Работа 3.2.4

Свободные колебания в электрическом контуре

Цель работы: исследование свободных колебаний в колебательном контуре.

В работе используются: генератор импульсов, электронное реле, магазин сопротивлений, магазин емкостей индуктивность, электронный осциллограф, LCR-измеритель.

Экспериментальная установка:

Рис. 1: Схема установки

Таблица 1: Параметры катушки

ν , Γ ц	L , м Γ н	R, O_{M}
50	145.65	10.516
1.000	141.66	11.45
5.000	142.36	136.2

Таблица 2: Параметры генератора

Период импульсов T_0 , с	0.01
Частота генератора ν , Γ ц	100
Длительность импульсов	5 мкс

Обработка результатов

Вычисление периодов

Рассчитаем экспериментальные значения периодов колебаний по результатам измерений x_0, x, n . Используем формулу:

 $T_{\mathfrak{S}KC\Pi} = T_0 \frac{x}{nx_0}$

Погрешность $T_{\text{эксп}}$:

$$\sigma_{T_{\text{skch}}} = \sqrt{\left(\frac{T_0}{nx_0}\sigma_x\right)^2 + \left(\frac{T_0x}{nx_0^2}\sigma_{x_0}\right)^2}$$

Найдем теоретические значения по формуле:

$$T_{\text{reop}} = 2\pi\sqrt{LC} \tag{1}$$

Погрешность теоретических значений пренебрежимо мала по сравнению с экспериментальными.

Построим график $T_{\text{эксп}} = f(T_{\text{теор}})$ (рис. 2). Используя метод наименьших квадратов, полагая, что график проходит через точку (0,0), найдем угловой коэффициент:

$$k = 0.95 \pm 0.06$$

Угловой коэффициент совпадает с единицей в пределах погрешности, поэтому можно считать, что формула (1) верна.

Таблица 3	₹.	Ланные	ппя	эсперимента	c	периолами
Lao/imma e	,.	$\Delta annoise$	ZIJIZI	John Dimonia	\cdot	псриодами

raceman of Memoria democratica e metro-democratica										
x_0 , дел	x, дел	n	C, мкф	$T_{ m эксп}$, мс	T_{reop} , MC	$\sigma_{T_{\mathfrak{s}_{\mathrm{KCH}}}}, \mathrm{MC}$				
26	14	17	0.0200	0.32	0.339	0.03				
27	15	12	0.0400	0.46	0.480	0.04				
26	16	10	0.0800	0.62	0.678	0.05				
26	14	5	0.1500	1.08	0.929	0.09				
26	25	8	0.3000	1.20	1.310	0.07				
26	15	4	0.4000	1.44	1.520	0.11				
26	21	5	0.5000	1.62	1.700	0.10				
26	19	4	0.6000	1.83	1.860	0.12				
26	24	5	0.7000	1.85	2.010	0.10				
26	26	5	0.8000	2.00	2.140	0.11				

Рис. 2: График $T_{\text{эксп}}(T_{\text{теор}})$

Критическое сопротивление, декремент затухания и добротность

0.5

Рассчитаем логарифмиеский декремент затухания по формуле:

0

$$\Theta = \frac{1}{n} \ln \frac{U_k}{U_{k+n}}$$

$$\sigma_{\Theta} = \frac{1}{n} \sqrt{\left(\frac{\sigma_{U_{k+n}}}{U_{k+n}}\right)^2 + \left(\frac{\sigma_{U_k}}{U_k}\right)^2}$$
(2)

2.5

Для определения сопротивления контура сложим омическое сопротивление катушки с сопротивлением резистора:

$$R_{\text{koht}} = R + R_L$$

Критическое сопротивление можно определить, используя формулу:

$$R_{\text{\tiny KP}} = 2\pi \sqrt{\frac{\Delta Y}{\Delta X}}$$

$$\sigma_{R_{\text{\tiny KOHT}}} = \frac{\pi}{\sqrt{\frac{\Delta Y}{\Delta X}}} \sigma_{\frac{\Delta Y}{\Delta X}}$$

