Fingerprint Quality Validation

Lưu Nam Đạt

Mar-22-2023

Part 1: Variance of Gray Levels

$$mean(I) = \mu = \frac{1}{N} \times \sum_{i=1}^{N} E_i$$

$$var(I) = \sigma^2 = \frac{\sum_{i=1}^{N} (E_i - \mu)^2}{N}$$

$$std(I) = \sigma = \sqrt{var(I)}$$

Figure 1: Grayscale Distribution of a Fingerprint Image

Let σ_{base} be the standard deviation of the image The contrast quality (cq) of a block β is determined by:

$$cq_{\beta} = \frac{\sigma_{\beta}}{\sigma_{base}}$$

High cq_{β} value means that the block β contains both clear ridges and clear valleys, which promises useful data.

If cq_{β} is too low, β can either be a background block, or a block without any helpful information at all (bad block).

Figure 2: Standard Deviation and Contrast Quality of some blocks

Grayscale Distribution $\sigma = 54$ μ μ + σ Population 100 120 140 160 Gray level -20

Figure 3: Grayscale Distribution of a good block

Grayscale Distribution 32 -30 -28 26 $\mu = 113$ 24 $\sigma = 57$ 22 μ + σ μ μ 20 -Population 100 120 140 160 Gray level -20 220

Figure 4: Grayscale Distribution of another good block

Figure 5: Grayscale Distribution of a bad block

Figure 6: Grayscale Distribution of a background block

Part 2: Orientation Certainty

$$gx = I * \begin{bmatrix} 1 & 0 & 1 \\ 2 & 0 & 2 \\ 1 & 0 & 1 \end{bmatrix}$$

$$gy = I * \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

Figure 7: Relation between gx (horizontal axis) and gy (vertical axis) on a good block (1)

Figure 8: Relation between gx (horizontal axis) and gy (vertical axis) on a good block (2)

Figure 9: Relation between gx (horizontal axis) and gy (vertical axis) on a good block (3)

Figure 10: Relation between gx (horizontal axis) and gy (vertical axis) on a good block (4)

Figure 11: Relation between gx (horizontal axis) and gy (vertical axis) on a bad block (1)

Figure 12: The direction along which the data set has minimum/maximum variance (the length of each line indicates the variance along respective direction)

Find unit vectors that minimize/maximize variance

Figure 13: Projections of some points onto a unit vector

If \vec{v} is a unit vector:

$$dist(O, P_i') = \vec{P}_i \cdot \vec{v} = \sum_{d=1}^{D} P_{id} v_d$$

Variance of projections:

$$V = \frac{1}{N} \times \sum_{i=1}^{N} \sum_{d=1}^{D} (p_{id}v_{d} - \mu)^{2}$$

By performing a geometric transformation such that $\mu_x=\mu_y=0$ Variable μ of the equation above then has the value of 0

Thus, the formula to calculate the variance of projections is simplified to:

$$V = \frac{1}{N} \times \sum_{i=1}^{N} \sum_{l=1}^{D} (p_{id}v_d)^2$$

The goal is to find a vector \vec{v} with the length of 1 unit such that V is maximized.

And thus, I add a Lagrange multiplier λ to the equation:

$$V = \frac{1}{N} \times \sum_{i=1}^{N} \sum_{d=1}^{D} (p_{id}v_{d})^{2} - \lambda (\sum_{d=1}^{D} v_{d}^{2} - 1)$$

To find local min/max of V, I derive the equation into:

$$\frac{\delta V}{\delta v_a} = \frac{2}{N} \times \sum_{i=1}^{N} \left(p_{ia} \sum_{d=1}^{D} (p_{id} v_d) \right) - 2\lambda v_a$$

At
$$\frac{\delta V}{\delta v} = 0$$
:

$$\frac{2}{N} \sum_{i=1}^{N} \left(p_{ia} \sum_{d=1}^{D} (p_{id} v_d) \right) = 2\lambda v_a$$

$$\Leftrightarrow \sum_{d=1}^{D} v_d \left(\frac{2}{N} \sum_{i=1}^{N} p_{ia} p_{id} \right) = 2\lambda v_a$$

$$\Leftrightarrow \sum_{d=1}^{D} v_d \left(2cov(p_a,p_d)\right) = 2\lambda v_a$$

Since the image is two-dimensional, \vec{v} has 2 components v_x and v_y .

The equation above is simplified into:

$$\Leftrightarrow \begin{cases} v_x cov(p_x, p_x) + v_y cov(p_x, p_y) = \lambda v_x \\ v_x cov(p_y, p_x) + v_y cov(p_y, p_y) = \lambda v_y \end{cases}$$

$$\Leftrightarrow \begin{bmatrix} var(p_x) & cov(p_x, p_y) \\ cov(p_x, p_y) & var(p_y) \end{bmatrix} \begin{bmatrix} v_x \\ v \end{bmatrix} = \lambda \begin{bmatrix} v_x \\ v \end{bmatrix} \Leftrightarrow A\vec{v} = \lambda \vec{v}$$

The fact that A is a matrix and λ is a scalar implies that \vec{v} must be an eigenvector

Consequently, the eigenvectors are the directions along which the data set has minimum/maximum variance $\int \delta V$

$$\left(\frac{\delta V}{\delta v_a} = 0\right)$$

And the eigenvalues λ indicate the variance along those directions pointed by their respective eigenvectors

The covariance matrix of 2 gradient images gx and gy are calculated as:

$$A = \frac{1}{N} \times \sum \begin{bmatrix} dx \\ dy \end{bmatrix} \begin{bmatrix} dx & dy \end{bmatrix} = \begin{bmatrix} a & c \\ c & b \end{bmatrix}$$