Week 6 - Estimating validity (part 1)

Thomas J. Faulkenberry, Ph.D.

A test is **reliable** if observed score variability is due to *true score variability*A test is **valid** if it measures what it purports to measure

- Three types of validity
 - Content validity subjective rating of items by content experts
 - Criterion-related validity (this week)
 - Construct validity (next week)

Criterion-related validity

- test scores are related to some *criterion*
 - Ex: a test for screening job applicants relates to the criterion of work effectiveness
 - Ex: a school admissions test relates to the criterion of GPA (or % of students who complete program)
- in simple cases, reliability measured with a correlation coefficient
 - ρ_{XY} , where X= test score and Y= criterion score
 - "validity coefficient"

What role does reliability play?

• a test cannot correlate more highly with any other score than it correlates with its own true score

$$- \rho_{XY} \le \rho_{XT} = \sqrt{\rho_{XX'}}$$

- if a test does not have perfect reliability (i.e., $\rho_{XX'} < 1$), then the validity coefficient is **attenuated** (reduced)
 - that is, $ho_{XY} <
 ho_{T_X T_Y}$

Spearman (1904) proposed the following idea to correct for this attenuation.

First, note that, by definition,
$$\rho_{XY} = \frac{c_{XY}}{\sigma_X \sigma_Y}$$
.

It is easy to prove that
$$c_{XY}=c_{T_XT_Y}$$
. Thus, we have $\rho_{XY}=\frac{c_{T_XT_Y}}{\sigma_X\sigma_Y}$.

So we can compute the correlation between true scores as:

$$\rho_{T_X T_Y} = \frac{c_{T_X T_Y}}{\sigma_{T_X} \sigma_{T_Y}} = \frac{\rho_{XY} \sigma_{X} \sigma_{Y}}{\sigma_{T_X} \sigma_{T_Y}}$$

$$= \frac{\rho_{XY}}{\left(\frac{\sigma_{T_X}}{\sigma_{X}}\right) \left(\frac{\sigma_{T_Y}}{\sigma_{Y}}\right)}$$

$$= \frac{\rho_{XY}}{\sqrt{\rho_{XX'}} \sqrt{\rho_{YY'}}}$$

Example: Suppose Test A relates to Criterion C with correlation 0.4 and Test B relates to Criterion C with correlation 0.3. Further suppose that reliability of A=0.81, reliability of B=0.25, and reliability of C=0.64. Which test (A or B) is the more valid predictor of Criterion C?

Example: Suppose Test A relates to Criterion C with correlation 0.4 and Test B relates to Criterion C with correlation 0.3. Further suppose that reliability of A = 0.81, reliability of B = 0.25, and reliability of C = 0.64. Which test (A or B) is the more valid predictor of Criterion C?

Let's compute the "corrected" validity coefficients:

• Test A:
$$\rho_{T_A T_C} = \frac{\rho_{AC}}{\sqrt{\rho_{AA'}}\sqrt{\rho_{CC'}}} = \frac{0.4}{\sqrt{0.81}\sqrt{0.64}} = 0.56$$

• Test B:
$$\rho_{T_BT_C} = \frac{\rho_{BC}}{\sqrt{\rho_{BB'}}\sqrt{\rho_{CC'}}} = \frac{0.3}{\sqrt{0.25}\sqrt{0.64}} = 0.75$$

Example: Suppose Test A relates to Criterion C with correlation 0.4 and Test B relates to Criterion C with correlation 0.3. Further suppose that reliability of A = 0.81, reliability of B = 0.25, and reliability of C = 0.64. Which test (A or B) would be better for predicting criterion C?

Let's compute the "corrected" validity coefficients:

• Test A:
$$\rho_{T_A T_C} = \frac{\rho_{AC}}{\sqrt{\rho_{AA'}}\sqrt{\rho_{CC'}}} = \frac{0.4}{\sqrt{0.81}\sqrt{0.64}} = 0.56$$

• Test B:
$$\rho_{T_BT_C} = \frac{\rho_{BC}}{\sqrt{\rho_{BB'}}\sqrt{\rho_{CC'}}} = \frac{0.3}{\sqrt{0.25}\sqrt{0.64}} = 0.75$$

Thus, Test B has the largest potential validity coefficient

• if we make the test more reliable by adding more items

Note that the formula works for correcting attenuation in single variables too:

For example, if you wanted to estimate the true correlation between a predictor observed score X and a criterion true score Y, you would just "partial out" the reliability of the criterion – that is,

$$\rho_{XT_Y} = \frac{\rho_{XY}}{\sqrt{\rho_{YY'}}}$$

Often, criterion-related tests are used for screening people into dichotomous categories

- hire / do not hire
- successful / not successful

Often, criterion-related tests are used for screening people into dichotomous categories

- hire / do not hire
- successful / not successful

Basic procedure:

- 1. set a "cut score" Z on the criterion variable Y
- 2. if $Y \geq Z$, place into one category ("successful")
- 3. if Y < Z, place into other category ("unsuccessful")

Example: Suppose 100 job applicants are screened with a test.

