WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

C07D 211/58, A61K 31/435, 31/41, C07D 207/14, 211/56, 211/26, 207/09, 401/12, 405/12, 409/12, 413/06, 413/14, 409/06, 405/06

(11) International Publication Number:

WO 99/25686

(43) International Publication Date:

27 May 1999 (27.05.99)

(21) International Application Number:

PCT/US98/23254

A1

(22) International Filing Date:

17 November 1998 (17.11.98)

(30) Priority Data:

08/972,484 18 November 1997 (18.11.97) US 09/055,285 6 April 1998 (06.04.98) US 09/133,434 13 August 1998 (13.08.98) US

(63) Related by Continuation (CON) or Continuation-in-Part (CIP) to Earlier Applications

US 08/972,484 (CIP)
Filed on 18 November 1997 (18.11.97)
US 09/055,285 (CIP)
Filed on 6 April 1998 (06.04.98)
US 09/133,434 (CIP)
Filed on 13 August 1998 (13.08.98)

(71) Applicants (for all designated States except US): TEIJIN LIM-ITED [JP/JP]; 6-7, Minamihommachi 1-chome, Chuo-ku, Osaka-shi, Osaka 541-0054 (JP). COMBICHEM, INC. [US/US]; 9050 Camino Santa Fe, San Diego, CA 92121 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): SHIOTA, Tatsuki [JP/JP]; Teijin Limited, Tokyo Research Center, 4-3-2, Asahigaoka, Hino-shi, Tokyo 191 (JP). KATAOKA, Ken-ichiro [JP/JP]; Teijin Limited, Tokyo Research Center, 4-3-2, Asahigaoka, Hino-shi, Tokyo 191 (JP). IMAI, Minoru [JP/JP]; Teijin Limited, Tokyo Research Center, 4-3-2, Asahigaoka, Hino-shi, Tokyo 191 (JP). TSUTSUMI, Takaharu [JP/JP]; Teijin Limited, Tokyo Research Center, 4-3-2, Asahigaoka, Hino-shi, Tokyo 191 (JP). SUDOH, Masaki [JP/JP]; Teijin Limited, Tokyo Research Center, 4-3-2, Asahigaoka, Hino-shi, Tokyo 191 (JP). SOGAWA, Ryo [JP/JP]; Teijin Limited, Tokyo Research Center, 4-3-2, Asahigaoka, Hino-shi, Tokyo 191 (JP). MORITA, Takuya [JP/JP]; Teijin Limited, Tokyo Research Center, 4-3-2, Asahigaoka, Hino-shi, Tokyo 191 (JP). HADA, Takahiko [JP/JP]; Teijin Limited, Tokyo Research Center, 4-3-2, Asahigaoka, Hino-shi, Tokyo 191 (JP). MUROGA, Yumiko [JP/JP]; Teijin Limited, Tokyo Research Center, 4-3-2, Asahigaoka, Hino-shi, Tokyo 191 (JP). TAKENOUCHI, Osami [JP/JP]; Teijin Limited, Tokyo Research Center, 4-3-2, Asahigaoka,

Hino-shi, Tokyo 191 (JP). FURUYA, Monoru [JP/JP]; Teijin Limited, Tokyo Research Center, 4-3-2, Asahigaoka, Hino-shi, Tokyo 191 (JP). ENDO, Noriaki [JP/JP]; Teijin Limited, Tokyo Research Center, 4-3-2, Asahigaoka, Hino-shi, Tokyo 191 (JP). TARBY, Christine, M. [US/US]; CombiChem, Inc., 9050 Camino Santa Fe. San Diego, CA 92121 (US). MOREE, Wilna [NL/US]; CombiChem, Inc., 9050 Camino Santa Fe, San Diego, CA 92121 (US). TEIG, Steven, L. [US/US]; CombiChem North, Suite 201, 1804 Embarcadero Road, Palo Alto, CA 94303 (US).

- (74) Agents: BIGGART, Waddell, A. et al.; Sughrue, Mion, Zinn, MacPeak & Seas, PLLC, Suite 800, 2100 Pennsylvania Avenue, N.W., Washington, DC 20037-3202 (US).
- (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: CYCLIC AMINE DERIVATIVES AND THEIR USE AS DRUGS

(57) Abstract

A compound represented by general formula (I), a pharmaceutically acceptable acid addition salt thereof or a pharmaceutically acceptable C_1 – C_6 alkyl addition salt thereof, and their medical applications. Since these compounds inhibit the action of chemokines such as MIP–1 α and/or MCP–1 on target cells, they may be useful as a therapeutic drug and/or preventative drug in diseases, such as atherosclerosis, rheumatoid arthritis, and the like where blood monocytes and lymphocytes infiltrate into tissues.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	$\mathbf{U}\mathbf{Z}$	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugosłavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
\mathbf{CZ}	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

SPECIFICATION

Cyclic Amine Derivatives and Their Use as Drugs

5 Field of the Invention

10

15

20

25

30

35

This invention relates to novel cyclic amine derivatives.

This invention also relates to chemokine receptor antagonists that may be effective as a therapeutic agent and/or preventive agent for diseases such as atherosclerosis, rheumatoid arthritis, psoriasis, asthma, ulcerative colitis, nephritis (nephropathy), multiple sclerosis, pulmonary fibrosis, myocarditis, hepatitis, pancreatitis, sarcoidosis, Crohn's disease, endometriosis, congestive heart failure, viral meningitis, cerebral infarction, neuropathy, Kawasaki disease, and sepsis in which tissue infiltration of blood leukocytes, such as monocytes and lymphocytes, play a major role in the initiation, progression or maintenance of the disease.

Description of related art

Chemokines are a group of inflammatory/immunomodulatory polypeptide factors which have a molecular weight of 6-15 kD and are produced by a variety of cell types, such as macrophages, monocytes, eosinophils, neutrophiles, fibroblasts, vascular endotherial cells, smooth muscle cells, and mast cells, at inflammatory sites. The chemokines can be classified into two major subfamilies, the CXC chemokines (or α -chemokines) and CC chemokines (or β chemokines), by the common location of the four conserved cysteine residues and by the differences in the chromosomal locations of the genes encoding them. The first two cysteines of CXC chemokines are separated by one amino acid and those of CC chemokines are adjacent. For example IL-8 (abbreviation for interleukin-8) is a CXC chemokine, while the CC chemokines include MIP-1lpha/eta (abbreviation for macrophage inflammatory protein- $1\alpha/\beta$), MCP-1 (abbreviation for monocyte chemoattractant protein-1), and RANTES (abbreviation for regulated upon activation, normal T-cell expressed and secreted). There also exist chemokines which do not fall into either chemokine subfamily. They are lymphotactin, which has only two cysteines and defines the C chemokine, and fractalkine that has a chemokine-like domain in the mucin structure in which the first two cysteines are separated by three amino acids and hence defines CX_3C chemokine. These chemokines promote chemotaxis, cell migration, increase the expression of cellular adhesion molecules such as integrins, and cellular adhesion, and are

thought to be the protein factors intimately involved in the adhesion and infiltration of leukocytes into the pathogenic sites in such as inflammatory tissues (for references, see for example, Vaddi, K., et al., The Chemokine Facts Book, Academic Press, 1997; Chemoattractant Ligand and Their Receptors, Horuk, R., Ed., CRC Press, 1996; Ward, G.W., et al., Biochem. J., 1998, 333, 457; Luster, A.D., New Engl. J. Med., 1998, 338, 436; Baggiolini, M., Nature, 1998, 392, 565; Rollins, B.J., Blood, 1997, 90, 909; Alam, R., J. Allergy Clin. Immunol., 1997, 99, 273; Hancock, W.W., Am. J. Pathol., 1996, 148, 681; Taub, D.D., Cytokine & Growth Factor Rev., 1996, 7, 335; Strieter, R.M., et al., J. Immunol., 1996, 156, 3583; Furie, M.B., et al., Am. J. Pathol., 1995, 146, 1287; Schall, T.J., et al., Current Opinion in Immunology, 1994, 6, 865; Edginton, S.M., Biotechnology, 1993, 11, 676).

For example, MIP-1 α causes a transient increase in intracellular calcium ion concentration levels and induces migration of T lymphocytes, B lymphocytes (see for example, Taub, D.D., et al., Science, 1993, 260, 355; Schall, T.J., et al., J. Exp. Med., 1993, 177, 1821), and eosinophiles (see for example, Rot, A., et al., J. Exp. Med., 1992, 176, 1489), chemotaxis of natural killer cells (see for example, Maghazachi, A.A., et al., J. Immunol., 1994, 153, 4969), expression of integrins (see for example, Vaddi, K., et al., J. Immunol., 1994, 153, 4721), and osteoclast differentiation (see for example, Kukita, T., et al., Lab. Invest., 1997, 76, 399). MIP-1 α also enhances IgE and IgG4 production in B cells (see for example, Kimata, H., et al., J. Exp. Med., 1996, 183, 2397) and inhibits hematopoietic stem cell proliferation (see for example, Mayani, H., et al., Exp. Hematol., 1995, 23, 422; Keller, J.R., et al., Blood, 1994, 84, 2175; Eaves, C.J., et al., Proc. Natl. Acad. Sci. USA, 1993, 90, 12015; Bodine, D.M., et al., Blood, 1991, 78, 914; Broxmeyer, H.E., et al., Blood, 1990, 76, 1110).

With respect to the activity of MIP-1 α in vivo and its role in the pathogenesis of disease, it has been reported that it is a pyrogen in rabbits (see for example Davatelis, G., et al., Science, 1989, 243, 1066); that MIP-1 α injection into mouse foot pads results in an inflammatory reaction such as infiltration by neutrophils and mononuclear cells (see for example Alam, R., et al., J. Immunol., 1994, 152, 1298); that MIP-1 α neutralizing antibody has an inhibitory effect or a therapeutic effect in animal models of granuloma (see for example Lukacs, N.W., et al., J. Exp. Med., 1993, 177, 1551), asthma (see for example Lukacs, N.W., et al., Eur. J. Immunol., 1995, 25, 245; Lukacs, N.W., et al., J. Immunol., 1997, 158, 4398), multiple sclerosis (see for example Karpus,

W.J., et al., J. Immunol., 1995, 155, 5003; Karpus, W.J., et al., J. Leukoc. Biol., 1997, 62, 681), idiopathic pulmonary fibrosis (see for example Smith, R.E., et al., J. Immunol., 1994, 153, 4704; Smith, R.E., Biol. Signals, 1996, 5, 223), acute lung injury (see for example Shanley, T.P., et al., J. Immunol., 1995, 154, 4793; Standiford, T.J., et al., J. Immunol., 1995, 155, 1515), and rheumatoid arthritis (see for example Kasama, T., et al., J. Clin. Invest., 1995, 95, 2868); that coxsackie virus induced myocarditis and herpes stromal keratitis are inhibited in mice with a disrupted MIP-1lpha gene (see for example Cook, D.N. et al., Science, 1995, 269, 1583; Tumpey, T.M., et al., J. Virology, 1998, 72, 3705); and that significant expression of MIP-l α is observed in patients with chronic inflammatory diseases of lung (see for example Standiford, T.J., et al., J. Immunol., 1993, 151, 2852), hypersensitivity pneumonitis (see for example Denis, M., Am. J. Respir. Crit. Care Med., 1995, 151, 164), rheumatoid arthritis (see for example Koch, A.E., et al., J. Clin. Invest., 1994, 93, 921), infectious meningitis (see for example Lahrtz, F., et al., J. Neuroimmunol., 1998, 85, 33), and chronic inflammation of muscle (see for example Adams, E.M., et al., Proc. Assoc. Am. Physicians, 1997, 109, 275). These studies indicate that MIP-1 α is deeply involved in the local attraction of various subtypes of leukocytes and the initiation, progression and maintenance of resulting inflammatory response.

5

10

15

20

25

30

35

MCP-1 (also known as MCAF (abbreviation for macrophage chemotactic and activating factor) or JE) is a CC chemokine produced by monocytes/macrophages, smooth muscle cells, fibroblasts, and vascular endothelial cells and causes cell migration and cell adhesion of monocytes (see for example Valente, A.J., et al., Biochemistry, 1988, 27, 4162; Matsushima, K., et al., J. Exp. Med., 1989, 169, 1485; Yoshimura, T., et al., J. Immunol., 1989, 142, 1956; Rollins, B.J., et al., Proc. Natl. Acad. Sci. USA, 1988, 85, 3738; Rollins, B.J., et al., Blood, 1991, 78, 1112; Jiang, Y., et al., J. Immunol., 1992, 148, 2423; Vaddi, K., et al., J. Immunol., 1994, 153, 4721), memory T lymphocytes (see for example Carr, M.W., et al., Proc. Natl. Acad. Sci. USA, 1994, 91, 3652), T lymphocytes (see for example Loetscher, P., et al., FASEB J., 1994, 8, 1055) and natural killer cells (see for example Loetscher, P., et al., J. Immunol., 1996, 156, 322; Allavena, P., et al., Eur. J. Immunol., 1994, 24, 3233), as well as mediating histamine release by basophils (see for example Alam, R., et al., J. Clin. Invest., 1992, 89, 723; Bischoff, S.C., et al., J. Exp. Med., 1992, 175, 1271; Kuna, P., et al., J. Exp. Med., 1992, 175, 489).

In addition, high expression of MCP-1 has been reported in diseases where accumulation of monocyte/macrophage and/or T cells is thought to be important

in the initiation or progression of diseases, such as atherosclerosis (see for example Hayes, I.M., et al., Arterioscler. Thromb. Vasc. Biol., 1998, 18, 397; Takeya, M., et al., Hum. Pathol., 1993, 24, 534; Yla-Herttuala, S., et al., Proc. Natl. Acad. Sci. USA, 1991, 88, 5252; Nelken, N.A., J. Clin. Invest., 1991, 88, 1121), rheumatoid arthritis (see for example Koch, A.E., et al., J. Clin. Invest., 5 1992, 90, 772; Akahoshi, T., et al., Arthritis Rheum., 1993, 36, 762; Robinson, E., et al., Clin. Exp. Immunol., 101, 398), nephritis (see for example Noris, M., et al., Lab. Invest., 1995, 73, 804; Wada, T., at al., Kidney Int., 1996, 49, 761; Gesualdo, L., et al., Kidney Int., 1997, 51, 155), nephropathy (see for example Saitoh, A., et al., J. Clin. Lab. Anal., 1998, 12, 1; Yokoyama, H., 10 et al., J. Leukoc. Biol., 1998, 63, 493), pulmonary fibrosis, pulmonary sarcoidosis (see for example Sugiyama, Y., et al., Internal Medicine, 1997, 36, 856), asthma (see for example Karina, M., et al., J. Invest. Allergol. Clin. Immunol., 1997, 7, 254; Stephene, T.H., Am. J. Respir. Crit. Care Med., 1997, 156, 1377; Sousa, A.R., et al., Am. J. Respir. Cell Mol. Biol., 1994, 10, 142), 15 multiple sclerosis (see for example McManus, C., et al., J. Neuroimmunol., 1998, 86, 20), psoriasis (see for example Gillitzer, R., et al., J. Invest. Dermatol., 1993, 101, 127), inflammatory bowel disease (see for example Grimm, M.C., et al., J. Leukoc. Biol., 1996, 59, 804; Reinecker, H.C., et al., Gastroenterology, 1995, 106, 40), myocarditis (see for example Seino, Y., et al., Cytokine, 1995, 20 7, 301), endometriosis (see for example Jolicoeur, C., et al., Am. J. Pathol., 1998, 152, 125), intraperitoneal adhesion (see for example Zeyneloglu, H.B., et al., Human Reproduction, 1998, 13, 1194), congestive heart failure (see for example Aurust, P., et al., Circulation, 1998, 97, 1136), chronic liver disease (see for example Marra, F., et al., Am. J. Pathol., 1998, 152, 423), viral 25meningitis (see for example Lahrtz, F., et al., Eur. J. Immunol., 1997, 27, 2484), Kawasaki disease (see for example Wong, M.; et al., J. Rheumatol., 1997, 24,1179) and sepsis (see for example Salkowski, C.A.; et al., Infect. Immun., 1998, 66, 3569). Furthermore, anti-MCP-1 antibody has been reported to show an inhibitory effect or a therapeutic effect in animal models of rheumatoid arthritis (see 30 for example Schimmer, R.C., et al., J. Immunol., 1998, 160, 1466; Schrier, D.J., J. Leukoc. Biol., 1998, 63, 359; Ogata, H., et al., J. Pathol., 1997, 182, 106), multiple sclerosis (see for example Karpus, W.J., et al., J. Leukoc. Biol., 1997, 62, 681), nephritis (see for example Lloyd, C.M., et al., J. Exp. Med., 1997, 185, 1371; Wada, T., et al., FASEB J., 1996, 10, 1418), Asthma (see for example 35Gonzalo, J.-A., et al., J. Exp. Med., 1998, 188, 157; Lukacs, N.W., J. Immunol., 1997, 158, 4398), atherosclerosis (see for example Guzman, L.A., et al.,

Circulation, 1993, 88 (suppl.), I-371), delayed type hypersensitivity (see for example Rand, M.L., et al., Am. J. Pathol., 1996, 148, 855), pulmonary hypertension (see for example Kimura, H., et al., Lab. Invest., 1998, 78, 571), and intraperitoneal adhesion (see for example Zeyneloglu, H.B., et al., Am. J. Obstet. Gynecol., 1998, 179, 438). A peptide antagonist of MCP-1, MCP-1(9-76), has been also reported to inhibit arthritis in the mouse model (see Gong, J.-H., J. Exp. Med., 1997, 186, 131), as well as studies in MCP-1-deficient mice have shown that MCP-1 is essential for monocyte recruitment in vivo (see Lu, B., et al., J. Exp. Med., 1998, 187, 601; Gu, L., et al., Moll. Cell, 1998, 2, 275).

These data indicate that chemokines such as MIP-1 α and MCP-1 attract monocytes and lymphocytes to disease sites and mediate their activation and thus are thought to be intimately involved in the initiation, progression and maintenance of diseases deeply involving monocytes and lymphocytes, such as atherosclerosis, rheumatoid arthritis, psoriasis, asthma, ulcerative colitis, nephritis (nephropathy), multiple sclerosis, pulmonary fibrosis, myocarditis, hepatitis, pancreatitis, sarcoidosis, Crohn's disease, endometriosis, congestive heart failure, viral meningitis, cerebral infarction, neuropathy, Kawasaki disease, and sepsis (see for example Rovin, B.H., et al., Am. J. Kidney. Dis., 1998, 31, 1065; Lloyd, C., et al., Curr. Opin. Nephrol. Hypertens., 1998, 7, 281; Conti, P., et al., Allergy and Asthma Proc., 1998, 19, 121; Ransohoff, R.M., et al., Trends Neurosci., 1998, 21, 154; MacDermott, R.P., et al., Inflammatory Bowel Diseases, 1998, 4, 54). Therefore, drugs which inhibit the action of chemokines on target cells may be effective as a therapeutic and/or preventive drug in the diseases.

Genes encoding receptors of specific chemokines have been cloned, and it is now known that these receptors are G protein-coupled seven-transmembrane receptors present on various leukocyte populations. So far, at least five CXC chemokine receptors (CXCR1-CXCR5) and eight CC chemokine receptors (CCR1-CCR8) have been identified. For example IL-8 is a ligand for CXCR1 and CXCR2, MIP-1\alpha is that for CCR1 and CCR5, and MCP-1 is that for CCR2A and CCR2B (for reference, see for example, Holmes, W.E., et al., Science 1991, 253, 1278-1280; Murphy P.M., et al., Science, 253, 1280-1283; Neote, K. et al., Cell, 1993, 72, 415-425; Charo, I.F., et al., Proc. Natl. Acad. Sci. USA, 1994, 91, 2752-2756; Yamagami, S., et al., Biochem. Biophys. Res. Commun., 1994, 202, 1156-1162; Combadier, C., et al., The Journal of Biological Chemistry, 1995, 270, 16491-16494, Power, C.A., et al., J. Biol. Chem., 1995, 270, 19495-19500; Samson, M., et al.,

Biochemistry, 1996, 35, 3362-3367; Murphy, P.M., Annual Review of Immunology, 1994, 12, 592-633). It has been reported that lung inflammation and granuroma formation are suppressed in CCR1 deficient mice (see Gao, J.-L., et al., J. Exp. Med., 1997, 185, 1959; Gerard, C., et al., J. Clin. Invest., 1997, 100, 2022), and that recruitment of macrophages and formation of atherosclerotic lesion decreased in CCR2-deficient mice (see Boring, L., et al., Nature, 1998, 394, 894; Kuziel, W.A., et al., Proc. Natl. Acad. Sci., USA, 1997, 94, 12053; Kurihara, T., et al., J. Exp. Med., 1997, 186, 1757; Boring, L., et al., J. Clin. Invest., 1997, 100, 2552). Therefore, compound which inhibit the binding of chemokines such as MIP-1α and/or MCP-1 to these receptors, that is, chemokine receptor antagonist, may be useful as drugs which inhibit the action of chemokines such as MIP-1α and/or MCP-1 on the target cells, but there are no drugs known to have such effects.

The cyclic amine derivatives provided by the present invention is quite novel. Recently, it has been reported that the diphenylmethane derivatives 15 (WO9724325; Hesselgesser, J., et al., J. Biol. Chem., 1998, 273, 15687), piperidine derivatives (JP9-249566), imidazobenzodiazepine derivatives (JP9-249570), benzazocine derivatives (JP9-255572), tricyclic compounds with cyclic amino group (WO9804554), phenothiazine derivatives (Bright, C., et al., Bioorg. Med. Chem. Lett., 1998, 8, 771), pieprazine derivatives (WO9744329), 20 benzimidazole derivatives (WO9806703), distamycin analogues (Howard, O.M.Z., et al., J. Med. Chem., 1998, 41, 2184), bis-acridine derivatives (WO9830218), spiro-substituted azacycles (WO9825604; WO9825605), substituted aryl (WO9825617), aminoquinoline derivatives (WO9827815), piperazines arylpiperidine derivatives (WO9831364), hexanoic amide derivatives (WO9838167), **25** and other small molecules (WO9744329; WO9802151; WO9804554) have antagonistic activity of chemokine receptor, such as CXCR1, CXCR4, CCR1, CCR2, CCR3, and CCR5. However, these compounds differ from the compound of the present invention.

30 Summary of the Invention

5

10

Therefore, it is an object of the present invention to provide small molecule compound which inhibits the binding of chemokines such as MIP-1 α and/or MCP-1 to their receptors on the target cells.

It is another object of the present invention to establish a method to inhibit the binding to the receptors on the target cells and/or effects on target cells of chemokines such as MIP-1 α and/or MCP-1.

It is an additional object of the present invention to propose a method

for the treatment of diseases for which the binding of chemokines such as MIP-1 α and/or MCP-1 to the receptor on the target cell is one of the causes.

As a result of intensive studies, the present inventors discovered that a cyclic amine derivative having a arylalkyl group, its pharmaceutically acceptable C_1 - C_6 alkyl addition salt or its pharmaceutically acceptable acid addition salt has an excellent activity to inhibit the binding of chemokines such as MIP-1 α and/or MCP-1 and the like to the receptor of a target cell, which has led to the completion of this invention.

That is, the present invention is a compound of the formula (I) below:

10

15

20

25

30

5

$$\begin{array}{c|c}
R_{1}^{1} & (CH_{2})_{j} - N \\
R_{2}^{2} & (CH_{2})_{m}
\end{array}$$

$$\begin{array}{c}
CH_{2} & (CH_{2})_{n} - N - C - (CH_{2})_{p} - R^{4} \\
R_{3}^{2} & (CH_{2})_{p} - R^{5}
\end{array}$$
(I)

, a pharmaceutically acceptable acid addition salt thereof or a pharmaceutically acceptable $C_1\text{--}C_6$ alkyl addition salt thereof (Invention 1),

wherein R¹ is a phenyl group, a C₃-C₈ cycloalkyl group, or an aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof, in which the phenyl or aromatic heterocyclic group may be condensed with a benzene ring or an aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof, to form a condensed ring, and the phenyl group, C_3 - C_8 cycloalkyl group, aromatic heterocyclic group, or condensed ring may be substituted with one or more of a halogen atom, a hydroxy group, a cyano group, a nitro group, a carboxy group, a carbamoyl group, a C1-C6 alkyl group, a C3-C8 cycloalkyl group, a C_2-C_6 alkenyl group, a C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a C_3-C_5 alkylene group, a C_2-C_4 alkylenoxy group, a C_1-C_3 alkylenedioxy group, a phenyl group, a phenoxy group, a phenylthio group, a benzyl group, a benzyloxy group, a benzoylamino group, a C_2 - C_7 alkanoyl group, a C_2 - C_7 alkoxycarbonyl group, a C_2-C_7 alkanoyloxy group, a C_2-C_7 alkanoylamino group, a C_2-C_7 N-alkylcarbamoyl group, a C_4-C_9 N-cycloalkylcarbamoyl group, a C_1-C_6 alkylsulfonyl group, a C_3-C_8 (alkoxycarbonyl) methyl group, a N-phenylcarbamoyl group, a piperidinocarbonyl group, a morpholinocarbonyl group, a 1pyrrolidinylcarbonyl group, a divalent group represented by the formula: -NH(C=0)0-, a divalent group represented by the formula: -NH(C=S)0-, an amino

group, a mono $(C_1-C_6$ alkyl) amino group, or a di $(C_1-C_6$ alkyl) amino group, wherein the substituent for the phenyl group, C_3-C_8 cycloalkyl group, aromatic heterocyclic group, or condensed ring is optionally substituted with one or more of a halogen atom, a hydroxy group, an amino group, a trifluoromethyl group, a C_1-C_6 alkyl group, or a C_1-C_6 alkoxy group;

 R^2 is a hydrogen atom, a C_1 - C_6 alkyl group, a C_2 - C_7 alkoxycarbonyl group, a hydroxy group, or a phenyl group, in which the C_1 - C_6 alkyl or phenyl group may be substituted with one or more of a halogen atom, a hydroxy group, a C_1 - C_6 alkyl group, or a C_1 - C_6 alkoxy group, and when j = 0, R^2 is not a hydroxy group;

j represents an integer of 0-2;
k represents an integer of 0-2;
m represents an integer of 2-4;
n represents 0 or 1;

5

15

20

25

30

 R^3 is a hydrogen atom or a C_1 - C_6 alkyl group optionally substituted with one or two phenyl groups each of which may be substituted with one or more of a halogen atom, a hydroxy group, a C_1 - C_6 alkyl group, or a C_1 - C_6 alkoxy group;

 R^4 and R^5 are the same or different from each other and are a hydrogen atom, a hydroxy group, a phenyl group, or a C_1 - C_6 alkyl group, in which the C_1 - C_6 alkyl group is optionally substituted with one or more of a halogen atom, a hydroxy group, a cyano group, a nitro group, a carboxy group, a carbamoyl group, a mercapto group, a guanidino group, a C_3 - C_8 cycloalkyl group, a C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a phenyl group optionally substituted with one or more of a halogen atom, a hydroxy group, a C_1 - C_6 alkyl group, a C_1 - C_6 alkoxy group, or a benzyloxy group, a phenoxy group, a benzyloxy group, a benzyloxycarbonyl group, a C_2 - C_7 alkanoyl group, a C_2 - C_7 alkoxycarbonyl group, a C_2 - C_7 alkanoylamino group, a C_2 - C_7 alkoxycarbonyl group, a C_2 - C_7 alkanoylamino group, a mono $(C_1$ - C_6 alkyl) amino group, a di $(C_1$ - C_6 alkyl) amino group, or an aromatic heterocyclic group having 1-3 of heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof and optionally condensed with benzene ring, or R^4 and R^5 taken together form a 3 to 6 membered cyclic hydrocarbon;

- p represents 0 or 1;
- q represents 0 or 1;
- G is a group represented by -CO-, -SO₂-, -CO-O-, -NR 7 -CO-, -CO-NR 7 -, 35 -NH-CO-NH-, -NH-CS-NH-, -NR 7 -SO₂-, -SO₂-NR 7 -, -NH-CO-O-, or -O-CO-NH-, wherein R 7 is a hydrogen atom or a C₁-C₆ alkyl group, or R 7 taken together with R 5 represents C₂-C₅ alkylene group;

 R^6 is a phenyl group, a C_3-C_8 cycloalkyl group, a C_3-C_8 cycloalkenyl group, a benzyl group, or an aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof, in which the phenyl, benzyl, or aromatic heterocyclic group may be condensed with a benzene ring or an aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof, to form a condensed ring, and the phenyl group, C_3-C_8 cycloalkyl group, C_3-C_8 cycloalkenyl group, benzyl group, aromatic heterocyclic group, or condensed ring may be substituted with one or more of a halogen atom, a hydroxy group, a mercapto group, a cyano group, a nitro group, a thiocyanato group, a carboxy group, a carbamoyl group, a trifluoromethyl group, a C_1 - C_6 alkyl group, a C_3 - C_6 cycloalkyl group, a C_2 - C_6 alkenyl group, a C_1 - C_6 alkoxy group, a C_3 - C_8 cycloalkyloxy group, a C_1 - C_6 alkylthio group, a C_1-C_3 alkylenedioxy group, a phenyl group, a phenoxy group, a phenylamino group, a benzyl group, a benzoyl group, a phenylsulfinyl group, a phenylsulfonyl group, a 3-phenylureido group, a C_2 - C_7 alkanoyl group, a C_2 - C_7 alkoxycarbonyl group, a C_2 - C_7 alkanoyloxy group, a C_2 - C_7 alkanoylamino group, a C_2-C_7 N-alkylcarbamoyl group, a C_1-C_6 alkylsulfonyl group, a phenylcarbamoyl group, a $N, N-\text{di}(C_1-C_6)$ alkyl)sulfamoyl group, an amino group, a mono(C_1-C_6 alkyl) amino group, a di $(C_1-C_6$ alkyl) amino group, a benzylamino group, a C_2-C_7 $(alkoxycarbonyl)\,amino\,\,group,\,\,a\,\,C_1-C_6\,\,(alkylsulfonyl)\,amino\,\,group,\,\,or\,\,a\,\,bis\,(C_1-C_6)$ alkylsulfonyl) amino group, wherein the substituent for the phenyl group, C_3-C_8 cycloalkyl group, C_3 - C_0 cycloalkenyl group, benzyl group, aromatic heterocyclic group, or condensed ring is optionally substituted with one or more of a halogen atom, a cyano group, a hydroxy group, an amino group, trifluoromethyl group, a C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a C_1-C_6 alkylthio group, a mono(C_1-C_6 alkyl) amino group, or a $di(C_1-C_6 \text{ alkyl})$ amino group.

Also the present invention is a method of inhibiting the binding of a chemokine to the receptor of a target cell and/or its action on a target cell using a pharmaceutical preparation containing a therapeutically effective amount of a compound represented by the above formula (I), a pharmaceutically acceptable acid addition salt thereof, or a pharmaceutically acceptable C_1 - C_6 alkyl addition salt thereof (Invention 2).

35

10

15

20

25

30

Here, the compound represented by the above formula (I) have activities to inhibit the binding of chemokines such as MIP-1 α and/or MCP-1 and the like

to the receptor of a target cell and activities to inhibit physiological activities of cells caused by chemokines such as MIP-1 α and/or MCP-1 and the like.

5 Description of the Preferred Embodiments

(1) On Invention 1

10

15

20

25

30

35

In the above formula (I), R^1 is a phenyl group, a C_3 - C_8 cycloalkyl group, or an aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof, in which the phenyl or aromatic heterocyclic group may be condensed with a benzene ring or an aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof, to form a condensed ring, and the phenyl group, C_3 - C_8 cycloalkyl group, aromatic heterocyclic group, or condensed ring may be substituted with one or more of a halogen atom, a hydroxy group, a cyano group, a nitro group, a carboxy group, a carbamoyl group, a C_1 - C_6 alkyl group, a C_3 - C_9 cycloalkyl group, a C_2 - C_6 alkenyl group, a C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a C_3 - C_5 alkylene group, a C_2 - C_4 alkylenoxy group, a C_1 - C_3 alkylenedioxy group, a phenyl group, a phenoxy group, a phenylthio group, a benzyl group, a benzyloxy group, a benzoylamino group, a C_2-C_7 alkanoyl group, a C_2-C_7 alkoxycarbonyl group, a C_2 - C_2 alkanoyloxy group, a C_2 - C_7 alkanoylamino group, a C_2-C_7 N-alkylcarbamoyl group, a C_4-C_6 N-cycloalkylcarbamoyl group, a C_1-C_6 alkylsulfonyl group, a C_3-C_8 (alkoxycarbonyl) methyl group, a N-phenylcarbamoyl group, a piperidinocarbonyl group, a morpholinocarbonyl group, a 1pyrrolidinylcarbonyl group, a divalent group represented by the formula: -NH(C=0)0-, a divalent group represented by the formula: -NH(C=S)0-, an amino group, a mono $(C_1-C_6 \text{ alkyl})$ amino group, or a di $(C_1-C_6 \text{ alkyl})$ amino group.

The " C_3 - C_8 cycloalkyl group" for R^1 means a cyclic alkyl group such as a cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and cyclooctyl group, specifically including a cyclopropyl, cyclopentyl, and cyclohexyl group.

The "aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof" for R¹ is specifically, for example, thienyl, furyl, pyrrolyl, imidazolyl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, pyridyl, pyrimidinyl, triazinyl, triazolyl, oxadiazolyl (furazanyl),

thiadiazolyl group and the like, preferably including a thienyl, furyl, pyrrolyl, isoxazolyl, and pyridyl group.

The "condensed ring" for R¹ means a ring obtained by the condensation with a benzene ring or an aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom of a phenyl group or an aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom and/or a nitrogen atom, at any possible sites, suitably and specifically for example, naphthyl, indolyl, benzofuranyl, benzothienyl, quinolyl, benzimidazolyl, benzoxazolyl, benzotriazolyl, benzoxadiazolyl (benzofurazanyl), and benzothiadiazolyl group.

5

10

15

20

25

30

35

Among them, a phenyl group and an isoxazolyl group can be listed as a preferred specific example for \mathbb{R}^1 .

The "halogen atom" as a substituent for the phenyl group, C_3 - C_8 cycloalkyl group, aromatic heterocyclic group, or condensed ring in R^1 includes a fluorine atom, chlorine atom, bromine atom, and iodine atom, suitably including a fluorine atom, chlorine atom, and bromine atom.

The " C_1 - C_6 alkyl group" as a substituent for R^1 means a C_1 - C_6 straight-chain or a branched alkyl group such as a methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, isopropyl, isobutyl, sec-butyl, tert-butyl, isopentyl, neopentyl, tert-pentyl, isohexyl, 2-methylpentyl, 1-ethylbutyl group, and the like, suitably specifically including a methyl, ethyl, propyl, and isopropyl group.

The " C_3 - C_8 cycloalkyl group" as a substituent for R^1 is the same as defined for the aforementioned " C_3 - C_8 cycloalkyl group" for R^1 , where the same examples can be given for the preferred specific examples.

The " C_2 - C_6 alkenyl group" as a substituent for R^1 means a C_2 - C_6 straight-chain or a branched alkenyl group such as a vinyl, allyl, 1-propenyl, 2-butenyl, 3-butenyl, 2-methyl-1-propenyl, 4-pentenyl, 5-hexenyl, 4-methyl-3-pentenyl group, and the like, suitably specifically including a vinyl and 2-methyl-1-propenyl group.

The " C_1 - C_6 alkoxy group" as a substituent for R^1 means group consisting of the aforementioned C_1 - C_6 alkyl group and oxy group, specifically, for example, a methoxy and ethoxy group.

The " C_1 - C_6 alkylthio group" as a substituent for R^1 means group consisting of the aforementioned C_1 - C_6 alkyl group and thio group, specifically, for example,

a methylthio and ethylthio group.

5

10

15

20

25

30

35

The " C_3 - C_5 alkylene group" as a substituent for R^2 means the C_3 - C_5 divalent alkylene group such as a trimethylene, tetramethylene, pentamethylene, and 1-methyltrimethylene group, specifically, for example, a trimethylene and a tetramethylene group.

The "C₂-C₄ alkylenoxy group" as a substituent for R^1 means group consisting of the aforementioned C₂-C₄ divalent alkylene group and oxy group such as a ethylenoxy (-CH₂CH₂O-), trimethylenoxy (-CH₂CH₂CH₂O-), tetramethylenoxy (-CH₂CH₂CH₂O-), and 1,1-dimethylenoxy (-CH₂C(CH₃)₂O-) group, specifically, for example, a ethylenoxy and trimethylenoxy group.

The " C_1 - C_3 alkylenedioxy group" as a substituent for R^1 means group consisting of C_1 - C_3 divalent alkylene group and two oxy groups such as a methylenedioxy (-OCH $_2$ O-), ethylenedioxy (-OCH $_2$ CH $_2$ O-), trimethylenedioxy (-OCH $_2$ CH $_2$ O-), and propylenedioxy (-OCH $_2$ CH(CH $_3$)O-) group, specifically, for example, a methylenedioxy and ethylenedioxy group.

The " C_2 - C_7 alkanoyl group" as a substituent for R^1 means C_2 - C_7 straight-chain or branched alkanoyl group such as an acetyl, propanoyl, butanoyl, pentanoyl, hexanoyl, heptanoyl, isobutyryl, 3-methylbutanoyl, 2-methylbutanoyl, pivaloyl, 4-methylpentanoyl, 3,3-dimethylbutanoyl, 5-methylhexanoyl group, and the like, where the preferred and specific example includes an acetyl group.

The " C_2 - C_7 alkoxycarbonyl group" as a substituent for R^1 means group consisting of the aforementioned C_1 - C_6 alkoxy group and carbonyl group, preferably and specifically for example, a methoxycarbonyl and ethoxycarbonyl group.

The " C_2-C_7 alkanoyloxy group" as a substituent for R^1 means group consisting of the aforementioned C_2-C_7 alkanoyl group and oxy group, specifically, for example, an acetyloxy group.

The " C_2 - C_7 alkanoylamino group" as a substituent for R^1 means group consisting of the aforementioned C_2 - C_7 alkanoyl group and amino group, specifically, for example, an acetylamino group.

The " C_2-C_7 N-alkylcarbamoyl group" as a substituent for R^1 means group consisting of the aforementioned C_1-C_6 alkyl group and carbamoyl group, specifically, for example, a N-methylcarbamoyl and N-ethylcarbamoyl group.

The " C_4 - C_5 N-cycloalkylcarbamoyl group" as a substituent for R^1 means group consisting of the aforementioned C_5 - C_8 cycloalkyl group and carbamoyl group, specifically, for example, a N-cyclopentylcarbamoyl and N-cyclohexylcarbamoyl group.

The " C_1 - C_6 alkylsulfonyl group" as a substituent for R^1 means group

consisting of the aforementioned $C_1 - C_6$ alkyl group and sulfonyl group, preferably and specifically, for example, a methylsulfonyl group.

The " C_3-C_8 (alkoxycarbonyl)methyl group" as a substituent for R^1 means group consisting of the aforementioned C_2-C_1 alkoxycarbonyl group and methyl group, preferably and specifically for example, a (methoxycarbonyl)methyl and (ethoxycarbonyl)methyl group.

The "mono(C_1 - C_6 alkyl)amino group" as a substituent for R^1 means amino group substituted with one of the aforementioned C_1 - C_6 alkyl group, preferably and specifically, for example, a methylamino and ethyl amino group.

The "di(C_1 - C_6 alkyl) amino group" as a substituent for R^1 means amino group substituted with the same or different two C_1 - C_6 alkyl group aforementioned, preferably and specifically, for example, a dimethylamino, diethylamino, and N-ethyl-N-methylamino group.

Among them, a halogen atom, a hydroxy group, a C_1 - C_6 alkyl group, a C_2 - C_6 alkenyl group, a C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a C_2 - C_4 alkylenoxy group, a methylenedioxy group, a N-phenylcarbamoyl group, an amino group, a mono(C_1 - C_6 alkyl) amino group, and a di(C_1 - C_6 alkyl) amino group can be listed as a preferred specific example for substituent for the phenyl group, C_3 - C_8 cycloalkyl group, aromatic heterocyclic group, or condensed ring in R^1 .

Furthermore above substituent for the phenyl group, C_3-C_8 cycloalkyl group, aromatic heterocyclic group, or condensed ring in R^1 are optionally substituted with one or more of a halogen atom, a hydroxy group, an amino group, a trifluoromethyl group, a C_1-C_6 alkyl group, or a C_1-C_6 alkoxy group. The halogen atom, C_1-C_6 alkyl group, and C_2-C_6 alkoxy group are the same as defined for the aforementioned substituents for the phenyl group, C_3-C_8 cycloalkyl group, aromatic heterocyclic group, or condensed ring in R^1 , and the same examples can be listed as preferred specific examples.

30

35

25

5

10

In the above formula (I), R^2 represents a hydrogen atom, a C_1 - C_6 alkyl group, a C_2 - C_7 alkoxycarbonyl group, a hydroxy group, or a phenyl group, in which the C_1 - C_6 alkyl or phenyl group may be substituted with one or more of a halogen atom, a hydroxy group, a C_1 - C_6 alkyl group, or a C_1 - C_6 alkoxy group, and when j=0, R^2 is not a hydroxy group.

The C_1-C_6 alkyl group and C_2-C_7 alkoxycarbonyl group for R^2 are the same as defined for the aforementioned substituent for the phenyl group, C_3-C_5

cycloalkyl group, aromatic heterocyclic group, or condensed ring in \mathbb{R}^1 , and the same examples can be listed as preferred specific examples.

The halogen atom, C_1 - C_6 alkyl group, and C_1 - C_6 alkoxy group as substituents for the C_1 - C_6 alkyl or phenyl group in R^2 are the same as defined for the aforementioned substituent for the phenyl group, C_3 - C_8 cycloalkyl group, aromatic heterocyclic group, or condensed ring in R^1 , and the same examples can be listed as preferred specific examples.

5

15

25

30

35

Among them, a hydrogen atom is a preferred specific example for R^2 .

In the above formula (I), j represents an integer of 0-2. It is particularly preferred for j to be 0.

In the above formula (I), k represents an integer of 0-2 and m represents an integer of 2-4. It is preferred to use a 2-substituted pyrrolidine in which k is 0 and m is 3, a 3-substituted pyrrolidine in which k is 1 and m is 2, a 3-substituted piperidine in which k is 1 and m is 3, a 4-substituted piperidine in which k is 2 and m is 2, or 3-substituted hexahydroazepine in which k is 1 and m is 4.

n in the above formula (I) represents 0 or 1.

Especially, 3-amidopyrrolidines in which k is 1, m is 2, and n is 0 and 4-(amidomethyl)piperidines in which k is 2, m is 2, and n is 1 can be listed as a particularly preferred example.

 R^2 in the above formula (I) represents a hydrogen atom or a C_1 - C_6 alkyl group optionally substituted with one or two phenyl groups each of which may be substituted with one or more of a halogen atom, a hydroxy group, a C_1 - C_6 alkyl group, or a C_1 - C_6 alkoxy group.

The C_1 - C_6 alkyl group for R^3 is the same as defined for the aforementioned substituents for the phenyl group, C_3 - C_8 cycloalkyl group, aromatic heterocyclic group, or condensed ring in R^4 , specifically, for example, a methyl, ethyl and propyl group.

The halogen atom, C_1-C_6 alkyl group, and C_1-C_6 alkoxy group as substituents for the phenyl group, which is a substituent for C_1-C_6 alkyl group in \mathbb{R}^3 , are the same as defined for the aforementioned substituents for the phenyl group, C_3-C_6 cycloalkyl group, aromatic heterocyclic group, or condensed ring in \mathbb{R}^1 , and the same examples can be listed as preferred specific examples.

Among them, a hydrogen atom is a preferred specific example for R³.

In the above formula (I), R^4 and R^5 are the same or different from each other and are a hydrogen atom, a hydroxy group, a phenyl group, or a C_1 - C_6 alkyl group, in which the C_1 - C_6 alkyl group is optionally substituted with one or more of a halogen atom, a hydroxy group, a cyano group, a nitro group, a carboxy group, a carbamoyl group, a mercapto group, a guanidino group, a C_3 - C_6 cycloalkyl group, a C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, a phenyl group optionally substituted with one or more of a halogen atom, a hydroxy group, a C_1 - C_6 alkyl group, a C_1 - C_6 alkoxy group, or a benzyloxy group, a phenoxy group, a benzyloxy group, a benzyloxy group, a C_2 - C_7 alkanoyloxy group, a C_1 - C_6 alkyl) amino group, a di(C_1 - C_6 alkyl) amino group, or an aromatic heterocyclic group having 1-3 of heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof and optionally condensed with benzene ring, or R^4 and R^5 taken together form a 3 to 6 membered cyclic hydrocarbon.

5

10

15

20

25

30

35

The C_1 - C_6 alkyl group for R^4 and R^5 is the same as defined for the aforementioned substituent for the phenyl group, C_3 - C_8 cycloalkyl group, aromatic heterocyclic group, or condensed ring in R^1 , and the same examples can be listed as preferred specific examples.

The halogen atom, C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, C_2-C_7 alkanoyl group, C_2-C_7 alkoxycarbonyl group, C_2-C_7 alkanoyloxy group, C_2-C_7 alkanoylamino group, C_2-C_7 N-alkylcarbamoyl group, C_1-C_6 alkylsulfonyl group, mono(C_1-C_6 alkyl) amino group, and di(C_1-C_6 alkyl) amino group as a substituent for the C_1-C_6 alkyl group in R^4 and R^5 are the same as defined for the aforementioned substituent for the phenyl group, C_3-C_8 cycloalkyl group, aromatic heterocyclic group, or condensed ring in R^4 , and the same examples can be listed as preferred specific examples.

The C_3 - C_8 cycloalkyl group and aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof as substituent for the C_1 - C_6 alkyl group in R^4 and R^5 are the same as defined for the aforementioned group for R^1 , and the same examples can be listed as preferred specific examples.

The halogen atom, C_1-C_6 alkyl group, and C_1-C_6 alkoxy group for the substituent for the phenyl group which is substituent for the C_1-C_6 alkyl group in R^4 and R^5 are the same as defined for the aforementioned substituent for the phenyl group, C_3-C_8 cycloalkyl group, aromatic heterocyclic group, or condensed

ring in R^1 , and the same examples can be listed as preferred specific examples.

The "3 to 6 membered cyclic hydrocarbon" consisting of R^4 , R^5 , and the adjacent carbon atom includes a cyclopropane, cyclobutane, cyclopentane, and cyclohexane.

 $\bf 5$. Among them, a hydrogen atom and a $C_1\text{--}C_6$ alkyl group can be listed as a preferred specific example for R^4 and R^5 .

In the above formula (I), p represents 0 or 1, and q represents 0 or 1. It is particularly preferred for both p and q to be 0.

10

15

20

25

In the above formula (I), G is a group represented by -CO-, -SO₂-, -CO-O-, -NR⁷-CO-, -CO-NR⁷-, -NH-CO-NH-, -NH-CS-NH-, -NR⁷-SO₂-, -SO₂-NR⁷-, -NH-CO-O-, or -O-CO-NH-, wherein R⁷ is a hydrogen atom or a C_1 - C_6 alkyl group, or R⁷ taken together with R⁵ represents a C_2 - C_5 alkylene group.

In the above formula, -CO- means a carbonyl group, -SO₂- means a sulfonyl group, and -CS- means a thiocarbonyl group. Preferred G group is specifically, for example, those represented by the formula $-NR^7$ -CO- and -NH-CO-NH-.

The C_1 - C_6 alkyl group for R^7 are the same as defined for the aforementioned substituent for the phenyl group, C_5 - C_8 cycloalkyl group, aromatic heterocyclic group, or condensed ring in R^1 , and the same examples can be listed as preferred specific examples.

The " C_2 - C_5 alkylene group" consisting of R^5 and R^7 means C_2 - C_5 straight-chain or branched alkylene group such as a methylene, ethylene, propylene, trimethylene, tetramethylene, 1-methyltrimethylene, pentamethylene group, and the like, suitably and specifically including a ethylene, trimethylene and tetramethylene group.

A hydrogen atom is a preferred specific example for R^7 .

In the above formula (I), R⁶ is a phenyl group, a C₃-C₈ cycloalkyl group, 30 a C₃-C₈ cycloalkenyl group, a benzyl group, or an aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof, in which the phenyl, benzyl, or aromatic heterocyclic group may be condensed with a benzene ring or an aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof, to form a condensed ring, and the phenyl group, C₃-C₈ cycloalkyl group, C₃-C₈ cycloalkenyl group, benzyl group, aromatic heterocyclic group, or condensed

ring may be substituted with one or more of a halogen atom, a hydroxy group, a mercapto group, a cyano group, a nitro group, a thiocyanato group, a carboxy group, a carbamoyl group, a trifluoromethyl group, a C_1 - C_6 alkyl group, a C_3 - C_6 cycloalkyl group, a C_2 - C_6 alkenyl group, a C_1 - C_6 alkoxy group, a C_3 - C_6 cycloalkyloxy group, a C_1 - C_6 alkylthio group, a C_1 - C_3 alkylenedioxy group, a phenyl group, a phenoxy group, a phenylamino group, a benzyl group, a benzoyl group, a phenylsulfinyl group, a phenylsulfonyl group, a 3-phenylureido group, a C_2 - C_7 alkanoyl group, a C_2 - C_7 alkoxycarbonyl group, a C_2 - C_7 alkanoylamino group, a C_2 - C_7 alkylcarbamoyl group, a C_1 - C_6 alkylsulfonyl group, a phenylcarbamoyl group, a C_1 - C_6 alkyl) sulfamoyl group, an amino group, a mono $(C_1$ - C_6 alkyl) amino group, a di $(C_1$ - C_6 alkyl) amino group, a benzylamino group, a C_2 - C_7 (alkoxycarbonyl) amino group, a C_1 - C_6 (alkylsulfonyl) amino group, or a bis $(C_1$ - C_6 alkylsulfonyl) amino group.

The C_3 - C_8 cycloalkyl group, aromatic heterocyclic group having 1-3 heteroatoms selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom, or a combination thereof, and the condensed ring for R^6 are the same as defined for the aforementioned R^1 , and the same examples can be listed as preferred specific examples.

The " C_3 - C_8 cycloalkenyl group" for R^6 means a cyclic alkenyl group such as a cyclobutenyl, cyclopentenyl, cyclohexenyl, cycloheptenyl, and cyclooctenyl group, specifically including a 1-cyclopentenyl and 1-cyclohexenyl group.

Among them, a phenyl group, a furyl group, and a thienyl group can be listed as a preferred specific example for R^{ε} .

25

30

35

5

10

15

20

The halogen atom, C_1-C_6 alkyl group, C_2-C_6 alkenyl group, C_1-C_6 alkoxy group, C_1-C_6 alkylthio group, C_1-C_3 alkylenedioxy group, C_2-C_7 alkanoyl group, C_2-C_7 alkoxycarbonyl group, C_2-C_7 alkanoyloxy group, C_2-C_7 alkanoylamino group, C_2-C_7 alkanoyloxy group, mono $(C_1-C_6$ alkyl) amino group, and di $(C_1-C_6$ alkyl) amino group as a substituent for the phenyl group, C_3-C_8 cycloalkyl group, C_3-C_8 cycloalkenyl group, benzyl group, aromatic heterocyclic group, or condensed ring in R^6 are the same as defined for the aforementioned substituent for the phenyl group, C_3-C_8 cycloalkyl group, aromatic heterocyclic group, or condensed ring in R^6 , and the same examples can be listed as preferred specific examples.

The C_3-C_2 cycloalkyl group as a substituent for R^6 is the same as defined for the aforementioned C_3-C_2 cycloalkyl group for R^1 , where the same examples

can be given for the preferred specific examples.

5

10

15

20

25

30

35

The " C_3-C_8 cycloalkyloxy group" as a substituent for R^6 means group consisting of the aforementioned C_3-C_8 cycloalkyl group and oxy group, specifically, for example, a cyclopropyloxy, cyclopentyloxy, and cyclohexyloxy group.

The "N,N-di (C_1-C_6 alkyl) sulfamoyl group" as a substituent for R^6 means sulfamoyl group substituted with the same or different two C_1-C_6 alkyl group aforementioned, preferably and specifically, for example, a N,N-diethylsulfamoyl, N,N-diethylsulfamoyl, and N-ethyl-N-methylsulfamoyl group.

The " C_2 - C_7 (alkoxycarbonyl) amino group" as a substituent for R^6 means group consisting of the aforementioned C_2 - C_7 alkoxycarbonyl group and amino group, specifically, for example, a (methoxycarbonyl) amino and (ethoxycarbonyl) amino group.

The " C_1 - C_6 (alkylsulfonyl) amino" group as a substituent for R^6 means group consisting of the aforementioned C_1 - C_6 alkylsulfonyl group and amino group, specifically, for example, a (methylsulfonyl) amino group.

The "bis $(C_1-C_6$ alkylsulfonyl) amino" group as a substituent for R^6 means amino group substituted with the same or different two C_1-C_6 alkylsulfonyl group aforementioned, preferably and specifically, for example, a bis (methylsulfonyl) amino group.

Among them, a halogen atom, a mercapto group, a nitro group, a thiocyanato group, a trifluoromethyl group, a C_1 - C_6 alkyl group, a C_1 - C_6 alkoxy group, a phenyl group, a phenylsulfonyl group, a C_2 - C_7 alkanoylamino group, or an amino group can be listed as preferred specific example for substituent for the phenyl group, C_3 - C_8 cycloalkyl group, C_3 - C_8 cycloalkenyl group, benzyl group, aromatic heterocyclic group, or condensed ring in R^6 .

Furthermore above substituents for the phenyl group, C_3-C_8 cycloalkyl group, C_3-C_8 cycloalkenyl group, benzyl group, aromatic heterocyclic group, or condensed ring in R^6 are optionally substituted with one or more of a halogen atom, a cyano group, a hydroxy group, an amino group, trifluoromethyl group, a C_1-C_6 alkyl group, a C_1-C_6 alkoxy group, a C_1-C_6 alkyl group, or a di(C_1-C_6 alkyl)amino group.

The halogen atom, C_1 - C_6 alkyl group, C_1 - C_6 alkoxy group, a C_1 - C_6 alkylthio group, mono(C_1 - C_6 alkyl)amino group, and di(C_1 - C_6 alkyl)amino group are the same as defined for the aforementioned substituents for the phenyl group, C_3 - C_8 cycloalkyl group, aromatic heterocyclic group, or condensed ring in \mathbb{R}^1 , and the

same examples can be listed as preferred specific examples.

(2) On Invention 2

5

10

15

20

25

30

The compound represented by the formula (I) above, a pharmaceutically acceptable acid addition salt thereof or a pharmaceutically acceptable C_1 - C_6 alkyl addition salt can be used to prepare a chemokine receptor antagonist preparation of the present invention by formulating the therapeutically effected amount and a carrier and/or diluent into a pharmaceutical composition. Thus, the cyclic amine derivatives shown by the above formula (I), a pharmaceutically acceptable acid addition salt thereof or a pharmaceutically acceptable C_1 - C_6 alkyl addition salt can be administered orally or by parenterally, for example, intravenously, subcutaneously, intramuscularly, percutaneously or intrarectally.

The oral administration can be accomplished in the form of tablets, pills, granules, powder, solution, suspension, capsules, etc.

The tablets for example can be prepared using a vehicle such as lactose, starch and crystallized cellulose; binder such as carboxymethylcellulose, methylcellulose, and polyvinylpyrrolidone; disintegrator such as sodium alginate, sodium bicarbonate and sodium lauryl sulfate, etc.

Pills, powder and granule preparations can be prepared by a standard method using the vehicles mentioned above. Solution or suspension can be prepared by a standard method using glycerin ester such as tricaprylin and triacetin or alcohols such as ethanol. Capsules can be made by charging granules, powder or solution in gelatin, etc.

Subcutaneous, intramuscular or intravenous preparations can be prepared as an injection using aqueous or nonaqueous solution. Aqueous solution for example may include isotonic sodium chloride solution. Nonaqueous solutions may include for example, propyleneglycol, polyethyleneglycol, olive oil, ethyl oleate, etc., and optionally, one can add antiseptics and stabilizers. For injection, one can be sterilized by filtration through a bacterial filter or combination of disinfectant.

35

Percutaneous administration may be in the form of an ointment or cream, and ointment can be prepared in the standard manner using fatty oils such as

castor oil and olive oil, or Vaseline, while creams can be made using fatty oils or emulsifying agent such as diethyleneglycol and sorbitan esters of fatty acid.

 $\label{eq:formula} For intrarectal \ administration, \ one \ can \ use \ standard \ suppositories \ using \\ 6 \ gelatin \ soft \ capsules, \ etc.$

The cyclic amine derivatives of the present invention, a pharmaceutically acceptable acid addition salt thereof or a pharmaceutically acceptable C_1 - C_6 alkyl addition salt is administered at a dose that varies depending on the type of disease, route of administration, age and sex of patient, and severity of disease, but is likely to be 1-500 mg/day in an average adult.

