GREAT LEARNING – PGPDSBA

LI_BFSI_01 - Life Insurance Sales

Source: https://www.istockphoto.com/photo/insurance-protecting-family-health-live-house-and-car-concept-gm1199060494-342911158

Batch: PGPDSBA.O.AUG22.B

Name: Saurabh Girpunje

Contents:

- 1] Introduction What did you wish to achieve while doing the project?
- 2] EDA Uni-variate / Bi-variate / multi-variate analysis to understand relationship b/w variables. Both visual and non-visual understanding of the data.
- 3] Data Cleaning and Pre-processing Approach used for identifying and treating missing values and outlier treatment (and why) Need for variable transformation (if any) Variables removed or added and why (if any)
- 4] Model building Clear on why was a particular model(s) chosen. Effort to improve model performance.
- 5] Model validation How was the model validated? Just accuracy, or anything else too?
- 6] Final interpretation / recommendation Very clear and crisp on what recommendations do you want to give to the management / client.

Index:

Sr. No.	Contents	Page No.
1	Introduction	4
2	EDA and Business Implication	4
3	Data Cleaning and Pre-processing	12
4	Model building	18
5	Model validation	26
6	Final interpretation / recommendation	27

Table of Figures:

Sr. No.	Name of Figure	Page No.
1	Univariate Analysis of Agent Bonus	7
2	Univariate Analysis of Age	7
3	Univariate Analysis of CustTenure	8
4	Univariate Analysis of Monthly Income	8
5	Bivariate Analysis of Agent Bonus vs Occupation	10
6	Bivariate Analysis of Agent Bonus vs Designation	11
7	Bivariate Analysis of Agent Bonus vs Zone	11
8	AgentBonus, Designation and Payment method	12
9	Correlation Heatmap	17
10	y_test vs y_pred on Linear Regression	23
11	y_test vs y_pred on Lasso Regression	23
12	y_test vs y_pred on Ridge Regression	24
13	y_test vs y_pred on Elastic Net Regression	24
14	y_test vs y_pred on Decision Tree Regression	25
15	y_test vs y_pred on Random Forest Regression	25
16	Feature Importance	26

1. Introduction

The dataset belongs to a leading life insurance company. The company wants to predict the bonus for its agents so that it may design appropriate engagement activity for their high performing agents and upskill programs for low performing agents.

1.1. Defining problem statement:

The life insurance company wants to predict how much bonus to give its agents. This will help them create special activities for agents who perform well and provide training for agents who do not perform as well. We have a dataset with information about the agents' performance, sales history, customer satisfaction, and other relevant details. Overall, the company's goal is to improve agent performance, increase sales, make customers happier, and make more money by using the model's predictions to allocate resources and investments effectively.

1.2. Need of the study/project:

Overall, the study/project of predicting bonuses for agents in a leading life insurance company helps evaluate performance, motivate, and engage high-performing agents, improve the performance of low-performing agents, manage talent effectively, and make data-driven decisions for fair compensation and rewards.

1.3. Understanding business/social opportunity:

Life insurance companies help people, organizations, and the economy in many ways. They keep our money safe, help us maintain a good life, and give us a feeling of safety and calmness. They also teach us how to prevent losses, make us more successful, and help us understand the dangers and results of risks through education.

2. EDA and Business Implication:

2.1. Data Dictionary:

CustID - Unique customer ID

AgentBonus - Bonus amount given to each agents in last month

Age - Age of customer

CustTenure - Tenure of customer in organization

Channel - Channel through which acquisition of customer is done

Occupation - Occupation of customer

EducationField - Field of education of customer

Gender - Gender of customer

ExistingProdType - Existing product type of customer

Designation - Designation of customer in their organization

NumberOfPolicy - Total number of existing policy of a customer

MaritalStatus - Marital status of customer

MonthlyIncome - Gross monthly income of customer

Complaint - Indicator of complaint registered in last one month by customer ExistingPolicyTenure - Max tenure in all existing policies of customer SumAssured - Max of sum assured in all existing policies of customer Zone - Customer belongs to which zone in India. Like East, West, North and South PaymentMethod - Frequency of payment selected by customer like Monthly, quarterly, half yearly and yearly

LastMonthCalls - Total calls attempted by company to a customer for cross sell CustCareScore - Customer satisfaction score given by customer in previous service call

AgentBonus is the target variable and it is of continuous datatype. This problem belongs to the Regression analysis.

2.2. Checking rows and columns in dataset:

Total number of rows in dataset are 4520 and columns are 20

2.3. Getting top 5 rows in dataset:

	CustID	AgentBonus	Age	CustTenure	Channel	Occupation	EducationField	Gender	ExistingProdType	Designation	NumberOfPolicy	Marital Status	Month
0	7000000	4409	22.0	4.0	Agent	Salaried	Graduate	Female	3	Manager	2.0	Single	
1	7000001	2214	11.0	2.0	Third Party Partner	Salaried	Graduate	Male	4	Manager	4.0	Divorced	
2	7000002	4273	26.0	4.0	Agent	Free Lancer	Post Graduate	Male	4	Exe	3.0	Unmarried	
3	7000003	1791	11.0	NaN	Third Party Partner	Salaried	Graduate	Fe male	3	Executive	3.0	Divorced	
4	7000004	2955	6.0	NaN	Agent	Small Business	UG	Male	3	Executive	4.0	Divorced	

2.4. Getting last 5 rows in dataset:

	CustID	AgentBonus	Age	CustTenure	Channel	Occupation	EducationField	Gender	ExistingProdType	Designation	NumberOfPolicy	MaritalStatus	Мс
4515	7004515	3953	4.0	8.0	Agent	Small Business	Graduate	Male	4	Senior Manager	2.0	Single	
4516	7004516	2939	9.0	9.0	Agent	Salaried	Under Graduate	Female	2	Executive	2.0	Married	
4517	7004517	3792	23.0	23.0	Agent	Salaried	Engineer	Female	5	AVP	5.0	Single	
4518	7004518	4816	10.0	10.0	Online	Small Business	Graduate	Female	4	Executive	2.0	Single	
4519	7004519	4764	14.0	10.0	Agent	Salaried	Under Graduate	Female	5	Manager	2.0	Married	

