Trading ETF's - The sequel, Daniel Emil Wiinberg S133232

```
D <- read.table("finans2_data.csv", header = TRUE, sep = ";")
```

Introduction to the data

```
head(D); tail(D)
##
     ETF
            Geo.mean Volatility maxTuW
## 1 SPY
          0.10490378
                        2.478601
                                     309
## 2 MDY
          0.13954700
                        2.925897
                                     327
## 3 EWJ -0.02620057
                        2.699671
                                     327
## 4 EWH
          0.11267242
                        3.373114
                                     302
## 5 EWG
          0.05038104
                        3.800206
                                     177
## 6 EWW
          0.08650049
                        4.073397
                                     327
##
      ETF
             Geo.mean Volatility maxTuW
## 90 FXI
           0.14410014
                        4.6620500
                                      324
## 91 IAU
           0.12507213
                        2.8521063
                                      333
## 92 SLV
           0.02909721
                        4.8307408
                                      333
## 93 USO -0.27565080
                        4.8030638
                                      319
## 94 SHY
           0.01321481
                        0.1965787
                                      375
           0.08273749
                        2.0187989
                                      182
```

The data contain 95 rows of data (excluding header), one for each ETF. Each row contain 3 columns for the 3 variables: Geo.mean, Volatility and maxTuw. These variables are calculated from the data used in the first project, representing the 454 weeks returns of each ETF.

- Geo.mean contains observations of the geometric average rate of return for the ETFs in the dataset.
- Volatility represents the weekly volatility which is the standard deviation of the ratio between the price of an ETF at the beginning of a week and the end.
- maxTuW is Maximum Time under Water, and indicates the maximum number of weeks between two peak prices.

Scatterplots

First we plot the volatility and maxTuW variables against the geometric mean in a scatterplot.

plot(c(D\$Geo.mean), c(D\$maxTuW), type="p", xlab="Geo.mean",
 ylab="maxTuW", col=c("blue"), cex=1)

Histograms

Next we plot the three variables in a histogram plot to easily the distribution of values.

Histogram of D\$Geo.mean

hist(D\$Volatility, xlab="Volatility", prob=TRUE, breaks = 30, col="green")

Histogram of D\$Volatility

Histogram of D\$maxTuW

Summary table

We extract some general information about the variables using the summary R function and display it in a table as shown below.

```
# summary(D)
# sd(D$Geo.mean)
# sd(D$Volatility
# sd(D$maxTuW)
```

	n	mean	sd	median	q1	q3
Geo.mean Volatility maxTuW	95 95 95	0.07690 3.060 307.3	0.08087 0.8790 42.77	0.08274 3.026 324.0	0.02871 2.588 309.0	0.1344 3.675 327.0

Multiple linear regression

Our linear regression model with for the geometric mean with our two variables for volatility and maxTuW is:

$$Y_i = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_{2,i} + \epsilon_i$$

Where Y_i is the geometric mean, x_1 is Volatility and x_2 is maxTuW.

Next we divide out data set into two pools, where we will use the bigger pool to create a prediction model, and then use the smaller test set to see how well our prediction model behaves.

```
# Subset containing only AGG, VAW, IWN and SPY (for validation)
D_test = subset(D, ETF %in% c("AGG","VAW","IWN","SPY"))
# Subset containing only the 91 remaining ETFs (for model estimation)
D_model = subset(D, !(ETF %in% c("AGG","VAW","IWN","SPY")))
```

Here we create our linear regression for the geometric mean with our two variables.

```
# Estimate multiple linear regression model
fit = lm(Geo.mean ~ Volatility + maxTuW, data = D_model)
# Show parameter estimates etc.
summary(fit)
##
## Call:
## lm(formula = Geo.mean ~ Volatility + maxTuW, data = D_model)
## Residuals:
       Min
                 1Q
                     Median
## -0.28946 -0.05088 0.02092 0.04937 0.23927
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
                                      4.323 4.04e-05 ***
## (Intercept) 0.2528394 0.0584827
## Volatility -0.0351310 0.0097229 -3.613 0.000503 ***
## maxTuW
              -0.0002203 0.0001910 -1.154 0.251795
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.07582 on 88 degrees of freedom
## Multiple R-squared: 0.1704, Adjusted R-squared: 0.1516
## F-statistic: 9.039 on 2 and 88 DF, p-value: 0.0002689
```

From the summary is can be seen that:

Name	Value
$\overline{\beta_0}$	0.2528394
β_1	-0.0351310
$eta_2 \\ \hat{\sigma}^2$	-0.0002203
$\hat{\sigma}^2$	0.07582
Degree of freedom	88
R^2	0.1516

 β_0 is the interception with x=0 and β_1 and β_2 are the slopes of the regression line. Meaning the effect that β_i has on x_i .

