无线通信实验在线开放课程

主讲人: 吴光 博士

广东省教学质量工程建设项目

Lab 15: OFDM Technology

主讲人: 吴光 博士

Email: wug@sustech.edu.cn

Demo: OFDM Technology

L (

1 0 0 0 1 1

项目	每100毫升	营养素参考值
能量	190千焦	2%
蛋白质	0克	0%
脂肪	0克	0%
-饱和脂肪酸	0克	0%
碳水化合物	11.2克	4%
-糖	11.2克	
钠	12毫克	1%

V.S.

OFDM Transmitter OFDM Receiver

Multipath Propagation

Transmitter

Impulse response: $h_2[n] * h_1[n] = \delta[n] \text{ or } \delta[n-k]$

ISI | as the Bandwidth |

Narrow-Band Channel

Wide-Band Channel

Impulse response: $h_2[n] * h_1[n] = \delta[n] \text{ or } \delta[n-k]$

Understanding OFDM

Exercise: Simple OFDM

OFDM Transmitter OFDM Receiver

$$\bar{y}[n] = x[n] * h[n]$$

$$\downarrow$$

$$DFT[\bar{y}[n], N] = DFT[x[n], N] \cdot DFT[h[n], N]$$

$$\downarrow$$

$$DFT[\bar{y}[n], N] = s[n] \cdot DFT[h[n], N]$$

$$\bar{y}[n] = x[n] * h[n]$$

$$DFT[\bar{y}[n], N] = DFT[x[n], N] \cdot DFT[h[n], N]$$

$$DFT[\bar{y}[n], N] = s[n] \cdot DFT[h[n], N]$$

$$x[n] \longrightarrow x_{cp}[n]$$

$$x_{cp}[n] = x[N-M], \dots, x[N-1], x[0], x[1], \dots, x[N-1]$$

$$DFT[\bar{y}[n], N] = DFT[x[n], N] \cdot DFT[h[n], N]$$

$$DFT[\bar{y}[n], N] = s[n] \cdot DFT[h[n], N]$$

OFDM Transmitter OFDM Receiver

Orthogonality between subcarriers

OFDM symbol

Multipath Channel

Output Waveform

2. Add Cyclic Prefix (CP)

Add Cyclic Prefix (CP)

Integration Interval

OFDM symbol

Output Waveform

3. Subcarrier mapping for OFDM

Symbol	,	Subcarrier	Freq. Sp	ectrun	1		
			w[0]	\longleftrightarrow	0	\longrightarrow	DC subcarrier
s[1]	\longrightarrow	d(-3) —	w[1]	\longleftrightarrow	s[1]		
s[2]	\longrightarrow	d(-2)	$\longrightarrow w[2]$	\longleftrightarrow	s[2]		
s[3]	\longrightarrow	d(-1)	$\longrightarrow w[3]$	\longleftrightarrow	s[3]		
s[4]	\longrightarrow	d(+1)	w[4]	\longleftrightarrow	0	─	Null Tones
<i>s</i> [5]	\longrightarrow	d(+2)	w[5]	\longleftrightarrow	s[4]		
<i>s</i> [6]	\longrightarrow	d(+3)	w[6]	\longleftrightarrow	<i>s</i> [5]		
			w[7]	\longleftrightarrow	s[6]		

About FFT and IFFT

<

OFDM Transmitter

OFDM Receiver

项目设计

• Basic:

- 1、Task 1: Programming for OFDM Transceiver. (30 Points)
- 1、Task 2: Frequency Selectivity of Wireless Channels. (15 Points)
- 2. Task 3: Sensitivity to Frequency Offsets. (15 Points)

Advanced:

- 1、Task 1: High-order Modulation of Subcarrier. (20 Points)
- 2、Task 2: Image/Video Transmission with OFDM. (20 Points)

Task1: Frequency Selectivity of Wireless Channels

- Packet length = 500 bits
- Modulation type = QPSK
- Channel estimate length = 4
- FFT size (N) = 64
- Length of CP $(L_c) = 8$
- Null tones = $\{0, 31, 32, 33\}$

Task1: Frequency Selectivity of Wireless Channels

- TX sample rate = 4 MSamp/sec
- TX oversample factor = 20
- RX sample rate = 4 MSamp/sec
- RX oversample factor = 20
- Capture time = 2.4 msec

Task1: Frequency Selectivity of Wireless Channels

- TX sample rate = 20 MSamp/sec
- TX oversample factor = 4
- RX sample rate = 10 MSamp/sec
- RX oversample factor = 2
- Capture time = $100 \mu sec$

提示任务1: 子载波数N=64, 循环前缀Lc=8, 射频载波fc=915MHz, 上采样因子OFactor=4

SampleRate=400KHz

SampleRate=5MHz

SampleRate=800KHz

SampleRate=4MHz

SampleRate=1MHz

SampleRate=2MHz

Frequency Offset: 0 Hz

Frequency Offset: 10 Hz

Frequency Offset: 20 Hz

Frequency Offset: 30 Hz

- TX sample rate = 20 MSamp/sec
- TX oversample factor = 20
- RX sample rate = 4 MSamp/sec
- RX oversample factor = 4
- Capture time = $500 \mu sec$
- Frequency offset (Hz) = 200 Hz

SHARED							
modulation QPSK	type packet length	(bits) # of Iterations					
Training Se	equence Type 1a Short Training	modulation type PSK pulse shaping filter Raised filter parameter 0.5 filter length (symbols)					
64 Null Tones							
1 100		32 🕏 0 🕏 0 ing Sequence Length of CP					

Task2: Sensitivity to Frequency Offsets

Task2: Sensitivity to Frequency Offsets

[20,20,4,4] N=64

[4,4,4,4] N=1024

$$[20,20,4,4]$$
 N=1024

[Sample Rate, Over sample factor]

提示任务2: 子载波数N=64/512/1024, 循环前缀Lc=8/16/32, 上采样因子OFactor=10, 采样率SampleRate=4MHz

频偏 df=50Hz

频偏 df=100Hz

N=512

N = 64

1.00.80.60.40.20.0-0.2-0.4-0.6-0.8-1.0-1.00.8-0.8-1.0-1.00.8-0.8-1.0-1.0-0.8-0.8-0.8-1.0-1.0-0.8-0.8-1.0-1.0-0.8-0.8-1.0-1.0-0.8-0.8-1.0-1.0-0.8-0.8-0.8-1.0-1.0-0.8-0

N=1024

Question ?

