

电子测量技术

Electronic Measurement Technology
ISSN 1002-7300,CN 11-2175/TN

《电子测量技术》网络首发论文

题目: 双自适应 CKF 锂电池荷电状态估计

作者: 杨宇飞,王高杰,郑艳萍

收稿日期: 2024-06-23 网络首发日期: 2024-09-29

引用格式: 杨宇飞,王高杰,郑艳萍.双自适应 CKF 锂电池荷电状态估计[J/OL]. 电子

测量技术. https://link.cnki.net/urlid/11.2175.TN.20240927.1459.180

网络首发:在编辑部工作流程中,稿件从录用到出版要经历录用定稿、排版定稿、整期汇编定稿等阶段。录用定稿指内容已经确定,且通过同行评议、主编终审同意刊用的稿件。排版定稿指录用定稿按照期刊特定版式(包括网络呈现版式)排版后的稿件,可暂不确定出版年、卷、期和页码。整期汇编定稿指出版年、卷、期、页码均已确定的印刷或数字出版的整期汇编稿件。录用定稿网络首发稿件内容必须符合《出版管理条例》和《期刊出版管理规定》的有关规定;学术研究成果具有创新性、科学性和先进性,符合编辑部对刊文的录用要求,不存在学术不端行为及其他侵权行为;稿件内容应基本符合国家有关书刊编辑、出版的技术标准,正确使用和统一规范语言文字、符号、数字、外文字母、法定计量单位及地图标注等。为确保录用定稿网络首发的严肃性,录用定稿一经发布,不得修改论文题目、作者、机构名称和学术内容,只可基于编辑规范进行少量文字的修改。

出版确认: 纸质期刊编辑部通过与《中国学术期刊(光盘版)》电子杂志社有限公司签约,在《中国学术期刊(网络版)》出版传播平台上创办与纸质期刊内容一致的网络版,以单篇或整期出版形式,在印刷出版之前刊发论文的录用定稿、排版定稿、整期汇编定稿。因为《中国学术期刊(网络版)》是国家新闻出版广电总局批准的网络连续型出版物(ISSN 2096-4188,CN 11-6037/Z),所以签约期刊的网络版上网络首发论文视为正式出版。

网络首发时间: 2024-09-29 10:35:20

网络首发地址:https://link.cnki.net/urlid/11.2175.TN.20240927.1459.180

双自适应 CKF 锂电池荷电状态估计

杨字飞1,2 王高杰2 郑韬葎1

(1. 郑州大学机械与动力工程学院 郑州 450001; 2. 广东佛山联创工程研究生院 佛山 528300)

摘 要: 锂电池荷电状态是锂电池安全运行最重要的状态参数,为了提高锂电池 SOC 的估算精度,本文提出了一种双自适应容积卡尔曼滤波算法。利用锂电池二阶 DP 等效电路模型做状态参数的离线辨识,使用精确度较高的容积卡尔曼滤波算法估测单个 SOC,并且引入自适应因子去估测实时噪声,在获得 SOC 的基础对锂电池内阻实时估计,用双自适应容积卡尔曼滤波算法估测 SOC。为了全面验证自己的结论符合实际工况要求,本文进行了动态压力测试、联邦城市驾驶、城市驾驶循环和城郊驾驶循环的模拟工况实验,通过算法获得前三种工况 SOC 的误差在 0.5%以内,城郊驾驶循环工况的误差在 1%以内,并且具有较强的鲁棒性,证明自己的算法成立。

关键词: SOC; 离线辨识; 双自适应容积卡尔曼滤波算法

中图分类号: TM912; TN06 文献标识码: A 国家标准学科分类代码: 510.40

Estimation of state of charge of lithium battery dual adaptive CKF

Yang Yufei^{1, 2} Wang Gaojie² Zheng Yanping¹
(1 School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou 450001, Zhengzhou, China;
2 Guangdong Shun de Innovative Design Institute, Foshan 528300, Guangdong, China)

Abstract: The state of charge of lithium batteries is the most important state parameter for the safe operation of lithium batteries. In order to improve the estimation accuracy of lithium battery SOC, this paper proposes a dual adaptive volumetric Kalman filter algorithm. The second-order DP equivalent circuit model of lithium batteries is used for offline identification of state parameters, and a high-precision volumetric Kalman filter algorithm is used to estimate a single SOC. An adaptive factor is introduced to estimate real-time noise. On the basis of obtaining SOC, the internal resistance of lithium batteries is estimated in real time, and the dual adaptive volumetric Kalman filter algorithm is used to estimate SOC. In order to fully verify that the conclusions of this paper meet the requirements of actual working conditions, this paper conducted dynamic stress testing, federal city driving, urban driving cycle and suburban driving cycle simulation experiments. The SOC errors of the first three working conditions obtained by the algorithm are within 0.5%, and the error of the suburban driving cycle

-Keywords: SOC; Offline identification; Dual adaptive cubature Kalman Filtering

working condition is within 1%, and it has strong robustness, proving that the algorithm is valid.

