AD-A101 288

GEO-TECHNICAL SERVICES INC HARRISBURG PA NATIONAL DAM INSPECTION PROGRAM. FOREST LAKE DAM (NDI ID NUMBER--ETC(U) DACW31-81-C-0019

UNCLASSIFIED

JOST J. 13 J. 13 J. 14 J. 15 J. 15

SUSQUEHANNA RIVER BASIN FOREST LAKE CREEK, SUSQUEHANNA COUNTY

PENNSYLVANIA

FOREST LAKE DAM

NDI ID NO. PA-00968 DER ID NO. 58-21

FOREST LAKE COTTAGE OWNERS ASSOCIATION

PHASE I INSPECTION REPORT
NATIONAL DAM INSPECTION PROGRAM

DTIC ELECTE JUL 13 1981

D

Prepared by

Geo-Technical Services, Inc.

CONSULTING ENGINEERS & GEOLOGISTS

851 S. 19th Street

Harrisburg, Pennsylvania 17104

For

DEPARTMENT OF THE ARMY

Baltimore District, Corps of Engineers

Baltimore, Maryland 21203

*Original centering color pletter is a seed reproducttope will be in black and

MAY 1981

Distribution White the Distribution Unimited

TIC FILE COPY

00

00

N

AD A 1 0 1

81 7 10 025

Accession For

NTIS GRA&I
DTIC TAB
Unannounced
Justification

By Pec DTIC Form D

Distribution/on File

Availability Codes

Avail and/or
Dist Special

SUSQUEHANNA RIVER BASIN

FOREST LAKE CREEK
SUSQUEHANNA COUNTY, PENNSYLVANIA

FOREST LAKE DAM

NDI ID No. PA-00968 DER ID No. 58-21

FOREST LAKE COTTAGE OWNERS ASSOCIATION

PHASE I INSPECTION REPORT

NATIONAL DAM INSPECTION PROGRAM

National Dam Inspection Program. Forest Lake Dam (NDI ID Number PA-00968, DER ID Number 58-21), Susquehanna River Basin, Forest Lake Creek, Susquehanna County, Pennsylvania. Phase I Inspection Report.

Prepared By

GEO-TECHNICAL SERVICES, INC.
CONSULTING ENGINEERS & GEOLOGISTS

851 S. 19th Street

Harrisburg, Pennsylvania 17104

Contract DACW31-81-C-0019

For

DEPARTMENT OF THE ARMY

BALTIMORE DISTRICT, CORPS OF ENGINEERS

Baltimore, Maryland 21203

"Original contains color plates: All DTIC reproductions will be in black and white"

412 431

May 1981

DISTRIBUTION STATEMENT A

Approved for public release; Distribution Unlimited

PREFACE

This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I investigation is to identify expediously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I investigation; however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. In cases where the reservoir was lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structure and may obscure certain conditions which might otherwise be detectable if inspected under the normal operating environment of the structure.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through frequent inspections can unsafe conditions be detected and only through continued care and maintenance can these conditions be prevented or corrected.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established Guidelines, the spillway design flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonable possible storm runoff), or fractions thereof. The spillway design flood provides a measure of relative spillway capacity and serves as an aid in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and the downstream damage potential.

TABLE OF CONTENTS

E
S

PHASE I INSPECTION REPORT NATIONAL DAM INSPECTION PROGRAM

BRIEF ASSESSMENT OF GENERAL CONDITION

AND

RECOMMENDED ACTION

Name of Dam: Forest Lake Dam

NDI ID No. PA-00968 DER ID No. 58-21

Size: Small (12 feet high; 720 acre-feet)

Hazard

Classification: Significant

Owner: Forest Lake Cottage Owners Association

Richard H. Lamon, President

R. D. #2, Box 220A

Montrose, Pennsylvania 18801

State Located: Pennsylvania

County Located: Susquehanna

Stream: Forest Lake Creek

Date of Inspection: December 10, 1980

Based on visual inspection, field survey, available records, calculations and past operation performance, Forest Lake Dam is judged to be in poor condition. The selected Spillway Design Flood (SDF) for the facility is one-half of the PMF (Probable Maximum Flood). The existing spillway will not pass the floods in excess of 10 percent of the PMF, including the 100-year flood, without overtopping the dam. Based on hydrologic and hydraulic analysis and the hazard classification, the spillway is judged to be inadequate.

The structural integrity of the dam is suspect because of the visual signs of structural deterioration, depicted by the partial failure of the downstream stone wall.

The top two-foot section of the vertical concrete headwall, in the outlet works, has a 5-degree tilt toward the reservoir. Overturning failure of this top of wall would damage the outlet works slide gate assembly and would be hazardous to the road traffic over the dam.

There is no formal inspection and maintenance program or warning system and evacuation plan in effect for Forest Lake Dam.

FOREST LAKE DAM

The following investigations and remedial measures are recommended for immediate implementation by the owner:

- (1) Increase the spillway capacity to adequately pass the flood flows without overtopping the dam.
- (2) Remove tree and brush from the downstream slope of the dam and near the toe of the dam, under the supervision of a professional engineer.
- (3) Engage a competent professional engineer to more accurately ascertain the magnitude and nature of the seepage condition at the toe of the dam when the reservoir is at normal pool, to assess the structural stability of the dam with particular attention to the remaining stone wall at the downstream side of the embankment and the tilted upstream headwall, and to investigate erosion in the outlet channels of the service spillway and outlet works. Take corrective measures as indicated by these investigations.

In addition, it is recommended that the Owner take the following precautionary operation and maintenance measures:

- (1) Develop a detailed emergency operation procedure and warning system to facilitate timely and orderly evacuation of the downstream population due to hazardous conditions at the dam. The anticipated hazard conditions include, but are not limited to, overtopping of the dam and the development of piping conditions at the toe of the dam.
- (2) When warnings of storms of major proportions are given by the National Weather Service, activate the emergency operation and warning system procedures.
- (3) After satisfactory implementation of the remedial measures resulting from the recommended additional investigations, institute a formal inspection and maintenance program for the dam. As presently required by the State of Pennsylvania, the program shall include an annual inspection of the dam by a professional engineer, experienced in the design and construction of dams. Deficiencies found during annual inspections should be remedied as necessary.

Submitted by:

GEO-TECHNICAL SERVICES, INC.

Approved:

DEPARTMENT OF THE ARMY

BALTIMORE DISTRICT, CORPS OF ENGINEERS

AMES W. PECK

dolonel, Corps of Engineers

Commander and District Engineer

Date: 3 JUNE 1981

FOREST LAKE DAM (PA 00988)

PHASE I INSPECTION REPORT NATIONAL DAM INSPECTION PROGRAM FOREST LAKE DAM NDI# PA-00968, PENNDER # 58-21

SECTION 1

GENERAL INFORMATION

1.1 General

- a. Authority. The Dam Inspection Act, Public Law 92-367, authorized the Secretary of the Army, through the Corps of Engineers, to initiate a program of inspection of dams throughout the United States.
- b. <u>Purpose</u>. The purpose is to determine if the dam consititutes a hazard to human life or property.

1.2 Description of Project.

- a. Dam and Appurtenances. Forest Lake Dam is a composite earthfill-masonry concrete structure approximately 12 feet high and 200 feet long. Most of the 200 foot length of the dam is earthen embankment. A portion of the downstream face consists of a masonry wall, a length of which has collapsed, and a portion of the upstream face consists of a concrete wall. There is no emergency spillway provided for the facility. A service spillway, consisting of two 15-inch diameter, 27-foot-long Corrugated Metal Pipes (CMP), is located at the left abutment. The outlet works, consisting of a 24-inch diameter, 40-foot-long concrete pipe, is located at the maximum section of the dam. Flow through the outlet works is regulated by a rectangular slide gate, located at the pipe inlet and accessible from the top of the concrete headwall.
- b. Location. Forest Lake Dam is located on Forest Lake Creek in Forest Lake Township, Susquehanna County, Pennsylvania. The Borough of Montrose, Pennsylvania, is situated about 5 miles southeasterly of the dam at the intersection of State Routes 29 and 706. The dam and reservoir are contained within the Laurel Lake, Pennsylvania and New York 7.5 minute series USGS Quadrangle Map, at Latitude N 41 52 48" and Longitude W 75057 38". A Location Map is shown on Exhibit E-1.
- c. <u>Size Classification</u>. Small (12 feet high, 720 acre-feet storage capacity at top of dam).
 - d. Hazard Classification. Significant (see paragraphs 3.1e and 5.1c).

