EXPECTATION

REALITY

INPUT = FEATURES

OUTPUT = TARGET

predetti	reali_test
27.609031	22.6
22.099034	50.0
26.529255	23.0
12.507986	8.3
22.254879	21.2
28.271228	24.7
18.467419	14.1
18.558070	18.7
24.681964	28.1
20.826879	19.8
	27.609031 22.099034 26.529255

	predetti	reali_test
0	27.609031	22.6
1	22.099034	50.0
2	26.529255	23.0
3	12.507986	8.3
4	22.254879	21.2
97	28.271228	24.7
98	18.467419	14.1
99	18.558070	18.7
100	24.681964	28.1
101	20.826879	19.8

Introducendo opportune assunzioni si ottiene il modello di regressione lineare semplice.

Assunzione 1:

$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$
 per ogni osservazione i=1,...n

Assunzione 2:

Le \mathcal{E}_i sono variabili casuali indipendenti con valore atteso $E(\mathcal{E}_i) = 0$ e varianza costante $V(\mathcal{E}_i) = \sigma^2$ per ogni i=1,...,n

Assunzione 3:

I valori x_i della variabile esplicativa X sono noti senza errore