(3) Matter common throughout Invention 1 and Invention 2

Preferred specific examples for the cyclic amine compound in the above formula (I) include compound having each substituent as shown in the following Tables 1.1-1.201.

In the Tables 1.1-1.201, "chirality" means configuration of the asymmetric carbon atom on the cyclic amine. "R" shows that the asymmetric carbon atom has a R configuration, "S" shows that the asymmetric carbon atom has a S configuration, and "-" means racemate or that the compound do not have a asymmetric carbon atom on the nitrogen containing ring.

[Table 1.1 - Table 1.201]

10

15

20

Table 1.1

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1	CH ₂ -	1	2	0	-	Н	- CH ₂ -N-C-
2	C├ - CH ₂ -	1	2	0	- -	н	- CH ₂ - N-CH ₃
3	CH2-	1	2	0	-	H	- CH₂- N- C-⟨
4	CH_CH ₂ -	1	2	0	-	H	- CH ₂ -N-C-CF ₃
5	C⊢√CH₂-	1	2	0	S	Н	$-CH_2-N$ CF_3 CF_3
6	СН-СН2-	1	2	0	S	H	$-CH_2-N+C-$
7	CHCH ₂ -	1	2	0	S	Н	-CH ₂ -N-C
8	CHCH ₂ -	1	2	0	S	Н	-CH ₂ -N-C
9	CHCH2-	1	2	0	S	Н	- CH ₂ -N-C-CI
10	CHCH_2-	1	2	0	S	Н	-CH ₂ -N-C-OCH ₃
11	CHCH ₂ -	1	2	0	S	Н	$-CH_2-N\cdot C- \bigcirc OCH_3$

Table 1.2

	· · -						
Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R ³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
12	CI—CH ₂ -	1	2	0	S	н	$-CH_{2}-N C \longrightarrow OCH_{3}$ $-CH_{2}-N C \longrightarrow OCH_{3}$
13	CHCH ₂ -	1	2	0	S	Н	$-CH_2-N$ CF_3 $+CH_2-N$
14	C├────────────────────────────────────	1	2	0	S	Н	-CH ₂ -N-C-CH ₃
	CHCH ₂ -					H	- CH ₂ - N- C- CI
16	CHCH2-	1	2	0	S	н	-CH ₂ -N-C
17	CHCH2-	1	2	0	S	н	- CH ₂ -N-C-CI
18	CI—CH ₂ -	1	2	0	S	Н	- CH ₂ - N- C-
19	CH2-	1	2	0	S	Н	-CH ₂ -N-C
20	C⊢CH₂-	1	2	0	S	Н	- CH ₂ -N-C-
21	C├────────────────────────────────────	1	2	0	S	Н	$-CH_2-NCF_3$
22	C├ - CH ₂ -	1	2	0	S	Н	$-CH_2-NC$ CF_3 F

Table 1.3

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R ³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
23	CH-CH ₂ -	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
24	CI—CH ₂ -	1	2	0	S	н	-CH ₂ -N-C
25	CHCH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
26	C├─ \ CH ₂ -	1	2	0	S	н	$-CH_2-N-C-$ O_2N
27	CH-CH ₂ -	1	2	0	S	Н	-CH ₂ -N-C-NO ₂
28	CH2-	1	2	0	S	Н	- CH ₂ -N-C-NO ₂
29	СН2-	1	2	0	R	Н	$-CH_2-NC$ CF_3 CF_3
30	C├─ \ CH ₂ -	1	2	0	R	Н	$-CH_2-NC$ F_3C
31	CH2-	1	2	0	R	Н	- CH ₂ - N- C-
32	CI—(1	2	0	R	Н	-CH ₂ -N-C-
33	C├ - CH ₂ -	1	2	0	R	Н	-CH ₂ -N-CI

Table 1.4

	•						
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	[°] R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
34	CH2-	1	2	0	R	Н	$-CH_2-N$ C
35	CI—CH ₂ -	1	2	0	R	н	$-CH_2-NC-OCH_3$
36	CH-CH ₂ -	1	2	0	R	Н	$-CH_2-NC- \bigcirc OCH_3$ $-CH_3-NC- \bigcirc OCH_3$
37	CHCH2-	1	2	0	R	Н	- CH ₂ - N-CF ₃
38	C├─ \ CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CH ₃
39	CH2-	1	2	0	R	Н	- CH ₂ -N-C
40	C⊢√CH₂-	1	2	0	R	Н	-CH ₂ -N-C
41	C├ ~ CH ₂ -	1	2	0	R	Н	- CH ₂ -N-C-
	CH-CH ₂ -						- CH ₂ - N- C-
43	CHCH ₂ -	1	2	0	R	Н	- CH ₂ -N-C
44	CH_CH ₂ -	1	2	0	R	Н	$-CH_2-NC-$

Table 1.5

Compd	R ¹ (OLL)		<u>.</u>	•			
No.	R ¹ (CH ₂) _j -	k 	m	n	chirality	⁻ R ³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
45	CI—CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-F ₃
46	CH-2-	1	2	0	R	Н	$-CH_2-N-C F$
47	CHCH ₂ -	1	2	0	R	Н	-CH₂-N-C-
48	C⊢√CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-F
49	C⊢√CH₂-	1	2	0	R	Н	$-CH_2-N-C-$ O_2N
50	C├ - CH ₂ -	1	2	0	R	Н	- CH ₂ - N-C-CF ₃
51	CHCH ₂ -	1	2	0	R	Н	- CH ₂ -NC-
52	CHCH ₂ -	1	2	0	R	Н	$-CH_2-NC-$
53	CHCH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
54	СН-СН2-	1	2	0	R	Н	- CH ₂ -N-C-
55	CH-2-	1	2	0	R	Н	- CH₂- N- C- H CI

Table 1.6

Compd. No.	R ¹ (CH ₂)	k	m	n	chirality	R ³	$-(CH_2)_p + (CH_2)_q G - R^6$
56	CI——CH₂-	1	2	0	R	Н	$-CH_2-N$ $\stackrel{O}{\stackrel{\circ}{\mathbb{C}}}$ H_3C
57	CH2−	Ť	2	0	R	Н	$-CH_2-NC$ H_3C O H_3C H_3C
58	C├ - CH ₂ -	1	2	0	R	Н	- CH ₂ -N-C-CI
59	CH2-	1	2	0	R	Н	- CH ₂ -N-C
60	CH-CH₂-	1	2	0	R	н	-CH ₂ -N-C-
61	C	1	2	0	R	Н	- CH ₂ -N-C-CF ₃
62	C├ - CH ₂ -	1	2	0	R	Н	$-CH_2-NC$
63	CI—()— CH₂-	1	2	0	R	Н	$-CH_2-N$ $C CH_2CH_3$
64	CI——CH₂-	1	2	0	R	Н	$-CH_2-NC$
65	CI—CH₂-	1	2	0	R	Н	- CH ₂ -N-C-
66	C⊢√_CH₂-	1	2	0	R	Н	CH ₂ -N-C-

Table 1.7

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R ³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
67	CI—CH ₂ -	1	2	0	R	Н	- CH ₂ -N-C
68	ССН2-	1	2	0	R	Н	-CH ₂ -N-C
69	CHCH ₂ -	1	2	0	R	Н	$-CH_2-N$ C F
70	CH-CH ₂ -	d.	2	0	R	H	-CH ₂ -N-C
71	CH-2-	1	2	0	R	Н	$-CH_2-NC$ H_3CO
72	CHCH ₂ -	1	. 2	0	R	Н	-CH ₂ -N-C
73	C⊢—CH₂-	1	2	0	R	Н	$-CH_2-N^+C$ F_3CO
74	CI—€ CH ₂ -	1	2	0	R	Н	$-CH_2-N$ C CO_2CH_3
75	CH2-	4***	2	0		Н	$-CH_2-N$ C F_3C
76	C├ - CH ₂ -	1	2	0	R	н	- CH ₂ -N-C
7 7	с⊢{сн₂-	1	2	0	R	н	- CH ₂ -N C-F

Table 1.8

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q G - R^6$
78	CI—CH₂-	1	2	0	R	Н	$-CH_2-N$ C $-$ F
79	CI	1	2	0	R	Н	$-CH_{2}-N \stackrel{O}{\leftarrow} -CF_{3}$ $F_{3}C$
80	CI	1	2	0	R	н	$-CH_2-N-C$ F_3C
81	CH-CH ₂ -	1	2	0	R	н	$-CH_2-NC$ CH_3 CH_3
82	CI—CH ₂ -	1	2	0	-	-СН ₃	-CH ₂ -N-C-CF ₃
83	CH-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-\(\sigma\)
84	CHCH ₂ -	1	2	0	R	Н	$-CH_2-N-C NO_2$
85	CHCH ₂ -	1	2	0	-	Н	-(CH ₂) ₂ -N-C-
86	CHCH_2-	1	2	0	-	Н	-(CH ₂) ₂ -N-C-NO ₂
87	CHCH_2-	1	2	0	S		-(CH ₂) ₂ -N-C-CF ₃
88	CI-CH ₂ -	1	2	0	S	Н	-(CH ₂) ₂ -N-C- H F ₃ C

Table 1.9

Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
89	С├──СН2-	1	2	0	S	Н	$-(CH_2)_2$ -N-C- \longrightarrow Br
90	CH2-	1	2	0	S	Н	-(CH ₂) ₂ -N-C
91	CH-CH ₂ -	1	2	0	S	.	-(CH ₂) ₂ -N-CI
92	CH-CH ₂ -	1	2	0	S	Н	-(CH ₂) ₂ -N-C
93	C⊢√CH₂-	1	2	0	S	Н	$-(CH_2)_2$ -N-C- \bigcirc OCH ₃
94	CH ₂ -	1	2	0	S	Н	$-(CH_2)_2-N-C \longrightarrow OCH_3$ OCH_3 OCH_3
95	C├ - CH ₂ -	1	2	0	S	Н	-(CH ₂) ₂ -N-C-CF ₃
96	CI—CH₂-	1	2	0	S	Н	-(CH ₂) ₂ -N-CH ₃
97	CH-CH ₂ -	1	2	0	S	Н	-(CH ₂) ₂ -N-C-CI
	CI-CH ₂ -						-(CH ₂) ₂ -N-C
99	CHCH ₂ -	1	2	0	S	Н	$-(CH_2)_2-N+C$ CI

Table 1.10

Compd.	R^1 R^2 $(CH_2)_j$	k	m	n	chirality	R³	$-(CH_2)_{p \to R^5}^{R^4}(CH_2)_q G^-R^6$
100	CHCH ₂ -	1	2	0	S	Н	-(CH ₂) ₂ -N-C-CN
101	CH-CH ₂ -	1	2	0	S	Н	-(CH ₂) ₂ -N-C-O
102	C├ - CH ₂ -	1	2	0	S	н	$-(CH_2)_2 - \underset{H}{\overset{\circ}{\text{N-}}} \overset{\circ}{\text{C-}} \overset{CF_3}{\overset{\circ}{\text{C-}}}$
103	C├ \ CH ₂ -	1	2	0	S	Н	-(CH ₂) ₂ -N-C- H
104	C├ ─ CH ₂ -	1	2	0	S	Н	-(CH ₂) ₂ -N-C-
105	C ← C H ₂ -	1	2	0	S	Н	-(CH ₂) ₂ -N-C-CF ₃
1 0 6	C├ - CH ₂ -	1	2	0	S	Н	-(CH ₂) ₂ -N-C-
107	C├ ─ CH ₂ -	1	2	0	S	н	-(CH ₂) ₂ -N-C-F
108	С⊢С СН₂-	1	2	0	S	Н	$-(CH_2)_2 - \underset{H}{N} - \overset{O}{\overset{U}{\overset{U}{\overset{U}{\overset{U}{\overset{U}{\overset{U}{\overset{U}{$
1 0 9	CHCH ₂ -	1	2	0	S	Н	-(CH ₂) ₂ -N-C-NO ₂
110	CHCH ₂ -	1	2	0	S	н	-(CH ₂) ₂ -N-C-NO ₂

Table 1.11

1111 $CH_{2} - CH_{2} - 1 2 0 R H - (CH_{2})_{2} - \frac{0}{H} - \frac{0}{C} - \frac{0}{H} - \frac{0}{H} - \frac{0}{C} - \frac{0}{H} - \frac{0}$								
112 $CH_{2}-CH_{2}-1$ 2 0 R H $-(CH_{2})_{2}-N-C-C+C-C+C-C+C-C-C+C-C-C-C-C-C-C-C-C-C$	Compd. No.	R ¹ (CH ₂)	k	m	n	chirality	R ³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
113 $C \mapsto CH_2 - 1 2 0 R H $	111	C├ - CH ₂ -	1	2	0	R	H	$-(CH_2)_2$ -N-C- CF_3
114 $CH ightharpoonup CH_{2}^{-}$ 1 2 0 R H $-(CH_{2})_{2}^{-} \stackrel{\circ}{}_{H}^{-} \stackrel{\circ}{}_{C}^{-} \stackrel{\circ}{}_{A}^{-} \stackrel$	112	C├ - CH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-C
115 CH_{2} 1 2 0 R H $-(CH_{2})_{2}$ N-C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	113	C├ \ CH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-C-Br
116 CH_{2} 1 2 0 R H $-(CH_{2})_{2}$ $\stackrel{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{$	114	C ├── CH ₂ -	1	2	0	R	Н	~(CH ₂) ₂ -N-C
117 $CH_{2}^{-} - CH_{2}^{-}$ 1 2 0 R H $-(CH_{2})_{2}^{-} \stackrel{N}{\overset{C}{\overset{C}{\overset{C}{\overset{C}{\overset{C}{\overset{C}{\overset{C}{\overset$	115	C├ - CH₂-	1	2	0	R	Н	-(CH ₂) ₂ -N-C-CI
118 $CH_{2}^{-} - CH_{2}^{-}$ 1 2 0 R H $-(CH_{2})_{2}^{-} \stackrel{\circ}{H}^{-} \stackrel{\circ}{C} - \stackrel{\circ}{C}$ 119 $CH_{2}^{-} - CH_{2}^{-}$ 1 2 0 R H $-(CH_{2})_{2}^{-} \stackrel{\circ}{H}^{-} \stackrel{\circ}{C} - \stackrel{\circ}{C}$	116	CI—CH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-C
119 CH_{2}^{-} 1 2 0 R H $-(CH_{2})_{2}^{-} \stackrel{\text{N}}{\text{H}} \stackrel{\text{C}}{\text{C}} \stackrel{\text{O}}{\text{C}}$	117	C├ ~ CH ₂ -	1	2	0	R	Н	-(CH2)2-N-C OCH3
120 CH ₂ - 1 2 0 R H -(CH ₂) ₂ -N-C-	118	C├ \	1	2	0	R	Н	$-(CH_2)_2-N-C- \bigcirc OCH_3$ OCH_3 OCH_3
	119	CI-CH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-CF ₃
121 CH ₂ - 1 2 0 R H -(CH ₂) ₂ -N-C-	120	CI-CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-CH ₃
- (5.12)2 H	121	C├ - CH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-C-CI

Table 1.12

Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R ³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} G - R^6$
122	CHCH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C
123	CI-CH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-C-CI
124	CH-CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-
125	CH-CH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-C
126	CHQ-CH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-C-CF ₃
127	CH2-	1	2	0	R	Н	$-(CH_2)_2 - N - C - CF_3$
128	C├─ \ CH ₂ -	1	2	0	R	Н	$-(CH_2)_2$ - N- C- F
129	C	1	2	0	R	Н	-(CH ₂) ₂ -N-C-CF ₃
	CHCH ₂ -						-(CH ₂) ₂ -N-C-OCF ₃
131	C├ - CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C
132	C├ ~ CH ₂ -	1	2	0	R	Н	$-(CH_2)_2 - N - C \longrightarrow O_2 N$

Table 1.13

Compd. No.	R ¹ (CH ₂)	k	m	n	chirality	R ³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}$ $(CH_2)_{q}$ $-G-R^6$
133	CI-CH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-C-NO ₂
134	CH2−	1	2	0	R	Н	$-(CH_2)_2-N-C$ H O NO_2
135	CH-CH ₂ -	1	2	0	R	Н	$-(CH_2)_2 - NC $ Br
136	C├ - CH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-C
137	C├ - CH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-C-
138	CH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-C-CI
139	CH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-CI
	CI—CH ₂ -						-(CH2)2-N-C- H $H3C$
141	CI—CH ₂ -	1	2	0	R	Н	H_3CO CI H_3CO CI
142	CI—CH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-CI
143	CI—CH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-C-Br

Table 1.14

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R ³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
144	CH-CH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-C-
145	CI-CH ₂ -	1	2	0	R	Н	$-(CH_2)_2 - NC $
146	CHCH ₂ -	1	2	0	R	н	$-(CH_2)_2 - NCC - CH_3$
147	C├─ \ CH ₂ -	1	2	0	R	н	$-(CH_2)_2 - N C - CH_2CH_3$
148	CHCH_2-	1	2	0	R	Н	-(CH ₂) ₂ -N-C-
149	CH2-	1	2	0	R	Н	-(CH ₂) ₂ -N-C-
	CHCH ₂ -					Н	-(CH ₂) ₂ -N-C-
151	C├ ~ CH₂-	1	2	0	R	Н	-(CH ₂) ₂ -N C F
152	CI—(1	2	0	R	Н	-(CH ₂) ₂ -N-C-F
153	C├ ─ CH ₂ -	1'	2	0	R	н	-(CH ₂) ₂ -N-C
154	CHCH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C

Table 1.15

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R ³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}$ $(CH_2)_{q}$ $G-R^6$
155	CH2-	1	2	0	R	Н	-(CH ₂) ₂ -N-C
156	CH2-	1	2	0	R	Н	$-(CH_2)_2 - N C - OCF_3$
157	CI—CH ₂ -	1	2	0	R	н	$-(CH_2)_2 - N \cdot C - F_3CO$
158	C├ - CH ₂ -	. 1	2	0	R	н	$-(CH_2)_2-N$ C $ -$
159	C├ - ⟨CH ₂ -	1	2	0	R	н	$-(CH_2)_2 - NC - F$ F_3C
160	CI-CH ₂ -	1	2	0	R	Н	-(CH2)2-N-C + F3C
161	C├ ─ CH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-C
162	CI— CH₂-	1	2	0	R	Н	-(CH ₂) ₂ -N-C-F-F
163	C├ \ CH ₂ -	1	2	0	R	Н	-(CH2)2-N-C- $F3C$
164	СН-СН2-	1	2	0	R	Н	-(CH2)2-N-C- $F3C$ $F3C$
165	С⊢√_СН2-	1	2	0	R	Н	-(CH2)2-NCC CH3

Table 1.16

	1.10						
Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q G - R^6$
166	CI—CH ₂ -	1	2	0	R	н	(S) Q CF ₃ -CH-N-C CF ₃
167	CH-CH ₂ -	1	2	0	R	н	(S) -CH-N-C- CH ₃
168	CH-CH ₂ -	1	2	0	R	H	(S) Q CI -CH-N-C-C CH ₃
169	C├ - CH ₂ -	1	2	0	R	н	(S) -CH-N-C-CI CH ₃
170	C├ - CH ₂ -	1	2	0	R	н	(S) CF_3 CH CH_3 F
171	CH2−	1	2	0	R	Н	(S) P -CHN-C-CI CH3
172	С⊢—СН₂-	1	2	0	R	н	(S) P -CHN-C- CH ₃
173	CI—CH₂-	1	2	0	R	н	(S) NO ₂ -CH-N-C- NO ₂ -CH ₃
174	C├ \ CH ₂ -	1	2	0	. R	Н	$ \begin{array}{c c} (F) & C & CF_3 \\ -CH & C & CF_3 \\ -CH_3 & CH_3 \end{array} $
175	C ⊢ CH₂-	1	2	0	R	Н	(F) -CHN-C CH ₃ Br
176	CI—CH₂-	1	2	0	R	н	(A) -CH-N-C

Table 1.17

Compd. R^1 $(CH_2)_j$ k m			R ³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
	0			
177 CI—CH₂- 1 2		R	Н	(H) CI -CHN-C-CI CH ₃
178 CI—CH₂- 1 2	0	R	н	$(F) \qquad CF_3$ $-CH NC \longrightarrow F$
179 C⊢√ CH₂- 1 2	0	R	Н	(A) O -CH-N-C-CI CH ₃
180 C⊢√ CH ₂ - 1 2	0	R	Н	(R) O O O O O O O O O
181 CH2- 1 2	0	R	Н	(A) -CHN-C H CH3
182 CH2- 1 2	0	R	н	CH ₃ O CF ₃ -CH N C CH ₃
183 CH ₂ →CH ₂ - 1 2	0	R	н	CH ₃ O Br -CH N C — Br CH ₃
184 CH ₂ - 1 2 0	0	R	Н	CH3 O CI
185 CI—CH₂- 1 2 C				
186 C⊢ CH₂- 1 2 C	O	R	Н	$ \begin{array}{ccc} CH_3 & O & CF_3 \\ -CH & C & CF_3 \\ -CH_3 & F \end{array} $
187 C⊢√ CH₂- 1 2 C				CH ₃ C -CH N C CI CH ₃

Table 1.18

Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R ³	$-(CH_2)_{p} + (CH_2)_{q} - (C$
188	CH ₂ −	1	2	0	R	Н	CH ₃ O -CH-N-C- CH ₃
189	CI—CH ₂ -	1	2	0	R	Н	CH ₃ PNO ₂ -CHN-CH ₃
190	CI-CH ₂ -	1	2	0	R	н	(F) O CF 3 -CH-N-C-CF 3 CH ₂ -CS
191	C├ - CH ₂ -	1	2	0	R	H	(A) Br -CH-N-C- CH ₂ -S
192	CH-CH ₂ -	1	2	0	R	н	(A) -CHNC- CH2- CH2- CH2-
193	C	1	2	0	R	н	
194	C├ - CH ₂ -	1	2	0	R	Н	(F) PCF3 -CH-N-C-F
195	C	1	2	0	R	Н	(F) P -CHN-C-CI CH2-S
196	С├-СН2-	1	2	0	R	Н	(A) -CHN-C- CH2-S
197	C ← CH ₂ -	1	2	0	R	Н	(A) P NO 2 -CHN-C- CH2 CH2
198	CH-2-	1	2	0	R	н	CH ₂ CF ₃

Table 1.19

Compd.	R ¹ (CH ₂),	k	m	n	chirality	R ³	$-(CH_2)_p + (CH_2)_q G - R^6$
199	CI-CH ₂ -	1	2	0	R	Н	(S) P Br -CH ₂ -S
200	C├ - CH ₂ -	1	2	0	R	н	(S) P CH ₂ CH ₂
201	CH ₂ -	1	· 2	0	R	н	(S) P CI -CH-N-C- CI CH ₂ -S
202	CH-√CH ₂ -	1	2	0	R	Н	CF_3 CF_3 CH_2 F
203	C├ - CH ₂ -	1	2	0	R	н	(S) CHN-C-CI CH ₂ -CI
204	C⊢√_CH₂-	1	2	0	R	н	
205	CI—CH₂-	1	2	0	R	Н	(S) P NO 2 -CH-N-C-S
206	C├ ─ CH ₂ -	1	2	0	R	н	(S) -CH-N-C- H P (CH ₂) ₂ -G-CH ₃
207	C⊢—CH₂-	1	2	0	R	н	(S) -CH-N-C H P (CH ₂) ₂ -S-CH ₃
208	CH_CH ₂ -	1	2	0	R	Н	(S) P) C1 -CH-N-C- H P P CH ₃ (CH ₂) ₂ -S-CH ₃
209	C├ - CH₂-	1	2	0	R	н	(S) -CH-N-C

Table 1.20

Compd. No.	R ¹ (CH ₂)	k	m	n	chirality	Ř³	$-(CH_2)_{p} + (CH_2)_{q} - G-R^6$
210	CI—()— CH₂-	1	2	0	R	Н	(S) OF 3 -CH-N-C- H Q (CH ₂) ₂ -9-CH ₃ F
211	CH ₂ -	1	2	0	R	Н	(S) P C-CI (CH ₂) ₂ -S-CH ₃
212	CH-CH ₂ -	1	2	0	R	Н	(S) P -CH-N-C- H O (CH ₂) ₂ -3-CH ₃
213	CHCH ₂ -	1	2	0	R	Н	(S) II NO2 -CH-N-C- H Q (CH ₂) ₂ -G-CH ₃
214	CH_CH ₂ -	1	2	0	-	Н	-(CH ₂) ₃ -C-
215	CI—CH ₂ -	1	2	0	-	Н	$-(CH_2)_3$ - C - OCH_3
216	C ← C H ₂ -	1	2	0	-	Н	-(CH ₂) ₃ -C-
217	CI—CH₂-	1	2	0	-	Н	$-(CH_2)_2$ - C O O O O O
218	CH2−	1	2	0	-	Н	-(CH2)2-C - CH3 $H3C$
219	CI(CH ₂ -	1	2	0	-	Н	$-(CH_2)_2$ - C
220	CI-CH ₂ -	1	2	0	-	Н	$-(CH_2)_2$ - C - CH_3

Table 1.21

Compd.	R^1 R^2 $(CH_2)_j$	k	m	n	chirality	R ³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
221	CH-CH₂-	1	2	0	-	н	-(CH ₂) ₂ -C-
222	C├ ─ CH ₂ -	1	2	0	-	н	$-(CH_2)_2-C-$
223	C├ - CH ₂ -	1	2	0	-	н	$-(CH_2)_2$ - C
224	C├ - CH ₂ -	1	2	0	-	Н	$-CH_2 - \overset{O}{\overset{\circ}{\mathbb{S}}} - CH_3$
225	CH2-	1	2	0	-	Н	-(CH ₂) ₃ -C-N-
226	C├ - CH ₂ -	1	2	0	-	н	-(CH ₂) ₃ - C-NH3
227	CH2-	1	2	0	-	Н	-(CH ₂) ₃ -C-N-CI
228	CH-CH2-	1	2	0	-	н	-(CH ₂) ₃ C-NH OCH ₃
229	CH-2-	1	2	0	-	н	- CH ₂ -Ç-CH ₂ -C-N-CH ₃
230	C├─ \ CH ₂ -	1	2	0	-	Н	-CH ₂ -CH ₂ -C-N-F
231	C├ - CH ₂ -	1	2	0	-	Н	-(CH ₂) ₃ -C-N C-CH ₃

Table 1.22

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^{-R^6}$
232	CI—CH₂-	1	2	0	-	Н	-(CH ₂) ₃ -C-N-
233	CH-2-	1	2	0	-	Н	O II O I
234	CH2−	1	2	0	-	Н	-(CH ₂) ₃ -C-N-CH ₃
235	CH2-	1	2	0	-	Н	- CH ₂ - CH- CH ₂ - C- N- CH ₂ - CH CH ₃
236	CH-€ CH ₂ -	1	2	0	-	H .	-CH ₂ -N-S-CH ₃
237	CH₂-	1	2	0	-	Н	- CH ₂ - N- C- O- CH ₂ -
238	CH2-	1	2	0	-	Н	- CH O- C- N- CI
239	—CH₂−	1	2	0	S	Н	$-CH_2-N-C- $
240	CH ₂ -	1	2	0	S ,	Н	$-CH_2-N-C-$
241	CI —CH ₂ -	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
242	CH ₂ -	1	2	0	S	Н	-CH ₂ -N-C-CF ₃

Table 1.23

Compd. No.	R ¹ (CH ₂)-	k	m	n	chirality	R ³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
243	CH ₂ -	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
244	CH ₃	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
245	F CH₂-	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
246	CI CH ₂ -	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
247	CH ₂ -	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
248	H₃CQ —CH₂-	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
249	F ₃ C —CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
250	H ₃ C —CH ₂ —	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
251	F-CH ₂ -	1 .	2	0	S	Н	-CH ₂ -N-C-CF ₃
252	H ₃ CO-CH ₂ -	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
253	H ₃ C-CH ₂ -	1	2	0	S	Н	-CH ₂ -N-C-CF ₃

Table 1.24

145.5	· · - ·						
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q}$
254	NO ₂	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
255	O ₂ N —CH ₂ -	1	2	0	S	H	-CH ₂ -N-C-CF ₃
256	O ₂ N-CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
257	CF ₃	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
258	CO ₂ CH ₂ CH ₃	1	2	0	S	н	-CH ₂ -N-C-CF ₃
259	CH ₃	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
260	CI CH ₂ -	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
261	F ₃ C-CH ₂ -	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
262	Br CH ₂ -	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
263	Br.—CH ₂ —	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
264	CH ₂ -	1	2	0	S	H	-CH ₂ -N-C-CF ₃

Table 1.25

Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} - G - R^6$
265	Br—€CH ₂ -	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
266	CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
267	OCH ₃	1	2	0	S	н	-CH ₂ -N-C-CF ₃
268	H2C-C-N CH2-	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
269	H ₃ C-\$ CH ₂ -	1	2	0	S	н	$-CH_2-N-C-$
270	H ₃ CO ₂ C —CH ₂ -	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
271	CH ₂ -	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
272	HO-CH ₂ -	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
273	CN CH ₂ -	· 1	2	0	S	Н	-CH ₂ -N-C-CF ₃
274	NC CH ₂ -	1	2	0	S	Н	$-CH_2-N-C$
275	NC-CH2-	1	2	0	S	Н	-CH ₂ -N-C-CF ₃

Table 1.26

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R ³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
276	F-CH ₂ -	1	2	0	S	H	-CH ₂ -N-C-CF ₃
277	-CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
278	H₃∞₂C-{}-CH₂-	1	2	0	S	Н	-CH ₂ -N-C
279	F ₃ CO-CH ₂ -	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
280	F₃CQ —CH₂-	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
281	HO ₂ C-CH ₂ -	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
282	(H ₃ C) ₃ C-CH ₂ -	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
283	CH ₃ CH ₂ - CH ₃	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
	CH_CH						$-CH_2-N-C- \bigcirc CF_3$
285	—CH₂-	1	2	0	R	Н	$-CH_2-N-C CF_3$
286	CH ₂ -	1	2	0	R	н	$-CH_2-N-C- \bigcirc CF_3$

Table 1.27

Idbie							
Compd. No.	R ¹ (CH ₂)	k	m	n	chirality	R ³	$-(CH_2)_p + (CH_2)_q G - R^6$
287	CI CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
288	CH CH2−	1	2	0	R	н	$-CH_2-N-C CF_3$
289	CI CH₂− CI	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
290	CH ₃	1	2	0	R	н	-CH ₂ -N-C-CF ₃
291	F_CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-CF ₃
292	CI CH₂-	1	2	0	R	н	$-CH_2-N-C- \bigcirc \bigcap_{H}^{C} \bigcirc CF_3$
293	CI CH₂-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
	H ₃ CO —CH ₂ —						-CH ₂ -N-C-CF ₃
295	F ₃ C ————————————————————————————————————	1	2	0	R	Н	CH ₂ -N-C
296	H ₃ C ————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-⟨CF ₃
297	F-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃

Table 1.28

lable	1.20						
Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
298	H₃CO-{}CH₂-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
299	H ₃ CCH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
300	$CH \longrightarrow CH_2-$	1	2	0	R	H	-CH ₂ -N-C
301	O ₂ N —CH ₂ —	1	2	0	R	Н	$-CH_2-N-C- $
302	O ₂ N-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
303	CF ₃ —CH ₂ -	1	2	0	R	н.	-CH ₂ -N-C-CF ₃
304	CO ₂ CH ₂ CH ₃	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
305	СН- СН ₃	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
306	CI CH₂− CI	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
307	F ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
308	. Br —CH ₂ —	1	2	0	R	H	-CH ₂ -N-C-CF ₃

Table 1.29

1 4 2 1 3							
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	$$ R^3	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
309	Br CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
310	OH2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
311	Br	1	2	0	R	H	-CH ₂ -N-C-CF ₃
312	O-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
313	OCH ₃	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
314	4°C-C-Ha+≥	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
315	H ₂ C-S————————————————————————————————————	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
							-CH ₂ -N-C-CF ₃
317	CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-CF ₃
318	HO-CH ₂ -	1	2	0	R	Н	$-CH_2-N-C- \bigcirc CF_3$
319	CN CH ₂ -	1	2	0	R	Н	$-CH_2-N-C-$

Table 1.30

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R ³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
320	NC —CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
321	NC-⟨CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
322	F-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
32 3	CH ₂ −	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
324	$H_3 \infty_2 C$ - CH_2 -	1	2	0	R	H	-CH ₂ -N-C-CF ₃
325	F ₃ CO-CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-CF ₃
326	F₃CO —CH₂-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
327	HO ₂ C-CH ₂ -	1	2	0	R	H ·	$-CH_2-N-C-$
328	(H ₃ C) ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
329	CH_3 CH_2 CH_3	1	2	0	R	н	-CH ₂ -N-C-CF ₃
330	CI-CH ₂ -	0	3	1	-	н	-CH ₂ -N-C-

Table 1.31

Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R ³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
331	CI-CH ₂ -	0	3	1	<u>-</u>	Н	- CH ₂ -N-C- CH ₃
332	CH-€ CH ₂ -					н	$-CH_2-N-C \longrightarrow OCH_3$ OCH_3 OCH_3
333	CH2−	0	3	1	-	Н	-CH ₂ -N-C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
334	CH2−	0	3	1	-	Н	- CH ₂ -N-C-CH ₃
335	С⊢—СН₂-	0	3	1	-	Н	-CH ₂ -N-C-NO ₂
336	CH2−	0	3	1	-	Н	$-CH_2-N-C$
337	СН-СН2-	0	3	1	-	н	$-CH_2-N-C-$
338	CHCH ₂ -	0	3	1	-	Н	- CH ₂ - N- C-
339	CH2-	0	3	1	R	н	- CH ₂ -N-C-
340	CI	0	3	1	S	Н	$-CH_2-N$ - CF_3
341	CH2-	0	3	1	-	Н	-(CH ₂) ₂ -N-C-

Table 1.32

Table I	.0 2						
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R ³	$-(CH_2)_p + (CH_2)_q - G - R^6$
342	CH-CH ₂ -	0	3	1	-	н	- CH N- C-
343	CH-CH ₂ -	0	3	1	-	Н	- CH N- C- H CH(CH ₃) ₂
344	CH-{	0	3	1	-	. Н	O - CH N- C- - H CH ₂ CH(CH ₃) ₂
345	C⊢√CH₂-	0	3	1	-	Н	-(CH ₂) ₃ -C-
346	CH2-	0	3	1	-	Н	$-(CH_2)_2$ - C
347	C├─ \ CH ₂ -	0	3	1	-	Н	-(CH2)2-CH3 $H3C$
34 8	C├	0	3	1	-	Н	$-(CH_2)_2$ - C - CH_3
349	CHCH ₂ -	0	3	1	-	Н	$-CH_2$ - S - CH_3
350	CI-CH ₂ -	0	3	1	-	Н	$-CH_2-N \stackrel{\circ}{\underset{H}{\overset{\circ}{=}}} -CH_3$
351	CH2−	0	3	1	-	Н	O - CH ₂ -N-C-O-CH ₂ -
352	CHCH ₂ -	0	3	1	-	Н	- CH O · C · N

Table 1.33

353 $C \mapsto C $								
354 $CH - CH_2 - 1$ 3 0 - H $-CH_2 - H - C - CH_2 - H - C - C - CH_2 - H - C - C - C - C - C - C - C - C - C$	Compd.	R ¹ (CH ₂)	k	m	n	chirality	R ³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} - G - R^6$
355 $CH \longrightarrow CH_{2}^{-}$ 1 3 0 - H $-CH_{2}^{-} \stackrel{\circ}{\text{N}} \stackrel{\circ}{\text{C}} \stackrel{\circ}{\text{C}$	353	CH_CH₂-	1	2	1	-	H	-CH ₂ -N-C-
356 $CH \longrightarrow CH_2-$ 1 3 0 - H $-CH_2- \stackrel{O}{H} \stackrel{O}{C} \longrightarrow \stackrel{O}{C} \stackrel{O}{A}$ 357 $CH \longrightarrow CH_2-$ 1 3 0 - H $-CH_2- \stackrel{O}{H} \stackrel{O}{C} \longrightarrow \stackrel$	354	CH-√	1	3	0	-	н	- CH ₂ -N-C-
357 $CH \longrightarrow CH_{2}^{-}$ 1 3 0 - H $-CH_{2}^{-} \stackrel{\circ}{N^{-}} \stackrel{\circ}{C} \longrightarrow H_{3} \stackrel{\circ}{C}$ 358 $CH \longrightarrow CH_{2}^{-}$ 1 3 0 - H $-CH_{2}^{-} \stackrel{\circ}{N^{-}} \stackrel{\circ}{C} \longrightarrow H_{3} \stackrel{\circ}{C}$ 359 $CH \longrightarrow CH_{2}^{-}$ 1 3 0 - H $-(CH_{2})_{2} \stackrel{\circ}{N^{-}} \stackrel{\circ}{C} \longrightarrow H_{3} \stackrel{\circ}{C} \longrightarrow H_$	355	CH—CH₂-	1	3	0	-	Н	-CH ₂ -N-CH ₃
358 $CH - CH_2 - 1$ 3 0 - H $-CH_2 - N^+C - CH_2$ 359 $CH - CH_2 - 1$ 3 0 - H $-(CH_2)_2 - N^+C - CH_2$ 360 $CH - CH_2 - 1$ 3 0 - H $-(CH_2)_2 - N^+C - CH_2$ 361 $CH - CH_2 - 1$ 3 0 - H $-(CH_2)_3 - C - CH_2$	356	CH-CH₂-	1	3	0	-	H	- CH ₂ -N-C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
359 $CH - CH_2 - 1$ 3 0 - H $-(CH_2)_2 - N - C - CH_2$ 360 $CH - CH_2 - 1$ 3 0 - H $-(CH_2)_2 - N - C - CH_2$ 361 $CH - CH_2 - 1$ 3 0 - H $-(CH_2)_3 - C - CH_2$	357	CH-2-	1	3	0	-	Н	$-CH_2-N-C$ H_3C
360 $CH \longrightarrow CH_2 - 1$ 3 0 - H $-(CH_2)_2 - N \stackrel{\circ}{=} $	358	C├ \ CH ₂ -	1	3	0	-	н	- CH ₂ -N-C
361 CH_{2}^{-} 1 3 0 - H $-(CH_{2})_{3}^{-}$ CH_{2}^{-} 1 3 0 - H $-(CH_{2})_{3}^{-}$ CH_{2}^{-} CH_{2}^{-} 1 3 0 - CH_{2}^{-} CH_{2}^{-	359	CH2−	1	3	0	-	Н	-(CH2)2-N-C-
362 CH ₂ - 1 3 0 - H -(CH ₂) ₃ -C-(CH ₂) ₃	360	C!—(CH ₂ -	1	3	0	-	Н	-(CH ₂) ₂ -N-C-NO ₂
0 ~	362	CH	1	3	0	-	Н	$-(CH_2)_3$ - C - CCH_3
363 CH2- 1 3 0 - H -(CH2)3-C-S	363	CH2-	1	3	0	-	Н	-(CH ₂) ₃ - C-

Table 1.34

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}$ $(CH_2)_q$ $G-R^6$
364	CI—(CH₂-	1	3	0	-	Н	-(CH2)2-C-OCH3 $H3CO$
365	CH-CH ₂ -	1	3	0	-	н	-(CH2)2-CH3 $H3C$
366	C├ - CH ₂ -	1	3	0	- -	н	$-(CH_2)_2 - C - CH_3$
367	СЊ2-	1	3	0	-	H	-(CH2)2-CH3
368	CH2−	1	3	0	-	н	-(CH ₂) ₂ -C-
369	C⊢√CH₂-	1	3	0	-	н	-(CH ₂) ₂ -C-CI
370	CH2-	1	3	0	-	Н	-(CH ₂) ₂ -C-C-C(CH ₂) ₃ CH ₃
371	CH2-	1	3	0	-	Н	-(CH ₂) ₂ -C
372	CH2-	1	3	0	-	Н	$-CH_2 \overset{O}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{$
37 3	CHCH ₂ -	1	3	0	-	Н	-(CH ₂) ₃ -C-N-
374	С⊢{СН₂-	1	3	0	-	Н .	-(CH ₂) ₃ -C-N-OCH ₃

Table 1.35

lable i							
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (C$
375	C├-{}-CH₂-	1	3	0	-	Н	-(CH ₂) ₃ - C-N-CI
376	CH-CH₂-	1	3	0	-	Н	-(CH ₂) ₃ -C-N-OCH ₃
377	С⊢√_СН2-	1	3	0	-	H	- CH ₂ -C-CH ₂ -C-N-CI CH ₃
378	CH2 ⁻	1	3	0	-	Н	$-CH_2 CH_2 - C \cdot N - F$
379	CH2⁻	1	3	0	-	Н	-(CH ₂) ₃ -C-N-C-CH ₃
380	C├ \ CH ₂ -	1	3	0	-	Н	-(CH ₂) ₃ -C-N-CH ₂ -
381	CHCH ₂ -	1	3	0	-	Н	- CH ₂ - N- S- CH ₃
382	CH2-	1	3	0	-	Н	- CH ₂ - N- C- O- CH ₂ -
383	C├─ ○ CH ₂ -	1	3	0	-	Н	- CH O- C- N- CI
384	CHCH ₂ -	2	2	0	-	Н	-CH ₂ -N-C-CH ₃
385	CH-CH ₂ -	2	2	0	-	н	-CH ₂ -N-C-NO ₂

Table 1.3.6

	.4.0						
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} G - R^6$
386	CH₂-	2	2	0	-	H	-CH ₂ -N-C-
387	(CH ₂ -	2	2	0	-	н	-CH ₂ -N-C-
388	CH ₂ -	2	2	0	-	Н	-CH ₂ -N-C-\(\sigma\)
389	CH₂-	2	2	0	-	. н	-CH ₂ -N-C
390	CH ₂ -	2	2	0	-	Н	-CH ₂ -N-C-CF ₃
391	~ CH₂-	2	2	0	-	Н	$-CH_2-N-C-$ $+$ F
392	CH ₂ -	2	2	0	-	Н	$-CH_2-N-C- \bigcirc OCF_3$
393	—CH₂-	2	2	0	-	Н	-CH ₂ -N-C-
394	~ _CH₂−	2	2	0	-	Н	-CH ₂ -N-C-CI
395	€ CH ₂ -	2	2	0	-	Н	-CH ₂ -N-C-⟨Sr
396	CH₂⁻	2	2	0	-	Н	-CH ₂ -N-C

Table 1.37

Compd.	R ¹ (CH ₂)	k	m	n	chirality	⁻ R ³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
397	()—CH₂-	2	2	0	-	Н	-CH ₂ -N-C
398	CH₂-	2	2	0	-	Н	-(CH ₂) ₂ -N-C-
399	CH ₂ -	2	2	0	-	Н	-(CH ₂) ₂ -N-C-
400	CH ₂ -	2	2	0	-	Н	-(CH ₂) ₂ -N-C-NO ₂
401	—CH₂-	2	2	0	-	Н	-(CH ₂) ₂ -N-C
402	CH₂−	2	2	0	-	Н	-(CH ₂) ₂ -N-C-CF ₃
403	◯ —CH₂−	2	2	0	-	Н	-(CH2)2-N-C- $+$ F
404	CH₂−	2	2	0	-	Н	$-(CH_2)_2$ -N-C- \longrightarrow OCF ₃
405	CH₂-	2	2	0	-	Н	-(CH ₂) ₂ -N-C-Br
406	~ -CH₂-	2	2	0	-	Н	-(CH ₂) ₂ -N-C-C
407	CH₂−	2	2	0	-	H	-(CH ₂) ₂ -N-C

Table 1.38

Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{\rho} + (CH_2)_{\overline{q}} + G - R^6$
408	CH₂-	2	2	0	-	Н	-(CH ₂) ₂ -N-C-F
409	CH ₂ -	2	2	0	-	Н	-(CH ₂) ₂ -N-C-CI
410	CH₂-	2	2	0	-	Н	(S) P -CH-N-C- H CH ₂ CH(CH ₃) ₂
411	CH ₂ -	2	2	0	-	н	(S) -CH-N-C- H CH ₂ CH(CH ₃) ₂
412	CH₂-	2	2	0	-	Н	$(S) \qquad \bigcap_{\substack{\square \\ \square \\ \square \\ \square \\ \square \\ \square \\ \square \\ \square}} NO_2$
413	(CH₂-	2	2	0	-	н	(S) -CH-N-C- H CH ₂ CH(CH ₃) ₂
414	CH₂-	2	2	0	-	Н	(S) CF_3 CC_3 CC_4 CC_4 CC_4 CC_5 CC_3 CC_4 CC_5
415	CH ₂ -	2	2	0	-	H	(S) CF_3 CF_3 CH_1 CH_2 CH_3 CF_3 CF_3 CF_3
416	—CH₂-	2	2	0	-	н	(S) O OCF ₃ -CH-N-C- CH ₂ CH(CH ₃) ₂
417	—CH₂-	2	2	0	-	H	(S) Br -CH-N-C
418	CH ₂ -	2	2	0	-	Н	(S) -CH-N-C- H CH ₂ CH(CH ₃) ₂

Table 1.39

i abic							
Compd.	R ¹ (CH ₂)j	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
419	CH₂-	2	2	0	-	Н	(S) P -CH-N-C-Br -CH ₂ CH(CH ₃) ₂
420	CH ₂ -	2	2	0	-	н .	(S) 0 -CH-N-C-F H CH ₂ CH(CH ₃) ₂
421	CH₂-	2	2	0	-	Н	(S) CI -CH-N-C
422	€ CH ₂ -	2	2	0	-	Н	(R) P -CH-N-C- H CH ₂ CH(CH ₃) ₂
423	€ CH ₂ -	2	2	0	-	Н	(<i>P</i>) 0 -CH-N-C- CH ₂ CH(CH ₃) ₂
424	CH ₂ -	2	2	0	-	Н	(<i>H</i>) NO ₂ -CH-N-C
425	CH ₂ -	2	2	0	-	Н	(R) $-CH-N-C -CO_2CH_3$ $-CH_2CH(CH_3)_2$
426	CH ₂ -	2	2	0		Н	(<i>R</i>) −CH-N-C- H CH ₂ CH(CH ₃) ₂
427	CH₂-	2	2	0	-	Н	$(P) \qquad CF_3$ $-CH-N-C-$ H $CH_2CH(CH_3)_2 \qquad F$
428	—CH₂-	2	2	0	- -	Н	$(R) \qquad OCF_3$ $-CH-N-C-$ $CH_2CH(CH_3)_2$
429	CH₂-	2	2	0	-	Н	(<i>H</i>) Br -CH-N-C- Br -CH ₂ CH(CH ₃) ₂

Table 1.40

Iabic	1.4 U						
Compd.	R ¹ (CH ₂),	k	m	n	chirality	Ì₹³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
430	CH₂-	2	2	0	-	Н	(H) CH -CH-N-C- -CH-N-C- -CH ₂ CH(CH ₃) ₂
431	CH ₂ -	2	2	0	-	н	(<i>H</i>) (<i>H</i>) -CH-N-C
432	CH ₂ -	2	2	0	-	Н	(A) P -CH-N-C-F H CH ₂ CH(CH ₃) ₂
433	CH ₂ -	2	2	0	-	Н	(F) CI -CH-N-C
434	CH-2-	1	3	1	-	Н	-CH ₂ -N-C-
435	с⊢(СН₂-	1	3	1	-	н	-CH ₂ -N-C-
436	CH2-	1	3	1	-	Н	-CH ₂ -N-C-\(\bigc\) NO ₂
437	C├ - CH ₂ -	1	3	1	-	н	-CH ₂ -N-C-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\
438	C├ \ _CH₂-	1	3	1	-	н	-CH ₂ -N-C-CF ₃
439	CH ₂ −	1	3	1	-		$-CH_2-N-C- \bigvee_{F}^{CF_3}$
440	C├ \ _CH ₂ -	1	3	1	-	н	$-CH_2-N-C-$

Table 1.41

Compd. No.	R ¹ (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
441	C⊢-{CH₂-	1	3	1	-	н	-CH ₂ -N-C-
442	С⊢√_СН₂-	1	3	1	-	Н	-CH ₂ -N-C-C
443	С⊢√СН₂-	1	3	1	-	Н	-CH ₂ -N-C-⟨->-Br
444	C⊢√CH ₂ -	1	3	1	-	Н	-CH ₂ -N-C
445	С⊢√_СН₂-	1	3	1	-	н	-CH ₂ -N-C-CI
446	CH2-	1	3	1	-	Н	-(CH ₂) ₂ -N-C-
447	СН2-	1	3	1	-	Н	-(CH ₂) ₂ -N-C-
448	CH2-	1	3	1		Н	-(CH ₂) ₂ -N-C-NO ₂
449	CHCH ₂ -	1	3	1	- .	Н	$-(CH_2)_2$ -N-C- \longrightarrow ∞_2 CH ₃
450	C├─ \ CH ₂ -	1	3	1	-	H	-(CH ₂) ₂ -N-C-CF ₃
451	CHCH ₂ -	1	3	4	-	Н	-(CH ₂) ₂ -N-C-F ₃

Table 1.42

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q - G - R^6$
452	С⊢—СН2−	1	3	1	-	н	-(CH ₂) ₂ -N-C
453	СЊ_СН2-	1	3	1	-	н	-(CH ₂) ₂ -N-C-
454	С⊢—СН2-	1	3	1	-	Н	-(CH ₂) ₂ -N-C-C
455	С⊢√СН₂-	1	3	1	-	Н	-(CH ₂) ₂ -N-C-Br
456	СЊ_СН₂-	1	3	1	-	н	-(CH ₂) ₂ -N-C-F
457	СЊ_СН₂-	1	3	1	, -	н	-(CH ₂) ₂ -N-C-CI
458	C ⊢√ -CH₂-	2	2	1	-	н	- CH ₂ - N- C-
459	C⊢√CH₂-	2	2	1	-	н	- CH ₂ -N-C-CH ₃
460	CHCH ₂ -	2	2	1	-	H	$-CH_2-N$ $\stackrel{O}{\stackrel{\parallel}{\text{C}}}$ $-CH_3$
461	CHCH ₂ -	2	2	1	-	H ·	- CH ₂ -N-C-CF ₃
462	CH2-	2	2	1	-	н	$-CH_2-N-C$ H_3C

Table 1.43

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R ³	$-(CH_2)_p + (CH_2)_q G - R^6$
463	CI—CH₂-	2	2	1	-	н	$-CH_2$ $-N$ CH_3
464	CI—CH₂-	2	2	1	-	н	$-CH_{2}-N-C$ OCH_{3} OCH_{3} OCH_{3}
465	С├─(СН2-	2	2	1	-	Н	-CH ₂ -N-C-\(\bigc\)
466	CI—CH₂-	2	2	1	-	н	- CH ₂ - N- C-
467	CI—CH₂-	2	2	1	-	Н	- CH ₂ -N-C-
468	CH-⟨\bar{\cdot\}-CH2-	2	2	1	-	н	-CH ₂ -N-C-N(CH ₃) ₂
469	CH-€	2	2	1	-	н	$-CH_2-N$
470	C⊢√_CH₂-	2	2	1	-	Н	-CH ₂ -N-C-CN
471	CH-2−	2	2	1	-	Н	- CH ₂ -N-C
472	C ⊢ CH ₂ -	2	2	1	-	Н	- CH ₂ -N-C
473	CH2−	2	2	1	-	н	-CH ₂ -N-C-CH ₃

Table 1.44

•							
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	Ř³ .	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
474	CI-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
475	С├-{}СН₂-	2	2	1	-	H	- CH ₂ -N-C-CH(CH ₃) ₂
476	CH-√CH ₂ -	2	2	1	-	H	-CH ₂ -N-C-NO ₂
477	с⊢сн₂-	2	2	1	-	Н	- CH ₂ -N-C- C- OCH(CH ₃) ₂
478	C⊢——CH₂-	2	2	1	-	Н	- CH ₂ - N- C-\ H N H ₃ C
479	С⊢√СН₂-	2	2	1	-	Н	- CH ₂ - N C
480	C├ \ CH ₂ -	2	2	1	-	H	- CH ₂ -N-C-O Br
481	CH2-	2	2	1	-	Н	-CH ₂ -N-C-S
482	CHCH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-S
483	CH-√CH ₂ -	2	. 2	1	-	Н	-CH₂-N-C-S CH₃
484	CH-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-N-H

Table 1.45

, abic .							
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_p + \frac{R^4}{R^5} (CH_2)_q - G^-R^6$
485	С⊢—СН₂-	2	2	1	-	н	- CH ₂ -N-C-CF ₃
486	CH2−	2	2	1	-	н	- CH ₂ -N-C-CN
487	CI—CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-
488	CH₂-	2	2	1	-	Н	- CH ₂ -N-C-N-C-NH ₂
489	C├ \	2	2	1	-	н	$-CH_2-N-C$ F_3C
490	C⊢√CH₂-	2	2	1	-	н	-CH ₂ -N-C
491	C├ \ CH ₂ -	2	2	1	-	Н	CH ₂ N-C
492	CH2-	2	.2	1	-	Н	- CH ₂ - N- C- OCF ₃
493	СН2-	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
494	CH_CH ₂ -	2	2	1	-	Н	- CH ₂ -N-C-CF ₃
495	ССН2-	2	2	1	-	H	- CH ₂ -N-C-CF ₃

Table 1.46

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
496	CHCH ₂ -	2	2	1	-	н	$-CH_2-N+C-F$
497	CI-CH ₂ -	2	2	1	÷	н	-CH ₂ -N-C-CH(CH ₃) ₂
498	CH2−	2	2	1	-	Н	-CH ₂ -N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-
499	CHCH ₂ -	2	2	1	-	Н	- CH ₂ -N C-N(CH ₃) ₂
500	C├ - CH ₂ -	2	2	1	-	Н	$-CH_2-NC-OCH_3$
501	С⊢—СН₂-	2	2	1	-	Н	-CH ₂ -N-C-NO ₂
502	CI—CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$
503	CH-2-	2	2	1		H	-CH ₂ -N-C-NO ₂
504	CI-CH ₂ -	2	2	1	-	Н	$-CH_2-H$ C OCH_3 OCH_3
505	CH₂-	2	2	1	-	Н	$-CH_2-N-C- \longrightarrow Br$
506	CI-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-\ NO ₂

Table 1.47

Compd.	R ¹ (CH ₂) –	k	m	n	chirality	Ŕ³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
507	CI—CH ₂ -	2	2	1	-	Н	- CH ₂ -N-C-
508	CI—CH ₂ -	2	2	1	.	Н	-CH ₂ -N-C-S
509	CH-CH ₂ -	2	2	1	-	Н	- CH ₂ -N-C-S
510	CH-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C-CH_3$
511	CHCH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-(CH ₃) ₃
512	CI—CH ₂ -	2	2	1	-	н	ÇN CHCH₃ - CH₂- N- C-
513	CH-2-	2	2	1	-	Н	- CH ₂ -N-C-CH ₃
514	CI-CH ₂ -	2	2	1	-	Н	- CH ₂ - N- C- C(CH ₃) ₃
515	CH-2-	2	2	1	-	H	- CH ₂ - N- C- CH ₂ OH
516	H ₂ N-CH ₂ -	2	2	1	-	H -	$-CH_2-N-C- \bigcirc CF_3$
517	H ₂ N CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-

Table 1.48

lable							
Compd.	R ¹ (CH ₂),-	k	m	n	chirality	Ř³	$-(CH_2)_p$ $+ \frac{R^4}{R^5}$ $(CH_2)_q$ $- GR^6$
518	NH ₂ -CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
519	O-N-CH ₂ -	2	2	. 1	-	Н	-CH ₂ -N-C-CF ₃
520	с⊢СН₂-	2	2	1	-	-сн _з	$-CH_2-N-C-$
521	С├─(СН₂-	2	2	1	-	-(CH ₂) ₂ CH-	-CH ₂ -N-C-CF ₃
522	СЊСН₂-	2	2	1	-	-CH ₂ CH-	-CH ₂ -N-C-CF ₃
523	C├ \ CH ₂ -	2	2	1		-(CH ₂) ₂ CH-	-CH ₂ -N-C-
524	C ⊢√ CH ₂ −	2	2	1	-	-CH ₂ CH-	-CH ₂ -N-C-
525	CI—(CH₂-	2	2	1	-	н	-CH ₂ -N-C-
526	CH2-	2	2	1	-	Н	-CH ₂ -N-C-
527	CHCH ₂ -	2	2	1	-	H	-CH ₂ -N-C-_S
528	CI	2	2	1	-	Н	$-CH_{2}-N-C$ $F_{3}C$ CH_{3} $F_{3}C$

