....פרמטרית: צריך להשלים....

פעולות על וקטורים:

 $(\downarrow$ מנהם זה המרחק בינהם החיסור וקטורים זה המרחק בינהם v=(a,b), u=(c,d) בינהם עבור v=(a,b), u=(c,d) מגדיר: עבור עבור וקטורים:

 $(\overline{7}=7)$ וכן $\overline{i}=-i$ וכן לב לדוגמאות: $\overline{z}=a-bi$ נגדיר את הצמוד המרוכב z=a+bi וכן לפיים לב לדוגמאות:

 $\langle v,u \rangle = ac + bd$: מכפלה ע"י הסימון הבאv = (a,b), u = (c,d) מכפלה סקלרית: עבור

 $\|v\| = \sqrt{\langle v,v \rangle} = \sqrt{a_1^2 + a_2^2 + \dots + a_n^2}$ באופן הבא: $v = (a_1,a_2,\dots,a_n) \in \mathbb{R}^n$ נגדיר את הנורמה (אורך): עבור וקטור

. יהיו מתקיים: סקלר אזי מתקיים: $u,v\in\mathbb{R}^n$ יהיו

- $v=\overrightarrow{0}$ אם"ם $\|v\|=0$ וגם $\|v\|\geq 0$
 - $||t \cdot v|| = |t| \cdot ||v||$ •
 - $||v+u|| \le ||v|| + ||u|| \qquad \bullet$
 - $||v u|| \le ||v|| + ||u|| \quad \bullet$

: בא: באופן הבא: $v=(b_1,b_2,...,b_n)$, $u=(a_1,a_2,...,a_n)$ ביניהם באופן הבא: מרחק:

$$d(u,v) = ||v - u|| = \sqrt{(b_1 - a_1)^2 + (b_2 - a_2)^2 + \dots + (b_n - a_n)^2}$$

u=(c,d) ל- v=(a,b) בין α בין וקטורים: עבור זווית בין וקטורים

(נשים לב שע"י הוספת המרחק בינהם w נוכל ליצור משולש, ואז לפי משפט הקוסינוסים נקבל: $v^2 + u^2 - 2vu \cdot \cos \alpha = w^2$) ולכן:

$$\cos \alpha = \frac{\langle v, u \rangle}{\|v\| \cdot \|u\|}$$

 $\cos \alpha = 0 \Leftrightarrow \langle v, u \rangle = 0 \Leftrightarrow v \perp u$:וקטורים מאונכים

מכפלה פנימית:

מקיימת: פעולה אשר מוגדרת על שני וקטורים u,v תקרא מכפלה פנימית אם היא מקיימת:

- $\langle u+v,w \rangle = \langle u,w \rangle + \langle v,w \rangle$ מתקיים: u,v,w מרטורים לכל וקטורים לינאריות:
 - (סימטריות) $\langle u,v\rangle=\overline{\langle v,u\rangle}$ מתקיים: u,v מתקיים לכל וקטורים u,v
 - $v=\vec{0}$ מתקיים שוויון אם"ם (v,v) אומתקיים שוויון אם סקלר v

 $\langle u,v \rangle = \sum_{i=1}^n a_i \overline{b_i}$ באופן הבא: \mathbb{C}^n באופן הסקלרית מעל $v = (b_1,b_2,...,b_n)$, $u = (a_1,a_2,...,a_n)$ באופן הבא: $v = (b_1,b_2,...,b_n)$, $u = (a_1,a_2,...,a_n)$ באופן הבא: \mathbb{R}^n עבור וקטורים מעל \mathbb{R}^n מגדירים באותה צורה).

<u>טענות:</u>

- $\langle u,aw \rangle = \overline{a}\langle u,w \rangle$:עבור $a \in \mathbb{F}$ -ו $u,w \in \mathbb{F}^n$ עבור
 - $\|a\cdot u\|=|a|\cdot\|u\|$:עבור $a\in\mathbb{F}$ ו- $a\in\mathbb{F}$ עבור
- (פיתגורס המוכלל) $\|u-v\|^2=\|u+v\|^2=\|u\|^2+\|v\|^2$ אזי מתקיים: $u\perp v$ כך ש $u,v\in V$ יהי v מרחב מכפלה פנימית ויהיו
 - $(u+v)\perp (u-v)$ מרחב מכפלה פנימית מעל $\mathbb R$ ויהיו $u\|v\|=\|v\|$ כך ש- $u,v\in V$ יהי $v\in V$ יהי
 - (אי שיוויון קושי שוורץ) $|\langle u,v \rangle| \leq \|u\| \cdot \|v\|$ מתקיים: $u,v \in V$ מרחב מ"פ $v \in V$
 - $\langle u,v \rangle = u^t \bar{v}$ וקטורים כלשהם ב- \mathbb{F}^n אזי מתקיים: u,v יהיו

