Multi-Pass Graph Streaming Lower Bounds

Kheeran K. Naidu

University of Bristol, UK $\,$

kheeran.naidu@bristol.ac.uk

Based on joint works with Sepehr Assadi, Christian Konrad, Janani Sundaresan

Definition

Definition

- •
- •
- •

Definition

A (2n)-vertex graph is presented as a sequence of edges to an algorithm

 e_1

Definition

Definition

A (2n)-vertex graph is presented as a sequence of edges to an algorithm

Trivial Algorithm

• Store all edges with $O(n^2)$ space.

Definition

A (2n)-vertex graph is presented as a sequence of edges to an algorithm

Trivial Algorithm

• Store all edges with $O(n^2)$ space.

Interesting Algorithms

- Use $O(n \operatorname{polylog} n)$ space (semi-streaming).
 - Many graph problems require $\Omega(n)$ space in one pass [FKM⁺04].
- Use one or more passes of the stream.

- Construct a hard graph G.
- Adversarially order its edges.
- Prove hardness via one-way communication complexity.

- Construct a hard graph G.
- Adversarially order its edges.
- Prove hardness via one-way communication complexity.

- Construct a hard graph G.
- Adversarially order its edges.
- Prove hardness via one-way communication complexity.

- Construct a hard graph G.
- Adversarially order its edges.
- Prove hardness via one-way communication complexity.

- Construct a hard graph G.
- Adversarially order its edges.
- Prove hardness via one-way communication complexity.
- By reduction to Index (e.g. connectivity, matchings, maximal independent set, ...).

- Construct a hard graph G.
- Adversarially order its edges.
- Prove hardness via one-way communication complexity.
- By reduction to Index (e.g. connectivity, matchings, maximal independent set, ...).

- Construct a hard graph G.
- Adversarially order its edges.
- Prove hardness via one-way communication complexity.
- By reduction to Index (e.g. connectivity, matchings, maximal independent set, ...).
 - In one pass, Alice must reveal $\Omega(N)$ bits.

- Construct a hard graph G.
- Adversarially order its edges.
- Prove hardness via one-way communication complexity.
- By reduction to Index (e.g. connectivity, matchings, maximal independent set, ...).
 - In one pass, Alice must reveal $\Omega(N)$ bits.

- Construct a hard graph G.
- Adversarially order its edges.
- Prove hardness via one-way communication complexity.
- By reduction to Index (e.g. connectivity, matchings, maximal independent set, ...).
 - In one pass, Alice must reveal $\Omega(N)$ bits.
 - In two passes, Bob sends
 J in O(log N) bits.

- Construct a hard graph G.
- Adversarially order its edges.
- Prove hardness via one-way communication complexity.
- By reduction to Index (e.g. connectivity, matchings, maximal independent set, ...).
 - In one pass, Alice must reveal $\Omega(N)$ bits.
 - In two passes, Bob sends
 J in O(log N) bits.

- Construct a hard graph G.
- Adversarially order its edges.
- Prove hardness via one-way communication complexity.
- By reduction to Index (e.g. connectivity, matchings, maximal independent set, ...).
 - In one pass, Alice must reveal $\Omega(N)$ bits.
 - In two passes, Bob sends
 J in O(log N) bits.
 - Fix?

- Construct a hard graph G.
- Adversarially order its edges.
- Prove hardness via one-way communication complexity.
- By reduction to Index (e.g. connectivity, matchings, maximal independent set, ...).
 - In one pass, Alice must reveal $\Omega(N)$ bits.
 - In two passes, Bob sends
 J in O(log N) bits.
 - Fix?

2-Pass Streaming Lower Bounds (Our Results)

HiddenStrings₂

A 3-player communication game for any integers t_g , $r_g \ge 1$ and $t_g \cdot r_g$ many independent instances of Index.

2-Pass Streaming Lower Bounds (Our Results)

HiddenStrings₂

A 3-player communication game for any integers $t_g, r_g \ge 1$ and $t_g \cdot r_g$ many independent instances of Index.

