Model Question Paper with effect from 2018-19 (CBCS Scheme)

USN

17MAT41

Fourth Semester B.E.(CBCS) Examination **Engineering Mathematics - IV**

(Common to all Branches)

Time: 3 Hrs

Max.Marks: 100

Note: Answer any FIVE full questions, choosing at least ONE question from each module. Use of statistical tables allowed.

- 1. (a) Solve $\frac{dy}{dx} = 2y + 3e^x$, y(0) = 0 using Taylor's series method considering up to fourth degree terms and, find the y(0.1)(06 Marks)
 - (b) Use Runge Kutta method of fourth order to solve $(x+y)\frac{dy}{dx} = 1$, y(0.4) = 1, to find y(0.5). (Take h = 0.1). (07 Marks)
 - (c) Given that $\frac{dy}{dx} = x y^2$ and y(0) = 1, y(0.1) = 0.9117, y(0.2) = 0.8494, & y(0.3) = 0.8061find y(0.4), using Adam-Bashforth predictor-corrector method. (07 Marks)

- 2. (a) Solve the differential equation $\frac{dy}{dx} = x + y^2$ under the initial condition y(0) = 1 by using modified Euler's method at the point x = 0.2. Perform three iterations at each step, taking h = 0.1. (06 Marks)
 - (b) Use fourth order Runge Kutta method, to find y(1.2), given $\frac{dy}{dx} = xy$, y(1) = 2. (07 Marks)
 - (c) Apply Milne's predictor-corrector formulae to compute y(0.3) given

(07 Marks)

$\frac{dy}{dx} = x^2$	+ y ²	with
-----------------------	------------------	------

Х	-0.1	0.0	0.1	0.2
У	0.9087	1.0000	1.1114	1.2525

Module-II (K M)

- 3. (a) Using Runge Kutta method, solve $\frac{d^2y}{dx^2} x^2 \frac{dy}{dx} 2xy = 1$, for x = 0.1, correct to four decimal places, using initial conditions v(0) = 1, v'(0) = 0. (06 Marks)
 - (b) If α and β are two distinct roots of $J_n(x) = 0$, then prove that $\int_0^1 x J_n(\alpha x) J_n(\beta x) dx = 0$ if $\alpha \neq \beta$. (07 Marks)
 - (c) Express $f(x) = x^3 + 2x^2 x 3$ in terms of Legendre polynomials.

(07 Marks)

Page 1 of 3

OR

4. (a) Apply Milne's predictor-corrector method to compute y(0.4) given the differential equation $\frac{d^2y}{dx^2} = 1 + \frac{dy}{dx}$ and the following table of initial values:

(06 Marks)

~	0	0.1	0.2	0.3
$\frac{x}{y}$	1	1.1103	1.2427	1.3990
<i>y'</i>	1	1.2103	1.4427	1.6990

(b) With usual notation, show that (i) $J_{1/2}(x) = \sqrt{(2/\pi x)} \sin x$ (ii) $J_{-1/2}(x) = \sqrt{(2/\pi x)} \cos x$.

(07 Marks)

(c) With usual notation, derive the Rodrigues's formula viz., $P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n$.

(07 Marks)

Module-III (())

5. (a) State and prove Cauchy's theorem.

(06 Marks)

(b) Evaluate $\int_C \frac{2z^2+1}{(z+1)^2(z-2)} dz$ where C is the circle |z|=3, using Cauchy's residue theorem.

(07 Marks)

(c) Discuss the transformation $w = e^z$.

(07 Marks)

OR

6. (a) Find the analytic function f(z) = u + iv, given $v = [r - (1/r)] \sin \theta, r \neq 0$.

(06 Marks)

(b) Derive Cauchy-Riemann equation in cartesian form.

- (07 Marks)
- (c) Find the bilinear transformation which maps the points z = i, 1, -1 into the points $w = 1, 0, \infty$.
- (07 Marks)

7. (a) Derive mean and variance of the Binomial distribution.

(06 Marks)

(b) A random variable X has the following probability function for various values of x:

							2
ĺ	V(- r)	-2	-1	0	1	2)
ļ	$\Lambda \left(-\lambda_{i} \right)$	-4				0.2	l _r
	D(x)	0.1	$\mid k \mid$	0.2	2k	0.5	γ.
	1 (11)	l	<u> </u>	L	<u></u>		

Find (i) the value of k (ii) P(x < 1) (iii) $P(x \ge -1)$

(07 Marks)

(c) A fair coin is tossed thrice. The random variables X and Y are defined as follows:

X=0 or 1 according as head or tail occurs on the first; Y= Number of heads.

Determine (i) the distribution of X and Y (ii) joint distribution of X and Y.

(07 Marks)

- 8. (a) Two persons A and B play a game in which their chances of winning are in the ratio 3:2. If 6 games are played, find A's chance of winning at least three games. (06 Marks)
 - (b) In a normal distribution, 7% of the items are under 35 and 89% of the items are under 63. Find the mean and standard deviation of the distribution. (07 Marks)
 - (c) Let X be the random variable with the following distribution and Y is defined by X^2

$X(=x_i)$	-2	-1	1	2
$f(x_i)$	1/4	1/4	1/4	1/4

Determine (i) the distribution of g of Y (ii) joint distribution of X and Y (iii) E(XY).

(07 Marks)

- Module-V (B15) 9. (a) A manufacture claimed that at least 95% of the equipment which he supplied to a factory conformed to specifications. An examination of a sample of 200 pieces of equipment revealed that 18 of them
 - were faulty. Test his claim at a significance level of 1% and 5%.

