\Box

Dense Subspaces of LP(Rn)

Theorem 1: Let $1 \le p \le \infty$. The collection of all simple Rinchaus $d = \sum_{j=1}^{N} a_j \chi_{E_j}$ with $m(E_j) < \infty$ (1c $j \le N$) is dense in $L^p(\mathbb{R}^n)$.

Proof: We know I seq of simple hunchions Edn3 such that $4n(x) \rightarrow f(x)$ a.e. x and $|4n| \le |4|$.

Since I cha-fip = 2 pifip, the result follows from the DCT.

Note that if ofn = \(\sum_{j=1}^{N} a_j \chi_{\varepsilon_j} \) with a; 's all dishirt (& \$\pm 0)\$

& Es's all disjoint

then m(E) cos for IsjaN, since

$$|\mathcal{L}_{n}|^{p} = \sum_{j=1}^{N} |a_{j}|^{p} \chi_{E_{j}}$$

$$\Rightarrow \int |\mathcal{L}_{n}|^{p} = \sum_{j=1}^{N} |a_{j}|^{p} m(E_{j}) \leq \int |f|^{p} < \infty.$$

This completes the proof for 1=p<0.

Exercise: Prove the p=00 case of the above theorem.

Theorem 2

Let $1 \le p < \infty$, then continuous functions with compact support are dense in $L^p(\mathbb{R}^n)$, i.e. for any $f \in L^p(\mathbb{R}^n)$ and $\epsilon > 0$, $\exists g \in C_c(\mathbb{R}^n)$ s.t. $||f-g||_{p} < \epsilon$.

Proof:

Let $f \in L^p(\mathbb{R}^n)$ and $\varepsilon > 0$. We have just shown that \exists simple durchan $e^p = \sum_{i=1}^{N} a_i \chi_{\hat{e}_i}$ with $a_i \neq 0$

such that

[|f-φ|P < εP.

· We now show that "step functions" are dense in the space of all simple functions (and hence in LP(R") also).

Note that her each j,

$$m(E_j) = \frac{1}{|a_j|P} \int_{E_j} |\varphi|^p \leq \frac{1}{|a_j|P} \int_{\mathbb{R}^n} |\xi| < \infty$$

Now, by Questian I from Homework 3, we know I a set A; that in a finite union of closed cubes such that

m (Ej ΔA;) < ε (I εj ε N) & A; 's disjoint E; ι Α; υ Α; ι Ε; . ¿ Can we really do this?

Now let
$$\mathcal{F} = \sum_{j=1}^{N} a_j \chi_{A_j}$$

$$\Rightarrow \int |\widetilde{\varphi} - \varphi|^{p} \leq \sum_{j=1}^{N} |a_{j}|^{p} \int |\chi_{A_{j}} - \chi_{\varepsilon_{j}}|^{p}$$

$$= \sum_{j=1}^{N} |a_{j}|^{p} m(A_{j} \Delta \varepsilon_{j})$$

$$< \sum_{j=1}^{N} |a_{j}|^{p}$$

$$< \sum_{j=1}^{N} |a_{j}|^{p}$$

. To finish we need only show that if $f = \chi_Q$ with Q a closed cube in \mathbb{R}^n and $\epsilon > 0$, then $\exists g \in C_c(\mathbb{R}^n)$ such that $\int |f - g|^p < \epsilon$.

We know I open set $G \subseteq \mathbb{R}^n$ such that $Q \subseteq G$ and $m(G \cap Q) < E$.

Simply let 9 be any continuous function with

for then
$$\int |f-g| \leq \int 1 = m(G \circ Q) < \xi.$$

Exercise: Show that Theorem 2 fails for p=00