

DIGITAL EMC CO., LTD.

683-3, Yubang-Dong, Yongin-Si, Kyunggi-Do, Korea. 449-080 Tel: +82-31-321-2664 Fax: +82-31-321-1664 http://www.digitalemc.com

CERTIFICATION OF COMPLIANCE

UNB Tech

Daiyoung B/D 2nd FL, 1423-6, Gwanyang 1-dong, Dongan-gu, Anyang-city, Gyeonggi-Do, Korea

Dates of Tests: January 06 ~ 14, 2010 Test Report S/N: DR50111001J Test Site: DIGITAL EMC CO., LTD.

FCC ID

APPLICANT

X3F-UBC-100

UNB Tech

Purpose : Original Grant

FCC Equipment Class : Part 15 Spread Spectrum Transmitter(DSS)

Device name : Bluetooth Hands Free Car Kit

Manufacturer : SK Tech

FCC ID : X3F-UBC-100

Model name : UBC-100

Test Device Serial number : Identical prototype

FCC Rule Part(s) : FCC Part 15.247 Subpart C

ANSI C63.4-2003

Frequency Range : 2402 ~ 2480 MHz

Max. Output power : -3.09 dBm Conducted

Data of issue : January 22, 2010

The Test results relate only to the tested sample. It is not allowed to copy this report even partly without the allowance of DIGITAL EMC CO., LTD.

TABLE OF CONTENTS

1. GENERAL INFORMATION	3
2. EQUIPMENT INFORMATION	4
2.1 EQUIPMENT DESCRIPTION	4
2.2 QNCILLARY EQUIPMENT	4
3. INFORMATION ABOUT TEST ITEM	5
3.1 TESTED FREQUENCY	5
3.2 TESTED ENVIRONMENT	5
3.3 TEST MODE	5
3.4 AUXILIARY EQUIPMENT	5
3.5 EMI SUPPRESSION DEVICE(S)/MODIFICATION	5
4. TEST REPORT	6
4.1 SUMMARY OF TESTS	6
4.2 TRANSMITTER REQUIREMENTS	
4.2.1 CARRIER FREQUENCY SEPARATION	7
4.2.2 NUMBER OF HOPPING FREQUENCIES	9
4.2.3 20 dB BANDWIDTH	12
4.2.4 TIME OF OCCUPANCY(DWELL TIME)	15
4.2.5 PEAK OUTPUT POWER	17
4.2.6 CONDUCTED SPURIOUS EMISSIONS	20
4.2.7 RADIATED SPURIOUS EMISSION	33
4.2.8 AC LINE CONDUCTED EMISSIONS	42
4.2.9 ANTENNA REQUIREMENTS	43
APPENDIX TEST EQUIPMENT FOR TESTS	44

1. General information

This report contains the result of tests performed by:

DIGITAL EMC CO., LTD.

Address: 683-3, Yubang-Dong, Yongin-Si, Kyunggi-Do, Korea. 449-080

http://www.digitalemc.com E-mail: Harveysung@digitalemc.com

Tel: +82-31-321-2664 Fax: +82-31-321-1664

Quality control in the testing laboratory is implemented as per ISO/IEC 17025 which is the "General requirements for the competent of calibration and testing laboratory".

Tested by: Engineer

January 22, 2010 Sun-Kyu Ryu

Date Name Signature

Reviewed by: *Manager*

January 22, 2010 W.J. Lee

Date Name Signature

Applicant:

Company name : UNB Tech

Address : Daiyoung B/D 2nd FL, 1423-6, Gwanyang 1-dong, Dongan-gu, Anyang-city, Gyeonggi-Do, Korea

Date of order : December 16, 2009

2. Equipment information

X3F-UBC-100

2.1 Equipment description

Equipment model no.	UBC-100	
Equipment serial no.	Identical prototype	
Type of equipment	Bluetooth Hands Free Car Kit	
Frequency band	2402 ~ 2480 MHz	
Type of Modulation	 □ GFSK for 1Mbps(BDR mode) □ π/4-DQPSK for 2Mbps(EDR mode) □ 8DPSK for 3Mbps(EDR mode) 	
Spread Spectrum	Frequency Hopping	
Channel Spacing	1.0 MHz	
Power	DC 3.7V (Lithium Battery)	
Type of antenna	☑ Internal Type: Chip Antenna☐ External Type:	

