FUNKCIJE

- 1. Ugotovi, kateri od naslednjih predpisov so funkcije in kateri ne, ter utemelji zakaj.
 - (a) $A = \{1, 2, 3\}$ in $B = \{a, b, c, d\}$

$$f:A\to B$$

$$f(1)=b, f(2)=d, f(3)=b$$

(b) A = mnozica vseh ljudi na svetu B = mnozica vseh držav na svetu

$$f: A \to B$$

 $f(a) = \operatorname{država}$, katere državljan je a

(c) A = državljani Slovenija

$$f: A \to N$$
$$f(a) = \text{EMŠO}(a)$$

- 2. Izračunaj vrednost funkcije za dano neodvisno spremenljivko x.
 - (a) f(x) = 5x 1 za x = -2
 - (b) $f(x) = \sqrt{x^2 + 9}$ za x = 4
- 3. Za katere vrednosti neodvisne spremenljivke x imajo funkcije podano vrednost?
 - (a) f(x) = -3x + 4 vrednost -2
 - (b) $f(x) = x^2 3$ vrednost 1
- 4. Dana je funkcija $f(x) = \sqrt{2-x} + x^2$.
 - (a) Izračunaj vrednosti f(0), f(1), f(-2) in f(3).
 - (b) Določi f(-x) in f(x+2).
- 5. Preveri ali so naslednje ralne funkcije bijektivne. Če niso, jim spremeni domeno, kodomeno ali oboje hkrati, da bodo postale bijektivne.
 - (a) $f(x) = x^3$
 - (b) f(x) = |x|
 - (c) $f(x) = e^x$
 - (d) $f(x) = x^3 x$
 - (e) $f(x) = \cos x$
- 6. Določi definicijsko območje naslednjim funkcijam.
 - (a) $f(x) = \sqrt{x+4}$
 - (b) $f(x) = \frac{2x}{x^2-4}$
 - (c) $f(x) = \frac{x+1}{\sqrt{x-2}}$
 - (d) $f(x) = \sqrt{16 x^2}$
 - (e) $f(x) = \sqrt{x+1} \sqrt{3-x} + e^{\frac{1}{x}}$
 - (f) $f(x) = \ln \frac{2+x}{2-x}$
 - (g) $f(x) = \sqrt{\ln \frac{5x x^2}{4}}$
- 7. Določi kompozitum realnih funkcij f in g, s predpisom
 - (a) $f(x) = x^2$ in g(x) = x + 1
 - (b) $f(x) = \sqrt{x} + 7$ in $g(x) = x + x^2$
 - (c) $f(x) = e^x$ in $g(x) = -\frac{1}{x^2}$

- (d) $f(x) = \cos x + 1$ in $g(x) = x^2 + 5x + 2$
- 8. K danim funkcijam poišči njihove inverze.
 - (a) $f(x) = \frac{x-1}{3-x}$
 - (b) $f(x) = 1 + 2\ln(3x 6)$
 - (c) $f(x) = e^{3x} 7$
 - (d) $f(x) = x^2 2x + 5$ na intervalu $(-\infty,1]$
 - (e) $f(x) = \sqrt[3]{x-2} + 1$ na intervalu $(2, \infty)$
- 9. Naj bo $f(x) = \frac{x+1}{x-2}$
 - (a) Poišči predpis f^{-1} .
 - (b) Določi definicijsko območje in zalogo vrednosti tako, da bo f^{-1} obstajala.
- 10. Naj bo $f(x) = 3 \ln \frac{3x-1}{4} + 2$.
 - (a) Poišči predpis f^{-1} .
 - (b) Določi definicijsko območje in zalogo vrednosti tako, da bo f^{-1} obstajala.
- 11. Ugotovi sodost oziroma lihost danih funkcij.
 - (a) $f(x) = 3x x^3$
 - (b) $f(x) = (1-x)^{\frac{2}{3}} + (1+x)^{\frac{2}{3}}$
 - (c) $f(x) = \sqrt{1 x^2}$
 - (d) $f(x) = -x^2 2|x| + 1$
 - (e) $f(x) = \ln(2 x)$
 - (f) $f(x) = \log \frac{1-x}{1+x}$