Autovalores e Autovetores

Dada uma transformação linear de um espaço vetorial nele mesmo, $T: V \to V$ gostaríamos de saber que vetores seriam levados neles mesmos por esta transformação. Isto é, dada $T: V \to V$, quais são os vetores $v \in V$ tais que T(v) = v? (v é chamado vetor fixo).

Exemplo 1

```
I: \mathbb{R}^2 \to \mathbb{R}^2 (Aplicação identidade)

(x, y) \mapsto (x, y)

Neste caso, todo \mathbb{R}^2 é fixo uma vez que I(x, y) = (x, y), para todo (x, y) \in \mathbb{R}^2.
```

Exemplo 2

$$r_x : \mathbb{R}^2 \to \mathbb{R}^2$$
 (Reflexão no eixo-x)
 $(x, y) \mapsto (x, -y)$

Exemplo 3

$$N: \mathbb{R}^2 \to \mathbb{R}^2$$
 (Aplicação nula)
(x, y) \mapsto (0, 0)

Passaremos agora para o seguinte problema: Dada uma transformação linear de um espaço vetorial $T: V \to V$, estamos interessados em saber quais vetores são levados em um múltiplo de si mesmo; isto é, procuramos um vetor $v \in V$ e um escalar $\lambda \in \mathbb{R}$ tais que

$$T(\mathbf{v}) = \lambda \mathbf{v}$$

Neste caso T(v) será um vetor de mesma "direção" que v. Por vetores de mesma "direção" estaremos entendendo vetores sobre a mesma reta suporte.

Como v = 0 satisfaz a equação para todo λ , estaremos interessados em determinar vetores $v \neq 0$ satisfazendo a condição acima. O escalar λ será chamado autovalor ou valor característico de T e o vetor v um autovetor ou vetor característico de T. Vamos formalizar este conceito.

Passaremos doravante a dar a designação usual de operador linear para uma transformação linear $T: V \to V$ (de um espaço vetorial nele mesmo).

Definição

Seja $T: V \to V$ um operador linear. Se existirem $v \in V$, $v \neq 0$, e $\lambda \in \mathbb{R}$ tais que $Tv = \lambda v$, λ é um autovalor de T e v um autovetor de T associado a λ .

$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
$$\mathbf{v} \mapsto 2\mathbf{v}$$

$$\begin{bmatrix} x \\ y \end{bmatrix} \longmapsto \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2x \\ 2y \end{bmatrix} = 2 \begin{bmatrix} x \\ y \end{bmatrix}$$

De um modo geral toda transformação

$$T: \mathbb{R}^2 \to \mathbb{R}^2$$

 $\mathbf{v} \mapsto \alpha \mathbf{v}, \ \alpha \neq 0$

tem α como autovalor e qualquer $(x, y) \neq (0, 0)$ como autovetor correspondente. Observe que $T(\mathbf{v})$ é sempre um vetor de mesma direção que \mathbf{v} . Ainda mais, se:

- i) $\alpha < 0$, T inverte o sentido do vetor.
- ii) $|\alpha| > 1$, T dilata o vetor.
- iii) $|\alpha| < 1$, T contrai o vetor.
- \dot{v}) $\alpha = 1$, $T \in a$ identidade.

 $r_x : \mathbb{R}^2 \to \mathbb{R}^2$ (Reflexão no eixo-x) $(x, y) \mapsto (x, -y)$

$$\begin{bmatrix} x \\ y \end{bmatrix} \longmapsto \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}.$$

Os vetores da forma $\begin{bmatrix} 0 \\ y \end{bmatrix}$ são tais que

$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 0 \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ -y \end{bmatrix} = -1 \begin{bmatrix} 0 \\ y \end{bmatrix}.$$

Exemplo 3

 $T: \mathbb{R}^2 \to \mathbb{R}^2$ (Rotação de 90° em torno da origem) (x, y) \mapsto (-y, x)

$$\begin{bmatrix} x \\ y \end{bmatrix} \rightarrow \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -y \\ x \end{bmatrix}$$

Seja
$$A = \begin{bmatrix} 2 & 2 \\ 0 & 1 \end{bmatrix}$$

Então A
$$\cdot \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2x + 2y \\ y \end{bmatrix}$$

$$e\ T_A(x, y) = (2x + 2y, y).$$

Para procurar os autovetores e autovalores de T_A resolvemos a equação $T_A(\mathbf{v}) = \lambda \mathbf{v}$ ou

$$\begin{bmatrix} 2x + 2y \\ y \end{bmatrix} = \lambda \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \lambda x \\ \lambda y \end{bmatrix}$$

Teorema

Dada uma transformação $T: V \to V$ e um autovetor v associado a um autovalor λ , qualquer vetor $w = \alpha v$ ($\alpha \neq 0$) também é autovetor de T associado a λ .

Definição

O subespaço $V_{\lambda} = \{ \mathbf{v} \in V : T(\mathbf{v}) = \lambda \mathbf{v} \}$ é chamado o subespaço associado ao autovalor λ .

Autovalores e Autovetores de uma matriz

Dada uma matriz quadrada, A, de ordem n, estaremos entendendo por autovalor e autovetor de A autovalor e autovetor da transformação linear $T_A: \mathbb{R}^n \to \mathbb{R}^n$, associada à matriz A em relação à base canônica, isto é, $T_A(\mathbf{v}) = \mathbf{A} \cdot \mathbf{v}$ (na forma coluna). Assim, um autovalor $\lambda \in \mathbf{R}$ de A, e um autovetor $\mathbf{v} \in \mathbb{R}^n$, são soluções da equação $\mathbf{A} \cdot \mathbf{v} = \lambda \mathbf{v}$, $\mathbf{v} \neq 0$.

Exemplo

Dada a matriz diagonal

$$\mathbf{A} = \begin{bmatrix} a_{11} & 0 & \dots & 0 \\ 0 & a_{22} & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & a_{nn} \end{bmatrix}$$

e dados os vetores $e_1 = (1, 0, ..., 0)$, $e_2 = (0, 1, 0, ..., 0)$, ..., $e_n = (0, 0, ..., 0, 1)$, temos

$$\mathbf{A} \cdot \mathbf{e}_1 = \begin{bmatrix} a_{11} \\ 0 \\ \vdots \\ 0 \end{bmatrix} = a_{11} \mathbf{e}_1$$

Polinômio Característico

Exemplo 1

$$\mathbf{A} = \begin{bmatrix} 4 & -2 & 0 \\ -1 & 1 & 0 \\ 0 & 1 & 2 \end{bmatrix}$$

Exemplo 2

$$\mathbf{A} = \begin{bmatrix} -3 & 4 \\ -1 & 2 \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} \sqrt{3} & -1 \\ 1 & \sqrt{3} \end{bmatrix}$$

Exemplo 4

$$\mathbf{A} = \begin{bmatrix} 3 & 0 & -4 \\ 0 & 3 & 5 \\ 0 & 0 & -1 \end{bmatrix}$$

Exemplo 5

$$\mathbf{A} = \begin{bmatrix} 3 & -3 & -4 \\ 0 & 3 & 5 \\ 0 & 0 & -1 \end{bmatrix}$$

Exemplo 6

Seja $T: \mathbb{R}^2 \to \mathbb{R}^2$ dada por T(x, y) = (-3x + 4y, -x + 2y). Procuremos seus autovalores e autovetores.