Aula 1 – Conceitos Básicos

A Geometria Elementar, também chamada Geometria Euclidiana, fundamenta-se em três entes geométricos aceitos sem definição: ponto, reta e plano.

Indicaremos por \overrightarrow{AB} uma reta que passa pelo pontos $A \in B$.

Postulado ou axioma é uma proposição aceita como verdadeira, sem demonstração.

Vamos dar exemplos de axiomas ou postulados.

1. A reta é ilimitada nos dois sentidos.

2. Por um ponto passam infinitas retas.

3. Por dois pontos distintos passa uma e somente uma reta.

4. Por um ponto, não pertencente a uma reta r, é possível traçar uma e somente uma reta paralela s. Este postulado é chamado de Postulado de Euclides.

5. Toda reta que passa por dois pontos distintos de um plano está contida nesse plano.

6. Um ponto O, de uma reta, divide-a em duas regiões denominadas semiretas. O é denominado origem das duas semi-retas.

Notação: \overrightarrow{OA}

Definição: Dados dois pontos A e B de uma reta r, denomina-se segmento de reta AB a todos os pontos de r entre A e B. A e B são chamados de extremos.

Notação: \overline{AB}

medida de um segmento AB = m(AB)

Definição: Segmentos congruentes tem medidas iguais e, reciprocamente, segmentos que tem medidas iguais são congruentes.

$$AB \equiv CDsem(AB) = m(CD)$$

Medida de um Segmento: Para medir segmentos, tomamos um segmento como unidade e a partir daí, podemos medir qualquer outro segmento.

7. Postulado do Transporte de Segmentos: Dados um segmento AB e uma semi-reta de origem A', existe sobre essa semi-reta um único B' tal que $A'B' \equiv AB$.

Definição: Pontos colineares são pontos que pertencem à uma mesma reta.

8. Dados três pontos colineares e distintos dois a dois, um deles, e apenas um, está entre os outros dois.

9. Dados dois pontos distintos A e B de uma reta r, existe sempre um ponto C que está entre A e B, e um ponto D tal que A está entre D e B.

10. Se B está entre A e C, então m(AC) = m(AB) + m(BC)

11. Uma reta pertencente a um plano, divide-o em duas regiões chamadas semiplanos sendo r a reta origem dos dois semiplanos.

Teorema é uma proposição aceita como verdadeira mediante demonstração.

Corolário é um resultado imediato de um teorema.

Pontos coplanares são pontos que pertencem a um mesmo plano.

12. Três pontos não colineares determinam um único plano que passa por eles.

Posições relativas entre duas retas distintas: Duas retas $r \in s$ são:

- 1) concorrentes se sua interseção é um ponto.
- 2) paralelas se são coplanares e não tem ponto em comum.
- 3) reversas se não são coplanares.

Exercícios Resolvidos

- 1. Assinale Verdadeiro (V) ou Falso (F).
 - a) Por um ponto passam infinitas retas.()
 - b) Por três pontos dados passa uma só reta.()
 - c) Três pontos distintos são colineares.()
 - d) Duas retas coplanares e distintas são concorrentes ou paralelas.()
 - e) Duas retas que não têm ponto em comum são paralelas.()

Solução:

- a) (V), axioma.
- b) (F), por três pontos passam três retas.

c) (F), três pontos distintos não são colineares.

d) (V),

e) (F), pois elas podem ser reversas e nessa caso não são paralelas.

2. Quantas semi-retas há em uma reta com origem nos cinco pontos $A, B, C, D \in E$?

Solução:

Seja r a reta, e A, B, C, D, E pontos pertencentes a esta reta r.

Pelo axioma 6, cada ponto determina duas semi-retas, então 5 pontos determinam 10 semi-retas.

3. Por seis pontos todos distintos, sendo três deles colineares, quantas retas podemos construir?

Solução:

e C) colineares, vamos construir todas as retas possíveis, usando o axioma 3.

São 13 retas.

Exercícios Propostos

1. Quantos segmentos há em uma reta, com origem nos cinco pontos distintos, dada na figura a seguir?

- 2. $A, B \in C$ são três pontos distintos numa reta. Se \overline{AB} é igual ao dobro de \overline{BC} e $\overline{AC} = 18$ cm, determine \overline{AB} e \overline{BC} .
- 3. O segmento \overline{AB} de uma reta é igual ao quíntuplo do segmento \overline{CD} dessa mesma reta. Determine a medida do segmento \overline{AB} , considerando-se como unidade de medida a sexta parte do segmento \overline{CD} .

