

AINETWORK TRAFFIC ANALYSIS

PRESENTATION

TEAM:

Tyoshika lalam VU22CSEN0100432

Sushanth X VU22CSEN0100016

Problem Summary:

Modern networks face increasing challenges in monitoring and securing traffic due to the exponential growth of data, encrypted communication, and sophisticated cyber threats. This presentation explores how AI and machine learning can revolutionize network security and operations.

Modern networks = Huge Data + Encryption + Advanced Threats \rightarrow Old methods are not enough.

- Traditional rule-based security and DPI are failing.
- Manual classification is slow and error-prone.
- → Need Al-based real-time analysis to:
 - Detect patterns.
 - Spot anomalies.
 - Secure encrypted traffic.

B Deliverables:

- 1.Traffic Classification Model
- Al model that identifies types of traffic (e.g., WhatsApp, YouTube, VPNs) from packet metadata or flow patterns.
- 2. Threat Detection & Anomaly Framework Al system that detects:
- Malware.
- DDoS attacks.
- Suspicious behaviors.
- Unknown anomalies.

Model Information

ARCHITECTURE

Ensemble Model: Random Forest + XGBoost

FEATURES USED

32 features

DATA SPLIT

70% Train / 15% Validation / 15% Test

OBJECTIVE

Classify network traffic and detect threats/anomalies

ALGORITHM

Multi-class Classification

EVALUATION **METRICS**

Accuracy, Precision, Recall, F1 Score, Confusion Matrix

TOP FEATURES

Flow Duration | Total Bytes | Packet Inter-arrival Time (Mean) | Flow Bytes per Second | TCP Flags

DATASET

• NETWORK_TRAFFIC_DATA_2025-04-

28.CSV

Network Traffic Dataset								
Search,						Classification: ALL		
TIMESTAMP I	SOURCE IP	DESTINATION IP	PROTOCOL	APPLICATION	TOTAL BYTES	CLASSIFICATION		
28/4/2025, 6:58:16 am	208.89.228.90	150.21.62.111	SMTP	Gmail Email	4,290	Phishing		
28/4/2025, 6:43:13 am	241.190.216.250	66.217.24.36	UDP	981	PortScanning			
28/4/2025, 4:38:05 am	224.32.158.135	85.184.214.143	SMTP	Unknown Application Unknown	89,098	DataExfiltration		
28/4/2025, 1:53:50 am	28.10.218.189	128.253,159,244	SMTP	Gmail Email	9,842	BENIGN		
27/4/2025, 11:17:02 pm	206.216.18.96	234.125.215.52	HTTPS	Unknown Application Unknown	3,166	BruteForce		
27/4/2025, 11:14:08 pm	25, 11:14:08 pm 80.42.92.36		НТТР	Unknown Application Unknown	6,788	BENIGN		
27/4/2025, 11:09:59 pm	228.112.32.129	199.150,77.204	НТТР	Yahoo Mail Email	6,147	BENIGN		
27/4/2025, 5:25:24 pm	100.232.244.222	49.205.22.113	НТТР	Unknown Application Unknown	901	BENIGN		

