Teoría de Lenguajes

Clase Teórica 2 Autómatas Finitos

Primer cuartimestre 2016

Material compilado por Julio Jacobo a lo largo de distintas ediciones de la materia Teoría de Lenguajes en el Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, revisado recientemente por Verónica Becher.

Bibliografía: Capítulo 2, *Introduction to Automata Theory, Languages and Computation*, J. Hopcroft, R. Motwani, J. Ullman, Second Edition, Addison Wesley, 2001.

Es una 5-upla $\langle Q, \Sigma, \delta, q_0, F \rangle$ donde

 $lackbox{ }Q$ es un conjunto finito de estados

- Q es un conjunto finito de estados
- $ightharpoonup \Sigma$ es un conjunto finito de símbolos que constituye el alfabeto de entrada

- Q es un conjunto finito de estados
- $ightharpoonup \Sigma$ es un conjunto finito de símbolos que constituye el alfabeto de entrada
- $\delta: Q \times \Sigma \to Q$ es la función de transición

- ▶ Q es un conjunto finito de estados
- $ightharpoonup \Sigma$ es un conjunto finito de símbolos que constituye el alfabeto de entrada
- $\delta: Q \times \Sigma \to Q$ es la función de transición
- $q_0 \in Q$ es el estado inicial

- ▶ Q es un conjunto finito de estados
- $ightharpoonup \Sigma$ es un conjunto finito de símbolos que constituye el alfabeto de entrada
- $\delta: Q \times \Sigma \to Q$ es la función de transición
- $ightharpoonup q_0 \in Q$ es el estado inicial
- ▶ $F \subseteq Q$ es el conjunto de estados finales

$$\blacktriangleright \ \widehat{\delta}\left(q,\lambda\right) = q$$

- $\blacktriangleright \ \widehat{\delta} (q, \lambda) = q$
- $\blacktriangleright \ \widehat{\delta}\left(q,xa\right)=\delta\left(\widehat{\delta}\left(q,x\right),a\right)\text{, con }x\in\Sigma^{*}\text{ y }a\in\Sigma.$

- $\triangleright \widehat{\delta}(q,\lambda) = q$
- $\blacktriangleright \ \widehat{\delta}\left(q,xa\right)=\delta\left(\widehat{\delta}\left(q,x\right),a\right)\text{, con }x\in\Sigma^{*}\text{ y }a\in\Sigma.$

Notar que
$$\widehat{\delta}\left(q,a\right)=\delta\left(\widehat{\delta}\left(q,\lambda\right),a\right)=\delta\left(q,a\right).$$

Definición (Función de transición generalizada $\widehat{\delta}$)

- $\blacktriangleright \ \widehat{\delta} (q, \lambda) = q$
- $\blacktriangleright \ \widehat{\delta}\left(q,xa\right)=\delta\left(\widehat{\delta}\left(q,x\right),a\right)\text{, con }x\in\Sigma^{*}\text{ y }a\in\Sigma.$

Notar que $\widehat{\delta}\left(q,a\right)=\delta\left(\widehat{\delta}\left(q,\lambda\right),a\right)=\delta\left(q,a\right)$. Por esto puede utilizarse el símbolo δ para ambos tipos de transición.

Definición (Cadena aceptada por un AFD)

Una cadena x es aceptada por un AFD $M=\langle Q,\Sigma,\delta,q_0,F\rangle$ si y solo si $\widehat{\delta}\left(q_0,x\right)\in F.$

Definición (Cadena aceptada por un AFD)

Una cadena x es aceptada por un AFD $M=\langle Q,\Sigma,\delta,q_0,F\rangle$ si y solo si $\widehat{\delta}\left(q_0,x\right)\in F.$

Definición (Lenguaje aceptado por un AFD)

Dado un AFD $M = \langle Q, \Sigma, \delta, q_0, F \rangle$, el lenguaje aceptado por M, $\mathcal{L}(M)$, es el conjunto de cadenas aceptadas por M y se define como

$$\mathcal{L}\left(M\right) = \left\{x \in \Sigma^* : \widehat{\delta}\left(q_0, x\right) \in F\right\}.$$

Es una 5-upla $\langle Q, \Sigma, \delta, q_0, F \rangle$ donde Q, Σ, q_0 y F tienen el mismo significado que para el AFD, pero $\delta: Q \times \Sigma \to \mathcal{P}(Q)$.

Es una 5-upla $\langle Q, \Sigma, \delta, q_0, F \rangle$ donde Q, Σ, q_0 y F tienen el mismo significado que para el AFD, pero $\delta: Q \times \Sigma \to \mathcal{P}(Q)$.

La función de transición puede extenderse para que acepte como segundo argumento cadenas de Σ , o sea $\widehat{\delta}:Q\times\Sigma^*\to\mathcal{P}\left(Q\right)$, definiéndola de la siguiente manera:

Es una 5-upla $\langle Q, \Sigma, \delta, q_0, F \rangle$ donde Q, Σ, q_0 y F tienen el mismo significado que para el AFD, pero $\delta: Q \times \Sigma \to \mathcal{P}(Q)$.

La función de transición puede extenderse para que acepte como segundo argumento cadenas de Σ , o sea $\widehat{\delta}:Q\times\Sigma^*\to\mathcal{P}\left(Q\right)$, definiéndola de la siguiente manera:

- $\widehat{\delta}\left(q,\lambda\right) = \{q\}$
- $\widehat{\delta}\left(q,xa\right) = \left\{p \in Q : \exists r \in \widehat{\delta}\left(q,x\right) \ \ \text{tal que } p \in \delta\left(r,a\right)\right\}, \\ \operatorname{con} x \in \Sigma^* \ \ \text{y} \ a \in \Sigma.$

$$\widehat{\delta}\left(q,\lambda a\right)=\left\{ p\in Q:\exists r\in\widehat{\delta}\left(q,\lambda\right)\text{ tal que }p\in\delta\left(r,a\right)\right\}$$

$$\begin{split} \widehat{\delta}\left(q,\lambda a\right) &= \left\{p \in Q: \exists r \in \widehat{\delta}\left(q,\lambda\right) \text{ tal que } p \in \delta\left(r,a\right)\right\} \\ &= \left\{p \in Q: \exists r \in \left\{q\right\} \text{ tal que } p \in \delta\left(r,a\right)\right\} \end{split}$$

$$\begin{split} \widehat{\delta}\left(q,\lambda a\right) &= \left\{p \in Q: \exists r \in \widehat{\delta}\left(q,\lambda\right) \text{ tal que } p \in \delta\left(r,a\right)\right\} \\ &= \left\{p \in Q: \exists r \in \left\{q\right\} \text{ tal que } p \in \delta\left(r,a\right)\right\} \\ &= \left\{p \in Q: p \in \delta\left(q,a\right)\right\} \\ &= \delta\left(q,a\right). \end{split}$$

$$\begin{split} \widehat{\delta}\left(q,\lambda a\right) &= \left\{p \in Q: \exists r \in \widehat{\delta}\left(q,\lambda\right) \text{ tal que } p \in \delta\left(r,a\right)\right\} \\ &= \left\{p \in Q: \exists r \in \left\{q\right\} \text{ tal que } p \in \delta\left(r,a\right)\right\} \\ &= \left\{p \in Q: p \in \delta\left(q,a\right)\right\} \\ &= \delta\left(q,a\right). \end{split}$$

Por esto puede utilizarse el símbolo δ para ambos tipos de transición.

