Algorithms 2001. 9. 6.

Graph Algorithms

Classification of edges

tree edge
back edge
forward edge
cross edge

Undirected graph

	forward edge = back edge	cross edge
BFS tree	×	0
DFS tree	0	×

Directed graph

	forward edge	back edge	cross edge
BFS tree	×	0	0
DFS tree	0	0	0

Topological sort

A directed acyclic graph(dag) is a digraph without any cycle.

Let G = (V, E) be a dag.

A topological sort of G is an arrangement of the vertex set s.t if $(i,j) \in E$ then i appears before j in the arrangement.

Topological-sort(x)		
$mark[v] \leftarrow visited;$		
$\forall w \in L(v) // L(v) = adjacency list of v$		
if(mark[v]=unvisited)		
Topological-sort[w];		
output v;		

The alg. gives a reverse topological order

Strongly connected component

Let G = (V, E) be a digraph.

A strongly connected component of G is a maximul set of vertices in which there is a directed path between any two vertices in the net.

* A digraph is said to be strongly connected if it has only one strongly connected component.

strongly connected component: 271

Algorithms 2001. 10. 25.

Strongly-Connected-Component(G)

- 1. Call DFS(G) to compute finishing time f[u], $\forall u \in G$
- 2. Construct G^R by reversing all the edges of G
- 3. Call $DFS(G^R)$ at the vertex with the highest finishing time; if it doesn't cover all the vertice, then call DFS again at the vertex with the highest finishing time among the remaining vertices; ...
- 4. Each tree resulted by step 3 is a strongly connected component

Claim

v & w are in the same strongly connected component iff v & w are in the same tree in the DFS forest of step 3

proof.

⇒ easy (trivial)

Assume v & w are in the same strongly connected component

Then $\exists (v \xrightarrow{*} w)$ and $\exists (w \xrightarrow{*} v)$ in G

Hence $\exists (w \xrightarrow{*} v)$ and $\exists (v \xrightarrow{*} w)$ in G

Suppose DFS in G^R starts at some vertex x and reaches v (or w), then it also reaches w (or v);

i.e they are in the same tree in the DFS forest.

 \Leftarrow

Assume v & w are in the same tree in the *DFS* forest of G^R

$$\exists (x \xrightarrow{*} v) \text{ in } G^R \Rightarrow \exists (v \xrightarrow{*} x) \text{ in } G$$

Suppose, for the contradiction that \exists no path $x \xrightarrow{*} v$ in G.

Then $f[x] \langle f[v]$, contradiction! (Since $f[x] \rangle f[v]$ by step 3)

Similarly, we can show that $\exists x \xrightarrow{*} w$ in G.

Therefore $\exists (v \xrightarrow{*} w)$ and $\exists (w \xrightarrow{*} v)$ in G

v&w are in the same strongly connected component.♥

Algorithms 2001. 10. 25.

Minimum Spanning Tree

Given a connected (undirected) graph G = (V, E) and a weight function $W \colon E \to R$ A spanning tree T of G is a subgraph of G which includes all vertices of G and is a tree. The weight of a spanning tree T is $W(T) = \sum_{e \in T} w(e)$

Objective

Given G = (V, E) a connected graph, find a spanning tree with the minimum weight.

Fundamental principle

Thm.

Let (S, V-S) be a bipartition of vertices.

If $\{u, v\}$ is an edge with the minimum weight among those edges crossing S and V-S, then there exists a minimum spanning tree containing $\{u, v\}$

Proof.

In any minimum spanning tree $T^{(1)}$ not containing $\{u,v\}$, there is only one path between u&v. The path contains at least one edge crossing S on V-S. Take such a crossing edge $\{x,y\}$, Note that $w(\{x,y\}) \ge w(\{u,v\})$ (given condition)

Case 1.

If $w(\lbrace x, y \rbrace) \rangle w(\lbrace u, v \rbrace)$, then T is not a minimum spanning tree

(: The tree $T \bigcup \{u, v\} - \{x, y\}$ is less weighted than T) contradiction to (1)! Case 2.

If $w(\lbrace x,y\rbrace) = w(\lbrace u,v\rbrace)$, then $T\bigcup \lbrace u,v\rbrace - \lbrace x,y\rbrace$ has the same weight as T. Hence $T\bigcup \lbrace u,v\rbrace - \lbrace x,y\rbrace$ is also a minimum spanning tree.

* If dege weights are all distinct, \exists only one minimum spanning tree.

If not, \exists can be more than on minimum spanning tree.

Algorithms 2001, 10, 30,

Kruskal's algorithm

Idea.

Build a minimum spanning tree T by adding minimum edges not generating cycles.

- 1. $T \leftarrow \emptyset$;
- 2. Initialize n singleton sets containing a vertex
- 3. sort the edges in nondecreasing weight order and put then in Q
- 4. While T has fewer than |V|-1 edges

choose minimum cost edge $\{u, v\}$ in Q;

delete $\{u, v\}$ from Q;

if u and v belong to different sets

then $T \leftarrow T \bigcup \{u, v\}$

merge the two sets containing u and v;

e.g.