A1		v X	√ f _x -	id																			~
																							4
-4	A	В	C	D	E	F G	H	1	1	K	L	M	N	0	Р	Q	R	S	T	U	V	W	1
1	id	timestamp	sourceIP	destination	sourcePor	destinatio protocol	flowDuratit	otalBytes to	otalPacke av	/gPacketlr	ninPacket	maxPacket	flowsPerS	timeBetw	flowBytes	packetInte	packetInte	tcpFlags	flowIdleTi	ii classificat	i confidenc	anomaly	Sca
2	b6c66587-	2025-03-2	101.121.1	172.82.63	4347	23 FTP	78.34726	30876	149	207	143	268	3	199.1785	394091.6	0.525821	0.128148	{"SYN":fal	ACK:true	FIN:false}	666.957	7 DDoS	(
3	b6c7e116-	2025-04-1	233.161.1	130.213.6	36373	21 UDP	64.06131	605	1	598	336	792	9	191.144	9444.078	64.06131	32.07151	{"SYN":fal	ACK:true	FIN:true}	163.8791	BENIGN	C
				231.6.169	60117	143 HTTP	188.8425	17059	65	260	206	390	1	469,9407	90334.56	2.905268	1.537309	{"SYN":fal	ACK:false	FIN:false}	448.7207	7 DoS	(
_5	e93ed233	2025-04-0	40.62.202	204.235.1	51159	5432 FTP	193.9229	3670	12	283	160	418	8	198.8241	18925.05	16.16024	5.048327	{"SYN":fal	ACK:true	FIN:false}	382.1817	BENIGN	
6	38348612	2025-04-1	87.248.22	117.9.102	63204	34940 ICMP	135.0677	18637	99	188	106	308	9	486.4082	137982.7	1.36432	0.808509	{"SYN":fal	ACK:true	FIN:false}	194,9856	DoS	(
7	464c5a6f-:	2025-04-0	197.214.1	252.136.1	57124	23 TCP	39.16879	2889	9	290	152	456	9	71.2799	73757.7	4.352088	0.593799	{"SYN":fal	ACK:true	FIN:false}	439.8821	BENIGN	(
8	b2d270dd	2025-04-1	60.220.16	128.38.25	12294	587 SMTP	227.8471	5569	20	273	187	358	1	421.5469	24441.83	11.39236	3.161837	{"SYN":fal	ACK:true	FIN:false}	925.2707	7 BENIGN	(
9	06c46d5c-	2025-04-2	36.45.129	128.97.31	9592	443 SMTP	304.2942	6333	48	131	101	210	2	12.23135	20812.1	6.339462	2.614335	{"SYN":fal	ACK:true	FIN:true}	632.2549	BENIGN	
10	баабее3а-	2025-04-1	98.208.11	51.180.22	54153	993 HTTPS	230.5852	3121	33	92	56	138	4	168.795	13535.13	6.987429	2.007601	{"SYN":fal	s ACK:false	FIN:false}	728.5418	BruteFor	Cŧ (
11	9c344f3a-	2025-04-1	16.62.86.9	927.182.43	4502	25 SMTP	460.6482	9542	28	332	189	530	4	284.6617	20714.29	16.45172	7.286806	{"SYN":tru	ACK:true	FIN:false}	931.4798	BENIGN	(
12	58a51f3c-	2025-04-2	196.150.1	85.157.10	65136	52992 ICMP	282.158	9281	24	385	236	644	2	300.013	32892.91	11.75658	3.64244	{"SYN":fal	s ACK:false	FIN:false}	367.2998	BENIGN	(
13	3ba51eb8	2025-04-1	176.155.2	173.155.2	54103	110 FTP	255.6995	435	0	586	360	713	5	258.9813	1701.216	Infinity	Infinity	{"SYN":fal	ACK:false	FIN:false}	236.9513	BENIGN	(
14	ad25addf-	2025-04-2	199.42.10	146.102.1	31188	995 FTP	16.50752	1747	12	142	89	237	1	383,6221	105830.6	1.375626	0.777241	{"SYN":fal	ACK:true	FIN:false}	135.8601	BENIGN	(