Gabarito

- 1. 10.
- 2. $\overline{AB}=12~\mathrm{cm}$ e $\overline{BC}=6~\mathrm{cm}$ ou $\overline{AB}=36~\mathrm{cm}$ e $\overline{BC}=18~\mathrm{cm}$.
- 3. 30.

Ângulos

Definição: Ângulo geométrico é a reunião de duas semi-retas de mesma origem e não colineares.

Notação: \widehat{AOB} , onde O é o vértice.

As semi-retas \overrightarrow{OA} e \overrightarrow{OB} são os lados do ângulo.

Axioma 13: Um ângulo pode ser medido por meio de um instrumento chamado transferidor, que tem o grau como unidade. O número de graus de um ângulo é a sua medida. A medida de um ângulo geométrico é um número real α , tal que $0 < \alpha < 180^{\circ}$.

Notação: \widehat{AOB} : ângulo geométrico $m(\widehat{AOB})$: medida do ângulo \widehat{AOB}

Se \overrightarrow{OD} é uma semi-reta que divide \widehat{AOB} , então $m(\widehat{AOD}) + m(\widehat{DOB})$ $= m(A\widehat{O}B).$

Nota:

1) O ângulo de 180° é chamado raso e é quando os lados são semi-retas opostas.

2) O ângulo de 0° é quando os lados coincidem.

- 3) Toda vez que houver referência a ângulo, entenda-se ângulo geométrico.
- 4) Dois ângulos são chamados congruentes se têm a mesma medida, na mesma unidade.

Exemplo:

Os ângulos $A\widehat{B}$ C e $D\widehat{E}$ F na figura são congruentes.

Notação: $A\widehat{B}C \equiv D\hat{E}F$.

Setor angular, interior de um ângulo, exterior de um ângulo

Definição: Seja um ângulo $A\widehat{O}B$ num plano α e consideremos os semiplanos α_1 de origem na reta \overrightarrow{OA} que contém o lado \overrightarrow{OB} e α_2 , de origem na reta \overrightarrow{OB} e que contém \overrightarrow{OA} conforme a Figura 1. O conjunto dos pontos comuns aos semiplanos α_1 e α_2 denominamos de setor angular. A Figura 2 mostra um setor angular.

Definição: Um ponto que pertence ao setor angular e não pertence ao ângulo diz-se ponto interior ao ângulo \widehat{AOB} .

Definição: Um ponto do plano do ângulo que não pertence ao setor angular diz-se ponto exterior ao ângulo. O ponto D, na figura, é exterior ao ângulo $A\widehat{O}B$.

Definição: Ângulos que possuem o mesmo vértice e um lado comum são denominados ângulos consecutivos. Os ângulos $A\widehat{O}B$ e $A\widehat{O}C$ são consecutivos.

Definição: Dois ângulos consecutivos que não possuem ponto interior comum são denominados ângulos adjacentes.

Os ângulos $A\widehat{O}B$ e $B\widehat{O}C$ são adjacentes.

Definição: Bissetriz de um ângulo é a semi-reta interior ao ângulo, que determina com os seus lados, dois ângulos adjacentes e congruentes. Na figura, \overrightarrow{OC} é bissetriz do ângulo \widehat{AOB} .

Definição: Ângulo reto é um ângulo cuja medida é 90° . Na figura $A\widehat{O}B$ é reto, o símbolo \square representa um ângulo reto.

Definição: Ângulo agudo é um ângulo cuja medida é menor que 90° . Na figura, $A\widehat{O}B$ é ângulo agudo.

Definição: Ângulo obtuso é um ângulo cuja medida é maior que 90º. Na figura, $A\widehat{O}B$ é ângulo obtuso.

Definição: Dois ângulos são complementares se a soma de suas medidas é igual a 90° .

Exemplo:

Definição: Dois ângulos são suplementares se a soma de suas medidas é igual a 180° .

