Prediction using Traffic Flow data

Introduction

Purpose of this assignment is to analyse a Traffic Flow dataset using a variety of Deep Learning techniques. A model will be trained capable of predicting the carriageway flow of a road given a certain date and time.

Information of this sort can be utilized both from individual travellers to private companies or even state authorities. The value of Traffic Flow prediction can be acknowledged easily if one were to think of the support this information could give to commuters. They would be able to create an improved travel plan avoiding traffic, reducing carbon emissions and fuel consumption.

On a larger scale the benefits can also be seen with the de-congestion of main traffic roads and a general improvement in traffic circulation.

Indicative Research Publications

- Traffic Flow Prediction With Big Data: A Deep Learning Approach by Yinsheng Lv, Yanjie Duan, Wenwen Kang, Zhengxi Li and Fei-Yue Wang
- Deep learning for short-term traffic flow prediction by Nicholas G. Polson, Vadim Sokolov

Task Definition

A regression model has been implemented that predicts the Average Carriageway Flow of a certain road given both continuous and categorical values. The dataset used to train this model is comprised of a years Traffic Flow Data generated monthly from a certain highway in England and saved in a .csv file.

Apart from identifiers and descriptions of each site, each file contains information about the Day Type (whether it's a working day or a holiday), the Average Speed, the Average Flow detected on any lane and a Quality index of the data provided. The data provided are generated with 15 minute intervals.

	Local Date	Local Time	Day Type ID	Total Carriageway Flow	Total Flow vehicles less than 5.2m	Total Flow vehicles 5.21m - 6.6m	Total Flow vehicles 6.61m - 11.6m	Total Flow vehicles above 11.6m	Speed Value	Quality Index	Network Link Id	NTIS Model Version\n
0	2018- 04-01	00:14:00	5	65.0	47.0	1.0	3.0	14.0	101.25	15	126001501	7
1	2018- 04-01	00:29:00	5	71.0	59.0	3.0	0.0	9.0	99.63	15	126001501	7
2	2018- 04-01	00:44:00	5	55.0	40.0	4.0	3.0	8.0	100.40	15	126001501	7
3	2018- 04-01	00:59:00	5	66.0	49.0	6.0	4.0	7.0	100.41	15	126001501	7
4	2018- 04-01	01:14:00	6	55.0	34.0	5.0	3.0	13.0	98.90	15	126001501	7

Image 1: Preview of the Dataset imported

Description

Two distinct models have been created depending on their short-term and long-term ability to predict.

First the Long-Term Model (LTM) is trained. Goal of this model is to be able to make predictions for any given date and time. The preprocessing function ltm_proc handles the training features. The input features are Day Type (a categorical integer describing the type of day) and Local Time (the local time).

Because **Day Type** contains categorical values, an Entity Embedding approach has been followed, mapping the distinct variables into an n-dimensional vector. This method was attempted because of its potential to limit the number of columns needed per category and to meaningfully represent categories in the transformed space.

For the 2nd feature, Local Time, acknowledging it as a cyclical feature, it is important to find a way to represent the values in a manner that preserves the connection between them. For this reason, through the *time_handler* function this feature has been replaced by two continuous features Sine and Cosine Weight representing the cyclical feature in the form of coordinates on a circle.

	Day Type ID	Sine Weight	Cosine Weight
0	5.0	0.000000	1.000000e+00
1	5.0	0.065403	9.978589e-01
2	5.0	0.130526	9.914449e-01
3	5.0	0.195090	9.807853e-01
4	6.0	0.258819	9.659258e-01

Image 2: Preview of the training data using the first preprocessing function

The 2nd model trained is the *Short-Term Model* (STM), purpose of which is to make live predictions about the current traffic flow using previously collec-

ted data. Function stm_proc handles the training features of this model. This approach utilizes information chosen with, a user defined, number of k (integer, k>2) previous 15min steps.

Apart from the previous two features (Day Type and Local Time), the $stm_preproc$ function three more continuous features have been added. Previous Step feature computes the quantity and the direction of the Average Traffic Flow in last k quarters, in other words it is the difference between the previous Average Traffic Flow (ATF) and the i-k ATF where i is the current position. Previous Flow and Previous Speed are the other two features containing the the immediately preceding ATF and Average Speed Value respectively.

Note that, in both functions, rows with NaN values have been dropped and all continuous values have been standardized with the function *standardization*.

	Day Type ID	Sine Weight	Cosine Weight	Previous Step	Previous Flow	Previous Speed
0	5	0	1	-0.000590692	-1.36446	0.488457
1	5	0.0654031	0.997859	-0.000590692	-1.36446	0.488457
2	5	0.130526	0.991445	0.10257	-1.34157	0.339237
3	5	0.19509	0.980785	-0.275686	-1.40262	0.410163
4	6	0.258819	0.965926	0.188538	-1.36065	0.411084

Image 3: Preview of the training data using the second preprocessing function

Finally, both LTM and STM follow the same methodology to build the final model. In function *embed_model* two models are created which are later concatenated into the main model. This happens in order to combine the Embedded categorical data with the continuous data (more information about Entity Embeddings is provided in the sources).

Image 5: A plot summary of the main models' structure

Experimental Evaluation

For the evaluation of the regression model **Mean Absolute Error** and **Root Mean Squared Error** have been employed . Following is a list of experiments with different hyperparameters, based on the model of Image 5, and their results.

For Experiments 1-5 Train/Test size is 50/50 and k=2.

