André Luis Schwerz andreluis@utfpr.edu.br

Universidade Tecnológica Federal do Paraná

Banco de Dados 1 2017/1

- Contextualização
- Álgebra Relacional
- Operadores de Seleção e Projeção
- Operadores de Conjunto
- Operador Renomear
- 6 Junções
- Operador de Divisão
- 8 Exercícios

Objetivos

Entender:

- Qual o fundamento das linguagens de consulta relacionais como a SQL.
- O que é e qual é a importância da Álgebra Relacional.

- 1 Contextualização
- 2 Álgebra Relacional
- Operadores de Seleção e Projeção
- Operadores de Conjunto
- Operador Renomear
- Junções
 - Operador de Divisão
- 8 Exercícios

Contextualização

- A Álgebra Relacional é uma linguagem formal de consulta associada ao modelo relacional
- Na álgebra as consultas usam operadores.
 - Descreve um procedimento passo a passo para computar o resultado
- A álgebra relacional tem influenciado linguagens comerciais como a SQL

Contextualização

Preliminares

```
Marinheiros(id-marin: integer, nome-marin: string, avaliacao: integer, idade: real)
```

```
Barcos(id-barco: integer, nome-barco: string, cor: string)
```

```
Reservas(id-marin: integer, id-barco: integer, dia: date)
```

Contextualização

Preliminares

M1 - Marinheiros

id-marin	nome-marin	avaliação	idade
22	Dustin	7	45,0
31	Lubber	8	55,5
58	Rusty	10	35,0

R1 - Reservas

id-marin	id-barco	data
22	101	10/10/96
58	103	11/12/96

M2 - Marinheiros

id-marin	nome-marin	avaliação	idade
28	Yuppy	9	35,0
31	Lubber	8	55,5
44	Guppy	5	35,0
58	Rusty	10	35,0

- Contextualização
 - Álgebra Relacional
 - Operadores de Seleção e Projeção
- Operadores de Conjunto
- 5 Operador Renomear
- Junções
 - Operador de Divisão
- 8 Exercícios

Visão geral

- Usa operadores relacionais
- Cada operador aceita uma ou duas instâncias de relações como entrada e produz uma instância de relação de saída
 - Facilita a composição de operadores
- Expressão de álgebra relacional
 - Recursivamente definida como:
 - uma relação
 - um operador unário aplicado a uma única expressão ou um operador binário aplicado a duas expressões
- Sistemas relacionais usam expressões algébricas para representar planos de avaliação de consultas

- 1 Contextualização
 - Álgebra Relacional
- Operadores de Seleção e Projeção
- Operadores de Conjunto
 - Operador Panamaar
- Operador Renomear
- Junções
 - Operador de Divisão
- 8 Exercícios

Seleção

- Operador de seleção σ (sigma)
 - Unário
 - Seleciona linhas de uma relação
 - Exemplo, aplicado à instância M2: $\sigma_{avaliacao>8}(M2)$
 - Especifica as tuplas a serem mantidas por meio de uma condição de seleção
 - Expressão booleana que usa conectivos lógicos (∧, ∨, ¬)
 - Operadores de comparação $(<, \leq, \geq, >, =, \neq)$
 - As referências à atributos podem ser feitas por posição (na forma i ou .i) ou por nome (na forma nome ou .nome)

- Operador de **projeção** π (Pi)
 - Unário
 - Projeta colunas de uma relação
 - Exemplo, aplicado à instância M2: $\pi_{nome-marin,avaliacao}(M2)$
 - E se a expressão fosse essa? $\pi_{idade}(M2)$
 - A resposta de uma expressão é uma relação e não um multiconjunto

Seleção e Projeção

• Seleção e projeção em conjunto

$$\pi_{nome-marin,avaliacao} \left(\left(\sigma_{avaliacao > 8} (M2) \right) \right)$$

M2 - Marinheiros

id-marin	nome-marin	avaliação	idade
28	Yuppy	9	35,0
31	Lubber	8	55,5
44	Guppy	5	35,0
58	Rusty	10	35,0

Resultado da Expressão

nome-marin	avaliação
Yuppy	9
Rusty	10

- 1 Contextualização
 - Álgebra Relacional
- Operadores de Seleção e Projeção
- 4 Operadores de Conjunto
- Operador Renomear
- Junções
 - Operador de Divisão
- 8 Exercícios

