

RESONANCES AND COUPLING

Eric Prebys, UC Davis

Perturbations (non-linear or otherwise)

In our earlier lectures, we found the general equations of motion

$$x'' = -\frac{B_y(x,s)}{(B\rho)} \left(1 + \frac{x}{\rho}\right)^2 + \frac{\rho + x}{\rho^2}$$
$$y'' = \frac{B_x(y,s)}{(B\rho)} \left(1 + \frac{x}{\rho}\right)^2$$

- We initially considered only the linear fields, but now we will bundle all additional terms into ΔB
 - non-linear plus linear field errors
- We see that if we keep the lowest order term in ΔB , we have

This part gave us the Hill's equation

$$B_{y} = B_{0} + B'x + \Delta B_{y}(x,s)$$

$$B_{x} = B'y + \Delta B_{x}(y,s)$$

Move this to the other side of the equation

$$x'' + \left(\frac{1}{\rho^2} + \frac{B'}{(B\rho)}\right) x = -\frac{1}{(B\rho)} \Delta B_y(x,s)$$
$$y'' - \frac{B'}{(B\rho)} y = \frac{1}{(B\rho)} \Delta B_x(y,s)$$

Floquet Transformation

- Evaluating these perturbed equations can be very complicated, so we will seek a transformation which will simplify things
- Our general equation of motion is

$$x(s) = A\sqrt{\beta(s)}\cos(\psi(s) + \delta)$$

 This looks quite a bit like a harmonic oscillator, so not surprisingly there is a transformation which looks exactly like harmonic oscillations

$$\xi(s) = \frac{x}{\sqrt{\beta}}$$

$$\phi = \frac{\psi}{v} = \frac{1}{v} \int \frac{1}{\beta} ds \Rightarrow \frac{d\phi}{ds} = \frac{1}{v\beta}$$

Plugging back into the Equation

$$\frac{d\phi}{ds} = \frac{d\phi}{d\psi} \frac{d\psi}{ds} = \frac{1}{v\beta}$$

$$x = \sqrt{\beta}\xi$$

$$x' = \frac{1}{2} \frac{1}{\sqrt{\beta}} \beta' \xi + \beta^{1/2} \frac{d\xi}{d\phi} \frac{d\phi}{ds} = -\alpha \frac{1}{\sqrt{\beta}} \xi + \frac{1}{v\sqrt{\beta}} \dot{\xi}$$

$$= \frac{1}{v\sqrt{\beta}} (\dot{\xi} - \alpha v \xi)$$

$$x'' = \frac{\alpha}{v\beta^{3/2}} (\dot{\xi} + \alpha v \xi) + \frac{1}{v\sqrt{\beta}} (\frac{\ddot{\xi}}{v\beta} - \alpha' v \xi - \frac{\alpha \dot{\xi}}{\beta}) =$$

$$= \frac{\ddot{\xi} - v^2 (\alpha^2 \xi + \beta \alpha') \xi}{v^2 \beta^{3/2}}$$

$$x'' + K(s)x = \frac{\ddot{\xi} - v^2(\alpha^2 + \beta\alpha')\xi}{v^2 \beta^{3/2}} + K(s)\beta^{1/2}\xi$$
$$= \frac{\ddot{\xi} - v^2(\alpha^2 + \beta\alpha' - \beta^2 K)\xi}{v^2 \beta^{3/2}} = -\frac{\Delta B}{(B\rho)}$$

 When we derived chromaticity in terms of lattice functions ("Off-momentum particles lecture), we showed that:

$$K\beta^2 - \beta\alpha' - \alpha^2 = 1$$

So our rather messy equation simplifies

$$\frac{\ddot{\xi} - v^2 \left(\alpha^2 + \beta \alpha' - \beta^2 K\right) \xi}{v^2 \beta^{3/2}} = -\frac{\Delta B}{(B\rho)}$$

$$\Rightarrow \ddot{\xi} + v^2 \xi = -v^2 \beta^{3/2} \frac{\Delta B}{(B\rho)}$$
Harmonic Oscillator Driving Term

