Operatines ignifest to the same Help

https://powcoder.com

Lecture 6b

Previously

Deadlocks

- O Deadlock conditions Assignment Project Exam Help
- O Methods of handling deadlocks https://powcoder.com

Today

More about deadlocks

- O More deadlock avoidangenment Project Exam Help
- O Resource Allocation Graphs
- O Deadlock detection and recovery powcoder.com

Recap: Prevention of deadlocks

Prevention by design

O Make sure that at least spenfield Project Exam Help conditions for a deadlock does not occur:

Mutual exclusion

O Hold-and-wait

O No-preemption

Circular wait

https://powcoder.com R1

Recap: Avoidance of deadlocks

Resource Allocation Denial

Request[i] for process P_i

Assignment Project Exam Help

- 1. If Request[i] <= Need[i], go to step 2.

 Otherwise, error (maximunhaxse/powcoder.com
- 2. If Request[i] < Available, go to step 3.
 Otherwise, P_i must wait (resolute to the top of the policy of the po
- 3. Pretend to fulfill request:

```
Available := Available - Request[i]
Allocation[i] := Allocation[i] + Request[i]
Need[i] := Need[i] - Request[i]
```

Approve request if resulting state is safe. Otherwise, restore state and set P_i to wait.

Available

 R_2

Recap: Avoidance of deadlocks

	Alloc	ation			Need				
	R_0	R_1	R ₂			R_0	R_1	R_2	
P_0	0	1	0		P_0	7	4	3	
P ₁	2	0	0 🛕	ssionn	ne ^P nt	Proje	ec ² F	x 3m	Hel
P_2	3	0	2	ssignn	P ₂	6	0	0	1101
P_3	2	1	1	http	s: ^P / ₂ n	owc	oder.	cdm	
P_4	0	0	2	Песр	P ₄	4	3	1	

O Assume request (1 0 2) bydd WeChat powcoder

Recap: Avoidance of deadlocks

	Alloc	ation		
	R_0	R_1	R_2	
P_0	0	1	0	
P ₁	2	0	0 🛕	ssignn
P_2	3	0	2	
P ₃	2	1	1	http
P_4	0	0	2	P

		$R_0 R_1 R_2$			
	P_0	7	4	3	
ignn	nent i	Proje	ect E	xam	Help
	P ₂	6	0	0	•
http	s://p	owc	oder.	cdm	
•	P_4	4	3	1	

Available					
R_0	R_1	R_2			
3	3	2			

O Assume request (1 0 2) by dd We Chat powcodered

Allocation							
$R_0 R_1 R_2$							
P_0	0	1	0				
P ₁	3	0	2				
P_2	3	0	2				
P_3	2	1	1				
P_4	0	0	2				

Need						
$R_0 R_1 R_2$						
P_0	7	4	3			
P ₁	0	2	0			
P_2	6	0	0			
P ₃	0	1	1			
P_4	4	3	1			

Available					
R_0	R ₁	R_2			
2	3	0			

Sufficient resources to continue with P₁

Recap: Avoidance of deadlocks

Allocation						
$R_0 R_1 R_2$						
P_0	0	1	0			
P ₁	3	0	² A			
P_2	3	0	2			
P_3	2	1	1			
P_4	0	0	2			

		Need			
		$R_0 R_1 R_2$			
	P_0	7	4	3	
ignn	nent	Proje	ecť E	xam	H
http	s:///p	owc	oder.	cdm	
	P ₄	4	3	1	

Available					
$R_0 R_1 R_2$					
2	3	0			

- O Assume request (3 3 0) by P₄
 Request cannot be granted (insufficient resources)
- O Assume request (0 2 0) by P_0 Request cannot be granted (would result in unsafe state with only {2,1,0} available resources)

Avoidance of deadlocks

Resource Initiation Denial

O Admit process P_n onlywhen its resource jequests complete cause a deadlock

```
\sum_{i=0}^{n-1} \frac{\text{https://powcoder.com}}{\text{Need[i][j] + Need[n][j] <= Available[j]}} 
Add WeChat powcoder
```

- O Assumes that processes know in advance the amount of resources they will need
- O Assumes worst-case resource allocation (all processes request their maximum resources at the same time)

Resource allocation graphs

Graphical models of resource allocation

- O Process nodes P_i
 Assignment Project Exam Help
- O Resource nodes R_i
- O Number of instances of editips: pewspder.com

Add WeChat powcoder

- O Request edge P_i → R_j
- O Assignment edge R_j → P_i

What happens if $P_3 \rightarrow R_2$?

Cycles in the graph indicate a deadlock.

Resource allocation graphs

Graphical models of resource allocation

- O Process nodes P_i
 Assignment Project Exam Help
- O Resource nodes R_i
- O Number of instances of edettps://pewspder.com

Add WeChat powcoder

- O Request edge P_i → R_j
- O Assignment edge R_j → P_i

Is there a deadlock in this system? Yes.

