EE2331 Data Structures and Algorithms

Sorting

Given a List in Random Order

How to find the largest number?

How to find the smallest number?

■ How to determine if an arbitrary number exists in the list?

Given a List in Ascending Order

- How to determine the largest / smallest / any arbitrary number now?
 - Remember binary search?

- The numbers can be also in descending order
- Or at least in some proper order (such as BST and heap)

Sorting

- To rearrange the order (ascending or descending) of data for ease of searching
- In this notes, discuss the various ways to sort a large amount of data and compare them by time/space efficiency.
 - $\square O(n)$, $O(n\log n)$, $O(n^2)$...
- Efficiency of a sorting method is usually measured by the number of comparisons and data movements required.

Outline

- Terminologies
- 6 sorting algorithms
 - Bubble Sort, Insertion Sort, Merge Sort
 - Heapsort, Quicksort, Radix Sort
- Sorting using Queues
- Sorting using Stacks
- Indirect Sorting

Terminologies

Stable vs. Unstable Internal vs. External

Stable & Unstable Sort

- Sequence before sorting: 5, 3, 8[#], 6, 8^{*}
- Sequence after sorting: 3, 5, 6, 8[#], 8^{*}
 - Stable sort
- Sequence after sorting: 3, 5, 6, 8*, 8#
 - Unstable sort

Stable: if it always leaves elements with equal keys in their original order

Internal & External Sort

- Internal sort
 - Small data volume
 - Process in main memory
- External sort
 - Large amount of data
 - Need external or secondary storage in processing (e.g. disk storage)

Internal Sorting Algorithms

- In this course, we shall only discuss internal sorting algorithms. To simplify discussion, sorting of an integer array is used in our examples.
 - 1. Bubble Sort
 - Insertion Sort
 - 3. Heap Sort
 - 4. Radix Sort
 - Quick Sort
 - 6. Merge Sort (also good for external sort)
- How to choose the sorting algorithm?

Bubble Sort

Time Complexity: $O(n^2)$

Space Complexity: O(1)

Daily Life Example

Consider the goldfish bowl

Bubble Sort

- The easiest sorting algorithm
- The most time consuming algorithms
- Another name: interchange sort
- The idea:
 - Scanning the list from one end to the other
 - When a pair of adjacent keys is found to be out of order, swap those entries
 - In each pass, the largest key in the list will be bubbled to the end, but the earlier keys may still be out of order

Bubble Sort Example

- Sort the sequence {8, 5, 9, 6, 3} in ascending order
- The final result should be {3, 5, 6, 8, 9}

■1st pass, 1st comparison

Compare 1st element with 2nd element

i.e. 8 vs. 5

if left hand side > right hand side, swap them!

■ 1st pass, 2nd comparison

Compare 2nd with 3rd element

i.e. 8 vs. 9

Since left hand side < right hand side, do nothing!

■ 1st pass, 3rd comparison

Compare 2nd with 3rd element

i.e. 9 vs. 6

Since left hand side < right hand side, swap them!

■ 1st pass, 4th comparison

Compare 2nd with 3rd element

i.e. 9 vs. 3

Since left hand side < right hand side, swap them!

■ After 1st pass

The largest element bubbled to bottom after running the 1st pass

Bubble Sort: 2nd Pass

■ Start from 2nd pass, no need to consider the largest element (the last element)

Bubble Sort: 2nd Pass

2nd pass, 1st comparision

2nd pass, 2nd comparision

2nd pass, 3rd comparision

unsorted list

partially

sorted list

The 2nd largest element fall to 2nd bottom after running the 2nd pass

After 2nd pass

20

Bubble Sort: 3rd Pass

3rd pass, 1st comparision

partially sorted list

3rd pass, 2nd comparision

After 3rd pass

The 3rd largest element fall to 3rd bottom after running the 3rd pass

4th pass, 1st comparision

5 3 6 8 9

partially sorted list

The 4th largest element fall to 4th bottom after running the 4th pass

After 4th pass

partially sorted list

The final sequence

Not necessary to run the 5th pass (why?)

sorted list

Time Complexity

- The amount of time to compare two numbers is constant O(1)
- The amount of time to swap two numbers is also constant O(1)
- The amount of time require to sort the sequence is proportional to the number of comparisons (or swaps)

How Many Comparisons?

