Домашня робота з математичного моделювання #11

Студента 2 курсу групи МП-21 Захарова Дмитра

14 травня 2023 р.

Завдання 1.

Умова. Вуглець, вилучений з стародавнього черепу, містив тільки $\epsilon = \frac{1}{6}$ тієї кількості вуглецю ¹⁴C, який містить вуглець, вилучений із сучасної кістки. Який вік черепу?

Розв'язок. З відкритих джерел знаходимо період піврозпаду ізотопу 14 С: $T_{1/2} \approx 5700$ років.

Нехай початкова кількість вуглецю N_0 . Тоді залежність кількості вуглецю від часу t описується рівнянням:

$$N(t) = N_0 \cdot 2^{-t/T_{1/2}}$$

За умовою нам потрібно знайти такий час τ , коли $N(\tau) = \epsilon N_0$. Тоді:

$$N_0 \cdot 2^{-\tau/T_{1/2}} = \epsilon N_0 \to \tau = -\log_2 \epsilon \cdot T_{1/2} = \log_2 \frac{1}{\epsilon} \cdot T_{1/2}$$

Отже, підставляючи числа, маємо $\tau \approx 14735$ років.

Відповідь. $\log_2 \frac{1}{\epsilon} \cdot T_{1/2} \approx 14735$ років.

Завдання 2.

Умова. Після народження першої дитини, подружня пара депонувала $B_0 = 5000$ дол. на рахунок, за яким банк платить r = 8% доходу, який нараховуються безперервно. Дохід, який виплачується, приплюсовується до вкладу. Скільки доларів буде нараховано на рахунок на вісімнадцятий день народження дитини?

Розв'язок. Дохід в залежності від часу визначається диференційним рівнянням:

$$\dot{B}(t) = rB(t) \rightarrow B(t) = B_0 \cdot e^{rt}$$

Підставляємо числа:

$$B(18) = 5000 \cdot e^{0.08 \cdot 18} \approx 21100$$

Відповідь. ≈ 21100 .

Завдання 3.

Умова. Припустимо, що етанінал натрію (pentobarbital) використовується для знеболення собаки. Стан знеболення у собаки досягається, коли її кров містить принаймні 45 мг етанінала натрію на кілограм ваги собаки (позначимо $\epsilon = \frac{45 \text{ мг}}{1 \text{ кг}}$. Припустимо також, що із крові собаки етанінал натрію виводиться за експонентою, з періодом напіввиведення $T_{1/2} = 5$ годин. Яку разову дозу потрібно ввести для знеболення 50 кілограмової собаки (позначимо m = 50 кг) на $\tau = 1$ годину?

Відповідь. Будемо вважати, що у початковий стан тіло собаки не містило етаніал натрію. Нехай ми вводимо деяку дозу μ_0 . Тоді відповідно до умови, маса дози змінюється за законом:

$$\mu(t) = \mu_0 \cdot 2^{-t/T_{1/2}}$$

Стан знеболення у собаки при вазі m досягається, коли її кров містить ϵm етаніала натрію, в нашому випадку $\epsilon m=2250$ мг. Звичайно, що

початкова доза має буде більшою за це значення, інакше якщо взяти рівно це значення, наприклад, то знеболення одразу зникає.

Тоді, відповідно до умови, через час $\tau=1$ година, маса дози має бути ϵm . Таким чином:

$$\mu(\tau) = \mu_0 \cdot 2^{-\tau/T_{1/2}} = \epsilon m$$

Тоді:

$$\mu_0 = \epsilon m \cdot 2^{\tau/T_{1/2}} = 2250 \cdot 2^{1/5} \; \text{Mp} \approx 2585 \; \text{Mp}$$

Відповідь. Приблизно 2.585 грам.

Завдання 4.

Умова. Період напіврозпаду радіоактивного кобальту $T_{1/2}=5.27$ років. Припустимо, що в результаті ядерної аварії рівень радіації кобальту в деякому регіоні в $\alpha=100$ разів перевищив рівень, прийнятний для проживання людини. Протягом якого часу регіон буде придатним для життя? (Ігноруйте ймовірну присутність інших радіоактивних ізотопів.)

