STAT 3011 Discussion 015

Week 14: Regression Analysis

Talha Hamza

University of Minnesota College of Science and Engineering

Spring 2025

Scatterplots: Visualizing Relationships

Purpose

Display the relationship between two quantitative variables

Construction

- X-axis: Explanatory variable
- Y-axis: Response variable
- Each point represents (x,y) pair

What to Look For

- Overall pattern (linear, curved, etc.)
- Strength of relationship
- Direction (positive/negative)
- Outliers

Scatterplot Example: Olympic Dash Times

Parameters Definition

10

```
xlab/ylab Axis labels
pch=16 Solid points
col Point color
cor() Calculates correlation
```

Correlation: Measuring Linear Association

Definition

$$r = \frac{1}{n-1} \sum \left(\frac{x_i - \bar{x}}{s_x} \right) \left(\frac{y_i - \bar{y}}{s_y} \right)$$

Measures strength and direction of linear relationship (always between -1 to 1)

Interpretation

Value Range	Interpretation
$0.8 \le r \le 1.0$	Very strong
$0.6 \le r < 0.8$	Strong
$0.4 \le r < 0.6$	Moderate
$0.2 \le r < 0.4$	Weak
$0.0 \le r < 0.2$	Very weak

Least Squares Regression

Regression Line

$$\hat{y} = a + bx$$

Where:

- $a = \bar{y} b\bar{x}$ (y-intercept)
- $b = r \frac{s_y}{s_y}$ (slope)

Key Concepts

- Minimizes sum of squared residuals
- r^2 = proportion of variation in y explained by x
- Always passes through (\bar{x}, \bar{y})

R Implementation

```
# Scatterplot
plot(x, y, xlab="Explanatory", ylab="Response", pch=16)

# Correlation
cor(x, y)

# Regression
model <- lm(y ~ x)

summary(model)

# Add regression line
abline(model)</pre>
```

Output Interpretation

- Coefficients table shows intercept (a) and slope (b)
- Residual standard error measures typical prediction error
- Multiple R-squared shows proportion of variance explained

Inference for Regression

Hypothesis Test for Slope

- $H_0: \beta = 0$ (no linear relationship)
- $H_a: \beta \neq 0$ (linear relationship exists)
- Test statistic: $t = \frac{b}{SE(b)} \sim t_{n-2}$

Confidence Interval for Slope

$$b \pm t_{n-2}^* \times SE(b)$$

Where t^* is critical value for desired confidence level

Example: Olympic Dash Times

Interpretation

- Slope = -0.0303: Times decrease by about 0.03 sec/year
- p-value < 0.05: Statistically significant relationship
- $r^2 = 0.902$: 90.2% of variation is explained, rest is error

Final Remarks

Hypothesis Testing for β Assumptions

- 1. **Random Sample**: Pairs (x_i, y_i) are independent observations
- 2. Model Conditions:
 - True relationship is linear: $\mu_{\mathbf{v}} = \alpha + \beta \mathbf{x}$
 - Residuals are approximately normal $\epsilon \sim \textit{N}(0,\sigma)$
 - Constant variance

Note: The *t*-test for β is robust to minor violations of normality when $n \ge 30$

Cautions in Regression

- Correlation ≠ Causation
- Beware of lurking variables
- Don't extrapolate beyond data range

Questions?

Email me at hamza050@umn.edu or attend my office hours

4 4 5 5 1 1 5 1