<матан, 4 сем>

Лектор: А. А. Лодкин Записал :ta_xus

1 июня 2017 г.

Оглавление

1	Теория	меры и интегралы по мере	2
	§ 1	Системы множеств	2
	$\S2$	Борелевская сигма-алгебра	2
	$\S 3$	Mepa	3
	$\S4$	Свойства меты	4
	$\S5$	Объём в \mathbb{R}^n . Мера Лебега	5
	§ 6	Измеримые функции	6
	§ 7	Интеграл по мере	7
	§ 8	Теорема Беппо Ле́ви	7
	$\S 9$	Свойства интеграла от суммируемых функций	8
	§ 10	Счётная аддитивность интеграла	8
	§ 11	Абсолютная непрерывность интеграла	8
	§ 12	Интеграл от непрерывной функции по мере Лебега	9
	§ 13	Сравнение подходов Римана и Лебега	9
	§ 14	Сравнение несобственного интеграла и интеграла Лебега	9
	§ 15	Интеграл по дискретной мере и мере, задаваемой плотностью	10
	§ 16	Мера Лебега-Стилтьеса. Интеграл по распределению	10
	§ 17	Интеграл Эйлера-Пуассона	11
	§ 18	Вероятностный смысл мемы	11
	§ 19	Геометрический смысл меры Лебега. Принцип Кавальери	11
	§ 20	Сведение кратного интеграла к повторному	12
	§ 21	Мера Лебега и аффинные преобразования	13
	§ 22	Мера образа при гладком отображении	13
	§ 23	Глакая замена переменной в интеграле	13
	§ 24	Предельный переход под знаком интеграла	13
	$\S25$	Теорема Лебега об ограниченной сходимости	14
A	Обознач	нения	15

Глава 1: Теория меры и интегралы по мере

§ 1 Системы множеств

Определение 1. Пусть здесь (и дальше) X — произвольное множество. Тогда $\mathcal{P}(X) \equiv 2^X$ — множество всех подмножеств X.

Е.g. $X = \{1 ... n\} \Rightarrow \#\mathcal{P}(X) = 2^n$ (это количество элементов, если что)

Определение 2 (Алгебра). Пусть $\mathcal{A} \subset \mathcal{P}(X)$. Тогда \mathcal{A} — алгебра множеств, если

- 1. $\varnothing \in \mathcal{A}$
- $2. X \in \mathcal{A}$
- 3. $A, B \in \mathcal{A} \Rightarrow A \cap B, A \cup B, A \setminus B \in \mathcal{A}$

Замечание. Заметим, что в алгебре пересечение (или объединение) конечного числа её элементов лежит в алгебре. Это можно доказать простой индукцией. А вот для бесконечных объединений пользоваться индукцией уже нельзя, ведь $\infty \notin \mathbb{N}$.

Определение 3 (σ -алгбера). Пусть $\mathcal{A} \in \mathcal{P}(X)$. Тогда $\mathcal{A} - \sigma$ -алгебра, если

- 1. \mathcal{A} алгебра
- 2. $A_1, \ldots, A_n \in \mathcal{A} \Rightarrow \bigcup_{k=1}^{\infty} A_k \in \mathcal{A}, \bigcap_{k=1}^{\infty} A_k \in \mathcal{A}$

Определение 4. Пусть $\mathcal{E} \subset \mathcal{P}(X)$. Тогда

$$\sigma(\mathcal{E}) := \bigcap \left\{ \mathcal{A} \mid \mathcal{A} - \sigma$$
-алгебра, $\mathcal{A} \supset \mathcal{E}
ight\}$

эта конструкция — сигма-алгебра, просто аксиомы проверить.

§ 2 Борелевская сигма-алгебра

Определение 1. Пусть \mathcal{O} — все открытые множества в \mathbb{R}^n . Тогда $\mathcal{B}_n = \sigma(\mathcal{O})$ — борелевская σ -алгебра в \mathbb{R}^n .

Определение 2 (Ячейка в \mathbb{R}^n). Обозначать её будем Δ^n , по размерности соответствующего пространства.

$$\Delta^{1} = \begin{cases} [a; b) \\ (-\infty; b) \\ [a; +\infty) \\ (-\infty; +\infty) \end{cases} \quad \forall n \ \Delta = \prod_{k=1}^{n} \Delta_{k}^{1}$$

Ещё введём алгебру $\mathcal{A} = \mathcal{C}ell_n = \{A \mid A = \bigcup_{k=1}^p \Delta_k\}$

Лемма 1. Пусть $\mathcal{E}_1, \mathcal{E}_2 \subset \mathcal{P}(X), \ \sigma(\mathcal{E}_1) \supset \mathcal{E}_2$. Тогда $\sigma(\mathcal{E}_1) \supset \sigma(\mathcal{E}_2)$

Теорема 2. $\mathcal{B}_n = \sigma(\mathcal{C}ell_n)$.

