DATA ANALYSIS TECHNIQUES FOR LIGO DETECTOR CHARACTERIZATION

by

GUILLERMO A. VALDES SANCHEZ, M.Sc.

DISSERTATION

Presented to the Graduate Faculty of
The University of Texas at San Antonio
In Partial Fulfillment
Of the Requirements
For the Degree of

DOCTOR OF PHILOSOPHY IN PHYSICS

COMMITTEE MEMBERS: Mario Diaz, Ph.D., Chair Soumya Mohanty, Ph.D. Soma Mukherjee, Ph.D. Kelly Nash, Ph.D. Joshua Smith, Ph.D.

THE UNIVERSITY OF TEXAS AT SAN ANTONIO
College of Sciences
Department of Physics
August 2017

ProQuest Number: 10599518

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10599518

Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.

This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, MI 48106 – 1346

DEDICATION

To my wife, Lili.

ACKNOWLEDGEMENTS

I want to thank Mario Díaz for his invaluable help during all the time I have met him. Thanks to his support I have completed my doctorate, but also he gave me the opportunity to participate in amazing projects.

Brian O'Reilly, for all of his advice and guidance in the last years. His comments and suggestions were essential for my investigations. He made me feel welcome in the LIGO observatory.

Josh Smith, who was always willing to help. Thanks to Josh, I work in one of the areas that interest me most doing what I like. While collaborating with him, it was easy to choose the main topic of my thesis, LIGO Detector Characterization.

Aidan Brooks, who introduced me to the thermal compensator system and shared the idea of the Kalman filter application.

I would like to thank my family. My parents Norma Sánchez and Guillermo Valdés; my sister and brother, Erika Valdés and Luis Valdés; and my grandparents, Clara Cedillo and Leopoldo Sánchez. Thank you for your support and patience.

Lastly, but most important, I want to thank my wife, Lili Ramírez. Thanks for your support and your love. I love you.

DATA ANALYSIS TECHNIQUES FOR LIGO

DETECTOR CHARACTERIZATION

Guillermo A. Valdes Sanchez, Ph.D.

The University of Texas at San Antonio, 2017

Supervising Professor: Mario Diaz, Ph.D.

Gravitational-wave astronomy is a branch of astronomy which aims to use gravitational waves

to collect observational data about astronomical objects and events such as black holes, neutron

stars, supernovae, and processes including those of the early universe shortly after the Big Bang.

Einstein first predicted gravitational waves in the early century XX, but it was not until Septem-

ber 14, 2015, that the Laser Interferometer Gravitational-Wave Observatory (LIGO) directly ob-

served the first gravitational waves in history.

LIGO consists of two twin detectors, one in Livingston, Louisiana and another in Hanford,

Washington. Instrumental and sporadic noises limit the sensitivity of the detectors. Scientists

conduct Data Quality studies to distinguish a gravitational-wave signal from the noise, and new

techniques are continuously developed to identify, mitigate, and veto unwanted noise.

This work presents the application of data analysis techniques, such as Hilbert-Huang trans-

form (HHT) and Kalman filtering (KF), in LIGO detector characterization. We investigated the

application of HHT to characterize the gravitational-wave signal of the first detection, we also

demonstrated the functionality of HHT identifying noise originated from light being scattered by

perturbed surfaces, and we estimated thermo-optical aberration using KF.

We put particular attention to the scattering origin application, for which a tool was developed

to identify disturbed surfaces originating scattering noise. The results reduced considerably the

time to search for the scattering surface and helped LIGO commissioners to mitigate the noise.

iv

TABLE OF CONTENTS

Acknov	vledgements	iii
Abstrac	et	iv
List of	Tables	X
List of l	Figures	хi
Chapte	r 1: Introduction	1
Chapte	r 2: Gravitational Waves	4
2.1	Introduction	4
2.2	Gravitational Waves Sources	8
2.3	Gravitational Waves Detection	10
	2.3.1 Interferometric Detection	
	2.3.2 Advanced Gravitational-wave Detector Network	12
2.4	Gravitational Waves Observed	13
	2.4.1 GW150914: First Detection	14
	2.4.2 GW152612: Boxing Day Detection	14
	2.4.3 GW170104: Third Detection	15
Chapte	r 3: Advanced LIGO	17
3.1	Introduction	17
3.2	LIGO Degrees of Freedom	19
3.3	LIGO Instrumental Noise	20
3.4	LIGO Auxiliary Subsystems	24

