Projet numérique : Soutenance finale Modèle de Vicsek

ROYER Antoine and PEYROUTET Alexis

L3 PCAME - Tarbes

- Présentation et explication
 - Présentation du modèle
 - Explications sur le modèle
- Méthode utilisée
 - Classes et méthodes
 - Créations et manipulations sur les agents
- Résultats et interprétations physiques
 - Premiers résultats et paramètres importants
 - Résultats historiques de Vicsek
 - Au-delà du modèle de Vicsek

Présentation et explication

Tamás Vicsek (74 ans);

Essaim d'oiseaux

- Tamás Vicsek (74 ans) ;
- Etude des mouvements collectifs (systèmes auto-organisés);

Migration des grues

- Tamás Vicsek (74 ans);
- Etude des mouvements collectifs (systèmes auto-organisés);
- Auncun agent leader dans le modèle ;

- Tamás Vicsek (74 ans);
- Etude des mouvements collectifs (systèmes auto-organisés);
- Auncun agent leader dans le modèle ;
- Création du modèle en 1995.

Les bases du modèles

Le modèle de Vicsek permet d'étudier un groupe d'agents qui se déplace dans un espace.

Les bases du modèles

Chacun des agents a une vitesse donnée (en norme et en direction) et va interagir avec ses voisins.

Les bases du modèles

Création d'un mouvement de groupe suite aux interactions entre les agents.

Les équations du modèle

$$\begin{cases} \Theta_i(t+dt) = \Theta_{j|r_i-r_j|< r} + \eta_i(t) \\ r_i(t+dt) = r_i(t) + v_i \Delta t \end{cases}$$

• r_i la position de chaque individu ;

Les équations du modèle

$$\begin{cases} \Theta_i(t+dt) = \Theta_{j|r_i-r_j|< r} + \eta_i(t) \\ r_i(t+dt) = r_i(t) + v_i \Delta t \end{cases}$$

- r_i la position de chaque individu ;
- i est l'indice de l'agent en question et t le temps ;

Les équations du modèle

$$\begin{cases} \Theta_i(t+dt) = \Theta_{j|r_i-r_j|< r} + \eta_i(t) \\ r_i(t+dt) = r_i(t) + v_i \Delta t \end{cases}$$

- r_i la position de chaque individu ;
- i est l'indice de l'agent en question et t le temps ;
- η le bruit et Θ l'angle définissant la direction de sa vitesse.

Les équations du modèle

$$\begin{cases} \Theta_i(t+dt) = \Theta_{j|r_i-r_j|< r} + \eta_i(t) \\ r_i(t+dt) = r_i(t) + v_i \Delta t \end{cases}$$

• $\Theta_{j|r_i-r_i|< r}$ est la direction moyenne des vitesses des agents dans un cercle de rayon r;

Les équations du modèle

$$\begin{cases} \Theta_i(t+dt) = \Theta_{j|r_i-r_j|< r} + \eta_i(t) \\ r_i(t+dt) = r_i(t) + v_i \Delta t \end{cases}$$

- $\Theta_{i|r_i-r_i|< r}$ est la direction moyenne des vitesses des agents dans un cercle de rayon r;
- *j* représentera alors l'ensemble des voisins de *i* compris dans ce cercle.

Autres intérêts du modèle

Comportement des foules et construction de bâtiments

Autres intérêts du modèle

Domaine de la robotique

- Présentation et explication
 - Présentation du modèle
 - Explications sur le modèle
- Méthode utilisée
 - Classes et méthodes
 - Créations et manipulations sur les agents
- Résultats et interprétations physiques
 - Premiers résultats et paramètres importants
 - Résultats historiques de Vicsek
 - Au-delà du modèle de Vicsek

Programmation orientée objet ⇒ Deux classes composées de plusieurs méthodes

```
class Group:
```

Création et manipulation d'agents

- Créations d'agents ;
- Choix des paramètres (bruit, vitesse, cône de vision . . .);
- Evolution dans le temps grâce aux équations.

$$r_i(t + dt) = r_i(t) + v_i \Delta t$$

Création et manipulation de groupe

- Création de groupes ;
- Evolution dans le temps en fonction des voisins ;
- Calcul du paramètre d'alignement.

$$\Theta_i(t+dt) = \Theta_{j|r_i-r_i| < r} + \eta_i(t)$$

- Présentation et explication
 - Présentation du modèle
 - Explications sur le modèle
- Méthode utilisée
 - Classes et méthodes
 - Créations et manipulations sur les agents
- Résultats et interprétations physiques
 - Premiers résultats et paramètres importants
 - Résultats historiques de Vicsek
 - Au-delà du modèle de Vicsek

Mouvements de groupe

Images avec agents colorés pour indiquer leur direction

Mouvements de groupe

600

Apparition de petits groupes

Mouvements de groupe

Regroupement en un seul et même groupe

Cône de vision

 Meilleure visualisation des voisins visibles par l'agent;

Cône de vision

Présentation et explication

- Meilleure visualisation des voisins visibles par l'agent ;
- Images trop chargées pour observer correctement les mouvements de groupe.

