# SIGMA DELTA ADC MODULE BY SZYMON FILIPKOWSKI

Dokumentacja obejmuje Sigma Delta ADC module autorstwa Szymona Filipkowskiego, wersja **v2.0.1**.Projekt dostępny na serwisie GITHUB: https://github.com/Tacot2009/WETI-2025\_26-Szymon\_Filipkowski



### Kod źródłowy procesora:

https://github.com/Tacot2009/WETI-2025\_26-Szymon\_Filipkowski/blob/main/STM32-project/sigma-delta-adc-2/Core/Src/main.c

#### Schematy układu:

https://github.com/Tacot2009/WETI-2025\_26-Szymon\_Filipkowski/blob/main/Schemat/ADC.pdf https://github.com/Tacot2009/WETI-2025\_26-Szymon\_Filipkowski/blob/main/Schemat/main.pdf

### **Kosztorys:**

https://github.com/Tacot2009/WETI-2025\_26-Szymon\_Filipkowski/blob/main/listapodzespolow-koszty.xlsx

### Dokumentacja:

https://github.com/Tacot2009/WETI-2025\_26-Szymon\_Filipkowski/blob/main/dokumentacj a.docx



link do strony projektu na serwisie github

### Spis treści

- **1.** Główne cechy
- 2. Przykładowe zastosowania
- 3. Opis
- 4. Historia wersji
- 5. Piny I/O i informacje o nich
- 6. Specyfikacja
  - a. Rekomendowane wartości pracy
  - **b.** Charakterystyka AC tryb pojedyńczy
  - c. Charakterystyka AC tryb ciągły
  - d. Absolutnie maksymalne wartości pracy
- **7.** Dokładny opis
  - a. Diagram
  - **b.** Kontrola trybów pracy
  - c. Opis działania
- 8. Informacje dodatkowe

### 1. Główne cechy

- Wbudowany procesor
- Zakres wejściowy 0V do 2.56V
- Zasilanie 3.3V
- Komunikacja jednostronna UART
- Łatwa zmiana trybów pracy
- Funkcjonalność plug-and-play
- Najażniejsze cechy
  - > Rozdzielczość: 8 Bitów
  - Dokładność 0.01V
  - Częstotliwość raportowania 2Hz
  - Zużycie mocy ~10mW
  - Uart (baud 115200)

### 2. Przykładowe zastosowania

- Współpraca z dowolnym urządzeniem obsługującym protokół komunikacyjny UART.
- Interfejs do czujników temperatury, źródeł napięcia, przetworników, fotorezystorów itp.

### 3. Opis

"Sigma Delta ADC module by Szymon Filipkowski" to 8-bitowy przetwornik ADC wykorzystujący modulację Sigma-Delta do szacowania wartości cyfrowej sygnału wejściowego. Moduł wykorzystuje mikrokontroler z rodziny STM32C0 do dekodowania sygnału cyfrowego i przesyłania go w postaci wiadomości UART do urządzenia wyjściowego. Sprzęt i oprogramowanie są dostępne jako open-source na serwisie GITHUB, dzięki czemu każdy może dostosować ten moduł do własnych potrzeb. Autorem i twórcą projektu jest Szymon Filipkowski.

### 4. Historia wersji

- v1.0.0 pierwszy projekt PCB, oprogramowanie w fazie rozwoju
- v1.2.0 dodanie wyjścia obsługującego komunikację UART z procesora do głównego złącza wyjść na PCB, przewidziana do przyszłych zastosowań
- V.1.2.1 dodanie dokumentacji w języku polskim
- v1.3.0 dodano UART, dodano zlacze do programowania procesora
- v2.0.0 nowy schemat, nowe pcb, uproszczenie układu, obniżenie ceny, optymalizacja kodu
- v2.0.1 dodano README, dodano absolutnie maksymalne wartości pracy, dodano dodatkowe informacje, ogólne poprawki do dokumentacji

# 5. Piny I/O oraz informacje o nich



| PIN |            | 1/0 | DECODIDEION                                 |  |
|-----|------------|-----|---------------------------------------------|--|
| NO. | NAME       | I/O | DESCRIPTION                                 |  |
| 1.  | MOD        | I   | Wybór trybu pracy                           |  |
| 2.  | IN         | I   | Wejście napięcia analogowego                |  |
| 3.  | GND        | I   | Wejście masy (+0V)                          |  |
| 4.  | 3.3V (Vin) | I   | Zasilanie +3.3V                             |  |
| 5.  | RX         | I   | Wejście danych protokołu UART (baud 115200) |  |
| 6.  | TX         | 0   | Wyjście danych protokołu UART (baud 115200) |  |
| 7.  | GND        | 0   | Referencja 0V                               |  |
|     | ZŁĄCZE     |     | Złącze programatora do procesora od lewe:   |  |
| 8.  | PROG       | l/O | NRST, GND, SWCLK, SWDIO                     |  |