Definición (Cadena aceptada por un AFND)

Una cadena x es aceptada por un AFND $M=\langle Q,\Sigma,\delta,q_0,F\rangle$ si y solo si $\widehat{\delta}\left(q_0,x\right)\cap F\neq \phi.$

Definición (Cadena aceptada por un AFND)

Una cadena x es aceptada por un AFND $M=\langle Q,\Sigma,\delta,q_0,F\rangle$ si y solo si $\widehat{\delta}\left(q_0,x\right)\cap F\neq \phi.$

Definición (Lenguaje aceptado por un AFND)

Dado un AFND $M=\langle Q,\Sigma,\delta,q_0,F\rangle$, el lenguaje aceptado por M, $\mathcal{L}\left(M\right)$, es el conjunto de cadenas aceptadas por M y se define como

$$\mathcal{L}\left(M\right) = \left\{x \in \Sigma^* : \widehat{\delta}\left(q_0, x\right) \cap F \neq \phi\right\}.$$

Definición

Función de transición $\delta: \mathcal{P}(Q) \times \Sigma^* \to \mathcal{P}(Q)$ dada por

$$\delta(P, x) = \bigcup_{q \in P} \delta(q, x).$$

Definición

Función de transición $\delta: \mathcal{P}(Q) \times \Sigma^* \to \mathcal{P}(Q)$ dada por

$$\delta(P, x) = \bigcup_{q \in P} \delta(q, x).$$

Es trivial ver que, para todo AFD existe un AFND equivalente.

Definición

Función de transición $\delta: \mathcal{P}(Q) \times \Sigma^* \to \mathcal{P}(Q)$ dada por

$$\delta(P, x) = \bigcup_{q \in P} \delta(q, x).$$

Es trivial ver que, para todo AFD existe un AFND equivalente. Lo que no es tan obvio es que lo inverso también es cierto:

Definición

Función de transición $\delta: \mathcal{P}\left(Q\right) \times \Sigma^* \to \mathcal{P}\left(Q\right)$ dada por

$$\delta(P, x) = \bigcup_{q \in P} \delta(q, x).$$

Es trivial ver que, para todo AFD existe un AFND equivalente. Lo que no es tan obvio es que lo inverso también es cierto:

Para cada AFND existe un AFD equivalente.

Dado un AFND $M = \langle Q, \Sigma, \delta, q_0, F \rangle$, existe un AFD $M' = \langle Q', \Sigma, \delta', q'_0, F' \rangle$ tal que $\mathcal{L}(M) = \mathcal{L}(M')$.

Dado un AFND $M = \langle Q, \Sigma, \delta, q_0, F \rangle$, existe un AFD $M' = \langle Q', \Sigma, \delta', q'_0, F' \rangle$ tal que $\mathcal{L}(M) = \mathcal{L}(M')$.

Demostración. Construimos un $M' = \langle Q', \Sigma, \delta', q'_0, F' \rangle$. Q' es el conjunto de elementos $[q_1, \ldots, q_i]$, con $q_1, \ldots, q_i \in Q$ (corresponden a los elementos de $\mathcal{P}(Q)$).

Dado un AFND $M = \langle Q, \Sigma, \delta, q_0, F \rangle$, existe un AFD $M' = \langle Q', \Sigma, \delta', q'_0, F' \rangle$ tal que $\mathcal{L}(M) = \mathcal{L}(M')$.

Demostración. Construimos un $M' = \langle Q', \Sigma, \delta', q'_0, F' \rangle$. Q' es el conjunto de elementos $[q_1, \ldots, q_i]$, con $q_1, \ldots, q_i \in Q$ (corresponden a los elementos de $\mathcal{P}\left(Q\right)$).

$$F' = \{ [q_1, \dots, q_i] \in Q' : \{q_1, \dots, q_i\} \cap F \neq \phi \}$$

Dado un AFND $M = \langle Q, \Sigma, \delta, q_0, F \rangle$, existe un AFD $M' = \langle Q', \Sigma, \delta', q'_0, F' \rangle$ tal que $\mathcal{L}(M) = \mathcal{L}(M')$.

Demostración. Construimos un $M' = \langle Q', \Sigma, \delta', q'_0, F' \rangle$. Q' es el conjunto de elementos $[q_1, \ldots, q_i]$, con $q_1, \ldots, q_i \in Q$ (corresponden a los elementos de $\mathcal{P}(Q)$).

$$F' = \{ [q_1, \dots, q_i] \in Q' : \{q_1, \dots, q_i\} \cap F \neq \emptyset \}$$
$$q'_0 = [q_0]$$

Dado un AFND $M = \langle Q, \Sigma, \delta, q_0, F \rangle$, existe un AFD $M' = \langle Q', \Sigma, \delta', q'_0, F' \rangle$ tal que $\mathcal{L}(M) = \mathcal{L}(M')$.

Demostración. Construimos un $M' = \langle Q', \Sigma, \delta', q'_0, F' \rangle$. Q' es el conjunto de elementos $[q_1, \ldots, q_i]$, con $q_1, \ldots, q_i \in Q$ (corresponden a los elementos de $\mathcal{P}(Q)$).

$$F' = \{ [q_1, \dots, q_i] \in Q' : \{q_1, \dots, q_i\} \cap F \neq \phi \}$$

$$q'_0 = [q_0]$$

$$\delta'([q_1, \ldots, q_j], a) = [p_1, \ldots, p_i] \iff \delta(\{q_1, \ldots, q_j\}, a) = \{p_1, \ldots, p_i\}.$$

Demostremos que para toda cadena x, $\delta'\left(q_0',x\right)=\left[q_1,\ldots,q_i\right]\Longleftrightarrow\delta\left(q_0,x\right)=\left\{q_1,\ldots,q_i\right\}.$

Demostremos que para toda cadena x, $\delta'\left(q_0',x\right)=\left[q_1,\ldots,q_i\right]\Longleftrightarrow\delta\left(q_0,x\right)=\left\{q_1,\ldots,q_i\right\}.$

Demostración por inducción en la longitud de la cadena.

