

TEST REPORT

Photobiological safety of lamps and lamp systems

Report Reference No. CEC2016-0121

Date of issue 2016. 08. 23.

Total number of pages 19 pages

CB Testing Laboratory KTR (KOREA TESTING & RESEARCH INSTITUTE)

Applicant's name Seoul Semiconductor Co., Ltd.

Ansan-sity Gyeonggi-do, Korea

Test specification:

Standard IEC 62471:2006 (First Edition)

European Group Difference and National differences

Test procedure N/A

Non-standard test method...... N/A

Test Report Form No. IEC62471A

TRF Originator...... VDE Testing and Certification Institute

Master TRF Dated 2009-05

Copyright © 2009 IEC System for Conformity Testing and Certification of Electrical Equipment (IECEE), Geneva, Switzerland, All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the IECEE is acknowledged as copyright owner and source of the material. IECEE takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

If this Test Report Form is used by non-IECEE members, the IECEE/IEC logo and the reference to the CB Scheme procedure shall be removed.

This report is not valid as a CB Test Report unless signed by an approved CB Testing Laboratory and appended to a CB Test Certificate issued by an NCB in accordance with IECEE 02.

Test item description LED PACKAGE

Trade Mark:

SEOUL SEMICONDUCTOR

Manufacturer Seoul Semiconductor Co, Ltd.

Model/Type reference 3528

Ratings: 180 mA

Testi	ng procedure and testing location:	
\boxtimes	CB Testing Laboratory	KTR (KOREA TESTING & RESEARCH INSTITUTE)
Test	ing location/ address:	98, Gyoyukwon-ro, Gwacheon-si, Gyeonggi-do, Korea
	Associated CB Laboratory:	
Test	ing location/ address:	
	Tested by (name + signature):	Myung-ha Choi 到 かんきト
	Approved by (+ signature):	Jae-jun Ko & MA
	Testing procedure: TMP	
	Tested by (name + signature):	
	Approved by (+ signature):	
Test	ing location/ address:	
	Testing procedure: WMT	
	Tested by (name + signature):	
	Witnessed by (+ signature):	
	Approved by (+ signature):	
Testi	ing location/ address:	
	Testing procedure: SMT	
	Tested by (name + signature):	
	Approved by (+ signature):	
	Supervised by (+ signature):	
Testí	ng location/ address	
	Testing procedure: RMT	
t sindus sins sh	Tested by (name + signature):	a varias especialis su estre a variable arreprendicione de traductiva de varia en elevaria de vere e e e e e e Traductiva de variador de vere e e e e
	Approved by (+ signature):	
	Supervised by (+ signature):	
Testi	ng location/ address:	

TRF No. IEC62471A

KTR-QI-Y30053-F19(01)

Page 3	of 19	Report No. : CEC2016-012
Summary of testing:		
Tests performed (name of test and test clause):	Testing lo	ocation:
Full type testing according to IEC 62471:2006 (First Edition) European Group Difference and National differences	98, Gyoyu	REA TESTING & RESEARCH INSTITUTE) kwon-ro, Gwacheon-si, Gyeonggi-do,
Summary of compliance with National Difference Test sample has been tested according to requirem Difference and National differences, relate data is a	ents of IEC 62	.471:2006 (First Edition) + European Group e end of this report(page 16 to 18).
Copy of marking plate:		
a traditi e de e e e e e e autica a al deserva a en la esta de en la elegación de elegación de la altituda de La composição de elegación de el	and the second section of the second second	alada (1.174), waa kada kada kada ahaa ahaa ahaa ahaa ah
e e e e e e e e e e e e e e e e e e e		

TRF No. (EC62471A

KTR QI-Y10053-F19(01)

