

Comparaison des suites

Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr

* très facile ** facile *** difficulté moyenne **** difficile **** très difficile I : Incontournable T : pour travailler et mémoriser le cours

Exercice 1 ***I

Déterminer un équivalent le plus simple possible de chacune des suites suivantes quand n tend vers $+\infty$.

1)
$$\operatorname{Arccos} \frac{n-1}{n}$$
 2) $\operatorname{Arccos} \frac{1}{n}$ 3) $\operatorname{ch}(\sqrt{n})$ 4) $\left(1+\frac{1}{n}\right)^n$ 5) $\frac{\operatorname{Argch} n}{\sqrt{n^4+n^2-1}}$ 6) $(1+\sqrt{n})^{-\sqrt{n}}$ 7) $\operatorname{ln}(\cos\frac{1}{n})(\ln\sin\frac{1}{n})$ 8) $(\frac{\pi}{2})^{3/5} - (\operatorname{Arctan} n)^{3/5}$ 9) $\sqrt{1+\frac{(-1)^n}{\sqrt{n}}}-1$

3)
$$\operatorname{ch}(\sqrt{n})$$

4)
$$(1+\frac{1}{n})^n$$

5)
$$\frac{\operatorname{Argch} n}{\sqrt{n^4+n^2-1}}$$

6)
$$(1+\sqrt{n})^{-\sqrt{n}}$$

7)
$$\ln(\cos\frac{1}{n})(\ln\sin\frac{1}{n})$$

8)
$$(\frac{\pi}{2})^{3/5}$$
 – $(Arctan n)^{3/5}$

9)
$$\sqrt{1 + \frac{(-1)^n}{\sqrt{n}}}$$

Correction ▼ [005252]

Exercice 2 ***I

Montrer que $\sum_{k=0}^{n} k! \sim n!$.

Correction ▼ [005253]

Exercice 3 ***I

- 1. Soient u et v deux suites réelles strictement positives. Pour $n \in \mathbb{N}$, on pose $U_n = \sum_{k=0}^n u_k$ et $V_n = \sum_{k=0}^n v_k$. Montrer que si $u_n \sim v_n$ et si $\lim_{n \to +\infty} V_n = +\infty$, alors $U_n \sim V_n$.
- 2. Application. Trouver un équivalent de $\sum_{k=1}^{n} \frac{1}{\sqrt{k}}$ et $\sum_{k=1}^{n} \ln(k)$.

Correction ▼ [005254]

Exercice 4 ****

Soit (u_n) une suite réelle de limite nulle. Montrer que si $u_n + u_{2n} \sim \frac{3}{2n}$, alors $u_n \sim \frac{1}{n}$. A-t-on : si $u_n + u_{n+1} \sim \frac{2}{n}$, alors $u_n \sim \frac{1}{n}$?

Correction ▼

Exercice 5 ***I

Soit *u* la suite définie par $u_0 = \frac{\pi}{2}$ et, $\forall n \in \mathbb{N}, u_{n+1} = \sin(u_n)$.

- 1. Montrer que la suite *u* est strictement positive, décroissante de limite nulle.
- 2. On admet que si u est une suite de limite nulle, alors, quand n tend vers $+\infty$, $\sin(u_n) = u_n \frac{u_n^3}{6} + o(u_n^3)$. Déterminer un réel α tel que la suite $v_n = u_{n+1}^{\alpha} - u_n^{\alpha}$ ait une limite réelle non nulle. En appliquant le lemme de CÉSARO à la suite (v_n) , en déduire un équivalent simple de u_n quand n tend vers $+\infty$.

Correction ▼ [005256]

Correction de l'exercice 1 A

1. Tout d'abord, pour $n \ge 1$, $\frac{n-1}{n}$ existe et est élément de [-1,1]. Donc, $\arccos \frac{n-1}{n}$ existe pour tout entier naturel non nul n.

