# Работа 2.1.3 Определение $C_p/C_v$ по скорости звука в газе

Валеев Рауф Раушанович группа 825

4 марта 2019 г.

### Цель работы

- 1. измерение частоты колебаний и длины волны при резонансе звуковых колебаний в газе, заполняющем трубу
- 2. определение показателя адиабаты с помощью уравнения состояния идеального газа

### Краткая теоретическая справка

#### Скорость звука

Распространение звуковой волны в газе происходит адиабатически. Сжатия и разрежения в газе сменяют друг друга настолько быстро, что теплообмен между слоями газа, имеющими разные температуры, не успевает произойти. Используя полученное уравнение адиабаты идеального газа, найдем скорость звука по общей формуле

$$c = \sqrt{\frac{dP}{d\rho}}$$

Заменим в уравнение Пуассона  $PV^{\gamma}=const$  объем на плотность  $\rho=\frac{m}{V}$ , после чего получим  $P=const\cdot \rho^{\gamma}$ . Тогда после логарифмирования и дифференцирования этого выражения имеем

$$rac{dP}{P} = \gamma rac{d
ho}{
ho}$$
, или  $\left(rac{dP}{d
ho}
ight)_{
m anna6at} = \sigma rac{P}{
ho}$ 

откуда для скорости звука получаем.

$$c = \sqrt{\left(\frac{dP}{d\rho}\right)_{\rm адиабат}} = \sqrt{\gamma\frac{P}{\rho}} = //PV = \frac{\mu}{m}RT// = \sqrt{\gamma\frac{RT}{\mu}} \Rightarrow$$
 
$$\gamma = \frac{\mu}{RT}c^2$$

Таким образом, для определения показателя адиабаты достаточно измерить температуру газа и скорость распространения звука (молярная масса газа предполагается известной).

Звуковая волна, распространяющаяся вдоль трубы, испытывает многократное отражение от торцов. Звуковые колебания в трубе являются наложением всех отраженных волн и, вообще говоря, очень сложны. Картина упрощается, если длина трубы L равна целому числу полуволн, то есть когда

$$L = n\frac{\lambda}{2}$$
$$c = \lambda f$$

Подбор условий, при которых возникает резонанс, можно производить двояко:

- 1. При неизменной частоте f звукового генератора (а, следовательно, и неизменной длине звуковой волны  $\lambda$ ) можно измерять длину трубы L.
- 2. При постоянной длине трубы можно изменять частоту звуковых колебаний. В этом случае следует плавно изменять частоту f звукого генератора, а следовательно, и длину звуковой волны  $\lambda$ . Для последовательных резонансов получим

$$L = \frac{\lambda_1}{2}n = \frac{\lambda_2}{2}(n+1) = \dots = \frac{\lambda_{k+1}}{2}(n+k)$$

Отсюда имеем, что

$$f_1 = \frac{c}{\lambda_1} = \frac{c}{2L}n, \ f_2 = \frac{c}{\lambda_2} = \frac{c}{2L}(n+1) = f_1 + \frac{c}{2L}, ...,$$
$$f_{k+1} = \frac{c}{\lambda_{k+1}} = \frac{c}{2L}(n+k) = f_1 + \frac{c}{2L}k$$

#### Экспериментальная установка



Здесь звуковые колебания возубждаются телефоном Т и улавливаются микрофоном М. Мембрана телефона приводится в движение переменным током звуковой частоты; в качестве источника переменной ЭДС используется звуковой генератор ГЗ. Возникающей в микрофоне сигнал наблюдается на осцилографе ЭО.

Микрофон и телефон подсоединены к установке через тонкие резиновые трубки. Такая связь достаточна для возбуждения и обнаружения звуковых колебаний в трубе и в то же время мало возмущает эти колебания.

Установка содержит теплоизолированную трубу постоянной длины. Воздух в трубе нагревается из термостата. Температура газа принимается равной температуре воды, омывающей трубу.

## Ход работы

- 1. ЭО и ЗГ для дальнейшей работы.
- 2. Измеряем скорость звука в трубе постоянной длины. Плавно увеличивая частоту генератора, получаем ряд последовательных резонансных значений частоты, отмечая момент резонанса по увеличению амплитуды колебаний на экране осцилогрофа.