15	354eab3c-	2025-04-2	79.1.201.	189.4.207.2	7465	3306 HTTPS	483.139	4990	15	315	190	393	4	404.2567	10328.29	32.20927	12.70427	{"SYN":tru	ACK:true	FIN:false)	858.9733	BENIGN	
16	c808df07-	2025-04-0	115.140.2	37.109.12	45798	25 TCP	45.84105	35834	240	149	92	229	3	459.2494	781701.2	0.191004	0.076642	{"SYN":fal	ACK:true	FIN:false}	46.11867	7 DDoS	(
17	f3a2984a-	2025-04-0	172.189.5	75.175.22	35423	443 TCP	276.7028	2260	8	277	170	380	2	97.80839	8167.609	34.58785	20.51363	{"SYN":tru	ACK:true	FIN:false}	142.1964	1 Botnet	(
18	ced5b5b0-	2025-04-1	12.202.23	145.46.50	37360	23 ICMP	376.7235	9229	70	131	103	204	2	19.43236	24498.08	5.381764	2.254633	{"SYN":fal	ACK:true	FIN:false}	28.3563	BENIGN	(
19	2a4a9833-	2025-04-1	187.104.1	58.113.38	59495	993 HTTP	691.9584	2310	16	141	75	181	10	231.8124	3338.351	43.2474	4.742527	{"SYN":fal	ACK:true	FIN:false}	337.4273	Botnet	(
20	c41572fd-	2025-03-2	47.83.45.	111.248.18	46990	53 HTTPS	748.6829	8805	41	213	147	318	9	174.4492	11760.65	18.26056	3.475182	{"SYN":fal	ACK:true	FIN:false}	439.2405	Malware	(
21	f39eaaf9-€	2025-04-2	135.118.2	223.140.1	5032	11592 FTP	285.7428	7440	37	198	123	300	10	166.6016	26037.4	7.722778	3.962142	{"SYN":tru	ACK:true	FIN:false}	659.5145	BENIGN	
22	086f3194-	2025-04-1	212.223.1	41.34.98.1	18715	3389 FTP	96.17191	43964	227	193	153	283	6	385.0382	457139.7	0.423665	0.229727	{"SYN":tru	ACK:true	FIN:false}	772.9223	B DDoS	(
23	ffc5f1bb-a	2025-04-1	127.158.1	139.96.57	36179	1693 FTP	959.0337	962	7	123	78	183	2	502.9495	1003.093	137.0048	36.91946	{"SYN":fal	ACK:true	FIN:false}	588.4717	7 Botnet	(
24	57dce9ab-	2025-04-0	84.187.13	98.139.21	22612	23 TCP	83.65447	5589	25	220	167	304	10	332.2287	66810.53	3.346179	1.114197	{"SYN":fal	ACK:true	FIN:false}	677.6342	BENIGN	(
25	e3d71caa-	2025-04-1	186.14.13	9.76.55.23	7085	80 ICMP	81.79851	55054	350	157	108	227	9	188.2819	673044.1	0.23371	0.111494	{"SYN":tru	ACK:true	FIN:false)	400.8887	7 DDoS	(
26	11f6deb9-	2025-04-0	102.207.1	189.87.24	47118	5432 UDP	51.80192	2368	5	428	306	645	3	32.13894	45712.59	10.36038	3.042554	{"SYN":fal	ACK:true	FIN:false}	787.7866	BENIGN	(
27	5e2816bd	2025-04-1	1.161.50.	183.195.14	55550	50231 SMTP	21.82695	420	1	345	245	572	1	279.3268	19242.27	21.82695	10.07262	{"SYN":fal	ACK:true	FIN:false}	731.642	BENIGN	(
28	f5d55607-	2025-04-1	61.38.30.	182.68.188	27476	21 SMTP	122.5528	2356	8	292	189	362	5	289.5117	19224.36	15.3191	5.221431	{"SYN":fal	ACK:true	FIN:false}	415.8557	7 Botnet	(
29	bc8b0be1-	2025-04-0	239.80.36	174.155.1	56624	143 TCP	301.2486	15345	40	379	250	537	3	80.23158	50937.99	7.531215	3.238498	{"SYN":fal	ACK:false	FIN:false}	353.7998	B DoS	(
4 -																							Þ

