Univerza v Ljubljani

Fakulteta za matematiko in fiziko

Finančni praktikum

Največja konveksna množica znotraj konveksne množice

Avtorja: Jure Sternad Rok Rozman Jaša Pozne

Mentorja: prof. dr. Sergio Cabello doc. dr. Janoš Vidali

Ljubljana, 17. december 2021

Kazalo

1	Navodilo	2
2	Opis problema	2
3	Nadaljnji potek dela	2

1 Navodilo

Če imamo podana konveksna mnogokotnika P in Q v koordinatni ravnini, potem je problem odločanja ali se P lahko preslika v Q linearen program (izvedljivosti). Poleg tega je problem odločanja za koliko lahko P največ povečamo, da je lahko v Q, tudi linearen program. V primeru, da je P disk, je to tudi linearen program.

2 Opis problema

Definicija 1. Konveksen poligon P je tak poligon, za katerega velja, da pri poljubni izbiri dveh točk p in q iz poligona P, daljica pq, ki povezuje omenjeni točki v celoti leži v poligonu P.

Definicija 2. Translacije so preslikave oblike $\tau(\vec{x}) = \vec{x} + \vec{a}$ za nek $a \in \mathbb{R}$.

Definicija 3. Rotacije so preslikave oblike $\tau(\vec{x}) = R_{\phi}\vec{x} + \vec{a}$ za nek $\phi \in (0, 2\pi)$ in $\vec{a} \in \mathbb{R}$. Takšna preslikava ustreza rotaciji za kot ϕ okoli točke v ravnini, ki je določena z enačbo $\tau(\vec{x}) = x$.

3 Nadaljnji potek dela

Naša naloga je, da naredimo eksperimente, v katerih bomo poiskali največje možne kvadrate, diske, enakostranične trikotnike ..., ki jih lahko preslikamo tako, da so znotraj danega konveksnega mnogokotnika. Eksperimente bomo reševali s pomočjo linearnega programiranja. Poleg tega bomo ločili primere, ko P lahko rotiramo; v tem primeru bomo ločili več različnih rotacij. Za reševanje problema bomo uporabljali programski jezik Sage.