 $\langle u,v \rangle = 0$ ניצבים אם"ם ניצבים ווקטורים $u,v \in \mathbb{R}^n$ ניצבים אם"ם ניצבות:

בסיסים אורתוגונלים ואורתונורמלים במרחב מכפלה פנימית

 $.\mathbb{F}$ יהי V מרחב מ"פ מעל

 $v_i
eq \vec{0}$ וכן $\langle v_i, v_j \rangle = 0$ מתקיים $1 \leq i \neq j \leq n$ וכן לכל $\{v_1, v_2, \dots, v_n\} \in V$ מתקיים $\{v_1, v_2, \dots, v_n\} \in V$

הגדרה: בסיס אורתוגונלי של V הוא בסיס של V המהווה קבוצה אורתוגונלית.

הגדרה: קבוצה אורתונורמלית היא קבוצה אורתוגונלית שבה אורכו של כל וקטור הוא 1.

. המהווה קבוצה אורתונורמלית של V הוא בסיס של V המהווה קבוצה אורתונורמלית.

כל קבוצה אורתוגונלית / אורתונורמלית היא בת"ל.

$$w = \sum_{i=1}^{n} \frac{\langle w_i, v_i \rangle}{\langle v_i, v_i \rangle} v_i$$

: כלשהו מתקיים $w\in V$ מרחב מ"פ ויהי v_1,v_2,\ldots,v_n בסיס אורתוגונלי של v_1,v_2,\ldots,v_n כלשהו מתקיים

 $\|u\|^2 = \langle u,u \rangle = 1$ יהי u וקטור כלשהו בבסיס אורתונורמלי אזי מתקיים:

<u>המשלים הניצב וההיטל הניצב</u>

 $S^{\perp}=\{\,v\in V\mid \forall_{s\in S}:v\perp s\,\}$ מרחב מ"פ ותהי S תת קבוצה של V לא ריקה. נגדיר את: S^{\perp} באופן הבא:

 S^{\perp} אשר ניצבים לכל איברי S^{\perp} (כלומר, S^{\perp} היא קבוצת כל הווקטורים ב-

.U של הניצב של U^\perp נקרא המשלים הניצב של U תת מרחב של U נקרא המשלים הניצב של U

 $p \neq u \in U$ לכל d(v,p) < d(v,u) מרחב מ"פ ו- U מרחב מ"פ ו- U ויהי $V \in V$ כלשהו. וקטור $v \in U$ נקרא **ההיטל הניצב** של $v \in U$ אם"ם מתקיים: $v \in V$ ויהי $v \in U$ ויהי $v \in U$ באופן הבא: $(P_U(v)$ באופן הבא: $v \in U$ באופן הבא: $v \in U$

:טענות

יהי $S \subseteq V$ אזי:

- $\vec{0} \in S^\perp$ אם S לא ריקה אז \bullet
- V אם S לא ריקה אז S^{\perp} תת מרחב של S •
- $U^{\perp}=S^{\perp}$ אזי מתקיים: $S=\{u_1,u_2,...,u_n\}$ אזי מתקיים: U=Sp $\{u_1,u_2,...,u_n\}=Sp(S)$ אזי מתקיים: U=Sp
 - $V^{\perp} = \{\overrightarrow{0}\}$
 - $U\cap U^\perp=\left\{\,\overrightarrow{0}\,
 ight\}$ יהי U תת מרחב של U אזי מתקיים: U
 - U אזי p הוא ההיטל הניצב של v על v על v אם v אזי v הוא ההיטל הניצב של v על v על v על v ויהי v
 - U יהי U ת"מ של V ויהי $V \in V$ כלשהו. יהי $\{u_1, u_2, ..., u_k\}$ יהי $v \in V$ יהי $v \in V$

 $:\!\!U$ אזי הווקטור p הוא ההיטל של

$$P_U(v) = \sum_{i=1}^{\kappa} \frac{\langle v, u_i \rangle}{\langle u_i, u_i \rangle} u_i$$

- $V=U \oplus U^{\perp}$ יהיו U ת"מ של V אזי מתקיים: •
- $\dim(U) + \dim(U^{\perp}) = \dim(V)$ יהי U ת"מ של U. אזי מתקיים:
- - $v \in V$ אם"ם $P_U(v) = v$ יהי $V \in V$ ויהי ויהי $V \in V$ יהי U יהי •

מציאת בסיס אורתוגונלי לתת מרחב

תהי $\{u_1, u_2, ..., u_k\}$ קבוצה בת"ל.

