APPENDIX A

THE CALCULATION METHOD FOR a_l

The constant a_l in function (4) is determined by the number, distribution, and types of observable cable signs on the road l. Different cable signs vary in their importance to indicate the presence of cables. As shown in Table III, cable signs are classified into three classes (class A/B/C) based on the degree of importance from highest to lowest. And a_l can be calculated based on the number of three classes of cable sign near l:

$$a_l = E_l \cdot \left(\varepsilon_1 \cdot m_l^a + \varepsilon_2 \cdot m_l^b + \varepsilon_3 \cdot m_l^c \right) \tag{A1}$$

Where m_l^a , m_l^b and m_l^c represent the quantities of class A/B/C cable sign near l, and \mathcal{E}_l , \mathcal{E}_2 and \mathcal{E}_3 denote the respective weights assigned to class A/B/C cable signs. E_l represents the overall score of experts on the reasonableness of cable laying along l. The higher the value of E_l is, the lower the difficulty of laying cables along l is.

TABLE III
CABLE OBSERVABLE MARKER CLASSIFICATION

Class of Cable Sign	Type of Visible Cable sign	Position				
A	Open Compress Cable	Along the				
A	Section	Road				
D/Cabla Dina	Markers for Maintenance,	Along the				
B(Cable Pipe	Vents, Entrances and Exits,	Road or				
Network)	Alarms/Reminders etc	Pavement				
C (Ht:lite)	Markers for Maintenance,	Along the				
C (Utility	Vents, Entrances and Exits,	Road or				
Tunnel)	Alarms/Reminders etc	Pavement				

Use the example of Fig.A1 to better understand the presence of concealed cable between i and x.

Fig. A1 Road network and cable signs between substation i and x. Assuming that \mathcal{E}_l =0.6, \mathcal{E}_2 =0.3 and \mathcal{E}_3 =0.1. As shown in Fig.A1, there are four road paths between i and x, and the numbers of m_i^a , m_i^b and m_c can be seen in Fig.A1. Suppose E_l of these four roads are 0.75, 0.65, 0.77, 0.35, respectively. Then the a_l of the four roads between i and x is calculated based on function (A1) as 0.9, 0.59, 2.1, 0.11, respectively.

APPENDIX B

DERIVATION PROCESS OF LINE LOSS

In the AC power flow model, the active power transmitted at the start and end of the transmission line can be expressed as:

$$\begin{cases} p_{ij}^{a} = U_{i}^{2} g_{ij} - U_{i} U_{j} \left[g_{ij} \cdot \cos \Delta \theta_{ij} + b_{ij} \cdot \sin \Delta \theta_{ij} \right] \\ p_{ij}^{a} = U_{j}^{2} g_{ij} - U_{j} U_{i} \left[g_{ij} \cdot \cos \Delta \theta_{ij} + b_{ij} \cdot \sin \Delta \theta_{ij} \right] \end{cases}$$
(B1)

where p_{ij}^a and p_{ji}^a are the active power at the beginning node i and the end node j of line l_{ij} respectively; U_i and U_j are the voltage amplitudes of node i and node j respectively; $\Delta\theta_{ij}$ represents the voltage phase angle difference between the two ends of l_{ij} ; g_{ij} represents the electrical conductance. The model variables in the equation are all expressed in per unit values.

The expression for g_{ij} is as follows:

$$g_{ij} = \frac{r_{ij}}{r_{ij} + x_{ij}^2}$$
 (B2)

where r_{ij} and x_{ij} respectively represent the resistance and reactance of line l_{ij} .

