INTRODUCTION TO THE PRACTICE OF STATISTICS

SIXTH EDITION

MOORE

McCABE

CRAIG

Authors' note about the cover

Introduction to the Practice of Statistics emphasizes the use of graphical and numerical summaries to understand data. The front cover shows a painting entitled *0 to 9*, by the American artist Jasper Johns in 1961. In this work, the structure of the painting is determined by number sequence, just as our graphical summaries are determined by the numerical calculations that we perform when we analyze data. Can you find all of the digits in the painting?

Introduction to the **Practice of Statistics**

Senior Publisher: CRAIG BLEYER Publisher: RUTH BARUTH

Development Editors: SHONA BURKE, ANNE SCANLAN-ROHRER

Senior Media Editor: ROLAND CHEYNEY
Assistant Editor: BRIAN TEDESCO
Editorial Assistant: KATRINA WILHELM

Marketing Coordinator: DAVE QUINN
Photo Editor: CECILIA VARAS
Photo Researcher: ELYSE RIEDER
Cover and Text Designer: VICKI TOMASELLI
Senior Project Editor: MARY LOUISE BYRD

Illustrations: INTEGRE TECHNICAL PUBLISHING CO.

Production Manager: JULIA DE ROSA

Composition: INTEGRE TECHNICAL PUBLISHING CO.

Printing and Binding: RR DONNELLEY

TI-83TM screen shots are used with permission of the publisher: ©1996, Texas Instruments Incorporated. TI-83TM Graphic Calculator is a registered trademark of Texas Instruments Incorporated. Minitab is a registered trademark of Minitab, Inc. Microsoft © and Windows © are registered trademarks of the Microsoft Corporation in the United States and other countries. Excel screen shots are reprinted with permission from the Microsoft Corporation. S-PLUS is a registered trademark of the Insightful Corporation. SAS© is a registered trademark of SAS Institute, Inc. *CrunchIt!* is a trademark of Integrated Analytics LLC.

Library of Congress Control Number: 2007938575

ISBN-13: 978-1-4292-1623-4

ISBN-10: 1-4292-1623-9 (Extended Version, Casebound)

ISBN-13: 978-1-4292-1622-7

ISBN-10: 1-4292-1622-0 (Casebound)

ISBN-13: 978-1-4292-1621-0

ISBN-10: 1-4292-1621-2 (Paperback)

© 2009 by W. H. Freeman and Company. All rights reserved.

Printed in the United States of America

First printing

W. H. Freeman and Company 41 Madison Avenue New York, NY 10010 Houndmills, Basingstoke RG21 6XS, England www.whfreeman.com

Introduction to the Practice of Statistics

SIXTH EDITION

DAVID S. MOORE

GEORGE P. McCABE

BRUCE A. CRAIG

Purdue University

Brief Contents

	: About This Book	XV	CHAPTER 10:	Inference for Regression	559
To Students About the A	: What Is Statistics? Authors	xxv xxix	CHAPTER 11:	Multiple Regression	607
Data Table I		xxxi	CHAPTER 12:	One-Way Analysis	
Beyond the	Basics Index	xxxiii		of Variance	637
			CHAPTER 13:	Two-Way Analysis of Variance	683
PART I	Looking at Data				
CHAPTER 1:	Looking at Data— Distributions	1			
CHAPTER 2:	Looking at Data— Relationships	83	•	Chapters (on the IPS Web si man.com/ips6e and CD-RO	
CHAPTER 3:	Producing Data	171	CHAPTER 14:	Logistic Regression	14-1
PART II	Probability and Infere	nce	CHAPTER 15:	Nonparametric Tests	15-1
CHAPTER 4:	Probability: The Study of Randomness	237	CHAPTER 16:	Bootstrap Methods and Permutation Tests	16-1
CHAPTER 5:	Sampling Distributions	311	CHAPTER 17:	Statistics for Quality: Control and Capability	17-1
CHAPTER 6:	Introduction to Inference	353		Control and Capability	17-1
CHAPTER 7:	Inference for Distributions	417			_
CHAPTER 8:	Inference for Proportions	487	Data Append Tables	ix	D-1 T-1
				dd-Numbered Exercises	A-1
PART III	Topics in Inference		Notes and Da		N-1
			Photo Credits		C-1
CHAPTER 9:	Analysis of Two-Way Tables	525	Index		I-1

Contents

To Teachers: About This Book	XV	1.3 Density Curves and Normal Distributions	53	
To Students: What Is Statistics?	XXV	Density curves	55	
About the Authors	xxix	Measuring center and spread for density		
Data Table Index	xxxi	curves Normal distributions	56 58	
Beyond the Basics Index	xxxiii	The 68–95–99.7 rule	59	
,		Standardizing observations	61	
		Normal distribution calculations	62	
PART I Looking at Data		Using the standard Normal table	64	
		Inverse Normal calculations Normal quantile plots	66 68	
CHAPTER 1		Beyond the basics: density estimation	71	
Looking at Data—Distributions	1	Section 1.3 Summary	71	
	1	Section 1.3 Exercises	72	
Introduction	1	Chapter 1 Exercises	78	
Variables Measurement: know your variables	2 5			
•	3	CHAPTER 2		
1.1 Displaying Distributions with Graphs	6	Looking at Data—Relationships	83	
Graphs for categorical variables	6	zeeking at zata melatiensinps		
Data analysis in action: don't hang up	7	Introduction	83	
on me Stemplots	7 9	Examining relationships	84	
Histograms	12	2.1 Scatterplots	86	
Examining distributions	15	•		
Dealing with outliers	17	Interpreting scatterplots Adding categorical variables to	88	
Time plots	18	scatterplots	89	
Beyond the basics: decomposing time series*	19	More examples of scatterplots	90	
Section 1.1 Summary Section 1.1 Exercises	22 22	Beyond the basics: scatterplot smoothers	92	
		Categorical explanatory variables	93	
1.2 Describing Distributions with Numbers	30	Section 2.1 Summary	94 95	
Measuring center: the mean	30	Section 2.1 Exercises	93	
Measuring center: the median Mean versus median	32 34	2.2 Correlation	101	
Measuring spread: the quartiles	34	The correlation r	102	
The five-number summary and boxplots	36	Properties of correlation	102	
The $1.5 \times IQR$ rule for suspected outliers	38	Section 2.2 Summary	105	
Measuring spread: the standard		Section 2.2 Exercises	105	
deviation	40	2.3 Least-Squares Regression	108	
Properties of the standard deviation Choosing measures of center and spread	42 43	Fitting a line to data	110	
Changing the unit of measurement	45 45	Prediction	111	
Section 1.2 Summary	47	Least-squares regression	112	
Section 1.2 Exercises	48	Interpreting the regression line	115	

