Deterministic Bayesian inference methods for the Naomi model

HIV Inference Lab Group Meeting

Adam Howes

Imperial College London

April 2023

Bayesian modelling and inference

- ullet As a statistical modeller, the bulk of our job is in constructing a generative model for data y using parameters ϑ
- This is the joint distribution $p(y, \vartheta) = p(y | \vartheta)p(\vartheta)$
- Then, we want to compute (ideally without having to think much about it) the posterior $p(\vartheta \mid y)$ which is just¹

$$p(\vartheta \mid y) = \frac{p(y,\vartheta)}{p(y)} = \frac{p(y \mid \vartheta)p(\vartheta)}{p(y)}$$

• The central problem of Bayesian inference is doing the following integral

$$p(y) = \int p(y, \vartheta) d\vartheta$$

 $^{^1\}mbox{l've}$ highlighted this with sarcasm in mind: it's a difficult problem

Numerical integration

- If you want to integrate something deterministically, you could use numerical integration, otherwise called quadrature
- Choose nodes $\vartheta \in \mathcal{Q} \subset \Theta$ and weights $\omega : \Theta \to \mathbb{R}$ and compute the weighted sum

$$\tilde{p}(y) = \sum_{\vartheta \in \mathcal{Q}} p(y,\vartheta)\omega(\vartheta)$$

 By "deterministic" I mean: if you follow the same procedure you will get the same answer

Naive quadrature example

- Remember how integration is taught? (Rienmann sums)
- Try computing $\int_0^{\pi} \sin(x) dx = 2$ using trapezoid rule
- Nodes evenly spaced through $[0, \pi]$

```
trapezoid_rule <- function(x, spacing) {
  w <- rep(spacing, length(x)) # Weights given by space between nodes
  w[1] <- w[1] / 2 # Apart from the first which is halved
  w[length(x)] <- w[length(x)] / 2 # And the last, also halved
  sum(w * x) # Compute the weighted sum
}</pre>
```

Number of nodes: 10 Trapezoid rule estimate: 1.98 Truth: 2 1.00 0.75 (x) 0.50 0.25 0.00 Х

Figure 1: With 10 nodes it's 0.02 off.

Figure 2: With 30 nodes it's 0.002 off.

Number of nodes: 100 Trapezoid rule estimate: 2 Truth: 2 1.00 0.75 (x) 0.50 0.25 0.00

Figure 3: With 100 nodes it's pretty much correct.

Х

Monte Carlo as it relates to numerical integration

- Suppose we can sample $\vartheta_i \sim p(y, \vartheta)$ for $i = 1, \dots, N$
- The Monte Carlo (MC) estimate is

$$\tilde{p}(y) = \frac{1}{N} \sum_{i} p(y, \vartheta_i)$$

which is quadrature with the samples as nodes and $\omega(\vartheta_i) = 1/N$ for all i

• For complicated models² it's not possible to sample directly from $p(y, \vartheta)$, but we can usually sample from a Markov chain (MCMC)

²Or not even that complicated

Monte Carlo is fundamentally unsound

- "Monte Carlo ignores information" according to O'Hagan (1987)
- Suppose N=3 and we sample $\vartheta_1,\vartheta_2,\vartheta_3$ with $\vartheta_2=\vartheta_3$ then our MC estimate is

$$\tilde{p}(y) = \frac{1}{3} \left(p(y, \vartheta_1) + p(y, \vartheta_2) + p(y, \vartheta_3) \right)$$

• This is despite the fact that nothing new about the function has been learned by adding $\{\vartheta_3, p(y, \vartheta_3)\}$

Application to HIV survey sampling

- This is a digression but...
- Say we're running a household survey, and sample the same individual twice
- We didn't learn anything new about HIV by surveying them again!
- This doesn't just bite for nodes or individuals which are exactly the same: an analogous argument can be made if they are close together and we expect their function evaluations to be similar

 \implies Bayesian quadrature, Bayesian survey design For some half-baked thoughts, see athowes.github.io/fourthgen/paper.pdf

Curse of dimensionality

- Quadrature doesn't work very well when $\dim(\vartheta)$ gets even moderately sized, because there is an exponential increase in the volume you need to cover
- If you're using k points per dimension it's $k^{\dim(\vartheta)}$ e.g. k = 5 then

```
5^{1:8}
## [1] 5 25 125 625 3125 15625 78125 390625
```

Latent variables and hyperparameters

- Previously all of the parameters were under the symbol ϑ what if we split them up as being $\vartheta = (x, \theta)$
- The key part about this is that dim(x) = N is big and $dim(\theta) = m$ is small

Names for x	Names for $ heta$
Latent variables, random effects, latent field	Hyperparameters, fixed effects

Spatio-temporal statistics

- There is nothing inherently special about spatio-temporal statistics, but we do often end up tackling problems with similar structures
- We have observations indexed by space $s \in \mathcal{S}$ and time $t \in \mathcal{T}$
- Usually we associate parameters to spatio-temporal locations, giving us something like $\{x_{s,t}\}_{s\in\mathcal{S},t\in\mathcal{T}}$

What's important about this?

