

PROCESO DE GESTIÓN DE FORMACIÓN PROFESIONAL INTEGRAL GUÍA DE APRENDIZAJE (PYTHON (MACHINE LEARNING + BIG DATA))

1. IDENTIFICACIÓN DE LA GUIA DE APRENDIZAJE

- Denominación del Programa de Formación: Tecnología en Análisis y Desarrollo de Software
- Código del Programa de Formación: 228118
- Nombre del Proyecto Formativo (si aplica): Desarrollo de Software Empresarial Innovador Alineado con las Políticas y Estrategias Gubernamentales Locales y Nacionales.
- Fase del Proyecto (si aplica): Codificar
- Actividad de Proyecto Formativo (si aplica): Desarrollar la estructura de datos y la interfaz de usuario del software
- **Competencia**: Implementar la solución de software de acuerdo con los requisitos de operación y modelos de referencia.
- Resultados de Aprendizaje: Planear actividades de implantación del software de acuerdo con las condiciones del sistema.
- Duración de la Guía de Aprendizaje (horas): 120 horas

2. PRESENTACIÓN

¡Bienvenidos a esta emocionante experiencia de aprendizaje con Big Data y Machine Learning! A través de esta guía de aprendizaje, los participantes tendrán la oportunidad de adentrarse en el fascinante mundo del análisis de datos masivos y la inteligencia artificial, comprendiendo cómo la información se convierte en conocimiento útil para la toma de decisiones estratégicas en distintos sectores. Este proceso formativo permitirá a los aprendices desarrollar competencias fundamentales en la recolección, procesamiento, análisis e interpretación de grandes volúmenes de datos, utilizando herramientas y lenguajes especializados como Python, R y plataformas de Big Data.

Durante este recorrido, se promoverá un aprendizaje integral que trasciende lo técnico, estimulando el pensamiento crítico, la capacidad analítica y la resolución de problemas complejos mediante la aplicación de modelos de aprendizaje automático (Machine Learning). La guía invita a construir sobre los conocimientos previos en programación, matemáticas y estadística, fortaleciendo la comprensión de los nuevos conceptos y técnicas que conforman el ecosistema de

la Ciencia de Datos, desde la limpieza y transformación de datos hasta la creación y evaluación de modelos predictivos.

El trabajo autónomo y colaborativo será un eje central de esta experiencia. Los aprendices deberán gestionar sus tareas de manera organizada y metódica, explorando diferentes fuentes de información, experimentando con datos reales y compartiendo sus hallazgos con el equipo. A través del trabajo en equipo, se fomentará el crecimiento tanto individual como colectivo, potenciando la comunicación efectiva, la co-creación de soluciones innovadoras y el aprendizaje a partir de la diversidad de perspectivas.

Esta guía está diseñada para inspirar a los aprendices a involucrarse activamente en su proceso de formación, entendiendo que la Ciencia de Datos no solo implica dominar herramientas tecnológicas, sino también desarrollar una mentalidad analítica, ética y orientada al descubrimiento. ¡Es momento de comenzar esta aventura con el desarrollo de las actividades!.

3. FORMULACIÓN DE LAS ACTIVIDADES DE APRENDIZAJE

Descripción de la(s) Actividad(es)

3.1 Actividades de reflexión inicial: Datos que cuentan historias

Descripción de la actividad: Comprender los fundamentos de la ciencia de datos y su impacto en la toma de decisiones.

- Mediante trabajo colaborativo se conformarán grupos pequeños de trabajo de (3 o 4 aprendices por grupo).
- Cada grupo recibe una tarjeta temática con un contexto real en el que se usan datos. Ejemplos:
 - Salud: Predicción de enfermedades con IA.
 - o **Educación**: Personalización del aprendizaje con analítica de datos.
- Cada grupo reflexiona y responde:
 - ¿Qué tipo de datos se generan en este contexto?
 - o ¿Para qué se usan?
 - o ¿Qué beneficios y riesgos identifican?
 - ¿Qué profesiones o tecnologías intervienen en este proceso?
 - o ¿Cómo impacta en la sociedad o en la vida de las personas?
- Cada grupo elabora una infografía o poster digital (o en papel) con sus conclusiones.
 - El cartel debe incluir: título del contexto, tipos de datos, beneficios, riesgos y conclusiones.
- Posteriormente, cada grupo expone la infografía o poster digital generado.