2.2 Ancillary equipment

Equipment	Model No.	Serial No.	Manufacturer	Note
-	-	-	-	-
-	-	-	-	-

3. Information about test items

X3F-UBC-100

3.1 Tested frequency

- Hopping Function: Enable

Frequency	TX	RX	
Frequency band of operation	$2402MHz\sim2480MHz$	2402MHz ~ 2480MHz	

- Hopping Function: Disable

Frequency	TX	RX
Lowest frequency	2402MHz	2402MHz
Middle frequency	2441MHz	2441MHz
Highest frequency	2480MHz	2480MHz

3.2 Tested environment

Temperature	:	15 ~ 35 (°C)
Relative humidity content	:	20 ~ 75 %
Air pressure	:	86 ~ 103 kPa
Details of power supply	:	DC 3.7 V

3.3 Test mode

Test Case 1	-
Test Case 2	-
Test Case 3	-

3.4 Auxiliary equipment

Equipment	Model No.	Serial No.	Manufacturer	Note
-	-	-	-	1
=	-	-	-	1

3.5 EMI Suppression Device(s)/Modifications

EMI suppression device(s) added and/or modifications made during testing

 \rightarrow None

4. Test Report

4.1 Summary of tests

FCC Part Section(s)	Parameter Limit (Using in 2400 ~ 2483.5MHz)		Test Condition	Status Note 1	
I. Test Items					
	Carrier Frequency Separation	>= 20dB BW or >= Two- Thirds of the 20dB BW		С	
15.247(a)	Number of Hopping Frequencies	>= 15 hops		С	
	20 dB Bandwidth	None		С	
	Dwell Time	=< 0.4 seconds	Conducted	С	
15.247(b)	Transmitter Output Power	=< 1Watt , if CHs >= 75 Others =<0.125W	Conducted	С	
	Band-edge /Conducted	The radiated emission to any 100 kHz of out-band shall be		С	
15.247(c) Conducted Spurious Emissions		at least 20dB below the highest in-band spectral density.		С	
15.205	Radiated Spurious Emissions	FCC 15.209 Limits	Radiated	С	
15.209	Radiated Spurious Emissions	FCC 13.209 Ellilits	Radiated	C	
15.207	AC Conducted Emissions	EN 55022	AC Line	NA	
13.207	AC CONQUCTED EMISSIONS	EN 55022	Conducted	Note 2	
15.203	Antenna Requirements	FCC 15.203	-	С	

Note 1: **C**=Comply **NC**=Not Comply **NT**=Not Tested **NA**=Not Applicable

Note 2: Conducted emission test is not applicable. Because the power of the EUT is supplied from a car battery using a cigar jack adapter.

The sample was tested according to the following specification:

ANSI C-63.4-2003, DA00-705

4.2 Transmitter requirements

4.2.1 Carrier Frequency Separation

- Procedure:

The carrier frequency separation was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

After the trace being stable, the reading value between the peaks of the adjacent channels using the marker-delta function was recorded as the measurement results.

The spectrum analyzer is set to:

Span = wide enough to capture the peaks of two adjacent channels

RBW = 1% of the span Sweep = auto

 $VBW = \ge RBW$ Detector function = peak

Trace = max hold

- Measurement Data: Comply

Hopping mode	Data rate	Peak of center channel (MHz)	Peak of adjacent Channel (MHz)	Test Result (MHz)
Enable	1Mbps	2441.039000	2442.041000	1.002000

See next page for actual measured spectrum plot.

- Minimum Standard:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW

Carrier Frequency Separation

4.2.2 Number of Hopping Frequencies

- Procedure:

The number of hopping frequencies was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

To get higher resolution, four frequency ranges within the 2400 ~ 2483.5 MHz FH band were examined.

The spectrum analyzer is set to:

Span = 25MHz Plot 1: Start Frequency = 2389.5MHz, Stop Frequency = 2414.5 MHz
Plot 2: Start Frequency = 2414.5MHz, Stop Frequency = 2439.5 MHz
Plot 3: Start Frequency = 2439.5MHz, Stop Frequency = 2464.5 MHz

Plot 4: Start Frequency = 2464.5MHz, Stop Frequency = 2489.5 MHz

RBW = 1% of the span or more Sweep = auto

 $VBW = \ge RBW$ Detector function = peak

Trace = max hold

- Measurement Data: Comply

Hopping mode	Data rate	Test Result (Total Hops)
Enable	1Mbps	79

Note 1: See next pages for actual measured spectrum plots.

