STAD29: Statistics for the Life and Social Sciences

Lecture notes

Section 1

Principal components

Principal Components

- Have measurements on (possibly large) number of variables on some individuals.
- Question: can we describe data using fewer variables (because original variables correlated in some way)?
- Look for direction (linear combination of original variables) in which values most spread out. This is first principal component.
- Second principal component then direction uncorrelated with this in which values then most spread out. And so on.

Principal components

- See whether small number of principal components captures most of variation in data.
- Might try to interpret principal components.
- If 2 components good, can make plot of data.
- (Like discriminant analysis, but no groups.)
- "What are important ways that these data vary?"

xxx Packages

You might not have installed the first of these. See over for instructions.

```
library(ggbiplot) # see over
library(tidyverse)
library(ggrepel)
```

xxx Installing ggbiplot

- ggbiplot not on CRAN, so usual install.packages will not work. This is same procedure you used for smmr in C32:
- Install package devtools first (once):

```
install.packages("devtools")
```

• Then install ggbiplot (once):

```
library(devtools)
install_github("vqv/ggbiplot")
```

xxx Small example: 2 test scores for 8 people

```
my url <- "http://www.utsc.utoronto.ca/~butler/d29/test12.txt"
test12 <- read table2(my url)
test12
## # A tibble: 8 x 3
## first second id
##
    <dbl> <dbl> <chr>
    2
## 1
             9 A
## 2 16 40 B
## 3 8 17 C
    18 43 D
## 4
    10 25 E
## 5
    4 10 F
## 6
## 7
    10 27 G
```

g <- ggplot(test12, aes(x = first, y = second, label = id)) +
geom_point() + geom_text_repel()</pre>

12

8

30 H

xxx The plot

xxx Principal component analysis

Grab just the numeric columns:

```
test12 %>% select_if(is.numeric) -> test12_numbers
```

Strongly correlated, so data nearly 1-dimensional:

```
cor(test12_numbers)
```

```
## first second
## first 1.000000 0.989078
## second 0.989078 1.000000
```

Finding principal components xxx

• Make a score summarizing this one dimension. Like this:

```
test12.pc <- princomp(test12_numbers, cor = T)
summary(test12.pc)</pre>
```

```
## Importance of components:

## Comp.1 Comp.2

## Standard deviation 1.410347 0.104508582

## Proportion of Variance 0.994539 0.005461022

## Cumulative Proportion 0.994539 1.000000000
```

Comments

- "Standard deviation" shows relative importance of components (as for LDs in discriminant analysis)
- Here, first one explains almost all (99.4%) of variability.
- That is, look only at first component and ignore second.
- cor=T standardizes all variables first. Usually wanted, because variables measured on different scales. (Only omit if variables measured on same scale and expect similar variability.)

Scree plot xxx

ggscreeplot(test12.pc)

xxx Component loadings

explain how each principal component depends on (standardized) original variables (test scores):

```
test12.pc$loadings
```

##

```
## Loadings:
## Comp.1 Comp.2
## first 0.707 0.707
## second 0.707 -0.707
##
## Comp.1 Comp.2
## SS loadings 1.0 1.0
## Proportion Var 0.5 0.5
## Cumulative Var 0.5 1.0
```

First component basically negative sum of (standardized) test scores. That is, person tends to score similarly on two tests, and a composite score would summarize performance.

STAD29: Statistics for the Life and Social Sc

xxx Component scores

```
d <- data.frame(test12, test12.pc$scores)
d</pre>
```

```
##
     first second id
                           Comp.1
                                        Comp.2
## 1
         2
                   A -2.071819003 -0.146981782
        16
               40
                   B 1.719862811 -0.055762223
## 2
        8
               17 C -0.762289708 0.207589512
## 3
        18
              43 D 2.176267535 0.042533250
## 4
        10
               25
                  E -0.007460609 0.007460609
## 5
## 6
       4
               10
                  F -1.734784030 0.070683441
        10
               27
                      0.111909141 - 0.111909141
## 7
                      0.568313864 -0.013613668
## 8
        12
               30
```

- Person A is a low scorer, high positive comp.1 score.
- Person D is high scorer, high negative comp.1 score.
- Person E average scorer, near-zero comp.1 score.

xxx Plot of scores

```
ggplot(d, aes(x = Comp.1, y = Comp.2, label = id)) +
  geom_point() + geom_text_repel()
```


xxx Comments

- Vertical scale exaggerates importance of comp.2.
- Fix up to get axes on same scale:

```
g <- ggplot(d, aes(x = Comp.1, y = Comp.2, label = id)) +
  geom_point() + geom_text_repel() +
  coord_fixed()</pre>
```

