<u>Painel</u> / Meus cursos / <u>SC26EL</u> / <u>Avaliações Eletrônicas</u> / <u>Prova 2 CP</u>

Iniciado em	segunda, 17 mai 2021, 15:59
Estado	Finalizada
Concluída em	segunda, 17 mai 2021, 19:30
Tempo	3 horas 30 minutos
empregado	
Notas	3,0/3,0
Avaliar	10,0 de um máximo de 10,0(100 %)

Questão **1**

Correto

Atingiu 1,0 de 1,0 Considere o sistema abaixo:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

A função de transferência do sistema pode ser obtida através da expressão $G(s) = C(sI - A)^{-1}B$.

A soma dos coeficientes do numerador dos termos da matriz $(sI - A)^{-1}$ é: 4

Os denominador de G(s) é: 1 \checkmark s^2+ 2 \checkmark s+ 1

Questão **2**

Correto

Atingiu 1,0 de 1,0 Considere o sistema abaixo:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Abaixo tem-se duas possíveis estruturas de controle.

Possíveis estruturas de Controle

Deseja-se que a saída siga uma referência do tipo degrau com erro nulo e seja capaz de rejeitar perturbações aplicadas na entrada do sistema. Assim, projete o controlador adequado. Se for o controlador sem integral do erro de rastreamento da referência, utilize como autovalores desejados para o sistema em malha fechada os valores $s_1 = s_2 = -5$. Se for o controlador com integral do erro de rastreamento, utilize como autovalores desejados para o sistema em malha fechada os valores $s_1 = s_2 = -5$ e $s_3 = -30$. Com base na sua escolha e projeto, preencha adequadamente as questões abaixo:

A estrutura de controle adequada para o problema é:

Sem Integral do Erro

Com integral do erro

Com Integral do Erro

O posto da matriz de controlabilidade é:

3

A soma dos elementos da matriz de controlabilidade é: -1

O sistema é: Controlável .

A soma dos coeficientes do polinômio característico desejado para o controlador é: 1116

O vetor de ganhos do controlador é um vetor: Linha

Se você escolheu a estrutura sem a integral do erro de rastreamento, preencha com os ganhos calculados. Caso contrário, preencha cada campo com zero (0): $k_1 = 0$ \checkmark , $k_2 = 0$ \checkmark e $k_r = 0$ \checkmark .

Se você escolheu a estrutura com a integral do erro de rastreamento, preencha com os ganhos calculados já considerando a troca de sinal para o ganho associado ao integrador. Caso contrário, preencha cada campo com zero (0):

$$k_1 = \begin{bmatrix} 181 \\ \checkmark \end{bmatrix}, k_2 = \begin{bmatrix} 38 \\ \checkmark \end{bmatrix}$$
 e $k_1 = \begin{bmatrix} 375 \\ \checkmark \end{bmatrix}$.

Questão **3**

Correto

Atingiu 1,0 de 1,0 Considere o sistema abaixo:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Projete um observador de estados para o sistema acima utilizando a fórmula abaixo e considerando os autovalores do observador em $\mu_1=\mu_2=-15$.

$$K_{\mathrm{e}} = \Phi(A) \left[egin{array}{c} C \\ AC \\ \vdots \\ A^{n-1}C \end{array}
ight]^{-1} \left[egin{array}{c} 0 \\ 0 \\ \vdots \\ 1 \end{array}
ight]$$

Com base no projeto, preencha adequadamente as questões abaixo:

O posto da matriz de observabilidade é: 2

A soma dos elementos da matriz de observabilidade é: 4

O sistema é: Observável 🗸 .

Os coeficientes do polinômio característico do observador são: 1 $\checkmark s^2 + 30$ $\checkmark s + 225$

A soma dos elementos da matriz $\Phi(A)$ é: 392 \checkmark .

O vetor de ganhos do observador é um vetor: Coluna

Os elementos do vetor de ganhos K_e são: $k_{e1} = \begin{bmatrix} 28 \\ \checkmark \end{bmatrix}$, $k_{e2} = \begin{bmatrix} 70 \\ \checkmark \end{bmatrix}$

 Questionário sobre Projeto de Controlador com Observador de Estados - Parte 1

Recuperação 2 CP ►