UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS P.O. Box 1450 Alexandria, Virginia 22313-1450 www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/074,411	02/12/2002	Roger Eastvold	390P010777-US (PAR)	7013
Geza C. Ziegler	7590 03/05/200 :. Jr.	EXAMINER		
PERMAN & GREEN, LLP 425 Post Road Fairfield, CT 06430			PATEL, ASHOKKUMAR B	
			ART UNIT	PAPER NUMBER
ŕ			2456	
			MAIL DATE	DELIVERY MODE
			03/05/2009	PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

		Application No.	Applicant(s)			
Office Action Summary		10/074,411	EASTVOLD, ROGER			
		Examiner	Art Unit			
		ASHOK B. PATEL	2456			
Period fo	The MAILING DATE of this communication app or Reply	ears on the cover sheet with the c	orrespondence address			
A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS, WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION. - Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication. - If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication. - Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).						
Status						
1)⊠	Responsive to communication(s) filed on 12/19	2/2000				
•						
3)□	' 					
J)الــا	Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under <i>Ex parte Quayle</i> , 1935 C.D. 11, 453 O.G. 213.					
	closed in accordance with the practice under 2	x parte Quayre, 1999 O.D. 11, 40	0.0.210.			
Dispositi	on of Claims					
4)🛛	☑ Claim(s) <u>1-36</u> is/are pending in the application.					
	4a) Of the above claim(s) is/are withdrawn from consideration.					
5)	5) Claim(s) is/are allowed.					
6)⊠	Claim(s) <u>1-36</u> is/are rejected.					
7)	Claim(s) is/are objected to.					
8)□	Claim(s) are subject to restriction and/or	r election requirement.				
Application Papers						
9) The specification is objected to by the Examiner.						
10) ☐ The drawing(s) filed on is/are: a) ☐ accepted or b) ☐ objected to by the Examiner.						
, —	Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).					
Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).						
11)	11)☐ The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.					
Priority ι	ınder 35 U.S.C. § 119					
 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f). a) All b) Some * c) None of: 1. Certified copies of the priority documents have been received. 2. Certified copies of the priority documents have been received in Application No 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)). * See the attached detailed Office action for a list of the certified copies not received. 						
2) Notic 3) Inform	e of References Cited (PTO-892) se of Draftsperson's Patent Drawing Review (PTO-948) mation Disclosure Statement(s) (PTO/SB/08) r No(s)/Mail Date	4) Interview Summary Paper No(s)/Mail Da 5) Notice of Informal P 6) Other:	te			

Art Unit: 2456

DETAILED ACTION

1. Claims 1-36 are subject to examination.

Response to Arguments

2. Applicant's arguments with respect to claims 1-36 have been considered but are moot in view of the new ground(s) of rejection.

Claim Rejections - 35 USC § 112

3. The following is a quotation of the first paragraph of 35 U.S.C. 112:

The specification shall contain a written description of the invention, and of the manner and process of making and using it, in such full, clear, concise, and exact terms as to enable any person skilled in the art to which it pertains, or with which it is most nearly connected, to make and use the same and shall set forth the best mode contemplated by the inventor of carrying out his invention.

4. Claims 1, 6, 11 and 24 are rejected under 35 U.S.C. 112, first paragraph, as failing to comply with the written description requirement. The claim(s) contains subject matter which was not described in the specification in such a way as to reasonably convey to one skilled in the relevant art that the inventor(s), at the time the application was filed, had possession of the claimed invention. These claims contains the phrase "wherein the remote network receives the second data without an identity of the predetermined equipment associated with the second data being known to the remote network", is not described in the specification.

Applicant is required to cancel the new matter in the reply to this Office Action.

Claim Rejections - 35 USC § 103

5. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

Art Unit: 2456

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.

6. Claims 1-36 are rejected under 35 U.S.C. 103(a) as being Pyotsia et al. (hereinafter Pyotsia) (US 7, 010, 294 B1) in view of Reid et al. (hereinafter Reid)(US 6, 182, 226 B1)

Referring to claim 1,

Pyotsia teaches a system for accessing data remotely from a network (Fig. 2), comprising:

a local network interface permitting data transfer between a local network (please refer to col. 5, line 19-26, "With reference to FIG. 2, <u>a diagnostic system 21</u> may be any automation system, such as automation system 11 and 12 in FIG. 1, <u>or any field device management or control system</u>, such as the management system 10 in FIG. 1, or combination thereof." Note: Fig. 1, element 10 which is element 21 of Fig. 2 is an "a local network interface" permitting data transfer from a local network "which is Fig. 2, element "Hart/Field bus and "field devices.") and an intermediate network (Fig. 1, element "Factory LAN" and including Fig. 2, elements 21 and 23 is "an intermediate network ", please refer to col. 5, line 19-26, "With reference to FIG. 2, <u>a diagnostic system 21</u> may be any automation system, such as automation system 11 and 12 in FIG. 1, <u>or any field device management or control system, such as the management system 10 in FIG. 1,</u> or combination thereof. A characteristic feature of the diagnostic system is that it comprises a wired connection, such as a field bus or a

HART bus, to field devices 14, 15 and 16, and is able to control or configure the field devices, or to read measurement or status data from the field devices." <u>note: Thus, "the management system 10" is a diagnostic system 21 of Fig. 2 interfacing the Factory LAN" of Fig. 1.)</u> (Fig. 2, element 21's interface showing OLE and "data" going into element 23) Fi.2, element 23);

a remote network interface device (Fig. 2, element 23) permitting data transfer between the intermediate network and a remote network (Fig. 2, element 24, 25, 26, col. 6, line 3-41); and

a module located within the intermediate network, through which data transferring between the local network and the remote network passes, the module being configured to receive and process a first data from the remote network and send a different data to the local network based on the first data received from the remote network (col. 6, line 63-col. 7, line 67, "FIG. 3 illustrates the wireless control arrangement according to the present invention when using the WAP. The diagnostic system 21, device database 22 as well as the WWW server 33 may be similar to those described with reference to FIG. 2. However, content of WWW pages may be created so that the use of WAP and WML is taken into account, e.g. by providing simple WWW pages with the HTML language or by using the WML language in the WWW pages. The mobile terminal MT is provided with a WAP micro browser, whereas the data connection through the mobile communication network 26 is similar to that in FIG. 2. A WAP gateway 35 provides a connection between the mobile communication network 26 and the WWW technology in the internet 24. Firstly, the WAP gateway 35 translates

Page 5

WAP requests to WWW requests thereby allowing the WAP micro browser in the mobile terminal MT to submit requests to the WWW server 33. The WAP gateway 35 also translates the responses from the WWW server 33 into a format understood by the micro browser in the MT. If the WWW server 33 provides a WAP content (e.g., WML), the WAP gateway 35 retrieves it directly from the WWW server and forwards it to the MT. However, if the WWW server 33 provides a WWW content (such as HTML), the WAP gateway 35 (or a separate filter unit) translates the WWW content (e.g., HTML) into WAP content (e.g., WML). This translation is also called filtering since it often extracts the essential parts of the WWW content for translation. A further advantage of the WAP is that it inherently provides a connection security between the MT and the WWW server 33. The security and the authentication of the user is especially important when the inventive arrangement is used for configuration and control of the field devices. As the configuration and control commands will affect on the operation of the plant, a system according to the invention has to assure that the user is an authorized user. It may also be possible to create a WWW server 33 that includes the WAP gateway functionality 35, in order to facilitate end-to-end security solutions, or to achieve better access control or a guarantee of responsiveness. The WWW server 23 and 33 utilizes the data in the device database 22 for creating the interactive WWW pages for browsing the data and for control and configuration of the field devices. As the server 23 or 33 uses the same database with the diagnostic system 21, the contents of the WWW pages are always up-to-date. The mobile terminal MT is able to browse the diagnostic and configuration data in the device database 22 by means of the

interactive WWW pages. In response to the requests and selections made by the user in the interactive WWW pages the WWW server 23 makes inquiries to the device database 22, and a new WWW page is created according to the data obtained from the database 22. The created WWW page may include diagnostic data, status and an operation history data of the selected field device, as well as information required for controlling and configuring the field device. According to the user's selections an appropriate piece of data is shown in the WWW page in text format, graphical format and/or in any other suitable format, together with the fields or links for making further selections or commands. The server 23 or 33 translates the configuration or control commands made by the user in the interactive WWW page into configuration commands used in the interface between the WWW server 23 or 33 and the diagnostic system 21, typically based on the information obtained from the database 22. The interface between the server 23 and the diagnostic system 21 may be OLE (Object Linking and Embedding) The diagnostic system 21 forwards the control and configuration commands received from the server 23 or 33 to the field devices, typically upon translating the generic commands into the device specific instructions. As a result, an "on-line" connection from the mobile terminal MT to the field device is provided.")and to transmit a second data from the intermediate network to the remote network where the second data is related to a predetermined condition of predetermined equipment identified by the module (col. 8, line 1-22, "By means of the inventive interactive user interface and the "on-line" connection, the maintenance personnel is able to retrieve information on the operation of a desired field device, such

as a control valve, and display it on the user interface of the mobile terminal. The information may be displayed in a text format and/or graphical format. The information may also include alarms and any operation parameters which the maintenance person wishes to monitor on-line, such as the opening of a valve. The operational data obtained by the mobile terminal MT allows the maintenance person to immediately make a decision on the maintenance need of the respective field device, i.e. whether it is possible to postpone the maintenance operation up to the next shut down of the plant or whether special arrangements are needed in order to avoid an unintentional shutdown. During the shutdown of the plant the mobile terminal can be used for performing various field test for the field device, such as a step response test or a hystheresis test for a control valve. Also during the operation of the plant the diagnostic system 21 may allow the mobile terminal to perform a forced control of the field device to a desired mode of operation or position.")

Pyotsia fails to teach "wherein the remote network receives the second data without an identity of the predetermined equipment associated with the second data being known to the remote network".

Reid teaches "A rewrite node is a point in an access rule where source or destination addresses are mapped to other source or destination addresses. Destination IP address rewrites allow an inbound connection through network address translation (NAT) address hiding to be remapped to a destination inside the NAT barrier. Source address rewrites can be used on outbound connections to make the source appear to be one of many external addresses. This process allows the internal hosts to

be aliased to external addresses. Rewrites can be based on any connection criteria,

Page 8

including users.", col. 6, lines 46-56. ("wherein the remote network receives the second

data without an identity of the predetermined equipment associated with the second

data being known to the remote network"

One of ordinary skill in the art could have substituted "WAP security of Pyotsia by

known methods. For example, Pyotsia discloses security by WAP protocol and Reid

discloses "Destination IP address rewrites allow an inbound connection through network

address translation (NAT) address hiding to be remapped to a destination inside the

NAT barrier", and the results would have been a predictable use of known technique of

providing security over the network. Thus, it would have been obvious to one of

ordinary skill in the art to replace the WAP security with a network address translation

(NAT)

It would have been obvious because it provides a method for controlling

interactions between networks by the use of firewalls with defined regions as taught by

Reid.

Referring to claim 2,

Pyotsia teaches the system of claim 1, wherein the data transfer between each

of the networks occurs via the Internet Protocol (IP), and wherein each network has its

own unique IP address (Fig. 2, elements 26, 24 25 and 23 are located in the internet

environment.)

Referring to claim 3,

Keeping in mine the teachings of Pyotsia as stated above, Pyotsia explicitly fails to teach the system of claim 2, wherein the module hides the IP addresses of the remote network and the local network from each other.

Reid teaches "A rewrite node is a point in an access rule where source or destination addresses are mapped to other source or destination addresses. Destination IP address rewrites allow an inbound connection through network address translation (NAT) address hiding to be remapped to a destination inside the NAT barrier. Source address rewrites can be used on outbound connections to make the source appear to be one of many external addresses. This process allows the internal hosts to be aliased to external addresses. Rewrites can be based on any connection criteria, including users.", col. 6, lines 46-56. (wherein the data transfer between each of the networks occurs via the Internet Protocol (IP), and wherein each network has its own unique IP address, and the system of claim 2, wherein the module hides the IP addresses of the remote network and the local network from each other.)

One of ordinary skill in the art could have substituted "WAP security of Pyotsia by known methods. For example, Pyotsia discloses security by WAP protocol and Reid discloses "Destination IP address rewrites allow an inbound connection through network address translation (NAT) address hiding to be remapped to a destination inside the NAT barrier", and the results would have been a predictable use of known technique of providing security over the network. Thus, it would have been obvious to one of ordinary skill in the art to replace the WAP security with a network address translation (NAT)

Art Unit: 2456

It would have been obvious because it provides a method for controlling interactions between networks by the use of firewalls with defined regions as taught by Reid.

