

ГОСУДАРСТВЕННЫЙ СТАНДАРТ УКРАИНЫ

Система стандартов безопасности труда

АППАРАТЫ ЭЛЕКТРИЧЕСКИЕ КОММУТАЦИОННЫЕ НА НАПРЯЖЕНИЕ ДО 1000 В

Требования безопасности

ДСТУ 2817—94 (ГОСТ 12.2.007.6—93)

ГОССТАНДАРТ УКРАИНЫ Киев

ГОСУДАРСТВЕННЫЙ СТАНДАРТ УКРАИНЫ

СИСТЕМА СТАНДАРТОВ БЕЗОПАСНОСТИ ТРУДА

АППАРАТЫ ЭЛЕКТРИЧЕСКИЕ КОММУТАЦИОННЫЕ НА НАПРЯЖЕНИЕ ДО 1000 В Требования безопасности

СИСТЕМА СТАНДАРТІВ БЕЗПЕКИ ПРАЦІ АПАРАТИ ЕЛЕКТРИЧНІ КОМУТАЦІЙНІ НА НАПРУГУ ДО 1000 В

ДСТУ 2817—94 (ГОСТ 12.2.007.6—93)

Вимоги безпеки

OCCUPATION SAFETY STANDARDS SYSTEM
ELECTRICAL SWITCHING
APPARATUS FOR VOLTAGES UP TO 1000 V
Safety requirements

OKII 34 0000

Дата введения 01.01.96

Настоящий стандарт распространяется на коммутационные электрические аппараты (далее аппараты) на напряжение до 1000 В по ДСТУ 3020 (ГОСТ 12434).

Стандарт устанавливает требования безопасности к конструкции аппаратов.

Требования настоящего стандарта являются обязательными.

Стандарт пригоден для целей сертификации.

© Госстандарт Украины, 1995

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен без разрешения Государственного комитета Украины по стандартизации, метрологии и сертификации

1. Общие положения

- 1.1. Аппараты должны соответствовать требованиям настоящего стандарта, ГОСТ 12.2.007.0 и при соблюдении требований и правил эксплуатации должны быть безопасными для людей, материальных ценностей и окружающей среды в течение всего срока службы.
- 1.2. Безопасность конструкции аппаратов обеспечивается соблюдением требований электробезопасности, пожаробезопасности и требований безопасности труда (санитарно-гигиенических, экологических и эргономических), связанного с использованием в электроустановках электрических коммутационных аппаратов.
- 1.3. Безопасность конструкции аппаратов подтверждается результатами контроля и испытаний изделий, проводимых независимыми испытательными центрами (лабораториями), аккредитованными Госстандартом.
- 1.4. Требования безопасности, не установленные настоящим стандартом, должны быть указаны в стандартах и технических условиях на конкретные виды, серии и типы аппаратов.

2. Требования электробезопасности

- 2.1. Для обеспечения электробезопасности могут быть применены отдельно либо в сочетании друг с другом следующие технические способы и средства:
- 1) изоляция токоведущих частей (рабочая, дополнительная, усиленная);
- 2) защита от прикосновения к токоведущим частям, от электромагнитных излучений, от электрической дуги (изолирование, оболочки, козырьки, экраны и пр.);
 - 3) защитное заземление;
 - 4) защитное отключение:
- 5) предупредительная сигнализация, блокировка, знаки безопасности.
- 2.2. Конструкция аппаратов должна соответствовать общим требованиям электробезопасности, установленным ГОСТ 12.1.019.

- 2.3. Показатели, определяющие уровень электробезопасности аппаратов, в том числе значение электрической прочности изоляции и значение ее сопротивления, должны указываться в стандартах и технических условиях на конкретные виды, серии и типы аппаратов.
- 2.4. Классы аппаратов по способу защиты человека от поражения электрическим током по ГОСТ 12.2.007.0.
- 2.5. Изоляция частей изделий, доступных для прикосновения, должна обеспечивать защиту человека от поражения электрическим током.
- 2.6. Степени защиты аппаратов оболочками от прикосновения к токоведущим, движущимся и нагревающимся частям аппарата должны соответствовать ГОСТ 14255.