Chapter	4: LIG	O Detector Characterization	30
4.1	Introdu	action	30
4.2	Transie	ent Noise Sources	31
	4.2.1	Earthquakes	31
	4.2.2	Anthropogenic Noise	31
	4.2.3	Radio Frequency Modulation	31
	4.2.4	Blip Transients	32
	4.2.5	Correlated Noise	32
4.3	Detecto	or Characterization Methods and Tools	33
	4.3.1	Injection Methods	33
	4.3.2	Data Quality Investigations	33
	4.3.3	Summary Pages	33
	4.3.4	Event Trigger Generators	35
	4.3.5	Vetoing Noise Transients	36
	4.3.6	Feature Extraction and Classification Methods	38
4.4	Detecto	or Characterization Contributions	40
	4.4.1	Improving Sensitivity	40
	4.4.2	Detector Characterization for the First Gravitational Wave Detected: GW1509	14 42
Chamtan	. 5. Data	Analysis Tashnismas	46
•		Analysis Techniques	
5.1		-Huang Transform	46
	5.1.1	Empirical Mode Decomposition	47
	5.1.2	Stoppage Criteria	48
	5.1.3	Hilbert Spectral Analysis	49
	5.1.4	EMD Example	50
5.2		Filter	51
	5.2.1	Kalman Filter Estimation	53
	522	Kalman Filter Example	56

	5.2.3	Kalman Filter Tuning	· • •	57
Chapter	r 6: Hilb	pert-Huang Transform Event Trigger Generator	. 	60
6.1	Introdu	ection	, 	60
6.2	Method	ds	. 	60
6.3	Results	8		61
6.4	Discuss	sion	. 	62
6.5	Conclus	sion		66
Chapter	r 7: Scat	ttering Identification Using Hilbert-Huang Transform		68
7.1	Introdu	action		68
7.2		round		
7.3	Hilbert-	-Huang Transform	. 	70
7.4	Method	dology	. 	71
	7.4.1	Approach		71
		Data		
	7.4.3	Data Preparation	. 	73
	7.4.4	Procedure	. 	73
	7.4.5	Implementation	. 	74
7.5	Method	d Validation: O1 Scattering	. 	80
	7.5.1	Results	. 	80
	7.5.2	Discussion	. 	80
	7.5.3	Limitation of study		81
7.6	Method	d Testing: ER10 Scattering		82
	7.6.1	Results	. 	82
	7.6.2	Discussion		82
77	Conclus	sion		92

Chapter	r 8: Kalman Filter for Thermo-optical Aberration Estimation	•	•	• •	•	•	•	 88
8.1	Introduction							 88
8.2	Background							 88
8.3	Methodology							 89
	8.3.1 Problem Statement							 89
	8.3.2 Research Approach							 89
	8.3.3 Assumptions							 90
	8.3.4 State-space Representation		•				•	 91
	8.3.5 Parameters and Coefficients Estimation		•				•	 93
	8.3.6 Results		•				•	 93
8.4	Kalman Filter Estimation of Aberration Due to the Ring Heater							
8.5	Conclusion						•	 100
	r 9: Conclusion		•		•		•	 103
A.1	Sum of Squares Due to Error						•	 103
A.2	R-Square						•	 103
A.3	Adjusted R-Squared		•				•	 104
A.4	Root Mean Squared Error		•		•		•	 105
Append	lix B: Results of Scattering Identification with HHT		•				•	 106
B.1	Validation Samples							 106
	B.1.1 GPS 1127425396							 106
	B.1.2 GPS 1128450906							 108
	B.1.3 GPS 1128538776		•				•	 110
	B.1.4 GPS 1129311319		•				•	 112
	B.1.5 GPS 1129829056		•				•	 114
	B.1.6 GPS 1129835218				_			116