Referring to claim 4,

Pyotsia teaches the system of claim 2, wherein the module exchanges data with an equipment diagnostic monitor system located within the intermediate network, the equipment diagnostic monitoring system being configured to monitor a health of the equipment within the local network and wherein the equipment diagnostic monitor system has the function of monitoring at least one activity of at least one tool residing within the local network (col. 6, line 63-col. 7, line 67, "FIG. 3 illustrates the wireless control arrangement according to the present invention when using the WAP. The diagnostic system 21, device database 22 as well as the WWW server 33 may be similar to those described with reference to FIG. 2. However, content of WWW pages may be created so that the use of WAP and WML is taken into account, e.g. by providing simple WWW pages with the HTML language or by using the WML language in the WWW pages. The mobile terminal MT is provided with a WAP micro browser, whereas the data connection through the mobile communication network 26 is similar to that in FIG. 2. A WAP gateway 35 provides a connection between the mobile communication network 26 and the WWW technology in the internet 24. Firstly, the WAP gateway 35 translates WAP requests to WWW requests thereby allowing the WAP micro browser in the mobile terminal MT to submit requests to the WWW server 33. The WAP gateway 35 also translates the responses from the WWW server 33 into

Page 11

Art Unit: 2456

a format understood by the micro browser in the MT. If the WWW server 33 provides a WAP content (e.g., WML), the WAP gateway 35 retrieves it directly from the WWW server and forwards it to the MT. However, if the WWW server 33 provides a WWW content (such as HTML), the WAP gateway 35 (or a separate filter unit) translates the WWW content (e.g., HTML) into a WAP content (e.g., WML). This translation is also called filtering since it often extracts the essential parts of the WWW content for translation. A further advantage of the WAP is that it inherently provides a connection security between the MT and the WWW server 33. The security and the authentication of the user is especially important when the inventive arrangement is used for configuration and control of the field devices. As the configuration and control commands will affect on the operation of the plant, a system according to the invention has to assure that the user is an authorized user. It may also be possible to create a WWW server 33 that includes the WAP gateway functionality 35, in order to facilitate end-to-end security solutions, or to achieve better access control or a guarantee of responsiveness. The WWW server 23 and 33 utilizes the data in the device database 22 for creating the interactive WWW pages for browsing the data and for control and configuration of the field devices. As the server 23 or 33 uses the same database with the diagnostic system 21, the contents of the WWW pages are always up-to-date. The mobile terminal MT is able to browse the diagnostic and configuration data in the device database 22 by means of the interactive WWW pages. In response to the requests and selections made by the user in the interactive WWW pages the WWW server 23 makes inquiries to the device database 22, and a new WWW page is created according to the

Page 12

Art Unit: 2456

data obtained from the database 22. The created WWW page may include diagnostic data, status and an operation history data of the selected field device, as well as information required for controlling and configuring the field device. According to the user's selections an appropriate piece of data is shown in the WWW page in text format, graphical format and/or in any other suitable format, together with the fields or links for making further selections or commands. The server 23 or 33 translates the configuration or control commands made by the user in the interactive WWW page into configuration commands used in the interface between the WWW server 23 or 33 and the diagnostic system 21, typically based on the information obtained from the database 22. The interface between the server 23 and the diagnostic system 21 may be OLE (Object Linking and Embedding) The diagnostic system 21 forwards the control and configuration commands received from the server 23 or 33 to the field devices, typically upon translating the generic commands into the device specific instructions. As a result, an "on-line" connection from the mobile terminal MT to the field device is provided.", col. 8, line 1-22, "By means of the inventive interactive user interface and the "on-line" connection, the maintenance personnel is able to retrieve information on the operation of a desired field device, such as a control valve, and display it on the user interface of the mobile terminal. The information may be displayed in a text format and/or graphical format. The information may also include alarms and any operation parameters which the maintenance person wishes to monitor on-line, such as the opening of a valve. The operational data obtained by the mobile terminal MT allows the maintenance person to immediately make a decision on the maintenance need of the

respective field device, i.e. whether it is possible to postpone the maintenance operation up to the next shut down of the plant or whether special arrangements are needed in order to avoid an unintentional shutdown. During the shutdown of the plant the mobile terminal can be used <u>for performing various field test for the field device</u>, such as a step response test or a hystheresis test for a control valve. Also during the operation of the plant the diagnostic system 21 may allow the mobile terminal to perform a forced control of the field device to a desired mode of operation or position.")

Referring to claim 5,

Pyotsia teaches the system of claim 4, wherein the equipment diagnostic monitor system collects and analyzes data from tests performed on the at least one tool. (col. 8, line 1-22, "By means of the inventive interactive user interface and the "on-line" connection, the maintenance personnel is able to retrieve information on the operation of a desired field device, such as a control valve, and display it on the user interface of the mobile terminal. The information may be displayed in a text format and/or graphical format. The information may also include alarms and any operation parameters which the maintenance person wishes to monitor on-line, such as the opening of a valve. The operational data obtained by the mobile terminal MT allows the maintenance person to immediately make a decision on the maintenance need of the respective field device, i.e. whether it is possible to postpone the maintenance operation up to the next shut down of the plant or whether special arrangements are needed in order to avoid an unintentional shutdown. During the shutdown of the plant the mobile terminal can be used for performing various field test for the field device, such as a step response test

Art Unit: 2456

or a hystheresis test for a control valve. Also during the operation of the plant the diagnostic system 21 may allow the mobile terminal to perform a forced control of the field device to a desired mode of operation or position." Col. 5, line 27-53, "For this purpose, the diagnostic system 21 comprises a management and control software for the field devices. In the preferred embodiment each field device type (e.g. two different control valves or control valves of different manufacturers may represent different device types) is provided with a specific control software which contains all necessary data and instructions sets for controlling, configuring, reading, etc., the field devices of a Normally these operations can be made by a control room predetermined time. personnel from a work station. A device database 22 stores information on each field device controlled by the diagnostic system 21 and, preferably, all diagnostics data read from the field devices. In other words, the database 22 contains an updated configuration of field devices as well as the operation history thereof. In accordance to the principles of the present invention, the diagnostic system 21 is further provided with an interactive user interface which utilize the configuration, control and management data in the database 22 and is accessible by the mobile terminal MT through a dedicated data connection established over the cellular communication system 26, in order to selectively control, configure or monitor the field devices 14, 15 and 16 connected to the diagnostic system 21. In the preferred embodiment of the invention the interactive user interface is embodied as one or more world wide web (WWW) pages in a WWW server 23.")

Referring to claim 6,

Art Unit: 2456

Pyotsia teaches a system for accessing a local network from a remote network through an intermediate network(Fig. 2), comprising:

a local network interface permitting data transfer between the local network (please refer to col. 5, line 19-26, "With reference to FIG. 2, a diagnostic system 21 may be any automation system, such as automation system 11 and 12 in FIG. 1, or any field device management or control system, such as the management system 10 in FIG. 1, or combination thereof." Note: Fig. 1, element 10 which is element 21 of Fig. 2 is an "a local network interface" permitting data transfer from a local network "which is Fig. 2, element "Hart/Field bus and "field devices.") and the intermediate network (Fig. 1, element "Factory LAN" and including Fig. 2, elements 21 and 23 is "an intermediate network ", please refer to col. 5, line 19-26, "With reference to FIG. 2, a diagnostic system 21 may be any automation system, such as automation system 11 and 12 in FIG. 1, or any field device management or control system, such as the management system 10 in FIG. 1, or combination thereof. A characteristic feature of the diagnostic system is that it comprises a wired connection, such as a field bus or a HART bus, to field devices 14, 15 and 16, and is able to control or configure the field devices, or to read measurement or status data from the field devices." note: Thus, "the management system 10" is a diagnostic system 21 of Fig. 2 interfacing the Factory LAN" of Fig. 1.) (Fig. 2, element 21's interface showing OLE and "data" going into element 23) Fi.2 , element 23), the local network having a plurality of equipment located within the local network (please refer to col. 5, line 19-26, "With reference to FIG. 2, a diagnostic system 21 may be any automation system, such as automation

system 11 and 12 in FIG. 1, or any field device management or control system, such as the management system 10 in FIG. 1, or combination thereof." Note: Fig. 1, element 10 which is element 21 of Fig. 2 is an "a local network interface" permitting data transfer from a local network "which is Fig. 2, element "Hart/Field bus and "field devices."):

a remote network interface permitting data transfer between the remote network Fig. 2, element 23) and the intermediate network, the remote network having the user located within the remote network; and permitting data transfer between the intermediate network and a remote network (Fig. 2, element 24, 25, 26, col. 6, line 3-41); and

a module located within the intermediate network, the module being configured to receive and process data from at least one of the plurality of users of the remote network and send a different data to at least one of the plurality of equipment of the local network based on the data received from the remote network, the module being further configured to allow one of the plurality of users to select at least one equipment diagnostic monitor system from a plurality of equipment diagnostic monitoring systems; and the equipment diagnostic monitor system for monitoring the health of the plurality of equipment within the local network, the equipment diagnostic monitoring system being located within the intermediate network, wherein the equipment diagnostic monitor system monitors tests performed on the plurality of equipment residing within the local network. (col. 6, line 63-col. 7, line 67, "FIG. 3 illustrates the wireless control arrangement according to the present invention when using the WAP. The diagnostic

Page 17

Art Unit: 2456

system 21, device database 22 as well as the WWW server 33 may be similar to those described with reference to FIG. 2. However, content of WWW pages may be created so that the use of WAP and WML is taken into account, e.g. by providing simple WWW pages with the HTML language or by using the WML language in the WWW pages. The mobile terminal MT is provided with a WAP micro browser, whereas the data connection through the mobile communication network 26 is similar to that in FIG. 2. A WAP gateway 35 provides a connection between the mobile communication network 26 and the WWW technology in the internet 24. Firstly, the WAP gateway 35 translates WAP requests to WWW requests thereby allowing the WAP micro browser in the mobile terminal MT to submit requests to the WWW server 33. The WAP gateway 35 also translates the responses from the WWW server 33 into a format understood by the micro browser in the MT. If the WWW server 33 provides a WAP content (e.g., WML), the WAP gateway 35 retrieves it directly from the WWW server and forwards it to the MT. However, if the WWW server 33 provides a WWW content (such as HTML), the WAP gateway 35 (or a separate filter unit) translates the WWW content (e.g., HTML) into a WAP content (e.g., WML). This translation is also called filtering since it often extracts the essential parts of the WWW content for translation. A further advantage of the WAP is that it inherently provides a connection security between the MT and the WWW server 33. The security and the authentication of the user is especially important when the inventive arrangement is used for configuration and control of the field devices. As the configuration and control commands will affect on the operation of the plant, a system according to the invention has to assure that the user is an authorized

user. It may also be possible to create a WWW server 33 that includes the WAP gateway functionality 35, in order to facilitate end-to-end security solutions, or to achieve better access control or a guarantee of responsiveness. The WWW server 23 and 33 utilizes the data in the device database 22 for creating the interactive WWW pages for browsing the data and for control and configuration of the field devices. As the server 23 or 33 uses the same database with the diagnostic system 21, the contents of the WWW pages are always up-to-date. The mobile terminal MT is able to browse the diagnostic and configuration data in the device database 22 by means of the interactive WWW pages. In response to the requests and selections made by the user in the interactive WWW pages the WWW server 23 makes inquiries to the device database 22, and a new WWW page is created according to the data obtained from the database 22. The created WWW page may include diagnostic data, status and an operation history data of the selected field device, as well as information required for controlling and configuring the field device. According to the user's selections an appropriate piece of data is shown in the WWW page in text format, graphical format and/or in any other suitable format, together with the fields or links for making further selections or commands. The server 23 or 33 translates the configuration or control commands made by the user in the interactive WWW page into configuration commands used in the interface between the WWW server 23 or 33 and the diagnostic system 21, typically based on the information obtained from the database 22. The interface between the server 23 and the diagnostic system 21 may be OLE (Object Linking and Embedding) The diagnostic system 21 forwards the control and

configuration commands received from the server 23 or 33 to the field devices, typically upon translating the generic commands into the device specific instructions. As a result, an "on-line" connection from the mobile terminal MT to the field device is provided." col. 8, line 1-22, "By means of the inventive interactive user interface and the "on-line" connection, the maintenance personnel is able to retrieve information on the operation of a desired field device, such as a control valve, and display it on the user interface of the mobile terminal. The information may be displayed in a text format and/or graphical format. The information may also include alarms and any operation parameters which the maintenance person wishes to monitor on-line, such as the opening of a valve. The operational data obtained by the mobile terminal MT allows the maintenance person to immediately make a decision on the maintenance need of the respective field device, i.e. whether it is possible to postpone the maintenance operation up to the next shut down of the plant or whether special arrangements are needed in order to avoid an unintentional shutdown. During the shutdown of the plant the mobile terminal can be used for performing various field test for the field device, such as a step response test or a hystheresis test for a control valve. Also during the operation of the plant the diagnostic system 21 may allow the mobile terminal to perform a forced control of the field device to a desired mode of operation or position.")

Pyotsia fails to teach "a plurality of equipment diagnostic monitor system.", however, one of ordinary skill in the art could have used more than one (plurality) of Pyotsia's "Diagnostics systems" to monitor the devices in various LAN network segments independently and the results of such an extension of Pyotsia's invention

would have been predictable in that the devices located at different segments of the LANs could be independently remotely controlled and monitored.

