Predicting Brand Loyalty in Grocery Shoppers

Rafael Rivera-Soto rivera43@stanford.edu

Daniel Gardner dangard@stanford.edu

Abstract—The abstract goes here.

I. INTRODUCTION

Brand loyalty is a chief concern for marketers of grocery products. Consumers will often buy the same brand of a household good for their entire lives. It is vital for product marketers to determine which consumers are especially brand loyal so that the marketers can target advertising and promotions toward them. For most grocery items, consumers are presented with the choice of purchasing a brand name product or a store brand product. Well-known national brands include Kelloggs cereal, Heinz ketchup, and Tide detergent, while store brands include Costcos Kirkland, Targets Market Pantry, and Walmarts Great Value. Despite a brand product often being more expensive than its store brand counterpart, many consumers prefer the reliability and known quality of the national brand. This brand preference or loyalty widely varies across different households and especially across different product types. We use machine learning techniques to predict a households preference for brand name products and determine what factors into that predilection. For a given product, we label households as brand loyal or not based on the brand ratio of their past purchases. Our algorithm takes as inputs the demographics of a household along with product-specific parameters. We then use logistic regression, support vector machines, and adaptive boosting to predict the households brand loyalty for that product. We also experiment with using the k-nearest neighbors algorithm to find similar product clusters and utilize these clusters as a feature in our final brand loyalty prediction.

II. RELATED WORK

Brand loyalty has been extensively studied by economists and marketing researchers. Often their research focuses on a specific demographic group and observes whether this group has different behavior than the population at large. Bronnenberg et al. examines grocery purchases by consumers who are particularly well-informed about the homogeneity of certain brand and store-brand products and observes that they purchase the cheaper store brand more often than the average shopper. They are able to do this by matching employment information (choosing medical professionals and chefs) with domain-specific products (pain medication and baking goods). In a more recent paper, Bronnenberg et al. examines households that have lived in multiple regions of the United States in their lifetime and finds that the brand capital they

have developed in the past makes them have different brand loyalties than similar consumers in their current region.

The most common use of machine learning algorithms in consumer behavior research is to create market baskets, or products that are frequently purchased together. This is useful when trying to develop marketing campaigns to mesh multiple product categories, but it does little to explain which consumers might prefer to buy a brand of a particular product. As evidence of the increasing interest in applying machine learning to the field, the popular data science website kaggle.com has hosted multiple competitions to develop models related to grocery purchases. These include a problem posed by a marketing research firm to predict when shoppers will visit a store next and how much they will spend, as well as a problem from Walmart to classify different types of shopping trips.

The previous approaches to brand loyalty have studied specific groups and how they behave differently, while machine learning in the grocery space has dealt mostly with clustering of substitute and complementary products. We will instead focus on what characteristics of the average consumer contributes to his or her brand purchasing choices. This analysis allows us to address the most pressing question for marketers - which slice of the population they should focus their limited advertising revenue on to maximize the success of their brand, both in the short term and long term.

III. DATASET AND FEATURES

A. Dataset

We use the Nielsen Consumer Panel Dataset from the James M. Kilts Center for Marketing at the University of Chicago Booth School of Business. The Nielsen Company provides scanners to households who keep track of their purchases at grocery stores. This data contains more than three million unique universal product codes (UPCs) from transactions between 2004 and 2014. Households have unique ID numbers and usually remain in the dataset over multiple years. The approximately 60,000 households are located in 50 different major metropolitan areas in the United States, representing a broad spectrum of consumers across the country. For this project we used only the 2014 data, as it contains the most unique UPCs.

The data is stored in four separate datasets: Panelists, which contains all the demographic information about each household; Trips, which contains all shopping trips for all the households; Purchases, which contains all the products purchased and the price paid on all shopping trips; and

Products, which connects each UPC with one of 1400 product modules.

Each product module represents a group of UPCs that are essentially substitutes for one another. Examples include CE-REAL - READY TO EAT, SEAFOOD-TUNA-SHELF STA-BLE, DAIRY-MILK-REFRIGERATED, and PAIN REMEDIES - HEADACHE.

B. Preprocessing

In order to prepare our data to use in our machine learning algorithms, we have to determine the purchase history of each household for a given product, and also calculate certain metrics for that product. An example is helpful for illustration:

To get household purchase history for product module 5000, we filter the Products dataset for UPCs with product module = 5000. We then merge that UPC file with the Purchases dataset to get a list of all purchases made from product module 5000. We then merge with Trips and then with Panelists and now have a list of all purchases, each labeled with its purchasing household. We then sum the number of purchases each household makes in total and also for the specific brand label = CTL, which is the brand code for store brand. We can calculate the number of brand name products they bought by taking # total purchases - # CTL purchases. The households brand loyalty is simply # brand purchases / # total purchases.

We also calculate the following metrics for product module 5000: average unit price, average brand/store brand price ratio, and total brand/store-brand purchase ratio. The average unit price is the total \$ spent / # units purchased. The brand price ratio = (total \$ spent on brand / # brand units purchased) / (total \$ spent on store brand / # store brand units purchased). The brand purchase ratio = # brand purchases / # total purchases.

