```
In [1]: import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
```

In [5]: df = pd.read\_csv(r"C:\Users\pl\Downloads\sales\_data\_sample.csv",encoding='latin1

In [6]: df.head()

Out[6]:

|   | ORDERNUMBER | QUANTITYORDERED | PRICEEACH | ORDERLINENUMBER | SALES   | ORDERDATE          |
|---|-------------|-----------------|-----------|-----------------|---------|--------------------|
| 0 | 10107       | 30              | 95.70     | 2               | 2871.00 | 2/24/2003<br>0:00  |
| 1 | 10121       | 34              | 81.35     | 5               | 2765.90 | 5/7/2003 0:00      |
| 2 | 10134       | 41              | 94.74     | 2               | 3884.34 | 7/1/2003 0:00      |
| 3 | 10145       | 45              | 83.26     | 6               | 3746.70 | 8/25/2003<br>0:00  |
| 4 | 10159       | 49              | 100.00    | 14              | 5205.27 | 10/10/2003<br>0:00 |

5 rows × 25 columns

In [7]: df.describe()

Out[7]:

|       | ORDERNUMBER  | QUANTITYORDERED | PRICEEACH   | ORDERLINENUMBER | SALES        |     |
|-------|--------------|-----------------|-------------|-----------------|--------------|-----|
| count | 2823.000000  | 2823.000000     | 2823.000000 | 2823.000000     | 2823.000000  | 282 |
| mean  | 10258.725115 | 35.092809       | 83.658544   | 6.466171        | 3553.889072  |     |
| std   | 92.085478    | 9.741443        | 20.174277   | 4.225841        | 1841.865106  |     |
| min   | 10100.000000 | 6.000000        | 26.880000   | 1.000000        | 482.130000   |     |
| 25%   | 10180.000000 | 27.000000       | 68.860000   | 3.000000        | 2203.430000  |     |
| 50%   | 10262.000000 | 35.000000       | 95.700000   | 6.000000        | 3184.800000  |     |
| 75%   | 10333.500000 | 43.000000       | 100.000000  | 9.000000        | 4508.000000  |     |
| max   | 10425.000000 | 97.000000       | 100.000000  | 18.000000       | 14082.800000 |     |
| 4     |              |                 |             |                 |              | •   |

In [8]: df.shape

Out[8]: (2823, 25)

```
In [9]: df = df[['QUANTITYORDERED', 'ORDERLINENUMBER']]
df = df.dropna(axis = 0)
```

```
In [10]: wcss = []

for i in range(1, 11):
    clustering = KMeans(n_clusters=i, init='k-means++', random_state=42)
    clustering.fit(df)
    wcss.append(clustering.inertia_)

ks = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
sns.lineplot(x = ks, y = wcss);
```







```
In [12]: df.describe().T
```

## Out[12]:

```
count
                             mean
                                        std
                                            min 25% 50%
                                                            75% max
QUANTITYORDERED 2823.0
                         35.092809 9.741443
                                                      35.0
                                                            43.0 97.0
                                             6.0
                                                 27.0
ORDERLINENUMBER 2823.0
                           6.466171 4.225841
                                             1.0
                                                  3.0
                                                       6.0
                                                             9.0 18.0
```

```
In [13]: from sklearn.preprocessing import StandardScaler

ss = StandardScaler()
scaled = ss.fit_transform(df)
```

```
In [14]: wcss_sc = []

for i in range(1, 11):
    clustering_sc = KMeans(n_clusters=i, init='k-means++', random_state=42)
    clustering_sc.fit(scaled)
    wcss_sc.append(clustering_sc.inertia_)

ks = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
sns.lineplot(x = ks, y = wcss_sc);
```



