Sequências e Funções

Sequências

Rever + praticar – páginas 72 e 73

1. 1° termo: 7

 2° termo: 7 + 5 = 12

 3° termo: 12 + 5 = 17

 4° termo: 17 + 5 = 22

 5° termo: 22 + 5 = 27

Assim, os termos pedidos são 7, 12, 17, 22 e 27.

2. 4º termo: 12

5° termo: 4° termo -2 = 12 - 2 = 10

3° termo: 4° termo + 2 = 12 + 2 = 14

 2° termo: 3° termo + 2 = 14 + 2 = 16

1.º termo: $2.^{\circ}$ termo + 2 = 16 + 2 = 18

Assim, os cinco primeiros termos da sequência são

18, 16, 14, 12 e 10.

3.

3.1. a) 1ª figura: 1 quadrado

2ª figura: 2 quadrados

3ª figura: 3 quadrados

Então, a 7ª figura tem 7 quadrados.

b) A figura de ordem *n* tem *n* quadrados.

3.2. a) 1ª figura: 4 triângulos

2ª figura: 6 triângulos

3ª figura: 8 triângulos

 4^{a} figura: 10 triângulos (8 + 2)

 5^{a} figura: 12 triângulos (10 + 2)

b) 2n + 2

Praticar + – páginas 74 a 77

1. O 4º termo é 96, pois, sendo 44 o 3º termo,

temos:

44 + 4 = 48

 $48 \times 2 = 96$

O 1º termo é 5, pois, sendo 18 o 2º termo, temos:

18:2=9

$$9 - 4 = 5$$

Assim:

1º termo	2º termo	3º termo	4º termo
5	18	44	96

2.

2.1. 1° termo: $4 \times 1^2 + 1 = 4 + 1 = 5$

2.º termo: $4 \times 2^2 + 1 = 4 \times 4 + 1 = 16 + 1 = 17$

Soma dos dois primeiros termos: 5 + 17 = 22

2.2. Termo de ordem 12:

$$4 \times 12^2 + 1 = 4 \times 144 + 1 =$$

= 576 + 1 =

2.3. O último termo é o termo de ordem 20. Assim:

$$4 \times 20^2 + 1 = 4 \times 400 + 1 =$$

= 1600 + 1 =
= 1601

3.

3.1. O quinto termo da sequência é 19 (13 + 6).

Logo, 43 é o primeiro termo da sequência que é maior que 40.

3.3. 1° termo: $6 \times 1 - 11 = -5$

 2° termo: $6 \times 2 - 11 = 1$

3° termo: $6 \times 3 - 11 = 7$

Logo, a expressão do termo geral é 6n - 11.

A opção correta é a [B].

4.2. O 1º termo da sequência é composto por cinco

Cada um dos termos seguintes utiliza mais três fósforos do que o termo anterior.

Assim, 3n + 2 é uma expressão que permite gerar a sequência do número de fósforos de cada termo.

Logo, para construir o termo de ordem 40 são necessários $3 \times 40 + 2 = 120 + 2 = 122$ fósforos.

4.3.
$$3n + 2 = 103 \Leftrightarrow 3n = 103 - 2$$

$$\Leftrightarrow 3n = 101$$

$$\Leftrightarrow n = \frac{101}{3}$$

Como $\frac{101}{3} \notin \mathbb{N}$, podemos concluir que não existe qualquer termo composto por 103 fósforos.

5.
$$5 \cdot 1 \cdot \frac{5 \times 1 + 4}{2} = \frac{5 + 4}{2} = \frac{9}{2}$$
$$\frac{5 \times 2 + 4}{2} = \frac{10 + 4}{2} = \frac{14}{2} = 7$$

Os dois primeiros termos da sequência são $\frac{9}{2}$ e 7.

5.2.
$$\frac{5n+4}{2} = \frac{127}{1} \Leftrightarrow 5n+4 = 254$$
$$\Leftrightarrow 5n = 250$$
$$\Leftrightarrow n = \frac{250}{5}$$
$$\Leftrightarrow n = 50$$

A sequência tem 50 termos.

6.

6.1. A sequência do número de pontos é 4, 7, 10,

O termo geral da sequência do número de pontos é 3n + 1.

Assim, para construir o oitavo termo da sequência, são necessários $3 \times 8 + 1 = 24 + 1 = 25$ pontos.

6.2. A sequência do número de triângulos é 2, 6, 10, 14, ...

O termo geral da sequência do número de triângulos é 4n - 2.

Assim, o 10º termo é composto por 38 triângulos $(4 \times 10 - 2 = 40 - 2 = 38).$

6.3.
$$4n - 2 = 37 \Leftrightarrow 4n = 39$$

$$\Leftrightarrow n = \frac{39}{4}$$

 $\Leftrightarrow n = \frac{39}{4}$ Como $\frac{39}{4} \notin \mathbb{N}$, então não existe qualquer termo desta sequência composto por 37 triângulos.

7.1.
$$2 \times (1-2) + 1 = 2 \times (-1) + 1 = -2 + 1 = -1$$

 $2 \times (2-2) + 1 = 2 \times 0 + 1 = 1$
 $2 \times (3-2) + 1 = 2 \times 1 + 1 = 2 + 1 = 3$
Os três primeiros termos da sequência são -1, 1 e 3.
7.2. $2 \times (100-2) + 1 = 2 \times 98 + 1 = 197$

7.3.
$$2(n-2) + 1 = 150 \Leftrightarrow 2n - 4 + 1 = 150$$

 $\Leftrightarrow 2n - 4 + 1 = 150$
 $\Leftrightarrow 2n = 153$
 $\Leftrightarrow n = \frac{153}{2}$

Como 153 ∉ N, podemos concluir que 150 não é termo da sequência.

7.4.
$$2(n-2) + 1 = 149 \Leftrightarrow 2n-4+1 = 149$$

 $\Leftrightarrow 2n = 149+4-1$
 $\Leftrightarrow 2n = 152$
 $\Leftrightarrow n = \frac{152}{2}$
 $\Leftrightarrow n = 76$

Logo, 149 é o termo de ordem 76 da sequência.

8.

8.1. Tem um hexágono preto, pois todos os termos da sequência têm um hexágono preto.

8.2. A sequência do número total de hexágonos é 7, 13, 19, ...

A expressão que permite calcular o número total de hexágonos é 6n + 1.

8.3. A sequência do número de hexágonos verdes é 6, 12, 18, ...

O termo geral da sequência do número de hexágonos verdes é 6n. Logo, o décimo sétimo termo tem $102 (6 \times 17)$ hexágonos verdes.

9.

9.1. Quadrados azuis:

O termo geral da sequência do número de quadrados azuis é n + 1. Logo, o termo de ordem 10 tem 10 + 1 = 11 quadrados azuis.

O termo de ordem 10 tem 11 quadrados azuis.

9.2. A sequência do número de quadrados brancos é 1, 3, 5, ...

O termo geral da sequência do número de quadrados brancos é 2n - 1. Logo, o termo de ordem 20 tem $2 \times 20 - 1 = 40 - 1 = 39$ quadrados brancos.

9.3. A sequência do número total de quadrados é 3, 6, 9, ...

O termo geral da sequência do número total de quadrados é 3n. Logo, o termo de ordem 6 tem $3 \times 6 = 18$ quadrados.

- **9.4.** Se o termo é composto por 17 quadrados azuis, então é o termo de ordem 16. O termo de ordem 16 tem $2 \times 16 1 = 31$ quadrados brancos.
- **9.5.** Como a expressão do número total de quadrados é 3*n*, então o termo de ordem 51 tem 153 quadrados.

$$3n = 153 \Leftrightarrow n = \frac{153}{3}$$
$$\Leftrightarrow n = 51$$

9.6. O termo geral da sequência do número de quadrados brancos é 2n - 1.

10.

10.1.

10.2. Todas as figuras da sequência têm dois losangos brancos. Logo, a opção correta é a [C].

10.3. A sequência do número de losangos pretos é:

Logo, a opção correta é a [C].

11.

11.1. Linha 5: 1 5 10 10 5 1 Linha 6: 1 6 15 20 15 6 1

11.2. Soma dos elementos da linha 0: $1 = 2^0$

Soma dos elementos da linha 1: $2 = 2^1$

Soma dos elementos da linha 2: $4 = 2^2$

Soma dos elementos da linha 3: $8 = 2^3$

Soma dos elementos da linha 4: $16 = 2^4$

11.3. $2^{10} = 1024$

12.

12.1. A sequência do número de bolas é 4, 7, 10, ... O termo geral da sequência do número de bolas é 3n + 1

Assim, para construir o 9º termo são necessárias $3 \times 9 + 1 = 28$ bolas.