Test item particulars Tested lamp..... : ⊠ continuous wave lamps pulsed lamps Tested lamp system: Lamp classification group ⊠ exempt rísk 1 ☐ risk 2 risk 3 Lamp cap.....: : -Bulb: -Rated of the lamp...... See page 1 Furthermore marking on the lamp: -Seasoning of lamps according IEC standard -Used measurement instrument IDR-300 Information for safety use -Possible test case verdicts: test case does not apply to the test object.................. N/A test object does meet the requirement...... P (Pass) test object does not meet the requirement F (Fail) Testing: General remarks: The test results presented in this report relate only to the object tested. This report shall not be reproduced, except in full, without the written approval of the Issuing testing laboratory. "(See Enclosure #)" refers to additional information appended to the report. "(See appended table)" refers to a table appended to the report. Throughout this report a comma is used as the decimal separator. List of test equipment must be kept on file and available for review. General product information: Manufacture: Seoul Semiconductor Co., Ltd., Manufacture Address: Seoul Semiconductor 97-11, 163, Sandan-ro, Danwon-qu Ansan-sity, Gyeonggi-do, Korea Factory: Seoul Semiconductor Co., Ltd., Factory Address: Same as manufacture address Models: 3528 Rating: 180 mA

TRF No. ÆC62471A

KTR QI-Y 10053-F19(01)

Report No.: CEC2016-0121

Clause	Requirement + Test	Result - Remark	Verdict
	nequiement - rest	Troone Tronam	1 101010
4	EXPOSURE LIMITS		Р
4.1	General		Р
	The exposure limits in this standard is not less than 0,01 ms and not more than any 8-hour period and should be used as guides in the control of exposure		Р
	Detailed spectral data of a light source are generally required only if the luminance of the source exceeds 10 ⁴ cd m ⁻²		Р
4.3	Hazard exposure limits		Р
4.3.1	Actinic UV hazard exposure limit for the skin and eye		P
	The exposure limit for effective radiant exposure is 30 J m ⁻² within any 8-hour period		Р
	To protect against injury of the eye or skin from ultraviolet radiation exposure produced by a broadband source, the effective integrated spectral irradiance, E _S , of the light source shall not exceed the levels defined by:		Р
	$E_{s} \cdot t = \sum_{200}^{400} \sum_{t} E_{\lambda} \langle \lambda, t \rangle \cdot S_{UV}(\lambda) \cdot \Delta t \cdot \Delta \lambda \le 30 \qquad \text{J-m}^{-2}$		p
	The permissible time for exposure to ultraviolet radiation incident upon the unprotected eye or skin shall be computed by:		Р
	$t_{\text{max}} = \frac{30}{E_{\text{s}}}$ s		P
4.3.2	Near-UV hazard exposure limit for eye		Р
	For the spectral region 315 nm to 400 nm (UV-A) the total radiant exposure to the eye shall not exceed 10000 J·m ⁻² for exposure times less than 1000 s. For exposure times greater than 1000 s (approximately 16 minutes) the UV-A irradiance for the unprotected eye, E _{UVA} , shall not exceed 10 W·m ⁻² .		P
	The permissible time for exposure to ultraviolet radiation incident upon the unprotected eye for time less than 1000 s, shall be computed by:		Р
	r _{max} ≤ 10 000 s		P
4.3.3	Retinal blue light hazard exposure limit		Р
	To protect against retinal photochemical injury from chronic blue-light exposure, the integrated spectral radiance of the light source weighted against the blue-light hazard function, $B(\lambda)$, i.e., the blue-light weighted radiance , L_B , shall not exceed the levels defined by:		P