	B.1.7 GPS 1129980347
	B.1.8 GPS 1129984868
	B.1.9 GPS 1130969276
	B.1.10 GPS 1131279835
	B.1.11 GPS 1131484700
	B.1.12 GPS 1132718209
B.2	Testing Samples
	B.2.1 GPS 1164350638
	B.2.2 GPS 1164366066
	B.2.3 GPS 1164370230
	B.2.4 GPS 1164371032
	B.2.5 GPS 1164372040
Append	ix C: Matlab Codes
C.1	gps2utc.m
C.2	EEMD.m
C.3	ismonotonic.m
C.4	isimf.m
C.5	EMDspline.m
C.6	EMDpeaks.m
C.7	imf_plot_paper.m
C.8	hilbert_spectrum.m
C.9	EstimateHht_Thesis.m
Diri	l
RIDIIOGI	aphy

Vita

LIST OF TABLES

Table 3.1	Definitions of the LIGO degrees of freedom: Differential Arm (DARM),	
	Common Arm (CARM), Michelson (MICH), Signal Recycling Cavity Length	
	(SRCL), and Power Recycling Cavity Length (PRCL)	20
Table 7.1	List of investigated channels, including 23 mirrors, 4 reaction masses (CPX,	
	CPY, ERMX, ERMY), and 2 transmission monitors (TMSX, TMSY). Where	
	x equals the longitudinal (L), pitch (P), and yaw (Y) DOFs	72
Table 7.2	The ten highest correlated objects with the scattering around 25-Oct-2015	
	19:06:41 UTC (GPS 1129835218)	78
Table 7.3	Samples used for validation of proposed method for O1 scattering data and	
	results obtained	80
Table 7.4	Correlation strength threshold	82
Table 7.5	Samples used for testing of proposed method for ER10 scattering data and	
	results obtained	82
Table 7.6	The ten highest correlated objects with the scattering around 25-Oct-2015	
	17:23:59 UTC (GPS 1129829056)	85
Table 7.7	The ten highest correlated objects with the scattering around 10-Oct-2015	
	18:59:19 UTC (GPS 1128538776)	86
Table 7.8	The ten highest correlated objects with the scattering around 28-Nov-2016	
	12:23:35 UTC (GPS 1164371032)	87
Table 8.1	Parameters that best fit the analytical models	93
Table 8.2	Evaluated coefficients	93
Table 8.3	Goodness-of-fit statics	94

LIST OF FIGURES

Figure 2.1	A passing gravitational wave propagating along the z-axis of spacetime.	
	(a) Undisturbed spacetime. (b) A passing gravitational wave propagating	
	in the z -direction strains the spacetime, distorting the x - y cross-sections	
	corresponding to different points along the gravitational wave's period. (c)	
	The strain induced by a passing gravitational wave is dependent on the	
	wave's polarization	7
Figure 2.2	Schematic overview of an interferometric detector. (a) Without a GW	
	present, the interferometer is kept at a destructive interference configura-	
	tion. (b) A GW will change the relative distance between the arms and	
	cause the interferometer output to deviate from the destructive interference.	
	The intensity of the light and its temporal evolution encode the footprints	
	of GWs	. 1
Figure 3.1	Advanced LIGO optical configuration. ITM: input test mass; ETM: end	
	test mass; ERM: end reaction mass; CP: compensation plate; PRM: power	
	recycling mirror; PR2/PR3: power recycling mirror 2/3; BS: 50/50 beam	
	splitter; SRM: signal recycling mirror; SR2/SR3: signal recycling mirror	
	2/3; FI: Faraday isolator; ϕ_m : phase modulator; PD: photodetector. The	
	laser power numbers correspond to full-power operation. All of the com-	
	ponents shown, except the laser and phase modulator, are mounted in the	
	LIGO ultra-high vacuum system on seismically isolated platforms	.8