где

$$X=\frac{1}{R^2},\ Y=\frac{1}{\Theta^2}$$

Чтобы найти $\frac{\Delta Y}{\Delta X}$, построим график Y(X) (рис. 3) и найдем его угловой коэффициент:

$$\frac{\Delta Y}{\Delta X} = (3.9 \pm 0.2) \text{kOm}^2$$

Погрешность X мала по сравнению с погрешностью Y:

$$\sigma_Y = \frac{2n^2}{\ln^3 \left(\frac{U_k}{U_{k+n}}\right)} \sqrt{\left(\frac{\sigma_{U_k}}{U_k}\right)^2 + \left(\frac{\sigma_{U_{k+n}}}{U_{k+n}}\right)^2}$$

Получаем:

$$R_{\mathrm{\kappa p}}^{\mathrm{граф}} = (12.4 \pm 0.3) \mathrm{кОм}$$

Рассчитаем теоретическое значение для критического сопротивления:

$$R_{\text{крит}}^{\text{теор}} = 2\sqrt{\frac{L}{C}}$$

$$\sigma_{R_{\text{кр}}^{\text{теор}}} = 2\frac{\sqrt{LC}}{C^2}\sigma_{C}$$

$$R_{\text{крит}}^{\text{теор}} = (10.6 \pm 0.2)\text{кОм}$$
(3)

Значение полученное в ходе эксперимента:

$$R_{\mathrm{крит}}^{\mathrm{эксп}} = 8$$
кОм

Полученное значение близко к графическому результату. Результат полученный практически меньше графического и теоретического. Это может быть вызвано тем, что точность осциллографа, с помощью которого определялась апериодичность колебаний, не позволяла увидеть колебания с малой амплитудой.

Рассчитаем добротность для максимального и минимального Θ по формуле:

$$Q = \frac{\pi}{\Theta}, \quad \sigma_Q = \frac{\pi}{\Theta^2} \sigma_{\Theta}$$
$$Q_{\Theta_{max}}^{(1)} = 2.36 \pm 0.16$$
$$Q_{\Theta_{min}}^{(1)} = 6.6 \pm 0.9$$

Рассчитаем эти же величины, используя формулу:

$$Q = \frac{1}{R} \sqrt{\frac{L}{C}}, \quad \sigma_Q = \sqrt{\left(\frac{1}{R} \frac{\sqrt{LC}}{C^2} \sigma_C\right)^2 + \left(\frac{1}{R^2} \sqrt{\frac{L}{C}} \sigma_R\right)^2}$$

$$Q_{\Theta_{max}}^{(2)} = 2.28 \pm 0.06$$

$$Q_{\Theta_{min}}^{(2)} = 6.51 \pm 0.13$$
(4)

Полученные значения совпадают в пределах погрешности, значит теоретическая формула (4) верна.

Таблица 4: Данные для эксперимента с затухающими колебаниями

R , κ O	$R_{\text{конт}}$, кОм	X , κOm^{-2}	U_k	U_{k+n}	n	Θ	Y	σ_Y
0.800	0.936	1.141	20	3	4	0.474	4.4	0.8
1.000	1.136	0.775	33	3	4	0.599	2.8	0.3
1.300	1.436	0.485	34	3	3	0.809	1.5	0.2
1.500	1.636	0.374	35	3	3	0.819	1.5	0.2
1.900	2.036	0.241	34	4	2	1.07	0.87	0.08
2.200	2.336	0.183	34	9	1	1.33	0.57	0.04

Колебания на фазовой плоскости

Имея спираль на плоскости (\dot{U},U) , мы можем посчитать логарифмический декремент, пользуясь формулой (2). Для этого снимем значения точек, в которых спираль пересекает ось Y=U: в этот момент ток равен нулю, а напряжение максимально. Количество витков спирали есть количество периодов между точками.

$$\Theta_{max} = 1.30 \pm 0.11$$

 $\Theta_{min} = 0.46 \pm 0.04$

Полученные значения совпадают с вычисленными по результатам эксперимента с графиком напряжения от времени (Таблица 2). Этот способ более точный, т.к. напряжение в момент, когда конденсатор полностью заряжен легче определить, а также осциллограф позволяет получить большее абсолютное значение напряжения с меньшей погрешностью.

Рис. 3: Зависимость Y(X)

Таблица 5: Радиус спирали									
Y , дел, $0.1R_{\rm kp}$	2	4	6	9	16	Y , дел, $0.3R_{\rm kp}$	6	22	

Вывод

Эксперимент показал, что для определения периода колебаний можно пользоваться формулой (1). Для критического сопротивления справедлива формула (3). Добротность контура можно описать формулой (4).