Pyotsia fails to teach "wherein the remote network receives the second data without an identity of the predetermined equipment associated with the second data being known to the remote network".

Reid teaches "A rewrite node is a point in an access rule where source or destination addresses are mapped to other source or destination addresses. Destination IP address rewrites allow an inbound connection through network address translation (NAT) address hiding to be remapped to a destination inside the NAT barrier. Source address rewrites can be used on outbound connections to make the source appear to be one of many external addresses. This process allows the internal hosts to be aliased to external addresses. Rewrites can be based on any connection criteria, including users.", col. 6, lines 46-56. ("wherein the remote network receives the second data without an identity of the predetermined equipment associated with the second data being known to the remote network"

One of ordinary skill in the art could have substituted "WAP security of Pyotsia by known methods. For example, Pyotsia discloses security by WAP protocol and Reid discloses "Destination IP address rewrites allow an inbound connection through network address translation (NAT) address hiding to be remapped to a destination inside the NAT barrier", and the results would have been a predictable use of known technique of providing security over the network. Thus, it would have been obvious to one of

ordinary skill in the art to replace the WAP security with a network address translation (NAT)

It would have been obvious because it provides a method for controlling interactions between networks by the use of firewalls with defined regions as taught by Reid.

Referring to claim 7,

Pyotsia teaches the system of claim 6, wherein the data transfer between each of the networks occurs via the Internet Protocol (IP) (Fig. 2, elements 26, 24 25 and 23 are located in the internet environment.)

Referring to claim 8,

Keeping in mine the teachings of Pyotsia as stated above, Pyotsia explicitly fails to teach to teach the system of claim 7, wherein the module hides the IP addresses of the local network and the remote network from each other.

Reid teaches "A rewrite node is a point in an access rule where source or destination addresses are mapped to other source or destination addresses. Destination IP address rewrites allow an inbound connection through network address translation (NAT) address hiding to be remapped to a destination inside the NAT barrier. Source address rewrites can be used on outbound connections to make the source appear to be one of many external addresses. This process allows the internal hosts to be aliased to external addresses. Rewrites can be based on any connection criteria, including users.", col. 6, lines 46-56. (wherein the data transfer between each of the networks occurs via the Internet Protocol (IP), and wherein each network has its own

unique IP address, and the system of claim 2, wherein the module hides the IP addresses of the remote network and the local network from each other.)

One of ordinary skill in the art could have substituted "WAP security of Pyotsia by known methods. For example, Pyotsia discloses security by WAP protocol and Reid discloses "Destination IP address rewrites allow an inbound connection through network address translation (NAT) address hiding to be remapped to a destination inside the NAT barrier", and the results would have been a predictable use of known technique of providing security over the network. Thus, it would have been obvious to one of ordinary skill in the art to replace the WAP security with a network address translation (NAT)

It would have been obvious because it provides a method for controlling interactions between networks by the use of firewalls with defined regions as taught by Reid.

Referring to claim 9,

Pyotsia teaches the system of claim 6, wherein the equipment diagnostic monitor system collects and analyzes data from the at least one activity of the at least one item (col. 8, line 1-22, "By means of the inventive interactive user interface and the "on-line" connection, the maintenance personnel is able to retrieve information on the operation of a desired field device, such as a control valve, and display it on the user interface of the mobile terminal. The information may be displayed in a text format and/or graphical format. The information may also include alarms and any operation parameters which the maintenance person wishes to monitor on-line, such as the

opening of a valve. The operational data obtained by the mobile terminal MT allows the maintenance person to immediately make a decision on the maintenance need of the respective field device, i.e. whether it is possible to postpone the maintenance operation up to the next shut down of the plant or whether special arrangements are needed in order to avoid an unintentional shutdown. During the shutdown of the plant the mobile terminal can be used for performing various field test for the field device, such as a step response test or a hystheresis test for a control valve. Also during the operation of the plant the diagnostic system 21 may allow the mobile terminal to perform a forced control of the field device to a desired mode of operation or position." Col. 5, line 27-53, "For this purpose, the diagnostic system 21 comprises a management and control software for the field devices. In the preferred embodiment each field device type (e.g. two different control valves or control valves of different manufacturers may represent different device types) is provided with a specific control software which contains all necessary data and instructions sets for controlling, configuring, reading, etc., the field devices of a predetermined time. Normally these operations can be made by a control room personnel from a work station. A device database 22 stores information on each field device controlled by the diagnostic system 21 and, preferably, all diagnostics data read from the field devices. In other words, the database 22 contains an updated configuration of field devices as well as the operation history thereof. In accordance to the principles of the present invention, the diagnostic system 21 is further provided with an interactive user interface which utilize the configuration, control and management data in the database 22 and is accessible by the mobile terminal MT through a

dedicated data connection established over the cellular communication system 26, in order to selectively control, configure or monitor the field devices 14, 15 and 16 connected to the diagnostic system 21. In the preferred embodiment of the invention the interactive user interface is embodied as one or more world wide web (WWW) pages in a WWW server 23.")

Referring to claim 10,

Pyotsia teaches the system of claim 6, wherein the user on the remote network may request that tests be performed on the at least one item, and may upload data to the remote network, from at least one test performed on the at least one item (col. 8, line 1-22, "By means of the inventive interactive user interface and the "on-line" connection, the maintenance personnel is able to retrieve information on the operation of a desired field device, such as a control valve, and display it on the user interface of the mobile terminal. The information may be displayed in a text format and/or graphical format. The information may also include alarms and any operation parameters which the maintenance person wishes to monitor on-line, such as the opening of a valve. The operational data obtained by the mobile terminal MT allows the maintenance person to immediately make a decision on the maintenance need of the respective field device, i.e. whether it is possible to postpone the maintenance operation up to the next shut down of the plant or whether special arrangements are needed in order to avoid an unintentional shutdown. During the shutdown of the plant the mobile terminal can be used for performing various field test for the field device, such as a step response test or a hystheresis test for a control valve. Also during the operation of the plant the

Art Unit: 2456

diagnostic system 21 may allow the mobile terminal to perform a forced control of the field device to a desired mode of operation or position." Col. 5, line 27-53, "For this purpose, the diagnostic system 21 comprises a management and control software for the field devices. In the preferred embodiment each field device type (e.g. two different control valves or control valves of different manufacturers may represent different device types) is provided with a specific control software which contains all necessary data and instructions sets for controlling, configuring, reading, etc., the field devices of a predetermined time. Normally these operations can be made by a control room personnel from a work station. A device database 22 stores information on each field device controlled by the diagnostic system 21 and, preferably, all diagnostics data read from the field devices. In other words, the database 22 contains an updated configuration of field devices as well as the operation history thereof. In accordance to the principles of the present invention, the diagnostic system 21 is further provided with an interactive user interface which utilize the configuration, control and management data in the database 22 and is accessible by the mobile terminal MT through a dedicated data connection established over the cellular communication system 26, in order to selectively control, configure or monitor the field devices 14, 15 and 16 connected to the diagnostic system 21. In the preferred embodiment of the invention the interactive user interface is embodied as one or more world wide web (WWW) pages in a WWW server 23.")

Referring to claim 11,

Pyotsia teaches the data system, comprising:

Art Unit: 2456

a local network interface device enabling data transfer between a local network (please refer to col. 5, line 19-26, "With reference to FIG. 2, a diagnostic system 21 may be any automation system, such as automation system 11 and 12 in FIG. 1, or any field device management or control system, such as the management system 10 in FIG. 1, or combination thereof." Note: Fig. 1, element 10 which is element 21 of Fig. 2 is an "a local network interface" permitting data transfer from a local network "which is Fig. 2, element "Hart/Field bus and "field devices.") and an intermediate network(Fig. 1, element "Factory LAN" and including Fig. 2, elements 21 and 23 is "an intermediate network ", please refer to col. 5, line 19-26, "With reference to FIG. 2, a diagnostic system 21 may be any automation system, such as automation system 11 and 12 in FIG. 1, or any field device management or control system, such as the management system 10 in FIG. 1, or combination thereof. A characteristic feature of the diagnostic system is that it comprises a wired connection, such as a field bus or a HART bus, to field devices 14, 15 and 16, and is able to control or configure the field devices, or to read measurement or status data from the field devices." note: Thus, "the management system 10" is a diagnostic system 21 of Fig. 2 interfacing the Factory LAN" of Fig. 1.) (Fig. 2, element 21's interface showing OLE and "data" going into element 23) Fi.2 ,element 23); a local network interface permitting data transfer between a local network and an intermediate network (please refer to col. 5, line 19-26, "With reference to FIG. 2, a diagnostic system 21 may be any automation system, such as automation system 11 and 12 in FIG. 1, or any field device management or control system, such as the management system 10 in FIG. 1, or combination thereof."

Art Unit: 2456

Note: Fig. 1, element 10 which is element 21 of Fig. 2 is an "a local network interface" permitting data transfer from a local network "which is Fig. 2, element "Hart/Field bus and "field devices.");

a remote network interface device (Fig. 2, element 23) enabling data transfer between a remote network and the intermediate network (Fig. 2, element 24, 25, 26, col. 6, line 3-41); and

a equipment diagnostic monitor system for monitoring a health of a plurality of equipment within the local network, the equipment diagnostic monitoring system being located within the intermediate network, wherein the equipment diagnostic monitor system monitors at least one activity of at least one of the plurality of equipment in the local network; wherein the intermediate network is configured to selectively receive and selectively process data from the remote network depending on a set of predetermined criteria applied by the intermediate network and send a different data to the local network based on the selectively processed data and to transmit a second data from the intermediate network to the remote network where the second data is related to a predetermined condition of equipment identified by the equipment diagnostic monitor system(col. 6, line 63-col. 7, line 67, "FIG. 3 illustrates the wireless control arrangement according to the present invention when using the WAP. The diagnostic system 21, device database 22 as well as the WWW server 33 may be similar to those described with reference to FIG. 2. However, content of WWW pages may be created so that the use of WAP and WML is taken into account, e.g. by providing simple WWW pages with the HTML language or by using the WML language in the WWW pages. The mobile

Page 28

Art Unit: 2456

terminal MT is provided with a WAP micro browser, whereas the data connection through the mobile communication network 26 is similar to that in FIG. 2. A WAP gateway 35 provides a connection between the mobile communication network 26 and the WWW technology in the internet 24. Firstly, the WAP gateway 35 translates WAP requests to WWW requests thereby allowing the WAP micro browser in the mobile terminal MT to submit requests to the WWW server 33. The WAP gateway 35 also translates the responses from the WWW server 33 into a format understood by the micro browser in the MT. If the WWW server 33 provides a WAP content (e.g., WML), the WAP gateway 35 retrieves it directly from the WWW server and forwards it to the MT. However, if the WWW server 33 provides a WWW content (such as HTML), the WAP gateway 35 (or a separate filter unit) translates the WWW content (e.g., HTML) into a WAP content (e.g., WML). This translation is also called filtering since it often extracts the essential parts of the WWW content for translation. A further advantage of the WAP is that it inherently provides a connection security between the MT and the WWW server 33. The security and the authentication of the user is especially important when the inventive arrangement is used for configuration and control of the field devices. As the configuration and control commands will affect on the operation of the plant, a system according to the invention has to assure that the user is an authorized user. It may also be possible to create a WWW server 33 that includes the WAP gateway functionality 35, in order to facilitate end-to-end security solutions, or to achieve better access control or a guarantee of responsiveness. The WWW server 23 and 33 utilizes the data in the device database 22 for creating the interactive WWW

pages for browsing the data and for control and configuration of the field devices. As the server 23 or 33 uses the same database with the diagnostic system 21, the contents of the WWW pages are always up-to-date. The mobile terminal MT is able to browse the diagnostic and configuration data in the device database 22 by means of the interactive WWW pages. In response to the requests and selections made by the user in the interactive WWW pages the WWW server 23 makes inquiries to the device database 22, and a new WWW page is created according to the data obtained from the database 22. The created WWW page may include diagnostic data, status and an operation history data of the selected field device, as well as information required for controlling and configuring the field device. According to the user's selections an appropriate piece of data is shown in the WWW page in text format, graphical format and/or in any other suitable format, together with the fields or links for making further selections or commands. The server 23 or 33 translates the configuration or control commands made by the user in the interactive WWW page into configuration commands used in the interface between the WWW server 23 or 33 and the diagnostic system 21, typically based on the information obtained from the database 22. The interface between the server 23 and the diagnostic system 21 may be OLE (Object Linking and Embedding) The diagnostic system 21 forwards the control and configuration commands received from the server 23 or 33 to the field devices, typically upon translating the generic commands into the device specific instructions. As a result, an "on-line" connection from the mobile terminal MT to the field device is provided." col. 8, line 1-22, "By means of the inventive interactive user interface and the

Art Unit: 2456

"on-line" connection, the maintenance personnel is able to retrieve information on the operation of a desired field device, such as a control valve, and display it on the user interface of the mobile terminal. The information may be displayed in a text format and/or graphical format. The information may also include alarms and any operation parameters which the maintenance person wishes to monitor on-line, such as the opening of a valve. The operational data obtained by the mobile terminal MT allows the maintenance person to immediately make a decision on the maintenance need of the respective field device, i.e. whether it is possible to postpone the maintenance operation up to the next shut down of the plant or whether special arrangements are needed in order to avoid an unintentional shutdown. During the shutdown of the plant the mobile terminal can be used for performing various field test for the field device, such as a step response test or a hystheresis test for a control valve. Also during the operation of the plant the diagnostic system 21 may allow the mobile terminal to perform a forced control of the field device to a desired mode of operation or position.").

