Experimentalphysik II

(Kompendium)

Herausgegeben von

Jeffrey Kelling Felix Lemke Stefan Majewsky

Stand: 23. Oktober 2008

Inhaltsverzeichnis

Elektrizität und Magnetismus	3
Elektrisches Feld	
Magnetisches Feld	
Maxwell'sche Gleichungen	
Elektrischer Dipol	
Magnetischer Dipol	
Elektronik und elektromagnetische Wellen	4
Stromkreise	
Selbst- und Gegeninduktion	
Elektromagnetische Wellen	
Energietransport bei elektromagnetischen Wellen	
Elektromagnetische Wellen an Grenzschichten	
Geometrische Optik	5
Bezeichnungen	
Spiegel	
Kugeloberflächen	
Linsen	

 ${\bf Spezielle\ Relativit\"{a}ts theorie\ siehe\ Kompendium\ , Theoretische\ Mechanik``.}$

Elektrisches Feld

- Coulomb-Kraft: $\vec{F} = \frac{1}{4\pi\varepsilon_0} \cdot \frac{Q_1Q_2}{r^2} \cdot \vec{e_r}$
- Feld einer Punktladung: $\vec{E}=\frac{1}{4\pi\varepsilon_0}\cdot\frac{Q}{r^2}\cdot\vec{e_r},$ allgemein: $\vec{F}=q\vec{E}$

Integralform	Differentielle Form
$\varepsilon_0 \oiint \vec{E} d\vec{A} = Q_{\text{frei}} + Q_{\text{geb}}$	$\varepsilon_0 \operatorname{div} \vec{E} = \varrho_{\text{frei}} + \varrho_{\text{geb}}$
$\iint \vec{D} d\vec{A} = Q_{\text{frei}}$	$\operatorname{div} \vec{D} = \varrho_{\mathrm{frei}}$
$ec{D} = arepsilon_0 ec{E} + ec{P}$	$\operatorname{div} \vec{P} = -\varrho_{\mathrm{geb}}$
$\vec{P} = \chi_e \varepsilon_0 \vec{E} \Rightarrow \vec{D} =$	$(1 + \chi_e) \varepsilon_0 \vec{E} \equiv \varepsilon_r \varepsilon_0 \vec{E}$

- Superpositions gesetz: $\vec{E}\left(\vec{r}\right) = \frac{1}{4\pi\varepsilon_0} \int \frac{\mathrm{d}Q'\cdot\left(\vec{r}-\vec{r}'\right)}{|\vec{r}-\vec{r}'|^3}$ (Ladungen an Orten \vec{r}')
- Energiedichte: $w=\frac{\mathrm{d}W}{\mathrm{d}V}=\frac{1}{2}\vec{E}\vec{D}=\frac{1}{2}\varepsilon_r\varepsilon_0\vec{E}^2$

Magnetisches Feld

Integralform	Differentielle Form	
$\oint \vec{B} d\vec{r} = \mu_0 \left(I_{\text{frei}} + I_{\text{geb}} + \frac{d}{dt} \iint \vec{D} d\vec{A} \right)$	$\operatorname{rot} \vec{B} = \mu_0 \left(\vec{J}_{\text{frei}} + \vec{J}_{\text{geb}} + \frac{\partial \vec{D}}{\partial t} \right)$	
$\oint \vec{H} d\vec{r} = I_{\text{frei}} + \frac{\mathrm{d}}{\mathrm{d}t} \iint \vec{D} d\vec{A}$	$\mathrm{rot} ec{H} = ec{\mathtt{J}}_{\mathrm{frei}} + rac{\partial ec{D}}{\partial t}$	
$ec{B}=\mu_0\left(ec{H}+ec{M} ight)=\mu_0ec{H}+ec{J}$	$\cot \vec{M} = \vec{j}_{\text{geb}} \text{ und rot } \vec{J} = \mu_0 \vec{j}_{\text{geb}}$	
$\vec{M} = \chi_m \vec{H} \Rightarrow \vec{B} = (1 + \chi_m) \mu_0 \vec{H} \equiv \mu_r \mu_0 \vec{H}$		

- Biot-Savart-Gesetz: $\vec{H}\left(\vec{r}\right) = \frac{I}{4\pi} \int \frac{\mathrm{d}\vec{r'} \times \left(\vec{r} \vec{r'}\right)}{\left|\vec{r} \vec{r''}\right|^3}$ (Stromfluss an Orten $\vec{r''}$)
- Energiedichte: $w=\frac{\mathrm{d}W}{\mathrm{d}V}=\frac{1}{2}\vec{H}\vec{B}=\frac{1}{2}\frac{\vec{B}^2}{\mu_r\mu_0}$