- e. Ownership. Forest Lake Cottage Owners Association; Richard H. Lamon, President. R. D. #2, Box 220A, Montrose, Pennsylvania 18801.
- f. Purpose of Dam. The original purpose of the impounded water was for ice harvesting and recreation. Additionally, water releases from the impoundment activated a saw mill (see Booth Mill Pond, Exhibit E-1). Presently, the lake is being used for recreation.
- g. Design and Construction History. Information related to the design and construction of the dam is not available. Data obtained from the Pennsylvania Department of Environmental Resources (PennDER) indicate that the dam was constructed in 1842. Although "as-built" drawings are not available, inspection reports, correspondence and photographs document operation and maintenance activities since 1919. The present service spillway was added after the June 1972 flood.
- h. Normal Operational Procedure. The pool is maintained at the level of the service spillway (invert of two 15-inch diameter CMP). Lake level has been drawn down by approximately three feet every winter since 1965 to protect boat docks from ice damage.

1.3 Pertinent Data.

a.	Drainage Area. (square miles)	0.84
b .	Discharge at Damsite. (CFS) Maximum known flood at damsite	
	since construction	Not Known
	Outlet works at maximum pool elevation	50
	Spillway capacity at maximum pool elevation	
	Design Conditions Existing Conditions	Not Known 14
с.		
	Top of Dam	
	Design Conditions	Not Known
	Existing Conditions (at lowest point)	1528.8
	Maximum Pool	
	Design Conditions	Not Known
	Existing Conditions (at low point of dam)	1528.8
	Normal Pool (spillway crest)	1526.4
	Upstream Invert Outlet Works	Nat Known
	Downstream Invert Outlet Works	1518.5
	Streambed at Toe of Dam	1516.8
	Maximum Tailwater (at max. spillway	
	discharge), approximately	1517
d.	Reservoir Length. (feet)	
	Normal Pool	3050
	Maximum Pool (at lowest dam crest elevation)	3200
	1 A	

≟.	Storage. (acre-reet)	
	Normal Pool (including pre-construction Lake storage)	604
	Maximum Pool	
	Design Conditions	Not Known
	Existing Conditions	720
Ε.	Reservoir Surface. (acres)	
	Normal Pool	46
	Maximum Pool	
	Design Conditions	Not Known
	Existing Conditions	51
	•	
g.	Dam.	
	Type - Composite earthfill-masonry structure	
	Length (feet) (including spillway)	200
	Height (feet)	12
	Top Width (feet)	**
	Design Conditions	Not Known
	Existing Conditions	14' to 30'
	Existing Whattions	14 (0)0
	Side Slopes - Vary, see typical sections	
	(Exhibits A-3 and A-4).	
	Zoning - See type, above.	
	Cut-Off	Not Known
	Impervious Core	
		Not Known
	Grout Curtain	Not Known
_	Disconder and Day 1 at the Married	3 V -
n.	Diversion and Regulating Tunnel	None
	0.111	
i.	Spillway (service spillway, no emergency	
	spillway)	
	Type - Two 15-inch diameter CMP	
	Length (feet)	27'
	Crest Elevation (Invert of 15" dia. pipes)	1526.4
	Upstream Channel	None
	Downstream Channel - Road drainage ditch,	
	See Exhibit A-1.	
j.	Outlet Works	
	Type - 24-inch diameter concrete pipe.	
	Length (feet)	40
	Closure and Regulating Facilities - Reported	
	3' x 2' rectangular slide gate at the pipe	
	inlet. For location of stem, see Exhibit A-4.	
	Access - From top of dam at concrete headwall.	

SECTION 2 ENGINEERING DATA

2.1 Design.

- a. <u>Data Available</u>. There is no available information related to the design and construction of the dam. The earliest information available consists of data compiled by the Water Supply Commission of Pennsylvania in 1919. Inspection reports accompanied with photographs indicate the conditions of the dam in 1935, 1951 and 1965. The above cited information and related correspondence is available on file with PENNDER.
- b. <u>Design Features</u>. The dam and appurtenances are described in Paragraph 1.2a. The original extent of the near-vertical, downstream dry stone wall is not known. Available data indicates that the dam was subject to frequent overtopping prior to the construction of the service spillway.

2.2 Construction Records.

There are no records available for evaluation of construction methods and the classification or quality of materials placed in the dam. Information given by Delbert W. Potts, Caretaker for the Cottage Owners Association, indicates that an unregulated upper intake existed prior to the construction of the present service spillway. This upper intake was located above the inlet to the outlet works at the face of the concrete headwall. Overflow through a 12-inch CMP inlet was conveyed by a vertical elbow into the 24-inch diameter outlet pipe within the earthfill portion of the dam. The upper intake was replaced with the present service spillway in 1972.

2.3 Operation.

Prior to 1965, the outlet works were in continuous operation during periods of low flow supplying water to a saw mill (see Booth Mill Pond, Exhibit E-1). The present normal operation of the facility is described in paragraph 1.2h, Section 1.

2.4 Other Investigations.

In addition to on-site inspections cited in paragraph 2.1a, investigations were conducted in response to complaints by the Cottage Owners Association regarding drawdown of the Lake by the saw mill operator. These investigations resulted in repairs of the slide gate and the installation of the 12-inch CMP overflow, prior to 1968.

2.5 Evaluation.

a. Availability of Data. Engineering data was extracted from PENNDER files. The owner stated that he has no plans of the dam. Pertinent dam features were obtained by survey on the inspection date (12/10/1980). There are no other sources of information available for the evaluation of the facility.

- b. Adequacy. In the absence of plans, engineering specifications and construction records, assessment of the structural integrity of the dam and its safety must be based on the combination of available cited data, visual inspection, performance history, as well as the hydrologic and hydraulic analysis presented in Section 5.
- c. $\underline{\text{Validity}}$. There is no reason to question the validity of the available data.

SECTION 3

VISUAL INSPECTION

3.1 Observations.

- a. General. The overall appearance of the dam is poor. Location of observed deficiencies are shown on the General Plan, presented in Exhibit A-1, Appendix A. The profile and typical sections of the dam are presented in Exhibits A-2, A-3 and A-4 and are based on field survey made on the day of inspection. The survey datum for this inspection is elevation 1527 feet above mean sea level which is stamped on the USGS Bench Mark (No. TT15K, 1931) on the large sandstone slab, upstream of the service spillway. On the inspection date (12/10/1980), the lake was being drawn down for the winter. The lake level was approximately at elevation 1523.6, or 2.8 feet below its normal level. Deficiencies observed during the field inspection are described below and further illustrated in Exhibit A-1, Appendix A. Visible features are depicted in photographs presented in Appendix C.
- Observations made during inspection indicate that the dam is in poor condition. The upstream slope varies, having a vertical concrete wall along a distance of 19 feet in the vicinity of the outlet works (see Outlet Works, Exhibit A-4). The remaining upstream face is unprotected earthfill embankment with the steepest slope being 1V to 1.43H (see Exhibits A-3, A-4 and photographs 1 and 2. Appendix C). The top width of the dam varies from 14-feet at the left abutment to 30 feet at the outlet works. The lowest top of dam elevation is 1528.8 and is located near the right abutment (see top of dam profile, Exhibit A-2). Lake Hill Road (TR 643) traverses the crest of the dam, rising in elevation at each abutment (see Exhibits A-1 and A-2). The downstream face of the dam includes a 20-foot long, near-vertical dry masonry wall, rising from the downstream toe of the dam near the left abutment, to an approximate elevation 1526 (see Section A, Exhibit A-3 and Photographs 3 and 4, Appendix C). The top left end of the stone wall is characterized by overhanging stones, up to 12-inches off the vertical face and is subjected to a surcharge from the upstream earthfill section. The balance of the stone wall had collapsed (see Photographs 3 and 5, Appendix C) within the limits shown in Exhibit A-1. Between the outlet works and the right abutment, the downstream face of the dam is an earth embankment, varying in slope from 1V:1.34H at the outlet works (see Exhibit A-4) to 1V:1.5H at the right abutment. Approximately 3 Gallons Per Minute (GPM) seepage was observed to emanate from the toe of the dam between the collapsed stone wall and the outlet works. There was no evidence of piping at the toe of the dam on the day of the inspection. Growth of trees within the dam proper is limited to a 24-inch diameter ash on the downstream slope, near the right abutment, and two 16-inch diameter trees near the toe at the left abutment (see Exhibit A-1 and Photographs 3 and 4, Appendix C).

c. Appurtenant Structures. The service spillway is located on the left abutment. It consists of two 15-inch diameter Corrugated Metal Pipe (CMP) culverts under Lake Hill Road (TR-643). The inlet is in good condition with the pipes being flush with a vertical stone headwall (see Photographs 5 and 6, Appendix C). An extended side road ditch conveys the flow from the termination of the pipes to the downstream channel of Forest Lake Creek. Portions of the service spillway outlet channel, immediately below the downstream face of the dam, are severely eroded (see Exhibit A-1 and photographs 3 and 4, Appendix C).

