1. 实验名称及目的

固定翼速度/高度/偏航接口验证实验(Python):该例程以 Python 的形式,通过平台固定翼接口,实现在软硬件在环仿真过程中固定翼按期望指令飞行。

2. 实验原理

2.1. 软/硬件在环仿真(SIL/HIL)的实现[1][2]

从实现机制的角度分析,可将 RflySim 平台分为运动仿真模型、底层控制器、三维引擎、外部控制四部分。

- 运动仿真模型:这是模拟飞行器运动的核心部分。在 RflySim 平台中,运动仿真模型是通过 MATLAB/Simulink 开发的,然后通过自动生成的 C++代码转化成 DLL (动态链接库)文件。在使用 RflySim 平台进行软硬件在环仿真时,会将 DLL 模型导入到 CopterSim,形成运动仿真模型。这个模型在仿真中负责生成飞行器的运动响应,它拥有多个输入输出接口与底层控制器、三维引擎、地面控制站和外部控制进行数据交互,具体数据链路、通信协议及通信端口号见 API.pdf中的通信接口部分。
- 底层控制器:在软/硬件在环仿真(SIL/HIL)中,真实的飞行控制硬件(如 PX4 飞行控制器)被集成到一个虚拟的飞行环境中。在软件在环仿真(SIL)中,底层控制器(通过 wsl 上的 PX4 仿真环境运行)通过网络通信与运动仿真模型交互数据。在硬件在环仿真(HIL)中,它(将 PX4 固件在真实的飞行控制器(即飞控)硬件上运行)则通过串口通信与运动仿真模型进行数据交互。飞控与CopterSim 通过串口(硬件在环 HITL)或网络 TCP/UDP(软件在环 SITL)进行连接,使用 MAVLink 进行数据传输,实现控制闭环。
- 三维引擎:这部分负责生成和处理仿真的视觉效果,提供仿真环境和模型的三维 视图,使用户能够视觉上跟踪和分析飞行器的运动。CopterSim发送飞机位姿、电 机数据到三维引擎,实现可视化展示。
- 外部控制 (offboard): 从仿真系统外部对飞行器进行的控制,包括自动飞行路径规划、远程控制指令等。在平台例程中主要通过地面控制站 (QGC)、MATLAB和 Python调用对应接口实现。

2.2. 通过外部控制接口(python)进行速度/高度/偏航控制

单机控制脚本 AircraftMathworksController.py 中依次调用了 RflySim 平台飞机控制接口协议文件 PX4MavCtrlV4.py 中定义的以下接口函数

创建通信示例

mav1 = PX4MavCtrl.PX4MavCtrler(1)

创建一架飞机的通信示例

启用 Mavlink 消息监听循环

mav1.InitMavLoop()

配置 CopterSim 通信模式,该函数的参数定义如下:

def InitMavLoop(self,UDPMode=2):

""" Initialize MAVLink listen loop from CopterSim

0 and 1 for UDP_Full and UDP_Simple Modes, 2 and 3 for MAVLink_Full and MAVLink_Simple modes, 4 for MAVLink_NoSend

The default mode is MAVLink_Full

默认通信模式为 Mavlink_Full: Python 直接发送 MAVLink 消息给 CopterSim, 再转发给 PX4, 数据量较大适合单机控制;适合单机或少量飞机仿真,无人机数量小于4;

设定航路点

n = 30 r = 400

missionPoints=[]

for i in range(n):

angle = 2*math.pi*i/n

x=r*math.sin(angle)

y=r*math.cos(angle)

missionPoints.append([x,y,-100])

用一组离散的点模拟圆形运动轨迹,并在循环中通过 append 方法逐个将相应的轨迹点存入目标点列表 (missionPoints)。missionPoints.append([x,y,-100])表示在 missionPoints 列表的末尾添加一个新的列表[x,y,-100]。

根据欧拉公式:

$$e^{ix} = \cos x + i\sin x$$

这些点将在 x-y 平面上形成一个圆形轨迹。

飞行阶段

完成上述设置后,程序会通过检查一个 flag 变量的值来决定无人机应该执行哪些动作。

当 flag == 0 时,解锁飞机

解锁飞机

mav1.SendMavArm(True)

设定起飞目标点

targetPos=[200, 0, -100]

mav1.sendMavTakeOff(targetPos[0],targetPos[1],targetPos[2])

发送绝对的 GPS 坐标作为起飞目标点,使用 sendMavTakeOffGPS 命令,最后三位分别是经度、维度、和高度,会先从 uavPosGPSHome 向量中提取解锁 GPS 坐标,在此基础上用绝对坐标

