	Solution Methods for Ax=b
	Ax=b might arise from linear system
	Ax=b might arise from linear system of equations, regression, etc.
	LU-Decomposition: A=LU L=loven
	triengulan
	$\mathcal{L} = \mathcal{L}_{\mathcal{D}} \mathcal{P}^{e_{\mathcal{L}}}$
	trangulan
	To get A=LU, used (taussian elimination
	elimination
	^
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	$L \underline{U} \times = \underline{b}$ $\underline{U} \times = \underline{b}$ $\underline{U} \times = \underline{b}$ $\underline{U} \times = \underline{b}$ $\underline{V} \times = \underline{b}$
	$\frac{U}{X} = \frac{D}{D}$ turband Substitution
	$X = U^{-1}L^{-1}D$ Backvard Sulu,
(2)	QR Decomp : A = QR QTQ = I B = Upper triengular
	D= Opper triengular
	To get QR: Classical (Tran-Schmidt More
	Mudified CT-S Stable &
	House halder Wexpersive
	110056 11000 (M. St.) 256 1810 (C.
	A x = b
	QBx=b Ctet QK Decomp.
	$\underline{A} \times = \underline{Q}^{T} \underline{b}$ Orthogonalize
	$\underline{A} \times = \underline{Q}^{T} \underline{b}$ Orthogonalize $\underline{X} = \underline{B}^{T} \underline{Q}^{T} \underline{b}$ Forward Sub

Scalar Differential Equation Basics
A differential equation is simply one
which involves one or more derivatives.
Independent variables are the "Input"
Dependent Variables are the "output"
dy the onlinour for At The unknown for Dependent variable
at Trucpervent variable
- Dependent variable
Jan - U(x,t) is the unknown for Dependent Van Dependent Van
Dx 2 - It Independent usoriables
Dependent Van
Focus on Scalar Equations: the
Focus un Scalar equations: the Dependent Variable (when evaluated),
regults in a Scalan,
Classifications
 Ordinary Differential Eq (UDE) = It there independent Variable
i) une independent Variable
 Partial Differential Eq (PDE): If there are two or more independent
ere the or more independent
Vaniables

- Orden: The highest Denivative in the - Homogeneous Equation! If the terms which do not include the dependent variable are zero. It not homogeneous, then called Non-homogeneous. - Linear / non-linear! Any differential
equation where multiple solutions
observe the superposition principle
and linear. Otherwise non-linear, If y,(t) & y_2(t) are both solutions, then if Cy,(t) + (2 y_2(t) is also a solution — linean, Mutation Nute: for simplicity we arite dt = 4t 1 3tg = 4tt 1 3x 3+a = 1xtt 1 --For ODES, white du = Ut=in, du = Ut=in

6 X') £ς Dep \mathcal{I}_{\wedge} 0 Owen Humo Type Inen ODÊ /XXX (7) XX (X)=0 / X $ODE \times_{YM} + \times = 0 \times$ 3 DDE NXX + N/A = NFF N X/A/F DD5 (1xx + 1/1/2) (1 x1/1) 2 Another Check on No mogeneous:

If you set the Dependent

Variable to zero, does the

equation equal zero?

Operations Let & (x,y,z) be a scalar field, $\underline{U(X,Y,\xi)} = (U(X,Y,\xi), V(X,Y,\xi), h(X,Y,\xi)) be$ (1) Ctradient: 0 = Derivative wint, x-1/1, and Z-Olrection Cradient increases the dimension at the abject, Divergence: 0.() Nut applicable to Scalar fields J.4 Dues nut exist D-A = [] x gh g5] (A) = Ax + Ax + m5

(5) Laplacian:
$$0.0=0^2(=\Delta)$$
 $0.0\phi = (0x_10y_1, 0x_2) \cdot (\phi x_1 dy_1) dy_2$
 $= dyx + dyy_1 + dy_2$
 $0.0y = \begin{bmatrix} u_{xx} + u_{yy} + u_{2x} \\ v_{xx} + v_{yy} + v_{2x} \\ v_{xx} + v_{yy} + v_{2x} \end{bmatrix}$