2.5. Getting information about the dataset:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4520 entries, 0 to 4519
Data columns (total 20 columns):

#	Column	Non-Null Count	Dtype
0	CustID	4520 non-null	int64
1	AgentBonus	4520 non-null	int64
2	Age	4251 non-null	float64
3	CustTenure	4294 non-null	float64
4	Channel	4520 non-null	object
5	Occupation	4520 non-null	object
6	EducationField	4520 non-null	object
7	Gender	4520 non-null	object
8	ExistingProdType	4520 non-null	int64
9	Designation	4520 non-null	object
10	NumberOfPolicy	4475 non-null	float64
11	MaritalStatus	4520 non-null	object
12	MonthlyIncome	4284 non-null	float64
13	Complaint	4520 non-null	int64
14	ExistingPolicyTenure	4336 non-null	float64
15	SumAssured	4366 non-null	float64
16	Zone	4520 non-null	object
17	PaymentMethod	4520 non-null	object
18	LastMonthCalls	4520 non-null	int64
19	CustCareScore	4468 non-null	float64
d+vn	oc: float64/7) int64/	5) object(0)	

dtypes: float64(7), int64(5), object(8)

2.6. Describing dataset:

	count	unique	top	freq	mean	std	min	25%	50%	75%	max
CustID	4520.00	NaN	NaN	NaN	7002259.50	1304.96	7000000.00	7001129.75	7002259.50	7003389.25	7004519.00
AgentBonus	4520.00	NaN	NaN	NaN	4077.84	1403.32	1605.00	3027.75	3911.50	4867.25	9608.00
Age	4251.00	NaN	NaN	NaN	14.49	9.04	2.00	7.00	13.00	20.00	58.00
CustTenure	4294.00	NaN	NaN	NaN	14.47	8.96	2.00	7.00	13.00	20.00	57.00
Channel	4520	3	Agent	3194	NaN	NaN	NaN	NaN	NaN	NaN	NaN
Occupation	4520	5	Salaried	2192	NaN	NaN	NaN	NaN	NaN	NaN	NaN
EducationField	4520	7	Graduate	1870	NaN	NaN	NaN	NaN	NaN	NaN	NaN
Gender	4520	3	Male	2688	NaN	NaN	NaN	NaN	NaN	NaN	NaN
ExistingProdType	4520.00	NaN	NaN	NaN	3.69	1.02	1.00	3.00	4.00	4.00	6.00
Designation	4520	6	Manager	1620	NaN	NaN	NaN	NaN	NaN	NaN	NaN
NumberOfPolicy	4475.00	NaN	NaN	NaN	3.57	1.46	1.00	2.00	4.00	5.00	6.00
Marital Status	4520	4	Married	2268	NaN	NaN	NaN	NaN	NaN	NaN	NaN
MonthlyIncome	4284.00	NaN	NaN	NaN	22890.31	4885.60	16009.00	19683.50	21606.00	24725.00	38456.00
Complaint	4520.00	NaN	NaN	NaN	0.29	0.45	0.00	0.00	0.00	1.00	1.00
ExistingPolicyTenure	4336.00	NaN	NaN	NaN	4.13	3.35	1.00	2.00	3.00	6.00	25.00
SumAssured	4366.00	NaN	NaN	NaN	619999.70	246234.82	168536.00	439443.25	578976.50	758236.00	1838496.00
Zone	4520	4	West	2566	NaN	NaN	NaN	NaN	NaN	NaN	NaN
PaymentMethod	4520	4	Half Yearly	2656	NaN	NaN	NaN	NaN	NaN	NaN	NaN
LastMonthCalls	4520.00	NaN	NaN	NaN	4.63	3.62	0.00	2.00	3.00	8.00	18.00
CustCareScore	4468.00	NaN	NaN	NaN	3.07	1.38	1.00	2.00	3.00	4.00	5.00

Insights:

- There are 7 variables of float datatype, 5 variables of int datatype and 8 variables of object datatype.
- CustID variable can be drop as this only includes customer id and will be of no use in building model and further analysis.
- Age of customer varies from 2 years to 58 years. This shows that usually customer
 with 2 years cannot take insurance by himself/herself. It must be insurance taken by
 the customer for their children and that should be age of children.
- There are null values in some of the columns. Need to treat them.
- There are no duplicate values in the dataset.
- The AgentBonus includes information about the bonus amounts for agents. The mean bonus is approximately 4,077.84, with a standard deviation of 1,403.32. The minimum bonus is 1,605, and the maximum bonus is 9,608.
- There are 3 Gender unique values present. Need to verify the values.
- The values present varies in scale. So, need of scaling before building model.

2.7. Univariate Analysis:

1] Agent Bonus:

Figure 1: Univariate Analysis of Agent Bonus

It is right skewed distribution. Here, mean value is greater than median value. Most of the Agent got bonus in the median range. Outliers are also present in a large extent. Some of the Agent are performing well so they are receiving higher amount of Bonus value.

2] Age:

Figure 2: Univariate Analysis of Age

Most of the age of the customer are seen to be between 8 years to 20 years. This seems that customers are taking insurance for their children. Agent should focus on this strategy to sell more insurance or target the customer by introducing new schemes for children insurance.

3] CustTenure:

Figure 3: Univariate Analysis of CustTenure

It is been observed that most of the customers have opted for the insurance for maximum of the 10-20 years. It is seen that customers are avoiding to take insurance for long duration of time.

4] Monthly Income:

Figure 4:Univariate Analysis of Monthly Income

Most of the customers have the monthly income between 20000 to 25000.

5] Channel:

Most Channel used for selling insurance is through Agent only. Online is the least Channel used by Customer's. So, company should focus on giving bonus to Agent's so to acquire more and more customers.

6] Occupation:

It is seen that Customers who are Salaried are taking more number of Insurance. Free Lancer customers are almost negligible. Customers with Small Business are also taking Insurance.

7] Gender:

Male are dominating.

