Introduction to Psychometric Models

Lecture 2

https://jonathantemplin.com/bayesian-psychometric-modeling-fall-2024/

Today's Lecture Objectives

- 1. An Framing Example
- 2. Latent traits
- 3. Our first graphical model (path diagram)
- 4. Psychometric models from generalized linear models

Class Discussion: Satisfaction with Life Scale

Take a look at the following items (as reported in McDonald, 1999): https://uiowa.qualtrics.com/jfe/form/SV_6J8Hakox1U4S7UW

Questions for discussion:

- 1. How would we analyze these data?
- 2. Do you know of any psychometric model that would work?

More Class Discussion: SWLS, Revised

Now, take a look at the following revised items (item stems reported in McDonald, 1999): https://uiowa.qualtrics.com/jfe/form/SV_e8rqrilRNBnT8SG

Questions for discussion:

- 1. What is different about this survey?
- 2. Does this survey seem to measure the same construct as the previous survey?
- 3. How would we analyze these data?
- 4. Do you know of any psychometric model that would work?

Latent Traits: A Big-Picture View

Latent trait theory posits there are attributes of a person (typically) that are:

- Unobservable (hence the term latent)
- Quantifiable
- Related to tasks that can be observed

Latent Traits: A Big-Picture View

Often, these attributes are often called constructs, underscoring they are constructed and do not exist, such as:

- A general or specific ability (in educational contexts)
- A feature of personality, such as "extroversion" (in psychological contexts)

The same psychometric models apply regardless of the measurement context

• I like to say "math don't care" to describe how a mathematical model is agnostic to the context in which it is used

The Long History of Latent Trait Theory

- Latent trait theory, as we now know it, began well before most current academic disciplines
 - Educational assessments (tests) have existed for centuries
 - These seek to measure latent abilities
 - The study of intelligence began in the mid 1800s
 - Intelligence is also a latent trait
- Methodological innovations have often spurred empirical (discipline-specific) trait development
 - Early methods were limited by mathematical and statistical theory
 - The invention and wide-spread use of computers made advances in psychometrics possible
 - More recent statistical innovations further shape methods (i.e., computational estimation methods using Bayes)

Latent Traits are Interdisciplinary

- Many varying fields use some version of latent traits
- Similar (or identical) methods are often developed separately
 - Item response theory in education
 - Item factor analysis in psychology
- Many different terms for same ideas, such as the
 - Label given to the latent trait: Factor/Ability/Attribute/Construct
 - Label given to those giving the data:
 Examinee/Subject/Participant/Respondent/Patient/Student
- What this means:
 - Lots of words to keep track of, but (relatively) few concepts
 - We will focus on concepts (but have a lot of words)

The Best Constructs Are Built Purposefully

- Latent constructs seldom occur randomly—they are defined
 - The definition typically indicates:
 - What the construct means
 - What observable behaviors are likely related to the construct
 - For a lot of what we do, observable behavior means answering questions on an assessment or survey
- Therefore, modern psychometric methods are built around specifying the set of observed variables to which a latent variable relates
 - No need for exploratory analyses—we define our construct and seek to falsify our definition
- The term I use for "relates" is "measure"
 - Educational assessment items measure some type of ability

Guiding Principles

- To better understand psychometric methods and theory, I recommend you envision what you would do if latent variables were not latent
 - Example: Imagine if we could directly observe mathematics ability
- Then, consider what we would do with that value
 - Example: We could predict how students would perform on items using logistic regression
- Psychometric models essentially do this—use observed variable methods as if we know the value of the latent variable
 - There are some catches, though
 - We need a data collection design that allows for such methods to be used
 - We need a more formal vetting of whether or not we did a good job measuring the construct

Measurement, Formally Defined

Measurement is the quantification of some characteristic (physical or otherwise)

- Consider the measurement of length (a physical construct)
 - Why? We need to know where to put things
 - How? We use some type of device (a ruler, yardstick, tape measure) and note the distance from the origin
 - What? The distance is then quantified with some type of unit (a unit of measure)
 - Inches, centimeters, meters, yards, etc...