当 flag == 1 时,无人机起飞和进入航路寻迹模式

位置检测

curPos=mav1.uavPosNED

dis = math.sqrt((curPos[0]-targetPos[0])**2+(curPos[1]-targetPos[1])**2)

计算飞机当前位置和起飞目标位置的水平距离,用于判断是否到达目标位置,以开始下一阶段任务。

启动外部控制 (offboard)

mav1.initOffboard()

使 px4 控制器进入外部控制模式,且以 30HZ 的频率发送 offboard 指令

航路寻迹模式

targetPos=missionPoints[flagI]

mav1.SendPosNED(targetPos[0], targetPos[1], targetPos[2])

会通过航路点索引 flagI 的值从 missionPoints 列表中读取相应的航点,并通过 SendPosNED 函数更新为下一个目标点。

当 flag == 2 时,发送期望速度、偏航和高度

mav1.SendVelYawAlt(10,math.pi/2,-150)

发送期望速度、偏航和高度,测试命令是否能正确运行,可以观测速度是否为 10,高度是否为 150

3. 实验效果

固定翼在软硬件在环仿真中, 能按照期望指令飞行。

4. 文件目录

文件夹/文件名称	说明
AircraftMathworks.dll	固定翼 DLL 模型文件。
AircraftMathworksVelYawAltCtrl.py	固定翼速度、高度、偏航例程文件。
AircraftMathworksHITLRun.bat	硬件在环仿真批处理文件。
AircraftMathworksSITLRun.bat	软件在环仿真批处理文件。
PX4MavCtrlV4.py	RflySim 平台视觉/集群控制接口文件。

5. 运行环境

序号	软件要求	硬件要求		
7. ♦ 1. X.11 X .4.		名称	数量	
1	Windows 10 及以上版本	笔记本/台式电脑 ^①	1	
2	RflySim 平台免费版	PX4 飞控 ^②	1	
3	Python3.11	数据线	1	

- ① 推荐配置请见: https://doc.rflysim.com/1.1InstallMethod.html
- ② 须保证平台安装时的编译命令为: px4_fmu-v5_default, 固件版本为: 1.12.3。其他配套飞控请见: http://doc.rflysim.com/hardware.html

6. 实验步骤

6.1. Python 库文件部署

以 VsCode 打开 "C:\PX4PSP\RflySimAPIs\RflySimSDK\ ReLabPath.py", 并运行。

```
RelabPath.py X

RelabPath.py X

| print(sys.base_prefix) | print("The Python version maybe wrong, please confirm!") | print("Rflysim install Path is:',rflyPath) | print("Rflysim install Path is:',rflyPath) | print('Current Path is:',curPath) | curPath = basepath+'\\Lib\\site-packages\\rflysim.pth' | f.write(curPath+'\\compath') | f.write(curPath+'\\compath') | f.write(curPath+'\\compath') | f.write(curPath+'\\compath') | f.write(curPath+'\\compath') | f.write(curPath+'\\underseth') | f.write(curPath+'\\undersethh') | f.write(curPath+'\undersethh') | f.write(curPath+'\undersethh') | f.write(curPath+'\undersethh') | f.write(curPath+'\unde
```

完成 Python 公共库环境部署。

6.2. 软件在环仿真

Step 1:

右键以管理员身份运行"AircraftMathworksSITLRun.bat"批处理文件, 在弹出的终端窗口中输入1, 启动1架飞机的软件在环仿真。

Step 2:

完成初始化。

Step 3:

打开 AircraftMathworksVelYawAltCtrl.py 文件并运行,运行一段时间后可看到固定翼按期望指令(速度、高度、偏航角)飞行。

```
AircraftMathworksVelYawAltCtrl.py 9+ X
D: > OneDrive > 桌面 > VelAltYawCtrlAPI > PythonCtrlAPI > 🏺 AircraftMathworksVelYawAltCtrl.py > ...
            if flag==1:
                curPos=mav1.uavPosNED
                dis = math.sqrt((curPos[0]-targetPos[0])**2+(curPos[1]-targetPos[1])**2)
                     print("到达起飞位置")
                    flag = 2
flagTime=time.time()
                     flagI=0
                    mav1.initOffboard()
print("开始进入Offboard模式")
                     print("开始进入航路寻迹模式")
                     targetPos=missionPoints[flagI]
                     mav1.SendPosNED(targetPos[0], targetPos[1], targetPos[2])
                     mav1.SendCruiseRadius(20)
            if flag == 2:
                #print("发送期望速度、高度和偏航")
                mav1.SendVelYawAlt(10,math.pi/2,-150) # 测试命令是否能正确运行,看下速度是否为10,高度是否为100
PROBLEMS 41 OUTPUT TERMINAL DEBUG CONSOLE
PS Z:\工程师\2022-叶颖鑫·模型组\4-项目文件\5-例程整理\童俊豪\PythonCtrlAPI\固定翼航向角控制> d:; cd 'd:\OneDrive\桌面\VelAextensions\ms-python.python-2023.12.0\pythonFiles\lib\python\debugpy\adapter/../..\debugpy\launcher' '55464' '--' 'D:\OneDr
5s, Arm the drone
Arm the drone!
开始起飞
```


