П.1 Измеримые множества в пространстве.

«Кирпичиком» для построения измеримых множеств в пространстве R^3 является параллелепипед $\Pi_{abc} = \{(x,y,z) \colon x_i \leq x \leq x_i + a, \ y_j \leq y \leq y_j + b, \ z_k \leq z \leq z_k + c\}$ с вершиной в точке (x_i,y_j,z_k) , его параметр $d(\Pi_{abc}) = \sqrt{a^2 + b^2 + c^2}$ - диагональ параллелепипеда. ОПР. Телом G в пространстве называют открытую, односвязную и ограниченную область в R^3 . Замкнутая область – это $\overline{G} = G \cup \partial G$, где ∂G - совокупность граничных точек.

ОПР. Ступенчатым телом G_ξ называют объединение параллелепипедов Π_σ , возможно пересекающихся по границе, $G_\xi = \bigcup_{\sigma \in \mathcal{E}} \Pi_\sigma$. Ступенчатое тело G_ξ вписано в G , если

 $\Pi_\sigma \subset G, \, \forall \, \sigma \in \xi$, и описано, если $G_\xi \supset G$. Параметром $d(G_\xi)$ ступенчатого тела называют число $d(G_\xi) = \max_{\sigma \in \xi} d(\Pi_\sigma)$.

ОПР. Нижней мерой тела G называется число $\underline{\mu}(G) = \sup_{\xi} \mu(G_{\xi})$, где верхняя грань берется по всем ступенчатым телам, вписанным в G . Верхняя мера тела G называется число $\overline{\mu}(G) = \inf_{\xi} \mu(G_{\xi})$, где G_{ξ} - ступенчатые тела, описанные около G . Числа $\underline{\mu}(G)$ и $\overline{\mu}(G)$ существуют для любого G .

ОПР. Тело G измеримо в пространстве, если $\mu(G) = \overline{\mu}(G) = \mu(G)$.

Число $\mu(G)$ называется мерой тела G или его объемом.

ПРИМЕРЫ измеримых областей.

1. $\Pi_{abc} = \{(x,y,z) \in \mathbb{R}^3 : x_0 \le x \le x_0 + a, y_0 \le y \le y_0 + b, z_0 \le z \le z_0 + c\}$ - параллеленипед со сторонами a,b,c и вершиной (x_0,y_0,z_0) , $\mu(\Pi_{abc}) = abc$

2. $T_D^{a,b} = D \times [a;b] = \{(x,y,z): (x,y) \in D, z \in [a;b]\}$ - прямой цилиндр, образующая которого перпендикулярна плоскости ХОУ, с основанием D и высотой b-a, где $\mu(D)$ - площадь области D.

ПОЯСНЕНИЕ. Если $D_\xi = \bigcup_\sigma \Pi_\sigma$ ступенчатая область, вписанная в D, то объединение параллелепипедов $\Pi_\sigma imes [a;b]$ является ступенчатым телом, вписанным в $T_D^{a,b}$ Его объем при $d(D_\xi) \to 0$ стремится к величине $\mu(T_D^{a,b}) = (b-a) \cdot \mu(D)$.

3. $V_D^{f,g} = \{(x,y,z): (x,y) \in D, g(x,y) \le z \le f(x,y)\}$ - стандартная область по оси ОZ, где g(x,y), f(x,y) – кусочно-гладкие функции в измеримой области D на плоскости R^2 . $\mu(V_D^{f,g}) = \iint_D (f(x,y) - g(x,y)) dx dy \, .$

ПОЯСНЕНИЕ. Если $D_\xi = \bigcup_\sigma \Pi_\sigma$ ступенчатая область, вписанная в D и

$$m_{\sigma}(f) = \min_{M \in \Pi_{\sigma}} f(M), M_{\sigma}(f) = \max_{M \in \Pi_{\sigma}} f(M).$$

