

Statistics and Learning

Julien Bect

(julien.bect@centralesupelec.fr)

Teaching : CentraleSupélec / dept. of Statistics and Signal Processing

Research: Laboratory of Signals and Systems (L2S)

J. Bect & L. Le Brusquet — 1A — Statistics and Learning

Lecture 1/9 Introduction and point estimation methods

In this lecture you will learn how to...

- Introduce statistical inference and illustrate its usefulness
- Define the mathematical framework
- Present some commonly used estimation methods

Lecture outline

1 - Introduction

2 – The mathematical framework of statistical inference

- 3 Some (classical) methods for point estimation
 - 3.1 The substitution method
 - 3.2 The method of moments
 - 3.3 Maximum likelihood estimation

Lecture outline

1 - Introduction

2 - The mathematical framework of statistical inference

- 3 Some (classical) methods for point estimation
 - 3.1 The substitution method
 - 3.2 The method of moments
 - 3.3 Maximum likelihood estimation

One word, several meanings. . .

One (or several) statistic(s) : numerical indicators, often simple, computed from data.

Examples: average, standard deviation, median, etc....

- statistics : a mathematical discipline which has several branches, including
 - descriptive statistics,
 - statistical inference (part 1 of this course),
 - design of experiments,
 - statistical learning (part 2 of this course),
 - ₩ . . .

Remark : a mathematical definition of the word "statistic" (first meaning) will be given later.

Historical example : the opinion survey case

A descriptive statistic may be calculated on :

- ▶ the entire population → quantity of interest
- ightharpoonup a sample ightharpoonup "approximate" value (sense to be defined)

To infer = to draw conclusions about a population from data collected for a sample

Demographic statistics (census)

Descriptive statistics are useful to "explore" data sets

Typical goals : obtain numerical summaries (of small dimension) and/or easily interpretable visualizations.

Other example: estimation of a proportion

Context. Consider a box with W white balls and R red balls, where W and R are unknown.

Goal. Estimate the proportion $\theta = \frac{W}{W+R}$ of white balls.

Data (observations). We perform n draws with replacement

for the *i*-th draw, $x_i = 1$ if the ball is white, 0 otherwise.

Steps to estimate θ

- 1 statistical modeling x_i realization of a RV X_i , with $X_i \stackrel{\text{iid}}{\sim} \operatorname{Ber}(\theta)$, $0 \le \theta \le 1$
- 2 inference (here, estimation) using the data $\underline{x} = (x_1, \dots, x_n)$ and the statistical model.
 - Consider $\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} X_i$ (a possible descriptive statistic)
 - \blacksquare Is it reasonable to use it a "substitute" for the unknown θ ?

Relation between statistical inference and probability theory

Probability theory provides the foundation for statistical inference :

- probability theory : a probability space is given;
- statistical inference: several probabilistic models are assumed possible; we want to extract (from data) information from data about the underlying probability measure.

Illustration on the "box" example :

	Probability (W and R known)	Inference $(W \text{ and } R \text{ unknown})$	
typical questions	 distribution of the number of white balls after n draws; distribution of the number of draws to get the first white ball 	• estimate θ ; • give an interval containing θ ; • decide whether $\theta \leq 0.5$ or not.	
type of conclusions	certain	for finite n , impossible to answer with certainty	

Application fields & examples of statistical questions

Many fields of application:

- ► Healthcare : identify biomarkers responsible for a disease from data collected on cohorts.
- ► Environment, safety : estimate the probability of risk from measurement data.
- ► Industry : control the quality of a production line from data collected for only a few elements.
- ▶ Opinion survey : predict the winner of an election from a survey, quantify the uncertainty about the prediction.
- ► Insurance : evaluate the risk of ruin for an insurance company facing a disaster.

Lecture outline

1 - Introduction

2 - The mathematical framework of statistical inference

- 3 Some (classical) methods for point estimation
 - 3.1 The substitution method
 - 3.2 The method of moments
 - 3.3 Maximum likelihood estimation

From data to random variables

Data (observations)

Let $\underline{x} \in \underline{\mathcal{X}}$ denote the data that must be analyzed. For instance :

- $\mathbf{0}$ a scalar quantity, measured on n objects/individuals :
 - $\underline{x} = (x_1, \ldots, x_n), \quad x_i \in \mathbb{R}, \quad \underline{\mathcal{X}} = \mathbb{R}^n;$
- ② d scalar quantities, potentially of different natures, measured on n objects/individuals :
 - $\underline{x} = (x_1, \ldots, x_n), \quad x_i \in \mathbb{R}^d, \quad \underline{\mathcal{X}} = \mathbb{R}^{n \times d};$
- 3 any dataset of a more complex nature (times series, symbolic data, graphs, etc.).