- Minimum Standard:

At least 15 hopes

Number of Hopping Frequencies 1

Number of Hopping Frequencies 2

Number of Hopping Frequencies 3

Number of Hopping Frequencies 4

4.2.3 20 dB Bandwidth

- Procedure:

The bandwidth at 20 dB below the highest inband spectral density was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function disabled at the highest, middle and the lowest available channels.

After the trace being stable, Use the marker-to-peak function to set the marker to the peak of the emission. Use the marker-delta function to measure 20dB down one side of the emission. Reset the marker-delta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 20 dB bandwidth of the emission.

The spectrum analyzer is set to:

Center frequency = the highest, middle and the lowest Frequencies

Span = approximately 2 or 3 times of the 20 dB bandwidth

RBW = 1% of the 20dB bandwidth or more Sweep = auto

 $VBW = \geq RBW$ Detector function = peak

Trace = max hold

- Measurement Data: Comply

Hopping mode	Data rate	Tested Frequency	Test Results (MHz)
Disable 1Mbps	Lowest	0.945	
	Middle	0.950	
		Highest	0.945

Note 1: See next pages for actual measured spectrum plots.

- Minimum Standard:

|--|

20dB Bandwidth

20dB Bandwidth

Middle Frequency & Data rate: 1Mbps

20dB Bandwidth

Highest Frequency & Data rate: 1Mbps

4.2.4 Time of Occupancy (Dwell Time)

- Procedure:

The dwell time was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

The spectrum analyzer is set to:

Center frequency = 2441 MHz Span = zero

RBW = 1 MHz $VBW = \ge RBW$

Trace = max hold Detector function = peak

- Measurement Data: Comply

Hopping mode	Data rate	Packet Type	Burst On Time (ms)	Period (ms)	Number of hopping Channels	Test Result (s)
Enable	1Mbps	DH 5	2.895	3.75	79	0.3088

Note 1: Each new transmission event begins on the next channel in the hopping sequence after the final channel used in the previous transmission event.

DWELL TIME=(0.4 x Number of hopping Channels) x Burst On time / (period x Number of hopping Channels)

Note 2: See next pages for actual measured spectrum plots.

- Minimum Standard:

No greater than 0.4 seconds

Time of Occupancy

4.2.5 Peak Output Power

- Procedure:

The peak output power was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function disabled at the highest, middle and the lowest available channels.

After the trace being stable, Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power.

The spectrum analyzer is set to:

Center frequency = the highest, middle and the lowest Frequencies

Span = approximately 5 times of the 20 dB bandwidth

RBW = greater than the 20dB bandwidth of the emission being measured

 $VBW = \ge RBW$ Detector function = peak

Trace = $\max \text{ hold}$ Sweep = auto

- Measurement Data: Comply

Hanning made	Data rate	Tooked Fue grown on	Test Results			
Hopping mode	Data Tate	Tested Frequency	dBm	mW		
Disable	1Mbps	Lowest	-3.10	0.490		
		Middle	-3.09	0.491		
		Highest	-3.68	0.429		

Note 1: See next pages for actual measured spectrum plots.

- Minimum Standard:

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: **1 Watt**. For all other frequency hopping systems in the 2400-2483.5 MHz band: **0.125 Watts**

Peak Output Power

Peak Output Power

Middle Frequency & Data rate: 1Mbps

Peak Output Power

Highest Frequency & Data rate: 1Mbps

4.2.6 Conducted Spurious Emissions

- Procedure:

The bandwidth at 20dB down from the highest inband spectral density is measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function disabled at the highest, middle and the lowest available channels.

After the trace being stable, Use the marker-to-peak function to measure 20 dB down both sides of the intentional emission.

For Band-edge testing the spectrum analyzer is set to:

Tested frequency = the highest and the lowest Frequencies

Center frequency = 2400MHz, 2483.5MHz

Span = 10MHz Detector function = peak

RBW = 1% of the span VBW = 100 kHz $Trace = \max \text{ hold}$ Sweep = auto

For spurious testing the spectrum analyzer is set to:

Tested frequency = the highest, middle and the lowest Frequencies

RBW = 100 kHz VBW = 100 kHzDetector function = peak Sweep = auto

Trace = max hold

- Measurement Data: Comply

Note 1: See next pages for actual measured spectrum plots.

