Support Vector Machine (SVM) classifier

Contents

- 1. How SVM works: theory and visual explanation.
- 2. Introduction to Non-Linear SVM tricks.
- 3. Tuning parameters of SVM.

1. How SVM works: theory

SVM is a supervised classification method that separates data using hyperplanes.

Finding the most suitable hyperplane

$$(x_1, y_1), \ldots, (x_m, y_m), x_i \in \mathbb{R}^n, y_i \in \{-1, 1\}.$$

$$F(\mathbf{x}) = \operatorname{sign}(\langle \mathbf{w}, \mathbf{x} \rangle + b)$$

$$\langle \mathbf{w}, \mathbf{x} \rangle + b = 0$$

$$egin{cases} rg \min_{\mathbf{w},b} ||w||^2, \ y_i(\langle \mathbf{w}, \mathbf{x}_i \rangle + b) \geqslant 1, \quad i = 1, \ldots, m. \end{cases}$$

$$\begin{cases} \mathbf{L}(\mathbf{w}, \mathbf{b}; \lambda) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^n \lambda_{\mathbf{i}} (c_i((\mathbf{w} \cdot \mathbf{x_i}) - b) - 1) \to \min_{w, b} \max_{\lambda} \\ \lambda_{\mathbf{i}} > 0, \quad 1 \le i \le n \end{cases}$$

how do I separate this data?

Introduction to non-linear SVMs

$$\varphi : \mathbb{R}^n \to X$$
 $F(\mathbf{x}) = \text{sign}(\langle \mathbf{w}, \varphi(\mathbf{x}) \rangle + b)$

$$\mathbf{k}(\mathbf{x}, \mathbf{x}') = \langle \, \varphi(\mathbf{x}), \varphi(\mathbf{x}') \, \rangle$$

$$\mathbf{k}(\mathbf{x}, \mathbf{x}') = (\langle \mathbf{x}, \mathbf{x}' \rangle + \text{const})^d$$

$$\mathbf{k}(\mathbf{x}, \mathbf{x}') = e^{-\gamma ||\mathbf{x} - \mathbf{x}'||^2}, \, \gamma > 0.$$

$$\mathbf{k}(\mathbf{x}, \mathbf{x}') = e^{-\frac{||\mathbf{x} - \mathbf{x}'||^2}{2\sigma^2}}.$$

$$\mathbf{k}(\mathbf{x}, \mathbf{x}') = \tanh(\kappa \langle \mathbf{x}, \mathbf{x}' \rangle + c), \ \kappa > 0, c < 0.$$

https://habr.com/ru/post/105220/

Tuning parameters of SVM

$$egin{cases} rac{1}{2}\|\mathbf{w}\|^2 + C\sum_{i=1}^n oldsymbol{\xi}_i
ightarrow \min_{w,b,oldsymbol{\xi}_i} \ c_i(\mathbf{w}\cdot\mathbf{x_i}-b) \geq 1-oldsymbol{\xi}_i, \quad 1 \leq i \leq n \ oldsymbol{\xi}_i \geq 0, \quad 1 \leq i \leq n \end{cases}$$

Cupcakes

versus

Muffins

"a cupcake is just a muffin with frosting"

"a muffin is just a cupcake with random bits of stuff in it"

Datset

Туре	Flour	Milk	Sugar	Butter	Egg	Baking Powder	Vanilla	Salt
Muffin	55	28	3	7	5	2	0	0
Muffin	47	24	12	6	9	1	0	0
Muffin	47	23	18	6	4	1	0	0
Muffin	50	25	12	6	5	2	1	0
Muffin	55	27	3	7	5	2	1	0
Muffin	54	27	7	5	5	2	0	0
Muffin	47	26	10	10	4	1	0	0
Muffin	50	17	17	8	6	1	0	0
Muffin	50	17	17	11	4	1	0	0
Cupcake	39	0	26	19	14	1	1	0
Cupcake	34	17	20	20	5	2	1	0
Cupcake	39	13	17	19	10	1	1	0
Cupcake	38	15	23	15	8	0	1	0
Cupcake	42	18	25	9	5	1	0	0
Cupcake	36	14	21	14	11	2	1	0
Cupcake	38	15	31	8	6	1	1	0
Cupcake	36	16	24	12	9	1	1	0
Cupcake	34	17	23	11	13	0	1	0

Kernel Trick: Comparison

Thank you.