Estrategias o técnicas didácticas activas:

• Aprendizaje Basado en Problemas (ABP) y discusión en pequeños grupos.

Materiales de formación: Papel periódico, marcadores, colores, lápices y/o computador con acceso a internet, pantalla y/o televisor para proyectar, plataforma LMS.

Material de apoyo:

- El Mundo de los Datos. (s.f.). El Mundo de los Datos. Recuperado de https://elmundodelosdatos.com/
- Domo. (2025). Data Never Sleeps: Al Edition 2025 [Infografía]. Domo. https://www.domo.com/es/learn/infographic/data-never-sleeps-ai-edition-2025

Duración de la actividad: 02 horas.

3.2 Actividades de contextualización e identificación de conocimientos necesarios para el aprendizaje: Data Sprint — Quiz de Ciencia de Datos".

Descripción de la actividad: Diagnosticar los conocimientos previos sobre Ciencia de Datos (Big Data, Machine Learning, Estadística, Ética de datos y Fundamentos de Programación en Python).

- El aprendiz ingresa a la URL del quiz, suministrada por el instructor
 - En la pantalla de inicio registra su nombre, inicia el quiz y dispone de 20 minutos para responder 20 preguntas seleccionadas aleatoriamente.
 - Al finalizar, el sistema muestra nombre, fecha de realización, puntaje total, tiempo empleado, exactitud (%) y desglose por temática.
 - El aprendiz pulsa "Descargar resultados (.json)" para obtener el archivo de desempeño y realiza una captura de pantalla del puntaje mostrado.
 - Entrega en Classroom/LMS:
 - Archivo resultados_[nombre].json.
 - Captura de pantalla del puntaje.
 - El instructor realizará una retroalimentación de conformidad a los resultados de cada aprendiz.

Ambiente requerido: Ambiente de pluritecnologico con ventilación, mobiliario ergonómico, iluminación, acceso a internet, computadores de escritotio y/o portátil, pantalla y/o televisor para proyectar y acceso a la plataforma LMS.

Estrategias o técnicas didácticas activas:

 Diagnóstico inicial individual con instrumento digital y Aprendizaje autónomo guiado (autoexploración y autorregulación del tiempo).

Materiales de formación: computador con acceso a internet, pantalla y/o televisor para proyectar, plataforma LMS.

Material de apoyo:

- IBM. (2023). ¿Qué es la ciencia de datos? IBM. Recuperado de https://www.ibm.com/co-es/topics/data-science
- Microsoft Learn. (2024). Introducción al aprendizaje automático con Python y Azure Machine Learning. Microsoft. Recuperado de https://learn.microsoft.com/es-es/training/paths/intro-machine-learning-python-azure/
- Python Software Foundation. (2024). The Python Tutorial. Python.org. Recuperado de https://docs.python.org/es/3/tutorial/
- Wes McKinney. (2018). Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython (2.ª ed.). O'Reilly Media.

Duración de la actividad: 02 horas.

3.3 Actividades de apropiación:

Actividad No.01 – Programacion en Python para Ciencia de Datos

Descripción de la actividad: Aplicar los conceptos fundamentales de Python en el contexto de la Ciencia de Datos, fortaleciendo el uso de estructuras, funciones y librerías básicas para la manipulación de conjuntos de datos.

- Escuche con atención la explicación de su instructor(a) sobre los temas de fundamentos de programación en Python, incluyendo estructuras de control, tipos de datos, funciones y uso básico de librerías para análisis de datos (como pandas y numpy), con apoyo de presentación electrónica.
- De manera individual, desarrolle el "Taller Fundamentos de Programación en Python para Ciencia de Datos" entregado por el instructor, aplicando los conceptos vistos para resolver ejercicios prácticos de manipulación y análisis de conjuntos de datos.
- Una vez finalizado el taller, genere el archivo con las soluciones en formato .ipynb (Jupyter Notebook) o .py, y exporte una copia en formato PDF.
- Suba ambos archivos (código fuente y PDF) en el espacio dispuesto para la entrega en el LMS (Classroom o Zajuna), siguiendo las indicaciones del instructor.

Estrategias o técnicas didácticas activas:

• Aprendizaje Basado en Problemas (ABP) y simulaciones.

Materiales de formación: computador con acceso a internet, pantalla y/o televisor para proyectar, plataforma LMS.

