- 1. 已知 $\cos\alpha=\frac{24}{25},$ 求 $\sin\alpha$. 解答在这里利用"勾股数", 若 α 在第一象限, 则 $\sin\alpha=\frac{7}{25};$ 若 α 在第四象限, 则 $\sin\alpha=-\frac{7}{25}.$
- 2. 已知 $\tan \alpha = -\sqrt{5}$, 求 $\cos \alpha$. 解答在这里如图,若 α 在第二象限,则 $\cos \alpha = \frac{-1}{\sqrt{6}} = -\frac{\sqrt{6}}{6}$;若 α 在第四象限,则 $\cos \alpha = \frac{1}{\sqrt{6}} = \frac{\sqrt{6}}{6}$. (图 1) (2) 若角 α 的一个三角函数值是以字母形式给出的. 通常按照"倒、平、倒、商、倒"的顺序求解,还应注意象限的分类,即从已知的三角函数有关的平方关系中对另一个三角函数的符号进行分类,具体见下表: 已知平方关系的变式分类 $\sin \alpha \cos \alpha = \pm \sqrt{1-\sin^2 \alpha}$ 一、四象限和二、三象限 $\tan \alpha \sec \alpha = \pm \sqrt{1+\tan^2 \alpha} \cos \alpha \sin \alpha = \pm \sqrt{1-\cos^2 \alpha}$ 一、二象限和三、四象限 $\cot \alpha \csc \alpha = \pm \sqrt{1+\cot^2 \alpha} \sec \alpha \tan \alpha = \pm \sqrt{\sec^2 \alpha 1}$ 一、三象限和二、四象限 $\csc \alpha \cot \alpha = \pm \sqrt{\csc^2 \alpha 1}$
- 3. 已知 $\cos\alpha=m(m\neq0,\,m\neq\pm1),\,$ 求 α 的其他三角函数值. 解因为 $\sin^2\alpha+\cos^2\alpha=1,\,$ 故可按 $\sin\alpha$ 的符号 划分象限. (1) 若 α 在第一、二象限, 则 $\sec\alpha=\frac{1}{m}$ (倒), $\sin\alpha=\sqrt{1-m^2}$ (平), $\csc\alpha=\frac{1}{\sqrt{1-m^2}}$ (倒), $\tan\alpha=\frac{\sin\alpha}{\cos\alpha}=\frac{\sqrt{1-m^2}}{m}$ (商), $\cot\alpha=\frac{m}{\sqrt{1-m^2}}$ (倒). (2) 若 α 在第二、四象限, 则 $\sec\alpha=\frac{1}{m}$, $\sin\alpha=-\sqrt{1-m^2}$, $\csc\alpha=-\frac{1}{\sqrt{1-m^2}}$, $\tan\alpha=-\frac{\sqrt{1-m^2}}{m}$, $\cot\alpha=-\frac{m}{\sqrt{1-m^2}}$.
- 4. 三角恒等式的证明. 证明三角恒等式的常用方法有: (1) 切、割化弦. 将正切和余切、正割和余割化为正弦和余弦.
- 5. 求证: $\frac{1-\tan^2 x}{1+\tan^2 x} = \cos^2 x \sin^2 x$. 证明 $\because \frac{1-\tan^2 x}{1+\tan^2 x} = \frac{1-\frac{\sin^2 x}{\cos^2 x}}{1+\frac{\sin^2 x}{\cos^2 x}} = \frac{\cos^2 x \sin^2 x}{\cos^2 x + \sin^2 x} = \cos^2 x \sin^2 x$, 左 边 = 右边, ∴ 原式成立. (2) 正、余互化. 若要证之式仅含正切、余切,则常可将正切(余切)化为余切(正切).
- 6. 求证: $\frac{\tan\alpha}{\tan\alpha \tan\beta} = \frac{\cot\beta}{\cot\beta \cot\alpha}.$ 证明: $\frac{\cot\beta}{\cot\beta \cot\alpha} = \frac{\cot\beta(\tan\alpha\tan\beta)}{(\cot\beta \cot\alpha)(\tan\alpha\tan\beta)} = \frac{\tan\alpha(\cot\beta\tan\beta)}{\tan\alpha(\cot\beta\tan\beta) (\cot\alpha\tan\beta)}$ $= \frac{\tan\alpha}{\tan\alpha \tan\beta},$ 左边 = 右边, ∴ 原式成立. 有时利用公式 $\sin(90^\circ \alpha) = \cos\alpha$, $\cos(90^\circ \alpha) = \sin\alpha$, $\tan(90^\circ \alpha) = \cot\alpha$, $\cot(90^\circ \alpha) = \tan\alpha$, 也可进行"正、余互化".
- 7. 求证: $\sin^2 1^\circ + \sin^2 2^\circ + \dots + \sin^2 89^\circ = \frac{89}{2}$. 证明 $\because \sin^2 89^\circ = \cos^2 1^\circ$, $\sin^2 88^\circ = \cos^2 2^\circ$, \dots , $\sin^2 46^\circ = \cos^2 44^\circ$, \therefore 左边 $= (\sin^2 1^\circ + \cos^2 1^\circ) + (\sin^2 2^\circ + \cos^2 2^\circ) + \dots + (\sin^2 44^\circ + \cos^2 44^\circ) + \sin^2 45^\circ$ ____ = $44 + \frac{1}{2} = \frac{89}{2}$. \therefore 原式成立. (3) 以 "1" 逆代. 由于 $1 = \sin^2 \alpha + \cos^2 \alpha = \sec^2 \alpha \tan^2 \alpha = \csc^2 \alpha \cot^2 \alpha$ ____ = $\tan \alpha \cdot \cot \alpha = \sin \alpha \cdot \csc \alpha = \cos \alpha \cdot \sec \alpha = \tan \frac{\pi}{4} = \dots$, 故常可将"隐含的 1" 用以上各式逆代.
- 8. 求证 $\frac{1+2\sin\alpha\cos\alpha\cos^2\alpha-\sin^2\alpha=\frac{1}{+}\tan\alpha}{1-\tan\alpha}.$ 证明 : 左边 $=\frac{\sin^2\alpha+2\sin\alpha\cos\alpha+\cos^2\alpha\cos^2\alpha-\sin^2\alpha=\frac{(}{\cos\alpha}+\sin\alpha)}{(\cos\alpha+\sin\alpha)(\cos\alpha-\sin\alpha)}$

