

Digital Engineering • Universität Potsdam

SPONSORED BY THE

Federal Ministry

of Education and Research

Understanding Embeddings for NLP

Mario Tormo Romero

Design IT. Create Knowledge.

KISZ BB

Federal Ministry of Education and Research

The AI Service Center Berlin-Brandenburg (KISZ-BB) is a project of the Hasso-Plattner-Institute with the aim of lowering barriers to the use of AI in business and society through knowledge transfer and networking. The main research areas are operational research to investigate an AI data center with heterogeneous hardware and methodological research to adapt and optimize AI models. The KISZ-BB provides resources such as computing power, storage space, data and models for the development and use of AI applications. The KISZ-BB also offers educational and consulting services in the form of workshops, individual consultations and online courses. In this way, companies, start-ups and non-profit institutions are supported in successfully mastering the next steps towards the professionalization of AI applications.

AI service centers

MOTIVATION, TASK & SERVICES

05.12.2023

KISZ-BB

Learning Goals

- Understand the challenges of converting unstructured text into numerical data for ML/DL/AI.
- Explore the evolution of solutions for representation learning, through a spectrum of embedding techniques, from historical approaches to modern algorithms.
- Recognize the significance of vector databases in storing and querying embeddings, and their advantages over traditional databases when dealing with embeddings.

05.12.2023 KISZ-BB

Agenda

- 1. Turning text into numbers
- 2. Improving the representations (with a small interlude)
- 3. Storing embeddings
- 4. Conclusion

05.12.2023 KISZ-BB 5

Part 1: Turning text into numbers

Why do we want to work with texts?

Document Summarization

Language Translation

Sentiment Analysis

Question-Answering Systems

05.12.2023 KISZ-BB

Data representation

05.12.2023 Source: [LiLS20] 8

Tokenization

In a hole in the ground there lived a hobbit.

Tokens are not always words. They can be

Bytes

Characters

Subwords or word pieces

Full words and their roots

Sentence pieces

Typical challenges during tokenization include

Contractions

I'm, you've, he's, Matt's

Stop words

the, a, it, this, that

<u>Languages with unclear</u> <u>word boundaries</u>

姚明进入总决赛

"Yao Ming reaches the finals" in Chinese

05.12.2023 KISZ-BB 9

and Research

Historical approaches: Rule-based systems

- completely with capital letters
- Includes excessive punctuation like "!!!", "\$\$\$" or "???"
- Has an inconsistent sender email address
- Includes an attachment of an .exe, .zip or .js file
- Has unusual character encoding or mixes multiple character sets

Historical approaches: Bag of Words

Federal Ministry of Education and Research

Document 1: "I love NLP."

Document 2: "NLP is fascinating, and I enjoy learning about it."

Vocabulary: ["I", "love", "NLP", "is", "fascinating", "and", "enjoy", "learning", "about", "it"]

Historical approaches: Bag of Words

Advantages

- Simplicity
- Efficiency
- Language agnostic
- Interpretability
- Useful for certain tasks

Disadvantages

- Loss of sequence Information
- Fixed Vocabulary size
- Equal importance
- Inefficiency with large datasets
- Out of vocabulary words

Historical approaches: tf-idf

Historical approaches: tf-idf

Advantages

- Content relevance
- Flexibility
- Reduce common words
- Language agnostic
- Weighted representation

Disadvantages

- Sparse vectors
- Sensitivity to text length
- Manual tuning required
- Doesn't handle misspellings
- Ignores semantic meaning

Design IT. Create Knowledge.

Federal Ministr

and Research

Lexical semantics

Multiple meanings (polysemy)

Word relatedness

Connotations

Synonyms

Word similarity

Semantic frames and roles

by Hasso-Plattne

Federal Ministry of Education and Research

The concept of embedding

0.128 0.233 0.007 0.134 0.655 0.912 0.031 0.291 0.367 0.049

Analogy questions

Who is to mathematics what Albert Einstein is to physics?

Which word is to woman what king is to man?

king - man + woman = ...

