Basic Data Structures

Data Structures and Algorithms

Nanjing University, Fall 2021 郑朝栋

What is a "data structure"?

- A data structure is a way to store and organize data in order to facilitate access and modifications.
- E.g., array and linked list.
- Different types of data demand different data structures.

Abstract Data Type (ADT)

- A data structure usually provides an interface.
 - Often, the interface is also called an abstract data type (ADT).
 - An ADT specifies what a data structure "can do" and "should do", but not "how to do" them.
- ADT: List, which supports get, set, add, remove, ...
 Data structure: ArrayList, LinkedList, ...
- An ADT is a logical description, and a data structure is a concrete implementation.
 - Similar to .h file and .cpp file.
 - Different data structures can implement same ADT. (Why bother?)

The Queue ADT

The Queue ADT represents a collection of items to which we can add items and remove the next item.

- Add(x): add x to the queue.
- Remove(): remove the next item y from queue, return
 y.

The *queuing discipline* decides which item to be removed.

FIFO Queue

The Queue ADT represents a collection of items to which we can add items and remove the next item.

- Add(x): add x to the queue.
- Remove(): remove the next item y from queue, return y.

The **first-in-first-out** (**FIFO**) queuing discipline: items are removed in the same order they are added.

FIFO Queue:

- Add(x) or Enqueue(x):
 add x to the end of the queue.
- Remove() or **Dequeue()**: remove the first item from the queue.

LIFO Queue: Stack

The Queue ADT represents a collection of items to which we can add items and remove the next item.

- Add(x): add x to the queue.
- Remove(): remove the next item y from queue, return y.

The **last-in-first-out** (**LIFO**) queuing discipline: the most recently added item is the next one removed.

Stack (LIFO Queue):

- Add(x) or Push(x):add x to the top of the stack.
- Remove() or Pop(): remove the item at the top of the stack.

The Deque ADT

The **Deque** (double-ended queue) ADT represents a sequence of items with a front and a back.

AddFirst(x), AddLast(x), RemoveFirst(), RemoveLast().

Deque can implement FIFO Queue:

• Enqueue(x) is AddLast(x), Dequeue() is RemoveFirst().

Deque can implement Stack (LIFO Queue):

Push(x) is AddLast(x), Pop() is RemoveLast().

The List ADT

- A **List** is a sequence of items x_1, x_2, \dots, x_n
- The List interface supports the following operations:
 - Size(): return *n*, the length of the list
 - Get(i): return x_i
 - Set(i,x): set $x_i = x$
 - Add(i,x): set $x_{j+1} = x_j$ for $n \ge j \ge i$, set $x_i = x$, increase list size by 1
 - Remove(i): set $x_j = x_{j+1}$ for $i \le j \le n-1$, decrease list size by 1

The List ADT

- The List interface supports the following operations:
 - Size(): return *n*, the length of the list
 - Get(i): return x_i
 - Set(i,x): set $x_i = x$
 - Add(i,x): set $x_{j+1} = x_j$ for $n \ge j \ge i$, set $x_i = x$, increase list size by 1
 - Remove(i): set $x_j = x_{j+1}$ for $i \le j \le n-1$, decrease list size by 1
- List can implement Deque:
 - AddFirst(x) is Add(1,x), AddLast(x) is Add(Size()+1,x)
 - RemoveFirst() is Remove(1), RemoveLast() is Remove(Size())

Using array to implement List:

ArrayList data structure

The List interface supports the following operations:

- Size(): always $\Theta(1)$ return n, the length of the list
- **Get(i):** always $\Theta(1)$ return x_i
- Set(i,x): always $\Theta(1)$ set $x_i = x$
- Add(i,x): $\Theta(1)$ to $\Theta(n)$ set $x_{j+1} = x_j$ for $n \ge j \ge i$, set $x_i = x$, increase n by 1
- Remove(i): $\Theta(1)$ to $\dot{\Theta}(n)$ set $x_j = x_{j+1}$ for $i \le j \le n-1$, decrease n by 1

- Queries and updates are fast.
- Modifications are fast at "end", but slow at "front" or "middle".

Using array to implement List:

ArrayList data structure

The List interface supports the following operations:

- Size(): always $\Theta(1)$ return n, the length of the list
- **Get(i):** always $\Theta(1)$ return x_i
- Set(i,x): always $\Theta(1)$ set $x_i = x$
- Add(i,x): $\Theta(1)$ to $\Theta(n)$ set $x_{j+1} = x_j$ for $n \ge j \ge i$, set $x_i = x$, increase n by 1
- Remove(i): $\Theta(1)$ to $\Theta(n)$ set $x_j = x_{j+1}$ for $i \le j \le n-1$, decrease n by 1

- **Q:** Is ArrayList good for Stack?
- A: Yes. (Push and Pop are fast.)
- Q: Is ArrayList good for FIFO Queue?
- A: No. (Enqueue can be slow.)
- **Q:** Is ArrayList good for Deque?
- A: No.

- Queries and updates are fast.
- Modifications are fast at "end", but slow at "front" or "middle".

