The University of Melbourne

COMP20007: Design of Algorithms

Semester 1 Sample Assessment 2019

Reading Time 15 minutes. Writing Time Three hours.

This paper has 35 pages including this cover page.

Authorised Materials: None.

Instructions to Invigilators:

Students will write all of their answers on this examination paper. Students may not remove any part of the examination paper from the examination room.

Instructions to Students:

This paper counts for 60% of your final grade. All questions must be answered in the indicated answer boxes provided on the examination paper. Answer each of the following questions by writing a brief response or explanation (no essays please!). Only material written inside the boxes will be marked. If you need to make rough notes, or prepare draft answers, you may do so on the reverse of any page. If you need additional space for your answers, you may use the overflow section on the last page.

Paper to be held by Baillieu Library: No.

Examiner use only:

Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8

Question 1 (8 marks).

]
]
	<u>'</u>				1
					J
]
					1
					1
					J
			1	T	1

a. Perform mergesort on the array $\begin{bmatrix} 25,23,17,29,7,16,33,21 \end{bmatrix}$, showing the result after each re-

[1
L, E, X, I, T, Y into an initially empty 2-3 tree.
, L, X and Y. Fill the boxes from left to right first.
[2 n
After inserting L:
After inserting Y:

e.	. Which two rotations must be done to balance the following tree? Give the node and the	e direc	ction
	of the rotation (left or right).		

[1 mark]

f. Give the in-order traversal of this tree after these two rotations.

[1 mark]

Question 2 (9 marks).

a.	How many comparisons does Horspool's algorithm perform to search for the pattern EAR in the text STRINGSEARCH?				
	[1 mark				
b.	A pair of strings are <i>anagrams</i> of each other if they contain the exact same letters, for example "DESSERTS" and "STRESSED" are anagrams.				
	Write an algorithm which takes as input two strings, S and T , and determines whether or no they are an agrams. Your algorithm should run in $O(n)$ time where $n := \max\{ S , T \}$. You may assume that all characters in S and T are uppercase alphabetic characters.				
	[4 marks]				

c.	Write an algorithm which takes as input an array of n strings, of length no longer than m characters long, and outputs the largest set of strings which are all anagrams of each other.
	For example, given the array ["ABC", "ABBA", "CAB", "BABA", "CBA", "BAC", "BAD" your algorithm would output "ABC", "CAB", "CBA", "BAC" (not necessarily in that order).
	Your algorithm must run in $O(mn \log n)$ time. You may again assume that all characters are uppercase alphabetic characters.
	[4 marks]

Question 3 (6 marks).

a. Which of the following statements are true?

	(i) $\log(n) \in \Omega(\log(\log(n)))$	
	(ii) $\log_3(n) \in \Theta(\log_2(n^2))$	
	(iii) $100\sqrt{n} + 0.01n^2 + 0.001n^3 \in O(n)$ (iv) $\log n + n^2 \in \Omega(n)$	
	(1) 1080 10 0 ==(1)	[2 marks
		[2 marks
b.	Solve, using the method of repeated substitutions, the following recurrence relation:	
	T(n) = 2T(n-1) + 7, T(2) = 0	
		[2 marks

fu	enction CHUNKSORT($A[0n-1]$)	
	if $n == 2$ and $A[0] > A[1]$ then swap $A[0]$ and $A[1]$	
	else	
	CHUNKSORT $(A[0\frac{n}{2}-1])$ CHUNKSORT $(A[\frac{n}{2}n-1])$ CHUNKSORT $(A[\frac{n}{4}\frac{3n}{4}-1])$ CHUNKSORT $(A[0\frac{n}{2}-1])$ CHUNKSORT $(A[\frac{n}{2}n-1])$ CHUNKSORT $(A[\frac{n}{4}\frac{3n}{4}-1])$	
	te the recurrence relation (including the base case	se) for the number of comparisons of CHUNK
Sor	T.	
		[1 mark]
	all, the master theorem states that if T is a real $T(n) = C(n)$ and $T(n) = C(n)$	·
Use	the master theorem to find the time complexity	y of ChunkSort.
		[1 mark]

c. Consider the following sorting algorithm:

Question 4 (4 marks).

a.	Consider the decision problems PROBLEMA and PROBLEMB. PROBLEMA is known to be NP-Complete.
	Your friend has found a polynomial time reduction from PROBLEMB to PROBLEMA. Another friend of yours has found an algorithm to solve any instance of PROBLEMB in polynomial time.
	Have your friends proved that P=NP? Explain your answer.
	[2 marks]
h.	Consider the following algorithm, which computes the value of the <i>n</i> th triangle number.
٠.	function TriangleNumber (n)
	result $\leftarrow 0$
	for i in $1 \dots n$ do
	$result \leftarrow result + i$
	return result
	Is TRIANGLENUMBER a polynomial time algorithm in terms of the size of its inputs? Explain your answer.
	[2 marks]

Question 5 (10 marks).