The outlet works is located near the maximum section of the dam, approximately 80 feet east of the right abutment. On the day of the inspection, the water surface in the reservoir was above the intake and its condition could not be verified. Available data indicates the existence of a trash rack at the inlet to the 24-inch diameter concrete pipe. The slide gate is operable by means of a stem, located near the middle of the concrete headwall (see Exhibits A-1 and A-4).

The top of wall elevation at the right end of the upstream headwall is 0.2 foot higher than that at the left end and the entire top 2-foot section is tilted upstream by approximately 5 degrees off vertical. The visible portion of this wall has a 4V to 1H batter on the back side. On the day of the inspection, the reservoir was being lowered for the winter and the flow through the 24-inch diameter concrete pipe was approximately 200 GPM, creating a free overfall into the outlet channel. The outlet of the concrete pipe appears to be in good condition. The outlet channel extends to the left of the outlet pipe, joining the natural stream channel approximately 15 feet downstream of the pipe outlet. Immediately downstream of the outlet pipe, the bottom of the channel is eroded to a depth of 18 to 24 inches (see Exhibits A-1, A-4 and Photograph 4, Appendix C).

- d. Reservoir Area. The northwestern part of the watershed is predominantly farm land with an average slope of 10 percent. The balance of the watershed is predominantly wooded, having an average slope of 12 percent on the left bank of Forest Lake. The right bank of the lake is steeply sloped, ranging from 25 percent at the widest part of the lake to 8 percent at the right abutment of the dam. The watershed rises from the normal lake level elevation 1526.4 to the maximum elevation 1940 feet above mean sea level, at the northeastern portion of the drainage divide (see Exhibit E-1). Extensive development is limited to the lake shoreline, consisting of permanent and seasonal residences. Sediment deposit at the lake inlet is not pronounced. Geologic conditions are described in Appendix F.
- e. <u>Downstream Channel</u>. Immediately downstream of the Forest Lake Dam, the bottom width of the channel varies between 6 to 10 feet and both stream banks are steep and partially wooded. The top of the right bank is 6 feet above streambed and the overbank slope is approximately 10 percent. The top of the left bank is 14 feet above the streambed. The downstream channel characteristics are illustrated in Photograph 9, Appendix C. The average slope of the channel along the first 2200-foot stretch of the stream below the dam is 0.033 foot per foot (3.3%). A 4-foot diameter culvert is located 1900 feet below the dam, with the

top of the road being 4.5 feet above the streambed. A low-lying two story dwelling is located on the left bank of the stream, approximately 100 feet upstream of the culvert. The first floor elevation of the dwelling is 4.6 feet above the streambed. A trailer is located on the right bank of the creek downstream of the culvert, approximately 2100 feet below the dam and 15 feet above the streambed. Stream channel characteristics, both upstream and downstream of the culvert, and the location of the dwellings with reference to the stream are shown in Photographs 10 and 11, Appendix C. A house is located 150 feet from the right bank of the stream, approximately 4000 feet downstream of the dam. The basement floor elevation of this house is 1.8 feet above the streambed. Approximately 7100 feet downstream of the dam, a house is located 50 feet from the right bank of the stream whose first floor elevation is 12 feet above the streambed. The location of the cited dwellings are shown in Exhibit E-1. Observed downstream hazard conditions indicate that a few lives could be lost and significant property damage incurred should Forest Lake Dam fail. Consequently, the hazard classification for this facility is considered to be significant.

SECTION 4

OPERATIONAL PROCEDURES

4.1 Procedure.

From mid April to October of each year, the reservoir is maintained at the service spillway invert elevation 1526.4 with excess inflow discharging through the spillway into Forest Lake Creek. In the early part of October, the reservoir is drawn down for the winter by approximately 3 feet to facilitate repairs and maintenance of boat dock facilities and to prevent ice damage to the docks. The reservoir level is raised beginning in early April of each year to elevation 1526.4. Reservoir elevations are regulated by a slide gate at the inlet to the 24-inch diameter concrete pipe.

4.2 Maintenance of Dam.

The dam is visited daily by the owner's caretaker, who lives and works on a farm near the dam site. The owner does not make formal inspections of the dam, nor does he provide a regular maintenance schedule for the dam. The road on top of the dam is maintained by the Township.

4.3 Maintenance of Operating Facilities.

The outlet works is the only operating facility at the dam. The operating wheel for the slide gate is kept at the caretaker's residence. Maintenance of the slide gate is limited to seasonal operation of the lift mechanism.

4.4 Warning System.

There is no emergency operation and warning system in effect at the present time.

4.5 Evaluation.

The appearance of the dam indicates that periodic inspections are necessary to check the conditions at the downstream toe of the dam. Maintaining the downstream slope of the dam and the immediate area below the downstream toe clear of brush will facilitate such inspections. Periodic inspections should include, as a minimum, the measurement of toe seepage with reference to the water level in the reservoir and the severity of erosion conditions in the outlet channels of the service spillway and the outlet works. The annual drawdown of the reservoir level facilitates the inspection and maintenance of the upstream face of the dam. These inspections and the resulting maintenance activities should include, as a minimum, periodic measurements of the tilted concrete headwall at the outlet works and the removal of brush and debris from the service spillway inlet.

An emergency operation and warning system is necessary to prevent loss of life resulting from a dam failure.

SECTION 5 HYDROLOGY AND HYDRAULICS

5.1 Evaluation of Features.

- a. <u>Design Data</u>. There is no information available to indicate the design criteria for the Forest Lake Dam.
- b. Experience Data. There are no records available to indicate the maximum pool attained by the reservoir during past floods. The June 1972 flood resulting from Hurricane Agnes is believed to be the flood of record. The owner's representative stated that a temporary emergency spillway was excavated on the left abutment in June 1972 and that the dam was not overtopped during that flood. This trench was subsequently replaced by the present service spillway. The caretaker reported that the dam was not overtopped during the 1972 flood and that no overtopping has occured since the installation of the service spillway. Available data (1931 correspondence, PENNDER Files) indicates that overtopping of the dam was a frequent occurence for a period of at least 50 years.
- c. <u>Visual Observations</u>. Based on visual inspection, described in Section 3 of this report, and field survey, the observations relevant to hydrology and hydraulics are described as follows:
- (1) Dam: The top of dam has an irregular profile and its lowest point is at elevation 1528.8 (see Exhibit A-2, Appendix A). The normal pool level during the spring and summer months is at elevation 1526.4. Consequently, the maximum rise in the reservoir pool level prior to overtopping the dam is 2.4 feet. Since the dam was constructed at the outlet of a natural lake, the effective storage behind the dam is the storage capacity above the upstream invert of the outlet works.
- (2) Appurtenant Structures: The spillway is located at the left abutment of the dam, consisting of two 15-inch diameter Corrugated Metal Pipes (see Exhibits A-2 and A-3, Appendix A; and Photographs 5, 6, 7 and 8, Appendix C). Computed spillway capacity used in this report is 14 cubic feet per second (cfs), provided that the spillway inlet is unobstructed by debris (see sheet D-7, Appendix D).

The slide gate at the inlet to the 24-inch diameter outlet works is normally closed when the reservoir pool level is at elevation 1526.4. The maximum discharge capacity of the outlet works at normal pool level is approximately 50 cfs (see Sheets D-7 and D-8, Appendix D).

(3) <u>Reservoir Area</u>: There are no upstream structures of significant influence on the rate and time of flood inflow into Forest Lake. There are no visible indications to suggest drastic change in the prevailing watershed land use to significantly alter the rate of inflow into the reservoir during extreme floods.

- (4) <u>Downstream Conditions</u>: The spillway and dam crest overtopping discharge capacities are not affected by tailwater conditions for the entire range of discharges considered in this study (see Sheets D-9 and D-10, Appendix D). Failure of the dam would result in flooding of one dwelling, located on the left bank of Forest Lake Creek and approximately 1800 feet downstream of the dam. Basement flooding will also occur in a home, located on the right bank of the creek and approximately 4000 feet downstream of the dam, should the dam fail. The observed downstream conditions indicate that a significant hazard classification is warranted for Forest Lake Dam.
- d. Method of Analysis. Hydrologic and hydraulic evaluation was made in accordance with the procedures and guidelines established by the U.S. Army, Corps of Engineers, Baltimore District, Phase I Safety Inspection of Dams. The analysis has been performed utilizing the HEC-1DB program developed by the U.S. Army Corps of Engineers, Hydrologic Engineering Center, Davis, California. A brief description of program capabilities, as well as the input and output data used specifically for this analysis, is presented in appendix D.

e. Summary of Analysis.

