Graphes et surfaces

Francis Lazarus

GIPSA-Lab, CNRS, INPG

Graphes

 $K_{3,3}$

Graphes planaires

Définition

Un graphe est planaire s'il peut être dessiné *proprement* dans le plan (ou la sphère)

Exemple : K_4 est planaire

Question: $K_{3,3}$ et K_5 sont-ils planaires?

Théorème de Jordan

Théorème de Jordan (1838-1922)

Toute injection continue $S^1 \to {\rm I\!R}^2$ sépare le plan en deux composantes connexes, l'une bornée.

- 1ère preuve correcte : Veblen, 1905
- preuve formelle : Hales, 2005

Formule d'Euler, 1750

Théorème

Pour tout graphe dessiné dans le plan (ou la sphère)

$$S - A + F = 2$$

5: # sommets,

A: # arêtes,

F: # faces = # composantes du complémentaire du dessin.

Preuve : Par récurrence sur *A* en utilisant le th. de Jordan

$$S = A = 1, F = 2$$

Théorème

 $K_{3,3}$ et K_5 ne sont pas planaires.

Preuve pour $K_{3,3}$:

• Euler $\implies 2 = 5 - A + F = 6 - 9 + F$, i.e. F = 5

ullet $K_{3,3}$ bipartite \implies toute face a 4 côtés au moins

• incidences $(A,F) \implies 2A \ge 4F$, i.e. $9 \ge 10$.

Théorème

 $K_{3,3}$ et K_5 ne sont pas planaires.

Preuve pour $K_{3,3}$:

- Euler \implies 2 = S A + F = 6 9 + F, i.e. F = 5
- $K_{3,3}$ bipartite \implies toute face a 4 côtés au moins
- incidences $(A,F) \implies 2A \ge 4F$, i.e. $9 \ge 10$.

Contradiction! \square

Théorème

 $K_{3,3}$ et K_5 ne sont pas planaires.

Preuve pour $K_{3,3}$:

- Euler \implies 2 = S A + F = 6 9 + F, i.e. F = 5
- ullet $K_{3,3}$ bipartite \Longrightarrow toute face a 4 côtés au moins
- incidences $(A,F) \implies 2A \ge 4F$, i.e. $9 \ge 10$.

Théorème

 $K_{3,3}$ et K_5 ne sont pas planaires.

Preuve pour $K_{3,3}$:

- Euler $\implies 2 = S A + F = 6 9 + F$, i.e. F = 5
- ullet $K_{3,3}$ bipartite \Longrightarrow toute face a 4 côtés au moins
- incidences $(A,F) \implies 2A \ge 4F$, i.e. $9 \ge 10$.

Théorème

 $K_{3,3}$ et K_5 ne sont pas planaires.

Preuve pour $K_{3,3}$:

- Euler $\implies 2 = S A + F = 6 9 + F$, i.e. F = 5
- $K_{3,3}$ bipartite \implies toute face a 4 côtés au moins
- incidences $(A,F) \implies 2A \ge 4F$, i.e. $9 \ge 10$.

Graphes interdits

Théorème de Kuratowski, 1930

Un graphe est planaire ssi il ne contient pas (de subdivisions de) $K_{3,3}$ ni K_5 .

Graphes interdits

Théorème de Kuratowski, 1930

Un graphe est planaire ssi il ne contient pas (de subdivisions de) $K_{3,3}$ ni K_5 .

Graphes interdits

Théorème de Kuratowski, 1930

Un graphe est planaire ssi il ne contient pas (de subdivisions de) $K_{3,3}$ ni K_5 .

Surfaces

Définition

Une surface est une variété compacte de dimension 2.

Surfaces

Définition

Une surface est une variété compacte de dimension 2.

Triangulation

Théorème de Radò, 1925

Toute surface est triangulable.

Caractéristique

Définition

La caractéristique d'Euler d'une surface triangulée ${\mathcal M}$ est

$$\chi(\mathcal{M}) = S - A + F$$

Théorème

 $\chi(\mathcal{M})$ ne dépend pas de la triangulation de $\mathcal{M}.$

Caractéristique

Définition

La caractéristique d'Euler d'une surface triangulée ${\mathcal M}$ est

$$\chi(\mathcal{M}) = S - A + F$$

Théorème

 $\chi(\mathcal{M})$ ne dépend pas de la triangulation de \mathcal{M} .