Пример 1. Все множества нижё — борелевские.

 $\langle 1 \rangle \mathcal{O}.$

$$\langle 2 \rangle \ \mathcal{F} = \{ A \mid \overline{A} \in \mathcal{O} \}.$$

$$\langle 3 \rangle \left(A = \bigcap_{\substack{k=1 \ G_k \in \mathcal{O}}}^{\infty} G_k \right) \in G_{\delta}.$$

$$\langle 4 \rangle \left(B = \bigcup_{\substack{k=1 \ F_k \in \mathcal{F}}}^{\infty} F_k \right) \in F_{\sigma}.$$

$$\langle 5 \rangle \left(C = \bigcup_{\substack{k=1\\A_k \in G_\delta}}^{\infty} A_k \right) \in G_{\delta\sigma}.$$

У всех этих множеств со сложными индексами δ — пересечение, σ — объединение, G — операция над открытыми в самом начале, F — над замкнутыми.

§3 Mepa

Определение 1. Пусть задано X, $\mathcal{A} \subset \mathcal{P}(X)$, $A_k \in \mathcal{A}$. Тогда $\mu \colon \mathcal{A} \to [0; +\infty]$ мера, если

1.
$$\mu(\varnothing) = 0$$

2.
$$\mu(\underbrace{\bigcup_{k=1}^{\infty}A_{k}}_{\in\mathcal{A}})=\sum_{k=1}^{\infty}\mu(A_{k})$$
. Здесь никто не обещает, что будет именно σ -алгебра.

Множества $A \in \mathcal{A}$ в таком случае называются μ -измеримыми.

Пример 1.
$$a \in X$$
, $\mu(A) = \begin{cases} 1, & a \in A \\ 0, & a \notin A \end{cases} - \delta$ -мера Дирака.

Пример 2.
$$a_k \in x, \ m_k \geqslant 0, \ \mu(a) := \sum_{k: \ a_k \in a} m_k$$
 — «молекулярная» мера.

Пример 3. $\mu(A) = \#A$ — считающая мера. ¹

 $^{^{1}}$ она считает, не считывает $\stackrel{\cdot \cdot \cdot}{\smile}$

§ 4 Свойства меты

Здесь всюду будем рассматривать тройку $(X, \mathcal{A} \subset \mathcal{P}(X), \mu)$

Утверждение 1 (Монотонность меры). Пусть $A, B \in \mathcal{A}, A \subset B$. Тогда $\mu(A) \leqslant \mu(B)$.

Утверждение 2. Пусть $A, B \in \mathcal{A}, A \subset B, \mu(B) < +\infty$. Тогда $\mu(B \setminus A) = \mu(B) - \mu(A)$.

Утверждение 3 (Усиленная монотонность). Пусть $A_{1..n}, B \in \mathcal{A}, A_{1..n} \subset B$ и дизтонктицы.

Тогда
$$\sum_{k=1}^{n} \mu(A_k) \leqslant \mu B$$

Утверждение 4 (Полуаддитивность меры). Пусть $B_{1..n}, A \in \mathcal{A}, A \subset \bigcup_{k=1}^n B_k$.

Тогда
$$\mu A \leqslant \sum_{k=1}^{n} \mu(B_k)$$
.

 \blacksquare

Сделать B_k дизъюнктными: $C_k = B_k \setminus \bigcup_{j < k} B_k$. Затем представить A как дизъюнктное объединение D_k : $D_k = C_k \cap A$. Так можно сделать, потому что

$$A = A \cap \bigcup_{k=1}^{n} B_k = A \cap \bigcup_{k=1}^{n} C_k = \bigcup_{k=1}^{n} A \cap C_k$$

Ну а тогда

$$\mu(A) = \sum_{k} \mu D_k \leqslant \sum_{k} \mu C_k \leqslant \sum_{k} \mu B_k$$

▲

Утверждение 5 (Непрерывность меры снизу). Пусть $A_1 \subset A_2 \subset \cdots$, $A_k \in \mathcal{A}$, $A = \bigcup_{k=1}^{\infty} A_k \in \mathcal{A}$. $A = \lim_{n \to \infty} \mu A_n$

Утверждение 6 (Непрерывность меры сверху). Пусть $A_1 \supset A_2 \supset \cdots, A_k \in \mathcal{A},$ $A = \bigcap_{k=1}^{\infty} A_k \in \mathcal{A}, \ \mu A_1 < +\infty.$ Тогда $\mu A = \lim_{n \to \infty} \mu A_n$

<+Тут будет картинка про метод исчерпывания Евдокса+>

Определение 1. Пусть задана тройка $(X, \mathcal{A}_{\sigma}, \mu)$. Тогда μ — полная, если

$$\forall \in \mathcal{A} \colon \mu A = 0 \ \forall B \subset A, B \in \mathcal{A} \ :: \ \mu B = 0$$

Определение 2. Мера μ на \mathcal{A} называется σ -конечной, если

$$\exists X_n \in \mathcal{A}, \mu X_n < +\infty \ :: \ \bigcup_{n=1}^{\infty} X_n = X$$

 $^{^{1}}$ Опять-таки никто не сказал, что $\mathcal{A}-\sigma$ -алгебра.