ξ

 $\nu\phi + \delta$

Understanding Floquet Coordinates

• In the absence of nonlinear terms, our equation of motion $\dot{\xi}$ is simply that of a harmonic oscillator

$$\ddot{\xi}(\phi) + v^2 \xi(\phi) = 0$$

and we write down the solution

$$\xi(\phi) = a\cos(v\phi + \delta)$$

$$\dot{\xi}(\phi) = -av\sin(v\phi + \delta)$$

- Thus, motion is a circle in the $\left(\varepsilon, \frac{\dot{\varepsilon}}{v}\right)$ plane
- · Using our standard formalism, we can express this as

$$\begin{split} \xi(\phi) &= \xi_0 \cos\left(v\phi\right) + \frac{\dot{\xi}_0}{v} \sin\left(v\phi\right) \\ \dot{\xi}(\phi) &= -\xi_0 v \sin\left(v\phi\right) + \dot{\xi}_0 \cos\left(v\phi\right) \end{split} \Rightarrow \begin{pmatrix} \xi(\phi) \\ \dot{\xi}(\phi) \end{pmatrix} = \begin{pmatrix} \cos\left(v\phi\right) & \tilde{\beta} \sin\left(v\phi\right) \\ -\frac{1}{\tilde{\beta}} \sin\left(v\phi\right) & \cos\left(v\phi\right) \end{pmatrix} \begin{pmatrix} \xi_0 \\ \dot{\xi}_0 \end{pmatrix}; \text{ where } \tilde{\beta} \equiv \frac{1}{v} \end{split}$$

- A common mistake is to view φ as the phase angle of the oscillation.
 - $v\phi$ the phase angle of the oscillation
 - ϕ advances by 2π in one revolution, so it's *related* (but NOT equal to!) the angle around the ring. unnormalized!

Note:
$$x_{\text{max}}^2 = \beta \varepsilon = \beta \xi_{\text{max}}^2 = \beta a^2 \Rightarrow a^2 = \epsilon$$

Note:

Perturbations

 In general, resonant growth will occur if the perturbation has a component at the same frequency as the unperturbed oscillation; that is if

 $\Delta B(\xi,\phi) = ae^{i\nu\phi} + (...) \Rightarrow \text{resonance}!$

We will expand our magnetic errors at one point in φ as

$$\Delta B(x) = b_0 + b_1 x + b_2 x^2 + b_3 x^3 \dots; b_n = \frac{1}{n!} \frac{\partial^n B}{\partial x^n} \Big|_{x=y=0}$$

$$x = \sqrt{\beta}\xi$$

$$x = \sqrt{\beta \xi}$$

$$-\frac{v^2 \beta^{3/2} \Delta B}{(B\rho)} = -\frac{v^2}{(B\rho)} (\beta^{3/2} b_0 + \beta^{4/2} b_1 \xi + \beta^{5/2} b_2 \xi^2 + ...)$$

$$\ddot{\xi} + v^2 \xi = -\frac{v^2}{(B\rho)} \sum_{n=0}^{\infty} \beta^{(n+3)/2} b_n \xi^n$$

- But in general, b_n is a function of ϕ , as is β , so we bundle all the dependence into harmonics of ϕ $\frac{1}{(B\rho)} \beta^{(n+3)/2} b_n = \sum_{m=-\infty}^{\infty} C_{m,n} e^{im\phi}$
- So the equation associated with the nth driving term becomes

$$\ddot{\xi} + v^2 \xi = -v^2 \sum_{m=-\infty}^{\infty} C_{m,n} \xi^n e^{im\varphi}$$

Remember! ξ,β , and b_n are all functions of (only) ϕ

Calculating Driving Terms

 $\int_{0}^{2\pi} e^{in\phi} e^{-im\phi} d\phi = 2\pi \delta_{m,n}$

• We can Fourier transform to calculate the $C_{m,n}$ coefficients based on the measured fields 1 1 2π

 $C_{m,n} = \frac{1}{(B\rho)} \frac{1}{2\pi} \int_{0}^{2\pi} \beta^{(n+3)/2} b_n e^{-im\phi} d\phi$

But we generally know things as functions of s, so we use $d\phi = \frac{1}{v}d\psi = \frac{1}{v}\frac{d\psi}{ds}ds = \frac{1}{v\beta}ds$ to get

$$C_{m,n} = \frac{1}{(B\rho)} \frac{1}{2\pi \nu} \oint \beta^{(n+1)/2}(s) b_n(s) e^{-im\phi} ds$$

Where (for a change) we have explicitly shown the *s* dependent terms.