Exemplo:

Definição: Dois ângulos são denominados opostos pelo vértice, se os lados de um são as semi-retas opostas dos lados do outro. Na figura, os ângulos AOB e $A'\widehat{O}B'$ são opostos pelo vértice.

Teorema: Os ângulos opostos pelo vértice são congruentes.

Prova:

Seja $A\widehat{O}B$ e $A'\widehat{O}B'$ dois ângulos opostos pelo vértice.

Denominamos $m(\widehat{AOB}) = X e m(\widehat{A'OB'}) = Y$.

Temos que:

$$m(A\widehat{O}A') = 180^{\circ} \Rightarrow m(B\widehat{O}A') = 180 - X$$
 (1)

$$m(B\widehat{O}B') = 180^{\circ} \Rightarrow m(B\widehat{O}A') = 180 - Y$$
 (2)

De (1) e (2) vem:

$$180 - X = 180 - Y \Rightarrow X = Y$$

Logo,
$$A\widehat{O}B = A'\widehat{O}B'$$
.

Definição: Duas retas são perpendiculares se são concorrentes e formam ângulos adjacentes suplementares congruentes. Na figura a seguir, r e s são perpendiculares.

Decorre da definição que duas retas perpendiculares formam 4 ângulos retos.

Definição: Mediatriz de um segmento de reta é a reta perpendicular a este segmento que passa pelo ponto médio desse segmento. A figura mostra a reta m, mediatriz do segmento AB.

Axioma 14: Postulado de transporte de ângulos. Dado um ângulo $A\widehat{O}B$ e uma semi-reta $\overline{O'A'}$ de um plano, existe sobre esse plano e num dos semiplanos que $\overrightarrow{OA'}$ permite determinar, uma única semi-reta $\overrightarrow{OB'}$ que forma com $\overrightarrow{OA'}$ um ângulo $A'\widehat{OB}'$ congruente ao ângulo $A\widehat{OB}$.

Sistema de unidades angulares

a. Sistema sexagesimal

Unidade: grau, notação: $m^0 \to m$ graus.

Definição: Um grau é $\frac{1}{90}$ de um ângulo reto.

Submúltiplos do grau são o minuto e o segundo.

$$1 = 60' \text{ e } 1' = 60''.$$

b. Sistema decimal

Unidade: grado, notação: $m \ gr \rightarrow m \ grados$.

Definição: Um grado é $\frac{1}{100}$ de um ângulo reto.

• Relação entre esses dois sistemas

Temos que:

$$1^\circ = \frac{1}{90}$$
do ângulo reto

$$1gr = \frac{1}{100}$$
 do ângulo reto

$$\Rightarrow 90^{\circ} \longleftrightarrow 100 gr$$

Exercícios Resolvidos

- 1. Estabeleça a correspondência dos itens a seguir com as figuras de 1 a 5.
 - a) bissetriz de um ângulo;
 - b) ângulos complementares;
 - c) ângulos suplementares;
 - d) ângulos adjacentes e complementares;
 - e) ângulos adjacentes e suplementares.

Resposta: a) 3; b) 5, c) 2; d) 1; e) 4.

2. Determine o ângulo entre as bissetrizes de dois ângulos adjacentes e complementares.

Solução: Considere dois ângulos $A\widehat{O}B$ e $B\widehat{O}C$ adjacentes e complementares.

Tracemos as bissetrizes OD e OE desses ângulos, respectivamente. Denote $m(A\widehat{O}B) = X e m(B\widehat{O}C) = Y$, vem que:

$$X + Y = 90^{\circ}$$

Temos que:

$$m(\widehat{AOD}) = \frac{X}{2} e m(\widehat{BOE}) = \frac{Y}{2}$$

$$\Rightarrow m(D\widehat{O}E) = \frac{X}{2} + \frac{Y}{2} = \frac{X+Y}{2} = \frac{90^{\circ}}{2} = 45^{\circ}$$

Logo, o ângulo entre as bissetrizes é 45°.

- 3. Calcule o complemento dos ângulos:
- a) 27°
- b) 32°38′

Solução:

a)
$$90^{\circ} - 27^{\circ} = 63^{\circ}$$

b)
$$90^{\circ} - 32^{\circ}38' = 89^{\circ}60' - 32^{\circ}38' = 57^{\circ}22'$$

4. Calcule o suplemento do complemento de 72°.

Solução: O complemento de 72° é $90^{\circ} - 72^{\circ} = 18^{\circ}$.

