Работа 3.4.5.

Петля гистерезиса (динамический метод)

Петля гистерезиса (динамический метод)

Цель работы: изучение петель гистерезиса ферромагнитных материалов с помощью осциллографа.

Оборудование: автотрансформатор, понижающий трансформатор, интегрирующая цепочка, амперметр, вольтметр, электронный осциллограф, делитель напряжения, тороидальные образцы с двумя обмотками.

Ферромагнитные материалы часто применяются в трансформаторах, дросселях, машинах переменного тока, то есть в устройствах, где они подвергаются периодическому перемагничиванию. Изучение магнитных характеристик ферромагнетиков в переменных полях представляет поэтому большой практический интерес. Основные характеристики ферромагнетиков - их коэрцитивная сила, магнитная проницаемость, мощность, рассеиваемая в виде тепла при перемагничивании, и т. д. - зависят от частоты перемагничивающего поля. В настоящей работе кривые гистерезиса ферромагнитных материалов изучаются в поле частоты 50 Гц с помощью электронного осциллографа.

Измерение магнитной индукции в образцах. Магнитную индукцию удобно определять с помощью ЭДС, возникающей при изменении магнитного потока Ф в катушке, намотанной на образец:

$$\varepsilon = -\frac{d\Phi}{dt} \tag{1}$$

Пусть катушка плотно охватывает образец, и индукция B в образце однородна. В этом случае

$$\Phi = BSN, \tag{2}$$

где N - число витков в измерительной катушке, а S - площадь витка. Подставляя это значение Φ в формулу (1), после интегрирования найдём

$$|B| = \frac{1}{SN} \int \varepsilon dt \tag{3}$$

Таким образом, для определения B нужно проинтегрировать сигнал, наведённый меняющимся магнитным полем на измерительную катушку, намотанную на образец.

Для интегрирования сигнала применяют разного рода интегрирующие схемы. Простейшая из них состоит из соединённых последовательно резистора R и конденсатора C (рис. 1) и выполняет своё назначение, если сопротивление R резистора заметно превышает сопротивление конденсатора (если выходной сигнал много меньше входного: $U_{\text{вых}} \ll U_{\text{вх}}$).

Рис. 1: Интегрирующая RC-цепочка

В самом деле, при при выполнении этого условия ток в цепи пропорционален входному напряжению: $I \approx U_{\rm BX}/R$, а напряжение на ёмкости C

$$U_{\text{\tiny BMX}} = \frac{q}{C} = \frac{1}{C} \int I dt \approx \frac{1}{RC} \int U_{\text{\tiny BX}} dt \tag{4}$$

Этот вывод тем ближе к истине, чем больше постоянная времени $\tau=RC$ превосходит характерное время процесса (например, его период). Для синусоидальных напряжений

$$U_{\text{вых}} = \frac{U_{\text{вх}}}{RC\Omega} \tag{5}$$

где Ω - частота сигнала.

Обозначив параметры интегрирующей ячейки через $R_{\rm u}$ и $C_{\rm u}$, выразим индукцию B с помощью формул (3) и (4) через $U_{\rm вых}$ - напряжение на ёмкости интегрирующей ячейки:

$$|B| = \frac{1}{SN} \int \varepsilon dt = \frac{1}{SN} \int U_{\text{BX}} dt = \frac{R_{\text{H}} C_{\text{H}}}{SN} U_{\text{BMX}}$$
 (6)

Экспериментальная установка. Схема установки изображена на рис. 2. Напряжение сети (220 В, 50 ГЦ) с помошью регулировочного автотрансформатора Ат через разделительный понижающий трансформатор Тр подаётся на намагничивающую обмотку N_0 исследуемого образца.

Действующее значение переменного тока в обмотке N_0 измеряется амперметром А. Последовательно с амперметром включено сопротивление R_0 , напряжение с которого подаётся на вход X электронного осциллографа (ЭО). Это напряжение пропорционально току в обмотке N_0 , а следовательно, и напряжённости H магнитного поля в образце.

Для измерения магнитной индукции B с измерительной обмотки N на вход RC-цепочки подаётся напряжение $U_{\rm u}$ ($U_{\rm bx}$), пропорциональное согласно (6) про- изводной \dot{B} , а с интегрирующей ёмкости $C_{\rm u}$ снимается напряжение U_{C} ($U_{\rm bbix}$), пропорциональное величине B, и подаётся на вход Y осциллографа.