• We're going to assume small perturbations, so we can approximate β with the solution to the homogeneous equation $\ddot{\xi} + v^2 \xi = -v^2 \sum_{m,n}^{\infty} C_{m,n} \xi^n e^{im\varphi}$

$$\xi(\phi) \approx a\cos(v\phi)$$
; (define starting point so $\delta = 0$)

$$\xi^{n} = a^{n} \cos^{n} \left(v \phi \right) = \operatorname{Re} \left[a^{n} \frac{1}{2^{n}} \sum_{\substack{k=-n \\ \Delta k=2}}^{n} \left(\begin{array}{c} n \\ \frac{n-k}{2} \end{array} \right) e^{ivk\phi} \right]; \text{ where } \left(\begin{array}{c} i \\ j \end{array} \right) = \frac{i!}{j!(i-j)!}$$

Example

$$\cos^3\theta = \frac{1}{2^3} \left(\begin{pmatrix} 3 \\ 3 \end{pmatrix} \cos(-3\theta) + \begin{pmatrix} 3 \\ 2 \end{pmatrix} \cos(-\theta) + \begin{pmatrix} 3 \\ 1 \end{pmatrix} \cos(\theta) + \begin{pmatrix} 3 \\ 0 \end{pmatrix} \cos(3\theta) \right) = \frac{3}{4} \cos 3\theta + \frac{1}{4} \cos \theta$$

Plugging this in, we can write the nth driving term as

$$-v^{2} \left(\frac{a}{2}\right)^{n} \sum_{\substack{k=-n\\ \Delta k=2}}^{n} \left(\frac{n}{n-k}\right) \sum_{m=-\infty}^{\infty} C_{m,n} e^{i(m+\nu k)\phi} \qquad \qquad \left(\begin{array}{c} i\\ j \end{array}\right) \equiv \frac{i!}{j!(i-j)!}$$

We see that a resonance will occur whenever

$$m + vk = \pm v$$
 $-\infty < m < \infty$
 $v(1 \mp k) = \pm m$ $-n \le k \le n$ $(\Delta k = 2)$

Since m and k can have either sign, we can cover all possible combinations by writing

$$v_{\text{resonant}} = \frac{m}{1-k}$$

- Reminder
 - n= power of multipole expansion (quad=1, sextupole=2, octupole=2, etc)
 - m= Fourier component of anomalous magnetic component when integrated around the ring.

Types of Resonances

Magnet Type	n	k	Order 1- <i>k</i>	Resonant tunes v=m/(1-k)	Fractional Tune at Instability
Dipole	0	0	1	т	0,1
Quadrupole	1	1	0	none (tune shift)	-
	1	-1	2	m/2	0,1/2,1
Sextupole	2	2	1	m	0,1
	2	0	1	m	0,1
	2	-2	3	m/3	0,1/3,2/3,1
Octupole	3	3	2	m/2	0,1/2,1
	3	1	0	None	-
	3	-1	2	m/2	0,1/2,1
	3	-3	4	m/4	0,1/4,1/2,3/4,1

USPAS Fundamentals, June 4-15, 2018

Example: Sextupole (Third Order Resonance)

- The third order resonance will occur at tunes near m/3.
- The strength of the resonance will be given by

Sextupole term
$$A_{m,2} = \oint \beta^{3/2} \frac{B''}{2(B\rho)} \cos(3\psi) ds$$
Convert back to ordinary phase angle
$$3v\phi = 3\psi$$

$$B_{m,2} = \oint \beta^{3/2} \frac{B''}{2(B\rho)} \sin(3\psi) ds$$

$$B'' = \frac{b_2}{2}$$

 It will perturb the stable region of phase space into a triangle

Relative size of Terms determine Orientation in phase space

Strength of Resonance

The size of the stable region in phase space with shrink with increased driving strength or by moving the tune closer to m/3.

x (mm)

$$\delta v = v - \frac{m}{3}$$

$$A_{m,2} = \oint \beta^{3/2} \frac{B''}{2(B\rho)} \cos(3\psi) ds \quad [L]^{-1/2}$$

$$B_{m,2} = \oint \beta^{3/2} \frac{B''}{2(B\rho)} \sin(3\psi) ds \quad [L]^{-1/2}$$

$$\epsilon_{\text{max}} = \frac{64\pi^2 \delta v^2}{3(A_{m,2}^2 + B_{m,2}^2)}$$

$$\delta v = \frac{\sqrt{3\epsilon (A_{m,2}^2 + B_{m,2}^2)}}{2(B\rho)}$$

Simulation of Third Integer Extraction*

Application of Resonance

• If we increase the driving term (or move the tune closer to m/3), then the area of the triangle will shrink, and particles which were inside the separatrix will now find themselves outside

 These will stream out along the asymptotes at the corners.