	Correlation and regression	115	Randomized comparative experiment	nts 183
•	*Understanding <i>r</i> ²	118	How to randomize	184
	Beyond the basics: transforming		Cautions about experimentation	188
	relationships	119	Matched pairs designs	189
	Section 2.3 Summary	121	Block designs	190
	Section 2.3 Exercises	122	Section 3.1 Summary	191
			Section 3.1 Exercises	192
2.4	Cautions about Correlation and	425		40=
	Regression	125	3.2 Sampling Design	197
	Residuals	126	Simple random samples	200
	Outliers and influential observations	129	Stratified samples	202
	Beware the lurking variable	132	Multistage samples	203
	Beware correlations based on averaged		Cautions about sample surveys	204
	data	135	Section 3.2 Summary	207
	The restricted-range problem	135	Section 3.2 Exercises	208
	Beyond the basics: data mining	136	2.2 Tayyand Statistical Informac	212
	Section 2.4 Summary	137	3.3 Toward Statistical Inference	212
	Section 2.4 Exercises	137	Sampling variability	213
2 -	D (A) ; f T W TII	4.42	Sampling distributions	214
2.5	Data Analysis for Two-Way Tables	142	Bias and variability	217
	The two-way table	142	Sampling from large populations	219
	Joint distribution	144	Why randomize?	219
	Marginal distributions	145	Beyond the basics: capture-recapture	
	Describing relations in two-way tables	146	sampling	220
	Conditional distributions	146	Section 3.3 Summary	221
	Simpson's paradox	148	Section 3.3 Exercises	221
	The perils of aggregation	151	3.4 Ethics	224
	Section 2.5 Summary	151		
	Section 2.5 Exercises	152	Institutional review boards	225
2.0	The Overtion of Counties	4 = 4	Informed consent	226
2.6	The Question of Causation	154	Confidentiality	227
	Explaining association: causation	154	Clinical trials	228
	Explaining association: common		Behavioral and social science	220
	response	155	experiments	230
	Explaining association: confounding	156	Section 3.4 Summary	232
	Establishing causation	157	Section 3.4 Exercises	232
	Section 2.6 Summary	159	Chapter 3 Exercises	234
	Section 2.6 Exercises	159		
	Chapter 2 Exercises	161		
			PART II Probability and Inf	erence
CH	APTER 3		,	
Pro	oducing Data	171		
	_		CHAPTER 4	
Intr	roduction	171	Probability: The Study of	
	Anecdotal data	171	Randomness	237
	Available data	172		
	Sample surveys and experiments	173	Introduction	237
3.1	Design of Experiments	178	4.1 Randomness	237
	Comparative experiments	180	The language of probability	239
	Randomization	181	Thinking about randomness	240

	The uses of probability	241	CHAPTER 5	
	Section 4.1 Summary	241	Sampling Distributions	311
	Section 4.1 Exercises	241	Introduction	311
4.2	Probability Models	242	5.1 Sampling Distributions for Counts and	
	-	243	Proportions	313
	Sample spaces Probability rules	245	•	313
		243	The binomial distributions for sample	
	Assigning probabilities: finite number of outcomes	248	counts	314
		240	Binomial distributions in statistical	
	Assigning probabilities: equally likely outcomes	249	sampling	315
		249	Finding binomial probabilities: software	
	Independence and the multiplication rule	251	and tables	316
		251	Binomial mean and standard deviation	319
	Applying the probability rules		Sample proportions	321
	Section 4.2 Summary	255	Normal approximation for counts and	
	Section 4.2 Exercises	255	proportions	322
	- 1		The continuity correction*	326
4.3	Random Variables	258	Binomial formula*	327
	Discrete random variables	259	Section 5.1 Summary	330
	Continuous random variables	263	Section 5.1 Exercises	331
	Normal distributions as probability		F. 2. The Seventine Distribution	
	distributions	265	5.2 The Sampling Distribution	221
	Section 4.3 Summary	267	of a Sample Mean	335
	Section 4.3 Exercises	267	The mean and standard deviation of \overline{x}	337
			The central limit theorem	339
4.4	Means and Variances of Random		A few more facts	343
	Variables	270	Beyond the basics: Weibull distributions	344
	The mean of a random variable	270	Section 5.2 Summary	346
	Statistical estimation and the law of	210	Section 5.2 Exercises	346
	large numbers	273	Chapter 5 Exercises	350
		275		
	Thinking about the law of large numbers	213	CHAPTER 6	
	Beyond the basics: more laws of large numbers	277	Introduction to Inference	353
	Rules for means	277		
	The variance of a random variable	279	Introduction	353
	Rules for variances and standard	219	Overview of inference	354
	_	281		250
	deviations	285	6.1 Estimating with Confidence	356
	Section 4.4 Summary Section 4.4 Exercises	286	Statistical confidence	356
	Section 4.4 Exercises	200	Confidence intervals	358
4.5	General Probability Rules*	289	Confidence interval for a population mean	360
	General addition rules	290	How confidence intervals behave	363
	Conditional probability	293	Choosing the sample size	364
	General multiplication rules	298	Some cautions	366
	Tree diagrams	299	Beyond the basics: the bootstrap	368
	Bayes's rule	301	Section 6.1 Summary	368
	Independence again	302	Section 6.1 Exercises	369
	Section 4.5 Summary	302		
	Section 4.5 Exercises	303	6.2 Tests of Significance	372
	Chapter 4 Exercises	307	The reasoning of significance tests	372

Stating hypotheses	374	The two-sample <i>t</i> procedures	450
Test statistics	376	The two-sample <i>t</i> significance test	451
P-values	377	The two-sample <i>t</i> confidence interval	454
Statistical significance	379	Robustness of the two-sample	
Tests for a population mean	382	procedures	456
Two-sided significance tests and		Inference for small samples	457
confidence intervals	386	Software approximation for the degrees	
<i>P</i> -values versus fixed α	388	of freedom*	460
Section 6.2 Summary	390	The pooled two-sample <i>t</i> procedures*	461
Section 6.2 Exercises	390	Section 7.2 Summary	466
6.3 Use and Abuse of Tests	394	Section 7.2 Exercises	467
Choosing a level of significance	395	7.3 Optional Topics in Comparing	
What statistical significance does		Distributions*	473
not mean	396	Inference for population spread	473
Don't ignore lack of significance	397	The <i>F</i> test for equality of spread	474
Statistical inference is not valid for all		Robustness of Normal inference	
sets of data	398	procedures	476
Beware of searching for significance	398	The power of the two-sample <i>t</i> test	477
Section 6.3 Summary	399	Section 7.3 Summary	479
Section 6.3 Exercises	399	Section 7.3 Exercises	479
6.4 Power and Inference as a Decision*	401	Chapter 7 Exercises	481
Power	401		
Increasing the power	405	CHAPTER 8	
Inference as decision*	406	Inference for Proportions	487
Two types of error	406		.02
Error probabilities	407	Introduction	487
The common practice of testing		0.1 Informer for a Simula Dramoution	400
hypotheses	409	8.1 Inference for a Single Proportion	488
Section 6.4 Summary	410	Large-sample confidence interval for a	
Section 6.4 Exercises	410	single proportion	488
Chapter 6 Exercises	412	Beyond the basics: the plus four confidence	
•		interval for a single proportion	491
CHAPTER 7		Significance test for a single proportion	493
Inference for Distributions	417	Confidence intervals provide additional	40.6
interested for Distributions	717	information	496
Introduction	417	Choosing a sample size	498
7.1 Inference for the Mean of a Population	418	Section 8.1 Summary Section 8.1 Exercises	501 502
The <i>t</i> distributions	418		
The one-sample <i>t</i> confidence interval	420	8.2 Comparing Two Proportions	505
The one-sample <i>t</i> test	422	Large-sample confidence interval for a	
Matched pairs <i>t</i> procedures	428	difference in proportions	506
Robustness of the <i>t</i> procedures	432	Beyond the basics: plus four confidence	
The power of the <i>t</i> test*	433	interval for a difference in proportions	509
Inference for non-Normal populations*	435	Significance test for a difference in	
Section 7.1 Summary	440	proportions	511
Section 7.1 Exercises	441	Beyond the basics: relative risk	515
7.2 Comparing Two Moons	117	Section 8.2 Summary	516
7.2 Comparing Two Means	447	Section 8.2 Exercises	517
The two-sample z statistic	448	Chapter 8 Exercises	519