收稿日期: 2024-06-23

*基金项目:河南省重大科技专项《燃料电池汽车及关键部件技术研究与示范应用》,项目号: 221100240200

0 引 言

随着全球工业化的发展,传统燃油汽车的出现给人类的出行带来了巨大的便利,但与此同时,汽车数量的大量增加也会引发能源紧缺和环境污染问题。电动汽车的出现完美解决了这两大难题,但与此又会产生新的问题。若想电动汽车长时间稳定的运行,其核心必须通过电池管理系统(battery management system,BMS)对其进行实时监控。电池的荷电状态(State of charge, SOC)最重要的状态参数。精准估算 SOC 值,避免因电池故障导致的安全事故,是驾驶员安全行驶的前提。动力锂电池以其高能量密度、低自放电率、长循环寿命和环保的特性,成为当下电动汽车的研究热点。

SOC 代表的是标准情况下蓄电池的剩余电量于 蓄电池的电量之比, 基于目前为止工程测量 SOC 的 方法大致分为四种, 安时积分法, 库存计数法(即 开路电压法),基于数据驱动的方法和基于模型的方 法^[1]。安时积分法^[2]的原理简单,方法易于实现,计 算简单,它的基本原理是将电池在充放电过程中的 电流进行积分, 并根据电流积分值和电池初始容量 值、电池的实际容量值来估计电池的当前的容量。 然而这种方法不能估算电池的初始剩余电量,如果 初始的 SOC 测量精度存在误差的话, 那么在以后锂 电池运行的过程中误差会越来越大; 开路电压法[3] 需要锂电池静置让其内部环境稳定, 测量其初始电 压, 然后按照一定的放电倍率放电, 计算出其对应 的 SOC 值和开路电压值, 然后经过 MATLAB 拟合 可得到 SOC 与开路电压的拟合曲线,需要了解电池 的容量可通过查表其对应的开路电压获得, 这个方 法极其容易受到外部环境像温度的影响, 从而导致 误差较大。基于数据驱动的方法是指计算机中常用 的机器学习和神经网络等算法。刘奇、吴松荣等[4]提 出了一种基于自适应麻雀搜索算法与径向基函数 (radial basis function, RBF)神经网络相结合的估计 方法, 提升了 SOC 估计精度, 并且其方法鲁棒性很 高。张振强等[5]等提出了一种基于局部模型网络和 天牛须搜索优化组合的 SOC 估计方法, 能够较好的 兼顾模型的精度和运算速度。张心成等间提出了一 种改进的门控循环单元 (gated recurrent unit, GRU) 模型算法估计 SOC, 通过构建新型 1DCNN-BI-GRU-ATT 模型与原有模型进行比较估计精度和稳 定性的提升。我们可以发现以上基于驱动模型的方 法一个最大的特点是依靠计算机的主动学习,虽然

各种算法得出来的精度和稳定性都很高,但是这种 算法严重依赖计算机用干训练的数据质量和数量. 并且它也需要较高的计算资源和较多的计算时间。 基于模型的方法可以完美的符合并且适应以上要求. 因此通常被学术界认定一种通用的办法, 并且在此 基础上不断加深创新。基于模型的计算方法分为针 对电池内部机理和外部电路特性进行建模、分为电 化学模型和等效电路模型。由于锂电池的内部情况 比较复杂, 我们很难去用一个模型去展示出来其内 部性质。因此等效电路模型就成为了我们着重的研 究对象。高铭琨等[7]对我们常用的等效电路模型种 类进行了综述。基于模型的状态估计已经有简单的 标准卡尔曼滤波器发展到扩展卡尔曼滤波器。扩展 卡尔曼滤波器^[8] (extended kalman filtering, EKF)能 得到状态变量得最优估计,然而系统噪声会直接影 响参数的准确性, 估算精度较低。郝世宇等[9]提出了 一种自适应扩展卡尔曼滤波器 (adaptive extended kalman Filter, AEKF) 的方法去估计锂电池的荷电状 态,提升了荷电状态 SOC 的估计精度,然而扩展卡 尔曼滤波估计非线性系统最多只能扩展到一阶,当 我们产生二阶甚至以上的项时就会产生计算误差。 田元武等[10]提出了一种 ARWLS-AEKF 联合算法估计 锂电池 SOC, 通过引入加权遗传因子进行估计, 提 高了 SOC 的估计精度。张海涛, 刘新天等[11]提出了 一种变窗口自适应容积卡尔曼滤波(adaptive unscented kalman filter, AUKF) 算法, 通过改变窗 口长度, 在城市驾驶循环 (UDDS) 与无迹卡尔曼滤 波和自适应无迹卡尔曼滤波比较,提升了 SOC 的估 计精度和鲁棒性。Shuzhi Zhang 等[12]提出了一种改 讲的自适应无迹卡尔曼滤波算法来估计 SOC. 由于 算法的自适应作用导致误差协方差矩阵非正定,从 而导致自适应无法进行,把协方差矩阵的 Cholesky 分解改为奇异值分解实现了 SOC 的在线精确估计。 高峰等[13]提出了一种基于门控循环单元(GRU)和 无迹卡尔曼滤波 (UKF) 相结合的算法, 实现了基于 数据驱动和基于模型方法的结合, 得出来 SOC 估计 的精度较高, 但是算法较为复杂, 程序过程繁琐。 Haoyu Chai 等[14]提出了一种自适应容积卡尔曼滤波 器(adaptive cubature kalman filtering, ACKF)来估 计锂电池的荷电状态, 进一步提高了荷电状态的估 计精度。郭向伟等[15]提出了一种新型的自适应渐消 无迹卡尔曼滤波算法(AFUKF)估测 SOC 精度。华 菁, 阮观强等[16]提出了一种带有时变遗忘因子的最 小二乘法和自适应容积卡尔曼滤波结合(TVFFRLS-

ACKF)的算法可以提高 SOC 的估计精度,并且最大误差不高于 1.5%。王文亮等^[17]针对单个扩展卡尔曼估计精度不高的问题,采用双扩展卡尔曼滤波器去提升 SOC 的估计精度。邹琳等^[18]提出了一种双无迹卡尔曼滤波算法去提升了 SOC 的估测精度和鲁棒性。印学浩等^[19]构建了健康状态(state of health,SOH)与电池模型参数间多维度空间插值曲面,在估计锂电池退化的条件下提升了 SOC 的长期估计性。

