PD-95513D

International Rectifier

Features

- Advanced Process Technology
- Ultra Low On-Resistance
- 175°C Operating Temperature
- Fast Switching
- Repetitive Avalanche Allowed up to Timax
- Multiple Package Options
- Lead-Free

Description

This HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These features combine to make this design an extremely efficient and reliable device for use in a wide variety of applications.

IRFR3710ZPbF IRFU3710ZPbF IRFU3710Z-701PbF

HEXFET® Power MOSFET

D-Pak I-Pak
IRFR3710ZPbF IRFU3710ZPbF
I-Pak Leadform 701
IRFU3710Z-701PbF
Refer to page 11 for package outline

Absolute Maximum Ratings

	Parameter	Max.	Units	
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)	56		
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	39	Α	
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Package Limited)	42		
I _{DM}	Pulsed Drain Current ①	220		
P _D @T _C = 25°C	Power Dissipation	140	W	
	Linear Derating Factor	0.95	W/°C	
V_{GS}	Gate-to-Source Voltage	± 20	V	
E _{AS (Thermally limited)}	Single Pulse Avalanche Energy®	150	mJ	
E _{AS} (Tested)	Single Pulse Avalanche Energy Tested Value ©	200		
I _{AR}	Avalanche Current ①	See Fig.12a, 12b, 15, 16	Α	
E _{AR}	Repetitive Avalanche Energy S		mJ	
TJ	Operating Junction and	-55 to + 175		
T _{STG}	Storage Temperature Range		°C	
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)		

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case		1.05	
$R_{\theta JA}$	Junction-to-Ambient (PCB mount) ⑦		50	°C/W
$R_{\theta JA}$	Junction-to-Ambient		110	

HEXFET® is a registered trademark of International Rectifier. www.irf.com

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	100			٧	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.088		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		15	18	mΩ	V _{GS} = 10V, I _D = 33A ③
$V_{GS(th)}$	Gate Threshold Voltage	2.0		4.0	٧	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
gfs	Forward Transconductance	39			S	$V_{DS} = 25V, I_D = 33A$
I _{DSS}	Drain-to-Source Leakage Current			20	μΑ	$V_{DS} = 100V, V_{GS} = 0V$
				250		$V_{DS} = 100V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage		_	200	nA	V _{GS} = 20V
	Gate-to-Source Reverse Leakage		_	-200		V _{GS} = -20V
Q_g	Total Gate Charge		69	100		I _D = 33A
Q_{gs}	Gate-to-Source Charge		15		nC	$V_{DS} = 80V$
Q_{gd}	Gate-to-Drain ("Miller") Charge		25		1	V _{GS} = 10V ③
t _{d(on)}	Turn-On Delay Time		14			$V_{DD} = 50V$
t _r	Rise Time		43		1	$I_D = 33A$
t _{d(off)}	Turn-Off Delay Time		53		ns	$R_G = 6.8 \Omega$
t _f	Fall Time		42		1	V _{GS} = 10V ③
L _D	Internal Drain Inductance		4.5			Between lead,
					nH	6mm (0.25in.)
L _S	Internal Source Inductance		7.5		1	from package
						and center of die contact
C _{iss}	Input Capacitance		2930			V _{GS} = 0V
Coss	Output Capacitance		290		1	$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		180		рF	f = 1.0MHz
Coss	Output Capacitance		1200			$V_{GS} = 0V$, $V_{DS} = 1.0V$, $f = 1.0MHz$
Coss	Output Capacitance		180		1	$V_{GS} = 0V$, $V_{DS} = 80V$, $f = 1.0MHz$
C _{oss} eff.	Effective Output Capacitance		430		1	$V_{GS} = 0V$, $V_{DS} = 0V$ to $80V$ ④

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
I _S	Continuous Source Current			56		MOSFET symbol
	(Body Diode)				Α	showing the
I _{SM}	Pulsed Source Current			220		integral reverse
	(Body Diode) ①					p-n junction diode.
V_{SD}	Diode Forward Voltage	_		1.3	V	$T_J = 25^{\circ}C$, $I_S = 33A$, $V_{GS} = 0V$ ③
t _{rr}	Reverse Recovery Time		35	53	ns	$T_J = 25^{\circ}C, I_F = 33A, V_{DD} = 50V$
Q _{rr}	Reverse Recovery Charge		41	62	nC	di/dt = 100A/µs ③
t _{on}	Forward Turn-On Time	Intrinsi	turn-or	time is	negligib	le (turn-on is dominated by LS+LD)

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Typical Forward Transconductance vs. Drain Current

Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current vs. Case Temperature

Fig 10. Normalized On-Resistance vs. Temperature

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. | Unclamped Inductive Waveforms

Fig 13a. Basic Gate Charge Waveform

Fig 13b. Gate Charge Test Circuit 6

Fig 12c. Maximum Avalanche Energy vs. Drain Current

Fig 14. Threshold Voltage vs. Temperature www.irf.com

International TOR Rectifier

IRFR/U3710ZPbF & IRFU3710Z-701PbF

Fig 15. Typical Avalanche Current vs.Pulsewidth

Fig 16. Maximum Avalanche Energy vs. Temperature

Notes on Repetitive Avalanche Curves, Figures 15, 16: (For further info, see AN-1005 at www.irf.com)

- Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T_{jmax}. This is validated for every part type.
- 2. Safe operation in Avalanche is allowed as long asT_{jmax} is not exceeded.
- 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b.
- P_{D (ave)} = Average power dissipation per single avalanche pulse.
- BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
- 6. I_{av} = Allowable avalanche current.
- 7. ΔT = Allowable rise in junction temperature, not to exceed T_{jmax} (assumed as 25°C in Figure 15, 16). t_{av} = Average time in avalanche. D = Duty cycle in avalanche = $t_{av} \cdot f$
 - $Z_{thJC}(D, t_{av})$ = Transient thermal resistance, see figure 11)

$$\begin{split} P_{D \; (ave)} &= 1/2 \; (\; 1.3 \cdot \text{BV} \cdot \text{I}_{av}) = \triangle \text{T} / \; \text{Z}_{thJC} \\ \text{I}_{av} &= 2 \triangle \text{T} / \; [1.3 \cdot \text{BV} \cdot \text{Z}_{th}] \\ \text{E}_{AS \; (AR)} &= P_{D \; (ave)} \cdot t_{av} \end{split}$$

Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

Fig 18a. Switching Time Test Circuit

Fig 18b. Switching Time Waveforms

D-Pak (TO-252AA) Package Outline

Dimensions are shown in millimeters (inches)

- 1.— DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994
- 2.- DIMENSION ARE SHOWN IN INCHES [MILLIMETERS].

 LEAD DIMENSION UNCONTROLLED IN L5.

- DIMENSION DI, E1, L3 & D3 ESTABLISH A MINIMUM MOUNTING SURFACE FOR THERMAL PAD.

 5.— SECTION C-C DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETIMEEN .005 AND 0.10 [0.13 AND 0.26] FROM THE LEAD TIP.
- DIMENSION D & E DO NOT INCLUDE MOLD FLASH, MOLD FLASH SHALL NOT EXCEED .005 [0.15] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY.
- DIMENSION BY & B TO BE DETERMINED AT DATUM A & B TO BE DETERMINED AT DATUM PLANE H.

 9.— OUTLINE CONFORMS TO JEDEC OUTLINE TO-252AA.

_					
S Y	DIMENSIONS				
B O	MILLIMETERS		INC	NO T	
L	MIN. MAX.		MIN.	MAX.	E
Α	2.18	2.39	.086	.094	
A1	-	0.13	-	.005	
ь	0.64	0.89	.025	.035	
ь1	0.65	0.79	.025	.031	7
b2	0.76	1,14	.030	.045	
b3	4,95	5,46	.195	.215	4
C	0.46	0,61	.018	.024	
c1	0,41	0,56	.016	.022	7
c2	0.46	0.89	.018	.035	
D	5.97	6.22	.235	.245	6
D1	5.21	-	.205	-	4
E	6,35	6,73	,250	.265	6
E1	4.32	-	.170	-	4
e	2.29	BSC	.090		
н	9.40	10.41	.370	.410	
L	1,40	1.78	.055	.070	
L1	2,74	BSC	.108		
L2	0.51 BSC		.020 BSC		
L3	0.89	1.27	.035	.050	4
L4	-	1.02	-	.040	
L5	1,14	1.52	.045	.060	3
0	0*	10*	0.	10*	
Ø1	0.	15*	0.	15"	
ø2	25*	35*	25*	35*	

LEAD ASSIGNMENTS

HEXFET

- 1.- GATE 2.- DRAIN 3.- SOURCE 4.- DRAIN

IGBT & CoPAK

- 1.- GATE 2.- COLLECTOR 3.- EMITTER 4.- COLLECTOR

D-Pak (TO-252AA) Part Marking Information

Notes:

- 1. For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/datasheets/data/
- 2. For the most current drawing please refer to IR website at http://www.irf.com/package/

International

TOR Rectifier

I-Pak (TO-251AA) Package Outline

Dimensions are shown in millimeters (inches)

I-Pak (TO-251AA) Part Marking Information

Notes

- 1. For an Automotive Qualified version of this part please see https://www.irf.com/product-info/auto/
- 2. For the most current drawing please refer to IR website at http://www.irf.com/package/

I-Pak Leadform Option 701 Package Outline ®

Dimensions are shown in millimeters (inches)

1-. GATE

2-. DRAIN

3-. SOURCE

4-. DRAIN

NOTES:

1.0 CONTROL DIMENSIONS IN INCHES

2.0 PARALLELISM AND ANGULARITY MAX. 0.076 (0.003)

3.0 LEADFORM CRITICAL DIMENSIONS DOUBLE RINGED

International **I⊆R** Rectifier

D-Pak (TO-252AA) Tape & Reel Information

Dimensions are shown in millimeters (inches)

- CONTROLLING DIMENSION : MILLIMETER.
 ALL DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).
- 3. OUTLINE CONFORMS TO EIA-481 & EIA-541

NOTES:
1. OUTLINE CONFORMS TO EIA-481.

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11).
- ② Limited by T_{Jmax} , starting $T_J = 25$ °C, L = 0.28mH ③ $R_G = 25\Omega$, $I_{AS} = 33A$, $V_{GS} = 10V$. Part not recommended for use above this value.
- ③ Pulse width \leq 1.0ms; duty cycle \leq 2%.
- 4 Coss eff. is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS} .
- Limited by T_{Jmax} , see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.
- This value determined from sample failure population. 100% tested to this value in production.
- When mounted on 1" square PCB (FR-4 or G-10 Material) . For recommended footprint and soldering techniques refer to application note #AN-994.

Data and specifications subject to change without notice. IRFR/U3710Z has been designed and qualified for the Industrial market. Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.09/2010