Measurement of Latent Constructs

- How does this differ when we cannot observe the thing we are measuring—when the construct is latent?
 - We still need something we can observe—item responses for example
 - We need a method to map the response to a number (like the inches)
 - Strongly agree==5?
 - We also need a way to aggregate all responses to a value that represents a person
 - A score or classification
 - We then need a way to ensure what we just did means what we think it does
 - Methods for validation
 - We also need to remember that the values we estimate for the latent variable won't be perfectly reliable
 - Caution needed for secondary analyses

Measurement Models

 A distinguishing feature of psychometric models is the second word—they are models

- We often call such models "measurement models"
- Measurement models are the mathematical specification that provides the link between the latent variable(s) and the observed data
- The form of such models looks different across the wide classes of measurement models (e.g., factor analysis vs. item response models) but wide generalities exist
- Measurement models need:
 - Distributional assumptions about the data (with link functions)
 - A linear or non-linear form that predicts data from the trait(s)
- The key: Observed data are being predicted by latent variable(s)

Measurement Models vs. Other Measurement Techniques

Measurement models are a different way of thinking about psychometrics than what most people without psychometric training do

Characteristics of Latent Variables

Characteristics of Latent Variables

- Latent variables can have different levels of measurement (hypothetically)
 - Interval level (as in factor analysis and item response theory) Continuous
 - No absolute zero, but units of the quantity are equivalent across the range of values
 - Example: A person with a value of 2 is the same distance from a person with a value of 0 as is a person with a value of -2
 - Ordinal level (as in diagnostic classification models)
 - Can rank order people but not determine how far apart they may be
 - Example: Students considered masters of a topic have more ability than students considered non-masters
 - Nominal level (as in latent class or finite mixture models) Categorical
 - Groups/classes/clusters of people
 - No scale provided at all

Most Common: Continuous Latents

- For most of this class, we will treat latent variables as continuous (interval level)
- As they do not exist, continuous latent variables need a defined metric:
 - What is their mean?
 - What is their standard deviation?
- Defining the metric is the first step in a latent variable model
 - Called scale identification
- The metric is arbitrary
 - Can set differing means/variances but still have same model
 - Linear transformations of parameters based on scale mean and standard deviation

Measurement Model Path Diagrams

Measurement models are often depicted in graphical format, using what is called a path diagram

- Typically, latent variables are represented as objects that are circles/ovals
- Using graph theory terms, a variable in a path diagram (latent or observed) is called a node
- Lines connecting the variables are called edges

Latent Variable Only

19

Adding Observed Variables

Measurement model path diagrams often denote observed variables with boxes On the next slide:

- ullet The term "latent variable" is replaced with heta
- ullet The observed variables are denoted as Y1 through Y5
 - Imagine these represent the five items of the scale we started class with

Path Diagram with Observed and Latent Variables

Path Diagrams: Not Models

Path diagrams are useful for depicting a measurement model but are not models

- All model parameters cannot be included in the diagram
- No indication about the distribution of the variables (especially needed in Bayesian psychometric modeling)

Translating a Path Diagram to a Model

Going back to our the point from before—let's imagine the latent variable as an observed variable

- An arrow (edge) indicates one variable predicts another
 - The predictor is the variable on the side of the arrow without the point
 - The outcome is the variable on the side of the point
- If we assume the items were continuous (like linear regression), the diagram indicates a regression model for each outcome

$$Y_{p1} = \beta_{Y_1,0} + \beta_{Y_1,1}\theta_p + e_{p,Y_1}$$

Interpreting the Parameters

All five regression lines implied by the model are then:

$$Y_{p1} = \beta_{Y_1,0} + \beta_{Y_1,1}\theta_p + e_{p,Y_1}$$

$$Y_{p1} = \beta_{Y_2,0} + \beta_{Y_2,1}\theta_p + e_{p,Y_2}$$

$$Y_{p3} = \beta_{Y_3,0} + \beta_{Y_3,1}\theta_p + e_{p,Y_3}$$

$$Y_{p4} = \beta_{Y_4,0} + \beta_{Y_4,1}\theta_p + e_{p,Y_4}$$

$$Y_{p5} = \beta_{Y_5,0} + \beta_{Y_5,1}\theta_p + e_{p,Y_5}$$

Here:

- ullet $eta_{Y_i,0}$ is the intercept of the regression line predicting the score from item Y_i
 - The expected resposne score for a person who has $\theta_p = 0$
- ullet $eta_{Y_i,1}$ is the slope of the regression line predicting the score from item Y_i
 - The expected change in the response score for a one-unit change in θ_p

More Interpreting the Parameters

Also:

- e_{p,Y_i} is the residual (error), indicating the difference in the predicted score for person p to item i
 - Like in regression, we additionally assume:
 - \circ $e_{p,Y_i} \sim N\left(0, \sigma_{e_{Y_i}}^2\right)$: is normally distributed with mean zero and...
- $\sigma_{e_{Y_i}}^2$ is the residual variance of item Y_i , indicating the square of how far off the prediction is on average

The five regression models are estimated simultaneously:

- ullet If $heta_p$ were observed, we would call this a multivariate regression
 - <u>Multivariate regression</u>: Multiple continuous outcomes predicted by one or more predictors

25

More About Regression

$$Y_{pi} = \beta_{Y_i,0} + \beta_{Y_i,1}\theta_p + e_{p,Y_i}$$

In the regression model for a single variable, what distribution do we assume about the outcome?

- As error is normally distributed, the outcome takes a normal distribution $Y_{pi} \sim N(?,?)$
- As $\beta_{Y_i,0}$, $\beta_{Y_i,1}$, and θ_p are constants, they move the mean of the outcome to $\beta_{Y_i,0}+\beta_{Y_i,1}\theta_p$
 - $Y_{pi} \sim N(\beta_{Y_i,0} + \beta_{Y_i,1}\theta_p,?)$
- ullet As error has a variance of $\sigma^2_{e_{Y_i}}$, the outcome is assumed to have variance $\sigma^2_{e_{Y_i}}$
 - $P_{pi} \sim N(\beta_{Y_i,0} + \beta_{Y_i,1}\theta_p, \sigma^2_{e_{Y_i}})$
- Therefore, we say Y_{pi} follows a conditionally normal distribution

The Univariate Normal Distribution

- When we say $Y \sim N(\mu, \sigma^2)$, that implies a probability density function (pdf).
- For the univariate normal (sometimes called Gaussian) distribution, the pdf is:

$$f(Y) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[\frac{(Y-\mu)^2}{2\sigma^2}\right]$$

- Here, π is the constant 3.14 and exp is Euler's constant (2.71)
- Of note here is that there are three components that go into the function:
 - The data Y
 - The mean μ this can be the conditional mean we had on the previous slide (formed by parameters)
 - The variance σ^2
- The key to using Bayesian methods is to know the distributions for each of the variables in the model

From Regression to CFA

When θ_i is latent, the five-variable model becomes a <u>confirmatory factor analysis</u> (CFA) model

- <u>CFA</u>: Prediction of continuous items using linear regression with one or more continuous latent variables as predictors
 - The interpretations of the regression parameters are identical between linear regression and CFA

Regression and CFA Differences

The differences between CFA and regression are:

- ullet θ_p is not observed in CFA but is observed in regression
 - Therefore, we must set its mean and variance
 - There are multiple was to do this (standardized factor, marker item, etc...)
 —stay tuned
- Each of the model parameters has a different name (and symbol denoting it) in CFA
 - $\beta_{Y_i,0} = \mu_i$ is the item intercept
 - $\beta_{Y_i,1} = \lambda_i$ is the factor loading for an item
 - $\sigma_{e_{Y_i}}^2 = \psi_i^2$ is the unique variance for an item
- We must have a sufficient number of observed variables to empirically identify the latent trait

Changing Notation

Our five-item CFA model with CFA-notation:

$$Y_{p1} = \mu_1 + \lambda_1 \theta_p + e_{p,Y_1}$$

$$Y_{p2} = \mu_2 + \lambda_2 \theta_p + e_{p,Y_2}$$

$$Y_{p3} = \mu_3 + \lambda_3 \theta_p + e_{p,Y_3}$$

$$Y_{p4} = \mu_4 + \lambda_4 \theta_p + e_{p,Y_4}$$

$$Y_{p5} = \mu_5 + \lambda_5 \theta_p + e_{p,Y_5}$$

Measurement Models for Different Item Types

Measurement Models for Different Item Types

- The CFA model assumes (1) continuous latent and (2) continuous observed variables
 - What should we do if we have binary items (e.g., yes/no, correct/incorrect)?
- If we had observed θ_p and wanted to predict $Y_{1p} \in \{0, 1\}$ (read as Y_{p1} takes values of either zero or one) what type of analysis would we use?