The active power loss L_{ij} on line l_{ij} is calculated as:

$$L_{ii} = p_{ii}^{a} + p_{ii}^{a} = (U_{i}^{2} + U_{i}^{2})g_{ii} - 2U_{i}U_{i} \cdot g_{ii} \cos \Delta\theta_{ii}$$
 (B3)

Under the normal operation of the UPN, the node voltage amplitude is close to 1, the voltage phase angle difference between the two ends of the line is very small, and the active power loss L_{ij} of line l_{ij} can be approximated according to the Taylor expansion formula as follows:

$$L_{ij} \approx g_{ij} \cdot \left(\Delta \theta_{ij}\right)^2 \tag{B4}$$

In the DC power flow model, the DC power flow on line l_{ij} is given by:

$$p_{ij} = \frac{\theta_i - \theta_j}{x_{ij}} \tag{B5}$$

Therefore, combine B4 and B5, in the DC power flow, the active power loss L_{ij} can be expressed as:

$$L_{ij} = g_{ij} \left(\theta_i - \theta_j \right)^2 = g_{ij} \cdot p_{ij}^2 \cdot x_{ij}^2 = \frac{r_{ij} \cdot x_{ij}^2}{r_{ij} + x_{ij}^2} \cdot p_{ij}^2$$
 (B6)

Multiplying L_{ij} by the line capacity base value H_B gives the final line loss:

$$L_{ij} = \frac{r_{ij} \cdot x_{ij}^2}{r_{ij} + x_{ij}^2} \cdot p_{ij}^2 \cdot H_B$$
 (B6)

APPENDIX C

THE KKT TRANSFORMATION WITH LINEARIZATION PROCESS

The lagrangian function for the original lower-level problem (25)-(30) is:

$$\begin{split} L &= \sum_{n \in V_{T}} \Delta P d_{n} - \sum_{l \in L} \mu_{l} \left(p_{l} - v_{l} \cdot \frac{1}{x_{l}} \cdot \sum_{n \in V_{T}} A_{nl} \cdot \delta_{n} \right) \\ &- \sum_{n \in V_{T}} \lambda_{n} \left(\sum_{g \in G_{n}} p_{g} - \sum_{l \in L} A_{nl} \cdot p_{l} + \Delta P d_{n} - P d_{n} \right) \\ &- \sum_{l \in L} \underline{\omega}_{l} \left(p_{l} + \overline{p}_{l} \right) - \sum_{l \in L} \overline{\omega}_{l} \left(\overline{p}_{l} - p_{l} \right) \\ &- \sum_{j \in G} \underline{\theta}_{j} \left(g_{j} - \underline{g}_{j} \right) - \sum_{j \in G} \overline{\theta}_{j} \left(\overline{g}_{j} - g_{j} \right) \\ &- \sum_{n \in V_{T}} \underline{\alpha}_{n} \left(\Delta p d_{n} \right) - \sum_{n \in V_{T}} \overline{\alpha}_{n} \left(P d_{n} - \Delta P d_{n} \right) \end{split}$$
 (C1)

Where μ_l , λ_n , $\underline{\omega}_l$, $\overline{\omega}_l$, $\underline{\theta}_j$, θ_j , $\underline{\alpha}_n$, $\overline{\alpha}_n$ are the Lagrangian multipliers associated with the DC power flow constraints (26) - (30), respectively. The optimality conditions for the original problem KKT of these constraints are:

$$\frac{\partial L}{\partial \delta_n} = \sum_{l \in L} \frac{1}{x_l} A_{nl} \mu_l v_l = 0, \qquad n \in V_T$$
 (C2)

$$\frac{\partial L}{\partial g_j} = -\lambda_n - \underline{\theta}_j + \overline{\theta}_j = 0, \qquad j \in G$$
 (C3)

$$\frac{\partial L}{\partial p_l} = \sum_{n \in V_T} A_{nl} \lambda_n - \mu_l - \underline{\omega}_l + \overline{\omega}_l = 0, \quad l \in L$$
 (C4)

$$\frac{\partial L}{\partial \Delta P d_n} = 1 - \lambda_n - \underline{\alpha}_n + \overline{\alpha}_n = 0, \quad n \in V_T$$
 (C5)

$$\underline{\underline{\omega}}_{l} \geq 0, \qquad \qquad l \in L \qquad (C6)$$

$$\underline{\omega}_{l} \geq 0, \qquad \qquad l \in L \qquad (C7)$$

$$\omega_l \ge 0, \qquad l \in L$$
 (C7)

$$\underline{\theta}_{i} \ge 0, \qquad j \in \mathbf{G}$$
 (C8)

$$\overline{\theta}_i \ge 0, \qquad i \in G$$
 (C9)

