CS 228 : Logic in Computer Science

Krishna. S

Satisfaction, Validity

- ▶ Given a FO formula $\varphi(x_1, ..., x_n)$ over a signature τ , is it satisfiable/valid?
 - Satisfiable, if there exists a τ -structure \mathcal{A} and an assignment α for x_1, \ldots, x_n in $u(\mathcal{A})$ such that $\mathcal{A} \models_{\alpha} \varphi(x_1, \ldots, x_n)$

Satisfaction, Validity

- ▶ Given a FO formula $\varphi(x_1, ..., x_n)$ over a signature τ , is it satisfiable/valid?
 - ► Satisfiable, if there exists a τ -structure \mathcal{A} and an assignment α for x_1, \ldots, x_n in $u(\mathcal{A})$ such that $\mathcal{A} \models_{\alpha} \varphi(x_1, \ldots, x_n)$
 - ▶ Valid, if for any τ -structure \mathcal{A} and any assignment α for x_1, \ldots, x_n in $u(\mathcal{A}), \mathcal{A} \models_{\alpha} \varphi(x_1, \ldots, x_n)$
- ► Assume we fix the type of the structure A, say words (why words?)

FOL over Words

- ▶ Given an FO sentence φ over words, is it satisfiable/valid?
- Satisfiable (Valid) iff some word (all words) satisfies φ

FOL over Words

- Given an FO sentence φ over words, is it satisfiable/valid?
- Satisfiable (Valid) iff some word (all words) satisfies φ
- There could be infinitely many words w satisfying φ
- ▶ $L(\varphi) = \{ \text{ words } w \mid w \models \varphi \}$ is called the language of φ

FOL over Words

- Given an FO sentence φ over words, is it satisfiable/valid?
- Satisfiable (Valid) iff some word (all words) satisfies φ
- ▶ There could be infinitely many words w satisfying φ
- ▶ $L(\varphi) = \{ \text{ words } w \mid w \models \varphi \} \text{ is called the language of } \varphi$
- Given φ, write an algorithm to check L(φ) = Ø words which satisfies the FOL formula PHI are the language of the PHI.

First-Order Logic over Words

- ▶ Signature for words : <, S and Q_a for finitely many symbols a
- Given a FO formula over words, the signature is fixed

- ▶ Signature for words : <, S and Q_a for finitely many symbols a
- Given a FO formula over words, the signature is fixed
- Expressiveness
 - Given a set of words or a language L, can you write a FO formula φ such that $L(\varphi) = L$

- ▶ Signature for words : <, S and Q_a for finitely many symbols a
- Given a FO formula over words, the signature is fixed
- Expressiveness
 - Given a set of words or a language L, can you write a FO formula φ such that $L(\varphi) = L$
 - If you can, FO is expressive enough to capture your language/specification/property

- ▶ Signature for words : <, S and Q_a for finitely many symbols a
- Given a FO formula over words, the signature is fixed
- Expressiveness
 - Given a set of words or a language L, can you write a FO formula φ such that $L(\varphi) = L$
 - If you can, FO is expressive enough to capture your language/specification/property
 - If you cannot, show that FO cannot capture your property.
- Satisfiability

- ▶ Signature for words : <, S and Q_a for finitely many symbols a
- Given a FO formula over words, the signature is fixed
- Expressiveness
 - Given a set of words or a language L, can you write a FO formula φ such that $L(\varphi) = L$
 - If you can, FO is expressive enough to capture your language/specification/property
 - If you cannot, show that FO cannot capture your property.
- ▶ Satisfiability
 - ▶ Given a FO formula φ over words, is $L(\varphi)$ non-empty? Satisfiable if it is non-empty.