Demostremos que para toda cadena x,

 $\delta'\left(q_{0}',x\right)=\left[q_{1},\ldots,q_{i}\right]\Longleftrightarrow\delta\left(q_{0},x\right)=\left\{ q_{1},\ldots,q_{i}\right\} .$

Demostración por inducción en la longitud de la cadena.

 ${\it Caso Base:} \ |x|=0, \ {\it o sea} \ x=\lambda.$

Demostremos que para toda cadena \boldsymbol{x} ,

$$\delta'(q_0',x) = [q_1,\ldots,q_i] \iff \delta(q_0,x) = \{q_1,\ldots,q_i\}.$$

Demostración por inducción en la longitud de la cadena.

Caso Base:
$$|x|=0$$
, o sea $x=\lambda$. Por definición de $\widehat{\delta}$,

$$\delta'\left(q_0',\lambda\right)=\left[q_0\right] \ \ \ \ \delta\left(q_0,\lambda\right)=\left\{q_0\right\},$$

Demostremos que para toda cadena x,

$$\delta'(q'_0, x) = [q_1, \dots, q_i] \iff \delta(q_0, x) = \{q_1, \dots, q_i\}.$$

Demostración por inducción en la longitud de la cadena.

Caso Base: |x|=0, o sea $x=\lambda.$ Por definición de $\widehat{\delta}$,

$$\delta'\left(q_0',\lambda\right) = \left[q_0\right] \ \ \mathsf{y} \ \ \delta\left(q_0,\lambda\right) = \left\{q_0\right\},$$

por lo que
$$\delta'(q'_0, \lambda) = [q_0] \iff \delta(q_0, \lambda) = \{q_0\}.$$

Demostremos que para toda cadena x, $\delta'(q_0', x) = [q_1, \dots, q_i] \iff \delta(q_0, x) = \{q_1, \dots, q_i\}$.

Demostración por inducción en la longitud de la cadena.

Caso Base: |x| = 0, o sea $x = \lambda$. Por definición de $\widehat{\delta}$,

$$\delta'\left(q_0',\lambda\right)=\left[q_0\right] \ \ \ \ \delta\left(q_0,\lambda\right)=\left\{q_0\right\},$$

$$\text{por lo que } \delta'\left(q_0',\lambda\right) = [q_0] \Longleftrightarrow \delta\left(q_0,\lambda\right) = \{q_0\}.$$

Caso inductivo: suponemos que vale para x tal que |x|=n: $\delta'\left(q_0',x\right)=[p_1,\ldots,p_k]\Longleftrightarrow\delta\left(q_0,x\right)=\{p_1,\ldots,p_k\}.$ Veamos que vale para xa, para $a\in\Sigma$,

Demostremos que para toda cadena x, $\delta'(q_0', x) = [q_1, \dots, q_i] \iff \delta(q_0, x) = \{q_1, \dots, q_i\}$.

Demostración por inducción en la longitud de la cadena.

Caso Base: |x|=0, o sea $x=\lambda$. Por definición de $\widehat{\delta}$,

$$\delta'\left(q_0',\lambda\right)=\left[q_0\right] \ \ \ \ \delta\left(q_0,\lambda\right)=\left\{q_0\right\},$$

 $\text{por lo que } \delta'\left(q_0',\lambda\right) = [q_0] \Longleftrightarrow \delta\left(q_0,\lambda\right) = \{q_0\}.$

Caso inductivo: suponemos que vale para x tal que |x|=n: $\delta'\left(q_0',x\right)=[p_1,\ldots,p_k]\Longleftrightarrow\delta\left(q_0,x\right)=\{p_1,\ldots,p_k\}.$

Veamos que vale para
$$xa$$
, para $a \in \Sigma$,

$$\delta'\left(q_0',xa\right)=\delta'\left(\delta'\left(q_0',x\right),a\right)=\left[r_1,\ldots,r_i\right]\Longleftrightarrow$$
 por definición de δ' en AFD M'

Demostremos que para toda cadena x,

 $\delta'(q_0', x) = [q_1, \dots, q_i] \Longleftrightarrow \delta(q_0, x) = \{q_1, \dots, q_i\}.$

Demostración por inducción en la longitud de la cadena.

Caso Base: |x| = 0, o sea $x = \lambda$. Por definición de $\widehat{\delta}$,

$$\delta'\left(q_0',\lambda\right)=\left[q_0\right] \ \ \ \ \delta\left(q_0,\lambda\right)=\left\{q_0\right\},$$

por lo que $\delta'(q_0', \lambda) = [q_0] \iff \delta(q_0, \lambda) = \{q_0\}.$

Caso inductivo: suponemos que vale para x tal que |x| = n:

 $\delta'(q'_0, x) = [p_1, \dots, p_k] \iff \delta(q_0, x) = \{p_1, \dots, p_k\}.$ Veamos que vale para xa, para $a \in \Sigma$,

$$\delta'\left(q_{0}',xa\right)=\delta'\left(\delta'\left(q_{0}',x\right),a\right)=\left[r_{1},\ldots,r_{i}\right]\Longleftrightarrow$$

por definición de δ' en AFD M'

$$\exists [p_1, \dots, p_k], \delta'\left(q_0', x\right) = [p_1, \dots, p_k] \land \delta'\left([p_1, \dots, p_k], a\right) = [r_1, \dots, r_i] \iff \mathsf{por} \; \mathsf{HI} \; \mathsf{y} \; \mathsf{y} \; \mathsf{por} \; \mathsf{definición} \; \mathsf{de} \; \delta \; \mathsf{en} \; \mathsf{AFND} \; M$$

10 / 19

Demostremos que para toda cadena x, $\delta'(q'_0, x) = [q_1, \dots, q_i] \iff \delta(q_0, x) = \{q_1, \dots, q_i\}$.

Demostración por inducción en la longitud de la cadena.

Caso Base: |x| = 0, o sea $x = \lambda$. Por definición de $\widehat{\delta}$,

$$\delta'(q'_0,\lambda) = [q_0] \text{ y } \delta(q_0,\lambda) = \{q_0\},$$

por lo que $\delta'(q'_0, \lambda) = [q_0] \iff \delta(q_0, \lambda) = \{q_0\}.$

Caso inductivo: suponemos que vale para x tal que $\vert x \vert = n$:

 $\delta'(q_0',x) = [p_1,\ldots,p_k] \iff \delta(q_0,x) = \{p_1,\ldots,p_k\}.$

Veamos que vale para xa, para $a \in \Sigma$,

$$\delta'\left(q_{0}',xa\right)=\delta'\left(\delta'\left(q_{0}',x\right),a\right)=\left[r_{1},\ldots,r_{i}\right]\Longleftrightarrow$$

por definición de δ' en AFD M'

$$\exists \left[p_1,\ldots,p_k\right], \delta'\left(q_0',x\right) = \left[p_1,\ldots,p_k\right] \land \delta'\left(\left[p_1,\ldots,p_k\right],a\right) = \left[r_1,\ldots,r_i\right] \Longleftrightarrow$$

por HI y y por definición de δ en AFND M

$$\exists \{p_1, \dots, p_k\}, \ \delta(q_0, x) = \{p_1, \dots, p_k\} \land \delta(\{p_1, \dots, p_k\}, a) = \{r_1, \dots, r_i\} \iff$$

por def δ en AFND M,

Demostremos que para toda cadena x, $\delta'(q_0', x) = [q_1, \dots, q_i] \iff \delta(q_0, x) = \{q_1, \dots, q_i\}$.

