

PATENT ABSTRACTS OF JAPAN

(11) Publication number:

00058777 A

(43) Date of publication of application: 25. 02 . 00

(51) Int. CI

H01L 27/108 H01L 21/8242

(21) Application number: 10363259

(22) Date of filing: 21 . 12 . 98

(30) Priority:

12 . 08 . 98 KR 98

9832638

(71)Applicant

SAMSUNG ELECTRONICS CO

LTD

(72) Inventor:

RI SHOKO

KIN EIKAN RI SOMIN SAI JOSAI

(54) CAPACITOR COMPRISING ALUMINA/ALUMINUM NITRIDE COMPOSITE DIELECTRIC FILM FORMED BY ATOMIC LAYER VAPOR-DEPOSITION METHOD, AND ITS MANUFACTURE

(57) Abstract:

PROBLEM TO BE SOLVED: To trigger no chemical reaction even when a conductive polysilicon is used as a lower part electrode in succession in a semiconductor DRAM process, by forming a composite dielectric film comprising an alumina layer and an aluminum nitride layer on the upper part of a conductive layer with a pattern by an atomic layer vapor-deposition method.

SOLUTION: A silicon oxide film 101 is formed on a semiconductor substrate 100 first, and a storage polysilicon 102 is formed as a lower part electrode constituting a charge storage capacitor, over which an alumina 103 is formed by an atomic layer vapor-deposition method. Being amorphous, the alumina film is excellent in step coverage, almost to 100%. Then the alumina layer 103 and an aluminum

nitride layer 104 are repeatedly formed by the atomic layer vapor-deposition method in situ, forming an Al2O3/AlN composite dielectric thin film 115, over which a doped polysilicon is vapor-deposited to form the upper electrode of a DRAM capacitor.

COPYRIGHT: (C)2000, JPO 101-100 102

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開2000-58777

(P2000-58777A)

(43)公開日 平成12年2月25日(2000.2.25)

(51) Int.CL.

識別配号

FΙ

テーマコード(参考)

H01L 27/108 21/8242 H01L 27/10

651

5F083

審査請求 未請求 請求項の数19 OL (全 9 頁)

(21)出顧番号 特顧平10-383259

(22)出願日

平成10年12月21日(1998.12.21)

(31)優先権主張番号

S号 98P32638

(32)優先日

平成10年8月12日(1998.8.12)

(33)優先權主張国 韓国(KR)

(71)出願人 390019839

三星電子株式会社

大韓民国京畿道水原市八達区梅灘洞416

(72)発明者 李鑑翰

大韓民国京畿道軍沿市山峰洞領東アパート

966椋604号

(72)発明者 金栄寛

大韓民国京畿道城南市盆唐区瑞▲けん▼福

87番地ハンシンアパート112棟1501号

(74)代理人 100072349

弁理士 八田 幹雄 (外3名)

最終頁に続く

(54) 【発明の名称】 原子唇蒸着方法で形成したアルミナノアルミニウムナイトライド複合誘電体験を持つキャパシタ とその製造方法

(57)【要約】

【課題】 半導体装置及びその製造方法に関し、特にS IS 構造の電極形態を持つ、固有全体障膜を具備したD RAMキャパシタ及びその製造方法を提供する。

【解決手段】 本発明の半導体装置は、原子圏蒸着(ALD)方式を利用し、アルミナ/アルミニウムナイトライド(ALO、/ALN)又は、アルミニウムナイトライド(ALN/ALON)の複合誘電体滞膜を電極間誘電体物質で形成することにより、導電性ポリシリコンをキャバシタ電極に使用しても、電極との置換等、化学的反応を起こすことがなく、良好なステップカバーリッジを持ち、薄膜内の残留問題を最小化した高誘電体薄膜を具備するDRAMキャパンタを具現する。また、これと同様に、本発明のDRAM電荷蓄積用キャパシタは、良好な酸化力と優秀な絶縁特性を持つ。

【特許請求の範囲】

【請求項】】 半導体基板上に導電層を形成する段階: 上記の導電層を各セル単位で限定にされるようにバターンニングし、導電層バターンを形成する段階:上記のバターン形成された導電層上部に原子層蒸着(ALD)方式でアルミナ(AI,O。)層とアルミニウムナイトライド(AIN)層の複合誘電体膜を形成する段階:および上記複合誘電体膜上部に導電層を形成する段階を具備すること特徴とするDRAMキャバシタ製造方法。

