# Integer Programming ISE 418

Lecture 8

Dr. Ted Ralphs

# **Reading for This Lecture**

- Wolsey Chapter 2
- Nemhauser and Wolsey Sections II.3.1, II.3.6, II.4.1, II.4.2, II.5.4
- "Duality for Mixed-Integer Linear Programs," Güzelsoy and Ralphs

# The Efficiency of Branch and Bound

- In general, our goal is to solve the problem at hand as quickly as possible.
- The overall solution time is the product of the number of nodes enumerated and the time to process each node.
- Typically, by spending more time in processing, we can achieve a reduction in tree size by computing stronger (closer to optimal) bounds.
- This highlights another of the many tradeoffs we must navigate.
- Our goal in bounding is to achieve a balance between the strength of the bound and the efficiency with which we can compute it.
- How do we compute bounds?
  - Relaxation: Relax some of the constraints and solve the resulting mathematical optimization problem.
  - <u>Duality</u>: Formulate a "dual" problem and find a feasible to it.
- In practice, we will use a combination of these two closely-related approaches.

## Relaxation

As usual, we consider the MILP

$$z_{IP} = \max\{c^{\top}x \mid x \in \mathcal{S}\},\tag{MILP}$$

where

$$\mathcal{P} = \{ x \in \mathbb{R}^n_+ \mid Ax \le b \}$$
 (FEAS-LP)

$$S = P \cap (\mathbb{Z}_+^p \times \mathbb{R}_+^{n-p})$$
 (FEAS-MIP)

**Definition 1.** A relaxation of IP is a maximization problem defined as

$$z_R = \max\{z_R(x) \mid x \in \mathcal{S}_R\}$$

with the following two properties:

$$\mathcal{S} \subseteq \mathcal{S}_R$$
 $c^{\top}x \leq z_R(x), \ \forall x \in \mathcal{S}.$ 

## Importance of Relaxations

- The main purpose of a relaxation is to obtain an upper bound on  $z_{IP}$ .
- Solving a relaxation is one simple method of bounding in branch and bound.
- The idea is to choose a relaxation that is much easier to solve than the original problem, but still yields a bound that is "strong enough."
- Note that the relaxation must be solved to optimality to yield a valid bound.
- We consider three types of "formulation-based" relaxations.
  - LP relaxation
  - Combinatorial relaxation
  - Lagrangian relaxation
- Relaxations are also used in some other bounding schemes we'll look at.

# Aside: How Do You Spell "Lagrangian?"

- Some spell it "Lagrangean."
- Some spell it "Lagrangian."
- We ask Google.
- In 2002:
  - "Lagrangean" returned 5,620 hits.
  - "Lagrangian" returned 14,300 hits.
- In 2007:
  - "Lagrangean" returns 208,000 hits.
  - "Lagrangian" returns 5,820,000 hits.
- In 2010:
  - "Lagrangean" returns 110,000 hits (and asks "Did you mean: Lagrangian?")
  - "Lagrangian" returns 2,610,000 hits.
- In 2014 (strange regression!):
  - "Lagrangean" returns 1,140,000 hits
  - "Lagrangian" returns 1,820,000 hits.

## The Branch and Bound Tree as a "Meta-Relaxation"

• The branch-and-bound tree itself encodes a relaxation of our original problem, as we mentioned in the last lecture.

- ullet As observed previously, the set T of leaf nodes of the tree (including those that have been pruned) constitute a valid disjunction, as follows.
  - When we branch using admissible disjunctions, we associate with each  $t \in T$  a polyhedron  $X_t$  described by the imposed branching constraints.
  - The collection  $\{X_t\}_{t\in T}$  then defines a disjunction.
- The *subproblem* associated with node i is an integer program with feasible region  $S \cap P \cap X_t$ .
- The problem

$$\max_{t \in T} \max_{x \in \mathcal{P} \cap X_t} c^{\top} x \tag{OPT}$$

is then a relaxation according to our definition.