(06 Marks)

- (b) Explain (i) transient state (ii) absorbing state (iii) recurrent state of a Markov chain,
- (07 Marks)
- (c) Show that probability matrix $P = \begin{bmatrix} 1/2 & 1/4 & 1/4 \\ 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \end{bmatrix}$ is regular stochastic matrix and find the associated unique fixed probability vector

(07 Marks)

OR

10. (a) Define the terms: (i)Null hypothesis (ii)Confidence intervals (iii)Type-I and Type-II errors (06 Marks)

(b) The following are the *I.Q.*'s of a randomly chosen sample of 10 boys: 70,120,110,101,88,83,95,98,107,100. Does this supports the hypothesis that the population mean of I.Q.'s is 100 at 5% level of significance? ($t_{0.05} = 2.262$ for 9 d.f.)

(07 Marks)

(c) Three boys A, B and C are throwing a ball to each other. A always throws the ball to B and B always throws the ball to C. But C is just as likely to throw the ball to B as to A. If C was the first person to throw the ball, find the probabilities that after three throws (i) A has the ball (ii) B has the ball and (iii) C has the ball.

(07 Marks)

Engineering Mathematic-IV

(7 MATA)

$$\frac{\sin y(x)}{y(x)} = y(x_0) + (x_0 - x_0) y'(x_0) + (x_0 - x_0)^2 y''(x_0) + \frac{1}{2!} y$$

$$y' = 2y + 3e^{x}$$
 $y'(0) = 3$

$$y'' = 2y' + 3e^{2}$$
 $y''' = 9$

$$y''' = 2y'' + 3e^{2x}$$
 $y'''(0) = 21$

$$y(0.1) = 0 + (0.1) y'(0) + (0.1) x' y''(0) + (0.1) x''(0)$$

$$(n+y) \frac{dy}{dx} = 1$$
, $y(0.4)=1$, $y(0.5)=2$

$$K_1 = h + (n_0, y_0) = (0.1) + (0.4, 1) = 0.0714$$
 $K_2 = h + (n_0 + h/2, y_0 + k/3) = 0.0673$
 $K_3 = h + (n_0 + h/2, y_0 + k/2) = 0.0674$
 $K_4 = h + (n_0 + h/2, y_0 + k/2) = 0.0638$
 $Y = h + (n_0 + h/2, y_0 + k/2) = 0.0638$
 $Y = h + (n_0 + h/2, y_0 + k/2) = 0.0638$
 $Y = h + (n_0 + h/2, y_0 + k/2) = 0.0638$
 $Y = h + (n_0 + h/2, y_0 + k/2) = 0.0638$
 $Y = h + (n_0 + h/2, y_0 + k/2) = 0.0674$

 $\frac{dy}{dt} = x - y^2 \qquad \text{0.3} = 0.8061, \ y^{(0.4)?}$

 $y' = x - y^{2}$ $0.1 \quad 0.9117$ $0.2 \quad 0.8494$ $0.3 \quad 0.8061$ $0.3498 = y_{3}^{2}$

0.4

 $y_{4}^{p} = y_{3} + y_{34} (55y_{3}^{1} - 59y_{2}^{1} + 37y_{1}^{1} - 9y_{0}^{1})$ $y_{4}^{p} = 0.7789$ $y_{4}^{p} = y_{3} + y_{34} (9y_{4}^{1} + 19y_{3}^{1} - 5y_{2}^{1} + y_{1}^{1})$ $y_{4}^{p} = y_{3} + y_{34} (9y_{4}^{1} + 19y_{3}^{1} - 5y_{2}^{1} + y_{1}^{1})$

(a) a)
$$\frac{dy}{da} = \frac{x+y^2}{3}$$
; $y(0) = 1$
 $y(0,2) = ?$
 $y(0,2) = ?$

· y (0.2) ~ 1.2756.

72 = 1.2756

3) b)
$$\frac{dy}{dx} = xy$$
; $y(1) = 3$ here $\frac{1}{3} = \frac{1}{3}$
 $k_1 = h \int (x_1 x_2 + y_1) = (0.2) (1 + 2) = 0.4$
 $k_2 = h \int (x_1 + 2 x_2 + y_2) = 0.49224$
 $k_3 = h \int (x_2 + y_2) = 0.59824$
 $k_4 = h \int (x_2 + 2 x_3 + x_4)$
 $= 0.49214$
 $y_1 = y_2 + y_2$
 $y_2 = x_1 + y_2$
 $y_3 = x_4 + y_4$
 $y_4 = x_4 + y_4$
 $y_4 = x_4 + y_4$
 $y_5 = x_4 + y_4$
 $y_5 = x_4 + y_4$

20.0 0.9087 0.0 1.1114 1.24532 0.1 1.2727 1.60883

$$y_{4}^{P} = 40 + \frac{4}{3}(3 y_{1}^{1} - y_{2}^{1} + 3y_{3}^{1})$$

$$= 0.90878 + \frac{4 \times 0.1}{3} \times (3 - 1.34522 + 3.3176)$$

$$= 1.43843$$

$$y_{4}^{1} = \frac{1}{3}(34, y_{4}^{1}) = (0.3)^{2} + (1.43843)^{2} = 315929$$

$$y_{4}^{1} = \frac{1}{3}(32 + y_{3}^{1}) + \frac{1}{3}(1.34522 + 3.1592)$$

$$= 1.11145 + \frac{1}{3}(1.34522 + 6.43522 + 3.1592)$$

$$= 1.43944$$

$$= 0.3)^{2} + (1.43944) = 2.16199$$
Now $y_{4}^{1} = y_{2} + y_{3}^{1}(y_{3}^{1} + y_{3}^{1} + y_{4}^{1})$

$$= 1.439538$$
Hence $y_{1}^{1}(0.3) = 1.439538$

If I and P are the distinct Goods of Ja(xx)=0 there $\int x J_n(x = c) J_n(p = c) dx = 0$ Let $u = J_n(x=e)$ Put L=dx so that u=Jack) du = du dt = d dt d'a = d (da) dt = 2 d'Ja dsc dt (dx) dx Bessel's DF Since Jack) satisfes +2 dJn + + dJn + (+2 n2) Jn=0 (de) Lede + det du + (det = 0 du + 5c du + (x2-123) u=0
Tel + 5c du + (x2-123) u=0 1117 if 1= JM(B>C) dy + 3c dx + (p²-52) v=0 3)