【請求項2】 上記の複合誘電体膜を形成する段階は、トリメチルアルミニウム(TMA)をソースガスとして基板温度を300~450℃に維持し、原子層蒸着(ALD)方式でアルミナ層とアルミニウムナイトライド層を交代で反復し、複合誘電体膜を形成する段階を含む請求項1に記載のDRAMキャバシタ製造方法。

【請求項3】 上記の複合誘電体膜を形成する段階は、アルミニウムクロライドをソースガスとし、基板温度を450~600℃に維持し、原子層蒸着(ALD)方式でアルミナ層とアルミニウムナイトライド層を交代で反復して複合誘電体膜を形成する段階を含む請求項1に記 20載のDRAMキャパシタ製造方法。

【請求項4】 上記の複合誘電体腺を形成する段階は、 選定されたソースガス流入順序により、原子層蒸着(A LD)方式でアルミナ層とアルミニウムナイトライド層 を交代で反復し、所定の厚さの複合誘電体腺を形成する 段階を含む請求項1に記載のDRAMキャパシタ製造方法。

【請求項5】 上記の選定されたソースガス流入順序は、トリメチルアルミニウム(TMA)ソースとH。Oソース及び、NH。ソースを所定の時間の間、ガスバルス形態で流入させ、上記のTMAソース流入、H。Oソース流入及び、NH。ガスソース流入の中間にパージのための不活性気体を流入させる請求項4に記載のDRAMキャパシタ製造方法。

【請求項6】 上記のアルミニウムナイトライド層と上記のアルミナ膜の複合誘電膜を交代で形成する段階は、TMAソース、パージ、H₂Oソース、パージ、TMAソース、パージ、NH₂ソース及び、パージの8段階を単位サイクルとし、上記の単位サイクルを反復する回数によって上記の所定の厚さを調節する請求項4に記載の 40 DRAMキャパンタ製造方法。

【請求項7】 上記の選定されたソースガス流入順序は、アルミニウムクロライド(AIC 1。)ソースとH。 〇ソース及び、NH。ソースを所定の時間の間ガスパルス形態で流入させ、上記アルミニウムクロライド(AIC 1。)ソース流入、H。〇ソース流入及び、NH。ガスソース流入の中間にパージのための不活性気体を流入させる請求項4に記載のDRAMキャバシタ製造方法。

【論求項8】 上記のアルミニウムナイトライド層と上記アルミナ膜の複台誘電膜を交代で形成する段階は、ア 50

ルミニウムクロライド(A1CII)ソース、パージ、HIOソース、パージ、アルミニウムクロライド(A1CII)ソース、パージ、NHI、ソース及び、パージの8段階を単位サイクルとして、上記の単位サイクルを反復する回数により、上記の所定の厚さを調節する請求項4に記載のDRAMキャパシタ製造方法。

【請求項9】 上記の不活性気体は、窒素(N₂)、アルゴン(argon)(Ar)、又は、ヘリウム(He)のうち、いずれか一つである請求項4または請求項7に記載10 のDRAMキャパシタ製造方法。

【請求項10】 半導体差板上に導電層を形成する段階:上記の導電層を各セル単位に限定するようにバターンニングし、導電層バターンを形成する段階:上記のバターン形成された導電層上部に原子層蒸若(ALD)方式でアルミニウムナイトライド(A1N)層を形成する段階:上記のアルミニウムナイトライド層上部にアルミニウムオキシナイトライド(A1ON)層を形成する段階:および上記のアルミニウムオキシナイトライド層上部に導電層を形成する段階を具備することを特徴とするDRAMキャバンタ製造方法。

[請求項11] 上記のアルミニウムオキシナイトライド (AION) 層を形成する段階は、上記のアルミニウムナイトライド (AIN) を酸素雰囲気で熱処理する段階を含む請求項10に記載のDRAMキャパシタ製造方法

【請求項12】 上記の半導体基板上に形成された上記 導電層はドーピングされたポリシリコンを含む請求項1 または請求項10に記載のDRAMキャパシタ製造方法。

【請求項 13】 上記の導電層にパターンを形成する段 階は、

HSGスタックボリシリコン電極を形成する段階を含む 請求項1または請求項10に記載のDRAMキャバシタ 製造方法。

【請求項14】 上記の導電層にパターンを形成する段階は、円筒タイプスタックポリシリコン電極を形成する段階を含む請求項1または請求項10に記載のDRAMキャパシタ製造方法。