The data is modeled, a priori, by a random variable (RV) \underline{X} \underline{X} is considered as a realization of \underline{X} .

Statistical model

The observation space $(\underline{\mathcal{X}},\underline{\mathscr{A}})$

It is the measurable space in which \underline{X} takes its values.

Most of the time, we will use :

- $ightharpoonup \underline{\mathcal{X}} = \mathbb{R}^n \text{ with } \underline{\mathscr{A}} = \mathscr{B}(\mathbb{R}^n)$
- ightharpoonup or, more generally, $\underline{\mathcal{X}} = \mathbb{R}^{n \times d}$ with $\underline{\mathscr{A}} = \mathscr{B}\left(\mathbb{R}^{n \times d}\right)$.

Statistical modeling

Let $(\Omega, \mathscr{F}, \mathbb{P})$ be a probability space carrying :

- ▶ the observed random variable X,
- ▶ any other (unobserved) RV that we might need.

The probability $\mathbb P$ is not perfectly known : we consider a

▶ set \mathscr{P} of probability distributions sur (Ω, \mathscr{F})

Statistical model (cont'd)

Distribution of the observations

Let $\mathbb{P}^{\underline{X}}$ denote the distribution of \underline{X} when $\mathbb{P} \in \mathscr{P}$ is the underlying probability measure.

We have a set $\mathscr{P}^{\underline{X}} = \{\mathbb{P}^{\underline{X}}, \mathbb{P} \in \mathscr{P}\}$ of possible distributions.

Definition: Statistical model

Formally, we call statistical model the triplet

$$\mathcal{M} = \left(\underline{\mathcal{X}}, \, \underline{\mathscr{A}}, \, \mathscr{P}^{\underline{X}}\right).$$

Remarks:

- We can construct several models $(\Omega, \mathcal{F}, \mathcal{P}, \underline{X})$ for a given \mathcal{M} .
- In particular, when we only care about the observed RV \underline{X} , we can work on the *canonical* model : $\Omega = \underline{\mathcal{X}}$, $\mathscr{F} = \underline{\mathscr{A}}$, $\mathscr{P} = \mathscr{P}^{\underline{X}}$, $\underline{X} = \operatorname{Id}_{\underline{\mathcal{X}}}$.

Statistical inference

Reminder : the data $\underline{x} \in \underline{\mathcal{X}}$ is seen as a realization of $\underline{X} \sim \mathbb{P}^{\underline{X}}$, for a certain (unknown) probability $\mathbb{P} \in \mathscr{P}$.

The goal of statistical inference

Goal : to construct procedures allowing to extract information about \mathbb{P}^{X} from

- ▶ one realization of X,
- ▶ the knowledge of the set $\mathscr{P}^{\underline{X}}$ of all possible distributions.

Important

Since the true probability $\mathbb P$ is unknown, we must design statistical procedures that are "applicable" to any probability $\mathbb P\in\mathscr P$.

Family of distributions

The set \mathscr{P} est represented by a parameterized family :

$$\mathscr{P} = \{ \mathbb{P}_{\theta}, \ \theta \in \Theta \}$$
.

Parametric model

If Θ is finite-dimensional, the model is called parametric.

- ightharpoonup the parameter vector θ is often of small size.
- we will denote by p the number of parameters $(\Theta \subset \mathbb{R}^p)$.