在 QGC 右上角罗盘处可以看到偏航角为 90°。

在 CopterSim 右下角可以看到飞行合速度即空速约为 10m/s, 飞行高度约为 100m。

6.3. 硬件在环仿真

Step 1:

按下图所示将飞控与计算机链接。

Step 2:

在 Rflytools 文件夹中打开 QGC 地面站。

🔀 3DDisplay	2023/7/27 15:02	快捷方式	1 KB
copterSim	2023/7/27 15:02	快捷方式	1 KB
FlightGear-F450	2023/7/27 15:02	快捷方式	2 KB
HITLRun	2023/7/27 15:02	快捷方式	2 KB
₹ Python38Env	2023/7/27 15:02	快捷方式	2 KB
2 QGroundControl	2023/7/27 15:02	快捷方式	1 KB
	2023/7/27 15:02	快捷方式	1 KB
🗾 RflySimAPIs	2023/7/27 15:02	快捷方式	1 KB
	2023/7/27 15:02	快捷方式	1 KB
SITLRun	2023/7/27 15:02	快捷方式	2 KB
Win10WSL	2023/7/27 15:02	快捷方式	2 KB

Step 3:

点击进入左侧"固件"界面后,勾选下方"高级设置"选择自定义固件文件。

在 C:\PX4PSP\Firmware\build\px4_fmu-v5_default 这个路径下选择确认 px4_fmu-v5_default.px4 文件。

如果选择卓翼 H7 飞控的话,则在 C:\PX4PSP\Firmware\build\droneyee_zyfc-h7_default 这个路径下确认 droneyee_zyfc-h7_default.px4 文件。

名称	修改日期	类型	大小
aboards	2023/7/28 11:05	文件夹	
CMakeFiles	2023/7/28 11:05	文件夹	
etc etc	2023/7/28 11:07	文件夹	
external	2023/7/28 11:05	文件夹	
agenerated_params	2023/7/28 11:05	文件夹	
nsg msg	2023/7/28 11:06	文件夹	
NuttX	2023/7/28 11:06	文件夹	
aplatforms	2023/7/28 11:05	文件夹	
ROMFS	2023/7/28 11:07	文件夹	
nomfs_extras	2023/7/28 11:07	文件夹	
== src	2023/7/28 11:05	文件夹	
a uORB	2023/7/28 11:05	文件夹	
droneyee_zyfc-h7.bin	2023/7/28 11:07	BIN 文件	1,805 KB
droneyee_zyfc-h7_default.px4	2023/7/28 11:07	PX4 文件	1,617 KB

Step 4:

在机架界面设置机架型号为"Standard Plane",设置完毕后点击右侧"应用并重启"。

Step 5:

在"安全"界面,选择"HITL enabled"启动硬件在环仿真,之后在概况界面中确认配置完成后,重新插拔飞控完成设置。

Step 6:

右键以管理员身份运行 "AircraftMathworksHITLRun.bat"批处理文件,在弹出的终端窗口中根据提示输入串口号 5,启动一架飞机的硬件在环仿真。

		-	
pycache_	2023/7/24 11:00	文件夹	
AircraftMathworks.dll	2022/7/27 19:11	应用程序扩展	255 KB
S AircraftMathworksMavlinkHITLRun	2022/9/20 17:07	Windows 批处理	6 KB
AircraftMathworksMavlinkSITLRun	2022/9/20 17:07	Windows 批处理	6 KB
☐ AircraftMathworksVelYawAltCtrl	2023/7/21 15:06	PY 文件	3 KB
PX4MavCtrlV4	2023/6/7 10:43	PY 文件	137 KB

Step 7:

之后测试步骤与软件在环的 Step2 到 Step3 相同,运行之后在 CopterSim、RflySim3D和QGC 中观察飞机是否按期望指令飞行。

注意事项:在固定翼的 offboard 控制中,用到如下控制接口:

- 1) SendMavTakeOff: 起飞指令。
- 2) SendVelYawAlt:发送速度、偏航与高度指令。

7. 参考资料

- [1]. DLL/SO 模型与通信接口......API.pdf
- [2]. 外部控制接口..\..\API.pdf
- [3].

8. 常见问题

Q1.

A1.