Тогда объединение параллелепипедов $\Pi_{\sigma} \times \left[M_{\sigma}(g); m_{\sigma}(f) \right]$ представляет ступенчатое тело, вписанное в $V_D^{f,g}$, а объединение параллелепипедов $\Pi_{\sigma} \times \left[m_{\sigma}(g); M_{\sigma}(f) \right]$ - ступенчатое тело, описанное около $V_D^{f,g}$. Предел объемов каждого из них при $d(D_{\xi}) \to 0$ равен

$$\mu(V_D^{f,g}) = \iint_D (f(x,y) - g(x,y)) dx dy.$$

4. Тело G_c с измеримыми сечениями. Рассматриваются тела G , у которых сечения плоскостями перпендикулярными координатным осям, например, плоскостями с уравнением z=p , измеримы на плоскости ХОУ, т.е. для любого $p\in [a,b]$ область

 $D_p = \left\{ \left(x,y \right) \in R^2 : \left(x,y,p \right) \in G \right\} \ \text{измерима и ее мера} \ \mu \left(D_p \right) \ \text{непрерывная функция}$ переменной p на отрезке [a;b]. Множество $G^p = \left\{ \left(x,y,z \right) : \left(x,y \right) \in D_p, z = p \right\}$ назовем сечением тела G плоскостью z = p. Тогда тело $G_c = \bigcup_{p \in [a,b]} G^p$ и $\mu(G_c) = \int_a^b \mu(D_p) dp$ ее объем.

ПОЯСНЕНИЕ. Если $\xi = \left(a = \xi_0, \xi_1, ..., \xi_k, \xi_{k+1}, ... \xi_n = b\right)$ разбиение отрезка $\begin{bmatrix} a;b \end{bmatrix}$ с параметром разбиения d_{ξ} . Разбиение пересечения $D_{\xi_k} \cap D_{\xi_{k+1}}$ на прямоугольники $D_{\xi_k} \cap D_{\xi_{k+1}} = \bigcup_{\sigma} \Pi_{\sigma}$ порождает разбиение тела G на параллелепипеды $\Pi_{\sigma} \times \begin{bmatrix} \xi_k; \xi_{k+1} \end{bmatrix}$. Объем ступенчатого тела, построенного из них равен $\sum_{n=0}^{n} (\mu(D_{\xi_k}) + \Delta \mu) \left(\xi_{k+1} - \xi_k \right)$, где $\Delta \mu = o(1)$ при $d(D_{\xi}) \to 0$,

стремится к $\mu(G) = \int_{a}^{b} \mu(D_p) dp$ при уменьшении параметра разбиения.

В частности, цилиндр 2) тело с измеримыми сечениями и $\mu(D_p) = \mu(D)$ - постоянная на отрезке [a,b] функция.

ПРИМЕР 1. Найти объем тела ограниченного поверхностями:

$$z = x + y$$
, $z = xy$, $x + y = 1$, $x = 0$, $y = 0$.

РЕШЕНИЕ. Рассмотрим сечения плоскостями $y = p \in [0;1]$. Тогда область D_p (трапеция) на плоскости XOZ имеет границы z = x + p, z = px, x = 1 - p, x = 0 и ее мера (площадь)

$$\mu(D_p) = \int\limits_0^{1-p} (x+p-px) dx = \left(\frac{(x+p)^2}{2} - \frac{px^2}{2}\right)\Big|_0^{1-p} = \frac{1}{2} \left(1-p(1-p)^2 - p^2\right) - \text{непрерывная функция}$$

на отрезке [0;1]. Тогда объем тела G равен: $\mu(G) = \frac{1}{2} \int_{0}^{1} (1 - p(1-p)^{2} - p^{2}) dp =$

$$= \frac{1}{2} \int_{0}^{1} (1 - p + p^{2} - p^{3}) dp = \frac{7}{24}.$$

П.2 Тройной интеграл.

Пусть G - измеримое тело и $G_\xi = \bigcup_{\sigma \in \mathcal{E}} \Pi_\sigma$ соответствующее разбиение G на

параллелепипеды. В каждом параллелепипеде Π_{σ} выберем произвольную точку $P_{\sigma} \in \Pi_{\sigma}$. ОПР. Интегральной суммой функции f(x,y,z) по области G называют выражение:

$$S_f(G_{\xi}) = \sum_{\sigma \in \xi} f(P_{\sigma}) \mu(\Pi_{\sigma}).$$

ОПР. Тройным интегралом Римана функции f(x,y,z) по области G называют число:

$$\iiint\limits_{G} f(x, y, z) dx dy dz = \lim_{d(\xi) \to 0} S_{f}(G_{\xi}).$$

Если функция имеет тройной интеграл, то она называется интегрируемой по Риману в области G .

