II. VEZÉRLÉSI STRATÉGIÁK

- 1. Nem-módosítható
- 2. Visszalépéses
- 3. Gráfkereső

1. Nemmódosítható stratégia

- A nemmódosítható keresés olyan kereső rendszer, ahol
 - globális munkaterület: a reprezentációs gráf egy csúcsa
 - · kiinduló érték: startcsúcs,
 - terminálási feltétel: az aktuális csúcs egy célcsúcs vagy a keresés megakad.
 - keresés szabálya: az aktuális csúcsot cseréli ki
 - vezérlési stratégia: kiválasztja az új csúcsot,

2

Alkalmazás

- Amikor rendelkezünk a problématéren olyan célfüggvénnyel (heurisztikával), amely a helyes megoldásokban veszi fel az optimumát
 - Lokális keresés, amikor egy csúcs szimbolizál
 - egy lehetséges választ (általános útkeresés)
 - egy választ leíró útnak egy pontját (speciális útkeresés)
 - Evolúciós algoritmus, amikor egy csúcs egyszerre több lehetséges választ szimbolizál.
- Olyan reprezentációs gráfok esetén, ahol egy rossz döntés miatt nem juthat a keresés zsákutcába
 - Kommutatív állapottér reprezentáció

3

Kommutatív állapottér reprezentáció

- Egy adott állapotra alkalmazható műveletek mindazokra az állapotokra is végrehajthatók, amelyek az adott állapotból egy művelettel elérhetők.
- □ Egy állapotra alkalmazott műveletsorozat és annak tetszőleges permutációja azonos állapotba vezet.
- □ Célállapotból elérhető állapot is célállapot.
- Példa: rezolúció

4

1.2. Lokális keresések

- □ Egy adott pillanatban ismert egyetlen csúcsot (lehetséges választ) annak környezetéből vett lehetőleg jobb csúccsal cserél le.
- ☐ A jobbság eldöntéséhez a célfüggvényt használ
- □ Alkalmazás:
 - Adott tulajdonságú elem keresése
 - Függvény optimumának keresése

Hegymászó algoritmus

 Lokális optimumban megengedi a legjobb - de az aktuális csúcsnál rosszabb - szomszédra való lépést, és kizárja a szülő csúcsra való visszalépést.

Procedure Hegymászó módszer

- $1.n \leftarrow startcsúcs$
- 2. while n nem célcsúcs loop
- 3. $n \leftarrow \operatorname{opt}_{f}(\Gamma(n) \backslash \pi(n))$
- 4. endloop

end

6

Szimulált hűtés

- ☐ A következő csúcs választása véletlenszerű.
- ☐ Ha a kiválasztott *r* csúcs célfüggvény értéke rosszabb (kisebb), mint az aktuális n csúcsé, akkor újcsúcsként való elfogadásának valószínűsége fordítottan arányos f(r) és f(n) különbséggel.
- ☐ Egy rosszabb csúcs elfogadásának valószínűsége az idő függvényében csökken (T>0).

ha
$$f(r) \ge f(n)$$
 vagy

$$f(r) < f(n)$$
 és $e^{\frac{f(r) - f(n)}{T}} > random$

Az új csúcs elfogadásának valószínűsége T=10, f(n)=120f(r)exp((f(r)-f(n))/10)147 OK (14.88) 127 OK (2.01) OK (1.00) 120 107 0.27 77 0.01

A T hányados szerepe

□ Az új csúcs elfogadásának valószínűsége a T függvényében:

f(n)=120, f(r)=107T exp(-13/T)

> 1 0.000002 5 0.0743 10 0.2725 20 0.52 50 0.77 1010 0.9999.

Szimulált hűtés algoritmusa

Procedure Szimulált hűtés

- 1. $n \leftarrow startcsúcs; k \leftarrow 1$
- 2. while not terminálási feltétel (n nem célcsúcs) loop
- 3. $\underline{\text{for }} i = 1 \dots L_{\nu} \underline{\text{loop}}$
- 4. $r \leftarrow \text{select}(\Gamma(n) \backslash \pi(n))$
 - $\underline{\text{if }} f(r) \ge f(n) \ or \ f(r) < f(n) \ and \ e^{\frac{f(r) f(n)}{T_1}} > random$
- 6. then $n \leftarrow r$
- 7. endloop
- 8. endloop

end

5.

Hűtési ütemterv

- □ A T csökkentésével csökken egy új csúcs elfogadásának valószínűsége.
- □ Adjunk ütemtervet a T változására
- □ Az ütemterv elemei:
 - Kezdeti hőmérséklet: T₀
 - Hőmérséklet csökkentésének menete és egy hőmérséklet melletti szakasz hossza:

 (T_k, L_k) k=1,2,...

ahol minden T_k érték L_k lépésen keresztül van érvényben.

Szimulált hűtés ereje

- ☐ A szimulált hűtés algoritmusa (aszimptotikusan) egy optimális megoldáshoz konvergál, ha
 - az algoritmussal bármely csúcsból bármely csúcs elvileg véges lépésen belül elérhető (erősen összefüggés, csúcs környezet)
- □ Ahhoz azonban, hogy véges lépésen belül is egy elég jó megoldást találjunk, megfelelő hűtési ütemtervet kell találni.

