차원의 저주란,

- *데이터 학습을 위해 차원이 증가하면서 학습데이터 수가 차원의 수보다 적어져 성능이 저하되는 현상.
- *차원이 증가할 수록 개별 차원 내 학습할 데이터 수가 적어지는(sparse) 현상 발생

*해결책: 차원을 줄이거나(축소시키거나) 데이터를 많이 획득

즉, 간단히 말해서

차원이 증가함에 따라(=변수의 수 증가) 모델의 성능이 안 좋아지는 현상을 의미합니다.

무조건 변수의 수가 증가한다고 해서 차원의 저주 문제가 있는 것이 아니라, <mark>관측치 수보다 변수의 수가 많아지면</mark> 발생합니다. (예를들어, 관측치 개수는 200개인데, 변수는 7000개)

왜 이런 현상이 발생할까요?

Made by: ta-daa

Dimensionality Reduction

Dimensionality Reduction

Housing Data

5 dimensions 2 dimensions

Size

Number of rooms

Number of bathrooms

Schools around

Crime rate

Size feature

Location feature

Mean

Variance

Variance =
$$\frac{1}{3}^{0} = \frac{1}{3}^{0}$$
 = 2/3

Mean

Variance =
$$\frac{2^2 + 1^2 + 3^2}{3} = 14/3$$

Variance?

Variance?

x-variance =
$$\frac{2^2 + 0^2 + 2^2}{3}$$
 = 8/3

y-variance =
$$\frac{1^2+0^2+1^2}{3}$$
 = 2/3

Covariance

covariance =
$$\frac{(-2) + 0 + (-2)}{3} = -4/3$$

covariance =
$$\frac{2+0+2}{3} = 4/3$$

Covariance

covariance =
$$\frac{-2+0+2+0+0+2+0+-2}{9} = 0$$

Covariance

negative covariance

covariance zero (or very small)

positive covariance

Covariance matrix

Linear Transformations

Linear Transformations

Linear Transformations

Eigenvalues

$$\begin{pmatrix} 9 & 4 \\ 4 & 3 \end{pmatrix}$$

Characteristic Polynomial

$$\begin{vmatrix} x-9 & -4 \\ -4 & x-3 \end{vmatrix} = (x-9)(x-3) - (-4)(-4) = x^2 - 12x + 11$$
$$= (x-11)(x-1)$$

Eigenvalues 11 and 1

Eigenvalues

$$\begin{pmatrix} 9 & 4 \\ 4 & 3 \end{pmatrix}$$

Characteristic Polynomial

$$\begin{vmatrix} x-9 & -4 \\ -4 & x-3 \end{vmatrix} = (x-9)(x-3) - (-4)(-4) = x^2 - 12x + 11$$
$$= (x-11)(x-1)$$

Eigenvalues 11 and 1

Eigenvalue

고유값

자료행렬을 요약하는 수치로서, 특성치라고도 한다. 각 고유값은 그에 대응하는 고유벡터가 있다. A는 $m \times n$ 행렬이고, x는 R^n 의 영벡터가 아닌 벡터이다. 스칼라 λ 에 대하여 Ax가 x의 스칼라 λ 배, 즉 $Ax = \lambda x$ 일 때, λ 를 A의 고유값(eigenvalue of A)이라 하고, x $(x \neq 0)$ 를 λ 에 대응하는 A의 고유 벡터(eigenvector of A)라 한다.

예를 들어, 벡터 $\mathbf{x} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ 는 $\mathbf{A}\mathbf{x} = \begin{pmatrix} 3 & 0 \\ 8 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 3 \\ 6 \end{pmatrix} = 3 \begin{pmatrix} 1 \\ 2 \end{pmatrix} = 3\mathbf{x}$ 이므로 고유치 $\lambda = 3$ 에 대응하는 행렬 $\mathbf{A} = \begin{pmatrix} 3 & 0 \\ 8 & -1 \end{pmatrix}$ 의 고유 백터이다. A가 실수의 $\mathbf{n} \times \mathbf{n}$ 대칭행렬이면 A의 고유값은 실수이다. A는 $\mathbf{n} \times \mathbf{n}$ 행렬일 때 A의 고유값이 λ 이기 위한 필요충분조건은 $\det(\mathbf{A} - \lambda \mathbf{I}) = 0$ 이다. $\det(\mathbf{A} - \lambda \mathbf{I})$ 는 \mathbf{n} 차 다항식이 된다. 이때 $\det(\mathbf{A} - \lambda \mathbf{I}) = 0$ 을 행렬 A의 특성방 정식(characteristic equation of A)라고 한다.

n×n 행렬 A가 서로 다른 고유값을 가지면 A는 대각화가 가능한 행렬이다. 대각행렬과 닮은 행렬을 "대각화 가능 행렬(diagonalizable matrix)"이라 한다. n×n 행렬 A가 대각행렬 D와 닮았을 때 A는 '대각화 가능하다(be diagonalizable)'라고 하고 A를 대각화 가능 행렬이라 한다. n×n 행렬 A가 대각화 가능 행렬이기 위한 필요충분 조건은 A가 n 개의 일차독립인 고유벡터를 갖는 것이다.

행렬 A의 서로 다른 고유값 λ_1 , λ_2 , …, λ_m 에 대응하는 고유벡터가 $X_1, X_2, …, X_m$ 일 때 $X_1, X_2, …, X_m$ 는 일차독립이다. SVD(Singular Value Decomposition, 특이값 분해), Pseudo-Inverse, 선형연립방정식의 풀이, PCA(Principal component analysis, 주성분분석) 등의 주요 응용이 eigenvalue, eigenvector를 그 밑바탕에 깔고 있다.

Eigenvalues

$$\begin{pmatrix} 9 & 4 \\ 4 & 3 \end{pmatrix}$$

Characteristic Polynomial

$$\begin{vmatrix} x-9 & -4 \\ -4 & x-3 \end{vmatrix} = (x-9)(x-3) - (-4)(-4) = x^2 - 12x + 11$$
$$= (x-11)(x-1)$$

Eigenvalues 11 and 1

