

Maharaja Education Trust (R), Mysuru

MAHARAJA INSTITUTE OF TECHNOLOGY MYSORE

An Autonomous Institute, affiliated Visvesvuraya Technological University, Belagavi Belawadi, Srirangapatna Taluk, Mandya - 571 477 Approved by AICTE, New Delhi [Recognized by Govt. of Karnatakai

First Semester B.E Degree Examination, February/March 2024 Mathematics-1 for Computer Science and Engineering Stream

Duration: 3 hrs Max. Marks: 100

Note: 1. Answer five full questions choosing one complete question from each module.

2. Formula Hand Book is permitted

3. M: Marks, L: Bloom's level, C: Course outcomes.

	3. M: Marks, L: Bloom's level, C: Course ouicomes.	_		-
SI. No.	Questions	M	L	C
	Module 1			
1 a)	With usual notation prove that $\cot \emptyset = \frac{1}{r} \left(\frac{dr}{d\theta} \right)$	6	L2	COI
b)	Find the angle of intersection between the two polar curves $r^m = a^m \cos m\theta$ and $r^m = b^m \sin m\theta$.	7	L1	COI
c)	Find the radius of curvature for the Folium of De-Cartes $x^3 + y^3 = 3axy$ at the point $\left(\frac{3a}{2}, \frac{3a}{2}\right)$ on it.	7	LI	COI
	OR		,	1
2 a)	With usual notation prove that $\frac{1}{p^2} = \frac{1}{r^2} + \frac{1}{r^4} \left(\frac{dr}{d\theta}\right)^2$.	7	L2	CO1
b)	Find the pedal equation of the curve $r(1 - \cos \theta) = 2a$.	7	LI	COI
c)	Using modern mathematical tool, write a program/code to find radius of curvature of the curve $r = 4(1 + \cos t)$ at the point $t = \frac{\pi}{2}$.	6	L3	CO5
	Module 2			
3 a)	Expand $\log(1+x)$ in powers of x up to the terms containing x^4 using Maclaurin's series.	6	L2	CO1
b)	If $Z = f(x + ay) + g(x - ay)$ then prove that $\frac{\partial^2 Z}{\partial y^2} = a^2 \frac{\partial^2 Z}{\partial x^2}$	7	L2	COI
c)	Find the extreme values of the function $f(x, y) = x^3 + 3xy^2 - 3x^2 - 3y^2 + 4$	7	L1	COI
	OR			
4 a)	Evaluate (i). $\lim_{x\to 0} \left(\frac{\tan x}{x}\right)^{\frac{1}{x^2}}$ (ii). $\lim_{x\to 1} x^{\frac{1}{1-x}}$	7	L3	COI
b)	If $u = x + 3y^2 - z$, $v = 4x^2yz$ and $w = 2z^2 - xy$ then find $\frac{\partial(u,v,w)}{\partial(x,y,z)}$ at the point $(1,-1,0)$	7	L1	COI
c)	Using modern mathematical tool, write a program/code to evaluate $\lim_{x\to\infty} \left(1+\frac{1}{x}\right)^x$	6	L3	CO5
	Module 3			
5 a)	Solve: $\frac{dy}{dx} - y \tan x = y^2 \sec x$	6	L3	CO2
b)	Find the orthogonal trajectories of the family of curve $r^n \sin n\theta = a^n$ where a is a parameter.	7	L1	CO2
c)	Find the solution of the equation $x^2(y - px) = yp^2$ by reducing into Clairaut's	7	L1	CO ₂

	form using the substitution as $X = x^2$ and $Y = y^2$					
	OR					
6 a)	Solve: $(x^4 - 2xy^2 + y^4)dx - (2x^2y - 4xy^3 + \sin y)dy = 0$	6	L3	CO2		
b)	When a switch is closed in a circuit containing a battery E, a resistance R and an	7	LI	CO2		
	inductance L the current i build up at a rate given by $L\frac{di}{dt} + Ri = E$ Find i as a					
	function of t. How long will it be before the current has reached one-half of its					
	final value, if $E = 6$ volts, $R = 100$ ohms and $L = 0.1$ Henry					
c)	Solve: $xyp^2 - (x^2 + y^2)p + xy = 0$	7	L3	CO2		
	Module 4					
7a)	i) Find the last digit in 7 ¹²⁶	,		CO3		
	ii) Find the remainder when $64 \times 65 \times 66$ is divided by 67	6	LI			
b)	Solve the linear congruence $11x \equiv 4 \pmod{25}$	7	L3	CO3		
c)	Find the remainder when 5 ¹¹ is divided by 7 using Fermat's Little theorem.	7	L1	CO3		
OR						
8 a)	Solve $x \equiv 3 \pmod{4}$, $x \equiv 2 \pmod{3}$ and $x \equiv 4 \pmod{5}$	6	L3	CO3		
	Using Chinese Remainder theorem.	1 2				
b)	Solve the system of linear congruence	7	L3	CO3		
	$5x + 3y \equiv 2 \pmod{14}$ and $-3x + 4y \equiv 7 \pmod{14}$					
c)	Show that 4(29)! + 5! is divisible by 31 using Wilson's Theorem.	7	L2	CO3		
-	Module 5					
9 a)		6	L1	CO4		
	Find the rank of the matrix $\begin{bmatrix} 0 & 11 & -5 & 3 \\ 2 & -5 & 3 & 1 \end{bmatrix}$					
	2 -5 3 1					
b)	Investigate the values of λ and μ so that the equation	7	L3	CO4		
D)	$2x + 3y + 5z = 9$, $7x + 3y - 2z = 8$, $2x + 3y + \lambda z = \mu$	′	LS	CO4		
	has (i) no-solution (ii) unique solution (iii) infinite solution					
c)	Using Rayleigh's power method, find the largest eigen value and the	7	L3	CO4		
			20	004		
	corresponding eigen vector of the matrix $A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$ by taking initial					
	2 -1 3					
	vector as $[1,1,1]^T$. Perform 6 iterations.					
	OR					
10a)	Solve the following system of equation by Gauss elimination method	7	L3	CO4		
	$x_1 - x_2 + x_3 = 6$, $2x_1 + 4x_2 + x_3 = 3$, $3x_1 + 2x_2 - 2x_3 = -2$ Solve the following system of equation by Gauss seidel method					
b)		7	L3	CO4		
	27x + 6y - z = 85, $6x + 15y + 2z = 72$, $x + y + 54z = 110$					
c)	Using modern mathematical tool, write a program/code to test the consistency of	6	L3	CO5		
	the equation $x_1 + 2x_2 - x_3 = 1$, $2x_1 + x_2 + 4x_3 = 2$ and $3x_1 + 3x_2 + 4x_3 = 1$					
