Московский Физико-Технический Институт (государственный университет)

Вычислительная математика

Лабораторная работа №1

Автор:

Овсянников Михаил Б01-008

Долгопрудный, 2022

Содержание

Цель	3
Рабочие функции	3
Графики и порядок точности	5
Выводы	8

Цель

В работе предлагается вычислить производные некоторых функций численно и аналитически и сравнить результаты. Также, понять, какой метод имеет какой порядок точности, то есть $o(h^n)$, понять, какое n.

Рабочие функции

Нам дан список функций, для которых нужно провести данное исследование. Помимо этого также дан целый список методов аппроксимации производной функции в точке.

Перечислим все данные нам функции:

- $\sin(x^2)$
- $\cos(\sin(x))$
- $e^{\sin(\cos(x))}$
- $\ln(x+3)$
- $(x+3)^{0.5}$

Для дальнейшей работы нам понадобятся аналитические представления их производных, чтобы считать погрешность численного метода:

f(x)	f'(x)
$\sin(x^2)$	$2x\cos(x^2)$
$\cos(\sin(x))$	$-\sin(\sin(x))\cos(x)$
$e^{\sin(\cos(x))}$	$e^{\sin(\cos(x))}\cos(\cos(x))\cdot(-\sin(x))$
$\ln(x+3)$	$\frac{1}{x+3}$
$(x+3)^{0.5}$	$\frac{1}{2(x+3)^{0.5}}$

Таблица 1. Таблица функция-производная

Также нам даны различные методы численного определения производной. Перечислим и их тоже:

1.
$$f'(x) \simeq \frac{f(x+h)-f(x)}{h}$$

2.
$$f'(x) \simeq \frac{f(x) - f(x-h)}{h}$$

3.
$$f'(x) \simeq \frac{f(x+h)-f(x-h)}{2h}$$

4.
$$f'(x) \simeq \frac{4}{3} \cdot \frac{f(x+h)-f(x-h)}{2h} - \frac{1}{3} \cdot \frac{f(x+2h)-f(x-2h)}{4h}$$

5.
$$f'(x) \simeq \frac{3}{2} \cdot \frac{f(x+h)-f(x-h)}{2h} - \frac{3}{5} \cdot \frac{f(x+2h)-f(x-2h)}{4h} + \frac{1}{10} \frac{f(x+3h)-f(x-3h)}{6h}$$

Будем вычислять производную в какой-нибудь точке x_0 численно, затем аналитически и находить абсолютную погрешность численного метода ε .

Также, будем менять шаг $h_n=\frac{2}{2^n},\ n=\overline{1,21}$ и смотреть, какова ошибка аппроксимации. Построим графики $\varepsilon(h_n)$ в логарифмическом масштабе по обеим осям - по наклону прямых поймем порядок точности метода.

Графики и порядок точности

Будем строить графики зависимости $\varepsilon(h_n)$ с помощью Python, а именно с помощью библиотеки Matplotlib. Весь код доступен в файле Lab1.py.

Начальную точку выберем $x_0=10.0$. С помощью слайдера в программе можно менять точку, в которой считаются производные. С помощью кнопок можно переключаться между функциями, или же менять масштаб осей.

Рис. 1. Графики для функции $\sin(x^2)$

Рис. 2. Графики для функции cos(sin(x))

Рис. 3. Графики для функции $e^{\sin(\cos(x))}$

Рис. 4. Графики для функции $\ln(x+3)$

Рис. 5. Графики для функции $(x+3)^{0.5}$

Выводы

По всем графикам видно, что общая точность растет с номером метода. По наклонам прямолинейных участков графиков можно заключить, что:

- Методы 1 и 2 имеют одинаковую точность o(h)
- Метод 3 имеет точность $o(h^2)$
- Метод 4 имеет точность $o(h^3)$
- ullet Метод 5 имеет точность $o(h^4)$

Также на графиках отчетливо видно оптимальное значение шага h. Уменьшая шаг дальше, мы просто-напросто увеличиваем общую ошибку.