PART III Topics in Inference		Section 10.2 Summary Chapter 10 Exercises	593 594
CHAPTER 9		CHAPTER 11	
Analysis of Two-Way Tables	525	Multiple Regression	607
Introduction	525	Introduction	607
9.1 Inference for Two-Way Tables	526	11.1 Inference for Multiple Regression	607
The hypothesis: no association	529	Population multiple regression	
Expected cell counts	529	equation	607
The chi-square test	530	Data for multiple regression	608
The chi-square test and the <i>z</i> test	533	Multiple linear regression model	609
Beyond the basics: meta-analysis	534	Estimation of the multiple regression	
Section 9.1 Summary	536	parameters	610
9.2 Formulas and Models for		Confidence intervals and significance	611
Two-Way Tables*	536	tests for regression coefficients ANOVA table for multiple regression	611 612
		Squared multiple correlation R^2	613
Computations Computing conditional distributions	536 537	•	
Computing conditional distributions Computing expected cell counts	540	11.2 A Case Study	615
The X^2 statistic and its P -value	540	Preliminary analysis	615
Models for two-way tables	541	Relationships between pairs of	
Concluding remarks	544	variables	616
Section 9.2 Summary	545	Regression on high school grades	618
0.2.6. (5)4	E 4 E	Interpretation of results Residuals	619 620
9.3 Goodness of Fit*	545	Refining the model	621
Section 9.3 Summary	548	Regression on SAT scores	622
Chapter 9 Exercises	548	Regression using all variables	623
CHAPTER 10		Test for a collection of regression	
	FFO	coefficients	623
Inference for Regression	559	Beyond the basics: multiple logistic	
Introduction	559	regression	625
10.1 Simula Lineau Bannasian	F.C.0	Chapter 11 Francisco	627
10.1 Simple Linear Regression	560	Chapter 11 Exercises	628
Statistical model for linear regression	560	CHAPTER 12	
Data for simple linear regression	561 565	One-Way Analysis of Variance	637
Estimating the regression parameters Confidence intervals and significance	303		
tests	570	Introduction	637
Confidence intervals for mean response	572	12.1 Inference for One-Way Analysis of	
Prediction intervals	574	Variance	638
Beyond the basics: nonlinear regression	576	Data for one-way ANOVA	638
Section 10.1 Summary	578	Comparing means	639
10.2 More Detail about Simple Linear		The two-sample <i>t</i> statistic	640
Regression*	579	An overview of ANOVA	641
Analysis of variance for regression	579	The ANOVA model	644 646
The ANOVA F test	579 581	Estimates of population parameters Testing hypotheses in one-way ANOVA	648
Calculations for regression inference	583	The ANOVA table	649
Inference for correlation	590	The F test	652

12.2 Comparing the Means	655	CHAPTER 15	
Contrasts	655	Nonparametric Tests	15-1
Multiple comparisons	661	Introduction	15-1
Software	665		
Power*	666	15.1 The Wilcoxon Rank Sum Test	15-3
Section 12.2 Summary Chapter 12 Exercises	669 670	The rank transformation The Wilcoxon rank sum test The Normal approximation	15-4 15-5 15-7
CHAPTER 13		What hypotheses does Wilcoxon test?	15-8
Two-Way Analysis of Variance	683	Ties	15-10
Introduction	683	Rank, <i>t</i> , and permutation tests Section 15.1 Summary	15-12 15-14
13.1 The Two-Way ANOVA Model	684	Section 15.1 Exercises	15-15
Advantages of two-way ANOVA	684	15.2 The Wilcoxon Signed Rank Test	15-17
The two-way ANOVA model Main effects and interactions	688 689	The Normal approximation Ties	15-20 15-21
13.2 Inference for Two-Way ANOVA	694	Section 15.2 Summary	15-23
The ANOVA table for two-way ANOVA	694	Section 15.2 Exercises	15-23
Section 13.2 Summary	698	15.3 The Kruskal-Wallis Test*	15-26
Chapter 13 Exercises	699	Hypotheses and assumptions The Kruskal-Wallis test	15-28 15-28
		Section 15.3 Summary	15-20
		Section 15.3 Exercises	15-31
		Chapter 15 Exercises	15-33
		Chapter 15 Notes	15-35
Companion Chapters (on the IPS Web sit		CHARTER 4C	
www.whfreeman.com/ips6e and CD-RC	OM)	CHAPTER 16 Bootstrap Methods and	
		Permutation Tests	16-1
CHAPTER 14		Introduction	16-1
Logistic Regression	14-1	Software	16-2
Introduction	14-1		
14.1 The Logistic Regression Model	14-1	16.1 The Bootstrap Idea	16-3
Binomial distributions and odds	14-2	The big idea: resampling and the bootstrap distribution	16-4
Odds for two samples	14-3	Thinking about the bootstrap idea	16-9
Model for logistic regression	14-4	Using software	16-10
Fitting and interpreting the logistic	116	Section 16.1 Summary	16-11
regression model	14-6	Section 16.1 Exercises	16-11
14.2 Inference for Logistic Regression	14-8	16.2 First Steps in Using the Bootstrap	16-13
Confidence intervals and significance	140	Bootstrap <i>t</i> confidence intervals	16-13
tests Multiple logistic regression	14-8 14-14	Bootstrapping to compare two groups	16-17
Section 14.2 Summary	14-14	Beyond the basics: the bootstrap for a scatterplot smoother	16-20
Chapter 14 Exercises	14-17	Section 16.2 Summary	16-20
Chapter 14 Notes	14-23	Section 16.2 Exercises	16-21

16.3	How Accurate Is a Bootstrap Distribution?* Bootstrapping small samples Bootstrapping a sample median	16-24 16-26 16-28	\overline{x} charts for process monitoring s charts for process monitoring Section 17.1 Summary Section 17.1 Exercises	17-8 17-12 17-17
	Section 16.3 Summary Section 16.3 Exercises	16-28 16-30	17.2 Using Control Charts \overline{x} and R charts	1 7-21 17-22
16.4	Bootstrap Confidence Intervals	16-30	Additional out-of-control rules	17-23
	Bootstrap percentile confidence intervals More accurate bootstrap confidence intervals: BCa and tilting Confidence intervals for the correlation	16-31 16-32 16-35	Setting up control charts Comments on statistical control Don't confuse control with capability! Section 17.2 Summary Section 17.2 Exercises	17-25 17-30 17-33 17-34 17-35
	Section 16.4 Summary Section 16.4 Exercises	16-38 16-38	17.3 Process Capability Indexes*	17-39
16.5	Significance Testing Using Permutation Tests Using software Permutation tests in practice Permutation tests in other settings Section 16.5 Summary Section 16.5 Exercises Chapter 16 Exercises Chapter 16 Notes	16-41 16-45 16-45 16-49 16-52 16-52 16-56 16-59	The capability indexes C_p and C_{pk} Cautions about capability indexes Section 17.3 Summary Section 17.3 Exercises 17.4 Control Charts for Sample Proportions Control limits for p charts Section 17.4 Summary Section 17.4 Exercises Chapter 17 Exercises Chapter 17 Notes	17-41 17-45 17-46 17-49 17-50 17-54 17-54 17-56
	APTER 17 tistics for Quality: Control and			
	ability	17-1	Data Appendix	D-1
Intro	oduction	17-1	Tables	T-1
	Use of data to assess quality	17-2	Answers to Odd-Numbered Exercises	A-1
17.1	Processes and Statistical Process Control	17-3	Notes and Data Sources	N-1
	Describing processes	17-3	Photo Credits	C -1
	Statistical process control	17-6	Index	I-1

TO TEACHERS: About This Book

tatistics is the science of data. *Introduction to the Practice of Statistics (IPS)* is an introductory text based on this principle. We present the most-used methods of basic statistics in a way that emphasizes working with data and mastering statistical reasoning. *IPS* is elementary in mathematical level but conceptually rich in statistical ideas and serious in its aim to help students think about data and use statistical methods with understanding.

