TDS3651 Visual Information Processing

Textures
Lecture 7

Faculty of Computing and Informatics

Multimedia University

Lecture Outline

- Textures
 - Defining textures in images
 - Texture representation, Filter bank
- Clustering
 - K-means clustering
 - Using clustering to form histograms for texture feature occurrences
- Applications

What defines a texture?

Textures

Regular & Irregular patterns

Texture-related tasks

Shape from texture

Estimate surface orientation or shape from image texture

Segmentation/classification from texture cues

- Analyze, represent texture
- Group image regions with consistent texture

Synthesis

Generate new texture patches/images given some examples

Texture-related tasks

Shape from texture

Estimate surface orientation or shape from image texture

Analysis vs. Synthesis

- Why analyse texture?
- Why synthesize texture?

Texture-related tasks

- Shape from texture
 - Estimate surface orientation or shape from image texture
- Segmentation/classification from texture cues
 - Analyze, represent texture
 - Group image regions with consistent texture
- Synthesis
 - Generate new texture patches/images given some examples

Textures from walls

Textures from animals

Are edges sufficient?

- What kind of response will we get with an edge detector for these images?
- Is it good enough to "represent" the image content?

Are edges sufficient?

What about this image?

Why analyse texture?

- Important to perception:
 - Indicates material's properties
 - Appearance cue, especially if shape is similar (e.g. orange vs. apple)
- In technical terms...
 - Representation-wise, we want a feature one step above "basic building blocks" of filter outputs, edges, etc.

How should we represent these textures as data?

- Textures are made up of repeated local patterns,
 so
 - Find these "patterns"
 - Use filters that LOOK like patterns (spots, bars, raw patches, etc.)
 - Consider magnitude of response of these patterns
 - Describe their statistics within each local window (or "neighbourhood")
 - Mean, standard deviation
 - (and at a higher level..) Histogram of feature occurrences

original image

derivative filter

	Mean d/dx value	<u>Mean</u> d/dy <u>value</u>
Win. #1	4	10

•

original image

derivative filter responses, squared

	Mean d/dx value	Mean d/dy value
Win. #1	4	10
Win. #2	18	7

•

original image

derivative filter responses, squared

	Mean d/dx value	Mean d/dy <u>value</u>
Win. #1	4	10
Win. #2	18	7
:	:	:
Win. #9	20	20

•

	<u>Mean</u> d/dx <u>value</u>	<u>Mean</u> <u>d/dy</u> <u>value</u>
Win. #1	4	10
Win. #2	18	7
:	:	:
Win. #9	20	20

•

•

	Mean d/dx value	Mean d/dy value
Win. #1	4	10
Win. #2	18	7
:	:	:
Win. #9	20	20

•

There are 4 types of textures defined here

Think of a way how we can represent each image pixel with only these 4 texture features...

Windows with small gradients in both directions

Windows with primarily vertical edges

Method #1
Represent each pixel

Label each type of texture (e.g. 0, 1, 2, 3)

Assign the feature values (d/dx and d/dy in this case) to the "nearest" group. Do that for all pixels.

edges

both directions

original image

derivative filter responses, squared

Each window is now labelled with one of the four group labels

This is a better way to represent textures than using each pixel

	Mean d/dx value	Mean d/dy <u>value</u>
Win. #1	4	10
Win. #2	18	7
:	:	:
Win. #9	20	20

•

•

Dimension 1 (mean d/dx value)

Differentiating Textures

How can we differentiate between texture windows?

represented in two windows

(a and b in example)

Differentiating Textures

How can we differentiate between texture windows?

Distance reveals how dissimilar texture from window a is with texture from window b.

Issue #1: Texture information

Issue #2: Texture groupings

How to know the "groups" of textures and then assign them?

Solution:

Other Issues

- Window scale
 - We are assuming we know the relevant window size to obtain these statistics

Possible to perform scale selection by looking for window scale where texture description is not changing

Resolving issue #1

Are **TWO** types of filters sufficient for describing texture in an image?

Filter bank

- Our previous example used only 2 filters
 - x and y derivatives revealed some information about local structure
- We can generalize to apply a collection of multiple
 (d) filters also known as a "filter bank"
 - Feature vectors will be d-dimensional
 - Same way to calculate distance/dissimilarity

Filter bank

- What filters to put in the bank?
 - Typically, we want a combination of scales and orientations, and different types of patterns

Matlab code: http://www.robots.ox.ac.uk/~vgg/research/texclass/filters.html

Python code: http://www.rsgislib.org/rsgislib imagefilter.html#filter-banks

Leung-Malik (LM) filter bank

- 48 filters:

- 1st and 2nd derivative of Gaussians at 6 orientations and 3 scales (total 36)
- 8 LoG filters, 4 Gaussian filters (total 12)

Filter bank: Example

$$p(x; \mu, \Sigma) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(x - \mu)^T \Sigma^{-1}(x - \mu)\right)$$

Filter bank responses

You try: Can you match the texture to the response:

Filter bank responses ⇒ Feature

d-dimensional features

- Previously: 2 filters ⇒ 2-dimensional feature vector
- Now: 48 filters ⇒ 48-dimensional feature vectors
- Distance can be measured with L2-distance or Euclidean distance

$$D(a,b) = \sqrt{\sum_{i=1}^{d} (a_i - b_i)^2}$$

Euclidean distance (L_2)

Resolving issue #2

How do we group these texture information into "groups"?

