

UNIVERSIDADE FEDERAL DO PARÁ INSTITUTO DE GEOCIÊNCIAS PROGRAMA DE PÓS-GRADUAÇÃO EM GEOFÍSICA

PROFESSOR: JESSÉ CARVALHO COSTA

RELATÓRIO 2: DISCIPLINA TÓPICOS DE INVERSÃO

TÍTULO: MÉTODOS DE OTIMIZAÇÃO

ALUNOS: FELIPE LOUZEIRO, LUCAS DE CASTRO COSTA, MURILLO NASCIMENTO E THYERRE AUGUSTO CARDOSO SAMPAIO

Sumário

1	OBJETIVOS
	METODOLOGIA 2.1 LINHAS DE BUSCA
	2.2 FUNÇÕES
3	MÉTODOS DE OTIMIZAÇÃO 3.1 MÉTODOS DE PRIMEIRA ORDEM
	3.1.1 STEEPEST DESCENT
	3.1.2 CONJUGATE GRADIENT DESCENT
	3.2.1 MÉTODO DE SEGONDA ORDEM
4	REFERÊNCIAS BIBLIOGRÁFICAS

1 OBJETIVOS

O objetivo deste relatório é mostrar a eficácia dos métodos de otimização de primeira e segunda ordem, apresentando testes e alterações notáveis. Será analisado quantas iterações serão necessárias para cada método.

2 METODOLOGIA

Para a análise dos algoritmos de otimização, foram divididos testes analisando funções e linha de busca para cada método (1). Para os experimentos, serão utilizados três tipos de linhas de busca.

2.1 LINHAS DE BUSCA

Supondo que escolhemos uma direção de descida d, é necessário escolher o fator de passo α para obter nosso próximo ponto de projeto. Uma abordagem é usar a pesquisa de linha, que seleciona o fator de passo que minimiza a função unidimensional:

$$minimize_{\alpha} f(\boldsymbol{x} - \alpha \boldsymbol{d}). \tag{1}$$

A linha de busca é usada para a minimizar uma função a partir de uma direção de descida. Podemos aplicar o busca de linha da nossa escolha. Para informar o que se busca, podemos usar a derivada do objetivo de busca de linha, que é simplesmente o derivada direcional ao longo de d em $\mathbf{x} - \alpha \mathbf{d}$.

Para aproximar melhor e ter menos iterações, são utilizadas condições aplicadas nas linhas de busca. Uma dessas é a de diminuição suficiente, representada por:

$$f(\boldsymbol{x}^{(k+1)}) \le f(\boldsymbol{x}^{(k)}) + \beta \alpha \nabla_{\boldsymbol{d}^{(k)}} f(\boldsymbol{x}^{(k)}), \tag{2}$$

sendo $\beta \in [0, 1]$, nos nossos testes será utilizado $\beta = 1 \times 10^{-4}$. Esta condição também é conhecida como condição de Armijo.

Outra condição que foi utilizada será a de forte curvatura, representada por:

$$|\nabla_{\boldsymbol{d}^{(k)}} f(\boldsymbol{x}^{(k+1)})| \le -\sigma \nabla_{\boldsymbol{d}^{(k)}} f(\boldsymbol{x}^{(k)})$$
(3)

no qual σ controla quão superficial deve ser a próxima derivada directional.

Juntando as duas condições ditas, formam as condições fortes de Wolfe, sendo a de Armijo a primeira, enquanto a de forte curvatura a segunda.

Nos nossos testes, serão utilizadas duas linhas de busca: a primeira sem considerar condições, a busca simples, e a segunda utilizando as condições fortes de *Wolfe*.

2.2 FUNÇÕES

Para os testes dos métodos de otimização, serão utilizadas funções com o intuito de analisar a quantidade de iterações necessárias. Uma das funções utilizadas foi:

$$f(\mathbf{x}) = 3(x_1)^2 + 24(x_2)^2 \tag{4}$$

Outra das funções que será usada é a de Rosenbrock para 6 componentes, como apresentada abaixo:

$$f(\mathbf{x}) = b(x_2 - x_1^2)^2 + (a - x_1)^2 + b(x_3 - x_2^2)^2 + (a - x_2)^2 + b(x_4 - x_3^2)^2 + (a - x_3)^2 + (b(x_5 - x_1^4)^2 + (a - x_4)^2 + b(x_6 - x_1^5)^2 + (a - x_5)^2,$$
(5)

sendo a e b parâmetros da função definidos como 1 e 5, respectivamente.

