

Curso de Tecnologia em Sistemas de Computação Disciplina: Redes de Computadores II AD1 - GABARITO - 1° semestre de 2008

1. [1 ponto] Quais são as duas principais funcionalidades da camada de redes? Explique cada uma delas de forma sucinta, indicando a diferença entre elas.

As duas principais funcionalidades da camada de redes são o encaminhamento e o roteamento. O encaminhamento determina como um pacote deve atravessar um roteador. Ou seja, dado um determinado pacote e sua porta de chegada, o encaminhamento define a porta de saída pela qual o pacote deve ser transmitido. O roteamento define a rota que os pacotes devem seguir desde a origem até o destino. O algoritmo de roteamento determina como o encaminhamento nos roteadores deve ser feito.

2. [0.5 pontos] Qual é a diferença entre encaminhamento e roteamento?

Roteamento tem a ver com a descrição e também determinação do caminho fim-a-fim a ser tomado por um pacote que atravessa a rede. Por exemplo, enumerando os enlaces da rede que devem ser atravessados desde o nó origem até o nó destino. Encaminhamento tem a ver com a determinação da porta de saída (enlace) de um roteador que um pacote determinado pacote deve tomar. Por exemplo, dado alguma informação no pacote (ex. endereço de destino), determinar a porta de saída pela qual o pacote deve ser transmitido.

3. [1 ponto] Descreva o que consta em uma tabela de roteamento de um roteador de uma rede orientada a conexão (circuito virtual) e de uma rede sem conexão (datagrama). Quais são as diferenças?

A tabela de roteamento em uma rede orientada a conexão consiste de números de circuitos virtuais e portas de saída. Esta informação é utilizada para encaminhar os pacotes da seguinte forma: ao chegar um pacote, o roteador utiliza o número do circuito virtual do pacote para derminar por qual porta de saída o pacote deve ser encaminhado. Além disso, o número do cicuiro virtual pode mudar, sendo atualizado pelo roteador antes do pacote ser transmitido.

A tabela de roteamento em uma rede sem conexão (como a Internet), consiste de endereços destinos e portas de saída. Esta informação é utilizada para encaminhar os pacotes da seguinte forma: ao chegar um pacote, o roteador utiliza o endereço destino do pacote para determinar por qual porta de saída o pacote deve ser encaminhado.

Um diferença entre os dois tipos de roteamento é que em redes com circuito virtual, o pacote precisa ser modificado pelo roteador (para escrever o número do novo circuito virtual), enquanto tal modificação não é necessária em redes sem conexão.

4. [0.5 pontos] O que consta nas tabelas de roteamento dos roteadores da Internet? Explique como tal informação é utilizada para rotear pacotes.

Os roteadores da Internet, por ser uma rede sem conexão, possui tabelas de roteamento que consistem de prefixos e portas de saída. Ao chegar um pacote, o roteador utiliza o endereço destino do pacote para fazer uma busca pela tabela de roteamento. O roteador busca pelo prefixo mais longo que coincide o endereço destino. O pacote então é encaminhado pela porta de saída correspondente a este prefixo.

5. [1 ponto] Descubra o endereço IP do servidor Web da UFRJ (www.ufrj.br). Converta este número IP para sua representação binária (zeros e uns). Dica: para descobrir o endereço IP do servidor, utilize o comando *ping*.

O endereço IP do servidor é: 146.164.2.32 Sua representação binária e: 10010010.10100100.00000010.00100000

6. [1 ponto] Suponha que um aplicativo envia 70 bytes de dados através de um socket TCP. Tal informação é encapsulado em um segmento TCP e posteriormente em um pacote IP. Qual o tamanho do pacote depois destes dois encapsulamentos? Qual o percentual de *overhead* (tamanho dos cabeçalhos divido pelo tamanho total)?

O cabeçalho do protocolo IP é de 20 bytes. O cabeçalho do protocolo TCP também é de 20 bytes. Logo, o pacote possui 40 bytes de cabeçalho. Como o pacote possui 70 bytes de dados, seu tamanho será de 40+70=110 bytes. O overhead será 40/110=0.36.