Quand *n* tend vers $+\infty$, $\frac{n-1}{n}$ tend vers 1 et donc Arccos $\frac{n-1}{n}$ tend vers 0. Mais alors,

$$\arccos\frac{n-1}{n} \sim \sin(\arccos\frac{n-1}{n}) = \sqrt{1 - (\frac{n-1}{n})^2} = \frac{\sqrt{2n-1}}{n} \sim \frac{\sqrt{2}}{\sqrt{n}}.$$

- 2. Arccos $\frac{1}{n}$ tend vers 1 et donc Arccos $\frac{1}{n} \sim 1$.
- 3. $\operatorname{ch}(\sqrt{n}) = \frac{1}{2} (e^{\sqrt{n}} + e^{-\sqrt{n}}) \sim \frac{1}{2} e^{\sqrt{n}}$.
- 4. $n\ln(1+\frac{1}{n})\sim n.\frac{1}{n}=1$ et donc, $\left(1+\frac{1}{n}\right)^n=e^{n\ln(1+1/n)}$ tend vers e. Par suite, $\left(1+\frac{1}{n}\right)^n\sim e$.
- 5. Argch n existe pour $n \ge 1$ et comme, pour $n \ge 1$, $n^4 + n^2 1 \ge n^4 > 0$, $\frac{\operatorname{Argch} n}{\sqrt{n^4 + n^2 1}}$ existe pour $n \ge 1$.

$$\operatorname{Argch} n = \ln(n + \sqrt{n^2 - 1}) \sim \ln(n + n) = \ln(2n) = \ln n + \ln 2 \sim \ln n.$$

Donc, $\frac{\operatorname{Argch} n}{\sqrt{n^4+n^2-1}} \sim \frac{\ln n}{\sqrt{n^4}} = \frac{\ln n}{n^2}$.

6. $-\sqrt{n}\ln(\sqrt{n}+1) = -\sqrt{n}\ln(\sqrt{n}) - \sqrt{n}\ln(1+\frac{1}{\sqrt{n}}) = -\sqrt{n}\ln(\sqrt{n}) - \sqrt{n}(\frac{1}{\sqrt{n}}+o(\frac{1}{\sqrt{n}})) = -\sqrt{n}\ln(\sqrt{n}) - 1 + o(1)$, et donc

$$(1+\sqrt{n})^{-\sqrt{n}} = e^{-\sqrt{n}\ln(\sqrt{n})-1+o(1)} \sim e^{-\sqrt{n}\ln(\sqrt{n})-1} = \frac{1}{e}\frac{1}{\sqrt{n}^{\sqrt{n}}}.$$

7.

$$\ln(\cos\frac{1}{n})(\ln\sin\frac{1}{n}) \sim (\cos\frac{1}{n} - 1)\ln(\frac{1}{n}) \sim (-\frac{1}{2n^2})(-\ln n) = \frac{\ln n}{2n^2}.$$

8. $(\operatorname{Arctan} n)^{3/5} = (\frac{\pi}{2} - \operatorname{Arctan} \frac{1}{n})^{3/5} = (\frac{\pi}{2})^{3/5} (1 - \frac{2}{\pi} (\frac{1}{n} + o(\frac{1}{n})))^{3/5} = (\frac{\pi}{2})^{3/5} (1 - \frac{6}{5n\pi} + o(\frac{1}{n}))$, et donc

$$(\frac{\pi}{2})^{3/5} - (\operatorname{Arctan} n)^{3/5} = (\frac{\pi}{2})^{3/5} (1 - 1 + \frac{6}{5n\pi} + o(\frac{1}{n})) \sim (\frac{\pi}{2})^{3/5} \frac{6}{5n\pi}$$

9. Tout d'abord, pour $n \ge 1$, $\left| \frac{(-1)^n}{\sqrt{n}} \right| = \frac{1}{\sqrt{n}} \le 1$, et donc $1 + \frac{(-1)^n}{\sqrt{n}} \ge 0$, puis $\sqrt{1 + \frac{(-1)^n}{\sqrt{n}}} - 1$ existe. Ensuite, quand n tend vers $+\infty$,

$$\sqrt{1 + \frac{(-1)^n}{\sqrt{n}}} - 1 \sim \frac{(-1)^n}{2\sqrt{n}}.$$

Correction de l'exercice 2 A

Pour $n \ge 2$, on a

$$\frac{1}{n!} \sum_{k=0}^{n} k! = 1 + \frac{1}{n} + \sum_{k=0}^{n-2} \frac{k!}{n!}.$$