Shows how exam scores really spread out along one dimension:

g

xxx The biplot

- Plotting variables and individuals on one plot.
- Shows how components and original variables related.
- Shows how individuals score on each component, and therefore suggests how they score on each variable.
- Add labels option to identify individuals:

```
g <- ggbiplot(test12.pc, labels = test12$id)
```

xxx The biplot

xxx Comments

- Variables point almost same direction (left). Thus very negative value on comp.1 goes with high scores on both tests, and test scores highly correlated.
- Position of individuals on plot according to scores on principal components, implies values on original variables. Eg.:
- D very negative on comp.1, high scorer on both tests.
- A and F very positive on comp.1, poor scorers on both tests.
- C positive on comp.2, high score on first test relative to second.
- A negative on comp.2, high score on second test relative to first.

xxx Track running data

(1984) track running records for distances 100m to marathon, arranged by country. Countries labelled by (mostly) Internet domain names (ISO 2-letter codes):

```
my url <- "http://www.utsc.utoronto.ca/~butler/d29/men_track_:
track <- read_table(my_url)</pre>
track %>% sample_n(12)
```

```
A tibble: 12 \times 9
          m200
                    m800 m1500 m5000 m10000 marathon cour
##
     m100
               m400
##
    <dbl>
                                         <dbl> <chi
```

12.2 23.2 52.9 2.02 4.24 16.7 35.4 165. ck

44.6 1.75 3.59 131. ru ## 2 10.1 20 13.2 27.5

3 1.78 3.61 13.5 10.6 20.5 45.9 28.1 131. dk

10.3 20.9 46.9 1.79 3.77 14.0 29.2 136. kr ## 5 10.6 21.5 47.8 1.84 3.92 14.7 30.8

149. id ## 10.6 21.3 46.8 1.79 3.77 14.1 30.1 139. tw STAD29: Statistics for the Life and Social Sc 20 / 43 Lecture notes

xxx Country names

A tibble: 251 x 4

##

8 Angola

Lecture notes

Also read in a table to look country names up in later:

```
my_url <- "http://www.utsc.utoronto.ca/~butler/d29/isocodes.cs
iso <- read_csv(my_url)
iso</pre>
```

24

```
##
     Country
                    ISO2
                          IS03
                                  M49
##
     <chr>
                    <chr> <chr> <dbl>
   1 <NA>
##
                   <NA>
                          <NA>
                                   NA
##
   2 Afghanistan af
                          afg
                                    4
   3 Aland Islands ax
##
                          ala
                                  248
##
   4 Albania
                    al
                          alb
                                    8
                                   12
##
   5 Algeria
                    dz
                          dza
##
   6 American Samoa as
                                   16
                          asm
##
   7 Andorra
                    ad
                          and
                                   20
```

ao

ago

STAD29: Statistics for the Life and Social Sc

xxx Data and aims

- Times in seconds 100m-400m, in minutes for rest (800m up).
- This taken care of by standardization.
- 8 variables; can we summarize by fewer and gain some insight?
- In particular, if 2 components tell most of story, what do we see in a plot?

xxx Fit and examine principal components

```
track num <- track %>% select if(is.numeric)
track.pc <- princomp(track_num, cor = T)</pre>
summary(track.pc)
## Importance of components:
##
                            Comp.1 Comp.2
                         2.5733531 0.9368128
## Standard deviation
## Proportion of Variance 0.8277683 0.1097023
## Cumulative Proportion
                         0.8277683 0.9374706
##
                             Comp.3 Comp.4
## Standard deviation
                         0.39915052 0.35220645
## Proportion of Variance 0.01991514 0.01550617
## Cumulative Proportion
                         0.95738570 0.97289187
##
                              Comp.5 Comp.6
## Standard deviation 0.282630981 0.260701267
  Proportion of Variance 0.009985034 0.008495644
```

STAD29: Statistics for the Life and Social Sc.

Lecture notes

xxx Scree plot

ggscreeplot(track.pc)

xxx How many components?

- As for discriminant analysis, look for "elbow" in scree plot.
- See one here at 3 components; everything 3 and beyond is "scree".
- So take 2 components.
- Note difference from discriminant analysis: want "large" rather than "small", so go 1 step left of elbow.
- Another criterion: any component with eigenvalue bigger than about 1 is worth including. 2nd one here has eigenvalue just less than 1.
- Refer back to summary: cumulative proportion of variance explained for 2 components is 93.7%, pleasantly high. 2 components tell almost whole story.