1.3. Evolúciós (genetikus) algoritmus

- Egy adott pillanatban nem egyetlen lehetséges választ, hanem lehetséges válaszok (egyedek) halmazát, populációját tartjuk nyilván.
- A populációt lépésenként próbáljuk meg jobbra cserélni. Egy populáció annál jobb, minél inkább olyan egyedekkel rendelkezik, amelyek a kitűzött probléma helyes válaszai vagy azokhoz közeli lehetséges válaszok.
- ☐ A populáció megváltozása visszavonhatatlan.

Evolúciós algoritmus működése

- ☐ Kezdetben egy véletlen populációt választunk.
- ☐ Minden lépésben
 - Szelekció: Kiválasztja a szülő egyedeket.
 - Rekombináció (keresztezés): A szülőkből utódokat állít elő.
 - Mutáció: az utódok kismértékű változtatása.
 - Visszahelyezés: utódokat is tartalmazó új populáció kialakítása
- A cél lehet egy keresett célegyed előállítása, vagy a populáció globális értékének változatlansága.

20

Alapalgoritmus

Procedure EA

 $p \leftarrow kezdeti populáció$ while terminálási feltétel nem igaz loop

 $p' \leftarrow szelekció(p)$

 $p'' \leftarrow rekombináció(p')$

 $p''' \leftarrow mutáció(p'')$

 $p \leftarrow visszahelyez\acute{e}s(p,p''')$

endloop

Algoritmus elemei

- □ Kódolás (egyed reprezentáció)
- □ Rátermettségi (fitnesz) függvény
 - Kapcsolat a célfüggvénnyel
- □ Evolúciós operátorok
 - szelekció, rekombináció (keresztezés), mutáció, visszahelyezés
- □ Kezdő populáció, Megállási feltétel
- □ Stratégiai paraméterek

7 1 4 6 5 2 3

indirekt

 populáció mérete, mutáció valószínűsége, utódképzési ráta, visszahelyezési ráta, stb.

22

Kódolás

- Egy egyedet jelsorozattal (kromoszóma) kódolunk.
 A jelek (gén) vagy azok csoportjai írják le az egyed tulajdonságait: atribútum és érték.
- Sokszor egy jelnek a kódsorozatban elfoglalt pozíciója (lókusz) adja meg az atribútumot, a jel pedig az értéket (allél). Ilyenkor a kód szerkezete tulajdonságonkénti feldarabolhatóságot mutat.
- □ Gyakori megoldás:
 - valós (egész) számok tömbje, bináris tömb,
 - permutáció, fa-ábrázolás

23

Gráfszínezési példa kódolása Adott egy véges egyszerű gráf, amelynek a csúcsait a lehető legkevesebb szín felhasználásával úgy kell kiszínezni, hogy a szomszédos csúcsok eltérő színűek legyenek. 1. 2. 3. 4. 5. 6. 7. direkt Gráfszínezési példa kódolása 1 lehető legkevesebb szín felhasználásával úgy kell kiszínezni, hogy a szomszédos csúcsok eltérő színűek legyenek.

24

Szelekció

- Célja: a rátermett egyedek kiválasztása úgy, hogy a rosszabbak kiválasztása is kapjon esélyt.
- Néhány módszer:
 - Rátermettség arányos: a rátermettségi függvényre vagy annak skálázására épülő rulett kerék algoritmus
 - Rangsorolásos: rátermettség alapján sorba rendezett egyedek közül a kisebb sorszámúakat nagyobb valószínűséggel választja ki
 - Versengő: véletlenül kiválasztott egyedcsoportok (pl. párok) legjobb egyedét választja ki.
 - Csonkolásos: a rátermettség szerint legjobb valahány egyedből véletlenszerűen választ néhányat.

25

Rekombináció

- A feladata az, hogy adott szülő-egyedekből olyan utódokat hozzon létre, amelyek a szüleik tulajdonságait hordozzák.
- □ Tulajdonságai
 - A rekombináció a kód szerkezetéhez illeszkedő átalakítás, amely kihasználja, hogy a kód szerkezete általában tulajdonságonkénti darabolhatóságot mutat.
 - A csupán szerkezeti átrendezést keresztezésnek hívják
 - Ügyelni kell a kód-invariáns megtartására (permutáció)
 - Sztochasztikus és heurisztikus módszerek

26

Rekombináció tömbökre

□ Köztes rekombináció

- A szülők $(\underline{x}, \underline{y})$ által kifeszített hiperkocka valamelyik eleme lesz az utód (\underline{u})
- $\forall i=1...n$: $u_i = a_i x_i + (1-a_i) y_i$ $a_i \in [-h, 1+h]$ véletlen

□ Lineáris rekombináció

- A szülők $(\underline{x}, \underline{y})$ által kifeszített hiperkocka egy adott hipersíkjának valamelyik eleme lesz az utód (\underline{u})
- $\forall i=1...n: u_i=ax_i+(1-a)y_i \quad a{\in}[-h,\,1+h]$ véletlen