Since β_1 and β_2 are both slightly negative it means that volatility and Maximum Time under Water has a negative influence on the average return.

Model validation

We start by plotting the observed geometric mean values against our fitted values.

Next we plot the fitted values and each of our explanatory variables against the residuals. We are looking systematic dependences between the values and the residuals.

From the plots of the residuals against the explanatory variables we do not see a systematic dependence, which means that our model is sound.

Next we check if the residuals are normal distributed by doing a qq-plot.

From the qq-plot and qq-line we can see that the residuals are normal distributed, which means that the normality assumption holds.

Confidence interval for β_1

The confidence interval for parameter β_1 is given by:

$$\hat{\beta}_1 \pm t_{1-\alpha/2} \hat{\sigma}_{\beta_1}$$

```
#Confidence interval for beta_1
-0.0351310 + c(1,-1)*qt(0.975, df=88)*0.0097229

## [1] -0.01580878 -0.05445322

# Confidence intervals for the model coefficients
confint(fit, level = 0.95)

## 2.5 % 97.5 %

## (Intercept) 0.1366172663 0.3690616050

## Volatility -0.0544532736 -0.0158088161

## maxTuW -0.0005999244 0.0001592431
```

We can see that the values calculated for β_1 using the formula are the same as when using the R-function. The confidence intervals for β_0 and β_2 are also given from the R-function above.

Hypothesis testing

We are testing whether β_1 might be -0.06, meaning we are testing:

$$H_{0,1}: \beta_1 = \beta_{0,1} \Rightarrow \beta_1 = -0.06$$

Against the other hypothesis:

$$H_{1,1}:\beta_1\neq\beta_{0,1}\Rightarrow\beta_1\neq-0.06$$

We are testing with a significance level of $\alpha = 0.05$.

```
tobs = (-0.0351310 - (-0.06)) / 0.0097229 tobs
```

```
## [1] 2.557776
```

```
# The p value becomes
2*(1-pt(tobs, df=88))
```

```
## [1] 0.01224591
```

We can see that with a p-value=0.0122 we have some evidence against the hypothesis. This could also be seen from the confidence interval for β_1 being $\{-0.0545; -0.0158\}$, since -0.06 is outside the interval.

Backward selection

If we go back to inspect our model, we can see that that maxTuW is not a significant parameter in our model, since its p-value is 0.252. Using backwards selection we remove this parameter from our model, and fit the data again.

```
# Estimate multiple linear regression model
final_model = lm(Geo.mean ~ Volatility, data = D_model)
# Show parameter estimates etc.
summary(final_model)
##
## Call:
## lm(formula = Geo.mean ~ Volatility, data = D_model)
##
## Residuals:
       Min
##
                 1Q
                      Median
                                   3Q
                                           Max
  -0.28686 -0.03830 0.02009 0.04689
                                       0.25202
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
                          0.02996
                                    6.504 4.44e-09 ***
## (Intercept) 0.19486
## Volatility -0.03824
                          0.00936 -4.085 9.62e-05 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.07596 on 89 degrees of freedom
## Multiple R-squared: 0.1579, Adjusted R-squared: 0.1484
## F-statistic: 16.69 on 1 and 89 DF, p-value: 9.624e-05
```

We can now see that the slope is highly significant with a p-value of $9.62 * 10^{-5}$, meaning we cannot reduce our model further.

Therefore our final model with estimations of our parameters is:

$$Y_i = \beta_0 + \beta_1 x_{1,i} = 0.19486 - 0.03824x_1$$

Comparing D_{model} and D_{test}

First we predict the data for the geometric mean using our final.

Next we use the cbind function to easily compare the actual geometric mean from our 4 test models to the values that we just got from our prediction.

```
# Observed values and predictions
compare = cbind(id = D_test$ETF, Geo.mean = D_test$Geo.mean, pred)
compare
##
      id
           Geo.mean
                          fit
                                               lwr
## 1
     "SPY" "0.10490378" "0.100090940900893" "-0.0520845445000064"
## 40 "IWN" "0.066849084" "0.0724485877394012" "-0.0793227571820516"
## 69 "AGG" "0.024793652" "0.172012988491345"
                                               "0.0133582944803555"
## 80 "VAW" "0.113346442" "0.05689659980963"
                                               "-0.0951704082967189"
##
## 1
     "0.252266426301793"
## 40 "0.224219932660854"
## 69 "0.330667682502335"
## 80 "0.208963607915979"
```

We can see that the predictions are all fairly close, even though some of the predictions are better than others. However they are all within the 95% confidence interval.