								[2	2 marks]
	0	1	2	3	4	5	6	7	
	• •	arisons are	-	-	-	You can	assume tha	at we can	check if
a siot i	, empty w		ing uniy ex	9111p u 115011				I	[1 mark]
c. How n	any comp	arisons are	required	to lookup	the key 1:	5? You ca	n assume t	that we ca	an check
	-	without ma	_	_	-				
								l	[1 mark]
hash ta	ble uses o	hash table pen addres $k \mod 3 +$	sing and						
	1 1 /1	(-) mount com	toin the	1 term?					
Explai	1 why $h_2(R)$	() illust con	itaiii tiie -	ri temi:					1 mark]

e. Show the state of the hash tab	e after using this do	ouble hashing scheme	(i.e., the scheme de-
scribed in part d.) to insert 9, 1	', 4 and 11.		

[1 mark]

0	1	2	3	4	5	6	7

f.	Use Huffman's algorithm	to construct a huffman tree	for the string	"free-coffee"
----	-------------------------	-----------------------------	----------------	---------------

[2 marks]

g. What is the encoded version of this string, using your Huffman tree? Let each left child be 0 and each right child be 1.

[1 mark]

h. Use the following Huffman tree (again, using 0 for left and 1 for right) to decode 0111001000.

[1 mark]

Question 6 (10 marks).

a.	A string of parentheses (i.e., "(" and ")") is $valid$ if no pair of parentheses is "closed" before it is "opened", $e.g.$, "(())()" is valid while "())(" is not.
	The 5 valid strings of 6 parentheses are:
	"()()()", "(())()", "()(())", "(()())" and "((()))".
	Give 3 (three) examples of valid strings of parentheses containing 8 (eight) parentheses.
	[1 mark]
b.	Write a recursive formula and base case(s) for the subproblem N_i , where N_i is defined as the number of different valid strings containing exactly i parentheses.
	[4 marks]

		[3 mark
hat is the space complexity of you	ur algorithm? Give your answer in Big-C	Oh notation.
1 1 3 3		[1 ma
		[1 mu
		_
hat is the time complexity of you	r algorithm? Give your answer in Big-Ol	n notation.
mae is the time complemely of yo	r argoriumir. Grie your answer in Big or	[1 mai
		[1 IIIai

c. Using the recursive formula you derived in part b. write pseudocode for an algorithm which

a. Show how we interpret the array [null, 8, 4, 3, 5, 2, 13, 6, 4] as a tree with the indexing scheme used for heaps. Note that some of the nodes will not be used.

[1 mark]

b. Run the bottom-up construct heap algorithm to convert this array into a *max-heap*. Show all steps. Fill the trees from left to right first.

[2 marks]

Part b. continued.

c. Show the state of the heap after one REMOVEMAX operation.

[1 mark]

d. Give the weights matrix for the following graph.

[1 mark]

	[3

f.	What is the time complexity of Floyd's algorithm (assume the graph has <i>n</i> vertices).					
	[1 mark]					
i	Using DIJKSTRA (G, u, v) as a helper function which returns the cost of the shortest path between u and v in a graph G , write an algorithm in pseudocode for computing the <i>all pairs shortest paths</i> u and u in a graph u with non-negative edge weights. The graph u has u vertices and u edges and is sparse, u , u					
•	Your algorithm must have a time complexity better (i.e., smaller) than Floyd's algorithm.					
	[3 marks]					
1.	What is the time complexity of your algorithm?					
	[1 mark					

Overflow Answers

The boxes here are for emergency use only. If you do need to use extra space for any answers, indicate CLEARLY in your previous answer that you have continued onto this page. Without such an indication, it is possible that this part of your answer will be overlooked.