10.	关于正弦、余弦的"齐次题型"的解题方法,形如 $a\sin\theta + b\cos\theta$, ① $a\sin^2\theta + b\sin\theta\cos\theta + c\cos^2\theta$, ② $\frac{a\sin\theta + b\cos\theta}{a'\sin\theta + b'\cos\theta}$, ③ $\frac{a\sin^2\theta + b\sin\theta\cos\theta + c\cos^2\theta}{a'\sin^2\theta + b'\sin\theta\cos\theta + c'\cos^2\theta}$ ④ 的式子,分别称为正弦、余弦的齐次式或齐次分式。				
	$a'\sin\theta + b'\cos\theta' = a'\sin^2\theta + b'\sin\theta\cos\theta + c'\cos^2\theta$ 已知 $\tan\theta$ 的值, 欲求以上各式的值, 可按下述方法 (实质是以 "1" 代换〉求得: ① 式乘以 $\frac{\cos\theta}{\cos\theta}$, 得到 $(a\tan\theta + \cos\theta)$				
	$b)\cos\theta$, 然后求 $\cos\theta$ 即可; ③ 式分子、分母同除以 $\cos\theta$, 得到 $\frac{a\tan\theta+b}{a'\tan\theta+b'}$; ④ 式分子、分母同除以 $\cos^2\theta$, 得				
	到 $\frac{a \tan^2 \theta + b \tan \theta + c}{a' \tan^2 \theta + b' \tan \theta + c'}$;	② 式可先化为 $\frac{a\sin^2\theta + b\sin^2\theta}{\sin^2\theta}$	$\frac{a'\tan\theta + b'}{\theta + \cos\theta + c\cos^2\theta}$, 然后得到	$\frac{a\tan^2\theta + b\tan\theta + c}{\tan^2\theta + 1}.$	
11.	已知 $\tan \theta = -3$, 求下列各 $\cos \theta (3 \tan \theta + 1) = \pm \frac{1}{\sqrt{10}} (-2 \tan^2 \theta - 2 \tan \theta + 1)$	$9+1) = \pm \frac{8}{\sqrt{10}} = \pm \frac{4}{5}\sqrt{10}. \tag{2}$	$2)\sin^2\theta - 2\sin\theta\cos\theta + 1 = \frac{2\mathrm{s}}{2}$	$\frac{\sin^2 \theta - 2\sin \theta \cos \theta + \cos^2 \theta}{\sin^2 \theta + \cos^2 \theta} =$	
	$\frac{2 \tan^{2} \theta - 2 \tan \theta + 1}{\tan^{2} \theta + 1}$ ③ -960°, ④ -1600°" 这四个2		练题】(一) 角的概念的推广).	1 在 "① 160°, ② 480°,	
	А. ①	В. ① ②	C. ① ② ③	D. ① ② ③ ④	
12.	集合 $M = \{\alpha \alpha = k \cdot 90^{\circ}, k$	∈ N} 中各角的终边都在 ().		
	A. x 轴的正半轴上	B. y 轴的正半轴上	C. x 轴或 y 轴上	D. x 轴正半轴或 y 轴的	
				正半轴上	
13.	若 α 是第四象限的角, 则 π	- α 是 ().			
	A. 第一象限的角	B. 第二象限的角	C. 第三象限的角	D. 第四象限的角	
14.	若一圆弧长等于其所在圆的		· · · ·		
	A. $\frac{\pi}{3}$	B. $\frac{2}{3}\pi$. (D) $\sqrt{3}$. (D)2.	C. $\alpha + \beta = 2k\pi(k \in \mathbf{Z})$	D. $\alpha + \beta = (2k+1)\pi(k \in$	
	15.	. 若 α 和 β 的终边关于		$\mathbf{Z})$	
		y 轴对称, 则必有 ().			
		$(A)\alpha + \beta = \frac{\pi}{2} (B)\alpha + \beta =$			
		$(2k+\frac{1}{2})\pi(k\in\mathbf{Z})$			
16.	若 $-\frac{\pi}{2} < \alpha < \beta < \frac{\pi}{2}$,则 α -	- β 的取值范围是 ().			
	A. $(-\frac{\pi}{2}, 0)$	B. $(-\frac{\pi}{2}, \frac{\pi}{2})$	C. $(-\pi, 0)$	D. $(-\pi, \pi)$)	
17.	集合 $M = \{x x = \frac{k\pi}{2} \pm \frac{\pi}{4}, k\}$	$k \in \mathbf{Z}$ $\not \sqsubseteq P = \{x x = \frac{k\pi}{4}, k\}$	∈ Z} 之间的关系是 ().		
	A. $M \subset P$	B. $M \supset P$	C. $M = P$	D. $M \cap P = \emptyset$	
18.	(1) 与-45° 角终边相同的角的	的集合是 (2) 若	α 是第四象限的角, 则 α 的.	取值范围是	
	(3) 终边落在 x 轴负半轴上	的角的集合为	(4) 终边落在第一、三象限	角平分线上的角的集合	
	为 . (5) 若角 α -	与 β 的终边是互为反向延长约	线, 则 $lpha$, eta 之间满足关系式	是 (6) 若角	
	α 的终边和函数 $y = - x $ 的	J图象重合, 则 $lpha$ 的集合是	·		
19.	(1) 若 α 是第二象限的角, 原	则 $rac{lpha}{2}$ 是第 $_{oxdots}$ 象限的	均 角, 2α 是第 象阝	限的角. (2) 若 $\alpha = -4$,	
	则 α 是第 象限的	,— 约角.			

20.	(1) 在-720° 与 720° 之间, 与称, 且 $\alpha \in (-2\pi, 2\pi)$, 则 $\alpha =$		(2) 设角 α 的终边与	$\frac{7}{5}\pi$ 的终边关于 y 轴对	
91	(1) 在扇形 OAB 中,已知		2cm	が 一般 である かいかい かいかい かいかい かいしゅ かいしゅ かいしゅ かいしゅ かいしゅ	
21.	OAB 的面积为				
			则此弦和劣弧所组成的弓形		
			的扇形的面积等于		
22.	若集合 $A = \{x k\pi + \frac{\pi}{3} \le x$	$< k\pi + \frac{\pi}{2}, k \in \mathbf{Z}\}, B = \{x 4\}$	$-x^2 \ge 0$ },则 $A \cap B =$		
23.	已知扇形的周长为 30cm, 当	它的半径和圆心角各取什么	值时, 扇形的面积最大? 最大	面积是多少?	
24.	已知一扇形的圆心角是 120°	,求此扇形面积与其内切圆面	可枳之比.		
25.	在 1 时 15 分时, 时针和分针	所成的最小正角是多少弧度	? (二) 任意角的三角函数		
26.	若角 α 的终边落在直线 $y=$	$2x$ 上, 则 $\sin \alpha$ 的值等于 ().		
	A. $\pm \frac{1}{5}$	$B. \pm \frac{\sqrt{5}}{5}$	$C. \pm \frac{2}{5}\sqrt{5}$	D. $\pm \frac{1}{2}$	
27.	若点 $P(3,y)$ 在角 α 的终边	上,且满足 $y < 0$, $\cos \alpha = \frac{3}{5}$,	则 tan α 的值等于 ().		
	A. $-\frac{3}{4}$	B. $\frac{4}{3}$	C. $\frac{3}{4}$	D. $-\frac{4}{3}$	
28.	若三角形的两内角 α, β 满足	$\sin \alpha \cdot \cos \beta < 0$,则此三角别	形的形状 ().		
	A. 是锐角三角形	B. 是钝角三角形	C. 是直角三角形	D. 不能确定	
29.	若 α 是第三象限角,则下列 α	各式中不成立的是 ().			
	A. $\sin \alpha + \cos \alpha < 0$	B. $\tan \alpha - \sin \alpha < 0$	C. $\cos \alpha - \cot \alpha < 0$	D. $\cot \alpha \cdot \csc \alpha < 0$	
30.	下列四个命题中, 正确的是().			
	A. 终边相同的角的三角函数值相等				
	B. $\{\alpha \alpha = k\pi + \frac{\pi}{6}, k \in \mathbf{Z}\} \neq \{\beta \beta = -k\pi + \frac{\pi}{6}, k \in \mathbf{Z}\}$				
	C. 若 α 是第二象限角, 则				
	D. 第四象限的角可表示为	$\{\alpha 2k\pi + \frac{3}{2}\pi < \alpha < 2k\pi, k \in \mathbb{R}^n\}$	$\in \mathbf{Z} \}$		
31.	若 θ 是第三象限角. 且 $\cos \frac{\theta}{2}$	- < 0. 则 θ 是 ().			
	A. 第一象限角	B. 第二象限角	C. 第二象限角	D. 第四象限角	
32.	若 $(\frac{1}{2})^{\sin 2\theta} < 1$, 则 θ 是 ().			
	A. 第一或第二象限角	B. 第二或第四象限角	C. 第一或第三象限角	D. 第二或第三象限角	