Mais, pour $0 \le k \le n-2$, $\frac{k!}{n!} = \frac{1}{n(n-1)...(k+1)} \le \frac{1}{n(n-1)}$ (le produit contenant au moins les deux premiers facteurs. Par suite,

$$0 \le \sum_{k=0}^{n-2} \frac{k!}{n!} \le \frac{n-2}{n(n-1)}.$$

On en déduit que $\sum_{k=0}^{n-2} \frac{k!}{n!}$ tend vers 0 quand n tend vers $+\infty$. Comme $\frac{1}{n}$ tend aussi vers 0 quand n tend vers $+\infty$, on en déduit que $\frac{1}{n!} \sum_{k=0}^{n} k!$ tend vers 1 et donc que

2

$$\sum_{k=0}^{n} k! \sim n!.$$

Correction de l'exercice 3

1. Soit $\varepsilon > 0$.

Les suites u et v sont équivalentes et la suite v est strictement positive. Donc, il existe un rang n_0 tel que, pour $n \ge n_0$, $|u_n - v_n| < \frac{\varepsilon}{2} v_n$. Soit $n > n_0$.

$$\begin{aligned} \left| \frac{U_n}{V_n} - 1 \right| &= \frac{|U_n - V_n|}{V_n} \le \frac{1}{V_n} \sum_{k=0}^n |u_k - v_k| \\ &\le \frac{1}{V_n} \left(\sum_{k=0}^{n_0} |u_k - v_k| + \frac{\varepsilon}{2} \sum_{k=n_0+1}^n v_k \right) \\ &\le \frac{1}{V_n} \left(\sum_{k=0}^{n_0} |u_k - v_k| + \frac{\varepsilon}{2} V_n \right) = \frac{1}{V_n} \sum_{k=0}^{n_0} |u_k - v_k| + \frac{\varepsilon}{2} \end{aligned}$$

Maintenant, l'expression $\sum_{k=0}^{n_0} |u_k - v_k|$ est constante quand n varie, et d'autre part, V_n tend vers $+\infty$ quand n tend vers $+\infty$. On en déduit que $\frac{1}{V_n} \sum_{k=0}^{n_0} |u_k - v_k|$ tend vers 0 quand n tend vers $+\infty$. Par suite, il existe un rang $n_1 > n_0$ tel que, pour $n \ge n_1$, $\frac{1}{V_n} \sum_{k=0}^{n_0} |u_k - v_k| < \frac{\varepsilon}{2}$.

Pour $n \ge n_1$, on a alors $\left| \frac{U_n}{V_n} - 1 \right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$.

On a montré que

$$\forall \varepsilon > 0, \ \exists n_1 \in \mathbb{N}/ \ \forall n \in \mathbb{N}, \ (n \geq n_1 \Rightarrow \left| \frac{U_n}{V_n} - 1 \right| < \varepsilon.$$

Ainsi, la suite $\frac{U_n}{V_n}$ tend vers 1 quand n tend vers $+\infty$ et donc $U_n \sim V_n$.

2.

$$2(\sqrt{n+1} - \sqrt{n}) = \frac{2}{\sqrt{n+1} + \sqrt{n}} \sim \frac{2}{2\sqrt{n}} = \frac{1}{\sqrt{n}}.$$

De plus,

$$\sum_{k=1}^{n} 2(\sqrt{k+1} - \sqrt{k}) = 2\sqrt{n+1} - 2\sqrt{1}.$$

Cette dernière expression tend vers $+\infty$ quand n tend vers $+\infty$.

En résumé, pour $n \ge 1$, $\frac{1}{\sqrt{n}} > 0$, $2(\sqrt{n+1} - \sqrt{n}) > 0$, de plus quand n tend vers $+\infty$, $\frac{1}{\sqrt{n}} \sim 2(\sqrt{n+1} - \sqrt{n})$ et enfin, $\sum_{k=1}^{n} 2(\sqrt{k+1} - \sqrt{k})$ tend vers $+\infty$ quand n tend vers $+\infty$. D'après 1),

$$\sum_{k=1}^{n} \frac{1}{\sqrt{k}} \sim \sum_{k=1}^{n} 2(\sqrt{k+1} - \sqrt{k}) = 2\sqrt{n+1} - 2\sqrt{1} \sim 2\sqrt{n}.$$

$$(n+1)\ln(n+1) - n\ln n = (n+1-n)\ln n + (n+1)\ln(1+\frac{1}{n}) = \ln n + 1 + o(1) \sim \ln n.$$