Figure 3.2	The five degrees of freedom necessary for full interferometer control: MICH,	
	the interior Michelson formed by the input test masses and the beam split-	
	ter, DARM, the differential interferometer arm degree of freedom used for	
	gravitational wave sensing, CARM, the common arm degree of freedom	
	calculated by the average arm length, SRCL, the signal recycling cavity	
	length degree of freedom, and PRCL, used to control the power recycling	
	cavity length.	21
Figure 3.3	Principal noise terms for the nominal (high power, broadband) mode of	
	operation of Advanced LIGO.	22
Figure 3.4	Time-lapsed schematic illustrating the fluctuating gravitational force on a	
	suspended mass by the propagation of a surface wave through the ground	23
Figure 3.5	Schematic of the Advanced LIGO configuration, its many optical cavity	
	components, and different seismic isolation apparatuses applied to each	
	optic and/or optic table. Of the 11 different optic chambers shown, 'HAM'	
	chambers house auxiliary optics used for power recycling, mode cleaning,	
	and other purposes. 'BSC' chambers house the core interferometer's op-	
	tics: the beam splitter, two sets of inner and end test masses that comprise	
	each arm, the reaction suspension chains used for quiet actuation of the	
	test masses, and transmission monitor optics used for arm length stabiliza-	
	tion,described later	25
Figure 3.6	Quadruple pendulum (QUAD). (a) QUAD design inside its mounting cage.	
	(b) QUAD consists of two chains, the main and the reaction chain. Stage	
	4 of the main chain is the interferometer optic. Three stages of blade (can-	
	tilever) springs provide vertical isolation. Sensor actuator devices (OS-	
	EMs) provide active damping and control in conjunction with an electro-	
	static drive (ESD). The reaction chain is used as a seismically isolated ac-	
	tuation surface.	27

Figure 3.7	Schematic layout of the Thermal Compensation System for the X-arm. A	
	similar configuration is implemented on the Y-arm, with the SLED probe	
	beam instead transmitting through the BS. Each of the masks can be inde-	
	pendently flipped in or out of the beam path	8
Figure 4.1	(a) GW readout displacement showing upconversion of a 1.2 Hz seismic	
	injection. Both panels show the same data of the displacement in the GW	
	channel but in different frequency bands. The left panel shows the linear ef-	
	fect of the injected signal in the detector output, while the right panel shows	
	that this injection produces noise at higher frequencies (known as 'upcon-	
	version'). (b) Measurement of scattered light coupling. Pictures show the	
	spectral composition of bench displacement (left) and interferometer output	
	(right) in the undisturbed case (cyan) and when one sinusoidal excitation is	
	applied to the bench (black). The excess noise in the interferometer output	
	is matched closely by the scattered light model (red)	4
Figure 4.2	Summary page of the seismic isolation watchdogs. Watchdogs are alarms	
	that prevent the system to perform in an unsafe state. In this particular	
	example, we can read that of the 7 alarms activated during the day, 3 corre-	
	spond to parts inside HAM 6. Of those 3 alarms, one alarm was related to	
	the ISI geophones and the two others to the ISI actuators	5
Figure 4.3	Illustration of the removal of some data from the h(t) channel due to its	
	association with two hypothetical non-astrophysical disturbances. The top	
	trace, $h(t)$, represents the $h(t)$ data. The middle trace is a monitor of wind	
	speeds on the detector site, and the lowest trace is a microphone located in	
	one of the detector's buildings. The first and second vetoed period in $h(t)$,	
	between pairs of dashed lines, are removed due to association with sharp	
	glitches in the microphone, while the third period is removed because of	
	high local wind speeds	7

