Chapitre 3: Espaces vectoriels

1 Espace vectoriel réel

1.1 Structure d'espace vectoriel réel

Exemple 1

Soient n et p deux entiers naturels non nuls.

- $\mathbb{R}^n =$
- $\mathcal{M}_{n,p}(\mathbb{R})$ est
- $\mathbb{R}[X]$ est
- $\mathbb{R}_n[X]$ est
- Si D est une partie de \mathbb{R} , \mathbb{R}^D est
- En particulier, $\mathbb{R}^{\mathbb{N}}$ est

Test 1 (Voir la solution.)

Dans chaque cas, calculer u + 3v.

- 1. Dans \mathbb{R}^3 , avec u = (1, -1, 0) et v = (3, -2, 5).
- 2. Dans $\mathcal{M}_{2,2}(\mathbb{R})$ avec $u = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ et $v = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.
- 3. Dans $\mathbb{R}[X]$ avec $u = 3X^3 X + 1$ et $v = X^5 2X^3 + X^2 + 2$

Les ensembles de l'exemple 1, aussi différents les uns des autres soient-ils, possèdent une structure commune : ils peuvent tous être munis d'une « addition » et d'une « multiplication par un nombre réel ». L'objet de ce chapitre est de donner un cadre formel et unifié à l'étude des ensembles ayant une telle structure. Ainsi, les résultats généraux que l'on obtiendra s'appliqueront aussi bien aux matrices qu'aux fonctions, aux polynômes . . .

Définition 1 (Loi de composition interne, loi de composition externe)

Soit E un ensemble non vide.

- Une **loi de composition interne sur** E est une application de $E \times E$ dans E.
- Une loi de composition externe sur E est une application de $\mathbb{R} \times E$ dans E

Exemple 2

Soient n		4	antiana		la a	1-
Soieni n	e_{l}	CHELLX	enners	namrei	s non	mins

- 1. Dans \mathbb{R}^n .
 - L'addition de deux *n*-uplets de réels est une loi de composition interne :

• La multiplication d'un n-uplet de réels par un nombre réel est une loi de composition externe :

