Diskrete Wahrscheinlichkeitstheorie

Grundlagen

Diskreter Wahrscheinlichkeitsraum

diskreter W'keitsraum $\Omega = \{\omega_1, \omega_2, \dots\}$ Elementarereignis Elementarw'keit $\Pr[\omega_i]$

 $0 \le \Pr[\omega_i] \le 1$ $\sum_{i \in S} \Pr[\omega] = 1$

endlicher W'keitsraum $\Omega = \{\omega_1, \dots, \omega_n\}$ unendlicher W'keitsraum $\Omega = \{\omega_1, \omega_2, \dots\}$

Ereignis

Eine Menge $E\subseteq\Omega$ heißt Ereignis mit Wahrscheinlichkeit

$$\Pr[E] = \sum_{\omega \in E} \Pr[\omega]$$

Sind A und B Ereignisse $\implies A \cup B$, $A \cap B$, $A \setminus B$, etc. sind

$$\begin{aligned} & \mathsf{lst}\ A \subseteq B \implies \Pr[A] \leq \Pr[B] \\ & \Pr[\emptyset] = 0, \ \Pr[\Omega] = 1 \\ & 0 \leq \Pr[E] \leq 1 \end{aligned}$$

Komplementäres Ereignis

 $ar{E}$ heißt komplementäres Ereignis zu E $\Pr[\bar{E}] = 1 - \Pr[E]$

Disjunkte/Unvereinbare Ereignisse

Zwei Ereignisse A und B sind disjunkt/unvereinbar, falls $A \cap B = \emptyset$ Ereignisse sind paarweise disjunkt, falls für alle Paare $i \neq j$ gilt: $A_i \cap A_j = \emptyset$

relative Häufigkeit

relative Häufigkeit von $E:=\frac{\text{absolute Häufigkeit von }E}{\text{Anzahl aller Beobachtungen}}$ Anzahl Eintreten von ${\cal E}$ Anzahl aller Beobachtungen

Sei X_i Bernoulli-verteilt mit Erfolgswahrscheinlichkeit $p\Longrightarrow Z=rac{1}{n}(X_1+\cdots+Z_n)$ gibt die relative Häufigkeit an, mit der X=1bei n'Wiederholungen des Versuches eintritt

relative Abweichung

$$\left|\frac{1}{n}\sum X_i - p\right|$$

absolute Abweichung

$$|\sum_{i} X_i - np|$$

Siebformel, Prinzip der Inklusion/Exklusion

$$\begin{split} & \mathsf{Seien} \ A_1, \dots, A_n \ \mathsf{Ereignisse} \ \mathsf{mit} \ n \geq 2 \implies \\ & \Pr \Big[\bigcup_{i=1}^n A_i \Big] = \sum_{i=1}^n \Pr[A_i] - \sum_{1 \leq i_1 \leq i_2 \leq n} \Pr[A_{i_1} \cap A_{i_2}] + - \dots \end{split}$$

$$+ (-1)^{l-1} \sum_{\substack{1 \le i_1 < \dots < i_l \le n \\ + (-1)^{n-1}} \Pr[A_1 \cap \dots \cap A_n]} \Pr[A_{i_1} \cap \dots \cap A_n]$$

Additionssatz

Seien A_1, \ldots, A_n paarweise disjunkte Ereignisse \Longrightarrow $\Pr\left[\bigcup A_i\right] = \sum \Pr[A_i]$

$$\Pr\left[\bigcup_{i=1} A_i\right] = \sum_{i=1} \Pr[A_i]$$

$$\Pr[A \cup B] = \Pr[A] + \Pr[B]$$

Boolesche Ungleichung

Seien A_1, \dots, A_n Ereignisse \Longrightarrow $\Pr\left[\bigcup_{i=1}^n A_i\right] \leq \sum_{i=1}^n \Pr[A_i]$

$$\Pr\left[\bigcup_{i=1}^{n} A_i\right] \le \sum_{i=1}^{n} \Pr[A_i]$$

Prinzip von Laplace

Sei E ein Ereignis und alle Elementarereignisse aus E gleich wahrscheinlich $\Longrightarrow \Pr[E] = \frac{|E|}{|\Omega|}$

Bedingte Wahrscheinlichkeit

Seien A und B Ereignisse mit $Pr[B] > 0 \implies$

Die bedingte Wahrscheinlichkeit Pr[A|B] von A gegeben B ist:

$$\Pr[A|B] := \frac{\Pr[A \cap B]}{\Pr[B]}$$

 $\Pr[B|B] = 1$

 $\Pr[A|\Omega] = \Pr[A]$

für festes B ist $\Pr[A|B]$ proportional zu $\Pr[A\cap B]$

 $\Pr[\emptyset|B] = 0$

 $\Pr[\bar{A}|B] = 1 - \Pr[A|B]$

 $Pr[A \cap B] = Pr[B|A] \cdot Pr[A] = Pr[A|B] \cdot Pr[B]$

Multiplikationssatz

Seien A_1, \ldots, A_n Ereignisse und $\Pr[A_1 \cap \cdots \cap A_n] > 0 \implies$ $\Pr[A_1 \cap \cdots \cap A_n] = \Pr[A_1] \cdot \Pr[A_2|A_1] \cdot \Pr[A_3|A_1 \cap A_2] \cdot \ldots$ $\Pr[A_n|A_1\cap\cdots\cap A_{n-1}]$

Satz von der totalen Wahrscheinlichkeit

Seien A_1, \ldots, A_n paarweise disjunkte Ereignisse und $B \subseteq A_1 \cup \cdots \cup A_n$ $A_n \implies \Pr[B] = \sum_{i=1}^n \Pr[B|A_i] \cdot \Pr[A_i]$

Satz von Bayes

Seien A_1, \ldots, A_n paarweise disjunkte Ereignisse mit $\Pr[A_j] > 0 \ \forall j$ und $B \subseteq A_1 \cup \cdots \cup A_n$ ein Ereignis mit $\Pr[B] > 0 \implies$

Für beliebige
$$i=1,\ldots,n$$
 gilt:
$$\Pr[A_i|B] = \frac{\Pr[A_i \cap B]}{\Pr[B]} = \frac{\Pr[B|A_i] \cdot \Pr[A_i]}{\sum_{j=1}^n \Pr[B|A_j] \cdot \Pr[A_j]}$$

Unabhängigkeit

Sei $Pr[A|B] \implies$ Die zwei Ereignisse A und B sind unabhängig, falls B keinen Einfluss auf die Wahrscheinlichkeit des Eintretens von A hat. Es gilt:

$$\Pr[A|B] = \Pr[A]$$

$$\Pr[A \cap B] = \Pr[A] \cdot \Pr[B]$$

Seien A_1,\ldots,A_n paarweise verschiedene Ereignisse $\Longrightarrow A_1,\ldots,A_n$ sind unabhängig, falls für alle Teilmengen $I=\{i_1,\ldots,i_k\}\subseteq\{1,\ldots,n\}$ mit $i_1< i_2<\cdots< i_k$ gilt, dass $\Pr[A_{i_1}\cap\cdots\cap A_{i_k}]=\Pr[A_{i_1}]\cdot\ldots\cdot\Pr[A_{i_k}]$

Die paarweise verschiedenen Ereignisse A_1,\ldots,A_n sind genau dann unabhängig, wenn für alle $(s_1,\ldots,s_n)\in\{0,1\}^n$ gilt, dass $\Pr[A_1^{s_1}\cap\cdots\cap A_n^{s_n}]=\Pr[A_1^{s_1}]\cdot\ldots\cdot\Pr[A_n^{s_n}]$, wobei $A_i^0=\bar{A}_i$ und $A_i^1=A_i$

Seien A und B zwei unabhängige Ereignisse $\implies \bar{A}$ und B, A und \bar{B} , \bar{A} und \bar{B} sind unabhängig.

Seien A,B und C unabhängige Ereignisse $\implies A\cap B$ und C bzw. $A\cup B$ und C sind unabhängig.

Zufallsvariablen

Sei ein Wahrscheinlichkeitsraum auf der Ergebnismenge Ω gegeben. Eine Abbildung

$$X:\Omega\to\mathbb{R}$$

heißt (numerische) Zufallsvariable

Zugehörige Ereignis:

$$A_i := \{ \omega \in \Omega; X(\omega) = x_i \} = X^{-1}(x_i)$$

Sei Ω endlich oder abzählbar unendlich \implies die Zufallsvariable X ist diskret und ihr Wertebereich ebenfalls endlich oder abzählbar unendlich

Wertebereich

Sei X eine Zufallsvariable \implies

$$W_X := X(\Omega) = \{x \in \mathbb{R}; \exists \omega \in \Omega \text{ mit } X(\omega) = x\}$$

Dichtefunktion

$$f_X : \mathbb{R} \ni x \mapsto \Pr[X = x] \in [0, 1]$$

 $(\Pr[X^{-1}(x_i)] = \Pr["X = x_i"] = \Pr[X = x_i])$

Verteilungsfunktion

$$F_X: \mathbb{R} \ni x \mapsto \Pr[X \le x] = \sum_{x' \in W_X: x' \le x} \Pr[X = x'] \in [0, 1]$$

(Stammfunktion der Dichtefunktion)

Erwartungswert

$$\mathbb{E}[X] := \sum_{x \in W_X} x \cdot \Pr[X = x] = \sum_{x \in W_X} x \cdot f_X(x) = \sum_{\omega \in \Omega} X(\omega) \cdot \Pr[\omega],$$
 falls $\sum_{x \in W_X} |x| \cdot \Pr[X = x]$ konvergiert bzw