		Prediction		
		Successful	Unsuccessful	Total
Actual outcome	Successful	30	20	50
	Unsuccessful	10	40	<i>50</i>
	Total	40	60	100

Example: Suppose 100 job applicants are screened with a test.

		Prediction		
		Successful	Unsuccessful	Total
Actual outcome	Successful	30	20	50
	Unsuccessful	10	40	<i>50</i>
	Total	40	60	100

Validity for such a test is related to the "hit rate"

• i.e., proportion of applicants correctly screened (prediction=outcome)

• for this example, hit rate =
$$\frac{30 + 40}{100} = 0.70$$

Example: Suppose 100 job applicants are screened with a test.

		Prediction		
		Successful	Unsuccessful	Total
Actual outcome	Successful	30	20	50
	Unsuccessful	10	40	50
	Total	40	60	100

Validity for such a test is related to the "hit rate"

- note that this hit rate is "good", because it works better than just hiring everybody (success rate of 50%)
- here, 50% is the "base rate" the best hit rate available from all possible procedures

Example: Suppose 100 people are screened for some psychopathology:

		Prediction		
		Psychopathology	No Psychopathology	Total
Actual	Psychopathology	7	3	10
	No psychopathology	14	76	90
	Total	21	79	100

Example: Suppose 100 people are screened for some psychopathology:

		Prediction		
		Psychopathology	No Psychopathology	Total
Actual	Psychopathology	7	3	10
	No psychopathology	14	76	90
	Total	21	79	100

• hit rate =
$$\frac{7+76}{100} = 0.83$$

- \bullet but base rate = 0.90 (we could just categorize everyone as "no psychopathology")
- better off giving no test at all!

How to set cut scores?

Consider the following score distribution. Which cut score would give us the largest hit rate?

Score	Successful	Unsuccessful
20	3	0
19	5	0
18	12	2
17	8	1
16	10	2
15	4	5
14	1	8
13	1	10
12	2	7
11	1	5
10	1	4
9	0	3
8	0	2

Cut score = 15

		Prediction		
		Successful	Unsuccessful	Total
Actual outcome	Successful			48
	Unsuccessful			49
	Total			97

Idea:

- we are predicting that scores at or above 15 will be successful.
- count how many of those *successful*
- count how many are *unsuccessful*

Cut score = 15

		Prediction		
		Successful	Unsuccessful	Total
Actual outcome	Successful	42		48
	Unsuccessful			49
	Total			97

Idea:

- we are predicting that scores at or above 15 will be successful.
- count how many of those *successful*: 42
- count how many are *unsuccessful*

Cut score = 15

		Prediction		
		Successful	Unsuccessful	Total
Actual outcome	Successful	42		48
	Unsuccessful	10		49
	Total			97

Idea:

- we are predicting that scores at or above 15 will be successful.
- count how many of those *successful*: 42
- count how many are *unsuccessful*: 10

Cut score = 15

		Prediction		
		Successful	Unsuccessful	Total
Actual outcome	Successful	42	6	48
	Unsuccessful	10	39	49
	Total	52	45	97

Idea:

• calculate the remaining cells

• Hit rate =
$$\frac{42 + 39}{97} = 0.835$$

Cut score = 16

		Prediction		
		Successful	Unsuccessful	Total
Actual outcome	Successful	38	10	48
	Unsuccessful	5	44	49
	Total	43	54	97

• Hit rate =
$$\frac{38 + 44}{97} = 0.845$$

Cut score = 17

		Prediction		
		Successful	Unsuccessful	Total
Actual outcome	Successful	28	20	48
	Unsuccessful	3	46	49
	Total	31	66	97

• Hit rate =
$$\frac{28+46}{97} = 0.763$$

• So, setting cut score to 16 gives best hit rate (0.845)