Resumo de Cálculo em uma Variável Complexa

Sumário

Números Complexos e propriedades

Exponencial, Limite e Derivada

Equações de Cauchy-Riemann

Cauchy-Riemann, Eq. de Laplace e Integral

Teorema da integral de Cauchy

Fórmulas da integral de Cauchy para domínios multi-conexos

Cauchy, Liouville e Morera

Teorema de Laurent

Resíduos

Métodos de resoluções de integrais reais

Números Complexos e propriedades

Propriedades 1 As seguintes propriedades valem para quaisquer $z, w, t \in \mathbb{C}$:

- (a) z + (w + t) = (z + w) + t
- (b) z + w = w + z
- (c) 0 + z = z
- (d) z + (-z) = 0
- (e) $z \cdot (w \cdot t) = (z \cdot w) \cdot t$
- (f) zw = wz
- $(g) 1 \cdot z = z$
- (h) $z \cdot z^{-1} = 1 \text{ se } z \neq 0$
- (i) $z \cdot (w+t) = z \cdot w + z \cdot t$

Definição 1 Um número complexo z é da forma $z=x+iy,\ x,y\in\mathbb{R}$ e $i=\sqrt{-1}$, que podemos escrever como um par de variáveis de \mathbb{R}^2 de forma que z=(x,y).

Definição 2 (Soma e produto nos complexos) Seja z=(x,y) e $w=(a,b), x,y,a,b,\in\mathbb{R}$, definimos soma e produto, para manter consistência com as propriedades acima, da seguinte forma

$$z + w = (x + a, y + b)$$
$$z \cdot w = (xa - yb, xb + ya)$$

Definição 3 (O Módulo) $Seja z = x + iy \ um \ complexo, \ então \ o \ módulo \ ("tamanho") \ de \ um \ número \ complexo \ é \ definido \ por$

$$\mid z \mid = \sqrt{x^2 + y^2}$$

Definição 4 (O Conjugado) Seja z = x + iy um complexo, então o conjugado de um número complexo é definido por

$$\overline{z} = x - iy$$

Propriedades 2 (Propriedades do conjugado) As seguintes propriedades valem para quaisquer $z, w \in \mathbb{C}$:

- (a) $\overline{\overline{z}} = z$, $\overline{z \pm w} = \overline{z} \pm \overline{w}$ $e \ \overline{zw} = \overline{z} \ \overline{w}$
- (b) $\overline{z/w} = \overline{z}/\overline{w} \text{ se } w \neq 0$
- (c) $z + \overline{z} = 2Re(z) \ e \ z \overline{z} = 2iImg(z)$
- (d) $z \in \mathbb{R}$ se e somente se $\overline{z} = z$
- (e) z é imaginário puro se e somente se $\overline{z} = -z$

Definição 5 (A Forma Polar) Seja z = x + iy com $z \neq 0$, então podemos escrever z como

$$z = r(\cos(\theta) + i sen(\theta))$$

Com as sequintes propriedades

1.
$$r = |z|$$

2.
$$cos(\theta) = \frac{x}{|r|}$$

3.
$$sen(\theta) = \frac{y}{|r|}$$

Teorema 1 Seja $n \in \mathbb{Z}_{++}$ e $z = r(cos(\theta) + isen(\theta))$. Então

$$z^n = r^n(\cos(n\theta) + i sen(n\theta))$$

Exponencial, Limite e Derivada

Definição 6 (Função exponencial) Seja $z \in \mathbb{C}$ com z = x + iy, $x, y \in \mathbb{R}$, então

$$e^z := e^x(cos(y) + isen(y))$$

Definição 7 (Cosseno e seno complexo) Para $z \in \mathbb{C}$, vamos definir

$$\cos(z) = \frac{1}{2}(e^{iz} + e^{-iz})$$

$$sen(z) = \frac{1}{2i}(e^{iz} - e^{-iz})$$

Propriedades 3 (Cos e sen) Seja $z = x + iz, x, y \in \mathbb{R}$. Então

(a)
$$cos(z) = cos(x)cosh(y) - isen(x)senh(y)$$

(b)
$$sen(z) = sen(x)cosh(y) + icos(x)senh(y)$$

(c)
$$|\cos(z)|^2 = \cos^2(x) + \sinh^2(y)$$

(d)
$$| sen(z) |^2 = sen^2(x) + senh^2(y)$$

Definição 8 (Função logaritmo) Seja $z \in \mathbb{C}, z \neq 0^1$

$$Ln(z) = ln \mid z \mid +iArg(z)$$

$$ln(z) = ln \mid z \mid +iarg(z)$$

Definição 9 (Limite) Seja $z_0 \in \mathbb{C}$ um ponto de acumulação de $D \subset \mathbb{C}$ e seja $f: D \to \mathbb{C}$. Dizemos que