- If there are n elements in total
 - ■No. of passes?
 - $\square n-1$
 - ■How many comparisons in each pass?
 - $\blacksquare i^{\text{th}}$ pass: n i comparisons
 - How many comparisons in total?

$$\sum_{i=1}^{n-1} (n-i) = \frac{n(n-1)}{2}$$

- ■Therefore, the time complexity is
 - $\square O(n^2)$

How Many Swaps in Total?

of swaps is at most # of comparisons

- The worst case: the algorithms has to run all the n - 1 passes
- The best case: (already sorted list) the algorithms stops after running the 1^{st} pass (i.e. O(n))

Drawback of Bubble Sort

- Slow
 - Worst case: $O(n^2)$
 - Average case: $O(n^2)$
 - Half the number of comparisons: $\sum_{i=1}^{n-1} \left(\frac{n-i}{2}\right) = \frac{n(n-1)}{4}$
 - Best case: O(*n*)

Simple Version

```
Mind the for-loop indexes here
void bubble(int data[], int n) {
                                              i control the no. of passes
   int i, j;
                                              j control the no. of comparisons in
                                              each pass
  //sort in ascending orde
  for (i = 0; i < n - 1; i++)
      for (j = 0; j < n - 1 - i; j++)
         if (data[j] > data[j+1])
            swap(&data[j], &data[j+1]);
           Each pass consists of
                                        Swap these two elements if
           comparing each element
                                        they are not in proper order
           with its successor
```

After each pass i, the elements from data[n - i - 1] to data[n - 1] are sorted

Improved Version

```
void bubble(int data[], int n) {
  int i, j, no swap;
  //sort in ascending order
  for (i = 0; i < n - 1; i++) {
     no_swap = true;
     for (j = 0; j < n - 1 - i; j++)
        if (data[j] > data[j+1]) {
           swap(&data[j], &data[j+1]);
                                             1 pass
           no_swap = false;
     if (no_swap) break;
```

Bubble Up and Down

- The previous algorithm bubble down the largest element in each pass
- The alternative way to implement bubble sort is:
 - Bubble up the smallest element to the front of the sublist in each pass
 - ■Their time and space complexities are the same

Bubble Up

```
Mind the changes in red
                                          j starts from end of the list up to i
void bubble(int data[], int n) {
                                          If the right element is smaller, bubble up
   int i, j, no_swap = 0;
                                          to the left of the list
   //move smallest element to front in each pass
```

Insertion Sort

Time Complexity: $O(n^2)$

Space Complexity: O(1)

Daily Life Example

■ The idea of insertion is like playing cards

Insertion Sort

- Similar to bubble sort, consists of n 1 passes
- Instead of bubbling the largest (or smallest) element, insertion sort successively inserts a new element into a (sorted) sublist in each pass
- Initially 1st element may be thought of as a sorted sublist of only one element
- After each sorted-insertion, the sorted sublist's length grows by 1.
- Insertion sort makes use of the fact that elements in the sublist are already known to be in sorted order.

Insertion Sort Example

The unsorted list:

Consider the 1st element as a *sorted* sublist

Insert this element into the left sublist such that they maintain a proper order

Ignore them in current pass

The 1st pass

Pick up "5". Move "8" to right

Insert "5" to the appropriate position

Insertion Sort Example

After 1st pass

The 2nd pass

After 2nd pass

Insertion Sort Example

Insert this element into the left Compare with this sublist such that they maintain sublist only a certain order The 3rd pass 9 6 Ignore in current pass Pick up "6". Move "9" and "8" to right Insert "6" to the 5 9 appropriate position After 3rd pass 2 moves in this pass! 8 9

sorted list

unsorted list

Insertion Sort Example

The 4th pass

Compare with this sublist only

5 6 8 9 (3)

Insert this element into the left sublist such that they maintain a certain order

Pick up "3". Move "9", "8", "6" and "5" to right

Insert "3" to the appropriate position

After 4th pass

3 5 6 8 9

sorted list

4 moves in this pass!

