MAT115A HW7

Tao Wang

December 7, 2024

Exercise (1)

Question:

Let n=4861. Use $4860=2^2\cdot 3^5\cdot 5$ and x=11 to verify that n is prime via Luca's converse of Fermat's Little Theorem or its corollary.

Answer:

Since

$$11^{4860} \equiv 1 \pmod{4861}$$

$$11^{\frac{4860}{2}} \not\equiv 1 \pmod{4861}$$

$$11^{\frac{4860}{3}} \not\equiv 1 \pmod{4861}$$

$$11^{\frac{4860}{5}} \not\equiv 1 \pmod{4861}$$

4861 is prime via Luca's converse of Fermat's Little Theorem.

Exercise (2)

Question:

If the two most common letters in a long ciphertext, encrypted by an affine transformation $C \equiv aP + b \mod 26$ are W and B, respectively, then what are the most likely values for a and b?

Answer:

Based on the given information, we can set up the following equations

$$4a + b \equiv 22 \pmod{26}$$
$$19a + b \equiv 1 \pmod{26}$$

Plug $b \equiv 22-4a \pmod{26}$ into the second equation, we get $15a+22 \equiv 1 \pmod{26}$. Then, $15a \equiv -21 \equiv 5 \pmod{26}$. Since $15^{-1} \equiv 7 \pmod{26}$, $a \equiv 35 \pmod{26} = 9$ Plug a = 9 back into the first equation, we get $36 + b \equiv 22 \pmod{26}$. Therefore, $b \equiv -14 \equiv 12 \pmod{26}$.

$$a = 9$$
 and $b = 12$

Exercise (3)

Question:

What is the plaintext message that corresponds to the ciphertex

that is produced using modular exponentiation with modulus p=29 and encryption exponent e=17?

Answer:

p=29 and e=17. We have $17d\equiv 1 \pmod{28}$ and $d\equiv 5 \pmod{28}$ $P\equiv 13^5\equiv 6 \pmod{29}$ and $P\equiv 11^5\equiv 14 \pmod{29}$ and $P\equiv 2^5\equiv 3 \pmod{29}$ Therefore, the plaintext message is 6 14 14 3, or \boxed{GOOC}

Exercise (4)

Question:

What is the ciphertext that is produced when RSA encryption with N = 77 and e = 7 is used to encrypt the message "BEST".

Answer:

BEST = 01 04 18 19 N = 77 and e = 7 $C \equiv 1^7 \equiv 1 \pmod{77}$ $C \equiv 4^7 \equiv 60 \pmod{77}$ $C \equiv 18^7 \equiv 39 \pmod{77}$ $C \equiv 19^7 \equiv 68 \pmod{77}$

Therefore, the ciphertext is 01 60 39 68

Exercise (5)

Question:

What is the plaintext message that corresponds to the ciphertext

$$01\ 49\ 49\ 10$$

produced by the RSA encryption with N = 77 and e = 43.

Answer:

$$N=77$$
 and $e=43$
$$ed\equiv 1(\bmod{\phi(77)})\implies 43d\equiv 1(\bmod{60})$$

$$d\equiv 7(\bmod{60})$$
 Therefore, $P\equiv 1^7\equiv 1(\bmod{77})$ and $P\equiv 49^7\equiv 14(\bmod{77})$ and $P\equiv 10^7\equiv 10(\bmod{77})$ The plaintext is 01 14 14 10 or $\boxed{B\ O\ O\ K}$