Основы программной инженерии (ПОИТ) Технологии разработки программного обеспечения (ИСиТ)

Технологии разработки ПО. Формализация функциональных требований

План лекции:

- назначение диаграммы вариантов использования;
- компоненты диаграммы вариантов использования;
- примеры.

На прошлой лекции:

1. Инженерия требований

Требование — это утверждение, которое идентифицирует эксплуатационные, функциональные параметры, характеристики или ограничения проектирования продукта или процесса, которое *однозначно*, *проверяемо* и *измеримо*.

Требование -

- √ условие или возможность, необходимые пользователю для решения его задач или достижения цели (1)
- ✓ условие или возможность, которым должна отвечать или которыми должна обладать система или ее компонента, чтобы удовлетворить контракт, стандарт, спецификацию или иной формальный документ (2)
- ✓ документированное представление условия или возможности, указанное в (1) или (2)

Цели разработки требований

- ✓ обеспечение наиболее полного и точного отражения условий или возможностей, необходимых заказчику для решения его проблем и достижения бизнес-целей;
- ✓ снижение затрат на разработку, обслуживание и поддержку сложного программного обеспечения.

Вне зависимости от применяемой методологии разработки первым этапом разработки является формулировка требований к продукту.

Набор требований к продукту представляет собой техническое задание, при этом требования делятся на *функциональные* (то, что система позволяет сделать, желаемая функциональность) и *нефункциональные* (требования к оборудованию, операционной системе и т.п.).

2. Диаграмма вариантов использования

Диаграмма вариантов использования (англ. use-case diagram) –

диаграмма, описывающая, какой функционал разрабатываемой программной системы доступен каждой группе пользователей.

Диаграмма вариантов использования = Диаграмма прецедентов

- А ты строишь диаграммы при проектировании?
- Да, как видишь

Диаграммы вариантов использования

- ✓ показывают взаимодействия между *вариантами использования* и *действующими лицами*, отражая функциональные требования к системе с точки зрения *пользователя*.
- ✓ являются исходной концептуальной моделью системы в процессе ее проектирования и разработки.

B Microsoft Visio 2016 использовать набор инструментов – «Схема вариантов использования»

3. Цели построения

1) определить общие границы и контекст моделируемой предметной области на начальных этапах проектирования; 2) сформулировать общие требования к функциональному проектированию системы; 3) разработать исходную концептуальную модель системы для ее последующей реализации; 4) документировать функциональные требования в общем виде для взаимодействия разработчика системы с ее заказчиком и пользователями.
--

4. Достоинства модели вариантов использования

	определяет пользователей и границы системыопределяет системный интерфейс;
Достоинства модели вариантов	удобна для общения пользователей с разработчиками;используется для написания тестов;
использования	 является основой для пользовательской документации;
	 хорошо вписывается в любые методы проектирования (как объектно-ориентированные, так и структурные).

5. Суть диаграммы вариантов использования

Диаграмма вариантов использования

позволяет наглядно представить ожидаемое поведение системы.

Основными понятиями диаграмм вариантов использования являются: действующее лицо, вариант использования и связь.

Основные понятия

- ✓ действующее лицо;
- ✓ вариант использования;
- **✓** связь:
 - ассоциация;
 - отношение расширения;
 - отношение включения;
 - отношение обобщения.

6. Вариант использования

Вариант использования

определяет последовательность действий (сценариев) взаимодействия конкретного актера с проектируемой системой с целью достижения какойлибо цели, значимой для этого актера.

В качестве актера могут выступать не только люди, но и другие системы, устройства и т.п.

Имя *варианта использования* начинается с большой буквы и обозначается оборотом глагола или существительного, обозначающего *действие*

7. Актер

Актер

представляет собой внешнюю по отношению к моделируемой системе сущность, которая взаимодействует с системой и использует ее функциональные возможности для достижения определенных целей и решения частных задач.

Может рассматриваться как некая роль относительно конкретного варианта использования.

Каждый актер – отдельная роль относительно конкретного варианта использования.

Актер = Actor = Действующее лицо = Роль

Стандартное графическое изображение актера:

Актер всегда находится вне системы, его *внутренняя структура* никак не воспринимается.

Примеры актеров: студент, преподаватель, клиент банка, банковский служащий, продавец, сотовый телефон, гость.

Имя актера основано на использовании имени существительного.

8. Отношения

Один *актер* может взаимодействовать с несколькими *вариантами использования* и наоборот.

Два варианта использования, определенные для одной и той же сущности, **не могут** взаимодействовать друг с другом, т.к. любой из них самостоятельно описывает законченный вариант использования этой сущности.

Виды отношений	
ассоциативное отношение (отношение ассоциации, association relationship)	1 *
отношение расширения (extend relationship)	< —<<расширить>>— —
отношение включения (include relationship)	— <<включить>> — >
отношение обобщения (generalization relationship)	──

Отношение ассоциации (association relationship):

отношение между *вариантом использования* и *актером*, отражающее *связь* между ними.

Отношения ассоциации отражают возможность использования актером прецедента.

Отношение устанавливает, какую конкретную роль играет актер при взаимодействии с экземпляром варианта использования.

Обозначение: в виде прямой линии.