Определение 3. Пусть $\mathcal{A}_1, \mathcal{A}_2$ — сигма-алгебры подмножеств $X, \mathcal{A}_1 \subset \mathcal{A}_2,$ $\mu_1 \colon A_1 \to [0; +\infty], \ \mu_2 \colon A_2 \to [0; +\infty].$ Тогда μ_2 называется продолжением μ_1 .

Теорема 7 (Лебега-Каратеодора). Пусть μ — сигма-конечная мера на \mathcal{A} . Тогда

- 1. Существуют её полные сигма-конечные продожения
- 2. Среди них есть наименьшее: $\overline{\mu}$. Её ещё называют стандартным продолжением.

<+идея доказательства+> Пока надо запомнить, что стандратное продолжение — сужение внешней «меры» на хорошо разбивающие множества.

$\S 5$ Объём в \mathbb{R}^n . Мера Лебега

Определение 1. Пусть $\Delta = \Delta_1 \times \cdots \times \Delta_n$, $\Delta_k = [a_k, b_k)$. Тогда

$$v_1\Delta_k\equiv |\Delta_k|:=egin{cases} b_k-a_k, & a_k\in\mathbb{R}\wedge b_k\in\mathbb{R}\ \infty, & ext{иначе} \end{cases}$$
 $v_2\Delta \stackrel{(\in R^n)}{\equiv} v_2\Delta := |\Delta_1|\cdots |\Delta_n|$

Для всего, что $\in Cell_n$, представим его в виде дизъюнктного объединения Δ_j . Тогда $vA := \sum_{j=1}^q v\Delta_j$.

Замечание. Здесь радикально всё равно, входят ли концы — у них мера ноль.

Теорема 1. $v - \kappa$ онечно-аддитивен, то есть

$$\forall A, A_{1..p} \in \mathcal{Cell}, A = \bigsqcup_{k=1}^{p} A_k \Rightarrow vA = \sum_{k=1}^{p} vA_k$$

Теорема 2. v-cчётно-аддитивен, то есть

$$\forall A, A_{1..} \in \mathcal{C}ell, A = \bigsqcup_{k=1}^{\infty} A_k \implies vA = \sum_{k=1}^{\infty} vA_k$$

🗆 Здесь в конспекте лишь частный случай про ячейки. 🗖

Определение 2 (Мера Лебега). $X = \mathbb{R}^n$, $\mathcal{A} = Cell_n$. Тогда $\lambda_n = \overline{v_n}$, $\mathcal{M} = \overline{\mathcal{A}}$ — мера Лебега и алгебра множеств, измеримых по Лебегу, соответственно.

Свойства меры Лебега

- $(1) \triangleright \lambda\{x\} = 0$
- $(2) \rhd \lambda(\{x_k\}_k) = 0$
- $(3) \triangleright \mathcal{B} \subset \mathcal{M}$
- $(4) \triangleright L \subset \mathbb{R}^m, m < n \Rightarrow \lambda_n L = 0$

А это уже целая теормема.

Теорема 3 (Регулярность меры Лебега). Пусть $A \in \mathcal{M}, \, \varepsilon > 0$. Тогда

$$\exists G \in \mathcal{O}, F \in \mathcal{F} :: F \subset A \subset G \land \begin{cases} \lambda(G \setminus A) < \varepsilon \\ \lambda(A \setminus F) < \varepsilon \end{cases}$$

□ куча скучных оценок квадратиками. ■

<+Пример неизмеримого множества на окружности+>

§6 Измеримые функции

Определение 1. Пусть задана тройка $(X, \mathcal{A}_{\sigma}, \mu)$. Пусть ещё $f: X \to \mathbb{R}$. Тогда f называется измеримой относительно \mathcal{A} , если

$$\forall \Delta \subset \mathbb{R} :: f^{-1}(\Delta) \in \mathcal{A}$$

Теорема 1. Пусть f измеримо относительно \mathcal{A} . Тогда измеримы и следующие (Лебеговы) множества

1 типа
$$\{x \in X \mid f(x) < a\} \equiv X[f < a]$$

2 типа
$$\{x \in X \mid f(x) \leqslant a\} \equiv X[f \leqslant a]$$

3 типа
$$\{x \in X \mid f(x) > a\} \equiv X[f > a]$$

4 типа
$$\{x \in X \mid f(x) \geqslant a\} \equiv X[f \geqslant a]$$

 Π ри этом верно и обратное: если измеримы множества какого-то отдного типа, то f измерима.

Теорема 2. Пусть f_1, \ldots, f_n измеримы относительно \mathcal{A} и $g: \mathbb{R}^n \to R$ непрерывна. Тогда измерима и $\varphi(x) = g(f_1(x), \ldots, f_n(x))$.

