Методы асимметричного шифрования

Шифр Эль-Гамаля

Историческая справка

- Схема была предложена в 1985 году Тахером Эль-Гамалем (
 Taher Elgamal), египетским криптографом
- В отличие от RSA алгоритм Эль-Гамаля не был запатентован и, поэтому, стал более дешевой альтернативой
- Схема Эль-Гамаля лежала в основе бывших стандартов электронной цифровой подписи в США (DSA) и России (ГОСТ Р 34.10-94).

Шифр Elgamal

- Шифр является усовершенствованием системы Диффи-Хеллмана
- Шифр основан на вычислении дискретных логарифмов в конечном поле :
 - \bigcirc Пусть $y = g^x mod p$
 - Вычислительно трудно найти x при известных y, g, p
- Проблема вычисления дискретного логарифма имеет такую же сложность, как проблема разложения на множители

Elgamal генерация ключей

- [●] Генерируется случайное простое число р
- Выбирается целое число g такое, что 1< g< p, и gпорождающий элемент циклической группы (генератор) порядка p, для которого справедливо: g mod p, g²mod p, g³mod p ... g^{p-1}mod p являются различными целыми из [1,p-1]
- Выбирается случайное целое число x такое, что 1 < x < p
 </p>
- ullet Вычисляется $y = g^x mod p$
- Открытым ключом объявляется тройка (p, g, y)
- Закрытым ключом назначается число х

Elgamal зашифрование

- ullet Открытый текст разбивается на блоки m_i размером ${f k} = [\log_2 {f p}]$ бит. Блоки интерпретируются, как числа из диапазона (0; 2^k -1)
- Выбирается сессионный ключ-случайное целое число k, 1<k<p-1</p>

$$a = (g^k) \mod p$$
 $b = (y^k * m_i) \mod p$

- extstyle ex
- Длина шифротекста вдвое больше длины исходного сообщения

Elgamal расшифрование

- [●] Ключ расшифрования число x (закрытый ключ)
- Блок шифротекста преобразуется в открытый текст по формуле:
 - $= m_i = b \times (a^x)^{-1} \mod p$

$$b \times (a^{x})^{-1} \equiv (y^{k} * m_{i}) \times g^{-kx} \equiv (g^{kx} * m_{i}) \times g^{-kx} \equiv m_{i} \bmod p$$

Для практических вычислений используется выражение:

 $m_i=b imes (a^x)^{-1}mod\ p=b imes a^{(p-1-x)}mod\ p$ (т. к. $a^{(p-1)}\equiv 1mod\ p$ согласно малой теоремы Ферма)

Протокол конфиденциальной передачи сообщения на основе шифра Elgamal

- Отправитель создает маску $y^k = g^{xk}$, которая скрывает значение открытого текста М.
- Получатель создает точную копию маски $a^x = g^{kx}$ и инвертирует ее (мультипликативная инверсия), чтобы снять маску с шифротекста

Пример

- <u>Ключ: p=11, g=2(2¹⁰ 1mod 11), x = 3, y = g mod p=2³ mod 11 = 8.</u>
 - Открытый ключ (р,g,x)=(11,2,8)
 - Закрытый ключ x=3
- ightharpoonup Зашифрование открытого текста m_i =7
 - k=4, $a=(g^k) \mod p=2^4 \mod 11=5$; $b=(y^k*m_i) \mod p=(4096\times 7) \mod 11=6$
 - Зашифрованный текст (a,b)=(5,6)
- № Расшифрование:
 - $b \times a^{(p-1-x)} \mod p = 6 \times 5^7 \mod 11 = 6 \times 3 \mod 11 = 7 = m_i$

Безопасность шифра

- Чтобы шифр Эль-Гамаля был безопасен, модуль р должен содержать по крайней мере 300 десятичных цифр
- Модуль р или случайное число k, которое отправитель использует для зашифровки, должны обновляться для каждой передачи сообщения, чтобы предотвратить атаку знания исходного текста:
 - $b = (y^k * M) mod \ p \ b' = (y^k * M') mod \ p \$ и пусть M стало известно
 - ullet Тогда $y^k = b imes M^{-1} mod \ p$ и $M' = b' imes (y^k)^{-1} mod \ p$
- Шифр Эль-Гамаля может использоваться всякий раз, когда может использоваться RSA, т.е. шифрования и дешифрования маленьких сообщений