Data set is attached to the

Traffic Classification Model

Detected applications include:

- 1. Email
- 2.Web Browsing
- 3.Social Media
- 4.File Transfer
- 5.Database Access
- 6.Video Streaming
- 7.Remote Access
- 8.Cloud Services
- 9.Unknown Applications
- Web browsing, email, and unknown traffic are among the most commonly observed application types.
- Remote access and cloud services were identified less frequently.

Classification of applications:

Application Detection Confidence:

- Majority of application detections achieved high confidence levels (above 80%).
- A smaller proportion falls into lower confidence ranges (below 70%).
- Overall, application identification is considered reliable and robust.

Threat Detection & Anomaly Identification Framework

Detected anomaly categories include:

- 1. Malware
- 2.Brute Force Attacks
- 3. Distributed Denial of Service (DDoS)
- 4.Botnet Activity
- 5.Data Exfiltration Attempts
- 6.Denial of Service (DoS)
- 7. Phishing Attempts
- 8.Port Scanning Activities

All major types of network anomalies were effectively identified and classified.

Anomaly Score Distribution:

- Records were distributed across various anomaly score ranges.
- The majority of anomalies have moderate to high anomaly scores (between 0.4 and 1.0).
- Very few records fall into low anomaly score ranges (below 0.4).
- This distribution reflects the system's strong capability to distinguish between benign and truly malicious activities.

Traffic by Protocol

Network traffic was observed across multiple protocols, including:

1. HTTPS

2.FTP

3.HTTP

4.SMTP

5.TCP

6.UDP

7.ICMP

This diversity in protocols highlights a wide variety of network activities, both secure and unsecure.

Traffic by Port (Top 10)

Top ports identified in the network flows include:

- 1.8080 (Alternative HTTP port)
- 2.80 (Standard HTTP)
- 3.587 (SMTP Secure Email Submission)
- 4.3306 (MySQL Database)
- 5.993 (IMAP Secure Email Retrieval)
- 6.25 (SMTP Email Transfer)
- 7.22 (SSH Remote Login)
- 8.465 (SMTPS Secure Email Submission)
- 9.995 (POP3 Secure Email Retrieval)
- 10.5432 (PostgreSQL Database)

Traffic across these ports suggests a mix of web services, email communications, database interactions, and secure remote access.

Ensemble Model Architecture

For this project, we used an ensemble model, which combines the strengths of multiple classifiers to improve prediction accuracy and reduce errors. In particular, we used:

- Random Forest (a decision tree-based model) for its strength in handling high-dimensional data.
- XGBoost (a gradient boosting method) to fine-tune the model for better performance.

This combination allows the model to learn from diverse perspectives and make more accurate predictions than individual models alone.

Model Metrics

Accuracy:

93.6%

Precision: 91.1%

Recall: 88.8%

F1 Score: 90.0%

Confusion Matrix

- The confusion matrix shows how well the model classifies traffic across different categories:
- True Positives: The model correctly identified benign traffic and malicious activities (e.g., DDoS, Malware).
- False Positives: Misclassifications of benign traffic as threats.
- False Negatives: Failure to detect some threats.
- The ensemble model shows strong performance, especially in detecting benign traffic and common attacks like DDoS and Malware.

Precision, Recall, and F1 Score by Class:

Precision is particularly high for Benign traffic, DDoS, and Botnet traffic, which indicates that the model rarely misclassifies benign traffic or fails to detect malicious activity.

Recall (True Positives) is high across most categories, with Botnet and Port Scanning showing particularly robust detection.

The F1 Score balances the precision and recall to ensure high reliability across all traffic types

Outcomes:

- Automated Network Traffic Analysis using AI/ML models to detect and classify traffic in real time.
- Improved Threat Detection & Security, identifying anomalies, malware, and encrypted attacks with higher accuracy.
- Reduced False Positives & False Negatives, enhancing the efficiency of network security operations.
- Scalability & Performance Optimization, ensuring Al models can handle high-traffic environments with minimal latency.
- Privacy-Preserving Traffic Analysis, leveraging Al for encrypted traffic analysis without decryption.

THANK YOU.