$$\int_{a}^{a} (a) = \alpha J_{n}(\alpha \alpha)$$

$$\int_{a}^{a} (a) = J_{n}(\beta \alpha)$$

$$\int_{a}^{a} (a) = J_{n}(\beta \alpha)$$

$$\int_{a}^{a} (a) = J_{n}(\alpha \alpha)$$

$$\int_{a}^{a} (a) = J_{n}(\alpha)$$

$$\int_{a}^{a} (a) = J_{n}(\alpha)$$

$$\int_{a}^{a} (a) = J_{n}(\alpha)$$

$$\int_{a}^{a} (a) = J_$$

$$P_{3}(x) = \frac{1}{2} (3x^{2} - 1)$$

$$P_{3}(x) = \frac{1}{2} (5x^{3} - 3x)$$

$$x^{3} = \frac{1}{5} \left[2 \frac{1}{5}(x) + 3 \frac{1}{5}(x) \right]$$

$$x^{3} = \frac{1}{5} \left[2 \frac{1}{5}(x) + 3 \frac{1}{5}(x) \right]$$

$$-\frac{1}{5} \left[2 \frac{1}{5}(x) + 3 \frac{1}{5}(x) \right] + 2 \frac{1}{5} \left[2 \frac{1}{5}(x) - \frac{1}{5} \frac{1}{5}(x) \right]$$

$$-\frac{1}{5} \left[2 \frac{1}{5}(x) + \frac{1}{5} \frac{1}{5}(x) - \frac{1}{5} \frac{1}{5}(x) \right]$$

$$-\frac{1}{5} \left[(x) + \frac{1}{5} \frac{1}{5}(x) - \frac{1}{5} \frac{1}{5}(x) \right]$$

$$\frac{2}{5} \frac{1}{5} (x) + \frac{1}{5} \frac{1}{5} (x) - \frac{1}{5} \frac{1}{5} (x)$$

$$\frac{2}{5} \frac{1}{5} (x) + \frac{1}{5} \frac{1}{5} (x) - \frac{1}{5} \frac{1}{5} (x)$$

$$\frac{2}{5} \frac{1}{5} (x) + \frac{1}{5} \frac{1}{5} (x) - \frac{1}{5} \frac{1}{5} (x)$$

$$\frac{2}{5} \frac{1}{5} (x) + \frac{1}{5} \frac{1}{5} (x) - \frac{1}{5} \frac{1}{5} (x)$$

$$\frac{2}{5} \frac{1}{5} (x) + \frac{1}{5} \frac{1}{5} (x) - \frac{1}{5} \frac{1}{5} (x)$$

$$\frac{2}{5} \frac{1}{5} \frac{1}{5} (x) + \frac{1}{5} \frac{1}{5} \frac{1}{5} (x)$$

$$\frac{2}{5} \frac{1}{5} \frac$$

$$\begin{aligned}
\lambda_{1} &= h \cdot g(x_{0} \cdot y_{0} \cdot h_{0}) = h \cdot b_{0} = (0.1)(0) = 0 \\
\lambda_{2} &= h \cdot g(x_{0} \cdot y_{0} \cdot h_{0}) = h(1 + 2 \times y_{0} + \frac{y_{0}}{y_{0}}) \\
&= 0.1 (1 + 0 + 0) = 0.1 \\
\lambda_{3} &= h \cdot f(x_{0} + \frac{h}{2}, y_{0} + \frac{y_{1}}{2}, \frac{h}{2} + \frac{h}{2}) \\
&= 0.1 (1 + 0 + 0) = 0.1 (0 + 0.1) \\
&= 0.1 (1 + 0 + 0) = 0.1 (0 + 0.1) \\
&= 0.1 (0 + 0.000) = 0.005
\end{aligned}$$

