COMPLEX - TD 10

Énoncé

décembre 2023

Exercice 1: $\mathcal{P} \subseteq \mathcal{ZPP}$

1.a] Montrer que $\mathcal{P} \subseteq \mathcal{RP}$ et que $\mathcal{P} \subseteq co - \mathcal{RP}$.

1.b] En déduire que $\mathcal{P} \subseteq \mathcal{ZPP}$.

Exercice 2: Amplification

Soit ε un nombre réel avec $0 < \varepsilon < 1/2$. Un langage L est dans $\mathcal{BPP}(\varepsilon)$ s'il existe une machine de Turing polynomiale M probabiliste telle que :

- si $x \in L$, alors $\Pr(M \text{ accepte } x) \ge \frac{1}{2} + \varepsilon$,
- si $x \notin L$, alors $\Pr(M \text{ accepte } x) < \frac{1}{2} \varepsilon$.

En cours, nous avons défini \mathcal{BPP} comme $\mathcal{BPP}(\varepsilon)$ avec $\varepsilon = 1/6$. Nous allons notamment voir dans cet exercice que le choix de ε constant ne modifie pas la définition de \mathcal{BPP} .

On considère une machine de Turing probabiliste M' qui sur $x \in \{0,1\}^*$ simule n > 0 fois M. Ainsi, M' accepte l'entrée x si M accepte $\geq n/2$ fois l'entrée x. Pour étudier M', nous allons utiliser une inégalité de Chernoff.

Théorème. Soient X_1, \ldots, X_n des variables aléatoires binaires indépendantes, X

$$\sum_{i=1}^{n} X_i \ et \ \mu = \mathbb{E}(X)$$
. Alors, pour tout $\delta, 0 < \delta \le 1$: $\Pr(X < (1-\delta)\mu) < e^{-\mu \cdot \delta^2/2}$.

- **2.a**] Soit X_i la variable aléatoire binaire correspondant au résultat de la *i*ème exécution de la machine M par la machine M'. Estimer $\mathbb{E}(X_i)$ (suivant si $x \in L$ ou $x \notin L$, on donnera une minoration ou une majoration de $\mathbb{E}(X_i)$).
- **2.b**] Soit $X = \sum_{i=1}^{n} X_i$. Estimer $\mathbb{E}(X)$.
- **2.c**] Soit p_e la probabilité d'erreur de la machine M' sur $x \in L$. Montrer que :

$$p_e = \Pr(X < n/2) \le \Pr(X < (1 - \delta)\mu), \text{ avec } \delta = \frac{2\varepsilon}{1 + 2\varepsilon}.$$

- **2.d**] En déduire une majoration de p_e .
- **2.e**] Montrer que $\mu \cdot \delta^2/2 > \frac{\varepsilon^2 \cdot n}{2}$ et en déduire que $p_e < e^{-\frac{\varepsilon^2 \cdot n}{2}}$.

- **2.f**] Soit ε une constante. Comment choisir n et pour avoir une probabilité d'erreur $< 2^{-p}$, avec p un polynôme en la taille de l'entrée.
- **2.g**] Qu'en déduisez-vous sur la classe \mathcal{BPP} .
- **2.h**] Même question avec $\varepsilon = 2^{-|x|}$.

Exercice 3: Machines de Turing « je-ne-sais-pas » (Examen 2017-2018)

Dans cet exercice, nous considérons une variante des machines de Turing probabilistes. Soit Σ un alphabet fini. Une ?-machine de Turing probabiliste sur l'alphabet Σ est une machine de Turing probabiliste sur l'alphabet Σ qui s'arrête sur toute entrée mais qui possède trois états finaux distincts (au lieu de un seul) notés $q_{\rm acc}$, $q_{\rm rej}$ et $q_{\rm ?}$. L'état $q_{\rm acc}$ est l'état d'acceptation, l'état $q_{\rm rej}$ est l'état de rejet et l'état $q_{\rm ?}$ est l'état d'indécision.

La machine retourne toujours une valeur dans l'ensemble $\{1,0,?\}$ correspondant aux états q_{acc} , q_{rej} et $q_?$ respectivement (avec l'interprétation suivante : 1 signifie que la machine accepte le mot en entrée, 0 signifie qu'elle refuse le mot en entrée, et ? signifie que la machine ne sait pas répondre sur le mot en entrée). Pour une ?-machine de Turing probabiliste \mathcal{M} , nous notons $\mathcal{M}(x)$ la variable aléatoire correspondant à la valeur que retourne \mathcal{M} à la fin de son exécution.