Figure 4.4	(a) Time-frequency localization of trigger events in the $h(t)$ channel at the	
	Livingston detector, according to the KleineWelle ETG on Oct 15, 2015.	
	The color represents the signal-to-noise ratio (SNR). (b) Time-frequency	
	localization of trigger events in the $h(t)$ channel of the Livingston detector,	
	vetoed by HVeto on Oct 10, 2015. The color represents the round winner	
	channel. In this example, the round 1 winner channel (in blue) was associ-	
	ated to the piezoelectric attached to the OMC, the round 2 winner channel	
	(in red) was associated with the electric power at the X-end station, and the	
	round 3 winner channel (in yellow) was associated to the magnetometer	
	located at the corner station	9
Figure 4.5	Glitch classes seen in LIGO Livingston detector named after the mecha-	
	nism that produces it or its shape. For example (a) scattering glitch, (b)	
	whistle glitch, (c) blip glitch, and (d) koi fish glitch	.1
Figure 4.6	(a) Spectrum of DARM before and after the ring heater at the end X station	
	was replaced. Notice the removal of the 76 Hz spike in the spectrum once	
	the ring heater driver is replaced. The 60/120 Hz features are due to the	
	mains power. (b) DARM's spectrum before and after the actuated mirror	
	mounting was replaced with a fixed mounting. (c) Left and right panels	
	are the trigger rate plots for both the ER6 and post ER6 time period respec-	
	tively. In these plots, the Omicron triggers are separated into four SNR bins	
	and the data is combined over a 5 min interval to calculate the rate 4	.3

rigure 4.7	A bilp transient in LiGO-Livingston strain data that produced a significant
	background trigger in the CBC analysis in orange, and the best-match tem-
	plate waveform (amplitude-scaled for comparison) in black, which exhibits
	a few more low- SNR cycles but otherwise quite similar morphology. The
	best-match waveform for the GW150914 signal, in gray, is quite distinct
	from both the blip transient and the neutron-star-black-hole (NSBH) wave-
	form that most closely matches it, with more than 10 distinct cycles shown
	and a significant increase in frequency over time. All three time series have
	the same zero-phase band-pass filter applied
Figure 5.1	Example of EMD applied to the sum of three arbitrary signals with different
	frequency and amplitude. The application of EMD results in three IMF
	(and one residue), which are similar to the original arbitrary signals 5
Figure 5.2	Example of HSA applied to an arbitrary signal that changes its amplitude
	from 20 to 5 and frequency from 5Hz to 10Hz, after 5 seconds. The HHT
	spectrogram is constructed with the IA and IF
Figure 5.3	Graphical description of the Kalman filter algorithm consisting of the pre-
	diction and correction parts
Figure 5.4	(a) Comparison of the assumed truck's position and the truck's real po-
	sition. (b) Comparison of the assumed truck's position and the truck's
	measured position. (c) Comparison of the truck's measured position and
	the estimated position. (d) Differences between the real position and the
	assumed, the measured, and the estimated positions
Figure 5.5	In Kalman filter estimation, the incorrect choice of process variance leads
	to (a) overfitting or (b) underfitting. (c) Knowing the process and measure-
	ment variances result in a better estimation

Figure 6.1	The gravitational-wave event GW150914 observed by the LIGO Hanford	
	detector. Time is relative to 14-Sep-2015 09:50:45 UTC. For visualization,	
	the time series was filtered with a 35-350 Hz bandpass filter and normalized	
	between -1 and 1	51
Figure 6.2	Left: IMF ₁ -IMF ₄ . Right: Instantaneous amplitude and threshold (red dashed	
	line) of each IMF	52
Figure 6.3	Left: IMF ₅ -IMF ₈ . Right: Instantaneous amplitude and threshold (red dashed	
	line) of each IMF	53
Figure 6.4	Left: IMF ₉ -IMF ₁₁ and residue. Right: Instantaneous amplitude and thresh-	
	old (red dashed line) of each IMF	54
Figure 6.5	HHT spectrogram of the gravitational-wave event GW150914 observed	
	by the LIGO Hanford detector. Time is shown relative to 14-Sep-2015	
	09:50:45 UTC. The color represents the normalized amplitude 6	55
Figure 6.6	Comparison of the Fourier transform spectrogram (top) and Hilbert-Huang	
	transform spectrogram (bottom) of the gravitational-wave event GW150914	
	observed by the LIGO Hanford detector. Time is shown relative to 14-Sep-	
	2015 09:50:45 UTC. The HHT spectrogram only includes IMF ₁ , IMF ₂ , and	
	IMF ₃ , which are the IMF with the GW content. The color represents the	
	normalized amplitude	57
Figure 7.1	(a) DARM's spectral density. Blue line: spectral density when scattering	
	was present, around 25-Oct-2015 19:06:41 UTC. Red line: spectral density	
	when no scattering was present, 25-Oct-2015 13:00:00 UTC. (b) DARM's	
	HHT spectrogram. Scattering fringes can be seen around -25s and 0s from	
	25-Oct-2015 19:06:41 UTC (GPS 1129835218)	15
Figure 7.2	(a) HHT spectrogram of IMF $_1$ at 25-Oct-2015 19:06:41 UTC (GPS 1129835218))
	time. This spectrogram was created using together (b) the instantaneous	
	frequency and (c) the instantaneous amplitude of IMF_1	76