Material de apoyo:

- Python Software Foundation. (2024). The Python Tutorial. Python.org. Recuperado de https://docs.python.org/es/3/tutorial/
- Wes McKinney. (2018). Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython (2.ª ed.). O'Reilly Media.

Duración de la actividad: 20 horas.

Actividad No.02 – Analisis de Grandes Volumenes de Datos

Descripción de la actividad: Apropiar los conceptos relacionados con el Analisis de grandes volúmenes de datos provenientes de fuentes abiertas o institucionales, aplicando el proceso de ciencia de datos (ingesta, limpieza, transformación, exploración y visualización) con Python (*pandas, numpy, matplotlib*) y/o herramientas de BI.

- Escuche con atención la explicación de su instructor(a) sobre los conceptos de Big Data, análisis de grandes volúmenes de información, y las etapas del proceso de ciencia de datos, con apoyo de presentación electrónica y ejemplos prácticos.
- Observe la demostración del uso de herramientas y librerías de análisis de datos (por ejemplo, pandas, numpy, matplotlib o Power BI) para la exploración, limpieza, transformación y visualización de conjuntos de datos extensos.
- De manera individual o en pequeños grupos (según indicación del instructor), descargue el conjunto de datos asignado desde la URL o fuente indicada, y realice el análisis exploratorio aplicando filtros, agrupamientos y cálculos estadísticos básicos que permitan identificar patrones o tendencias.
- Desarrolle el "Taller: Análisis de Grandes Volúmenes de Datos" entregado por el instructor, integrando los resultados obtenidos en su análisis y respondiendo las preguntas orientadoras del taller.
- Una vez finalizado el ejercicio, genere el archivo de trabajo en formato .ipynb (Jupyter Notebook)
 o .py, junto con un informe en formato PDF que incluya:

- Descripción del conjunto de datos.
- o Pasos realizados en el análisis (limpieza, procesamiento, visualización).
- o Principales hallazgos y conclusiones.
- Suba los archivos generados (código y PDF) en el espacio dispuesto para la entrega dentro del LMS (Classroom, Zajuna o Sofía), siguiendo las instrucciones del instructor.

Estrategias o técnicas didácticas activas:

• Aprendizaje Basado en Problemas (ABP) y simulaciones.

Materiales de formación: computador con acceso a internet, pantalla y/o televisor para proyectar, plataforma LMS.

Material de apoyo:

- Python Software Foundation. (2024). The Python Tutorial. Python.org. Recuperado de https://docs.python.org/es/3/tutorial/
- Wes McKinney. (2018). Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython (2.ª ed.). O'Reilly Media.
- McKinney, W. (2018). Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython (2.ª ed.). O'Reilly Media.

Duración de la actividad: 20 horas.

Actividad No.03 – Modelos de Inteligencia Artificial

Descripción de la actividad: Apropiar los conceptos relacionados con los **modelos de inteligencia artificial, específicamente el aprendizaje automático (Machine Learning)**, aplicando técnicas de entrenamiento, validación y evaluación de modelos predictivos mediante el uso de **Python y librerías especializadas** como *scikit-learn, pandas, numpy y matplotlib*.

- Escuche con atención la explicación de su instructor(a) sobre los principios del aprendizaje automático, los tipos de modelos (supervisado, no supervisado y por refuerzo) y las etapas del ciclo de Machine Learning, con apoyo de presentación electrónica y ejemplos aplicados.
- Observe la demostración del uso de herramientas y librerías de Python (por ejemplo, scikit-learn, pandas, numpy, matplotlib, seaborn) para la creación, entrenamiento y evaluación de modelos predictivos.

- De manera individual o en pequeños grupos (según indicación del instructor), descargue el conjunto de datos asignado desde la fuente indicada y realice el preprocesamiento necesario (limpieza, codificación de variables, normalización, división de datos en entrenamiento y prueba).
- Desarrolle el "Taller: Modelos de Inteligencia Artificial con Machine Learning" entregado por el instructor, implementando al menos dos algoritmos distintos (por ejemplo, Regresión Lineal, Árboles de Decisión, K-Vecinos más Cercanos o Random Forest), comparando sus resultados y métricas de rendimiento.
- Una vez finalizado el ejercicio, genere el archivo de trabajo en formato .ipynb (Jupyter Notebook)
 o .py, junto con un informe en formato PDF que incluya:
 - Descripción del conjunto de datos.
 - Explicación de los modelos implementados.
 - Comparación de resultados y métricas (accuracy, precision, recall, F1-score, etc.).
 - o Conclusiones sobre el modelo con mejor desempeño y posibles mejoras futuras.
- Suba los archivos generados (código y PDF) en el espacio dispuesto para la entrega dentro del LMS (Classroom, Zajuna o Sofía Plus), siguiendo las instrucciones del instructor(a).