Insertion Sort

```
void insertion(int data[], int n) {
  for (int i = 1; i < n; i++) {
                                        // n -1 passes
     int temp = data[i];
                                         // element to be inserted
     // shift the elements in the sublist if they are not in order.
     // the sublist is from data[0] to data[i]
     int j;
     for (j = i-1; j >= 0 \&\& data[j] > temp; j--)
        data[i+1] = data[i];
     data[j+1] = temp; // j+1 is the location for insertion
```

Generic Version

Generic sorting function for any data type

```
function pointer
template<class Type>
void insertionSort(Type *x, unsigned N,
                    int (*compare)(const Type&, const Type&)) {
   for (int i = 1; i < N; i++) {
      Type t = x[i];
      int j;
      for (j = i-1; j >= 0 \&\& compare(x[j], t) > 0; j--)
         x[j+1] = x[j];
      x[j+1] = t;
```

Complexity Analysis

- Like bubble sort, need an extra temporary memory
 - Space complexity: O(1)
 - ■Bubble sort: the temp. variable is used for swapping
 - ■Insertion sort: the temp. variable is used to hold the element that going to be inserted into the sublist

Complexity Analysis

- The best case: O(n)
 - The list is already sorted; scan it once!
- The worst case: $O(n^2)$
 - *n-1* items to be inserted
 - At most i comparisons at i-th insertion
 - The total no. of comparisons = $\sum_{i=1}^{n-1} i = \frac{n(n-1)}{2}$
- The average case: $O(n^2)$
 - Half the number of comparisons
- Because of the simplicity of insertion sort, it is the fastest sorting method when the number of elements N is small, e.g. N < 10.</p>

Summary (Average Performance)

Merge Sort

Time Complexity: O(nlogn)

Space Complexity: O(n)

Daily Life Example

The idea of merging

The Algorithm

- Initially the input list is divided into N sublists of size 1
- Adjacent pairs of lists are merged to form larger sorted sublists
- The merging process is repeated until there is only one list

Merging

- To merge 2 sorted lists
- It takes 2 input arrays *A*[] & *B*[], 1 output array *C*[] and 3 counters (*i*, *j*, *k*) for the arrays respectively
- The smaller of A[i] and B[j] is copied to C[k], then the counters are advanced
- If either A[] or B[] finishes first, the reminder of the other array is copied to C[]

Merge Sort Example

Merge Sort Example

Merge Adjacent Lists

```
void merge(int data[], int first, int mid, int last) {
   int temp[SIZE], i = first, j = mid + 1, k = 0;
   while (i \leq mid && j \leq last) {
                                                        Compare A[i] and B[j], copy
                                                        the smaller one to temp[k]
      if (data[i] <= data[j]) ^
                                                        A is data[first...mid]
          temp[k++] = data[i++];
                                                        B is data[mid+1...last]
      else
                                                        C is temp[...]
          temp[k++] = data[j++];
   while (i <= mid) temp[k++] = data[i++]; The remaining A or B will while (j <= last) temp[k++] = data[j++]; be copied into temp
   i = 0;
   while (i < k) data[first+i] = temp[i++]; \leftarrow The sorted temp. array is
                                                             copied back to data<sub>49</sub>
}
```

Divide-and-Conquer

- This algorithm is a classic divide-andconquer strategy
- Very powerful use of recursion
- The problem is divided into smaller problems and solved independently and recursively
- The conquering phase consists of merging together the sorted lists

Dividing Phase

Divide the list into halves

Divide again and again until only one single element left in the list

Conquering Phase

Merge Sort (Using Recursion)

```
void mergesort(int data[], int first, int last) {
   int mid = (first + last) / 2;
  if (first >= last) return; //base case: size = 1
   mergesort(data, first, mid); //recursion: divide the list into halves
   mergesort(data, mid+1, last);//recursion: divide the list into halves
   merge(data, first, mid, last); //start merging the list: conquer
}
int main(...) {
  int data[] = \{8, 5, 9, 6, 3\};
   mergesort(data, 0, 4);
   return 0;
```