Pyotsia fails to teach "a plurality of equipment diagnostic monitor system.", however, one of ordinary skill in the art could have used more than one (plurality) of Pyotsia's "Diagnostics systems" to monitor the devices in various LAN network segments independently and the results of such an extension of Pyotsia's invention would have been predictable in that the devices located at different segments of the LANs could be independently remotely controlled and monitored.

Referring to claim 12,

Pyotsia teaches the system of claim11, further comprising a security module located within the intermediate network, through which data transferred between the local network and the remote network passes (col. 7, line 22-34, "FIG. 3 illustrates the wireless control arrangement according to the present invention when using the WAP. The diagnostic system 21, device database 22 as well as the WWW server 33 may be similar to those described with reference to FIG. 2.", "A further advantage of the WAP is that it inherently provides a connection security between the MT and the WWW server 33. The security and the authentication of the user is especially important when the inventive arrangement is used for configuration and control of the field devices. As the configuration and control commands will affect on the operation of the plant, a system according to the invention has to assure that the user is an authorized user. It may also be possible to create a WWW server 33 that includes the WAP gateway functionality 35, in order to facilitate end-to-end security solutions, or to achieve better access control or a quarantee of responsiveness.")

Referring to claim 13,

Pyotsia teaches the system of claim 12, wherein data transfer between each of the networks occurs via an Internet Protocol (IP). (Fig. 2, elements 26, 24 25 and 23 are located in the internet environment.)

Referring to claim 14,

Keeping in mine the teachings of Pyotsia stated above, Pyotsia explicitly fails to teach the system of claim 13, wherein the module hides the IP addresses of the local network and the remote network from each other.

Reid teaches "A rewrite node is a point in an access rule where source or destination addresses are mapped to other source or destination addresses. Destination IP address rewrites allow an inbound connection through network address translation (NAT) address hiding to be remapped to a destination inside the NAT barrier. Source address rewrites can be used on outbound connections to make the source appear to be one of many external addresses. This process allows the internal hosts to be aliased to external addresses. Rewrites can be based on any connection criteria, including users.", col. 6, lines 46-56. (wherein the data transfer between each of the networks occurs via the Internet Protocol (IP), and wherein each network has its own unique IP address, and the system of claim 2, wherein the module hides the IP addresses of the remote network and the local network from each other.)

One of ordinary skill in the art could have substituted "WAP security of Pyotsia by known methods. For example, Pyotsia discloses security by WAP protocol and Reid discloses "Destination IP address rewrites allow an inbound connection through network address translation (NAT) address hiding to be remapped to a destination inside the NAT barrier", and the results would have been a predictable use of known technique of providing security over the network. Thus, it would have been obvious to one of ordinary skill in the art to replace the WAP security with a network address translation (NAT)

It would have been obvious because it provides a method for controlling interactions between networks by the use of firewalls with defined regions as taught by Reid.

Art Unit: 2456

Referring to claim 15,

Pyotsia teaches the system of claim ii, wherein the equipment diagnostic monitor system collects and analyzes data from tests performed on the at least one item (col. 8, line 1-22, "By means of the inventive interactive user interface and the "on-line" connection, the maintenance personnel is able to retrieve information on the operation of a desired field device, such as a control valve, and display it on the user interface of the mobile terminal. The information may be displayed in a text format and/or graphical format. The information may also include alarms and any operation parameters which the maintenance person wishes to monitor on-line, such as the opening of a valve. The operational data obtained by the mobile terminal MT allows the maintenance person to immediately make a decision on the maintenance need of the respective field device, i.e. whether it is possible to postpone the maintenance operation up to the next shut down of the plant or whether special arrangements are needed in order to avoid an unintentional shutdown. During the shutdown of the plant the mobile terminal can be used for performing various field test for the field device, such as a step response test or a hystheresis test for a control valve. Also during the operation of the plant the diagnostic system 21 may allow the mobile terminal to perform a forced control of the field device to a desired mode of operation or position." Col. 5, line 27-53, "For this purpose, the diagnostic system 21 comprises a management and control software for the field devices. In the preferred embodiment each field device type (e.g. two different control valves or control valves of different manufacturers may represent different device types) is provided with a specific control software which contains all necessary

data and instructions sets for controlling, configuring, reading, etc., the field devices of a Normally these operations can be made by a control room predetermined time. personnel from a work station. A device database 22 stores information on each field device controlled by the diagnostic system 21 and, preferably, all diagnostics data read from the field devices. In other words, the database 22 contains an updated configuration of field devices as well as the operation history thereof. In accordance to the principles of the present invention, the diagnostic system 21 is further provided with an interactive user interface which utilize the configuration, control and management data in the database 22 and is accessible by the mobile terminal MT through a dedicated data connection established over the cellular communication system 26, in order to selectively control, configure or monitor the field devices 14, 15 and 16 connected to the diagnostic system 21. In the preferred embodiment of the invention the interactive user interface is embodied as one or more world wide web (WWW) pages in a WWW server 23.")

Referring to claim 16,

Pyotsia teaches the system of claim ii, wherein the equipment diagnostic monitor system is configured to execute or ignore a request by the user on the remote network based on the set of predetermined criteria, wherein the user requests that tests be performed on the at least one item, and that data from previous tests performed on the at least one item be uploaded (col. 5, line 40-42, "In other words, the database 22 contain an updated configuration of field devices as well as the operation history thereof.", col. 7, line 47-50, "The created WWW page may include diagnostic data,

status and an operation history data of the selected field device, as well as information required for controlling and configuring the field device.", col. 8, line 1-22, "By means of the inventive interactive user interface and the "on-line" connection, the maintenance personnel is able to retrieve information on the operation of a desired field device, such as a control valve, and display it on the user interface of the mobile terminal. The information may be displayed in a text format and/or graphical format. The information may also include alarms and any operation parameters which the maintenance person wishes to monitor on-line, such as the opening of a valve. The operational data obtained by the mobile terminal MT allows the maintenance person to immediately make a decision on the maintenance need of the respective field device, i.e. whether it is possible to postpone the maintenance operation up to the next shut down of the plant or whether special arrangements are needed in order to avoid an unintentional During the shutdown of the plant the mobile terminal can be used for shutdown. performing various field test for the field device, such as a step response test or a hystheresis test for a control valve. Also during the operation of the plant the diagnostic system 21 may allow the mobile terminal to perform a forced control of the field device to a desired mode of operation or position." Col. 5, line 27-53, "For this purpose, the diagnostic system 21 comprises a management and control software for the field devices. In the preferred embodiment each field device type (e.g. two different control valves or control valves of different manufacturers may represent different device types) is provided with a specific control software which contains all necessary data and instructions sets for controlling, configuring, reading, etc., the field devices of a

predetermined time. Normally these operations can be made by a control room personnel from a work station. A device database 22 stores information on each field device controlled by the diagnostic system 21 and, preferably, all diagnostics data read from the field devices. In other words, the database 22 contains an updated configuration of field devices as well as the operation history thereof. In accordance to the principles of the present invention, the diagnostic system 21 is further provided with an interactive user interface which utilize the configuration, control and management data in the database 22 and is accessible by the mobile terminal MT through a dedicated data connection established over the cellular communication system 26, in order to selectively control, configure or monitor the field devices 14, 15 and 16 connected to the diagnostic system 21. In the preferred embodiment of the invention the interactive user interface is embodied as one or more world wide web (WWW) pages in a WWW server 23.")

Referring to claim 17,

Pyotsia teaches the system of claim11, wherein the user on the remote network sends a suggestion regarding an operation of the at least one item being monitored to an entity managing the at least one item on the local network (col. 6, line 63-col. 7, line 67, "FIG. 3 illustrates the wireless control arrangement according to the present invention when using the WAP. The diagnostic system 21, device database 22 as well as the WWW server 33 may be similar to those described with reference to FIG. 2. However, content of WWW pages may be created so that the use of WAP and WML is taken into account, e.g. by providing simple WWW pages with the HTML language or by

using the WML language in the WWW pages. The mobile terminal MT is provided with a WAP micro browser, whereas the data connection through the mobile communication network 26 is similar to that in FIG. 2. A WAP gateway 35 provides a connection between the mobile communication network 26 and the WWW technology in the internet 24. Firstly, the WAP gateway 35 translates WAP requests to WWW requests thereby allowing the WAP micro browser in the mobile terminal MT to submit requests to the WWW server 33. The WAP gateway 35 also translates the responses from the WWW server 33 into a format understood by the micro browser in the MT. If the WWW server 33 provides a WAP content (e.g., WML), the WAP gateway 35 retrieves it directly from the WWW server and forwards it to the MT. However, if the WWW server 33 provides a WWW content (such as HTML), the WAP gateway 35 (or a separate filter unit) translates the WWW content (e.g., HTML) into a WAP content (e.g., WML). This translation is also called filtering since it often extracts the essential parts of the WWW content for translation. A further advantage of the WAP is that it inherently provides a connection security between the MT and the WWW server 33. The security and the authentication of the user is especially important when the inventive arrangement is used for configuration and control of the field devices. As the configuration and control commands will affect on the operation of the plant, a system according to the invention has to assure that the user is an authorized user. It may also be possible to create a WWW server 33 that includes the WAP gateway functionality 35, in order to facilitate end-to-end security solutions, or to achieve better access control or a guarantee of responsiveness. The WWW server 23 and 33 utilizes the data in the device database

Page 38

Art Unit: 2456

22 for creating the interactive WWW pages for browsing the data and for control and configuration of the field devices. As the server 23 or 33 uses the same database with the diagnostic system 21, the contents of the WWW pages are always up-to-date. The mobile terminal MT is able to browse the diagnostic and configuration data in the device database 22 by means of the interactive WWW pages. In response to the requests and selections made by the user in the interactive WWW pages the WWW server 23 makes inquiries to the device database 22, and a new WWW page is created according to the data obtained from the database 22. The created WWW page may include diagnostic data, status and an operation history data of the selected field device, as well as information required for controlling and configuring the field device. According to the user's selections an appropriate piece of data is shown in the WWW page in text format, graphical format and/or in any other suitable format, together with the fields or links for making further selections or commands. The server 23 or 33 translates the configuration or control commands made by the user in the interactive WWW page into configuration commands used in the interface between the WWW server 23 or 33 and the diagnostic system 21, typically based on the information obtained from the database 22. The interface between the server 23 and the diagnostic system 21 may be OLE (Object Linking and Embedding) The diagnostic system 21 forwards the control and configuration commands received from the server 23 or 33 to the field devices, typically upon translating the generic commands into the device specific instructions. As a result, an "on-line" connection from the mobile terminal MT to the field device is provided.", col. 8, line 1-22, "By means of the inventive interactive user interface and the

"on-line" connection, the maintenance personnel is able to retrieve information on the operation of a desired field device, such as a control valve, and display it on the user interface of the mobile terminal. The information may be displayed in a text format and/or graphical format. The information may also include alarms and any operation parameters which the maintenance person wishes to monitor on-line, such as the opening of a valve. The operational data obtained by the mobile terminal MT allows the maintenance person to immediately make a decision on the maintenance need of the respective field device, i.e. whether it is possible to postpone the maintenance operation up to the next shut down of the plant or whether special arrangements are needed in order to avoid an unintentional shutdown. During the shutdown of the plant the mobile terminal can be used for performing various field test for the field device, such as a step response test or a hystheresis test for a control valve. Also during the operation of the plant the diagnostic system 21 may allow the mobile terminal to perform a forced control of the field device to a desired mode of operation or position.")

Referring to claim 18,

Pyotsia teaches the system of claim ii, wherein the equipment diagnostic monitor system sends an alert to a predetermined entity when an analysis of data received from the at least one item indicates that the at least one item is operating outside of a predetermined performance range (col. 8, line 1-22, "By means of the inventive interactive user interface and the "on-line" connection, the maintenance personnel is able to retrieve information on the operation of a desired field device, such as a control valve, and display it on the user interface of the mobile terminal. The information may

be displayed in a text format and/or graphical format. The information may also include alarms and any operation parameters which the maintenance person wishes to monitor on-line, such as the opening of a valve. The operational data obtained by the mobile terminal MT allows the maintenance person to immediately make a decision on the maintenance need of the respective field device, i.e. whether it is possible to postpone the maintenance operation up to the next shut down of the plant or whether special arrangements are needed in order to avoid an unintentional shutdown. During the shutdown of the plant the mobile terminal can be used for performing various field test for the field device, such as a step response test or a hystheresis test for a control valve. Also during the operation of the plant the diagnostic system 21 may allow the mobile terminal to perform a forced control of the field device to a desired mode of operation or position.")

