Citation Intent Classification

Identifying the Intent of a Citation in scientific papers

Isaac Riley and Pavan Mandava May 20, 2020

Download Source Code

Task Description

- Identifying intent of a citation in scientific papers
- Three Intent categories/classes from the data set
 - 1 background (background information)
 - 2 method (use of methods/tools)
 - 3 result (comparing results)
- Classification Task
 - Assign a discrete class (intent) for each data point

Data set

- Training Data: 8.2K+ data points
 - 1 background 4.8K
 - 2 method 2.3K
 - 3 result 1.1K
- Testing Data: 1.8K data points
 - 1 background 1K
 - 2 method 0.6K
 - 3 result 0.2K

4 lead to a decrease in SC absorption in mice	
(Deng et al., 2010; Deng et al., 2012).	background
We used an active contour algorithm [10] to segment	
organs from 340 coronal slices over the two patients.	method
Similar results were found by Sideris et al. (1999) in	
Greece and Mohebali et al. (2005) in Iran.	result

Table: Sample Dataset

Approach & Architecture

Classifier Implementation

Base Classifier: Perceptron

- Linear Classifier
- Binary Classifier

class Perceptron:

class MultiClassPerceptron:

```
def __init__(self, epochs: int,learning_rate: float,random_state: int)
def fit(self, X_train: list, labels: list)
def predict(self, X_test: list)
```

- Parameters and Hyperparameters

Approach & Architecture

Feature Representation

Lexicons and Regular Expressions (\approx 30 Features)

LEXICONS

```
ALL_LEXICONS = {
   'INCREASE': ['increase', 'grow', 'intensify', 'build up', 'explode'],
   'USE': ['use', 'using', 'apply', 'applied', 'employ', 'make use'],
   .....
}
```

- REGEX
 - ACRONYM
 - CONTAINS URL
 - ENDS WITH ETHYL

Evaluation of the Classifier F1 Score

- F1 Score
 - weighted average of Precision and Recall

```
def f1_score(y_true, y_pred, labels, average)
```

- Averaging
 - MACRO
 - MICRO
 - None
- Why MACRO and MICRO ?

Model Performance Results

Averaging	Score
MICRO	0.64
MACRO	0.57
background	0.72
method	0.54
result	0.46

Table: F1-Score Results

7

Next Steps

- Better Feature Representation Word Embeddings
 - word2vec
 - BERT
 - ELMo
 - **.** . . .
- Better Classifier (Non-Linear / Neural Networks)
 - BiRNNs
 - BiLSTMs
 - CNNs
 - **.** . . .
- Interaction with other groups

Thanks for listening