针对上述问题的分析,为了进一步提高锂电池的荷电状态的精度,保证锂电池在电动汽车的安全运行,本文基于二阶 RC 等效模型,对锂电池的参数进行离线辨识,由于锂电池的内阻在放电过程是逐步增大,对锂电池的内阻加入一个噪声进行实时估计,本文提出了一种双自适应容积卡尔曼滤波算法(Dual adaptive cubature Kalman filtering,DACKF)估计 SOC,通过动态压力测试(DST)和联邦城市驾驶(FUDS),城市驾驶循环(UDC),城郊驾驶循环(EUDC)四种模拟工况全面验证 DACKF 算法的可靠性。

1 锂离子电池等效模型取

1.1 等效电路模型

由于锂电池内部存在欧姆内阻和极化内阻,考虑到精确性和计算量的问题,DP 双极化模型(二阶RC 模型)相比较其他模型可较为精确的模拟锂电池内部的动态特性,应用性较好,因此,本文选用二阶 RC 等效电路模型^[20],如图 1 所示:

图 1 二阶 RC 等效电路模型

Figure 1 Second-order RC equivalent circuit model

图 1 中: R_0 表示欧姆内阻; R_1,R_2 两者都是极化内阻; C_1,C_2 两者都是极化电容; $^{U_{oc}}$ 表示开路电压; U_L 表示电池端电压; U_1,U_2 表示电路极化电压; I_L 表示电池负载电流

由基尔霍夫定律可得:

$$\begin{cases} U_{I}' = -\frac{U_{I}}{R_{I}C_{I}} + \frac{I_{L}}{C_{I}} \\ U_{2}' = -\frac{U_{2}}{R_{2}C_{2}} + \frac{I_{L}}{C_{2}} \\ U_{OC} = U_{L} + U_{I} + U_{2} + R_{0}I_{L} \end{cases}$$
(1)

SOC 定义:标准情况下蓄电池的剩余电量于蓄电池的电量之比,SOC 的计算公式:

$$SOC(t) - SOC(0) = \int_{0}^{t} aI(t)dt / W_{n}$$
(2)

上式 (2) 中: α : 电池的库伦效率, 一般为 1; w_n : 容量 Ah; 采样时间 $\Delta t = 1s$; $\eta(t)$: t 时刻的放电电流; SOC(0) 为 SOC 的初始值。

对式(1)和(2)进行离散化可得状态方程和观测方程:

$$\begin{pmatrix}
SOC(N+I) \\
U_{1}(N+I) \\
U_{2}(N+I)
\end{pmatrix} = \begin{pmatrix}
I & 0 & 0 \\
0 & e^{\frac{V_{I}}{m_{I}}} & 0 \\
0 & 0 & e^{\frac{V_{I}}{m_{2}}}
\end{pmatrix} \begin{pmatrix}
SOC(N) \\
U_{1}(N) \\
U_{2}(N)
\end{pmatrix} (3)$$

$$+I(N)? \begin{pmatrix}
\frac{V_{I}}{W_{n}} \\
R_{I} * (I - e^{\frac{V_{I}}{m_{2}}}) \\
R_{2} * (I - e^{\frac{V_{I}}{m_{2}}})
\end{pmatrix}$$

$$U_{L} = U_{OC} - U_{I} - U_{2} - R_{0} * I_{L} \qquad (4)$$

其中: $m_1 = R_1C_1, m_2 = R_2C_2$, n 是不连续的时间; N, N+1 指相应于该时刻

1.2 开路电压和荷电状态的联系

锂离子电池被看作一种非线性时变系统,开路电压 (Open-circuit voltage, OCV)与 SOC 有一定的非线性,在长期静置条件下,其开路电压会逐渐趋于稳定。本次实验选用了国内的 IFR21700 锂离子电池,标称容量为 3000mAh,标称电压为 3.2V,最大放电倍率为 3C,充电额定截至电压 3.6V,恒压充电截至电流 40mA 结束,放电截至电压为 2V,温度恒定为 25℃。其实验平台如图 2表示。把图片 a)中的锂电池放到 b)高性能电池检测实验平台,通过 c)设置放电工步到最后检测完成从上位机得出来 d)实验数据。

图 2 展示了高性能电池检测平台测试锂电池的实验步骤,从上位机设置工步,把锂电池放到实验平台去测试,测试完成后在上位机得出数据。

(a) 21700 锂电池 (a) 21700 lithium battery

(b) 高性能电池测试平台 (b) High-performance battery testing platform

(c) 上位机工步设置 (c) Upper computer step setting

(d) 上位机数据监测

(d) Host computer data monitoring 图 2 电池测试平台

Figure 2 Battery test platform 为了更好的模拟实际工况,本次实验选用了以

下五种实验方案:

1. 采用恒流恒压充放电,静置 1h,以 1C 的恒定电流放电 6min,静置 1h,循环直至放电至截至电压,每循环一次记录电压电流的变化:其完整的电压电流放电测试如图 3:

图 3 1C 放电电流电压

Figure 3 1C discharge current and voltage

2. 为了验证电动汽车在真实路面的动态压力测试情况,采用动态压力测试 (dynamic stress test, DST) 工况,其单次电流放电测试如图 4:

图 4 单个 DST 工况放电电流

Figure 4 Discharge current of a single DST condition

3. 为了更好的验证复杂路面的真实情况,采用联邦城市驾驶 (Federal Urban Driving Schedual, FUDS) 工况,其完整的电压电流放电测试如图 5:

图 5 FUDS 循环工况电流、电压曲线 Figure 5 Current and voltage curves of FUDS cycle

conditions

4. 为了模仿城市驾驶循环的频繁启停车况,采用城市驾驶循环(urban driving Cycle, UDC)工况^[22], 汽车最高驾驶速度为 50 km/h, 汽车启动后,暂停 11 S, 再 4 S 内缓慢加速至 15 km/h,恒定速度行驶 8 S,在 5 S 刹车至完全停止,停止 21 S,然后在12 S 内启动并且缓慢加速至 32 km/h,行驶 24 S, 在11 S 内缓慢刹车至完全停止,暂停 21 S, 在 26 S 内缓慢加速至 50 km/h,行驶 12 S, 8 S 内减速至 35 km/h,行驶 13 S, 12 S 内刹车至完全停止,暂停 7 S。一个完整的循环为 195 S, 理论距离为 994.03 米,平均速度为 18.35 km/h。其单次电流放电测试如图 6:

图 6 单个 UDC 工况放电电流

Figure 6 Discharge current of a single UDC condition

5. 为了模仿城市高速路上的行驶状况,采用城郊驾驶循环(Extra-urban driving Cycle, EUDC)工况^[23],汽车最高驾驶速度为 120 km/h,在启动汽车前暂停 20 S,在 41 S 内缓慢加速至 70 km/h,行驶 50 S,在 8 S 内减速至 50 km/h,行驶 69 S,然后在 13 S 内缓慢加速至 70 km/h,行驶 50 S,然后在 20 S 内缓慢加速至 120 km/h,行驶 10 S,最后在 34 S 内缓慢刹车至完全停止,暂停 20 S。整个过程总时间为 400 S,理论距离为 6956 米,平均速度为 62.6 km/h。其单次电流放电测试如图 7:

图 7 单个 EUDC 工况放电电流

Figure 7 Discharge current of a single EUDC condition

通过图 3 中的数据我们可以测出锂电池的开路电压与 SOC 的关系, 并且对此进行五阶多项式拟合,可以得到 SOC-OCV 曲线如图 8 所示:

Figure 8 SOC-OCV curve

由 MATLAB 中得出来的五阶拟合系数可得 SOC-OCV 关系式:

$$U_{oc} = 16.6244SOC^{5} - 41.8794SOC^{4}$$

$$+39.8221SOC^{3} - 17.9570SOC^{2}$$

$$+4.0662SOC + 2.6287$$
(5)

1.3 电池离线参数辨识

我们选取了图 3 中任意一段电压放电曲线如图 9 所示从图 9 我们可以清楚的看到当电池开始放电的一瞬间,端电压迅速下降,即 AB 段,当放电结束的一瞬间端电压迅速上升,即 CD 段,然后在静止过程种缓慢上升,即 DE 段。

图 9 端电压响应曲线

Figure 9 Terminal voltage response curve

AB 和 CD 段代表了锂电池的欧姆内阻的压降产生和消失的过程,DE 段端电压的缓慢上升表示了在静置时间内 R_1C_1 和 R_2C_2 的极化反应过程, [24] 内阻和端电压的方程:

$$\begin{cases} R_{o} = \frac{U_{A} - U_{B} + U_{C} - U_{D}}{2I} \\ U_{L} = U_{OC} - A(t) * e^{-Ct} - B(t) * e^{-Dt} \end{cases}$$
 (6)

其中, I 为放电电流; Uoc 为每次放电结束后的静止电压; 当 t=0 时, A(0),B(0)分别代表二阶 DP 模型中 R_1C_1 和 R_2C_2 的初始电压,A(t),B(t)代表了 t 时刻 R_1C_1 和 R_2C_2 时的电压值。

$$\begin{pmatrix}
A(t) = A(0) * (1 - e^{-Ct}) \\
B(t) = B(0) * (1 - e^{-Dt})
\end{pmatrix}$$
(7)

自定义拟合函数为:

$$y = \alpha - \beta * e^{-C*t} - \delta * e^{-D*t}$$
 (8)

其中: α 为每次放电结束后的端电压值,每次放电时间为 360 s,结合历史参考文献我们可以大致得出电阻的值大约是几十毫欧,电容的值大约在 10^3 - 10^5 F 内,因此,我们可得出 e^{-C^*t} 和 e^{-D^*t} \approx 0,于是可得

$$\begin{pmatrix}
A(0) = I * R_1 \\
B(0) = I * R_2
\end{pmatrix} \tag{9}$$

于是可推导出电阻、电容的表达式分别为

$$\begin{cases}
R_{I} = \beta / I \\
R_{2} = \delta / I
\end{cases}$$

$$C_{I} = I / R_{I} / C$$

$$C_{2} = I / R_{2} / D$$
(10)

1.4 Matlab 联合 1stOpt 的离线参数辨识

在我们用 MATLAB 进行端电压的拟合过程中, α 可由我们上图 SOC-OCV 曲线得到端电压值,但 β , C, δ , D 初始值的取值会对我们的拟合效果产生强烈的影响,甚至会直接导致无法拟合,因此如何取得初始值就成了一个比较关键的问题,于是我们以温度为 25 度,SOC=0.7 为例,利用 1stopt 软件的自定义函数设置为公式(8)。1stopt 求解的参数结果如图 8 所示,通过拟合求解可得出来 β , C, δ , D 初始值,其中蓝色曲线是我们的实验数据曲线,红色是 1stOpt 拟合软件得出来的曲线,可以看到 R^2 在 99%以上,拟合效果良好。

图 10 1stopt 拟合曲线

Figure 10 1stopt fitting curve

得出来初始值后,我们把初始值再代入到 MATLAB 的 Curve Fitting 拟合工具箱中,利用公式 (10) 可以得出来当 SOC=0.9 时候各个参数值,拟合出来的效果改正后的 R²统一在 99.5%以上,说明拟合效果好。同理,我们可以得出来当 SOC=0.8 至 SOC=0.1 时各个参数值如表 1 所示

表 1 RC 参数辨识

Table 1 RC parameter identification

SOC	$R_0(\Omega)$	$R_1(\Omega)$	$R_2(\Omega)$	$C_1(F)$	$C_2(F)$
0.9	0.0599	0.0118	0.00357	2100	2.55E+05
0.8	0.0594	0.0137	0.00513	2420	1.50E+05
0.7	0.0594	0.0121	0.01083	2430	7.10E+04
0.6	0.0597	0.0119	0.00577	2220	1.58E+05
0.5	0.06	0.0135	0.0043	2090	2.33E+05
0.4	0.0602	0.0156	0.00577	2150	1.33E+05
0.3	0.0603	0.0161	0.0072	2010	9.92E+04
0.2	0.0602	0.0166	0.00507	1720	1.79E+05
0.1	0.0604	0.0258	0.00716	1160	1.27E+05
Aver:	0.0599	0.0152	0.00609	2030	1.56E+05

