확률통계및프로그래밍 Learning Journal

Estimation of a Random Variable

세종대학교 지능기전공학부 무인이동체공학전공 21011890 노지민

1. 서 론

1.1 Estimation 이론의 배경

우리의 주변에는 여러가지의 신호가 뒤얽혀 많은 현상이 일어난다. 이 현상에는 실험을 통해 관측이 되는 경우도 있지만, 모든 현상이 전부 관측을 통해 분석할 수는 없다. 이때 추정이론을 활용해 기존의 Random Variable 를 활용하여 우리의 관심의 대상이 되는 새로운 신호에 대한 Random Variable 를 모델링 할 수 있다. 추정과정을 통해엔지니어들은 보다 많은 신호에 대한 처리, 활용으로 이어졌고, 추정이론의 중요성이 더욱 강조되어 여러가지 추정 기법이 탄생했다.

1.2 연구의 목적

신호 추정은 아무런 관찰이 없는 경우의 Random Variable 추정, 하나의 사건이 주어졌을 때의 추정, 비슷한 실험에서의 Random Variable 가 주어졌을 때의 추정 등 매우 광범위하다. 본 저널에서는 다른 랜덤 변수가 주어졌을 때의 최적의 추정에 대한 예제의 추정 과정을 전개하는 방식으로 추정이론에 대해 전개하여 심화적으로 탐구하고자한다.

1.3 저널의 구성

본 저널을 본론에서 추정에 대한 기본적인 개념을 다루고, 최대 사후확률의 추정(MAP)과 최대가능도의 추정(ML)의 방법론을 소개한 뒤, 본격적으로 시뮬레이션 과정을 통해 추정이론을 전개하는 구성으로 연구를 진행하였다.

2. 본 론

2.1 Estimation

지금까지는 확률 모델링을 위해 확률 실험의 결과값을 사용했지만, Estimation 에서는 관측된 값을 이용해 관측되지 않은 Random Variable 의 표본 값에 대한 근사 값을 계산하기 위해 관측된 값을 사용한다. Random Variable 는 쉽게 구할 수 없거나, 표본값을 얻을 수 없는 경우도 있는데, 이때의 Estimation을 Prediction이라고 한다. 이후의 부분실험으로 생성되는 Random Variable 를 추정하기 위해 앞선 부분실험에서 생성되는 Random Variable를 활용해 계산하다. 이때 X 가 추정하려고 하는 Random Variable 이라면, 추정 값인, 또 다른 Random Variable 는 \hat{X} 기호로 나타낸다.

어떤 확률 실험이 Random Variable X 를 생성한다. 하지만 이때,X를 직접 관찰할 수 없다. 그러나 이 때의 X 는 X 의 표본 값에 대한 부분적인 정보를 제공하는 Random Variable 나 사건에 대해 관찰할 수 있다. 그러므로 X는 연속적이거나 이산적일 수 도 있다. 만약 X 가 이산 RV 라면, X 를 추정하기 위해 가설 검증법을 사용할 수 있다. 이때 각각의 $x_i \in S_x$ 에 대해 확률 모델 $p_x(x_i) = 1$, $p_x(x) = 0$, $x \neq x_i$ 로서 H_i 를 정의할 수 있는데, 가설의 검증을 통해, 주어진 관찰로부터 가장 부합하는 x_i 를 선택 할 수 있다. 이 과정에서 x;의 결과값의 정확도를 최대화하는 확률을 높일 수 있다. 하지만, 부정확 한 결과값이 초래하는 영향을 고려하지 못한다. 그러므로 X 의 값에 대하여 해답이 근접하거나 동 떨어진 척도에 관계없이 모두 같은 방식으로 오차 들을 다루게 된다. 그러므로 위의 추정과정의 목 적은 평균적으로 X의 실제 값에 근접한 \hat{X} 의 추정 이다. 이렇듯 X의 실제 값과 거리가 멀 확률이 낮 은 \hat{X} 를 찾기 위해 추정의 질적 척도를 아래 수식 의 Mean Square Error 를 사용한다.

