SVM & T-fold Cross Validation

February 14, 2021

1 Support Vector Machines (SVMs)

In this notebook, we will learn a linear and kernalised method of SVMs, which can be used for both regression and classification. To start with, we will focus on binary classification. We will use stochastic gradient descent (SGD) for the optimisation of the hinge loss.

We will work with the Breast Cancer Wisconsin (Diagnostic) Data Set, which you first need to download and then load in this notebook. If you faced difficulties downloading this data set from Kaggle, you should download the file directly from Blackboard. The data set contains various aspects of cell nuclei of breast screening images of patients with (malignant) and without (benign) breast cancer. Our goal is to build a classification model that can take these aspects of an unseen breast screening image, and classify it as either malignant or benign.

If you run this notebook locally on your machine, you will simply need to place the csv file in the same directory as this notebook. If you run this notebook on Google Colab, you will need to use

```
from google.colab import files
upload = files.upload()
```

and then upload it from your local downloads directory.

```
[1]: # necessary imports
import numpy as np
import pandas as pd
```

```
[2]: data = pd.read_csv('./data.csv')

# print shape and last 10 rows
print(data.shape)
data.tail(10)
```

(569, 33)

[2]:		id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	\
	559	925291	В	11.51	23.93	74.52	403.5	
	560	925292	В	14.05	27.15	91.38	600.4	
	561	925311	В	11.20	29.37	70.67	386.0	
	562	925622	M	15.22	30.62	103.40	716.9	
	563	926125	M	20.92	25.09	143.00	1347.0	

564	926424	M	21.56	22.39	142.0	0 1479.0	
565	926682 M		20.13	28.25	131.2	0 1261.0	
566	926954 M		16.60	28.08	108.3	0 858.1	
567	927241 M		20.60	29.33	140.1	0 1265.0	
568	92751	В	7.76	24.54	47.9	2 181.0	
	smoothness		mpactness_mean	concavity_m		points_mean	\
559		09261	0.10210	0.11		0.04105	
560		09929	0.11260	0.04		0.04304	
561		07449	0.03558	0.00		0.00000	
562		10480	0.20870	0.25		0.09429	
563	0.	10990	0.22360	0.31	.740	0.14740	
564	0.	11100	0.11590	0.24	390	0.13890	
565	0.	09780	0.10340	0.14	400	0.09791	
566	0.	08455	0.10230	0.09	251	0.05302	
567	0.	11780	0.27700	0.35	5140	0.15200	
568	0.	05263	0.04362	0.00	0000	0.00000	
	texture	- .	perimeter_worst	area_worst	smoothness_		
559	•••	37.16	82.28	474.2		12980	
560	•••	33.17	100.20	706.7		12410	
561	•••	38.30	75.19	439.6		09267	
562	•••	42.79	128.70	915.0		14170	
563	•••	29.41	179.10	1819.0		14070	
564	•••	26.40	166.10	2027.0		14100	
565	•••	38.25	155.00	1731.0		11660	
566	•••	34.12	126.70	1124.0	0.	11390	
567	•••	39.42	184.60	1821.0	0.	16500	
568	•••	30.37	59.16	268.6	0.	08996	
							L \
EEO	compactnes		concavity_worst	_	-	symmetry_wors	
559		0.25170	0.3630		0.09653	0.211	
560		0.22640	0.1326		0.10480	0.225	
561		0.05494	0.0000		0.00000	0.156	
562		0.79170	1.1700		0.23560	0.4089	
563		0.41860	0.6599		0.25420	0.292	
564		0.21130	0.4107		0.22160	0.206	
565		0.19220	0.3215		0.16280	0.257	
566		0.30940	0.3403		0.14180	0.2218	
567		0.86810	0.9387		0.26500	0.408	
568	,	0.06444	0.0000		0.00000	0.287	1
	fractal_di	mension w	vorst Unnamed:	32			
559	rractar_an	_		aN			
560				aN aN			
561				aN aN			
562							
302		0.1	.¥U <i>3</i> U IN	aN			

563	0.09873	NaN
564	0.07115	NaN
565	0.06637	NaN
566	0.07820	NaN
567	0.12400	NaN
568	0.07039	NaN

[10 rows x 33 columns]

We can see that our data set has 569 samples and 33 columns. The column id can be taken as an index for our pandas dataframe and diagnosis is the label (either M: malignant or B: benign).