Motivation

Threshold to 3 regions. Easy.

Now, how to determine the "three" main intensities that define the groups seen in the image?

One way is to cluster.

Finding Clusters

- Aim: Choose three "centres" as the representative intensities, and label every pixel according to which of these centres it is nearest to
- Best cluster centres are those that minimize sum of squared distances (SSD) between all points and their nearest cluster centre

$$\sum_{\text{clusters } i} \sum_{\text{points p in cluster } i} ||p - c_i||^2$$

The intuition behind SSD

Look at this cluster of points. Which of these points will be the **NEAREST** to all other points?

How would you find the answer?

How to solve this?

"Chicken and egg" problem!

- If we knew the cluster centres, we could allocate points to groups by assigning each to its closest centre
- If we knew the group memberships, we could get the centres by computing the mean per group

Goal: Cluster to minimize variance in data given clusters

Cluster center Data
$$c^*, \ \delta^* = \underset{c,\delta}{\operatorname{arg\,min}} \frac{1}{N} \sum_{j}^{N} \sum_{i}^{K} \delta_{ij} \left(c_i - x_j \right)^2$$
 Whether x_j is assigned to c_i

- Basic idea: Randomly initialize the k cluster centres, and iterate between the two steps we just saw.
 - 1. Randomly initialize cluster centres $c_1, \dots c_k$
 - 2. Given cluster centres, determine points in each cluster for each point p, find closest c_i , put p into cluster l
 - 3. Given points in each cluster, solve for c_i set c_i to the mean of points in cluster I
 - 4. If c_i have changed, repeat Step 2. Otherwise, terminate.
- Properties:
 - Will always converge to some solution
 - Does not always find the global minimum of objective function

$$\sum_{\text{clusters } i} \sum_{\text{points p in cluster } i} ||p - c_i||^2$$

1. Determine beforehand how many clusters or value of *k*

- Determine beforehand how many clusters or value of k
- 2. Randomly guess *k* cluster centre locations

- Determine beforehand how many clusters or value of k
- 2. Randomly guess *k* cluster centre locations
- 3. Each data point finds out which centre it is closest to (each centre "owns" a set of points)

- Determine beforehand how many clusters or value of k
- 2. Randomly guess *k* cluster centre locations
- 3. Each data point finds out which centre it is closest to
- 4. Each centre finds the centroid of its own group

- Determine beforehand how many clusters or value of k
- 2. Randomly guess *k* cluster centre locations
- Each data point finds out which centre it is closest to
- Each centre finds the centroid of its own group
- 5. With the new centroid, repeat again the process from (3) until algorithm terminates

A nice demo: http://syskall.com/kmeans.js/

K-means: Pros and Cons

Pros

- Simple, fast to compute
- Converges to local minimum of within-cluster squared error

Cons

- Setting k?
- Sensitive to initial centres
- Sensitive to outliers
- Detects spherical clusters
- Assuming means can be computed

(A): Undesirable clusters

(B): Ideal clusters

(A): Two natural clusters

(B): k-means clusters

Histograms for Texture Representation

Texture Representation Revisited

- Textures are made up of repeated local patterns, so
 - Describe their statistics within each local window (or "neighbourhood" so to speak)
 - Mean, standard deviation
 - (and at a higher level..) Histogram of feature occurrences

Example Revisited

original image

Instead of only assigning each pixel to texture types, build some statistics about it after that

Histogram of feature occurrences

Based on the earlier e.g. a histogram of 4 bins is now the new "feature vector"

⇒ Describes the statistical distribution of textures in an image

Texture-based grouping

Grouping pixels based on texture similarity

Feature space: Filter bank responses (e.g. 24-D)

"Textons"

- Find "textons" by clustering vectors of filter bank outputs
- Describe texture in a window based on texton histogram

Color vs. Texture distribution

- These matched images look very similar in terms of their color distributions.
- Can texture distributions help distinguish them better?

Application: Scene classification

Application: Scene classification

100 types of textures were found (by clustering) ⇒ called "universal textons"

Assign each pixel to nearest texton Build histogram of textons

Classification by **chi square**, χ^2 measure to match texton histogram against stored examples. Take the nearest match.

$$\chi^{2}(h_{i}, h_{j}) = \frac{1}{2} \sum_{k=1}^{K} \frac{\left[h_{i}(k) - h_{j}(k)\right]^{2}}{h_{i}(k) + h_{j}(k)}$$

Arguably better than Euclidean distance!

Application: Material classification

Application: Image Retrieval

Texture features for image retrieval

Introduction to Earth Mover's distance

Y. Rubner, C. Tomasi, and L. J. Guibas. The earth mover's distance as a metric for image retrieval. *International Journal of Computer Vision*, 40(2):99-121, November 2000,

Summary

- **Textures** defining them, representing them
- Texture Representation
 - Simple features (mean, std. dev.) from filters
 - Filter bank a series of filters
 - Histogram of texture feature occurrences
- Applications: Scene classification, texture matching, image retrieval

Recommended Reading

[Forsyth & Ponce] Chapter 10 (10.1 in particular)