

Computer Processors

Boolean Logic

Boolean algebra

- Boolean algebra was introduced by George Boole in 1847
- Boolean algebra is an algebra that has two value true/false, high/low or 1/0
- The main operators in Boolean logic are
 AND, OR and NOT
- We have seen that logic seems to be an appropriate tool for computation

А	В	A ^ B
0	0	0
0	1	0
1	0	0
1	1	1

А	В	AvB
0	0	0
0	1	1
1	0	1
1	1	1

,	A	¬A
	0	1
	1	0

George Boole

Truth tables

- Truth table are a means of communicating a Boolean function
- All possible values are enumerated with the result being placed in the final column
- All Boolean functions can be expressed as a truth table or as a functional expression

а	b	С	output
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Representations of Boolean functions

- Truth tables
- Functional expressions
- Logic circuit diagram
- Expression tree

a AND b OR NOT c

а	b	С	output
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Canonical representation (DNF)

- Every truth table can be expressed using at least one Boolean expression called the canonical representation
- May not be the most concise method of communicating a given Boolean function
- 1. Take each row of the truth table where '1' appear as the output
- 2. Construct a logic expression for that row by **AND**'ing the variable where a '1' appears in the column and the negation of a variable where '0' appears in the column
- **3. OR** each of the expression together

а	b	С	output
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Canonical representation

- Take each row of the truth table where '1' appear as the output
- Construct a logic expression for that row by AND'ing the variable where a '1' appear in the column and the negation of a variable where '0' appears in the column
- 3. OR each of the expression together

$$(\neg a \land \neg b \land \neg c) \lor (\neg a \land \neg b \land c)$$
$$\lor (\neg a \land b \land \neg c) \lor (\neg a \land b \land c)$$
$$\lor (a \land b \land c)$$

а	b	С	output	
0	0	0	1	
0	0	1	1	
0	1	0	1	
0	1	1	1	
1	0	0	0	
1	0	1	0	
1	1	0	0	
1	1	1	1	

Canonical representation

- <u>Every</u> Boolean function can be expressed using the three Boolean operators **AND**,
 OR and **NOT**
- Might not be the most concise method of communicating the Boolean function
- It will come in handy when we design logic circuits

а	b	С	output
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Canonical representation (CNF)

- CNF is an alternative normal form
- May not be the most concise method of communicating a given Boolean function
- Take each row of the truth table where '0' appear as the output
- 2. Construct a logic expression for that row by **OR**'ing the variable where a '0' appears in the column and the negation of a variable where '1' appears in the column
- **3. AND** each of the expression together

а	b	С	output
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Binary Boolean Functions

- There are 16 different binary Boolean functions
- Each binary Boolean function has a conventional name
- In general there are 2^m where m = 2ⁿ

All of the binary Boolean functions are compositions of **AND**, **OR** and **NOT**

Function	x, y
Constant 0	0
And	$x \wedge y$
x And Not y	$x \land \neg y$
x	x
Not x And y	$\neg x \wedge y$
y	y
Exclusive Or	$x \land \neg y \lor \neg x \land y$
Or	$x \vee y$
Nor	$\neg(x \lor y)$
Equivalence	$x \land y \lor \neg x \land \neg y$
Not y	$\neg y$
If y then x	$x \vee \neg y$
Not x	$\neg x$
If x then y	$y \vee \neg x$
Nand	$\neg(x \land y)$
Constant 1	1

Logic gates

- A gate is a physical device that implements a Boolean function
- If a Boolean function operates on n
 variables and returns m binary results
 then the gate implementing the function
 has n input pins and m output pins
- Any gate, except the elementary gates, can be decomposed into elementary gates

Equivalence gate composed from elementary gates

Logic gates

Convert from Boolean expression to Logic circuit.

- Fully parenthesize the Boolean expression
- Construct the tree expression for the Boolean expression
- Start from the top of the tree working down recursively construct the logic circuit

(a AND b) OR (NOT c)

Logic gates - Transistors

- We now know that all Boolean functions can be expressed in terms of AND, OR and NOT gates
- We know that AND, OR and NOT gates can be constructed from transistors
- Therefore all Boolean functions can be constructed from transistors

Layers of abstraction are important in computer science

Summary

- Introduced truth tables and canonical representation
- Introduced composite logic gates
- Demonstrated a technique for obtaining the canonical representation
- Demonstrated a technique for obtaining a logic circuit from a Boolean expression
- Demonstrated that abstraction is a powerful tool