33.	(1) 直角坐标平面内, 终边过			
	一点 $P(-3,a)$, 且 $\cos \alpha = -$	$\frac{3}{5}$, 则 $a =$ (3) 孝	肯点 $P(-\sqrt{3},m)$ 是角 θ 终边_	上一点,且 $\sin \theta = \frac{\sqrt{13}}{13}$
		•	冬边上,则 $\sin \alpha - \cos \alpha = $	10
34.	$(1)\frac{\sin x}{ \sin x } + \frac{ \cos x }{\cos x} + \frac{\tan x}{ \tan x }$ (用区间表示)是	•	(2) 若 sin α · cos α	lpha>0, 则 $lpha$ 的取值范围
35.		(3) 函数 $y = \sqrt{\cos x}$ 的第	定义域是 (4) 函数	
	的定义域是 (5)	函数 $y = \sqrt{\sin x} + \sqrt{-\tan x}$	的定义域是	
36.	若实数 α, β 满足 $ \cos \alpha - \cos \alpha $	$\cos \beta = \cos \alpha + \cos \beta , \text{ If. } \alpha$	$\alpha \in (\frac{\pi}{2}, \pi)$,则化简 $\sqrt{(\cos \alpha - \pi)}$	$(\cos \beta)^2$ 结果是 ().
	A. $\cos \alpha - \cos \beta$	B. $ \cos \alpha - \cos \beta $	C. $\cos \beta - \cos \alpha$	D. $ \cos \beta - \cos \alpha $
37.	(1) 已知角 α 终边上—点 <i>P P</i> 与 <i>x</i> 轴的距离和与轴的距)已知角 α 终边上一点
38.	求下列函数的定义域: (1)y =	$= \sqrt{\sin(\cos x)}. (2)y = \sqrt{\cos(x)}$	(sin x). (三) 同角三角函数的:	基本关系式
39.	下列四个命题中. 能够成立的			
	A. $\sin \alpha = \frac{1}{2} \text{ L.} \cos \alpha = \frac{1}{2}$	B. $\sin \alpha = \frac{1}{3}$ H. $\csc \alpha = 2$	C. $\sin \alpha = 0$ IL $\cos \alpha =$	
			-1	-2
40.	已知 $\sin \alpha = \frac{4}{5}$, 且 α 是第二	象限的角, 那么 $ an \alpha$ 的值等	等于 ().	
	A. $-\frac{3}{4}$	B. $-\frac{4}{2}$	C. $\frac{3}{4} (\bigcirc) \frac{4}{3}$.	D. $2k\pi + \frac{3}{2}\pi \le \theta \le 2k\pi + \frac{3}{2}\pi$
	4	0	. 若 $1 + \sin \theta \sqrt{1 - \cos^2 \theta} +$	2
			$\cos\theta\sqrt{1-\sin^2\theta} = 0. $ 则	
			θ 的取值范围是 ().	
			(A) 第三象限角. (B) 第	
			四象限角. $(C)2k\pi \leq \theta \leq$	
			$2k\pi + \frac{3}{2}\pi(k \in \mathbf{Z})$	
42.	若 α 是二角形的一个内角, 」	且 $\sin \alpha + \cos \alpha = \frac{2}{3}$,则这个	三角形的形状是().	
	A. 锐角三角形	B. 钝角三角形	C. 不等腰的直角三角形	D. 等腰直角三角形
43.	化简 $(\frac{1}{\sin\alpha} + \frac{1}{\tan\alpha})(1-\cos\alpha)$	sα) 的结果是 ().		
	A. $\sin \alpha$	B. $\cos \alpha$	C. $1 + \sin \alpha$	D. $1 + \cos \alpha$
44.	若 $\theta \neq \frac{k\pi}{2}(k \in \mathbf{Z})$, 则 $\frac{\sin \theta}{\cos \theta}$	$\frac{+\tan\theta}{+\cot\theta}$ ().		

B. 恒取负值 C. 恒取非正值 D. 恒取非负值

A. 恒取正值

	$g(1 + \cos \alpha) = m, \lg \frac{1}{1 - \cos \alpha}$		
A. $m + \frac{1}{n}$	B. $m-n$	C. $\frac{1}{2}(m+\frac{1}{n})$	D. $\frac{1}{2}(m-n)$
$36 \ $ 若 $\frac{\sin^2 \theta + 4}{\cos \theta + 1} =$	B. $m-n$ 2, 则 $(\cos\theta+3)(\sin\theta+1)$ 的信	互是 ().	
A 6	B 4	C 2	D 0

46. 若 $\sin \theta \cdot \cos \theta < 0$, $|\cos \theta| = \cos \theta$, 则点 $P(\tan \theta, \sec \theta)$ —定在 ().

B. 第二象限

A. 第一象限

47. 若
$$\sqrt{\frac{1-\sin x}{1+\sin x}} = \tan x - \sec x$$
,则 x 的取值范围是().

A. $2k\pi + \frac{\pi}{2} < x < 2k\pi +$ B. $k\pi + \frac{\pi}{2} < x < k\pi +$ C. $2k\pi < x < 2k\pi + \pi(k \in \mathbb{D})$ D. $2k\pi - \frac{\pi}{2} < x < 2k\pi + \frac{3\pi}{2}(k \in \mathbf{Z})$ \mathbf{Z} \mathbf{Z}

C. 第三象限

D. 第四象限

- 48. 若 $\alpha \in (0, 2\pi)$,则适合 $\sqrt{\frac{1+\cos\alpha}{1-\cos\alpha}} \sqrt{\frac{1-\cos\alpha}{1+\cos\alpha}} = 2\cot\alpha$ 的角 α 的集合是 (). A. $\{\alpha|0<\alpha<\pi\}$ B. $\{\alpha|0<\alpha<\frac{\pi}{2}\pi<\alpha<$ C. $\{\alpha|0<\alpha<\pi\alpha=\frac{3\pi}{2}\}$ D. $\{\alpha|0<\alpha<\frac{\pi}{2}\frac{3\pi}{2}<\alpha<2\pi\}$
- 49. (1) 若角 α 的终边过点 $(1, \tan \theta)$,且 $\theta \in (\frac{\pi}{2}, \pi)$,则 $\sin \alpha =$ ______. (2) 若 $\sin \alpha + \cos \alpha = \frac{1}{3}$,则 $\sin \alpha \cos \alpha =$ _____. (3) 化简 $\sin^2 \alpha + \cos^2 \alpha \sin^2 \beta + \cos^2 \alpha \cos^2 \beta =$ _____. (4) 化简 $\sin^2 \alpha + \sin^2 \beta \sin^2 \alpha \sin^2 \beta + \cos^2 \alpha \cos^2 \beta =$ _____. (5) 化简 $\sin^6 \alpha + \cos^6 \alpha + 3 \sin^2 \alpha \cos^2 \alpha =$ ____. (6) 若 θ 是第二象限角,且 $\sin \theta = \frac{m-3}{m+5}$, $\cos \theta = \frac{1-2m}{m+5}$,则 m =____.
- 50. (1) 计算下列各式: ① $\tan \alpha (1 \cot^2 \alpha) + \cot \alpha (1 \tan^2 \alpha) =$ ________; ② $(\sec^2 \beta 1)(1 \csc^2 \beta) + \tan \beta \cot \beta =$ ________; ③ $(\sec \alpha \cos \alpha)(\csc \alpha \sin \alpha)(\tan \alpha + \cot \alpha) =$ _______. (2) 若 $\alpha \in (-\frac{4}{3}\pi \frac{5}{4}\pi)$, 则 $\frac{\sin \alpha}{|\sin \alpha|} + \frac{|\cos \alpha|}{\cos \alpha} + \tan \alpha |\cot \alpha| =$ _______. (3) 若 θ 是第四象限的角,则 $\frac{1}{\cos \theta \sqrt{1 + \tan^2 \theta}} + \frac{2\cot \theta}{\sqrt{\frac{1}{\sin^2 \theta} 1}} =$ _______. (4) 若 $\cot \theta + \csc \theta = 5$, 则 $\sin \theta =$ _______. (5) 若 $\sin \alpha + \cos \alpha = \frac{\sqrt{3}}{3}$, 则 $\tan \alpha + \cot \alpha =$ ______.
- 51. (1) $\tan x = 2$,则① $\frac{1}{1-\sin x} + \frac{1}{1+\sin x} = _____;$ ② $\frac{1}{(\sin x 3\cos x)(\cos x \sin x)} = _____;$ ③ $\frac{1}{4}\sin^2 x + \frac{2}{3}\cos^2 x = _____.$ (2) 若 $\frac{2\sin^2 \alpha 3\cos^2 \alpha}{\cos^2 \alpha \sin^2 \alpha} = -4$,则 $\tan \alpha = ____.$ (3) 若 $(\sin \alpha + \cos \alpha)^2 = \frac{8}{5}$,则 $\tan \alpha = ____.$
- 52. 若 $\tan\alpha$ 和 $\tan\beta$ 是关于 x 的方程 $x^2-px+q=0$ 的两根, $\cot\alpha$ 和 $\cot\beta$ 是关于 x 的方程 $x^2-rx+s=0$ 的两根, 则 rs 等于 ().

