삼성전기 AI전문가 양성과정 - 프로젝트 실습 (비영상)

자연어처리를 위한 Cross Entropy

현청천

2022.02.28

Entropy (연속확률분포)

$$H(X) = \int_{x} f(x; \theta) \log \frac{1}{f(x; \theta)} dx$$

확률분포에 대한 정보량의 기댓값

Entropy (이산확률분포)

$$H(X) = \sum_{x} p(x; \theta) \log \frac{1}{p(x; \theta)}$$

확률분포에 대한 정보량의 기댓값

Entropy (정보량)

내일은 해가 동쪽에서 뜬다

내일은 해가 서쪽에서 뜬다

$$q = 0.0000001$$

$$I(p) = \log \frac{1}{p} = \frac{1}{0.99999999} \simeq 0$$
 $I(q) = \log \frac{1}{q} = \frac{1}{0.000000001} \simeq 18.42068074$

Entropy

	Α	25%	00
	В	25%	0 1
	С	25%	10
= 1	D	25%	1 1

 $H(x) = \sum_{x} p_{\theta}(x) \log_2 \frac{1}{p_{\theta}(x)}$

$$\log_2 \frac{1}{0.25} = 2$$

 $\log_2 \frac{1}{0.5}$

$$\log_2 \frac{1}{0.125} = 3$$

Α	50%	0
В	25%	10
С	12.5%	1 1 0

12.5%

$$0.5 \times 1 + 0.25 \times 2 + 0.125 \times 3 + 0.125 \times 3 = 1.75$$

Entropy

A, B 두 글자가 발생하는 경우 A 발생 확률에 따른 Entropy

확률분포의 불확실성이 증가하면 Entropy가 증가

Cross Entropy (연속확률분포)

$$H(p,q) = \int_{x} p(x) \log \frac{1}{q(x)} dx$$

Cross Entropy (이산확률분포)

$$H(p,q) = \sum_{x} p(x) \log \frac{1}{q(x)}$$

$$\log_2 \frac{1}{0.25} = 2$$

$$\log_2 \frac{1}{0.125} = 3$$

$$H(p,q) = \sum_{x} p(x) \log_2 \frac{1}{q(x)}$$

 $0.5 \times 2 + 0.25 \times 2 + 0.125 \times 2 + 0.125 \times 2 = 2$

$$\log_2 \frac{1}{0.125} = 3$$

$$0.5 \times 1 + 0.25 \times 2 + 0.125 \times 3 + 0.125 \times 3 = 1.75$$

A, B 두 글자가 발생하는 경우
A 발생 확률에 따른 두 확률분포의
Cross Entropy

q(A)

	0.1	0.2	0.3	0.4	0.5	0.6	0.7	8.0	0.9
0.1	0.33	0.36	0.44	0.55	0.69	0.88	1.12	1.47	2.08
0.2	0.54	0.5	0.53	0.59	0.69	0.84	1.03	1.33	1.86
0.3	0.76	0.64	0.61	0.63	0.69	0.79	0.95	1.19	1.64
0.4	0.98	0.78	0.70	0.67	0.69	0.75	0.87	1.05	1.42
0.5	1.20	0.92	0.78	0.71	0.69	0.71	0.78	0.92	1.20
0.6	1.42	1.05	0.87	0.75	0.69	0.67	0.7	0.78	0.98
0.7	1.64	1.19	0.95	0.79	0.69	0.63	0.61	0.64	0.76
8.0	1.86	1.33	1.03	0.84	0.69	0.59	0.53	0.5	0.54
0.9	2.08	1.47	1.12	0.88	0.69	0.55	0.44	0.36	0.33

p(A)

Cross Entropy Loss

Cross Entropy loss
$$CE = \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{C} y_{ij} \log \frac{1}{\hat{y}_{ij}} = -\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{C} y_{ij} \log \hat{y}_{ij}$$

정답확률분포와 예측확률분포의 Cross Entropy의 평균

	Α	В	С	D
1	1	0	0	0
2	1	0	0	0
3	1	0	0	0
4	1	0	0	0
5	0	1	0	0
6	0	1	0	0
7	0	1	0	0
8	0	0	1	0
9	0	0	1	0
10	0	0	0	1

	Α	В	С	D
1	0.25	0.25	0.25	0.25
2	0.25	0.25	0.25	0.25
3	0.25	0.25	0.25	0.25
4	0.25	0.25	0.25	0.25
5	0.25	0.25	0.25	0.25
6	0.25	0.25	0.25	0.25
7	0.25	0.25	0.25	0.25
8	0.25	0.25	0.25	0.25
9	0.25	0.25	0.25	0.25
10	0.25	0.25	0.25	0.25

$$CE = -\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{C} y_{ij} \log \hat{y}_{ij} = 1.3862943611198906$$

	Α	В	С	D	
1	0.40	0.30	0.20	0.10	
2	0.40	0.30	0.20	0.10	
3	0.40	0.30	0.20	0.10	
4	0.40	0.30	0.20	0.10	
5	0.40	0.30	0.20	0.10	
6	0.40	0.30	0.20	0.10	
7	0.40	0.30	0.20	0.10	
8	0.40	0.30	0.20	0.10	
9	0.40	0.30	0.20	0.10	
10	0.40	0.30	0.20	0.10	

$$CE = -\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{C} y_{ij} \log \hat{y}_{ij} = 1.2798542258336674$$

Cross Entropy Loss vs Negative Log Likelihood

$$CE = -\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{C} y_{ij} \log \hat{y}_{ij}$$

$$CE = -\frac{1}{N} \sum_{i=1}^{N} \log \hat{y}_i$$

$$NLL = -\sum_{i=1}^{n} \log \hat{y}_i$$

Minimize cross entropy loss

Minimize negative log likelihood

Maximize likelihood

Cross Entropy Loss (NMIST)

$$p(y | x; \theta)$$

	y										
5	0	0	0	0	0	1	0	0	0	0	
0	1	0	0	0	0	0	0	0	0	0	
4	0	0	0	0	1	0	0	0	0	0	
1	0	1	0	0	0	0	0	0	0	0	

0.04	0.03	0.02	0.1	0.01	0.7	0.01	0.02	0.03	0.04
0.6	0.01	0.2	0.02	0.03	0.01	0.04	0.02	0.04	0.03
0.01	0.04	0.03	0.02	0.75	0.03	0.05	0.02	0.04	0.01
0.03	0.65	0.01	0.04	0.02	0.01	0.03	0.02	0.15	0.04

감사합니다.