

Europäisches Patentamt

European Patent Office

Office européen des brevets

(f) Publication number!

0 235 198

В1

(12

# EUROPEAN PATENT SPECIFICATION

- Date of publication of patent specification: 05.12.90
- (8) Int. C..<sup>E</sup>: C 08 G 63/68, C 09 B 69/10
- (t) Application number: 86905107.8
- (£) Date of filing: 06.08.86
- International application number: PCT/US86/01651
- (f) Internationa' publication number: WO 87/01121 26.02.87 Gazette 87/05
- © COLORED UNSATURATED POLYESTER MATERIAL CONTAINING COPOLYMERIZED METHINE DYES, AND PRODUCTS THEREFROM.
- ( Priority: 16.08.85 US 766218
- Date of publication of application: 09.09.87 Bulletin 87/37
- Publication of the grant of the patent: 05.12.90 Bulletin 90/49
- (H) Designated Contracting States: DE FR GB IT SE
- \$\frac{56}{DE-A-1 182 061}\$
  FR-A-2 375 273
  US-A-3 706 700

Chemical Abstract, volume 71, no. 12, 22 September 1969, (Columbus, Ohio, US), V.V. Korshak et al.: "Colored polyesters based on bis (hydroxyalkoxy) azo-benzenes", see page 24, abstract no. 50783u, & Izv. Akad. Nauk SSSR, Ser. Khim. 1969, (5), 1078-85

- Proprietor: EASTMAN KODAK COMPANY (a New Jersey corporation) 343 State Street Rochester New York 14650 (US)
- (T) Inventor: PRUETT, Wayne, Payton P.O. Box 1972
  Kingsport, TN 37662 (US)
  Inventor: WANG, Richard, Hsu-Shien P.O. Box 1972
  Kingsport, TN 37662 (US)
  Inventor: HILBERT, Samuel, David P.O. Box 1972
  Kingsport, TN 37662 (US)
  Inventor: WEAVER, Max, Allen P.O. Box 1972
  Kingsport, TN 37662 (US)
- (II) Representative: Parent, Yves et al Kodak-Pathé Département Brevets et Licences Centre de Recherches et de Technologie Zone industrielle F-71102 Chalon-sur-Saône Cédex (FR)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement, it shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).

#### Description

This invention relates to colored, unsaturated polyesters which contain certain methine dye moieties chemically linked through copolymerization into the polyester backbone whereby the dive moieties become essentially nonextractable from the polyester. These colored polyesters are thus highly suitable for incorporation into curable polyester materials used in the production of bathroom fixtures (sinks, showers, tubs), boats, automotive parts, and the like wherein resistance to dive extractability is of great consequence. The addition of the methine dive monomers during the polyester preparation also gives greater colorant uniformity than possible, for example, where such colorants are simply blended with the polyester material prior to casting or molding thereof.

It is known, of course, that some methine dyes may be used to color polyester fibers using conventional dyeing procedures. It is also known that certain dyes can be melt blended (not copolymerized) with preformed polyesters or dispersed with reactive solvent (curing monomer) into unsaturated polyester material prior to molding and curing, to produce colored product. In other limited cases, certain dyes such as selected anthraquinones are reactable into the polyester chain by copolymerization.

Advantages of the present methine moieties over others which might be copolymerized into the polyester include (1) greater thermal stability, for example, than azo dyes which generally are not stable to polymer preparation temperatures, (2) methine dyes can be selected or tailored to absorb light at the proper wavelengths to protect particular contents of a package, (3) certain anthraquinone dyes, for example, which absorb light below 420 nm are generally not stable to UV, (4) the present methine dyes have high extinction coefficients, i.e., less dye is needed to give equivalent color, and (5) generally speaking, methine dyes are much less costly than anthraquinone dyes.

In accordance with the present invention, the methine moieties have at least one methine unit defined herein as "the group >C=C< conjoined with a conjugated aromatic system." This unit imparts to the moiety and to the polymer the property of ultraviolet or visible light absorption generally within the range of about 320 nm to about 650 nm. The moieties preferably have molecular weights of from about 200 to about 600 although lower and higher molecular weights are also operable. The moieties are derived from reactants (monomers) having one or more groups which condense during esterification or polycondensation to enter the moiety into the polymer chain. These groups include hydroxyl, carboxyl, carboxylic ester, acid halide, amino and the like. As aforesaid, these methine moieties are thermally stable at polymer processing conditions, for example, including polycondensation temperatures of up to about 300°C. Of course, where only one condensable group is present, the methine monomer would act as a chain terminator in known manner. These moieties are useful in total concentrations ranging from about 1.0 to about 5,000, preferably 2.0 to about 1,500 parts by weight of moiety per million parts by weight of final polymer (ppm).

The present invention is defined in its broad embodiment as unsaturated polyester material having copolymerized therein a total of from 1.0 to about 5,000 ppm, of at least one methine moiety having one or more methine units, said moiety absorbing in the range of from 320 nm to about 650 nm, and being non-extractable from said polyester material and stable under processing conditions therefor.

The extractabilities of the present methine moieties can be determined as follows:

## Extraction Procedure

All extractions are done in glass containers with distilled solvents (water, heptane, etc.) under the time and temperature conditions described below. The sample form is 0.5 inch × 2.5 inch (12.7 × 63.5 mm) molded segments of about 10 to 20 ml thickness, the thickness, however, not being critical. All samples are washed with cold solvent to remove surface contaminants and are then contacted with 2 ml of solvent/inch² (1 ml of solvent/3.2 cm²) of surface area. After the specified period of ageing in the solvent, the solvent is transferred to glass flasks, concentrated, spiked and analyzed. Solvent blanks (controls) are run under the same conditions without polymer.

# **Extraction Conditions**

1. Water. The samples are added to the solvent at room temperature and heated at 250°F (121°C) (15 psi, 1.03 bar) for two hours. For half the samples, the solvent is transferred to glass flasks, concentrated, and analyzed; the remaining samples are placed in a 120°F (49°C) oven for 30 days and the solvent then transferred to glass flasks, concentrated, and analyzed.

2. 50% Ethanol/water (v/v). The samples are added to solvent at room temperature, placed in an oven at 120°F (49°C), concentrated, and analyzed after 24 hours and 30 days.

3. Heptane. The samples are added to solvent at 150°F (65°C) and heated at 150°F (65°C) for 2 hours. Part of the samples are transferred to glass flasks, concentrated, and analyzed. The remainder of the samples are placed in a 120°F (49°C) oven for 30 days and the solvent then transferred to glass flasks, concentrated, and analyzed.

40

Analysis

65

instrument — Hewlett-Packard 84504, spectrophotometer

Cell Path Length - 1 cm

Scanning Range — 400 nm to 650 nm

Calibration for Red Methine dye in Anisole — 520 nm absorbance maximum

Calibration for Red Methine dye in DMF — 530 nm absorbance maximum

The Hewlett-Packard 8450 A spectrophotometer is equipped with microprocessor and programming capability with RAM memory and floppy disk storage. The instrument is calibrated at 1000 ppb, 1500 ppb, and 2000 ppb dye in anisole and 970 ppb, 1460 ppb, and 1940 ppb in the DMF. The calibration data are stored on a floppy disk for recall when needed.

The extractability of the present methine moieties from the present cured polyester material is

essentially nonexistent.

Useful methine reactants or monomers for the present invention have the general formulas:

wherein A is selected from the following radicals designated by their exemplary table numbers:

(R) 
$$\frac{1}{n}$$
  $\frac{1}{n}$   $\frac{1}{n}$ 

wherein:

R and R' are selected from hydrogen, fluorine, chlorine, bromine, alkyl, alkoxy, phenyl, phenoxy, alkythio, and arylthio; n is 0, 1, 2;

 $R_1$  and  $R_2$  are selected from hydrogen; cycloalkyl; cycloalkyl substituted with one or two of alkyl, —OH, alkoxy, halogen, or hydroxy substituted alkyl; phenyl; phenyl substituted with alkyl, alkoxy, halogen, alkanoylamino, carboxy, cyano, or alkoxycarbonyl; straight or branched lower alkenyl; straight or branched alkyl of 1—8 carbons and such alkyl substituted with the following: hydroxy; halogen; cyano; succinimido; hydroxysuccinimido; acyloxysuccinimido; glutarimido; phenyl(arbamoyloxy; phthalimido; 4-carboxyphthalimido; phthalimidino; 2-pyrrolidono; cyclohexyl; phenyl; phenyl substituted with alkyl, alkoxy, halogen, hydroxy alkanoylamino; carboxy, cyano, or alkoxycarbonyl; alkylsulfamoyl; vinyl-sulfonyl; acrylamido; sulfamyl; benzoylsulfonicimido; alkylsulfonamido; phenylsulfonamido; alkoxycarbonylamino; alkylcarbamoyloxy; alkoxycarbonyl; alkoxycarbonylamino; groups of the formula

wherein Y is -NH-,

-0-, -S-, or  $-0h_20-$ ;  $-S-F_{14}$ ,  $SO_2Oh_2Oh_2SF_{14}$ ; wherein  $F_{14}$  is alky!, phenyl, phenyl substituted with naiogen, alkył, alkoxy, alkanoviamino, cyano, or alkoxycarbonył; pyrigyl; pyrimidinyi; benzoxazolył; benzimidazovlyl; benzothiazoly:: radicals of the formulae

halogen, hydroxy, phenoxy, aryl, cyano, cycloalkyl, alkylsulfonyl, alkylthic, alkanoyloxy, and alkoxy; and when X is -CO-, R<sub>16</sub> also can be hydrogen, amino, alkenyi, alkylamino, dialkylamino, arvlamino, aryl, or furyl; alkoxy, alkoxy substituted with hydroxy, cyano, alkanoyloxy, or alkoxy; phenoxy; phenoxy substituted with one or more of alkyl, carboxy, alkoxy, carbalkoxy, or halogen;  $R_1$  and  $R_2$  can be a single combined group such as pentamethylene, tetramethylene, ethyleneoxyethylene, ethylene sulfonylethylene, or

XR<sub>17</sub> ethylene-N-ethylene

which, with the nitrogen to which it is attached, forms a ring; R<sub>17</sub> is alkyl, aryl, or cycloalkyl;

R<sub>3</sub> is alkylene, arylene, aralkylene, alkyleneoxy, or alkyleneoxyalkylene; Z is a direct single bond, OCO, O, S,  $SO_2$ ,  $R_{17}SO_2N=$ ,

OCNH-arviene

arylene, or alkylene;

20

25

30

65

 $R_4$ ,  $R_5$ , and  $R_6$  are each selected from hydrogen and alkyl;

 $R_7$  is carboxy, carbalkoxy, or  $(R)_n$ ;

R<sub>10</sub> is hydrogen, alkyl, and aryl;

 $R_{\text{S}}$  and  $R_{\text{S}}$  are selected from hydrogen and substituted or unsubstituted alkyl, aryl, or cycloalkyl;

 $R_{11}$  and  $R_{12}$  are hydrogen, alkyl, hydroxyl, or acyloxy; 40

B represents the atoms necessary to complete a five or six membered ring and is selected from

and

Pland Clare selected from cyano, carbalkoxy, carbaryloxy, carbaryloxy, carbamyl, carbamyl, carbamyl, N-alkyl-aryloarbamyl, N,N-dialkylcarbamyl, N-aryloarbamyl, N-cyclohexylcarbamyl, aryl, 2-benzoxazolyl, 2-benzotniazolyl, 2-benzimidazolyl, 1,3,4-thiadiazol-2-yl, 1,3,4-oxadiazol-2-yl, SC<sub>2</sub> alkyl, SO<sub>2</sub> aryl, and acyl, or Pland Climay be combined as

wherein R<sub>12</sub> is defined above and R<sub>18</sub> is CN, COOH, CO<sub>2</sub> alkyl, carbamyl, or N-alkylcarbamyl;

wherein at least one of A, P, and Q for each dye molecule must be or bear a condensable group selected from carboxy, carbalkoxy, carbaryloxy, N-alkylcarbamyloxy, acyloxy, chlorocarbonyl, carbamyloxy, N-lalkyl)<sub>2</sub>carbamyloxy, amino, alkylamino, hydroxyl, N-phenylcarbamyloxy, cyclohexanoyioxy, and carbocyclohexyloxy; and

wherein in the above definitions, each alkyl, aryl, or cycloalkyl moiety or portion of a group or radical may be substituted where appropriate with hydroxyl, acyloxy, alkyl, cyano, alkoxycarbonyl, halogen, alkoxy, or aryl, aryloxy, or cycloalkyl. Also in the above definitions, at least one of A, P, and Q for each dye molecule must be or bear a group capable of reacting under polymerization conditions, to incorporate the methine dye into the polymer, including the following, carboxy, carbalkoxy, carbaryloxy, N-alkyl-carbamyloxy, acyloxy, chlorocarbonyl, carbamyloxy, N-alkylcarbamyloxy, acyloxy, chlorocarbonyl, carbamyloxy, N-alkylcarbamyloxy, amino, alkylamino, hydroxyl, phenylcarbamyloxy, cyclohexanoyloxy, and carbocyclohexyloxy, wherein the alkyl and/or aryl groups may contain common substituents such as hydroxyl, cyano, acyloxy, carbalkoxy, phenyl, and halogen which do not interfere with the condensation reaction.

In all of the above definitions the alkyl or alkylene moieties or portions of the various groups contain from 1—8 carbons, straight or branched chain.

The unsaturated polyesters useful in this invention include the esterification and polycondensation products of one or more unsaturated dicarboxylic acids or their anhydrides and one or more dihydric or polyhydric alcohols. As the acid component, the α,β-ethylenically unsaturated polycarboxylic acids include those having 2—12 carbon atoms, e.g., maleic, fumaric, substituted fumaric, citraconic, mesaconic, tetraconic, glutaconic, muconic, and the like, as well as mixtures thereof. Noncurable polycarboxylic acids, i.e., those which do not contain reactive α,β-ethylenic unsaturation, may also be used if employed in combination with one or more of the aforementioned α,β-ethylenically unsaturated polycarboxylic acids. Where such noncurable polycarboxylic acids are employed, the amount thereof should not constitute more than about 80% of the total equivalents of carboxyl groups in the esterification mixture. Preferably, such noncurable polycarboxylic acids will be employed in amounts varying between about 35% and 75% of the above indicated equivalence basis. Among the noncurable polycarboxylic acids that may be used are oxalic, malonic, succinic, glutaric, sebacic, adipic, phthalic, isopthalic, terephthalic, substituted phthalic, such as tetrachlorophthalic, suberic, azelaic, tricarballylic, citric, tartaric, cyclopropanedicarboxylic, cyclohexanedicarboxylic, and the like, as well as mixtures thereof.

As the alcohol component, the saturated aliphatic polyhydric alcohols include those preferably containing only two hydroxyl groups. Among such diols are ethylene glycol, propylene glycol, butylene glycol, diethylene glycol, diethylene glycol, diethylene glycol, tetraethylene glycol, butanediol-1,2, butanediol-1,3, butanediol-1,4, pentanediol-1,2, pentanediol-1,4, pentanediol-1,5, hexanediol-1,6, neopentyl glycol, 2,2,4-trimethyl-1,3-pentanediol and the like, as well as mixtures thereof. However, saturated aliphatic polyhydric alcohols containing more than two hydroxyl groups may also be employed and include glycerol, trimethylol ethane, trimethylol propane, pentaerythritol, sorbitol, and the like, as well as mixtures thereof. It is usually desirable that such polyols be employed in minor proportions relative to the diol or diols.

The components may be reacted in the manner customarily used in preparing ethylenically unsatruated polyester resins, i.e., at elevated temperatures and atmospheric pressure, although pressures slightly above or below atmospheric may be employed if desired. The reaction temperature is not critical but preferably is just below the boiling point of the most volatile component of the reaction mixture which is generally the alcohol component. However, temperatures in excess of the boiling point of the most volatile constituent may be employed if the reaction vessel has been equipped with a steam-heated reflux condenser which permits water of esterification to escape from the reaction vessel while condensing volatilized reaction components and returning them to the reaction system.

In preparing the curable compositions, the unsaturated polyesters are blended with a reactive curing agent, operably in a weight ratio of agent/polyester of 10/90 to 90/10, but preferably from 30/60 to 70/40. These agents contain one or more  $CH_2=C<$  groups and desirably have boiling points at atmospheric pressure of 60°C or greater. Such agents include styrene, side-chain substituted styrenes such as the amethyl styrene, a-ethyl styrene, and the like, ring substituted styrenes, such as alkyl styrenes, e.g., ortho-

meta and para-alky, styrenes, including o-methy' styrene, p-ethy' styrene, meta-propy! styrene, 2.4-di-methy styrene, 2.5-diethy, styrene, and the like, halostyrenes, e.g., c-bromostyrene, p-eniorostyrene, 2.4-di-methy, styrene, and the like. Also included are alky' esters of acrylic and methacrylic acid, e.g., methy, ethy, or butyl acrylate, methy, methacrylate, and the like. Also useful are vinyl acetate, vinyl butyrate, vinyl laurate, acrylonitrile methacrylonitrile, vinyl chioride, acrylamide, methacrylamide and their dderivatives, aliv. compounds such as dially phthalate, aliv. acetate, alivi methacrylate, dially' carbonate, aliv. lactate, alivi c-hydroxylosoutyrate, aliv. tricniorosilane, aliv. acetate, alivi methacrylate, dially oxalate, dially gluconate, dially methyl gluconate, dially adipate, diallyl sebacate, diallyl traconate, diallyl tartrachate, diallyl mesaconate, diallyl citraconate, the diallyl ester of muconic acid, diallyl itaconate, diallyl tricniorosilane, the diallyl ester of endomethylenetetrahydrophthalate, diallyl dichiorosilane, the diallyl aconitate, triallyl cyanurate, triallyl citrate, triallyl phosphate, tricnioroshyllyl phosphate, tetraallyl silane, tetraallyl silicate, hexallyldisiloxane, and the like. These curing agents may be used singly or in combination with one another.

In order to facilitate the curing, it is preferred that a polymerization catalyst be incorporated in the blend at the time of its curing. The type and amounts of these catalytic materials are well known in the art, and any material which normally induces polymerization of polyester resinous compositions can be utilized. The optimum reaction conditions are modified to some extent by the choice of the particular catalyst used in the process. A very active catalyst should be used in lower concentrations, and preferably at lower temperatures, than a less reactive material. The preferred catalysts comprise a wide variety of organic superoxides, i.e., organic peroxides ("acidic peroxides") and hydroperoxides ("alcoholic peroxides"). Mixtures of peroxides and hydroperoxides, including commercially available mixtures such as methyl ethyl ketone peroxide, cyclohexanone peroxide, and the like, are especially effective as catalysts. Among the useful organic peroxide catalysts are acetyl peroxide, benzoyl peroxide, substituted benzoyl peroxides, halogenated benzyl peroxides such as p-bromobenzoyl peroxide, and 2,4-dichlorobenzoyl peroxide, benzoyl acetyl peroxide, phthalyl peroxide, succinyl peroxide, fatty oil acid peroxides, such as coconut oil peroxide, lauryl peroxide, stearyl peroxide, oleyl peroxide, anisoyl peroxide, toluyl peroxide, and the like. Organic peracids, such as peracetic acid and perbenzoic acid, may also be employed. The useful organic hdyroperoxide catalysts include tertiary butyl hydroperoxide, cumene hydroperoxide, diisopropyl benzene hydroperoxide, 1-hydroxycyclohexyl hydroperoxide, the terpene oxides, such as ascaridole, 1-p-methane hydroperoxide, and the like. Various other types of polymerization catalysts may also be employed, for example, compounds such as aluminum chloride, stannic chloride, boron trifluoride, or the azo-type catalysts such as a,a'-azobisisobutyronitrile.

Since the unsaturated polyester may contain a high degree of polymerizable or reactive unsaturation, it is often desirable to blend a polymerization inhibitor therewith to retard internal polymerization of the polyester during any storage period encountered prior to curing. Once the curable composition is contacted with a sufficient amount of a polymerization catalyst, however, the effect of the inhibitor will be overcome. Among the useful inhibitors are phenol, the monoalkyl phenols, such as orthor, meta-, and paracresol as well as mixtures of such isomers, polyalkyl phenols having a plurality of the same or different substituents, e.g., ethyl, propyl, butyl, and higher alkyl radicals attached to their nuclei, catechol, tertiary butyl catechol, hydroquinone, tertiary butyl hydroquinone, resorcinol, eugenol, guaiacol, pyrogallol, benzaldehyde, tannic acid, ascorbic acid, isoascorbic acid, phenylene diamine, sym-di-β-naphthyl-phenylene diamine, aniline, and the like. The amount of polymerization inhibitor employed depends on the nature of the unsaturated polyester as well as the period of storage stability required. Generally, from about 0.001% to 0.3% by weight, based on the total weight of the curable polyester blend will be sufficient.

