Digraphen, DAGs und Wurzelbäume

Eingangs- und Ausgangsgrad

Bei einer gerichteten Kante $e = (u, v) \in E$ heißt u Startknoten von e; v heißt Endknoten von e; e heißt eine aus u austretende und in v mündende Kante.

Eingangsgrad: indeg(v) = Anzahl der in v mündenden Kanten.

Ausgangsgrad: outdeg(v) = Anzahl der aus v austretenden Kanten.

Abbildung 1: Ein Knoten v mit indeg(v) = 2 und outdeg(v) = 3.

Gerichtete Wege, Pfade, Kreise

Analog definiert wie bei Graphen außer dass Kanten nur entlang ihrer Orientierung durchlaufen werden dürfen (Einbahnstraßen!).

Weg: bcabde

Pfad: abdef

Kreis: b d e f c a

Starke Komponenten

Zwei Knoten u, v eines Digraphen G = (V, E) heißen stark zusammenhängend, wenn es in G sowohl einen (gerichteten) Weg von u nach v als auch einen (gerichteten) Weg von v nach u gibt. In Zeichen: $u \leftrightarrow v$.

- Wenn es einen gerichteten Weg von u nach v gibt, dann gibt es auch einen gerichteten Pfad von u nach v (auf dem Weg liegende Kreise einfach rausschneiden!).
- " \leftrightarrow " ist eine Äquivalenzrelation auf V.
- Die resultierenden Knoten-Äquivalenzklassen (bzw. die von ihnen aufgespannten Untergraphen) heißen starke Komponenten.
- Ein Digraph mit nur einer Komponente heißt stark zusammenhängend.

Beispiel

(a)

Abbildung 2: (a) ein stark zusammenhängender Digraph (b) ein Digraph und seine starken Komponenten

Transitive Hülle

- Ein von einem Punktpfad verschiedener Pfad heißt echt.
- Die transitive Hülle $G^+ = (V, E^+)$ von G = (V, E) repräsentiert Pfadverbindungen in G durch Kanten:

 $E^+ := \{(u, v) | \text{ Es gibt in } G \text{ einen echten Pfad von } u \text{ nach } v\}$

• Die transitive Hülle ist mit dem Algorithmus von Warshall in $O(n^3)$ Schritten berechenbar.

Algorithmus von Warshall ("high level")

Eingabe: Adjazenzmatrix A von G = (V, E) mit V = [n].

Ausgabe: Adjazenzmatrix A^+ von $G^+ = (V, E^+)$

Methode: Dynamisches Programmieren:

1. Berechne *n* Matrizen P_0, P_1, \ldots, P_n mit folgender Interpretation:

$$P_k[i,j] = \begin{cases} 1 & \text{es gibt einen Pfad (Punktpfade ausgeschlossen)} \\ & \text{von } i \text{ nach } j \text{ mit Zwischenknoten aus } [k] \\ 0 & \text{sonst} \end{cases}$$

2. Gib $A^+ := P_n$ als Adjazenzmatrix von G^+ aus!

Bei k=0 sind also gar keine Zwischenknoten zugelassen und damit nur direkte Verbindungen durch Kanten erlaubt !

Algorithmus von Warshall ("low level")

- 1. Initialisiere P mit P := A (entspricht der Matrix P_0).
- 2. Die folgende 3-fach geschachtelte Laufanweisung berechnet P_k (mit Laufindex k = 1, ..., n):

```
\begin{array}{l} \mbox{for } k:=1 \mbox{ to } n \mbox{ do} \\ \mbox{for } i:=1 \mbox{ to } n \mbox{ do} \\ \mbox{} F[i,j]:=1 \mbox{ to } n \mbox{ do} \\ \mbox{} P[i,j]:=P[i,j] \lor (P[i,k] \land P[k,j]) \\ \mbox{end-for} \\ \mbox{end-for} \\ \mbox{end-for}; \end{array}
```

3. Gib $A^{+} := P$ aus.

Algorithmus von Warshall (Korrektheitsnachweis)

Die mit (*) markierte Programmzeile

$$P[i,j] := P[i,j] \lor (P[i,k] \land P[k,j])$$

berechnet P_k korrekt aus P_{k-1} , und zwar aus folgendem Grund:

- Es gibt einen Pfad von i nach j mit Zwischenknoten aus [k] **gdw** einer der folgenden beiden Fälle eintritt:
 - Es gibt einen Pfad mit Zwischenknoten aus [k-1] von i nach j.
 - Es gibt einen Pfad mit Zwischenknoten aus [k-1] sowohl von i nach k als auch von k nach j.

Azyklische Digraphen, topologische Nummerierung

- Ein Digraph ohne (gerichtete) Kreise heißt azyklischer Digraph, auf Englisch auch "Directed Acyclig Graph" oder einfach "DAG" genannt.
- In einem DAG heißt u ein (echter) Vorgänger von v bzw. v ein (echter) Nachfolger von u, falls ein (echter) Pfad von u nach v existiert.
- Eine bijektive Abbildung $N: V \to [n]$ heißt topologische Nummerierung der Knoten des DAG G = (V, E) gdw N(u) < N(v) für alle $(u, v) \in E$ gilt. (Echte Vorgänger eines Knoten haben also stets kleinere Nummern als der Knoten selbst.)

Abbildung 3: Ein DAG und eine topologische Nummerierung seiner Knoten.

Wurzelbäume

Ein Wurzelbaum ist ein Baum T=(V,E), bei dem ein Knoten als Wurzel ausgezeichnet ist. Graphische Visualisierung und Terminologie lehnen sich an "Familien-Stammbäume" an:

Hans U. Simon, Ruhr-Universität Bochum,

Hierarchische Partitionierungen, Tiefe

Wurzelbäume eignen sich zur Visualisierungen von Hierarchien wie zum Beispiel:

- Verzeichnisse und Unterverzeichnisse auf einem PC
- Untergliederung einer Firma in Abteilungen, Gruppen, Labors.
- Untergliederung einer Fakultät in Fachbereiche, Institute, Lehrstühle.
- usw.

Die **Tiefe** eines Knotens v in einem Baum mit Wurzel r ist seine Entfernung zur Wurzel gemessen in der Anzahl der Kanten auf dem Pfad von v nach r.

Binäre Suchbäume

- Der "Schlüssel", der an einem Knoten gespeichert ist, ist stets größer als alle Schlüssel im linken Unterbaum und stets kleiner als alle Schlüssel im rechten Unterbaum.
- Dieses Organisationsprinzip eröffnet die Möglichkeit der (überaus effizienten) "Binärsuche".

Vollständige Binärbäume

- Knoten i hat die Kinder 2i und 2i + 1 (daher implizite Darstellung in einem Array T[1:n] möglich).
- \bullet Auf dem Level der "Tiefe" d gibt es 2^d Knoten.
- Datenstruktur findet Anwendung beim Sortierverfahren "Heapsort" (mehr dazu in der Vorlesung "Datenstrukturen").