A.
$$pq$$
 B. $\frac{1}{pq}$ C. $\frac{p}{q^2}$ D. $\frac{q}{p^2}$

53. 若
$$\sin x = \frac{a-b}{a+b} (0 < a < b)$$
, 则 $\sqrt{\cot^2 x - \cos^2 x}$ 的结果是 ().

$$A. \frac{4ab}{a^2 - b^2}$$

B.
$$-\frac{4ab}{a^2 - b^2}$$

C.
$$\frac{4ab}{a^2 + b^2}$$

D.
$$-\frac{4ab}{a^2 + b^2}$$

54. 若
$$\alpha$$
 在第一象限, 且 $\frac{1+\tan\alpha}{1-\tan\alpha}=3+2\sqrt{2}$, 则 $\cos\alpha$ 的值是 ().

A.
$$\frac{\sqrt{6}}{2}$$

B.
$$\frac{\sqrt{6}}{3}$$

C.
$$\frac{\sqrt{3}}{2}$$

D.
$$\frac{\sqrt{3}}{3}$$

55. 求下列各式的值:
$$(1)(1+\cot\alpha-\csc\alpha)(1+\tan\alpha+\sec\alpha)$$
. $(2)\frac{1-\sin^{6}\alpha-\cos^{6}\alpha}{\sin^{2}\alpha-\sin^{4}\alpha}$. $(3)\frac{1-\sin^{4}\alpha-\cos^{4}\alpha}{1-\sin^{6}\alpha-\cos^{6}\alpha}$

56. 求证下列各式:
$$(1)\frac{\tan \alpha - \cot \alpha}{\sec \alpha - \csc \alpha} = \sin \alpha + \cos \alpha$$
. $(2)\frac{\sin^2 \alpha}{1 + \cot \alpha} + \frac{\cos^2 \alpha}{1 + \tan \alpha} = 1 - \sin \alpha \cos \alpha$ $(3)(\frac{\sin \theta + \tan \theta}{\csc \theta + \cot \theta})^2 = \frac{\sin^2 \theta + \tan^2 \theta}{\csc^2 + \cot^2 \theta}$.

57. 利用 "1" 的代换证明下列各题:
$$(1)\frac{1-2\cos^2\alpha}{\sin\alpha\cos\alpha} = \tan\alpha - \cot\alpha$$
. $(2)\frac{\cot\alpha + \csc\alpha - 1}{\cot\alpha - \csc\alpha + 1} = \cot\alpha + \csc\alpha$. $(3)\tan\alpha$.

58. (1) 已知
$$\sin \theta + \cos \theta = \sqrt{2}$$
, 求 $\sin \theta - \cos \theta$ 的值. (2) 已知 $\sin \theta - \cos \theta = \frac{\sqrt{2}}{3}(0 < \theta < \frac{\pi}{2})$, 求 $\sin \theta + \cos \theta$ 的值. (3) 已知 $\sin \theta + m \cos \theta = n$, 求 $m \sin \theta - \cos \theta$ 的值. (4) 已知 $\sin \theta + \sin^2 \theta = 1$, 求 $\cos^2 \theta + \cos^4 \theta = 1$ 的值. (5) 已知 $\cos A = \cos \theta \cdot \sin C$, $\cos B = \sin \theta \cdot \sin C$ ($C \neq k\pi$, $k \in \mathbf{Z}$), 求 $\sin^2 A + \sin^2 B + \sin^2 C$ 的值.

60. 若
$$\sin(\pi + \alpha) = -\frac{3}{5}$$
, 则 ().

A.
$$\cos \alpha = \frac{4}{5}$$

B.
$$\tan \alpha = \frac{3}{4}$$

C.
$$\sec \alpha = -\frac{5}{4}$$

D.
$$\sin(\pi - \alpha) = \frac{3}{5}$$

61. 若
$$4\pi < \alpha < 5\pi$$
, $\cos \alpha = -\frac{1}{3}$, 则 $\tan \alpha$ 的值为 ().

A.
$$-2\sqrt{2}$$

B.
$$\pm 2\sqrt{2}$$

C.
$$\pm \frac{\sqrt{2}}{4}$$

D.
$$-\frac{\sqrt{2}}{4}$$

A.
$$\cos^3(-\alpha - \pi) = \cos^3 \alpha$$
 B. $\sin(\alpha - 3\pi) = \sin \alpha$ C. $\sec(3\pi - \alpha) = \frac{1}{\cos \alpha}$ D. $-\cot(5\pi - 2\alpha)$

C.
$$sec(3\pi - \alpha) = \frac{1}{\cos \alpha}$$

D.
$$-\cot(5\pi - 2\alpha) =$$

63. 若
$$\alpha, \beta, \gamma$$
 是一个三角形的三个内角,则在"① $\sin(\alpha + \beta) - \sin\gamma$, ② $\cos(\alpha + \beta) + \cos\gamma$, ③ $\tan\frac{\alpha + \beta}{2} \cdot \tan\frac{\gamma}{2}$, ④ $\tan(\alpha + \beta) - \tan\gamma$ " 这四个式子中,其值为常数的有().

A. 1 个

B. 2 个

C. 3 个

D. 4 个

64. 函数
$$y = \cos(\tan x)$$
 ().

