DS311 - R Lab Assignment

Brian Solis

2025-05-04

R Assignment 1

- In this assignment, we are going to apply some of the build in data set in R for descriptive statistics analysis.
- To earn full grade in this assignment, students need to complete the coding tasks for each question to get the result.
- After finished all the questions, knit the document into HTML format for submission.

Question 1

Using the **mtcars** data set in R, please answer the following questions.

```
# Loading the data
data(mtcars)

# Head of the data set
head(mtcars)
```

```
##
                      mpg cyl disp hp drat
                                               wt qsec vs am gear carb
## Mazda RX4
                            6 160 110 3.90 2.620 16.46
                     21.0
## Mazda RX4 Wag
                               160 110 3.90 2.875 17.02
                     21.0
                            6
                     22.8
## Datsun 710
                            4
                              108
                                   93 3.85 2.320 18.61
                                                                       1
## Hornet 4 Drive
                     21.4
                            6
                               258 110 3.08 3.215 19.44
                                                                       1
                                                                       2
## Hornet Sportabout 18.7
                               360 175 3.15 3.440 17.02
                                                                  3
                            8
                               225 105 2.76 3.460 20.22
## Valiant
                     18.1
```

a. Report the number of variables and observations in the data set.

```
# Enter your code here!
dim(mtcars)

## [1] 32 11

# Answer:
print("There are total of 11 variables and 32 observations in this data set.")
```

- ## [1] "There are total of 11 variables and 32 observations in this data set."
 - b. Print the summary statistics of the data set and report how many discrete and continuous variables are in the data set.

```
# Enter your code here!
summary(mtcars)
```

```
##
                          cyl
                                           disp
                                                             hp
         mpg
##
   Min.
           :10.40
                    Min.
                            :4.000
                                             : 71.1
                                                              : 52.0
                                     Min.
                                                      Min.
##
    1st Qu.:15.43
                     1st Qu.:4.000
                                      1st Qu.:120.8
                                                      1st Qu.: 96.5
   Median :19.20
                    Median :6.000
                                     Median :196.3
                                                      Median :123.0
           :20.09
                                            :230.7
   Mean
##
                    Mean
                            :6.188
                                     Mean
                                                      Mean
                                                              :146.7
    3rd Qu.:22.80
                     3rd Qu.:8.000
##
                                     3rd Qu.:326.0
                                                      3rd Qu.:180.0
##
   {\tt Max.}
           :33.90
                    Max.
                            :8.000
                                             :472.0
                                                              :335.0
                                     Max.
                                                      Max.
##
         drat
                           wt
                                           qsec
                                                             ٧s
##
   \mathtt{Min}.
           :2.760
                     Min.
                            :1.513
                                     Min.
                                             :14.50
                                                      Min.
                                                              :0.0000
   1st Qu.:3.080
                    1st Qu.:2.581
                                     1st Qu.:16.89
                                                      1st Qu.:0.0000
  Median :3.695
                    Median :3.325
                                     Median :17.71
                                                      Median :0.0000
##
##
   Mean
           :3.597
                    Mean
                            :3.217
                                     Mean
                                            :17.85
                                                      Mean
                                                              :0.4375
   3rd Qu.:3.920
##
                     3rd Qu.:3.610
                                      3rd Qu.:18.90
                                                      3rd Qu.:1.0000
##
   Max.
           :4.930
                            :5.424
                                             :22.90
                                                              :1.0000
                     Max.
                                     Max.
                                                      Max.
##
                                            carb
          am
                           gear
##
  Min.
           :0.0000
                     Min.
                             :3.000
                                      Min.
                                              :1.000
##
   1st Qu.:0.0000
                      1st Qu.:3.000
                                      1st Qu.:2.000
## Median :0.0000
                     Median :4.000
                                      Median :2.000
## Mean
          :0.4062
                     Mean
                            :3.688
                                      Mean
                                              :2.812
## 3rd Qu.:1.0000
                      3rd Qu.:4.000
                                       3rd Qu.:4.000
##
   Max.
           :1.0000
                             :5.000
                                              :8.000
                     Max.
                                      Max.
```