$$\begin{aligned}
\lambda_{3} &= h \cdot g(x_{0} + \frac{h}{2}, y_{0} + \frac{h}{2}, \frac{h}{2} + \frac{h}{2}) \\
&= 0.1 (1 + 0.1 + 0.000) = 0.1 \\
&= 0.1 (0 + 0.1) = 0.1 (0 + 0.1) = 0.1 \\
&= 0.1 (0 + 0.1) = 0.1 (0 + 0.1) = 0.1 \\
&= 0.1 (0 + 0.1) = 0.1 (0 + 0.1) = 0.1 \\
&= 0.1 (0 + 0.1) = 0.1 (0 + 0.1) = 0.1 \\
&= 0.1 (0 + 0.1) = 0.1 (0 + 0.1) = 0.1 \\
&= 0.1 (0 + 0.1) = 0.1 (0 + 0.1) = 0.1 \\
&= 0.1 (0 + 0.1) = 0.1 (0 + 0.1) = 0.1 \\
&= 0.1 (0 + 0.1) = 0.1 (0 + 0.1) = 0.1 \\
&= 0.1 (0 + 0.1) = 0.1 (0 + 0.1) = 0.1 \\
&= 0.1 (0 + 0.1) = 0.1 (0 + 0.1) = 0.1 \\
&= 0.1 (0 + 0.1) = 0.1 (0 + 0.1) = 0.1 \\
&= 0.1 (0 + 0.1) = 0.1 (0 + 0.1) = 0.1 \\
&= 0.1 (0 + 0.1) = 0.1 (0 + 0.1) = 0.1 \\
&= 0.1 (0 + 0.1) = 0.1 (0 + 0.1) = 0.1 \\
&= 0.1 (0 + 0.1) = 0.1 (0 + 0.1) = 0.1 \\
&= 0.1 (0 + 0.1) = 0.1 (0 + 0.1) = 0.1 \\
&= 0.1 (0 + 0.1) = 0.1 (0 + 0.1) = 0.1 \\
&= 0.1 (0 + 0.1) = 0.1 (0 + 0.1) = 0.1 \\
&= 0.1 (0 + 0.1) = 0.1 (0 + 0.1) = 0.1 \\
&= 0.1 (0 + 0.1) = 0.1 (0 + 0.1) = 0.1 \\
&= 0.1 (0 + 0.1) = 0.1 (0 + 0.1) = 0.1 \\
&= 0.1 (0 + 0.1) = 0.1 (0 + 0.1) = 0.1 \\
&= 0.1 (0 + 0.1) = 0.1 (0 + 0.1) = 0.1 \\
&= 0.1 (0 + 0.1) = 0.1 (0 + 0.1) = 0.1 \\
&= 0.1 (0 + 0.1) = 0.1 (0 + 0.1) = 0.1 \\
&= 0.1 (0 + 0.1) = 0.1 (0 + 0.1) = 0.1 \\
&= 0.1 (0 + 0.1) = 0.1 (0 + 0.1) = 0.1 \\
&= 0.1 (0 + 0.1) = 0.1 (0 + 0.1) = 0.1 \\
&= 0.1 (0 + 0.1) = 0.1 (0 + 0.1) = 0.1 \\
&= 0.1 (0 + 0.1) = 0.1 (0 + 0.1) = 0.1 \\
&= 0.1 (0 + 0.1) = 0.1 (0 + 0.1) = 0.1 \\
&= 0.1 (0 + 0.1) = 0.1 (0 + 0.1) = 0.1 \\
&= 0.1 (0 + 0.1) = 0.1 (0 + 0.1) = 0.1 \\
&= 0.1 (0 + 0.1) = 0.1 (0 + 0.1) = 0.1 \\
&= 0.1 (0 + 0.1) = 0.1 (0 + 0.1) = 0.1 \\
&= 0.1 (0 + 0.1) = 0.1 (0 + 0.1) = 0.1 \\
&= 0.1 (0 + 0.1) = 0.1 (0 + 0.1) = 0.1 \\
&= 0.1 (0 + 0.1) = 0.1 (0 + 0.1) = 0.1 \\
&= 0.1 (0 + 0.1) = 0$$

$$J_{3} = 0.1100h$$

$$K_{1} = h f(x_{0} + h y_{0} + k_{3} z_{0} + J_{3})$$

$$= 0.1 (0.110h) = 0.0110h$$

$$= 0.1 (x_{1} + 2x_{2} + 2x_{3} + k_{4})$$

$$K = \frac{1}{6} (x_{1} + 2x_{2} + 2x_{3} + k_{4})$$

$$x_{1} = \frac{1}{6} (x_{1} + 2x_{2} + 2x_{3} + k_{4})$$

$$y_{1} = y_{0} + k$$

$$y_{2} = y_{0} + k$$

$$y_{3} = y_{0} + k$$

$$y_{3} = y_{0} + k$$

$$y_{4} = y_{0} + k$$

$$Z_{+} = 1 + \frac{1}{3}(0.1) \frac{5}{2}(2.2103) - 2.4427 + \frac{1}{2}(2.699)^{3}$$

$$= 1.9835$$
M: Ine Corrector
$$y^{C} = \frac{1}{3}(2.4+2.3+24)$$

$$= 1.2427 + \frac{0.1}{3}(1.4427 + 4(1.1699) + \frac{1.9835}{3}(1.58344)$$

$$= \frac{1.58344}{3}(2.4427 + 4(2.699) + \frac{1.427}{3}(2.4427 + 4(2.699) + \frac{1.9835}{3}(2.4427 + 4(2.699) + \frac{1.9835}{3}(2.4427 + 4(2.699) + \frac{1.98344}{3}(2.4827 + \frac{1.9835}{3}(2.4827 + \frac{1.9835}{3}(2.482$$

y(0.4) = 1.5834

 $v = (x^2 - 0)^2$ Let = 2nx(x2-1)n-1 $(x^2-1)^{-1}$ - ACC = 20x(x2-1)(-1(x2-1) $= 2n \times (3^2 - 1)^n$ = 202 $(5c^2-1) \vee_1 = 2nx \vee$ Differentiating (x2-1) vs + 23cv, - 2nxv, $(3c^2-1) + 2+2(1-n) x + 2(1-n)$ S(32.-) Va+2 + nc, (2x) Va+1 + nc, 2 Va) Voung Leubniz + \{ \(2 (1 - n) \) \(\times \) \(\times

(2)
$$V_{0+2} + \frac{1}{3} 2n x + 2(1-n) x - 3V_{0+1}$$

$$= n(n+0) x = 0$$
(1-50) $V_{0+2} - 2x v_{0+1} + n(n+0) v_{0} = 0$
This shows that v_{0} sakepes