Table 1.49

Compd.	R ¹ (CH ₂)	k	m	n	chirality	H³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
529	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-VO NO ₂
530	CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-
531	CI—CH₂-	2	2,	1	-	н	-CH ₂ -N-C-S
532	CH2-	2	2	1	-	Н	$-CH_{2}-N$ $+C$ $+CH_{3}$ $+G$ $+G$ $+G$ $+G$ $+G$ $+G$ $+G$ $+G$
533	CH-2-	2	2	1	<u>-</u>	Н	$-CH_2-N-C-$ H H_3C
534	CH2−	2	2	i	-	Н	$-CH_2-N-C-VO$ H_3C
535	CI—CH₂-	2	2	1	-	Н	-CH ₂ -N-C-S H ₃ C-C
536	CH-2-	2	2	1	-	н	$-CH_2-N-C-V_1$ $+ H_3C$ $+ CH_3$
537	C⊢√CH₂-	2	2	1	-	Н	$-CH_2-N-C$ H_3C $C(CH_3)_3$
538	CI—CH₂-	2	2	1	-	н	-CH ₂ -N-C- H ₃ C
539	CHCH ₂ -	2	2	1	-	н	$-CH_{2}-N-C -CH_{2}-N-C -CH_{3}$ $-CH_{2}-N-C -CH_{3}$ $-CH_{2}-N-C -CH_{3}$

Table 1.50

iabic i	.00						
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	'R³	$-(CH_2)_p + (CH_2)_q G - R^6$
540	CI—⟨CH ₂ -	2	2	1	-	Н	$-CH_2-N-C-N$
541	C⊢√ CH₂-	2	2	1	-	н	$-CH_2-N-C$ H_2N
542	C├ \ CH₂-	2	2	1	-	Н	-CH ₂ -N-C-CH ₂ CH ₃
543	C├ - CH ₂ -	2	2	1	-	н	$-CH_2-N-C -CH_2CH_3$
544	CH2-	2	2	1	-	Н .	-CH2-N-C-
545	C├─ \ CH ₂ -	2	2	4		Н	$-CH_2-N-C-$
546	C├ \ CH ₂ -	2	2	1	-	H	-CH ₂ -N-C-CI
547	CH2-	2	2	1	-	Н	$-CH_2-N-C$ H CI
548	CH2-	2	2	1	-		-CH ₂ -N-C-CI
549	CH-CH ₂ -	2	2	1	-	Н	$-CH_{2}-N-C$ $O_{2}N$ $O_{2}N$
550	СН-СН2-	2	2	1	-		$-CH_2-N-C-$ O_2N CI

Table 1.51

Table 1							
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R ³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
551	С⊢√СН₂-	2	2	1	-	Н	-CH ₂ -N-C-CH ₂ -CH ₃
552	CH-2-	2	2	1	-	Н	-CH ₂ -N-C-CH ₂
553	C├────────────────────────────────────	2	2	1	-	н	$-CH_2-N-C-CH_2$ CF_3 CF_3
554	C├─ \ CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-N-H
555	CH2-	2	2	1	-	Н	-CH ₂ -N-C-N-CI
556	CH₂-	2	2	1	-	Н	-CH ₂ -N-C-N-CH ₃
557	CHCH2-	2	2	1	-	Н	-(CH ₂) ₂ -N-C-
558	CH2-	2	2	1	-	н	-CHN-C-
559	CH-CH ₂ -	2	2	1	-	Н	-CHNC-CF3
560	CH-€	2	2	1	-	Н	-CHNC-CN -CH3
561	CH-CH ₂ -	2	2	1	-	н	-CHN-C-Br

Table 1.52

WO 99/25686

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	\mathbb{R}^3	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} G - R^6$
562	CI	2	2	1	-	Ч	-CH-N-C-CI
563	CH-2-	2	2	1	-	H	$ \begin{array}{ccc} CF_3 \\ -CH & C \\ H \\ CH_3 & F_3C \end{array} $
564	C⊢—CH₂-	2	2	1	-	Н	OCH ₂ CH ₃ -CHNC-CH
565	CI—CH₂-	2	2	1	-	Н	-CHNC-CF ₃
566	CI⟨CH ₂ -	2	2	1	-	Н	-CHN-C-CH3
567	CI—CH₂-	2	2	1	-	H	-CHNC-CF3
568	CI-CH ₂ -	2	2	1	-	Н	-CHNC-CF3
569	CH-2-	2	2	1	-	н	-CHNC-CF3
570	CI—CH ₂ -	2	2	1	-	Н	-CH-N-C-F CH ₃
571	CI—CH ₂ -	2	2	1	-	Н	-CHNC-CH3)2 -CHNC-CH3
572	CH2-	2	2	1	-	Н	-CHN-CF ₃

Table 1.53

10010	.00						
Compd.	R ¹ (CH ₂)	k	m	n	chirality	'R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^- R^6$
573	CI—CH ₂ -	2	2	1	-	н	-CHN-C-S
574	CI-CH ₂ -	2	2	1	-	н	-CHN-C-S Br
575	CH2−	2	2.	1	-	н	-CH N C C(CH ₃) ₃
576	CH2-	2	2	1	· -	Н	-CHNC-OSCH ₃
577	CI—CH₂-	2	2	1	-	Н	-CH N C
578	C├─ \ CH ₂ -	2	2	1	-	Н	-CHNC-S
579	CI—CH₂-	2	2	1	-	Н	-CHN-C-N
580	CH2-	2	2	1	-	н	-CHNC-S CH3
581	CH2-	2	2	1	-	Н	-CHNC-S
582	CH2-	2	2	1	-	н .	-CHNC-S
583	CH_CH ₂ -	2	2	1	- -	Н	- CH N C N CH3

Table 1.54

, abic .	.0 .						
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^{-R^6}$
584	CI—(CH ₂ -	2	2	1	-	н	- CHN C- C- C- C- CH3
585	CI—()—CH₂-	2	2	1	-	н	-CHN-C-CN CH3
586	CI—(2	2	1	-	н	- CH N C-CI
587	CI—CH₂-	2	2	1	-	Н	-CHNC-CF3 CH3
588	C⊢√CH ₂ -	2	2	1		н	$-CHNC-NH_2$ CH_3
589	CI-CH ₂ -	2	2	1	-	н	- СН N- С- Н Н СН ₃
590	CH ₂ -	2	2	1	-	Н	- CH N C CH(CH ₃) ₂ CH ₃
591	CH_CH ₂ -	2	2	1	-	н	-CHN-C-N(CH ₃) ₂ -CH ₃
592	CI-CH ₂ -	2	2	1	-	Н	$-CHNC - OCH_3$ CH_3
593	CH2-	2	2	1	-	Н	$-CHNC \longrightarrow CH_2OH$ CH_3
594	CI—CH ₂ -	2	2	1	-	Н	- СН- N- С- ОН СН ₃

Table 1.55

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	'R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^-R^6$
595	C⊢CH₂-	2	2	1	-	Н	- CH N C- CO ₂ CH ₃ CH ₃
59 6	C├─ (CH ₂ -	2	2	1	-	н	- CH N C- C- CH ₃
597	CI—CH₂-	2	2	1	-	н	- CH N C - CH3 - CH3
59 8	CH2-	2	2	1	-	н	- CH- H-C-O
599	CHCH ₂ -	2	2	1	<u>.</u> ·	Н	-CH N C N CH ₃ CH ₃
600	CH2⁻	2	2	1	-	Н	-CHNC-OBr
601	CH ₂ -	2	2	1	-	H	-CHNC-CH3 CH3
602	CI—CH₂-	2	2	1	-	Н	-CHNC
603	CHCH ₂ -	2	2	1	-	Н	$-CHNC \longrightarrow NH_2$ $-CHNC \longrightarrow NH_2$ CH_3
604	CH2-	2	2	1	-	Н	-CH-N-C-
605	CH2-	2	2	1	-	Н	-CH-N-C-CO

Table 1.56

Compd.	R^1 $(CH_2)_j$	k	m	n	chirality	⁻ R³	$-(CH_2)_p + \frac{R^4}{R^5} (CH_2)_q G - R^6$
606	CH2-	2	2	1	-	н	-CH-N-C-\S CH ₃
607	CI	2	2	1	-	н	-CH-N-C-S CH ₃
608	CH2-	2	2	1	•	н	-CH-N-C-CH ₃ -CH ₃ H ₃ C
609	CH2-	2	2	1	-	Н	-CH-NCCO CH ₃ H ₃ C
610	CH-CH ₂ -	2	2	1	-	Н	-CH3 O=CCH3
611	C⊢√CH₂-	2	2	1	-	н	$-CH_{H}C-C(CH_{3})_{3}$ $-CH_{3}H_{3}C$
612	CH-€	2	2	1	-	Н	-CH-N-C-YO
613	C├ - CH ₂ -	2	2	1	-	·H	-CH-N-C-CH ₃ -CH ₃ F ₃ C
614	CHCH ₂ -	2	2	1	-	Н	$-CH-N-C-V-CH_3$ $-CH_3$ $-CH_3$ $-CH_3$ $-CH_3$
	CH2-						-CH-N-C-NH
616	C	2	2	1	-	Н	-CH-N-CN

Table 1.57

105.0							
Compd.	R ¹ (CH ₂)	k	m	n	chirality	[*] R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
617	CH-CH ₂ -	2	2	1	-	н	-CH-N-C-CF3
618	CH2-	2	2	1	-	Н	-CHN-C- H CH(CH ₃) ₂
619	CH2-	2	2	1	<u>-</u>	Н	- CH- N- C- CN - H CH(CH ₃) ₂
620	CHCH ₂ -	2	2	1	-	Н	- CH-N-C- H CH(CH ₃) ₂ Br
621	CH2-	2	2	1	-	Н	- CH N C C C C C C C C C C C C C C C C C
622	CH2−	2	2	1	-	Н	O N(CH ₃) ₂ -CH N C SH(CH ₃) ₂ CH(CH ₃) ₂
623	CH ₂ -	2	2	1	-	Н	-CHNC-OCH3 -CH(CH3)2
624	CH2−	2	2	1	-	Н	- CH+ N- C- NO ₂ - CH+ N- C- NO ₂ - CH(CH ₃) ₂
625	CHCH2-	2	2	1	-	Н	- CH N C - NH ₂ - CH (CH ₃) ₂
626	CH ₂ -	2	2	1		н	-CH N-C- H CH(CH ₃) ₂ CF ₃
627	CH2-	2	2	1	-	н	OCH ₂ CH ₃ - CH N C - CH CH ₃) ₂

Table 1.58

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	Ř³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
628	CI—⟨CH ₂ -	2	2	1	· -	Н	- CH N C CO ₂ CH ₃ - CH(CH ₃) ₂
629	CH—CH₂-	2	2 .	1	-	н	-CHNC-CH(CH ₃) ₂
630	CH-√CH ₂ -	2	2	1	-	н	$-CH \stackrel{\text{O}}{\overset{\text{C}}}{\overset{\text{C}}{\overset{\text{C}}}{\overset{\text{C}}{\overset{\text{C}}{\overset{\text{C}}{\overset{\text{C}}{\overset{\text{C}}}{\overset{\text{C}}{\overset{\text{C}}}{\overset{\text{C}}{\overset{\text{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}$
631	CH2−	2	2	1	-	Н	$ \begin{array}{ccc} & & & & & & \\ & & & & & & \\ & & & & & &$
632	CH2-	2	2	1	-	Н	-CHNC- H CH(CH ₃) ₂ CF ₃
633	CH2−	2	2	1	-	н	CF ₃ -CHNC
634	CH2−	2	2	1	-	Н	$-CHNC-F$ $CH(CH_3)_2$
635	CI—CH₂-	2	2	1	-	Н	-CHN-C
636	CHCH ₂ -	2	2	1	-	Н	$-CHNC-CH_3$ $-CH(CH_3)_2$
637	CH2-	2	2	1	-	Н	-CH-N-C-CF ₃ -CH(CH ₃) ₂
638	CHCH ₂ -	2	2	1	-	Н	$-CH \stackrel{\circ}{N}C - CN$ $-CH \stackrel{\circ}{C}CH$ $CH(CH_3)_2$
							•

Table 1.59

	•						
Compd.	R ¹ (CH ₂)	k	m	n	chirality	[°] R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
639	C├ \ CH ₂ -	2	2	1	-	H .	$-CHNC- N(CH_3)_2$ $-CH(CH_3)_2$
640	C├ \ CH ₂ -	2	2	1	-	H	$-CH V C \longrightarrow OCH_3$ $CH(CH_3)_2$
641	CHCH ₂ -	2	2	1	-	Н	$-CHNC-CO_2CH_3$ $CH(CH_3)_2$
642	C⊢√CH ₂ -	2	2	1	-	Н	-CH N-C- H CH(CH ₃) ₂
643	CH2-	2	2	1	-	H .	$-CHNC-CF_3$ $-CH(CH_3)_2$
644	CH2-	2	2	1	-	Н	-CHNC - C(CH3)3 $-CH(CH3)2$
645	CH2-	2	2	1	-	H	$-CH N C \longrightarrow NH_2$ $CH(CH_3)_2$
646	CHCH ₂ -	2	2	1	-	Н	O - CH-N-C- H CH(CH ₃) ₂ CH ₂ OH
647	CI-CH ₂ -	2	2	1	-	Н	O O C-CH ₃ CH(CH ₃) ₂
648	CH2-	2	2	1	-	Н	$- \underset{CH(CH_3)_2}{\overset{O}{\vdash}} - CH(CH_3)_2$
649	CHCH ₂ -	2	2	1	-	Н	- CH N C- OCH(CH ₃) ₂ CH(CH ₃) ₂

Table 1.60

Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_p$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
650	CI—⟨¯¯)— CH₂-	2	2	1	· •	Н	-CH-N-C
651	CI—CH ₂ -	2	2	1	-	Н	CHCH ₃ CHCH ₃ CHCH ₃ CH(CH ₃) ₂
652	С├-{}СН₂-	2	2	1	-	Н	$-CHNC-NO_2$ $-CH(CH_3)_2$
653	CI—CH₂-	2	2	1	-	Н	-CH-N-C- $-CH-N-C -CH-N-C -CH-N-C-$
654	CI—€ CH ₂ -	2	2	1	-	Н	-CH-N-C
655	C├ ─ CH ₂ -	. 2	2	1	-	Н	-CH-N-C- -CH-N-C- -CH(CH ₃) ₂
656	CI—CH ₂ -	2	2	1	-	Н	-CHNC-C9 CH(CH ₃) ₂
657	CH_CH ₂ -	2	2	1	-	Н	-CH-N-CS CH(CH ₃) ₂
658	CH-CH₂-	2	2	1	-	Н.	- CH-N-C NH CH (CH ₃) ₂
659	CH- (CH₂-	2	2	1	-	Н	$-CH-N-C-CS$ $-CH(CH_3)_2$ NO_2
660	CI—CH₂-	2	2	1	-	Н	-CH-N-C-N CH(CH ₃) ₂

Table 1.61

iable	.0 1						
Compd. No.	R ¹ (CH ₂)j	k	m	n	chirality	⁻ R³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} - G - R^6$
661	C├ - CH ₂ -	2	2	1	-	н	-CH-N-CS H CH(CH ₃) ₂ OCH ₃
662	C├ - CH ₂ -	2	2	1	-	н	-CH-N-CCH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃
663	С├-СН₂-	2	2	1	-	н	- CH-N-C O H CH(CH ₃) ₂
664	CI—CH₂-	2	2	1	-	Н	-CH-N-C
665	CH₂-	2	2	1	-	Н	-CH-N-C-S -CH(CH ₃) ₂
666	CI————————————————————————————————————	2	2	1	-	н	CH(CH ₃) ₂ CH ₃ CH ₃ CH ₃ CH ₃
667	CI—CH₂-	2	2	1	-	Н	O CH ₃ -CH-N-C-O H CH (CH ₃) ₂
668	CH2-	2	2	1	-	Н	CH CH CH CH $CH_3)_2$
669	CI-CH ₂ -	2	2	1	-	Н	-CH-N-C- H N CH(CH ₃) ₂ CH ₃
670	CH2-	2	2	1	-	Н	-CH-N-C- H H O Br CH(CH ₃) ₂
671	С⊢√_СН2-	. 2	2	1	<u>-</u> ·	Н	-CH-N-C- H NO ₂ CH(CH ₃) ₂

Table 1.62

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
672	CH-{}CH₂-	2	2	1	-	н	-CH-N-C- H N CH(CH ₃) ₂ H
673	CH-CH₂-	2	2	1	-	Н	-CH-N-C- C(CH ₃) ₂
674	CH-2-	2	2	1	-	Н	-CH-N-C- CH(CH ₃) ₂
675	CH2-	2	2	1	-	Н	-CH-N-C- H S CH ₃
676	CH-CH₂-	2	2	1	-	Н	-CH-N-C- H N CH(CH ₃) ₂ H
677	CH2 ⁻	2	2	1	-	н	-CH-N-C- H N-C- CH(CH ₃) ₂ CH ₃
678	CH-2-	2	2	1	-	Н	-CH-N-C- CH(CH ₃) ₂
679	CI—CH₂-	2	2	1	-	Н	-CH-N-C-S-CH(CH ₃) ₂
680	CH2 ⁻	2	2	1	-	Н	-CHN-C- H S Br CH(CH ₃) ₂
681	CH-√CH ₂ -	2	2	1	-	Н	-CH-N-C-CH ₃ -CH(CH ₃) ₂ -CH ₃
682	CI—CH₂-	2	2	1	-	Н	-CH-N-C

Table 1.63

lubic							
Compd. No.	R ¹ (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_p + \frac{R^4}{R^5} (CH_2)_q - G^-R^6$
683	CH-€CH ₂ -	2	2	1	-	Н	-CHN-C-S SCH ₃
684	CH2−	2	2	1	-	Н	-CH-N-C- H S S-CH(CH ₃) ₂ CH(CH ₃) ₂ 0
685	CI—CH ₂ -	2	2	1	-	Н	-CH-N-C
686	C├ - CH ₂ -	2	2	1	-	Н	- CH N- C- H CH ₂ CH(CH ₃) ₂
687	CI—CH ₂ -	2	2	1	-	Н	-c+ N-C-
688	CH ₂ -	2	2	1	-	Н	-CHN-C-(CF3
689	CH2-	2	2	1	-	Н	-CHN-C-
690	CH2-	2	2	1	-	н	-CHN-C-Br
691	CH2-	2	2	1	-	Н	-CH N-C
692	CH2-	2	2	1	-	Н	- CH N-C-OCH3
693	CI—CH ₂ -	2	2	1	-	H	-CHN-C

Table 1.64

Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q G - R^6$
694	CI—CH ₂ -	2	2	1	-	н .	-CHNC-CH2CH3
695	CH₂-	2	2	1	-	Н	-CHNC-CH3
696	CI—CH₂-	2	2	1	-	Н	- CH N-C
697	CI—CH₂-	2	2	1	-	Н	-CH-N-C
698	CI—CH₂-	2	2	1	-	Н	-CHN-C-N(CH ₃) ₂
699	CHCH ₂ -	2	2	1	-	н	-CH N-C- OCH3
700	C├ ~ CH ₂ -	2	2	1	-	Н	-CHN-C
701	CI—(2	2	1	-	Н	-CHN-C-C-CH3
702	CI—CH ₂ -	2	2	1	-	Н	-CHN-C-CF3
703	CI————————————————————————————————————	2	2	1	-	Н	-CH N-C-CH(CH ₃) ₂
							-CHN-C-NO2

Table 1.65

Compd.	R ¹ (CH ₂)	k	m	n	chirality	R ³	$-(CH_2)_p + (CH_2)_q - G - R^6$
705	С⊢√СН₂-	2	2	1	-	Н	-CHN-C-S H3C
706	CI— CH ₂ -	2	2	1	-	Н	-CHN-C-STCH3
707	C├ ─ CH ₂ -	2	2	1	-	Н	-CH-N-C
708	CI—CH₂-	2	2	1	-	Н	-CHN-C-S Br
709	CI—()- CH₂-	2	2	1	-	Н	-CHN-C-STSCH3
710	CHCH ₂ -	2	2	1	-	Н	-CH-N-C-S Br
711	C├ - CH ₂ -	2	2	1	-	Н	-CHN-C-CH3
712	CHCH ₂ -	2	2	1	-	Н	-CHN-C-ST)
713	C├ - CH ₂ -	2	2	1	-	H	-CH-N-C
	C├ - CH ₂ -						0 _
715	C├ ~ CH ₂ -	2	2	1	-	H .	-chyc-s

Table 1.66

Compd.	R ¹ (CH ₂),-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
716	CHCH ₂ -	2	2	1	-	Н	-CHN-C-NH
717	CI-CH ₂ -	2	2	1	-	H·	-CH-N-C-VNO2
718	C⊢√CH₂-	2	2	1	- .	Н	-CHN-C-NH
719	С⊢{_}СН₂-	2	2	i	-	н	-CH-N-C-
720	C⊢√CH₂-	2	2	1	· · · · · · · · · · · · · · · · · · ·	Н	-CH-N-C-C Br
721	CHCH ₂ -	2	2	1	-	Н	-CH-N-C-\N CH3
722	CHCH ₂ -	2	2	1	-	H	-сн-v-с- Сн ₂ он
723	CH—CH₂-	2	2	1	-	Н	-CH-N-C-NH ₂
724	C├─ \ CH ₂ -	2	2	1	-	Н	-CH-N-C-(CH3)3
725	C├────────────────────────────────────	2	2	1	-	Н	-CHNC-C-C-C
726	CHCH ₂ -	2	2	1	-	Н	-CH-N-C-CH ₃

Table 1.67

						•	
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
727	CH2-	2	2	1	-	Н	-CHN-C-CI
728	CH2-	2	2	1	-	Н	-CH-N-C-NH ₂
729	CH₂-	2	2	1	-	Н	-CH-N-C-\(\)\(\)\(\)\(\)\(\)\(\)\(\)\(\)\(\)\(\
730	CH2-	2	2	1	-	Н	-CH-N-C-
731	CH2-	2	2	1	-	Н	-CH-N-C-CH3
732	CH2-	2	2	1	-	н	-CH-N-C-CF ₃
733	СН2-	2	2	1	-	Ĥ	-CH-N-C- HO CH(CH ₃) ₂
734	CI—CH ₂ -	2	2	1	-	H	-CH-N-CF
735	CI-CH ₂ -	2	2	1	-	н	-CH-N-C
736	CI—CH ₂ -	2	2	1	-	Н	$-CH-N-C H_2N$ CF_3
737	CI—CH ₂ -	2	2	1	-	Н	-CH-N-C

Table 1.68

R^2 $(CH_2)_j$	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
CH2−	2	2	1	-	Н	-CH-N-C-CH ₃
CH2-	2	2	1	-	Н	-CH-N-C-\NH
CH-€	2	2	1	-	Н	-CH-N-C
CH-2-	2	2	1	-	Н	-CH-N-C-\S
CH-CH ₂ -	2	2	1	-	Н	-CHN-C-S
CHCH_2-	2	2	1	-	Н	-ch-y-c-
CI-CH ₂ -	2	2	1	- ·	Н	-CHNC-CH3
CI—CH ₂ -	2	2	1	. -	Н	-CHN-C-(CH ₃) ₃
CI—CH ₂ -	2	2	1	-	Н	-CH-N-C
						Q ∼CH ₃
						-CHN-C-Cs
	$CH \longrightarrow CH_2^-$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$CH - CH_{2} - 2 $	$CH \longrightarrow CH_2^-$ 2 2 1 - CH_2^- 2 2 2 1 1 - CH_2^- 2 2 2 2 1 1 - CH_2^- 2 2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table 1.69

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q G - R^6$
749	CH_CH ₂ -	2	2	1	-	Н	-CH-N-C
750	C├─────CH₂─	2	2	1	-	Н	-CHN-C-O
751	CHCH ₂ -	2	2	1	-	Н	-CH-N-C-CH ₃ -CH ₂ OH
752	CI—CH₂-	2	2	1	-	Н	CF ₃ −CH+N-C− H CH ₂ OH CF ₃
753	CI—CH ₂ -	2	2	1	-	Н	-CHNC-CN -CH2OH
754	CH-2-	2	2	1	-	н	-CHN-C-CH2OH
755	CH-2-	2	2	1	-	н	-CH-N-C-CH ₂ OCH ₃ -CH ₂ OH
756	CHCH2-	2	2	1	-	н	-CH-N-C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
757	CI-CH ₂ -	2	2	1	-	н	-CH-N-C- H CH₂OH
758	CHCH ₂ -	2	2	1	-	Н	-CH-N-C-CO ₂ CH ₃ -CH-N-C-CO ₂ CH ₃ -CH ₂ CO ₂ CH ₃
759	CH_CH ₂ -	2	2	1	-	Н	-CHN-C-OCF3 -CH2OH

Table 1.70

Table							
Compd.	R ¹ (CH ₂)j	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
760	C├ - CH ₂ -	2	2	1	-	н	$-CH-N-C$ $CH_{2}OH$ $CH_{2}OH$ CH_{3}
761 ,	C├ - CH ₂ -	2	2	1	-	н	-CH-N-C-F H CH ₂ OH
762	CH-CH ₂ -	2	2	1	-	Н	-CH-N-C-CF ₃ -CH ₂ OH
763	C⊢√CH ₂ -	2	2	1	-	Н	-CH-N-C- H CH2OH
764	C├ - CH ₂ -	2	2	1	-	Н	-C-N-C-C-C-CH ₃
765	CI—CH₂-	2	2	1	-	н	CH ₃ O CH ₃ -C-N-C-CH ₃
766	C!—CH ₂ -	2	2	1	-	Н	CH ₃ O CF ₃ -C-N-C-C
767	CI-CH ₂ -	2	2	1	-	Н	CH ₃ Q -C-N-C- -CH ₃
768	CH2-	2	2	1	-	Н	CH ₃ O Br CH ₃ O CH ₃
769	CHCH_2-	2	2	1	-	Н	CH ₃ O OCF ₃ -C-N-C- H CH ₃
770	$CH_2^ CH_2^ CH_2^-$	2	2	1	-	Н	CH ₃ Q -C-N-C-C-C-C-CF ₃ -C-N-C-C-C-C-CF ₃ CH ₃ F

Table 1.71

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
771	СН-СН2-	2	2	1	-	Н	CH ₃ CF ₃ -C-N-C-F CH ₃
772	CI—CH ₂ -	2	2	1	-	Н	CH ₃ O -C-N-C-C-CF ₃ CH ₃
773	CI—CH₂-	2	2	1	-	н	CH ₃ P -C-N-C- H CH ₃ C(CH ₃) ₃
774	CI—CH ₂ -	2	2	1	-	н	CH ₃ P CH ₃ P CH ₃ SCH ₃
775	CI	2	2	1	-	Н	CH ₃ O CH ₃ -C-N-C- O C(CH ₃) ₃
776	C	2	2	1	-	Н	CH3 CH3 -C-N-C-CH3 -CH3
777	C├ - CH₂-	2	2	1	-	Н	CH ₃ O CF ₃ -C-N-C-O CH ₃ CH ₃
778	CI—CH₂-	2	2	1	-	Н	CH ₃ O NO ₂ -C-N-C-C-CI CH ₃
779	C├ ─ _CH ₂ -	2	2	1	-	Н	CH ₃ CCI -C-N-C-
780	CI—CH ₂ -	2	2	1	-	н	CH ₃ O NO ₂ -C-N-C- NO ₂
781	C	2	2	1	-	н	-C-N-C-N-C-N-CH ₃ H

Table 1.72

782 CH₂- 2 2 1 - H -	$ \begin{array}{c} $
	CH ₃ OCH ₃
сн	, ⊓3
783 CH2- 2 2 1 - H -CH	OCH ₂ CH ₃ N-C-
	H ₃ O CF ₃ -N-C-CH ₂ H H ₃
785 CH₂- 2 2 1 - H -	CH ₃ OCH ₃ CH ₂ OCH ₃ CH ₃ OCH ₃
2	C—CH ₂
	CH ₃
$_{ m H_2C}$	CH ₂ CCF ₃ CCF ₃
789 CH₂- 2 2 1 - H - H₂C	Q CH ₃
790 CH ₂ - 2 2 1 - H	C—CH ₂
791 CH₂- 2 2 1 - H - H₂C	-CH ₂ NO ₂ NO ₂
792 CH ₂ - 2 2 1 - H H ₂ C	C-N-C-CH ₂ OCF ₃

Table 1.73

iable i	.1 0						
Compd.	R ¹ (CH ₂)j	k	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q - G - R^6$
793	C⊢√CH₂-	2	2	1	-	н	$-C - N - C - F$ $H_2C - CH_2$
794	C	2	2	1	-	H	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
795	CI-CH ₂ -	2	2	1	-	Н	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $
796	CH2-	2	2	1	-	Н	H ₂ C—CH ₂ SCH ₃
797	CI—()—CH₂-	2	2	1	-	Н	H_2 C— CH_2 $C(CH_3)_3$
798	CH ₂ -	2	2	1	-	Н	-C-N-C-CH ₂
799	CI—()— CH₂-	2	2	1	-	_. H	H ₂ C—CH ₂ CH ₃
800	CI-CH ₂ -	2	2	1		Н	$\begin{array}{c} -C - N - C - C - C - C - C - C - C - C $
801	CH-2-	2	2	1	-	Н	H ₂ C—CH ₂
802	CH-2-	2	2	1	-	H	$-C - N - C - OCH_3$ $H_2C - CH_2$
803	CHCH ₂ -	2	2	1	-	Н	H_2C-CH_2 OCH ₂ CH ₃ H_2C-CH_2

Table 1.74

i abic i	• • •						
Compd.	R ¹ (CH ₂)j	k	m	n	chirality	R³	$-(CH_2)_p + \frac{R^4}{R^5}(CH_2)_q - G - R^6$
804	CH2 ⁻	2	2	1	-	Н	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
805	CH2−	2	2	1	-	н	H_2 C— CH_2 OCH ₃
806	C⊢CH₂-	2	2	1	-	н	H ₂ C — CH ₂
807	CH₂-	2	2	1	-	н	-CH-N-C-NH ₂
808	CH₂-	2	2	1	-	н	-CH-N-C
809	C├ \ CH ₂ -	2	2	1	-	н	-CH-N-C-CI H H C-NH ₂ CH ₂) ₂ -C-NH ₂
810	CHCH_2-	2	2	1	-	Н	-CH-N-C- H (CH ₂) ₂ - (F-NH ₂
811	C├ - CH ₂ -	2	2	1	-	н	-CH-NC
812	C├─ \ CH ₂ -	2	2	1	-	н	-CH-N-CS (CH ₂) ₂ -C-NH ₂ SCH ₃
813	C-CH ₂ -	2	2	1	-	н	$-CH-N-C -CF_3$ $(CH_2)_2-C-NH_2$
814	C-CH ₂ -	2	2	1	-	Н	-CH-N-C

Table 1.75

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} G - R^6$
815	CI	2	2	1	-	н	- CH-N-C- CF3 (CH ₂) ₂ -C-NH ₂ F
816	C├ - CH ₂ -	2	2	1	-	н	-CH-N-C- H (CH ₂) ₂ -C-NH ₂
817	C├ - CH ₂ -	2	2	1	-	Н	-CH-N-C
818	CI—⟨CH ₂ -	2	2	1	-	Н	-CH-N-C
819	C⊢√CH₂-	2	2	1	-	H	CF ₃ -CH-N-C- H (CH ₂) ₂ -C-NH ₂ CF ₃
820	C⊢√CH ₂ -	2	2	1	-	н	$-CH + NC - NO_2$ $(CH_2)_2 - C - NH_2$
821	CH-€-	2	2	1	-	H	-CH-N-C
82 2	CHCH ₂ -	2	2	1	-	Н	-CH-N-C-S-SCH ₃ -CH ₂ OCH ₃
823	CI-CH ₂ -	2	2	1	-	Н	-CH-N-C-H CH ₂ OCH ₃
824	CI—CH ₂ -	2	2	1	-	Н	-CH-N-C-C(CH ₃) ₃ -CH ₂ OCH ₃
825	CH-2-	2	2	1	-	Н	-CH-N-C

Table 1.76

iubio .	•						
Compd.	R ¹ (CH ₂) _j	k	m	ñ	chirality	R³	$-(CH_2)_p + (CH_2)_q - G - R^6$
826	C├- (_)- CH ₂ -	2	2	1	-	Н	CH_2OCH_3
827	C├ - CH ₂ -	2	2	1	-	н	-CH-N-C-NH H CH ₂ OCH ₃
828	C⊢√CH₂-	2	2	1	-	н	-CH-N-C
829	C⊢√CH₂-	2	2	1	-	н	-CH-N-C-CF3 -CH ₂ OCH ₃ F
830	с⊢СН₂-	2	2	1	-	Н	-CH-N-C-F H CH ₂ OCH ₃
831	CHCH ₂ -	2	2	1	-	н	-CH-N-C- H CH₂OCH3
832	CHCH ₂ -	2	2	1	-	Н	-CH-N-C
833	CHCH ₂ -	2	2	1	-	Н	-CH-N-C-NO ₂ -CH-N-C-CH ₂ OCH ₃
834	CH2-	2	2	1	-	н	O -CH-N-C-CF ₃ CH ₂ OCH ₃
835	CHCH2-	2	2	1	-	н	-CH-N-C- H CH ₂ OCH ₃
836	CHCH ₂ -	2	2	1	•	Н	$-CH-N-C-$ $CH_{2}OCH_{3}$

Table 1.77

	• • •						
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
837	C├ - CH ₂ -	2	2	1	-	Н	-CH-N-C
838	CI—CH₂-	2	2	1		н	-CH-N-C
839	CI—CH ₂ -	2	2	1	-	Н	$\begin{array}{c c} & \text{OCH}_3 \\ \hline -\text{CH-N-C-} & \text{OCH}_3 \\ \hline & \text{CH}_2\text{OCH}_3 & \text{OCH}_3 \end{array}$
840	CH2-	2	2	1	-	Н	-(CH ₂) ₃ -C-
841	CI—CH ₂ -	2	2	1	· _	Н	-(CH ₂) ₂ - C-
842	CH-€-CH ₂ -	2	2	1	-	н	-(CH ₂) ₂ -C-CI
843	C├ - CH ₂ -	2	2	1	-	Н	-(CH2)2-C-CH3 $H3C$
844	CHCH ₂ -	2	2	1	-	Н	$-(CH_2)_2-C- \bigcirc -CH_3$
845	CH ₂ -	2	2	1	-	Н	$-(CH_2)_2$ - C -
846	CHCH ₂ -	2	2	1	-	Н	$-(CH_2)_2 - C - C - C$
847	CHCH ₂ -	2	2	1	-	Н	-(CH ₂) ₂ -C-C-C-OCH ₃

Table 1.78

iabic	1.7 0						
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)^{\frac{R^4}{p+5}}(CH_2)^{\frac{1}{q}}G^{-R^6}$
848	CH2-	2	2	1	-	н	$-(CH_2)_2$ $-CH_3$ H_3C
849	C├ \ \\\\\\\\	2	2	1	- -	Н	-(CH2)2-C - OCH3 $H3CO$
850	C├ \ CH ₂ -	2	2	1	-	Н	$-CH_2- \begin{tabular}{l} O \\ \hline O \\ O \\ \hline \end{tabular} -CH_3$
851	C⊢√CH₂-	2	2	1	-	Н	- CH ₂ -N-C-N-CF ₃
852	C├──── CH ₂ -	2	2	1	-	Н	$-CH_2-N-C-N-CF_3$
853	CH2-	2	2	1	-	Н	- CH ₂ - N- C- N-
854	CH2-	2	2	1	-	Н	- CH ₂ -N-C-N-H
855	CI—CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-N-CH ₃
856	CH-2-	2	2	1	-	Н	- CH ₂ - N- C- N- C- CH ₃
857	СН2-	2	2	1	-	Н	-CH ₂ -N-C-N-OCH ₃
858	С⊢-{СН₂-	2	2	1	_	Н	-CH ₂ -N-C-N-OCH ₃

Table 1.79

Table 1	1.79						
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}$ $(CH_2)_{q}$ $G-R^6$
859	C├ - CH ₂ -	2	2	1	-	Н	- CH ₂ - N-C-N-CI
860	C├ - CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-N-CN
861	CH-{CH ₂ -	2	2	1	-	Н	- CH ₂ -N-C-N-
862	с⊢√_СН₂-	2	2	1	-	Н	-CH ₂ -N-C-N-CH ₃
863	CH2-	2	2	1	-	Н	-CH ₂ -N-C-N-C-N-
864	C⊢CH₂-	2	2	1	-	Н	-CH ₂ -N-C-N-C-OCH ₃
865	CH2-	2	2	1	-	H	-CH ₂ -N-S-CH ₃
866	CH2-	2	2	1	-	Н	- CH ₂ -N-S-CF ₃
867	CH2-	2	2	1	-	Н	$-CH_{2}-N-S \longrightarrow CF_{3}$ $-CF_{3}$ $-CF_{3}$
							-CH ₂ -N-S-CH ₂ CH ₃
869	CH-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-S-CH(CH ₃) ₂

Table 1.80

i abic i							
Compd. No.	R ¹ (CH ₂)j-	k	m	п	chirality	R³	$-(CH_2)_p + (CH_2)_q - G - R^6$
870	CHCH ₂ -	2	2	1	-	Н	- CH ₂ -N-S-CH ₃
871	CHCH ₂ -	2	2	1	-	Н	-CH ₂ -N-S
872	CH-CH ₂ -	2	2	1	-	н	-CH ₂ -N-S-
873	СН-СН2-	2	2	1	-	Н	- CH ₂ -N-C-O CH ₂
874	CI—(¯)—CH₂-	2	2	1	-	Н	- CH O C N CI
875	CH ₂ -	2	2	1	-	Н	- CH ₂ - N-C
876	Br—CH ₂ -	2	2	1	-	H	$-CH_2-NC$
877	NC-CH ₂ -	2	2	1	-	Н	- CH ₂ -N-C-CF ₃
878	O ₂ N-CH ₂ -	2	2	1	-	Н	- CH ₂ -N-C-CF ₃
879	O-CH ₂ -	2	2	1	-, -,	Н	- CH ₂ -N-C-CF ₃
880	0^0 —CH₂-	2	2	1	-	Н	- CH ₂ - N- C- CF ₃

Table 1.81

Table	1.0 1						
Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} - G - R^6$
881	Br CH ₂ -	2	2	1	-	H	- CH ₂ - N- C- CF ₃
882	O CH₂-	2	2	1	-	Н	-CH ₂ -N-CF ₃
883	CI CH ₂ -	2	2	1	-	н	- CH ₂ - N- C-
884	ньс.с- µ-Сн₂-	2	2	1	-	н	$-CH_2-N$ C $-$ C F_3
885	H ₃ C-S-CH ₂ -	2	2	1	-	Н	- CH ₂ -N-C-CF ₃
886	F-CH ₂ -	2	2	1	-	н	- CH ₂ - N- C-
887	F ₃ C-CH ₂ -	2	2	1	-	Н	- CH ₂ - N-C-CF ₃
888	HO-CH ₂ -	2	2	1	-	Н	$-CH_2-N$ C-CF3
889	CH ₂ -	2	2	1	-	Н	- CH ₂ - N- C- CF ₃
890	CH ₂ -	2	2	1	-	Н	$-CH_{2}-NCG$ $-CH_{2}-NCG$ $-CH_{2}-NCG$ $-CH_{2}-NCG$ $-CF_{3}$
891	CI—CH ₂ -	2	2	1	. -	Н	- CH ₂ -N-C-CF ₃

Table 1.82

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R ³	$-(CH_2)^{\frac{R^4}{p+5}}(CH_2)^{\frac{1}{q}}G^{-R^6}$
892	H ₃ CO CH ₂ -	2	2	1	-	H	- CH ₂ -N-CF ₃
	O ₂ N CH ₂ -					н	- CH ₂ -N-C-CF ₃
894	HO CH_3 CH_2 CH_3	2	2	1	-	н	-CH ₂ -N-C-CF ₃
895	(CH ₂) ₂ -	2	2	1	<u>-</u>	н	- CH ₂ -N-C-CF ₃
896	CN CH ₂ -	2	2	1	-	Н	$-CH_2-N C CF_3$
897	HO ₂ C CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-CF ₃
898	HO ₂ C-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
899	OCH ₃	2	2	1	-	Н	- CH ₂ -N-C-CF ₃
900	H ₃ ∞ ₂ C- CH ₂ -	2	2	1	-	Н	- CH ₂ -N-C-CF ₃
901	○ -cH-	2	2	1	-	Н	- CH ₂ - N- C- CF ₃
.902	O_2N O_2N O_2N	2	2	1	-	Н	- CH ₂ -N-C-CF ₃

Table 1.83

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q G - R^6$
903	H ₃ CO — CH ₂ - OCH ₃	2	2	1	-	н	- CH ₂ - N-C-CF ₃
904	HOCH ₂ -	2	2	1	-	Н	- CH ₂ - N- C-
905	O ₂ N CH ₂ -	2	2	1	-	н	- CH ₂ - N- C- CF ₃
906	(CH ₂) ₃ -	2	2	1	-	н	- CH ₂ - N- C − CF ₃
907	-CH(CH ₂) ₂ -	2	2	1	-	н	- CH ₂ - N-C-CF ₃
908	O CH ₂ -	2	2	1	-	Н	- CH ₂ - N- C − CF ₃
909	O :: CH2-	2	2	1	-	Н	- CH ₂ -N-C-CF ₃
	CI————————————————————————————————————						-CH ₂ -N-C-CF ₃
911	CICH ₂ -	2	2	1	-	H	- CH ₂ - N- C- CF ₃
912	Br CH ₂ -	2	2	1	-	H	- CH ₂ - N- C-
913	H ₃ CO-CH ₂ -	2	2	1	-	Н	- CH ₂ - N-C-

Table 1.84

						<u></u>	
Compd.	H ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^{-}R^6$
914	CH ₂ O-CH ₂ -	2	2	1	-	Н	- CH ₂ - N- C-
915	OH CHCH₂-	2	2	1	-	Н	- CH ₂ - N- C-
916	N CH₂-	2	2	1	-	Н	- CH ₂ -N-C-CF ₃
917	N→ CH ₂ -	2	2	1	· <u>-</u>	Н	$-CH_2-N-C$
918	H3CO2C CH2	2	2	1	-	Н	- CH ₂ -N-C-CF ₃
919	H ₃ C-CH ₂ -	2	2	1	-	Н	- CH ₂ -N-C-CF ₃
920	OCF ₃	2	2	1	-	Н	- CH ₂ - N- C- CF ₃
921	CH ₂ -	2	2	1	-	Н	- CH ₂ -N-C-CF ₃
922	CH₂-	2	2	1	-	Н	- CH ₂ - N- C- CF ₃
923	CI—CI—	2	2	1	-	Н	- CH ₂ -N-C-CF ₃
924	H ₂ N-C	2	2	1	-	Н	-CH ₂ -N-C

Table 1.85

Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}(CH_2)_{q}$ $-G-R^6$
925	H ₂ N-C-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
926	CH2-CH2-	2	2	1	• •	Н	-CH ₂ -N-C-CF ₃
927	F ₃ CQ ————————————————————————————————————	2	2	1	;	Н	-CH ₂ -N-C-CF ₃
928	F₃CO-CH₂-	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
929	н₃СЅ{}СН ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
930	CH ₃ -CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
	NC CH ₂ -					Н	-CH ₂ -N-C-CF ₃
932	NO ₂	2	2	1	-	Н	-CH ₂ -N-C- CF _{.3}
933	CH₃ CH—	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
934	N − CH ₂ −	2	2	1	-	Н	-CH ₂ -N-C-
935	O ₂ N —CH ₂ -	2	2	1	-	H	-CH ₂ -N-C-CF ₃

Table 1.86

Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
936	NO_2 CH_2	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
937	(H ₃ C) ₂ N-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
938	C⊢√ CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
939	O ₂ N CH ₂	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
940	OH CH ₂ -	2	2	1	-	Н	-CH2-N-C-CF3
941	F ₃ C CH ₂ -	2	2	1	-	Н.	-CH ₂ -N-C-CF ₃
942	CI—CH₂-	2	2	1	-	Н	$\begin{array}{ccc} & & & & CF_3 \\ & & & & & \\ -CHNC- & & & & \\ & H & & & & \\ & CH(CH_3)_2 & & CF_3 \end{array}$
943	CI—CH₂-	1	4	0	-	Н	-CH ₂ -N-C-CF ₃
944	C⊢(CH ₂ -	1	4	0	-	Н	$-CH_2-N-C$
945	C├ \ CH ₂ -	1	4	0	-	н	-CH ₂ -N-C-\(\sigma\) H
946	CI—CH ₂ -	1	4	0	-	Н	$-(CH_2)_2-N-C-$

Table 1.87

i ubic .							
Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}$ $(CH_2)_{q}$ $G-R^6$
947	СН-СН₂-	4	4	0	-	Н	$-(CH_2)_2-N-C- \longrightarrow OCH_3$
948	CH-CH₂-	1	4	0	-	Н	-(CH ₂) ₃ -C-N-CI
949	CH2-	1	4	0	-	Н	-(CH ₂) ₃ -C-N-CH ₂ -
950	CH2-	0	4	1	-	Н	- CH ₂ - N- C-
951	CH2-	1	2	0	R	H	-CH ₂ -N-C-C-CH ₃
952	C ⊢√ CH ₂ -	1	2	0	R	н	$-CH_2-N-C- N(CH_3)_2$
953	C├ \ CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C
954	CI—CH ₂ -	1	2	0	R [.]	Н	-CH ₂ -N-C- H H₃C-NH
955	CI-CH ₂ -	1	2	0	R	H	-(CH ₂) ₂ -N-C-\\ H H ₃ C-NH
956	CH-2-	1	2	0	R	Н	-(CH ₂) ₂ -N-C- HO
957	CH-CH ₂ -	1	2	0	R	Н	-сн ₂ -N-с-

Table 1.88

Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R ³	$-(CH_2)_{p} + (CH_2)_{q} - (C$
958	C├ - CH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-C-
959	CI—CH₂-	1	2	0	R	н	-CH ₂ -N-C-CH ₃
960	C⊢CH₂-	1	2	0	R	H	-(CH ₂) ₂ -N-C-CH ₃
961	C├ ~ CH ₂ -	i	2	0	R	Н	-CH ₂ -N-C
962	CI-CH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-C-\\ H
963	CHCH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-СОН
964	CI—CH₂-	4	2	0	R	Н	CH ₂ -N-C
965	CI—CH₂-	1	2	0	Ŗ	Н	$-(CH_2)_2$ -N-C- \longrightarrow ∞_2CH_3
966	CI—CH₂-	1	2	0	R	Н	-CH ₂ -N-C-CH ₃
967	CH-CH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-C-CH ₃
968	C⊢√_CH₂-	1	2	0	R	Н	-CH ₂ -N-C-NH

Table 1.89

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	[*] R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - R^6$
969	CH-2-	1	2	0	R	н	-(CH ₂) ₂ -N-C-NH
970	CH-2-	1	2	0	R	Н	-CH ₂ -N-C-N(CH ₃) ₂
971	CH-CH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-C-N(CH ₃) ₂
972	CH-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-\(\sigma\) NH ₂
973	CI—CH₂-	1	2	0	R	Н	-(CH ₂) ₂ -N-C-NH ₂
974	СН2−	1	2	0	R	н	-CH ₂ -N-C-NH ₂
	CH-CH ₂ -					н	-(CH ₂) ₂ -N-C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
976	CHCH ₂ -	1	2	0	R	н	$-CH_2-N-C NH$
977	CHCH ₂ -	1	2	0	R	H	-(CH ₂) ₂ -N-C-NH
							-CH2-N-C-NH
979	CH2⁻	1	2	0	R	Н	-(CH ₂) ₂ -N-C-NH

Table 1.90

Compd. No.	R^1 $(CH_2)_j$	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
980	CH-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CH ₃
981	CI—CH₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C-
982	C⊢√CH₂-	1	2	0	R	· н	-CH ₂ -N-C- H (H ₃ C) ₂ N
983	CHCH ₂ -	i	2	0	R	H	-(CH ₂) ₂ -N-C-\\ (H ₃ C) ₂ N
984	CHCH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
985	C├─ \ CH ₂ -	1	2	0	R	Н	$-(\mathrm{CH_2})_2-\mathrm{N-C}-\underbrace{\hspace{1cm}}_{\mathrm{H}}^{\mathrm{O}}-\mathrm{CH_2OH}$
986	CH-CH-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
987	CH-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
988	C⊢√CH ₂ -	1	4	0	-	Н	-CH ₂ -N-C-CF ₃
989	C├ - CH₂-	1	4	0	-	Н	-CH ₂ -N-C-O-CH ₂ -
990	C├─ \ CH ₂ -	1	4	0	-	Н	-CH ₂ -N-C-

Table 1.91

Table 1							
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R ³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
991	CH_CH ₂ -	1	4	0	-	Н	-(CH ₂) ₂ -C-
992	CH2-	1	4	0	-	Н	$-(CH_2)_2-C$ OCH_3 OCH_3
993	CHCH ₂ -	1	4	0	-	н	CH_3 CH_2 CH_3 CH_3 C
994	CHCH₂-	1	4	0	-	Н	-(CH ₂) ₃ -C-
995	CI—⟨CH₂-	1	4	0	-	н	-(CH ₂) ₃ -C-\OCH ₃
996	CI-CH ₂ -	1	4	0	-	Н	-(CH ₂) ₃ -C-N-CH ₃
997	C⊢-€	2	2	1	-	Н	-CHN-C-(CH ₃) ₂
998	CH-CH ₂ -	2	2	1	-	Н	-CHN-C-CF3 -CH2CH(CH3)2
999	C├ \ CH ₂ -	2	2	1	-	н	O CH ₃ -CH-N-C- H CH ₂ CH(CH ₃) ₂
1000	C⊢√CH₂-	2	2	1	-	Н	O OCH ₃ - CH N-C- OCH ₃ - CH (CH ₃) ₂
1001	CH-CH ₂ -	2	2	1	-	Н	OCH ₂ CH ₃ -CH-N-C-CH ₃ -CH ₂ CH(CH ₃) ₂

Table 1.92

lable i	.52						
Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	[°] R³	$-(CH_2)_{p} + (CH_2)_{q} - (C$
1002	С⊢(СН₂-	2	2	1	-	Н	OCF ₃ -CHN-C-CHCH ₃) ₂
1003	C├ - CH ₂ -	2	2	1	-	н	-CH-N-C
1004	CI—CH₂-	2	2	1	-	Н	-CH-N-C- H CH ₂ CH(CH ₃) ₂ OCH ₃
1005	CI—CH₂-	2	2	1	<u>.</u>	н	-CHN-C-CH ₃ -CH ₂ CH(CH ₃) ₂ OCH ₃
1006	CI—CH₂-	2	2	1	-	Н	OCH ₂ CH ₃ -CH-N-C
1007	CH2−	2	2	1	-	H	ОСН ₂ СН ₃ —СН-N-С- ОСН ₂ СН ₃ —СН ₂ СН(СН ₃) ₂ ОСН ₂ СН ₃
1008	CHCH ₂ -	2	2	1	-	Н	- CHN-C- (CH ₂) ₂ -C-NH ₂
1009	CH2-	2	2	1	-	Н	- CH-N- C- CCH ₃ - CH ₂) ₂ - C-NH ₂
1010	CH2-	2	2	1	-	Н	OCH ₂ CH ₃ -CH-N-C
1011	CH2-	2	2	1	-	н	-CH+N-C
1012	С├──СН2-	2	2	. 1	-	Н	- CH-N-C- (CH ₂) ₂ -C-NH ₂ OCH ₃

Table 1.93

i ubic							
Compd. No.	R ¹ (CH ₂) _j	k ·	m	n	chirality	Ή³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1013	С⊢√_СН₂-	2	2	1	-	Н	CH ₂) ₂ -C-NH ₂ OCH ₃
1014	CI—CH₂-	2	2	1	-	Н	OCH ₂ CH ₃ -CH-N-C
1015	CH-CH₂-	2	2	1	-	Н	OCH ₂ CH ₃ -CH-N-C
1016	CH2−CH2−	2	2	0		Н	-CH ₂ -N-C-⟨CF ₃
1017	CH2−	2	2	0	· _	Н	-CH ₂ -N-C-
1018	CH2⁻	2	2	1	-	н	OCH ₂ CH ₃ −CH ₂ −NC−C−CH ₂ CH ₃
1019	CHCH ₂ -	2	2	1	-	Н	$-CH_{2}-N-C- \bigcirc OCH_{2}CH_{3}$ $-CH_{2}-N-C- \bigcirc OCH_{2}CH_{3}$ $-CH_{2}-CH_{3}$
1020	C├ - CH ₂ -	2	2	1	-	Н	H H
1021	CI-CH ₂ -	2	2	1	-	Н	F₃CCH₂Ó
1022	C ├── CH ₂ -	2	2	1	-	H	, OCH₃
1023	CH2-	2	2	1	-	Н	$(S) \qquad \begin{array}{c} CH_2CH_3 \\ -CH_1C- \end{array}$ CH_3

Table 1.94

	4						R ⁴
Compd. No.	R ¹ (CH ₂)	k	m	n	chirality	⁻ R ³	$-(CH_2)_p + (CH_2)_q - G - R^6$
1024	CH-CH₂-	2	2	1	<u>-</u>	Н	$(S) \qquad \bigcirc OCH_3$ $-CH-N-C- \bigcirc OCH_3$ $CH_3 \qquad OCH_3$
1025	CH ₂ -	2	2	1	-	Н	(S) OCH ₂ CH ₃ -CH-N-C-OCH ₂ CH ₃ CH ₃
1026	CH2−	2	2	1	-	Н	$(S) \qquad \bigcirc CCH_2CH_3$ $-CH_1C-C-CH_2CH_3$ $CH_3 \qquad CCH_2CH_3$
1027	CH2-	2	2	1	-	Н	$(S) \qquad OCH_2CH_3$ $-CH_1C \longrightarrow OCH_3$ CH_3
1028	CH2-	2	2	1	- '	Н	(S) OCH ₂ CF ₃ -CH-N-C-CH ₂ CF ₃ OCH ₂ CF ₃
1029	CH2-	2	2	1	-	Н	$(S) \bigcirc O CH_2CH_3$ $-CH N C - O CH_2CH_3$ CH_3
1030	CHCH ₂ -	2	2	1	· -	Н	(S) OCF ₃ -CH-N-C-CH ₃
1031	CH2-	2	2	1	-	Н	(S) OCH ₃ -CH-N-C-C
1032	CH2−	2	2	1	-	Н	5.13
1033							• •
1034	C⊢√CH₂-	2	2	1	-	н	(R) \cap

Table 1.95

Table	.55						
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R ³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} - G^-R^6$
1035	C├ - CH ₂ -	2	2	1	-	н	(F) OCH ₂ CH ₃ -CH-N-C OCH ₂ CH ₃ -CH ₃
1036	C├ - CH₂-	2	2	1	-	н	$(H) \qquad \bigcirc OCH_2CH_3$ $-CH-N-C- \bigcirc OCH_2CH_3$ $-CH_3 \qquad OCH_2CH_3$
1037	CH-CH ₂ -	2	2	1	-	н	(F) OCH ₂ CH ₃ -CH-N-C
1038	CH2-	2	2	1	-	Н	(R) OCH ₂ CF ₃ -CH-N-C- H CH ₃ OCH ₂ CF ₃
1039	CH-2-	2	2	1 -	-	Н	(F) OCH ₂ CH ₃ -CH-N-C
1040	CHCH ₂ -	2	2	1	-	н	(R) OCF ₃ -CH-N-C
1041	C├ \ CH ₂ -	2	2	1	-	Н	(R) Q OCH3 -CH-N-C-C
1042	CI	2	2	1	-	Н	$-CH_2-N-C-$ H_2N H_2N
1043	CHCH ₂ -	2	2	1	-	Н	$-CH_2-N-C-$ H_2N
1044	CHCH ₂ -	2	2	1	-	Н	$-CH_{2}-N-C-$ $H_{2}N$
1045	С├-{СН₂-	2	2	1	-	Н	$-CH_2-N-C$ H_2N

Table 1.96

Table	1.50						
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R ³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} G - R^6$
1046	C├ - CH ₂ -	2	2	1	-	н	$-CH_{2}-N$ $H_{2}N$ CI
1047	С⊢—СН₂-	2	2	1	-	Н	$-CH_2-N-C$ H_2N CH_3 CH_3
. 1048	C├ - CH₂-	, 2	2	1	-	H	$-CH_2-N-C$
1049	CH√CH₂-	2	2	1	-	Н	$-CH_2-N-C-$ H_2N H_2N H_3
1050	CH-CH₂-	2	2	1	-	Н	(S) OCH ₃ -CH-N-C OCH ₃ H OCH ₂ CH(CH ₃) ₂ OCH ₃
1051	CH ₂ -	2	2	1	-	Н	$(S) \qquad \begin{array}{c} CH_2CH_3 \\ -CH_2CH(CH_3)_2 \end{array}$
1052	СН2−	2	2	1	- -	Н	(S) OCH ₃ -CH-N-C
1053	CH2⁻	2	2	1	-	Н	$(S) \qquad \bigcirc OCH_{2}CH_{3}$ $-CH_{1}C-CH_{2}CH_{3}$ $-CH_{2}CH(CH_{3})_{2}$
1054	C⊢√CH₂-	2	2	1	-	Н	$(S) \qquad \bigcirc OCH_2CH_3$ $-CH_1C- \bigcirc OCH_2CH_3$ $-CH_2CH(CH_3)_2 OCH_2CH_3$
1055	C├ \ CH ₂ -	2	2	1	-	н	$(S) \qquad \bigcirc OCH_2CH_3$ $-CH-N-C- \bigcirc OCH_3$ $-CH_2CH(CH_3)_2$
1056	CH_CH ₂ -	2	2	1	•	н	(S) OCH ₂ CF ₃ -CH-N-C-C-CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₃ CF ₃