Эллиптическая криптография

Эллиптическая криптография

- Безопасность RSA и Elgamal обеспечивается ценой использования больших ключей
- Требуется альтернативный метод, который дает тот же самый уровень безопасности, но с меньшими размерами ключей
- Одним из этих перспективных вариантов является криптосистема на основе метода эллиптических кривых (Elliptic Curve Cryptosystem — ECC)

Эллиптические кривые в вещественных числах

 Эллиптические кривые обычно применяются для вычисления длины кривой в окружности эллипса:

$$y^2 + axy + by = x^3 + cx^2 + dx + e$$

В криптографии распространение получил частный вид эллиптических кривых:

$$y^2 = x^3 + ax + b$$

• Если дискриминат $\Delta = -16(4a^3 + 27b^2) ≠ 0$, уравнение представляет <u>несингулярную</u> (гладкую) эллиптическую кривую, иначе сингулярную (с особыми точками)

Примеры несингулярных эллиптических кривых

- График не имеет особых точек (возврата и самопересечений)
- У График имеет две части, если дискриминат ∆ положителен и одну часть, если значение дискриминанта ∆ отрицательно
- Замечательным свойством несингулярных кривых является то, что любая прямая, проходящая через две различные точки кривой ещё раз пересекает кривую и эта третья точка пересечения является единственной!

Примеры сингулярных эллиптических кривых

При использовании сингулярных кривых стойкость
 эллиптической криптосистемы значительно снижается

Свойства точек эллиптической кривой

- Предполагаем:
 - На плоскости существует бесконечно удаленная точка О, принадлежащая кривой, в которой сходятся все вертикальные прямые линии
 - Если три точки эллиптической кривой лежат на прямой линии, то их сумма есть О
 - Касательная к кривой пересекает точку касания два раза

Сложение точек эллиптической кривой

- Точка О выступает в роли нулевого элемента: О=-О и для любой точки Р на кривой справедливо Р + О = Р
- Вертикальная линия пересекает кривую в двух точках с одной и той же абсциссой (координатой х), например, S = (x, y), T = (x, -y), и в бесконечно удаленной точке: S + T + O = O и T = -S
- Чтобы сложить две точки Р и Q с разными координатами х, следует провести через эти точки прямую и найти точку пересечения ее с эллиптической кривой: P + Q + S = O
- Чтобы удвоить точку Q, следует провести касательную в точке Q и найти другую точку пересечения S с эллиптической кривой. Тогда Q + Q +S= 2 x Q +S=0
- Умножение точки Р эллиптической кривой на положительное число к определяется как сумма к точек Р

Эллиптические кривые в криптографии

- Эллиптические кривые над вещественными числами приводит нас к проблеме округления (тексты должны представляться целыми числами)
- В криптографии используются только кривые над конечными полями,
 т.е. координаты точек кривой принадлежат конечному полю

Эллиптические кривые в GF(p)

- Элементами данной эллиптической кривой являются пары неотрицательных целых чисел, которые меньше p (p>3) и удовлетворяют частному виду эллиптической кривой $y^2 = (x^3 + ax + b) mod p$
- ullet Такую кривую будем обозначать $E_p(a,b)$. При этом числа a и b должны быть меньше p и должны удовлетворять условию $(4a^3+27b^2)mod\ p
 eq 0$
- ullet Любая точка на $E_p(a,b)$ вычисляется следующим образом:
 - \bigcirc Для значения x, 0 <= x <= p, вычисляется $(x^3 + ax + b) \mod p$
 - Для каждого из полученных на предыдущем шаге значений выясняется имеет ли это значение квадратом целого числа. Если является, то определяется у