(1) Cunt: $0x()$ Only vectors of above

 $0xy = det(\begin{bmatrix} 2i & 2j & 2k \\ 0x & 0y & 0t \\ 0x & 0y & 0t \end{bmatrix}) = e_{0x} = 0$
 $0xy = det(\begin{bmatrix} 2i & 2j & 2k \\ 0x & 0y & 0t \\ 0x & 0y & 0t \end{bmatrix}) = e_{0x} = 0$
 $0xy = det(\begin{bmatrix} 2i & 2j & 2k \\ 0x & 0y & 0t \\ 0x & 0y & 0t \end{bmatrix}) = e_{0x} = 0$
 $0xy = det(\begin{bmatrix} 2i & 2j & 2k \\ 0x & 0y & 0t \\ 0x & 0y & 0t \end{bmatrix}) = e_{0x} = 0$
 $0xy = det(\begin{bmatrix} 2i & 2j & 2k \\ 0x & 0y & 0t \\ 0x & 0y & 0t \end{bmatrix}) = e_{0x} = 0$
 $0xy = det(\begin{bmatrix} 2i & 2j & 2k \\ 0x & 0y & 0t \\ 0x & 0y & 0t \end{bmatrix}) = 0$
 $0xy = det(\begin{bmatrix} 2i & 2j & 2k \\ 0x & 0y & 0t \\ 0x & 0y & 0t \end{bmatrix}) = 0$
 $0xy = det(\begin{bmatrix} 2i & 2j & 2k \\ 0x & 0y & 0t \\ 0x & 0y & 0t \end{bmatrix}) = 0$
 $0xy = det(\begin{bmatrix} 2i & 2j & 2k \\ 0x & 0y & 0t \\ 0x & 0y & 0t \end{bmatrix}) = 0$
 $0xy = det(\begin{bmatrix} 2i & 2j & 2k \\ 0x & 0y & 0t \\ 0x & 0y & 0t \end{bmatrix}) = 0$
 $0xy = det(\begin{bmatrix} 2i & 2j & 2k \\ 0x & 0y & 0t \\ 0x & 0y & 0t \end{bmatrix}) = 0$
 $0xy = det(\begin{bmatrix} 2i & 2j & 2k \\ 0x & 0y & 0t \\ 0x & 0y & 0t \end{bmatrix}) = 0$
 $0xy = det(\begin{bmatrix} 2i & 2j & 2k \\ 0x & 0y & 0t \\ 0x & 0y & 0t \end{bmatrix}) = 0$
 $0xy = det(\begin{bmatrix} 2i & 2j & 2k \\ 0x & 0y & 0t \end{bmatrix}) = 0$
 $0xy = det(\begin{bmatrix} 2i & 2j & 2k \\ 0x & 0y & 0t \end{bmatrix}) = 0$
 $0xy = det(\begin{bmatrix} 2i & 2j & 2k \\ 0x & 0y & 0t \end{bmatrix}) = 0$
 $0xy = det(\begin{bmatrix} 2i & 2j & 2k \\ 0x & 0y & 0t \end{bmatrix}) = 0$
 $0xy = det(\begin{bmatrix} 2i & 2j & 2k \\ 0x & 0y & 0t \end{bmatrix}) = 0$
 $0xy = det(\begin{bmatrix} 2i & 2j & 2k \\ 0x & 0y & 0t \end{bmatrix}) = 0$
 $0xy = det(\begin{bmatrix} 2i & 2j & 2k \\ 0x & 0y & 0t \end{bmatrix}) = 0$
 $0xy = det(\begin{bmatrix} 2i & 2j & 2k \\ 0x & 0y & 0t \end{bmatrix}) = 0$
 $0xy = det(\begin{bmatrix} 2i & 2j & 2k \\ 0x & 0y & 0t \end{bmatrix}) = 0$
 $0xy = det(\begin{bmatrix} 2i & 2j & 2k \\ 0x & 0y & 0t \end{bmatrix}) = 0$
 $0xy = det(\begin{bmatrix} 2i & 2j & 2k \\ 0x & 0y & 0t \end{bmatrix}) = 0$
 $0xy = det(\begin{bmatrix} 2i & 2j & 2k \\ 0x & 0y & 0t \end{bmatrix}) = 0$
 $0xy = det(\begin{bmatrix} 2i & 2j & 2k \\ 0x & 0y & 0t \end{bmatrix}) = 0$
 $0xy = det(\begin{bmatrix} 2i & 2k \\ 0x & 0y & 0t \end{bmatrix}) = 0$
 $0xy = det(\begin{bmatrix} 2i & 2k \\ 0x & 0y & 0t \end{bmatrix}) = 0$
 $0xy = det(\begin{bmatrix} 2i & 2k \\ 0x & 0y & 0t \end{bmatrix}) = 0$
 $0xy = det(\begin{bmatrix} 2i & 2k \\ 0x & 0y & 0t \end{bmatrix}) = 0$
 $0xy = det(\begin{bmatrix} 2i & 2k \\ 0x & 0y & 0t \end{bmatrix}) = 0$
 $0xy = det(\begin{bmatrix} 2i & 2k \\ 0x & 0y & 0t \end{bmatrix}) = 0$

