LECTURE: 1-5: TRIGONOMETRY REVIEW

Basic Trigonometry

You want to recall:

- (a) the triangle definitions of all six trigonometric functions
- (b) the definitions of the four non-sine and cosine trigonometric functions in terms of sine and cosine
- (c) be able to graph all six trigonometric functions
- (d) be familiar with the unit circle definition and be able to evaluate all trigonometric functions at common angles without the use of a calculator
- (e) remember the Pythagorean Identities.

The Triangle Defintion

Example 1: Sketch a right triangle with side a adjacent to an angle θ , o opposite of the angle θ and hypotenuse h. Define each of the six trigonometric functions in terms of that triangle.

- a) $\sin \theta$
- b) $\cos \theta$
- c) $\tan \theta$
- d) $\sec \theta$
- e) $\csc \theta$
- f) $\cot \theta$

Functions in Terms of Sine and Cosine

Example 2: Define the following four functions in terms of sine and cosine.

(a)
$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

(b)
$$\sec \theta = \mathcal{L}$$

(b)
$$\sec \theta = \frac{1}{C_0 S \theta}$$
 (c) $\csc \theta = \frac{1}{S \ln \theta}$ (d) $\cot \theta = \frac{C_0 S \theta}{S_1 n \theta}$

(d)
$$\cot \theta = \frac{\cos \theta}{\sin \theta}$$

The Unit Circle Approach

Example 3: Recall the unit circle definition of $\sin \theta$ and $\cos \theta$.

COSA = COS(-0)

How do S-do Ods fit together?

Example 4: Draw the familiar 30-60-90 and 45-45 triangles and recall how to use them to evaluate common angles for trigonometric functions.

Find Sind and cost for
$$\theta = \frac{77}{6} = \pi + \frac{7}{6}$$

$$\cos(\frac{77}{6}) = \frac{-13}{2}$$

Example 5: Evaluate the following without the use of a calculator.

(a)
$$\sin(-\frac{2\pi}{3}) = -\frac{\sqrt{3}}{2}$$

(b)
$$\cos(\frac{11\pi}{4}) = -\frac{12}{2}$$

(c)
$$\cos(\frac{3\pi}{2})$$

Example 6: Find the following values.

(a)
$$\tan(\frac{3\pi}{4}) = -1$$

(b)
$$\cot(\frac{\pi}{6}) = \frac{a}{0} = \frac{13}{1} = 13$$

(b)
$$\cot(\frac{\pi}{6}) = \frac{a}{0} = \frac{\pi}{1} = \pi$$
 (c) $\sec(\pi) = \frac{1}{68\pi} = \frac{1}{-1} = -1$

Example 7: In the space below without the use of a calculator, sketch (and label) $y = \tan x$, $y = \cot x$, $y = \sec x$, $y = \csc x$.

M: Secx

The Pythagorean Identities:

1. Explain why we know $\sin^2 \theta + \cos^2 \theta = 1$.

Circle definition

2. Show how to get the other two Pythagorean Identities from the one above!

$$\frac{\sin^2\theta + \cos^2\theta}{\sin^2\theta} = \frac{1}{\sin^2\theta}$$

$$1 + \cot^2\theta = \csc^2\theta$$

$$\frac{\sin^2\theta + \cos^2\theta + 1}{\cos^2\theta + \cos^2\theta}$$

$$\tan^2\theta + 1 = 9c^2\theta$$