微积分II(第一层次)期末试卷(2012.6.20)

- 一、计算下列各题 $(6分 \times 10 = 60分)$
- 1. 计算曲面积分 $\iint z \, \mathrm{d}S$, 其中 S 为球面 $x^2 + y^2 + z^2 = a^2$ 被平面 $z = h \; (0 < h < a)$ 截出的顶部.
- 2. 计算曲面积分 $\iint (x-y) \, \mathrm{d}x \, \mathrm{d}y + (y-z)x \, \mathrm{d}y \, \mathrm{d}z$,其中 S 为柱面 $x^2 + y^2 = 1$ 及平面 z = 0, z = 3 所 围成的空间闭区域 V 的整个边界曲面的外侧
- 3. 求级数 $\sum_{n=1}^{\infty} \frac{n}{(2n-1)^2(2n+1)^2}$ 的和. 4. 求幂级数 $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n}$ 的收敛半径和收敛域.
- 5. 求微分方程 $u'' + y = x^2$ 的通解.
- 6. 求微分方程 (x-y) dx + (x+y) dy = 0 的通解.
- 7. 求函数 $\ln \frac{1+x}{1-x}$ 在 x=0 处的泰勒展式. 8. 判别广义积分 $\int_0^{+\infty} \frac{\arctan x}{1+x^p} dx \ (p>0)$ 的敛散性.
- 9. 计算曲线积分 $\int_{\mathbb{R}^{n}} \sqrt{x^2 + y^2} \, ds$, 其中 C 为圆周 $x^2 + y^2 = ay \ (a > 0)$.
- 10. 计算三重积分 $\iiint y^2 dx dy dz$, 其中 Ω 为锥面 $z = \sqrt{4x^2 + 4y^2}$ 与 z = 2 所围立体.
- 二、(10分) 讨论实数 p 为何值时,级数 $\sum_{n=0}^{\infty} \left(\frac{1}{n} \sin \frac{1}{n}\right)^{p}$ 收敛,实数 p 为何值时,级数发散.
- 三、(10分) 设函数 f(x), g(x) 连续可微,f(0) = g(0) = 0,使得曲线积分

$$\int_{(0.1.0)}^{(1,0,1)} \left((x^2 - f(x))y + \frac{1}{2}g(x)y^2 \right) dx + \left(f(x)y - g(x) \right) dy + dz$$

与路径无关, 求出 f(x), g(x), 并求出该曲线积分的值.

四、(10分) 1. 设函数 f(x) 是以 2π 为周期的周期函数,它在 $[-\pi,\pi]$ 上的表达式为 $f(x)=\pi^2$ x^2 , $(-\pi \le x \le \pi)$, 求函数 f(x) 在 $[-\pi,\pi]$ 上的傅立叶级数展开式;

2. 求级数
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n^2}$$
 的和.

3. 求级数
$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$
 的和.

五、(本题非商学院的学生必做题,10分) 已知曲线积分 $\int_L \frac{1}{f(x)+8y^2} (x\,\mathrm{d}y-y\,\mathrm{d}x)$ 恒等于常数 A,其中函数 f(x) 连续可导,f(1)=1,L 为任意包围原点 O(0,0) 的简单闭曲线,取正向,

- (1) 设G 为不包含原点的单连通区域,证明:G 内的曲线积分 $\int_C \frac{1}{f(x) + 8u^2} (x \, \mathrm{d}y y \, \mathrm{d}x)$ 与 路径无关,其中C为完全位于G内的曲线;
 - (2) 求函数 f(x) 与常数 A.

六、(本题商学院学生做,非商学院学生做了不给分,10分) 利用斯托克斯公式计算曲线积分

$$\oint_C (y-z) dx + (z-x) dy + (x-y) dz,$$

其中 C 是椭圆 $x^2 + y^2 = a^2, \frac{x}{a} + \frac{z}{b} = 1(a > 0, h > 0)$, 从 x 轴的正向看去,此椭圆取逆时针方向.