Experiment 1

Activation Function	Kernel Initializer	Neurons per Layer	Optimizer	Batch Size
RELU	normal	3, 3*	Adam	32

Long-Term Model Evaluation:

Loss (MSE)	MAE	RMSE
20707	117	144

Short-Term Model Evaluation:

Loss (MSE)	MAE	RMSE
98574	255	313

Observations:

This scenario points out that there is much room for improvement. The LTM manages to complete its training in under 30 epochs with MAE=117 while the STM has still not completely training after 500 epochs with MAE=255.

Experiment 2

Activation Function	Kernel Initializer	Neurons per Layer	Optimizer	Batch Size
RELU	normal	3, 300*	Adam	256

^{*}two layers of 3 and 300 neurons respectively

Long-Term Model Evaluation:

Loss (MSE)	MAE	RMSE
20323	116	142

Short-Term Model Evaluation:

Loss (MSE)	MAE	RMSE
4851	53	69

In this scenario both models managed to complete their training close to 20 epochs. By increasing batch size and neurons inside one of the dense layers both models managed to train faster. On the other hand, there was no significant improvement for the LTM upon evaluation when the STM, having been fully trained, gave better results.

Experiment 3

Activation Function	Kernel Initializer	Neurons per Layer	Optimizer	Batch Size
RELU	normal	3, 30*	Adam	256

^{*}two layers of 3 and 30 neurons respectively

Long-Term Model Evaluation:

Loss (MSE)	MAE	RMSE
20923	118	145

Short-Term Model Evaluation:

Loss (MSE)	MAE	RMSE
4834	53	70

In this case whilst there is a change in the number of neurons of the second layer, from 300 to 30, there is no substantial difference in the evaluation metrics in either model.

Experiment 4

Activation Function	Kernel Initializer	Neurons per Layer	Optimizer	Batch Size
RELU	normal	3*	Adam	256

*only one layer

Long-Term Model Evaluation:

Loss (MSE)	MAE	RMSE
54526	210	234

Short-Term Model Evaluation:

Loss (MSE)	MAE	RMSE
49209	200	222

Observations:

In this experiment one Dense layer was removed. It is clear that the models are not as efficient.

Experiment 5

Activation Function	Kernel Initializer	Neurons per Layer	Optimizer	Batch Size
tanh	normal	3, 30*	Adam	256

^{*}two layers of 3 and 30 neurons respectively

Long-Term Model Evaluation:

Loss (MSE)	MAE	RMSE
16810	98	129

Short-Term Model Evaluation:

Loss (MSE)	MAE	RMSE
5367	57	73

For this experiment tanh was used as activation function. The STM has very similar evaluation results compared to relu and has even better results for the LTM but requires far more epochs of training.

For Experiment 6 Train/Test size is 80/20 and k=2.

Experiment 6

Activation Function	Kernel Initializer	Neurons per Layer	Optimizer	Batch Size
tanh	normal	3, 30*	Adam	256

^{*}two layers of 3 and 30 neurons respectively

Long-Term Model Evaluation:

Loss (MSE)	MAE	RMSE
14615	94	121

Short-Term Model Evaluation:

Loss (MSE)	MAE	RMSE
5018	56	71

For this experiment only the Train/Test size was changed. By increasing the training size, from 50% to 80%, there are slightly better evaluation results but the model took much more time to complete its training.

For Experiment 7 Train/Test size is 50/50 and k=3.

Experiment 7

Activation Function	Kernel Initializer	Neurons per Layer	Optimizer	Batch Size
tanh	normal	3, 30*	Adam	256

^{*}two layers of 3 and 30 neurons respectively

Long-Term Model Evaluation:

Loss (MSE)	MAE	RMSE
14615	94	121

Short-Term Model Evaluation:

Loss (MSE)	MAE	RMSE
1203	24	35

For this last experiment Train/Test size is 50/50 and k is set to 3. The LTM has the exact same evaluation results with Experiment 6 where the only difference is that Train/Test size is 80/20. On the contrary the STM evaluation results are the best so far, which means that k is a parameter worth examining.

Conclusions

By analysing the the different hyperparameters used in the previous experiments a few assumptions can be made. The best overall results for both models were observed in Experiment 7. The Short Term Model tended to have better evaluation results than the Long Term Model. This was expected since the LTM had much fewer features to train on. Following is a plot comparing the STM to the LTM.

Image 6: Plot of Experiment 5, STM vs LTM

It is worth noting that all experiments are just a sample of the hyperparameter tuning that this model could undergo. The hyperparameters were chosen based on Google Colaboratorys' computing ability and time restrictions. At first an effort was made with GridSearchCV but there were compatibility issues with the input so a manual tuning approach was eventually preferred.

A future task could be to apply further hyperparameter tuning with various technologies to better both models.

Sources and Links

- https://medium.com/@davidheffernan_99410/an-introduction-to-using-categorical-embeddings-ee686ed7e7f9
- https://towardsdatascience.com/neural-network-embeddings-explained-4d028e6f0526
- https://mmuratarat.github.io/2019-06-12/embeddings-with-numeric-variables-Keras
- https://github.com/entron/entity-embedding-rossmann/tree/39b137968f7
 5ac065d62f4703a3a42263858a169
- http://blog.davidkaleko.com/feature-engineering-cyclical-features.html
- Data Source: Traffic Flow Data (A1->(04/2018-03/2019)->MIDAS Site 10285 at A1 northbound between A639 and A1(M) J40 (126001501)
 https://data.gov.uk/dataset/9562c512-4a0b-45ee-b6ad-afc0f99b841f/high ways-england-network-journey-time-and-traffic-flow-data
- Source Code: https://colab.research.goo-gle.com/drive/116wCc8xZ0b_e8oFhRn1PqUcWBwp5_Jk_

Stratakos Efstathios 21549