Maximum Bipartite Matching (MBM)

For $\varepsilon > 0$, any constant-error two-pass $(\frac{8}{9} + \varepsilon)$ -approximation streaming algorithm for MBM requires $n^{1+\Omega(1/(\log\log n)^2)}$ space.

2-Pass Streaming Lower Bounds (Our Results)

HiddenStrings₂

A 3-player communication game for any integers t_g , $r_g \ge 1$ and $t_g \cdot r_g$ many independent instances of Index.

Maximum Bipartite Matching (MBM)

For $\varepsilon > 0$, any constant-error two-pass $(\frac{8}{9} + \varepsilon)$ -approximation streaming algorithm for MBM requires $n^{1+\Omega(1/(\log\log n)^2)}$ space.

Maximal Independent Set (MIS)

Any constant-error two-pass streaming algorithm for MIS requires $\Omega(n^{4/3-o(1)})$ space.

Definition

A bipartite **matching** is a subset of vertex disjoint edges of the graph. A **maximum matching** is a largest matching of the graph.

Definition

A bipartite **matching** is a subset of vertex disjoint edges of the graph. A **maximum matching** is a largest matching of the graph.

Definition

A bipartite **matching** is a subset of vertex disjoint edges of the graph. A **maximum matching** is a largest matching of the graph.

Definition

A bipartite **matching** is a subset of vertex disjoint edges of the graph. A **maximum matching** is a largest matching of the graph.

Approximations

• M is a $(\frac{|M|}{|M^*|})$ -approximate matching (e.g. $\frac{2}{3}$).

Ruzsa-Szeméredi (RS) Graphs

Definition (Induced Matching)

Definition (Induced Matching)

A matching whose vertex induced subgraph contains only its edges.

Definition ((r, t)-RS Graph)

Definition (Induced Matching)

A matching whose vertex induced subgraph contains only its edges.

Definition ((r, t)-RS Graph)

Definition (Induced Matching)

A matching whose vertex induced subgraph contains only its edges.

Definition ((r, t)-RS Graph)

Definition (Induced Matching)

A matching whose vertex induced subgraph contains only its edges.

Definition ((r, t)-RS Graph)

Definition (Induced Matching)

A matching whose vertex induced subgraph contains only its edges.

Definition ((r, t)-RS Graph)

Definition (Induced Matching)

A matching whose vertex induced subgraph contains only its edges.

Definition ((r, t)-RS Graph)

Definition (Induced Matching)

A matching whose vertex induced subgraph contains only its edges.

Definition ((r, t)-RS Graph)

A graph whose edges set is the union of t many edge-disjoint induced matchings of size r.

Proposition ([GKK12] (see also [FLN+02]))

For constant $\delta > 0$, there exists a (bipartite) (r,t)-RS graph on 2n vertices where $r = (\frac{1}{2} - \delta) \cdot n$ and $t = n^{\Omega(1/\log\log n)}$.

Definition (Induced Matching)

A matching whose vertex induced subgraph contains only its edges.

Definition ((r, t)-RS Graph)

A graph whose edges set is the union of t many edge-disjoint induced matchings of size r.

Proposition ([GKK12] (see also [FLN+02]))

For constant $\delta > 0$, there exists a (bipartite) (r,t)-RS graph on 2n vertices where $r = (\frac{1}{2} - \delta) \cdot n$ and $t = n^{\Omega(1/\log\log n)}$.

Definition (Induced Matching)

A matching whose vertex induced subgraph contains only its edges.

Definition ((r, t)-RS Graph)

A graph whose edges set is the union of t many edge-disjoint induced matchings of size r.

Proposition ([GKK12] (see also [FLN+02]))

For constant $\delta > 0$, there exists a (bipartite) (r, t)-RS graph on 2n vertices where $r = (\frac{1}{2} - \delta) \cdot n$ and $t = n^{\Omega(1/\log\log n)}$.

• $n^{\Omega(1/\log\log n)}$ many induced matchings.