Demostración por inducción en la longitud de la cadena.

Caso Base: |x|=0, o sea $x=\lambda$. Por definición de $\widehat{\delta}$,

$$\delta'\left(q_0',\lambda\right) = \left[q_0\right] \ \ \ \ \ \delta\left(q_0,\lambda\right) = \left\{q_0\right\},$$

por lo que $\delta'(q'_0, \lambda) = [q_0] \iff \delta(q_0, \lambda) = \{q_0\}.$

Caso inductivo: suponemos que vale para x tal que |x| = n: $\delta'(q_0', x) = [p_1, \dots, p_k] \iff \delta(q_0, x) = \{p_1, \dots, p_k\}.$

Veamos que vale para xa, para $a \in \Sigma$,

$$\delta'\left(q_{0}',xa\right)=\delta'\left(\delta'\left(q_{0}',x\right),a\right)=\left[r_{1},\ldots,r_{i}\right]\Longleftrightarrow$$
 por definición de δ' en AFD M'

$$\exists \left[p_1,\ldots,p_k\right], \delta'\left(q_0',x\right) = \left[p_1,\ldots,p_k\right] \land \delta'\left(\left[p_1,\ldots,p_k\right],a\right) = \left[r_1,\ldots,r_i\right] \Longleftrightarrow$$

por HI y y por definición de δ en AFND M

$$\exists \{p_1, \dots, p_k\}, \ \delta(q_0, x) = \{p_1, \dots, p_k\} \land \delta(\{p_1, \dots, p_k\}, a) = \{r_1, \dots, r_i\} \iff$$

por def δ en AFND M,

$$\delta(q_0, xa) = \delta(\delta(q_0, x), a) = \{r_1, \dots, r_i\}$$

Demostremos que para toda cadena x, $\delta'(q'_0, x) = [q_1, \dots, q_i] \iff \delta(q_0, x) = \{q_1, \dots, q_i\}$.

Demostración por inducción en la longitud de la cadena.

Caso Base: |x| = 0, o sea $x = \lambda$. Por definición de $\hat{\delta}$,

$$\delta'(q'_0,\lambda) = [q_0] \text{ y } \delta(q_0,\lambda) = \{q_0\},$$

por lo que $\delta'(q'_0,\lambda) = [q_0] \iff \delta(q_0,\lambda) = \{q_0\}.$

Caso inductivo: suponemos que vale para x tal que |x|=n: $\delta'(q_0',x)=[p_1,\ldots,p_k]\Longleftrightarrow \delta(q_0,x)=\{p_1,\ldots,p_k\}.$

Veamos que vale para xa, para $a \in \Sigma$,

$$\delta'\left(q_0',xa\right) = \delta'\left(\delta'\left(q_0',x\right),a\right) = [r_1,\ldots,r_i] \iff$$
por definición de δ' en AFD M'

por definicion de δ en AFD M $\exists [p_1, \ldots, p_k], \delta'(q_0', x) = [p_1, \ldots, p_k] \land \delta'([p_1, \ldots, p_k], a) = [r_1, \ldots, r_i] \iff$

por HI y y por definición de δ en AFND M

 $\exists \{p_1, \dots, p_k\}, \ \delta(q_0, x) = \{p_1, \dots, p_k\} \land \delta(\{p_1, \dots, p_k\}, a) = \{r_1, \dots, r_i\} \iff$

por def δ en AFND $M\mathrm{,}$

$$\delta(q_0, xa) = \delta(\delta(q_0, x), a) = \{r_1, \dots, r_i\}$$

Concluimos, $\delta'(q'_0, xa) = [r_1, \dots, r_i] \iff \delta(q_0, xa) = \{r_1, \dots, r_i\}$.

Dado un AFND $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ construimos AFD $M' = \langle Q', \Sigma, \delta', q'_0, F' \rangle$ tal que $\mathcal{L}\left(M\right) = \mathcal{L}\left(M'\right)$. Ahora nos queda probar que $\mathcal{L}\left(M\right) = \mathcal{L}\left(M'\right)$.

Dado un AFND $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ construimos AFD $M' = \langle Q', \Sigma, \delta', q'_0, F' \rangle$ tal que $\mathcal{L}\left(M\right) = \mathcal{L}\left(M'\right)$. Ahora nos queda probar que $\mathcal{L}\left(M\right) = \mathcal{L}\left(M'\right)$.

$$x \in \mathcal{L}(M)$$

Dado un AFND $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ construimos AFD $M' = \langle Q', \Sigma, \delta', q'_0, F' \rangle$ tal que $\mathcal{L}(M) = \mathcal{L}(M')$.

Ahora nos queda probar que
$$\mathcal{L}\left(M\right)=\mathcal{L}\left(M'\right).$$

$$x \in \mathcal{L}(M)$$

$$\iff \delta(q_0, x) = \{q_1, \dots, q_i\} \land \{q_1, \dots, q_i\} \cap F \neq \phi$$

Dado un AFND $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ construimos AFD $M' = \langle Q', \Sigma, \delta', q'_0, F' \rangle$ tal que $\mathcal{L}\left(M\right) = \mathcal{L}\left(M'\right)$. Ahora nos queda probar que $\mathcal{L}\left(M\right) = \mathcal{L}\left(M'\right)$.

$$x \in \mathcal{L}(M)$$

$$\iff \delta(q_0, x) = \{q_1, \dots, q_i\} \land \{q_1, \dots, q_i\} \cap F \neq \phi$$

$$\iff \delta'(q'_0, x) = [q_1, \dots, q_i] \land [q_1, \dots, q_i] \in F'$$

Dado un AFND $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ construimos AFD $M' = \langle Q', \Sigma, \delta', q'_0, F' \rangle$ tal que $\mathcal{L}\left(M\right) = \mathcal{L}\left(M'\right)$. Ahora nos queda probar que $\mathcal{L}\left(M\right) = \mathcal{L}\left(M'\right)$.

$$x \in \mathcal{L}(M)$$

$$\iff \delta(q_0, x) = \{q_1, \dots, q_i\} \land \{q_1, \dots, q_i\} \cap F \neq \phi$$

$$\iff \delta'(q'_0, x) = [q_1, \dots, q_i] \land [q_1, \dots, q_i] \in F'$$

$$\iff x \in \mathcal{L}(M').$$

AFND- λ es una 5-upla $\langle Q, \Sigma, \delta, q_0, F \rangle$ donde Q, Σ, q_0 y F tienen el mismo significado que para el AFND, pero $\delta: Q \times (\Sigma \cup \{\lambda\}) \to \mathcal{P}(Q)$.