$$\lim_{z\to z_0} f(z) = l$$

Quando para todo $\varepsilon > 0$, $\exists \delta > 0$ tal que

$$z \in D - \{z_0\} \ e \ |z - z_0| < \delta \Longrightarrow |f(z) - l| < \varepsilon$$

Definição 10 (Continuidade) Seja $f: D \subset \mathbb{C} \to \mathbb{C}$ e $z_0 \in D$. Dizemos que $f \notin$ contínua em z_0 se para todo $\varepsilon > 0$, $\exists \delta > 0$ tal que

$$z \in D - \{z_0\} \ e \ |z - z_0| < \delta \Longrightarrow |f(z) - f(z_0)| < \varepsilon$$

¹Aqui: $Arg(z) = \theta, \ \theta \in (-\pi, \pi] \ e \ arg(z) = \theta$

Definição 11 (Diferenciabilidade) Seja $f: D \subset \mathbb{C} \to \mathbb{C}$ e $z_0 \in D$ ponto de acumulação de D. Se existe o limite

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

dizemos que f é diferenciável em z_0 (ou derivável) e denotamos o limite acima por $f'(z_0)$.

Definição 12 (Funções Analíticas) Seja $f:D\subset\mathbb{C}\to\mathbb{C}$, f é dita analítica no domínio D se f é diferenciável em todos os pontos de D. E também é dita analítica em um ponto $z_0\in D$ se f é analítica em uma vizinhança de z_0 .

Equações de Cauchy-Riemann

Teorema 2 (Cauchy-Riemann (ida)) Seja f(z) = u(x,y) + iv(x,y) definida e contínua em alguma vizinhança de z = x + iy e suponha f diferenciável em z. Então, as derivadas parciais de u e v existem e satisfazem²

$$u_x(z) = v_y(z)$$
 e $u_y(z) = -v_x(z)$

Corolário 2.1 Se f é analítica em um domínio D, então as derivadas parciais de u e v existem em D e

$$u_x(z) = v_y(z)$$
 e $u_y(z) = -v_x(z)$

$$f' = u_x + iv_x \quad e \quad f' = v_y - iu_y$$

Teorema 3 (Cauchy-Riemann (volta)) Se as funções reais u(x,y) e v(x,y) de variáveis $x,y \in \mathbb{R}$ tiverem derivadas parciais contínuas que satisfazem as equações de Cauchy-Riemann em algum domínio D, então a função complexa f(z) = u(x,y) + iv(x,y) é analítica em D, com z = x + iy.

Cauchy-Riemann, Eq. de Laplace e Integral

Teorema 4 (Eq. de Laplace) Se f(z) = u(x,y) + iv(x,y) é analítica em um domínio D, (e as derivadas segundas de u e v existem e são continuas)³, então ambas u e v satisfazem a equação de Laplace.

$$\nabla u = u_{xx} + u_{yy} = 0$$

$$\nabla v = v_{xx} + v_{yy} = 0$$

Teorema 5 (Trigonométricas e logaritmo) Seja $z_1 \in \mathbb{C}$ e $z_2 \in \mathbb{C} - \{0\}$, temos que vale que

$$\sin'(z_1) = \cos(z_1)$$

$$\cos'(z_1) = -\sin(z_1)$$

$$Ln'(z_2) = \frac{1}{z_2}$$

²Chamadas aqui de **Equações de Cauchy-Riemann**

³Mais adiante, veremos que a parte em parenteses não é necessária.