Example. Family of (scalar) Gaussian distributions

$$\mathscr{P}^{\underline{X}} = \left\{ \mathscr{N}(\mu, \sigma^2), \quad \mu \in \mathbb{R}, \quad \sigma^2 \in \mathbb{R}_*^+ \right\}$$

Assumptions on the family of distributions

Dominated model

The model

$$\mathcal{M} = \left(\underline{\mathcal{X}}, \, \underline{\mathscr{A}}, \, \left\{ \mathbb{P}^{\underline{X}}_{\theta}, \, \theta \in \Theta \right\} \right)$$

is said to be dominated if there exists a (σ -finite) measure ν on $(\underline{\mathcal{X}},\underline{\mathscr{A}})$ such that

$$\forall \theta \in \Theta, \quad \forall A \in \underline{\mathscr{A}}, \quad \mathbb{P}_{\theta}^{\underline{X}}(\underline{X} \in A) = \int_{A} f_{\theta}(\underline{x}) \, \nu(\mathrm{d}\underline{x}).$$

 f_{θ} is the density of \mathbb{P}_{θ}^{X} with respect to ν .

In this course, we will consider the following cases :

- "continuous" RV : reference measure $\nu = \text{Lebesgue's measure}$,
- discrete RV : reference measures $\nu =$ counting measure.

Assumptions on the family of distributions (cont'd)

Identifiable model

The model

$$\mathcal{M} = \left(\underline{\mathcal{X}}, \, \underline{\mathscr{A}}, \, \left\{ \mathbb{P}^{\underline{\mathcal{X}}}_{\theta}, \, \theta \in \Theta \right\} \right)$$

is identifiable if the mapping $\theta \mapsto \mathbb{P}_{\theta}^{X}$ is injective.

In the rest of this course, all the models will be

- **dominated** by a reference measure ν ,
- identifiable.

Sampling models

n-sample

If $\underline{X} = (X_1, \dots, X_n)$ is such that :

- ightharpoonup the X_i 's are (mutually) independent,
- ightharpoonup all the X_i 's have the same distribution P,

then the X_i 's are called independent et identically distributed (iid) and we say that \underline{X} is an (iid) \underline{n} -sample.

Distribution of an *n*-sample.

Consider the model that describes each of the X_i 's individually :

$$\blacktriangleright (\mathcal{X}, \mathscr{A}, \{P_{\theta}, \theta \in \Theta\})$$

Then we have :

- $(\underline{\mathcal{X}}, \underline{\mathscr{A}}) = (\mathcal{X}^n, \mathscr{A}^{\otimes n})$ (product space),
- $ightharpoonup orall heta \in \Theta, \; \mathbb{P}_{ heta}^{ ilde{X}} = \mathrm{P}_{ heta}^{\otimes n} \qquad \text{(product distribution)}.$

This application will be used as an illustration in several lectures.

Context

- We are interested in the reliability of components from a production line.
- Reliability : measured by the lifetime of the components.
- ▶ Data (observations) : a sample of n = 10 components, for which the lifetime has been recorded : $\underline{x} = (x_1, \dots, x_n)$.

Modeling

- \triangleright Each x_i is modeled by a scalar RV X_i .
- ▶ The X_i 's are assumed iid, with values in $(\mathcal{X}, \mathscr{A}) = (\mathbb{R}, \mathcal{B}(\mathbb{R}))$.

Modeling (cont'd): family of distributions

Typical* assumption for the lifetime of a component :

$$X_1 \sim \mathcal{E}(\theta), \quad \theta > 0.$$

Hence the statistical model for one observation :

$$(\mathbb{R}, \mathcal{B}(\mathbb{R}), \{\mathcal{E}(\theta), \theta > 0\}).$$

Note: this assumption on X_1 holds for all the X_i 's, $i \ge 1$.

Density. The exponential distribution $\mathcal{E}(\theta)$ has the density :

$$f_{\theta}(x) = \theta \exp(-\theta x) \mathbb{1}_{[0,\infty[}(x).$$

in the case of unpredictable failures, not related to the age of the component

A few problems of (statistical) interest

- **estimate** θ , or
- **estimate** $\eta = \frac{1}{\theta} = \mathbb{E}(X_1)$ (average lifetime)
 - lectures #1 et #2
- ightharpoonup provide confidence intervals for heta and η
 - lecture #3
- **estimate** θ given prior information on its value (e.g., provided by the manufacturer of the production line)
 - ➡ lecture #4 on Bayesian estimation
- **test the hypothesis** $\eta \leq 10$, in order to assess the value of an optional warranty extension
 - lecture #5 on hypothesis testing

Data.