Referring to claim 19,

Pyotsia teaches the system of claim ii further comprising a remote control proxy server in the intermediate network that is between the local network and the remote network that prevents direct IP routing of a device in the local network that is being accessed by the remote network (Fig. 2, element 23, col. 7, line 22-34, "FIG. 3 illustrates the wireless control arrangement according to the present invention when using the WAP. The diagnostic system 21, device database 22 as well as the WWW server 33 may be similar to those described with reference to FIG. 2.", "A further advantage of the WAP is that it inherently provides a connection security between the MT and the WWW server 33. The security and the authentication of the user is

especially important when the inventive arrangement is used for configuration and control of the field devices. As the configuration and control commands will affect on the operation of the plant, a system according to the invention has to assure that the user is an authorized user. It may also be possible to create a WWW server 33 that includes the WAP gateway functionality 35, in order to facilitate end-to-end security solutions, or to achieve better access control or a guarantee of responsiveness.")

Referring to claim 24,

Pyotsia teaches the data system for accessing remote equipment, comprising:

a first network interface device enabling data transfer between a local network (please refer to col. 5, line 19-26, "With reference to FIG. 2, a diagnostic system 21 may be any automation system, such as automation system 11 and 12 in FIG. 1, or any field device management or control system, such as the management system 10 in FIG. 1, or combination thereof." Note: Fig. 1, element 10 which is element 21 of Fig. 2 is an "a first network interface" permitting data transfer from a local network "which is Fig. 2, element "Hart/Field bus and "field devices.") and an intermediate network (Fig. 1, element "Factory LAN" and including Fig. 2, elements 21 and 23 is "an intermediate network ", please refer to col. 5, line 19-26, "With reference to FIG. 2, a diagnostic system 21 may be any automation system, such as automation system 11 and 12 in FIG. 1, or any field device management or control system, such as the management system 10 in FIG. 1, or combination thereof. A characteristic feature of the diagnostic system is that it comprises a wired connection, such as a field bus or a HART bus, to field devices 14, 15 and 16, and is able to control or configure the field

devices, or to read measurement or status data from the field devices." note: Thus, "the management system 10" is a diagnostic system 21 of Fig. 2 interfacing the Factory LAN" of Fig. 1.) (Fig. 2, element 21's interface showing OLE and "data" going into element 23) Fig.2, element 23); a local network interface permitting data transfer between a local network and an intermediate network (please refer to col. 5, line 19-26, "With reference to FIG. 2, a diagnostic system 21 may be any automation system, such as automation system 11 and 12 in FIG. 1, or any field device management or control system, such as the management system 10 in FIG. 1, or combination thereof."

Note: Fig. 1, element 10 which is element 21 of Fig. 2 is an "a local network interface" permitting data transfer from a local network "which is Fig. 2, element "Hart/Field bus and "field devices.");

a second network interface device (Fig. 2, element 23) enabling data transfer between a remote network and the intermediate network (Fig. 2, element 24, 25, 26, col. 6, line 3-41); and

an equipment diagnostic monitor system configured to allow a user of the remote network to remotely control a diagnostic test performed on the equipment for monitoring a health of the equipment, the equipment being located in the local network, the equipment diagnostic monitoring system being located within the intermediate network, the equipment diagnostic monitoring system having at least a monitoring module, an analysis module, an alerts module and an active transfer module (col. 6, line 63-col. 7, line 67, "FIG. 3 illustrates the wireless control arrangement according to the present invention when using the WAP. The diagnostic system 21, device database 22 as well

as the WWW server 33 may be similar to those described with reference to FIG. 2. However, content of WWW pages may be created so that the use of WAP and WML is taken into account, e.g. by providing simple WWW pages with the HTML language or by using the WML language in the WWW pages. The mobile terminal MT is provided with a WAP micro browser, whereas the data connection through the mobile communication network 26 is similar to that in FIG. 2. A WAP gateway 35 provides a connection between the mobile communication network 26 and the WWW technology in the internet 24. Firstly, the WAP gateway 35 translates WAP requests to WWW requests thereby allowing the WAP micro browser in the mobile terminal MT to submit requests to the WWW server 33. The WAP gateway 35 also translates the responses from the WWW server 33 into a format understood by the micro browser in the MT. If the WWW server 33 provides a WAP content (e.g., WML), the WAP gateway 35 retrieves it directly from the WWW server and forwards it to the MT. However, if the WWW server 33 provides a WWW content (such as HTML), the WAP gateway 35 (or a separate filter unit) translates the WWW content (e.g., HTML) into a WAP content (e.g., WML). This translation is also called filtering since it often extracts the essential parts of the WWW content for translation. A further advantage of the WAP is that it inherently provides a connection security between the MT and the WWW server 33. The security and the authentication of the user is especially important when the inventive arrangement is used for configuration and control of the field devices. As the configuration and control commands will affect on the operation of the plant, a system according to the invention has to assure that the user is an authorized user. It may also be possible to create a

WWW server 33 that includes the WAP gateway functionality 35, in order to facilitate end-to-end security solutions, or to achieve better access control or a guarantee of responsiveness. The WWW server 23 and 33 utilizes the data in the device database 22 for creating the interactive WWW pages for browsing the data and for control and configuration of the field devices. As the server 23 or 33 uses the same database with the diagnostic system 21, the contents of the WWW pages are always up-to-date. The mobile terminal MT is able to browse the diagnostic and configuration data in the device database 22 by means of the interactive WWW pages. In response to the requests and selections made by the user in the interactive WWW pages the WWW server 23 makes inquiries to the device database 22, and a new WWW page is created according to the data obtained from the database 22. The created WWW page may include diagnostic data, status and an operation history data of the selected field device, as well as information required for controlling and configuring the field device. According to the user's selections an appropriate piece of data is shown in the WWW page in text format, graphical format and/or in any other suitable format, together with the fields or links for making further selections or commands. The server 23 or 33 translates the configuration or control commands made by the user in the interactive WWW page into configuration commands used in the interface between the WWW server 23 or 33 and the diagnostic system 21, typically based on the information obtained from the database 22. The interface between the server 23 and the diagnostic system 21 may be OLE (Object Linking and Embedding) The diagnostic system 21 forwards the control and configuration commands received from the server 23 or 33 to the field devices, typically

upon translating the generic commands into the device specific instructions. As a result, an "on-line" connection from the mobile terminal MT to the field device is provided.", col. 8, line 1-22, "By means of the inventive interactive user interface and the "on-line" connection, the maintenance personnel is able to retrieve information on the operation of a desired field device (an active transfer module), such as a control valve, and display it on the user interface of the mobile terminal. The information may be displayed in a text format and/or graphical format. The information may also include alarms (alerts module) and any operation parameters which the maintenance person wishes to monitor on-line, such as the opening of a valve. The operational data obtained by the mobile terminal MT allows the maintenance person to immediately make a decision on the maintenance need of the respective field device, i.e. whether it is possible to postpone the maintenance operation up to the next shut down of the plant or whether special arrangements are needed in order to avoid an unintentional During the shutdown of the plant the mobile terminal can be used for performing various field test for the field device, such as a step response test or a hystheresis test for a control valve. Also during the operation of the plant the diagnostic system 21 may allow the mobile terminal to perform a forced control of the field device to a desired mode of operation or position." Col. 5, line 27-53, "For this purpose, the diagnostic system 21 comprises a management and control software for the field devices. In the preferred embodiment each field device type (e.g. two different control valves or control valves of different manufacturers may represent different device types) is provided with a specific control software which contains all necessary data and

instructions sets for controlling, configuring, reading, etc., the field devices of a predetermined time (Analysis module). Normally these operations can be made by a control room personnel from a work station. A device database 22 stores information on each field device controlled by the diagnostic system 21 and, preferably, all diagnostics data read from the field devices. In other words, the database 22 contains an updated configuration of field devices as well as the operation history thereof (Monitoring module). In accordance to the principles of the present invention, the diagnostic system 21 is further provided with an interactive user interface which utilize the configuration, control and management data in the database 22 and is accessible by the mobile terminal MT through a dedicated data connection established over the cellular communication system 26, in order to selectively control, configure or monitor the field devices 14, 15 and 16 connected to the diagnostic system 21. In the preferred embodiment of the invention the interactive user interface is embodied as one or more world wide web (WWW) pages in a WWW server 23.")

wherein the equipment diagnostic monitor system is configured to monitor at least one activity performed on the equipment in the local network and the intermediate network is configured to receive and selectively process data from the remote network depending on a set of predetermined criteria applied by the intermediate network and send the processed data to the local network(col. 6, line 63-col. 7, line 67, "FIG. 3 illustrates the wireless control arrangement according to the present invention when using the WAP. The diagnostic system 21, device database 22 as well as the WWW server 33 may be similar to those described with reference to FIG. 2. However, content

Page 47

Art Unit: 2456

of WWW pages may be created so that the use of WAP and WML is taken into account, e.g. by providing simple WWW pages with the HTML language or by using the WML language in the WWW pages. The mobile terminal MT is provided with a WAP micro browser, whereas the data connection through the mobile communication network 26 is similar to that in FIG. 2. A WAP gateway 35 provides a connection between the mobile communication network 26 and the WWW technology in the internet 24. Firstly, the WAP gateway 35 translates WAP requests to WWW requests thereby allowing the WAP micro browser in the mobile terminal MT to submit requests to the WWW server 33. The WAP gateway 35 also translates the responses from the WWW server 33 into a format understood by the micro browser in the MT. If the WWW server 33 provides a WAP content (e.g., WML), the WAP gateway 35 retrieves it directly from the WWW server and forwards it to the MT. However, if the WWW server 33 provides a WWW content (such as HTML), the WAP gateway 35 (or a separate filter unit) translates the WWW content (e.g., HTML) into a WAP content (e.g., WML). This translation is also called filtering since it often extracts the essential parts of the WWW content for translation. A further advantage of the WAP is that it inherently provides a connection security between the MT and the WWW server 33. The security and the authentication of the user is especially important when the inventive arrangement is used for configuration and control of the field devices. As the configuration and control commands will affect on the operation of the plant, a system according to the invention has to assure that the user is an authorized user. It may also be possible to create a WWW server 33 that includes the WAP gateway functionality 35, in order to facilitate

end-to-end security solutions, or to achieve better access control or a guarantee of responsiveness. The WWW server 23 and 33 utilizes the data in the device database 22 for creating the interactive WWW pages for browsing the data and for control and configuration of the field devices. As the server 23 or 33 uses the same database with the diagnostic system 21, the contents of the WWW pages are always up-to-date. The mobile terminal MT is able to browse the diagnostic and configuration data in the device database 22 by means of the interactive WWW pages. In response to the requests and selections made by the user in the interactive WWW pages the WWW server 23 makes inquiries to the device database 22, and a new WWW page is created according to the data obtained from the database 22. The created WWW page may include diagnostic data, status and an operation history data of the selected field device, as well as information required for controlling and configuring the field device. According to the user's selections an appropriate piece of data is shown in the WWW page in text format, graphical format and/or in any other suitable format, together with the fields or links for making further selections or commands. The server 23 or 33 translates the configuration or control commands made by the user in the interactive WWW page into configuration commands used in the interface between the WWW server 23 or 33 and the diagnostic system 21, typically based on the information obtained from the database 22. The interface between the server 23 and the diagnostic system 21 may be OLE (Object Linking and Embedding) The diagnostic system 21 forwards the control and configuration commands received from the server 23 or 33 to the field devices, typically upon translating the generic commands into the device specific instructions. As a

Application/Control Number: 10/074,411 Page 49

Art Unit: 2456

result, an "on-line" connection from the mobile terminal MT to the field device is provided.").

Referring to claim 25,

Pyotsia teaches the system of claim 24, further comprising a security module located within the intermediate network, through which data transferred between the local network and the remote network passes (col. 7, line 22-34, "FIG. 3 illustrates the wireless control arrangement according to the present invention when using the WAP. The diagnostic system 21, device database 22 as well as the WWW server 33 may be similar to those described with reference to FIG. 2.", "A further advantage of the WAP is that it inherently provides a connection security between the MT and the WWW server 33. The security and the authentication of the user is especially important when the inventive arrangement is used for configuration and control of the field devices. As the configuration and control commands will affect on the operation of the plant, a system according to the invention has to assure that the user is an authorized user. It may also be possible to create a WWW server 33 that includes the WAP gateway functionality 35, in order to facilitate end-to-end security solutions, or to achieve better access control or a guarantee of responsiveness.")

Referring to claim 26,

Pyotsia teaches the system of claim 25, wherein data transfer between each of the networks occurs via an Internet Protocol (IP) (Fig. 2, elements 26, 24 25 and 23 are located in the internet environment.)

Referring to claim 27,

Pyotsia fails to teach the system of claim 26, wherein the security module hides an IP addresses of the local network and the remote network from each other.

