SHENDUO ZHANG

December 3, 2020 (GMT+8)

zhangshenduo@gmail.com

Problem 1

P123 2.4.1

Let p be a semi linear functional on a real linear space \mathcal{X} , prove that:

- 1. $p(\theta) = 0$;
- 2. $p(-x) \ge -p(x)$;
- 3. For arbitrary given $x_0 \in \mathcal{X}$, there must exists a real linear functinal f, satisfy $f(x_0) = p(x_0)$, and $f(x) \leq p(x) \ (\forall x \in \mathcal{X})$.

Solution 1.a

$$p(\theta) = 2p(\theta) \Rightarrow p(theta) = 0$$
 (1)

Solution 1.b

$$p(\theta) = p(x - x) \le p(x) + p(-x) \tag{2}$$

Solution 1.c Define $\mathcal{X}_0 = span\{x_0\}$, then if we can define such a functional on \mathcal{X}_0 , by Hahn-Banach's theorem, the claim follows. We define $f(ax_0) = ap(x_0)$. Then we claim f is a linear functional that is dominated by p over \mathcal{X}_0 . When $a \geq 0$, $f(ax) \leq p(ax)$. When $a \leq 0$, $f(-|a|x) = -p(|x|) \leq p(-|a|x) \leq p(ax)$.

Problem 2

P124 2.4.4

Let \mathcal{X} be a linear normed space, $\{x_n\}(n=1,2,\ldots)$ be a sequence in \mathcal{X} . If $\forall f \in \mathcal{X}^*$, the sequence $\{f(x_n)\}$ is bounded, prove that: $\{x_n\}$ is bounded in \mathcal{X} .

Solution 2.a Consider $span\{x_n\}$, then by Hahn-Banach's theorem, there $\exists f \in \mathcal{X}^*$ such that $||x_n|| = f(x_n)$. Hence $||x_n|| \le ||f|| \le M, \forall n$.

Problem 3

P124 2.4.5

Let \mathcal{X}_0 be a closed subspace of a linear normed space \mathcal{X} , prove that:

$$\rho(x, \mathcal{X}_0) = \sup\{|f(x)|; f \in \mathcal{X}^*, ||f|| = 1, f(\mathcal{X}_0) = 0\} \quad (\forall x \in \mathcal{X}),$$
(3)

where $\rho(x, \mathcal{X}_0) = \inf_{y \in \mathcal{X}_0} ||x - y||$.

Solution 3.a From Hahn-Banach's theorem, we know there exists $f \in \mathcal{X}^*$ such that $f(x_0) = \rho(x_0, \mathcal{X})$. We have the following holds for any $x \notin \mathcal{X}_0$ because \mathcal{X}_0 is the kernel of the bounded linear functional f,

$$|f(x)| \le ||f||\rho(x, \mathcal{X}_0) \tag{4}$$

Hence the equality follows.

Problem 4

P124 2.4.6

Let \mathcal{X} be a linear normed space. Given n linear independent elements x_1, x_2, \ldots, x_n in \mathcal{X} and n number C_1, C_2, \ldots, C_n in a number field \mathbb{K} , prove that: for the existence of $f \in \mathcal{X}^*$ such that $f(x_k) = C_k(k = 1, 2, \ldots, n)$ and $||f|| \leq M$, one must and only need to have for arbitrary

 $a_1, a_2, \ldots, a_n \in \mathbb{K},$

$$\left| \sum_{k=1}^{n} a_k C_k \right| \le M \left\| \sum_{k=1}^{n} a_k x_k \right\|. \tag{5}$$

Solution $4.a \Rightarrow$:

$$\left| \sum_{k=1}^{n} a_k C_k \right| = \left| \sum_{k=1}^{n} a_k f(x_k) \right| \le \|f\| \left\| \sum_{k=1}^{n} a_k x_k \right\| \le M \left\| \sum_{k=1}^{n} a_k x_k \right\|$$
 (6)

 \Leftarrow : Let $M = span\{x_n, n \ge 1\}$. Let x_k be the basis for M, define the dual basis as $f(x_k) = c_k, \forall 1 \le k \le n$. The functional on the closed subspace M can be expressed as a linear combination of a_k and c_k . Hence for any $x \in M$, $x = \sum_{k=1}^n a_k x_k$,

$$|f_0(x)| = \left| \sum_{k=1}^n a_k C_k \right| \le M ||x||.$$
 (7)

