Derivatives

Summary

- 1. The derivative (often denoted y', f'(x), or $\frac{dy}{dx}$) is a major component of calculus.
- 2. The derivative of a function is the limit as h approaches 0 of the difference quotient:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Average Rate of Change and Limits

Recall that the average rate of change of a function in an interval is the slope of the line connecting the points at those interval values:

$$\frac{\Delta y}{\Delta x} = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

But what happens as the difference between x_2 and x_1 approaches 0?

In other words, what is $\lim_{\Delta x \to 0}$ or what is $\lim_{x_2 \to x_1}$?

Example 1. Find the average rate of change over each interval for the function $f(x) = x^2 + 1$.

(a) [3, 3.001]

(d) What is $\lim_{\Delta x \to 0}$?

(b) [3, 3.0001]

(c) [3, 3.00001]

The answer in Example 1d is the **derivative** of $f(x) = x^2 + 1$ at the point x = 3.

It will tell us the slope of the line tangent to the curve at x = 3.

But what if we want to find the derivative of a function not just at one value of x, but for <u>all</u> values of x in the function's domain?

Interpreting Derivatives as a Limit of the Difference Quotient

What is the slope of the line connecting the 2 points below?

The difference quotient of a function is defined as

$$\frac{f(x+h)-f(x)}{h}$$

This is a 3-step process:

- 1. Evaluate f(x + h); a function composition
- 2. Subtract the given function, f(x)
- 3. Divide previous result by h and simplify

Example 2. Find the difference quotient of each.

(a)
$$f(x) = x^2$$

(b)
$$f(x) = 5x^2$$

(c)
$$f(x) = x^2 - 2x$$

(d)
$$f(x) = 7$$

The **derivative** is the limit of the difference quotient as h approaches 0.

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Example 3. Find the derivative of each.

(a)
$$f(x) = x$$

(b)
$$f(x) = x^2$$

$$(c) f(x) = 5x^2$$

(d)
$$f(x) = x^2 - 2x$$

Other Common Notations for Derivatives: $\frac{dy}{dx}$ and y'

When you evaluate a derivative at an x-value, you are finding the slope of the line tangent to the curve there.

This is also called finding the instantaneous rate of change.

Example 4. Find each of the following.

(a) f'(5) from Example **??**(a).

(b) f'(0) from Example ??(b).

(c) f'(-9) from Example ??(c).