

### 哈爾濱工業大學

## 第2讲事件的关系与运算







#### 事件的包含



(1)  $A \subset B$ : 事件A发生必导致事件B发生.



例如 掷一颗均匀的骰子,A="出现2点",B="出现偶数点"则  $A \subset B$ .

#### 事件的相等



(2) 
$$A=B \Longleftrightarrow \begin{cases} A \subset B, \\ B \subset A. \end{cases}$$



#### 事件的积(交)



- (3)  $A \cap B$ : 事件 $A \subseteq B$ 同时发生,简记AB.
- 推广:  $\bigcap_{i=1}^{n} A_i = A_1 A_2 \cdots A_n$ : 事件  $A_1, A_2, \cdots, A_n$  同时发生.

$$\bigcap_{i=1}^{\infty} A_i = A_1 A_2 \cdots : 事件 A_1, A_2, \cdots, A_i, \cdots 同时发生.$$



#### 互不相容事件(互斥事件)



- (4)  $AB = \emptyset$ :  $A \subseteq B$ 不能同时发生.
- ◆推广: n个事件  $A_1, A_2, \dots, A_n$  互斥的充分必要条件是任两个事件互斥.



#### 事件的和(并)



(5)  $A \cup B$ : 事件 $A \cup B$ 至少有一个发生,

当  $AB = \emptyset$ :  $A \cup B = A + B$ .

◆ 推广:  $\bigcup_{i=1}^{n} A_i = A_1 \cup A_2 \cup \cdots \cup A_n$ : 事件  $A_1, A_2, \cdots, A_n$  至少有一个发生.

 $\bigcup A_i = A_1 \cup A_2 \cup \cdots$ 事件 $A_1, A_2, \cdots$ 至少有一个发生.



#### 事件的差



(6) A-B: A发生而B不发生.

$$A - B = A - AB = A\overline{B} = A \cup B - B.$$

对任意事件A,

$$A-A=\emptyset, A-S=\emptyset, A-\emptyset=A.$$



#### 对立事件(逆事件)



(7) A:由A不发生所构成的事件.

$$A\overline{A} = \emptyset, A + \overline{A} = S, \overline{A} = A.$$

$$egin{array}{c|c} S & & & \\ \hline A & & & \\ \end{array}$$

例如 A= "出现奇数点" B= "出现偶数点" 则  $AB=\emptyset, A+B=S$ .



#### 例1 A="甲获奖",B="乙获奖"则

"甲、乙都获奖"=AB,

"甲、乙至少有一个获奖" =  $A \cup B$ ,

"甲、乙都没获奖" =  $\overline{AB} = \overline{A \cup B}$ ,

"甲、乙至少有一人没获奖" =  $\overline{A} \cup \overline{B} = \overline{AB}$ .

$$\overline{A}\overline{B}$$
 $\overline{A}B$ 
 $\overline$ 

#### 事件的运算性质



交換律:  $A \cup B = B \cup A$ , AB = BA;

结合律: $(A \cup B) \cup C = A \cup (B \cup C), (AB)C = A(BC);$ 

分配律:  $(A \cup B)C = (AC) \cup (BC)$ ,

 $(AB) \cup C = (A \cup C)(B \cup C);$ 

#### 对偶原则(德一摩根律):

$$\overline{A \cup B} = \overline{A}\overline{B}, \qquad \overline{AB} = \overline{A} \cup \overline{B}.$$

$$\bigcup_{i=1}^{n} \overline{A_i} = \bigcap_{i=1}^{n} \overline{A_i} = \overline{A_1} \overline{A_2} \cdots \overline{A_n}, \ \bigcap_{i=1}^{n} \overline{A_i} = \bigcup_{i=1}^{n} \overline{A_i} = \overline{A_1} \bigcup \cdots \bigcup \overline{A_n}.$$



#### 例2 $A \times B \times C$ 是随机试验的三个事件,

试用 $A \times B \times C$ 表示下列事件:

(1) A与B发生,C不发生

$$AB\overline{C} = AB - C = AB - ABC.$$



(2) *A、B、C*中恰好发生两个; *ABC*+*ABC*+*ABC*.





(3) A 、 B 、 C 中至少有一个发生; S

$$A \cup B \cup C$$



$$=A\overline{B}\overline{C}+\overline{A}B\overline{C}+\overline{A}\overline{B}C+AB\overline{C}+AB\overline{C}+\overline{A}BC+ABC$$

$$= \overline{\overline{A}\overline{B}\overline{C}}.$$

(4) A 、 B 、 C 中至少有两个发生; S

$$AB \cup AC \cup BC$$

$$=ABC+ABC+ABC+ABC.$$





(5) A、B、C中有不多于一个事件发生;

$$\overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} = \overline{AB \cup AC \cup BC},$$

(6) A、B、C中有不多于两个事件发生.

$$\overline{ABC} + \overline{ABC} = \overline{ABC} = \overline{A} \cup \overline{B} \cup \overline{C}.$$



# 谢 谢!