Lemma 8.1

Let $\Omega \subseteq \mathbb{C}$ be a domain such that $\partial\Omega$ is a positively oriented simple closed contour. Then for $z_0 \notin \partial\Omega$, we have that

$$\int_{\partial\Omega} \frac{dz}{z - z_0} = \begin{cases} 0 & \text{if } z_0 \notin \overline{\Omega} = \partial\Omega\\ 2\pi i & \text{if } z_0 \in \Omega \end{cases}$$

Proof: Suppose $z_0 \notin \overline{\Omega}$, then for each $z \in \partial \Omega$ define r(z) such that $z_0 \notin D_{r(z)}(z)$. Now define $\Lambda \subseteq \mathbb{C}$ and $f : \mathbb{C} \to \mathbb{C}$ as

$$\Lambda = \left(\bigcup_{z \in \partial \Omega} D_{r(z)}(z)\right) \cup \Omega \quad \text{and} \quad f(z) = \frac{1}{z - z_0}.$$

We have that Λ is a domain since it is a union of open balls in \mathbb{C} , and thus since $z_0 \notin \Lambda$, we have that f is holomorphic in Λ . Since $\partial \Omega \subseteq \Lambda$, we have that f is holomorphic on $\partial \Omega$, and thus by Cauchy's integral theorem, we obtain

$$\int_{\partial\Omega} \frac{dz}{z - z_0} = \int_{\partial\Omega} f(z) \, dz = 0.$$

Now suppose $z_0 \in \Omega$, then choose real r > 0 such that $C = C_r(z_0) \subseteq \Omega$. We can parameterize C by $z = \omega(\theta) = z_0 + re^{i\theta}$ where $0 \le \theta \le 2\pi$. Consequently, we have that $dz = ire^{i\theta} d\theta$, and thus

$$\int_C \frac{dz}{z-z_0} = \int_0^{2\pi} \frac{ire^{i\theta}}{z_0 + re^{i\theta} - z_0} d\theta = \int_0^{2\pi} \frac{ire^{i\theta}}{re^{i\theta}} d\theta = i \int_0^{2\pi} d\theta = 2\pi i.$$

Since C is contained in the interior of $\partial\Omega$, we have that

$$\int_C \frac{dz}{z - z_0} = \int_{\partial \Omega} \frac{dz}{z - z_0} = 2\pi i.$$

Lemma 8.2

Let f be holomorphic in some domain Ω and let $C \subseteq \Omega$ be a positively oriented simple closed contour. Then, for all z_0 in the interior of C we have that

$$\int_C \frac{f(z) - f(z_0)}{z - z_0} \, dz = 0$$

Proof: Define q as

$$g(z) = \frac{f(z) - f(z_0)}{z - z_0},$$

then because f is holomorphic in Ω , we have that g is holomorphic in $\Omega \setminus \{z_0\}$. Define $g(z_0) = f'(z_0)$, we will show that g is continuous at z_0 . Choose real r > 0 such that $D_r(z_0) \subseteq \Omega$, and for $n \in \mathbb{N}$, define $r_n = r/n$. We can define a sequence $\{z_n\}$ such that $z_n \in D_{r_n}(z_0)$ for all n. It is easy to show that $\{z_n\} \to z_0$. Since f is holomorphic at z_0 , we have that

$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0},$$

and thus

$$\lim_{n \to \infty} g(z_n) = \lim_{z_n \to z_0} \frac{f(z_n) - f(z_0)}{z_n - z_0} = f'(z_0),$$

which gives us $\lim_{z\to z_0} g(z) = g(z_0) = f'(z_0)$, showing that g is continuous at z_0 . Since we also have that g is holomorphic on $\Omega \setminus \{z_0\}$, we can apply Cauchy's integral theorem on g to obtain

$$\int_C g(z) dz = \int_C \frac{f(z) - f(z_0)}{z - z_0} dz = 0.$$

Alternate Proof: Since f is holomorphic in Ω , it is continuous at z_0 , thus for all $\varepsilon > 0$, there exists $\delta > 0$ such that $z \in D_{\delta}(z_0) \implies f(z) \in D_{\varepsilon}(f(z_0))$. Fix ε and choose δ such that $\overline{D}_{\delta}(z_0) \subseteq \Omega$. Additionally, let ∂D be the boundary of $\overline{D}_{\delta}(z_0)$. By the ML inequality, we have that

$$|I| = \left| \int_{\partial D} \frac{f(z) - f(z_0)}{z - z_0} dz \right| \le \int_{\partial D} \left| \frac{f(z) - f(z_0)}{z - z_0} \right| dz < \frac{\varepsilon}{\delta} L(\partial D) = \frac{\varepsilon}{\delta} 2\pi \delta = 2\pi \varepsilon,$$

and since $2\pi\varepsilon$ can be arbitrarily small, we have that I=0. Additionally, since z_0 is on the interior of C, we have that ∂D is contained in the interior of C for small enough δ , and thus

$$\int_C \frac{f(z) - f(z_0)}{z - z_0} dz = \int_{\partial D} \frac{f(z) - f(z_0)}{z - z_0} dz = 0.$$