27

Permutációk keresztezése ¬□ Parciálisan illesztett keresztezés Szakasz cseréje után a perm.tul. sértő párokat. 2742467 2 3 1 5 4 6 7 1742563 \Rightarrow 2315476 1742536 1315536 □ Ciklikus keresztezés $a_i \leftrightarrow b_i$; $a_j \leftrightarrow b_j$, ahol $a_i = b_i \ (j \neq i)$; stb. 2315467 2 3 1 2 4 6 7 1312467 1 7 4 5 5 3 6 1742536 1 3 4 2 4 6 7 1342567 2715536 2715463

Mutáció

☐ A mutáció egy egyed (utód) kis mértékű véletlen változtatását, finom közelítését végzi.
☐ Valós tömbbel való kódolásnál kis p valószínűséggel:
☐ $\forall i=1...n: z_i=x_i\pm range_i^*p$ ☐ Bináris tömbbel való kódolásnál kis p valószínűséggel:
☐ $\forall i=1...n: z_i=1-x_i$ ☐ Permutáció esetén kis valószínűséggel választott pozíció-párra
☐ csere; a pozíciók közötti szakaszon a jelek léptetése, a jelek sorozatának megfordítása, esetleg átrendezése.

Visszahelyezés

☐ A visszahelyezés a populációnak az utódokkal történő frissítése. Kiválasztja (második szelekció) a populációnak a lecserélendő egyedeit, és azok helyett az utódokat veszi fel.

utódképzési ráta = <u>utódok száma</u> populáció száma

visszahelyezési ráta = lecserélendő egyedek száma populáció száma

ha u=v, akkor feltétlen cseréről van szó

- ha u<v, akkor a valóban lecserélendő egyedeket (egy harmadik) szelekcióval válogatjuk ki
- ha u>v, akkor a visszahelyezendő utódokat (egy harmadik) szelekcióval válogatjuk ki

GYAKORLAT

Gráfszínezés szimulált hűtéssel

□ Feladat:

Adott egy véges egyszerű gráf, amelynek a csúcsait a lehető legkevesebb szín felhasználásával úgy kell kiszínezni, hogy a szomszédos csúcsok eltérő színűek legyenek.

□ Cél:

A gráf csúcsainak olyan minimális osztályozását (egy osztályba tartozó csúcsok azonos színűek) keressük, ahol egy osztályhoz tartozó csúcsok között nem vezet él.

Gráfszínezés állapottér-reprezentációja

- ☐ Állapot: a csúcsok egy olyan osztályozása, ahol
 - A gráf maximális fokszámánál több osztály van,
 - lehet egy osztály üres is,
 - egy osztályon belül lehetnek élek.
- □ Művelet: Egy osztályból egy csúcsot egy másik osztályba helyezünk.
- ☐ Állapotgráf: Exponenciális méretű az eredeti gráf csúcsszámához mérve.
- □ Célállapot: a legjobb osztályozás

Gráfszínezés célfüggvénye

- \square Annál jobb egy (O_1, \ldots, O_k) osztályozás,
 - minél több csúcs van az első néhány osztályában (ezáltal minél kevesebb nem üres osztálya van), és
 - minél kevesebb egy osztályon belül vezető élek száma.
- $\Box f(n) = \sum_{i} w_{i}(|O_{i}| \lambda |A(O_{i})|)$
 - ahol $A(O_i)$ az O_i osztálybeli élek halmaza
 - a $w_i > 0$ számok szigorúan fogyó sorozatot alkotnak.
- □ Könnyű a "szomszédos" osztályozás célfüggvényértékét kiszámolni.

Példa

□ Hol veszi fel az f:[0 .. 1024]→[-1,1] függvény a egész intervallumon a maximumát? (A f-et nem ismerjük, de az f(x)-t tetszőleges x-re ki tudjuk számolni)

x	kód	f(x)	$(f(x)+1)/(\Sigma+10)$	rulett
13	0000001101	0.22	0.10	2
53	0000110101	0.79	0.15	0
119	0001110111	0.87	0.15	1
339	0101010011	-0.35	0.05	0
358	0101100110	-0.03	0.08	1
482	0111100010	0.84	0.15	2
602	1001011010	-0.88	0.01	0
778	1100001010	0.84	0.15	2
841	1101001001	0.85	0.15	2
956	11101111100	-0.82	0.01	0
		Össz: 2.33		
		Átl: 0.23		
		Max: 0.23		
		Max. 0.07		

rulett szelekció	rekombináció mutáció
rulett x kód 2 13 00000 0 53 841 11010 1 119 13 00000 0 339 778 11000 1 358 119 00d11 2 482 778 11d00 0 602 358 01011 2 778 482 01111 2 841 482 01111 0 956 841 11010	01001 1101001101 1101001101 01101 0000001010 0000001010 01010 1100001101 1100001101 10111 0000011100 0001011100 11100 1101110111 1101110111 0110 0101100010 0101100010 00010 0111100110 0111100100 00010 0111001001 0111001001