$$e = E[(X - \hat{X})^2]$$

Mean Square Error 는 추정의 정확도를 정의하는 많은 방법 중 하나인데, 특정한 응용분야에 적합 하게 추정오차의 절댓값의 평균인 $E[\mid X - \hat{X} \mid]$ 와 추정오차의 절댓값의 최대값인 $\max \mid X - \hat{X} \mid$ 을 사용하기도 한다. 이 중 Mean Square Error 는 수학적인 분석을 제공해 계산하기 쉬운 추정을 할 수 있기 때문에 정확도의 척도로 가장 널리 사용된다. 특히 RV X 를 추정하기 위한 아래의 세가지 다른방법들을 시험해 보기 위해 Mean Square Error 를 사용한다.

- X의 확률 모델(관찰 없는 추정)
- X의 확률 모델과 표본값이 $x \in A$ 라는 정보
- RV X, Y 의 확률 모델, 그리고 Y = y 정보

위의 세가지 상황에 대한 추정 방법은 기본적으로 같다. 각각은 X 에 대한 확률 모델을 뜻하며, PMF과 될 수도, PDF가 될 수도, 조건부 확률 질량함수도 될 수 있다. 세 가지 경우 모두 Minimum Mean Square Error 값의 \hat{X} 는 이용 가능한 정보를 구체화하는 확률 모델로부터 계산한 X의 기댓값(혹은 조건부 기댓값)이다. 많은 경우 X의 선형 추정을 활용한다.

2.1.1 하나의 사건이 주어졌을 때 X의 추정

하나의 확률 실험을 수행한다고 가정하자. X 를 직접 관찰하는 것 대신에 오직 $X \in A$ 라는 정보가 주어졌을 때, X의 Minimum Mean Square Error 추정 \hat{X}_A 는 조건부 확률밀도함수 $f_{X|A}(x)$ 혹은 조건부 확률질량함수 $P_{X|A}(x)$ 를 가진다. 이때 조건부 Mean Square Error 를 최소화하면 아래와 같이 나타낼 수 있다.

$$\hat{x}_A = E[X \mid A]$$

2.1.2 Y 가 주어졌을 때 X의 Mean Square Error 추정

두 개의 RV X 와 Y 를 발생시키는 확률 실험을 가정하자. Y 만을 관찰할 수 있으며, X 를 추정해야 한다. 추정 목표는 모든 $y \in S_Y$ 에 X 와 가까운 값 \hat{x} 를 할당하는 것이다. 이때의 정확도의 척도, Mean Square Error 는 아래와 같다.

$$e_M = E[(X - \hat{x}_M(y))^2 | Y = y]$$

각각의 $y \in S_Y$ 가 특정한 $\hat{x}_M(y)$ 를 발생시키므로 $\hat{x}_M(y)$ 는 RV $\hat{X}_M(Y)$ 의 표본값이다. 이 경우에도 Y 가 주어졌을 때 X 의 추정은 이용 가능한 정보에 근거한 X 의 기댓값이므로 Y=y 가 주어졌을 때, X 의 Minimum Mean Square Error 추정은 아래와같다.

$$\hat{x}_M(y) = E[X|Y = y]$$

2.1.3 Y 가 주어졌을 때 X 의 선형 추정

RV Y 의 관찰 y 를 활용해 RV X 의 추정값 \hat{x} 를 결정한다. 이번에도 정확성 척도에는 Mean Square Error 를 사용한다. 2.1.3 의 경우, 2.1.2 에서와는 대조적으로 추정값은 모든 Y 에 대해 적용되는 하나의함수이며, 아래와 같다.

$$\hat{x}_L(y) = ay + b$$

여기서 a 와 v는 모든 y \in Sy 에 대해서 상수이다. $\hat{x}_L(y)$ 가 y 의 선형 함수이므로 이 과정을 선형 추정이라고 한다. 선형 추정은 계산하기 쉽고, 최적의 추정이 y 의 선형 함수로 도출되며, Minimum Mean Square Error 를 만드는 값, a, b 와 Minimum Mean Square Error 의 값은 오직 E[X], E[Y], Var[X], Var[Y], Cov[X,Y]에만 의존하므로 통계적인 추론을 요구하는 전기공학의 수많은 응용분야에서 사용된다.

