Assalan Ahmed Khatyan
SP19-BSSE-001B
BM
HW5

Max Z= 7x, +12x2 + 4x3

 $x_{1} + 2x_{2} + x_{3} \le 10$ $2x_{1} - x_{2} + 3x_{3} \le 8$ $x_{1}, x_{2}, x_{3} \ge 0$

(a)

Standard form:

Max Z = 7x,+12x2+4x3

(x) $x_1 + 2x_2 + x_3 + S_1 = 10$

 (Y_1) $2x_1 - x_2 + 3x_3 + S_2 = 8$

X1, X2, X3, S1, Sa≥0

Convert into dual Form:

Min w = 104, +842

 $Y_1 + 2Y_2 \ge 7$

 $2Y_1 - Y_2 \ge 12$

 $\frac{1}{1} + \frac{3}{2} \ge 4$

 $Y_1, Y_2 \geq 0$

Merch

$$B^{-1} = \begin{bmatrix} 2/5 & -1/5 \\ 1/5 & 2/5 \end{bmatrix}$$

$$XB = \begin{bmatrix} \chi_2 & \chi_1 \end{bmatrix}^T$$

$$CB = \begin{bmatrix} 12 & 7 \end{bmatrix}$$

BV	メ	Xa	χ ₃	SI	Sa	RHS
\overline{z}	D	D		11.7%		(N
χ ₂	0	1		2/5	-1/5	D T
χ_{i}	1	0		1/5	2/5	

For optimal values of basic vaciables

$$\vec{b} = \begin{bmatrix} 2/5 & -4/5 \\ 1/5 & 2/5 \end{bmatrix} \begin{bmatrix} 10 \\ 8 \end{bmatrix} = \begin{bmatrix} 12/5 \\ 26/5 \end{bmatrix}$$

For optimal values of objective function : z = B'bCB

$$Z = \begin{bmatrix} 12 & 7 \end{bmatrix} \begin{bmatrix} 22/5 \\ 26/5 \end{bmatrix} = 326/5$$

For optimal Coefficients of variable in constraints : a3 = B'a3

$$\overline{a}_{3} = \begin{bmatrix} 2/5 & -1/5 \\ 1/5 & 2/5 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \end{bmatrix} = \begin{bmatrix} -1/5 \\ 7/5 \end{bmatrix}$$

For optimal Coefficients of variables in Obj. Runction $: \overline{C_j} = C_B B'a_j - C_j$

$$\overline{C}_3 = C_B B^{-1} a_3 - C_3 = > \begin{bmatrix} 12 & 7 \end{bmatrix} \begin{bmatrix} -1/5 \\ 7/5 \end{bmatrix} - 4$$

$$\bar{C}_3 = \frac{37}{5} - 4 \Rightarrow \frac{17}{5}$$

$$\vec{C}_{S_i} = C_B B' a_{S_i} - C_{S_i} = \sum_{s} \begin{bmatrix} 12 & 7 \end{bmatrix} \begin{bmatrix} 2/s^{-1} \\ 1/s^{-1} \end{bmatrix} = 0$$

$$\overline{C_{S_2}} = C_B B^{-1} a_{S_2} - C_{S_2} \Rightarrow \begin{bmatrix} 12 & 7 \end{bmatrix} \begin{bmatrix} -1/5 \\ 2/5 \end{bmatrix} - 0$$

$$\overline{C_{s2}} = \frac{2}{5}$$

The Optimal Tableau is;

BV	×	×a	χ_3	SI	Sa	RHS
Z	D	0	17/5	31/5	2/5	RHS 326/5-
×a	0	1	-1/5	2/5	-1/5-	12/5
χ,	1					

Mary

$$B' = \begin{bmatrix} 2/5 & -1/5 \\ 1/5 & 2/5 \end{bmatrix}$$

$$= 10(3\frac{1}{5}) + 8(2\frac{1}{5})$$

$$W = 326/5$$

w = 326/5 optimal value of the dual.

QNO#2

(a)

Max
$$Z = 66x_1 - 22x_2$$

 $-x_1 + x_2 \le -2$
 $2x_1 + 3x_2 \le 5$
 $x_1, x_2 \ge 0$

Standard form:Man Z = 66x1-22x2

$$(Y_1)$$
 $\chi_1 - \chi_2 - S_1 = 2$
 (Y_2) $2\chi_1 + 3\chi_2 + S_2 = S^{-1}$

 $\chi_1, \chi_2 \geq 0$

Convert into dual form: $Min_1 \quad \omega = 2Y_1 + 5Y_2$ $Y_1 + 2Y_2 \ge 66$ $-Y_1 + 3Y_2 \ge -22$ $Y_1, Y_2 \ge 0$

(b)