ТЕОРЕМА 1. (необходимое условие интегрируемости)

Если функция f(x,y,z) интегрируема в измеримой области G, то она ограничена в \overline{G} .

ДОК. (аналогично соответствующей теореме для двойного интеграла)

ТЕОРЕМА 2. (достаточное условие интегрируемости)

Всякая кусочно-непрерывная на измеримом множестве \overline{G} функция интегрируема по Риману.

ДОК. (аналогично соответствующей теореме для двойного интеграла)

СВОЙСТВА ТРОЙНОГО ИНТЕГРАЛА. (аналогичны свойствам двойного интеграла).

- 1. линейность: $\iiint_C (\alpha f + \beta g) dx dy dz = \alpha \iiint_C f dx dy dz + \beta \iiint_C g dx dy dz$
- 2. аддитивность по множеству $G=G_1\cup G_2$, где G_1 и G_2 измеримые множества, пересекающиеся по границе. Тогда $\iiint\limits_G fdxdydz = \iiint\limits_G fdxdydz + \iiint\limits_{G_2} fdxdydz$.
- 3. теорема о среднем. Если f(x,y,z) непрерывна на \overline{G} , то существует точка $(x_c,y_c,z_c)\in \overline{G}$, для которой $\iint_G f(x,y,z)dxdydz=f(x_c,y_c,z_c)\cdot \mu(G)$.
- 4. Оценка отклонения интеграла от интегральной суммы:

$$\left| \iiint_{G} f(x, y, z) dx dy dz - S_{f}(G_{\xi}) \right| \leq \omega_{f}(\delta) \cdot \mu(G),$$

где G_ξ - любое разбиение G на параллелепипеды с параметром $d_\xi < \delta$, а $\omega_f(\delta)$ - функция колебания f(x,y,z) : $\omega_f(\delta) = \sup_{\rho(M_1,M_2) \le \delta} \left| f(M_1) - f(M_2) \right|$

Для непрерывной функции f(x,y,z) на \overline{G} колебание $\omega_f(\delta)$ бесконечно малая функция в точке $\delta=0$.

5. Если
$$\chi(x,y,z) = \begin{cases} 1, (x,y,z) \in G \\ 0, (x,y,z) \notin G \end{cases}$$
 - характеристическая функция области G , то
$$\mu(G) = \iiint_G \chi(x,y,z) dx dy dz.$$

П.3 Повторные интегралы.

Вычисление тройного интеграла сводится к вычислению двойных и одномерных интегралов, т.е. к повторному интегрированию. Для областей, рассмотренных выше, эта процедура следующая (рассматриваются функции F(x,y,z) кусочно-непрерывные в \overline{G}). 1. Для $G = \Pi_{abc}$:

$$\iiint_{G} F(x, y, z) dx dy dz = \int_{x_{0}}^{x_{0}+a} dx \int_{y_{0}}^{y_{0}+b} dy \int_{z_{0}}^{z_{0}+c} F(x, y, z) dz$$
 (1)

Внутренний одномерный интеграл берется по переменной z на отрезке $[z_0; z_0+c]$, при фиксированных (x,y) и поэтому является непрерывной функцией двух переменных (x,y). Интегрирование этой функции по переменной y на отрезке $[y_0; y_0+b]$ при фиксированном x задает функцию переменной x, которая интегрируется на отрезке $[x_0; x_0+a]$ Док.

$$\int_{x_{0}}^{x_{0}+a} dx \int_{y_{0}}^{y_{0}+b} dy \int_{z_{0}}^{z_{0}+c} F(x,y,z) dz = \sum_{k=1}^{n} \int_{x_{0}}^{x_{0}+a} dx \int_{y_{0}}^{y_{0}+b} dy \int_{z_{k}}^{z_{k+1}} F(x,y,z) dz = \sum_{k=1}^{n} \Delta z_{k} \int_{x_{0}}^{x_{0}+a} dx \sum_{j=1}^{m} \int_{y_{j}}^{y_{j+1}} F(x,y,\tilde{z}_{k}) dy = \sum_{k,j=1}^{n,m} \Delta z_{k} \Delta y_{j} \sum_{i=1}^{p} \int_{x_{i}}^{x_{i+1}} F(x,\tilde{y}_{j},\tilde{z}_{k}) dx = \sum_{k,j,i=1}^{n,m,p} F(\tilde{x}_{i},\tilde{y}_{j},\tilde{z}_{k}) \Delta x_{i} \Delta y_{j} \Delta z_{k}$$

