Ejercicio 1. Dar un conjunto fundamental de soluciones en \mathbb{R} del sistema

$$\begin{cases} (3+x^2)y_1' = 4xy_1 + (1-x^2)y_2\\ (3+x^2)y_2' = 6y_1 - 2xy_2 \end{cases}$$

sabiendo que $Y(x) = \begin{pmatrix} x \\ 3 \end{pmatrix}$ es solución.

Ejercicio 2. Dar un conjunto fundamental de soluciones en \mathbb{R} del sistema

$$\begin{cases} (3x-2)y_1' = (2-x)y_1 + y_2 \\ (3x-2)y_2' = (4x-x^2)y_1 + (1+x)y_2 \end{cases},$$

sabiendo que $Y(x) = \begin{pmatrix} -1 \\ 2-x \end{pmatrix}$ es solución.

Ejercicio 3. Resolver el sistema lineal no homogéneo

$$\begin{cases} y_1' = -4y_1 + 2y_2 + \frac{1}{x} \\ y_2' = 2y_1 - y_2 + 4 + \frac{2}{x} \end{cases},$$

comprobando previamente que $Y_1(x) = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ e $Y_2(x) = \begin{pmatrix} -2e^{-5x} \\ e^{-5x} \end{pmatrix}$ forman un conjunto fundamental de soluciones del sistema homogéneo correspondiente.

Ejercicio 4. Dar la solución general de las siguientes ecuaciones diferenciales lineales homogéneas

1.
$$3y'' - y = 0$$

2.
$$y'' - 16y = 0$$

3.
$$y'' - 3y' + 2y = 0$$
, $y(0) = -1$, $y'(0) = 2$

4.
$$y'' + 4y' - y = 0$$

5.
$$2y'' - 3y' - 4y = 0$$
, $y(1) = -1$, $y'(1) = 2$

6.
$$y'' - y' - 6y = 0$$

7.
$$y''' - 2y'' - 5y' + 6y = 0$$

8.
$$y''' - 7y'' - 25y - +175y = 0$$

9.
$$y'' - 2y' + y = 0$$
, $y(0) = 2$, $y'(0) = 0$

10.
$$y'' + 2y' + y = 0$$

11.
$$y'' - 6y' + 9y = 0$$
, $y(0) = -1$, $y'(0) = 2$

12.
$$y'' + 8y' + 16y = 0$$

13.
$$y''' - y'' - y' + y = 0$$

14.
$$y''' - 5y'' + 3y' + 9y = 0$$

15.
$$y'' + 9y = 0$$
, $y(0) = -1$, $y'(0) = 2$

16.
$$y'' - 2y' + 5y = 0$$
, $y(0) = 0$, $y'(0) = 2$

17.
$$y''' - y'' + 3y' + 5y = 0$$

18.
$$y''' - y'' + 9y' - 9y = 0$$

19.
$$x^2y'' + xy' - y = 0$$

20.
$$x^2y'' - 2xy' + 2y = 0$$

21.
$$x^2y'' - xy' + y = 0$$

$$22. \ x^2y'' + 3xy' - y = 0$$

Ejercicio 5. Se considera la ecuación diferencial $y'' + 2by' + a^2y = 0$, $a, b \in \mathbb{R}^+$ y se pide estudiar el límite de y(x), solución de la ecuación anterior.

Ejercicio 6. Obtener la solución general de las siguientes ecuaciones diferenciales:

1.
$$y'' + 3y' + 2y = 4x^2$$

$$3. y'' - 3y' = 4\sin x$$

2.
$$y'' - 3y' = 8e^{3x}$$

4.
$$y'' + 8y = 5x$$

5.
$$y'' + 8y = 2e^{-x}$$

6. $y'' + y = x \cos x$
7. $y'' + y = \cos x$
8. $y'' - 2y' + y \cdot 10e^{-2x} \cos x$
9. $y'' + y = \sec x$
10. $y'' + y = \tan x$
11. $y'' - 4y = \frac{e^{2x}}{x}$
12. $y'' + 3y' + 2y = (1 + e^x)^{-1}$
13. $x^2y'' - 3xy' + 3y = 2x^4e^x$

Ejercicio 7. Indicar la solución general de $y'''(x) - ay''(x) - y' + ay = e^{ax}$ en función del parámetro real a.

Ejercicio 8. Sea $\{y_1, y_2\}$ un conjunto fundamental de soluciones de la ecuación diferencial y'' + a(x)y' + b(x)y = 0, donde a y b son funciones continuas en un intervalo I. Demostrar que no existe $x_0 \in I$ tal que $y_1(x_0) = y_2(x_0) = 0$.

