Wstęp do programowania Pracownia 9

Uwaga: Na tej liście też będą wprawki (zalecany temat: rekurencja). Podczas tych zajęć można oddawać zadania z listy siódmej za 0.5 i ósmej za 1. Dodatkowo, zadanie z Grą w życie zostaje wirtualnie dołączone do tej listy, czyli jego punktacja jest taka sama, jak innych zadań na tej liście. Bonus (0.5) dla tej listy jest za zdobycie ponad jednego punktu.

Zadanie 1.(1pkt) Uruchom program sprawdzający spełnialność formuły ze strony wykładu. Bądź przygotowany na wyjaśnienie prowadzącemu wszystkich użytych w nim konstrukcji. Oprócz tego wykonaj następujące polecenia:

- a) Stwórz analogiczną funkcję, która sprawdza, czy formuła jest tautologią.
- b) Dodaj możliwość używania stałych w formule.
- c) Dodaj możliwość używania zmiennych o dłuższych nazwach (pisanych małymi literami)

Postaraj się, by po przeróbkach, Twój program pozostaa możliwie zwięzay.

Zadanie 2.(1pkt) Pożegnianie z żółwiem: wybierz rekurencyjny wzorek, którego wcześniej nie implementowałeś (na obecnej liście też pojawią się przykłady, paprotka z łodygą i drzewo pitagorasa) i napisz program używający modułu turtle, który ten rysunek wykonuje. Niezależnie od tego, jaki rysunek wybierzesz, możesz (lecz nie musisz) go uatrakcyjnić wizualnie (na przykład dodając kolory).

Zadanie 3.(1pkt) Wybierz i rozwiąż jedno z zadań z Analizy Literackiej.

Zadanie 4.(1pkt) W zadaniu tym wracamy do gry w życie. Przebieg każdej rozgrywki (na skończonej planszy) można podzielić na dwa etapy:

- 1. Etap poszukiwań
- 2. Etap stabilizacji, w którym pewne stany powtarzają się cyklicznie.

Będą nas interesowały takie podziały, w których etap poszukiwań jest możliwie najkrótszy, czyli kończy się on w pierwszym momencie osiągnięcia stanu, który potem jeszcze kiedyś się pojawi w ewolucji systemu (nazwiemy ten stan dorosłością). Współczynnikiem kreatywności układu nazwiemy odległość między pierwszym a drugim osiągnięciem stanu dorosłości (jak wiadomo, wszystkie komórki mogą umrzeć, w tej sytuacji dorosłość jest stanem, w którym nie ma żadnej komórki, współczynnik kreatywności takiego układu jest równy 0). Przykładowo układ:

						#				
					#					
				#						
			#							
		#						#		
	#							#		
#								#		

dorosłość osiąga w piątym stanie (pionowa kreska sobie cały czas oscyluje, kreska ukośna zanika, mając kolejno 7, 5, 3 oraz 1-dno pole; w piątym stanie kreska ukośna znika całkiem , zostają tylko 3 żywe komórki, które już "na wieki" będą oscylować). Współczynnik kreatywności tego układu wynosi 1.

Napisz program, który dla danego układu początkowego wyznacza czas dojścia do dorosłości i współczynnik kreatywności.