Definition (Induced Matching)

A matching whose vertex induced subgraph contains only its edges.

Definition ((r, t)-RS Graph)

A graph whose edges set is the union of t many edge-disjoint induced matchings of size r.

Proposition ([GKK12] (see also [FLN+02]))

For constant $\delta > 0$, there exists a (bipartite) (r, t)-RS graph on 2n vertices where $r = (\frac{1}{2} - \delta) \cdot n$ and $t = n^{\Omega(1/\log\log n)}$.

- $n^{\Omega(1/\log\log n)}$ many induced matchings.
- $\gg n \operatorname{polylog} n$ edges in the graph.

Global Graph

• $(2n_g)$ -vertex (r_g, t_g) -RS graph.

• $(2n_g)$ -vertex (r_g, t_g) -RS graph.

• $(2n_g)$ -vertex (r_g, t_g) -RS graph.

- $(2n_g)$ -vertex (r_g, t_g) -RS graph.
- \bullet $\Theta(n_g)$ small hard instances

Q: What is the selector for MBM?

- $(2n_g)$ -vertex (r_g, t_g) -RS graph.
- \bullet $\Theta(n_g)$ small hard instances

Q: What is the selector for MBM?

- $(2n_g)$ -vertex (r_g, t_g) -RS graph.
- \bullet $\Theta(n_g)$ small hard instances
- $1/3^{rd}$ of the vertices are special.

- $(2n_g)$ -vertex (r_g, t_g) -RS graph.
- \bullet $\Theta(n_g)$ small hard instances
- $1/3^{rd}$ of the vertices are special.

$\begin{array}{c|c} \textbf{Global Graph} \\ \text{vertex} \\ \text{group} \end{array} \geqslant \frac{n_g}{2}$

- $(2n_g)$ -vertex (r_g, t_g) -RS graph.
- \bullet $\Theta(n_g)$ small hard instances
- $1/3^{rd}$ of the vertices are special.

Local Graphs

• $(2n_\ell)$ -vertex (r_ℓ, t_ℓ) -RS graph.

- $(2n_g)$ -vertex (r_g, t_g) -RS graph.
- \bullet $\Theta(n_g)$ small hard instances
- $1/3^{rd}$ of the vertices are special.

Local Graphs

• $(2n_\ell)$ -vertex (r_ℓ, t_ℓ) -RS graph.

- $(2n_g)$ -vertex (r_g, t_g) -RS graph.
- \bullet $\Theta(n_g)$ small hard instances
- ullet 1/3rd of the vertices are special.

- $(2n_\ell)$ -vertex (r_ℓ, t_ℓ) -RS graph.
- \bullet 1/3rd of the vertices are special.

- $(2n_g)$ -vertex (r_g, t_g) -RS graph.
- \bullet $\Theta(n_g)$ small hard instances
- $1/3^{rd}$ of the vertices are special.

- $(2n_{\ell})$ -vertex (r_{ℓ}, t_{ℓ}) -RS graph.
- $1/3^{rd}$ of the vertices are special.
- 1-pass Index instance [GKK12]

- $(2n_g)$ -vertex (r_g, t_g) -RS graph.
- \bullet $\Theta(n_g)$ small hard instances
- $1/3^{rd}$ of the vertices are special.

- $(2n_{\ell})$ -vertex (r_{ℓ}, t_{ℓ}) -RS graph.
- $1/3^{rd}$ of the vertices are special.
- 1-pass Index instance [GKK12]

- $(2n_g)$ -vertex (r_g, t_g) -RS graph.
- \bullet $\Theta(n_g)$ small hard instances
- $1/3^{rd}$ of the vertices are special.

- $(2n_{\ell})$ -vertex (r_{ℓ}, t_{ℓ}) -RS graph.
- $1/3^{rd}$ of the vertices are special.
- 1-pass Index instance [GKK12]

- $(2n_g)$ -vertex (r_g, t_g) -RS graph.
- \bullet $\Theta(n_g)$ small hard instances
- $1/3^{rd}$ of the vertices are special.