Table 1.97

lable	1.31						
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	P3	$-(CH_2)_p + (CH_2)_q G - R^6$
1057	CH√CH₂-	2	2	1	-	·H	(R) OCH ₂ CH ₃ -CH-N-C-CH-CH ₃ CH ₂ CH(CH ₃) ₂
1058	CHCH2-	2	2	1	-	Н	(S) OCH ₃ -CH-N-C
1059	CH-2-	2	2	1	-	H	(S) Q OCF ₃ -CH-N-C- H CH ₂ CH(CH ₃) ₂
1060	CH2-	2	2	1	-	H	(H) CH_2CH_3 $CH_2CH(CH_3)_2$
1061	CH2-	2	2	1	-	H	(F) OCH ₂ CF ₃ -CH-N-C- H H CH ₂ CH(CH ₃) ₂ OCH ₂ CF ₃
1062	CHCH ₂ -	2	2	1	-	Н	(S) OCH ₂ CH ₃ -CH-N-C-CH-CH ₃ CH ₂ CH(CH ₃) ₂
1063	CH2-	2	2	1	-	Н	(F) OCH ₃ -CH-N-C- H CH ₂ CH(CH ₃) ₂
1064	C├─ੑੑੑੑੑੑੑੑ \ CH ₂ -	2	2	1	-	Н	(H) OCF ₃ -CH-N-C-S H CH ₂ CH(CH ₃) ₂
1065	C├ - CH ₂ -	2	2	1	-	Н	(H) OCH ₃ -CH-N-C- CH ₂ CH ₂ CH(CH ₃) ₂ OCH ₃
1066	CH-()- CH₂-	2	2	1	-	Н	(<i>H</i>) CH ₂ CH ₃ -CH-N-C
1067	СН—СН₂-	2	2	1	-	Н	$(H) \qquad OCH_3$ $-CHNC-OCH_3$ $CH_2CH(CH_3)_2 OCH_3$

Table 1.98

rable i	.90						
Compd.	R ¹ (CH ₂),-	k	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q G - R^6$
1068	CH√_CH ₂ -	2	2	1	-	Ĥ	(R) OCH ₂ CH ₃ $-CH$ N-C OCH ₂ CH ₃ $-CH_2$ CH ₃
1069	CH2-	2	2	1	-	H	(R) OCH ₂ CH ₃ $-$ CH-N-C OCH ₂ CH ₃ $+$ CH ₂ CH(CH ₃) ₂ OCH ₂ CH ₃
1070	CH-2 ⁻	2	2	1	-	н	CH ₂ OCH ₂
1071	CI—CH ₂ -	2	2	1	-	Н	-CH-NC-CH ₂ OCH ₂ -C
1072	CHCH ₂ -	2	2	1	· -	Н	-CH-N-C-C(CH ₃) ₃
1073	CHCH ₂ -	2	2	1	-	Н	-CH-N-C-CH ₂ O CH ₂ O CH ₂ -C
1074	CH2-	2	2	1	-	Н	-CH-N-C
1075	C├─ \ CH ₂ -	2	2	1	-	Н	-CH-N-C
1076	C├─ \ CH ₂ -	2	2	1	-	Н	- CH- N- C- O- NO 2 H CH ₂ O CH ₂ - O- CH ₂ -
1077	C├ - CH ₂ -	2	2	1	-	н	-CH-NC-CF ₃ -CH ₂ OCH ₂ -CF ₃
1078	CI—CH ₂ -	2	2	1	-	Н	-CH-N-C-C

Table 1.99

I able	.55						
Compd.	R ¹ (CH ₂) _j -	k	m	n (chirality	- R ³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
1079	CH2−	2	2	1	<u>-</u>	Н	-CH-N-C-CH ₃ -CH ₂ OCH ₂ -C
1080	CI—CH₂-	2	2	1	-	н	OCH ₂ CH ₃ - CH- N- C
1081	CHCH ₂ -	2	2	1	-	Н	OCH ₃ -CH-N-C -OCH ₃ H OCH ₃
1082	CI-CH ₂ -	2	2	1	-	н	(S) O O O O O O O O O O O O O O O O O O O
1083	CHCH ₂ -	2	2	1	-	Н	(A) D O O O O O O O O O O O O O O O O O O
1084	CI(CH ₂ -	1	2	0	R	Н	$-CH_2-N-C-$ H_2N
1085	CI-CH ₂ -	1	2	0	R	Н	$-CH_2-N$ C H_2N NO_2 H_2N
1086	CI—CH ₂ -	1	2	0	R	H .	$-CH_2-N-C-$ H_2N
1087	CI-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-N-H
1088	CHCH ₂ -	1	2	0	R	Н	-сн ₂ -N-С-С
1089	CI-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-N-C-N-F

Table 1.100

iable	.100						
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
1090	CH-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CH ₂ CH ₃
1091	CH-CH ₂ -	1	2	0	R	н	$-CH_2CH_2-N-CH_2H_2-N-CH_2N$
1092	CH-CH ₂ -	1	2	0	R	H	$-CH_{2}CH_{2}-N-C$ $H_{2}N$
1093	C├─ ○ CH ₂ -	1	2	0	R	Н	$-CH_2CH_2-N-C-$ H_2N
1094	CH2 ⁻	1	2	0	R	Н	-CH ₂ CH ₂ -N-C-N-H
1095	CH2 [−]	1	2	0	R	Н	-CH ₂ CH ₂ -N-C-
1096	CHCH ₂ -	1	2	0	R	Н	-CH ₂ CH ₂ -N-C-N-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H
1097	CHCH_2-	1	2	0	R	Н	-CH2CH2-N-C-
1098	CI-CH ₂ -	1	2	0	R	Н	$-CH_2-N+C CH_3$
1099	C├ - CH ₂ -	1	2	0	R	н	-CH ₂ -N-CF
1100	CH-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-F

Table 1.101

lable 1							
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} + (CH_2)_{q} - (CH_2)_{q}$
1101	CH-{	1	2	0	R	Н	$-CH_2-N-C CH_3$
1102	C⊢√CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-NO ₂
1103	H_3C — CH_2 —	1	2	0	R	Н	$-CH_2-N$ C $-CH_3$
1104	H_3C — CH_2 —	1	2	0	R	н	-CH ₂ -N-C
1105	H ₃ CCH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CI
1106	H ₃ C-CH ₂ -	1	2	0	R	Н .	-CH ₂ -N-C
1107	H ₃ C-CH ₂ -	1	2	0	R	Н	$-CH_2-N+C$
1108	CH₃ N —CH₂- CH₃	1	2	0	R	Н	$-CH_2-N$ C CH_3
1109	CH ₃ CH ₂ CH ₃	1	2	0	R	Н	-CH ₂ -N-C
1110	CH ₃ CH ₂ - CH ₃	1	2	0	, R	Н	-CH ₂ -N-C
							$-CH_2-N-C CH_3$

Table 1.102

Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R ³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
1112	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	$-CH_2$ -N-C-NO ₂
1113	CH_CH2-	2	2	1	-	Н	-CH ₂ -N-C
1114	C├ - CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
1115	CH_CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
1116	CHCH_2-	2	2	1	-	Н	$-CH_2-N-C CH_3$
1117	CHCH ₂ -	2	2	1	-	Н	$-CH_2-N-C NO_2$
1118	O-N-C	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1119	H₃CS-(CH₂-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1120	H ₃ CQ —CH ₂ - OCH ₃	1	2	0	R	Н .	-CH ₂ -N-C-CF ₃
1121	H_3C O_2N CH_2	1	2	0	R	Н	
1122	H ₃ C (H ₃ C) ₂ CH CH ₂ - CH(CH ₃) ₂	1	2	0	R	Н	-CH ₂ -N-C-CF ₃

Table 1.103

lable	.100						
Compd.	R ¹ (CH ₂),	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}(CH_2)_{q}G-R^6$
1123	CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1124	O ₂ N_O_CH ₂ -	1	2	0	R	Н	$-CH_2-N-C-$
1125	CH_CH2-	2	2	1	-	H	- CH-N-C- CI H CH ₂ O CH ₂ - CI
1126	CHCH ₂ -	2	2	1	-	Н	-CH+N-C
1127	C⊢√CH ₂ -	2	2	1	-	Н	-CH-N-C-NH CH2OCH2
1128	CH2−	2	2	1	-	Н	- CH-N-C
1129	C⊢(CH₂-	2	2	1	-	Н	CH-N-C-F CH ₂ OCH ₂
1130	C├ - CH ₂ -	2	2	1	-	Н	- CH-N-C
1131	C	2	2	1	-	Н	-CH-N-C-
1132	C├ - CH ₂ -	2	2	1	-	. Н	- CH-N-C
1133	H ₃ CO————————————————————————————————————	1	2	0	R	Н	-CH ₂ -N-C-CF ₃

Table 1.104

Table	1.104						
Compd.	R ¹ (CH ₂);	k	m	n	chirality	R³	$-(CH_2)^{\frac{R^4}{p+5}}(CH_2)^{-\frac{1}{q}}G^{-\frac{1}{q}}$
	H ₃ CO — CH ₂ -					н	-CH ₂ -N-C-CF ₃
1135	CH ₂ -NO ₂	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1136	CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1137	CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1138	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1139	(CH ₂) ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
	O_2N O_2N O_2N					Н	$-CH_2-N-C-$
	CH ₂ -						-CH ₂ -N-C-CF ₃
	CH ₂ -						-CH ₂ -N-C-CF ₃
1143	CH ₂ O CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1144	H ₃ CO H ₃ CO	1	2	0	R	Н	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃
						_	

Table 1.105

							$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1145	H ₃ CO————————————————————————————————————	1	2	0	R	H	-CH ₂ -N-C-CF ₃
	CH ₂ O-CH ₂ -					н	-CH ₂ -N-C-CF ₃
1147	Ho-c-h-Ch-CH2	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1148	CH₂-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1149	CH ₃ CH ₂ - CH ₃	1	2	0	R	H	-CH ₂ -N-C
1150	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	$-CH_2-N-C-$ CH_2CH_3
1151	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C-CH ₂ -CF ₃
1152	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C-N-H
							-CH ₂ -N-C-N-H
1154	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C-N-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H
							-CH ₂ -N-C

Table 1.107

iddic	1.107						
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	^T R ³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1167	CHCH2-	2	2	1	-	Н	-CH ₂ -N-C-
1168	CL N CH₂-	1	2	0	R	Н	$-CH_2-N-C$ CF_3
1169	H ₃ C-C-H ₂ -N O S-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1170	H N CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1171	CHCH2-	1	2	0	R	Н	$-CH_{2}-N-C- \longrightarrow Br$
1172	CH_CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-
1173	СНСН2-	1	2	0	R	Н	-CH ₂ -N-C-N-C-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-
1174	CHCH ₂ -	1	2	0	R	Н	$-CH_2-N-C-$ H_2N
1175	H ₃ C-CH ₂ -	1	2	0	R .	Н	$-CH_2-N-C$
1176	H₃C-(1	2	0	R	Н	-CH ₂ -N-C-N-C-N-H
1177	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-N-C-N-H

Table 1.108

							_
Compd. No.	R^{1} $(CH_{2})_{j}$	k	m	n	chirality	R ³	$-(CH_2)_{p} + (CH_2)_{q} - G-R^6$
1178	H₃C-{CH₂-	1	2	0	R	Н	$-CH_2-N-C$ H_2N
1179	H ₃ C- C H ₂ -	1	2	0	R	Н	$-CH_2-N-C$ H_2N
1180	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-N-C-N-H
1181	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	$-CH_2-N$ C CH_3 Br
	CH ₃ CH ₂ - CH ₃					Н	-CH ₂ -N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-
1183	CH_3 CH_2 CH_3	1	2	0	R	Н	-CH ₂ -N-C-N-C-N-CH ₃
1184	CH_3 CH_2 CH_3	1	2	0	R	Н	$-CH_2-N-C$ H_2 H_2 H_2
1185	CH_3 CH_2 CH_3	1	2	0	R	Н	$-CH_2-N-C$ H_2N H_2N
1186	CH_3 CH_2 CH_3	1	2	0	R	Н	-CH ₂ -N-C-N-H
	CH-CH ₂ -					н	$-CH_2$ -N-C-Br
1188	C⊢ √ _CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-N-C-N-H

Table 1.109

Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	$-(CH_2)^{\frac{R^4}{p+5}}(CH_2)^{\frac{1}{q}}G^{-R^6}$
1189	C├ - CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-N-N-H
1190	ССН2-	2	2	1	-	Н	$-CH_2-N-C$ H_2N
1191	CH₃ CH₂-	1	2	0	R	H	-CH ₂ -N-C
1192	CH ₃ N CH ₂ − CH ₃	1	2	0	R	Н	$-CH_2-N-C-CF_3$
1193	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	$-CH_2-NC$
	CH ₃ CH ₂ - CH ₃					Н	$-CH_2-N-C-$ F_3C
1195	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C-
1196	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C-NO ₂
	٠,٠,٠						-CH ₂ -N-C
1198	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH2-N-C-
	CH ₃ CH ₂ - CH ₃					Н	-CH ₂ -N-C-CH ₃
							•

Table 1.110

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1200	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C-CI
1201	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-CF
1202	CH₃ N—CH₂− CH₃	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1203	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-C-CF ₃
1204	H ₃ C	1	2	0	R	Н	$-CH_2-N-C$ F_3C
1205	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-Br
1206	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-\(\sigma\)
1207	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C- H F
1208	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-
1209	H ₃ C-CH ₂ -	1	2	0	R	Н	$-CH_2-N-C$
1210	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CI

Table 1.111

Compd.	R ¹ (CH ₂) _j -	k	m	Π	chirality	R^3	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} G - R^6$
1211	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-CF
1212	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1213	С⊢СН₂-	2	2	1	<u>.</u>	Н	$-CH_2-N-C$ F_3C CF_3 F_3C
1214	СҢСН₂-	2	2	1	-	Н	$-CH_2-N-C$ F CF_3
1215	С├─(СН₂-	2	2	1	-	н	-CH ₂ -N-C-CI
1216	C├ - CH₂-	2	2	1		н	-CH ₂ -N-C-F
1217	С⊢√СН₂-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1218	с-СН2-	1	2	0	R		F
1219	СН2-	1	2	0	R	Н	-CH ₂ -N-C-CI
1220	CHCH2-	1	2	0	R	н	$-CH_2-N-C-$ H_2N
1221	с⊢{Сн₂-	1	2	0	R	н	$-CH_2-NC-F$ H_2N

Table 1.112

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	P3	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1222	СН-СН2-	1	2	0	R	Н	-CH ₂ -N-C-N-CH ₃
1223	CHCH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-S
1224	СН-СН2-	1	2	0	R	Н	-CH ₂ -N-C-NO ₂
1225	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1226	H ₃ C-⟨□}-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CH ₃
1227	H ₃ C-\(\bigc\)-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C- CI
1228	H ₃ C-CH ₂ -	1	2	0	R	Н	$-CH_2-N-C$ H_2 H_2 H_2
1229	H ₃ C-CH ₂ -	1	2	0	R	Н	$-CH_2-N-C H_2N$
1230	H ₃ C-CH ₂ -	1	2	0	R	Н	$-CH_2-N-C-V$
1231	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S
1232	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-NO ₂

Table 1.113

lable i	.113						
Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	[.] R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - G - R^6$
1233	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1234	CH_3 CH_2 CH_3	1	2	0	R ·	Н	-CH ₂ -N-C-S-F
1235	CH ₃ CH ₂ CH ₃	1	2	0	R	Н	-CH ₂ -N-C-CH ₃
1236	CH ₃ CH ₂ CH ₃	1	2	0	R	Н	$-CH_2-N$ H_2N
1237	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	$-CH_2-N-C$ H_2N
1238	CH ₃ N→CH ₂ − CH ₃	1	2	0	R	Н	$-CH_2-N-C-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-$
1239	CH ₃ CH ₂ CH ₃	1	2	0	R	Н	-CH ₂ -N-C-S-
1240	CH ₃ CH ₂ CH ₃	1	2	0	R	Н	$-CH_2-N-C HO$
1241	C├ \ CH ₂ -	2	2	1	-	Н	$-CH_2-N-C-$
	C├ ~ CH₂-						-CH ₂ -N-C- H F
	C├ ~ CH₂-						-CH ₂ -N-C-CI

Table 1.114

	.117						
Compd.	R^{1} (CH_{2})	k	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q G - R^6$
1244	CHCH ₂ -	2	2	1	-	Н	$-CH_2-N$ C H_2N
1245	CHCH ₂ -	2	2	1	-	н	-CH ₂ -N-C-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F
1246	СН-СН2-	2	2	1	-	H	-CH ₂ -N-C-N
1247	с⊢Ст₂-	2	2	1	-	Н	-CH ₂ -N-C-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S
1248	СН2−	2	2	1	-	н	-CH ₂ -N-C-NO ₂
1249	CHCH ₂ -	1	2	0	R	Н	$-CH_2-NC$ $-CH_2-NC$ $-CI$
1250	H ₃ C—CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-NO ₂
1251	CH_3 CH_2 CH_3	1	2	0	R	Н	-CH ₂ -N-C
1252	CHCH_2-	1	2	0	R	Н	$-CH_2-N$ C-CH(CH ₃) ₂
1253	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1254	CH ₃ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CH(CH ₃) ₂

Table 1.115

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1255	CH-CH ₂ -	1	2	0	R	н	$-CH_2-N-C-\longrightarrow_{H_2N}^{O}$
1256	H ₃ C-CH ₂ -	1	2	Ō	R	н	$-CH_2-N$ H_2N H_2N
1257	CH ₃ CH ₂ CH ₃	1	2	0	R	н	$-CH_2-N$ H_2N H_2N
1258	H₃C-⟨CH₂-	1	2	0	R	Н	$-CH_2 - N - C - CI$ H_2N
1259	CH_3 CH_2 CH_3	1	2	0	R	н	$-CH_2-N-C$ H_2N
1260	H ₃ C—CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1261	CH-CH ₂ -	4	2	0	R	Н	$-CH_2-N+C-C(CH_3)_3$ $+G_3$
1262	H ₃ C-CH ₂ -	1	2	0	R	Н	$-CH_2 - N - C - C(CH_3)_3$ $+ H_3C$
1263	CH ₃ CH ₂ -	1	2	0	R	Н	$-CH_2-N-C \longrightarrow O$ H_3C
.1264	C⊢√_CH₂-	1	2	0	R	Н	-CH ₂ -N-C
1265	H ₃ C-\(\bigc\)-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C

Table 1.116

lable i	.110						
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R ³	$-(CH_2)_p + (CH_2)_q G - R^6$
1266	CH ₃ N CH ₂ − CH ₃	1	2	0	R	Н	-CH ₂ -N-C
1267	CHCH_2-	1	2	0	R	Н	-CH ₂ -N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-
1268	СН2-	1	2	0	R	Н	$-CH_2-N-C-$ H_3CO
1269	C├ \ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1270	CH	1	2	0	R	H	-CH ₂ -N-C
1271	с⊢С}−сн₂-	1	2	0	R	Н	-CH ₂ -N-C
1272	H ₃ C—CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-N-C-N-H-H-N-C-N-C-F ₃
1273	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1274	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1275	H ₃ C-CH ₂ -	1	2	0	R	H	-CH ₂ -N-C
1276	H ₃ C-CH ₂ -	1	2	0	R	н	$-CH_2-N-C-$

Table 1.117

	,						
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q}$
1277	CH₃ CH₂− CH₃	1	2	0	R	Н	-CH ₂ -N-C-N-C-N-H-N-C-N-C-N-N-C-N-C-N-C-N-C-N
1278	CH ₃ CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-
1279	CH ₃ CH ₂ − CH ₃	1	2	0	R	Н	-CH ₂ -N-C
1280	CH ₃ N—CH ₂ − CH ₃	1	2	0	R	Н	-CH ₂ -N-C-→ HO
1281	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-CF
1282	CHCH ₂ -	2	2	1	-	н	-CH ₂ -N-C-N-H H
1283	CHCH2-	2	2	1	-	Н	$-CH_{2}-N \cdot C - S$ $H_{3}CO$
1284	СН2-	2	2	1	-		$-CH_2-N$ C HO Br
1285	CHCH2-	2	2	1	-	Н	-CH ₂ -N-C
1286	H ₃ Ç N(CH ₂) ₃ O	1	2	0	R	Н	$-CH_2-N-C- \bigcirc CF_3$
1287	0 ₂ N-(CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃

Table 1.118

10010	,,,,,						
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q - G - R^6$
1288	HQ H₃CO————————————————————————————————————	1	2	0	R	Н	$-CH_2-N-C-$
1289	CH ₃ CH ₂ -	1	2	0	R	H	$-CH_2-N-C H_2N$
1290	CH ₃ CH ₂ -	1	2	0	R	н	$-CH_{2}-N-C- \longrightarrow CH_{3}$ $+L_{2}N-CH_{3}$
1291	H ₃ C—CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-N-CH ₃
1292	H ₃ C-CH ₂ -	1	2	0	R	Н	$-CH_2-N-C-$ H_2N H_2N Br
1293	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1294	H ₃ C	1	2	0	R	Н	$-CH_2-N$ CF_3 F
1295	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-C(CH ₃) ₃
1296	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SCH ₃
1297	H ₃ C-CH ₂ -	1	2	0	R	Н	$-CH_2-N-C-O$ F_3C
1298	H ₃ CO—CH ₂ -Br	1	2	0	R	н	-CH ₂ -N-C-CF ₃

Table 1.119

Table	1.119						
Compd.	R ² (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q G - R^6$
1299	H ₃ CQ H ₃ CO————————————————————————————————————	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1300	OCH ₃	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1301	OCH ₃ H ₃ CO—CH ₂ —CH ₂ —	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1302	H ₃ C CH ₃ H ₃ CO CH ₂	1	2	0	R	Н	$-CH_2-N-C-$
1303	H ₃ CO————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1304	H ₀ CQ CH ₂ O-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1305	H ₃ CO-CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-CF ₃
1306	H ₃ CCH ₂ Q H ₆ CO———CH ₂ —	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1307	H ₃ CQ H ₃ CO—CH ₂ — HO	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1308	CH ₂ -	1	2	Ö	R	Н	-CH ₂ -N-C-CF ₃
1309	H ₃ CO H ₃ CO—CH ₂ −	1	2	0) R	H	-CH ₂ -N-C-CF ₃

Table 1.120

Table !							
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R ³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1310	H ₃ CQ HO—CH ₂ —	1	2	0	R	H	-CH ₂ -N-C-CF ₃
1311	00 CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1312	CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1313	Br CH ₂ -	1	2	0	R	Н	-сн ₂ -N-с-СF ₃
1314	O ₂ N CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1315	H ₃ C CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1316	F ₃ C CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1317	O ₂ N CH-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
							$-CH_2-N-C$
1319	CHCH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1320	Br—CH ₂ —	1	2	0	R	Н	-CH ₂ -N-C-CF ₃

Table 1.121

i abic :							
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R ³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1321	CH_CH ₂ -	1	2	0	R	Н	-СH ₂ -N-С- Вг Н
1322	CH-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CH ₃
1323	CH-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1324	СН-СН2-	1	2	0	R	Н	$-CH_2-N$ CH_3 HO
1325	CH_CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1326	с⊢СН₂-	1	2	0	R	Н	-CH ₂ -N-C
1327	C├ - CH ₂ -	1	2	0	R	Н	$-CH_2-N-C H_2N$
1328	H ₃ C-\(\bigc\)-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1329	H ₃ C-CH ₂ -	1	2	0	R	Н	$-CH_2-HC$ CH_3
1330	. H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CI
1331	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-H ₃

Table 1.122

lable	1.122						
Compd.	R ¹ R ² (CH ₂)j-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1332	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1333	H ₃ C-CH ₂ -	1	2	. 0	R	Н	-CH ₂ -N-C-
1334	H ₃ C-CH ₂ -	1	2	0	R	Н	$-CH_2-N-C H_2N$
	CH ₃ CH ₂ - CH ₃						-CH ₂ -N-C- H
1336	CH ₃ CH ₂ - CH ₃	1	2	0	R	H	-CH ₂ -N-C-CH ₃
	CH ₃ CH ₂ -					н	-CH ₂ -N-C
1338	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	$-CH_2-N-C$ HO
1339	CH ₃ CH ₂ - CH ₃	1	2 ·	0	R	Н	-CH ₂ -N-C
1340	CH ₃ CH ₂ − CH ₃	1	2	0	R	Н	$-CH_2-N-C-$
1341	CH ₃ CH ₂ -	1	2	0	R	н	$-CH_2-N+C-$ H_2N
1342	C⊢√_CH₂−	2	2	1	-	Н	-CH ₂ -N-C-S-CI

Table 1.123

table i	.120						
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} G - R^6$
1343	CH_CH ₂ -	2	2	1	-	Н	$-CH_2-N$ - C - CH_3
1344	C	2	2	1	-	н	-CH ₂ -N-C-CI
1345	CHCH ₂ -	2	2	1	-	н	-CH ₂ -N-CH ₃
1346	CHCH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1347	C├ - CH ₂ -	1	2	0	R	Н	-CH₂-N-C-(S) CH₃
1348	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-S-CH ₃
1349	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C-S CH ₃
1350	CHCH2-	2	2	1,	-	Н	-CH ₂ -N-C-SCH ₃
1351	CI(CH ₂ -	1	2	0	R	Н	-CH ⁵ -H _C HV
1352	H_3C — CH_2 — CH_2	1	2	0	R .	Н	- cH ₂ -Д с в г
1353	CH ₃ N CH ₂ − CH ₃	1	2	0	R	н	-CH2-HC-CH3

Table 1.124

Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1354	C⊢-{}CH₂-	2	2	1	-	н	-CH2-11-C-CH3
1355	CHCH ₂ -	1	2	0	R	н	$-CH_2-N$ CN H_2N
1356	H ₃ C-CH ₂ -	1	2	0	R	н	$-CH_2-N$ C H_2N
1357	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	$-CH_2-N$ CN H_2N
1358	CH-CH2-	2	2	1	-	Н	$-CH_2-N$ C H_2N
1359	CH₃ N CH₂- CH₃	1	2	0	R	Н	-CH ₂ -N-C-
1360	CH ₃ CH ₂ - CH ₃	1	2	0	R	H	$-CH_2-N-C$ $-CH_3$ $-CH_3$ $-CH_3$ $-CH_3$ $-CH_3$ $-CH_3$
1361	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1362	CH ₃ N—CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C-CH ₃
1363	CH ₃ CH ₂ − CH ₃	1	2	0	R	н	-CH ₂ -N-C-CH ₃ -CH ₃ -CH ₃
1364	H₃C-⟨CH₂-	1	2	0	R	н	-CH ₂ -N-C-CH ₃

Table 1.125

i abie i	.123						
Compd.	R ¹ (CH ₂)j	k	m	n	chirality	R ³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}$ $(CH_2)_{q}$ G^-R^6
	CH ₃ CH ₂ - CH ₃					Н	$-CH_{2}-N+C-$ $H_{3}C$
1366	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	$-CH_2-N-C-CH_3$
1367	H ₃ C-CH ₂ -	1	2	0	R	н	$-CH_2-N$ C $+C$ $+C$ $+C$ $+C$ $+C$ $+C$
1368	CHCH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CI
1369	CHCH2-	1	2	0	R	Н	-CH ₂ -N-C- F ₃ CCH ₂ O
1370	CH2-	1	2	0	R	н	-CH ₂ -N-C-S Br
1371	CHCH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-
1372	C├ - CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-
1373	H ₃ C-CH ₂ -	1	2	. 0		н	-CH ₂ -N-C-CF ₃
1374	H ₃ C-()-CH ₂ -	1	2	0	R	H	OCH ₂ CF ₃ -CH ₂ -N-C
1375	H ₃ C-\CH ₂ -	1	2	0			-CH ₂ -N-C-S Br

Table 1.126

lable i	.120						
Compd.	R ¹ (CH ₂)j	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1376	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-
1377	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1378	CH_3 CH_2 CH_3	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1379	CH ₃ CH ₂ − CH ₃	1	2	0	R	Н	-CH ₂ -N-C
1380	CH ₃ N—CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C-SBr
1381	CH ₃ CH ₂ − CH ₃	1	2	0	R	Н	-CH ₂ -N-C-
1382	CH₃ CH₂− CH₃	1	2	0	R	Н	-CH2-N-C-
1383	C⊢√CH₂−	2	2	1	-	Н	$-CH_{2}-NC-CI$ $-CH_{2}-NC-CI$ Br $-CH_{2}-NC-CI$
1384	CH2-	2	2	1	-		
1385	CCH₂-	2	2	1	-	Н	-CH ₂ -N-C-
1386	C-CH ₂ -	2	2	1	-	н	-CH ₂ -N+C-

Table 1.127

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)^{R^4}_{p+2}(CH_2)^{q}_{q}G^{-R^6}$
1387	CH ₃ N—CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C
1388	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	$-CH_2-N-C-(CH_3)_3$ $-CH_3-N-C-(CH_3)_3$ $-CH_3$
	CH ₃ CH ₂ - CH ₃					Н	-CH2-N-C-NONO
1390	H_3C CH_3 H_3C CH_2 CH_3	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1391	H ₃ C — CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1392	H_3C —C H_2 —	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1393	H₃CCH₂—CH₂-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1394	O_2N H_3C CH_2	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1395	H ₂ C=CH-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1396	H_3C — CH_2 -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1397	Br—CH ₂ —	1	2	0	R	Н	$-CH_2-N-C-CF_3$

Table 1.128

Compd.	R ¹ (CH ₂)	k	m	n	chirality	R ³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1398	CH CH-	1	2	0	R	H	-CH ₂ -N-C-CF ₃
1399	CH-CH-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1400	CH-CH-	1	2	0	R	H ·	-CH ₂ -N-C-CF ₃
1401	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-N-CI
1402	H ₃ C-CH ₂ -	1	2	0	R	Н	$-CH_2-N-C-V-C-H_3$ $+L_2N OCH_3$
1403	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
1404	H₃C-{}CH₂-	1	2	0	R	Н	$-CH_2-N-C-$
1405	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-N H ₃ CS
1406	H ₃ C-\(\bigc\)-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-√CH ₃
1407	H ₃ C-CH ₂ -	1	2	0	R	Н	$-CH_2-N-C H_3CCH_2S$
1408	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Table 1.129

14510	= 0						
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	—(CH ₂) p 1 (CH ₂) q G−R ⁶ R ⁵
1409	H ₃ CCH ₂ -	1	2	0	R	Н	$-CH_2-N-C CH_3$
1410	CH ₃ N—CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-
1411	C├ ~ CH₂-	1	2	0	R	Н	-CH ₂ -N-C- H- C-C-NH
1412	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-C-NH
1413	CH ₃ N—CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C- H H ₃ C-C-NH
1414	с⊢—СН₂-	2	2	1	-	н	-CH ₂ -N-C- H H ₃ C-C-NH
1415	C├ \ CH₂-	1	2	0	R	н	$-CH_2-N-C H_2N$ SCN H_2N
1416	H ₃ C-\CH ₂ -	1	2	0	R	н	$-CH_2-N-C H_2N$ SCN H_2N
1417	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C-SCN H ₂ N
	CHCH ₂ -					Н	$-CH_2-N-C-$ H_2N H_2N
1419	C├ ─ _CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-SH H ₂ N

Table 1.130

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p+5}^{R^4}(CH_2)_{q}G-R^6$
1420	H ₃ C	1	2	0	R	Н	-CH ₂ -N-C-SH H ₂ N
1421	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	$-CH_2-N-C$ H_2N
1422	С⊢√_СН₂-	2	2	1	-	Н	$-CH_2-N-C$ H_2N SH H_2N
1423	СЊСН₂-	1	2	0	R	Н	-CH ₂ -N-C-
1424	H ₃ C-(CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-
1425	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C-
1426	CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-
1427	C├ \ _CH ₂ -	2	2	1	-	Н	$-CH_2-N-C-\longrightarrow H_3C-NH$
1428	C├ \	2	2	1	-	Н	-CH ₂ -N-C
1429	H ₃ CCH ₂ O	2	2	1	-	Н	$-CH_2-N \stackrel{\bigcirc}{C} \longrightarrow \begin{pmatrix} CI \\ H_2N \end{pmatrix}$
1430	O————————————————————————————————————	2	2	1	-	н	$-CH_2-N-C-$ H_2N

Table 1.131

Compd No.	$\begin{array}{ccc} & & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$	k	m	n	chirality	R ³	$-(CH_2)_p + (CH_2)_q - G - R^6$
1431	H3CCH2O—()—CH2-	2	2	1	-	Н	$-CH_2-N-C$ H_2N H_2N
1432	O-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N H_2N
1433	H₃CCH 2O-(CH2-	2	2	1	-	Н	-CH2-N-C-H2CH2
1434	H₃CCH 2O-(CH2-	2	2	1	-	Н	-CH2-N-C
1435	H ₃ CCH ₂ —CH ₂ -	2	2	1	-	Н	$-CH_{2}-N-C-$ $H_{2}N$
1436	(H₃C)2CH-(CH2-	2	2	1	-	Н	$-CH_2-N-C-$ H_2N
1437	н ₃ С(СН ₂) ₂ О————— СН ₂ -	2	2	1	-	Н	$-CH_2-N$ C H_2 N
1438	H ₃ CCH ₂ —CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N
1439	(H3C)2CH-CH2-	2	2	1	-	Н	$-CH_2-N$ C H_2N H_2N Br
	H ₃ C(CH ₂) ₂ O					н	$-CH_2-N-C-$ H_2N H_2N
1441	H₃CS—(CH₂-	2	2	1	-	Н	$-CH_2-N-C$ H_2N H_2N

Table 1.132

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
1442	H ₃ CCH ₂ —CH ₂ -	2	2	1	-	Н	
1443	(HgC)2CH CH2-	2	2	1	-	Н	-CH2-N-C
1444	H ₃ C(CH ₂) ₂ O-\CH ₂ -	2	2	1		Н	-CH2-N-C
1445	н₃ссн₂-√Сн₂-	2	2	1	-	Н	-CH2-N-CH2-CH2CH
1446	(H ₃ C) ₂ CH————————————————————————————————————	2	2	1	-	Н	-CH2-N-C
1447	ң ₀ С(СН ₂) ₂ О—————СН ₂ -	2	2	1	-	Н	-0+2-N-C-HN CH2-CH3 2CH3
1448	H₃CS-()-CH₂-	2	2	1	-	Н	-CH ₂ -N-C- H HN CH ₂ -SCH ₃
1449	н ₃ ссн ₂ ————————————————————————————————————	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
1450	(H ₂ C) ₂ CH———CH ₂ —	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
1451	(H ₃ CCH ₂) ₂ N	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
1452	HQ H ₃ CO—CH ₂ -	2	2	1		Н	-CH ₂ -N-C-CF ₃

Table 1.133

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R ³	-(CH ₂) _p + (CH ₂) _q G-R ⁶ R ⁵
1453	ң _{с(сн₂)₂с-{-}-ан₂-}	2	2	. 1	-	Н	-CH ₂ -N-C-CF ₃
1454	H ₈ CCH ₂ O-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
1455	H ₃ CQ HO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C- H CF ₃
1456	O—CH₂-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1457	(CH ₃) ₂ N-\(\sigma\) CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-
1458	H ₃ CO HO—CH ₂ -	2	2	1	-	Н	$-CH_2-N-C-$ H_2N
1459	(H ₃ C) ₂ N-CH ₂ -	2	2	1	-	н	$-CH_2-N-C H_2N$ H_2N
1460	H₃CQ HO—CH₂-	2	2	1	-	Н	$-CH_2-NC-\longrightarrow_{H_2N}^{O}$
1461	H ₃ CQ HO—CH ₂ -	2	2	1	-	Н	-CH2-N-C- H HN CH2-OH
1462	H ₃ CQ HO————————————————————————————————————	2	2	1	-	н	-CH2-N-C
1463	CH_CH ₂ -	2	1	1	-	Н	−CH ₂ −N-C−CF ₃

Table 1.134

iable	1.134						
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
1464	CH-CH ₂ -	2	1	1	-	Н	-CH ₂ -N-C-OCF ₃
1465	CH2-	2	1	1	-	н	$-CH_2-N-C$ F_3C
1466	CH2-	2	1	1	-	н	-CH ₂ -N-C-⟨S
1467	C⊢(CH₂-	2	1	1	- -	Н	-CH ₂ -N-C-
1468	С├─(СН₂-	2	1	-1	-	Н	$-CH_2-N-C- \bigcirc NO_2$
1469	CHCH ₂ -	2	1	1	-	н	-CH ₂ -N-C-CF ₃
1470	C	2	1	1	-	Н	-CH ₂ -N-C-CI
1471	CH_CH ₂ -	2	1	1	-	Н	-CH ₂ -N-C-F
1472	CH ₃ CH ₂ - S CH ₂ -	1	2	0	R	Н	$-CH_2-N+C-$
							-CH ₂ -N-C-CF ₃
1474	CI NHCH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C-CF ₃

Table 1.135

Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
1475	CI CH2-CH2-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1476	Br S CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-CF ₃
1477	Br O CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-CF ₃
1478	Br CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-CF ₃
1479	H_3C CH_3 CH_2 CH_3	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1480	CH ₃ CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1481	H_3C CH_3 CH_2 CH_2	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1482	B ₅ CH ₂ -	1	2	0	R	Н	$-CH_2-N+C$
1483	H_3C CH_2 -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1484	Cr S S-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1485	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-SF

Table 1.136

i abic							
Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R ³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1486	H ₃ C-CH ₂ -	1	2	0	R	н	$-CH_2-NC-$ H_2N OCH_3 H_2N
1487	H ₃ C-CH ₂ -	1	2	0	R	H	$-CH_2-N-C-$ H_2N CI
1488	H ₃ C-CH ₂ -	1	2	0	R	Н	$-CH_2-N-C-$
1489	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1490	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-
1491	H ₃ C-CH ₂ -	1	2	0	R	Н	NH ₂ 0 ←0 -CH ₂ -N-C-
1492	H ₃ C-CH ₂ -					Н	$-CH_2-NC- \bigvee_{N=1}^{N} \bigvee_{N=1}^{NO_2}$
1493	CH_3 CH_2 CH_3	1	2	0	R	Н	$-CH_{2}-N-C$ $-CH_{2}-N-C$ $+$ $+$ $+$ $+$
1494	CH_3 CH_2 CH_3	1	2	0	R	H	-CH ₂ -N-C
1495	CH ₃ N CH ₂ - CH ₃	1	2	0	R	Н	$-CH_2-N-C-V_N$ $-CH_2-N-C-V_N$ H_3C
1496	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	$-CH_2-N-C$

Table 1.137

Compd. No.	R^1 (CH_2)	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q}$
1497	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C
1498	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C
1499	CH₃ CH₂− CH₃	1	2	0	R	н	O CH ₃ −CH ₂ −N-C− H
1500	CH₃ N CH₂- CH₃	1	2	0	R	Н	-СH ₂ -№С
1501	CH₃ N—CH₂− CH₃	1	2	0	R	Н	-сн ₂ -N-с
1502	CH₃ N—CH₂- CH₃	1	2	0	R	Н	$-CH_2-N-C- F$
1503	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C
1504	H ₂ N-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1505	CH ₂ O CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1506	CHCH ₂ -	2	1	1	-	Н	$-CH_2-N-C$ H_2N H_2N
1507	CHCH_2-	2	1	1	-	Н	$-CH_2-N-C$ H_2N

Table 1.138

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_p + \frac{R^4}{R^5}(CH_2)_q - G - R^6$
1508	CH2-	2	1	1	-	н	$-CH_2-N-C-F$
1509	CH-CH ₂ -	2	1	1	-	н	-CH ₂ -N-C-
1510	CHCH ₂ -	2	1	1	-	Н	$-CH_2-N-C-$ H_2N
1511	CHCH ₂ -	2	. 1	1	-	н	-CH ₂ -N-C-(S) Br
1512	C	2	1	1	-	Н	$-CH_2-N-C-$ H_2N
1513	CHCH ₂ -	2	1	1	-	н	-CH ₂ -N-C
1514	(H ₃ CCH ₂) ₂ N————————————————————————————————————	2	2	1	-	Н	-CH ₂ -N-C-
1515	HQ H ₃ CO—CH ₂ -	2	2	1	-	H	$-CH_2-N-C-$ H_2N
1516	(H ₃ CCH ₂) ₂ N————————————————————————————————————	2	2	1	-	Н	$-CH_2-N$ H_2N H_2N H_2N
1517	HQ _ H3CO—CH2-	2	2	1	-	Н	$-CH_2-N$ H_2N H_2N H_2N
1518	HQ H ₃ CO-CH ₂ -	2	2	1	-	Н	-CH2-NC-OCH
							•

Table 1.139

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_p + \frac{R^4}{R^5}(CH_2)_q - G - R^6$
1519	HQ H ₃ CO-CH ₂ -	2	2	1	-	H	-CH2-N-COCH
1520	Br—CH ₂ —	1	2	0	R	н	$-CH_2-N-C-\longrightarrow^{D}$
1521	H ₃ CO-CH ₂ -	i	2	0	R	Н	$-CH_2-N-C$ \xrightarrow{Q} Br
1522	CH₂-	1	2	0	R	H	-CH ₂ -N-C-
1523	H ₃ CO—CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-
1524	H ₃ CQ HO—CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1525	Br—CH ₂ -	1	2	0	R	Н	$-CH_2-N-C-$
1526	H ₃ CO-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-C
1527	CH ₂ -	1	2	0	R	Н	$-CH_2-N-C-$ OCF ₃
1528	H ₃ CO CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-OCF ₃
1529	H ₃ CQ HO—CH ₂ —	1	2	0	R	Н	-СH ₂ -N-С-С-С

Table 1.140

lable	1.140						
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R ³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1530	Br—CH ₂ -	1	2	0	R	Н	$-CH_2-N-C$ F
1531	H ₃ CO-CH ₂ -	1	2	0	R	Н	$-CH_2-N+C$
1532	CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1533	H ₃ CQ H ₃ CO—CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1534	H ₃ CQ HO————————————————————————————————————	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1535	Br—€ CH ₂ -	. 1	2	0	R	Н	-CH ₂ -N-C-F
1536	H₃CO-{}-CH₂-	1	2	0	R	Н	$-CH_2-N-CF$
1537	CH ₂ -	1	2	0	R	н .	-CH ₂ -N-C
1538	H ₃ CO—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1539	H ₃ CQ HO————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C
1540	Br—CH ₂ -	1	2	0	R	Н	$-CH_2-N-C-$ F

Table 1.141

Compd. No.	R ¹ (CH ₂)j	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1541	H ₃ CO-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-√F H
1542	CH2-	1	2	0	R	Н	-CH ₂ -N-C-F
1543	H_3CO C H_2	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1544	H ₃ CQ HO—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1545	CI_\$_CH₂-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1546	H_3CO F F F F	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1547	H_3CO \longrightarrow CH_2 \longrightarrow Br	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1548	H ₃ C-\(\bigc\)-CH ₂ -	1	2	0	R	Н	$-CH_{2}-N$ $-CH_{2}$ $+CH_{3}$ $+G$ $+G$ $+G$ $+G$ $+G$ $+G$ $+G$ $+G$
1549	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH2-N-C - CH3 CH=C(CH3)2 $-CH2-N-C - CH3$ $+ CH3 + CH3$
1550	H ₃ C-CH ₂ -	1	2	0	R	н	- CH ₂ -N-C-N-CH ₃
1551	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -H _C C-S-N(CH ₂ CH ₂ OH) ₂

Table 1.142

	•••						
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q G - R^6$
1552	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1553	H ₃ C-(CH ₂ -	1	2	0	R	Н	-0+2-1-C-0
1554	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C······
1555	H ₃ C-CH ₂ -	1	2	0	R	Н	$-CH_{2}-N-C-\bigvee_{N}^{CH_{3}}$
1556	H ₃ C-CH ₂ -	1	2	0	R	Н	$-CH_2-N-C-ON \\ H_3C$
1557	H ₃ C-CH ₂ -	1	2	0	R	н	$-CH_2-N-C-V_N \\ + H_3C$
1558	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-N-C-N-CH ₃
1559	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-(CH ₃) ₃ H ₃ C
1560	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH2-HC
1561	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1562	H ₃ CCH ₂ -	1	2	0	R	Н	$-CH_2-N+C O_2N$ OCH_3

Table 1.143

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R ³	$-(CH_2)_{p+1}^{R^4}(CH_2)_{q}^{-}G-R^6$
1563	H ₃ C-CH ₂ -	1	2	0	R	Н	-cH ₂ -N-C- HO=C-NH ₂
1564	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C- HN -CF ₃
1565	CH ₃ N—CH ₂ − CH ₃	1	2	0	R	Н	-CH ₂ -N-C
1566	CH ₃ N CH ₂ − CH ₃	1	2	0	R	Н	$-CH_2-N-C$ O_2N OCH_3
1567	CH₃ N CH₂− CH₃	1	2	0	R	Н	-CH ₂ -N-C O=C NH ₂
1568	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -H°C
1569	CH_3 CH_2 CH_3	1	2	0	R	Н	-CH2-H-C-
1570	H3CS-CH2-	2	2	1	-	Н	$-CH_2-NC-$ H_2N
1571	H₃CS—CH₂-	2	2	1	-	Н	-CH2-N-CH2-SCH
1572	N+C-C-CH2-	2	2	1	-	Н	$-CH_2-NC-$
1573	H ² CO- HC- OH ² -	2	2	1	-	Н	$-CH_2-N$

Table 1.144

1574 $H_{5} \circ \bigcirc $	Ŗ ⁴
1575 $c \mapsto \bigcap_{H} \bigcap_{C} \bigcirc C \mapsto_{Z^{-}} \bigcirc C \mapsto_{$	R ⁴
1576 $\bigcirc \begin{array}{c} \begin{array}{cccccccccccccccccccccccccccccccc$	PNC-CF3
1577 $HO(CH_2) = \frac{0}{H^2} - CH_2 = 2$ 2 1 - H - CH 1578 $\frac{H_3C}{H^2} - \frac{0}{H^2} - CH_2 = 2$ 2 1 - H - CH 1580 $\frac{CH_3}{H^2} - \frac{0}{CH_2} - CH_2 = 2$ 2 1 - H - CH	PNC-CF3
1578 $\xrightarrow{H_3C}$ \xrightarrow{Q} $\xrightarrow{CH_2}$ 2 2 1 - H - CH 1579 $\xrightarrow{CH_3}$ \xrightarrow{Q} $\xrightarrow{CH_2}$ 2 2 1 - H - CH 1580 $\xrightarrow{H_3C}$ $\xrightarrow{CH_2}$ 2 2 1 - H - CH	CF ₃
1579 $\longrightarrow_{H}^{CH_3} \bigcirc_{CH_2^-}$ 2 2 1 - H -CH	CF ₃
1580	CF ₃
- н — ·	PHC-CF3
	2-N-C-CF3
1581 CH₂- 2 2 1 - H	H ₂ -N-C-S-NH
1582 CH₂- 2 2 1 - H	CH2-N-C-SN H-C-SN CONSCH-9
	2-N-C
1584 C⊢√CH₂- 1 2 0 R H -CH₂	OCF ₃

Table 1.145

i abie	1,145						
Compd.	R ¹ (CH ₂)j	k	m	n	chirality	R ³	$-(CH_2)_p + (CH_2)_q - G-R^6$
1585	с⊢{сн₂-	1	2	0	R	H	-CH ₂ -N-CBr
1586	CH2-	1	2	0	R	Н	-CH ₂ -N-C-
1587	CH-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-
1588	с⊢—СН₂-	1	2	0	R	Н	-CH ₂ -N-C
1589	H ₃ C-CH ₂ -	1	2	0	R	Н	$-CH_2-N-C-$ H_2N
1590	H ₃ C-CH ₂ -	1	2	0	R	н .	$-CH_2-N-C$ H_2N OCF_3 H_2N
1591	H₃C-⟨CH₂-	1	2	0	R	Н	-CH ₂ -N-C-\Br
1592	H ₃ C-\(\bigc\)-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-N-CI
1593	H ₃ C-CH ₂ -	1	2	0		н	-CH ₂ -N-C-
1594	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	$-CH_2-N$ CF_3 H_2N
1595	CH ₃ CH ₂ − CH ₃	1	2	0	R	Н	$-CH_{2}-N-C$ $H_{2}N$ $-CH_{2}-N-C$ $H_{2}N$ $-CH_{2}-N-C$ $H_{2}N$ $+CH_{2}-N$ $+CH_{2}$

Table 1.146

lable 1	.140						
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1596	CH ₃ N CH ₂ − CH ₃	1	2	0	R	Н	$-CH_2-N$ C N R
1597	CH ₃ CH ₂ - CH ₃	1	2	0	R	H .	-CH ₂ -N-C-N=
	CH ₃ CH ₂ - CH ₃					Н	-CH ₂ -N-C-
1599	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C- CH ₃
1600	CH2-	2	2	1	-	Н	$-CH_2-N-C \longrightarrow H_2N$
1601	CH2-	2	2	1	-	Н	$-CH_2-N-C H_2N$
1602	C+	2	2	1	-	Н	$-CH_2-N-C N$
1603	CH2-	2	2	1	-	Н	-CH ₂ -N-C-N-CI
1604	CHCH2-	2	2	1	-	Н	-CH ₂ -N-C-
1605	CHCH_2-	2	2	1	-	Н	-CH ₂ -N-C-CH ₃
1606	C⊢√CH₂−	1	2	0	R	Н	-CH ₂ -N-C-SCF ₃

Table 1.147

rabie							
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R ³	$-(CH_2)_p + \frac{R^4}{R^5} (CH_2)_q - G - R^6$
1607	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-SCF ₃
1608	CH ₃ CH ₂ CH ₃	1	2	0	R	Н	-CH ₂ -N-C-SCF ₃
1609	с⊢СН₂-	2	2	1	-	Н	$-CH_2-N-C$ SCF ₃
1610	CF ₃ P CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
1611	CH2-N-CH2-	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
1612	H ² CO(CH 3)2-MC	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
1613	H ₃ C-CH ₃ P CH ₂ -	2	2	1	-	н	$-CH_2-NC$
1614	F₃CS—CH₂-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1615	F ₃ CS—CH ₂ -	2	2	1	-	Н	$-CH_2-N-C-$
1616	F ₃ CS—CH ₂ -	2	2	1	-	• н	$-CH_2-N-C$ H_2N
1617	F₃CS—{}CH₂-	2	2	1	-	Н	$-CH_2-N-C$ H_2N H_2N

Table 1.148

iabic	1.140						
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q G - R^6$
1618	HQ H ₃ CO—CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-Br
1619	HQ H ₃ CO-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1620	HQ H ₃ CO-CH ₂ -	1	2	0	R	. Н	$-CH_2-N+C F$
1621	HQ H ₃ CO-CH ₂ -	1	2	0	R	Н	$-CH_2-N$ C F
1622	HQ H ₃ CO-CH ₂ -	1	2	0	R	Н	$-CH_2-N-C F$
1623	HO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1624	HO{}CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1625	HO-CH ₂ -	1	2	0	R	н ,	−CH ₂ −N-C−CF ₃ F
1626	HO—€ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1627	HO-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1628	H₃CS-{CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃

Table 1.149

lable							
Compd. No.	R^{1} $(CH_{2})_{j}$	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1629	H₃CS—()—CH₂-	1	2	0	R	н	$-CH_2-N-C-$
1630	H ₃ C CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1631	H ₂ NCH ₂ —CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1632	CF_3 CH_2	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1633	H ₃ CS NC-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1634	(H ₃ C) ₂ CH CH ₂ -	1	, 2	0	R	H	-CH2-N-C- CF3
	H ₃ C-CH ₂ -					Н	$-CH_2-N-C-C(CH_3)_3$
1636	H ₃ C-CH ₂ -	1	2	0	R	Н	H ₃ C CH ₃ O H ₃ C -CH ₂ -N-C H ₃
	0 11						$-CH_2-N_1$ C- $(CH_2)_4$ CH ₃
							$-CH_2 - N - C - C - C - C - C - C - C - C - C$
1639	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -H-C-OCH ₂ CH ₃

Table 1.150

Iddie	.,,,,,						
Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R ³	$-(CH_2)_p + (CH_2)_q - G - R^6$
1640	CH_3 CH_2 CH_3	1	2	0	R	Н	-CH ₂ -N-C
1641	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH2-N-C
	CH ₃ CH ₂ CH ₃					Н	$-CH_2-N-C-N$ O_2N-N
	CH ₃ P CH ₂ − CH ₃					Н	-CH ₂ -N-C-
	CH_3 CH_2 CH_3						-CH ₂ -N-C-
1645	CI CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1646	Br O CH2-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1647	H ₃ C(CH ₂) ₃ —CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
1648	H ₃ C(CH ₂) ₃	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1649	$H_3C(CH_2)_2$ — CH_2 -	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
1650	H ₃ C(CH ₂) ₂ —CH ₂ -	1	2	0	R	Н	$-CH_2-N-C-$

Table 1.151

lable	1.101						
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1651	H ₃ C(CH ₂) ₃ ———————————————————————————————————	2	2	1	-	н	-CH ₂ -N-C
1652	H ₃ C(CH ₂) ₃ ———————————————————————————————————	2	2	1	-	н	$-CH_2-NC\longrightarrow Br$ H_2N
1653	H ₃ C(CH ₂) ₂ —————————————————————————————————	2	2	1	<u>-</u>	Н	-CH ₂ -N-C
1654	H ₃ C(CH ₂) ₂ —————————————————————————————————	2	2	1	-	Н	$-CH_2-N-C-$ H H_2N
1655	H ₃ C(CH ₂) ₃ ———————————————————————————————————	2	2	1	-	Н	-CH2-N-C- HN CH2-(CH2)3CH6
1656	H ₃ C(CH ₂) ₃ ———————————————————————————————————	2	2	1	-	н	$-CH_2-NC-$ H_2N
1657	H ₃ C(CH ₂) ₂ —————————————————————————————————	2	2	1	-	Н	-CH ₂ -N-C
1658	H ₃ C(CH ₂) ₂ (CH ₂ -	2	2	1	-	Н	$-CH_2-N-C H_2N$
	C⊢√CH ₂ -					н	$-CH_2-N-C$ H_2N CI
1660	Br—√CH ₂ -	1	2	0	R	Н	$-CH_{2}-N-C$ $+L_{2}N$ $-CH_{2}-N-C$ $+L_{2}N$ $+L_{2}N$ $+L_{2}N$ $+L_{2}N$
1661	Br—CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2 H_2 H_2

Table 1.152

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1662	Br(CH ₂ -	1	2	0	R	н	$-CH_2-N-C H_2N$
1663	Br—⟨¯_)—CH₂-	1	2	0	R	H	$-CH_2-N-C-$ H_2 H_2 N
1664	H ₃ CS-CH ₂ -	2	2	1	-	н	$-CH_2-N-C-$ H H_2N
1665	H ₃ CS—CH ₂ -	2	2	1	-	н	$-CH_2-N$ C H_2 H_2 N
1666	H₃CS—CH₂-	2	2	1	-	Н	$-CH_2-N-C$ H_2N H_2N
1667	H ₃ CCH ₂ ————————————————————————————————————	2	2	1	-	Н	-CH ₂ -N-CBr
1668	H₃ССН2—СН2-	2	2	1	-	H	$-CH_2-N-C$ H_2N H_2N
1669	H ₃ CCH ₂ ————————————————————————————————————	2	2	1	-	Н	$-CH_2-N-C-$ H_2N
1670	H ₃ CCH ₂ —CH ₂ -	2	2	1	-	Н	$-CH_2-N-C \longrightarrow H_2N$
1671	H ₃ CCH ₂ —CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N H_2N
1672	H ₀ CCH ₂ —CH ₂ -	2	2	1	-	Н	$-CH_2-N-C-$ H_2N

Table 1.153

	1.100						
Compd.	R^1 $(CH_2)_j$	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} G - R^6$
1673	н₃ссн₂СН₂-	2	2	1	-	н	-CH ₂ -N-C
1674	F-CH ₂ -	2	2	1	-	H	-CH ₂ -N-C-Br
1675	F-CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N F
1676	F — CH_2 -	2	2	1	-	Н	$-CH_2-N$ C H_2N
1677	F-CH ₂ -	2	2	1	-	н	$-CH_2-N$ H_2N H_2N
1678	FCH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N
1679	F—CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N
1680	FCH ₂ -	2	2	1	-	Н	$-CH_2-N-C-$ H_2N H_2N
1681	F—CH ₂ -	2	2	1	-	Н	$-CH_2-N-C-$ H_2N
1682	F—CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C- H
1683	N CH2-	2	2	1	-	Н	-CH ₂ -N-C