8] Zone:

It is clearly seen that South zone is neglected as there are almost negligible customers who are taking insurance. West zone is highest is taking insurance. The company should increase number of Agent's in the East and South zone and need to tell benefits of the taking insurance.

9] Payment Method:

Most of the Customers are doing their payment method as Half Yearly. Different schemes and benefits should be introduced on the Yearly as well as Half yearly payments.

2.8. Bivariate Analysis:

1] Agent Bonus vs Occupation:

Agent receives more Bonus for subscription of customers with Large Business. Almost bonus is common from all type of Occupation.

2] Agent Bonus vs Designation:

Figure 6: Bivariate Analysis of Agent Bonus vs Designation

Most of the Bonus received to Agent is through VP and AVP. Might due to high salary also increases rating of the Agent and might increases Bonus.

3] Agent Bonus vs Zone:

Figure 7: Bivariate Analysis of Agent Bonus vs Zone

Most of the bonus achieved is from North, West and East zone.

Bar Plot: AgentBonus, Designation and Payment method PaymentMethod Half Yearly 7000 Yearly Quarterly Monthly 6000 5000 AgentBonus 4000 3000 2000 1000 Manager ΑVΡ Senior Manager Executive Designation

4] AgentBonus, Designation and Payment method:

Figure 8: AgentBonus, Designation and Payment method

Most bonus income are from VP who pay monthly and yearly, and AVP who pay quarterly.

3. Data Cleaning and Pre-processing

3.1. Outlier Treatment:

We had used Inter Quantile Range (IQR) for the outlier treatment. The values which are below 25th percentile of the data, are treated as LL (Lower limit) and the values which are above the 75th percentile of the data, are treated as UL (Upper limit).

Outlier's are present in some of the columns:

- It is possible to have the age more than 52, as this is the true outliers, so we are not removing outliers. Also, changing the data is also not relevant as this may cause discrepancy in the dataset.
- It is possible to have Income more than 33000 per month. So, changing data is not relevant.

3.2. Irrelevant variable:

We had removed CustID column as this column is of no use. It only contains ID of the customer which may have issue while building model.

3.3. Filling Null values:

Only 1.35% data is missing, so we can fill this data. So, we are using Mean, Median, Mode method to treat missing values here. As, missing values are present in the continuous variables are most of that variables have outliers so it is relevant to fill these null values with using median. After treating Null values, now there are 0 null values.

AgentBonus 0 Age 0 CustTenure Channel 0 Occupation 0 EducationField Gender 0 ExistingProdType 0 Designation NumberOfPolicy 0 MaritalStatus 0 MonthlyIncome Complaint ExistingPolicyTenure 0 SumAssured 0 Zone PaymentMethod 0 LastMonthCalls 0 CustCareScore dtype: int64

3.4. Data Cleaning:

We had segregated data into Numerical and Categorical datatypes:

1t	M
Agent 3194	Manager 1620
Third Party Partner 858	
Online 468	Senior Manager 676
Name: Channel, dtype: int64	AVP 336
	VP 226
Salaried 2192	Exe 127
Small Business 1918	Name: Designation, dtype: int64
Large Business 255	
	Married 2268
Free Lancer 2	Single 1254
Name: Occupation, dtype: int64	
	Unmarried 194
Graduate 1870	Name: MaritalStatus, dtype: int64
Under Graduate 1190	West 2566
Diploma 496	
Engineer 408	North 1884
Post Graduate 252	East 64
UG 230	South 6
MBA 74	Name: Zone, dtype: int64
Name: EducationField, dtype: int64	
	Half Yearly 2656
Male 2688	Yearly 1434
Female 1507	Monthly 354
Fe male 325	Quarterly 76
	Name: PaymentMethod, dtype: int64
Name: Gender, dtype: int64	, , , , , , , , , , , , , , , , , , , ,

- It is observed that many categorical columns have incorrect data.
- In Occupation column, Large Business is repeated two times and can be combined into same column.
- In Education field, UG and Under Graduate can be combined into one.
- In Gender, Female category is incorrectly spelled so it is also combined into one.
- In Designation, Exe and Executive can be combined into one.
- In MaritalStatus, Single and Unmarried can be combined into one as both meaning same.

After fixing columns data, it is shown as below.

```
1620
Manager
                                       Agent
                                                               3194
Executive
                  1535
                                       Third Party Partner
                                                                858
Senior Manager
                   676
                                       Online
                                                                468
AVP
                   336
                                       Name: Channel, dtype: int64
VP
                   226
Exe
                   127
                                       Salaried
Name: Designation, dtype: int64
                                       Small Business
                                       Large Business
                                                           255
Married
             2268
                                       Laarge Business
                                                           153
Single
             1254
                                       Free Lancer
Divorced
              804
                                       Name: Occupation, dtype: int64
Unmarried
              194
Name: MaritalStatus, dtype: int64
                                       Graduate
                                                         1870
                                       Under Graduate
                                                         1190
                                       Diploma
                                                          496
North
         1884
                                       Engineer
                                                          408
East
          64
                                       Post Graduate
                                                          252
South
                                       UG
                                                          230
Name: Zone, dtype: int64
                                       MBA
                                                           74
                                       Name: EducationField, dtype: int64
Half Yearly
Yearly
               1434
                                       Male
                                                  2688
Monthly
               354
                                       Female
                                                  1507
Quarterly
                 76
                                       Fe male
                                                   325
Name: PaymentMethod, dtype: int64
                                       Name: Gender, dtype: int64
```

3.5. Encoded Data:

We had used One-Hot Encoding here as One-Hot encoding is used to represent categorical data in a binary format, where each category is represented by a unique binary vector with all elements as zeros except for one, indicating the category's presence.