12.2. O número de bolas brancas é igual à ordem da figura. Logo, como há 17 bolas brancas, a ordem da figura é 17.

O termo geral da sequência do número de bolas é 3n + 1, sendo n a ordem do termo.

Logo, o 17º termo tem $3 \times 17 + 1 = 52$ bolas, ou seja, são necessárias 52 bolas para construir o termo.

12.3. O termo geral da sequência do número de bolas é 3n + 1, sendo n a ordem do termo.

Determinemos n tal que 3n + 1 = 151.

$$3n + 1 = 151 \Leftrightarrow 3n = 151 - 1$$

 $\Leftrightarrow 3n = 150$
 $\Leftrightarrow n = 50$

Como o número de bolas brancas é igual à ordem da figura, o termo tem 50 bolas brancas e 151 - 50 = 101 bolas verdes.

13

13.1.
$$T_{20} = \frac{1}{6} \times 20 \times (20 + 1) \times (2 \times 20 + 1) =$$

= 2870

13.2.
$$T_{15} = \frac{1}{6} \times 15 \times (15 + 1) \times (2 \times 15 + 1) =$$

$$= 1240$$

$$T_{12} = \frac{1}{6} \times 12 \times (12 + 1) \times (2 \times 12 + 1) =$$

= 650

$$6 \times (T_{15} - T_{12}) = 6 \times (1240 - 650) =$$

= 3540

13.3. Como $1^2 + 2^2 + 3^2 + \dots + 33^2 + 34^2 = T_{34}$, então:

$$T_{34} = \frac{1}{6} \times 34 \times (34 + 1) \times (2 \times 34 + 1) =$$

= 13 685

13.4. a)
$$V_1 = T_2 - T_1 =$$

= $1^2 + 2^2 - 1^2 =$
= $2^2 =$

 $V_2 = T_3 - T_2 =$

$$= 1^{2} + 2^{2} + 3^{2} - (1^{2} + 2^{2}) =$$

$$= 3^{2} =$$

$$= 9$$

$$V_{3} = T_{4} - T_{3} =$$

$$= (1^{2} + 2^{2} + 3^{2} + 4^{2}) - (1^{2} + 2^{2} + 3^{2}) =$$

$$= 4^{2} =$$

= 16

$$V_4 = T_5 - T_4 =$$

= $(1^2 + 2^2 + 3^2 + 4^2 + 5^2) - (1^2 + 2^2 + 3^2 + 4^2) =$
= $5^2 =$
= 25

Logo, os quatro primeiros termos desta nova sequência são: 4, 9, 16, 25

b) Como
$$T_3 = 1^2 + 2^2 + 3^2$$
, então:

$$V_3 - V_2 = T_4 - T_3 - (T_3 - T_2) =$$

$$= 1^2 + 2^2 + 3^2 + 4^2 - (1^2 + 2^2 + 3^2) -$$

$$- (1^2 + 2^2 + 3^2) + 1^2 + 2^2 =$$

$$= 4^2 - 3^2$$

$$\begin{split} V_3 - V_1 &= T_4 - T_3 - (T_2 - T_1) = \\ &= T_4 - T_3 - T_2 + T_1 = \\ &= 1^2 + 2^2 + 3^2 + 4^2 - 1^2 - 2^2 - 3^2 - 1^2 - 2^2 + 1^2 = \\ &= 4^2 - 2^2 \\ V_1 - T_1 &= T_2 - T_1 - T_1 = \end{split}$$

$$V_1 - T_1 = T_2 - T_1 - T_1 =$$

= $1^2 + 2^2 - 1^2 - 1^2 =$
= $2^2 - 1^2$

Figura 1
$$V_3 - V_2$$

Figura 3 $V_3 - V_2$
Figura 4 $V_1 - V_1$

Funções

Rever + praticar – páginas 78 a 87

1. *A*(2, 1); *B*(1, 3); *C*(4, 0); *D*(0, -2); *E*(0, 2); *F*(-4, 0); *G*(-2, 1); *H*(-3, -3); *I*(3, -4)

3.

3.1. Conjunto de partida = {Porto, Lisboa, Vila do Conde, Coimbra}

Conjunto de chegada = {Douro, Tejo, Ave, Mondego} **3.2.** Sim, porque a cada cidade corresponde um e um só rio.

4.

- **4.1.** A imagem do objeto 1 é 2.
- **4.2.** 2 é o objeto cuja imagem é 3.

4.3.
$$D'_f = \{-1, 0, 2, 3\}$$

5.

5.1. O contradomínio da função é o conjunto das imagens dos objetos do domínio. Neste caso, o domínio é $A = \{1, 2, 3\}$, logo:

$$f(-1) = -1 + 2 = 1$$

$$f(2) = 2 + 2 = 4$$

$$f(3) = 3 + 2 = 5$$

Logo, $D'_f = \{1, 4, 5\}.$

6. A expressão de uma função linear é do tipo y = ax, logo $y = \frac{3}{2}x$ é uma expressão de uma função linear, com $a = \frac{3}{2}$.

A opção correta é a [D].

7.

7.1.
$$f(x) = -5(x-3) - (x-1) =$$

= $-5x + 15 - x + 1 =$
= $-6x + 16$

f(x) é uma função afim.

7.2.
$$g(x) = -3(x - 6) + 3x =$$

= $-3x + 18 + 3x =$
= 18

g(x) é uma função constante.

7.3.
$$h(x) = \frac{x - (3x - 3) + 2}{5} + 1 =$$

$$= \frac{x - 3x + 3 + 2}{5} + \frac{5}{5} =$$

$$= \frac{-2x + 5 + 5}{5} =$$

$$= \frac{-2x + 10}{5} =$$

$$= -\frac{2}{5}x + 2$$

h(x) é uma função afim.

7.4.
$$i(x) = -(x^2 - 2) + x^2 - 3 =$$

= $-x^2 + 2 + x^2 - 3 =$
= -1

i(x) é uma função constante.

7.5.
$$j(x) = x + 4 - \frac{1}{6}(2x + 24) =$$

$$= x + 4 - \frac{2}{6}x - \frac{24}{6} =$$

$$= x + 4 - \frac{1}{3}x - 4 =$$

$$= \frac{3}{3}x - \frac{1}{3}x =$$

$$= \frac{2}{3}x$$

j(x) é uma função linear.

8.

8.1. Sabe-se que $P(\ell) = 6 \times \ell$, sendo ℓ o comprimento do lado dos hexágonos regulares e P o seu perímetro. Como esta é uma função do tipo y = kx, $k \neq 0$, conclui-se que P é uma função de proporcionalidade direta.

8.2. a)
$$P(2) = 6 \times 2 = 12$$

b)
$$6\ell = 7.2 \Leftrightarrow \ell = \frac{7.2}{6}$$

 $\Leftrightarrow \ell = 7.2$

Logo, P(1,2) = 7,2.

8.3. O objeto é 2 e a imagem é 12.

Um hexágono cujo lado tenha 2 unidades de comprimento terá 12 unidades de perímetro.

O objeto é 1,2 e a imagem é 7,2.

Um hexágono cujo lado tenha 1,2 unidades de comprimento terá 7,2 unidades de perímetro.

8.4
$$P(\ell) = 6\ell$$

9. r: y = 5x + 2 tem declive 5.

s: y = -3x + 2 tem declive -3.

t: y = 3x + 5 tem declive 3.

u: y = -3x + 5 tem declive -3.

As retas s e u têm o mesmo declive, ou seja, são paralelas.

10. O declive da reta AB é:

$$m_{AB} = \frac{y_B - y_A}{x_B - x_A} = \frac{5 - 3}{-2 - 1} = \frac{2}{-3} = -\frac{2}{3}$$

O declive da reta BC é:

$$m_{BC} = \frac{y_C - y_B}{x_C - x_B} = \frac{7 - 5}{4 - (-2)} = \frac{2}{4 + 2} = \frac{2}{6} = \frac{1}{3}$$

11. A expressão algébrica que define estas funções é da forma y = mx + b.

No caso da função f, b = 4 porque passa no ponto (0, 4) e como é paralela à reta s tem o mesmo declive, ou seja, $\frac{3}{2}$. Assim, $f(x) = \frac{3}{2}x + 4$.

No caso da função h, b = -2 porque passa no ponto (0, -2) e como é paralela à reta s tem o mesmo declive, ou seja, $\frac{3}{2}$. Assim, $h(x) = \frac{3}{2}x - 2$.

12. • 1 operário demora 8 horas.

4 operários demoram 2 horas.

Para passar de 1 para 4, é necessário multiplicar por $\frac{4}{4}$ = 4.

Para passar de 8 para 2, é necessário multiplicar por $\frac{2}{8} = \frac{1}{4}$.

(Inversamente, para passar de 2 para 8 multiplica-se por $\frac{8}{2} = 4$).

• 1 operário demora 8 horas.

