## НИУ МЭИ

## Институт радиотехники и электроники Кафедра радиотехнических систем

# Курсовой проект

«Разработка модуля расчёта координат спутника GPS»

По курсу «Аппаратура потребителей спутниковый радионавигационных систем»

Группа ЭР-15-14

Студент: Сушилина Е.Д.

Преподаватель: Корогодин И.В.

# Оглавление

| 1. Использование сторонних средств                                                                                                        | 3 |
|-------------------------------------------------------------------------------------------------------------------------------------------|---|
| исание процесса использования RTKLIB                                                                                                      |   |
| ремериды собственного спутника по данным RTKNAVI из состава RTKLIB                                                                        | 4 |
| афик угла места собственного спутника от времени по данным Trimble GNSS Planning временного интервала с 12:00 13.02.19 до 00:00 14.02.19. |   |
| yView по данным Trimble GNSS Planning Online на заданный интервал времени                                                                 | 5 |
| 2. Моделирование                                                                                                                          | 7 |
| становка задачи                                                                                                                           | 7 |
| блица использованных эфемерид                                                                                                             | 7 |
| афики                                                                                                                                     | 8 |
| Matlah                                                                                                                                    | ٥ |

#### Этап 1. Использование сторонних средств

Описание процесса использования RTKLIB

Программа RTKCONV позволяет конвертировать бинарный файл в текстовый формат RINEX, в частности получить тектовый nav-файл с эфемеридами GPS.

В RTKCONV задается путь к бинарному файлу, указывается выходной каталог и формат выходных данных. После нажатия кнопки Convert данные записываются в указанную папку.



Рисунок 1 окно программы RTKCONV

В программе RTKNAVI, нажав кнопку I в строчке Rover, выбирается тип входных данных — файл, в формате NVS BINR, и задаётся путь к файлу BINR\_evening.bin. Производится запуск программы. RTK Monitor позволяет вывести таблицу текущих эфемерид.



Рисунок 2 выбор входных данных в RTKNAVI

Эфемериды собственного спутника по данным RTKNAVI из состава RTKLIB (номер спутника GPS – 13).



#### Эфемериды спутника в nav-файле RINEX.

```
13 19 2 13 14 0 0.0 -.750683248043E-04
                                           .125055521494E-11
                                                               .000000000000F+00
     .197890000000E+05 -.112500000000E+01
                                           .458697663186E-08
                                                              .172085553352E+01
    -.119209289551E-06
                        .372648658231E-02
                                           .926107168198E-05
                                                              .515366066933E+04
     .309600000000E+06 -.242143869400E-07
                                           .110985872616E+01 -.130385160446E-06
                       .204000000000E+03
                                           .137219495126E+01 -.793104464556E-08
     .967880945155E+00
                        .100000000000E+01
                                           .204000000000E+04
                                                              .000000000000E+00
    -.296083761649E-09
     .240000000000E+01
                        .000000000000E+00 -.111758708954E-07
                                                               .770000000000E+02
     .302719000000E+06
                        .00000000000E+00
```

График угла места собственного спутника от времени по данным Trimble GNSS Planning Online для временного интервала с 12:00 13.02.19 до 00:00 14.02.19.



Рисунок 3 График угла места собственного спутника от времени

SkyView по данным Trimble GNSS Planning Online на заданный интервал времени.



Рисунок 4 настройки



Рисунок 5 SkyView

### Этап 2. Моделирование

Постановка задачи

На предыдущем этапе получено решение навигационной задачи с помощью программы вторичной обработки измерений RTKLIB. В процессе работы она рассчитывает положение спутников на соответствующий момент сигнального времени. При этом используются эфемериды - параметры некоторой модели движения спутника.

Требуется реализовать на языке Matlab или Python функцию расчета положения спутника GPS на заданный момент по шкале GPST. Построить трехмерные графики множества положений спутника: в СК ECEF WGS84 и соответствующей ей инерциальной СК. Положения должны соответствовать временному интервалу с 12:00 13.02.19 до 00:00 14.02.19.