- (1) Spillway Design Flood: According to the criteria established by the Office of the Chief of Engineers (OCE) for the size (Small) and hazard potential (Significant) of Forest Lake Dam, the Spillway Design Flood (SDF) is between 100-year Flood and the one-half Probable Maximum Flood (1/2 PMF). Based on the potential hazard downstream of the dam and the relatively large storage in the reservoir the 1/2 PMF is selected as the SDF for the Forest Lake Dam.
- (2) Results of Analysis: Pertinent results are tabulated in appendix D. Forest Lake Dam was evaluated for the normal reservoir pool level at elevation 1526.4, which is the prevailing condition between April and October of each year. Since the slide gate is in closed position during the aforementioned period, flow through the outlet works was excluded from the evaluation of spillway adequacy. The derived peak inflow and outflow from the reservoir for the selected SDF of 1/2 PMF are 1230 cfs and 1100 cfs, respectively. Since the spillway capacity is 14 cfs, all floods in excess of the 0.1 PMF will overtop the dam (see Summary of Dam Safety Analysis, Sheet D-16, Appendix D). The computed peak discharge for the 100-year flood is 700 cfs. Therefore, the spillway capacity is 2% of the 100-year flood.
- (3) Spillway Adequacy: Since the spillway is not capable of passing the one-half of the PMF without overtopping the dam, it is considered to be inadequate.

SECTION 6 STRUCTURAL STABILITY

6.1 Visual Observations.

The visual inspection of Forest Lake Dam is described in Section 3. Observations that are relevant to structural stability of the dam and the appurtenant structures are evaluated below:

a. Dam. The collapsed portion of the downstream dry masonry wall is located left of the outlet works (see Exhibit A-1). Whereas, the lowest elevation of the dam crest is located immediately to the right of the outlet works (see Exhibit A-2). Therefore, the collapse of the stone wall, within the visible limits shown in Exhibit A-1, is not attributed to the reported past overtopping occurences of the dam (see Paragraph 5.1b, Section 5). The surcharge loads on the wall from the upstream earthfill and road traffic (see Section A, Exhibit A-3) are the possible causes of the stone wall failure. On the basis of visual inspection and the available data, the structural integrity of the dam section adjacent to the collapsed stone wall, cannot readily be verified.

The observed seepage at the toe of the dam on December 10, 1980 was approximately at the rate of 3 GPM with no evidence of piping. The reservoir was being drawn down for the winter and the water surface in the reservoir was 2.8 feet below the normal pool elevation. Therefore, the observed rate of seepage does not reflect the prevailing conditions at the toe when the reservoir is at normal pool elevation.

b. Appurtenant Structures. Observed erosion in the service spillway channel is located approximately 20 feet downstream of the stone wall face of the dam. The present depth of the eroded channel bottom is approximately 18 inches and the slope of the channel is 18 percent. Extensive erosion in the bottom of the earth channel can cause instability of the channel banks. Should the right bank of the channel collapse due to extensive erosion of the channel bottom, the collapse could affect the stability of the dam.

The outlet works concrete headwall retains the adjacent upstream earthfill section of the dam. The top two foot section of this wall is tilted toward the reservoir. The observed 5 degree tilt from the vertical is above a horizontal construction joint, extending along the entire length of the wall. Information relative to wall reinforcement is inadequate to assess the stability of the tilted portion of the wall against overturning. Failure of the tilted wall section would bend the stem and cause damage to the slide gate. Additionally, failure of this wall will be hazardous to the roadway traffic over the dam.

6.2 Design and Construction Data.

Available design and construction data are inadequate to assess the structural integrity of the dam.

6.3 Past Performance.

The available data indicate that the partial collapse of the downstream dry stone wall occurred prior to 1965. There is no other information available related to structural failure of the dam or the appurtenant structures.

6.4 Post Construction Changes.

The present service spillway on the left abutment was constructed in June 1972. This spillway replaced a 12-inch diameter overflow pipe that was located above the outlet works intake.

6.5 Seismic Stability.

The dam is located in Seismic Zone No. 1 and may be subject to minor earthquake induced dynamic forces. Normally, it can be considered that if a dam in this zone is stable under static loading conditions, it can be assumed safe for any expected earthquake loading. However, since the static stability of the composite section of Forest Lake Dam is questionable, its seismic stability cannot be assessed.

SECTION 7 ASSESSMENT AND RECOMMENDATIONS FOR REMEDIAL MEASURES

7.1 Dam Assessment.

a. Safety.

- (1) Based on the visual inspection, field survey, available records, calculations and past operational performance, the Forest Lake Dam is judged to be in poor condition. The size classification of the facility is Small and its hazard classification is Significant. In accordance with the recommended guidelines, the selected Spillway Design Flood (SDF) for the facility is the one-half of the PMF (Probable Maximum Flood). Results of the hydrologic and hydraulic analysis indicate that for the slected SDF, the peak outflow from the reservoir is approximately 1100 cubic feet per second (cfs). The spillway capacity is the equivalent of the peak outflow resulting from a flood magnitude of 0.1 PMF. Therefore, all floods in excess of 0.1 PMF will cause overtopping of the Forest Lake Dam. Although the dam has withstood frequent overtoppings since its construction, the magnitude of the maximum past overtopping could not be verfied. Based on the hydrologic and hydraulic analysis and the hazard classification, the spillway is judged to be inadequate. The spillway will not pass the 100-year frequency flood without overtopping the dam.
- (2) The structural integrity of the dam is suspect because of the visual signs of structural deterioration, depicted by the partial failure of the downstream stone wall. Due to insufficient design and construction information, an assessment of the structural stability cannot be made.
- (3) The top two-foot section of the vertical concrete headwall, in the outlet works, has a 5-degree tilt toward the reservoir. Overturning failure of this top of wall would damage the outlet works slide gate assembly and would be hazardous to the roadway traffic over the dam. Information relative to wall reinforcement is inadequate to assess the stability of the tilted portion of the wall against overturning.
 - (4) A summary of the observed deficiencies is described below:

Description	Observed Deficiencies
<u>Dam</u>	12-inch overhang and partial failure of the downstream stone wall; irregular top of dam elevation; seepage at toe of dam between the collapsed stone wall and the outlet works; trees at toe and downstream slope.
Service Spillway	Eroded bottom of spillway outlet channel, downstream of the dam.

Description

Observed Deficiencies

Outlet Works Top of vertical concrete headwall is tilted toward the reservoir by 5 degrees; 18" to 24" erosion in the bottom of the outlet channel.

- (5) There is no formal inspection and maintenance program in effect for Forest Lake Dam.
- b. Adequacy of Information. The data collected from previously cited inspection reports, past performance, visual inspection and computations performed as part of this study are sufficient for the Phase I dam safety assessment, delineated in sub-paragraph a. of this section.
- c. <u>Urgency</u>. The recommendations in Paragraph 7.2 should be implemented as soon as practical or as dictated by the recommended additional investigations, that follow.
- d. <u>Necessity for Further Investigations</u>. In order to accomplish some of the remedial measures outline in Paragraph 7.2, further investigations by a professional engineer experienced in the design and construction of dams will be necessary.

7.2 Recommendations and Remedial Measures.

- a. The following investigations and remedial measures are recommended for immediate implementation by the Owner:
- (1) Increase the spillway capacity to adequately pass flood flows without overtopping the dam.
- (2) Remove tree and brush from the downstream slope of the dam and the trees near the toe of the dam, under the supervision of a professional engineer.
- (3) Engage a competent professional engineer to more accurately ascertain the magnitude and nature of the seepage condition at the toe of the dam when the reservior is at normal pool, to assess the structural stability of the dam with particular attention to the remaining stone wall at the downstream side of the embankment and the tilted upstream headwall, and to investigate erosion in the outlet channels of the service spillway outlet works. Take corrective measures as indicated by these investigations.
- b. In addition, it is recommended that the owner take the following precautionary operation and maintenance measures:
- (1) Develop a detailed emergency operation procedure and warning system to facilitate timely and orderly evacuation of the downstream population due to hazardous conditions at the dam. The anticipated hazard conditions include, but are not limited to, overtopping of the dam and the development of piping conditions at the toe of the dam.

- (2) When warnings of a storm of major proportions are given by the National Weather Service, activate the emergency operation and warning system procedures.
- (3) After satisfactory implementation of the remedial measures resulting from the recommended additional investigations, institute a formal inspection and maintenance program for the dam. As presently required by the State of Pennsylvania, the program shall include an annual inspection of the dam by a professional engineer, experienced in the design and construction of dams. Deficiencies found during annual inspections should be remedied as necessary.