A. 是奇函数, 但不是偶函

B. 是偶函数, 但不是奇函

C. 既不是奇函数, 也不是 D. 奇偶性无法确定

数

数

偶函数

65.	若函数 $f(x) = a \sin x + b \tan x + 1$ 满足 $f(5) = 7$, 则 $f(-5)$ 的值等于 ().				
	A. 5	B5	C. 6	D6	
66.	化简 $\tan(\frac{k\pi}{2} + \alpha)(k \in \mathbf{Z})$ 的	结果是 ().			
	A. $\tan \alpha$	B. $\pm \tan \alpha$	C. $\tan \alpha$ 或 $-\cot \alpha$	D. $\tan \alpha$ 或 $\cot \alpha$	
67.	计算下列各题: $(1)\sin^2 20^\circ +$	$\sin^2 70^\circ - \cos^2 20^\circ \cdot \cot^2 70^\circ \cdot$	$\csc^2 20^\circ =$ (2)ta	$n 1^{\circ} \cdot tan 2^{\circ} \cdot tan 3^{\circ} \cdot \cdots$	
	$\tan 87^{\circ} \cdot \tan 88^{\circ} \cdot \tan 89^{\circ} = \underline{\qquad}$ $(4)\log_4 \sin \frac{3}{4}\pi + \log_9 \tan(-\frac{5}{6})$				
68.	若锐角 α 终边上一点 A 的生	と标为 (2 sin 3, -2 cos 3), 则角	jα的弧度数为		
69.	化简下列各式: $(1)\frac{\sin(\pi+\alpha)}{\sin(5\pi-\alpha)}$	$\frac{\cos(\pi - \alpha)\tan(-\alpha + 3\pi)}{(\alpha)\tan(8\pi - \alpha)\cot(\alpha - 3\pi)}.$	(2) $\frac{\sin(\theta - \pi)\cos(\theta - \frac{3}{2}\pi)\cos(\theta -$	$\frac{\cot(-\theta - \pi)}{\csc(\frac{\pi}{2} - \theta)}.$	
70.	若三角形中的两内角 α, β 满	足 $\sin 2\alpha = \sin 2\beta$, 则这个三	角形的形状().		
	A. 只可能是等腰三角形.	B. 只可能是直角三角形,	C. 只可能是等腰直角三	D. 既可能是等腰三角形,	
		不可能是等腰三角形	角形	也可能是直角三角形	
71.	若函数 $f(x)$ 满足, $f(\cos x)$ =	$=rac{x}{2}(0 \le x \le \pi), \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	等于 ().		
	A. $\cos \frac{1}{2}$	B. $\frac{\pi}{3}$	C. $\frac{\pi}{4}$	D. $\frac{\pi}{2}$	
72.	若函数 $f(x) = a \sin(\pi x + \alpha)$ 等于 ().	$+b\cos(\pi x + \beta)$, 其中 a, b, α ,	β 都是非零实数, 且满足 $f($	1997) = -1 ,则 $f(1998)$	
	A1	B. 0	C. 1	D. 2	
73.	3. (1) 已知 $\cos(\frac{\pi}{6} - \theta) = a(a \le 1)$,求 $\cos(\frac{5\pi}{6} + \theta)$ 和 $\sin(\frac{2\pi}{3} - \theta)$ 的值. (2) 已知 $\tan(\pi - \alpha) = a^2$, $ \cos(\pi - \alpha) = -\cos\alpha$,求 $\sec(\pi + \alpha)$ 的值.				
74.	. (1) 求满足 $\sin(\frac{\pi}{4}-\alpha)=\frac{\sqrt{2}}{2},\ \alpha\in(0,2\pi)$ 的角 α . (2) 求 $\frac{\sin(k\pi-x)}{\sin x}-\frac{\cos x}{\cos(k\pi-x)}+\frac{\tan(k\pi-x)}{\tan x}-\frac{\cot x}{\cot(k\pi-x)}(k\in\mathbf{Z})$ 的取值范围. 二、三角函数的图象和性质【典型题型和解题技巧】				
75.	$f(x) = a \sin^2 x + b \sin x + c (a \neq 0)$ 型函数的值域.				
76.	. 求函数 $y = -2\sin^2 x + 2\sin x + 1$ 的值域. 解 $y = -2(\sin x - \frac{1}{2})^2 + \frac{3}{2}$. 考虑到 $-1 \le \sin x \le 1$, 因此, 若以 $\sin x$ 为横轴, 则函数图象应足抛物线夹在两直线 $\sin x = \pm 1$ 之间的一段 (如图 2). 观察图象易知 $y_{\max} = \frac{3}{2}$, $y_{\min} = -3$. 函数的值域是 $-3 \le y \le \frac{3}{2}$. (图 2) 注意此例属于复合函数的问题. 请读者注意, 高中阶段有关的函数问题, 常常以与二次函数有关的复合函数的题型出现, 解此类问题时, 应记住"配方, 画图, 截断"三个步驟.				
77.	已知 $0 \le x \le \frac{\pi}{2}$, 求函数 $y = a)^2 - a^2$, 又 $0 \le x \le \frac{\pi}{2}$, $\therefore 0 \le x \le \frac{\pi}{2}$			$y = f(\cos x) = (\cos x - \frac{1}{2})$ (2) (4)	

(图 3) (1) 如图 3(1), 此时 a < 0, m(a) = f(0) = 0, M(a) = f(1) = 1 - 2a. (2) 如图 3(2), 此时 $0 \le a \le \frac{1}{2}$, $m(a) = f(a) = -a^2$, M(a) = f(1)1 - 2a, . (3) 如图 3(3), 此时 $\frac{1}{2} \le a < 1$, $m(a) = f(a) = -a^2$, M(a)=f(a)=0. (4) 如图 3(4),此时 $a\geq 1,\ m(a)=f(1)=1-2a,\ M(a)=f(0)=0.$ 综上所述,可得

$$M(a) = \begin{cases} 1 - 2a(a < \frac{1}{2}), & m(a) = \begin{cases} 0(a < 0), \\ -a^2(0 \le a < 1), \\ 1 - 2a(a \ge 1). \end{cases}$$

- 78. $f(x) = \frac{a \sin x + b}{a' \sin x + b'}$ 型函数的值域。求此类函数的值域,可按去分母、反表示(即表示成 $\sin x = \frac{cy + d}{c'y + d'}$ 和 解不等式 $(\frac{cy+d}{c'y+d'} \le 1)$ 三个步骤求解.
- 79. 求函数 $y = \frac{2\sin x 1}{\sin x + 3}$ 的值域. 解由已知, 得 $\sin x = \frac{3y + 1}{2 y}$, 而 $|\sin x| \le 1$, 故 $|\frac{3y + 1}{2 y}| \le 1$, 即 $8y^2 + 10y 3 \le 1$ $(0, (4y-1)(2y+3) \le 0$. ∴ 函数的值域是 $y \in [-\frac{3}{2}, \frac{1}{4}]$.
- 80. $f(x) = \frac{a \tan^2 x + b \tan x + c}{a' \tan^2 x + b' \tan x + c'}$ 型函数的值域. 由于 $\tan x \in \mathbf{R}$, 故此类问题与 $\frac{at^2 + bt + c}{a't^2 + b't + c'} (t \in \mathbf{R})$ 类问题
- 81. 求函数 $y = \frac{\sec^2 x \tan x}{\sec^2 x + \tan x}$ 的值域. 解因为 $\sec^2 x = \tan^2 x + 1$, 故原式时变形为 $(y-1)\tan^2 x + (y+1)\tan x + (y-1) = 0$. (1) 若 y = 1, 则 $\tan x = 0$. (2) 若 $y \neq 1$, 则 $\tan x \in \mathbf{R}$, 得 $\triangle = (y+1)^2 4(y-1)^2 \geq 0$, 于是 $\frac{1}{3} \le y \le 3$ 且 $y \ne 1$. 综含 (1), (2) 知, 函数的值域是 $y \in [\frac{1}{3}, 3]$.
- 82. 解简单的三角不等式.
- 83. 解不等式 $\sin x \leq \frac{1}{2}$. 解在单位圆内绘出 $\sin x = \frac{1}{2}$ 的正弦线 (如图 4), 并结合 $y = \sin x$ 的单调性, 可得 $2k\pi \frac{7\pi}{6} \leq x \leq 2k\pi + \frac{\pi}{6} (k \in \mathbf{Z})$. ______(图 4)_____(图 5)
- 84. 解不等式 $|\cos 2x| \leq \frac{1}{2}$. 解原不等式为 $-\frac{1}{2} \leq \cos 2x \leq \frac{1}{2}$. 由图 5, 可得 $k\pi + \frac{\pi}{3} \leq 2x \leq k\pi + \frac{2\pi}{3}$, 于是 $\frac{k\pi}{2} + \frac{\pi}{6} \le x \le \frac{k\pi}{2} + \frac{\pi}{2} (k \in \mathbf{Z}).$
- 85. 解不等式 $\tan\frac{x}{2} \ge \sqrt{3}$. 解由图 6, 可得 $k\pi + \frac{\pi}{3} \le \frac{x}{2} \le k\pi + \frac{\pi}{2}$, $\therefore 2k\pi + \frac{2\pi}{3} \le x < 2k\pi + \pi(k \in \mathbf{Z})$. (图 6) 注 意有关 $\sin x, \cos x, \tan x$ 等的简单不等式, 通常可在单位圆中利用三角函数线的知识求解
- 86. 函数图象的 "平移" 和坐标的 "伸缩" (1) 图象的 "平移". 容易证明, 函数 y = f(x m)(m > 0) 的图象可由 函数 y = f(x) 的图象向右平移 m 个单位长度得到, 而函数 y = f(x+m)(m>0) 的图象可由函数 y = f(x)的图象向左平移 m 个单位长度得到.
- 87. 在同一个坐标系内, 为了得到 $y=3\sin(2x+\frac{\pi}{4})$ 的图象, 只需将 $y=3\cos 2x$ 的图象 (

选 D. (2) 坐标的 "伸缩". 容易证明, 函数 $y=f(\frac{x}{k})(k>0)$ 的图象, 可由将 y=f(x) 图象上每一点的横坐标 伸长到原来的 k 倍 (纵坐标不变) 而得到.