Пример

- - Θ E_{13} (1,1) обозначает $y^2 = (x^3 + x + 1) mod 13$
 - Θ Вычисляем ($4^3 + 4 + 1$) $mod \ 13 = (12 + 4 + 1) \ mod \ 13 = 4 = 2^2$
 - \bigcirc Вычисляем (3³ +3+1) mod 13 = (27 + 3 + 1) mod 13=5
 - \odot Вычисляем (7³ +7+1) mod 13 = (5 + 7 + 1) mod 13=0=0²

Свойства точек $E_p(a,b)$

- P + Q = P; P + Q = Q + P (KOMMYM.); (P + Q) + R = P + (Q + R) (ACCOLUMN)
- [●] Если P = (x,y), то P + (x,-y) = 0. Точка (x,-y) является отрицательным значением точки P и обозначается -P. Точка -P лежит на эллиптической кривой, т.е. принадлежит E_p (a,b).

 $\stackrel{ullet}{\sim} \lambda$ - угловой коэффициент секущей, проведенный через точки P и Q

Свойства точек $E_p(a,b)$

- P + Q = P; P + Q = Q + P (KOMMYM.); (P + Q) + R = P + (Q + R) (ACCOLUMN)
- [●] Если P = (x,y), то P + (x,-y) = 0. Точка (x,-y) является отрицательным значением точки P и обозначается -P. Точка -P лежит на эллиптической кривой, т.е. принадлежит E_p (a,b).

 $\stackrel{ullet}{\sim} \lambda$ - угловой коэффициент секущей, проведенный через точки P и Q

Задача дискретного логарифмирования на эллиптической кривой

Протокол Диффи-Хеллмана для эллиптических кривых (ECDH)

- ullet Группа точек эллиптической кривой $E_p(a,b)$
- В базовая точка (порождающий элемент) циклической подгруппы точек {kB, k=1,n} порядка n: nB=0
- x, y большие случайные числа такие, что 0 < x < n, 0 < y < n
- Поскольку:

$$xR_2 = x(yB) = xyB$$

 $yR_1 = y(xB) = xyB$

- ullet Стороны фактически создают симметричный ключ сеанса (координаты точки xyB)

Шифр Эль-Гамаля на эллиптических кривых

- ullet Получатель выбирает кривую $E_p(a,b)$, точку e_1 на кривой, выбирает секретной число d и вычисляет еще одну точку $e_2=d imes e_1$
- ullet Открытый ключ $E_p(a,b), e_1, e_2$
- ullet Отправитель сопоставляет открытому тексту точку P на кривой и создает шифровку C_1, C_2 , выбрав случайное r

$$C_1 = r \times e_1$$
 $C_2 = P + r \times e_2$

● Получатель выполняет расшифровку:

$$C_2 - (d \times C_1) =$$

 $P + r \times d \times e_1 - d \times r \times e_1 = P$

Пример генерации ключа

- $m{\Theta}$ Выбираем кривую $E_{67}(2,3)$
- Выбираем точку e₁=(2,22)
- Выбираем закрытый ключ d=4
- \bullet Вычисляем $e_2 = d \times e_1 = 4 \times (2,22) = (13,45)$

Пример зашифрования

■ Текст представляется точкой Р=(24,26) и выбираем случайное r=2

Пример расшифрования

Расшифровываем шифротекст (35,1)(21,44)

Свойства метода с использованием эллиптической кривой

- Возведение в степень в алгоритме Эль-Гамаля заменено умножением точки на константу в модели
- Умножение в алгоритме Эль-Гамаля заменено сложением точек в модели
- Инверсия в алгоритме Эль-Гамаля мультипликативная инверсия заменяется аддитивной инверсией точки на кривой
- № Вычислительные затраты, поэтому, меньше в модели
- Для того же самого уровня безопасности (вычислительные затраты на атаки) модуль р, может быть меньшим в эллиптической системе (ЕСС), чем в RSA. Например, ЕСС с модулем, состоящим из 160 битов, может обеспечить тот же уровень безопасности, как RSA с модулем 1024 битов

Таблица сравнения размеров ключей RSA и ECC (от NIST) для получения одинакового уровня защиты

Размер ключа RSA (биты)	Размер ключа ECC (биты)
1024	160
2048	224
3072	256
7680	384
15360	521