Estrategias o técnicas didácticas activas:

• Aprendizaje Basado en Problemas (ABP) y simulaciones.

Materiales de formación: computador con acceso a internet, pantalla y/o televisor para proyectar, plataforma LMS.

Material de apoyo:

- Géron, A. (2019). Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow (2.^a ed.).
 O'Reilly Media.
- IBM. (2023). Introducción al aprendizaje automático (Machine Learning). IBM. Recuperado de https://www.ibm.com/co-es/topics/machine-learning
- Python Software Foundation. (2024). The Python Tutorial. Python.org. Recuperado de https://docs.python.org/es/3/tutorial/

Duración de la actividad: 30 horas.

Actividad No.04 – Despliegue de una Aplicación de Inteligencia Artificial

Descripción de la actividad: Implementar y desplegar una aplicación de Inteligencia Artificial que integre un modelo de Machine Learning previamente entrenado, utilizando herramientas de desarrollo y servicios en la nube o en entornos locales.

- Escuche con atención la explicación de su instructor(a) sobre los conceptos de despliegue de modelos de Inteligencia Artificial, entornos de producción, y diferencias entre entornos locales y cloud, con apoyo de presentación electrónica y ejemplos demostrativos.
- Observe la demostración práctica del instructor sobre cómo empaquetar un modelo de Machine Learning entrenado en Python (por ejemplo, con joblib o pickle) y cómo integrarlo en una aplicación web sencilla con Flask o Streamlit.
- De manera individual o en pequeños grupos (según indicación del instructor), utilice el modelo entrenado en la actividad anterior o uno nuevo asignado por el instructor, y desarrolle una aplicación funcional que permita realizar predicciones a partir de datos ingresados por el usuario.
- Configure la aplicación para su ejecución local o despliegue en la nube (por ejemplo, Render, Hugging Face Spaces, Vercel o Railway), asegurando que el modelo cargue correctamente y que la interfaz muestre los resultados de manera clara y comprensible.
- Desarrolle el "Taller: Despliegue de una Aplicación de Inteligencia Artificial" entregado por el instructor, documentando los pasos de configuración, ejecución y publicación del proyecto.
- Una vez finalizada la práctica, genere los siguientes entregables:
 - o Carpeta del proyecto (código fuente y archivos del modelo entrenado).
 - o Capturas de pantalla de la aplicación en funcionamiento.
 - o Documento en formato PDF con los siguientes apartados:
 - Descripción del modelo implementado.
 - Arquitectura y componentes del despliegue.
 - Capturas o enlace de la aplicación publicada.
 - Conclusiones sobre el proceso de implementación y retos encontrados.
- Suba los archivos generados (código y PDF) en el espacio dispuesto para la entrega dentro del LMS (Classroom, Zajuna o Sofía Plus), siguiendo las instrucciones del instructor(a).

Ambiente requerido: Ambiente de pluritecnologico con ventilación, mobiliario ergonómico, iluminación, acceso a internet, computadores de escritotio y/o portátil, pantalla y/o televisor para proyectar y acceso a la plataforma LMS.

Estrategias o técnicas didácticas activas:

• Aprendizaje Basado en Problemas (ABP) y simulaciones.

Materiales de formación: computador con acceso a internet, pantalla y/o televisor para proyectar, plataforma LMS.

Material de apoyo:

- Chollet, F. (2021). Deep Learning with Python (2.ª ed.). Manning Publications.
- IBM. (2023). Despliegue de modelos de Machine Learning. IBM Cloud. Recuperado de https://www.ibm.com/docs/es/cloud-paks/cp-data/4.7.x?topic=models-deploying-machine-learning
- Streamlit Inc. (2024). Getting Started with Streamlit. Recuperado de https://docs.streamlit.io/get-started

Duración de la actividad: 30 horas.