为了了解辨识参数在放电过程中是如何变化的, 我们对离线辨识出的不同 SOC 下的 RC 参数进行三 次样条插值,得出参数随 SOC 的变化曲线如图 11 所示:

(a) SOC 随 R₀的变化曲线

(a) SOC curve with Ro

(b) SOC 随 R₁的变化曲线

(b) SOC curve with R_1

(c) SOC 随 R2的变化曲线

(c) SOC curve with R₂

(d) SOC 随 C1的变化曲线

(d) SOC curve with C₁

(e) SOC 随 C2的变化曲线

(e) SOC curve with C2

图 11 不同 SOC 下 RC 参数辨识结果

Figure 11 RC parameter identification results under different SOC

1.5 辨识结果验证

为了验证我们辨识出来的结果正确性,利用MATLAB中的 SIMULINK 仿真模型,把离线辨识得出来的结果代入二阶 DP模型中,仿真出来的端电压与我们实际测出来的电压值进行比较,就可以证明我们辨识结果的正确性。我们用复杂的 FUDS 测试的电流为输入值,得到仿真得出的电压与实验测得电压如图 12,其电压误差如图 13:

图 12 FUDS 工况下端电压对比

Figure 12 Comparison of terminal voltage under FUDS condition

图 13 FUDS 工况下端电压对比误差

Figure 13. Terminal voltage comparison error under FUDS condition

由图 13 我们可以看到仿真电压与实验测的电压值的绝对误差在 0.25V 以内,且大部分绝对误差在 0.1V 以内,只有当电池 SOC 逐渐接近为 0 时,才会出现较大的变化,由此证明我们的参数辨识结果满足精度要求,为我们下面的算法应用提供了理论支持。

2 DACKF 算法

2.1 CKF 算法

由于锂电池的内阻在放电过程是实时动态变化的,而过程噪声和量测噪声对锂电池 SOC 的估计影响较大,因此本文提出了双自适应容积卡尔曼滤波 算法来估计 SOC。容积卡尔曼滤波(CKF)算法是将样本点即容积点通过等权重的容积点传播系统状态的均值和协方差,采用球面——径向容积规则,借助于状态量的先验平均值和协方差矩阵来确定容积点。然后利用一个非线性方程来传递容积点,使得每个采样点在传递过程中的权重相等。非线性系统的状态方程和测量方程可以表示为:

$$\begin{cases} x_k = f(x_{k-1}, u_{k-1}) + Q_k \\ y_k = h(x_k, u_k) + R_k \end{cases}$$
 (11)

 $x_k, u_k, y_k \in R^n$,代表k时刻的状态量,输入量,测量值。 Q_k, R_k 代表过程噪声,测量噪声

CKF 的更新过程分为时间更新和测量更新:

1) 时间更新

对初始设置协方差矩阵 Cholesky(乔列斯基)分解生成容积点并且传递容积点后的方程为:

$$\begin{cases}
P_{k-1/|k-1} = S_{k-1/|k-1} S_{k-1/|k-1}^T \\
x_{i,k-1/|k-1} = S_{k-1/|k-1} \xi + \hat{x}_{k-1/|k-1} i = 1, 2, L, m
\end{cases} (12)$$

$$\xi = \begin{cases} \sqrt{n}[1], i = 1, 2L, n \\ -\sqrt{n}[1], i = n+1, n+2, L, 2n \end{cases}$$
(13)

$$x_{i,k/k-1} = f(x_{i,k-1/k-1}, u_{k-1})$$
 (14)

其中: $S_{k-1|k-1}$ 是 $P_{k-1|k-1}$ 的协方差矩阵; $x_{i,k-1|k-1}$ 是

k-1 时刻的容积点; ξ 是 $P_{k-1|k-1}$ 分解的转换点,状态估计值和先验误差协方差矩阵可以被表示:

$$\begin{cases} \hat{x}_{k|k-I} = \frac{1}{2n} \sum_{i=1}^{m} x_{i,k|k-I}^{l} \\ P_{k|k-I} = \frac{1}{2n} \sum_{i=1}^{m} (x_{i,k|k-I}^{l} - \hat{x}_{k|k-I})(x_{i,k|k-I}^{l} - \hat{x}_{k|k-I})T + Q_{k-I} \end{cases}$$
(15)

2) 测量更新

先验误差协方差矩阵经过乔列斯基分解:

$$P_{k-l/k-l} = S_{k-l/k-l} S_{k-lk-l}^{T}$$
(16)

通过状态预测值计算容积点并且代入测量方程

计算出测量值:

$$\begin{cases} x_{i,k/k-1}^{l^*} = S_{k/k-1} \xi_i + \hat{x}_{k/k-1} \\ y_{i,k/k-1} = f(x_{i,k/k-1}^{l^*}, u_k) \end{cases}$$
 (17)

计算测量估计值和测量误差协方差:

$$\begin{cases}
\hat{y}_{k|k-I} = \frac{1}{2n} \sum_{i=1}^{m} Y_{i,k|k-I} \\
P_{yy,y|y-I} = \frac{1}{2n} \sum_{i=1}^{m} (Y_{i,k|k-I} - \hat{y}_{k|k-I})(Y_{i,k|k-I} - \hat{y}_{k|k-I})^{T} + R_{k}
\end{cases} (18)$$

$$P_{xy,k|k-I} = \frac{1}{2n} \sum_{i=1}^{m} (x_{i,k|k-I} - \hat{x}_{k|k-I})(Y_{i,k|k-I} - \hat{y}_{k|k-I})^{T}$$