$$\underline{\alpha}_n \ge 0, \qquad n \in V_T \quad (C10)$$

$$-\frac{1}{\alpha_n} \ge 0, \qquad n \in V_T \quad (C11)$$

$$\underline{\omega}_l\left(p_l + \overline{p_l}\right) = 0, \qquad l \in \mathbf{L}$$
 (C12)

$$\overline{\omega}_l\left(\overline{p_l}-p_l\right)=0, \qquad l \in \mathbf{L}$$
 (C13)

$$\underline{\theta}_{i}\left(g_{i}-g_{i}\right)=0, \qquad j \in \mathbf{G} \qquad (C14)$$

$$\overline{\theta}_j \left(\overline{g}_j - g_j \right) = 0, \qquad j \in G$$
 (C15)

$$\underline{\alpha}_{n}(\Delta Pd_{n}) = 0, \qquad n \in V_{T} \quad (C16)$$

$$-\frac{1}{\alpha_n} \left(P d_n - \Delta P d_n \right) = 0, \qquad n \in V_T \qquad (C17)$$

where (C2) - (C11) denotes the original lower-level problem dual constraints and (C12) - (C17) denotes the complementary slackness constraints.

It can be seen that the original lower-level problem line flow formulation (26), dual constraints (C2) and complementary slackness constraints (C12) - (C17) are all non-linear terms. The above constraints are linearized by the following method:

(1) For the linearization of formulation ((33)

In function (26), there are two non-linear terms-- v_l multiplied by the phase angle δ_l at the beginning of the line and v_l multiplied by the phase angle δ_l at the end of the line, so continuous variables s_i^t and s_i^t are introduced to represent $v_i \delta_i^t$ and $v_l \delta_l^t$ respectively. Further intermediate variables z_l^t and z_l^t are introduced to equate the non-linear term (26) with the following linear terms:

$$p_l = \frac{1}{x_l} \cdot \left(z_l^f - z_l^t \right), \qquad l \in L \qquad (C18)$$

$$z_l^f = \delta_l^f - s_l^f, \qquad l \in \mathbf{L} \qquad (C19)$$

$$z_l^t = \delta_l^t - s_l^t, \qquad l \in \mathbf{L} \qquad (C20)$$

$$\underline{\delta} \cdot v_l \le z_l^f \le \overline{\delta} \cdot v_l, \qquad l \in \mathbf{L} \qquad (C21)$$

$$\underline{\delta} \cdot v_l \le z_l^t \le \overline{\delta} \cdot v_l, \qquad l \in \mathbf{L}$$
 (C22)

$$\delta \cdot (1 - v_l) \le s_l^f \le \overline{\delta} \cdot (1 - v_l), \quad l \in \mathbf{L}$$
 (C23)

$$\underline{\delta} \cdot (1 - v_l) \le s_l^t \le \overline{\delta} \cdot (1 - v_l), \quad l \in L \quad (C24)$$

The formulations (C18)-(C24) represents the linearized expression for the calculation of the line DC power flow, if line l is destroyed ($v_l = 0$), then according to the formulations (C21), (C22) can be obtained: $z_i^f = 0$, $z_i^t = 0$, so the line power flow $p_l=0$, $s_l^t=\delta_l^t$, $s_l^t=\delta_l^t$; if l is not destroyed $(v_l=1)$, then according to the formulations (C23), (C24) can be obtained: $s_i^t = 0$, $s_i^t = 0$, so $z_i^t = \delta_i^t$, $z_i^t = \delta_i^t$, and the line plow flow p_l is determined by the phase angle difference between the two ends of the line.