3.4 Actividades de Transferencia el Conocimiento: Proyecto Final - Aplicación del Proceso de Ciencia de Datos

Descripción de la actividad: Aplicar de manera integral los conocimientos y habilidades adquiridas en el curso mediante el desarrollo de un proyecto completo de Ciencia de Datos o Inteligencia Artificial, abordando todas las fases del proceso: definición del problema, recolección, limpieza, análisis exploratorio, modelado, evaluación y despliegue de resultados.

- Escuche con atención la orientación del instructor(a) sobre los lineamientos del proyecto final, las etapas a desarrollar y los criterios de evaluación, con apoyo de presentación electrónica y ejemplos de proyectos de Ciencia de Datos aplicados en distintos contextos.
- De manera individual o en equipos (según indicación del instructor), seleccione un tema o conjunto de datos provenientes de fuentes abiertas, institucionales o propias, y formule una pregunta o problema de análisis que pueda resolverse mediante técnicas de Ciencia de Datos o Machine Learning.
- Planifique el proyecto estructurando las siguientes fases:
 - 1. Definición del problema y objetivos.
 - 2. Recolección o selección de los datos.
 - 3. Limpieza, transformación y análisis exploratorio.
 - 4. Modelado predictivo o descriptivo (Machine Learning).
 - 5. Evaluación del modelo y visualización de resultados.
 - 6. Despliegue o presentación de la solución.
- Desarrolle el proyecto completo utilizando Python y librerías especializadas (pandas, numpy, matplotlib, seaborn, scikit-learn), o herramientas de Business Intelligence como Power BI, según el enfoque del proyecto.
- Elabore un informe final en formato PDF que incluya:
 - 1. Portada con nombre del proyecto, autor(es) y fecha.
 - 2. Descripción del problema y objetivos.
 - 3. Fuentes y características del conjunto de datos.
 - 4. Etapas del proceso de análisis y modelado.

- 5. Resultados, visualizaciones y métricas de evaluación.
- 6. Conclusiones, recomendaciones y reflexiones éticas sobre el uso de los datos.
- Prepare una breve presentación o demostración (pitch) del proyecto, mostrando la funcionalidad, resultados o despliegue de la aplicación, según el alcance del trabajo desarrollado.
- Suba los siguientes entregables al espacio dispuesto en el LMS (Classroom o Zajuna):
 - 1. Carpeta del proyecto (código fuente y datasets utilizados).
 - 2. Informe final en formato PDF.
 - 3. Presentación (PDF o diapositivas).
 - 4. (Opcional) Enlace a la aplicación desplegada o video de demostración.

Estrategias o técnicas didácticas activas:

• Aprendizaje Basado en Problemas (ABP) y simulaciones.

Materiales de formación: computador con acceso a internet, pantalla y/o televisor para proyectar, plataforma LMS.

Material de apoyo:

- Provost, F., & Fawcett, T. (2013). Data Science for Business: What You Need to Know About Data Mining and Data-Analytic Thinking. O'Reilly Media.
- Géron, A. (2019). Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow (2.^a ed.). O'Reilly Media.
- IBM. (2023). Ciclo de vida de la ciencia de datos. IBM. Recuperado de https://www.ibm.com/co-es/topics/data-science

Duración de la actividad: 16 horas.

4. PLANTEAMIENTO DE EVIDENCIAS DE APRENDIZAJE PARA LA EVALUACIÓN EN EL PROCESO FORMATIVO.

Fase del proyecto formativo	Actividad del proyecto formativo	Actividad de Aprendizaje	Evidencias de Aprendizaje	Criterios de Evaluación	Técnicas e Instrumentos de Evaluación
Codificar	Desarrollar la	Actividad No.01 – Programacion en Python para Ciencia de Datos	Archivo de programación y PDF con la solución del taller	Aplica estructuras y funciones de Python para manipular y analizar datos de forma correcta y eficiente.	Instrumento: Rubrica Tecnica: Taller ABP
		Actividad No.02 – Analisis de Grandes Volumenes de Datos	Archivo de programación y PDF con la solución del taller	Analiza e interpreta grandes volúmenes de datos, aplicando técnicas de limpieza, transformación y visualización.	Instrumento: Rubrica Tecnica: Taller ABP
	estructura de datos y la interfaz de usuario del software	Actividad No.03 – Modelos de Inteligencia Artificial	Archivo de programación y PDF con la solución del taller	Implementa y evalúa modelos de aprendizaje automático, seleccionando algoritmos y métricas adecuadas	Instrumento: Rubrica Tecnica: Taller ABP
		Actividad No.04 – Despliegue de una Aplicación de Inteligencia Artificial	Archivo de programación y PDF con la solución del taller	Integra y despliega un modelo de IA en una aplicación funcional y documentada.	Instrumento: Rubrica Tecnica: Taller ABP
		Proyecto Final - Aplicación del Proceso de Ciencia de Datos	Archivo de programación y PDF con la solución del proyecto	Elabora el plan de instalación de acuerdo con las características del software a implantar.	Instrumento: Rubrica Tecnica: Taller ABP

