Abhinav Modi

■ abhi1625@umd.edu | the abhinavmodi16 | • abhi1625.github.io | • 8402 49th Avenue, College Park, MD

EDUCATION

University of Maryland, College Park

Masters of Engineering in Robotics

Aug. 2018 - May 2020

Birla Institute of Technology and Science(BITS), Pilani, India

GPA: 7.53/10(3.18/4)

GPA: 4.0/4.0

Bachelors of Engineering (Hons.) in Mechanical Engineering

Aug. 2014 - May 2018

Relevant Coursework: Computer Processing of Pictorial Information, Perception for Autonomous Robots, Control of Robotic Systems, Decision making for Robotics, Software Development for Robotics

TECHNICAL SKILLS

Areas of Interest Deep Learning, Computer Vision, Data Structures and Algorithms, Image Processing,

SLAM, Deep Convolution Neural Networks(CNNs)

Modeling and Analysis Solidworks, MSc ADAMS, Simulink, MATLAB

Software development Agile development, Automated/Manual Unit testing, Google Mock/Test framework C++, ROS, Python, Linux, Tensorflow, TFLite, PyTorch, OpenCV, Git, Numpy, LaTex

RESEARCH EXPERIENCE

Perception and Robotics Group, University of Maryland

Research Assistant under Prof. Yiannis Aloimonos

Aug. 2018 - Present

- Performed neural network compression for a pipeline which predicts dense depth, optical flow and camera pose. Implemented network distillation and model quantization across different network architectures for comparison.
- Successfully reduced the memory footprint of the model by 94% and the inference time by 90% using Tensorflow and TFLite frameworks in python.

Autonomous Micro Aerial Vehicle(AMAV) Team

Research Assistant under Prof. Derek Paley

Dec. 2018 - Present

- Working with Intel's depth and stereo modules to develop vision algorithms for dynamic obstacle avoidance and navigation on micro UAVs.
- Participated and won the 7th edition of the VFS MAV Student Challenge, at the University of Pennsylvania, PA in May 2019.

PROJECTS

- Optical Flow based Obstacle Avoidance Compared traditional Gunnar Farnebäck method and Spatial Pyramid network to compute dense optical flow for real time obstacle avoidance on micro link)
- Flying through Gaps: Developed a Gaussian-Mixture-Model(GMM) based vision feedback system to autonomously fly a quadrotor through a window of known dimensions but unknown position and orientation.
- Structure from Motion: Simultaneous 3D map generation and camera pose estimation using image sequences from a monocular camera.
- Visual Odometry: Estimated 3D trajectory of a stereo camera(Duo3D) by computing sparse optical flow using Kanade-Lucas-Tomasi(KLT) tracker.
- Attitude Estimation: Compared madgwick and unscented kalman filters(UKF) to estimate orientation of a 6-DoF IMU against grouund-truth vicon data.(link)
- Human Obstacle Detection: Designed a software module to utilize a pretrained YOLOv3 network to detect and localize humans in a robot's reference frame.(link)
- Travelling Salesman Problem: Implemented a 2-approximation greedy algorithm using minimum spanning trees to find tours for the metric-TSP problem.(link)
- Deep Q-learning for MountainCar-v0: Trained a deep Q-learning network for the discrete action space mountain car problem in OpenAI gym.(link)

LEADERSHIP EXPERIENCE

Inspired Karters, Formula Student Team, BITS Pilani Team Captain

Feb. 2016 - Feb. 2017

- Established a new team structure for a team of 50 students from multiple disciplines to incorporate a KTM 390 engine, smaller wheels (10"), and a full body aero-package, all for the first time in the history of the team.
- Successfully raised INR 150,000 as a team in only one month's time, amounting to INR 7,50,000 during the whole year.