 $\operatorname{falls} \sum_{x \in W_X} |x| \cdot \Pr[X = x] \text{ konvergiert bzw}.$

$$\sum_{\alpha \in \Omega} |X(\Omega)| \cdot \Pr[\omega] \text{ existiert}$$

Sei X Zufallsvariable mit $W_X \subseteq \mathbb{N}_0 \implies$

$$\mathbb{E}[X] = \sum_{i=1}^{\infty} \Pr[X \ge i]$$

Sei X eine Zufallsvariable und A_1,\ldots,A_n paarweise disjunkte Ereignisse mit $A_1\cup\cdots\cup A_n=\Omega$ und $\Pr[A_1],\ldots,\Pr[A_n]>0$

$$\mathbb{E}[X] = \sum_{i=1}^{n} \mathbb{E}[X|A_i] \cdot \Pr[A_i],$$

falls alle Erwartungswerte auf der rechten Seite existieren und

$$\sum_{i=1}^{\infty} |\mathbb{E}[X|A_i]| \cdot \Pr[A_i] \text{ konvergiert}$$

Monotonie des Erwartungswerts

Seien X,Y Zufallsvariablen über dem W'keitsraum $\Omega \Longrightarrow$ Ist $X(\omega) \leq Y(\omega) \ \forall \omega \in \Omega \Longrightarrow \mathbb{E}[X] \leq \mathbb{E}[Y]$ Ist $a \leq X(\omega) \leq b \ \forall \omega \in \Omega \Longrightarrow a \leq \mathbb{E}[X] \leq b$

Rechenregeln für den Erwartungswert

Sei $Y:=f(X)=f\circ X$ mit $f:\mathcal{D}\to\mathbb{R}$ eine beliebige Funktion mit $W_X\subseteq\mathcal{D}\subseteq\mathbb{R}\Longrightarrow\mathbb{E}[f(X)]=\mathbb{E}[Y]=\sum_{x\in W_X}f(x)\cdot\Pr[X=x]=\sum_{\omega\in\Omega}f(X(\omega))\cdot\Pr[\omega]$

Linearität des Erwartungswerts

Sei X eine Zufallsvariable und $a,b\in\mathbb{R}\implies \mathbb{E}[a\cdot X+b]=a\cdot \mathbb{E}[X]+b$

Varianz

Sei
$$X$$
 eine Zufallsvariable und $\mu = \mathbb{E}[X] \Longrightarrow \operatorname{Var}[X] := \mathbb{E}[(X - \mu)^2] = \sum_{x \in W_X} (x - \mu)^2 \cdot \Pr[X = x]$
$$\operatorname{Var}[X] = \mathbb{E}[X^2] - \mathbb{E}[X]^2$$

$$\operatorname{Var}[a \cdot X + b] = a^2 \cdot \operatorname{Var}[X]$$

Standardabweichung

 $\sigma := \sqrt{\mathsf{Var}[X]}$ heißt Standardabweichung von X

Momente

Sei X eine Zufallsvariable \Longrightarrow

 $\mathbb{E}[X^k]$ ist das k-te Moment

 $\mathbb{E}[(X - \mathbb{E}[X])^k]$ ist das k-te zentrale Moment

Der Erwartungswert ist erstes Moment, die Varianz ist zweites zentrales Moment

Bedingte Zufallsvariable

Sei X eine Zufallsvariable und A ein Ereignis mit $\Pr[A] > 0 \implies$ Bedingte Zufallsvariable ist X|A mit Dichte

Bedingte Zufallsvariable ist
$$X|A$$
 mit Dichte $f_{X|A}(x) := \Pr[X = x|A] = \frac{\Pr["X = x" \cap A]}{\Pr[A]}$

und Erwartungswert

$$\mathbb{E}[X|A] = \sum_{x \in W_X} x \cdot f_{X|A}(x)$$

Mehrere Zufallsvariablen

Gemeinsame Dichte

 $f_{X,Y}(x,y):=\Pr[X=x,Y=y]=\Pr[\{\omega;X(\omega)=x,Y(\omega)=y\}]$ heißt gemeinsame Dichte der Zufallsvariablen X und Y

Randdichte

$$f_X(x)=\Pr[X=x]=\sum_{y\in W_Y}f_{X,Y}(x,y)$$
 bzw.
$$f_Y(y)=\Pr[Y=y]=\sum_{x\in W_X}f_{X,Y}(x,y)$$

gemeinsame Verteilung

Seien X, Y Zufallsvariablen. Deren gemeinsame Verteilung ist: $F_{Y,Y}(x,y) = \Pr[X \le x, Y \le y] = \Pr[\{\omega: X(\omega) \le x, Y(\omega) \le y\}]$

$$F_{X,Y}(x,y) = \Pr[X \le x, Y \le y] = \Pr[\{\omega; X(\omega) \le x, Y(\omega) \le y\}]$$
$$= \sum_{x' \le x} \sum_{y' \le y} f_{X,Y}(x',y')$$

Randverteilung

$$F_X(x) = \sum_{x' \le x} f_X(x') = \sum_{x' \le x} \sum_{y \in W_Y} f_{X,Y}(x', y)$$
$$F_Y(y) = \sum_{y' \le y} f_Y(y') = \sum_{y' \le y} \sum_{x \in W_X} f_{X,Y}(x, y')$$

Unabhängigkeit

Seien X_1, \ldots, X_n Zufallsvariablen.

 X_1,\ldots,X_n sind unabhängig, falls für alle

$$(x_1,\ldots,x_n)\in W_{X_1}\times\cdots\times W_{X_n}$$
 gilt:

$$\Pr[X_1 = x_1, \dots, X_n = x_n] = \Pr[X_1 = x_1] \cdot \dots \cdot \Pr[X_n = x_n]$$

bzw.

$$F_{X_1,...,X_n}(x_1,...,x_n) = F_{X_1}(x_1) \cdot ... \cdot F_{X_n}(x_n)$$

Seien X_1,\ldots,X_n unabhängige Zufallsvariablen und S_1,\ldots,S_n beliebige Mengen mit $S_i\subseteq W_{X_i}$ \Longrightarrow

Die Ereignisse " $X_1 \in S_1$ ", ..., " $X_n \in S_n$ " sind unabhängig.

Seien f_1, \ldots, f_n reellwertige Funktionen $(f_i : \mathbb{R} \to \mathbb{R})$:

Sind X_1, \ldots, X_n unabhängig $\implies f_1(X_1), \ldots, f_n(X_n)$ sind unabhängig

Zusammengesetzte Zufallsvariablen

Seien X und Y unabhängige Zufallsvariablen und $Z:=X+Y\Longrightarrow f_Z(z)=\sum_{x\in W_Y}f_X(x)\cdot f_Y(z-x)$

Linearität des Erwartungswerts

Seien X_1,\ldots,X_n Zufallsvariablen und $X:=a_1X_1+\cdots+a_nX_n$ mit $a_1,\ldots,a_n\in\mathbb{R}\Longrightarrow \mathbb{E}[X]=a_1\mathbb{E}[X_1]+\cdots+a_n\mathbb{E}[X_n]$

Multiplikativität des Erwartungswerts

Seien X_1, \ldots, X_n unabhängige Zufallsvariablen \Longrightarrow $\mathbb{E}[X_1 \cdot \ldots \cdot X_n] = \mathbb{E}[X_1] \cdot \ldots \cdot \mathbb{E}[X_n]$

Indikatorvariable

Sei A ein Ereignis. Die Zufallsvariable

$$I_A := \begin{cases} 1 & \text{falls } A \text{ eintritt} \\ 0 & \text{sonst} \end{cases}$$

heißt Indikatorvariable des Ereignisses A

$$\mathbb{E}[I_A] = \Pr[A]$$

$$\mathbb{E}[I_{A_1} \cdot \dots \cdot I_{A_n}] = \Pr[A_1 \cap \dots \cap A_n]$$

Varianz

Seien X_1, \dots, X_n unabh. Zufallsvariablen und $X := X_1 + \dots + X_n$ $\implies \mathsf{Var}[X] = \mathsf{Var}[X_1] + \dots + \mathsf{Var}[X_n]$

Wichtige diskrete Verteilungen

Bernoulli-Verteilung

Sei X eine Zufallsvariable mit $W_X = \{0, 1\}$

$$\text{ und Dichte } f_X(x) = \begin{cases} p & \text{ für } x = 1 \\ 1 - p & \text{ für } x = 0 \end{cases}$$

 \implies X ist Bernoulli-verteilt

p ist Erfolgswahrscheinlichkeit

$$\mathbb{E}[X] = p \text{, } \mathsf{Var}[X] = pq \text{, } q := 1 - p$$

Binomialverteilung

Sei $X:=X_1+\cdots+X_n$ eine Summe aus n unabhängigen, Bernoulliverteilten Zufallsvariablen mit gleicher Erfolgswahrscheinlichkeit p $\Longrightarrow X$ ist binomialverteilt mit den Parametern n und p: $X\sim \operatorname{Bin}(n,p)$

$$W_X = \{0, \dots, n\}$$

 $f_X(x) := b(x; n, p) = \binom{n}{x} p^x q^{n-x}, q := 1 - p$

$$\mathbb{E}[X] = np, \, \mathsf{Var}[X] = npq$$

Seien $X \sim \text{Bin}(n_x,p)$ und $Y \sim \text{Bin}(n_y,p)$ unabh. Zufallsvariablen und $Z:=X+Y \Longrightarrow Z \sim \text{Bin}(n_x+n_y,p)$

Geometrische Verteilung

Man betrachte ein Experiment, das so lange wiederholt wird, bis Erfolg eintritt. Gelingt ein einzelner Versuch mit Wahrscheinlichkeit p, so ist die Anzahl der Versuche bis zum Erfolg geometrisch verteilt.

