— DFS&BFS, Cycle, DAG, SCC, and Biconnectivity

hengxin0912@gmail.com

May 19, 2016

- Overview
- 2 DFS and BFS
- Cycle
- 4 DAG

Contents of Tutorials

- 1. Graph Traversal Decomposition
- 2. MST (Greedy Algorithm) & Path
- 3. DP: Dynamic Programming

Graph decomposition vs. Graph traversal

- Overview
- ② DFS and BFS
- Cycle
- 4 DAG

Classifying edges

Definition (Classifying edges)

Given a dfs/bfs traversal:

- ► Tree edge
- ► Back edge
- ► Forward edge
- ► Cross edge

Remarks:

- ► Applicable to both DFS and BFS
- ► With respect to DFS/BFS trees

Classifying edges [Problem: 3.4.1]

(a) DFS on directed graph.

(c) BFS on directed graph.

(b) DFS on undirected graph.

(d) BFS on undirected graph.

Classifying edges

DFS tree and BFS tree coincide [Problem: 3.4.30]

$$G = (V, E), v \in V$$
. DFS tree $T = BFS$ tree T' .

- G is an undirected graph $\Rightarrow G = T$.
- G is a digraph \Rightarrow ? G = T.

Solution.

- ▶ T: tree + back; T': tree + cross
- ightharpoonup T: tree + back + forward + cross; T': tree + back + cross

Distance constraints for BFS

Distance constraints for BFS [Problem: 3.4.4]

BFS on digraph:

BFS on undirected graph:

TE:
$$d[v] = d[u] + 1$$

TE:
$$d[v] = d[u] + 1$$

$$\mathsf{BE} \colon \ 0 \leq d[v] \leq d[u]$$

$$\mathsf{CE} \colon \, d[v] = d[u] \vee d[v] = d[u] + 1$$

 $\mathsf{CE} \colon d[v] \le d[u] + 1$

Solution to "CE in BFS on undirected graph".

- b d[v] = d[u], d[v] = d[u] + 1
- b d[v] < d[u], d[v] > d[u] + 1

Remark.

- ▶ BFS tree defines a *shortest-path* from its root to every other node.
- ► Layers in BFS on *undirected* graph ⇒ bipartite testing [Problem: 3.4.26]

- Overview
- 2 DFS and BFS
- Cycle
- 4 DAG

Cycle detection

Table: Cycle detection [Problem: 3.4.21]

	Digraph	Undirected graph
DFS	back edge ←⇒ cycle	back edge ⇔ cycle
BFS	back edge \Rightarrow cycle	cross edge ←⇒ cycle
	cycle ⇒ back edge	

Remark.

- cycle in undirected graphs
- cycle in digraphs
 - DAG
 - ► SCC

Orientation of undirected graph

Orientation of undirected graph [Problem: 3.4.13]

Undirected (connected) graph G, edge oriented s.t. $\forall v, \text{in}[v] \geq 1$.

Solution.

orientation $\iff \exists$ cycle; DFS

Bipartite graph

Bipartite graph [Problem: 3.4.26; 3.4.32]

To test bipartiteness of an undirected graph.

Solution.

BFS + Coloring:

- ightharpoonup pick any s, c[s] = 0
- $u \leftarrow \mathsf{Dequeue}(Q)$
- $\blacktriangleright \ \forall (u,v)$:
 - tree edge
 - cross edge: check

Proof.

Check cross edge (u, v):

- ▶ (∃) d[v] = d[u] ⇒ the same layer ⇒ odd cycle ([Problem: 3.4.17]; EX) ⇒ non-bipartite
- ▶ (\forall) $d[v] = d[u] + 1 \Rightarrow$ different layers \Rightarrow different colors

- Overview
- 2 DFS and BFS
- Cycle
- DAG

DAG

no back edge \iff DAG \iff \exists topo. ordering

Topo. sorting

DFS on digraph, $u \rightarrow v$:

- ▶ back edge: f(u) < f(v)
- ▶ others: f(u) > f(v)

$$u \to v \Rightarrow u \prec v$$

 $u \to v \Rightarrow f(u) > f(v)$

Topo. sorting: sort vertices in *decreasing* order of their *finish* times.

Kahn's toposort algorithm

Kahn's toposort algorithm (1962) [Problem: 3.4.19]

- queue for source vertices (in[v] = 0)
- ightharpoonup repeat: dequeue v, delete it, output it

Solution.

Lemma

Every DAG has at least one source and at least one sink vertex.

Remark

DFS on DAG:

- ▶ $arg max_v f(v) \Rightarrow source (used in SCC algorithm)$
- $ightharpoonup \arg\min_{v} f(v) \Rightarrow \sinh$