для некоторых точек $(\tilde{x}_i, \tilde{y}_j, \tilde{z}_k)$, $\tilde{x}_i \in (x_i; x_{i+1})$, $\tilde{y}_j \in (y_j; y_{j+1})$, $\tilde{z}_k \in (z_k; z_{k+1})$. Последнее представляет интегральную сумму тройного интеграла и ее предел равен с одной стороны тройному интегралу, а с другой повторному.

Порядок интегрирования по прямоугольнику может быть изменен.

Пример 2. Вычислить интеграл $\iiint_G \frac{dxdydz}{\big(1+x+y+z\big)^3}$, где область G ограничена плоскостями

$$x = 0$$
, $y = 0$, $z = 0$, $x + y + z = 1$

Решение

Рассматривается функция

$$F(x, y, z) = \begin{cases} 1/(1+x+y+z)^3, & (x, y, z) \in G \\ 0, & (x, y, z) \in \Pi_{1,1,1} \setminus G \end{cases}$$

Тогда по формуле вычисления интеграла по параллелепипеду

$$\iiint_{G} \frac{dxdydz}{\left(1+x+y+z\right)^{3}} = \int_{0}^{1} dx \int_{0}^{1} dy \int_{0}^{1} F(x,y,z) dxdydz = \int_{0}^{1} dx \int_{0}^{1-x} dy \int_{0}^{1-x-y} \frac{dz}{\left(1+x+y+z\right)^{3}} = \\
= \frac{1}{2} \int_{0}^{1} dx \int_{0}^{1-x} \left(-\frac{1}{(1+x+y+z)^{2}}\right) \Big|_{z=0}^{z=1-x-y} dy = \frac{1}{2} \int_{0}^{1} dx \int_{0}^{1-x} \left(\frac{1}{(1+x+y)^{2}} - \frac{1}{4}\right) dy = \frac{1}{2} \int_{0}^{1} \left(\frac{1}{1+x} - \frac{(1-x)}{4} - \frac{1}{2}\right) dx = \\
= \frac{1}{2} \left(\ln 2 - \frac{5}{8}\right)$$

2. Если
$$G = T_D^{a,b}$$
, то $\iiint_G F(x,y,z) dx dy dz = \int_a^b dz \iint_D F(x,y,z) dx dy$ (2)

Внутренний двойной интеграл берется по области D на плоскости XOУ при фиксированном z и является непрерывной функцией этой переменной, которая интегрируется на отрезке [a;b].

Док.
$$\int_{a}^{b} dz \iint_{D} F(x, y, z) dxdy = \sum_{k=1}^{n} \int_{z_{k}}^{z_{k+1}} dz \iint_{D} F(x, y, z) dxdy = \sum_{k=1}^{n} \Delta z_{k} \iint_{D} F(x, y, \tilde{z}_{k}) dxdy$$

Пусть D_ξ - ступенчатая область, являющаяся объединением прямоугольников $\Pi_\sigma, \sigma \in \xi$, вписанная в D . Тогда $\iint_D F(x,y,\tilde{z}_k) dx dy = \sum_\sigma F(\tilde{x}_\sigma,\tilde{y}_\sigma,\tilde{z}_k) \Delta x_\sigma \Delta y_\sigma + o(1)$ и

$$\int_{a}^{b} dz \iint_{D} F(x, y, z) dx dy = \sum_{i=1}^{n} \sum_{\sigma} F(\tilde{x}_{\sigma}, \tilde{y}_{\sigma}, \tilde{z}_{k}) \Delta x_{\sigma} \Delta y_{\sigma} \Delta z_{k} + o(1)$$

Второе слагаемое справа – интегральная сумма для тройного интеграла и ее предел равен самому интегралу с одной стороны, а с другой – повторному интегралу.

