Name:	
J#:	Dr. Clontz
Date:	

FINAL EXAM

Math 237 – Linear Algebra Fall 2017

Version 2

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Standard E1.

Mark:

Write an augmented matrix corresponding to the following system of linear equations.

$$x_1 + 3x_2 - 4x_3 + x_4 = 5$$
$$3x_1 + 9x_2 + x_3 - 7x_4 = 0$$
$$x_1 - x_3 + x_4 = 1$$

Solution:

$$\begin{bmatrix} 1 & 3 & -4 & 1 & 5 \\ 3 & 9 & 1 & -7 & 0 \\ 1 & 0 & -1 & 1 & 1 \end{bmatrix}$$

Standard E2.

Put the following matrix in reduced row echelon form.

$$\begin{bmatrix} -3 & 5 & 2 & 0 \\ 1 & -1 & 0 & 2 \\ 1 & -2 & -1 & -1 \end{bmatrix}$$

Solution:

$$\begin{bmatrix} -3 & 5 & 2 & 0 \\ 1 & -1 & 0 & 2 \\ 1 & -2 & -1 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 0 & 2 \\ -3 & 5 & 2 & 0 \\ 1 & -2 & -1 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 0 & 2 \\ 0 & 2 & 2 & 6 \\ 0 & -1 & -1 & -3 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 0 & 2 \\ 0 & 1 & 1 & 3 \\ 0 & -1 & -1 & -3 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & 0 & 1 & 5 \\ 0 & 1 & 1 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Standard E3.

Mark:

Find the solution set for the following system of linear equations.

$$2x_1 + 3x_2 - 5x_3 + 14x_4 = 8$$
$$x_1 + x_2 - x_3 + 5x_4 = 3$$

Solution: Let
$$A = \begin{bmatrix} 2 & 3 & -5 & 14 & 8 \\ 1 & 1 & -1 & 5 & 3 \end{bmatrix}$$
, so RREF $A = \begin{bmatrix} 1 & 0 & 2 & 1 & 1 \\ 0 & 1 & -3 & 4 & 2 \end{bmatrix}$. It follows that the solution set is given by
$$\begin{bmatrix} 1 - 2a - b \\ 2 + 3a - 4b \\ a \\ b \end{bmatrix}$$
 for all real numbers a, b .

Standard E4.

Mark:

Find a basis for the solution set to the homogeneous system of equations

$$4x_1 + 4x_2 + 3x_3 - 6x_4 = 0$$
$$-2x_3 - 4x_4 = 0$$
$$2x_1 + 2x_2 + x_3 - 4x_4 = 0$$

Standard V1.

Mark:

Let V be the set of all polynomials with the operations, for any $f, g \in V$, $c \in \mathbb{R}$,

$$f \oplus g = f' + g'$$
$$c \odot f = cf'$$

(here f' denotes the derivative of f).

- (a) Show that scalar multiplication **distributes scalars** over vector addition: $c \odot (f \oplus g) = c \odot f \oplus c \odot g$.
- (b) Determine if V is a vector space or not. Justify your answer.

Solution: Let $f, g \in \mathcal{P}$, and let $c \in \mathbb{R}$.

$$c \odot (f \oplus g) = c \odot (f' + g') = c(f' + g')' = cf'' + cg'' = cf' \oplus cg' = c \odot f \oplus c \odot g.$$

However, this is not a vector space, as there is no zero vector. Additionally, $1 \odot f \neq f$ for any nonzero polynomial f.

Standard V2.

Determine if $\begin{bmatrix} 0\\1\\-2\\1 \end{bmatrix}$ can be written as a linear combination of the vectors $\begin{bmatrix} 5\\2\\-3\\2 \end{bmatrix}$, $\begin{bmatrix} 3\\1\\1\\0 \end{bmatrix}$, and $\begin{bmatrix} 8\\3\\5\\-1 \end{bmatrix}$.

Solution:

 $RREF\left(\begin{bmatrix} 8 & 5 & 3 & 0 \\ 3 & 2 & 1 & 1 \\ 5 & -3 & 1 & -2 \\ -1 & 2 & 0 & 1 \end{bmatrix}\right) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

The system has no solution, so $\begin{bmatrix} 0\\1\\-2\\1 \end{bmatrix}$ is not a linear combination of the three other vectors.

Standard V3.

Determine if the vectors $\begin{bmatrix} -3\\1\\1\end{bmatrix}$, $\begin{bmatrix} 5\\-1\\-2\end{bmatrix}$, $\begin{bmatrix} 2\\0\\-1\end{bmatrix}$, and $\begin{bmatrix} 0\\2\\-1\end{bmatrix}$ span \mathbb{R}^3

Solution:

$$RREF \left(\begin{bmatrix} -3 & 5 & 2 & 0 \\ 1 & -1 & 0 & 2 \\ 1 & -2 & -1 & -1 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 1 & 5 \\ 0 & 1 & 1 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Since the resulting matrix has only two pivot columns, the vectors do not span \mathbb{R}^3 .

