

Random Forest

https://github.com/as-budi/Embedded Al.git

1. Pengertian Random Forest

- Random Forest adalah algoritma machine learning berbasis ensemble yang digunakan untuk tugas klasifikasi dan regresi.
- Algoritma ini terdiri dari kumpulan pohon keputusan (*decision trees*) yang bekerja bersama untuk meningkatkan akurasi dan mengurangi overfitting dibandingkan dengan pohon keputusan tunggal.
- Metode ini diperkenalkan oleh Leo Breiman pada tahun 2001 dan didasarkan pada konsep Bagging (Bootstrap Aggregating), yang bertujuan untuk meningkatkan performa model dengan menggabungkan hasil prediksi dari beberapa pohon keputusan.

2. Cara Kerja Random Forest

 Random Forest bekerja dengan membangun banyak pohon keputusan dari subset data yang berbeda dan kemudian menggabungkan hasilnya untuk mendapatkan prediksi akhir.

3. Tahapan dalam Random Forest:

1. Bootstrap Sampling

- Dari dataset awal, N sampel dipilih secara acak dengan pengembalian (bootstrap).
- Artinya, beberapa sampel bisa terpilih lebih dari sekali, sedangkan beberapa lainnya mungkin tidak terpilih.

2. Pembentukan Pohon Keputusan

- Setiap pohon dibuat menggunakan subset data hasil bootstrap.
- Pada setiap percabangan dalam pohon, hanya sejumlah fitur yang dipilih secara acak untuk dipertimbangkan sebagai kandidat pemisahan (feature randomness).
- Pohon tumbuh hingga kedalaman tertentu tanpa pemangkasan (pruning).

3. Penggabungan Hasil

- Untuk klasifikasi: hasil prediksi setiap pohon dihitung berdasarkan voting mayoritas.
- Untuk regresi: rata-rata dari prediksi setiap pohon digunakan sebagai hasil akhir.

4. Kelebihan dan Kekurangan Random Forest

Kelebihan:

✓ Akurasi Tinggi

- Mengurangi overfitting dibandingkan dengan pohon keputusan tunggal.
- Lebih tahan terhadap perubahan kecil dalam dataset.

✓ Mampu Menangani Data dengan Banyak Fitur

• Secara otomatis melakukan seleksi fitur dengan memilih subset fitur secara acak pada setiap pohon.

✓ Dapat Digunakan untuk Klasifikasi dan Regresi

Fleksibel untuk berbagai jenis tugas machine learning.

√ Tidak Sensitif terhadap Data Hilang

• Dapat menangani missing values dan tetap bekerja dengan baik.

✓ Menangani Data Non-Linear

• Berkat kombinasi banyak pohon, model ini dapat menangkap hubungan non-linear dalam data.

Kekurangan:

X Kompleksitas Tinggi

 Membutuhkan lebih banyak waktu dan sumber daya dibandingkan decision tree tunggal.

X Kurang Interpretable

 Karena terdiri dari banyak pohon, sulit untuk memahami bagaimana model mengambil keputusan.

X Menggunakan Banyak Memori

• Penyimpanan model besar, terutama jika jumlah pohon tinggi.

5. Contoh Implementasi dalam Python

```
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score
# Load dataset Tris
iris = load_iris()
X = iris.data
y = iris.target
# Bagi dataset menjadi training dan testing
X_{\text{train}}, X_{\text{test}}, y_{\text{train}}, y_{\text{test}} = train_{\text{test}}split(X_{\text{test}}, Y_{\text{test}}), Y_{\text{test}} random_state=42)
# Buat model Random Forest
rf = RandomForestClassifier(n_estimators=100, random_state=42)
rf.fit(X_train, y_train)
# Prediksi pada data uji
y_pred = rf.predict(X_test)
# Evaluasi model
accuracy = accuracy_score(y_test, y_pred)
print(f'Akurasi Model: {accuracy:.2f}')
```


6. Parameter Penting dalam Random Forest

Beberapa parameter penting dalam Random Forest yang dapat dikonfigurasi:

- n_estimators → Jumlah pohon dalam hutan (semakin banyak, semakin stabil).
- max_features
 → Jumlah fitur yang dipilih secara acak di setiap percabangan.
- max_depth → Kedalaman maksimum pohon keputusan.
- $min_samples_split$ \rightarrow Jumlah sampel minimal untuk membagi simpul (node).
- min_samples_leaf → Jumlah minimum sampel di setiap daun (*leaf*

7. Contoh Perhitungan Manual Random Forest

 Misalkan kita memiliki dataset Iris, tetapi untuk penyederhanaan, kita hanya akan menggunakan 4 sampel dan 2 fitur:

Sample	Panjang Kelopak	Lebar Kelopak	Class (Target)
Α	5.1	3.5	0 (Setosa)
В	4.9	3.0	0 (Setosa)
С	6.2	3.4	1 (Versicolor)
D	5.8	2.7	1 (Versicolor)

• Target (kelas) yang akan diprediksi: 0 (Setosa), 1 (Versicolor)

Bootstrap Sampling

- Dalam **Random Forest**, kita akan mengambil beberapa sampel secara acak dengan pengembalian (bootstrap sampling).
- Misalkan kita membangun **3 pohon keputusan**, dan masing-masing mengambil subset berbeda.