Some schematic history will help place *IPS* in the universe of texts for a first course in statistics for students from a variety of disciplines. Traditional texts were almost entirely devoted to methods of inference, with quick coverage of means, medians, and histograms as a preliminary. No doubt this reflected the fact that inference is the only part of statistics that has a mathematical theory behind it. Several innovative books aimed at nontraditional audiences pioneered a broader approach that paid more attention to design of samples and experiments, the messiness of real data, and discussion of real-world statistical studies and controversies. All were written by widely known statisticians whose main business was not writing textbooks. *The Nature of Statistics* (Wallis and Roberts) has passed away, but *Statistics* (Freedman and collaborators) and *Statistics: Concepts and Controversies* (Moore) remain alive and well. None of these books tried to meet the needs of a typical first course because their audiences did not need full coverage of standard statistical methods.

IPS was the first book to successfully combine attention to broader content and reasoning with comprehensive presentation of the most-used statistical methods. It reflects the consensus among statisticians—even stronger now than when the first edition appeared—concerning the content of an introduction to our discipline. This consensus is expressed in a report from the joint curriculum committee of the American Statistical Association and the Mathematical Association of America¹ and in discussions in leading journals.² *IPS* has been successful for several reasons:

- 1. *IPS* examines the nature of modern statistical practice at a level suitable for beginners. Attention to data analysis and data production as well as to probability and inference is "new" only in the world of textbooks. Users of statistical methods have always paid attention to all of these. Contemporary research in statistics, driven by advances in computing, puts more emphasis on sophisticated "looking at data" and on data-analytic ways of thinking. Formal inference remains important and receives careful treatment, but it appears as part of a larger picture.
- 2. *IPS* has a logical overall progression, so data analysis and data production strengthen the presentation of inference rather than stand apart from it. We stress that data analysis is an essential preliminary to inference because inference requires clean data. The most useful "goodness of fit" procedure, for example, is the normal quantile plot presented in Chapter 1 and used frequently in the inference chapters. We emphasize that when you do formal statistical inference, you are acting as if your data come from properly randomized data production. We use random samples and experimental randomization to motivate the need for probability as a language for inference.

- 3. *IPS* presents data analysis as more than a collection of techniques for exploring data. We integrate techniques with discussion of systematic ways of thinking about data. We also work hard to make data-analytic thinking accessible to beginners by presenting a series of simple principles: always plot your data; look for overall patterns and deviations from them; when looking at the overall pattern of a distribution for one variable, consider shape, center, and spread; for relations between two variables, consider form, direction, and strength; always ask whether a relationship between variables is influenced by other variables lurking in the background. Inference is similarly treated as more than a collection of methods. We warn students about pitfalls in clear cautionary discussions—about regression and correlation, experiments, sample surveys, confidence intervals, and significance tests. Our goal throughout *IPS* is to present principles and techniques together in a way that is accessible to beginners and lays a foundation for students who will go on to more advanced study.
- **4.** *IPS* integrates discussion of techniques, reasoning, and practice using real examples to drive the exposition. Students learn the technique of least-squares regression and how to interpret the regression slope. But they also learn the conceptual ties between regression and correlation, the importance of looking for influential observations (always plot your data), and to beware of averaged data and the restricted-range effect.
- **5.** *IPS* is aware of current developments both in statistical science and in teaching statistics. For example, the first edition already favored the version of the two-sample *t* procedures that does not assume equal population variances and discussed the great difference in robustness between standard tests for means and for variances. In the fourth edition, we introduced the modified ("plus four") confidence intervals for proportions that are shown by both computational studies³ and theory⁴ to be superior to the standard intervals for all but very large samples. Brief optional "Beyond the Basics" sections give quick overviews of topics such as density estimation, scatterplot smoothers, nonlinear regression, and data mining. Chapter 16 on resampling methods offers an extended introduction to one of the most important recent advances in statistical methodology.

The title of the book expresses our intent to introduce readers to statistics as it is used in practice. Statistics in practice is concerned with gaining understanding from data; it focuses on problem solving rather than on methods that may be useful in specific settings. A text cannot fully imitate practice because it must teach specific methods in a logical order and must use data that are not the reader's own. Nonetheless, our interest and experience in applying statistics have influenced the nature of *IPS* in several ways.

Statistical Thinking Statistics is interesting and useful because it provides strategies and tools for using data to gain insight into real problems. As the continuing revolution in computing automates the details of doing calculations and making graphs, an emphasis on statistical concepts and on insight from data becomes both more practical for students and teachers and more important for users who must supply what is not automated. No student should complete a first statistics course, for example, without a firm grasp of the distinction between observational studies and experiments and of why randomized comparative experiments are the gold standard for evidence of causation.

We have seen many statistical mistakes, but few have involved simply getting a calculation wrong. We therefore ask students to learn to explore data, always starting with plots, to think about the context of the data and the design of the study that produced the data, the possible influence of wild observations on conclusions, and the reasoning that lies behind standard methods of inference. Users of statistics who form these habits from the beginning are well prepared to learn and use more advanced methods.

Data Data are numbers with a context, as we say in "To Students: What Is Statistics?" A newborn who weighs 10.3 pounds is a big baby, and the birth weight could not plausibly be 10.3 ounces or 10.3 kilograms. Because context makes numbers meaningful, our examples and exercises use real data with real contexts that we briefly describe. Calculating the mean of five numbers is arithmetic, not statistics. We hope that the presence of background information, even in exercises intended for routine drill, will encourage students to always consider the meaning of their calculations as well as the calculations themselves. Note in this connection that a calculation or a graph or "reject H_0 " is rarely a full answer to a statistical problem. We strongly encourage requiring students always to state a brief conclusion in the context of the problem. This helps build data sense as well as the communication skills that employers value.

Mathematics Although statistics is a mathematical science, it is not a field of mathematics and should not be taught as if it were. A fruitful mathematical theory (based on probability, which *is* a field of mathematics) underlies some parts of basic statistics, but by no means all. The distinction between observation and experiment, for example, is a core statistical idea that is ignored by the theory. Mathematically trained teachers, rightly resisting a formula-based approach, sometimes identify conceptual understanding with mathematical understanding. When teaching statistics, we must emphasize statistical ideas and recognize that mathematics is not the only vehicle for conceptual understanding. *IPS* requires only the ability to read and use equations without having each step parsed. We require no algebraic derivations, let alone calculus. Because this is a *statistics* text, it is richer in ideas and requires more thought than the low mathematical level suggests.

Calculators and Computers Statistical calculations and graphics are in practice automated by software. We encourage instructors to use software of their choice or a graphing calculator that includes functions for both data analysis and basic inference. *IPS* includes some topics that reflect the dominance of software in practice, such as normal quantile plots and the version of the two-sample *t* procedures that does not require equal variances. Several times we display the output of multiple software systems for the same problem. The point is that a student who knows the basics can interpret almost any output. Students like this reassurance, and it helps focus their attention on understanding rather than reading output.