0.367 - 0.307

xxx How do components depend on original variables?

Loadings:

##

```
track.pc$loadings
```

Loadings:

m10000

Lecture notes

```
##
            Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7
             0.318
                    0.567
                           0.332
                                  0.128 0.263
## m100
                                               0.594
                           0.361 - 0.259 - 0.154 - 0.656 -
## m200
             0.337
                    0.462
0.113
## m400
             0.356
                    0.248 - 0.560
                                  0.652 - 0.218 - 0.157
## m800
             0.369
                          -0.532 - 0.480
                                          0.540
0.238
             0.373 -0.140 -0.153 -0.405 -0.488
## m1500
                                                 0.158
                                                        0.610
## m5000
             0.364 - 0.312 0.190
                                         -0.254
                                                 0.141 -
0.591
```

STAD29: Statistics for the Life and Social Sc.

-0.133

0.219 -

26 / 43

xxx Comments

- comp.1 loads about equally (has equal weight) on times over all distances.
- comp.2 has large positive loading for long distances, large negative for short ones.
- comp.3: large negative for middle distance, large positive especially for short distances.
- Country overall good at running will have lower than average record times at all distances, so comp.1 large. Conversely, for countries bad at running, comp.1 very negative.
- Countries relatively better at sprinting (low times) will be positive on comp.2; countries relatively better at distance running negative on comp.2.

xxx Commands for plots

• Principal component scores (first two). Also need country names.

```
d <- data.frame(track.pc$scores,</pre>
  country = track$country
names(d)
## [1] "Comp.1" "Comp.2" "Comp.3"
                                      "Comp.4" "Comp.5"
## [6] "Comp.6" "Comp.7" "Comp.8"
                                      "country"
g1 <- ggplot(d, aes(
  x = Comp.1, y = Comp.2,
  label = country
)) +
  geom_point() + geom_text_repel() +
  coord_fixed()
```

Biplot:
 Lecture notes.

xxx Principal components plot

g1

xxx Comments on principal components plot

- Good running countries at right of plot: US, UK, Italy, Russia, East and West Germany.
- Bad running countries at left: Western Samoa, Cook Islands.
- Better sprinting countries at bottom: US, Italy, Russia, Brazil, Greece.
 do is Dominican Republic, where sprinting records relatively good,
 distance records very bad.
- Better distance-running countries at top: Portugal, Norway, Turkey, Ireland, New Zealand, Mexico. ke is Kenya.

xxx Biplot

g2

xxx Comments on biplot

- Had to do some pre-work to interpret PC plot. Biplot more self-contained.
- All variable arrows point left; countries on left have large (bad) record times overall, countries on right good overall.
- Variable arrows extend negatively as well. Top left = bad at distance running, bottom right = good at distance running.
- Bottom left = bad at sprinting, top right = good at sprinting.
- Doesn't require so much pre-interpretation of components.

xxx How do I know which country is which?

Need to look up two-letter abbreviations in ISO table, eg. for best 8 running countries:

```
d %>%
arrange(desc(Comp.1)) %>%
left_join(iso, by = c("country" = "ISO2")) %>%
select(Comp.1, country, Country) %>%
slice(1:8)
```

Country

```
10.652914
                       ck
                                Cook Islands
## 2 7.297865
                                        Samoa
                       WS
## 3 4.297909
                                        Malta
                       mt.
## 4 3.945224
                       pg Papua New Guinea
## 5 3.150886
                                   Singapore
                       sg
## 6 2.787273
                       t.h
                                     Thailand
     2.773125
## 7
                       id
                                   Indonesia
      Lecture notes
                      STAD29: Statistics for the Life and Social Sc.
```

Comp. 1 country

##

xxx Best 8 running countries

```
d %>%
  arrange(Comp.1) %>%
  left_join(iso, by = c("country" = "ISO2")) %>%
  select(Comp.1, country, Country) %>%
  slice(1:8)
```

```
Country
##
        Comp. 1 country
## 1 -3.462175
                     us United States of America
## 2 -3.052104
                   ıık
                                   United Kingdom
## 3 -2.752084
                    it.
                                            Italy
## 4 -2.651062
                              Russian Federation
                     ru
## 5 -2.613964
                    dee
                                     East Germany
## 6 -2.576272
                    dew
                                     West Germany
## 7 -2.468919
                                        Australia
                     ลม
## 8 -2.191917
                     fr
                                           France
```

