Register Number					

Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam – 603 110

(An Autonomous Institution, Affiliated to Anna University, Chennai)

Computer Science and Engineering

Continuous Assessment Test – I Question Paper

Degree & Branch	B.E & Compute	er Science		Semester	VII	
Subject Code & Name	UCS1702 Mobile Computing				Regulation:	2018
Academic Year	2022-23 ODD	Batch	2019-23	Date	16.09.2022	FN
Time: 8.15 am to 9.45 am	Answer All Questions				Maximum	: 50 Marks

$Part - A (6 \times 2 = 12 Marks)$

<kl1></kl1>	1. Why CSMA/CD scheme fails in wireless networks?	<co1></co1>
<kl2></kl2>	2. Compare wired networks and ad-hoc networks.	<co1></co1>
<kl1></kl1>	3. Why is physical layer in IEEE802.11 subdivided? What are its sublayers?	<co1></co1>
<kl1></kl1>	4. What are the three alternatives for the implementation of Home Agent (HA)?	<co2></co2>
<kl1></kl1>	5. Why structure of the cellular phone is in hexagon shape?	<co1></co1>
<kl1></kl1>	6. What are the two possibilities for the location of the Care-of Address (COA)?	<co2></co2>

$Part - B (3 \times 6 = 18 Marks)$

<kl2></kl2>	7. Compare SDMA, FDMA, TDMA and CDMA.	<co1></co1>	2.2.4
<kl 3=""></kl>	8. What is the reason for the failure of many MAC schemes in wired networks? Identify the need for "specialized MAC schemes" in Wireless networks.	<c01></c01>	2.4.3
<kl2></kl2>	9. What is the basic prerequisite for FDMA? How does this prerequisite increase complexity compared to TDMA systems?	<co1></co1>	2.4.3

$Part - C (2 \times 10 = 20 Marks)$

<kl 3=""></kl>	10. Assume two senders A and B want to send data. CDMA assigns the following unique and orthogonal key sequences: key $A_k = 010011$ for sender A, key $B_K = 110101$ for sender B. Sender A wants to send the bit $A_d = 1$, sender B sends $B_d = 0$. Apply CDMA technique to identify the value detected by the receivers of sender A and B respectively.	<c01></c01>	1.3.1 2.1.3
	(OR)		
<kl 3=""></kl>	11. Identify the benefits of reservation schemes. Outline how are collisions avoided during data transmission. Why is the probability of collisions lower, compared to classical Aloha?12. List the entities of mobile IP. Make use of these entities to describe data transfer from a mobile node to a fixed node and vice versa. Why and where is encapsulation needed?	<co1></co1>	2.4.3
(OR)			
<kl 3=""></kl>	13. Identify how tunnelling works in general. How does it work for mobile IP using IP-in-IP, minimal, and generic routing encapsulation. Discuss the advantages and disadvantages of these three methods.	<co2></co2>	2.2.2

Prepared By	Reviewed By	Approved By		
Course Coordinator	PAC Team	HOD		