Figure 7.3	Estimation of the SRM mirror predictor around 25-Oct-2015 19:06:41 UTC	
	(GPS 1129835218). (a) Position of SRM (in the longitudinal degree of	
	freedom) relative to mounting cage. (b) Velocity of SRM relative to mount-	
	ing cage. (c) SRM scattering predictor. (d) First, third, and fifth scattering	
	harmonics of the SRM predictor. Second and fourth harmonics are omitted	
	for clarity	77
Figure 7.4	Scattering culprit for 25-Oct-2015 19:06:41 UTC (GPS 1129835218). SRM	
	L predictor had a correlation of 0.74 (green line) with the IA of IMF_1 (blue	
	line)	78
Figure 7.5	Correlation losers for 25-Oct-2015 19:06:41 UTC (GPS 1129835218). (a)	
	CPY L predictor had a correlation of 0.37 with the IA. (b) PRM L predictor	
	had a correlation of 0.21 with the IA	78
Figure 7.6	(a) DARM'S HHT spectrogram around 25-Oct-2015 19:06:41 UTC (GPS	
	1129835218) and the fifth scattering harmonic of the SRM scattering pre-	
	dictor (green line). (b) DARM'S Fourier spectrogram around 25-Oct-2015	
	19:06:41 UTC (GPS 1129835218) and the fifth scattering harmonic of the	
	SRM predictor (green line). SRM was flagged as the culprit by our technique.	79
Figure 7.7	Scattering culprit for 25-Oct-2015 17:23:59 UTC (GPS 1129829056). SRM	
	L predictor had a correlation of 0.65 (green line) with the IA of IMF_1 (blue	
	line)	85
Figure 7.8	Correlation losers for 25-Oct-2015 17:23:59 UTC (GPS 1129829056). (a)	
	CPY L predictor had a correlation of 0.49 with the IA. (b) ITMY L predic-	
	tor had a correlation of 0.39 with the IA	85
Figure 7.9	Scattering culprit for 10-Oct-2015 18:59:19 UTC (GPS 1128538776). OM1	
	P predictor had a correlation of 0.61 (green line) with the IA of IMF_1 (blue	
	line)	86