La multiplication d'une matrice par un nombre réel est une loi de composition externe : $: \mathbb{R} \times \mathcal{M}_{n,p}(\mathbb{R}) \longrightarrow \mathcal{M}_{n,p}(\mathbb{R}) \\ (\lambda,A) \longmapsto \lambda \cdot A $ $ (\lambda,A) \longmapsto \lambda \cdot A $ $ \mathbb{R}[X]. $ $ \text{L'addition de deux polynômes est une loi de composition interne : } \\ + : \mathbb{R}[X] \times \mathbb{R}[X] \longrightarrow \mathbb{R}[X] \\ (P,Q) \longmapsto P + Q $ $ \mathbb{R}[X] \longrightarrow \mathbb{R}[X] \\ (\lambda,P) \longmapsto \lambda \cdot P $ $ \mathbb{R}^D \text{ où } D \text{ est une partie de } \mathbb{R}. $ $ \mathbb{R}^D \text{ où } D \text{ est une partie de } \mathbb{R}. $ $ \mathbb{R}^D \longrightarrow \mathbb{R}^D \\ (f,g) \longmapsto f + g $ $ \mathbb{R}^D \longrightarrow \mathbb{R}^D \longrightarrow \mathbb{R}^D $ $ \mathbb{R}^D \longrightarrow \mathbb{R}^D \longrightarrow \mathbb{R}^D \longrightarrow \mathbb{R}^D $ $ \mathbb{R}^D \longrightarrow \mathbb{R}^D \longrightarrow \mathbb{R}^D \longrightarrow \mathbb{R}^D \longrightarrow \mathbb{R}^D $ $ \mathbb{R}^D \longrightarrow \mathbb$		$+: \mathcal{M}_{n,p}(\mathbb{R}) \times \mathcal{M}_{n,p}(\mathbb{R}) \longrightarrow \mathcal{M}_{n,p}(\mathbb{R})$ $(A,B) \longmapsto A + B$
$\begin{array}{c} : \mathbb{R} \times \mathcal{M}_{n,p}(\mathbb{R}) \longrightarrow \mathcal{M}_{n,p}(\mathbb{R}) \\ (\lambda,A) \longmapsto \lambda \cdot A \end{array}$ $\mathbb{R}[X].$ $L'addition \ de \ deux \ polynômes \ est \ une \ loi \ de \ composition \ interne: \\ +: \mathbb{R}[X] \times \mathbb{R}[X] \longrightarrow \mathbb{R}[X] \\ (P,Q) \longmapsto P+Q \end{array}$ $La \ multiplication \ d'un \ polynôme \ par \ un \ nombre \ réel \ est \ une \ loi \ de \ composition \ externe: \\ \cdot: \mathbb{R} \times \mathbb{R}[X] \longrightarrow \mathbb{R}[X] \\ (\lambda,P) \longmapsto \lambda \cdot P \end{array}$ $\mathbb{R}^D \ où \ D \ est \ une \ partie \ de \ \mathbb{R}.$ $L'addition \ de \ deux \ fonctions \ est \ une \ loi \ de \ composition \ interne: \\ +: \mathbb{R}^D \times \mathbb{R}^D \longrightarrow \mathbb{R}^D \\ (f,g) \longmapsto f+g $ $La \ multiplication \ d'une \ fonction \ par \ un \ nombre \ réel \ est \ une \ loi \ de \ composition \ externe: \\ \cdot: \mathbb{R} \times \mathbb{R}^D \longrightarrow \mathbb{R}^D \end{array}$		
$\begin{array}{c} : \mathbb{R} \times \mathcal{M}_{n,p}(\mathbb{R}) \longrightarrow \mathcal{M}_{n,p}(\mathbb{R}) \\ (\lambda,A) \longmapsto \lambda \cdot A \end{array}$ $\mathbb{R}[X].$ $L'addition \ de \ deux \ polynômes \ est \ une \ loi \ de \ composition \ interne: \\ +: \mathbb{R}[X] \times \mathbb{R}[X] \longrightarrow \mathbb{R}[X] \\ (P,Q) \longmapsto P+Q \end{array}$ $La \ multiplication \ d'un \ polynôme \ par \ un \ nombre \ réel \ est \ une \ loi \ de \ composition \ externe: \\ \cdot: \mathbb{R} \times \mathbb{R}[X] \longrightarrow \mathbb{R}[X] \\ (\lambda,P) \longmapsto \lambda \cdot P \end{array}$ $\mathbb{R}^D \ où \ D \ est \ une \ partie \ de \ \mathbb{R}.$ $L'addition \ de \ deux \ fonctions \ est \ une \ loi \ de \ composition \ interne: \\ +: \mathbb{R}^D \times \mathbb{R}^D \longrightarrow \mathbb{R}^D \\ (f,g) \longmapsto f+g $ $La \ multiplication \ d'une \ fonction \ par \ un \ nombre \ réel \ est \ une \ loi \ de \ composition \ externe: \\ \cdot: \mathbb{R} \times \mathbb{R}^D \longrightarrow \mathbb{R}^D \end{array}$		
$\begin{array}{c} : \mathbb{R} \times \mathcal{M}_{n,p}(\mathbb{R}) \longrightarrow \mathcal{M}_{n,p}(\mathbb{R}) \\ (\lambda,A) \longmapsto \lambda \cdot A \end{array}$ $\mathbb{R}[X].$ $L'addition \ de \ deux \ polynômes \ est \ une \ loi \ de \ composition \ interne: \\ +: \mathbb{R}[X] \times \mathbb{R}[X] \longrightarrow \mathbb{R}[X] \\ (P,Q) \longmapsto P+Q \end{array}$ $La \ multiplication \ d'un \ polynôme \ par \ un \ nombre \ réel \ est \ une \ loi \ de \ composition \ externe: \\ \cdot: \mathbb{R} \times \mathbb{R}[X] \longrightarrow \mathbb{R}[X] \\ (\lambda,P) \longmapsto \lambda \cdot P \end{array}$ $\mathbb{R}^D \ où \ D \ est \ une \ partie \ de \ \mathbb{R}.$ $L'addition \ de \ deux \ fonctions \ est \ une \ loi \ de \ composition \ interne: \\ +: \mathbb{R}^D \times \mathbb{R}^D \longrightarrow \mathbb{R}^D \\ (f,g) \longmapsto f+g $ $La \ multiplication \ d'une \ fonction \ par \ un \ nombre \ réel \ est \ une \ loi \ de \ composition \ externe: \\ \cdot: \mathbb{R} \times \mathbb{R}^D \longrightarrow \mathbb{R}^D \end{array}$		
$\begin{array}{c} : \mathbb{R} \times \mathcal{M}_{n,p}(\mathbb{R}) \longrightarrow \mathcal{M}_{n,p}(\mathbb{R}) \\ (\lambda,A) \longmapsto \lambda \cdot A \end{array}$ $\mathbb{R}[X].$ $L'addition \ de \ deux \ polynômes \ est \ une \ loi \ de \ composition \ interne: \\ +: \mathbb{R}[X] \times \mathbb{R}[X] \longrightarrow \mathbb{R}[X] \\ (P,Q) \longmapsto P+Q \end{array}$ $La \ multiplication \ d'un \ polynôme \ par \ un \ nombre \ réel \ est \ une \ loi \ de \ composition \ externe: \\ \cdot: \mathbb{R} \times \mathbb{R}[X] \longrightarrow \mathbb{R}[X] \\ (\lambda,P) \longmapsto \lambda \cdot P \end{array}$ $\mathbb{R}^D \ où \ D \ est \ une \ partie \ de \ \mathbb{R}.$ $L'addition \ de \ deux \ fonctions \ est \ une \ loi \ de \ composition \ interne: \\ +: \mathbb{R}^D \times \mathbb{R}^D \longrightarrow \mathbb{R}^D \\ (f,g) \longmapsto f+g $ $La \ multiplication \ d'une \ fonction \ par \ un \ nombre \ réel \ est \ une \ loi \ de \ composition \ externe: \\ \cdot: \mathbb{R} \times \mathbb{R}^D \longrightarrow \mathbb{R}^D \end{array}$		
$(\lambda,A) \longmapsto \lambda \cdot A$ $\mathbb{R}[X].$ $L'addition \ de \ deux \ polynômes \ est \ une \ loi \ de \ composition \ interne: \\ +: \mathbb{R}[X] \times \mathbb{R}[X] \longrightarrow \mathbb{R}[X] \\ (P,Q) \longmapsto P+Q$ $La \ multiplication \ d'un \ polynôme \ par \ un \ nombre \ réel \ est \ une \ loi \ de \ composition \ externe: \\ \cdot: \mathbb{R} \times \mathbb{R}[X] \longrightarrow \mathbb{R}[X] \\ (\lambda,P) \longmapsto \lambda \cdot P$ $\mathbb{R}^D \ ou \ D \ est \ une \ partie \ de \ \mathbb{R}.$ $L'addition \ de \ deux \ fonctions \ est \ une \ loi \ de \ composition \ interne: \\ +: \mathbb{R}^D \times \mathbb{R}^D \longrightarrow \mathbb{R}^D \\ (f,g) \longmapsto f+g$ $La \ multiplication \ d'une \ fonction \ par \ un \ nombre \ réel \ est \ une \ loi \ de \ composition \ externe: \\ \cdot: \mathbb{R} \times \mathbb{R}^D \longrightarrow \mathbb{R}^D$	• La multipli	ication d'une matrice par un nombre réel est une loi de composition externe :
