## Section 2.6 Derivatives of Inverse Functions

1. 
$$f(x) = x^3 - 1$$
,  $a = 26$   
 $f'(x) = 3x^2$ 

f is monotonic (increasing) on  $(-\infty, \infty)$  therefore f has an inverse.

$$f(3) = 26 \Rightarrow f^{-1}(26) = 3$$
  
 $(f^{-1})'(26) = \frac{1}{f'(f^{-1}(26))} = \frac{1}{f'(3)} = \frac{1}{3(3^2)} = \frac{1}{27}$ 

2. 
$$f(x) = 5 - 2x^3$$
,  $a = 7$   
 $f'(x) = -6x^2$ 

f is monotonic (decreasing) on  $(-\infty, \infty)$  therefore f has an inverse.

$$f(-1) = 7 \Rightarrow f^{-1}(7) = -1$$
  
 $(f^{-1})'(7) = \frac{1}{f'(f^{-1}(7))} = \frac{1}{f'(-1)} = \frac{1}{-6(-1)^2} = \frac{-1}{6}$ 

3. 
$$f(x) = x^3 + 2x - 1$$
,  $a = 2$   
 $f'(x) = 3x^2 + 2 > 0$ 

f is monotonic (increasing) on  $(-\infty, \infty)$  therefore f has an inverse

$$f(1) = 2 \Rightarrow f^{-1}(2) = 1$$
  
 $(f^{-1})'(2) = \frac{1}{f'(f^{-1}(2))} = \frac{1}{f'(1)} = \frac{1}{3(1^2) + 2} = \frac{1}{5}$ 

4. 
$$f(x) = \frac{1}{27}(x^5 + 2x^3), \quad a = -11$$
  
 $f'(x) = \frac{1}{27}(5x^4 + 6x^2)$ 

f is monotonic (increasing) on  $(-\infty, \infty)$  therefore f has an inverse.

$$f(-3) = \frac{1}{27}(-243 - 54) = -11 \Rightarrow f^{-1}(-11) = -3$$

$$(f^{-1})'(-11) = \frac{1}{f'(f^{-1}(-11))} = \frac{1}{f'(-3)}$$

$$= \frac{1}{\frac{1}{27}(5(-3)^4 + 6(-3)^2)} = \frac{1}{\frac{1}{27}(459)} = \frac{1}{17}$$

5. 
$$f(x) = \sin x$$
,  $a = 1/2, -\frac{\pi}{2} \le x \le \frac{\pi}{2}$   
 $f'(x) = \cos x > 0 \text{ on } \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ 

f is monotonic (increasing) on  $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$  therefore f has an inverse.

$$f\left(\frac{\pi}{6}\right) = \sin\frac{\pi}{6} = \frac{1}{2} \Rightarrow f^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{6}$$

$$(f^{-1})'\left(\frac{1}{2}\right) = \frac{1}{f'\left(f^{-1}\left(\frac{1}{2}\right)\right)}$$

$$= \frac{1}{f\left(\frac{\pi}{6}\right)} = \frac{1}{\cos\left(\frac{\pi}{6}\right)} = \frac{2}{\sqrt{3}} = \frac{2\sqrt{3}}{3}$$

6. 
$$f(x) = \cos 2x$$
,  $a = 1, 0 \le x \le \pi/2$   
 $f'(x) = -2 \sin 2x < 0 \text{ on } (0, \pi/2)$ 

f is monotonic (decreasing) on  $[0, \pi/2]$  therefore f has an inverse

$$f(0) = 1 \Rightarrow f^{-1}(1) = 0$$
 2  
 $(f^{-1})'(1) = \frac{1}{f'(f^{-1}(1))} = \frac{1}{f'(0)} = \frac{1}{-2 \sin 0} = \frac{1}{0}$ 

So, 
$$(f^{-1})(1)$$
 is undefined.

7. 
$$f(x) = \frac{x+6}{x-2}$$
,  $x > 0$ ,  $a = 3$   

$$f'(x) = \frac{(x-2)(1) - (x+6)(1)}{(x-2)^2}$$

$$= \frac{-8}{(x-2)^2} < 0 \text{ on } (2, \infty)$$

f is monotonic (decreasing) on  $(2, \infty)$  therefore f has an inverse.

$$f(6) = 3 \Rightarrow f^{-1}(3) = 6$$
  
 $(f^{-1})'(3) = \frac{1}{f'(f^{-1}(3))} = \frac{1}{f'(6)} = \frac{1}{-8/(6-2)^2} = -2$ 

8. 
$$f(x) = \frac{x+3}{x+1}$$
,  $x > -1$ ,  $a = 2$   

$$f'(x) = \frac{(x+1)(1) - (x+3)(1)}{(x+1)^2}$$

$$= \frac{-2}{(x+1)^2} < 0 \text{ on } (-1, \infty)$$

f is monotonic (decreasing) on  $(-1, \infty)$  therefore f has an inverse.

$$f(1) = 2 \Rightarrow f^{-1}(2) = 1$$
  
 $(f^{-1})'(2) = \frac{1}{f'(f^{-1}(2))} = \frac{1}{f'(1)} = \frac{1}{(-2)/(1+1)^2} = -2$ 

9. 
$$f(x) = x^3 - \frac{4}{x}$$
,  $a = 6, x > 0$   
 $f'(x) = 3x^2 + \frac{4}{x^2} > 0$ 

f is monotonic (increasing) on  $(0, \infty)$  therefore f has an inverse

$$f(2) = 6 \Rightarrow f^{-1}(6) = 2$$
  
 $(f^{-1})'(6) = \frac{1}{f'(f^{-1}(6))} = \frac{1}{f'(2)} = \frac{1}{3(2^2) + 4/2^2} = \frac{1}{13}$ 