Paramètre de bruit

Présentation et explication

 Ce paramètre perturbe la communication entre les agents ;

Paramètre de bruit

- Ce paramètre perturbe la communication entre les agents;
- La cohésion du groupe est significativement réduite lorsque le bruit augmente.

Paramètre d'alignement en fonction du bruit

40 agents

Densité fixe \rightarrow 4,15 agents par unité d'espace au carré

Résultats et interprétations physiques

Paramètre d'alignement en fonction du bruit

Agents plus nombreux \rightarrow Meilleur alignement

Paramètre d'alignement en fonction de la densité

Bruit fixé à 1

Densité plus forte → Meilleur alignement

ĕ0000

Création d'un agent leader

Un agent leader en noir

 Nouveau paramètre pour le type d'agent ;

Création d'un agent leader

ĕ0000

Un agent leader en noir

- Nouveau paramètre pour le type d'agent;
- Influence plus importante sur les agents normaux;

Création d'un agent leader

്റ്ററ

Un agent leader en noir

- Nouveau paramètre pour le type d'agent;
- Influence plus importante sur les agents normaux;
- Organisation en
 « triangle ou en arc de
 cercle » ;

Création d'un agent leader

Migration des grues

- Nouveau paramètre pour le type d'agent;
- Influence plus importante sur les agents normaux;
- Organisation en
 « triangle ou en arc de
 cercle » ;
- Autre type de mouvement collectif.

0**0**00

Mise en place d'une prédation

 Nouveau paramètre pour simuler la « peur des agents »;

Trois prédateurs en noir

Mise en place d'une prédation

റ്ക്ററ

Trois prédateurs en noir

- Nouveau paramètre pour simuler la « peur des agents »;
- Agents prennent la fuite dans le sens inverse de leur direction:

Mise en place d'une prédation

Trois prédateurs en noir

- Nouveau paramètre pour simuler la « peur des agents »;
- Agents prennent la fuite dans le sens inverse de leur direction ;
- Mouvements de groupes moins observés avec plusieurs prédateurs;

Mise en place d'une prédation

Un seul prédateur en noir

- Nouveau paramètre pour simuler la « peur des agents »;
- Agents prennent la fuite dans le sens inverse de leur direction ;
- Mouvements de groupes moins observés avec plusieurs prédateurs;
- Mouvements de groupes conservés avec un prédateur.

Système évolutif

Nous avons 4 groupes tests avec des paramètres différents.

bruit	sensibilité	pourcentage de survivants
1	0	30
0	1	79
1	1	86
0	0	39

Bruit et sensibilité au maximum \rightarrow Meilleure chance de survie.

0000

Nouveau type d'agent « mur »

0000

La majorité des agents fait demi-tour Importance de la taille de l'obstacle

000**•**

Simulation de petits obstacles en noir

000**•**

Les agents contournent les obstacles

Présentation et explication

Conclusion

 Nous avons réussi à simuler le modèle de Vicsek numériquement;

Conclusion

- Nous avons réussi à simuler le modèle de Vicsek numériquement;
- Nous avons joué sur le fait que chaque agent est unique ;

Présentation et explication

Conclusion

- Nous avons réussi à simuler le modèle de Vicsek numériquement;
- Nous avons joué sur le fait que chaque agent est unique ;
- Nous sommes allés au-delà du modèle avec la mise en place d'une prédation, la création d'agents leaders et de murs.

Conclusion

- Nous avons réussi à simuler le modèle de Vicsek numériquement;
- Nous avons joué sur le fait que chaque agent est unique ;
- Nous sommes allés au-delà du modèle avec la mise en place d'une prédation, la création d'agents leaders et de murs.
- Il serait maintenant intéressant de regarder les comportements collectifs chez certaines espèces végétales;

Présentation et explication

Merci pour votre écoute! Avez-vous des questions ?