Розв'язок. Нехай кількість кобальту, що відповідає придатному рівню для життя, дорівнює $N_{\rm normal}$. В такому разі за умовою, кількість кобальту стала дорівнювати $\alpha N_{\rm normal}$. Тоді кількість кобальту від часу можна описати рівнянням:

$$N(t) = \alpha N_{\text{normal}} \cdot 2^{-t/T_{1/2}}$$

Нас цікавить час τ , коли це значення знову стане дорівнювати N_{normal} . Для цього потрібно просто розв'язати рівняння:

$$\alpha N_{\text{normal}} \cdot 2^{-\tau/T_{1/2}} = N_{\text{normal}} \to 2^{-\tau/T_{1/2}} = \frac{1}{\alpha}$$

Звідси знаходимо:

$$au = -\log_2 rac{1}{lpha} \cdot T_{1/2} = \log_2 lpha \cdot T_{1/2} pprox 35$$
 років

Відповідь. Приблизно через 35 років.

Завдання 5.

Умова. Якраз перед полуднем неживе тіло жертви вбивства було знайдено в кімнаті з постійною температурою $\overline{T}=70^{\circ}F$. О 12:00 полудня температура тіла дорівнювала $T_1=80^{\circ}F$, а о 13:00 $T_2=75^{\circ}F$. Припустімо, що температура тіла під час смерті була $T_0=98.6^{\circ}F$ і що вона охолоджувалась відповідно до закону Ньютона. Коли відбулося вбивство?

Розв'язок. Відповідно до закону Ньютона-Ріхмана, температура T змінюється за законом:

$$\dot{T} = \kappa(\overline{T} - T)$$

де κ деяка стала. Якщо зробити заміну $\widetilde{T}=\overline{T}-T,$ то отримаємо рівняння:

$$\dot{\widetilde{T}} = -\kappa \widetilde{T} \to \widetilde{T}(t) = \widetilde{T}_0 \cdot e^{-\kappa t}$$

де \widetilde{T}_0 це деяка стала. Повертаючись до T:

$$T(t) = \overline{T} - \widetilde{T}(t) = \overline{T} - \widetilde{T}_0 \cdot e^{-\kappa t}$$

Нехай t вимірюється у годинах від моменту смерті. Тоді за умовою маємо $T(0) = T_0$ або:

$$T(0) = \overline{T} - \widetilde{T}_0 = T_0 \to \widetilde{T}_0 = \overline{T} - T_0$$

Таким чином наше рівняння має вид:

$$T(t) = \overline{T} - (\overline{T} - T_0)e^{-\kappa t}$$

Тепер, позначимо час від моменту смерті до полудня як τ , а від моменту смерті до 13:00 як $\tau+\Delta \tau$ де $\Delta \tau=1$ година. В такому разі маємо:

$$\begin{cases} T(\tau) = T_1 \\ T(\tau + \Delta \tau) = T_2 \end{cases}$$

Маємо 2 невідомі: κ та τ і 2 рівняння, отже можемо його розв'язати. Маємо:

$$\begin{cases} \overline{T} - (\overline{T} - T_0)e^{-\kappa\tau} = T_1\\ \overline{T} - (\overline{T} - T_0)e^{-\kappa(\tau + \Delta\tau)} = T_2 \end{cases}$$

З першого рівняння:

$$e^{-\kappa\tau} = \frac{\overline{T} - T_1}{\overline{T} - T_0}$$

А з другого рівняння:

$$e^{-\kappa\tau}e^{-\kappa\Delta\tau} = \frac{\overline{T} - T_2}{\overline{T} - T_0} = \frac{\overline{T} - T_1}{\overline{T} - T_0}e^{-\kappa\Delta\tau}$$

Отже:

$$-\kappa \Delta \tau = \ln \frac{\overline{T} - T_2}{\overline{T} - T_1} \to \kappa = \frac{1}{\Delta \tau} \cdot \ln \frac{\overline{T} - T_1}{\overline{T} - T_2}$$

Підставляючи знову у перше рівняння:

$$-\kappa\tau = \ln\frac{\overline{T} - T_1}{\overline{T} - T_0} \to \tau = \frac{1}{\kappa}\ln\frac{\overline{T} - T_0}{\overline{T} - T_1}$$

Отже остаточно:

$$\tau = \Delta \tau \cdot \frac{\ln(\overline{T} - T_0)/(\overline{T} - T_1)}{\ln(\overline{T} - T_1)/(\overline{T} - T_2)}$$

Підставляючи наші значення, маємо:

$$au=1$$
 година $\cdot rac{\ln(70-98.6)/(70-80)}{\ln(70-80)/(70-75)}pprox 1.5$ години

Отже, вбивство було приблизно о 10:30.

Відповідь. 10:30.