AFND- λ es una 5-upla $\langle Q, \Sigma, \delta, q_0, F \rangle$ donde Q, Σ , q_0 y F tienen el mismo significado que para el AFND, pero $\delta: Q \times (\Sigma \cup \{\lambda\}) \to \mathcal{P}(Q)$.

Definición (Clausura λ de un estado)

La clausura λ de un estado q, $Cl_{\lambda}\left(q\right)$, es el conjunto de estados alcanzable desde q, siguiendo sólo transiciones λ . Usamos la noción de clausura transitivo-reflexiva para definir Cl_{λ} . Sea $R\subseteq Q\times Q$ tal que $(q,p)\in R$ si y solo si $p\in\delta(q,\lambda)$. Luego,

$$Cl_{\lambda}(q) = \{p : (q, p) \in R^*\}$$

AFND- λ es una 5-upla $\langle Q, \Sigma, \delta, q_0, F \rangle$ donde Q, Σ , q_0 y F tienen el mismo significado que para el AFND, pero $\delta: Q \times (\Sigma \cup \{\lambda\}) \to \mathcal{P}\left(Q\right)$.

Definición (Clausura λ de un estado)

La clausura λ de un estado q, $Cl_{\lambda}\left(q\right)$, es el conjunto de estados alcanzable desde q, siguiendo sólo transiciones λ . Usamos la noción de clausura transitivo-reflexiva para definir Cl_{λ} . Sea $R\subseteq Q\times Q$ tal que $(q,p)\in R$ si y solo si $p\in\delta(q,\lambda)$. Luego,

$$Cl_{\lambda}(q) = \{p : (q, p) \in R^*\}$$

Notar que el estado q pertenece a su clausura λ .

AFND- λ es una 5-upla $\langle Q, \Sigma, \delta, q_0, F \rangle$ donde Q, Σ , q_0 y F tienen el mismo significado que para el AFND, pero $\delta: Q \times (\Sigma \cup \{\lambda\}) \to \mathcal{P}(Q)$.

Definición (Clausura λ de un estado)

La clausura λ de un estado q, $Cl_{\lambda}\left(q\right)$, es el conjunto de estados alcanzable desde q, siguiendo sólo transiciones λ . Usamos la noción de clausura transitivo-reflexiva para definir Cl_{λ} . Sea $R\subseteq Q\times Q$ tal que $(q,p)\in R$ si y solo si $p\in\delta(q,\lambda)$. Luego,

$$Cl_{\lambda}(q) = \{p : (q, p) \in R^*\}$$

Notar que el estado q pertenece a su clausura λ .

Definición (Clausura λ de un conjunto de estados P)

$$Cl_{\lambda}(P) = \bigcup_{q \in P} Cl_{\lambda}(q).$$

La función de transición puede extenderse para que acepte como segundo argumento cadenas en Σ , o sea $\widehat{\delta}:Q\times\Sigma^*\to\mathcal{P}\left(Q\right)$.

La función de transición puede extenderse para que acepte como segundo argumento cadenas en Σ , o sea $\widehat{\delta}: Q \times \Sigma^* \to \mathcal{P}\left(Q\right)$.

$$\widehat{\delta}(q,\lambda) = Cl_{\lambda}(q)$$

La función de transición puede extenderse para que acepte como segundo argumento cadenas en Σ , o sea $\widehat{\delta}:Q\times\Sigma^*\to\mathcal{P}\left(Q\right)$.

- $\blacktriangleright \ \widehat{\delta}\left(q,\lambda\right) = Cl_{\lambda}\left(q\right)$
- $\widehat{\delta}\left(q,xa\right) = Cl_{\lambda}\left(\left\{p: \exists r \in \widehat{\delta}\left(q,x\right) \text{ tal que } p \in \delta\left(r,a\right)\right\}\right)$ con $x \in \Sigma^{*}$ y $a \in \Sigma$, o sea,

La función de transición puede extenderse para que acepte como segundo argumento cadenas en Σ , o sea $\widehat{\delta}:Q\times\Sigma^*\to\mathcal{P}\left(Q\right)$.

- $\blacktriangleright \ \widehat{\delta}\left(q,\lambda\right) = Cl_{\lambda}\left(q\right)$
- $\widehat{\delta}\left(q,xa\right) = Cl_{\lambda}\left(\left\{p: \exists r \in \widehat{\delta}\left(q,x\right) \text{ tal que } p \in \delta\left(r,a\right)\right\}\right)$ con $x \in \Sigma^*$ y $a \in \Sigma$, o sea,

$$\widehat{\delta}(q, xa) = Cl_{\lambda} \left(\bigcup_{r \in \widehat{\delta}(q, x)} \delta(r, a) \right)$$

 $\blacktriangleright \ \delta \left(P,a\right) =\bigcup_{q\in P}\delta \left(q,a\right)$

14 / 19

- $\blacktriangleright \ \delta \left(P,a\right) =\bigcup_{q\in P}\delta \left(q,a\right)$
- $\widehat{\delta}(P,x) = \bigcup_{q \in P} \widehat{\delta}(q,x)$

$$\blacktriangleright \ \widehat{\delta}\left(P,x\right) = \bigcup_{q \in P} \widehat{\delta}\left(q,x\right)$$

Utilizando esto último, $\widehat{\delta}\left(q,xa\right)$ puede escribirse como

$$\widehat{\delta}(q, xa) = Cl_{\lambda}\left(\delta\left(\widehat{\delta}(q, x), a\right)\right).$$

$$\blacktriangleright \ \widehat{\delta}\left(P,x\right) = \bigcup_{q \in P} \widehat{\delta}\left(q,x\right)$$

Utilizando esto último, $\widehat{\delta}\left(q,xa\right)$ puede escribirse como

$$\widehat{\delta}(q, xa) = Cl_{\lambda}\left(\delta\left(\widehat{\delta}(q, x), a\right)\right).$$

Notar que $\widehat{\delta}(q, a)$ puede ser distinto de $\delta(q, a)$:

$$\widehat{\delta}\left(q,a\right) = Cl_{\lambda}\left(\delta\left(\widehat{\delta}\left(q,\lambda\right),a\right)\right) = Cl_{\lambda}\left(\delta\left(Cl_{\lambda}\left(q\right),a\right)\right) \neq \delta\left(q,a\right),$$

Definición (Cadena aceptada por un AFND-λ)

Se dice que una cadena x es aceptada por un AFND- λ $M=\langle Q,\Sigma,\delta,q_0,F\rangle$ si y solo si $\widehat{\delta}\left(q_0,x\right)\cap F\neq\phi$.