卡尔曼增益:

$$K = P_{xy,k/k-1} / P_{yy,k/k-1}$$
 (19)

后验估算状态值和误差协方差矩阵:

$$\begin{cases} \hat{x}_{k/k} = K(y_k - \hat{y}_{k/k-I}) + \hat{x}_{k/k-I} \\ P_{k/k} = P_{k/k-I} - KP_{yy,k/k-I}K^T \end{cases}$$
 (20)

2.2 ACKF 算法

$$\begin{cases} Q_{k} = (1-d) * Q_{k-1} + d * (K * \frac{1}{2n} \sum_{i=1}^{m} (Y_{i,k|k-1} - \hat{y}_{k|k-1}) (Y_{i,k|k-1} - \hat{y}_{k|k-1})^{T} * K^{T}) \\ R_{k} = (1-d) * R_{k-1} + d * (\frac{1}{2n} \sum_{i=1}^{m} (Y_{i,k|k-1} - \hat{y}_{k|k-1}) (Y_{i,k|k-1} - \hat{y}_{k|k-1})^{T}) \end{cases}$$

式中: 系统过程噪声协方差 , 测量噪声协方差 是随着锂电池放电过程中逐渐变化的; 其中 d= (1-b)/(1-b^k), b 为遗忘因子, 通常取值为 0.95<b<1, 本文中取值为 0.995。然后, 将取得的更新协方差矩 阵带入我们的状态方程, 形成可以对噪声协方差进 行自适应容积卡尔曼滤波算法。

2.3、DACKF 算法估测 SOC

利用 DACKF 估测锂电池 SOC 时需要欧姆内阻 A。在内的精确参数,而欧姆内阻 A。在锂电池放电过程中是缓慢变化的,因此,若要更精确的计算出锂电池的放电状态,必须对 A。进行实时估计,对其进行离散化可得状态方程与观测方程:

$$\begin{cases} R_{0,k} = R_{0,k-1} + Q_k \\ U_k = U_{OC(SOC,k)} - I_k R_{0,k} - U_{1,k} - U_{2,k} + R_k \end{cases}$$
 (22)

 $R_{0,k}$ 表示每次都在上一时刻的基础上加上一个过程噪声,来表示锂电池的变化过程。

3 验证与分析

3.1 ACKF 算法的精度验证

为了更好的模拟锂电池在实际工况的动态效应,本文选择了四种实际工况(动态压力测试,DST)和(联邦城市驾驶,FUDS),(城市驾驶循环,UDC),

(城郊驾驶循环, EUDC)进行了测试,在四种种工况分别比较了 CKF,ACKF,DACKF 算法与真实测量的 SOC 对比,并且比较了他们与真实值的误差图。图 14 为在 DST 工况下的 SOC 对比图,从图 14 中可以看出三种算法都能接近真实 SOC 值,DACKF 估算 SOC 的精度最高,更接近真实值。图 15 为 DST 工况下的 SOC 误差对比图。从图 15 可以看出在 DST 工况下,DACKF 的鲁棒性最好,CKF 的鲁棒性差。

图 14 DST 工况下不同算法估计 SOC Figure 14 SOC estimation by different algorithms under DST conditions

图 15 DST 工况下不同算法估计 SOC 误差
Figure 15 SOC estimation error of different algorithms
under DST condition

图 16 为 FUDS 工况下三种算法估测的 SOC 对比图,由于 FUDS 工况是为了模拟联邦城市驾驶的情况,电流变动较大,情况比较复杂,从图 16 我们同样可以看出,CKF偏离 SOC 真实值较大,而 DACKF相比较前两种算法更加接近 SOC 真实值,图 17 为 FUDS 工况下三种算法对比 SOC 误差图。从图 17 同

样可以看出,DACKF 的鲁棒性最好,CKF 的鲁棒性 最差。

图 16 FUDS 工况下不同算法估计 SOC Figure 16 SOC estimation by different algorithms under FUDS condition

图 17 FUDS 工况下不同算法估计 SOC 误差
Figure 17 SOC estimation error of different algorithms
under FUDS condition

为了全面验证算法在各种实用工况的适用性和鲁棒性。我们模拟电车在行驶过程中的频繁启停状态和高速行驶状态。我们模拟了城市驾驶循环工况(UDC)。图 18 和图 20 为 UDC 和 EUDC 工况三种算法下的 SOC 估计值与真实值比较,图 19 和图 21 为三种算法下估测 SOC 与实际计算 SOC 的误差比较,从图 19 和图 21 中能清晰的看出来三种算法的变化浮动程度,由此我们可以明显的看出无论是 UDC 工况还是 EUDC 工况, CKF 算法的变化浮动是最明显的,鲁棒性最差, ACKF 算法次之,DACKF 的精度和稳定性最高。

图 18 UDC 工况下不同算法估计 SOC Figure 18 SOC estimation by different algorithms under UDC conditions

图 19 UDC 工况下不同算法估计 SOC 误差
Figure 19 SOC estimation error of different algorithms
under UDC condition

图 20 EUDC 工况下不同算法估计 SOC Figure 20 SOC estimation by different algorithms under EUDC conditions

图 21 EUDC 工况下不同算法估计 SOC 误差
Figure 21 SOC estimation error of different algorithms
under EUDC condition

由图 14-图 21 我们可以得出,无论采用哪种工况, DACKF 估测锂电池 SOC 的精度都相对 CKF 和ACKF 的精度要高,我们计算出来三种算法与真实值的最大误差与平均绝对误差,进行对比,如表 2 所示,从表 2 中也可以得到,在 DST 工况下,DACKF