Sei X eine geometrisch verteilte Zufallsvariable mit Parameter (Erfolgswahrscheinlichkeit) $p \in (0,1]$ und $q:=1-p \Longrightarrow$

$$\begin{split} f_X(i) &= pq^{i-1} \text{ für } i \in \mathbb{N} \\ \mathbb{E}[X] &= \frac{1}{p}, \quad \mathsf{Var}[X] = \frac{q}{p^2} \end{split}$$

Negative Binomialverteilung

Seien X_1,\ldots,X_n unabhänige, geometrisch verteilte Zufallsvariablen mit Parameter p und $Z:=X_1+\cdots+X_n$ (Z \equiv Anzahl der Versuche bis zum n-ten erfolgreichen Experiment) \Longrightarrow

 ${\sf Z}$ ist negativ binomialverteil mit Ordnung n und

$$f_Z(z) = \begin{pmatrix} z - 1 \\ n - 1 \end{pmatrix} \cdot p^n (1 - p)^{z - n}$$

Coupon-Collector-Problem

Poisson-Verteilung

Wird verwendet um die Anzahl von Ereignissen zu modellieren, welche mit konstanter Rate und unabhängig voneinander in einem Zeitintervall auftreten.

$$X \sim \mathsf{Po}(\lambda)$$

Sei X eine Poisson-verteilte Zufallsvariable mit $\lambda \geq 0 \implies W_X = \mathbb{N}_0$

$$f_X(i) = \frac{e^{-\lambda}\lambda^i}{i!} \text{ für } i \in \mathbb{N}_0$$

$$\mathbb{E}[X] = \lambda, \, \mathsf{Var}[X] = \lambda$$

Poisson-Verteilung als Grenzwert der Binomialverteilung

$$\lim_{\substack{n \to \infty \\ X \sim \mathsf{Bin}(n,\lambda/n)}} b(k;n,\lambda/n) = e^{-\lambda} \cdot \frac{\lambda^k}{k!}$$

Faustregel: $n \ge 30$ und $p \le 0.05$

Gesetz seltener Ereignisse

 $\mathsf{lst}\ n >> \lambda \implies X \sim \mathsf{Bin}(n, \lambda/n) \approx X \sim \mathsf{Po}(\lambda),$

falls folgende Voraussetzungen erfüllt sind:

- Die Ereignisse treten nie zur gleichen Zeit auf
- Die Wahrscheinlichkeit, dass ein Ereignis in einem (kleinen) Zeitintervall auftritt, ist proportional zur Länge des Intervalls
- Die Anzahl der Ereignisse in einem festen Zeitintervall hängt nur von dessen Länge ab, nicht aber von der Lage auf der Zeitachse
- Wenn man zwei disjunkte Zeitintervalle betrachtet, so sind die Anzahlen der Ereignisse in diesen Zeiträumen voneinander unabhängig

Summe von Poisson-verteilten Zufallsvariablen

Seien X,Y unabhängige Zufallsvariablen mit $X\sim \mathsf{Po}(\lambda)$ und $Y\sim$ $Po(u) \implies$

$$Z := X + Y \sim \mathsf{Po}(\lambda + \mu)$$

Abschätzen von Wahrscheinlichkeiten

Markov-Ungleichung

Sei X eine Zufallsvariable, die nur nicht-negative Werte annimmt

$$\implies \Pr[X \ge t] \le \frac{\mathbb{E}[X]}{t} \iff \Pr[X \ge t \cdot \mathbb{E}[X]] \le \frac{1}{t}$$

Chebyshev-Ungleichung

 $\begin{array}{ll} \mathsf{Sei} \; X \; \mathsf{eine} \; \mathsf{Zufallsvariable} \; \mathsf{und} \; t \in \mathbb{R}^+ \; \Longrightarrow \\ \Pr[|X - \mathbb{E}[X]| \geq t] \leq \frac{\mathsf{Var}[X]}{t^2} \end{array}$

$$\Pr[|X - \mathbb{E}[X]| \ge t] \le \frac{\mathsf{Var}[X]}{t^2}$$

$$\iff \Pr[|X - \mathbb{E}[X]| \ge t\sqrt{\mathsf{Var}[X]}] \le \frac{1}{t^2}$$

Anw: $\Pr[X \ge k] = \Pr[X - \mathbb{E}[X] \ge k - \mathbb{E}[X]] \le \Pr[|X - \mathbb{E}[X]| \ge k - \mathbb{E}[X]] \le \frac{\mathsf{Var}[X]}{(k - \mathbb{E}[X])^2}$

Gesetz der großen Zahlen

Sei X eine Zufallsvariable und $\varepsilon, \delta > 0$ beliebig aber fest

Sind X_1,\dots,X_n unabhängige Zufallsvariablen mit derselben Verteilung wie X und $Z:=\frac{X_1+\dots+X_n}{Z}$

Für alle
$$n \geq \frac{\mathsf{Var}[X]}{\varepsilon \delta^2}$$
 gilt:
$$\Pr[|Z - \mathbb{E}[X]| \geq \delta] \leq \varepsilon$$

$$\Pr[|Z - \mathbb{E}[X]| \geq \delta^2] \leq \varepsilon$$

Chernoff-Schranken

Seien X_1, \ldots, X_n unabhängige Bernoulli-verteilte Zufallsvariablen (nicht zwingend gleichverteilt) mit Erfolgswahrscheinlichkeit p_i und

$$X:=\sum_{i=1}^n X_i \text{ und } \mu:=\mathbb{E}[X]=\sum_{i=1}^n p_i \text{ und jedes } \delta>0 \implies$$

$$\Pr[X \geq (1+\delta)\mu] \leq \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu} \ \text{ für alle } \delta > 0$$

$$\Pr[X \leq (1-\delta)\mu] \leq \left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^{\mu} \ \text{ für alle } 0 < \delta < 1$$

$$\Pr[X \geq (1+\delta)\mu] \leq e^{\frac{-\mu\delta^2}{3}} \qquad \qquad \text{für alle } 0 < \delta \leq 1$$

$$\Pr[X \leq (1-\delta)\mu] \leq e^{\frac{-\mu\delta^2}{2}} \qquad \qquad \text{für alle } 0 < \delta \leq 1$$

$$\Pr[|X - \mu| \ge \delta \mu] \le 2e^{\frac{-\mu\delta^2}{3}} \qquad \qquad \text{für alle } 0 < \delta \le 1$$

$$\Pr[X \ge (1+\delta)\mu] \le \left(\frac{e}{1+\delta}\right)^{(1+\delta)\mu}$$

$$\Pr[X \ge t] \le 2^{-t} \qquad \qquad \text{für } t \ge 2e\mu$$

Lemma

$$\begin{split} & \text{ für } 0 \leq \delta < 1 \text{ gilt } \\ & (1-\delta)^{1-\delta} \geq e^{-\delta+\delta^2/2} \text{ und } (1+\delta)^{1+\delta} \geq e^{\delta+\delta^2/3} \end{split}$$

Erzeugende Funktionen

Eine wahrscheinlichkeitserzeugende Funktion ist die (gewöhnliche) erzeugende Funktion der Folge $(f_i)_{i\in\mathbb{N}_0}$ mit $f_i:=\Pr[X=i]$

Für eine Zufallsvariable X mit $W_X \subseteq \mathbb{N}_0$ ist die (wahrscheinlichkeits-)erzeugende Funktion definiert durch

$$G_X(s) := \sum_{k=0}^{\infty} \Pr[X=k] \cdot s^k = \mathbb{E}[x^X]$$

Sei
$$Y:=X+t$$
 mit $t\in\mathbb{N}_0$ \Longrightarrow $G_Y(s)=s^t\cdot G_X(s)$

$$\begin{split} G_X^{(i)}(0) &= \Pr[X = i] \cdot i! \\ \mathbb{E}[X] &= G_X'(1) \\ \mathsf{Var}[X] &= G_X''(1) + G_X'(1) - (G_X'(1))^2 \end{split}$$

Eindeutigkeit der wahrscheinlichkeitserzeugenden Funktion

Die Dichte und die Verteilung einer Zufallsvariable X mit $W_X\subseteq$ N sind durch ihre wahrscheinlichkeitserzeugende Funktion eindeutig bestimmt

Bernoulli-Verteilung

Sei X eine Bernoulli-verteilte Zufallsvariable mit Erfolgswahrscheinlichkeit $p \implies$

$$G_X(s) = 1 - p + ps$$

Gleichverteilung auf {0, ..., n}

Sei X auf $\{0,\ldots,n\}$ gleichverteilt, d.h. für $0\leq k\leq n$ ist $\Pr[X=$ $k] = \frac{1}{n+1} \Longrightarrow$

$$G_X(s) = \sum_{k=0}^{n} \frac{1}{n+1} \cdot s^k = \frac{s^{n+1} - 1}{(n+1)(s-1)}$$

Binomialverteilung

Sei
$$X \sim \text{Bin}(n, p) \implies$$

 $G_X(s) = (1 - p + ps)^n$

$$G_X'(s) = n \cdot (1 - p + ps)^{n-1} \cdot p$$

Geometrische Verteilung

Sei X eine geometrisch verteilte Zufallsvariable mit Erfolgswahrscheinlichkeit $p\Longrightarrow ps$ $G_X(s)=\frac{ps}{1-(1-p)s}$

Poisson-Verteilung

Sei
$$X \sim \text{Po}(\lambda) \Longrightarrow$$
 $G_X(s) = e^{\lambda(s-1)}$

Momenterzeugende Funktionen

Sei X eine Zufallsvariable. Die zugehörige momenterzeugende Funktion ist

$$M_X(s) := \mathbb{E}[e^{Xs}] = \sum_{i=0}^{\infty} \frac{\mathbb{E}[X^i]}{i!} \cdot s^i$$

Sei
$$W_X \subseteq \mathbb{N}_0 \Longrightarrow M_X(s) = G_X(e^s)$$

Erzeugende Funktion einer Summe

Seien X_1,\ldots,X_n unabhängige Zufallsvariablen und $Z:=X_1+\cdots+X_n\implies$

$$G_Z(s) = G_{X_1}(s) \cdot \ldots \cdot G_{X_n}(s)$$
 und $M_Z(s) = M_{X_1}(s) \cdot \ldots \cdot M_{X_n}(s)$

Zufällige Summen

Seien X_1,X_2,\ldots unabhängige und identisch verteilte Zufallsvariablen mit der wahrscheinlichkeitserzeugenden Funktion $G_X(s)$ und N eine unabhängige Zufallsvariable mit der wahrscheinlichkeitserzeugenden Funktion $G_N(s)$ und $Z:=X_1+\cdots+X_N\implies G_Z(s)=G_N(G_X(s))$

Kontinuierliche Wahrscheinlichkeitsräume

Grundlagen

Ereignis

Eine Menge $A\subseteq\mathbb{R}$, die durch Vereinigung $A=\bigcup_k I_k$ abzählbar vieler paarweise disjunkter Intervalle beliebiger Art (offen, geschlossen, halboffen, einseitig unendlich) gebildet werden kann, heißt Ereignis. Ein Ereignis A tritt ein, wenn A einen Wert aus A annimmt.

$$\Pr[A] = \int_A f_X(x)dx = \sum_k \int_{I_k} f_X(x)dx$$

Kolmogorov-Axiome und σ -Algebren

σ -Algebren

Sei Ω eine Menge. Eine Menge $\mathcal{A}\subseteq\mathcal{P}(\Omega)$ heißt σ -Algebra über Ω , falls gilt

- $\Omega \in \mathcal{A}$
- $\bullet \ \ \mathsf{Wenn} \ A \in \mathcal{A} \mathsf{, \ dann \ folgt} \ \bar{A} \in \mathcal{A}$
- ullet Für $n\in\mathbb{N}$ sei $A_n\in\mathcal{A}.$ Dann gilt auch $\bigcup_{n=1}^\infty A_n\in\mathcal{A}$

Für jede (endliche) Menge Ω stellt die Menge $\mathcal{P}(\Omega)$ eine σ -Algebra dar.