Таблица использованных эфемерид.

В качестве эфемерид для моделирования использовались данные, полученные на предыдущем этапе:

| SAT          | PRN    | Statu  | IODE       | IODC              | Accı       | Hea    | Toe             |                     |        | Too             | Toc                 |                    |             | Ttrans              |  |
|--------------|--------|--------|------------|-------------------|------------|--------|-----------------|---------------------|--------|-----------------|---------------------|--------------------|-------------|---------------------|--|
| G13          | 13     | -      | 1978       | 77                | 0          | 00     | 2019/0          | 2019/02/13 14:00:00 |        |                 | 2019/02/13 14:00:00 |                    |             | 2019/05/12 15:28:45 |  |
| A (m) e      |        |        | e i0 (deg) |                   |            | OM     | OMEGA0 (d omega |                     | (dec   | M0 (deg) deltan |                     | (deg/s OMEGAdot (d |             |                     |  |
| 26560218.295 |        | .295   | 0.003      | 00372649 55.45549 |            | 63.    | 63.59022        |                     | 98     | 98.59776        | 2.6281E-07          |                    | -4.5442E-07 |                     |  |
| IDO          | T (deg | g/s) a | af0 (ns)   | a                 | f1 (ns     | /s] af | 2 (ns/s         | TGD (n              | s) BGD | 5a(n:           | BGD5b(ns            | Cuc(rad            | d)          | Cus(rad)            |  |
| -1.6964E-08  |        | - 80   | 75068.     | 3 0               | .0013 0.00 |        | 0000            | -11.2               | 0.0    | 0.0             |                     | -1.1921E-07        |             | 9.2611E-06          |  |
| Crc(         | m)     | (      | Ors(m)     |                   | Cic(r      | ad)    | Cis             | (rad)               | Cod    | e Fla           | ng .                |                    |             |                     |  |
| 2.04         | 100E+  | -02 -  | 1.1250     | E+00              | -2.42      | 214E-( | 08 -1.          | 3039E-0             | 7 1    | 0               |                     |                    |             |                     |  |

Время Тое, переведённое в шкалу GPST будет равно

$$t_{oe} = 3 \cdot 24 \cdot 3600 + 14 \cdot 3600 + 18 = 309618 \text{ c.}$$

Время начала моделирования, 12 часов дня по МСК -9 часов утра в UTC. В шкале GPST:

$$t = 3 \cdot 24 \cdot 3600 + 9 \cdot 3600 + 18 = 291618 \text{ c.}$$

### Графики

На рис.1 изображены SkyView за указанный временной интервал полученные с помощью Trimble GNSS Planning Online и в MatLab. Так как в Matlab R2015b нельзя развернуть ось г, чтобы убедиться в правильности расчётов, в SkyView вместо угла возвышения используется угол отклонения от зенита.

На рис. 2 и рис.3 — трехмерные графики множества положений спутника: в СК ECEF WGS84 и соответствующей ей инерциальной СК.



Рисунок 6 SkyView, полученные с помощью Trimble GNSS Planning Online (сверху) и в MatLab (снизу).