Замечание. В частности, $f_1 + f_2$ измерима.

Теорема 3. Пусть f_1, f_2, \ldots измеримы относительно \mathcal{A} . Тогда измеримы $\sup f_n$, $\inf f_n$, $\liminf f_n$, $\limsup f_n$, $\lim f_n$. Последний, правда, может не существовать.

□ Следует из непрерывности меры.

Определение 2. Пусть $f \colon X \to \mathbb{R}$ — измерима. Тогда она называется простой, если принимает конечное множество значений.

Определение 3 (Индикатор множества).

$$E \subset X, \mathbb{1}_E := \begin{cases} 1, & x \in E \\ 0, & x \notin E \end{cases}$$

Он, как видно совсем простая функция.

Утверждение 4.
$$f-npocmas \Rightarrow f=\sum_{k=1}^p c_k \mathbb{1}_{E_k}$$

Теорема 5. Пусть $f: X \to \mathbb{R}$, измерима, $f \geqslant 0$. Тогда

$$\exists (\varphi_n) \colon 0 \leqslant \varphi_1 \leqslant \varphi_2 \leqslant \cdots :: \varphi_n \nearrow f \text{ (поточечно)}$$

6

§7 Интеграл по мере

Определение 1. Пусть задана тройка $(X, \mathcal{A}_{\sigma}, \mu), f$ — измерима.

[1] f — простая.

$$\int\limits_X f \,\mathrm{d}\mu := \sum_{k=1}^p c_k \mu E_k$$

[2] $f \geqslant 0$.

$$\int\limits_X f \,\mathrm{d}\mu := \sup \left\{ \int\limits_X g \,\mathrm{d}\mu \, \middle| \, g\text{-простая}, 0 \leqslant g \leqslant f \right\}$$

[3] f общего вида.

$$f_{+} = \max\{f(x), 0\}$$

$$f_{-} = \max\{-f(x), 0\}$$

$$\int_{X} f d\mu = \int_{X} f_{+} d\mu - \int_{X} f_{-} d\mu$$

Здесь нужно, чтобы хотя бы один из интегралов в разности существовал.

Замечание 1.
$$\int\limits_A f \,\mathrm{d}\mu := \sum_{k=1}^p c_k \mu(E_k \cap A)$$

Замечание 2. Дальше измеримость и неотрицательность или суммируемость f будет периодически называться «обычными» условиями.

Утверждение 1.
$$\int\limits_A f \, \mathrm{d}\mu = \int\limits_X f \cdot \mathbbm{1}_A \, \mathrm{d}\mu.$$

Свойства интеграла от неотрицательных функций Здесь всюду функции неотрицательны и измеримы, что не лишено отсутствия внезапности.

$$\boxed{\mathbf{A}_1}$$
 $0 \leqslant f \leqslant g$. Тогда $\int\limits_{Y} f \,\mathrm{d}\mu \leqslant \int\limits_{Y} g \,\mathrm{d}\mu$.

$$\boxed{{
m A}_2}$$
 $A\subset B\subset X,\,A,B\in \mathcal{A},\,f\geqslant 0$, измерима. Тогда $\int\limits_A f\,{
m d}\mu\leqslant \int\limits_B f\,{
m d}\mu$

 $\boxed{A_3}$ см теорему 1.8.1.

$$\boxed{\mathbf{A}_4} \int_X (f+g) \, \mathrm{d}\mu = \int_X f \, \mathrm{d}mu + \int_X g \, \mathrm{d}mu$$

$$\boxed{\mathbf{A}_5} \int_{\mathbf{Y}} (\lambda g) \, \mathrm{d}\mu = \lambda \int_{\mathbf{Y}} f \, \mathrm{d}mu$$

§ 8 Теорема Беппо Ле́ви

Теорема 1. Пусть (f_n) — измеримы на X, $0 \leqslant f_1 \leqslant \cdots$, $f = \lim_n f_n$. Тогда

$$\int\limits_X f \, \mathrm{d}\mu = \lim_{n \to \infty} \int\limits_X f_n \, \mathrm{d}\mu$$

§ 9 Свойства интеграла от суммируемых функций

Определение 1. f — суммируемая (на X, μ), если $\int\limits_X f \, \mathrm{d} \mu < \infty$. Весь класс суммируемых (на X, μ) функций обозначается через $\mathcal{L}(X, \mu)$.