Table 1.154

Table 1							
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	. R ³	$-(CH_2)_p$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
1684	N-C-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C +$ H_2N $+$ H_2N
1685	N+ C	2	2	1	- -	н	$-CH_2-N-C$ H_2N
1686	N-C-\-CH2-	2	2	1	_	Н	$-CH_2-N-C$ H_2N H_2N
1687	○ N C CH2-	2	2	1	-	Н	$-CH_2-N-C$ H_2N
1688	N+C-CH₂-	2	2	1	-	Н	$-CH_2-N-C H_2N$
1689	N+C	2	2	1	-	H	$-CH_2-NC-$ H_2N H_2N
1690	N-C	2	2	1	-	Н	$-CH_2-N-C-$ H_2N
1691		2	2	1	-	Н	-CH ₂ -N-C-Br
1692	H ₃ C-CH ₃	1	2	C) R	Н	$-CH_2-N-C Br$ Br
•	СН ₃ Н ₃ С-СН ₂ -					н	$-CH_2-N-C$ H_2N
	CH ₃ CH ₂ −						-CH ₂ -N-C
				•			

Table 1.155

	.133						
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q G - R^6$
1695	H ₃ C—CH ₂ -	1	2	0	R	Н	$-CH_2-N-C$ H_2N H_2N
1696	H_3C- C H_2-	1	2	0	R	Н	$-CH_2-N-C$ H_2N
1697	H_3C CH_3 CH_2	1	2	0	R	Н	$-CH_2-N-C$ H_2N
1698	H_3C CH_3 CH_2	1	2	0	R	Н	$-CH_2-N-C$ H_2N
1699	H_3C — CH_2 — CH_2 —	1	2	0	R	Н	$-CH_2-N-C H_2N$
1700	H_3C — CH_2 — CH_2 —	1	2	0	R	Н	-CH ₂ -N-C-Br
1701	H ₂ C=CH———CH ₂ -	1	2	0	R	Н	$-CH_2-N-C$ H_2N
1702	H₃CO-{}CH₂-	1	2	0	R	Н	$-CH_2-N-C-$ H_2N
1703	CH ₂ -	1	2	0	R	Н	$-CH_2-N-C$ H_2N
1704	HO-CH ₂ -	1	2	0	R	Н	$-CH_2-N-C H_2N$
1705	CI CI—CH₂−	1	2	O) R	Н	$-CH_2-NC-$ H_2N

Table 1.156

Table 1	.156						
Compd. No.	R ¹ (CH ₂) _j	k	m	n c	chirality	⁻ R ³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} G - R$
1706	CH ₂ -	1	2	0	R	Н	$-CH_2-N$ $+CH_2-N$ $+CH_2-N$ $+CH_2-N$ $+CH_2-N$
1707	H₃CS—CH₂-	1	2	0	R	H [.]	$-CH_2-NC-$ H_2N
1708	H ₃ CCH ₂ —CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N
1709	(HgC)2CH	1	2	0	R	н	$-CH_2-N-C$ H_2 H_2 H_2 H_3
1710	H ₃ C Br—CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
	CH ₃					Н	-CH ₂ -N-C-CF ₃
1712	H₃CCH₂Q HO—CH₂	. 1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1713	H ₃ C HO—CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1714	HQ H ₃ CO—CH ₂	- 1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1715	N CH ₂ -		1 2	2 0	R	н	-CH ₂ -N-C-
							-CH ₂ -N-C-CF

Table 1.157

Table	1.107			-			
Compd.	R ¹ (CH ₂)-	k	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q - G-R^6$
1717	H ₃ CO-(N-CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ CF_3
1718	CH ₃ CH ₂ -	1	2	0	R	·H	-CH ₂ -N-C-CF ₃
1719	CH2−	1	2	0	R	Н	$-CH_2-N-C$
1720	H ₃ CO-C H ₃ C-CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1721	н₃ссн₂-√Сн₂-	1	2	0	R	Н	$-CH_2-N-C-$
1722	-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1723	CH ₂ -	1	2	0	R	Н	$-CH_2-NC- \bigcirc F$
1724	CH ₃ C—CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1725	H_3C CH_3 CH_2 CH_2	1	2	0	R	Н	-CH ₂ -N-C
1726	H ₃ CCH ₂ —CH ₂ -	1	2	0	R	Н	-CH ₂ -N-CF
1727	O-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-F ₃

Table 1.158

Compd.	R^{1} $(CH_{2})_{j}$	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1728		1	2	0	R	Н	-CH ₂ -N-C
1729	H_3C CH_3 CH_2	1	2	0	R	Н	-CH ₂ -N-CF
1730	H ₃ C C C C C C C C C C C C C C C C C C C	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1731	H ₃ CO N CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1732	HOCH ₂ ——CH ₂ —	1	2	0	R	H	-CH ₂ -N-C-CF ₃
1733	-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-F
1734	H₃CS-CH₂-	1	2	0	R	Н	$-CH_2-N-C- F$
1735	H₃CCH2—⟨}CH2-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1736	CH₂-	1	2	0	R	Н	$-CH_2-N-C- \bigvee_F^{CF_3}$
							$-CH_2-N-C- \bigvee_{F}^{CF_3}$
1738	H ₃ C ← CH ₂ − CH ₂ −	1	2	0	R	Н	$-CH_2-NC- $

Table 1.159

iabic	1.100						
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q - G - R^6$
1739	(H3C)2CH-⟨)-CH2-	1	2	0	R	Н	-CH ₂ -N-C-F
1740	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1741	H₃CS—CH₂−	1	2	0	R	Н	-CH ₂ -N-C
1742	H ₃ CCH ₂ —CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1743	CH₂-	1	2	0	R	Н	-CH ₂ -N-C-
1744	CH₃ H₃C—CH₂−	1	2	0	R	Н	-CH ₂ -N-C
1745	H_3C CH_3 CH_2 CH_2	1	2	0	R	Н	-CH ₂ -N-C
1746	(HgC) ₂ CH————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-Br
1747	CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N H_2N
1748	H ₃ CCH ₂ —CH ₂ -	1	2	0	R	Н	$-CH_2-N-C$ H_2N H_2N
1749	H ₃ C—CH ₂ -	1	2	0	R	Н	$-CH_2-NC-$ H_2N H_2N

Table 1.160

						•	
Compd No.	· R ¹ (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1750	CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-OCF ₃
1751	H₃CS—CH₂-	1	2	0	·R	H	-CH ₂ -N-C-OCF ₃
1752	H ₃ CCH ₂ —CH ₂ -	1	2	0	R.	Н	-CH ₂ -N-C
1753	O-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-C
1754	H_3C CH_2	1	2	0	R	Н	-CH ₂ -N-C
1755	H_3C CH_3 CH_2 CH_2	1	2	0	R	H	$-CH_2-N$
1756	(HgC)₂CH-CH2-	1	2	0	R	Н	-CH ₂ -N-C
1 7 57	Br Br CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1758	H ₃ CO-Br CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1759	H ₃ C-\CH ₂ -	1	2	0	R	н	$-CH_{2}-N-C$ $-OH_{2}-N-C$ $-OH_{2}-N-C$ $-CH_{2}-N-C$
1760	H₃C-⟨CH ₂ -	1	2	0	R	н	-CH ₂ -N-C -OCH ₃ CF ₂ CHCIF

Table 1.161

Compd.	R ¹ (CH ₂),-	k	m	n	chirality	⁻ R ³	$-(CH_2)_p$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
1761	H ₃ C-⟨	1	2	0	R	Н	-CH2-N-C-N-CI
1762	CH_3 CH_2 CH_3	1	2	0	R	н	-CH ₂ -N-C CI
1763	CH₂−	2	2	0	-	Н	-CH ₂ -N-C
1764	CH2-	2	2	0	-	Н	OCH2CH3 -CH2CH2-N-C-
1765	CH ₂ -	2	2	0	-	Н	$(S) \qquad \bigcirc OCH_2CH_3$ $-CH-N-C \qquad \bigcirc OCH_2CH_3$ $-CH_2CH(CH_3)_2$
1766	CH ₂ -	2	2	0	-	Н	$(R) \qquad \qquad \bigcirc CH_2CH_3$ $-CH N C \qquad \qquad \bigcirc CH_2CH_3$ $-CH_2CH(CH_3)_2$
1767	CH2-	1	3	1	-	Н	$-CH_2-N_1C- \bigcirc OCH_2CH_3$
1768	C├-{CH ₂ -	1	3	1	-	Н	-CH2CH2-N-C
							-CH2-N-C-OCH3 CH-CHCF2O
1770	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH2-N-C-N-CI
							-CH ₂ -N-C H (H ₃ C) ₃ C-CH-N-C H ₃ C

Table 1.162

Compd.						- R ³	$-(CH_2)_p + (CH_2)_{\overline{q}} - G - R^6$
1772	CH ₃ CH ₂ CH ₃	1	2	0	R	Н	H ₃ C H ₃ C H ₃ C
1773	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
1774	CH ₃ CH ₂ CH ₃	1	2	0	R	Н	$-CH_2-N$ $+N$ $+C$ $+C$ $+C$ $+C$ $+C$ $+C$ $+C$ $+C$
1775	HO-CH ₂ -	1	2	0	R	Н	$-CH_2-N-C-$ H_2N
1776	H ₃ CO—CH ₂ —CH ₂ —	1	2	0	R	Н	$-CH_2-N-C-$ H_2N
1777	CH ₂ -CH ₂ -	2	2	1	-	Н	$-CH_2-N-C H_2N$
1778	H ₃ C-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C-$ H_2N
1779	CH ₂ -	2	2	1	-	Н	$-CH_2$ $-N$ $-CF_3$ $+C$
1780	Br—CH ₂ —	2	2	1	-	Н	$-CH_2-N-C-$ H_2N
1781	HO-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C H_2N$
1782	H ₂ C=CH-CH ₂ -	2	2	1	•	Н	$-CH_2-N-C H_2$ H_2 N

Table 1.163

Compd. No.	R^1 $(CH_2)_j$	k	m	n	chirality	⁻ R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1783	NC-CH ₂ -	2	2	1	-	н	$-CH_2-N-C\longrightarrow H_2N$
1784	CH ₂ −	2	2	1	-	н	$-CH_2-N-C-$ H H_2N
1785	CH ₃ (CH ₂) ₂ —CH ₂ -	2	2	1	-	Н	$-CH_2-N-C-$ H H_2N
1786	CH ₂ -	2	2	1	-	Н	$-CH_2-N-C-$ H_2N H_2N
1787	CH ₃ (CH ₂) ₂ —CH ₂ -	· 1	2	0	R	Н	$-CH_2-N$ H_2N CF_3
1788	CH ₃	2	2	1	-	H	$-CH_2-NC- CF_3$ $+I_2N$
1789	H ₃ CO-CH ₂ -	2	2	1	-	Н	$-CH_2-NC-$ H_2N
1790	CHCH ₂	1	2	0	S	Н	$-CH_2-NC-$ H_2N
1791	CH-2-	1	2	0	S	Н	$-CH_2-N-C H_2N$ CCF_3
1792	CH ₃ CH ₂ — CH ₂ —	2	2	1	-	Н	$-CH_2-N-C$ H_2N
1793	CI—CH ₂ —	2	2	1	-	Н	$-CH_2-N-C$ H_2N

Table 1.164

Compd.	R^1 $(CH_2)_j$	k	m	n	chirality	⁻ R³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
1794	H₃ССН ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N H_2N
1795	CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N
1796	Br—CH ₂ —	2	2	1	-	Н	$-CH_2-N-C$ H_2N
1797	HO-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C H_2N$
1798	H ₃ CO-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N H_2N
1799	H ₂ C=C H-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N H_2N
1800	NC-⟨□}-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N
1801	CH₂-	. 2	2	1	-	Н	$-CH_2-N-C$ H_2 H_2 H_2
1802	HO-CH ₂ -	1	2	0	R	Н	$-CH_2-N-C$ H_2N
1803	HO—CH ₂ —	1	2	0	R	Н	$-CH_2-NC \xrightarrow{CF_3}$ $+L_2N$
1804	H ₃ C(CH ₂) ₂ —CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N

Table 1.165

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	H³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
1805	Вг—СН₂-	1	2	0	R	Н	-CH ₂ -N-C-SCF ₃
1806	H₃CO-{CH₂-	1	2	0	R	Н	-CH ₂ -N-C-SCF ₃
1807	H ₃ CQ HO-CH ₂ -	1	2	0	R	Н	$-CH_2-N-C-$ SCF ₃
1808	HQ H ₃ CO—CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-SCF ₃
1809	HO-CH ₂ -	1	2	0	R	Н	$-CH_2-N-C-$ SCF ₃
1810	CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-SCF ₃
1811	CH ₂ -	1	2	0	R	Н	$-CH_2-N-C-$ SCF ₃
1812	H ₃ CS-CH ₂ -	1	2	0	R	H	$-CH_2-N-C-$ SCF ₃
1813	H₃ССН ₂ —{}_СН ₂ —	1	2	0	R	Н	-CH ₂ -N-C-SCF ₃
1814	O CH₂−	1	2	0	R	Н	$-CH_2$ -N-C- \longrightarrow SCF ₃
1815	H_3 C- $\left\langle \begin{array}{c} CH_3 \\ -CH_2 \end{array} \right\rangle$	1	2	0	R	н	$-CH_2-N-C-$ SCF ₃

Table 1.166

Compd.	R ¹ (CH ₂)-	k	m	n	chirality	⁻ R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G - R^6$
1816	(CH ₃) ₂ C + CH ₂ -	1	2	0	R	Н.	$-CH_2-N-C- $ SC F ₃
1817	(CH ₃) ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-SCF ₃
1818	Br—CH ₂ -	1	2	0	R	Н	-CH ₂ -N-COCHF ₂
1819	H ₃ CO-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-C
1820	H ₃ CQ HO—CH ₂ —	1	2	0	R	Н	-CH ₂ -N-C-OCHF ₂
1821	HQ H₃CO—CH₂—	1	2	0	R	Н	-CH ₂ -N-C-C
1822	HO-{CH ₂ -	1	2	0	R	H	$-CH_2-N-C$ OC HF_2
1823	CH ₂ -	1	2	0	R	Н	$-CH_2-N-C$ OC HF2
1824	-CH ₂ -	1	2	0	R	, Н	-CH ₂ -N-C
1825	H3CS-CH2-	1	2	0	R	Н	-CH ₂ -N-C-OCHF ₂
1826	H ₃ CCH ₂ —CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-C

Table 1.167

Compd.	R^1 $(CH_2)_j$	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
1827	CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-OCHF ₂
1828	H_3C CH_3 CH_2	1	2	0	R	Н	-CH ₂ -N-C-OCHF ₂
1829	H_3C CH_3 CH_2 CH_2	1	2	0	R	Н	-CH ₂ -N-C
1830	(CH ₃) ₂ CH————————————————————————————————————	1	2	0	R	Н	-CH ₂ -N-C-OCHF ₂
1831	Br—CH ₂ -	1	2	0	R	Н	$-CH_2-N-C$
1832	H ₃ CO-CH ₂ -	1	2	0	R	Н	$-CH_2-NC-C(CH_3)_3$
1833	H ₃ CQ HO-CH ₂ -	1	2	0	R	Н	$-CH_2-N-C-C(CH_3)_3$
1834	HQ H ₃ CO-CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-C(CH ₃) ₃
1835	HO(CH₂-	1	2	0	R	Н	-CH ₂ -N-C-C(CH ₃) ₃
1836	O-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-(CH ₃) ₃
1837	CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-C(CH ₃) ₃

Table 1.168

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} G - R^6$
1838	H₃CS-CH₂-	1	2	0	R	Н	-CH ₂ -N-C
1839	H ₃ CCH ₂ ————————————————————————————————————	1	2	0	R	Н	$-CH_2-NC-C(CH_3)_3$
1840	-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-C(CH ₃) ₃
1841	H_3 C \longrightarrow C H_2	1	2	0	R	Н	-CH ₂ -N-C-(CH ₃) ₃
1842	H_3 C- CH_3 CH_2 - CH_2 -	1	2	0	R	Н	-CH ₂ -N-C-C(CH ₃) ₃
1843	(CH ₃) ₂ CH————————————————————————————————————	1	2	0	R	Н	$-CH_2-NC \xrightarrow{C} C(CH_3)_3$
1844	(CH ₃) ₃ C-CH ₂ -	1	2	0	R	Н	$-CH_2-NC$ $C(CH_3)_3$
1845	H ₃ CCH ₂ —CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1846	H_3C CH_3 CH_2 CH_2	1	2	0	R	Н	-CH ₂ -N-C-SCF ₃
1847	(CH ₃) ₃ C—CH ₂ -	1	2	0	R	Н	$-CH_2-N-C$ OC HF_2
1848	H ₃ CQ HO—CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-

Table 1.169

Compd.	R^1 (CH ₂)	k	m	n	chirality	Ħ³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1849	CH ₂ -	1	2	0	R	н	- CH ₂ -N-C-
1850	H₃CCH₂-⟨}-CH₂-	1	2	0	R	Н	- CH ₂ -N-C-
1851	H_3 C- CH_2 -	1	2	0	R	H	-CH ₂ -N-C
1852	CH ₂ -	1	2	0	R	Н	-CH2-N-C
1853	H ₃ CQ HO—CH ₂ —	1	2	0	R	н	$-CH_2-N+C-$
1854	CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
	H₃ССН ₂ —⟨СН ₂ -				R	Н	-CH ₂ -N-C-
1856	H_3 C- CH_2 -	1	2	0	R	н	$-CH_{2}-N$
1857	-CH ₂ -	1	2	0	R	н	$-CH_2-NC$
1858	Br—CH ₂ —	1	2	0	R	Н	$-CH_2-NC\longrightarrow Br$ H_2N
1859	H ₃ CO-CH ₂ -	1	2	0	R	H	$-CH_2-N$ H_2N H_2N

Table 1.170

Compd. No.	R ¹ (CH ₂)-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1860	H ₃ CQ HO-CH ₂ -	1	2	0	R	Н	$-CH_2-N+C$ H_2N H_2N
1861	HQ H ₃ CO-CH ₂ -	1	2	0	R	Н	$-CH_2-N-C$ H_2N H_2N
1862	HO-CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N H_2N
1863	-CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N H_2N
1864	H ₃ CS-CH ₂ -	1	2	0	R	H	$-CH_2-N-C$ H_2 H_2 H_2 H_3
1865	CH ₂ -	1	2	0	R	Н	$-CH_2-N-C$ H_2N H_2N
1866	H_3C CH_3 CH_2 CH_2	1	2	0	R	н	$-CH_2-N-C$ H_2N
1867	(CH ₃) ₂ CH————————————————————————————————————	1	2	0	R	Н	$-CH_2-N-C$ H_2N H_2N
1868	(CH ₃) ₃ C-\(\bigc\)-CH ₂ -	1	2	0	R	Н	$-CH_2-N$ C H_2N
1869	Br—√CH ₂ -	1	2	0	R	Н	$-CH_2-N-C$ H_2N
1870	H ₃ CO-{}CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N

Table 1.171

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	Ħ³	$-(CH_2)_p + (CH_2)_q - G - R^6$
1871	H ₃ CQ HO—CH ₂ —	1	2	0	R	Н	$-CH_2-N-C-$ H_2N
1872	HQ H ₃ CO-CH ₂ -	1	2	0	R	H	$-CH_2-N-C$ H_2 H_2 N
1873	но-{	1	2	0	R	Н	$-CH_2-N-C-$ H_2 H_2 N
1874	CH ₂ -	1	2	0	R	Н	$-CH_2-N$ H_2 H_2 N
1875	CH ₂ -	1	2	0	R	Н	$-CH_2-N-C$ H_2 H_2 N
1876	H ₃ CS-CH ₂ -	1	2	0	R	Н	$-CH_2-N-C-$ H_2 H_2 N
1877	H₃CCH₂—CH₂−	1	2	0	R	Н	$-CH_2-N-C$ H_2 H_2 N
1878	CH ₂ -						$-CH_2-NCC-$ H_2 H_2 N
1879	H_3C CH_3 CH_2 CH_2	1	2	0	R	Н	$-CH_2-N-C-$ H_2 H_2 N
1880	(CH ₃) ₂ CH-CH ₂ -	1	2	0	R	Н	$-CH_{2}-N-C$ H_{2} H_{2} N
1881	(CH ₃) ₃ C-CH ₂ -	1	2	0	R	Н	$-CH_2-N-C$ H_2 H_2 N

Table 1.172

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^-R^6$
1882	Br-CH ₂ -	1	2	0	R	Н	$-CH_2-N-C$ H_2N H_2N NO_2 H_2N
1883	H ₃ CO-CH ₂ -	1	2	0	R	Н	$-CH_2-N C \longrightarrow NO_2$ H_2N
1884	H ₃ CQ HO————————————————————————————————————	1	2	0	R	Н	$-CH_2-N-C$ H_2-N H_2-N
1885	HQ H ₃ CO-CH ₂ -	1	2	0	R	Н	$-CH_2-N-C$ H_2-N H_2-N
1886	HOCH ₂ -	1	2	0	Ŗ	н	$-CH_2-N+C$ H_2N H_2N
1887	CH ₂ -	1	2	0	R	Н	$-CH_2-N-C$ H_2-N H_2-N
1888	CH ₂ -	1	2	0	R	Н	$-CH_2-N-C \longrightarrow NO_2$ H_2N
1889	H ₃ CS-CH ₂ -	1	2	0	R	Н	$-CH_2-N-C \longrightarrow H_2 N$
1890	H₃CCH₂—⟨¯_)—CH₂−	1	2	0	R	Н	$-CH_{2}-N$ H_{2} NO_{2} NO_{2} NO_{2}
1891	CH ₂ -	1	2	0	R	Н	$-CH_2-N-C-V-V-V-V-V-V-V-V-V-V-V-V-V-V-V-V-V-V$
1892	H ₃ C-CH ₂ -	1	2	0	R	Н	$-CH_2-N-C \xrightarrow{\bigcirc} NO_2$ $+ H_2 N$

Table 1.173

Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
	CH ₃ CH ₂ - CH ₂ -	1	2	0	R	Н	$-CH_2-N-C-$ H_2N NO_2 H_2N
1894	(CH ₃) ₂ CH————————————————————————————————————	1	2	0	R	Н	$-CH_2-NC-$ H_2N
1895	(CH ₃) ₃ C-CH ₂ -	1	2	0	R	Н	$-CH_2-N-C-$ H_2 H_2 H_2 H_2
1896	HQ H ₃ CO—CH ₂ -	1	2	0	R	Н	$-CH_2-N-C \longrightarrow H_2N$
1897	H ₃ CS-CH ₂ -	1	2	0	R	Н	$-CH_2-N-C$ H_2 H_2 H_2
1898	H ₃ CCH ₂ —CH ₂ -	1	2	0	R	Н	$-CH_{2}-N$ H_{2} H_{2} N OCF_{3}
1899	(CH ₃) ₂ CH-CH ₂ -	1	2	0	R	Н	$-CH_2-N-C \longrightarrow H_2N$
1900	H ₃ CQ HO————————————————————————————————————	1	2	0	R	Н	$-CH_2-N-C$ H_2N H_2N OCF_3 H_2N
1901	H ₃ C(CH ₂) ₂ —————————————————————————————————	1	2	0	R	Н	$-CH_{2}-NC \longrightarrow H_{2}N$
1902	CH ₂ -	1	2	0	R	Н	$-CH_{2}-N+C$ $H_{2}N$ OCF_{3} $H_{2}N$
1903	(CH ₃) ₂ CH-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N OCF_3

Table 1.174

Compd.	R^1 $(CH_2)_j$	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}$ $(CH_2)_{q}$ $-G-R^6$
1904	H ₃ C(CH ₂) ₂ —————————————————————————————————	2	2	1	-	Н	$-CH_2-N-C H_2N$ OCF_3
1905	CH ₂ —	1	2	0	R	Н	$-CH_2-N-C$ H_2N OCF_3 H_2N
1906	CH2-	1	2	0	R	Н	$-CH_2-N-C \longrightarrow H_2N$
1907	HO-CH ₂ -	1	2	0	R	Н	$-CH_2-N-C-$ H_2N H_2N
1908	H ₃ CO-CH ₂ -	1	2	0	R	Н	$-CH_2-N-C H_2N$ OCF_3
1909	H ₂ C=CH-CH ₂ -	1	2	0	R	Н	$-CH_2-N-C H_2N$ H_2N
1910	Br—CH ₂ -	2	2	1	-	н	$-CH_2-NC H_2N$ OCF_3 H_2N
1911	CH ₂ —CH ₂ —	2	2	1	-	Н	$-CH_2-N-C$ H_2N
1912	HO()CH ₂	2	2	1	-	н	$-CH_{2}-N$ $H_{2}N$ OCF_{3} $H_{2}N$
1913	H_3 C \longrightarrow C H_2	2	2	1	-	Н	$-CH_2-N-C H_2N$
1914	H ₃ C-CH ₂ -	2	2	1	-	Н	$-CH_2-N$ H_2N OCF_3

Table 1.175

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R ³	$-(CH_2)_{p} + (CH_2)_{q} - (C$
1915	H ₃ CCH ₂ Q HO————————————————————————————————————	1	2	0	R	Н	$-CH_2-N-C \longrightarrow H_2N$
1916	H ₃ C HO—CH ₂ —	1	2	0	R	н	$-CH_2-N-C \longrightarrow OCF_3$ H_2N
1917	H ₃ CC H ₂ Q HO—CH ₂ —	2	2	1	-	Н	$-CH_{2}-N$ $H_{2}N$ OCF_{3} $H_{2}N$
1918	H ₃ C HO—CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N
1919	NH ₂	2	2	1	-	н	$-CH_2-N-C$ H_2N CF_3
1920	CH ₂ -	2	2	1	-	Н	$-CH_2-N$ C H_2 H_2 N
1921	CH ₂ -CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N OCF_3 H_2N
1922	CH2-CH2-	2	2	1	-	н	$-CH_2-N-C$ H_2N OCF_3 H_2N
1923	Br—CH ₂ -	2	2	1	-	н	$-CH_2-N-C-$ SCF ₃
1924	H ₃ CO-()-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-SCF ₃
1925	FCH ₂ -	2	2	1	-	н	-CH ₂ -N-C-SCF ₃

Table 1.176

Compd.	R^1 $(CH_2)_j$	k	m	n	chirality	Ŕ³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^-R^6$
1926	F-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C-$
1927	но -√ _сн ₂ -	2	2	1	-	н	$-CH_2-N-C-$
1928	CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$
1929	-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C-$ SCF ₃ $+CH_2-N-C-$
1930	H₃CS-()-CH₂-	2	2	1	-	Н	$-CH_2-N-C$ SCF ₃ H
1931	H₃CCH2CH2-	2	2	1	-	Н	-CH ₂ -N-C-SCF ₃
1932	o—CH₂-	2	2	1	-	Н	-CH ₂ -N-C-SCF ₃
1933	H_3 C \longrightarrow C H_2	2	2	1	-	Н	$-CH_2-N+C-$ SCF ₃ $-CH_2-N+C-$
1934	H_3C CH_3 CH_2 CH_2	2	2	1	-	Н	$-CH_2-N-C- \longrightarrow SCF_3$
1935	O ₂ N-(CH ₂ -	2	2	1	-	Н	$-CH_2-N-C- \bigcirc SCF_3$
1936	H ₃ C-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ SCF_3 H

Table 1.177

Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1937	(CH ₃) ₂ CH————————————————————————————————————	2	2	1	-	Н	-CH ₂ -N-C-SCF ₃
1938	Br—CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$
1939	H ₃ CO-()CH ₂ -	2	2	1	-	Н	$-CH_2-N+C$
1940	F——CH ₂ -	2	2	1	-	Н	$-CH_2-N$ - C - CH_3
1941	F—CH ₂ -	2	2	1	-	Н	$-CH_2-N-C-$ Br CH_3
1942	HO	2	2	1	-	Н	$-CH_2-N-C Br$ CH_3
1943	CH ₂ -	2	2	1	-	Н	$-CH_2-N$ C CH_3
1944	CH ₂ -	2	2	1	-	Н	$-CH_2-N$ C CH_3
1945	H ₃ CS—CH ₂ —	2	2	1	-	H	$-CH_2-NC$ CH_3
1946	H3CCH2-CH2-	2	2	1	-	Н	$-CH_2$ -N-C- \longrightarrow CH_3
1947	CH₂-	2	2	1	-	Н	$-CH_2-N$ C $-CH_3$

Table 1.178

Compd.	R ¹ (CH ₂) –	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G-R^6$
1948	CH ₃ H ₃ C−CH ₂ −	2	2	1	-	Н	$-CH_2-N-C Br$ CH_3
1949	H_3C CH_3 CH_2 CH_2	2	2	1	-	Н	$-CH_2-N-C$
1950	C ₂ N-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$
1951	H ₃ C-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C CH_3$
1952	Br—CH ₂ —	2	2	1	-	Н	-CH ₂ -N-CF
1953	H ₃ CO-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
1954	FCH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ \xrightarrow{Br} F
1955	F—CH ₂ —	2	2	1	-	Н	$-CH_2-N-C$ \xrightarrow{D} F
1956	HO-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-CF
1957	CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-Br
1958	-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-CF

Table 1.179

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
1959	н₃сs-{_}_Сн₂-	2	2	1	-	Н	$-CH_2-N-C \xrightarrow{P}F$
1960	H ₃ CCH ₂ —CH ₂ -	2	2	1	-	н	$-CH_2-N-CF$
1961	CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ \xrightarrow{P} F
1962	H_3 C \longrightarrow C H_2 -	2	2	1	-	Н	$-CH_2-N-C$ $+CH_2$
1963	H_3C CH_3 CH_2	2	2	1	-	н	$-CH_2-N-C +C$ $+C$ $+C$ $+C$ $+C$ $+C$ $+C$ $+C$
1964	O ₂ N-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
1965	H ₃ C-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ $\xrightarrow{\text{Br}}$ F
1966	(CH ₃) ₂ C H————————————————————————————————————	2	2	1	-	н	$-CH_2-N-C$ \xrightarrow{D} F
1967	B	2	2	1	-	Н	$-CH_2-N-C \longrightarrow F$ H_2N
1968	H ₃ CO-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2 H_2 H_2 H_3
1969	HO-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N

Table 1.180

Compd.	R^1 $(CH_2)_j$	k	m	n	chirality	R ³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}$ $(CH_2)_{q}$ $-G-R^6$
1970	CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N
1971	CH ₂ -	2	2	1	-	Н	$-CH_2-N$ C H_2N
1972	H ₃ CS-CH ₂ -	2	2	1	-	Н	$-CH_2-N C - F$ H_2N
1973	H ₃ CCH ₂ —CH ₂ -	2	2	1	-	н	$-CH_2-N+C$ H_2N
1974	H_3 C- CH_3	2	2	1	-	н	$-CH_2-N-C$ H_2N
1975	O ₂ N-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
1976	H ₃ C-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N
1977	NC-(2	2	1	-	Н	$-CH_2-N$ C H_2N
1978	(CH ₃) ₂ CH————————————————————————————————————	2	2	1	-	Н	$-CH_2-N-C$ H_2N
1979	CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2 H_2 N
1980	CH ₂ -	2	2	1	-	Н	$-CH_2-N$ H_2 H_2 H_2

Table 1.181

iable	1.101						
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	Ř³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1981	O ₂ N-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N H_2N
1982	NC-CH ₂ -	2	2	1	-	Н	$-CH_2-N$ C H_2 H_2 N
1983	(CH ₃) ₂ CH-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2 H_2 H_2
1984	Br—CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N
1985	H ₃ CO-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2 H_2 N
1986	HO-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ $+C$ $+C$ $+C$ $+C$ $+C$ $+C$ $+C$ $+$
1987	CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N
1988	CH ₂ -	2	2	1	-	Н	$-CH_2-N-C \longrightarrow H_2N$
1989	H ₃ CS-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N
1990	H ₃ CCH ₂ —CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ $H_2 N$
1991	-CH ₂ -	2	2	4	-	Н	$-CH_2-N-C \longrightarrow H_2N$

Table 1.182

Compd. No.	R^1 $(CH_2)_j$	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^-R^6$
1992	CH ₃ H ₃ C-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ $H_2 N$
1993	O ₂ N-(CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ $H_2 N$
1994	H ₃ C-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2 H_2 N
1995	NC-CH ₂ -	2	2	1	-	Н	$-CH_2-N+C-$ $H_2 N$
1996	(CH ₃) ₂ CH————————————————————————————————————	2	2	1	-	H	$-CH_2-N-C$ H_2N
1997	H_3C CH_3 CH_2 CH_2	2	2	1	-	Н	$-CH_2-N-C$ H_2N
1998	Br—CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-
1999	H ₃ CO-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-CI
2000	F—CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
2001	HO-{CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-
2002	CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C

Table 1.183

Compd. No.	R^1 (CH ₂)	k	m	n	chirality	R³	$-(CH_2)^{R^4}_{p+1}(CH_2)^{q}_{q}G^{-R^6}$
2003	CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-
2004	H ₃ CS-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-CI
2005	H₃CCH₂—————CH₂–	2	2	1	-	Н	- CH ₂ -N-C-
2006	H_3 C CH_3 CH_2	2	2	1	-	Н	-CH ₂ -N-C-
2007	O ₂ N-(CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-CI
2008	H ₃ C-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-CI
2009	NC-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-
2010	(CH ₃) ₂ CH-\	2	2	1	-	Н	-CH ₂ -N-C-CI
2011	H_3 C \longrightarrow C H_2 -	2	2	1	-	Н	, -CH2-N-C-
2012	Br—CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
2013	H ₃ CO-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C

Table 1.184

Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{p} + (CH_2)_{q} - (C$
2014	но-{	2	2	1	<u>`-</u>	Н	-CH ₂ -N-C-Br
2015	CH2-	2	2	1	-	Н	-CH ₂ -N-C
2016	CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
2017	н₃сs-{	2	2	1	-	Н	-CH ₂ -N-C
2018	H ₃ CCH ₂ —CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
2019	CH ₂ -	2	2	1		Н	-CH ₂ -N-C
2020	H_3 C $-$ C H_2 -	2	2	1	-	Н	-CH ₂ -N-C-Sr
2021	O ₂ N-CH ₂ -	2	2	1	-	Н	-CH₂-N-C
2022	H ₃ C-(CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-
2023	NC-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2024	(CH ₃) ₂ C H- CH ₂ -	2	2	1	•	Н	-CH ₂ -N-C

Table 1.185

Compd.	R^{2r}				chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G-R^6$
2025	H_3C CH_3 CH_2 CH_2	2	2	1	-	н	-CH ₂ -N-C
2026	F—CH ₂ -	2	2	1	-	H	$-CH_2-N$ C \longrightarrow CI
2027	Br—CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N H_2N Br
2028	H ₃ CO-CH ₂ -	. 2	2	1	-	H	-CH ₂ -N-C
2029	HO-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N H_2N H_2N
2030	CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N H_2N H_2N
2031	-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N Br
2032	O-CH ₂ -	2	2	1	ā	H	-CH ₂ -N-C
2033	H_3 C \longrightarrow C H_2	2	2	1	-	Н	-CH ₂ -N-C-Br
2034	O ₂ N-{	2	2	1	-	н	$-CH_2-N-C$ H_2N H_2N Br
2035	H ₃ C-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2 H_2 H_2 H_2

Table 1.186

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}$ $(CH_2)_{q}$ $-G-R^6$
2036	NC-√CH ₂ -	2	2	1	-	н	$-CH_2-N-C H_2N$ H_2N Br
2037	CH_3 H_3C CH_2	2	2	1	-	Н	$-CH_2-N-C$ H_2N H_2N
2038	F-CH ₂ -	2	2	1	-	H ;:	$-CH_2-N-C \longrightarrow Br$ H_2N
2039	H ₃ C-CH ₂ -	2	2	1	-	H	-CH ₂ -N-C- H CN
2040	H ₃ C-\(\bigcup_\)-CH ₂ -	1	2	0	R	Н	CH ₂ -N-C-CH-
2041	H ₃ C-\(\)-CH ₂ -	1	2	0	R	Н	О ОС Н ₃ - СН ₂ - N- С- СН-
2042	H ₃ C-√CH ₂ -	1	2	0	R	Н	$-CH_2-NC \xrightarrow{H_3C} H_3C$
2043	H ₃ C-\(\bigcirc\)-CH ₂ -	1	2	0	R	Н	$-CH_2-N-C-CH_2 \xrightarrow{CH_3}$
2044	CH_3 CH_2 CH_3	1	2	0	R	Н	-CH ₂ -N-C
2045	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C- H HN C-N-C-
2046	CH ₃ CH ₂ - CH ₃	1	2	0	R	H .	-CH ₂ -N-C-H ₃

Table 1.187

Compd.	R^1 $(CH_2)_j$	k	m	n	chirality	\mathbb{R}^3	$-(CH_2)_p + \frac{R^4}{R^5} (CH_2)_q - G^-R^6$
2047	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -H ₂ CH ₃
	CH_3 CH_2 CH_3					Н	-CH ₂ -N-C
2049	CH_3 CH_2 CH_3	1	2	0	R	н	-CH ₂ -N-CH ₃ -CH ₃ -CH ₃
2050	H ₃ C S CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
	H ₃ C — N— CH ₂ —					Н	-CH ₂ -N-C-CF ₃
2052	$\begin{array}{c} \text{Br} \\ \\ \text{CH}_2\text{-} \\ \\ \text{OCH}_2\text{CH}_3 \end{array}$	2	2	1	-	Н	$-CH_2-N-C$ H_2N H_2N
2053	H ₃ CQ CH ₂ O-CH ₂ -CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N
2054	H ₃ CO-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N
2055	H ₃ CQ CH ₂ -	2	2	1	-	Н	$-CH_2-N-C-$ H_2N
2056	Br, CH ₂ -	2	2	1	-	н	$-CH_2-N-C-F$ H_2N
2057	Br H ₃ CO—CH ₂ —	2	2	1	-	Н	$-CH_2-N-C$ H_2N

Table 1.188

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R^3	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
2058	H ₃ CQ OC H ₃ — CH ₂ —	2	2	1	-	н	$-CH_2-N-C-F$ H_2N
2059	CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N
2060	H_3CO H_3CO CH_2 CC CC CC CC CC CC CC C	2	2	1	-	Н	$-CH_2-N-C-$ H_2N
2061	F_CH ₃	2	2	1	-	Н	$-CH_2-N-C$ H_2 H_2 H_2 H_2
2062	H ₃ CO-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C-F$ H_2N
2063	H_3CO H_3CO CH_2	2	2	1	-	Н	$-CH_2-N-C-$ F H_2N
2064	Br CH ₂ -	2	2	1	-	Н	$-CH_2-N-C-$ H_2 H_2 H_2
2065	H ₃ CCH ₂ Q H ₃ CCH ₂ O———CH ₂ —	2	2	1	-	Н	$-CH_2-N-C$ H_2 H_2 H_2 H_3
2066	OCH ₂ -CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2 H_2 H_2 H_3
2067	(H ₂ C) ₂ CHCH ₂ ————————————————————————————————————	2	2	1	-	Н	$-CH_2-N$ $+D$ $+D$ $+D$ $+D$ $+D$ $+D$ $+D$ $+D$
2068	CI, F—CH₂−	2	2	1	-	Н	$-CH_2-N$ C H_2N

Table 1.189

Compd.	R^1 $(CH_2)_j$	k	m	n	chirality	R ³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} G - R^6$
2069	H ₃ C H ₃ CO————————————————————————————————————	2	2	1	-	Н	$-CH_2-N-C$ H_2N H_2N
2070	B_{r} CH_{2} OCH_{3}	2	2	1	-	Н	$-CH_2-N-C-$ H_2N H_2N
2071	H_3 CO $-$ C H_2 -OC H_3	2	2	1	-	Н	$-CH_2-N-CF$ H_2N
2072	(H ₃ C) ₂ CHO————————————————————————————————————	2	2	1	-	H	$-CH_2-N-C-$ H_2 H_2 N
2073	CH ₂ Q	2	2	1	-	Н	$-CH_2-N-C +$ H_2N
2074	H ₃ CO CH ₂ -	2	2	1	-	Н	$-CH_2-N$ C H_2 H_2 N
2075	H ₃ CQ CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ $+CH_2-N$ $+CH_2-N$
2076	F-CH ₂ -	2	2	1	-	Н	$-CH_{2}-N-C$ $+CH_{2}N$ $+CH_{2}N$
2077	CICH ₂	2	2	1	-	Н	$-CH_{2}-N-C$ $+CH_{2}N$ $+CH_{2}N$
2078	H3CCH2Q OH CH2	2	2	1	-	Н	$-CH_2-N-C$ H_2N
2079	CH ₂ Q H ₃ CO-CH ₂ -	2	2	1	-	н	$-CH_2$ $-N$ $-C$ $+$ $-F$

Table 1.190

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R^3	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
2080	CH ₂ Q H ₃ CO—CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N
2081	CI HO—CH ₂ —	2	2	1	· <u>-</u>	н	$-CH_{2}-N-C$ $+C$ $+C$ $+C$ $+C$ $+C$ $+C$ $+C$ $+$
2082	OH H ₃ CO-CH ₂ -	2	2	1	-	н	$-CH_2-N-CF$ H_2N
2083	H ₃ CQ HO—CH ₂ — Br	1	2	0	R	н	$-CH_2-N-C- \longrightarrow CF_3$ $-CH_2-N-C- \longrightarrow H_2$
2084	H ₃ CO HO—CH ₂ - H ₃ CO	1	2	0	R	Н	$-CH_2-N-C-$ H_2 H_2 H_2 H_3
2085	H ₃ CO—CH ₂ -	1	2	0	R	Н	$-CH_2-N-C H_2N$
2086	CI CH ₂ -	1	2	0	R	Н	$-CH_2-N-C-$ H_2N
2087	(H ₃ C) ₂ N—CH ₂ -	1	2	0	R	Н	$-CH_2-N-C H_2N$
2088	(H ₃ CCH ₂) ₂ N-\(\bigcirc\)-CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N
2089	F—CH ₂ -	1	2	0	R	н	$-CH_2-N-C H_2N$
2090	CH2-	1	2	0	R	Н	$-CH_2-N-C-\longrightarrow H_2N$

Table 1.191

Compd.	R^1 $(CH_2)_j$	k	m	n	chirality	R ³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
2091	CH_CH2-	2	2	1	-	Н	OCH ₂ CH ₃ -CH-N-C-
2092	С├─(СН2-	2	2	1	-	н	(R) OCH ₂ CH ₃ -CH-NC-CH ₂ NH CH ₂ NH
2093	C├ \ CH ₂ -	2	2	1	-	н	(R) OCH ₂ CH ₃ -CH-N-C
2094	C⊢√_CH₂-	2	2	1	-	н	(R O O CH ₂ CH ₃ - CH N C C CH ₂ CH ₃
2095	CH2-	2	2	1	-	Н	(R) C
2096	CH2-	2	2	1	-	Н	(R O O CH ₂ CH ₃ - CH N C O CH ₂ CH ₃
2097	CHCH ₂ -	2	2	1	-	Н	(F) OCH ₂ CH ₃ -CH-N-C-CH ₂ CH ₃ CH ₂ CH ₂ CH ₃
2098	CHCH_2-	2	2	1	-	Н	(R O OCH ₂ CH ₃ -CH-N-C-CI
2099	CHCH ₂ -	2	2	1	-	н	-CHN-C-CH ₂ CH ₃
2100	СН-СН2-	2	2	1	-	Н	(R O OCH ₂ CH ₃ -CH-N C OCH ₃ CH ₂ OCH ₃
2101	CHCH ₂ -	2	2	1	-	н	(R OCH ₂ CH ₃ -CH-N-C-CH-CH ₂ CH ₂ -OCH ₂ CH ₃

Table 1.192

Compd.	R ¹ (CH ₂) –	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
2102	CHCH ₂ -	2	2	1	-	Н	OCH ₂ CH ₃ -CH+N-C
2103	CH_CH2-	2	2	1	-	Н	() OCH₂CH₃ -CH-N-C- H₃C-CHOCH₂-
2104	CHCH_2-	2	2	1	-	Н	OCH ₂ CH ₃ -CH-N-C- H CH ₂ CH ₂ -C-OCH ₃ Ö R
2105	H ₃ CO OH CH ₂ -	2	2	1	-	н	$-CH_2-N-C-$ H_2 H_2 N
2106	H ₃ C OH CH ₂ -	2	2	1	-	Н	$-CH_2-N-C H_2$ H_2 N
2107	Br CH ₂ -	2	2	1	-	Н	$-CH_2-N$ C H H_2 N
2108	CH ₃ CH ₂	2	2	1	-	Н	$-CH_2-N-C-$ H_2 H_2 H_2
2109	BK_Q CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
2110	H ₃ CCH ₂ CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
2111	CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N
2112	Br H ₃ CO————————————————————————————————————	2	2	1	-	H	$-CH_2-N-C$ H_2N

Table 1.193

, ab.o							
Compd.	R^1 $(CH_2)_j$	k	m	n	chirality	R ³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
2113	H ₂ N H ₃ CO-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N
2114	H_2N H_3C — CH_2 —	2	2	1	-	Н	$-CH_{2}-N-C$ $H_{2}N$ $H_{2}N$
2115	CH-2-	2	2	1	-	н	$(H) \qquad O \\ -C + N - C - O \\ L + C - C + C + C + C + C + C + C + C + C$
2116	CHCH ₂ -	2	2	1	-	н	(<i>H</i>)
2117	C├ \ CH ₂ -	2	2	1	-	Н	OCH ₂ CH ₃ -CH-N-C H N CH ₂ -NH
2118	HO—CH ₂ -	1	2	0	R	Н	$-CH_2-N-C$ H_2 H_2 N
2119	OH HO-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
2120	B	1	2	0	R	Н	-CH ₂ -N-C-CF ₃ H ₂ N
2121	OCH ₃	1	2	0	R	н	$-CH_2-N-C \longrightarrow H_2N$
2122	CH2-	1	2	0	R	Н	$-CH_2-N-C-$ H_2N H_2N
2123	CH ₂ -NO ₂	1	2	0	Ŗ	Н	-CH ₂ -N-C

Table 1.194

Compd.	R^1 $(CH_2)_j$	k	m	n	chirality	R ³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
2124	O ₂ N CI————————————————————————————————————	1	2	0	R	Н	$-CH_2-N-C-$ H_2 H_2 H_2 H_3
2125	O ₂ N H ₃ CO—CH ₂ -	1	2	0	R	Н	$-CH_2-N-C H_2$ H_2 H_2 H_3
2126	O_2N H_3C — CH_2 —	1	2	0	R	н	$-CH_2-N-C H_2N$
2127	CH ₂ -	1	2	0	R	Н	$-CH_{2}-N-C-$ $H_{2}N$
2128	H ₂ N H ₃ CO————————————————————————————————————	1	2	0	R	Н	$-CH_2-N-C H_2$ H_2 H_2 H_2
2129	H_2N H_3C — CH_2 —	1	2	0	R	Н	-CH ₂ -N-C
2130	O' N= CH ₂ -	2	2	1	-	Н	$-CH_2-N-C-$ $+C-$ $+C-$ $+C-$ $+C-$ $+C-$ $+C-$ $+C-$
2131	CH_3 CH_2 CH_3	2	2	1	-	Н	-CH ₂ -N-C
2132	H ₂ N CH ₂ -	1	2	0	R	Н	$-CH_2-N-C \longrightarrow H_2N$
2133	(H ₃ C) ₂ N CH————————————————————————————————————	1	2	0	R	Н	$-CH_2-N-C \longrightarrow H_2N$
2134	O CH ₂ - N(CH ₃) ₂	1	2	0	R	Н	$-CH_2-N-C-$ H_2N

PCT/US98/23254

Table 1.195

WO 99/25686

Compd. No.	R^1 $(CH_2)_j$	k	m	n	chirality	R ³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}$ $(CH_2)_{q}$ $- G-R^6$
2135	(H ₃ C) ₂ N H ₃ CO—CH ₂ —	1	2	0	R	Н	-CH ₂ -N-C- H H ₂ N
2136	$(H_3C)_2N$ H_3C — CH_2 —	1	2	0	R	Н	-CH ₂ -N-C- H H ₂ N
2137	CH ₃	1	2	0	R	Н	$-CH_2-N-C H_2$ H_2 N
2138	CH ₃ CH ₂ CH ₃	1	2	0	R	Н	$-CH_2-N-C-$ H_2 H_2 H_2
2139	H ₃ C CI CH ₂ - CH ₃	1	2	0	R	Н	$-CH_2-N-C-$ H_2 H_2 H_2
2140	CH ₂ -NH ₂	2	2	1	-	Н	$-CH_2-N$ C H_2 H_2 N
2141	H_2N $HO-CH_2-$	2	2	1	-	Н	$-CH_2-N$ C $+$ H_2 N
2142	H_2N CH_2	2	2	1	-	Н	$-CH_2-N-C$ H H_2N
2143	CH ₂ - HNC-CH ₃	2	2	1	-	н	$-CH_2-N-C$
2144	H_2N H_3CO CH_2	2	2	1	-	н	$-CH_2-N-C$ H_2N H_2N
2145	H ₂ N HO—CH ₂ -	2	2	1	-	н	-CH ₂ -N-C

Table 1.196

Compd.	R^{1} $(CH_{2})_{j}$	k	m	n	chirality	R ³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^{-R^6}$
2146	CH ₂ -	2	2	1	-	Н	$-CH_2-N-C-$ H_2N
2147	H_3 C-C-NH H_3 CO-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C-$ H_2N
2148	H ₃ C-C-NH HO-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C-$ H_2N
2149	O ₂ N HO-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃ H ₂ N
2150	$\begin{array}{c} & & \bigcirc \\ & & \bigcirc \\ & & \\ &$	1	2	0	R	Н	$-CH_2-NCC-$ H_2N
2151	CH ₂ - HNC-CH ₃	1	2	0	R	Н	$-CH_2 - N C - CF_3$ $+ H_2 N$
2152	H ₃ C-C-NH H ₃ CO-CH ₂ -	1	2	0	R	Н	$-CH_2-N-C$ H_2 H_2 H_2
2153	H_3 C-C-NH H_3 C-CH ₂ -	1	2	0	R		-CH ₂ -N-C
2154	Q H ₃ C-C-NH H ₃ CO-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N
2155	H ₃ C-C-NH HO-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N
2156	CH ₂ - HN-C-CH ₃	2	2	1	-	Н	$-CH_2-N-C H_2N$ H_2N

Table 1.197

Compd.	R^1 $(CH_2)_j$	k	m	n	chirality	- R ³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^-R^6$
2157	CH ₃	1	2	0	R	н	$-CH_2-N-C-$ H_2N
2158	H ₃ C-NH HO———————————————————————————————————	1	2	0	R	Н	$-CH_2-N-C- \longrightarrow_{H_2N}^{CF_3}$
2159	H_3 C-NH H_3 CO-CH $_2$ -	2	2	1	-	Н	$-CH_2-N-C- F$ H_2N
2160	H ₃ C-NH HO-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N H_2N
2161	H ₃ C-NH CH ₂ -CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N H_2N
2162	H ₃ C-NH H ₃ CO-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N H_2N
2163	H ₃ C-NH HO-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C H_2N$ CF_3
2164	CH ₃ N CH ₂ -	1	2	0	R	Н	$-CH_2-N-C-$ H_2N
2165	CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N
2166	CH ₂ -	1	2	0	R	Н	$-CH_2-N-C-$ H_2N
2167	H N CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃

Table 1.198

							D4
Compd. No.	R^{2}					R^3	$-(CH_2)_{p}^{R^4}$ $+(CH_2)_{q}^{-}G^{-}R^6$
2168	H ₃ C CH ₂ - CH ₃	1	2	0	R	н	$-CH_2-N+C-$ H_2N
2169	H_3C CH_3 CH_3 CH_3					н	$-CH_2-N-CH_2$ H_2N
2170	CI N-CH ₂ -	1	2	0	R	Н	$-CH_2-N-C-$ H_2N
2171	H ₃ C CH ₂ -	1	2	0	R	Н	$-CH_2-N-C$ H_2 H_2 H_2 N
2172	F_3C CH_2 CH_3	1	2	0	R	Н	$-CH_2-N-C H_2N$ CF_3
2173	S CH ₂ - S CH ₃	1	2	0	R	Н	$-CH_2-NC-$ H_2N
	H ₃ C CH ₃ Br S CH ₂ -					Н	$-CH_2-N$ CF_3 H_2N
2175	OCH ₃ H ₃ CO———CH ₂ —	1	2	0	R	Н	-CH ₂ -N-C
2176	H ₃ C OH	1	2	0	R	Н	$-CH_2-NCC- H_{H_2N}$
2177	H_3 C OH CH_2 - CH_2 OH	1	2	0	R	Н	$-CH_2-N-C$ H_2N
2178	H ₃ CO-C + CH ₂ -	1	2	0	R	Н	$\begin{array}{c} H_2N \\ H_2N \\ -CH_2-N-C \\ H_2N \\ -CH_2-N-C \\ H_2N \\ \end{array}$

Table 1.199

Compd.	R^1 $(CH_2)_j$	k	m	n	chirality	R^3	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
2179	H ₃ C-F	1	2	0	R	Н	$-CH_2-N-C-$ H_2N H_2N
2180	CH(CH ₂) ₂ —	1	2	0	R	н	$-CH_2-N-C$ H_2N H_2N
2181	H ₃ CO	1	2	0	R	Н	$-CH_2-N-C \xrightarrow{C} H_2N$
2182	H ₃ C N CH ₂ -	1	2	0	R	Н	$-CH_2-N-C-$ H_2N
2183	Ş ⁻ N N= CH₂-	1	2	0	R	Н	$-CH_2-N-CF_3$ H_2N
2184	S-N N= CH ₂ -	2	2	1	-	Н	$-CH_2-N-C \xrightarrow{P} F$ $H_2 N$
2185	S-N CH ₂ -	2	2	1	-	Н	$-CH_2 - NC - CF_3$ H_2N
2186	H N CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N
2187	H ₂ N HO—CH ₂ —	1	2	0	R	Н	$-CH_2-N-C H_2N$ CF_3
2188	CH ₂ -	2	2	1	-	н	$-CH_2-N$ C H_2 H_2 N
2189	CH ₂ -	1	2	0	R	Н	$-CH_2-N-C$ H_2N H_2N

Table 1.200

Compd.	R^1 $(CH_2)_j$	k	m	n	chirality	R ³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
2190	CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N F H_2N
2191	CH ₂ -	2	2	1	-	H	$-CH_2-NCH_2$ $+CH_2-NCH_2$ $+CH_2-NCH_2$
2192	SH CH ₂ -	2	2	1	-	н	$-CH_2-N+C-$ H_2N H_2N
2193	S H CH ₂ -	2	2	1	-	Н	$-CH_2-N-C-$ H_2N
2194	H_2N H_3C — CH_2 —	2	2	1	-	Н	$-CH_2-N$ CF_3 H_2N
2195	H_2N CH_2 CH_2	2	2	1	-	Н	$-CH_2-N-C-$ H_2 H_2 H_2
2196	H_3C-NH H_3C-CH_2-	1	2	0	R	Н	$-CH_2-N-C$ H_2 H_2 N
2197	H ₃ C-NH H ₃ CO————————————————————————————————————	1	2	0	R	Н	$-CH_2-NCC-$ H_2N
2198	H ₃ C-NH CH2-CH2-	1	2	0	R	Н	$-CH_2-NC-$ H_2N
2199	H_3C-NH H_3C-CH_2-	2	2	1	-	Н	$-CH_2$ -N-C- $+CH_2$ N-CF ₃
2200	H ₃ C-NH CH ₂ -CH ₂ -	2	2	1	-	Н	$-CH_2-N-C-$ H_2N

Table 1.201

Compd.	R^1 $(CH_2)_j$	k	m	n	chirality	R ³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
2201	H ₃ C-NH H ₃ C-CH ₂ -	2	2	1	-	H	$-CH_{2}-N-C$ $H_{2}N$
2202	S H CH ₂ -	1	2	0	R	н	$-CH_2-N$ CF_3 H_2N
2203	CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2 H_2 H_2 H_2
2204	CH ₃ -CH ₂ -	2	2	1	-	Н	$-CH_2-N-C-$ H_2 H_2 H_2
2205	CH ₃	2	2	1	-	Н	$-CH_2-N$ C H_2 H_2 N
2206	$HO \longrightarrow CH_2$	2	2	1	-	Н	$-CH_2-N-C-$ H_2N
2207	CH ₃	2	2	1	-	Н	$-CH_2-N-C-F$ H H_2N
2208	HN-CH₃ C⊢———CH₂−	2	2	1	-	Н	$-CH_2-N-C$ H_2N H_2N
2209	HN-CH ₃	2	2	1	-	Н	$-CH_2-N-C$ H_2N

The present invention can also use acid addition salt of the cyclic amine compound where such acids include, for example, mineral acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, carbonic acid, and the like, as well as organic acids such as maleic acid, citric acid, malic acid, tartaric acid, fumaric acid, methanesulfonic acid, trifluoroacetic acid, formic acid, and the like.