- 1. There might be a lot of spatio-temporal locations, so N might be pretty big! If you have 100 districts and 10 years, that's already $100\times10=1000$ parameters
- 2. Perhaps we're willing to make quite strong assumptions about how things vary over space-time³: not IID anymore!

 $^{^3}$ Are there any slides about spatial statistics that don't describe Tobler's first law of geography?

Latent Gaussian models

• A latent Gaussian model (LGM) (Rue, Martino, and Chopin 2009) looks along these lines:

```
(Observations) y \sim p(y \mid x, \theta),
(Latent field) x \sim \mathcal{N}(x \mid \mu(\theta), Q(\theta)^{-1}),
(Hyperparameters) \theta \sim p(\theta).
```

- Many models are LGMs, especially in spatio-temporal statistics
- $\dim(x) = n$, $\dim(x) = N$, $\dim(\theta) = m$

• Remember that we wanted to compute

$$p(y) = \int p(y, \vartheta) d\vartheta$$

- One trick for doing this is to pretend $p(\vartheta \mid y)$ is Gaussian

 - Mode $\hat{\vartheta} = \arg\max_{\vartheta} \log p(y, \vartheta)$ Hessian $H(\hat{\vartheta}) = -\partial_{\vartheta}^2 \log p(y, \vartheta)|_{\vartheta = \hat{\vartheta}}$
 - Gaussian approximation $\Longrightarrow \tilde{p}_{\mathbf{G}}(\vartheta \mid y) = \mathcal{N}(\vartheta \mid \hat{\vartheta}, H(\hat{\vartheta})^{-1})$

Example of computing the Laplace approximation

• Consider the following model for i = 1, ..., n with fixed a and b

$$y_i \sim \mathsf{Poisson}(\lambda), \quad \lambda \sim \mathsf{Gamma}(a, b).$$

• It's conjugate so we directly know that

$$\lambda \mid y \sim \mathsf{Gamma}(a + \sum_i y_i, b + n)$$

Figure 4: A Gamma prior with a=3 and b=1.

Figure 5: Draw 3 points from Poisson(3), then compute the posterior.

```
fn \leftarrow function(x) dgamma(x, a + sum(y), b + length(y), log = TRUE)
# Here we are using numerical derivatives rather than automatic
ff <- list(
 fn = fn
 gr = function(x) numDeriv::grad(fn, x),
 he = function(x) numDeriv::hessian(fn, x)
opt_bfgs <- aghq::optimize_theta(
 ff, 1, control = aghq::default_control(method = "BFGS")
```

```
laplace <- posterior +
 stat function(
  data = data.frame(x = c(0, 10)),
   aes(x).
   fun = dnorm.
   n = 500.
   args = list(mean = opt_bfgs$mode, sd = sqrt(1 / opt_bfgs$hessian)),
  col = cbpalette[3]
```


Figure 6: The Laplace approximation matches the true posterior near the mode but it's not great in the tails.

Now

$$p(y) = \frac{p(\vartheta, y)}{p(\vartheta \mid y)} \approx \frac{p(\vartheta, y)}{p_{G}(\vartheta \mid y)}$$

and we can evaluate RHS where we would like, so let's pick the point at which the Gaussian is most accurate, which is $\hat{\vartheta}$

$$p_{\mathrm{LA}}(y) = \frac{p(\vartheta, y)}{p_{\mathrm{G}}(\vartheta \mid y)}|_{\vartheta = \hat{\vartheta}} = (2\pi)^{\dim(\vartheta)/2} \det(H(\hat{\vartheta}))^{-1/2} p(\hat{\vartheta}, y)$$

Marginal Laplace approximation

- Hey wait a second, is it reasonable to just assume $p(\vartheta \mid y)$ is Gaussian?
- There is the Bernstein–von Mises theorem, but we can't rely on that in general. However. . .
- 1. We just described a class of models (LGMs) where some subset of the parameters (x) have a Gaussian prior \implies it's a lot more reasonable to think that they would have a marginal posterior which is close to Gaussian
- 2. We just talked about how big x is in comparison to $\theta! \implies$ most of the work in our integral can be done using a marginal Laplace approximation to get rid of x

Generalist versus specialist methods

Dichotomy in statistical inference methods:

- 1. Generalist: works in all situations
- 2. Specialist: "exploits" properties of the problem at hand

We are taking approach 2!

