Technische Universität Wien

Institut für Automatisierungs- und Regelungstechnik

SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am 07.08.2009

Name:								
Vorname(n):								
Matrikelnummer:								Note
	Aufgabe	1	2	3	4	\sum		
	erreichbare Punkte	10	10	10	10	40		
	erreichte Punkte							
						<u> </u>		
${\bf Bitte}\;$								
tragen Sie N	Name, Vorname und M	[atrike]	lnumm	er auf c	lem De	ckblatt	ein.	
9								
rechnen Sie	die Aufgaben auf sepa	araten	Blätter	n, nich	t auf d	em Ang	gabeblatt,	
beginnen Si	e für eine neue Aufgal	e imm	er auck	n eine r	ieue Se	ite		
J	<u> </u>							
geben Sie a	uf jedem Blatt den Na	men so	owie die	e Matri	kelnum	mer an	ι,	
begründen	Sie Ihre Antworten aus	sführlic	ch und					
kreuzen Sie fung antrete	hier an, an welchem d en können	ler folge	enden 7	Termin (e Sie n i	icht zu	r mündliche	en Prü

 \square Fr, 14.08.2009 \square Mo, 17.08.2009 \square Di, 18.08.2009

1. Die nachfolgende Abbildung zeigt ein ebenes mechanisches System, bei dem ein Balken der Masse m von zwei gegenläufigen Reibrollen im Abstand 2l bewegt wird. Die Schwerpunktskoordinate des Balkens sei s. Außerdem wirkt ein viskoser Dämpfer (Dämpfungskonstante d) auf den Balken ein.

Abbildung 1: Balken auf Reibrollen.

Die fest gelagerten Reibrollen drehen konstant. Ihre Umfangsgeschwindigkeit sei betragsmäßig stets größer als die Geschwindigkeit $w=\dot{s}$ des Balkens, so dass sich die in Abbildung 1.b dargestellten Gleitreibkräfte

$$F_{R1} = \mu F_{N1} \qquad \text{und} \qquad F_{R2} = \mu F_{N2}$$

auf den Balken übertragen. Hier ist μ der konstante Reibkoeffizient. Beachten Sie, dass die Normalkräfte F_{N1} und F_{N2} nicht konstant sind. Die Erdbeschleunigung g wirkt in der dargestellten Richtung.

Die Höhe des Balkens ist vernachlässigbar, d. h. $h \ll l$. Nehmen Sie an, dass der Balken nie von den Rollen hinunterfällt, und dass alle in Abbildung 1 eingezeichneten Kräfte stets positive Werte besitzen.

a) Stellen Sie die Impulsbilanz des Balkens auf und bestimmen Sie daraus das dyna- 7P mische Modell der Form

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}$$
.

Als Zustandsvektor können Sie z. B. $\mathbf{x} = [s, w]^T$ verwenden.

- b) Welche und wie viele Ruhelagen \mathbf{x}_R besitzt dieses System. 1 P.
- c) Zeigen oder widerlegen Sie, dass die Ruhelage(n) \mathbf{x}_R global asymptotisch stabil 2 P.| ist/sind.

Hinweis: Sollte Ihnen die Lösung der Teilaufgabe a) nicht gelingen, so kann die Teilaufgabe b) auch unabhängig davon bearbeitet werden.

2. Gegeben ist das lineare, zeitdiskrete System der Form

$$\mathbf{x}_{k+1} = \begin{bmatrix} 1 & -\frac{3}{4} \\ \frac{1}{2} & -\frac{1}{4} \end{bmatrix} \mathbf{x}_k + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u_k$$
$$y_k = \begin{bmatrix} c_1, c_2 \end{bmatrix} \mathbf{x}_k$$

- a) Bestimmen Sie mit Hilfe des PBH-Eigenvektortests Kriterien für die Parameter 4P. c_1 und c_2 des Ausgangsvektors so, dass das obige System vollständig beobachtbar ist.
- b) Gegeben ist das obige lineare zeitdiskrete System mit dem Ausgangsvektor $\mathbf{c}^T = 4\,\mathrm{P}$. [1,0]. Berechnen Sie für dieses System den Rückführvektor $\hat{\mathbf{k}}$ eines vollständigen Luenberger-Beobachters mit Hilfe der Formel von Ackermann in der Form, dass die Eigenwerte der zugehörigen Fehlerdynamik bei $\lambda_{1,2} = \frac{1}{3}$ liegen.
- c) Gegeben ist ein lineares, zeitdiskretes, vollständig beobachtbares System der Form 2 P.