88. 将函数 $y = \cos x$ 图象上每一点的纵坐标保持不变,横坐标缩小为原来的一半,再将所得图象沿 x 轴向左平移 $\frac{\pi}{4}$ 个单位长度,则与所得新图象对应的函数的解析式为(

A. $y=\cos(2x+\frac{\pi}{4})$ B. $y=\cos(2x-\frac{\pi}{4})$ C. $y=\sin 2x$ D. $y=-\sin 2x$ 解横坐标缩小为原来的一半,可理解为伸长到原来的 $\frac{1}{2}$,故先得到函数 $y=\cos\frac{x}{1}=\cos 2x$. 再向左平移 $\frac{\pi}{4}$

后, 得 $y = \cos 2(x + \frac{\pi}{4})$, 即 $y = \cos(2x + \frac{\pi}{2}) = -\sin 2x$, 故选 D.

- 89. 函数 $y=3\sin x$ 的图象经过怎样的变换后,可得到 $y=3\sin(\frac{x}{2}-\frac{\pi}{4})$ 的图象?解法一先"伸缩",后"平 移". 第一步: 将函数 $y=3\sin x$ 的图象上的每一点, 纵坐标保持不变, 横坐标伸长到原来的 2 倍. 得到函 数 $y=3\sin\frac{x}{2}$ 的图象. 第二步: 将函数 $y=3\sin\frac{x}{2}$ 的图象向右平移 $\frac{\pi}{2}$ 个单位长度, 便得到函数 $y=3\sin\frac{x}{2}$ $3\sin\frac{1}{2}(x-\frac{\pi}{2})=3\sin(\frac{x}{2}-\frac{\pi}{4})$ 的图象. 解法二先 "平移", 后 "伸缩". 第一步: 将函数 $y=3\sin x$ 的图象, 向 右平移 $\frac{\pi}{4}$ 个单位长度, 得到函数 $y=3\sin(x-\frac{\pi}{4})$ 的图象. 第二步: 将函数 $y=3\sin(x-\frac{\pi}{4})$ 的每一点, 纵坐 标保持不变,横坐标伸长到原来的 2 倍,得到函数 $y=3\sin(\frac{x}{2}-\frac{\pi}{4})$ 的图象.
- 90. 函数 $y=A\sin(\omega x+\varphi)=\pm 1 (A\neq 0)$ 的对称轴. 观察图 7, 易求出 $\sin(\omega x+\varphi)=\pm 1$ 的解 x_0 , 则直线 $x=x_0$ 便是函数 $y = A\sin(\omega x + \varphi)$ 图象的对称轴. (图 7)
- 91. 函数 $y = \sin(2x + \frac{\pi}{4})$ 图象的一条对称轴是直线 ().

A. $x = \frac{3\pi}{4}$ B. $x = -\frac{3\pi}{4}$ C. $x = \frac{3\pi}{8}$ D. $x = -\frac{3\pi}{8}$ 解以 $x = -\frac{3\pi}{8}$ 代入,得 $\sin[1(-\frac{3\pi}{8}) + \frac{\pi}{4}] = \sin(-\frac{\pi}{2}) = -1$,故选 D. 注意若令 $\sin(2x + \frac{\pi}{4}) = \pm 1$,可得 $2x + \frac{\pi}{4} = k\pi + \frac{\pi}{2}$, 即得 $x = \frac{k\pi}{2} + \frac{\pi}{8}(k \in \mathbf{Z})$, 故函数 $y = \sin(2x + \frac{\pi}{4})$ 图象的对称轴直线的一般形式是 $x=rac{k\pi}{2}+rac{\pi}{8}(k\in\mathbf{Z})$. 请读者思考: 若函数 $f(x)=3\cos(2x+arphi)$ 是偶函数, 则 arphi 的值应取什么? 【训练题】 (一) 正弦函数、余弦函数的图象和性质

92. 若 MP, OM, AT 分别是 60° 角的正弦线、余弦线和正切线, 则 ().

A. MP < OM < AT B. OM < MP < AT C. AT < OM < MP D. OM < AT < MP

93. 在同一坐标系内, 曲线 $y = \sin x$ 与 $y = \cos x$ 的交点坐标是 (

A. $(2k\pi + \frac{\pi}{2}, 1)$ B. $(k\pi + \frac{\pi}{2}, (-1)^k)$ C. $(k\pi + \frac{\pi}{4}, \frac{(-1)^k}{\sqrt{2}})$ D. $(k\pi, 0)(k \in \mathbf{Z})$

94. 函数 $y = \log_1(\sin 2x)$ 为减函数的区间是 ().

A. $(k\pi, k\pi + \frac{\pi}{4}], k \in \mathbf{Z}$ B. $(k\pi, k\pi + \frac{\pi}{2}], k \in \mathbf{Z}$ C. $(2k\pi, 2k\pi + \frac{\pi}{4}], k \in \mathbf{Z}$ D. $(2k\pi, 2k\pi + \frac{\pi}{2}], k \in \mathbf{Z}$

	A. 是奇函数, 但非偶函数	B. 是偶函数, 但非奇函数	C. 既不是奇函数, 也不是 偶函数	D. 奇偶性无法确定		
96.	若 $0 < x < \frac{1}{2}$, 则下列各式不	成立的是 ().				
	$A. \sin(1+x) > \sin x$	$B. \cos(1+x) < \cos x$	C. $(1+x)^x > x^x$	$D. \log_x(1+x) > \log_x x$		
97.	若函数 $y = \cos(\sin x)$, 则下死	列结论正确的是 ().				
	A. 它的定义域是 [-1, 1]	B. 它是奇函数	C. 它的值域是 [cos 1, 1]	D. 它不是周期函数		
98.	下列四个函数中, 是偶函数目	$\mathbf{L}\mathbf{c}\ [0,rac{\pi}{2}]$ 上为增函数, 但不是	是周期函数的函数是 ().			
	A. $y = \sin x (x \in \mathbf{R})$	$B. y = \cos x (x \in \mathbf{R})$	C. $y = \sin x (x \in \mathbf{R})$	D. $y = \sin x + \cos x (x \in \mathbf{R})$		
99.	下列函数中,既在 $(0,\frac{\pi}{2})$ 上是	是增函数, 又是以 π 为最小正	周期的偶函数是 ().			
	A. $y = x^2 \cos x $	B. $y = \cos 2x$	C. $y = \sin x $	$D. y = \sin 2x $		
100.	要使 $\sqrt{(1+2\sin\theta)^2} = -(1-2\sin\theta)^2$			_		
	A. 第三、四象限	B. $\left[2k\pi - \frac{5\pi}{6}, 2k\pi - \frac{\pi}{6}\right]$	C. $\left[2k\pi - \frac{\pi}{6}, 2k\pi + \frac{7\pi}{6}\right]$	D. $[2k\pi - \frac{7\pi}{6}, 2k\pi - \frac{\pi}{6}](k \in \mathbf{Z})$		
101.	(1) 设 $\cos^2 x + 4\sin x - a = 0$					
	域是 (3) 函数 $y = \sin^2 x + 2\cos x (-\frac{\pi}{3} \le x \le \frac{2}{3}\pi)$ 的值域是 (4) 函数 $y = \frac{3\cos x + 1}{\cos x + 2}$					
	的值域是 (5) 函	数 $f(x) = \log_{\frac{1}{2}}(2\sin x)$ 的最	小值是			
102.	将下列各数由小到大排列: (1)sin 46°, cos 46°, cos 36°:	$(2)\sin 2, \cos 2, \tan 2$:			
	x < 1: (4)cos 1	°, sin 1°, cos 1, sin 1:	_·			
103.	(1) 在 $[0, 2\pi]$ 中, 满足 $\sin x \ge 1$					
	不等式 $ \cos 2x \le \frac{1}{2}$ 的解为		2	<u> </u>		
	$\theta \leq \pi$, $M \cap P = $	(5) 若 $-\pi \le x \le \pi$, 则	个等式 $\log_2(1+2\cos x) < 1$	的解为		
104.	若锐角 α, β 满足 $\sin \alpha < \cos \alpha$	8月则().	_	_		
	A. $\alpha > \beta$	B. $\alpha < \beta$	C. $\alpha + \beta < \frac{\pi}{2}$	D. $\alpha + \beta > \frac{\pi}{2}$		
105.	方程 $2^x = \cos x$ 的解有 ().				
	A. 0 个	B. 1 个	C. 2 个	D. 无穷多个		
106.	函数 $f(x) = (\sin \alpha)^{ \log_{\sin \alpha} x }$	$(2k\pi < \alpha < 2k\pi + \pi$ 且 $\alpha \neq$	$2k\pi + \frac{\pi}{2}, k \in \mathbf{Z}$) 的图象是 ()		
	A.	В.	С.	D.		