5. GLOSARIO DE TÉRMINOS

- Algoritmo: Conjunto de instrucciones lógicas y ordenadas que permiten resolver un problema o realizar un cálculo.
- Análisis de datos: Proceso de examinar, limpiar, transformar e interpretar datos para obtener conclusiones útiles.
- Big Data: Conjunto de datos tan grandes o complejos que requieren herramientas y técnicas especiales para su procesamiento.
- Ciencia de Datos: Disciplina que combina programación, estadística y conocimiento del dominio para extraer conocimiento y valor de los datos.
- Dataset: Conjunto estructurado de datos organizados generalmente en filas (registros) y columnas (atributos).
- Machine Learning: Rama de la inteligencia artificial que permite a los sistemas aprender automáticamente a partir de los datos sin ser programados explícitamente.
- Modelo predictivo: Representación matemática entrenada con datos históricos para realizar predicciones sobre nuevos casos.
- Limpieza de datos: Etapa del proceso donde se eliminan o corrigen valores erróneos, duplicados o incompletos en un conjunto de datos.
- Visualización de datos: Representación gráfica de la información que facilita la comprensión de patrones y tendencias.
- Python: Lenguaje de programación ampliamente utilizado en ciencia de datos por su simplicidad y sus librerías especializadas (pandas, numpy, scikit-learn, etc.).

6. REFERENTES BILBIOGRÁFICOS

- Chollet, F. (2021). Deep Learning with Python (2.^a ed.). Manning Publications.
- De la Torre Díez, I., & García-Zapirain, B. (2019). Introducción a la Ciencia de Datos con Python. Editorial Universidad de Deusto. Recuperado de https://repositorio.deusto.es/handle/10125/9291

- Domo. (2025). Data Never Sleeps: AI Edition 2025 [Infografía]. Domo. Recuperado de https://www.domo.com/es/learn/infographic/data-never-sleeps-ai-edition-2025
- El Mundo de los Datos. (s.f.). El Mundo de los Datos. Recuperado de https://elmundodelosdatos.com/
- Géron, A. (2019). Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow (2.ª ed.). O'Reilly Media.
- IBM. (2023). Ciclo de vida de la ciencia de datos. IBM. Recuperado de https://www.ibm.com/co-es/topics/data-science
- IBM. (2023). Introducción al aprendizaje automático (Machine Learning). IBM. Recuperado de https://www.ibm.com/co-es/topics/machine-learning
- McKinney, W. (2018). Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython (2.^a ed.). O'Reilly Media.
- Microsoft Learn. (2024). Introducción al aprendizaje automático con Python y Azure Machine Learning. Microsoft. Recuperado de https://learn.microsoft.com/es-es/training/paths/intro-machine-learning-python-azure/
- Provost, F., & Fawcett, T. (2013). Data Science for Business: What You Need to Know About Data Mining and Data-Analytic Thinking. O'Reilly Media.
- Python Software Foundation. (2024). The Python Tutorial. Python.org. Recuperado de https://docs.python.org/es/3/tutorial/
- Streamlit Inc. (2024). Getting Started with Streamlit. Recuperado de https://docs.streamlit.io/get-started

7. CONTROL DEL DOCUMENTO

	Nombre	Cargo	Dependencia	Fecha
Autor (es)	Alvaro Pérez Niño	Instructor	Centro de Servicios y Gestion Empresarial	Octubre 06 de 2025

8. CONTROL DE CAMBIOS (diligenciar únicamente si realiza ajustes a la guía)

	Nombre	Cargo	Dependencia	Fecha	Razón del Cambio
Autor (es)					