- Branch and bound can be seen as a method of iteratively strengthening this relaxation.
- We will later see how we can add valid inequalities to the constraint of  $\mathcal{P} \cap X_t$  to strengthen further.

# **Obtaining and Using Relaxations**

- Properties of relaxations
  - If a relaxation of (MILP) is infeasible, then so is (MILP).
  - If  $z_R(x) = c^{\top}x$ , then for  $x^* \in \operatorname{argmax}_{x \in S_R} z_R(x)$ , if  $x^* \in \mathcal{S}$ , then  $x^*$  is optimal for (MILP).
- The easiest way to obtain relaxations of (MILP) is to relax some of the constraints defining the feasible set S.
- It is "obvious" how to obtain an LP relaxation, but combinatorial relaxations are not as obvious.

# **Example: Traveling Salesman Problem**

The TSP is a combinatorial problem  $(E, \mathcal{F})$  whose ground set is the edge set of a graph G = (V, E).

- V is the set of customers.
- E is the set of travel links between the customers.

A feasible solution is a subset of E consisting of edges of the form  $\{i, \sigma(i)\}$  for  $i \in V$ , where  $\sigma$  is a simple permutation V specifying the order in which the customers are visited.

#### IP Formulation:

$$\sum_{\substack{j=1\\j \notin S}}^{n} x_{ij} = 2 \quad \forall i \in N^{-}$$

$$\sum_{\substack{i \in S\\j \notin S}}^{n} x_{ij} \geq 2 \quad \forall S \subset V, |S| > 1.$$

where  $x_{ij}$  is a binary variable indicating whether  $\sigma(i) = j$ .

#### Combinatorial Relaxations of the TSP

 The Traveling Salesman Problem has several well-known combinatorial relaxations.

#### Assignment Problem

- The problem of assigning n people to n different tasks.
- Can be solved in polynomial time.
- Obtained by dropping the subtour elimination constraints and the upper bounds on the variables.

### • Minimum 1-tree Problem

- A 1-tree in a graph is a spanning tree of nodes  $\{2, \ldots, n\}$  plus exactly two edges incident to node one.
- A minimum 1-tree can be found in polynomial time.
- This relaxation is obtained by dropping all subtour elimination constraints involving node 1 and also all degree constraints not involving node 1.

# **Exploiting Relaxations**

- How can we use our ability to solve a relaxation to full advantage?
- The most obvious way is simply to straightforwardly use the relaxation to obtain a bound.
- However, by solving the relaxation repeatedly, we can get additional information.
- ullet For example, we can generate extreme points of  $\operatorname{conv}(\mathcal{S}_R)$ .
- In an indirect way (using the Farkas Lemma), we can even obtain facet-defining inequalities for  $conv(S_R)$ .
- We can use this information to strengthen the original formulation.
- This is one of the basic principles of many solution methods.

## **Lagrangian Relaxation**

- A Lagrangian relaxation is obtained by relaxing a set of constraints from the original formulation.
- However, we also try to improve the bound by modifying the objective function, penalizing violation of the dropped constraints.
- Consider a pure IP defined by

$$\max c^{\top} x$$

$$\text{s.t. } A'x \le b'$$

$$A''x \le b''$$

$$x \in \mathbb{Z}_+^n,$$
(IP)

where  $S_R = \{x \in \mathbb{Z}_+^n \mid A'x \leq b'\}$  bounded and optimization over  $S_R$  is "easy."

Lagrangian Relaxation:

$$LR(u): z_{LR}(u) = \max_{x \in S_R} \{(c - uA'')x + ub''\}.$$

# **Properties of the Lagrangian Relaxation**

- For any  $u \geq 0$ , LR(u) is a relaxation of (IP) (why?).
- Solving LR(u) yields an upper bound on the value of the optimal solution.
- We will show later that this bound is at least as good as the bound yielded by solving the LP relaxation.
- Generally, we try to choose a relaxation that allows LR(u) to be evaluated relatively easily.
- $\bullet$  Recalling LP duality, one can think of u as a vector of "dual variables."