Using circular array to implement Deque:

ArrayDeque data structure

Using simple array to implement List:

- Queries and updates are fast.
- Modifications are fast at "end", but slow at "front" or "middle".
- ArrayList is good for Stack, but not FIFO Queue or Deque.

Using circular array to implement Deque:

ArrayDeque data structure

Maintain head and tail:

- AddFirst and RemoveFirst: move head.
- AddLast and RemoveLast: move tail.
- Use modular arithmetic to "wrap around" at both ends.

AddLast(x):

all in O(1)tail=(tail%N)+1

A[tail]=x

RemoveFirst():

head=(head%N)+1

AddFirst(x):

head=(head==1)?N:(head-1)

A[head]=x

RemoveLast(x):

tail=(tail==1)?N:(tail-1)

Using circular array to implement Deque:

ArrayDeque data structure

Maintain head and tail:

- AddFirst and RemoveFirst: move head.
- AddLast and RemoveLast: move tail.
- Use modular arithmetic to "wrap around" at both ends.

- Queries and updates are fast.
- Modifications are fast at "front" and "end" (i.e., head and tail), but still slow at "middle".
- ArrayDeque is good for Stack,
 FIFO Queue, and Deque; but can be slow for some List operations.
- Capacity of array is also a problem!!!

Using linked list to implement List:

LinkedList data structure

The List interface supports the following operations:

- Size(): always $\Theta(1)$ return n, the length of the list
- **Get(i):** $\Theta(1)$ to $\Theta(n)$ return x_i
- **Set(i,x):** $\Theta(1)$ to $\Theta(n)$ set $x_i = x$
- Add(i,x): $\Theta(1)$ to $\Theta(n)$ set $x_{j+1} = x_j$ for $n \ge j \ge i$, set $x_i = x$, increase n by 1
- Remove(i): $\Theta(1)$ to $\dot{\Theta}(n)$ set $x_j = x_{j+1}$ for $i \le j \le n-1$, decrease n by 1

Traversing backwards from tail is not efficient.

Q: Is LinkedList good for Stack?

A: Yes. (Push and Pop at head are fast.)

Q: Is LinkedList good for FIFO Queue?

A: Yes. (Enqueue and Dequeue are fast.)

Q: Is LinkedList good for Deque?

A: No. (RemoveLast can be slow.)

Using doubly-linked list to implement List:

DLinkedList data structure

The List interface supports the following operations:

- Size(): always $\Theta(1)$ return n, the length of the list
- **Get(i):** $\Theta(1)$ to $\Theta(n)$ return x_i
- Set(i,x): $\Theta(1)$ to $\Theta(n)$ set $x_i = x$
- Add(i,x): $\Theta(1)$ to $\Theta(n)$ set $x_{j+1} = x_j$ for $n \ge j \ge i$, set $x_i = x$, increase n by 1
- Remove(i): $\Theta(1)$ to $\Theta(n)$ set $x_j = x_{j+1}$ for $i \le j \le n-1$, decrease n by 1

DLinkedList is good for Stack, FIFO Queue, and Deque; but can be slow for some List operations.

Using doubly-linked list to implement List:

DLinkedList data structure

head

x.prev=NULL

The List interface supports the following operations:

- Size(): always $\Theta(1)$ return n, the length of the list
- **Get(i):** $\Theta(1)$ to $\Theta(n)$ return x_i
- **Set(i,x):** $\Theta(1)$ to $\Theta(n)$ set $x_i = x$
- Add(i,x): $\Theta(1)$ to $\Theta(n)$ set $x_{j+1} = x_j$ for $n \ge j \ge i$, set $x_i = x$, increase n by 1
- Remove(i): $\Theta(1)$ to $\dot{\Theta}(n)$ set $x_j = x_{j+1}$ for $i \le j \le n-1$, decrease n by 1

DLinkedList is good for Stack, FIFO Queue, and Deque; but can be slow for some List operations.

tail

Using doubly-linked list to implement List:

DLinkedList data structure

The List interface supports the following operations:

- Size(): always $\Theta(1)$ return n, the length of the list
- **Get(i):** $\Theta(1)$ to $\Theta(n)$ return x_i
- Set(i,x): $\Theta(1)$ to $\Theta(n)$ set $x_i = x$
- Add(i,x): $\Theta(1)$ to $\Theta(n)$ set $x_{j+1} = x_j$ for $n \ge j \ge i$, set $x_i = x$, increase n by 1
- Remove(i): $\Theta(1)$ to $\Theta(n)$ set $x_j = x_{j+1}$ for $i \le j \le n-1$, decrease n by 1 sentinel

x.next=S.next

S.next=&x

x.prev=&S

S.next.prev=&x

Summary

- Queue ADT: FIFO Queue, Stack (LIFO Queue), Deque
- List ADT: can implement various Queue
- Array based implementations (simple/circular):
 - Queries are fast, updates (i.e., Set) are also fast
 - Modifications (i.e., Add and Remove) are fast at "start" and "end", but slow in "middle"
 - Capacity can be a problem (come back to this later...)
- Linked list based implementations (singly/doubly linked):
 - Operations (queries, updates, and modifications) are fast at "start" and "end", but slow in "middle"
 - No capacity issue

