Web and Data Analysis

Minkoo Seo June 2015

About

- R user since 2011
- Wrote this book →
- Software Engineer at Google Korea
- http://mkseo.pe.kr/

 These views are mine and mine alone and do not reflect the views of my employer.

Web and Data Analysis

- Big data for web
 - Infrastructure
 - Way of thinking
- Analyzing web site performance
 - A/B Testing
 - Considerations for controlled experiments

Big data for Web

Infrastructure and as a way of thinking

Big data on the web: Search Engine

Inverted Index

Doc 0: It is what it is

Doc 1: What is a banana

Word	Location
а	D1
banana	D1
is	D0, D1
it	D0
what	D0, D1

http://en.wikipedia.org/wiki/Inverted_index

How do we find documents for a query?

Query: [what is a banana]

Word	Location
<u>a</u>	<u>D1</u>
<u>banana</u>	<u>D1</u>
<u>is</u>	D0, <u>D1</u>
it	D0
<u>what</u>	D0, <u>D1</u>

Answer: D1

http://en.wikipedia.org/wiki/Inverted_index

How big is the web?

- +4.67 billion pages on Sunday, 14 June, 2015.
 - http://www.worldwidewebsize.com/
- Need a storage system to store web index.

GFS, HDFS

Master knows data location.

File 1 Data is stored as blocks. Chunk 1 File 1 Chunk Server Replication for reliability. Chunk 2 File 2 Chunk 1 File 1 Chunk 2 File 1 Chunk Mappings App Master Chunk Server Chunk 1 redundant File 2 Chunk 2 Shadow Master File 1 Chunk 2 File 2 Chunk Server Chunk 1 http://en.wikipedia.org/wiki/Google_File_System File 2 Chunk 2

BigTable, HBase

- GFS is great, but that's too primitive.
- BigTable: A table with row key, column key and timestamp.

https://en.wikipedia.org/wiki/BigTable

MapReduce

• Building an index for the web.

Big Data

- So far
 - Big data processing in web scale data.

- Next
 - Data size changes the basic.
 - Simple algorithm + Big data.

sample(x, k)

 After sampling, big data is an well known statistical problem.

• But, sampling itself is a difficult problem.

sample(x, k) (cont)

- For each record, get a random number between [0, 1].
- Keep K records with the smallest random number.

http://had00b.blogspot.kr/2013/07/random-subset-in-mapreduce.html

Keep K records with the smallest random number.

sample(x, k) (cont)

Need a function to randomly distribute documents.

Docs from New York Times

Docs from elsewhere

Simple algorithm + Big Data

Counting N-gram (i.e., N consecutive words)

http://books.google.com/ngrams

Simple algorithm + Big Data (cont)

Collaborative Filtering: collecting preference from many users.

http://en.wikipedia.org/wiki/Collaborative_filtering

Frequently Bought Together

Price for all three: \$31.45

Add all three to Cart

Add all three to Wish List

Show availability and shipping details

- This item: Statistics For Dummies by Deborah J. Rumsey Paperback \$12.39
- Statistics Workbook For Dummies by Deborah J. Rumsey Paperback \$13.83
- Statistics Laminate Reference Chart: Parameters, Variables, Intervals, Proportions (Quickstudy: Academic ... by Inc. BarCharts Pamphlet \$5.23

Customers Who Bought This Item Also Bought

LOOK INSIDE!

Simple Algorithm + Big Data (cont)

- Query logs and web documents are valuable resources.
 - Query recommendation: from query sequence [qi09]
 - Learning new entities: rows of tables on the web [que13]

- For R users
 - Getting Data
 - Parsing Data
 - Building models
 - Environment to run analysis
 w/o written permission, planning, etc.

???

Analyzing web site performance

A/B Testing and Consideration

Measuring User Experience

- HEART [ker10]
 - Happiness: satisfaction, likelihood to recommend, visual appeal
 - Engagement: frequency, intensity, depth of interaction
 - Adoption and Retention: new users, revisit
 - Task success: time to complete, percent of completed

Pageviews, # of unique visitors, # of visits, clicks, earning, etc.