Operações de Conjunto União

- Denotada pelo operador de **união** ∪
 - Binário
 - $R \cup M$ retorna uma relação com todas as tuplas da instância de R ou todas as tuplas da instância de M (ou ambas)
 - R e M devem ser compatíveis
 - Devem ter o mesmo número de campos
 - Os campos têm, respectivamente, o mesmo domínio
 - O esquema de resultado é idêntico ao esquema de R

União - Exemplo

M1 - Marinheiros

id-marin	nome-marin	avaliação	idade
22	Dustin	7	45,0
31	Lubber	8	55,5
58	Rusty	10	35,0

M2 - Marinheiros

id-marin	nome-marin	avaliação	idade
28	Yuppy	9	35,0
31	Lubber	8	55,5
44	Guppy	5	35,0
58	Rusty	10	35,0

 $M1 \cup M2$

id-marin	nome-marin	avaliação	idade
22	Dustin	7	45,0
31	Lubber	8	55,5
58	Rusty	10	35,0
28	Yuppy	9	35,0
44	Guppy	5	35,0

Operações de Conjunto Interseção

- Denotada pelo operador de interseção ∩
 - Binário
 - $R \cap M$ retorna uma relação com todas as tuplas que ocorrem em ambas as instâncias de R e M
 - R e M devem ser compatíveis
 - Devem ter o mesmo número de campos
 - Os campos têm, respectivamente, o mesmo domínio
 - O esquema de resultado é idêntico ao esquema de R

Interseção - Exemplo

M1 - Marinheiros

id-marin	nome-marin	avaliação	idade
22	Dustin	7	45,0
31	Lubber	8	55,5
58	Rusty	10	35,0

M2 - Marinheiros

id-marin	nome-marin	avaliação	idade
28	Yuppy	9	35,0
31	Lubber	8	55,5
44	Guppy	5	35,0
58	Rusty	10	35,0

 $M1 \cap M2$

id-marin	nome-marin	avaliação	idade
31	Lubber	8	55,5
58	Rusty	10	35,0

Diferença de conjunto

- Denotada pelo operador diferença
 - Binário
 - R-M retorna uma relação com todas as tuplas que ocorrem na instância de R, mas não ocorrem em M
 - R e M devem ser compatíveis
 - Devem ter o mesmo número de campos
 - Os campos têm, respectivamente, o mesmo domínio
 - O esquema de resultado é idêntico ao esquema de R

Diferença de conjunto - Exemplo

M1 - Marinheiros

id-marin	nome-marin	avaliação	idade
22	Dustin	7	45,0
31	Lubber	8	55,5
58	Rusty	10	35,0

M2 - Marinheiros

id-marin	nome-marin	avaliação	idade
28	Yuppy	9	35,0
31	Lubber	8	55,5
44	Guppy	5	35,0
58	Rusty	10	35,0

M1-M2

id-marin	nome-marin	avaliação	idade
22	Dustin	7	45,0

Produto cartesiano

- ullet Denotada pelo operador **produto cartesiano** imes
 - Binário
 - $R \times M$ retorna uma relação cujo esquema contém todos os campos de R (na mesma ordem que aparecem em R) seguidos por todos os campos de M (na mesma ordem que aparecem em M)
 - O resultado de $R \times M$ contém uma tupla $\langle r, s \rangle$ (concatenação) para cada par de tuplas $r \in R$, $s \in M$
 - $R \times M$ herdam os nomes dos campos correspondentes de R e M
 - Conflito de nomeação
 - Nesse caso, não há herança e os campos são referenciados posicionalmente.

Produto cartesiano - Exemplo

M1 - Marinheiros

id-marin	nome-marin	avaliação	idade	
22	Dustin	7	45,0	
31	Lubber	8	55,5	
58	Rusty	10	35,0	

R1 - Reservas

id-marin	id-barco	data
22	101	10/10/96
58	103	11/12/96

 $\text{M1}\times\text{R1}$

id-marin	nome-marin	avaliação	idade	id-marin	id-barco	data
22	Dustin	7	45,0	22	101	10/10/96
31	Lubber	8	55,5	22	101	10/10/96
58	Rusty	10	35,0	22	101	10/10/96
22	Dustin	7	45,0	58	103	11/12/96
31	Lubber	8	55,5	58	103	11/12/96
58	Rusty	10	35,0	58	103	11/12/96

- 1 Contextualização
 - Álgebra Relacional
- Operadores de Seleção e Projeção
- Operadores de Conjunto
- Operador Renomear
- 6 Junções
 - Operador de Divisão
- 8 Exercícios

