Exploring Regular Expression Usage and Context in Python

Carl Chapman, Kathryn T. Stolee*

Iowa State University, North Carolina State University carlallenchapman@gmail.com, ktstolee@ncsu.edu

19 July, 2016

Regexes are everywhere!

- Regexes are everywhere!
- Everyone writes regexes!

- Regexes are everywhere!
- Everyone writes regexes!
- Regexes are hard to read/write!

• We wanted to write a tool to support regex creation.

- We wanted to write a tool to support regex creation.
- But...

- We wanted to write a tool to support regex creation.
- But...

We don't know how/when/why developers use regexes!

- We wanted to write a tool to support regex creation.
- But...

We don't know how/when/why developers use regexes!

and...

- We wanted to write a tool to support regex creation.
- But...

We don't know how/when/why developers use regexes!

and...

Regex feature usage references are missing!

Research goals

Explore regex

- Context (developer survey)
- Peatures (repository analysis)
- Use cases (similarity analysis)

```
• (ab*c|yz*)$

✓ abbbbbbbbc

✓ y

✓ abcy
```


Part 1: Context

RQ1

In what contexts do professional developers use regular expressions?

Part 1: Context

RQ1

In what contexts do professional developers use regular expressions?

- 18 professional developers
- 9 years average development experience
- Small mobile payment management company
- 30 questions in a Google form

How often and where do developers use regexes?

• 50% – at least once per week

How often and where do developers use regexes?

- 50% at least once per week
- Most often: command line and text editor tools
- Often: general purpose and scripting languages
- Rare: Database queries

Testing regular expressions

Developers test regular expressions <u>less often</u> than other code.

Testing regular expressions

Developers test regular expressions less often than other code.

50% say they use testing tools like www.regex101.com

Pain points

hard to compose (11=61%)

...trickiness to getting the expression right

Pain points

hard to compose (11=61%)

...trickiness to getting the expression right

hard to read (7 = 39%)

It is terrible to read (especially later after initial development)

Pain points

hard to compose (11=61%)

...trickiness to getting the expression right

hard to read (7 = 39%)

It is terrible to read (especially later after initial development)

inconsistency across implementations (3=17%)

Some regexes work differently (or don't work) in some languages.

Notable observations: Context

- Everyone (sort of) writes regexes regularly
- Developers find regexes hard to read and write
- Most often written in command line and text editors
- Testing regexes is less common than testing other code

Notable observations: Context

- Everyone (sort of) writes regexes regularly
- Developers find regexes hard to read and write
- Most often written in command line and text editors
- Testing regexes is less common than testing other code

but....

Notable observations: Context

- Everyone (sort of) writes regexes regularly
- Developers find regexes hard to read and write
- Most often written in command line and text editors
- Testing regexes is less common than testing other code

but....

- Are regexes everywhere?
- Which features are everywhere?

Part 2: Features

RQ3

Which regular expression language features are most commonly used in Python?

Project selection with the GitHub API

3,898 total Python projects found (out of 42,000 inspected IDs)

Of 3,898 Python projects, 1,645 (42%) called the re module

In Python: Utilizations of the re module

```
function pattern flags
r1 = re.compile("(0|-?[1-9][0-9]*)$", re.MULTILINE)
```

```
function which function of the re module is called?

pattern string used to specify regex behavior

flags modifies the regex engine
```

Filtering utilizations and patterns

53,894 unique utilizations observed in 1,645 projects.

12.7% use behavioral flags

6.5% were non-static patterns

43,525 utilizations remain

Filtering utilizations and patterns

53,894 unique utilizations observed in 1,645 projects.

12.7% use behavioral flags

6.5% were non-static patterns

43,525 utilizations remain

13,711 distinct patterns

114 had various errors

Filtering utilizations and patterns

- **53,894** unique utilizations observed in 1,645 projects.
- 12.7% use behavioral flags
- 6.5% were non-static patterns
- **43,525** utilizations remain
- **13,711** distinct patterns
- 114 had various errors
- 13,597 patterns from 1,544 projects remain for analysis

PCRE parsing patterns

Feature statistics - Top 8

Rank	Code	Example	% Projects	% Patterns
1	ADD	z+	73.2	44.1
2	CG	(caught)	72.6	52.4
3	KLE	.*	66.8	44.3
4	CCC	[aeiou]	62.4	32.9
5	ANY	•	61.1	34.3
6	RNG	[a-z]	51.6	19.3
7	STR	^	51.4	26.2
8	END	\$	50.3	23.3

Regex research tools

 Remember that we wanted to write a tool to support regex creation?