Примечание. Корпус аппарата может считаться защитной оболочкой, если он обеспечивает требуемую степень защиты.

- 2.7. Уровни воздействия электромагнитного поля должны соответствовать «Предельно допустимым уровням воздействия постоянных магнитных полей при работе с магнитными устройствами и магнитными материалами» № 174—77—М., 1977 и «Предельно допустимым уровням магнитных полей частотой 50 Гц» СН № 3206—М., 1985, утвержденным Минздравом СССР.
 - **2.8.** Защитное заземление по ГОСТ 12.1.030 и ГОСТ 21130.
 - 2.9. Цвета сигнализации, знаки безопасности по ГОСТ 12.4.026.
- 2.10. Электробезопасность аппаратов должна обеспечиваться выполнением требований (правил и норм) к конструкции и устройству изделий. Критерии электробезопасности должны соблюдаться также при совместном (комбинированном) воздействии факторов, снижающих уровень электробезопасности, которые соответствуют наиболее опасным условиям эксплуатации.
- 2.11. Границы нонизированного пространства опасной зоны выхлопа (ОЗВ) должны указываться в технических условиях и в инструкции по монтажу и эксплуатации.

3. Требования пожаробезопасности

- 3.1. Пожарная опасность коммутационных аппаратов обусловливается:
 - 1) нагревом частей изделий до высоких температур;
- 2) высокой температурой электрической дуги и электрических искр (выпадающих и разлетающихся раскаленных частиц);
 - 3) тепловым излучением электрической дуги и частиц;
 - 4) тексичными продуктами горения и дымом и др.
- 3.2. Снижение пожарной опасности аппаратов и их частей может достигаться:
- 1) исключением использования в конструкции изделий легковоспламеняющихся материалов в соответствии с ГОСТ 12.1.044;
- 2) ограничением массы горючих материалов, а также заменой на более нагревостойкие по ГОСТ 8865;
- 3) ограничением температуры возможных источников зажигания и выбором режима работы аппарата, обеспечивающих условия пожаровзрывобезопасности веществ и материалов в соответствии с ГОСТ 12.1.044;
- 4) применением конструкции изделий, максимально обеспечивающей предотвращение проявления пожароопасных факторов выхлопа коммутационного аппарата пламени и раскаленных частиц:
- 5) предотвращением либо снижением воздействия теплового излучения дуги и искр на горючие материалы;
- 6) ограничением проникновения горючих материалов (веществ) извне к пожароопасным узлам аппарата;
- 7) обеспечением повышения надежности функционирования annaрата — увеличением значения показателя вероятности безотказной работы;
- 8) введением в конструкцию аппаратов средств и элементов электрической защиты, снижающих вероятность возникновения пожара в соответствии с нормативами, установленными ГОСТ 12.1.004;
- 9) преимущественным применением изделий с меньшим количеством на полюс последовательных контактных точек, способных стать местом образования плохого контакта;

- 10) доведением величины переходных сопротивлений в контактных соединениях аппарата до уровня, установленного стандартами на конкретные изделия;
- 11) применением средств и (или) элементов, предназначенных для автоматического отключения аппарата в аварийных режимах работы (короткое замыкание, перегрузка, перегрев и др.) и исключающих возгорание частей изделий, выполненных из электроизоляционных материалов:
- 12) исключением применения изделий, способных выделять токсичные продукты горения в количествах, представляющих опасность для жизни и здоровья людей.
- 3.3. Пожарная безопасность аппаратов должна соответствовать ГОСТ 12.1.004 и обеспечиваться как в нормальном, так и в аварийных режимах работы (короткое замыкание, перегрузка, плохой контакт и др.).
- 3.4. Контактные соединения аппаратов не должны являться источником зажигания в режиме плохого контакта. Критерии пожарной безопасности контактных соединений аппаратов по ГОСТ 27924 (МЭК 695—2—3).
- 3.5. Зажигательная способность пламени ОЗВ коммутационного аппарата должна указываться в технических условиях и в инструкции по монтажу и эксплуатации на конкретные типы аппаратов. Здесь же по данным испытаний должны содержаться характеристики распределения параметров раскаленных металлических частиц и параметры их зоны разлета, определяющие пожароопасность раскаленных частиц опасной зоны выхлопа.

