

ORION

- Developed and maintained at UK National Nuclear Laboratory (NNL)
- Tracks 2,500 nuclides
- Fleet-based modeling of facilities

Mixed Oxide (MOX) Fuel Fabrication Modeling

 Calculate fissile stream content in MOX fuel given fissile stream isotopics

What is `good' MOX

ORION Methods

• Fixed Fraction (FF) Method

Effective Fissile Mass Coefficient (EFMC) Method

FF Method

- Fixed, user-input content
- Simplest method
- Does not take into account fissile stream isotopics (quality)
- Bad approximation for simulations with changing plutonium vector (continuous reprocessing)

EFMC Method

- Used in Sellafield MOX plant
- Two user inputs:
 - One-group collapsed cross section values
 - Absorption
 - Fission
 - Nu-bar (neutrons / fission)
 - Reference Fissile Fraction (RFF) effective enrichment

EFMC Method

1. Calculate Excess Neutrons Produced (ENP) for each isotope:

$$ENP_i = (\bar{\mathbf{v}}_i - 1) * \boldsymbol{\sigma}_{f,i} - \boldsymbol{\sigma}_{a,i}$$

2. Calculate EFMC for each isotope:

$$EFMC_{i} = \frac{ENP_{i} - ENP_{c}}{ENP_{f} - ENP_{c}}$$

ENP_c = Carrier isotope (U-238) ENP

ENP_f = Fissile isotope (U-235) ENP

EFMC Method

3. Find Actual Fissile Fraction (AFF):

$$RFF(EFMC_i)(RFV_i) + (100 - RFF)(EFMC_i)(RCV) =$$

$$AFF(EFMC_i)(AFV_i) + (100 - AFF)(EFMC_i)(ACV_i)$$

In this study:

Reference Fissile Vector (RFV) = U-235

Reference Carrier Vector (RCV) = U-238

EFMC Comparison with SCALE/TRITON

Selected four plutonium vectors:

Figure 5: Four plutonium vectors selected for the SCALE/TRITON comparison with ORION's EFMC method.

- Create 12 MOX fuel assembly models for each vector
 - -12 evenly spaced points from 2% to 20%
- Find beginning of cycle (BOC) & end of cycle (EOC) k_{inf} value

Good MOX Criteria

- Good MOX is set to be MOX with:
 - $EOC K_inf = 1.03$
 - MOX Fuel with 4 different plutonium vectors
 - For each plutonium vector:
 - -Search for Pu Content that makes EOC k_inf = 1.03

Good MOX Criteria

Pu Content for Good MOX

RFF Corresponding to critical Pu Content

- Finding the Reference Fissile Fraction (RFF) that corresponds to the `good' plutonium content
 - RFF -> (Pu Content) -> `good' MOX
 - Find if RFF is a good indicator of `goodness' of MOX

RFF Corresponding to critical Pu Content

Burnup vs RFF

- Quadratic relationship
- Points deviate in higher burnups

Varying Sensitivity to Burnup

Varying Sensitivity to Burnup

Shortcomings of EFMC

- Problem with current method:
 - RFF is not indicative of the fuel's capability to remain critical after burnup (burnup – scalability)
 - The EFMC method does not account for breeding effects

Improvements to EFMC

- BOC RFF -> EOC RFF
- Cold run to find Pu content so that EOC RFF is a certain value
- Easier to scale with burnup

Improvements to EFMC - 2

- Increase accuracy in higher burnups by adding a second term to calculate fissile value.
- Second term is a function of breeding potential (Effective Secondary Mass Coefficient – ESMC) and burnup.

$$(EMFC_i)(AFV) \rightarrow (EMFC_i)(AFV) + (ESMC_i)\varepsilon(BU)(AFV)$$

For example, for ^{240}Pu ,

$$ESMC_{Pu240} = f(\boldsymbol{\sigma}_{a,Pu240}, \boldsymbol{\sigma}_{f,Pu241})$$

Alternative

- Neural network approach by Leniau et al
- (+) Accurate prediction
- (+) Small computational burden
- (-) Large data required for training
- (-) May lack flexibility

Conclusion

- Fixed Fraction (FF) Method is not enough
- EFMC is a good estimator
- EFMC does not take into account future burnup
- Need for more complex methods

Thanks!

Discussion?

What is a `good' MOX? (Criterion)

How do we validate fuel cycle simulator functionalities?

(FIT)

What is the most effective, robust way to calculate MOX Fabrication?

Method

- Compare EFMC vs FF
- Compare EFMC vs SCALE / TRITON

Comparison with FF Method

Comparison with FF Method

FF vs EFMC Difference

Average TRU content of 4.731%.

$$\delta F(TRU_i) = \frac{F_{EFMC}(TRU_i) - F_{FF}(TRU_i)}{F_{FF}(TRU_i)}$$

Varying Sensitivity to Burnup

Each MOX fuel have varying sensitivity to burnup

Background and Motivation

- Functionality Isolation Test
- Myriad of nuclear fuel cycle simulators (NFCs)