Corollaire

Corollaire

Corollaire

Corollaire

Corollaire

Corollaire

Corollaire

Corollaire

Corollaire

Proposition (Brahana, 1921)

Toute surface admet un schéma canonique.

Schéma canonique de \mathcal{M}_2 : $(a,b,\ \bar{a},\ \bar{b},c,\ d,\bar{c},\ \bar{d})=[a,b][c,d]$ Schéma canonique de \mathcal{M}_g : $[a_1,b_1][a_2,b_2]\dots[a_g,b_g]$

Proposition (Brahana, 1921)

Toute surface admet un schéma canonique.

Schéma canonique de \mathcal{M}_2 : $(a,b,\ \bar{a},\ \bar{b},c,\ d,\bar{c},\ \bar{d})=[a,b][c,d]$ Schéma canonique de \mathcal{M}_g : $[a_1,b_1][a_2,b_2]\dots[a_g,b_g]$

Proposition (Brahana, 1921)

Toute surface admet un schéma canonique.

Schéma canonique de \mathcal{M}_2 : $(a,b,\ \bar{a},\ \bar{b},c,\ d,\bar{c},\ \bar{d})=[a,b][c,d]$ Schéma canonique de \mathcal{M}_g : $[a_1,b_1][a_2,b_2]\dots[a_g,b_g]$

Proposition (Brahana, 1921)

Toute surface admet un schéma canonique.

Schéma canonique de \mathcal{M}_2 : $(a,b, \bar{a}, \bar{b},c, d,\bar{c}, \bar{d}) = [a,b][c,d]$ Schéma canonique de \mathcal{M}_g : $[a_1,b_1][a_2,b_2]\dots[a_g,b_g]$

Proposition (Brahana, 1921)

Toute surface admet un schéma canonique.

Schéma canonique de \mathcal{M}_2 : $(a,b, \bar{a}, \bar{b},c, d,\bar{c}, \bar{d}) = [a,b][c,d]$ Schéma canonique de \mathcal{M}_g : $[a_1,b_1][a_2,b_2]\dots[a_g,b_g]$

Proposition

2 surfaces ayant des schémas canoniques dictincts ne sont par homéomorphes.

Preuve cas orientable :
$$\chi(\mathcal{M}) = S - A + F = 1 - A'/2 + 1$$
, i.e. $A' = 4 - 2\chi(\mathcal{M})$

Classification

Théorème

Deux surfaces (compactes sans bord) sont homéomorphes ssi elles ont même caractéristique et orientabilité.

Le genre

On pose $\chi(\mathcal{M})=2-2g$ g est le nombre maximal de cycles disjoints qui ne déconnectent pas $\mathcal{M}.$

Le genre

On pose $\chi(\mathcal{M})=2-2g$ g est le nombre maximal de cycles disjoints qui ne déconnectent pas $\mathcal{M}.$

Plongement cellulaire

Formule d'Euler

Pour tout plongement cellulaire π dans une surface ${\mathcal M}$ on a

$$S(\pi) - A(\pi) + F(\pi) = \chi(\mathcal{M})$$

Définition

Une carte combinatoire (G, ρ) est la donnée d'un graphe G et d'un système de rotations ρ .

Théorème

À tout $\pi: G \to \mathcal{M}$ on peut associer une carte (G, ρ) .

Réciproquement, pour toute (G, ρ) on peut construire $\pi : G \to \mathcal{M}$ dont (G, ρ) est la carte associée.

En particulier, les faces de π sont les cycles de $ar
ho=ar\cdot\circ
ho$

Théorème

```
À tout \pi: G \to \mathcal{M} on peut associer une carte (G, \rho).
Réciproquement, pour toute (G, \rho) on peut construire \pi: G \to \mathcal{M} dont (G, \rho) est la carte associée.
```

Théorème

```
A tout \pi: G \to \mathcal{M} on peut associer une carte (G, \rho).
```

Réciproquement, pour toute (G, ρ) on peut construire $\pi : G \to \mathcal{M}$ dont (G, ρ) est la carte associée.