Let's prepare the data set first of all by (i) cleaning it, (ii) separating label from features, and (iii) splitting it into train and test sets.

```
[3]: # drop last column (extra column added by pd)
data_1 = data.drop(data.columns[-1], axis=1)
# set column id as dataframe index
data_2 = data_1.set_index(data['id']).drop(data_1.columns[0], axis=1)
# check
data_2.tail()
```

	4454_27.0421.(7								
[3]:	id	diagnosis	radius_mea	n texture_mea	ın p	perimeter_mean	area_mean \		
	926424	М	21.5	6 22.3	39	142.00	1479.0		
	926682	М	20.1		25	131.20	1261.0		
	926954	М	16.6	0 28.0	8	108.30	858.1		
	927241	M	20.6	0 29.3	3	140.10	1265.0		
	92751	В	7.7	6 24.5	54	47.92	181.0		
	id 926424		s_mean com	pactness_mean 0.11590	con	cavity_mean \			
	926682	0.08455		0.10340	0.10340 0.14400 0.10230 0.09251 0.27700 0.35140				
	926954			0.10230					
	927241			0.27700					
	92751	0	.05263	0.04362		0.00000			
		concave p	oints_mean	symmetry_mear	ı 	radius_worst	texture_worst	\	
	id								
	926424		0.13890	0.1726	·	25.450	26.40		
	926682		0.09791	0.1752	2	23.690	38.25		
	926954		0.05302	0.1590		18.980	34.12		
	927241		0.15200	0.2397		25.740	39.42		
	92751		0.00000	0.1587		9.456	30.37		

perimeter_worst area_worst smoothness_worst compactness_worst \

```
id
926424
                 166.10
                              2027.0
                                                                    0.21130
                                                0.14100
926682
                 155.00
                              1731.0
                                                0.11660
                                                                    0.19220
926954
                 126.70
                                                                    0.30940
                              1124.0
                                                0.11390
927241
                 184.60
                              1821.0
                                                0.16500
                                                                    0.86810
92751
                                                                    0.06444
                  59.16
                               268.6
                                                0.08996
        concavity_worst
                          concave points_worst symmetry_worst \
id
926424
                 0.4107
                                         0.2216
                                                         0.2060
                                                         0.2572
926682
                 0.3215
                                         0.1628
926954
                 0.3403
                                         0.1418
                                                         0.2218
927241
                 0.9387
                                         0.2650
                                                         0.4087
92751
                 0.0000
                                                         0.2871
                                         0.0000
        fractal_dimension_worst
id
926424
                         0.07115
                         0.06637
926682
926954
                         0.07820
927241
                         0.12400
92751
                         0.07039
[5 rows x 31 columns]
```

We do a bit more preparation by converting the categorical labels into 1 for M and -1 for B.

```
[4]: # convert categorical labels to numbers
diag_map = {'M': 1.0, 'B': -1.0}
data_2['diagnosis'] = data_2['diagnosis'].map(diag_map)

# put labels and features in different dataframes
y = data_2.loc[:, 'diagnosis']
X = data_2.iloc[:, 1:]

# check
print(y.tail())
X.tail()

id
926424    1.0
926682    1.0
```

926954

927241

92751

1.0

1.0

Name: diagnosis, dtype: float64

-1.0

[4]:	id	radius_mean text	ure_mean	perimeter_mean	area_mean	smoothness_mean	\
	926424	21.56	22.39	142.00	1479.0	0.11100	
	926682	20.13	28.25	131.20	1261.0	0.09780	
	926954	16.60	28.08	108.30	858.1	0.08455	
	927241	20.60	29.33	140.10	1265.0	0.11780	
	92751	7.76	24.54	47.92		0.05263	
	02101	1.10	21.01	11.02	101.0	0.00200	
	id	compactness_mean	concavity	_mean concave	points_mean	symmetry_mean	\
	926424	0.11590	0	24390	0.13890	0.1726	
	926682	0.10340		14400	0.13390	0.1720	
	926954	0.10340		09251	0.05302	0.1732	
	927241	0.27700		35140	0.15200	0.2397	
	92751	0.04362		00000	0.13200	0.1587	
	92131	0.04302	0.	00000	0.00000	0.1307	
		fractal_dimension	_mean	radius_worst	texture_worst	\	
	id	^	 0E602	05 450	06.40		
	926424		05623	25.450	26.40		
	926682		05533	23.690	38.25		
	926954		05648	18.980	34.12		
	927241		07016	25.740	39.42		
	92751	0.	05884	9.456	30.37		
		perimeter_worst	area_worst	smoothness_we	orst compact	ness_worst \	
	id	166 10	2027 0	0.1	1100	0.01120	
	926424	166.10	2027.0		4100	0.21130	
	926682 926954	155.00 126.70	1731.0		1660 1390	0.19220 0.30940	
	927241	184.60	1124.0 1821.0		6500	0.86810	
	927241	59.16	268.6		3996	0.06444	
	92751	59.16	200.0	0.00	0990	0.06444	
		concavity_worst	concave po	ints_worst syn	mmetry_worst	\	
	id	0 4407		0.0046	0.0000		
	926424	0.4107		0.2216	0.2060		
	926682	0.3215		0.1628	0.2572		
	926954	0.3403		0.1418	0.2218		
	927241	0.9387		0.2650	0.4087		
	92751	0.0000		0.0000	0.2871		
		fractal_dimension	_worst				
	id						
	926424		0.07115				
	926682		.06637				
	926954		0.07820				
	927241		.12400				
	92751	C	0.07039				