2 3 4 5 6 **7 8** | 9 10 10 15

Running time

step 3 -
$$O(|E|\log|E|) = O(|E|\log|V|)$$

step 4 -
$$O(|E| \log^* |E|)$$

$$\Rightarrow O(|E|\log|V|)$$

Prim's algorithm

Idea.

Build a minimum spanning tree T by adding one vertex at a time to T

 $Q \leftarrow V$; // Q contains vertices not in T

for each $u \in Q$

$$d[u] \leftarrow \infty;$$

 $d[r] \leftarrow 0$; // r: root node, chosen at random

while $Q \neq \emptyset$

update the priority queue Q with respect to V; $\leftarrow O(\log |V|)$

Algorithms 2001, 10, 30,

Shortest paths

Given a digraph G = (V, E) with weight function $W: E \rightarrow R$

If P is a path consisting of edges e_1, e_2, \dots, e_k , then $w(P) = \sum_{i=1}^k w(e_i)$

- 1. Single pair shortest path problem
 - Find the shortest path between a pair of vertices u and v
- 2. Single-source shortest path problem
 - Given source vertex s = V, find the shortest paths from s to all other vertices in the graph
- 3. All pairs shortest path problem
 - Find the shortest paths between all pairs of vertices

Assumption

- If $(u, v) \notin E$, then $w(u, v) = \infty$
- If $\exists no$ directed path from u to v, then the algorithm should return ∞ as the weight of the shortest path
- $w(u, u) = 0 \quad \forall u \in V$
- Denote by $\delta(u, v)$ the weight of the shortest path from u to v

Single-source shortest path

Case 1. non-negative weight only

* Relaxation

We keep an upper bound d[v] of $\delta(s, v) \forall v \in V$.

i.e.
$$d[v] \ge \delta(s, v)$$

We may reduce d[v] by performing a relaxation operation on an arbitrary edge (u, v)

If d[v] > d[u] + w(u, v) then $d[v] \leftarrow d[u] + w(u, v)$

Fall 2001, page 5

Algorithms

2001. 11. 1.

Dijkstra's algorithm - basically the same as Prim's algorithm for m.s.t.

```
Q \leftarrow V;
for each u \in Q
d[u] \leftarrow \infty;
d[s] \leftarrow 0;
while Q \neq \emptyset
u \leftarrow \text{deleteMin}(Q);
for each v \in L(u) \cap Q;
if d[v] > d[u] + w(u, v)
d[v] \leftarrow d[u] + w(u, v)
update the priority queue Q with respect to V;
```

- * correctness proof : use mathematical induction
- * Running time : $O(|E| \log |V|)$

Case 2. Allows negative-weight edges but no negative-weight cycle

Bellman-Ford algorithm

```
d[s] \leftarrow 0;
for each v \in V - \{s\}
d[v] \leftarrow \infty;
for i \leftarrow 1 to |V| - 1
for each (u, v) \in E
d[v] \leftarrow \min\{d[v], d[u] + w(u, v)\};
negative-cycle-check();

negative-cycle-check()
for each (u, v) \in E
if d[v] > d[u] + w(u, v);
then output "no solution!";
```

Running Time O(|V||E|)

Correctness of checking negative weight cycles

Assume a negative cycle $v_0v_1\cdots v_k$ ($v_k=v_0$), i.e $\sum_{i=1}^k w(v_{i-1},v_i) < 0$ Suppose, for the contradiction that the algorithm doesn't output "no solution!" Thus, $d[v_i] \le d[v_{i-1}] + w[v_{i-1},v_i]$, $i=1,2,\cdots,k$ by $d[v] \le d[u] + w(u,v)$ $\Rightarrow \sum_{i=1}^k d[v_i] \le \sum_{i=1}^k d[v_{i-1}] + \sum_{i=1}^k w[v_{i-1},v_i], \quad \sum_{i=1}^k d[v_{i-1}] = \sum_{i=1}^k d[v_i]$ $\Rightarrow 0 \le \sum_{i=1}^k w(v_{i-1},v_i) \text{ contradiction}$ Algorithms

2001. 11. 1.