Operador Renomear

- Denotado pelo operador **renomear** ρ (Rho)
 - Renomeia relações e campos
 - Formato:

$$\rho\left(R(\overline{F}), E\right)$$

- E expressão de álgebra relacional arbitrária
- R uma instância de uma nova relação que contém as mesmas tuplas que o resultado de E, com alguns campos renomeados denotados por \overline{F}
- \overline{F} lista de termos no formato $nomeantigo \rightarrow nomenovo$ ou $posicao \rightarrow nomenovo$
- Não deve haver ambiguidade e não deve haver dois campos no resultado com o mesmo nome
- R e F são excludentemente opcionais

Operador Renomear

Exemplo

$$ho\Big(extit{C}ig(1 o id- extit{marin}1,5 o id- extit{marin}2ig), extit{M}1 imes extit{R}1\Big)$$

 $\text{M1}\times\text{R1}$

id-marin1	nome-marin	avaliação	idade	id-marin2	id-barco	data
22	Dustin	7	45,0	22	101	10/10/96
31	Lubber	8	55,5	22	101	10/10/96
58	Rusty	10	35,0	22	101	10/10/96
22	Dustin	7	45,0	58	103	11/12/96
31	Lubber	8	55,5	58	103	11/12/96
58	Rusty	10	35,0	58	103	11/12/96

Operadores de Conjunto

Considerações

- É frequente encontrar outros operadores de álgebra relacional
- No entanto, eles podem ser definidos em termos desses operadores básicos
 - O operador de renomear é usado apenas por conveniência sintática
 - Até mesmo, o operador de interseção é redundante, podendo ser definido como R-(R-M)

- 1 Contextualização
 - Álgebra Relacional
- Operadores de Seleção e Projeção
- Operadores de Conjunto
- Operador Renomear
- Junções
 - Operador de Divisão
- 8 Exercícios

Junções Considerações

- Maneira mais comum de juntar duas relações em álgebra relacional
 - Junção = produto cartesiano + seleções + projeções

Junções

Junções condicionais

- Denotada pelo operador de junções ⋈ (bowtie)
 - Formada por um par de relações e uma condição de junção
 - A condição de junção = é idêntica a condição de seleção
 - Definição
 - $R \bowtie_c M = \sigma_c(R \times M)$
 - A condição c pode referenciar campos em R e em M
 - Nominalmente ou posicionalmente

Junções Junções condicionais - Exemplo

• Exemplo:

$$M1 \bowtie_{m1.id-marin < r1.id-marin} R1$$

(id-marin)	nome-marin	avaliação	idade	(id-marin)	id-barco	data
22	Dustin	7	45,0	58	103	11/12/96
31	Lubber	8	55,5	58	103	11/12/96

• O campo (id-marin) de M1 e R1 não são omitidos no resultado final

Junções Equijunção

- Caso especial de junção condicional no qual a condição de junção usa apenas igualdades ligadas por ∧
- Não se mantém o campo duplicado para evitar redundância
 - Ou seja, refina-se a operação de junção com uma projeção a mais para eliminar o campo que seria duplicado
- Em caso de conflito de nomeação os campos ficam sem nome

Junções Equijunção

• Exemplo:

$$M1 \bowtie_{m1.id-marin=r1.id-marin} R1$$

(id-marin)	nome-marin	avaliação	idade	id-barco	data
22	Dustin	7	45,0	101	10/10/96
58	Rusty	10	35,5	103	11/12/96

Junções Junção Natural

- Caso especial da equijunção
 - As igualdades são especificadas para todos os campos que têm os mesmos nomes em R e M
 - Neste caso, omite-se a condição de junção
 - Garante que os mesmos campos não tenham conflitos de nomeação (ou seja, dois campos com o mesmo nome)
- No exemplo anterior, na verdade, podemos observar uma junção natural, denotada como:
 - M1 ⋈ R1
- Caso não existe campos com o mesmo nome, a junção natural resulta em um produto cartesiano

- 1 Contextualização
 - Álgebra Relacional
- Operadores de Seleção e Projeção
- Operadores de Conjunto
- Operador Ponomoar
- Operador Renomear
- Junçõe:
 - Operador de Divisão
 - Exercícios

Divisão

- Denotado pelo operador de divisão / (ou ÷)
- Definido por:

$$\pi_{\mathsf{x}}\bigg(A\bigg) - \pi_{\mathsf{x}}\bigg(\Big(\pi_{\mathsf{x}}\big(A\big) \times B\Big) - A\bigg)$$