的最大误差为 0.076%, 平均绝对误差为 0.068%, 在 FUDS 工况下最大误差为 0.3%, 平均绝对误差为 0.2%, 在 UDC 工况下最大误差为 1.14%, 平均误差为 0.432%, 在 EUDC 工况下最大误差为 1.96%, 平均绝对误差为 0.924%, 误差最小, 精度最高。由于(城郊道路循环, EUDC)的放电电流较大, 放电次数较多, 以及受外界环境影响, 锂电池内部参数变化比较剧烈, 因此误差会比前三种工况稍微高些, 但是也是满足我们的要求的。

表 2 不同工况算法下 SOC 估算误差对比
Table 2 Comparison of SOC estimation errors under different working condition algorithms

different working condition algorithms						
十七	算法	最大误差	平均绝对误差			
工况	异瓜	MAX/%	MAE%			
//.	CKF	5.13	0.51			
DST	ACKF	1.314	0.49			
	DACKF	0.3	0.2			
	CKF	4.275	0.75			
FUDS	ACKF	2.46	0.65			
	DACKF	0.076	0.068			
	CKF	10.84	0.734			
UDC	ACKF	3.25	1.614			
	DACKF	1.14	0.423			
	CKF	8.24	0.597			
EUDC	ACKF	6.93	0.397			
	DACKF	1.96	0.924			

为了模拟在实际工况 SOC 初始值失效时 DACKF 算法的鲁棒性优劣,通过历史参考文献[16-18]算法的鲁棒性优劣时,一般设置初始值为 0.9, 0.8, 0.7,看一下是否能跟上 SOC 实际参考值。从图 12 和图 13 我们可以看出,当 SOC 的初始值失真时候都能在很短的时间内跟上 SOC 实际参考值,在这里我们做了 DST 工况下 SOC 初始值失真时的对比图和误差图,在 FUDS, UDC,EUDC 工况下是同样现象。无论是在哪种工况下,当 SOC 的初始值存在误差时,DACKF 算法都能跟上实际参考值,证明DACKF 算法的鲁棒性好。

图 22 DST 工况下不同初始值估计 SOC Figure 22 SOC estimation with different initial values under DST condition

图 23 DST 工况下不同 SOC 初始值估计误差
Figure 23 Estimation error of different SOC initial
values under DST condition

4 结论

锂电池 SOC 是 BMS 中最重要的状态参数之一, SOC 精度的提高对保证电动汽车的安全运行有着 至关重要的作用。因此为了提升 SOC 的估计精度, 本文做了以下工作:采用离线辨识的方法辨识出锂 电池中重要的状态参数,如欧姆内阻,极化电容电 阻等。我们把辨识参数结果代入我们的状态方程得 出其端电压值满足我们的精度要求,故辨识结果符 合要求。由于锂电池的欧姆内阻是随着锂电池的放 电状态而逐步变化的, 对欧姆内阻的实时估计就显 得至关重要, 因此本文提出了双自适应容积卡尔曼 滤波(DACKF)算法去估计 SOC, 并且在 DST, FUDS, UDC, EUDC 四种模拟工况下与 CKF 和 ACKF 算法 做出了比较,比较结果证明,在 DST、FUDS 和 UDC 工况下, DACKF 算法估计 SOC 的误差精度都可以 达到 0.5%以内, 由于 EUDC 工况的充放电电流较大, 误差精度会稍微高一些, 但是其误差精度达到 1%以 内,并且其鲁棒性也得到了很好的验证,满足我们

实际的工程需求。

参考文献

[1] 华菁. 车载锂离子电池 SOC-SOH 联合估算研究[D/OL]. 上海电机学院, 2023[2024-03-21].

HUA J. Research on SOC-SOH Joint Estimation of on-board Lithium-ion battery[D/OL]. Shanghai Institute of Electric Power, 2023.

[2] LI S, XIAO E, WONG C-K. Joint SoC and SoH Estimation for Zinc-Nickel Single-Flow Batteries[J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2020, 67(10): 8484-8494.

[3] HE H, ZHANG X, XIONG R, et al. Online model-based estimation of state-of-charge and open-circuit voltage of lithium-ion batteries in electric vehicles[J]. ENERGY, 2012, 39(1): 310-318.

[4] 刘齐, 吴松荣, 邓鸿枥, 等. 基于 ASSA-RBF 联合算法的 三元锂离子电池 SOC 估计[J]. 电子测量技术, 2024, 47(1): 71-78.

LIU Q, WU S R, DENG H L, et al. SOC estimation of ternary lithium-ion battery based on ASSA-RBF joint algorithm[J/OL]. Electronic Measurement Technology, 2024, 47(1): 71-78.

[5] 张振强, 马思乐, 姜向远, 等. 基于局部模型网络的锂电池 SOC 估计方法[J]. 仪器仪表学报, 2023, 44(7): 161-171. ZHANG Z Q, Ma S L, JIANG X Y, et al. State of charge estimation of lithium-ion batteries using local model network[J/OL]. Chinese Journal of Scientific Instrument, 2023, 44(7): 161-171.

[6] 张心成, 李翔晟, 李藏龙, 等. 基于改进 GRU 模型算法的锂电池 SOC 估计[J]. 电子测量技术, 2023, 46(11): 57-65. ZHANG X C, Li X S, Li Z L, et al. SOC estimation of lithium battery based on improved gated recurrent Unit model algorithm[J/OL]. Electronic Measurement Technology, 2023, 46(11): 57-65

[7] 高铭琨, 徐海亮, 吴明铂. 基于等效电路模型的动力电池 SOC 估计方法综述[J]. 电气工程学报, 2021, 16(1): 90-

GAO M K, XU H L, WU M B. Review of SOC estimation methods for power batteries based on equivalent circuit model [J]. Journal of Electrical Engineering, 2021, 16 (1): 90-102. [J]. Journal of Electrical Engineering, 2021, 16 (1): 90-102.

