Global QCQP Solver

Chuwen Zhang

April 27, 2021

Contents

1	Semidefinite Relaxation					
	1.1	Method I	2			
		1.1.1 Vector case	2			
		1.1.2 Matrix case	2			
		1.1.3 Inhomogeneous	3			
	1.2	Method II	3			
	1.3	Remark	3			
		1.3.1 Extending to matrix and tensor case	3			
	1.4	Tests	4			
2 Branch and Cut Algorithm						
	2.1	Root	5			
Re	eferer	nces	6			

1 Semidefinite Relaxation

We consider two types of SDP relaxation for canonical QCQP. We first consider for the case where x is a vector, i.e., $x \in \mathbb{R}^n$.

And for inhomogeneous QCQP,

for inhomogeneous case, we notice:

$$x^{T}Qx + 2q^{T}x$$

$$= \begin{bmatrix} x^{T} & t \end{bmatrix} \begin{bmatrix} Q & q \\ q^{T} & o \end{bmatrix} \begin{bmatrix} x \\ t \end{bmatrix}$$
s.t. $1 \le tle1$

we can use a homogeneous reformulation where the size of problem by 1.

1.1 Method I

1.1.1 Vector case

for $X \in \mathbb{R}^n,$ we have: $x^T A_i x = A_i \bullet (x x^T)$

Maximize $Q \bullet Y$ s.t. $Y - xx^T \succeq 0$ or $\begin{bmatrix} 1 & x^T \\ x & Y \end{bmatrix} \succeq 0$ (1.3) $A_i \bullet Y \ (\leq, =, \geq) \ b_i, \forall i$

1.1.2 Matrix case

for $X \in \mathbb{R}^{n \times d},$ we have: $X^T A_i X = A_i \bullet (XX^T)$

Maximize
$$Q \bullet Y$$

s.t. $Y - XX^T \succeq 0$ or $\begin{bmatrix} I_d & X^T \\ X & Y \end{bmatrix} \succeq 0$ (1.4)
 $A_i \bullet Y \ (\leq, =, \geq) \ b_i, \forall i$

1.1.3 Inhomogeneous

SDP relaxation,

Maximize
$$Q \bullet Y + 2q^T x$$

s.t. $Y - xx^T \succeq 0$ or $\begin{bmatrix} 1 & x^T \\ x & Y \end{bmatrix} \succeq 0$ (1.5)
 $A_i \bullet Y + 2a_i^T x \ (\leq, =, \geq) \ b_i, \forall i$

Alternative

The above formulation could be unbounded. We homogenize by letting y = (x; t),

Maximize
$$y^T \begin{bmatrix} Q & q \\ q^T & 0 \end{bmatrix} y$$

s.t. $y^T \begin{bmatrix} A_i & a_i \\ a_i^T & 0 \end{bmatrix} y \ (\leq, =, \geq) \ b_i, \forall i$ (1.6)

1.2 Method II

Let $A = A_+ + A_-$ where $A_-, A_+ \succeq 0$, so we do Cholesky $R_+^T R_+ = A_+$, since R_+ may be low-rank, then we can define z_+ according the rank.

$$\begin{split} R_{+}x &= z_{+}, x^{T}A_{+}x = ||z_{+}||^{2} = \sum_{i}(z_{+})_{i}^{2} \\ y_{i} &= (z_{+})_{i}^{2}, \begin{bmatrix} 1 & (z_{+})_{i} \\ (z_{+})_{i} & y_{i} \end{bmatrix} \succeq 0, \forall i \end{split} \tag{1.7}$$

This is the so-called "many-small-cone" method.

1.3 Remark

1.3.1 Extending to matrix and tensor case

We first develop for the vector case: $x \in \mathbb{R}^n$, whereas QCQP is not limited to vector case:

- vectors, $x \in \mathbb{R}^n$, max-cut, quadratic knapsack problem
- matrices, $x \in \mathbb{R}^{n \times d}$, quadratic assignment problem, SNL, kissing number.