7. [3 pontos] Suponha que um roteador da Internet possua 4 portas, enumeradas de 0 a 4, onde os pacotes devem encaminhados de acordo com a tabela abaixo:

Faixa do Endereço Destino	Interface
11110000 00000000 00000000 00000000	
à	0
11110000 00111111 11111111 11111111	
11110010 00000000 11000000 00000000	
à	1
11110010 00000000 11111111 11111111	
11110010 00000000 11100111 00000000	
à	2
11110010 00000000 11100111 11111111	
11110110 10100000 11100000 10000000	
à	2
11110110 10100000 11100000 11111111	
caso contrário	3

(a) Construa a tabela de roteamento com base nas informações acima. Sua tabela deve conter 4 entradas, utilizar prefixo mais longo e encaminhar os pacotes para as interfaces corretas.

Prefixo	Interface
11110000 00	0
11110010 00000000 11	1
11110010 00000000 11100111	2
11110110 10100000 11100000 1	2
-	3

(b) Escreva a tabela de roteamento do item acima utilizando a notação a.b.c.d/x ao invés de utilizar números binários.

Prefixo	Interface
240.0.0.0/10	0
242.0.192.0/18	1
242.0.192.199/24	2
246.160.224.128/25	2
0.0.0.0/0	3

(c) Descreva para qual porta de saída os pacotes com os seguintes endereços destino serão encaminhados:

Endereço Destino do Pacote	Porta de saída
11110000 11110110 11011011 11000111	3
11110010 00000001 11110001 10111010	3
11110010 00000000 11000111 00001111	1
11110110 10000000 11110000 11100011	3
11110110 10100000 111111100 11100011	3
11111000 10100000 111111100 11100011	3

8. [1 ponto] Considere a rede ilustrada na figura acima. Suponha que todos os endereços IPs desta rede precisam pertencer à classe 128.10.10.128/25. Configure a rede atribuindo endereços IPs a cada uma das interfaces e também a cada uma das sub-redes, utilizando neste caso a notação a.b.c.d/x.

Repare que precisamos criar 5 redes locais diferentes: uma para cada segmento ilustrado na figura. Podemos dividir o endereço 128.10.10.128/25 em 5 redes, por exemplo, utilizando máscaras /28. Repare que ao usarmos /28 podemos ter até 8 redes (pois os bits 26, 27 e 28 serão usados para indentificar a rede). Além disso, ao usarmos /28 cada uma das sub-redes pode ter até 15 máquinas (pois os bits 29, 30, 31 e 32 serão usados para endereçar a máquina dentro da sub-rede). A figura abaixo ilustra uma possível configuração com base em redes /28, que não é a única solução correta.

9. [1 ponto] Considere um único roteador que interconecta três redes locais, L_1 , L_2 , e L_3 . Suponha que todas as interfaces (i.e., números IPs) destas redes precisam obrigatoriamente pertencer a rede 80.3.19.0/22. Você deseja alocar 100 números IPs para a rede

local L_1 , 80 números IPs para a rede local L_2 e 60 para a rede local L_3 . Forneça os endereços das redes locais na forma a.b.c.d/x para atender tais requerimentos (repare que há várias soluções corretas).

Repare que temos um endereço /22, o que nos permite ter até 1023 ($2^{10}-1$, pois temos 10 bits) endereços IPs distintos. Entretanto, tais IPs precisam estar divididos em três redes locais distintas. Vamos definir então três diferentes endereços de rede local, utilizando para cada uma delas, uma máscara /24. Isto nos dá até 4 redes locais diferentes, onde cada uma pode endereçar até 255 endereços distintos. Para a rede local L_1 temos 80.3.17.0/24, o que nos dá um total de 255 endereços IPs. Para a rede local L_2 temos 80.3.18.0/24, o que nos dá um total de 255 endereços IPs. Para a rede local L_3 temos 80.3.19.0/24, o que nos dá um total de 255 endereços IPs. Repare que esta solução atende os requerimentos acima. Repare ainda que existem várias outras possíveis soluções.

10. [1 ponto] Suponha que um aplicativo envia de uma só vez 10KB (1KB = 1000 bytes) de dados que irão atravessar um link que possui um MTU de 1450 bytes (que é o caso do link Ethernet). Quantos pacotes na camada de rede serão gerados? Suponha que o primeiro fragmento IP possua número de identificação 1211. Quais os números de identificação e offset que serão utilizados em cada pacote?