10. 
$$f(x) = \sqrt{x-4}$$
,  $a = 2$ ,  $x \ge 4$   
 $f'(x) = \frac{1}{2\sqrt{x-4}} > 0 \text{ on } (4, \infty)$ 

f is monotonic (increasing) on  $[4, \infty)$  therefore f has an inverse.

$$f(8) = 2 \Rightarrow f^{-1}(2) = 8$$
  
 $f'(8) = \frac{1}{2\sqrt{8-4}} = \frac{1}{4}$   
 $(f^{-1})'(2) = \frac{1}{f'(f^{-1}(2))} = \frac{1}{f'(8)} = \frac{1}{1/4} = 4$ 

11. 
$$f(x) = x^3$$
,  $\left(\frac{1}{2}, \frac{1}{8}\right)$   
 $f'(x) = 3x^2$   
 $f'\left(\frac{1}{2}\right) = \frac{3}{4}$   
 $f^{-1}(x) = \sqrt[3]{x}$ ,  $\left(\frac{1}{8}, \frac{1}{2}\right)$   
 $\left(f^{-1}\right)'(x) = \frac{1}{3\sqrt[3]{x}}$   
 $\left(f^{-1}\right)'\left(\frac{1}{8}\right) = \frac{4}{3}$ 

12. 
$$f(x) = 3 - 4x$$
,  $(1, -1)$   
 $f'(x) = -4$   
 $f'(1) = -4$   
 $f^{-1}(x) = \frac{3 - x}{4}$ ,  $(-1, 1)$   
 $(f^{-1})'(x) = -\frac{1}{4}$   
 $(f^{-1})'(-1) = -\frac{1}{4}$ 

13. 
$$f(x) = \sqrt{x - 4}, \quad (5, 1)$$

$$f'(x) = \frac{1}{2\sqrt{x - 4}}$$

$$f'(5) = \frac{1}{2}$$

$$f^{-1}(x) = x^2 + 4, \quad (1, 5)$$

$$(f^{-1})'(x) = 2x$$

$$(f^{-1})'(1) = 2$$

14. 
$$f(x) = \frac{4}{1+x^2}$$

$$f'(x) = \frac{-8x}{(x^2+1)^2}$$

$$f'(1) = -2$$

$$f^{-1}(x) = \sqrt{\frac{4-x}{x}}$$

$$(f^{-1})'(x) = \frac{-2}{x^2\sqrt{(4-x)/x}}$$

$$(f^{-1})'(2) = -\frac{1}{2}$$

3









17. (a)  $f(x) = \arcsin 3x$ 

$$f'(x) = \frac{1}{\sqrt{1 - (3x)^2}}(3) = \frac{3}{\sqrt{1 - 9x^2}}$$

$$f'(\sqrt{2}/6) = \frac{3}{\sqrt{1 - 9(1/18)}} = \frac{3}{\sqrt{1/2}} = 3\sqrt{2}$$

$$y - \frac{\pi}{4} = 3\sqrt{2}(x - \sqrt{2}/6)$$

$$y = 3\sqrt{2}x + \frac{\pi}{4} - 1, \text{ Tangent line}$$



18. (a) 
$$f(x) = \operatorname{arcsec} x$$

$$f'(x) = \frac{1}{|x|\sqrt{x^2 - 1}}$$

$$f'(\sqrt{2}) = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$$

$$y - \frac{\pi}{4} = \frac{\sqrt{2}}{2}(x - \sqrt{2})$$

$$y = \frac{\sqrt{2}}{2}x + \frac{\pi}{4} - 1, \text{ tangent line}$$

19. 
$$x = y^3 - 7y^2 + 2$$
  
 $1 = 3y^2 \frac{dy}{dx} - 14y \frac{dy}{dx}$   
 $\frac{dy}{dx} = \frac{1}{3y^2 - 14y}$   
At  $(-4, 1)$ :  $\frac{dy}{dx} = \frac{1}{3 - 14} = \frac{-1}{11}$ .

## Alternate Solution:

Let 
$$f(x) = x^3 - 7x^2 + 2$$
. Then  $f'(x) = 3x^2 - 14x$  and  $f'(1) = -11$ . So,

$$\frac{dy}{dx} = \frac{1}{-11} = \frac{-1}{11}.$$

20. 
$$x = 2 \ln(y^2 - 3)$$
  
 $1 = 2 \frac{1}{y^2 - 3} 2y \frac{dy}{dx}$   
 $\frac{dy}{dx} = \frac{y^2 - 3}{4y}$   
At  $(0, 2)$ :  $\frac{dy}{dx} = \frac{4 - 3}{8} = \frac{1}{8}$ 