Здесь всюду функции $\in \mathcal{L}$

$$\boxed{\mathbf{B}_1} \ f \leqslant g \Rightarrow \int_{\mathbf{Y}} f \, \mathrm{d}\mu \leqslant \int_{\mathbf{Y}} g \, \mathrm{d}\mu.$$

$$\boxed{\mathbf{B}_2} \int\limits_X (f \pm g) \, \mathrm{d}\mu = \int\limits_X f \, \mathrm{d}\mu \pm \int\limits_X g \, \mathrm{d}\mu.$$

$$\boxed{\mathbf{B}_3} \int\limits_X \lambda f \, \mathrm{d}\mu = \lambda \int\limits_X f \, \mathrm{d}\mu.$$

$$\boxed{\mathbf{B}_4} |f| \leqslant g \Rightarrow \left| \int_X f \, \mathrm{d}\mu \right| \leqslant \int_X g \, \mathrm{d}\mu.$$

$$\boxed{\mathbf{B}_5} \left| \int_X f \, \mathrm{d}\mu \right| \leqslant \int_X |f| \, \mathrm{d}\mu.$$

§ 10 Счётная аддитивность интеграла

Теорема 1. Пусть задана тройка (X, \mathcal{A}, μ) , f — измерима и $f \geqslant 0 \lor f \in \mathcal{L}$. Пусть к тому жее

$$A, A_{1..} \subset X, A = \bigcup_{n=1}^{\infty} A_n$$

Tог ∂a

$$\int_{A} f \, \mathrm{d}\mu = \sum_{n=1}^{\infty} \int_{A_n} f \, \mathrm{d}\mu$$

§ 11 Абсолютная непрерывность интеграла

Теорема 1. Пусть $f \in \mathcal{L}(X, \mathcal{A}, \mu)$. Тогда

$$\forall \varepsilon > 0 \; \exists \, \delta > 0 \; :: \; \forall \, A \in \mathcal{A}, A \subset X \colon \mu A < \delta \; :: \; \left| \int\limits_A f \, \mathrm{d}\mu \right| < \varepsilon$$

§ 12 Интеграл от непрерывной функции по мере Лебега

Теорема 1. Пусть $f \in C([a;b]), \lambda$ — мера Лебега на X = [a;b]. Тогда

$$f \in \mathcal{L}, \int_{[a:b]} f \, \mathrm{d}\mu = \int_a^b f = F(b) - F(a),$$

 $r \partial e \ F \ - \ nepвooбразная \ f.$

§ 13 Сравнение подходов Римана и Лебега

Сначала вспомним определения того, о чём собираемся рассуждать.

Определение 1 (Интеграл Римана). Пусть $f \in C([a;b])$ $a < x_1 < \cdots < x_{n-1} < x_n = b, \ \xi_i \in [x_i; x_{i+1}]$. Тогда

- $\tau = \{x_1, \dots, x_{n-1}\}$ разбиение отрезка [a;b]
- $\xi = \{\xi_1, \dots, \xi_{n-1}\}$ оснащение разбиения au
- $\Delta x_i = x_{i+1} x_i$ длина i-го отрезка
- $r = r(\tau) = \max_i \{\Delta x_i\}$ ранг разбиения
- $\sigma = \sigma(\tau, \xi, f) := \sum_{i=0}^{n-1} f(\xi_i) \cdot \Delta x_i$ сумма Римана

Сам интеграл определяется как-то так

$$\int_{a}^{b} f \, \mathrm{d}x = \lim_{r(\tau) \to 0} \sigma(\tau, \xi, f)$$

Определение 2 (Интеграл Лебега). см. 1.7.1. В качестве множества X понятное дело, отрезок [a;b].

Пример 1. Пусть X = [0;1]. Тогда $f(x) = \begin{cases} 0, & x \notin \mathbb{Q} \\ 1, & x \in \mathbb{Q} \end{cases}$ интегрируема по Лебегу, но не по Риману.

<+картиночка с обоими интегралами+>

§ 14 Сравнение несобственного интеграла и интеграла Лебега

Теорема 1. Пусть
$$f \geqslant 0 \lor f \in \mathcal{L}([a;b),\lambda)$$
. Тогда $\int_{[a;b)} f \, d\lambda = \int_{a}^{b} f$.

□ *Свести к собственному, а дальше непрерывность меры.

§ 15 Интеграл по дискретной мере и мере, задаваемой плотностью

Теорема 1. Пусть $\mu = \sum_k m_k \delta_{a_k}, \ \{a_k\} \in X \ u \ f \colon X \to \mathbb{R}, \ f \geqslant 0 \ unu \ f \in \mathcal{L}(X,\mu).$ Тогда

$$\int_{X} f \, \mathrm{d}\mu = \sum_{k} f(a_{k}) \cdot \underbrace{m_{k}}_{\mu\{a_{k}\}}$$

□ ХСчётная аддитивность интеграла поможет. 1.10.1

Пример 1. Пусть $\mu A = \# A$. Тогда

$$\sum_{m,n\in\mathbb{N}} = \int_{\mathbb{N}^2} f(m,n) \,\mathrm{d}\mu$$

Причем условия суммируемости ¹ ряда такие же, как у интеграла Лебега:

$$\left[\begin{array}{c} \forall \, m, n \in \mathbb{N} \; :: \; a_{m,n} \geqslant 0 \\ \sum_{m,n \in \mathbb{N}} |a_{m,n}| < \infty \end{array}\right]$$

Определение 1. Пусть задана пара $^{2}(X,\mu), \rho \colon X \to \mathbb{R},$ измерима, $\rho \geqslant 0$. Тогда

- $\nu(E) := \int\limits_E \rho \,\mathrm{d}\mu$ мера, задаваемая плотностью ρ
- ρ плотность меры ν относительно меры μ .