[8] 付浪, 杜明星, 刘斌, 等. 基于开路电压法与卡尔曼滤波法相结合的锂离子电池 SOC 估算[J]. 天津理工大学学报,

2015, 31(6): 9-13.

FU L, DU M X, LIU B, et al. SOC estimation of lithium-ion batteries based on the combination of open circuit voltage method and Kalman filter method [J]. Journal of Tianjin University of Technology, 2015, 31 (6): 9-13

[9] 郝世宇, 殷会飞, 杨茹, 等. 基于 AEKF 的锂离子动力电 池荷电状态估计[J]. 国外电子测量技术, 2021, 40(9): 49-53. HAO S Y, YIN H F, YANG R, et al. State of charge estimation of lithium-ion power battery based on AEKF[J]. Foreign Electronic Measurement Technology, 2021, 40(9): 49-53.

[10] 田元武, 张诗建, 周博雅, 等. 基于 ARWLS-AEKF 的锂电池 SOC 估计[J]. 电子测量技术, 2022, 45(17): 43-50.

TIAN Y W, ZHANG S J, ZHOU B Y, et al. Lithium battery SOC estimation based on ARWLS-AEKF joint algorithm[J]. Electronic Measurement Technology, 2022, 45(17): 43-50

[11] 张海涛, 刘新天. 基于改进自适应无迹卡尔曼滤波算法的锂电池荷电状态估计[J]. 汽车工程师, 2023(11): 12-18. ZHANG H T, LIU X T. SOC Estimation Lithium Battery Based on Improved AUKF Algorithm[J]. Automotive Engineer, 2023(11): 12-18.

[12] ZHANG S, GUO X, ZHANG X. An improved adaptive unscented kalman filtering for state of charge online estimation of lithium-ion battery[J]. Journal of Energy Storage, 2020, 32: 101980.

[13] 高峰, 贾建芳, 元淑芳, 等. 基于 GRU-UKF 的锂离子电池 SOC估计方法研究[J]. 电子测量与仪器学报, 2022, 36(11): 160-169.

GAO F, JIA J F, YUAN S F, et al. Research on SOC estimation method of lithium-ion battery based on GRU-UKF[J]. Journal of Electronic Measurement and Instrumentation, 2022, 36(11): 160-169.

[14] CHAI H, GAO Z, JIAO Z. State of Charge Estimation of Lithium-ion Batteries Based on An Adaptive Cubature Kalman Filter[C/OL]//2023 35th Chinese Control and Decision Conference (CCDC). Yichang, China: IEEE, 2023: 5244-5249[2024-03-14].

[15] 郭向伟, 李璐颖, 王晨, 等. 自适应渐消无迹卡尔曼滤波锂电池 SoC 估计[J]. 电子测量与仪器学报, 2024, 38(3): 167-175.

GUO X W, Li L Y, WANG C, et al. SoC estimation of lithium battery based on adaptive fading unscented kalman filter[J]. Journal of Electronic Measurement and Instrumentation, 2024, 38(3): 167-175

[16] 华菁, 阮观强, 胡星, 等. 基于 TVFFRLS-ACKF 的锂离

子电池 SOC 估算[J]. 电子测量技术, 2022, 45(24): 22-28. HUA J, RUAN G Q, HU X, et al. SOC estimation of lithiumion battery based on TVFFRLS-ACKF[J]. Electronic

Measurement Technology, 2022, 45(24): 22-28.

[17] 王文亮,何锋,蒋雪生,等.基于双扩展卡尔曼滤波锂电池荷电状态估算研究[J].电子测量技术,2020,43(19):49-52

WANG W L, HE F, JIANG X S, et al. Research on state of charge estimation of lithium battery based on double extended Kalman filter[J]. Electronic Measurement Technology, 2020, 43(19): 49-52.

[18] 邹琳, 刘佳俊, 马国庆, 等. 基于双无迹卡尔曼滤波的 锂电池 SOC 估算[J]. 电源技术, 2021, 45(4): 450-454.

ZOU L, LIU J J, MA G Q, et al. Estimation of state of charge of lithium battery based on dual unscented Kalman filter[J]. Power Supply Technology, 2021, 45(4): 450-454.

[19] 印学浩, 宋宇晨, 刘旺, 等. 基于多时间尺度的锂离子电池状态联合估计[J]. 仪器仪表学报, 2018, 39(8): 118-126. YING X H, SONG Y C, LIU W, et al. Multi-scale state joint estimation for lithium-ion battery[J]. Chinese Journal of Scientific Instrument, 2018, 39(8): 118-126.

[20] 吴小慧, 张兴敢. 锂电池二阶 RC 等效电路模型参数辨识[J]. 南京大学学报(自然科学), 2020, 56(5): 754-761.

WU X H, ZHANG X G. Parameter identification of second order RC equivalent circuit model for lithium batteries[J]. Journal of Nanjing University (Natural Science), 2020, 56(5): 754-761

[21] USABC electric vehicle Battery Test Procedures Manual [22] Anonymous. New European Driving Cycle[Z/OL](2023-09-03)

[23] MILUSHEV G. Electric Vehicle Consumption Test with Road Trace Correction via the Power/Energy Profile[C/OL]//2023 XXXIII International Scientific Symposium Metrology and Metrology Assurance (MMA). [24] LI C, KIM G-W. Improved State-of-Charge Estimation of Lithium-Ion Battery for Electric Vehicles Using Parameter Estimation and Multi-Innovation Adaptive Unscented Kalman Filter[J]. Energies, 2024, 17(1): 272.

作者简介

杨宇飞,硕士研究生(在读),主要研究方向为新能源汽车动力电池。

E-mail: 1191593067@qq.com

王高杰(通信作者),高级工程师,主要研究方向为自动控制。E-mail: 67021603@qq.com

郑艳萍,副教授,主要研究方向为自动化。E-mail: ypzheng@126.com