21. 
$$x \arctan x = e^{y}$$

$$x \frac{1}{1+x^{2}} + \arctan x = e^{y} \cdot \frac{dy}{dx}$$
At  $\left(1, \ln \frac{\pi}{4}\right) \cdot \frac{1}{2} + \frac{\pi}{4} = \frac{\pi}{4} \frac{dy}{dx}$ 

$$\frac{dy}{dx} = \frac{\pi+2}{\pi}$$

$$\frac{1}{\sqrt{1 - (xy)^2}} \left( x \frac{dy}{dx} + y \right) = \frac{2}{3} \arctan(2x)$$

$$\frac{1}{\sqrt{1 - (xy)^2}} \left( x \frac{dy}{dx} + y \right) = \frac{2}{3} \frac{1}{1 + 4x^2} (2)$$

$$At \left( \frac{1}{2}, 1 \right) \cdot \frac{1}{\sqrt{3/4}} \left( \frac{1}{2} y' + 1 \right) = \frac{2}{3}$$

$$\frac{2}{\sqrt{3}} \left( \frac{1}{2} y' + 1 \right) = \frac{2}{3}$$

$$y' = \left( \frac{\sqrt{3}}{3} - 1 \right) 2 = \frac{2\sqrt{3} - 6}{3}$$

23. 
$$f(x) = \arcsin(x+1)$$
  
 $f'(x) = \frac{1}{\sqrt{1-(x+1)^2}} = \frac{1}{\sqrt{-x^2-2x}}$ 

24. 
$$f(t) = \arcsin t^2$$
  
 $f'(t) = \frac{2t}{\sqrt{1-t^4}}$ 

25. 
$$g(x) = 3 \arccos \frac{x}{2}$$
  
 $g'(x) = \frac{-3(1/2)}{\sqrt{1 - (x^2/4)}} = \frac{-3}{\sqrt{4 - x^2}}$ 

26. 
$$f(x) = \operatorname{arcsec} 2x$$
  
 $f'(x) = \frac{2}{|2x|\sqrt{4x^2 - 1}} = \frac{1}{|x|\sqrt{4x^2 - 1}}$ 

27. 
$$f(x) = \arctan(e^x)$$
  
 $f'(x) = \frac{1}{1 + (e^x)^2} e^x = \frac{e^x}{1 + e^{2x}}$ 

28. 
$$f(x) = \arctan \sqrt{x}$$
$$f'(x) = \left(\frac{1}{1+x}\right)\left(\frac{1}{2\sqrt{x}}\right) = \frac{1}{2\sqrt{x}(1+x)}$$

29. 
$$g(x) = \frac{\arcsin 3x}{x}$$
  
 $g'(x) = \frac{x(3/\sqrt{1-9x^2}) - \arcsin 3x}{x^2}$   
 $= \frac{3x - \sqrt{1-9x^2} \arcsin 3x}{x^2\sqrt{1-9x^2}}$ 

30. 
$$g(x) = \frac{\arccos x}{x+1}$$
$$g'(x) = \frac{(x+1)\frac{-1}{\sqrt{1-x^2}} - \arccos x}{(x+1)^2}$$
$$= -\frac{x+1+\sqrt{1-x^2} \arccos x}{(x+1)^2\sqrt{1-x^2}}$$

31. 
$$g(x) = e^{2x} \arcsin x$$
  
 $g'(x) = e^{2x} \frac{1}{\sqrt{1 - x^2}} + 2e^{2x} \arcsin x$   
 $= e^{2x} \left[ 2 \arcsin x + \frac{1}{\sqrt{1 - x^2}} \right]$ 

32. 
$$h(x) = x^2 \arctan(5x)$$
  
 $h'(x) = 2x \arctan(5x) + x^2 \frac{1}{1 + (5x)^2} (5)$   
 $= 2x \arctan(5x) + \frac{5x^2}{1 + 25x^2}$ 

33. 
$$h(x) = \operatorname{arccot} 6x$$
  
 $h'(x) = \frac{-6}{1 + 36x^2}$ 

34. 
$$f(x) = \arccos 3x$$
  

$$f'(x) = \frac{-3}{|3x|\sqrt{9x^2 - 1}}$$

$$= \frac{-1}{|x|\sqrt{9x^2 - 1}}$$

35. 
$$h(t) = \sin(\arccos t) = \sqrt{1 - t^2}$$
  
 $h'(t) = \frac{1}{2}(1 - t^2)^{-1/2}(-2t)$   
 $= \frac{-t}{\sqrt{1 - t^2}}$ 

36. 
$$f(x) = \arcsin x + \arccos x = \frac{\pi}{2}$$
$$f'(x) = 0$$

37. 
$$y = 2x \arccos x - 2\sqrt{1 - x^2}$$
  
 $y' = 2 \arccos x - 2x \frac{1}{\sqrt{1 - x^2}} - 2(\frac{1}{2})(1 - x^2)^{-1/2}(-2x)$   
 $= 2 \arccos x - \frac{2x}{\sqrt{1 - x^2}} + \frac{2x}{\sqrt{1 - x^2}} = 2 \arccos x$ 

38. 
$$y = \ln(t^2 + 4) - \frac{1}{2} \arctan \frac{t}{2}$$
  

$$y' = \frac{2t}{t^2 + 4} - \frac{1}{2} \cdot \frac{1}{1 + (t/2)^2} \left(\frac{1}{2}\right)$$

$$= \frac{2t}{t^2 + 4} - \frac{1}{t^2 + 4} = \frac{2t - 1}{t^2 + 4}$$

39. 
$$y = \frac{1}{2} \left( \frac{1}{2} \ln \frac{x+1}{x-1} + \arctan x \right) = \frac{1}{4} \left[ \ln(x+1) - \ln(x-1) \right] + \frac{1}{2} \arctan x$$
  
$$\frac{dy}{dx} = \frac{1}{4} \left( \frac{1}{x+1} - \frac{1}{x-1} \right) + \frac{1/2}{1+x^2} = \frac{1}{1-x^4}$$