Theorem 8.1: Cauchy's Integral Formula

Let f be holomorphic in some domain Ω and $C \subseteq \Omega$ be a positively oriented simple closed contour. Then, for all z_0 in the interior of C, we have that

$$f(z_0) = \frac{1}{2\pi i} \int_C \frac{f(z)}{z - z_0} dz$$

Proof: We have that

$$\frac{1}{2\pi i} \int_C \frac{f(z_0)}{z - z_0} dz = \frac{f(z_0)}{2\pi i} \int_C \frac{dz}{z - z_0} = \frac{f(z_0)}{2\pi i} 2\pi i = f(z_0)$$

and

$$\frac{1}{2\pi i} \int_C \frac{f(z) - f(z_0)}{z - z_0} \, dz = 0,$$

thus

$$\frac{1}{2\pi i} \int_C \frac{f(z)}{z - z_0} dz = \frac{1}{2\pi i} \int_C \frac{f(z) - f(z_0) + f(z_0)}{z - z_0} dz$$
$$= \frac{1}{2\pi i} \int_C \frac{f(z) - f(z_0)}{z - z_0} dz + \frac{1}{2\pi i} \int_C \frac{f(z_0)}{z - z_0} dz = 0 + f(z_0) = f(z_0).$$

Corollary 8.1: Gauss' Mean Value Theorem

Let f be holomorphic in some domain Ω and for $z_0 \in \Omega$ and real r > 0, let $C = C_r(z_0) \subseteq \Omega$ be a positively oriented circle. Then we have that

$$f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{i\theta}) d\theta$$

Proof: We have that

$$f(z_0) = \frac{1}{2\pi i} \int_C \frac{f(z)}{z - z_0} dz,$$

and parameterizing C with $z = \omega(\theta) = z_0 + re^{i\theta}$ for $0 \le \theta \le 2\pi$, we obtain $dz = ire^{i\theta} d\theta$, thus

$$f(z_0) = \frac{1}{2\pi i} \int_0^{2\pi} \frac{f(z_0 + re^{i\theta})}{re^{i\theta}} ire^{i\theta} d\theta = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{i\theta}) d\theta.$$

Lemma 8.3

Let C be a contour and g continuous on C. Also define f as

$$f(z_0) = \frac{1}{2\pi i} \int_C \frac{g(z)}{z - z_0} dz.$$

If R is a region where $C \cap R = \emptyset$, then we have that f is holomorphic in R and that for all $z_0 \in R$,

$$f'(z_0) = \frac{1}{2\pi i} \int_C \frac{g(z)}{(z - z_0)^2} dz.$$

Proof: Fix real r > 0 such that $D_r(z_0) \subseteq R$, and let $\{z_n\} \subseteq D_r(z_0)$ be a sequence that converges to z_0 . We have to show that $\lim_{n\to\infty} A_n = 0$, where

$$A_n = \frac{f(z_n) - f(z_0)}{z_n - z_0} - \frac{1}{2\pi i} \int_C \frac{g(z)}{(z - z_0)^2} dz$$

Given our definition of f, we have that

$$\frac{f(z_n) - f(z_0)}{z_n - z_0} = \frac{1}{2\pi i} \int_C \frac{g(z)}{z_n - z_0} \left[\frac{1}{z - z_n} - \frac{1}{z - z_0} \right] dz$$

$$= \frac{1}{2\pi i} \int_C \frac{g(z)}{z_n - z_0} \cdot \frac{z_n - z_0}{(z - z_n)(z - z_0)} dz$$

$$= \frac{1}{2\pi i} \int_C \frac{g(z)}{(z - z_n)(z - z_0)} dz,$$

and thus

$$A_{n} = \frac{1}{2\pi i} \int_{C} \frac{g(z)}{(z - z_{n})(z - z_{0})} dz - \frac{1}{2\pi i} \int_{C} \frac{g(z)}{(z - z_{0})^{2}} dz$$

$$= \frac{1}{2\pi i} \int_{C} g(z) \left[\frac{1}{(z - z_{0})(z - z_{n})} - \frac{1}{(z - z_{0})^{2}} \right] dz$$

$$= \frac{1}{2\pi i} \int_{C} g(z) \frac{z_{n} - z_{0}}{(z - z_{0})^{2}(z - z_{n})} dz$$

$$= \frac{z_{n} - z_{0}}{2\pi i} \int_{C} \frac{g(z)}{(z - z_{0})^{2}(z - z_{n})} dz.$$

Define M and D as

$$M = \max_{z \in C} |g(z)|$$
 and $D = \min_{w \in C} |z - z_0|$.

Choose $n \in \mathbb{N}$ such that $|z_0 - z_n| < D/2$, then we have that

$$|A_n| = \left| \frac{z_n - z_0}{2\pi i} \int_C \frac{g(z)}{(z - z_0)^2 (z - z_n)} dz \right| \le \left| \frac{z_n - z_0}{2\pi i} \right| \cdot \frac{ML(C)}{D^2 \cdot D/2} = |z_n - z_0| \frac{ML}{\pi D^3},$$

but we know that $\lim_{n\to\infty} |z_n-z_0|=0$, thus $\lim_{n\to\infty} |A_n|=0$.