Furthermore, the present invention can also use a C₁-C₆ alkyl addition salt of the cyclic amine compound, such as 1-(4-chlorobenzyl)-1-methyl-4-[{N-(3-trifluoromethylbenzoyl)glycyl}aminomethyl]piperidinium iodide, where such alkyl include, for example, a methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, isopropyl, isobutyl, sec-butyl, tert-butyl, isopentyl, neopentyl, tert-pentyl, 2-methylpentyl, 1-ethylbutyl, and the like, suitably specifically including, a methyl and ethyl group. As preferred specific examples for counter anion of the ammonium cation, a halide anion such as fluoride, chloride, bromide or iodide can be listed.

The present invention may use racemates and all possible optically active forms of the compound represented by the above formula (I).

20 Compound represented by the above general formula (I) can be synthesized by any of the general preparations given below.

(Preparation 1)

10

15

25

30

A preparation which call for treating one equivalent of a compound represented by the formula (II) below:

$$\begin{array}{c}
R^{1} \longrightarrow (CH_{2})_{j} - N \longrightarrow (CH_{2})_{k} \longrightarrow (CH_{2})_{n} - NH \\
R^{2} \longrightarrow (CH_{2})_{m} \longrightarrow (CH_{2})_{n} - NH \\
R^{3} \longrightarrow (CH_{2})_{m} \longrightarrow (CH_{2})_{m} \longrightarrow (CH_{2})_{n} - NH \\
R^{3} \longrightarrow (CH_{2})_{m} \longrightarrow (C$$

{where R^1 , R^2 , R^3 , j, k, m, and n are the same as defined respectively in the above formula (I)} with 0.1-10 equivalents of a carboxylic acid represented by the formula (III) below:

$$\begin{array}{c} O \\ HO-C-(CH_2)_p & \xrightarrow{R^4} (CH_2)_q - G-R^6 \end{array}$$
 (III)

{where R^4 , R^5 , R^6 , G, p, and q are the same as defined respectively in the above formula (I)}, or its reactive derivative, either in the absence or presence of solvent.

The reactive derivative for the carboxylic acid in the above formula (III) include highly reactive carboxylic acid derivatives, which are usually used in synthetic organic chemistry, such as acid halides, acid anhydrides, mixed acid anhydrides.

Such reactions can be more smoothly run by using suitable amounts of a dehydrating agent such as molecular sieve, coupling reagent such as N-ethyl-N'-(3-(DCC), dicyclohexylcarbodiimide 10 dimethylaminopropyl)carbodiimide (EDCI or WSC), carbonyldiimidazole (CDI), $\emph{N} ext{-hydroxysuccinimide}$ (HOSu), $\emph{N} ext{-hydroxybenzotriazole}$ (HOBt), benzotriazol-1yloxytris(pyrrolidino)phosphonium hexafluorophosphate (PVBOP®), benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HBTU), 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate (TBTU), 15 2-(5-norbornene-2,3-dicarboxyimido)-1,1,3,3-tetramethyluronium O-(N-succinimidyl)-1,1,3,3-tetramethyluronium (TNTU), tetrafluoroborate tetrafluoroborate (TSTU), bromotris(pyrrolidino)phosphonium hexafluorophosphate (PyBro P^{\otimes}), and the like, or base including inorganic salts such as potassium carbonate, sodium carbonate, sodium hydrogencarbonate, and the like, amines such 20as triethylamine, diisopropylethylamine, and pyridine, and the like, or polymer (piperidinomethyl)polystyrene, such as bases supported (diethylaminomethyl)polystyrene, poly(4-(morpholinomethyl)polystyrene, vinylpyridine), and the like.

(Preparation 2)

25

5

A preparation which calls for treating 1 equivalent of an alkylating reagent given by the formula (IV) below:

$$\begin{array}{c}
R^1 \\
 \longrightarrow (CH_2)_j \longrightarrow X
\end{array} (IV)$$

(Where R^1 , R^2 , and j are the same as defined respectively in the above formula (I)); X represents a halogen atom, alkylsulfonyloxy group, or arylsulfonyloxy group), with 0.1-10 equivalents of a compound represented by the formula (V) below:

35

30

$$\begin{array}{c} (C H_2)_{k} \\ H N \\ (C H_2)_{m} \\ \end{array} - (C H_2)_{n} - N - C - (C H_2)_{p} - \frac{R^4}{R^5} (C H_2)_{q} - G - R^6 \\ \end{array}$$
 (V)

{where R^3 , R^4 , R^5 , R^6 , G, k, m, n, p, and q are the same as defined respectively in the above formula (I)} either in the absence or presence of solvent.

Such reactions can be more smoothly run if a base similar to that used in the above preparation 1 is present. In addition, the reactions in these preparations can also be promoted by iodide such as potassium iodide, sodium iodide, and the like.

In the above formulas (IV), X represents a halogen atom, alkylsulfonyloxy group, arylsulfonyloxy group. Such halogen atoms include preferably chlorine, bromine, and iodine atoms. Suitable specific examples for the alkylsulfonyloxy groups include methylsulfonyloxy, trifluoromethylsulfonyloxy group, and the like. A preferred specific example for the arylsulfonyloxy group includes a tosyloxy group.

15 (Preparation 3)

5

10

30

A preparation which calls for treating 1 equivalent of an aldehyde represented by the formula (VI) below:

$$\begin{array}{c}
R^{1} \\
-(CH_{2})_{j-1}-CHO
\end{array} (VI)$$

20 {where R^1 and R^2 are the same as defined respectively in the above formula (I); j represents 1 or 2} or the formula (VII) below:

$$R^1$$
-CHO (VII)

Such reactions are in general called reductive amination reactions and such reductive conditions may be generated by catalytic hydrogenation using a catalyst containing a metal such as palladium, platinum, nickel, rhodium, or the like, using complex hydrides, such as lithium aluminum hydride, sodium borohydride, sodium cyanoborohydride, sodium triacetoxyborohydride, and the

like, boranes, or electrolytic reduction, and the like.

(Preparation 4)

10

20

$$\begin{array}{c}
R_{2}^{1} \longrightarrow (CH_{2})_{j} \longrightarrow (CH_{2})_{k} \longrightarrow (CH_{2})_{n} \longrightarrow (CH_{2})_{n} \longrightarrow (CH_{2})_{p} \longrightarrow (CH_{2})_{p} \longrightarrow (CH_{2})_{q} \longrightarrow ($$

{where R^1 , R^2 , R^3 , R^4 , R^5 , R^7 , j, k, m, n, p and q are the same as defined respectively in the above formula {I)} with 0.1-10 equivalents of a carboxylic acid or sulfonic acid represented by the formula (IX) below:

$$HO-A-R^6$$
 (IX)

(where R^6 is the same as defined in the above formulas (I); "A" represents a carbonyl group or sulfonyl group), or its reactive derivative, either in the absence or presence of solvent.

The reactive derivative for the carboxylic acid or sulfonic acid in the above formula (IX) include highly reactive carboxylic acid or sulfonic acid derivative, which are usually used in synthetic organic chemistry, such as acid halides, acid anhydrides, mixed acid anhydrides.

Such reactions can be more smoothly run by using suitable amounts of a dehydrating agent, coupling reagent, or base which are similar to those used in the above preparation 1.

25 (Preparation 5)

A preparation which calls for treating 1 equivalent of a compound represented by the above formula (VIII) with 0.1-10 equivalents of a isocyanate or isothiocyanate represented by the formula (X) below:

$$30 Z=C=N-R^6 (X)$$

{where R^6 is the same as defined in the above formulas (I)}; Z represents a oxygen atom or sulfur atom}, either in the absence or presence of solvent.

(Preparation 6)

5

15

20

25

30

A preparation which calls for treating 1 equivalent of a compound represented by the formula (XI) below:

$$\begin{array}{c}
R^{1} \\
 \longrightarrow (CH_{2})_{j} - N \\
 R^{2}
\end{array}$$

$$\begin{array}{c}
 (CH_{2})_{h} \\
 (CH_{2})_{m}
\end{array}$$

$$\begin{array}{c}
 (CH_{2})_{n} - N - C \\
 (CH_{2})_{n} - N - C \\
 (CH_{2})_{p}
\end{array}$$

$$\begin{array}{c}
 (CH_{2})_{p} - A - OH \\
 (CH_{2})_{q} - A - OH
\end{array}$$

$$\begin{array}{c}
 (CH_{2})_{q} - A - OH$$

{where R^1 , R^2 , R^3 , R^4 , R^5 , j, k, m, n, p and q are the same as defined respectively in the above formula (I)}; "A" represents a carbonyl group or sulfonyl group} with 0.1-10 equivalents of an amine represented by the formula (XII) below:

$$10 R6-NH2 (XII)$$

{where R^6 is the same as defined in the above formula (I)}, either in the absence or the presence of solvent.

Such reactions can be more smoothly run by using suitable amounts of a dehydrating agent, coupling reagent, or base which are similar to those used in the above preparation 1.

If the substrates submitted to each of the above preparations contains a substituent which reacts under each reaction condition or is thought to adversely affect the reaction in general in synthetic organic chemistry, that functional group can be protected by a known suitable protecting group followed by the reaction of the above preparations and deprotection using a known procedure to obtain the desired compound.

Furthermore, a compound of the present invention can be prepared by the further conversion of the substituent(s) of the compound, prepared with the above preparations 1-6, using known reactions which are usually used in synthetic organic chemistry, such as alkylation, acylation, reduction, and so on.

Each of the above preparations may use solvents for the reaction such as halogenated hydrocarbons such as dichloromethane, chloroform, and the like, aromatic hydrocarbons such as benzene, toluene, and the like, ethers such as diethyl ether, tetrahydrofuran, and the like, esters such as ethyl acetate, aprotic polar solvents such as dimethylformamide, dimethyl sulfoxide, acetonitrile, and the like, alcohols such as methanol, ethanol, isopropyl alcohol, and the like.

The reaction temperature in either of the preparations should be in the range of -78 °C - +150 °C, preferably 0 °C - 100 °C. After completion of the reaction, the usual isolation and purification operations such as concentration, filtration, extraction, solid-phase extraction, recrystallization, chromatography, and the like may be used, to isolate the desired cyclic amine compound represented by the above formula (I). These can be converted into pharmaceutically acceptable acid addition salt or C_1-C_6 alkyl addition salt by the usual method.

10 Potential Industrial Utilities

5

15

20

The chemokine receptor antagonist, which contain the cyclic amine compound, its pharmaceutically acceptable acid addition salt or a pharmaceutically acceptable C_1 - C_6 alkyl addition salt of this invention, which inhibits chemokines such as MIP-l α and/or MCP-l and the like from action on target cells, are useful as therapeutic agents and/or preventive preparation for diseases such as atherosclerosis, rheumatoid arthritis, psoriasis, asthma, ulcerative colitis, nephritis (nephropathy), multiple sclerosis, pulmonary fibrosis, myocarditis, hepatitis, pancreatitis, sarcoidosis, Crohn's disease, endometriosis, congestive heart failure, viral meningitis, cerebral infarction, neuropathy, Kawasaki disease, sepsis, and the like, in which tissue infiltration of blood monocytes, lymphocytes, and the like plays a major role in the initiation, progression, and maintenance of the disease.

Examples

10

15

20

25

The present invention is now specifically described by the following examples. However, the present invention is not limited to these compounds described in these examples. Compound numbers in these examples represent numbers attached to these compounds listed as suitable specific examples in Tables 1.1-1.201.

Reference Example 1: Preparation of 3-Amino-1-(4-chlorobenzyl)pyrrolidine dihydrochloride.

4-Chlorobenzyl chloride (4.15 g, 25.8 mmol) and ${}^3\mathrm{Pr}_2\mathrm{NEt}$ (6.67 g, 51.6 mmol) were added to a solution of 3-{(tert-butoxycarbonyl)amino}pyrrolidine (4.81 g, 25.8 mmol) in DMF (50 mL). The reaction mixture was stirred at 70 °C for 15 h and the solvent was removed under reduced pressure. Recrystallization (CH₃CN, 50 mL) provided the desired material, 3-(tert-butoxycarbonyl)amino-1-(4-chlorobenzyl)pyrrolidine as a pale yellow solid (6.43 g, 80.2%): ${}^1\mathrm{H}$ NMR (CDCl₃, 300 MHz) δ 1.37 (s, 9 H), 1.5-1.7 (br, 1 H), 2.1-2.4 (m, 2 H), 2.5-2.7 (m, 2 H), 2.83 (br, 1 H), 3.57 (s, 2 H), 4.1-4.3 (br, 1 H), 4.9-5.1 (br, 1 H), 7.15-7.35 (br, 4 H); The purity was determined by RPLC/MS (98%); ESI/MS m/e 311.0 (M*+H, C₁₆H₂₄ClN₂O₂).

A solution of 3-(tert-butoxycarbonyl)amino-1-(4-chlorobenzyl)pyrrolidine (6.38 g, 20.5 mmol) in CH₃OH (80 mL) was treated with 1 N HCl-Et₂O (100 mL) and was stirred at 25 °C for 15 h. The solvent was removed under reduced pressure to afford a solid which was purified by recrystallization (1:2 CH₃OH-CH₃CN, 150 mL) to give 3-amino-1-(4-chlorobenzyl)pyrrolidine dihydrochloride as a white powder (4.939 g, 84.9%): 1 H NMR (d_6 -DMSO, 300 MHz) δ 3.15 (br, 1 H), 3.3-3.75 (br-m, 4 H), 3.9 (br, 1 H), 4.05 (br, 1 H), 4.44 (br, 1 H), 4.54 (br, 1 H), 7.5-7.7 (m, 4 H), 8.45 (br, 1 H), 8.60 (br, 1 H); The purity was determined by RPLC/MS (>99%); ESI/MS m/e 211.0 (M*+H, C₁₁H₁₆ClN₂).

30 Optically active (R)-3-amino-1-(4-chlorobenzyl)pyrrolidine dihydrochloride and (S)-3-amino-1-(4-chlorobenzyl)pyrrolidine dihydrochloride were also prepared pursuant to the above method using the corresponding reactant respectively. The products showed the same $^1\mathrm{H}$ NMR with that of the racemate.

35 Example 1: Preparation of 3-(N-Benzoylglycyl)amino-1-(4-chlorobenzyl)pyrrolidine (Compound No. 1).

N-Benzoylglycine (9.9 mg, 0.055 mmol), 3-ethyl-1-{3-(dimethylaminopropyl)carbodiimide hydrochloride (EDCI) (10.5 mg) and 1-

hydroxybenzotriazole hydrate (HOBt) (7.4 mg) were added to a solution of 3-amino-1-(4-chlorobenzyl)pyrrolidine dihydrochloride (14.2 mg, 0.050 mmol) and Et₃N (15.2 mg) in CHCl₃ (2.5 mL). The reaction mixture was stirred at 25 °C for 16 h, washed with 2 N aqueous NaOH (2 mL x 2) and brine (1 mL). After filtration through a PTFE membrane filter, the solvent was removed under reduced pressure to afford 3-(N-benzoylglycyl)amino-1-(4-chlorobenzyl)pyrrolidine (compound No. 1) as a pale yellow oil (17.7 mg, 95%): The purity was determined by RPLC/MS (95%); ESI/MS m/e 372.0 (M'+H, $C_{20}H_{22}ClN_3O_2$).

10 Examples 2-32.

The compounds of this invention were synthesized pursuant to methods of Example 1 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 2.

Table 2

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 2	2	C21 H24 C1 N3 O2	386	16.4	85
Example 3	3	C19 H21 Cl N4 O2	373	18.7	100
Example 4	4	C21 H21 C1 F3 N3 O2	440	57.2	69
Example 5	82	C22 H23 C1 F3 N3 O2	454	5.6	11
Example 6	85	C21 H24 C1 N3 O2	386	22.6	59
Example 7	86	C21 H23 Cl N4 O4	431	21.2	98
Example 8	214	C22 H25 Cl N2 O2	385	23.9	62
Example 9	215	C23 H27 Cl N2 O3	415	17.4	84
Example 10	216	C20 H23 C1 N2 O2 S	391	21.6	quant
Example 11	217	C23 H27 C1 N2 O4	431	15.3	66
Example 12	218	C23 H27 C1 N2 O2	399	12.8	64
Example 13	219	C22 H24 Cl F N2 O3	419	18.1	86
Example 14	220	C22 H25 Cl N2 O2	385	16.4	85
Example 15	221	C21 H23 C1 N2 O2	371	14.9	80
Example 16	222	C21 H22 C12 N2 O2	405	13.3	65
Example 17	223	C25 H31 Cl N2 O3	443	18.4*	63
Example 18	224	C20 H23 C1 N2 O3 S	407	11.2	28
Example 19	225	C22 H26 C1 N3 O2	400	22.7	quant
Example 20	226	C23 H28 Cl N3 O3	430	21.0	98
Example 21	227	C22 H25 C12 N3 O2	434	21.9	100
Example 22	228	C23 H28 Cl N3 O3	430	20.8	9'/

Example 23	229	C25 H32 Cl N3 O2	462	25.4	quant
Example 24	230	C26 H31 Cl F N3 O2	472	26.0	quant
Example 25	231	C24 H28 Cl N3 O3	442	30.3*	quant
Example 26	232	C22 H32 Cl N3 O2	406	3.9	19
Example 27	233	C23 H28 Cl N3 O2	414	8.5	41
Example 28	234	C22 H27 Cl N4 O2	415	7.3	35
Example 29	235	C24 H29 C12 N3 O2	462	9.0	39
Example 30	236	C25 H29 Cl N4 O3 S	501	17.4	69
Example 31	237	C21 H24 C1 N3 O3	402	14.2	71
Example 32	238	C21 H23 C12 N3 O3	436	23.4	quant

^{*}Yield of TFA salt.

5

10

15

20

25

Reference Example 2: Preparation of (R)-3-{N-(text-Butoxycarbonyl)glycyl}amino-1-(4-chlorobenzyl)pyrrolidine.

A mixture of (R)-3-amino-1-(4-chlorobenzyl)pyrrolidine dihydrochloride (4.54 g, 16.0 mmol), 2 N NaOH solution (80 mL), and ethyl acetate (80 mL) was shaken, the organic layer was separated, and the aqueous layer was extracted with ethyl acetate (80 mL x 2). The combined organic layers were dried over anhydrous sodium sulfate, filtered, and evaporated to give free (R)-3-amino-1-(4-chlorobenzyl)pyrrolidine (3.35 g, 99%).

A solution of (R)-3-amino-1-(4-chlorobenzyl)pyrrolidine (3.35 g, 16 mmol) in CH_2Cl_2 (80 mL) was treated with Et_3N (2.5 mL, 17.6 mmol), N-textbutoxycarbonylglycine (2.79 g, 16.0 mmol), EDCI (3.07 g, 16.0 mmol) and HOBt (2.16 g, 16 mmol). After the reaction mixture was stirred at 25 $^{\circ}$ C for 16 h, 2 N NaOH solution (80 mL) was added. The organic layer was separated, and the aqueous layer was extracted with dichloromethane (100 mL x 3). The combined organic layer was washed with water (100 mL x 2) and brine (100 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. Column chromatography $(R) - 3 - \{N - (tert - 1)\}$ afforded the desired (SiO₂,ethyl acetate) butoxycarbonyl)glycyl}amino-1-(4-chlorobenzyl)pyrrolidine (5.40 g, 92%).

Reference Example 3: Preparation of (R)-1-(4-Chlorobenzyl)-3-(glycylamino) pyrrolidine.

To a solution of $(R)-3-\{N-(tert-butoxycarbonyl)\,glycyl\}$ amino-1-(4-chlorobenzyl)pyrrolidine (5.39 g, 14.7 mmol) in methanol (60 mL) was added 4 N HCl in dioxane (38 mL). The solution was stirred at room temperature for 2 h. The reaction mixture was concentrated and 2 N NaOH solution (80 mL) was added. The mixture was extracted with dichloromethane (80 mL x 3), and the combined

```
extracts were dried over sodium sulfate and concentrated. Column chromatography (SiO<sub>2</sub>, AcOEt/EtOH/Et<sub>3</sub>N = 90/5/5) gave (R)-3-(glycyl) amino-1-(4-chlorobenzyl) pyrrolidine (3.374 g, 86%): ^{1}H NMR (CDCl<sub>3</sub>, 270 MHz) \delta 1.77 (dd, J = 1.3 and 6.9 Hz, 1 H), 2.20-3.39 (m, 2 H), 2.53 (dd, J = 3.3 and 9.6 Hz, 1 H), 2.62 (dd, J = 6.6 and 9.6 Hz, 1 H), 2.78-2.87 (m, 1 H), 3.31 (s, 2 H), 3.57 (s, 2 H), 4.38-4.53 (br, 1 H), 7.18-7.32 (m, 4 H), 7.39 (br. s, 1 H).
```

Other 3-acylamino-1-(4-chlorobenzyl) pyrrolidines were also synthesized pursuant to methods of Reference Example 2 and 3 using the corresponding reactants respectively.

- (S)-1-(4-Chlorobenzy1)-3-(glycylamino) pyrrolidine: 3.45 g, 79% (2 steps).
- (R)-3-(β -Alanylamino)-1-(4-chlorobenzyl)pyrrolidine: 3.79 g, 85% (2 steps).
- 15 (S)-3-(β -Alanylamino-)1-(4-chlorobenzyl)pyrrolidine: 3.72 g, 86% (2 steps).
 - (R)-3-{(S)-Alanylamino}-1-(4-chlorobenzyl)pyrrolidine: 368 mg, 65% (2 steps).
 - $(R)-3-\{(R)-Alanylamino\}-1-(4-chlorobenzyl)$ pyrrolidine: 425 mg, 75% (2
- 20 steps).

10

- $(R)-3-\{(2S)-2-A\min o-3-thienylpropanoyl\}amino-1-(4-chlorobenzyl)pyrrolidine: 566 mg, 78% (2 steps).$
- (R) -3-{ (2R) -2-Amino-3-thienylpropanoyl}amino-1- (4-
- chlorobenzyl)pyrrolidine: 585 mg, 81% (2 steps).

chlorobenzyl)pyrrolidine: 535 mg, 72% (2 steps).

- 25 $(R) 3 (2 \text{Amino} 2 \text{methylpropanoyl}) \text{ amino} 1 (4 \text{chlorobenzyl}) \text{pyrrolidine:} \quad 404 \text{ mg, } 66\% \quad (2 \text{ steps}).$ (R) 3 ((2S) 2 Amino 4 (methylsulfonyl) butanoyl) amino 1 (4 methylsulfonyl) amino 1 (4 methylsulfonyl)
- Furthermore (R)-3-(glycylamino)-1-(4-methylbenzyl)pyrrolidine, (R)-1-(4-bromobenzyl)-3-(glycylamino)pyrrolidine, (R)-1-(2,4-dimethylbenzyl)-3-(glycylamino)pyrrolidine, and (R)-1-(3,5-dimethylisoxazol-4-ylmethyl)-3-(glycylamino)pyrrolidine were also synthesized pursuant to methods of Reference Example 1, 2 and 3 using the corresponding reactants respectively.
- 35 (R) -3-(Glycylamino)-1-(4-methylbenzyl)pyrrolidine: 4.65 g, 62% yield from 3-{(tert-butoxycarbonyl)amino}pyrrolidine.
 - $(R) 1 (4 Bromobenzy1) 3 (glycylamino) pyrrolidine: 2.55 g, 68 \% yield from (R) 3 amino 1 (4 bromobenzy1) pyrrolidine; <math>^{1}$ H NMR (CDCl₃, 270 MHz) δ

1.37-1.78 (m, 3 H), 2.23-2.39 (m, 2 H), 2.50-2.67 (m, 2 H), 2.80-2.89 (m, 1 H), 3.32 (s, 2 H), 3.58 (s, 2 H), 4.39-4.55 (m, 1 H), 7.21 (d, J = 6.5 Hz, 2 H), 7.45 (d, J = 6.5 Hz, 2 H).

(R)-1-(2,4-Dimethylbenzyl)-3-(glycylamino) pyrrolidine: 1.56 g, 58% yield from 3-{(tert-butoxycarbonyl) amino) pyrrolidine; 1 H NMR (CDCl₃, 270 MHz) δ 1.55-1.78 (m, 3 H), 2.30(s, 3 H), 2.23-2.31 (m, 2 H), 2.33(s, 3 H), 2.51-2.63 (m, 2 H), 2.78-2.87 (m, 1 H), 3.30 (s, 2 H), 3.55 (s, 2 H), 4.38-4.60 (m, 1 H), 6.95 (d, J = 7.6 Hz, 1 H), 6.97 (s, 1 H), 7.13 (d, J = 7.6 Hz, 1 H), 7.43 (br-s, 1 H).

(R)-1-(3,5-Dimethylisoxazol-4-ylmethyl)-3-(glycylamino)pyrrolidine: 3.14 g, 45% yield from 3-{(tert-butoxycarbonyl)amino}pyrrolidine.

Example 33: Preparation of $(S)-3-[N-\{3,5-Bis(trifluoromethyl)benzoyl\}glycyl]amino-1-(4-chlorobenzyl)pyrrolidine (Compound No. 5).$

A solution of 3,5-bis(trifluoromethyl)benzoyl chloride (0.060 mmol) in chloroform (0.4 mL) was added to a solution of (S)-1-(4-chlorobenzyl)-3-(glycylamino)pyrrolidine (0.050 mmol) and triethylamine (0.070 mmol) in chloroform (1.0 mL). After the reaction mixture was agitated at room temperature for 2.5 h, (aminomethyl)polystyrene resin (1.04 mmol/g, 50 mg, 50 mmol) was added and the mixture was agitated at room temperature for 12 h. The reaction mixture was filtered and the resin was washed with dichloromethane (0.5 mL). The filtrate and washing were combined, dichloromethane (4 mL) was added, and the solution was washed with 2 N aqueous NaOH solution (0.5 mL) to give (S)-3-[N-{3,5-bis(trifluoromethyl)benzoyl}glycyl]amino-1-(4-chlorobenzyl)pyrrolidine (compound No. 5) (14.4 mg, 57%): The purity was determined by RPLC/MS (97%); ESI/MS m/e 508.0 (M*+H, $C_{22}H_{20}ClF_6N_3O_2$).

Examples 34-239.

30 The compounds of this invention were synthesized pursuant to methods of Example 33 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 3.

Table 3

35

5

10

15

20

25

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 34	5	$C_{22}H_{23}ClF_6N_3O_2$	508.0	14.4	57

Example 35	6	$C_{21}H_{21}ClF_3N_3O_2$	440.0	17.0	77
Example 36	7	C ₂₀ H ₂₁ BrClN ₃ O ₂	450.0	17.7	79
Example 37	8	$C_{20}H_{21}ClFN_3O_2$	390.0	12.7	65
Example 38	9	$C_{20}H_{20}Cl_3N_3O_2$	440.0	39.0	quant
Example 39	10	C ₂₁ H ₂₄ ClN ₃ O ₃	402.5	23.5	quant
Example 40	11	C ₂₂ H ₂₆ ClN ₃ O ₄	432.5	22.4	quant
Example 41	12	C ₂₂ H ₂₆ ClN ₃ O ₄	432.5	15.9	74
Example 42	13	$C_{21}H_{21}ClF_3N_3O_2$	440.0	13.1	60
Example 43	14	C ₂₁ H ₂₄ C1N ₃ O ₂	386.0	16.4	85
Example 44	15	$C_{20}H_{21}Cl_2N_3O_2$	406.0	15.7	77
Example 45	16	C ₂₁ H ₂₄ ClN ₃ O ₂	402.0	28.2	quant
Example 46	17	C ₂₀ H ₂₀ Cl ₃ N ₃ O ₂	442.0	35.6	quant
Example 47	18	C ₂₁ H ₂₁ ClN ₄ O ₂	397.5	22.8	quant
Example 48	19	C ₂₁ H ₂₂ ClN ₃ O ₄	416.0	16.3	78
Example 49	20	$C_{21}H_{20}ClF_4N_3O_2$	458.0	24.9	quant
Example 50	21	C ₂₁ H ₂₀ ClF ₄ N ₃ O ₂	458.0	17.9	78
Example 51	22	C ₂₁ H ₂₀ Cl F ₄ N ₃ O ₂	458.0	9.4	41
Example 52	23	C ₂₁ H ₂₀ Cl F ₄ N ₃ O ₂	458.0	15.4	67
Example 53	24	C ₂₁ H ₂₁ ClF ₃ N ₃ O ₃	456.0	20.7	91
Example 54	25	C ₂₁ H ₂₀ ClF ₄ N ₃ O ₂	458.0	18.5	81
Example 55	26	C ₂₀ H ₂₁ ClN ₄ O ₄	417.0	21.9	quant
Example 56	27	C ₂₀ H ₂₁ ClN ₄ O ₄	417.0	16.8	81
Example 57	28	C20H21ClN4O4	417.0	6.8	33
Example 58	29	C ₂₂ H ₂₀ ClF ₆ N ₃ O ₂	508.0	20.8	82
Example 59	30	C ₂₁ H ₂₁ ClF ₃ N ₃ O ₂	440.0	15.2	69
Example 60	31	C20H21BrClN3O2	450.0	15.6	69
Example 61	32	C ₂₀ H ₂₁ ClFN ₃ O ₂	390.0	11.8	61
Example 62	33	$C_{20}H_{20}Cl_3N_3O_2$	440.0	15.8	72
Example 63	34	C ₂₁ H ₂₄ ClN ₃ O ₃	402.5	33.8	quant
Example 64	35	C ₂₂ H ₂₆ ClN ₃ O ₄	432.5	56.1	quant
Example 65	36	C ₂₂ H ₂₆ ClN ₃ O ₄	432.5	37.6	quant
Example 66	37	$C_{21}H_{21}ClF_3N_3O_2$	440.0	12.6	57
Example 67	38	$C_{21}H_{24}ClN_3O_2$	386.0	12.3	64
Example 68	39	C ₂₀ H ₂₁ Cl ₂ N ₃ O ₂	406.0	15.9	78
Example 69	40	C ₂₁ H ₂₄ ClN ₃ O ₂	402.0	11.6	58
Example 70	41	C ₂₀ H ₂₀ Cl ₃ N ₃ O ₂	442.0	17.8	81
Example 71	42	$C_{21}H_{21}ClN_4O_2$	397.5	22.4	quant
Example 72	43	C ₂₁ H ₂₂ ClN ₃ O ₄	416.0	30.1	quant
Example 73	4 4	C ₂₁ H ₂₀ ClF ₄ N ₃ O ₂	458.0	13.4	59
Example 74	45	C21H20ClF4N3O2	458.0	13.2	58

Example 75	46	$C_{21}H_{20}ClF_4N_3O_2$	458.0	14.4	63
Example 76	47	C ₂₁ H ₂₁ ClF ₃ N ₃ O ₃	456.0	16.4	72
Example 77	48	$C_{21}H_{20}ClF_4N_3O_2$	458	16.5	72
Example 78	49	$C_{20}H_{21}ClN_4O_4$	417.0	12.5	60
Example 79	50	$C_{21}H_{20}ClF_4N_3O_2$	458.0	26.3	quant
Example 80	51	$C_{20}H_{21}BrClN_3O_2$	450.0	8.6	38
Example 81	52	C ₂₀ H ₂₁ ClFN ₃ O ₂	390.5	4.1	21
Example 82	53	$C_{20}H_{21}Cl_2N_3O_2$	406.0	5.4	27
Example 83	54	$C_{20}H_{20}Cl_3N_3O_2$	440.0	8.8	40
Example 84	55	$C_{20}H_{20}BrCl_4N_3O_2$	440.0	7.7	35
Example 85	56	C ₂₁ H ₂₄ ClN ₃ O ₂	386.0	4.8	25
Example 86	57	$C_{22}H_{26}ClN_3O_4$	429.5	4.9	23
Example 87	58	$C_{20}H_{21}Cl_2N_3O_2$	406.0	4.1	20
Example 88	59	C ₂₀ H ₂₁ BrClN ₃ O ₂	452.0	3.5	16
Example 89	60	C26H26ClN3O2	448.5	7.3	33
Example 90	61	$C_{21}H_{21}ClF_3N_3O_2$	440.0	7.1	32
Example 91	62	$C_{21}H_{24}ClN_3O_2$	386.0	10.4	54
Example 92	63	C ₂₂ H ₂₆ ClN ₃ O ₂	400.5	6.0	30
Example 93	64	C ₂₁ H ₂₁ C1N ₄ O ₂	397.0	7.0	35
Example 94	65	$C_{24}H_{24}ClN_3O_2$	422.0	7.7	36
Example 95	66	C24H24ClN3O2	422.0	6.3	30
Example 96	67	C ₂₀ H ₂₀ ClF ₂ N ₃ O ₂	408.0	4.7	23
Example 97	68	C ₂₀ H ₂₀ ClF ₂ N ₃ O ₂	408.0	7.8	38
Example 98	69	$C_{20}H_{20}C1F_2N_3O_2$	408.0	7.3	36
Example 99	70	C ₂₀ H ₂₀ ClF ₂ N ₃ O ₂	408.0	9.1	45
Example 100	71	C ₂₂ H ₂₆ ClN ₃ O ₄	429.0	5.6	26
Example 101	72	$C_{21}H_{21}ClF_3N_3O_2$	456.0	6.2	27
Example 102	73	C ₂₁ H ₂₁ ClF ₃ N ₃ O ₂	456.5	16.8	74
Example 103	74	C ₂₂ H ₂₄ ClN ₃ O ₄	430.0	16.4	76
Example 104	75	$C_{21}H_{20}ClF_4N_3O_2$	458.0	16.1	70
Example 105	76	$C_{21}H_{20}ClF_4N_3O_2$	458.0	17.0	74
Example 106	77	$C_{20}H_{16}C1F_{3}N_{3}O_{2}$	426.0	16.2	76
Example 107	78	$C_{20}H_{19}ClF_3N_3O_2$	426.0	18.0	85
Example 108	79	$C_{22}H_{20}ClF_6N_3O_2$	508.0	18.8	74
Example 109	80	$C_{22}H_{20}ClF_6N_3O_2$	508.0	16.4	65
Example 110	81	$C_{22}H_{26}ClN_3O_2$	400.0	13.9	70
Example 111	83	C ₂₀ H ₂₁ ClN ₄ O ₄	417.0	16.0	77
Example 112	84	C ₂₀ H ₂₁ ClN ₄ O ₄	417.0	21.6	quant
Example 113	87	C23H22ClF6N3O2	522.0	17.5	67
Example 114	88	C22H23ClF3N3O2	454.0	13.9	61

Example 115	89	C ₂₁ H ₂₃ BrClN ₃ O ₂	466.0	15.4	66
Example 116	90	C ₂₁ H ₂₃ ClFN ₃ O ₂	404.0	10.7	53
Example 117	91	C ₂₁ H ₂₂ Cl ₅ N ₃ O ₂	456.0	13.7	60
Example 118	92	C ₂₂ H ₂₆ ClN ₃ O ₃	416.0	38.4	quant
Example 119	93	C ₂₃ H ₂₈ ClN ₃ O ₄	446.0	25.2	quant
Example 120	94	$C_{23}H_{23}ClN_3O_4$	446.0	16.5	74
Example 121	<u>95</u>	$C_{22}H_{23}ClF_3N_3O_2$	454.0	16.3	72
Example 122	96	C ₂₂ H ₂₆ ClN ₃ O ₂	400.5	16.7	84
Example 123	97	C ₂₁ H ₂₃ Cl ₂ N ₃ O ₂	420.0	11.2	53
Example 124	98	C ₂₂ H ₂₆ ClN ₃ O ₂	416.5	11.8	57
Example 125	99	C ₂₁ H ₂₂ Cl ₃ N ₃ O ₂	454.0	14.8	65
Example 126	100	C ₂₂ H ₂₃ ClN ₄ O ₂	411.0	9.5	46
Example 127	101	C ₂₂ H ₂₄ ClN ₃ O ₄	430.5	13.2	61
Example 128	102	C22H22ClF4N3O2	472.0	13.1	56
Example 129	103	C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂	472.0	36.5	quant
Example 130	104	C22H22ClF4N3O2	472.0	22.8	97
Example 131	105	C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂	472.0	20.1	85
Example 132	106	$C_{22}H_{23}C1F_3N_3O_5$	470.0	27.4	quant
Example 133	107	C ₂₂ H ₂₂ C1F ₄ N ₃ O ₂	472.0	18.5	78
Example 134	108	C ₂₁ H ₂₃ ClN ₄ O ₄	431.0	11.9	55
Example 135	109	C ₂₁ H ₂₃ ClN ₄ O ₄	431.0	23.9	quant
Example 136	110	C ₂₁ H ₂₃ ClN ₄ O ₄	431.0	24.4	quant
Example 137	111	C ₂₃ H ₂₂ ClF ₆ N ₃ O ₂	522.0	9.5	36
Example 138	112	$C_{22}H_{23}ClF_3N_3O_2$	454.0	3.9	17
Example 139	113	$C_{21}H_{23}BrClN_3O_2$	466.0	7.5	32
Example 140	114	C ₂₁ H ₂₃ ClFN ₃ O ₂	404.0	6.1	30
Example 141	115	$C_{21}H_{22}Cl_3N_3O_2$	456.0	6.6	29
Example 142	116	$C_{22}H_{26}ClN_3O_3$	416.0	4.8	23
Example 143	117	$C_{23}H_{28}ClN_3O_4$	446.0	6.4	29
Example 144	118	$C_{23}H_{28}ClN_3O_4$	446.0	24.6	quant
Example 145	119	$C_{22}H_{23}ClF_3N_3O_2$	454.0	5.2	23
Example 146	120	$C_{22}H_{26}ClN_3O_2$	400.5	4.4	22
Example 147	121	C ₂₁ H ₂₃ Cl ₂ N ₃ O ₂	420.0	7.8	37
Example 148	122	$C_{22}H_{26}ClN_3O_2$	416.5	14.1	68
Example 149	123	C ₂₁ H ₂₂ Cl ₃ N ₃ O ₂	454.0	5.4	24
Example 150	124	C22H23ClN4O2	411.0	34.0	quant
Example 151	125	C ₂₂ H ₂₄ ClN ₃ O ₄	430.5	32.0	quant
Example 152	126	C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂	472.0	4.6	19
Example 153	127	C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂	472.0	10.4	44
Example 154	128	$C_{22}H_{22}ClF_4N_3O_2$	472.0	7.3	31

Example 155	129	C22H22ClF4N3O2	472.0	13.5	57
Example 156	130	$C_{22}H_{23}C1F_3N_3O_3$	470.0	15.1	64
Example 157	131	C ₂₂ H ₂₂ C1F ₄ N ₃ O ₂	472.0	8.6	36
Example 158	132	C ₂₁ H ₂₃ ClN ₄ O ₄	431.0	4.4	20
Example 159	133	$C_{21}H_{23}ClN_4O_4$	431.0	32.0	quant
Example 160	134	C ₂₁ H ₂₃ ClN ₄ O ₄	431.0	6.9	32
Example 161	135	C ₂₁ H ₂₃ BrClN ₃ O ₂	466.0	7.8	34
Example 162	136	$C_{21}H_{23}ClFN_3O_2$	404.0	13.7	68
Example 163	137	C ₂₁ H ₂₃ Cl ₂ N ₃ O ₂	420.5	14.6	69
Example 164	138	C ₂₁ H ₂₂ Cl ₃ N ₃ O ₂	454.0	17.7	78
Example 165	139	C ₂₁ H ₂₂ BrCl ₄ N ₃ O ₂	454.0	17.2	76
Example 166	140	C ₂₂ H ₂₆ ClN ₃ O ₂	400.0	15.0	75
Example 167	141	C ₂₃ H ₂₈ ClN ₃ O ₄	443.5	13.9	62
Example 168	142	C ₂₁ H ₂₃ Cl ₂ N ₃ O ₂	420.0	13.7	65
Example 169	143	C ₂₁ H ₂₃ BrClN ₃ O ₂	464.0	16.1	69
Example 170	144	$C_{27}H_{29}ClN_3O_2$	462.0	17.6	76
Example 171	145	$C_{22}H_{23}C1F_3N_3O_2$	454.0	16.0	71
Example 172	146	$C_{22}H_{26}ClN_3O_2$	400.0	14.9	75
Example 173	147	$C_{23}H_{28}ClN_3O_2$	414.0	16.2	78
Example 174	148	$C_{22}H_{23}ClN_4O_2$	411.0	14.9	73
Example 175	149	$C_{25}H_{26}ClN_3O_2$	436.0	17.1	78
Example 176	150	C ₂₅ H ₂₆ ClN ₃ O ₂	436.0	13.1	60
Example 177	1 51	$C_{21}H_{22}ClF_2N_3O_2$	422.0	14.8	70
Example 178	152	$C_{21}H_{22}ClF_2N_3O_2$	422.0	15.3	73
Example 179	153	$C_{21}H_{22}ClF_2N_3O_2$	422.0	15.3	73
Example 180	154	$C_{21}H_{22}ClF_2N_3O_2$	422.0	16.4	78
Example 181	155	$C_{23}H_{28}ClN_3O_4$	443.0	16.9	76
Example 182	156	C ₂₂ H ₂₃ Cl F ₃ N ₃ O ₂	470.5	12.6	54
Example 183	157	$C_{22}H_{23}ClF_3N_3O_2$	470.0	20.0	85
Example 184	158	$C_{23}H_{26}ClN_3O_4$	444.0	17.4	78
Example 185	159	$C_{22}H_{22}ClF_4N_3O_2$	472.0	18.4	78
Example 186	160	C ₂₂ H ₂₂ Cl F ₄ N ₃ O ₂	472.0	19.6	83
Example 187	161	C ₂₁ H ₂₁ C1F ₃ N ₃ O ₂	440.0	17.0	77
Example 188	162	$C_{21}H_{21}ClF_3N_3O_2$	440.0	17.1	78
Example 189	163	$C_{23}H_{22}ClF_6N_3O_2$	522.0	20.8	80
Example 190	164	C ₂₃ H ₂₂ ClF ₆ N ₃ O ₂	522.0	2.7	10
Example 191	165	C23H28ClN3O2	414.0	16.4	79
Example 192	166	C ₂₂ H ₂₃ ClF ₃ N ₃ O ₂	454.0	8.6	38
Example 193	167	C21H23BrClN3O2	464.0	11.6	50
Example 194	168	$C_{21}H_{23}Cl_2N_3O_2$	420.0	11.5	55

Example 195	169	C ₂₁ H ₂₂ Cl ₃ N ₃ O ₂	454.0	10.0	4 4
Example 196	170	$C_{22}H_{22}ClF_4N_3O_2$	472.0	10.4	44
Example 197	171	C ₂₁ H ₂₃ Cl ₂ N ₃ O ₂	420.0	8.9	42
Example 198	172	C ₂₁ H ₂₄ ClN ₃ O ₂	386.0	10.3	53
Example 199	173	C ₂₁ H ₂₃ ClN ₄ O ₄	431.0	14.6	68
Example 200	174	C ₂₂ H ₂₃ ClF ₃ N ₃ O ₂	454.0	10.4	46
Example 201	175	C ₂₁ H ₂₃ BrClN ₃ O ₂	464.0	13.4	58
Example 202	176	C ₂₁ H ₂₃ Cl ₂ N ₃ O ₂	420.0	12.7	60
Example 203	177	C ₂₁ H ₂₂ Cl ₃ N ₃ O ₂	454.0	13.2	58
Example 204	178	C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂	472.0	12.9	55
Example 205	179	C ₂₁ H ₂₃ Cl ₂ N ₃ O ₂	420.0	13.3	63
Example 206	180	C ₂₁ H ₂₄ ClN ₃ O ₂	386.0	24.2	quant
Example 207	181	C ₂₁ H ₂₃ ClN ₄ O ₄	431.0	1.0	1
Example 208	182	C ₂₃ H ₂₅ ClF ₃ N ₃ O ₂	468.0	15.1	65
Example 209	183	C ₂₂ H ₂₅ BrClN ₃ O ₂	478.0	18.0	75
Example 210	184	C ₂₂ H ₂₅ Cl ₂ N ₃ O ₂	434.0	16.3	75
Example 211	185	C ₂₂ H ₂₄ Cl ₃ N ₃ O ₂	468.0	18.6	79
Example 212	186	$C_{23}H_{24}ClF_4N_3O_2$	486.0	16.5	68
Example 213	187	$C_{22}H_{25}Cl_2N_3O_2$	434.0	14.4	66
Example 214	188	$C_{22}H_{26}ClN_3O_2$	400.0	14.0	70
Example 215	189	C ₂₂ H ₂₅ ClN ₄ O ₄	445.0	16.8	76
Example 216	190	$C_{26}H_{25}ClF_3N_3O_2S$	536.0	17.7	66
Example 217	191	C25H25BrClN3O2S	546.0	20.4	75
Example 218	192	$C_{25}H_{25}Cl_2N_3O_2S$	502.0	16.9	67
Example 219	193	C ₂₅ H ₂₄ Cl ₃ N ₃ O ₂ S	536.0	18.3	68
Example 220	194	$C_{26}H_{24}ClF_4N_3O_2S$	554.0	19.4	70
Example 221	195	C ₂₅ H ₂₅ Cl ₂ N ₃ O ₂ S	502.0	19.1	76
Example 222	196	C ₂₅ H ₂₆ ClN ₃ O ₂ S	468.0	16.0	68
Example 223	197	C ₂₅ H ₂₅ ClN ₄ O ₄ S	513.0	18.4	72
Example 224	198	$C_{26}H_{25}ClF_3N_3O_2S$	536.0	13.9	52
Example 225	199	C ₂₅ H ₂₅ BrClN ₃ O ₂ S	546.0	12.9	47
Example 226	200	C ₂₅ H ₂₅ Cl ₂ N ₃ O ₂ S	502.0	15.6	62
Example 227	201	C ₂₅ H ₂₄ Cl ₃ N ₃ O ₂ S	536.0	17.3	64
Example 228	202	C26H24ClF4N3O2S	554.0	15.4	56
Example 229	203	C ₂₅ H ₂₅ Cl ₂ N ₃ O ₂ S	502.0	13.5	54
Example 230	204	$C_{25}H_{25}ClN_3O_2S$	468.0	13.7	59
Example 231	205	C ₂₅ H ₂₅ ClN ₄ O ₄ S	513.0	13.9	54
Example 232	206	C ₂₄ H ₂₇ C1F ₃ N ₃ O ₄ S	546.0	10.0	37
Example 233	207	C ₂₃ H ₂ -BrClN ₃ O ₄ S	558.0	17.1	61
Example 234	208	C ₂₃ H ₂₇ Cl ₂ N ₃ O ₄ S	512.0	17.0	66

Example 235	209	$C_{23}H_{26}C1_3N_3O_4S$	546.0	7.3	27
Example 236	210	$C_{24}H_{26}ClF_4N_3O_4S$	564.0	19.2	68
Example 237	211	C ₂₃ H ₂₇ Cl ₂ N ₃ O ₄ S	512.0	7.9	31
Example 238	212	C ₂₃ H ₂₈ ClN ₃ O ₄ S	478.0	13.7	57
Example 239	213	C ₂₃ H ₂₇ ClN ₄ O ₄ S	523.0	5.5	21

Example 240: Preparation of $(R)-3-[N-\{3-Fluoro-5-(trifluoromethyl)benzoyl\}glycyl]amino-1-(3,5-dimethylisoxazol-4-ylmethyl)pyrrolidine (Compound No. 1191).$

A solution of 3-fluoro-5-(trifluoromethyl) benzoyl chloride (0.058 mmol) in dichloromethane (1 mL) was added to a mixture of (R)-1-(3,5-dimethylisoxazol-4-ylmethyl)-3-(glycylamino) pyrrolidine (0.050 mmol) and piperidinomethylpolystyrene (58 mg) in chloroform (0.2 mL) and dichloromethane (0.75 mL). After the reaction mixture was stirred at room temperature for 2 h, methanol (1.0 mL) was added and the mixture was stirred at room temperature for 30 min. The reaction mixture was loaded onto Varian SCX column, and washed with CH₃OH (16 mL). Product was eluted off using 2 N NH₃ in CH₃OH (6 mL) and concentrated to afford (R)-3-[N-{3-fluoro-5-(trifluoromethyl) benzoyl}glycyl]amino-1-(3,5-dimethylisoxazol-4-ylmethyl)pyrrolidine (Compound No. 1191) (19.5 mg, 88%): The purity was determined by RPLC/MS (100%); ESI/MS m/e 443.2 (M+H, C₂₀H₂₂F₄N₄O₃).

Examples 241-265.

5

10

15

The compounds of this invention were synthesized pursuant to methods of 20 Example 240 using the corresponding reactant respectively. The ESI/MS data and vields are summarized in Table 4.

Table 4

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 241	1192	C20 H22 F4 N4 O3	443.2	19.2	87
Example 242	1193	C20 H23 F3 N4 O4	441.0	17.5	79
Example 243	1194	C21 H22 F6 N4 O3	493.0	20.4	83
Example 244	1195	C19 H23 Br N4 O3	435.1	16.8	77
Example 245	1196	C19 H23 N5 O5	402.2	16.2	81
Example 246	1197	C20 H22 F4 N4 O3	443.2	17.6	80
Example 247	1198	C19 H23 Cl N4 O3	391.0	16.5	84
Example 248	1199	C20 H26 N4 O3	371.0	16.1	87

				
1200	C19 H22 C12 N4 O3			85
1201	C19 H22 F2 N4 O3	393.0	16.6	85
1202	C20 H22 F4 N4 O3	443.2	16.8	76
1203	C22 H24 F3 N3 O3	436.2	17.1	79
1204	C23 H23 F6 N3 O2	488.2	18.1	74
1205	C21 H24 Br N3 O2	430.0	17.5	81
1206	C21 H24 N4 O4	397.0	16.2	82
1207	C22 H23 F4 N3 O2	438.2	17.5	80
1208	C21 H24 Cl N3 O2	386.0	15.8	82
1209	C22 H27 N3 O2	366.0	15.7	86
1210	C21 H23 C12 N3 O2	420.0	17.8	85
1211	C21 H23 F2 N3 O2	388.0	16.3	84
1212	C22 H23 F4 N3 O2	438.2	17.4	80
1213	C24 H24 Cl F6 N3 O2	536.2	24.0	90
1214	C23 H24 Cl F4 N3 O3	486.2	22.2	91
1215	C22 H24 C13 N3 O2	467.9	20.9	89
1216	C22 H24 C1 F2 N3 O2	436.0	19.3	89
	1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215	1201 C19 H22 F2 N4 O3 1202 C20 H22 F4 N4 O3 1203 C22 H24 F3 N3 O3 1204 C23 H23 F6 N3 O2 1205 C21 H24 Br N3 O2 1206 C21 H24 N4 O4 1207 C22 H23 F4 N3 O2 1208 C21 H24 C1 N3 O2 1209 C22 H27 N3 O2 1210 C21 H23 C12 N3 O2 1211 C21 H23 F2 N3 O2 1212 C22 H23 F4 N3 O2 1212 C22 H23 F4 N3 O2 1213 C24 H24 C1 F6 N3 O2 1214 C23 H24 C1 F6 N3 O2 1215 C22 H24 C13 N3 O2	1201 C19 H22 F2 N4 O3 393.0 1202 C20 H22 F4 N4 O3 443.2 1203 C22 H24 F3 N3 O3 436.2 1204 C23 H23 F6 N3 O2 488.2 1205 C21 H24 Br N3 O2 430.0 1206 C21 H24 N4 O4 397.0 1207 C22 H23 F4 N3 O2 438.2 1208 C21 H24 C1 N3 O2 386.0 1209 C22 H27 N3 O2 366.0 1210 C21 H23 C12 N3 O2 420.0 1211 C21 H23 F2 N3 O2 388.0 1212 C22 H23 F4 N3 O2 438.2 1213 C24 H24 C1 F6 N3 O2 536.2 1214 C23 H24 C1 F4 N3 O3 486.2 1215 C22 H24 C13 N3 O2 467.9	1201 C19 H22 F2 N4 O3 393.0 16.6 1202 C20 H22 F4 N4 O3 443.2 16.8 1203 C22 H24 F3 N3 O3 436.2 17.1 1204 C23 H23 F6 N3 O2 488.2 18.1 1205 C21 H24 Br N3 O2 430.0 17.5 1206 C21 H24 N4 O4 397.0 16.2 1207 C22 H23 F4 N3 O2 438.2 17.5 1208 C21 H24 C1 N3 O2 386.0 15.8 1209 C22 H27 N3 O2 366.0 15.7 1210 C21 H23 C12 N3 O2 420.0 17.8 1211 C21 H23 F4 N3 O2 438.2 17.4 1212 C22 H23 F4 N3 O2 438.2 17.4 <

Example 266: Preparation of $(R)-1-(4-\text{Chlorobenzy1})-3-[\{N-\{4-(dimethylamino)benzoy1\}]$ glycyl}amino]pyrrolidine (Compound No. 952).

A solution of (R)-1-(4-chlorobenzyl)-3-(glycylamino)pyrrolidine (13.8 mg, 0.052 mmol) in CHCl₃ (2 mL) was treated with Et₃N (0.021 mL, 0.15 mmol), 4-(dimethylamino)benzoic acid (10 mg, 0.061 mmol), EDCI (10.2 mg, 0.053 mmol) and HOBt (7.5 mg, 0.055 mmol). The reaction mixture was stirred at room temperature for 16 h. The solution was washed with 2 N aqueous NaOH solution (2 mL x 2) and brine (2 mL), and dried by filtration through a PTFE membrane using CH_2Cl_2 (3 mL). Concentration afforded the desired material (compound No. 952) (24.9 mg, quant): The purity was determined by RPLC/MS (91%); ESI/MS m/e 415.0 (M*+H, $C_{22}H_{27}ClN_4O_2$).

Examples 267-347.

5

10

The compounds of this invention were synthesized pursuant to methods of Example 266 using the corresponding reactant respectively. Solid-phase extraction (Varian TM SCX column) or chromatography (HPLC-C18), if needed, afforded the desired material. The ESI/MS data and yields are summarized in Table 5.

20 Table 5

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 267	951	C22 H24 Cl N3 O4	430.0	26.3	quant
Example 268	953	C23 H29 Cl N4 O2	429.0	28.8	quant
Example 269	954	C21 H25 Cl N4 O2	401.0	27.9	quant
Example 270	955	C22 H27 Cl N4 O2	415.0	26.8	quant
Example 271	956	C21 H24 Cl N3 O3	402.0	10.3	51
Example 272	957	C20 H22 Cl N3 O3	388.0	1.4	7
Example 273	958	C21 H24 Cl N3 O3	402.5	1.2	6
Example 274	959	C22 H25 Cl N4 O3	429.5	4.7	22
Example 275	960	C23 H27 Cl N4 O3	443.0	10.9	49
Example 276	961	C21 H25 Cl N4 O2	401.0	28.4	quant
Example 277	962	C22 H27 C1 N4 O2	415.0	24.9	quant
Example 278	963	C21 H24 Cl N3 O3	402.0	4.4	22
Example 279	964	C22 H24 C1 N3 O4	430.0	29.5	quant
Example 280	965	C23 H26 C1 N3 O4	444.0	27.2	quant
Example 281	966	C22 H24 C1 N3 O3	414.0	27.0	quant
Example 282	967	C23 H26 Cl N3 O3	428.0	27.0	quant
Example 283	968	C22 H23 Cl N4 O2	411.0	21.4	quant
Example 284	969	C23 H25 Cl N4 O2	425.0	27.6	quant
Example 285	970	C22 H27 Cl N4 O2	415.0	28.6	quant
Example 286	971	C23 H29 Cl N4 O2	429.0	27.9	quant
Example 287	972	C20 H23 C1 N4 O2	387.0	26.2	quant
Example 288	973	C21 H25 Cl N4 O2	401.0	26.8	quant
Example 289	974	C20 H23 Cl N4 O2	387.0	26.6	quant
Example 290	975	C21 H25 Cl N4 O2	401.0	28.2	quant
Example 291	976	C22 H23 C1 N4 O2	411.0	29.2	quant
Example 292	977	C23 H25 Cl N4 O2	425.0	29.5	quant
Example 293	978	C20 H21 Cl N6 O2	413.0	2.2	11
Example 294	979	C21 H23 Cl N6 O2	427.0	10.2	48
Example 295	980	C22 H25 Cl N4 O3	429.0	28.8	quant
Example 296	981	C23 H27 Cl N4 O3	443.0	11.9	54
Example 297	982	C22 H27 C1 N4 O2	415.0	27.4	quant
Example 298	983	C23 H29 Cl N4 O2	429.5	28.1	quant
Example 299	I	C21 H24 Cl N3 O3	402.0	27.7	quant
Example 300	i	C22 H26 C1 N3 O3	416.0	28.6	quant
Example 301	. 1149	C21 H28 N4 O4	401	15.5*	38
Example 302	1	C21 H28 N4 O3	385	10.9*	28
Example 303		C21 H25 F3 N4 O3	439	17.3*	39
Example 304	1152	C21 H24 F N5 O3	415	12.7*	30

Example 305	1153	C21 H24 C1 N5 O3	430	17.5*	41
Example 306	1154	C22 H27 N5 O3	410	20.6*	50
Example 307	1155	C19 H23 F3 N4 O4	429	13.8*	32
Example 308	1156	C21 H30 N4 O4	403	17.7*	43
Example 309	1157	C18 H24 N4 O3 S2	409	12.6*	30
Example 310	1158	C19 H23 C12 N5 O3	440	16.9*	38
Example 311	1159	C22 H31 N5 O6	462	38.6*	85
Example 312	1160	C20 H26 Br N5 O3	464	20.4	45
Example 313	1289	C20 H27 N5 O4	403	5.8*	14
Example 314	1290	C21 H29 N5 O3	400	6.9*	17
Example 315	1291	C24 H28 N4 O2	405	22.4	68
Example 316	1292	C22 H27 Br N4 O2	461	23.8	15
Example 317	1293	C22 H23 F4 N3 O2	438	20.9	59
Example 318	1294	C22 H23 F4 N3 O2	438	20.8	59
Example 319	1295	C23 H31 N3 O3	398	17.5	54
Example 320	1296	C20 H25 N3 O2 S2	404	18.8	58
Example 321	1297	C21 H24 F3 N3 O3	424	18.1	53
Example 322	1388	C21 H32 N6 O3	417	7.4*	24
Example 323	1389	C19 H22 N6 O4	399	15.2	48
Example 324	1401	C23 H25 Cl N4 O2	425	8.3*	16
Example 325	1402	C24 H32 N4 O5	457	8.3*	15
Example 326	1403	C20 H24 N4 O2	353	14.8	52
Example 327	1404	C20 H24 N4 O2	353	17.0	60
Example 328	1405	C21 H26 N4 O2 S	399	17.3	54
Example 329	1407	C22 H28 N4 O2 S	413	19.1	57
Example 330	1410	C19 H24 N4 O3	357	9.7*	59
Example 331	1769	C22 H26 Cl F3 N4 O5	519	11.6*	20
Example 332	1770	C26 H28 C12 N6 O4	559	13.1*	21
Example 333	1771	C26 H37 N5 O4	484	12.7*	23
Example 334	1772	C28 H39 N5 O4	510	5.5*	9
Example 335	1773	C28 H37 N5 O4	509	6.2*	11
Example 336	1774	C28 H34 N6 O6	551	13.6*	22
Example 337	2039	C19 H24 N4 O2	341	5.2*	14
Example 338	2040	C22 H27 N3 O4	398	2.0*	5
Example 339	2041	C23 H29 N3 O3	396	6.2*	15
Example 340	2042	C25 H37 N3 O2	413	2.6*	6
Example 341	2043	C24 H31 N3 O2	394	6.8*	17
Example 342	2044	C25 H28 N4 O4	449	8.7*	16
Example 343	2045	C26 H29 Cl N6 O4	525	11.4*	19
Example 344	2046	C27 H32 N6 O4	505	7.7*	13

Example 345	2047	C28 H32 N4 O4	489	10.0*	18
Example 346	2048	C28 H37 N5 O5	524	3.7*	6
Example 347	2049	C28 H37 N5 O4	509	5.3*	9

^{*}Yield of TFA salt.

