Lecture Two - Second & Higher Order Equations

Section 2.1- Definitions of Second and Higher Order Equations

A second-order differential equation is an equation involving the independent variable *t* and unknown function *y*.

$$y'' = f(t, y, y')$$

Linear equation:

$$y'' + p(t)y' + q(t)y = g(t)$$

The coefficient p, q, and g can be arbitrary functions.

The equation is said to be *homogeneous* when:

$$y'' + p(t)y' + q(t)y = 0$$

Newton's - Hooke's Law for Springs: F = kx

Hooke's Law says that the force required to hold a stretched or compressed spring x units from its natural (unstressed) length is proportional to x. In symbols

$$F = kx$$

$$F \to - \bigvee_{i \to -\infty}^{k} -$$

The constant *k*, measured in force units per unit length, is a characteristic of the spring, called *the force constant* (or *spring constant*) of the spring.

- \triangleright To stretch the spring to a position x > 0, a force F > 0 (in the **positive** direction) is required.
- \triangleright To compress the spring to a position x < 0, a force F < 0 (in the *negative* direction) is required.

$$1 kg.m/s^2 = 1 N$$
 (Newton)

Example

A 4-kg weight is suspended from a spring. The displacement of the spring-mass equilibrium from the spring equilibrium is measured to be 49 cm. What is the spring constant?

Solution

$$mg = kx_0$$

$$k = \frac{mg}{x_0}$$

$$= \frac{4(9.8)}{0.49}$$

$$= 80 N / m$$

Proposition

$$y'' + p(t)y' + q(t)y = 0$$

Solutions:
$$y = C_1 y_1 + C_2 y_2$$

 C_1 , C_2 are any constant.

 $y_1(t) & y_2(t)$ are linearly independent solutions forming a *fundamental set of solutions*.

Definition

A linear combination of the two functions u & v is any function of the form

$$w = Au + Bv$$

Definition

Two functions u & v are said to be linearly independent on the interval (α, β) , if neither is a constant multiple of the order on that interval. If one is a constant multiple of the other on (α, β) , they said to be linearly dependent there.

Wronskian

The Wronskian is a function named after the Polish mathematician Józef Hoene-Wroński and it is used to determine whether a set of differentiable functions (solutions) is *linearly independent* on a given interval.

$$W(x) = \begin{vmatrix} f_1(x) & f_2(x) & f_n(x) \\ f_1'(x) & f_2'(x) & f_n'(x) \\ f_1^{(n-1)}(x) & f_2^{(n-1)}(x) & f_n^{(n-1)}(x) \end{vmatrix}$$

$$W = \begin{vmatrix} u & v \\ u' & v' \end{vmatrix} = uv' - vu'$$

If $W = 0 \implies u \& v$ are linearly dependent.

If $W \neq 0 \implies u \& v$ are linearly independent.

Theorem

Suppose that y_1 and y_2 are two solutions of the homogeneous second-order linear equation

$$y'' + p(x)y' + q(x)y = 0$$

On an open interval I on which p and q are continuous

- **1.** If y_1 and y_2 are linearly dependent, then $W(y_1, y_2) \equiv 0$ on I.
- **2.** If y_1 and y_2 are linearly independent, then $W(y_1, y_2) \neq 0$ at each point of I.

Example

Use the Wronskian to show that $\mathbf{f}_1 = x$, $\mathbf{f}_2 = \sin x$ are linearly independence

Solution

The Wronskian is

$$W(x) = \begin{vmatrix} x & \sin x \\ 1 & \cos x \end{vmatrix} = x \cos x - \sin x \neq 0$$

This function is not identically zero. Thus the functions are linearly independent.

System Equations

A Planar System of 1^{St} - order equations is a set of two first-order differential equations involving two unknown

$$x' = f(t, x, y)$$

$$y' = g(t, x, y)$$

where f and g are functions of the independent variable t and the unknown x and y.

