

دانشکده ی مهندسی کامپیوتر پروژه ی سوم مبانی و کاربردهای هوش مصنوعی

> نام استاد : بهنام روشنفکر نام دانشجو : آریان بوکانی شماره دانشجویی : ۹۷۳۱۰۱۲

> > نیمسال اول ۰۰-۹۹

	λ1	λ2	λ3	ε	دقت
تست اول	0.09	0.9	0.01	0.3	1910/2750 = 0.6945
تست دوم	0.02	0.5	0.48	0.3	2180/2750 = 0.7927
تست سوم	0.09	0.9	0.01	0.001	2280/2750 = 0.8290
تست چهارم	0.02	0.5	0.48	0.001	2302/2750 = 0.8370
تست پنجم	0.05	0.05	0.9	0.8	1992/2750 = 0.7243
تست ششم	0.05	0.9	0.05	0.8	1874/2750 = 0.6814

با توجه به دادههای بدست آمده میتوان نتایج زیر را برای انتخاب بهترین مقادیر لاندا بدست آورد:

- هرچه مقدار عومقدار لاندای آن کمتر باشد، دقت پیش بینی بیشتر می شود. زیرا این مقدار فقط برای هموارسازی و جلوگیری از پیش آمد احتمال صفر که ممکن است در unigram و bigram پیش بیایند آمده است و هرچه مقدار آن بیشتر شود، پیش بینی ضعیفتر خواهد بود.
- برای تخصیص وزن به احتمالهای bigram و unigram بهتر است که وزن بیشتری به احتمال bigram بدهیم چونکه آگاهانهتر تصمیم می گیرد.

بنابراین در نهایت بهتر است که ضریب bigram از همه بیشتر باشد و دو ضریب دیگر کمتر باشند. بهتر است که مقدار ع نیز کوچک انتخاب شود تا دقت پیش بینی بیشتر شود.

برای یافتن بهترین مقادیر لاندا و اپسیلون باید یک مجموعه ی تست دیگری بنام held-out داشته باشیم و سعی کنیم که مقدار دقت پیش بینی برای این مجموعه را بیشینه کنیم. در حالت بیشینه مقدار وزنهای استفاده شده، بهترین حالت برای استفاده در تستهای دیگر میباشند.