- 3. Строим график, откладывая по оси абсцисс номер резонанса k, а по оси ординат  $f_{k+1}-f_1$ . Угловой коэффициент прямой определяет велечину c/2L, где  $L=(740\pm1)$  мм.
- 4. Повторяем 2 и 3 для разных температур.

| $T = (24, 2 \pm 0, 1) \circ C$ |        |                 | $T = (35 \pm 0, 1)^{\circ}C$ |                 |       | $T = (45 \pm 0, 1)^{\circ}C$ |                 |      |
|--------------------------------|--------|-----------------|------------------------------|-----------------|-------|------------------------------|-----------------|------|
|                                |        | Номер           | f, kHz                       | $\sigma_f, kHz$ | Номер | f, kHz                       | $\sigma_f, kHz$ |      |
| Номер                          | f, kHz | $\sigma_f, kHz$ | 1                            | 0,71            | 0,01  | 1                            | 0,73            | 0,01 |
| 1                              | 1,16   | 0,01            | 2                            | 0.95            | 0,01  | 2                            | 0,96            | 0.01 |
| 2                              | 1,39   | 0,01            | 3                            | 1,19            | 0,01  | 3                            | 1,21            | 0,01 |
| 3                              | 1,62   | 0,01            | 4                            | 1,41            | 0,01  | 4                            | 1,45            | 0,01 |
| 4                              | 1,86   | 0,01            | 5                            | 1,65            | 0,01  | 5                            | 1,68            | 0,01 |
| 5                              | 2,07   | 0,01            | 6                            | 1,89            | 0.01  | 6                            | 1,92            | 0,01 |
| 6                              | 2,31   | 0,01            | 7                            | ,               |       | 7                            | /               | ,    |
| 7                              | 2,55   | 0,01            |                              | 2,13            | 0,01  |                              | 2,16            | 0,01 |
| 8                              | 2,78   | 0,01            | 8                            | 2,36            | 0,01  | 8                            | 2,39            | 0,01 |
| 9                              | 3,00   | 0,01            | 9                            | 2,59            | 0,01  | 9                            | 2,63            | 0,01 |
| J                              | 0,00   | 0,01            | 10                           | 2,83            | 0,01  | 10                           | 2,89            | 0,01 |

| T =   | $= (55 \pm 0,$ | 1)°C            | $T = (60 \pm 0, 1)^{\circ}C$ |        |                 |  |
|-------|----------------|-----------------|------------------------------|--------|-----------------|--|
| Номер | f, kHz         | $\sigma_f, kHz$ | Номер                        | f, kHz | $\sigma_f, kHz$ |  |
| 1     | 0,75           | 0,01            | 1                            | 0,74   | 0,01            |  |
| 2     | 0,99           | 0,01            | 2                            | 0,99   | 0,01            |  |
| 3     | 1,23           | 0,01            | 3                            | 1,23   | 0,01            |  |
| 4     | 1,46           | 0,01            | 4                            | 1,48   | 0,01            |  |
| 5     | 1,7            | 0,01            | 5                            | 1,71   | 0,01            |  |
| 6     | 1,95           | 0,01            | 6                            | 1,97   | 0,01            |  |
| 7     | 2,19           | 0,01            | 7                            | 2,21   | 0,01            |  |
| 8     | 2,43           | 0,01            | 8                            | 2,45   | 0,01            |  |
| 9     | 2,68           | 0,01            | 9                            | 2,7    | 0,01            |  |
| 10    | 2,93           | 0,01            | 10                           | 2,96   | 0,01            |  |

| $T, ^{\circ}C$ | c M/c | $\sigma_c$ , м/с | $\gamma$ | $\sigma_{\gamma}$ |
|----------------|-------|------------------|----------|-------------------|
| 24,2           | 341   | 1,3              | 1,368    | 0,009             |
| 35             | 348   | 1,3              | 1,372    | 0,008             |
| 45             | 353   | 1,3              | 1,370    | 0,008             |
| 55             | 359   | 1,3              | 1,368    | 0,007             |
| 60             | 363   | 1,3              | 1,377    | 0,007             |

5. Вычисляем значение  $\gamma = C_p/C_v$ .



Рис. 1:  $T = (24, 2 \pm 0, 1)^{\circ}C$ 



Рис. 2:  $T = (35 \pm 0, 1)^{\circ}C$ 



Рис. 3:  $T = (45 \pm 0, 1)$ °C



Рис. 4:  $T = (55 \pm 0, 1)$ °C



**Рис. 5:**  $T = (60 \pm 0, 1)^{\circ}C$