UNIVERSIDADE PRESBITERIANA MACKENZIE

- Faculdade de Computação e Informática -

Curso: Ciência da Computação

Disciplina: Linguagens Formais e Autômatos - Turma 5N Atividade Prova 1 --- setembro de 2020 Roberto Cássio de Araujo

Luan Damato - 31817051

Questão 01. Considere uma linguagem L definida sobre o alfabeto $\Sigma = \{ \mathbf{a}, \mathbf{b} \}$ e formada por todas as palavras que comecem com \mathbf{a} , terminem com \mathbf{a} e que tenham, pelo menos, três letras.

a) (1,0 ponto) Construa um afd que reconheça L.

- b) (1,0 ponto) Construa uma gramática que gere L. Qual é o tipo da gramática que você obteve? G = ({S, R}, {a, b}, {S→aRa, R→aR, R→bR, R→a, R→b}, S) Gramatica livre de contexto.
- c) (0,5 ponto) Construa uma expressão regular para L. $r = a(a|b)^{+}a$
- d) (1,5 ponto) Converta, passo a passo e usando o algoritmo visto em aula, a expressão regular obtida no item anterior em um ε-AFND.

A

В

A|B

 $(A|B)^+$

a(a|b)⁺a

Questão 02. (2,0 ponto) Transforme, usando o método visto em aula, o ε-afnd abaixo para um afnd:

Questão 03. (2,0 pontos) Construa, cuidadosamente passo a passo e usando o algoritmo visto em aula, uma versão minimizada do afd abaixo.

Classe	Estado (Qi)	(Qi, a)	(qi, b)
	Q0	1	1
1	Q1	1	2
Não terminais	Q2	2	1
	Q3	2	1
	Q6	1	2
	Q4	2	1
2			
Terminais	Q5	1	2

Q0 - (1,1)

Q1 – (1,2) Q6 – (1,2) Q2 – (2,1) Q3 – (2,1) Q4 - (2,1)Q5 - (1,2)

Classe	Estado (Qi)	(Qi, a)	(qi, b)
1,1	Q0	1,1	1,1
1,2	Q1 Q6	1,2 1,2	2,2 2,2
1,3	Q2 Q3	2,1 2,1	1,3 1,3
2,1	Q4	2,1	1,3
2,2	Q5	1,2	2,2

Questão 04. (2,0 ponto) Converta, detalhadamente e usando o algoritmo visto em aula, o afnd abaixo para um afd.

$Q0 = \{\}$	$Q4 = \{q0, q1\}$	Final
$Q1 = \{q0\}$ Inicial	$Q5 = \{q0, q2\}$	
$Q2 = \{q1\}$ Final	$Q6 = \{q1, q2\}$	Final
$Q3 = \{q2\}$	$Q7 = \{q0, q1, q2\}$	Final
$(\{q0\}, a) = \{q1, q2\}$		$(\{q1\}, a) = \{q1\}$
$(\{q0\}, b) = \{\}$		$(\{q1\}, b) = \{q1\}$
$(\{q1, q2\}, a) = \{q1\}$		$(\{\},b) = \{\}$
$(\{q1, q2\}, b) = \{q1\}$		$(\{\},b)=\{\}$