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4520 entries, 0 to 4519
Data columns (total 34 columns):
                                            Non-Null Count Dtype
     Column
0
     AgentBonus
                                           4520 non-null
                                                              int64
                                                              float64
1
     Age
                                           4520 non-null
2
     CustTenure
                                           4520 non-null float64
     ExistingProdType
                                           4520 non-null int64
 3
 4
     NumberOfPolicy
                                           4520 non-null
                                                               float64
 5
     MonthlyIncome
                                           4520 non-null
                                                              float64
 6
     Complaint
                                           4520 non-null
                                                              int64
     ExistingPolicyTenure
                                                              float64
                                           4520 non-null
                                                               float64
     SumAssured
                                           4520 non-null
     LastMonthCalls
                                          4520 non-null
                                                              int64
 10 CustCareScore
                                           4520 non-null
                                                              float64
                                           4520 non-null
 11 Channel_Online
                                                               uint8
12 Channel_Third Party ranther
13 Occupation_Large Business 4520 non-null
14 Occupation_Salaried 4520 non-null
15 Occupation_Small Business 4520 non-null
16 EducationField_Engineer 4520 non-null
17 EducationField_Graduate 4520 non-null
18 Signature 4520 non-null
     Channel_Third Party Partner
                                           4520 non-null
                                                               uint8
                                                               uint8
                                                               uint8
                                                               uint8
                                                               uint8
                                                               uint8
18 EducationField_MBA 4520 non-null
19 EducationField_Post Graduate 4520 non-null
20 EducationField_Under Graduate 4520 non-null
                                                               uint8
                                                               uint8
                                                               uint8
 21 Gender_Male
                                         4520 non-null
                                                              uint8
 22 Designation_Executive
23 Designation_Manager
                                         4520 non-null
                                                               uint8
23 Designation_Manager 4520 non-null
24 Designation_Senior Manager 4520 non-null
25 Designation_VP 4520 non-null
                                                               uint8
                                                               uint8
 26 MaritalStatus_Married
                                                               uint8
                                           4520 non-null
                                                               uint8
     MaritalStatus_Unmarried
                                           4520 non-null
 28 Zone_North
                                           4520 non-null
                                                               uint8
 29 Zone_South
                                           4520 non-null
 30 Zone_West
                                           4520 non-null
                                                               uint8
     PaymentMethod_Monthly
                                           4520 non-null
                                                               uint8
 32 PaymentMethod_Quarterly
                                           4520 non-null
                                                               uint8
33 PaymentMethod_Yearly
                                           4520 non-null
                                                              uint8
dtypes: float64(7), int64(4), uint8(23)
```

We had 7 float variable, 5 int64 datatype variable and remaining 23 encoded variables. We had drop first while using one-hot encoding.

3.6. Heatmap:

Figure 9: Correlation Heatmap

- There is no much correlation between the variables in the dataset.
- Only SumAssured is highly correlated with AgentBonus with ratio value of 0.84
- There is no correlation between Complaint and CustTenure, ExistingProdType.

3.7. Variable transformation:

We are using One-Hot encoding here to transform the categorical variables into numerical to build model. We are using one hot encoding here because data is not ordinal. The variables provided in the dataset, such as "Channel," "Occupation," "EducationField," "Gender," "Designation," "MaritalStatus," "Zone," and "PaymentMethod," do not have a natural ordering or inherent numerical relationship. These variables represent different categories or classes without any specific rank or order. One-hot encoding will expand the dimensionality of the dataset, creating additional binary columns for each unique category within each variable. We are also dropping first here.

#	Column	Non-Null Count	Dtype
0	AgentBonus	4520 non-null	int64
1	Age	4520 non-null	float64
2	CustTenure	4520 non-null	float64
3	ExistingProdType	4520 non-null	int64
4	NumberOfPolicy	4520 non-null	float64
5	MonthlyIncome	4520 non-null	float64
6	Complaint	4520 non-null	int64
7	ExistingPolicyTenure	4520 non-null	float64
8	SumAssured	4520 non-null	float64
9	LastMonthCalls	4520 non-null	int64
10	CustCareScore	4520 non-null	float64
11	Channel_Online	4520 non-null	uint8
12	Channel_Third Party Partner	4520 non-null	uint8
13	Occupation_Large Business	4520 non-null	uint8
14	Occupation_Salaried	4520 non-null	uint8
15	Occupation_Small Business	4520 non-null	uint8
16	EducationField_Engineer	4520 non-null	uint8
17	EducationField_Graduate	4520 non-null	uint8
18	EducationField_MBA	4520 non-null	uint8
19	EducationField_Post Graduate	4520 non-null	uint8
20	EducationField_Under Graduate	4520 non-null	uint8
21	Gender_Male	4520 non-null	uint8
22	Designation_Executive	4520 non-null	uint8
23	Designation_Manager	4520 non-null	uint8
24	Designation_Senior Manager	4520 non-null	uint8
25	Designation_VP	4520 non-null	uint8
26	MaritalStatus_Married	4520 non-null	uint8
27	MaritalStatus_Unmarried	4520 non-null	uint8
28	Zone_North	4520 non-null	uint8
29	Zone_South	4520 non-null	uint8
30	Zone_West	4520 non-null	uint8
31	PaymentMethod_Monthly	4520 non-null	uint8
32	PaymentMethod_Quarterly	4520 non-null	uint8
33	PaymentMethod_Yearly	4520 non-null	uint8
dtyp	es: float64(7), int64(4), uint8	(23)	

Insights:

The data is unbalanced. It is seen that South zone has almost negligible data that means Customers are also very few from South zone. More data should be collected from the South zone.

The data for the "Zone" variable is not evenly distributed. Most of the data is from the West and North zones, while there are very few observations from the East and South zones. This imbalance can make it harder to accurately analyse or model the data. To address this, we can try techniques like creating more samples for the underrepresented zones, collecting additional data for those zones, or considering the unique characteristics of each zone in the analysis.

We can try techniques like creating more samples of the less common category, reducing the samples of the more common categories, or using special methods that handle imbalanced data. We also need to choose evaluation metrics that consider the imbalance.

4. Model building

4.1. Train and Test Dataset

We had divided the dataset into train and test with 70-30 train-test split.

After splitting dataset into Train and Test, we have 3164 rows and 34 columns in Train dataset and 1356 rows and 34 columns in Test dataset.

4.2. RFE (Recursive feature elimination):

Recursive feature elimination (RFE) is a feature selection algorithm that works by iteratively removing the least important features from a dataset. The importance of each feature is determined by a scoring function, such as the coefficient of determination (R2) or the mean squared error (MSE).

Applying RFE on Linear Regression on whole 33 features initially to observe p-value and VIF values.

Ranking is given based on the RFE.