Definição 13 (Integral) Seja $C \in \mathbb{C}$ uma curva $e f : D \subset \mathbb{C} \to \mathbb{C}$ com D contendo a curva C, então a integral de f na curva C é definida por

$$\int_{C} f(z)dz := \lim_{n \to \infty} \sum_{m=1}^{n} f(w_m) \Delta z_m$$

Onde $\Delta z_m = z_m - z_{m-1}$ e w_m é um ponto de C no arco que liga z_m a z_{m-1} . Em particular quando z(a) = z(b) temos uma curva fechada e denotamos a integral como

$$\oint_C f(z)dz$$

Propriedades 4 (Propriedades da Integral) Consequências diretas da definição de integral

1. Linearidade:

$$\int_C \alpha f_1(z) + \beta f_2(z) dz = \alpha \int_C f_1(z) dz + \beta \int_C f_2(z) dz$$

2. Caminho inverso:

$$\int_{-C} f(z)dz = -\int_{C} f(z)dz$$

 $Em\ que\ -C\ \'e\ a\ curva\ parametrizada\ no\ sentido\ contrário\ a\ C.$

3. Partição da Curva:

$$\int_C f(z)dz = \int_{C_1} f(z)dz + \int_{C_2} f(z)dz$$

Onde $C = C_1 \cup C_2$

Teorema 6 Seja f(z) = u(z) + iv(z) uma função analítica em torno da curva C. Podemos escrever

$$\int_{C} f(z)dz = \int_{C} G + i \int_{C} H \tag{1}$$

Em que $G, H : D \subset \mathbb{R}^2 \to \mathbb{R}^2$ com

$$G(x,y) := (u(x,y), -v(x,y))$$

 $H(x,y) := (v(x,y), u(x,y))$

e D contém a curva C, por Cauchy-Riemann os jacobianos J_G e J_H são simétricos i.e. G e H são conservativos e as integrais da Equação 1 são independentes de caminho.

Teorema da integral de Cauchy

Teorema 7 Seja $f: D \subset \mathbb{C} \to \mathbb{C}$ analítica com derivada contínua e seja C uma curva contida em D com início z_0 e fim z_1 . Dada uma parametrização "crescente" z(t) de C, $t \in [t_0, t_1]$, temos

$$\int_{C} f(z)dz = \int_{t_0}^{t_1} f(z(t)).z'(t)dt$$

Teorema 8 (Integral de Cauchy) Seja $f:D\subset\mathbb{C}\to\mathbb{C}$ analítica com derivada contínua e seja C uma curva contida em D com início e fim iquais. Então

$$\oint_C f(z)dz = 0$$

Teorema 9 Seja $f: D \subset \mathbb{C} \to \mathbb{C}$ analítica com derivada contínua e sejam C e \tilde{C} curvas em $D \subset \mathbb{C}$ com pontos inicial z_0 e final z_1 . Então

$$\int_{C} f(z)dz = \int_{\tilde{C}} f(z)dz$$

Lema 10 (ML inequality) Seja f contida num domínio D contendo a curva C. Suponha $M \geq 0$ t.q. $|f(z)| \leq M \ \forall z \in \mathbb{C}$ e denote por L o comprimento de C. Então

$$\left| \int_C f(z) dz \right| \le ML$$

Teorema 11 (TFC complexo) Seja $D \subset \mathbb{C}$ um domínio (aberto simplesmente conexo) e $f: D \to \mathbb{C}$ analítica com derivada contínua. Sejam $z_0, z_1 \in D$ e C uma curva contida em D com ponto inicial z_0 e final z_1 . Seja $F: D \to \mathbb{C}$ tal que $F'(z) = f(z), \ \forall z \in D$. Então

$$\int_C f(z)dz = F(z_1) - F(z_0)$$

Teorema 12 (Integral indefinida) Se f é analítica em um aberto simplesmente conexo D, então existe F definida em D tal que F' = f em D.

Fórmulas da integral de Cauchy para domínios multi-conexos

Teorema 13 (Duplamente Conexo) Seja $D \subset \mathbb{C}$ duplamente conexo com C_1 "borda exterior" e C_2 "borda interior" com ambas as curvas orientadas no sentido anti-horário. Suponha D^* aberto contendo D e $f: D^* \to \mathbb{C}$ analítica. Então

$$\int_{C_1} f(z)dz = \int_{C_2} f(z)dz$$

Teorema 14 (Multi-conexo (generalização do caso anterior)) Se f for analítica em D^* multi-conexo com C_1, \ldots, C_n "borda interior" e C "borda exterior", onde todas são orientadas no sentido anti-horário. Então

$$\int_{C} f(z)dz = \sum_{j=1}^{n} \int_{C_{j}} f(z)dz$$

Teorema 15 (Teorema da Integral de Cauchy) Suponha f analítica em um domínio simplesmente conexo D. Então, $\forall z_0 \in D$ e qualquer curva simples $C \subset D$ que contorna z_0 no sentido anti-horário, temos

$$\oint_C \frac{f(z)}{z - z_0} dz = 2\pi i f(z_0)$$

ou de maneira equivalente,

$$f(z_0) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{z - z_0} dz$$

Teorema 16 (Teorema da Integral de Cauchy para derivada) Suponha f analítica em um domínio simplesmente conexo D. Então, $\forall z_0 \in D$ e qualquer curva simples $C \subset D$ que contorna z_0 no sentido anti-horário, a n-ésima derivada de $f(z_0)$ é