Deadlock Detection

- O Always grant resource requests when resources are available
- O Examine the state of the system to determine whether a deadlock has occurred Assignment Project Exam Help
- O If so, recover from the deadlock

https://powcoder.com

O Drawbacks:

- O Runtime overhead for deadlock detection
- O Potential losses due to recovery

Deadlock Detection – Single resources

Resource allocation graph

- O There are Available[j] instances of each resource type R_j
- O Allocation[i][j] is the number of instances of resource type R_j held by process P_i
- O Request[i][j] is the number of additional instances of resource type R_j requested by process P_i
- 2. Find an index i such that Add WeChat powcoder Finish[i] = false ^ Request[i] <= Work If no such i exists, go to step 4.
- 3. Work := Work + Allocation[i]
 Finish[i] := true
 Go to step 2.
- 4. If Finish[i] == false for some i, then the system is in a deadlocked state.

 P_i is deadlocked if Finish[i] == false.

Allocation							
	$R_0 R_1 R_2$						
P_0	0	1	0				
P ₁	2	0	0				
P_2	3	0	3				
P_3	2	1	1				
P_4	0	0	2				

٨	Request Project				\mathbf{D}_{2}	Fin	ish
A	ssigi		R ₁			xam	пегр
	P ₀ h1	ttns./	//p0v	vcod	er (com P ₁	false
	P ₁	2	P 0	2		P ₁	false
	P ₂ A	dd V	VeCl	naf p	ΟW	code	false
	P ₃	1	0	0	_ ,,	P_3	false
	P_4	0	0	2		P_4	false

Work					
R_0 R_1 R_2					
0	0	0			

Allocation								
$R_0 R_1 R_2$								
P_0	0	1	0					
P ₁	2	0	0					
P_2	3	0	3					
P_3	2	1	1					
P_4	0	0	2					

٨	Assignment Project				E,	Fin	ish
A	ssigi	R ₀	R_1			Xam	пер
	P ₀ h1	ttng·	//nov	zchd	er (വ്യ	false
	P ₁	2	/P0	2		com P ₁	false
	P ₂ A	dd V	VeC1	nal p	ΟW	code	false
	P_3	1	0	0	. , ,	P ₃	false
	P_4	0	0	2		P_4	false

Work				
R_0 R_1 R_2				
0	0	0		

Allocation							
$R_0 R_1 R_2$							
P_0	0	1	0				
P ₁	2	0	0				
P_2	3	0	3				
P_3	2	1	1				
P_4	0	0	2				

Δ	Assignment Project				F	Fin	ish Lela
$\boldsymbol{\Lambda}$	sorg	R ₀	R_1	R ₂	رنال ، ا	Aam	ricip
	P ₀ h1	ttns./	//nov	vc0d	er (cden	true
	P ₁	2	/P0 V	2		com P ₁	false
	P ₂	dd V	VeC1	nal p	ΟW	code	false
	P_3	1	0	0	. , ,	P ₃	false
	P_4	0	0	2		P ₄	false

Work					
R_0 R_1 R_2					
0	1	0			

Allocation								
$R_0 R_1 R_2$								
P_0	0	1	0					
P ₁	2	0	0					
P_2	3	0	3					
P_3	2	1	1					
P_4	0	0	2					

٨	Assignment Project					Fin	ish
A	ssig	R ₀	R_1			xam	пец
	P ₀ h1	ttns·/	//pov	vcod	er (com P ₁	true
	P ₁	2	P 0	2		P ₁	false
	P ₂ A	dd V	VeCl	nat p	ΟW	code	false
	P_3	1	0	0	_ ,,	P_3	false
	P_4	0	0	2		P ₄	false

Work					
$R_0 R_1 R_2$					
0	1	0			

Allocation								
$R_0 R_1 R_2$								
P_0	0	1	0					
P ₁	2	0	0					
P_2	0	0	0					
P_3	2	1	1					
P_4	0	0	2					

٨	Assignment Project					Fin	ish
A	ssig		R ₁			xam	пегр
	P ₀ h1	ttns·	//p0v	vcod	er (ငက်က	true
	P ₁	2	/P0	2		com P ₁	false
	P ₂	dd V	VeC1	naf p	ΟW	code	true
	P_3	1	0	0	. , ,	P ₃	false
	P_4	0	0	2		P_4	false

Work				
R_0 R_1 R_2				
3	1	3		

Example 1

Allocation								
	$R_0 R_1 R_2$							
P_0	0	0	0					
P ₁	0	0	0					
P_2	0	0	0					
P_3	0	0	0					
P_4	0	0	0					

٨	Assignment Project				Fin	ish	
A	ssig		R ₁			XaIII	пегр
	P ₀ h1	ttps:/	//pov	vcod	er.	com P ₁	true
	P ₁	0	P ₀ •	0		P ₁	true
	P ₂ A	dd V	VeCl	nat p	OW	code	true
	P_3	0	0	0		P_3	true
	P_4	0	0	0		P_4	true