Local Graphs

- $(2n_{\ell})$ -vertex (r_{ℓ}, t_{ℓ}) -RS graph.
- $1/3^{rd}$ of the vertices are special.
- 1-pass Index instance [GKK12]

local RS-graphs local selectors global selector

- $(2n_g)$ -vertex (r_g, t_g) -RS graph.
- \bullet $\Theta(n_g)$ small hard instances
- \bullet 1/3rd of the vertices are special.

Local Graphs

- $(2n_{\ell})$ -vertex (r_{ℓ}, t_{ℓ}) -RS graph.
- \bullet 1/3rd of the vertices are special.
- 1-pass Index instance [GKK12]

local RS-graphs local selectors global selector

- $(2n_g)$ -vertex (r_g, t_g) -RS graph.
- \bullet $\Theta(n_g)$ small hard instances
- $1/3^{rd}$ of the vertices are special.

- $(2n_{\ell})$ -vertex (r_{ℓ}, t_{ℓ}) -RS graph.
- \bullet 1/3rd of the vertices are special.
- 1-pass Index instance [GKK12]

	local RS-graphs	local selectors	global selector
$\overline{\mathcal{A}}$	$\gg n \operatorname{polylog} n$	$\gg n \operatorname{polylog} n$	O(n)

$\begin{array}{c|c} \textbf{Global Graph} \\ \hline \text{vertex} \\ \text{group} \\ \hline \end{array} \approx \frac{n_{\underline{g}}}{2}$

- $(2n_g)$ -vertex (r_g, t_g) -RS graph.
- \bullet $\Theta(n_g)$ small hard instances
- $1/3^{rd}$ of the vertices are special.

Local Graphs

- $(2n_{\ell})$ -vertex (r_{ℓ}, t_{ℓ}) -RS graph.
- $1/3^{rd}$ of the vertices are special.
- 1-pass Index instance [GKK12]

$\begin{array}{c|c} \textbf{Global Graph} \\ \textbf{vertex} \\ \textbf{group} \end{array} \approx \frac{n_g}{2}$

- $(2n_g)$ -vertex (r_g, t_g) -RS graph.
- \bullet $\Theta(n_g)$ small hard instances
- $1/3^{rd}$ of the vertices are special.

Local Graphs

- $(2n_{\ell})$ -vertex (r_{ℓ}, t_{ℓ}) -RS graph.
- $1/3^{rd}$ of the vertices are special.
- 1-pass Index instance [GKK12]

local RS-graphs local selectors global selector

o(1) per local graph (Index instance)

$\begin{array}{c|c} \textbf{Global Graph} \\ \textbf{vertex} \\ \textbf{group} \end{array} \approx \frac{n_g}{2}$

- $(2n_g)$ -vertex (r_g, t_g) -RS graph.
- \bullet $\Theta(n_g)$ small hard instances
- $1/3^{rd}$ of the vertices are special.

Local Graphs

- $(2n_{\ell})$ -vertex (r_{ℓ}, t_{ℓ}) -RS graph.
- $1/3^{rd}$ of the vertices are special.
- 1-pass Index instance [GKK12]

local RS-graphs local selectors global selector

o(1) per local graph (Index instance)

$\begin{array}{c|c} \textbf{Global Graph} \\ \textbf{vertex} \\ \textbf{group} \end{array} \approx \frac{n_g}{2}$

- $(2n_g)$ -vertex (r_g, t_g) -RS graph.
- \bullet $\Theta(n_g)$ small hard instances
- $1/3^{rd}$ of the vertices are special.

Local Graphs

- $(2n_{\ell})$ -vertex (r_{ℓ}, t_{ℓ}) -RS graph.
- $1/3^{rd}$ of the vertices are special.
- 1-pass Index instance [GKK12]

local RS-graphs local selectors global selector

o(1) per local graph (Index instance)

- $(2n_g)$ -vertex (r_g, t_g) -RS graph.
- \bullet $\Theta(n_g)$ small hard instances
- \bullet 1/3rd of the vertices are special.

