DATA STORAGE TECHNOLOGIES & NETWORKS (CS C446, CS F446 & IS C446)

LECTURE 19- STORAGE

Disks - Reliability

- Redundancy may be used to improve Reliability
 - Device Level Reliability
 - Improved by redundant disks
 - This of course implies redundant data
 - Data Level Reliability
 - Improved by redundant data
 - This of course implies additional disks
- (RAID) Redundant Array of Inexpensive Disks
 - or Redundant Array of Independent Disks
- Different Levels / Modes of Redundancy
 - Referred to as RAID levels

(a) RAID 0 (non-redundant)

- RAID 0 (Striping)
 - No redundancy
 - Each piece of data (say a logical block) is striped onto D disks in an array
 - A stripe refers to the entire data block of D stripe units
 - Size of the stripe unit may vary
 - bit-level, byte-level, sector-level, or block-level striping
 - □ Fine-grained interleaving:
 - increases data transfer rate for all I/O;
 - but only one I/O operation can be performed at a time and all disks must do positioning for every I/O
 - Coarse-grained interleaving:
 - Small I/Os will use fewer disks whereas data transfer rate is improved for large I/Os

RAID 1 (mirrored)

(b) RAID 1 (mirrored)

- RAID 1 (Mirroring)
 - Each data unit is replicated (i.e. mirrored) in two disks
 - Data disk and Check Disk
 - 2 (independent) reads can be done in parallel
 - I/O rate improves
 - Typically by a factor of 2/s
 - Slowdown factor s
 - □ 1<= s <=2
 - arising due to synchronization time (s = 1 for synchronized disks)
 - □ Increases for multiple (more than 2) disks
 - Only 1 write at a time I/O rate 1/s
 - Can recover from complete disk failure (1 out of 2)

RAID 2 (redundancy through Hamming code)

- (c) RAID 2 (redundancy through Hamming code)
- Also known as memory style error correction code (ECC) organization
- Striping of bytes across disks (1st bit of each byte in disk 1, 2nd bit in disk2 Error correction bits are stored in further disks)

- RAID 2 (ECC)
 - Error-Correcting Codes have been used in DRAMs for a long time
 - Hamming Code is used typically
 - For Disk Arrays:
 - D bit data and C bit Code added
 - Bit-interleaving:
 - D data disks and C check disks used
 - C=4 when D=10, C=5 when D=25 for Hamming Code (single error correction)
 - Not used commercially
 - Individual disks store ECC along with data

RAID 3 (bit-interleaved parity)

(d) RAID 3 (bit-interleaved parity)

- Striping at the level of bit inter leaved parity organization
- Single bit can be used for error detection and correction
- Advantages
 - Less number of disks, transfer rate is N times faster than RAID 1 as bits are distributed to all disks
- Disadvantages
 - Expense of computing & writing parity, fewer I/O per sec

- Difference between data level failures and device level failures
 - Disk failures can be detected externally (say by the controller)
- RAID 3
 - 1 bit of parity per D bits of data
 - i.e. 1 check disk per D data disks (bit interleaving)
 - Operations
 - Read (Normal) :
 - All data disks are used
 - Read (1 disk failure):
 - All (other) data disks and parity disk are used
 - Write:
 - All data disks and parity disk are used
 - Read-Modify-Write is not required
 - Always reads and writes complete stripes of data across all disks [drives operate in parallel]
 - No partial writes that update one out of many strips in a stripe
 - Performance:
 - Not used when high I/O rate is required (Why?)

RAID 4 (block-level parity)

(e) RAID 4 (block-level parity)

- Block inter leaved parity organization
 - Data transfer rate is slow, multiple read accesses can proceed in parallel (higher overall I/O rate)
 - Transfer rate of large reads are high (all disks can be read parallel)
 - Transfer rate of large writes are high (data & parity can be written parallel)

- RAID 3 enables high data transfer rates but
 - allows only one I/O at a time and
 - may suffer from worst case seek and rotational delays unless disks are synchronized.
- RAID 4
 - 1 bit of parity per D bits of data
 - 1 check disk per D data disks but with block interleaving
 - Operations:
 - Read (Normal):
 - Small reads:
 - Not all data disks are to be read
 - Independent reads can be on different (data) disks in parallel for reads smaller than stripe unit
 - Large reads:
 - Similar to RAID 3
 - Read (under 1 disk failure): read from all data disks and the check disk

- RAID 4
 - Operations:
 - Write:
 - Smaller than a stripe unit:
 - New parity = (Old data XOR New data) XOR old parity
 - So, 2 read operations and 2 write operations (1 data disk and 1 parity disk)
 - Parity disk is a bottleneck