TRF No. IEC62471A

Report No.: CEC2016-0121 Page 6 of 19 IEC 62471 Requirement + Test Result - Remark Verdict Clause $L_{B} \cdot t = \sum_{300}^{700} \sum_{t} L_{\lambda}(\lambda, t) \cdot B(\lambda) \cdot \Delta t \cdot \Delta \lambda \le 10^{6} \qquad \text{J} \cdot \text{m}^{-2} \cdot \text{sr}^{-1} \quad \text{for } t \le 10^{4} \text{ s} \qquad t_{\text{max}} = \frac{10^{6}}{L_{B}}$ $L_{B} = \sum_{300}^{700} L_{\lambda} \cdot B(\lambda) \cdot \Delta \lambda \le 100 \qquad \qquad \text{W} \cdot \text{m}^{-2} \cdot \text{sr}^{-1} \quad \text{for } t > 10^{4} \text{ s}$ р P N/A 4.3.4 Retinal blue light hazard exposure limit - small source N/A Thus the spectral irradiance at the eye E_{λ} , weighted see table 4.2 against the blue-light hazard function B(λ) shall not exceed the levels defined by: $E_{\rm B} \cdot t = \sum_{300}^{700} \sum_{t} E_{\lambda}(\lambda, t) \cdot B(\lambda) \cdot \Delta t \cdot \Delta \lambda \le 100 \qquad \text{J} \cdot \text{m}^{-2} \quad \text{for } t \le 100 \text{ s}$ N/A $E_{B} = \sum_{300}^{700} E_{\lambda} \cdot B(\lambda) \cdot \Delta \lambda \le 1 \qquad W \cdot m^{-2}$ N/A for t > 100 s 4.3.5 Р Retinal thermal hazard exposure limit p To protect against retinal thermal injury, the integrated spectral radiance of the light source, L_λ, weighted by the burn hazard weighting function $R(\lambda)$ (from Figure 4.2 and Table 4.2), i.e., the burn hazard weighted radiance, shall not exceed the levels defined by: $L_{\rm Fl} = \sum_{380}^{1400} L_{\lambda} \cdot R(\lambda) \cdot \Delta \lambda \le \frac{50\,000}{\alpha \cdot r^{0.25}} \qquad \qquad W \cdot m^{-2} \cdot \text{sr}^{-1} \qquad (10 \, \mu\text{s} \le t \le 10 \, \text{s})$ P 4.3.6 N/A Retinal thermal hazard exposure limit - weak visual stimulus N/A For an infrared heat lamp or any near-infrared source where a weak visual stimulus is inadequate to activate the aversion response, the near infrared (780 nm to 1400 nm) radiance, LiR, as viewed by the eye for exposure times greater than 10 s shall be limited $L_{1R} = \sum_{R=0}^{1400} L_{\lambda} \cdot R(\lambda) \cdot \Delta \lambda \le \frac{6000}{\alpha} \qquad W \cdot m^{-2} \cdot sr^{-1} \quad t > 10 \text{ s}$ N/A 4.3.7 N/A Infrared radiation hazard exposure limits for the eye The avoid thermal injury of the cornea and possible N/A delayed effects upon the lens of the eye (cataractogenesis), ocular exposure to infrared radiation, Eir, over the wavelength range 780 nm to 3000 nm, for times less than 1000 s, shall not exceed:

 $E_{\text{IR}} = \sum_{700}^{3000} E_{\lambda} \cdot \Delta \lambda \le 18000 \cdot t^{-0.75}$ W·m⁻² $t \le 1000 \text{ s}$

For times greater than 1000 s the limit becomes:

N/A

N/A

Report No.: CEC2016-0121 IEC 62471 Result - Remark Verdict Requirement + Test Clause N/A $E_{\mathsf{IR}} = \sum_{\mathsf{790}}^{3\,000} \mathcal{E}_{\lambda} \cdot \Delta \lambda \leq 100$ W · m⁻² t > 1000 sN/A 438 Thermal hazard exposure limit for the skin N/A Visible and infrared radiant exposure (380 nm to 3000 nm) of the skin shall be limited to: $E_{\mathsf{H}} \cdot t = \sum_{\Delta = 0}^{3000} \sum_{i} E_{\lambda} \left(\lambda, t \right) \cdot \Delta t \cdot \Delta \lambda \leq 20\,000 \cdot t^{0.25}$ N/A J · m-2 MEASUREMENT OF LAMPS AND LAMP SYSTEMS Р P 5.1 Measurement conditions Measurement conditions shall be reported as part of the evaluation against the exposure limits and the assignment of risk classification. N/A 5.1.1 Lamp ageing (seasoning) N/A Seasoning of lamps shall be done as stated in the appropriate IEC lamp standard. 5.1.2 Test environment Р For specific test conditions, see the appropriate IEC lamp standard or in absence of such standards, the appropriate national standards or manufacturer's recommendations. 5.1.3 Р Extraneous radiation Careful checks should be made to ensure that ex-P traneous sources of radiation and reflections do not add significantly to the measurement results. Р 5.1.4 Lamp operation Ρ Operation of the test lamp shall be provided in accordance with: the appropriate IEC lamp standard, or N/A Ρ the manufacturer's recommendation Ρ 5.1.5 Lamp system operation Р The power source for operation of the test lamp shall be provided in accordance with: N/A the appropriate IEC standard, or P the manufacturer's recommendation P 5.2 Measurement procedure 5.2.1 Р Irradiance measurements

TRF No. IEC62471A

Minimum aperture diameter 7mm.