3. Если
$$G = V_D^{f,g}$$
, то $\iiint_G F(x, y, z) dx dy dz = \iint_D dx dy \int_{g(x,y)}^{f(x,y)} F(x, y, z) dz$ (3)

Внутренний одномерный интеграл берется по переменной z при фиксированных (x,y) на отрезке [g(x,y);f(x,y)] и является непрерывной функцией этих переменных. Последняя функция интегрируется по области D, и полученное число представляет тройной интеграл функции F(x,y,z) по области G.

Док. Пусть
$$m = \min_{(x,y) \in D} g(x,y)$$
, $M = \max_{(x,y) \in D} f(x,y)$ и

$$\tilde{F}(x, y, z) = \begin{cases} F(x, y, z), g(x, y) \le z \le f(x, y), (x, y) \in D \\ 0, z \in [m, g(x, y)] \cup [f(x, y), M], (x, y) \in G \end{cases}$$

Тогда

$$\iint_{D} dx dy \int_{g(x,y)}^{f(x,y)} F(x,y,z) dz = \iint_{D} dx dy \int_{m}^{M} \tilde{F}(x,y,z) dz = \sum_{k=1}^{n} \iint_{D} dx dy \int_{z_{k}}^{z_{k+1}} \tilde{F}(x,y,z) dz = \sum_{k=1}^{n} \Delta z_{k} \iint_{D} \tilde{F}(x,y,\tilde{z}_{k}) dx dy = \sum_{k=1}^{n} \Delta z_{k} \left(\sum_{\sigma \in \xi} \tilde{F}(x_{\sigma},y_{\sigma},\tilde{z}_{k}) \Delta x_{\sigma} \Delta y_{\sigma} + o(1) \right) = \sum_{k,\sigma} \tilde{F}(x_{\sigma},y_{\sigma},\tilde{z}_{k}) \Delta x_{\sigma} \Delta y_{\sigma} \Delta z_{k} + o(1) = \sum_{k,\sigma} \tilde{F}(x_{\sigma},y_{\sigma},\tilde{z}_{k}) \Delta x_{\sigma} \Delta y_{\sigma} \Delta z_{k} + o(1)$$

Первое слагаемое в правой части равенства — интегральная сумма тройного интеграла $\iiint\limits_{C} F(x,y,z) dx dy dz$, который существует, а левая часть равенства — повторный интеграл.

Предельный переход при $d(\xi) \to 0$ доказывает формулу (3).

Пример 3. Вычислить интеграл $\iiint_G z dx dy dz$, где область G ограничена поверхностью

конуса
$$z^2 = \frac{h^2}{R^2}(x^2 + y^2)$$
 и плоскостью $z = h$.

Решение

$$\iiint\limits_{G}zdxdydz=\int\limits_{0}^{h}zdz\iint\limits_{D_{z}}dxdy\ \ ,$$
 где $D-$ круг $x^{2}+y^{2}\leq\frac{z^{2}R^{2}}{h^{2}}$. Во внутреннем интеграле

вычисляется площадь круга, т.е.
$$\frac{\pi R^2 z^2}{h^2}$$
 и $\iiint_G z dx dy dz = \pi R^2 \cdot \frac{z^4}{4h^2} \bigg|_{z=0}^{z=h} = \frac{\pi R^2 h^2}{4}$

4. Если
$$G = G_c$$
, то $\iiint_G F(x, y, z) dx dy dz = \int_a^b dp \iint_{D_c} F(x, y, p) dx dy$ (4)

Внутренний двойной интеграл берется по сечению области G плоскостью z=p, а внешний одномерный интеграл берется по отрезку значений параметра p, при которых эти сечения не пусты.

ДОК. Разобьем отрезок [a;b] на отрезки $[p_k;p_{k+1}]$ длиной Δp_k .По теореме о среднем для одномерного интеграла на отрезке $[p_k;p_{k+1}]$ существует точки $\tilde{p}_k \in [p_k;p_{k+1}]$, для которых

$$\int\limits_a^b dp \iint\limits_{D_p} F(x,y,p) dx dy = \sum_{k=1}^n \iint\limits_{D_{\tilde{p}_k}} F(x,y,\tilde{p}_k) dx dy \cdot \Delta p_k \ .$$
 Оценим двойной интеграл с помощью

интегральной суммы:

$$\iint_{D_{\tilde{p}_k}} F(x, y, \tilde{p}_k) dx dy = \sum_{\sigma} F(x_{\sigma}, y_{\sigma}, \tilde{p}_k) \Delta x_{\sigma} \Delta y_{\sigma} + o(1) ,$$

