## Data And Uncertainity Assignment 8 November 2017

Leonardo Ripoli

## Ex1.1)

Let  $\Omega = \mathbb{N}$ , show that  $\boldsymbol{A}$ , the set of all cofinite subsets in  $\Omega$ , forms an algebra.

The proof is done by checking that the 3 properties of an algebra are satisfied: empty set, closeness to complement and closeness to finite unions.

- 1.  $\emptyset \in A$  trivially because it is finite.
- 2. By definition if  $A \in \mathbf{A}$  it is cofinite, therefore either it is finite and its complement is infinite, or the other way around: in either case  $A \in \mathbf{A} \implies A^{\complement} \in \mathbf{A}$ .
- 3. Let  $A_1, A_2, A_3... \in \mathbf{A}$ , then if all of the  $A_i$  are finite, clearly  $\bigcup_{k=1}^n A_i$  is finite and therefore  $\bigcup_{k=1}^n A_i \in \mathbf{A}$ . If at least one of the  $A_i$  is infinite, then  $\bigcup_{k=1}^n A_i$  is infinite, we have to show that  $(\bigcup_{k=1}^n A_i)^{\complement}$  is finite. Let's say at least  $A_k$  is infinite (and therefore  $A_k^{\complement}$  is finite because  $A_k$  is cofinite by hypothesis), we have that  $(\bigcup_{k=1}^n A_i)^{\complement} = \bigcap_{k=1}^n A_i^{\complement}$ , and since  $\bigcap_{k=1}^n A_i^{\complement} \subseteq A_k^{\complement}$  and  $A_k^{\complement}$  is finite, it must be that  $\bigcap_{k=1}^n A_i^{\complement}$  is finite and therefore we have shown that  $\bigcup_{k=1}^n A_i \in \mathbf{A}$ .

## Ex1.2)

Let A be the algebra of cofinite sets and define the set function  $\mu(A) = 1$  if A is finite, and 0 otherwise: show that  $\mu$  is normalised and additive.

- 1.  $\mu(\mathbb{N}) = 1$  since  $\mathbb{N}$  is infinite, therefore  $\mu$  is normalised.
- 2. For additivity we have to show that  $\mu(\bigcup_{k=1}^n A_i) = \sum_{k=1}^n \mu(A_i), \forall A_k$  s.t.  $A_i \cap A_j = \emptyset$  if  $i \neq j$ .