* Bellman-Ford algorithm is basically a dynamic programming although they doesn't explicitly notice it

 $d_{i,v}$: the shortest path length from s to v with at most i edges

$$d_{0,s} = 0$$

$$d_{0,V} = \infty \quad \forall u \in V - \{s\}$$

$$d_{i, v} = \min_{(u, v) \in E} \{d_{i-1, u} + w(u, v)\} \ i \ge 0$$

Case 3. Directed acyclic graph, DAG

Topologically sort the vertices;

$$d[s] \leftarrow 0;$$

for each $v \in V - \{s\}$

$$d[v] \leftarrow \infty;$$

for each $u \in V$ in topological order

for each $v \in L(u)$

if
$$d[v] > d[u] + w[u, v]$$

then
$$d[v] \leftarrow d[u] + w[u, v]$$
;

Running time: O(|E|) assume $|E| = \Omega(|V|)$

All-pairs shortest path

Compute shortest paths between all pairs of vertices

- * Negative-weight edges are allowed. But no negative cycle is allowed.
- * Useful for, e.g, road atlas
- * A naive solution
 - Apply Bellman-Ford |V| times $\Rightarrow O(|V|^2|E|)$

Algorithms 2001. 11. 6.

Floyd-Warshall algorithm : $O(|V|^3)$ by dynamic programming

An optimal substructure (but inefficient)

 $d_{ij}^{(m)}$: the minimum weight of paths from v_i to v_j that contain at most m edges.

$$d_{ij}^{(0)} = \begin{cases} 0 & \text{if } i = j \\ \infty & \text{other wise} \end{cases}$$

$$d_{ij}^{(m)} = \min_{1 \le k \le n} \left\{ d_{ik}^{(m-1)} + w_{kj} \right\} \rightarrow O(|V|^4)$$

$$\text{cf. } d_{ij}^{(m)} = \min_{(k,j) \in E} \left\{ d_{ik}^{(m-1)} + w_{kj} \right\} \rightarrow O(|V|^2|E|)$$

 $\underset{\Downarrow}{\operatorname{improvement}}$

Floyd-Warshall algorithm

Let
$$V = \{ v_1, v_2, \dots, v_n \}$$

 $d_{ij}^{(k)}$: the minimum height of paths from v_i to v_j using only vertices $\{v_1, v_2, \dots, v_k\}$ as intermediate vertices

$$d_{ij}^{(k)} = \begin{cases} w_{ij} \\ \min\{d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\} & \text{if } k \ge 1 \end{cases}$$

Floyd-Warshall(W)

for
$$i \leftarrow 1$$
 to n
for $j \leftarrow 1$ to n
 $d_{ij}^{(0)} \leftarrow w_{ij};$
for $k \leftarrow 1$ to n
for $i \leftarrow 1$ to n
for $j \leftarrow 1$ to n
 $d_{ij}^{(k)} \leftarrow \min \{d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\}$

Running time : $O(|V|^3)$

* Floyd: 1962.

Warshall before Floyd, 1962

Transitive Closure of a graph

distrive Closure of a graph
$$d_{ij}^{(k)} = \begin{cases} 1 & \text{if } \exists a \text{ path } v_i \sim \rangle v_j \text{ using } \{v_1, \dots, v_k\} \\ 0 & \text{other wise} \end{cases}$$

$$d_{ij}^{(k)} = d_{ij}^{(k-1)} \vee (d_{ik}^{(k-1)} \wedge d_{ki}^{(k-1)}) \rightarrow O(|V|^3)$$

Fall 2001, page 8

Algorithms 2001. 11. 6.

Matrix multiplication

• Want to multiply two $n \times n$ matrices $A \times B$

•
$$C = AB$$
, $c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj} \rightarrow \Theta(n^3)$

 \circ Divide the matrices into four $\frac{n}{2} \times \frac{n}{2}$ matrices

Then C = AB can be rewritten as

$$\begin{pmatrix} r & s \\ t & u \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} e & f \\ g & h \end{pmatrix}$$
where
$$\begin{aligned} r &= ae + bf \\ s &= ag + bh \\ t &= ce + df \\ u &= cg + dh \end{aligned}$$

$$T(n) = 8T(\frac{n}{2}) + \Theta(n^2)$$
 by master's theorem $T(n) = \Theta(n^3)$. $n^{\log_2 8} = n^3$

o Strassen's algorithm

$$P_{i} = A_{i}B_{i} = (\alpha_{A}a + \alpha_{B}b + \alpha_{B}c + \alpha_{A}d)(\beta_{A}e + \beta_{B}f + \beta_{B}g + \beta_{A}h)$$

$$\begin{array}{ll} P_1 = a(g-h) & r = P_5 + P_4 - P_2 + P_6 \\ P_2 = (a+b)h & s = P_1 + P_2 \\ P_3 = (c+d)e & t = P_3 + P_4 \\ P_4 = d(f-e) & u = P_5 + P_1 - P_3 - P_7 \\ P_5 = (a+d)(e+h) & P_6 = (b-d)(f+h) \\ P_7 = (a-c)(e+g) & \end{array}$$

The time $T(n) = 7T(\frac{n}{2}) + \Theta(n)$

by master's theorem $T(n) = \Theta(n^{\log_2 7})$

Algorithms 2001. 11. 8.

String matching

Given an alphabet Σ , a text string $x \in \Sigma^*$, and a pattern string $p \in \Sigma^*$.