For example, SNL uses $X \in \mathbb{R}^{n \times d}$ for d-dimensional coordinates. For higher dimensional case, followings can be done:

- One may however using the vectorized method, i.e., x = vec(X) to reformulate the matrix-based optimization problem, given the SDP bounds by original and vectorized relaxations are equivalent with mile assumptions. (see Ding et al. (2011))
- the above method may create a matrix of very large dimension resulted from Kronecker product.
- ultimately, the solver should provide an option to use user specified relaxations.

1.4 Tests

We test on specific applications:

- vectors, $x \in \mathbb{R}^n$, max-cut, quadratic knapsack problem
- matrices, $x \in \mathbb{R}^{n \times d}$, QAP, SNL, kissing number.

and a recent general new library as present in qplib, http://qplib.zib.de/instances.html, see Furini et al. (2019).

		solve_time	best_bound	best_obj
prob_num	method			
0	gurobi	0.008010	1609.0	1609.000000
	gurobi_rel	0.006286	1781.581401	1781.581125
	$sdp_helberg$	0.006992	-	1865.679912
	sdp_qcqp1	0.006028	-	2526.824086
	$sdp_qcqp1_no_x$	0.005026	-	2018.968153

2 Branch and Cut Algorithm

For
$$x \in \mathbb{R}^n$$
, we have: $x^T A_i x = A_i \bullet (xx^T)$

$$\begin{array}{ll} \text{Maximize} & Q \bullet Y \\ \\ \text{s.t.} & Y - xx^T \succeq 0 \text{ or } \begin{bmatrix} 1 & x^T \\ x & Y \end{bmatrix} \succeq 0 \\ \\ & A_i \bullet Y \; (\leq, =, \geq) \; b_i, \forall i \end{array} \tag{2.1}$$

For MINLP and more specifically for QP, see Belotti et al. (2013), Misener and Floudas (2013). More recently, spacial branch-and-cut method Chen et al. (2017) for QP with complex variables.

Branching node and value selection, namely, select which $x_i, i = 1, ..., N$ and value α , for left and right children, for example:

$$x_i \le \alpha, x_i \ge \alpha$$

- Audet et al. (2000) using RLT relaxation and LP, literally, $W_{ij} \approx x_i x_j, v_i \approx x_i^2$. The branching is essentially based on $||W_{ij} x_i x_j||$, $||v_i x_i^2||$, at each node we solve a linear programming relaxation.
- Linderoth (2005) a B-B based on subdividing the feasible region into the Cartesian product of triangles and rectangles.

Branching value:

Some source code to look at:

• Couenne: https://www.coin-or.org/Couenne/

•

2.1 Root

The root of the problem can selected from different SDPs as we discussed before. It is a question to answer whether we should use the SDP with the tightest bound.

References

- Audet C, Hansen P, Jaumard B, Savard G (2000) A branch and cut algorithm for nonconvex quadratically constrained quadratic programming. *Mathematical Programming* 87(1):131–152, publisher: Springer.
- Belotti P, Kirches C, Leyffer S, Linderoth J, Luedtke J, Mahajan A (2013) Mixed-integer nonlinear optimization. *Acta Numerica* 22:1, publisher: Cambridge University Press.
- Chen C, Atamtürk A, Oren SS (2017) A spatial branch-and-cut method for nonconvex QCQP with bounded complex variables. *Mathematical Programming* 165(2):549–577, publisher: Springer.
- Ding Y, Ge D, Wolkowicz H (2011) On equivalence of semidefinite relaxations for quadratic matrix programming. *Mathematics of Operations Research* 36(1):88–104, publisher: INFORMS.
- Furini F, Traversi E, Belotti P, Frangioni A, Gleixner A, Gould N, Liberti L, Lodi A, Misener R, Mittelmann H, Sahinidis NV, Vigerske S, Wiegele A (2019) QPLIB: a library of quadratic

Linderoth J (2005) A simplicial branch-and-bound algorithm for solving quadratically constrained quadratic programs. $Mathematical\ programming\ 103(2):251-282$, publisher: Springer.

Misener R, Floudas CA (2013) GloMIQO: Global mixed-integer quadratic optimizer. Journal of Global Optimization 57(1):3-50, publisher: Springer.

Appendix