- Operador útil para certos tipos de consulta
 - Por exemplo, localize os nomes dos marinheiros que reservaram todos os barcos
- Compreender a definição do operador de divisão em termos de outros operadores é importante
- Menos importante que os demais operadores
 - Não suportado por muitos SGBDs

Divisão Explicação

- Considere duas instâncias de relação A e B
 - A tem os campos x e y
 - B tem apenas o campo y (com o mesmo domínio de A.y)
 - $A \div B = \text{conjunto de todos os valores } x \text{ tais que, para todo valor } y \text{ em } B \text{ há uma tupla } \langle x,y \rangle \text{ em } A$

Divisão Outra explicação

• Para cada valor x em A, considere o conjunto de valores y que aparecem em tuplas de A com esse valor x. Se esse conjunto contiver (todos os valores de y em B), o valor estará no resultado $A \div B$

Divisão

Mais uma explicação

- Fazendo uma analogia à divisão inteira
 - Considere os inteiros A e B
 - $A \div B = \text{ao maior inteiro } Q \text{ tal que } Q * B \leq A$
- Dadas as instâncias da relações A e B
 - $A \div B$ é a maior instância de relação Q tal que $Q \times B \subseteq A$

Divisão

Exemplo

R

Α	В
a1	b1
a2	b1
a3	b1
a4	b1
a1	b2
a3	b2
a2	b3
a3	b3
a4	b3
a1	b4
a2	b4
а3	b4

S

Α
a1
a2
a3

 $T \leftarrow R \div S$

Divisão

Exemplo

Α

id-f	id-p
f1	p1
f1	p2
f1	р3
f1	p4
f2	p1
f2	p2
f3	p2
f4	p2
f4	p4

В1

id-p
p2

В2

id-p
p2
р4

В3

id-p
p1
p2
n4

 $A \div B1$

id-f	
f1	
f2	
f3	
f4	

 $A \div B2$

id-f
f1
f4

 $A \div B3$

id-f
f1

Agenda

- 1 Contextualização
 - Álgebra Relacional
- Operadores de Seleção e Projeção
- Operadores de Conjunto
- Operador Renomear
- Junçõe:
 - Operador de Divisão
- 8 Exercícios

Exercícios

Base de dados

M3 - Marinheiros

id-marin	nome-marin	avaliação	idade
22	Dustin	7	45,0
29	Brutus	1	33,0
31	Lubber	8	55,5
32	Andy	8	25,5
58	Rusty	10	35,0
64	Horatio	7	35,0
71	Zorba	10	16,0
74	Horatio	9	35,0
85	Art	3	25,5
95	Bob	3	63,5

R2 - Reservas

id-marin	id-barco	data
22	101	10/10/98
22	102	10/10/98
22	103	10/08/98
22	104	10/07/98
31	102	11/10/98
31	103	11/06/98
31	104	11/12/98
64	101	09/05/98
64	102	09/05/98
74	103	09/08/98

B1 - Barcos

id-barco	nome-barco	cor
101	Interlake	azul
102	Interlake	vermelho
103	Clipper	verde
104	Marine	vermelho

(C1) Encontre os nomes dos marinheiros que reservam o barco 103.

$$\pi_{\textit{nome-marin}}\bigg(\Big(\sigma_{\textit{id-barco}=103}\big(\textit{Reservas}\big)\bigg)\bowtie\textit{Marinheiros}\bigg)$$

Outra alternativa:

$$\rho\Big(\mathit{Temp1}, \sigma_{id-\mathit{barco}=103}\big(\mathit{Reservas}\big)\Big)$$

$$\rho\Big(\mathit{Temp2}, \mathit{Temp1}\bowtie \mathit{Marinheiros}\Big)$$

$$\pi_{\mathit{nome-marin}}\big(\mathit{Temp2}\big)$$

(C1) Encontre os nomes dos marinheiros que reservam o barco 103.

$$\pi_{\textit{nome}-\textit{marin}}\bigg(\Big(\sigma_{\textit{id}-\textit{barco}=103}\big(\textit{Reservas}\big)\bigg)\bowtie\textit{Marinheiros}\bigg)$$

Mais uma alternativa:

$$\pi_{\textit{nome}-\textit{marin}}\Big(\sigma_{\textit{id}-\textit{barco}=103}\big(\textit{Reservas}\bowtie\textit{Marinheiros}\big)\Big)$$