We want to find the first occurrence or all occurrence of p in x.

Application: Search in editors, DNA sequence, approaximate matching

$$x[1], \dots, x[n]$$
 $|x| = n$
 $p[1], \dots, p[n]$ $|p| = m$ $n \ge m$

An elementary-school algorithm

Knuth-Morris-Pratt algorithm (KMP) : O(n+m) = O(n)

- Effectively manipulate the relationship between X's suffix and P's prefix
- Problem with the elementary-school algorithm
 - every time a miss match occurs, restarts without using the info, gained so far
- · Idea: use gained info, preprocessing the pattern string

KMP algorithm

$$i \leftarrow 1$$
; // ptr to the text

$$j \leftarrow 1$$
; // ptr to the pattern

while $j \le m \& i \le n$

if
$$j = 0$$
 or $x[j] = p[j]$

then {
$$i_{++}; j_{++};$$
 }

else
$$j \leftarrow \pi[j]$$
;

if j > m then "match at i-j+1"; else "no match";

Running time

Everytime we go through the loop the algorithm, advances in the text(by i^{++}) or shift the pattern by $j \leftarrow \pi[j]$

Note that $\pi[j] \langle j \quad \forall j$, so $j \leftarrow \pi[j]$ decreases j

thus, each time we go through the loop, i+(i-j) will be increased by at least 1 $i+(i-j) \le 2i \le 2(n+1)$

i.e. we go through the loop at most 2n time. Running time is O(n)

Algorithms 2001. 11. 8.

Preprocessing

$$j \leftarrow 1;$$

 $k \leftarrow 0;$
 $\pi[1] \leftarrow 0;$
while $j \leq m$
if $(k=0 \text{ or } p[j] = p[k])$
then $\{j++; k++; \pi[j] \leftarrow k, \}$
else $k \leftarrow \pi[k];$

Idea. match p against itself. Situation after j & k are incremented

Time $O(m) \leftarrow U$ sing the same technique as in the KMP alg.

$$j+(j-k) \le 2j \le 2(m+1)$$

Thus the running time of KMP is O(n)

NP-completeness

NP: non-deterministic polynomial

 ∇ NP-complete problems are a class of problems which most people believe will be a subset of more-than- $o(n^k)$ problems

abla Decision problem : Optimization problem Decision problem \rightarrow Is there a path from u to v with $length \leq k$? Optimization problem \rightarrow What is the shortest path length from u to v?

▼ The theory of NP-completeness restricts attention to decision problem(Yes/No problem)

Algorithms 2001. 11. 13.

An intuitive definition

P: the class of problems that can be "decided" (by answering yes or no) in polynomial time NP: the class of problems that can be "verified" (by answering only yes) in polynomial time

- decision: Say "yes" or "no" in any case
- verification: just say "yes", doesn't have to answer when the answer is "no"

A formal-language definition

$$P = \{L \subseteq \Sigma^* | \exists \text{ an alg. } A \text{ that decides } L \text{ in polynomial time} \}$$

 $NP = \{L \subseteq \Sigma^* | \exists \text{ an alg. } A \text{ that verifies } L \text{ in polynomial time} \}$

An alternative definition

$$P = \bigcup Time(N^{k})$$

$$NP = \bigcup_{k \ge 0} NTime(N^{k})$$

where

$$NTime(N^t) = \{L \subseteq \Sigma^* | L \text{ is accepted by some non deterministic Turing machine in time } O(T)\}$$

$$Time(N^t) = \{L \subseteq \Sigma^* | L \text{ is decided by some deterministic Turing machine in time } O(T)\}$$

Poly-time verification example

Hamiltonian cycle of an undirected graph G = (V, E) is a simple cycle that contains every vertex in V.

Hamiltonian-cycle problem

- Does G have a Hamiltonian cycle? or equivalently.
- $G \in HAM$ when $HAM = \{ \langle G \rangle | G \text{ has a hamiltonian cycle} \} (\langle G \rangle : G \cap encoding)$
- * A simple deciding algrithm
 - enumerate all $\approx (|V|-1)!$ permutations of the vertices and check to see if they contain a Hamiltonian cycle
 - a Hamiltonian cycle $\rightarrow \Omega((|V-1|!))$ at least $\Omega(2^{|V-1|})$: non-polynomial
- * What if a certificate is given? (certificate: a seq. of vertices)
 - proving that the certificate makes a Hamiltonian cycle is obviously easy.
 - → O(| Ⅵ²) adjacency list 표현 가정
- * $P \subseteq NP$ (trivial from definition),

$$P = NP$$
? \leftarrow open question

conjecture : $P \neq NP$

Algorithms 2001. 11. 13.

Reducibility

A language L_1 is said to be "poly-time reducible" to a language L_2 , denoted by $L_1 \leq_p L_2,$

if \exists a poly-time computable function $f: \Sigma^* \to \Sigma^*$ such that $\forall x \in \Sigma^*, x \in L_1 \Leftrightarrow f(x) \in L_2$ Intuitively

 $L_1 \leq_p L_2$ means that L_1 is no harder than L_2

Thm.

