

Library Indian Institute of Science Education and Research Mohali

DSpace@IISERMohali (/jspui/)

- / Publications of IISER Mohali (/jspui/handle/123456789/4)
- / Research Articles (/jspui/handle/123456789/9)

Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/1674

Title: Measurement of $\cos 2\beta$ in B0 \rightarrow D(*)h0 with D \rightarrow K0S π + π - decays by a combined time-dependent

Dalitz plot analysis of BaBar and Belle data

Authors: Bhardwaj, V. (/jspui/browse?type=author&value=Bhardwaj%2C+V.)

Keywords: CP violation

Belle data $cos2\beta$ $B0\rightarrow D(*)h0$ $D\rightarrow K0S\pi+\pi-$

time-dependent Dalitz plot

Issue Date: 2018

Publisher: American Physical Society

Citation: Physical Review D, 98(11).

Abstract:

We report measurements of $\sin 2\beta$ and $\cos 2\beta$ using a time-dependent Dalitz plot analysis of $B0 \rightarrow D(^*)h0$ with $D \rightarrow K0S\pi + \pi -$ decays, where the light unflavored and neutral hadron h0 is a $\pi 0$, η , or ω meson. The analysis uses a combination of the final data sets of the BaBar and Belle experiments containing 471×106 and 772×106 B B pairs collected at the Y(4S) resonance at the asymmetric-energy B factories PEP-II at SLAC and KEKB at KEK, respectively. We measure $\sin 2\beta = 0.80 \pm 0.14 (\text{stat}) \pm 0.06 (\text{syst}) \pm 0.03 (\text{model})$ and $\cos 2\beta = 0.91 \pm 0.22 (\text{stat}) \pm 0.09 (\text{syst})$ $\pm 0.07 (\text{model})$. The result for the direct measurement of the angle is $\beta = (22.5 \pm 4.4 (\text{stat}) \pm 1.2 (\text{syst})$ $\pm 0.6 (\text{model}))^\circ$. The last quoted uncertainties are due to the composition of the $D0 \rightarrow K0S\pi + \pi - decay$ amplitude model, which is newly established by a Dalitz plot amplitude analysis of a high-statistics $e + e - \rightarrow c^- c$ data sample as part of this analysis. We find the first evidence for $\cos 2\beta > 0$ at the level of 3.7 standard deviations. The measurement excludes the trigonometric multifold solution $\pi/2 - \beta = (68.1 \pm 0.7)^\circ$ at the level of 7.3 standard deviations and therefore resolves an ambiguity in the determination of the apex of the CKM Unitarity Triangle. The hypothesis of $\beta = 0^\circ$ is ruled out at the level of 5.1 standard deviations, and thus CP violation is observed in $B0 \rightarrow D(^*)h0$ decays. The measurement assumes no direct CP violation in $B0 \rightarrow D(^*)h0$ decays.

Description: Only IISERM authors are available in the record.

URI: https://journals.aps.org/prd/abstract/10.1103/PhysRevD.98.112012

(https://journals.aps.org/prd/abstract/10.1103/PhysRevD.98.112012) http://hdl.handle.net/123456789/1674 (http://hdl.handle.net/123456789/1674)

Appears in Research Articles (/jspui/handle/123456789/9) Collections:

Files in This Item

Show full item record (/jspui/handle/123456789/1674?mode=full)

■ (/jspui/handle/123456789/1674/statistics)

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.