0.5627	16.1121	5.4943	7.9374	1.2658
2.9885	8.6266	43.8877	2.1641	8.9138

Table – Measured values (arbitrary units) for a sample of size n = 10

Estimating η : a first estimtor

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \xrightarrow[n \to \infty]{\text{a.s.}} \mathbb{E}_{\theta} (X_1) = \eta \quad (\text{SLLN}).$$

 $\hat{\eta}^{(1)} = \bar{X}$ seems to be a reasonable "estimator" of η .

Numerical application $\hat{\eta}^{(1)} = 10.1960$

Notations / vocabulary

Notations. We will often use notations such as

- $ightharpoonup \mathbb{E}_{\theta}(.)$ (expectation),
- $ightharpoonup \mathbb{V}_{\theta}(.)$ (variance ou covariance matrix),
- $ightharpoonup f_{\theta}(.)$ (density), ...

to indicate that theses operators or functions depend on a probability \mathbb{P}_{θ} for a particular value of θ .

Definition: Statistic

A statistic is a random variable (often scalar- or vector-valued) that can be computed from \underline{X} alone*.

Example : the estimator $\hat{\eta}^{(1)} = \bar{X}$ is a statistic.

^{*} Technically : can be written as a measurable function of \underline{X} . In particular, depends neither on other (unobserved) RVs nor on θ .

Numerical assessment of the performance of $\hat{\eta}^{(1)}$

With numerical simulations, (almost) everything is possible!

- we choose a particular value of η (here, $\eta_* = 11, 4$), then
- we simulate on a computer a large number m of n-samples (here, m = 10000).

Remarks

- Our estimates are, in this case, not very accurate.
- Providing confidence intervals would be very relevant here.
- In this simple we can compute the density of $\hat{\eta}^{(1)}$ analytically.

A few words on the Gamma distribution $\Gamma(p,\lambda)$

Let
$$X \sim \Gamma(p,\lambda)$$
, $p > 0$, $\lambda > 0$). Its pdf is
$$f(x) = \frac{\lambda}{\Gamma(p)} x^{p-1} \, \exp(-\lambda x) \, \mathbb{1}_{\mathbb{R}^+}(x).$$

Moments

- ▶ mean : $\mathbb{E}_{\theta}(X) = \frac{p}{\lambda}$
- variance : $\mathbb{V}_{\theta}(X) = \frac{p}{\lambda^2}$

Particular cases

- \triangleright $\mathcal{E}(\lambda) = \Gamma(p = 1, \lambda)$
- $\Gamma(p=n,\lambda=\frac{n}{2})=\chi^2(n)$

Properties

- ▶ Let a > 0. If $X \sim \Gamma(p, \lambda)$, then $aX \sim \Gamma(p, \frac{\lambda}{a})$.
- If $X \sim \Gamma(p,\lambda)$, $Y \sim \Gamma(q,\lambda)$, and X and Y are independent, then $X + Y \sim \Gamma(p+q,\lambda)$.

Exercise. Show that $\hat{\eta}^{(1)} \sim \Gamma\left(n, \frac{n}{\eta}\right)$.

$$\hat{\eta}^{(2)}$$
: another estimator.

With a convergence argument similar to the one used earlier :

$$\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2}\xrightarrow[n\to\infty]{\text{a.s.}}\mathbb{E}_{\theta}\left(X_{1}^{2}\right)=\frac{2}{\theta^{2}}=2\eta^{2},$$

therefore using $\hat{\eta}^{(2)} = \sqrt{\frac{1}{2n} \sum_{i=1}^{n} X_i^2}$ seems "reasonable" as well.

Numerical application $\hat{\eta}^{(2)} = 11.2228$

Questions

- ▶ How can we compare two estimators?
- ▶ If there an estimator that is "better" than the others?
- ► How to construct "good" estimators?

