МИНИСТЕРСТВО НА ОБРАЗОВАНИЕТО И НАУКАТА ДЪРЖАВЕН ЗРЕЛОСТЕН ИЗПИТ ПО

Учебен предмет – математика май 2009 г.

ВАРИАНТ № 1

Ключ с верните отговори

Въпроси с изборен отговор

Въпрос	Верен отговор	Брой
Nō		точки
1.	Α	2
2.	Б	2
3.	Γ	2
4.	Б	2
5.	Б	2
6.	В	2
7.	Γ	2
8.	В	2
9.	В	2
10.	Б	2
11.	Γ	2
12.	A	2
13.	Б	2
14.	В	2
15.	В	2
16.	A	2
17.	Б	2
18.	В	2
19.	Б	2
20.	Б	2
21.	У	3
22.	20000	3
23.	4	3
24.	$4\frac{1}{6}$	3
25.	10^{4}	3

Въпрос №	Верен отговор	Брой точки
26.	$x_{1,2} = -1 \pm \frac{2}{3}\sqrt{3}$	15
27.	$P = \frac{26}{220} = \frac{13}{110}$	15
28.	$P_{\Delta ABC} = 3\left(\sqrt{5} + \sqrt{13}\right)$	15

Въпроси с решения

26. КРИТЕРИИ ЗА ОЦЕНЯВАНЕ НА ЗАДАЧА 26

1. Записваме уравнението така $\sqrt{\frac{2+x}{x}} + \sqrt{\frac{x}{x+2}} = 4$.

Определяме множеството от допустими стойности:

$$\frac{2+x}{x} > 0 \Leftrightarrow x \in (-\infty; -2) \cup (0; +\infty)$$

2. Повдигаме двете страни на уравнението на втора степен и получаваме

$$\frac{2+x}{x} + \frac{x}{x+2} + 2\sqrt{\frac{2+x}{x} \cdot \frac{x}{x+2}} = 16$$
 (3 T.)

3.
$$\Leftrightarrow \frac{(x+2)^2 + x^2}{x(x+2)} + 2 = 16$$
 (2 T.)

4.
$$\Leftrightarrow \frac{2x^2 + 4x + 4}{x(x+2)} = 14 \Leftrightarrow 2x^2 + 4x + 4 = 14x^2 + 28x$$
 (2 T.)

5.
$$\Leftrightarrow 12x^2 + 24x - 4 = 0 \Leftrightarrow 3x^2 + 6x - 1 = 0$$
 (2 T.)

6. Корените на последното уравнение са
$$x_{1,2} = -1 \pm \frac{2}{3} \sqrt{3}$$
, (2 т.)

и че
$$-1 \pm \frac{2}{3} \sqrt{3} \in (-\infty; -2) \cup (0; +\infty)$$
. (1 т.)

*Забележка: Ако вместо етап 1. и 7. е направена директна проверка,

че
$$x_{1,2} = -1 \pm \frac{2}{3}\sqrt{3}$$
 са решения на даденото уравнение (4 т.)

Второ решение:

1. Полагане
$$\sqrt{\frac{x+2}{x}} = t$$
 (2 т.)

2. Допустими стойности за
$$t: t > 0$$
 (1 т.)

3. Получаване на уравнението
$$t + \frac{1}{t} = 4$$
 (1 т.)

4. Намиране на
$$t_{1,2} = 2 \pm \sqrt{3}$$
 (2 т)

5. Установяване, че
$$t_1 > 0, t_2 > 0$$
 (2 т.)

6. Заместване
$$\sqrt{\frac{x+2}{x}} = 2 + \sqrt{3}$$
 и $\sqrt{\frac{x+2}{x}} = 2 - \sqrt{3}$ (1 т.)

7. Намиране решението на първото уравнение
$$x = \frac{1}{3 + 2\sqrt{3}} = \frac{2\sqrt{3} - 3}{3}$$
 (3 т.)

8. Намиране решението на второто уравнение
$$x = \frac{1}{3 - 2\sqrt{3}} = \frac{-2\sqrt{3} - 3}{3}$$
 (3 т.)

КРИТЕРИИ ЗА ОЦЕНЯВАНЕ НА ЗАДАЧА 27

Като се има пред вид с какви монети разполагаме, от три монети обща сума 1,20 лв. може да се получи по два начина — 1 монета по 1 лв. и 2 по 10 ст. или 2 монети по 50 ст. и 1 монета по 20 ст. (3 т.)

Броят на възможните тройки монети е
$$C_{12}^3 = \frac{12.11.10}{2.3} = 220$$
. (2 т.)

1 монета по 1 лв. може да бъде избрана по $C_2^1=2\,$ начина и 2 по 10 ст. по $C_2^2=1\,$ начин (2 т.).

Следователно 1 монета по 1 лв. и 2 по 10 ст. могат да бъдат избрани по $C_2^1.C_2^2 = 2.1 = 2$ начина. (2 т.)

Две монети по 50 ст. могат да бъдат избрани по $C_4^2 = \frac{4.3}{2} = 6$ начина и 1 монета от 20 ст. може да бъде избрана по $C_4^1 = 4$ начина. (2 т.)

Следователно 2 монети по 50 ст. и 1 монета по 20 ст. могат да бъдат избрани по
$$C_4^2.C_4^1=6.4=24\,$$
 начина. (2 т.)

Общият брой на благоприятните изходи е 2+24=26 и търсената вероятност P е $P=\frac{26}{220}=\frac{13}{110}$. (2 т.)

КРИТЕРИИ ЗА ОЦЕНЯВАНЕ НА ЗАДАЧА 28

• доказване, че
$$\triangle ABM$$
 е равнобедрен (2 т.)

• изразяване на
$$BC = 2AB = x$$
 (1 т.)

• изразяване на
$$CL = 2AL = 2y$$
 (2 т.)

• получаване на уравнение от ъглополовящата
$$16 = 2x^2 - 2y^2$$
 (3 т.)

• получаване на уравнение от медианата
$$64 = 18y^2 - 2x^2$$
 (3 т.)

• решаване на системата и получаване на
$$x = \sqrt{13}$$
, $y = \sqrt{5}$ (3 т.)

• определяне на периметъра на триъгълника
$$P_{\Delta ABC} = 3\left(\sqrt{5} + \sqrt{13}\right)$$
 (1 т.)