## **GANPAT UNIVERSITY**



## U. V. PATEL COLLEGE OF ENGINEERING

#### PRACTICAL LIST

**2CEIT601: Theory of Computation** 

Computer Engineering/ Information Technology/ Computer Engineering with Artificial Intelligence

**A.Y. 2023-2024(Even Session)** 

# GANPAT UNIVERSITY U.V. PATEL COLLEGE OF ENGINEERING

#### B. Tech Semester VI

Computer Engineering/ Information Technology/ Computer Engineering with Artificial Intelligence 2CEIT601: Theory of Computation

### **List of Experiments**

#### Tools - Telnet

| Sr. No | Experiments                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |  |  |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|
| 1      | Introduction to LEX Programming Environment for formal language.                                                                                                                                                                         |  |  |  |  |  |  |  |  |  |  |
|        | <ul> <li>Introduction of "VI" Editor with Commands.</li> </ul>                                                                                                                                                                           |  |  |  |  |  |  |  |  |  |  |
|        | <ul> <li>Introduction of Lex.</li> </ul>                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |  |  |
|        | Explain How to Compile Lex program with sample program.                                                                                                                                                                                  |  |  |  |  |  |  |  |  |  |  |
| 2      | Write a separate Lex program for following:                                                                                                                                                                                              |  |  |  |  |  |  |  |  |  |  |
|        | 1. Write RE that accepts zero or one (at most one) occurrence of 'a' over t                                                                                                                                                              |  |  |  |  |  |  |  |  |  |  |
|        | alphabets {a,b}.                                                                                                                                                                                                                         |  |  |  |  |  |  |  |  |  |  |
|        | 2. Write RE that accepts either 'a' or 'b'.                                                                                                                                                                                              |  |  |  |  |  |  |  |  |  |  |
|        | 3. Write RE that accept either 'a' or 'b' or 'c' without using  .                                                                                                                                                                        |  |  |  |  |  |  |  |  |  |  |
|        | 4. Write RE that accepts zero or more occurrences of 'a' and single occurrences of 'b'.                                                                                                                                                  |  |  |  |  |  |  |  |  |  |  |
|        | 5. Write RE that accepts all the strings which ends with 'b'.                                                                                                                                                                            |  |  |  |  |  |  |  |  |  |  |
|        | 6. Write RE for a new line.                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |  |  |
|        | 7. Write RE that accepts '\n'.                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |  |  |
|        | 8. Write a RE that accepts any character except '\' and 'n'.                                                                                                                                                                             |  |  |  |  |  |  |  |  |  |  |
|        | 9. Write all the strings which are accepted by [a b c*].                                                                                                                                                                                 |  |  |  |  |  |  |  |  |  |  |
|        | 10. Write a RE that accepts any character except 'a' and 'b'.                                                                                                                                                                            |  |  |  |  |  |  |  |  |  |  |
| 3      | Write a separate Lex program for following:                                                                                                                                                                                              |  |  |  |  |  |  |  |  |  |  |
|        | 1. Write more than one RE that accepts string 'abc'.                                                                                                                                                                                     |  |  |  |  |  |  |  |  |  |  |
|        | <ol> <li>Is there any difference between 'abc' and "abc"? Justify your answer.</li> <li>Which are the strings accepted by ("abc")*.</li> <li>Write the RE that accepts zero or more occurrences of digit and capital letters.</li> </ol> |  |  |  |  |  |  |  |  |  |  |
|        |                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |  |  |
|        |                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |  |  |
|        | 5. Write valid and invalid strings accepted by following regular expressions.                                                                                                                                                            |  |  |  |  |  |  |  |  |  |  |
|        | I. (a-b)?[0-9 A-Z]*                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |  |  |
|        | II. [^ab][0-9]*                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |  |  |
|        | III. ^[ab][0-9 A-Z]+                                                                                                                                                                                                                     |  |  |  |  |  |  |  |  |  |  |
|        | IV. [0-9][A-Z]\$                                                                                                                                                                                                                         |  |  |  |  |  |  |  |  |  |  |
|        | V. [A-Z a-z]{6}                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |  |  |
|        | VI. [a+b]{6}                                                                                                                                                                                                                             |  |  |  |  |  |  |  |  |  |  |
|        | VII. [a+b]                                                                                                                                                                                                                               |  |  |  |  |  |  |  |  |  |  |