$\mathbb{R}[X].$ $L'addition\ de\ deux\ polynômes\ est\ une\ loi\ de\ composition\ interne\ : \\ +:\mathbb{R}[X]\times\mathbb{R}[X]\longrightarrow\mathbb{R}[X]$ $(P,Q)\longmapsto P+Q$ $La\ multiplication\ d'un\ polynôme\ par\ un\ nombre\ réel\ est\ une\ loi\ de\ composition\ externe\ : \\ \cdot:\mathbb{R}\times\mathbb{R}[X]\longrightarrow\mathbb{R}[X]$ $(\lambda,P)\longmapsto\lambda\cdot P$ $L'addition\ de\ deux\ fonctions\ est\ une\ loi\ de\ composition\ interne\ : \\ +:\mathbb{R}^D\times\mathbb{R}^D\longrightarrow\mathbb{R}^D$ $(f,g)\longmapsto f+g$ $La\ multiplication\ d'une\ fonction\ par\ un\ nombre\ réel\ est\ une\ loi\ de\ composition\ externe\ : \\ \cdot:\mathbb{R}\times\mathbb{R}^D\longrightarrow\mathbb{R}^D$		$\cdot: \mathbb{R} \times \mathscr{M}_{n,p}(\mathbb{R}) \longrightarrow \mathscr{M}_{n,p}(\mathbb{R})$
$Light addition \ de \ deux \ polynômes \ est \ une \ loi \ de \ composition \ interne: \\ +: \mathbb{R}[X] \times \mathbb{R}[X] \longrightarrow \mathbb{R}[X] \\ (P,Q) \longmapsto P+Q$ $La \ multiplication \ d'un \ polynôme \ par \ un \ nombre \ réel \ est \ une \ loi \ de \ composition \ externe: \\ \cdot: \mathbb{R} \times \mathbb{R}[X] \longrightarrow \mathbb{R}[X] \\ (\lambda,P) \longmapsto \lambda \cdot P$ $\mathbb{R}^D \ où \ D \ est \ une \ partie \ de \ \mathbb{R}.$ $La \ ddition \ de \ deux \ fonctions \ est \ une \ loi \ de \ composition \ interne: \\ +: \mathbb{R}^D \times \mathbb{R}^D \longrightarrow \mathbb{R}^D \\ (f,g) \longmapsto f+g$ $La \ multiplication \ d'une \ fonction \ par \ un \ nombre \ réel \ est \ une \ loi \ de \ composition \ externe: \\ \cdot: \mathbb{R} \times \mathbb{R}^D \longrightarrow \mathbb{R}^D$		$(\lambda, A) \longmapsto \lambda \cdot A$
$Light addition \ de \ deux \ polynômes \ est \ une \ loi \ de \ composition \ interne: \\ +: \mathbb{R}[X] \times \mathbb{R}[X] \longrightarrow \mathbb{R}[X] \\ (P,Q) \longmapsto P+Q$ $La \ multiplication \ d'un \ polynôme \ par \ un \ nombre \ réel \ est \ une \ loi \ de \ composition \ externe: \\ \cdot: \mathbb{R} \times \mathbb{R}[X] \longrightarrow \mathbb{R}[X] \\ (\lambda,P) \longmapsto \lambda \cdot P$ $\mathbb{R}^D \ où \ D \ est \ une \ partie \ de \ \mathbb{R}.$ $La \ ddition \ de \ deux \ fonctions \ est \ une \ loi \ de \ composition \ interne: \\ +: \mathbb{R}^D \times \mathbb{R}^D \longrightarrow \mathbb{R}^D \\ (f,g) \longmapsto f+g$ $La \ multiplication \ d'une \ fonction \ par \ un \ nombre \ réel \ est \ une \ loi \ de \ composition \ externe: \\ \cdot: \mathbb{R} \times \mathbb{R}^D \longrightarrow \mathbb{R}^D$		
$Light addition \ de \ deux \ polynômes \ est \ une \ loi \ de \ composition \ interne: \\ +: \mathbb{R}[X] \times \mathbb{R}[X] \longrightarrow \mathbb{R}[X] \\ (P,Q) \longmapsto P+Q$ $La \ multiplication \ d'un \ polynôme \ par \ un \ nombre \ réel \ est \ une \ loi \ de \ composition \ externe: \\ \cdot: \mathbb{R} \times \mathbb{R}[X] \longrightarrow \mathbb{R}[X] \\ (\lambda,P) \longmapsto \lambda \cdot P$ $\mathbb{R}^D \ où \ D \ est \ une \ partie \ de \ \mathbb{R}.$ $La \ ddition \ de \ deux \ fonctions \ est \ une \ loi \ de \ composition \ interne: \\ +: \mathbb{R}^D \times \mathbb{R}^D \longrightarrow \mathbb{R}^D \\ (f,g) \longmapsto f+g$ $La \ multiplication \ d'une \ fonction \ par \ un \ nombre \ réel \ est \ une \ loi \ de \ composition \ externe: \\ \cdot: \mathbb{R} \times \mathbb{R}^D \longrightarrow \mathbb{R}^D$		
$Light addition \ de \ deux \ polynômes \ est \ une \ loi \ de \ composition \ interne: \\ +: \mathbb{R}[X] \times \mathbb{R}[X] \longrightarrow \mathbb{R}[X] \\ (P,Q) \longmapsto P+Q$ $La \ multiplication \ d'un \ polynôme \ par \ un \ nombre \ réel \ est \ une \ loi \ de \ composition \ externe: \\ \cdot: \mathbb{R} \times \mathbb{R}[X] \longrightarrow \mathbb{R}[X] \\ (\lambda,P) \longmapsto \lambda \cdot P$ $\mathbb{R}^D \ où \ D \ est \ une \ partie \ de \ \mathbb{R}.$ $La \ ddition \ de \ deux \ fonctions \ est \ une \ loi \ de \ composition \ interne: \\ +: \mathbb{R}^D \times \mathbb{R}^D \longrightarrow \mathbb{R}^D \\ (f,g) \longmapsto f+g$ $La \ multiplication \ d'une \ fonction \ par \ un \ nombre \ réel \ est \ une \ loi \ de \ composition \ externe: \\ \cdot: \mathbb{R} \times \mathbb{R}^D \longrightarrow \mathbb{R}^D$		
$Light addition \ de \ deux \ polynômes \ est \ une \ loi \ de \ composition \ interne: \\ +: \mathbb{R}[X] \times \mathbb{R}[X] \longrightarrow \mathbb{R}[X] \\ (P,Q) \longmapsto P+Q$ $La \ multiplication \ d'un \ polynôme \ par \ un \ nombre \ réel \ est \ une \ loi \ de \ composition \ externe: \\ \cdot: \mathbb{R} \times \mathbb{R}[X] \longrightarrow \mathbb{R}[X] \\ (\lambda,P) \longmapsto \lambda \cdot P$ $\mathbb{R}^D \ où \ D \ est \ une \ partie \ de \ \mathbb{R}.$ $La \ ddition \ de \ deux \ fonctions \ est \ une \ loi \ de \ composition \ interne: \\ +: \mathbb{R}^D \times \mathbb{R}^D \longrightarrow \mathbb{R}^D \\ (f,g) \longmapsto f+g$ $La \ multiplication \ d'une \ fonction \ par \ un \ nombre \ réel \ est \ une \ loi \ de \ composition \ externe: \\ \cdot: \mathbb{R} \times \mathbb{R}^D \longrightarrow \mathbb{R}^D$		
$+: \mathbb{R}[X] \times \mathbb{R}[X] \longrightarrow \mathbb{R}[X]$ $(P,Q) \longmapsto P+Q$ La multiplication d'un polynôme par un nombre réel est une loi de composition externe : $\cdot: \mathbb{R} \times \mathbb{R}[X] \longrightarrow \mathbb{R}[X]$ $(\lambda,P) \longmapsto \lambda \cdot P$ $\mathbb{R}^D \text{ où } D \text{ est une partie de } \mathbb{R}.$ L'addition de deux fonctions est une loi de composition interne : $+: \mathbb{R}^D \times \mathbb{R}^D \longrightarrow \mathbb{R}^D$ $(f,g) \longmapsto f+g$ La multiplication d'une fonction par un nombre réel est une loi de composition externe : $\cdot: \mathbb{R} \times \mathbb{R}^D \longrightarrow \mathbb{R}^D$		de deux nolvnômes est une loi de composition interne :
$(P,Q)\longmapsto P+Q$ $La\ multiplication\ d'un\ polynôme\ par\ un\ nombre\ réel\ est\ une\ loi\ de\ composition\ externe:$ $:\mathbb{R}\times\mathbb{R}[X]\longrightarrow\mathbb{R}[X]$ $(\lambda,P)\longmapsto\lambda\cdot P$ $\mathbb{R}^D\ où\ D\ est\ une\ partie\ de\ \mathbb{R}.$ $L'addition\ de\ deux\ fonctions\ est\ une\ loi\ de\ composition\ interne:$ $+:\mathbb{R}^D\times\mathbb{R}^D\longrightarrow\mathbb{R}^D$ $(f,g)\longmapsto f+g$ $La\ multiplication\ d'une\ fonction\ par\ un\ nombre\ réel\ est\ une\ loi\ de\ composition\ externe:$ $:\mathbb{R}\times\mathbb{R}^D\longrightarrow\mathbb{R}^D$	Laddition	
La multiplication d'un polynôme par un nombre réel est une loi de composition externe : $: \mathbb{R} \times \mathbb{R}[X] \longrightarrow \mathbb{R}[X] $ $ (\lambda, P) \longmapsto \lambda \cdot P $ $ \mathbb{R}^D \text{ où } D \text{ est une partie de } \mathbb{R}. $ $ \text{Laddition de deux fonctions est une loi de composition interne : } \\ + : \mathbb{R}^D \times \mathbb{R}^D \longrightarrow \mathbb{R}^D $ $ (f,g) \longmapsto f+g $ $ \text{La multiplication d'une fonction par un nombre réel est une loi de composition externe : } \\ : \mathbb{R} \times \mathbb{R}^D \longrightarrow \mathbb{R}^D $		