Für $\Omega=\mathbb{R}$ ist die Klasse der Borel'schen Mengen, die aus allen Mengen $A\subseteq\mathbb{R}$ besteht, welche sich durch abzählbare Vereinigungen und Schnitte von Intervallen (offen, halboffen oder geschlossen) darstellen lassen, eine σ -Algebra

Kolmogorov-Axiome

Sei Ω eine beliebige Menge und $\mathcal A$ eine σ -Algebra über Ω . Eine Abbildung $\Pr[.]:\mathcal A\to[0,1]$ heißt Wahrscheinlichkeitsmaß auf $\mathcal A$, falls

- $\Pr[\Omega] = 1$
- A_1, A_2, \ldots seien paarweise disjunkte Ereignisse \Longrightarrow

$$\Pr\left[\bigcup_{i=1}^{\infty} A_i\right] = \sum_{i=1}^{\infty} \Pr[A_i]$$

Für ein Ereignis $A \in \mathcal{A}$ heißt $\Pr[A]$ Wahrscheinlichkeit von A. Ein Wahrscheinlichkeitsraum ist definiert durch das Tupel $(\Omega, \mathcal{A}, \Pr)$

Sei $(\Omega, \mathcal{A}, \Pr)$ ein Wahrscheinlichkeitsraum und A, B, A_1, A_2, \dots Ereignisse \Longrightarrow

- $Pr[\emptyset] = 0, Pr[\Omega] = 1$
- $0 \le \Pr[A] \le 1$
- $\Pr[\bar{A}] = 1 \Pr[A]$
- Wenn $A \subseteq B$, so folgt $\Pr[A] \le \Pr[B]$

Lebesgue-Integrale

messbare Funktionen

Eine Funktion $f: \mathbb{R} \to \mathbb{R}$ heißt messbar, falls das Urbild jeder Borel'schen Menge ebenfalls eine Borel'sche Menge ist.

Für jede Borel'sche Menge A ist die zugehörige Indikatorfunktion messbar.

Jede stetige Funktion ist messbar.

Summen und Produkte von messbaren Funktionen sind wiederum

messbar.

Jeder messbaren Funktion kann man ein Integral, das so genannte Lebesgue-Integral $\int f d\lambda$ zuordnen

Sei $f:\mathbb{R} \to \mathbb{R}_0^+$ eine messbare Funktion \Longrightarrow $\Pr:A\to\int f\cdot I_A d\lambda$ ist eine Abbildung auf den Borel'schen Mengen, die die zweite Eigenschaft der Kolmogorov-Axiome erfüllt Gilt zusätzlich $\Pr[\mathbb{R}]=1$

f definiert auf natürliche Weise einen Wahrscheinlichkeitsraum $(\Omega, \mathcal{A}, \Pr)$ mit $\Omega = \mathbb{R}$ und \mathcal{A} ist die Menge der Borel'schen Mengen.

Kontinuierliche Zufallsvariablen

Dichtefunktion

Sei X eine kontinuierliche oder auch stetige Zufallsvariable \implies Dichtefunktion: $f_X: \mathbb{R} \to \mathbb{R}_0^+$

$$\int_{-\infty}^{\infty} f_X(x) dx = 1$$

Verteilungsfunktion

$$F_X(x) := \Pr[X \le x] = \Pr[\{t \in \mathbb{R} | t \le x\}] = \int_{-\infty}^x f_X(t)dt$$

 F_X ist monoton steigend

 F_X ist stetig

$$\lim_{x \to -\infty} F_X(x) = 0 \text{ und } \lim_{x \to \infty} F_X(x) = 1$$

Für jede differenzierbare Funktion F, welche die zuvor genannten Eigenschaften erfüllt \Longrightarrow

$$f(x) = F'(x)$$
 und $Pr[a < X \le b] = F_X(b) - F_X(a)$

$$\begin{aligned} & \text{F\"{u}r } a < X \leq b, \ a \leq X \leq b, \ a \leq X < b, \ a < X < b \ \text{gilt:} \\ & \int_{[a,b]} f(t)dt = \int_{]a,b[} f(t)dt = \int_{[a,b[} f(t)dt = \int_{]a,b[} f(t)dt \end{aligned}$$

Kontinuierliche Zufallsvariablen als Grenzwerte diskreter Zufallsvariablen

Sei X eine kontinuierliche Zufallsvariable

Definiert man für ein festes $\delta > 0$

$$X_{\delta} = n\delta \iff X \in [n\delta, (n+1)\delta[\text{ für } n \in \mathbb{Z} \implies \Pr[X_{\delta} = n\delta] = F_X((n+1)\delta) - F_X(n\delta)$$

Für $\delta \to 0$ nähert sich die Verteilung von X_δ der Verteilung von Ximm mehr an

Erwartungswert

sofern das Integral
$$\int_{-\infty}^{\infty} |t| \cdot f_X(t) dt$$
 existiert

Sei
$$X,Y$$
 Zufallsvariablen mit $Y:=g(X)$ \Longrightarrow $\mathbb{E}[Y]=\int_{-\infty}^{\infty}g(t)\cdot f_X(t)dt$

Varianz

Sei
$$X$$
 eine Zufallsvariable \Longrightarrow
$$\operatorname{Var}[X] = \mathbb{E}[(X - \mathbb{E}[X])^2] = \int_{-\infty}^{\infty} (t - \mathbb{E}[X])^2 \cdot f_X(t) dt,$$
 sofern $\mathbb{E}[(X - \mathbb{E}[X])^2]$ existiert

Wichtige stetige Verteilungen

Gleichverteilung

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{für } x \in [a,b] \\ 0 & \text{sonst} \end{cases}$$

$$F(x) = \int_{-\infty}^{x} f(t)dt = \begin{cases} 0 & \text{für } x < a \\ \frac{x-a}{b-a} & \text{für } a \le x \le b \\ 1 & \text{für } x > b \end{cases}$$

$$\mathbb{E}[X] = \frac{a+b}{2}, \, \mathsf{Var}[X] = \frac{(a-b)^2}{12}$$

Normalverteilung

Sei X eine Zufallsvariable mit $W_X=\mathbb{R}$ und Parametern $\mu\in\mathbb{R}$ und $\sigma\in\mathbb{R}^+$ X ist normalverteilt, falls

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} \cdot \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) = \varphi(x;\mu,\sigma)$$

$$F(x) = \frac{1}{\sqrt{2\pi}\sigma} \cdot \int_{-\infty}^{x} \exp\left(-\frac{(t-\mu)^2}{2\sigma^2}\right) dt =: \Phi(x; \mu, \sigma)$$

$$\mathbb{E}[X] = \mu, \, \mathsf{Var}[X] = \sigma^2$$

$$X \sim \mathcal{N}(\mu, \sigma^2)$$

Lineare Tranformation der Normalverteilung

Sei $X\sim \mathcal{N}(\mu,\sigma^2)$ und Y=aX+b mit beliebigen $a\in\mathbb{R}\backslash 0$ und $b\in\mathbb{R}\Longrightarrow Y\sim \mathcal{N}(a\mu+b,a^2\sigma^2)$

Sei
$$Y := \frac{X - \mu}{\sigma} \implies Y \sim \mathcal{N}(0, 1)$$
. Y heißt auch normiert.

Additivität der Normalverteilung

Seien X_1,\ldots,X_n unabhängige und normalverteilte Zufallsvariablen mit Parameter $\mu_i,\sigma_i(1\leq i\leq n)$ und $Z:=a_1X_1+\cdots+a_nX_n\Longrightarrow Z$ ist normalverteilt mit Erwartungswert $\mu=a_1\mu_1+\cdots+a_n\mu_n$ und Varianz $\sigma^2=a_1^2\sigma_1^2+\cdots+a_n^2\sigma_n^2$

Standardnormalverteilung

X ist standardnormalverteilt, falls $X\sim\mathcal{N}(0,1)$ Die zugehörige Dichte $\varphi(x;0,1)$ kürzen wir durch $\varphi(x)$ ab $\mathbb{E}[X]=0,\, \mathrm{Var}[X]=1$

Exponentialverteilung

Die Exponentialverteilung ist das kontinuierliche Analogon zur geometrischen Verteilung. Sie ist gedächtnislos und spielt vor allem bei der Modellierung von Wartezeiten eine große Rolle.

Sei X eine Zufallsvariable mit Parameter $\lambda, \lambda > 0$ X ist exponentialverteilt, falls

$$\begin{split} f(x) &= \begin{cases} \lambda \cdot e^{-\lambda x} & \text{falls } x \geq 0 \\ 0 & \text{sonst} \end{cases} \\ F(x) &= \begin{cases} 1 - e^{-\lambda x} & \text{für } x \geq 0 \\ 0 & \text{sonst} \end{cases} \\ \mathbb{E}[X] &= \frac{1}{\lambda}, \, \mathsf{Var}[X] = \frac{1}{\lambda^2} \end{split}$$

Eigenschaften der Exponentialverteilung

Sei X exponentialverteilt mit Parameter λ und Y:=aX mit a>0 $\implies Y$ ist exponentialverteilt mit Parameter λ/a

Gedächtnislosigkeit

Eine (positive) kontinuierliche Zufallsvariable X mit $W_X=\mathbb{R}^+$ ist genau dann exponentialverteilt, wenn für alle x,y>0 gilt, dass $\Pr[X>x+y|X>y]=\Pr[X>x]$

Anwendung bei Zerfallsraten

$$\begin{split} \mathbb{E}[X] &\equiv \text{erwartete Zeit bis Zerfall} \\ \lambda &= \frac{1}{\mathbb{E}[X]} \end{split}$$

Exponentialverteilung als Grenzwert der geometrischen Verteilung

Sei X_n eine Folge geometrisch verteilter Zufallsvariablen mit Parameter $p_n = \lambda/n$

Sei $Y_n:=\frac{1}{n}X_n \implies$ Die Folge Y_n geht für $n\to\infty$ in eine exponentialverteilte Zufallsvariable mit Parameter λ über.

