Diagrama de Clases

Relaciones entre clases

- 1. Usuario \leftrightarrow Dispositivo
 - o Tipo: Asociación
 - o Cardinalidad: 1 Usuario \rightarrow n Dispositivos
 - Justificación: Cada usuario puede gestionar múltiples dispositivos, pero un dispositivo está asociado a un solo usuario. Se representa con línea continua y flecha desde Usuario hacia Dispositivo, indicando navegabilidad.

C

2. Usuario ↔ Automatización

- o **Tipo:** Asociación
- o **Cardinalidad:** 1 Usuario → n Automatizaciones
- Justificación: Los usuarios pueden activar o configurar varias automatizaciones; la flecha apunta del Usuario hacia Automatización para mostrar que el control lo tiene el usuario.

3. Automatización ↔ Dispositivo

- o Tipo: Agregación
- o Cardinalidad: n ↔ m
- Justificación: Una automatización contiene referencias a múltiples dispositivos y un dispositivo puede estar en varias automatizaciones. Los dispositivos existen independientemente de la automatización, por eso se usa agregación (rombo vacío en el extremo de Automatización).

Principios de POO aplicados

1. Abstracción:

 Cada clase representa un concepto real del sistema (Usuario, Dispositivo, Automatización), ocultando la complejidad interna de la gestión de datos y operaciones.

2. Encapsulamiento:

 Los atributos de las clases se pueden definir como privados o protegidos en Python (_atributo o __atributo) y se acceden mediante métodos públicos, protegiendo la integridad de los datos.

3. Agregación:

La relación Automatización ↔ Dispositivo refleja agregación:
 Automatización "usa" varios dispositivos, pero los dispositivos viven independientemente.

4. Asociación:

 Las relaciones Usuario ↔ Dispositivo y Usuario ↔ Automatización son asociaciones simples que muestran navegación y control.