APPENDIX A

VISUAL INSPECTION - CHECKLIST AND FIELD SKETCHES

GEO-TECHNICAL SERVICES
Consulting Engineers & Geologists

SCALE HORZ. I" = 50' VERT. I" = 4'

PP. PSZZ ET+ ROAD INTERSECTION RIGHT ABUTMENT INVERT EL. 1518.51 (AT OUTLET) M + 78 1528.83 24" RCP LOWEST DAM EL. 1528.8 81.8251 457 86+2 INVERT EL. 1526.39 2-15" CMP 82.9.22 854 +27 1529.42 78+ LEFT ABUTMENT 24.0521 544 1232.29 0 520 526 1530 528 1522 15/8

EXHIBIT A-2

TYPICAL DAM SECTIONS

TYPICAL DAM SECTIONS

CHECK LIST VISUAL INSPECTION PHASE 1

COUNTY Susquehanna		HAZARD CATEGORY Significant	TEMPERATURE $30 \cancel{F} \omega = 3:00 \text{ P.M.}$			OTHERS			
Lake Dam STATE Pennsylvania	NDI # PA - 968 PENNDER# 58-021	1 Dry stone Masonry SIZE Small	scember 10, 1980 WEATHER Cloudy	E OF INSPECTION 1,523.6 M.S.L	WSPECTION 1,516.8 M.S.L.	SONNEL OWNER REPRESENTATIVES	ngineer Delbert W. Potts (Caretaker)	ogist	urveyor
NAME OF DAM Forest Lake Dam	ON	1YPF OF DAM Earth & Dry stone Masonry	DATEISHMSPECTION December 10, 1980	POOL FLEVATION AT TIME OF INSPECTION	1 AII WATER AT TIME OF INSPECT	INSPECTION PERSONNEL	Gi <u>deon Yachin - Engineer</u>	James Diaz - Geologist	Ronald Mather - Surveyor

RECORDED BY James Diaz

EMBANKMENT

ITEM	OBSERVATIONS/REMARKS/RECOMMENDATIONS NDIR PA 00968
SURFACE CRACKS	None .
UNUSUAL MOVEMENT OR CRACKING AT OR BEYOND THE TOE	None
SLOUGHING OR ERO- SION OF EMBANK- MENT AND ABUTMENT SLOPES	None on embankment. Service spillway outlet channel on left abutment below 12" RCP has channel erosion 18" - deep (see Exhibit A-1 and photograph 3, Appendix C).
VERTICAL AND HORI- ZONTAL ALIGNMENT OF THE CREST	For vertical alignment, see Exhibit A-2. Curved horizontal alignment near each abutment (see Exhibit A-1).
RIPRAP FAILURES	There is no riprap on the upstream face of the dam. Dry stone wall on left downstream side has 12" + overhang with wall failure to right of overhang resulting in many fallen stones (see Exhibit A-1 and photograph 4, Appendix C).
JUNCTION OF EMBANK- MENT AND ABUT- MENT, SPILLWAY AND DAM	Good (no emergency spillway).

EMBANKMENT

ITEM	OBSERVATIONS/REMARKS/RECOMMENDATIONS NDI# PA . 00968
DAMP AREAS IRREGULAR VEGETA- TION (LUSH OR DEAD PLANTS)	Isolated toe seepage area, left of outlet works (see Exhibit A-1).
ANY NOTICEABLE SEEPAGE	Flow of 3 GPM [±] at downstream toe, left of outlet pipe. Negligible accumulation of fines.
STAFF GAGE AND RECORDER	None
DRAINS	None other than outlet works.
ROCK OUTCROPS	None in vicinity of dam. The large horizontal sandstone slab (15' dia. x 2' thick) on the left abutment near the spillway approach appears to be a large boulder (see photograph 5, Appendix C).
	16" diameter tree on left abutment toe of dam and 24" diameter tree on right abutment toe of dam (see Exhibit A-1). No evidence of leakage along the roots of these trees.
	PAGE 3 UF IN

OUTLET WORKS

ITEM	OBSERVATIONS/REMARKS/RECOMMENDATIONS NDI# PA : 00968
INTAKE STRUCTURE	None
OUTLET CONDUIT (CRACKING AND SPALLING OF CON- CRETE SURFACES)	24-inch diameter Concrete Pipe with upstream control.
OUTLET STRUCTURE	None. The downstream end of the outlet is a 24" RCP.
OUTLET CHANNEL	An eroded ditch 18 to 24" deep extends left from the outlet pipe to the center of the natural stream channel (see Exhibit A-1).
GATE(S) AND OPERA- TIONAL EQUIPMENT	2' by 3% wide rectangular gate (reported) is attached to the upstream concrete endwall. This gate is operated twice a year to lower the lake in winter and raise it to "recreation" pool for the summer.
CONCRETE SURFACES, CRACKS, SPALLING, JOINTS	The concrete headwall on the upstream face of the dam is sound. However, the top 2-foot section of this wall is tilted upstream about 5 degrees off Vertical. Downstream face of this wall has a 4 to 1 slope (4V:1H).

EMERGENCY SPILLWAY

ITEM	OBSERVATIONS/REMARKS/RECOMMENDATIONS NDI# PA · 968
TYPE AND CONDITION	No constructed emergency spillway. High flood flows will overtop dam.
APPROACH CHANNEL	NA
SPILLWAY CHANNEL AND SIDEWALLS	NA
STILLING BASIN PLUNGE POOL	NA
DISCHARGE CHANNEL	NA
BRIDGE AND PIERS EMERGENCY GATES	NA PAGE STATE

SERVICE SPILLWAY

ITEM	OBSERVATIONS/REMARKS/RECOMMENDATIONS NDI# PA- 00968
TYPE AND CONDITION	Two 15" CMP installed under road in left abutment. During "Agnes" storm in 1972, a 5' wide channel was excavated across the road in this area to prevent overtopping of the dam.
APPROACH CHANNEL	Excavated earth channel on left abutment.
OUTLET STRUCTURE	Two 15" CMP under road on left abutment, terminating at roadway ditch across road.
DISCHARGE CHANNEL	Excavated and eroded earth ditch on left abutment.
·	

PAGE 6 OF 8

INSTRUMENTATION

ITEM	OBSERVATIONS/REMARKS/RECOMMENDATIONS NDIMPA. 00968
MONUMENTATION SURVEYS	USGS Bench mark on large sandstone slab on left abutment near spillway approach channel (elevation 1527):
OBSERVATION WELLS	None
WEIRS	None
PIEZOMETERS	None
OTHERS	None
OPERATION & MAINTENANCE DATA	Slide gate is opened in early October every year to lower lake by approximately 3-feet and closed in early April to return pool to recreation level.

RESERVOIR AREA AND DOWNSTREAM CHANNEL

ITEM	OBSERVATIONS/REMARKS/RECOMMENDATIONS	NDI# PA - 00968
SLOPES: RESERVOIR	Gentle wooded and farmland slopes	
SEDIMENTATION	Slight	
DOWNSTREAM CHAN- NEL (OBSTRUCTIONS, DEBRIS, ETC.)	Natural wooded stream channel	
SLOPES. CHANNEL VALLEY	Natural steep wooded slopes	
APPROXIMATE NUMBER OF HOMES AND POPULATION	Four occupied dwellings	
WATERSHED DESCRIPTION	Wooded mountain area with a few open farmland areas. within the northwestern part of the watershed.	Farmland predominant

PAGE BOF II

APPENDIX B

ENGINEERING DATA - CHECKLIST

CHECK LIST ENGINEERING DATA PHASE I

NAME OF DAM FOREST LAKE DAM

	NDIR PA . 00968
ITEM	- 1
PERSONS INTERVIEWED AND TITLE	Delbert W. Potts, Caretaker of Grounds
REGIONAL VICINITY MAP	See Exhibit E-1, Appendix E
CONSTRUCTION HISTORY	Construction and design documents are not available. Available information indicates that the dam was constructed in 1842.
AVAILABLE DRAWINGS	None
TYPICAL DAM SECTIONS	For typical sections obtained by survey (12/10/80), see Appendix A.
OUTLETS. PLAN DETAILS DISCHARGE RATINGS	24-inch diameter concrete pipe with upstream control Not available Not available Not available

PAGE 1 OF 5

CHECK LIST ENGINEERING DATA PHASE I (CONTINUED)

ITEM	REMARKS NDI# PA: 00968
SPILLWAY PLAN SECTION DETAILS	Two 15-inch diameter CMP on left abutment. No emergency spillway. Design drawings not available. For present conditions, see Appendix A.
OPERATING EQUIP. MENT PLANS AND DETAILS	Slide gate on upstream end of 24-inch diameter outlet works. Lift mechanism consists of a wheel operated stem, located at mid-point of the outlet works headwall. Wheel is being kept at a nearby farm.
DESIGN REPORTS	None available
GEOLOGY REPORTS	None available
DESIGN COMPUTATIONS: HYDROLOGY AND HYDRAULICS STABILITY ANALYSES SEEPAGE ANALYSES	None available
MATERIAL INVESTIGATIONS: BORING RECORDS LABORATORY TESTING FIELD TESTING	None available

CHECK LIST ENGINEERING DATA PHASE I (CONTINUED)

ITEM	REMARKS NDI# PA . 00968
BORROW SOURCES	Not known
POST CONSTRUCTION DAM SURVEYS	None available prior to 1980. For conditions on 12/10/80, see top of dam profile and typical sections, Appendix A.
POST CONSTRUCTION ENGINEERING STUDIES AND REPORTS	Inspection reports (1935, 1951, and 1965) on file with PENNDER.
HIGH POOL RECORDS	No formal records are available
MONITORING SYSTEMS	None
MODIFICATIONS	Installation of service spillway consisting of two 15-inch diameter CMP on the left abutment. These CMP are reported to have replaced 12-inch CMP overflow that existed above the outlet works.