(2) Linearization for the dual constraint (C2)

Similarly, by introducing the continuous variables t_l and h_l , the nonlinear dual constraint (C2) is equivalently represented by the following set of linearization constraints:

$$\sum_{l \in I} \frac{1}{x_l} \cdot A_{nl} \cdot t_l = 0, \qquad n \in V_T \quad (A25)$$

$$t_{l} = u_{l} - h_{l}, \qquad l \in \mathbf{L} \qquad (A26)$$

$$\underline{u}_l \cdot v_l \le t_l \le v_l \cdot u_l, \qquad l \in L$$
 (A27)

$$\underline{u}_l \cdot (1 - v_l) \le h_l \le \overline{u}_l \cdot (1 - v_l), \ l \in \mathbf{L}$$
 (A28)

(3) Linearization for the complementary slackness constraints (C12) - (C17)

The nonlinear complementary slackness constraints (C12) - (C17) are equivalently represented by the following set of

linearization constraints by introducing the 0-1 variables $\omega_l^{\underline{\omega}}$,

$$\omega_l^{\bar{\omega}}$$
, $\omega_g^{\underline{\theta}}$, $\omega_g^{\bar{\theta}}$, $\omega_n^{\bar{\alpha}}$, $\omega_n^{\bar{\alpha}}$:

$$\omega_l \le M \cdot \omega_l^{\underline{\omega}}, \qquad l \in L$$
 (C29)

$$p_l + p_l \le M \cdot (1 - \omega_l^{\omega}), \qquad l \in L$$
 (C30)

$$\overline{\omega_l} \le M \cdot \omega_l^{\overline{\omega}}, \qquad l \in L$$
 (C31)

$$\overline{p}_l - p_l \le M \cdot \left(1 - \omega_l^{\bar{\omega}}\right), \qquad l \in L \qquad (C32)$$

$$\underline{\theta}_{i} \leq M \cdot \omega_{i}^{\underline{\theta}}, \qquad j \in G \quad (C33)$$

$g_{j} - \underline{g}_{j} \leq M \cdot (1 - \omega_{j}^{\theta}),$	$j \in G$	(C34)	7-11
•			8-10
$\overline{\theta}_j \leq M \cdot \omega_j^{\overline{\theta}},$	$j \in G$	(C35)	8-30
$\overline{g}_j - g_j \le M \cdot \left(1 - \omega_j^{\overline{\theta}}\right),$	$j \in G$	(C36)	9-13
$8j$ $8j = m$ $(1 \omega_j)$,	jeo	(030)	9-16
$\underline{\alpha}_n \leq M \cdot \omega_n^{\underline{\alpha}},$	$n \in V_T$	(C37)	9-49
$\Delta p_n^d \le M \cdot \left(1 - \omega_n^{\underline{\alpha}}\right),$	n c V	(C20)	10-16
$\Delta p_n \leq M \cdot (1-\omega_n^-),$	$n \in V_T$	(C38)	11-17
$\overline{\alpha}_n \leq M \cdot \omega_n^{\overline{\alpha}},$	$n \in V_T$	(C39)	11-30
$d \rightarrow d \left(1 - \overline{\alpha}\right)$	T 7	(=10)	12-13
$p_n^d - \Delta p_n^d \leq M \cdot \left(1 - \omega_n^{\overline{\alpha}}\right),$	$n \in V_T$	(C40)	12-52
$\omega_l^{\underline{\omega}} + \omega_l^{\overline{\omega}} \le 1,$	$l \in L$	(C41)	13-15
<u>_</u>			14-32
$\omega_{\overline{j}}^{\underline{\theta}} + \omega_{j}^{\theta} \leq 1,$	$j \in G$	(C42)	14-50
$\omega_n^{\underline{\alpha}} + \omega_n^{\overline{\alpha}} \leq 1,$	$n \in V_T$	(C43)	15-49
- (C30), (C31) - (C32), (C3	_		15-54
(C38) and (C39) - (C4			16-31