We choose a collection of 25 representative products to make predictions about. We require each product to have more than 10,000 purchases in the year and we include a mix of products across departments, from FROZEN FOODS to ALCOHOLIC BEVERAGES to HEALTH & BEAUTY. We are especially careful to select products that have a variety of household brand loyalty ratios. In general, most households were almost 100

C. Feature Selection

The demographic information about each household in the Panelists file is quite extensive. It contains the number and age of adults and children, the education and employment information of the male and female head of house, the zip code and residence type, and the households race and income. It also contains information about the presence to kitchen appliances, televisions, and internet connection in the home.

For our machine learning algorithms, we chose as features income, race, household size, age and presence of children, and head male and female education and employment status. Each of these was a categorical variable and required us to create a dummy binary variable for each of its categories. For example, age_and_presence_of_children has eight different categories representing combinations of numbers and

ages of children in the home. We reduced this to three binary categorical variables: has_young_children, has_children, has_teenagers. Age and income did not require dummy variables because their categories were granular and monotonically increasing. One notable feature we omitted was occupation, which simply had too many categories and mostly correlated with income.

IV. METHODS

A. Logistic Regression

Our initial efforts were concentrated upon whether consumers tend to buy more branded or non-branded products. This is a binary classification task for which we implemented a Logistic Regression model. A Logistic Regression squashes the output of the model in the range $y = \{0,1\}$ using the sigmoid function (Eq. 1). The output values are then interpreted as the probabilities, thus any output greater than 0.5 is classified as belonging to the positive class and to the negative class otherwise (Eq. 2).

$$h_{\theta}(x) = g(\theta^T x) = \frac{1}{1 + e^{-\theta^T x}}$$
 (1)

$$P(y = 1|x; \theta) = h_{\theta}(x)$$

$$P(y = 0|x; \theta) = 1 - h_{\theta}(x)$$
(2)

We based our initial predictions on products whose distributions between branded buyers and non-branded buyers was almost even. We labeled someone as being on the "branded-buyer" class if they're above the ratio cut-off value of 0.5, all other consumers were labeled as belonging to the "non-branded" class.

B. Support Vector Machines

The Support Vector Machine is a discriminative classifier that finds an optimal hyperplane with the largest margin between the classes. These models also allow us to implicitly map our input features into a high-dimensional feature space where the optimal hyper-plane might result in a better division between the classes. These feature mappings are called kernels. In our implementation, we used the Radial Basis Function (RBF) kernel (Eq. 3). SVM's use a particular choice of the loss function called the "Hinge Loss" (Eq. 4). To fit this model, we use an algorithm such as Stochastic Gradient Descent to adjusts our weights in such a way that the Hingle Loss is minimized. We used this model in the binary classification model described above and compare the effectiveness.

$$K(x, x') = exp(-\frac{||x - x'||^2}{2\sigma^2})$$
 (3)

$$\delta(z,y) = \max\{0, 1 - yz\} \tag{4}$$

C. Boosting

The idea of this model is to take a weak learning algorithm, that is, any learning algorithm that does slightly better than random and transform it to a strong classifier that does much better than random. Roughly, this method begins by assigning every training example equal weight. It then receives a weak-hypothesis that does well according to the current weights. A weak hypothesis is an algorithm that takes as inputs some distribution (weights) p and outputs a weak learner that does better than random (Eq. 5). After evaluating the results after incorporating the new hypothesis, it re-weights the examples in such a way that incorrect classifications receive higher weights and correct classifications receives lower weights. In this way, boosting is able to create a strong hypothesis that generalizes well to new examples.

$$\sum_{i=1}^{m} p^{(i)} 1\{y^{(i)} \neq \phi_j(x^{(i)})\} \le \frac{1}{2} - \gamma \tag{5}$$

D. Softmax Regression

After our initial efforts, we decided to extend our model to incorporate more than one class. In particular, we chose to divide consumers into three bins using cutoffs at 0.33 and at 0.66. This resulted in the following class division:

$$C = \begin{cases} 0, & \text{if } ratio < 0.33\\ 1, & \text{if } 0.33 \le ratio < 0.66\\ 2, & \text{if } ratio \ge 0.66 \end{cases}$$
 (6)

All of our previous models have been binary classifiers. In order to account for more classes we fit a Softmax Regression model. This is a generalization of the Logistic Regression models to multiple classes. In particular, Softmax Regression uses the Multinomial Distribution. The probability that our features take on a certain class is given by Eq. 7.

$$p(y = i|x; \theta) = \frac{e^{\eta_i}}{\sum_{j=1}^k e^{\theta_j^T x}}$$
 (7)

V. EXPERIMENTS

A. Results

B. Discussion

Multinomial logistic regression allows us to capture the middle group of brand neutral consumers, so it makes sense that this has the highest accuracy. The demographic features contributing to brand purchases are somewhat logical. Brands cost more, so higher earners can afford to pay a premium while lower earners opt for off-brand replacements. Older females often make most of a households grocery purchases, and they are likely to have settled on a reliable brand. Household size should be explored further, as it is unclear what that indicates about brand loyalty. An interesting discovery is that certain premium products (e.g. brand eggs) are preferred by households with white, educated women. Future work could focus on finding a marketing strategy that attracts new customers to a brand. We could predict which groups of consumers will

Fig. 1. Caption

Fig. 2. Caption

be most likely to switch from off-brand to brand products and then calculate potential profits from these new consumer purchases.

VI. CONCLUSION

The conclusion goes here.

REFERENCES

[1] H. Kopka and P. W. Daly, A Guide to ETEX, 3rd ed. Harlow, England: Addison-Wesley, 1999.

Fig. 3. Caption