Nous définissons la classe de complexité (?)-PP comme l'ensemble des langages L de Σ^* pour lesquels il existe une ?-machine de Turing probabiliste \mathcal{M} qui s'arrête en temps polynomial en la taille de son entrée et telle que

- 1. pour tout $x \in \Sigma^*$, $\Pr[\mathcal{M}(x) = ?] \le 1/2$;
- 2. pour tout $x \in L$, $\Pr[\mathcal{M}(x) = 0] = 0$;
- 3. pour tout $x \notin L$, $\Pr[\mathcal{M}(x) = 1] = 0$.
- **3.a**] Montrer que $P \subseteq (?)-PP$.
- **3.b**] Montrer que (?)-PP \subseteq RP \cap co-RP.
- **3.c**] Montrer que $RP \cap co RP \subseteq (?) PP$ et donc que $RP \cap co RP = (?) PP$.
- **3.d**] Que peut-on en déduire sur (?)—PP? Donner un argument permettant de prouver directement ce résultat (les détails de la démonstration ne sont pas demandés).

Exercice 4 : Stabilité des classes de complexité probabilistes

- **4.a**] Soient L_1 et L_2 deux langages de la classe de complexité RP. Montrer que les langages $L_1 \cap L_2$ et $L_1 \cup L_2$ appartiennent à la classe de complexité RP.
- **4.b**] Soient L_1 et L_2 deux langages de la classe de complexité BPP. Montrer que les langages $L_1 \cap L_2$ et $L_1 \cup L_2$ appartiennent à la classe de complexité BPP.

4.c Montrer les résultats analogues pour les classes de complexité co-RP et ZPP.

Compléments

Exercice 5: Atlantic City

Soient $T: \mathbb{N} \to \mathbb{N}$ une fonction et $L \subset \{0,1\}^*$ un langage. Nous dirons que L appartient à la classe $\mathcal{BPTIME}(T)$, s'il existe une machine de Turing probabiliste M qui termine en temps espéré T(|x|) pour tout mot $x \in \{0,1\}^*$ et telle que $\Pr[M(x)=1] \geq 2/3$ si $x \in L$ et $\Pr[M(x)=0] \geq 2/3$ si $x \notin L$ (où $\Pr[M(x)=b]$ pour $b \in \{0,1\}$ désigne la proportion des calculs de M qui retournent le résultat b sur l'entrée x). Nous notons $\widehat{\mathsf{BPP}} = \bigcup_{k \geq 0} \widehat{\mathcal{BPTIME}}(n \mapsto n^k)$.

5.a] Montrer que BPP = BPP.

Exercice 6: $NP \subseteq BPP \Rightarrow NP = RP$

6.a] Montrer que $RP \subseteq NP$

Le but de l'exercice est de montrer que si $NP \subseteq BPP$ alors $NP \subseteq RP$ (et donc NP = RP).

6.b] Rappelons que, dans le cadre des langages formels pour les problèmes de décision sur un alphabet Σ , on dit qu'un langage $\mathcal{L}_1 \subset \Sigma^*$ est réductible en temps polynomial à un langage $\mathcal{L}_2 \subset \Sigma^*$ (ce qui est généralement noté $\mathcal{L}_1 \leq_P \mathcal{L}_2$) s'il existe une fonction calculable en temps polynomial $f: \Sigma^* \to \Sigma^*$ telle que pour tout $w \in \Sigma^*$, $x \in \mathcal{L}_1$ si et seulement si $f(x) \in \mathcal{L}_2$.

Soient \mathcal{L}_1 et \mathcal{L}_2 deux langages sur un alphabet Σ tels que $\mathcal{L}_1 \leq_P \mathcal{L}_2$. Montrer que si $\mathcal{L}_2 \in \mathsf{RP}$ alors $\mathcal{L}_1 \in \mathsf{RP}$.

- **6.c**] Nous supposons que SAT \in BPP. Plus précisément, avec les techniques d'amplification vues en cours et en TD, nous supposons qu'il existe une machine de Turing probabiliste \mathcal{M} qui prenant en entrée une formule booléenne Φ en n variables (x_1, \ldots, x_n) sous forme normale conjonctive de m clauses retourne un bit de sorte que :
 - si Φ est satisfiable, $\Pr[\mathcal{M}(\Phi) = 1] \ge 1 4^{-n}$;
 - si Φ n'est pas satisfiable, $\Pr[\mathcal{M}(\Phi) = 0] \ge 1 4^{-n}$.

Considérons la machine de Turing probabiliste \mathcal{N} qui exécute l'algorithme suivant :

- 1. initialiser une formule booléenne Ψ à Φ
- 2. pour i de 1 à n-1
 - (a) construire la formule booléenne $\Psi_{x_i=0}$ obtenue en remplaçant chaque clause par la clause obtenue en fixant la valeur x_i à 0 (c'est-à-dire les clauses où x_i apparaît sous la forme d'un littéral positif $x_i \vee \ell_1 \vee \cdots \vee \ell_t$ sont remplacées par $\ell_1 \vee \cdots \vee \ell_t$ et les clauses où x_i apparaît sous la forme d'un littéral négatif $\neg x_i \vee \ell_1 \vee \cdots \vee \ell_t$ sont supprimées).

