Prim's Algorithm

Shusen Wang

Prim's Algorithm

Basic idea: Grow the tree in successive stages.

- Initially, the tree has one vertex and no edge.
- In each iteration, add one vertex and one edge to the tree.
- Throughout, maintain the properties of trees:
 - Connectivity.
 - No cycle.
- The algorithm runs in $|\mathcal{V}|$ iterations.

Initial State

U: vertices of spanning tree

$$\mathcal{U} = \{v_1\}$$

- Pick any vertex in the graph.
- Maybe pick v_1 .
- Add v_1 to \mathcal{U} .

$$\mathcal{U} = \{v_1\}$$

• The edges connecting u to $v \setminus u$:

$$e_{1,2}, e_{1,3}, e_{1,4}.$$

• Among them, $e_{1,4}$ has the smallest weight.

$$\mathcal{U} = \{v_1\}$$

• The edges connecting u to $v \setminus u$:

$$e_{1,2}, e_{1,3}, e_{1,4}.$$

• Among them, $e_{1,4}$ has the smallest weight.

$$\mathcal{U} = \{v_1, v_4\}$$

• The edges connecting u to $v \setminus u$:

$$e_{1,2}$$
, $e_{1,3}$, $e_{1,4}$.

- Among them, $e_{1,4}$ has the smallest weight.
- Add v_4 to \mathcal{U} .

$$\mathcal{U} = \{v_1, v_4\}$$

• The edges connecting ${\it u}$ to ${\it v} \backslash {\it u}$: $e_{1,2}, e_{1,3},$

$$e_{4,2}, e_{4,3}, e_{4,5}, e_{4,6}, e_{4,7}.$$

• Among them, $e_{1,2}$ has the smallest weight.

$$\mathcal{U} = \{v_1, v_4\}$$

• The edges connecting u to $v \setminus u$: $e_{1,2}, e_{1,3},$ $e_{4,2}, e_{4,3}, e_{4,5}, e_{4,6}, e_{4,7}.$

• Among them, $e_{1,2}$ has the smallest weight.

$$\mathcal{U} = \{v_1, v_4, v_2\}$$

- The edges connecting u to $v \setminus u$: $e_{1,2}, e_{1,3},$ $e_{4,2}, e_{4,3}, e_{4,5}, e_{4,6}, e_{4,7}.$
- Among them, $e_{1,2}$ has the smallest weight.
- Add v_2 to U.

$$U = \{v_1, v_4, v_2\}$$

• The edges connecting u to $v \setminus u$:

$$e_{1,3},$$
 $e_{4,3}, e_{4,5}, e_{4,6}, e_{4,7},$ $e_{2.5}.$

• Among them, $e_{4,3}$ has the smallest weight.

$$\mathcal{U} = \{v_1, v_4, v_2\}$$

• The edges connecting u to $v \setminus u$:

$$e_{1,3},$$
 $e_{4,3}, e_{4,5}, e_{4,6}, e_{4,7},$ $e_{2.5}.$

• Among them, $e_{4,3}$ has the smallest weight.

$$\mathcal{U} = \{v_1, v_4, v_2, v_3\}$$

• The edges connecting u to $v \setminus u$:

$$e_{1,3}$$
, $e_{4,3}$, $e_{4,5}$, $e_{4,6}$, $e_{4,7}$, $e_{2,5}$.

- Among them, $e_{4,3}$ has the smallest weight.
- Add v_3 to \mathcal{U} .

$$\mathcal{U} = \{v_1, v_4, v_2, v_3\}$$

• The edges connecting u to $v \setminus u$:

$$e_{4,5}, e_{4,6}, e_{4,7},$$
 $e_{2,5},$ $e_{3,6}.$

• Among them, $e_{4,7}$ has the smallest weight.

$$\mathcal{U} = \{v_1, v_4, v_2, v_3\}$$

• The edges connecting u to $v \setminus u$:

$$e_{4,5}, e_{4,6}, e_{4,7},$$
 $e_{2,5},$
 $e_{3,6}.$

• Among them, $e_{4,7}$ has the smallest weight.

$$\mathcal{U} = \{v_1, v_4, v_2, v_3, v_7\}$$

• The edges connecting u to $v \setminus u$:

$$e_{4,5}, e_{4,6}, e_{4,7},$$
 $e_{2,5},$ $e_{3,6}.$

- Among them, $e_{4,7}$ has the smallest weight.
- Add v_7 to \mathcal{U} .

$$\mathcal{U} = \{v_1, v_4, v_2, v_3, v_7\}$$

• The edges connecting u to $v \setminus u$:

$$e_{4,5}, e_{4,6}, \ e_{2,5}, \ e_{3,6}, \ e_{75}, e_{7,6}.$$

• Among them, $e_{7,6}$ has the smallest weight.

$$\mathcal{U} = \{v_1, v_4, v_2, v_3, v_7\}$$

• The edges connecting u to $v \setminus u$:

$$e_{4,5}, e_{4,6}, \ e_{2,5}, \ e_{3,6}, \ e_{75}, e_{7,6}.$$

• Among them, $e_{7,6}$ has the smallest weight.

$$\mathcal{U} = \{v_1, v_4, v_2, v_3, v_7, v_6\}$$

• The edges connecting u to $v \setminus u$:

$$e_{4,5}, e_{4,6}, \ e_{2,5}, \ e_{3,6}, \ e_{75}, e_{7,6}.$$

- Among them, $e_{7,6}$ has the smallest weight.
- Add v_6 to U.

$$\mathcal{U} = \{v_1, v_4, v_2, v_3, v_7, v_6\}$$

• The edges connecting u to $v \setminus u$:

$$e_{4,5}, \ e_{2,5}, \ e_{7,5}.$$

• Among them, $e_{7,5}$ has the smallest weight.

$$\mathcal{U} = \{v_1, v_4, v_2, v_3, v_7, v_6\}$$

• The edges connecting u to $v \setminus u$:

$$e_{4,5}, \ e_{2,5}, \ e_{7,5}.$$

• Among them, $e_{7,5}$ has the smallest weight.

$$\mathcal{U} = \{v_1, v_4, v_2, v_3, v_7, v_6, v_5\}$$

• The edges connecting u to $v \setminus u$:

$$e_{4,5}, \ e_{2,5}, \ e_{7.5}.$$

- Among them, $e_{7,5}$ has the smallest weight.
- Add v_5 to \mathcal{U} .

End of Procedure

$$\mathcal{U} = \{v_1, v_4, v_2, v_3, v_7, v_6, v_5\}$$

- Now $\mathcal{U}=\mathcal{V}$. (All the vertices have been added to \mathcal{U} .)
- Return the tree.

Prim's Algorithm

- 1. Initially, the tree has one vertex and no edge.
- 2. Let set \mathcal{U} contain the vertices of the tree.
- 3. Let set T be the empty set.

Prim's Algorithm

- 1. Initially, the tree has one vertex and no edge.
- 2. Let set \mathcal{U} contain the vertices of the tree.
- 3. Let set \mathcal{T} be the empty set.
- 4. In each iteration, select one vertex and one edge:
 - Define the set $S = \{e_{xy} \in \mathcal{E} \mid x \in \mathcal{U} \text{ and } y \notin \mathcal{U}\}.$
 - Select from S the edge (denote e_{uv}) that has the smallest weight.
 - Add edge e_{yy} to \mathcal{T} .
 - Add vertex v to u.
- 5. Return the selected edges, T.

Thank You!