3.1

- (a) Show that any conic in A^2 is isomorphic either to A^1 or $A^1 \{0\}$ (cf. Ex. 1.1).
- (b) Show that A^1 is *not* isomorphic to any proper open subset of itself. (This result is generalized by (Ex. 6.7) below.)
- (c) Any conic in \mathbf{P}^2 is isomorphic to \mathbf{P}^1 .
- (d) We will see later (Ex. 4.8) that any two curves are homeomorphic. But show now that \mathbf{A}^2 is not even homeomorphic to \mathbf{P}^2 .
- (e) If an affine variety is isomorphic to a projective variety, then it consists of only one point.
- 3.2 A morphism whose underlying map on the topological spaces is a homeomorphism need not be an isomorphism.
 - (a) For example, let $\varphi: \mathbf{A}^1 \to \mathbf{A}^2$ be defined by $t \mapsto (t^2, t^3)$. Show that φ defines a bijective bicontinuous morphism of \mathbf{A}^1 onto the curve $y^2 = x^3$, but that φ is not an isomorphism.
 - (b) For another example, let the characteristic of the base field k be p > 0, and define a map $\varphi : \mathbf{A}^1 \to \mathbf{A}^2$ by $t \to t^p$. Show that φ is bijective and bicontinuous but not an isomorphism. This is called the *Frobenius morphism*.

Solution:

(a) Bijection: Since k is an integral domain, this map is injective. In addition, the map is surjective: if $(x_0, y_0) \in Z(y^2 - x^3)$ are nonzero, we set $t_0 = \frac{y_0}{x_0}$. We then have that $\varphi(t_0) = (t_0^2, t_0^3) = (x_0, y_0)$.

Closed: Let $Y = Z(T) \in \mathbf{A}^1$ be a closed set, T some family of polynomials in k[x]. Establishing notation, write

$$\psi: k[x,y] \to k[t] \qquad x \mapsto t^2, y \mapsto t^3$$

Now observe that

$$\varphi(Y) = \left\{ (z_0^2, z_0^3) \mid z_0 \in Y \right\} = \left\{ (z_0^2, z_0^3) \mid f(z_0) = 0 \quad \forall f \in T \right\} = Z(y^2 - x^3, T')$$

where $T' = \{g \in k[x,y] \mid \psi(g) \in T\}$. Hence φ is a closed.

Continuous: Now we show this function is continuous. Let $W = Z(S) \cap Z(y^2 - x^3)$ where S is a family of polynomials in k[x, y]. Then

$$\varphi^{-1}(W) = \left\{ t_0 \in \mathbf{A}^1 \mid f(t_0^2, t_0^3) = 0 \quad \forall f \in T \cap (y^2 - x^3) \right\}.$$

If $f(t_0^2, t_0^3) = 0$, then $\psi(f)(t_0) = 0$. Hence $\varphi^{-1}(W) \subseteq Z(\psi(T))$. The alternative direction is immediate, and we have that $\varphi^{-1}(W) = Z(\psi(T))$, so that $\varphi^{-1}(W)$ is closed.

Morphism: We show that this function is actually a morphism of varieties. Consider a regular map $f: V \subset Z(y^2 - x^3) \to k$ on some open subset $V \subset Z(y^2 - x^3)$. Let $P \in \varphi^{-1}(V)$. Since $f: V \to k$ is regular, there exits an open set $U \subseteq V$ containing $\varphi(p)$ such that

$$f(x,y) = \frac{g(x,y)}{h(x,y)}$$
 $\forall (x,y) \in U.$

Now observe that $\varphi^{-1}(U)$ is an open subset of $\varphi^{-1}(V)$ containing P, and moreover that

$$f \circ \varphi(t) = f(t^2, t^3) = \frac{g(t^2, t^3)}{h(t^2, t^3)} \quad \forall t \in \varphi^{-1}(U).$$

Hence, $f \circ \varphi$ is regular whenever f is, making φ a morphism of varieties.

We finally show that this is not an isomorphism. This is because

$$k[x,y]/(y^2-x^3) \not\cong k[x] \implies A(Z(y^2-x^3)) \not\cong A(\mathbf{A}^1).$$

and this is due to the fact that ψ is not surjective (e.g., $x \notin \text{im}(\psi)$, although $\text{ker}(\psi) = I(y^2 - x^3)$). Hence, these varieties are not isomorphic.