Maximum aperture diameter 50 mm.

Р

P

Page 8 of 19 Report No.: CEC2016-0121 IEC 62471 Clause Requirement + Test Result - Remark Verdict Þ The measurement shall be made in that position of the beam giving the maximum reading. Р The measurement instrument is adequate calibrated. 5.2.2 P Radiance measurements Р 5.2.2.1 Standard method The measurements made with an optical system. Ρ The instrument shall be calibrated to read in absolute Р radiant power per unit receiving area and per unit solid angle to acceptance averaged over the field of view of the instrument. 5.2.2.2 Alternative method Р P Alternatively to an imaging radiance set-up, an irradiance measurement set-up with a circular field stop placed at the source can be used to perform radiance measurements. 5.2.3 Measurement of source size P The determination of α, the angle subtended by a source, requires the determination of the 50% emission points of the source. 5.2.4 Pulse width measurement for pulsed sources N/A N/A The determination of Δt , the nominal pulse duration of a source, requires the determination of the time during which the emission is > 50% of its peak value. 5.3 Р Analysis methods P 5.3.1 Weighting curve interpolations р To standardize interpolated values, use linear insee table 4.1 terpolation on the log of given values to obtain intermediate points at the wavelength intervals desired. Calculations 5.3.2 Р The calculation of source hazard values shall be P performed by weighting the spectral scan by the appropriate function and calculating the total weighted energy. 5.3.3 Measurement uncertainty N/A The quality of all measurement results must be N/A see Annex C in the norm quantified by an analysis of the uncertainty.

6	LAMP CLASSIFICATION	
	For the purposes of this standard it was decided that the values shall be reported as follows:	Ъ

TRF No. IEC62471A

KTR QI-Y] 0053-F19(01)

	IEC 62471		,
Clause	Requirement + Test	Result – Remark	Verdict
	 for lamps intended for general lighting service, the hazard values shall be reported as either ir- radiance or radiance values at a distance which produces an illuminance of 500 lux, but not at a distance less than 200 mm 		N/A
	 for all other light sources, including pulsed lamp sources, the hazard values shall be reported at a distance of 200 mm 		Р
6.1	Continuous wave lamps		P
6.1.1	Except Group		Р
	In the except group are lamps, which does not pose any photobiological hazard. The requirement is met by any lamp that does not pose:		Р
	 an actinic ultraviolet hazard (E_s) within 8-hours exposure (30000 s), nor 		Р
	 a near-UV hazard (E_{UVA}) within 1000 s, (about 16 min), nor 		Р
	 a retinal blue-light hazard (L_B) within 10000 s (about 2,8 h), nor 		P
	 a retinal thermal hazard (L_R) within 10 s, nor 		Р
	an infrared radiation hazard for the eye (E _{IR}) within 1000 s		N/A
6.1.2	Risk Group 1 (Low-Risk)		N/A
	In this group are lamps, which exceeds the limits for the except group but that does not pose:		N/A
	an actinic ultraviolet hazard (E _s) within 10000 s, nor	gayanan araba da karaban karab	N/A
	 a near ultraviolet hazard (E_{UVA}) within 300 s, nor 		N/A
	 a retinal blue-light hazard (L_B) within 100 s, nor 		N/A
	 a retinal thermal hazard (L_R) within 10 s, nor 		N/A
	 an infrared radiation hazard for the eye (E_{IR}) within 100 s 		N/A
	Lamps that emit infrared radiation without a strong visual stimulus and do not pose a near-infrared retinal hazard (L _{IR}), within 100 s are in Risk Group 1.		N/A
6.1.3	Risk Group 2 (Moderate-Risk)		N/A
	This requirement is met by any lamp that exceeds the limits for Risk Group 1, but that does not pose:		N/A
	 an actinic ultraviolet hazard (E_s) within 1000 s exposure, nor 		N/A
	 a near ultraviolet hazard (E_{UVA}) within 100 s, nor 		N/A