16 operários demoram $\frac{1}{2}$ hora.

Para passar de 1 para 16, é necessário multiplicar por $\frac{16}{1} = 16$.

Para passar de 8 para $\frac{1}{2}$, é necessário multiplicar por $\frac{1}{2}$ = $\frac{1}{16}$.

(Inversamente, para passar de 16 para 1 multiplica-se por $\frac{1}{16}$ e para passar de $\frac{1}{2}$ para 8 multiplica-se por 16).

• 4 operários demoram 2 horas.

16 operários demoram $\frac{1}{2}$ hora.

Para passar de 4 para 16, é necessário multiplicar por $\frac{16}{4} = 4$.

Para passar de 2 para $\frac{1}{2}$, é necessário multiplicar por $\frac{1}{2} = \frac{1}{4}$.

(Inversamente, para passar de 16 para 4 multiplica-se por $\frac{4}{16} = \frac{1}{4}$ e para passar de $\frac{1}{2}$ para 2, é necessário multiplicar por $\frac{2}{\frac{1}{2}} = 4$).

Podemos, então, concluir que a grandeza "número de operários" é inversamente proporcional à grandeza "tempo", uma vez que depende dela de tal forma que, fixadas unidades, ao multiplicar a medida da segunda por um dado número positivo, a medida da primeira fica multiplicada pelo inverso desse número.

- **13.** Uma grandeza é inversamente proporcional a outra quando dela depende de tal forma que, fixadas unidades, ao multiplicar a medida da segunda por um dado número positivo, a medida da primeira fica multiplicada pelo inverso desse número.
- **13.1.** Como as grandezas x e y são inversamente proporcionais, temos que $3 \times 5 = 15$ é a constante de proporcionalidade inversa. Assim:

$$5 \times a = 15 \Leftrightarrow a = \frac{15}{2} \Leftrightarrow a = 3$$

 $b \times 30 = 15 \Leftrightarrow b = \frac{15}{30} \Leftrightarrow b = \frac{1}{2}$

$$1 \times c = 15 \Leftrightarrow c = \frac{15}{1} \Leftrightarrow c = 15$$

$$d \times \frac{15}{2} = 15 \Leftrightarrow d = \frac{15}{\frac{15}{2}} \Leftrightarrow d = \frac{30}{15} \Leftrightarrow d = 2$$

x	3	5	$\frac{1}{2}$	1	2
у	5	3	30	15	$\frac{15}{2}$

13.2. Como as grandezas x e y são inversamente proporcionais, temos que $2 \times 20 = 40$ é a constante de proporcionalidade inversa. Assim:

$$10 \times a = 40 \Leftrightarrow a = \frac{40}{10} \Leftrightarrow a = 4$$

$$5 \times b = 40 \Leftrightarrow b = \frac{40}{5} \Leftrightarrow b = 8$$

$$8 \times c = 40 \Leftrightarrow c = \frac{40}{8} \Leftrightarrow c = 5$$

$$d \times 40 = 40 \Leftrightarrow d = \frac{40}{40} \Leftrightarrow d = 1$$

x	10	2	5	8	1
у	4	20	8	5	40

- **14.** A constante de proporcionalidade inversa é $40 \times 5 = 200$. Logo, $f(x) = \frac{200}{x}$, x > 0, sendo f a função de proporcionalidade inversa associada.
- **15.** A função representada graficamente é da forma $y = \frac{k}{x}$, com x > 0 e k = f(1). Como o ponto (2, 1) pertence ao gráfico da função, $1 = \frac{k}{2} \Leftrightarrow k = 2$. Assim, a expressão algébrica que define a função é $y = \frac{2}{x}$, x > 0.
- **16.** A função h tem uma expressão analítica da forma $y = ax^2$, $a \ne 0$, pois todos os pontos do seu gráfico estão sobre uma parábola e o ponto (0, 0) pertence ao seu gráfico.

17. Consideremos um dos pontos pertencente ao gráfico da função, que não o (0, 0). Por exemplo, o ponto (-2, 8). Assim, como a função é representada por uma expressão analítica do tipo $y = ax^2$, $a \ne 0$, temos que:

$$8 = a \times (-2)^2 \Leftrightarrow 8 = 4a \Leftrightarrow a = 2$$

Logo, a função é definida por $y = 2x^2$.

Praticar + - páginas 88 a 104

1.

- **1.1.** *A*(-3, -2); *B*(-4, 0); *C*(3, 3); *D*(-2, 3); *E*(5, -1); *F*(0, 2)
- **1.2.** *F*, pois tem abcissa nula.
- **1.3.** Ponto *C*

2.

- **2.1.** As correspondências que são funções são as correspondências *A* e *B*. Nestas correspondências, a cada elemento do conjunto de partida corresponde um e um só elemento do conjunto de chegada.
- 2.2. Correspondência A

$$D = \{1, 2, 3\}$$

$$D' = \{2, 3, 4\}$$

Conjunto de chegada = $\{2, 3, 4\}$

Correspondência B

$$D = \{1, 2, 4\}$$

$$D' = \{3\}$$

Conjunto de chegada = $\{3, 5, 6\}$

3.

3.1.
$$f(-2) = 2 \times (-2) = -4$$

3.2.
$$f(x) = 64 \Leftrightarrow 2x = 64 \Leftrightarrow x = \frac{64}{2} \Leftrightarrow x = 32$$

O objeto que, por f, tem imagem 64 é o 32.

3.3. x y = 2x0 0

4. As opções [B] e [D] não são as corretas porque não são funções de proporcionalidade direta, ou seja, do tipo y = kx.

A opção [A] não é a correta porque $f(3) = \frac{3}{4}$.

Logo, a opção correta é a [C] $(f(3) = 4 \times 3 = 12)$.

5.

5.1. A correspondência é uma função, pois a cada valor da variável "tempo de aquecimento" corresponde um e um só valor da variável "temperatura".

5.3. 18 tem como imagem 43.

5.4. 2 tem como imagem 20.

5.5. Variável dependente: temperatura

Variável independente: tempo

6.

6.1. *A*(2, 2), *B*(3, 4) e *C*(0, 1)

6.2. A reta r é paralela à reta s, pelo que r e s têm o mesmo declive ($a_r = a_s$).

$$a_r = a_s = \frac{4-2}{3-2} = 2$$

A ordenada na origem da reta r é 1 (por observação do gráfico).

Então, uma equação da reta $r \notin y = 2x + 1$.

7.

7.1. Como as retas r e s são paralelas, têm o mesmo declive. Logo, o declive da reta s é 4.

7.2. O declive da reta $s \in 4$ (por 7.1) e a ordenada na origem da reta $s \in 17$. Então, uma equação da reta $s \in y = 4x + 17$.

7.3. Sabe-se que 4 é o declive da reta *r*.

Então, y = 4x + b.

Como o ponto (0, 5) pertence à reta *r*, então:

$$5 = 4 \times 0 + b \Leftrightarrow 5 = 0 + b$$

 $\Leftrightarrow 5 = b$

Logo, uma equação da reta $r \notin y = 4x + 5$.

8. A reta y = -2x + 1 tem ordenada na origem 1. Assim, as opções [C] e [D] não são corretas. Por outro lado, a reta tem declive negativo, logo a opção correta é a [B].

9.

9.1. a) A constante de proporcionalidade é 243.

b) A constante de proporcionalidade representa, no contexto da situação, o custo de produção de cada relógio daquele modelo.

9.2. a) Custo de produção de cada relógio: 243 € Custo de venda de cada relógio: 2 × 243 € = 486 €.

18 000 € : 486 € ≈ 37

O cliente poderá comprar 37 relógios.

b) O custo dos oito relógios, para o Sr. José, é $8 \times 486 \in = 3888 \in$.

Como o Sr. José pretende obter $5432 \in$ de lucro bruto, terá de conseguir obter com as vendas

 $5432 \in +3888 \in =9320 \in$.

Assim, cada relógio deve ter um preço de venda ao público de $9320 \in : 8 = 1165 \in .$

10. Se f é uma função afim, é da forma f(x) = ax + b, sendo a e b números reais.

$$a = \frac{2-4}{0-2} = \frac{-2}{-2} = 1$$

Logo, $f(x) = 1 \times x + b$.

Como (0, 2) pertence ao gráfico de f:

$$2 = 1 \times 0 + b \Leftrightarrow b = 2$$

Então, f(x) = x + 2.

11. Como g(6) = 8, então (6, 8) pertence ao gráfico de g.

Como g(-4) = -12, então (-4, -12) pertence ao gráfico de g.

Assim, sendo g(x) = ax + b, temos:

$$a = \frac{-12 - 8}{-4 - 6} = \frac{-20}{-10} = 2$$

Logo, g(x) = 2x + b.