(C2) Encontre os nomes dos marinheiros que reservam um barco vermelho.

$$\pi_{nome-marin}\bigg(\big(\sigma_{cor='vermelho'}Barcos\big)\bowtie Reservas\bowtie Marinheiros\bigg)$$

(C3) Encontre as cores dos barcos reservados por Lubber.

$$\pi_{cor}\bigg((\sigma_{nome-marin='Lubber'} Marinheiros) \bowtie Reservas \bowtie Barcos \bigg)$$

(C4) Encontre os marinheiros que reservaram pelos menos um barco.

$$\pi_{nome-marin}(Marinheiros \bowtie Reservas)$$

(C5) Encontre os nomes dos marinheiros que reservaram um barco vermelho **ou** um barco verde.

$$\rho\Big(\textit{TempBarcos}, \big(\sigma_{\textit{cor}='\textit{Vermelho'}}\textit{Barcos}\big)\bigcup\big(\sigma_{\textit{cor}='\textit{Verde'}}\textit{Barcos}\big)\Big)$$

$$\pi_{\textit{nome}-\textit{marin}}\big(\textit{TempBarcos}\bowtie\textit{Reservas}\bowtie\textit{Marinheiros}\big)$$

(C6) Encontre os id-marins dos marinheiros que reservaram um barco vermelho **e** um barco verde.

$$\rho\Big(\textit{BarcosVerm}, \big(\sigma_{\textit{cor}='\textit{Vermelho'}}\textit{Barcos}\big) \bowtie \textit{Reservas} \bowtie \textit{Marinheiros}\Big)$$

$$\rho\Big(\textit{BarcosVerd}, \big(\sigma_{\textit{cor}='\textit{Verde'}}\textit{Barcos}\big) \bowtie \textit{Reservas} \bowtie \textit{Marinheiros}\Big)$$

$$\pi_{\textit{id}-\textit{marin}}(\textit{BarcosVerm}) \cap \pi_{\textit{id}-\textit{marin}}(\textit{BarcosVerd})$$

(C7) Encontre os nomes dos marinheiros que reservaram pelo menos dois barcos.

$$\rho\Big(\textit{TempReservas}, \pi_{\textit{id-marin}, \textit{nome-marin}, \textit{id-barco}}\big(\textit{Marinheiros} \bowtie \textit{Reservas}\big)\Big)$$

$$\rho\Big(\textit{ParesReservas}, \big(1 \rightarrow \textit{id-marin}1, 2 \rightarrow \textit{nome-marin}1, 3 \rightarrow \textit{id-barco}1, \\ 4 \rightarrow \textit{id-marin}2, 5 \rightarrow \textit{nome-marin}2, 6 \rightarrow \textit{id-barco}2\big), \\ \textit{TempReservas} \times \textit{TempReservas}\Big)$$

$$\pi_{\textit{nome}-\textit{marin1}}\Big(\sigma_{\textit{id}-\textit{marin1}=\textit{id}-\textit{marin2} \land \textit{id}-\textit{barco1} \neq \textit{id}-\textit{barco2}}\big(\textit{ParesReservas}\big)\Big)$$

(C8) Encontre os id-marins dos marinheiros com idade acima de 20 que não reservaram um barco vermelho.

$$\pi_{id-marin}(\sigma_{idade}>_{20}Marinheiros)-$$

$$\pi_{id-marin}\Big(\big(\sigma_{cor='vermelho'}Barcos\big)\bowtie Reservas\bowtie Marinheiros\Big)$$

(C9) Encontre os nomes dos marinheiros que reservaram todos os barcos.

$$\rho\Big(\textit{TempIdMarins}, \big(\pi_{\textit{id-marin}, \textit{id-barco}} \textit{Reservas}\big) / \big(\pi_{\textit{id-barco}} \textit{Barcos}\big)\Big)$$

$$\pi_{nome-marin}(TempIdMarins \bowtie Marinheiros)$$

(C10) Encontre os nomes dos marinheiros que reservaram todos os barcos de nome Interlake.

$$\rho\bigg(\mathit{TempIdMarins}, \Big(\pi_{\mathit{id-marin}, \mathit{id-barco}}\mathit{Reservas}\Big)/$$

$$\left(\pi_{id-barco}\left(\sigma_{nome-barco='Interlake'}Barcos\right)\right)\right)$$

$$\pi_{nome-marin}(TempIdMarins \bowtie Marinheiros)$$