Second-Order Equations and Planar Systems

$$y'' = f(t, y, y')$$

Let's re-write in first-order system:

$$y' = v$$
$$v' = F(t, y, v)$$

$$y'' + p(t)y' + q(t)y = F(t)$$

$$y'' = F(t) - p(t)y' - q(t)y$$

$$\mathbf{v'} = F(t) - p(t)\mathbf{v} - q(t)\mathbf{y}$$

$$y' = v$$

$$v' = F(t) - p(t)v - q(t)y$$

Example

Consider a damped unforced spring: y'' + 0.4y' + 3y = 0; which satisfies the initial conditions y(0) = 2 and v(0) = y'(0) = -1

Solution

$$\begin{cases} y' = v \\ v' = -0.4v - 3y \end{cases}$$

$$v' + 0.4v = -3y$$

$$\int -3ye^{0.4y} dy = -\frac{3}{.16}e^{0.4y} (0.4y - 1) \qquad \int xe^{ax} dx = \frac{e^{ax}}{a^2} (ax - 1)$$

$$v(y) = -18.75e^{0.4y} (0.4y - 1) + C$$

$$v = -7.5y + 18.75 + Ce^{-0.4y}$$

$$v(0) = -7.5(0) + 18.75 + Ce^{-0.4(0)}$$

$$-1 = 18.75 + C \implies C = -19.75$$

$$v(y) = -7.5y + 18.75 - 19.75e^{-0.4y}$$

$$y' = v = -7.5y + 18.75 - 19.75e^{-0.4y}$$

$$\frac{dy}{dt} = -7.5y + 18.75 - 19.75e^{-0.4y}$$

$$y(t) = -\frac{3\sqrt{74}}{74}e^{-t/5}\sin\left(\frac{\sqrt{74}}{5}t\right) + 2e^{-t/5}\cos\left(\frac{\sqrt{74}}{5}t\right)$$

The *yv*-plane is called the *phase plane*.

Phase Plane Plot

Displacement y and the velocity v

Exercises Section 2.1 – Definitions of 2nd and Higher Order Equations

(*Exercises* 1- 4) Decide whether the equation is linear or nonlinear. For the linear equation, state whether the equation is homogeneous or inhomogeneous.

1.
$$t^2y'' = 4y' - \sin t$$

$$3. \quad t^2y'' + 4yy' = 0$$

2.
$$ty'' + (\sin t)y' = 4y - \cos 5t$$

4.
$$y'' + 4y' + 7y = 3e^{-t}\sin t$$

Show by direct substitution that the given functions $y_1(t)$ and $y_2(t)$ are solutions of the given differential equation. Then verify by direct substitution, that any linear combination $C_1y_1(t) + C_2y_2(t)$ of the 2 given solutions is also a solution.

5.
$$y'' + 4y = 0$$
; $y_1(t) = \cos 2t$ $y_2(t) = \sin 2t$

6.
$$y'' - 2y' + 2y = 0$$
; $y_1(t) = e^t \cos t$ $y_2(t) = e^t \sin t$

7. Explain why $y_1(t)$ and $y_2(t)$ are linearly independent solutions. Calculate Wronskian and use it to explain the independence of the given solutions.

$$y'' + 9y = 0;$$
 $y_1(t) = \cos 3t$ $y_2(t) = \sin 3t$

8. Show that $y_1(t) = e^t$ and $y_2(t) = e^{-3t}$ form a fundamental set of solutions for y'' + 2y' - 3y = 0, then find a solution satisfying y(0) = 1 and y'(0) = -2.