Measurement Models for Different Item Types

• Logistic regression:

$$P(Y_{p1} = 1) = \frac{\exp(\beta_{Y_1,0} + \beta_{Y_1,1}\theta_p)}{1 + \exp(\beta_{Y_1,0} + \beta_{Y_1,1}\theta_p)}$$

• Alternatively:

$$Logit (P(Y_{p1} = 1)) = \beta_{Y_1,0} + \beta_{Y_1,1}\theta_p$$

Interpreting of Model Parameters

$$Logit (P(Y_{p1} = 1)) = \beta_{Y_1,0} + \beta_{Y_1,1}\theta_p$$

Here:

- $\beta_{Y_1,0}$ is the intercept the expected log odds of a correct response when $\theta_p=0$
- $\beta_{Y_1,1}$ is the slope the expected change in log odds of a correct response for a one-unit change in θ_p
- Note: there is no error variance term...why?

Bernoulli Distributions

- Using logistic regression for binary outcomes makes the assumption that the outcome follows a (conditional) Bernoulli distribution, or $Y \sim B(p_Y)$
 - The parameter p_Y is the probability that Y equals one, or P(Y=1)
- The Bernoulli pdf (sometimes called the probability mass function as the variable is discrete) is:

$$f(Y) = (p_Y)^Y (1 - p_y)^{1-Y}$$

- So, there is no error variance parameter in logistic regression as there is no parameter in the distribution that represents error.
 - Error is represented by how far off a probability is from either zero or one

Logistic Regression with Latent Variable(s)

 Back to our running example, if we had binary items and wished to form a (unidimensional) latent variable model, we would have something that looked like:

$$P(Y_{pi} = 1 \mid \theta_p) = \frac{\exp(\mu_i + \lambda_i \theta_p)}{1 + \exp(\mu_i + \lambda_i \theta_p)}$$

- Here, the parameters retain their names from CFA:
 - $\beta_{Y_i,0} = \mu_i$ is the item intercept
 - lacksquare $\beta_{Y_i,1} = \lambda_i$ is the factor loading for an item
- We call this slope-intercept parameterization
- This parameterization is called <u>item factor analysis(IFA)</u>

From IFA to IRT

• IFA and IRT are equivalent models—their parameters are transformations of each other:

$$a_i = \lambda_i$$

$$b_i = -\frac{\mu_i}{\lambda_i}$$

• This yields the discrimination-difficulty parameterization that is common in unidimensional IRT models:

$$P(Y_{pi} = 1 \mid \theta_p) = \frac{\exp(a_i (\theta_p - b_i))}{1 + \exp(a_i (\theta_p - b_i))}$$

From IFA to IRT

$$P(Y_{pi} = 1 \mid \theta_p) = \frac{\exp(a_i (\theta_p - b_i))}{1 + \exp(a_i (\theta_p - b_i))}$$

- b_i is the item difficulty—the point on the θ scale at which a person has a 50% chance of answering with a one
- a_i is the item discrimination—the slope of a line tangent to the curve at the item difficulty
- IRT models have a number of different forms of this equation (this is the two-parameter logistic 2PL model)

Generalized Linear (Psychometric) Models

- A key to understanding the varying types of psychometric models is that they must map the theory (the right-hand side of the equation— θ_p) to the type of observed data
- Today we've seen two types of data: continuous (with a normal distribution) and binary (with a Bernoulli distribution)
- For each, the right-hand side of the item model was the same
- For the normal distribution:
 - We had an error term but did not transform the right-hand side
- For the Bernoulli distribution:
 - No error term and a function used to transform the right-hand side so that the conditional mean ranged between zero and one
- We will use these features in each of our models as we continue in this class
 - This is also an introduction to generalized linear models

Wrapping Up

- This lecture was a quick introduction to psychometric models
- Latent trait theory guides the construction of items
- Psychometric models then implement and test the theory
- The family of model used is determined by the type of observable data