Теоретические сведения

Краткое собрание теоретических сведений о алгоритмах генераторов (t,m,s)сетей, и структур, понятий, необходимых для тестов генераторов.

Алгоритм семейства генераторов joe-kuo:

1. Начальная реализация

Алгоритм генерации последовательности Соболя объяснён в [2]. Здесь же мы дадим краткое описание деталям. Чтобы сгенерировать j-ю компоненту точки в последовательности Соболя, мы должны выбрать примитивный многочлен некой степени s_i в поле Z_2

$$x^{s_j} + a_{1,j}x^{s_{j-1}} + a_{2,j}x^{s_{j-2}} + \dots + a_{s_{j-1},j}x + 1$$
, (1)

где наши коэффициенты $a_{1.j}$, $a_{2.j}$, $a_{3.j}$... $a_{s_j-1,j}$ равны либо 0, либо 1.

Мы определяем последовательность положительных целых $\{m_{1,j}, m_{2,j} \dots \}$ рекуррентным соотношением:

$$m_{k,j} := 2a_{1.j}m_{k-1.j} \oplus 2^2 a_{2.j}m_{k-2.j} \oplus \dots \oplus 2^{s_j-1}a_{s_j-1.j}m_{k-s_j+1.j} \oplus 2^{s_j}m_{k-s_j,j} \oplus m_{k-s_j,j}, (2)$$

где \oplus - оператор сложения по модулю 2 (исключающее «или»).

Начальные значения $m_{1,j}, m_{2,j}, \dots$, $m_{s_j,j}$ могут быть любыми, но с условием, что $m_{k,j}, 1 \le k \le s_j$, нечётное и меньше 2^k .

Направления $\{v_{1,j}, v_{2,j}, ...\}$ определяются по формуле:

$$v_{k,j} \coloneqq \frac{m_{k,j}}{2^k}$$

Тогда $x_{i,j}$, *j*-я компонента i —й точки в последовательности Соболева, задается формулой:

$$x_{i,j} \coloneqq i_1 v_{1,j} \oplus i_2 v_{2,j} \oplus \dots, (3)$$

где i_k - это -я цифра справа, если i записана в двоичной форме $i=(\dots i_3i_2i_1)_2$. В дальнейшем мы будем использовать $(\cdot)_2$ для обозначения двоичного представления номеров.

Например, при $s_j=3$, $a_{1,j}=0$ и $a_{2,j}=1$ у нас имеется примитивный многочлен x^3+x+1 . Начиная с $m_{1,j}=1$, $m_{2,j}=3$, и $m_{3,j}=7$, мы

используем формулу (2) чтобы получить значения $m_{4,j}=5$ $m_{5,j}=7$, и т.д. Отсюда мы можем вычислить направления:

$$v_{1,j} = (0.1)_2, v_{2,j} = (0.11)_2, v_{3,j} = (0.111)_2, v_{4,j} = (0.0101)_2, v_{5,j} = (0.00111)_2, \ldots$$

Исходя из (3), мы получаем -е компоненты первых нескольких точек:

$0 = (0)_1$	$x_{0,j} = 0$
1 = (1) ₂	$x_{1,j} = (0.1)_2 = 0.5$
$2 = (10)_2$	$x_{2,j} = (0.11)_2 = 0.75$
3 = (11) ₂	$x_{3,j} = (0.1)_2 \oplus (0.11)_2 = (0.01)_2 = 0.25$
$4 = (100)_2$	$x_{4,j} = (0.111)_2 = 0.875$
$5 = (101)_2$	$x_{5,j} = (0.1)_2 \oplus (0.111)_2 = (0.011)_2 = 0.375$

2. Реализация кода Грэя

Формула (3) соответствует первоначальной реализации Соболя. Более эффективная реализация, которая была предложена Антоновым и Салеевым, получила название код Грэя.