CHECK LIST ENGINEERING DATA PHASE I (CONTINUED)

ITEM	REMARKS NDI# PA: 00968
PRIOR ACCIDENTS OR FAIL URES	Not reported
MAINTENANCE RECORDS MANUAL	Not available
OPERATION. RECORDS MANUAL	Not available
OPERATIONAL PROCEDURES	April to October of each year, the normal pool is at the invert elevation of the Service Spillway pipes. The reservoir level is lowered by at least three feet exary winter to protect and maintain boat docks.
WARNING SYSTEM AND/OR COMMUNICATION FACILITIES	Not available
MISCELLANEOUS	

PAGE 4 ()+ 5

CHECK LIST HYDROLOGIC AND HYDRAULIC ENGINEERING DATA

NDI ID # 00968 PENNDER ID # 58-021

SIZE OF DRAINAGE AREA: 0.84 square miles
ELEVATION TOP NORMAL POOL 1526.4 STORAGE CAPACITY 604 acre-feet
ELEVATION TOP FLOOD CONTROL POOL NA STORAGE CAPACITY NA
ELEVATION MAXIMUM DESIGN POOL Unknown STORAGE CAPACITY Unknown
ELEVATION TOP DAM: 1528.8 STORAGE CAPACITY: 720 acre-feet
SPILLWAY DATA
CREST ELEVATION: 1526.4 feet ms1
TYPE:Two 15-inch diameter Corrugated Metal Pipes
CREST LENGTH: NA NA
CHANNEL LENGTH: (Outlet_channel) 140 feet to stream
SPILLOVER LOCATION: Left abutment
NUMBER AND TYPE OF GATES: None
OUTLET WORKS
OUTLET WORKS
TYPE: 24-inch diameter Concrete Pipe
LOCATION: Maximum dam section; 80-feet east of right abutment
ENTRANCE INVERTS: Not known
EXIT INVERTS: Elevation 1518,5 feet msl
EMERGENCY DRAWDOWN FACILITIES. Operable slide gate
HYDROMETEOROLOGICAL GAGES
TYPE: None
LOCATION NA
RECORDS: None
MAXIMUM NON-DAMAGING DISCHARGE: 14 cfs

APPENDIX C

PHOTOGRAPHS

FOREST LAKE DAM DOWNSTREAM PHOTOGRAPHS LOCATION MAP

1 & 2 UPSTREAM FACE OF DAM

VIEW FROM LEFT BANK, SHOWING STONE WALL FAILURE

INLET TO PIPE SPILLWAY (BEHIND MAN

LOOKING UPSTREAM ON RIGHT ABUTMENT

SPILLWAY OUTLET CHANNEL

10. HOUSE (1900' DOWNSTREAM)
N. SIDE OF ROAD, EAST OF CREEK

11 TRAILER (2100' DOWNSTREAM), ON RIGHT BANK

APPENDIX D

HYDROLOGY AND HYDRAULICS

SUMMARY DESCRIPTION OF FLOOD HYDROGRAPH PACKAGE (HLC-1) DAM SAFETY INVESTIGATIONS

The hydrologic and hydraulic evaluation for this inspection report has employed computer techniques using the Corps of Engineers computer program identified as the Flood Hydrograph Package (HEC-1) Dam Safety Version.

The program has been designed to enable the user to perform two basic types of hydrologic analyses: (1) the evaluation of the over-topping potential of the dam, and (2) estimate the downstream hydrologic-hydraulic consequences resulting from assumed structural failures of the dam. A brief summary of the computation procedures typically used in the dam over-topping analysis is shown below.

- Development of an inflow hydrograph to the reservoir.
- Routing of the inflow hydrograph(s) through the reservoir to determine if the event(s) analyzed would overtop the dam.
- Routing of the outflow hydrograph(s) of the reservoir to desired downstream locations. The results provide the peak discharge, time of the peak discharge and maximum stage of each routed hydrograph at the outlet of the reach.

The output data provided by this program permits the comparison of downstream conditions just prior to a breach failure with that after a breach failure and the determination as to whether or not there is a significant increase in the hazard to loss of life as a result of such a failure.

The results of the studies conducted for this report are presented in Section 5.

For detailed information regarding this program, refer to the Users Manual for the Flood Hydrograph Package (HEC-1), Dam Safety Investigations prepared by the Hydrologic Engineering Center, U.S. Army Corps of Engineers, Davis, California.

JOH FOREST LAKE DAM PA-0968

Consulting Engineers & Geologists

SHEET NO CALCULATED BY WEH

CHECKED BY

SCALE

SUMMARY OF HYDRAULIC CALCULATIONS

- 1.) PERFORM A MULTI-RATIO OVERTOPPING ANALYSIS
- 2. DUE TO THE DOWNSTREAM HAZARD CLASSIFICATION, NO BREACH ANALYSIS WILL BE MADE.

0-2

IN FOREST LAKE DAM

PA-0968

GEO-TECHNICAL SERVICES Consulting Engineers & Geologists

SHELL NO CALCULATED BY WEH DATE 2/9/81

SCALE

GENERAL DATA

RIVER BASIN

STREAM NAME

DAM NAME

NUI IU No.

DER ID No.

OWNER

LOCATION

SIZE CATEGORY

HAZARD CATEGORY

UPSTREAM DAMS

DOWNSTREAM DAMS

SUSQUEHANINA (SUB-BASIN 4)*

FOREST LAKE CREEK

FOREST LAKE DAM

PA-00968

58-021

FOKEST LAKE COTTAGERS ASSOC.

FOREST LAKE TWP, SUSQUENANIA Co., PA.

N 41°52'48" LAT.

LONG. W 75°57'38"

SMALL

SIGNIFICANT

NONE

NONE

* PENN-DER WATER RESOURCES BULLETIN No.5

GEO-TECHNICAL SERVICES Consulting Engineers & Geologists SHEET NO CALCULATED BY WEH DATE 2/11/5/ .. _ _ DATE _ CHECKED BY

DRAINAGE BASIN & UNIT HYDROGRAPH DATA

DRAINAGE AREA

0.84 Sq. Mi.

LENGTH OF RESERVOIR - NORMAL 3050 FT.

- MAX. 3200 FT.

SNYDER UNIT HYDROGRAPH COEFFICIENTS AS SUPPLIED BY BALT. DIST. COE (SUSQUEHANNA BASIN ZONE 11)

Cp = 0.62

Ct = 1.50

LAG TIME = TP = C+ (L*Lcq)

L= 1.41 mi. RESERVOIR OUTLET TO DEAMAGE DIVIDE

Las 0.70 mi. RESERVOIR OUTLET TO CENTROID

: Tp = 1.50 (1.41 x 0.70) 0.3 = 1.49 HRS

RAINFALL DATA

PER HYDROMETEROLOGICAL REPORT No. 40 (SUSQUEHANNA BASIN) GEOGRAPHIC ADJUSTMENT FACTOR : 0.945

PMF RAINFALL = 22.2" (24 HR. & 200 Sq. MI.)

22.2 x 0.945= 21.0

RAINFALL DISTRIBUTION

6 HR 118%

127% IZHR

136% 24HR

48 Hz 142%

IOH FORECT LAKE DAM

PA - 0968

GEO-TECHNICAL SERVICES
Consulting Engineers & Geologists

1011	CANC	247	14-0/68
SHILLNO			u .
CALCULATED BY	WEH	- -	DATE 2/11/81
CHECKED BY			DATE

DAM DATA

TOP OF DAM ELEV. (LOW BUNT)	1528.8
DAM LENGTH (INC. SPILLWAY)	200'
DAM HEIGHT	12'
DAM WIDTH	14' (ROAO)
"C" VALUE - DAM (PER HYDRAULICS OF BRIDGE WATERWAYS)	<i>3.</i> 0
Man I am Dan	

NON LEVEL DAM

LENGTH	BELOW
OF DAM	ELEV.
0'	1528.8
105.	1529
3.05	1530
365'	1531
410'	1532

SPILLWAY DATA

THERE IS NO CONVENTIONAL EMERGENCY STILLWAY

THE SERVICE SPILLWAY CONSISTS OF 2- 15" CMP'S WHICH MAINTAIN THE LAKE SINGERCE @ ELEV. 1526.4 COMPUTE RATING CURVE FOR PIPES.