Замечание. Она правда мера, интеграл счётно-аддитивен.

Теорема 2. Пусть выполнены «обычные» условия на f. Тогда $\int\limits_V f \,\mathrm{d} \nu = \int\limits_V f \rho \,\mathrm{d} \mu.$

§ 16 Мера Лебега-Стилтьеса. Интеграл по распределению

Определение 1. Пусть $I \subset \mathbb{R}$, $F: I \to \mathbb{R}$, $F \nearrow$, F(x) = F(x-0) (непрерывна слева).³. Рассмотрим порождённую полуинтервалами $[a;b) \subset I$ σ -алгебру. Введём «объём» $\nu_F: \nu([a;b)) = F(b) - F(a)$.

Тогда мера Лебега-Стилтьеса μ_F — стандартное продолжение ν_F на некоторую σ -алгебру \mathcal{M}_F .

Замечание 1. Здесь надо доказывать cчётную аддитивность, а то как продолжать ν , если она — не мера?

Свойства мемы Лебега-Стилтьеса

Утверждение 1. Пусть $\Delta = [a; b]$. Тогда $\mu \Delta = F(b+0) - F(a)$.

Утверждение 2. Пусть $\Delta = \{a\}$. Тогда $\mu\Delta = F(a+0) - F(a)$.

Утверждение 3. Пусть $\Delta = (a; b)$. Тогда $\mu \Delta = F(b) - F(a + 0)$.

¹ здесь объявим бесконечность приличным значением суммы ряда

²тройка, но все же поняли, что сигма-алгебра имелась в виду

³ А можно и без. Тогда $\nu([a;b)) = F(b-0) - F(a-0)$, см. ??

Лемма 4. Пусть $F \in C(I)$, $\Delta \subset I$. Тогда $\mu_F(\Delta) = \int_{\Delta} F'(t) d\lambda$.

Теорема 5. Пусть $F \nearrow$, кусочно-гладка на $I \subset \mathbb{R}$, а для f выполнены обычные условия $(X = \mathcal{B}, \mu = \mu_F)$. Промежутки гладкости F обозначим за (c_k, c_{k+1}) . Тогда

$$\int_{X} f \, d\mu_F = \sum_{k} \int_{c_k}^{c_{k+1}} fF' \, d\lambda + \sum_{k} f(c_k) \underbrace{\Delta_{c_k} F}_{c_{\kappa a \nu o \kappa} \ 6 \ c_k}$$

Определение 2 (Образ мемы). Пусть (X, \mathcal{A}, μ) — пространство с мемой, $f: X \to Y$. Превратим и Y в пространство с мемой.

1.
$$\mathcal{A}' = \{ E \subset Y \mid f^{-1}(E) \in \mathcal{A} \}.$$

2.
$$\mu' \equiv \nu = \mu \circ f^{-1}$$
.

Теорема 6. Пусть для $g: Y \to \mathbb{R}$ выполнены обычные условия $(\mathcal{A} = \mathcal{A}', \mu = \nu)$. Тогда $\int\limits_{Y} g \, \mathrm{d}\nu = \int\limits_{X} (g \circ f) \, \mathrm{d}\mu$.

Определение 3 (Функция распределения). Пусть задано (X, μ) , $\mu X < +\infty$, $f \colon X \to \mathbb{R}$. Тогда $F(t) := \mu X[f < t]$. Как видно, она возрастает и непрерывна слева.

Теорема 7. Пусть задано (X, μ) , $\mu X < +\infty$, выполнены обычные условия для

$$f. \ Tor \partial a \int\limits_X f \, \mathrm{d}\mu = \int\limits_{-\infty}^{+\infty} t \, \mathrm{d}\mu_F.$$

§ 17 Интеграл Эйлера-Пуассона

Утверждение 1.
$$\int\limits_{\mathbb{R}^2}e^{-(x^2+y^2)}\,\mathrm{d}\lambda_2=\pi$$

§ 18 Вероятностный смысл мемы

<+Табличка с соответствием+>

§ 19 Геометрический смысл меры Лебега. Принцип Кавальери

Определение 1. Пусть задано (X, μ) , P(x) — предикат. Говорят, что P(x) = 1 почти везде (п.в.), если $\mu\{x \mid P(x) = 0\} = 0$.

Определение 2. $f \sim g \Leftrightarrow f(x) = g(x)$ п.в. .