Regex research tools

- Remember that we wanted to write a tool to support regex creation?
- Regex feature usage references were missing (not anymore!).

Regex research tools

- Remember that we wanted to write a tool to support regex creation?
- Regex feature usage references were missing (not anymore!).
- So,

We analyzed <u>your</u> tools! (Hampi, Rex, RE2, brics, Automata.Z3)

Which features are supported by analysis tools?

Rank	Code	Example	Brics	Hampi	Rex	RE2	A.Z3
1	ADD	z+	•	•	•	•	•
2	CG	(caught)	•	•	•	•	•
3	KLE	.*	•	•	•	•	•
4	CCC	[aeiou]	•	•	•	•	•
5	ANY		•	•	•	•	•
6	RNG	[a-z]	•	•	•	•	•
7	STR	^	•	•	•	•	•
8	END	\$	•	•	•	•	•
9	NCCC	[^qwxf]	•	•	•	•	•
10	WSP	\s	•	•	•	•	•
11	OR	alb	•	•	•	•	•
12	DEC	\d	•	•	•	•	•
13	WRD	\w	•	•	•	•	•
14	QST	z?	•	•	•	•	•
15	LZY	z+?	•	•	•	•	•
16	NCG	a(?:b)c	•	•	•	•	•
17	PNG	(?P <name></name>	×x)	•	•	•	•

Rank	Code	Example	Brics	Hampi	Rex	RE2	A.Z3
18	SNG	z{8}	•	•	•	•	•
19	NWSP	\S	•	•	•	•	•
20	DBB	z{3,8}	•	•	•	•	•
21	NLKA	a(?!yz)	•	•	•	•	•
22	WNW	\b	•	•	•	•	•
23	NWRD	\W	•	•	•	•	•
24	LWB	z{15,}	•	•	•	•	•
25	LKA	a(?=bc)	•	•	•	•	•
26	OPT	(?i)CasE	•	•	•	•	•
27	NLKB	(? x)yz</td <td>•</td> <td>•</td> <td>•</td> <td>•</td> <td>•</td>	•	•	•	•	•
28	LKB	(?<=a)bc	•	•	•	•	•
29	ENDZ	\Z	•	•	•	•	•
30	BKR	\1	•	•	•	•	•
31	NDEC	\D	•	•	•	•	•
32	BKRN	\g <name></name>	•	•	•	•	•
33	VWSP	\v	•	•	•	•	•
34	NWNW	\B	•	•	•	•	•

Notable observations: Features

- Regexes are (sort of) everywhere (42% of projects, 32 utilizations per project)
- Current regex research tools cover the most common features

Notable observations: Features

- Regexes are (sort of) everywhere (42% of projects, 32 utilizations per project)
- Current regex research tools cover the most common features

but....

Notable observations: Features

- Regexes are (sort of) everywhere (42% of projects, 32 utilizations per project)
- Current regex research tools cover the most common features

but....

What are the regexes doing?

RQ4

How behaviorally similar are regexes across projects?

RQ4

How behaviorally similar are regexes across projects?

RQ4

How behaviorally similar are regexes across projects?

How to find measure similarity?

by-hand inspection

RQ4

How behaviorally similar are regexes across projects?

- by-hand inspection
- cluster by syntactic similarity like Jaccard or longest substring

RQ4

How behaviorally similar are regexes across projects?

- by-hand inspection
- cluster by syntactic similarity like Jaccard or longest substring
- § formal analytical subsumption, no sufficient tools at that moment

RQ4

How behaviorally similar are regexes across projects?

- by-hand inspection
- cluster by syntactic similarity like Jaccard or longest substring
- formal analytical subsumption, no sufficient tools at that moment
- Chosen technique: cluster by behavioral similarity using matching string overlap

- A (ab*c|yz*)\$
 - abbbbbbbc
 -)
 - abcy
 - pac
 - abcyzzz

- B (ab*c|yz*)
 - y
 - abc
 - abcy
 - abcccc
 - yxw

- A (ab*c|yz*)\$
 - abbbbbbbc
 - y
 - abcy
 - pac
 - abcyzzz

A matches 3/5 = 60% of B's strings

B (ab*c|yz*)

- y
- abc
- abcy
- abcccc
- yxw

- A (ab*c|yz*)\$
 - abbbbbbbc
 - y
 - abcy
 - pac
 - abcyzzz

A matches 3/5 = 60% of B's strings

B (ab*c|yz*)

- y
- abc
- abcy
- abcccc
- yxw

B matches 5/5 = 100% of A's strings

A (ab*c|yz*)\$

- abbbbbbbc
- y
- abcy
- pac
- abcyzzz

A matches 3/5 = 60% of B's strings

B (ab*c|yz*)

