数字逻辑设计

秦阳 School of Computer Science csyqin@hit.edu.cn

目 录

- 多级门电路 (Multi-Level Circuits)
- 两级门电路的设计
- 多输出电路的设计
- 多级门电路实例

前提:忽略输入端原、反变量的差别.

门的级数——

电路输入与输出之间串联的门的最大数值

□二级电路

AND-OR 电路(积之和) OR-AND 电路(和之积)

- □ 三级电路 OR-AND-OR 电路
- □ 各门没有特定的排列顺序
- □ 输出门可以使与门也可以是或门

1. 二级电路

AND-OR 电路(积之和)

 $f=ac\dot{d}+\dot{b}cd+\dot{b}cd+acd$

OR-AND 电路(和之积)

$$f = (c+d)(a+b+c)(c+d)(a+b+c)$$

5个门, 16 个输入端

5个门, 14 个输入端

1. 二级电路

AND-OR 电路(积之和)

 $f=ac\dot{d}+\dot{b}cd+\dot{b}cd+acd$

2. 三级电路

OR-AND-OR 电路

f=cda+b+cd) (a+b)

5个门, 16 个输入端

5个门, 12 个输入端

二级门电路的8种基本形式——1

二级门电路的8种基本形式——2

多级门电路设计实例

 \rightarrow 设计组合电路,对输入的2个二进制数 $X=X_1X_2$ 和 $Y=Y_1Y_2$ 比较,当 $X>Y_1$ 输出F=1;否则,F=0.

确定输入输出

真值表

$X_1 X_2 Y_1 Y_2$	F	$X_1 X_2 Y_1 Y_2$	F
0 0 0 0	0	1 0 0 0	1
0 0 0 1	0	1 0 0 1	1
0 0 1 0	0	1 0 1 0	0
0 0 1 1	0	1 0 1 1	0
0 1 0 0	1	1 1 0 0	1
0 1 0 1	0	1 1 0 1	1
0 1 1 0	0	1 1 1 0	1
0 1 1 1	0	1 1 1 1	0

最简二级与或电路

$$\mathbf{F} = \mathbf{X}_1 \overline{\mathbf{Y}}_1 + \mathbf{X}_2 \overline{\mathbf{Y}}_1 \overline{\mathbf{Y}}_2 + \mathbf{X}_1 \mathbf{X}_2 \overline{\mathbf{Y}}_2$$

采用单一逻辑门(与非门)设计

$$\mathbf{F} = \mathbf{X}_1 \overline{\mathbf{Y}}_1 + \mathbf{X}_2 \overline{\mathbf{Y}}_1 \overline{\mathbf{Y}}_2 + \mathbf{X}_1 \mathbf{X}_2 \overline{\mathbf{Y}}_2$$

$$= (\overline{\overline{X_1}\overline{Y}_1}) (\overline{X_2}\overline{\overline{Y}_1}\overline{\overline{Y}_2}) (\overline{X_1}\overline{X_2}\overline{\overline{Y}_2})$$

目录

- 多级门电路(Multi-Level Circuits)
- 两级门电路的设计
- 多输出电路的设计
- 多级门电路实例

任何逻辑都可以用二级门电路实现

$$F(X,Y,Z) = \sum_{XYZ} (1,6,7) = \prod_{XYZ} (0,2,3,4,5)$$

$$F'(X,Y,Z) = \sum_{XYZ} (0,2,3,4,5) = \prod_{XYZ} (1,6,7)$$

NAND and NOR gates:

相比与门、或门——速度更快;价格便宜;使用的器件更少

二级门电路的设计方法

1. 使用单一逻辑门(与非门)设计最简二级电路

给定: 最简与或式

Method 1: (**F'**)'

$$F = \overline{A}B + A\overline{B}$$

$$=\overline{\overline{\mathbf{A}}\mathbf{B}+\mathbf{A}\overline{\mathbf{B}}}$$

$$=\overline{\overline{A}B} \cdot \overline{AB}$$

给定: 最简与或式

Method 2: 1. 找出F的最简积之和式.

- 2. 画出二级与或电路(AND-OR).
- 3. 用与非门替换所有逻辑门.
- 4. 将连接输出门的所有单个变量取反

2. 使用单一逻辑门(或非门)设计最简二级电路

给定: 最简与或式

Method 1: $(F^D)^D$

$$F = \overline{A}C + B\overline{C} + A\overline{B}$$

$$F^{D} = (A + \overline{B}) \cdot (B + \overline{C}) \cdot (\overline{A} + C)$$

$$= \overline{ABC} + ABC$$

$$= \overline{ABC} \cdot \overline{ABC}$$

$$F=(F^D)^D=\overline{(A+B+C)}+\overline{(A+B+C)}$$

给定: 最简与或式

Method 2:

- 1. 找出F的最简和之积式.
- 2. 画出二级或与电路(OR-AND).
- 3. 用或非门替换所有逻辑门.
- 4. 将连接输出门的所有单个变量取反

3. 使用单一逻辑门(与或非门)设计最简二级电路

给定: 最简与或式

• Method : (**F**')'

$$F = \overline{A}C + B\overline{C} + A\overline{B}$$

$$F = \overline{\overline{A}C + BC + AB}$$

$$\overline{A}$$
 C
 \overline{B}
 \overline{C}
 A
 \overline{B}

$$F = \overline{A}C + B\overline{C} + A\overline{B}$$

$$= \overline{A}B\overline{C} + ABC$$

$$F = \overline{A}B\overline{C} + ABC$$

正逻辑与负逻辑

客观:只要电路组成一定,其输入与输出的电位 关系就唯一被确定下来

主观:输入与输出的高低电位被赋予什么逻辑值 是人为规定的

正逻辑与负逻辑

对于同一电路

- 可以采用正逻辑,也可以采用负逻辑
- 它不会影响电路结构,但是会影响电路逻辑功能。

L = 0

L = 1

输出:H=0

 0
 1
 1

 1
 0
 1

 1
 1
 0

与非门

输入:H=0 L=1 输出:H=1

L = 0

正逻辑——高电平有效 负逻辑——低电平有效

• 逻辑符号——用带小圆圈的门符号表示

正、负逻辑的变换定理

定理1:

定理2:

$$\stackrel{A}{\Longrightarrow} \stackrel{\overline{A}}{\Longrightarrow} \stackrel$$

定理3:

目录

- 多级门电路(Multi-Level Circuits)
- 两级门电路的设计
- 多输出电路的设计
- 多级门电路实例

多输出电路的设计

利用与非门设计二级电路: $F_1 = C + A\overline{B}$, $F_2 = BC + A\overline{B}\overline{C}$

关键:寻找共享项,追求整体最简

$$F_{1} = C + A\overline{B}$$

$$= C + A\overline{B} (C + \overline{C})$$

$$= C + A\overline{B}C + A\overline{B}\overline{C}$$

$$= C + A\overline{B}C$$

多输出电路的设计

$$\mathbf{F}_1 = \mathbf{C} + \mathbf{A}\mathbf{\bar{B}}\mathbf{\bar{C}}$$

$$\mathbf{F}_2 = \mathbf{BC} + \mathbf{ABC}$$

关键:寻找共享项,追求整体最简

目 录

- 多级门电路(Multi-Level Circuits)
- 两级门电路的设计
- 多输出电路的设计
- 多级门电路实例

三人表决器设计

少数服从多数 真值表

A	В	C	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$$F=AB+AC+BC$$

举重比赛裁判电路设计

- 一个主裁判,两个副裁判
- 比赛结果用红、绿两只灯显示

- 两灯都亮: 成功
- > 只有红灯亮: 需讨论
- ▶ 其他: 未成功

规则

- 1. 红绿两只灯都亮:
 - ■三个裁判均按下自己的按钮;
 - ■两个裁判(其中有一个是主裁判)按下自己的按钮;
- 2 只红灯亮:
 - ■两个裁判(均是副裁判);
 - ■只一个主裁判按下自己的按钮;
- 3. 其它情况,红绿灯都灭

真值表

7- 1 1 1				
A	B	C	$\mathbf{F_2}$	$\mathbf{F_1}$
主付付		红绿		
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	1	0
1	0	0	1	0
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1

$$\mathbf{F}_2 = \mathbf{A} + \mathbf{BC}$$

$$\mathbf{F}_1 = \mathbf{A}\mathbf{B} + \mathbf{A}\mathbf{C}$$

操作码生成器

Truth Table

A B C	$\mathbf{F_2} \mathbf{F_1}$
× + -	
0 0 0	0 0
0 0 1	1 1
0 1 0	1 0
0 1 1	××
100	0 1
101	××
1 1 0	××
111	××

▶用与或非门设计一个操作码形成器,当按下×、+、-各个操作键时,要求分别产生乘法、加法、减法的操作码01、10和11

Constraint:
$$AB=0$$

$$BC=0$$

$$ABC=0$$

$$ABC=0$$

$$ABC=0$$

$$ABC=0$$

$$ABC=0$$

$$\mathbf{F}_2 = \mathbf{B} + \mathbf{C}$$

$$\mathbf{F}_2 = (\mathbf{B}'\mathbf{C}')'$$

$$\mathbf{F}_1 = \mathbf{A} + \mathbf{C}$$

$$\mathbf{F_1} = (\mathbf{A'C'})'$$

Y = X * X

X is 2-bit binary, Design a circuit to realize Y=X²

真值表

X ₁	X ₀	y ₃	y ₂	y ₁	y ₀
0	0	0	0	0	0
0	1	0	0	0	1
1	0	0	1	0	0
1	1	1	0	0	1

$$\begin{cases} y_3 = x_1 x_0 \\ y_2 = x_1 \overline{x}_0 \\ y_1 = 0 \\ y_0 = x_0 \end{cases}$$

小结

- 多级门电路 (Multi-Level Circuits)
- 两级门电路的设计
- 多输出电路的设计
- 多级门电路实例