Judgment Statistics in practice requires judgment. It is easy to list the mathematical assumptions that justify use of a particular procedure, but not so easy to decide when the procedure can be safely used in practice. Because judgment develops through experience, an introductory course should present clear guidelines and not make unreasonable demands on the judgment of

students. We have given guidelines—for example, on using the *t* procedures for comparing two means but avoiding the *F* procedures for comparing two variances—that we follow ourselves. Similarly, many exercises require students to use some judgment and (equally important) to explain their choices in words. Many students would prefer to stick to calculating, and many statistics texts allow them to. Requiring more will do them much good in the long run.

Teaching Experiences We have successfully used *IPS* in courses taught to quite diverse student audiences. For general undergraduates from mixed disciplines, we cover Chapters 1 to 8 and Chapter 9, 10, or 12, omitting all optional material. For a quantitatively strong audience—sophomores planning to major in actuarial science or statistics—we move more quickly. We add Chapters 10 and 11 to the core material in Chapters 1 to 8 and include most optional content. We de-emphasize Chapter 4 (probability) because these students will take a probability course later in their program, though we make intensive use of software for simulating probabilities as well as for statistical analysis. The third group we teach contains beginning graduate students in such fields as education, family studies, and retailing. These mature but sometimes quantitatively unprepared students read the entire text (Chapters 11 and 13 lightly), again with reduced emphasis on Chapter 4 and some parts of Chapter 5. In all cases, beginning with data analysis and data production (Part I) helps students overcome their fear of statistics and builds a sound base for studying inference. We find that IPS can be flexibly adapted to quite varied audiences by paying attention to our clear designation of some material as optional and by varying the chapters assigned.

The Sixth Edition: What's New?

- **Co-author** We are delighted to welcome Professor Bruce Craig to the *Introduction to the Practice of Statistics* author team. Bruce is currently Director of the Statistical Consulting Service at Purdue University and is an outstanding teacher. His vast experience consulting and collaborating with individuals who use statistical methods in their work provides him with perspective on the field of statistics that resonates with the approach of this text.
- Ethics Chapter 3 now contains a new section (3.4) on ethics. We believe that this topic is a very important part of the undergraduate curriculum and that a course in statistics is an ideal forum to stimulate thought and discussion about ethical issues.
- **Text Organization** Logistic Regression, previously treated in Chapter 16, now appears in Chapter 14. Similarly, Bootstrap Methods and Permutation Tests has moved to Chapter 16. This change is in line with the increasing importance of logistic regression in statistical practice. In response to suggestions from current *IPS* users, we have moved the material on data analysis for two-way tables from Chapter 9 back to Chapter 2 (Section 2.5). In addition, the large sample confidence procedures are now the featured methods for one and two proportions in Chapter 9, and the plus-four have been moved to Beyond the Basics sections, a more appropriate location. The table of contents follows what we consider to be the best ordering of the topics from a

pedagogical point of view. However, the text chapters are generally written to enable instructors to teach the material in the order they prefer.

- **Design** A new design incorporates colorful, revised figures throughout to aid students' understanding of text material. Photographs related to chapter examples and exercises make connections to real-life applications and provide a visual context for topics.
- Exercises and Examples Exercises and examples are labeled to help instructors and students easily identify key topics and application areas. The number of total exercises has increased by 15%. Approximately half the total exercises are new or revised to reflect current data and a variety of topics. *IPS* examples and exercises cover a wide range of application areas. An application index is provided for instructors to easily select and assign content related to specific fields.
- **Use Your Knowledge Exercises** Short exercises designed to reinforce key concepts now appear throughout each chapter. These exercises are listed, with page numbers, at the end of each section for easy reference.
- Look Back At key points in the text Look Back margin notes direct the reader to the first explanation of a topic, providing page numbers for easy reference.

In addition to the new Sixth Edition enhancements, *IPS* has retained the successful pedagogical features from previous editions:

- **Caution** Warnings in the text, signaled by a caution icon, help students avoid common errors and misconceptions.
- **Challenge Exercises** More challenging exercises are signaled with an icon. Challenge exercises are varied: some are mathematical, some require openended investigation, and so on.
- **Applets** Applet icons are used throughout the text to signal where related, interactive statistical applets can be found on the text Web site (www. whfreeman.com/ips6e) and CD-ROM.
- **Statistics in Practice** Formerly found at the opening of each chapter, these accounts by professionals who use statistics on the job are now located on the *IPS* Web site and CD-ROM.
- **CrunchIt! Statistical Software** Developed by Webster West of Texas A&M University, CrunchIt! is an easy-to-use program for students and offers capabilities well beyond those needed for a first course. CrunchIt! output, along with other statistical software output, is integrated throughout the text. Access to CrunchIt! is available online through an access-code-protected Web site. Access codes are available in every new copy of *IPS* 6e or can be purchased online.

Acknowledgments

We are pleased that the first five editions of *Introduction to the Practice of Statistics* have helped move the teaching of introductory statistics in a direction supported by most statisticians. We are grateful to the many colleagues and students who have provided helpful comments, and we hope that they will

LOOK BACK

find this new edition another step forward. In particular, we would like to thank the following colleagues who offered specific comments on the new edition:

Mary A. Bergs

Mercy College of Northwest Ohio

John F. Brewster *University of Manitoba*

Karen Buro

Grant MacEwan College Smiley W. Cheng University of Manitoba Gerarda Darlington University of Guelph Linda Dawson

University of Washington, Tacoma

Michael Evans University of Toronto

Mary Gray

American University

Rick Gumina

Colorado State University
Patricia Humphrey

Georgia Southern University

Mohammad Kazemi

The University of North Carolina

at Charlotte Jeff Kollath

Oregon State University
William J. Kubik
Hanover College
Charles Liberty
Keene State College
Brian Macpherson
University of Manitoba

Henry Mesa

Portland Community College

Helen Noble

San Diego State University

Richard Numrich

College of Southern Nevada

Becky Parker

Montana State University Maria Consuelo C. Pickle St. Petersburg College German J. Pliego University of St. Thomas

Philip Protter Cornell University John G. Reid

Mount Saint Vincent University

Diann Reischman

Grand Valley State University

Shane Rollans

Thompson Rivers University

Nancy Roper

Portland Community College

Teri Rysz

University of Cincinnati

Engin Sungur

University of Minnesota, Morris

Todd Swanson

Hope College

Anthony L. Truog

University of Wisconsin,

Whitewater Augustin Vukov University of Toronto Erwin Walker Clemson University Nathan Wetzel

University of Wisconsin.

Stevens Point

The professionals at W. H. Freeman and Company, in particular Mary Louise Byrd, Ruth Baruth, and Shona Burke, have contributed greatly to the success of *IPS*. Additionally, we would like to thank Anne Scanlan-Rohrer, Pam Bruton, Jackie Miller, and Darryl Nester for their valuable contributions to the Sixth Edition. Most of all, we are grateful to the many people in varied disciplines and occupations with whom we have worked to gain understanding from data. They have provided both material for this book and the experience that enabled us to write it. What the eminent statistician John Tukey called "the real problems experience and the real data experience" have shaped our view of statistics, convincing us of the need for beginning instruction to focus on data and concepts, building intellectual skills that transfer to more elaborate settings and remain essential when all details are automated. We hope that users and potential users of statistical techniques will find this emphasis helpful.