Inhibitors of this type may be added during preparation of the unsaturated polyester or optionally added later to the curable blend. In addition, other known additives may be employed such as promoters used in conjunction with the catalyst, mold lubricants, fillers and reinforcing materials, other colorants, flow promoters, ultraviolet absorbing agents, and the like.

The conditions necessary for curing the above blends do not depart from the practice ordinarily observed in curing these types of compositions in general. They may be cured in contact with air or in enclosed molds at temperatures ranging from about 10°C to about 160°C, or even higher as long as they are kept below the point at which the particular curable blend employed begins to decompose. Where it is convenient, it is especially desirable to cure the catalyzed blends by heating to between 90°C and about 150°C for a period of about 3 to 90 minutes.

In general, the methine reactants (monomers) are prepared, for example, by reacting the hydrogenated parent of an aromatic moiety A above, which is electron rich, with a Vilsmeier complex to produce an aldehyde [Bull. Societe Chim. de France, No. 10:1898—99 (October 1962); Angewandte Chemie 72, No. 22, 836—845, November 21, 1960]. For reasons of cost and convenience, phosphorus oxychloride (POCl<sub>3</sub>) and N,N-dimethylformamide (DMF) are the preferred reagents. Thus, aromatic amines such as anilines, 60 m-toluidines, 2,5-dimethylanilines, 2,5-dimethoxyanilines, or the like are converted in high yields into the corresponding aldehydes via the Vilsmeier reaction, which aldehydes are subsequently reacted with an active methylene compound of the formula P—CH<sub>2</sub>—Q in the presence of a base, such as piperidine to produce the methine monomers, as shown in the following reaction sequence

Tetrahydroquinolines, benzomorpholines, indoles, thiazoies, and Fischer's base also undergo the Vilsmeier reactions to produce aldehydes. Preparation of the methine monomers and intermediate aldehydes via the above route is disclosed in considerable detail in many patents including: U.S. 2,649,471; U.S. 2,850,520; U.S. 3,247,211; U.S. 3,260,737; U.S. 3,326,960; U.S. 3,349,098; U.S. 3,386,491; U.S. 3,390,168; U.S. 3,453,270; U.S. 3,453,280; U.S. 3,468,619; U.S. 3,504,010; U.S. 3,555,016; U.S. 3,597,434; U.S. 3,652,636; U.S. 3,661,899; U.S. 3,728,374; U.S. 3,787,476; U.S. 3,829,410; U.S. 3,829,461; U.S. 3,846,069; U.S. 3,869,495; U.S. 3,869,498; U.S. 4,879,434; U.S. 3,920,719; and U.S. 4,077,962 It is also known that it is not necessary to isolate the intermediate aldehyde before preparing the methine monomers as the Vilsmeier reaction mixture can be reacted directly to produce the desired product (U.S. Patents 3,917,604 and 4,088,673). All of these patent teachings are incorporated herein by reference.

Since the Vilsmeier complexes also convert hydroxyl groups to halogen, other methods must be employed to prepare methine monomers bearing hydroxyl groups. For example, the monomers can be prepared according to the scheme

comprising reacting N,N-di-β-hydroxyethylaniline with formaldehyde and m-nitrobenzenesulfonic acid in the presence of concentrated HCl and iron filings to produce the intermediate 4'-(di-β-hydroxyethylamino)-benzalaniline-m-sulfonic acid, which can be reacted with active methylenes to produce the monomers (U.S. 2,583,551).

Another method for producing methine monomers containing dicyanovinyl groups is described in U.S. 4,006,178 wherein aromatic amines are reacted with 1-halogeno-2,2-dicyanoethylene to produce corresponding methine compounds as follows:

Intermediate aldehyde compounds containing groups such as acyloxy or alkoxycarbony! can be hydrolyzed to prepare methine monomers containing hydroxy! or carboxy groups, respectively, which are capable of being reacted into the condensation polymer.

The following examples will illustrate the common reaction of an aromatic aldehyde with an active methylene to produce a typical methine monomer.

Example 1

4-(N,N-Dimethylamino)cinnamaldehyde (1,75 g, 0.01 m), methyl cyanoacetate (0.99 g, 0.01 m), methanol (20 mL), and piperidine (3 drops) are mixed and heated together at reflux for 30 minutes. After being allowed to cool, the reaction mixture is filtered. The orange dye (2.5 g) is washed with methanol and air-dried and has the following structure.

30 This yellow dye absorbs light at  $\lambda_{max}$  464 nm with a molar extinction coefficient of 38,000.

Example 2

Ethyl [[4-(dimethylamino)phenyl]methylene]propenedioate shown below is prepared by the reaction of 4-(dimethylamino)benzaldehyde with diethyl malonate in the presence of a base catalyst in toluene. This pale yellow dye absorbs UV light at  $\lambda_{max}$  373 nm with a molar extinction coefficient of 33,000.

$$(CH_3)_2N$$
 -  $CH = C(COC_2H_5)_2$ 

The following tables further exemplify the useful methine reactants.

45

**4**0

20

25

50

55

60

£5

| TABLE 1 | 1 2 R2 | (R) 3.=.6 R1 |
|---------|--------|--------------|
|         | ۵′     | à            |

|         | p , q | CN, CM   | CN, SO, CH, | CN, CONHC6H5                       | CN, SO,CH,                         | CN, COCeHs                         | CN, - 12 - 10 - 10 - 10 - 10 - 10 - 10 - 10 | CN, CO2CH,   | CN, CONH,      | CN, CO,C,H;                            | CN, CO2C6H5               | CN, CO2C6H11 | CN, CONHC, H, OH |   |
|---------|-------|----------|-------------|------------------------------------|------------------------------------|------------------------------------|---------------------------------------------|--------------|----------------|----------------------------------------|---------------------------|--------------|------------------|---|
|         | R2    | CH2CH2OH | CH2CH2OH    | CH <sub>2</sub> CH <sub>2</sub> OH | CH 2 CH 2 OH                       | CH2CH2OH                           | CH <sub>2</sub> CH <sub>2</sub> OH          | C2Hs         | Czlls          | C2Hs                                   | C2Hs                      | C2Hs         | C2Hs             |   |
|         | R1    | СИ,СИ,ОН | CH2CH2OH    | CH <sub>2</sub> CH <sub>2</sub> OH | CH <sub>2</sub> CH <sub>2</sub> OH | CH <sub>2</sub> CH <sub>2</sub> OH | СН2СН2ОН                                    | CH2CH(OH)CH1 | СН2СН(ОН)СН2ОН | C2H3                                   | C2H5                      | CzHs         | C2Hs             |   |
|         | (R)n  | =        | æ           | 3-CH,                              | 3-CH,                              | <b>=</b>                           | Ŧ                                           | 3-CH,        | 2,5-d1-OCH3    | 2-0CH <sub>3</sub> , 5-CH <sub>1</sub> | 2-0CH <sub>3</sub> , 5-Cl | 2-SCH,       | 2-0C,Hs          |   |
| Example | No.   | *1       | *           | S                                  | 9                                  | 7                                  | 8                                           | 6            | 10             | 11                                     | 12                        | 13           | . 14             | • |

| _ | _     |   |
|---|-------|---|
|   |       |   |
|   | _     |   |
|   |       |   |
|   |       |   |
|   | 1     | ١ |
| 1 | 1     |   |
| 1 | 4     |   |
| 1 | 1 Y Y |   |

| Example<br>No. | (R) <sub>n</sub>                       | RI                                              | R <sub>2</sub>                | P. Q                             |
|----------------|----------------------------------------|-------------------------------------------------|-------------------------------|----------------------------------|
|                | =                                      | C, H, OCCH,                                     | C2Hs                          | CN, CO, CH,                      |
|                | æ                                      | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0           | C 2 H , OCCH ,                | CN, CN                           |
|                | 3-CH3                                  | С, И, ОССИ,                                     | с, и, осси,                   | CN, CO, CH,                      |
|                | 3-CH,                                  | с, н, осси,                                     | с 24,0Ссн 3                   | CO2C2HS, CO2C2HS                 |
|                | æ                                      | с, н, осси,                                     | с <sub>2</sub> н,осси,        | 0:00                             |
|                | Ξ                                      | C,H,OCCH,                                       | 0<br>C 2 H 4 O C C H 3        | cN C € H s −0C−C=-C              |
|                | Ħ                                      | C <sub>2</sub> H, OCCH,                         | C <sub>2</sub> H <sub>5</sub> | остория се из<br>- остория се из |
|                | Ħ                                      | CH,                                             | CH 3                          | -0C-C-C-C6H3                     |
|                | <b>35</b>                              | C. H.s                                          | сн, си, оёсн,                 | CN, CO2CH3                       |
|                | 3-CH,                                  | C <b>6 H s</b>                                  | си,си,осси,                   | CH, COOH                         |
|                | 3-0C <sub>2</sub> H, OCCH <sub>3</sub> | p-cH <sub>3</sub> C <sub>6</sub> H <sub>4</sub> | си, си, осси,                 | CN, CO2CH2CH2CH,CH,              |
|                | 3-CH,                                  | m-C1C,H,                                        | CH2CH2OH                      | CN, CO2CH3                       |
|                | ×                                      | CH2C6H3                                         | CH2C6H5                       | CN, CO2CH1                       |
|                | 3-CH3                                  | CH1C6Hs                                         | CH1                           | CN, CN                           |

| _        |
|----------|
| -        |
| $\circ$  |
| Ð        |
| -        |
| _        |
|          |
|          |
| -        |
| ~        |
| -        |
| $\Box$   |
| 75       |
|          |
|          |
| ے.       |
| =        |
| Ξ        |
| <u>-</u> |
| -        |
| E 1.     |
| ᇤᅼ       |
| $\equiv$ |
| B        |
| $\equiv$ |
| B        |

|                     | P , Q            | CN, COC(CH1)1   | CN, CO,CH,                                        | CN, CO,CH,CH,OCH,                  | CN, CO2CH,      | CH, CO2CH;        | CN, CO2CH1 | CN, CO,CH1 |              | CN, CN         | CN, CONHC, II, n                   | CN, CO,CH, | CN, CN | CN, CN | CN, CO,CH,        |
|---------------------|------------------|-----------------|---------------------------------------------------|------------------------------------|-----------------|-------------------|------------|------------|--------------|----------------|------------------------------------|------------|--------|--------|-------------------|
| TABLE 1 (continued) | R2               | CH1             | CH <sub>2</sub> CH <sub>2</sub> OCCH <sub>1</sub> | CH2CH2OCC6H5                       | C2H5            | CzHs              | CeHs       | C2H3       | CH2CH2CO2CH3 | CH 2CH 2CO 2 H | CH <sub>2</sub> CH <sub>2</sub> OH | CH2CH2CN   | CH 2   | CH2    | CH 2-             |
| TABLE 1 (           | RL               | CH <sub>2</sub> | CH <sub>2</sub> C <sub>1</sub>                    | CH <sub>2</sub> , OCH <sub>3</sub> | CH, CH, OCC, H, | CH, CH, OCNHC, H, | CeHs       | CH2CH2CN   | CH2CH2CO2CH3 | CH 2CH 2CO 2H  | CH2CH2C6H5                         | CH, CH, C1 | CH2    | CH2    | -CH2CH2SO2CH2CH2- |
|                     | (R) <sub>n</sub> | 3-сн,           | 3-CH3                                             | 3-CH <sub>3</sub>                  | 3-CH,           | 3-CH3             | æ          | 3-CH,      | ×            | ×              | æ                                  | æ          | æ      | æ      | ×                 |
| •                   | Example<br>No.   | 29              | 30                                                | 31                                 | 32              | 33                | 34         | 35         | 36           | 37             | 38                                 | 39         | 40     | 4.1    | 4.2               |

|                     | p, 0             | CN, CO,CH,              | CN, CO2CH,       | CN, CO,CH;        | CN, CO2CH,                           |              | CN, CO2CH3                    | CN, CO2CH3                    | CN, CO2CH3        | CN, CO2CH3                    | CN, CO,CH,  | CN, CO2CH3                      | CN, CO, CH,                               | CN, CO,CH,                       |
|---------------------|------------------|-------------------------|------------------|-------------------|--------------------------------------|--------------|-------------------------------|-------------------------------|-------------------|-------------------------------|-------------|---------------------------------|-------------------------------------------|----------------------------------|
| TABLE 1 (continued) | R2               | -CH,CH,N(SO,CH,)CH,CH,- | -CH1CH1-OCH1CH1- | -CH,CH,CH,CH,CH,- | -CH <sub>2</sub> CH <sub>2</sub> N H | <i>[</i> , ] | -CH2CH2N ii i coon            | -CH,CH2N(C,H5)50,CH3          | -CH2CH2OC6H5      | CH, CH, CO-CH, CO-CH,         | CH2CH2OC2H5 | CH2CH2OCH2CH2OC2H5              | CH <sub>2</sub> CH <sub>2</sub> N COCH-OH | соси-осси,<br>си,си,и  <br>соси, |
| 1                   | R1               | -CH2CH2N                | -CH1CH1-         | -CH2CH2(          | C <sub>2</sub> H <sub>5</sub>        |              | C <sub>2</sub> H <sub>5</sub> | C <sub>2</sub> H <sub>5</sub> | C2Hs              | C <sub>2</sub> H <sub>5</sub> | CH2CH2OC2H5 | CH <sub>2</sub> CH <sub>3</sub> | CH, CH,                                   | CH2 CH3                          |
|                     | (R) <sub>n</sub> | Ħ                       | 3-CH3            | Ŧ                 | 3-CH,                                |              | 3-CH <sub>3</sub>             | 3-CH3                         | 3-CH <sub>1</sub> | 3-CH <sub>3</sub>             | Ŧ           | 3-CH <sub>3</sub>               | 3-CH3                                     | 3-CH3                            |
|                     | Example<br>No.   | 43                      | 44               | 45                | <b>4</b><br>6                        |              | 47                            | 48                            | 49                | 50                            | 51          | 52                              | 53                                        | 4.                               |

|                     | O''d                             | CN, CO2CH1     | си, со,си,   | CN, CO, CH, | CN, CO2CH,      | CN, CO2CH3       | CN, CO2CH3 | си, соон        | CN, CO,CH(CH <sub>1</sub> ),   | CO2CH3, CO2CH3                       | CO, CH, , CN   |
|---------------------|----------------------------------|----------------|--------------|-------------|-----------------|------------------|------------|-----------------|--------------------------------|--------------------------------------|----------------|
| TABLE 1 (continued) | <u>R2</u><br>, Cοςμ <sub>2</sub> | CH2CH2N CH2CH2 | CH, CH, N ii | C2H,        | CH2CH2CH2SO2CH3 | CH, CH, OCOC, H, | -CH2CH=CH2 | -CH2CH2N CO-CH2 | -CH2CH2N CO-CH2                | CH <sub>2</sub> CH <sub>2</sub> N II | -CH2CH2N COCH2 |
| .1                  | R <sub>1</sub>                   | CH 3           | CH2C6H5      | CH2C6H11    | C2H5            | C2Hs             | -CH,CH=CH, | -C2H3           | -C <sub>2</sub> H <sub>5</sub> | -C2H5                                | -C2Hs          |
|                     | (R) <sub>n</sub>                 | 3-CH3          | 3-CH,        | æ           | 3-CH3           | 3-CH3            | 3-CH2      | 3-CH,           | 3-CH3                          | 3-CH <sub>3</sub>                    | 3-CH3          |
| •                   | Example<br>No.                   | 55             | 95           | 57          | 58              | 59               | 09         | 61              | 62                             | 63                                   | 64             |

| _        |
|----------|
| ontinued |
| و<br>و   |
| _        |
| 11       |
| _        |
| H        |
| ₹        |
| _        |

| 6   |                   |                                |                                                                                   |                |
|-----|-------------------|--------------------------------|-----------------------------------------------------------------------------------|----------------|
| No. | (R)n              | RI                             | R <sub>2</sub>                                                                    | P, Q           |
| 65  | 3-CH3             | -C 2 H 3                       | -CH1CH1SO1CH=CH1                                                                  | CO, CH, CH     |
| 99  | 3-CH,             | -C2Hs                          | -CH1CH1SO1CH1CH1SC6H1                                                             | CO2CH3, CN     |
|     | 3-CH3             | -C2H5                          | -CH2CH2S                                                                          | CO2CH1, CN     |
|     | 3-CH,             | -C, H,                         | -E+ CH 2 CH 2 SC 4 H 9 ,                                                          | CO2CH3, CN     |
| 69  | 3-CH <sub>3</sub> | -C <sub>2</sub> H <sub>5</sub> | -CH2CH2N(C2H4CN)SO2CH3                                                            | CO,CH,, CN     |
| 7.0 | 3-CH,             | -C2Hs                          | -CH <sub>2</sub> CH <sub>2</sub> CONH <sub>2</sub>                                | CO2CH1, CN     |
| 71  | 3-CH,             | -C <sub>2</sub> H <sub>s</sub> | -CH <sub>2</sub> CH <sub>2</sub> CON(C <sub>2</sub> H <sub>5</sub> ) <sub>2</sub> | CO2CH3, CN     |
| 72  | 3-CH3             | -C2Hs                          | -CH,CH(OCOCH,)CH,OCOCH, CN, CN                                                    | CN, CN         |
| 73  | 3-CH,             | -C2Hs                          | -CH2CH2OCCeH5                                                                     | CN, CN         |
|     | 3-CH,             | -C2Hs                          | -CH2CH2OCC6H11                                                                    | CN, CN         |
| 75  | 3-CH,             | -C2Hs                          | -CH2CH2SO2N(C2H3)2                                                                | CN, CO2CH3     |
| 16  | 3-CH,             | -C2Hs                          | -CH2CH2SO2N(CH3)C6H3                                                              | CM, CO,CH,     |
| 7.7 | 3-CH1             | -C2H5                          | -CH2CHS2-C                                                                        | CN, CO,CH,     |
| 78  | 3~CH3             | -C2H3                          | -CH2CH2-S-C                                                                       | CH, CO2CH3C6H5 |
| 79  | 3-CH3             | -C2Hs                          | -CH <sub>2</sub> CH <sub>2</sub> S-C <sub>5</sub>                                 | CN, CO2CH3     |

|                     | P . Q            | CN, CO <sub>2</sub> CH <sub>3</sub>              | CN, CU,CH,       | CN, CO1CH 1                         | CN, CO, CH,                                                          | CN, THE STATE OF T | CN, -C C-C, H;   | CN, CONH S                     | CN, CO2CH 3        | Colchi, CN                               | CO2CH3, CW    | CO, CH, CN       |
|---------------------|------------------|--------------------------------------------------|------------------|-------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------|--------------------|------------------------------------------|---------------|------------------|
| TABLE 1 (continued) | R2               | -CH <sub>2</sub> CH <sub>3</sub> SO <sub>2</sub> | -CH 2 CH 2 S-C 0 | -CH <sub>2</sub> CH <sub>2</sub> S- | -CH(CH <sub>1</sub> )CH <sub>2</sub> CO <sub>2</sub> CH <sub>3</sub> | -CH(CH1)CH2CO2C2H5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -си,си,оси,си,он | -си,си,оёси,с,и,               | -си,си,ойси,ос,еи, | -cH2CH(C4H3)OCCH3<br>-CH2CH(OCOCH3)CH2C1 | -CH2CH2OCH2C1 | -сн,сн,оёсн,осн, |
|                     | RI               | -C2H3                                            | -C, H,           | -C2H5                               | -C,Hs                                                                | -C2Hs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -C2Hs            | -C <sub>2</sub> H <sub>5</sub> | -C2H5              | -C,H,                                    | -C2H5         | -C2Hs            |
|                     | (R) <sub>n</sub> | 3-сн,                                            | 3-СИ,            | 3-CH,                               | 3-CH,                                                                | 3-CH,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3-CH3            | 3-CH,                          | 3-CH3              | 3-CH3                                    | 3-CH,         | 3-сн,            |
| Examole             | NO.              | 80                                               | 81               | 8.2                                 | 83                                                                   | 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.2              | 98                             | 8.7                | 88                                       | 0.6           | 91.              |

CN, CO1CH1

CM, CO,CH,

CH, CO,CH,

P, C

CN, CO,CH,

CH, CO<sub>2</sub>CH<sub>3</sub>

CN, CO,CH,

CN, CO,CH,

-CH1CH1-

C2H5

3-CH3

100

86

66

16

96

-CH,CH,-

CAHS

3-CH,

101

CM, CO,CH,

| 7    | - |
|------|---|
| लं   | ĺ |
| 1BLE | - |
| ζ    |   |
|      |   |
|      |   |
|      |   |

9**4** 95

Example

No.