Comme $\sum_{k=1}^{n} ((k+1)\ln(k+1) - k\ln k) = (n+1)\ln(n+1)$ tend vers $+\infty$ et que les suites considéres sont positives, on en déduit que

$$\ln(n!) = \sum_{k=1}^{n} \ln k \sim \sum_{k=1}^{n} ((k+1)\ln(k+1) - k\ln k) = (n+1)\ln(n+1) \sim n\ln n.$$

Correction de l'exercice 4

Pour $n \ge 1$, posons $u_n = \frac{(-1)^n}{\ln n} + \frac{1}{n}$. On a alors

$$n(u_n + u_{n+1} - \frac{2}{n}) = 1 + \frac{n}{n+1} - 2 + n(-1)^n \left(\frac{1}{\ln n} - \frac{1}{\ln(n+1)}\right) = \frac{(-1)^n n(\ln(n+1) - \ln n)}{\ln n \ln(n+1)} + o(1)$$

$$= \frac{(-1)^n n \ln(1 + 1/n)}{\ln n \ln(n+1)} + o(1) = \frac{(-1)^n (1 + o(1))}{\ln n \ln(n+1)} + o(1) = o(1).$$

Donc, $n(u_n + u_{n+1} - \frac{2}{n}) = o(1)$, ou encore $u_n + u_{n+1} = \frac{2}{n} + o(\frac{1}{n})$, ou enfin, $u_n + u_{n+1} \sim \frac{2}{n}$. Pourtant, u_n est équivalent à $\frac{(-1)^n}{\ln n}$ et pas du tout à $\frac{1}{n}$ ($|nu_n| = \frac{n}{\ln n} \to +\infty$). Supposons maintenant que $u_n + u_{2n} \sim \frac{3}{2n}$ et montrons que $u_n \sim \frac{1}{n}$. On pose $v_n = u_n - \frac{1}{n}$. Il s'agit maintenant de montrer que $v_n = o(\frac{1}{n})$ sous l'hypothèse $v_n + v_{2n} = o(\frac{1}{n})$.

Soit $\varepsilon > 0$. Il existe $n_0 \in \mathbb{N}$ tel que, pour $n \ge n_0$, $n|v_n + v_{2n}| < \frac{\varepsilon}{4}$.

Soient $n \ge n_0$ et $p \in \mathbb{N}$.

$$\begin{aligned} |v_{n}| &= |v_{n} + v_{2n} - v_{2n} - v_{4n} + \dots + (-1)^{p} (v_{2^{p}n} + v_{2^{p+1}n}) + (-1)^{p+1} v_{2^{p+1}n}| \le \sum_{k=0}^{p} |v_{2^{k}n} + v_{2^{k+1}n}| + |v_{2^{p+1}n}| \\ &\frac{\varepsilon}{4} \sum_{k=0}^{p} \frac{1}{2^{k}n} + |v_{2^{p+1}n}| = \frac{\varepsilon}{4n} \frac{1 - \frac{1}{2^{p+1}}}{1 - \frac{1}{2}} + |v_{2^{p+1}n}| \\ &\le \frac{\varepsilon}{2n} + |v_{2^{p+1}n}| \end{aligned}$$

Maintenant, la suite u tend vers 0, et il en est de même de la suite v. Par suite, pour chaque $n \ge n_0$, il est possible de choisir p tel que $|v_{2^{p+1}n}| < \frac{\varepsilon}{2n}$.

En résumé, si n est un entier donné supérieur ou égal à n_0 , $n|v_n| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$. On a montré que

$$\forall \varepsilon > 0, \exists n_0 \in \mathbb{N} / \forall n \in \mathbb{N}, (n \ge n_0 \Rightarrow |nv_n| < \varepsilon.$$

Par suite, $v_n = o(\frac{1}{n})$ et donc $u_n = \frac{1}{n} + o(\frac{1}{n})$, ou encore $u_n \sim \frac{1}{n}$.

