score encodings

Quality control tool: FastQC

Informs on:

- Base quality
- Duplication
- Overrepresentation of sequences
 - contamination?
 - adapters?
- GC content (should be around 50%, in Bis-Seq lower)

Quality before trimming

Figure: Base-quality generally decreases with increasing sequencing length

Quality after trimming

Figure: Quality after trimming

Sequence bias

Background

For example in:

- First bases of Illumina RNAseq due to 'random' hexamer primers for reverse transcription
- RADseq fragments (cutting sites)

Hexamer primers for cDNA synthesis cause sequence bias

 Primary analysis
 Secondary analysis
 Tertiary analysis
 Plan
 References

 0000000000000
 0000000000000
 0
 0
 0
 0

PCR Duplicates

Background

Duplicates are generally removed in quantitative analyses (e.g. RNA-seq)

Figure: Duplication levels (FastQC output)

De novo assembly

Task: Look for overlapping regions and create contigs (contiguous sequences)

- Genome assembly software
 - SOAP de NOVO
 - Velvet
 - MIRA (we use this one in the course)
- Transcriptome assembly software
 - Review: Martin and Wang, (2011)
 - Trinity
 - MIRA

De novo assembly: Step by step

De novo assembly: The N50 metric

N50 is a single measure of the contig length size distribution in an assembly

- Sort contigs in descending length order
- Size of contig above which the assembly contains at least 50% of the total length of all contigs

Figure: From Kane, N.C.

Mapping against reference genome/transcriptome

Main purposes:

Background

Identify variants (SNPs, InDels)

Mapping against reference genome/transcriptome

- Main purposes:
 - Quantify gene expression

Population 1

Population 2

Mapping: global alignment

Background

- Implemented in e.g. BWA, Bowtie2
- Needleman-Wunsch algorithm
- Aligns sequences in their full length
- Used for multiple sequence alignment when sequences are similar

Figure: Global alignment from rosalind.info

Mapping: local alignment

Background

- Smith-Waterman algorithm
- Clipping of terminal unmatched bases
- Only aligned bases contribute to the alignment's score
- Used to target smaller portions of genes with high similarity

```
\label{tccAGTTATGTCAGgggacacgagcatgcagagac} \texttt{|||||||||||} \texttt{aattgccgccgtcgttttcagCAGTTATGTCAGatc}
```

Figure: Local alignment from rosalind.info

Splice-aware alignment of RNAseq reads to the genome

Figure: Adapted from Haas and Zody, (2010)

Mapping: SAM/BAM files example

Background

Output format of most alignment programs

- Header lines preceded by @
- One tab-delimited line per read

Figure: Example from http://samtools.sourceforge.net/SAM1.pdf

- SAM files are large
- BAM: Compressed binary versions, not human-readable

Mapping: Mandatory fields in SAM files

Background

Col	Field	Type	Regexp/Range	Brief description
1	QNAME	String	[!-?A-~]{1,255}	Query template NAME
2	FLAG	$_{ m Int}$	[0,2 ¹⁶ -1]	bitwise FLAG
3	RNAME	String	* [!-()+-<>-~][!-~]*	Reference sequence NAME
4	POS	Int	[0,2 ³¹ -1]	1-based leftmost mapping POSition
5	MAPQ	Int	[0,2 ⁸ -1]	MAPping Quality
6	CIGAR	String	* ([0-9]+[MIDNSHPX=])+	CIGAR string
7	RNEXT	String	* = [!-()+-<>-~][!-~]*	Ref. name of the mate/next read
8	PNEXT	$_{ m Int}$	[0,2 ³¹ -1]	Position of the mate/next read
9	TLEN	Int	[-2 ³¹ +1,2 ³¹ -1]	observed Template LENgth
10	SEQ	String	* [A-Za-z=.]+	segment SEQuence
11	QUAL	String	[!-~]+	ASCII of Phred-scaled base QUALity+33

Explanation of the flag field (click here: Link1, Link2)