Maxwell'sche Gleichungen

	Integralform	Differentielle Form
1. Gleichung	$\iint \vec{D} d\vec{A} = Q$	$\operatorname{div} \vec{D} = \varrho$
2. Gleichung	$\oiint \vec{B} d\vec{A} = 0$	$\operatorname{div} \vec{B} = 0$
3. Gleichung	$\oint \vec{E} \mathrm{d}\vec{r} = -\frac{\mathrm{d}}{\mathrm{d}t} \iint \vec{B} \mathrm{d}\vec{A}$	$\operatorname{rot} \vec{E} = -\frac{\partial \vec{B}}{\partial t}$
4. Gleichung	$\oint \vec{H} d\vec{r} = I + \frac{d}{dt} \iint \vec{D} d\vec{A}$	$\operatorname{rot} \vec{H} = \vec{\jmath} + \frac{\partial \vec{D}}{\partial t}$

Elektrischer Dipol

- System aus zwei Ladungen +Q und -Q mit Abstand \vec{L} (von der negativen zur positiven Ladung gerichtet)
- Dipol
moment: $\vec{p}=Q\cdot\vec{L},$ Feld: $\vec{E}=\frac{1}{4\pi\varepsilon_0r^3}\left[3\left(\vec{p}\vec{e_r}\right)\vec{e_r}-\vec{p}\right]$
- Drehmoment: $\vec{M}=\vec{p}\times\vec{E}$, potentielle Energie: $E_{\rm pot}=-\vec{p}\cdot\vec{E}$

Magnetischer Dipol

- ullet stromdurchflossene Leiterschleife (Richtung der umschlossenen Fläche \vec{A} aus I durch Schraubenregel)
- Dipol
moment: $\vec{m} = I \cdot \vec{A}$, Drehmoment: $\vec{M} = \vec{m} \times \vec{B}$, potentielle Energie: $E_{\rm pot} = -\vec{m} \cdot \vec{B}$

Stromkreise

- elektrische Spannung: $U = \int \vec{E} d\vec{r} = \Delta \varphi$ (Potentialdifferenz), analog magnetische Spannung: $\Theta = \int \vec{B} d\vec{r}$
- Ohm'sches Gesetz: $\vec{j}=\sigma\vec{E}$, Kontinuitätsgleichung: div $\vec{j}=-\frac{\partial\varrho}{\partial t}$
- Kirchhoffsche Regeln: In einem Knoten ist $\sum I=0$, in einer Masche ist $\sum U=0$.
- elektrischer Widerstand: $\widetilde{Z_R}=R=\frac{U}{I}=\frac{1}{\sigma}\cdot\frac{l}{A}\equiv\varrho\cdot\frac{l}{A}$
- Kapazität eines Kondensators: $Q=C\cdot U$, kapazitativer Widerstand: $\widetilde{Z_C}=\frac{1}{i\omega C}=-\frac{i}{\omega C}$
- Induktivität einer Spule: $U=L\cdot \frac{\mathrm{d}I}{\mathrm{d}t},$ induktiver Widerstand: $\widetilde{Z_L}=i\omega L$
- \bullet Transformator: $\frac{U_{02}}{U_{01}}=-\frac{N_2}{N_1}$ (unbelastet), $\left|\frac{I_2}{I_1}\right|=\frac{N_1}{N_2}$ (belastet)

Selbst- und Gegeninduktion

- Lenz'sche Regel: Ein Induktionsstrom ist so gerichtet, dass er seiner Ursache entgegenwirkt.
- Selbstinduktion: $\Phi_B = \iint \vec{B} d\vec{A} = LI$
- Gegeninduktion: $\Phi_2 = \iint \vec{B} d\vec{A} = M_{21}I_1$, Symmetrie: $M_{12} = M_{21}I_1$

Elektromagnetische Wellen

Im Folgenden sei $\varrho = 0$ und $\vec{j} = 0$ (keine freien Ladungen und Ströme).

- Wellengleichung: $\vec{E} = \vec{E}_0 \cdot \sin\left(\omega \cdot t \mp \vec{k} \cdot \vec{r} \alpha\right)$, $\vec{B} = \frac{1}{\omega} \left(\vec{k} \times \vec{E}\right) = \vec{B}_0 \cdot \sin\left(\omega \cdot t \mp \vec{k} \cdot \vec{r} \alpha\right)$
- Kreisfrequenz: $\omega=2\pi f$, Wellenzahl: $\left|\vec{k}\right|=\frac{2\pi}{\lambda}$ (zeigt in ausbreitungsrichtung)
- Ausbreitungsgeschwindigkeit: $c=\frac{\omega}{k}=\lambda f=\frac{1}{\sqrt{\varepsilon_r\varepsilon_0\mu_r\mu_0}}=\frac{c_0}{\sqrt{\varepsilon_r\mu_r}}$