3.3

(a) Let $\varphi: X \to Y$ be a morphism. Then for each $P \in X$, φ induces a homomorphism of local rings $\varphi_P^*: \mathcal{O}_{\varphi(P),Y} \to \mathcal{O}_{P,X}$.

- (b) Show that a morphism φ is an isomorphism if and only if φ is a homeomorphism, and the induced map φ_P^* on local rings is an isomorphism, for all $p \in X$.
- (c) Show that if $\varphi(X)$ is dense in Y, then the map φ_P^* is injective for all $p \in X$.

Solution:

(a) Given a morphism $\phi: X \to Y$ of varieties and a point $P \in X$, we define

$$\phi_P^* : \mathcal{O}_{\phi(P),Y} \to \mathcal{O}_{P,X} \qquad (U \subset Y, f : U \to k) \longmapsto (\phi^{-1}(U), f \circ \phi : \phi^{-1}(U) \to k).$$

Well-defined: Let $(U_1, f_1) \sim (U_2, f_2)$ be members of $\mathcal{O}_{\phi(P),Y}$. Then $f_1 \cap f_2$ on $U_1 \cap U_2$, which implies that $f_1 \circ \phi = f_2 \circ \phi$ on $\phi^{-1}(U_1 \cap U_2)$. Hence $(\phi^{-1}(U_1), f_1 \circ \phi) \sim (\phi^{-1}(U_2), f_2 \circ \phi)$.

Local: Let $\mathfrak{m}_{\phi(P)} = \{(V, f) \in \mathcal{O}_{\phi(P), Y} \mid f \circ \phi(p) = 0\}$ be the maximal ideal of $\mathcal{O}_{\phi(P), Y}$. Then observe that $\phi_P^*(\mathfrak{m}_{\phi(P)}) = (\phi^{-1}(V), f \circ \phi) \in \mathfrak{m}_P \subset \mathcal{O}_{P, X}$. Hence, we see that $\phi_P^*(\mathfrak{m}_{\phi(P)}) \subset \mathfrak{m}_P$, so that ϕ_P^* is a homomorphism of local rings.

- (b) Let $\phi: X \to Y$ be a homeomorphism such that ϕ_P^* is an isomorphism for each $P \in X$. Let $f: V \subseteq Y \to k$ be a regular function on V containing P. Then f corresponds via ϕ_P^* to the regular function $f \circ \phi: \phi^{-1}(V) \to k$ on $\phi^{-1}(P)$. Hence, ϕ is a morphism of varieties. By a similar argument, ϕ^{-1} is also a morphism of varieties. As they are inverses of each other, we see that ϕ is an isomorphism of varieties. The other direction is not difficult to check.
- (c) Given $(U, f) \in \mathcal{O}_{\phi(P,Y)}$ such that $\phi_P^*((U, f)) = 0$, we wish to show that f(U) = 0. The condition $\phi_P^*((U, f)) = 0$ implies that $f(\phi(X) \cap U) = 0$. Now suppose that there exists $x \in U$ such that $f(x) \neq 0$. Since $k \setminus \{0\}$ is open in k, there exists an open neighborhood $V \subseteq U$ around x such that $f(V) \neq 0$ (let $V = f^{-1}(k \setminus \{0\})$). But $\phi(X)$ is dense in Y, so $\phi(X) \cap V \neq \emptyset$. This is a contradiction because $f(\phi(X) \cap V) \subset f(\phi(X) \cap U) = 0$. Therefore, there can be no such x. In other words, f(U) = 0 as desired.

3.4 Show that the d-uple embedding of \mathbf{P}^n (Ex. 2.12) is an isomorphism onto its image.

Solution: We recall some notation.

- $M_i(x_0,\ldots,x_n)$ is the *i*-th *d*-degree monomial (from 0 to $N=\binom{n+d}{n}-1$)
- $\rho_d: \mathbf{P}^n \to Z(\mathfrak{a}) \subset \mathbf{P}^N$ sends (a_0, \dots, a_n) to $(M_0(a_0, \dots, a_n), \dots, M_N(a_0, \dots, a_n))$
- $\theta: k[y_0, \dots, y_N] \to k[x_0, \dots, x_n]$ sends y_i to $M_i(x_0, \dots, x_n)$.