이때 선형 최소 평균 제곱 오차 추정(Linear Minimum Mean Square Error Estimate, LMSE)는 부첨자 L을 사용해 아래와 같이 정리된다.

$$e_L = E[(X - \hat{X}_L(Y))^2]$$

이 공식에서 기댓값은 $\hat{X}_L(Y)$ 에 대한 성능 척도인 조건부 기댓값과는 달리 조건 없는 기댓값이기 때문에 $\hat{X}_L(y)$ 가 아니라 $\hat{X}_L(Y)$ 를 사용한다. 원칙적으로 MMSE 추정은 각각의 $y \in S_Y$ 에 대해 다른 계산을 수행하지만, LMSE 추정에서는 모든 y 에 대해 같은 계수 a 와 b 를 사용한다. 이 이론을 정리하면 아래와 같이 정리할 수 있다.

RV X 와 Y 는 기댓값 μX 와 μY , 표준편차 σX 와 σY 그리고 상관계수 ρX , Y를 가지고, Y 가 주어졌을 때 X 의 LMSE 추정은 다음과 같다.

$$\hat{X}_L(Y) = \rho X, Y \frac{\sigma X}{\sigma Y} (Y - \mu Y) + \mu X$$

이런 선형 추정기는 다음과 같은 성질을 갖는다.

a) 선형 추정에 대한 MMSE

$$e_L = E\left[\left(X - \hat{X}_L(Y)\right)^2\right] = \sigma X^2 (1 - \rho X, Y^2)$$

b) 추정 오차 $X - \hat{X}_L(Y)$ 는 Y와 직교한다.

간혹, 최적의 추정 중에서 하나가 선형이고 다른 하나는 비선형인 확률 모델이 존재한다. 이 경우의 예제는 본론 2.3 에서 다뤄보고 선형 추정기와 최적 추정기의 비교도 같이 다뤄보도록 하자.

2.2 최대 사후 확률(MAP)과 최대 가능도(ML)

본론 2.1에서는 추정 이론 특히, 또 다른 RVY의 표본 값이 주어졌을 때 RVX를 추정하는 것에 있어서 MMSE를 구하는 방법을 다뤘다. 본론 2.2에서는 최대 사후 확률(MAP)와 최대 가능도(ML) 추정기에 대해 전개하고자 한다. 이 두 가지 모두 MMSE를 만들어 내지는 못하지만 몇몇 응용 분야에서 획득하기가 쉽고, 때로는 MMSE 보다 그리크지 않은 오차를 가지는 추정을 만들어 내기 때문에 유용하게 다뤄진다. MAP 와 ML 추정 모두 각각의 가설 검증과 깊은 관계가 있다.

2.2.1 최대 사후 확률(MAP)

Y 의 관찰(Y=y)이 주어졌을 때 X 의 MAP 추정은 다음과 같이 정의된다.

이산:

$$\hat{x}_{MAP}(y_j) = \arg\max_{(x \in S_x)} P_{X|Y}(x|y_j)$$

연속:

$$\hat{x}_{MAP}(y) = \arg \max_{(x)} f_{X|Y}(x|y)$$

이 정의에서 표기 arg max g(x)는 g(x)를 최대화하는 x의 값을 나타낸다. 여기서 g(x)는 변수 x의 임의의 함수를 의마하고, 조건부 PDF, 조건부 PMF 의 특성은 최대 사후 확률 추정기를 계산하는 것으로부터 아래와 같이 유도된다.

$$f_{X|Y}(x|y) = \frac{f_{X|Y}(x|y)f_X(x)}{f_Y(y)} = \frac{f_{X,Y}(x,y)}{f_Y(y)}$$

분모 $f_{V}(y)$ 는 x 에 의존하지 않기 때문에 모든 x

에 대해 $f_{X|Y}(x|y)$ 를 최대화하는 것은 분자 $f_{X|Y}(x|y)f_X(x)$ 를 최대화하는 것과 같다. $P_{X|Y}(x|y)$ 를 최대화하는 것도 마찬가지로 최댓값에 대응되는 x_i 를 찾는 것이다. 즉, X 와 Y 가 이산 RV 일 때, 최대 사후확률의 추정은 X 의 표본 공간의 각결과 x_i 가 가설 H_i 에 대응되는 다진 가설 검증의결과와 유사하다. 최대 사후확률 추정은 참인 x_i 를 선택하는 확률을 최대화한다.