Замкнутая кривая, возникающая на экране, воспроизводит в некотором масштабе (различном для осей X и Y) петлю гистерезиса. Чтобы придать этой кривой количественный смысл, необходимо установить масштабы изображения, т. е. провести калибровку каналов X и Y ЭО. Для этого, во-первых, надо узнать, каким напряжениям (или токам) соответствуют амплитуды сигналов, видимых на экране, и, во-вторых, каким значениям B и H соответствуют эти напряжения (или токи).

Измерение напряжения с помощью осциллографа. Исследуемый сигнал подаётся на ВХОД X; величина сигнала характеризуется длиной 2x горизонтальной черты, наблюдаемой на экране (x - отклонение от нуля - амплитуда сигнала).

Если известна чувствительность усилителя K_x в вольтах на деление шкалы экрана, то удвоенная амплитуда напряжения определяется произведением

$$2U_{x,0} = 2x \cdot K_x$$

Напряжение, подаваемое на ось Y, измеряется аналогично:

$$2U_{y,0} = 2y \cdot K_y$$

где y - отклонение от нуля в делениях шкалы, K_y - чувствительность усилителя в $\mathrm{B}/\mathrm{дел}.$

Наличие в схеме амперметра и вольтметра позволяет провести калибровку усилителей ЭО, т.е. проверить значения коэффициентов K_x и K_y , (или определить их, если ручки плавной регулировки усиления при измерениях не были установлены на максимум).

Калибровка горизонтальной оси \ThetaО проводится при закороченной обмотке N_0 . Эта обмотка с помещённым в неё ферромагнитным образцом является нелинейным элементом, так что ток в ней не имеет синусоидальной формы, и это не позволяет связать амплитуду тока с показаниями амперметра.

При закороченной обмотке N_0 амперметр A измеряет эффективное значение синусоидального тока $I_{9\varphi\varphi}$, текущего через известное сопротивление R_0 . Сигнал с этого сопротивления подаётся на вход X ЭО. Измерив 2x - длину горизонтальной прямой на экране, можно рассчитать m_x - чувствительность канала X:

$$m_x = \frac{2R_0\sqrt{2}I_{9\Phi\Phi}}{2x}\frac{\mathbf{B}}{\mathbf{\Pi}\mathbf{e}\mathbf{\pi}} \tag{7}$$

Калибровка вертикальной оси проводится с помощью сигнала, снимаемого через делитель напряжения с обмотки 12,6 В понижающего трансформатора (рис. 2). Вольтметр V измеряет напряжение $U_{\text{эфф}}$ на обмотке. Часть этого напряжения снимается с делителя с коэффициентом деления K и подаётся на вход Y ЭО (вместо напряжения Π О на рис. 2).

Измерив 2y - длину вертикальной прямой на экране, можно рассчитать чувствительность канала Y:

$$m_y = \frac{2\sqrt{2}KU_{9\Phi\Phi}}{2y} \frac{\mathbf{B}}{\mathbf{\Pi}\mathbf{e}\boldsymbol{\Pi}} \tag{8}$$

Рис. 2: Схема установки

При калибровке канала Y тороид должен быть отключён, так как несинусоидальный ток нагрузки в первичной обмотке N_0 тороида приводит к искажению формы кривой напряжения и на обмотке трансформатора, питающей делитель.

Калибровку осей осциллографа можно использовать для построения кривой гистерезиса в координатах B и H. Значения H рассчитываются по теореме о циркуляции, значения B - по формуле (6).

Постоянную времени RC-цепочки можно определить экспериментально. С обмотки 6,3 В на вход интегрирующей цепочки подаётся синусоидальное напряжение $U_{\rm Bx}$. На вход Y осциллографа поочерёдно подаются сигналы со входа ($U_{\rm Bx}$) и выхода ($U_{\rm Bax} = U_C$) RC-цепочки. Измерив амплитуды этих сигналов с помощью осциллографа, можно рассчитать постоянную времени $\tau = RC$. Как следует из формулы (5),

$$RC = \frac{U_{\text{BX}}}{RU_{\text{BMX}}} \tag{9}$$

Ход работы.