построенной по ступенчатой области $D_k(\xi)$, являющейся объединением прямоугольников $\Pi_{k,\sigma}, \mu(\Pi_{k,\sigma}) = \Delta x_\sigma \Delta y_\sigma$. Тогда повторный интеграл можно представить в виде:

$$\sum_{k=1}^{n} \iint_{D_{z_{k}}} F(x, y, \tilde{p}_{k}) dx dy \cdot \Delta p_{k} = \sum_{k, \sigma} F(x_{\sigma}, y_{\sigma}, \tilde{p}_{k}) \Delta x_{\sigma} \Delta y_{\sigma} \Delta p_{k} + o(1)$$

Выражение справа при $d(\xi) \to 0$ имеет предел, равный тройному интегралу, а выражение слева равно повторному интегралу.

Пример 4. Вычислить интеграл $\iiint x^2 dx dy dz$, где область G ограничена поверхностями:

$$z = y^2$$
, $z = 4y^2$, $z = x$, $z = 2x$, $z = 1$, $y > 0$.

РЕШЕНИЕ. Буква д наиболее часто встречается в уравнениях границы, поэтому сечения следует проводить перпендикулярно оси OZ плоскостями z=p. Сечением являются прямоугольники $D_{\scriptscriptstyle p}$, границы которого имеют уравнения:

$$x = \frac{p}{2}, \ x = p, \ y = \frac{\sqrt{p}}{2}, \ y = \sqrt{p}, \ p \in [0;1].$$

Тогда

$$\iiint_{G} x^{2} dx dy dz = \int_{0}^{1} dp \iint_{D_{p}} x^{2} dx dy = \int_{0}^{1} dp \int_{p/2}^{p} x^{2} dx \int_{\sqrt{p}/2}^{\sqrt{p}} dy = \frac{1}{3} \cdot \frac{7}{8} \cdot \int_{0}^{1} p^{\frac{7}{2}} dp = \frac{7}{108}.$$

П.З Замена переменной в тройном интеграле.

ОПР. Заменой переменной в пространстве называют биективное отображение $G_{u,v,w} \xrightarrow{f} G_{x,y,z}$ области $G_{u,v,w}$ в R^3 на область $G_{x,y,z}$ в R^3 , при котором каждая точка

$$Q(u,v,w)\in G_{u,v,w} \text{ переходит в точку } P(x,y,z)\in G_{x,y,z} \text{ , причем } \begin{cases} x=x(u,v,w),\\ y=y(u,v,w),\\ z=z(u,v,w) \end{cases}$$

Отображение задается непрерывно дифференцируемыми функциями x = x(u, v, w), y = y(u, v, w), z = z(u, v, w)

Определитель
$$J(u,v,w) = \begin{vmatrix} x'_u & x'_v & x'_w \\ y'_u & y'_v & y'_w \\ z'_u & z'_v & z'_w \end{vmatrix} \neq 0$$
 называется якобианом отображения f .

Пример 5 (сферическая замена переменных)

Положение точки Q в пространстве можно характеризовать тремя числами u = r, $v = \varphi$, $w = \theta$ - сферическими координатами точки. Здесь r - расстояние точки Q до точки O начала координат $r \ge 0$. Если Q' проекция точки Q на плоскость XOУ, то φ - угол, который образует вектор $\overline{OQ'}$ с положительным направлением оси ОХ, $\varphi \in [0;2\pi)$.

Наконец,
$$\theta$$
 - угол, который образует вектор \overline{OQ} с плоскостью XOУ, $\theta \in \left[-\frac{\pi}{2}; \frac{\pi}{2} \right]$

Связь между декартовыми и сферическими координатами осуществляется по формулам:

$$\begin{cases} x = r\cos\phi\cos\theta, \\ y = r\sin\phi\cos\theta, \text{ . Например, прообразом шара: } x^2 + y^2 + z^2 \leq R^2 \text{ при отображении} \\ z = r\sin\theta \end{cases}$$

сферической замены является параллелепипед $\left\{ (r, \varphi, \theta) : 0 \le r \le R, 0 \le \varphi < 2\pi, -\frac{\pi}{2} \le \theta \le \frac{\pi}{2} \right\}$.