Eggerdre differential equation
$$P_{0}(x) = k v_{0} = k \frac{d^{2}}{dx^{0}}$$

$$= k \frac{d^{2}}{dx^{0}} \left(x^{2} - 1 \right)^{n}$$

$$= k \frac{d^{2}}{dx^{0}} \left(x^{2} - 1 \right)^{n} \left(x - 1 \right)^{n}$$

$$= k \frac{d^{2}}{dx^{0}} \left(x^{2} - 1 \right)^{n} \left(x - 1 \right)^{n}$$

$$= k \frac{d^{2}}{dx^{0}} \left(x^{2} - 1 \right)^{n} \left(x - 1 \right)^{n}$$

$$= k \frac{d^{2}}{dx^{0}} \left(x^{2} - 1 \right)^{n} \left(x - 1 \right)^{n}$$

$$= k \frac{d^{2}}{dx^{0}} \left(x^{2} - 1 \right)^{n} \left(x - 1 \right)^{n}$$

$$+ n \left(x - 1 \right)^{n} \left(x - 1 \right)^{n} \left(x - 1 \right)^{n}$$

$$+ n \left(x - 1 \right)^{n} \left(x - 1 \right)^{n}$$

$$+ n \left(x - 1 \right)^{n} \left(x - 1 \right)^{n}$$

$$+ n \left(x - 1 \right)^{n} \left(x - 1 \right)^{n}$$

$$+ n \left(x - 1 \right)^{n} \left(x - 1 \right)^{n}$$

$$+ n \left(x - 1 \right)^{n} \left(x - 1 \right)^{n}$$

$$+ n \left(x - 1 \right)^{n} \left(x - 1 \right)^{n}$$

$$+ n \left(x - 1 \right)^{n} \left(x - 1 \right)^{n}$$

$$+ n \left(x - 1 \right)^{n} \left(x - 1 \right)^{n}$$

$$+ n \left(x - 1 \right)^{n} \left(x - 1 \right)^{n}$$

$$+ n \left(x - 1 \right)^{n} \left(x - 1 \right)^{n}$$

$$+ n \left(x - 1 \right)^{n} \left(x - 1 \right)^{n}$$

$$+ n \left(x - 1 \right)^{n} \left(x - 1 \right)^{n} \left(x - 1 \right)^{n}$$

$$+ n \left(x - 1 \right)^{n} \left(x - 1 \right)^{n} \left(x - 1 \right)^{n}$$

$$+ n \left(x - 1 \right)^{n} \left(x - 1 \right)^{n} \left(x - 1 \right)^{n}$$

$$+ n \left(x - 1 \right)^{n} \left(x - 1 \right)^{n} \left(x - 1 \right)^{n}$$

$$+ n \left(x - 1 \right)^{n} \left(x - 1 \right)^{n} \left(x - 1 \right)^{n}$$

$$+ n \left(x - 1 \right)^{n} \left(x - 1 \right)^{n} \left(x - 1 \right)^{n}$$

$$+ n \left(x - 1 \right)^{n} \left(x - 1 \right)^{n} \left(x - 1 \right)^{n}$$

$$+ n \left(x - 1 \right)^{n} \left(x - 1 \right)^{n} \left(x - 1 \right)^{n} \left(x - 1 \right)^{n}$$

$$+ n \left(x - 1 \right)^{n} \left(x - 1 \right)^{n} \left(x - 1 \right)^{n} \left(x - 1 \right)^{n}$$

$$+ n \left(x - 1 \right)^{n} \left(x - 1 \right)^{n}$$

$$+ n \left(x - 1 \right)^{n} \left($$

Module- !!! 5 (a) Statement: If f(z) is analytic at all points inside and on a simple closed curve C. Then $\int f(z) dz = 0$. 1/1:- (el- f(2)= u+iv Then If(2) dz = I(u+iv) (dx+idy) = S(adx-vdy)+is(vdx+udy) We have Green's theorem in a plane stating that if M(x,y) and N(x,y) are two real valued for having continuous first order partial derivatives in a region R 6'ded by the carve C then $\int M dx + N dy = \iint \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dx dy$ Thus, RHS of (1) becomes Sf(2)dz= S((-2v-2y)dxdy+i)S((2u-2v))
R

dxdy

Since f(2) és analytée, we have Eauchy-Réemann equations: $\frac{\partial u}{\partial x} = \frac{\partial y}{\partial y}, \quad \frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}$ $\int_{C} \int_{C} (2) dz = \iint_{R} \left(\frac{\partial u}{\partial y} - \frac{\partial u}{\partial y} \right) dx dy$ + i SS (dy - dy) dx dy $\implies \int f(z) dz = 0.$ Hence the proof. (6) (et $f(z) = \frac{2z^2+1}{(z+1)^2(z-2)}$; c:|z|=3. Z=-1 is a pole of order 2 and Z=2 is a pole of order 1. Both of them lie within the circle

Residue at Z=-1 be denoted by R, and we have

$$R_{1} = \frac{1}{2} + \frac{1}{(2-1)!} \frac{d}{dz} \left\{ (z+1)^{2} \frac{2z^{2}+1}{(z+1)^{2}(z-2)} \right\}$$

$$= \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \left\{ \frac{2z^{2}+1}{2z^{2}} \right\}$$

$$= \frac{1}{2} + \frac{1}{2}$$

Now, residue at
$$z=2$$
, R_2

$$= lt \begin{cases} (z-2) \frac{2z+1}{(z+1)^2(z-2)} \end{cases}$$

$$= lt \begin{cases} 2z+1 \\ z-2 \end{cases}$$

$$= 2 \begin{cases} 2z+1 \\ z+2z+1 \end{cases}$$

Hence by Couchy's residue theorem, $R = 2\pi i \left(R_1 + R_2\right) = 2\pi i \left(\frac{8}{7} + \frac{5}{9}\right)$

= 18219 63 (c) Wiscussion of Wzex. Consider w=e^z x+iy, z e iy i.e., u+iv=e x+iy, z e e e = e (cosytisiny) ... Uze cosy, V= e siny - (1) We shall find the image in the w-plane corresponding to the straight lines parallel to the co-ordinate axes en the z-plane. That is Rz constant and y = constant!