Лемма 1 (Беппо-Леви для рядов). Пусть заданы $(X, \mu), u_n \colon X \to \mathbb{R}, n \in \mathbb{N}, u_n$ измеримы, $u_n \geqslant 0$. Тогда

a)
$$\int_{x} \sum_{n=1}^{\infty} u_n d\mu = \sum_{n=1}^{\infty} \int_{x} u_n d\mu.$$

b) Если эти числа конечны, то ряд $\sum_n u_n \ cx \ n.s.$

Лемма 2 (Беппо-Леви «вверх ногами»). Пусть задано (X, μ) , (f_n) , измеримы, $f_1 \geqslant f_2 \geqslant \cdots \geqslant 0$. Пусть ещё $f_1 \in \mathcal{L}$. Тогда

$$\lim_{n \to \infty} \int_{X} f_n \, \mathrm{d}\mu = \int_{X} \lim_{n \to \infty} f_n \, \mathrm{d}\mu$$

<+Здесь была ещё пара лемм, но они не особо используются дальше. Вроде+>

Определение 3. Пусть $E \subset \mathbb{R}^m \times \mathbb{R}^n \in \mathcal{M}_{m+n}$.

$$\triangleright E_x = \{ y \in \mathbb{R}^n \mid (x, y) \in E \} - \text{«срез»}$$

$$ho$$
 $\Pi_1(E) = \{x \in \mathbb{R}^m \mid E_x \neq \varnothing\}$ — «проекция»

<+картиночка для \mathbb{R}^2 +>

Теорема 3. Пусть $E \in \mathcal{M}_{m+n}, E_x \in \mathcal{M}_n$ п.в. $x, \varphi(x) = \lambda_n(E_x)$ измерима относительно \mathcal{M}_m .

Tог ∂a

$$\lambda_{m+n}(E) = \int_{\mathbb{R}^m} \lambda_n(E_x) \, \mathrm{d}\lambda_m$$

<+много букв+>

Определение 4 (График). $\Gamma^f = \{(x,t) \in \mathbb{R}^{n+1} \mid t = f(x)\}.$

Определение 5 (Подграфик). $\Gamma_{-}^{f} = \{(x,t) \in \mathbb{R}^{n+1} \mid 0 \leqslant t \leqslant f(x)\}.$

Определение 6 (Надграфик). $\Gamma_+^f = \{(x,t) \in \mathbb{R}^{n+1} \mid t \geqslant f(x)\}.$

Теорема 4 (Геометрический смысл интеграла). *Пусть* $f: \mathbb{R}^n \to \mathbb{R}$, измерима, $\geqslant 0$. *Тогда*

- 1. Γ_{-}^{f} измеримо.
- 2. $\lambda_{n+1}\Gamma_-^f = \int_{\mathbb{R}^n} f \, \mathrm{d}\lambda_n$ измеримо.

§ 20 Сведение кратного интеграла к повторному

Будем в дальнейшем обозначать интегрирование по мере Лебега через $\mathrm{d}x$ (ну или $\mathrm{d}y$), размерность определяется из размерности x. Еще обозначим $\mathrm{d}(x,y)$ через $\mathrm{d}x\mathrm{d}y$.

Теорема 1 (Тонелли). Пусть $f: \mathbb{R}^{m+n} \to \mathbb{R}$, измерима, $\geqslant 0$, $x \in \mathbb{R}^m$, $y \in \mathbb{R}^n$. Тогда

$$\iint_{\mathbb{R}^m \times \mathbb{R}^n} f(x, y) \, dx dy = \int_{\mathbb{R}^m} dx \int_{\mathbb{R}^n} f(x, y) \, dy$$

Теорема 2 (Фубини). *Пусть* $f: \mathbb{R}^{m+n} \to \mathbb{R}$, измерима, $\in \mathcal{L}(\mathbb{R}^{n+m}, \lambda_{m+n})$, $x \in \mathbb{R}^m$, $y \in \mathbb{R}^n$. Тогда

$$\iint_{\mathbb{R}^m \times \mathbb{R}^n} f(x, y) \, dx dy = \int_{\mathbb{R}^m} dx \int_{\mathbb{R}^n} f(x, y) \, dy$$

§ 21 Мера Лебега и аффинные преобразования

Главные герои этого параграфа:

 \bigcirc Сдвиг: $T: \mathbb{R}^n \to \mathbb{R}^n$, Tx = x + a, $a \in \mathbb{R}^n$.

 \bigcap Поворот с растяжением: $L \colon \mathbb{R}^n \to \mathbb{R}^n$, L — линейный император.

Утверждение 1. $E \in \mathcal{M} \Rightarrow T(E) \in \mathcal{M}$.

Утверждение 2. $E \in \mathcal{M} \Rightarrow L(E) \in \mathcal{M}$.

Утверждение 3. Пусть $L \colon \mathbb{R}^n \to \mathbb{R}$, линейно. Тогда

$$\exists C \geqslant 0 \forall E \in \mathcal{M} :: \lambda L(E) = C\lambda E$$

Теорема 4. C из прошлой теоремы равно $|\det[L]|$.