If
$$L_1 \leq_p L_2$$
 and $L_2 \not\in P$, then for $L \not\in P$

<proof>

Thm.

If
$$L_1 \leq_p L_2$$
 and $L_2 \in NP$, then $L_1 \in NP$

NP-completeness

A language $L(\subseteq \Sigma^*)$ is NP-complete, if

- 1. $L \in NP$
- 2. $\forall A \in NP$, $A \leq_p L$

* If a language satisfies at least the above 2, it is called NP-hard

Thm.

Let
$$L \in NP$$
-complete and $L \in P$, then $P = NP$

of>

Want to show $P \subseteq NP \& NP \subseteq P$

 $P \subseteq NP$: trivial

 $NP \subseteq P$

Let $A \in NP$, then $A \leq_p L$ by the def. of NP-completeness

Since $L \in P$, $A \in P$ by the previous theorem.

 $\therefore NP \subseteq P$

* meaning

If ∃only one NP-complete problem that can be solved in poly. time, then all NP-complete

Algorithms 2001. 11. 13.

problems (absolutely including NP-complete problems) can be solved in poly. time.

Algorithms 2001. 11. 15.

© Think about the difficulty to prove that a language is NP-complete by the definition of NP-completeness

→ devise a simple method

Thm. If $L \in NP$ and $\exists A \in NP$ -complete s.t $A \leq_p L$, then $L \in NP$ -complete proof.

- ① $L \in NP$: given
- ② $\forall B \in NP$, $B \leq_{D} L$?

Since A is NP-complete, $\forall B \in NP, B \leq {}_{D}A$

Since $A \leq_{p} L$, $B \leq_{p} A \leq_{p} L$ i.e $B \leq_{p} L$

- \bigcirc To prove a language L to be NP-complete, we only have to show that
 - (1) $L \in NP$
 - (2) For a known NP-complete problem A, $A \le {}_{p}L$
- © Starting point: we should have the 1st NP-complete problem

Def.

A Boolean formula is an expression containing Boolean variables and operations:

$$\wedge$$
 , \vee , \rightarrow , \neg , \Leftrightarrow

A boolean formula \emptyset is **satisfiable** if \exists an assignment of Boolean values to its variables s.t the formula evaluates to true

e.g
$$((a \lor b \lor c) \land \overline{d}) \rightarrow (c \lor \overline{f}) : d=1$$

Def.

GSAT = $\{\langle \emptyset \rangle | \emptyset \text{ is a satisfiable Boolean formula}\}$: General satisfiability

Thm. (Cook's Thm)

GSAT is NP-complete

** The textbook uses circuit satisfiability problem as the 1st NP-complete problem. Either is Okay for the starting.

Algorithms 2001. 11. 15.

 \bigcirc To prove that a language L is NP-complete

- (1) Show $L \in NP$
- (2) Choose a known NP-complete problem L', describe an alg. for a function f that maps every instance of L' to an instance of L
- (3) Show that the process of the above (2) can be done in poly. time
- (4) Prove that $x \in L'$ iff $f(x) \in L$
- \times Step (2), (3) \rightarrow polytime transformation

Def.

A literal is either a Boolean variable or its negation.

A **clause** is a Boolean formula of the form $l_1 \vee l_2 \vee \cdots \vee l_k$ where each l_i is a literal.

A Boolean formula is said to be in **conjuntive normal form** (CNF) if it is of the form $c_1 \wedge c_2 \wedge \cdots \wedge c_m$ where each c_i is a clause.

e.g
$$(X_1 \vee \overline{X_2} \vee X_3) \wedge X_4 \wedge (\overline{X_4} \vee X_5)$$

A Boolean formula is said to be in k-CNF if it is in CNF and each clause has at most k distinct literals (slightly different from the def. in the text).

Thm.

- SAT = $\{\langle \emptyset \rangle | \emptyset \text{ is a satisfiable Boolean formula in CNF}\}$ is NP-complete
- 3SAT = $\{\langle \emptyset \rangle | \emptyset \text{ is a satisfiable Boolean formula in } 3-CNF\}$ is NP-complete proof.
 - ① SAT & 3SAT $\in NP$

A satisfying assingment of variables can be verified in poly. time.

② GSAT \leq_p SAT, GSAT \leq_p 3SAT

Rewrite the original formula of GSAT as a conjunction of formulas describing the operation.

For example,
$$\emptyset = ((x_1 \rightarrow x_2) \lor (\overline{x_1} \lor x_3) \lor x_4) \land \overline{x_2}$$

Step 1. Introduce new variables $(y_i's)$

Algorithms 2001. 11. 15.

Step 2. Construct a conjunction \emptyset_1 of formulas each with at most 3 literals, defining how the subformulas and the new variables are related.

