

AOT260L/AOB260L

60V N-Channel MOSFET

General Description

The AOT(B)260L uses Trench MOSFET technology that is uniquely optimized to provide the most efficient high frequency switching performance. Power losses are minimized due to an extremely low combination of R_{DS(ON)} and Crss.In addition, switching behavior is well controlled with a "Schottky style" soft recovery body diode.This device is ideal for boost converters and synchronous rectifiers for consumer, telecom, industrial power supplies and LED backlighting.

Product Summary

 $\begin{array}{ll} V_{DS} & 60V \\ I_{D} \; (at \; V_{GS} \! = \! 10V) & 140A \\ R_{DS(ON)} \; (at \; V_{GS} \! = \! 10V) & < 2.5 m\Omega \\ R_{DS(ON)} \; (at \; V_{GS} \! = \! 6V) & < 2.9 m\Omega \end{array}$

100% UIS Tested 100% R_q Tested

Absolute Maximum Ratings T _A =25°C unless otherwise noted								
Parameter		Symbol	Maximum	Units				
Drain-Source Voltage		V _{DS}	60	V				
Gate-Source Voltage		V_{GS}	±20	V				
Continuous Drain	T _C =25°C	ı	140					
Current ^G	T _C =100°C	'D	110	A				
Pulsed Drain Current ^C		I _{DM}	500					
Continuous Drain	T _A =25°C	1	20	۸				
Current	T _A =70°C	IDSM	16	— A				
Avalanche Current ^C		I _{AS} , I _{AR}	128	A				
Avalanche energy L=0.1mH ^C		E _{AS} , E _{AR}	819	mJ				
	T _C =25°C	P _D	330	W				
Power Dissipation ^B	T _C =100°C	- D	165	VV				
	T _A =25°C	Ь	1.9	W				
Power Dissipation ^A	T _A =70°C	P _{DSM}	1.2	VV				
Junction and Storage Temperature Range		T _J , T _{STG}	-55 to 175	°C				

Thermal Characteristics								
Parameter		Symbol	Тур	Max	Units			
Maximum Junction-to-Ambient A	t ≤ 10s	D	12	15	°C/W			
Maximum Junction-to-Ambient AD	Steady-State	$R_{\theta JA}$	54	65	°C/W			
Maximum Junction-to-Case	Steady-State	$R_{\theta JC}$	0.35	0.45	°C/W			

Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
STATIC F	PARAMETERS			•		
BV _{DSS}	Drain-Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	60			V
I _{DSS}	Zone Onto Vallana Busin Oursell	V _{DS} =60V, V _{GS} =0V			1	^
	Zero Gate Voltage Drain Current	T _J =55°C			5	μА
I _{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} = ±20V			100	nA
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS} I_{D}=250\mu A$	2.2	2.7	3.2	V
I _{D(ON)}	On state drain current	V _{GS} =10V, V _{DS} =5V	500			Α
		V _{GS} =10V, I _D =20A		2	2.5	m()
		TO220 T _J =125°C		3.1	3.9	mΩ
		V _{GS} =6V, I _D =20A				
R _{DS(ON)}	Static Drain-Source On-Resistance	TO220		2.2	2.9	mΩ
	Static Dialii-Source Off-Resistance	V _{GS} =10V, I _D =20A				
		TO263		1.7	2.2	mΩ
		V _{GS} =6V, I _D =20A				
		TO263		1.9	2.5	mΩ
g _{FS}	Forward Transconductance	V_{DS} =5V, I_D =20A		68		S
V_{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V		0.65	1	V
V_{SD}	Diode Forward Voltage	I _S =75A,V _{GS} =0V		0.85	1.3	V
I _S	Maximum Body-Diode Continuous Curr	ent ^G			140	Α
DYNAMIC	PARAMETERS					
C _{iss}	Input Capacitance		9400	11800	14200	pF
C _{oss}	Output Capacitance	V _{GS} =0V, V _{DS} =30V, f=1MHz	1090	1360	1770	pF
C _{rss}	Reverse Transfer Capacitance]	32	40	68	pF
R_g	Gate resistance	f=1MHz	0.5	1	1.5	Ω
SWITCHI	NG PARAMETERS			3		
Q _g (10V)	Total Gate Charge		120	150	180	nC
Q_{gs}	Gate Source Charge	V_{GS} =10V, V_{DS} =30V, I_{D} =20A	28	40	52	nC
Q_{gd}	Gate Drain Charge	1	9	15	25	nC
t _{D(on)}	Turn-On DelayTime			30		ns
t _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =30V, R_{L} =1.5 Ω ,		27		ns
t _{D(off)}	Turn-Off DelayTime	$R_{GEN}=3\Omega$		74		ns
t _f	Turn-Off Fall Time	1		12		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =20A, dI/dt=500A/μs	22	32	42	ns
Q _{rr}	Body Diode Reverse Recovery Charge	I _F =20A, dI/dt=500A/μs	140	200	260	nC

A. The value of R_{0JA} is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with T_A =25° C. The Power dissipation P_{DSM} is based on R $_{\text{BJA}}$ and the maximum allowed junction temperature of 150° C. The value in any given application depends on the user's specific board design, and the maximum temperature of 175° C may be used if the PCB allows it.

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

Rev.2.0: November 2013 Page 2 of 6 www.aosmd.com

B. The power dissipation P_D is based on $T_{J(MAX)}$ =175° C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.

C. Repetitive rating, pulse width limited by junction temperature T_{J(MAX)}=175° C. Ratings are based on low frequency and duty cycles to keep

D. The $R_{\theta JA}$ is the sum of the thermal impedence from junction to case $R_{\theta JC}$ and case to ambient.

E. The static characteristics in Figures 1 to 6 are obtained using <300 µs pulses, duty cycle 0.5% max.

F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of $T_{J(MAX)}$ =175° C. The SOA curve provides a single pulse rating.

G. The maximum current rating is package limited.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 9: Maximum Forward Biased Safe Operating Area (Note F)

Pulse Width (s)
Figure 10: Single Pulse Power Rating Junction-toCase (Note F)

Pulse Width (s)
Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)

Rev.2.0 : November 2013 www.aosmd.com Page 4 of 6

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Pulse Width (s)
Figure 16: Normalized Maximum Transient Thermal Impedance (Note H)

Rev.2.0 : November 2013 www.aosmd.com Page 5 of 6

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

Rev.2.0 : November 2013 www.aosmd.com Page 6 of 6