$\begin{array}{c} \cdot \colon \mathbb{R} \times \mathbb{R}[X] \longrightarrow \mathbb{R}[X] \\ (\lambda, P) \longmapsto \lambda \cdot P \end{array}$ $\mathbb{R}^D \text{ où } D \text{ est une partie } de \mathbb{R}.$ $L'addition \text{ de deux fonctions est une loi de composition interne}: \\ + : \mathbb{R}^D \times \mathbb{R}^D \longrightarrow \mathbb{R}^D \\ (f,g) \longmapsto f+g \end{array}$ $La \text{ multiplication d'une fonction par un nombre réel est une loi de composition externe}: \\ \cdot : \mathbb{R} \times \mathbb{R}^D \longrightarrow \mathbb{R}^D \end{array}$		(1,Q) /1 + Q
$\begin{array}{c} \cdot \colon \mathbb{R} \times \mathbb{R}[X] \longrightarrow \mathbb{R}[X] \\ (\lambda, P) \longmapsto \lambda \cdot P \end{array}$ $\mathbb{R}^D \text{ où } D \text{ est une partie } de \mathbb{R}.$ $L'addition \text{ de deux fonctions est une loi de composition interne}: \\ + : \mathbb{R}^D \times \mathbb{R}^D \longrightarrow \mathbb{R}^D \\ (f,g) \longmapsto f+g \end{array}$ $La \text{ multiplication d'une fonction par un nombre réel est une loi de composition externe}: \\ \cdot : \mathbb{R} \times \mathbb{R}^D \longrightarrow \mathbb{R}^D \end{array}$		
$\begin{array}{c} \cdot \colon \mathbb{R} \times \mathbb{R}[X] \longrightarrow \mathbb{R}[X] \\ (\lambda, P) \longmapsto \lambda \cdot P \end{array}$ $\mathbb{R}^D \text{ où } D \text{ est une partie } de \mathbb{R}.$ $L'addition \text{ de deux fonctions est une loi de composition interne}: \\ + : \mathbb{R}^D \times \mathbb{R}^D \longrightarrow \mathbb{R}^D \\ (f,g) \longmapsto f+g \end{array}$ $La \text{ multiplication d'une fonction par un nombre réel est une loi de composition externe}: \\ \cdot : \mathbb{R} \times \mathbb{R}^D \longrightarrow \mathbb{R}^D \end{array}$		
$\begin{array}{c} \cdot \colon \mathbb{R} \times \mathbb{R}[X] \longrightarrow \mathbb{R}[X] \\ (\lambda, P) \longmapsto \lambda \cdot P \end{array}$ $\mathbb{R}^D \text{ où } D \text{ est une partie } de \mathbb{R}.$ $L'addition \text{ de deux fonctions est une loi de composition interne}: \\ + : \mathbb{R}^D \times \mathbb{R}^D \longrightarrow \mathbb{R}^D \\ (f,g) \longmapsto f+g \end{array}$ $La \text{ multiplication d'une fonction par un nombre réel est une loi de composition externe}: \\ \cdot : \mathbb{R} \times \mathbb{R}^D \longrightarrow \mathbb{R}^D \end{array}$		
$\begin{array}{c} \cdot \colon \mathbb{R} \times \mathbb{R}[X] \longrightarrow \mathbb{R}[X] \\ (\lambda, P) \longmapsto \lambda \cdot P \end{array}$ $\mathbb{R}^D \text{ où } D \text{ est une partie } de \mathbb{R}.$ $L'addition \text{ de deux fonctions est une loi de composition interne}: \\ + : \mathbb{R}^D \times \mathbb{R}^D \longrightarrow \mathbb{R}^D \\ (f,g) \longmapsto f+g \end{array}$ $La \text{ multiplication d'une fonction par un nombre réel est une loi de composition externe}: \\ \cdot : \mathbb{R} \times \mathbb{R}^D \longrightarrow \mathbb{R}^D \end{array}$	La multipli	ication d'un polynôme par un nombre réel est une loi de composition externe :
$(\lambda,P)\longmapsto \lambda\cdot P$ $\mathbb{R}^D \text{ où } D \text{ est une partie de } \mathbb{R}.$ $L'\text{addition de deux fonctions est une loi de composition interne}: \\ +: \mathbb{R}^D \times \mathbb{R}^D \longrightarrow \mathbb{R}^D \\ (f,g)\longmapsto f+g$ $La \text{ multiplication d'une fonction par un nombre réel est une loi de composition externe}: \\ \cdot: \mathbb{R} \times \mathbb{R}^D \longrightarrow \mathbb{R}^D$		
$L'addition \ de \ deux \ fonctions \ est \ une \ loi \ de \ composition \ interne:$ $+: \mathbb{R}^D \times \mathbb{R}^D \longrightarrow \mathbb{R}^D$ $(f,g) \longmapsto f+g$ $La \ multiplication \ d'une \ fonction \ par \ un \ nombre \ r\'eel \ est \ une \ loi \ de \ composition \ externe:$ $\cdot: \mathbb{R} \times \mathbb{R}^D \longrightarrow \mathbb{R}^D$		
$L'addition \ de \ deux \ fonctions \ est \ une \ loi \ de \ composition \ interne:$ $+: \mathbb{R}^D \times \mathbb{R}^D \longrightarrow \mathbb{R}^D$ $(f,g) \longmapsto f+g$ $La \ multiplication \ d'une \ fonction \ par \ un \ nombre \ r\'eel \ est \ une \ loi \ de \ composition \ externe:$ $\cdot: \mathbb{R} \times \mathbb{R}^D \longrightarrow \mathbb{R}^D$		
$L'addition \ de \ deux \ fonctions \ est \ une \ loi \ de \ composition \ interne:$ $+: \mathbb{R}^D \times \mathbb{R}^D \longrightarrow \mathbb{R}^D$ $(f,g) \longmapsto f+g$ $La \ multiplication \ d'une \ fonction \ par \ un \ nombre \ r\'eel \ est \ une \ loi \ de \ composition \ externe:$ $\cdot: \mathbb{R} \times \mathbb{R}^D \longrightarrow \mathbb{R}^D$		
$L'addition \ de \ deux \ fonctions \ est \ une \ loi \ de \ composition \ interne:$ $+: \mathbb{R}^D \times \mathbb{R}^D \longrightarrow \mathbb{R}^D$ $(f,g) \longmapsto f+g$ $La \ multiplication \ d'une \ fonction \ par \ un \ nombre \ r\'eel \ est \ une \ loi \ de \ composition \ externe:$ $\cdot: \mathbb{R} \times \mathbb{R}^D \longrightarrow \mathbb{R}^D$		
$L'addition \ de \ deux \ fonctions \ est \ une \ loi \ de \ composition \ interne:$ $+: \mathbb{R}^D \times \mathbb{R}^D \longrightarrow \mathbb{R}^D$ $(f,g) \longmapsto f+g$ $La \ multiplication \ d'une \ fonction \ par \ un \ nombre \ r\'eel \ est \ une \ loi \ de \ composition \ externe:$ $\cdot: \mathbb{R} \times \mathbb{R}^D \longrightarrow \mathbb{R}^D$		
$+:\mathbb{R}^{D}\times\mathbb{R}^{D}\longrightarrow\mathbb{R}^{D}$ $(f,g)\longmapsto f+g$ La multiplication d'une fonction par un nombre réel est une loi de composition externe : $\cdot:\mathbb{R}\times\mathbb{R}^{D}\longrightarrow\mathbb{R}^{D}$	ns \mathbb{R}^{D} où D e s	st une partie de \mathbb{R} .
$(f,g)\longmapsto f+g$ La multiplication d'une fonction par un nombre réel est une loi de composition externe : $\cdot:\mathbb{R}\times\mathbb{R}^{D}\longrightarrow\mathbb{R}^{D}$	• L'addition	de deux fonctions est une loi de composition interne :
La multiplication d'une fonction par un nombre réel est une loi de composition externe : $\cdot: \mathbb{R} \times \mathbb{R}^D \longrightarrow \mathbb{R}^D$		
$\cdot: \mathbb{R} \times \mathbb{R}^D \longrightarrow \mathbb{R}^D$		$(f,g)\longmapsto f+g$
$\cdot: \mathbb{R} \times \mathbb{R}^D \longrightarrow \mathbb{R}^D$		
$\cdot: \mathbb{R} \times \mathbb{R}^D \longrightarrow \mathbb{R}^D$		
$\cdot: \mathbb{R} \times \mathbb{R}^D \longrightarrow \mathbb{R}^D$		
$\cdot: \mathbb{R} \times \mathbb{R}^D \longrightarrow \mathbb{R}^D$	Lo multin 1	ination d'une femation par un personne réal est une le de constitue est
	· La multipli	
$(\lambda, f) \longmapsto \lambda \cdot f$		
		$(\lambda,f)\longmapsto \lambda\cdot f$