 \emptyset_1 is

$$(y_1 {\leftrightarrow} (x_1 {\rightarrow} x_2)) \wedge (y_2 {\leftrightarrow} (\overline{x_1} \vee x_3)) \wedge (y_3 {\leftrightarrow} (y_2 \vee x_4)) \wedge (y_4 {\leftrightarrow} (y_1 \vee t_3)) \wedge (y_5 {\leftrightarrow} (y_4 \wedge \overline{x_2}))$$

Fact. \varnothing is satisfiable iff $\varnothing_2 = \varnothing_1 \wedge y_5$ is satisfiable. ($\varnothing \equiv \varnothing_1 \wedge y_5$)

Step 3. Convert each subformula of \emptyset_2 into an equivalent 3-CNF formula.

Use the following rules:

$$A \rightarrow B \equiv \overline{A} \vee B$$

$$A \leftrightarrow B \equiv (\overline{A} \vee B) \wedge (A \vee \overline{B})$$

$$(A \wedge B) \vee (C \wedge D) \equiv (A \vee C) \wedge (A \vee D) \wedge (B \vee C) \wedge (B \vee D)$$
e.g
$$(y_1 \leftrightarrow (x_1 \rightarrow x_2)) = (\overline{y_1} \vee (x_1 \rightarrow x_2)) \wedge (y_1 \vee (\overline{x_1 \rightarrow x_2}))$$

$$= (\overline{y_1} \vee (\overline{x_1} \vee x_2)) \wedge (y_1 \vee (\overline{x_1} \vee x_2))$$

$$= (\overline{y_1} \vee \overline{x_1} \vee x_2) \wedge (y_1 \vee (x_1 \wedge \overline{x_2}))$$

$$= (\overline{y_1} \vee \overline{x_1} \vee x_2) \wedge (y_1 \vee x_2) \wedge (y_1 \vee \overline{x_2})$$

Let the result of Step 3 be a CNF \emptyset_3 .

 \emptyset is satisfiable iff \emptyset_3 is satisfiable.

Finally, the transformation of Step 1, 2 & 3 can be done in poly. time w.r.t the length of the original formula.

Algorithms 2001. 11. 20.

Thm. EXACT-3SAT

= $\{\langle \emptyset \rangle | \emptyset \text{ is a satisfiable Boolean formula in CNF with exactly 3 distinct literals per clause}\}$ is NP-complete

proof.

- ① When a satisfying assingment of variables is provided, its satisfiability can be checked in poly. time. \therefore EXACT-3SAT \in NP
- ② Show $3SAT \leq EXACT 3SAT$

Convert each clause of 3SAT(with "at most" 3 literals) into a conjunction of clauses with "exactly" 3 literals by the following rules:

$$(I_1 \lor I_2 \lor I_3)$$
 form : Okay

$$(I_1 \vee I_2) \equiv (I_1 \vee I_2 \vee p) \wedge (I_1 \vee I_2 \vee \overline{p})$$

$$(\mathit{I}) \equiv (\mathit{I} \lor \mathit{p}_1 \lor \mathit{p}_2) \land (\mathit{I} \lor \overline{\mathit{p}_1} \lor \mathit{p}_2) \land (\mathit{I} \lor \mathit{p}_1 \lor \overline{\mathit{p}_2}) \land (\mathit{I} \lor \overline{\mathit{p}_1} \lor \overline{\mathit{p}_2})$$

of literals in the new formula $\leq 12 \times \#$ of literals in the original formula

It is obviously a poly-time transformation.

The original formula is satisfiable iff the new formula is satisfiable.

Thm. **HAM** = $\{\langle G \rangle | G \text{ has a Hamiltonian cycle} \}$ is NP-complete

Thm. Longest-Cycle = $\{\langle G, k \rangle | Graph \ G \ has \ a \ simple \ cycle \ of \ length \ge k \}$ is NP-complete proof.

- ① When a simple cycle is provided, it's easy(poly-time checkable) to verify that the $length \ge k$ \therefore It is in NP
- ② HAM≤ Longest Cycle

Given an instance of HAM(a graph G), transform it to an instance G' of Longest-Cycle by assigning $w_e = 1$, $\forall e \in E$ using the same graph.

This transformation takes $\Theta(|E|)$ (poly-time)

 \exists a Hamiltonian cycle in G iff \exists a simple cycle of $length \ge |V|$ in G'

Note. The transformation only has to provide 1-to-1 correspondence between their instances that preserves "yes" or "no" answers.

***** MAX-SNP-Complete

Def. Clique = $\{\langle G.k \rangle | G = (V, E) \text{ is a graph and } G \text{ has a clique of size} \geq k\}$

* Remind: a clique is a complete subgraph

input: a graph G = (V, E) and an integer k

question: Does G have a clique of $size \ge k$?