Como (6, 8) pertence ao gráfico de g, então:

$$8 = 2 \times 6 + b \Leftrightarrow b = -4$$

Logo, g(x) = 2x - 4. Então:

$$g(0) - 5 \times g(1) = 2 \times 0 - 4 - 5 \times (2 \times 1 - 4) =$$

$$= 0 - 4 - 5 \times (2 - 4) =$$

$$= -4 - 10 + 20 =$$

$$= 6$$

12. Duas grandezas são diretamente proporcionais se a razão entre os valores correspondentes das duas, tomados pela mesma ordem, for constante e não nula.

Logo, a opção correta é a [A].

13. Duas grandezas são inversamente proporcionais se o produto dos valores correspondentes das duas for constante e não nulo.

Logo, a opção correta é a [C].

14. Como as grandezas x e y são inversamente proporcionais, o produto dos valores correspondentes das duas é constante.

$$a \times 10 = 20 \times 5 \Leftrightarrow a = \frac{20 \times 5}{10}$$

 $\Leftrightarrow a = 10$

15.

15.1. Como *x* e *y* são inversamente proporcionais, o produto dos valores correspondentes é constante.

$$4 \times 12 = 1 \times a \Leftrightarrow a = \frac{4 \times 12}{1}$$

$$\Leftrightarrow a = 48$$

$$4 \times 12 = b \times 24 \Leftrightarrow b = \frac{4 \times 12}{24}$$

$$\Leftrightarrow b = 2$$

$$4 \times 12 = c \times 40 \Leftrightarrow c = \frac{4 \times 12}{40}$$

$$\Leftrightarrow c = \frac{48}{40}$$

$$\Leftrightarrow c = \frac{6}{5}$$

$$4 \times 12 = 8 \times d \Leftrightarrow d = \frac{4 \times 12}{8}$$

$$\Leftrightarrow d = \frac{48}{8}$$

$$\Leftrightarrow d = 6$$

15.2. Como x e y são diretamente proporcionais, o quociente entre os valores correspondentes das duas grandezas, tomados pela mesma ordem, é constante.

$$\frac{12}{4} = \frac{a}{1} \Leftrightarrow a = \frac{12 \times 1}{4}$$

$$\Leftrightarrow a = \frac{12}{4}$$

$$\Leftrightarrow a = 3$$

$$\frac{12}{4} = \frac{24}{b} \Leftrightarrow b = \frac{4 \times 12}{12}$$

$$\frac{-4}{4} = \frac{-12}{b} \Leftrightarrow b = \frac{-12}{12}$$

$$\Leftrightarrow b = 8$$

$$\frac{12}{4} = \frac{40}{c} \Leftrightarrow c = \frac{4 \times 40}{12}$$
$$\Leftrightarrow c = \frac{40}{3}$$

$$\frac{12}{4} = \frac{d}{8} \Leftrightarrow d = \frac{8 \times 12}{4}$$
$$\Leftrightarrow d = 24$$

16. Como $2 \times 3 = 6$, então 6 é a constante de proporcionalidade.

Logo, $y = \frac{6}{x}$, x > 0, e, portanto, a opção correta é a [B].

17.

17.1. As grandezas são diretamente proporcionais e a constante de proporcionalidade é $k = \frac{300}{1} = 300$. $7 \times 300 = 2100$

O automóvel percorrerá 2100 km.

17.2. 300 km — 1
$$\ell$$

750 km — $x \ell$
 $x = \frac{750 \times 1}{300} = 2,5$

São necessários 2,5 ℓ de combustível.

18. 80 elementos (100 - 20 = 80) do grupo de escuteiros vão acampar.

Número de elementos	100	80
Número de dias	8	х

Trata-se de uma situação de proporcionalidade inversa. Então:

$$100 \times 8 = 80 \times x \Leftrightarrow x = \frac{100 \times 8}{80}$$

Com a mesma quantidade de comida, os restantes elementos podem ficar acampados mais dois dias (10 - 8 = 2).

19. [A] Falsa, pois, se V – volume do cubo e a – aresta do cubo, então $V = a^3$ não é do tipo $y = \frac{a}{r}$, x > 0.

[B] Falsa, pois, se
$$y = \frac{a}{x}$$
, então $a = x \times y$, $x > 0$.

[D] Falsa, pois as grandezas "velocidade média" e "tempo" são inversamente proporcionais, logo, se se deslocar a 70 km/h, demora 4 horas.

A opção correta é a [C].

20.

20.1. A opção correta é a [C], pois, as grandezas "número de participantes" e "valor a pagar" são inversamente proporcionais.

20.2.
$$10 \times 50 \in = 500 \in$$

Se participarem 10 pessoas, então pagam de transporte, no total, $500 \in$.

Então, se cada um pagou $10 \in$, o número de pessoas é igual a $500 \in$: $10 \in$ = 50.

Foram à visita 50 pessoas.

21.1. Como as grandezas são inversamente proporcionais, a constante de proporcionalidade é $600 \times 378 = 226\,800$. Assim:

$$V \times P = 226\ 800 \Leftrightarrow V = \frac{226\ 800}{P}$$

21.2. Se $V = 700 \text{ cm}^3$, então:

$$700 = \frac{226\ 800}{P} \Leftrightarrow P = \frac{226\ 800}{P}$$
$$\Leftrightarrow P = 324$$

A um volume de 700 cm³ corresponde uma pressão de 324 mmHg.

21.3. Se P = 2268 mmHg, então:

$$V = \frac{226\ 800}{2268} \Leftrightarrow V = 100$$

A uma pressão de 2268 mmHg corresponde um volume de 100 cm³.

22. Como o "caudal" e o "tempo" são grandezas inversamente proporcionais, o produto dos valores das duas grandezas é constante. Assim:

$$10 \times 15 = a \times 20 = 30 \times b$$

$$10 \times 15 = a \times 20 \Leftrightarrow a = \frac{10 \times 15}{20}$$
$$\Leftrightarrow a = 7,5$$
$$10 \times 15 = 30 \times b \Leftrightarrow b = \frac{10 \times 15}{30}$$
$$\Leftrightarrow b = 5$$

23.

23.1. Funções f e g: a > 0, pois as parábolas têm a concavidade voltada para cima.

Função h: a < 0, pois a parábola tem a concavidade voltada para baixo.

23.2.
$$h(x) = ax^2$$

Como A(1, -2) pertence ao gráfico de h, temos:

$$-2 = a \times 1^2 \Leftrightarrow -2 = a$$

Logo, $h(x) = -2x^2$.

24. [A] Verdadeira. Como o coeficiente de x^2 é negativo (-4), a parábola tem a concavidade voltada para baixo.

[B] Falsa.

$$f(1) = -4 \times 1^2 = -4 \text{ e } -4 \neq 4.$$

Logo, o ponto de coordenadas (1, 4) não pertence ao gráfico da função.

[C] Verdadeira. A função é quadrática, pois é do tipo $y = ax^2$.

[D] Verdadeira. A parábola contém o ponto (0, 0). A opção correta é a [B].

60

25.1. A função que tem expressão analítica da forma $y = ax^2$, $a \ne 0$, é a função f, pois é a única cujo gráfico é uma parábola de vértice na origem.

25.2. O ponto de coordenadas (1, 2) pertence ao gráfico da função $y = ax^2$. Assim:

$$2 = a \times 1^2 \Leftrightarrow a = 2$$

Logo,
$$y = 2x^2$$
.

A opção correta é a [B].

26. Para determinar as coordenadas dos pontos A e B, basta resolver a equação.

$$x^2 = -x + 12 \Leftrightarrow x^2 + x - 12 = 0$$

Recorrendo à fórmula resolvente, com a = 1, b = 1 e c = -12, tem-se:

$$\Rightarrow x = \frac{-1 \pm \sqrt{1^2 - 4 \times 1 \times (-12)}}{2 \times 1}$$

$$\Rightarrow x = \frac{-1 \pm \sqrt{1 + 48}}{2}$$

$$\Rightarrow x = \frac{-1 \pm \sqrt{49}}{2}$$

$$\Rightarrow x = \frac{-1 \pm 7}{2}$$

$$\Rightarrow x = \frac{-1 - 7}{2} \lor x = \frac{-1 + 7}{2}$$

$$\Rightarrow x = -\frac{8}{2} \lor x = \frac{6}{2}$$

$$\Rightarrow x = -4 \lor x = 3$$

$$C.S. = \{-4, 3\}$$

Como a abcissa do ponto A é negativa, -4, então a ordenada é 16 ($y = (-4)^2 \Leftrightarrow y = 16$).

A abcissa do ponto *B* é positiva, 3, então $y = 3^2$ \Leftrightarrow y = 9. A ordenada é 9.

Logo, B (3, 9).

As coordenadas dos pontos A e B são A(-4, 16) e B(3, 9).

27.