Ejercicio 9. Dar la solución general de

$$x^2y'' + \alpha xy' - \alpha y = x^2, \quad \alpha \in \mathbb{R},$$

Ejercicio 10. Dar la solución general de

$$x^2y'' - nxy' + ny = x^n, \quad n \in \mathbb{N},$$

Ejercicio 11. Sea f una función continua y definida en todo \mathbb{R} . Para cada valos del parámetro α se considera la ecuación diferencial

$$y'''(x) - (2\alpha + 4)y''(x) + (\alpha^2 + 6\alpha + 4)y'(x) - 2\alpha(\alpha + 2)y(x) = f(x),$$
(1)

se pide

- 1. Dar la solución de la parte homogénea de (1), en funcón de α .
- 2. Para $\alpha = 0$ y $f(x) = 4e^{2x}$ dar la solución particular de (1) usando el método de coeficientes indeterminados.
- 3. Para $m \neq 2$ y $f(x) = e^{mx}$, deducir si existe o no una solución particular de (1) de la forma $y_p(x) = x^2 e^{mx}$.

Ejercicio 12. Sea f una función continua y definida en todo \mathbb{R} . Para cada valos del parámetro α se considera la ecuación diferencial

$$4y'''(x) - (4 + \alpha)y'(x) - \alpha y(x) = f(x), \tag{2}$$

se pide

- 1. Dar la solución de la parte homogénea de (2), en funcón de α .
- 2. Para $\alpha = 8$ y $f(x) = xe^{-x}$ dar la solución particular de (2) usando el método de coeficientes indeterminados.
- 3. Para $\alpha = 0$ y f(x) = 4, dar la solución particular de (2) usando el método de variación de parámetros.

Ejercicio 13. Para cada valos del parámetro α se considera la ecuación diferencial

$$y''(x) - (\alpha + \alpha^2)y'(x) + \alpha^3 y(x) = 6xe^x,$$
(3)

se pide

1. Dar la solución de la parte homogénea de (3), en funcón de α.

2. Para $\alpha = 1$ dar la solución particular de (3) usando el método de coeficientes indeterminados.

Ejercicio 14. Dada la ecuación diferencial

$$xy''(x) + 2y' + xy(x) = 1, (4)$$

se pide

- 1. Demostrar que en $(0, +\infty)$, $\{\frac{\sin x}{x}, \frac{\cos x}{x}\}$ es un conjunto fundamental de soluciones de la parte homogénea de (4).
- 2. Dar la solución general con las condiciones iniciales $y\left(\frac{\pi}{2}\right) = y_0 = y'\left(\frac{\pi}{2}\right)$.

Ejercicio 15. Probar que el método de variación de parámetros aplicado a la ecuación diferencial y'' + y = f(x) conduce a la solución particular

$$y_p(x) = \int_0^x f(t)\sin(x-t)dt.$$

Ejercicio 16. Consideremos la ecuación diferencial con coeficientes continuos sobre un intervalo I

$$y^{(n)} + a_1(x)y^{(n-1)} + \ldots + a_{n-1}(x)y' + a_n(x)y = 0,$$
(5)

de la que conocemos una solución particular no nula en I, $y_1(x)$. Demostrar que el cambio de variable $y(x) = y_1(x)z(x)$ reduce la ecuación a una ecuación lineal homogénea de orden n-1 en la variable w(x) = z'(x). Si la ecuación en w(x) tiene un conjunto fundamental de soluciones $\{w_2(x), \ldots, w_n(x)\}$, probar que el conjunto

$$\{y_1(x), z_2(x)y_1(x), z_3(x)y_1(x), \dots, z_n(x)y_1(x)\}$$

es un conjunto fundamental de soluciones para la ecuación (5), siendo $z_i = \int w_i(x) dx$ para i = 2, ..., n. Este resultado, en su versión n = 2 queda ampliado de la siguiente manera. Si $y_1(x)$ es una solución particular no nula en I de

$$y'' + a_1(x)y' + a_2(x)y = 0, (6)$$

entonces

$$\{y_1(x), y_1(x) \int \frac{1}{y_1(x)^2} \exp\left(-\int a_1(x)dx\right) dx\},$$

son un conjunto fundamental de soluciones en I de la ecuación (6).

Ejercicio 17. Dar la solución general de

1.
$$(1+x^2)y'' - 2xy' + 2y = 6(x^2+1)^2$$
.

2.
$$(1+x^2)y'' + (x-2\sqrt{x^2+1})y' + y = 0$$
.

Ejercicio 18. Dar, en caso de que exista, una ecuación diferencial lineal que tenga a $\{e^x, \sin x\}$ como conjunto fundamental de soluciones en todo \mathbb{R} .

Ejercicio 19. Sea $\{y_1(x), y_2(x)\}$ un conjunto fundamental en un I de la ecuación diferencial lineal con coeficientes continuos en I, y'' + p(x)y' + q(x)y = 0. Demostrar que entre dos ceros consecutivos de y_1 debe existir un cero de y_2 .