

A Level · Edexcel · Maths

1.1 Proof

1.1.1 Language of Proof / 1.1.2 Proof by Deduction / 1.1.3 Proof by Exhaustion / 1.1.4 Disproof by Counter Example

Total Marks	/142
Very Hard (10 questions)	/41
Hard (10 questions)	/42
Medium (10 questions)	/42
Easy (9 questions)	/17

Scan here to return to the course or visit savemyexams.com

Easy Questions

1	In a mathematical argument, how are three consecutive integers usually denoted algebraically?		
			(1 mark)
2	(i)	In a mathematical argument, how is an even number usually denoted?	
	(ii)	Similarly, how is an odd number usually denoted?	
			(2 marks)
			(= mar ns)
3	Prove	e that the sum of two odd numbers is even.	
			(2 marks)
4	Expla	in why $(x-3)^2 \ge 0$ for all real values of x .	
			(1 mark)
5	Prove	e that the product of two even numbers is a multiple of 4.	
			(2 marks)
			-

Medium Questions

1 Prove that the sum of any three consecutive integers is a multiple of 3.	
	(3 marks)
2 Prove that $x^2 + 2 \ge 2$ for all values of x .	
	(2 marks)
3 Prove that the square of an even number is a multiple of 4.	
	(3 marks)
4 The set of numbers S is defined as all positive integers less than 5.	
Prove by exhaustion that the cube of all values in S are less than 100.	
	(3 marks)

1yExams	© 2024 Save My Exams, Ltd.	Get more and ace your exams at	savemyexams.com
			(2 marks
not always od	d.		
		e difference between any two	

б (a)	Express 18 as a product of its prime factors.
	(2 marks)
(b)	Write down all prime numbers between 1 and 13.
	(1 mark)
(c)	By dividing 13 by each of the prime numbers found in part (b), prove that 13 is a prime number.
	(3 marks)

7 (a) Factorise $n^2 + 3n + 2$.

(1 mark)

(b) Hence show that $n^3 + 3n^2 + 2n = n(n+1)(n+2)$.

(1 mark)

(c) Given that n is even, write down whether (n+1) and (n+2) are odd or even.

(2 marks)

(d) Hence deduce whether $n^3 + 3n^2 + 2n$ is odd or even. Justify your answer.

(2 marks)

8 (a)	By writing it as a	fraction in its lowe:	st terms, show tha	t 0.35 is a rational number.
-------	--------------------	-----------------------	--------------------	------------------------------

(2 marks)

(b) Two rational numbers, a and b are such that $a = \frac{m}{n}$ and $b = \frac{p}{q}$ where m, n, p, q are integers with no common factors and $n, q \neq 0$.

Find an expression for *ab*.

(3 marks)

(c) Deduce whether or not the product ab is rational or irrational.

(2 marks)

9 Prove that a triangle with side lengths of 8 cm, 6 cm and 10 cm must contain a rightangle. You may use the diagram below to help.

Not to scale

10 (a)	A standard chess board has 64, 1x1- sized squares. It also has 1, 8x8 - sized square.	
	How many 2x2 - sized squares are there on a standard chess board?	
		(1 mark)
(b)	Write down the number of 3x3 - sized and 4x4 - sized squares there are on a schess board.	standard
		(2 marks)
(c)	Hence show that there are 204 squares in total on a standard chess board.	
		(3 marks)

Hard Questions

1 Prove that the sum of any three consecutive even numbers is a multiple of 6.

(4 marks)

2 Prove that $f(x) \ge 4$ for all values of x, where $f(x) = (3 - x)^2 + 4$.

(3 marks)

3 Prove that the square of an odd number is always odd.

(3 marks)

4 The set of numbers *S* is defined as all positive integers greater than 5 and less than 10.

Prove by exhaustion that the square of all values in S differ from a multiple of 5 by 1.

5 Use a counter-example to prove that not all integers of the form $2^n - 1$, where n is an integer, are prime.

(2 marks)

6 By considering all possible prime factors of 17, prove it is a prime number.

(3 marks)

7 (a) Fully factorise $n^3 + 6n^2 + 8n$.

(2 marks)

(b) Prove that, if n is odd, $n^3 + 6n^2 + 8n$ is odd and that if n is even, $n^3 + 6n^2 + 8n$ is even.

(3 marks)

8 (a) Two rational numbers, a and b are such that $a = \frac{m}{n}$ and $b = \frac{p}{q}$, where m, n, p, q are integers with no common factors and $n,q \neq 0$.

Find expressions for ab and $\frac{a}{b}$.

(4 marks)

(b) Deduce whether or not ab and $\frac{a}{b}$ are rational or irrational.

(4 marks)

9 Prove that the exterior angle in any triangle is equal to the sum of the two opposite interior angles. You may use the diagram below to help

10 (a)	(a) A standard chess board has 64, 1x1 - sized squares. It also has 1, 8x8 - sized square.		
	How many 2x2 - sized and 3x3 - sized squares are there on a standard chess board?		
		(2 marks)	
(b)	Hence show that there are 204 squares in total on a standard chess board.		
		(4 marks)	

Very Hard Questions

1 Prove that the sum of any three consecutive even numbers is always a multiple of 2, but not always a multiple of 4.

(3 marks)

2 Prove that $f(x) \ge 0$ for all values of X, where $f(x) = \frac{9x^2 + 12x + 4}{5}$.

(3 marks)

3 Prove that the (positive) difference between an integer and its cube is the product of three consecutive integers.

(3 marks)

4 The elements, x, of a set of numbers, S, are defined $x \in \mathbb{N}$, x < 6.

Prove that every element of *S* can be written in the form 3n-2m where $n, m \in \mathbb{N}$.

5 Give an example to show when the following statement is both true and false.

The square of a positive integer is always greater than doubling it.

(2 marks)

6 (a)	Prove that 23 is a prime number.	
	(4 mark	s)
(b)	Briefly explain why only prime factors need to be tested for, in order to prove a number is prime.	1
	(2 mark	s)
7	Prove that, if n is negative, $n^4 - n^3$ is positive.	
	(4 mark	5)
8	Prove that the sum of two rational numbers is rational.	

Not to scale

9 Prove the angle at the circumference in a semi-circle is a right angle.

You may use the diagram below to help.

(4 marks)

10 A standard chess board has 64 1x1 - sized squares. It also has 1 8x8 - sized square.

Prove that there are 204 squares on a standard chess board.

(6 marks)