1.3

1.32

1.2

1.5

1.5

1.6

1.6

1.3

1.1

1.3

1.8 1.5

1

1

1.3

1.27

1.2

1.12

0.9

1

1.28

1.22

1.12

1.15

1.3

1.35

1.4

1.39

1.29

1.23

2.1

1.4

1.6

1.5

16-50

17-18

18-19

18-21

18-30

19-20

19-22

20-23

20-24

21-22

21-31

21-33

22-29

23-25

24-25

24-26

25-27

4

3

3

3

2

3

0

3

0

0

2

0

0

3

3

2

1

0

3

2

3

1

4

3

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

2

0

0

0

0

0

0

0

0

2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

2

0

0

0.95

0.97

0.92

0.83

0.84

0.86

0.97

0

0.96

0.6

0

0.75

0

0

0.97

0.98

0.9

0.97

0.36

0

0.55

0

0

0.57

0

0

0.63

0.92

0.92

0

0

0

0

0

0.76 0.75 0 0 0 0.93 0.95 0.93 0.89 0.89 0.89

where (C29) - (C30), (C31) - (C32), (C33) - (C34), (C35) - (C36), (C37) - (C38) and (C39) - (C40) are linearised equivalent representations of the constraints (C12), (C13), (C14), (C15), (C16) and (C17) respectively. The intermediate variables introduced satisfies formulations (C41) - (C43).

In summary, the original lower-level problem after transformation by KKT is expressed as formulations (C18)-(C24), formulations (33)- (37), (C25) - (C28), (C3) - (C11) and (C29) - (C43). Therefore, the transformed vulnerability identification problem is as follows:

$$\max_{a} \sum_{T \in \Omega_{T}} \pi_{T} \left(\sum_{i \in V} \Delta P d_{i*}^{T} \right)$$
 (C44)

s.t. (26) - (29), (33) - (37), (C18) - (C43).

APPENDIX D

PARAMETERS OF UTN AND ROAD NETWORK

Table IV contains information such as the road lengths, Table V contains the node parameters of the case study, the number of cables on the roads, and E_{ij} for each road in the case study are shown in Figure D1.

TABLE IV
ROAD NETWORK CONNECTION RELATION AND PARAMETER

ROAD N	ETWORK CO	NNECTION	RELATIO	N AND PA	RAMETER	26-27	1.57	0	0	2
l_{ij}	$d_{ij}(\mathrm{km})$	mra_{ij}	mrb_{ij}	mrc_{ij}	E_{ij}	26-29	1.05	4	0	0
1-2	1.8	0	0	0	0	26-37	4	3	0	0
1-3	1.6	0	0	0	0	27-28	1.9	0	0	0
2-51	1.7	0	0	0	0	28-37	3	0	0	0
2-52	1.7	0	0	0	0	28-38	3.5	0	0	0
3-4	1.3	0	0	0	0	29-35	2	0	0	0
3-12	1.9	0	0	0	0	30-31	2.3	3	0	0
4-5	1.7	0	0	0	0	31-32	1.8	3	0	0
4-12	1.7	0	0	1	0.43	32-33	2	5	0	0
5-6	1.8	0	0	0	0	32-45	2.2	0	0	0
6-9	1.5	3	0	0	0.93	33-34	1.7	3	0	0
6-10	1.5	2	0	0	0.95	34-35	1.82	4	0	0
6-13	1.5	2	0	0	0.78	34-44	2	2	0	0
7-8	1.3	2	0	0	0.87	35-36	1.5	2	0	0