Mehrere kontinuierliche Zufallsvariablen

Mehrdimensionale Dichten

Seien X,Y kontinuierliche Zufallsvariablen \Longrightarrow Die Dichte ist beschrieben durch: $f_{X,Y}:\mathbb{R}^2\to\mathbb{R}_0^+$ mit

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx dy = 1$$

Für ein Ereignis $A \subseteq \mathbb{R}^2$ gilt: $\Pr[A] = \int_A f_{X,Y}(x,y) dx dy$

Mehrdimensionale Verteilung

Sei $f_{X,Y}$ die gemeinsame Dichte der Zufallsvariablen $X,Y\Longrightarrow$ Die gemeinsame Verteilung ist definiert als: $F_{X,Y}:\mathbb{R}^2\to [0,1]$ $F_{X,Y}(x,y)=\Pr[X\leq x,Y\leq y]=\int_{-\infty}^y\int_{-\infty}^xf_{X,Y}(u,v)dudv$

Randdichte

Sei $f_{X,Y}$ die gemeinsame Dichte der Zufallsvariablen X und Y. Die Randdichte von X ist:

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,v)dv$$

Randverteilung

Sei $f_{X,Y}$ die gemeinsame Dichte der Zufallsvariablen X und Y. Die Randverteilung von X ist:

$$F_X(x) = \Pr[X \le x] = \int_{-\infty}^x \left[\int_{-\infty}^\infty f_{X,Y}(u,v) dv \right] du$$

Unabhängigkeit

Seien X_1,\ldots,X_n Zufallsvariablen \Longrightarrow X_1,\ldots,X_n sind genau dann unabhängig, wenn $F_{X_1,\ldots,X_n}(x_1,\ldots,x_n)=F_{X_1}(x_1)\cdot\ldots\cdot F_{X_n}(x_n)$ bzw. $f_{X_1,\ldots,X_n}(x_1,\ldots,x_n)=f_{X_1}(x_1)\cdot\ldots\cdot f_{X_n}(x_n)$ bzw.

Warteprobleme mit der Exponentialverteilung - Warten auf mehrere Ereignisse

Seien X_1,\ldots,X_n unabhängige und exponentialverteilte Zufallsvariablen mit den Parametern $\lambda_1,\ldots,\lambda_n\implies$

 $X:=min\{X_1,\ldots,X_n\}$ ist exponentialverteilt mit dem Parameter $\lambda_1+\cdots+\lambda_n$

Erläuterung:

Wartet man auf das Eintreffen eines Ereignisses aus mehreren unabhängigen Ereignissen, so addieren sich die Raten.

Poisson-Prozess

Seien T_1,T_2,\ldots unabhängige exponentialverteilte Zufallsvariablen mit Parameter λ und sei $X(t):=\max\{n\in\mathbb{N}|T_1+\cdots+T_n\leq t\}$ für $t>0 \implies X(t)$ ist Poisson-verteilt mit Parameter $t\lambda$

Erläuterung: Wenn man Ereignisse zählt, deren zeitlicher Abstand exonentialverteilt ist, so ist die Anzahl dieser Ereignisse in einer festen Zeitspanne Poisson-verteilt.

Summen von Zufallsvariablen

Seien X und Y unahängige kontinuierliche Zufallsvariablen und $Z:=X+Y\Longrightarrow f_Z(z)=\int_{-\infty}^\infty f_X(x)\cdot f_Y(z-x)dx$

Momenterzeugende Funktionen für kontinuierliche Zufallsvariablen

Sei X eine Zufallsvariable. Die zugehörige momenterzeugede Funktion ist

$$M_X(s) = \mathbb{E}[e^{Xs}]$$

Gleichverteilung

Sei U eine gleichverteilte Zufallsvariable auf $[a,b]\Longrightarrow M_U(t)=\mathbb{E}[e^{tX}]=rac{e^{tb}-e^{ta}}{t(b-a)}$

Standardnormalverteilung

Sei
$$N \sim \mathcal{N}(0,1) \implies$$
 $M_N(t) = e^{\frac{t^2}{2}}$

Normalverteilung

Sei
$$Y \sim \mathcal{N}(\mu, \sigma^2) \Longrightarrow M_Y(t) = e^{t\mu + (t\sigma)^2/2}$$

Zentraler Grenzwertsatz

Seien X_1,\ldots,X_n unabhängige und gleich verteilte Zufallsvariablen mit Erwartungswert μ und Varianz σ^2 ($\sigma^2>0$) für X_i . Und sei $Y_n:=X_1+\cdots+X_n$ für $n\geq 1$ \Longrightarrow $Z_n:=\frac{Y_n-n\mu}{\sigma\sqrt{n}}$ ist asymptotisch standardnormalverteilt, also $Z_n\sim\mathcal{N}(0,1)$ für $n\to\infty$

Die Verteilung von Z_n konvergiert gegen die Standardnormalverteilung für $n \to \infty$

Aussage:

Wenn eine Zufallsgröße durch lineare Kombination vieler unabhängiger identisch verteilter Zufallsgrößen entsteht, so erhält man näherungsweise eine Normalverteilung.

Grenzwertsatz von de Moivre

Seien X_1,\dots,X_n unabhängige Bernoulli-verteilte Zufallsvariablen mit gleicher Erfolgswahrscheinlichkeit p und $H_n:=X_1+\dots+X_n$ für $n\geq 1\Longrightarrow H_n^*:=\dfrac{H_n-np}{\sqrt{np(1-p)}}$ konvergiert für $n\to\infty$ gegen die Standardnormalverteilung

Normalverteilung als Grenzwert der Binomialverteilung

Sei
$$H_n \sim \mathrm{Bin}(n,p)$$
 eine binomialverteilte Zufallsvariable. $\Longrightarrow \frac{H_n}{n}$ konvergiert für $n \to \infty$ gegen $\mathcal{N}\Big(p,\frac{p(1-p)}{n}\Big)$

Verschiedene Approximationen der Binomialverteilung

Sei $H_n \sim \text{Bin(n,p)}$ mit Verteilungsfunktion F_n . Für $n \to \infty$ gilt: $F_n(t) = \Pr[\frac{H_n}{n} \le \frac{t}{n}] \to \Phi\left(\frac{\frac{t}{n} - p}{\sqrt{\frac{p(1-p)}{n}}}\right) = \Phi\left(\frac{t - np}{\sqrt{p(1-p)n}}\right)$

Faustregel: $np \ge 5$ und $n(1-p) \ge 5$

Stetigkeitskorrektur

Verwende
$$\Pr[X \leq x] pprox \Phi \Bigg(\frac{x + 0.5 - np}{\sqrt{np(1-p)}} \Bigg)$$
 anstatt $\Pr[X \leq x] pprox \Phi \Bigg(\frac{x - np}{\sqrt{np(1-p)}} \Bigg)$

Induktive Statistik

Ziel:

Aus gemessenen Zufallsgrößen auf die zugrunde liegenden Gesetzmäßigkeiten schließen.

Schätzvariablen

Man führe n Messungen durch. Jede Messung wird durch eine Zufallsvariable X_i dargestellt. \Longrightarrow

Die n Messungen heißen Stichproben, und die Variablen X_i nennt man Stichprobenvariablen.

Grundprinzip statistischer Verfahren

Wenn man ein Experiment genügen oft wiederholt, so nähert sich der Durchschnitt der Versuchsergebnisse immer mehr dem Verhalten an, das man im Mittel erwarten würde. Auf diesem Grundprinzip beruhen alle statistischen Verfahren.

arithmetische Mittel

Seien X_i Zufallsvariablen. Das arithmetische Mittel \bar{X} ist:

$$\bar{X} := \frac{1}{n} \sum_{i=1}^{n} X_i$$

Ist \bar{X} ein erwartungstreuer Schätzer, dann gilt:

$$\mathbb{E}[\bar{X}] = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[X_i] = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[X] = \mathbb{E}[X]$$

erwartungstreue Schätzvariable

Sei X eine Zufallsvariable mit Dichte $f(x; \theta)$

Eine Schätzvariable/Schätzer für den Parameter θ der Dichte X ist eine Zufallsvariable, die aus mehreren (meist unabhänigen und identisch verteilten) Stichprobenvariablen zusammengesetzt ist.

Ein Schätzer U heißt erwartungstreu, wenn gilt

$$\mathbb{E}[U] = \theta$$

Bias der Schätzvariablen

 $\mathbb{E}[U-\theta]$ nennt man Bias der Schätzvariablen U. Bei erwartungstreuen Schätzvariablen ist der Bias gleich null.

Mean squared error (MSE) - mittlere quadratische Abweichung

Sei U eine Schätzvariable \Longrightarrow

$$MSE := \mathbb{E}[(U - \theta)^2]$$

Sei U erwartungstreu \Longrightarrow $MSE = \mathbb{E}[(U - \mathbb{E}[U])^2] = \mathsf{Var}[U]$

effizientere Schätzvariablen

Seien A,B Schätzvariablen und MSE von A kleiner, als die von B

A ist effizienter als B

Konsistenz im quadratischen Mittel

Eine Schätzvariable heißt konsistent im quadratischen Mittel, wenn $MSE \rightarrow 0$ für $n \rightarrow \infty$ (n sei der Umfang der Stichprobe)

Bei jeder Verteilung mit endlicher Varianz folgt: Der Schätzer \bar{X} ist konsistent.

schwache Konsistent

Sei
$$\bar{X}:=rac{1}{n}\sum_{i=1}^n X_i$$
 und $\varepsilon>0$ beliebig, aber fest \implies

$$\Pr[|\bar{X} - \theta| \ge \varepsilon] = \Pr[|\bar{X} - \mathbb{E}[X]| \ge \varepsilon] \le \frac{\mathsf{Var}[\bar{X}]}{\varepsilon^2} \to 0 \text{ für } n \to \infty$$

Also: Für genügend große n liegen als die Werte von \bar{X} beliebig nahe am gesuchten Wert $\theta = \mathbb{E}[X]$. Diese Eigenschaft nennt man auch schwache Konsistenz, da sie aus der Konsistenz im quadratischen Mittel folgt.