A Primer for Words

Alphabet

An alphabet Σ is a finite set

```
\Sigma = \{a, b, ..., z\}
\Sigma = \{+, \alpha, 100, B\}
```

- Elements of Σ called letters or symbols
- ▶ A word or string over Σ is a finite sequence of symbols from Σ
- ▶ If $\Sigma = \{a, b\}$, then abababa is a word of length 7
- ▶ The length of a word w is denoted |w|
- There is a unique word of length 0 denoted ϵ , called the empty word
- $|\epsilon| = 0$

Notations for Words

- ▶ aaaaa denoted a⁵
- $\rightarrow a^0 = \epsilon$
- $a^{n+1} = a^n.a = a.a^n$
- ▶ The set of all words over Σ is denoted Σ^*
 - $\{a,b\}^* = \{\epsilon, a, b, aa, ab, ba, bb, aaa, ...\}$
 - $\{a\}^* = \{\epsilon, a, aa, aaa, \dots\} = \{a^n \mid n \geqslant 0\}$
- ▶ By convention, $\{\}^* = \{\epsilon\}$

Notations for Words

- Σ is a finite set
- \triangleright Σ^* is the infinite set of all finite words over alphabet Σ
- ▶ Each $w \in \Sigma^*$ is a finite word
 - $\{a,b\} = \{b,a\}$ but $ab \neq ba$
 - $\{ a, a, b \} = \{ a, b \}$ but $aab \neq ab$
 - Ø is the set consisting of no words
 - $\{\epsilon\}$ is a set having the single word ϵ
 - $ightharpoonup \epsilon$ is a word

Operations on Words

- Concatenation of words : x.y = xy
 - ► Concatenation is associative : x.(yz) = (xy).z
 - ▶ Concatenation not commutative in general $x.y \neq y.x$
 - ϵ is the identity for concatenation $\epsilon . x = x . \epsilon = x$
 - |x.y| = |x| + |y|
- xⁿ: catenating word x n times
 - ightharpoonup (aab)⁵ = aabaabaabaabaab
 - $(aab)^0 = \epsilon$
 - $(aab)^* = \{\epsilon, aab, aabaab, aabaabaab, ...\}$
 - $x^{n+1} = x^n x$

More Operations on Words

▶ For $a \in \Sigma$ and $x \in \Sigma^*$,

 $|x|_a$ = number of times the symbol a occurs in the word x

- ▶ $|aabbaa|_a = 4$, $|aabbaa|_b = 2$
- $|\epsilon|_a=0$
- ▶ Prefix of a word $w \in \Sigma^*$ is an initial subword of w

$$Pref(w) = \{x \in \Sigma^* \mid \exists y \in \Sigma^*, w = x.y\}$$
 Take words from set which are prefixes.

- ▶ $Pref(aaba) = \{\epsilon, a, aa, aab, aaba\}$
- Proper prefixes = {a, aa, aab}
- $ightharpoonup \epsilon$, aaba improper prefixes

Operation on Sets

Given a finite alphabet Σ , denote by A, B, C, \ldots subsets of Σ^*

- Subsets of Σ* are called languages
- $\blacktriangleright A \cup B = \{x \in \Sigma^* \mid x \in A \text{ or } x \in B\}$

►
$$A = a^*, B = \{b, bb\}, A \cup B = a^* \cup \{b, bb\}$$

- ▶ $A \cap B = \{x \in \Sigma^* \mid x \in A \text{ and } x \in B\}$
 - ullet $A = (ab)^*, B = \{abab, \epsilon, bb\}, A \cap B = \{\epsilon, abab\}$
- $\overline{A} = \{x \in \Sigma^* \mid x \notin A\}$
 - ► For $\Sigma = \{a\}$ and $A = (aa)^*$, $\overline{A} = \{a, a^3, a^5, \dots\}$ See the empty word is not here.
- ightharpoonup $AB = \{xy \mid x \in A, y \in B\}$
 - $A = \{a, ba\}, B = \{\epsilon, aa, bb\}$
 - $AB = \{a, a^3, abb, ba, ba^3, babb\}$
 - \triangleright BA = {a, ba, a³, aaba, bba, bbba}

Operation on Sets

For a set $A \subseteq \Sigma^*$,

- $A^0 = \{\epsilon\}$
- $A^{n+1} = A.A^n$
 - $\{a, ab\}^2 = \{a, ab\}.\{a, ab\} = \{aa, aab, aba, abab\}$
 - $\{a,b\}^n = \{x \in \{a,b\}^* \mid |x| = n\}$
- $A^* = A^0 \cup A \cup A^2 \cup \cdots = \bigcup_{i \ge 0} A^i$
- $A^+ = AA^* = A \cup A^2 \cup \cdots = \bigcup_{i>1} A^i$
- Union : Associative, commutative
- Concatenation : Associative, Non commutative
- $A \cup \emptyset = \emptyset \cup A = A$
- ▶ $\emptyset A = A\emptyset = \emptyset$ Shouldn't it be A.