Daí, o suplemento do complemento de 72° é $180^{\circ} - 18^{\circ} = 162^{\circ}$.

5. Calcule a medida de um ângulo cuja medida é igual a $\frac{3}{5}$ do seu suplemento.

Solução: Seja X a medida do ângulo procurado.

 $180^{\circ} - X$ é a medida do suplemento do ângulo procurado, temos:

$$X = \frac{3}{5}(180 - X)$$

Resolvendo a equação vem:

$$5X = 540 - 3X \Rightarrow 8X = 540 \Rightarrow X = 67^{\circ}30'$$

6. Dois ângulos opostos pelo vértice tem medidas expressas em graus por $4X-20^\circ$ e $2X+15^\circ$. Calcule as medidas desses ângulos.

Solução: Como os ângulos são opostos pelo vértice, então eles têm a mesma medida, ou seja:

$$4X - 20^{\circ} = 2X + 15^{\circ} \Rightarrow 2X = 35^{\circ} \Rightarrow X = \frac{35^{\circ}}{2} = 17^{\circ}30'.$$

Assim, a medida de um deles é:

$$4X - 20^{\circ} = 4 \cdot 17^{\circ}30' - 20^{\circ} = 50^{\circ}$$

Logo, os ângulos medem 50° .

Exercícios Propostos

- 1. Calcule o suplemento dos ângulos:
 - a) 47°
- b) 34°20′
- 2. Dado um ângulo agudo de medida α , represente:
 - a) A quinta parte do seu complemento.
 - b) A décima parte do seu suplemento.
- 3. Qual é a medida de um ângulo que excede o seu complemento de 69°?
- 4. As medidas de dois ângulos opostos pelo vértice são $34\theta-8^{\circ}$ e $14\theta+2^{\circ}$. Calcule θ .
- 5. Prove que dois ângulos que têm o mesmo suplemento são congruentes.
- 6. Na figura $m(A\widehat{O}B) = 32^{\circ}$ e $B\widehat{O}C = m(B\widehat{O}C) = 80^{\circ}$. Se OM é a bissetriz de $A\widehat{O}B$, ON é a bissetriz de $B\widehat{O}C$ e OX é a bissetriz de $M\widehat{O}N$, determine a medida do ângulo $X\widehat{O}C$.

Gabarito

1. a) 133°, b) 145°40′.

2. a)
$$\frac{1}{5}(90^{\circ} - \alpha)$$
, b) $\frac{1}{10}(180^{\circ} - \alpha)$.

- 3. 79°30′.
- 4. 30'.
- 5. Demonstração.
- $6.68^{\circ}.$

Triângulos

Definição: Triângulo é a união de três segmentos cujas extremidades são três pontos não colineares. A figura ao lado mostra um triângulo. Os pontos A, B e C são os vértices, e os segmentos AB, AC e BC são os lados do triângulo. Denotamos por $\triangle ABC$ um triângulo de vértices A, B e C.

Definição: Chama-se perímetro de um triângulo o número que exprime a soma das medidas dos três lados.

Notação: 2p.

Definição: Os pontos comuns aos interiores dos ângulo BAC, ABC e ACBsão pontos interiores ao triângulo ABC. Na figura, o ponto P é interior ao triângulo. Os ângulos BAC, ABC e ACB são os ângulos internos do triângulo.

Definição: A união de um triângulo com o seu interior é chamada região triangular. Os pontos que não pertencem à região triangular são os pontos exteriores ao triângulo. Na figura, Q é um ponto exterior ao triângulo.

Definição: Num triângulo, lado oposto a um ângulo é o lado que une os vértices dos dois outros ângulos, lado adjacente a dois ângulos é o lado que une os vértices desses dois ângulos. Na figura, o lado BC é oposto ao ângulo BAC, e o lado BC é adjacente aos ângulos ABC e ACB.

Definição: Ângulo externo a um triângulo é aquele que é adjacente e suplementar a um de seus ângulos internos. Na figura ao lado, o ângulo $A\widehat{C}D$ é um ângulo externo ao triângulo ABC.

Classificação dos triângulos

Podemos classificar os triângulos de dois modos:

1º Quanto aos lados:

- Equilátero: os que têm os três lados congruentes.