X 와 Y 가 연속 RV 인 경우, Y = y 인 사건을 관찰했을 때, 가설 H_x 를 $x \le X \le x + dx$ 인 가설이라면, x 는 연속 파라미터이므로 H_x 는 연속이다. 가설 $H_{\widehat{X}}$ 을 선택하는 것은 X 에 대한 추정 \hat{X} 를 선택하는 것과 같다. 즉, 최대 사후 확률 추정기 $\hat{X}_{MAP}(y)$ 는 Y = y 인사건을 관찰했을 때 H_x 의 확률을 최대화한다.

최대 사후 확률의 추정 공식을 보면 알 수 있듯이 이산에서는 확률 질량 함수, 연속에서는 확률 밀도 함수를 알아야 한다. 그러므로 MAP 과정에서의 사전 정보는 필수적이며, 사전 정보가 없을 경우 MAP를 사용할 수 없다.

2.2.2 최대 가능도(ML)

Y 의 관찰(Y=y)이 주어졌을 때 X 의 ML 추정은 다음과 같이 정의된다.

이산:

$$\hat{x}_{ML}(y_j) = \arg \max_{(x \in S_r)} P_{Y|X}(y_j|x)$$

연속:

$$\hat{x}_{ML}(y) = \arg \max_{(x)} f_{Y|X}(y|x)$$

최대 가능도 정의 공식을 살펴보면 X 의 사전 확률 모델에 관한 정보를 사용하지 않는다. 최대 가능도 가설 검증에서도 사전 확률에 대한 정보를 이용하지 않는 것과 비슷하다.

2.2.3 최대 사후 확률(MAP) vs 최대 가능도(ML)

MAP 와 ML 의 정의에 대해 살펴보았다. MAP 와 ML 의 가장 큰 차이점은 공식에서 드러나듯이, 사전 확률 모델에 관한 정보의 필요이다. MAP는 사전 정보가 필수적으로 필요하며, ML에서의 추정에서는 사용되지 않는다. 반면, 최대가능도 규칙은 X 의 모든 가능한 값들이 서로 동일한 발생확률을 가질 때 최대 사후 확률 규칙과 동일한 결과를 얻는다는 것을 알 수 있다.

2.3 예제를 통한 추정이론 전개 및 시뮬레이션

예제 12.4)

R 이 균등 (0,1) 확률 밀도 함수를 가지며, R=r 이 주어졌을 때, X는 균등 (0,r) RV 이다. R 이 주어졌을 때, X의 MMSE 추정 $\hat{\chi}_M(r)$ 를 구해보자.

Simulation)

Example 12.4 Simulation

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

풀이) 본론 2.1.2 관찰된 Y=y 가 주어졌을 때의 정리를 이용해 $\hat{x}_M(r)=E[X|R=r]$ 임을 알 수 있다. 추정을 계산하기 위해서는 조건부 확률밀도함수 $f_{X|R}(x|r)$ 가 필요하다. 문제에서 균등 $(0,\ 1)$ 을 따른다는 것을 알려주었으므로, 조건부 확률 밀도 함수는 아래와 같다.

$$f_{X|R}(x|r) = \begin{cases} \frac{1}{r} & 0 \le x \le r, \\ 0 & \text{otherwise,} \end{cases}$$

그러므로 MMSE는 아래와 같이 정리할 수 있다.

$$\hat{x}_M(r) = \int_0^r 1/r \ dx = r/2$$

위와 같이 문제를 풀 수 있다. 이 경우 R = r이 주어졌으므로 X의 추정은 단순히 r/2이지만, 같은 확률 모델에 대해 아래 문제와 같이 X = x가 주어지는 경우 R의 추정은 더욱 복잡하게 나타난다.