[5 rows x 30 columns]

As with any data set that has features over different ranges, it's required to standardise the data before.

```
[5]: ## EDIT THIS FUNCTION - DONE
     def standardise(X):
       mu = np.mean(X, 0)
       sigma = np.std(X, 0)
       X std = (X - mu) / sigma ## <-- EDIT THIS LINE - DONE
       return X std
[6]: X_std = standardise(X)
     # check
     X_std.tail()
[6]:
             radius_mean texture_mean perimeter_mean area_mean smoothness_mean
     id
     926424
                2.110995
                              0.721473
                                               2.060786
                                                          2.343856
                                                                            1.041842
                1.704854
                              2.085134
                                                          1.723842
     926682
                                               1.615931
                                                                            0.102458
                0.702284
     926954
                              2.045574
                                               0.672676
                                                          0.577953
                                                                           -0.840484
     927241
                1.838341
                              2.336457
                                               1.982524
                                                          1.735218
                                                                            1.525767
               -1.808401
                                              -1.814389 -1.347789
    92751
                              1.221792
                                                                           -3.112085
             compactness_mean concavity_mean concave points_mean symmetry_mean \
     id
                                                                          -0.312589
     926424
                     0.219060
                                      1.947285
                                                           2.320965
     926682
                    -0.017833
                                      0.693043
                                                           1.263669
                                                                          -0.217664
     926954
                    -0.038680
                                     0.046588
                                                           0.105777
                                                                          -0.809117
     927241
                     3.272144
                                     3.296944
                                                           2.658866
                                                                          2.137194
                    -1.150752
     92751
                                    -1.114873
                                                          -1.261820
                                                                          -0.820070
             fractal_dimension_mean ... radius_worst texture_worst
     id
     926424
                          -0.931027 ...
                                             1.901185
                                                            0.117700
     926682
                          -1.058611 ...
                                             1.536720
                                                            2.047399
     926954
                          -0.895587 ...
                                             0.561361
                                                            1.374854
    927241
                           1.043695 ...
                                             1.961239
                                                            2.237926
     92751
                          -0.561032 ...
                                            -1.410893
                                                            0.764190
             perimeter_worst area_worst smoothness_worst compactness_worst \
     id
     926424
                    1.752563
                                2.015301
                                                   0.378365
                                                                     -0.273318
     926682
                    1.421940
                                1.494959
                                                  -0.691230
                                                                     -0.394820
     926954
                    0.579001
                                0.427906
                                                  -0.809587
                                                                      0.350735
```

```
927241
                    2.303601
                              1.653171
                                                  1.430427
                                                                      3.904848
     92751
                   -1.432735 -1.075813
                                                  -1.859019
                                                                     -1.207552
             concavity_worst concave points_worst symmetry_worst \
     id
     926424
                    0.664512
                                           1.629151
                                                          -1.360158
     926682
                    0.236573
                                          0.733827
                                                          -0.531855
     926954
                    0.326767
                                          0.414069
                                                          -1.104549
     927241
                    3.197605
                                          2.289985
                                                           1.919083
     92751
                   -1.305831
                                         -1.745063
                                                          -0.048138
             fractal_dimension_worst
     id
                           -0.709091
     926424
     926682
                           -0.973978
     926954
                           -0.318409
     927241
                            2.219635
     92751
                           -0.751207
     [5 rows x 30 columns]
[7]: # insert 1 in every row for the intercept b
     X_std.insert(loc=len(X_std.columns), column='intercept', value=1)
     # split into train and test set
     # stacking data X and labels y into one matrix
     # the newaxis bit converts y into a column vector instead of a 1D row vector
     data_split = np.hstack((X_std, np.array(y)[:, np.newaxis]))
     # shuffling the rows
     np.random.shuffle(data_split)
     # we split train to test as 70:30
     split_rate = 0.7
     train, test = np.split(data_split, [int(split_rate*(data_split.shape[0]))])
     X_train = train[:,:-1]
     y_train = train[:, -1]
     X_{\text{test}} = \text{test}[:,:-1]
     y_{test} = test[:, -1]
     y_train = y_train.astype(float)
     y_test = y_test.astype(float)
```

