Title: Designing Cross-Domain Semantic Web of Things Applications

Abstract: According to Cisco's predictions there will be more than 50 billions of devices connected to the Internet by 2020. The devices and produced data are mainly exploited to build domain-specific Internet of Things (IoT) applications. From a data-centric perspective, these applications are not interoperable with each other. To assist users or even machines in building promising inter-domain IoT applications, main challenges are to exploit, reuse, interpret and combine sensor data. To overcome interoperability issues, we designed the Machine-to-Machine Measurement (M3) framework consisting in: (1) generating templates to easily build Semantic Web of Things applications, (2) semantically annotating IoT data to infer high-level knowledge by reusing as much as possible the domain knowledge expertise, and (3) a semantic-based security application to assist users in designing secure IoT applications. Regarding the reasoning part, stemming from the 'Linked Open Data', we propose an innovative idea called the 'Linked Open Rules' to easily share and reuse rules to infer high-level abstractions from sensor data. The M3 framework has been suggested to standardizations and working groups such as ETSI M2M, oneM2M, W3C SSN ontology and W3C Web of Things. Proof-of-concepts of the flexible M3 framework have been developed on the cloud (http://www.sensormeasurement.appspot.com/) and embedded on Android-based constrained devices.

Titre : Concevoir des applications Internet des Objets sémantiques

Résumé: Selon les prévisions de Cisco, il y aura plus de 50 milliards d'appareils connectés à Internet d'ici 2020. Les appareils et les données produites sont principalement exploitées pour construire des applications « Internet des Objets (IdO) ». D'un point de vue des données, ces applications ne sont pas interopérables les unes avec les autres. Pour aider les utilisateurs ou même les machines à construire des applications 'Internet des Objets' inter-domaines innovantes, les principaux défis sont l'exploitation, la réutilisation, l'interprétation et la combinaison de ces données produites par les capteurs. Pour surmonter les problèmes d'interopérabilité, nous avons conçu le système Machine-to-Machine Measurement (M3) consistant à: (1) enrichir les données de capteurs avec les technologies du web sémantique pour décrire explicitement leur sens selon le contexte, (2) interpréter les données des capteurs pour en déduire des connaissances supplémentaires en réutilisant autant que possible la connaissance du domaine définie par des experts, et (3) une base de connaissances de sécurité pour assurer la sécurité dès la conception lors de la construction des applications IdO. Concernant la partie raisonnement, inspiré par le « Web de données », nous proposons une idée novatrice appelée le « Web des règles » afin de partager et réutiliser facilement les règles pour interpréter et raisonner sur les données de capteurs. Le système M3 a été suggéré à des normalisations et groupes de travail tels que l'ETSI M2M, oneM2M, W3C SSN et W3C Web of Things. Une preuve de concept de M3 a été implémentée et est disponible sur le web (http://www.sensormeasurement.appspot.com/).