From Exercise 2.12, we already know that $\rho_d : \mathbf{P}^n \to Z(\mathfrak{a}) \subset \mathbf{P}^N$ is a homeomorphism. We show that ρ_d and ρ_d^{-1} are morphisms of varieties and are inverses of each other (as morphisms of varieties).

• We show ρ_d is a morphism of varieties. Let $f: V \subseteq Z(\mathfrak{a}) \to k$ be regular. Then for each $p \in V$, there exists an open set $U \subseteq V$ containing p such that $f(y_0, \ldots, y_N) = g_1(y_0, \ldots, y_N)/g_2(y_0, \ldots, y_N)$ on U, for some homogeneous polynomials g_1, g_2 of the same degree. Consider the function $f \circ \rho_d : \rho_d^{-1}(V) \to k$. Observe that $\rho_d^{-1}(U)$ is a subset of $\rho_d^{-1}(V)$ containing $\rho_d^{-1}(p)$, and moreover that

$$f \circ \rho_d = \frac{\theta(g_1)}{\theta(g_2)}$$
 on all of $\rho_d^{-1}(U)$.

Note that $\theta(g_1)$, $\theta(g_2)$ are homogeneous polynomials of the same degree, and moreover that $\theta(g_2) \neq 0$ on any of $\rho_d^{-1}(U)$. Hence, $f \circ \rho_d$ is regular, which implies that ρ_d is a morphism of varieties.

• We show ρ_d^{-1} is a morphism of varieties. Let $m: V \subseteq \mathbf{P}^n \to k$ be a regular function. Then for each $p \in P$, there exists some open set $U \subseteq V$ containing p and a pair of homogeneous polynomials h_1, h_2 of the same degree such that $m(x_0, \ldots, x_n) = h_1(x_0, \ldots, x_n)/h_2(x_0, \ldots, x_n)$ on all of U.

Take $U_i = \mathbf{P}^n - H_i$ such that $p \in U \cap U_i$. Let $\alpha = |d - \deg(h_1)| = |d - \deg(h_2)|$. Observe that

$$m = \frac{x_i^{\alpha} h_1(x_0, \dots, x_n)}{x_i^{\alpha} h_2(x_0, \dots, x_n)} = \frac{h'_1(x_0, \dots, x_n)}{h'_2(x_0, \dots, x_n)}.$$

Both h_1' and h_2' are homogeneous polynomials of degree $\alpha + \deg(h_1) = \alpha + \deg(h_2)$ which is divisible by d. Hence, we see that both of these polynomials are in the image of θ . Let $k_1, k_2 \in k[y_0, \ldots, y_N]$ such that $\theta(k_1) = h_1', \theta(k_2) = h_2'$. Then we see that

$$f \circ \rho_d^{-1} = \frac{k_1}{k_2}$$
 on all of $\rho_d(U \cap U_i)$.

Thus we see that $f \circ \rho_d^{-1} : \rho_d(V) \subset Z(\mathfrak{a}) \to k$ is a regular function, so that ρ_d^{-1} is a morphism of varieties.

As both ρ_d and ρ_d^{-1} are morphisms of varieties, and are homeomorphisms, we see that ρ_d establishes the isomorphism $\mathbf{P}^n \cong Z(\mathfrak{a})$, as desired.

By 3.3(b) and (c), since we know $\phi := \rho_d$ is a homeomorphism onto its image by Exercise 2.12, it suffices to check that ϕ_P^* is surjective for all $P \in X$. Let's consider a pair $(U, f) \in \mathcal{O}_{P, \mathbf{P}^n}$, where, without loss of generality, we may assume that $U \subseteq U_0 = \mathbf{P}^n \setminus Z(x_0)$. Then consider $(V, g) \in \mathcal{O}_{\phi(P), \text{im } \phi}$ given by $V = \phi(U)$ and

$$g(y_0,\ldots,y_N)=f(y_{(d-1)e_0+e_0},\ldots,y_{(d-1)e_0+e_n}).$$

The set V is open because ϕ is a homeomorphism. The function g is regular at $\phi(P)$ because... We verify that $\phi_P^*(V,g)=(U,f)$: indeed, $\phi^{-1}V=\phi^{-1}\phi(U)=U$ and for all $\mathbf{x}=[x_0:\dots:x_n]\in U$, so that in particular $x_0\neq 0$, $g(M_0(\mathbf{x}),\dots,M_N(\mathbf{x}))=f(x_0^d,\dots,x_0^{d-1}x_n)=f(x_0,\dots,x_n)$.