- Minimum Standard:

Minimum Standard:	> 20 dBc
-------------------	----------

Low Band-edge Hopping mode: Enable & Data rate: 1Mbps

High Band-edge Hopping mode: Enable & Data rate: 1Mbps

30MHz ~ **5GHz Conducted Spurious Emissions** Lowest Frequency & Data rate: 1Mbps

5GHz ~ 10GHz Conducted Spurious Emissions Lowest Frequency & Data rate: 1Mbps

Copyright 2000-2005 Agilent Technologies

20GHz ~ 25GHz Conducted Spurious Emissions Lowest Frequency & Data rate: 1Mbps

Reference for limit

Middle Frequency & Data rate: 1Mbps

30MHz ~ **5GHz Conducted Spurious Emissions** Middle Frequency & Data rate: 1Mbps

30MHz ~ **5GHz Conducted Spurious Emissions** Middle Frequency & Data rate: 1Mbps

15GHz ~ 20GHz Conducted Spurious Emissions Middle Frequency & Data rate: 1Mbps

Copyright 2000-2005 Agilent Technologies

20GHz ~ 25GHz Conducted Spurious Emissions Middle Frequency & Data rate: 1Mbps

30MHz ~ **5GHz Conducted Spurious Emissions** Highest Frequency & Data rate: 1Mbps

10GHz ~ 15GHz Conducted Spurious Emissions Highest Frequency & Data rate: 1Mbps

20GHz ~ 25GHz Conducted Spurious Emissions Highest Frequency & Data rate: 1Mbps

4.2.7 Radiated Spurious Emissions

- Procedure:

The EUT was placed on a 0.8m high wooden table inside a shielded enclosure. An antenna was placed near the EUT and measurements of frequencies and amplitudes of field strengths were recorded for reference during final measurements. For final radiated testing, measurements were performed in OATS. Measurements were performed with the EUT oriented in 3 orthogonal axis and rotated 360 degrees to determine worst-case orientation for maximum emissions.

```
The spectrum analyzer is set to:

Tested frequency = Low, Middle, High Frequencies

Frequency Range = 30 \text{ MHz} \sim 10 \text{th} harmonic.

RBW and VBW = 1. \text{ Frequency range: } 30 \text{MHz} \sim 16 \text{Hz}

RBW = 120 \text{KHz} / VBW = 1. \text{KHz} RBW = 1. \text{KHz} / VBW = 1. \text{KHz} RBW = 1. \text{KHz} / VBW = 1. \text{KHz} RBW = 1. \text{MHz} / VBW = 1. \text{MHz} RBW = 1. \text{MHz} / VBW = 1. \text{MHz} RBW = 1. \text{MHz} / VBW = 1. \text{MHz} RBW = 1. \text{MHz} / VBW = 1. \text{MHz} RBW = 1. \text{
```

- Measurement Data: Comply

Note 1: See next pages for actual measured spectrum plots and data.

- Minimum Standard:

• FCC Part 15.209(a) and (b)

Frequency (MHz)	Limit (uV/m) @ 3m
30 ~ 88	100 **
88 ~ 216	150 **
216 ~ 960	200 **
Above 960	500

^{**} Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88MHz, 174-216MHz or 470-806MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

• FCC Part 15.205 (a): Only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	MHz	GHz	GHz
0.009 ~ 0.110	8.41425 ~ 8.41475	108 ~ 121.94	1300 ~ 1427	3600 ~ 4400	14.47 ~ 14.5
$0.495 \sim 0.505$	12.29 ~ 12.293	123 ~ 138	1435 ~ 1626.5	4.5 ~ 5.15	15.35 ~ 16.2
$2.1735 \sim 2.1905$	12.51975 ~ 12.52025	149.9 ~ 150.05	1645.5 ~ 1646.5	5.35 ~ 5.46	$17.7 \sim 21.4$
$4.125 \sim 4.128$	12.57675 ~ 12.57725	156.52475 ~ 156.52525	$1660 \sim 1710$	7.25 ~ 7.75	22.01 ~ 23.12
$4.17725 \sim 4.17775$	13.36 ~ 13.41	156.7 ~ 156.9	$1718.8 \sim 1722.2$	$8.025 \sim 8.5$	$23.6 \sim 24.0$
$4.20725 \sim 4.20775$	16.42 ~ 16.423	162.0125 ~ 167.17	$2200\sim2300$	9.0 ~ 9.2	31.2 ~ 31.8
$6.215 \sim 6.218$	16.69475 ~ 16.69525	167.72 ~ 173.2	$2310\sim2390$	9.3 ~ 9.5	36.43 ~ 36.5
$6.26775 \sim 6.26825$	16.80425 ~ 16.80475	240 ~ 285	$2483.5 \sim 2500$	10.6 ~ 12.7	Above 38.6
$6.31175 \sim 6.31225$	25.5 ~ 25.67	322 ~ 335.4	$2655 \sim 2900$	13.25 ~ 13.4	
8.291 ~ 8.294	37.5 ~ 38.25	399.90 ~ 410	$3260 \sim 3267$		
$8.362 \sim 8.366$	73 ~ 74.6	608 ~ 614	$3332\sim3339$		
8.37625 ~ 8.38675	74.8 ~ 75.2	960 ~ 1240	3345.8 ~ 3358		