```
[('const', False, 2),
    ('Age', True, 1),
    ('CustTenure', True, 1),
    ('ExistingProdType', True, 1),
    ('NumberOfPolicy', True, 1),
    ('NumberOfPolicy', True, 1),
    ('Complaint', True, 1),
    ('ExistingProdType', True, 1),
    ('ExistingPolicyTenure', True, 1),
    ('SumAssured', True, 1),
    ('LastMonthCalls', True, 1),
    ('Channel_Online', True, 1),
    ('Channel_Online', True, 1),
    ('Occupation_Large Business', True, 1),
    ('Occupation_Salaried', True, 1),
    ('Occupation_Small Business', True, 1),
    ('EducationField_Engineer', True, 1),
    ('EducationField_Graduate', True, 1),
    ('EducationField_MBA', True, 1),
    ('EducationField_MBA', True, 1),
    ('EducationField_Under Graduate', True, 1),
    ('Gender_Male', True, 1),
    ('Designation_Executive', True, 1),
    ('Designation_Senior Manager', True, 1),
    ('Designation_Senior Manager', True, 1),
    ('Designation_VP', True, 1),
    ('ManitalStatus_Married', True, 1),
    ('Yone_North', True, 1),
    ('Zone_North', True, 1),
    ('Zone_West', True, 1),
    ('PaymentMethod_Quarterly', True, 1),
    ('PaymentMethod_Quarterly', True, 1),
    ('PaymentMethod_Quarterly', True, 1)]
```

4.3. VIF:

VIF stands for "Variance Inflation Factor." It is a metric used in statistical analysis and regression modeling to assess the severity of multicollinearity among the predictor variables. VIF measures how much the variance of an estimated regression coefficient increases when the predictor variable is added to a model compared to when it is not included, helping to identify potential issues of multicollinearity that can affect the reliability of regression results.

After passing the arbitrary selected columns by RFE we will manually evaluate each models p-value and VIF value. Unless we find the acceptable range for p-values and VIF we keep dropping the variables one at a time based on below criteria.

High p-value High VIF: Drop the variable

High p-value Low VIF or Low p-value High VIF : Drop the variable with high p-value first

Low p-value Low VIF: accept the variable

Checking VIF

Variance Inflation Factor or VIF, gives a basic quantitative idea about how much the feature variables are correlated with each other. It is an extremely important parameter to test our linear model. We will initially checking vif for continuous features only.

	Features	VIF
7	SumAssured	1.71
4	MonthlyIncome	1.47
0	Age	1.34
1	CustTenure	1.31
8	LastMonthCalls	1.15
6	ExistingPolicyTenure	1.11
2	ExistingProdType	1.05
3	NumberOfPolicy	1.04
5	Complaint	1.00
9	CustCareScore	1.00

4.4. Model Building:

4.4.1. Linear Regression Model:

So, we had build first model with Linear Regression and observed p-value and vif values

	OLS Regress:	ion Results				
					====	
Dep. Variable:	AgentBonus	R-squared:		а	.807	
Model:	OLS	Adj. R-squar	red:		.805	
Method: L		F-statistic			97.6	
	10 Aug 2023	Prob (F-sta			0.00	
Time:	19:09:05	Log-Likelih			793.	
No. Observations:	3164	AIC:		4.965		
Df Residuals:	3130	BIC:		4.986		
Df Model:	33	DIC.		4.500	C.104	
Covariance Type:	nonrobust					
established Type.						
	coe		t	P> t	Γ0.025	0.9751
			_	F 2 C	[0.023	
const	5020.8320			0.000	4113.339	5928.325
Age	197.057			0.000	172.107	222.009
CustTenure	215.157			0.000	190.449	239.867
ExistingProdType	57.077			0.012	12.375	101.780
NumberOfPolicy	-4.060			0.724	-26.638	18.518
	152.885			0.724	105.787	199.985
MonthlyIncome						
Complaint	16.745			0.128	-4.835	38.325
ExistingPolicyTenure	118.325			0.000	95.643	141.008
SumAssured	816.214			0.000	787.876	844.553
LastMonthCalls	-13.459			0.266	-37.166	10.246
CustCareScore	4.351			0.694	-17.350	26.052
Channel_Online	50.114			0.174	-22.206	122.435
Channel_Third Party Partr				0.863	-50.927	60.783
Occupation_Large Business				0.281	-1424.793	414.087
Occupation_Salaried	-473.079			0.281	-1334.198	388.039
Occupation_Small Business				0.214	-1438.678	322.331
EducationField_Engineer	-41.277			0.817	-390.217	307.661
EducationField_Graduate	-63.911			0.523	-260.119	132.296
EducationField_MBA	22.984			0.865	-242.207	288.176
EducationField_Post Gradu				0.292	-332.019	99.807
EducationField_Under Grad				0.776	-66.337	88.913
Gender_Male	12.850			0.570	-31.490	57.191
Designation_Executive	-464.918	1 64.783	-7.177	0.000	-591.940	-337.896
Designation_Manager	-440.962	5 55.340	-7.968	0.000	-549.468	-332.457
Designation_Senior Manage				0.000	-373.130	-167.524
Designation_VP	-30.561	2 72.188	-0.423	0.672	-172.101	110.979
MaritalStatus_Married	-45.168	2 30.746	-1.469	0.142	-105.452	15.115
MaritalStatus_Unmarried	-2.819	3 32.929	-0.086	0.932	-67.384	61.746
Zone_North	-6.586	93.942	-0.070	0.944	-190.781	177.609
Zone_South	204.423	9 322.036	0.635	0.526	-426.999	835.847
Zone_West	-2.451	93,488	-0.026	0.979	-185.755	180.852
PaymentMethod_Monthly	205.553	2 61.222	3.358	0.001	85.514	325.592
PaymentMethod_Quarterly	134.141	89.511	1.499	0.134	-41.365	309.648
PaymentMethod_Yearly	-78.272	2 35.106	-2.230	0.026	-147.105	-9.439
Omnibus:	139.518	Durbin-Wats	on:	1	.992	
Prob(Omnibus):	0.000	Jarque-Bera	(JB):	160	.457	
Skew:	0.508	Prob(JB):		1.44		
Kurtosis:	3.429	Cond. No.			151.	
					====	

Here we can see that many of the features has p-value > 0.05. So, we will remove those features with p-value > 0.05 as they are not significant.

So, we will again run RFE by considering less number of features and drop features one-byone those have p-value > 0.05. Also, we will observe R-squared and Adj. R-squared.

Now again running RFE with considering 23 features and training the data with OLS.

