

SÍLABO Simulación

Código	ASUC 0153	4	Carácter	Obligatorio
Prerrequisito	120 créditos aprobados			
Créditos	4			
Horas	Teóricas	2	Prácticas	4
Año académico	2025-00			

I. Introducción

Simulación es una asignatura obligatoria de la Facultad de Ingeniería, que cursan las Escuelas Académico Profesionales de Ingeniería de Sistemas e Informática, Ingeniería Empresarial, Ingeniería Mecatrónica e Ingeniería Industrial. Tiene como requisito haber aprobado 120 créditos. Desarrolla, a nivel logrado, las competencias transversales: Conocimientos de Ingeniería y Experimentación, y, a nivel intermedio, la competencia específica Uso de Herramientas Modernas. En virtud de lo anterior, su relevancia reside en desarrollar en el estudiante habilidades necesarias para abstraer los elementos de un sistema para elaborar modelos de simulación y pronosticar resultados en diferentes escenarios, haciendo uso de las herramientas pertinentes.

Los contenidos generales que la asignatura desarrolla son los siguientes: Conceptos de sistemas, modelos, tipos de modelos; simulación de sistemas; dinámica de sistemas; diagramas causales, diagramas de Forrester; corrida de modelos realimentados; simulación discreta; fundamentos de software para simulación, solución de problemas mediante simulación; validación de métodos.

II. Resultado de aprendizaje de la asignatura

Al finalizar la asignatura, el estudiante será capaz de formular modelos de simulación para el pronóstico de resultados en diferentes escenarios que permitan apoyar la toma de decisiones, empleando herramientas de simulación pertinentes.

III. Organización de los aprendizajes

Mode	Duración en horas	24	
Resultado de aprendizaje de la unidad	Al finalizar la unidad, el estudiante será capaz o de la industria de la producción y comerciali servicios con metodología de modelado basado ejecución de experimentos y búsqueda de soluc	ización de o en agente	bienes o
Ejes temáticos	 Teoría de la metodología basada en agente. Implementación de tipos de poblaciones de. Modelamiento del comportamiento. Visualización de la data del modelo. Diagramas de estado y transiciones. Propiedades, eventos y funciones. Configuración multiparámetros de agentes. Modelamiento de efectos de tiempo: retraso. Comportamientos complejos. Experimentación multiparamétrica. 	agentes	

Modelad	Unidad 2 o basado en la dinámica de sistemas	Duración en horas	24	
Resultado de aprendizaje de la unidad	Al finalizar la unidad, el estudiante será capaz de formular modelos de procesos productivos, con metodología del modelado basado en la dinámica de sistemas, para la ejecución de experimentos y búsqueda de soluciones.			
Ejes temáticos	 Conjuntos de composición (variables) y relace Diagrama causal y de Forrester Tipificación de variables por comportam conversores (dinámicos, parámetros, DataSe Ejecución de experimentos Extracción de data del modelo Experimentación multiparamétrica Métodos de inyección y sustitución Creación de ambientes de simulación Diseño y calibración de experimentos 	iento: stocl	cs, flujos,	

Unidad 3 Durad Modelado basado en eventos discretos en ho			24		
Resultado de aprendizaje de la unidad	Al finalizar la unidad, el estudiante será capaz de formular modelos de cadena de suministro o producción, mediante la metodología del modelado basado en eventos discretos, para la ejecución de experimentos y búsqueda de soluciones.				
Ejes temáticos	· · · · · · · · · · · · · · · · · · ·				

	Duración en horas	24		
	Modelado de flujos continuos			
Resultado de aprendizaje de la unidad	Al finalizar la unidad, el estudiante será capaz de formular modelos de flujos continuos en la industria de bienes y servicios, con metodología de modelado basado en eventos discretos, para la ejecución de experimentos y búsqueda de soluciones.			
Ejes temáticos	 Definición de flujos continuos Diseño de instalaciones Diseño lógico de flujos usando librerías Animación 3D de la cadena de flujos Uso de elementos de toma de escenas Diseño de servicios para los flujos Uso de puntos de control Definición de la lógica del flujo Uso de la conexión de orígenes de datos Eventos dinámicos 			

IV. Metodología

En el desarrollo de la asignatura se aplicará una metodología activa dentro de un enfoque participativo, reflexivo y crítico. Los estudiantes serán quienes construyan su aprendizaje a través del seminario-taller, el debate de los análisis de lecturas y los videos, los talleres prácticos para resolver en clase, las exposiciones dialogadas, ejemplificaciones, el análisis de casos, etc.

Se desarrollarán actividades programadas en el aula virtual, utilizando medios y materiales educativos adecuados para cada sesión con énfasis en aquellos que permitan el desarrollo de experiencias planificadas: multimedia e hipermedia.