【請求項 15 】 電筒蓄積用キャパシタを持つDRAM 5 装置において、半導体基板上に形成されたスタックポリシリコン電極と:上記のスタックポリシリコン電極上部 に形成されたアルミナ層とアルミニウムナイトライド層 の複合誘電体膜と:上記の複合誘電体膜上部に形成されたプレートポリシリコン電極で構成されたことを特徴と するDRAMキャパシタ。

【請求項16】 上記の複合誘電体膜は、アルミナー原子層アルミニウムナイトライドー原子層の積層を基本単位として、選定された回数だけ反復的に積層された構造を具備する請求項15に記載のDRAMキャパシタ。

50 【請求項17】 電荷蓄積用キャパシタを持つDRAM

装置において、半導体基板上に形成されたスタックボリ シリコン電極と:上記スタックポリシリコン電極上部に 形成されたアルミニウムナイトライド層と;上記アルミ ニウムナイトライド層上部に形成されたアルミニウムオ キシナイトライド(AION)層と;上記アルミニウム オキシナイトライド層上部に形成されたプレートポリシ リコン電極で構成されたことを特徴とするDRAMキャ

【請求項18】 上記のスタックボリシリコン電極は、 HSGポリシリコン電極を含む請求項1′5または請求項 10 17に記載のDRAMキャパシタ。

【請求項19】 上記のスタックボリシリコン電極は、 円筒タイプスタックポリシリコン電極を含む請求項15 または請求項17に記載のDRAMキャパシタ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、半導体装置及びそ の製造方法に関し、特に高集精半導体DRAMの電荷蓄 精用キャパシタ及びその製造方法に関する。

【従来の技術】半導体基板上の単位面積当たり製造され る半導体素子の集積度が増加するに伴い、データ蓄積用 電荷キャパシタ (storage capacitor)が占有する空間も 縮少している。したがって、与えられたデザインルール (design rule)の元で、許容された空間内に大容量の キャパシタンスを持つ電荷蓄積用キャパシタを製作する ことが必要になる。

【0003】このように、許容された空間内で、高いキ ャパシタンス値を持つ電荷蓄積用キャパシタを製作する ために、半導体業界では、電荷蓄積用キャパシタの有効 面積を極大化させる方法、又は、誘電率が大きい物質を 電極間の絶縁物質に使用する方法などを基本とし 新し い電荷蓄積用キャパシタが開発されている。

【0004】電荷蓄積用キャパシタの有効面積を極大化 させるための一技術として、ファザン(Fazan)等は、 アメリカ台衆国特許第5、278、091号において、 スタック構造の下部電極上にHSG(hemispherical gr am)シリコン薄膜を形成することにより、電荷蓄積用 キャパシタのキャパシタンスを増大させる技術を開示し ている。

[0005]また、キタワ (T.Kittawa) などは、19 92年度 International Conferenceon Solid State De vices and Materials学会論文要約集第90頁、92頁 に、タンタル(tantalum) 酸化膜(Ta_zO_s) のような高誘電体膜を使用した256MビットDRAM の製造方法に関する技術を開示している。タンタル酸化 膜またはBST (Ba,Sr.,,TıO,)物質等は、誘 電定数が大きいため、大容量のキャパシタを製造できる ことが期待されているが、上記高誘電体膜を利用し、D RAMキャパンタを製作するためには多くの克服しなけ 50 れている導電性ポリシリコンを下部電極に継続して使用

ればならない工程上の問題点がある。すなわら、良好な ステップカバーリッジ (step coverage) を持つタンタ ル酸化腺を製造する為に、表面運動領域(surface kine tic regime)の範囲である低温(low temperature)で 化学気相蒸岩方式(CVD; chemical vapor depositio n) で薄膜を形成することにより、酸素欠乏問題及びハ イドロカーボン(hydrocartxon)の薄膜内の残留問題. 結晶性低下等による誘電率劣化現象。絶縁特性不良など の問題点を引き起こす可能性がある。

【① 0 0 6 】これと同様に、タンタル酸化膜の漏洩電流 及び誘電率劣化などの問題点を解決するための手段とし て、紫外線オゾン(UV ○。)及び高温乾式酸素アニ リング (dry ○。 anneal) などの工程が使用されてい る。すなわち、乾式酸素アニリングを通してタンタル酸 化膜下部に生成される酸化膜は、タンタル酸化膜の絶縁 特性を向上させ、グレーン境界面 (grain boundary)の 絶縁性がおもわしくない所では、相対的に酸素の拡散が 促進され、酸化膜が一層厚く形成されるので、漏洩電流 問題を改善できるようになる。