예제 12.5)

R 이 균등(0, 1) 확률 밀도 함수를 가지며, R = r 이 주어졌을 때, X 는 균등 (0,r) RV 이다. X=x 가 주어 졌을 때, R 의 MMSE 추정 $\hat{r}_M(x)$ 를 구해보자.

Simulation)

Example 12.5 Simulation

```
% r: uniform (0,1)
% x: uniform (0,r)
% r_hat

t=1000;
s = 100;
x = rand(t,1); % 1000 times RV
r_hat=zeros(t,1);
for i=1:1:t
    fr=x(i)+(1-x(i))*rand(s,1); %given x(i),
generate rv
    r_hat(i)=mean(x(i)*1./(fr)); % uniform (0,1)*r =
(0,r)
end
```

figure(1),plot(x,r_hat,'*')

title('예제 12.5 Simiulation');

풀이) 본론 2.1.2 와 같이 $\hat{x}_M(r) = E[X|X=x]$ 이다. 계산을 하기 위해 $f_{R|X}(r|x)$ 필요하다. 하지만, 유도해보면, 값은 아래와 같이 복잡하게 유도된다.

$$f_{R|A}(r|x) = egin{cases} rac{1}{-r \ln x} & 0 \leq x \leq r, \\ 0 & otherwise, \end{cases}$$

따라서 $\hat{r}_{M}(x)$ 는 아래와 같이 유도.

$$\hat{r}_M(x) = \int_x^1 r \frac{1}{-r \ln x} dr = \frac{x-1}{\ln x}$$

위와 같이 각 예제를 풀이할 수 있다.

이때 각 예제에서 $\hat{x}_M(r)$ 을 살펴보면, 예제 12.4 에서의 $\hat{x}_M(r)$ 은 선형이고, 예제 12.5 의 $\hat{r}_M(r)$ 는 비선형이다. 다음 예제를 통해 위 확률 모델에 대한선형 추정기 $\hat{r}_L(x)$ 를 유도하고, 예제 12.5 의 최적추정기와 비교해보자.

예제 12.6)

위 두 예제와 같이 R 은 균등(0,1) RV 이고, R = r 이 주어졌을 때 X 는 균등(0, r) RV 이다. X 가 주어졌 을 때 R 의 최적 선형 추정기를 유도해보자.

풀이) 문제로부터 $f_{X|R}(x|r)$ 과 $f_R(r)$ 를 알 수 있고, X 와 R 의 결합 확률 밀도 함수를 다음과 같이 유

도할 수 있다.

$$f_{X,R}(x,r) = f_{X|R}(x|r)f_R(r) = \begin{cases} \frac{1}{r} & 0 \le x \le r \le 1, \\ 0 & \text{otherwise,} \end{cases}$$

또, 추정은 본론 2.1 에 따라 아래와 같다.

$$\hat{r}_L(x) = \rho R, X \frac{\sigma R}{\sigma X} (x - E[X]) + E[R]$$

R 이 균등 (0,1) RV 이므로 E[R] = 1/2 로, $\sigma R = 1/\sqrt{12}$ 로 계산할 수 있다. $f_{X|R}(x|r)$ 에 대한 공식을 사용해 $f_{X}(x)$ 를 구할 수 있다.

$$f_X(x) = \int_{-\infty}^{\infty} f_{X|R}(x|r) dr$$

$$= \begin{cases} \int_{x}^{1} 1/r \, dr = -\ln x \ 0 \le x \le 1, \\ 0 \quad \text{otherwise,} \end{cases}$$

이 한계 확률 밀도 함수로부터 E[X]=1/4, $\sigma x=\sqrt{7}/12$ 를 계산할 수 있다. 결합 확률 밀도 함수를 이용하면, E[X|R]=1/6, Cov[X,R]=E[X|R]-E[X]E[R]=1/24로 계산할 수 있다. 그러므로 $\rho R, X=\sqrt{3}/7$ 로 계산할 수 있다. 이 값을 추정 공식에 대입해 최적 선형 추정기를 아래와 같이 구할 수 있다.

$$\hat{r}_L(x) = \frac{6}{7}x + \frac{2}{7}$$

계산된 최적 선형 추정기와 예제 12.5 에서의 MMSE 추정기를 Matlab 으로 구현하였을 때 아래 와 같이 나타난다. Y 축은 $\hat{r}_M(x)$, $\hat{r}_L(x)$ 값이다.

