Experiment #15	Student ID	
Date	Student Name	[@KLWKS_BOT THANOS]

Experiment Title: Implementation of basic programs on Non-Deterministic Algorithms - I.

Aim/Objective: To understand the concept and implementation of Basic programs on Non-

Deterministic Algorithms.

Description:

The students will able to understand and implement programs on Non-Deterministic Algorithms.

Pre-Requisites:

Knowledge: Non-Deterministic Algorithms in C/C++/Java/Python

Tools: Code Blocks/Eclipse IDE

Pre-Lab:

Read the following conversation

Jaya: Travelling salesman problem is a NP hard problem. Hema: I do not think so

Jaya: No, I am so sure that Travelling Salesman problem is a NP hard problem. Hema: ...!!

You are Jaya's friend. Help her prove her statement.

Procedure:

1. Definition of TSP:

• TSP asks whether there exists a Hamiltonian cycle in a weighted graph such that the total weight is less than or equal to a given value k.

2. Belongs to NP:

- Given a proposed solution (a path), it can be verified in polynomial time whether:
 - The path visits every vertex exactly once.
 - The total cost is less than or equal to k.

3. Reduction from Hamiltonian Cycle:

- The Hamiltonian Cycle Problem (HCP) is a known NP-complete problem.
- HCP can be reduced to TSP:
 - Assign weights of 1 to edges in the Hamiltonian cycle.
 - Assign very large weights (e.g., infinity) to all other edges.
 - Solving the TSP in this case also solves HCP.

Course Title	Design and Analysis of Algorithms	ACADEMIC YEAR: 2024-25
Course Code(s)	23CS2205A & 23CS2205E	1 P a g e

Experiment #15	Student ID	
Date	Student Name	[@KLWKS_BOT THANOS]

4. Conclusion:

 Since TSP can verify solutions in polynomial time and a known NP-complete problem (HCP) reduces to it, TSP is NP-hard.

Jaya is correct.

In-Lab:

Raju prepares for the examination, but he got stuck into a concept called "NP-HARD AND "NP-COMPLETE PROBLEMS" on Nondeterministic Algorithms. So, help Raju to score good marks. Help him to define the Nondeterministic algorithms by sorting an array.

Procedure/Program:

Nondeterministic Algorithm - Explanation Using Array Sorting

A **nondeterministic algorithm** is a conceptual model where the algorithm can "guess" solutions instantly and verify them efficiently. Sorting an array using such an algorithm involves:

- 1. **Guessing**: The algorithm guesses a permutation of the array.
- 2. **Verification**: It checks if the guessed permutation is sorted in O(n) time.

Though nondeterministic algorithms are theoretical, they highlight the concept of solving problems efficiently if "perfect guesses" were possible.

Course Title	Design and Analysis of Algorithms	ACADEMIC YEAR: 2024-25
Course Code(s)	23CS2205A & 23CS2205E	2 P a g e

Experiment #15	Student ID	
Date	Student Name	[@KLWKS_BOT THANOS]

• Data and Results:

Data

Array of integers to be sorted using nondeterministic algorithm.

Result

Guesses a permutation and verifies if it's sorted efficiently.

• Analysis and Inferences:

Analysis

Verification is polynomial, guessing theoretically bypasses exhaustive search process.

Inferences

Nondeterministic sorting highlights efficiency with hypothetical perfect guessing.

Post-Lab:

Hema: Hamiltonian Path is NP-Complete.

Jaya: Well, prove that!

Hema: I will prove and let you know.

Help Hema to try and prove that Hamilton Path is NP-Complete

Course Title	Design and Analysis of Algorithms	ACADEMIC YEAR: 2024-25
Course Code(s)	23CS2205A & 23CS2205E	3 P a g e

Experiment #15	Student ID	
Date	Student Name	[@KLWKS_BOT THANOS]

Procedure/Program:

1. Hamiltonian Path in NP:

• A given path can be verified in polynomial time to check if it visits all vertices exactly once.

2. Reduction from Hamiltonian Circuit (HC):

- HC asks for a cycle visiting each vertex exactly once.
- Transform HC graph G to a new graph G' by splitting a vertex v into v_1 and v_2 with an edge $v_1 o v_2$.
- HC in G corresponds to HP in G'.

3. Conclusion:

- HP is NP (verification) and NP-hard (reduction).
- Thus, Hamiltonian Path is NP-Complete.

• Data and Results:

Data

Hamiltonian Path verification can be done in polynomial time efficiently.

Result

Hamiltonian Path problem is proven to be NP-Complete.

Course Title	Design and Analysis of Algorithms	ACADEMIC YEAR: 2024-25
Course Code(s)	23CS2205A & 23CS2205E	4 P a g e

Experiment #15	Student ID	
Date	Student Name	[@KLWKS_BOT THANOS]

• Analysis and Inferences:

Analysis

Reduction from Hamiltonian Circuit ensures NP-hardness of Hamiltonian Path.

Inferences

Hamiltonian Path combines verification and reduction for NP-Completeness proof.

• Sample VIVA-VOCE Questions:

- 1. How does a non-deterministic algorithm differ from a deterministic algorithm?
 - Deterministic: Executes a single sequence of steps.
 - Non-deterministic: Explores multiple possibilities simultaneously.
- 2. Is the clique decision problem in the class NP?
- Yes, verifying a solution (a clique of size k) is possible in polynomial time.
- 3. What is the NP complexity class? What is the relationship between NP and P complexity classes?
 - NP: Problems verifiable in polynomial time.
 - $P \subseteq NP$; unknown if P = NP.

Course Title	Design and Analysis of Algorithms	ACADEMIC YEAR: 2024-25
Course Code(s)	23CS2205A & 23CS2205E	5 P a g e

Experiment #15	Student ID	
Date	Student Name	[@KLWKS_BOT THANOS]

- 4. What is the power of non-deterministic algorithms? How are they related to the concept of polynomial-time verification?
- Non-deterministic algorithms solve problems by guessing and verifying solutions in polynomial time.
 - 5. Give some applications of non-deterministic algorithms.
 - Applications: Traveling Salesman Problem, graph coloring, scheduling, and optimization problems.

Evaluator Remark (if Any):	
	Marks Secured out of 50
	Signature of the Evaluator with
	Date

Evaluator MUST ask Viva-voce prior to signing and posting marks for each experiment.

Course Title	Design and Analysis of Algorithms	ACADEMIC YEAR: 2024-25
Course Code(s)	23CS2205A & 23CS2205E	6 P a g e