Modalidad Presencial y Semipresencial - Blended

Durante las sesiones, se guiará a los estudiantes a través de:

- Clase magistral activa
- Aprendizaje orientado a proyectos
- Aprendizaje colaborativo
- Aprendizaje basado en problemas
- Estudio de casos

Modalidad A Distancia

Durante las sesiones, se guiará a los estudiantes a través de:

- Flipped classroom
- Clase magistral activa
- Aprendizaje orientado a proyectos
- Aprendizaje colaborativo
- Aprendizaje basado en problemas
- Estudio de casos

V. Evaluación Modalidad Presencial

Rubros	Unidad por evaluar	Fecha	Entregable/Instrumento	Peso parcial	Peso total
Evaluación de entrada	Prerrequisito	Primera sesión	- Evaluación individual teórica / Prueba objetiva	0 %	
Consolidad	1	Semana 1 - 4	- Taller de resolución de casos / Rúbrica de evaluación	50 %	15.07
0 l C1	2	Semana 5 - 7	- Taller de resolución de casos / Rúbrica de evaluación	50 %	15 %
Evaluación parcial EP	1 y 2	Semana 8	- Evaluación individual teórico- práctica / Prueba de desarrollo	30 %	
Consolidad	3	Semana 9 - 12	- Taller de resolución de casos / Rúbrica de evaluación	50 %	15.07
0 2 C2	4	Semana 13 - 15	- Taller de resolución de casos / Rúbrica de evaluación	50 %	15 %
Evaluación final EF	Todas las unidades	Semana 16	- Trabajo práctico individual / Rúbrica holística de evaluación	40%	
Evaluación sustitutoria*	Todas las unidades	Fecha posterior a la evaluación final	- Aplica		

^{*} Reemplaza la nota más baja obtenida en los rubros anteriores.

Modalidad Semipresencial - Blended

Rubros	Unidad por evaluar	Fecha	Entregable / Instrumento	Peso parcial	Peso total
Evaluación de entrada	Prerrequisito	Primera sesión	- Evaluación individual teórica / Prueba objetiva	0 %	
Consolidado 1	1 y 2	Semana 1 - 3	 Actividades virtuales Taller de resolución de casos / Rúbrica de evaluación 	15 % 85 %	15 %
Evaluación parcial EP	1 y 2	Semana 4	- Evaluación individual teórico- práctica / Prueba de desarrollo	30 %	
Consolidado 2	3 y 4	Semana 5 - 7	 Actividades virtuales Taller de resolución de casos / Rúbrica de evaluación 	15 % 85 %	15 %
Evaluación final EF	Todas las unidades	Semana 8	- Trabajo práctico individual / Rúbrica holística de evaluación	40%	
Evaluación sustitutoria*	Todas las unidades	Fecha posterior a la evaluación final	Aplica		

^{*} Reemplaza la nota más baja obtenida en los rubros anteriores.

Modalidad A Distancia

Rubros	Unidad por evaluar	Fecha	Entregable / Instrumento	Peso total
Evaluación de entrada	Prerrequisito	Primera sesión	- Evaluación individual teórica / Prueba objetiva	0 %
Consolidado 1	1	Semana 2	- Taller de resolución de casos / Rúbrica de evaluación	15 %
Evaluación parcial EP	1 y 2	Semana 4	- Evaluación individual teórico-práctica / Prueba de desarrollo	30 %
Consolidado 2 C2	3	Semana 6	- Taller de resolución de casos / Rúbrica de evaluación	15 %
Evaluación final EF	Todas las unidades	Semana 8	- Trabajo práctico individual / Rúbrica holística de evaluación	40 %
Evaluación sustitutoria*	Todas las unidades	Fecha posterior a la evaluació n final	Aplica	

^{*} Reemplaza la nota más baja obtenida en los rubros anteriores.

Fórmula para obtener el promedio:

VI. Bibliografía

Básica

Torres Vega, P. (2016). Simulación de sistemas con el software Arena. Fondo editorial Universidad de Lima. https://at2c.short.gy/JIZsjb

Coss, R. (2011). Simulación: un enfoque práctico. (2.º ed.). Limusa. https://at2c.short.gy/8T9d3e

Complementaria

Solano, J., Silva, L. y Mendoza, D. (2020). IEEE vts motor vehicles challenge: aprendizaje basado en problemas para la enseñanza del modelado y simulación de sistemas continuos. Encuentro Internacional de Educación en Ingeniería. https://acofipapers.org/index.php/eiei/article/view/722

Himmelblau, M. (2023). Análisis y simulación de procesos. Reverté.

Urquia, A. y Martín, C. (2016). Métodos de simulación y modelado. Editorial UNED.

Urquia, A. y Martín, C. (2016). Modelado y simulación de eventos discretos. Editorial UNED.

VII. Recursos digitales

Recursos para el modelado y simulación

Arsham, H. (s. f.). Modelling & simulation resources.

http://home.ubalt.edu/ntsbarsh/business-stat/refsim.htm

University of Central Florida (s. f.). Modelling and simulation: engineering technology of

the future. https://www.ucf.edu/modeling-simulation/

FLEXSIM. (Software de computadora).