k-WTA Activation Function

Marco Costa, Andrea Luca Antonini 24 giugno 2020

1 Introduction

The purpose of this project is to implement a Neural Network in which we use k-WTA as activation function.

The use of k-WTA acivation is motivated for defending against gradient-based adversarial attacks. In fact, provided a labeled data item (\mathbf{x}, \mathbf{y}) , the attacker finds a perturbation \mathbf{x} ' imperceptibly similar to \mathbf{x} but misleading enough to cause the network to output a label different from \mathbf{y} . The most effective way to find such a perturbation, i.e. adversarial example, is by exploiting the gradient information of the network \mathbf{w} .r.t. its input \mathbf{x} .

k-WTA activation function takes as input the entire output of a layer, retains its k largest values and deactivates all others to zero. If we use $f(\mathbf{x}; \mathbf{w})$ to denote a k-WTA network taking an input \mathbf{x} and parameterized by weights \mathbf{w} , then the gradient $\nabla_{\mathbf{x}} f(\mathbf{x}; \mathbf{w})$ at certain \mathbf{x} is undefined. Therefore, $f(\mathbf{x}; \mathbf{w})$ is \mathbf{C}^0 discontinous. The discontinuities in the activation function also renders $f(\mathbf{x}; \mathbf{w})$ discontinous w.r.t. \mathbf{w} , but these discontinuities are rather sparse in the space of \mathbf{w} , thus the network can be trained successfully.

Formally, k-WTA retains the k largest values of a Nx1 input vector and sets all others to be zero before feeding the vector to the next network layer:

$$\phi_k(\mathbf{y})_j = \begin{cases} y_j \text{ , if } y_j \in \{ \text{ k largest elements of } \mathbf{y} \} \\ 0 \text{ , otherwise} \end{cases}$$
 (1)

where $\phi_k : \mathbb{R}^N \to \mathbb{R}^N$ is the k-WTA function (parameterized by an integer k), $\mathbf{y} \in \mathbb{R}^N$ is the input to the activation, and $\phi_k(\mathbf{y})_j$ denotes the j-th element of the output $\phi_k(\mathbf{y})$.

Instead of specifying k, we introduce a parameter $\gamma \in \{0,1\}$ called *sparsity ratio*. If a layer has an ouput dimension N, then its k-WTA activation has $k = \lfloor \gamma \cdot N \rfloor$. Even though the sparsity ratio can be set differently for different layers, in practice there is no gain from introducing such a variation, so we use a fixed γ .

In a Convolutional Neural Network (CNN), the output of a layer is a C x H x W tensor: in this case we will treat the tensor as a $C \cdot H \cdot W$ x 1 vector input to the k-WTA activation function.

The runtime of computing a k-WTA activation is asymptotically O(N), because finding k largest value in a list corresponds to finding the k-th largest value, which has O(N) complexity.

Concerning the training of k-WTA networks, we know that when the sparsity ratio γ is relatively small (≤ 0.2), the network training converges slowly. In fact,

a smaller γ activates fewer neurons, effectively reducing more of the layer width and, therefore, the network size. Nevertheless, we prefer a smaller γ because it usually leads to better robustness against finding adversarial examples.

Theoretically speaking, consider one layer outputting values \mathbf{x} , passed through a k-WTA activation, and followed by the next layer whose linear weight matrix is W. We define the k-WTA activation pattern under the input \mathbf{x} as:

$$\mathcal{A}(\mathbf{x}) := \{i \in [l] \mid x_i \text{ is one of the } k \text{ largest values in } \mathbf{x}\} \subseteq [l]$$

where we use [l] to indicate integer set $\{1, ..., l\}$.

Even an infinitesimal perturbation of \mathbf{x} can change $\mathcal{A}(\mathbf{x})$: some element i is removed from $\mathcal{A}(\mathbf{x})$, while another element j is added in. Corresponding to this change, in the evaluation of $W\phi_k(\mathbf{x})$, the contribution of W's column vector W_i is useless, while another column vector W_j suddenly takes effect. It's this change that makes the result of $W\phi_k(\mathbf{x})$ C^0 discontinous.

Once W is determined, the discontinuity jump depends on the value of x_i and x_j , that are respectively the input value that does no more affect the result and the new value that actually has effect. We note from previous experiments that the smaller γ is, the larger the discontinuity jump will be: for this reason, we prefer a smaller γ , that will make the search of adversarial examples harder.

If the activation patterns of all layers are fixed, then $f(\mathbf{x})$ is a linear function, but when the activation pattern changes, $f(\mathbf{x})$ switches from one linear function to another linear function. Over the entire space of \mathbf{x} , $f(\mathbf{x})$ is piecewise linear. The specific activation patterns of all layers define a specific linear piece of the function, i.e. a linear region: in k-WTA, these linear regions are disconnected. If the linear regions are densely distributed, a small perturbation $\Delta \mathbf{x}$ from any data point will likely cross the boundary of the linear region where \mathbf{x} is. Whenever boundary crossing occurs, the gradient becomes undefined.

The rationale behind k-WTA activation is to destroy network gradients, that are information needed in $white\ box\ attacks$.

k-WTA is able to universally improve the white-box robustness, regardless of the training method. The k-WTA robustness under *black box attacks* is not always significantly better than other activation function networks (e.g. ReLU).