GEO-TECHNICAL SERVICES Consulting Engineers & Geologists

JOB	FOREST	LAKE	PA. 0268
SHEET	NO	·	OF 3/11/81
CALCUL	ATED BY _ WEH		DATE 3/11/81
CHECKE	ED BY		DATE
SCALE			

RATING CURVE FOR TWIN 15" CMP

REF. - KING'S HANDBOOK OF HYDRAULICS - 1954.

. h	CFS		•		i	
- :	0					
1.8	14	Prior	to ove	Hop	ping	
3.0	18	. overtopi	oing co	ndi	4on.	
. 5.0.	23	4 //				
7.0	27 .	•		<i>"</i> .		
2.0	31			<i>at</i>		
11.0	34	11		H		
	3.0 5.0 7.0	3.0 18 5.0 23 7.0 27 9.0 31	3.0. 18 overtop, 5.0. 23 " 7.0. 27 " 9.0. 31 "	3.0 18 overtopping co 5.0 23 " 7.0 27 " 9.0 31 "	3.0. 18 overtopping condit 5.0. 23 " 7.0. 27 " 9.0. 31 "	3.0. 18 overtopping condition. 5.0. 23 " 7.0. 27 " " 9.0. 31 "

NOTE: RATING CURVE TO BE INPUT DIRECTLY

Outlet Works Data: 24" & RCP, Normally closed.

Discharge Capacity Q = a 2010 = 3.14 29 Hg

Minus $A = Cross : ectional pipe area = <math>\frac{\pi D^2}{4} = 3.14$ $H = total head (fect) = 1528.8 - 1518.5 + <math>\frac{1}{2} = 9.3'$ $E_{K} = \frac{Ke + kv}{1.5} + \frac{29.1}{0.66} n^2 L/r^{4/3} (n=0.005; L=40; r=0.5')$

At normal pool Elev. 1526.4 Q= 3.14x \64.4x8.9 = 51.1 H= 1526.4-1518.5+ = 8.9'

IN FOREST LAKE DAM PA-0968

SHELLNO

CALCULATED BY WEH

DATE 2/1/81 ...

CHECKED BY

DATE

SCAL

OUTLET WOKKS DATA (CONTINUED)

Min. dam crest elevation

Legipe at sutlet = 1. 1518.5+1.0 = 1519.5

Total Head HT = $\frac{12}{29}$ (ke + $\frac{29.10.5}{15.0}$ + kv) = 9.3'

Q = 3.14.1 $\frac{64.4 \times 9.3}{2.16}$ = 52.3 cfs , say 50cfs

STORAGE DATA

GEO-TECHNICAL SERVICES

Consulting Engineers & Geologists

ELEV.	AREA	STOK.	4GE	DESCRIPTION
(FT.)	(Ac)	(MG)	(AC. FT.)	
1487 (1)	0	0	0	RESERVOIR BOT.
1526.4	46	198*	604	NORMAL POOL
1528.8	51	236	720	TOP OF DAM
1540	67	451		CONTOUR

(I) ESTABLISH ELEV. © O AREA

LISE STORAGE PER BULLETIN 5 OF 198 MG @ ELEV. 1526.4 $\Delta E = \frac{38}{A} = \frac{(3)(606)}{46} = 39.5'$ ELEV. © O AREA = 1526.4 - 39.5' = 1486.9 (CALL 1487)

* PENN-DER WATER RESOURCES BULLETIN NO.5

0-8

GEO-TECHNICAL SERVICES Consulting Engineers & Geologists

JOB FOREST LAKE	PA 0968
SHELT NO	OF
CALCULATED BY WELL	DATL
CHECKED BY	DATE

CALCULATE TAILWATER & DOWNSTR. FACE OF DAM

HORMAL DEPTH RATING CURVE AT DAM FACE

HITV.	CFS
1517.0	66
1518.0	250
1510.0	731
1520.0	1476
1521.0	2461
1522.0	3692
1523.0	5292
1524.0	7243
1525.0	9527
1526.0	12190

NOTE: SEE SKETCH ON SHEET D-10

* THRU DAM

TAILWATER HAS NO EFFECT ON THE ANALYSIS (SEE SKETCH SHEET D-10)

204 Avenable from NESS INC Townsond Mass 01470

HIM FORES! LAKE DER 58-21.

GEO-TECHNICAL SERVICES Consulting Engineers & Geologists

The same of the sa

SCALL HOSE I" 50" VERT. I" = 4"

JOH FOREST LAKE DAN

SHEEP NO LONG 5/81

CHECKED BY G.Y. 104/8/

100 YEAR FLOOD DETERMINATION

: (1) C.O. 5. Memo 4/22/81 : (2) HYDROLOGIC STUDY - TRAPICAL STORM AGNES - COE DEC. 1975 (3) BULLETIN No. 13 - FLOODS IN PR. - USGS OCT. 1977 (4) GULLETINES FOR DETERMINING FLOOD FLOW FREY HEAVE & NEWSER JUNE 1477 METHOD A COE REGIONAL REGRESSION (Ref. 2) LAT. N 41°52'48" LONG. W 75°57'35" Log (Qm) = Cm + 0.75 Log (A) an 2 Moon Annual Flow A = 0.84 mi2 Cm = 2.15 Log (Qm) = 2.15 + 0.75 Log (4) = 2.09 Log(Qp) = Log(Qm) + Kpg. S p = 100 gr. g = 0.2 Kpg = 2.47 (Firm Ref. 4; Kpg = 2.47226) S= C3 - 0.05 Log (A) Cs . 0.35 / S = 0.35 - 0.05 Log (0.84) = 0.35 Log (Qp) = 2.09 + 2.47 (.35) = 2,9545 :. Qp = 900.5 efs; Say Q100 = 900 efs METHOD B Bur # 13 (Ref. 3) QT: CA - Region 2 T = 100 7=0.744 07 = 564 (.84) = 495 efs Average Value OF METHODS A B B 100YR FLOOD Q100 = QT + QP = 697.8 say 700 cfs

-1526.4 1538 34 PATIONAL DAM INSPECTION PROSPAN FOREST LAKE MAMMMADADIKE (CAPHIONETHO ANALYSIS) FOREST LAKE THIP COLLUSIATINA TOP DA 0 15 0 0 0 1534 1540 404 ROUTE THRU PESERVOIR INFLOW TO RESERVOIR J. P. 1530 0.62 -.05 1526.4 21.8 1528.8 FLOCO HYDROCPAFH FACKANG (+8041)
DAM SAFETY VIRSION UNLY 1674
LAST WOFIFICATION 01 APR GE 1.49 1487 \$\$1526.4 \$D1528.8 \$V1528.8 225

	(HEC-1)	JULY 1975	AFR SO	*****
*****	PACKAGE		0	
*****	CGRAPH	VERSIO	IFICATI	
*******	FLUOD HYDROGRAPH PACKAGE	DAM SAFETY VERSION	LAST MODIFICATION	******
:	řL	A O	_	

DATE* 81/05/05. ...IIME* . 06.46.09...

2

NATIONAL DAM INSPECTION PROGRAM
FOREST LAKE DAM—-PAGGE (OVERTOPPING ANALYSIS)
FOREST LAKE TWP, SUSQUEHAWA CO, PA

NSTAN IPRI IPLI TRACE 0 JOS SPECIFICATION

IHR IMIN METRO Ô - -LROPT NET O MARY IDAY O ACPER 150

1.00 FULTI-PLAM AMALYSES TO BE PERFORMED NPLAM 1 NRTIO= 7 LPTIO= 1 •75 • 50 .30 •20 •13 RTICS=

SUE-AREA RUNOFF COMPUTATION

INFLOW TO RESERVOIR

INAME ISTAGE ITAPE JPLT JPRT I ECON ISTAG. ICCMP

ISAME ISNCH RA TTO 0.000 HYDPOGRAPH DATA TRSDA TRSPC SNAP 0.00 TARFA • 84 IUMS 1 IMYSG

A96 0.00 R72 R48 142.00 PRECIP DATA R6 R12 R24 21.00 11 P. Uff 127.00 136.00 ... SPFE 1.03 TASPC COMPUTED BY THE PRUSHAM IN

0.00 RTIMP ALSMX 0.00 CNSTL • 05 STRTL 1.00 4 T I OK LCSS DATA EPRIN STAKS F 0.50 0.00 3710L 1.00 0.00 STRRA 0.03 LROFT

UNIT HYPEOGRAPH DATA
TER 1.49 CPR .62 STAR 0

		•							
-	-1- =61	٥,	TELES TIPE O ORCENE	100	1 4	FIICHE 2.00			
*)	10-0F-88	30!	UNIT HYDPOGINEH 33 EMB-0F-9E910D OPPINATES. LACE 1.44 HOURS. CPH .655 VOLH 1.00	1 AC =	1.45	rouas. CP=	•65	VOL= 1.00	
÷70			257	- 150	•	• th C	157.	164.	136
7%	41		975	* ¿ *		37.	31.	54.	22.
12.	1	•	,•	7.		•	ۍ. د	:	.