 $.\mathit{Sp}\{w_1,w_2,\dots,w_k\} = \mathit{Sp}\{u_1,u_2,\dots,u_k\}$ יבר למצוא קבוצה אורתוגונלית ל $\{w_1,w_2,\dots,w_k\}$ כך ש

התהליך למציאת קבוצה כזו נקרא **תהליך גראם-שמידט:**

$$w_{i+1} = u_{i+1} - \sum_{i=1}^{j} \frac{\langle u_{j+1}, w_i \rangle}{\langle w_i, w_i \rangle} w_i$$

- $w_1=u_1$ מגדירים תחילה: $u_1=u_1$
- בא: אורתוגונלית. אזי את האיבר הבא נחשב באופן הבא: $\{w_1, w_2, ..., w_j\}$ נניח שמצאנו
 - $\it k$ נמשיך בסעיף 2 עד אשר נגיע לקבוצה בגודל. 3

הערה: במידה ומעוניינים בבסיס אורתונורמלי יש לנרמל כל וקטור לפני שמוסיפים אותו לקבוצה.

לכסון מטריצות

 \mathbb{F} מעל שדה $n \times n$ בגודל A,B מעל שדה יהיו מטריצות

 $B=P^{-1}AP$:נאמר ש- $\mathbb F$ דומה ל- A מעל $\mathbb F$ אם"ם קיימת מטריצה B הפיכה מעל

D -דומה ל- ער ש- D כך ש- D לכסינה מער ש- קיימת מטריצה אלכסונית A בומה ל- דומה ל- הגדרה: תהי

 $f_A(x) = |xI - A|$ ומוגדר להיות: $f_A(x)$ ומוגדר הפולינום האופייני של A מסומן: בהינתן מטריצה A, הפולינום האופייני של

(cI-A)v=0 מסומן V_c ומוגדר כמרחב הפתרונות של המערכת ההומוגנית A השייך ל- A השייך ל- C מסומן ע"ע של מרטיצה A המרחב העצמי של השייך ל- C מסומן ומוגדר כמרחב הפתרונות של מרטיצה המרחב העצמי של C

. $\mathbb F$ פולינום כלשהו מעל $g(x) = \sum_{i=1}^m b_i x^i$ ויהי ויהי $A_{n imes n}$ מעל

 $g(A) = \sum_{i=1}^m b_i A^i$ אזי g(A) מוגדר באופן הבא

P=I מטריצה A תמיד דומה לעצמה כי אפשר לבחור

 $.\mathbb{F}$ מעל A אז גם A דומה ל- B מעל A אז גם A דומה ל-

- A -אם B דומה ל- A ו- C דומה ל- B אז B דומה ל- A
- מצירוף הסעיפים הקודמים נקבל שיחס הדמיון הוא יחס שקילות.
- $A^m = P^{-1}D^mP$: אם A דומה למטריצה אלכסונית D אזי מתקיים
- A ערך עצמי של $c \Leftrightarrow |cI-A|=0$ אזי: $c \in \mathbb{F}$ ויהי $c \in \mathbb{F}$ אזי: $c \in \mathbb{F}$ ערך עצמי של
- .1 הוא x^n מעל שדה \mathbb{F} . מעלתו של הפולינום האופייני של A היא A והמקדם של \mathbb{F} הוא $A_{n \times n}$
- (כלומר, לא ייתכן שלמערכת c של c חייב להיות וקטור עצמי. (כלומר, לא ייתכן שלמערכת c של c יהיה פתרון יחיד) תהי מטריצה.
 - . היא בת"ל. $\bigcup_{i=1}^k B_i$ כל הע"ע של $A_{n \times n}$ ויהי $A_{n \times n}$ בסיס עבור $C_1, C_2, ..., C_k$ יהיא בת"ל.

$$\sum_{i=1}^k \dim(V_{c_i}) = n$$
 אַכאן ש- A לכסינה אם"ם:

- לשתי מטריצות דומות יש את אותו פולינום אופייני.
- A=cI אם"ם $\mathbb F$ אם"ם לכסינה מעל A אזי מתקיים: A לכסינה מעל שדה בעלת ע"ע יחיד בעלת ע"ע אזי מתקיים: •
- A אוא הפולינום האופייני של $f_A(x)$ כאשר $f_A(x)$ מתקיים מתקיים מתקיים $A_{n imes n}$ מתקיים של $A_{n imes n}$
- $g(A)=Pg(B)P^{-1}$ מטריצות דומות: $A=PBP^{-1}$ ויהי $A=PBP^{-1}$ ויהי A

$$g(D)=egin{pmatrix} g(d_1) & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & g(d_n) \end{pmatrix}$$
: תהי מתקיים: $g(x)$ פולינום כלשהו אזי מתקיים: $D=egin{pmatrix} d_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & d_n \end{pmatrix}$ מטריצה אלכסונית כלשהי ויהי

- c^m עם ע"ע של A^m שלם מתקיים v וויהי הו"ע שלה עם הע"ע a. אזי לכל $m \geq 1$ שלם מתקיים v וו"ע של A^m עם ע"ע A^m
 - . תהי $A_{n \times n}$ מטריצה מעל שדה \mathbb{F} . \mathbb{F} ע"ע של A אם"ם $A_{n \times n}$.