xxx Worst 8 running countries

```
d %>%
  arrange(desc(Comp.1)) %>%
  left_join(iso, by = c("country" = "ISO2")) %>%
  select(Comp.1, country, Country) %>%
  slice(1:8)
```

```
##
        Comp. 1 country
                                 Country
    10.652914
                            Cook Islands
                     ck
## 2 7.297865
                                   Samoa
                    WS
## 3 4.297909
                                   Malta
                    mt
## 4 3.945224
                       Papua New Guinea
                    pg
## 5 3.150886
                               Singapore
                     sg
## 6 2.787273
                    t.h
                                Thailand
## 7 2.773125
                     id
                               Indonesia
## 8 2.697066
                                    Guam
                     gu
```

xxx Better at distance running

```
d %>%
  arrange(desc(Comp.2)) %>%
  left_join(iso, by = c("country" = "ISO2")) %>%
  select(Comp.2, country, Country) %>%
  slice(1:8)
```

```
##
        Comp.2 country
                                            Country
## 1 1.6860391
                                        Costa Rica
                     cr
                                     Korea (North)
## 2 1.5791490
                     kp
## 3 1.5226742
                     ck
                                      Cook Islands
## 4 1.3957839
                     t.r
                                             Turkey
## 5 1.3167578
                                           Portugal
                     pt
## 6 1.2829272
                                               Guam
                     gu
## 7 1.0663756
                                             Norway
                     no
## 8 0.9547437
                     ir Iran, Islamic Republic of
```

xxx Better at sprinting

##

```
d %>%
  arrange(Comp.2) %>%
  left_join(iso, by = c("country" = "ISO2")) %>%
  select(Comp.2, country, Country) %>%
  slice(1:10)
```

Comp.2 country

```
## 1
     -2.4715736
                         do
                                    Dominican Republic
## 2 -1.9196130
                                                   Samoa
                         WS
## 3 -1.8055052
                                              Singapore
                         sg
## 4 -1.7832229
                         bm
                                                Bermuda
## 5 -1.7386063
                                               Malaysia
                         mγ
## 6 -1.6851772
                         th
                                               Thailand
## 7 -1.1204235
                             United States of America
## 8 -0.9989821
                         it
                                                   Italy
                                    Russian Federation
     -0.7639385
                         ru
                                                  D--- - - - 7
      Lecture notes
                      STAD29: Statistics for the Life and Social Sc.
```

Country

xxx Plot with country names

```
g <- d %>%
  left_join(iso, by = c("country" = "ISO2")) %>%
  select(Comp.1, Comp.2, Country) %>%
  ggplot(aes(x = Comp.1, y = Comp.2, label = Country)) +
  geom_point() + geom_text_repel(size = 1) +
  coord_fixed()
```

Warning: Column `country`/`ISO2` joining factor and
character vector, coercing into character vector

xxx The plot

g

xxx Principal components from correlation matrix

Create data file like this: cov.txt and read in like this:

```
my_url <- "http://www.utsc.utoronto.ca/~butler/d29/cov.txt"
mat <- read_table(my_url, col_names = F)
mat</pre>
```

```
## # A tibble: 3 x 3
## X1 X2 X3
## <dbl> <dbl> <dbl> <dbl> = 0.970 -0.96
## 2 0.970 1 -0.998
## 3 -0.96 -0.998 1
```

xxx Pre-processing

A little pre-processing required:

- Turn into matrix (from data frame)
- Feed into princomp as covmat=

```
mat.pc <- mat %>%
  as.matrix() %>%
  princomp(covmat = .)
```

xxx Scree plot: one component fine

ggscreeplot(mat.pc)

xxx Component loadings

```
Compare correlation matrix:
"'r mat "'
   A tibble: 3 x 3 X1 X2 X3 <dbl> * Then 'comp.1' *negative*.
<dbl> 1 1 0.970 -0.96 2 0.970 1 -0.998 3 * When X1 small, X2 small,
-0.96 -0.998 1 "'
with component loadings
"'r mat.pcloadings"
    Loadings: Comp.1 Comp.2 Comp.3 X1
0.573 0.812 0.112 X2 0.581 -0.306 -0.755 X3
-0.578 0.498 -0.646 Comp.1 Comp.2 Comp.3
SS loadings 1.000 1.000 1.000 Proportion
Var 0.333 0.333 0.333 Cumulative Var 0.333
0.667 1.000 ""
```

- * When X1 large, X2 also large, X3 small.
- X3 large.
 - * Then 'comp.1' *positive*.

xxx No scores

- With correlation matrix rather than data, no component scores
- So no principal component plot
- and no biplot.

```
## Error in FUN(X[[i]], ...): invalid 'name' argument
```