[0007]一方、BST誘電体は、優秀な絶縁特性を 確保するために、スコットキー障壁(Schottky barrier height) の大きい金属電極の採用が必要である。ま た、金属電極とポリシリコンの間にオーミック接触(oh mc contact)のための層、及び電極とポリシリコン間 の化学的反応を防止するためのバリアメタル(barrierm etal)の採用が必須である。

【0008】上記のBST誘電物質は、キャパシタの上 下部電極形成のため、MIM (metal insulator meta 1) 構造を基本としており、前述したタンタル酸化膜

は、MIS (metal insulator semiconductor) 又はM | M構造を採択しているので、上記高誘電物質を高集積 DRAM工程に適用する為には、既存のシリコン酸化膜 (SiO₂)及びONO (oxidenitrideoxide) 絶縁膜に 適用された、ポリシリコンを利用したSIS(semicond uctor insulator semiconductor) 構造が適用出来なく なる工程上の負担が発生するようになる。

100091

【発明が解決しようとする課題】キャパシタの面積を増 加させるための一手段として、当業界では、キャパシタ の高さを増大させる方法が使われているが、図1を参照 すればキャパシタの半径を減少させるほど、キャパシタ の高さの増加による面積増加比率が増し、同じ容量のキ ャパシタを製作するために、等価酸化膜の厚さ (equiva lent_Tox)を薄くしなければならないことが分かる。し たがって、従来のONO誘電体膜より薄い等価酸化膜の 厚さ (equivalent Tox)を持つ構造に対しても、良好な 絶縁特性を持つ電荷蓄積用キャパシタの開発が必要とな

【0010】また、従来の半導体DRAM工程に採用さ

しても、電極間誘電体物質との置換などの化学的反応を 起こさず、良好なステップカバーリッジ特性を見せる高 誘電率薄膜を具備したキャパシタの開発が高集債DRA M製造のために要求される.

【0011】したがって、本発明の第1の目的は、高集 精半導体DRAM工程に適用することができる電荷蓄積 用キャパシタ及びその製造方法を提供することにある。

【10012】本発明の第2の目的は、上記第1の目的に 加えて、大容量のキャパシタンスを持ちながらも、下部 性を持つ高集績DRAM電荷蓄積用キャパシタ及びその 製造方法を提供することにある。

【()()13]本発明の第3の目的は、上記第1の目的に 加えて、良好な酸化力と優秀な絶縁特性を持ち、ハイド ロカーボンの薄膜内の残留問題を最小化した、高誘電率 の誘電体薄膜を具備した高集積DRAM電荷蓄積用キャ パシタ及びその製造方法を提供することにある。

【1)1)14】本発明の第4の目的は、上記第1の目的に 加えて、従来のスタック (stacked) 型電荷蓄積用キャ パシタの構造を変更することなく、後続の熱処理工程に 20 おいても、下部電極物質のポリシリコンと反応すること なく、安定した高誘電率誘電体膜を具備した高集積DR AM電荷蓄積用キャパシタ及びその製造方法を提供する ことにある。

[0015]

【課題を解決するための手段】上記の目的を達成するた めに、本発明は、半導体基板上に導電層を形成する段 階:上記の導電層を各セル単位で限定されるようにパタ ーンニングして導電層パターンを形成する段階:上記パ ターン形成された導電層上部に原子層蒸着(atomic lay er deposition;ALD)方式でアルミナ(AlェОェ)層 とアルミニウムナイトライド(A I N)層の複合誘電体 膜を形成する段階:および上記の複合誘電体膜上部に導 電層を形成する段階を具備することを特徴とするDRA Mキャパシタ製造方法を提供する。

【① 0 1 6 】本発明の別の目的を達成するために、本発 明は、半導体基板上に導電層を形成する段階:上記の導 電層を各セル単位に限定するようにパターニングし、導 電房バターンを形成する段階:上記のバターン形成され た導電層上部に原子層蒸着 (ALD) 方式でアルミニウ ムナイトライド (A IN) 磨を形成する段階:上記のア ルミニウムナイトライド層上部にアルミニウムオキシナ イトライド(A 1 O N)層を形成する段階:および上記 のアルミニウムオキシナイトライド層上部に導電層を形 成する段階を具備することを特徴とするDRAMキャパ シタ製造方法を提供する。