# A (Very) Brief Tour of Duality

- Suppose we could obtain an optimization problem "dual" to (MILP) similar to the standard one we can derive for an LP.
- Such a dual allows us to obtain bounds on the value of an optimal solution.
- The advantage of a dual over a relaxation is that we need not solve it to optimality<sup>1</sup>.
- Any feasible solution to the dual yields a valid bound.
- For (MILP), there is apparently no single standard "dual" problem.
- Nevertheless, there is a well-developed duality theory that generalizes that of LP duality, which we summarize next.
- This duality theory will be discussed in more detail later in the course.

<sup>&</sup>lt;sup>1</sup>Note, however, that duals and relaxations are close relatives in a sense we will discuss later

# **A Quick Overview of LP Duality**

We consider the LP relaxation of (MILP) in standard form

$$\left\{ x \in \mathbb{R}^n_+ \mid \bar{A}x = b \right\},\tag{LP}$$

where  $\bar{A} = [A \mid I]$  and x is extended to include the slack variables.

- Recall that there always exists an optimal solution that is basic.
- We construct basic solutions by
  - Choosing a basis B of m linearly independent columns of A.
  - Solving the system  $Bx_B = b$  to obtain the values of the basic variables.
  - Setting remaining variables to value 0.
- If  $x_B \ge 0$ , then the associated basic solution is *feasible*.
- With respect to any basic feasible solution, it is easy to determine the impact of increasing a given activity.
- The reduced cost

$$\bar{c}_j = c_j - c_B^{\mathsf{T}} B^{-1} \bar{A}_j.$$

of (nonbasic) variable j tells us how the objective function value changes if we increase the level of activity j by one unit.

#### The LP Value Function

- From the resource (dual) perspective, the quantity  $u=c_BB^{-1}$  is a vector that tells us the marginal economic value of each resource.
- $\bullet$  Thus, the vector u gives us a *price* for each resource.
- This price vector can be seen as the gradient of the value function

$$\phi_{LP}(\beta) = \max_{x \in \mathcal{S}(\beta)} c^{\top} x, \tag{LPVF}$$

of an LP, where for a given  $\beta \in \mathbb{R}^m$ ,  $\mathcal{S}(d) = \{x \in \mathbb{R}^n_+ \mid \bar{A}x = d\}$ .

- We let  $\phi_{LP}(\beta) = -\infty$  if  $\beta \in \Omega = \{\beta \in \mathbb{R}^m \mid \mathcal{S}(\beta) = \emptyset\}$ .
- These gradients can be seen as *linear over-estimators* of the value function.
- The dual problems we'll consider are essentially aimed at producing such over-estimators.
- We'll generalize to *non-linear functions*.

# **LP Value Function Example**

$$\phi_{LP}(\beta) = \min 6y_1 + 7y_2 + 5y_3$$
 s.t.  $2y_1 - 7y_2 + y_3 = \beta$  
$$y_1, y_2, y_3 \in \mathbb{R}_+$$



Note that we are minimizing here!

#### The LP Dual

• To understand the structure of the value function in more detail, first note that it is easy to see  $\phi_{LP}$  is concave.

- Now consider an optimal basis matrix B for the instance (LP).
  - The gradient of  $\phi_{LP}$  at b is  $\hat{u} = c_B B^{-1}$ .
  - Since  $\phi_{LP}(b) = \hat{u}^{\top}b$  and  $\phi_{LP}$  is concave, we know that  $\phi_{LP}(\beta) \leq \hat{u}^{\top}\beta$  for all  $\beta \in \mathbb{R}^m$ .
- The traditional LP dual problem can be viewed as that of finding a linear function that bounds the value function from above and has minimum value at b.