Complexity Analysis

- Merge sort goes through the same steps independent of the data
 - Best case = Worst case = Average case
- For each runs, it requires O(n) time to finish
- There are log₂n runs in total
- The time complexity is O(nlogn)
- Faster than bubble sort and insertion sort!
- The trade-off is it needs extra memory to hold the temporary sorted result
- Space complexity = O(n)
- Improvement to the merge algorithm:
 - Instead of merging each set of lists from data[] to temp[] and then copy temp[] back to data[], alternate merge passes can be performed from data[] to temp[] and from temp[] to data[].

Summary

Heapsort

Time Complexity: O(nlogn)

Space Complexity: O(1)

Heap Revision

- Max. heap tree is a binary tree with 2 properties
 - Property 1: The tree is complete
 - Property 2: The tree is descending

The Heapsort Algorithm

- Phase 1) Build Heap
 - Organize the input array as a max heap
- Phase 2) Swap Node
 - 1st pass
 - Swap the root (max node) with the last unsorted element
 - Now the original root (max node) has been sorted
 - Percolate down the new root if it is not the next-largest element
 - This puts the next-largest element into the root position
 - 2nd and the forth coming passes
 - Swap the next-largest element with the last unsorted element
 - Repeat until all nodes are sorted

■ Phase 1) Build the max. heap tree

Percolate up twice

Phase 2) 1st Pass

Phase 2) 1st Pass

Phase 2) 1st Pass

Phase 2) 2nd Pass

67

Phase 2) 2nd Pass

Phase 2) 2nd Pass

Phase 2) 3rd Pass

Phase 2) After 3rd Pass

Phase 2) After 4th Pass

Phase 2) After 5th Pass

Phase 2) After 6th Pass

Phase 2) After 7th Pass

Complexity Analysis

- Time to build the heap tree
 - Suppose there are n nodes
 - The depth of the tree is $\log_2 n$
 - So at most log₂n comparison for each percolate up
 - Total n·log₂n
- Time to sort the data
 - About log₂n time for each percolate down process
 - Total $(n-1)\log_2 n$
- Time complexity: $O(n \cdot \log n)$
 - Go through the same steps in the second phase (percolate down)
 - Best case = Worst case = Average case
- Extra space is required for swapping the nodes
 - Space Complexity: O(1)

Heapsort (Recursive Version)

```
void percolateUp(int data[], int index) {
  int parent = (index - 1) / 2;
  if (parent < 0) return;
                                       //base case
  //note: if parent >= 0, index also >= 0
  if (data[index] > data[parent]) {     //general case
     swap(&data[index], &data[parent]);
     percolateUp(data, parent);
```

Heapsort (Recursive Version)

```
void percolateDown(int data[], int n, int index) {
  int left, right, maxIndex;
  if (index < 0 \mid | index >= n) return; //base case 1
  left = 2 * index + 1;
  right = left + 1;
  if (left >= n) return;
                                        //base case 2
  maxIndex = right < n && data[left] < data[right] ? right : left;
  swap(&data[index], &data[maxIndex]);
    percolateDown(data, n, maxIndex);
```

Heapsort

```
void heapsort(int data[], int n) {
  int i, last;
  for (i = 1; i < n; i++) {
                                        //start from index 1
     percolateUp(data, i);
                                        //build the max. heap tree
  for (last = n - 1; last > 0; last--) {
     swap(&data[0], &data[last]); //sort the sequence
     percolateDown(data, last, 0);
```

Heapsort (Iterative Version)

<pre>void percolateUp(int data[], int index) {</pre>	
}	

Heapsort (Iterative Version)

```
void percolateDown(int data[], int n, int index) {
```

Summary

Quicksort

Time Complexity: O(nlogn)

Space Complexity: O(logn)