EXCS LCSS COMP 0	SUM 23.66 21.65 2.21 46249. (606.)[550.)(56.)(1309.63)		ROUTE THRU RECERVOIF	ISTAG ICOMP IECON ITAPE UPLT UPRT INAME ISTAGE IAUTO	ROUTING DATA	CLOSS AVG 14:5 1SAME 10F1 1FMF CO.00 0.00 1 1 1 0 0 0	NSTPS NSTOL LAG AMSKK X TSK STOPA ISPRAT 1 0 0 0.000 0.000 -15261	1530.00 1532.00 1534.00 1536.00 1538.00	18,00 23,00 27,00 31,00 34,00	46. 51. 67.
2. PERICO RAIN	· ·	† ! !	ROUTE THE			0.0 0.0		1528.80	14.00	0. 46
7. 0 0.5A HK.MN PE		电电阻 化氯甲烷			•			STAGE 1526.40	FLOW 0.00	SURFACE AREA=

EXPL 0.0

COGL CAREA

EXPW ELEVL

COON

SPUID

CREL 1526.4

1987e 1525e 1529e 1540e

ELEYATION=

			:					
1			:					
DAMIIO 4004			!					
DAM CATA COGD EXPD DAMMID 3.0 1.5 400.	416	1532.0			•			
TOPEL	365.	1531.0	•					
	* B = *	1530.6	FGURE	ROUPS	HOLPS	7: 20 1:	Safiga	HC URS
:	105.	1529.6)֥2% 3	2 43.75	37.00	3 · • · · ·	F 41.7E	"E 41•5(
	÷	1528.6 1	11. AT TIME 47.51 HOURS	177- AT TIME 43-75 HOUPS	453. AT TIME 40.75 HOURS	2900 1. CALT TALE 11. 4927	1896. AT TIPE 41.75 HOUPS	1747. AT TIME 41.50 HCURS
	CREST LENGTH	ELEVATION	PEAK GUTFLOW IS	PEAK GUTFLOW IS	PEAR OUTFLOW IS	PEAK GUTFLOW IS	PEAK GUTFLOW IS	PEAK OUTFLOW IS
; ; ;	:		PEAK	PEAK	PEAK	PEAK	PEAK	PEAK

PEAR FLOW AND STORAGE (END OF PERIOD) CURMARY FOR MULTIPLE FLAN-RATIO ECONOMIC COMPUTATIONS (FLOW AND STORAGE FLOWS IN CUBIC FEET FER SECOND (CUBIC METERS PER SECOND). AREA IN SQUARE MILES (SQUARE KILOMETERS)	COMPUTATIONS	1	
	PEAK FLOW AND STORAGE (END OF PERIOD) TURMARY FOR MILTIPLE FLAN-RATIO ECONOMIC CO	FLOWS IN CUBIC FEET FER SECOND (CUBIC METERS PER SECOND).	AREA IN SQUARE MILES (SQUARE KILOMETERS)

OPERATION STA	STATION	AREA	PLAN	RATIO 1	AREA FLAN RATIO 1 FATIO 2 RATIO 3 RATIO 4 RATIO 5 RATIO 6 RATIO 7	RATICS APPRATICS APPRAIS	RATIO 4	0WS RATIO 5	RATIO 6	RATIO 7 1.00
HYDROGRAPH AT	1	. 64 2.18)	-~	247.	247. 493. 740. 9h7. 6.98)(13.97)(20.95)(27.94)(740.	967.	1233.	1850.	2466.
ROUTED TO	2	2.18)	1	.31)(5.03)	13.95)(799.	31.02)	49.75)(1 11. 11. 17. 177. 1993. 799. 1096. 1757. 2370. (.31)(5.03)(13.95)(22.62)(31.02)(49.75)(67.12)(

D-14

2370. AT TIME 41.56 HOURS

PEAK OUTFLOW IS

SURBERY OF DAM SAFETY ANALYSIS

	E A E		00.0
1528.80 1720. 14.	MAX OUTFLOW HOURS	47.50 43.75 42.75 42.00	41.50
ļ	DURATION OVER TOP HOURS	0.00 7.25 3.00	6.50 9.25 9.75
SFILLWAY CREST 1526.40 604.	MAXIMUM OUTELOH CFS	11. 177. 493. 799.	
	MAXIMUM STORAGE AC-FT	693. 754. 776.	802 • 823 • 840 •
INITIAL VALUE 1576-40. 604-	MAXIMUM DEPTH OVER DAM	90.00 9.00 1.007	1.56
ELEVATION STORAGE GUTFLOK	MAXINUM RESERVOIR N.S.FLEV	1529-25	1550e12 1550e36 1550e76 1531e08
	RATIO OF PMF	.16 .20 .30	.50 .75 .1500
PLAN 1			

APPENDIX E

EXHIBITS

APPENDIX F

GEOLOGY

FOREST LAKE DAM APPENDIX F GEOLOGY

Forest Lake Dam and reservoir area are located within the Glaciated Allegheny Plateau Section of the Appalachian Plateaus Physiographic Province. Deposits of glacial drift of variable thickness cover the entire area. The drift was deposited by the Wisconsin Ice Sheet during the Pleistocene Period of geologic time.

The glacial drift is composed primarily of till which is a reddish-brown, unsorted, compact mixture of clay, silt, sand, gravel, and cobbles with occasional boulder sized pieces. The gravel, cobbles and boulders are sub-angular to rounded, consisting of sandstone and siltstone derived from the Catskill formation, the dominant rock formation of the area. The clay content and compact nature of the till makes it a relatively impermeable soil type.

Some deposits of glacial outwash are also found in the area. The outwash is composed of loose, poorly sorted to stratified deposits of silt, sand and gravel. The outwash deposits are generally very pervious.

Other loose, pervious soils in the area are the recent deposits of alluvial silt, sand, and gravels with some clay. These soils are localized and limited to streambeds and flood plain area.

The bedrock underlying the entire dam and reservoir is the Catskill Formation of the Susquehanna Group. This group of formations is of the Upper Devonian age. The Catskill strata generally consists of well indurated red shale, siltstone and fine sandstone with some gray, green and brown shale and sandstone layers. Occasional conglomeratic layers are encountered. The red shales are the dominant lithology and the residual soils derived from this rock are usually high in clay and silt and contain numerous flaky and angular fragments and flat, slabby boulders. At the dam site, a large flat sandstone boulder is located on the left abutment near the spillway approach channel. The rock mass is boulder "float" that has migrated downslope from the hill to the east or it was deposited by the Wisconsin Ice Sheet. The dry masonry walls of the dam itself are constructed from similar flat, slabby one to two man sized boulders.

The regional structure of the bedrock in the area indicates the structure of the bedrock underlying the dam and reservoir area ranges from a broad flat fold to near-horizontal. The strike of the broad folds trend in a northeast-southwest direction.

Although depth to bedrock at the dam site is unknown, the steep earth slopes immediately downstream indicate at least 12 feet of overburden soil.

Ref.: Ground Water of Northeastern Pennsylvania, Stanley W. Lohman, 1937; Bulletin W-4, Pennsylvania Geologic Survey

LEGEND

DEVONIAN UPPER

CENTRAL AND EASTERN PENNSYLVANIA

Oswayo Formation

USWAYO FORMATION
Promish and greenish gray, fine and
medium grained sandstones with some sholes and scattered calcareaus lenses;
includes red shales which become more numerous castward. Relation to type Onwayo not proved

Catskill Formation

Chiefly red to brownish shales and sand-stones, includes gray and greenish sand-stone tongues named Elk Mountain, Honestales, Shohola, and Delaware River in the east

Marine beds

Marine Octas
Gray to otive brown shales, graywackes,
and sandstinues, contains "Chemung" beds
and "Portage" beds including Burket,
Brallies, Hurrell, and Trimmers Rock;
Tully Limestone at base.

Susquehanna Group

Barbed line is "Chemung-Catskill" con-tuet of Second Pennylvania Survey County reports; barbs on "Chemung" side of line.

NOTE:

GEOLOGIC MAP AND LEGEND OBTAINED FROM GEOLOGIC MAP OF PENNSYLVANIA BY PA. TOPOGRAPHIC AND GEOLOGIC SURVEY, DATED 1960

PHASE 1 INSPECTION REPORT NATIONAL DAM INSPECTION PROGRAM

FOREST LAKE DAM GEOLOGIC MAP

GEO - Technical Services, Inc HARRISBURG, PA

FEBRUARY 1981

EXHIBIT F