Могут быть дополнительные обозначения: кратность связи, направление связи, наименование связи

Мощность (кратность, multiplicity) ассоциации определяет количество экземпляров обеих сущностей, которое может участвовать в данной ассоциации. Графически значение мощности отмечается возле линии отношения ассоциации на стороне соответствующей сущности.

В диаграммах вариантов использования определено три типа мощности ассоциации: один-к-одному; один-ко-многим; многие-ко-многим.

Отношение расширения (extend relationship):

определяет взаимосвязь базового варианта использования с некоторым другим более общим вариантом использования, функциональное поведение которого задействуется базовым не всегда, а только при выполнении некоторых дополнительных условий.

Отношение расширения отражает возможное присоединение одного варианта использования к другому в некоторой точке (точке расширения).

Стрелка указывает на базовый вариант использования!

Отношение включения (include relationship):

указывает, что некоторое заданное поведение для одного варианта использования включается в качестве составного компонента в последовательность поведения другого варианта использования.

Отношение обобщения (generalization relationship):

Отношение обобщения служит для указания того, что некоторый вариант использования может быть обобщен до другого варианта использования.

В – предок по отношению к А

A – потомок B

Потомок наследует все свойства и поведение своего родителя, может быть дополнен новыми свойствами и особенностями поведения.

Стрелка указывает на родительский вариант использования.

9. Примечание – элемент диаграммы вариантов использования

Примечание (Note) в языке UML предназначено для включения в модель произвольной текстовой информации, имеющей непосредственное отношение к контексту разрабатываемого проекта.

Примечание может относиться к любому элементу диаграммы.

10. Пример

Рассмотрим выполнение 12-ой лабораторной работы студентами.

Моделируемая система – «Ознакомление с технологиями разработки ПО».

Цель – см. цель лабораторной работы 12.

Актер – «Студент» (взаимодействует с системой).

Функциональность:

- «Студент» должен ответить на контрольные вопросы по изученному материалу;
- «Студент» определяет цели и назначение проекта;
- «Студент» выбирает название проекта;
- «Студент» выбирает модули, входящие в состав проекта в соответствии с требованиями лабораторной работы 12;
- «Студент» выполняет индивидуальное задание;
- «Студент» выполняет проектирование и разработку проекта с использованием гибких технологий разработки ПО;
- «Студент» должен выполнить тестирование;
- «Студент» должен выполнить рефакторинг;
- «Студент» должен выполнить документирование;
- «Студент» представляет проект.

При взаимодействии с актером «Студент» система должна позволять выполнять набор функциональных требований, при этом важна реакция системы.

Главная последовательность взаимодействия «Студента» с «Системой»:

Функциональность	Реакция системы
1. «Студент» должен ответить на контрольные вопросы по изученному материалу	2. «Система» обеспечивает «Студенту» возможность изучения теории по теме лабораторной работы
3. «Студент» определяет цели и назначение проекта	4. «Система» должна проконтролировать определение «Студентом» цели и назначения проекта
5. «Студент» называет проект	
6. «Студент» выбирает модули, входящие в состав проекта в соответствии с требованиями лабораторной работы 12	

7. «Студент» выполняет индивидуальное задание	8. «Система» контролирует выполнение «Студентом» индивидуального задания
9. «Студент» выполняет проектирование и разработку проекта с использованием гибких технологий разработки ПО	
10. «Студент» должен выполнить тестирование	
11. «Студент» должен выполнить рефакторинг	
12. «Студент» должен выполнить документирование	
13. «Студент» представляет проект	14. «Система» оценивает презентацию проекта скрам-команды и каждого члена команды - сдача лабораторной работы преподавателю

Альтернативная последовательность

7а: «Студент» **не выполняет** индивидуальное задание.

7в: Реакция системы: «Студент» **не** допускается до экзамена.

Некоторые пояснения

Помимо актеров и вариантов использования диаграмма вариантов использования содержит примечания — элементы, служащие для размещения на диаграмме поясняющей текстовой информации. Примечание может относиться к любому элементу диаграммы и соединяется с данным элементом штриховой линией.

На диаграмме показано, что у актера «Студент» и соответствующими вариантами использования существуют отношения ассоциации.

Базовый вариант использования «Ответить на вопросы» связан отношением расширения с вариантом использования «Изучить теорию».

Пример диаграммы вариантов использования системы для актера «Студент»:

Можно также расширить функциональное назначение моделируемой системы: ввести актера «Преподаватель» и построить диаграммы вариантов использования системы «Ознакомление с технологиями разработки ПО» для этой роли.

При взаимодействии с актером «Преподаватель» система должна обеспечить возможность выполнения следующих основных функциональных требований:

- «Преподаватель» разрабатывает техническое задание;
- «Преподаватель» должен организовать взаимодействие со скрам-мастером каждой команды;
- «Преподаватель» отвечает на возникающие вопросы;
- «Преподаватель» регистрирует скрам-мастера и состав команды, исходные данные проекта;

- «Преподаватель» осуществляет контроль хода выполнения индивидуального задания;
- «Преподаватель» осуществляет контроль хода выполнения проектирования и разработки проекта;
- «Преподаватель» проверить результаты выполнения индивидуального задания;
- «Преподаватель» принимает лабораторную работу.