TO TEACHERS: About This Book

Media and Supplements

For Students

portals.bfwpub.com/ips6e (Access code required. Available packaged with *Introduction to the Practice of Statistics*, Sixth Edition, or for purchase online.) StatsPortal is the digital gateway to *IPS* 6e, designed to enrich the course and enhance students' study skills through a collection of Web-based tools. StatsPortal integrates a rich suite of diagnostic, assessment, tutorial, and enrichment features, enabling students to master statistics at their own pace. It is organized around three main teaching and learning components:

- **Interactive eBook** offers a complete and customizable online version of the text, fully integrated with all the media resources available with *IPS* 6e. The eBook allows students to quickly search the text, highlight key areas, and add notes about what they're reading. Similarly, instructors can customize the eBook to add, hide, and reorder content, add their own material, and highlight key text for students.
- **Resources** organizes all the resources for *IPS* 6e into one location for students' ease of use. These resources include the following:
 - **StatTutor Tutorials** offer over 150 audio-multimedia tutorials tied directly to the textbook, including videos, applets, and animations.
 - **Statistical Applets** are 16 interactive applets to help students master key statistical concepts.
 - CrunchIt! Statistical Software allows users to analyze data from any Internet location. Designed with the novice user in mind, the software is not only easily accessible but also easy to use. CrunchIt! offers all the basic statistical routines covered in the introductory statistics courses. CrunchIt! statistical software is available via an access-code protected Web site. Access codes are available in every new copy of *IPS* 6e or can be purchased online.
 - Stats@Work Simulations put students in the role of statistical consultants, helping them better understand statistics interactively within the context of real-life scenarios. Students are asked to interpret and analyze data presented to them in report form, as well as to interpret current event news stories. All tutorials are graded and offer helpful hints and feedback.
 - **EESEE Case Studies** developed by The Ohio State University Statistics Department provide students with a wide variety of timely, real examples with real data. Each case study is built around several thought-provoking questions that make students think carefully about the statistical issues raised by the stories. **EESEE** case studies are available via an access-code-protected Web site. Access codes are available in every new copy of *IPS* 6e or can be purchased online.

- **Podcast Chapter Summary** provides students with an audio version of chapter summaries to download and review on an mp3 player.
- Data Sets are available in ASCII, Excel, JMP, Minitab, TI, SPSS, and S-Plus formats.
- Online Tutoring with SMARTHINKING is available for homework help from specially trained, professional educators.
- Student Study Guide with Selected Solutions includes explanations of crucial concepts and detailed solutions to key text problems with step-by-step models of important statistical techniques.
- **Statistical Software Manuals** for TI-83/84, Minitab, Excel, JMP, and SPSS provide instruction, examples, and exercises using specific statistical software packages.
- **Interactive Table Reader** allows students to use statistical tables interactively to seek the information they need.

Resources (instructors only)

- **Instructor's Guide with Full Solutions** includes worked-out solutions to all exercises, teaching suggestions, and chapter comments.
- **Test Bank** contains complete solutions for textbook exercises.
- **Lecture PowerPoint slides** offer a detailed lecture presentation of statistical concepts covered in each chapter of *IPS*.
- Assignments organizes assignments and guides instructors through an easy-to-create assignment process providing access to questions from the Test Bank, Web Quizzes, and Exercises from *IPS* 6e. The Assignment Center enables instructors to create their own assignments from a variety of question types for self-graded assignments. This powerful assignment manager allows instructors to select their preferred policies in regard to scheduling, maximum attempts, time limitations, feedback, and more!

Online Study Center: www.whfreeman.com/osc/ips6e

(Access code required. Available for purchase online.) In addition to all the offerings available on the Companion Web site, the OSC offers:

- StatTutor Tutorials
- Stats@Work Simulations
- Study Guide with Selected Solutions
- Statistical Software Manuals

Companion Web site: www.whfreeman.com/ips6e

Seamlessly integrates topics from the text. On this open-access Web site, students can find the following:

 Interactive Statistical Applets that allow students to manipulate data and see the corresponding results graphically.

- Data Sets in ASCII. Excel, JMP. Minitab, TI, SPSS, and S-Plus formats.
- Interactive Exercises and Self-Ouizzes to help students prepare for tests.
- Optional Companion Chapters 14, 15, 16, and 17, covering logistic regression, nonparametric tests, bootstrap methods and permutation tests, and statistics for quality control and capability.
- **Supplementary Exercises** for every chapter.

Interactive Student CD-ROM Included with every new copy of *IPS*, the CD contains access to the companion chapters, applets, and data sets also found on the Companion Web site.

Special Software Packages Student versions of JMP, Minitab, S-PLUS, and SPSS are available on a CD-ROM packaged with the textbook. This software is not sold separately and must be packaged with a text or a manual. Contact your W. H. Freeman representative for information or visit www.whfreeman.com.

NEW! SMARTHINKING Online Tutoring (access code required) W. H. Freeman and Company is partnering with SMARTHINKING to provide students with free online tutoring and homework help from specially trained, professional educators. Twelve-month subscriptions are available for packaging with *IPS*.

Printed Study Guide prepared by Michael A. Fligner of The Ohio State University offers students explanations of crucial concepts in each section of *IPS*, plus detailed solutions to key text problems and stepped-through models of important statistical techniques. ISBN 1-4292-1473-2

For Instructors

The **Instructor's Web site** www.whfreeman.com/ips6e requires user registration as an instructor and features all the student Web materials plus:

- **Instructor version of EESEE** (Electronic Encyclopedia of Statistical Examples and Exercises), with solutions to the exercises in the student version and **CrunchIt!** statistical software.
- **Instructor's Guide**, including full solutions to all exercises in .pdf format.
- **PowerPoint slides** containing all textbook figures and tables.
- **Lecture PowerPoint slides** offering a detailed lecture presentation of statistical concepts covered in each chapter of *IPS*.
- Full answers to the Supplementary Exercises on the student Web site.

Instructor's Guide with Solutions by Darryl Nester, Bluffton University. This printed guide includes full solutions to all exercises and provides video and Internet resources and sample examinations. It also contains brief discussions of the *IPS* approach for each chapter. ISBN 1-4292-1472-4

Test Bank by Brian Macpherson, University of Manitoba. The test bank contains hundreds of multiple-choice questions to generate quizzes and tests. Available in print as well as electronically on CD-ROM (for Windows and Mac), where questions can be downloaded, edited, and resequenced to suit the instructor's needs.

Printed Version, ISBN 1-4292-1471-6 Computerized (CD) Version, ISBN 1-4292-1859-2

Enhanced Instructor's Resource CD-ROM Allows instructors to search and export (by key term or chapter) all the material from the student CD, plus:

- All text images and tables
- Statistical applets and data sets
- Instructor's Guide with full solutions
- · PowerPoint files and lecture slides
- Test bank files

ISBN 1-4292-1503-8

Course Management Systems W. H. Freeman and Company provides courses for Blackboard, WebCT (Campus Edition and Vista), and Angel course management systems. They are completely integrated courses that you can easily customize and adapt to meet your teaching goals and course objectives. On request, Freeman also provides courses for users of Desire2Learn and Moodle. Visit www.bfwpub.com/lmc for more information.

iclicker

i-clicker is a new two-way radio-frequency classroom response solution developed by educators for educators. University of Illinois physicists Tim Stelzer, Gary Gladding, Mats Selen, and Benny Brown created the i-clicker system after using competing classroom response solutions and discovering they were neither classroom-appropriate nor student-friendly. Each step of i-clicker's development has been informed by teaching and learning. i-clicker is superior to other systems from both pedagogical and technical standpoints. To learn more about packaging i-clicker with this textbook, please contact your local sales repor visit www.iclicker.com.