2. Dans $\mathcal{M}_{n,p}(\mathbb{R})$.

- 5. Dans $\mathbb{R}^{\mathbb{N}}$.
 - L'addition de deux suites est une loi de composition interne :

La multiplication d'une quite par un nombre réel est une lei de composition externe :

La multiplication d'une suite par un nombre réel est une loi de composition externe :

Test 2 (Voir la solution.)

- 1. (a) Soit $n \in \mathbb{N}^*$ et soit $(P,Q) \in \mathbb{R}_n[X]^2$. Montrer que $P + Q \in \mathbb{R}_n[X]$.
 - (b) En déduire que l'addition de polynômes est une loi de composition interne sur $\mathbb{R}_n[X]$.
- 2. Soit E l'ensemble des polynômes de degré exactement égal à n. L'addition des polynôme est-elle une loi de composition interne sur E?

Définition 2 (Espace vectoriel réel)

Soit E un ensemble non vide muni d'une loi de composition interne, notée +, et d'une loi de composition externe, notée ·.

On dit que E est un **espace vectoriel réel** (ou un \mathbb{R} -espace vectoriel) si

- 1. la loi + vérifie les conditions suivantes :
 - i) $\forall (x, y) \in E^2$, x + y = y + x (commutativité)
 - ii) $\forall (x, y, z) \in E^3$, (x + y) + z = x + (y + z) (associativité)
 - iii) il existe un élément, noté 0_E et appelé **élément neutre**, tel que :
 - $\forall x \in E, \ x + 0_E = x = 0_E + x$
 - iv) pour tout $x \in E$, il existe un élément, noté -x et appelé symétrique de x, tel que : x + (-x) = $(-x) + x = 0_{\rm E}$
- 2. la loi · vérifie les conditions suivantes :
 - i) $\forall x \in E \ \forall (\lambda, \mu) \in \mathbb{R}^2$, $(\lambda \times \mu) \cdot x = \lambda \cdot (\mu \cdot x) = \mu \cdot (\lambda \cdot x)$
 - ii) $\forall x \in E, 1 \cdot x = x$
 - iii) $\forall (x, y) \in E^2 \ \forall \lambda \in \mathbb{R}, \ \lambda \cdot (x + y) = \lambda \cdot x + \lambda \cdot y \ (distributivit\acute{e})$
 - iv) $\forall x \in E \ \forall (\lambda, \mu) \in \mathbb{R}^2$, $(\lambda + \mu) \cdot x = \lambda \cdot x + \mu \cdot x$.