|                |                   |                                    | TABLE 2 (continued)     |              |             |
|----------------|-------------------|------------------------------------|-------------------------|--------------|-------------|
| Example<br>No. | (R)n              | $\frac{R_1}{}$                     | R <sub>3</sub>          | 7 z          | P, Q        |
| 102            | 3-си,             | C, H,                              | -CH2CH2-                | -CNHCHHCH3   | CH, CO, CH, |
| 103            | 3-CH <sub>1</sub> | C2Hs                               | -CH 1 CH 1-             | -00          | CN, CO2CH3  |
| 104            | =                 | C2H3                               | -CH1CH1-                | -0200-       | CN, CO, CH, |
| 105            | Œ                 | CH, CH, CN                         | -CH 1CH 1-              | -020-        | СИ, СО,СИ,  |
| 106            | Ξ                 | CH <sub>2</sub> CH <sub>2</sub> CN | -CH2CH2-                | -20-         | СИ, СО1СИ1  |
| 107            | =                 | CH <sub>2</sub> CH <sub>2</sub> CN | -CH2CH2-                | -ос(сн,),со- | CN, CN      |
| 108            | æ                 | CH, CH, CN                         | -CH 2 CH 2 OCH 2 CH 2 - | -02          | CN, CN      |
| 109            | =                 | CH2 CH2 CN                         | -CH 2 CH 2 -            | 00-00-       | CN, 50, CH, |
| 110            | ×                 | CH2CH2CN                           | -CH2CH1-                | -02          | CH, SO1C6H1 |
| 111            | Ŧ                 | сн, сн, оёсн,                      | -CH2CH2-                | -02          | CN, CONICER |

EP 0 235 198 B1

|                     | 0,9              |            | CN, CO,C <sub>6</sub> Hs | CM, CO,C,M,CN           | CN, CO <sub>2</sub> CH <sub>3</sub> | CM, CO,CH,      | CM, CO <sub>2</sub> CH <sub>3</sub> | CH, CO,CH,  | CN, CU2CH3  | CH, -1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 | CH, CH,   | CN, CH       |
|---------------------|------------------|------------|--------------------------|-------------------------|-------------------------------------|-----------------|-------------------------------------|-------------|-------------|--------------------------------------------|-----------|--------------|
|                     | 2                | -02        | -9:                      | -оёси, си, си, ёо-<br>о | -оёси,си,си,ёо-<br>о                | -05сн,сн,си,со- | 1                                   | -02         | -02         | -02                                        | -00       | 502          |
| TABLE 2 (continued) | R3               | -CH, CH, - | -CH 2CH 1-               | -CH2CH2-                | CH 2 CH 2                           | -CH2CH(CH1)-    | - CH 3 -                            | -CH2CH2CH2- | -CH2CH2CH2- | -CH2CH2-                                   | -CH2CH2-  | -CH 2CH 2-   |
|                     | R1               | С,1115     | C,1H,5                   | .c1 C, H,               | CeHs                                | Cellin          | CH, CH, C, Hs                       | CH,CH,OC,H, | CH2CH2OC6H3 | CH2CH2N COCH2                              | CH1CH1CH1 | CH 2 CH 2 OH |
|                     | (R) <sub>n</sub> | 2,5-dlocH, | 3-61                     | 2-0CH1, 5-C1            | 3-CH,                               | 3-си,           | 3-CH,                               | 3-CH3       | 3-CH3       | 3-CH3                                      | 3-CH,     | 3-CH3        |
| 9 20                | No.              | 112        | 113                      | 114                     | 115                                 | 116             | 1117                                | 118         | 119         | 120                                        | 121       | 122          |

|                     |                  |                  |                             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | E                | 0 2                       | 35 15                              | , D                       |                               |                               |                  |                 |                               | ŗ              |
|---------------------|------------------|------------------|-----------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------|------------------------------------|---------------------------|-------------------------------|-------------------------------|------------------|-----------------|-------------------------------|----------------|
|                     | D , 9            | CN, CN           | CN, CO,CB,                  |             | - C = C = C - C = 10 | CO2C2Hs, CO2C2Hs | CO2C2H3, SO2CH3           | CN, CeHs                           | си, соии,                 | COC, H,, COC, H,              | CO2C4H3, CO2C6H3              | CN, CONHC, H, OH | CN, CONHC, H,-n | CN, CONHCLHI                  | CORH, CORH,    |
|                     | 2                | -203-            | -05 (CH <sub>2</sub> ), CO- | single bond | о 0<br>-06 (сиз), со-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -оё (сн., ёо-    | -0ë(cH <sub>2</sub> ),ë0- | -од (сн., ), бо-                   | -0;(сн;);о-               | -од (сиз),со-                 | -0; (ch; ); co-               | -оё (си,), ёо-   | -0С(СН,),СО-    | -оё(сн.), ёо-                 | -од (сн,), ёо- |
| TABLE 2 (continued) | R <sub>3</sub>   | -CH2CH1-         | -CH2CH2-                    | -CH2CH2-    | -CH2CH1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -CH2CH2-         | -CH2CH2-                  | -CH <sub>2</sub> CH <sub>2</sub> - | "H, -CH, CH, -            | -CH2CH2-                      | -CH1CH1-                      | -CH2CH2-         | -CH2CH1-        | -CH 2CH 2-                    | -CH2CH2-       |
|                     | RI               | CH 2CH 2CO 2CH 3 | CH2CH2C1                    | C2Hs        | C2Hs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C2H5             | C2H5                      | C2Hs                               | CH(CH,)CH,CO,CH, -CH,CH,- | C <sub>2</sub> H <sub>3</sub> | C <sub>2</sub> H <sub>s</sub> | CzHs             | C, H,           | C <sub>2</sub> H <sub>5</sub> | C2H3           |
|                     | (R) <sub>n</sub> | 3-CH,            | 3-CH1                       | 3-CH,       | 3-CH,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3-CH3            | 3-CH,                     | 3-C11,                             | 3-CH,                     | 3-CH,                         | 3-CH,                         | 3-CH3            | 3-CH3           | 3-CH,                         | 3-CH3          |
| 0 0                 | No.              | 123              | 124                         | 125         | 126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 127              | 128                       | 129                                | 130                       | 131                           | 132                           | 133              | 134             | 135                           | 136            |

| ~ |   |
|---|---|
| щ |   |
| 9 |   |
| Ē | Ì |
|   |   |

| - |
|---|
| - |
| Ξ |
|   |
|   |
|   |
|   |

| Example |                   |                     |          | 5     | 5             |
|---------|-------------------|---------------------|----------|-------|---------------|
| No.     | (R) <sub>n</sub>  | R1                  | KA, KS   | , K6  |               |
| 117     | =                 | C, H,               | CH3, CH1 | CH.   | CN, CO,CH,    |
| 138     | . 22              | СН,СН,ОИ            | CH1, CH1 | CH 3  | CN, SO,CH,    |
| 961     | =                 | CH 2 CH 2 OH        | CH1, CH1 | CH 1  | COICHII COICH |
| 140     | =                 | CH1CH1OH            | CH1, CH1 | CH,   | CN, SO2C4Hs   |
| 141     | 7-CH3             | CH1CH10H            | CH, CH,  | CH 1  | CN, CO2C2H5   |
| 142     | 7-CH3             | C, H, OCCH,         | CH1, CH1 | CH.   | CN, CN        |
| 143     | 7-CH3             | C2H,OCNH-           | CH1, CH1 | CH,   | CN, CN        |
| 77      | 7-CH,             | C <sub>2</sub> H,CN | CH1, CH1 | CH 3  | CM, CO,CM,    |
| 145     | 7-CH <sub>3</sub> | C2H, OH             | CH, CH,  | CH,   | CN, CONHCERS  |
| 146     | 7-CH1             | C <sub>2</sub> H,OH | CH3, CH3 | CH.   | CN, -E        |
| 147     | 7-CH,             | C <sub>2</sub> H,OH | CH3, CH3 | CII 3 | 0 CN C.H.     |

| _ |   |
|---|---|
| E |   |
| 9 | 2 |
| Ξ | • |
| = |   |
| Ξ |   |
| ۲ | 5 |
| ~ |   |
|   | ′ |
| ш |   |
| α | 2 |
| < |   |

| P. Q. COON C. H. | -0       | CN, CONNC211, OH | COC(CH1)1, CN | CM, CO1CH, | CN, CO2C2Hs | CN, CONH,     | CN, CO, C&HS | CN, CO,CH, | CN, CO,CH, | CN, CO,C,H,CN                                  | CN, CO,CH3 | CN, CN          | CN, 30, CH, | CN, CO2CH3          | CN, CO2CH1 |
|------------------|----------|------------------|---------------|------------|-------------|---------------|--------------|------------|------------|------------------------------------------------|------------|-----------------|-------------|---------------------|------------|
| R6               | CHJ      | CH,              | CH 3          | CH.        | CH.         | CH,           | CH.          | CH 1       | CH3        | CH,                                            | Ξ          | ¥               | =           | Ξ                   | ¥          |
| RA . R5          | CH1, CH1 | CH1, CH1         | CH3, CH3      | CH, CH,    | CH3, CH3    | CH, CH,       | CH, CH,      | CH, CH,    | CH3, CH3   | CH3, CH3                                       | H, CH,     | H, CH,          | H, CH,      | H, CH3              | н, сн,     |
| $\frac{R_1}{}$   | C2H4OH   | C2H, OH          | C2H, OH       | C2H,OH     | C,H,OCC,H,  | C, H, OCC, H, | C2H, OCOC2H, | CH2C6H3    | CH2        | CH <sub>2</sub> C <sub>6</sub> H <sub>11</sub> | C. H n     | CH2CH2OCH2CH2OH | CH2CH2OCCH3 | CH2CH2N(C&H5)SO2CH3 | CH2CH2N    |
| (R) <sub>n</sub> | 7-CH,    | 7-CH,            | 7-CH3         | =          | =           | ==            | =            | æ          | æ          | =                                              | 7-CH3      | 7-CH,           | 7-CH3       | 7-CH3               | 7 -C11,    |
| Example<br>No.   | 148      | 1.49             | 150           | 151        | 152         | 153           | 154          | 155        | 156        | 157                                            | 158        | 159             | 160         | 161                 | 162        |

| 16.1 7-CH <sub>1</sub> CH <sub>2</sub> CH <sub>2</sub> N CO-CH <sub>1</sub> 16.4 7-CH <sub>1</sub> CH <sub>2</sub> CH <sub>2</sub> N CO-CH <sub>2</sub> 16.5 5-CH <sub>1</sub> , 8-CH <sub>2</sub> O CH <sub>2</sub> CH <sub>2</sub> OCCH <sub>3</sub> 16.6 5,8-di-oCH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> OCCH <sub>3</sub> 16.6 5,8-di-oCH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> OCCH <sub>3</sub> 16.6 5,8-di-oCH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> OCCH <sub>3</sub> 16.7 7-OC <sub>2</sub> H <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> OCCH <sub>3</sub> 16.8 7-CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> OCCH <sub>3</sub> 16.9 7-CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> OCCH <sub>3</sub> 17.0 7-CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> COHC <sub>2</sub> H <sub>3</sub> )  17.1 7-CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> COHC <sub>2</sub> H <sub>3</sub> )  17.2 H CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> COH(C <sub>3</sub> H <sub>3</sub> )  17.3 H CH <sub>3</sub> CH <sub>3</sub> CH <sub>4</sub> COH(C <sub>3</sub> H <sub>3</sub> )  17.4 7-CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> COH(C <sub>3</sub> H <sub>3</sub> )  17.5 7-CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> COH(C <sub>3</sub> H <sub>3</sub> )  17.6 7-CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> 17.7 7-CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> COH(C <sub>3</sub> H <sub>3</sub> )  17.8 H CH <sub>3</sub> CH <sub>3</sub> CH <sub>4</sub> COH(C <sub>3</sub> H <sub>3</sub> )  17.9 7-CH <sub>3</sub> CH <sub>3</sub> CH <sub>4</sub> CO <sub>3</sub> H <sub>3</sub> 17.0 CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> 17.1 7-CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> 17.2 H CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> 17.3 H CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> 17.4 7-CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> CCH <sub>3</sub> 17.5 7-CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> CCH <sub>3</sub> 17.6 7-CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> CCH <sub>3</sub> 17.7 7-CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> CCH <sub>3</sub> 17.7 7-CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> CC <sub>3</sub> H <sub>3</sub> 17.7 7-CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> CCH <sub>3</sub> 17.7 7-CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> CC <sub>3</sub> H <sub>3</sub> 17.7 7-CH <sub>3</sub> CH <sub>3</sub> CCH <sub>3</sub> CCH <sub>3</sub> 17.7 7-CH <sub>3</sub> CH <sub>3</sub> CCH <sub>3</sub> CCH <sub>3</sub> 17.7 7-CH <sub>3</sub> CH <sub>3</sub> CCH <sub>3</sub> CCH <sub>3</sub> 17.7 7-CH <sub>3</sub> CH <sub>3</sub> CCH <sub>3</sub> CCH <sub>3</sub> 17.7 7-CH <sub>3</sub> CH <sub>3</sub> CCH <sub>3</sub> CCH <sub>3</sub> 17.7 7-CH <sub>3</sub> CH <sub>3</sub> CCH <sub>3</sub> CCH <sub>3</sub> 17.7 7-CH <sub>3</sub> CH <sub>3</sub> CCH <sub>3</sub> CCH <sub>3</sub> 17.7 7-CH <sub>3</sub> CH <sub>3</sub> CCH <sub>3</sub> CCH <sub>3</sub> 17.7 7-CH <sub>3</sub> CH <sub>3</sub> CCH <sub>3</sub> CCH <sub>3</sub> 17.7 7-CH <sub>3</sub> CH <sub>3</sub> CCH <sub>3</sub> CCH <sub>3</sub> 17.7 7-CH <sub>3</sub> CH <sub>3</sub> CCH <sub>3</sub> CCH <sub>3</sub> 17.7 7-CH <sub>3</sub> CH <sub>3</sub> CCH <sub>3</sub> CCH <sub>3</sub> 17.7 7-CH <sub>3</sub> CH <sub>3</sub> CCH <sub>3</sub> CCH <sub>3</sub> 17.7 7-CH <sub>3</sub> CH <sub>3</sub> CCH <sub>3</sub> CCH <sub>3</sub> 17.7 7-CH <sub>3</sub> CH <sub>3</sub> CCH <sub>3</sub> CCH <sub>3</sub> 17.7 7-CH <sub>3</sub> CH <sub>3</sub> CCH <sub>3</sub> CCH <sub>3</sub> 17.7 7-CH <sub>3</sub> CH <sub>3</sub> CCH <sub>3</sub> CCH <sub>3</sub> 17.7 7-CH <sub>3</sub> CH <sub>3</sub> CCH <sub>3</sub> CCH <sub>3</sub> 17.7 7-CH <sub>3</sub> CH <sub>3</sub> CCH <sub>3</sub> CCH <sub>3</sub> 17.7 7-CH <sub>3</sub> CH <sub>3</sub> CCH <sub>3</sub> CCH <sub>3</sub> 17.7 7-CH <sub>3</sub> CH <sub>3</sub> CCH <sub>3</sub> CCH <sub>3</sub> 17.7 7-CH <sub>3</sub> CH <sub>3</sub> CCH <sub>3</sub> CCH <sub>3</sub> 17.7 7-CH <sub>3</sub> CH <sub>3</sub> CCH <sub>3</sub> CCH <sub>3</sub> 17.7 7-CH <sub>3</sub> CH <sub>3</sub> CCH <sub>3</sub> CCH <sub>3</sub> 17.7 7-CH <sub>3</sub> CH <sub>3</sub> CCH <sub>3</sub> CCH <sub>3</sub> 17.7 7-CH <sub>3</sub> CH <sub>3</sub> CCH <sub>3</sub> CCH <sub>3</sub> 17.7 7-CH <sub>3</sub> CH <sub>3</sub> CCH <sub>3</sub> CCH <sub>3</sub> 17.7 7-CH <sub>3</sub> CH <sub>3</sub> CCH <sub>3</sub> CCH <sub>3</sub> 17.7 7-CH <sub>3</sub> CH <sub>3</sub> CCH <sub>3</sub> CCH <sub>3</sub> 17.7 7-CH <sub>3</sub> CH <sub>3</sub> CCH <sub>3</sub> CCH <sub>3</sub> 17.7 7-CH <sub>3</sub> CH <sub>3</sub> CCH <sub>3</sub> CCH <sub>3</sub> | Example<br>No. | (R) <sub>n</sub> | R1                                                | R4, R5 | R <sub>6</sub> | 0,9                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------|---------------------------------------------------|--------|----------------|----------------------------------------|
| 7-CH, CH,CH,SC,CH,O,CH, S-CH,O, CH,CH,O,CH, S,8-di-OCH, CH,CH,O,CH, T-OC,H, CH,CH,O,CH, T-CH, CH,CH,CO,CH, T-CH, CH,CH,CO,CH, T-CH, CH,CH,CO,CH, T-CH, CH,CH,CO,CH, T-CH, T-CH, CH,CH,CO,CH, T-CH, T-CH, CH,CH,COH,CH, H, CH, H CH,CH,CH,COH,CH, H, CH, H T-CH, CH,CH,COH,CH, H, CH, H T-CH, CH,CH,CH,COH,CH, H, CH, H T-CH, CH,CH,CH,SOH, H, CH, H T-CH, CH,CH,CH,SOH, H, CH,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 163            | 7 - CH 3         | CH2CH2N CO-CH2                                    | н, сн, | =              | CN, CO <sub>2</sub> CH,                |
| 5-CH <sub>3</sub> , β-CH <sub>3</sub> O CH <sub>2</sub> CH <sub>2</sub> OCH <sub>3</sub> 5,β-di-OCH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> OCH <sub>3</sub> 7-OC <sub>2</sub> H <sub>3</sub> 7-CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> OCH <sub>3</sub> 7-CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> OCH <sub>3</sub> 7-CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CO <sub>2</sub> CH <sub>3</sub> 7-CH <sub>3</sub> R, CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 164            | 7 - CH ,         | CH 2 CH 2 SC  | н, си, | æ              | CM, CO2CH3                             |
| 5,8-di-och, Ch2Ch2oCch, H, CH, H  7-oC2H3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 165            | 5-CH1, 8-CH10    | о<br>Си <b>зсиз</b> осен <b>з</b>                 | B, CH1 | =              | CN, CO4CH1                             |
| 7-OC, H, CH, CH, OCCH, H, CH, H, CH, H  7-CH, CH, CH, CCH, OCCH, CH, CH, H, CH, H  7-CH, CH, CH, CH, COOH  7-CH, CH, CH, CH, COOH  H CH, CH, CH, CH, CH, H H H  H CH, CH, CH, CH, CH, CH, H H H  7-CH, CH, CH, CH, CH, CH, H H H  7-CH, CH, CH, CH, CH, CH, H H H  7-CH, CH, CH, CH, CH, H H H H  7-CH, CH, CH, CH, CH, H H H H  7-CH, CH, CH, CH, CH, H H H, CH, H  7-CH, CH, CH, CH, CH, H H H, CH, H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 166            | 5,8-di-UCH,      | CH2CH2OCCH3                                       | H, CH, | æ              | CN, CO, CH,                            |
| 7-CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> OCNH(*-*) 7-CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CO <sub>2</sub> CH <sub>3</sub> H, CH <sub>3</sub> T-CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> COOH H, CH <sub>2</sub> CH <sub>2</sub> COOH H, CH <sub>2</sub> CH <sub>2</sub> COOH H CH <sub>2</sub> CH(OH)CH <sub>3</sub> H CH <sub>2</sub> CH(OH)CH <sub>3</sub> H CH <sub>2</sub> CH(C <sub>6</sub> H <sub>5</sub> )OH H, H H CH <sub>2</sub> CH(C <sub>6</sub> H <sub>5</sub> )OH H, CH <sub>3</sub> H, CH                                                                                                                                                                                                                                                                                                                                                                                                                             | 167            | 7-0C2H5          | CH <sub>2</sub> CH <sub>2</sub> OCCH <sub>3</sub> | H, CH, | ×              | CN, CONHC <sub>6</sub> H <sub>11</sub> |
| 7-CH <sub>3</sub> $CH_2CH_2CO_2CH_3$ $H, CH3$ $H$<br>7-CH <sub>3</sub> $CH_2CH_2COOH$ $H, CH3$ $H$<br>7-CH <sub>3</sub> $CH_2CH_2CON(C_2H_3)_2$ $H, CH3$ $H$<br>$H$ $CH_2CH(OH)CH3 H, H H H H7-CH3 CH_2CH(C_6H_3)OH H, H H H H H H H H H H $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 168            | 7-CH3            | CH2CH2OCNH-                                       | и, си  | Ŧ              | )=-<br>                                |
| 7-CH <sub>3</sub> CH <sub>2</sub> COOH H, CH <sub>3</sub> 7-CH <sub>3</sub> CH <sub>2</sub> CON(C <sub>2</sub> H <sub>3</sub> ) <sub>2</sub> H, CH <sub>3</sub> H  H CH <sub>2</sub> CH(OH)CH <sub>3</sub> H, H H, H H  7-CH <sub>3</sub> C <sub>6</sub> H <sub>3</sub> 7-CH <sub>3</sub> C <sub>6</sub> H <sub>3</sub> 7-CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> C <sub>6</sub> H <sub>3</sub> 7-CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> C <sub>6</sub> H <sub>3</sub> 7-CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> C <sub>6</sub> H <sub>3</sub> 7-CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CC <sub>6</sub> H <sub>3</sub> 7-CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CC <sub>6</sub> H <sub>3</sub> 7-CH <sub>3</sub> H, CH <sub>3</sub> H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 169            | 7-CH,            | CH 2CH 2CO 2CH 3                                  | H, CH, | Ŧ              | CN, CN                                 |
| 7-CH <sub>3</sub> CH <sub>2</sub> CON(C <sub>2</sub> H <sub>3</sub> ) <sub>2</sub> H, CH <sub>3</sub> H<br>H CH <sub>2</sub> CH(OH)CH <sub>3</sub> H, H H<br>7-CH <sub>3</sub> C <sub>6</sub> H <sub>3</sub> H, CH <sub>3</sub> CH <sub>3</sub><br>7-CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> S-·(***) H, CH <sub>3</sub> H<br>7-CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> S-·(****) H, CH <sub>3</sub> H<br>7-CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> OC <sub>6</sub> H <sub>3</sub> H, CH <sub>3</sub> H<br>7-CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CO <sub>6</sub> H <sub>3</sub> H, CH <sub>3</sub> H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 170            | 7-CH3            | CH2CH2COOH                                        | H, CH, | ×              | си, соон                               |
| H CH2CH(C6H3)CH H H CH2CH(C6H3)OH H, H H, H H  T-CH3  CH2CH2S-***  T-CH3  CH2CH2CC8H3  H, CH3 H  T-CH3  CH2CH2CC8H3 H, CH3 H  H, CH3 H  T-CH3  CH2CH2CC8H3 H, CH3 H  H, CH3 H  T-CH3  T-CH3  CH2CH2CC8H3 H, CH3 H  T-CH3  T-CH3  CH2CH2CH2CO8H3 H, CH3 H  T-CH3  T-CH3  H, CH3 H  T-CH3  T-CH3  T-CH3  H, CH3 H  T-CH3  T-CH3  H, CH3 H  T-CH3  T-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 171            | 7-CH,            | CH2CH2CON(C2H5)2                                  | H, CH, | =              | CONH1, CO1CH1                          |
| H 7-CH <sub>3</sub> C <sub>6</sub> H <sub>3</sub> OCH <sub>2</sub> CH(C <sub>6</sub> H <sub>3</sub> )OH H, H H, CH T-CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> S\(\binom{\center}{\center}\) H, CH T-CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> OC <sub>6</sub> H <sub>3</sub> T-CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CO <sub>6</sub> H <sub>3</sub> H, CH <sub>3</sub> H T-CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> SO <sub>2</sub> CH <sub>3</sub> H, CH <sub>3</sub> H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 172            | =                | CH2CH(OH)CH1                                      | = ,=   | =              | CN, CN                                 |
| 7-CH <sub>3</sub> C <sub>6</sub> H <sub>3</sub> H, CH <sub>3</sub> CH <sub>3</sub> 7-CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> S-*** H, CH <sub>3</sub> H  7-CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> O <sub>6</sub> H <sub>3</sub> H, CH <sub>3</sub> H  7-CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CO <sub>6</sub> H <sub>3</sub> H, CH <sub>3</sub> H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 173            | =                | CH2CH(CeH5)OH                                     | н, н   | Ξ              | CH, CH                                 |
| 7-CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> S, H, CH <sub>3</sub> H 7-CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> OC <sub>6</sub> H <sub>3</sub> H, CH <sub>3</sub> H 7-CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> SO <sub>2</sub> CH <sub>3</sub> H, CH <sub>3</sub> H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 174            | 7-CH3            | C & H s                                           | H, CH, | CH3            | CN, CO1CH1                             |
| 7-CH, CH2CH2OC6H3 H, CH1 H 7-CH, CH2CH2CH2SO2CH1 H, CH1 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 175            | 7-CH3            | CH2CH2S                                           | H, CH3 | ×              | CN, CO2C2H4OH                          |
| 7-CH, CH2CH2CH2SO2CH1 H, CH1 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 176            | 7-CH3            | CH2CH2OC6H3                                       | H, CH, | H              | CN, CO2C, H.CJ                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 177            | 7-CH,            | CH2CH2CH2SO2CH1                                   | H, CH, | =              | CN, CO2C4H9-n                          |