Use the Wronskian to show that are linearly independence

9.
$$y_1(x) = e^{-3x}, y_2(x) = e^{3x}$$

10.
$$\mathbf{f}_1 = 1$$
, $\mathbf{f}_2 = e^x$, $\mathbf{f}_3 = e^{2x}$

11.
$$\left\{ e^{x}, xe^{x}, (x+1)e^{x} \right\}$$

12.
$$y_1(x) = e^{-3x}$$
, $y_2(x) = \cos 2x$, $y_3(x) = \sin 2x$

13.
$$y_1(x) = e^x$$
, $y_2(x) = e^{2x}$, $y_3(x) = e^{3x}$

14.
$$y_1(x) = \cos^2 x$$
, $y_2(x) = \sin^2 x$, $y_3(x) = \sec^2 x$, $y_4(x) = \tan^2 x$

Determine whether the functions $y_1(t)$ and $y_2(t)$ are linearly dependent on the interval (0, 1)

15.
$$y_1(t) = \cos t \sin t$$
, $y_2(t) = \sin 2t$

18.
$$y_1(t) = t^2 \cos(\ln t), \quad y_2(t) = t^2 \sin(\ln t)$$

16.
$$y_1(t) = e^{3t}$$
, $y_2(t) = e^{-4t}$

19.
$$y_1(t) = \tan^2 t - \sec^2 t$$
, $y_2(t) = 3$

17.
$$y_1(t) = te^{2t}, y_2(t) = e^{2t}$$

20.
$$y_1(t) \equiv 0, \quad y_2(t) = e^t$$

Use the substitution v = y' to write each second-order equation as a system of two first-order differential equation.

21.
$$y'' + 2y' - 3y = 0$$

22.
$$y'' + 3y' + 4y = 2\cos 2t$$

23.
$$y'' + 2y' + 2y = 2\sin 2\pi t$$

24.
$$y'' + \mu(t^2 - 1)y' + y = 0$$

25.
$$4y'' + 4y' + y = 0$$

Find a particular solution satisfying the given initial conditions

26.
$$y'' - 4y = 0$$
; $y_1(t) = e^{2t}$, $y_2(t) = 2e^{-2t}$; $y(0) = 1$, $y'(0) = -2$

27.
$$y'' - y = 0$$
; $y_1(t) = 2e^t$, $y_2(t) = e^{-t+3}$; $y(-1) = 1$, $y'(-1) = 0$

28.
$$y'' + y = 0$$
; $y_1(t) = 0$, $y_2(t) = \sin t$; $y(\frac{\pi}{2}) = 1$, $y'(\frac{\pi}{2}) = 1$

29.
$$y'' + y = 0$$
; $y_1(t) = \cos t$, $y_2(t) = \sin t$; $y(\frac{\pi}{2}) = 1$, $y'(\frac{\pi}{2}) = 1$

30.
$$y'' - 4y' + 4y = 0$$
; $y_1(t) = e^{2t}$, $y_2(t) = te^{2t}$; $y(0) = 2$, $y'(0) = 0$

31.
$$2y'' - y' = 0$$
; $y_1(t) = 1$, $y_2(t) = e^{t/2}$; $y(2) = 0$, $y'(2) = 2$

32.
$$y'' - 3y' + 2y = 0$$
; $y_1(t) = 2e^t$, $y_2(t) = e^{2t}$; $y(-1) = 1$, $y'(-1) = 0$

33.
$$ty'' + y' = 0$$
; $y_1(t) = \ln t$, $y_2(t) = \ln 3t$; $y(3) = 0$, $y'(3) = 3$

34.
$$t^2y'' - ty' - 3y = 0$$
; $y_1(t) = t^3$, $y_2(t) = -\frac{1}{t}$; $y(-1) = 0$, $y'(-1) = -2$ $(t < 0)$

35.
$$y'' + \pi^2 y = 0$$
; $y_1(t) = \sin \pi t + \cos \pi t$, $y_2(t) = \sin \pi t - \cos \pi t$; $y(\frac{1}{2}) = 1$, $y'(\frac{1}{2}) = 0$

36.
$$x^3 y^{(3)} - x^2 y'' + 2xy' - 2y = 0$$

 $y(1) = 3, \quad y'(1) = 2, \quad y''(1) = 1$ $y_1(x) = x, \quad y_2(x) = x \ln x, \quad y_3(x) = x^2$