36-37	1.4	3	0	0	0.9	66-67	1.02	0	0	0	0
36-41	2.7	0	0	0	0	66-69	1.02	0	1	0	0.7
36-44	1.7	2	0	0	0.87	67-68	1.9	0	0	0	0
37-40	3.7	0	0	0	0	68-76	1.79	0	0	0	0
38-39	1.9	0	0	0	0	69-70	1.76	0	0	2	0.67
39-40	1.7	1	0	0	0.56	69-71	1.69	0	0	0	0
39-85	2.1	0	0	0	0	69-75	1.95	4	0	0	0.89
40-41	1.82	1	0	0	0.6	70-72	1.05	0	1	0	0.78
40-65	1.95	0	0	0	0	71-73	2.3	0	0	0	0
41-42	1.67	3	0	0	0.96	72-73	1.21	0	2	0	0.74
41-43	1.32	2	0	0	0.87	73-74	1.25	0	0	1	0.32
42-61	1.65	4	0	0	0.95	74-75	2.52	0	0	0	0
42-65	0.89	0	0	0	0	74-77	2.1	0	0	2	0.56
43-44	1.32	3	0	0	0.93	74-80	2.9	0	0	3	0.67
44-46		2	0	0	0.89	75-77	1.92	4	0	0	0.97
45-46	1.4	0	0	0	0	76-77	1.68	0	0	0	0
45-47	1.6	3	0	0	0.79	77-78	2.6	4	0	0	0.96
46-61	1.62	4	0	0	0.95	78-81	2	2	0	0	0.92
47-48	1.45	3	0	0	0.9	79-80	1.97	0	2	0	0.59
47-50	1.7	0	0	0	0	80-81	2.01	4	0	0	0.95
47-60	1.89	0	0	0	0	81-82	2	4	0	0	0.94
48-49	1.43	4	0	0	0.97	81-83	2.32	4	0	0	0.96
48-58	1.05	3	0	0	0.89	82-83	1.87	3	0	0	0.89
49-50	0.89	2	0	0	0.88	83-87	1.62	0	0	0	0
51-55	1.97	0	0	0	0	84-85	1.82	0	0	0	0
52-53	1.9	2	0	0	0.89	84-86	1.3	0	0	0	0
52-54	1.9	2	0	0	0.93	86-87	2.05	0	0	0	0
53-55	1.82	0	0	0	0			TA	BLE V		
53-56	1.89	4	0	0	0.94		N	lode PAI	RAMETERS		
54-56	2.2	2	0	0	0.9	Node Number	Node	Types	Load/MW	Activ	e Output/MW
54-57	0.93	4	0	0	0.92	1	n	a	0		0
55-66	1.1	0	0	1	0.5	2	p		0		0
56-66	1.25	0	0	0	0		p				0
56-70	1.19	0	0	0	0	3 4	p		342 385		0
57-58	0.65	2	0	0	0.78	5	p		0		0
57-70	1.8	0	0	0	0		p		0		
58-59	1.1	0	1	0	0.78	6	p			0	
58-72	1.4	0	2	0	0.57	7	p		233.8	0	
59-60	1.4	0	0	0	0	8	p		268.5		0
59-79	1.62	0	0	3	0.78	9	p		0	0	
60-61	1.63	0	0	0	0	10	p		0	0	
60-62	1.4	0	0	0	0	11	p		0		0
62-63	1.3	0	0	0	0	12	p		287.5		0
62-80	1.6	0	2	0	0.76	13	p		0		0
63-64	1.6					14	p	q	0		0
		0	0	0	0	15		q	220		0
64-65	0.9	0	0	0	0	16	p	q	329		0
64-82	1.2	2	0	0	0.9	17	p	q	0		0
64-87	1.3	0	0	0	0	18	p	a	258		0
65-84	1.7	0	0	0	0	19	Г	7			

20	pq	228	0				
21	pq	274	0				
22	pq	385	0				
23	pq	247.5	0				
24	pq	368.6	0				
25	pq	324	0				
26	pq	339	0				
27	pq	261.5	0				
28	pq	306	0				
29	pq	583.5	0				
30	pq	0	600				
31	$v\theta$	0	0				
32	pv	9.5	750				
33	pv	0	850				
34	pv	0	508				
35	pv	0	650				
36	pv	0	250				
37	pv	0	540				
38	pv	0	830				
39	pv	0	868				
G37	R2 R51 B25	R55 R66	R68 G30				
R3 R1	R5	B2 B2	R75				
	B26 B54		R71 R77				
R4 R13	RISA	R70	R74				
R5 B2	B27	R57 B3	B4				
R6	R9	B14 B15	R73 R78				
B28 R10	R16 R50	R471 R59	R79 / G39				
R11 R30	B16 R14 R	G33 R60	R80				
B21	R32 B1	R46	B12 B11 B12				
R17	R21	R44 R61	R63 R82				
R19	B24 R33	R36 R43 B10	B6 R64 B5 R83				
G35 B23	R29 B20	R37 R41	R42				
R20 R24	R26	R40	R84 B8				
R23 G36 R25	G34	G_{32}	G21 P7				
R28 R38 R39 R85							
Power Station Substation Main road node — — — Cable							
Overhead line Road Class A cable sign Class B/C cable sign							

Fig. D1 The coupling network between UPN and the road network of the case $\,$