TRF No. IEC62471A

	IEC 62471				
Clause	Requirement + Test Result - Remark				
	a retinal blue-light hazard (L _B) within 0,25 s (aversion response), nor		N/A		
	 a retinal thermal hazard (L_R) within 0,25 s (aversion response), nor 		N/A		
	 an infrared radiation hazard for the eye (E_{IR}) within 10 s 		N/A		
	Lamps that emit infrared radiation without a strong visual stimulus and do not pose a near-infrared retinal hazard ($L_{\rm IR}$), within 10 s are in Risk Group 2.		N/A		
6.1,4	Risk Group 3 (High-Risk)				
	Lamps which exceed the limits for Risk Group 2 are in Group 3.		N/A		
6.2	Pulsed lamps				
	Pulse lamp criteria shall apply to a single pulse and to any group of pulses within 0,25 s.		N/A		
	A pulsed lamp shall be evaluated at the highest nominal energy loading as specified by the manufacturer.		N/A		
	The risk group determination of the lamp being tested shall be made as follows:		N/A		
	 a lamp that exceeds the exposure limit shall be classified as belonging to Risk Group 3 (High-Risk) 		N/A		
	 for single pulsed lamps, a lamp whose weighted radiant exposure or weighted radiance does is below the EL shall be classified as belonging to the Exempt Group 		N/A		
	for repetitively pulsed lamps, a lamp whose weighted radiant exposure or weighted radiance dose is below the EL, shall be evaluated using the continuous wave risk criteria discussed in clause 6.1, using time averaged values of the pulsed emission		N/A		

		IEC 62471		
Ì	Clause	Requirement + Test	Result – Remark	Verdict

Table 4.1	Spectral we	eighting function for assessing t	ultraviolet hazards for sk	kin and eye P
	elength¹ , nm	UV hazard function S _ω (λ)	Wavelength λ, nm	UV hazard function S _ພ (λ)
	200	0,030	313*	0,006
	205	0,051	315	0,003
	210	0,075	316	0,0024
	215	0,095	317	0,0020
	220	0,120	318	0,0016
	225	0,150	319	0,0012
	230	0,190	320	0,0010
	235	0,240	322	0,00067
	240	0,300	323	0,00054
	245	0,360	325	0,00050
	250	0,430	328	0,00044
2	254*	0,500	330	0,00041
,	255	0,520	333*	0,00037
	260	0,650	335	0,00034
	265	0,810	340	0,00028
	270	1,000	345	0,00024
	275	0,960	350	0,00020
2	280*	0,880	355	0,00016
e economistre recessored	285	0,770	360	0,00013
	290	0,640	365*	0,00011
	295	0,540	370	0,000093
2	297*	0,460	375	0,000077
	300	0,300	380	0,000064
3	303*	0,120	385	0,000053
4	305	0,060	390	0,000044
	308	0,026	395	0,000036
;	310	0,015	400	0,000030
			····	

Wavelengths chosen are representative: other values should be obtained by logarithmic interpolation at intermediate wavelengths.

TRF No. (EC62471A

^{*} Emission lines of a mercury discharge spectrum.

	IEC 62471					
Clause	Requirement + Test	Result – Remark	Verdict			

Table 4.2	Spectral weighting sources	functions for assessing retinal hazards	from broadband optical P
	Wavelength nm	Blue-light hazard function Β (λ)	Burn hazard function R (λ)
	300	0,01	
	305	0,01	
	310	0,01	
	315	0,01	
	320	0,01	
	325	0,01	
	330	0,01	
	335	0,01	
	340	0,01	
	345	0,01	
	350	0,01	
	355	0,01	
	360	0,01	
	365	0,01	
	370	0,01	
	375	0,01	
	380	0,01	0,1
	385	0,013	0,13
	390	0,025	0,25
	395	0,05	0,5
	400	0,10	1,0
	405	0,20	2,0
	410	0,40	4,0
	415	0,80	8,0
	420	0,90	9,0
	425	0,95	9,5
	430		9.8
	435	1,00	10,0
	440	1,00	10,0
	445	0,97	9,7
	450	0,94	9,4
	455	0,90	9,0
	460	0,80	8,0
	465	0,70	7,0
	470	0,62	6,2
	475	0,55	5,5
	480	0,45	4,5
	485	0,40	4,0
			2,2
	490	0,22 0,16	1,6
	495	10 ^{((450-λ)/50)}	1,0
	500-600		1,0
	600-700	0,001	1,0 10 ^{{(700-\lambda)/500} }
	700-1050		
···········	1050-1150		0,2 0,2·10 ^{0,02(1150-λ)}
	1150-1200		
	1200-1400		0,02