Stichprobenmittel

Seien X_1, \ldots, X_n Stichproben und \bar{X} ein erwartungstreuer Schätzer für den Erwartungswert ⇒

$$\bar{X} := \frac{1}{n} \sum_{i=1}^{n} X_i$$

heißt Stichprobenmittel der Stichprobe X_1, \ldots, X_n

Stichprobenvarianz

Seien X_1, \ldots, X_n Stichproben und \bar{X} und S^2 erwartungstreure Schätzer für den Erwartungswert bzw. die Varianz \implies

$$S^2:=rac{1}{n-1}\sum_{i=1}^n(X_i-ar{X})^2$$
heißt Stichprobenvarianz der Stichprobe X_1,\dots,X_n

Maximum-Likelihood-Prinzip (MLE) zur Konstruktion von Schätzvariablen

Likelihood-Funktion

Sei $\vec{X} = (X_1, \dots, X_n)$, wobei X_1, \dots, X_n unabhängige Kopien der Zufallsvariablen X mit der Dichte $f(x;\theta) = \Pr_{\theta}[X = x]$ ist. Hierbei sei θ der gesuchte Parameter der Verteilung. Außerdem sei $\vec{x} = (x_1, \dots, x_n)$, wobei eine Stichprobe für jede Variable X_i den Wert x_i liefert.

$$L(\vec{x}; \theta) := \prod_{i=1}^{n} f(x_i; \theta) = \prod_{i=1}^{n} \operatorname{Pr}_{\theta}[X_i = x_i]$$

$$\stackrel{unabh.}{=} \operatorname{Pr}_{\theta}[X_1 = x_1, \dots, X_n = x_n]$$

$$\iff \ln(L(\vec{x}; \theta)) = \sum_{i=1}^{n} \ln(f(x_i; \theta))$$

$$\iff \ln(L(\vec{x};\theta)) = \sum_{i=1}^{n} \ln(f(x_i;\theta))$$

entspricht der Wahrscheinlichkeit, dass wir die Stichprobe \vec{x} erhalten, wenn wir den Parameter mit dem Wert θ belegen.

L ist die Likelihood-Funktion der Stichprobe \vec{x}

Maximum-Likelihood-Schätzwert

Ein Schätzwert $\hat{\theta}$ für den Parameter einer Verteilung $f(x;\theta)$ heißt Maximum-Likelihood-Schätzwert (ML-Schätzwert) für eine Stichprobe \vec{x} , wenn gilt:

$$L(\vec{x};\theta) \le L(\vec{x};\hat{\theta}) \ \forall \theta$$

Maximum-Likelihood-Funktion

Die Maximum-Likelihood-Funktion der Stichprobe \vec{x} ist: $\hat{\theta}_{MLE} = \arg\max_{\alpha} L(\vec{x}; \theta)$

Konfidenzintervalle

Konfidenzniveau

Sei θ der gesuchte Parameter und U_1, U_2 zwei Schätzvariablen und es gilt:

$$\Pr[U_1 \le \theta \le U_2] \ge 1 - \alpha$$

 \implies Die Wahrscheinlichkeit $1-\alpha$ heißt Konfidenzniveau.

Wenn wir für eine konkrete Stichprobe die Schätzer U_1 und U_2 berechnen und davon ausgehen, dass $\theta \in [U_1, U_2]$ ist, so ziehen wir höchstens mit Wahrscheinlichkeit α einen falschen Schluss.

Konfidenzintervall

Sei θ der gesuchte Parameter und U_1, U_2 zwei Schätzvariablen und

$$\theta \in [U_1, U_2]$$

 $\implies [U_1, U_2]$ heißt Konfidenzintervall.

In vielen Fällen verwendet man nur eine Schätzvariable ${\cal U}$ und konstruiert ein symmetrisches Konfidenzintervall: $[U - \delta, U + \delta]$

γ -Quantil

Sei X eine stetige Zufallsvariable mit Verteilung F_X . Eine Zahl x_γ $\mathsf{mit}\ F_X(x_\gamma) = \gamma$

heißt γ -Quantil von X bzw. der Verteilung F_X

Für die Standardnormalverteilung bezeichnet z_{γ} das γ -Quantil

Testen von Hypothesen

Definition eines Tests

Seien X_1, \ldots, X_n unabhängige Stichprobenvariablen mit derselben Verteilung wie X und \vec{x} der zugehörige Stichprobenvektor. \Longrightarrow Für \vec{x} muss nun die Frage beantwortet werden, ob wir für diesen Versuchsausgang die Hypothese annehmen oder ablehnen.

Ablehnungsbereich - kritischer Bereich

Sei $K := \{\vec{x} \in \mathbb{R}^n; \vec{x} \text{ führt zur Ablehnung der Hypothese}\} \implies$ K ist der Ablehnungsbereich bzw. kritischer Bereich des Tests.

Konstruktion des Ablehnungsbereiches

Gewöhnlich wird der Ablehnungsbereich K konstruiert, indem man die Zufallsvariablen X_1, \ldots, X_n zu einer neuen Variablen T, der so genannten Testgröße, zusammenfasst. Dann unterteilt man den Wertebereich \mathbb{R} von T in mehrere Bereiche, die entweder zur Ablehnung der Hypothese führen sollen oder nicht. Dabei betrachtet man meist ein einzelnes halboffenes oder abgeschlossenes Intervall und spricht dann von einem einseitigen bzw. von einem zweiseitigen Test.

Die Menge $\tilde{K} \subseteq \mathbb{R}$ enthalte die Werte von T, die zur Ablehnung der Hypothese führen sollen.

 $ilde{K}\subseteq\mathbb{R}$ entspricht direkt dem Ablehnungsbereich $K=T^{-1}(ilde{K}\subseteq$ \mathbb{R}^n)

Testgröße

Die Testgröße erhält man, indem man die Zufallsvariablen X_1, \ldots, X_n zu einer neuen Variablen T zusammenfasst. T ist dann die Testgröße.

Hypothese und Alternative

Nullhypothese (H_0) : die zu überprüfende Hypothese

Alternative (H_1) : Eine zweite Hypothese

triviale Alternative: H_0 gilt nicht

Fehler bei statistischen Tests

Bei jedem Test können mit einer gewissen Wahrscheinlichkeit falsche Schlüsse gezogen werden.

 H_0 gilt, wird aber abgelehnt (das Ergebnis $ec{x}$ der Fehler 1. Art:

Stichprobe liegt in K)

 H_0 gilt nicht, wird aber angenommen (das Er-Fehler 2. Art:

gebnis \vec{x} der Stichprobe liegt nicht in K)

Signifikanzniveau

Die Wahrscheinlichkeit für den Fehler 1. Art wird mit α bezeichnet. Der Fehler 1. Art wird auch α -Fehler genannt.

 α ist das Signifikanzniveau des Tests

Güterfunktion

Die Güterfunktion $g(\cdot,p)$ gibt allgemein die Wahrscheinlichkeit an, mit der ein Test die Nullhypothese verwirft.

Allgemeines Vorgehen bei statistischen Tests

- 1. Formulierung von Annahmen (bzgl. Verteilung der Stichprobenvariablen und deren Unabhängigkeit)
- 2. Formulierung der Nullhypothese
- 3. Auswahl des Testverfahrens
- 4. Durchführung des Tests und Entscheidung

Berechnung der Fehlerwahrscheinlichkeiten

$$\begin{aligned} & \text{Fehlerw'keit 1. Art} = \sup_{p \in H_0} \Pr{}_p[T \in K] = \sup_{p \in H_0} \Pr{}_p[T \le k] \\ & \text{Fehlerw'keit 2. Art} = \sup_{p \in H_1} \Pr{}_p[T \not \in K] = \sup_{p \in H_1} \Pr{}_p[T > k] \end{aligned}$$

Das richtige Testverfahren finden

Anzahl der beteiligten Zufallsgrößen

Ein-Stichproben-Test: eine Zufallsgröße

Zwei-Stichproben-Test: zwei Zufallsgrößen mit potentiell un-

> terschiedlichen Verteilungen, für die jeweils eine Stichprobe erzeugt wird

Formulierung der Nullhypothese

Welche Größe dient zur Definition der Nullhypothese? Hierbei werden in erster Linie Tests unterschieden, die Aussagen über verschiedene so genannte Lageparameter treffen, wie z.B. den Erwartungswert oder die Varianz der zugrunde liegenden Verteilungen.

Gelegentlich wird zur Formulierung der Nullhypothese auch der so genannte Median betrachtet. Der Median einer Verteilung entspricht dem (kleinsten) Wert x mit $F(x) = \frac{1}{2}$

Annahmen über die Zufallsgrößen

Was ist über die Verteilung der untersuchten Größe(n) bekannt? Bei entsprechenden Annahmen könnte es sich z.B. um die Art der Verteilung, den Erwartungswert oder die Varianz handeln.

Ein-Stichproben-Tests für Lageparameter

- Gaußtest
- t-Test
- Wilcoxon-Test
- χ²-Varianztest

Zwei-Stichproben-Tests für Lageparameter

- Zwei-Stichproben-t-Test
- Zwei-Stichproben-Wilcoxon-Test

Nicht an Lageparametern orientierte Tests

χ²-Anpassungstest

Tests

Approximativer Binomialtest

Annahmen:

 X_1,\ldots,X_n seien unabhängig und identisch verteilt mit $\Pr[X_i=$ |1| = p und $\Pr[X_i = 0] = 1 - p$, wobei p unbekannt sei. n sei hinreichend groß, so dass die Approximation nach Grenzwertsatz von de Moivre brauchbare Ergebnisse liefert.

Hypothesen Ablehnungskriterium für H_0 $H_0: p=p_0$ gegen $H_1: p \neq p_0$ $|Z| > z_{1-\alpha/2}$ $H_0: p \geq p_0$ gegen $H_1: p < p_0$ $Z < z_{\alpha}$ $H_0: p \le p_0 \text{ gegen } H_1: p > p_0 \mid Z > z_{1-\alpha}$

Testgröße:

$$Z := \frac{h - np_0}{\sqrt{np_0(1 - p_0)}}$$

 $Z:=\overline{\sqrt{np_0(1-p_0)}}$ wobei $h:=X_1+\cdots+X_n$ die Häufigkeit bezeichnet, mit der die Ereignisse $X_i = 1$ aufgetreten sind.