- Isósceles: os que têm dois lados congruentes.

— Escaleno: os que têm os três lados não congruentes entre si.

$2^{\underline{0}}$ Quanto aos ângulos:

- Retângulos: quando têm um ângulo reto.

- Obtusângulos: quando têm um ângulo obtuso.

- Acutângulos: quando têm os três ângulos agudos.

Elementos notáveis de um triângulo

Mediana de um triângulo é o segmento que une um vértice ao ponto médio do lado oposto. Na figura, AM é uma mediana do triângulo ABC.

Bissetriz de um triângulo é o segmento da bissetriz de um ângulo interno que tem por extremidades o vértice desse ângulo e o ponto de encontro com o lado oposto. Na figura, AN é uma bissetriz do triângulo ABC.

Altura de um triângulo é o segmento da perpendicular traçada de um vértice à reta suporte do lado oposto, cujos extremos são esse vértice e o ponto de encontro com essa reta. Na figura, AH é uma altura do triângulo ABC.

Mediatriz de um triângulo é a mediatriz de um de seus lados. Na figura, a reta t é a mediatriz do lado BC do triângulo ABC.

Exercício Resolvido

Assinale Verdadeiro (V) ou Falso (F).

- a) Um triângulo possui três ângulos externos. ()
- b) Um triângulo isósceles é sempre acutângulo. ()
- c) Um triângulo obtusângulo pode ser isósceles. ()
- d) Um triângulo isósceles pode ser equilátero. ()

Solução:

a) (F), pois possui seis ângulos externos.

b) (F), pois existe triângulo isósceles que é triângulo retângulo, por exemplo.

c) (${\bf V}$), basta que o ângulo formado pelos lados congruentes seja obtuso.

d) (${\bf V}$), basta que possua os três lados congruentes.

Retas paralelas

Lembre-se de que já vimos a definição de retas paralelas em posições relativas entre duas retas distintas e também o postulado 4. (Postulado de Euclides).

Definição: Duas retas $r \in S$ de um mesmo plano interceptados pela transversal t formam oito ângulos. Os pares de ângulos, um com vértice em A e o outro em B, conforme figura, são denominados:

Vamos considerar verdadeira a propriedade a seguir, mas depois que estudarmos congruência, podemos demonstrar tal propriedade.

Propriedade: Uma reta transversal a duas retas paralelas formam ângulos que obedecem às relações seguintes:

- 1° Os ângulos correspondentes e os ângulos alternos são congruentes.
- 2^{0} Os ângulos colaterais são suplementares.

Seja t uma transversal as retas r e s e $r \parallel s$.

$$a=e,b=f,c=g,d=h$$
 (correspondentes)
$$c=e,d=f,a=g,b=h \text{ (alternos internos e alternos externos)}$$

$$c+f=d+e=b+g=a+h=180^{\circ} \text{ (colaterais)}$$

Nota: As recíprocas das propriedades 1^{0} e 2^{0} são verdadeiras.

Exercícios Resolvidos

1. Na figura, as retas a e b são paralelas. Calcule o valor de x.

Solução:

Sendo $2x + 15^{\circ}$ e $30^{\circ} - x$ as medidas de dois ângulos alternos internos,

$$30^{\circ} - x = 2x + 15^{\circ} \Rightarrow -x - 2x = 15^{\circ} - 30^{\circ} \Rightarrow 3x = 15^{\circ} \Rightarrow x = 5^{\circ}$$

2. Na figura, as retas a e b são paralelas. Calcule o valor de x.

Solução:

Sendo $4x + 70^{\circ}$ e 50° as medidas de dois ângulos colaterais internos, temos:

$$4x + 70^{\circ} + 50^{\circ} = 180^{\circ} \Rightarrow 4x = 180^{\circ} - 120^{\circ} \Rightarrow 4x = 60^{\circ} \Rightarrow x = 15^{\circ}$$

 $\bf 3.$ Na figura, as retas a e b são paralelas. Calcule a medida do ângulo $\widehat{AC}B$.

Solução:

Seja a figura dada. Trace por C uma reta $c \parallel a$, e seja $m(A\widehat{C}B) = X + Y$ conforme a figura.

