Задание 8 (сдать до 7 июня) *Вариант 1*

1. Пусть $A: \mathbb{R}^n \to \mathbb{R}^n$ – оператор на евклидовом \mathbb{R}^n со стандартным скалярным произведением и A – его матрица в стандартном базисе. Для A определены две нормы:

$$||\mathcal{A}||_0 = \sup_{\mathbb{R}^n \ni x \neq 0} \frac{||\mathcal{A}x||}{||x||}$$

и норма, определённая скалярным произведением на $M_n(\mathbb{R})$,

$$||\mathcal{A}||_1 = \sqrt{\operatorname{tr} A^t A}.$$

Доказать, что

$$\frac{1}{\sqrt{n}}||\mathcal{A}||_1 \leqslant ||\mathcal{A}||_0 \leqslant ||\mathcal{A}||_1.$$

2. На пространстве матриц $M_2(\mathbb{R})$ задано скалярное произведение $(A,B)=\operatorname{tr} A^t B$. Найти серию углов между подпространствами

$$\mathcal{L} = \left\{ \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} \mid a, b \in \mathbb{R} \right\}$$

И

$$\mathcal{S}_0 = \left\{ \begin{pmatrix} a & b \\ b & -a \end{pmatrix} \mid a, b \in \mathbb{R} \right\}.$$

3. Пусть $f_n(x) = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!}$. Используя свойства нормы оператора, докажите, что для оператора $\mathcal{A} \colon \mathcal{V} \to \mathcal{V}$ выполнено

$$||f_n(\mathcal{A}) - f_m(\mathcal{A})|| \leq |f_n(||\mathcal{A}||) - f_m(||\mathcal{A}||)|.$$

Из матанализа мы знаем, что $\{f_n(||\mathcal{A}||)\}$ – последовательность Коши в \mathbb{R} . Таким образом, $\{f_n(\mathcal{A})\}$ – последовательность Коши в $\mathcal{L}(\mathcal{V},\mathcal{V})$, а значит, она имеет предел

$$\lim_{n\to\infty} f_n(\mathcal{A}) = \exp \mathcal{A}.$$

- **4.** (12 баллов) Пусть $V = (v_1, v_2, v_3)$ матрица, составленная из линейно независимых единичных векторов $v_1, v_2, v_3 \in \mathbb{R}^3$. Эти векторы определяют треугольник на единичной сфере со сторонами $\theta_{ij} = \angle v_i, v_j$ (дуги больших окружностей) и углами φ_i при вершине v_i . Пусть $w_1, w_2, w_3 \in \mathbb{R}^3$ таковы, что $v_i \cdot w_j = \delta_{ij}$ (w_i необязательно единичные).
 - 1) Проверьте, что $\varphi_i = \pi \angle w_j, w_k$, где i, j, k попарно различны;
 - 2) Проверьте, что матрица $W = (w_1, w_2, w_3)$ обратна к V^t ;
 - 3) Проверьте, что матрицы Грама $G_W = W^t W$ и $G_V = V^t V$ систем V и W обратны друг к другу;
 - 4) Вычислив G_W двумя способами: по определению и как обратную к G_V , с помощью алгебраических дополнений, запишите равенство этих матриц и из равенства коэффициентов выведите сферическую теорему косинусов:

$$\cos \theta_{12} = \cos \theta_{13} \cos \theta_{23} + \sin \theta_{13} \sin \theta_{23} \cos \varphi_3.$$

5) Если треугольник $\triangle v_1 v_2 v_3$ мал, то, разлагая в формуле из предыдущего пункта косинусы и синусы от θ_{ij} по Тейлору и приравнивая члены \leq 2-го порядка малости слева и справа, мы получим теорему косинусов евклидовой геометрии. Проделайте это вычисление!