- 11.) Quantifiers are important because they allow us to make more rigorous mathematical statements. For example, we could state that x < y, but without context, the exact meaning of this statement is ambiguous. However, using quantifiers, we can provide context. For example, $\forall x \in \mathbb{R}, \exists y \in \mathbb{R} : x < y$. This gives context to the original statement and allows us to fully understand it.
- 12.) *
- 13.) Assume $x, y \in \mathbb{R}$, x, y > 0, and $n \in \mathbb{N}$. Because it is a biconditional statement, we must prove it both ways:
 - a.) Assume x < y. We can manipulate the inequality as follows:

$$x < y$$

$$nx < ny$$

$$\ln(x^n) < \ln(y^n)$$

$$e^{\ln(x^n)} < e^{\ln(y^n)}$$

$$x^n < y^n$$

Thus $x < y \implies x^n < y^n$.

b.) Assume $x^n < y^n$ and manipulate as follows:

$$x^{n} < y^{n}$$

$$\ln(x^{n}) < \ln(y^{n})$$

$$nx < ny$$

$$x < y$$

Thus $x^n < y^n \implies x < y$.

Thus $x < y \iff x^n < y^n$. Q.E.D.

- 14.) a.) Assume $x \in \mathbb{R}$ and 0 < x < 1. Multiplying each term by x^n gives us $0(x^n) < x(x^n) < 1(x^n) \implies 0 < x^{n+1} < x^n$, thus $x^{n+1} < x^n$. Q.E.D.
 - b.) Assume $x \in \mathbb{R}$ and x > 1. Multiplying both terms by x^n gives us $x(x^n) > 1(x^n) \implies x^{n+1} > x^n$. Q.E.D.
- 15.) Consider the base case where n=1, $2^n=2^1=2\geq 1$, thus the base case holds. Next, suppose the inequality holds for n, and consider n+1. $n+1\leq n+n\leq 2^n+2^n=2(2^n)=2^{n+1}$, thus $n+1\leq 2^{n+1}$, thus the induction step holds. Q.E.D.

- 16.) a.) $s \in \mathbb{R}$ is an upper bound of G if for all $x \in G$, $s \ge x$.
 - b.) G is bounded if there exist $u, v \in \mathbb{R}$ such that u is an upper bound of G and v is a lower bound of G.
 - c.) $n \in \mathbb{R}$ is the infimum of G if n is a lower bound of G and for all $v \in \mathbb{R}$ such that v is a lower bound of G, $n \geq v$.
- 17.) Three upper bounds for S are 11, 12, and 13. Three lower bounds for S are 1, 0, and -1. $\sup(S) = 11$, as 11 is an upper bound of S and 11 < u for all upper bounds u of S. Finally, $\inf(S) = 1$, as 1 is a lower bound of S and 1 > v for all lower bounds v of S.
- 18.) Let $v \in \mathbb{R}$ be a lower bound of B, thus $v \leq x$ for all $x \in B$. Since $A \subseteq B$, we know that for all $a \in A$, $a \in B$, thus for all $a \in A$, $v \leq a$, thus v is a lower bound of A. Q.E.D.
- 19.) Let $s \in \mathbb{R}$ such that $s = \sup(A)$. Since $s = \sup(A)$, $s \le u$ for all upper bounds u of A. Consequently, for $u \in \mathbb{R}$ to be an upper bound of A, $u \ge s$, thus the set of all upper bounds of A is $\{u \in \mathbb{R} : u \ge s\} = [\sup(A), \infty)$. Q.E.D.
- 20.) $S = [-2, 5] = \{x \in \mathbb{R} : -2 \le x \le 5\}$. Consider -2: -2 is by definition a lower bound of S as $-2 \le x$ for all $x \in S$. Next, for establishing a contradiction, suppose v is a lower bound of S and v > -2, but since $-2 \in S$, $v \not \le x$ for all $x \in S$, thus v > -2 cannot be a lower bound of $S \Rightarrow \Leftarrow$, thus $\inf(S) = -2$. Q.E.D.