TO STUDENTS: What Is Statistics?

tatistics is the science of collecting, organizing, and interpreting numerical facts, which we call *data*. We are bombarded by data in our everyday lives. The news mentions imported car sales, the latest poll of the president's popularity, and the average high temperature for today's date. Advertisements claim that data show the superiority of the advertiser's product. All sides in public debates about economics, education, and social policy argue from data. A knowledge of statistics helps separate sense from nonsense in the flood of data.

The study and collection of data are also important in the work of many professions, so training in the science of statistics is valuable preparation for a variety of careers. Each month, for example, government statistical offices release the latest numerical information on unemployment and inflation. Economists and financial advisors, as well as policymakers in government and business, study these data in order to make informed decisions. Doctors must understand the origin and trustworthiness of the data that appear in medical journals. Politicians rely on data from polls of public opinion. Business decisions are based on market research data that reveal consumer tastes. Engineers gather data on the quality and reliability of manufactured products. Most areas of academic study make use of numbers, and therefore also make use of the methods of statistics.

Understanding from Data

The goal of statistics is to gain understanding from data. To gain understanding, we often operate on a set of numbers—we average or graph them, for example. But we must do more, because data are not just numbers; they are numbers that have some context that helps us understand them.

You read that low birth weight is a major reason why infant mortality in the United States is higher than in most other advanced nations. The report goes on to say that 7.8% of children born in the United States have low birth weight, and that 13.4% of black infants have low birth weight. To make sense of these numbers you must know what counts as low birth weight (less than 2500 grams, or 5.5 pounds) and have some feeling for the weights of babies. You probably recognize that 5.5 pounds is small, that 7.5 pounds (3400 grams) is about average, and that 10 pounds (4500 grams) is a big baby.

Another part of the context is the source of the data. How do we know that 7.8% of American babies have low birth weight or that the average weight of newborns is about 3400 grams? The data come from the National Center for Health Statistics, a government office to which the states report information from all birth certificates issued each month. These are the most complete data available about births in the United States.

When you do statistical problems—even straightforward textbook problems—don't just graph or calculate. Think about the context and state your conclusions in the specific setting of the problem. As you are learning how to do statistical calculations and graphs, remember that the goal of statistics is not calculation for its own sake but gaining understanding from numbers. The

calculations and graphs can be automated by a calculator or software, but you must supply the understanding. This book presents only the most common specific procedures for statistical analysis. A thorough grasp of the principles of statistics will enable you to quickly learn more advanced methods as needed. Always keep in mind, however, that a fancy computer analysis carried out without attention to basic principles will often produce elaborate nonsense. As you read, seek to understand the principles, as well as the necessary details of methods and recipes.

The Rise of Statistics

Historically, the ideas and methods of statistics developed gradually as society grew interested in collecting and using data for a variety of applications. The earliest origins of statistics lie in the desire of rulers to count the number of inhabitants or measure the value of taxable land in their domains. As the physical sciences developed in the seventeenth and eighteenth centuries, the importance of careful measurements of weights, distances, and other physical quantities grew. Astronomers and surveyors striving for exactness had to deal with variation in their measurements. Many measurements should be better than a single measurement, even though they vary among themselves. How can we best combine many varying observations? Statistical methods that are still important were invented to analyze scientific measurements.

By the nineteenth century, the agricultural, life, and behavioral sciences also began to rely on data to answer fundamental questions. How are the heights of parents and children related? Does a new variety of wheat produce higher yields than the old, and under what conditions of rainfall and fertilizer? Can a person's mental ability and behavior be measured just as we measure height and reaction time? Effective methods for dealing with such questions developed slowly and with much debate.²

As methods for producing and understanding data grew in number and sophistication, the new discipline of statistics took shape in the twentieth century. Ideas and techniques that originated in the collection of government data, in the study of astronomical or biological measurements, and in the attempt to understand heredity or intelligence came together to form a unified "science of data." That science of data—statistics—is the topic of this text.

The Organization of This Book

Part I of this book, called "Looking at Data," concerns data analysis and data production. The first two chapters deal with statistical methods for organizing and describing data. These chapters progress from simpler to more complex data. Chapter 1 examines data on a single variable; Chapter 2 is devoted to relationships among two or more variables. You will learn both how to examine data produced by others and how to organize and summarize your own data. These summaries will be first graphical, then numerical, and then, when appropriate, in the form of a mathematical model that gives a compact description of the overall pattern of the data. Chapter 3 outlines arrangements (called "designs") for producing data that answer specific questions. The principles presented in this chapter will help you to design proper samples and experiments and to evaluate such investigations in your field of study.

Part II, consisting of Chapters 4 to 8, introduces statistical inference—formal methods for drawing conclusions from properly produced data. Statistical inference uses the language of probability to describe how reliable its conclusions are, so some basic facts about probability are needed to understand inference. Probability is the subject of Chapters 4 and 5. Chapter 6, perhaps the most important chapter in the text, introduces the reasoning of statistical inference. Effective inference is based on good procedures for producing data (Chapter 3), careful examination of the data (Chapters 1 and 2), and an understanding of the nature of statistical inference as discussed in Chapter 6. Chapters 7 and 8 describe some of the most common specific methods of inference for drawing conclusions about means and proportions from one and two samples.

The five shorter chapters in Part III introduce somewhat more advanced methods of inference, dealing with relations in categorical data, regression and correlation, and analysis of variance. Supplement chapters, available on the book-companion CD and Web site, present additional statistical topics.

What Lies Ahead

Introduction to the Practice of Statistics is full of data from many different areas of life and study. Many exercises ask you to express briefly some understanding gained from the data. In practice, you would know much more about the background of the data you work with and about the questions you hope the data will answer. No textbook can be fully realistic. But it is important to form the habit of asking, "What do the data tell me?" rather than just concentrating on making graphs and doing calculations.

You should have some help in automating many of the graphs and calculations. You should certainly have a calculator with basic statistical functions. Look for key words such as "two-variable statistics" or "regression" when you shop for a calculator. More advanced (and more expensive) calculators will do much more, including some statistical graphs. You may be asked to use software as well. There are many kinds of statistical software, from spreadsheets to large programs for advanced users of statistics. The kind of computing available to learners varies a great deal from place to place—but the big ideas of statistics don't depend on any particular level of access to computing.

Because graphing and calculating are automated in statistical practice, the most important assets you can gain from the study of statistics are an understanding of the big ideas and the beginnings of good judgment in working with data. Ideas and judgment can't (at least yet) be automated. They guide you in telling the computer what to do and in interpreting its output. This book tries to explain the most important ideas of statistics, not just teach methods. Some examples of big ideas that you will meet are "always plot your data," "randomized comparative experiments," and "statistical significance."

You learn statistics by doing statistical problems. Practice, practice, practice. Be prepared to work problems. The basic principle of learning is persistence. Being organized and persistent is more helpful in reading this book than knowing lots of math. The main ideas of statistics, like the main ideas of any important subject, took a long time to discover and take some time to master. The gain will be worth the pain.