Standard V4.

Let W be the set of all \mathbb{R}^3 vectors $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ satisfying x+y+z=1 (this forms a plane). Determine if W is a subspace of \mathbb{R}^3 .

Solution: No, because **0** does not belong to W.

Mark:

Determine if the set of vectors $\left\{ \begin{bmatrix} -3 \\ -8 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \\ 3 \end{bmatrix} \right\}$ is linearly dependent or linearly independent

Solution:

$$RREF\left(\begin{bmatrix} -3 & 1 & 0 \\ -8 & 2 & -1 \\ 0 & 2 & 3 \end{bmatrix}\right) = \begin{bmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 1 & \frac{3}{2} \\ 0 & 0 & 0 \end{bmatrix}$$

This has a non pivot column, therefore the set is linearly dependent.

Standard S2.

Mark

Determine if the set $\{x^3 - x, x^2 + x + 1, x^3 - x^2 + 2, 2x^2 - 1\}$ is a basis of \mathcal{P}^3 .

Solution:

$$RREF \left(\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & -1 & 2 \\ -1 & 1 & 0 & 0 \\ 0 & 1 & 2 & -1 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Since the resulting matrix is not the identity matrix, it is not a basis.

Standard S3.

IVICIII.

Let $W = \operatorname{span} \left\{ \begin{bmatrix} 2 & 0 \\ -2 & 0 \end{bmatrix}, \begin{bmatrix} 3 & 1 \\ 3 & 6 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \right\}$. Find a basis for this vector space.

Solution:

$$RREF\left(\begin{bmatrix} 2 & 3 & 0 & 1\\ 0 & 1 & 0 & 2\\ -2 & 3 & 1 & 0\\ 0 & 6 & 1 & 1 \end{bmatrix}\right) = \begin{bmatrix} 1 & 0 & 0 & -\frac{5}{2}\\ 0 & 1 & 0 & 2\\ 0 & 0 & 1 & -11\\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Thus $\left\{ \begin{bmatrix} 2 & 0 \\ -2 & 0 \end{bmatrix}, \begin{bmatrix} 3 & 1 \\ 3 & 6 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix} \right\}$ is a basis of W.

Standard S4.

$$\begin{bmatrix} 2 \\ 0 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 3 \\ 1 \\ -1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 2 \\ -8 \\ -1 \end{bmatrix}$$
Find the dimension of W .

Solution:

$$RREF \begin{pmatrix} \begin{bmatrix} 2 & 3 & 0 \\ 0 & 1 & 2 \\ 2 & -1 & -8 \\ 1 & 1 & -1 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 1 & 0 & -3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Since it has two pivot columns, its dimension is 2.

Standard A1.

Let $T: \mathbb{R}^4 \to \mathbb{R}^2$ be the linear transformation given by

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\\x_4 \end{bmatrix}\right) = \begin{bmatrix} x_1 + 3x_3\\3x_2 - x_3 \end{bmatrix}.$$

Write the matrix for T with respect to the standard bases of \mathbb{R}^4 and \mathbb{R}^2 .

Solution:

$$\begin{bmatrix} 1 & 0 & 3 & 0 \\ 0 & 3 & -1 & 0 \end{bmatrix}$$

Standard A2.

Determine if $D: \mathbb{R}^{2\times 2} \to \mathbb{R}$ given by $D\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = a - 3c$ is a linear transformation or not.

Standard A3.

Determine if each of the following linear transformations is injective (one-to-one) and/or surjective (onto).

- (a) $S: \mathbb{R}^2 \to \mathbb{R}^4$ given by the standard matrix $\begin{bmatrix} 2 & 1 \\ 1 & 2 \\ 0 & 1 \\ 3 & -3 \end{bmatrix}$.
- (b) $T: \mathbb{R}^4 \to \mathbb{R}^3$ given by the standard matrix $\begin{bmatrix} 2 & 3 & -1 & 1 \\ -1 & 1 & 1 & 1 \\ 4 & 7 & -1 & 5 \end{bmatrix}$

Solution:

(a)
$$\begin{bmatrix} 2 & 1 \\ 1 & 2 \\ 0 & 1 \\ 3 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}.$$
 Since each column is a pivot column, S is injective. Since there a no zero row, S is not surjective.

(b) Since $\dim \mathbb{R}^4 > \dim \mathbb{R}^3$, T is not injective.

$$RREF\left(\begin{bmatrix} 2 & 3 & -1 & 1\\ -1 & 1 & 1 & 1\\ 4 & 7 & -1 & 5 \end{bmatrix}\right) = \begin{bmatrix} 1 & 0 & 0 & 2\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 3 \end{bmatrix}$$

Since there is not a zero row, T is surjective.

Standard A4.

Mark:

Let $T: \mathbb{R}^4 \to \mathbb{R}^4$ be the linear transformation given by

$$T\begin{pmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \end{pmatrix} = \begin{bmatrix} x + 3y + 3z + 7w \\ x + 3y - z - w \\ 2x + 6y + 3z + 8w \\ x + 3y - 2z - 3w \end{bmatrix}$$

Compute a basis for the kernel and a basis for the image of T.