Max Clique: Given a graph G = (V, E), find a clique of maximum size.

Thm. Clique∈P iff Max Clique has a poly-time algorithm. proof. trivial

Thm. Clique is NP-complete

Heuristics!! problem space (=problem search space) / local optima (=attractor)

Algorithms 2001. 11. 22.

Thm. Clique is NP-complete proof.

Clique∈NP

Given a vertex set of $size \ge k$, check to see if it is a clique trivially in poly. time.

- ∴ Clique∈NP
- ② $EXACT 3SAT \le {}_{n}Clique$

Given an instance of EXACT-3SAT $\emptyset = c_1 \wedge c_2 \wedge \cdots \wedge c_m$ where each $c_i = (I_1 \vee I_2 \vee I_3)$.

We want to construct an instance G_{\emptyset} of Clique such that $\emptyset \in EXACT - 3SAT$

iff
$$\langle G_{\emptyset}, m \rangle \in Clique$$

 $G_{\emptyset} = (V, E)$ is constructed as follows

V: we have one vertex for each literal in \emptyset , So |V| = 3m.

E: \exists an edge between $I_{ir} \& I_{is}$

if i) $i \neq j$ (i.e. l_{ir} and l_{js} are not in the same clause)

and ii) they are consistant. i.e. $I_{ir} \neq \overline{I_{is}}$

The construction can be done in poly. time. w.r.t the # of literals.

Claim.
$$\emptyset \in EXACT - 3SAT \Leftrightarrow \langle G_{\emptyset}, m \rangle \in clique$$

(⇒) Assume $\emptyset \in EXACT - 3SAT$

 \exists an assignment that makes \emptyset true. i.e each clause of \emptyset has at least one literal with value 1 (true). Pick m vertices corresponding to these literals, one from each clause.

The set of vertices forms a clique of size m in G_{\emptyset} by the construction above.

(\Leftarrow) Assume $\langle G_{\emptyset}, m \rangle \in Clique$ (∃a clique of $size \geq m$ (= m))

By the construction above, note that a clique in G_{\emptyset} cannot contain two vertices derived from the same clause. Therefore the clique of size m has exactly one vertex derived from each clause.

Assign 1(true) to the literals corresponding to the vertices of the clique (of size m) in G_{\varnothing} .

Then by the construction above.

- 1. Each clause has a literal with value 1
- 2. The assignment is consistant (i.e. \exists no such edge x-x)
- so. \emptyset is satisfiable i.e $\emptyset \in EXACT 3SAT$

```
recursive set - decidable recursively enumerable set - verifiable } without time factor P - "quickly" decidable NP - "quickly" verifiable } with time factor
```

 $CO-NP=\{L\subseteq \Sigma^*|\exists an alg. A that verifies \overline{L} in poly. time\}$ cf. $\overline{L}\in NP$

NP = CO - NP (?) open question

 $P \subseteq NP \cap CO - NP$ (true)

 $(NP \cap CO - NP) - P = \emptyset$ (?) open question

Algorithms 2001. 11. 22.

Thm.
$$NP \neq CO - NP \Rightarrow P \neq NP$$

proof. Easy (use the fact that $P = CO - P$)
 $P = NP \rightarrow P = CO - P \rightarrow NP = CO - NP$

Approximation

If a problem is known to be NP-complete, it is strongly believed that there is no poly time algorithm for it.

The best we can do is finding a poly-time approximation algorithm for it.

Approximation algorithm is for the optimization version of the problem.

For a minimization problem, the ratio bound $\rho(n)$ is a measure for an algorithm's performance such that $\frac{c}{c^*} \leq \rho(n)$

where

n: the size of the problem,

 c^* : the optimal solution cost,

c: the cost of a solution produced by the algorithm

TSP (Traveling Salesman Problem)

 $TSP = \{\langle G, k \rangle | G = (V, E) \text{ is a complete graph with weighted edges }, k \in \mathbb{Z} \text{ and } G \text{ has a Ham Cycle of } cost \leq k \}$ Thm. TSP is NP-complete

proof.
$$HAM \leq_p TSP$$

$$G \in HAM \Leftrightarrow \langle G', 0 \rangle \in TSP$$

Algorithms 2001. 11. 27.