Якобиан сферической замены $J(r, \varphi, \theta) = \begin{vmatrix} \cos\varphi\cos\theta & -r\sin\varphi\cos\theta & -r\cos\varphi\sin\theta \\ \sin\varphi\cos\theta & r\cos\varphi\cos\theta & -r\sin\varphi\sin\theta \end{vmatrix} = \\ \sin\theta & 0 & r\cos\theta \end{vmatrix}$ $= r^2\sin^2\theta\cos\theta \begin{vmatrix} -\sin\phi & -\cos\phi \\ \cos\phi & -\sin\phi \end{vmatrix} + r^2\cos^3\theta \begin{vmatrix} \cos\phi & -\sin\phi \\ \sin\phi & \cos\phi \end{vmatrix} = r^2\cos\theta$

$$= r^{2} \sin^{2} \theta \cos \theta \begin{vmatrix} -\sin \phi & -\cos \phi \\ \cos \phi & -\sin \phi \end{vmatrix} + r^{2} \cos^{3} \theta \begin{vmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{vmatrix} = r^{2} \cos \theta$$

ЗАМЕЧАНИЕ.

Иногда в сферической замене вместо угла θ используют угол $\theta' = \frac{\pi}{2} - \theta$, $\theta' \in [0; \pi]$, образуемый вектором \overline{OQ} с положительным направлением оси OZ. В этом случае

соответствующая замена переменных задается формулами: $\begin{cases} x = r\cos\varphi\sin\theta', \\ y = r\sin\varphi\sin\theta', \\ z = r\cos\theta' \end{cases}$

с якобианом $J(r, \phi, \theta') = r^2 \sin \theta'$.

Пример 6. (Цилиндрическая замена)

Положение точки Q в пространстве можно характеризовать тремя числами $u=r,\ v=\varphi$ и w=h называемыми цилиндрическими координатами точки Q. Здесь r - длина вектора $\overline{OQ'}$ на плоскости $XOY, r \ge 0$, φ - угол, который образует вектор $\overline{OQ'}$ с положительным направлением оси $OX,\ \varphi \in [0;2\pi)$, и h - проекция вектора \overline{OQ} на ось $OZ,\ h \in R$. Связь между декартовыми и цилиндрическими координатами осуществляется по

формулам $\begin{cases} x = r\cos\varphi, \\ y = r\sin\varphi, \end{cases}$

УПРАЖНЕНИЕ. Вычислить якобиан цилиндрической замены переменных. Ответ: $J(r, \varphi, h) = r$.

Прообразом прямого кругового цилиндра $\{(x, y, z): x^2 + y^2 \le R^2, 0 \le z \le H\}$ при отображении цилиндрической замены является параллелепипед $\{(r, \varphi, h): 0 \le r \le R, 0 \le \varphi \le 2\pi, 0 \le h \le H\}$.

ТЕОРЕМА 3. (О замене переменной в тройном интеграле)

Пусть функция F(x,y,z) непрерывна на замкнутой, ограниченной и измеримой области $\overline{G}_{x,y,z}$. На замкнутой, ограниченной и измеримой области $\overline{G}_{u,v,w}$ задано отображение $\begin{cases} x = x(u,v,w), \\ y = y(u,v,w),, \text{ осуществляющее биекцию области } \overline{G}_{u,v,w} \text{ на } \overline{G}_{x,y,z}, \text{ причем функции } \\ z = z(u,v,w) \end{cases}$

x = x(u, v, w), y = y(u, v, w), z = z(u, v, w) непрерывно дифференцируемые в точках области $G_{u,v,w}$. Тогда имеет место формула:

$$\iiint_{G_{x,y,z}} F(x,y,z) dx dy dz = \iiint_{G_{u,v,w}} F(x(u,v,w),y(u,v,w),z(u,v,w)) |J(u,v,w)| du dv dw.$$

ДОК. (Без доказательства)

Пример 7. Вычислить интеграл $\iiint_G (x^2 + y^2) dx dy dz$, где область G, ограничена