Solution:

$$RREF \left(\begin{bmatrix} 1 & 3 & 3 & 7 \\ 1 & 3 & -1 & -1 \\ 2 & 6 & 3 & 8 \\ 1 & 3 & -2 & -3 \end{bmatrix} \right) = \begin{bmatrix} 1 & 3 & 0 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Then a basis for the kernel is

$$\left\{ \begin{bmatrix} -3\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} -1\\0\\-2\\1 \end{bmatrix} \right\}$$

and a basis for the image is

$$\left\{ \begin{bmatrix} 1\\1\\2\\1 \end{bmatrix}, \begin{bmatrix} 3\\-1\\3\\-2 \end{bmatrix} \right\}$$

Let

$$A = \begin{bmatrix} 3 \\ 5 \\ -1 \end{bmatrix} \qquad B = \begin{bmatrix} 2 & -1 \\ 0 & 4 \\ 3 & 1 \end{bmatrix} \qquad C = \begin{bmatrix} 1 & -1 & 3 & -3 \\ 2 & 1 & -1 & 2 \end{bmatrix}$$

Exactly one of the six products AB, AC, BA, BC, CA, CB can be computed. Determine which one, and compute it.

Solution: BC is the only one that can be computed, and

$$BC = \begin{bmatrix} 0 & -3 & 7 & -8 \\ 8 & 4 & -4 & 8 \\ 5 & -2 & 8 & -7 \end{bmatrix}$$

Standard M2.

Determine if the matrix $\begin{bmatrix} 3 & -1 & 0 & 4 \\ 2 & 1 & 1 & -1 \\ 0 & 1 & 1 & 3 \\ 1 & 2 & 0 & 0 \end{bmatrix}$ is invertible.

Solution: This matrix is row equivalent to the identity matrix, so it is invertible.

Standard M3.

Find the inverse of the matrix $\begin{bmatrix} 3 & 1 & 3 \\ 2 & -1 & -6 \\ 1 & 1 & 4 \end{bmatrix}.$

Solution: $\begin{bmatrix} 3 & 1 & 3 & 1 & 0 & 0 \\ 2 & -1 & -6 & 0 & 1 & 0 \\ 1 & 1 & 4 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 2 & -1 & -3 \\ 0 & 1 & 0 & -14 & 9 & 24 \\ 0 & 0 & 1 & 3 & -2 & -5 \end{bmatrix}.$ Thus the inverse is $\begin{bmatrix} 2 & -1 & -3 \\ -14 & 9 & 24 \\ 3 & -2 & -5 \end{bmatrix}.$

Standard G1.

Compute the determinant of the matrix $\begin{bmatrix} 3 & -1 & 0 & 4 \\ 2 & 1 & 1 & -1 \\ 0 & 1 & 1 & 3 \\ 1 & -2 & 0 & 0 \end{bmatrix}$.

Solution:

$$\det\begin{bmatrix} 3 & -1 & 0 & 4 \\ 2 & 1 & 1 & -1 \\ 0 & 1 & 1 & 3 \\ 1 & -2 & 0 & 0 \end{bmatrix} = -\det\begin{bmatrix} -1 & 0 & 4 \\ 1 & 1 & -1 \\ 1 & 1 & 3 \end{bmatrix} + (-2)\det\begin{bmatrix} 3 & 0 & 4 \\ 2 & 1 & -1 \\ 0 & 1 & 3 \end{bmatrix} = -1(-4) + (-2)(20) = -36$$

Standard G2.

Mark:

Compute the eigenvalues, along with their algebraic multiplicities, of the matrix $\begin{bmatrix} 9 & -3 & 2 \\ 19 & -6 & 5 \\ -5 & 2 & 0 \end{bmatrix}.$

Solution: 1 (with algebraic multiplicity 3)

Standard G3.

Mark:

Find the eigenspace associated to the eigenvalue 2 in the matrix $A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -4 & 4 & 0 & 0 \\ 11 & -6 & 1 & -1 \\ -9 & 5 & 1 & 3 \end{bmatrix}$.

Solution: The eigenspace is spanned by $\begin{bmatrix} -1 \\ -2 \\ 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} -1 \\ -2 \\ 0 \\ 1 \end{bmatrix}$.

Standard G4.

Mark:

Compute the geometric multiplicity of the eigenvalue 2 in the matrix $A = \begin{bmatrix} 0 & -2 & -1 & 0 \\ -4 & -2 & -2 & 0 \\ 14 & 12 & 10 & 2 \\ -13 & -10 & -8 & -1 \end{bmatrix}$.

Solution: The eigenspace is spanned by $\begin{bmatrix} -1\\ \frac{1}{2}\\ 1\\ 0 \end{bmatrix}$ and $\begin{bmatrix} -1\\ 1\\ 0\\ 1 \end{bmatrix}$, so the geometric multiplicity is 2.

Additional Notes/Marks