Logo $125^{\circ} + X = 180^{\circ}$ (ângulos colaterais internos) $\Rightarrow X = 55^{\circ}$.

 $Y=20^{\circ}$ (ângulos alternos internos).

Logo, $m(A\widehat{C}B) = 55^{\circ} + 20^{\circ} = 75^{\circ}$.

4. Duas retas distintas a e b de um plano, cortados por uma transversal t, formam ângulos colaterais internos, cujas medidas em graus são, respectivamente, $6X-30^{\circ}$ e $2X+34^{\circ}$. Determine X de modo que as retas a e b sejam paralelas.

Solução:

Queremos que as retas a e b sejam paralelas, então $6X-30^{\circ}+2X+34^{\circ}=180^{\circ}$ (ângulos colaterais internos) $\Rightarrow 8X=176^{\circ} \Rightarrow X=22^{\circ}$.

Exercícios Propostos

1. Em cada figura a seguir, as retas r e s são paralelas. Calcule o valor de x.

2. Em cada figura, a seguir, as retas r e s são paralelas. Calcule o valor de x.

3. Seja na figura $r \parallel s$, calcule o valor de x.

4. Na figura a seguir, calcule x.

Gabarito

1. a)
$$x = 70^{\circ}$$
, b) $x = 20^{\circ}$, c) $x = 44^{\circ}$, d) $x = 110^{\circ}$.

3.
$$x = 90^{\circ}$$
.

4. a)
$$x = 95^{\circ}$$
, b) $x = 60^{\circ}$.

Ângulos no triângulo

Teorema Angular de Tales: A soma das medidas dos ângulos internos de um triângulo é igual a 180°.

Prova:

Seja $\triangle ABC$ e considere uma reta $r \parallel AB$ passando por C.

Daí, $m(A\widehat{C}D) = m(B\widehat{A}C)$ (ângulo alterno interno) $m(E\widehat{C}D) = m(C\widehat{B}A)$ (ângulo correspondente) Como um ângulo raso tem 180°, vem:

$$\widehat{C} + \widehat{A} + \widehat{B} = 180^{\circ}$$

Corolário: Em todo triângulo, qualquer ângulo externo tem medida igual à soma das medidas dos dois ângulos internos não adjacentes a ele.

Prova:

Seja o $\Delta \mathsf{ABC},$ considere \widehat{C} e ângulo externo em relação ao vértice C.

Temos que:

$$\begin{cases} \widehat{A} + \widehat{B} + \widehat{C} = 180^{\circ} & (1) \\ \widehat{C}e + \widehat{C} = 180^{\circ} & (2) \end{cases}$$

Subtraindo (1) de (2) vem:

$$\hat{A} + \hat{B} - \hat{C}e = 0 \Rightarrow \hat{C}e = \hat{A} + \hat{B}$$

De forma similar $\widehat{B}e = \widehat{A} + \widehat{C}$, onde $\widehat{B}e$ é o ângulo externo em relação ao vértice $B \in \widehat{A}e = \widehat{B} + \widehat{C}$, onde $\widehat{A}e \in \widehat{O}$ angulo externo em relação ao vértice

Exercícios Resolvidos

1. No triângulo ABC da figura, calcule o valor de X.

Solução:

Temos por Tales que: $X + 2X + 3X = 180^{\circ} \Rightarrow 6X = 180^{\circ} \Rightarrow X = 30^{\circ}$

2. No triângulo ABC da figura, calcule o valor de x. Solução:

Pelo resultado do ângulo externo, vem:

$$2x+3x = 110^{\circ} \Rightarrow 5x = 110^{\circ} \Rightarrow x = 22^{\circ}$$

3. Dada a figura 1 a seguir, calcule o valor de x.

Solução:

Considere A, B, C e D os vértices da figura dada. Prolongue BC até AD e denomine de E a interseção da reta BC com a reta AD.

Daí denominando $m(\hat{CED}) = Y$ vem usando o resultado do ângulo externo no ΔABE ,

$$Y = 30^{\circ} + 40^{\circ}$$

e no ΔCED ,

$$X = Y + 20^{\circ} \Rightarrow X = 70^{\circ} + 20^{\circ} = 90^{\circ}$$

4. Na figura a seguir, O é o ponto de encontro das bissetrizes internas do triângulo ABC e a medida do ângulo \widehat{A} . Calcule a medida do ângulo \widehat{A} .