# The LP Dual (cont'd)

• As we have seen, for any  $u \in \mathbb{R}^m$ , the following gives a upper bound on  $\phi_{LP}(b)$ .

$$g(u) = \max_{x \ge 0} \left[ c^{\top} x + u^{\top} (b - \bar{A}x) \right] \ge c^{\top} x^* + u^{\top} (b - \bar{A}x^*)$$
$$= c^{\top} x^*$$
$$= c^{\top} x^*$$
$$= \phi_{LP}(b)$$

• With some simplification, we can obtain an explicit form for this function.

$$g(u) = \max_{x \ge 0} \left[ c^{\top} x + u^{\top} (b - \bar{A}x) \right]$$
$$= u^{\top} b + \max_{x \ge 0} (c^{\top} - u^{\top} \bar{A}) x$$

Note that

$$\max_{x \ge 0} (c^{\top} - u^{\top} \bar{A}) x = \begin{cases} 0, & \text{if } c^{\top} - u^{\top} \bar{A} \le \mathbf{0}^{\top}, \\ \infty, & \text{otherwise,} \end{cases}$$

# The LP Dual (cont'd)

So we have

$$g(u) = \begin{cases} u^{\top}b, & \text{if } c^{\top} - u^{\top}\bar{A} \leq \mathbf{0}^{\top}, \\ \infty, & \text{otherwise,} \end{cases}$$

which is again a linear over-estimator of the value function.

 $\bullet$  An LP dual problem is obtained by computing the strongest linear over-estimator with respect to b.

$$\min_{u \in \mathbb{R}^m} g(u) = \min \ b^{\top} u$$
  
s.t.  $u^{\top} \bar{A} \ge c^{\top}$  (LPD)

# Combinatorial Representation of the LP Value Function

• From the fact that there is always an extremal optimum to (LPD), we conclude that the LP value function can be described combinatorially.

$$\phi_{LP}(\beta) = \min_{u \in \mathcal{E}} u^{\top} \beta \tag{LPVF}$$

for  $\beta \in \mathbb{R}^m$ , where

$$\mathcal{E} = \left\{ c_B \bar{A}_E^{-1} \mid E \text{ is the index set of a dual feasible bases of } \bar{A} \right\}$$

• Note that  $\mathcal{E}$  is also the set of extreme points of the *dual polyhedron*  $\{u \in \mathbb{R}^m \mid u^\top \bar{A} \geq c^\top\}.$ 

## The MILP Value Function

- We now generalize the notions seen so far to the MILP case.
- The value function associated with (MILP) is

$$\phi(\beta) = \max_{x \in \mathcal{S}(\beta)} c^{\top} x \tag{VF}$$

for  $\beta \in \mathbb{R}^m$ , where  $S(\beta) = \{x \in \mathbb{Z}_+^p \times \mathbb{R}_+^{n-p} \mid \bar{A}x = \beta\}$ .

• Again, we let  $\phi(\beta) = -\infty$  if  $\beta \in \Omega = \{\beta \in \mathbb{R}^m \mid \mathcal{S}(\beta) = \emptyset\}$ .

# **Example: MILP Value Function**

$$\phi(\beta) = \min \quad \frac{1}{2}x_1 + 2x_3 + x_4$$
s.t  $x_1 - \frac{3}{2}x_2 + x_3 - x_4 = \beta$  and  $x_1, x_2 \in \mathbb{Z}_+, x_3, x_4 \in \mathbb{R}_+.$ 



Note again that we are minimizing here!