Local Graphs

- $(2n_{\ell})$ -vertex (r_{ℓ}, t_{ℓ}) -RS graph.
- $1/3^{rd}$ of the vertices are special.
- 1-pass Index instance [GKK12]

local RS-graphs local selectors global selector $A \gg n \operatorname{polylog} n$

$\begin{array}{c|c} \textbf{Global Graph} \\ \textbf{vertex} \\ \textbf{group} \end{array} \approx \frac{n_g}{2}$

- $(2n_g)$ -vertex (r_g, t_g) -RS graph.
- \bullet $\Theta(n_g)$ small hard instances
- \bullet 1/3rd of the vertices are special.

Local Graphs

- $(2n_{\ell})$ -vertex (r_{ℓ}, t_{ℓ}) -RS graph.
- $1/3^{rd}$ of the vertices are special.
- 1-pass Index instance [GKK12]

local RS-graphs local selectors global elector o(1) fraction of edges \mathcal{A} O(n)

Global Graph local graph vertex $\approx \frac{n_g}{2}$ group

- $(2n_g)$ -vertex (r_g, t_g) -RS graph.
- \bullet $\Theta(n_g)$ small hard instances
- $1/3^{rd}$ of the vertices are special.

Local Graphs

- $(2n_{\ell})$ -vertex (r_{ℓ}, t_{ℓ}) -RS graph.
- $1/3^{rd}$ of the vertices are special.
- 1-pass Index instance [GKK12]

o(1) fraction of edges

local RS-graphs

local selectors

global elector

- $(2n_g)$ -vertex (r_g, t_g) -RS graph.
- \bullet $\Theta(n_g)$ small hard instances
- $1/3^{rd}$ of the vertices are special.

Local Graphs

- $(2n_{\ell})$ -vertex (r_{ℓ}, t_{ℓ}) -RS graph.
- $1/3^{rd}$ of the vertices are special.
- 1-pass Index instance [GKK12]

o(1) fraction of edges

local RS-graphs

local selectors

global elector

8/9-approximation

HiddenStrings₂

HiddenStrings₂

HiddenStrings₂

HiddenStrings₂

2-Pass Streaming Lower Bounds

HiddenStrings₂

2-Pass Streaming Lower Bounds

HiddenStrings₂

A 3-player communication game for any integers $t_g, r_g \ge 1$ and $t_g \cdot r_g$ many independent instances of Index.

Maximum Bipartite Matching (MBM)

For $\varepsilon > 0$, any constant-error two-pass $(\frac{8}{9} + \varepsilon)$ -approximation streaming algorithm for MBM requires $n^{1+\Omega(1/(\log\log n)^2)}$ space.

2-Pass Streaming Lower Bounds

HiddenStrings₂

A 3-player communication game for any integers t_g , $r_g \ge 1$ and $t_g \cdot r_g$ many independent instances of Index.

Maximum Bipartite Matching (MBM)

For $\varepsilon > 0$, any constant-error two-pass $(\frac{8}{9} + \varepsilon)$ -approximation streaming algorithm for MBM requires $n^{1+\Omega(1/(\log\log n)^2)}$ space.

Maximal Independent Set (MIS)

Any constant-error two-pass streaming algorithm for MIS requires $\Omega(n^{4/3-o(1)})$ space.

HiddenStrings_p

HiddenStrings_p

HiddenStrings_p

HiddenStrings_p

HiddenStrings_p

HiddenStrings_p

A (p+1)-player communication game for any integers $t_g, r_g \geq 1$ and $t_g \cdot r_g$ many independent instances of HiddenStrings $_{p-1}$.

Maximum Bipartite Matching (MBM)

For $\varepsilon > 0$, any constant-error $(1 - \varepsilon)$ -approximation semi-streaming algorithm for MBM requires $\Omega(\log(1/\varepsilon))$ passes.

HiddenStrings_p

A (p+1)-player communication game for any integers $t_g, r_g \geq 1$ and $t_g \cdot r_g$ many independent instances of HiddenStrings $_{p-1}$.