3.5 By abuse of language, we will say that a variety "is affine" if it is isomorphic to an affine variety. If $H \subseteq \mathbf{P}^n$ is any hypersurface, show that $\mathbf{P}^n - H$ is affine. [Hint: Let H have degree d. Then consider the d-uple embedding of \mathbf{P}^n in \mathbf{P}^N and use the fact that \mathbf{P}^N minus a hyperplane is affine.]

Solution: Recall that a hypersurface is a variety defined by an irreducible polynomial, and a hyperplane is a hypersurface whose defining polynomial is linear.

We first prove the fact that \mathbf{P}^N minus a hyperplane H is isomorphic to \mathbf{A}^n . Without loss of generality, the defining equation of the hyperplane provides us with a relation $x_0 = p(x_1, \dots, x_n)$ where p is a linear polynomial. This observation allows us to define a bijection between \mathbf{P}^N minus a hyperplane H and \mathbf{A}^n .

3.6 There are quasi-affine varieties which are not affine. For example, show that $X = \mathbf{A}^2 - \{(0,0)\}$ is not affine. [*Hint*: Show that $\mathcal{O} \cong k[x,y]$ and use (3.5). See (III, Ex. 4.3) for another proof.]

3.7

- (a) Show that any two curves in P^2 have a nonempty intersection.
- (b) More generally, show that if $Y \subseteq \mathbf{P}^n$ is a projective variety of dimension $\geqslant 1$, and if H is a hypersurface, then $Y \cap H \neq \emptyset$. [Hint: Use (Ex. 3.5) and (Ex. 3.1e). See (7.2) for a generalization.]

3.8 Let H_i and H_j be the hyperplanes in \mathbf{P}^n defined by $x_i = 0$ and $x_j = 0$, with $i \neq j$. Show that any regular function on $\mathbf{P}^n - (H_i \cap H_j)$ is constant. (This gives an alternate proof of (3.4a) in the case $Y = \mathbf{P}^n$.)

Solution: Suppose that there is some non-constant regular function f on $\mathbf{P}^n - (H_i \cap H_j)$. Then we may write f as $\frac{h_1(x_0, \dots, x_n)}{h_2(x_0, \dots, x_n)}$ so that h_1 and h_2 are relatively prime, homogeneous polynomials and $\deg h_1 = \deg h_2 > 0$. Then $V(h_2) \subseteq H_i \cap H_j$, which implies that $(x_i, x_j) \subseteq (h_2)$. But this would mean that h_2 divides both x_i and x_j and must be equal to a unit, which contradicts $\deg h_2 > 0$.

3.9 The homogeneous coordinate ring of a projective variety is not invariant under isomorphism. For example, let $X = \mathbf{P}^1$, and let Y be the 2-uple embedding of \mathbf{P}^1 in \mathbf{P}^2 . Then $X \cong Y$ (Ex. 3.4). But show that $S(X) \not\cong S(Y)$.

Solution: Why is $k[x,y] \not\cong k[x,y,z]/(xz-y^2)$? Possibly: (x,y,x) is an ideal of height 3 in the latter, but dim k[x,y] is 2. Problem with this: seems to suggest that dim Y is different from the dimension of its embedding.

3.10 Subvarieties. A subset of a topological space is locally closed if it is an open subset of its closure, or, equivalently, if it is the intersection of an open set with a closed set.

If X is a quasi-affine or quasi-projective variety and Y is an irreducible locally closed subset, then Y is also a quasi-affine (respectively, quasi-projective) variety, by virtue of being a locally closed subset of the same affine or projective space. We call this the induced structure on Y, and we call Y a subvariety of X.