#### **A General Dual Problem**

- A dual function  $F: \mathbb{R}^m \to \mathbb{R}$  is one that satisfies  $F(\beta) \ge \phi(\beta)$  for all  $\beta \in \mathbb{R}^m$ .
- How to select such a function?
- We may choose one that is easy to construct/evaluate and/or for which  $F(b) \approx \phi(b)$ .
- This results in the following generalized dual of (MILP).

$$\min \{F(b): F(\beta) \ge \phi(\beta), \ \beta \in \mathbb{R}^m, F \in \Upsilon^m\}$$
 (D)

where  $\Upsilon^m \subseteq \{f \mid f : \mathbb{R}^m \to \mathcal{R}\}.$ 

- We call  $F^*$  strong for this instance if  $F^*$  is a feasible dual function and  $F^*(b) = \phi(b)$ .
- This dual instance always has a solution  $F^*$  that is strong if the value function is bounded and  $\Upsilon^m \equiv \{f \mid f : \mathbb{R}^m \to \mathbb{R}\}$ . Why?

#### **LP Dual Function**

 It is straightforward to obtain a dual function: simply take the dual of the LP relaxation.

- In practice, working with this dual just means using dual simplex to solve the relaxations.
- Note again that since dual simplex maintains a dual feasible solution at all times, we can stop anytime we like.
- In particular, as soon as the upper bound goes below the current lower bound, we can stop solving the LP.
- This can save significant effort.
- With an LP dual, we can "close the gap" by adding valid inequalities to strengthen the LP relaxation.
- The size of the gap in this case is a measure of how well we are able to approximate the convex hull of feasible solutions (near the optimum).

## The Lagrangian Dual

We can obtain a dual function from a Lagrangian relaxation by letting

$$L(\beta, u) = \max_{x \in \mathcal{S}_R(\beta)} (c - uA'')x + u\beta'',$$

where 
$$S_R(d) = \{x \in \mathbb{Z}_+^n \mid A'x \le d\}$$

ullet Then the Lagrangian dual function,  $\phi_{LD}$ , is

$$\phi_{LD}(\beta) = \min_{u > 0} L(\beta, u)$$

• We will see a number of ways of computing  $\phi_{LD}(b)$  later in the course.

#### **Dual Functions from Branch-and-Bound**

As before, let  $\mathcal{T}$  be set of the terminating nodes of the tree. Then, assuming we are branching on variable disjunctions, in a leaf node  $t \in \mathcal{T}$ , the relaxation we solve is:

$$\phi^t(\beta) = \max c^\top x$$
 s.t.  $\bar{A}x = \beta,$  
$$l^t \le x \le u^t, x \ge 0$$

The dual at node t:

$$\phi^t(\beta) = \min \left\{ \pi^t \beta + \underline{\pi}^t l^t + \bar{\pi}^t u^t \right\}$$
s.t. 
$$\pi^t A + \underline{\pi}^t + \bar{\pi}^t \ge c^\top$$

$$\underline{\pi} \ge 0, \bar{\pi} \le 0$$

We obtain the following strong dual function:

$$\max_{t \in \mathcal{T}} \{ \hat{\pi}^t \beta + \underline{\hat{\pi}}^t l^t + \hat{\bar{\pi}}^t u^t \},$$

where  $(\hat{\pi}^t, \hat{\underline{\pi}}^t, \hat{\bar{\pi}}^t)$  is an optimal solution to the dual at node t.

# The Duality Gap

- In most cases, the the value of an optimal solution to a given dual problem is not equal to the value of an optimal solution to (MILP).
- The difference between these values for a particular instance is known as the *duality gap* or just *the gap*.
- It is typically reported as a percentage of the value of the best known solution (this is called the *relative gap*).
- The size of the relative gap is a rough measure of the difficulty of a problem.
- It can help us estimate how long it will take to solve a given problem by branch and bound.

# **Strong Duality**

- When the duality gap is guaranteed to be zero, we say we have a *strong* dual.
- For linear programs, the LP dual is a strong dual.
- For integer programs, the dual (D) is a strong dual, since the value function itself is a solution for which the gap is zero.
- Of course, obtaining a description of the value function is more difficult than solving theinteger program itself.