95. 函数 $y = \lg(1 - \sin x) - \lg(1 + \sin x)(.)$

107. 设 $x \in (0, \frac{\pi}{2})$, 则下列各式中正确的是 (

A. $\sin(\sin x) < \cos x <$ B. $\sin(\cos x) < \cos x <$ C. $\cos(\sin x) < \cos x <$ D. $\cos(\cos x) < \cos x <$ $\sin(\cos x)$ $\cos(\cos x)$ $\cos(\sin x)$

- 108. 求下列函数的定义域: $(1)y = \log_{\sin x}(2\cos x + 1)$. $(2)y = \sqrt{1 2\cos x} + \lg(2\sin x \sqrt{2})$. $(3)y = \sqrt{\sin x} + \lg(2\sin x \sqrt{2})$.
- 109. 画出下列函数的图象: $(1)y = |\sin x|$. $(2)y = |\cos x| + \cos x$. $(3)y = (\sin \alpha)^{|\log_{\sin \alpha} x|}(\alpha$ 为锐角). $(4)y = (\sin \alpha)^{|\cos x|}$ $\frac{|\sin x|}{\sin x}. (5)y = f(\sin x),$ 其中 $f(x) = \begin{cases} 2(x \ge 0), \\ -1(x < 0). \end{cases}$
- 110. (1) 若 $0 < \alpha < \frac{\pi}{4}$, 且 $\lg \sin \alpha + \log \cos \alpha + \lg 9 = \lg \tan \alpha + \lg \cot \alpha + \frac{1}{2} \lg 8$, 求 $\sin \alpha \cos \alpha$ 的值. (2) 设 x是第二象限角, 且满足 $\cos \frac{x}{2} + \sin \frac{x}{2} = -\frac{\sqrt{5}}{2}$, 求 $\sin \frac{x}{2} - \cos \frac{x}{2}$ 的值.
- 111. 若 $0 < \theta < \frac{\pi}{2}$, 比较 $M = \log_{\sin \theta} \cos \theta$ 与 $N = \log_{\cos \theta} \sin \theta$ 的大小.
- 112. 若 α, β 是关于 x 的二次方程 $x^2 + 2(\cos \theta + 1)x + \cos^2 \theta = 0$ 的两实根, 且 $|\alpha \beta| \le 2\sqrt{2}$, 求 θ 的范围.
- 113. (1) 求函数 $f(x) = a \sin x \sin^2 x$ 的最大值 g(a), 并画出 g(a) 的图象. (2) 若函数 $f(x) = \cos^2 x a \sin x + b$ 的最大值为 0, 最小值为-4, 实数 a>0, 求 a,b 的值. (二) 函数 $y=A\sin(\omega x+\varphi)$ 的图象
- 114. 函数 $y = 3\sin(2x + \frac{\pi}{6})$ 的图象的一条对称轴是直线 ().

B. $x = \frac{\pi}{c}$

C. $x = -\frac{\pi}{c}$

D. $x = \frac{\pi}{2}$

115. 先将函数 $y = \sin 2x$ 的图象向右平移 $\frac{\pi}{3}$ 个单位长度, 再将所得图象作关于 y 轴的对称变换, 则与最后所得图 象对应的函数的解析式是(

A. $y = \sin(-2x + \frac{\pi}{3})$ B. $y = \sin(-2x - \frac{\pi}{3})$ C. $y = \sin(-2x + \frac{2}{3}\pi)$ D. $y = \sin(-2x - \frac{2}{3}\pi)$

116. 将函数 $y=\sin x$ 的图象上所有点向左平移 $\frac{\pi}{3}$ 个单位长度, 再把所得图象上各点横坐标伸长到原来的 2 倍, 则与最后得到的图象对应的函数的解析式为 (

A. $y = \sin(\frac{x}{2} - \frac{\pi}{3})$ B. $y = \sin(\frac{x}{2} + \frac{\pi}{6})$ C. $y = \sin(\frac{x}{2} + \frac{\pi}{3})$ D. $y = \sin(2x + \frac{\pi}{3})$

117. 函数 $y = A\sin(\omega x + \varphi)(A > 0, \omega > 0, |\varphi| < \frac{\pi}{2})$ 的图象如图所示, 则 y 的表达式是 ().

A. $2\sin(\frac{10}{11}x + \frac{\pi}{6})$ B. $2\sin(\frac{10}{11}x - \frac{\pi}{6})$ C. $2\sin(2x + \frac{\pi}{6})$ D. $2\sin(2x - \frac{\pi}{6})$

118. 函数 $y = 2\sin(\frac{1}{2}x + \frac{\pi}{3})$ 在一个周期内的简图是 (). _____

	A(C)	U	C. 向右平移 $\frac{\pi}{3}$	D. 向左平移 $\frac{\pi}{3}$
	. 要得到函数 $y = \sin(\frac{x}{2} - \frac{\pi}{6})$ 的图象. 只需将函数 $y = \sin\frac{x}{2}$ 的图象 (). (A) 向右平移 $\frac{\pi}{6}$			
	4	为增函数的区间是 $\cos(2x-rac{\pi}{5})$ 为减函数的区间		- 2x) 为增喊数的区间
	将奇函数 $y=f(x)(x\in\mathbf{R})$ 于原点对称, 那么 C 所对应度, 再改变各点的横坐标($\omega=$, $\varphi=$		单位长度后,所得的图象为 先将函数 $f(x)=\sin x$ 的图象 为 $\frac{2\pi}{3}$ 的函数 $y=\sin(\omega x+1)$	C' ,而图象 C' 与 C 关象向右平移 $\frac{\pi}{5}$ 个单位长 $+\varphi)(\omega>0)$ 的图象,则
122.	若函数 $f(x) = 2\cos(\frac{\pi}{4}x + \frac{\pi}{3})$ A. 10	- - - - - - - - - - - - - - - - - - -	, 则正整数 <i>k</i> 的最小值为 (C. 12). D. 13
		$(arphi)(-\pi 是偶函数, 则$		
124.	根据周期涵数的定义, 求函数	$y = 2\cos(4x - \frac{\pi}{3})$ 的最小证	周期.	
		E周期为 3 的周期函数, 且 f 的周期函数. 且 $2 \le x \le 3$ l		
	取得最小值 $-\frac{1}{2}$, 求此函数的	$ u x + \varphi)(A > 0, \omega > 0)$ 在同一的解析式. (2) 已知函数 $f(x) =$ 最高点到其相邻的最低点间,和性质	$= A\sin(\omega x + \varphi)(A > 0, \omega)$	> 0) 的图象上一个最高
127.	函数 $y = \tan 3\pi x$ 的最小正月	周期为 ().		
	A. $\frac{1}{3}$	B. $\frac{2}{3}$	C. $\frac{6}{\pi}$	D. $\frac{3}{\pi}$
128.	下列函数中, 以 π 为最小正)	問期的偶函数是 ().		
	A. $y = \sin x \cdot \cos x$	B. $y = \cot x$	C. $y = \cos \frac{x}{2}$	$D. y = \cos^2 x$

129. 若 $a = \sin \frac{3}{4}$, $b = \cos \frac{3}{4}$, $c = \cot \frac{3}{4}$, 则 a, b, c 之间的大小关系是 ().