위의 그래프를 통해 MMSE 추정기와 LMSE 추정 기를 비교할 수 있다. 두 개의 추정기가 0 혹은 1 에 가까운 x 값을 제외하고는 상당히 비슷한 양상을 띄는 것을 알 수 있다. 특히 x 가 5/6 에 대해서 LMSE 은 R 의 가장 큰 값인 1 보다 큰 추정값을 보인다. 반면에 MMSE 는 모든 x 에 대해 R 의 범위에 제한되어 추정 그래프를 그려냈음을 알 수 있다.

2.4 시뮬레이션에서의 polyfit 을 통한 풀이 검증

앞서 2.3에서 MMSE와 LMSE 계산을 통해 직접 추정 결과 값을 도출하고 그래프를 그려 비교해 보았다. 2.4 에서는 Matlab 의 Polyfjit 을 통해 예제 데이터에 대한 최적의 피팅의 계수를 산출하고, 2.3 에서의 결과값과 비교해보겠다.

예제 12.4)

polyfit 의 결과 값을 살펴보자. 0.4969r + 0.0007의 그래프를 그려냈다. 앞서 2.3 에서 계산한 MMSE 0.5r 과 비교했을 때, 비슷한 값이 도출됨을 알 수 있다. 이어서 예제 12.6을 살펴보자.

예제 12.6)

예제 12.6 에서의 LMSE 와 polyfit 으로 산출한 그래프를 비교해보자. Matlab 에서는 0.8747x + 0.2085 의 결과 값을 산출했다. 2.3 에서의 분수형태의 LMSE 계수를 계산해 비교해보자. LMSE에서는 0.8571x + 0.2857 의 계산값을 얻었다. 앞선 예제 12.4 와 마찬가지로 0.8747 과 0.8571 값의 오차는 크지 않는 것을 볼 수 있다. 그러므로 앞서 공식에 의해 풀이한 예제에서의 추정기는 잘 유도했다고 말할 수 있다.

3. 결 론

본 저널은 예제의 MMSE 혹은 LMSE 를 정의와 공식을 통해, 정해진 예시를 직접 추정이론을 전 개하는 연구를 진행했다. 공식만을 이용한 기계적 인 탐구가 아닌, 예제의 시뮬레이션과 Matlab 의 polyfit 을 활용해 계산한 추정기와의 비교를 통해 검증과정으로 더욱 더 심화적으로 연구해 보았다.

추정기의 정의를 바탕으로 진행한 추정 과정이실제 사례들의 대한 추정을 진행할 때 많이 사용되는 polyfit 과 비교했을 때, 매우 유사한 값을 도출해 냄으로써, 진행한 추정을 통해 산출된 추정기가 최적의 값으로 계산되었음을 검증할 수 있었다.

[참고문헌]

- 1) 김상현, 김남철
 [LMSE 해석 및 부블록 특징에 근거한 고속 프랙탈 부호화]
 (1977)
- 2) 문성주, 이덕창, 김대호, 오세경. (2003). 극단치이론을 이용한 VaR 의 추정 및 성과. 증권학회지, 32(3), 223-266.
- 3) 정인하. (1993). 연구교신 : 분포함수의 추정 및 응용에 관한 연구 (Dirichlet process 에 의한 비모수 결정이론을 중심으로). 응용통계연구, 6(1), 173-181.
- 4) Roy D.Yates, David J. Goodman, [Probability and Stochastic Processes 3rd edition
- 5) William Mendenhall, Robert J. Beaver, Barbara M. Beaver, [Introduction to Probability & Statistics 14^{th} edition].