A/B Testing Example

Media IMAGE VIDEO

Button:
JOIN US NOW
LEARN MORE
SIGN UP NOW

Result: 8.26% -> 11.6% 2,880,000 more signup.

https://blog.optimizely.com/2010/11/29/ how-obama-raised-60-million-by-running-a-simple-experiment/

A/B Testing

https://support.google.com/analytics/answer/1745152?hl=en&ref_topic=1745207

Running Experiments

- Experiment is not cheap.
 - Each variation should be high quality as experiment == real product.
 - Consider different approach. e.g., user survey.
- Design
 - Hypothesis
 Information browsing -> Pageview increase
 Better answer -> Pageview decrease
 - Logging
 - Sample Size

Running Experiments (cont)

- Before starting an experiment, test it.
 - Bing had a bug that resulted in poor search quality. Poor quality increased # of clicks and revenue [ron12].
 - Test logging [cor09].
- Before and after experiment [dia10].
 - Pre-Period or A/A testing:
 Comparable traffic in control and experiment.
 - Post-period: Learned effect from experiment.

Running Experiments (cont)

- Understanding the significance [mar14]
 - Stopping experiments early as soon as one sees significant.
 - Significant but the difference is too small.
- Bots [cor09], e.g., crawler.
- Simpson's Paradox [cor09]
 - Sampling is not uniform, and some browsers are sampled at higher rate.
 - Most of browsers performed worse in treatment, but overall treatment looks better.

Simpson's Paradox

	Applicants	Admitted
Men	8442	44%
Women	4321	35%

Department	Men		Women	
	Applicants	Admitted	Applicants	Admitted
Α	825	62%	108	82%
В	560	63%	25	68%
С	325	37%	593	34%
D	417	33%	375	35%
E	191	28%	393	24%
F	272	6%	341	7%

Presenting the Result

- Report
 - Experiment design.
 - Confidence Interval, Visualization.
 - Custom log analysis: # of clicks on this after a click on that.
- Experiment Council [dia10]
 - Experiment set up: diversion criteria, triggering, analysis, sizing and duration.
 - Interpreting data: validity of result, completeness of metrics, discussion if the result is positive or negative.
- For R users
 - Understanding infra, analyzing logs, deriving metrics, figuring out confidence interval, and presenting the results.

Summary

- Big data for web
 - Infrastructure
 - Way of thinking
- Analyzing web site performance
 - A/B Testing
 - Considerations for controlled experiments

Reference

- Christopher D. Manning, Prabhakar Raghavan and Hinrich Schütze, Introduction to Information Retrieval, Cambridge University Press. 2008. http://nlp.stanford.edu/IR-book/
- http://www.worldwidewebsize.com/
- http://googleblog.blogspot.kr/2008/07/we-knew-web-was-big.html
- How to pick random (small) data samples using Map/Reduce? http://stackoverflow.com/questions/2514061/how-to-pick-random-small-data-samples-using-map-reduce

Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber, Bigtable: A Distributed Storage System for Structured Data, OSDI, 2006.

http://en.wikipedia.org/wiki/Collaborative_filtering

http://had00b.blogspot.kr/2013/07/random-subset-in-mapreduce.html

http://books.google.com/ngrams

- [qi09] Qi He, et. al, "Web Query Recommendation via Sequential Query Prediction", ICDE, 2009.
- [que13] Quercini, Gianluca, and Chantal Reynaud. "Entity discovery and annotation in tables." *Proceedings of the 16th International Conference on Extending Database Technology.* ACM, 2013.
- [ker10] Kerry Rodden, Hilary Hutchinson, Xin Fu, Measuring the User Experience on a Large Scale: User-Centered Metrics for Web Applications, CHI, 2010.

- [dia10] Diane Tang, Ashish Agarwal, Deirdre O'Brien, Mike Meyer, "Overlapping Experiment Infrastructure: More, Better, Faster Experimentation", Conference on Knowledge Discovery and Data Mining, ACM, 2010.
- [ron12] Ron Kohavi, Alex Deng, Brian Frasca, Roger Longbotham, Toby Walker, Ya Xu, "Trustworthy Online Controlled Experiments: Five Puzzling Outcomes Explained", KDD 2012.
- [mar14] Martin Goodson, "Most Winning A/B Test Results are Illusory", Qubit, 2014.
 - http://www.qubit.com/research/most-winning-ab-test-results-are-illusory

• [cor09] T. Corrk, Brian Frasca, R. Kohavi, R. Longbotham, "Seven Pitfalls when Running Controlled Experiments on the Web", KDD, 2009.