Answer:

print("There are 3 discrete variables (cyl, vs, am, gear, carb) and 6 continuous variables in this data

- ## [1] "There are 3 discrete variables (cyl, vs, am, gear, carb) and 6 continuous variables in this dat
 - c. Calculate the mean, variance, and standard deviation for the variable **mpg** and assign them into variable names m, v, and s. Report the results in the print statement.

```
# Enter your code here!
mean(mtcars$mpg)
```

[1] 20.09062

```
v <- var(mtcars$mpg)
s <- sd(mtcars$mpg)</pre>
```

d. Create two tables to summarize 1) average mag for each cylinder class and 2) the standard deviation

print(paste("The average of Mile Per Gallon from this data set is", m, "with variance", v, "and stand

d. Create two tables to summarize 1) average mpg for each cylinder class and 2) the standard deviation of mpg for each gear class.

```
# Enter your code here!
avg_mpg_cyl <- aggregate(mpg ~ cyl, data=mtcars, mean)
sd_mpg_gear <- aggregate(mpg ~ gear, data=mtcars, sd)
avg_mpg_cyl</pre>
```

```
##
     cyl
              mpg
## 1
       4 26.66364
       6 19.74286
       8 15.10000
## 3
sd_mpg_gear
##
     gear
                mpg
## 1
        3 3.371618
## 2
        4 5.276764
## 3
        5 6.658979
```

e. Create a crosstab that shows the number of observations belong to each cylinder and gear class combinations. The table should show how many observations given the car has 4 cylinders with 3 gears, 4 cylinders with 4 gears, etc. Report which combination is recorded in this data set and how many observations for this type of car.

[1] "The most common car type in this data set is car with 8 cylinders and 3 gears. There are total

Question 2

Use different visualization tools to summarize the data sets in this question.

a. Using the **PlantGrowth** data set, visualize and compare the weight of the plant in the three separated group. Give labels to the title, x-axis, and y-axis on the graph. Write a paragraph to summarize your findings.

```
# Load the data set
data("PlantGrowth")

# Head of the data set
head(PlantGrowth)
```

```
weight group
##
## 1
       4.17 ctrl
## 2
       5.58 ctrl
## 3
       5.18 ctrl
## 4
       6.11 ctrl
## 5
       4.50 ctrl
       4.61 ctrl
# Enter your code here!
data("PlantGrowth")
head(PlantGrowth)
##
     weight group
       4.17 ctrl
## 1
## 2
       5.58 ctrl
       5.18 ctrl
       6.11 ctrl
## 4
## 5
       4.50 ctrl
## 6
       4.61 ctrl
boxplot(weight ~ group, data=PlantGrowth,
       main="Plant Growth by Group",
       xlab="Group", ylab="Weight")
```

Plant Growth by Group

Result:

- => Report a paragraph to summarize your findings from the plot! Plants in group 2 appear to have higher median weight compared to groups 1 and 3. The variance is quite similar among the groups, though group 3 shows slightly higher variability.
 - b. Using the **mtcars** data set, plot the histogram for the column **mpg** with 10 breaks. Give labels to the title, x-axis, and y-axis on the graph. Report the most observed mpg class from the data set.

```
hist(mtcars$mpg, breaks=10,
    main="Histogram of MPG",
    xlab="Miles per Gallon (mpg)", ylab="Frequency")
```

Histogram of MPG


```
print("Most of the cars in this data set are in the class of 15-20 mile per gallon.")
```