Then by Hahn-Banach's theorem, we can extend f to be a linear functional reserving its norm. \square

Problem 5

P124 2.4.7

Given n linear independent elements x_1, x_2, \ldots, x_n in a linear normed space \mathcal{X} . Prove that: $\exists f_1, f_2, \ldots, f_n \in \mathcal{X}^*$, such that

$$f_i(x_j) = \delta_{ij}(i, j = 1, 2, \dots, n).$$
 (8)

Solution 5.a Consider the linear subspace M_i spaned by all those elements without x_i . Then, by Hahn-Banach's theorem, we know $\exists f_i \in \mathcal{X}^*$ such that $||f_i|| = 1$ and $f_i(x_i) = d$, $f(M_j) = 0$. Divided the functional f_i by $\rho(x_i, M_i)$, we prove the result.

Problem 6

P124 2.4.12

Let C be a convex set in a linear normed space. Let $x_0 \in \dot{C}$, $x_1 \in \partial C$, $x_2 = m(x_1 - x_0) + x_0(m > 1)$. Prove that: $x_2 \notin C$.

Solution 6.a Suppose it's inside C, it only suffices to prove then x_1 can not be on the boundary. x_0 is an interior point, hence exists $B(x_0, \delta) \subset C$. For all $y \in B(x_0, \delta)$, the convex combination of y and x_2 shall be inside C. Denote $z = \lambda x_2 + (1 - \lambda)y$. Then $z - x_1 = (1 - \lambda)(y - x_0)$. Let $d = (1 - \lambda)\delta$, then for any such z inside $B(z_1, d)$, it can be expressed as a convex combination of y and x_2 , which means it's inside C. This would imply a contradiction of x_1 being on ∂C . Indeed,

$$z = x_1 + (1 - \lambda)(y - x_0) = \lambda x_2 + (1 - \lambda)x_0 + (1 - \lambda)(y - x_0) = \lambda x_2 + (1 - \lambda)y \in C.$$
 (9)

Problem 7

P124 2.4.13

Denote M to be a closed convex set in a linear normed space \mathcal{X} , prove that: $\forall x \in \mathcal{X} \backslash M$, there must $\exists f_1 \in \mathcal{X}^*$ satisfying $||f_1|| = 1$, and

$$\sup_{y \in M} f_1(y) \le f_1(x) - d(x), \tag{10}$$

where $d(x) = \inf_{z \in M} ||x - z||$.

Solution 7.*a* From the geometry form of Hahn-Banach's theorem, there exists $f \in \mathcal{X}^*$ such that H_f^a split M and $B(x, \delta)$, where $\delta = \rho(x, M)$ since x is an interior point.

$$\sup_{t \in M} f(t) \le \inf_{\|e\| = 1} f(x - \delta e) = f(x) - \delta \sup_{\|e\| = 1} f(e) = f(x) - \delta \|f\|$$
(11)

Let $f_1 = \frac{f}{\|f\|}$, we conclude the claim.

Problem 8

P124 2.4.14

Let M be a closed convex set in a linear normed space \mathcal{X} , prove that

$$\inf_{z \in M} ||x - z|| = \sup_{f \in \mathcal{X}^*, ||f|| = 1} \left\{ f(x) - \sup_{z \in M} f(z) \right\} \quad (\forall x \in \mathcal{X}).$$
 (12)

Solution 8.a

From previous problem, we have proved the existence of $f_1 \in \mathcal{X}^*$ such that,

$$d(x) \le f_1(x) - \sup_{x \in M} f_1(x).$$
 (13)

And $\forall x \in \mathcal{X} \backslash M$, then $\forall \epsilon > 0, \exists z_{\epsilon} \in M$ such that

$$||x - z|| < \rho(x, M) + \epsilon. \tag{14}$$

$$\sup_{f \in X^*, \|f\|=1} \left\{ f(x) - \sup_{x \in M} f(x) \right\} \le \sup_{f \in X^*, \|f\|=1} \left\{ f(x) - f(z_{\epsilon}) \right\} \le \|x - z_{\epsilon}\|$$
 (15)

Hence

$$\sup_{f \in \mathcal{X}^*, ||f||=1} \left\{ f(x) - \sup_{z \in M} f(z) \right\} \le d(x)$$

$$\tag{16}$$

Therefore, the equality is proved.