Théorème

À tout $\pi: G \to \mathcal{M}$ on peut associer une carte (G, ρ) .

Réciproquement, pour toute (G, ρ) on peut construire $\pi : G \to \mathcal{M}$ dont (G, ρ) est la carte associée.

Théorème

À tout $\pi: G \to \mathcal{M}$ on peut associer une carte (G, ρ) .

Réciproquement, pour toute (G, ρ) on peut construire $\pi : G \to \mathcal{M}$ dont (G, ρ) est la carte associée.

Théorème

À tout $\pi: G \to \mathcal{M}$ on peut associer une carte (G, ρ) .

Réciproquement, pour toute (G, ρ) on peut construire $\pi : G \to \mathcal{M}$ dont (G, ρ) est la carte associée.

Existence de plongement

Corollaire

Tout graphe G se plonge dans une surface.

Preuve : Choisir un ρ sur G et le réaliser !

Existence de plongement

Corollaire

Tout graphe G se plonge dans une surface.

Preuve : Choisir un ρ sur G et le réaliser !

Preuve topologique:

Existence de plongement

Corollaire

Tout graphe G se plonge dans une surface.

Preuve : Choisir un ρ sur G et le réaliser !

Preuve topologique:

Genre orientable

Définition

$$g(G) = \min\{g \mid \exists \pi : G \to \mathcal{M}_g\}$$

Rq : Le plongement dans $\mathcal{M}_g(G)$ est nécessairement cellulaire.

Exemple : $g(K_{3,3}) = 1$.

Genre orientable

Définition

$$g(G) = \min\{g \mid \exists \pi : G \to \mathcal{M}_g\}$$

Rq : Le plongement dans $\mathcal{M}_g(G)$ est nécessairement cellulaire.

Exemple : $g(K_{3,3}) = 1$.

Calcul

Théorème (Thomassen, 1989)

Le calcul de g(G) est NP-difficile.

Dit autrement, le problème de décision $(g(G) \le k ?)$ est NP-complet.

Rq : Puisque plongement \sim système de rotations, on peut tester le genre associé à chaque système de rotations. Il y a

$$\prod_{s \in S(G)} (deg(s) - 1)!$$

systèmes distincts...

Calcul

Théorème (Thomassen, 1989)

Le calcul de g(G) est NP-difficile.

Dit autrement, le problème de décision $(g(G) \le k ?)$ est NP-complet.

Rq : Puisque plongement \sim système de rotations, on peut tester le genre associé à chaque système de rotations. Il y a

$$\prod_{s \in S(G)} (deg(s) - 1)!$$

systèmes distincts...

Définition

- supprimant des arêtes
- supprimant des sommets isolés,
- contractant des arêtes.

Définition

- supprimant des arêtes,
- supprimant des sommets isolés,
- contractant des arêtes

Définition

- supprimant des arêtes,
- 2 supprimant des sommets isolés,
- contractant des arêtes

Définition

- supprimant des arêtes,
- 2 supprimant des sommets isolés,
- contractant des arêtes.

Th. de Kuratowski (bis)

G planaire ssi ni $K_{3,3}$ ni K_5 n'en sont des mineurs.

Th. Robertson-Seymour, 1985 (Conjecture de Wagner

Dans toute suite infinie de graphes, l'un est un mineur d'un autre.

Corollaire (th. des mineurs exclus)

Toute famille \mathcal{F} de graphes stable par mineur est caractérisée par une famille finie de mineurs exclus.

preuve : Soit
$$M = \{G \notin \mathcal{F} \mid H < G \implies H \in \mathcal{F}\}.$$

 $\bullet \ \ H \in \mathcal{F} \Leftrightarrow \forall G \in M : G \not \leq H$

Or, par Robertson-Seymour, M est fini.

Th. de Kuratowski (bis)

G planaire ssi ni $K_{3,3}$ ni K_5 n'en sont des mineurs.

Th. Robertson-Seymour, 1985 (Conjecture de Wagner)

Dans toute suite infinie de graphes, l'un est un mineur d'un autre.