1.1 Linear SVM

We start with defining the hinge loss as

$$\mathcal{L}(\boldsymbol{w}) = \frac{1}{2} \|\boldsymbol{w}\|^2 + \frac{\lambda}{n} \sum_{i=1}^{n} \max \left(0, 1 - y_i(\boldsymbol{w} \cdot x_i + b)\right).$$

where w is the vector of weights, λ the regularisation parameter, and b the intercept which is included in our X as an additional column of 1's.

```
[8]: # EDIT THIS FUNCTION - DONE
def compute_cost(W, X, y, regul_strength=1e5):
    n = X.shape[0]
    distances = 1 - y * np.dot(X, W) ## <-- EDIT THIS LINE - DONE
    distances[distances < 0] = 0 # equivalent to max(0, distance)
    hinge = regul_strength * (np.sum(distances) / n) ## <-- EDIT THIS LINE - DONE

# calculate cost
    cost = 1 / 2 * np.dot(W, W) + hinge
    return cost</pre>
```

Next, we need the gradients of this cost function.

```
[9]: # calculate gradient of cost
def calculate_cost_gradient(W, X_batch, y_batch, regul_strength=1e5):
    # if only one example is passed
    if type(y_batch) == np.float64:
        y_batch = np.asarray([y_batch])
        X_batch = np.asarray([X_batch]) # gives multidimensional array

distance = 1 - (y_batch * np.dot(X_batch, W))
    dw = np.zeros(len(W))

for ind, d in enumerate(distance):
    if max(0, d)==0:
        di = W
    else:
        di = W - (regul_strength * y_batch[ind] * X_batch[ind])
    dw += di

dw = dw/len(y_batch) # average
    return dw
```

Both of the two previous functions are then used in SGD (stochastic gradient descent) to update the weights iteratively with a given learning rate α . We also implement a stop criterion that ends the learning as soon as the cost function has not changed more than a manually determined percentage.

We know that the learning happens through updating the weights according to

$$\boldsymbol{w} = \boldsymbol{w} - \alpha \frac{\partial \mathcal{L}}{\partial \boldsymbol{w}}$$

where $\frac{\partial \mathcal{L}}{\partial \mathbf{n}}$ is the gradient of the hinge loss we have computed in the previous cell.

```
[10]: # EDIT THIS FUNCTION
      def sgd(X, y, max_iterations=2000, stop_criterion=0.01, learning rate=1e-5,_
       →regul_strength=1e5, print_outcome=False):
        # initialise zero weights
        weights = np.zeros(X.shape[1])
        # initialise starting cost as infinity
        prev_cost = np.inf
        # stochastic gradient descent
        for iteration in range(1, max_iterations):
            # shuffle to prevent repeating update cycles
            np.random.shuffle([X, y])
            for ind, x in enumerate(X):
                ascent = calculate_cost_gradient(weights, x, y[ind], regul_strength)_u
       →## <-- EDIT THIS LINE - DONE
                weights = weights - (learning_rate * ascent)
            # convergence check on 2 n'th iteration
            if iteration==2**nth or iteration==max_iterations-1:
                # compute cost
                cost = compute_cost(weights, X, y, regul_strength) ## <-- EDIT THIS_
       →LINE - DONE
                if print_outcome:
                  print("Iteration is: {}, Cost is: {}".format(iteration, cost))
                # stop criterion
                if abs(prev_cost - cost) < stop_criterion * prev_cost:</pre>
                    return weights
                prev_cost = cost
                nth += 1
        return weights
```

Now, we can take these functions and train a linear SVM with our training data.

```
Iteration is: 1, Cost is: 643.6344645837801
Iteration is: 2, Cost is: 963.0193861899953
Iteration is: 4, Cost is: 670.9963277398275
Iteration is: 8, Cost is: 836.9168198632913
Iteration is: 16, Cost is: 740.2278402108747
```

```
Iteration is: 32, Cost is: 571.910922482765
Iteration is: 64, Cost is: 778.1430215536361
Iteration is: 128, Cost is: 545.3824443539849
Iteration is: 256, Cost is: 512.7494745850026
Iteration is: 512, Cost is: 453.97725378828716
Iteration is: 1024, Cost is: 742.8344529665217
Iteration is: 1999, Cost is: 655.4247548686748
Training finished.
```

