Vorlesung Werkstofftechnik - Wärmebehandlung

Prof. Dr.-Ing. Christian Willberg Hochschule Magdeburg-Stendal

Kontakt: christian.willberg@h2.de
Teile des Skripts sind von
Prof. Dr.-Ing. Jürgen Häberle
übernommen

Bildreferenz

Wärmebehandlung

- Glühverfahren
- Härteverfahren

Charakterisierung:

- Art des Erwärmens
- Haltetemperatur
- Haltedauer
- Art des Abkühlens (Ofen-, Luft-, Öl-, Wasserabkühlung)

Warum?

- Verbesserung der Bearbeitbarkeit (Weichglühen)
- Arbeitsgang der Erzeugung (Härten von Werkzeugen)
- Verbesserung der mechanischen Eigenschaften (Vergüten von Stahl, Aushärten von Al-Legierungen)
- Verminderung des Verschleißes (Randschichthärten von Zahnrädern)
- Beseitigung von Kaltverfestigung (Rekristallisationsglühen)
- Abbau von Guss- oder Schweißspannungen (Spannungsarmglühen)

Glühen

• langsames Kühlen. Versuch nahe dem Gleichgewichtszustand zu kommen

Ziele ausabeiten für

- Spannungsarmglühen
- Rekristallisationsglühen
- Weichglühen
- Normalglühen
- Grobkornglühen
- Diffusionsglühen

Spannungsarmglühen

- Langsames Erwärmen auf 550 650 °C (unterhalb A_{c1})
- Haltedauer 2 4 h, langsame
 Abkühlung (Ofenabkühlung)

Ziel:

Abbau innerer Spannungen
(Eigenspannungen) ohne wesentliche
Änderung der sonstigen
Eigenschaften

nule endal

Spannungsarmglühen

- ullet Langsames Erwärmen auf 550 650 °C (unterhalb ${
 m A}_{c1}$)
- Haltedauer 2 4 h, langsame
 Abkühlung (Ofenabkühlung)

Ziel:

Abbau innerer Spannungen
(Eigenspannungen) ohne wesentliche
Änderung der sonstigen
Eigenschaften

Rekristallisationsglühen

- Rückgängigmachen von Eigenschaftsänderungen (Verfestigung) durch Kaltumformung;
- Gefügeumbildung bzw. neubildung im festen Zustand;
- Spannungsabbau
- Erhöhung der Bruchdehnung

nule endal

Rekristallisationsglühen

- Rekristallisationstemperatur bei Stahl: 500 - 600°C
- halten, langsame Abkühlung
- bei zu langer Haltezeit: Grobkornbildung

Weichglühen

- Herstellung eines für die Weiterverarbeitung günstigen weichen Zustands
- Zementitteilchen werde kugelig eingeformt (GKZ-Glühen).

Weichglühen

- ullet Temperaturen um ${
 m A}_{C1}$ (unterhalb, oberhalb oder pendelnd um ${
 m A}_{C1}$)
- langsame Abkühlung.

Normalglühen

- Temperatur 30 50°C über Umwandlungstempertur im Austenitgebiet.
- ullet Erwärmung zwischen ${
 m A}_{C1}$ und Glühtemperatur rasch, kurze Haltedauer
- rasche Abkühlung durch Zweiphasen-Intervall, dann langsam abkühlen

Normalglühen

- Herstellung eines gleichmäßigen und feinkörnigen Gefüges mit Perlitanteilen
- Annäherung an den Gleichgewichtszustand durch zweifaches Umkörnen (bei Erwärmung und Abkühlung)
- häufig eingesetztes Verfahren

Temperatur [°C]

Grobkornglühen

- Erzielung eines groben Korns
- Verbesserung der Spanbarkeit

Grobkornglühen

- Temperatur deutlich über ${
 m A}_{C3}$ (950 1100°C)
- Haltezeit 1 bis 2 h
- langsame Ofenabkühlung
- dann raschere Luftabkühlung

Diffusionsglühen

Beseitigung örtlicher
 Konzentrationsunterschiede
 (Seigerungen) durch Diffusion

nule endal

Diffusionsglühen

- Temperatur hoch im Austenitbereich
- lange Haltezeit (bis 50 h)
- langsame Abkühlung

ZTU-Schaubilder

- Zeit Temperatur Umwandlungs Schaubilder
- werden für verschiedene Materialien und Legierungen bereitgestellt
- auf dieser Basis werden die Wärmebehandlungsprozesse geplant
- Unterscheidung in Abkühlung bei
 - konstanter Temperatur (isotherme Umwandlung)
 - kontinuierliche Abkühlung

isotherme Umwandlung

- Probe wird abgeschreckt
- bei konstanter Temperatur gehalten, bis Umwandlung abgeschlossen

Kontinuierliche Abkühlung

- ausgehend von der Austenitiseriungsbedingung verschieden schnell abgekühlt
- die Umwandlung in Ferrit, Perlit,
 Bainit (Zwischenstufe) oder
 Martensit bei verschiedenen
 Temperaturen findet in
 unterschiedlichem Ausmaß statt
- am Ende der Abkühlkurve wird meist die erreichbare Härte eingetragen

Härteverfahren

Härten

- erfolgt das Abkühlen von einer Temperatur oberhalb der Umwandlungslinie GOSK mit einer Geschwindigkeit, die größer ist als die kritische ("Abschrecken")
- Ziel ist ein
 Ungleichgewichtszustand durch
 Umwandlung des Austenits in
 Martensit (gegebenenfalls auch
 Bainit)

Verfahren

- Härten nach Volumenerwärmung
- Anlassen
- Vergüten
- Randschichthärten
- Thermochemische Verfahren
 - Aufkohlen / Einsatzhärten
 - Nitrieren
- Thermomechanische Verfahren
- Aushärten

Härten nach Volumenerwärmung

- Kohlenstoffgehalt von mindestens 0.3% (sonst Vorbehandlung nötig)
- bei kleinen Abmessungen kann eine vollständige Martensitbildung über den gesamten Querschnitt erfolgen (Durchhärtung). Bei großen Abmessungen wird die kritische Abkühlgeschwindigkeit nur bis zu einer bestimmten Tiefe erreicht (Einhärtung).
- Höchsthärte ist allein vom Kohlenstoffgehalt abhängig

Randschichthärten

- wird angewendet bei niedrig- und unlegierten Stählen mit 0.3 0.7% Kohlenstoff (obere Grenze zur Vermeidung von Härterissen)
- insbesondere bei Kurbelwellen, Zapfen, Walzen, Zahnrädern u.a.. Ziel dieses Verfahrens ist eine harte und verschleißbeständige Oberfläche bei zähem Kern.
- Randschicht des Werkstückes auf Härtetemperatur erhitzt und durch Abschrecken gehärtet.

Verfahren

Das Randschichthärten ist mit folgenden Verfahren möglich:

- Flammhärten
- Induktionshärten
- Strahlhärten (Elektronenstrahlund Laserhärten)
- Tauchhärten

Fragen?