Figure 7.10	Correlation losers for 10-Oct-2015 18:59:19 UTC (GPS 1128538776). (a)	
	OM2 L predictor had a correlation of 0.60 with the IA. (b) SRM P predictor	
	had a correlation of 0.45 with the IA	86
Figure 7.11	Scattering culprit for 28-Nov-2016 12:23:35 UTC (GPS 1164371032). ETMY	
	P predictor had a correlation of 0.83 (green line) with the IA of IMF_1 (blue	
	line)	87
Figure 7.12	Correlation losers for 28-Nov-2016 12:23:35 UTC (GPS 1164371032). (a)	
	Culprit ₂ , ERMY L predictor had a correlation of 0.77 with the IA. (b) PRM	
	P predictor had a correlation of 0.36 with the IA	87
Figure 8.1	Aberration in the test masses produced by laser heating. (a) Comparison	
	of the aberration models: the analytical model (Model 1 in green dots) and	
	the exponential model (Model 2 in black line). (b) Aberration due to laser	
	heating, constructed by the sum of two exponentials	95
Figure 8.2	Aberration in the test masses produced by the ring heater. (a) Comparison	
	of the aberration models: the analytical model (Model 1 in green dots) and	
	the exponential model (Model 2 in black line). (b) Aberration due to ring	
	heater, constructed by the sum of two exponentials	96
Figure 8.3	(a) HWS measurement 1 and low-passed measurement 1. (b) HWS mea-	
	surement 1 and exponential model response for $p_{RH}=1.$ (c) HWS mea-	
	surement 1 and Kalman estimation. (d) Comparison between Kalman esti-	
	mation and exponential model response for $p_{RH}=1.$	98
Figure 8.4	(a) HWS measurement 2 and low-passed measurement 2. (b) HWS mea-	
	surement 2 and exponential model response for $p_{RH}=1.$ (c) HWS mea-	
	surement 2 and Kalman estimation. (d) Comparison between Kalman esti-	
	mation and exponential model response for $p_{RH} = 1, \dots, \dots$	99

Chapter 1: INTRODUCTION

Gravitational-wave astronomy is an emerging branch of observational astronomy which aims to use gravitational waves to collect observational data about astronomical objects such as black holes and neutron stars, events such as supernovae, and processes including those of the early universe shortly after the Big Bang.

Einstein first predicted gravitational waves in the early XXth century; although a particular consequence of general relativity, they are a common feature of all theories of gravity that obey special relativity [1–3]. The first observational evidence for their existence first came in 1974 from measurements of the Hulse-Taylor binary pulsar, whose orbit evolves exactly as would be expected for gravitational wave emission [4].

On February 11, 2016, it was announced that the Laser Interferometer Gravitational-Wave Observatory, in its advanced configuration called aLIGO [5], had directly observed the first gravitational waves in September 2015 [6]. The second observation of gravitational waves was made on 26 December 2015 and announced on 15 June 2016 [7]. A third gravitational-wave signal was detected on January 4, 2017 [8].

aLIGO consists in two twin detectors, located more than 3000km apart. Each detector includes a laser interferometer and many auxiliary subsystems dedicated to provide good quality laser and isolate the interferometer from noise, such as a thermal compensation system and the suspensions system [9, 10].

In LIGO, achieving full isolation from instrumental and sporadic noise is particularly difficult, even with the help of the auxiliary systems. Combined with the fact that the detectors measure an extremely small change in distance proportional to the gravitational wave passing, data analysis is required to identify a gravitational-wave signal buried in undesired noise.

The Detector Characterization group largely performs the necessary task of characterizing the instrument and the noise limiting its sensitivity [11, 12]. The people working within this group conduct data quality studies [13–15] and constantly new techniques to identify, mitigate, and veto

unwanted noise [16–19]; and distinguish them from a gravitational-wave signal. But, as problems are solved, new problems arise. Sometimes the mitigation of a constant noise yields the presence of a new one. Therefore, each correction or implementation of new auxiliary systems requires more characterization and new data analysis tools.

In this dissertation, motivated by the Detector Characterization group efforts and achievements, we present the application of data analysis techniques in LIGO detector characterization. The techniques shown here are relatively new. The Hilbert-Huang transform (HHT), a technique invented at NASA by Norden E. Huang in the late 90's that decomposes a signal into simpler signal and is designed to work well for data that is non-stationary and nonlinear [20]. And Kalman filtering (KF), an algorithm that uses the model of a system to correct its output measurements, containing statistical noise and other inaccuracies [21]. Named after one of its primary developers in the early 60's, Rudolf E. Kálmán, and utilized in navigation systems.

These two techniques have been employed in LIGO before. HHT was used to detect and characterize noisy simulated gravitational-wave signals [22], while KF found application in regressing resonance modes of the suspensions [23]. In this dissertation, we illustrate the use of HHT to characterize the gravitational-wave signal of the first detection. We demonstrate the functionality of HHT identifying noise originated from light being scattered in perturbed surfaces. We also show an application of KF to estimate thermo-optical aberration.