40. 
$$y = \frac{1}{2} \left[ x \sqrt{4 - x^2} + 4 \arcsin\left(\frac{x}{2}\right) \right]$$
  
 $y' = \frac{1}{2} \left[ x \frac{1}{2} (4 - x^2)^{-1/2} (-2x) + \sqrt{4 - x^2} + 2 \frac{1}{\sqrt{1 - (x/2)^2}} \right] = \frac{1}{2} \left[ \frac{-x^2}{\sqrt{4 - x^2}} + \sqrt{4 - x^2} + \frac{4}{\sqrt{4 - x^2}} \right] = \sqrt{4 - x^2}$ 

41. 
$$g(t) = \tan(\arcsin t) = \frac{t}{\sqrt{1 - t^2}}$$

$$g'(t) = \frac{\sqrt{1 - t^2} - t(-t/\sqrt{1 - t^2})}{1 - t^2} = \frac{1}{(1 - t^2)^{3/2}}$$

42. 
$$f(x) = \operatorname{arcsec} x + \operatorname{arccsc} x = \frac{\pi}{2}$$
  
 $f'(x) = 0$ 

43. 
$$y = x \arcsin x + \sqrt{1 - x^2}$$

$$\frac{dy}{dx} = x \left( \frac{1}{\sqrt{1 - x^2}} \right) + \arcsin x - \frac{x}{\sqrt{1 - x^2}} = \arcsin x$$

44. 
$$y = x \arctan 2x - \frac{1}{4} \ln(1 + 4x^2)$$
  

$$\frac{dy}{dx} = \frac{2x}{1 + 4x^2} + \arctan(2x) - \frac{1}{4} \left(\frac{8x}{1 + 4x^2}\right) = \arctan(2x)$$

45. 
$$y = 8 \arcsin \frac{x}{4} - \frac{x\sqrt{16 - x^2}}{2}$$
  

$$y' = 2 \frac{1}{\sqrt{1 - (x/4)^2}} - \frac{\sqrt{16 - x^2}}{2} - \frac{x}{4} (16 - x^2)^{-1/2} (-2x)$$

$$= \frac{8}{\sqrt{16 - x^2}} - \frac{\sqrt{16 - x^2}}{2} + \frac{x^2}{2\sqrt{16 - x^2}} = \frac{16 - (16 - x^2) + x^2}{2\sqrt{16 - x^2}} = \frac{x^2}{\sqrt{16 - x^2}}$$

46. 
$$y = 25 \arcsin \frac{x}{5} - x\sqrt{25 - x^2}$$
  

$$y' = 5 \frac{1}{\sqrt{1 - (x/2)^2}} - \sqrt{25 - x^2} - x \frac{1}{2} (25 - x^2)^{-1/2} (-2x) = \frac{25}{\sqrt{25 - x^2}} - \frac{(25 - x^2)}{\sqrt{25 - x^2}} + \frac{x^2}{\sqrt{25 - x^2}} = \frac{2x^2}{\sqrt{25 - x^2}}$$

47. 
$$y = \arctan x + \frac{x}{1+x^2}$$
  
 $y' = \frac{1}{1+x^2} + \frac{(1+x^2) - x(2x)}{(1+x^2)^2} = \frac{(1+x^2) + (1-x^2)}{(1+x^2)^2} = \frac{2}{(1+x^2)^2}$ 

48. 
$$y = \arctan \frac{x}{2} - \frac{1}{2(x^2 + 4)}$$
  

$$y' = \frac{1}{2} \frac{1}{1 + (x/2)^2} + \frac{1}{2}(x^2 + 4)^{-2}(2x) = \frac{2}{x^2 + 4} + \frac{x}{(x^2 + 4)^2} = \frac{2x^2 + 8 + x}{(x^2 + 4)^2}$$

49. The Chain Rule should have been used for 
$$4x$$
 in  $e^{4x}$ .

$$\frac{d}{dx} \left[ \arcsin e^{4x} \right] = \frac{e^{4x}(4)}{\sqrt{1 - \left(e^{4x}\right)^2}} = \frac{4e^{4x}}{\sqrt{1 - e^{8x}}}$$

**50.** Under the radical, 
$$x^2$$
 should be  $(x^2)^2 = x^4$ .

$$\frac{d}{dx} \left[ \operatorname{arcsec} x^2 \right] = \frac{2x}{x^2 \sqrt{(x^2)^2 - 1}} = \frac{2}{x \sqrt{x^4 - 1}}$$

51. 
$$y = 2 \arcsin x$$
,  $\left(\frac{1}{2}, \frac{\pi}{3}\right)$   
 $y' = \frac{2}{\sqrt{1 - x^2}}$ 

At 
$$\left(\frac{1}{2}, \frac{\pi}{3}\right)$$
,  $y' = \frac{2}{\sqrt{1 - (1/4)}} = \frac{4}{\sqrt{3}}$ .