| 4 | 1. | Demonstrate the use of Lex predefined variables (yytext, yyleng, yyin) with the help of a program.                               | 2,3 |
|---|----|----------------------------------------------------------------------------------------------------------------------------------|-----|
|   | 2. | Write a Lex program to recognize character, string and special symbols from given                                                |     |
|   | 3. | input. Write a Lex program to validate mobile numbers. (i.e Number having length of 10                                           |     |
|   |    | is valid)                                                                                                                        |     |
|   | 4. | Write a Lex program to differentiate mobile number and landline number. (Apply                                                   |     |
|   |    | following constraints: Both mobile and landline numbers have 10 digits but                                                       |     |
|   |    | landline number starts with digit 0 to 6 and mobile number has starting digit 7 to 9.)                                           |     |
| 5 | 1. | Write a Lex program to recognize identifiers in C,                                                                               | 3   |
|   |    | C identifiers should have following constraint                                                                                   |     |
|   |    | It should start with either letter or underscore ( ) sign.                                                                       |     |
|   |    | It should not contain special symbols.                                                                                           |     |
|   | 2. | Write a Lex program for validation of Email-Add. (Consider Email Add. from any                                                   |     |
|   |    | domain e.g. @gmail.com)                                                                                                          |     |
|   | 3. | Write a Lex program to identify integer, float and exponential value.                                                            |     |
|   |    | Examples:                                                                                                                        |     |
|   |    | 123                                                                                                                              |     |
|   |    | Integer                                                                                                                          |     |
|   |    | 12.23<br>Float                                                                                                                   |     |
|   |    | 12E23                                                                                                                            |     |
|   |    | Exponential                                                                                                                      |     |
|   |    | 12.25E23                                                                                                                         |     |
|   |    | Exponential                                                                                                                      |     |
|   |    | 12.25E-25                                                                                                                        |     |
|   |    | Exponential                                                                                                                      |     |
|   |    | -12.25E-25                                                                                                                       |     |
|   |    | Exponential                                                                                                                      |     |
|   |    | 12.25E25.25                                                                                                                      |     |
| 6 | 1  | Other (Reason: float value after E not allowed) Write a Lex program to count the number of words, characters and lines from user | 3   |
|   | 1. | input.                                                                                                                           | 3   |
|   | 2. | Write a Lex program to count the number of words, characters and lines from a                                                    |     |
|   |    | file.                                                                                                                            |     |
|   | 3. | Write a Lex program to convert lower case letter to upper case from user input                                                   |     |
|   |    | and terminate the program if user enters 0.                                                                                      |     |
|   | 4. | Write a Lex program to convert the lowercase letter of a given file to upper case.                                               |     |
|   | 5. | Write a Lex program to check whether the IP address entered by the user is valid                                                 |     |
|   |    | or not.                                                                                                                          |     |
|   | 6. | Write a Lex program to validate IP addresses from user specified files.                                                          |     |
|   |    | Consider the content of ipaddress.txt file as below:                                                                             |     |
|   |    | 192.168.2.255                                                                                                                    |     |
|   |    | 123.256.89.89                                                                                                                    |     |
|   |    | Hello                                                                                                                            |     |
|   |    | 0.0.0.289                                                                                                                        |     |