Now let $\varphi: X \to Y$ be a morphism, let $X' \subseteq X$ and $Y' \subseteq Y$ be irreducible locally closed subsets such that $\varphi(X') \subseteq Y'$. Show that $\varphi|_{X'}: X' \to Y'$ is a morphism.

3.11 Let X be any variety and let $P \in X$. Show there is a 1-1 correspondence between the prime ideals of the local ring \mathcal{O}_P and the closed subvarieties of X containing P.

3.12 If P is a point on a variety X, then $\dim \mathcal{O}_P = \dim X$. [Hint: Reduce to the affine case and use (3.2c).]

3.13 The Local Ring of a Subvariety. Let $Y \subseteq X$ be a subvariety. Let $\mathcal{O}_{Y,X}$ be the set of equivalence classes $\langle U, f \rangle$ where $U \subseteq X$ is open, $U \cap Y \neq 0$, and f is a regular function on U. We say $\langle U, f \rangle$ is equivalent to $\langle V, g \rangle$ if f = g on $U \cap V$. Show that $\mathcal{O}_{Y,X}$ is a local ring, with residue field K(Y) and dimension $= \dim X - \dim Y$. It is the local ring of Y on X. Note if Y = P is a point we get \mathcal{O}_P and if Y = X we get K(X). Note also that if Y is not a point, then K(Y) is not algebraically closed, so in this way we get local rings whose residue fields are not algebraically closed.

3.14 Projection from a Point. Let \mathbf{P}^n be a hyperplane in \mathbf{P}^{n+1} and let $P \in \mathbf{P}^{n+1} - \mathbf{P}^n$. Define a mapping $\varphi : \mathbf{P}^{n+1} - P \to \mathbf{P}^n$ by $\varphi(Q) =$ the intersection of the unique line containing P and Q with \mathbf{P}^n .

- (a) Show that φ is a morphism.
- (b) Let $Y \subseteq \mathbf{P}^3$ be the twisted cubic curve which is the image of the 3-uple embedding of \mathbf{P}^1 (Ex. 2.12). If t,u are the homogeneous coordinates on \mathbf{P}^1 , we say that Y is the curve given parametrically by $(x,y,z,w) = (t^3,t^2u,tu^2,u^3)$. Let P = (0,0,1,0), and let \mathbf{P}^2 be the hyperplane z = 0. Show that the projection of Y from P is a cuspidal cubic curve in the plane, and find its equation.

3.15 Products of Affine Varieties. Let $X \subseteq \mathbf{A}^n$ and $Y \subseteq \mathbf{A}^m$ be affine varieties.

- (a) Show that $X \times Y \subseteq A^{n+m}$ with its induced topology is irreducible. [Hint: Suppose that $X \times Y$ is a union of two closed subsets $Z_1 \cup Z_2$. Let $X_i = \{x \in X \mid x \times Y \subseteq Z_i\}$, i = 1, 2. Show that $X = X_1 \cup X_2$ and X_1, X_2 are closed. Then $X = X_1$ or X_2 so $X \times Y = Z_1$ or Z_2 .] The affine variety $X \times Y$ is called the product of X and Y. Note that its topology is in general not equal to the product topology (Ex. 1.4).
- **(b)** Show that $A(X \times Y) \cong A(X) \otimes_k A(Y)$.
- (c) Show that $X \times Y$ is a product in the category of varieties, i.e., show (i) the projections $X \times Y \to X$ and $X \times Y \to Y$ are morphisms, and (ii) given a variety Z, and the morphisms $Z \to X$, $Z \to Y$, there is a unique morphism $Z \to X \times Y$ making a commutative diagram

(d) Show that $\dim X \times Y = \dim X + \dim Y$.

