Principal Component Analysis (PCA) and Principal Geodesic Analysis (PGA)

Geometry of Data

October 6, 2022

Centering a Data Matrix

Data matrix X: $n \times d$

n rows (data points)d columns (dimensions, or features)

Centering a Data Matrix

Data matrix X: $n \times d$

n rows (data points) d columns (dimensions, or features)

Mean of data (rows):

$$\mu = \frac{1}{n} \sum_{i=1}^{n} X_{i\bullet}$$

Centering a Data Matrix

Data matrix X: $n \times d$

n rows (data points) d columns (dimensions, or features)

Mean of data (rows):

$$\mu = \frac{1}{n} \sum_{i=1}^{n} X_{i\bullet}$$

Centered data (subtract mean from each row):

$$\tilde{X}_{i\bullet} = X_{i\bullet} - \mu$$

Covariance Matrix

Sample covariance matrix:

$$\Sigma = \frac{1}{n} \tilde{X}^T \tilde{X}$$

Covariance Matrix

Sample covariance matrix:

$$\Sigma = \frac{1}{n} \tilde{X}^T \tilde{X}$$

 Σ_{ij} is the covariance between the ith and jth dimension (feature)

$$\Sigma_{ij} = \frac{1}{n} \sum_{k=1}^{n} (X_{ki} - \mu_i)(X_{kj} - \mu_j) = \operatorname{cov}(X_{\bullet i}, X_{\bullet j})$$

Properties

Covariance is **symmetric**: $\Sigma = \Sigma^T$

$$\Sigma_{ij} = \operatorname{cov}(X_{\bullet i}, X_{\bullet j}) = \operatorname{cov}(X_{\bullet j}, X_{\bullet i}) = \Sigma_{ji}$$

Covariance is **positive-semidefinite**:

$$v^T \Sigma v \ge 0$$

Eigenvectors, Eigenvalues

Square matrix A: $d \times d$ Eigenvector $v \in \mathbb{R}^d$ and eigenvalue $\lambda \in \mathbb{R}$:

$$Av = \lambda v$$

Eigenvectors, Eigenvalues

Square matrix A: $d \times d$

Eigenvector $v \in \mathbb{R}^d$ and eigenvalue $\lambda \in \mathbb{R}$:

$$Av = \lambda v$$

Meaning: The transformation A is a scaling when applied to v

Eigenanalysis of a Symmetric Matrix

Fact: If A is a $d \times d$ symmetric matrix, it has *exactly* d real eigenvalues $\lambda_k \in \mathbb{R}$ (possibly with repeats).

Each eigenvalue λ_k has a corresponding eigenvector $v_k \in \mathbb{R}^d$.

Eigenanalysis of a Symmetric Matrix

The SVD of a symmetric matrix looks like this:

$$A = VSV^T$$

- ▶ The singular values are the eigenvalues: $s_k = \lambda_k$.
- The left and right singular vectors are the same and are the eigenvectors, v_k .

Principal Component Analysis

PCA is an eigenanalysis of the covariance matrix:

$$\Sigma = V\Lambda V^T$$

Principal Component Analysis

PCA is an eigenanalysis of the covariance matrix:

$$\Sigma = V\Lambda V^T$$

- ▶ Eigenvectors: $v_k = V_{\bullet k}$ are principal components
- ► Eigenvalues: λ_k are the **variance** of the data in the v_k direction

PCA Algorithm Summary

Input: Data matrix $X: n \times d$

- 1. Compute centered data $ilde{X}$
- 2. Compute covariance matrix:

$$\Sigma = \frac{1}{n} \tilde{X}^T \tilde{X}$$

3. Eigenanalysis of covariance:

$$\Sigma = V\Lambda V^T$$

PCA Algorithm Summary

Input: Data matrix $X: n \times d$

- 1. Compute centered data $ilde{X}$
- 2. Compute covariance matrix:

$$\Sigma = \frac{1}{n} \tilde{X}^T \tilde{X}$$

3. Eigenanalysis of covariance:

$$\Sigma = V\Lambda V^T$$

Hint: numpy.linalg.eig computes an eigenanalysis!

Dimensionality Reduction

Goal: Find a k-dimensional subspace, V_k , that best fits our data

Dimensionality Reduction

Goal: Find a k-dimensional subspace, V_k , that best fits our data

Least-squares fit:

$$\arg\min_{V_k} \sum_{i=1}^n \operatorname{distance}(V_k, x_i)^2$$

Dimensionality Reduction

Goal: Find a k-dimensional subspace, V_k , that best fits our data

Least-squares fit:

$$\arg\min_{V_k} \sum_{i=1}^n \operatorname{distance}(V_k, x_i)^2$$

Solution: Use first *k* principal components:

$$V_k = \operatorname{span}(v_1, v_2, \dots, v_k)$$

Example: Iris Data

Example: Iris Data PCA

Scree Plot: Eigenvalues (Variance)

Horizontal axis: index k

Vertical axis: proportion of variance: $\frac{\lambda}{\sum^d}$

$$\frac{\lambda_k}{\sum_{j=1}^d \lambda_j}$$

Linear Statistics (PCA)

Linear Statistics (PCA)

Linear Statistics (PCA)

Linear Statistics (PCA)

Curved Statistics (PGA)

Linear Statistics (PCA)

Linear Statistics (PCA)

Linear Statistics (PCA)

Curved Statistics (PGA)

PGA Definition

 $v_i \in T_\mu M$: principal components $U \subset M$: open set containing data π_H : operator to project point to H

$$\begin{split} v_1 &= \arg\min_{\|v\|=1} \sum_{i=1}^N ||\operatorname{Log} y_i(\pi_H(y_i))||^2, \\ \text{where} \quad H &= \operatorname{Exp}_{\mu}(\operatorname{span}(\{v\}) \cap U). \end{split}$$

$$u_k = \arg\min_{\|\nu\|=1} \sum_{i=1}^N ||\log y_i(\pi_H(y_i))||^2,$$
where $H = \operatorname{Exp}_{\mu}(\operatorname{span}(\{v_1, \dots, v_{k-1}, \nu\}) \cap U).$

PGA Approximation

Input: $y_1, \ldots, y_N \in M$

Output: PCs, $v_k \in T_\mu M$, variances, $\lambda_k \in \mathbb{R}$

- 1. $\mu = \text{Fr\'echet mean of } \{y_i\}$
- $2. \ u_i = \text{Log}\,\mu(y_i)$
- 3. $\mathbf{S} = \frac{1}{N-1} \sum_{i=1}^{N} u_i u_i^T$
- 4. $\{v_k, \lambda_k\}$ = eigenvectors/eigenvalues of **S**.