CSE4009 CAPSTONE, Project

AHMED SHMELS-18BCE2427

ROZA KEFELEGN-18BCE2431

KEMAL MUDIE -18BCE2433

COVID-19 detection and analysis on CXRs using various CNN models

Under the guidance of Dr. Rajkumar S

Associate Professor Grade 1

School of Computer Science & Engineering

Proposed methodology

Project Structure

- Task 0 1 Importing the Dataset from Kaggle
- Task 0 2 *Importing Libraries*
- Task 0 3 Preparing Training and Test Sets
- Task 0 4 *Creating Custom Dataset*
- Task 0 5 Image Transformations
- Task 0 6 *Prepare DataLoader*
- Task 0 7 Data Visualization
- Task 0 8 Creating the Model
- Task 0 9 *Training the Model*
- Task 1 0 Show the Predictions
- Task 1 1 Saving the Model
- Task 1 2 Inference on a Single Image

Evaluation metrics

- 1. Confusion metrics (CM)
- 2. receiver operating characteristics (ROC) and AUC
 - TP: It's when the model correctly predicts the positive class. Here, positive class refers to a COVID 19 patient.
 - TN: It's when the model correctly predicts the negative class. Here, negative class refers to a patient NOT suffering from COVID 19.
 - FP: It's when the model incorrectly predicts the positive class. Predicted that a patient suffering from COVID-19 but it's wrong.
 - FN: It's when the model incorrectly predicts the negative class. Predicted that a patient NOT suffering from COVID-19 but it's wrong.

$$Accuracy = \frac{TP + TN}{TP + TN + FN + FP}, \qquad F-1 \text{ score} = \frac{2 \times \text{precision} \times \text{recall}}{Precision + \text{recall}}.$$

$$Precision = \frac{TP}{TP + FP}.$$

$$Recall = \frac{TP}{TP + FN}.$$

$$MCC = \frac{(TP \times TN) - (FP \times FN)}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}}.$$

Proposed InceptionV3 architecture

Training performance plots

Training Performance Plots

Confusion matrix

Classification report

	precision	recall	f1-score	support
NORMAL	0.53	0.95	0.68	1248
COVID	0.98	0.70	0.82	3537
accuracy			0.77	4785
macro avg	0.75	0.83	0.75	4785
weighted avg	0.86	0.77	0.78	4785

Performance results per class

Predication/ out put

ROC curve (True positive rate vs false Positive rate)

Proposed VGG16 architecture

confusion matrix

Classification report

	precision	recall	f1-score	support
Covid Normal	0.92 0.91	0.92 0.92	0.92 0.91	269 269
Viral Pneumonia	0.99	0.97	0.98	269
accuracy	0.04	0.04	0.94	807
macro avg weighted avg	0.94 0.94	0.94 0.94	0.94 0.94	807 807

Model evaluation

Train loss vs validation loss

Model Loss Train 0.9 Validation 0.8 0.7 0.6 0.5 0.3 0.2 0.1 12 14

Tarin accuracy vs validation accuracy

Proposed ResNet-18 architecture

Train loss vs validation loss

Classification report and Confusion matrix

```
1 printMetrics(results)
   - Accuracy: 94.85%
   - Precision: 94.83%
   - Recall: 94.85%
   - F1: 94.83%
[ 1948 76 10
                  41
                 15]
  104 1084 0
       0 266
                  0]
       2
                717]]
```

Predication/output

During training

After training

