PyTrader

Using Quantitative Measures to Trade Algorithmically

Outline

- Why use algorithmic trading
- The data
- Clustering stocks
- Technical Indicators
- Strategies
- Modeling stock commodities
- Backtesting strategies
- Making improvements

Algorithmic Trading

What it is

 Carrying out large amounts of trades based on pre-written rules calculated from multiple indicators such as price movement, volatility, volume, etc

Why it's important

- The universe of stocks and trading is massive
- Time is a very important consideration, especially in 24hr markets
- Potential to remove human psychology as a hindrance
- Allows us to better understand some trends in trading

The Data

- Analyzing the US stock/equities market
 - Very granular data containing price information of various stocks
 - o Data includes date, price (open, low, high, and close) and volume
 - Companies from the S&P 500 analyzed
- Date ranges from Jan 1st 2017 to Mar 25 2019 for strategy analysis
- Date ranges from Feb 2017 to Feb 2018 for clustering analysis
- Date ranges from Jan 2015 to March 2019 for LSTM
- Data can be gathered from Yahoo finance/Quandl/Kaggle
 - Depends on if the API is working
 - Kaggle data used for clustering
 - Quandle used for strategy analysis

Clustering stocks

- What factors can we use to cluster companies
 - Yearly returns and volatility
- Maybe see if we can use it to form a diverse portfolio
- KMeans to cluster and look at elbow plot of inertia to find n_clusters

Visualizing Clusters

Inspecting clusters by sector

Cluster 5 results		Cluster 4 results	Cluster 3 results		
Utilities	15	Industrials	23	Real Estate	13
Energy	9	Financials	19	Consumer Discretionary	6
Health Care	9	Consumer Discretionary	15	Energy	5
Consumer Discretionary	8	Information Technology	9	Consumer Staples	4
Financials	7			Communication Services	4
Industrials	6	Health Care	9	Utilities	3
Information Technology	4	Materials	6	Health Care	3
Consumer Staples	3	Energy	2	Industrials	2
Materials	3	Utilities	2	Information Technology	1
Real Estate	2	Real Estate	2	Materials	1
Cluster 2 results		Cluster 1 results		Cluster 0 results	
Financials	11	Consumer Staples	11		
Information Technology	11	Consumer Discretionary	7	Information Technology	24
Industrials	10	Communication Services	7	Health Care	21
Health Care	8	Energy	6	Financials	21
Materials	7	Industrials	5	Industrials	18
Consumer Staples	7	Real Estate	5	Consumer Discretionary	17
Consumer Discretionary	6	Health Care	5	Communication Services	5
Real Estate	4	Information Technology	3	Consumer Staples	5
Energy	3	Utilities		Materials	
Communication Services	2		3		4
Utilities	2	Financials	3	Real Estate	2
Communication Services\n	1	Materials	1	Energy	1

Focus strategies on one stock

- Analyzing Apple's data to test strategy performance
- 2 years of data will be analyzed for analysis and ARIMA modeling
- 5 years of data will be analyzed for LSTM as it needs a larger input

Quantitative Analysis

- Use of models and algorithms to model risk, understand behavior, and evaluate assets in investments
- Use of technical indicators to statistically quantify features for modeling
- Originally used through charting skills and visual analysis to understand trends by plotting technical indicators
 - Through computer science, these indicators were used to algorithmically carry out trades
- Technical indicators are any variables derived from price, volume, and time to describe various aspects of stock movement

Technical Indicators - 4 Major Categories

- Overlays
 - Trend indicators that overlap price movement
- Oscillators
 - Momentum indicators that show how fast prices moves
- Volume
 - Measures/confirms trend direction based on raw volume and its derivatives
- Volatility
 - Measures that show the deviation of a price over a given time period
- Amongst all the categories there are hundreds of indicators, so it's best to choose anywhere from 1-3 indicators at a time in a strategy
 - Curse of dimensionality in noisy data

Visualizing the Data

Candle Bar graphs

Overlays - Trend Indicators

- Many variations to consider, all are some form of averaging the price for a given time period
 - Simple moving average (SMA), Exponential moving average (EMA), Kaufman Adaptive Moving Average (KAMA)
- Short windows follow the price trail more closely
- Longer windows can give the long term trend
- Crossover between short and longer windows allow us to create signals