<u>לכסון אוניטרי</u>

A אורתונורמלי של \mathbb{F}^n המורכב מו"ע של הוא לכסון אוניטרי הוא לכסון בעזרת בסיס אורתונורמלי כלומר, בלכסון אוניטרי מחפשים בסיס אורתונורמלי של

 $\overline{a_{ij}}$ הוא i,j - מטריצה מרוכבת נסמן ב $ar{A}$ את המטריצה שאיברה ה $A_{m imes n}$ הוא הגדרה:

 $A^* = (\bar{A})^t = \overline{(A^t)}$ עבור $A_{m \times n}$ מטריצה מרוכבת נסמן:

. מטריצה אוניטרית מטריצה $P^* = P^{-1}$ המקיימת המדרה: מטריצה אוניטרית הגדרה

ינים אוניטרית ו- $n \times n$ אלכסונית כך ש: $n \times n \times n$ אוניטרית ו- $n \times n \times n$ אלכסונית כך ש: $n \times n \times n \times n$ אוניטרית ו- $n \times n \times n \times n \times n$

 $AA^* = A^*A$ נקראת מטריצה נורמלית אם"ם מתקיים $A_{n \times n}$ נקראת מטריצה מטריצה

 $A^*=A$ נקראת **מטריצה הרמטית** אם"ם מתקיים $A_{n imes n}$

הגדרה: מטריצה אוניטרית ממשית נקראת מטריצה אורתוגונלית ועמודותיה הן קבוצה אורתונורמלית.

 \mathbb{R} מטריצה ממשית נאמר שיש ל- A **לכסון אורתוגונלי** אם יש לה לכסון אוניטרי מעל A

<u>:טענות</u>

- $P^*=P^{-1}$ אם"ם \mathbb{F}^n אם"ם מהוות בסיס אורתונורמלי של $P_{n imes n}$ אזי עמודות $P_{n imes n}$
 - מטריצות וסקלר k אזי מתקיים: A,B מטריצות המטריצה הצמודה. יהיו

$$(A \pm B)^* = A^* \pm B^*$$

$$(kA)^* = \bar{k}A^*$$

$$(AB)^* = B^*A^* \quad \circ$$

$$(A^*)^* = A$$
 o

- כל מטריצה אלכסונית היא נורמלית.
- כל מטריצה ממשית סימטרית היא נורמלית.
 - כל מטריצה אוניטרית היא נורמלית.
 - כל מטריצה הרמטית היא נורמלית.
- . משפט הלכסון האוניטרי מעל A אם"ם A נורמלית. A משפט הלכסון האוניטרי מטריצה A מטריצה A אזי A נורמלית.
- $\langle u,v \rangle = 0$ וקטורים עצמיים של A השייכים לערכים עצמיים שונים של A אזי מתקיים: u,v וקטורים עצמיים של A
 - :מתקיים מעריצה ב- \mathbb{F}^n אזי מתקיים עורים כלשהם ב- u,v ויהיו מעריצה לשהי מטריצה u,v

$$\langle Au, v \rangle = \langle u, A^*v \rangle$$

$$\langle A^*u, v \rangle = \langle u, Av \rangle$$
 o

- $A^*v=ec{0} \Longleftrightarrow Av=ec{0}$: אזי מתקיים אזי מרכיצה $A_{n imes n}$ נורמלית ויהי $v\in \mathbb{F}^n$ אזי מתקיים
 - A-cI אזי A-cI נורמלית ויהי F
 - $ar{c}$ עם הע"ע A^* ו"ע של A^* עם הע"ע אזי v ו"ע של v עם הע"ע A^*
- $u \perp v$ אזי מתקיים: A אזי מתקיים: u,v וקטורים עצמיים של A אזי מתקיים: u,v
 - תהי $A_{n imes n}$ מטריצה מרוכבת אזי אם A הרמיטית כל ע"ע שלה ממשי. •
 - |z|=1 מטריצה מרוכבת אזי אם A אוניטרית כל ע"ע שלה מקיים: $A_{n imes n}$
- . משפט הלכסון האורתוגונאלי: תהי $A_{n \times n}$ ממשית אזי ל- A יש לכסון אורתוגונלי אם"ם $A_{n \times n}$

מטריצות סיבוב, שיקוף והיטל

 $A = egin{pmatrix} \cos(lpha) & -\sin(lpha) \ \sin(lpha) & \cos(lpha) \end{pmatrix}$ נגד כיוון השעון ביחס לראשית באופן הבא: A בזווית A נגד כיוון השעון ביחס לראשית באופן הבא:

 $A = egin{pmatrix} \cos(lpha) & \sin(lpha) \ \sin(lpha) \end{pmatrix}$ באופן הבא: נגדיר מטריצת שיקוף A ביחס לציר V_1 כאשר V_1 הוא המרחב העצמי של הע"ע באופן הבא: נגדיר מטריצת שיקוף A ביחס לציר אור ביחס לציר באופן הבא המרחב העצמי של הע"ע באופן הבא: נגדיר מטריצת שיקוף V_1 ביחס לציר ביחס לציר באופן הבא ביחס לציר באופן באו

