DESIGN A PD controller for a given rlc circuit to IMPROVE it's SETTLING TIME.

Team Member:

Name

- 1. Shah Jafri Rahman Khan
- 2. Fariha Rahim Rumi

ID

021161011 021161015

Introduction:

We can reduce the settling time by using A PD controller.

We have reduced the settling time of the RLC circuit by 1/2.

What is controller

 A controller is a device that generates an output signal based on the input signal it receives

• The input signal is actually an error signal ,which is the difference between the measured variable and the desired value

What Is PD Controller?

- A proportional derivative controller (PD controller), as its name indicates, is a controller with a "proportional action" and a "derivative action".
- The proportional action is an action proportional to the variable controlled or its error (difference between the desired value and the actual value of the controlled variable); this basically means that a gain multiplies either the variable or its error compared to the desired value.
- The derivative action is an action that implies the derivative of the controlled variable. This usually means that the variable is derived, then multiplied by a gain

Given RLC Circuit:

Procedure:

- Using SISO Design tool, create the design for a unity negative feedback system with G(s) and plot the root locus.
- 2. Draw the zeta line for required overshoot. Select the closed-loop pole at the intersection of shadowed region and the root locus.
- 3. Calculate the imaginary part, ωd and real part, σd of the compensated dominant pole from the two-third value of uncompensated peak time and half of uncompensated settling time.
- 4. Find the Zc by calculating the pole angle.
- 5. Put the value of Zc in pole/zero.

Uncompensated In Proteus:

Uncompensated In MATLAB:

Uncompensated-Compensated(Calculation):

$$G_p = \frac{\frac{1}{LC}}{s^2 + \frac{R}{L}s + \frac{1}{LC}}$$

Same Over Shoot $Maintain\ Pick\ Time rac{T_p}{2}$

$$\theta_1 = 113.51^0$$
 $\theta_2 = 90.83^0$
 $\theta_{zc} = 24.4^0$
 $z_c = 65670.15$

Compensated In MATLAB:

Compensated In Matlab:

Design pd:

- PD=K(S+Zc) = R_2 C(s+1/ R_1 C)
- K=4.66*10^-6 (from matlab)
- Zc= 65670.15 (from hand calculation)
- 1/R1*c=Z c=65670.15
- R1=1/(C*Zc) =152.2ohm ohm

Let, C=0.1uF

R2*C=4.66*10^-

R2=46.25

Implement Circuit In Proteus:

