- 1. Realizar el grafo computacional de las siguientes funciones
 - a. Y=sin(x^2+5x+2)
 - b. Y=cos(2x+3)-relu(x)
 - c. $y = \frac{2x}{e^x 3}$

Cada operación se representa como un nodo en el grafo, y la conexion indica la dirección del flujo de datos.

a. $y = \sin(x^2 + 5x + 2)$

- Operación 1: x²
- Operación 2: $x^2 + 5x$
- Operación 3: $x^2 + 5x + 2$
- Operación 4: $sin(x^2 + 5x + 2)$


```
import matplotlib.pyplot as plt
# Definir las operaciones
operaciones = ["x", "Operación 1", "Operación 2", "Operación 3", "Operación 4
(Salida)"]
# Definir las conexiones entre las operaciones
conexiones = [("x", "Operación 1"), ("Operación 1", "Operación 2"),
         ("Operación 2", "Operación 3"), ("Operación 3", "Operación 4 (Salida)")]
# Crear el gráfico
plt.figure(figsize=(10, 6))
# Asignar alturas a las operaciones en el eje y
alturas = [4, 3, 2, 1, 2]
for conexion in conexiones:
  # Obtener las coordenadas x e y de los nodos
  x_{coords} = [operaciones.index(conexion[0]), operaciones.index(conexion[1])]
                                           [alturas[operaciones.index(conexion[0])],
                 y_coords
alturas[operaciones.index(conexion[1])]]
  plt.plot(x_coords, y_coords, 'k-') # Dibujar líneas entre nodos
# Dibujar nodos
for op, alt in zip(operaciones, alturas):
  plt.plot(operaciones.index(op), alt, 'ro', markersize=10)
plt.yticks(alturas, operaciones) # Etiquetas del eje y
plt.title("Grafo Computacional")
plt.xlabel("Operaciones")
plt.ylabel("Nivel")
plt.grid(True)
plt.ylim(0, 5) # Limitar el rango del eje y
plt.show()
```

b. y = cos(2x + 3) - ReLU(x)

- Operación 1: 2x
- Operación 2: 2x + 3
- Operación 3: cos(2x+3)
- Operación 4: ReLU(x)
- Operación 5: Resta cos(2x + 3) ReLU(x)

```
import matplotlib.pyplot as plt
# Definir las operaciones
operaciones = ["x", "Operación 1", "Operación 2", "Operación 3", "Operación 4
(Salida)", "Operación 5 (Salida)"]
# Definir las conexiones entre las operaciones
conexiones = [("x", "Operación 1"), ("Operación 1", "Operación 2"),
         ("Operación 2", "Operación 3"), ("Operación 2", "Operación 4 (Salida)"),
         ("Operación 3", "Operación 5 (Salida)")]
# Crear el gráfico
plt.figure(figsize=(10, 8))
# Asignar alturas a las operaciones en el eje y
alturas = [4, 3, 2, 1, 2, 1]
for conexion in conexiones:
  x_coords = [operaciones.index(conexion[0]), operaciones.index(conexion[1])]
                 y coords
                                           [alturas[operaciones.index(conexion[0])],
alturas[operaciones.index(conexion[1])]]
  plt.plot(x_coords, y_coords, 'k-')
# Dibujar nodos
for op, alt in zip(operaciones, alturas):
  plt.plot(operaciones.index(op), alt, 'ro', markersize=10)
plt.yticks(alturas, operaciones)
plt.title("Grafo Computacional")
plt.xlabel("Operaciones")
plt.ylabel("Nivel")
plt.grid(True)
plt.ylim(0, 5)
plt.show()
```


c. $y = 2x / e^x - 3$

- Operación 1: ex
- Operación 2: ex 3
- Operación 3: 2x / ex 3

```
import matplotlib.pyplot as plt
# Definir las operaciones
operaciones = ["x", "Operación 1", "Operación 2", "Operación 3 (Salida)"]
conexiones = [("x", "Operación 1"), ("Operación 1", "Operación 2"),
         ("Operación 2", "Operación 3 (Salida)")]
# Crear el gráfico
plt.figure(figsize=(10, 8))
# Asignar alturas a las operaciones en el eje y
alturas = [4, 3, 2, 1]
for conexion in conexiones:
  x_{coords} = [operaciones.index(conexion[0]), operaciones.index(conexion[1])]
                 y_coords
                                            [alturas[operaciones.index(conexion[0])],
alturas[operaciones.index(conexion[1])]]
  plt.plot(x_coords, y_coords, 'k-')
# Dibujar nodos
for op, alt in zip(operaciones, alturas):
  plt.plot(operaciones.index(op), alt, 'ro', markersize=10)
plt.yticks(alturas, operaciones)
plt.title("Grafo Computacional")
plt.xlabel("Operaciones")
plt.ylabel("Nivel")
plt.grid(True)
plt.ylim(0, 5)
plt.show()
```


 Para 5 épocas mostrar los pesos sinápticos, de la función sigmoide en 3d donde los pesos iniciales son [0.1,0.3,-0.7] y el bias es 0.25. las entradas del grafo se colocan en la siguiente tabla.

X1	X2	X3	Υ
.3	.2	.1	.7
.1	.1	1	.0
.5	2	4	5

Función Sigmoide con Pesos Sinápticos en 3D


```
import numpy as np
import matplotlib.pyplot as plt
# Función sigmoide
def sigmoid(x):
  return 1/(1 + np.exp(-x))
# Datos de entrada y salida
X = \text{np.array}([[0.3, 0.2, 0.1],
        [0.1, 0.1, -0.1],
        [0.5, -0.2, -0.4]
y = np.array([[0.7],
        [0.0],
        [-0.5]
# Pesos iniciales y bias
weights = np.array([0.1, 0.3, -0.7])
bias = 0.25
# Parámetros del modelo
learning_rate = 0.1
epochs = 5
# Entrenamiento del modelo
for epoch in range(epochs):
  # Forward pass
  weighted_sum = np.dot(X, weights) + bias
  predictions = sigmoid(weighted_sum)
  # Cálculo del error
  error = y - predictions
  # Cálculo de los gradientes
  d_weights = np.mean(X * error * predictions * (1 - predictions), axis=0)
  d_bias = np.mean(error * predictions * (1 - predictions))
  # Actualización de los pesos y el bias
  weights += learning_rate * d_weights
  bias += learning_rate * d_bias
  # Mostrar los pesos sinápticos
  print(f"Época {epoch + 1}: Pesos = {weights}, Bias = {bias}")
# Calcular Z utilizando los valores de X e Y del meshgrid
```

```
Z = sigmoid(weights[0] * X[:, 0] + weights[1] * X[:, 1] + weights[2] * X[:, 2] + bias)

# Gráfico de los pesos sinápticos
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
x = np.arange(-1, 1, 0.1)
y = np.arange(-1, 1, 0.1)
X, Y = np.meshgrid(x, y)
Z = sigmoid(weights[0] * X + weights[1] * Y + bias)
ax.plot_surface(X, Y, Z, cmap='viridis')
ax.set_xlabel('X1')
ax.set_ylabel('X2')
ax.set_zlabel('Sigmoide')
plt.title('Función Sigmoide con Pesos Sinápticos en 3D')
plt.show()
```

- 3. Realizar el código fuente que representa los siguientes modelos.
 - a. Para regresión


```
# Crear el modelo
model = keras.models.Sequential()

# Agregar la capa de entrada
model.add(keras.layers.Input(shape=(10,)))

# Agregar capas densas con activación relu
model.add(keras.layers.Dense(units=1024, activation='relu'))
model.add(keras.layers.Dense(units=256, activation='relu'))
model.add(keras.layers.Dense(units=64, activation='relu'))
model.add(keras.layers.Dense(units=16, activation='relu'))

# Agregar capa densa con activación lineal
model.add(keras.layers.Dense(units=1, activation='linear'))

# Mostrar el resumen del modelo
model.summary()
```

Layer (type)	Output Shape	Param #
dense	(None, 1024)	11,264
dense_1	(None, 256)	262,400
dense_2	(None, 64)	16,448
dense_3	(None, 16)	1,040
dense_4	(None, 1)	17

b. Para clasificación


```
import tensorflow as tf
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input, Conv2D, BatchNormalization, ReLU,
MaxPooling2D, Flatten, Dense
import pandas as pd
# Define the model
input_layer = Input(shape=(28, 28, 3))
x = Conv2D(16, kernel_size=(3, 3), activation='relu')(input_layer)
x = BatchNormalization()(x)
x = MaxPooling2D(pool\_size=(2, 2))(x)
x = Conv2D(32, kernel\_size=(3, 3), activation='relu')(x)
x = BatchNormalization()(x)
x = MaxPooling2D(pool\_size=(2, 2))(x)
x = Flatten()(x)
x = Dense(32, activation='relu')(x)
x = Dense(16, activation='relu')(x)
x = Dense(8, activation='relu')(x)
x = Dense(4, activation='relu')(x)
output_layer = Dense(10, activation='softmax')(x)
model = Model(inputs=input_layer, outputs=output_layer)
# Compile the model
model.compile(optimizer='adam',
                                                   loss='categorical_crossentropy'.
metrics=['accuracy'])
# Crear un DataFrame con los datos de la tabla
data = {
  "Capa": ["Input", "Conv2D-1", "BatchNormalization-1", "MaxPooling2D-1",
        "Conv2D-2", "BatchNormalization-2", "MaxPooling2D-2",
        "Flatten", "Dense-1", "Dense-2", "Dense-3", "Dense-4", "Output"],
  "Tipo": ["Input", "Conv2D", "BatchNormalization", "MaxPooling2D",
        "Conv2D", "BatchNormalization", "MaxPooling2D",
        "Flatten", "Dense", "Dense", "Dense", "Dense", "Dense"],
  "Salida": ["(28, 28, 3)", "(26, 26, 16)", "(26, 26, 16)", "(13, 13, 16)",
         "(11, 11, 32)", "(11, 11, 32)", "(5, 5, 32)",
         "800", "32", "16", "8", "4", "10"],
  "Parámetros": [0, 448, 64, 0, 4640, 128, 0, 0, 25632, 528, 136, 36, 50]
df = pd.DataFrame(data)
# Imprimir el modelo
print("Arquitectura del Modelo:")
```

```
print(model.summary())
print("\n")

# Imprimir el DataFrame como tabla
print("Tabla de Capas:")
print(df)
```

Layer (type)	Output Shape	Param #
input_layer (InputLayer)	(None, 28, 28, 3)	0
conv2d (Conv2D)	(None, 26, 26, 16)	448
batch_normalization	(None, 26, 26, 16)	64
(BatchNormalization)		
max_pooling2d (MaxPooling2D)	(None, 13, 13, 16)	0
conv2d_1 (Conv2D)	(None, 11, 11, 32)	4,640
batch_normalization_1	(None, 11, 11, 32)	128
(BatchNormalization)		
max_pooling2d_1 (MaxPooling2D)	(None, 5, 5, 32)	0
	(None, 800)	0
dense (Dense)	(None, 32)	25,632
dense_1 (Dense)	(None, 16)	528
dense_2 (Dense)	(None, 8)	136
dense_3 (Dense)	(None, 4)	36
dense_4 (Dense)	(None, 10)	50

- Configurar un autoencoder para el conjunto de datos fashion mnist https://keras.io/api/datasets/fashion_mnist/, para ello:
 - a. aplanar las imágenes y normalizar.
 - Configurar para el encoder la siguiente arquitectura [256,128,64,32].
 - c. Entrenar el modelo con Early Stoping y BatchNormalization, para 1000 epocas.
 - Mostrar 12 salidas aleatorias del autoencoder y compararlas con las imágenes originales.

```
import numpy as np
import matplotlib.pyplot as plt
from keras.datasets import fashion_mnist
from keras.models import Sequential, Model
from keras.layers import Dense, Input
from keras.callbacks import EarlyStopping
# Importar BatchNormalization desde tensorflow.keras.layers
from tensorflow.keras.layers import BatchNormalization
# Cargar el conjunto de datos Fashion MNIST
(x_train, _), (x_test, _) = fashion_mnist.load_data()
# Normalizar y aplanar las imágenes
x train = x train.astype('float32') / 255.
x_{test} = x_{test.astype('float32')} / 255.
x_train = x_train.reshape((len(x_train), np.prod(x_train.shape[1:])))
x_{test} = x_{test.reshape((len(x_{test}), np.prod(x_{test.shape[1:])))}
# Configurar la arquitectura del autoencoder
input_dim = x_train.shape[1]
encoding dim = 32
input img = Input(shape=(input dim,))
encoded = Dense(256, activation='relu')(input img)
encoded = BatchNormalization()(encoded)
encoded = Dense(128, activation='relu')(encoded)
encoded = BatchNormalization()(encoded)
encoded = Dense(64, activation='relu')(encoded)
encoded = BatchNormalization()(encoded)
encoded = Dense(encoding_dim, activation='relu')(encoded)
decoded = Dense(64, activation='relu')(encoded)
decoded = Dense(128, activation='relu')(decoded)
decoded = Dense(256, activation='relu')(decoded)
decoded = Dense(input_dim, activation='sigmoid')(decoded)
```

```
autoencoder = Model(input_img, decoded)
# Compilar el modelo
autoencoder.compile(optimizer='adam', loss='binary crossentropy')
# Configurar Early Stopping
early_stopping = EarlyStopping(monitor='val_loss', patience=5, verbose=1)
# Entrenar el modelo
history = autoencoder.fit(x_train, x_train,
          epochs=1000,
          batch_size=256,
          shuffle=True.
          validation_data=(x_test, x_test),
          callbacks=[early_stopping])
# Mostrar 12 salidas aleatorias del autoencoder y compararlas con las imágenes
originales
decoded_imgs = autoencoder.predict(x_test)
n = 12
plt.figure(figsize=(20, 4))
for i in range(n):
  # Mostrar la imagen original
  ax = plt.subplot(2, n, i + 1)
  plt.imshow(x_test[i].reshape(28, 28))
  plt.gray()
  ax.get_xaxis().set_visible(False)
  ax.get_yaxis().set_visible(False)
  # Mostrar la reconstrucción
  ax = plt.subplot(2, n, i + 1 + n)
  plt.imshow(decoded_imgs[i].reshape(28, 28))
  plt.gray()
  ax.get_xaxis().set_visible(False)
  ax.get_yaxis().set_visible(False)
plt.show()
```

Epoch 1/1000 235/235 ————————————————————————————————————	· 15s 33ms/step - loss: 0.4215
235/235 ———————————val_loss: 0.3040	8s 33ms/step - loss: 0.3086 -
Epoch 3/1000 235/235 ————————————————————————————————————	9s 40ms/step - loss: 0.3015 -
Epoch 4/1000 235/235 ————————————————————————————————————	· 8s 35ms/step - loss: 0.2966 -
Epoch 5/1000 235/235 ————————————————————————————————————	· 9s 39ms/step - loss: 0.2928 -
Epoch 6/1000 235/235 ————————————————————————————————————	9s 37ms/step - loss: 0.2907 -
Epoch 7/1000	· 8s 33ms/step - loss: 0.2884 -
Epoch 8/1000 235/235 ————————————————————————————————————	· 8s 35ms/step - loss: 0.2877 -
Epoch 9/1000 235/235 ————————————————————————————————————	8s 33ms/step - loss: 0.2865 -
val_loss: 0.2878 Epoch 10/1000 235/235 ————————————————————————————————————	9s 36ms/step - loss: 0.2860 -
val_loss: 0.2861 Epoch 11/1000 235/235 ————————————————————————————————————	· 8s 32ms/step - loss: 0.2848 -
val_loss: 0.2873 Epoch 12/1000 235/235 ————————————————————————————————————	8s 33ms/step - loss: 0.2840 -
val_loss: 0.2844	·7s 31ms/step - loss: 0.2833 -
Epoch 14/1000	

	- 8s 32ms/step - loss: 0.2822 -
val_loss: 0.2843 Epoch 15/1000	
·	- 7s 32ms/step - loss: 0.2826 -
val_loss: 0.2834	•
Epoch 16/1000	
235/235 ————————————————————————————————————	- 8s 33ms/step - loss: 0.2818 -
val_loss: 0.2821	
Epoch 17/1000	40a 40ma/atan Jana 0 2044
235/235 —	- 10s 40ms/step - loss: 0.2811
- val_loss: 0.2822 Epoch 18/1000	
•	- 8s 32ms/step - loss: 0.2805 -
val loss: 0.2816	00 02 may 010p 1000. 0.2000
Epoch 19/1000	
235/235 ——————————	- 8s 33ms/step - loss: 0.2800 -
val_loss: 0.2818	
Epoch 20/1000	
	- 7s 31ms/step - loss: 0.2794 -
val_loss: 0.2810	
Epoch 21/1000	00 24mg/ston 1000 0 270F
235/235 ————————————————————val_loss: 0.2804	- 8s 34ms/step - loss: 0.2795 -
Epoch 22/1000	
235/235 ————————————————————————————————————	- 8s 33ms/step - loss: 0.2784 -
val_loss: 0.2815	
Epoch 23/1000	
235/235 ————————————————————————————————————	- 8s 32ms/step - loss: 0.2786 -
val_loss: 0.2802	
Epoch 24/1000	
235/235	- 8s 33ms/step - loss: 0.2785 -
val_loss: 0.2817	
Epoch 25/1000 235/235 ————————————————————————————————————	- 8s 32ms/step - loss: 0.2778 -
val_loss: 0.2789	03 321113/316p - 1033. 0.2170 -
Epoch 26/1000	
235/235 —————————	- 8s 33ms/step - loss: 0.2781 -
val_loss: 0.2790	<u>.</u>
Epoch 27/1000	
235/235 ————————————————————————————————————	- 9s 37ms/step - loss: 0.2774 -
val_loss: 0.2803	

- val_loss: 0.2783	10s 43ms/step - loss: 0.2777
Epoch 29/1000 235/235 ————————————————————————————————————	8s 35ms/step - loss: 0.2770 -
Epoch 30/1000 235/235 ————————————————————————————————————	8s 33ms/step - loss: 0.2768 -
Epoch 31/1000	12s 50ms/step - loss: 0.2757
Epoch 32/1000	11s 45ms/step - loss: 0.2766
Epoch 33/1000	8s 32ms/step - loss: 0.2756 -
Epoch 34/1000 235/235 ————————————————————————————————————	14s 59ms/step - loss: 0.2765
	13s 54ms/step - loss: 0.2760
	11s 48ms/step - loss: 0.2750
- val_loss: 0.2771 Epoch 37/1000 235/235 ————————————————————————————————————	10s 42ms/step - loss: 0.2748
	10s 42ms/step - loss: 0.2751
- val_loss: 0.2760 Epoch 39/1000 235/235 ————————————————————————————————————	12s 49ms/step - loss: 0.2744
- val_loss: 0.2757 Epoch 40/1000 235/235 ————————————————————————————————————	11s 45ms/step - loss: 0.2747
Epoch 41/1000	

235/235 ————————————————————————————————————	- 10s 40ms/step - loss: 0.2741
Epoch 42/1000	- 9s 36ms/step - loss: 0.2740 -
val_loss: 0.2760	00 001110/3(0p 1000: 0:27 40
Epoch 43/1000	
235/235 ————————————————————————————————————	9s 40ms/step - loss: 0.2739 -
val_loss: 0.2752	
Epoch 44/1000	
235/235 ————————————————————————————————————	- 9s 37ms/step - loss: 0.2736 -
val_loss: 0.2782	
Epoch 45/1000	0. 20
235/235 ——————————————————val loss: 0.2748	- 9s 39ms/step - loss: 0.2732 -
Epoch 46/1000	
•	- 9s 38ms/step - loss: 0.2731 -
val_loss: 0.2757	00 001110, 010p 10001 01 <u>2</u> 1 01
Epoch 47/1000	
235/235 —————————	- 9s 37ms/step - loss: 0.2734 -
val_loss: 0.2757	
Epoch 48/1000	
235/235 ————————————————————————————————————	- 9s 38ms/step - loss: 0.2734 -
val_loss: 0.2744	
Epoch 49/1000	0- 00/
235/235	- 9s 39ms/step - loss: 0.2726 -
val_loss: 0.2743 Epoch 50/1000	
235/235 ————————————————————————————————————	- 11s 46ms/step - loss: 0.2727
- val_loss: 0.2745	110 101116,6t6p 1000. 0.272.
Epoch 51/1000	
235/235 ——————————	- 11s 45ms/step - loss: 0.2730
- val_loss: 0.2741	
Epoch 52/1000	
235/235 ————————————————————————————————————	- 8s 33ms/step - loss: 0.2718 -
val_loss: 0.2744	
Epoch 53/1000	0. 20
235/235 —————————————————val_loss: 0.2744	- 8s 32ms/step - loss: 0.2726 -
Epoch 54/1000	
235/235 ————————————————————————————————————	- 8s 34ms/step - loss: 0.2723 -
val_loss: 0.2738	

val_loss: 0.2736	· 8s 36ms/step - loss: 0.2716 -
Epoch 56/1000 235/235 ————————————————————————————————————	· 8s 33ms/step - loss: 0.2720 -
Epoch 57/1000 235/235 ————————————————————————————————————	· 8s 34ms/step - loss: 0.2717 -
val_loss: 0.2730 Epoch 58/1000 235/235	· 8s 34ms/step - loss: 0.2709 -
val_loss: 0.2734 Epoch 59/1000 235/235 ————————————————————————————————————	· 8s 35ms/step - loss: 0.2717 -
val_loss: 0.2739 Epoch 60/1000 235/235 ————————————————————————————————————	· 8s 33ms/step - loss: 0.2714 -
val_loss: 0.2738 Epoch 61/1000 235/235	· 8s 34ms/step - loss: 0.2716 -
val_loss: 0.2736 Epoch 62/1000	·
val_loss: 0.2738 Epoch 62: early stopping	· 8s 34ms/step - loss: 0.2709 -
313/313 ————————————————————————————————	· 2s 6ms/step

Realizar los mismos puntos anteriores pero con una arquitectura convolucional [32,16,8] padding same.

```
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.keras.datasets import fashion_mnist
from tensorflow.keras.models import Sequential, Model
from tensorflow.keras.layers import Conv2D, MaxPooling2D, UpSampling2D, Input
from tensorflow.keras.callbacks import EarlyStopping
from tensorflow.keras.layers import BatchNormalization
# Cargar el conjunto de datos Fashion MNIST
(x_train, _), (x_test, _) = fashion_mnist.load_data()
# Normalizar y cambiar el formato de las imágenes
x_{train} = x_{train.astype}('float32') / 255.
x_{test} = x_{test.astype('float32')} / 255.
x_{train} = np.reshape(x_{train}, (len(x_{train}), 28, 28, 1)) # Añadimos una dimensión
para el canal (1 para escala de grises)
x_{test} = np.reshape(x_{test}, (len(x_{test}), 28, 28, 1))
# Configurar la arquitectura del autoencoder
input_img = Input(shape=(28, 28, 1))
# Encoder
x = Conv2D(32, (3, 3), activation='relu', padding='same')(input_img)
x = MaxPooling2D((2, 2), padding='same')(x)
x = BatchNormalization()(x)
x = Conv2D(16, (3, 3), activation='relu', padding='same')(x)
x = MaxPooling2D((2, 2), padding='same')(x)
x = BatchNormalization()(x)
x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)
encoded = MaxPooling2D((2, 2), padding='same')(x)
# Decoder
x = Conv2D(8, (3, 3), activation='relu', padding='same')(encoded)
x = UpSampling2D((2, 2))(x)
x = Conv2D(16, (3, 3), activation='relu', padding='same')(x)
x = UpSampling2D((2, 2))(x)
x = Conv2D(32, (3, 3), activation='relu')(x)
x = UpSampling2D((2, 2))(x)
decoded = Conv2D(1, (3, 3), activation='sigmoid', padding='same')(x)
autoencoder = Model(input img, decoded)
```

```
# Compilar el modelo
autoencoder.compile(optimizer='adam', loss='binary_crossentropy')
# Configurar Early Stopping
early_stopping = EarlyStopping(monitor='val_loss', patience=5, verbose=1)
# Entrenar el modelo
history = autoencoder.fit(x train, x train,
                epochs=1000,
                batch size=256,
                shuffle=True,
                validation_data=(x_test, x_test),
                callbacks=[early_stopping])
# Mostrar 12 salidas aleatorias del autoencoder y compararlas con las imágenes
originales
decoded_imgs = autoencoder.predict(x_test)
n = 12
plt.figure(figsize=(20, 4))
for i in range(n):
  # Mostrar la imagen original
  ax = plt.subplot(2, n, i + 1)
  plt.imshow(x_test[i].reshape(28, 28))
  plt.grav()
  ax.get_xaxis().set_visible(False)
  ax.get_yaxis().set_visible(False)
  # Mostrar la reconstrucción
  ax = plt.subplot(2, n, i + 1 + n)
  plt.imshow(decoded_imgs[i].reshape(28, 28))
  plt.gray()
  ax.get_xaxis().set_visible(False)
  ax.get_yaxis().set_visible(False)
plt.show()
```

235/235 ————————————————————————————————————	49s	173ms/step	-	loss:
Epoch 2/1000 235/235 ————————————————————————————————————	46s	195ms/step	-	loss:
Epoch 3/1000 235/235 ————————————————————————————————————	45s	193ms/step	-	loss:
Epoch 4/1000 235/235 ————————————————————————————————————	51s	216ms/step	-	loss:
Epoch 5/1000 235/235 ————————————————————————————————————	51s	218ms/step	-	loss:
Epoch 6/1000 235/235 ————————————————————————————————————	51s	215ms/step	-	loss:
Epoch 7/1000 235/235 ————————————————————————————————————	48s	203ms/step	-	loss:
Epoch 8/1000 235/235 ————————————————————————————————————	48s	203ms/step	-	loss:
Epoch 9/1000 235/235 ————————————————————————————————————	49s	210ms/step	-	loss:
Epoch 10/1000 235/235 ————————————————————————————————————	51s	217ms/step	-	loss:
Epoch 11/1000 235/235 ————————————————————————————————————	50s	214ms/step	-	loss:
Epoch 12/1000 235/235 ————————————————————————————————————	48s	202ms/step	-	loss:
Epoch 13/1000 235/235 ————————————————————————————————————	46s	193ms/step	-	loss:
Epoch 14/1000 235/235 ————————————————————————————————————	45s	190ms/step	-	loss:

Epoch 15/1000 235/235 ————————————————————————————————————	45s	193ms/step	-	loss:
0.2799 - val_loss: 0.2835 Epoch 16/1000 235/235 ————————————————————————————————————	46s	195ms/step	_	loss:
0.2799 - val_loss: 0.2808 Epoch 17/1000 235/235 ————————————————————————————————————		·		
0.2799 - val_loss: 0.2804 Epoch 18/1000	4/5	201ms/step	-	1055.
235/235 ————————————————————————————————————	48s	204ms/step	-	loss:
235/235 ————————————————————————————————————	47s	200ms/step	-	loss:
Epoch 20/1000 235/235 ————————————————————————————————————	44s	188ms/step	-	loss:
Epoch 21/1000 235/235 ————————————————————————————————————	46s	193ms/step	-	loss:
Epoch 22/1000 235/235 ————————————————————————————————————	45s	193ms/step	-	loss:
Epoch 23/1000 235/235 ————————————————————————————————————	44s	188ms/step	-	loss:
0.2770 - val_loss: 0.2808 Epoch 24/1000 235/235 ————————————————————————————————————	48s	205ms/step	_	loss:
0.2771 - val_loss: 0.2832 Epoch 25/1000 235/235 ————————————————————————————————————	469	197ms/step	_	loss.
0.2774 - val_loss: 0.2837 Epoch 25: early stopping		·		1000.
313/313 ————————————————————————————————	/s 19m	ns/step		