Tangent line:  $y - \frac{\pi}{3} = \frac{4}{\sqrt{3}}\left(x - \frac{1}{2}\right)$ 

$$y = \frac{4}{\sqrt{3}}x + \frac{\pi}{3} - \frac{2}{\sqrt{3}}$$

$$y = \frac{4\sqrt{3}}{3}x + \frac{\pi}{3} - \frac{26\sqrt{3}}{3}$$

52. 
$$y = \frac{1}{2}\arccos x$$
,  $\left(-\frac{\sqrt{2}}{2}, \frac{3\pi}{8}\right)$   
 $y' = \frac{-1}{2\sqrt{1-x^2}}$   
At  $\left(-\frac{\sqrt{2}}{2}, \frac{3\pi}{8}\right)$ ,  $y' = \frac{-1}{2\sqrt{1/2}} = -\frac{\sqrt{2}}{2}$ .  
Tangent line:  $y - \frac{3\pi}{8} = -\frac{\sqrt{2}}{2}\left(x + \frac{\sqrt{2}}{2}\right)$   
 $y = -\frac{\sqrt{2}}{2}x + \frac{3\pi}{8} - \frac{1}{2}$ 

53. 
$$y = \arcsin\left(\frac{x}{2}\right)$$
,  $\left(2, \frac{\pi}{4}\right)$   
 $y' = \frac{1}{1 + (x^2/4)} \left(\frac{1}{2}\right) = \frac{2}{4 + x^2}$   
At  $\left(2, \frac{\pi}{4}\right)$ ,  $y' = \frac{2}{4 + 4} = \frac{1}{4}$ .  
Tangent line:  $y - \frac{\pi}{4} = \frac{1}{4}(x - 2)$   
 $y = \frac{1}{4}x + \frac{\pi}{4} - \frac{1}{2}$ 

54. 
$$y = \operatorname{arcsec}(4x)$$
,  $\left(\frac{\sqrt{2}}{4}, \frac{\pi}{4}\right)$   
 $y' = \frac{4}{|4x|\sqrt{16x^2 - 1}} = \frac{1}{x\sqrt{16x^2 - 1}} \text{ for } x > 0$   
At  $\left(\frac{\sqrt{2}}{4}, \frac{\pi}{4}\right)$ ,  $y' = \frac{1}{(\sqrt{2}/4)\sqrt{2 - 1}} = 2\sqrt{2}$ .

Tangent line: 
$$y - \frac{\pi}{4} = 2\sqrt{2}\left(x - \frac{\sqrt{2}}{4}\right)$$
  
 $y = 2\sqrt{2}x + \frac{\pi}{4} - 1$ 

55. 
$$y = 4x \arccos(x - 1), (1, 2\pi)$$
  
 $y' = 4x \frac{-1}{\sqrt{1 - (x - 1)^2}} + 4 \arccos(x - 1)$   
At  $(1, 2\pi), y' = -4 + 2\pi$ .  
Tangent line:  $y - 2\pi = (2\pi - 4)(x - 1)$   
 $y = (2\pi - 4)x + 4$ 

56. 
$$y = 3x \arcsin x$$
,  $\left(\frac{1}{2}, \frac{\pi}{4}\right)$   
 $y' = 3x \frac{1}{\sqrt{1 - x^2}} + 3 \arcsin x$   
At  $\left(\frac{1}{2}, \frac{\pi}{4}\right)$ ,  $y' = \frac{3}{2} \frac{1}{\sqrt{3/4}} + 3\left(\frac{\pi}{6}\right) = \sqrt{3} + \frac{\pi}{2}$ .  
Tangent line:  $y - \frac{\pi}{4} = \left(\sqrt{3} + \frac{\pi}{2}\right)\left(x - \frac{1}{2}\right)$   
 $y = \left(\sqrt{3} + \frac{\pi}{2}\right)x - \frac{\sqrt{3}}{2}$ 

57. 
$$f(x) = \arccos x$$
  
 $f'(x) = \frac{-1}{\sqrt{1 - x^2}} = -2 \text{ when } x = \pm \frac{\sqrt{3}}{2}.$   
When  $x = \sqrt{3}/2$ ,  $f(\sqrt{3}/2) = \pi/6$ .  
When  $x = -\sqrt{3}/2$ ,  $f(-\sqrt{3}/2) = 5\pi/6$ .

Tangent lines

$$y - \frac{\pi}{6} = -2\left(x - \frac{\sqrt{3}}{2}\right) \Rightarrow y = -2x + \left(\frac{\pi}{6} + \sqrt{3}\right)$$
$$y - \frac{5\pi}{6} = -2\left(x + \frac{\sqrt{3}}{2}\right) \Rightarrow y = -2x + \left(\frac{5\pi}{6} - \sqrt{3}\right)$$

58. 
$$g(x) = \arctan x$$
,  $g'(x) = \frac{1}{1+x^2}$ ,  $g'(1) = \frac{1}{2}$   
Tangent line:  $y - \frac{\pi}{4} = \frac{1}{2}(x-1)$   
 $y = \frac{1}{2}x + \frac{\pi}{4} - \frac{1}{2}$ 

59. 
$$f(x) = \arctan x, a = 0$$
  
 $f(0) = 0$   
 $f'(x) = \frac{1}{1+x^2}, \qquad f'(0) = 1$   
 $f''(x) = \frac{-2x}{(1+x^2)^2}, \quad f''(0) = 0$   
 $P_1(x) = f(0) + f'(0)x = x$   
 $P_2(x) = f(0) + f'(0)x + \frac{1}{2}f''(0)x^2 = x$ 