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \oint_C \frac{f(z)}{(z-z_0)^{n+1}} dz$$

Cauchy, Liouville e Morera

Teorema 17 (Desigualdade de Cauchy) Suponha f analítica num domínio simplesmente conexo contendo C (fechado simples) com z_0 no "interior". Seja $M \ge 1, n \in \mathbb{N}$, temos

$$\left| f^{(n)}(z_0) \right| = \frac{n!}{2\pi} \left| \oint_C \frac{f(z_0)}{(z - z_0)^{n+1}} dz \right|$$

$$\leq n! \frac{M}{r^n}$$

Onde, M é cota superior para |f(z)| no círculo \hat{C} centrado em z_0 de raio r > 0 e que esteja "dentro" de C.

Teorema 18 (Teorema de Liouville) Se uma função inteira (analítica em todo \mathbb{C}) é limitada em valor absoluto de \mathbb{C} , então essa função é constante.

Teorema 19 (Teorema de Morera (recíproca de Cauchy)) Se f é contínua em um domínio simplesmente conexo D e se

$$\oint_C f(z)dz = 0$$

para cada curva fechada simples em D, então f é analítica em D.

Teorema de Laurent

Teorema 20 (Teorema de Laurent) Seja f(z) analítica num domínio entre dois círculos concêntricos C_1 e C_2 com centro z_0 . Então, f(z) pode ser representado pela **série de Laurent**

$$f(z) = \sum_{n=0}^{\infty} a_n(z - z_0) + \sum_{m=1}^{\infty} \frac{b_n}{(z - z_0)^m}$$

para z no anel definido por C_1 e C_2 em que

$$a_n = \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z - z_0)^{n+1}} dz, \ n \ge 0, \ n \in \mathbb{Z}$$

$$b_m = \frac{1}{2\pi i} \oint_C f(z)(z - z_0)^{m-1} dz, \ m \ge 1, \ m \in \mathbb{Z}$$

Com C qualquer curva fechada simples orientada no sentido anti-horário contida no anel C_1 , C_2 .

Definição 14 (Singularidade) Dizemos que z_0 é uma **singularidade** de uma função complexa f, se f não está definida em z_0 ou não é analítica em z_0 .

Resíduos

Definição 15 (Polo) Um **polo** é uma singularidade na qual os coeficientes não nulos da parte principal da série de Laurent são finitos.

Definição 16 (Singularidade essencial) Uma singularidade essencial é uma singularidade que não é um polo.

Teorema 21 Seja f uma função complexa e z₀ um polo de f. Então,

$$\lim_{z \to z_0} |f(z)| = \infty$$

Teorema 22 Seja z_0 uma singularidade (isolada) essencial de uma função complexa f. Então, f toma todos os valores, com um valor excepcional no máximo, numa vizinhança arbitrariamente pequena de z_0 .

Teorema 23 (Resíduos em polos) Suponha z_0 um polo simples de f, i.e., z_0 é um polo de ordem m = 1. Então, localmente para $z \neq z_0$ podemos calcular o resíduo de z_0 em f como

$$Res_{z=z_0} f(z) = b_1 = \lim_{z \to z_0} (z - z_0) f(z)$$

Ou se f é da forma $f(z) = \frac{p(z)}{q(z)}$ com p e q analíticas em z_0 , em que z_0 é raiz simples de q (ou seja, $q'(z_0) \neq 0$, mas $q(z_0) = 0$) $\forall z \neq z_0$ numa vizinhança de z_0 , então

$$Res_{z=z_0} f(z) = b_1 = \frac{p(z_0)}{q'(z_0)}$$

Teorema 24 Zeros de funções analíticas complexas não identicamente nulas são isolados.

Teorema 25 Se q é analítica e z_0 é raiz de ordem m de q, i.e., $q(z_0) = 0, \ldots, q^{(m-1)}(z_0) = 0$ mas $q^{(m)}(z_0) \neq 0$, então z_0 é **polo de ordem m** de $\frac{1}{q}$.