Let us eliminate x and y seperately from (1). Squaring and adding we get $u + v = e^{-1}$ (2) 4150 by dividing we get Uz e Zseny en cosy i.e, <u>U</u> 2 lany — (3) Case(1):-Let x=C, where c, is a constant. Eq(2) becomes 'u²+v² ze²c, z constant = x

(Say)

This represents a circle with centre origin and radius hin the w-plane. Case(2):- Let 9 = C2 where C2 is a constant. Éq(3) becomes $\frac{1}{4}$ = $\frac{1}{4}$ anc = m (say). This represents a straight line passing theo' the origin in the w-plane. Conclusion: The straight line parallel Co ne roma 1 1 x z C 1 y2C2

X w-plane Z-plane the re-arus (yz c2) en the z-plane maps onto a straight line passing then the origin in The straight line parallel to the y-axis (xzCi) in the z-plane maps onto a circle with centre origin and radius il where he eg in the w-plane. Suppose we dean a tangent at the point of

intersection of these two curves in the w-plane the angle subtended is equal to 90°. Hence these two conves can be regarded as Orthogonal lagretories of each Olher 6. a) V= (2-1) sino, 2+0. => V2= (1+ 1/2) Sino Voz (R-I) coso. Consider f(z)=e-ie (Uz+ivz). But Un= LVo (CR er") $f'(2) = e^{-i\theta} \left(\frac{f}{2} v_0 + iv_2 \right).$ $ze^{-i\theta}\left[\left(1-\frac{1}{R^{2}}\right)\cos\theta+\frac{1}{R^{2}}\sin\theta\right]$ $= e^{-i\theta} \left[\left(\cos\theta + i\sin\theta \right) - \left(\cos\theta - i\sin\theta \right) \right]$ $= e^{-i\theta} \left[e^{i\theta} - \int_{\mathcal{R}^2} e^{-i\theta} \right] = 1 - \frac{1}{(\chi e^{i\theta})^2}$ $=1-\frac{1}{z^2}$

i.e.
$$f'(z) = 1 - \frac{1}{2^2}$$

$$f(z) = (z + \frac{1}{z}) + c$$

$$u + iv = xe^{i\theta} + \frac{1}{xe^{i\theta}}$$

$$= x(\cos\theta + i\sin\theta) + \frac{1}{x}(\cos\theta - i\sin\theta)$$

$$u + iv = (x + \frac{1}{x})\cos\theta + i(x - \frac{1}{x})\sin\theta$$

$$u = (x + \frac{1}{x})\cos\theta$$

$$\therefore f(z) = (x + \frac{1}{x})\cos\theta + i(x - \frac{1}{x})\sin\theta$$

$$x + \frac{1}{x}\cos\theta$$

(b) The necessary condetion that the following first order partial at any point $z = x + iy$ is that, there exists at any point $z = x + iy$ is that, there exists at any point $z = x + iy$ is that, there exists four continuous first order fartial four continuous first order fartial four continuous first order fartial four continuous $\frac{1}{2} \cos\theta + \frac{1}{2} \cos\theta + \frac{1$

Pf:- (et f(z) be analytic at z=21tig. $\Rightarrow f'(z) = lt f(z+8z)-f(z) exists and enique.$ Unique. In the cartesian form $f(z) = u(\alpha; y) + iv(\alpha; y)$ and let 8z be the increment in z correspon-ding to the increments 8x, 8y in x, y. $f'(2) = \{t \left[u(x,y) + iv(x+8x,y+8y)\right] - \{u(x,y) + iv(x,y)\}$ $= \begin{cases} 2 & \text{Im}(x+8x,y+8y) - \text{im}(x,y) \\ 8x \to 0 \end{cases}$ $87 \rightarrow 0$ 87 $+i lt \left[V(x+8x,y+8y)-V(x,y)\right] - (1)$ 87Now Sz = (Z+Sz)-Z $= \left[(\chi + 8\chi) + i \left(y + 8y \right) \right] - \left(\chi + i y \right)$ = 8x+184 Since 82 -0, we have Corse (i): - Let Sy=0 So that SZ=Sn. $= 3 Sx \rightarrow 0.$ Now (1) becomes,

Equating real and imaginary parts,

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
 and $\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}$

(c) Let $w = \frac{\alpha z + b}{Cz + d}$ be the required

bilinear transformation.

 $z = i, w = 1$

i.e, $l = \frac{\alpha i + b}{Ci + d}$
 $\Rightarrow \alpha i + b - Ci - d = 0$
 $\Rightarrow \alpha + b = 0$

Consider $\frac{1}{\omega} = \frac{Cz + d}{\alpha z + b}$
 $\Rightarrow 0 = \frac{-C + d}{-\alpha + b}$

in +1b+0c = 0

in +1b-(1+i) c=0.

Applying Rule of CROSS multiplication,

$$\frac{a}{|1-(1+i)|} = \frac{b}{|1-(1+i)|} = \frac{c}{|1-i|}$$

$$\Rightarrow a = (-1+i),$$

$$b = 1+i$$

$$c = 1-i = d$$
Thus, $w = -\frac{(1+i)}{(1-i)} = \frac{(1-2)}{(1-i)}$

$$= \frac{(1+i)^{2}}{(1-i)^{2}} = \frac{(1-2)}{(1+2)}$$

$$= \frac{(1+i)^{2}}{(1-i)^{2}} = \frac{(1-2)}{(1+2)}$$

 $\frac{1-1}{2} \left(\frac{1-2}{1+2} \right) = i \left(\frac{1-2}{1+2} \right)$

module - IV

7.a. Deer we are and valiance of Binomial distribution

of publishing of success and quis the probability of failure, the probability of x success out of n trials is given by $P(n) = n(n) P^n q^{n-n}$

mean and standard during on y the Binomial Ristmbuton $mean(u) = \sum_{n=0}^{\infty} \pi p(n) = \sum_{n=0}^{\infty} \pi \cdot n(np) q^{n-1}$

 $=\frac{2}{2}n.\underline{n!} pnq^{n-1} = \frac{2}{2} \frac{2.\underline{n!}}{2(n-1)!} pnq^{n-1}$

 $= \frac{2}{n^{2}} \frac{n(n-1)!}{n-1/(n-1)!} p.p^{x-1} q^{n-x}$

 $= np \frac{2}{(n+1)!} \frac{(n+1)!}{(n+1)-(x+1)!} p^{n-1}q^{(n+1)-(x+1)}$

11=np= n-1 (n-1 px-1 g(n-1)-(x-1)

u=np(p+q)nt=np

[u=np]

 $vacianc(v) = \sum_{n=0}^{n} n^2 p(n) - u^2 - \Theta$

 $\frac{1}{2} x^{2} p(x) = \frac{1}{2} \left[2 n p(x-1) + 2 \left[p(x) \right] \right]$ $= \frac{1}{2} \chi(x-1) p(x) + \frac{1}{2} \pi p(x)$ $= \frac{1}{2} \chi(x-1) m(n p^{x} q^{n-x} + n p)$

$$\frac{n}{2} \frac{n(n+1)(n-2)!}{(2l-2)!(n-2)!} p^{2}q^{n-2}p^{2-2}+np$$

$$= N(n+1)p^{2} \stackrel{f}{=} \frac{n-2!}{(n-2)![(n-2)-(n-2)]} p q +np.$$

Valian6 N= n(n+)p2+np-n2p2= 0 (a np(1-p)=npq/.

