Caractérisation des solutions

- L'absorbance mesure la capacité d'une solution à absorber la lumière.
- La couleur d'une solution est déterminée à partir de son spectre d'absorption $A = f(\lambda)$ a et de l'étoile chromatique \Box . La solution prend la couleur correspondant aux longueurs d'ondes transmises.

La loi de Beer-Lambert établit une proportionnalité entre l'absorbance d'une solution et sa concentration :

- Les mesures doivent être effectuées à la longueur d'onde du maximum d'absorption.
- Un dosage par étalonnage permet de déterminer la concentration d'une solution inconnue.
- 1 Préparer une gamme étalon par dilution.
- 2 Tracer la courbe d'étalonnage A = f(c).
- Mesurer l'absorbance de la solution à doser, et en déduire sa concentration en utilisant la courbe d'étalonnage.

Le spectrophotomètre mesure uniquement l'absorbance des solutions relativement diluées.

Le dosage par étalonnage

25 Loi de Beer-Lambert

Le jaune de tratrazine (E102) est un colorant de synthèse utilisé dans l'industrie alimentaire.

Un spectrophotomètre a permis de mesurer l'absorbance de solutions de différentes concentrations.

Ces mesures sont regroupées dans le tableau ci-après :

Solution	1	2	3	4	5	6
Concentration c (en µmol·L ⁻¹)	10,0	15,0	20,0	30,0	40,0	50,0
Absorbance A	0,26	0,39	0,51	0,81	1,05	1,30

- 1. Tracer le graphe A = f(c).
- 2. Quelle est la particularité de la courbe obtenue?
- Citer la loi ainsi vérifiée.
- **4.** On mesure l'absorbance d'une solution de jaune de tartrazine de concentration inconnue. On trouve $A_s = 0.92$. Quelle est la concentration c_s de cette solution?

\atop Dosage par étalonnage

Le lugol, médicament utilisé pour le traitement de problèmes à la tyroïde, est composé d'une solution de diiode $\rm I_2$, dont le solvant est l'eau. On réalise le spectre d'absorption du lugol :

1. À quelle longueur d'onde faut-il régler le spectrophotomètre pour mesurer l'absorbance de solutions de lugol? Pourquoi?

On réalise ensuite une gamme étalon par dilution de la solution-mère. Puis, on effectue la mesure de l'absorbance de ces solutions-filles. On trace alors le graphe A = f(c):

- 2. Décrire le graphe obtenu. Conclure.
- 3. On mesure l'absorbance de la solution commerciale de lugol diluée 10 fois. On trouve A = 1,0. Déterminer graphiquement la concentration de cette solution diluée.
- 4. À l'aide du résultat obtenu à la question 1, calculer la concentration de la solution commerciale.

(20) Exploiter les résultats d'un dosage

| Tracer un graphique.

Un spectrophotomètre, réglé sur la longueur d'onde $\lambda = 640$ nm, permet de mesurer l'absorbance A de solutions de différentes concentrations C en bleu patenté.

Solution	S ₁	S ₂	S ₃	S ₄	S ₅
C (¥ 10 ⁻⁶ mol ⁻¹)	2,0	4,0	6,0	8,0	10,0
Α	0,030	0,064	0,094	0,130	0,162

Dans les mêmes conditions, une solution S pour bain de bouche, contenant le colorant bleu patenté comme seule espèce colorée, a une absorbance $A_S = 0,126$.

- 1. Tracer la courbe d'étalonnage.
- **2.** Déterminer la concentration en quantité de matière C_s de bleu patenté de la solution S.