|                     | P, Q           | CO2C2115, CO2C711                                                             | COC6H5, SO2CH3 | CN, CN                    | CN, CN                                   | 0 CONH2 C4H5       | CN, CO2CH,                         | CN, CO2CH3  | CN, CO2CH3                                             |
|---------------------|----------------|-------------------------------------------------------------------------------|----------------|---------------------------|------------------------------------------|--------------------|------------------------------------|-------------|--------------------------------------------------------|
|                     | R6             | CH.                                                                           | <b>сн.</b>     | CH 3                      | =                                        | x                  | Ξ                                  | Ξ           | ±                                                      |
| (þ                  | R4, R5         | CH1, CH1                                                                      | CH3, CH3       | CH1, CH1                  | CH1, H                                   | CH1, H             | CH, H                              | CH 3.4 H    | CH3, H                                                 |
| TABLE 3 (continued) | R1             | CH <sub>2</sub> CH <sub>2</sub> SO <sub>2</sub> C <sub>1</sub> C <sub>1</sub> | CH2            | си, си (оёси, ) си, оёси, | CH <sub>2</sub> CH(OH)CH <sub>2</sub> OH | СН 1СН (ОН )СН 2ОН | CH <sub>2</sub> CH=CH <sub>2</sub> | CH 2CH 2N H | о си, си, и си, он |
|                     | (R)n           | 7-Br                                                                          | 7-61           | 7-0CH3                    | 7-CH3                                    | 7-CH,              | 7-CH3                              | 7-CH3       | 7-CH3                                                  |
| 1                   | Example<br>No. | 178                                                                           | 179            | 180                       | 181                                      | 182                | 183                                | 184         | 185                                                    |

| Example<br>No. | (R)n     | <u>R</u> 1                                                                                                                             | R4     | P. 0             |
|----------------|----------|----------------------------------------------------------------------------------------------------------------------------------------|--------|------------------|
| 186            | I        | C2H4OH                                                                                                                                 | Ξ      | CN, CN           |
| 187            | Z.       | C2H4OH                                                                                                                                 | Ξ      | CH, SOZCH,       |
| 188            | =        | C2H, OH                                                                                                                                | z      | CN, SO2C6HS      |
| 189            | Ξ        | C2 H4 OH                                                                                                                               | =      | CN, CONHC, HS    |
| 190            | Ξ        | C2H, OH                                                                                                                                | =      | CN, CONHC, H, OH |
| 191            | <b>=</b> | си, си, осси,                                                                                                                          | =      | CH, CN           |
| 192            | =        | си, си, осси,                                                                                                                          | =      | СИ, 50,СИ,       |
| 193            | 6 -CH3   | он, сн, оссн,                                                                                                                          | ×      | CN, CO,CH,       |
| 194            | 6 -CH3   | CH2CH2OC-C6H5                                                                                                                          | 3-083  | CN, CO, CH,      |
| 195            | 6 -CH    | 0 0 С. В. С. В. ОС. С. В. В. ОС. С. В. | 3-CH 1 | -00-03-04.       |

|                     | P. Q           | -00-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0- | O CONII, C. H.     | CN, CO,CH, | CN, CN          | CN, CO2CH,                    | СИ, СО1СИ1           | CH, CN |    | =· \ •   \ ½ | CN, CO <sub>2</sub> CH, | CN, CO2CH,         | CN, CO2CH,        | CN, CO2CH, | CN, CO,CH,  | CN, CO, CH, |
|---------------------|----------------|----------------------------------------|--------------------|------------|-----------------|-------------------------------|----------------------|--------|----|--------------|-------------------------|--------------------|-------------------|------------|-------------|-------------|
|                     | RA             | 3-CH,                                  | 3-CH ,             | 3-CH 3     | 3-CH1           | 3-CH1                         | 3-CH3                | 3-CH   |    | 3-CH3        | 3-CH,                   | 3-CH 3             | 3-сн,             | 3-CH 3     | 3-CH,       | 3-CII 1     |
| TABLE 4 (continued) | R1             | CH2CH(OH)CH3                           | си,си,оси,си,осси, | CH2C6H5    | CH <sub>2</sub> | C <sub>6</sub> H <sub>5</sub> | CH <sub>2</sub> COOH | CH2    | O: | сн,сн,оёсн,  | CH 2CH 2CN              | CH2CH2N(CH3)SO2CH3 | CH, CH, OCNHC, H, | CH2CH2C1   | CH2CH2OC6H5 | CH2CH2SC6H3 |
|                     | (R)n           | 6-CH3                                  | 6-CH3              | 6-CH3      | 6-CH3           | 6-CH3                         | 6-СН3                | 6-CH3  |    | 6-СИ3        | 6-CH3                   | 6-CH3              | 6-CH3             | 6-CH3      | 6~CH,       | 6-CH1       |
|                     | Example<br>No. | 196                                    | 197                | 198        | 199             | 200                           | 201                  | 202    |    | 203          | 204                     | 205                | 206               | 207        | 208         | 209         |

|                     | P, Q           | си, соон   | CN, CO2CH3 | CN, CO2CH3                                     | CN, CO2CH3  | CN, CO <sub>2</sub> CH <sub>3</sub> | CN, CO,CH,     | CN, COC(CH1)1                                                        | CN, CO2CH1 | CN, CO,CH,           | CH, CO2CH,          | CN, CO <sub>2</sub> CH <sub>3</sub> | CH, -C       |
|---------------------|----------------|------------|------------|------------------------------------------------|-------------|-------------------------------------|----------------|----------------------------------------------------------------------|------------|----------------------|---------------------|-------------------------------------|--------------|
| 3                   | R4             | 3-CH3      | 3-CH3      | 3-CH3                                          | 3-CH3       | 3-CH3                               | 3-CH.          | 3-CH3                                                                | 3-CH3      | 3-CH3                | 3-CH3               | 3-CH1                               | 3-CH3        |
| TABLE 4 (continued) | R1             | CH2CH2S-CS | CH2CH2SO2  | CH <sub>2</sub> CH <sub>2</sub> N <sub>N</sub> | -CH2CH2N II | -CH2CH=CH2                          | -CH2CH2OC2H4UH | - CH <sub>2</sub> CH <sub>2</sub> SO <sub>2</sub> CH=CH <sub>2</sub> | -CH2CH131  | -CH, CH, SO2N(CH,) 2 | -CH2CH2CON(CH1)C6H3 | 0<br>-CH,CH,OCCH,Cl                 | -сн,сн,оёсн, |
|                     | (R)n           | 6-CH3      | 6-CH3      | 6-CH3                                          | 6-CH,       | 6-CH <sub>1</sub>                   | 6 -CH3         | 6-CH <sub>1</sub>                                                    | 6 - CH 3   | 6 - C 11 3           | 6-CH                | 6-CH3                               | 6-CH3        |
|                     | Example<br>No. | 210        | 211        | 212                                            | 213         | 214                                 | 21.5           | 216                                                                  | 217        | 218                  | 220                 | . 221                               | 222          |

|                    | P. B | CN, -CH           | CM, -C. 2         | CH, CO2CH3        | CN, CO2CH3  | CN, CO2CH3 |
|--------------------|------|-------------------|-------------------|-------------------|-------------|------------|
| (Den)              | R4   | 3-си, с           | 3-CH3             | 3-CH,             | 3-CII,      | 3-CH3      |
| ABLE 4 (continued) | RJ   | -си, си, оёси,    | о<br>-си,си,оёсн, | CH2CH2N CH2       | CH2CH2N C-S | CH2CH2-S-  |
|                    | (R)n | 6-CH <sub>3</sub> | 6-CH3             | 6-CH <sub>3</sub> | 6 CH 3      | 6-CH3      |
|                    | No.  | 223               | 224               | 225               | 226         | 227        |

|         |                                         | P-1-9          | CN, CO,CH, | CN, CO2CH3 | CN, CO2C2115 | CN, 301CH;    | CN, SO, C. 8. | CN, CN             | )=-<br>D=U U=O        | CM, COMBUGHS  | -00-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0- |
|---------|-----------------------------------------|----------------|------------|------------|--------------|---------------|---------------|--------------------|-----------------------|---------------|----------------------------------------|
|         |                                         | <u>R</u> 10    | CH,        | C. H.s     | C, H,        | C & 11 s      | C IIs         | C. H.s             | C & H s               | CeHs          | C e H s                                |
| TABLE 5 | 5 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 | <u>R</u> 1     | CH,        | CH,        | =            | си, си, осси, | CH2CH2OCCH3   | о<br>Си, си, осси, | он, си, осси <b>,</b> | СИ, СИ, ОССИ, | CH 2 CH 2 OH                           |
|         |                                         | <u>R</u> 7     | Ħ          | =          | =            | =             | =             | =                  | Œ                     | ×             | =                                      |
|         |                                         | Example<br>No. | 228        | 229        | 230          | 231           | 232           | 233                | 234                   | 235           | 236                                    |

|                     | P. Q.          | CH, CONH,    | NO 2- 1NO | CN, CO2C6H5 | CN, CONH, | -0C-C===C- | CN, CO,CH, | CN, CO <sub>2</sub> CH <sub>3</sub> |     |       | CN, CO2CH1 | CN, CO2CH3 | CN, CO,CH; | CN, CN          | CN, CN | CN, CO <sub>2</sub> CH <sub>3</sub><br>CN, CO <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH |
|---------------------|----------------|--------------|-----------|-------------|-----------|------------|------------|-------------------------------------|-----|-------|------------|------------|------------|-----------------|--------|-----------------------------------------------------------------------------------------------|
| (pa                 | R10            | CkHs         | CeHs      | Cens        | C e H s   | C.H.s      |            | 18                                  | CH, | CIII, | CHJ        | CH3        | C 6 H s    | CeHs            | CeHs   | ¢ H \$<br>C ¢ H \$                                                                            |
| TABLE 5 (continued) | R1             | CH 2 CH 2 OH | СИ2СИ2ОН  | СИ,СИ,ОИ    | CH2CH2OH  | СН3        | CH,        | сн,                                 | ch, | CH,   | CH3        | CHJ        | CH2C6H5    | CH <sub>2</sub> | CH2    | CH <sub>2</sub> CH <sub>2</sub> CN<br>CH <sub>2</sub> CH <sub>2</sub> CONH <sub>2</sub>       |
|                     | <u>R</u> 7     | Z            | =         | <b>3</b>    | : =       | =          | z          | æ                                   | Ŧ   | 5-CH3 | 5-01       | 5-0CH,     | =          | æ               | Ŧ      | <b>z</b> =                                                                                    |
|                     | Example<br>No. | 237          | ar c      | 0000        | 240       | 24.1       | 242        | 243                                 | 244 | 245   | 246        | 2.4.7      | 248        | 249             | 250    | 251.                                                                                          |

| (per  |
|-------|
| ntin  |
| 5 (co |
| Ë     |
| TAB   |

| 0 0 0 0 |    | (Declinical Cartes)      | 1                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------|----|--------------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No.     | R7 | <u>R</u> 1               | R10              | P.Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 253     | =  | CH2CH2CH2NUCC6H5         | C, H,            | CN, CO, CH,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2.54    | =  | CH2CH2CH2NHSO2C6H5       | CeHs             | CN, CU1CH1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 255     | æ  | CH2CH2CH2N(CH3)SO2CH3    | CEHS             | CN, CO, CH,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 256     | =  | CH2CH2CH2N(C2H4OH)SO2CH3 | C. B. B.         | CN, CU,CH,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 257     | Ξ  | CH <sub>3</sub>          | <b>=</b>         | CN, CO,CH,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 258     | Ξ  | сн,                      | ×                | CO <sub>2</sub> CH <sub>3</sub> , - CO <sub>3</sub> CH <sub>3</sub> , - CO |
| 250     | Ξ  | CH,                      | =                | CN, COOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 260     | =  | CH,                      | C&Hs             | CN, CO2CH2C6H5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 261     | =  | CH,                      | C 6 H 4 - P-COOH | CN, CO2CH2C6H11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 262     | Ξ  | C* 119 - n               | C&H,-p-CO2CH     | CN, CO, CH,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 263     | æ  | CH2CH2CH2N               | C&H              | CN, CO, CH;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 264     | æ  | CH2CH2CH2N COCH2         | Cens             | CH, CO2CH3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 265     | =  | CH2CH2CH2N C-CH2         | C <b>6</b> H s   | CH, CO,CH,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

| ਰ     |
|-------|
| inue  |
| conti |
| 5     |
| BLE   |
| ₹     |

| P. Q            | CN, CO, CH, | CN, CO2CH3     | CN, CO,CH,                    |
|-----------------|-------------|----------------|-------------------------------|
| <u>R</u> 10     | C. H.s      | C & H s        | C 6 H 5                       |
| <u>8</u> 1<br>9 | CH2CH2N II  | CH2CH2CH2N CH2 | C <sub>6</sub> H <sub>5</sub> |
| <u>R</u> 7      | =           | æ              | æ                             |
| Example<br>No.  | 266         | 267            | 268                           |

|                |             | TABLE 6                            | 9           |                                    |
|----------------|-------------|------------------------------------|-------------|------------------------------------|
|                |             | R 10.                              | NN<br>S R 9 |                                    |
| Example<br>No. | RB          | Rg                                 | R10         | P. Q                               |
| 6              | CH,         | CH 3                               | CH,         | CN, CO2CH3                         |
| 0              | CH <b>3</b> | CH,                                | CHJ         | CN, CO1C1HS                        |
| 271            | CH,         | CH.                                | Cells       | CN, CO2CH3                         |
| 2              | СН,         | CH3                                | C&HS        | CN, COOH                           |
| 9              | CH3         | CH.                                | Cells       | CO2C2HS, CO2C2HS                   |
| *              | CH3         | CH,                                | Cells       | CH, CONHC2H,OH                     |
| 5              | CH.         | CH2CH2OH                           | C&Hs        | CN, CN                             |
| 9              | CH3         | CH1CH1OH                           | CAHS        | CN, SO,CH,                         |
| 7              | CH3         | CH2CH2OH                           | Cells       | CN, 502C6H5                        |
| 8              | CH,         | CH2CH2OH                           | Calls       | CN, CONHUGHS                       |
| 279            | CH3         | СН,СН,ОН                           | CeHs        | Cz. V:                             |
| 280            | CH.         | CH <sub>2</sub> CH <sub>2</sub> OH | Cells       | 0 CN C4H3<br>0 CN C4H3<br>-0C-C=C- |

EP 0 235 198 B1

|                     | PLA        | CN, CN        | CN, CH           | CN, CO2CH3 | CN, CO2CH2CH2CH | CN, CO2CH, | си, со <sub>2</sub> си <sub>3</sub> | CN, CO2CH3                    | CN, CN     | CN, CO2CH3 | -CN, -C  | -CN, -CN, -CN, -CN, -CN, -CN, -CN, -CN, |
|---------------------|------------|---------------|------------------|------------|-----------------|------------|-------------------------------------|-------------------------------|------------|------------|----------|-----------------------------------------|
| (penu               | $R_{10}$   | Calls         | CeHs             | CAHS       | CEHS            | C, H, s    | C <sub>6</sub> H <sub>5</sub>       | C. t. H. s                    | C. H. s    | æ          | C e H s  | Cells                                   |
| TABLE 6 (continued) | <u>R</u> 9 | CH, CH, OCCH, | CH, CH, OCOC, H, | C2HS       | CeHs            |            |                                     |                               |            | CH.        |          |                                         |
|                     | <u>R</u> 8 | CH.           | CH,              | C2Hs       | Calls           | CzHs       | C <sub>2</sub> H <sub>5</sub>       | C <sub>2</sub> H <sub>5</sub> | CH, CH, OH | CH3        | СН2СН2ОН | СН2СН2ОН                                |
| Ехатріе             | NO.        | 281           | 282              | 283        | 284             | 285        | 286                                 | 287                           | 288        | 289        | 290      | 291                                     |

| (pen        |
|-------------|
| ontin       |
| 9           |
| <b>ABLE</b> |
| _           |

| P. Q. A.       | CN, -C, S, - NO                    | CN, 502   | CN, SO <sub>2</sub> C1 | CN, SO <sub>2</sub> ,OCH,          | CN, CO,CH,   | CN, CO <sub>2</sub> CH <sub>3</sub> | CN, CO2CH3 | CN, CO2CH3 | си, со,си,                            | си, со,си, | L CN, CO <sub>2</sub> CH <sub>3</sub> | CN, CO <sub>2</sub> CH <sub>3</sub>   |
|----------------|------------------------------------|-----------|------------------------|------------------------------------|--------------|-------------------------------------|------------|------------|---------------------------------------|------------|---------------------------------------|---------------------------------------|
| R10            | Calls                              | C & H s   | Cells                  | Cells                              | C & H s      | CeHs                                | C, H,      | C. e. H. s | , , , , , , , , , , , , , , , , , , , | 5          |                                       | · · · · · · · · · · · · · · · · · · · |
| <u>R</u> 9     | 1                                  |           | 11                     | I II                               | CH 2 C 6 H 5 | CH2 Cells                           | C6 H 1 1   | C. H9-n    | CH 3                                  | C.B.II.s   | C <sub>6</sub> H <sub>5</sub>         | Ce Hs                                 |
| RB             | CH <sub>2</sub> CH <sub>2</sub> OH | CH1 CH1OH | CH, CH, OH             | CH <sub>2</sub> CH <sub>2</sub> OH | CH.          | CH2 C6 H5                           | CH3        | C4119-11   | СН3                                   | СН,        | CH 3                                  | CH3                                   |
| Example<br>No. | 292                                | 293       | 294                    | 295                                | 296          | 297                                 | 298        | 299        | 300                                   | 301        | 302                                   | 303                                   |

| <u>Р. д.</u><br>9. соон с <sub>е</sub> н <sub>s</sub> | -00-C-C | ) === - 20 - 20 -             |
|-------------------------------------------------------|---------|-------------------------------|
| R10                                                   | 5       | , c                           |
| <u>R</u> 9                                            | CeHs    | C <sub>6</sub> H <sub>5</sub> |
| RB                                                    | CH3     | C, H, - n                     |
| Example<br>No.                                        | 304     | 305                           |

