- 一、填空题(共 5 题, 每题 3 分, 共 15 分)
- 1. 设 n 阶方阵 A、 B、C 满足 ABC = I,则 B⁻¹ = ().

2. 行列式
$$D = \begin{vmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 0 & 4 & 1 & 2 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 2 & 3 \\ 5 & 4 & 3 & 2 & 1 \end{vmatrix}$$
, 则 $A_{41} + A_{42} + A_{43} + A_{44} + A_{45} = ()$.

3. 设 3 阶方阵
$$A = \begin{pmatrix} \alpha \\ 2\gamma_1 \\ 3\gamma_2 \end{pmatrix}$$
, $B = \begin{pmatrix} \beta \\ \gamma_1 \\ \gamma_2 \end{pmatrix}$, 且 $|A| = 6$, $|B| = 2$, 则 $|A - B| = ($).

4. 若 3 阶方阵 A 的特征多项式为 $|\lambda I - A| = (\lambda + 1)(\lambda - 1)^2$,

则 $|A^{-1} + 2I| = ($).

- 5. 设 3 阶矩阵 $A = \begin{pmatrix} 1 & 2 & -2 \\ 1 & a & 3 \\ 2 & -1 & 1 \end{pmatrix}$, B 为非零矩阵,且 AB = 0,则 a = ().
- 二、选择题(共5题,每题3分,共15分)
- 1. 设 $A \times B$ 为 n 阶方阵,则下列选项中正确的是().
 - (A) 若 A、 B 都可逆, 则 A* + B* 一定可逆;
 - (B) 若 A、 B 都不可逆,则 A* + B* 一定不可逆;
 - (C) 若 A 可逆, 但 B 不可逆,则 A* + B* 一定不可逆;
 - (D) 以上三选项都不对.
- 2. 设 β_1 , β_2 是方程组 Ax = b 的两个不同解, α_1 , α_2 是方程组 Ax = 0 的基础解系,则 Ax = b 的一般解为().

(A)
$$k_1\alpha_1 + k_2(\alpha_1 + \alpha_2) + \frac{\beta_1 - \beta_2}{2}$$
; (B) $k_1\alpha_1 + k_2(\alpha_2 - \alpha_1) + \frac{\beta_1 + \beta_2}{2}$;

(C)
$$k_1\alpha_1 + k_2(\beta_1 + \beta_2) + \frac{\beta_1 - \beta_2}{2}$$
; (D) $k_1\alpha_1 + k_2(\beta_1 - \beta_2) + \frac{\beta_1 + \beta_2}{2}$.

- 3. A、B为n阶矩阵,且A~B,则().
 - $(A) \lambda I A = \lambda I B;$ (B) A 和 B 有相同的特征值和特征向量;
 - (C) $AB \sim B^2$; (D) 对任意常数 t, 均有 $tE A \sim tE B$.

4. 若 n 阶矩阵 A 经过若干次初等变换化为 B,则必有()

$$(A) r(A) = r(B);$$

- (B) 存在可逆阵 0,使得 B = A0;
- (C) 方程 AX = 0 与 BX = 0 同解; (D) |A| = |B|;
- 5. 矩阵 $A = \begin{pmatrix} 1 & u & u & u \\ a & 1 & a & a \\ a & a & 1 & a \end{pmatrix}$ 的伴随矩阵 A^* 的秩为 1,则 a = ().

(B)
$$-1$$

(A) 1 (B)
$$-1$$
 (C) $-\frac{1}{3}$ (D) 3

三、计算和证明(共36分,每题6分)

1. 计算
$$\begin{vmatrix} 1 & 2 & 3 & \cdots & n-1 & n \\ 2 & 3 & 4 & \cdots & n & 1 \\ 3 & 4 & 5 & \cdots & 1 & 2 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ n-1 & n & 1 & \cdots & n-3 & n-2 \\ n & 1 & 2 & \cdots & n-2 & n-1 \end{vmatrix}.$$

- 2. 矩阵 $A = \begin{pmatrix} 3 & 0 & 1 \\ 1 & 1 & 0 \\ 2 & 1 & 4 \end{pmatrix}$, 矩阵 X 满足 AX = A + 2X, 求矩阵 X.
- 3. 设 A 是 $n \times m$ 矩阵, B 是 $m \times n$ 矩阵 (n < m), 又 AB = I(n) 阶单位矩阵), 证明: B的列向量组线性无关.
- 4. 求向量组 $\alpha_1 = (1,3,2,0), \ \alpha_2 = (7,0,14,3), \ \alpha_3 = (2,-1,0,1), \ \alpha_4 = (5,1,6,2)$ 的秩,及其一个极大线性无关组,并将其余向量用极大线性无关组线性表示.

5. 设
$$A = \begin{pmatrix} -2 & 1 & 1 \\ 0 & 2 & 0 \\ -4 & 1 & 3 \end{pmatrix}$$
, 分析 A 是否可对角化;

若能,求出相应的可逆矩阵 P 与对角阵 Λ ,使得 $P^{-1}AP = \Lambda$; 若不能,说明理由.

6. 设 α_1 , α_2 , α_3 是 R^3 的一组基,求基 α_1 , $\frac{1}{2}\alpha_2$, $\frac{1}{3}\alpha_3$ 到基 α_1 + α_2 , α_2 + α_3 , α_3 + α_1 的过渡矩阵.

四、证明题(8分)

设 A 为 n 阶矩阵,若存在正整数 $k(k \ge 2)$,使得 $A^k \alpha = 0$,但 $A^{k-1} \alpha \ne 0$,这里 α 为 n 维非零列向量,证明: α , $A\alpha$, ..., $A^{k-1} \alpha$ 线性无关.

五、(13分)

设矩阵
$$A = \begin{pmatrix} 1 & 1 & 1-a \\ 1 & 0 & a \\ a+1 & 1 & a+1 \end{pmatrix}$$
, $\beta = \begin{pmatrix} 0 \\ 1 \\ 2a-2 \end{pmatrix}$, 已知方程组 $Ax = b$ 无解,

- (1) 求 a 的值;
- (2) 求方程组 $A^{T}Ax = A^{T}\beta$ 的一般解.

六、(13分)

已知二次型 $f(x_1,x_2,x_3) = (1-a)x_1^2 + (1-a)x_2^2 + 2x_3^2 + 2(1+a)x_1x_2$ 的 规范形为 $z_1^2 + z_2^2$,

- (1) 求 a 的值;
- (2)用正交变换法将二次型化为标准形,并写出对应的正交矩阵.