ABOUT THE AUTHORS

David S. Moore is Shanti S. Gupta Distinguished Professor of Statistics, Emeritus, at Purdue University and was 1998 president of the American Statistical Association. He received his A.B. from Princeton and his Ph.D. from Cornell, both in mathematics. He has written many research papers in statistical theory and served on the editorial boards of several major journals. Professor Moore is an elected fellow of the American Statistical Association and of the Institute of Mathematical Statistics and an elected member of the International Statistical Institute. He has served as program director for statistics and probability at the National Science Foundation.

In recent years, Professor Moore has devoted his attention to the teaching of statistics. He was the content developer for the Annenberg/Corporation for Public Broadcasting college-level telecourse *Against All Odds*:

Inside Statistics and for the series of video modules *Statistics*: *Decisions through Data*, intended to aid the teaching of statistics in schools. He is the author of influential articles on statistics education and of several leading texts. Professor Moore has served as president of the International Association for Statistical Education and has received the Mathematical Association of America's national award for distinguished college or university teaching of mathematics.

George P. McCabe is the Associate Dean for Academic Affairs and a Professor of Statistics at Purdue University. In 1966 he received a B.S. degree in mathematics from Providence College and in 1970 a Ph.D. in mathematical statistics from Columbia University. His entire professional career has been spent at Purdue with sabbaticals at Princeton, the Commonwealth Scientific and Industrial Research Organization (CSIRO) in Melbourne, Australia, the University of Berne (Switzerland), the National Institute of Standards and Technology (NIST) in Boulder, Colorado, and the National University of Ireland in Galway. Professor McCabe is an elected fellow of the American Statistical Association and was 1998 chair of its section on Statistical Consulting. He has served on the editorial boards of several statistics journals. He has consulted with many major corporations and has testified as

an expert witness on the use of statistics in several cases.

Professor McCabe's research interests have focused on applications of statistics. Much of his recent work has been focused on problems in nutrition, including nutrient requirements, calcium metabolism, and bone health. He is author or coauthor of over 150 publications in many different journals.

Bruce A. Craig is Professor of Statistics and Director of the Statistical Consulting Service at Purdue University. He received his B.S. in mathematics and economics from Washington University in St. Louis and his Ph.D. in statistics from the University of Wisconsin-Madison. He is an active member of the American Statistical Association and will be chair of its section on Statistical Consulting in 2009. He also is an active member of the Eastern North American Region of the International Biometrics Society and was elected by the voting membership to the Regional Committee between 2003 and 2006. Professor Craig serves on the editorial board of several statistical journals and serves on many data and safety monitoring boards, including Purdue's IRB.

Professor Craig's research interests focus on the development of novel statistical methodology to address research questions in the life sciences. Areas of current interest are protein structure determination, diagnostic testing, and animal abundance estimation. In 2005, he was named Purdue University Faculty Scholar.

DATA TABLE INDEX

IABLE 1.1	Service times (seconds) for calls to a customer service center	8
TABLE 1.2	Literacy rates (percent) in Islamic nations	10
TABLE 1.3	IQ test scores for 60 randomly chosen	
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	fifth-grade students	13
TABLE 1.4	Yearly discharge of the Mississippi River (in cubic kilometers of water)	18
TABLE 1.5	Average property damage per year due to tornadoes	25
TABLE 1.6	Carbon dioxide emissions (metric tons per person)	26
TABLE 1.7	Mean annual temperatures (°F) in two California cities	26
TABLE 1.8	Survival times (days) of guinea pigs in a medical experiment	29
TABLE 1.9	Educational data for 78 seventh-grade students	29
TABLE 1.10	Fuel economy (miles per gallon) for 2004 model vehicles	31
TABLE 1.11	Biological clock cycle lengths for a plant species in different locations	79
TABLE 2.1	NBA teams as businesses	98
TABLE 2.2	Two measurements of foot deformities	98
TABLE 2.3	World record times for the 10,000-meter run	99
TABLE 2.4	Growth of icicles over time	100
TABLE 2.5	Two measures of glucose level in diabetics	129
TABLE 2.6	Four data sets for exploring correlation and regression	142
TABLE 2.7	Fruit and vegetable consumption and smoking	162
TABLE 2.8	Percent growth in stock price and earnings for industry groups	163
TABLE 2.9	Neuron response to tones and monkey calls	164
TABLE 4.1	Grades awarded at a university, by school	294
TABLE 7.1	Monthly rates of return on a portfolio (percent)	425
TABLE 7.2	Aggressive behaviors of dementia patients	429
TABLE 7.3	Length (in seconds) of audio files sampled from an iPod	436

TABLE 7.4	DRP scores for third-graders	452
TABLE 7.5	Seated systolic blood pressure	463
TABLE 10.1	In-state tuition and fees (in dollars) for 32 public universities	595
TABLE 10.2	Watershed area and index of biotic integrity	596
TABLE 10.3	Percent forest and index of biotic integrity	597
TABLE 10.4	Annual number of tornadoes in the United States between 1953 and 2005	598
TABLE 10.5	C-reactive protein and serum retinol	598
TABLE 10.6	VO+ and osteocalcin	599
TABLE 10.7	VO— and TRAP	599
TABLE 10.8	Bank wages, length of service (LOS), and bank size	601
TABLE 10.9	SAT and ACT scores	604
TABLE 12.1	Quality ratings in three groups	665
TABLE 12.2	Age at death for women writers	676
TABLE 12.3	Price promotion data	677
TABLE 12.4	Piano lesson data	678
TABLE 13.1	Safety behaviors of abused women	701
TABLE 13.2	Tool diameter data	706
TABLE 13.3	Expected price data	707

BEYOND THE BASICS INDEX

CHAPTER 1	Decomposing time series	19
CHAPTER 1	Density estimation	71
CHAPTER 2	Scatterplot smoothers	92
CHAPTER 2	Transforming relationships	119
CHAPTER 2	Data mining	136
CHAPTER 3	Capture-recapture sampling	220
CHAPTER 4	More laws of large numbers	277
CHAPTER 5	Weibull distributions	344
CHAPTER 6	The bootstrap	368
CHAPTER 8	The plus four confidence interval for a single proportion	491
CHAPTER 8	Plus four confidence interval for a difference in proportions	509
CHAPTER 8	Relative risk	515
CHAPTER 9	Meta-analysis	534
CHAPTER 10	Nonlinear regression	576
CHAPTER 11	Multiple logistic regression	625
CHAPTER 16	The bootstrap for a scatterplot smoother	16-20

Looking at Data— Distributions

Students planning a referendum on college fees. See Example 1.1.

Introduction

Statistics is the science of learning from data. Data are numerical facts. Here is an example of a situation where students used the results of a referendum to convince their university Board of Trustees to make a decision.

- 1.1 Displaying Distributions with Graphs
- 1.2 Describing Distributions with Numbers
- 1.3 Density Curves and Normal Distributions

XAMPLE

1.1 Students vote for service learning scholarships. According to the National Service-Learning Clearinghouse: "Service-learning is a teaching and learning strategy that integrates meaningful community service with instruction and reflection to enrich the learning experience, teach civic responsibility, and strengthen communities." University of Illinois at Urbana–Champaign students decided that they wanted to become involved in this national movement. They proposed a \$15.00 per semester Legacy of Service and Learning Scholarship fee. Each year, \$10.00 would be invested in an endowment and \$5.00 would be used to fund current-use scholarships. In a referendum, students voted 3785 to 2977 in favor of the proposal. On April 11, 2006, the university Board of Trustees approved the proposal. Approximately \$370,000 in current-use scholarship funds will be generated each year, and with the endowment, it is expected that in 20 years there will be more than a million dollars per year for these scholarships.