Laboratório 4

Medidas em Circuitos RLC Paralelo

Alunos: João Victor Rodrigues Galvão e Joelder Victor Antonino Aguiar Grupo 11

Valores dos componentes para cada Grupo.

Grupo	L (mH)	C (nF)
1	2,7	6,8
2	5,4	5,6
3	1,4	2,2
4	2,7	4,7
5	2,7	2,2
6	5,4	1,0
7	1,4	4,7
8	2,7	2,2
9	2,7	1,0
10	5,4	3,3
11	1,4	5,6
12	2,7	1,0

Proposta:

1. Para o circuito da figura 1, supondo que a resistência interna da fonte (r) seja de 50Ω , determine o valor de R para que o circuito seja criticamente amortecido;

Figura 1. Resposta natural de circuito RLC paralelo. Para as simulações, ajuste o gerador de onda quadrada para uma frequência correspondente a $\frac{1}{50RC}$.

- 2. Para o valor de *R*, calculado (*item anterior*):
 - a) Determine em que instante (t_m) a função atinge o valor máximo (ou mínimo);
 - b) Determine o valor da tensão neste instante: $v(t=t_m)$;
 - c) Faça um esboço do gráfico;
 - d) No laboratório, obtenha os valores calculados através de simulação (PSpice);
 - e) No laboratório, monte o circuito em protoboard e efetue as medidas de t_m e de $v(t=t_m)$.

Circuito

Gráfico

Zoom no ponto de máximo