Reid teaches "A rewrite node is a point in an access rule where source or destination addresses are mapped to other source or destination addresses. Destination IP address rewrites allow an inbound connection through network address translation (NAT) address hiding to be remapped to a destination inside the NAT barrier. Source address rewrites can be used on outbound connections to make the source appear to be one of many external addresses. This process allows the internal hosts to be aliased to external addresses. Rewrites can be based on any connection criteria, including users.", col. 6, lines 46-56. (wherein the data transfer between each of the networks occurs via the Internet Protocol (IP), and wherein each network has its own unique IP address, and the system of claim 2, wherein the module hides the IP addresses of the remote network and the local network from each other.)

One of ordinary skill in the art could have substituted "WAP security of Pyotsia by known methods. For example, Pyotsia discloses security by WAP protocol and Reid discloses "Destination IP address rewrites allow an inbound connection through network address translation (NAT) address hiding to be remapped to a destination inside the NAT barrier", and the results would have been a predictable use of known technique of providing security over the network. Thus, it would have been obvious to one of ordinary skill in the art to replace the WAP security with a network address translation (NAT)

It would have been obvious because it provides a method for controlling interactions between networks by the use of firewalls with defined regions as taught by Reid.

Referring to claim 28,

Pyotsia teaches the system of claim 24, wherein the equipment diagnostic monitor system is configured to collect and analyze data from at least one test performed on the equipment item (col. 8, line 1-22, "By means of the inventive interactive user interface and the "on-line" connection, the maintenance personnel is able to retrieve information on the operation of a desired field device, such as a control valve, and display it on the user interface of the mobile terminal. The information may be displayed in a text format and/or graphical format. The information may also include alarms and any operation parameters which the maintenance person wishes to monitor on-line, such as the opening of a valve. The operational data obtained by the mobile terminal MT allows the maintenance person to immediately make a decision on the maintenance need of the respective field device, i.e. whether it is possible to postpone the maintenance operation up to the next shut down of the plant or whether special arrangements are needed in order to avoid an unintentional shutdown. During the shutdown of the plant the mobile terminal can be used for performing various field test for the field device, such as a step response test or a hystheresis test for a control valve. Also during the operation of the plant the diagnostic system 21 may allow the mobile terminal to perform a forced control of the field device to a desired mode of operation or position." Col. 5, line 27-53, "For this purpose, the diagnostic system 21

comprises a management and control software for the field devices. In the preferred embodiment each field device type (e.g. two different control valves or control valves of different manufacturers may represent different device types) is provided with a specific control software which contains all necessary data and instructions sets for controlling, configuring, reading, etc., the field devices of a predetermined time. Normally these operations can be made by a control room personnel from a work station. A device database 22 stores information on each field device controlled by the diagnostic system 21 and, preferably, all diagnostics data read from the field devices. In other words, the database 22 contains an updated configuration of field devices as well as the operation history thereof. In accordance to the principles of the present invention, the diagnostic system 21 is further provided with an interactive user interface which utilize the configuration, control and management data in the database 22 and is accessible by the mobile terminal MT through a dedicated data connection established over the cellular communication system 26, in order to selectively control, configure or monitor the field devices 14, 15 and 16 connected to the diagnostic system 21. In the preferred embodiment of the invention the interactive user interface is embodied as one or more world wide web (WWW) pages in a WWW server 23.")

Referring to claim 29,

Pyotsia teaches the system of claim 24, wherein the equipment diagnostic monitor system is configured to execute or ignore a request from the user on the remote network based on a set of predetermined criteria, wherein the user requests that tests be performed on the equipment, and that other data be uploaded from previous tests

performed on the equipment(col. 5, line 40-42, "In other words, the database 22 contain an updated configuration of field devices as well as the operation history thereof.", col. 7, line 47-50, "The created WWW page may include diagnostic data, status and an operation history data of the selected field device, as well as information required for controlling and configuring the field device.", col. 8, line 1-22, "By means of the inventive interactive user interface and the "on-line" connection, the maintenance personnel is able to retrieve information on the operation of a desired field device, such as a control valve, and display it on the user interface of the mobile terminal. The information may be displayed in a text format and/or graphical format. The information may also include alarms and any operation parameters which the maintenance person wishes to monitor on-line, such as the opening of a valve. The operational data obtained by the mobile terminal MT allows the maintenance person to immediately make a decision on the maintenance need of the respective field device, i.e. whether it is possible to postpone the maintenance operation up to the next shut down of the plant or whether special arrangements are needed in order to avoid an unintentional shutdown. During the shutdown of the plant the mobile terminal can be used for performing various field test for the field device, such as a step response test or a hystheresis test for a control valve. Also during the operation of the plant the diagnostic system 21 may allow the mobile terminal to perform a forced control of the field device to a desired mode of operation or position." Col. 5, line 27-53, "For this purpose, the diagnostic system 21 comprises a management and control software for the field devices. In the preferred embodiment each field device type (e.g. two different control valves or control valves of

different manufacturers may represent different device types) is provided with a specific control software which contains all necessary data and instructions sets for controlling, configuring, reading, etc., the field devices of a predetermined time. Normally these operations can be made by a control room personnel from a work station. A device database 22 stores information on each field device controlled by the diagnostic system 21 and, preferably, all diagnostics data read from the field devices. In other words, the database 22 contains an updated configuration of field devices as well as the operation history thereof. In accordance to the principles of the present invention, the diagnostic system 21 is further provided with an interactive user interface which utilize the configuration, control and management data in the database 22 and is accessible by the mobile terminal MT through a dedicated data connection established over the cellular communication system 26, in order to selectively control, configure or monitor the field devices 14, 15 and 16 connected to the diagnostic system 21. In the preferred embodiment of the invention the interactive user interface is embodied as one or more world wide web (WWW) pages in a WWW server 23.").

Referring to claim 30,

Pyotsia teaches the system of claim 24, wherein the local network is configured to receive and display a suggestion from the user on the remote network regarding the operation of the equipment being monitored on the local network (col. 6, line 63-col. 7, line 67, "FIG. 3 illustrates the wireless control arrangement according to the present invention when using the WAP. The diagnostic system 21, device database 22 as well as the WWW server 33 may be similar to those described with reference to FIG. 2.

However, content of WWW pages may be created so that the use of WAP and WML is taken into account, e.g. by providing simple WWW pages with the HTML language or by using the WML language in the WWW pages. The mobile terminal MT is provided with a WAP micro browser, whereas the data connection through the mobile communication network 26 is similar to that in FIG. 2. A WAP gateway 35 provides a connection between the mobile communication network 26 and the WWW technology in the internet 24. Firstly, the WAP gateway 35 translates WAP requests to WWW requests thereby allowing the WAP micro browser in the mobile terminal MT to submit requests to the WWW server 33. The WAP gateway 35 also translates the responses from the WWW server 33 into a format understood by the micro browser in the MT. If the WWW server 33 provides a WAP content (e.g., WML), the WAP gateway 35 retrieves it directly from the WWW server and forwards it to the MT. However, if the WWW server 33 provides a WWW content (such as HTML), the WAP gateway 35 (or a separate filter unit) translates the WWW content (e.g., HTML) into a WAP content (e.g., WML). This translation is also called filtering since it often extracts the essential parts of the WWW content for translation. A further advantage of the WAP is that it inherently provides a connection security between the MT and the WWW server 33. The security and the authentication of the user is especially important when the inventive arrangement is used for configuration and control of the field devices. As the configuration and control commands will affect on the operation of the plant, a system according to the invention has to assure that the user is an authorized user. It may also be possible to create a WWW server 33 that includes the WAP gateway functionality 35, in order to facilitate

end-to-end security solutions, or to achieve better access control or a guarantee of responsiveness. The WWW server 23 and 33 utilizes the data in the device database 22 for creating the interactive WWW pages for browsing the data and for control and configuration of the field devices. As the server 23 or 33 uses the same database with the diagnostic system 21, the contents of the WWW pages are always up-to-date. The mobile terminal MT is able to browse the diagnostic and configuration data in the device database 22 by means of the interactive WWW pages. In response to the requests and selections made by the user in the interactive WWW pages the WWW server 23 makes inquiries to the device database 22, and a new WWW page is created according to the data obtained from the database 22. The created WWW page may include diagnostic data, status and an operation history data of the selected field device, as well as information required for controlling and configuring the field device. According to the user's selections an appropriate piece of data is shown in the WWW page in text format, graphical format and/or in any other suitable format, together with the fields or links for making further selections or commands. The server 23 or 33 translates the configuration or control commands made by the user in the interactive WWW page into configuration commands used in the interface between the WWW server 23 or 33 and the diagnostic system 21, typically based on the information obtained from the database 22. The interface between the server 23 and the diagnostic system 21 may be OLE (Object Linking and Embedding) The diagnostic system 21 forwards the control and configuration commands received from the server 23 or 33 to the field devices, typically upon translating the generic commands into the device specific instructions. As a

result, an "on-line" connection from the mobile terminal MT to the field device is provided.", col. 8, line 1-22, "By means of the inventive interactive user interface and the "on-line" connection, the maintenance personnel is able to retrieve information on the operation of a desired field device, such as a control valve, and display it on the user interface of the mobile terminal. The information may be displayed in a text format and/or graphical format. The information may also include alarms and any operation parameters which the maintenance person wishes to monitor on-line, such as the opening of a valve. The operational data obtained by the mobile terminal MT allows the maintenance person to immediately make a decision on the maintenance need of the respective field device, i.e. whether it is possible to postpone the maintenance operation up to the next shut down of the plant or whether special arrangements are needed in order to avoid an unintentional shutdown. During the shutdown of the plant the mobile terminal can be used for performing various field test for the field device, such as a step response test or a hystheresis test for a control valve. Also during the operation of the plant the diagnostic system 21 may allow the mobile terminal to perform a forced control of the field device to a desired mode of operation or position.").

Referring to claim 31,

Pyotsia teaches the system of claim 24, wherein the equipment diagnostic monitor system is configured to send an alert to a predetermined entity when the analysis of the data indicates that the equipment is operating outside of a predetermined performance range col. 8, line 1-22, "By means of the inventive interactive user interface and the "on-line" connection, the maintenance personnel is

able to retrieve information on the operation of a desired field device, such as a control valve, and display it on the user interface of the mobile terminal. The information may be displayed in a text format and/or graphical format. The information may also include alarms and any operation parameters which the maintenance person wishes to monitor on-line, such as the opening of a valve. The operational data obtained by the mobile terminal MT allows the maintenance person to immediately make a decision on the maintenance need of the respective field device, i.e. whether it is possible to postpone the maintenance operation up to the next shut down of the plant or whether special arrangements are needed in order to avoid an unintentional shutdown. During the shutdown of the plant the mobile terminal can be used for performing various field test for the field device, such as a step response test or a hystheresis test for a control valve. Also during the operation of the plant the diagnostic system 21 may allow the mobile terminal to perform a forced control of the field device to a desired mode of operation or position.").

Referring to claim 32,

Pyotsia teaches the system of claim 24, further comprising an interface proxy located in the intermediate network, the interface proxy being configured to permit data transfer between the equipment diagnostic system and the remote network (Fig. 2, element 23, col. 7, line 22-34, "FIG. 3 illustrates the wireless control arrangement according to the present invention when using the WAP. The diagnostic system 21, device database 22 as well as the WWW server 33 may be similar to those described with reference to FIG. 2.", "A further advantage of the WAP is that it inherently provides

Referring to claim 33,

Pyotsia teaches the system of claim 1, wherein the intermediate network is configured to accept or reject information transmitted by the remote network depending on a set of predetermined criteria applied by the intermediate network(col. 7, line 22-34, "FIG. 3 illustrates the wireless control arrangement according to the present invention when using the WAP. The diagnostic system 21, device database 22 as well as the WWW server 33 may be similar to those described with reference to FIG. 2.", "A further advantage of the WAP is that it inherently provides a connection security between the MT and the WWW server 33. The security and the authentication of the user is especially important when the inventive arrangement is used for configuration and control of the field devices. As the configuration and control commands will affect on the operation of the plant, a system according to the invention has to assure that the user is an authorized user. It may also be possible to create a WWW server 33 that

Application/Control Number: 10/074,411 Page 60

Art Unit: 2456

includes the WAP gateway functionality 35, in order to facilitate end-to-end security solutions, or to achieve better access control or a guarantee of responsiveness.")

Referring to claim 34,

Pyotsia teaches the system of claim 6, wherein the data is selectively passed between the local network and the remote network depending on a set of predetermined criteria applied by the intermediate network (col. 7, line 22-34, "FIG. 3 illustrates the wireless control arrangement according to the present invention when using the WAP. The diagnostic system 21, device database 22 as well as the WWW server 33 may be similar to those described with reference to FIG. 2.", "A further advantage of the WAP is that it inherently provides a connection security between the MT and the WWW server 33. The security and the authentication of the user is especially important when the inventive arrangement is used for configuration and control of the field devices. As the configuration and control commands will affect on the operation of the plant, a system according to the invention has to assure that the user is an authorized user. It may also be possible to create a WWW server 33 that includes the WAP gateway functionality 35, in order to facilitate end-to-end security solutions, or to achieve better access control or a guarantee of responsiveness.")