#### Положения спутника в системе ЕСЕГ



Рисунок 7

Положения спутника в системе ЕСІ



Рисунок 8

#### Реализация в Matlab:

```
clear all;clc;close all;
%Ephemerides:
t oe=309600+18; % seconds of week at 14:00 UTC+leap seconds
a=26560218.295;
e=0.00372649;
M0 = deg2rad(98.59776);
omega=deg2rad(78.62098);
i0=degtorad(55.45549);
OMEGA0=deg2rad(63.59022);
deltan=deg2rad(2.6281e-07);
idot=deg2rad(-1.6964e-08);
OMEGAdot=deg2rad(-4.5442e-07);
%Corrections:
Cus=9.2611e-06;
Crc=2.0400e+02;
Cic=-2.4214e-08;
Crs=-1.1250;
Cuc = -1.1921e - 07;
Cis = -1.3039e - 07;
%Constants:
omegae = 7.2921151467e-5;
mu = 3.986004418e+14;
latitude=55.45;
longitude=37.42;
height=175;
%Computation:
for k=1:43200
t = 291600 + 18 + k; %GPS Seconds of Week at 9:00 UTC (12:00 MSK)
tk=t-t oe;
    if tk>302400
       tk=t(k)-t oe;
```

```
end
    if tk<-302400
       tk=tk+604800;
Mk=M0+(sqrt(mu)/sqrt(a^3)+deltan)*tk;
%Solution of the Kepler equation Mk=Ek-e*sin(Ek):
E(1) = 0; i=1;
    while 1
        E(i+1) = Mk + e*sin(E(i));
        if abs(E(i+1) - E(i)) < 10^{(-8)}
            break
        end
        i = i + 1;
    end
Ek=E(i+1);
%true anomaly:
vk=atan2((sqrt(1-e^2)*sin(Ek)),(cos(Ek)-e));
%Computation of the argument of latitude, radial distance and
inclination:
uk=omega+vk+Cuc*cos(2*(omega+vk))+Cus*sin(2*(omega+vk));
rk=a*(1-e*cos(Ek))+Crc*cos(2*(omega+vk))+Crs*sin(2*(omega+vk));
ik=i0+idot*tk+Cic*cos(2*(omega+vk))+Cis*sin(2*(omega+vk));
%longitude of the ascending node:
lambdak=OMEGA0+(OMEGAdot-omegae)*tk-omegae*t oe;
    xk = rk*cos(uk);
    yk = rk*sin(uk);
%the Earth-fixed coordinates:
    xk \ ecef(k) = xk*cos(lambdak) - yk*cos(ik)*sin(lambdak);
    yk = cef(k) = xk*sin(lambdak) + yk*cos(ik)*cos(lambdak);
    zk \ ecef(k) = yk*sin(ik);
%the Earth-Centered inertial coordinates:
    theta = omegae*tk;
    xk eci(k) = xk ecef(k)*cos(theta) - yk ecef(k)*sin(theta);
    yk eci(k) = xk ecef(k)*sin(theta) + yk ecef(k)*cos(theta);
    zk eci(k) = zk ecef(k);
%Transformation between ECEF and ENU coordinates:
    [East, North, Up] = ecef2enu(xk ecef(k), yk ecef(k),
zk ecef(k), latitude, longitude, height, wgs84Ellipsoid);
    distance = sqrt(East^2 + North^2 + Up^2);
    elevation(k) = rad2deg(asin(Up/distance));
    azimuth(k) = atan2(East, North);
        if elevation(k)<0</pre>
            elevation(k) = NaN;
            azimuth(k) = NaN;
        end
end
응응
figure; plot(elevation);
%% SkyView
figure;
SV=polar (azimuth, 90-elevation);
view([90 - 90]);
grid on; title('SkyView');
```

```
%% ECEF/ECI 3Dplots
figure; [X,Y,Z]=sphere(20);
surfl(X*6.371,Y*6.371,Z*6.371);
hold on; axis equal;
plot3(xk_ecef/10^6,yk_ecef/10^6,zk_ecef/10^6);
title('Положения спутника в системе ECEF');
xlabel('x, тыс.км'); ylabel('y, тыс.км'); zlabel('z, тыс.км');
figure; [X,Y,Z]=sphere(20); surfl(X*6.371,Y*6.371,Z*6.371);
hold on; axis equal;
plot3(xk_eci/10^6,yk_eci/10^6,zk_eci/10^6);
title('Положения спутника в системе ECI');
xlabel('x, тыс.км'); ylabel('y, тыс.км'); zlabel('z, тыс.км');
```

Было получено решение навигационной задачи с помощью программы вторичной обработки измерений и на языке Matlab реализована функция расчета положения спутника GPS. Построенный SkyView за указанный временной интервал совпал с полученным с помощью Trimble GNSS Planning Online. Построенные трёхмерные графики наглядно показывают разницу между траекториями движения спутника в фиксированной и инерциальной системах координат.