5

10

15

20

Example 348: Preparation of (R)-1-(4-Chlorobenzyl)-3-[(N-(2-amino-5-chlorobenzoyl)glycyl)amino]pyrrolidine (Compound No. 1084).

A solution of (R)-1-(4-chlorobenzyl)-3-(glycylamino)pyrrolidine (0.050 mmol) in CHCl₃ (2 mL) was treated with 2-amino-5-chlorobenzoic acid (0.060 mmol) and diisopropylcarbodiimide (0.060 mmol). The reaction mixture was stirred at room temperature for 15 h. The mixture was loaded onto VarianTM SCX column, and washed with CH₃OH (15 mL). Product was eluted off using 2 N NH₃ in CH₃OH (5 mL) and concentrated to afford (R)-1-(4-chlorobenzyl)-3- $\{N$ -(2-amino-5-chlorobenzoyl)glycyl}amino]pyrrolidine (Compound No. 1084) (12.7 mg, 60%): The purity was determined by RPLC/MS (87%); ESI/MS m/e 421.0 (M⁺+H, C₂₀H₂₂Cl₂N₄O₂).

Examples 349-361.

The compounds of this invention were synthesized pursuant to methods of Example 348 using the corresponding reactant respectively. If the starting amine remained, treatment with isocyanatomethylated polystyrene (50 mg) in CHCl $_3$ (1 mL) at room temperature, filtration and concentration afforded the desired material. The ESI/MS data and yields are summarized in Table 6.

Table 6

		Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 3	49	1085	$C_{20}H_{22}ClN_5O_4$	432.0	4.1	19
Example 3	350	1086	C ₂₀ H ₂₃ ClN ₄ O ₂	387.0	7.9	41
Example 3	351	1087	$C_{22}H_{23}ClN_4O_2$	411.0	15.0	73
Example 3	352	1088	$C_{18}H_{20}ClN_3O_3$	362.0	12.9	71
Example 3	353	1089	$C_{22}H_{22}ClFN_4O_2$	429.0	16.0	75
Example 3	354	1090	$C_{22}H_{26}ClN_3O_3$	416.0	15.8	76
Example 3	355	1091	$C_{21}H_{24}Cl_2N_4O_2$	435.0	10.9	50
Example 3	356	1092	C ₂₁ H ₂₄ ClN ₅ O ₄	446.0	7.9	35
Example 3	357	1093	C ₂₁ H ₂₅ ClN ₄ O ₂	401.0	9.5	47
Example 3	358	1094	C ₂₃ H ₂₅ ClN ₄ O ₂	425.0	15.8	74
Example 3	359	1095	C ₁₉ H ₂₂ ClN ₃ O ₃	376.0	13.5	72
Example 3	360	1096	C ₂₃ H ₂₄ ClFN ₄ O ₂	443.0	11.8	53

Example 361	1097	CasHasCl NaOs	l 430.0 l	15.1	70
Example 361	1097	C231128C1113C3	1		
1 1					

Example 362: Preparation of $(R)-1-(4-Chlorobenzyl)-3-[\{N-(3-bromo-4-methylbenzoyl)glycyl\}amino]pyrrolidine (Compound No. 1098).$

A solution of (R)-1-(4-chlorobenzyl)-3-(glycylamino) pyrrolidine (0.050 mmol) in CHCl₃ (1.35 mL) and tert-butanol (0.15 mL) was treated with 3-bromo-4-methylbenzoic acid (0.060 mmol), diisopropylcarbodiimide (0.060 mmol), and HOBt (0.060 mmol). The reaction mixture was stirred at room temperature for 15 h. The mixture was loaded onto VarianTM SCX column, and washed with $CH_3OH/CHCl_3$ 1:1 (12 mL) and CH_3OH (12 mL). Product was eluted off using 2 N NH₃ in CH_3OH (5 mL) and concentrated to afford $(R)-1-(4-\text{chlorobenzyl})-3-[\{N-(3-\text{bromo-}4-\text{methylbenzoyl})\text{glycyl}\}$ amino]pyrrolidine (Compound No. 1098) (11.6 mg, 50%): The purity was determined by RPLC/MS (94%); ESI/MS m/e 466.0 $(C_{21}H_{23}BrClN_3O_2)$.

15 Examples 363-572.

5

10

25

The compounds of this invention weré synthesized pursuant to methods of Example 362 using the corresponding reactant respectively. Preparative TLC, if needed, afforded the desired material. The ESI/MS data and yields are summarized in Table 7.

20 The following 3 compounds were obtained as byproduct of Compound Nos. 1415, 1416, and 1417, respectively.

1419: 7.9 mg, 38% yield; ESI/MS m/e 419.0 ($C_{20}H_{23}ClN_4O_2S$).

1420: 7.1 mg, 36% yield; ESI/MS m/e 399.2 $(C_{21}H_{26}N_4O_2S)$.

1421: 7.4 mg, 37% yield; ESI/MS m/e 404.2 ($C_{19}II_{25}N5O3S$).

Table 7

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 363	1099	C ₂₀ H ₂₀ BrClFN ₃ O ₂	470.0	3.1	13
Example 364	1100	$C_{20}H_{20}Cl_2FN_3O_2$	424.0	3.1	15
Example 365	1 101	C21H23ClIN3O2	512.0	12.5	49
Example 366	1102	C ₂₁ H ₂₃ ClN ₄ O ₄	431.2	7.7	36
Example 367	1103	C ₂₂ H ₂₆ BrN ₃ O ₂	446.0	13.8	62
Example 368	1104	C ₂₁ H ₂₃ BrFN ₅ O ₂	450.0	16.5	74
Example 369	1105	C ₂₁ H ₂₃ ClFN ₃ O ₂	404.2	14.7	73
Example 370	1106	C ₂₂ H ₂₆ IN ₃ O ₂	492.0	18.5	75

Example 371	1107	C ₂₂ H ₂₆ N ₄ O ₄	411.2	15.2	74
Example 372	1108	C ₂₀ H ₂₅ BrN ₄ O ₃	449.0	12.8	57
Example 373	1109	C ₁₉ H ₂₂ BrFN ₄ O ₃	455.0	16.2	71
Example 374	1110	$C_{19}H_{22}ClFN_4O_3$	409.2	14.4	70
Example 375	1111	C ₂₀ H ₂₅ IN ₄ O ₃	497.0	17.9	72
Example 376	1112	C ₂₀ H ₂₅ N5O ₅	416.2	14.9	72
Example 377	1113	C ₂₃ H ₂₇ BrClN ₃ O ₂	494.0	16.1	65
Example 378	1114	C ₂₂ H ₂₄ BrClFN ₃ O ₂	498.0	20.2	81
Example 379	1115	C ₂₂ H ₂₄ Cl ₂ FN ₃ O ₂	452.2	18.6	82
Example 380	1116	C ₂₃ H ₂₇ ClIN ₃ O ₂	539.1	21.9	81
Example 381	1117	C ₂₃ H ₂₇ ClN ₄ O ₄	459.2	18.7	81
Example 382	1171	C ₂₁ H ₂₃ BrClN ₃ O ₂	466.0	4.9	21
Example 383	1172	C ₂₂ H ₂₃ ClN ₄ O ₃	427.2	16.1	75
Example 384	1173	C ₂₃ H ₂₅ ClN ₄ O ₃	441.2	22.8	quant
Example 385	1174	C ₂₀ H ₂₂ ClFN ₄ O ₂	405.2	21.4	quant
Example 386	1175	C ₂₂ H ₂₆ BrN ₃ O ₂	446.0	15,8	71
Example 387	1176	C ₂₃ H ₂₆ N ₄ O ₃	407.2	17.6	87
Example 388	1177	C ₂₄ H ₂₈ N ₄ O ₃	421.2	20.2	96
Example 389	1178	$C_{21}H_{25}FN_4O_2$	385.0	16.2	84
Example 390	1179	C ₂₁ H ₂₅ N ₅ O ₄	412.2	2.3	11
Example 391	1180	C ₂₃ H ₂₆ N ₄ O ₂	391.0	21.6	quant
Example 392	1181	C ₂₀ H ₂₅ BrN ₄ O ₃	451.0	20.1	89
Example 393	1182	C ₂₁ H ₂₅ N ₅ O ₄	412.2	13.3	65
Example 394	1183	C ₂₂ H ₂₇ N ₅ O ₄	426.2	20.9	98
Example 395	1184	$C_{19}H_{24}FN_5O_3$	390.0	20.0	quant
Example 396	1185	$C_{19}H_{24}N_6O_5$	417.2	18.2	87
Example 397	1186	$C_{21}H_{25}N_5O_3$	396.2	17.6	89
Example 398	1187	C ₂₃ H ₂₇ BrClN ₃ O ₂	494.0	22.1	90
Example 399	1188	C ₂₄ H ₂₇ ClN ₄ O ₃	455.2	17.2	76
Example 400	1189	$C_{25}H_{29}ClN_4O_3$	469.2	21.1	90
Example 401	1190	$C_{22}H_{26}ClFN_4O_2$	433.2	20.4	94
Example 402	1217	$C_{21}H_{20}Cl_2F_3N_3O_2$	474.0	38.5	81
Example 403	1218	$C_{21}H_{23}ClFN_3O_2$	404.2	35.6	88
Example 404	1219	$C_{21}H_{23}Cl_2N_3O_2$	420.0	3.7	9
Example 405	1220	C20H22ClIN4O2	513.0	53.0	quant
Example 406	1221	$C_{20}H_{21}ClF_2N_4O_2$	423.0	38.7	92
Example 407	1222	C ₁₉ H ₂₃ ClN ₄ O ₂	375.2	33.6	90
Example 408	1223	C ₂₆ H ₂₆ ClN ₃ O ₂ S	496.0	43.7	88
Example 409	1224	C ₂₀ H ₂₁ ClN ₄ O ₅	433.0	40.6	94
Example 410	1225	C22H23ClF3N3O2	454.2	18.4	41

Example 411	1226	C ₂₂ H ₂₆ FN ₃ O ₂	384.0	17.1	45
Example 412	1227	C ₂₂ H ₂₆ ClN ₃ O ₂	400.2	17.5	44
Example 412	1228	C ₂₁ H ₂₅ IN ₄ O ₂	493.0	23.3	47
Example 414	1229	$C_{21}H_{24}F_{2}N_{4}O_{2}$	403.2	18.4	46
Example 415	1230	C ₂₀ H ₂₆ N ₄ O ₂	355.2	15.7	44
Example 416	1231	C ₂₇ H ₂₉ N ₃ O ₂ S	476.0	20.9	88
Example 417	1232	C ₂₁ H ₂₄ N ₄ O ₅	413.0	19.9	96
Example 417 Example 418	1232	C ₂₀ H ₂₂ ClF ₃ N ₄ O ₃	459.0	19.4	85
Example 410	1233	C ₂₀ H ₂₅ FN ₄ O ₃	389.0	17.8	92
Example 419	1234	C ₂₀ H ₂₅ ClN ₄ O ₃	405.2	18.7	92
<u> </u>	1235	$C_{19}H_{24}IN_5O_3$	498.0	23.9	96
Example 421	1237	$C_{19}H_{23}F_{2}N_{5}O_{3}$	408.2	19.0	93
Example 422	1237	C ₁₉ H ₂₅ N ₅ O ₃	360.0	16.3	91
Example 423		C ₁₈ H ₂₅ N ₅ O ₃ C ₂₅ H ₂₈ N ₄ O ₃ S	481.2	21.4	89
Example 424	1239	C ₂₅ H ₂₈ N ₄ O ₃ S C ₁₉ H ₂₃ N ₅ O ₆	418.0	19.9	95
Example 425			502.0	22.5	90
Example 426	1241	C ₂₃ H ₂₄ Cl ₂ F ₃ N ₃ O ₂	432.2	21.2	98
Example 427	1242	C ₂₃ H ₂₇ ClFN ₃ O ₂	448.0	21.6	96
Example 428	1243	C ₂₃ H ₂₇ Cl ₂ N ₃ O ₂	541.0	26.4	98
Example 429	1244	C ₂₂ H ₂₆ ClIN ₄ O ₂	451.0	21.3	94
Example 430	1245	C ₂₂ H ₂₅ ClF ₂ N ₄ O ₂	403.2	19.4	96
Example 431	1246	C ₂₁ H ₂₇ ClN ₄ O ₂	524.0	24.7	94
Example 432	1247	C ₂₈ H ₃₀ ClN ₃ O ₂ S	461.0	20.7	90
Example 433	1248	C ₂₂ H ₂₅ ClN ₄ O ₅	451.0	7.4	33
Example 434	1249	C20 H20 C12 N4 O4	431.0	15.5	72
Example 435	1250	C21 H23 C1 N4 O4	431.2	22.9	quant
Example 436	1251	C19 H22 C1 N5 O5	414.2	17.9	86
Example 437	1252	C23 H28 C1 N3 O2		15.8	80
Example 438	1253	C24 H31 N3 O2	394.2	17.3	87
Example 439	1254	C22 H30 N4 O3	399.2		91
Example 440	1255	C20 H22 Br Cl N4 O2	467.0	21.3	93
Example 441	1256	C21 H25 Br N4 O2	445.0	20.7	93
Example 442	1257	C19 H24 Br N5 O3			90
Example 443	1258	C21 H25 C1 N4 O2	401.2	18.1	90
Example 444	1259	C19 H24 C1 N5 O3	406.0	20.1	
Example 445	1260	C23 H29 N3 O3	396.2	16.8	85
Example 446		C23 H30 Cl N3 O3	432.2	19.8	92
Example 447	1262	C24 H33 N3 O3	412.2	17.4	85
Example 448		C22 H32 N4 O4	417.2	18.7	90
Example 449	1264	C25 H26 C1 N3 O3	452.2	29.1	quant
Example 450	1265	C26 H29 N3 O3	432.2	18.1	8 4

Example 451	1266	C24 H28 N4 O4	437.2	19.3	88
Example 452	1267	$C_{23}H_{22}ClF_3N_4O_3$	495.2	20.6	83
Example 453	1268	$C_{21}H_{23}Cl_2N_3O_3$	436.0	17.5	80
Example 454	1269	C ₂₀ H ₂₁ BrClN ₃ O ₃	468.0	19.2	82
Example 455	1270	$C_{20}H_{21}Cl_2N_3O_3$	422.2	17.3	82
Example 456	1271	C ₂₀ H ₂₀ ClFN ₄ O ₄	435.0	17.1	79
Example 457	1272	$C_{24}H_{25}F_3N_4O_3$	475.2	21.7	91
Example 458	1273	$C_{22}H_{26}ClN_3O_3$	416.2	17.8	86
Example 459	1274	C ₂₁ H ₂₄ BrN ₃ O ₃	448.0	19.5	87
Example 460	1275	C ₂₁ H ₂₄ ClN ₃ O ₃	402.2	16.7	83
Example 461	1276	C ₂₁ H ₂₃ FN ₄ O ₄	415.2	18.1	87
Example 462	1277	C ₂₂ H ₂₄ F ₃ N ₅ O ₄	480.2	20.3	85
Example 463	1278	C ₂₀ H ₂₅ ClN ₄ O ₄	421.2	18.6	88
Example 464	1279	C ₁₉ H ₂₃ BrN ₄ O ₄	451.0	21.3	94
Example 465	1280	C ₁₉ H ₂₃ ClN ₄ O ₄	407.2	19.1	94
Example 466	1281	C ₁₉ H ₂₂ FN ₅ O ₅	420.2	19.1	91
Example 467	1282	C ₂₅ H ₂₆ ClF ₃ N ₄ O ₃	523.2	25.0	96
Example 468	1283	C ₂₃ H ₂₇ Cl ₂ N ₃ O ₃	464.2	12.2	53
Example 469	1284	C ₂₂ H ₂₅ BrClN ₃ O ₃	496.0	24.1	97
Example 470	1285	C ₂₂ H ₂₅ Cl ₂ N ₃ O ₃	450.2	21.8	97
Example 471	1321	C ₂₀ H ₂₀ BrCl ₂ N ₃ O ₂	486.0	5.1	21
Example 472	1322	$C_{21}H_{23}Cl_2N_3O_2$	420.0	10.5	50
Example 473	1323	$C_{20}H_{20}Cl_2IN_3O_2$	532.0	7.1	27
Example 474	1324	$C_{21}H_{24}ClN_3O_3$	402.2	22.2	quant
Example 475	1325	$C_{27}H_{26}ClN_3O_3$	476.0	22.2	93
Example 476	1326	$C_{20}H_{21}Clin_3O_3$	514.0	26.9	quant
Example 477	1327	$C_{21}H_{25}ClN_4O_2$	401.2	24.2	quant
Example 478	1328	$C_{21}H_{23}BrClN_3O_2$	466.0	23.1	99
Example 479	1329	$C_{22}H_{26}ClN_3O_2$	400.2	16.4	82
Example 480	1330	$C_{21}H_{23}Clin_3O_2$	512.2	20.8	81
Example 481	1331	$C_{21}H_{24}N_3O_3$	382.2	19.6	quant
Example 482	1332	C ₂₈ H ₂₉ N ₃ O ₃	456.2	21.1	93
Example 483	1333	$C_{21}H_{24}IN_3O_3$	494.0	25.3	quant
Example 484	1334	C ₂₂ H ₂₈ N ₄ O ₂	381.2	19.0	quant
Example 485	1335	C ₁₉ H ₂₂ BrClN ₄ O ₃	471.0	25.8	quant
Example 486	1336	C20H25ClN4O3	405.2	18.5	91
Example 487	1337	C ₁₉ H ₂₂ ClIN ₄ O ₅	517.0	23.1	89
Example 488	1338	C ₂₀ H ₂₆ N ₄ O4	387.2	20.6	quant
Example 489	1339	C ₂₆ H ₂₈ N ₄ O ₄	461.2	23.7	quant
Example 490	1340	C ₁₉ H ₂₃ IN ₄ O ₄	499.0	28.2	quant

Example 491	1341	C ₂₀ H ₂₆ N ₄ O ₄	386.0	20.5	quant
Example 492	1342	$C_{22}H_{24}BrCl_2N_3O_2$	514.0	27.2	quant
Example 493	1343	$C_{23}H_{27}Cl_2N_3O_2$	448.0	21.4	95
Example 494	1344	$C_{22}H_{24}Cl_2IN_3O_2$	560.0	27.0	96
Example 495	1345	C ₂₃ H ₂₈ ClN ₃ O ₃	430.2	23.8	quant
Example 496	1346	C ₂₂ H ₂₅ ClIN ₃ O ₃	542.0	29.4	quant
Example 497	1347	C ₁₉ H ₂₂ ClN ₃ O ₂ S	392.0	16.9	43
Example 498	1348	$C_{20}H_{25}N_3O_2S$	372.2	6.9	19
Example 499	1349	C ₁₈ H ₂₄ N ₄ O ₃ S	377.2	8.1	43
Example 500	1350	$C_{21}H_{26}ClN_3O_2S$	420.0	13.0	62
Example 501	1351	C ₂₂ H ₂₄ BrClN ₄ O ₃	509.2	5.0	10
Example 502	1352	C ₂₃ H ₂₇ BrN ₄ O ₃	489.2	3.6	15
Example 503	1353	C ₂₁ H ₂₆ BrN ₅ O ₄	494.0	2.8	11
Example 504	1354	C ₂₄ H ₂₈ BrClN ₄ O ₃	537.2	5.2	19
Example 505	1355	C21 H22 C1 N5 O2	412.0	25.5	quant
Example 506	1356	C22 H25 N5 O2	392.0	16.5	84
Example 507	1357	C20 H24 N6 O3	397.2	19.9	quant
Example 508	1358	C23 H26 Cl N5 O2	440.2	21.8	99
Example 509	1368	$C_{21}H_{20}Cl_2F_3N_3O_2$	474.0	18.4	78
Example 510	1369	C24H24ClF6IN3O4	568.0	24.1	85
Example 511	1370	C ₁₈ H ₁₉ BrClN ₃ O ₂ S	458.0	19.4	85
Example 512	1371	C26H26ClN3O1S	512.2	22.1	86
Example 513	1372	$C_{26}H_{26}ClN_3O_2$	448.0	19.1	85
Example 514	1373	$C_{22}H_{23}ClF_3N_3O_2$	454.2	16.2	71
Example 515	1374	$C_{25}H_{27}F_{6}IN_{3}O_{4}$	548.2	22.1	81
Example 516	1375	C ₁₉ H ₂₂ BrN ₃ O ₂ S	436.0	17.1	78
Example 517	1376	C ₂₇ H ₂₉ N ₃ O ₄ S	492.0	19.4	79
Example 518	1377	C ₂₇ H ₂₉ N ₃ O ₂	428.2	18.1	85
Example 519	1378	C ₂₀ H ₂₂ ClF ₃ N ₄ O ₃	459.0	17.3	75
Example 520	1379	C ₂₃ H ₂₆ F ₆ IN ₄ O ₅	553.2	21.0	76
Example 521	1380	C ₁₇ H ₂₁ BrN ₄ O ₃ S	443.0	16.4	74
Example 522	1381	C ₂₅ H ₂₈ N ₄ O ₅ S	497.0	18.4	74
Example 523	1382	C ₂₅ H ₂₈ N ₄ O ₃	433.2	17.3	80
Example 524	1383	$C_{23}H_{24}Cl_2F_3N_3O_2$	502.0	20.0	80
Example 525	1384	C ₂₀ H ₂₃ BrClN ₃ O ₂ S	486.0	21.0	87
Example 526	1385	C28H30ClN3O4S	540.2	. 23.8	88
Example 527	1386	C28H30ClN3O2	476.0	20.0	84
Example 528	1411	C ₂₂ H ₂₄ Cl ₂ N ₄ O ₃	463.0	0.4	2
Example 529	1412	C ₂₃ H ₂₇ ClN ₄ O ₂	443.0	1.3	6
Example 530	1413	C ₂₁ H ₂₆ ClN ₅ O ₄	448.0	1.1	5

			491.0	0.8	3
Example 531	1414	$C_{24}H_{28}Cl_2N_4O_3$. 1		
Example 532	1415	$C_{21}H_{22}CIN_5O_2S$	444.0	6.8	31
Example 533	1416	C ₂₂ H ₂₅ N ₅ O ₂ S	424.0	4.8	23
Example 534	1417	C ₂₀ H ₂₄ N ₆ O ₃ S	429.2	4.5	21
Example 535	1418	$C_{23}H_{26}ClN_5O_2S$	472.0	10.4	44
Example 536	1423	C27 H26 Cl N3 O3	476.0	23.9	quant
Example 537	1424	C27 H29 N3 O4 S	456.2	28.0	quant
Example 538	1425	C26 H28 N4 O4	461.2	22.3	97
Example 539	1426	C29 H30 Cl N3 O3	504.2	26.8	quant
Example 540	1583	C21 H22 Cl F3 N4 O2	455.0	14.6	64
Example 541	1584	C21 H22 Cl F3 N4 O3	471.0	17.4	74
Example 542	1585	C19 H20 Br Cl N4 O2	453.0	15.6	69
Example 543	1586	C19 H20 C12 N4 O2	407.2	2.3	11
Example 544	1587	C26 H26 C1 N3 O3	464.0	15.4	66
Example 545	1588	C20 H23 Cl N4 O2	387.0	14.8	77
Example 546	1589	C22 H25 F3 N4 O2	435.2	11.1	51
Example 547	1590	C20 H25 F3 N4 O3	451.2	16.3	72
Example 548	1591	C20 H23 Br N4 O2	433.0	15.4	71
Example 549	1592	C20 H23 Cl N4 O2	387.0	15.6	81
Example 550	1593	C27 H29 N3 O3	444.2	14.8	67
Example 551	1594	C20 H24 F3 N5 O3 ·	440.2	16.2	74
Example 552	1595	C20 H24 F3 N5 O4	456.2	15.4	68
Example 553	1596	C18 H22 Br N5 O3	436.0	15.6	72
Example 554	1597	C18 H22 Cl N5 O3	391.8	14.4	73
Example 555	1598	C25 H28 N4 O4	449.2	15.9	71
Example 556	1599	C19 H25 N5 O3	372.2	15.8	85
Example 557	1606	C21 H21 Cl F3 N3 O2 S	472.0	17.0	72
Example 558	1607	C21 H21 Cl F3 N3 O2 S	452.2	15.3	68
Example 559	1608	C20 H23 F3 N4 O3 S	457.2	15.9	70
Example 560	1660	C21 H22 Br F3 N4 O2	501.0	19.0	76
Example 561	1661	C21 H22 Br F3 N4 O3	517.0	16.2	63
Example 562	1662	C20 H21 Br F2 N4 O2	469.0	15.1	65
Example 563	1663	C20 H22 Br Cl N4 O2	467.0	14.5	62
Example 564	1692	C20 H23 Br2 N3 O3	514	7.3	28
Example 565	1693	C22 H26 F2 N4 O2	417	16.2	78
Example 566	1694	C22 H27 F N4 O2	399	21.8	quant
Example 567	1695	C22 H27 Br N4 O2	459	24.5	quant
Example 568	1696	C22 H27 I N4 O2	507	27.4	quant
Example 569	1697	C22 H27 Cl N4 O2	415	22.1	quant
Example 570	•	C23 H27 F3 N4 O3	465	24.3	quant
	<u> </u>	<u> </u>	<u> </u>	<u> </u>	

Example 571	1699	C23 H27 F3 N4	02	449	25.3	quant
Example 572	1700	C22 H25 Br Cl	N3 O2	480	17.8	74

For example, Compound No. **1583** showed the following NMR spectra: ^{1}H NMR (400 MHz, CD₃OD) δ 1.64-1.72 (m, 1 H), 2.20-2.30 (m, 1 H), 2.41-2.51 (m, 2 H), 2.71-2.78 (m, 2 H), 3.59 (dd, J = 15.4, 12.9 Hz, 2 H), 3.94 (s, 2 H), 4.35-4.41 (m, 1 H), 6.82 (d, J = 8.6 Hz, 1 H), 7.29 (s, 4 H), 7.40 (dd, J = 8.6, 1.7 Hz, 1 H), 7.85 (d, J = 0.96 Hz, 1 H).

5

10

15

20

Reference Example 4: Preparation of $(S)-3-[N-\{3-(trifluoromethyl)benzoyl\}glycyl]$ aminopyrrolidine.

- A suspension of $(S)-1-(4-\text{chlorobenzyl})-3-[N-\{3-(\text{trifluoromethyl})\text{benzoyl}\}\text{glycyl}]$ aminopyrrolidine (2.93 g, 6.66 mmol) and $Pd(OH)_2$ in 5% $HCO_2H/\text{methanol}$ (70 mL) was stirred at 60 °C for 3 h. The Pd catalyst was filtered off through Celite, and the filtrate was concentrated. To the residue was added 2N aqueous NaOH solution (100 mL) and the mixture was extracted with ethyl acetate (100 mL x 3). The combined extracts were washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated. Column chromatography $(SiO_2, AcOEt/MeOH/Et_3N = 85/10/5-60/30/5)$ gave $(S)-3-[N-\{3-(\text{trifluoromethyl})\text{benzoyl}\}\text{glycyl}]$ aminopyrrolidine (1.70 g, 81%) as an oil: 1H NMR $(CDCl_3, 270 \text{ MHz})$ S 1.76 (d, J = 7.3 Hz, 1 H), 2.07-2.25 (m, 1 H), 2.81-2.98 (m, 2 H), 3.02-3.11 (m, 2 H), 4.12 (s, 2 H), 4.41 (br, 1 H), 6.90 (br, 1 H), 7.45 (br, 1 H), 7.58 (dd, J = 7.3 and 7.3 Hz, 1 H), 7.77 (d, J = 7.3 Hz, 1 H), 8.02 (d, J = 7.3 Hz, 1 H), 8.11 (s, 1 H); ESI/MS m/e 316.0 $(M^2+H, C_14H_16F_3N_3O_2)$.
- (R)-3-[N-{3-(Trifluoromethyl)benzoyl}glycyl]aminopyrrolidine was also prepared pursuant to the above method using the corresponding reactant: 1.49 g, 68%; The product showed the same ¹H NMR and ESI/MS with those of (S)-isomer.
 - $(R) 3 [N \{2 Amino 5 (trifluoromethyl) benzoyl\} glycyl] aminopyrrolidine was also prepared pursuant to the above method using the corresponding reactant: 316 mg, 93%; ESI/MS m/e 331.2 (M<math>^+$ +H, C $_{14}H_{17}F_3N_4O_2$).
- 30 $(R) 3 [N \{2 (tert Butoxycarbonylamino) 5 (trifluoromethoxy)benzoyl\}glycyl]aminopyrrolidine was also prepared pursuant to the above method using the corresponding reactant: quant; <math>^1H$ NMR (CDCl₃, 400 MHz) δ 1.51 (s, 9 H), 1.60-1.70 (m, 2 H), 2.10-2.25 (m, 1 H), 2.80-2.88 (m, 1 H), 2.89-2.98 (m, 1 H), 3.04-3.18 (m, 2 H), 4.05 (d, J = 4.9 Hz, 2 H), 4.43 (br, 1 H), 6.15 (br, 1 H), 7.03 (br, 1 H), 7.32 (d, J = 9.3 Hz, 1 H), 7.38 (s, 1 H), 8.42 (d, J = 9.3 Hz, 1 H).

Example 573: Preparation of (R)-3-[{N-(2-(tert-Butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl)amino]-1-(4-chlorobenzyl)pyrrolidine.

A solution of (R)-1-(4-chlorobenzyl)-3-(glycylamino) pyrrolidine (5.0 g, 18.7 mmol) in dichloromethane (100 mL) was treated with Et_3N (2.9 mL, 20.5 mmol), 2-(tert-butoxycarbonylamino)-5-(trifluoromethyl)benzoic acid (6.27 g, 20.5 mmol), EDCI (3.9 g, 20.5 mmol) and HOBt (2.8 g, 20.5 mmol). The reaction mixture was stirred at room temperature overnight. To the reaction mixture was added 2 N aqueous NaOH solution (80 mL) and the mixture was extracted with dichloromethane. The extract was dried over anhydrous Na_2SO_4 , filtered, and 10 evaporated. Column chromatography $(SiO_2, hexane/ethyl acetate = 1/1-1/4)$ $(R)-3-[\{N-(2-(tert-butoxycarbonylamino)-5$ afforded trifluoromethylbenzoyl)glycyl}amino]-1-(4-chlorobenzyl)pyrrolidine (9.41 g, 91%) as a white amorphous solid: ESI/MS m/e 555.2 (M † +H, C₂₆H₃₀ClF₃N₄O₄).

15

25

35

5

Preparation of $(R) -3 - [{N-(2-(text-$ Example 5: Reference butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl}amino]pyrrolidine.

 $(R)-3-[\{N-(2-(tert-butoxycarbonylamino)-5-$ Α mixture trifluoromethylbenzoyl)glycyl)amino]-1-(4-chlorobenzyl)pyrrolidine (6.3 g, 11.4 mmol), $Pd(OH)_2$ (1.68 g), HCO_2H (3.7 mL), and methanol (80 mL) was stirred 20 at 50 °C overnight. After the mixture was cooled to room temperature, the Pd catalyst was filtered off through Celite and the filtrate was concentrated. Column chromatography (SiO₂, AcOEt, AcOEt/MeOH = 5/1-4/1) gave (R)-3-[{N-1/2}] (2-(tert-butoxycarbonylamino)-5-

trifluoromethylbenzoyl)glycyl)amino]pyrrolidine (4.42 g, 90%) as a white solid: ^{1}H NMR (CDCl₃, 400 MHz) δ 1.48 (s, 9 H), 2.0-2.4 (m, 2 H), 3.42-3.71 (m, 5 H), 4.00-4.22 (m, 2 H), 4.56 (br, 1 H), 7.48 (d, J = 9.0 Hz, 1 H), 7.93 (s, 1 H), 8.17 (br, 1 H), 8.33 (d, J = 9.0 Hz, 1 H), 8.45 (br, 1 H).

$(S) -1-Benzyl-3-[N-{3-}$ 30 574: Preparation of Example (trifluoromethyl)benzoyl}glycyl]aminopyrrolidine (Compound No. 239).

 $(S) - 3 - [N - {3 - }]$ of solution $(\texttt{trifluoromethyl}) \ \texttt{benzoyl} \ \texttt{glycyl} \ \texttt{aminopyrrolidine} \ (\texttt{0.060 mmol}) \ \texttt{in} \ \texttt{CH}_3 \texttt{CN} \ (\texttt{1.1 mL})$ and (piperidinomethyl)polystyrene (2.6-2.8 mmol/g, 30 mg) were added to a solution of benzyl bromide (0.050 mmol) in CH_3CN (0.4 mL). The reaction mixture was stirred at 45 °C for 5 h. After the mixture was cooled to room temperature, the resin was removed by filtration and the filtrate was concentrated. The residue was resolved in CH_3CN (1.0 mL) and phenyl isocyanate (0.008 mL, 0.05

mmol) was added. The mixture was stirred at room temperature for 1 h, loaded onto VarianTM SCX column, and washed with CH₃OH (15 mL). Product was eluted off using 2 N NH₃ in CH₃OH (6 mL) and concentrated to afford (S)-1-benzyl-3-[N-{3-(trifluoromethyl)benzoyl}glycyl]aminopyrrolidine (compound No. **239**) (9.0 mg, 44%): The purity was determined by RPLC/MS (99%); ESI/MS m/e 406.0 (M⁺+H, C₂₁H₂₂F₃N₃O₂).

Example 575: Preparation of $(R)-1-(4-Butylbenzyl)-3-[{N-(3-trifluoromethylbenzoyl)glycyl}amino]pyrrolidine (Compound No. 1648).$

To a mixture of (R)-3-[N-{3-(trifluoromethyl)benzoyl}glycyl]aminopyrrolidine (0.050 mmol), 4-butylbenzaldehyde (0.18 mmol), NaBH₃CN (0.23 mmol), and methanol (1.85 mL) was added acetic acid (0.060 mL). The reaction mixture was stirred at 60 °C for 12 h. The mixture was cooled to room temperature, loaded onto Varian[™] SCX column, and washed with CH₃OH (15 mL). Product was eluted off using 2 N NH₃ in CH₃OH (5 mL) and concentrated to afford (R)-1-(4-butylbenzyl)-3-[{N-(3-trifluoromethylbenzoyl)glycyl}amino]pyrrolidine (Compound No. 1648) (20.6 mg, 89%): The purity was determined by RPLC/MS (91%); ESI/MS m/e 462.2 (M*+H, C₂₅H₃₀F₃N₃O₂).

Examples 576-738.

5

10

15

20

25

The compounds of this invention were synthesized pursuant to methods of Examples 574or 575 using the corresponding reactant respectively. Preparative TLC or chromatography (HPLC- C_{18}), if needed, afforded the desired material. The ESI/MS data and yields are summarized in Table 8.

Table 8

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 576	240	$C_{21}H_{21}F_4N_3O_2$	424.0	10.2	48
Example 577	241	$C_{21}H_{21}ClF_3N_3O_2$	440.0	12.1	55
Example 578	242	$C_{21}H_{23}Cl_2F_3N_3O_2$	474.0	13.9	59
Example 579	243	$C_{21}H_{20}Cl_2F_3N_3O_2$	474.0	13.8	58
Example 580	244	$C_{22}H_{24}F_3N_3O_2$	420.0	13.1	62
Example 581	245	C ₂₁ H ₂₁ F ₄ N ₃ O ₂	424.0	11.9	56
Example 582	246	$C_{21}H_{21}ClF_3N_3O_2$	440.0	8.5	39
Example 583	247	$C_{21}H_{20}Cl_2F_3N_3O_2$	474.0	10.5	4 4
Example 584	248	$C_{22}H_{24}CF_3N_3O_3$	436.0	11.0	51

Example 585	249	$C_{22}H_{21}ClF_6N_3O_2$	474.0	12.8	54
Example 586	250	C ₂₂ H ₂₄ F ₃ N ₃ O ₂	420.0	11.0	52
Example 587	251	C ₂₁ H ₂₁ F ₄ N ₃ O ₂	424.0	13.5	64
Example 588	252	$C_{22}H_{24}F_3N_3O_3$	436.0	11.8	54
Example 589	253	C ₂₂ H ₂₄ F ₃ N ₃ O ₂	420.0	11.1	53
Example 590	254	$C_{21}H_{20}ClF_3N_4O_4$	485.0	2.4	10
Example 591	255	C ₂₁ H ₂₁ F ₃ N ₄ O ₄	451.0	12.2	54
Example 592	256	$C_{21}H_{21}F_3N_4O_4$	451.0	11.4	51
Example 593	257	$C_{22}H_{21}F_6N_3O_2$	474.0	11.1	47
Example 594	258	C ₂₄ H ₂₆ F ₃ N ₃ O ₄	478.0	15.3	64
Example 595	259	$C_{22}H_{23}ClF_3N_3O_2$	420.0	6.4	31
Example 596	260	$C_{21}H_{20}Cl_2F_3N_3O_2$	474.0	12.1	51
Example 597	261	$C_{22}H_{21}C1F_6N_3O_2$	474.0	13.6	57
Example 598	262	$C_{21}H_{21}BrF_3N_3O_2$	484.0	15.2	63
Example 599	263	$C_{21}H_{21}BrF_3N_3O_2$	484.0	14.5	60
Example 600	264	$C_{27}H_{26}F_3N_3O_3$	498.0	9.3	37
Example 601	265	$C_{21}H_{21}BrF_3N_3O_2$	484.0	11.6	48
Example 602	266	C ₂₂ H ₂₂ F ₃ N ₃ O ₄	450.0	8.9	40
Example 603	267	$C_{22}H_{24}F_3N_3O_3$	436.0	10.3	47
Example 604	268	$C_{23}H_{25}F_3N_4O_3$	463.0	6.3	27
Example 605	269	C ₂₂ H ₂₄ F ₃ N ₃ O ₄ S	484.0	8.0	33
Example 606	270	$C_{23}H_{24}F_3N_3O_4$	464.0	8.9	38
Example 607	271	$C_{21}H_{20}F_5N_3O_2$	442.0	6.1	28
Example 608	272	C ₂₁ H ₂₂ F ₃ N ₃ O ₃	422.0	13.6	59
Example 609	273	C ₂₂ H ₂₁ F ₃ N ₄ O ₂	431.0	12.6	59
Example 610	274	C ₂₂ H ₂₁ F ₃ N ₄ O ₂	431.0	7.7	36
Example 611	275	C ₂₂ H ₂₁ F' ₃ N ₄ O ₂	431.0	12.7	59
Example 612	276	$C_{21}H_{20}F_5N_3O_2$	442.0	11.7	53
Example 613	277	C ₂₇ H ₂₆ F ₃ N ₃ O ₂	482.0	9.5	39
Example 614	278	$C_{23}H_{24}F_3N_3O_4$	464.0	13.0	56
Example 615	279	C ₂₂ H ₂₁ F ₆ N ₃ O ₃	490.0	10.4	42
Example 616	280	$C_{22}H_{21}F_6N_3O_3$	490.0	12.0	49
Example 617	281	$C_{22}H_{22}F_3N_3O_4$	450.0	4.9	22
Example 618	282	$C_{25}H_{30}F_3N_3O_2$	462.0	12.0	52
Example 619	283	$C_{20}H_{23}F_3N_4O_3$	425.0	8.1	38
Example 620	284	$C_{27}H_{25}ClF_5N_3O_2$	516.0	4.8	19
Example 621	285	$C_{21}H_{22}F_3N_3O_2$	406.0	4.8	24
Example 622	286	C ₂₁ H ₂₁ F ₄ N ₃ O ₂	424.0	4.5	21
Example 623	287	$C_{21}H_{21}ClF_3N_3O_2$	440.0	5.8	26
Example 624	288	$C_{21}H_{20}Cl_2F_3N_3O_2$	474.0	8.1	34
L	<u> </u>				

Example 625	289	C ₂₁ H ₂₀ Cl ₂ F ₃ N ₃ O ₂	474.0	8.0	34
Example 626	290	C ₂₂ H ₂₄ F ₃ N ₃ O ₂	420.0	6.0	29
Example 627	291	C ₂₁ H ₂₁ F ₄ N ₃ O ₂	424.0	6.2	29
Example 628	292	$C_{21}H_{21}ClF_3N_3O_2$	440.0	4.5	20
Example 629	293	C ₂₁ H ₂₀ Cl ₂ F ₃ N ₃ O ₂	474.0	5.1	22
Example 630	294	C ₂₂ H ₂₄ CF ₃ N ₃ O ₃	436.0	4.2	19
Example 631	295	C ₂₂ H ₂₁ ClF ₆ N ₃ O ₂	474.0	6.0	25
Example 632	296	C ₂₂ H ₂₄ F ₃ N ₃ O ₂	420.0	4.3	21
Example 633	297	C ₂₁ H ₂₁ F ₄ N ₃ O ₂	424.0	8.2	39
Example 634	298	C ₂₂ H ₂₄ F ₃ N ₃ O ₃	436.0	12.2	56
Example 635	299	C ₂₂ H ₂₄ F ₃ N ₃ O ₂	420.0	8.1	39
Example 636	300	C ₂₁ H ₂₀ ClF ₃ N ₄ O ₄	485.0	13.7	57
Example 637	301	C ₂₁ H ₂₁ F ₃ N ₄ O ₄	451.0	15.1	67
Example 638	302	C ₂₁ H ₂₁ F ₃ N ₄ O ₄	451.0	16.6	74
Example 639	303	C ₂₂ H ₂₁ F ₆ N ₃ O ₂	474.0	12.6	53
Example 640	304	C ₂₄ H ₂₆ F ₃ N ₃ O ₄	478.0	14.5	61
Example 641	305	C ₂₂ H ₂₃ ClF ₃ N ₃ O ₂	420.0	8.4	37
Example 642	306	C ₂₁ H ₂₀ Cl ₂ F ₃ N ₃ O ₂	474.0	13.5	57
Example 643	307	C ₂₂ H ₂₁ ClF ₆ N ₃ O ₂	474.0	3.7	16
Example 644	308	C ₂₁ H ₂₁ BrF ₃ N ₃ O ₂	484.0	7.2	30
Example 645	309	C ₂₁ H ₂₁ BrF ₃ N ₃ O ₂	484.0	6.7	28
Example 646	310	C ₂₇ H ₂₆ F ₃ N ₃ O ₃	498.0	4.2	17
Example 647	311	C ₂₁ H ₂₁ BrF ₃ N ₃ O ₂	484.0	6.3	26
Example 648	312	C ₂₂ H ₂₂ F ₃ N ₃ O ₄	450.0	2.4	11
Example 649	313	C ₂₂ H ₂₄ F ₃ N ₃ O ₃	436.0	1.9	9
Example 650	314	C ₂₃ H ₂₅ F ₃ N ₄ O ₃	463.0	5.0	22
Example 651	315	C ₂₂ H ₂₄ F ₃ N ₃ O ₄ S	484.0	2.5	10
Example 652	316	C ₂₃ H ₂₄ F ₃ N ₃ O ₄	464.0	3.3	14
Example 653	317	C ₂₁ H ₂₆ F ₅ N ₃ O ₂	442.0	4.5	20
Example 654	318	C ₂₁ H ₂₂ F ₃ N ₃ O ₃	422.0	7.9	34
Example 655	319	C ₂₂ H ₂₁ F ₃ N ₄ O ₂	431.0	6.5	30
Example 656	320	$C_{22}H_{21}F_3N_4O_2$	431.0	14.2	66
Example 657	321	C ₂₂ H ₂₁ F ₃ N ₄ O ₂	431.0	14.9	69
Example 658	322	$C_{21}H_{20}F_5N_3O_2$	442.0	13.6	62
Example 659	323	$C_{27}H_{26}F_3N_3O_2$	482.0	3.9	16
Example 660	324	C ₂₃ H ₂₄ F ₃ N ₃ O ₄	464.0	15.2	66
Example 661	325	C ₂₂ H ₂₁ F ₆ N ₃ O ₅	490.0	16.1	66
Example 662	326	$C_{22}H_{21}F_6N_3O_3$	490.0	13.6	56
Example 663	327	C_{2} , H_{2} , $F_{3}N_{3}O_{4}$	450.0	5.4	24
Example 664	328	$C_{25}H_{34}F_3N_3O_2$	462.0	10.9	47

Example 705	1301	C24 H28 F3 N3 O5	496	12.6	53
_	1302	C24 H28 F3 N3 O3	464	24.5	quant
Example 706	1302	C23 H25 Br F3 N3 O4	544	22.2	86
Example 707		C29 H30 F3 N3 O4	542	28.6	quant
Example 708	1304	1	486	35.4	quant
Example 709	1305	C26 H26 F3 N3 O3			
Example 710	1306	C24 H28 F3 N3 O4	480	8.1	35
Example 711	1307	C23 H26 F3 N3 O5	482	27.9	quant
Example 712	1308	C23 H24 F3 N3 O3	448	5.9	28
Example 713	1309	C23 H25 F3 I N3 O4	592	24.0	85
Example 714	1310	C22 H24 F3 N3 O4	452	3.4	16
Example 715	1311	C22 H22 F3 N3 O4	450	3.4	16
Example 716	1312	C21 H21 F3 I N3 O2	532	18.1	72
Example 717	1313	C21 H21 Br F3 N3 O2	484	17.4	76
Example 718	1314	C19 H19 F3 N4 O4 S	457	16.8	77
Example 719	1315	C20 H22 F3 N3 O3	410	13.6	70
Example 720	1316	C22 H20 Cl F6 N3 O2	508	18.6	77
Example 721	1317	C21 H20 Cl F3 N4 O4	485	17.0	74
Example 722	1318	C21 H20 Cl F4 N3 O2	458	17.0	78
Example 723	1319	C21 H20 Cl F4 N3 O2	458	17.6	81
Example 724	1320	C21 H20 Br F4 N3 O2	502	18.5	77
Example 725	1390	C26 H32 F3 N3 O2	476	16.1	51
Example 726	1391	C23 H26 F3 N3 O2	434	20.0	76
Example 727	1392	C22 H23 Cl F3 N3 O2	454	20.0	67
Example 728	1393	C23 H26 F3 N3 O2	434	20.1	70
Example 729	1394	C22 H23 F3 N4 O4	465	18.4	60
Example 730	1395	C23 H24 F3 N3 O2	432	21.4	75
Example 731	i	C26 H26 F3 N3 O2	470	20.4	66
Example 732		C21 H20 Br2 F3 N3 O2	562	14.5	54
Example 733		C22 H22 C12 F3 N3 O2	488	10.8	47
Example 734		C22 H22 C12 F3 N3 O2	488	9.4	40
Example 735		C22 H23 Cl F3 N3 O2	454	19.1	88
Example 736		C22 H21 F6 N3 S	506.0	24.2	96
Example 737	<u> </u>	C20 H22 F3 N3 O2 S	426	6.0	30
Example 738	i	C21 H23 F3 N4 O2	421	6.5	32

^{*}Yield of TFA salt.

Examples 739-748.

The compounds of this invention were synthesized pursuant to methods of $\,\,$ Example 738 using the corresponding reactant respectively. Preparative TLC,

if needed, afforded the desired material. The .ESI/MS data and yields are summarized in Table 9.

Table 9

 $\mathbf{5}$

10

15

20

25

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield(%)
Example 739	1650	C24 H28 F3 N3 O2	448.0	20.4	91
Example 740	1706	C23 H25 F3 N4 O3	463.2	3.7	11
Example 741	1707	C22 H25 F3 N4 O2 S	467.0	10.3	29
Example 742	1708	C23 H27 F3 N4 O2	449.2	11.4	34
Example 743	1709	C24 H29 F3 N4 O2	463.2	15.2	44
Example 744	1775	C22 H25 F3 N4 O4	467.2	9.2	26.3
Example 745	1776	C22 H25 F3 N4 O4	467.2	8.9	25.4
Example 746	1787	C24 H29 F3 N4 O2	463.2	5.6	16.1
Example 747	1802	C23 H27 F3 N4 O4	481.2	11.7	32.5
Example 748	1803	C22 H25 F3 N4 O3	451.2	9.6	28.4

Example 749: Preparation of (R)-3-[{N-(2-Amino-5-trifluoromethoxybenzoyl)glycyl}amino]-1-(3-hydroxy-4-methoxybenzyl)pyrrolidine (Compound No. 1896).

 $(R) - 3 - [N - \{2 - (tert-butoxycarbonylamino) - 5$ of mixture (trifluoromethoxy)benzoyl}glycyl]aminopyrrolidine (0.050 mmol), 3-hydroxy-4-methoxybenzaldehyde (0.060 mmol), NaBH3CN (0.15 mmol), and methanol (1.3 mL) was added acetic acid (0.050 mL). The reaction mixture was stirred at 60 $^{\circ}\text{C}$ for 8 h. The mixture was cooled to room temperature, loaded onto $Varian^{TM}$ SCX column, and washed with CH_3OH (10 mL). Product was eluted off using 2 N NH_3 in $\mathrm{CH_{3}OH}$ (5 mL) and concentrated. To the resulting material was added 4 N HCl in 1,4-dioxane and the solution was stirred overnight at room temperature. preparative TLC gave $(R) -3 - [\{N - (2 - amino - 5 - amino$ and Concentration trifluoromethoxybenzoyl)glycyl)amino]-1-(3-hydroxy-4-

methoxybenzyl)pyrrolidine (Compound No. 1896) (9.1 mg, 38%): The purity was determined by RPLC/MS (93%); ESI/MS m/e 483 ($M^{\dagger}+H$, $C_{22}H_{25}F_3N_4O_5$).

Examples 750-757.

The compounds of this invention were synthesized pursuant to methods of Example 749 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 10.

Table 10

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield(%)
Example 750	1897	C22 H25 F3 N4 O3 S	483	22.7	94.1
Example 751	1898	C23 H27 F3 N4 O3	465	12.2	52.5
Example 752	1899	C24 H29 F3 N4 O3	479	14.4	60.2
Example 753	1900	C22 H25 F3 N4 O5	483	2.6	10.8
Example 754	1901	C24 H29 F3 N4 O3	479	14.5	60.6
Example 755	1902	C23 H25 F3 N4 O4	479	12.0	50.2
Example 756	1915	C23 H27 F3 N4 O5	467.2	2.5	6.7
Example 757	1916	C22 H25 F3 N4 O4	467.2	3.1	8.9

Example 758: Preparation of (R)-3-[{N-(2-Amino-5-5 (trifluoromethyl)benzoyl)glycyl}amino]-1-(4-vinylbenzyl)pyrrolidine (Compound No. 1701).

mixture of $(R)-3-[\{N-(2-a\min o-5-(trifluoromethyl) benzoyl) glycyl\} amino]$ pyrrolidine (0.050 mmol), 4-vinylbenzyl chloride (9.9 mg, 0.065 mmol), piperidinomethylpolystyrene (60 mg), acetonitrile (1.0 mL) and chloroform (0.30 mL) was stirred at 50 °C for 12 h. The reaction mixture was cooled, loaded onto Varian SCX column and washed with CH₃OH (15 mL). Product was eluted using 2 N NH₃ in CH₃OH (5 mL) and concentrated to afford $(R)-3-[\{N-(2-a\min o-5-(trifluoromethyl) benzoyl) glycyl\} amino]-1-(4-vinylbenzyl) pyrrolidine <math>(Compound No. 1701)$ (19.6 mg, 88%): The purity was determined by RPLC/MS (92%); ESI/MS m/e 547.2 $(M^++H, C_{23}H_{25}C1F_3N_4O_2)$.

Examples 759-762

10

15

20

The compounds of this invention were synthesized pursuant to methods of Example 758 using the corresponding reactant respectively. Preparative TLC, if needed, afforded the desired material. The ESI/MS data and yields are summarized in Table 11.

Table 11

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 759	1702	C22 H25 F3 N4 O3	451.2	5.3	24
Example 760	1703	C22 H23 F3 N4 O4	465.2	5.0	22
Example 761	1704	C21 H23 F3 N4 O3	437.2	20.9	96
Example 762	1705	C21 H21 C12 F3 N4 O2	489.2	9.3	38

PCT/US98/23254 WO 99/25686

of $(R) -3 - [{N - (2 - Amino - 5 - 6)}]$ Preparation Example 763: (trifluoromethoxy)benzoyl)glycyl}amino]-1-(2,4-dichlorobenzyl)pyrrolidine (Compound No. 1905).

of $(R) -3 - [\{N - (2 - amino - 5 - amino$ mixture Α (0.050 mmol), 2.4-(trifluoromethoxy)benzoyl)glycyl)amino]pyrrolidine dichlorobenzyl chloride (0.060 mmol), piperidinomethylpolystyrene (60 mg), acetonitrile (0.8 mL) and chloroform (0.5 mL) was stirred at 60 $^{\circ}\text{C}$ for 12 h. The reaction mixture was cooled, loaded onto $Varian^{TM}$ SCX column and washed with 50% $\rm CHCl_3/CH_3OH$ (10 mL) and $\rm CH_3OH$ (10 mL). Product was eluted using 2 N $\rm NH_3$ in ${
m CH_3OH}$ (5 mL) and concentrated. To the resulting material was added 4 N HCl in 1,4-dioxane (2 mL), and the solution was stirred overnight at room temperature. TLC afforded $(R) - 3 - [\{N - (2 - amino - 5 - amino$ preparative Concentration and (trifluoromethoxy)benzoyl)glycyl}amino]-1-(2,4-dichlorobenzyl)pyrrolidine (Compound No. 1905) (17.6 mg, 70%): The purity was determined by RPLC/MS (93%); ESI/MS m/e 505 (M $^{+}$ +H, $C_{21}H_{21}Cl_{2}F_{3}N_{4}O_{3}$).

Examples 764-770

The compounds of this invention were synthesized pursuant to methods of Example 763 using the corresponding reactant respectively. The ESI/MS data and 20 yields are summarized in Table 12.

Table 12

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 764	1906	C22 H23 F3 N4 O5	481	9.4	39.1
Example 765	1907	C21 H23 F3 N4 O4	453	7.5	33.2
Example 766	1908	C22 H25 F3 N4 O4	467	7.7	33.0
Example 767	2180	C22 H24 Cl F3 N4 O2	469	1.3	26
Example 768	2181	C23 H25 F3 N6 O3	491	4.3	52
Example 769	2182	C19 H22 F3 N5 O2 S	442	7.0	51
Example 770	1909	C23 H25 F3 N4 O3	463	8.7	37.6

25

5

10

15

 $(R) -3 - [{N - (2 - Amino - 5 - 6)}]$ Preparation of 771: trifluoromethoxybenzoyl)glycyl}amino]-1-(2-amino-4-chlorobenzyl)pyrrolidine (Compound No. 1921).