Marginal Laplace approximation

• What does this look like? Instead of assuming $p(\vartheta \mid y) = p(x, \theta \mid y)$ is Gaussian we assume $p(x \mid \theta, y)$ is

$$\tilde{p}_{\mathrm{G}}(x \mid \theta, y) = \mathcal{N}(x \mid \hat{x}, H(\hat{x}))^{-1}$$

where $\hat{x} = \hat{x}(\theta)$

Now the marginal Laplace approximation is

$$p_{\mathrm{LA}}(\theta, y) = \frac{p(x, \theta, y)}{\tilde{p}_{\mathrm{G}}(x \mid \theta, y)}|_{x = \hat{x}} = (2\pi)^{N/2} \det(H(\hat{x}))^{-1/2} p(\hat{x}, \theta, y)$$

Integrated nested Laplace approximation

- Now we can compute $p_{LA}(\theta, y)$ but what we really want is still p(y)
- But hopefully 4 m is small enough that we can now tackle this with quadrature
- ullet So pick some nodes ${\mathcal Q}$ and a weighting function ω and away we go

$$p(y) \approx \sum_{\theta \in \mathcal{O}} p_{\text{LA}}(\theta, y) \omega(\theta)$$

This is the famous integrated nested Laplace approximation (INLA)

⁴Really: hopefully

Taking stock

- 1. Bayesian inference is integration
- 2. Spatial statistics has parameters (x, θ)
- 3. Integrate x cheaply using a Gaussian assumption
- 4. Try a bit harder with θ performing quadrature

Now let's apply this to a difficult problem in HIV inference!

The Naomi model

- Naomi is a spatial evidence synthesis model
- Used by countries to produce HIV estimates in a yearly process supported by UNAIDS
- Inference for Naomi is currently conducted using TMB by optimising $p_{LA}(\theta, y)$, and has to be pretty quick to allow for interactive review and development of estimates

Figure 7: A supermodel

1	2	3	4	5	6	7
Upload inputs	Review inputs	Model options	Fit model	Calibrate model	Review output	Save results
BACK / CONTIN	NUE					
Spectrum file (r	required)					
Select new file				Browse		
Area boundary	file (required)					
Select new file				Browse		
Population (requ	ired)					
Select new file				Browse		
Household Sur	vey (required)					
Select new file				Browse		
ART						
Select new file				Browse		
ANC Testing						
Select new file				Browse		
BACK / CONTIN	NUE					

Figure 8: Example of the user interface from https://naomi.unaids.org/

Template Model Builder refresher

- To use TMB (Kristensen et al. 2015), you write your objective function $-\log p(y,x,\theta)$ in the C++ syntax
- For example, for the model $\mathbf{y} \sim \mathcal{N}(\mu, 1)$ with $p(\mu) \propto 1$ then the TMB user template looks like (next slide)
- TMB implements the Laplace approximation! Set random = "x"

```
#include <TMB.hpp>
template < class Type>
Type objective_function<Type>::operator()() {
 // Define data e.g.
 DATA_VECTOR(y);
 // Define parameters e.g.
 PARAMETER(mu);
 // Calculate negative log-likelihood e.g.
 nll = Type(0.0);
 nll -= dnorm(y, mu, 1, true).sum()
 return(nll);
```

Why do we use TMB

- It runs quickly, and is flexible enough to write the model
- Another answer is that we don't have any better options

Option	Would it work?
MCMC INLA via R-INLA	No! It is accurate (eventually) but takes too long No! Though Naomi is a spatial model with a large Gaussian latent field, it isn't technically a LGM, and isn't compatible with R-INLA

Idea

- Implement an algorithm inspired by INLA which
- 1. is compatible with Naomi and its intricacies
- 2. uses $\ensuremath{\mathtt{TMB}}$ and thereby automatic differentiation to perform the Laplace approximation

Not a new idea!

