Homework 27 Section 6.3

Mark Petersen

Exercises: 2,3,4,5

07/29/2020

Exercise 1. (Q2): Consider the sequence of functions

$$h_n\left(x\right) = \sqrt{x^2 + \frac{1}{n}}.$$

a) Compute the pointwise limit of (h_n) and then prove that the convergence is uniform on \mathbb{R} . *Proof:* The pointwise limit of (h_n) is |x|. To show that it's convergence is uniform we do the following

$$|h_n - |x|| = \left| \sqrt{x^2 + \frac{1}{n}} - |x| \right|$$

$$= \left| \sqrt{x^2 + \frac{1}{n}} - |x| \right| \frac{\left(\sqrt{x^2 + \frac{1}{n}} + |x| \right)}{\left(\sqrt{x^2 + \frac{1}{n}} + |x| \right)}$$

$$= \frac{x^2 + \frac{1}{n} - x^2}{\sqrt{x^2 + \frac{1}{n}} + |x|}$$

$$= \frac{\frac{1}{n}}{\sqrt{x^2 + \frac{1}{n}} + |x|}$$

$$\leq \frac{\frac{1}{n}}{\frac{1}{\sqrt{n}}}$$

$$= \frac{1}{\sqrt{n}}.$$

Using the Archimedean property, for any $\epsilon > 0$, there exists an $N \in \mathbb{N}$ such that $\frac{1}{\sqrt{N}} < \epsilon$. Therefore (h_n) converges uniformly.

b) Not that each (h_n) is differentiable. Show $g(x) = \lim_{n \to \infty} h'_n(x)$ exists for all x, and explain how we can be certain that the convergence is not uniform on any neighborhood of zero.

Proof: The derivative of the sequence
$$h_n$$
 is

$$h'_n(x) = 2x \left(x^2 + \frac{1}{n}\right)^{-\frac{1}{2}}$$
$$= \frac{2x}{\sqrt{x^2 + \frac{1}{n}}},$$

which converges pointwise to

$$\frac{2x}{x}$$
.

The converges cannot be uniform on any neighborhood of zero since the derivative of |x| does not exists at 0.

Exercise 2. (Q3): Consider the sequence of functions

$$f_n\left(x\right) = \frac{x}{1 + nx^2}.$$

a) Find the points on \mathbb{R} where each $f_n(x)$ attains its maximum and minimum value. Use this to prove (f_n) converges uniformly on \mathbb{R} . What is the limit function?

Proof: In order to find the points on \mathbb{R} where each $f_n(x)$ attains its max and min value, we take derivative, set it equal to zero, and solve for x.

$$f_n' = \frac{1 - nx^2}{(1 + nx^2)^2}.$$

Which shows that $f'_n(x) = 0$ when $x = \pm \frac{1}{\sqrt{n}}$. Since $f_n(-\infty) = f_n(\infty) = 0$, we know that f_n obtains a maximum/minumum at $x = \pm \frac{1}{\sqrt{n}}$. This means that f_n is bounded and that the bound is

$$f_n\left(\pm\frac{1}{\sqrt{n}}\right) = \frac{\pm\frac{1}{\sqrt{n}}}{1+n\left(\frac{1}{\sqrt{n}}\right)^2} = \pm\frac{1}{2\sqrt{n}}.$$

Note that $f_n \to 0$ as $n \to \infty$, thus

$$|f_n - 0| \le \frac{1}{2\sqrt{n}}.$$

Since we can choose an N given an $\epsilon > 0$ such that $\frac{1}{2\sqrt{N}} < \epsilon$, the sequence (f_n) converges uniformly to f = 0.

b) Let $f = \lim_{n \to \infty} f_n$. Compute $f'_n(x)$ and find all the values of x for which $f'(x) = \lim_{n \to \infty} f'_n(x)$.

a) The derivative $f'_n(x)$ was computed in part (a). The pointwise limit of $\left(f'_n\right)$ is 0. As shown in part (a), $f'_n(x) = 0$ when $x = \pm \frac{1}{\sqrt{n}}$.