Mapping: Easy decoding of SAM flags

Mapping: CIGAR string in SAM files

Op	BAM	Description
M	0	alignment match (can be a sequence match or mismatch)
I	1	insertion to the reference
D	2	deletion from the reference
N	3	skipped region from the reference
S	4	soft clipping (clipped sequences present in SEQ)
H	5	hard clipping (clipped sequences NOT present in SEQ)
P	6	padding (silent deletion from padded reference)
=	7	sequence match
X	8	sequence mismatch

Mapping: CIGAR string example

Background

```
RefPos: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Ref: C C A T A C T G A A C T G A C T
Read: A C T A G A A T G G C T
```

CIGAR: 3M1I3M1D5M

Variant calling

Background

Consistent mismatches in the alignment indicate:

- Single Nucleotide Polymorphisms (SNPs)
- Insertions/Deletions (InDels)

References

VCF file format

Background

Variant call format

- described in http://www.1000genomes.org/node/101
- informs on location and quality of each SNP

VCF file information

Background

Figure: VCF file info from http://vcftools.sourceforge.net/VCF-poster.pdf

Phased alleles are on the same chromosome strand

VCF file information

Background

Figure: VCF file info from http://vcftools.sourceforge.net/VCF-poster.pdf

Phased alleles are on the same chromosome strand

Identified SNPs vary between programs/algorithms

Background

Venn diagram of the number of SNPs (coverage >400) called with four programs from the same alignment file (ddRAD tags mapped against the genome of Guppy).

Differential gene expression analysis

Background

Figure: Log2 fold-change of expression over the mean of counts normalized by size factors. Differentially expressed genes (p<0.1) are red.

From the DESeq2 R package documentation

Clustering

Figure: Multivariate grouping of stressed (W) and control (C) seagrass samples. Most variation is explained by the first principle component

Background Primary analysis Secondary analysis Tertiary analysis Plan References

○○○○

○○○○○○○○○○○○○○○

○○◆○○○○

○

Visualizing differential expression

Figure: Heatmap of functions that were differentially expressed between Atlantic and Mediterranean seagrass samples.

Outlier analysis

Background

Based on Vitti et al., (2012)

Outlier detection

Background

Eukaryote genome annotation

Identify the strcuture and functional role

Gene ontologies

Figure: GO terms of unigenes in a moth genome

(Jacquin-Joly et al., 2012)

Cloud of GO term enrichments

mitocoolid mentione operations
establisme of politic biological mentione operations
the continue of politic biological mentione operations
flavor containing compand biosynthesis, politication bit the mentiodisc process
flavor containing compand biosynthesis, politication bit the amount of the politication of the containing containing politication of the containing politication of the politication of the

response to stimulus

cell wall organization or biogenesis cell wall modification callular carbohydrate biosynthetic proces. Proceedings of the control of the cont

Figure: Term cloud of heat-responsive functions in seagrass

Bioinformatics-Practical

Background

- Unix Tools (Martin)
- Trimming and Quality Control (Martin)
- Genome Assembly (Alexander)
- Mapping and Variant Calling (Martin)

References

Background

- Haas, BJ and MC Zody (2010). "Advancing RNA-seq analysis". In: *Nature biotechnology* 28.5, pp. 421–423.
- Hansen, KD, SE Brenner, and S Dudoit (2010). "Biases in Illumina transcriptome sequencing caused by random hexamer priming". In: Nucleic acids research 38.12. e131–e131.
- Jacquin-Joly, E, F Legeai, N Montagné, C Monsempes, MC François, J Poulain, et al. (2012). "Candidate chemosensory genes in female antennae of the noctuid moth Spodoptera littoralis". In: *International journal of biological sciences* 8.7, p. 1036.
- Martin, J and Z Wang (2011). "Next-generation transcriptome assembly". In: *Nature Reviews Genetics*.
- Vitti, JJ, MK Cho, SA Tishkoff, and PC Sabeti (2012). "Human evolutionary genomics: ethical and interpretive issues". In: *Trends in Genetics* 28.3, pp. 137–145.

Plan

References