- (b) exécuter la machine de Turing \mathcal{M} sur $\Psi_{x_i=0}$ et obtenir le bit $b \in \{0,1\}$
- (c) si b = 1, \mathcal{N} met à jour Ψ avec $\Psi_{x_i=0}$ si b = 0, \mathcal{N} met à jour Ψ avec $\Psi_{x_i=1}$ (la formule booléenne obtenue en remplaçant chaque clause de Ψ par la clause obtenue en fixant la valeur x_i à 1).
- 3. si $\Psi_{x_n=0}$ est vraie ou $\Psi_{x_n=1}$ est vraie, retourner 1 sinon retourner 0

Montrer que si la machine de de Turing probabiliste \mathcal{N} prend en entrée une formule booléenne Φ satisfiable, alors la formule booléenne Ψ obtenue à la fin de la i-ème itération de boucle est insatistifiable avec probabilité inférieure ou égale à

$$\sum_{j=1}^{i} \frac{1}{4^{n-j}} = \frac{1}{4^{n-1}} + \dots + \frac{1}{4^{n-i}}$$

- **6.d**] En déduire, en utilisant la machine de Turing probabiliste \mathcal{N} , que $\mathsf{SAT} \in \mathsf{RP}$.
- **6.e**] Conclure.

Exercice 7 : Classe de complexité probabiliste \mathcal{PP}

Soit Σ un alphabet arbitraire fini (avec $\#\Sigma > 1$). Nous considérons la classe de complexité \mathcal{PP} définie comme étant l'ensemble des langages $L \subseteq \Sigma^*$ pour lesquels il existe une machine de Turing probabiliste \mathcal{M} telle que :

- (1) \mathcal{M} s'arrête sur toute entrée $x \in \Sigma^*$ et s'exécute en temps polynomial p(|x|) où |x| désigne la longueur de x;
- (2) pour tout $x \in L$, $\Pr[\mathcal{M}(x) = 1] > 1/2$;
- (3) pour tout $x \notin L$, $\Pr[\mathcal{M}(x) = 0] > 1/2$.
- **7.a**] Montrer que si L est un langage défini sur Σ dans \mathcal{PP} et si \mathcal{M} est une machine de Turing probabiliste qui vérifie les propriétés (1) et (2) précédentes, alors nous avons
 - (2') pour tout $x \in L$, $\Pr[\mathcal{M}(x) = 1] \ge \frac{1}{2} + \frac{1}{2^{p(|x|)}}$ où |x| est la longueur de x.
- **7.b**] Nous considérons la classe de complexité \mathcal{PP}' définie comme étant l'ensemble des langages L définis sur Σ pour lesquels il existe une machine de Turing probabiliste \mathcal{M} qui vérifie les propriétés (1), (2) et la propriété (3') suivante :

4

- (3') pour tout $x \notin L$, $\Pr[\mathcal{M}(x) = 0] \ge 1/2$;
- **7.c**] Montrer que $\mathcal{PP} \subseteq \mathcal{PP}'$

- **7.d**] Soient L un langage de Σ^* et une machine de Turing probabiliste \mathcal{M} vérifiant les propriétés (1), (2') et (3'). Considérons la machine de Turing probabiliste \mathcal{M}' qui exécute \mathcal{M} sur son entrée x et :
 - si \mathcal{M} rejette x, \mathcal{M}' rejette x;
 - si \mathcal{M} accepte x, \mathcal{M}' rejette x avec probabilité $2^{-(p(|x|)+1)}$ et accepte x avec probabilité $1-2^{-(p(|x|)+1)}$.

Montrer que \mathcal{M}' vérifie les propriétés (1), (2) et (3) pour le langage L.

- **7.e**] Conclure.
- **7.f**] En déduire que pour tout langage L de \mathcal{PP} , le langage $\overline{L} = \Sigma^* \setminus L$ appartient à \mathcal{PP} .

Les deux dernières questions sont indépendantes des précédentes. Nous considérons désormais la classe de complexité \mathcal{PP}^+ définie comme étant l'ensemble des langages $L \subseteq \Sigma^*$ pour lesquels il existe une machine de Turing probabiliste \mathcal{M} qui vérifie les propriétés (2), (3) et la propriété (1') suivante :

- (1') \mathcal{M} s'arrête sur toute entrée $x \in \Sigma^*$ et s'exécute en temps polynomial **espéré** p(|x|) où |x| désigne la longueur de x;
- **7.g**] Montrer que tout langage L de \mathcal{PP}^+ est décidable (c'est-à-dire qu'il existe une machine de Turing déterministe qui s'arrête sur toute entrée de Σ^* , en temps fini arbitraire, qui accepte tout mot $x \in L$ et rejette tout mot $x \notin L$).
- **7.h**] Montrer que tout langage décidable appartient à \mathcal{PP}^+ .