Observer Design, Kalman Filter

by Sergei Savin

Spring 2020

Content

- Observer Design
 - Observer as a controllable LTI
 - Estimation error dynamics
 - State estimation error stability
 - Observer Design vs Controller design
 - Special case
 - General case: design via Riccati eq.
- Kalman Filter
 - System with noise and disturbances
 - Estimates definitions
 - Estimate updates
 - Knows and unknowns
 - Covariance update and Kalman gain

- From the previous lecture we remember that we wanted the estimate of the state to have the same dynamics as the actual state.
- We also remember that we want to take into account the error between the estimated and measured output y

Assume the measurement is perfect: $\hat{y} = y$. Then we can propose observer as the following dynamical system:

$$\hat{\dot{x}} = A\hat{x} + Bu + L(y - \hat{y})$$

Estimation error dynamics

Remember that state estimation error is $\epsilon = \hat{x} - x$ and the actual dynamics of the system is:

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx \end{cases}$$

Then, we can write the state estimation error dynamics:

$$\hat{\dot{x}} - \dot{x} = A\hat{x} - Ax + Bu - Bu + L(y - \hat{y})$$

or:

$$\dot{\epsilon} = A\epsilon + L(Cx - C\hat{x})$$

or:

$$\dot{\epsilon} = A\epsilon - LC\epsilon$$

State estimation error stability

Thus, with the proposed observer, state estimation error is:

$$\dot{\epsilon} = (\mathsf{A} - \mathsf{LC})\epsilon$$

From which immediately follows that the observer is *stable* (i.e., the state estimation error tends to zero), as long as the following matrix is negative-definite:

$$A - LC < 0$$

We need to find L.

Observer Design vs Controller design

Let us observe the key difference between observer design and controller design.

Controller design: find such K that:

$$A - BK < 0$$

Observer design: find such L that:

$$A - LC < 0$$

We have instruments for finding K, what about L?

Special case

Assume that C is identity I. Then the observer design problem becomes:

• find such L that A - LI < 0.

Which is equivalent to the problem:

• find such L that A - BL < 0, where B = I.

And in that formulation, it is equivalent to the controller design problem, which we know how to solve.

General case: design via Riccati eq.

In general, we can observe that if A - LC is negative-definite, then $(A - LC)^{\top}$ is negative-definite too (by definition of the negative-definiteness).

Therefore, we can solve the following dual problem:

• find such L that $A^{\top} - C^{\top}L^{\top} < 0$.

The dual problem is *equivalent* to the control design problem. We can solve it by producing and solving algebraic Riccati equation, as in the LQR formulation. In pseudo-code it can be represented the following way:

$$\mathsf{L}^\top = \mathsf{lqr}(\mathsf{A}^\top,\,\mathsf{C}^\top,\,\mathsf{Q},\,\mathsf{R}).$$

where ${\sf Q}$ and ${\sf R}$ are weight matrices, determining the "sensitivity" or "aggressiveness" of the observer.

System with noise and disturbances

Assume we have a discrete linear system with disturbance and noise:

$$\begin{cases} x_{i+1} = Ax_i + Bu_i + w \\ y_i = Cx_i + v \end{cases}$$

where w and v are disturbance and noise, both are random processes. Covariance matrix of w is W, covariance matrix of v is V.

Our estimation \hat{x} is now done is two steps: after dynamics update, and after sensor update. We will use the following notation for it:

- $\hat{x}_{i|i-1}$ is the *i*-th step estimate after dynamics update; also called an *a priori* estimate.
- $\hat{\mathbf{x}}_{i|i}$ is the estimate after sensor update; also called an *a posteriori* estimate.

Estimates covariances

Both estimates $\hat{x}_{i|i-1}$ and $\hat{x}_{i|i}$ have associated state estimation errors:

- $\bullet \ \epsilon_{i|i-1} = \mathsf{x}_i \hat{\mathsf{x}}_{i|i-1}$
- $\bullet \ \epsilon_{i|i} = \mathsf{x}_i \hat{\mathsf{x}}_{i|i}$

Those state estimation errors have their covariance matrices:

- $\bullet \ \mathsf{P}_{i|i-1} = \mathrm{cov}(\epsilon_{i|i-1}),$
- $\bullet \ \mathsf{P}_{i|i} = \mathrm{cov}(\epsilon_{i|i})$

We can consider the output estimation error $\varepsilon_i = \mathsf{y}_i - \mathsf{C}\hat{\mathsf{x}}_{i|i-1}$ and its covariance matrix Y_i :

$$Y_i = cov(y_i - C\hat{x}_{i|i-1})$$

Estimate updates

We know that $\hat{x}_{i|i-1}$ can be found as follows:

$$\hat{\mathsf{x}}_{i|i-1} = \mathsf{A}\hat{\mathsf{x}}_{i-1|i-1} + \mathsf{B}\mathsf{u}_i$$

where $\hat{x}_{i-1|i-1}$ is the estimate on the previous time step.

We will search for the update law for the a posteriori estimate $\hat{x}_{i|i}$ in the following form:

$$\hat{x}_{i|i} = \hat{x}_{i|i-1} + K_i(y_i - C\hat{x}_{i|i-1})$$

We need to find K_i , which is the Kalman filter gain.

Knows and unknowns

We know or measure:

- A, B and C
- W and V
- yi

We need to find:

- $\hat{x}_{i|i-1}$ and $\hat{x}_{i|i}$
- K_i
- \bullet $\mathsf{Y}_i,\,\mathsf{P}_{i|i-1}$ and $\mathsf{P}_{i|i}$

Covariance update and Kalman gain

There is a formula for the a priori estimation covariance update:

$$\mathsf{P}_{i|i-1} = \mathsf{A}\mathsf{P}_{i-1|i-1}\mathsf{A}^\top + \mathsf{W}$$

And a formula for the measurement covariance:

$$\mathsf{Y}_i = \mathsf{CP}_{i|i-1}\mathsf{C}^\top + \mathsf{V}$$

With those two, we can find the Kalman filter gain:

$$\mathsf{K}_i = \mathsf{P}_{i|i-1}\mathsf{C}^{\top}\mathsf{Y}_i^{-1}$$

Now we can find the a posteriori covariance:

$$\mathsf{P}_{i|i} = (\mathsf{I} - \mathsf{K}_i \mathsf{C}) \mathsf{P}_{i|i-1}$$

Lecture slides are available via Moodle.

You can help improve these slides at:

 $\verb|https://github.com/SergeiSa/Linear-Control-Slides-Spring-2020| \\$

Check Moodle for additional links, videos, textbook suggestions.