Lecture outline

1 - Introduction

2 - The mathematical framework of statistical inference

- 3 Some (classical) methods for point estimation
 - 3.1 The substitution method
 - 3.2 The method of moments
 - 3.3 Maximum likelihood estimation

Mathematical framework

In this section:

we consider a statistical model

$$\mathscr{M} = \left(\underline{\mathcal{X}}, \underline{\mathscr{A}}, \left\{\mathbb{P}_{\theta}^{\underline{X}}, \, \theta \in \Theta\right\}\right),$$

most of the time assumed to be parametric $(\Theta \subset \mathbb{R}^p)$;

- when \underline{X} is an IID *n*-sample, we write

 - $\triangleright \mathbb{P}_{\theta}^{\underline{X}} = \mathcal{P}_{\theta}^{\otimes n};$
- we want to estimate a "quantity of interest" :
 - either θ itself (\Rightarrow parametric model),
 - ightharpoonup or, more generally, $\eta = g(\theta)$.

Lecture outline

1 - Introduction

2 - The mathematical framework of statistical inference

- 3 Some (classical) methods for point estimation
 - 3.1 The substitution method
 - 3.2 The method of moments
 - 3.3 Maximum likelihood estimatior

The substitution method

Assume that

- we already have an estimator $\hat{\eta}$ of $\eta = g(\theta)$
- ▶ and we want to estimate another quantity of interest η' that can be written as $\eta' = h(\eta)$, with h a continuous function.

The substitution method

The substitution method consists in using

$$\hat{\eta}' = h(\hat{\eta})$$
 as an estimator of η .

Reminder: $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \mathcal{E}(\theta), \quad \theta > 0.$

We are interested in the probability that a failure occurs before t_0 :

$$\eta' = \mathbb{P}_{ heta}\left(X_1 \leq t_0
ight) = \int_0^{t_0} heta \exp(- heta x) \mathrm{d}x$$

$$= 1 - \exp(- heta t_0) = 1 - \exp\left(-rac{t_0}{\eta}
ight).$$

Using $\hat{\eta}^{(1)} = \bar{X}$ as an estimator of η , we get

$$\hat{\eta}' = 1 - \exp\left(-rac{t_0}{ar{X}}
ight).$$

Empirical measure

Let
$$X_1, \ldots, X_n \stackrel{\mathsf{iid}}{\sim} \mathbb{P}^{X_1}$$
.

Recall the Dirac measure at $x \in \mathcal{X}$:

$$\forall A \in \mathscr{A}, \quad \delta_x(A) = egin{cases} 1 & \text{if } x \in A, \\ 0 & \text{otherwise.} \end{cases}$$

Definition: empirical measure

The empirical measure is the (random) measure defined by :

$$\hat{\mathbb{P}}^{X_1} = \frac{1}{n} \sum_{i=1}^n \delta_{X_i}.$$

Usefulness: the empirical measure can be seen as an estimator of \mathbb{P}^{X_1} allows us to construct of other estimators using the substitution method.

Example : estimator of the k-th order moment

Assume $X_1 \in L^k$. Then

$$m_k = \mathbb{E}\left(X_1^k\right) = \mathscr{G}\left(\mathbb{P}^{X_1}\right)$$

is well defined, with $\mathscr{G}(\mu) = \int_{\mathcal{X}} x^k \mu(\mathrm{d}x)$. By substitution :

$$\widehat{\mathbf{m}}_{k} = \mathscr{G}\left(\widehat{\mathbb{P}}^{X_{1}}\right) = \int_{\mathcal{X}} x^{k} \frac{1}{n} \sum_{i=1}^{n} \delta_{X_{i}}(\mathrm{d}x) = \frac{1}{n} \sum_{i=1}^{n} X_{i}^{k}.$$

Similar example : the sample variance. If $X_1 \in L^2$ and $\eta' = \mathbb{V}(X_1) = \mathscr{G}(\mathbb{P}^{X_1})$, where $\mathscr{G}(\mu) = \int_{\mathcal{X}} x^2 \mu(\mathrm{d}x) - \left(\int_{\mathcal{X}} x \mu(\mathrm{d}x)\right)^2$, we get by substitution :

$$S^{2} = \frac{1}{n} \sum_{i=1}^{n} X_{i}^{2} - \bar{X}^{2} = \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$
 (sample variance).

One last example : the empirical cdf

Let $x \in \mathbb{R}$. The cumulative distribution function (cdf) of X_1 at x is

$$F(x) = \mathbb{P}^{X_1}(X_1 \le x) = \mathscr{G}_x(\mathbb{P}^{X_1}) \quad \text{with} \quad \mathscr{G}_x(\mu) = \int_{-\infty}^x \mu(\mathrm{d}x).$$

Hence the empirical cdf:

$$\hat{F}(x) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{\{X_i \le x\}}.$$

Figure – Empirical cdf for $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \mathcal{N}(0,1)$ and n=20.

Lecture outline

1 - Introduction

2 - The mathematical framework of statistical inference

- 3 Some (classical) methods for point estimation
 - 3.1 The substitution method
 - 3.2 The method of moments
 - 3.3 Maximum likelihood estimatior

The method of moments

Assume that

- $\blacktriangleright X_1, \ldots, X_n \stackrel{\mathsf{iid}}{\sim} P_{\theta}$, with $\theta \in \Theta$;
- ▶ most of the time assumed to be parametric : $\Theta \subset \mathbb{R}^p$,
- \blacktriangleright we want to estimate θ itself

Consider the function

$$\begin{array}{ccc} h : & \Theta \subset \mathbb{R}^p & \to & h(\Theta) \subset \mathbb{R}^p, \\ & & \theta & \mapsto & h(\theta) = \left(\begin{array}{c} \mathbb{E}_{\theta} \left(X_1 \right) \\ \vdots \\ \mathbb{E}_{\theta} \left(X_1^p \right) \end{array} \right). \end{array}$$

Remark : sometimes other moments can be used (not necessarily the first p).

The method of moments (cont'd)

Assume $h: \Theta \to h(\Theta)$ injective, and thus bijective.

The method of moments

The method of moments consists in

- estimating the first p moments $\hat{m}_k = \frac{1}{n} \sum_{i=1}^n X_i^k$, $k \leq p$,
- ▶ then applying h^{-1} to construct an estimator of θ .

Hence moment-of-moments estimator : $\hat{\theta} = h^{-1}(\hat{m}_{1:p})$, where

$$\hat{m}_{1:p} = \begin{pmatrix} \frac{1}{n} \sum_{i=1}^{n} X_i \\ \vdots \\ \frac{1}{n} \sum_{i=1}^{n} X_i^p \end{pmatrix}.$$

Remark : well defined only if $\hat{m}_{1:p} \in h(\Theta)$ \mathbb{P}_{θ} -ps, pour tout θ . Otherwise \to minimization of some distance (generalized method of moments).

Method of moments: examples

Example: component reliability

We have $\mathbb{E}_{\theta}(X_1) = \theta^{-1}$ (exponential distribution), therefore

$$heta = \left(\mathbb{E}_{ heta}\left(X_{1}
ight)
ight)^{-1} \quad ext{and} \quad \hat{ heta} = \left(ar{X}
ight)^{-1}.$$

Example :
$$X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, \sigma^2)$$
, with $\theta = (\mu, \sigma^2) \in \mathbb{R} \times \mathbb{R}_+^*$

We have
$$h(\theta) = \begin{pmatrix} \mathbb{E}_{\theta}(X_1) \\ \mathbb{E}_{\theta}(X_1^2) \end{pmatrix} = \begin{pmatrix} \mu \\ \mu^2 + \sigma^2 \end{pmatrix}$$
,

therefore
$$\begin{pmatrix} \mu \\ \sigma^2 \end{pmatrix} = \begin{pmatrix} \mathbb{E}_{\theta} \left(X_1 \right) \\ \mathbb{E}_{\theta} \left(X_1^2 \right) - \left(\mathbb{E}_{\theta} \left(X_1 \right) \right)^2 \end{pmatrix}$$
,

and finally
$$\begin{pmatrix} \hat{\mu} \\ \hat{\sigma}^2 \end{pmatrix} = \begin{pmatrix} \frac{1}{n} \sum_{i=1}^n X_i \\ \frac{1}{n} \sum_{i=1}^n X_i^2 - (\frac{1}{n} \sum_{i=1}^n X_i)^2 \end{pmatrix}$$

Exercise. $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \mathcal{U}_{[a,b]}$. Method-of-moments estimator of (a,b)?

Lecture outline

1 - Introduction

2 - The mathematical framework of statistical inference

- 3 Some (classical) methods for point estimation
 - 3.1 The substitution method
 - 3.2 The method of moments
 - 3.3 Maximum likelihood estimation

Maximum likelihood estimation

Reminder : dominated model $\to \mathbb{P}^{X}_{\theta}$ admits a pdf f_{θ} .

