Midas Oden

COMP 3353 Project #1

Questions:

- 1. (9 points) Convert the following unsigned base 2 numbers (binary) to base 16 numbers (hexadecimal):
- A. 0110 0001 1111 ...

$$0110 = 2^2 + 2^1 = 6$$
$$0001 = 2^0 = 1$$

 $1111 = 2^3 + 2^2 + 2^1 + 2^0 = 15 = F$

- * FINAL ANSWER = (61F)_H
- B. 1000 1111 1100 ...

$$1000 = 2^3 = 8$$

$$1111 = 2^3 + 2^2 + 2^1 + 2^0 = 15 = F$$

$$1100 = 2^3 + 2^2 = 12 = C$$

- * FINAL ANSWER = (8FC)_H
- C. 0001 0110 0100 0101 ...

$$0001 = 2^0 = 1$$

$$0110 = 2^2 + 2^1 = 6$$

$$0100 = 2^2 = 4$$

$$0101 = 2^2 + 2^0 = 5$$

- * FINAL ANSWER = (1645)_H
- 2. (27 points) Convert the following **binary numbers** to **base 10 numbers (decimal)**. Each time if binary numbers are represented in:
- a) Signed magnitude representation.

1)
$$1100\ 1010 = -(2^6 + 2^3 + 2^1) = -74_d$$

2)
$$1111\ 0010 = -(2^6 + 2^5 + 2^4 + 2^1) = -114_d$$

3)
$$1000\ 0111 = -(2^2 + 2^1 + 2^0) = -7_d$$

- b) One's complement representation.
 - 1) $1100\ 1010 = 0011\ 0101 = 2^5 + 2^4 + 2^2 + 2^0 = -53_d$
 - 2) $1111\ 0010 = 0000\ 1101 = 2^3 + 2^2 + 2^0 = -13_d$
 - 3) $1000\ 0111 = 0111\ 1000 = 2^6 + 2^5 + 2^4 + 2^3 = -120_d$
- c) Two's complement representation.
 - 1) $1100\ 1010 = 1100\ 1010 1 = !(1100\ 1001) = 0011\ 0110 = 2^5 + 2^4 + 2^2 + 2^1 = -54_d$
 - 2) $1111\ 0010 = 1111\ 0010 1 = !(1111\ 0001) = 0000\ 1110 = 2^3 + 2^2 + 2^1 = -14_d$
 - 3) $1000\ 0111 = 1000\ 0111 1 = !(1000\ 0110) = 0111\ 1001 = 2^6 + 2^5 + 2^4 + 2^3 + 2^0 = -121_d$
- 3. (36 points) Convert the following **base 10 (decimal)** values to **binary numbers (8-bits)**. Each binary result represented in:
- a) Signed magnitude representation.
 - 1) $-100_d = 100 \div 2 = 50 \dots 50 \div 2 = 25 \dots 25 \div 2 = 12 \dots 12 \div 2 = 6 \dots 6 \div 2 = 3 \dots 3 \div 2 = 1 \dots 1 \div 2 = 0 ===> -100_d = 1110 0100$
 - 2) $-16_d = 16 \div 2 = 8 \dots 8 \div 2 = 4 \dots 4 \div 2 = 2 \dots 2 \div 2 = 1 \dots 1 \div 2 = 0$ ===> $-16_d = 1001\ 0000$
 - 3) $-21_d = 21 \div 2 = 10 \dots 10 \div 2 = 5 \dots 5 \div 2 = 2 \dots 2 \div 2 = 1 \dots 1 \div 2 = 0$ ====> $-21_d = 1001 \ 0101$
 - 4) $-0_d = 10000000$
- b) One's complement representation.
 - 1) $-100_d = 100 \div 2 = 50 \dots 50 \div 2 = 25 \dots 25 \div 2 = 12 \dots 12 \div 2 = 6 \dots 6 \div 2 = 3 \dots 3 \div 2 = 1 \dots 1 \div 2 = 0 ====> = !(0110\ 0100) = 1001\ 1011$
 - 2) $-16_d = 16 \div 2 = 8 \dots 8 \div 2 = 4 \dots 4 \div 2 = 2 \dots 2 \div 2 = 1 \dots 1 \div 2 = 0$ ====>!(0001 0000) = 1110 1111
 - 3) $-21_d = 21 \div 2 = 10 \dots 10 \div 2 = 5 \dots 5 \div 2 = 2 \dots 2 \div 2 = 1 \dots 1 \div 2 = 0$ ====>!(0001 0101) = 1110 1010
 - 4) -0_d = !(0000 0000) = 1111 1111
- c) Two's complement representation.
 - 1) $-100_d = !(0110\ 0100) = 1001\ 1011 + 1 = 1001\ 1100$
 - 2) $-16_d = !(0001\ 0000) = 1110\ 1111 + 1 = 1111\ 0000$
 - 3) $-21_d = !(0001\ 0101) = 1110\ 1010 = 1110\ 1010$
 - 4) $-0_d = !(0000\ 0000) = 1111\ 1111 + 1 = 1\ 0000\ 0000$

(There are 12 separate answers in total.)

4. (4 points) What is the range of:

A. An unsigned 7-bit number? The range of an unsigned n-bit number is from 0 to 2^n - 1, hence the range of an unsigned 7-bit number is from 0 to 2^7 - 1 = 0 to 127.

B. A signed 7-bit number? The range of a signed n-bit number is from -2^{n-1} to 2^{n-1} - 1, hence the range of a signed 7-bit number is from -2^{7-1} to 2^{7-1} - 1 = -2^6 to 2^6 - 1 = -64 to 63.

5. (12 points) Solve following bitwise operations (\wedge = AND, \vee = OR) e.g. 0101 \wedge 0011 = **0001**

1. $1000 \land 1110 = 1000$

A	В	$\mathbf{A} \wedge \mathbf{B}$
1	1	1
0	1	0
0	1	0
0	0	0

A	В	$A \vee B$
1	1	1
0	1	1
0	1	1
0	0	0

3.
$$(1000 \land 1110) \lor (1001 \land 1110) = 1000$$

Α	В	A ^ B	С	D	C v D	(A ∧ B) ∨ (C ∧ D)
1	1	1	1	1	1	1
0	1	0	0	1	0	0
0	1	0	0	1	0	0
0	0	0	1	0	0	0

6. (9 points) Please demonstrate each step in the calculation of the arithmetic operation 25 - 65. (both 25 and 65 are signed decimal numbers)

===>
$$25_d$$
 = $25 \div 2$ = $12 \dots 12 \div 2$ = $6 \dots 6 \div 2$ = $3 \dots 3 \div 2$ = $1 \dots 1 \div 2$ = $0 \div 25_d$ = $0001 \times 1001_{2^2s}$

===>
$$65_d = 65 \div 2 = 32 ... 32 \div 2 = 16 ... 16 \div 2 = 8 ... 8 \div 2 = 4 ... 4 \div 2 = 2 ... 2 \div 2 = 1 ... 1 \div 2 = 0$$
 ===> $-65_d = !(0100\ 0001) = 1011\ 1110_{1's} + 1 = 1011\ 1111_{2's}$

7. (3 points) Mathematically the answer in Q6 is -40_d. Please verify your answer in Q6 using a conversion of 2's and decimal numbers.

===>
$$40_d$$
 = $40 \div 2 = 20 \dots 20 \div 2 = 10 \dots 10 \div 2 = 5 \dots 5 \div 2 = 2 \dots 2 \div 2 = 1 \dots 1 \div 2 = 0$
===> -40_d = !(0010 1000) = 1101 0111_{1's} + 1 = 1101 1000_{2's}