Definición (Cadena aceptada por un AFND-λ)

Se dice que una cadena x es aceptada por un AFND- λ $M=\langle Q,\Sigma,\delta,q_0,F\rangle$ si y solo si $\widehat{\delta}\left(q_0,x\right)\cap F\neq \phi.$

Definición (Lenguaje aceptado por un AFND-λ)

Dado un AFND- λ $M=\langle Q, \Sigma, \delta, q_0, F \rangle$, el lenguaje aceptado por M, $\mathcal{L}\left(M\right)$, es el conjunto de cadenas aceptadas por M y se define como

$$\mathcal{L}\left(M\right)=\left\{ x:\widehat{\delta}\left(q_{0},x\right)\cap F\neq\phi\right\} .$$

Teorema (Equivalencia entre AFND y AFND- λ)

Dado un AFND- λ $M=\langle Q,\Sigma,\delta,q_0,F\rangle$, hay un AFND $M'=\langle Q,\Sigma,\delta',q_0,F'\rangle$ que reconoce el mismo lenguaje.

Demostración. Definimos

Teorema (Equivalencia entre AFND y AFND-λ)

Dado un AFND- λ $M=\langle Q,\Sigma,\delta,q_0,F\rangle$, hay un AFND $M'=\langle Q,\Sigma,\delta',q_0,F'\rangle$ que reconoce el mismo lenguaje.

Demostración. Definimos

$$\delta'(q, a) = \widehat{\delta}(q, a).$$

Teorema (Equivalencia entre AFND y AFND-λ)

Dado un AFND- λ $M=\langle Q,\Sigma,\delta,q_0,F\rangle$, hay un AFND $M'=\langle Q,\Sigma,\delta',q_0,F'\rangle$ que reconoce el mismo lenguaje.

Demostración. Definimos

$$\delta'\left(q,a\right)=\widehat{\delta}\left(q,a\right).$$

$$F'=\left\{ \begin{array}{cc} F & \text{, si } Cl_{\lambda}\left(q_{0}\right)\cap F=\emptyset \\ \\ F\cup\left\{q_{0}\right\} & \text{, si no.} \end{array} \right.$$

Observar que $F' \supseteq F$.

Demostremos que $\delta'\left(q_0,x\right)=\widehat{\delta}\left(q_0,x\right)$ para $|x|\geq 1$., por inducción en la longitud de la cadena.

Dado AFND- λ $M = \langle Q, \Sigma, \delta, q_0, F \rangle$

construimos AFND $M' = \langle Q, \widehat{\Sigma}, \delta', q_0, F' \rangle$.

Demostremos que $\delta'\left(q_0,x\right)=\widehat{\delta}\left(q_0,x\right)$ para $|x|\geq 1$., por inducción en la longitud de la cadena.

Caso base |x|=1. Sea x=a. Por definición de $\delta',$ $\delta'\left(q,a\right)=\widehat{\delta}\left(q,a\right),$

Demostremos que $\delta'\left(q_0,x\right)=\widehat{\delta}\left(q_0,x\right)$ para $|x|\geq 1$., por inducción en la longitud de la cadena.

Caso base |x|=1. Sea x=a. Por definición de δ' , $\delta'(q,a)=\widehat{\delta}(q,a)$, Caso inductivo |x|>1. Sea x=wa y asumamos que vale para w.

Demostremos que $\delta'\left(q_0,x\right)=\widehat{\delta}\left(q_0,x\right)$ para $|x|\geq 1$., por inducción en la longitud de la cadena.

Caso base |x|=1. Sea x=a. Por definición de δ' , $\delta'\left(q,a\right)=\widehat{\delta}\left(q,a\right)$, Caso inductivo |x|>1. Sea x=wa y asumamos que vale para w.

$$\delta'\left(q_{0},wa\right)=\delta'(\underbrace{\delta'\left(q_{0},w\right)},a)=\delta'(\widehat{\delta}\left(q_{0},w\right),a),$$

las expresiones tomadas por las llaves son iguales por h.i.

Demostremos que $\delta'\left(q_0,x\right)=\widehat{\delta}\left(q_0,x\right)$ para $|x|\geq 1$., por inducción en la longitud de la cadena.

Caso base |x|=1. Sea x=a. Por definición de δ' , $\delta'\left(q,a\right)=\widehat{\delta}\left(q,a\right)$, Caso inductivo |x|>1. Sea x=wa y asumamos que vale para w.

$$\delta'\left(q_{0},wa\right)=\delta'(\underbrace{\delta'\left(q_{0},w\right)},a)=\delta'(\widehat{\delta}\left(q_{0},w\right),a),$$

las expresiones tomadas por las llaves son iguales por h.i.

Por otro lado, si $P \subseteq Q$

$$\delta'\left(P,a\right) = \bigcup_{q \in P} \delta'\left(q,a\right) = \bigcup_{q \in P} \widehat{\delta}\left(P,a\right) = \widehat{\delta}\left(P,a\right)$$

Demostremos que $\delta'\left(q_0,x\right)=\widehat{\delta}\left(q_0,x\right)\ \mathrm{para}\ |x|\geq 1.$, por inducción en la longitud de la cadena.

Caso base |x|=1. Sea x=a. Por definición de δ' , $\delta'\left(q,a\right)=\widehat{\delta}\left(q,a\right)$, Caso inductivo |x|>1. Sea x=wa y asumamos que vale para w.

$$\delta'\left(q_{0},wa\right)=\delta'(\underbrace{\delta'\left(q_{0},w\right)},a)=\delta'(\widehat{\delta}\left(q_{0},w\right),a),$$

las expresiones tomadas por las llaves son iguales por h.i.

Por otro lado, si $P \subseteq Q$

$$\delta'\left(P,a\right) = \bigcup_{q \in P} \delta'\left(q,a\right) = \bigcup_{q \in P} \widehat{\delta}\left(P,a\right) = \widehat{\delta}\left(P,a\right)$$

Por lo tanto, haciendo $P = \widehat{\delta}(q_0, w)$, tenemos que

Demostremos que $\delta'(q_0,x)=\widehat{\delta}(q_0,x)$ para $|x|\geq 1$., por inducción en la longitud de la cadena.

Caso base |x|=1. Sea x=a. Por definición de δ' , $\delta'\left(q,a\right)=\widehat{\delta}\left(q,a\right)$, Caso inductivo |x|>1. Sea x=wa y asumamos que vale para w.

$$\delta'\left(q_{0},wa\right)=\delta'(\underbrace{\delta'\left(q_{0},w\right)},a)=\delta'(\widehat{\delta}\left(q_{0},w\right),a),$$

las expresiones tomadas por las llaves son iguales por h.i.