Solução:

Seja o Δ ABC, O o ponto de encontro das bissetrizes internas desse triângulo e $m(\widehat{BOC}) = 3 \ m(\widehat{A})$.

Considere $m(\widehat{ACO}) = m(\widehat{BCO}) = a$ e $m(\widehat{ABO}) = m(\widehat{CBO}) = b$.

Daí

$$\begin{cases} 2b + 2a + m(A) = 180^{\circ} \\ b + a + 3m(A) = 180^{\circ} \text{ (x 2)} \end{cases}$$

$$\Rightarrow \begin{cases} 2b + 2a + m(A) = 180^{\circ} & (1) \\ 2b + 2a + 6m(A) = 360^{\circ} & (2) \end{cases}$$

Fazendo (2) - (1) vem:

$$6 m(A) - m(A) = 180^{\circ} \Rightarrow 5 m(A) = 180^{\circ} \Rightarrow m(A) = 36^{\circ}$$

5. Na figura 1 a seguir, P é a interseção das bissetrizes externas em $\widehat{\mathbf{B}}$ e $\widehat{\mathbf{C}}$. Calcule a medida do ângulo \widehat{A} é 70°.

Fig. 1

Fig. 2

Solução:

Seja a figura 1 dada, com P sendo a interseção das bissetrizes externas em B e \widehat{C} e m(\widehat{A}) = 70°. Denote m(B \widehat{P} C) = X, m(C \widehat{B} P) = a e m(B \widehat{C} P) = b. Temos que:

$$m(A\widehat{B}C) = 180^{\circ} - 2a$$

$$m(B\widehat{C}A) = 180^{\circ} - 2b$$

Por Tales no Δ BCP vem: $a+b+X=180^{\circ}$

Por Tales no Δ ABC vem:

$$180^{\circ} - 2a + 180^{\circ} - 2b + 70^{\circ} = 180^{\circ}$$

Logo,

$$\left\{ \begin{array}{l} a+b+X=180^{\circ} \\ 180^{\circ}-2a+180^{\circ}-2b+70^{\circ}=180^{\circ} \end{array} \right.$$

$$\Rightarrow \begin{cases} a+b+X = 180^{\circ} & (1) \\ -2a-2b = -250^{\circ} & (2) \end{cases}$$

De (2) temos que

$$2a + 2b = 250^{\circ} \Rightarrow a + b = 125^{\circ}$$
 (3)

Substituindo (3) em (1) vem:

$$125^{\circ} + X = 180^{\circ} \Rightarrow X = 180^{\circ} - 125^{\circ} = 55^{\circ}$$

Logo,

$$m(B\widehat{P}C) = 55^{\circ}$$

Exercícios Propostos

1. Na figura a seguir, P é a interseção das bissetrizes internas em \widehat{B} e \widehat{C} . Calcule a medida do ângulo \widehat{BPC} sabendo que o ângulo \widehat{A} mede 80° .

2. Na figura a seguir, calcule a soma dos quatro ângulos $\widehat{\alpha},\widehat{\beta},\widehat{\gamma}$ e $\widehat{\theta}.$

3. Na figura a seguir, P é a interseção da bissetriz interna de \widehat{B} com a externa de \widehat{C} . Calcule o ângulo \widehat{BPC} em função de \widehat{A} .

4. Na figura a seguir, o triângulo ABC é retângulo em $\widehat{\mathbf{A}}$ e isósceles. Sendo $\overline{BD}=\overline{BE}$ e DÂC = 30°, calcule a medida do ângulo ABD.

Nota: Nesta questão use o fato de que em um triângulo isósceles os ângulos da base são congruentes. Este fato será provado na Aula 2.

5. Na figura a seguir, calcule o ângulo $\widehat{\alpha}$. Dica: Use o resultado do ângulo externo de um triângulo.

Gabarito

- 1. $m(B\widehat{P}C) = 130^{\circ}$.
- 2. A soma pedida é 540°.
- 3. $m(\widehat{BPC}) = \frac{m(\widehat{A})}{2}$.
- 4. $m(\widehat{ABD}) = 15^{\circ}$.
- 5. $m(\widehat{\alpha}) = 33^{\circ}$.