Gaußtest

Annahmen:

 X_1, \ldots, X_n seien unabhängig und identisch verteilt mit $X_i \sim \mathcal{N}(\mu, \sigma^2)$, wobei σ^2 bekannt ist. Alternativ gelte $\mathbb{E}[X_i] = \mu$ und $\text{Var}[X_i] = \sigma^2$, und n sei groß genug.

Hypothesen

Ablehnungskriterium für H_0

$$H_0: \mu = \mu_0 \ ext{gegen} \ H_1: \mu
eq \mu_0 \ |Z| > z_{1-lpha/2} \ H_0: \mu \geq \mu_0 \ ext{gegen} \ H_1: \mu < \mu_0 \ Z < z_lpha \ H_0: \mu \leq \mu_0 \ ext{gegen} \ H_1: \mu > \mu_0 \ Z > z_{1-lpha}$$

$$Z := \frac{\bar{X} - \mu_0}{\sigma} \sqrt{n}$$

Annahmen:

 X_1, \ldots, X_n seien unabhängig und identisch verteilt mit $X_i \sim \mathcal{N}(\mu, \sigma^2)$. S^2 sei die Stichprobenvarianz. Alternativ gelte $\mathbb{E}[X_i] = \mu$ und $\mathsf{Var}[X_i] = \mu$ σ^2 , und n sei groß genug.

Hypothesen

Ablehnungskriterium für H_0

$H_0: \mu = \mu_0 \text{ gegen } H_1: \mu \neq \mu_0$ $H_0: \mu \geq \mu_0 \text{ gegen } H_1: \mu < \mu_0$ $H_0: \mu \leq \mu_0 \text{ gegen } H_1: \mu > \mu_0$	$ T > t_{n-1,1-\alpha/2}$
$H_0: \mu \geq \mu_0$ gegen $H_1: \mu < \mu_0$	$T < t_{n-1,\alpha}$
$H_0: \mu \le \mu_0 \text{ gegen } H_1: \mu > \mu_0$	$T > t_{n-1,1-\alpha}$

Testgröße:

$$T := \frac{\bar{X} - \mu_0}{S} \sqrt{n}$$

Zwei-Stichproben-t-Test

Annahmen:

 X_1, \ldots, X_m und Y_1, \ldots, Y_n seien unabhängig und jeweils identisch verteilt, wobei $X_i \sim \mathcal{N}(\mu_X, \sigma_X^2)$ und $Y_i \sim \mathcal{N}(\mu_Y, \sigma_Y^2)$ gelte. Die Varianzen seien identisch, also $\sigma_X^2 = \sigma_Y^2$

$$\begin{array}{lll} \text{Hypothesen} & \text{Ablehnungskriterium für H_0} \\ \hline H_0: \mu_X = \mu_Y \text{ gegen } H_1: \mu_X \neq \mu_Y & |T| > t_{m+n-2,1-\alpha/2} \\ H_0: \mu_X \geq \mu_Y \text{ gegen } H_1: \mu_X < \mu_Y & T < t_{m+n-2,\alpha} \\ H_0: \mu_X \leq \mu_Y \text{ gegen } H_1: \mu_X > \mu_Y & T > t_{m+n-2,1-\alpha} \end{array}$$

$$T := \sqrt{\frac{n+m-2}{\frac{1}{m} + \frac{1}{n}}} \cdot \frac{\bar{X} - \bar{Y}}{\sqrt{(m-1) \cdot S_X^2 + (n-1) \cdot S_Y^2}}$$

 χ^2 -Anpassungstest

Annahmen:

 X_1,\ldots,X_n seien unabhängig und identisch verteilt mit W_{X_i} $\{1,\ldots,k\}.$

Hypothesen

$$H_0: \Pr[X=i] = p_i$$
 für $i=1,\ldots,k$ $H_1: \Pr[X=i] \neq p_i$ für mindestens ein $i \in \{1,\ldots,k\}$

Ablehnungskriterium für H_0 bei Signifikanzniveau α :

$$T > \chi^2_{k-1,1-\alpha},$$

dabei sollte gelten, dass $np_i \geq 1$ für alle i und $np_i \geq 5$ für mindestens 80% der Werte $i=1,\ldots,k$

$$T = \sum_{i=1}^{k} \frac{(h_i - np_i)^2}{np_i},$$

wobei h_i die Häufigkeit angibt, mit der X_1, \ldots, X_n den Wert i angenommen haben.

Stochastische Prozesse

Wir betrachten zeitliche Folgen von Zufallsexperimenten. Mathematisch beschreibt man diese durch einen so genannten stochastischen Prozess. Darunter versteht man eine Folge von Zufallsvariablen $(X_t)_{t \in T}$, die das Verhalten des Systems zu verschiedenen Zeitpunkten t angeben.

Sei
$$T=\mathbb{N}_0 \implies$$
 stochastische Prozesse mit diskreter Zeit.
Sei $T=\mathbb{R}_0^+ \implies$ stochastische Prozesse mit kontinuierlicher Zeit.

Eine besonders einfache Art von stochastischen Prozessen sind so genannte Markov-Ketten. Diese haben die Eigenschaft, dass der nächste Zustand des Prozesses zwar vom aktuellen Zustand abhängen darf, nicht aber von der Historie, d.h. davon, wie der aktuelle Zustand erreicht wurde.

Markov-Kette

Eine (endliche) Markov-Kette (mit diskreter Zeit) über der

Zustandsmenge $S = \{0, \dots n-1\}$

besteht aus einer unendlichen Folge von

Zufallsvariablen $(X_t)_{t \in \mathbb{N}_0}$ mit

Wertemenge S

sowie der Starterteilung q_0 mit $q_0^T \in \mathbb{R}^n$.

Die Komponenten von q_0 sind ≥ 0 und addieren sich zu 1.

Für jede Indexmenge $I\subseteq\{0,\ldots,t-1\}$ und beliebige Zustände $i, j, s_k (k \in I)$ gilt:

$$\Pr[X_{t+1} = j | X_t = i, \ \forall k \in I : X_k = s_k] = \Pr[X_{t+1} = j | X_t = i]$$

Startverteilung

 $q_0=(p_{\varepsilon 0},p_{\varepsilon 1},\ldots,p_{\varepsilon n})$ mit $S=0,\ldots,n$, wobei $p_{\varepsilon i}$ die Wahrscheinlichkeit angibt im Zustand i zu starten.

Zeithomogene Markov-Kette

Sind die Werte $p_{ij} := \Pr[X_{t+1} = j | X_t = i]$ von t unabhängig, so nennt man die Markov-Kette (zeit)homogen.

Übergangsmatrix

Sei die Markov-Kette homogen. ⇒

Die Übergangsmatrix ist:

$$P = (p_{ij})_{0 \le i,j < n} = \begin{bmatrix} p_{00} & \dots & p_{0n} \\ \vdots & \ddots & \vdots \\ p_{n0} & \dots & p_{nn} \end{bmatrix}$$

Knoten $\hat{=}$ Zustände S

Unendliche Markov-Kette

Sei
$$S = \mathbb{N}_0 \implies$$

die Markov-Kette ist unendlich.

Wahrscheinlichkeitsraum einer Markov-Kette

Man betrachte die Kette von der Zeit 0 bis t_0 . Sei $\vec{x} = (x_0, x_1, \dots, x_{t_0})$ die Folge von Zuständen, die von der Kette in dieser Zeit durchlaufen wurde und $\Omega \subseteq S^{t_0+1}$ die Menge möglicher Zustandsfolgen. Zu einer beliebigen Folge $\omega := (x_0, x_1, \dots, x_{t_0}) \in \Omega$ ist der diskrete

Wahrscheinlichkeitsraum:

$$\Pr[\omega] = (q_0)_{x_0} \cdot \prod_{i=1}^{t_0} \Pr[X_i = x_i | X_{i-1} = x_{i-1}]$$

Berechnung von Übergangswahrscheinlichkeiten

Die Situation zum Zeitpunkt t wird durch den Zustandsvektor q_t (Zeilenvektor) beschrieben.

 $(q_t)_i$ bezeichnet die Wahrscheinlichkeit, mit der sich die Kette nach t Schritten im Zustand i aufhält.

$$\begin{split} \Pr[X_{t+1} = k] &= \sum_{i=0}^{n-1} \Pr[X_{t+1} = k | X_t = i] \cdot \Pr[X_t = i] \\ \text{also } (q_{t+1})_k &= \sum_{i=0}^{n-1} p_{ik} \cdot (q_t)_i \\ \text{bzw. } q_{t+1} = q_t \cdot P \end{split}$$

$$q_t = q_0 \cdot P^t$$
 und $q_{t+k} = q_t \cdot P^k$

Die Einträge P^k geben an, mit welcher Wahrscheinlichkeit ein Übergang vom Zustand i zum Zustand j in genau k Schritten erfolgt:

$$p_{ij}^{(k)} := \Pr[X_{t+k} = j | X_t = i] = (P^k)_{ij}$$

Exponentiation von Matrizen

Sei
$$P$$
 diagonalisierbar \implies $P^k = B \cdot D^k \cdot B^{-1}$

Übergangszeit

Die Anzahl der Schritte, die von der Markov-Kette für den Weg von Zustand i nach Zustand j benötigt werden, wird als Übergangszeit bezeichnet und ist definiert durch:

$$T_{ij} := \min\{n \ge 0 | X_n = j, \mathsf{wenn} X_0 = i\}$$

Wenn j nie erreicht wird gilt: $T_{ij} = \infty$

Rückkehrzeit

Die Anzahl der Schritte, die von der Markov-Kette benötigt wird, um von Zustand i zum Zustand i zurückzukehren, wird als Rückkehrzeit bezeichnet und ist definiert durch:

$$T_i := T_{ii} = \min\{n \ge 1 | X_n = i, \mathsf{wenn} X_0 = i\}$$

Ankunftswahrscheinlichkeit

Die Wahrscheinlichkeit in beliebig vielen Schritten vom Zustand i in den Zustand j zu gelangen, wird als Ankunftswahrscheinlichkeit bezeichnet und ist definiert durch:

$$f_{ij} := \Pr[T_{ij} < \infty] = p_{ij} + \sum_{k \neq j} p_{ik} \cdot f_{kj} \text{ für alle } i, j \in S, i \neq j$$

Rückkehrwahrscheinlichkeit

Die Wahrscheinlichkeit in beliebig vielen Schritten vom Zustand j in den Zustand j zurückzukehren, wird als Rückkehrwahrscheinlichkeit bezeichnet und ist definiert durch:

$$f_j := f_{jj} = \Pr[T_j < \infty] = p_{jj} + \sum_{k \neq j} p_{jk} \cdot f_{kj}$$

erwartete Übergangszeit

$$h_{ij}:=\mathbb{E}[T_{ij}]=1+\sum_{k\neq j}p_{ik}\cdot h_{kj} \text{ für alle } i,j\in S, i\neq j$$
 sofern die Erwartungswerte h_{ij} und h_{kj} existieren.

erwartete Rückkehrzeit

$$h_j := h_{jj} = \mathbb{E}[T_j] = 1 + \sum_{k \neq j} p_{jk} \cdot h_{kj}$$

sofern der Erwartungswert h_{kj} existiert.