27.1. Como o ponto *D*, de coordenadas (1, 2), pertence ao gráfico de f, cuja expressão é do tipo $f(x) = ax^2$, temos que:

$$2 = a \times 1^2 \Leftrightarrow a \times 1 \Leftrightarrow a = 2$$

Logo,
$$f(x) = 2x^2$$
.

27.2. O ponto A tem ordenada nula. Como A pertence ao gráfico de *g*, temos que:

$$0 = g(x) \Leftrightarrow 0 = -x + 3 \Leftrightarrow x = 3$$

Logo, as coordenadas do ponto A são (3, 0) e $\overline{CA} = 3$. Como $f(x) = 2x^2$ e o ponto B(-2, y) pertence ao gráfico de f, temos que:

$$y = 2 \times 2^2 = 2 \times 4 = 8$$

Logo, B(-2, 8).

Assim:
$$A_{[ABC]} = \frac{b \times h}{2}$$
, ou seja:

$$A_{[ABC]} = \frac{3 \times 8}{2} = 12 \text{ u.a.}$$

28.

28.1. a) (1, -1)

b) Por exemplo, (1, 1).

c) Por exemplo, (0, -2).

d) Por exemplo, (0, 2).

28.2. (1, 1)

28.3. (-1, -1)

28.4. 2 unidades

29. O gráfico [B] não é o correto porque a distância da cadeira número 1 ao solo não se mantém constante com o decorrer do tempo.

O gráfico [D] também não é o correto porque a cadeira número 1 não se encontra, seja em que momento for, a uma distância nula do solo.

O gráfico [C] também não representa a relação entre t e d porque, no instante inicial, a cadeira número 1 não se encontra à distância máximo do solo.

Logo, a opção correta é a [A].

30.

30.1. É uma função porque a cada objeto corresponde uma e uma só imagem.

30.2. Não é uma função porque a cada objeto correspondem duas imagens.

31.

31.1. Como a reta tem declive 4, então y = 4x + b. Por outro lado, sabe-se que a reta passa em (2, 6).

$$6 = 4 \times 2 + b \Leftrightarrow b = 6 - 8 \Leftrightarrow b = -2$$

Então, uma equação da reta é y = 4x - 2.

31.2. 1º processo

Sabe-se que a reta é paralela a y = -3x + 3. Como retas paralelas têm o mesmo declive, então y = -3x + b.

Por outro lado, sabe-se que a reta passa na origem do referencial, então:

$$0 = -3 \times 0 + b \Leftrightarrow b = 0$$

Logo, uma equação da reta é y = -3x.

2º processo

Como a reta passa na origem, então y = -3x.

31.3. Como a reta passa nos pontos (-1, 4) e (2, -5), o declive é igual a:

$$m = \frac{y_B - y_A}{x_B - x_A} = \frac{-5 - 4}{2 - (-1)} = \frac{-9}{3} = -3$$

Então, y = -3x + b.

Como passa em (-1, 4), temos:

$$4 = -3 \times (-1) + b \Leftrightarrow 4 = 3 + b \Leftrightarrow 1 = b$$

Então, uma equação da reta é y = -3x + 1.

32.

32.1. Como o ponto (1, -6) pertence ao gráfico de f,

$$-6 = 6 \times 1 + (s - 5) \Leftrightarrow -6 = 6 + s - 5$$
$$\Leftrightarrow -6 - 6 + 5 = s$$
$$\Leftrightarrow -7 = s$$

32.2. Como a ordenada na origem é 5, então:

$$s - 5 = 5 \Leftrightarrow s = 10$$

33.

33.1. n = 100

$$P(100) = -0.1 \times 100 + 50 = 40$$

O bilhete custa 40 €.

33.2. n = 250

$$P(250) = -0.1 \times 250 + 50 = -25 + 50 = 25$$

Se a sala encher, cada bilhete custa 25 €, pelo que a receita arrecadada com o espetáculo é 6250 € $(25 \times 250 \in = 6250 \in)$.

34. O ponto *A* de coordenadas (1, 1) pertence à reta. Logo:

$$1 = -2 \times 1 + b \Leftrightarrow 1 = -2 + b \Leftrightarrow 3 = b$$

Então, $b = 3$.

35.
$$f(x) = 1 - \frac{1}{5}(x+5) = 1 - \frac{1}{5}x - \frac{1}{5} \times 5 =$$

$$= 1 - \frac{1}{5}x - 1 =$$

$$= -\frac{1}{5}x$$

Então, $f(x) = -\frac{1}{5}x$ é uma função linear, pois é da

forma
$$y = ax$$
, $a \ne 0$, com $a \in \mathbb{R}$.

$$g(x) = \frac{3}{2} x - 3\left(\frac{x}{2} - 1\right) = \frac{3}{2} x - \frac{3}{2} x + 3 = 3$$

Então, g(x) = 3 é uma função constante, pois é da forma y = a, com $a \in \mathbb{R}$.

Logo, a afirmação é verdadeira.

36.

36.1. As retas *s* e *t* têm a mesma ordenada na origem, pois o ponto de interseção das duas retas pertence ao eixo dos yy.

36.2. Sabemos que o ponto A tem abcissa 1 e que pertence à reta r de equação y = x + 2.

Assim, a ordenada do ponto $A \notin y = 1 + 2 = 3$.

Logo, A tem coordenadas (1, 3).

A reta t contém os pontos A(1, 3) e A(4, 0).

Assim, o declive da reta
$$t \notin a = \frac{0-3}{4-1} = \frac{-3}{3} = -1$$
.

Logo, y = -1x + b.

Como D(4, 0), temos:

$$0 = -1 \times 4 + b \Leftrightarrow b = 4$$

Logo, y = -x + 4 é uma equação da reta t.

A reta s tem o mesmo declive da reta r, pois são retas paralelas, e a mesma ordenada na origem de t. Logo, s: y = x + 4.

37.

37.1. Como
$$f(5) = 10$$
, então $y = ax \Leftrightarrow 10 = a \times 5$

$$\Leftrightarrow a = \frac{10}{5} \Leftrightarrow a = 2.$$

Assim, f(x) = 2x.

37.2. Como f(5) = 10, então $y = a \Leftrightarrow a = 10$.

Assim, f(x) = 10.

37.3. Como f(5) = 10, então:

$$y = ax + b \Leftrightarrow 10 = a \times 5 + b \Leftrightarrow 10 - 5a = b$$

Se a = 1, então:

$$10 - 5 = b \Leftrightarrow b = 5$$

Logo,
$$x = x + 5$$
.

Assim, f(x) = x + 5.

38.

38.1.
$$C(n) = 60 + 30n$$

38.2. Uma expressão analítica da função que relaciona o número n de consultas num mês com o valor a pagar C, em euros, por alguém que adquira o seguro Saúde Plus, é C(n) = 20 + 35n, logo:

$$20 \in +10 \times 35 \in =20 \in +350 \in =370 \in$$

O Mário pagou 370 €.

38.3. Para que o seguro Saúde Mais compense mais que o seguro Saúde Plus, é necessário que:

$$20 + 35n > 60 + 30n$$

$$20 + 35n > 60 + 30n \Leftrightarrow 35n - 30n > 60 - 20$$
$$\Leftrightarrow 5n > 40$$
$$\Leftrightarrow n > 8$$

Será necessário marcar, pelo menos, nove consultas num mês, para que o seguro Saúde Mais compense.

39.

39.1. • c representa a função f, pois tem a maior ordenada na origem.

• a representa a função g, pois tem ordenada na origem 0.

• Logo, *b* representa a função *h*.

39.2. Como as retas são paralelas, têm o mesmo declive. Assim, h(x) = 2x + b.

Como a reta passa no ponto A de coordenadas (2, 2):

$$2 = 2 \times 2 + b \Leftrightarrow 2 = 4 + b$$

$$\Leftrightarrow b = -2$$

Logo, h(x) = 2x - 2.

39.3.
$$f(x) = 2x + 4$$

$$g(x) = 2x$$

$$h(x) = 2x - 2$$

Assim:

$$f(0) - 3 \times g(1) = 2 \times 0 + 4 - 3 \times (2 \times 1) =$$
$$= 0 + 4 - 6 =$$
$$= -2$$

40. [A] $2^4 \times 1 = 4 \times 4 = \sqrt{100} \times 1, 6 = 2 \times 8 = 16$

As grandezas A e B são inversamente proporcionais se o produto dos valores correspondentes das duas for constante e não nulo.

[B] $20 \times 200 \neq 0,1 \times 2$. As grandezas A e B não são inversamente proporcionais.

[C] $2 \times 2^8 \neq 1 \times 4$. As grandezas A e B não são inversamente proporcionais.

[D] $0.01 \times 0.1 \neq \frac{1}{20} \times 4$. As grandezas A e B não são

inversamente proporcionais.

A opção correta é a [A].