Energietransport bei elektromagnetischen Wellen

- Energiedichte einer Komponente: $w_{\rm el}=w_{\rm magn}=\frac{1}{2}\varepsilon_r\varepsilon_0E^2=\frac{1}{2}\frac{E^2}{c^2\mu_r\mu_0}=\frac{1}{2}\frac{B^2}{\mu_r\mu_0}$
- Gesamtenergie dichte: $w=\varepsilon_r\varepsilon_0E^2=\frac{B^2}{\mu_r\mu_0}$
- Energiestromdichte, Intensität: $I=\frac{\mathrm{d}}{\mathrm{d}A}\frac{\mathrm{d}W}{\mathrm{d}t}=cw=c\varepsilon_r\varepsilon_0E^2=\frac{EB}{\mu_r\mu_0}$
- Poyntingvektor: $\vec{S} = \vec{E} \times \vec{H}$, $|\vec{S}| = I$
- Energiestrom, Leistung: $P = \iint \vec{S} d\vec{A}$, Joule'sche Verlustleistung: $P_{\text{Joule}} = \iiint \frac{\vec{J}^2}{\sigma} dV$
- Strahlungsdruck: $p_s = \frac{\mathrm{d}}{\mathrm{d}A} \frac{\mathrm{d}p}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}A} \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{W}{c}\right) = \frac{I}{c} = \frac{\left|\vec{S}\right|}{c} = \varepsilon_r \varepsilon_0 E^2 = \frac{B^2}{\mu_r \mu_0}$
- Leistungsbilanz: $P + \frac{\mathrm{d}W}{\mathrm{d}t} + P_{\mathrm{Joule}} = 0$

Elektromagnetische Wellen an Grenzschichten

• Brechzahl eines Mediums: $n = \frac{c_0}{c} = \sqrt{\varepsilon_r \mu_r}$

Eine in n_1 an eine Grenzschicht zu n_2 nahende Welle 1 wird zu einem Teil (2) reflektiert und geht zu einem Teil (3) durch.

- Reflexionskoeffizient $R=\frac{E_2}{E_1}=\frac{n_1-n_2}{n_1+n_2}$, Transmissionskoeffizient $T=\frac{E_3}{E_1}=\frac{2n_1}{n_1+n_2}$
- Reflexionsvermögen $\varrho = \frac{I_2}{I_1} = \left(\frac{n_1 n_2}{n_1 + n_2}\right)^2$, Transmissionsvermögen $\sigma = \frac{I_3}{I_1} = \frac{4n_1n_2}{n_1 + n_2}$

Bezeichnungen

- \bullet Gegenstand der Höhe G bei g, Bild der Höhe B bei b
- Brennweite: f, Gegenstandsweite: x = g f, Bildweite: x' = b f

Spiegel

- Brennweite $f = \left| \frac{r}{2} \right|$, Abbildungsgleichungen: $\frac{1}{g} + \frac{1}{b} = \frac{1}{f}$ und $xx' = f^2$, Abbildungsmaßstab: $\beta = \frac{B}{G} = -\frac{b}{g}$
- Vorzeichenkonvention: positiv = vor dem Spiegel (b, g, r) bzw. aufrecht (B, G)
- Hohlspiegel: r > 0 und F vor dem Spiegel, Wölbspiegel: r < 0 und F hinter dem Spiegel
- Bildkonstruktion:
 - Paraxialstrahlen werden zu Brennpunktstrahlen und umgekehrt
 - Radialstrahlen (durch den Wölbungsmittelpunkt) werden in sich reflektiert
 - Zentralstrahlen (in den Schnittpunkt des Spiegels mit der optischen Achse) werden normal reflektiert

Kugeloberflächen

Auf der Seite des Gegenstandes sei ein Medium mit der Brechzahl n_g , gegenüber ein Medium mit n_b .

- Abbildungsgleichung: $\frac{n_g}{q} + \frac{n_b}{b} = \frac{n_b n_g}{r}$, Abbildungsmaßstab: $\beta = \frac{B}{G} = -\frac{n_g}{n_b} \cdot \frac{b}{q}$
- Vorzeichenkonvention: g ist positiv auf der Seite des Mediums n_g , b auf der Seite des Mediums n_b . r ist positiv, wenn die Kugeloberfläche vom Gegenstand weg gewölbt ist, sonst negativ.

Linsen

- Abbildungsgleichungen und Abbildungsmaßstab wie bei Spiegeln
- \bullet Vorzeichenkonvention: b ist dort positiv, wo g negativ ist und umgekehrt
- \bullet Sammellinsen: F auf der Seite des Gegenstandes, F' auf der Seite des Bildes
- \bullet Zerstreuungslinsen: F auf der Seite des Bildes, F' auf der Seite des Gegenstandes
- Bildkonstruktion:
 - Paraxialstrahlen werden zu Brennpunktstrahlen in F'
 - Brennpunktstrahlen in F werden zu Paraxialstrahlen
 - Zentralstrahlen werden nicht gebrochen
- Brechung eines beliebigen, von der Gegenstandsseite kommenden Strahles:
 - Hilfsstrahl: parallel zum Ausgangsstrahl, durch F
 - Hilfsstrahl wird zu Paraxialstrahl gebrochen, diesen verlängern zur Brennebene von F^\prime
 - Schnitt des Hilfsstrahles mit der Brennebene von F' verlängern zum Einfallspunkt des Ausgangsstrahls in die Linse; dies ist der ausfallende Strahl