- y
- abc
- abcy
- abcccc
- yxw

B matches 5/5 = 100% of A's strings

A and B are 80% similar

Similarity matrix \rightarrow Behavioral clusters

Rex generates
400 strings for each regex.
Average scores to
half-matrix for MCL

Scope

- 3,582 (26%) of patterns appeared in multiple projects
- 711 unsupported by Rex

Scope

- 3,582 (26%) of patterns appeared in multiple projects
- 711 unsupported by Rex
- 2,871 patterns analyzed from 722 (44%) of the projects
 - 186 clusters with size ≥ 2
 - 2,042 clusters with size = 1

Example cluster

Index	Pattern	NProjects	Index	Pattern	NProjects
1	\s*([^:]*)\s*:(.*)	9	7	[:]	6
2	:+	8	8	([^:]+):(.*)	6
3	(:)	8	9	\s*:\s*	4
4	(:+)	8	10	\:	2
5	(:)(:*)	8	11	^([^:]*):[^:]*\$	2
6	^([^:]*): *(.*)	8	12	^[^:]*:([^:]*)\$	2

Six categories of clusters

Category	Clusters	Patterns	Projects	% Projects
Multi Matches	21	237	295	40%
Specific Char	17	103	184	25%
Anchored Patterns	20	85	141	19%
Two or More Chars	16	40	120	16%
Content of Parens	10	46	111	15%
Code Search	15	27	92	13%

Six categories of clusters

Category	Clusters	Patterns	Projects	% Projects
Specific Char	17	103	184	25%
Content of Parens	10	46	111	15%
Code Search	15	27	92	13%

Content of Parens <(.+)>, <[^>]*?>

Specific Char :+, }, %

Code Search .*rlen=([0-9]+)

Notable observations: Use cases

- Finding a specific character is quite common, 25% of projects (in contrast with survey)
- Regexes are often used to capture the contents of (), <>,
 and [] (in agreement with survey)
- Regexes are often used to parse source code

Notable observations: Use cases

- Finding a specific character is quite common, 25% of projects (in contrast with survey)
- Regexes are often used to capture the contents of (), <>,
 and [] (in agreement with survey)
- Regexes are often used to parse source code

but....

Notable observations: Use cases

- Finding a specific character is quite common, 25% of projects (in contrast with survey)
- Regexes are often used to capture the contents of (), <>,
 and [] (in agreement with survey)
- Regexes are often used to parse source code

but....

- Similarity metric is approximate
- Metric is perhaps too sensitive to differences in literals
- Regex patterns were analyzed out of context

Better Similarity Metrics

Our similarity metric is empirical, can we do it analytically?

Better Similarity Metrics

Our similarity metric is empirical, can we do it analytically?

Migration Support for Developers

Supported regex features are different among languages.

Better Similarity Metrics

Our similarity metric is empirical, can we do it analytically?

Migration Support for Developers

Supported regex features are different among languages.

Identify Best Practices

Could impact regex education and improve comprehension.

Better Similarity Metrics

Our similarity metric is empirical, can we do it analytically?

Migration Support for Developers

Supported regex features are different among languages.

Identify Best Practices

Could impact regex education and improve comprehension.

Domain-Specific Support

Does regex feature usage vary based on environment (IDE search, source code, text editor, database query, etc.)?

Recap

- Regexes are (sort of) everywhere! (42% of Python projects)
- (almost) Everyone writes regexes! (50% of deves weekly)
- Regexes are hard to read/write! (this is a pain point)

Recap

- Regexes are (sort of) everywhere! (42% of Python projects)
- (almost) Everyone writes regexes! (50% of deves weekly)
- Regexes are hard to read/write! (this is a pain point)

also...

- Current tools support most of the most common features
- Regexes are often used for parsing/validating source code
- Many opportunities for future work!

Questions?

Katie Stolee – ktstolee@ncsu.edu

(psst! Graduate students! I'm hiring!)

Survey vs. Repository

How often do you use....

Group	Code	Survey	Repo Rank
endpoint anchors	(STR, END)	4.4	7, 8
capture groups	(CG)	4.2	2
word boundaries	(WNW)	3.5	22
lazy repetition	(LZY)	2.9	15
(neg) look-ahead/behind	(LKA, NLKA,	2.5	25, 21
	LKB, NLKB)		28, 27

Key: 6 = very frequently, 5 = frequently, 4 = occasionally, 3 = rarely, 2 = very rarely, 1 = never