41. [A] e [C] são falsas, pois as variáveis não são inversamente proporcionais.

[B] é falsa, pois, se
$$a = 12$$
, então $\frac{12}{b} = 6 \Leftrightarrow b = \frac{12}{6}$
 $\Leftrightarrow b = 2$.

A opção correta é a [D].

$$\left(\frac{a}{3} = 6 \Leftrightarrow a = 18\right)$$

42. A função representada é uma função quadrática, logo é da forma $y = ax^2$, $a \ne 0$. Como o ponto A(2, 8)pertence ao seu gráfico, temos:

$$8 = a \times 2^2 \Leftrightarrow a = \frac{8}{4} \Leftrightarrow a = 2$$

Logo, a função é definida pela expressão $y = 2x^2$.

42.1. Como o ponto B(1, k) pertence ao gráfico da função, temos:

$$k = 2 \times 1^2 \Leftrightarrow k = 2 \times 1 \Leftrightarrow k = 2$$

A ordenada do ponto $B \in 2$.

42.2. Como o ponto C(w, 4) pertence ao gráfico da função, temos:

$$4 = 2 \times w^2 \Leftrightarrow w^2 = \frac{4}{2} \Leftrightarrow w^2 = 2 \Leftrightarrow w = \pm \sqrt{2}$$

Por observação da figura, sabe-se que C tem abcissa negativa. Logo, $w = -\sqrt{2}$.

A abcissa do ponto $C \in -\sqrt{2}$.

42.3. Se o gráfico é simétrico ao gráfico de f, em relação ao eixo das abcissas, então a = -2.

Logo, a opção correta é a [D].

43.

43.1. Como o retângulo tem 10 unidades de perímetro e \overline{OC} = 1, temos:

Logo, a área do retângulo é $1 \times 4 = 4$ u.a.

43.2. Da alínea anterior, resulta que A(1, 4).

Sabe-se que numa função de proporcionalidade inversa o produto da abcissa pela ordenada de qualquer ponto do seu gráfico é constante e igual à constante de proporcionalidade inversa.

Assim, como 1 × 4 = 4, temos que $g(x) = \frac{4}{x}$, x > 0.

43.3.
$$g(2) = \frac{4}{2} = 2$$

A ordenada do ponto do gráfico de *g* que tem abcissa 2 é 2.

43.4.
$$g\left(\frac{1}{2}\right) = \frac{4}{\frac{1}{2}} = 8$$

Logo, m = 8.

44.

44.1. Como tem um desconto de 70%, o André vai pagar 30% do valor do bilhete, ou seja,

$$0.3 \times 20 \in -6 \in$$
.

44.2. A opção correta é a [B].

44.3. Seja *c* o preço do bilhete. Para que compense tornar-se sócio e comprar o bilhete com desconto, 40 + 0,3*c* terá de ser inferior ao preço do bilhete, *c*. Assim:

$$40 + 0.3c < c \Leftrightarrow 0.3c - c < -40$$

$$\Leftrightarrow -0.7c < -40$$

$$\Leftrightarrow 0.7c > 40$$

$$\Leftrightarrow \frac{7}{10}c > 40$$

$$\Leftrightarrow 7c > 400$$

$$\Leftrightarrow c > \frac{400}{7}$$

Como $\frac{400}{7} \approx 57$, o bilhete terá de custar, no mínimo, $58 \in$.

45. Para reduzir em 20 dias o tempo de construção previsto, a escola deveria ser construída em 60 dias (80 - 20 = 60).

Número de operários	60	а
Número de dias	80	60

Como as grandezas são inversamente proporcionais, o produto dos valores correspondentes das duas é constante.

Assim:

$$60 \times 80 = a \times 60 \Leftrightarrow a = \frac{60 \times 80}{60}$$
$$\Leftrightarrow a = 80$$

Para construir a escola em 60 dias, são necessários 80 trabalhadores, ou seja, mais 20 operários do que o inicialmente previsto.

46.

46.1. g é uma função de proporcionalidade direta. Logo, é da forma $y = k \times x$.

Como o ponto *B*(6, 3) pertence ao gráfico de *g*, temos:

$$3 = k \times 6 \Leftrightarrow k = \frac{3}{6}$$
$$\Leftrightarrow k = \frac{1}{2}$$

Logo,
$$g(x) = \frac{1}{2} \times x$$
.

Assim,
$$g(4) = \frac{1}{2} \times 4 = 2$$
.

46.2. • *f* é uma função de proporcionalidade inversa.

Logo, é da forma
$$y = \frac{k}{x}$$
, $x > 0$.

• O ponto A pertence ao gráfico de g. Logo, A(2, g(2)).

Como
$$g(2) = \frac{1}{2} \times 2 = 1$$
, então $A(2, 1)$.

• Como *A* também pertence ao gráfico de *f*, temos:

$$1 = \frac{k}{2} \Leftrightarrow k = 2 \times 1 = 2$$

Então,
$$f(x) = \frac{2}{x}, x > 0.$$

46.3.
$$f(6) = \frac{2}{6} = \frac{1}{3}$$

Logo,
$$C\left(6, \frac{1}{3}\right)$$
.

Então:

$$A_{[ABC]} = \frac{\overline{CB} \times \overline{AD}}{2}$$

$$A_{[ABC]} = \frac{\left(3 - \frac{1}{3}\right) \times 4}{2} = \frac{8}{3} \times 2 = \frac{16}{3}$$

A área do triângulo [ABC] é $\frac{16}{3}$ u.a.

47

47.1. k > 0, pois a parábola tem a concavidade voltada para cima.

47.2. O ponto A(-2, 2) pertence ao gráfico da função f, definida por $y = k \times x^2$. Logo:

$$2 = k \times (-2)^2 \Leftrightarrow 2 = k \times 4$$

$$\Leftrightarrow k = \frac{1}{2}$$

47.3. Da alínea anterior, $f(x) = \frac{1}{2} \times x^2$. Assim:

$$f(4) - 2 \times f(0) = \frac{1}{2} \times 4^2 - 2 \times \frac{1}{2} \times 0^2 =$$

$$= \frac{1}{2} \times 16 - 0 =$$

$$= 8$$

47.4. A função g é da forma $y = \frac{m}{r}$, x > 0.

Sabe-se que o ponto A(-2, 2) pertence ao gráfico da função g. Assim, $2 = \frac{m}{-2} \Leftrightarrow m = -4$.

Temos, então, que $g(x) = -\frac{4}{x}$, x > 0.

Como o ponto B(-4, y) pertence ao gráfico de g,

temos,
$$y = \frac{-4}{-4} \Leftrightarrow y = 1$$
.

Então, fica provado que a ordenada do ponto B é 1. **47.5.** C é a imagem de A por meio de uma reflexão do eixo Oy. Assim, C(2, 2).

Logo:

$$A_{[AOC]} = \frac{\overline{AC} \times \overline{OD}}{2}$$

$$A_{[AOC]} = \frac{4 \times 2}{2} = 4$$

A área do triângulo [AOC] é 4 u.a.

48.

48.1. a) 1° processo

Como g é uma função afim, é do tipo y = ax + b. Como A(1, 5) e B(2, 4) pertencem ao seu gráfico, temos:

$$\begin{cases} 5 = 1 \times a + b \\ 4 = 2 \times a + b \end{cases} \Leftrightarrow \begin{cases} a + b = 5 \\ 2a + b = 4 \end{cases} \Leftrightarrow \begin{cases} a = 5 - b \\ 2(5 - b) + b = 4 \end{cases}$$

$$\Leftrightarrow \begin{cases} \frac{1}{10-2b+b=4} & \Leftrightarrow \begin{cases} \frac{1}{-2b+b=4-10} \end{cases}$$

$$\Leftrightarrow \begin{cases} -b = -6 \end{cases} \Leftrightarrow \begin{cases} a = 5 - 6 \\ b = 6 \end{cases} \Leftrightarrow \begin{cases} a = -1 \\ b = 6 \end{cases}$$

$$(a,\,b)=(-1,\,6)$$

Então,
$$g(x) = -x + 6$$
.

2º processo

O declive é igual a:

$$m = \frac{y_B - y_A}{x_B - x_A} = \frac{4 - 5}{2 - 1} = -\frac{1}{1} = -1$$

Logo, y = -x + b. Como, por exemplo, o ponto B pertence ao gráfico da função:

$$4 = -2 + b \Leftrightarrow b = 4 + 2 \Leftrightarrow b = 6$$

Então,
$$g(x) = -x + 6$$
.

b) Como a função f é uma função quadrática, com vértice na origem do referencial, então $f(x) = ax^2$, $a \ne 0$. Sendo B(2, 4) um ponto do seu gráfico, então:

$$4 = a \times 2^2 \Leftrightarrow 4a = 4 \Leftrightarrow a = 1$$

Logo,
$$f(x) = x^2$$
.

c) Se o gráfico cartesiano é simétrico do gráfico de f, relativamente ao eixo das abcissas, o coeficiente de x^2 é simétrico de 1, ou seja, -1. Assim, $y = -x^2$.

