Exercise sheet 6.

Advanced Algorithms

Instructor: László Kozma

Due 12:00, December 18th, 2020

Exercise 1 Splay trees

2+4+4 Points

WiSe 2020/21

- (a) Try to get some familiarity with the behavior of splay trees. Draw a binary search tree with 5-10 nodes and work out a few splay operations on paper. You can also try some interactive demonstrations of splay tree on the internet. Try to force splay to make costly operations. What happens?
- (b) A possible intuition for the efficiency of splay trees is that when searching for x, the depths of most nodes on the search path of x are reduced. Prove a statement that makes this intuition precise, showing that if a node on the search path has depth d before splaying, then it has depth at most $a \cdot d + b$ after splaying, for suitable constants a, b > 0.
 - Hint: consider a node at depth d on the search path and see how it is affected by all the zig-zig, zig-zag, and zig operations.
- (c) Consider a "simpler version" of splay, called move-to-root. In move-to-root, instead of the zig-zig and zig-zag operations, we simply rotate the accessed element up using normal rotations until it becomes the root.
 - Show that move-to-root can be very inefficient: construct an initial tree and an arbitrarily long search sequence that has high cost per search if move-to-root is used instead of splay. Is the choice of initial tree essential in your example?

Recall the definition from class: a family \mathcal{H} of hash functions $U \to T$ (where |T| = n, and |U| = m) is 2-universal, if for all $x, y \in U$, $x \neq y$,

$$\Pr_{h \in \mathcal{H}} \left[h(x) = h(y) \right] \le \frac{1}{n}.$$

- (a) Let $U = \{a, b, c, d, e\}$. Give an explicit 2-universal family of four hash functions $U \to \{0,1\}$ (write the hash family as a 4×5 table with entries 0 and 1), and verify that the family is 2-universal, using the definition. Give an example of the same size that is not universal.
- (b) A counter-intuitive aspect of hash families is that they can be quite good even if some of the individual hash functions they contain are bad. Give a small example of a 2-universal family \mathcal{H} of functions $U \to T$, say with $|U|=|\mathcal{H}|=4, |T|=2$, such that \mathcal{H} contains the all-zero function h(x)=0.
- (c) A family \mathcal{H} of hash functions is 2-independent, if for all $x, y \in U$, $x \neq y$, and all $a, b \in T$,

$$\Pr_{h \in \mathcal{H}} \left[h(x) = a \text{ and } h(y) = b \right] \le \frac{1}{n^2}.$$

(Intuitively, on every pair of items in U the function h looks like a perfectly random function; observe that "\le " could be replaced by "\in ". Do you see why?

Show that independence is stronger than universality, in the following sense: if \mathcal{H} is 2-independent, then it is 2-universal.

- (d) Show that the converse is not true by constructing a small example (say U = $\{a, b, c, d\}, T = \{0, 1\}, \text{ and } |\mathcal{H}| = 4\}$ that is 2-universal, but not 2-independent.
- (e) (4 bonus points) Show that the definition of 2-universality cannot be strengthened significantly, in the following sense: for every family \mathcal{H} of hash functions, there are values $x, y \in U$ such that

$$\Pr_{h \in \mathcal{H}} \left[h(x) = h(y) \right] \ge \frac{1}{n} - \frac{1}{m}.$$

Total: 26 points. Have fun with the solutions!

From: Yumeng Li and Thore Brehmer

- Exercise 1 Splay trees
 - (a) Try to get some familiarity with the behavior of splay trees. Draw a binary search tree with 5-10 nodes and work out a few splay operations on paper. You can also try some interactive demonstrations of splay tree on the internet. Try to force splay to make costly operations. What happens?
 - (b) A possible intuition for the efficiency of splay trees is that when searching for x, the depths of most nodes on the search path of x are reduced. Prove a statement that makes this intuition precise, showing that if a node on the search path has depth d before splaying, then it has depth at most $a \cdot d + b$ after splaying, for suitable constants a, b > 0.

Hint: consider a node at depth d on the search path and see how it is affected by all the zig-zig, zig-zag, and zig operations.

(c) Consider a "simpler version" of splay, called move-to-root. In move-to-root, instead of the zig-zig and zig-zag operations, we simply rotate the accessed element up using normal rotations until it becomes the root.

Show that move-to-root can be very inefficient: construct an initial tree and an arbitrarily long search sequence that has high cost per search if move-to-root is used instead of splay. Is the choice of initial tree essential in your example?