Код Грэя (в двоичном представлении) от целого i определяется как

$$gray(i)\coloneqq i\oplus \left\lfloor\frac{i}{2}\right\rfloor = (\dots i_3i_2i_1)_2\oplus (\dots i_4i_3i_2)_2$$

Он обладает таким свойством, что двоичные представления (i) и (i-1) отличаются только на одну позицию, а именно, индекс первой цифры справа от 0 в двоичном представлении (i-1)

i	gray(i)
$0=(0000)_2$	$(0000)_2 = 0$
1=(0001) ₂	$(0001)_2$ =1
2=(0010) ₂	$(0011)_2$ =3
3=(0011) ₂	$(0010)_2$ =2
4=(0100) ₂	$(0110)_2$ =6
5=(0101) ₂	$(0111)_2$ =7
6=(0110) ₂	$(0101)_2$ =5
7=(0111) ₂	$(0100)_2$ =4
8=(1000) ₂	$(1100)_2$ =12

9=(1001) ₂	(1101) ₂ =13
10=(1010) ₂	$(1111)_2$ =15
11=(1011) ₂	$(1110)_2$ =14
12=(1100) ₂	$(1010)_2$ =10
13=(1101) ₂	$(1011)_2$ =11
14=(1110) ₂	$(1001)_2 = 9$
15=(1111) ₂	$(1000)_2$ =8

Исходя из таблицы, можно заметить, что код Грэя - это просто переупорядочение неотрицательных целых чисел в каждом блоке 2^m чисел для $m=0,1,\dots$

Вместо (3), мы генерируем точки Соболя, используя формулу

$$\overline{x}_{i,j} \coloneqq g_{i,1}v_{1,j} \oplus g_{i,2}v_{2,j} \oplus \dots$$
, (4)

где $g_{i,k}$ - это -я цифра справа от i в коде Грея в двоичном представлении, то есть, $gray(i)=(\dots g_{i,3},g_{i,2},g_{i,1})_2$. Аналогично, поскольку (i) и (i-1) отличаются на одну позицию, мы можем сгенерировать точки рекурсивно, используя формулу

$$\overline{x}_{0,j} \coloneqq 0 \ \text{u}\overline{x}_{i,j} \coloneqq \overline{x}_{i-1,j} \oplus v_{c_{i-1},j}, (5)$$

где c_i является индексом первой цифры 0 справа в двоичном представлении $i=(\dots i_3i_2i_1)_2$. Мы имеем $c_0=1,\,c_1=2,\,c_3=3,\,c_4=1,\,c_5=2,\,$ и т.д.

С реализацией кода Грэя мы просто получаем точки в другом порядке, сохраняя при этом их свойства однородности. Это связано с тем, что каждый блок из 2^m точек для m=0,1,... аналогичен первоначальной реализации. Отметим, что (4) и (5) порождают одинаковую последовательность; (4) позволяет начать с любой позиции в последовательности, в то время как (5) является рекурсивной и более вычислительно эффективной формулой.

3. Примитивные многочлены и числа направленности

Следуя ограничениям, описанным в [2], мы определяем коэффициенты примитивного многочлена (1) с целыми числами

$$a_j \coloneqq (a_{1,j}a_{2,j} \dots a_{s_j-1,j})_2$$
,

таким образом, что каждый примитивный многочлен однозначно задается степенью S_j вместе с числом a_j . Например, если $s_j=7$ и $a_j=28=(011100)_2$ мы получаем многочлен $x^7+x^5+x^4+x^3+1$.

Генератор joe-kuo, $D^{(6)}$ – генератор new-joe-kuo-6.21201:

Размерность, при которой каждое значение t первый раз появляется																				
		t	t																	
		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
m=10	$D^{(6)}$	2	3	4	5	9	16	32	76	167	402	>21201								
	[1]	2	3	4	5	8	15	21	23	18	36	>1111								
m=12	$D^{(6)}$	2	3	4	6	10	16	34	40	109	233	559	1069	>21201						
	[1]	2	3	4	7	10	10	10	22	35	51	96	61	>1111						
m=14	$D^{(6)}$	2	3	4	6	8	12	22	48	85	164	383	720	1235	1861	>21201				
	[1]	2	3	4	5	9	10	25	17	40	55	67	67	131	61	>1111				
m=16	$D^{(6)}$	2	3	4	6	8	14	15	35	80	159	255	500	837	1553	2375	2721	>21201		
	[1]	2	3	4	6	9	8	15	13	32	58	69	74	102	95	447	167	>1111		
m=18	$D^{(6)}$	2	3	4	7	8	11	15	35	70	108	213	414	720	1177	1819	2616	3092	3677	>21201
	[1]	2	3	4	7	7	10	12	21	28	25	103	126	115	114	196	232	665	380	>1111

