

关于我 About me

@bayuncao

ChaMD5安全团队AI组负责人,专注于AI安全领域的研究者与实践者,在开源大模型漏洞挖掘方向取得多项突破性成果,持有多个CVE漏洞编号及通用漏洞证书,擅长将工程能力与安全研究结合,全栈开发,自研AI代码审计系统,持续深耕大模型供应链安全、越狱攻防及AI Agent漏洞自动化挖掘领域,致力于构建AI时代的新型防御体系。

让模型加载过程透明可溯

目录

- 1. 为什么需要模型加载监控?
- 2. Itrack 技术架构总览
- 3. 核心功能与性能优势
- 4. 未来演进

行业痛点

- 参考 NIST《AI 风险管理框架》(AI RMF)对模型加载监控的要求(NIST AI RMF 1.0)。
- Gartner 报告指出,相当一部分的ML 安全事件源于模型加载 阶段的监控缺失。

模型文件加载行为不可见 (隐蔽性威胁)

- 2022年 PyTorch 恶意依赖项攻击,包名为 torchtriton,包含一个二进制文件,除了窃取主机名、DNS 配置、用户名、shell 环境等系统信息外,还会将/etc/hosts、/etc/passwords、~/.gitconfig、~/.ssh/的内容,以及在用户主目录中找到的前1000 个文件上传到外部服务器。
- 根据《大模型可信赖研究报告》预训练数据集中可能包含来源不明或被恶意投毒的数据,若未严格检测,模型可能学习到有害信息并泄露隐私

传统监控工具无法感知 ML 上下文

• 上下文缺失: LLM 推理需加载多阶段子模型(如 Tokenizer、Embedding 层),传统工具无法标记各阶段资源消耗,导致无法检测"模型加载劫持"攻击(如恶意进程伪装成合法推理服务)。

• 动态行为盲区: Oracle云漏洞导致挖矿程序驻留。

合规审计缺乏细粒度日志

• 合规漏洞: 2024 年OpenAI在2023年3月的数据泄露事件中未能及时通知监管机构,并且在没有合法依据的情况下使用用户数据训练ChatGPT,违反 GDPR 数据保护条例,被处罚1500万欧元。

• 审计实践: Google Cloud AI 安全指南要求记录模型加载的完整依赖链,包括临时文件、内存映射和子进程行为。

解决方案对比

方案类型	监控粒度	性能损耗	ML 上下文感知	技术原理	适用场 景	局限性
传统 HIDS	进程级	高 (>15% CPU)	×	基于规则匹配 系统调用(如 open、execve)	通用服务器安全监控	无法关联模 型版本、依 赖路径等业 务语义
应用日志	业务级	低(<1% CPU)	部分	依赖 ML 框架 自身日志(如 TensorFlow/P yTorch)	开发调 试、基 础行为 审计	无法捕获底 层依赖库加 载、容器逃 逸行为
<mark>/</mark> ltrack	系统级 + 进程级	<3% CPU	✓	eBPF 挂钩文 件操作 + 用户 态解析 ML 元 数据	生产环 境实时 监控、 合规审 计	需 Linux 4.4 + 内核、 需 CAP_BPF 权限部署

文件层攻击面 (模型权重篡改)

- PyTorch 供应链攻击: 2022年恶意 PyPI 包伪装成 PyTorch 扩展库, 劫持模型加载流程。
- Hugging Face 模型投毒: Hugging Face披露部分用户上传的PyTorch模型文件(.bin)可能通过pickle反序列化执行恶意代码。

Oltrack (Features)

 监测模型文件加载时的inode变化与哈希值,关联加载进程的容器上下文 (如 Kubernetes Pod ID)。

执行层攻击面 (恶意依赖注入)

- PyPI 恶意包攻击: 2024 年攻击者上传tensorflow-nightly-malicious包,
 窃取 GPU 算力。
- conda 仓库投毒:某金融科技公司的内部conda仓库遭入侵,攻击者上 传同名但版本号更高的恶意opency-python包。由于企业依赖解析策略 缺陷,内部模型训练服务优先拉取了恶意版本。

○ltrack (Features)

• 通过 eBPF 跟踪动态链接库加载事件(dlopen),标记非白名单依赖 (如/tmp/libhack.so)。

网络层攻击面 (模型泄露)

• 模型窃取攻击:攻击者通过 API 高频查询重构 LLM 参数。

○ltrack (Features)

• 捕获敏感文件(如*.pt)的sendfile系统调用,关联进程网络行为(如 TCP 连接目标 IP)。

ltrack 在 MITRE 框架中的覆盖范围

攻击面	覆盖战术	覆盖技术数 7.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	检测能力示例
文件层	Defense Evasion	2	文件哈希校验、进程 签名验证
执行层	Persistence, Privilege Escalation	2	依赖路径监控、权限 链分析
网络层	Exfiltration	2	文件传输行为关联、 网络连接审计
总计	3 大类	6 项技术	覆盖 ML 全生命周期 攻击链

ltrack 架构总览

威胁监测引擎工作流 - 事件采集

- 文件操作: 挂钩security_file_open、security_mmap_file, 捕获模型文件 (.pt/.h5) 的加载路径与哈希值。
- 进程间通信: 监控bpf_trace_printk跟踪进程树 (如 Docker 容器内python进程加载模型)。
- 网络行为:通过skb事件捕获sendfile传输的敏感文件(如模型权重外传)。

威胁监测引擎工作流 - 规则匹配

- 静态规则:基于 toml 配置文件约束监测范围。
- · 依赖链分析:标记非标准依赖路径(如/tmp/libcustom.so)。

威胁监测引擎工作流 - 量化威胁等级(Features)

- CVSS 适配:将模型加载事件映射到 CVSS v4.0 评分(如模型泄露风险评分=9.0, CVSS v4.0 指南)。
- 上下文加权:根据进程权限(如 root 用户加载敏感模型)动态调整风险值。

威胁监测引擎工作流 - 动态阻断 (实时防护) (Features)

- 进程终止:通过kill系统调用终止恶意进程(需 CAP_SYS_ADMIN 权限)。
- 文件隔离:将恶意模型文件移动到沙箱目录(如/var/quarantine)。
- 网络拦截:通过 eBPF TC (Traffic Control) 丟弃外传敏感数据包。

零侵入监测

- > 全局可见性
 - 单点监控
 - 内核级数据源
- ▶ 低资源损耗
 - 共享内核
 - 无应用干扰
- > 快速部署
 - 一键启动
 - 动态扩展

企业级集成

- ➤ Prometheus 指标导出
 - 与 Grafana 集成生成威胁分布仪表盘
- > Splunk 日志管道配置
 - 日志格式兼容 CEF (Common Event Format), 支持
 HTTP Event Collector (HEC)。
- Kubernetes Operator 部署
 - 与 Prometheus Operator 联动,自动生成 ServiceMonitor

轻量集成

组件	集成方式	关键能力	合规性支持
Prometheus	Pull模式(REST API)/Push 模式(Pushgateway)	实时指标可视化、告警规则定义(需配合 Alertmanager路由)	NIST SP 800-190
Splunk	支持Push/Pull模式(如CEF 日志、API拉取)	威胁狩猎、数据分析与 告警	GDPR Art.30
Kubernetes	Operator 自动化	零侵入式部署(如 cAdvisor集成)、自动 化服务发现	CIS K8s Benchmark

未来演进

- □ GPU检测支持
- □ 轻量集成支持
- □ 高度自定义事件类型

OR THE REAL PROPERTY.