<+тут декомпозиция на ортогональный и диагональные операторы и 2 леммы+>

§ 22 Мера образа при гладком отображении

Обозначение. $J_F(x) \equiv \det F'(x)$

Теорема 1. Пусть $E \in \mathcal{M}$, $F: G \subset \mathbb{R}^n \to R^n$, гладкая биекция. Тогда $F(E) \in \mathcal{M}$ и $\lambda F(E) = \int\limits_E |\det F'(x)| \mathrm{d}x$.

□ ∻쏫■

§ 23 Глакая замена переменной в интеграле

Теорема 1. Пусть $F: G \subset \mathbb{R}^n \to R^n$, гладкая биекция. Пусть к тому же $E \subset F(G) \in \mathcal{M}, f: E \to \mathbb{R}$ с обычными условиями. Тогда

$$\int_{E} f(y) dy = \int_{F^{-1}(E)} f(F(x)) \cdot |J_F(x)| dx$$

Пример 1 (Полярные координаты). $\Re |J|=r$

Пример 2 (Сферические координаты). $\Re |J| = r^2 \cos \psi$

§ 24 Предельный переход под знаком интеграла

Определение 1 (Всякие сходимости). Пусть $(f_n): X \to \mathbb{R}, f: X \to \mathbb{R}, \mu$ — мера на X.

$$f_n \to f \qquad := \qquad \forall \, x \in X \, :: \, f_n(x) \to f(x)$$

$$f_n \overset{X}{\to} f \qquad := \qquad \sup_X |f_n - f| \to 0$$

$$f_n \to f \text{ II.B.} \qquad := \qquad \exists \, N \subset X \colon \mu(N) = 0 \, :: \, \forall \, x \in X \setminus N \, :: \, f_n(x) \to f(x).$$

$$f_n \overset{\mu}{\to} f \qquad := \qquad \forall \, \sigma > 0 \, :: \, \mu X[|f_n - f| \geqslant \sigma] \to 0$$

Замечание 1. $f \stackrel{X}{\Longrightarrow} f \Rightarrow f_n \to f \Rightarrow f_n \to f$ п.в. .

Замечание 2. Пусть $\mu X < \infty$, тогда $f_n \to f$ п.в. $\Rightarrow f_n \stackrel{\mu}{\to} f$.

Замечание 3 (Теорема Рисса). $f_n \xrightarrow{\mu} f$ п.в. $\Rightarrow \exists (n_k) :: f_{n_k} \to f$ п.в. .

Теорема 1.
$$f_n \stackrel{X}{\Longrightarrow} f, \mu X < \infty \Rightarrow \int\limits_X f_n d\mu \to \int\limits_X f$$

Теорема 2. см теорему Беппо-Леви (1.8.1) или её вариацию 1.19.2.

Теорема 3 (Фату). Пусть заданы $(X, \mu), f_n \geqslant 0$, измеримы. Тогда

$$\int\limits_X \underline{\lim} \, f_n \, \mathrm{d}\mu \leqslant \underline{\lim} \int\limits_X f_n \, \mathrm{d}\mu$$

§ 25 Теорема Лебега об ограниченной сходимости

Теорема 1. Пусть снова заданы $(X,\mu),\ (f_n)$ измерима, $f_n\to f$ п.в. . K тому же

$$\exists \varphi \in \mathcal{L} :: \forall n | f_n | \leqslant \varphi$$

Тогда

$$\lim_{n \to \infty} \int_{Y} f_n \, \mathrm{d}\mu = \int_{Y} f \, \mathrm{d}\mu$$

Обозначение. (\mathcal{L}) — условия теоремы Лебега об ограниченной сходимости.

Следствие 1. Её ещё можно формулировать локально и для семейства функций зависящих от вещественного параметра. ❖

Обозначение. (\mathcal{L}_{loc}) — условия локальной теормемы Лебега об ограниченной сходимости.

Следствие 2. Непрерывность по параметру при выполнении (\mathcal{L}_{loc}) 🛠

Глава А: Обозначения

Обозначения с лекции

```
a:=b — определение a. \bigsqcup_k A_k — объединение дизъюнктных множеств.
```

 \mathcal{A} Алгебра множеств

Нестандартные обозначения

🛠 — ещё правится. Впрочем, относится почти ко всему.

□ · · · ■ — начало и конец доказательства теоремы

▼···▲ — начало и конец доказательства более мелкого утверждения

:set aflame — набирающему зело не нравится билет

<+что-то+> — тут будет что-то, но попозже

$$a \dots b - [a; b] \cap \mathbb{Z}$$

 — штуки эквивалентны. Часто используется в этом смысле в определениях, когда вводится два разных обозначения одного и того же объекта.

:: В кванторах, «верно, что»

 \mathcal{A}_{σ} Сигма-алгебра множеств