```
[('const', False, 12),
('Age', True, 1),
('CustTenure', True, 1),
('ExistingProdType', True, 1),
('NumberOfPolicy', False, 9),
('MonthlyIncome', True, 1),
('complaint', False, 2),
('ExistingPolicyTenure', True, 1),
('sumAssured', True, 1),
('LastMonthCalls', False, 8),
('channel_Online', True, 1),
('Cucupation_Large Business', True, 1),
('Occupation_Large Business', True, 1),
('Occupation_Salaried', True, 1),
('EducationField_Engineer', True, 1),
('EducationField_Engineer', True, 1),
('EducationField_Bost Graduate', True, 1),
('EducationField_MBA', True, 1),
('EducationField_MBare, True, 1),
('Cone, MaritalStatus_Married', True, 1),
('Designation_WP', True, 1),
('Yane_Msitstatus_Married', False, 10),
('Zone_North', False, 7),
('Zone_South', True, 1),
('Zone_South', True, 1),
('PaymentMethod_Quarterly', True, 1),
('PaymentMethod_Vearly', True, 1),
('PaymentMethod_Vearly', True, 1),
('PaymentMethod_Vearly', True, 1)]

OLS Regression Results

AgentBonus R-squared:

Least Squares F-statistic:

Thu, 10 Aug 2023 Prob (F-statistic):
19:00:05 106:1kelihood:
13:64 AlC:
```

	OLS Regress					
	gentBonus	R-squared:			0.807	
Model:	OLS	Adi. R-squar	red:	Č		
		Prob (F-stat				
Time:		Log-Likelih		- 24		
No. Observations:	3164	AIC:	bou.	4.964		
Df Residuals:	3140	BIC:		4.978		
Df Model:	23	BIC:		4.970	30404	
Covariance Type:	noncobust					
covariance type.						
	coef		t	P> t	[0.025	0.975]
const	5054.6523		11.220	0.000	4171.360	5937.944
Age	197.6011			0.000	172,718	222.485
CustTenure	215.2949			0.000	190.628	239.962
ExistingProdType	52.9548				9,376	96.533
MonthlyIncome	151.7814			0.000	105.008	198.555
ExistingPolicyTenure	117.0854			0.000	94.514	139.657
SumAssured	816.0348				787.780	844.289
Channel Online	48.3413		1.336	0.182	-22,609	119,291
Occupation_Large Business	-522.1215				-1438.688	394.445
Occupation Salaried	-503.2033			0.251	-1361.856	355.449
Occupation Small Business	-585.2828				-1463.498	292.932
EducationField Engineer	-60.8603		-0.348	0.727	-403.278	281.558
EducationField Graduate	-69.2517		-0.729	0.727	-255,460	116.956
EducationField MBA	18.7067		0.143		-238.365	275.778
EducationField Post Graduate				0.264		88.844
Designation Executive	-454.4367		-7.106	0.204	-579.825	-329.049
Designation_executive Designation Manager	-439.7889			0.000	-547.668	-329.049
Designation_Manager					-375.781	-171.068
Designation VP	-34.0341		-0.474	0.636	-174.943	106.875
MaritalStatus Married	-43.1914		-1.955	0.051		0.120
Zone South	184.0944		0.598	0.550		788.024
PaymentMethod Monthly	196,4268		3,273	0.001	78,745	314.108
PaymentMethod Ouarterly	129.5773		1.460	0.144	-44.412	303.567
PaymentMethod_Quarterly PaymentMethod_Yearly	-73.8148	34.704	-2.127	0.144	-141.860	-5.770
Paymenthethod_Yearly						-5.770
Omnibus:	141.398	Durbin-Wats			1.995	
Prob(Omnibus):		Jarque-Bera			3.081	
Skew:	0.511		(30).	3.87		
Kurtosis:	3,438	Cond. No.		5.0	126.	
Kur Costs.						

Here, we observe that, the 10 features are removed but R-squared values is stable. So, we can proceed by dropping that variable. Now dropping the features which has p-value > 0.05 one-by-one and observing R2 squared and Adj R-squared.

So, after performing this process repeatedly, we now have with 12 features left in the train dataset.

OLS Regression Results									
Dep. Variable:	AgentBonus	R-squared:		0.807					
Model:	OLS			0.806					
Method:	Least Squares				1095.				
	Thu, 10 Aug 2023	•			0.00				
Time:	19:09:05		hood:		24800.				
No. Observations:	3164				63e+04				
Df Residuals:	3151	BIC:		4.9	70e+04				
Df Model:	12								
Covariance Type:	nonrobust								
	coef	std err	t	P> t	[0.025	0.975]			
const	4475.4023	52.540	85.181	0.000	4372.387	4578.418			
Age	198.7119	12.657	15.700	0.000	173.895	223.529			
CustTenure	215.2153	12.566	17.127	0.000	190.577	239.853			
ExistingProdType	49.2265	20.846	2.361	0.018	8.353	90.100			
MonthlyIncome	148.5145	20.788	7.144	0.000	107.756	189.273			
ExistingPolicyTenure	117.3797	11.494	10.213	0.000	94.844	139.915			
SumAssured	815.5805	14.397	56.648	0.000	787.352	843.809			
Designation_Executive	-450.3848	63.460	-7.097	0.000	-574.813	-325.957			
Designation_Manager	-432.5758	54.209	-7.980	0.000	-538.863	-326.288			
Designation_Senior Ma	nager -267.1051	50.065	-5.335	0.000	-365.269	-168.941			
MaritalStatus_Married	-44.4243	21.969	-2.022	0.043	-87.500	-1.349			
PaymentMethod_Monthly	189.0994	57.367	3.296	0.001	76.618	301.580			
PaymentMethod_Yearly	-70.9304	33.855	-2.095	0.036	-137.311	-4.550			
Omnibus:	135.765	Durbin-Wat			1.993				
Prob(Omnibus):	0.000	Jarque-Ber	a (JB):		155.495				
Skew:	0.501	Prob(JB):		1.	72e-34				
Kurtosis:	3.418	Cond. No.			15.2				
=======================================									

After dropping features one-by-one, R-squared is stable that means it seems to be liable to drop features with high p-value.

	Features	VIF
2	ExistingProdType	3.00
11	PaymentMethod_Yearly	2.56
10	PaymentMethod_Monthly	2.03
6	Designation_Executive	2.01
9	MaritalStatus_Married	1.93
3	MonthlyIncome	1.77
5	SumAssured	1.72
7	Designation_Manager	1.56
0	Age	1.34
1	CustTenure	1.32
8	Designation_Senior Manager	1.26
4	ExistingPolicyTenure	1.11

We have VIF values less than 5. So, these features can be used in building the model's.

Interpretation:

- This output represents the results of an Ordinary Least Squares (OLS) regression model with the "AgentBonus" variable as the dependent variable and 12 predictor variables.
- R-squared (R²): The coefficient of determination is 0.807, indicating that approximately 80.7% of the variance in the dependent variable (AgentBonus) can be explained by the predictor variables in the model.