To evaluate the mean accuracy in both train and test set, we write a small function called score.

```
[13]: print("Accuracy on train set: {}".format(score(W, X_train, y_train)))
print("Accuracy on test set: {}".format(score(W, X_test, y_test)))
```

Accuracy on train set: 0.9472361809045227 Accuracy on test set: 0.9590643274853801

Questions:

- 1. What are other evaluation metrices besides the accuracy? Implement them and assess the performance of our classification algorithm with them.
- bias, variance, Confusion Matrix
- 2. What makes other evaluation metrices more appropriate given our unbalanced data set (we have more benign than malignant examples)?
- Can get Type 1 and Type 2 errors and adjust the model as appropriate
- 3. Try different learning rates, regularisation strengths and number of iterations independently. What can you observe? Can you achieve higher accuracies?
- Higher learning rate (closer to 1) leads to fewer iterations till convergence for the cost.
- As regularisation strength increases, so does accuracy (as fewer wrongly classified points are allowed)
- Greater number of iterations leads to higher accuracy (up to convergence of cost, after which increasing iterations doesn't affect accuracy too much)
- 4. What is your understanding why have we used the hinge loss with this data set of 31 features?
- Idea that a hard margin is not possible

- 5. Can you think of other loss functions instead of the hinge loss? What is your intuition how they will perform compared to the hinge loss? You could try implementing one and compare the results.
- Square Loss or Logistic Loss
- They give us more information than we need

1.2 T-fold cross validation

Now we repeat the same procedure as above but do not only have one train-test split, but multiple in a T-fold cross validation method.

```
[14]: def cross_val_split(data, num_folds):
    fold_size = int(len(data) / num_folds)
    data_perm = np.random.permutation(data)
    folds = []
    for k in range(num_folds):
        folds.append(data_perm[k*fold_size:(k+1)*fold_size, :])
    return folds
```

```
[15]: # evaluate
folds = cross_val_split(train, 5)
```

```
[16]: ## EDIT THIS FUNCTION - DONE
      def cross_val_evaluate(data, num_folds):
        folds = cross_val_split(data, num_folds)
        train_scores = []
        val_scores = []
        for i in range(len(folds)):
          print('Fold', i+1)
          # define the training set (i.e. selecting all folds and deleting the one_
       \rightarrowused for validation)
          train_set = np.delete(np.asarray(folds).reshape(len(folds), folds[0].
       \rightarrowshape[0], folds[0].shape[1]), i, axis=0)
          train_folds = train_set.reshape(len(train_set)*train_set[0].shape[0],_
       →train_set[0].shape[1])
          X train = train folds[:,:-1] ## <-- EDIT THIS LINE - DONE</pre>
          y_train = train_folds[:, -1]
          # define the validation set
          val_fold = folds[i] ## <-- EDIT THIS LINE - DONE</pre>
          X_val = val_fold[:,:-1] ## <-- EDIT THIS LINE - DONE</pre>
          y_val = val_fold[:, -1]
```

```
# train the model
          W = sgd(X_train, y_train, max_iterations=1025, stop_criterion=0.01,_
       →learning_rate=1e-3, regul_strength=1e3)
          print("Training finished.")
          # evaluate
          train_score = score(W, X_train, y_train)
          val_score = score(W, X_val, y_val)
          print("Accuracy on train set #{}: {}".format(i+1, train_score))
          print("Accuracy on validation set #{}: {}".format(i+1, val_score))
          train_scores.append(train_score)
          val_scores.append(val_score)
        return train_scores, val_scores
[17]: train_scores, val_scores = cross_val_evaluate(train, 5)
     Fold 1
     Training finished.
     Accuracy on train set #1: 0.9620253164556962
     Accuracy on validation set #1: 0.9493670886075949
     Fold 2
     Training finished.
     Accuracy on train set #2: 0.9620253164556962
     Accuracy on validation set #2: 0.9620253164556962
     Fold 3
     Training finished.
     Accuracy on train set #3: 0.9651898734177216
     Accuracy on validation set #3: 0.9746835443037974
     Fold 4
     Training finished.
     Accuracy on train set #4: 0.9651898734177216
     Accuracy on validation set #4: 0.9493670886075949
     Fold 5
     Training finished.
     Accuracy on train set #5: 0.9841772151898734
     Accuracy on validation set #5: 0.8860759493670886
     Finally, let's compute the mean accuracy.
```

0.9443037974683545

[18]: print(np.mean(val_scores))