Real Symmetric Matrices have Real Eigenvectors

Notation. For notational convenience, for any $N \in \mathbb{N}$, let $\widetilde{N} = \{1, \dots, N\}$.

In this document, we prove that for any $M \times M$ real symmetric matrix, S_M , there exists for some eigenvalue λ , a corrosponding **real** eigenvector $\vec{v} \in \mathbb{R}^M$. Prior to starting the main proof, we begin with a lemma.

Lemma. Suppose we have a $M \times M$ real symmetric matrix with a some eigenvalue λ . If there we have a corrosponding eigenvector $v \in \mathbb{C}^M$, then every entry of v, say v_i is equal to a **real** linear combination of the other entries $v_i \mid j \neq i$.

So, we will show that:

$$\forall i \in \widetilde{M} : v_i = \sum_{j \neq i} c_j v_j \quad (c_j \in \mathbb{R})$$

Proof of Lemma. Begin by taking a real symmetric matrix S_M for some $M \in \mathbb{N}$. Suppose we have an eigenvalue λ . Then, if we have some eigenvector v, we know that:

$$(1): \forall i \in \widetilde{M}: a_1v_1 + \dots + d_iv_i + \dots + a_{m-1}v_m = \lambda v_i \quad (a_i \in \mathbb{R})$$

We obtain (1) by expanding the equality $Av = \lambda v$ and noticing that every row of Av is expressible as the sum of the non-diagonal entries multiplied by $v_j \mid j \neq i$ plus $d_i v_i$. Note that since our matrix is symmetric, for some rows, some of the constants a_j are not distinct but this should not raise any issues. Next, we collect the terms:

$$\forall i \in \widetilde{M} : a_1 v_1 + \dots + a_{m-1} v_m = v_i (\lambda - d_i)$$

Since S_M is a real symmetric matrix, the a_j terms are real so we can say:

$$\forall i \in \widetilde{M} : v_i(\lambda - d_i) = \sum_{j \neq i} a_j v_j \quad (a_j \in \mathbb{R})$$

Finally, divide both sides by $(\lambda - d_i)$. Since S_M is a real symmetric matrix, we know $\lambda \in \mathbb{R}$ then also $(\lambda - d_i) \in \mathbb{R}$. On the right hand side, the coefficients of the v_j become $\frac{a_j}{(\lambda - d_i)}$. Since $a_j \in \mathbb{R}$, then also $\frac{a_j}{(\lambda - d_i)} \in \mathbb{R}$. Letting $c_j = \frac{a_j}{(\lambda - d_i)}$, we obtain:

$$\forall i \in \widetilde{M} : v_i = \sum_{j \neq i} c_j v_j \quad (\forall j : c_j \in \mathbb{R})$$

Thus, for any $M \in \mathbb{N}$, a real symmetric matrix with eigenvalue λ must have a corrosponding eigenvector v such that each of its entries is expressible as a real linear combination of the other entries. \square

Now, we will prove the main theorem.

Theorem. Suppose we have a $M \times M$ real symmetric matrix, S_M . Then, we will show that there exists for some eigenvalue λ , a corrosponding **real** eigenvector $\vec{v} \in \mathbb{R}^M$.

Proof. For this proof we will induct on the dimension of the matrix, M. So let the inductive statement be

 $f(M):S_M$ has a real eigenvector v corresponding to an eigenvalue λ

Base Case. Take the base case M=2. Then by **Zoom Meeting 11.12**, we know f(2) is true.

Inductive Step. For our inductive step, we need to show that $f(M) \Rightarrow f(M+1)$. So, let us assume f(M). This means that we can assume any real symmetric matrix S_M has a real eigenvector $v \in \mathbb{R}^M$ corrosponding to λ .

Next, we will write S_{M+1} as the matrix S_M augmented by some $u \in \mathbb{R}^M$ as follows:

$$S_{M+1} = \left[\begin{array}{c|c} S_M & u \\ \hline u^T & d_{M+1} \end{array} \right]$$

From our lemma, we use the fact that S_{M+1} is symmetric and our assumption of f(M) to obtain:

(1):
$$\forall i \in \{1, \dots, m+1\} : v_i = \sum_{j \neq i} c_j v_j \quad (c_j \in \mathbb{R})$$

$$(2): \forall i \in \tilde{M}: v_i \in \mathbb{R}$$

In particular for (2), we know that $v_i = \left(\sum_{j \neq i} \frac{a_j}{d_i - \lambda} v_j\right)$.

From (1), we know that for row i = m+1: $v_{m+1} = \sum_{j \neq m+1} c_j v_j$ $(c_j \in \mathbb{R})$ By (2), this is a linear combination of real entries v_i . Since $v_{m+1} \in \mathbb{R}$, it follows that:

$$\forall i \in \{1, \ldots, m+1\} : v_i \in \mathbb{R}$$

So, we have established that $f(m) \Rightarrow f(M+1)$.

By the induction, the theorem is proved. \Box .