Definition: likelihood

We call likelihood the function:

$$\mathcal{L}: \Theta \times \underline{\mathcal{X}} \to \mathbb{R}_+$$
$$(\theta; \underline{x}) \mapsto f_{\theta}(\underline{x})$$

Remark. Si
$$X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} P_{\theta}$$
, then $\mathcal{L}(\theta; \underline{x}) = \prod_{i=1}^n f_{\theta}(x_i)$.

(usual abuse of notation : here $f_{\theta} = f_{\theta}^{X_1}$)

Definition: MLE

If $\hat{\theta}$ is a maximizer of $\theta \mapsto \mathcal{L}(\theta; \underline{X})$, then $\hat{\theta}$ is a maximum likelihood estimator (MLE) of θ .

MLE: practical details

- Existence and uniqueness of the MLE are not guaranteed in general.
- For an IID *n*-sample, we often use the log-likelihood :

$$\ln \mathcal{L}(\theta;\underline{x}) = \sum_{i=1}^{n} \ln f_{\theta}(x_i).$$

▶ If \mathcal{L} is twice differentiable, a necessary condition for $\hat{\theta}$ to be an MLE is :

$$\begin{cases} \left(\nabla_{\theta} \left(\ln \mathcal{L}\right)\right) \left(\hat{\theta}; \underline{X}\right) &= 0, \\ \left(\nabla_{\theta} \nabla_{\theta}^{\top} \left(\ln \mathcal{L}\right)\right) \left(\hat{\theta}; \underline{X}\right) \text{ has negative eigenvalues.} \end{cases}$$

(locally concave function; $\nabla_{\theta} \nabla_{\theta}^{\top}$ is the Hessian operator)

For $x_1, \ldots, x_n \ge 0$, we have $\mathcal{L}(\theta; \underline{x}) = \prod_{i=1}^n \theta \exp(-\theta x_i)$, and thus

$$\ln \mathcal{L}(\theta; \underline{x}) = n \ln(\theta) - \theta \sum_{i=1}^{n} x_i.$$

Stationarity condition ("likelihood equation")

$$\frac{\partial(\ln \mathcal{L})}{\partial \theta}(\theta;\underline{x}) = 0 \iff \frac{n}{\theta} - \sum_{i=1}^{n} x_i = 0.$$

If $\sum_{i=1}^{n} x_i \neq 0$, the MLE exists and is equal to $\hat{\theta} = (\bar{X})^{-1}$.

(we check that, at this point,
$$\frac{\partial^2 (\ln \mathcal{L})}{\partial \theta^2} (\hat{\theta}; \underline{x}) = -\frac{n}{\hat{\theta}^2} < 0$$
)

Remark: the same estimator was obtained by the method of moments.

MLE example : Gaussian IID *n*-sample, $\theta = (\mu, \sigma^2)$

Same approach as in the previous example :

$$\ln \mathcal{L}(\theta; \underline{x}) = -\frac{n}{2} \ln(2\pi) - \frac{n}{2} \ln(\sigma^2) - \frac{\sum_{i=1}^{n} (x_i - \mu)^2}{2\sigma^2},$$

$$(\nabla_{\theta} \ln \mathcal{L})(\theta; \underline{x}) = \frac{n}{\sigma^2} \begin{pmatrix} \frac{1}{n} \sum_{i=1}^{n} x_i - \mu \\ -\frac{1}{n} + \frac{1}{n^2} \frac{1}{n^2} \sum_{i=1}^{n} (x_i - \mu)^2 \end{pmatrix}.$$

Solving the liklihood equation yields :

$$\hat{\theta} = \begin{pmatrix} \hat{\mu} \\ \hat{\sigma}^2 \end{pmatrix} = \begin{pmatrix} \frac{1}{n} \sum_{i=1}^n X_i \\ \frac{1}{n} \sum_{i=1}^n X_i^2 - \left(\frac{1}{n} \sum_{i=1}^n X_i\right)^2 \end{pmatrix}$$

et we can check that $(\nabla_{\theta}\nabla_{\theta}^{\top} \ln \mathcal{L})(\hat{\theta};\underline{x})$ is negative definite.

Remark: the same estimator was obtained by the method of moments.