поверхностями $x^2 + y^2 = 2z$, z = 2

РЕШЕНИЕ. Сделаем цилиндрическую замену. Для этого подставим формулы перехода в уравнения границы области $r^2=2h$, h=2 . Прообразом области G является область $G_{r,\varphi,h}=\left\{\!\!\left(r,\varphi,h\right)\!\!:\!0\le\varphi<2\pi,0\le h\le 2,0\le r\le\sqrt{2h}\right\}\!\!$. Тогда по формуле замены:

$$\iiint_G (x^2 + y^2) dx dy dz = \int_0^{2\pi} d\varphi \int_0^2 dh \int_0^{\sqrt{2h}} r^3 dr = 2\pi \int_0^2 h^2 dh = \frac{16\pi}{3}.$$

Приложение тройного интеграла

1. Масса тела

m(G) — масса тела — аддитивная функция множества. Ее производная по множеству

$$\rho(x,y,z) = \lim_{\delta \to 0} \frac{m(U_{\delta}(M))}{\mu\big(U_{\delta}(M)\big)}, \, \mathrm{где}U_{\delta}(M) - \, \mathrm{шар} \, \mathrm{радиусa} \, \delta \, \, \mathrm{c} \, \, \mathrm{центром} \, \mathrm{B} \, \mathrm{точке} \, M(x,y,z) \, ,$$

называется плотностью распределения массы. Тогда

$$m(G) = \iiint_G \rho(x, y, z) dx dy dz$$

Статические моменты относительно координатных плоскостей вычисляются по формулам

$$M_{xy} = \iiint_G z \rho dx dy dz$$
, $M_{xz} = \iiint_G y \rho dx dy dz$, $M_{yz} = \iiint_G x \rho dx dy dz$

Центр тяжести тела определяется по формулам:

$$x_{u} = \frac{M_{yz}}{m(G)}, \quad y_{u} = \frac{M_{xz}}{m(G)}, \quad z_{u} = \frac{M_{xy}}{m(G)}$$

Пример 8 Найти массу и координаты центра тяжести тела, ограниченного поверхностью $x^2 + y^2 + z^2 = 2az$ с плотностью $\rho(x, y, z) = k / \sqrt{x^2 + y^2 + z^2}$

Решение. Перейдем к сферическим координатам в интеграле $m = \iiint_G \frac{k dx dy dz}{\sqrt{x^2 + y^2 + z^2}}$.

Уравнение поверхности:
$$r = 2a\sin\theta$$
, $\theta \in \left[0; \frac{\pi}{2}\right]$, $\varphi \in \left[0; 2\pi\right]$, $\rho = \frac{k}{r}$

$$m(G) = \int_{0}^{2\pi} d\varphi \int_{0}^{\pi/2} d\theta \int_{0}^{2a\sin\theta} r^2 \cos\theta \cdot \frac{k}{r} dr = 2\pi k \int_{0}^{\pi/2} \cos\theta d\theta \cdot \frac{r^2}{2} \Big|_{0}^{2a\sin\theta} = 4a^2\pi k \int_{0}^{\pi/2} \sin^2\theta d\sin\theta = \frac{4a^2\pi k}{3}$$

Вычисление момента $M_{\rm ry}$:

$$M_{xy} = \iiint_{G} z dx dy dz = k \int_{0}^{2\pi} d\varphi \int_{0}^{\pi/2} \cos\theta \sin\theta d\theta \int_{0}^{2a\sin\theta} r^{2} dr = \frac{16\pi a^{3}k}{3} \int_{0}^{\pi/2} \cos\theta \sin^{4}\theta d\theta = \frac{16\pi a^{3}k}{15}$$

Тогда
$$z_{y} = \frac{M_{xy}}{m} = \frac{4a}{5}$$
, $x_{y} = y_{y} = 0$

ВОПРОСЫ К ЭКЗАМЕНУ.

- 1. Измеримые множества в R^3 . Мера множества. Примеры измеримых множеств.
- 2. Понятие тройного интеграла. Необходимое условие интегрируемости функции. Достаточное условие интегрируемости функции. Свойства тройного интеграла.
- 3. Повторное интегрирование. Вычисление тройного интеграла через повторные по стандартным областям.
- 4. Замена переменной в пространстве, якобиан преобразования. Формула замены переменной в тройном интеграле.
- 5. Сферическая и цилиндрическая замены переменных. Вычисление якобианов преобразований. Формулы вычисления тройных интегралов в сферической и цилиндрической системе координат.