8. Claims 20-23, 35 and 36 are rejected under 35 U.S.C. 103(a) as being Pyotsia et al. (hereinafter Pyotsia) (US 7, 010, 294 B1) in view of Reid et al. (hereinafter Reid)(US 6, 182, 226 B1) and further in view of Crist et al. (hereinafter Crist)(US 6, 182, 226 B1)

Referring to claims 20, 21, 22 and 23,

Keeping in my mind the teachings of Pyotsia as stated above, Pyotsia fails to teach the limitations of claims 20-23.

Crist teaches the system of claim further comprising a semiconductor tool coupled to the local network, a user being able to access the semiconductor tool via the remote network, and the system of claim 20, wherein the intermediate network further comprises an equipment diagnostic monitor system that monitors and analyzes the semiconductor tool, and the system of claim 21, wherein the equipment diagnostic monitor system controls tests performed by software within the semiconductor tool, saves data from the tests and sends out alerts to a remote user via the remote network when the semiconductor tool is operating outside a predetermined performance range. (col.4, line15-21, col. 6, line 1-3, col. 6, line 57 through col. 7, line 17) Crist teaches the system of claim 21, wherein the equipment monitor system effects access to the semiconductor tool by a remote user. (col. 6, line 57 through col. 7, line 17)

It would have been obvious to apply the system of Pyotsia to the testing of a semiconductor tool coupled to the local network, as the application promises the predictable results as sated by Pyotsia at col. 6, line 63-col. 7, line 67, "FIG. 3 illustrates the wireless control arrangement according to the present invention when using the WAP. The diagnostic system 21, device database 22 as well as the WWW server 33 may be similar to those described with reference to FIG. 2. However, content of WWW pages may be created so that the use of WAP and WML is taken into account, e.g. by providing simple WWW pages with the HTML language or by using the WML language in the WWW pages. The mobile terminal MT is provided with a WAP micro

browser, whereas the data connection through the mobile communication network 26 is similar to that in FIG. 2. A WAP gateway 35 provides a connection between the mobile communication network 26 and the WWW technology in the internet 24. Firstly, the WAP gateway 35 translates WAP requests to WWW requests thereby allowing the WAP micro browser in the mobile terminal MT to submit requests to the WWW server 33. The WAP gateway 35 also translates the responses from the WWW server 33 into a format understood by the micro browser in the MT. If the WWW server 33 provides a WAP content (e.g., WML), the WAP gateway 35 retrieves it directly from the WWW server and forwards it to the MT. However, if the WWW server 33 provides a WWW content (such as HTML), the WAP gateway 35 (or a separate filter unit) translates the WWW content (e.g., HTML) into a WAP content (e.g., WML). This translation is also called filtering since it often extracts the essential parts of the WWW content for translation. A further advantage of the WAP is that it inherently provides a connection security between the MT and the WWW server 33. The security and the authentication of the user is especially important when the inventive arrangement is used for configuration and control of the field devices. As the configuration and control commands will affect on the operation of the plant, a system according to the invention has to assure that the user is an authorized user. It may also be possible to create a WWW server 33 that includes the WAP gateway functionality 35, in order to facilitate end-to-end security solutions, or to achieve better access control or a guarantee of responsiveness. The WWW server 23 and 33 utilizes the data in the device database 22 for creating the interactive WWW pages for browsing the data and for control and

configuration of the field devices. As the server 23 or 33 uses the same database with the diagnostic system 21, the contents of the WWW pages are always up-to-date. The mobile terminal MT is able to browse the diagnostic and configuration data in the device database 22 by means of the interactive WWW pages. In response to the requests and selections made by the user in the interactive WWW pages the WWW server 23 makes inquiries to the device database 22, and a new WWW page is created according to the data obtained from the database 22. The created WWW page may include diagnostic data, status and an operation history data of the selected field device, as well as information required for controlling and configuring the field device. According to the user's selections an appropriate piece of data is shown in the WWW page in text format, graphical format and/or in any other suitable format, together with the fields or links for making further selections or commands. The server 23 or 33 translates the configuration or control commands made by the user in the interactive WWW page into configuration commands used in the interface between the WWW server 23 or 33 and the diagnostic system 21, typically based on the information obtained from the database 22. The interface between the server 23 and the diagnostic system 21 may be OLE (Object Linking and Embedding) The diagnostic system 21 forwards the control and configuration commands received from the server 23 or 33 to the field devices, typically upon translating the generic commands into the device specific instructions. As a result, an "on-line" connection from the mobile terminal MT to the field device is provided.", col. 8, line 1-22, "By means of the inventive interactive user interface and the "on-line" connection, the maintenance personnel is able to retrieve information on the

Page 64

Art Unit: 2456

operation of a desired field device (an active transfer module), such as a control valve, and display it on the user interface of the mobile terminal. The information may be displayed in a text format and/or graphical format. The information may also include alarms (alerts module) and any operation parameters which the maintenance person wishes to monitor on-line, such as the opening of a valve. The operational data obtained by the mobile terminal MT allows the maintenance person to immediately make a decision on the maintenance need of the respective field device, i.e. whether it is possible to postpone the maintenance operation up to the next shut down of the plant or whether special arrangements are needed in order to avoid an unintentional shutdown. During the shutdown of the plant the mobile terminal can be used for performing various field test for the field device, such as a step response test or a hystheresis test for a control valve. Also during the operation of the plant the diagnostic system 21 may allow the mobile terminal to perform a forced control of the field device to a desired mode of operation or position." Col. 5, line 27-53, "For this purpose, the diagnostic system 21 comprises a management and control software for the field devices. In the preferred embodiment each field device type (e.g. two different control valves or control valves of different manufacturers may represent different device types) is provided with a specific control software which contains all necessary data and instructions sets for controlling, configuring, reading, etc., the field devices of a predetermined time (Analysis module). Normally these operations can be made by a control room personnel from a work station. A device database 22 stores information on each field device controlled by the diagnostic system 21 and, preferably, all

diagnostics data read from the field devices. In other words, the database 22 contains an updated configuration of field devices as well as the operation history thereof (Monitoring module). In accordance to the principles of the present invention, the diagnostic system 21 is further provided with an interactive user interface which utilize the configuration, control and management data in the database 22 and is accessible by the mobile terminal MT through a dedicated data connection established over the cellular communication system 26, in order to selectively control, configure or monitor the field devices 14, 15 and 16 connected to the diagnostic system 21. In the preferred embodiment of the invention the interactive user interface is embodied as one or more world wide web (WWW) pages in a WWW server 23."

Referring to claim 35,

Pyotsia teaches the system of claim 1 wherein, the intermediate network comprises an equipment diagnostic monitoring system configured to monitor and analyze the at least one semiconductor processing tool and having at least a monitoring module, an analysis module, an alerts module and an active transfer module col. 6, line 63-col. 7, line 67, "FIG. 3 illustrates the wireless control arrangement according to the present invention when using the WAP. The diagnostic system 21, device database 22 as well as the WWW server 33 may be similar to those described with reference to FIG. 2. However, content of WWW pages may be created so that the use of WAP and WML is taken into account, e.g. by providing simple WWW pages with the HTML language or by using the WML language in the WWW pages. The mobile terminal MT is provided with a WAP micro browser, whereas the data connection through the mobile

Application/Control Number: 10/074,411 Page 66

Art Unit: 2456

communication network 26 is similar to that in FIG. 2. A WAP gateway 35 provides a connection between the mobile communication network 26 and the WWW technology in the internet 24. Firstly, the WAP gateway 35 translates WAP requests to WWW requests thereby allowing the WAP micro browser in the mobile terminal MT to submit requests to the WWW server 33. The WAP gateway 35 also translates the responses from the WWW server 33 into a format understood by the micro browser in the MT. If the WWW server 33 provides a WAP content (e.g., WML), the WAP gateway 35 retrieves it directly from the WWW server and forwards it to the MT. However, if the WWW server 33 provides a WWW content (such as HTML), the WAP gateway 35 (or a separate filter unit) translates the WWW content (e.g., HTML) into a WAP content (e.g., WML). This translation is also called filtering since it often extracts the essential parts of the WWW content for translation. A further advantage of the WAP is that it inherently provides a connection security between the MT and the WWW server 33. The security and the authentication of the user is especially important when the inventive arrangement is used for configuration and control of the field devices. configuration and control commands will affect on the operation of the plant, a system according to the invention has to assure that the user is an authorized user. It may also be possible to create a WWW server 33 that includes the WAP gateway functionality 35, in order to facilitate end-to-end security solutions, or to achieve better access control or a guarantee of responsiveness. The WWW server 23 and 33 utilizes the data in the device database 22 for creating the interactive WWW pages for browsing the data and for control and configuration of the field devices. As the server 23 or 33 uses the same

database with the diagnostic system 21, the contents of the WWW pages are always up-to-date. The mobile terminal MT is able to browse the diagnostic and configuration data in the device database 22 by means of the interactive WWW pages. In response to the requests and selections made by the user in the interactive WWW pages the WWW server 23 makes inquiries to the device database 22, and a new WWW page is created according to the data obtained from the database 22. The created WWW page may include diagnostic data, status and an operation history data of the selected field device, as well as information required for controlling and configuring the field device. According to the user's selections an appropriate piece of data is shown in the WWW page in text format, graphical format and/or in any other suitable format, together with the fields or links for making further selections or commands. The server 23 or 33 translates the configuration or control commands made by the user in the interactive WWW page into configuration commands used in the interface between the WWW server 23 or 33 and the diagnostic system 21, typically based on the information obtained from the database 22. The interface between the server 23 and the diagnostic system 21 may be OLE (Object Linking and Embedding) The diagnostic system 21 forwards the control and configuration commands received from the server 23 or 33 to the field devices, typically upon translating the generic commands into the device specific instructions. As a result, an "on-line" connection from the mobile terminal MT to the field device is provided.", col. 8, line 1-22, "By means of the inventive interactive user interface and the "on-line" connection, the maintenance personnel is able to retrieve information on the operation of a desired field device (an active transfer

module), such as a control valve, and display it on the user interface of the mobile terminal. The information may be displayed in a text format and/or graphical format. The information may also include alarms (alerts module) and any operation parameters which the maintenance person wishes to monitor on-line, such as the opening of a valve. The operational data obtained by the mobile terminal MT allows the maintenance person to immediately make a decision on the maintenance need of the respective field device, i.e. whether it is possible to postpone the maintenance operation up to the next shut down of the plant or whether special arrangements are needed in order to avoid an unintentional shutdown. During the shutdown of the plant the mobile terminal can be used for performing various field test for the field device, such as a step response test or a hystheresis test for a control valve. Also during the operation of the plant the diagnostic system 21 may allow the mobile terminal to perform a forced control of the field device to a desired mode of operation or position." Col. 5, line 27-53, "For this purpose, the diagnostic system 21 comprises a management and control software for the field devices. In the preferred embodiment each field device type (e.g. two different control valves or control valves of different manufacturers may represent different device types) is provided with a specific control software which contains all necessary data and instructions sets for controlling, configuring, reading, etc., the field devices of a predetermined time (Analysis module). Normally these operations can be made by a control room personnel from a work station. A device database 22 stores information on each field device controlled by the diagnostic system 21 and, preferably, all diagnostics data read from the field devices. In other words, the database 22

contains an updated configuration of field devices as well as the operation history thereof (Monitoring module). In accordance to the principles of the present invention, the diagnostic system 21 is further provided with an interactive user interface which utilize the configuration, control and management data in the database 22 and is accessible by the mobile terminal MT through a dedicated data connection established over the cellular communication system 26, in order to selectively control, configure or monitor the field devices 14, 15 and 16 connected to the diagnostic system 21. In the preferred embodiment of the invention the interactive user interface is embodied as one or more world wide web (WWW) pages in a WWW server 23.")

Pyotsia fails to teach the local network comprises at least one semiconductor processing tool and semiconductor processing tool monitoring equipment; and the remote network comprises remote control equipment configured to allow a user remote access to the at least one semiconductor processing tool.

Crist teaches the local network comprises at least one semiconductor processing tool and semiconductor processing tool monitoring equipment; and the remote network comprises remote control equipment configured to allow a user remote access to the at least one semiconductor processing tool.(col.4, line15-21, col. 6, line 1-3, col. 6, line 57 through col. 7, line 17, col. 6, line 57 through col. 7, line 17).