【()() 17]本発明のその他の目的を達成するために、 本発明は、電荷蓄積用キャパシタを持つDRAM装置に おいて、半導体基板上に形成されたスタックボリシリコ れた酸化アルミニウム層とアルミニウムナイトライド層 の複合誘電体膜と:上記複合誘電体膜上部に形成された プレートポリシリコン電極で構成されることを特徴とす るDRAMキャパシタを提供する。

【()()18] 本発明のその他の目的を達成する為に、本 発明は、電荷蓄積用キャパシタを持つDRAM装置にお いて、半導体益板上に形成されたスタックボリシリコン 電極と:上記のスタックポリシリコン電極上部に形成さ れたアルミニウムナイトライド層と:上記のアルミニウ **電極で導電性シリコンを使用することができ、良好な特 10 ムナイトライド層上部に形成されたアルミニウムオキシ** ナイトライド (AION) 層と:上記のアルミニウムオ キシナイトライド層上部に形成されたプレート(plat e) ポリシリコン電極で構成されることを特徴とする D RAMキャパシタを提供する。

[0019]

【発明の実施の形態】以下、本発明の電荷蓄積用DRA Mキャパシタ及びその製造方法の好適な実施例を、添付 図面を参照して詳細に説明する。

【0020】図2~4は、本発明の第1実施例に従い、 DRAMキャバシタの製造方法を表す工程順序図であ る。図2を参照すると、まず半導体基板100上にシリ コン酸化膜 (SiO,) 101が形成されており、電荷 **蓄積用キャパシタを構成する下部電極として蓄積用ポリ** シリコン (storage polysilicon) 102が形成されて いる。そして、上記の蓄積用ポリシリコン102及び絶 縁膜 1 () 1 の上部に、アルミナ (A 1, O,) 1 () 3 膜が 形成されている。

[0021] 実施例として、上記のアルミナ層103 は、原子層蒸着 (atomic layer deposition: ALD) 方式で形成することができる。アルミナ103をDRA Mキャパシタの誘電膜に使用するためには、ステップカ バーリッジが良好で誘電体薄膜内に残存する不純物が少 なくなければならない。ところが、一般的に半導体業界 で通用しているスパッターリング (sputtering) 方式 で、上記のアルミナ膜103を形成する場合、誘電体薄 膜内に残存する不純物は減少させることができるが、ス テップカバーリッジが不良で、3次元構造の誘電体薄膜 に使用するには不適合である。また、上記アルミナ薄膜 11)3を形成するための実施例として、化学気钼蒸着 (chemical vapor deposition; CVD) 方式を適用で きるが、前述のスパッターリング方式とは反対に、ステ ップカバーリッジは優秀であるが、薄膜内の不純物の除 去が難しい問題点がある。したがって、本発明の実施例 のアルミナ薄膜 103は、原子層蒸着(ALD)方式で 形成することができる。このように、原子層蒸着方式で 形成されたアルミナ膜は、非結晶質 (amorphous) 状態 で、ステップカバーリッジは100%に近づく程度に非 常に良好である。

【0022】図3は、原子層蒸着方式で形成されたアル ン電極と;上記スタックポリシリコン電極上部に形成さ 50 ミナ膜上部にアルミニウムナイトライド層104を形成 する工程段階を表わす断面図であって、アルミナ層10 3とアルミニウムナイトライド層104を原子層蒸着方 式でイン・シチュー(ın–situ)するように反復的に形 成することによって、Al.O,/AlN複合誘電体薄膜 を形成する。

【0023】図4は、プレートポリシリコン層105の 形成工程を図示するもので、原子層蒸着方式で形成され たA1,0,/A1N複合誘電体薄膜115上部に、ドー ピングされたポリシリコンを蒸着することで、DRAM キャバシタの上部電極105を形成する。

【0024】図5は、図4の点線円180部位の拡大図 で、アルミナ膜 (A I2O2) 103とアルミニウムナイ トライド膜(A1N)104を原子層蒸着(ALD)方 式により、一原子層(one atomic layer)の大きさに交 代で蒸着させることで、形成されたAl,O,/AlN複 台誘電体薄膜の断面を表わず拡大図である。

