1. Determine whether the following statements are substitution instances of the forms given. (1 point) Circle (or embolden or write) Y (for yes) or N (for no)

- a. Is the statement $A \supset \sim (B \cdot C)$ a substitution instance of $p \supset \sim q$? Y / N
- b. Is the statement $B \supset B$ a substitution instance of $p \supset q$? Y / N
- c. Is the statement $(A \supset B) \supset C$ a substitution instance of $p \supset (q \supset r)$? Y / N
- d. Is the statement $(A \supset B) \supset C$ a substitution instance of $(p \supset q) \supset r$? Y / N
- 2. Is the following inference valid? If so, by what rule? (1 point)

$$\sim (A \lor B) \supset (\sim A \lor \sim B), \sim (\sim A \lor \sim B) / \therefore \sim \sim (A \lor B).$$

Valid? (Y/N)

By which rule? _____

3. Construct a proof for the following. In each step, you may you any of the eight basic rules of inference. (2 points)

 $A \supset (B \lor C), A \bullet \sim B / :: C$

Construct a proof for the following, using any of the rules of inference and replacement rules you need. (2 points)

 \sim A / \therefore \sim (A • \sim B).

