2024 年秋季学期《解析几何与线性代数 A》阶段测试 (2)

一、已知 \mathbb{R}^3 中的向量 $\mathbf{u}=[1,1,1]^T$,线性映射 $L_A(\mathbf{x})$ 将 \mathbb{R}^3 中的向量 \mathbf{x} 映射为关于 \mathbf{u} 的正交投影向量,分别用矩阵、向量、向量的线性组合表示这个线性映射。

- 二、1. 写出 $\mathbb{R}^n o \mathbb{R}^m$ 的线性映射 $L_A(\mathbf{x})$ 的定义。
 - 2. 证明:若映射 $L:\mathbb{R}^n \to \mathbb{R}^m$ 满足以下两个条件:

$$\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$$
, $L(\mathbf{x} + \mathbf{y}) = L(\mathbf{x}) + L(\mathbf{y})$;

②
$$\forall \mathbf{x} \in \mathbb{R}^n$$
 和 $c \in \mathbb{R}$, $L(c\mathbf{x}) = cL(\mathbf{x})$;

则该映射为线性映射。

三、设矩阵
$$A=egin{bmatrix}1&1&2\\0&1&1\\1&0&1\end{bmatrix}$$
,求 \mathbb{R}^3 上的线性变换 $L_A(\mathbf{x})=A\mathbf{x}$ 的值域 $\mathrm{range}(L_A)$ 与核 $\mathrm{ker}(L_A)$ 。

四、证明矩阵乘法的结合律 (AB)C = A(BC)。

五、设矩阵方程
$$AX=B+X$$
,其中 $A=\begin{bmatrix}2&1&-1\\0&3&2\\1&-1&1\end{bmatrix}$, $B=\begin{bmatrix}1&-1\\1&1\\2&1\end{bmatrix}$,求 X 。

六、若
$$n$$
 阶方阵 A 和 m 阶方阵 B 都可逆,求 $M=\begin{bmatrix}A&C\\O&B\end{bmatrix}$ 的逆矩阵。

七、1.对于 n 阶方阵 $A=[{\bf a}_1,{\bf a}_2,\ldots,{\bf a}_n]$,其中 ${\bf a}_i=[a_{1i},a_{2i},\ldots,a_{nj}]^T$,写出 A 的行列式 $\det A$ 的定义式,并写出行列式关于向量 ${\bf a}_i$ 的性质。

2. 证明: $\det(AB) = \det A \det B$ 。 (提示: 利用矩阵乘法的定义以及行列式的定义和性质)

八、证明: 若矩阵 A 不可逆,则其伴随矩阵 adj(A) 也不可逆。