Maximum Bipartite Matching (MBM)

For $\varepsilon > 0$, any constant-error $(1 - \varepsilon)$ -approximation semi-streaming algorithm for MBM requires $\Omega(\log(1/\varepsilon))$ passes.

Maximal Independent Set (MIS)

Any constant-error semi-streaming algorithm for MIS requires $\Omega(\log \log n)$ passes.

HiddenStrings_p

A (p+1)-player communication game for any integers $t_g, r_g \geq 1$ and $t_g \cdot r_g$ many independent instances of HiddenStrings $_{p-1}$.

Maximum Bipartite Matching (MBM)

For $\varepsilon > 0$, any constant-error $(1 - \varepsilon)$ -approximation semi-streaming algorithm for MBM requires $\Omega(\log(1/\varepsilon))$ passes.

Maximal Independent Set (MIS)

Any constant-error semi-streaming algorithm for MIS requires $\Omega(\log \log n)$ passes. **Optimal!**

Maximum Matching

- (1ε) -approximations require $\Omega(\log 1/\varepsilon)$ passes.
- Algorithms require either $O(1/\varepsilon^2)$ or $O((1/\varepsilon) \cdot \log n)$ passes.
- Narrowing the gap even for the 1-pass or 2-pass settings.

Maximum Matching

- (1ε) -approximations require $\Omega(\log 1/\varepsilon)$ passes.
- Algorithms require either $O(1/\varepsilon^2)$ or $O((1/\varepsilon) \cdot \log n)$ passes.
- Narrowing the gap even for the 1-pass or 2-pass settings.

Maximal Independent Set

- Semi-streaming algorithms optimally require $\Theta(\log \log n)$ passes.
- For p-passes, optimal only up to $n^{o(1)}$ factors.

Maximum Matching

- (1ε) -approximations require $\Omega(\log 1/\varepsilon)$ passes.
- Algorithms require either $O(1/\varepsilon^2)$ or $O((1/\varepsilon) \cdot \log n)$ passes.
- Narrowing the gap even for the 1-pass or 2-pass settings.

Maximal Independent Set

- Semi-streaming algorithms optimally require $\Theta(\log \log n)$ passes.
- For p-passes, optimal only up to $n^{o(1)}$ factors.

General Questions

- How well do these ideas work for other graph problems?
- Are there other settings where HiddenStrings is useful?

Maximum Matching

- (1ε) -approximations require $\Omega(\log 1/\varepsilon)$ passes.
- Algorithms require either $O(1/\varepsilon^2)$ or $O((1/\varepsilon) \cdot \log n)$ passes.
- Narrowing the gap even for the 1-pass or 2-pass settings.

Maximal Independent Set

- Semi-streaming algorithms optimally require $\Theta(\log \log n)$ passes.
- For p-passes, optimal only up to $n^{o(1)}$ factors.

General Questions

- How well do these ideas work for other graph problems?
- Are there other settings where HiddenStrings is useful?

Thank you!

References I

- Sepehr Assadi and Janani Sundaresan, *Hidden permutations to the rescue: Multi-pass semi-streaming lower bounds for approximate matchings*, 64th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2023, Santa-Cruz, CA, USA, November 6 9, 2023, IEEE, 2023.
- Sepehr Assadi, *A two-pass (conditional) lower bound for semi-streaming maximum matching*, Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA 2022, Virtual Conference / Alexandria, VA, USA, January 9 12, 2022 (Joseph (Seffi) Naor and Niv Buchbinder, eds.), SIAM, 2022, pp. 708–742.