|    | 0.000                                                                                 |     |  |  |  |  |  |  |  |
|----|---------------------------------------------------------------------------------------|-----|--|--|--|--|--|--|--|
|    | 0.0.0.0.                                                                              |     |  |  |  |  |  |  |  |
|    | 289.255.245.243                                                                       |     |  |  |  |  |  |  |  |
|    | 0.0.0.214<br>10.0.0.245                                                               |     |  |  |  |  |  |  |  |
|    |                                                                                       |     |  |  |  |  |  |  |  |
|    | 0.0.0.0                                                                               |     |  |  |  |  |  |  |  |
|    | 255.255.255                                                                           |     |  |  |  |  |  |  |  |
|    |                                                                                       |     |  |  |  |  |  |  |  |
|    | Expected O/P:                                                                         |     |  |  |  |  |  |  |  |
|    | 192.168.2.255 – Valid IP address                                                      |     |  |  |  |  |  |  |  |
|    | 123.256.89.89 - Invalid IP address                                                    |     |  |  |  |  |  |  |  |
|    | Hello - Invalid IP address                                                            |     |  |  |  |  |  |  |  |
|    | 0.0.0.289 - Invalid IP address                                                        |     |  |  |  |  |  |  |  |
|    | 0.0.0.0 Invalid IP address                                                            |     |  |  |  |  |  |  |  |
|    | 289.255.245.243 - Invalid IP address                                                  |     |  |  |  |  |  |  |  |
|    | 0.0.0.214 - Valid IP address                                                          |     |  |  |  |  |  |  |  |
|    | 10.0.0.245 - Valid IP address                                                         |     |  |  |  |  |  |  |  |
|    | 0.0.0.0 - Valid IP address                                                            |     |  |  |  |  |  |  |  |
|    | 255.255.255.255 - Valid IP address                                                    |     |  |  |  |  |  |  |  |
|    |                                                                                       |     |  |  |  |  |  |  |  |
|    | 7. Write a Lex program to check whether the Date entered by the user in format        |     |  |  |  |  |  |  |  |
|    | (dd/mm/yyyy) is valid or not.                                                         |     |  |  |  |  |  |  |  |
|    | (aa, min, qqqq is tand or mod                                                         |     |  |  |  |  |  |  |  |
|    | Note: Consider the date range from 1 to 31 for every month and year from 1900         |     |  |  |  |  |  |  |  |
|    | to 2999                                                                               |     |  |  |  |  |  |  |  |
| 7  | Write a regular expression for following languages and use it in Lex program          | 1,2 |  |  |  |  |  |  |  |
|    | 1. The language of all strings contains exactly two 0's                               |     |  |  |  |  |  |  |  |
|    | 2. The language of all strings contains at least two 0's                              |     |  |  |  |  |  |  |  |
|    | 3. The language of all strings ending in 1 and not containing 00                      |     |  |  |  |  |  |  |  |
|    | 4. String with odd number of 1's                                                      |     |  |  |  |  |  |  |  |
|    | 5. The language of all strings that do not end with 01                                |     |  |  |  |  |  |  |  |
|    | 6. The language of all string not containing 00                                       |     |  |  |  |  |  |  |  |
|    | 7. The language of all string containing either 10 or 001                             |     |  |  |  |  |  |  |  |
| 8  | 1. Write a program to identify the word and change the case of each character of      | 2,3 |  |  |  |  |  |  |  |
|    | word (i.e. if character in word is in lowercase then convert it to uppercase and if   |     |  |  |  |  |  |  |  |
|    | it is uppercase then convert to lowercase)                                            |     |  |  |  |  |  |  |  |
|    | 2. Write a Lex program to count the number of comments (single line or multiple       |     |  |  |  |  |  |  |  |
|    | lines) in a given C source file.                                                      |     |  |  |  |  |  |  |  |
|    | 3. Write a Lex program to display your name when 0 is entered and nothing should      |     |  |  |  |  |  |  |  |
|    | be displayed on the screen                                                            |     |  |  |  |  |  |  |  |
|    | 4. Write a Lex program to count the word "India" from a file. Expected Input from     |     |  |  |  |  |  |  |  |
|    | file: India is a great country and India has a large population. Expected output:     |     |  |  |  |  |  |  |  |
|    | word count = 2                                                                        |     |  |  |  |  |  |  |  |
|    | 5. Display content of the text file on the output screen with the word "Hello"        |     |  |  |  |  |  |  |  |
|    | replaced by "Hi".                                                                     |     |  |  |  |  |  |  |  |
| 9  | Design a Program to create PDA machine that accept the well-formed parenthesis        | 1,3 |  |  |  |  |  |  |  |
| 10 | Design a Turing Machine that calculate 2's complement of given binary string.         |     |  |  |  |  |  |  |  |
| 11 | Study about the time complexity of Deterministic and Non Deterministic Turing Machine |     |  |  |  |  |  |  |  |
|    | stady about the time complexity of Determinate and Non Determinate runing Machine     | 4   |  |  |  |  |  |  |  |

#### **Course Outcomes:**

| CO1 | Demonstrate advanced knowledge of formal computation and its relationship to formal |
|-----|-------------------------------------------------------------------------------------|
|     | languages.                                                                          |
| CO2 | Distinguish different computing languages and classify their respective types.      |
| CO3 | Recognize and comprehend formal reasoning about languages.                          |
| CO4 | Show a competent understanding of the basic concepts of complexity theory.          |

| Mapping of CO and PO: |     |     |     |     |     |     |     |     |     |          |          |          |          |          |          |
|-----------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|----------|----------|----------|----------|----------|----------|
| COs                   | PO1 | PO2 | РО3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO1<br>0 | PO1<br>1 | PO1<br>2 | PSO<br>1 | PSO<br>2 | PSO<br>3 |
| CO1                   | 2   | 1   | 2   | 1   | 0   | 0   | 0   | 0   | 0   | 0        | 0        | 2        | 1        | 2        | 1        |
| CO2                   | 2   | 2   | 2   | 1   | 0   | 0   | 0   | 0   | 0   | 0        | 0        | 2        | 1        | 2        | 2        |
| CO3                   | 3   | 3   | 1   | 2   | 0   | 0   | 0   | 0   | 0   | 0        | 0        | 1        | 2        | 2        | 2        |
| CO4                   | 2   | 2   | 1   | 2   | 0   | 0   | 0   | 0   | 0   | 0        | 0        | 1        | 3        | 2        | 0        |

## **Prepared By**

Prof. Ritesh Upadhyay Assistant Professor, CE Dept. Prof. Amit Solanki Assistant Professor, CE Dept. Prof. Chirag Patel Assistant Professor, CE Dept.