Operation Output

Operation Scalar injut Vector Input Vector Tenson CTradient Not defined Scalan Divengence Scalar Vector Laplacian Nut Defined Vector Curl ex,) let $u = \begin{bmatrix} xy \\ sin x \end{bmatrix}$, $\phi = 2x^2 + 2y + e^{-2}$ $\begin{array}{c|c} O & \phi = \left[\begin{array}{cc} \phi^{2} & -6 & -5 \\ \hline & \phi^{1/} & -6 & -5 \\ \hline & & & & \end{array}\right]$ $O \cdot \overline{\Omega} = (X \wedge 1S) + X(X \times X) = \overline{\Lambda} \cdot C$ 0 x U = ((sin x) x - (xy) y) & z = (cos x - x) ez $\int_{0}^{2} dx = (2x^{2})xx + (2y)yy + (e^{-2})2z = 2z + e^{-2}$ $O_{X} = \left(\left(\frac{s_i \cdot x}{x_i} \right)^{XX} + \left(\frac{s_i \cdot x}{x_i} \right)^{XX} \right) - \left(\frac{s_i \cdot x}{x_i} \right)^{XX}$

Solution et linear CDES,

To general, the complete solution

to a linear ODE can be

written as the sum of

a solution to the Nomageneous

pant of the ODE plus the

solution to the non-homogeneous

part.

Let g(x|t) = f(t) be the linear ODE exi) if $\ddot{x} + 2\dot{x} - 3 = 8in(t)$

 $g(x(t)) = \ddot{x} + 2\dot{y} - 3$ f(t) = sn(t)

let $x_h(t)$ Solve the nomogeneous part of g(x(t)) = f(t):

 $= \gamma S(x_n(\xi)) = 0$

Let xp(t) solve the non-homogenous part-

= 3(xp(f)) = f(f)

Then the complete Solution is $x(t) = x_h(t) + x_p(t)$

Xplt) called the particular solution.

why? Pecall that linear also means

$$f(a+b) = f(a) + f(b)$$

$$g(x(t)) = g(x_h + x_p) = g(x_h) + g(x_p)$$

$$= O + f(t)$$

Now, in general there will be multiple

No mage recus solutions,

I linear ODE of order of will

have of homogeneous solutions,

let $x_1(t)$, $x_2(t)$, x_1 , x_1 , x_1 , x_2 , x_2 , x_3 , x_4 ,

If the conditions spatially -> bundary

conditions, the ODF

is a boundary value problem (BUP) w/ y=1 at x=0 yx=0 at x=0 6(1) x /xx + 1/2=0 AVI NA w/ x=1 at t=0 exi) Xff + x= 0 A BUP To simply things, look at 200-order
ODFs. a sinciated conditions (1) Find xn(t) = Solution to axn +bxn + cxn = 0 Equations of the form $q \dot{x}_n + b x_n = 0$ Nave solutions of the form $x_{n-1} + e^{\alpha t}$ Try xh(t)=cext - xn=a(ext=xxn xn= da Ceat = d2 xn