Recall the definition from class: a family \mathcal{H} of hash functions $U \to T$ (where |T| = n, and |U| = m) is 2-universal, if for all $x, y \in U$, $x \neq y$,

$$\Pr_{h \in \mathcal{H}} \left[h(x) = h(y) \right] \le \frac{1}{n}.$$

(a) Let $U = \{a, b, c, d, e\}$. Give an explicit 2-universal family of four hash functions $U \to \{0, 1\}$ (write the hash family as a 4×5 table with entries 0 and 1), and verify that the family is 2-universal, using the definition. Give an example of the same size that is not universal.

	t	the sar	ne si	ze tha	at is i	not u	nive	ersa	ıl.												
a)	U = 2	£ a,6	, c	,d,e	3	7	{ =	٤	h	, hz/	h ₃	, l	14	3	T	= (3 (), 1	13		
e.g.		a 6	C 1 1 0 0 1 1 0 0	de 1000000000000000000000000000000000000																	
R	2 [h(a) 2 [h(a)) = h() = h(()] [(د	= 2 = C) (h (+ 1) [=	12														
R	2 [h(b)) = h(((د	= 4																	
Y2	_ [h(b) - [h(b) 2 [h(c)	= h(e)]	= 12	-				(e.g.	2 h,	а 0	600	c 0	J. 0	2 2 1					
K	2- [h(c)) = h((e)]	= 12	•						hs hy	0	0	1	7 (יל יל		1			
3	=) 2-0	hivers	sal								=)	h	o€		2-	ah	ive	x Sa	(

(b) A counter-intuitive aspect of hash families is that they can be quite good even if some of the individual hash functions they contain are bad. Give a small example of a 2-universal family \mathcal{H} of functions $U \to T$, say with $|U| = |\mathcal{H}| = 4, |T| = 2$, such that \mathcal{H} contains the all-zero function h(x) = 0.

100	1 1 1	U =	$ \mathcal{H} $ =	= 4, T	$\gamma = 2$, suc	h tl	hat	\mathcal{H}	cont	ains	the	all-z	ero f	unc	tion	<i>h</i> ((x)	=0	1		į
b)	U = 2	3 a, 6	, c	,d3		H	=	٤	h	, hz	, h ₃		ny 3	_	=	E	O	1	3			+
e.g.		a 6) C	<u>d</u>																		+
	6	, O C	1	1																		
	h	1 0 0 , 0 1	1 1	C																		+
	h	4 1 0	ンへ	0																		+
				\7	(h)	(hs))	4														
	R- [h	(a) =	h(b	/ /=	4 +	· 4	=	之														+
	R. [1	ι (a) =	: h(c	= [(ع	1 2																	+
																						1
	R [h	[4]=	hlo	1 /=	2	_																+
	R. [h	= (ما)،	h(c	<u> </u>	艺																	+
	R. [hi																					+
				7,1																		
	P. [h	(-) -	. 17	1)] -	1																	+
	17 [n	(2)	· n(\ <u></u>	7																	+
																						1
	=) 2 - (unive		. (+
		Mille	_ F-S0																			+
																						1
																						+
						_																+
																						+
		_																			-	+
		++-	-			+																+
																						+
																						+
		+			+ + + -							_			_						+	+

(c) A family \mathcal{H} of hash functions is 2-independent, if for all $x, y \in U$, $x \neq y$, and $a, b \in T$

$$\Pr_{h\in\mathcal{H}}\Big[h(x)=a \text{ and } h(y)=b\Big]\leq \frac{1}{n^2}.$$

(Intuitively, on every pair of items in U the function h looks like a perfectly random function; observe that "\le " could be replaced by "\in ". Do you see why?)

Show that independence is stronger than universality, in the following sense: if \mathcal{H} is 2-independent, then it is 2-universal.

		$\{a, b, c, d\}, T =$	e converse is not true by constructing a small example (say $U = \{0,1\}$, and $ \mathcal{H} = 4$) that is 2-universal, but not 2-independent.
U=	2 a, 6, c	z,d3	H= Eh, hz, hz, hy3 T= 80,13
	Pr: =	Pr for	2- independent
	Pru :=	Pr for a	2-universal
e.e	. Fron	6)	$h(x) = \alpha - h(y) = b$
	h	a 6 c d	$P_{ri} \left[h(a) = 0 A h(b) = 0 \right] = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$
	h,	a 6 c d 10000 10011 10110	$P_{i}\left(h(a)=0 \Lambda h(b)=1\right)=\frac{1}{4}$
	h	1 0 1 0	Pri [h(a) = 1 1 h(b) = 0] = 4
	=) 2-	- universal	(Pri [h(a) = 1 1 h(b) = 1] = 0
			L) =) not Z-independent