Amendments to the Claims:

This listing will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

- 1. (Previously presented) A method for preparing an aluminosilicate polymer, comprising the following steps:
- (a) treating a mixed aluminum and silicon alkoxide only comprising hydrolyzable functions, or a mixed aluminum and silicon precursor resulting from the hydrolysis of a mixture of aluminum compounds and silicon compounds only comprising hydrolyzable functions, with an aqueous alkali, in the presence of silanol groups, the aluminum concentration being maintained at between 1.5 x 10⁻² and 0.3 mo1/1, the AL/Si molar ratio being maintained between 1 and 3.6 and the alkali/Al molar ratio being maintained between 2.3 and 3;
- (b) stirring the mixture resulting from step a) at ambient temperature of between 15°C and 35°C in the presence of silanol groups long enough to form the aluminosilicate polymer; and directly after step (b)
- (c) eliminating the byproducts formed during steps a) and b) from the reaction medium.
- 2. (Original) The method according to Claim 1, wherein the alkali of step a) is selected from among the group consisting of sodium, potassium, and lithium hydroxide, diethylamine and triethylamine.
- 3. (Original) The method according to Claim 1, wherein the silanol groups are supplied in silica or glass bead form.
- 4. (Original) The method according to Claim 3, wherein the silica or glass beads have a diameter between 0.2 mm and 5 mm.
 - 5. (Cancelled)
- 6. (Original) The method according to Claim 1, wherein the aluminum concentration is maintained between 4.4×10^{-2} and 0.3 mol/1.
- 7. (Original) The method according to Claim 1, wherein said alkali/Al molar ratio is about 2.3.

- 8. (Original) The method according to Claim 1, wherein said alkali/Al molar ratio is about 3.
 - 9. (Cancelled)
- 10. (Original) The method according to Claim 1, wherein the mixed aluminum and silicon precursor resulted from hydrolysis of a mixture of aluminum compounds and silicon compounds only having hydrolyzable functions is a product resulting from the mixture in an aqueous medium (i) of a compound selected from the group consisting of aluminum salts, aluminum alkoxides and aluminum halogenoalkoxides and (ii) at least one compound selected from the group consisting of silicon alkoxides and chloroalkoxides only having hydrolyzable functions.
- 11. (Original) The method according to Claim 10, wherein the mixed aluminum and silicon precursor is the product resulting from the mixture (i) of an aluminum halide and (ii) a silicon alkoxide only having hydrolyzable functions.
- 12. (Original) The method according to Claim 11, wherein said silicon alkoxide only having hydrolyzable functions is tetraethyl orthosilicate or tetraethyl orthosilicate.
- 13. (Previously presented) The method according to Claim 1, comprising, after step c) a step d), by which at least one acid modifying agent of aluminum is added to the aluminosilicate polymer resulting from step c) wherein the acid modifying agent allows the modification of the surface of the aluminosilicate polymer.
- 14. (Previously presented) The method according to Claim 13, wherein said acid modifying agent of aluminum is selected from group consisting of carboxylic acids, phosphonic acids, sulfonic acids, difunctional acids, their ester and anhydride components and amino acids.
- 15. (Previously presented) The method according to Claim 14, wherein said acid modifying agent of aluminum is selected from the group consisting of HCOOH, R₁COOH wherein R₁ is selected from the group consisting of CH₃(CH₂)_n, n being between 0 and 12, CF₃, C₆H₅, (C₆H₅)₂, substituted aromatic rings, C₄H₄S; R₂PO(OH)₂ wherein R₂ is selected from the group consisting of CH₃, C₆H₅,R₃SO₃H wherein R₃ is CH₃(CH₂)_n, n being between 0 and 5; HOOC(CH₂)_nCOOH, n =0-8;

aromatic difunctional acids; $HOOC(CH_2)_nPO(OH)_2$, n=2, 4; hydroxyl aliphatic acids; $HOOC(CH_2OH)_nCOOH$, n=1-2; $CH_3CH(NH_2)COOH$.

- 16. (Previously presented) The method according to Claim 13, wherein step e) comprises a first adding of acetic acid and a following adding of another different acid modifying agent of aluminum.
- 17. (Previously presented) The method according to Claim 13, wherein the amount of acid modifying of aluminum corresponds to a molar ration between chelating functions of the chelating agent and aluminum of the aluminosilicate polymer comprised between 0.1 and 10.
- 18. (Currently amended) A material An amorphous material obtainable by the method according to Claim 1.
- 19. (Previously presented) The material according to Claim 18, characterized in that its Raman spectrum comprises in spectral region 200-600 cm⁻¹ a wide band at 250±6 cm⁻¹, the Raman spectrum being produced for the material resulting from steps b) and c) and before step d).
- 20. (Previously presented) The method according to Claim 1 wherein the hybrid aluminusilicate polymer is characterized in that its Raman spectrum comprises in spectral region 200-600 cm⁻¹ a wide band at 250±6 cm⁻¹, a wide intense band at 359±6 cm⁻¹, a shoulder at 407±7 cm⁻¹, and a wide band at 501±6 cm⁻¹, the Raman spectrum being produced for the material resulting from step b) and before step c).
- 21. (Currently amended) A method for preparing a hybrid aluminosilicate polymer, comprising the following steps:
- a) treating a mixed aluminum and silicon alkoxide of which the silicon has hydrolyzable substituents only, or a mixed aluminum and silicon precursor resulting from the hydrolysis of a mixture of aluminum compounds and silicon compounds only having hydrolyzable substituents, with an aqueous alkali, in the presence of silanol groups, the aluminum concentration being maintained at between 1.5×10^{-2} and 0.3×10^{-2}

- b) stirring the mixture resulting from step a) at ambient temperature of between 15°C and 35 °C in the presence of silanol groups long enough to form the hybrid aluminosilicate polymer; and then directly
- c) adding alkali to increase the alkali/Al molar ratio to 3 if required if this ratio has not already been reached in step a); and then directly
- d) eliminating the byproducts formed during steps a) and b) and c) from the reaction medium.