Thuy
$$x_2 = t \times_1 = t e^{\alpha_1 t}$$

Check. $x_2 = e^{\alpha_1 t} + t \alpha_1 e^{\alpha_1 t}$
 $x_2 = \alpha_1 e^{\alpha_1 t} + \alpha_1 e^{\alpha_1 t} + t \alpha_1^2 e^{\alpha_1 t}$

= $2\alpha_1 e^{\alpha_1 t} + \alpha_1 e^{\alpha_1 t} + t \alpha_1^2 e^{\alpha_1 t}$

= $2\alpha_1 e^{\alpha_1 t} + e^{\alpha_1 t} + e^{\alpha_1 t} + e^{\alpha_1 t} + e^{\alpha_1 t}$

= $(2\alpha_1 e^{\alpha_1 t}) e^{\alpha_1 t} + (e^{\alpha_1 t}) e^{\alpha_1 t} + (e^{\alpha_1 t}) e^{\alpha_1 t}$

= $(2(-b)e^{\alpha_1 t} + (e^{\alpha_1 t}) e^{\alpha_1 t} + (e^{\alpha_1 t}) e^{\alpha_1 t}$

= $(e^{\alpha_1 t}) e^{\alpha_1 t} + (e^{\alpha_1 t}) e^{\alpha_1 t}$

= $(e^{\alpha_1 t}) e^{\alpha_1 t} + (e^{\alpha_1 t}) e^{\alpha_1 t}$

= $(e^{\alpha_1 t}) e^{\alpha_1 t} + (e^{\alpha_1 t}) e^{\alpha_1 t}$

= $(e^{\alpha_1 t}) e^{\alpha_1 t} + (e^{\alpha_1 t}) e^{\alpha_1 t}$

= $(e^{\alpha_1 t}) e^{\alpha_1 t} + (e^{\alpha_1 t}) e^{\alpha_1 t}$

= $(e^{\alpha_1 t}) e^{\alpha_1 t} + (e^{\alpha_1 t}) e^{\alpha_1 t}$

= $(e^{\alpha_1 t}) e^{\alpha_1 t} + (e^{\alpha_1 t}) e^{\alpha_1 t}$

= $(e^{\alpha_1 t}) e^{\alpha_1 t} + (e^{\alpha_1 t}) e^{\alpha_1 t}$

= $(e^{\alpha_1 t}) e^{\alpha_1 t} + (e^{\alpha_1 t}) e^{\alpha_1 t}$

= $(e^{\alpha_1 t}) e^{\alpha_1 t} + (e^{\alpha_1 t}) e^{\alpha_1 t}$

= $(e^{\alpha_1 t}) e^{\alpha_1 t} + (e^{\alpha_1 t}) e^{\alpha_1 t}$

= $(e^{\alpha_1 t}) e^{\alpha_1 t} + (e^{\alpha_1 t}) e^{\alpha_1 t}$

= $(e^{\alpha_1 t}) e^{\alpha_1 t} + (e^{\alpha_1 t}) e^{\alpha_1 t}$

= $(e^{\alpha_1 t}) e^{\alpha_1 t} + (e^{\alpha_1 t}) e^{\alpha_1 t}$

= $(e^{\alpha_1 t}) e^{\alpha_1 t} + (e^{\alpha_1 t}) e^{\alpha_1 t}$

= $(e^{\alpha_1 t}) e^{\alpha_1 t} + (e^{\alpha_1 t}) e^{\alpha_1 t}$

Note: This only wenter because ballaceo

(3)
$$b^{\lambda}$$
- $V_{ac} < 0$: T_{uv} imaginary roots:

 $X_1 = p + (q)$
 $X_2 = p - (q)$
 $X_1 = p + (q)$
 $X_1 = p + (q)$
 $X_2 = p - (q)$
 $X_1 = p + (q)$
 X

= e PE (C | coi (qt) + (2 sin (qt)) = Xn(t)