- ## [1] "Most of the cars in this data set are in the class of 15-20 mile per gallon."
 - c. Using the **USArrests** data set, create a pairs plot to display the correlations between the variables in the data set. Plot the scatter plot with **Murder** and **Assault**. Give labels to the title, x-axis, and y-axis on the graph. Write a paragraph to summarize your results from both plots.

```
# Load the data set
data("USArrests")

# Head of the data set
head(USArrests)
```

```
Murder Assault UrbanPop Rape
##
                13.2
## Alabama
                          236
                                    58 21.2
                10.0
                          263
                                    48 44.5
## Alaska
## Arizona
                 8.1
                          294
                                    80 31.0
                                    50 19.5
## Arkansas
                 8.8
                          190
## California
                 9.0
                          276
                                    91 40.6
## Colorado
                 7.9
                          204
                                    78 38.7
```

```
# Enter your code here!
data("USArrests")
head(USArrests)
```

```
Murder Assault UrbanPop Rape
##
                13.2
                          236
## Alabama
                                     58 21.2
## Alaska
                10.0
                          263
                                     48 44.5
                 8.1
                          294
                                     80 31.0
## Arizona
## Arkansas
                 8.8
                          190
                                     50 19.5
## California
                                     91 40.6
                 9.0
                          276
## Colorado
                 7.9
                          204
                                    78 38.7
```

pairs(USArrests, main="Pairs Plot for US Arrests Data")

Pairs Plot for US Arrests Data


```
plot(USArrests$Murder, USArrests$Assault,
    main="Scatterplot of Murder vs Assault",
    xlab="Murder", ylab="Assault")
```

Scatterplot of Murder vs Assault

Result:

=> Report a paragraph to summarize your findings from the plot! The pairs plot and scatter plot indicate a strong positive correlation between Murder and Assault rates. States with higher murder rates also have higher assault rates. There also appears to be moderate positive correlations between these two crime variables and urban population.

Question 3

Download the housing data set from www.jaredlander.com and find out what explains the housing prices in New York City.

Note: Check your working directory to make sure that you can download the data into the data folder.

a. Create your own descriptive statistics and aggregation tables to summarize the data set and find any meaningful results between different variables in the data set.

```
# Head of the cleaned data set
head(housingData)
```

##		Neighborhood	Market.Value.per.SqFt	Boro	Year.Built
##	1	FINANCIAL	200.00	Manhattan	1920
##	2	FINANCIAL	242.76	Manhattan	1985

```
## 4
       FINANCIAL
                               271.23 Manhattan
                                                     1930
## 5
         TRIBECA
                               247.48 Manhattan
                                                     1985
## 6
         TRIBECA
                               191.37 Manhattan
                                                     1986
                                                     1985
## 7
         TRIBECA
                               211.53 Manhattan
```

Enter your code here!

aggregate(Market.Value.per.SqFt ~ Boro, data=housingData, mean)

```
Boro Market.Value.per.SqFt
##
## 1
                             47.93232
            Bronx
## 2
         Brooklyn
                             80.13439
## 3
                            180.59265
        Manhattan
## 4
           Queens
                             77.38137
## 5 Staten Island
                              41.26958
```

aggregate(Market.Value.per.SqFt ~ Neighborhood, data=housingData, mean)

##		Neighborhood	Market.Value.per.SqFt
##	1	ALPHABET CITY	148.35500
##	2	ARROCHAR-SHORE ACRES	57.75000
##	3	ASTORIA	91.48167
##	4	BATH BEACH	70.34000
##	5	BAY RIDGE	68.03500
##	6	BAYSIDE	71.42111
##	7	BEDFORD PARK/NORWOOD	38.24500
##	8	BEDFORD STUYVESANT	83.24172
##	9	BELMONT	56.45000
##	10	BENSONHURST	71.70429
##	11	BERGEN BEACH	73.27000
##	12	BOERUM HILL	96.57600
##	13	BOROUGH PARK	64.10857
##	14	BRIARWOOD	75.36250
##	15	BRIGHTON BEACH	81.91429
##	16	BRONX-UNKNOWN	32.06500
##	17	BRONXDALE	28.94333
##	18	BROOKLYN HEIGHTS	114.11778
##	19	BUSH TERMINAL	60.95000
##	20	BUSHWICK	76.13500
##	21	CANARSIE	46.58000
	22	CARROLL GARDENS	93.40556
##	23	CHELSEA	215.94932
##	24	CHINATOWN	154.17952
	25	CITY ISLAND	40.83000
	26	CIVIC CENTER	174.06696
	27	CLINTON	176.70032
##	28	CLINTON HILL	88.97385
##	29	COBBLE HILL	120.69800
	30	COBBLE HILL-WEST	85.71125
##	31	COLLEGE POINT	65.05000
	32	CONEY ISLAND	55.05750
	33	CORONA	94.20706
	34	CROWN HEIGHTS	64.26286
##	35	DOWNTOWN-FULTON FERRY	103.26857