• FCC Part 15.205(b): The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.

Restricted Band Edge Lowest Frequency & Data rate: 1Mbps

Marker 1's emissions of the low band edge test plots are emissions from WIMAX downlink signal in Korea.

Restricted Band Edge Lowest Frequency & Data rate: 1Mbps Average mode / Horizontal polarization

Marker 1's emissions of the low band edge test plots are emissions from WIMAX downlink signal in Korea.

Restricted Band Edge Lowest Frequency & Data rate: 1Mbps

Peak mode / Vertical polarization

Marker 1's emissions of the low band edge test plots are emissions from WIMAX downlink signal in Korea.

Restricted Band Edge Lowest Frequency & Data rate: 1Mbps

Average mode / Vertical polarization

Marker 1's emissions of the low band edge test plots are emissions from WIMAX downlink signal in Korea.

Restricted Band Edge Highest Frequency & Data rate: 1Mbps

Peak mode / Horizontal polarization

Restricted Band Edge Highest Frequency & Data rate: 1Mbps Average mode / Horizontal polarization

Restricted Band Edge Highest Frequency & Data rate: 1Mbps

Peak mode / Vertical polarization

Restricted Band Edge Highest Frequency & Data rate: 1Mbps

30MHz ~ 1GHz Radiated Spurious Emissions

Lowest Frequency & Data rate: 1Mbps

RADIATED EMISSION

Date: 2010-01-12

 Model Name
 :
 UBC-100
 Reference No.
 :
 No.
 :
 Power Supply
 :
 3.7V
 Serial No.
 Serial No.
 :
 Identical prototype
 Temp/Humi
 :
 22'c
 46%

 Test Condition
 :
 TX: 2402MHz
 Operator
 :
 D.C.CHA

Memo :

LIMIT : FCC Part15 Subpart.B Class B (3m) MARGIN: 3 dB

No	. FREQ	READING	ANT	LOSS	GAIN	RESULT	LIMIT	MARGIN	ANTENNA	TABLE
	[MHz]	QP [dBuV]	FACTOR [dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[DEG]
	Horizont	al	.							
1	47.099	17.8	10.7	1.0	22.4	7.1	40.0	32.9	200	358
2	608.280	19.8	19.1	4.0	24.2	18.7	46.0	27.3	200	112
	Vertical									
3	103.065	18.6	10.8	1.4	22.5	8.3	43.5	35.2	100	358
4	824.337	19.4	19.7	4.7	23.3	20.5	46.0	25.5	100	358

30MHz ~ **1GHz Radiated Spurious Emissions** Middle Frequency & Data rate: 1Mbps

RADIATED EMISSION

Date: 2010-01-12

 Model Name
 :
 UBC-100
 Reference No.
 :
 Image: Condition of the conditi

Memo

LIMIT : FCC Part15 Subpart.B Class B (3m) MARGIN: 3 dB

N	ο.	FREQ	READING	ANT	LOSS	GAIN	RESULT	LIMIT	MARGIN	ANTENNA	TABLE
		[MHz]	QP [dBuV]	FACTOR [dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[DEG]
	- I	Horizont	al								
1		47.112	17.5	10.7	1.0	22.4	6.8	40.0	33.2	200	169
2	6	11.388	19.8	19.1	4.0	24.2	18.7	46.0	27.3	301	344
-	- 1	/ertical									
3		47.120	19.4	10.7	1.0	22.4	8.7	40.0	31.3	400	154
4	7	99.500	19.6	19.7	4.6	23.6	20.3	46.0	25.7	100	223