**61.** 
$$f(x) = \arcsin x, a = \frac{1}{2}$$

$$f'(x) = \frac{1}{\sqrt{1-x^2}}$$

$$f''(x) = \frac{x}{(1-x^2)^{3/2}}$$

$$P_1(x) = f\left(\frac{1}{2}\right) + f'\left(\frac{1}{2}\right)\left(x - \frac{1}{2}\right) = \frac{\pi}{6} + \frac{2\sqrt{3}}{3}\left(x - \frac{1}{2}\right)$$

$$P_2(x) = f\left(\frac{1}{2}\right) + f'\left(\frac{1}{2}\right)\left(x - \frac{1}{2}\right) + \frac{1}{2}f''\left(\frac{1}{2}\right)\left(x - \frac{1}{2}\right)^2 = \frac{\pi}{6} + \frac{2\sqrt{3}}{3}\left(x - \frac{1}{2}\right) + \frac{2\sqrt{3}}{9}\left(x - \frac{1}{2}\right)^2$$



**62.** 
$$f(x) = \arcsin x, a = 1$$

$$f'(x) = \frac{1}{1+x^2}$$

$$f''(x) = \frac{-2x}{(1+x^2)^2}$$

$$P_1(x) = f(1) + f'(1)(x-1) = \frac{\pi}{4} + \frac{1}{2}(x-1)$$

$$P_2(x) = f(1) + f'(1)(x-1) + \frac{1}{2}f''(1)(x-1)^2 = \frac{\pi}{4} + \frac{1}{2}(x-1) - \frac{1}{4}(x-1)^2$$

8

63. 
$$x^2 + x \arctan y = y - 1, \left(-\frac{\pi}{4}, 1\right)$$

$$2x + \arctan y + \frac{x}{1+y^2}y' = y'$$

$$\left(1 - \frac{x}{1+y^2}\right)y' = 2x + \arctan y$$

$$y' = \frac{2x + \arctan y}{1 - \frac{x}{1+y^2}}$$

At 
$$\left(-\frac{\pi}{4}, 1\right)$$
:  $y' = \frac{-\frac{\pi}{2} + \frac{\pi}{4}}{1 - \frac{-\pi/4}{2}} = \frac{-\frac{\pi}{2}}{2 + \frac{\pi}{4}} = \frac{-2\pi}{8 + \pi}$ 

Tangent line: 
$$y - 1 = \frac{-2\pi}{8 + \pi} \left( x + \frac{\pi}{4} \right)$$
  

$$y = \frac{-2\pi}{8 + \pi} x + 1 - \frac{\pi^2}{16 + 2\pi}$$

64. 
$$\arctan(xy) = \arcsin(x + y), \quad (0, 0)$$
  
$$\frac{1}{1 + (xy)^2} [y + xy'] = \frac{1}{\sqrt{1 - (x + y)^2}} [1 + y']$$

At 
$$(0,0)$$
:  $0 = 1 + y' \Rightarrow y' = -1$ 

Tangent line: 
$$y = -x$$

65. 
$$\arcsin x + \arcsin y = \frac{\pi}{2}, \quad \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$$

$$\frac{1}{\sqrt{1-x^2}} + \frac{1}{\sqrt{1-y^2}}y' = 0$$

$$\frac{1}{\sqrt{1-y^2}}y' = \frac{-1}{\sqrt{1-x^2}}$$

$$\operatorname{At}\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right) : y' = -1$$

Tangent line: 
$$y - \frac{\sqrt{2}}{2} = -1\left(x - \frac{\sqrt{2}}{2}\right)$$
  
 $y = -x + \sqrt{2}$ 

66. 
$$\arctan(x+y) = y^2 + \frac{\pi}{4}$$
, (1, 0)

$$\frac{1}{1 + (x + y)^2} [1 + y'] = 2yy'$$

At 
$$(1,0)$$
:  $\frac{1}{2}[1+y'] = 0 \Rightarrow y' = -1$ 

Tangent line: 
$$y - 0 = -1(x - 1)$$

$$y = -x + 1$$

## 67. f is not one-to-one because many different x-values yield the same y-value.

Example: 
$$f(0) = f(\pi) = 0$$

Not continuous at 
$$\frac{(2n-1)\pi}{2}$$
, where n is an integer.

68. f is not one-to-one because different x-values yield the same y-value.

Example: 
$$f(3) = f(-\frac{4}{3}) = \frac{3}{5}$$

Not continuous at  $\pm 2$ .

- 69. Because you know that  $f^{-1}$  exists and that  $y_1 = f(x_1)$ by Theorem 3.17, then  $(f^{-1})'(y_1) = \frac{1}{f'(x_1)}$ , provided that  $f'(x_1) \neq 0$ .
- 70. Theorem 3.17: Let f be a function that is differentiable on an interval I. If f has an inverse function g, then g is differentiable at any x for which  $f'(g(x)) \neq 0$ .

Moreover, 
$$g'(x) = \frac{1}{f'(g(x))}, f'(g(x)) \neq 0.$$

- The derivatives are algebraic. See Theorem 3.18.
- 72. (a) Since the slope of the tangent line to f at  $\left(-1, -\frac{1}{2}\right)$ is  $\frac{1}{2}$ , the slope of the tangent line to  $f^{-1}$  at  $\left(-\frac{1}{2}, 1\right)$ is  $m = \frac{1}{(1/2)} = 2$ .
  - (b) Since the slope of the tangent line to f at (2, 1) is 2, the slope of the tangent line to  $f^{-1}$  at (1, 2) is  $m=\frac{1}{2}$
- 73. (a)  $\cot \theta = \frac{x}{5}$  $\theta = \operatorname{arccot}\left(\frac{x}{5}\right)$

(b) 
$$\frac{d\theta}{dt} = \frac{-1/5}{1 + (x/5)^2} \frac{dx}{dt} = \frac{-5}{x^2 + 25} \frac{dx}{dt}$$

If 
$$\frac{dx}{dt} = -400$$
 and  $x = 10$ ,  $\frac{d\theta}{dt} = 16$  rad/h.