 $A=rac{1}{a^2+b^2}inom{a^2}{ab}$ ביחס לישר $U=Sp\{(a,b)\}$ ביחס לישר $U=Sp\{(a,b)\}$ ביחס לישר ביחס לישר (מדרה: נגדיר מטריצת היטל

<u>סיכום תכונות</u>

דטרמיננט	האם הפיכה	האם יש לכסון אורתוגונלי	האם סימטרית	האם יש לכסון אוניטרי	
1	ΙΟ	לא, מלבד <u>±</u> I	לא, מלבד <u>±</u> I	ΙΟ	מטריצות סיבוב
-1	ΙΟ	ΙΣ	Cl	Cl	מטריצות שיקוף
	לא	ΙÞ	ΙΟ	ΙΟ	מטריצות היטל

הקשר בין סוגי המטריצות:

פולינומים מאפסים ופולינום מינימלי של מטריצה

.1 הוא x^n הוא פולינום שבו המקדם של n הוא ממעלה ממעלה פולינום שבו המקדם של

 $g(A)=0_{n imes n}$ ויהי $A_{n imes n}$ ויהי $g(x)=0_{n imes n}$. נאמר ש- $g(x)=0_{n imes n}$ פולינום מאפס של

 $g(x) = (x - c_1)(x - c_2) \dots (x - c_k)$ נקרא פולינום $g(x) = (c_1, c_2, \dots, c_k)$ אם קיימים g(x) שונים זה מזה כך ש $g(x) = c_1$ נקרא פולינום פשוט מעל

 $.m_A(x)$ ומסומן A ומסומן A נקרא פולינום מינימלי של A ומסומן A ומסומן A ומסומן A ומסומן A

:טענות

- .g(A)=0 : אזי מתקיים: $g(x)=(x-c_1)(x-c_2)\dots(x-c_k)$ נסמן: $.c_1,c_2,\dots,c_k$ אזי מער $\mathbb F$ בעלת הע"ע $A_{n imes n}$
 - A אם"ם קיים פולינום פשוט מעל $\mathbb F$ המאפס את A אס"ם קיים פולינום פשוט מעל A המאפס את A המאפס את A
 - . $\mathbb F$ אם"ם $m_A(x)$ פולינום פשוט מעל A אזי A לכסינה מעל $\mathbb F$ אם"ם מטריצה מעל שדה A מטריצה מעל שדה A
 - g(c) עם הע"ע g(A) עם עצמי של g(x) ויהי וקטור עצמי של g(x) ויהי ויהי g(x) ויהי g(x) איזי g(x) ויהי g(x) ויהי
 - g פולינום כלשהו שמאפס את A. אזי כל ע"ע של g(x) יהי g(x)
- .(A הוא פולינום מתוקן שמאפס את A מטריצה כלשהי. מעלת הפולינום המינימלי של A היא לכל היותר A (כי הפולינום האופייני של A הוא פולינום מתוקן שמאפס את A
 - . תהי A מטריצה כלשהי. הפולינום המינימלי של $A_{n \times n}$ חיד.
 - $f_A(x)$ את ובפרט את מטריצה A מטריצה לשהי. אזי אזי $m_A(x)$ מחלק כל פולינום שמאפס את $A_{n imes n}$
 - A מטריצה כלשהי. שורשיו של $m_A(x)$ הם בדיוק כל הערכים העצמיים של $A_{n imes n}$

<u>חבורות</u>

: עם פעולה: * כלשהי נקראת חבורה אם"ם מתקיימים התנאים הבאים:

- $a*b \in G$: מתקיים $a,b \in G$ סגירות: לכל
- a*(b*c)=(a*b)*c מתקיים: $a,b,c\in G$ אסוציאטיביות: לכל
- $a*1_G=a$ מקיים: $a\in G$ אשר לכל $1_G\in G$ מקיים: $a*1_G=a$
- $a^{-1}*a=a*a^{-1}=1_G$ כך ש: $a^{-1}\in G$ קיים $a\in G$ לכל לכל לכל $a\in G$

 $(a^{-1})^m = a^{-m}$: עבור $a \in G$ ועבור $a \in G$ שלם נגדיר חזקה באופן הבא: $a \in a * ... * a$ שלם נגדיר חזקה שלם נגדיר חזקה באופן הבא:

 $0(g) \ge 3 \Leftrightarrow g \ne g^{-1}$ מתקיים $g \in G$ וכן m = 0(g) וכן ולכן נקבל כי לכל m = 0(g) ולכן נקבל מהדרה:

בה הפעולה * חבורה אבלית. מבורה אבלית: חבורה אבלית:

. צלעות מבורה G תקרא חבורה **דיהדרלית** אם היא מורכבת מהעתקות השיקוף ומהעתקות הסיבוב של מצולע בעל n

 ${\it .G}$ של הסדר נקרא נקרא מספר איברי ${\it G}$ נקרא הסדר של הגדרה: תהי

m=O(a) נקרא **הסדר של האיבר a** וסימונו: a וסימונו: a ויהי a כלשהו. השלם החיובי המינימלי a המקיים $a^m=1_G$ נקרא הסדר של האיבר a וסימונו:

:הבאים התנאים התנאים מסומנת G אם מתקיימים התנאים של G נקראת הבחרה של G ומסומנת G אם מתקיימים התנאים הבאים:

- $\forall a,b \in H: a*b \in H$ סגירות:
 - $1_G \in H$: קיום איבר ניטרלי
- $\forall a \in H: a^{-1} \in H$ קיום איבר הופכי: •

 $(a \mid a \mid a \in G)$ נסמן: $(a \mid a \mid a \in G)$ (כלומר כל החזקות של $(a \mid a \in G)$ (החזקות של מ).

a היא תת חבורה ונקראת **תת חבורה הנוצרת ע"י מ**. הקבוצה $\langle a \rangle$ היא תת חבורה ונקראת $a \in G$ עבור $a \in G$ המקיימת $a \in G$ המקיימת $a \in G$ המקיימת הבורה ציקלית.

G של G ותת חבורה G של G

.G -ב H של קוסט של נקראת נקראת $H_a = \{\, h \in H \mid h*a\,\}$ הקבוצה $a \in G$

 $|S_n| = n!|$ את קבוצת כל התמורות על הקבוצה $|S_n| = n!|$ את קבוצת כל התמורות על הקבוצה $|S_n| = n!|$

. עם פעולת הרכבה היא חבורה אשר נקראת **חבורת תמורות** \mathcal{S}_n

<u>:טענות</u>

- :תהי חבורה G ויהיו G כלשהם. אזי מתקיים
 - $gx = hx \Leftrightarrow g = h$ o
 - $xg = xh \Leftrightarrow g = h$
 - $(gh)^{-1} = h^{-1}g^{-1}$ o
 - $(g^k)^{-1} = (g^{-1})^k = g^{-k}$
- . תהי G חבורה סופית ויהי $a \in G$ כלשהו. אזי מתקיים G סופי.
- . תהי G חבורה כלשהי ויהי $a \in G$ כלשהו. הקבוצה $a \in G$ היא תת חבורה
- $|\langle a \rangle| = \mathcal{O}(a) = m$ מרי חבורה G ויהי G המקיים: G המקיים: G המקיים: G המקיים: G
- (G-משפט לגרנז': תהי G חבורה סופית ותהי H תת חבורה של G. אזי |H| מחלק |G| (כלומר מספר האיברים ב- H מחלק את מספר האיברים ב- G מתקיים: G0 מחלק את G1.
 - (בפרט G ציקלית) אין מחבורה כלשהי מסדר ראשוני אזי לכל $a \in G$ מתקיים $a \in G$ בפרט $a \in G$ ציקלית)
 - כל חבורה ציקלית היא אבלית.
 - $|H_a|=m$:תת חבורה סופית מסדר m של G אזי מתקיים H
 - $H_a\cap H=\emptyset$: אז מתקיים a
 otin H של G. אם A
 otin H אז מתקיים G ותת חבורה G
 - $H_a=H$: אז מתקיים $a\in H$ אם של G. אם H או מתקיים •
 - H של G. כל איבר של G נמצא בקוסט כלשהו של H.
 - $H_a = H_b \Longleftrightarrow ab^{-1} \in H$ מתהי חבורה G ותת חבורה H של G ויהיו וויהיו של H ותת חבורה G
- (H ששיך לשני קוסטים שונים של G אזי מתקיים: $H_a\cap H_b=\emptyset$ אוי מתקיים: $H_a=H_b$ אזי מתקיים: $A,b\in G$ אזי מתקיים: G ששיך לשני קוסטים שונים של $H_a=H_b$
 - $a^n=1_G$ מתקיים: $a\in G$ אזי לכל $a\in G$ מתקיים: a
 - $.a^{P-1}=1_G$:מתקיים $a\in\mathbb{Z}_P{}^X$ משפט פרמה: יהי P ראשוני כלשהו. אזי לכל
 - . כל חבורה מסדר קטן מ- 6 היא אבלית.
 - תהי G חבורה אבלית סופית מסדר n: g_1 : נסמן: $g_1*g_2*...*g_n$ נסמן: $u=g_1*g_2*...*g_n$ אזי מתקיים: $u=g_1*g_2*...*g_n$ או $u=g_1*g_2*...*g_n$ היא מכפלת כל איברי $u=g_1*g_2*...*g_n$ השונים אשר מקיימים: $u=g_1*g_2*...*g_n$ או $u=g_1*g_2*...*g_n$ היא מכפלת כל איברי $u=g_1*g_2*...*g_n$ השונים אשר מקיימים: $u=g_1*g_2*...*g_n$ היא מכפלת כל איברים $u=g_1*g_2*...*g_n$ ביוון שע"פ לגרנז' אין בחבורה איברים מסדר $u=g_1*g_2*...*g_n$