### 6. Specyfikacja

### a. Rekomendowane wartości pracy

|                                      | MIN | MAX  | JEDNOSTKA |
|--------------------------------------|-----|------|-----------|
| Vin                                  | 3.3 | 3.3  | V         |
| GND                                  | 0   | 0    | V         |
| IN (Wejście napięcia<br>analogowego) | 0   | 2.56 | V         |
| MOD (tryb pracy)                     | 0   | 3.3  | V         |

### b. Charakterystyka AC – tryb pojedyńczy

|                               | ZAŁOŻENIA TESTU            | TYPOWE |
|-------------------------------|----------------------------|--------|
| Czas pojedynczej<br>konwersji | Vin = 3.3 V<br>IN = 1.28 V | 1 SEC  |
| Zużycie energii               | Vin = 3.3 V<br>IN = 1.28 V | 9 mW   |

## c. Charakterystyka AC – tryb ciągły

|                            | ZAŁOŻENIA TESTU            | TYPOWE  |
|----------------------------|----------------------------|---------|
| Czas pojedynczej konwersji | Vin = 3.3 V<br>IN = 1.28 V | 0.5 SEC |
| Zużycie energii            | Vin = 3.3 V<br>IN = 1.28 V | 11 mW   |

## d. Absolutnie maksymalne wartości pracy

Przekroczenie wartości granicznych podanych poniżej może spowodować trwałe uszkodzenie urządzenia. Są to jedynie wartości graniczne obciążenia – nie należy zakładać, że urządzenie będzie działać poprawnie w tych warunkach. Długotrwałe narażenie na warunki graniczne może negatywnie wpłynąć na niezawodność urządzenia.

|                                   | MIN       | MAX       | JEDNOSTKA |
|-----------------------------------|-----------|-----------|-----------|
| Vin - GND                         | -0.1      | 3.8       | V         |
| IN (Wejście napięcia analogowego) | 0         | Vin       | V         |
| MOD (tryb pracy)                  | GND – 0.1 | Vin + 0.1 | V         |

# 7. Dokładny opis a. Diagram



### b. Kontrola trybów pracy

Urządzenie ADC obsługuje dwa tryby pracy: tryb wywołania (tryb pojedynczy) i tryb ciągły (tryb automatyczny). Tryb automatyczny jest domyślnym trybem modułu. Aby użyć trybu pojedynczej konwersji należy zewrzeć pin MOD z GND (+0V) *PRZED* włączeniem modułu; następnie go włączyć. W tym trybie ADC wykonuje jedną konwersję napięcia i wysyła ją za pomocą protokołu UART. Następnie MCU przechodzi w tryb oszczędzania energii. Aby ponowić konwersję należy zmienić logiczny stan pinu MOD. Nie zaleca się wyłączania całego układu. Jeśli pin podczas włączenia układu pin MOD pozostał rozłączony - moduł działa w trybie automatycznym, przesyłając dane przez protokół UART po każdej zakończonej konwersji napięcia wejściowego.

# c. Opis działania

- 1. Sygnał analogowy jest oczytywany bezpośrednio ze źródła.
- 2. Wzmacniacz operacyjny w konfiguracji diffrence aplifier odejmuje napięcie sprzężenia zwrotnego od sygnału wejściowego. Tworzy to sygnał błędu pokazujący różnicę między wejściem a aktualnym wyjściem.
- Filtr dolnoprzepustowy działający jako integrator przetwarza sygnał błędu. Filtruje szum o wysokiej częstotliwości i wprowadza opóźnienie.

- 4. Wzmacniacz operacyjny pełniący funkcję komparatora konwertuje zintegrowany sygnał na cyfrowe wyjście binarne. Powstałe wyjście cyfrowe służy zarówno jako wynik konwersji, jak i sprzężenie zwrotne dla ciągłej korekcji błędu.
- 5. W między czasie co określoną ilość czasu procesor zlicza czas w który sygnał logicznym był wysokim i porównuje go do czasu całkowitego. Na podstawie tych danych przesyła obliczone napięcie wejściowe przez pin TX protokołem komunikacyjnym UART o baudzie 115200.

### 8. Informacje dodatkowe

Moduł został zaprojektowany w sposób umożliwiający elastyczne dostosowanie częstotliwości raportowania. W razie potrzeby można ją łatwo zwiększyć wyłącznie za pomocą zmian w oprogramowaniu, kosztem nieznacznego obniżenia dokładności przetwarzania. Takie podejście pozwala dostosować działanie modułu do konkretnych wymagań aplikacji – w zależności od priorytetu: szybkości odczytu lub precyzji pomiaru.

Wstępne testy wykazały, że udało się osiągnąć częstotliwość raportowania na poziomie 5 kHz przy dokładności około 0.03V.