##		DOWNTOWN-FULTON MALL	132.42500
##		DOWNTOWN-METROTECH	122.48000
##		DYKER HEIGHTS	68.36000
##		EAST NEW YORK	36.99167
##		EAST TREMONT	72.33333
##		EAST VILLAGE	207.46115
##	42	ELMHURST	69.80564
##		FAR ROCKAWAY	74.88500
##	44	FASHION	194.81067
##	45	FINANCIAL	199.30917
##	46	FLATBUSH-CENTRAL	65.71167
##	47	FLATBUSH-LEFFERTS GARDEN	46.27000
##	48	FLATBUSH-NORTH	54.00000
##	49	FLATIRON	223.30311
##	50	FLUSHING MEADOW PARK	58.59000
##	51	FLUSHING-NORTH	80.16992
##	52	FLUSHING-SOUTH	89.62750
##	53	FOREST HILLS	70.20706
##	54	FORT GREENE	81.76900
##	55	GLENDALE	57.39667
##	56	GOWANUS	82.45333
##	57	GRAMERCY	188.68471
##	58	GRANT CITY	47.60000
##	59	GRAVESEND	75.63526
##	60	GREAT KILLS	33.74000
##	61	GREENPOINT	86.18053
##	62	GREENWICH VILLAGE-CENTRAL	142.57767
##	63	GREENWICH VILLAGE-WEST	202.13667
##	64	GRYMES HILL	50.09000
##	65	HAMMELS	139.07200
##	66	HARLEM-CENTRAL	102.79106
##	67	HARLEM-EAST	139.93972
##	68	HARLEM-UPPER	79.25667
##	69	HARLEM-WEST	95.20500
##	70	HIGHBRIDGE/MORRIS HEIGHTS	61.82000
##	71	HILLCREST	53.95000
##	72	HOLLIS	109.56000
##	73	HOWARD BEACH	55.06000
##	74	INWOOD	62.05500
##	75	JACKSON HEIGHTS	47.79238
##	76	JAMAICA	104.76600
##	77	JAMAICA ESTATES	79.69500
##	78	JAVITS CENTER	125.09000
##	79	KENSINGTON	56.87500
##	80	KEW GARDENS	69.64300
##	81	KINGSBRIDGE HTS/UNIV HTS	23.86000
##	82	KINGSBRIDGE/JEROME PARK	58.37800
##	83	KIPS BAY	191.31769
##	84	LITTLE ITALY	142.52308
##	85	LITTLE NECK	65.85000
##	86	LONG ISLAND CITY	108.16667
##	87	LOWER EAST SIDE	173.56262
	88	MADISON	71.26000
##	89	MANHATTAN VALLEY	111.30043