Remarque 1 (Vocabulaire et notation)

- 1. Attention, par abus, on note avec le même symbole + l'addition dans E et dans R.
- 2. Les éléments de E sont appelés des **vecteurs** et sont parfois notés avec une flèche (par exemple, \overrightarrow{u}) et parfois sans. Au concours, il est recommandé de s'aligner sur la notation du sujet!
- 3. Les éléments de $\mathbb R$ qui interviennent dans la loi externe sont parfois appelés des **scalaires**.
- 4. On écrira souvent λu au lieu de $\lambda \cdot u$.
- 5. On place toujours les scalaires devant le vecteur.

Proposition 1

Soit E un ensemble muni de deux lois + et \cdot en faisant un espace vectoriel.

- 1. L'élément neutre pour la loi + est unique.
- 2. pour tout $x \in E$, le symétrique de x est unique.

Proposition 2 (Exemples de référence)

Soient n et p deux entiers non nuls. Les ensembles suivants, munis des lois + et \cdot définies dans l'exemple 2, sont des espaces vectoriels réels :

$$\mathbb{R}^n$$
 , $\mathcal{M}_{n,p}(\mathbb{R})$, $\mathbb{R}[\mathrm{X}]$, $\mathbb{R}_n[\mathrm{X}]$, $\mathbb{R}^{\mathbb{N}}$, \mathbb{R}^{D}

où D est une partie de $\mathbb R$

Remarque 2

Par abus, on dira souvent «E (ou \mathbb{R}^n , $\mathcal{M}_{n,p}(\mathbb{R})$, $\mathbb{R}[X]$, ...) est un espace vectoriel réel » en omettant la référence aux lois + et ·.

Exemple 3

Soient n et p deux entiers naturels non nuls.

Espace vectoriel E	Neutre	Élément	Symétrique
\mathbb{R}^n		(x_1,\ldots,x_n)	
$\mathscr{M}_{n,p}(\mathbb{R})$		$\mathbf{A} = (a_{i,j})_{\substack{1 \leqslant i \leqslant n \\ 1 \leqslant j \leqslant p}}$	
\mathbb{R}^{D} , D partie de \mathbb{R}		$f: D \to \mathbb{R}$	

Test 3 (Voir la solution.)

- 1. Déterminer l'élément neutre de l'addition de $\mathbb{R}[X]$. Soit $P = a_0 + a_1X + \cdots + a_nX^n \in \mathbb{R}[X]$, déterminer son symétrique.
- 2. Déterminer l'élément neutre de l'addition de $\mathbb{R}^{\mathbb{N}}$. Soit $(u_n)_{n\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}$, déterminer son symétrique.

4

Proposition 3 (Règles de calcul)

Soit E un espace vectoriel réel. Alors

- 1. $\forall x \in E$, $0 \cdot x = 0_E$.
- 2. $\forall \lambda \in \mathbb{R}, \lambda . 0_{\mathrm{E}} = 0_{\mathrm{E}}.$
- 3. $\forall x \in E \ \forall \lambda \in \mathbb{R}, \ \lambda \cdot x = 0_E \iff (\lambda = 0 \ \text{ou} \ x = 0_E).$
- 4. $\forall x \in E, (-1) \cdot x = -x.$

1.2 Combinaisons linéaires

Définition 3 (Combinaison linéaire de vecteurs)

Soit E un espace vectoriel et soient $x_1,...,x_p$ des vecteurs de E. Un vecteur x est dit **combinaison linéaire** des vecteurs $x_1,...,x_p$ s'il existe des réels $\lambda_1,...,\lambda_p$ tels que

$$x = \lambda_1 x_1 + \cdots + \lambda_p x_p$$
.

Exemple 4

1. Dans \mathbb{R}^3 , u = (1,4,1) est combinaison linéaire des vecteurs v = (1,0,1) et w = (0,1,0) car:

2. $Dans \mathbb{R}_3[X]$, $P = 3X^2 + 2X - 1$ est naturellement écrit comme une combinaison linéaire des monômes

3. $Dans\,\mathcal{M}_2(\mathbb{R})$, soient $A=\begin{pmatrix} 3 & 2 \\ 3 & 6 \end{pmatrix}$ et $B=\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$. A est-elle une combinaison linéaire de B et de I_2 ?

4. Dans tout espace vectoriel E, 0_E est combinaison linéaire de n'importe quelle famille de vecteurs :

Remarque 3

En pratique, pour montrer qu'un vecteur x est combinaison linéaire des vecteurs $x_1, ..., x_p$, on cherche les scalaires $\lambda_1, ..., \lambda_p$ tels que $x = \lambda_1 x_1 + \cdots + \lambda_p x_p$ en résolvant un système linéaire.

Test 4 (Voir la solution.)

- 1. Dans $\mathcal{M}_{3,1}(\mathbb{R})$, on pose $e_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $e_2 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ et $e_3 = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$. Écrire les vecteurs $u = \begin{pmatrix} 3 \\ -1 \\ 3 \end{pmatrix}$ et $v = \begin{pmatrix} 1 \\ -2 \\ 5 \end{pmatrix}$ comme combinaison linéaire des vecteurs e_1 , e_2 et e_3 .
- 2. Dans $\mathbb{R}[X]$, montrer que le polynôme $X^2 + 1$ est combinaison linéaire des polynômes $(X + 1)^2$, X + 1 et 1.
- 3. Dans $\mathcal{M}_2(\mathbb{R})$, la matrice $\begin{pmatrix} 2 & 1 \\ -1 & 1 \end{pmatrix}$ est-elle combinaison linéaire des matrices $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ et $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$?

Test 5 (Voir la solution.)

- 1. On considère les trois polynômes suivants : $P = X^2 + 2X$, $Q = -X^2 + 1$ et $R = 4X^2 + 6X 1$. Déterminer tous les triplets de réels (a, b, c) tels que aP + bQ + cR = 0.
- 2. Dans \mathbb{R}^4 , on considère les vecteurs x = (1, 2, -1, 4) et y = (2, 4, -2, 4). Déterminer tous les couples de réels (a, b) tels que ax + by = 0.

2 Sous-espaces vectoriels

2.1 Sous-espace vectoriel

Définition 4 (Sous-espace vectoriel)

Soit E un espace vectoriel et soit $F \subset E$. On dit que F est un **sous-espace vectoriel** de E lorsque

- 1. F est non vide,
- 2. $\forall x \in F \ \forall y \in F, x + y \in F \ (stabilité par addition),$
- 3. $\forall x \in F \ \forall \lambda \in \mathbb{R}, \ \lambda \cdot x \in F \ (stabilit\'e \ par \ multiplication \ par \ un \ scalaire)$

Remarque 4

En combinant les points 2 et 3 avec un raisonnement par récurrence, on voit qu'un sous-espace vectoriel est stable par combinaison linéaire.

Exemple 5

Proposition 4

Un sous-espace vectoriel d'un espace vectoriel E est un espace vectoriel (pour les lois induites par celles de E).