Тестовая среда

Основная задача нашей тестовой среды заключается в том, чтобы облегчить работу тестировщикам в таких вещах как:

- 1) Создание новых типов тестов.
- 2) Итерирование по тестам и быстрое варьирование параметров.

Составление xml файлов с понятной для человека структуры тестов:

```
<testgroup name="joe-kuo-6(new)">
       <tmsnetgenerator name="joe-kuo" filename="new-joe-kuo-6.21201.txt"/>
       <!--<uniqueness writeoutput="true" dimension="64" pointnum="65536"/>-->
       <integration writeoutput="true" dimension="32" pointnum="16384">
          <parameters function key="subcube"/>
       </integration>
       <integration writeoutput="true" dimension="64" pointnum="32768">
          <parameters function key="subcube"/>
       </integration>
       projection writeoutput="true" x="50" y="100" pointnum="1024"/>
       projection writeoutput="true" x="2" y="50" pointnum="4096"/>
       projection writeoutput="true" x="50" y="8" pointnum="8192"/>
       <orthogonality writeoutput="true" dimension="32" b="2" pointnum="65536"/>
       <orthogonality writeoutput="true" dimension="32" b="32" pointnum="65536"/>
   </testgroup>
   <testgroup name="joe-kuo-5(new)">
       <tmsnetgenerator name="joe-kuo" filename="new-joe-kuo-5.21201.txt"/>
       <!--<uniqueness writeoutput="true" dimension="64" pointnum="65536"/>-->
       <integration writeoutput="true" dimension="32" pointnum="16384">
          <parameters function key="subcube"/>
       </integration>
       <integration writeoutput="true" dimension="64" pointnum="32768">
          <parameters function key="subcube"/>
       <orthogonality writeoutput="true" dimension="32" b="2" pointnum="65536"/>
       <orthogonality writeoutput="true" dimension="32" b="32" pointnum="65536"/>
   </testgroup>
   <testgroup name="joe-kuo-7(new)">
       <tmsnetgenerator name="joe-kuo" filename="new-joe-kuo-7.21201.txt"/>
       <!--<uniqueness writeoutput="true" dimension="64" pointnum="65536"/>-->
       <integration writeoutput="true" dimension="32" pointnum="16384">
          <parameters function key="subcube"/>
       </integration>
       <integration writeoutput="true" dimension="64" pointnum="32768">
          <parameters function_key="subcube"/>
       </integration>
       projection writeoutput="true" x="2" y="50" pointnum="4096"/>
       ction writeoutput="true" x="50" y="8" pointnum="8192"/>
       <orthogonality writeoutput="true" dimension="32" b="2" pointnum="65536"/>
       <orthogonality writeoutput="true" dimension="32" b="32" pointnum="65536"/>
   </testgroup>
</root>
```

- 3) Проверка входных параметров для тестов
- 4) Подготовка к расширению семейства генераторов

Как работает тестовая среда:

В начале программа берет в качестве входных данных названия файла **xml** конфигураций (если нет параметров, то default.xml), далее происходит регистрация конфигурационных файлов с проверкой входных параметров(класс TestingSuite). В случае несоответствия параметров, тест не регистрируется. После регистрации тесты запускаются последовательно.

Что происходит при регистрации теста:

В первую очередь при регистрации автоматически обрабатывается (парсится) файл конфигурации. Для успешной регистрации тестовой группы необходимо, чтобы:

- 1) Был корректно обозначен как минимум один генератор
- 2) Должны быть корректно обозначены тесты, при успешном парсинге теста, создается в куче объект этого теста и указатель на него сохраняется в векторе tests. При этом создается имя теста, которое используется для генерации файлов

Имя теста содержит в себе:

- 1. Название группы тестов, к которой принадлежит
- 2а. генератор над которым проходит тест
- 2б. имя файла направляющих чисел, если требуется для инициализации генератора
- 3. входные параметры
- В данный момент каждый тип теста парсится по-своему, поэтому для каждого нового типа тестов нужно реализовывать свой парсер

Все тесты прогоняются по методу абстрактного родительского класса RunTest().