【()()25】本発明の実施例として、アルミナ膜103 とアルミニウムナイトライド膜104を各々1. 1Aず つ。原子層蒸着 (ALD) 方式で数回反復して形成する ことにより、数十Aの厚さのAI,O。/AIN複合誘電 20 体薄膜を形成することができる。

【1)1)26】図6は、本発明の実施例として、原子層蒸 着 (atomic layer deposition: ALD) 方式におい て、AI2〇2/AIN複合誘電体薄膜を形成するための ソースガス流入順序を表わす図面である。図6を参照 し、AI、O。/AIN複合誘電体薄膜を原子層蒸着方式 で形成するためのガスパルシング(qas pulsing)蒸着 順序を説明すると、下記の通りである。

【0027】すなわち、チャンバーの圧力を一定に維持 するために、常に、流入される雰囲気ガス503以外 に、選定された(pre-determined)ソースガス流入順序 により、トリメチルアルミニウム(TMA、trimethy) aluminum)ソース500とH, Oソース501、NH, ソ ース502は、一定時間の間ガスパルス形態で流入さ れ、それぞれのソースガス流入の中間にパージ(purge or purging) 用不活性ガス5()4が流入される。

【0028】本発明の実施例として、第四気ガス及び、 パージガスでアルゴン(arqon)(Ar).窒素(N₂) またはヘリウム(He)中のどれか一つを使用すること ができる。

【0029】図6を参照すると、TMAソースーパージ →H₂Oソース→パージ→TMAソース→パージ→NH, ソースーパージの8段階が、順次パルス形態でガスが流 入する過程が、単位サイクルとして定義され、蒸着する Al,O,/AlN複合誘電体薄膜の厚さは、ガスパルシ ングする単位サイクル505の反復回数によって、正確 に調節することがでる。

【0030】すなわち、一度のガスパルシングサイクル を終了する度ごとに、Al2O,/AlNの複合誘電体膜 は2. 2 Å(1. 1 Å厚のA 1, O, と 1. 1 Å厚のA 1 50 体基板 1 0 0 上に形成されたシリコン酸化腺 1 0 1 及

N) の厚さに蒸着される。ガスパルシングサイクルを反 復すれば、その反復回数により、複合誘電体薄膜の厚さ が比例的に増加するようになるので、望みの厚さの薄膜 蒸着が可能となる。

【0031】本発明に従う実施例として、原子層蒸着方 式でAI、O。/AIN複合誘電体薄膜を形成するための ソースガスであってTMA(trimethyl aluminum)ソー スの代りにアルミニウムクロライド (aluminum chlorid e. A | C l :) ソースを使用することができる。この 10 時 原子層蒸着のためのガス流入段階は、アルミニウム クロライドソース→パージーH, Oソース→パージーア ルミニウムクロライドソース→パージ→N H₂ソース→ パージの8段階を基本単位とし、複合誘電体薄膜を形成 する.

【0032】また、TMAソースを利用して上記の複合 誘電体薄膜を形成する場合 300~450 Cの蒸着温 度で最適の特性を持つ薄膜を得ることができ、TMAソ ースの代りにアルミニウムクロライドソースを使用する 場合には、450~600℃の蒸若温度を維持すること により、良質の複合誘電体薄膜を得ることができる。 【0033】一方、本発明の第1実施例によって形成さ れたアルミナ薄膜は、非結晶質 (amorphous) 状態で. ステップカバーリッジは100%に近い値を持つ。実施 例として、前述した方法で形成されたアルミナを酸素等 囲気ガスでアニリング(annealang)工程を進行するこ とで、薄膜の密度を増加させることができる。その一実 施例として、本発明の第1実施例によって形成されたア ルミナ薄膜を800℃で酸素アニリングを30分間実施 した場合、薄膜の屈折率を波長633.0ヵmの光に対 し1.64()から1.692に増加させることができ る。したがって、原子層蒸着方式で形成したアルミナ薄 膜は、後続のアニリング工程の最適化を通じ、誘電膜の 厚さの減少、誘電率増加及び、等価シリコン酸化膜の厚 さ(Tox)を最小化することが期待できる。