30MHz ~ 1GHz Radiated Spurious Emissions

Highest Frequency & Data rate: 1Mbps

RADIATED EMISSION

Date: 2010-01-12

 Model Name
 :
 UBC-100
 Reference No.
 :
 Image: Condition of the conditi

Memo :

LIMIT : FCC Part15 Subpart.B Class B (3m) MARGIN: 3 dB

No	. FREQ	READING	ANT	LOSS	GAIN	RESULT	LIMIT	MARGIN	ANTENNA	TABLE
	[MHz]	QP [dBuV]	FACTOR [dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[DEG]
	Horizont	:al	377							
1	47.379	23.6	10.4	1.0	22.4	1 12.6	40.0	27.4	100	358
2	825.854	19.2	19.7	4.7	23.3	20.3	46.0	25.7	301	98
	Vertical	L								
3	47.399	26.4	10.4	1.0	22.4	1 15.4	40.0	24.6	400	7
4	103.211	27.5	10.8	1.4	22.5	5 17.2	43.5	26.3	100	1
5	844.560	18.6	19.7	4.8	23.4	1 19.7	46.0	26.3	100	1

1GHz ~ 25GHz Radiated Spurious Emissions

Lowest Frequency & Data rate: 1Mbps

Frequency	ANT	Reading	g(dBuV)	T.F	Result(dBuV/m)		Limit(dBuV/m)		Margin(dB)	
(MHz)	Pol	PK	AV	(dB)	PK	AV	PK	AV	PK	AV
4804	Н	46.11	36.10	7.27	53.38	43.37	74.00	54.00	20.62	10.63
4804	V	46.15	36.65	7.27	53.42	43.92	74.00	54.00	20.58	10.08
-	-	ı	1	-	1	ı	-	ı	-	-
-	-	-	-	-	-	-	-	-	-	-

Middle Frequency & Data rate: 1Mbps

Frequency	ANT	Reading	g(dBuV)	T.F	Result(dBuV/m)		Limit(d	BuV/m)	Margin(dB)	
(MHz)	Pol	PK	AV	(dB)	PK	AV	PK	AV	PK	AV
4882	Н	45.47	35.27	7.65	53.12	42.92	74.00	54.00	20.88	11.08
4882	V	46.74	36.19	7.65	54.39	43.84	74.00	54.00	19.61	10.16
-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-

Highest Frequency & Data rate: 1Mbps

Frequency	ANT	Reading	g(dBuV)	T.F	Result(dBuV/m)		Limit(d	BuV/m)	Margin(dB)	
(MHz)	Pol	PK	AV	(dB)	PK	AV	PK	AV	PK	AV
4960	Н	44.47	33.09	7.96	52.43	41.05	74.00	54.00	21.57	12.95
4960	V	44.81	34.57	7.96	52.77	42.53	74.00	54.00	21.23	11.47
-	i	-	-	1	-	-	-	-	1	-
-	-	-	-	-	-	-	-	-	-	-

Note.

- 1. No other spurious and harmonic emissions were detected at a level greater than 20dB below limit.
- 2. Sample Calculation.

Margin = Limit – Result / Result = Reading + T.F / T.F = AF + CL - AGWhere, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain

4.2.8 AC Line Conducted Emissions

- Procedure:

The conducted emissions are measured in the shielded room with a spectrum analyzer in peak hold. While the measurement, EUT had its hopping function disabled at the middle channels in line with Section 15.31(m). Emissions closest to the limit are measured in the quasi-peak and average detector mode with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation and Exerciser operation. The highest emissions relative to the limit are listed.

- Measurement Data: NA

Note: Conducted emission test is not applicable. Because the power of the EUT is supplied from a car battery using a cigar jack adapter.

- Minimum Standard: FCC Part 15.207(a)/EN 55022

Frequency Range	Conducted Limit (dBuV)				
(MHz)	Quasi-Peak	Average			
0.15 ~ 0.5	66 to 56 *	56 to 46 *			
0.5 ~ 5	56	46			
5~30	60	50			

^{*} Decreases with the logarithm of the frequency

4.2.9 Antenna Requirements

- Procedure:

Describe how the EUT complies with the requirement that either its antenna is permanently attached, or that it employs a unique antenna connector, for every antenna proposed for use with the EUT.