TABLE 6 (continued)

|         |                                                            | P. A. 9        | CN, CO2CH, | CN, CO2CH2CH2CN | CN, CO2CH2CH2OH | CN, CO2CH2CH3C6H5 | CN, CO2CH2C6H11 | CO1C1Hs, CO1C1Hs | COOH, CN<br>0 COOH C4Ms | -2==-2-20- | CN, CO2CH, | CH, CO,CH, | CN, CO2CH1 | CN, CO2CH, | CH, CH            |
|---------|------------------------------------------------------------|----------------|------------|-----------------|-----------------|-------------------|-----------------|------------------|-------------------------|------------|------------|------------|------------|------------|-------------------|
| 7       | s<br>                                                      | R12            | =          | æ               | I               | z                 | Ξ               | =                | ×                       | Ŧ          | ×          | =          | æ          | ×          | ×                 |
| TABLE 7 | R <sub>11</sub> 2<br>2 S S S S S S S S S S S S S S S S S S | R11            | ×          | =               | æ               | æ                 | ×               | Z                | Ŧ                       | =          | =          | ×          | =          | =          | Ю                 |
|         |                                                            | (R)n           | ==         | ==              | <b></b>         | =                 | ==              | ****             | ×                       | ×          | 5-CH3      | 5-0CH3     | 5-C1       | 5,7-di-CH1 | 5-CH <sub>3</sub> |
|         |                                                            | Example<br>No. | 306        | 307             | 308             | 309               | 310             | 311              | 312                     | 313        | 314        | 315        | 316        | . 317      | 318               |

|                     | P. 9              |       | CH, -KD | CH, -C- | CN, SO <sub>1</sub> | CN, 502 | CN, C6 Hs | - 0=-2-20- | CN, CN  | CN, CO,CH,  | CN, CO,CH, |
|---------------------|-------------------|-------|---------|---------|---------------------|---------|-----------|------------|---------|-------------|------------|
|                     | R12               | Ξ     | n       | ×       | Ξ                   | Ξ       | x         | H          | ±       | =           | =          |
| TABLE 7 (continued) | $\frac{R_{1}}{1}$ | но    | 110     | NO      | НО                  | НО      | Ю         | HO         | 00002H3 | 0 C C & H s | 06cH2C1    |
|                     | (R)n              | 5-CH3 | 5-CH3   | 5-CH,   | 5-CH3               | 5-CII,  | 5-CH3     | 5-CH1      | 5-CH3   | 5-CHJ       | 5-CH1      |
|                     | Example<br>No.    | 31.9  | 320     | 321     | 322                 | 323     | 324       | 325        | 326     | 327         | 328        |

|                     | PrQ            | CN, CN | CN, CN | CH, CO2CH, | CN, CO2CH1 | CN, CO2CH1 | CN, - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | си, - 1 си, | CN, - W- W- 1-OCH, | CN, - W-W                                 | CN, CM | CN, CO,CH, | CN, ( NO) | CH, CO, CH, |
|---------------------|----------------|--------|--------|------------|------------|------------|-------------------------------------------|-------------|--------------------|-------------------------------------------|--------|------------|-----------|-------------|
|                     | <u>R</u> 12    | 110    | OCCH,  | =          | CH.        | ×          | Ŧ                                         | Ξ           | ×                  | Ŧ                                         | Ξ      | æ          | Ŧ         | =           |
| TABLE 7 (continued) | R11            | HO     | occu,  | CH,        | CH 3       | осинсен.   | оси, оси,                                 | 9сн, ос, и, | оси, с, и,         | 0<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>1 | -200   |            | C GCH,    | овси,       |
|                     | (R)n           | ×      | ±      | x          | я          | =          | ×                                         | =           | Ξ                  | Ŧ                                         | Ŧ      | Ξ          | ×         | =           |
| :                   | Example<br>No. | 329    | 0 £ £  | 331        | 332        | 333        | 334                                       | 335         | 336                | 337                                       | 338    | 339        | 340       | 34.1        |

|         |                                                | P. Q           | CN, CO,CH, | CO2CH2CH3, CO2CH2CH3 | CO2CH1, SO2CH1 | CO2CH1, SO2C6H1 | CN, CONIC, H, OH | CN, CO2CH2CH2OH | CN, CO2CH2CH2OC2H5 | CN, CO2CH2CH2C1 | CN, CO2CH2CH2C&H5 | CN, CO2CH2CH2OC6H5 | CN, CO2CeHS | CN, CO2C6H11 | CN, CO2CH2Cell1 | CN, CO2CH2C6H3 | CN, CO2CH2CH(CH3)3 |
|---------|------------------------------------------------|----------------|------------|----------------------|----------------|-----------------|------------------|-----------------|--------------------|-----------------|-------------------|--------------------|-------------|--------------|-----------------|----------------|--------------------|
| TABLE 8 | S CH J CH CH = C F F CH J CH - CH = C F F CH J | <u>R</u> 7     | <b>=</b>   | Ŧ                    | H              | н               | =                | ×               | ×                  | Ŧ               | π                 | I                  | H           | =            | =               | æ              | 5-CH,              |
|         |                                                | Example<br>No. | 342        |                      | 344            | 345             | 346              | 347             | 348                | 349             | 350               | 351                | 352         | 353          | 354             | 155            | 356                |

|                     | P. 19          | CN, CO2CH2CH       | CN, CO, CH, | CN, CN | CN, CO2CH1 |         | CA, CONHUGHIS | CN, COMICABA | CN, SO <sub>2</sub> CH <sub>3</sub> | CN, SO2CeH5 | CN, COC(CH1)1                     | و:ب | · \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | 0 CN C, H,<br>-0C-C==C-<br>0 CO, CH, C, H, | -0 <sup>2</sup> -¢=====¢- | CN. CN.                           | Z-2 Z-2                           |
|---------------------|----------------|--------------------|-------------|--------|------------|---------|---------------|--------------|-------------------------------------|-------------|-----------------------------------|-----|-----------------------------------------|--------------------------------------------|---------------------------|-----------------------------------|-----------------------------------|
| TABLE 8 (continued) | R7             | 5-0CH <sub>3</sub> | 5-01        | 5-соон | 5-соон     | 5-00011 | 5-C00H        | 5-соон       | 5-COOH                              | 5-C00H      | 5-C0 <sub>2</sub> CH <sub>3</sub> |     | 5-C0 <sub>2</sub> CH <sub>3</sub>       | 5-C01CH3                                   | 5-CO <sub>2</sub> CH 3    | 5-CO <sub>1</sub> CH <sub>1</sub> | 5-CO <sub>2</sub> CH <sub>3</sub> |
|                     | Example<br>No. | 357                | 358         | ያኒያ    | 360        | 361     | 362           | 363          | 364                                 | 365         | 366                               |     | 367                                     | 368                                        | 369                       | 370                               | 371                               |

|                     | P. 2           | CN, SO <sub>2</sub> | CN, CO2C2H5                                       | CN, CO,CH,   | CN, CO,CII,                                          | CM, CN          | CN, CO2CH1    | CN, CO,CH,    | CN, COOH | 00-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0 |        | CO2CH3, -CO | CN, -C | CN, CONH |  |
|---------------------|----------------|---------------------|---------------------------------------------------|--------------|------------------------------------------------------|-----------------|---------------|---------------|----------|----------------------------------------|--------|-------------|--------|----------|--|
| TABLE 8 (continued) | R7             | 5-CO,CH,            | 5-CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | 5-CO2CH2C6Hs | 5-CO <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> OH | 5-CO2CH2CH2C6H5 | 5-CO2CH1CH1CN | 5-CO2CH(CH3)2 | 5-COOH   | 5-C00H                                 | 8-C00H | 5 - COOH    | 5-C00H | 5-c00H   |  |
|                     | Example<br>No. | 372                 | 373                                               | 374          | 375                                                  | 376             | 377           | 378           | 379      | 380                                    | 381    | 382         | 383    | 384      |  |

|         |                            | CN, CO <sub>2</sub> C <sub>2</sub> H <sub>5</sub> CN, CO <sub>2</sub> C <sub>2</sub> H <sub>5</sub> CN, CO <sub>2</sub> CH <sub>3</sub> CN, CO <sub>2</sub> CH <sub>3</sub> CN, CO <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH  CH, CO <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH  CH, CO <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH  CN, CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> CH  CN, CO <sub>2</sub> CH <sub>3</sub> CH  CN, CO <sub>2</sub> CH <sub>3</sub> CH  CN, CO <sub>2</sub> CH |
|---------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6       | р<br>СН = СН - СН = С<br>О | CH3 CH3 CH3 CH3 CH3 C2H3 C2H3 C2H3 C2H3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| TABLE 9 | R <sub>1</sub>             | CH3 CH3 CH3 CH3 CH3 CH3 C2H5 C2H5 C2H5 C2H5 C2H5 C4H5 C4H5 C6H5 C6H5 C6H5 C6H5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|         |                            | (R)n H H 3-CH; 3-CCH; 5-CH; 2,5-d1-CCH; 2,5-d1-CH; 3-CCH; H H H H H H H H H H H H H H H H H H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|         |                            | Example  No.  385  386  387  389  390  391  392  393  395  396  398  398                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

|                     | P, Q       | CN, CO2CH3        | CN, CN          | CN, CN | CN, 50, CH;    | CN, -C        |                                | CN, CO2CH3 | CN, CM              | C            |          | المال |
|---------------------|------------|-------------------|-----------------|--------|----------------|---------------|--------------------------------|------------|---------------------|--------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ued)                | <u>R</u> 2 | CH <sub>2</sub>   | CH1             | CH2    | CH 2 CO 2 CH 3 | C2Hs          | CH 2                           | CH2CH2C1   | C2H3<br>CH CH CH ON | CH 2 CH 2 CH | CH2CH2OH | ен, си, осси,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| TABLE 9 (continued) | R1         | CH <sub>2</sub> , | CH <sub>2</sub> | CH2    | CH2            | CH1("-"CO1CH1 | CH <sub>2</sub> C <sub>3</sub> | CH2CH2C1   | CH2CH2OC2H4OC2H5    | CH2CH2OH     | СН2СН2ОН | си, си, осси,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                     | (R)n       | ш                 | Ξ               | ¥      | Ŧ              | Ξ             | 3-CH3                          | 3-CH3      | 3-CH1               | 3-CH3        | 3 - CH 3 | 3-CH3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1                   | No.        | 400               | 401             | 402    | 403            | 404           | 405                            | 406        | 407                 | 408          | 409      | 410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

|                     | P1 0             | CN, -IN CON, | CN, CN<br>CN, SO <sub>2</sub> CH <sub>3</sub> | CN, SO,C6H5<br>CN, SO,C6H11               | CN, CN           | CN, CN        | CN, CO2CH3  | CN, SO <sub>2</sub> C1 | Z-E Z-E           | си, со,си, | CN, CO2CH2        |
|---------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------|------------------|---------------|-------------|------------------------|-------------------|------------|-------------------|
| hed)                | $\frac{R}{2}$    | CH <sub>2</sub> CH <sub>2</sub> OCH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C 2 H 5<br>C 2 H 5                            |                                           | CH,CH,OCOC,H;    | CH,CH,OCOC,H, | CH2CH2OCHH  | си, си, оёс, и,        | CH2CH2OCC2H5      | Си,си,ос-  | си,               |
| TABLE 9 (continued) | R                | о си, си, оёсн,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CH 2CH (OH ) CH 2OH                           | сн, сн (ойсн, ) сн, ойсн, сн, сн (он) сн, | си, сн, осос, и, | CH2CH2OCC6H5  | CH2CH2OCNH- | 0<br>Си,си,оёс,н,      | 0<br>CH1CH1OCC1H2 | си, си, оё | си, си, оёси,,    |
|                     | (R) <sub>n</sub> | 3-CH,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3-CH <sub>3</sub>                             | 3-CH3                                     | 3-CH,            | 3-CH,         | 3 - CH3     | 3-CH,                  | 3-СН3             | 3-CH3      | 3-CH <sub>3</sub> |
|                     | Example<br>No.   | 4 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 412                                           | 414                                       | 416              | 417           | 418         | 419                    | 420               | 421        | 422               |

| 0   | į |
|-----|---|
| Ч   | ł |
|     | l |
| £   | 1 |
| - 5 | l |
| =   | ١ |
| =   | ١ |
| _   | i |
|     |   |

$$C = HC - \begin{cases} R_{4} \\ Q \\ Q \\ R \end{cases}$$

| P. L. Q           | CN, CO, CH, | CN, CO2C2H,OH | CN, CONHC, H, OH | CN, CO2CH2CH2CH | CN, CO2CH2CH2OC3H5 | CN, CO2CH2CH2C6H5 | CN, CO2CH2C4H3 | CN, CO2CH2CH2OC6H5 | CN, CO2C2H3 | CO2C2HS, CO2C2HS | CO1CH1, SO1CH1 | CN, CN             | CN, SO2CeHs |
|-------------------|-------------|---------------|------------------|-----------------|--------------------|-------------------|----------------|--------------------|-------------|------------------|----------------|--------------------|-------------|
|                   | CHJ         | CH,           | CH.              | CH.             | CH.                | CH.               | CHJ            | CH.                | CH 3        | CH,              | CH 3           | CH,                | CH3         |
| R42. R5 R6        | CH, CH,     | CH1, CH1      | CH, CH,          | CH1, CH1        | CHJ, CHJ           | CH3, CH3          | CH3, CH3       | CH1, CH1           | CH3, CH3    | CH, CH,          | CH, CH,        | CH1, CH1           | CH1, CH1    |
| $\frac{R_1}{R_1}$ | CH,         | CH,           | CH,              | CH,             | CH1                | CII,              | CH,            | CH,                | CH,CH,Cl    | CH2CH2OH         | CH2CH2OC6H5    | о<br>си, си, осси, | CH2CH2OCCH3 |
| (R)n              | Ξ           | ×             | Ŧ                | æ               | I                  | =                 | ×              | ×                  | Ξ           | Ξ                | æ              | Ŧ                  | Ξ           |
| Example<br>No.    | 424         | 425           | 426              | 427             | 428                | 429               | 430            | 43.1               | 432         | 433              | 434            | 435                | 436         |

EP 0 235 198 B1

| Example |          | TABLE 10 (continued)                              | (pan     |            |                                     |
|---------|----------|---------------------------------------------------|----------|------------|-------------------------------------|
| No.     | (R)n     | R1                                                | R41_R5   | <u>R</u> 6 | P-1-9                               |
| 437     | =        | си, си, оёси,                                     | CH3, CH3 | CH,        | CN, SO2CH,                          |
| 438     | Ħ        | CH2CH2OCCH3                                       | CH3, CH3 | CH 1       | CN, CUNHC&HS                        |
| 439     | =        | си, си, осси,                                     | CH, H    | CH 1       | CN, CONHC, H, OH                    |
| 440     | ×        | си, си, оёсн,                                     | н, н     | I          | CN, SO2CH1                          |
| 441     | <b>=</b> | CH, CH, OCCH,                                     | н, н     | Cells      | CN, CO <sub>2</sub> CH <sub>3</sub> |
| 442     | 6-C1     | сн, сн, оссн,                                     | H, H     | CH.        | סבט עבס                             |
| 443     | 7 -CH,   | сн <sub>2</sub> си <sub>2</sub> оссн <sub>3</sub> | H , H    | CH,        | CN, CONH                            |
| 444     | Ŧ        | CH 2 CH 2 OC OC 2 H 5                             | н, н     | CH 3       | O CO-CH - C-H;                      |
| 445     | æ        | CH, CH, OCC 6H5                                   | H . H    | CH 3       | -0                                  |
| 446     | x        | CH2CH2OCNH                                        | н, н     | CH.        | - )= === )- DO -                    |
| 1447    | Ξ        | CH2CH2CH2NHC-                                     | н, н     | CH.        | CN, CO2CH1                          |
| 448     | =        | CH,CH,C1                                          | н, н     | CH 3       | CN, CO2CH3                          |

EP 0 235 198 B1

|                      | P. 1.8         | CN, CO,C.H;         | CN, CO2CH2C6H5 | CN, CN | CH, CH , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | CN, CN, | CN, - LE | CH, THE | CN, SO <sub>2</sub> C1 | CN, CO2CH2CH2CH |
|----------------------|----------------|---------------------|----------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------------------------------|---------|------------------------|-----------------|
|                      | <u>R</u> 6     | CII.                | CH.            | CH 3   | CHI,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | СН,     | CH.                                          | CH.     | CH,                    | CH 3            |
| inued)               | R41_R5         | H .                 | н, н           | н, н   | н, н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | #<br>#  | н, н                                         | н<br>Н  | # #<br># #             | H , H           |
| TABLE 10 (continued) | R1             | CH, CH, CH, N COCH, | CH2            | CH2    | CH2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CH2     | CH2                                          | CH1     | CH2                    | CH2CH2OCCH3C6H3 |
|                      | (R)n           | =                   | æ              | =      | æ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | =       | ×                                            | Ξ       | I I                    | Z               |
|                      | Example<br>No. | 449                 | 450            | 451    | 452                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 453     | 4 54                                         | 455     | 456                    | 458             |

|                      | P. C. 2        | CN, COC(CH1)1      | CN, COC6Hs    | CN, COOH    | CN, C6Hs      | CN, S         | си,           |
|----------------------|----------------|--------------------|---------------|-------------|---------------|---------------|---------------|
|                      | $\frac{R}{6}$  | CH,                | CHJ           | CH3         | CH,           | CH3           | CH.           |
| TABLE 10 (continued) | R41_R5         | н , н              | #<br>#        | н, н        | н, н          | н, н          | н 'н          |
| TABI                 | R1             | о<br>си, си, оёси, | CH, CH, OCCH, | CH2CH2OCCH3 | си, си, оссн, | си, си, осси, | си, си, осси, |
|                      | (R)            | =                  | x             | =           | Ξ             | ×             | Ξ             |
|                      | Example<br>No. | 459                | 460           | 461         | 462           | 463           | 464           |

| ٦. | 1 |
|----|---|
| _  | ļ |
| Ę  | İ |
| 81 | İ |
| 3  |   |
| Ξ  | ì |
|    |   |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0-74           | CN, CN     | CN, CONII, | CN, CO2CH3 | CN, CONFICEUS | ביין |          | CN, CN      | CN, CO2CH3                                        | CN, SO2CH3  | CN, SO2CeHs   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------|------------|------------|---------------|------|----------|-------------|---------------------------------------------------|-------------|---------------|
| $C = HC - \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{2} = \frac{R}{$ | $\frac{R}{1}$  | CH 2CH 2OH | CH 2CH 2OH | CH 2CH 2OH | CH2CH2OH      |      | CH2CH2OH | сизсизойсня | CH <sub>2</sub> CH <sub>2</sub> OCCH <sub>3</sub> | CH2CH2OCCH1 | CH, CH, OCCH, |
| $Q = HC - V = V$ $Q = HC - V = V$ $(R)_{n=1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (R.)n          | ¥          | ×          | æ          | x             |      | Ξ        | =           | Ŧ                                                 | ×           | æ             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (R)n           | Ŧ          | I          | x          | Ŧ             |      | =        | =           | æ                                                 | æ           | =             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Example<br>No. | 465        | 466        | 467        | 468           |      | 469      | 470         | 471                                               | 472         | 473           |

| Eramole |         | TABLE    | TABLE 11 (continued)                                             |                  |
|---------|---------|----------|------------------------------------------------------------------|------------------|
| No.     | $(R)_n$ | (R'In    | $\frac{R}{1}$                                                    | 1. 0.1d          |
| 474     | ×       | <b>x</b> | си, си, осси,                                                    | CN, -C           |
| 475     | ×       | Ξ        | 0 0 сн 20 ссн 3                                                  | 0 CN C H 5       |
| 476     | =       | æ        | CH <sub>2</sub> CH <sub>2</sub> OCCH <sub>3</sub>                | 0 CN C.H.s       |
| 477     | Ŧ       | Ŧ        | си,си,осси,                                                      | CN, COC. HS      |
| 478     | =       | ×        | ch,ch,occh,                                                      | CN, COC(CH1)1    |
| 479     | Ξ       | ==       | CH <sub>2</sub> CH <sub>2</sub> OCOC <sub>2</sub> H <sub>3</sub> | CN, C&Hs         |
| 480     | I       | H        | CH2CH2C1                                                         | CN, CO, CH,      |
| 481     | 3-CH3   | **       | CH2CH2OH                                                         | CN, CO,CH,       |
| 482     | 3-CH3   | Ξ        | CzHs                                                             | CN, CO,CH,       |
| 483     | 3-CH3   | =        | CH2-                                                             | CN, CU,CH,       |
| 484     | 22      | x        | CH <sub>3</sub>                                                  | CO2C2Hs, CO2C2Hs |
| 485     | =       | æ        | сизси(он)сиз                                                     | -0C-C=-C-        |
| 486     | æ       | ж        | CH <sub>2</sub> COOH                                             | CH, CN           |
| 487     | æ       | Ħ        | CH <sub>2</sub> CO <sub>2</sub> CH <sub>3</sub>                  | CN, CN           |