Tout sous-espace vectoriel d'un espace vectoriel E contient 0_E.

Proposition 5 (Caractérisation des sous-espaces vectoriels)

Soit E un espace vectoriel et soit $F \subset E$. Alors F est un sous-espace vectoriel de E si et seulement si

- 1. F est non vide,
- 2. $\forall (x, y) \in F^2 \ \forall \lambda \in \mathbb{R}, \ x + \lambda y \in F.$

Méthode 1

- 1. Pour montrer qu'un ensemble est un espace vectoriel, on montre souvent que c'est un sous-espace d'un espace vectoriel de référence à l'aide de la caractérisation ci-dessus car cela demande beaucoup moins de vérifications que la définition d'espace vectoriel.
- 2. Pour montrer que F est non vide, on montre souvent que $0_E \in F$.

Exemple	• (

Exemple 7

Montrons que $F = \{(x, y, z) \in \mathbb{R}^3 \mid 2x + y = 0\}$ est un sous-espace vectoriel de \mathbb{R}^3 .

Exemple 8

Plus généralement, l'ensemble des solutions d'un système linéaire **homogène** à n variables est un sous-espace vectoriel de \mathbb{R}^n . En effet, considérons un système

(E) =
$$\begin{cases} a_{1,1}x_1 + \dots + a_{1,n}x_n = 0 \\ \vdots & \vdots & \vdots \\ a_{p,1}x_1 + \dots + a_{p,n}x_n = 0 \end{cases}$$

Exemple 9

Soit $(n, m) \in \mathbb{N}^2$ avec $n \leq m$.

- 1. $\mathbb{R}_n[X]$ est un sous-espace vectoriel de $\mathbb{R}_m[X]$ et de $\mathbb{R}[X]$.
- 2. L'ensemble des suites réelles convergeantes est un sous-espace vectoriel de $\mathbb{R}^{\mathbb{N}}$.

Test 6 (Voir la solution.)

Parmi les espaces suivants, lesquels sont des sous-espaces vectoriels de l'espace considéré?

1.
$$F = \{(x, y) \in \mathbb{R}^2 \mid xy = 0\}.$$

2.
$$G = \{P \in \mathbb{R}[X] \mid P'(0) = 0\}$$

3.
$$H = \{ f \in \mathscr{C}(\mathbb{R}, \mathbb{R}) \mid \lim_{x \to +\infty} f(x) = 1 \}$$

Test 7 (Voir la solution.)

Montrer que les ensembles suivants sont des espaces vectoriels

1.
$$E = \{M \in \mathcal{M}_3(\mathbb{R}) \mid {}^tM = 2M\}.$$

2.
$$F = \{(u_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} \mid \forall n \in \mathbb{N}, u_{n+2} = u_{n+1} + 2u_n\}.$$

2.2 Sous-espace vectoriel engendré

Définition 5 (Sous-espace vectoriel engendré)

Soit E un espace vectoriel et $u_1, ..., u_n$ des vecteurs de E.

L'ensemble des combinaisons linéaires de $u_1, ..., u_n$ est un sous-espace vectoriel de E appelé **sous-espace** vectoriel engendré par les vecteurs $u_1, ..., u_n$. On le note

$$Vect(u_1, ..., u_n)$$

On dit que $(u_1, ..., u_n)$ est une **famille génératrice** de Vect $(u_1, ..., u_n)$.

Remarque 5

Soit E un espace vectoriel et $u_1, ..., u_n$ des vecteurs de E.

$$Vect(u_1, ..., u_n) = \{\lambda_1 u_1 + \cdots + \lambda_n u_n \mid (\lambda_1, ..., \lambda_n) \in \mathbb{R}^n\}$$

Exemple 10

1. $Dans \mathbb{R}[X]$, $Vect(1,X,X^2)$ est égal à $\mathbb{R}_2[X]$

En effet, pour tout
$$P \in \mathbb{R}[X]$$

$$P \in \text{Vect}(1, X, X^2) \Longleftrightarrow \exists (\lambda_0, \lambda_1, \lambda_2) \in \mathbb{R}^3, \quad P = \lambda_0 \cdot 1 + \lambda_1 \cdot X + \lambda_2 \cdot X^2 \Longleftrightarrow P \in \mathbb{R}_2[X]$$

Plus généralement, pour tout $n \in \mathbb{N}$, Vect $(1, X, ..., X^n)$ est égal à $\mathbb{R}_n[X]$

2. Soit E un espace vectoriel et $x \in E$. Alors

 $\operatorname{Vect}(x) = \{\lambda \cdot x \mid \lambda \in \mathbb{R}\}\ (si\ x \neq 0_E, on\ dit\ que\ \operatorname{Vect}(x)\ est\ la\ droite\ vectorielle\ engendrée\ par\ x).$

3. Dans \mathbb{R}^2 , représenter Vect((2,1)).

4. Dans \mathbb{R}^3 , représenter Vect((1,0,0),(1,2,0)).

Proposition 6

Soit E un espace vectoriel et $u_1, ..., u_n$ des vecteurs de E. Tout sous-espace vectoriel de E contenant $u_1, ..., u_n$ contient $\text{Vect}(u_1, ..., u_n)$.

Proposition 7

Soit E un espace vectoriel et soit (u_1, \ldots, u_n) une famille de vecteurs de E.

- 1. Si un vecteur u est combinaison linéaire de u_1, \ldots, u_n alors $\text{Vect}(u_1, \ldots, u_n) = \text{Vect}(u_1, \ldots, u_n, u)$.
- 2. On a $\forall i \in \{1, ..., n\}, \forall j \neq i$, $Vect(u_1, ..., u_n) = Vect(u_1, ..., u_i + u_j, ..., u_n)$.
- 3. Si $\lambda_1, ..., \lambda_n$ sont des scalaires **tous non nuls** alors $\text{Vect}(u_1, ..., u_n) = \text{Vect}(\lambda_1 u_1, ..., \lambda_n u_n)$.

Remarque 6

- 1. En particulier, $Vect(u_1, ..., u_n) = Vect(u_1, ..., u_n, 0_E)$.
- 2. En combinant les points 2 et 3, on voit que si on ajoute un multiple d'un vecteur de la famille à un autre vecteur de la famille, la nouvelle famille obtenue engendre le même sous-espace vectoriel :

$$\forall i \in \{1, ..., n\}, \forall j \neq i, \ \forall \lambda \in \mathbb{R}, \ \text{Vect}(u_1, ..., u_n) = \text{Vect}(u_1, ..., u_i + \lambda u_j, ..., u_n).$$

1. Dans $\mathcal{M}_{3,1}(\mathbb{R})$, simplifions $F = \text{Vect}\left(\begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}, \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 4 \\ 6 \\ -1 \end{pmatrix}\right)$.