48.2.
$$f(x) = 25$$

 $x^2 = 25 \Leftrightarrow x = \pm \sqrt{25} \Leftrightarrow x = -5 \lor x = 5$
C.S. = {-5, 5}

R.: Os objetos são -5 e 5.

48.3. Como o ponto c é o ponto de interseção dos gráficos das duas funções, basta igualar as funções e determinar o valor de x, ou seja:

$$x^2 = -x + 6 \Leftrightarrow x^2 + x - 6 = 0$$

Recorrendo à fórmula resolvente, com a = 1, b = 1 e c = -6, tem-se:

$$\Rightarrow x = \frac{-1 \pm \sqrt{1 - 4 \times (-6)}}{2 \times 1}$$

$$\Rightarrow x = \frac{-1 \pm \sqrt{1 + 24}}{2}$$

$$\Rightarrow x = \frac{-1 \pm \sqrt{25}}{2}$$

$$\Rightarrow x = \frac{-1 \pm 5}{2}$$

$$\Rightarrow x = \frac{-1 - 5}{2} \lor x = \frac{-1 + 5}{2}$$

$$\Rightarrow x = -\frac{6}{2} \lor x = \frac{4}{2}$$

$$\Rightarrow x = -3 \lor x = 2$$

C.S. =
$$\{-3, 2\}$$

abcissa do ponto B

Por observação do gráfico, podemos verificar que o ponto *C* tem abcissa negativa.

Se
$$x = -3$$
, então $g(-3) = -(-3) + 6 = 3 + 6 = 9$.
Assim, $C(-3, 9)$.

49.

49.2.
$$6m - 8 = 4 \Leftrightarrow 6m = 12$$
 $\Leftrightarrow m = 2$

49.3.
$$A = \frac{b \times h}{2}$$

$$A = \frac{\overline{AB} \times \overline{DC}}{2}$$

$$A = \frac{4 \times 3}{2} = \frac{12}{2} = 6 \text{ u.a.}$$

49.4. Como $\overline{AB} = 4$, $\overline{BD} = 3$ e $\overline{AD} > 4$ ([AD] é o lado que se opõe ao ângulo de maior amplitude, logo é o lado com maior comprimento), conclui-se que o triângulo é escaleno. Como $A\widehat{BD} = 90^{\circ}$, então o triângulo é retângulo.

49.6. Por exemplo, (1, 2). Não é o único, os pontos (2, 2), (3, 2), ..., ou seja, todos os pontos que tenham ordenada 2, pois pertencem à mediatriz de [*AB*].

50.

50.1.
$$[2 \times g(0) - g(1)]^3 =$$

$$= \left[2 \times \left(\frac{2 \times 0}{3} - 1\right) - \left(\frac{2 \times 1}{3} - 1\right)\right]^3 =$$

$$= \left(2 \times (-1) - \frac{2}{3} + 1\right)^3 =$$

$$= \left(-1 - \frac{2}{3}\right)^3 =$$

$$= \left(-\frac{5}{3}\right)^3 =$$

$$= -\frac{125}{27}$$

50.2. O inverso de $\frac{1}{7}$ é 7.

$$\frac{2x}{3} - 1 = 7 \Leftrightarrow \frac{2x}{3} = 8$$
$$\Leftrightarrow 2x = 24$$
$$\Leftrightarrow x = \frac{24}{2}$$
$$\Leftrightarrow x = 12$$

Como 12 não pertence ao domínio de *g*, 7 não pertence ao contradomínio de *g*.

51. A função g é representada por uma reta com declive 1 e ordenada na origem -2.

Como m > 0, a função g é crescente, logo a opção [C] fica excluída.

Como a ordenada na origem é -2, a opção correta é a [A].

52. 52.1.
$$\frac{8}{2} = 4$$

O polígono regular é um quadrado.

52.2. O ponto (10, 30) não pertence ao gráfico da função f, pois $\frac{30}{10} = 3$ e 3 \neq 4.

52.3. Se
$$\frac{8}{2}$$
 = 4, então $f(x) = 4x$.

52.4.
$$f(30) = 4 \times 30 = 120$$

Significa que o perímetro de um quadrado de lado 30 é 120.

52.5. Como f(x) = 4x, temos:

$$4x = 48 \Leftrightarrow x = \frac{48}{4} = 12$$

O objeto é 12.

53. Os gráficos 1 e 5 são hipérboles. Logo, são representações de funções de proporcionalidade inversa, ou seja, as funções são de forma $y = \frac{k}{x}$, x > 0.

No gráfico 1, os pontos de abcissa positiva têm ordenada negativa, ou seja, k < 0. Logo, gráfico 1:

$$i(x) = -\frac{3}{x}$$
, $x > 0$ e gráfico 5: $h(x) = \frac{3}{x}$, $x > 0$.

Os gráficos 2 e 6 são parábolas com a concavidade voltada para baixo, ou seja, as funções são da forma $y = ax^2$, com a < 0. Sabemos que quanto maior é o valor absoluto de a, menor é a abertura da parábola. Logo, gráfico 2: $j(x) = -3x^2$ e gráfico 6: $k(x) = -\frac{1}{2}x^2$.

Os gráficos 3 e 4 são parábolas com a concavidade voltada para cima. Tendo em conta o seu crescimento, concluímos que gráfico 3: $g(x) = 3x^2$ e gráfico 4: $\frac{1}{2}x^2$.

54.

54.1. Na 2ª modalidade:

Número de quilómetros percorridos	1	2	3	()
Preço a pagar (em euros)	104	108	112	()

$$\frac{104}{1} = 104$$

$$\frac{108}{2} = 54$$

$$\frac{112}{3}\approx 37,3$$

(

Na 2ª modalidade, o preço a pagar pelo cliente não é diretamente proporcional ao número de quilómetros percorridos porque, como mostram os cálculos anteriores, a razão entre os valores correspondentes das duas grandezas, tomados pela mesma ordem, não é constante.

54.2. A opção correta é a [D], pois são $100 \in$ fixos e 4 € por cada quilómetro percorrido.

54.3. 1^a modalidade: $30 \times 5 \in = 150 \in$

2.ª modalidade:
$$100 \in +4 \times 30 \in =100 \in +120 \in =$$

= 220 €

Como o restaurante fica a 30 km, a 1ª modalidade é financeiramente mais compensatória.

54.4. Seja *n* o número de quilómetros percorridos.

Preço a pagar na 1.ª modalidade: $5 \times n$

Preço a pagar na 2^a modalidade: $100 + 4 \times n$

Para que a 2ª modalidade compense, é necessário que o custo seja inferior ao custo da 1ª.

$$100 + 4n < 5n \Leftrightarrow 4n - 5n < -100$$

$$\Leftrightarrow n > 100$$

Ou seja, o número mínimo de quilómetros a partir do qual deixa de compensar financeiramente a 1ª modalidade é 101.

55.

55.1.
$$D_g = \mathbb{N}$$

55.2.

s	1	2	С	5	10
g(s)	а	b	120°	d	36°

Como as grandezas "número de setores" e "amplitude de cada setor" são inversamente proporcionais, temos que:

$$10 \times 36^{\circ} = 1 \times a \Leftrightarrow a = 360^{\circ}$$

$$10 \times 36^{\circ} = 2 \times b \Leftrightarrow b = \frac{10 \times 36^{\circ}}{2}$$

$$\Leftrightarrow b = 180^{\circ}$$

$$10 \times 36^{\circ} = c \times 120^{\circ} \Leftrightarrow c = \frac{10 \times 36^{\circ}}{120^{\circ}}$$

$$\Leftrightarrow c = \frac{360^{\circ}}{120^{\circ}}$$

$$\Leftrightarrow c = 3$$

$$10 \times 36^{\circ} = 5 \times d \Leftrightarrow d = \frac{10 \times 36^{\circ}}{5}$$

$$\Leftrightarrow d = 72^{\circ}$$

Logo:

s	1	2	3	5	10
g(s)	360°	180°	120°	72°	36°

55.3. A constante é 360° e representa a amplitude do setor circular que corresponde ao círculo.

55.4. Como $k = 10 \times 36 = 360$, então $g(s) = \frac{360}{s}$. Logo, a opção correta é a [D].

56.
$$f(x) = ax^2 - 2x^2 = x^2 \times (a-2)$$

Como a parábola que representa graficamente a função tem a concavidade voltada para cima, a - 2 > 0. Logo, a opção correta é a [A].

57.