$$\mathbf{x}_{k+1} = \mathbf{\Phi} \mathbf{x}_k + \mathbf{\Gamma} u_k$$
$$y_k = \mathbf{c}^T \mathbf{x}_k + \Delta y_k,$$

wobei Δy_k den Messfehler beschreibt. Für das nominelle System, d.h. für $\Delta y_k=0$, wird ein vollständiger Luenberger-Beobachter der Form

$$\hat{\mathbf{x}}_{k+1} = \mathbf{\Phi}\hat{\mathbf{x}}_k + \mathbf{\Gamma}u_k + \hat{\mathbf{k}}(\hat{y}_k - y_k)$$
$$\hat{y}_k = \mathbf{c}^T\hat{\mathbf{x}}_k$$

entworfen. Berechnen Sie die Dynamik des Beobachtungsfehlers $\mathbf{e}_k = \hat{\mathbf{x}}_k - \mathbf{x}_k$ und bestimmen Sie anschließend den stationären Beobachtungsfehler zufolge eines konstanten Messfehlers Δy . Nehmen Sie dabei an, dass der Rückführvektor $\hat{\mathbf{k}}$ so gewählt wurde, dass die resultierende Fehlerdynamik stabil ist.

3. a) Gegeben ist die Übertragungsfunktion G(s) eines linearen, zeitinvarianten, kontinuierlichen Systems anhand deren Pol- und Nullstellendiagramm in Abbildung 2.

Abbildung 2: Pol- und Nullstellendiagramm.

Geben Sie die zugehörige Übertragungsfunktion G(s) so an, dass die stationäre Verstärkung V der Übertragungsfunktion V=25 beträgt.

- Ist die Strecke BIBO-stabil?
- Ist die Strecke sprungfähig?
- Ist die Strecke phasenminimal?
- b) Skizzieren Sie das Bodediagramm der Übertragungsfunktion

$$G(s) = \frac{-20(s-5)}{(s+10)(s+1)}$$

3 P.

anhand der Asymptoten auf beiligendem Blatt. Welche der folgenden Übertragungsfunktionen besitzt den gleichen Betragsgang aber einen unterschiedlichen Phasengang?

$$G_1(s) = \frac{20(s+5)}{(s-10)(s-1)}, \qquad G_2(s) = \frac{-20(s-5)}{(s+10)(s+1)}e^{-2s}$$

$$G_3(s) = \frac{20(s-2)(5-s)}{(s+10)(s+1)(s+2)}, \qquad G_4(s) = \frac{20(s/5+1)}{(s/10+1)(s+1)}$$

c) Gegeben ist das System der Form

$$\dot{\mathbf{x}}(t) = \begin{bmatrix} -4 & 2 \\ 0 & -2 \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} 2 \\ 1 \end{bmatrix} u(t-2)$$
$$y(t) = \begin{bmatrix} 0 & 1 \end{bmatrix} \mathbf{x}(t)$$

- Ist dieses System linear?
- Ist dieses System zeitinvariant?

Berechnen Sie für dieses System die zugehörigen s- und z-Übertragungsfunktionen G(s) und G(z). Wählen Sie dazu die Abtastzeit $T_a=1/10$.

Hinweis: Begründen Sie alle Ihre Antworten ausführlich!

- 4. a) Gegeben ist die Impulsantwort $(g_k) = (0, 1/2, 1, 1, 1, 1, ...)$ eines linearen, zeit- 2 P. diskreten, zeitinvarianten Systems. Bestimmen Sie die zur Ausgangsfolge $(y_k) = (0, 1/2, 1, 1/2, 0, 0, 0, ...)$ gehörige Eingangsfolge (u_k) . Sie können (u_k) wahlweise formal anschreiben oder skizzieren.
 - b) Alle Halte- und Abtastglieder des in Abbildung 3 gezeigten Regelkreises werden 4 P. synchron und mit einer Abtastzeit von $T_a=1\,\mathrm{s}$ betrieben. Es handelt sich um ein lineares System, d. h. es gilt das Superpositionsgesetz.

Abbildung 3: Regelkreis.

Bestimmen Sie für diesen Regelkreis die diskrete Übertragungsfunktion

$$G(z) = \frac{y_z(z)}{u_z(z)}.$$

Hinweis: Die Teilaufgaben a) und b) sind unabhängig voneinander zu lösen.

Gehen Sie nun von einem zeitdiskreten LTI-System

$$\mathbf{x}_{k+1} = \mathbf{\Phi} \mathbf{x}_k$$

aus, wobei $\boldsymbol{\Phi}$ keine Diagonalmatrix ist. Die Transitionsmatrix des Systems besitzt die Form

$$\Psi(k) = \begin{bmatrix} \binom{1/2}{2}^{k-\alpha} & \beta^{k-1} - \gamma \\ \varepsilon & \phi \end{bmatrix}$$

mit den konstanten Parametern $\alpha, \beta, \gamma, \varepsilon, \phi \in \mathbb{R}$.

- c) Bestimmen Sie Parameter α , β , γ , ε , ϕ . Sie können dazu die Eigenschaften der 3 P.| Transitionsmatrix benützen.
- d) Bestimmen Sie die Dynamikmatrix Φ .

Hinweis: Die Teilaufgaben c) und d) sind unabhängig von a) und b).