- Adjusted R-squared (Adj. R²): The adjusted R-squared is 0.806, which is a modified version of R-squared that considers the number of predictor variables in the model, providing a more accurate measure of the model's goodness of fit
- P-values: A p-value less than 0.05 is typically considered statistically significant, suggesting
 that the predictor variable has a significant impact on the dependent variable. In this output,
 several variables (e.g., Age, CustTenure, MonthlyIncome, etc.) have p-values less than 0.05,
 indicating they are statistically significant predictors.
- Overall, the model appears to have a good fit with a high R-squared value, and several predictor variables show significant associations with the "AgentBonus" variable. However, further analysis required before finalize the model.

Predicting the Linear Regression model:

Figure 10: y_test vs y_pred on Linear Regression

Equation of the Line:

(4475.4) * const + (198.71) * Age + (215.22) * CustTenure + (49.23) * ExistingProdType + (148.51) * MonthlyIncome + (117.38) * ExistingPolicyTenure + (815.58) * SumAssured + (-450.38) * Designation_Executive + (-432.58) * Designation_Manager + (-267.11) * Designation_Senior Manager + (-44.42) * MaritalStatus_Married + (189.1) * PaymentMethod_Monthly + (-70.93) * PaymentMethod_Yearly

4.4.2.Lasso Regression Model:

Model evaluation:

Figure 11: y_test vs y_pred in Lasso Regression

We had calculated the R2-squared and RSME values also.

Equation of line is:

 $\label{eq:agent_Bonus} Agent_Bonus = 4400.95 + (199.02) * Age + (216.31) * CustTenure + (26.72) * ExistingProdType + (171.60) * MonthlyIncome + (117.11) * ExistingPolicyTenure + (816.81) * SumAssured + (-363.45) * Designation_Executive + (-358.83) * Designation_Manager + (-205.72) * Designation_Senior Manager + (-39.88) * MaritalStatus_Married + (134.35) * PaymentMethod_Monthly + (-42.38) * PaymentMethod_Yearly$

4.4.3. Ridge Regression Model:

Model Evaluation:

Figure 12: y_test vs y_pred in Ridge Regression

Equation of line is:

AgentBonus = 4467.48 + 198.84 * Age + 215.41 * CustTenure + 47.57 * ExistingProdType + 151.12 * MonthlyIncome + 117.43 * ExistingPolicyTenure + 815.41 * SumAssured - 440.60 * Designation_Executive - 424.28 * Designation_Manager - 260.29 * Designation_Senior Manager - 44.31 * MaritalStatus_Married + 185.24 * PaymentMethod_Monthly - 69.06 * PaymentMethod_Yearly

4.4.4. Elastic Net Regression Model:

Model Evaluation:

Figure 13: y_test vs y_pred in Elastic Net Regression

Equation of line is:

AgentBonus = 4130.80 + 222.28 * Age + 229.27 * CustTenure + 5.87 * ExistingProdType + 241.02 * MonthlyIncome + 128.64 * ExistingPolicyTenure + 537.59 * SumAssured - 65.94 * Designation_Executive - 52.16 * Designation_Manager + 19.14 * Designation_Senior Manager - 3.27 * MaritalStatus_Married + 8.49 * PaymentMethod_Monthly - 11.92 * PaymentMethod_Yearly

4.4.5.Decision Tree:

We had used GridSearchCV to optimize the best hyper-parameters.

We got best hyper-parameters as:

Best Hyperparameters: {'max_depth': 10, 'max_features': None, 'min_samples_leaf': 2, 'min_samples_split': 10}

Model Evaluation:

Figure 14: y_test vs y_pred in Decision Tree Regression

4.4.6.Random Forest:

We had trained and fit this Random Forest model with Best Hyper-parameters with the help of GridSearchCV library.

Model Evaluation:

Figure 15: y_test vs y_pred in Random Forest Regression

Also,

We had found the Feature Importance:

Figure 16: Feature Importance

Interpretation:

• From the above graph, it is found that SumAssured is the most importance feature in the dataset followed by MonthlyIncome and Age and then CustTenure.

5. Model validation

Model Name	Train RSME	Test RSME	Train R2	Test R2
Linear Regression	613.47	623.56	0.806	0.807
Model				
Lasso Regression	613.72	623.72	0.806	0.808
Model				
Ridge Regression	613.47	623.57	0.807	0.808
Model				
Elastic Net	675.72	688.87	0.765	0.764
Regression Model				
Decision Tree	461.93	645.18	0.89	0.794
Regression Model				
Random Forest	252.97	562.32	0.967	0.843
Regression Model				

- Linear Regression, Lasso Regression, and Ridge Regression models have similar train RSME and test RSME values, indicating that they are generalizing well on unseen data. Their R-squared values are also relatively high, suggesting a good fit to the data.
- Elastic Net Regression Model has a slightly higher test RSME compared to train RSME, indicating some overfitting. The R-squared values are relatively lower, suggesting that this model may not fit the data as well as the other models.

- Decision Tree Regression Model shows a significant difference between train RSME and test RSME, indicating potential overfitting. While the train R-squared is high (0.89), the test R-squared is lower (0.794), suggesting that the model may not generalize well to new data.
- Random Forest Regression Model shows a significant difference between train RSME and test RSME, indicating overfitting.
- Lasso Regression Model may be the most appropriate model to finalize. It shows similar
 performance to the other models but has the advantage of performing feature selection due to
 its L1 regularization. By setting some coefficients to zero, Lasso Regression effectively
 identifies and excludes irrelevant features, leading to a potentially more interpretable and
 simpler model.
- Additionally, the Lasso Regression model has slightly better Test RSME and Test R2
 compared to the other models, which indicates better generalization to unseen data. The
 slight improvement in performance on the test set is a positive sign that the Lasso Regression
 model may be more robust in making predictions on new data.

5.1. Ensemble Techniques:

We had applied Ada-Boosting on Lasso Regression Model and Ridge Regression model. We also applied Bagging on Lasso Regression Model and Ridge Regression model. Model has same output as below compared to the original model.

Model Name	Train RSME	Test RSME	Train R2	Test R2
Linear Regression Model	613.47	623.56	0.806	0.807
Lasso Regression Model	613.72	623.72	0.806	0.808
Ridge Regression Model	613.47	623.57	0.807	0.808
Elastic Net Regression Model	675.72	688.87	0.765	0.764
Decision Tree Regression Model	461.93	645.18	0.89	0.794
Random Forest Regression Model	252.97	562.32	0.967	0.843
Lasso+AdaBoosting Regression Model	623.63	637.61	0.8	0.799
Lasso+Bagging Regression Model	613.64	623.91	0.806	0.807
Ridge+AdaBoosting Regression Model	623.95	638.12	0.8	0.799
Ridge+Bagging Regression Model	613.63	623.9	0.806	0.808

Interpretation:

- Overall, the ensemble techniques (AdaBoosting and Bagging) did not provide a substantial improvement in performance over the individual Lasso and Ridge Regression models in this case.
- Both Ridge Regression and Lasso Regression models have similar performance and generalization on the test data. They also exhibit a good balance between model complexity and performance. Either of these models can be considered a suitable choice for training in the future, depending on the specific requirements and interpretability needs.

6. Final interpretation / recommendation

- Company should focus more on Large Business customers
- · Company should focus more on Unmarried customers by introducing them with benefits plans
- Company should focus more on Female customers

- Should focus more on Salaried persons especially Managers and Executive
- Most customers were acquired through agents, indicating their significant role in customer acquisition
- Graduate is the most common education field among customers
- There are more male customers than female customers, and there is a category called Female that requires further investigation
- Most customers are married, followed by single and divorced individuals
- The dataset represents customers primarily from the West zone, followed by the North zone
- Half Yearly is the most common payment frequency chosen by customers
- Based on these insights, the life insurance company can make data-driven decisions regarding bonus allocation to agents. For example, they may consider introducing specific bonus schemes based on different product types, tenure, or payment methods.
- Additionally, they could focus on rewarding higher-performing agents with higher sum assured
 policies or those who have been with the company for a longer time. The company can use
 this information to design appropriate engagement activities and incentives to motivate agents
 and improve overall performance.
- Ridge Regression Model and the Lasso Regression Model are the most optimum models for
 predicting the bonus for agents. Both models have very similar Train RSME and Test RSME
 values, indicating that they are generalizing well to unseen data. Additionally, their R-squared
 values for both the training and testing sets are quite high, which means they explain a
 significant portion of the variance in the bonus amounts.
- The high R-squared values indicate that the model can capture the relationships between the
 input features and the bonus amounts reasonably well. This means that the company can
 confidently use the model's predictions to allocate bonuses to agents with a high level of
 accuracy.
- With a reliable bonus prediction model, the company can easily identify high-performing
 agents who deserve higher bonuses based on their predicted bonus amounts. This allows the
 company to recognize and reward agents who bring in significant business or demonstrate
 exceptional performance.
- By using the model's predictions, the company can optimize its bonus allocation strategy.
 They can allocate bonuses based on factors such as the agent's tenure, product type, income, age, etc., as indicated by the feature importance analysis.
- Fair and accurate bonus allocation can motivate agents to perform better and increase their
 retention within the company. When agents feel valued and rewarded appropriately, they are
 more likely to remain committed to their roles and contribute to the company's success.
- By using data-driven bonus allocation, the company can avoid overpaying bonuses to lowperforming agents and ensure that the allocated budget is utilized effectively.
- The company can continuously update and refine the model as new data becomes available. This ensures that the model adapts to changing patterns and remains relevant over time.
- Ridge and Lasso Regression, empowers the life insurance company to make informed decisions regarding bonus allocation, agent motivation, and business strategy. It enhances the company's ability to retain high-performing agents, optimize resource allocation, and ultimately improve overall business performance.
- When bonuses are precisely calculated based on agent performance metrics, such as tenure, sales achievements, and customer satisfaction, it ensures that rewards are distributed equally. High-performing agents receive rewards that match their contributions, and this, in turn, motivates them to continue excelling.
- Agents with outstanding customer satisfaction scores might receive specialized training to
 capitalize on their strengths. On the other hand, those who face challenges in certain areas
 can benefit from targeted training to improve their performance. As a result, engagement
 initiatives and training programs become not only effective but also efficient, aligning closely
 with organizational goals.

The End