TRF No. IEC62471A

	IEC 62471				
Clause	Requirement + Test	Result – Remark	Verdict		

Table 5.4 Summary of the ELs for the surface of the skin or cornea (irradiance based values)					
Hazard Name	Relevant equation	Wavelength range nm	Exposure duration sec	Limiting aperture rad (deg)	EL in terms of con- stant irradiance W·m ⁻²
Actinic UV skin & eye	$E_S = \sum E_\lambda \cdot S(\lambda) \cdot \Delta \lambda$	200 – 400	< 30000	1,4 (80)	30/t
Eye UV-A	$E_{UVA} = \sum E_{\lambda} \cdot \Delta \lambda$	315 – 400	≤1000 >1000	1,4 (80)	10000/t 10
Blue-light small source	$E_{B} = \sum E_{\lambda} \cdot B(\lambda) \cdot \Delta \lambda$	300 – 700	≤100 >100	< 0,011	100/t 1,0
Eye IR	$E_{iR} = \sum E_{\lambda} \cdot \Delta \lambda$	780 –3000	≤1000 >1000	1,4 (80)	18000/t ^{0,75} 100
Skin therma	$E_H = \sum E_{\lambda} \cdot \Delta \lambda$	380 - 3000	< 10	2π sr	20000/t ^{0,75}

Table 5.5	Sur	nmary of the ELs for the	e retina (radian	ce based valu	es)		Р
Hazard Na	me	Relevant equation	Wavelength range nm	Exposure duration sec	Field of view radians	EL in ter constant r W·m ⁻² •	adiance
Blue light		$L_{B} = \sum L_{\lambda} \cdot B(\lambda) \cdot \Delta \lambda$	300 – 700	0,25 - 10 10-100 100-10000 ≥ 10000	0,011•√(t/10) 0,011 0,0011•√t 0,1	10 ⁶ / 10 ⁶ / 10 ⁶ /	't 't
Retinal thermal		$L_{R} = \sum L_{\lambda} \cdot R(\lambda) \cdot \Delta \lambda$	380 – 1400	< 0,25 0,25 – 10	0,0017 0,011•√(t/10)	50000/(c 50000/(c	,
Retinal thermal (weak visua stimulus)		$L_{IR} = \sum L_{\lambda} \cdot R(\lambda) \cdot \Delta \lambda$	780 – 1400	> 10	0,011	6000	/a

TRF No. IEC62471A

Report No.: CEC2016-0121

		IEC 6247	52471	
Clause	Requirement + Test	dudaya s	Result – Remark	Verdict

Page 14 of 19

Table 6.1	Emission limits for ri	for risk aroun	isk arolins of continuous wave lamps	inel evew si					C
		do so	000000000000000000000000000000000000000	a way	3	Contractor 18	***************************************		r
	7.77					IN LIOSSIDIU	ETHISSION IMEASULEMENT		
Risk	Spectrum	Symbol	Units	Exe	Exempt	Low	Low risk	Mod risk	risk
				Limit	Result	Limit	Result	Lmit	Result
Actinic UV	S _{UV} (λ)	TT)	₩•m⁻²	0,001	3,87E-05	0,003	ŧ	60,03	ł
Near UV		Euva	₩•m ⁻²	10	6,28E-05	33	ſ	100	1
Blue light	B(A)	FB	W·m ⁻² ·sr ⁻¹	100	69,278 1	10000	ı	4000000	ž
Blue light, small source	B(A)	m	W•m ⁻²	1,0*	*	0,1	J	400	4
Retinal thermal	R(A)	Ļ	W•m- ² •sr ⁻¹	28000/α	5,13E+03	28000/α	ş	71000/α	,
Retinal thermal, weak visual stimulus**	R(A)	LıR	W•m²•sr¹	6000/α	ı	6000/α	ı	6000/α	-
IR radiation, eye		E _{IR}	₩•m²²	100	ı	570	ı	3200	-
* Small sou	Small source defined as one	s one with a <	0,011 radian.	Averaging fi	with a < 0,011 radian. Averaging field of view at 10000 s is 0,1 radian	t 10000 s is C).1 radian.	***************************************	

