Q: If $a(\frac{1}{b} + \frac{1}{c})$, $b(\frac{1}{c} + \frac{1}{a})$, $c(\frac{1}{a} + \frac{1}{b})$ are in arithmetic progression (AP), prove that a, b, c are also in AP. **Solution:**

Given
$$a\left(\frac{1}{b} + \frac{1}{c}\right)$$
, $b\left(\frac{1}{c} + \frac{1}{a}\right)$, $c\left(\frac{1}{a} + \frac{1}{b}\right)$ are in arithmetic progression (AP)

 \Rightarrow On adding 1 to every term, using the property of AP, we get

 $\Rightarrow a\left(\frac{1}{b} + \frac{1}{c}\right) + 1$, $b\left(\frac{1}{c} + \frac{1}{a}\right) + 1$, $c\left(\frac{1}{a} + \frac{1}{b}\right) + 1$
 $\Rightarrow a\left(\frac{1}{b} + \frac{1}{c}\right) + \frac{a}{a}$, $b\left(\frac{1}{c} + \frac{1}{a}\right) + \frac{b}{b}$, $c\left(\frac{1}{a} + \frac{1}{b}\right) + \frac{c}{c}$
 $\Rightarrow a\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right)$, $b\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right)$, $c\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right)$
 \Rightarrow Now cancel $\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right)$ from all terms, using the property of AP, we get $\Rightarrow a, b, c$ are in AP

Hence proved