

IN THE CLAIMS

1

2 1. (Cancelled)

1

2 2. (Currently Amended) The method of claim 1 wherein the
3 programmable at least a portion of the PLD chip is partitioned into a plurality of rows and
4 columns of logic array blocks (LABs).

1

2 3. (Currently Amended) The method of claim 1 A method of verifying a
3 full-chip electronic design of a programmable logic device (PLD) chip, the method comprising:
4 partitioning the PLD chip into a plurality of blocks;
5 generating a block level RTL model of one of the plurality of blocks, wherein generating
6 a block level RTL comprises:

7 creating a block level schematic of an electronic design;
8 extracting a block Ram Bit Address(RBA) file from the block level schematic;
9 extracting a block level CRAM array from the block level RBA file; and
10 generating the block level RTL using the block level CRAM array;
11 generating a block level functional representation of the one of the plurality of blocks;
12 producing a full chip RTL model using the block level RTL model and the block level
13 functional representation; and
14 using the full chip RTL model for verification, simulation or debugging.

1

2 4. (Original) The method of claim 3 wherein the block level CRAM array
3 comprises absolute coordinates and RAM bit values for each CRAM bit.

1

2 5. (Currently Amended) The method of claim 4 wherein the CRAM
3 iscomprises at least one of EPROM, EEPROM, fuse, anti-fuse, SRAM, MRAM, FRAM, or
4 DRAM.

1

2 6. (Currently Amended) The method of claim 1-A method of verifying a
3 full-chip electronic design of a programmable logic device (PLD) chip, the method comprising:
4 partitioning the PLD chip into a plurality of blocks;
5 generating a block level RTL model of one of the plurality of blocks, wherein generating
6 a block level RTL comprises:

7 creating a block level schematic of an electronic design;
8 generating a full chip schematic using a plurality of the block level schematics;
9 producing a full chip RBA file from the full chip schematic;
10 extracting block level RBA file from the full chip RBA file;
11 extracting a block level CRAM array from the block level RBA file; and
12 generating a block level RTL model using the block level CRAM array;
13 generating a block level functional representation of the one of the plurality of blocks;
14 producing a full chip RTL model using the block level RTL model and the block level
15 functional representation; and
16 using the full chip RTL model for verification, simulation or debugging.

17
1
2 7. (Original) The method of claim 6 wherein the block level CRAM array
3 comprises absolute coordinates and RAM bit values for each CRAM bit.

1
2 8. (Currently Amended) The method of claim 7 wherein the CRAM
3 iscomprises at least one of EPROM, EEPROM, fuse, anti-fuse, SRAM, MRAM, FRAM, or
4 DRAM.

1
2 9. (Currently Amended) The method of claim 43 further including:
3 comparing the block level RTL model to the block level schematic before producing a
4 full chip RTL model; and
5 modifying the block level functional representation and the block level CRAM array if
6 the block level RTL is not equivalent to the block level schematic.

1
2 10. (Currently Amended) The method of claim 43 wherein the PLD is a
3 complex programmable logic device ("CPLD"), programmable array logic ("PAL"),
4 programmable logic arrays ("PLA"), field PLA ("FPLA"), erasable PLDs ("EPLD"), electrically
5 erasable PLD ("EEPLD"), logic cell arrays ("LCA") or field programmable gate arrays
6 ("FPGA").

1
2 11. (Currently Amended) The method of claim 43 wherein the
3 programmable logic device is embedded into another electronic device.

- 2 12. (Currently Amended) The method of claim 121 wherein the ~~other~~
3 electronic device comprises programmable and non-programmable circuitry.
1
2 13. (Original) The method of claim 2 wherein the LAB comprises a plurality
3 of one or more of the following sub-blocks: LE, LIM, LAB wide, LEIM, CRAM and DIM.
1
2 14. (Currently Amended) The method of claim 13 wherein one or more of
3 the plurality of blocks ~~arecomprise~~ digital signal processing blocks, input/output blocks, or
4 memory blocks,~~etc.~~
1
2 15. (Currently Amended) A data processing system for verifying a full-chip
3 electronic design of a programmable logic device (PLD) chip, the data processing system
4 including instructions for implementing the method of claim 13.
5
6 16. (Currently Amended) A method of verifying a programmable region of
7 an electronic design, the method comprising:
8 partitioning the programmable region into a plurality of blocks;
9 generating a block level RTL model of one of the plurality of blocks wherein generating
10 a block level RTL comprises:
11 creating a block level schematic of an electronic design;
12 extracting a block Ram Bit Address(RBA) file from the block level schematic;
13 extracting a block level CRAM array from the block level RBA file; and
14 generating the block level RTL using the block level CRAM array;
15 generating a block level functional representation of the one of the plurality of blocks;
16 producing a full region RTL model from the block level RTL model and the block level
17 functional representation; and
18 using the full region RTL model for verification, simulation or debugging.