Analyse

Séries numériques

Question 1/19

Règle de d'Alembert

Réponse 1/19

Si
$$\left| \frac{u_{n+1}}{u_n} \right| \to \ell$$
 où $0 \le \ell < 1$, alors $\sum u_n$ converge absolument

Si $\left| \frac{u_{n+1}}{u_n} \right| \to \ell$ où $\ell > 1$, alors $\sum u_n$ diverge grossièrement

Question 2/19

Théorème de comparaison des séries à termes positifs

Réponse 2/19

$$\exists N \in \mathbb{N}, \ \forall n \geqslant N, \ 0 \leqslant u_n \leqslant v_n$$

Si $\sum v_n$ converge alors $\sum u_n$ converge
Si $\sum u_n$ diverge alors $\sum v_n$ diverge

Question 3/19

Caractérisation par ε de la somme

Réponse 3/19

$$\forall \varepsilon > 0, \ \exists J_{\varepsilon} \in \mathcal{P}_f(I), \ \forall K \in \mathcal{P}_f(I)$$

$$J_{\varepsilon} \subset K \Rightarrow \left| S - \sum_{i \in K} (a_i) \right| \leqslant \varepsilon$$

Question 4/19

Série de Riemann

Réponse 4/19

$$\sum_{n=1}^{+\infty} \left(\frac{1}{n^{\alpha}}\right)$$

Une série de Riemann converge si et seulement si $\alpha > 1$

Question 5/19

Produit de Cauchy

Réponse 5/19

Si $\sum a_n \underset{n}{\text{et}} \sum b_n$ sont absolument convergentes

et
$$c_n = \sum_{k=0}^{\infty} (a_k b_{n-k})$$
, alors $\sum c_n$ est absolument

convergente
$$\left(\sum_{n=0}^{+\infty} (a_n)\right) \left(\sum_{n=0}^{+\infty} (b_n)\right) = \sum_{n=0}^{+\infty} \left(\sum_{k=0}^{n} (a_k b_{n-k})\right)$$

Question 6/19

Convergence absolue

Réponse 6/19

$$\sum u_n$$
 converge absolument si $\sum |u_n|$ converge
Si $\sum |u_n|$ converge alors $\sum u_n$ converge

Question 7/19

Sommabilité

Réponse 7/19

$$(a_i)$$
 est sommable si $\sum_{i \in I} (|a_i|) < +\infty$

Question 8/19

Règle de Riemann

Réponse 8/19

S'il existe $\alpha > 1$ tel que $(n^{\alpha}u_n)$ est bornée, alors $\sum u_n$ converge Si (nu_n) est minorée par m > 0 à partir de $n \in \mathbb{N}$, alors $\sum u_n$ diverge

Question 9/19

Série de Bertrand

Réponse 9/19

$$\sum_{n=2}^{+\infty} \left(\frac{1}{n^{\alpha} \ln^{\beta}(n)} \right)$$

Une série de Bertrand converge si et seulement si $(\alpha, \beta) > (1, 1)$ pour l'ordre lexicographique

Question 10/19

Encadrement des sommes par les intégrales f est continue et décroissante sur $[n_0, +\infty[$ avec $n_0 \in \mathbb{Z}$

Réponse 10/19

$$\int_{n_0+1}^{n+1} (f(t)) dt$$

$$\leq \sum_{k=n_0+1}^{n} (f(k)) \leq \sum_{k=n_0+1}^{n} (f(t)) dt$$

Question 11/19

$$\sum u_n$$
 diverge grossièrement

Réponse 11/19

 (u_n) ne tend pas vers 0

Question 12/19

Théorème spécial de convergence des séries alternées

Réponse 12/19

Une série alternée est convergente Les sommes partielles sont du signe du premier terme

Les restes sont du signe de leur premier terme et de valeur absolue plus petite que celle de ce dernier

Question 13/19

Comparaison par dominance

Réponse 13/19

$$u_n = O(v_n)$$

Si $\sum v_n$ converge alors $\sum u_n$ converge
Si $\sum u_n$ ou $\sum |u_n|$ diverge alors $\sum v_n$ diverge

Question 14/19

Formule du binôme négatif

Réponse 14/19

$$+\infty$$
 /

$$\sum_{n=0}^{+\infty} \left(\frac{n!}{(n-p)!} z^{n-p} \right) = \frac{p!}{(1-z)^{p+1}}$$
$$\frac{1}{(1-z)^{p+1}} = \sum_{n=0}^{+\infty} \left(\binom{n+p}{p} z^n \right)$$

Question 15/19

Semi-convergence

Réponse 15/19

Convergence sans convergence absolue

Question 16/19

Critère d'Abel

Réponse 16/19

Si (a_n) est une suite réelle positive décroissante de limite nulle, et la somme partielle de $\sum b_n$ est bornée, alors $\sum a_n b_n$ converge Les suites $e^{in\alpha}$, $\cos(n\alpha)$ et $\sin(n\alpha)$ vérifient les conditions pour (b_n) lorsque $\alpha \not\equiv 0$ $[2\pi]$

Question 17/19

$$\ell^1(I,X)$$

Réponse 17/19

Ensemble des familles sommables indexées sur I à valeurs dans $X\subset \mathbb{C}$

Question 18/19

Série alternée

Réponse 18/19

$$\sum u_n$$
 est alternée s'il existe une suite (a_n) positive décroissante de limite nulle telle que $u_n = (-1)^n a_n$

Question 19/19

$$\sum_{i\in I} (a_i)$$

Réponse 19/19

$$\sup \left(\left\{ \sum_{i \in I} (a_i), \ J \in \mathcal{P}_f(I) \right\} \right)$$