Ignorando o cabeçalho introduzido pelos protocolos de transporte e de redes, temos um total de 7 pacotes transmitidos, pois $\lceil 10000/1450 \rceil = 7$. O primeiro pacote possui número de identificação 1211 e offset 0, o segundo pacote identificação 1211 e offset 1450, o terceiro pacote identificação 1211 e offset 2900, até o último pacote, que possui identificação 1211 e offset 8700. Repare que todos os pacotes possuem o mesmo número de identificação. Os seis primeiros pacotes são do mesmo tamanho (1450 bytes de dados), enquanto o último pacote possui 1300 bytes de dados.

11. [1 ponto] Suponha que você irá baixar um arquivo MP3 da Internet que possui 4.8MB (1MB = 10⁶ bytes) de tamanho. Se você está ligado a uma rede local tipo Ethernet, cujo MTU é 1450 bytes, quantos pacotes IP serão necessários (no mínimo) para efetuar esta transferência. Faça as contas ignorando os cabeçalhos dos protocolos TCP e IP, e depois refaça as contas considerando estes dois cabeçalhos.

Ignorando o cabeçalho introduzido pelos protocolos TCP e IP, temos um total de 3000 pacotes (no mínimo devido a possíveis retransmissões), pois $\lceil 4800000/1450 \rceil = 3311$. O cabeçalho dos protocolos TCP e IP, juntos, adicionam 40 bytes (20 bytes de cada protocolo). Assim sendo, a aplicação consegue enviar somente 1460 bytes por pacote, pois 1450-40=1410. Logo serão necessários 3405 pacotes para efetuar a transmissão, pois $\lceil 4800000/1410 \rceil = 3405$.

12. **[1 ponto]**

Suponha que você tenha um ponto de acesso sem fio em sua casa e conecte-o a um modem de um provedor de servico de banda de larga (ex: velox). Considere que um único número IP seja atribuído dinamicamente ao seu ponto de acesso sem fio pelo seu provedor de servico. Suponha também que você tenha 3 PC's conectados ao seu ponto de acesso sem fio. Qual o protocolo você usaria para atribuir números IP's aos seus 3 PC's ? Explique resumidamente como o protocolo funciona.

O protocolo NAT.

O NAT é um mecanismo que permite criar uma rede local privada, com endereços IPs que não são vistos diretamente por hosts na Internet pública. O NAT-box é um computador especial que permite que um host na rede local privada faça uma conexão com um host na rede pública da Internet, traduzindo os endereços. Ao abrir uma conexão TCP com um servidor Web na Internet, por exemplo, um host na rede privada atravessa o NAT-box de forma transparente para ambos (host e servidor Web). O NAT-box anota o endereço e porta de origem do pacote vindo da rede local privada, e muda a porta e o endereço do pacote antes de transmiti-lo pelo link de saída (que dá acesso a Internet). O NAT-box mantém uma tabela com este mapeamento. O novo endereço de origem deste pacote é o endereço IP público do NAT-box. Ao receber um pacote vindo da Internet, o NAT-box consulta sua tabela de mapeamento e faz o procedimento reverso.

13. **[2.0 pontos]**

Considere a rede ilustrada abaixo onde cada enlance está associado com o seu respectivo custo. Construa a tabela de roteamento do nó E usando o algoritmo de Dijkstra. Construa uma tabela igual a mostrada em aula que demonstra o funcionamento do algoritmo de forma iterativa.

Passo	N'	d(A),p(A)	d(B),p(B)	d(C),p(C)	d(D),p(D)	d(F),p(F)
0	E	∞	10,E	∞	$_{4,\mathrm{E}}$	$_{1,\mathrm{E}}$
1	EF	∞	$_{5,\mathrm{F}}$	∞	$_{4,\mathrm{E}}$	-
2	EFD	8,D	$_{5,\mathrm{F}}$	5,D	-	-
3	EFDB	$_{6,\mathrm{B}}$	-	5,D	-	-
4	EFDBC	$_{6,\mathrm{B}}$	-	-	-	-
5	EFDBCA	=	-	-	-	-

14. [1 ponto]

Considere a rede ilustrada abaixo. Suponha que todos os enlaces tenham custo igual a 1 e o nó E deseja enviar uma determinada mensagem em broadcast na rede (isto é, para todos os outros nós da rede). Usando a mesma notação dada em aula, \rightarrow para mensagens que são repassadas por um nó, e \rightarrow | para mensagens que não são repassadas por um nó indique as mensagens que serão enviadas pela rede caso o nó E use o algoritmo Repasse pelo caminho reverso (Reverse Path Forward) para enviar uma mensagem em broadcast.