סוגי מטריצות ותכונות

.כך ש: A היא מטריצה המתקבלת משחלוף שורות בעמודות והצמדה; של רכיבי מטריצה מרוכבת A היא מטריצה המתקבלת משחלוף שורות בעמודות והצמדה; של רכיבי מטריצה מרוכבת A

$$A^* = \left(\overline{A}\right)^T = \overline{A^T}$$

 $m{A}^T = m{A}$ מטריצה $m{o}$ ימער היא מטריצה מטריצה היא מטריצה מטריצה מטריצה מטריצה מטריצה מטריצה איז מטריצה מיימע (בדר"כ בעלת ערכים ממשיים בלבד)

(ערכיה מרוכבים, ובפרט ממשיים, המקבילה המרוכבת של סימטרית) $oldsymbol{A}^* = oldsymbol{A}$ מטריצה **הרמיטית** היא מטריצה ריבועית המקיימת

> (ערכיה מרוכבים, ובפרט ממשיים) $A^*A = AA^*$ מטריצה **נורמלית** היא מטריצה ריבועית מטריצה **נורמלית**

> (ערכיה מרוכבים, ובפרט ממשיים) $A^* = A^{-1}$ מטריצה אוניטרית היא מטריצה ריבועית המקיימת

(ערכיה ממשיים, למעשה היא אוניטרית ממשית)

 $A^T = A^{-1}$ מטריצה אורתוגונלית היא מטריצה ריבועית מטריצה אורתוגונלית

<u>תכונות</u>

(צמודה לעצמה) $A^* = A$

כל הרמיטית היא נורמלית.

 $(\overline{7}=7)$ ערכי האלכסון הראשי חייבים להיות ממשיים, כיוון שרק ממשיים שווים לצמוד שלהם

כל הרמיטית ניתנת ללכסון אוניטרי (כלומר ע"י מטריצה אוניטרית). והמטריצה המתקבלת היא אלכסונית ממשית.

לכן <u>כל הע"ע</u> של הרמיטית הם <u>ממשיים</u> וכל ויש לה <u>n ו"ע בל"ת</u>. גם ניתן למצוא בסיס אורתונורמלי בעל n ו"ע.

 $R \in \mathbb{Z}$ - סכום הרמיטית א הרמיטית הרמיטית. המכפלה הרמיטית המכפלה הרמיטית הא הרמיטית הוא הרמיטית החמיטית הרמיטית המכפלה הרמיטית המכפלה הרמיטית החמיטית הרמיטית החמיטית הרמיטית הרמיטית החמיטית הרמיטית הרמי

 $v^*Av = (v^*Av)^*$ -עבור וקטור מרוכב כלשהו v, מתקיים כי המכפלה v^*Av ממשית, כיוון ש

 $\mathbb R$ מטריצה הרמיטית מרוכבת מסדר n imes n לא יוצרת מ"ו מעל $\mathbb C$, כיוון שמטריצת הזהות מרוכבת מסדר n imes n לא יוצרת מ"ו מעל

הדטרמיננטה של הרמיטית הוא ממשי.

 $(\mathcal{C} + \mathcal{C}^*)$ סכום מטריצה ריבועית והצמודה שלה נותן הרמיטית

 $A^* = -A$ חיסור מטריצה ריבועית בצמודה שלה נותן אנטי-הרמיטית ($(\mathcal{C} - \mathcal{C}^*)$. אנטי הרמיטית מקיימת

 $A^*A = AA^*$:

 $A^TA = AA^T$ שטריצה ריבועית ממשית A מקיימת $A^* = A^T$ ולכו היא נורמלית אם מתקיים ש

נורמליות היא דרך טובה לבדוק לכסינות: מטריצה נורמלית ⇔ אם היא 'דומה אוניטרית' למטריצה אלכסונית.

לכן כל מטריצה המקיימת $A^*A = AA^*$ היא לכסינה.

איזה מטריצות ידועות כנורמליות:

מהמרוכבות: אוניטרית, הרמיטית ואנטי הרמיטית.

מהממשיות: אורתוגונלית, סימטרית ואנטי-סימטרית.

מטריצה נורמלית היא לא בהכרח אף אחת מאלה ↑. יכול להיות שכן, אך לא ניתן להסיק זאת רק מנורמליות.

מטריצה נורמלית משולשית היא אלכסונית.