My main comment is that several aspects of the computational machineery that is presented by Rue and his colleagues **could benefit** from the use of a numerical technique known as automatic differentiation (AD) ... By the use of AD one could obtain a system that is automatic from a user's perspective... the benefit would be a fast, flexible and easy-to-use system for doing Bayesian analysis in models with Gaussian latent variables

– Hans J. Skaug (coauthor of TMB), RSS discussion of Rue, Martino, and Chopin (2009)

Meanwhile in Canada...

- Alex Stringer in Toronto → Waterloo had independently been thinking along similar lines, and made a lot of progress
- 1. Implementing an algorithm similar to INLA, using a specific quadrature rule $\mathcal Q$ called adaptive Gauss-Hermite quadrature (AGHQ) which arguably should be the default for this problem
- 2. Defining a class of models called extended latent Gaussian models (ELGMs) which Naomi fits into
- I will explain what both of these acronyms (AGHQ⁵ and ELGM) mean!

⁵Amusingly similar to AGYW: adolescent girls and young women

Gauss-Hermite quadrature

Recall

$$\int f(z)\mathrm{d}z \approx \sum_{z\in\mathcal{Q}} f(z)\omega(z)$$

- Replace f(z) by $\phi(z)f(z)$ and say that f is a polynomial and ϕ is unknown
- Suppose that $\phi(z) = \exp(-z^2)$

Adaptation

- The nodes and weights we use should probably depend on the integrand
- Especially when the integrand is also a function of y, which we don't know in advance, as in $p(y, \vartheta)$
 - i.e. how could any fixed quadrature rule be appropriate for all possible y?
- Let $z \in \mathcal{Q}(m, k)$ then

$$\theta(z) = \hat{\theta} + Lz$$

where *L* is the lower Cholesky of $H = LL^{\top}$

- Other matrix decompositions can also be used e.g. spectral $H = E \Lambda E^{\top} = (E \Lambda^{1/2})(E \Lambda^{1/2})$
 - Arguably this is preferable: symmetric with respect to the principle axis (Jäckel 2005)

Figure 9: Unadapted points in two dimensions with k = 3.

Figure 11: First option: rotate by the lower Cholesky L.

Figure 12: Second option: rotate using the eigendecomposition $E\Lambda^{1/2}$.

Extended latent Gaussian models

- To explain what an extended latent Gaussian model (ELGM) is, we need a little more detail on LGMs
- In an LGM the conditional mean depends on exactly one structured additive predictor, specifically

$$y_i \sim p(y_i | \eta_i, \theta_1), \quad i \in [n]$$

 $\mu_i = \mathbb{E}(y_i | \eta_i) = g(\eta_i),$
 $\eta_i = \beta_0 + \sum_{l=1}^p \beta_j z_{ji} + \sum_{k=1}^r f_k(u_{ki}),$

Extended latent Gaussian models

• ELGM remove this requirement such that

$$\mu_{\it i} = {\it g}(\eta_{\mathcal{J}_{\it i}})$$

where $g_i: \mathbb{R}^{|\mathcal{J}_i|} \to \mathbb{R}$ and \mathcal{J}_i is some set of indices

• This allow for a higher degree of non-linearity in the model

Why is Naomi an ELGM?

	Things I thought made Naomi an ELGM	Does it actually?
1	ANC offset from household survey	?
2	Incidence depends on adult prevalence and coverage	?
3	ART coverage and recent infection are products	?
4	ART attendance uses a multinomial	?
5	Aggregation of finer processes	?

- I will explain each of these, and whether or not they make Naomi an ELGM, in more detail in slides to follow
 - The notation may not have been introduced properly, but hopefully the gist will still
 make sense

ANC offset from household survey

 Linear predictors for ANC indicators contain nested in them the linear predictors for household survey indicators

$$\begin{split} & \mathsf{logit}(\rho_{\mathsf{x},\mathsf{a}}^{\mathsf{ANC}}) = \mathsf{logit}(\rho_{\mathsf{x},\mathsf{F},\mathsf{a}}) + \beta^{\rho^{\mathsf{ANC}}} + u_{\mathsf{x}}^{\rho^{\mathsf{ANC}}} + \eta_{R_{\mathsf{x}},\mathsf{a}}^{\rho^{\mathsf{ANC}}}, \\ & \mathsf{logit}(\alpha_{\mathsf{x},\mathsf{a}}^{\mathsf{ANC}}) = \mathsf{logit}(\alpha_{\mathsf{x},\mathsf{F},\mathsf{a}}) + \beta^{\alpha^{\mathsf{ANC}}} + u_{\mathsf{x}}^{\alpha^{\mathsf{ANC}}} + \eta_{R_{\mathsf{x}},\mathsf{a}}^{\alpha^{\mathsf{ANC}}}. \end{split}$$