Thus he have for the Binomiae destribution

A random valiable X has the following probability function of values of x

0.0.0				
·	•		7	
	į .		- Mary	2 3
(x=(x*)	1 - 2 - 1			
	And the formation of th	0.2	2 6	malk 1
gates and a second or the second seco		10.2	21	
P(m)			The second secon	***************************************
		ann i a thiùine ann a thiùin a thùinn ann a thuinn a th' ann ann a thùinn ann a tha ann ann ann air air air ai		. 1

Find(i) the value of K (11) P(2×1) (111) P(27,-1)

Soh prni) 7,0 and Z prni)=1 for a probability

Σp(n;)=1 0.1+ K+0,2+2 K+0,3+K= 4K+0,6=1=) [K=0.1]

	•				<u>.</u>	<u> </u>	1 _	Ĩ
1	X = 71'	2		0	•	2	[3]	f
	1 = 11		The state of the s	: 				
	P(x)	0.1	0.11	0,2 1	0,21	0.31	0,1/	
		·	***************************************	·				

$$P(x<1) = p(x=-2) + p(x=-1) + p(x=0)$$

$$P(\pi_{7/-1}) = 0.1 + 0.1 + 0.1 = 0.14.$$

$$P(\pi_{-1}) + P(\pi_{-1}) + P(\pi_{-1}) + P(\pi_{-2}) + P(\pi_{-3}) = 0.1 + 0.2 + 0.2$$

(4) A four com in torsed their. The random valicables x and yo are defined as fallows; X=0 n, alcording as head or back of aure on the first; Y= Nember of heads Datemine (i) the distribution of X and Y(11) Joint destablished on of X and Y.

Soh: The Sample space & and the association of random

Vowables & and y is given by the Following Table S HHH HHT HTH HTT THH HTH TTH TTI. X 0 0 0 0 1 1 1 0 Y 3 2 2 1 2 1 0

a) The probability distribution of x and y 15 found on X={xi'}={0,13 and Y={4,3=40,1,2,3} fallows

P(x=0) = 4/8=1/2; P(x=1) 15 /2

P(Y=0) = 1/8 P(Y=1) = 3/8

p(y=)=3/8 p1y=31=1/8

Then we have I allowing probability distribute of X87

121	0	
p (ni)	1/2	1/2

wy	o pour	<u> </u>		A A PARTY OF THE PROPERTY OF THE PARTY OF TH
19;	0		2	3
9(4)	1/8	/ (2)	3/8/	1/8

(b) "The Joint distribution of X and Y 13 found by lompuly

Jj = P(x=x1, Y=yy) where we have.

21=0, 21=1 and 4=0, 4=1, 43=2, 44=3

('X=0 implies there is a hoad tuenout of Y is the Lotal number heads our imposebl)

= p(x=0, y=1)=1/8 (Bonesponding to the out come HTT J24 = 0

 $J_{B} = P(X=0, Y=2) = \frac{2}{8} = \frac{1}{9}$

J14 = P(x=0, Y=3) = 1/8

The Required your probability distribution of x and Y are as follows.

NV	<i>N</i> 's		·		
X	$-v_{-}$		12	3	Som
0	0	1/8	1/4	1/8	1/2
01	1/8	1/4	1/8	0	1/2
Sum	1/8	318	3/8	1/8	

chances a of wining are in the ratio 3:2 y 6 germes are played, find AIS chance of avening at least these germes of John throm what is given, the probability that A wine a germe is P = 3/(3+2) = 3/s Therefore, the probability that I would by the opening of Success for A in 6 games is given by the binomial probability function

$$b(6,\frac{3}{5},a) = 6(x(\frac{3}{5})^{3}(1-3/5)^{6-1}$$

$$= 6(x(\frac{3}{5})^{3}(\frac{3}{5})^{4}(\frac{3}{5})^{6-1} = b(x) \quad \text{Say}$$

here, the probability of A wining at least thru of Six games is

$$1 - \frac{26}{56} \times 135 = 1 - 0.1392 = 0.820 \,\mathrm{r}$$

Thus, A has about 82%. Chance of whiting winning at least three of the Sin games.

8. b. In a nomal dishebulion 71 of the eterns are unde 35 and 89% of the citems under 63. Find mean and Standard deviation of the distribution Soh: let be and to be the mean and S.D of the normal distubution By data P(x < 35) = 0.07, P(x < 60) = 0.89 we have S.n. V X = 2-4 When 71=35, $Z=\frac{35-4}{9}=2$, (Say) 2 = 60 Z = 60 - 4 = 72 (Say)Hence we have P(2 < 21) = 0.078 p(2<4)=0.89 0.5 + \$ (21) = 0.89 0.5+0/21)=0,07 \$122) = 0,39 9121)=-0,43 P(3) = p(1,2263) ·· \$ (2)= -\$ (1475) 2) = 1,2263 21=-1.495 60-4 = 1,2263 ie 35-4 = -1.47s U+ 1,22631=60 U-1.47595=35 W-48.65 C= 9,25 c. let x be the random valiable with the following deletables and y is defined by X2 $X=(x_i)$ -2 -1 1 2 $f(x_i)$ 1/4 1/4 1/4 1/4 1/4