Historical semantics

09/17/2023 Source: [HaLJ16] 19

A small thing about the learned semantics

- the learned semantics don't necessarily correspond to the interpretation that we give to those words
- those semantics are learnt from millions of texts, mostly from the Internet
- they represent the average meaning of the texts that we have used for creating those representations
- the bias and prejudices present in the texts are also contained in our representations

Interlude: Metrics and Visualization

Vector comparison

Euclidean distance

Distance between ends of vectors

Dot product similarity

Product of the lengths of the projected vectors

Cosine similarity

Cosine of angle θ between vectors

09/17/2023 Source: [Schw00] 22

Vector visualization

MNIST Digits

Limitations of these techniques

- Information Loss
- Overcrowding and Clutter
- Interpretation Challenges
- Scalability Issues
- Subjectivity in Interpretation
- Algorithm Sensitivity

09/17/2023 Source: [Unde00] 24

Part 2: Improving the representations (continued)

Service HPI Zentrum by Hasso-Plattner-Institut

word2vec

Negative sampling

Sub Sampling

Other similar embeddings

GloVe

- Emphasizes Semantic Meaning
- Balances Global and Local Context
- Contextual Understanding in Large Corpora
- Information Retrieval and Search Engines

FastText

- Handling Out-of-Vocabulary Words
- Enhanced Understanding of Morphologically Rich Languages
- Misspelling Correction and Social Media Analysis
- Morphologically Complex Languages

Doc2Vec

- Document-Level Representations
- Unsupervised Learning of Document Embeddings
- Document Clustering and Information Retrieval
- Personalized Content Recommendation

Static vs contextual embeddings

Development of more complex embeddings

Sentence embeddings and sentence transformers

$$\frac{\left\{ \vdots\right\} + \left\{ \vdots\right\} + \dots + \left\{ \vdots\right\}}{n}$$

Getting better embeddings

Knowledge graphs

Multimodality

Part 3: Storing embeddings

Vector databases

Non-Relational Databases

Vector indices and vector databases

Metadata storage and filtering

Backups

Security

Integration

Examples of vector databases

09/17/2023 Source: [Wu23] 35

Design IT. Create Knowledge.

Conclusion

Federal Ministry of Education and Research

Summing it up

Data representation
Tokens
Bag of Words
TF-IDF

Lexical semantics
Embeddings
Analogy questions
Historical semantics
Bias and prejudices

ਪਿੰਦ Vector Vector Visualization Word2vec and other static embeddings
Sentence embeddings and SBERT
New directions in language representation

Vector databases

Vector indices and databases

Examples of vector databases

Digital Engineering • Universität Potsdam

SPONSORED BY THE

Thank you for your attention

Design IT. Create Knowledge.

Sources

- [Dred00] dredviz Documentation
 URL https://research.cs.aalto.fi//pml/software/dredviz/ Accessed 2023-11-07
- [HaLJ16] HAMILTON, WILLIAM L.; LESKOVEC, JURE; JURAFSKY, DAN: Diachronic Word Embeddings Reveal Statistical Laws of Semantic Change, arXiv (2016), S. 2
- [JuMa00] Jurafsky, Daniel; Martin, James H.: Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics and Speech Recognition. 3rd Edition (Draft 07-01-2023)
- [LiLS20] LIU, ZHIYUAN; LIN, YANKAI; SUN, MAOSONG: Representation Learning for Natural Language Processing. Singapore: Springer Nature Singapore, 2020, S.4
- [Schw00] SCHWABER-COHEN, ROIE: Vector Similarity Explained | Pinecone.
 URL https://www.pinecone.io/learn/vector-similarity/ Accessed 2023-11-07
- [Umap00] UMAP. URL https://meta.caspershire.net/umap/ Caspershire Meta
- [Unde00] COENEN, ANDY; PEARCE, ADAM: *Understanding UMAP* | *Google Pair.* URL https://pair-code.github.io/understanding-umap/ Accessed 2023-11-07
- [Wu23] Wu, Yingjun: Why You Shouldn't Invest In Vector Databases?

 URL https://blog.det.life/why-you-shouldnt-invest-in-vector-databases-c0cd3f59d23c. Accessed 2023-11-07

05.12.2023 KISZ-BB 39