37.
$$y^{(3)} + 2y'' - y' - 2y = 0$$

 $y(0) = 1, \quad y'(0) = 2, \quad y''(0) = 0$ $y_1(x) = e^x, \quad y_2(x) = e^{-x}, \quad y_3(x) = e^{-2x}$

38.
$$y^{(3)} - 6y'' + 11y' - 6y = 0$$

 $y(0) = 0, \quad y'(0) = 0, \quad y''(0) = 3$ $y_1(x) = e^x, \quad y_2(x) = e^{2x}, \quad y_3(x) = e^{3x}$

39.
$$y^{(3)} - 3y'' + 3y' - y = 0$$

 $y(0) = 2$, $y'(0) = 0$, $y''(0) = 0$ $y_1(x) = e^x$, $y_2(x) = xe^x$, $y_3(x) = x^2e^x$

40.
$$y^{(3)} - 5y'' + 8y' - 4y = 0$$

 $y(0) = 1$, $y'(0) = 4$, $y''(0) = 0$ $y_1(x) = e^x$, $y_2(x) = e^{2x}$, $y_3(x) = xe^{2x}$

41.
$$y^{(3)} + 9y'' = 0$$

 $y(0) = 3$, $y'(0) = -1$, $y''(0) = 2$ $y_1(x) = 1$, $y_2(x) = \cos 3x$, $y_3(x) = \sin 3x$

42.
$$y^{(3)} - 3y'' + 4y' - 2y = 0$$

 $y(0) = 1$, $y'(0) = 0$, $y''(0) = 0$ $y_1(x) = e^x$, $y_2(x) = e^x \cos x$, $y_3(x) = e^x \sin x$

43.
$$x^3 y^{(3)} - 3x^2 y'' + 6xy' - 6y = 0$$

 $y(1) = 6$, $y'(1) = 14$, $y''(1) = 1$ $y_1(x) = x$, $y_2(x) = x^2$, $y_3(x) = x^3$

44.
$$x^3 y^{(3)} + 6x^2 y'' + 4xy' - 4y = 0$$

 $y(1) = 1$, $y'(1) = 5$, $y''(1) = -11$ $y_1(x) = x$, $y_2(x) = x^{-2}$, $y_3(x) = x^{-2} \ln x$

(Exercises 17-18) Given the mass, damping, and spring constants of an undriven spring-mass system $my'' + \mu y' + ky = 0$

- a) Provide separate plots of the position versus time (y vs. t) and the velocity versus time (y vs. t)
- b) Provide a combined plot of both position and velocity versus time
- c) Provide a plot of the velocity versus position (v vs. y) in the yv phase plane.

45.
$$m = 1 kg$$
, $\mu = 0 kg / s$, $k = 4kg / s^2$, $y(0) = -2 m$, $y'(0) = -2 m / s$

46.
$$m = 1 kg$$
, $\mu = 2 kg / s$, $k = 1kg / s^2$, $y(0) = -3 m$, $y'(0) = -2 m / s$

47. When the values of a solution to a differential equation are specified at two different points, these conditions. (In contrast, initial conditions specify the values of a function and its derivative at the same point). The purpose of this is to show that for boundary value problems there is no existence-uniqueness theorem. Given that every solution to

$$y'' + y = 0$$
 is of the form $y(t) = c_1 \cos t + c_2 \sin t$

Where c_1 and c_2 are arbitrary constants, show that

- a) There is a unique solution to the given differential equation that satisfies the boundary conditions y(0) = 2 and $y(\frac{\pi}{2}) = 0$
- b) There is no solution to given equation that satisfies y(2) = 0 and $y(\pi) = 0$
- c) There are infinitely many solution to the given DE equation that satisfy y(0) = 2 and $y(\pi) = -2$