Por otro lado, si $P \subseteq Q$

$$\delta'\left(P,a\right) = \bigcup_{q \in P} \delta'\left(q,a\right) = \bigcup_{q \in P} \widehat{\delta}\left(P,a\right) = \widehat{\delta}\left(P,a\right)$$

Por lo tanto, haciendo $P = \widehat{\delta}(q_0, w)$, tenemos que

$$\delta'\left(q_{0},wa\right)=\delta'\left(\widehat{\delta}\left(q_{0},w\right),a\right)=\widehat{\delta}\left(\widehat{\delta}\left(q_{0},w\right),a\right)=\widehat{\delta}\left(q_{0},wa\right).$$

$$\lambda \in \mathcal{L}(M) \iff$$

Para
$$x = \lambda$$
,

$$\lambda \in \mathcal{L}(M) \iff Cl_{\lambda}(q_0) \cap F \neq \emptyset \Longrightarrow$$

$$\lambda \in \mathcal{L}(M) \iff Cl_{\lambda}(q_0) \cap F \neq \emptyset \Longrightarrow q_0 \in F' \iff$$

$$\lambda \in \mathcal{L}(M) \iff Cl_{\lambda}(q_0) \cap F \neq \emptyset \Longrightarrow q_0 \in F' \iff \lambda \in \mathcal{L}(M')$$

Para
$$x = \lambda$$
,

$$\lambda \in \mathcal{L}(M) \iff Cl_{\lambda}(q_0) \cap F \neq \varnothing \Longrightarrow q_0 \in F' \iff \lambda \in \mathcal{L}(M')$$

$$\lambda \in \mathcal{L}\left(M'\right) \Longleftrightarrow q_0 \in F' \Longrightarrow \left(q_0 \in F \lor Cl_{\lambda}\left(q_0\right) \cap F \neq \varnothing\right)$$
 Dado que

$$\lambda \in \mathcal{L}(M) \iff Cl_{\lambda}(q_0) \cap F \neq \emptyset \Longrightarrow q_0 \in F' \iff \lambda \in \mathcal{L}(M')$$
$$\lambda \in \mathcal{L}(M') \iff q_0 \in F' \Longrightarrow (q_0 \in F \vee Cl_{\lambda}(q_0) \cap F \neq \emptyset)$$

Dado que

$$\underbrace{q_{0} \in F}_{\biguplus} \qquad \lor \quad \underbrace{Cl_{\lambda}(q_{0}) \cap F \neq \varnothing}_{\biguplus}$$

$$Cl_{\lambda}(q_{0}) \cap F \neq \varnothing \qquad \qquad \lambda \in \mathcal{L}(M)$$

$$\downarrow \downarrow$$

$$\lambda \in \mathcal{L}(M)$$

$$\lambda \in \mathcal{L}(M) \iff Cl_{\lambda}(q_{0}) \cap F \neq \varnothing \Longrightarrow q_{0} \in F' \iff \lambda \in \mathcal{L}(M')$$

$$\lambda \in \mathcal{L}(M') \iff q_{0} \in F' \Longrightarrow \left(q_{0} \in F \vee Cl_{\lambda}(q_{0}) \cap F \neq \varnothing\right)$$
Dado que
$$\underbrace{q_{0} \in F}_{\qquad \qquad \qquad } \vee \underbrace{Cl_{\lambda}(q_{0}) \cap F \neq \varnothing}_{\qquad \qquad \qquad \downarrow \downarrow}$$

$$Cl_{\lambda}(q_{0}) \cap F \neq \varnothing \qquad \qquad \lambda \in \mathcal{L}(M)$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$\lambda \in \mathcal{L}(M)$$

concluimos

 $\lambda \in \mathcal{L}(M)$

Para
$$x = \lambda$$
,

$$\lambda \in \mathcal{L}(M) \iff Cl_{\lambda}(q_{0}) \cap F \neq \varnothing \Longrightarrow q_{0} \in F' \iff \lambda \in \mathcal{L}(M')$$

$$\lambda \in \mathcal{L}(M') \iff q_{0} \in F' \Longrightarrow \left(q_{0} \in F \vee Cl_{\lambda}(q_{0}) \cap F \neq \varnothing\right)$$
Dado que
$$\underbrace{q_{0} \in F}_{\qquad \qquad \qquad } \vee \underbrace{Cl_{\lambda}(q_{0}) \cap F \neq \varnothing}_{\qquad \qquad \qquad }$$

$$Cl_{\lambda}(q_{0}) \cap F \neq \varnothing \qquad \qquad \lambda \in \mathcal{L}(M)$$

concluimos

$$\lambda \in \mathcal{L}(M') \Leftrightarrow \lambda \in \mathcal{L}(M)$$
.

 $\begin{array}{l} {\sf Dado} \ {\sf AFND-}\lambda \ M = \langle Q, \Sigma, \delta, q_0, F \rangle \\ {\sf construimos} \ {\sf AFND} \ M' = \langle Q, \Sigma, \delta', q_0, F' \rangle. \end{array}$

Veamos ahora que $\mathcal{L}\left(M'\right)=\mathcal{L}\left(M\right)$, para $x\neq\lambda.$

$$x \in \mathcal{L}(M) \iff$$

por aceptación en AFND- λ

Dado AFND- λ $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ construimos AFND $M' = \langle Q, \Sigma, \delta', q_0, F' \rangle$.

Veamos ahora que $\mathcal{L}\left(M'\right)=\mathcal{L}\left(M\right)$, para $x\neq\lambda$.

$$x \in \mathcal{L}(M) \Longleftrightarrow \widehat{\delta}(q_0, x) \cap F \neq \emptyset$$
, por aceptación en AFND- λ

Dado AFND- λ $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ construimos AFND $M' = \langle Q, \Sigma, \delta', q_0, F' \rangle$.