Initial Indicator exploration

Comparing SMA to EMA

KAMA

Signals from KAMA

Oscillator - RSI

- RSI = 100 100/ (1 + RS)
 - RS is the average returns for a given time period, usually 14 days
- A momentum indicator that shows the strength of price fluctuations
- Ranges from 0 100
 - Usually, if RSI is above 70 then the stock is overbought and will likely lead to big sell off period
 - If RSI below 30, stock is undervalued which will likely lead to big buy period
- For this analysis, the upper range for RSI was set to 80 and lower range was set to 25

Analyzing signal creation potential

RSI Buy and Sell Signals

Volume signal

- From previous graphs, we see that volume and price correlate greatly
- On balance volume (OBV) was used, which indicates volume movement relative to buy and sell strength
- The if conditions are important
- Value of OBV doesn't matter as much as the conditions used to derive it

$$OBV = OBV_{prev} + \begin{cases} volume, & ifclose > close_{prev} \\ 0, & ifclose = close_{prev} \\ -volume, & ifclose < close_{prev} \end{cases}$$

OBV and Price

Volatility - ATR

- The volatility metric used is average true range (ATR)
 - Calculated as rolling average of the True Range
- True Range: max of the 3 values below for a day
 - High Low
 - Current High Previous Close (absolute value)
 - Current Low Previous Close (absolute value)
- A rolling average of the volatility for a 5 day period and 14 day period were tested
- The 14 day period proved to be a good metric that was not as susceptible to sharp changes in price

Volatility Signals

Beginning to model price

- Before beginning time series modeling
 - Data stationarity
- Data will need to be made stationary as stock data is very noisy
- Doesn't really have seasonality
- Stationarity will remove trends and allow the model to learn from a more normally distributed dataset

Beginning to model price

ADF Statistic: -1.924

p-value: 0.321 Critical Values:

10%: -2.573 1%: -3.458 5%: -2.874 ADF Statistic: -15.996

p-value: 0.000 Critical Values: 10%: -2.573

1%: -3.457 5%: -2.873

Log of the price to help with stationarity

ADF Statistic: -23.415 p-value: 0.000 Critical Values: 10%: -2.570 1%: -3.442 5%: -2.867

ARIMA Modeling

- Time series modeling technique that has 3 factors
 - Autoregressive component (AR) effect of past values
 - Differencing component (I) level of differencing to enforce stationarity
 - Moving average component (MA) effect of previous error
- Requires that data is stationary and i.i.d
 - o i.i.d. independent and identically distributed
- Notation for order is ARIMA (p,d,q)
 - The p,d,q represent how far back in the should we look for each model component

Check ACF to inspect AR process

Checking PACF to pick parameters

Finding the best ARIMA model - regular price

ARIMA Model Results

Dep. Variable:		D.y No. Observations:				454			
Model:		ARIMA(4, 1, 2) Log Like			kelihood	elihood -346.74			
Method:		CSS-	mle	S.D. of innovations			0.513		
Date:	Su	n, 31 Mar 2	019	AIC			709.497		
Time:		18:55	:46	BIC			742.442		
Sample:			1	HQIC			722.477		
=========	coef	std err	====:	z	P> z	[0.025	0.975]		
const	0.2236	0.099	2	.261	0.024	0.030	0.417		
ar.L1.D.y	1.3969	0.045	31	.116	0.000	1.309	1.485		

	coei	stu en	Z	P> 2	[0.025	0.975]
const	0.2236	0.099	2.261	0.024	0.030	0.417
ar.L1.D.y	1.3969	0.045	31.116	0.000	1.309	1.485
ar.L2.D.y	-1.2459	0.070	-17.907	0.000	-1.382	-1.110
ar.L3.D.y	0.8151	0.070	11.665	0.000	0.678	0.952
ar.L4.D.y	-0.3035	0.045	-6.746	0.000	-0.392	-0.215
ma.L1.D.y	-0.6107	0.011	-56.557	0.000	-0.632	-0.590
ma.L2.D.y	1.0000	0.029	34.741	0.000	0.944	1.056
			Roots			

Real		Imaginary	Modulus	Frequency		
AR.1	0.0934	-1.2992j	1.3026	-0.2386		
AR.2	0.0934	+1.2992j	1.3026	0.2386		
AR.3	1.2496	-0.6170j	1.3936	-0.0730		
AR.4	1.2496	+0.6170j	1.3936	0.0730		
MA.1	0.3054	-0.9522j	1.0000	-0.2006		
MA.2	0.3054	+0.9522j	1.0000	0.2006		

 Using auto_arima, the it automatically finds the best model parameters by minimizing information criterion such as the AIC and BIC