Delemno (1) the disclubulion of gof y (11) joint distribution of X and X 15 defined by (11) EXXY)

X	-2	-1.	1	2	g (a!)
4	1/4	.0	0	1/4	1/2
1	0	1/4) he	0	1/2
(f(x,)	1/4	1/4	1/4	1/2	

Sample Space
$$(-2,4)$$
, $(2,4)$, $(1,1)$, $(-1,1)$ Each hay prob $\frac{1}{14}$
 $0x \int P(-2,4) = P(-\frac{2}{4})P(4) \qquad (PAB) = P(AB)P(B)$
 $= \frac{1}{2}x\frac{1}{2} = \frac{1}{4} \quad \text{or} \left(P(\frac{4}{-2})P(-2) = \frac{1}{2}x\frac{1}{4}\right)$
 $P(2,4) = P(\frac{2}{4})P(4) = \frac{1}{2}x\frac{1}{2} = \frac{1}{4}$

9.(a) Let p be the prob. of success which being the frob.

of the equipment supplied to the factory conformal to

the specifications

p= 0.95 , q= 0.05

Ho: p= 0.95, claim is correct.

H,: p<0.95 " " false.

μ= np= 200x.95 = 190

σ = Vnpq = J200x.95x0.05 = 3.08 2

Expected no. of equipments = 192

School nos. = 182 (18 were faulty)

: difference = 190-182 = 8

 $\chi'_{ow} \chi = \frac{\alpha - nb}{\sqrt{npq}} = 2.6 > 1.65 \text{ at 5.1. level 9f significant}$ $> 2.33 \quad " \quad 1.1. \quad " \quad "$

:. Claim is rejected at 5% as well as 1% level of significance.

9(b)i) Yeansient State - A state (at least one) "j" to which we can go from state "i" best can't return to "i", Then state "i" is called teausient state.

(iii) Recurrent State - A state "i" is called recurrent, if we go from that state to any other state "j", then there is at least one path to seturn back to "i"

(iv) Absorbing state -

$$\rho =
\begin{bmatrix}
v_2 & v_4 & v_4 \\
v_2 & 0 & v_2 \\
0 & 1 & 0
\end{bmatrix}$$

$$\rho =
\begin{bmatrix}
2 & 2 & 2 \\
1 & 2 & 1 \\
1 & 0 & 1
\end{bmatrix}$$

$$p^{3} = \begin{bmatrix} 4 & 4 & 4 \\ 3 & 2 & 3 \\ 1 & 2 & 1 \end{bmatrix}$$

: All entries in P^3 are fositive.

.. P is regular stochastic matrix

Now we've to find out v = (a,b,c) where (atbtc = 1)s.t. vP = v

$$\begin{bmatrix} a & b & c \end{bmatrix} \begin{bmatrix} v_2 & v_4 & v_4 \\ v_2 & 0 & v_2 \end{bmatrix} = \begin{bmatrix} a & b & c \end{bmatrix}$$

$$\frac{a}{2} + \frac{b}{2} = a ; \frac{a}{4} + c = b ; \frac{a}{4} + \frac{b}{2} = c$$

$$\frac{b}{2} = \frac{a}{2} , \qquad b-c = c - \frac{b}{2} = \frac{3b}{2} = 2c$$

$$a=b , b=\frac{4c}{3}$$

we've a+b+c=1 $\frac{4c+4c+c=1}{3} + \frac{11c}{3} = 1$

$$\Rightarrow C = \frac{3}{11}$$

- $(\frac{4}{11}, \frac{4}{11}, \frac{3}{11})$ is the fixed prob. vector.
- 10(a) (i) Null Hypothesis The hypothesis formulated for The furpose of its rejection under the assumption that it is true is called Neull hypothesis denoted by Ho.
 - (ii) Confidence Intervals A confidence interval is an interval of values instead of a single point estimate. The level of confidence corresponds to the expected fooportion of intervals that will contain the farameter of many confidence intervals are constanted of the same lample size from the same fopulation.
 - (iii) Type-I & Type-II error: If the hypothesis is true but we reject it, then it's type-I error.

 Of the hypothesis is false but we accept it,

 then it's type-II error.
 - (6) $\mu = 100$, n = 10 $\overline{x} = \frac{2x}{n} = 97.2$ $S^{2} = \frac{1}{(n-1)} \sum_{x=0}^{\infty} (x-\overline{x})^{2}$
 - $S^{2} = \frac{1}{9} \left[(70 97.2)^{2} + (120 97.2)^{2} + (110 97.2)^{2} + (101 97.2)^{2} + (88 97.2)^{2} + (83 97.2)^{2} + (95 97.2)^{2} + (98 97.2)^{2} + (107 97.2)^{2} + (100 97.2)^{2} \right]$
 - $S^2 = \frac{1}{9} \left[1833.6 \right] = \sqrt{203.73} \Rightarrow S = 14.27$
 - we have $t = \frac{\overline{x} \mu}{8} \sqrt{n} = \frac{97.2 100}{14.27} \sqrt{10} = .6204 < 2.262$: teyp. is accepted.

(C) Sample space =
$$\{A, B, C\}$$

 $t \cdot p \cdot m \quad P = \begin{cases} A & B & C \\ B & 0 & 0 & 1 \\ C & 1/2 & 1/2 & 0 \end{cases}$

Initially if C has the ball, the associated initial probvector is given by $p^{(0)} = (0, 0, 1)$

Since the prob. are desired after three theores we've to find $p^{(3)} = p^{(0)}p^3$

$$P^{3} = \begin{cases} \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{2} \end{cases}$$

$$p^{(3)} = p^{(0)} p^3 = \left[\frac{1}{4}, \frac{1}{4}, \frac{1}{2}\right]$$

. After there throws the feeb. that the ball is with A is to, with B is to and with C is \$\frac{1}{2}\$.

The state of the s

i...)

(**) .