 $(R) -3 - [\{N - (2 - amino - 5 - amino$ of mixture Α 30

trifluoromethoxybenzoyl)glycyl}amino]pyrrolidine (0.050 mmol), 4-chloro-2-

PCT/US98/23254 WO 99/25686

nitrobenzyl chloride (0.050 mmol), piperidinomethylpolystyrene (60 mg), acetonitrile (1.0 mL) and chloroform (0.7 mL) was stirred overnight at 50 $^{\circ}$ C. The reaction mixture was cooled, loaded onto Varian TM SCX column and washed with 50% $\mathrm{CHCl_3/CH_3OH}$ (10 mL) and $\mathrm{CH_3OH}$ (10 mL). Product was eluted using 2 N NH $_3$ in $\mathrm{CH_{3}OH}$ (5 mL) and concentrated. To the resulting material was added ethanol (3 mL) and 10% Pd-C (15 mg), and the mixture was stirred under $\rm H_2$ at room temperature for 1.5 h. Filtration, concentration, and preparative TLC afforded (R)-3-[{N-(2-amino-5-trifluoromethoxybenzoyl)glycyl}amino]-1-(2-amino-4chlorobenzyl)pyrrolidine (Compound No. 1921) (2.2 mg, 6%): The purity was determined by RPLC/MS (81%); ESI/MS m/e 486.2 ($M^{\dagger}+H$, $C_{21}H_{23}ClF_3N_5O_3$).

of $(R) -3 - [{N - (2 - Amino - 5 - 6)}]$ 772: Preparation Example trifluoromethylbenzoyl)glycyl}amino]-1-(4-bromo-2-fluorobenzyl)pyrrolidine (Compound No. 2120).

οf $(R) -3 - [\{N-(2-(tert-butoxycarbonylamino) -5-$ Τo а mixture trifluoromethylbenzoyl)glycyl}amino]pyrrolidine (0.050 mmol), 4-bromo-2fluorobenzaldehyde (0.15 mmol), methanol (1.5 mL), and acetic acid (0.016 mL) was added NaBH3CN (0.25 mmol) in methanol (0.50 mL). The reaction mixture was stirred at 50 °C overnight. The mixture was cooled to room temperature, loaded onto Varian $^{\text{TM}}$ SCX column, and washed with CH $_3$ OH (5 mL x 2). Product was eluted 20 off using 2 N $\mathrm{NH_3}$ in $\mathrm{CH_3OH}$ (5 mL) and concentrated. The residue was dissolved in methanol (0.25 mL) and 4 N HCl in dioxane (0.50 mL) was added. The solution was stirred at room temperature for 5 h and concentrated. The residue was dissolved in methanol, loaded onto Varian TM SCX column, and washed with CH $_3$ OH (5 mL x 2). Product was eluted off using 2 N NH_3 in CH_3OH (5 mL) and concentrated. 25 The resulting material was dissolved into ethyl acetate (0.5 mL), loaded onto Varian ™ Si column, eluted off using ethyl acetate/methanol = 5:1 (6 mL), and $(R) - 3 - [\{N - (2 - amino - 5 - amino$ afford to concentrated trifluoromethylbenzoyl)glycyl}amino]-1-(4-bromo-2-fluorobenzyl)pyrrolidine (Compound No. 2120) (16.0 mg, 31%): The purity was determined by RPLC/MS (99%); 30 ESI/MS m/e 517.0 (M^++H , $C_{21}H_{21}BrF_4N_4O_2$).

Examples 773-793.

5

10

15

The compounds of this invention were synthesized pursuant to methods of Example 772 using the corresponding reactant respectively. The ESI/MS data and 35 yields are summarized in Table 13.

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 773	2083	C22 H24 Br F3 N4 O4	545.2	2.9	11
Example 774	2084	C23 H27 F3 N4 O5	497.2	5.1	21
Example 775	2085	C22 H25 F3 N4 O4	467.2	3.1	13
Example 776	2086	C21 H22 Cl F3 N4 O3	471.0	4.6	20
Example 777	2087	C23 H28 F3 N5 O2	464.2	5.6	24
Example 778	2088	C25 H32 F3 N5 O2	492.2	5.9	24
Example 779	2089	C21 H21 F5 N4 O2	457.2	4.5	20
Example 780	2090	C27 H27 F3 N4 O3	513.2	8.0	31
Example 781	2118	C21 H23 F3 N4 O4	453.1	2.7	12
Example 782	2119	C21 H23 F3 N4 O4	453.1	4.3	19
Example 783	2121	C22 H25 F3 N4 O4	467.0	1.2	2
Example 784	2122	C21 H21 C1 F4 N4 O2	472.9	13.1	28
Example 785	2123	C22 H22 F3 N5 O6	510.1	13.1	51
Example 786	2124	C21 H21 C1 F3 N5 O4	500.1	15.6	62
Example 787	2125	C22 H24 F3 N5 O5	496.0	16.0	65
Example 788	2126	C22 H24 F3 N5 O4	480.1	15.6	65
Example 789	2137	C22 H24 Cl F3 N4 O2	469.2	2.6	11
Example 790	2138	C26 H29 F3 N6 O2	515.3	25.1	98
Example 791	2139	C20 H24 C1 F3 N6 O2	473.2	25.0	98
Example 792	2149	C21 H22 F3 N5 O5	482.3	4.9	34
Example 793	2157	C22 H25 F3 N4 O3	451.2	15.5	70

Example 794: Preparation of $(R)-3-[\{N-(2-A\min o-5-trifluoromethylbenzoyl)glycyl\}amino]-1-(2,4-dimethoxypyrimidin-5-ylmethyl)pyrrolidine (Compound No. 2175).$

5

10

15

 $(R)-3-[\{N-(2-A\min no-5-trifluoromethylbenzoyl)\, glycyl\}\, amino] pyrrolidine (17.2 mg, 0.04 mmol) was dissolved in THF (1 mL) and 2,4-dimethoxy-5-pyrimidine carboxaldehyde (6.7 mg, 0.04 mmol) was added followed by sodium triacetoxyborohydride (12.7 mg, 0.06 mmol) and glacial acetic acid (2.4 mg, 0.04 mmol). The mixture was stirred at room temperature for 24 h and evaporated. The residue was then dissolved in dichloromethane (1 mL) and washed with 1 N NaOH solution (1 mL). The organic phase was recovered and evaporated then treated with 25% trifluoroacetic acid in dichloromethane (1 mL) for 1 h at room temperature and evaporated. The residue was purified using LC/MS to afford (<math>R$)-3-[{N-(2-amino-5-trifluoromethylbenzoyl)glycyl)amino]-1-(2,4-dimethoxypyrimidin-5-ylmethyl)pyrrolidine (Compound No. 2175) (18.6 mg, 78%): The purity was determined by RPLC/MS (98%); ESI/MS m/e 483 (M*+H, C21H25F3N3C4).

Examples 795-803.

The compounds of this invention were synthesized pursuant to methods of Example 794 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 14.

5

15

20

Table 14

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 795	2165	C18 H21 F3 N6 O2	411	2.0	27
Example 796	2166	C18 H20 F3 N5 O2 S	428	9.9	66
Example 797	2167	C24 H25 F3 N6 O2	487	15.1	73
Example 798	2169	C24 H29 F3 N4 O2	463	1.2	24
Example 799	2170	C26 H25 C1 F3 N5 O2	520	6.0	40
Example 800	2171	C19 H23 F3 N6 O2	425	16.8	88
Example 801	2174	C23 H24 Br F3 N4 O2 S2	591	5.3	53
Example 802	2178	C25 H28 F3 N5 O4	518	5.4	62
Example 803	2179	C25 H28 F3 N5 O3	502	6.3	60

Example 804: Preparation of (R)-1-(2-Amino-4,5-

10 methylenedioxybenzyl)-3-[{N-(2-amino-5-

trifluoromethylbenzoyl)glycyl}amino]pyrrolidine (Compound No. 2127).

mixture of $(R)-3-[\{N-(2-a\min o-5-trifluoromethylbenzoyl)glycyl\}amino]-1-(4,5-methylenedioxy-2-nitrobenzyl)pyrrolidine (30.5 mg), 10% Pd-activated carbone (6 mg), and methanol (3 mL) was stirred under a hydrogen atmosphere at room temperature for 10 h. The Pd catalyst was filtered off through Celite, and the filtrate was concentrated. Solid phase extraction (Bond ElutTM SI, 20% methanol/AcOEt) afforded <math>(R)-1-(2-a\min o-4,5-methylenedioxybenzyl)-3-[\{N-(2-a\min o-5-trifluoromethylbenzoyl)glycyl\}amino]pyrrolidine (Compound No. 2127) (21.9 mg, 76%): The purity was determined by RPLC/MS (95%); ESI/MS m/e 480.1 (M⁺+H, <math>C_{22}H_{24}F_3N_5O_4$).

Examples 805 and 806.

The compounds of this invention were synthesized pursuant to methods of 25 Example 804 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 15.

Table 15

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 805	2128	C22 H26 F3 N5 O3	466.0	8.6	30
Example 806	2129	C22 H26 F3 N5 O2	450.1	13.1	37

Example 807: Preparation of $(R)-1-(3-A\min o-4-chlorobenzy1)-3-[(N-(2-a\min o-5-trifluoromethylbenzoy1)glycyl)amino]pyrrolidine (Compound No. 2132).$

mixture of $(R)-3-[\{N-(2-\min o-5-\max o-5-\mix_o-5-\mix$

15

20

25

10

5

Example 808: Preparation of $(R)-1-(2-A\min -4,5-methylenedioxybenzyl)-3-[{N-(2-(tert-butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl}amino]pyrrolidine.$

To a mixture of $(R)-3-[\{N-(2-(tert-butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl\}$ amino]pyrrolidine (0.150 mmol), 4,5-methylenedioxy-2-nitrobenzaldehyde <math>(0.45 mmol), methanol (4.5 mL), and acetic acid (0.048 mL) was added NaBH₃CN (0.75 mmol) in methanol (1.50 mL). The reaction mixture was stirred at 50 °C overnight. The mixture was cooled to room temperature, loaded onto VarianTM SCX column, and washed with CH₃OH. Product was eluted off using 2 N NH₃ in CH₃OH and concentrated to afford $(R)-3-[\{N-(2-(tert-butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl\}amino]-1- <math>(4,5-methylenedioxy-2-nitrobenzyl)$ pyrrolidine.

A mixture of $(R)-3-[\{N-(2-(tert-butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl\}amino]-1-(4,5-methylenedioxy-2-$

30 nitrobenzyl)pyrrolidine prepared above, 10% Pd-activated carbone (22 mg), and methanol (3.0 mL) was stirred under a hydrogen atmosphere at room temperature overnight. The Pd catalyst was filtered off, and the filtrate was concentrated to afford $(R)-1-(2-\text{amino}-4,5-\text{methylenedioxybenzyl})-3-[\{N-(2-(\text{tert-butoxycarbonylamino})-5-\text{trifluoromethylbenzoyl})glycyl\}amino]pyrrolidine$

(87.1 mg, quant.): Any remarkable by-products were not detected in TLC.

 $(R)-1-(3-A\min o-4-methoxybenzyl)-3-[\{N-(2-(tert-butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl\}amino]pyrrolidine and <math display="block">(R)-1-(3-a\min o-4-methylbenzyl)-3-[\{N-(2-(tert-butoxycarbonylamino)-5-methylbenzyl)-3-[\{N-(2-(tert-butoxycarbonylamino)-5-methylbenzyl)-3-[(N-(2-(tert-butoxycarbonylamino)-5-methylbenzyl]-3-[(N-(2-(tert-butoxycarbonylamino)-5-methylbenzylamino)-3-[(N-(2-(tert-butoxycarbonylamino)-5-methylbenzylamino)-3-[(N-(2-(tert-butoxycarbonylamino)-5-methylbenzylamino)-3-[(N-(2-(tert-butoxycarbonylamino)-5-methylbenzylamino)-3-[(N-(2-(tert-butoxycarbonylamino)-3-[(N-(2-(tert-b$

5

10

15

20

25

30

35

trifluoromethylbenzoyl)glycyl}amino]pyrrolidine were also synthesized pursuant to methods of Example 808 using the corresponding reactant respectively.

 $(R)-1-(3-A\min o-4-methoxybenzyl)-3-[\{N-(2-(tert-butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl)amino]pyrrolidine: 101 mg, quant.; Any remarkable by-products were not detected in TLC.$

 $(R)-1-(3-a\min o-4-methylbenzyl)-3-[\{N-(2-(tert-butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl\}amino]pyrrolidine: 97.2 mg, quant.; Any remarkable by-products were not detected in TLC.$

Example 809: Preparation of (R)-1-(3-Amino-4-chlorobenzyl)-3-[{N-(2-(tert-butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl}amino]pyrrolidine.

To a mixture of $(R)-3-[\{N-(2-(tert-butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl\}amino]pyrrolidine (0.150 mmol), 4-chloro-3-nitrobenzaldehyde (0.45 mmol), methanol (4.5 mL), and acetic acid (0.048 mL) was added NaBH3CN (0.75 mmol) in methanol (1.50 mL). The reaction mixture was stirred at 50 °C overnight. The mixture was cooled to room temperature, loaded onto VarianTM SCX column, and washed with CH3OH. Product was eluted off using 2 N NH3 in CH3OH and concentrated to afford <math>(R)-3-[\{N-(2-(tert-butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl\}amino]-1-(4-chloro-3-nitrobenzyl)pyrrolidine.$

A mixture of $(R)-3-[\{N-(2-(tert-butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl\}amino]-1-(4-chloro-3-nitrobenzyl)pyrrolidine prepared above, 10% Pd-activated carbone (22 mg), ethyl acetate (2.7 mL) and methanol (0.3 mL) was stirred under a hydrogen atmosphere at room temperature for 15 h. The Pd catalyst was filtered off, and the filtrate was concentrated to afford <math>(R)-1-(3-a\min o-4-chlorobenzyl)-3-[\{N-(2-(tert-butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl\}amino]pyrrolidine (89.7 mg, quant.): Any remarkable by-products were not detected in TLC.$

Example 810: Preparation of $(R)-1-(3-A\min o-4-hydroxybenzy1)3-[\{N-(2-A\min o-5-trifluoromethylbenzoy1)glycyl\}amino]pyrrolidine (Compound No. 2187).$

A solution of $(R)-1-(3-amino-4-hydroxybenzyl)-3-[{N-(2-(tert-1))}]$

butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl}amino]pyrrolidine (20 mg), prepared pursuant to methods of Example 808, in 4 N HCl in dioxane (2.0 mL) was stirred at room temperature overnight. After the solution was concentrated, the residue was dissolved in methanol, loaded onto Varian SCX column, washed with CH₃OH, and eluted off using 2 N NH₃ in CH₃OH. Concentration and preparative TLC (SiO₂, AcOEt/MeOH = 4:1) afforded (R)-1-(3-amino-4-hydroxybenzyl)3-[{N-(2-Amino-5-trifluoromethylbenzoyl)glycyl}amino]pyrrolidine (Compound No. 2187) (9.6 mg, 59%): The purity was determined by RPLC/MS (86%); ESI/MS m/e 452.3 (M⁺+H, C₂₁H₂₄F₃N₅O₃).

Example 811: Preparation of (R)-3-[{N-(2-Amino-5-trifluoromethylbenzoyl)glycyl}amino]-1-{4-chloro-3-(dimethylamino)benzyl}pyrrolidine (Compound No. 2133).

 $(R)-1-(3-amino-4-chlorobenzyl)-3-[{N-(2-(text-$

butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl)amino]pyrrolidine (44.9 mg), methanol (0.95 mL), acetic acid (0.05 mL), and 37% aqueous HCHO solution (0.15 mL) was added NaBH $_3$ CN (38 mg). The reaction mixture was stirred at 50 $^{\circ}$ C overnight. The mixture was cooled to room temperature and evaporated. To the residue was added 2 N aqueous NaOH solution and ethyl acetate, the organic layer was separated, and the aqueous layer was extracted with ethyl acetate. The combined organic layers were dried and concentrated, and the residue was loaded onto $Varian^{TM}$ SCX column and washed with CH_3OH . Product was eluted off using 2 N NH $_3$ in CH $_5$ OH and concentrated. The residue was dissolved in 50% conc. HCl/dioxane and the solution was stirred at room temperature for 1 h. The reaction mixture was adjusted to pH 10 with 5 N aqueous NaOH solution and extracted with ethyl acetate (2 times). The combined extracts were dried over Na2SO4, filtered, and evaporated. Preparative TLC (SiO_2 , 20% MeOH/AcOEt) gave (R)- $3-[\{N-(2-amino-5-trifluoromethylbenzoyl)glycyl\}amino]-1-\{4-chloro-3-trifluoromethylbenzoyl)glycyl}amino]-1-[4-chloro-3-trifluoromethylbenzoyl)glycyl}amino]-1-[4-chloro-3-trifluoromethylbenzoyl)glycyl]amino]-1-[4-chloro-3-trifluoromethylbenzoyl)glycyl]amino]-1-[4-chloro-3-trifluoromethylbenzoyl)glycyl]amino]-1-[4-chloro-3-trifluoromethylbenzoyl)glycyl]amino]-1-[4-chloro-3-trifluoromethylbenzoyl)glycyl]amino]-1-[4-chloro-3-trifluoromethylbenzoyl)glycyl]amino]-1-[4-chloro-3-trifluoromethylbenzoyl)glycyl]amino]-1-[4-chloro-3-trifluoromethylbenzoyl)glycyl]amino]-1-[4-chloro-3-trifluoromethylbenzoyl)glycyl]amino]-1-[4-chloro-3-trifluoromethylbenzoyl)glycyl]amino]-1-[4-chloro-3-trifluoromethylbenzoyl)glycyl]amino]-1-[4-chloro-3-trifluoromethylbenzoyl)glycyl]amino]-1-[4-chloro-3-trifluoromethylbenzoyl)glycyl]amino[4-trifluoromethylbenzoyl]amino[4-trifluoromethyl$ (dimethylamino)benzyl}pyrrolidine (Compound No. 2133). (10.9 mg, 28%): The purity was determined by RPLC/MS (95%); ESI/MS m/e 498.3 (M^{\dagger} +H, $C_{23}H_{27}C1F_3N_5O_2$).

Examples 812-814.

a mixture of

5

10

15

20

25

30

The compounds of this invention were synthesized pursuant to methods of 35 Example 811 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 16.

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 812	2134	$C_{24}H_{28}F_3N_5O_4$	508.4	19.0	50
Example 813	2135	$C_{24}H_{30}F_3N_5O_3$	494.4	21.8	50
Example 814	2136	C ₂₄ H ₃₀ F ₃ N ₅ O ₂	478.4	29.2	69

Example 815: Preparation of (R)-3-[{N-(2-Amino-5-trifluoromethylbenzoyl)glycyl}amino]-1-(3-methylamino-4-hydroxybenzyl)pyrrolidine (Compound No. 2158).

To a mixture of $(R)-1-(3-\text{amino}-4-\text{hydroxybenzyl})-3-[\{N-(2-(\text{tert-butoxycarbonylamino})-5-\text{trifluoromethylbenzoyl})\,\text{glycyl}\}\,\text{amino}]\,\text{pyrrolidine}$ (27.3 mg, 0.049 mmol), 37% HCHO solution (4.0 mg, 0.049 mmol), acetic acid (0.10 mL) and methanol (1.3 mL) was added NaBH₃CN (9.2 mg) in methanol (0.2 mL). The reaction mixture was stirred at 60 °C overnight. The mixture was cooled to room temperature, loaded onto Varian SCX column, and washed with CH₃OH (5 mL x 2). Product was eluted off using 2 N NH₃ in CH₃OH (8 mL) and concentrated.

10

15

20

25

30

The resulting material was dissolved in methanol (1 mL) and 4 N HCl in dioxane (1.0 mL) was added. The solution was stirred at room temperature for 3 h. After the solution was concentrated, the residue was dissolved in methanol (1 mL), loaded onto VarianTM SCX column, washed with CH₃OH (5 mL x 2), and eluted off using 2 N NH₃ in CH₃OH (8 mL). Concentration and preparative TLC (SiO₂) afforded (R)-3-[{N-(2-amino-5-trifluoromethylbenzoyl)glycyl}amino]-1-(3-methylamino-4-hydroxybenzyl)pyrrolidine (Compound No. **2158**) (4.3 mg, 19%): The purity was determined by RPLC/MS (71%); ESI/MS m/e 480.3 (M^{*}+H, C₂₂H₂₆F₃N₅O₃).

Example 816: Preparation of $(R)-1-(3-Acetylamino-4-methoxybenzyl)-3-[{N-(2-amino-5-trifluoromethylbenzoyl)glycyl}amino]pyrrolidine (Compound No. 2152).$

To a solution of $(R)-1-(3-\text{amino}-4-\text{methoxybenzyl})-3-[\{N-(2-(\text{tert-butoxycarbonylamino})-5-\text{trifluoromethylbenzoyl})\,\text{glycyl}\}\,\text{amino}]\,\text{pyrrolidine}$ (50.5 mg) in pyridine (1 mL) was added acetic anhydride (1 mL). The reaction mixture was stirred at room temperature overnight and methanol was added. The mixture was evaporated, and 1 N NaOH solution was added. The mixture was extracted with ethyl acetate and the organic layer was concentrated. Preparative TLC gave $(R)-1-(3-\text{acetylamino}-4-\text{methoxybenzyl})-3-[\{N-(2-(\text{tert-butoxycarbonylamino})-5-\text{trifluoromethylbenzoyl})\,\text{glycyl}\,\text{amino}]\,\text{pyrrolidine}.$

The resulting $(R)-1-(3-acetylamino-4-methoxybenzyl)-3-[{N-(2-(tert-1))}-3-[{N-(2-(te$

butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl}amino]pyrrolidine was dissolved in 50% 6 N hydrochloric acid in dioxane and the solution was stirred at room temperature for 2 h. The mixture was adjusted to pH 10 with 5 M NaOH solution, and extracted with ethyl acetate. The organic layer was evaporated and preparative TLC (SiO_2 , AcOEt/MeOH = 4:1) afforded (R)-1-(3-acetylamino-4-methoxybenzyl)-3-[{N-(2-amino-5-trifluoromethylbenzoyl)glycyl}amino]pyrrolidine (Compound No. 2152) (3.7 mg,

8%): The purity was determined by RPLC/MS (100%); ESI/MS m/e 508.3 ($M^{\dagger}+H$,

 $C_{24}H_{28}F_3N_5O_4)$.

10

5

Examples 817-819.

The compounds of this invention were synthesized pursuant to methods of Example 816 using the corresponding reactants respectively. The ESI/MS data and yields are summarized in Table 17.

15

20

25

30

Table 17

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 817	2150	C23H25C1F3N5O3	512.3	3.8	9
Example 818	2151	C24H26F3N5O5	522.2	3.1	8
Example 819	2153	C24H28F3N5O3	492.3	4.3	10

Example 820: Preparation of (R)-3-[{N-(2-Amino-5-trifluoromethylbenzoyl)glycyl}amino]-1-(benz[d]oxazol-5-yl)pyrrolidine (Compound No. 2189).

A solution of $(R)-1-(3-\text{amino}-4-\text{hydroxybenzyl})-3-[\{N-(2-(\text{tert-butoxycarbonylamino})-5-\text{trifluoromethylbenzoyl})\,\text{glycyl}\}\,\text{amino}]\,\text{pyrrolidine}$ (20 mg), prepared pursuant to methods of Example 808, in THF (2 mL) was treated with triethyl orthoformate (0.020 mL, 3.3 eq) and pyridinium p-toluenesulphonate (1.2 mg, 0.4 eq). The reaction mixture was stirred overnight under reflux. After cooling to room temperature, the mixture was concentrated. The residue was dissolved in AcOEt, loaded onto BondElutTM Si column, eluted off using ethyl acetate/methanol = 4/1, and concentrated.

The resulting material was dissolved into AcOEt (1.5 mL), and 4 N HCl in dioxane (0.5 mL) was added. The solution was stirred at room temperature overnight, adjusted to pH 10 with 5 M NaOH aqueous solution, and extracted with AcOEt. The extract was concentrated and purified by PTLC $(SiO_2, AcOEt/MeOH =$

4:1) to afford (R)-3-[{N-(2-amino-5-trifluoromethylbenzoyl)glycyl}amino]-1-(benz[d]oxazol-5-yl)pyrrolidine (Compound No. **2189**) (0.5 mg, 3%): The purity was determined by RPLC/MS (97%); ESI/MS m/c 462.3 (M $^+$ +H, $C_{22}H_{22}F_3N_5O_3$).

Example 821: Preparation of $(R)-3-[\{N-(2-A\min o-5-trifluoromethylbenzoyl)glycyl\}amino]-1-(benzo[c]thiadiazol-5-yl)pyrrolidine (Compound No. 2183).$

5

10

15

20

25

30

35

To a mixture of 5-(hydroxymethyl) benzo[c]thiadiazole (8.3 mg, 0.050 mmol), (piperidinomethyl) polystyrene (86 mg), and chloroform (1 mL) was added methanesulfonyl chloride (0.0042 mL) and the mixture was stirred at room temperature for 1.5 h. Acetonitrile (1 mL) and (R)-3-[{N-(2-(tert-butoxycarbonylamino)-5-trifluoromethylbenzoyl)glycyl)amino]pyrrolidine (0.060 mmol) was added and the reaction mixture was stirred at 50 °C for 3 h. After cooling to room temperature, phenyl isocyanate (30 mg) was added, and the mixture was stirred at room temperature for 1 h, loaded onto Varian SCX column and washed with CH₃OH (5 mL) and CHCl₃ (5 mL). Product was eluted using 2 N NH₃ in CH₃OH (3 mL) and concentrated.

The resulting material was dissolved into dichloromethane (1 mL), and 1 M chlorotrimethylsilane and 1 M phenol in dichloromethane (1 mL) was added. The solution was stirred at room temperature for 5 h, loaded onto Varian SCX column and washed with CH3OH and dichloromethane. Product was eluted using 2 N NH3 in CH3OH and concentrated. Preparative TLC (SiO2, AcOEt/MeOH = 3:1) afforded (R)-3-[{N-(2-amino-5-trifluoromethylbenzoyl)glycyl}amino]-1- (benzo[c]thiadiazol-5-yl)pyrrolidine (Compound No. 2183) (11.5 mg, 48%): The purity was determined by RPLC/MS (86%); ESI/MS m/e 479.2 (M 4 +H, C21H21F3N6O2S).

Reference Example 6: Preparation of 4-[{N-(1-(9-fuluorenylmethoxycarbonyl)pyrrolidin-3-yl)carbamoylmethyl}aminomethyl]-3-methoxyphenyloxymethyl-polystyrene.

To a solution of (R)-1-(9-fuluorenylmethoxycarbonyl)-3-glycylamino-pyrrolidine hydrochloride (4.38 g, 10 mmol) in DMF (65 mL) were added acetic acid (0.3 mL), sodium triacetoxyborohydride (1.92 g), and 4-formyl-3-(methoxyphenyloxymethyl)-polystyrene (1 mmol/g, 200 g). The mixture was shaken for 2 h and filtered. The resin was washed with MeOH, DMF, CH_2Cl_2 , and methanol, and dried to afford the desired material (2.73 g).

Examples 822-912: General Procedure for Solid-Phase Synthesis of 3-Aminopyrrolidines.

To a mixture of the corresponding acid (1.6 mmol), HBTU (1.6 mmol), and DMF (6 mL) was added diisopropylethylamine (3.6 mmol), and the mixture was shaken for 2 min. $4-[\{N-(1-(9-\text{fuluorenylmethoxycarbonyl})\text{pyrrolidin-3-yl})\text{ carbamoylmethyl} aminomethyl]-3-methoxyphenyloxymethyl-polystyrene (400 mg, 0.4 mmol) was added and the mixture was shaken for 1 h and filtered. The resin was rinsed with DMF and <math>\text{CH}_2\text{Cl}_2$, and dried.

A mixture of the resulting resin, piperidine (3.2 mL), and DMF (12.8 mL) was shaken for 10 min and filtered. The resin was washed with DMF and CH_2Cl_2 , and dried.

To the dry resin (0.05 mmol) was added a mixture of NaBH(OAc) $_3$ (0.25 mmol), AcOH (0.025 mL) and DMF (1 mL). The corresponding aldehyde (2.5 mmol) was added, and the mixture was shaken for 2 h, then filtered and washed with CH $_3$ OH, 10% diisopropylethylamine in DMF, DMF, CH $_2$ Cl $_2$, and CH $_3$ OH. A mixture of the resin, water (0.050 mL), and trifluoroacetic acid (0.95 mL) was shaken for 1 h and filtered. The resin was washed with CH $_2$ Cl $_2$ and CH $_3$ OH. The filtrate and washings were combined and concentrated. The crude material was loaded onto Varian SCX column and washed with CH $_3$ OH (15 mL). Product was eluted using 2 N NH $_3$ in CH $_3$ OH (5 mL) and concentrated. Preparative TLC or HPLC, if needed, afforded the desired material. The ESI/MS data and yields are summarized in Table 18.

20

15

5

10

Table 18

	Compound No.	Molecular	Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 822	1805	C21 H21 Br	F3 N3 O2 S	516	13.3	76
Example 823	1806	C22 H24 F3	N3 03 S	468	12.8	81
Example 824	1807	C22 H24 F3	N3 O4 S	484	13.7	83
Example 825	1808	C22 H24 F3	N3 04 S	484	14.9	91
Example 826	1809	C21 H22 F3	N3 03 S	454	12.9	84
Example 827	1810	C22 H22 F3	N3 O4 S	482	12.9	79
Example 828	1811	C24 H26 F3	N3 O2 S	478	12.9	79
Example 829	1812	C22 H24 F3	N3 O2 S2	484	5.3	32
Example 830	1813	C23 H26 F3	N3 O2 S	466	12.8	81
Example 831	1814	C23 H24 F3	N3 O3 S	480	9.7	59
Example 832	1815	C23 H26 F3	N3 02 S	466	12.7	80
Example 833	1816	C24 H28 F3	N3 O2 S	480	14.4	88
Example 834	1817	C25 H30 F3	N3 O2 S	494	14.1	84
Example 835	1818	C21 H22 Br	F2 N3 O3	482	13.4	82
Example 836	1819	C22 H25 F2	N3 O4	434	11.7	79

Example 837	1820	C22 H25 F2 N3 O5	450	11.8	77
Example 838	1821	C22 H25 F2 N3 O5	450	13.3	87
Example 839	1822	C21 H23 F2 N3 O4	420	11.9	83
Example 840	1823	C22 H23 F2 N3 O5	448	11.9	78
Example 841	1824	C24 H27 F2 N3 O3	444	9.1	60
Example 842	1825	C22 H25 F2 N3 O3 S	450	11.3	74
Example 843	1826	C23 H27 F2 N3 O3	432	10.8	74
Example 844	1827	C23 H25 F2 N3 O4	446	12.7	84
Example 845	1828	C23 H27 F2 N3 O3	432	11.7	80
Example 846	1829	C24 H29 F2 N3 O3	446	14.3	94
Example 847	1830	C24 H29 F2 N3 O3	446	10.0	66
Example 848	1831	C22 H28 Br N3 O3	462	4.8	31
~	1832	C23 H31 N3 O4	414	10.4	74
Example 849 Example 850	1833	C23 H31 N3 O4	430	12.1	83
Example 850 Example 851	1834	C23 H31 N3 O5	430	12.0	82
Example 851 Example 852	1835	C22 H29 N3 O4	400	7.9	58
Example 853	1836	C23 H29 N3 O5	428	11.1	76
Example 854	1837	C25 H33 N3 O3	424	13.3	92
Example 855	1838	C23 H31 N3 O3 S	430	8.7	60
Example 856	1839	C24 H33 N3 O3	412	11.3	81
Example 857	1840	C24 H31 N3 O4	426	12.9	89
Example 858	1841	C24 H33 N3 O3	413	12.8	91
Example 859	1842	C25 H35 N3 O3	426	8.7	60
Example 860	1843	C25 H35 N3 O3	426	12.2	84
Example 861	1844	C26 H37 N3 O3	440	11.3	76
Example 862	1845	C31 H37 Br N4 O2	577	6.4	30
Example 863		C23 H28 F3 N3 O2 S	480	12.8	81
Example 864		C25 H31 F2 N3 O3	460	12.2	78
Example 865		C27 H29 N3 O4	460	6.1	39
Example 866	1849	C29 H31 N3 O2	454	15.1	98
Example 867		C28 H31 N3 O2	442	12.7	85
Example 868	1851	C28 H31 N3 O2	442	14.3	95
Example 869	1852	C28 H29 N3 O3	456	3.4	22
Example 870	1853	C27 H29 N3 O6 S	524	15.4	87
Example 871	1854	C29 H31 N3 O4 S	518	15.8	90
Example 872	1855	C28 H31 N3 O4 S	506	17.0	99
Example 873	1856	C28 H31 N3 O4 S	506	3.0	17
Example 874	1857	C28 H29 N3 O5 S	520	10.0	57
Example 875	1858	C20 H22 Br2 N4 O2	511	9.3*	37
Example 876	1859	C21 H25 Br N4 O3	461	6.7*	29
L	<u> </u>	<u> </u>		L	L

_			· · · · · · · · · · · · · · · · · · ·		
Example 877	<u> </u>	C21 H25 Br N4 O4	477	9.5*	40
Example 878	1861	C21 H25 Br N4 O4	477	10.0*	42
Example 879	1862	C20 H23 Br N4 O3	447	7.8*	34
Example 880	1863	C21 H23 Br N4 O4	475	3.4*	14
Example 881	1864	C21 H25 Br N4 O2 S	477	3.9*	16
Example 882	1865	C22 H25 Br N4 O3	473	6.4*	27
Example 883	1866	C23 H29 Br N4 O2	472	7.0*	29
Example 884	1867	C23 H29 Br N4 O2	473	7.6*	32
Example 885	1868	C24 H31 Br N4 O2	487	9.1*	37
Example 886	1869	C20 H22 Br I N4 O2	557	8.9*	33
Example 887	1870	C21 H25 I N4 O3	509	9.2*	37
Example 888	1871	C21 H25 I N4 O4	525	6.3*	25
Example 889	1872	C21 H25 I N4 O4	525	5.9*	23
Example 890	1873	C20 H23 I N4 O3	495	7.7*	31
Example 891	1874	C21 H23 I N4 O4	523	8.2*	32
Example 892	1875	C23 H27 I N4 O2	519	6.7*	26
Example 893	1876	C21 H25 I N4 O2	525	4.3*	17
Example 894	1877	C22 H27 I N4 O2	507	7.9*	32
Example 895	1878	C22 H25 I N4 O3	521	8.4*	33
Example 896	1879	C23 H29 I N4 O2	521	8.2*	32
Example 897	1880	C23 H29 I N4 O2	521	8.1*	32
Example 898	1881	C24 H31 I N4 O2	535	8.6*	33
Example 899	1882	C20 H22 Br N5 O4	476	5.3*	22
Example 900	1883	C21 H25 N5 O5	428	5.7*	26
Example 901	1884	C21 H25 N5 O6	444	8.2*	36
Example 902	1885	C21 H25 N5 O6	444	5.0*	22
Example 90:	1886	C20 H23 N5 O5	414	8.7*	40
Example 90	1887	C21 H23 N5 O6	442	7.8*	34
Example 90	1888	C23 H27 N5 O4	438	5.6*	25
Example 90	6 1889	C21 H25 N5 O4 S	444	13.2*	58
Example 90	7 1890	C22 H27 N5 O4	426	11.3*	51
Example 90	8 1891	C22 H25 N5 O5	440	7.4*	33
Example 90	9 1892	C22 H27 N5 O4	426	5.5*	25
Example 91	0 1893	C23 H29 N5 O4	440	5.7*	25
Example 91	1 1894	C23 H29 N5 O4	440	9.4*	41
Example 91	2 1895	C24 H31 N5 O4	455	8.5*	37
			<u> </u>	1	1

^{*}Yield of TFA salt.

Reference Example 7: Preparation of 2-Carbamoyl-1-(4-

chlorobenzyl)pyrrolidine.

A solution of dl-prolinamide hydrochloride (2.5 g, 21.8 mmol) in CH₃CN (35 mL) was treated with Et₃N (7.45 mL) and 4-chlorobenzyl chloride (3.88 g, 24.1 mmol). The reaction mixture was stirred at 70 °C for 4 h and then at 25 °C for 16 h. The resulting mixture was diluted with CH_2Cl_2 (20 mL) and was washed with water(3 x 30 mL). The organic phase was dried (MgSO₄) and concentrated. Chromatography (SiO₂, 1% $CH_3OH-CH_2Cl_2$) afforded 2-carbamoyl-1-(4-chlorobenzyl)pyrrolidine (5.21 g, 81%).

10 Reference Example 8: Preparation of 2-(Aminomethyl)-1-(4-chlorobenzyl)pyrrolidine.

2-carbamoyl-1-(4-chlorobenzyl)pyrrolidine was dissolved in 1M BH₃-THF (9.4 mL) and heated to 70 °C. After 16 h and 25 h, additional 0.5 equiv. of 1M BH₃-THF were added. After 40 h, 1 N aqueous HCl solution (14 mL) was added and the reaction was heated to reflux for 3 h, 3 N aqueous HCl solution (6 mL) was added and the reaction was heated for an additional 3 h. The reaction mixture was cooled to 25 °C, basicified with 4 N aqueous NaOH solution and extracted with CH_2Cl_2 (4 x 15 mL). Chromatography (SiO₂, 8:1:1 $^4\text{PrOH-H}_2\text{O-NH}_4\text{OH}$) afforded 2-(aminomethyl)-1-(4-chlorobenzyl)pyrrolidine (1.21 g, 86%).

20

25

15

5

Optically active (S)-2-(aminomethyl)-1-(4-chlorobenzyl) pyrrolidine and (R)-2-(aminomethyl)-1-(4-chlorobenzyl) pyrrolidine were also prepared pursuant to the above method using the corresponding reactant respectively.

(S)-2-(aminomethyl)-1-(4-chlorobenzyl)pyrrolidine: ¹H NMR (CDCl₃, 400 MHz) δ 1.40-1.80 (m, 5 H), 1.80-1.95 (m, 1 H), 2.12-2.21 (m, 1 H), 2.48-2.65 (m, 1 H), 2.66-2.78 (m, 2 H), 2.85-2.95 (m, 1 H), 3.26 (d, J = 13.2 Hz, 1 H), 3.93 (d, J = 13.2 Hz, 1 H), 7.20-7.40 (m, 4 H).

(R)-2-(aminomethyl)-1-(4-chlorobenzyl)pyrrolidine showed the same ^{1}H NMR with that of (S)-isomer.

30

35

Example 913: Preparation of 2-{(N-benzoylleucyl)aminomethyl}-1-(4-chlorobenzyl)pyrrolidine (Compound No. 344).

A solution of 2-(aminomethyl)-1-(4-chlorobenzyl)pyrrolidine (22.5 mg, 0.10 mmol) and dl-benzoylleucine (0.12 mmol) in CHCl₃ (1 mL) was treated with EDCI (23 mg), HOBt (16.2 mg) and Et₃N (15.2 μ L), and stirred at 25 °C for 16 h. The reaction mixture was diluted with CH₂Cl₂ (0.5 mL), washed with 2 N aqueous NaOH solution (2 x 0.75 mL), dried by filtration through a PTFE membrane and concentrated to afford 2-{(N-benzoylleucyl)aminomethyl}-1-(4-

chlorobenzyl)pyrrolidine (compound No. **344**) (74 mg, quant) : The purity was determined by RPLC/MS (85%); ESI/MS m/e 442 (M^t+H , $C_{25}H_{32}ClN_3O_2$).

Examples 914-935.

The compounds of this invention were synthesized pursuant to methods of Example 913 using the corresponding reactant respectively. Chromatography, if needed, (HPLC- C_{18} , $CH_3CN/H_2O/TFA$) afforded the desired material as the TFA salt. The ESI/MS data and yields are summarized in Table 19 and compound No. **339** and **340** showed the following 1H NMR spectra respectively.

10

5

Table 19

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 914	330	C21 H24 Cl N3 O2	386	75*	quant
Example 915	331	C22 H26 Cl N3 O2	400	44*	70
Example 916	332	C24 H30 Cl N3 O5	476	57	quant
Example 917	333	C20 H23 Cl N4 O2	387	40	quant
Example 918	334	C22 H26 Cl N3 O2	400	68	quant
Example 919	335	C21 H23 Cl N4 O4	431	73	quant
Example 920	336	C22 H23 C1 F3 N3 O2	454	75	quant
Example 921	337	C22 H26 Cl N3 O2	400	68	quant
Example 922	338	C22 H26 Cl N3 O2	400	70	quant
Example 923	341	C22 H26 Cl N3 O2	400	80*	quant
Example 924	342	C22 H26 Cl N3 O2	400	68	quant
Example 925	343	C24 H30 Cl N3 O2	428	63	quant
Example 926	345	C23 H27 Cl N2 O2	399	68*	quant
Example 927	346	C23 H26 Cl F N2 O3	433	51	quant
Example 928	347	C24 H29 Cl N2 O2	413	47	quant
Example 929	348	C23 H27 C1 N2 O2	399	26	quant
Example 930	349	C21 H25 Cl N2 O3 S	421	42	quant
Example 931	350	C26 H33 Cl N2 O3	457	12.4	54
Example 932	351	C22 H26 Cl N3 O3	416	34	81
Example 933	352	C22 H25 C12 N3 O3	450	51	quant

^{*}Yield of TFA salt.

15 Example 934. Compound No. 339: 82%; 1 H NMR (CDCl₃) δ 1.52-1.75 (m, 4 H), 1.84-1.95 (m, 1 H), 2.10-2.20 (m, 1 H), 2.67-2.78 (m, 1 H), 2.80-2.90 (m, 1 H), 3.10-3.20 (m, 1 H), 3.25 (d, J = 13.1 Hz, 1 H), 3.50-3.60 (m, 1 H), 3.89 (d,

J = 13.1 Hz, 1 H), 4.28-4.20 (m, 2 H), 7.00-7.05 (m, 1 H), 7.12-7.29 (m, 4 H), 7.51 (t, J = 7.8 Hz, 1 H), 7.74 (d, J = 7.8 Hz, 1 H), 7.99 (d, J = 7.8 Hz, 1 H), 8.10-8.27 (m, 2 H).

Example 935. Compound No. **340**: 68%; 1 H NMR (CDCl₃) δ 1.55–1.73 (m, 4 H), 1.86–1.97 (m, 1 H), 2.12–2.21 (m, 1 H), 2.67–2.76 (m, 1 H), 2.86–2.93 (m, 1 H), 3.14–3.21 (m, 1 H), 3.27 (d, J = 13.1 Hz, 1 H), 3.52–3.59 (m, 1 H), 3.89 (d, J = 13.1 Hz, 1 H), 4.09–4.21 (m, 2 H), 7.00–7.07 (m, 1 H), 7.12–7.30 (m, 4 H), 7.50 (t, J = 7.8 Hz, 1 H), 7.73 (d, J = 7.8 Hz, 1 H), 8.01 (d, J = 7.8 Hz, 1 H), 8.10–8.25 (m, 2 H).

10

15

20

25

Reference Example 9: Preparation of 3-(Aminomethyl)-1-(4-chlorobenzyl)pyrrolidine.

To a mixture of 4-carboxy-1-(4-chlorobenzyl)pyrrolidin-2-one (5.05 g, 20 mmol), EDCI (2.85 g, 22 mmol), HOBt (2.97 g, 22 mmol) and dichloromethane (100 mL) was added 0.5 M ammonia in dioxane (60 mL, 30 mmol). The reaction mixture was stirred at room temperature for 15 h and washed with 2N HCl (3 times) and 2 N NaOH aqueous solution (100 mL x 4). The organic layer was dried over anhydrous magnesium sulfate, filtered, and concentrated to afford 3-carbamoyl-1-(4-chlorobenzyl)pyrrolidin-2-one (1.49 g) as a colorless solid.

To a solution of 3-carbamoyl-1-(4-chlorobenzyl)pyrrolidin-2-one (1.45 g) in THF (15 mL) was added 1.0 N BH $_3$ in THF (25 mL). The reaction mixture was stirred at 65 °C for 15 h. After cooling to room temperature, the solvent was removed under reduced pressure. Water (30 mL) and conc. HCl (10 mL) were added and the mixture was stirred at 100 °C for 2 h and room temperature for 1 h. 2 N NaOH aqueous solution (100 mL) was added and the mixture was extracted with AcOEt (50 mL x 3). The combined organic layers were dried over K_2CO_3 , filtered and concentrated. Column chromatography (SiO $_2$, 15% CH $_3OH-5\%$ Et $_3N$ in CH $_2Cl_2$) afforded 3-(aminomethyl)-1-(4-chlorobenzyl)pyrrolidine (860 mg, 19%) as a colorless oil.

30

35

Reference Example 10: Preparation of 1-(4-Chlorobenzyl)-3-{(glycylamino)methyl}pyrrolidine.

A mixture of 3-(aminomethyl)-1-(4-chlorobenzyl)pyrrolidine (860 mg, 3.8 mmol), Et₃N (5.7 mmol), N-tert-butoxycarbonylglycine (704 mg), EDCI (594 mg), HOBt (673 mg), and dichloromethane (20 mL) was stirred at room temperature for 15 h. Dichloromethane (50 mL) was added and the solution was washed with 2 N NaOH solution (50 mL x 2), dried over anhydrous sodium sulfate, filtered, and concentrated to afford $3-[\{N-(tert-butoxycarbonyl)glycyl\}aminomethyl]-1-(4-mixed)$

chlorobenzyl)pyrrolidine (1.31 g, 90%).

To a solution of $3-[\{N-(tert-butoxycarbonyl)glycyl\}]$ aminomethyl]-1-(4-chlorobenzyl)pyrrolidine (804 mg, 2.11 mmol) in methanol (10 mL) was added 4 N HCl in dioxane (5 mL). The solution was stirred at room temperature for 3.5 h. The reaction mixture was concentrated and 1 N NaOH solution (20 mL) was added. The mixture was extracted with dichloromethane (20 mL x 3), and the combined extracts were dried over sodium sulfate and concentrated to give desired $1-(4-chlorobenzyl)-3-\{(glycylamino)methyl\}pyrrolidine (599 mg, 100%): The purity was determined by RPLC/MS (100%); ESI/MS m/e 282.2 (M+H, C14H20ClN3O).$

10

15

20

5

Example 936: Preparation of 3-[{N-(3-Trifluoromethylbenzoyl)glycyl}aminomethyl]-1-(4-chlorobenzyl)pyrrolidine (Compound No. 1463).

A solution of 3-(trifluoromethyl)benzoyl chloride (0.058 mmol) in dichloromethane (0.2 mL) was added to a mixture of 1-(4-chlorobenzyl)-3-{(glycylamino)methyl)pyrrolidine (0.050 mmol) and piperidinomethylpolystyrene (60 mg) in chloroform (0.2 mL) and dichloromethane (1 mL). After the reaction mixture was stirred at room temperature for 2.5 h, methanol (0.30 mL) was added and the mixture was stirred at room temperature for 1 h. The reaction mixture was loaded onto Varian SCX column, and washed with CH₃OH (15 mL). Product was eluted off using 2 N NH₃ in CH₃OH (5 mL) and concentrated to afford (3-[{N-(3-trifluoromethylbenzoyl)glycyl}aminomethyl]-1-(4-chlorobenzyl)pyrrolidine (Compound No. 1463) (22.4 mg, 99%): The purity was determined by RPLC/MS (97%); ESI/MS m/e 454.2 (M+H, $C_{22}H_{22}ClF_3N_3O_2$).

25

Examples 937-944.

The compounds of this invention were synthesized pursuant to methods of Example 936 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 20.

30

Table 20

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 937	1464	C22 H23 Cl F3 N3 O3	470.0	21.0	89
Example 938	1465	C23 H22 C1 F6 N3 O2	522.0	24.5	94
Example 939	1466	C21 H23 Br Cl N3 O2	466.0	20.8	90
Example 940	1467	C21 II23 C12 N3 O2	420.0	19.6	93

Example 941	1468	C21 H23 Cl N4 O4	431.2	19.5	91
Example 942	1469	C22 H22 C1 F4 N3 O2	472:0	21.8	92
Example 943	1470	C21 H22 C13 N3 O2	456.0	22.1	97
Example 944	1471	C21 H22 C1 F2 N3 O2	422.0	20.9	99

Example 945: Preparation of $3-[\{N-(2-A\min o-4,5-difluorobenzoyl\}]-1-(4-chlorobenzoyl)$ pyrrolidine (Compound No. 1506).

A solution of 1-(4-chlorobenzyl)-3-{(glycylamino)methyl}pyrrolidine (0.050 mmol) in CHCl₃ (1.35 mL) and tert-butanol (0.05 mL) was treated with 2-amino-4,5-difluorobenzoic acid (0.060 mmol), diisopropylcarbodiimide (0.060 mmol), and HOBt (0.060 mmol). The reaction mixture was stirred at room temperature for 19 h. The mixture was loaded onto VarianTM SCX column, and washed with CH₃OH/CHCl₃ 1:1 (10 mL) and CH₃OH (10 mL). Product was eluted off using 2 N NH₃ in CH₃OH (5 mL) and concentrated to afford 3-[{N-(2-amino-4,5-difluorobenzoyl)glycyl)aminomethyl]-1-(4-chlorobenzyl)pyrrolidine (Compound No. 1506) (22.0 mg, quant): The purity was determined by RPLC/MS (92%); ESI/MS m/e 437 (C₂₁H₂₃ClF₂N₄O₂).

Examples 946-952.

5

10

15

20

25

The compounds of this invention were synthesized pursuant to methods of Example 945 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 21.

Table 21

ESI/MS m/e Yield (mg) Yield (%) Compound Molecular Formula Mo C21 24 Br Cl N4 O2 481 20.6 86 Example 946 1506 C21 H24 F Cl N4 O2 1507 419 21.7 quant Example 947 C27 H28 Cl N3 O2 26.5 quant 462 1509 Example 948 C21 H24 Cl I N4 O2 84 527 22.0 1510 Example 949 C19 H21 Br Cl N3 O2 S 23.7 472 quant Example 950 1511 C21 H24 Cl2 N4 O2 435 22.3 quant Example 951 1512 C27 H28 Cl N3 O4 S 24.6 94 526 Example 952 1513

Reference Example 11: Preparation of 1-(4-Chlorobenzyl) nipecotic acid.
4-Chlorobenzyl chloride (6.42 g, 39.9 mmol) and Pr₂NEt (7.74 g, 40.0 mmol)

were added to a solution of ethyl nipecotate (6.29~g,~40.0~mmol) in CH₃CN (15~mL). The reaction mixture was stirred at 70 °C for 1.5 h. The solvent was removed under reduced pressure. Saturated aqueous NaHCO₃ (50~mL) was added to the residue and the mixture was extracted with EtOAc (100~mL). The organic phase was washed with saturated aqueous NaHCO₃ and brine, and dried over Na₂SO₄. The solvent was removed under reduced pressure to afford ethyl 1-(4-chlorobenzyl)nipecotate as a red yellow oil (11.025~g,~97.8%) used without further purification. The purity was determined by RPLC/MS (97%); ESI/MS m/e 382.2 $(M^{\dagger}+H,~C_{15}H_{C1}ClNO_2)$.

5

10

15

20

25

30

A solution of LiOH (1.66 g) in H_2O (25 mL) was added to the solution of ethyl 1-(4-chlorobenzyl)nipecotate in THF (60 mL) and CH₃OH (20 mL). The reaction mixture was stirred at room temperature for 15 h. The solvent was removed under reduced pressure to afford an amorphous solid which was purified by column chromatography (SiO₂, 50% CH₃OH-CH₂Cl₂) to yield 1-(4-chlorobenzyl)nipecotic acid (9.75 g, 98.2%) as a pale yellow amorphous solid. The purity was determined by RPLC/MS (>95%); ESI/MS m/e 254.0 (M⁺+H, C₁₃H₁₇ClNO₂).

Reference Example 12: Preparation of 1-(4-Chlorobenzyl)-3-{(text-butoxycarbonyl)amino}piperidine.

A solution of 1-(4-chlorobenzyl)nipecotic acid (7.06 g, 27.8 mmol) in tBuOH (500 mL) was treated with Et₃N (3.38 g) and activated 3 Å molecular sieves (30 g). Diphenylphosphoryl azide (8.58 g) was added, and the reaction mixture was warmed at reflux for 18 h. The mixture was cooled and the solvent was reflux for 18 h. The mixture was cooled and the solvent was remove under vacuum. The residue was dissolved in EtOAc (500 mL), and the organic phase was washed with saturated aqueous NaHCO₃ (2 x 100 mL) and brine (50 mL), dried (Na₇SO₄), and concentrated in vacuo. Chromatography (SiO₂, 25% EtOAc-hexane) afforded 1-(4-chlorobenzyl)-3-{(tert-butoxycarbonyl)amino}piperidine (2.95 g, 32.6%) as a white crystalline solid: 1 H NMR (CDCl₃, 300 MHz) δ 1.4-1.75 (br, 4 H), 2.2-2.7 (br, 4 H), 3.5 (br, 2 H), 3.8 (br, 1 H), 7.3 (br, 4 H); The purity was determined by RPLC/MS (>99%); ESI/MS m/e 269.2 (M⁺+H-56, C₁₇H₂₆ClN₂O₃).

Reference Example 13: Preparation of 3-Amino-1-(4-chlorobenzyl)piperidine.

A solution of $1-(4-\text{chlorobenzyl})-3-\{(\text{tert-35} \text{ butoxycarbonyl}) \text{ amino}\}$ piperidine (2.55 g, 7.85 mmol) in CH₂OH (25 mL) was treated with 1 N HCl-Et₂O (50 mL). The reaction mixture was stirred at 25 °C for 15 h. The solvent was removed under reduced pressure to afford 3-amino-1-(4-chlorobenzyl)piperidine dihydrochloride as an amorphous solid (2.49 g, quant).

The purity was determined by RPLC/MS (>95%),; ESI/MS m/e 225.2 ($M^{\dagger}+H$, $C_{12}H_{18}ClN_2$).

Example 953: Preparation of 1-(4-Chlorobenzyl)-3-[{N-(3-methylbenzoyl)glycyl}amino]piperidine (Compound No. 355).

N-(3-Methylbenzoyl)glycine (10.6 mg, 0.055 mmol), EDCI (10.5 mg) and 1-hydroxybenzotriazole hydrate (7.4 mg) were added to a solution of 1-(4-chlorobenzyl)-3-aminopiperidine dihydrochloride (14.9 mg, 0.050 mmol) and Et₃N (15.2 mg) in CHCl₃ (2.5 mL). The reaction mixture was stirred at 25 °C for 16 h, washed with 2 N aqueous NaOH (2 mL x 2) and brine (1 mL). After filtration through PTFE membrane filter, the solvent was removed under reduced pressure to afford 1-(4-chlorobenzyl)-3-[{N-(3-methylbenzoyl)glycyl}amino]piperidine (compound No. 355) as a pale yellow oil (17.4 mg, 87%): The purity was determined by RPLC/MS (97%); ESI/MS m/e 400.0 (M+H, $C_{22}H_{26}ClN_3O_2$).

15 Examples 954-982.

The compounds of this invention were synthesized pursuant to methods of Example 953 using the corresponding reactant respectively. The ESI/MS data and yields are summarized in Table 22 and compound No. 358 showed the following ¹H NMR spectra.

20

5

10

Table 22

	Compound No.	Molecular Formula	ESI/MS m/e	Yield (mg)	Yield (%)
Example 954	354	C21 H24 Cl N3 O2	386	16.1	83
Example 955	356	C20 H23 Cl N4 O2	387	19.4	100
Example 956	357	C22 H26 Cl N3 O2	400	16.8	84
Example 957	359	C22 H26 Cl N3 O2	400	8.9	17
Example 958	360	C22 H25 Cl N4 O4	445	25.6	quant
Example 959	361	C23 H27 Cl N2 O2	399	15.5	29
Example 960	362	C24 H29 Cl N2 O3	429	12.4	58
Example 961	363	C21 H25 C1 N2 O2 S	405	22.2	quant
Example 962	364	C24 H29 Cl N2 O4	445	20.7	93
Example 963	365	C24 H29 Cl N2 O2	413	15.6	75
Example 964	366	C23 H26 Cl F N2 O3	433	21.6	100
Example 965	367	C23 H27 Cl N2 O2	399	11.9	60
Example 966	368	C22 H25 Cl N2 O2	385	16.0	83
Example 967	369	C22 H24 C12 N2 O2	419	13.9	60
Example 968	370	C26 H33 Cl N2 O3	457	15.9	54