Gambler's Ruin Problem

Sei folgende Markov-Kette gegeben mit q = 1 - p:

$$\implies f_{i,m} = \frac{1 - \left(\frac{1-p}{p}\right)^j}{1 - \left(\frac{1-p}{p}\right)^m}$$

Stationäre Verteilung

Sei P die Übergangsmatrix einer Markov-Kette. Als stationäre Verteilung dieser Markov-Kette wird der Zustandsvektor π genannt, wenn gilt:

$$\pi = \pi \cdot P$$

Bedeutung:

Wenn die Markov-Kette einmal den Zustandsvektor π angenommen hat, so bleibt dieser bei allen weiteren Übergängen erhalten.

Nicht alle Markov-Ketten erfüllen diese Eigenschaft.

absorbierend, transient, rekurrent

absorbierend

Ein Zustand i heißt absorbierend, wenn aus ihm keine Übergänge herausführen, d.h. $p_{ij} = 0$ für alle $j \neq i$ und folglich $p_{ii} = 1$

transient

Ein Zustand i heißt transient, wenn $f_i < 1$, d.h. mit positiver Wahrscheinlichkeit $1 - f_i > 0$ kehrt der Prozess nach einem Besuch von i nie mehr dorthin zurück.

rekurrent

Ein Zustand i mit $f_i = 1$ heißt rekurrent.

Irreduzibilität

Eine Markov-Kette heißt irreduzibel, wenn es für alle Zustandspaare $i, j \in S$ eine Zahl $n \in \mathbb{N}$ gibt, so dass $p_{ij}^{(n)} > 0$

Bedeutung:

Jeder Zustand kann von jedem anderen Zustand aus mit positiver

Wahrscheinlichkeit erreicht werden, wenn nur genügend viele Schritte durchgeführt werden. \implies Graph ist stark zusammenhängend.

Für irreduzible endliche Markov-Ketten gilt: $f_{ij}=\Pr[T_{ij}<\infty]=1$ für alle Zustände $i,j\in S$ und alle $h_{ij}=\mathbb{E}[T_{ij}]$ existieren.

Eine irreduzible endliche Markov-Kette besitzt eine eindeutige stationäre Verteilung π und es gilt $\pi_j=\frac{1}{h_{jj}}$ für alle $j\in S$

Aperiodizität

Periode

Die Periode eines Zustands j ist definiert als die größte Zahl $\xi \in \mathbb{N}$, so dass gilt:

$$\{n \in \mathbb{N}_0 | p_{jj}^{(n)} > 0\} \subseteq \{i \cdot \xi | i \in \mathbb{N}_0\}$$

Ein Zustand mit Periode $\xi = 1$ heißt aperiodisch.

Ein Zustand $i\in S$ ist genau dann aperiodisch, falls gilt: Es gibt ein $n_0\in\mathbb{N}$, sodass $p_{ii}^{(n)}>0$ für alle $n\in\mathbb{N},n\geq n_0$

Sind alle Zustände aperiodisch \implies die Markov-Kette ist aperiodisch.

Ein Zustand $i \in S$ einer endlichen Markov-Kette ist sicherlich dann aperiodisch, wenn er im Übergangsdiagramm

- ullet eine Schleife besitzt (also $p_{ii}>0$) oder
- auf mindestens zwei geschlossenen Wegen W_1 und W_2 liegt, deren Längen l_1 und l_2 teilerfremd sind (für die also $ggT(l_1, l_2) = 1$ gilt).

Ergodizität

Irreduzible aperiodische Markov-Ketten nennt man ergodisch.

Für ergodische endliche Markov-Ketten gilt:

Es gibt ein $t\in\mathbb{N}$, sodass unabhängig vom Startzustand $(q_t)_i>0$ für alle $i\in S$

Für jede ergodische endliche Markov-Kette $(X_t)_{t\in\mathbb{N}_0}$ gilt unabhängig vom Startzustand:

$$\lim_{n\to\infty}q_n=\pi,$$

wobei π die eindeutige stationäre Verteilung der Kette bezeichnet.

Doppeltstochastische Matrizen

stochastische Matrizen

Eine $n \times n$ Matrix $P = (p_{ij})_{0 \le i,j < n}$ heißt stochastisch, falls alle Einträge p_{ij} nichtnegativ und alle Zeilensummen gleich 1 sind. Also:

$$\sum_{i=0}^{n-1} p_{ij} = 1$$
 für alle $i = 0, \dots, n-1$

Die Übergangsamtrix einer Markov-Kette ist immer stochastisch und umgekehrt.

doppeltstochastische Matrizen

Eine $n \times n$ Matrix $P = (p_{ij})_{0 \le i,j < n}$ heißt doppeltstochastisch, falls alle Einträge p_{ij} nichtnegativ und alle Zeilensummen und alle Spal-

tensummen gleich 1 sind. Also:

$$\sum_{j=0}^{n-1}p_{ij}=1 \text{ für alle } i=0,\dots,n-1 \text{ und}$$

$$\sum_{i=0}^{n-1}p_{ij}=1 \text{ für alle } j=0,\dots,n-1$$

Sei P eine doppeltstochastische $n\times n$ Matrix \Longrightarrow $\pi=\left(\frac{1}{n},\ldots,\frac{1}{n}\right)$ ist ein Eigenvektor zum Eigenwert 1 bezüglich der Multiplikation von links: $\pi=\pi\cdot P$

Für jede ergodische endliche Markov-Kette $(X_t)_{t\in\mathbb{N}_0}$ mit doppeltstochastischer Übergangsmatrix gilt unabhängig vom Startzustand: $\lim_{t\to\infty}q_t=\left(\frac{1}{n},\ldots,\frac{1}{n}\right)$, wobei n die Kardinalität der Zustandsmenge bezeichne.

Mathematische Grundlagen

Bekannte Reihen

geometrische Reihe	$\sum_{k=0}^{\infty} p^k = \frac{1}{1-p}$	
	$\sum_{k=0}^{n} p^k = \begin{cases} \frac{1 - p^{n+1}}{1 - p} \\ n + 1 \end{cases}$	$p \neq 1$ $n = 1$
Summe der natürlichen Zahlen	$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$	P
	$\sum_{i=1}^{\infty} 1$	

harmonische Reihe
$$\sum_{k=1}^{\infty} \frac{1}{k} =$$

harmonische Reihe
$$\sum_{k=1}^{\infty} \frac{1}{k} = \infty$$
 alternierende harmonische Reihe
$$\sum_{k=1}^{\infty} (-1)^{k+1} \cdot \frac{1}{k} = \ln(2)$$

$$\sum_{k=1}^{\infty} \frac{(sp)^k}{k} = \ln\left(\frac{1}{1-sp}\right),$$
 falls $0 \le sp < 1$

Bekannte Integrale

$$I := \int_{-\infty}^{\infty} e^{-\frac{x^2}{2}} dx = \sqrt{2\pi}$$

Integralrechnung

Substitutionsregel

$$\int_{a}^{b} f(g(x)) \cdot g'(x) dx = \int_{g(a)}^{g(b)} f(u) du$$

$$u = g(x), du = g'(x)dx$$

 $a \Rightarrow g(a), b \Rightarrow g(b)$

Beispiel:

$$\int_0^1 \sin(2x) \cdot 2dx, \ g(x) = 2x, \ f(g(x)) = \sin(2x), \ g'(x) = 2$$

$$u := 2x, \ du = 2dx, \ g(0) = 0, \ g(1) = 2$$

$$\int_0^1 \sin(2x) \cdot 2dx = \int_0^2 \sin(u) du = [-\cos(u)]_0^2 = [-\cos(2x)]_0^1$$

Partielle Integration

$$\int_a^b f(x)g'(x)dx = [f(x) \cdot g(x)]_a^b - \int_a^b f'(x) \cdot g(x)dx$$

Kombinatorik

Anzahl an Möglichkeiten k Elemente aus einer n-elementigen Menge

zu ziehen:

	geordnet	ungeordnet
mit zurücklegen	n^k	$\binom{n+k-1}{n-1}$
ohne zurücklegen	$n^{\underline{k}} = \frac{n!}{(n-k)!}$	$\binom{n}{k} = \frac{n!}{k!(n-k)!}$

Hypergeometrische Verteilung

Eine Zufallsvariable X mit der Dichte

$$\Pr[X = x] = \frac{\binom{b}{x}\binom{a}{r-x}}{\binom{a+b}{r}}$$

hypergeometrisch verteilt.

Es beschreibt das Ziehen von r Elementen ohne Zurücklegen aus einer Grundmenge der Mächtigkeit a+b mit b besonders ausgezeichneten Elementen.

z.B: Ziehen von x Buben aus einem Set von 32 = a + b Karten mit 4=b besonders ausgezeichneten Elementen (Anzahl an Buben im Kartenset)

Sonstiges

Sei
$$X \sim \mathcal{N}(\mu, \sigma^2) \Longrightarrow$$

$$\Pr[-x \le X \le x] = \Phi(x) - \Phi(-x) = 2\Phi(x) - 1$$

Anmerkungen

Dies ist eine Zusammenfassung der Vorlesung Diskrete Wahrscheinlichkeitstheorie an der Technischen Universität München. Gehalten wurde diese Vorlesung durch Albers S. im Sommersemester 2018. Ersteller dieser Zusammenfassung ist Gaida B. Alle Angaben sind ohne Gewähr.