

Department of Information and Communication Engineering

ASSIGNMENT

STAT-2201 Engineering Statistics

Assignment Topic:

Types of statistical errors, Procedure of test of hypothesis

Submitted By

Azmira Akter Simla

Roll: 220626

Dept. of Information and

Communication Engineering

Submitted To

Dr. Md. Sarwar Hosain
Associate Professor
Dept. of Information and
Communication Engineering
Pabna University of Science and
Technology, Pabna.

Date of Submission: 23-04-25

TYPES OF STATISTICAL ERRORS

When performing a hypothesis test, we make a decision based on sample data. However, there is always a possibility of making an incorrect decision. These incorrect decisions are classified into Type I Error and Type II Error.

1. Type I Error (False Positive - α Error)

Definition:

• Type I error occurs when we reject a true null hypothesis (H_0) incorrectly. In simpler terms, we conclude that there is an effect or difference when there is actually none.

Example:

- Suppose a medical test is designed to detect a disease.
- A healthy person (who does not have the disease) takes the test, but the result incorrectly shows positive for the disease.
- This means the test falsely indicates that the person has the disease when they actually do not.

Probability of Type I Error:

- The probability of committing a Type I error is denoted by α (alpha).
- This is called the Significance Level of the test, commonly set at 0.05 (5%) or 0.01 (1%).
- If $\alpha = 0.05$, it means there is a 5% chance of rejecting (H_0) when it is actually true.

How to Reduce Type I Error:

- > Decrease the significance level (e.g., using $\alpha = 0.01$ instead of 0.05).
- > Use a larger sample size to improve test accuracy.

2. Type II Error (False Negative - β Error)

Definition:

• Type II error occurs when we fail to reject a false null hypothesis (H_0) . In other words, we conclude that there is no effect or difference when there actually is one.

Example:

- Continuing with the medical test example:
 - A sick person (who actually has the disease) takes the test, but the result incorrectly shows negative for the disease.
 - This means the test fails to detect the disease, even though the person actually has it.

Probability of Type II Error:

- The probability of committing a Type II error is denoted by β (beta).
- The power of a test is given by (1β) , which represents the probability of correctly rejecting a false (H_0) .

How to Reduce Type II Error:

- > Increase the sample size.
- > Use a more sensitive test or a lower significance level.
- > Improve measurement accuracy and experimental design.

Procedure of test of hypothesis

The following steps are followed when performing a hypothesis test:

Step 1: State the Hypotheses

- Null Hypothesis (H_0) : Assumes no effect or no difference (default assumption).
- \diamond Alternative Hypothesis (H_1) : What we want to prove (can be one-tailed or two-tailed).

Step 2: Set the Significance Level (α)

❖ Typically chosen as 0.01, 0.05, or 0.10, representing the probability of a Type I Error

Step 3: Select the Appropriate Test

- ❖ Parametric Tests (if data follows a known distribution):
 - Z-test (for large samples, known population variance).
 - t-test (small samples, unknown variance).
 - F-test (ANOVA, comparing variances).
 - Chi-square test (goodness-of-fit, independence).
- * Non-parametric Tests (if assumptions are violated):
 - Mann-Whitney U test (non-parametric alternative to t-test).
 - Wilcoxon signed-rank test (paired samples).
 - Kruskal-Wallis test (non-parametric alternative to ANOVA).

Step 4: Calculate the Test Statistic

* Compute the test statistic (e.g., t-value, z-score, F-statistic, χ^2) based on sample data.

Step 5: Determine the Critical Value or p-value

- Critical Value Approach: Compare the test statistic with the critical value from tables.
- p-value Approach:
 - 1. If p-value $\leq \alpha$, reject H_0 .
 - 2. If p-value $> \alpha$, fail to reject H_0 .

Step 6: Make a Conclusion

 \clubsuit Based on statistical results, we either reject or fail to reject H_0 and interpret the findings.

Example:

Step 1: State the Hypotheses

• Null Hypothesis (H_0) : The average weight of the population is 70 kg.

$$H_0$$
: $\mu = 70$

• Alternative Hypothesis (H_1) : The average weight is not 70 kg (two-tailed test).

$$H_1$$
: $\mu \neq 70$

Step 2: Set the Significance Level (α)

• We choose $\alpha = 0.05$, meaning there is a 5% chance of making a Type I Error (rejecting H_0 when it is true).

Step 3: Select the Appropriate Test

• Since the sample size is small (n < 30) and population variance is unknown, we use a t-test.

Step 4: Calculate the Test Statistic

Given Data:

- Sample size: n = 10
- Sample mean: $\bar{x} = 72 \text{ kg}$
- Sample standard deviation: s = 3
- Population mean(μ_0): 70 kg

The t-test formula for a one-sample t-test:

$$t = \frac{\bar{x} - \mu_0}{\frac{S}{\sqrt{n}}}$$

Substituting the values:

$$t = \frac{72 - 70}{\frac{3}{\sqrt{10}}}$$
$$= \frac{2}{\frac{3}{3.162}}$$

$$= \frac{2}{0.948}$$
$$= 2.11$$

Step 5: Determine the Critical Value or p-value

- Since this is a two-tailed test and degrees of freedom (df) = n 1 = 10 1 = 9, we check a t-table for $\alpha = 0.05$ (two-tailed).
- The critical t-value for df = 9 at $\alpha/2 = 0.025$ in each tail is ± 2.262 .

Comparing t-Value:

- |t| = 2.11 is less than the critical value 2.262.
- Alternatively, if we check the p-value for t = 2.11 (df = 9), it is around 0.063.

Since p-value $> \alpha$ (0.063 > 0.05), we fail to reject H_0 .

Step 6: Make a Conclusion

- Since the test statistic does not exceed the critical value, we do not have enough evidence to reject H_0 .
- There is no significant difference in the average weight from 70 kg.