The results obtained confirm that HHT is capable of finding gravitational-wave signals in a real measurement. We also show the tool developed to identify which perturbed surface was originating the scattering noise, that reduced considerably the time to search for the culprit surface and helped LIGO commissioners to mitigate the noise. Lastly, our results show that the KF estimation of the aberration is clearly less noisy than the aberration measurements.

The dissertation contains two main parts: the introduction and the applications. Chapter 2 gives an introduction to gravitational waves, Chapter 3 provides an overview of Advanced LIGO and the auxiliary systems of interest, Chapter 4 reviews the important tasks of the Detector Characterization group and its achievements, and Chapter 5 explains the data analysis techniques employed.

On the other hand, Chapter 6 illustrate the application of HHT as event trigger generator, Chapter 8 demonstrate the application of HHT identifying scattering, and Chapter 8 shows the use of KF in thermo-optical aberration estimation.

Chapter 2: GRAVITATIONAL WAVES

2.1 Introduction

Einstein formulated the General Theory of Relativity at the beginning of the twentieth century, and he described gravity as the curvature of spacetime. General Relativity (GR) predicts that perturbations of the spacetime curvature satisfy a wave equation. These ripples in spacetime are called gravitational waves (GWs), and they propagate at the speed of light [1–3]. Similar to how the acceleration of charge produces electromagnetic (EM) waves are generated by the acceleration of charge, GWs are produced by the acceleration of matter; another similarity to EM waves is that GWs carry energy away from the source. However, unlike their EM counterparts, GWs interact very weakly with matter and combined with the decreasing amplitude as they travel away from the source, this makes the direct detection of GWs very challenging.

The relationship between matter and spacetime can be summarized in the Einstein field equation

$$G_{\mu\nu} = 8\pi T_{\mu\nu} \tag{2.1}$$

where $G_{\mu\nu}$ is the Einstein tensor, which describes the curvature of spacetime, and $T_{\mu\nu}$ is the stress-energy tensor, which describes the energy and momentum in spacetime; assuming geometrized units G=c=1. The Einstein tensor is defined as

$$G_{\mu\nu} = R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} \tag{2.2}$$

is described by the Ricci curvature tensor $R_{\mu\nu}$, the Ricci scalar R, and the spacetime metric $g_{\mu\nu}$.

Equations 2.1 and 2.2 may appear simple, but the Einstein field equations are ten coupled nonlinear differential equations, and exact solutions can only be found using some special assumptions. To demonstrate the prediction of gravitational radiation from the theory of GR, we only use the weak-field approximation. Far away from the source, in the weak-field limit, the stress-energy tensor $T_{\mu\nu}$ becomes zero.

In the weak-field limit, the spacetime metric can be approximated as

$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu} \tag{2.3}$$

which states that the spacetime metric can be described as flat ($\eta_{\mu\nu}$, the Minkowski metric) with a small added perturbation ($h_{\mu\nu}$, the GW we are looking for).

One fundamental concept in Special Relativity is that the spacetime interval ds between any two neighboring points is given by

$$ds^2 = -c^2 dt^2 + dx^2 + dy^2 + dz^2 (2.4)$$

or

$$ds^2 = \eta_{\mu\nu} dx^\mu dx^\nu \tag{2.5}$$

with the Minkowski metric $\eta_{\mu\nu}$ given, in Cartesian coordinates, by

$$\eta_{\mu\nu} = \begin{pmatrix}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$
(2.6)

The same physical concept is carried over into GR. Then, the more general statement of the definition of the spacetime interval is

$$ds^2 = g_{\mu\nu}dx^{\mu}dx^{\nu} \tag{2.7}$$

To explore the effects of this perturbation, it is very useful to move into the *transverse-traceless* (TT) *gauge*, where coordinates are defined by the world lines of freely-falling test masses [24]. In