Какие тесты есть сейчас:

- 1. Покомпонентная уникальность
- 2. Интегрирование функций
- 3. Утилита по созданию проекций точек сети на плоскость
- 4. Попарная ортогональность точек сети

1. Покомпонентная уникальность

Uniqueness(writeoutput, dimension, pointnum), где writeoutput — флаг записи результатов в файл, dimension — размерность пространства, где строится сеть, pointnum — количество элементов сети.

Описание:

В этом тесте идет проверка на уникальность вхождения значения компоненты в множество.

Реализация:

Создается структура данных set, берем последовательно компоненту (номер оси координат), идет прохождение по каждой точке, а затем значение ее компоненты заносится в set. После этого идет проверка на количество элементов в set и в генераторе, и если хотя бы в одной компоненте есть несоответствие - значит значение из компоненты входило два раза

2. Интегрирование функций

Integration(writeoutput, dimension, pointnum, function), где writeoutput — флаг записи результатов в файл, dimension — размерность пространства, где строится сеть, pointnum — количество элементов сети, function — наименование функции, для соответствующего вызовы подтеста.

Описание:

Данный тест(утилита) берет в себя название функции, из чего при прогонке теста по названию функции выбирает нужную реализацию функции и при фиксированном числе точек и переменной размерности пространства считает модуль разности аналитического значения интеграла от функции и численного. В данный момент тест нужен для оценки корректности реализации генератора, условий на остановку у теста нет(утилита).

В планах сделать дополнительный параметр нормировки максимума ошибки, для того, чтобы при прогонке теста валидировать метод, а не просто выписывать значения ошибки.

3. Утилита по созданию проекций точек сети на плоскость

Projection(writeoutput, x, y, pointnum), где writeoutput — флаг записи результатов в файл, x — первая ось, лежащая в плоскости, y — вторая ось, лежащая в плоскости, pointnum — количество элементов сети.

Описание:

Этот тест нужен для наглядной проверки и сравнения результатов распределения проекций точек сети у разных генераторов. С помощью скрипта в tools можно создать график распределения точек на плоскости.

В планах создать обработку-вычисление на discrepancy в плоскости для того, чтобы при прогонке теста валидировать метод, а не просто выписывать точки проекции.

4. Попарная ортогональность точек сети

Orthogonality(writeoutput, dimension, b, pointnum), где writeoutput — флаг записи результатов в файл, dimension — размерность пространства, где строится сеть, b — основание, по которому точки разделяются на семейство упорядоченных пар, pointnum — количество элементов сети.

Описание:

В тесте идет проверка на соответсвие того, что заданная сеть обладает свойством ортогональности для любых пар координат, при разделении точек на семейства-пары, где пара — координата квадрата с стороной длиной $\frac{1}{b}$, в котором находится точка.

Этот тест является одним из необходимых тестов на проверку, что сеть является ортогональным массивом «силы» г. Подробнее об ортогональном анализе и ортогональных массивах смотрите в [3] и [4](в будущем надо будет выписать в краткие теоретические сведения).

Ссылки по теории:

- [1]. S. Joe and F. Y. Kuo, *Remark on Algorithm 659: Implementing Sobol's quasirandom sequence generator*, ACM Trans. Math. Softw. **29**, 49-57 (2003). <u>Link to paper</u>.
- [2]. S. Joe and F. Y. Kuo, *Constructing Sobol sequences with better two-dimensional projections*, SIAM J. Sci. Comput. **30**, 2635-2654 (2008). <u>Link to paper</u>.
- [3]. https://en.wikipedia.org/wiki/Orthogonal_array
- [4]. https://statistics.stanford.edu/sites/default/files/EFS%20NSF%20464.pdf