Existem duas respostas corretas para esta questão pois existem dois caminhos com o mesmo custo de E até B: ECB e EDB. A primeira resposta considera como melhor caminho ECB e a segunda EDB.

Resposta 1: Considerando os seguintes caminhos de E até todos os outros nós da rede: ECA, ECB, EC, ED, EF, EDG

Resposta 2: Considerando os seguintes caminhos de E até todos os outros nós da rede: ECA, EDB, EC, ED, EF, EDG

15. [1 ponto]

Considere a mesma rede da questão anterior só que agora considere que o nó E utiliza o algoritmo de flooding para enviar as mensagens. Mostre os pacotes que serão enviados por cada nó da rede, indicando também o instante de transmissão de cada um deles (a ser decidido por você). Por exemplo, $A \to B, t = 1$.

Existem duas respostas corretas para esta questão pois existem dois caminhos com o mesmo custo de E até B: ECB e EDB. A primeira resposta considera como melhor caminho ECB e a segunda EDB.

Resposta 1 - ECB	Resposta 2 - EDB
$E \to C, t = 1$	$E \to C, t = 1$
$E \to D, t = 1$	$E \to D, t = 1$
$E \to F, t = 1$	$E \to F, t = 1$
$F \to C, t = 2$	$F \to C, t = 2$
$C \to A, t = 2$	$C \to A, t = 2$
$C \to B, t = 2$	$C \to B, t = 2$
$C \to F, t = 2$	$C \to F, t = 2$
$D \rightarrow B, t = 2$	$D \to B, t = 2$
$D \to G, t = 2$	$D \to G, t = 2$
$B \to A, t = 3$	$B \to A, t = 3$
$B \to D, t = 3$	$B \to C, t = 3$
$A \rightarrow B, t = 3$	$A \to B, t = 3$

16. **[2.0 pontos]**

Considere a rede ilustrada abaixo onde cada enlance está associado com o seu respectivo custo. Suponha que cada nó conhece inicialmente o custo até o seu vizinho. Construa a tabela de roteamento do nó Z usando o algoritmo distance-vector. Mostre como a tabela foi construída usando o algoritmo.

A tabela é construída baseada no algoritmo mostrado abaixo.

```
o 1 Inicialização
2 faça para todos os nós y em N:
                                                                            Tabela de roteamento do nó Z:
     D_x(y) = c(x,y), se y é vizinho de x
                                                                            Destino | custo | link de saída
4
     D_x(y) = infinito, caso contrário
5
   para cada vizinho v
                                                                                     1 9
                                                                                V
                                                                                     1 5
                                                                                             - 1
                                                                                                   (Z,V)
6
      envie o vetor de distâncias D<sub>x</sub> calculado por x
                                                                               X
Y
                                                                                         2
                                                                                             - 1
                                                                                                   (Z,X)
7
                                                                                     1 3
                                                                                                   (Z,X)
8 Loop
9 esperar (até que haja mudança no custo de um enlace de x ou
             até que seja recebido um vetor de distâncias de um vizinho v)
10 faça para cada y em N:
11 D_x(y) = \min_{v} \{c(x,v) + D_v(y)\}
12 Se D<sub>x</sub>(y) mudou para algum destino y
       envie o novo vetor de distâncias D<sub>x</sub> para todos os vizinhos
13 para sempre 1
```

17. [1 ponto]

Considere os algoritmos intra-AS (ex: OSPF, RIP) e o BGP (inter-AS). Explique porque regras políticas, sociais, comerciais (policy) são mais importantes para uma classe de algoritmos do que para a outra.

Os algoritmos intra-AS são usados dentro do mesmo sistema autônomo (AS) e estão sob a mesma administração, portanto o maior objetivo desses algoritmos é encontrar o caminho de menor custo de uma fonte até o destino. Já o algoritmo BGP interconecta todos as AS's da Internet e portanto aspectos comeciais, políticos são importantes como, por exemplo, qual a origem do tráfego que um AS está roteando, é interessante para um AS servir de trânsito ? etc.