- Here $logit(\rho_{x,F,a})$ and $logit(\alpha_{x,F,a})$ are Gaussian
- R-INLA does have the copy feature $\eta^* = A\eta$ but A must be $n \times n$
- Conclusion: does make Naomi an ELGM

Incidence depends on adult prevalence and coverage

• Linear predictor for incidence contains aggregated prevalence and coverage $\log(\lambda_{x,s,a}) = \beta_0^{\lambda} + \beta_S^{\lambda,s=M} + \log(\rho_x^{15-49}) + \log(1 - \omega \cdot \alpha_x^{15-49}) + u_x^{\lambda} + \eta_{R_x,s,a}^{\lambda}.$

- Here $\log(\rho_v^{15-49})$ and $\log(1-\omega\cdot\alpha_v^{15-49})$ are not going to be Gaussian
- Conclusion: does make Naomi an ELGM

ART coverage and recent infection are products

• In the household survey, say, individuals who are taking ART or have been recently infected must be HIV positive

$$\begin{split} &y_{x,s,a}^{\hat{\alpha}} \sim \mathsf{xBin}(\textit{m}_{x,s,a}, \rho_{x,s,a} \cdot \alpha_{x,s,a}), \\ &y_{x,s,a}^{\hat{\kappa}} \sim \mathsf{xBin}(\textit{m}_{x,s,a}, \rho_{x,s,a} \cdot \kappa_{x,s,a}). \end{split}$$

- $logit(\rho_{x,s,a})$ and $logit(\alpha_{x,s,a})$ are Gaussian, but we're taking a product here
- $\kappa_{x,s,a}$ is more complicated: a function of incidence, prevalence, mean duration of recent infection and false recent ratio
- Conclusion: does make Naomi an ELGM

Warning! These equations as writen do not appear in Naomi: instead there are aggregated versions, more about this soon.

ART attendance uses the multinomial

Aggregation of finer processes

• There are many instances of models being placed on aggregate quantities

$$y_{\mathcal{I}}^{\hat{\theta}} \sim \mathsf{xBin}(m_{\mathcal{I}}^{\hat{\theta}}, \theta_{\mathcal{I}}),$$
$$\rho_{\mathcal{I}} = \frac{\sum_{i \in \mathcal{I}} \mathsf{N}_{i} \rho_{i}}{\sum_{i \in \mathcal{I}} \mathsf{N}_{i}}.$$

- Here we have $|\mathcal{I}|$ linear predictors being informed by one observation
- Conclusion: does make Naomi an ELGM

I've previously worked on this "disaggregation regression" situation with respect to space, see athowes/areal-comparison

The algorithm

Figure 13: Inference for the hyperparameters. Shaped like a snake for no real reason.

Figure 14: Inference for the latent field: naive Laplace version.

Comparing posterior distributions

• Let $\{\theta_i\}_{i=1}^n$ be posterior marginal samples from some quantity with empirical cumulative distribution (ECDF) function

$$F(\vartheta) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}_{\theta_i \leq \vartheta}$$

• Could be a hyperparameter, latent field parameter, model outputs

Our primary interest is in the model outputs: do any of the inference methods do a better job at computing the posterior for quantities countries use?

Maximum mean discrepancy

Pareto smoothed importance sampling

Thanks for listening!

- Working on a paper "Fast approximate Bayesian inference for small-area estimation of HIV indicators using the Naomi model" based on this work, joint with Alex Stringer (Waterloo) and my PhD supervisors Seth Flaxman (Oxford) and Jeff Eaton (Imperial)
- Let me know if you'd be up for being an early reader!
- Code for this project is at athowes.github.io/elgm-inf

References I

- Jäckel, Peter. 2005. "A Note on Multivariate Gauss-Hermite Quadrature." London: ABN-Amro. Re.
- Kristensen, Kasper, Anders Nielsen, Casper W Berg, Hans Skaug, and Brad Bell. 2015. "TMB: automatic differentiation and Laplace approximation." arXiv Preprint arXiv:1509.00660.
- O'Hagan, Anthony. 1987. "Monte Carlo Is Fundamentally Unsound." *The Statistician*, 247–49.
- Rue, Håvard, Sara Martino, and Nicolas Chopin. 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations." *Journal of the Royal Statistical Society: Series b* (Statistical Methodology) 71 (2): 319–92.