(P במטריצה ריבועית, A ו- B דומות אחת לשנייה אם מתקיים $A=P^{-1}BP$ עבור שתי מטריצות הפיכה כלשהי A ריבועיות, A ו- B דומות אחת לשנייה אם מתקיים

מטריצת אותה טרנספורמציה לינארית, בבסיסים שונים. P היא מטריצת החלפת בסיסים.

מטריצות דומות חולקות מספר רב של תכונות בינהם: <u>פ"א, דטרמיננטה, עקבה, ע"ע, פ"מ, דרגה</u> ועוד...

אם P=U כלומר היא אוניטרית, אז המטריצות **דומות אוניטרית**.

 $A^m = P^{-1}D^mP$ מטריצה A נקראית לכסינה אם היא דומה למטריצה אלכסונית D. כלומר קיימת P הפיכה, וניתן לומר באופן כללי:

מטריצה D ניתנת **ללכסון אוניטרי** אם היא \overline{T} ומה אוניטרית למטריצה אלכסונית D. (נקרא גם **לכסינה אוניטרית**). $A = \pmb{U^{-1}DU} = \pmb{U^*DU}$ כלומר קיימת P = U הפיכה, לאלכסונית ומתקיים:

 $A = UDU^*$ אוניטרית: B עורמלית $A = UDU^*$ אוניטרית: A אוניטרית: A אוניטרית: A אוניטרית: ערכי האלכסון של D הם הע"ע של A ועמודות U הם הו"ע המתאימים. (משפט הפירוק הספקטרלי).

משפט הפירוק הספקטרלי נותן פירוק של המטריצה לצורה קנונית בה המטריצה מיוצגת ע"י הע"ע והו"ע שלה. רק מטריצות לכסינות ניתנות לפירוק כזה (eigendecomposition)

. ממשיים A ממשיים אורתונורמלי של \mathbb{C}^n המורכב מו"ע של A וכל הע"ע של A ממשיים אורתונורמלי של מיש המורכב מו"ע של

. נורמלית \Leftrightarrow המרחבים העצמיים של A פורשים את אורתוגונלים אחד לשני אחד לשני A נורמלית \Leftrightarrow המרחבים העצמיים של

A כלומר, המרחב כולו נפרש ע"י קבוצה אורתונורמלית של ו"ע של

 $||Ax|| = ||A^*x||, x$ לכל

 $A^* = A^{-1}$:אוניטריות

 $A^*A = AA^* = I$ נשים לב שההגדרה שקולה ללומר:

כל אוניטרית היא **נורמלית**.

מטריצה אוניטרית שכל מרכיביה הם ממשיים היא אורתוגונולית.

 $.A^{-1} = \frac{adj(A)}{|A|}$ -פזכר ש $|\det(A)|^2=1$ מתקיים $\det(A)=1$ מתקיים $\det(A)=1$ למעשה

 $\langle Ax, Ay \rangle = \langle x, A^*Ay \rangle = \langle x, Iy \rangle = \langle x, y \rangle$ מטריצה אוניטרית שומרת מ"פ:

||Ax|| = ||x|| מטריצה אוניטרית שומרת על נורמה:

המרחבים הוקטורים של מטריצה אוניטרית הם אורתוגונלים.

התנאים הבאים שקולים:

.אוניטרית U \circ

. אוניטרית U^* \circ

 $.U^{-1} = U^*$ הפיכה וכן U

 \mathbb{C}^n עמודות U מהוות בסיס אורתונורמלי עבור

 \mathbb{C}^n שורות U מהוות בסיס אורתונורמלי עבור U

היא מטריצה נורמלית עם ע"ע הנמצאים על מעגל היחידה. U \circ

$A^T = A^{-1}$: אורתוגונלית

- $A^TA = AA^T = I$ נשים לב שההגדרה שקולה ללומר: •
- $A^*A = AA^*$ ולכן נורמלית, $A^{-1} = A^*$, אוניטרית, $A^{-1} = A^T$, ולכן נורמלית, היא בהכרח הפיכה
 - .±1 הדטרמיננטה של מטריצה אורטוגונלית היא
- למעשה מטריצה אורטוגונלית היא מטריצה אוניטרית מעל הממשיים. לכן גם תכונותיה זהות לאוניטרית.
- $A=QDQ^T$:ש לכסון אורתוגונלית כך ש: A אסימטרית. קיימים A אלכסונית ו- Q אורתוגונלית כך ש: A אמ"מ A נורמלית)

<u>ליכסון</u>

מטריצה ריבועית A היא לכסינה אם היא דומה למטריצה אלכסונית D. כלומר $P^{-1}AP$ אלכסונית גם כן. מטריצה ריבועית A היא לכסינה אם היא דומה למטריצה אלכסונית גם כן.

A של של \mathbb{F}^n המורכב מו"ע של המטריצה \mathbb{F}^n מעל \mathbb{F}^n לכסינה מימדי המרחבים הוקטוריים שלה שווה ל-n, כלומר קיים בסיס ל-