清华大学机械工程系数值分析 A 2025 年秋季学期

作业 1

代卓远 2025210205

2025年9月28日

- 1.1. 已知 4 个四位有效数字的三角函数的值 $\sin 1^\circ = 0.0175$, $\sin 2^\circ = 0.0349$, $\cos 1^\circ = 0.9998$, $\cos 2^\circ = 0.9994$. 用以下四种方法计算 $1 \cos 2^\circ$ 的值,比较结果的误差,并说明各有多少位有效数字.
 - (1) 直接用已知数字计算;

解. 直接计算

$$x_A = 1 - \cos 2^{\circ} = 1 - 0.9994 = 10^{-3} \times 0.6$$

误差

$$|x - x_A| \le 0.5 \times 10^{-4}$$

 $n = -3 - (-4) = 1$

有效数字为1位.

(2) 用公式 $1 - \cos 2x = 2 \sin^2 x$ 及已知数据;

解.

$$x_A = 1 - \cos 2^\circ = 2\sin^2 1^\circ = 2 \times 0.0175^2 = 10^{-3} \times 0.6125$$

误差

$$|x - x_A| \le 0.5 \times 10^{-5}$$

 $n = -3 - (-5) = 2$

有效数字为 2 位.

(3) 用公式 $1 - \cos x = \frac{\sin^2 x}{1 + \cos x}$ 及已知数据;

解.

$$x_A = 1 - \cos 2^\circ = \frac{\sin^2 2^\circ}{1 + \cos 2^\circ} = \frac{0.0349^2}{1 + 0.9994} \approx 10^{-3} \times 0.60918$$

误差

$$|x - x_A| \le 0.5 \times 10^{-7}$$

 $n = -3 - (-7) = 4$

有效数字为 4 位.

(4) 用 $1 - \cos x$ 的 Taylor (泰勒) 展开式,要计算结果有四位有效数字 $(1 - \cos 2^{\circ} = 6.0917298 \dots \times 10^{-4})$

数值分析 A 清华大学机械工程系

解.

$$x_A = 1 - \cos 2^\circ = \sum_{i=1}^n (-1)^{i-1} \frac{(2^\circ)^{2i}}{(2i)!}$$

$$\approx \frac{(2 \times \frac{\pi}{180})^2}{2!} - \frac{(2 \times \frac{\pi}{180})^4}{4!}$$

$$\approx 10^{-3} \times 0.60917298$$

误差

$$|x - x_A| \le 0.5 \times 10^{-7}$$

 $n > -3 - (-7) = 4$

有效数字 > 4 位.

1.2. 下面是两种利用 9 次 Taylor 多项式近似计算 e^{-5} 的方法,试分析哪种方法能提供较好的近似值.

(1)
$$e^{-5} \approx \sum_{i=0}^{9} (-1)^{i} \frac{5^{i}}{i!}$$

(2)
$$e^{-5} \approx \left(\sum_{i=0}^{9} \frac{5^i}{i!}\right)^{-1}$$

解.

显然第二种方法更好.

1.3. 下列公式要怎样变换才能使数值计算时能避免有效数字的损失?

(1)
$$\int_{N}^{N+1} \frac{1}{1+x^2} dx = \arctan(N+1) - \arctan N, N >> 1;$$

$$\arctan(N+1) - \arctan N = \arctan\left(\frac{1}{1+(N+1)N}\right)$$

数值分析 A 清华大学机械工程系

(2)
$$\sqrt{x^2 + \frac{1}{x}} - \sqrt{x^2 - \frac{1}{x}}, |x| >> 1;$$

解

$$\sqrt{x^2 + \frac{1}{x}} - \sqrt{x^2 - \frac{1}{x}} = \frac{2}{x\left(\sqrt{x^2 + \frac{1}{x}} + \sqrt{x^2 - \frac{1}{x}}\right)}$$

(3) $\ln(x+1) - \ln x$, x >> 1;

解.

$$\ln(x+1) - \ln x = \ln\left(\frac{x+1}{x}\right) = \ln\left(1 + \frac{1}{x}\right)$$

 $(4) \quad \cos^2 x - \sin^2 x, \ x \approx \frac{\pi}{4}$

解.

$$\cos^2 x - \sin^2 x = \cos 2x$$

1.4.
$$\exists \exists I_n = \int_0^1 x^n e^{x-1} dx, n = 0, 1, \dots,$$
 $\exists \exists I_0 = 1 - e^{-1}, I_n = 1 - nI_{n-1}, n = 1, 2, \dots.$

(1) 取 I_0 近似值 $\tilde{I}_0 = 1 - 0.3679$,用递推公式 $\tilde{I}_n = 1 - n\tilde{I}_{n-1}$ 计算 I_n 的近似值 $\tilde{I}_n, n = 1, 2, \cdots, 9$ (用四位有效数字计算),结果是否准确?

解.

n	\widetilde{I}_n	I_n
0	0.6321	0.632120559
1	0.3679	0.367879441
2	0.2642	0.264241118
3	0.2074	0.207276647
4	0.1704	0.170893412
5	0.1480	0.145532941
6	0.1120	0.126802357
7	0.2160	0.112383504
8	-0.7280	0.100931967
9	7.552	0.091612293

从 n=7 开始,误差过大,不准确.

(2) 设 $\varepsilon_n = I_n - \tilde{I}_n$, 推导 $|\varepsilon_n| - |\varepsilon_0|$ 的关系.

解.

$$\varepsilon_n = I_n - \tilde{I}_n = 1 - nI_{n-1} - (1 - n\tilde{I}_{n-1}) = -n\varepsilon_{n-1}$$
$$|\varepsilon_n| = n |\varepsilon_{n-1}| = n(n-1) |\varepsilon_{n-2}| = \dots = n! |\varepsilon_0|$$