Operation on Sets

- Union, Intersection distribute over union
 - $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
 - $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- Concatenation distributes over union
 - $A(\cup_{i\in I}B_i) = \cup_{i\in I}AB_i$
 - $(\cup_{i\in I}B_i)A = \cup_{i\in I}B_iA$
- Concatenation does not distribute over interesection
 - $A = \{a, ab\}, B = \{b\}, C = \{\epsilon\}$
 - ▶ $A(B \cap C) \neq AB \cap AC$

FO for Languages

Formalize in FO

Write FO formulae φ_i such that $L(\varphi_i) = L_i$ for i = 1, ..., 5.

- $ightharpoonup L_1$ = Words that have exactly one occurrence of the letter c
- ▶ L_2 = Words that begin with a and end with b
- ▶ L_3 = Words that have no two consecutive *a*'s
- ► L_4 = Words in which any a is followed immediately by a b
- ▶ L_5 = Words in which whenever an a occurs, it is followed eventually by a b, and no c occurs in between the a and the b aabbabab, $aabbcbccaab \in L_5$, $aacaab \notin L_5$.

Satisfiability of FO over Words

- ▶ Recall : Given an FO sentence φ over words, is $L(\varphi) = \emptyset$?
- ► Algorithm?

▶ Given FO formula φ over an alphabet Σ , construct an edge labeled graph G_{φ} : a graph whose edges are labeled by Σ .

Given FO formula φ over an alphabet Σ, construct an edge labeled graph Gφ: a graph whose edges are labeled by Σ.

Each path in the graph gives rise to a word over Σ , obtained by reading off the labels on the edges

Given FO formula φ over an alphabet Σ, construct an edge labeled graph Gφ: a graph whose edges are labeled by Σ.

- **Each** path in the graph gives rise to a word over Σ , obtained by reading off the labels on the edges
- G_{ω} has some special kinds of vertices
 - ► There is a unique vertex called the start vertex (blue vertex)
 - ► There are some vertices called good vertices (yellow vertex)

Given FO formula φ over an alphabet Σ, construct an edge labeled graph Gφ: a graph whose edges are labeled by Σ.

- ▶ Each path in the graph gives rise to a word over Σ , obtained by reading off the labels on the edges
- G_{ω} has some special kinds of vertices
 - ► There is a unique vertex called the start vertex (blue vertex)
 - ► There are some vertices called good vertices (yellow vertex)
- ▶ Read off words on paths from the start vertex to any final vertex and call this set of words $L(G_{\omega})$
- ▶ Ensure that G_{ω} is constructed such that $L(\varphi) = L(G_{\omega})$.

▶ Why does this help?

- ▶ Why does this help?
- We know how to check the existence of a path between 2 vertices in a graph easily

- Why does this help?
- We know how to check the existence of a path between 2 vertices in a graph easily
- If somehow we manage to construct G_{φ} correctly, then checking satisfiability of φ is same as checking the reachability of some good vertex from the start vertex of G_{φ} .

- Why does this help?
- We know how to check the existence of a path between 2 vertices in a graph easily
- If somehow we manage to construct G_{φ} correctly, then checking satisfiability of φ is same as checking the reachability of some good vertex from the start vertex of G_{φ} .
- ▶ How to construct G_{ω} ?

A First Machine A

- Colored circles called states
- Arrows between circles called transitions
- ▶ Blue state called an initial state
- Doubly circled state called a final state

A First Machine A

- ▶ A path from one state to another gives a word over $\Sigma = \{a, b, c\}$
- The machine accepts words along paths from an initial state to a final state
- ➤ The set of words accepted by the machine is called the language accepted by the machine

A First Machine A

- ▶ What is the language L accepted by this machine, L(A)?
- Write an FO formula φ such that $L(\varphi) = L(A)$

A Second and a Third Machine B, C

- ▶ What are L(B), L(C)?
- ▶ Give an FO formula φ such that $L(\varphi) = L(B) \cup L(C)$