Corollaire (th. des mineurs exclus)

Toute famille \mathcal{F} de graphes stable par mineur est caractérisée par une famille finie de mineurs exclus.

preuve : Soit
$$M = \{G \notin \mathcal{F} \mid H < G \implies H \in \mathcal{F}\}$$

Or, par Robertson-Seymour, M est fini.

Th. de Kuratowski (bis)

G planaire ssi ni $K_{3,3}$ ni K_5 n'en sont des mineurs.

Th. Robertson-Seymour, 1985 (Conjecture de Wagner)

Dans toute suite infinie de graphes, l'un est un mineur d'un autre.

Corollaire (th. des mineurs exclus)

Toute famille $\mathcal F$ de graphes stable par mineur est caractérisée par une famille finie de mineurs exclus.

preuve : Soit
$$M = \{G \notin \mathcal{F} \mid H < G \implies H \in \mathcal{F}\}$$

Th. de Kuratowski (bis)

G planaire ssi ni $K_{3,3}$ ni K_5 n'en sont des mineurs.

Th. Robertson-Seymour, 1985 (Conjecture de Wagner)

Dans toute suite infinie de graphes, l'un est un mineur d'un autre.

Corollaire (th. des mineurs exclus)

Toute famille \mathcal{F} de graphes stable par mineur est caractérisée par une famille finie de mineurs exclus.

preuve : Soit
$$M = \{G \notin \mathcal{F} \mid H < G \implies H \in \mathcal{F}\}.$$

- $H \in \mathcal{F} \Leftrightarrow \forall G \in M : G \nleq H$
- Or, par Robertson-Seymour, M est fini

Th. de Kuratowski (bis)

G planaire ssi ni $K_{3,3}$ ni K_5 n'en sont des mineurs.

Th. Robertson-Seymour, 1985 (Conjecture de Wagner)

Dans toute suite infinie de graphes, l'un est un mineur d'un autre.

Corollaire (th. des mineurs exclus)

Toute famille \mathcal{F} de graphes stable par mineur est caractérisée par une famille finie de mineurs exclus.

preuve : Soit
$$M = \{G \notin \mathcal{F} \mid H < G \implies H \in \mathcal{F}\}.$$

- $H \in \mathcal{F} \Leftrightarrow \forall G \in M : G \not\leq H$
- Or, par Robertson-Seymour, M est fini

Th. de Kuratowski (bis)

G planaire ssi ni $K_{3,3}$ ni K_5 n'en sont des mineurs.

Th. Robertson-Seymour, 1985 (Conjecture de Wagner)

Dans toute suite infinie de graphes, l'un est un mineur d'un autre.

Corollaire (th. des mineurs exclus)

Toute famille \mathcal{F} de graphes stable par mineur est caractérisée par une famille finie de mineurs exclus.

preuve : Soit
$$M = \{G \notin \mathcal{F} \mid H < G \implies H \in \mathcal{F}\}.$$

- $H \in \mathcal{F} \Leftrightarrow \forall G \in M : G \not\leq H$
- Or, par Robertson-Seymour, M est fini.

Graphes plongeables dans \mathcal{M}_g

Corollaire

Pour tout g, \exists une famille finie de graphes \mathcal{F}_g telle que H se plonge dans $\mathcal{M}_g \Leftrightarrow H$ n'a aucun mineur dans \mathcal{F}_g .

Exemple : $|\mathcal{F}_0|=2$ (Kuratowski), $|\mathcal{F}_1|>10^4$

Corollaire

Pour tout g, \exists un algorithme de complexité polynomiale pour tester si un graphe se plonge dans \mathcal{M}_g .

Graphes plongeables dans \mathcal{M}_g

Corollaire

Pour tout g, \exists une famille finie de graphes \mathcal{F}_g telle que H se plonge dans $\mathcal{M}_g \Leftrightarrow H$ n'a aucun mineur dans \mathcal{F}_g .

Exemple : $|\mathcal{F}_0|=2$ (Kuratowski), $|\mathcal{F}_1|>10^4$

Corollaire

Pour tout g, \exists un algorithme de complexité polynomiale pour tester si un graphe se plonge dans \mathcal{M}_g .

FIN

Retrouvez ces transparents et une bibliographie sur

http://www.gipsa-lab.fr/~francis.lazarus/