References II

- Hossein Esfandiari, MohammadTaghi Hajiaghayi, and Morteza Monemizadeh, *Finding large matchings in semi-streaming*, IEEE International Conference on Data Mining Workshops, ICDM Workshops 2016, December 12-15, 2016, Barcelona, Spain (Carlotta Domeniconi, Francesco Gullo, Francesco Bonchi, Josep Domingo-Ferrer, Ricardo Baeza-Yates, Zhi-Hua Zhou, and Xindong Wu, eds.), IEEE Computer Society, 2016, pp. 608–614.
- Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang, *On graph problems in a semi-streaming model*, Automata, Languages and Programming: 31st International Colloquium, ICALP 2004, Turku, Finland, July 12-16, 2004. Proceedings (Josep Díaz, Juhani Karhumäki, Arto Lepistö, and Donald Sannella, eds.), Lecture Notes in Computer Science, vol. 3142, Springer, 2004, pp. 531–543.

References III

- Eldar Fischer, Eric Lehman, Ilan Newman, Sofya Raskhodnikova, Ronitt Rubinfeld, and Alex Samorodnitsky, *Monotonicity testing over general poset domains*, Proceedings on 34th Annual ACM Symposium on Theory of Computing, May 19-21, 2002, Montréal, Québec, Canada (John H. Reif, ed.), ACM, 2002, pp. 474–483.
- Moran Feldman and Ariel Szarf, Maximum matching sans maximal matching: A new approach for finding maximum matchings in the data stream model, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2022, September 19-21, 2022, University of Illinois, Urbana-Champaign, USA (Virtual Conference) (Amit Chakrabarti and Chaitanya Swamy, eds.), LIPIcs, vol. 245, Schloss Dagstuhl Leibniz-Zentrum für Informatik, 2022, pp. 33:1–33:24.

References IV

- Ashish Goel, Michael Kapralov, and Sanjeev Khanna, *On the communication and streaming complexity of maximum bipartite matching*, Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17-19, 2012 (Yuval Rabani, ed.), SIAM, 2012, pp. 468–485.
- Rahul Jain, Jaikumar Radhakrishnan, and Pranab Sen, *A property of quantum relative entropy with an application to privacy in quantum communication*, J. ACM **56** (2009), no. 6, 33:1–33:32.
- Michael Kapralov, Better bounds for matchings in the streaming model, Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, New Orleans, Louisiana, USA, January 6-8, 2013 (Sanjeev Khanna, ed.), SIAM, 2013, pp. 1679–1697.

References V

- _____, Space lower bounds for approximating maximum matching in the edge arrival model, Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, January 10 13, 2021 (Dániel Marx, ed.), SIAM, 2021, pp. 1874–1893.
- Christian Konrad, Frédéric Magniez, and Claire Mathieu, *Maximum matching in semi-streaming with few passes*, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques 15th International Workshop, APPROX 2012, and 16th International Workshop, RANDOM 2012, Cambridge, MA, USA, August 15-17, 2012. Proceedings (Anupam Gupta, Klaus Jansen, José D. P. Rolim, and Rocco A. Servedio, eds.), Lecture Notes in Computer Science, vol. 7408, Springer, 2012, pp. 231–242.

References VI

- Christian Konrad and Kheeran K. Naidu, *On two-pass streaming algorithms for maximum bipartite matching*, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2021, August 16-18, 2021, University of Washington, Seattle, Washington, USA (Virtual Conference) (Mary Wootters and Laura Sanità, eds.), LIPIcs, vol. 207, Schloss Dagstuhl Leibniz-Zentrum für Informatik, 2021, pp. 19:1–19:18.
- Christian Konrad, A simple augmentation method for matchings with applications to streaming algorithms, 43rd International Symposium on Mathematical Foundations of Computer Science, MFCS 2018, August 27-31, 2018, Liverpool, UK (Igor Potapov, Paul G. Spirakis, and James Worrell, eds.), LIPIcs, vol. 117, Schloss Dagstuhl Leibniz-Zentrum für Informatik, 2018, pp. 74:1–74:16.

References VII

Sagar Kale and Sumedh Tirodkar, *Maximum matching in two, three, and a few more passes over graph streams*, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2017, August 16-18, 2017, Berkeley, CA, USA (Klaus Jansen, José D. P. Rolim, David Williamson, and Santosh S. Vempala, eds.), LIPIcs, vol. 81, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017, pp. 15:1–15:21.