A. a > b > c

B. b > c > a

D. c > b > a

130. 若 $\tan(2x - \frac{\pi}{3}) \le 1$, 则 x 的取值范围是 (

A. $\frac{k\pi 2 - \frac{\pi}{12} \le x \le \frac{k}{\pi}}{2} + B. k\pi - \frac{\pi}{12} \le x < k\pi + C. \frac{k\pi 2 - \frac{\pi}{12} < x \le \frac{k}{\pi}}{2} + D. k\pi - \frac{\pi}{12} < x < k\pi + \frac{7}{24}\pi(k \in \mathbf{Z}) \qquad \frac{7}{24}\pi(k \in \mathbf{Z}) \qquad \frac{7}{24}\pi(k \in \mathbf{Z})$

131. 下列函数中, 同时满足条件 "① 在 $(0,\frac{\pi}{2})$ 为增函数, ② 为奇函数, ③ 以 π 为最小正周期"的函数是 (

B. $y = \cot x$

C. $y = \tan \frac{x}{2}$

D. $y = |\sin x|$

132. 函数 $y = \cot x(-\frac{\pi}{4} \le x \le \frac{\pi}{4})$ 的值域是 ().

A. [-1.1]

B. $(-\infty, -1] \cup [1, +\infty)$ C. $(-\infty, -1]$

- 133. 根据要求,求 x 的取值范围: $(1)\tan\frac{x}{2} \geq \sqrt{3}$:______. $(2)\cot 2x \leq -\sqrt{3}$:_____. $(3)|\sin x| \leq 1$ $|\cos x|$:______. (4) $\log_x \tan x > 0$:______. (5) $\log_{\sqrt{3}} \sin \frac{x}{2} - \log_{\sqrt{3}} \cos \frac{x}{2} > -1$, $\underline{\mathbf{H}} - 2\pi < x < 1$
- 134. 将下列各题中的数由小到大排列: (1)tan 1, tan 2, tan 3:______. (2)1, sin 1, cos 1, tan 1:______
- 135. 在"① $y = |\sin 2x|$, ② $y = |\cos x|$, ③ $y = |\tan 2x|$, ④ $y = |\tan x| + |\cot x|$ " 这四个函数中,最小正周期为 $\frac{\pi}{2}$ 的偶函数有(

A. 0 个

B. 1 个

C. 2 个

D. 3 个

136. $\sin \frac{2\pi}{3}$, $\cos 1$, $\tan 2$, $\cot 3$ 的大小关系为 (

A. $\sin \frac{2\pi}{3} > \cos 1 > B$. $\sin \frac{2\pi}{3} > \cos 1 > C$. $\cos 1 > \sin \frac{2\pi}{3} > D$. $\cos 1 > \sin \frac{2\pi}{3} >$

 $\tan 2 > \cot 3$

 $\tan 2 > \cot 3$

137. 若 $0 < \alpha < 2\pi$, 且满足 $\sin \alpha < \cos \alpha < \cot \alpha < \tan \alpha$, 则有 ().

A. $0 < \alpha < \frac{\pi}{4}$

B. $\frac{\pi}{4} < \alpha < \frac{\pi}{2}$ C. $\pi < \alpha < \frac{5}{4}\pi$ D. $\frac{5\pi}{4} < \alpha < \frac{3\pi}{2}$

- 138. 求下列函数的定义域: $(1)y = \sqrt{\sqrt{3} \cot \frac{x}{2}}$. $(2)y = \frac{\lg(\tan x 1)}{\sqrt{1 2\sin x}}$. $(3)y = \lg(\tan x 1) + \sqrt{\sin 2x}$.
- 139. (1) 求函数 $y = \frac{\sec^2 x + \tan x}{\sec^2 x \tan x}$ 的值域. (2) 已知 $\theta \in [-\frac{\pi}{3}, \frac{\pi}{4}]$, 求函数 $y = \sec^2 \theta + 2 \tan \theta + 1$ 的最大值与最
- 140. 根据条件比较下列各组数的大小: (1) 已知 $\frac{\pi}{3} < \theta < \frac{\pi}{2}$, 比较 $\sin \theta, \cot \theta, \cos \theta$ 的大小. (2) 已知 $0 < \alpha < \frac{\pi}{4}$, 比较 $\sin \alpha, \sin(\sin \alpha), \sin(\tan \alpha)$ 的大小. (3) 已知 $0 < \theta < \frac{\pi}{2}$, 比较 $\cos \theta, \sin(\cos \theta), \cos(\sin \theta)$ 的大小.
- 141. 利用锐角三角函数的定义解下列各题: (1) 若 $\alpha,\beta\in(0,\frac{\pi}{2})$, 且 $17\cos\alpha+13\cos\beta=17$, $17\sin\alpha=13\sin\beta$, 求 $\frac{\alpha}{2}+\beta$. (2) 设 $x\in[\frac{\pi}{4},\frac{\pi}{2}]$, 求证: $\csc x-\cot x\geq\sqrt{2}-1$.

- 142. 已知 $a\cos\alpha + b\sin\alpha = c$, $a\cos\beta + b\sin\beta = c(0 < \alpha, \beta < \pi, \alpha \neq \beta)$, 且 $\cos\alpha + \cos\beta = \cos\alpha \cdot \cos\beta$, 求证: $c^2 b^2 = 2ac$.
- 143. 已知函数 f(x) 满足 $af(\sin x) + bf(-\sin x) = c\sin x \cos x (-\frac{\pi}{2} \le x \le \frac{\pi}{2}, a^2 b^2 \ne 0)$, 求 f(x) 的解析式.
- 144. (1) 设 $\frac{\sin \alpha}{a^2 1} = \frac{\cos \alpha}{2a \sin 2\beta} = \frac{1}{1 + 2a \cos 2\beta + a^2}$, 求证: $\sin \alpha = \frac{a^2 1}{a^2 + 1}$. (2) 已知 $a \sec^2 \alpha b \cos \alpha = 2a$, $b \cos^2 \alpha a \sec \alpha = 2b$, 求 a, b 的关系式. (3) 已知 $a \sin^2 \theta + b \cos^2 \theta = m$, $b \sin^2 \varphi + a \cos^2 \varphi = n$, $a \tan \theta = b \tan \varphi(a, b, m, n$ 互不相等), 求证: $\frac{1}{m} + \frac{1}{n} = \frac{1}{a} + \frac{1}{b}$.
- 145. 利用单位圆和三角函数线证明: (1) 若 α 为锐角, 则① $\sin \alpha + \cos \alpha > 1$; ② $\sin \alpha < \alpha < \tan \alpha$; ③ $\alpha \cdot \sin \alpha + \cos \alpha > 1$. (2) 若 $0 < \beta < \alpha < \frac{\pi}{2}$, 则 $\sin \alpha \sin \beta < \alpha \beta < \tan \alpha \tan \beta$.
- 146. 若 α 是锐角, 求证: $\cos(\sin \alpha) > \sin(\cos \alpha)$.
- 147. (1) 已知函数 f(x) 满足 $f(x+a) = \frac{1-f(x)}{1+f(x)}(a$ 为常数, 且 $a \neq 0$), 求证: f(x) 是一个以 2a 为周期的周期函数. (2) 已知 f(x) 为偶函数, 其图象关于直线 $x = a(a \neq 0)$ 对称, 求证: f(x) 是一个以 2a 为周期的周期函数.
- 148. 已知 f(x), g(x) 是定义在 R 上的两个函数, 且 g(x) 为奇函数. 并满足: ① f(0) = 1; ② 对任何 x, y ∈ R 都有 f(x y) = f(x)f(y) + g(x)g(y). 求证: (1) 对任何 x ∈ R 都有 f²(x) + g²(x) = 1. (2)f(x) 是偶函数. (3) 若 存在非零实数 a 满足 f(a) = 1, 则 f(x) 是周期函数.
- 149. 利用图象求方程 $\sin x = \tan \frac{x}{2}$ 在区间 $[0, 8\pi]$ 上解的个数.
- 150. 设 $0 \le x \le \pi$, $f_1(x) = \sin(\cos x)$, $f_2(x) = \cos(\sin x)$. (1) 求 $f_1(x)$, $f_2(x)$ 的最大值和最小值. (2) 比较 $f_1(x)$ 与 $f_2(x)$ 的大小.