Quicksort

Exchange and Partition

- A.K.A. partition-exchange sort
 - Step 1) Exchange, then Step 2) Partition
- If the list has one or no elements (base case)
 - Do nothing (as already sorted)
- If the list has two or more elements
 - Pick an element as the pivot
 - Place the elements smaller than the pivot before it and the elements larger than or equal to the pivot after it (in any order) (by iteration)
 - Sort the sublist before the pivot (by recursion)
 - Sort the sublist after the pivot (by recursion)

The General Concept

Quicksort Example

Quicksort Example

Quicksort Example

Sort the Left Sublist

Sort the left sublist 12 7 25 48 57 92 86 33 unsorted list

high low (12) 7 25 48 57 92 86 33

After searching, high will point to 7 (smaller than 12) and low will point out of the array

Sort the Left Sublist

Exchange pivot with high

Combining the array

Sort the Right Sublist

Search and exchange

Sort the Right Sublist

Exchange pivot with high 7 12 25 48 33 92 86 57

Sort Another Right Sublist

(base case)

Sort the Last Sublist

Select the pivot, low and high before searching

Exchange pivot with high (exchange with itself)

Finally, the list is sorted correctly

Quicksort

- Divide-and-conquer sorting algorithm
- e.g. the unsorted array is data[p...r]
- Divide Stage
 - Exchange and partition the array data[] into three sub-arrays: data[p...q-1], data[q] and data[q+1...r] such that
 - \blacksquare All element in data[p...q-1] is less than data[q], and
 - All element in data[q+1...r] is greater than or equal to data[q]

Quicksort

- Conquer Stage
 - The two sub-arrays data[p...q-1] and data[q+1...r] are sorted recursively
- Combine Stage
 - The sub-arrays are sorted in place
 - No extra memory needed (except swapping)
 - No work is need to combine them

The Procedure

```
void quicksort(int data[], int p, int r) { // p: start, r: end index
  int pivot, low, high, q;
  if (p >= r) return; //base case
  pivot = p; //set first element as pivot
  low = p + 1;
  high = r;
                                                                  divide
  while (low < high) {
                                                                (exchange
     while(data[low] <= data[pivot] && low < r) low++;
                                                                & partition) I
     while(data[high] > data[pivot] && high > p) high--;
                                                                 (iteration)
     if (low < high) swap(&data[low], &data[high]);</pre>
  if (data[pivot] > data[high]) //swap pivot with high
        swap(&data[pivot], &data[high]);
  q = high;
                                                                 conquer
  quicksort(data, p, q-1);
  quicksort(data, q+1, r);
```

A Good Pivot

A Bad Pivot

Complexity Analysis

- Partition
 - Low pointer moves to right, while high pointer moves to left
 - Total n-1 comparisons
 - \bigcirc O(n): linear time
- Exchange
 - Swapping nodes: O(1)
- How many passes in total?
 - The best case
 - Ideally, the two sub-lists will be of equal size if the median is chosen as pivot in each pass
 - There will be about log₂*n* passes
 - So total time complexity is $O(n \cdot \log n)$
 - The worst case
 - If one of the sub-arrays is always empty, or has only one element
 - Total no. of passes is about *n*
 - Then quicksort takes O(n²) time

Choosing a Good Pivot

- By choosing the pivot carefully, we can obtain $O(n \cdot \log n)$ time in the average case
- The simplest (poor) version
 - Choose the first element as pivot
 - If the list is already sorted, the time complexity would be $O(n^2)$
- Two better versions
 - Choose the pivot randomly in each pass, or
 - Select the median between first, last and middle element as pivot
 - These two solutions cannot completely avoid the worst case
 - It can also be shown that the average cast complexity of quicksort is approximately equal to 1.38 n log₂n
- If the size of the array is large, quicksort is the fastest sorting method known today.

Summary

Radix Sort

Time Complexity: O(*k*⋅*n*)

Space Complexity: O(n)

Sorting Model

- The sorting algorithms introduced so far are based on a comparison model where elements are compared to determine their relative order.
- It has been proven that this kind of algorithms require at least O(nlogn)
- Can we sort better without doing comparison?