- Conclusion: Comply

The Chip antenna is permanently attached on this device. Because of soldering.

- Minimum Standard:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions.

APPENDIX

TEST EQUIPMENT FOR TESTS

To facilitate inclusion on each page of the test equipment used for related tests, each item of test equipment.

	Туре	Manufacturer	Model	Cal.Due.Date (dd/mm/yy)	Next.Due.Date (dd/mm/yy)	S/N	
\boxtimes	Spectrum Analyzer	Agilent	E4440A	25/09/09	25/09/10	MY45304199	
	Spectrum Analyzer	Rohde Schwarz	FSQ26	05/06/09	05/06/10	200445	
	Spectrum Analyzer(RE)	H.P	8563E	13/10/09	13/10/10	3551A04634	
	Power Meter	H.P	EMP-442A	02/07/09	02/07/10	GB37170413	
	Power Sensor	H.P	8481A	02/07/09	02/07/10	3318A96332	
	Power Divider	Agilent	11636B	13/10/09	13/10/10	56471	
\boxtimes	Power Splitter	Anritsu	K241B	13/10/09	13/10/10	20611	
	Power Splitter	Anritsu	K241B	02/07/09	02/07/10	017060	
	Frequency Counter	H.P	5342A	13/07/09	13/07/10	2119A04450	
	TEMP & HUMIDITY Chamber	ЛЅСО	KR-100/J-RHC2	10/10/09	10/10/10	30604493/021031	
\boxtimes	Digital Multimeter	H.P	34401A	13/03/09	13/03/10	3146A13475, US36122178	
	Multifuction Synthesizer	HP	8904A	06/10/09	06/10/10	3633A08404	
\boxtimes	Signal Generator	Rohde Schwarz	SMR20	13/03/09	13/03/10	101251	
	Signal Generator	H.P	ESG-3000A	02/07/09	02/07/10	US37230529	
	Vector Signal Generator	Rohde Schwarz	SMJ100A	11/01/10	11/01/11	100148	
	Audio Analyzer	H.P	8903B	02/07/09	02/07/10	3011A09448	
	Modulation Analyzer	H.P	8901B	02/07/09	02/07/10	3028A03029	
	8960 Series 10 Wireless Comms. Test Set	Agilent	E5515C	02/07/09	02/07/10	GB43461134	
	Universal Radio communication Tester	Rohde Schwarz	CMU 200	19/05/09	19/05/10	106760	
\boxtimes	Bluetooth Tester	TESCOM	TC-3000B	02/07/09	02/07/10	3000B000268	
	Thermo hygrometer	BODYCOM	BJ5478	06/02/09	06/02/10	090205-3	
	Thermo hygrometer	BODYCOM	BJ5478	06/02/09	06/02/10	090205-2	
\boxtimes	Thermo hygrometer	BODYCOM	BJ5478	06/02/09	06/02/10	090205-4	
	AC Power supply	DAEKWANG	5KVA	13/03/09	13/03/10	20060321-1	
\boxtimes	DC Power Supply	НР	6622A	13/03/09	13/03/10	3448A03760	
	DC Power Supply	НР	6633A	13/03/09	13/03/10	3524A06634	
	BAND Reject Filter	Microwave Circuits	N0308372	06/10/09	06/10/10	3125-01DC0352	
	BAND Reject Filter	Wainwright	WRCG1750	06/10/09	06/10/10	2	
	High-Pass Filter	ANRITSU	MP526D	06/10/09	06/10/10	M27756	
	High-pass filter	Wainwright	WHKX2.1	N/A	N/A	1	
	High-Pass Filter	Wainwright	WHKX3.0	N/A	N/A	9	
	Tunable Notch Filter	Wainwright	WRCT800.0 /960.0-0.2/40-8SSK	N/A	N/A	10	
	Tunable Notch Filter	Wainwright	WRCD1700.0 /2000.0-0.2/40-10SSK	N/A	N/A	27	
	Tunable Notch Filter	Wainwright	WRCT1900.0/ 2200.0-5/40-10SSK	N/A	N/A	7	
	HORN ANT	ETS	3115	17/06/09	17/06/10	6419	
	HORN ANT	ETS	3115	23/09/09	23/09/10	21097	
	HORN ANT	A.H.Systems	SAS-574	10/06/09	10/06/10	154	
	HORN ANT	A.H.Systems	SAS-574	10/06/09	10/06/10	155	