【0034】アルミナ薄膜は、シリコン酸化膜(SIO ,) とシリコン窒化膜(SiN)の複合誘電体膜に比 ペ」誘電率が大きい反面。シリコン酸化膜と同じファウ ラー・ノードハイム(Fowler–Northerm)タイプのトン ネル(湍洩)電流メカニズムに起因する絶縁膜破壊(di electric breakdown) 特性が脆弱になりやすい。したが って、本発明の第1実施例に従いAl,O,/AlN複合 誘電体薄膜を採用したDRAMキャパシタ装置は、原子 層蒸若方式で蒸若しやすく フール・フレンケル (Pool -Frenkel)トンネル漏洩電流メカニズムが見られるアル ミニウムナイトライド(A1N)物質をアルミナ(AI , 〇。)と交代で形成させることによって、高電界での絶 緑膜破壊特性を改善させることができる。

[0035] 図7は、本発明の第2実施例に伴うDRA Mキャパシタの断面図である。図7を参照すると、半導 び、半導体基板100上部に半球模様のグレーン(hemi spherical grain:以下"HSG"という)を持つ下部 電極用スタック(stacked)蓄積用ポリシリコン電極 1 ()2が形成されている。

【10036】続いて、上記のスタック蓄積用ポリシリコ ン電極102上部に、アルミナ薄膜とアルミニウムナイ トライド薄膜を、図6に表わすガスバルシング方式で、 原子層蒸着をコントロールすることにより、半球模様の Al,O,/AlN複合誘電体薄膜が形成される。

【10037】図8は、本発明の第3実施例に従うDRA 10 Mキャパシタの断面図である。図8を参照すると、半導 体基板100上に形成されたスタックポリシリコン下部 電極102は、表面積を増大させる為に、円筒形(cyli ndrical) 模様をしており、上記の円筒形スタックボリ シリコン下部電極102上部に、前述の原子層蒸着方式 でAl,O,/AlNの複合誘電体薄膜を形成させること ができる。図7及び図8の点線円180部位に対する拡 大図は、図5を参照のこと。

【0038】図9~11は、本発明の第4実施例に従う DRAMキャパシタの形成方法を表わす工程順序図であ 20 る。図9を参照すると、半導体基板100上にシリコン 酸化膜101が形成されており、電荷蓄積用キャパシタ を構成する下部電極として蓄積用ポリシリコン102が 形成されている。そして、上記の蓄積用ポリシリコン1 ()2及び絶縁膜 1()1上部に、アルミニウムナイトライ F200が形成されている。実施例として、上記のアル ミニウムナイトライド層200は、原子層蒸着方式で形 成することができる。

【0039】図10を参照すると、原子圏蒸着方式で蒸 着されたアルミニウムナイトライド層200を酸素(O 30) 。) 雰囲気ガス下で酸化させることにより、上記のアル ミニウムナイトライド薄膜200上部に、アルミニウム オキシナイトライド (A1ON) 20/1を形成する。

【0040】とれと同様に、原子層蒸着方式で形成され たアルミニウムナイトライド200上部にアルミニウム オキシナイトライド201を形成し、AIN/AION 複合誘電体薄膜を形成し、DRAMキャバシタの電極間 誘電物質として使用すれば、プールーフレンケルタイプ の絶縁膜破壊メカニズムを通じ、破壊電圧特性を改善で きるだけではなく、アルミニウムナイトライド層200 の酸化工程段階でキャパシタ電極102とアルミニウム ナイトライド200間に存在する界面欠陥(Interface defect) を改善できる長所がある。

【①①41】図11を参照すると、酸化工程段階を経て 形成されたアルミニウムオキシナイトライド201上部 に、キャバシタ上部電極としてプレートポリシリコン1 05が形成されている。

【0042】図12は本発明の第5実施例に従うDRA Mキャパシタの断面図である。図12を参照すると、半 導体基板100上に形成されたシリコン酸化膜101及 50 高誘電率の誘電体薄膜を具備する高集積DRAM電荷蓄

び半導体基板上に、HSG蓄積用ポリシリコン下部電極 10.2が形成されている。続いて、上記のHSG蓄積用 ポリシリコン電極102上部に原子層蒸着方式でアルミ ニウムナイトライド層200が形成され、上記のアルミ ニウムナイトライド薄膜200を酸素雰囲気ガス下で酸 化させることにより、半球形態を持つアルミニウムオキ シナイトライド201を形成する。したがって、本発明 の第5実施例に従うDRAMキャバシタは、HSG形態 のAIN/AION複合誘電体薄膜を具備する電極間誘 電体物質を含むことを特徴とする。