##	90	MASPETH	53.32750
##	91	MIDDLE VILLAGE	78.35857
##	92	MIDTOWN CBD	234.36154
##	93	MIDTOWN EAST	211.04750
##	94	MIDTOWN WEST	222.06489
##	95	MIDWOOD	79.50273
##	96	MORNINGSIDE HEIGHTS	74.63000
##	97	MORRIS PARK/VAN NEST	26.90000
##	98	MORRISANIA/LONGWOOD	44.21250
##	99	MOTT HAVEN/PORT MORRIS	30.96000
##	100	MURRAY HILL	206.26795
##	101	NEW BRIGHTON	41.47667
##	102	NEW BRIGHTON-ST. GEORGE	41.06000
##	103	NEW SPRINGVILLE	40.47000
##	104	OAKLAND GARDENS	66.94000
##	105	OCEAN HILL	37.92900
##	106	OCEAN PARKWAY-NORTH	76.51111
##	107	OCEAN PARKWAY-SOUTH	75.08000
##	108	OZONE PARK	54.10000
##	109	PARK SLOPE	88.01774
##	110	PARK SLOPE SOUTH	95.84200
##	111	PARKCHESTER	32.67500
##	112	PELHAM PARKWAY SOUTH	30.55000
##	113	PROSPECT HEIGHTS	79.16200
	114	REGO PARK	62.13630
##	115	RIDGEWOOD	64.28667
##	116	RIVERDALE	57.10176
##	117	ROCKAWAY PARK	88.13600
##	118	SCHUYLERVILLE/PELHAM BAY	49.68000
##	119	SHEEPSHEAD BAY	79.79704
##	120	SILVER LAKE	35.80500
##	121	SOHO	162.72473
##	122	SOUNDVIEW	43.40333
##	123	SOUTH OZONE PARK	40.78000
##	124	SOUTHBRIDGE	159.53333
##	125	SUNNYSIDE	61.61818
	126	SUNSET PARK	80.58348
##	127	THROGS NECK	53.70667
##	128	TOMPKINSVILLE	35.81000
	129	TRIBECA	180.18473
	130	UPPER EAST SIDE (59-79)	216.83715
	131	UPPER EAST SIDE (79-96)	202.45179
	132	UPPER EAST SIDE (96-110)	167.41600
	133	UPPER WEST SIDE (59-79)	200.24391
	134	UPPER WEST SIDE (79-96)	171.84515
	135	UPPER WEST SIDE (96-116)	134.09353
	136	WASHINGTON HEIGHTS LOWER	65.29600
	137	WASHINGTON HEIGHTS UPPER	93.50833
	138	WEST NEW BRIGHTON	39.69000
	139	WHITESTONE	72.90000
	140	WILLIAMSBRIDGE	42.46000
	141	WILLIAMSBURG-CENTRAL	79.97017
	142	WILLIAMSBURG-EAST	84.32605
##	143	WILLIAMSBURG-NORTH	84.10577

##	144	WILLIAMSBURG-SOUTH	82.27618
##	145	WINDSOR TERRACE	70.21200
##	146	WOODHAVEN	38.61000
##	147	WOODSIDE	80.52625
##	148	WYCKOFF HEIGHTS	84.93000

b. Create multiple plots to demonstrates the correlations between different variables. Remember to label all axes and give title to each graph.

```
# Enter your code here!
plot(housingData$Year.Built, housingData$Market.Value.per.SqFt,
    main="Year Built vs Market Value per SqFt",
    xlab="Year Built", ylab="Market Value per SqFt")
```

Year Built vs Market Value per SqFt


```
boxplot(Market.Value.per.SqFt ~ Boro, data=housingData,
    main="Market Value per SqFt by Borough",
    xlab="Borough", ylab="Market Value per SqFt")
```

Market Value per SqFt by Borough

c. Write a summary about your findings from this exercise.

=> Enter your answer here! The analysis reveals a clear relationship between housing characteristics and market values in New York City. Properties built more recently generally command higher prices per square foot, suggesting a preference for newer construction. Additionally, location significantly affects property values, with Manhattan showing notably higher values compared to other boroughs, reflecting strong demand and economic status differences. Neighborhood-level analysis further emphasizes these variations, highlighting socioeconomic diversity and differential housing demand across the city.