EP 0 235 198 B1

|                      | P. Q           | CN, CONII,     | CN, CO1CH1CH1CN    | CH, CO2CH2CH2OC2H3 | CN, CN  | CN, SO <sub>2</sub> CH <sub>3</sub> | CN, CO2CH, | CN, CO2CH3 | CN, CO2CH3 | CN, CO2CH3                                        | CN, CO2CH3 | CN, CO2CH3    | CN, CO1CH1   | CN, CO2CH1  | CN, CO2CH3 |
|----------------------|----------------|----------------|--------------------|--------------------|---------|-------------------------------------|------------|------------|------------|---------------------------------------------------|------------|---------------|--------------|-------------|------------|
| TABLE 11 (continued) | R1             | CH 2 CO 2 CH 1 | CH1                | CH <sub>2</sub>    | CH1     | CH1                                 | CH,        | CHJ        | C1H5       | CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | CH2C6H5    | CH2CH2SO2CeH5 | CH 2 CH 2 CN | CH2CH2OC6H5 | CH2CH2S-E  |
| TABLE 1              | LR'1n          | ×              | 3'-CH <sub>3</sub> | 2'-CH <sub>1</sub> | 3'-0CH3 | æ.                                  | Œ          | 3'-CH;     | =          | Œ                                                 | Ħ          | æ             | =            | Ŧ           | x          |
|                      | (R)n           | =              | 3-CH1              | 3-c1,              | 3-СИ,   | 2,5-d1-OCH,                         | 2,5-di-CH, | 3-Br       |            | ==                                                | ±          | æ             | =            | Ξ           | H          |
|                      | Example<br>No. | 488            | 489                | 490                | 491     | 492                                 | 493        | 494        | 495        | 496                                               | 497        | 498           | 499          | 200         | 501        |

|                      | P. 4           | CN, CO1CH1                                    | CN, CO2CH1    | CN, CO2CH3                                          | CM, CO <sub>2</sub> CM <sub>3</sub> | -0G-C | си, солсилсилон | CN, CONBC, H, OH               |  |
|----------------------|----------------|-----------------------------------------------|---------------|-----------------------------------------------------|-------------------------------------|-------|-----------------|--------------------------------|--|
| TABLE 11 (continued) | R1 0           | CH 2 CH 2 N H H H H H H H H H H H H H H H H H | CH 2 CH 2 - N | CH <sub>2</sub> CH <sub>2</sub> N SO <sub>2</sub> H | CH 2 CH 2 SO 3 NH                   | CH 2  | CH <sub>2</sub> | CH <sub>2</sub> C <sub>1</sub> |  |
| TABLE 1              | (R')n          | Ξ                                             | ×             | æ                                                   | π                                   | æ     | ±               | Ξ                              |  |
|                      | (R)n           | =                                             | æ             | Ξ                                                   | Ξ                                   | Ξ     | <b>=</b>        | 944<br>244                     |  |
| ,                    | Example<br>No. | 502                                           | 503           | 504                                                 | 505                                 | 206   | 507             | 508                            |  |

| <u>ಒ</u> !       | CN                                                | CN                   | Z<br>C        | COICHI                                              | CO2CH3  | 60,611,        | COMII,                                                  |
|------------------|---------------------------------------------------|----------------------|---------------|-----------------------------------------------------|---------|----------------|---------------------------------------------------------|
| (R) <sub>n</sub> | æ                                                 | Ξ                    | æ             | Ξ                                                   | ×       | 2 - CH ,       | 2-C1                                                    |
| <                | (HOC <sub>2</sub> H <sub>4</sub> ) <sub>2</sub> N | (CH3 COC2 H4, ) 2 N- | CH, COCH, CH, | (CH <sub>3</sub> ) <sub>2</sub> N(CH <sub>3</sub> ) | CeHsCH, | C6 H11 N C2 H5 | CH <sub>3</sub> COOCH <sub>2</sub> CH <sub>2</sub> /N-· |
| Example<br>No.   | 509                                               | 510                  | 511           | 512                                                 | 513     | 514            | 515                                                     |

|                      | <u>-</u> 1           | Z<br>O | CN            | N<br>O                  | <b>N</b>           | π<br>O   | CN        |
|----------------------|----------------------|--------|---------------|-------------------------|--------------------|----------|-----------|
|                      | (R) n                | ±      | 2,5-di-CII,   | ж                       | =                  | <b>=</b> | 2-0CH 3   |
| TABLE 12 (continued) | Δ<br>CH <sub>3</sub> |        | CH, CH, OCCH, | CH3 CH3 CH3 CH3 CH3 CH3 | CH <sub>3</sub> -1 | CAHS.    | C2H5<br>1 |
|                      | Example<br>No.       | 516    | 517           | 518                     | 519                | 520      | 521       |

| ۵.                       | CO2CH3 | CO2CH3                                                          | CN            | CM                                                                                                             | CN      | CN           |
|--------------------------|--------|-----------------------------------------------------------------|---------------|----------------------------------------------------------------------------------------------------------------|---------|--------------|
| $n(\overline{\Omega})_n$ | Ξ      | Ξ                                                               | Ħ             | Œ                                                                                                              | æ       | æ            |
| TABLE 12 (continued)     | S      | CH <sub>3</sub> CH <sub>3</sub> CH <sub>4</sub> CH <sub>4</sub> | (HOC, H, ), N | (CH <sub>3</sub> COC <sub>2</sub> H <sub>4</sub> ) <sub>2</sub> N-·(-CH=CH-CH-CH <sub>3</sub> COC <sub>1</sub> | CH3<br> | C2 H, OCCH 3 |
| Example<br>No.           | 522    | 523                                                             | 524           | 525                                                                                                            | 526     | 527          |

| a.l                  | CN         | CN         | 50 <sub>2</sub> CH <sub>3</sub>                                      | 205                                                                 |
|----------------------|------------|------------|----------------------------------------------------------------------|---------------------------------------------------------------------|
| (R)n                 | H          | Œ          | =                                                                    | æ                                                                   |
| TABLE 12 (continued) | CH2-CO2CH3 | CH 2CH 20H | (CH <sub>3</sub> COCH <sub>2</sub> CH <sub>2</sub> ) <sub>2</sub> N( | (CH <sub>3</sub> COCH <sub>2</sub> CH <sub>2</sub> ) <sub>2</sub> N |
| Example<br>No.       | 528        | 529        | 530                                                                  | 531                                                                 |

| $C = IIC - \frac{7}{100} \times \frac{5}{100} \times \frac{5}{1$ |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Example |            |                                                   |                |
|---------|------------|---------------------------------------------------|----------------|
| No.     | (R)n       | $R_1$                                             | D L            |
| 532     | <b>3</b>   | C <sub>2</sub> H <sub>4</sub> OH                  | CN, CN         |
| 533     | =          | C2H4OH                                            | CN, SO2CH3     |
| 534     | =          | C2H4OH                                            | CN, SO2C6Hs    |
| 535     | =          | C2H,OH                                            | CM, CONHC, H,  |
| 536     | æ          | C2H,OH                                            | CH, COMIC2H,OH |
| 537     | Ħ          | CH, CH, OCCH,                                     | CN, CN         |
| 538     | Ŧ          | CH <sub>2</sub> CH <sub>2</sub> OCCH <sub>3</sub> | CN, SO2CH3     |
| 539     | 4,8-d1-CH3 | chzocch <sub>3</sub>                              | CN, CO2CH3     |
| 540     | 8 - CH 3   | CH2CH2OC-C6H5                                     | CN, CO2CH3     |
| 541     | 8 - CH 3   | CH, CH, OCCH,                                     | -0=0-00-       |
| 542     | 8 - CH 3   | CH2CH(OH)CH3                                      | -0-2-2-20-     |

| P. A.                                   | -00-c=====             | CN, CO2CH3             | CN, CN |       | CN, CO <sub>2</sub> CH <sub>3</sub> | CN, CN          | יבי עבס         | CN, CO2CH3 | 5::20                                                                              | CN, CO <sub>2</sub> CH <sub>3</sub> | CN, CO <sub>2</sub> CH <sub>3</sub> | 5 1 1 CO 1 1 2 |
|-----------------------------------------|------------------------|------------------------|--------|-------|-------------------------------------|-----------------|-----------------|------------|------------------------------------------------------------------------------------|-------------------------------------|-------------------------------------|----------------|
| TABLE 13 (continued) $\dfrac{R}{1}$ . Q | CH2CH2OCH2CH2OCH1      |                        | CH2    | CoHs  | CH2                                 | CH <sub>2</sub> | си,си,осси,     |            | CH <sub>2</sub> CH <sub>2</sub> N(CH <sub>3</sub> )SO <sub>2</sub> CH <sub>3</sub> | CH2CH2OÜNHC6H5<br>CH,CH,Cl          | CH2CH2OC6H5                         | CH2CH2SC6H5    |
| (R)n                                    | 2-C1-8-CH <sub>3</sub> | 4-C1-8-CH <sub>1</sub> | 8-CH3  | 8-CH, | =                                   | 4-0CH3-8-CH3    | 3,4-d1-C1-8-CH3 | Ξ          | æ                                                                                  | 6,8-di-CH3                          | 8-CH <sub>3</sub>                   | 8-CH3          |
| Example<br>No.                          | 543                    | 544                    | 545    | 546   | 547                                 | 548             | 549             | 550        | 551                                                                                | 552                                 | 553<br>554                          | 555            |

| P. L.                                  | CN, COOH                                         | CN, CO2CH3                                                      | CN, CO,CH,  | CN, CO2CH3    | CN, CO <sub>2</sub> CH <sub>3</sub> | - HU-00 NO     | CN 700 CN 7      |                 |           |                   |                     | CN, CO2CH3          | CN, CND      |
|----------------------------------------|--------------------------------------------------|-----------------------------------------------------------------|-------------|---------------|-------------------------------------|----------------|------------------|-----------------|-----------|-------------------|---------------------|---------------------|--------------|
| TABLE 13 (continued) $\frac{R_1}{R_1}$ | CH <sub>2</sub> CH <sub>2</sub> S-C <sub>S</sub> | CH <sub>2</sub> CH <sub>2</sub> SO <sub>2</sub> CH <sub>3</sub> | CH2CH2N III | -CH2CH2N ii i | -CH2CH=CH2                          | -CH2CH2OC2H4OH | -CH2CH2SO2CH=CH2 | -CH2CH(OH)CH2OH | -CH2C6H11 | -CH2CH25O2N(CH3)2 | -CH2CH2CON(CH3)C6H5 | о<br>-сн2сн2оссн2с1 | -CH2CH2OCCH3 |
| (R)n                                   | 4-0CH3-8-CH3                                     | 8 - CH 3                                                        | 8-CH3       | B - C H 3     | 8-CH3                               | 8-CH3          | 8-CH3            | 8 - CH 3        | 9-CH3     | 9 CH3             | 9 - CH 3            | 4-CH3               | . 4-CH3      |
| Example<br>No.                         | 556                                              | 557                                                             | 558         | 559           | 560                                 | 561            | 562              | 563             | 564       | 565               | 999                 | 267                 | 568          |

|          |                                                                                     | P. 4           | CN, CM                           | CN, SO, CH3 | CN, SO2C6H5 | CN, CONHC&HS | CN, CONHC2H4OH      | CN, CN                                            | CN, 302CH3  | CN, CO2CH3                             | CN, CO2CH3    |
|----------|-------------------------------------------------------------------------------------|----------------|----------------------------------|-------------|-------------|--------------|---------------------|---------------------------------------------------|-------------|----------------------------------------|---------------|
| TABLE 14 | $C = HC - \begin{cases} 1 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 &$ | <u>R</u> 1     | C <sub>2</sub> H <sub>4</sub> OH | C2H,OH      | HOOD        | CH1          | C <sub>2</sub> H,OH | CH <sub>2</sub> CH <sub>2</sub> OCCH <sub>3</sub> | CH2CH2OCCH3 | о<br>Си <b>,</b> си, оссн <sub>я</sub> | CH2CH2OC+C6H5 |
|          |                                                                                     | (R)n           | Ħ                                | I           | <b>.</b>    | æ            | ×                   | <del>***</del>                                    | æ           | 8 -CH3                                 | 8 - CH 3      |
|          |                                                                                     | Example<br>No. | 574                              | 575         | 576         | 577          | 578                 | 579                                               | 580         | 581                                    | 582           |

EP 0 235 198 B1

|                      | PAG            | O CN CoHs | -06-6-6-                                          | -00-0<br>-00-0<br>-00-0 | 0 CONH, C.H.S           | CN, CO2CH3 | CN, CN     | CN, CO2CH3 | CN, CO2CH3 | CN, CN | 0=v \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | CN, CO2CH3 | CM, CO2CH3                                                                         | CM, CO2CH3                            |
|----------------------|----------------|-----------|---------------------------------------------------|-------------------------|-------------------------|------------|------------|------------|------------|--------|-------------------------------------------|------------|------------------------------------------------------------------------------------|---------------------------------------|
| TABLE 14 (continued) | $\frac{R}{1}$  | 0         | CH <sub>2</sub> CH <sub>2</sub> OCCH <sub>3</sub> | CH2CH(OH)CH3            | сн 2сн 20сн 2сн 20ёсн 3 | H000-      | CH2        | C6H5       | CH2        | CH2    | сн, сн, оёсн,                             | HOOD-      | CH <sub>2</sub> CH <sub>2</sub> N(CH <sub>3</sub> )SO <sub>2</sub> CH <sub>3</sub> | CH2CH2OCNIC 6 H5                      |
|                      | (R),           |           | 8-CH3                                             | 8 - CH 3                | 2-C1-8-CH3              | 4-C1-8-CH3 | 5,8-di-CH3 | Œ          | ×          | =      | 3-CH <sub>3</sub>                         | 3-CH3      | 3-CH3                                                                              | 3-0CH <sub>3</sub> -8-CH <sub>3</sub> |
|                      | Example<br>No. |           | 583                                               | 584                     | 585                     | 586        | 587        | 588        | 589        | 590    | 591                                       | 592        | 593                                                                                | 594                                   |

| Р. 9<br>Си, со <sub>2</sub> си;<br>си, со <sub>2</sub> си;                      | CN, COOH                                         | CN, CO2CH3                              | CN, CO2CH3  | CN, CO <sub>2</sub> CH <sub>3</sub> CN, CN CN, CO <sub>2</sub> CH <sub>3</sub> CN, CO <sub>2</sub> CH <sub>3</sub> CN, CO <sub>2</sub> CH <sub>3</sub> CN, CO <sub>2</sub> CH <sub>3</sub>                                                                                                                                                                                                                           |
|---------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TABLE 14 (continued)  R1  CH 2 CH 2 C 1  CH 2 CH 2 C 6 H 5  CH 2 CH 2 C C 6 H 5 | CH2CH2SO2                                        | CH <sub>2</sub> CH <sub>2</sub> N H H L | -CH2CH2N ii | -CH <sub>2</sub> CH=CH <sub>2</sub> -CH <sub>2</sub> CH <sub>2</sub> OC <sub>2</sub> H <sub>4</sub> OH -CH <sub>2</sub> CH <sub>2</sub> SO <sub>2</sub> CH=CH <sub>2</sub> -CH <sub>2</sub> CH(OH)CH <sub>2</sub> OH -CH <sub>2</sub> CH(OH)CH <sub>2</sub> OH -CH <sub>2</sub> CH <sub>2</sub> SO <sub>2</sub> N(CH <sub>3</sub> ) <sub>2</sub> -CH <sub>2</sub> CH <sub>2</sub> CON(CH <sub>3</sub> ) <sub>2</sub> |
| (R)n<br>3-0CH3-7-CH3<br>3-0CH3-7-CH3<br>3-0CH3-7-CH3                            | 3,5-di-CH <sub>3</sub><br>3,5-di-CH <sub>3</sub> | 3-0CH3                                  | 7,10-di-CH3 | 3,8-di-CH; 3,8-di-OCH; 8-OCH; 8-Cl 8-CH; 8-CH;                                                                                                                                                                                                                                                                                                                                                                       |
| Example<br>No.<br>595<br>596<br>596                                             | 598                                              | 009                                     | 601         | 602<br>603<br>604<br>605<br>606<br>600                                                                                                                                                                                                                                                                                                                                                                               |

| P. Q.                    | CN, CO <sub>2</sub> CH <sub>3</sub>                  | CN, -C                                             | CN, -E              | CN, -C            | CN, CO2CH3      | CN, CO2CH3  | CN, CO2CH1  |
|--------------------------|------------------------------------------------------|----------------------------------------------------|---------------------|-------------------|-----------------|-------------|-------------|
| TABLE 14 (continued)  R1 | -сн <sub>2</sub> сн <sub>2</sub> осн <sub>2</sub> с1 | -сн <sub>2</sub> сн <sub>2</sub> оссн <sub>3</sub> | о<br>-си, си, оёсн, | о<br>-си,си,оёсн, | CH2CH2N C-N-CH3 | CH2CH2N CH2 | CH2CH2-S-   |
| (R)n                     | Ξ                                                    | æ                                                  | =                   | 5,8-di-CH,        | 5,8-di-CH3      | 8 – CH 3    | 7,9-d1-OCH3 |
| Example<br>No.           | 609                                                  | 610                                                | 611                 | 612               | 613             | 614         | 615         |

CN, CO2CH1

$$P = HC - \frac{1}{10}$$

(R)10

Example No.