- **3.16** Products of Quasi-Projective Varieties. Use the Segre embedding (Ex. 2.14) to identify $\mathbf{P}^n \times \mathbf{P}^m$ with its image and hence give it a structure of projective variety. Now for any two quasi-projective varieties $X \subseteq \mathbf{P}^n$ and $Y \subseteq \mathbf{P}^m$, consider $X \times Y \subseteq \mathbf{P}^n \times \mathbf{P}^m$
 - (a) Show that $X \times Y$ is a quasi-projective variety.
 - (b) If X, Y are both projective, show that $X \times Y$ is projective.
 - *(c) Show that $X \times Y$ is a product in the category of varieties.
- **3.17** Normal Varieties. A variety Y is normal at a point $P \in Y$ if \mathcal{O}_p is an integrally closed ring. Y is normal if it is normal at every point.
 - (a) Show that every conic in \mathbf{P}^2 is normal.
 - (b) Show that the quadric surfaces Q_1, Q_2 in \mathbf{P}^3 given by equations $Q_1 : xy = zw$; $Q_2 : xy = z^2$ are normal (cf. (II. Ex. 6.4) for the latter.)
 - (c) Show that the cuspidal cubic $y^2 = x^3$ in \mathbf{A}^2 is not normal.
 - (d) If Y is affine, then Y is normal $\iff A(Y)$ is integrally closed.
 - (e) Let Y be an affine variety. Show that there is a normal affine variety Y, and a morphism $\pi: \tilde{Y} \to Y$, with the property that whenever Z is a normal variety, and $\varphi: Z \to Y$ is a dominant morphism (i.e., $\varphi(Z)$ is dense in Y), then there is a unique morphism $e: Z \to \tilde{Y}$ such that $\varphi = \pi \circ \theta$. \tilde{Y} is called the normalization of Y. You will need (3.9A) above.
- **3.18** Projectively Normal Varieties. A projective variety $Y \subseteq \mathbf{P}^n$ is projectively normal (with respect to the given embedding) if its homogeneous coordinate ring S(Y) is integrally closed.
 - (a) If Y is projectively normal, then Y is normal.
 - (b) There are normal varieties in projective space which are not projectively normal. For example, let Y be the twisted quartic curve in \mathbf{P}^3 given parametrically by $(x, y, z, w) = (t^4, t^3u, tu^3, u^4)$. Then Y is normal but not projectively normal. See (III, Ex. 5.6) for more examples.
 - (c) Show that the twisted quartic curve Y above is isomorphic to \mathbf{P}^1 , which is projectively normal. Thus projective normality depends on the embedding.
- **3.19** Automorphisms of \mathbf{A}^n . Let $\varphi: \mathbf{A}^n \to \mathbf{A}^n$ be a morphism of \mathbf{A}^n to \mathbf{A}^n given by n polynomials $f_1, ..., f_n$ of n variables $x_1, ..., x_n$ Let $J = \det[\partial f_i/\partial x_j]$ be the Jacobian polynomial of φ .
 - (a) If φ is an isomorphism (in which case we call φ an automorphism of \mathbf{A}^n) show that J is a nonzero constant polynomial.
- **(b) The converse of (a) is an unsolved problem, even for n=2. See, for example. Vitushkin [1].
- **3.20** Let Y be a variety of dimension ≥ 2 , and let $P \in Y$ be a normal point. Let f be a regular function on Y P.
 - (a) Show that f extends to a regular function on Y.
 - (b) Show this would be false for $\dim Y = 1$. See (III, Ex. 3.5) for generalization.
- **3.21** Group Varieties. A group variety consists of a variety Y together with a morphism $\mu: Y \times Y \to Y$, such that the set of points of Y with the operation given by μ is a group, and such that the inverse map $y \to y^{-1}$ is also a morphism of $Y \to Y$.

- (a) The additive group G_a is given by the variety A^1 and the morphism $\mu : A^2 \to A^1$. defined by $\mu(a,b) = a + b$. Show it is a group variety.
- (b) The multiplicative group $\mathbf{G_m}$ is given by the variety $\mathbf{A}^1 \{(0)\}$ and the morphism $\mu(a, b) = ab$. Show it is a group variety.
- (c) If G is a group variety, and X is any variety, show that the set $\operatorname{Hom}(X, \mathbf{G_a})$ has a natural group structure.
- (d) For any variety X, show that $\operatorname{Hom}(X,\mathbf{G_a})$ is isomorphic to $\mathcal{O}(X)$ as a group under addition.
- (e) For any variety X, show that $\operatorname{Hom}(X, \mathbf{G_m})$ is isomorphic to the group of units in $\mathcal{O}(X)$, under multiplication.