Radix Sort

- What if every element can be represented by k digits with positional notation?
 - Consider one digit at a time, LSD first (the right most digit)
 - Divide the list into r sublists based on the digit, where r is the radix of a digit
 - 10 for decimal number; 2 for binary number
 - Consider another digit in the next pass until finally the list is completely sorted with totally k passes
 - Another name: bucket sort
 - A very great algorithm! Can sort data in almost <u>linear</u> time

Sorting using Queues

Radix sort

Implement Radix Sort Using

Queues

unsorted list

Enqueue the element into the queues (buckets) one by one (by the LSD)

Bucket 0 (Queue)		
Bucket 1 (Queue)		
Bucket 2 (Queue)	enqueue 🗘	32
Bucket 3 (Queue)		
Bucket 4 (Queue)		

Bucket 5 (Queue)	
Bucket 6 (Queue)	
Bucket 7 (Queue)	
Bucket 8 (Queue)	
Bucket 9 (Queue)	

After 1st Pass

Dequeue All, then Enqueue One by One Again

After 2nd Pass

Using queues to maintain the stability (equal keys remain the same order)

Concatenated queue data

How to Obtain the Digits?

- To obtain the least significant digit
 - ■bucket # = e % 10
- To obtain the 2nd least significant digit
 - ■bucket # = e / 10 % 10
- To obtain the 3rd least significant digit
 - ■bucket # = e / 100 % 10
- To obtain the *k*th least significant digit
 - bucket # = e / pow(10, k 1) % 10

Complexity Analysis

- Time to enqueue and dequeue the elements in each pass is O(*n*)
- There are *k* passes
 - $\blacksquare k$ is the no. of digits of the elements
- The time complexity is $O(k \cdot n)$
- Radix sort's complexity depends directly on the length of elements
 - Other sorting methods depends on *n* only

Complexity Analysis

- If *k* is large and *n* relatively small, radix sort is not a good choice, e.g. to sort 5 and 100,000,000,000,000,000
 - k = 18 and n = 2
 - Use comparison sorts
- But if *k* is small and *n* is large, then radix sort will be **faster** (linear time) than any other method we have studied, e.g. to sort #0 ~ #99 (uniformly distributed)
 - k = 2 and n = 100
 - Time complexity is O(n)
- Other drawbacks
 - Memory overhead: additional memory for queues
 - Space complexity: O(n)

Advanced Example

- Radix sort can have many variations
- Sorting strings
- Use 26 buckets (a to z)?
 - Two buckets are enough!
 - "Convert" characters into binary bits first
 - Compare the bits one by one

0100 0001	Α
0100 0010	В
0100 0011	С

. . .

0101	1010	Z

Example: sorting strings

Original data	After 1st pass	After 2 nd pass	After 3 rd pass
now	so <mark>b</mark>	t <mark>a</mark> g	ace
for	no <mark>b</mark>	a <mark>c</mark> e	bet
tip	ac <mark>e</mark>	b <mark>e</mark> t	dim
i1k	ta <mark>g</mark>	d <mark>i</mark> m	for
dim	i l <mark>k</mark>	t <mark>i</mark> p	<mark>h</mark> ut
tag	di <mark>m</mark>	s <mark>k</mark> y	i1k
jot	ti <mark>p</mark>	i <mark>1</mark> k	jot
sob	fo <mark>r</mark>	s <mark>o</mark> b	nob
nob	jo <mark>t</mark>	n <mark>o</mark> b	now
sky	hu <mark>t</mark>	f <mark>o</mark> r	sky
hut	be <mark>t</mark>	j <mark>o</mark> t	<mark>s</mark> ob
ace	no <mark>w</mark>	n <mark>o</mark> w	tag
bet	sky	h <mark>u</mark> t	tip

Sorting Characters

The unsorted string is "SORTING", sort the characters by ASCII code in ascending order