Correction de l'exercice 5

1. Il est immédiat que la suite u est définie et à valeurs dans $\left[-1,\frac{\pi}{2}\right]$.

Plus précisément, $u_0 \in]0, \frac{\pi}{2}]$, et si pour $n \ge 0$, $u_n \in]0, \frac{\pi}{2}]$, alors $u_{n+1} \in]0, 1] \subset]0, \frac{\pi}{2}]$. On a montré par récurrence que, $\forall n \in \mathbb{N}, u_n \in]0, \frac{\pi}{2}].$

Montrons que pour tout réel $x \in]0, \frac{\pi}{2}]$, on a $\sin x > x$. Pour $x \in [0, \frac{\pi}{2}]$, posons $f(x) = x - \sin x$. f est dérivable sur $[0, \frac{\pi}{2}]$ et pour $x \in [0, \frac{\pi}{2}]$, $f'(x) = 1 - \cos x$. Par suite, f' est strictement positive sur $[0, \frac{\pi}{2}]$ et donc strictement croissante sur $[0, \frac{\pi}{2}]$. Mais alors, pour $x \in]0, \frac{\pi}{2}]$, on a f(x) > f(0) = 0.

Soit $n \in \mathbb{N}$. Puisque $u_n \in]0, \frac{\pi}{2}]$, on a $u_{n+1} = \sin(u_n) < u_n$. La suite u est donc strictement décroissante. Puisque la suite u est d'autre part minorée par 0, la suite u converge vers un réel noté ℓ . Puisque pour tout $n \in \mathbb{N}$, $0 < u_n \le \frac{\pi}{2}$, on a $0 \le \ell \le \frac{\pi}{2}$. Mais alors, par continuité de la fonction $x \mapsto \sin x$ sur $[0, \frac{\pi}{2}]$ et donc en ℓ , on a

$$\ell = \lim_{n \to +\infty} u_{n+1} = \lim_{n \to +\infty} \sin(u_n) = \sin(\lim_{n \to +\infty} u_n) = \sin(\ell).$$

Or, si $x \in]0, \frac{\pi}{2}]$, sin x < x et en particulier sin $x \neq x$. Donc, $\ell = 0$.

La suite u est strictement positive, strictement décroissante, de limite nulle.

2. Soit $\alpha \in \mathbb{R}$. Puisque u_n tend vers 0 quand n tend vers $+\infty$,

$$u_{n+1}^{\alpha} = (\sin(u_n))^{\alpha} = (u_n - \frac{u_n^3}{6} + o(u_n^3))^{\alpha} = u_n^{\alpha} (1 - \frac{u_n^2}{6} + o(u_n^2))^{\alpha} = u_n^{\alpha} (1 - \frac{\alpha u_n^2}{6} + o(u_n^2)) = u_n^{\alpha} - \frac{\alpha u_n^{2+\alpha}}{6} + o(u_n^{2+\alpha}).$$

et donc, $u_{n+1}^{\alpha} - u_n^{\alpha} = -\frac{\alpha u_n^{2+\alpha}}{6} + o(u_n^{2+\alpha})$. En prenant $\alpha = -2$, on obtient alors

$$v_n = \frac{1}{u_{n+1}^2} - \frac{1}{u_n^2} = \frac{1}{3} + o(1).$$

D'après le lemme de CÉSARO, $\frac{1}{n}\sum_{k=0}^{n-1}v_k$ tend également vers $\frac{1}{3}$. Mais,

$$\frac{1}{n}\sum_{k=0}^{n-1}v_k = \frac{1}{n}\sum_{k=0}^{n-1}\left(\frac{1}{u_{k+1}^2} - \frac{1}{u_k^2}\right) = \frac{1}{n}\left(\frac{1}{u_n^2} - \frac{1}{u_0^2}\right).$$

Ainsi, $\frac{1}{n}(\frac{1}{u_n^2} - \frac{1}{u_0^2}) = \frac{1}{3} + o(1)$ puis, $\frac{1}{u_n^2} = \frac{n}{3} + \frac{1}{u_0^2} + o(n) = \frac{n}{3} + o(n)$. Donc, $\frac{1}{u_n^2} \sim \frac{n}{3}$, puis $u_n^2 \sim \frac{3}{n}$ et enfin, puisque la suite u est strictement positive,

$$u_n \sim \sqrt{\frac{3}{n}}$$
.