ЗАДАНИЕ 4. По заданному регулярному выражению, построить конечный детерминированный автомат-распознаватель, восстановить грамматику языка.

10	$(b \cup c * a)(a \cup bc) * (b * \cup c)$

Переходим от регулярного выражения к ЕНКА:

Теперь избавимся от спонтанных переходов:

Построим систему переходов:

	0	1	2*	3	4*	5*	35*
A	2	2	2	-	-	-	-
В	2	-	35	-	-	5	5
С	1	1	4	2	-	-	2

Мы выяснили, что 3 - это не достижимое состояние

Получим следующую таблицы:

	0	1	2*	4*	5*	35*
A	2	2	2	-	-	-
В	2	-	35	-	5	5
С	1	1	4	-	-	2

Результат от программы(JFLAP):

Делаем ДКА добавляя тупиковое состояние:

	0	1	2*	4*	5*	35*	T
A	2	2	2	T	T	T	T
В	2	T	35	T	5	5	T
C	1	1	4	T	T	2	T

Восстанавливаем грамматику языка:

 $S \rightarrow aB|bB|cA$

A->aB|cA

B->aB|bD|cC| ϵ

C-> ε

D->bE|cB| ϵ E->bE| ϵ