3 MÉTODOS DE OTIMIZAÇÃO

Nesta seção, serão avaliados quantas iterações foram necessárias e em cada linha de busca, para saber quais são mais eficazes nas funções apresentadas. Esses testes serão feitos a partir das Equações 4 e 5, para facilitar, serão chamadas de primeira e segunda função, respectivamente. Nas duas funções, foram feitos testes com duas linhas de busca: a simples e a com as condições fortes de Wolf.

3.1 MÉTODOS DE PRIMEIRA ORDEM

3.1.1 STEEPEST DESCENT

Neste método, foi utilizado o máximo de 5000 iterações. Para a primeira função, os resultados são apresentados nas Figuras 1 e 2. Para a busca com linha simples foram necessárias 966 iterações para chegar próximo do resultado, enquanto que para as condições fortes de Wolf foram 1068 iterações.

Figura 1: Método de otimização steepest descent para a primeira função. Utilizada a linha de busca simples. Nesta função de duas dimensões, o ponto inicial é [1.8, 1.8] e o ponto mínimo [0, 0]. Esse padrão será adotado para todos os casos da primeira função.

Figura 2: Método de otimização steepest descent para a primeira função. Utilizada a linha de busca com as condições fortes de Wolf.

Para a segunda função, os resultados gráficos são apresentados nas Figuras 3 e 4. Para a linha de busca simples, foram necessárias 2042 iterações, enquanto para as condições fortes de Wolf foram feitas 1144 para atingir próximo do mínimo.

3.1.2 CONJUGATE GRADIENT DESCENT

Neste método, foram repetidas o máximo de 5000 iterações do caso anterior. Nas Figuras 5 e 6 estão representadas o método aplicado para a primeira função. Para a busca de linha simples, foram utilizadas 2459 iterações, enquanto que para o de condições de Wolf foram 152.

Para a segunda função, o de busca de linha simples foram necessárias 2783 iterações, enquanto para as condições fortes de Wolf foram 105.

3.2 MÉTODO DE SEGUNDA ORDEM

3.2.1 MÉTODO DE NEWTON

Para este método, foi colocado o máximo de 1000 iterações para avaliar as funções. Na primeira função, foram necessárias a mesma quantidade de iterações da busca simples e da condição forte de Wolf para chegar no resultado esperado, 2 iterações.

Diferente do caso anterior, as iterações variaram dependendo da busca de linha. Para a simples foram necessárias 14 iterações, enquanto para as condições fortes de Wolf foram 15.

Figura 3: Método de otimização steepest descent para a segunda função. Utilizada a linha de busca simples. Neste corte de função de seis dimensões, o ponto inicial [-1.7, -1.7, -1.7, -1.7, -1.7, -1.7] e o ponto mínimo [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]. Este padrão será mantido para todos os casos da segunda função.

4 REFERÊNCIAS BIBLIOGRÁFICAS

Referências

1 KOCHENDERFER, M. J.; WHEELER, T. A. Algorithms for optimization. [S.l.]: Mit Press, 2019.

Figura 4: Método de otimização *steepest descent* para a segunda função. Utilizada a linha de busca com as condições fortes de Wolf.

Figura 5: Método de otimização conjugate gradient descent para a primeira função. Utilizada a linha de busca simples.

Figura 6: Método de otimização conjugate gradient descent para a primeira função. Utilizada a linha de busca com as condições fortes de Wolf.

Figura 7: Método de otimização conjugate gradient descent para a segunda função. Utilizada a linha de busca simples.

Figura 8: Método de otimização conjugate gradient descent para a primeira função. Utilizada a linha de busca com as condições fortes de Wolf.

Figura 9: Método de otimização de Newton para a primeira função. Utilizada a linha de busca simples.

Figura 10: Método de otimização de Newton para a primeira função. Utilizada a linha de busca com condições fortes de Wolf.

Figura 11: Método de otimização de Newton para a segunda função. Utilizada a linha de busca simples.

Figura 12: Método de otimização de Newton para a segunda função. Utilizada a linha de busca com condições fortes de Wolf.