It would have been obvious to apply the system of Pyotsia to the testing of a semiconductor tool coupled to the local network, as the application promises the predictable results as sated by Pyotsia at col. 6, line 63-col. 7, line 67, "FIG. 3 illustrates the wireless control arrangement according to the present invention when

using the WAP. The diagnostic system 21, device database 22 as well as the WWW server 33 may be similar to those described with reference to FIG. 2. However, content of WWW pages may be created so that the use of WAP and WML is taken into account. e.g. by providing simple WWW pages with the HTML language or by using the WML language in the WWW pages. The mobile terminal MT is provided with a WAP micro browser, whereas the data connection through the mobile communication network 26 is similar to that in FIG. 2. A WAP gateway 35 provides a connection between the mobile communication network 26 and the WWW technology in the internet 24. Firstly, the WAP gateway 35 translates WAP requests to WWW requests thereby allowing the WAP micro browser in the mobile terminal MT to submit requests to the WWW server 33. The WAP gateway 35 also translates the responses from the WWW server 33 into a format understood by the micro browser in the MT. If the WWW server 33 provides a WAP content (e.g., WML), the WAP gateway 35 retrieves it directly from the WWW server and forwards it to the MT. However, if the WWW server 33 provides a WWW content (such as HTML), the WAP gateway 35 (or a separate filter unit) translates the WWW content (e.g., HTML) into a WAP content (e.g., WML). This translation is also called filtering since it often extracts the essential parts of the WWW content for translation. A further advantage of the WAP is that it inherently provides a connection security between the MT and the WWW server 33. The security and the authentication of the user is especially important when the inventive arrangement is used for configuration and control of the field devices. As the configuration and control commands will affect on the operation of the plant, a system according to the invention

has to assure that the user is an authorized user. It may also be possible to create a WWW server 33 that includes the WAP gateway functionality 35, in order to facilitate end-to-end security solutions, or to achieve better access control or a guarantee of responsiveness. The WWW server 23 and 33 utilizes the data in the device database 22 for creating the interactive WWW pages for browsing the data and for control and configuration of the field devices. As the server 23 or 33 uses the same database with the diagnostic system 21, the contents of the WWW pages are always up-to-date. The mobile terminal MT is able to browse the diagnostic and configuration data in the device database 22 by means of the interactive WWW pages. In response to the requests and selections made by the user in the interactive WWW pages the WWW server 23 makes inquiries to the device database 22, and a new WWW page is created according to the data obtained from the database 22. The created WWW page may include diagnostic data, status and an operation history data of the selected field device, as well as information required for controlling and configuring the field device. According to the user's selections an appropriate piece of data is shown in the WWW page in text format, graphical format and/or in any other suitable format, together with the fields or links for making further selections or commands. The server 23 or 33 translates the configuration or control commands made by the user in the interactive WWW page into configuration commands used in the interface between the WWW server 23 or 33 and the diagnostic system 21, typically based on the information obtained from the database 22. The interface between the server 23 and the diagnostic system 21 may be OLE (Object Linking and Embedding) The diagnostic system 21 forwards the control and

configuration commands received from the server 23 or 33 to the field devices, typically upon translating the generic commands into the device specific instructions. As a result, an "on-line" connection from the mobile terminal MT to the field device is provided.", col. 8, line 1-22, "By means of the inventive interactive user interface and the "on-line" connection, the maintenance personnel is able to retrieve information on the operation of a desired field device (an active transfer module), such as a control valve, and display it on the user interface of the mobile terminal. The information may be displayed in a text format and/or graphical format. The information may also include alarms (alerts module) and any operation parameters which the maintenance person wishes to monitor on-line, such as the opening of a valve. The operational data obtained by the mobile terminal MT allows the maintenance person to immediately make a decision on the maintenance need of the respective field device, i.e. whether it is possible to postpone the maintenance operation up to the next shut down of the plant or whether special arrangements are needed in order to avoid an unintentional shutdown. During the shutdown of the plant the mobile terminal can be used for performing various field test for the field device, such as a step response test or a hystheresis test for a control valve. Also during the operation of the plant the diagnostic system 21 may allow the mobile terminal to perform a forced control of the field device to a desired mode of operation or position." Col. 5, line 27-53, "For this purpose, the diagnostic system 21 comprises a management and control software for the field devices. In the preferred embodiment each field device type (e.g. two different control valves or control valves of different manufacturers may represent different device types) is provided with a specific control software which contains all necessary data and instructions sets for controlling, configuring, reading, etc., the field devices of a predetermined time (Analysis module). Normally these operations can be made by a control room personnel from a work station. A device database 22 stores information on each field device controlled by the diagnostic system 21 and, preferably, all diagnostics data read from the field devices. In other words, the database 22 contains an updated configuration of field devices as well as the operation history thereof (Monitoring module). In accordance to the principles of the present invention, the diagnostic system 21 is further provided with an interactive user interface which utilize the configuration, control and management data in the database 22 and is accessible by the mobile terminal MT through a dedicated data connection established over the cellular communication system 26, in order to selectively control, configure or monitor the field devices 14, 15 and 16 connected to the diagnostic system 21. In the preferred embodiment of the invention the interactive user interface is embodied as one or more world wide web (WWW) pages in a WWW server 23."

Referring to claim 36,

Keeping in my mind the teachings of Pyotsia as stated above, Pyotsia fails to teach the system of claim ii, wherein the at least one item in the local network is a semiconductor processing tool.

Crist teaches the system of claim further comprising a semiconductor tool coupled to the local network, a user being able to access the semiconductor tool via the remote network, and the system of claim 20, wherein the intermediate network further

comprises an equipment diagnostic monitor system that monitors and analyzes the semiconductor tool, and the system of claim 21, wherein the equipment diagnostic monitor system controls tests performed by software within the semiconductor tool, saves data from the tests and sends out alerts to a remote user via the remote network when the semiconductor tool is operating outside a predetermined performance range. (col.4, line15-21, col. 6, line 1-3, col. 6, line 57 through col. 7, line 17) Crist teaches the system of claim 21, wherein the equipment monitor system effects access to the semiconductor tool by a remote user. (col. 6, line 57 through col. 7, line 17)

It would have been obvious to apply the system of Pyotsia to the testing of a semiconductor tool coupled to the local network, as the application promises the predictable results as sated by Pyotsia at col. 6, line 63-col. 7, line 67, "FIG. 3 illustrates the wireless control arrangement according to the present invention when using the WAP. The diagnostic system 21, device database 22 as well as the WWW server 33 may be similar to those described with reference to FIG. 2. However, content of WWW pages may be created so that the use of WAP and WML is taken into account, e.g. by providing simple WWW pages with the HTML language or by using the WML language in the WWW pages. The mobile terminal MT is provided with a WAP micro browser, whereas the data connection through the mobile communication network 26 is similar to that in FIG. 2. A WAP gateway 35 provides a connection between the mobile communication network 26 and the WWW technology in the internet 24. Firstly, the WAP gateway 35 translates WAP requests to WWW requests thereby allowing the WAP micro browser in the mobile terminal MT to submit requests to the WWW server

Application/Control Number: 10/074,411 Page 75

Art Unit: 2456

33. The WAP gateway 35 also translates the responses from the WWW server 33 into a format understood by the micro browser in the MT. If the WWW server 33 provides a WAP content (e.g., WML), the WAP gateway 35 retrieves it directly from the WWW server and forwards it to the MT. However, if the WWW server 33 provides a WWW content (such as HTML), the WAP gateway 35 (or a separate filter unit) translates the WWW content (e.g., HTML) into a WAP content (e.g., WML). This translation is also called filtering since it often extracts the essential parts of the WWW content for translation. A further advantage of the WAP is that it inherently provides a connection security between the MT and the WWW server 33. The security and the authentication of the user is especially important when the inventive arrangement is used for configuration and control of the field devices. As the configuration and control commands will affect on the operation of the plant, a system according to the invention has to assure that the user is an authorized user. It may also be possible to create a WWW server 33 that includes the WAP gateway functionality 35, in order to facilitate end-to-end security solutions, or to achieve better access control or a guarantee of responsiveness. The WWW server 23 and 33 utilizes the data in the device database 22 for creating the interactive WWW pages for browsing the data and for control and configuration of the field devices. As the server 23 or 33 uses the same database with the diagnostic system 21, the contents of the WWW pages are always up-to-date. The mobile terminal MT is able to browse the diagnostic and configuration data in the device database 22 by means of the interactive WWW pages. In response to the requests and selections made by the user in the interactive WWW pages the WWW server 23 makes

inquiries to the device database 22, and a new WWW page is created according to the data obtained from the database 22. The created WWW page may include diagnostic data, status and an operation history data of the selected field device, as well as information required for controlling and configuring the field device. According to the user's selections an appropriate piece of data is shown in the WWW page in text format. graphical format and/or in any other suitable format, together with the fields or links for making further selections or commands. The server 23 or 33 translates the configuration or control commands made by the user in the interactive WWW page into configuration commands used in the interface between the WWW server 23 or 33 and the diagnostic system 21, typically based on the information obtained from the database 22. The interface between the server 23 and the diagnostic system 21 may be OLE (Object Linking and Embedding) The diagnostic system 21 forwards the control and configuration commands received from the server 23 or 33 to the field devices, typically upon translating the generic commands into the device specific instructions. As a result, an "on-line" connection from the mobile terminal MT to the field device is provided.", col. 8, line 1-22, "By means of the inventive interactive user interface and the "on-line" connection, the maintenance personnel is able to retrieve information on the operation of a desired field device (an active transfer module), such as a control valve, and display it on the user interface of the mobile terminal. The information may be displayed in a text format and/or graphical format. The information may also include alarms (alerts module) and any operation parameters which the maintenance person wishes to monitor on-line, such as the opening of a valve. The operational data

Page 77

Art Unit: 2456

obtained by the mobile terminal MT allows the maintenance person to immediately make a decision on the maintenance need of the respective field device, i.e. whether it is possible to postpone the maintenance operation up to the next shut down of the plant or whether special arrangements are needed in order to avoid an unintentional shutdown. During the shutdown of the plant the mobile terminal can be used for performing various field test for the field device, such as a step response test or a hystheresis test for a control valve. Also during the operation of the plant the diagnostic system 21 may allow the mobile terminal to perform a forced control of the field device to a desired mode of operation or position." Col. 5, line 27-53, "For this purpose, the diagnostic system 21 comprises a management and control software for the field devices. In the preferred embodiment each field device type (e.g. two different control valves or control valves of different manufacturers may represent different device types) is provided with a specific control software which contains all necessary data and instructions sets for controlling, configuring, reading, etc., the field devices of a predetermined time (Analysis module). Normally these operations can be made by a control room personnel from a work station. A device database 22 stores information on each field device controlled by the diagnostic system 21 and, preferably, all diagnostics data read from the field devices. In other words, the database 22 contains an updated configuration of field devices as well as the operation history thereof (Monitoring module). In accordance to the principles of the present invention, the diagnostic system 21 is further provided with an interactive user interface which utilize the configuration, control and management data in the database 22 and is accessible by

the mobile terminal MT through a dedicated data connection established over the cellular communication system 26, in order to selectively control, configure or monitor the field devices 14, 15 and 16 connected to the diagnostic system 21. In the preferred embodiment of the invention the interactive user interface is embodied as one or more world wide web (WWW) pages in a WWW server 23."

Conclusion

Examiner's note: Examiner has cited particular columns and line numbers in the references as applied to the claims above for the convenience of the applicant. Although the specified citations are representative of the teachings of the art and are applied to the specific limitations within the individual claim, other passages and figures may apply as well. It is respectfully requested from the applicant in preparing responses, to fully consider the references in entirety as potentially teaching all or part of the claimed invention, as well as the context of the passage as taught by the prior art or disclosed by the Examiner.

Applicant's amendment necessitated the new ground(s) of rejection presented in this Office action. Accordingly, **THIS ACTION IS MADE FINAL**. See MPEP § 706.07(a). Applicant is reminded of the extension of time policy as set forth in 37 CFR 1.136(a).

A shortened statutory period for reply to this final action is set to expire THREE MONTHS from the mailing date of this action. In the event a first reply is filed within TWO MONTHS of the mailing date of this final action and the advisory action is not mailed until after the end of the THREE-MONTH shortened statutory period, then the

Application/Control Number: 10/074,411 Page 79

Art Unit: 2456

shortened statutory period will expire on the date the advisory action is mailed, and any extension fee pursuant to 37 CFR 1.136(a) will be calculated from the mailing date of the advisory action. In no event, however, will the statutory period for reply expire later

than SIX MONTHS from the date of this final action.

Any inquiry concerning this communication or earlier communications from the

examiner should be directed to ASHOK B. PATEL whose telephone number is

(571)272-3972. The examiner can normally be reached on 6:30 am-4:30 pm.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's

supervisor, Bunjob Jaroenchonwanit can be reached on (571) 272-3913. The fax

phone number for the organization where this application or proceeding is assigned is

571-273-8300.

Information regarding the status of an application may be obtained from the

Patent Application Information Retrieval (PAIR) system. Status information for

published applications may be obtained from either Private PAIR or Public PAIR.

Status information for unpublished applications is available through Private PAIR only.

For more information about the PAIR system, see http://pair-direct.uspto.gov. Should

you have questions on access to the Private PAIR system, contact the Electronic

Business Center (EBC) at 866-217-9197 (toll-free).

/Ashok B. Patel/

Primary Examiner, Art Unit 2456