Veamos ahora que $\mathcal{L}\left(M'\right)=\mathcal{L}\left(M\right)$, para $x\neq\lambda$.

$$x\in\mathcal{L}\left(M\right) \Longleftrightarrow \widehat{\delta}\left(q_{0},x\right)\cap F\neq\varnothing, \text{ por aceptación en AFND-}\lambda$$

$$\Longrightarrow \delta'\left(q_{0},x\right)\cap F'\neq\varnothing \text{ , por el paso intermedio y porque }F\subseteq F'$$

$$x\in\mathcal{L}\left(M
ight) \Longleftrightarrow \widehat{\delta}\left(q_{0},x
ight)\cap F
eqarnothing, ext{ por aceptación en AFND-}\lambda$$
 $\Longrightarrow \delta'\left(q_{0},x
ight)\cap F'
eqarnothing, ext{ por el paso intermedio y porque }F\subseteq F'$ $\Longrightarrow x\in\mathcal{L}\left(M'\right).$

$$x\in\mathcal{L}\left(M
ight) \Longleftrightarrow \widehat{\delta}\left(q_{0},x
ight)\cap F
eqarnothing, ext{ por aceptación en AFND-}\lambda$$
 $\Longrightarrow \delta'\left(q_{0},x
ight)\cap F'
eqarnothing, ext{ por el paso intermedio y porque }F\subseteq F'$ $\Longrightarrow x\in\mathcal{L}\left(M'\right).$

$$x\in\mathcal{L}\left(M
ight) \Longleftrightarrow \widehat{\delta}\left(q_{0},x
ight)\cap F
eqarnothing, ext{ por aceptación en AFND-}\lambda$$
 $\Longrightarrow \delta'\left(q_{0},x
ight)\cap F'
eqarnothing, ext{ por el paso intermedio y porque }F\subseteq F'$ $\Longrightarrow x\in\mathcal{L}\left(M'
ight).$

$$x \in \mathcal{L}(M') \iff$$

$$\begin{split} x \in \mathcal{L}\left(M\right) & \Longleftrightarrow \widehat{\delta}\left(q_0,x\right) \cap F \neq \varnothing, \text{ por aceptación en AFND-}\lambda \\ & \Longrightarrow \delta'\left(q_0,x\right) \cap F' \neq \varnothing \text{ , por el paso intermedio y porque } F \subseteq F' \\ & \Longrightarrow x \in \mathcal{L}\left(M'\right). \end{split}$$

$$x \in \mathcal{L}(M') \iff \delta'(q_0, x) \cap F' \neq \emptyset$$
, por aceptación en AFND

$$\begin{split} x \in \mathcal{L}\left(M\right) & \Longleftrightarrow \widehat{\delta}\left(q_0,x\right) \cap F \neq \varnothing, \text{ por aceptación en AFND-}\lambda \\ & \Longrightarrow \delta'\left(q_0,x\right) \cap F' \neq \varnothing \text{ , por el paso intermedio y porque } F \subseteq F' \\ & \Longrightarrow x \in \mathcal{L}\left(M'\right). \end{split}$$

$$x\in\mathcal{L}\left(M'
ight)\Longleftrightarrow\!\delta'\left(q_{0},x
ight)\cap F'
eqarnothing$$
, por aceptación en AFND
$$\Longrightarrow\!\widehat{\delta}\left(q_{0},x
ight)\cap F
eqarnothing$$

Dado AFND- λ $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ construimos AFND $M' = \langle Q, \Sigma, \delta', q_0, F' \rangle$.

construimos AFND $M' = \langle Q, \Sigma, \delta', q_0, F' \rangle$. Veamos ahora que $\mathcal{L}(M') = \mathcal{L}(M)$, para $x \neq \lambda$.

$$x\in\mathcal{L}\left(M
ight) \Longleftrightarrow \widehat{\delta}\left(q_{0},x
ight)\cap F
eqarnothing, ext{ por aceptación en AFND-}\lambda$$
 $\Longrightarrow \delta'\left(q_{0},x
ight)\cap F'
eqarnothing, ext{ por el paso intermedio y porque }F\subseteq F'$ $\Longrightarrow x\in\mathcal{L}\left(M'\right).$

$$\begin{split} x \in \mathcal{L}\left(M'\right) & \Longleftrightarrow \!\! \delta'\left(q_{0},x\right) \cap F' \neq \varnothing \text{, por aceptación en AFND} \\ & \Longrightarrow \!\! \widehat{\delta}\left(q_{0},x\right) \cap F \neq \varnothing \vee \left(\widehat{\delta}\left(q_{0},x\right) \cap \left\{q_{0}\right\} \neq \varnothing \wedge Cl_{\lambda}\left(q_{0}\right) \cap F \neq \varnothing\right) \end{split}$$

Dado AFND- λ $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ construimos AFND $M' = \langle Q, \Sigma, \delta', q_0, F' \rangle$.

construimos AFND $M' = \langle Q, \Sigma, \delta', q_0, F' \rangle$. Veamos ahora que $\mathcal{L}(M') = \mathcal{L}(M)$, para $x \neq \lambda$.

$$x\in\mathcal{L}\left(M
ight) \Longleftrightarrow \widehat{\delta}\left(q_{0},x
ight)\cap F
eqarnothing, ext{ por aceptación en AFND-}\lambda$$
 $\Longrightarrow \delta'\left(q_{0},x
ight)\cap F'
eqarnothing, ext{ por el paso intermedio y porque }F\subseteq F'$ $\Longrightarrow x\in\mathcal{L}\left(M'\right).$

$$\begin{split} x \in \mathcal{L}\left(M'\right) & \Longleftrightarrow \!\! \delta'\left(q_{0},x\right) \cap F' \neq \varnothing \text{, por aceptación en AFND} \\ & \Longrightarrow \!\! \widehat{\delta}\left(q_{0},x\right) \cap F \neq \varnothing \vee \left(\widehat{\delta}\left(q_{0},x\right) \cap \left\{q_{0}\right\} \neq \varnothing \wedge Cl_{\lambda}\left(q_{0}\right) \cap F \neq \varnothing\right) \end{split}$$

Dado AFND- λ $M=\langle Q,\Sigma,\delta,q_0,F\rangle$ construimos AFND $M'=\langle Q,\Sigma,\delta',$

construimos AFND $M' = \langle Q, \Sigma, \delta', q_0, F' \rangle$. Veamos ahora que $\mathcal{L}(M') = \mathcal{L}(M)$, para $x \neq \lambda$.

 $\Longrightarrow x \in \mathcal{L}(M)$.

$$x\in\mathcal{L}\left(M
ight) \Longleftrightarrow \widehat{\delta}\left(q_{0},x
ight)\cap F
eqarnothing, ext{ por aceptación en AFND-}\lambda$$
 $\Longrightarrow \delta'\left(q_{0},x
ight)\cap F'
eqarnothing, ext{ por el paso intermedio y porque }F\subseteq F'$ $\Longrightarrow x\in\mathcal{L}\left(M'\right).$

$$\begin{split} x \in \mathcal{L}\left(M'\right) & \Longleftrightarrow \!\! \delta'\left(q_{0},x\right) \cap F' \neq \varnothing \text{, por aceptación en AFND} \\ & \Longrightarrow \!\! \widehat{\delta}\left(q_{0},x\right) \cap F \neq \varnothing \vee \left(\widehat{\delta}\left(q_{0},x\right) \cap \left\{q_{0}\right\} \neq \varnothing \wedge Cl_{\lambda}\left(q_{0}\right) \cap F \neq \varnothing\right) \\ & \Longrightarrow \!\! x \in \mathcal{L}\left(M\right) \vee x \in \mathcal{L}\left(M\right) \end{split}$$