Exercise 3. (Q4): Let

$$h_n\left(x\right) = \frac{\sin\left(nx\right)}{\sqrt{n}}.$$

Show that $h_n \to 0$ uniformly on \mathbb{R} but that the sequence of derivatives (h'_n) diverges for every $x \in \mathbb{R}$.

Proof: Given and $\epsilon > 0$, let $N = \frac{1}{\epsilon^2}$, then whenever n > N,

$$|h_n - 0| = \left| \frac{\sin(nx)}{\sqrt{n}} \right|$$

$$\leq \frac{1}{\sqrt{n}}$$

$$\leq \epsilon.$$

therefore, $h_n(x) \to 0$ uniformly on \mathbb{R} . Taking the derivative we get

$$h_{n}^{'}\left(x\right) = \cos\left(nx\right)\sqrt{n}$$

which diverges as $\cos(nx)$ oscillates except when $x = \pi k$ for $k = \{0, 1, 2, 3, ...\}$.

Exercise 4. (Q5): Let

$$g_n\left(x\right) = \frac{nx + x^2}{2n},$$

and set $g(x) = \lim_{n \to \infty} g_n(x)$. Show that g is differentiable in two ways:

a) Compute $g\left(x\right)$ by algebraically taking the limit as $n\to\infty$ and then find $g'\left(x\right)$.

$$\lim g_n(x) = \frac{1}{2}x,$$

so
$$g(x) = \frac{1}{2}x$$
 and $g'(x) = \frac{1}{2}$.

b) Compute $g'_n(x)$ for each $n \in \mathbb{N}$ and show that the sequence of derivatives (g'_n) converges uniformly on every interval [-M,M]. use Theorem 6.3.3 to conclude $g'(x) = \lim_{n \to \infty} g'_n(x)$.

a) $g_n^{'}(n)=\frac{1}{2}+\frac{x}{n}$. Given an $\epsilon>0$, let $N=\frac{M}{\epsilon}$, then whenever n>N, it follows that

$$|g'_n - g'| = \left| \frac{1}{2} + \frac{x}{n} - \frac{1}{2} \right|$$

$$= \left| \frac{x}{n} \right|$$

$$\leq \frac{M}{n}$$

$$< \epsilon$$

Therefore $g'_n \to \frac{1}{2}$ uniformly. According to Theorem 6.3.3 $g'(x) = \lim g'_n(x)$.

- c) Repeat parts (a) and (b) for the sequence $f_n\left(x\right)=\left(nx^2+1\right)/\left(2n+x\right)$.
 - a) We first compute f(x) by algebraically taking the limit as $n \to \infty$ and then find f'(x).

$$f_n = \frac{nx^2}{(2n+x)} + \frac{1}{2n+x}.$$

Taking the limit as $n \to \infty$ yields

$$f\left(x\right) = \frac{1}{2}x^2.$$

Taking the derivative gives

$$f'(x) = x$$
.

b) We now compute $f'_n(x)$ for each $n \in \mathbb{N}$ and show that the sequence of derivatives (f') converges uniformly on every interval [-M,M]. use Theorem 6.3.3 to conclude $f'(x) = \lim_{n \to \infty} f'_n(x)$. The derivative is $f'_n(x) = \frac{4n^2x + nx^2 - 1}{(2n + x)^2}$. Note that

$$|f'_n - f'| = \left| \frac{4n^2x + nx^2 - 1}{(2n+x)^2} - x \right|$$

$$= \left| \frac{4n^2x + nx^2 - 1 - 4n^2x - 4nx^2 - x^3}{(2n+x)^2} \right|$$

$$= \left| \frac{-3nx^2 - x^3 - 1}{(2n+x)^2} \right|$$

$$\leq \left| \frac{3nM^2 + M^3 + 1}{4n^2} \right|$$

which tends to 0 as $n \to \infty$. Thus, given an $\epsilon > 0$, there exists an N such that whenever n > N

$$|f_n' - f'| < \epsilon$$
.

Since $f'_n \to x$ uniformly and $f_n \to f$ pointwise on the interval [-M, N], According to Theorem 6.3.3 $f'(x) = \lim_{n \to \infty} f'_n(x)$.