

Introduction to Applied Multivariate Analysis with

Multidimensional Scaling

Takes an input matrix giving dissimilarities between pairs of items and outputs a coordinate matrix.

To begin our account of the method, we shall assume that the proximity matrix we are dealing with is a matrix of Euclidean distances, \mathbf{D} , derived from a raw $n \times q$ data matrix, \mathbf{X} . In Chapter 1, we saw how to calculate Euclidean distances from \mathbf{X} ; classical multidimensional scaling is essentially concerned with the reverse problem: given the distances, how do we find \mathbf{X} ?

Want to find b's in terms of the d's to derive the coordinate values by factoring B. Need to introduce location constraint.

First assume X is known and consider the $n \times n$ inner products matrix, B

$$\mathbf{B} = \mathbf{X}\mathbf{X}^{\top}.\tag{4.1}$$

The elements of **B** are given by

$$b_{ij} = \sum_{k=1}^{q} x_{ik} x_{jk}.$$
 (4.2)

It is easy to see that the squared Euclidean distances between the rows of X can be written in terms of the elements of B as

$$d_{ij}^2 = b_{ii} + b_{jj} - 2b_{ij}. (4.3)$$

Measure of fit is how well the proximities match distances in the geometrical model.

Using all q-dimensions will lead to complete recovery of the original Euclidean distance matrix. The best-fitting m-dimensional representation is given by the m eigenvectors of \mathbf{B} corresponding to the m largest eigenvalues. The adequacy of the m-dimensional representation can be judged by the size of the criterion

$$P_m = \frac{\sum_{i=1}^m \lambda_i}{\sum_{i=1}^n \lambda_i}.$$

Values of P_m of the order of 0.8 suggest a reasonable fit.

Measure of fit is how well the proximities match distances in the geometrical model.

When the observed proximity matrix is not Euclidean, the matrix \mathbf{B} is not positive-definite. In such cases, some of the eigenvalues of \mathbf{B} will be negative; correspondingly, some coordinate values will be complex numbers. If, however, \mathbf{B} has only a small number of small negative eigenvalues, a useful representation of the proximity matrix may still be possible using the eigenvectors associated with the m largest positive eigenvalues. The adequacy of the resulting solution might be assessed using one of the following two criteria suggested by Mardia et al. (1979):

$$P_m^{(1)} = \frac{\sum_{i=1}^m |\lambda_i|}{\sum_{i=1}^n |\lambda_i|},$$

$$P_m^{(2)} = \frac{\sum_{i=1}^m \lambda_i^2}{\sum_{i=1}^n \lambda_i^2}.$$

Example: skulls data

Table 4.2: skulls data. Measurements of four variables taken from Egyptian skulls of five periods.

-					epoch					-			
c4000BC	131	138	89	49	c3300BC	137	136	106	49	c200BC	132	133	90 53
c4000BC	125	131	92	48	c3300BC	126	131	100	48	c200BC	134	134	$97\ 54$
c4000BC	131	132	99	50	c3300BC	135	136	97	52	c200BC	135	135	99 50
c4000BC	119	132	96	44	c3300BC	129	126	91	50	c200BC	133	136	$95\ 52$
c4000BC	136	143	100	54	c3300BC	134	139	101	49	c200BC	136	130	$99\ 55$
c4000BC	138	137	89	56	c3300BC	131	134	90	53	c200BC	134	137	$93\ 52$
c4000BC	139	130	108	48	c3300BC	132	130	104	50	c200BC	131	141	99 55
c4000BC	125	136	93	48	c3300BC	130	132	93	52	c200BC	129	135	$95\ 47$
c4000BC	131	134	102	51	c3300BC	135	132	98	54	c200BC	136	128	93 54
c4000BC	134	134	99	51	c3300BC	130	128	101	51	c200BC	131	125	88 48
					I								

Plot Solution: skulls

Example: voting data

Table 4.4: voting data. House of Representatives voting data; (R) is short for Republican, (D) for Democrat.

	Hnt	Snd	Hwr	Thm	Fry	Frs	Wdn	Roe	Hlt	Rdn	Mns	Rnl	Mrz	Dnl	Ptt
$\overline{\text{Hunt}(R)}$	0														
Sandman(R)	8	0													
Howard(D)	15	17	0												
Thompson(D)	15	12	9	0											
Freylinghuysen(R)	10	13	16	14	0										
Forsythe(R)	9	13	12	12	8	0									
Widnall(R)	7	12	15	13	9	7	0								
Roe(D)	15	16	5	10	13	12	17	0							
Heltoski(D)	16	17	5	8	14	11	16	4	0						
Rodino(D)	14	15	6	8	12	10	15	5	3	0					
Minish(D)	15	16	5	8	12	9	14	5	2	1	0				
Rinaldo(R)	16	17	4	6	12	10	15	3	1	2	1	0			
Maraziti(R)	7	13	11	15	10	6	10	12	13	11	12	12	0		
Daniels(D)	11	12	10	10	11	6	11	7	7	4	5	6	9	0	
Patten(D)	13	16	7	7	11	10	13	6	5	6	5	4	13	9	0

Plot Solution: voting

Shepard Plot: voting

Example: WWIILeaders data

Table 4.5: WWIIleaders data. Subjective distances between WWII leaders.

	Htl M	lss	Chr	Esn	Stl	Att	Frn	DGl	MT-	Trm	Chm	Tit
Hitler	0											
Mussolini	3	0										
Churchill	4	6	0									
Eisenhower	7	8	4	0								
Stalin	3	5	6	8	0							
Attlee	8	9	3	9	8	0						
Franco	3	2	5	7	6	7	0					
De Gaulle	4	4	3	5	6	5	4	0				

Plot Solution: WWIILeaders