57.1. O ponto P tem a mesma abcissa do ponto A e a mesma ordenada do ponto C. Logo, P(2, y).

Como *P* pertence ao gráfico de *f*, temos:

$$y = \frac{12}{2} \Leftrightarrow y = 6$$

Logo, a ordenada do ponto P é 6.

Consequentemente, a ordenada de C também é 6. Logo, C(0, 6).

57.2. Consideremos que o ponto Q tem coordenadas (a, b). Sabe-se que numa função de proporcionalidade inversa, o produto da abcissa pela ordenada de qualquer ponto do gráfico é constante e igual à constante de proporcionalidade inversa.

Assim, como P(2, 6) pertence ao gráfico de f, a constante de proporcionalidade inversa é $2 \times 6 = 12$.

Como o triângulo [OBQ] é retângulo em B, temos:

$$A_{[OBQ]} = \frac{\overline{OB} \times \overline{BQ}}{2} = \frac{a \times b}{2}$$

Como Q(a, b) pertence ao gráfico de f, temos que $a \times b = 12$.

Logo,
$$A_{[OBQ]} = \frac{12}{2} = 6$$
.

A área do triângulo [OBQ] é 6 u.a.

58.

58.1. a > 0, pois a parábola que representa graficamente a função f tem a concavidade voltada para cima.

58.2. Como \overline{AB} = 4, a abcissa do ponto B é 2. Logo, B(2, y). Como B pertence ao gráfico de g, y = g(2), ou seja:

$$y = -2 \times 2^2 \Leftrightarrow y = -2 \times 4 \Leftrightarrow y = -8$$

Logo, $B(2, -8)$.

58.3. • Como a área do retângulo é 96, temos que: $\overline{EB} \times \overline{AB} = 96 \Leftrightarrow \overline{EB} = \frac{96}{\overline{AB}}$, ou seja:

$$\overline{EB} = \frac{96}{4} \Leftrightarrow \overline{EB} = 24$$

• Como a ordenada do ponto $B \in -8$, podemos concluir que a ordenada do ponto $E \in 24 - 8 = 16$.

• Como os pontos *E* e *B* têm a mesma abcissa, pois [*EB*] é paralelo ao eixo *Oy*, temos que a abcissa de *E* é 2. Logo, *E*(2, 16).

• O ponto *E*(2, 16) pertence ao gráfico da função *f*. Assim:

$$16 = a \times 2^2 \Leftrightarrow a = \frac{16}{4} \Leftrightarrow a = 4$$

Podemos, então, concluir que a = 4.

59

59.1.
$$f(x) = 2(x - 5) + \frac{x}{3} = \frac{2x}{1} - 10 + \frac{x}{3} = \frac{6x}{3} - 10 + \frac{x}{3} = \frac{7}{3}x - 10$$

f(x) é uma função afim, pois é do tipo y = ax + b.

59.2.
$$f(x) = 2(x^2 - x) - 10(x + x^2) + 8x^2 =$$

= $2x^2 - 2x - 10x - 10x^2 + 8x^2 =$
= $-12x$

f(x) é uma função linear, pois é do tipo y = ax.

59.3.
$$f(x) = 3 + \frac{2x}{3} + 3(x - 1) =$$

$$= 3 + \frac{2x}{3} + \frac{3x}{1} - 3 =$$

$$= \frac{2x}{3} + \frac{9x}{3} =$$

$$= \frac{11}{3}x$$

f(x) é uma função linear, pois é do tipo y = ax.

59.4.
$$f(x) = \frac{2(x-5)}{3} - \left(\frac{x}{3} - 3\right) - \frac{x}{3} =$$

$$= \frac{2x-10}{3} - \frac{x}{3} + 3 - \frac{x}{3} =$$

$$= \frac{2x}{3} - \frac{10}{3} - \frac{2x}{3} + \frac{3}{1} =$$

$$= -\frac{1}{3}$$

f(x) é uma função constante, pois é do tipo y = b.

60.
$$y = x^2$$
 e $y = 2(x + 1)^2 - 7$

Para determinar a abcissa do ponto de interseção das duas parábolas, basta resolver a equação.

$$x^2 = 2(x+1)^2 - 7$$

$$\Leftrightarrow x^2 = 2(x^2 + 2x + 1) - 7$$

$$\Leftrightarrow x^2 = 2x^2 + 4x + 2 - 7$$

$$\Leftrightarrow x^2 - 2x^2 - 4x - 2 + 7 = 0$$

$$\Leftrightarrow -x^2 - 4x + 5 = 0$$

Recorrendo à fórmula resolvente, com a = -1, b = -4 e c = 5, tem-se:

$$\Leftrightarrow x = \frac{-(-4) \pm \sqrt{(-4)^2 - 4 \times (-1) \times 5}}{2 \times (-1)}$$

$$\Leftrightarrow x = \frac{4 \pm \sqrt{16 + 20}}{-2}$$

$$\Leftrightarrow x = \frac{4 \pm \sqrt{36}}{-2}$$

$$\Leftrightarrow x = \frac{4 \pm 6}{-2}$$

$$\Leftrightarrow x = \frac{-2}{-2} \lor x = \frac{10}{-2}$$

$$\Leftrightarrow x = 1 \lor x = -5$$

$$C.S. = \{-5, 1\}$$

A abcissa do ponto A é positiva, logo é 1, e a ordenada é igual a:

$$y = 1^2 \Leftrightarrow y = 1$$

As coordenadas do ponto A são (1, 1).

61.

61.1. Como a abcissa de *A* é *x* e pertence ao gráfico da função $y = 2x^2$, então $A(x, 2x^2)$.

61.2. Como os pontos A e B têm a mesma ordenada, então B(0, 18). Como A pertence ao gráfico da função $y = 2x^2$, então:

$$2x^2 = 18 \Leftrightarrow x^2 = 9 \Leftrightarrow x = \pm 3$$

$$\Leftrightarrow x = 3 \ (x > 0)$$

Logo, A(3, 18).

$$A_{[OAB]} = \frac{b \times h}{2}$$

$$A_{[OAB]} = \frac{3 \times 18}{2} = 27 \text{ u.a.}$$

61.3. Como *B* tem a mesma ordenada que *A*, então $B(0, 2x^2)$.

Logo,
$$A_{[OAB]} = \frac{x \times 2x^2}{2} = x^3$$
.

62.1. A área é igual a $\frac{b \times h}{2}$. Então:

$$\frac{b \times h}{2} = 18 \Leftrightarrow b \times h = 36 \Leftrightarrow h = \frac{36}{b}$$

62.2. A função *f* é de proporcionalidade inversa, uma vez que o produto da abcissa pela ordenada de qualquer ponto do gráfico é constante e igual à constante de proporcionalidade inversa (36).

62.3.

63.

63.1. Os pontos *A* e *B* são os pontos de interseção dos dois gráficos, então:

$$-x^2 + 2 = -x \Leftrightarrow -x^2 + x + 2 = 0$$

Recorrendo à fórmula resolvente, com a = -1, b = 1e c = 2, tem-se que:

$$\Leftrightarrow x = \frac{-1 \pm \sqrt{1^2 - 4 \times (-1) \times 2}}{2 \times (-1)}$$

$$\Leftrightarrow x = \frac{-1 \pm \sqrt{1+8}}{-2}$$

$$\Leftrightarrow x = \frac{-1 \pm 3}{-2}$$

$$\Leftrightarrow x = -1 \lor x = 2$$

 $C.S. = \{-1, 2\}$

As abcissas dos pontos A e B são, respetivamente, -1 e 2.

Para determinar as ordenadas, basta substituir o valor de cada uma das abcissas numa das equações, $y_A = -(-1) = 1$, a ordenada de A é 1.

$$y_B = -2$$
, a ordenada de $B \in -2$.

Logo,
$$A(-1, 1) \in B(2, -2)$$
.

63.2. Os pontos C e D têm ordenada nula e pertencem ao gráfico de função f.

Basta substituir y por zero e determinar as abcissas de C e de D.

$$y = -x^2 + 2 \Leftrightarrow -x^2 + 2 = 0 \Leftrightarrow -x^2 = -2$$

$$\Leftrightarrow x = \pm \sqrt{2}$$

$$\Rightarrow x = -\sqrt{2} \lor x = \sqrt{2}$$

C.S. =
$$\{-\sqrt{2}, \sqrt{2}\}$$

As abcissas dos pontos C e D são, respetivamente, $-\sqrt{2} \text{ e } \sqrt{2}$.

$$C(-\sqrt{2}, 0), D(\sqrt{2}, 0) \in \overline{CD} = 2\sqrt{2}$$

$$A_{[BCD]} = \frac{b \times h}{2}$$

$$A_{[BCD]} = \frac{2 \times \sqrt{2} \times 2}{2} = 2\sqrt{2}$$

A área do triângulo [BCD] é $2\sqrt{2}$ u.a.