【0043】図13は、本発明の第6実施例に従うDR AMキャパシタの断面図である。図13を参照すると、 半導体基板100上にシリコン絶縁膜101が形成され ており、円筒形スタック蓄積用ポリシリコン下部電極1 ()2が形成されている。続いて、電荷蓄積用キャパシタ の誘電物質断面積を増大させるために考案された円筒形 スタック蓄積用ポリシリコン電極102の上部に、本発 明の第3実施例で詳述した方式によりAIN/AION 複合誘電体膜を形成する。

【()()44】本発明の特許請求範囲を構成する付加的な 特徴と長所は、以下に詳述する通りである。

【0045】開示された本発明の概念と特定実施例は、 本発明と類似する目的を遂行するための他の構造の設計 や修正の基本として、即時、使用することを該当技術分 野の熱糠した者により、認識されなければならない。

【()()46】また、本発明で開示された発明概念と実施 例が本発明の同一目的を遂行するために他の構造で修正 したり、設計するための基礎として該当技術分野の熟練 した者により、使用させることができるであろう。

【0047】さらに、該当技術分野の熱糠した者による そのような修正又は、変更された等価構造は、特許請求 範囲で記述した発明の思想や範囲を抜け出さない限度内 において多様な変化、置換及び、変更を可能とする。 [0048]

【発明の効果】以上のように、本発明の半導体装置及び その製造方法は、従来の高誘電体薄膜を使用したDRA Mキャパシタが持つ、工程上の問題点を解決する発明で あって、本発明は、原子層蒸着方式を利用し、アルミナ とアルミニウムナイトライド (AlgOg/AIN) 複合 誘電体薄膜又は、アルミニウムナイトライドとアルミニ ウムオキシナイトライド(AIN/AION)複合誘電 体薄膜を電極間誘電体薄膜で形成することにより、従来 の半導体DRAM工程に採用されている導電性ポリシリ コンを下部電極として継続して使用しても、電極間誘電 体物質との置換等、化学的反応を起こさず、良好なステ ップカバーリッジを持つ高誘電体薄膜を具備するDRA Mキャパシタを具現した。

【0049】また、良好な酸化力と優秀な絶縁特性を持 ち、ハイドロカーボンの薄膜内の残留問題を最小化した

精用キャパシタ及びその製造方法を提供する。 【図面の簡単な説明】

【図1】半導体工程の高集債化に伴い DRAMキャパシタの構造的影響の一例を表わすグラフである。

【図2】本発明の第1実施例に従いDRAMキャバシタの形成方法を表わす工程順序図である。

【図3】本発明の第1実施例に従いDRAMキャバシタの形成方法を表わす工程順序図である。

【図4】本発明の第1実施例に従いDRAMキャバシタの形成方法を表わす工程順序図である。

【図5】図4 図7及び図8の点線円180の部位の一例を表す拡大図である。

【図6】本発明の第1実施例に従う原子層蒸着(ALD)ソースガス流入順序の一例を表わす図面である。

【図7】本発明の第2実施例に従うDRAMキャバシタの一例を示す断面図である。

【図8】本発明の第3実施例に従うDRAMキャバシタの一例を示す断面図である。

【図9】本発明の第4実施例に従うDRAMキャパシタの形成方法を表わす工程順序図である。

*【図10】本発明の第4実施例に従うDRAMキャパシ タの形成方法を表わす工程順序図である。

【図11】本発明の第4実施例に従うDRAMキャパシタの形成方法を表わす工程順序図である。

【図12】本発明の第5実施例に従うDRAMキャパシタの一例を示す断面図である。

【図13】本発明の第6実施例に従うDRAMキャパシタの一例を示す断面図である。

【符号の説明】

10 100:半導体釜板

101:シリコン酸化膜

102: 蓄積ポリシリコン下部電極

103:アルミナ (A L₂O₂) 薄膜

104, 200: アルミニウムナイトライド (A1N) 薄膜

105,202:プレート (plate) ポリシリコン上部 番茄

115, 125, 135; Al, O./AlN複合誘電体 膛

201: アルミニウムオキシナイトライド (A1ON)

(7)

 $http://www6.ipdl.jpo.go.jp/tjcontentdb.ipdl?N0000=20\&N0400=image/gif\&N0401=/1...\ 11/07/2001=10...$

(9)

特開2000-58777

[211]

[212]

【図13】

(72)発明者 李祖▲みん▼

大韓民国ソウル特別市江南区新沙洞524-

大韓民国ソウル特別市江南区対峙2洞ミド

アバート108棟202号

Fターム(参考) 5F083 AD24 AD42 AD62 HA10 JA01