Work				
$R_0 R_1 R_2$				
7	2	6		

All requests served – no deadlock

Allocation							
$R_0 R_1 R_2$							
P_0	0	1	0				
P ₁	2	0	0				
P_2	3	0	3				
P_3	2	1	1				
P ₄	0	0	2				

Δ	Assignment Project					Fin	ish Lela
$\boldsymbol{\Lambda}$	sorg	R ₀	R_1	R ₂	د نال	Aam	ricip
	P ₀ h1	ttns./	//nov	vcod	er (com	false
	P ₁	2	/P0 V	2		P ₁	false
	P ₂	dd V	VeC1	nat p	ΟW	code	false
	P_3	1	0	0	• , ,	P ₃	false
	P_4	0	0	2		P ₄	false

Work				
$R_0 R_1 R_2$				
0	0	0		

Allocation								
	$R_0 R_1 R_2$							
P_0	0	1	0					
P ₁	2	0	0					
P_2	3	0	3					
P_3	2	1	1					
P_4	0	0	2					

Δ	Assignment Project					Fin	ish
$\boldsymbol{\Lambda}$	soig	R ₀	R_1	R ₂	د نسال	Xaiii .	ricip
	P ₀ h1	ttns·/	//nov	vcod	er (com	false
	P ₁	2	/P0 V	2		P ₁	false
	P ₂	dd V	VeC1	nat p	ΟW	code	false
	P_3	1	0	0	• , ,	P ₃	false
	P_4	0	0	2		P ₄	false

Work					
$R_0 R_1 R_2$					
0	0	0			

Allocation								
	$R_0 R_1 R_2$							
P_0	0	1	0					
P ₁	2	0	0					
P_2	3	0	3					
P_3	2	1	1					
P ₄	0	0	2					

٨	Assignment Project				E	Fin	ish
A	ssig	R ₀	R_1			XaIII	rieip
	P ₀ h1	ttns	//pov	vc6d	er (cden	true
	P ₁	2	/P0	2		com P ₁	false
	P ₂	dd V	VeCl	naf p	ΟW	code	false
	P_3	1	0	0	_ ,,	P ₃	false
	P_4	0	0	2		P ₄	false

Work			
R_0	R_1	R ₂	
0	1	0	

Example 2

Allocation				
	R_0	R_1	R_2	
P_0	0	1	0	
P ₁	2	0	0	
P_2	3	0	3	
P_3	2	1	1	
P_4	0	0	2	

Δ	ssio	Request Project			Finish		ish Helr
<i>1</i> 3	133151	R ₀	R_1	R ₂		XuIII	ricip
	P ₀ h1	ttns·/	$\frac{1}{2}$	vcod	er (com	true
	P ₁	2	P 0	2		P ₁	false
	P ₂ A	dd V	VeCl	nat p	ΟW	code	false
	P_3	1	0	0		P_3	false
	P ₄	0	0	2		P ₄	false

Work			
R_0	R_1	R_2	
0	1	0	

No further requests can be served - Processes P₁, ..., P₄ deadlocked

Deadlock Detection

When to do deadlock detection?

- O How often is a deadle challengment enterprise Exam Help
- O How many processes will be affected by deadlock when it happens? https://powcoder.com
- O Run it

- O on every resource request?
- O every hour?
- O based on metrics?

Deadlock Recovery

- O Abort
 - O all processes involved in deadlock
 - o individual processes Astilithere is no Project Exam Help
- O Rollback
 - o all processes involved in dettps://powcoder.com
 - o individual processes until there is we deadlock anymere.
- O How to choose which processes to kill or preempt?
 - O Minimise "loss"
 - O Least CPU time?
 - O Fewest allocated resources?
- O Deadlock could happen again

Combined Deadlock Handling Strategy

For example:

- O Group resources into resource types:
 - O Disks Assignment Project Exam Help
 - O I/O devices
 - O Files
 - O Main memory

Add WeChat powcoder

https://powcoder.com

- O Prevent circular wait between these classes
- O Use appropriate methods within these classes, e.g.
 - O Prevent no-preemption on main memory
 - O Avoidance on I/O devices
 - 0 . . .

Two-Phase Locking

As used in databases

no-preemption

Summary

Deadlocks

- O Methods for handling Adexig trackent Project Exam Help
 - O Deadlock prevention
- https://powcoder.com
- O Deadlock avoidance
- O Deadlock detection and MedweChat powcoder

Read

- O Tanenbaum & Bos., Modern Operating Systems
 - O Chapter 6

Assignment Project Exam Help

- O Silberschatz et al., Operatihttps://epowooden.com
 - O Chapter 7

Next Lecture

- O Introduction O Deadlocks
- O Operating System Architectures Assignment Project Exam Help
- O Processes O File Systems
- o Threads Programming https://powcederscombutput
- O Process Scheduling Evaluation WeCharpsecurity and Virtualisation
- O Process Synchronisation