Teorema 26 (Teorema dos Resíduos) Seja C uma curva fechada simples orientada no sentido antihorário contornando uma quantidade finita de singularidades z_1, \ldots, z_m de uma função complexa f. Então

$$\oint_C f(z)dz = 2\pi i \sum_{j=1}^m Res_{z=z_0} f(z)$$

Métodos de resoluções de integrais reais

Definição 17 (Valor principal) Se f é uma função continua em $(-\infty, \infty)$. Então, o valor principal de Cauchy da integral de f em $(-\infty, \infty)$ é definido como

p.v.
$$\int_{-\infty}^{\infty} f(x)dx := \lim_{R \to \infty} \int_{-R}^{R} f(x)dx$$

1. Integrais Trigonométricas

Se queremos calcular uma integral da forma

$$I = \int_0^{2\pi} f(\cos(\theta), \sin(\theta)) d\theta$$

Podemos parametrizar no círculo unitário com a parametrização

$$z(\theta) = e^{i\theta}, \ 0 \le \theta \le 2\pi$$
$$d\theta = \frac{dz}{iz}$$

e pela parametrização podemos reescrever

$$\cos(\theta) = \frac{1}{2}(e^{i\theta} + e^{-i\theta}) = \frac{1}{2i}\left(z + \frac{1}{z}\right)$$
$$\sin(\theta) = \frac{1}{2}(e^{i\theta} - e^{-i\theta}) = \frac{1}{2i}\left(z - \frac{1}{z}\right)$$

Exemplo 1 Calcule

$$I = \int_0^{2\pi} \frac{1}{5 + 4\cos(\theta)} d\theta$$

Podemos parametrizar como descrito acima de forma que

$$I = \int_0^{2\pi} \frac{1}{5 + 4\cos(\theta)} d\theta$$
$$= \int_{\alpha} \frac{1}{5 + 4 \cdot \frac{1}{2}(z + \frac{1}{z})} \frac{dz}{iz}$$
$$= \frac{1}{2i} \int_{\alpha} \frac{1}{(z + 2)(z + \frac{1}{2})} dz$$

Temos 2 polos $z_1=-2$ e $z_2=-\frac{1}{2},$ mas só z_1 está na curva, então

$$I = \frac{1}{2i} \int_{\alpha} \frac{1}{(z+2)(z+\frac{1}{2})} dz$$

$$= \frac{1}{2i} \cdot 2\pi i \cdot \operatorname{Res}_{z=-\frac{1}{2}} f(z)$$

$$= \pi \cdot \lim_{z \to -\frac{1}{2}} \left(z + \frac{1}{2}\right) \cdot \frac{1}{(z+2)(z+\frac{1}{2})}$$

$$= \pi \cdot \lim_{z \to -\frac{1}{2}} \frac{1}{z+2}$$

$$= \frac{2\pi}{2}$$

Exemplo 2 Calcule

$$I = \int_0^{\pi} \frac{1}{2 - \cos(\theta)} d\theta$$

Aqui temos um problema, o intervalo não é $(0,2\pi)$, então temos que reescrever a integral de forma que fique o intervalo desejado. Note que, usando $\cos(\theta) = \cos(2\pi - \theta)$, e tomando $t = 2\pi - \theta$ podemos reescrever a integral de forma que

$$\int_0^{\pi} \frac{1}{2 - \cos(\theta)} d\theta = -\int_{\pi}^{2\pi} \frac{1}{2 - \cos(t)} dt = \int_{\pi}^{2\pi} \frac{1}{2 - \cos(t)} dt$$

 $Ou\ seja,$

$$\int_0^{2\pi} \frac{1}{2 - \cos(\theta)} d\theta = 2I$$

Agora podemos seguir o método acima,

$$2I = \int_0^{2\pi} \frac{1}{2 - \cos(\theta)} d\theta$$
$$= \int_{\alpha} \frac{1}{2 - \frac{1}{2} \cdot (z - \frac{1}{z})} \frac{dz}{iz}$$
$$= -\frac{2}{i} \int_{\alpha} \frac{1}{z^2 - 4z - 1} dz$$