0. Соберем схему согласно рис. 2 и подготовим приборы к работе. Сведем в таблицу характеристики устновки.

	Феррит	Пермаллой	Кремнистое железо
N_0 , витков	35	40	35
$N_{\rm m}$, витков	400	200	350
S, cm ²	3.0	3.8	1.2
$2\pi R$, cm	25	24	10

1. Снимем зачения, соответсвтующие вершинам петель гистерезиса, подбирая ток питания таким, чтобы предельная петля гистерезиса занимала большую часть экрана.

Феррит		Пермаллой		Кремнистое				
Феррит		пермаллои			железо			
I, A	x, дел	у, дел	I, A	х, дел	y, дел	I, A	x, дел	у, дел
0.054	1.2	1.0	0.065	1.2	0.4	0.167	1.0	1.0
0.097	2.0	1.6	0.088	1.8	0.8	0.241	1.6	1.4
0.156	2.8	2.0	0.100	2.0	1.0	0.321	2.4	1.6
0.169	3.2	2.2	0.114	2.4	1.2	0.412	3.0	1.8
0.201	3.6	2.4	0.132	3.2	1.8	0.460	4.0	2.0
0.223	4.2	2.6						
0.240	5.0	2.8						

Примем погрешность $\sigma_x=0.1$ дел, так как на единицу шкалы на экране осциллографа приходилось малых 5 делений. Аналогично, $\sigma_y=0.1$ дел. Погрешность же σ_I будет равна 1 мА.

Построим соответствующие кривые намагничивания.

Кремнистое железо

При измерениях использовались следующие диапазоны, а также были получены следующие значения 2x и 2y:

	Феррит	Пермаллой	Кремнистое железо
K_x , м B /дел	20	20	50
K_y , м B /дел	20	100	100
2x, дел	1.8	1.8	0.6
2y, дел	1.8	3.2	1.4
m_x , м $\mathrm{B}/\mathrm{дел}$	22	18	48
m_y , м $\mathrm{B}/\mathrm{дел}$	23	96	95
H, $A/м$ дел	34	22.0	160
В, Тл/дел	0.19	0.91	0.70

Определим значения σ_H и σ_B . Считая $H=f(x,K_x),\ B=f(y,K_y)$ (?), по формуле

$$\sigma = \sqrt{\sum_{k=1}^{n} \left(\frac{\partial f}{\partial x_k} \sigma_{x_k}\right)^2}$$

найдем значения погрешностей:

	$\sigma_H,\mathrm{A/M}$ дел	$\sigma_B,{ m T}$ л/дел
Феррит	2	0.01
Пермаллой	1	0.03
Кремнистое железо	10	0.04

Теперь из графиков можно определить значения μ и H_c и B_s

	Феррит	Пермаллой	Кремнистое железо
μ	3200	13200	3500
$H_c,A/M$	62	40	96
B_s ,Тл	0.40	2.7	2.1

Им соответствуют погрешности

	Феррит	Пермаллой	Кремнистое железо
σ_{μ}	500	2400	600
H_c , A/M	6	4	9
B_s ,Тл	0.05	0.3	0.2

Погрешность σ_{μ} найдем по формуле

$$\sigma_{\mu} = \sqrt{\sigma_{ ext{c,луч}}^2 + \sigma_{ ext{приб}}^2},$$

где $\sigma_{\text{случ}}^2$ определим по МНК. Погрешности σ_{H_c} и σ_{B_s} найдем, считая $H_c=f(\Delta H_c,x),$ $B_s=f(\Delta B_s,y).$

Определим значение au=RC экспериментально по формуле

$$\tau = \frac{U_{\text{BX}}}{\Omega U_{\text{BMX}}} = \frac{6.3 \text{B}}{50 \cdot 2\pi \ c^{-1} \cdot 0.049 \text{B}} = 0.41 \ c$$

Видно, что полученное значение почти не отличается от "номинального":

$$\tau = RC = 20 \cdot 10^3 \text{Om} \cdot 20 \cdot 10^{-6} \Phi = 0.4 \ c$$

На выходе для RC - 0.05 В примерно

Таким образом, в данной лабораторной работе мы изучили поведение некоторых материалов (а именно феррита, кремнистого железа и пермаллоя) в переменном магнитном поле, а также определили некоторые характеристики этих веществ.