If 
$$\frac{dx}{dt} = -400$$
 and  $x = 3$ ,  $\frac{d\theta}{dt} \approx 58.824$  rad/h.

74. (a) 
$$\cot \theta = \frac{x}{3}$$

$$\theta = \operatorname{arccot}\left(\frac{x}{3}\right)$$

(b) 
$$\frac{d\theta}{dt} = \frac{-3}{x^2 + 9} \frac{dx}{dt}$$

If 
$$x = 10$$
,  $\frac{d\theta}{dt} \approx 11.001 \text{ rad/h}$ .

If 
$$x = 3$$
,  $\frac{d\theta}{dt} \approx 66.667 \text{ rad/h}$ .

A lower altitude results in a greater rate of change

75. (a) 
$$h(t) = -16t^2 + 256$$

$$-16t^2 + 256 = 0$$
 when  $t = 4$  sec



(b) 
$$\tan \theta = \frac{h}{500} = \frac{-16t^2 + 256}{500}$$

$$\theta = \arctan \left[ \frac{16}{500} \left( -t^2 + 16 \right) \right]$$

$$\frac{d\theta}{dt} = \frac{-8t/125}{1 + \left[ (4/125)(-t^2 + 16) \right]^2}$$

$$=\frac{-1000t}{15,625+16(16-t^2)^2}$$

When t = 1,  $d\theta/dt \approx -0.0520$  rad/sec. When t = 2,  $d\theta/dt \approx -0.1116$  rad/sec.

76. 
$$\cos \theta = \frac{800}{5}$$

$$\theta = \arccos\left(\frac{800}{s}\right)$$

$$\frac{d\theta}{dt} = \frac{d\theta}{ds} \cdot \frac{ds}{dt}$$

$$= \frac{-1}{\sqrt{1 - (800/s)^2}} \left(\frac{-800}{s^2}\right) \frac{ds}{dt}$$

$$= \frac{800}{s\sqrt{s^2 - 800^2}} \frac{ds}{dt}, \quad s > 800$$

$$=\frac{800}{s_2\sqrt{s^2-800^2}}\frac{ds}{dt}$$
,  $s > 800$ 



77. 
$$\tan \theta = \frac{h}{300}$$

$$\frac{dh}{dt} = 5 \text{ ft/sec}$$

$$\theta = \arctan\left(\frac{h}{300}\right)$$

$$\frac{d\theta}{dt} = \frac{1/300}{1 + (h^2/300^2)} \left(\frac{dh}{dt}\right)$$

$$= \frac{300}{300^2 + h^2} (5)$$

$$= \frac{1500}{300^2 + h^2} = \frac{3}{200} \text{ rad/sec when } h = 100$$

 $\sec y = u$ 

 $\sec y \tan y \frac{dy}{dx} = u'$ 

78. 
$$\frac{d\theta}{dt} = 30(2\pi) = 60\pi \text{ rad/min}$$

$$\tan \theta = \frac{x}{50}$$

$$\theta = \arctan\left(\frac{x}{50}\right)$$

$$\frac{d\theta}{dt} = \frac{d\theta}{dx}\frac{dx}{dt} = \frac{50}{x^2 + 2500}\frac{dx}{dt}$$

$$\frac{dx}{dt} = \frac{x^2 + 2500}{50}\frac{d\theta}{dt}$$
When  $\theta = 45^\circ = \frac{\pi}{4}$ ,  $x = 50$ :
$$\frac{dx}{dt} = \frac{(50)^2 + 2500}{50}(60\pi) = 6000\pi \text{ ft/min}$$

79. Prove 
$$\frac{d}{dx}[\arcsin u] = \frac{u'}{\sqrt{1-u^2}}$$
.

Let  $y = \arccos u$ . Then
 $\cos y = u$ 
 $-\sin y \frac{dy}{dx} = u'$ 
 $\frac{dy}{dx} = -\frac{u'}{\sin y} = -\frac{u'}{\sqrt{1-u^2}}$ .

Prove  $\frac{d}{dx}[\arctan u] = \frac{u'}{1+u^2}$ .

Let  $y = \arctan u$ . Then
 $\tan y = u$ 
 $\sec^2 y \frac{dy}{dx} = u'$ 
 $\frac{dy}{dx} = \frac{u'}{\sec^2 y} = \frac{u'}{1-u^2}$ .

Prove  $\frac{d}{dx}[\arccos u] = \frac{u'}{|u|\sqrt{u^2-1}}$ .

Let  $y = \operatorname{arcsec} u$ . Then



Note: The absolute value sign in the formula for the derivative of arcsec u is necessary because the inverse secant function has a positive slope at every value in its domain.



Prove 
$$\frac{d}{dx}[\operatorname{arccsc} u] = \frac{-u'}{|u|\sqrt{u^2 - 1}}$$
.

Let  $y = \operatorname{arccsc} u$ . Then
 $\csc y = u$ 
 $-\csc y \cot y \frac{dy}{dx} = u'$ 
 $\frac{dy}{dx} = \frac{u'}{-\csc y \cot y} = -\frac{u'}{|u|\sqrt{u^2 - 1}}$ .

Note: The absolute value sign in the formula for the derivative of arccsc u is necessary because the inverse cosecant function has a negative slope at every value in its domain.