 These particles can be intercepted by an extraction channel

- →Slow extraction (ms to many seconds)
- Very common technique

USPAS Fundamentals, June 4-15, 2018

Example: Mu2e Experiment 8 GeV Extraction

Use sextupoles to drive 3rd integer resonance

Moving tune closer to m/3 will reduce stable phase space, causing beam to be removed at a steady rate

Electrostatic septum at 80 kV/1cm deflects beam into a downstream Lambertson magnet

Coupling

Introduce skew-quadrupole term

$$\frac{\partial B_x}{\partial x} = -\frac{\partial B_y}{\partial y} \neq 0$$

$$x' \propto -\frac{\partial B_y}{\partial x} x - \frac{\partial B_y}{\partial y} y$$
 Planes coupled x and y motion not independent $y' \propto \frac{\partial B_x}{\partial y} y + \frac{\partial B_x}{\partial x} x$

$$y' \propto \frac{\partial B_x}{\partial y} y + \frac{\partial B_x}{\partial x} x$$

General Transfer Matrix

$$\begin{pmatrix} x \\ x' \\ y \\ y' \end{pmatrix} = M \begin{pmatrix} x_0 \\ x'_0 \\ y_0 \\ y'_0 \end{pmatrix}$$

Normal Quad

$$\frac{1}{f} \equiv q = \frac{B'l}{(B\rho)}$$

$$\mathbf{M}_{\mathbf{Q}} = \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ -q & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & q & 1 \end{array} \right)$$

Skew quad

$$B_x = \tilde{B}'x \rightarrow \Delta y' = \frac{\tilde{B}'l}{(B\rho)}x \equiv \tilde{q}x$$

$$B_{x} = \tilde{B}'x \to \Delta y' = \frac{\tilde{B}'l}{(B\rho)}x \equiv \tilde{q}x$$

$$B_{y} = -\tilde{B}'y \to \Delta x' = \frac{\tilde{B}'l}{(B\rho)}y \equiv \tilde{q}y$$

So the transfer matrix for a skew quad would be:

$$\mathbf{M}_{\tilde{\mathbf{Q}}} = \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & \tilde{q} & 0 \\ 0 & 0 & 1 & 0 \\ \tilde{q} & 0 & 0 & 1 \end{array} \right)$$

For a normal quad rotated by ϕ it would be

$$\mathbf{M}_{\mathbf{Q}} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -q\cos 2\phi & 1 & -q\sin 2\phi & 0 \\ 0 & 0 & 1 & 0 \\ -q\sin 2\phi & 0 & q\cos 2\phi & 1 \end{pmatrix}$$

Coupled Tunes

$$\overline{v} = \frac{\left(v_x + v_y\right)}{2}$$

$$\delta v = v_y - v_x$$

$$v_{\pm} = \overline{v} \pm \frac{\delta v}{2} \sqrt{1 + \frac{\kappa^2 v}{4\pi^2 \delta v^2}}$$

$$= \overline{v} \pm \frac{1}{4\pi} \sqrt{4\pi^2 \delta v^2 + \kappa^2}$$

If there's coupling, then there will always be a tune split

$$v_x = v_y = v$$

$$\Rightarrow \delta v = 0$$

$$\Delta v_{min} = v_{+} - v_{-}$$

$$= \frac{\kappa}{2\pi} = \frac{\sqrt{\beta_{x}\beta_{y}}}{2\pi} \tilde{q}$$

$$\kappa \equiv \tilde{q} \sqrt{\beta_x \beta_y}$$

If there's no coupling, then

$$v_{\pm} = \overline{v} \pm \frac{\delta v}{2}$$
$$= v_{x,y}$$

Example: Tune Coupling in LHC

Coupling and Resonances

Although we won't derive it in detail, it's clear that if motion is coupled, we can analyze the system in terms of the normal coordinates, and repeat the analysis in the last chapter. In this case, the normal tunes will be linear combinations of the tunes in the two planes, and so the general condition for resonance becomes.

 $k_x v_x \pm k_y v_y = m$ $(k_x, k_y, m \text{ all integers})$

This appears as a set of crossing lines in the nx,ny "tune space". The width of individual lines depends on the details of the machine, and one tries to pick a "working point" to avoid the strongest resonances.