Cherchons à déterminer si l'un des trois vecteurs est combinaison linéaire des deux autres. Une façon de faire est de chercher s'il existe des scalaires x, y, z non tous nuls tels que

$$x \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} + y \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix} + z \begin{pmatrix} 4 \\ 6 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

Soit $(x, y, z) \in \mathbb{R}^3$

$$x \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} + y \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix} + z \begin{pmatrix} 4 \\ 6 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \iff \begin{cases} x + 2y + 4z = 0 \\ 2x + 2y + 6z = 0 \\ -x + y - z = 0 \end{cases}$$

$$\iff \begin{cases} x + 2y + 4z = 0 \\ -2y - 2z = 0 \\ 3y + 3z = 0 \end{cases}$$

$$\iff \begin{cases} x + 2y + 4z = 0 \\ z = -y \end{cases}$$

$$\iff \begin{cases} x = 2y \\ z = -y \end{cases}$$

Ainsi,

$$2\begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} + \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix} - \begin{pmatrix} 4 \\ 6 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

ou encore

$$\begin{pmatrix} 4 \\ 6 \\ -1 \end{pmatrix} = 2 \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} + \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}.$$

 $Donc F = Vect \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}, \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}. De plus, on ne peut pas simplifier plus car Vect \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} et Vect \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}$ sont strictement inclus dans F (le vérifier).

2. Dans $\mathbb{R}[X]$, déterminons $F = \text{Vect}(X^2 + 1, X + 2, 1)$. On a

$$F = \operatorname{Vect}(X^2 + 1, X + 2, -1) \qquad d'après \ le \ point \ 3 \ de \ la \ proposition$$

$$= \operatorname{Vect}(X^2 + 1 - 1, X + 2, -1) \qquad d'après \ le \ point \ 2 \ de \ la \ proposition$$

$$= \operatorname{Vect}(X^2, X + 2, -1)$$

$$= \operatorname{Vect}(X^2, X + 2, -2) \qquad d'après \ le \ point \ 3 \ de \ la \ proposition$$

$$= \operatorname{Vect}(X^2, X + 2 - 2, -2) \ d'après \ le \ point \ 2 \ de \ la \ proposition$$

$$= \operatorname{Vect}(X^2, X, -2)$$

$$= \operatorname{Vect}(X^2, X, 1) \qquad d'après \ le \ point \ 3 \ de \ la \ proposition$$

$$= \mathbb{R}_2[X]$$

Test 8 (Voir la solution.)

Donner une expression la plus simple possible des sous-espaces vectoriels suivants.

- 1. Dans \mathbb{R}^2 , F = Vect((1,2),(2,4)).
- 2. Dans $\mathbb{R}[X]$, $F = Vect(1 + X, X, X X^2, 1 + 2X + X^2)$.

Méthode 2

Pour montrer qu'un ensemble F est un (sous-)espace vectoriel, on peut aussi montrer que c'est l'espace engendré par une famille de vecteurs.

• Lorsque l'ensemble est donné sous forme paramétrique.

Exemple 12

Dans chaque cas, montrons que F est un espace vectoriel et donnons une famille génératrice de F.

1. $F = \{(x, y, -3x + y) \in \mathbb{R}^3 \mid (x, y) \in \mathbb{R}^2 \}$

Test 9 (Voir la solution.)

Dans chaque cas, montrer que F est un espace vectoriel et donner une famille génératrice de F.

1.
$$F = \{(2a+c, a+3b, 2b+c) \in \mathbb{R}^3 \mid (a, b, c) \in \mathbb{R}^3 \}.$$

2.
$$F = \{(c-a)X^3 + aX^2 + (2a-b)X + c \in \mathbb{R}[X] \mid (a, b, c) \in \mathbb{R}^3\}$$

• Lorsque l'ensemble est décrit à l'aide d'équations.

Exemple 13

On considère $F = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 0 \text{ et } x + 2y - 3z = 0\}.$ 1. Écrire les conditions sous lesquelles un vecteur appartient à F sous forme d'un système. 2. Obtenir un système triangulaire équivalent. 3. Exprimer les inconnues principales en fonctions des autres. 4. Faire apparaître la famille génératrice et conclure.

Test 10 (Voir la solution.)

Dans chaque cas, montrer que F est un espace vectoriel et donner une famille génératrice de F.

1.
$$F = \{(x, y, z) \in \mathbb{R}^3 \mid -x - y + z = 0 \text{ et } 2x + y - 5z = 0\}.$$

2.
$$G = \{(x, y, z) \in \mathbb{R}^3 \mid x - y + 2z = 0\}.$$

3.
$$H = \{(x, y, z) \in \mathbb{R}^3 \mid 2x = y \quad et \quad y = 3z\}$$

Test 11 (Voir la solution.)

 $Soit \mathbf{E} = \left\{ (u_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} \mid \forall n \in \mathbb{N} \ u_{n+2} = u_{n+1} + 6u_n \right\}$

- 1. Rappeler la forme de l'expression du terme général d'un élément de E.
- 2. En déduire que E est un espace vectoriel et en donner une famille génératrice.

Méthode 3

Inversement, étant donné un espace vectoriel sous forme de « Vect » vous devez savoir en déterminer des équations qui le décrivent.

Exemple 14

Déter	minons un système d'équations caractérisant les éléments de $F = Vect((1,2,1),(-1,1,0))$.					
1.	1. Écrire la condition pour qu'un vecteur appartienne à F sous forme d'un système (non-homogène).					
2	Mettre le système sous forme triangulaire.					
2.	inetire le système sous forme trangulaire.					
3.	Faire apparaître les équations et conclure					

Test 12 (Voir la solution.)

Décrire les espaces vectoriels suivants à l'aide d'équations.

- 1. $F_1 = Vect((1, 2, -1, 2), (1, 1, 1, 1))$.
- 2. $F_2 = Vect((1,1,1),(1,2,3),(1,4,9))$.
- 3. $F_3 = Vect((2,1,-3),(1,1,-2)).$

3 Objectifs

- 1. Avoir compris les notions d'espace vectoriel et de sous-espace vectoriel.
- 2. Connaître par coeur les définitions de combinaison linéaire, sous-espace engendré par une famille.
- 3. Savoir montrer qu'un ensemble est un espace vectoriel ou un sous-espace vectoriel avec la caractérisation des sous-espaces vectoriels.
- 4. Savoir montrer qu'un ensemble est un sous-espace vectoriel en en déterminant une famille génératrice.
- $5. \ \ Savoir \ décrire \ un \ sous-espace \ vectoriel \ engendr\'e \ par \ une \ famille \ \grave{a} \ l'aide \ d'équations.$
- 6. Savoir manipuler la notation Vect.