11/20/2018 summations

CS201 Data Structures and Algorithms

Summations

Printable Version

 $Prove \sum k = 1 \text{ n } k = n \text{ (} n + 1 \text{) } 2 \text{ .}$

By induction on n.

Basis: Let n = 1.

$$\sum k = 1 n k = n (n + 1) 2$$

$$\sum k = 1 \ 1 \ k = 1 \ (1 + 1) \ 2$$

$$1 = 1 \times 2 \ 2 = 2 \ 2$$

$$1 = 1$$

Inductive Hypothesis: Assume true for 1 < k < n.

Induction:

$$\sum k = 1 \ n \ k = \sum k = 1 \ n - 1 \ k + n$$

$$\sum k = 1 \ n \ k = (\ n - 1\) \ (\ (\ n - 1\) + 1\) \ 2 + n \ (By \ The \ Inductive \ Hypothesis)$$

$$\sum k = 1 n k = (n-1) n 2 + n$$

$$\sum k = 1 \ n \ k = n \ 2 - n \ 2 + 2 \ n \ 2$$

$$\sum k = 1 \ n \ k = n \ 2 - n + 2 \ n \ 2$$

$$\sum k = 1 n k = n 2 + n 2$$

$$\sum k = 1 \ n \ k = n \ (n+1) \ 2$$

ı

Prove $\sum k = 0$ n 2 k = 2 n + 1 - 1.

By induction on n.

11/20/2018 summations

Basis: Let n = 0.

$$\sum k = 0 \text{ n } 2 \text{ k} = 2 \text{ n} + 1 - 1$$

$$\sum k = 0 \ 0 \ 2 \ k = 2 \ 0 + 1 - 1$$

1 = 1

Inductive Hypothesis: Assume true for 1 < d < n.

Induction:

$$\sum k = 0 \text{ n } 2 \text{ k} = \sum k = 0 \text{ n } - 1 \text{ 2 k} + 2 \text{ n}$$

$$\sum \, k = 0 \, \, n \, \, k = 2 \, \left(\, \, n \, - \, 1 \, \, \right) + 1 \, - \, 1 \, + \, 2 \, \, n \, \left(B \, Y \, The \, Inductive \, Hypothesis \right)$$

$$\sum k = 0 \ n \ k = 2 \ n - 1 + 2 \ n$$

$$\sum k = 0 \text{ n } k = 2 \times 2 \text{ n - 1}$$

$$\sum k = 0 \ n \ k = 2 \ n + 1 - 1$$

Problems:

- 2.2-3
- 2.2-7
- 3.1-1
- 3.1-5
- 3.1-7