Reading

- [CLRS] Ch10 (10.1-10.3)
- [Morin] Ch1 (1.1, 1.2), Ch2 (2.1-2.4), Ch3 (3.1, 3.2)

Balancing Symbols

Compiler needs to check whether the parentheses (), brackets [], and braces {} are matched.

```
if (a>b)
CheckParen(str):
                                                         \{b=c[10];\}
Stack s
                                                            if (a>b)
int i=1
while (str[i]!=NULL)
                                                          \{b=c[10];
 if (str[i] is '(' or '[' or '{')
                                                           if (a>b))
  s.push(str[i])
 if (str[i] is ')' or ']' or '}')
                                                         \{b=c[10];\}
  if (s.empty())
                                                            if (a>b)
   return false
  if (s.pop() and str[i] mismatch
                                                         \{b=c[10);\}
   return false
 i++
return s.empty()
```

Evaluating Postfix Expressions

How do we evaluate $(a + b) \times (c + d)$?

infix expression

If we place operators **after** operands:

$$((a b +) (c d +) \times)$$

In fact, we can remove the parentheses:

$$ab+cd+\times$$

postfix expression

Postfix notation, also known as **reverse Polish notation** (**RPN**), is a mathematical notation in which operators follow their operands. If there are multiple operations, operators are given immediately after their last operands.

RPN does not need parentheses!

<u>One more example:</u>

Infix: $(a + b) \times c + d$

RPN: $a b + c \times d +$

Evaluating Postfix Expressions

8

Given an expression in RPN, how to evaluate its value?

EvalRPN(str): Stack s while ((token=NextToken(str))!=NULL) if (token is an operand) s.push(token) else res=PopOperandAndCalc(s,token) s.push(res) return s.pop()

Given an infix expression, how to convert it to RPN and evaluate its value? (Beware of priorities!)

One simple example:

$$36 + 8 \times$$

Application of Stack: Function Calls

How do function calls actually work?

Alice: only knows addition.

Bob: only knows multiplication.

Question: $100 + 234 + 35 \times 45 + 25$

```
Calc: 35 \times 45
Answer: 1575

100 + 234 = 334

1575

I left at end of line

35 × 35 × 45 = 1575

334

1909
```

Function Calls

How do function calls actually work?

Alice: only knows addition.

Bob: only knows multiplication.

Question: $100 + 234 + 35 \times 45 + 21$

Stack "bottom"

Eliminating Recursion

function calls are implemented via a "call stack" with the help of a stack, recursion can be recursion is a specific type of function call—replaced by **iteration**

```
FactRec(n):

if (n==1)
  return 1
else
  return n*FactRec(n-1)
```

```
struct Frame {
  int val
  int acc
  Frame* prevFrame
}
```

```
FactIter(n):
Stack s
s.push(Frame(n,-1,NULL))
while (!s.empty())
 frame=s.peek()
                              "return address" imp
 if (frame.val<=1)
  frame.acc=1
 if (frame.acc!=-1) {
  res=(frame.val)*(frame.acc)
  (frame.prevFrame)->acc=res
  s.pop() }
 else
  s.push(Frame(frame.val-1,-1,&frame))
return res
```

Eliminating Recursion

function calls are implemented via a "call stack" With the help of a stack, recursion can be recursion is a specific type of function call—replaced by **iteration**

Q: Why recursion can be *undesirable*?

A: Recursion can be slow and memory consuming due to the creation and maintenance of stack frames.

Q: Why recursion can be *desirable*?

A: Recursion can make the code clearer, concise, and intuitive.

Tail Recursion

A function is called **tail-recursive** if each activation of the function will make at most a single recursive call, and will return immediately after that call.


```
EuclidGCDRec(m, n):

if (n==0)
  return m
 else
  rem=m%n
  return EuclidGCDRec(n, rem)
```

Tail Recursion

A function is called **tail-recursive** if each activation of the function will make at most a single recursive call, and will return immediately after that call.

Tail Recursion to Iteration

- Each function parameter is a variable.
- Convert the main body of the function into a loop:
 - Base cases: do computation and return results.
 - Recursive cases: do computation and update variables.

EuclidGCDRec (m, n):

```
if (n==0)
  return m
else
  rem=m%n
  return EuclidGCDRec(n, rem)
```

EuclidGCDIter (m, n): while (true) if (n==0) return m else rem=m%n m=n

n=rem

Iteration versus Recursion

- Recursion can be converted into iteration
 - Generic method: simulate a call stack
 - Special case: tail recursion
- Iteration can be converted into tail recursion
- No one is always perfect
 - Iteration can be faster and more memory efficient
 - Recursion can be clearer, more concise and intuitive

Reading

- [Deng] Ch1 (1.4*), Ch4 (4.1-4.4)
- [Weiss] Ch3 (3.6)
- [CSAPP] Ch3 (3.7*)