Results

Best model params

ARIMA Model Results

		ARIMA	Model Resu			
Dep. Variable	:		o.y No. C	bservations:		454
Model:	ARIMA(1, 1, 4)		4) Log L	.ikelihood		2044.189
Method:		css-n		of innovations		0.003
Date:	Sur	n, 31 Mar 20	19 AIC			-4074.379
Time:		19:55:	24 BIC			-4045.552
Sample:			1 HQIC			-4063.021
========	coef	std err	Z	P> z	[0.025	0.975]
const	0.0014	0.001	2.411	0.016	0.000	0.003
ar.L1.D.y	-0.0142	0.052	-0.271	0.786	-0.116	0.088
ma.L1.D.y	0.9769	0.028	35.443	0.000	0.923	1.031
ma.L2.D.y	0.9629	0.031	30.922	0.000	0.902	1.024
ma.L3.D.y	0.9274	0.057	16.149	0.000	0.815	1.040
ma.L4.D.y	0.9432	0.041	22.881 Roots	0.000	0.862	1.024
	======= Real	Ima	aginary	Modulus		Frequency
AR.1	-70.6319		0000j	70,6319		0.5000
MA.1	0.3199		.9683j	1.0198		-0.1992
MA.2	0.3199		.9683j	1.0198		0.1992
MA.3	-0.8116		.6007j	1.0097		-0.3986
MA.4	-0.8116		.6007j	1.0097		0.3986

Results

Using neural networks - LSTM

- Long Short Term Model (LSTM) is a type of recurrent neural network that differs from the basic feed-forward neural networks.
- Data can go back between layers and have a sense of memory when modeling
- Input format is generally (batch size, time steps, input dimension)

LSTM - How it works

LSTM input

1	2	3	4	5
2	3	4	5	6
3	4	5	6	7
4	5	6	7	8
5	6	7	8	9

LSTM model creation

Layer (type)	Output Shape	Param #
======================================	(None, 60, 50)	10400
dropout_1 (Dropout)	(None, 60, 50)	0
lstm_2 (LSTM)	(None, 60, 50)	20200
dropout_2 (Dropout)	(None, 60, 50)	0
flatten_1 (Flatten)	(None, 3000)	0
dense_1 (Dense)	(None, 1)	3001

Total params: 33,601 Trainable params: 33,601 Non-trainable params: 0

```
Epoch 1/10
887/887 [============ ] - 168s 189ms/step - loss: 0.0094
Epoch 2/10
887/887 [=========== ] - 165s 186ms/step - loss: 0.0049
Epoch 3/10
887/887 [=========== ] - 165s 186ms/step - loss: 0.0031
Epoch 4/10
Epoch 5/10
Epoch 6/10
Epoch 7/10
887/887 [========= ] - 165s 186ms/step - loss: 0.0028
Epoch 8/10
Epoch 9/10
887/887 [========== ] - 168s 189ms/step - loss: 0.0016
Epoch 10/10
887/887 [============ ] - 165s 187ms/step - loss: 0.0018
```

LSTM results

MSE for 60 day period: 85.55894235891884

Predicted vs Actual Signals

Backtesting

- Using strategy and results from modeling to test how well our strategies will work
- Survivorship bias
- Quantopian will be the platform to deploy our models on
 - Accounts for many factors such as time delays in ordering, changes in volume as companies increase their shares, and scheduling orders
 - o Tracks multiple metrics to analyze our results
 - Test from Jan 1st 2017 to Mar 25th 2019
 - Base capital of \$5000
- Primary metrics of concern will be total returns and sharpe ratio
 - Sharpe ratio is a measure of performance adjusted for risk
 - Ideal is to aim for ratio > 1

KAMA strategy

KAMA strategy

RSI strategy

RSI strategy

OBV strategy

OBV strategy

Total Returns 84.17 % Specific Returns -2.08 % Common Returns 86.13 % Sharpe 1.16 Max Drawdown -14.18 % Volatility 0.17

Volatility strategy

Volatility strategy

Best strategy so far

- The volatility strategy does will both in terms of performance and risk management
- Our base capital was low enough to offset the survivorship bias

Future improvements

- Combine multiple indicators to see if it performs better than a single strategy
- Use different strategies to enter and exit respectively
- Look into strategies and concerns for larger base capital
- Look into strategies implementing stock shorting
- Model ARIMA for returns as opposed to price and see if there's potential value
- Model volatility through GARCH and combine it with ARIMA
- Tune trading bot on quantopian to include multiple stocks accounting for diversity and sentiment
- The possibilities are endless in terms of strategy combinations