Que tem polos $z_1=2-\sqrt{3}$ e $z_2=2+\sqrt{3}$, mas só z_1 está na curva α

$$\begin{split} 2I &= -\frac{2}{i} \int_{\alpha} \frac{1}{(z-2+\sqrt{3})(z-2-\sqrt{3})} dz \\ &= -\frac{2}{i} \cdot 2\pi i \cdot \text{Res}_{z=2-\sqrt{3}} f(z) \\ &= -4\pi \cdot \lim_{z \to 2-\sqrt{3}} (z-2+\sqrt{3}) \frac{1}{(z-2+\sqrt{3})(z-2-\sqrt{3})} \\ &= -4\pi \cdot \lim_{z \to 2-\sqrt{3}} \frac{1}{z-2-\sqrt{3}} \\ &= \frac{2\pi}{\sqrt{3}} \end{split}$$

Logo, $I = \frac{\pi}{\sqrt{3}}$

2. Integrais Improprias de funções racionais

Seja uma integral da forma

$$I = \int_{-\infty}^{\infty} f(x)dx$$

Onde f é uma função racional, então

$$I = \int_{-\infty}^{\infty} f(x)dx$$

$$= \int_{-\infty}^{0} f(x)dx + \int_{0}^{\infty} f(x)dx$$

$$= \lim_{R \to \infty} \int_{-\infty}^{0} f(x)dx + \lim_{R \to \infty} \int_{0}^{\infty} f(x)dx$$

Se os 2 limites existem então

$$I = \text{p.v.} \int_{-\infty}^{\infty} f(x)dx$$

Exemplo 3 Calcule

$$I = \int_{-\infty}^{\infty} \frac{1}{x^4 + 4} dx$$

Seguindo o método acima

$$I = \lim_{R \to \infty} \int_{-R}^{0} f(x)dx + \lim_{R \to \infty} \int_{0}^{R} f(x)dx$$
$$= \text{p.v.} \int_{-\infty}^{\infty} f(x)dx$$
$$= \lim_{R \to \infty} \int_{-R}^{R} \frac{1}{x^4 + 4} dx$$

Que vale, pois os limites existem. Então, podemos reparametrizar num semi-circulo de forma que mantemos uma curva nos $\mathbb R$ que é a desejada

$$\int_{\alpha} \frac{1}{z^4 + 4} dz = \int_{\alpha_1} \frac{1}{z^4 + 4} dz + \int_{\alpha_2} \frac{1}{z^4 + 4} dz$$

Onde $\alpha = \alpha_1 + \alpha_2$, como na figura

Figure 1: Curvas no semi-circulo

Como z = x + yi, $x, y \in \mathbb{R}$, em α_1 temos y = 0. Assim tomando $R \to \infty$

$$\lim_{R\to\infty}\int_{\alpha}\frac{1}{z^4+4}dz=\lim_{R\to\infty}\int_{-R}^R\frac{1}{x^4+4}dx+\lim_{R\to\infty}\int_{\alpha_2}\frac{1}{z^4+4}dz$$

Temos 3 limites e um deles é o que queremos, então vamos calcular os outros 2

$$\begin{split} \lim_{R \to \infty} \int_{\alpha} \frac{1}{z^4 + 4} dz &= \lim_{R \to \infty} \int_{\alpha} \frac{1}{(z - 1 - i)(z + 1 - i)(z + 1 + i)(z - 1 + i)} dz \\ &= \lim_{R \to \infty} \left(2\pi i \cdot \left(\operatorname{Res}_{z = 1 + i} f(z) + \operatorname{Res}_{z = -1 + i} f(z) \right) \right) \\ &= \lim_{R \to \infty} \left(2\pi i \cdot \left(\frac{-1 - i}{16} + \frac{1 - i}{16} \right) \right) \\ &= \lim_{R \to \infty} \left(\frac{\pi}{4} \right) = \frac{\pi}{4} \end{split}$$

E para o outro limite parametrizamos por $z(t) = R \cdot e^{it} \ (0 \le t \le t)$

$$\lim_{R \to \infty} \left| \int_{\alpha_2} \frac{1}{z^4 + 4} dz \right| \le \lim_{R \to \infty} \int_{\alpha_2} \frac{1}{R^4 + 4} dz$$

$$= \lim_{R \to \infty} \left(\frac{1}{R^4 + 4} \int_{\alpha_2} dz \right)$$

$$= \lim_{R \to \infty} \left(\frac{1}{R^4 + 4} \pi R \right)$$

$$= 0$$

Ou seja,

$$\frac{\pi}{4} = I + 0$$

 $Logo, I = \frac{\pi}{4}$