n	e_D =0,195m, e_{Cu} =0,21m \bullet = x_2 =Position du TC n°2	Intitulé	Cellules à vérifier	t _{diff1} (D18)	t _{diff2} (I18)	(RC) _{tot} (O18)	t _{stab} (O19)	E _{stock1} (D21)	E _{stock2} (I21)	E _{stock} (O21)	Commentaires? t _{stab} par rapport à (RC) _{tot} ?
1	Po (W) Dural e ₂ =e _D	Barre homogène, pas de résistance convective en bout de barre	M3 (h)=2,5e7 W/m ² K; F15 (R _c)=0; D12 (e ₁)=0; l12 (e ₂)= e _D I9-I10-I11: Dural (cf P9-10-11) M6 (dt): 10 sec. I13(x ₂)=7e ₂ /8	X	570,4 sec	570,4 sec	1110,0 sec	X	2,85 KJ	2,85 KJ	Dans les deux simulations, le rapport entre tstab et RCtot vaut environ 2. On remarque que RCtot et tstab se multiplient d'un facteur 4 d'une simulation à l'autre. Cela est lié au fait que la longueur a doublé et que la diffusivité thermique s'exprime par la dérivée seconde de la distance (donc x²) d'où le facteur 4 =2²
2	$e_2=2e_D \qquad \qquad T_{eau}$	=1 avec barre deux fois plus longue	Comme 1 avec M6 (dt) : 40 sec. I12(e ₂)=2e _D	X	2281,5 sec	2281,5 sec	4440,0 sec	X	11,41 KJ	11,41 KJ	
3	Po (W) e_1 e_2 =1,5 e_D e_2 =1,5 e_D	=2 avec contact imparfait proche de la source de chauffage	D12 (e_1)= e_D /2; l12 (e_2)= 1,5 e_D F10 (R_c)=2K/W D9-D10-D11 : Dural; l13(x_2)=7(e1+e2)/8 M6 (dt) : 40 sec.	142,6 sec	1283,3 sec	3637,9 sec	5480,0 sec	8,38 KJ	6,42 KJ	14,80 KJ	Le rapport entre tstab et RCtot est d'environ 1,5 La résistance de contact influence le temps de stabilisation car cette résistance représente le gap de température entre les deux parties du matériau .
4	Po (W) $e_1=1,5e_D$ R_c R_c T_{eau}	=2 avec contact imparfait loin de la source de chauffage	Comme 3 avec D12 $(e_1)=1,5e_D$; I12 $(e_2)=e_D/2$	1283,3 sec	142,6 sec	3637,9 sec	8000 sec	20,87 KJ	0,71 KJ	21,58 KJ	Le rapport entre tstab et RCtot est d'environ 2,2 Dans la simulation 4, la température sera plus élevée plus longtemps donc stocke plus d'énergie et à un temps de stabilisation plus long.
5	Po (W) Dural $e_1=e_D$ Cuivre $e_2=e_{Cu}$	2 barres différentes en	Comme 3 avec D12 $(e_1)=e_D/2$; I12 $(e_2)=e_{Cu}$ F10 $(R_c)=0$ K/W; D9-D10-D11 : Dural (cf P9-10-11) I9-I10-I11 : Cuivre (cf Q9-10-11) M6 (dt) : 20 sec.	570,4 sec	393,0 sec	2083,4 sec	2700 sec	5,46 KJ	1,97 KJ	7,43 KJ	Le rapport entre tstab et RCtot est 1,3. Le rapport entre tstab et RCtot est 2,6 soit le double par rapport à la simulation 5.
6	Po (W) $e_1 = e_{Cu}$ Dural $e_2 = e_D$ T_{cau}	=5 avec inversion des deux barres	Comme 5 avec D12 (e_1)= e_{Cu} ; I12 (e_2)= e_D D9-D10-D11 Cuivre (cf Q9-10-11) I9-I10-I11 : Dural (cf P9-10-11) M6 (dt) : 40 sec.	393,0 sec	570,4 sec	2083,4 sec	5480,0 sec	10,55 KJ	2,85 KJ	13,41 KJ	Cette différence s'explique car le cuivre est plus conducteur que le dularumin, donc la température entre le gap est plus élevée avant donc permet un meilleur stock d'énergie.
7	Po (W) $e_1 = e_D$ R_c $Cuivre e_2 = e_{Cu}$ R_{conv} T_{eau}	=5 avec résist. convective en bout de barre h=2,5.10 ³ W/m ² h	Comme 5 avec M3 (h)=2,5e3 W/m²K F10 (R _c)=2K/W M6 (dt): 60 sec.	570,4 sec	393,0 sec	4263,6 sec	7200,0 sec	14,16 KJ	4,85 KJ	19,02 KJ	Le rapport entre tstab et RCtot est 1,64. Rctot est plus élevé que dans la simulation 5 car il y a la résistance de contact qui s'ajoute. Le temps de stabilisation est donc plus long et l'énergie stockée supérieure