4. Эколого-гигиенические требования

- 4.1. Конструкция аппаратов, являющихся источником выделяющихся вредных веществ и вредных воздействий на человека в рабочей зоне, должна удовлетворять требованиям соответствующих стандартов безопасности труда и санитарно-гигиеническим нормам.
- 4.2. Содержание вредных веществ в воздухе рабочей зоны должно соответствовать общим санитарно-гигиеническим требованиям, установленным ГОСТ 12.1.005.

- 4.3. Уровень шума должен соответствовать требованиям ГОСТ 12.1.003 и «Санитарным нормам допустимых уровней шума на рабочих местах» СН № 3223—85. М., 1985.
- 4.4. Уровень вибрации на рабочих местах должен соответствовать требованиям ГОСТ 12.1.012.
- 4.5. Допустимые уровни воздействий указанных и других опасных и вредных производственных факторов, связанных с функционированием коммутационных аппаратов, должны быть установлены в стандартах и технических условиях на отдельные виды, серии и типы аппаратов.
- 4.6. В технических условиях и инструкции по монтажу и эксплуатации на изделия конкретных видов и типов должни быть указаны предельные и фактические (по данным испытаний) значения параметров (например, времени действия и интенсивности теплового потока), характеризующих предельно допустимое и фактическое ожоговое воздействие пламени ОЗВ на кожу человека
- 4 7 Аппараты, создающие опасные и вредные воздействия на человека и окружающую среду, превышающие нормативный уровень, должны быть оснащены защитными элементами (экраны, поглотители и др. средства) для ограничения указанных воздействий до допустимых уровней.

5. Конструктивно-технические требования

5.1. Температуры нагрева частей аппаратов — по ГОСТ 403. Температура поверхностей аппарата, с которыми может соприкасаться обслуживающий персонал, не должна превышать 318 К (45 °C).

Поверхности приводных элементов органов управления должны быть выполнены из нетоксичных, нетеплопроводных, а в необходимых случаях и из электроизоляционных материалов. Температура нагретых поверхностей приводных элементов органов управления, используемых без применения средств индивидуальной защиты, не должна превышать 310 К (37 °C).

5.2. Металлические основания выдвижных аппаратов, предназначенных для встраивания в какое-либо устройство, электрически не соединенные с токоведущими частями, должны иметь электрическое соединение основания с заземляемой частью устройства, в которое аппарат встраивается.

В положении разъединения всех токоведущих частей аппарата с источником питания допускается отсутствие такого соединения.

При выдвижении аппарата сначала должны размыкаться токоведущие цепи, а затем цепи заземления. При движении аппарата в обратном направлении должна обеспечиваться обратная последовательность замыкания цепей.

Допускается не заземлять магнитопроводы и основания аппаратов, встраиваемых в заземленные металлические оболочки, если их конструкция обеспечивает надежное электрическое соединение с заземляющим устройством.

- 5.3. Конструкция аппаратов выдвижного исполнения должна обеспечивать фиксацию аппаратов в рабочем и контрольном положении и иметь блокировку, предотвращающую вкатывание или выкатывание аппарата во включенном положении контактной системы.
- 5.4. Выключатели автоматические с ручным приводом должны иметь устройство, исключающее возможность травмирования руки оператора рукояткой привода при электродинамическом отбросе контактов аппарата.
- 5.5. В аппаратах, предназначенных для коммутации тока всеми полюсами, включая нулевой полюс, при отключении должно быть обеспечено сначала размыкание всех токоведущих цепей, а затем размыкание нулевой цепи. При включении аппарата должна обеспечиваться обратная последовательность замыкания токоведущих и нулевых цепей.
- 5.6. Опасная зона выхлопа аппарата (границы ионизированной зоны выхлопа и параметры зоны выхлопа пламени) должна устанавливаться в стандартах или технических условиях на отдельные виды, серии и типы аппаратов, а также указываться в инструкции по монтажу и эксплуатации.
- 5.7. Величные путей утечки и воздушных зазоров при наличии факторов, снижающих прочность изоляции (например, пыли, влажности, высокой температуры, копоти, токопроводящих продуктов гашения дуги и др.), должна обеспечивать безопасность обслуживающего персонала и устанавливаться в технических условиях на конкретные типы аппаратов.