Tree 1 (Subset 1)

Sample	Feature 1	Feature 2	Class
A	5.1	3.5	0
В	4.9	3.0	0
С	6.2	3.4	1

Tree 2 (Subset 2)

Sample	Feature 1	Feature 2	Class
A	5.1	3.5	0
D	5.8	2.7	1
С	6.2	3.4	1

Tree 3 (Subset 3)

Sample	Feature 1	Feature 2	Class
В	4.9	3.0	0
D	5.8	2.7	1
С	6.2	3.4	1

Pembentukan Pohon Keputusan

- Setiap pohon akan membuat aturan berdasarkan pembagian optimal (splitting criterion).
- Dalam Random Forest, pembagian didasarkan pada Gini Impurity atau Entropy.

Gini Impurity Formula

- $Gini = 1 \sum p_i^2$
- ullet di mana p_i adalah probabilitas masing-masing kelas dalam node.

Contoh Perhitungan Gini Impurity

 Misalkan kita memiliki node awal dengan dua kelas untuk Tree 1, masing-masing dengan probabilitas:

 \circ **Setosa**: 2/3 = 0.67

• **Versicolor**: 1/3 = 0.33

Maka Gini impurity sebelum pembagian:

•
$$Gini_{awal} = 1 - (0.67^2 + 0.33^2) = 1 - (0.4489 + 0.1089) = 0.442$$

- Setelah pemisahan pada **Feature 1 (Panjang Kelopak)** dengan batas **5.5**, kita memperoleh dua kelompok:
 - 1. Kiri (Feature $1 \le 5.5$) $\rightarrow \{A \text{ (Setosa)}, B \text{ (Setosa)}\}\$
 - 2. **Kanan (Feature 1 > 5.5)** → {C (Versicolor)}
- Gini impurity masing-masing node:
 - \circ Gini kiri: Semua kelas Setosa o $Gini=1-(1^2)=0$
 - \circ Gini kanan: Semua kelas Versicolor o $Gini=1-(1^2)=0$

• Gini impurity total dihitung dengan formula:

$$ullet \ Gini_{total} = rac{n_{kiri}}{n_{total}} Gini_{kiri} + rac{n_{kanan}}{n_{total}} Gini_{kanan}$$

•
$$Gini_{total} = \frac{2}{3}(0) + \frac{1}{3}(0) = 0$$

- Karena Gini impurity setelah pemisahan **lebih kecil**, maka kita memilih **Feature 1 dengan threshold 5.5** sebagai split terbaik.
- Perlakkuan yang sama digunakan untuk Tree 2 dan Tree 3.

Prediksi dengan Voting

Misalkan kita memiliki sampel baru dengan **Feature 1 = 5.0, Feature 2 = 3.2**, dan kita ingin memprediksi kelasnya.

- Tree 1: Memilih Setosa (0)
- Tree 2: Memilih Setosa (0)
- Tree 3: Memilih Setosa (0)

Karena mayoritas pohon memilih **Setosa (0)**, maka hasil akhir model adalah **Setosa (0)**.

8. Generalisasi ke Dataset Lebih Besar

- Dalam implementasi nyata seperti pada dataset Iris dengan 150 sampel dan 4 fitur, proses ini berulang dalam skala yang lebih besar:
- Setiap **tree** menggunakan subset data (bootstrap sample).
- Fitur dipilih secara acak untuk pembagian optimal.
- Hasil voting dari semua pohon menentukan prediksi akhir.
- Jika kita mengulangi proses ini untuk 100 pohon, maka hasil akhir akan menjadi lebih stabil dan akurat dibandingkan hanya menggunakan satu pohon keputusan.

Kesimpulan

- 1. Random Forest membangun banyak pohon keputusan dengan bootstrap sampling.
- 2. Setiap pohon memilih subset fitur acak untuk menghindari overfitting.
- 3. Pemisahan dalam pohon menggunakan kriteria seperti Gini Impurity atau Entropy.
- 4. Prediksi akhir diperoleh melalui voting mayoritas (klasifikasi) atau rata-rata (regresi).
- 5. Dengan lebih banyak pohon, model menjadi lebih stabil dan lebih akurat.