80. 
$$f(x) = kx + \sin x$$

For  $k \ge 1$ , f is one-to-one, and for  $k \le -1$ , f is one-to-one. Therefore, f has an inverse for  $k \ge 1$  and  $k \le -1$ .

$$\frac{d}{dx}[\operatorname{arcsec} u] = \frac{u'}{|u|\sqrt{u^2 - 1}}$$

$$\frac{d}{dx}[\operatorname{arccsc} u] = \frac{-u'}{|u|\sqrt{u^2 - 1}}$$

$$\frac{d}{dx}[\arctan x] = \frac{1}{1+x^2} > 0 \text{ for all } x.$$

$$\frac{d}{dx}\left[\arctan(\tan x)\right] = \frac{\sec^2 x}{1 + \tan^2 x} = \frac{\sec^2 x}{\sec^2 x} = 1$$

84. False. The derivative 
$$\frac{dy}{dx}$$
 is undefined when  $x = \pm 1$ .

85. Let 
$$\theta = \arctan\left(\frac{x}{\sqrt{1-x^2}}\right), \quad -1 < x < 1$$

$$\tan \theta = \frac{x}{\sqrt{1-x^2}}$$

$$\sin \theta = \frac{x}{1} = x$$

So, 
$$\arcsin x = \arctan\left(\frac{x}{\sqrt{1-x^2}}\right)$$
 for  $-1 < x < 1$ .



86. Let 
$$\theta = \arctan \frac{x}{\sqrt{1-x^2}}$$
,  $|x| < 1$ .

Then 
$$\tan \theta = \frac{x}{\sqrt{1-x^2}}$$
, as indicated in the figure.

So, 
$$\cos\left(\frac{\pi}{2} - \theta\right) = x$$
 and  $\frac{\pi}{2} - \theta = \arccos x$  which gives  $\arccos x = \frac{\pi}{2} - \arctan\frac{x}{\sqrt{1 - x^2}}$ .



87. 
$$f(x) = \sec x$$
,  $0 \le x < \frac{\pi}{2}$ ,  $\pi \le x < \frac{3\pi}{2}$ 



(a) 
$$y = \operatorname{arcsec} x$$
,  $x \le -1$  or  $x \ge 1$ 

$$0 \le y < \frac{\pi}{2}$$
 or  $\pi \le y < \frac{3\pi}{2}$ 



(b) 
$$y = \operatorname{arcsec} x$$

$$x = \sec y$$

$$1 = \sec y \tan y \cdot y'$$

$$y' = \frac{1}{\sec y \tan y}$$

$$= \frac{1}{x\sqrt{x^2 - 1}}$$

$$\tan^2 y + 1 = \sec^2 y$$

$$\tan y = \pm \sqrt{\sec^2 y - 1}$$

On  $0 \le y < \pi/2$  and  $\pi \le y < 3\pi/2$ ,  $\tan y \ge 0$ .

88. 
$$f(x) = \arcsin\left(\frac{x-2}{2}\right) - 2\arcsin\frac{\sqrt{x}}{2}$$
,  $0 \le x \le 4$ 

$$f'(x) = \frac{1/2}{\sqrt{1 - [(x - 2)/2]^2}} - 2\left[\frac{1/(4\sqrt{x})}{1 - (\sqrt{x}/2)^2}\right]$$

$$= \frac{1}{2\sqrt{1 - (1/4)(x^2 - 4x + 4)}} - \frac{1}{2\sqrt{x}\sqrt{1 - (x/4)}}$$

$$= \frac{1}{2\sqrt{x - (x^2/4)}} - \frac{1}{2\sqrt{x - (x^2/4)}}$$

Because the derivative is zero, you can conclude that the function is constant. (By letting  $x = \sqrt[3]{\ln f(x)}$ , you can see that the constant is  $-\pi/2$ .)

89. 
$$f(x) = 2x\sqrt{x-6}$$

Because  $f(x) = 2x\sqrt{x-6} = 40$  when x = 10, f(10) = 40 and  $f^{-1}(40) = 10$ .

$$f^{-1}(40) = \frac{1}{f'(f^{-1}(40))}$$
$$= \frac{1}{f'(10)}.$$

$$f'(x) = 2x \left(\frac{1}{2\sqrt{x-6}}\right) + 2\sqrt{x-6}$$
$$= \frac{x}{\sqrt{x-6}} + 2\sqrt{x-6}$$
$$= \frac{3x-12}{\sqrt{x-6}}$$

$$(f^{-1})'(40) = \frac{1}{f'(10)} = \frac{1}{(3(10) - 12)/\sqrt{(10) - 6}}$$
  
=  $\frac{1}{18/2} = \frac{1}{9}$ .

So, the answer is A.

90. 
$$f(x) = \frac{1}{3} \arctan \frac{x}{3}$$

$$f'(x) = \frac{1}{3} \cdot \frac{\frac{1}{3}}{1 + \left(\frac{x}{3}\right)^2}$$
$$= \frac{1}{9} \left(\frac{1}{1 + \frac{x^2}{9}}\right)$$
$$= \frac{1}{9 + x^2}$$

So, the answer is D.

91. 
$$f(x) = \ln(x^3 + 1) + \arctan 4x$$

$$f'(x) = \frac{3x^2}{x^3 + 1} + \frac{4}{1 + 16x^2}$$

When x = 1,

$$f'(1) = \frac{3(1)^2}{(1)^3 + 1} + \frac{4}{1 + 16(1)^2}$$
$$= \frac{3}{2} + \frac{4}{17}$$
$$= \frac{59}{34}.$$

So, the answer is D.