	Туре	Manufacturer	Model	Cal.Due.Date (dd/mm/yy)	Next.Due.Date (dd/mm/yy)	S/N
	Dipole Antenna	Schwarzbeck	VHA9103	06/10/09	06/10/10	2116
	Dipole Antenna	Schwarzbeck	VHA9103	06/10/09	06/10/10	2117
	Dipole Antenna	Schwarzbeck	UHA9105	05/10/09	05/10/10	2261
	Dipole Antenna	Schwarzbeck	UHA9105	05/10/09	05/10/10	2262
	LOOP Antenna	ETS	6502	14/09/09	14/09/10	3471
	Coaxial Fixed Attenuators	Agilent	8491B	02/07/09	02/07/10	MY39260700
	Attenuator (3dB)	WEINSCHEL	56-3	16/12/09	16/12/10	Y2342
	Attenuator (3dB)	WEINSCHEL	56-3	16/12/09	16/12/10	Y2370
	Attenuator (10dB)	WEINSCHEL	23-10-34	01/10/09	01/10/10	BP4386
	Attenuator (10dB)	WEINSCHEL	23-10-34	11/01/10	11/01/11	BP4387
	Attenuator (20dB)	WEINSCHEL	86-20-11	06/10/09	06/10/10	432
	Attenuator (10dB)	WEINSCHEL	31696	06/10/09	06/10/10	446
	Attenuator (10dB)	WEINSCHEL	31696	06/10/09	06/10/10	408
	Attenuator (40dB)	WEINSCHEL	57-40-33	01/10/09	01/10/10	NN837
	Attenuator (30dB)	JFW	50FH-030-300	13/03/09	13/03/10	060320-1
	Type N Coaxial CIRCULATOR	NOVA MICROWAVE	0088CAN	02/07/09	02/07/10	788
	Type N Coaxial CIRCULATOR	NOVA MICROWAVE	0185CAN	02/07/09	02/07/10	790
	Type N Coaxial CIRCULATOR	NOVA MICROWAVE	0215CAN	02/07/09	02/07/10	112
	Amplifier (30dB)	Agilent	8449B	10/10/09	10/10/10	3008A01590
	Amplifier	EMPOWER	BBS3Q7ELU	02/02/09	02/02/10	1020
	RF Power Amplifier	OPHIRRF	5069F	02/07/09	02/07/10	1006
\boxtimes	EMI TEST RECEIVER	R&S	ESU	02/02/09	02/02/10	100014
	BILOG ANTENNA	SCHAFFNER	CBL6112B	02/06/09	02/06/10	2737
	Amplifier (22dB)	H.P	8447E	05/02/09	05/02/10	2945A02865
	EMI TEST RECEIVER	R&S	ESCI	12/05/09	12/05/10	100364
	LOG-PERIODIC ANT.	Schwarzbeck	UHALP9108A	30/05/09	30/05/10	590
	BICONICAL ANT.	Schwarzbeck	VHA 9103	02/06/09	02/06/10	2233
	LOG-PERIODIC ANT.	Schwarzbeck	UHALP9108A1	07/10/09	07/10/10	1098
	BICONICAL ANT.	Schwarzbeck	VHA 9103	06/10/09	06/10/10	91031946
	Low Noise Pre Amplifier	TSJ	MLA-100K01-B01-2	13/03/09	13/03/10	1252741
	Amplifier (25dB)	Agilent	8447D	12/05/09	12/05/10	2944A10144
	Amplifier (25dB)	Agilent	8447D	03/07/09	03/07/10	2648A04922
	Spectrum Analyzer(CE)	H.P	8591E	26/04/09	26/04/10	3649A05889
	LISN	Kyoritsu	KNW-407	03/07/09	03/07/10	8-317-8
	LISN	Kyoritsu	KNW-242	13/10/09	13/10/10	8-654-15
	CVCF	NF Electronic	4420	13/03/09	13/03/10	304935/337980
	DC BLOCK	Hyuplip	KEL-007	N/A	N/A	7-1581-5
	50 ohm Terminator	НМЕ	CT-01	12/01/10	12/01/11	N/A
	RFI/FIELD Intensity Meter	Kyoritsu	KNM-2402	03/07/09	03/07/10	4N-170-3