C. H.s

616

p, Q

2 соон С<sub>в</sub>н<sub>s</sub>

CO2CH1, CO2CH1

CH3

618

CN, CD2CH2CH2OH

CN, CO2CH3

620

617

EP 0 235 198 B1

|                      | 0 'A           | 5 H 3 C C C C C C C C C C C C C C C C C C | 0 CO2CH3 C6H5 | CN, CONHC, H, OH | OCN C& H &     | CN, CO2CH3          | CN, SO2       | 0 CO2CH3<br>-OC-C | 0 CO2CH3 C6H3                             |
|----------------------|----------------|-------------------------------------------|---------------|------------------|----------------|---------------------|---------------|-------------------|-------------------------------------------|
| TABLE 15 (continued) | m              | H.J                                       | HD S          |                  | нооо           | -N<br>!-SC2H5       | - G-CH3       | CH <sub>3</sub>   | Z-•\\\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\. |
|                      | (R)10          | C4H4-p-CO2CH3                             | Сенр-соон     | C. H p-Br        | C, H, - p-0CH, | C 6 H 4 - p - C H 3 | C. H o - C. 1 | CeH,-m-CO2CH3     | C.Hp-CO2CH1                               |
|                      | Example<br>No. | 621                                       | 622           | 623              | 624            | 625                 | 626           | 627               | 628                                       |

EP 0 235 198 B1

| D ' d                       | CN, CO2CH;     |       | си, со <sub>2</sub> си, | CN, CONH | D= 2-20-                                        | CN CEH 5                                                                    | CN,                |
|-----------------------------|----------------|-------|-------------------------|----------|-------------------------------------------------|-----------------------------------------------------------------------------|--------------------|
| TABLE 15 (continued)  B  -N | S S C 2 H 4 OH | S     |                         |          | H - CCH 3 - C - C - C - C - C - C - C - C - C - | -N-<br>N-<br>N-<br>N-<br>N-<br>N-<br>N-<br>N-<br>N-<br>N-<br>N-<br>N-<br>N- | "N" " " - CO 2CH 1 |
| •                           | C. H. s        | C. Hs | C. e. H. s              | C. H. S. | C& H s                                          | C <sub>6</sub> H <sub>5</sub>                                               | CeHs               |
| Example<br>No.              | 0.69           | 631   | 632                     | 633      | 634                                             | 635                                                                         | 636                |

The preparation of the unsaturated polvesters of this invention is according to well known techniques in the art as described, for example, in U.S. Patents: 3.642,672; 3,549,586; 4,299,927; and 4,355,136. It is preferred that these polyesters have an acid number of from about 10 to about 28, an inherent viscosity of from about 0.05 to about 0.25, and a number average molecular weight of from about 1100 to about 3800. Typical colored polyester material prepared in accordance with this invention are as follows:

#### Example 637

Preparation of Unsaturated Polyester Material from Neopentyl Glycol, isophthalic Acid, and Maleic Annydride Copolymerized with Methine Colorant and Cured With Styrene

The reaction apparatus comprising a one-litre flask is fitted with a stirrer, thermometer, nitrogen inlet tube, and heated Vigreux column. The top of the Vigreux column is also fitted with a Dean-Stark trap and cold water condenser. The flask is charged with 251.6 g of neopentyl glycol (2.415 mol), 191.0 g of isophthalic acid (1.15 m), 0.0951 g (200 ppm) of the reactive methine compound

20

15

and 0.55 g of dibutyltin oxide. The flask is then heated to reflux and held at this temperature until the theoretical amount of distillate is collected from this esterification stage. The reaction system is cooled to 145°C and 112.8 g of maleic anhydride (1.15 m) and 0.055 g of toluhydroquinone are added. The esterification and polycondensation reactions are continued for one hour at 175°C, then for one hour at 185°C, and then at 195°C until an acid number of 18.1 for the unsaturated polyester is obtained. The inherent viscosity of this polyester is 0.133, the number average molecular weight is 2640 and the color is bright red-orange. Sufficient of this polyester material is blended or dissolved in styrene monomer to give 40 wt.% monomer and the system then blended with 1 wt% benzoyl peroxide. One-eighth inch thick sheet castings are prepared by decanting the blend between glass plates separated by i-inch thick gasket. The blend is cured by heating for two hours at 70°C, then for one hour at 100°C, then for two hours at 125°C, and then for one hour at 150°C. After cooling, the cured polyester sheet is removed and cut into bars. The flexural strength of the bars is  $18.46 \times 10^3$  psi (127 N/mm<sup>2</sup>).

Example 638 Preparation of Unsaturated Polyester Material from Propylene Glycol, Isophthalic Acid, and Maleic Anhydride Copolymerized With Methine Colorant and Cured With Styrene

The following components are charged into the equipment described in Example 801:

192.5 g propylene glycol (2.53 mol); 191.0 g isophthalic acid (1.15 mol); 0.50 g dibutyltin oxide;) and

50

60

40

45

These components are reacted as described in Example 801 until the theoretical amount of distillate is collected. The reaction is cooled to 145°C and 112.8 g maleic anhydride (1.15 mol) and 0.05 g of toluhydroquinone are added. The reaction is continued for one hour at 175°C, then for one hour at 185°C, and then at 195°C until an acid number of 14.1 for the unsaturated polyester is obtained. The inherent viscosity of this polyester is 0.11, the number average molecular weight is 1912, and the color is yellow. A curable blend of this unsaturated polyester and sheet casting and bars thereof were prepared as in Example 801. The bars had a flexural strength of  $18.60 \times 10^3$  psi (128 N/mm<sup>2</sup>).

The above inherent viscosities, acid numbers, number average molecular weights, and fiexural strengths were determined as follows:

Acid number by ASTM D-1639-70;

Number Average Moplecular Weight by ASTM D-08.03 (Gel Permeation Chromatography);

Fiexural Strength by ASTM D-790-81;

Inherent Viscosity according to ASTM D2857—70 procedure in a Wagner Viscometer of Lab Glass Inc. of Vineland, N.J. having a 1/2 ml capitary bulb, using a polymer concentration of 0.5% by weight in 60/40 by weight, phenol/tetrachloroetnane solvent. The procedure comprises heating the polymer/solvent system at

120°C for 15 minutes to enhance dissolution of the polymer, cooling the solution to 25°C and measuring the time of flow at 25°C. The LV, is calculated from the equation

 $\begin{array}{ccc}
25^{\circ}C & & & \frac{t_s}{-} \\
(\eta) & = & \frac{t_o}{-} \\
0.50\% & & & \\
\end{array}$ 

where:

Ē

 $\langle \eta \rangle$  = Inherent viscosity at 25°C at a polymer concentration of 0.5 g/(00 ml of solvent;

In = Natural logarithm;

t<sub>s</sub> = Sample flow time;

 $t_o = Solvent-blank flow time; and$ 

C = Concentration of polymer in grams per 100 ml of solvent = 0.50.

#### Claims

1. A colored composition comprising unsaturated polyester material, wherein the polyester has an I.V. of 0.05 to 0.25, an acid number of 10 to 28, and a number average molecular weight of from 1100 to 3800, 20 having copolymerized therein a total of from 1.0 to 5000 ppm of at least one methine moiety, said moiety absorbing in the range of from 320 nm to 650 nm and being nonextractable from said polyester material, wherein each methine moiety is derived from a reactive compound having the formula

25

30

$$P$$
 $C=CH-A$ 
,
 $A-CH=C-C=CH-A$ 
,
 $(R)$ 

35

40

wherein each A is selected from the following radicals:

 $(R) = \prod_{n \in \mathbb{N}} \prod_{i \in \mathbb{N}} (R)_{n}$ 50

55  $(R) \xrightarrow{n} [R]_{n}, - [R]_{n}$ 60

€5

$$(R)_{n} \xrightarrow{R_{1}} (R_{1})_{n} = R_{4} \qquad (R_{7} \xrightarrow{R_{1}} R_{10})_{n} = R_{10}$$

$$R_4$$
 $R_5$ 
 $R_6$ 
 $R_1$ 
 $R_{10}$ 
 $R_{10}$ 

wherein:

15

20

30

45

50

55

60

€5

R and R' are selected from hydrogen, fluorine, chlorine, bromine, alkyl, alkoxy, phenyl, phenoxy, alkyltic, and arylthio; r. is 0, 1, 2;

 $R_1$  and  $R_2$  are selected from hydrogen; cycloalky); cycloalky, substituted with one or two of alky, —OH, alkoxy, nalogen, or nydroxy substituted alkyl: pnenyl; pnenyl substituted with alkyl, alkoxy, halogen, alkanoylamino, carboxy, cvano, or alkoxycarbonyl; straight or branched lower alkenyl; straight or branched alkyl of 1-8 carbons and such alkyl substituted with the following: hydroxy; halogen; evano; succinimido; hydroxysuccinimido; acyloxysucinimido; glutarimido; phenylcarbamoyloxy; phthalimido; 4carboxyphthalimido; pnthalimidino; 2-pyrrolidono, cyclohexyl; phenyl; pnenyl substituted with alkyl, alkoxy, halogen, hydroxy alkanoylamine, carboxy, cyano, or alkoxycarbonyl; alkylsulfamoyl; vinylsulfonyl; pnenylsulfonamido: alkylsulfonamido; benzoylsulfonicimido; sulfamyl; alkoxycarbonylamine; alkylcarbamovioxy; alkoxycarbonyl; alkoxycarbonyloxy; alkenylcarbonylamine; groups of the formula

wherein Y is --NH--,

-O-, -S-, or  $-CH_2O-$ ;  $-S-R_{14}$ ;  $SO_2CH_2CH_2SR_{14}$ ; wherein  $R_{14}$  is alkyl, phenyl phenyl substituted with halogen, alkyl, alkoxy, alkanoylamino, cyano, or alkoxycarbonyl; pyridyl; pyrimidinyl; benzoxazolyl; 25 benzimidazolyl; benzothiazolyl; radicals of the formulae

N-R -C CH

 $-OSR_{16}$ ;  $-NHXR_{16}$ ;  $-X-R_{16}$ ;  $-CONR_{15}R_{15}$ ; and  $-SO_2NR_{15}R_{16}$ ; wherein  $R_{15}$  is selected from H, aryl, alkyl, and alkyl substituted with halogen, -OH, phenoxy, aryl, -CN, cycloalkyl, alkylsulfonyl, alkylthio, alkanoyloxy, or alkoxy; X is —CO—, —COO—, or —SO<sub>2</sub>—; R<sub>16</sub> is selected from alkyl and alkyl substituted with halogen, hydroxy, phenoxy, aryl, cyano, cycloalkyl, alkylsulfonyl, alkylthio, alkanoyloxy, and alkoxy; and when X is —CO—, R<sub>16</sub> also can be hydrogen, amino, alkenyl, alkylamino, dialkylamino, arylamino, aryl, or furyl; alkoxy; alkoxy substituted with hydroxy, cyano, alkanoyloxy, or alkoxy; phenoxy; phenoxy substituted with one or more of alkyl, carboxy, alkoxy, carbalkoxy, or halogen;  $R_1$  and  $R_2$  can be a single combined group such as pentamethylene, tetramethylene, ethyleneoxy ethylene, ethylene sulfonylethylene, or

ethylene-N-ethylene

which, with the nitrogen to which it is attached, forms a ring; R<sub>17</sub> is alkyl, aryl, or cycloalkyl;

 $R_3$  is alkylene, arylene, aralkylene, alkyleneoxy, or alkyleneoxyalkylene;

Z is a direct single bond, OCO, O, S, SO<sub>2</sub>, R<sub>17</sub>SO<sub>2</sub>N=,

—OC-alkylene-CO—, —OC-arylene-CO—, —S—S—

arylene, or alkylene;

 $R_4$ ,  $R_5$ , and  $R_6$  are each selected from hydrogen and alkyl;

R<sub>7</sub> is carboxy, carbalkoxy, or (R),

Ric is hydrogen, alkyl, and aryl;

 $R_{\epsilon}$  and  $R_{s}$  are each selected from hydrogen and substituted or unsubstituted alkyl, aryl, or cycloalkyl;

 $R_{11}$  and  $R_{12}$  are each selected from hydrogen, alkyl, hydroxyl, or acyloxy;

B represents the atoms necessary to complete a five or six membered ring and is selected from

each. P and Q  $_{are}$  selected from cyano, carbalkoxy, carbaryloxy, carbaralkyloxy, carbamyl, carboxy, Nalkylcarbamyi, N-alkyl-N-arylcarbamyi, N,N-dialkylcarbamyi, N-arylcarbamyi, N-cyclohexylcarbamyi, aryl, 30  $\hbox{$2$-benzoxazolyl, $2$-benzothiazolyl, $2$-benzimidazolyl, $1,3,4$-thiadiazol-$2$-yl, $1,3,4$-oxadiazol-$2$-yl, $SO_2$ alkyl,  aryl, and acyl, or P and Q may be combined as

$$= C \qquad \qquad C \qquad \qquad = \begin{bmatrix} 0 & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$$

wherein  $R_{17}$  is defined above and  $R_{18}$  is CN, COOH,  $CO_2$  alkyl, carbamyl, or N-alkylcarbamyl;

wherein at least one of A, P, and Q for each dye molecule must be or bear a condensable group selected from carboxy, carbalkoxy, carbaryloxy, N-alkylcarbamyloxy, acyloxy, chlorocarbonyl, alkylamino, hydroxyl, N-phenylcarbamyloxy, N-(alkyl)₂carbamyloxy, amino, carbamyloxy, cyclohexanoyloxy, and carbocyclohexyloxy; and

wherein in the above definitions, each alkyl, aryl, or cycloalkyl moiety or portion of a group or radical may be substituted where appropriate with hydroxyl, acyloxy, alkyl, cyano, alkoxycarbonyl, halogen, alkoxy, or aryl, aryloxy, or cycloalkyl.

2. The composition of claim 1 wherein the polyester acid component is comprised of 40—60 mole% isophthalic acid and conversely 60—40 mole% of either or a mixture of maleic fumaric acid, and the alcohol component is comprised of propylene glycol, neopentyl glycol, or mixtures thereof.

3. The composition of claim 3 wherein the polyester acid component is comprised of isophthalic acid and maleic acid, and the alcohol is neopentyl glycol or neopentyl glycol mixed with less than about 75 mole% propylene glycol.

4. The composition of claim 1 wherein the reactive compound has the formula

5. The composition of claim 4 wherein:

R is H, alkyl, halogen or alkoxy; and

35

40

50

 $R_t$  and  $R_t$  are each selected from H, alkyl, cycloalkyl, cycloalky, substituted with one or more of alkyl, OH, CN, alkoxy, carbalkoxy or alkanovioxy, and alky substituted with one or more of OH, CN, alkanovioxy, carbalkoxy, aryl, substituted aryl, alkoxy, alkoxyalkoxy, nalogen, succinimica or carbamyl.

6. The composition of claim 1 wherein the reactive compound has the formula

7. The composition of claim 6 where:

R is H, alkyl, halogen or alkoxy;

5

10

15

20

25

30

35

40

45

50

55

 $R_1$  is selected from H, alkyl, cycloalkyl, cycloalkyl substituted with one or more of alkyl, OH, CN, alkoxy, carbalkoxy or alkanovioxy, and alkyl substituted with one or more of OH, CN, alkanovioxy, carbalkoxy, aryl, substituted aryl, alkoxy, alkoxy-alkoxy, halogen, succinimido or carbamyl; and

 $R_4$ ,  $R_5$  and  $R_6$  are each H or alkyl.

8. The composition of claim 1 wherein the reactive compound has the formula

9. The composition of claim 8 wherein:

R and R' are each selected from H, alkyl, halogen and alkoxy; and

R<sub>1</sub> is H, alkyl, cycloalkyl, cycloalkyl substituted with one or more of alkyl, OH, CN, alkoxy, carbalkoxy or alkanoyloxy, and alkyl substituted with one or more of OH, CN, alkanoyloxy, carbalkoxy, aryl, substituted aryl, alkoxy, alkoxyalkoxy, halogen, succinimido or carbamyl.

10. The composition of claim 1 wherein the reactive compound has the formula

11. The composition of claim 10 wherein:

each R is H, alkyl, halogen or alkoxy; each R, is H, alkyl, cycloalkyl, cycloalkyl substituted with one or more of alkyl, OH, CN, alkoxy, carbalkoxy or alkanoyloxy, and alkyl substituted with one or more of OH, CN, alkanoyloxy, carbalkoxy, aryl, substituted aryl, alkoxy, alkoxyalkoxy, halogen, succinimido or carbamyl;

12. The composition of claim 1 wherein the condensable group is one or more of carboxy, carbalkoxy

13. The composition of claim 1 wherein the reactive compound is

€5

14. The composition of claim 1 wherein the reactive compound is

$$(\mathsf{CH}_3)_2 \mathsf{N} - (\mathsf{CH}_3)_2 $

15. The composition of claim 1 wherein the reactive compound is

$$\begin{pmatrix} & \text{NC} & \text{C=HC-} & \text{C} $

16. The composition of claim 1 wherein the reactive compound is

$$(CH_3COCH_2CH_2)_2-N CH_3COCH_2CH_3$$
 $CH_3$ 

17. The composition of claim 1 wherein the reactive compound is

$$(CH_3COCH_2CH_2)_2-N-CH= CH_3$$

18. The composition of claim 1 wherein the reactive compound is

- 19. The composition of any of claims 1-3 blended with a curing agent.
- 20. The cured composition of claim 19.
- 21. Formed articles of the cured composition of claim 20.

#### Patentansprüche

1. Farbige Zusammensetzung mit einem ungesättigten Polyestermaterial, in der der Polyester eine I.V. von 0,05 bis 0,25, eine Säurezahl von 10 bis 28 sowie eine mittlere Molekulargewichtszahl von 1100 bis 3800 hat, und der eincopolymerisiert insgesamt 1,0 bis 5000 ppm mindestens einer Methingruppierung enthält, die im Bereich von 320 nm bis 650 nm absorbiert und aus dem Polyestermaterial nicht extrahierbar ist, wobei jede Methingruppierung sich von einer reaktiven Verbindung mit der Formel

Ξ

10

15

20

25

30

35

40

45

ableitet, wobei jedes A aus einem der folgenden Reste ausgewählt ist:

$$(R) \xrightarrow{n} \qquad (R)_{n} \qquad (R)$$

$$(R) = \begin{pmatrix} \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} & R \end{pmatrix} & R \end{pmatrix} & \begin{pmatrix} R \end{pmatrix} &$$

$$R_{10}$$

$$R_{10}$$

$$R_{10}$$

$$R_{10}$$

$$R_{10}$$

$$R_{10}$$

$$R_{10}$$

$$R_{10}$$

$$R_{10}$$

$$R_{11}$$

$$R_{11}$$

worin:

ξ

:0

15

20

35

40

45

50

55

60

€5

R und R' ausgewählt sind aus Wasserstoff, Fluor, Chlor, Brom, Alkyl, Alkoxy, Phenyl, Phenoxy,

Alkylthio und Arylthio; und n gleich 0, 1 oder 2 ist;
R<sub>1</sub> und R<sub>2</sub> ausgewählt sind aus Wasserstoff, Cycloalkyl; Cycloalkyl, das substituiert ist durch ein oder zwei Alkyl, OH—, Alkoxy, Halogen, oder Hydro-substituiertem Alkyl; Phenyl; Phenyl, substituiert durch Alkyl, Alkoxy, Halogen, Alkanoylamino, Carboxy, Cyano oder Alkoxycarbonyl; geradkettigem oder verzweigtkettigem kurzkettigen Alkenyl; geradkettigem oder verzweigtkettigem Alkyl mit 1—8 Kohlenstoffatomen und solchem Alkyl, das substituiert ist durch: Hydroxy; Halogen; Cyano; Succinimido; Hydroxysuccinimido; Acyloxysuccinimido; Glutarimido; Phenylcarbamoyloxy; Phthalimido; 4-Carboxyphthalimido; Phthalimidino; 2-Pyrrolidono; Cyclohexyl; Phenyl; Phenyl substituiert mit Alkyl, Alkoxy, Halogen, Hydroxyalkanoylamino, Carboxy, Cyano oder Alkoxycarbonyl; Alkylsulfamoyl; Vinylsulfonyl; Acrylamido; Sulfamyl, Benzoylsulfonicimido; Alkylsulfonamido, Phenylsulfonamido; Alkoxycarbonylamino, Alkylcarbamoyloxy; Alkoxycarbonyl; Alkoxycarbonyloxy; Alkenylcarbonylamino; Gruppen der Formel

in der Y gleich —NH—, —N-alkyl, —O—, —S—, oder — $CH_2O$ — ist; — $SR_{14}$ ;  $SO_2CH_2CH_2SR_{14}$ ; worin  $R_{14}$  gleich Alkyl, Phenyl, Phenyl substituiert mit Halogen, Alkyl, Alkoxy, Alkanoylamino, Cyano oder Alkoxycarbonyl ist; Pyridyl; Pyrimidinyl; Benzoxazolyl, Benzimidazolyl; Benzothiazolyl; Resten der Formeln

-OXR<sub>16</sub>; -NHXR<sub>16</sub>; -X-R<sub>16</sub>; -CONR<sub>15</sub>R<sub>15</sub>; und -SO<sub>2</sub>NR<sub>15</sub>R<sub>15</sub>; worin R<sub>15</sub> ausgewählt ist aus H, Aryl, Alkyl, und Alkyl substituiert mit Halogen, -OH, Phenoxy, Aryl-, -CN, Cycloalkyl, Alkylsulfonyl, Alkyltnio, Alkanoyloxy oder Alkoxy; X ist gleich -CO-, -COO-, oder -SO<sub>2</sub>-, R<sub>16</sub> ist, ausgewählt aus Alkyl und Alkyl, substituiert mit Halogen, Hydroxy, Phenoxy, Aryl, Cyano, Cycloalkyl, Alkylsulfonyl, Alkyltnio, Alkanoyloxy, und Alkoxy, wobei gilt, daß wenn X gleich -CO- ist, R<sub>16</sub> ferner stehen kann für Wasserstoff, Amino, Alkenyl, Alkylamino, Dialkylamino, Arylamino, Aryl oder Furyl; Alkoxy; Alkoxy, substituiert mit Hydroxy, Cyano, Alkanoyloxy oder Alkoxy; Phenoxy; Phenoxy, substituiert mit einem oder mehreren Alkyl, Carboxy, Alkoxy, Carbalkoxy oder Halogen; und worin R<sub>1</sub> und R<sub>2</sub> eine einzelne kombinierte Gruppe bilden können, z.B. Pentamethylen, Tetramethylen, Ethylenoxyethylen, Ethylensulfonylethylen oder

### XR<sub>17</sub>

# Ethylen-N-ethylen,

die mit dem Stickstoff, an den sie gebunden ist, einen Ring bildet, wobei  $R_{12}$  für Alkyl, Aryl oder Cycloalkyl steht;

 $R_s$  steht für Alkylen, Arylen, Aralkylen, Alkylenoxy oder Alkylenoxyalkylen; Z ist eine direkte einfache Bindung oder OCO, O, S, SO<sub>2</sub>,  $R_{\rm t2}SO_2N=$ ,

Arylen oder Alkylen:

Ε

10

55

60

€5

 $R_{\text{4}},\,R_{\text{5}}$  und  $R_{\text{6}}$  sind jeweils ausgewählt aus Wasserstoff und Alkyl;

R<sub>7</sub> steht für Carboxy, Carbalkoxy oder (R),

R<sub>10</sub> ist Wasserstoff, Alkyl oder Aryl;

 $R_{\rm g}$  ud  $R_{\rm g}$  sind ausgewählt aus Wasserstoff und substituiertem oder unsubstituiertem Alkyl, Aryl oder Cycloalkyl;

R<sub>11</sub> und R<sub>12</sub> sind jeweils ausgewählt aus Wasserstoff, Alkyl, Hydroxyl oder Acyloxy;

B steht für die Atome, die erforderlich sind, um einen fünf- oder sechsgliedrigen Ring zu vervollständigen und ist ausgewählt aus:

25 Vervoissandiger and ist adaption and 
$$R_7$$
 ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$  ,  $R_7$ 

P und Q sind jeweils ausgewählt aus Cyano, Carbalkoxy, Carbaryloxy, Carbaralkyloxy, Carbamyl, Carboxy, N-Alkylcarbamyl, N-Alkyl-N-arylcarbamyl, N-N-Dialkylcarbamyl, N-Arylcarbamyl, N-Cyclohexylcarbamyl, Aryl. 2-Benzoxazolyl, 2-Benzothiazoyl, 2-Benzimidazolyl, 1,3,4-Thiadiazol-2-yl, 1,3,4-Oxadiazol-2-yl, SO<sub>2</sub>-Alkyl, SO<sub>2</sub>-Aryl und Acyl oder P und Q können kombiniert sein zu

worin R<sub>17</sub> die bereits angegebene Bedeutung hat und R<sub>18</sub> steht für-CN, —COOH, —CO<sub>2</sub>-alkyl, Carbamyl oder N-alkylcarbamyl;

wobei mindestens einer der Reste A, P und Q für jedes Farbstoffmolekül eine kondensierbare Gruppe,

ausgewählt aus den folgenden Gruppen sein muß oder eine solche Gruppe tragen muß: Carboxy, Carbalkoxy, Carbaryloxy, N-Alkyloarbamyloxy, Acyloxy, Chiorocarbonyl, Carbamyloxy, N-(Alkyl) carpamyloxy, Amino, Alkylamino, Hydroxyl, N-Phenylcarbamyloxy, Cyclonexanoyloxy und Carbocyclonexyloxy;

und worin in den angegebenen Definitionen jeder Alkyl-, Aryl- oder Cycloalkylrest gegebenenfalls substituien sein kann mit Hydroxyl, Acyloxy, Alkyl, Cyano, Alkoxycarbonyl, Halogen, Alkoxy oder Aryl, Aryloxy oder Cycloalkyl.