The original data After 1st pass			_	After 2 nd pass			
0101 0011	S	_	0101 0010	R	_	0101 01 <mark>0</mark> 0	Т
0100 1111	0		0101 0100	Т		0100 10 <mark>0</mark> 1	-
0101 0010	R		0100 1110	N		0101 00 <mark>1</mark> 0	R
0101 0100	Т		0101 0011	S		0100 1110	N
0100 1001	I		0100 1111	0		0101 00 <mark>1</mark> 1	S
0100 1110	N		0100 1001	I		0100 1111	0
0100 0111	G		0100 0111	G		0100 01 <mark>1</mark> 1	G

Sorting Characters

Sorting Characters

The sorted string is "GINORST"

After 6 th pass	8	After 7 th pass After 8 th pass			8		
01 <mark>0</mark> 0 0111	G		0 <mark>1</mark> 00 0111	G		<mark>0</mark> 100 0111	G
01 <mark>0</mark> 0 1001	ı		0 <mark>1</mark> 00 1001	I		<mark>0</mark> 100 1001	I
01 <mark>0</mark> 0 1110	N		0100 1110	N		<mark>0</mark> 100 1110	N
01 <mark>0</mark> 0 1111	0		0100 1111	0		<mark>0</mark> 100 1111	0
01 <mark>0</mark> 1 0010	R		0 <mark>1</mark> 01 0010	R		<mark>0</mark> 101 0010	R
01 <mark>0</mark> 1 0011	S		0 <mark>1</mark> 01 0011	S		<mark>0</mark> 101 0011	S
01 <mark>0</mark> 1 0100	Τ		0 <mark>1</mark> 01 0100	Т		<mark>0</mark> 101 0100	Т

How to Obtain the Bits?

- To obtain the last bit, use the bit-wise operator
 - int bit; char c = 'S'; //0101 0011 (binary)
 - \blacksquare bit = c & 0x01; //0x01 (hex) = 0000 0001 (binary)
 - //0101 0011 AND 0000 0001 = 0000 0001 = 1
- To obtain 2nd last bit
 - \blacksquare bit = (c >> 1) & 0x01;
 - // >> 1: shift the bits one step to right. The original right most bit is discarded
 - //c >> 1: 0010 1001
 - //0010 1001 AND 0000 0001 = 1

How to Obtain the Bits?

- To obtain 3rd last bit
 - \blacksquare (c >> 2) & 0x01;
 - //c >> 2:0001 0100
 - \square //0001 0100 AND 0000 0001 = 0

- To obtain the *k*th bit
 - \blacksquare (c >> (k 1)) & 0x01;

Summary

Built-in Sort Function

Built-in Sort Function in C

- C/C++ standard library function that implements a polymorphic sorting algorithm for arrays of arbitrary objects according to a user-provided comparison function.
- Include <cstdlib>

Example 1 of qsort()

```
// Use qsort()to sort an array of fraction
int compareFraction(const void *a, const void *b) {
         fraction *f1 = (fraction *)a; //type cast the pointer
         fraction *f2 = (fraction *)b; //before using it to refer to an object
         if (*f1 == *f2)
                                    return 0;
         else if (*f1 < *f2)
                                    return -1;
         else
                                    return 1;
int main() {
   int len = 100;
  fraction *list = new fraction[len];
  // codes to assign values to list[] .....
  qsort(list, len, sizeof(fraction), compareFraction);
```

Example 2 of qsort()

```
// Use the gsort function to sort a list of names (cstring, char [])
// the void pointer arguments point to cstring (char*)
// i.e. (char**), which is pointer-to-(char*)
int compareString(const void *a, const void *b) {
   char **c1 = (char **)a;
  char **c2 = (char **)b;
  // dereferencing once becomes cstring (char *)
  return strcmp(*c1, *c2); //compare cstring
}
int main() {
   char *name[] = {"Wong Chi Ming",
                   "Chan Tai Man",
                   "Ho Pui Shan",
                   "Au Pui Ki",
                   "Cheung Ka Man"};
    qsort(name, 5, sizeof(char *), compareString);
}
```