Tweet filtering based on user interests using doc2vec & unsupervised clustering

IFN712 Research in IT Practice n10423010 Xinruo Wang

Project Background

- 500 million tweets posted on Twitter daily
- People want to finding specific tweets which interest them

- Difficult to find relevant tweets
 - A large volume of tweets
 - Unannotated data
- How to automatically detect user's interests from their tweets and retrieve related posts for them

Project Overview (1/2)

- Group tweets based on topics (user interests) using doc2vec, tf-idf and unsupervised clustering techniques
- Traditional tf-idf methods fail in tweet topic categorisation
 - tweets are too short & noisy
 - tf-idf ignores semantics of words
 - tf-idf loses ordering of words
- doc2vec can be a better feature representation technique

Project Overview (2/2)

- The research will answer two questions:
 - whether doc2vec can capture tweet topics better than tf-idf
 - what is the most effective clustering method to group tweets together

Related Works (1/2)

- To apply tweet clustering, the first step is to use a feature representation method to convert the texts into vectors
- Tf-idf is a common method applied in many research

Godfrey et al. (2014) [4]

Feature representation: tf-idf

Clustering: k-means and NMF

Evaluation: Non-Negative Matrix Factorization

(NMF)

Data: labelled 30,000 tweets about World Cup

Results: both clustering had similar

performance

+ Use DBSCAN to remove noisy tweets as pre-processing

- Problem of tweet length remains
- Ordering and semantics of words are ignored
- Produced matrices are high-dimensional and sparse

Related Works (2/2)

• To solve the problems of tf-idf, do2vec algorithm was developed

Le & Mikolov (2014)) [5]

Feature representation: doc2vec, tf-idf

Data: triplets of paragraphs obtained from

search queries

Evaluation: Use distance measures to find which two paragraphs are from the same query

Results: doc2vec outperformed tf-idf by 30%

+ Can be applied to different length of documents

Curiskis et al. (2020) [6]

Feature representation: doc2vec, tf-idf etc.

Clustering: k-means, hierarchical etc.

Data: two labelled Twitter datasets etc.

Evaluation: NMI matrix etc.

Results: doc2vec performed better than tf-idf

 Require labelled datasets, which does not suit real scenario

Methods (1/3)

1.Data collection

- 14million tweet data set
- use #music
- remove retweets

2.Data preprocessing

- 3.Feature representati on

4.Clustering

- elbow method

5.Evaluation

6.Tweet

filtering

• silhouette coefficient

- remove URL, emoj, HTML entities, @,
- hashtags lowercase
- remove digits
- remove punctuation
- lemmatisation
- remove stopwords
- tokenisation
- remove tokens with < 3 char
- Remove short tweets with < 4 tokens

- TF-IDF
- doc2vec

- k-means
- Hierarchical agglomerative

a university for the real world

7.Reporting

Methods (2/3)

• After pre-processing

of tweets: **3974**

of users: 1799

of tokens in each tweet

Average: **7.11**

Median value: 7

Standard deviation: 2.54

Methods (3/3)

Silhouette score

The silhouette value is a measure of how similar an object is to its own cluster compared to other clusters

For each data point i, define:

$$a(i) = \frac{1}{|C_i|-1} \sum_{j \in C_i, i \neq j} d(i,j)$$

$$b(i) = \min_{k \neq i} \frac{1}{|C_k|} \sum_{j \in C_k} d(i, j)$$

$$s(i) = \frac{b(i) - a(i)}{\max(a(i), b(i))}$$

represent the average distance of the point i to all the other points that belongs to the same cluster Ci.

which represent the average distance of the point i to all the other points in the next nearest cluster

- •-1 \leq s(i) \leq 1
- s(i) = 1 is a good indicator of good clusters

Results & Discussion (1/4)

- In general, doc2vec outperformed tf-idf
- doc2vec combined with k-means gave the best performance in all cases

Table 1. Optimal number of clusters / Comparison of silhouette scores

HAC: Hierarchical Agglomerative Clustering

	Optimal number of clusters (k)	
Feature Rep.	K-means	HAC
TF-IDF	3	5
Doc2vec	8	3

K = 3	Silhouette Score	
Feature Rep.	K-means	HAC
TF-IDF	0.0487	0.0394
Doc2vec	0.4692	0.4663

K = 5	Silhouette Score	
Feature Rep.	K-means	HAC
TF-IDF	0.0517	0.0522
Doc2vec	0.4133	0.3300

K = 8	Silhouette Score	
Feature Rep.	K-means	HAC
TF-IDF	0.0671	0.0421
Doc2vec	0.3403	0.3048

Results & Discussion (2/4)

- Visualisation of best model using doc2vec & k-means (optimal k=8)
 - Each cluster has similar distribution of silhouette score
 - Clusters are close to each other but not scattered

Fig 1. Silhouette plot

Fig 2. Principal Component Analysis (2d)

Results & Discussion (3/4)

- Determine cluster topics
 - It is difficult to interpret what the true topics are from manual inspection of top keywords in each cluster

Cluster 2

- love
- music
- new
- show
- today
- get
- one
- time
- like
- night

Cluster 3

- new
- song
- post
- music
- follower
- want
- retweet
- love
- video
- check

Results & Discussion (4/4)

- Summary of limitations
 - Do2vec only resulted in the maximum silhouette score of 0.4692
 - Cluster topic interpretability is very low: top-keywords are not meaningful
- Improvement suggestions
 - Add a pre-processing step to detect synonyms (u & you, 2night & tonight) to reduce dimensions of corpus
 - Use N-gram tokeniser to keep phrases to improve topic interpretability
- Future study
 - Investigate how to interpret cluster topics when using doc2vec

Conclusion

- Take-away messages
 - Doc2vec is better at capturing tweet topics than tf-idf
 - Doc2vec combined with k-means gave the best performance
- Novelty of the research
 - Require no labelled dataset
- Significance
 - Use to retrieve relevant tweets for users
 - Apply to analyse follower interests for marketing purposes (business perspective)

References

- [1] Image source: https://www.stickpng.com/img/icons-logos-emojis/tech-companies/twitter-logo
- [2] Image source: https://www.pinclipart.com/pindetail/xTomTi accelerated-reader-bookfinder-logo-australia-map-landscape-hd/
- [3] Image source: https://www.thebalanceeveryday.com/twitter-terms-for-beginners-896935
- [4] Godfrey, D., Johns, C., Meyer, C., Race, S., & Sadek, C. (2014). A case study in text mining: Interpreting twitter data from world cup tweets. arXiv preprint arXiv:1408.5427.
- [5] Le, Q. V., & Mikolov, T. (2014). Distributed representations of sentences and documents. Proceedings of the 31th international conference on machine learning, ICML 2014, Beijing, China, 21–26 June 20141188–1196.
- [6] Curiskis, S., Drake, B., Osborn, T., & Kennedy, P. (2020). An evaluation of document clustering and topic modelling in two online social networks: Twitter and Reddit. *Information Processing and Management*, *57*(2). https://doi.org/10.1016/j.ipm.2019.04.002