2. Zusammensetzung nach Anspruch 1, in der die Polyester-Säurekomponente zu 40-60 Mol-% aus Isophthalsäure und zu 60-40 Mol-% aus entweder Maleinsäure oder Furnarsäure oder einer Mischung hiervon besteht und die Alkoholkomponente aus Propylengiykol, Neopentylgiykol oder einer Mischung hiervon.

3. Zusammensetzung nach Anspruch 2, in der die Polyester-Säurekomponente aus Isophthaisäure und Maleinsaure und die Alkoholkomponente aus Neopentyiglykol, oder Neopentylgiykol, vermischt mit weniger als etwa 75 Mol-% Proylengiykol besteht.

4. Zusammensetzung nach Anspruch 1, in der die reaktive Verbindung die folgende Formel hat;

5. Zusammensetzung nach Anspruch 4, in der bedeuten:

R gleich Wasserstoff, Alkyl, Halogen oder Alkoxy und

R, und R2 jeweils ausgewählt sind aus Wasserstoff, Alkyl, Cycloalkyl, Cycloalkyl substituiert mit einem oder mehreren Alkyl, —OH, —CN, Alkoxy, Carbalkoxy, oder Alkanoyloxy und Alkyl substituiert mit einem oder mehreren —OH, —CN, Alkanoyloxy, Carbalkoxy, Aryl, substituiertem Aryl, Alkoxy, Alkoxyalkoxy, Halogen, Succinimido oder Carbamyl.

6. Zusammensetzung nach Anspruch 1, in der die reaktive Verbindung der folgenden Formel

entspricht: C=CH-

7. Zusammensetzung nach Anspruch 6, worin bedeuten:

R Wasserstoff, Alkyl, Halogen oder Alkoxy; R<sub>2</sub> Wasserstoff, Alkyl, Cycloalkyl, Cycloalyl substituiert mit einem oder mehreren Alkyl, —OH, —CN, Alkoxy, Carbalkoxy oder Alkanoyloxy und Alkyl substituiert mit einem oder mehreren -OH, -CH, Alkanoyloxy, Carbalkoxy, Aryl, substituiertem Aryl, Alkoxy, Alkoxy-alkoxy, Halogen, Succinimido oder Carbamyl und

 $R_4$ ,  $R_5$  und  $R_6$  jeweils Wasserstoff oder Alkyl.

8. Zusammensetzung nach Anspruch 1, in der die reaktive Verbindung der folgenden Formel entspricht:

9. Zusammensetzung nach Anspruch 8, in der bedeuten:

R und R' jeweils Wasserstoff, Alkyl, Halogen oder Alkoxy und

R<sub>1</sub> Wasserstoff, Alkyl, Cycloalkyl, Cycloalkyl substituiert mit einem oder mehreren Alkyl-, —OH, —CN, Alkoxy, Carbalkoxy oder Alkanoyloxy und Alkyl substituiert mit einem oder mehreren -OH, --CN, Alkanoyloxy, Carbalkoxy, Aryl, substituiertem Aryl, Alkoxy, Alkoxyalkoxy, Halogen, Succinimido oder Carbamyl.

10. Zusammensetzung nach Anspruch 1, in der die reaktive Verbindung der folgenden Formel entspricht:

60

50

20

30

11. Zusammensetzung nach Anspruch 10, worin bedeuten

R jeweiis Wasserstoff, Alkyl, Halogen oder Alkoxy;

R<sub>1</sub> jeweits Wasserstoff, Alkyl, Cycloalkyl, Cycloalkyl substituien mit einem oder mehreren Alkyl, —OH, —CN, Alkoxy, Carbaikoxy oder Alkanovioxy und Alkyl substituier, mit einem oder mehreren —OH, —CN, Alkanoyloxy, Carbalkoxy, Aryl, substituiertem Aryl, Alkoxy, Alkoxyalkoxy, Halogen, Succinimide oder Carbamyl; und

12. Zusammensetzung nach Anspruch 1, in der die kondensierbare Gruppe aus einer oder mehreren Carboxy-, Carbalkoxy- oder Hydroxygruppen besteht.

13. Zusammensetzung nach Anspruch 1, in der die reaktive Verbindung besteht aus:

14. Zusammensetzung nach Anspruch 1, in der die reaktive Verbindung besteht aus:

$$(CH_3)_2N - CH = CC_2C_2H_5$$

$$CO_2C_2H_5$$

15. Zusammensetzung nach Anspruch 1, in der die reaktive Verbindung besteht aus:

$$\begin{array}{c}
\text{NC} \\
\text{CH}_{3}\text{O}_{2}\text{C}
\end{array}$$

$$\begin{array}{c}
\text{CH}_{3}\text{O}_{2}\text{C}
\end{array}$$

$$\begin{array}{c}
\text{CH}_{3}\text{O}_{2}\text{C}
\end{array}$$

$$\begin{array}{c}
\text{CH}_{3}\text{O}_{2}\text{C}
\end{array}$$

$$\begin{array}{c}
\text{CH}_{3}\text{O}_{2}\text{C}
\end{array}$$

16. Zusammensetzung nach Anspruch 1, in der die reaktive Verbindung besteht aus:

17. Zusammensetzung nach Anspruch 1, in der die reaktive Verbindung besteht aus:

65

50

55

25

18. Zusammensetzung nach Anspruct. 1, in der die reaktive Verbindung besteht aus:

- 19. Zusammensetzung nach einem der Ansprüche 1—3, vermischt mit einem Härungsmittel.
- 20. Die gehärtete Zusammensetzung nach Anspruch 19.
- 21. Formkörper, hergestellt aus der gehärteten Zusammensetzung nach Anspruch 20.

## Revendications

٤

:5

15

1. Composition colorée comprenant un polyester insaturé, ayant une viscosité inhérente comprise entre 0,05 et 0,25, un indice d'acidité compris entre 10 et 28 et un poids moléculaire moyen en nombre compris entre 1100 et 3800, dans lequel est copolymérisé un total de 1,0 à 5000 ppm d'au mons un groupement méthine, ledit groupement méthine absorbant dans la région du spectre comprise entre 320 nm et 650 nm et étant non extractible dudit polymère, et dans lequel chaque groupement méthine est dérivé d'un composé réactif ayant la formule:

PC=CH-A, A-CH=C-.

QC=CH-A, A-CH=C-.

$$(R)_n$$

Ou

 $(R)_n$ 
 $(R)_n$ 
 $(R)_n$ 
 $(R)_n$ 

Ou

 $(R)_n$ 
 où chaque A est choisi parmi les radicaux suivants:

€5

35

45

50

40

5

10

15

30

R et R' sont choisis parmi les atomes d'hydrogène, de fluor, de chlore, de brome, les radicaux alkyle, alkoxy, phényle, phénoxy, alkylthio, et arylthio; n est 0, 1, 2;

 $R_1$  et  $R_2$  sont choisis parmi un atome d'hydrogène; un radical cycloalkyle; cycloalkyle substitué par un ou deux alkyle, —OH, alkoxy, halogène ou alkyle substitué par un groupe hydroxy; un radical phényle; phenyle substitué par un alkyle, alkoxy, halogène, alkanoylamino, carboxy, cyano, ou alkoxycarbonyle; un radical alkènyle inférieur droit ou ramifié; un radical alkyle droit ou ramifié de 1 à atomes de carbone et un radical alkyle substitué par les groupes suivants; hydroxy; halogène; cyanc; succinimido; hydroxysuccinimido; acyloxysuccinimido; glutarimido; phénylcarbamoyloxy; phtalimido; 4carboxyphtalimido; phtalimidono; 2-pyrrolidono; cyclohexyle; phényle; phényle substitué par un groupe alkyle, alkoxy, halogène hydroxy alkanoylamino, carboxy, cyano, ou alkoxycarbonyle; alkylsulfamoyle;

vinyisulfonyie; acrylamido; sulfamvie; benzovisulfonicimido; alkyisulfonamido; phenyisulfonamido; alkoxycarbonylamino; alkyicarbamoyloxy; alkoxycarbonyie; alkoxycarbonyioxy; alkenyicarbonylamino; les groupes de formule:

où Y est —NH—, —N-alkyle, —S—, —S—, ou —CH2O—; —S—R14;  $SO_2CH_2CH_2SR_{12}$ ; où R14 est un radical alkyle, phényle, phényle substitué par un halogène, alkyle, alkoxy, alkanoylamino, cyano, ou alkoxycarbonyle; pyridyle; pyrimidinyle; benzoxazolyle; benzimidazolyle; benzothiazolyle; ou un radical de formule:

 $--\mathsf{OXR}_{16}; \ --\mathsf{NHXR}_{16}; \ --\mathsf{X}--\mathsf{R}_{16}; \ --\mathsf{CONR}_{15}\mathsf{R}_{15}; \ \text{et} \ --\mathsf{SO}_2\mathsf{NR}_{15}\mathsf{R}_{15}; \ \text{où} \ \mathsf{R}_{15} \ \text{est choisi parmi un atome}$ d'hydrogène, un groupe aryle, alkyle, et alkyle substitué par un halogène, —OH, phénoxy, aryle, —CN, cycloalkyle, alkylsulfonyle, alkylthio, alkanoyloxy, ou alkoxy; X est —CO—, —COO—, ou —SO $_2$ —;  $R_{16}$  est choisi parmi les radicaux alkyle et alkyle substitué par un halogène, hydroxy, phénoxy, aryle, cyano, cycloalkyle, alkylsulfonyle, alkylthio, alkanoyloxy, et alkoxy; et lorsque X est —CO—, R<sub>16</sub> peut aussi être un atome d'hydrogène, un radical amino, alkényle, alkylamino, dialkylamino, arylamino, aryle ou furyle; alkoxy; alkoxy substitué par un hydroxy, cyano, alkanoyloxy, ou alkoxy; phénoxy; phénoxy substitué par un ou plusieurs alkyle, carboxy, alkoxy, carbalkoxy, ou halogène; R1 et R2 peuvent former un groupe unique tel que pentaméthylène, tétraméthylène, éthylèneoxyéthylène, éthylène sulfonyléthylène, ou

qui, avec l'atome d'azote auquel il est attaché forme un cycle; R<sub>17</sub> est alkyle, aryle ou cycloalkyle;

R<sub>2</sub> est alkylène, arylène, aralkylène, alkylèneoxy, ou alkylèneoxyalkylène;

Z est une liaison simple, OCO, O, S, SO<sub>2</sub>, R<sub>17</sub>SO<sub>2</sub>N=,

arylène, ou alkylène;

 $R_4$ ,  $R_5$ , et  $R_6$  sont chacun choisis parmi un atome d'hydrogène et un radical alkyle;

R<sub>7</sub> est un radical carboxy, carbalkoxy, ou (R)<sub>n</sub>;

R<sub>10</sub> est un atome d'hydrogène, un radical alkyle, et aryle;

 $R_{\text{B}}$  et  $R_{\text{S}}$  chacun choisis parmi un atome d'hydrogène, un radical alkyle, aryle ou cycloalkyle substitué ou non;

 $R_{11}$  et  $R_{12}$  sont chacun choisis parmi un atome d'hydrogène, un radical alkyle, hydroxyle ou acycloxy B représente le nombre d'atomes nécessaire pour compléter un cycle à 5 ou 6 chaînons et est choisi parmi;

$$\stackrel{S}{\longrightarrow} \mathbb{R}_7$$
 ,  $\stackrel{S}{\longrightarrow} \mathbb{R}_7$  ,  $\stackrel{S}{\longrightarrow} \mathbb{R}_7$  ,  $\stackrel{S}{\longrightarrow} \mathbb{R}_7$  ,

65

60

£

15

30

35

40

5C

chacun des P et Q est choisi parmi les radicaux cyano, carbalkoxy, carbaryloxy, carbaralkyloxy, carbamyle, carboxy, N-alkylcarbamyle, N-alkyl-N-arylcarbamyle, N,N-dialkylcarbamyle, N-arylcarbamyle, Ncyclohexylcarbamyle, aryle, 2-benzoxazolyle, 2-benzothiazolyle 2-benzimidazolyle, 1,3,4-thiadiazol-2-yle, 1,3,4-oxadiazol-2-yie, SO<sub>2</sub>-alkyie, SO<sub>2</sub>-aryle, et acyle, ou P et Q peuvent être combinés sous la formule

où  $R_{17}$  est défini comme ci-dessus et  $R_{18}$  est CN, COOH,  $CO_2$ -alkyle, carbamyle, ou N-alkylcarbamyle;

où au moins un des A, P, et Q pour chaque molécule de colorant peut être ou peut porter un groupe condensable choisi parmi les groupes carboxy, carbalkoxy, carbaryloxy, N-alkylcarbamyloxy, acyloxy, chlorocarbonyle, carbamyloxy, N-(alkyl)<sub>2</sub>-carbamyloxy, amino, alkylamino, phénylcarbamyloxy, cyclohexanoyloxy, et carbocyclohexyloxy; et

où dans les définitions ci-dessus, chaque groupement ou portion de groupement ou radical alkyle, aryle, ou cycloalkyle peut être substitué là où c'est possible par un radical hydroxyle, acyloxy, alkyle, cyano,

alkoxycarbonyle, un atome d'halogène, un radical alkoxy, ou aryle, aryloxy, ou cycloalkyle. 2. Composition selon la revendication 1, dans lequel la composante acide du polyester comprend de 40 à 60% en poids d'acide isophtalique, et inversement 60 à 40% soit d'acide maléique soit d'acide fumarique, soit d'un mélange d'acide maiéique et d'acide fumarique, et la composante alcool du polyester comprend du polypropylène glycol, du néopentyl glycol ou des mélanges de ces derniers.

3. Composition selon la revendication 2, dans lequel la composante acide du polyester comprend de l'acide isophtalique et de l'acide maléique et l'alcool est le néopentyl glycol, où du néopentyl glycol mélange à au moins d'environ 75% en moles de propylène glycol.

4. Composition selon la revendication 1, dans laquelle le composé réactif a la formule:

5. Composition selon la revendication 4, dans laquelle;

R est H, alkyle, halogène ou alkoxy; et

 $R_1$  et  $R_2$  sont chacun séparément choisis parmi H alkyle, cycloalkyle, cycloalkyle substitué par un ou plusieurs groupes alkyle, OH, CN, alkoxy, carbalkoxy ou alkanoyloxy, et alkyle substitué par un ou plusieurs OH, CN, alkanoyloxy, carbalkoxy, aryle, aryle substitué, alkoxy, alkoxyalkoxy, haiogène, succinimido ou carbamyle.

6. Composition selon la revendication 1, dans laquelle le composé réactif a la formule:

65

60

5

10

15

20

25

30

45

7. Composition seion la revendication 6, dans laquelle;

R est H, alkyle, nalogène ou alkoxy;

R<sub>1</sub> est choisi parmi H, alkyle, cycloalkyle, cycloalkyle substitué par un ou plusieurs alkyle, OH, CN, alkoxy, carbalkoxy ou alkanoyloxy, et alkyle substitué par un ou plusieurs OH, CN, alkanoyloxy, carbalkoxy aryle, aryle substitué, alkoxy, alkoxyalkoxy, nalogène, succinimido ou carbamyle; et

 $R_{4\ell}\,R_{\epsilon}$  et  $R_{\epsilon}$  sont chacun H ou alkyle.

8. Composition selon la revendication 1, dans laquelle le groupe réactif à la formule:

9. Composition selon la revendication 10, dans laquelle R et R' sont chacun choisis parmi H, alkyle,

 $R_1$  est H, alkyle, cycloalkyle, cycloalkyle substitué par un ou plusieurs alkyle, OH, CN, alkoxy, carbalkoxy halogène et alkoxy; et ou alkanoyloxy, et alkyle substitué par un ou plusieurs OH, CN, alkanoyloxy, carbalkoxy, aryle, aryle substitue, alkoxy, alkoxyalkoxy, halogène, succinimido ou carbamyle.

10. Composition selon la revendication 1, dans laquelle le composé réactif a la formule:

11. Composition selon la revendication 10, dans laquelle chaque R est H, alkyle, halogène ou alkoxy; 30 chaque R<sub>1</sub> est H, alkyle, cycloalkyle, cycloalkyle substitué par un ou plusieurs alkyle, OH, CN, alkoxy, carbalkoxy ou alkanoyloxy, et alkyle substitué par un ou plusieurs OH, CN, alkanoyloxy, carbalkoxy, aryle, aryle substitué, alkoxy, alkoxyalkoxy, halogène, succinimido ou carbamyle, et

12. Composition selon la revendication 1, dans laquelle le groupe condensable est composé d'un ou plusieurs carboxy, carbalkoxy ou hydroxy.

13. Composition selon la revendication 1, dans laquelle le composé réactif est

14. Composition selon la revendication 1, dans laquelle le composé réactif est

$$(CH_3)_2N^{-1}$$
  $CO_2C_2H_5$   $CO_2C_2H_5$ 

65

20

25

35

40

45

50

55

15. Composition selon la revendication 1, dans laquelle le composé réactif est

16. Composition seion la revendication 1, dans laquelle le composé réactif est

$$(\mathsf{CH}_3 \overset{\mathsf{O}}{=} \mathsf{CH}_2 \mathsf{CH}_2)_2 \cdot \mathsf{N} \cdot \overset{\mathsf{C}}{=} \overset{\mathsf{C}}{=} \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}}{=} \mathsf{CH}_3 \overset{\mathsf{C}$$

17. Composition selon la revendication 1, dans laquelle le composé réactif est

$$(CH_3COCH_2CH_2)_2-N-CH=CH_3$$

18. Composition selon la revendication 1, dans laquelle le composé réactif est

19. Composition selon l'uen quelconque des revendications 1 à 3 en mélange avec un agent de réticulation.

20. Composition réticulée selon la revendication 19.

21. Articles formés à partir de la composition réticulée de la revendication 20.

50

45

40

10

15

20

25

55

50