Involves evaluation of non-GLS source

Furthermore remarks:

		IEC 62471 - ATTACHME	VT	
Clause	Requirement + Test		Result – Remark	Verdict

Copyright © 2008 IEC System for Conformity Testing and Certification of Electrical Equipment (IECEE), Geneva, Switzerland. All rights reserved.

	CENELEC COMMON MODIFICATIONS (EN)		
4	EXPOSURE LIMITS		
	Contents of the whole Clause 4 of IEC 62471:2006 moved into a new informative Annex ZB		-
***************************************	Clause 4 replaced by following:		***
	Limits of Artificial Optical Radiation Directive(2006/25/EC) have been applied instead of those fixed in IEC 62471:2006	See appended Table 6.1	P
4.1	General		
	First paragraph deleted		*

TRF No. IEC62471A KTR-QI-YJ0053-F19(01)

				C		<u>}</u>
					* () » ₍₁
# # #	& &	* *	4 3 3 3	8 %	\$ 6 \$	266
) 4 4	*	*	8	*		(a) (

Page 17 of 19 Report No.: CEC20	IEC 62471 - ATTACHMENT	Requirement + Test Verdict	
		Clause Requ	

Table 6.1	Emission limits	for risk groups	of continuor	is wave lamps	Emission limits for risk groups of continuous wave lamps (based on EU Directive 2006/25/EC)	irective 2006/2	5/EC)		۵
					EB	Emission Measurement	ement		
Risk	Action spectrum	Symbol	Units	Exe	Exempt	Low risk	isk	Mod risk	īsk
	-			Limit	Result	Limit	Result	LIBİL	Result
Actinic UV	S _{UV} (λ)	ů.	W•m⁻²	0,001	3,87E-05	0,003	ı	60'0	i
Near UV		Euva	W•m⁻²	6,33	6,28E-05	33	1	100	
Blue light	B(A)	g	W•m ⁻² •sr ⁻¹	100	69,278 1	10000	-	4000000	ı
Blue light, small source	B(A)	w W	W•m²	0,01*	1	1,0		400	1
Retinal thermal	R(A)	Ļ	W•m ⁻² •sr ⁻¹	28000/a	5,13E+03	28000/α		71000/a	1
			ana ang n	545000	The state of the s				
Retinal thermal, weak visual stimu.	R(A)	į	///•m ⁻² cr ⁻¹	0,0017 ≤ a ≤ 0,011			1 .		
lus**		ř Ž		6000/ a			***************************************	***************************************	
			Street and the Street	0,011 ≤ α ≤ 0,1			1		
IR radiation, eye	and the state of t	П Ж	W•m⁻²	100	-	570	ſ	3200	ſ
						1		£	

TRF No. IEC62471A KTR-QI-Y10053-F19(01)

Page 18 of 19

Report No.: CEC2016-0121

THE PROPERTY OF THE PROPERTY O	IEC 62471 - ATTACHMENT	ACHMENT	
Clause	Requirement + Test	Result – Remark	Verdict
		\$	
Table 6.1	Emission limits for risk groups of continuous wave lamps (based on EU Directive 2006/25/EC)	imps (based on EU Directive 2006/25/EC)	a.
* Small source d	Small source defined as one with $\alpha < 0,011$ radian. Averaging field of Involves evaluation of non-GLS source	radian. Averaging field of view at 10000 s is 0,1 radian.	- Constitution of the Cons
NOTE The action	NOTE The action function : see Table 4.1 and Table 4.2		
The applica	The applicable aperture diameters : see 4.2.1		
The Limital	The Limitations for the angular subtenses : see 4.2.2		
The related	The related measurement condition 5.2.3 and the range of acceptance angles : see Table 5.5	tance angles : see Table 5.5	
	200		

Photographs

<Fig. 1 Front side of LED PKG>