TSP with triangle inequality(metric TSP) ($w_{ij} \le w_{ik} + w_{kj}$, \forall cities i, j, k)

1. NN (Nearest Neighbor alg.)

- start at a random city(vertex), keep visiting the nearest unvisited neighbor Thm. The ratio bound for NN

$$\rho(n) = \frac{1}{2} (\lceil \log_2 n \rceil + 1) \ \forall I$$

$$\frac{c}{c^*} > \frac{1}{3} (\log_2(n+1) + \frac{4}{3})$$
 for some large instance

Guarantees almost nothing (이론적임, 실용성은 없는 알고리즘~ ^^;)

2. MST (Minimum Spanning Tree alg.)

- Construct a min. spanning tree T starting at a random vertex.
- Return the Ham. cycle H that visits the vertices in the order of a preorder traversal of T Thm. The ratio bound $\rho(n)$ for MST

$$\rho(n) \leq 2$$

proof. $c = cost(H) \le 2cost(T) \le 2c^*$

3. MM (Minimum-weight Matching alg.)

- Find a min. spanning tree T starting at a random vertex r
- Let V' be the set of odd-degree vertices in T. (The # of odd-degree vertices in a graph is always even)
- ullet Find a matching of V' which has maximum cardinality and minimum weight, say M
- Add M to T (to get an Eulerian graph T)
- Find an Eulerian tour C_1 of T'
- Convert C_1 into a TSP tour C_2 (a Ham. cycle) by using short cuts.

- * A matching of a graph G is a set of edges no two of which share an end point Remind.
 - An Eulerian tour of a graph is a cycle which contains every edge exactly once.
 - Eulerian graph every vertex has an even degree
 - Every Eulerian graph has at least an Eulerian tour

Fall 2001, page 21

Algorithms 2001. 11. 27.

Thm. The ratio bound $\rho(n)$ for MM

$$\rho(n) \leq \frac{3}{2}$$

proof.

Note.
$$cost(T) \le c^*$$

 $cost(C_1) = cost(T) + cost(M)$

Claim.
$$cost(M) \le \frac{1}{2} c^*$$

proof.

An optimal tour $C_{opt}(cost c^*)$ can be changed to a tour C'_{opt} with only vertices in V' by using short cuts.

The
$$cost(C'_{opt}) \leq c^*$$

Take alternate edges in $\left. C \right.'_{opt}$ and then we have two matchings of $\left. V \right.'$

Then the smaller of the two matchings must have $cost \le \frac{1}{2} cost(C'_{opt})$

Since M is a min. weight matching of V'

$$cost(M) \le the smaller matching above$$

 $\le \frac{1}{2} cost(C'_{opt}) \le \frac{1}{2} c^*$

therefore

$$cost(C_2) \leq cost(C_1) = cost(T) + cost(M) \leq \frac{3}{2} c^*$$

TSP without triangle inequality

Thm. If $P \neq NP$, \exists no poly-time approximation alg. with a ratio bound ρ for the TSP without triangle inequality.

proof.

Show that if \exists a poly-time approximatino alg. A with a ratio bound ρ , then the Ham cycle problem (a known NP-complete problem) is in P.

Given a Ham cycle problem instance G = (V, E), we construct an instance of TSP G' = (V, E') as follow:

$$W_{ij} = \begin{cases} 1 & \text{if } (i, j) \in E \\ p \mid V + 1 & o. w \end{cases} \leftarrow \text{amplification!!}$$

This is a poly time transformation.

Run alg. A on G', if A return a tour length $\leq \rho | V$, then \exists a Ham. cycle in G, otherwise \exists no Ham. cycle

Thus HAM can be solved in poly time.

Contradiction as far as $P \neq NP$

* TSP: combinatorial explosion

Algorithms

2001. 11. 29. / 12. 4.

Some stochostic(추이적) Approximation Methods

Simulated Annealing (SA)

```
s \leftarrow \text{initial solution};
t \leftarrow \text{initial temperature};
repeat

s' \leftarrow \text{perturb}(s);

\Delta s \leftarrow \cos(s') - \cos(s);

\text{if}(\Delta s < 0 \text{ or random}() < f(\Delta s, t))

s \leftarrow s'; //\text{accept}

until(time to change temperature)

change t;

until(stopping condition)
```

▷ Genetic Algorithm (GA): 유전 알고리즘

```
create a fixed # of initial solution; repeat for i \leftarrow 1 to k choose two parent solution P_1, P_2 from the population; offspring_i \leftarrow cross over(P_1, P_2); offspring_i \leftarrow mutation(offspring_i); local-optimization(offspring_i); //optimal replace the whole or part of the population with offspring_1, \cdots, offspring_k until(stopping criterion) return the best solution in the population;
```



```
s ← initial solution;
repeat
s' \leftarrow \text{perturb}(s);
s'' \leftarrow \text{local-optimization}(s');
\Delta s \leftarrow \text{cost}(s'') - \text{cost}(s);
if( \Delta s < 0) \leftarrow \text{SA적인 acceptance 카미 가능}
s \leftarrow s'';
until(stopping condition)
```


N(x): neighborhood of a solution

T: Tabu list

A: Aspiration function

```
X_0 \leftarrow \text{initial solution};
Initialize Tabu list T and aspiration function A;
i \leftarrow 1;
repeat

pick the best x_i \in \mathcal{M}(x_{i-1});

if( x_i \notin T)

then accept x_i;

update T and A;

else if(cost(x_i) < A(x_{i-1}))

then accept x_i;

update T and A;

else reject x_i;

update T and A;

update T and T
```