Fibonacci Sequence

Time Limit: 2.0s **Memory Limit:** 64M

The Fibonacci sequence is a well known sequence of numbers in which

$$F(n) = \left\{ egin{array}{ll} 0, & ext{if } n = 0 \ 1, & ext{if } n = 1 \ F(n-2) + F(n-1), & ext{if } n \geq 2 \end{array}
ight.$$

Given a number N $(1 \le N \le 10^{19})$, find the N^{th} Fibonacci number, modulo $1\,000\,000\,007$ $(=10^9+7)$. **Note:** For 30% of the marks of this problem, it is guaranteed that $(1 \le N \le 1\,000\,000)$.

Input Specification

The first line of input will have the number N.

Output Specification

The N^{th} Fibonacci number, modulo $1\,000\,000\,007~(=10^9+7)$.

Sample Input

26

Sample Output

121393