Sistema de Numeração Binário

O sistema binário utiliza-se de dois símbolos para representar um número qualquer. Tais símbolos são:

$$\Sigma_b = \{0,1\}$$
 ou $\Sigma_b = \{F,V\}$

Para um melhor entendimento, pode-se fazer um paralelo com o sistema decimal, com o qual estamos mais habituados. Neste sistema, são utilizados dez símbolos para a representação de um número:

$$\Sigma_d = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

Assim, podemos representar, por exemplo, o número 219 em decimal. O número mais à direita, o 9, representa a casa das unidades, enquanto o 1, a casa das dezenas, e o 2, a casa das centenas, de modo que:

$$219 = 2 \times 10^2 + 1 \times 10^1 + 9 \times 10^0 = 200 + 10 + 9$$

De forma semelhante, no sistema binário:

$$01011_2 = 0 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 = 0 + 8 + 0 + 2 + 1 = 11_{10}$$

Assim, 01011 em binário é o mesmo que 11 em decimal. Vale notar que o zero mais à esquerda pode ser omitido, pois ele não fornece nenhuma contribuição ao número, ou seja, $01011_2 = 1011_2$, do mesmo modo que $0219_{10} = 219_{10}$.

A contagem no sistema binário é realizada da mesma maneira que no sistema decimal:

Binário	Decimal
0000	00
0001	01
0010	02
0011	03
0100	04
0101	05
0110	06
0111	07
1000	08
1001	09
1010	10
1011	11
1100	12
1101	13
1110	14
1111	15