- 5.8. Аппараты должны иметь четкую и надежную фиксацию коммутационных положений, предотвращающую при нормальном оперировании непредусмотренное самопроизвольное включение, отключение, переключение аппарата или остановку подвижной части аппарата в промежуточном, а не коммутационном положении.
- 5.9. Рукоятки, маховики и педали управления, расположенные в непосредственной близости от частей аппарата, находящихся под напряжением, должны быть выполнены так, чтобы оператор был защищен от случайного прикосновения к этим частям.
- 5.10. Рукоятки и маховики управления аппаратами с ручным приводом при оперировании ими должны иметь указатели направления движения, соответствующие требованиям ГОСТ 21991.
- 5.11. Усилие нажатия на органы управления аппаратами должно соответствовать ГОСТ 12.2.007.0.

Для аппаратов на номинальные токи свыше 630 A с частотой от 3 до 30 включений в час при управлении рукояткой и маховиком посредством пальцев рук допускается усилие до 250 H.

Для аппаратов с двигательным приводом, имеющих аварийное ручное управление, усилие на рукоятке устанавливается в технических условиях на конкрстные типы аппаратов.

- 5.12. Аппараты с двигательным приводом независимого действия с накоплением энергии от внешнего источника должны иметь указатель полного накопления энергии, а в НТД на эти аппараты должны быть указаны условия накопления этой энергии.
- 5.13. Аппараты, применяемые на станках, должны соответствовать требованиям ГОСТ 12.2.009.
- 5.14. Оболочки в нормальном и аварийном режимах работы должны сохранять защитные свойства, соответствующие их маркировке или указанные в документации на изделие.
- 5.15. Оболочки изделий, содержащие расположенные вблизи их частей контактные соединения, не следует изготавливать из термопластичных материалов.

- 5.16. У аппаратов, требующих наблюдения за работой их частей, оболочки, при необходимости, должны изготавливаться из прозрачного материала либо в них могут быть предусмотрены соответствующие прозрачные стенки или окна.
- 5.17. Конструкция аппаратов должна удовлетворять общим эргономическим требованиям к изделию (ГОСТ 12.2.049) с учетом специфических особенностей их функционирования и обеспечения соответствующих мер безопасности оператора.

С. 10 ДСТУ 2817—94 (ГОСТ 12.2.007.6—93)

информационные данные

1. РАЗРАБОТАН И ВНЕСЕН АО «Электрические низковольтные аппараты и системы» (ЭНАС)

РАЗРАБОТЧИКИ: А. С. Кобозев, руководитель темы, канд. техн. наук; А. М. Панасенко

- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ приказом № 312 от 9 декабря 1994 г.
- 3. B3AMEH FOCT 12.2.007,6-75
- 4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер пункта
ДСТ!' 3020 (ГОСТ 12434—93)	Вводная часть
ГОСТ 12.1.003—83	4.3
ГОСТ 12.1.004—91	3.2, 3.3
ГОСТ 12.1.005—88	4.2
FOCT 12.1.012—90	4.4
ГОСТ 12.1.019—79	2.2
ГОСТ 12.1.030—81	2.8
ΓΟCT 12.1.044—89	3.2
ГОСТ 12.2.007.0—75	1.1, 2.4, 5.11
TOCT 12.2.009—80	5.13
ГОСТ 12.2.049—80	5.17
ΓΟCT 12.4.026—76	2.9
ГОСТ 403—73	5.1
ГОСТ 8865—87	3.2

ДСТУ 2817-94 (ГОСТ 12.2.007.6-93) С. 11

Окончание

Обозначение НТД, на который дана ссылка	Номер пункта	
FOCT 14255—69	2.6	
FOCT 21130—75	2.8	
ГОСТ 21991—89	5.10	
ГОСТ 27924—88	3.4	