Min $Z = 6x_1 + 3x_2$ $6x_1 - 3x_2 + x_3 \ge 25$ $3x_1 + 4x_2 + x_3 \ge 55$ $3x_1 + 4x_2 + x_3 \ge 55$

Standard Form: **

* Min Z = 6x1+3x2

6x1-3x2+x3-x

Min $Z = 6x_1 - 6x_1 + 3x_2$ $6x_1 - 6x_1^{\dagger} - 3x_2 + x_3 - 6_1 = 25^{\dagger}$ $3x_1^{\dagger} - 3x_1^{\dagger} + 4x_2 + x_3 - 6_2 = 55^{\dagger}$ $x_1^{\dagger}, x_1^{\dagger}, x_2, x_3 \ge 0$

Convert into dual form:-

Min Z = 4x1+8x2+3x3

$$\chi_{1} + \chi_{2} + \chi_{3} = 7$$

$$\chi_{1} - S\chi_{2} + \chi_{3} \ge 10$$

$$\chi_{1}, \chi_{2}, \chi_{3} \ge 0$$

Dual Simplex Algorithm:

$$\chi_{1} + \chi_{2} + \chi_{3} \leq 7$$
 $-\chi_{1} - \chi_{2} - \chi_{3} \leq -7$
 $-2\chi_{1} + \zeta\chi_{2} - \chi_{3} \leq -10$
 $\chi_{1}, \chi_{2}, \chi_{3} \geq 0$

Standard form:

$$\chi_{1} + \chi_{2} + \chi_{3} + S_{1} = 7$$
 $-\chi_{1} - \chi_{2} - \chi_{3} + S_{2} = -7$
 $-\chi_{1} + S\chi_{2} - \chi_{3} + S_{3} = -10$
 $\chi_{1}, \chi_{2}, \chi_{3} \ge 0$
 $S_{1}, S_{2}, S_{3} \ge 0$

	1							
BV	メ	χ,	χ_{3}	S,	S 2	S_3	RHS	
Z	1 -9	- 8	-3	0	0	0	0	-
Si	1	1	1	1	0	0	7	-
52	-1		-1	0	1	0	-7	
S3	-2	5	- <u>1</u>	0	0	1	-10 ←	
1								

$$\left|\frac{C_{j}}{a_{ij}}\right|$$
, $a_{ij} \leq 0$

$$\left|\frac{-4}{-2}\right| = 2$$
 , $\left|\frac{-3}{-1}\right| = 3$

BV
$$|x_1|$$
 $|x_2|$ $|x_3|$ $|S_1|$ $|S_2|$ $|S_3|$ $|S_4|$ $|S_2|$ $|S_3|$ $|S_4|$ $|$

BV

$$\chi_1$$
 χ_2
 χ_3
 S_1
 S_2
 S_3
 RHS

 Z
 0
 -11
 0
 0
 -2
 -1
 24

 S_1
 0
 2
 0
 1
 1
 0

 χ_3
 0
 7
 1
 0
 -2
 1
 4

 χ_1
 1
 -6
 0
 0
 1
 -1
 3

$$Z = 24$$
 $(3,0,4,0,0,0)$

 $Z = 4x_1 + 8x_2 + 3x_3$ 24 = 4(3) + 8(0) + 3(4)

QN0#4

Min Z = 2x1+2x2+4x3

$$2x_{1}+x_{2}-x_{3} \leq 2$$

 $3x_{1}+4x_{2}+2x_{3} \geq 8$
 $x_{1}, x_{1}, x_{3} \geq 0$

Dual Simplex Algorithm:

Min Z=2x1+2x2+4x3

$$2x_1 + x_2 - x_3 \le 2$$

-3x, -4x2-2x3 \le -8
 $x_1, x_2, x_3 \ge 0$

Standard form:~

$$2x_1+x_2-x_3+s_1=2$$

 $-3x_1-4x_2-2x_3+s_2=-8$
 $x_1, x_2, x_3 \ge 0$
 $s_1, s_2 \ge 0$

		• J					
BV	XI	χ ₂	23		52	RH	S
Z	-2	-2	-4	0	0	0	
SI	2	1	-1	1	0	2	
Sz	-3	-4	-2	0	1	-8	4
	4						

$$\left|\frac{-2}{-3}\right| = \frac{2}{3}, \left|\frac{-2}{-4}\right| = \frac{1}{2}, \left|\frac{-4}{-2}\right| = 2$$

BV	\mathcal{H}_{i}	×2	x3 S1	52	RHS
2	-1/2	0	-3 0	- 1/2	4
5,	5/4	\sim	-3/2 1	1/4	0
$\chi_{_{2}}$	3/4	1	Y ₂ 0	-1/4	2

$$Z = 4$$
 $(0, 2, 0, 0, 0)$

$$7 Z = 2x_1 + 2x_2 + 4x_3$$

 $4 = 2(2) + 0 + 0$