In [3]: import pandas as pd
 from sklearn.datasets import load\_digits
 digits=load\_digits()
 df=pd.DataFrame(load\_digits().data, columns=load\_digits().feature\_names)
 df

| Out[3]: |      | pixel_0_0 | pixel_0_1 | pixel_0_2 | pixel_0_3 | pixel_0_4 | pixel_0_5 | pixel_0_6 | pixel_0_7 | pixel |
|---------|------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-------|
|         | 0    | 0.0       | 0.0       | 5.0       | 13.0      | 9.0       | 1.0       | 0.0       | 0.0       |       |
|         | 1    | 0.0       | 0.0       | 0.0       | 12.0      | 13.0      | 5.0       | 0.0       | 0.0       |       |
|         | 2    | 0.0       | 0.0       | 0.0       | 4.0       | 15.0      | 12.0      | 0.0       | 0.0       |       |
|         | 3    | 0.0       | 0.0       | 7.0       | 15.0      | 13.0      | 1.0       | 0.0       | 0.0       |       |
|         | 4    | 0.0       | 0.0       | 0.0       | 1.0       | 11.0      | 0.0       | 0.0       | 0.0       |       |
|         |      |           |           |           |           |           |           |           |           |       |
|         | 1792 | 0.0       | 0.0       | 4.0       | 10.0      | 13.0      | 6.0       | 0.0       | 0.0       |       |
|         | 1793 | 0.0       | 0.0       | 6.0       | 16.0      | 13.0      | 11.0      | 1.0       | 0.0       |       |
|         | 1794 | 0.0       | 0.0       | 1.0       | 11.0      | 15.0      | 1.0       | 0.0       | 0.0       |       |
|         | 1795 | 0.0       | 0.0       | 2.0       | 10.0      | 7.0       | 0.0       | 0.0       | 0.0       |       |
|         | 1796 | 0.0       | 0.0       | 10.0      | 14.0      | 8.0       | 1.0       | 0.0       | 0.0       |       |

1797 rows × 64 columns

In [4]: df['target']=digits.target
df

| Out[4]: |      | pixel_0_0 | pixel_0_1 | pixel_0_2 | pixel_0_3 | pixel_0_4 | pixel_0_5 | pixel_0_6 | pixel_0_7 | pixel |
|---------|------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-------|
|         | 0    | 0.0       | 0.0       | 5.0       | 13.0      | 9.0       | 1.0       | 0.0       | 0.0       |       |
|         | 1    | 0.0       | 0.0       | 0.0       | 12.0      | 13.0      | 5.0       | 0.0       | 0.0       |       |
|         | 2    | 0.0       | 0.0       | 0.0       | 4.0       | 15.0      | 12.0      | 0.0       | 0.0       |       |
|         | 3    | 0.0       | 0.0       | 7.0       | 15.0      | 13.0      | 1.0       | 0.0       | 0.0       |       |
|         | 4    | 0.0       | 0.0       | 0.0       | 1.0       | 11.0      | 0.0       | 0.0       | 0.0       |       |
|         |      |           |           |           |           |           |           |           |           |       |
|         | 1792 | 0.0       | 0.0       | 4.0       | 10.0      | 13.0      | 6.0       | 0.0       | 0.0       |       |
|         | 1793 | 0.0       | 0.0       | 6.0       | 16.0      | 13.0      | 11.0      | 1.0       | 0.0       |       |
|         | 1794 | 0.0       | 0.0       | 1.0       | 11.0      | 15.0      | 1.0       | 0.0       | 0.0       |       |
|         | 1795 | 0.0       | 0.0       | 2.0       | 10.0      | 7.0       | 0.0       | 0.0       | 0.0       |       |
|         | 1796 | 0.0       | 0.0       | 10.0      | 14.0      | 8.0       | 1.0       | 0.0       | 0.0       |       |
|         |      |           |           |           |           |           |           |           |           |       |

1797 rows × 65 columns

```
In [32]: x=df.drop('target',axis='columns')
         y=df.target
          from sklearn.model selection import train test split
          x train,x test,y train,y test=train test split(x,y,test size=0.2)
In [33]: from sklearn.neighbors import KNeighborsClassifier
          knn=KNeighborsClassifier(n_neighbors=10)
In [34]: knn.fit(x_train,y_train)
Out[34]: KNeighborsClassifier(n_neighbors=10)
In [35]: knn.score(x_test,y_test)
Out[35]: 0.977777777777777
In [36]: |y_predicted=knn.predict(x_test)
          from sklearn.metrics import confusion matrix
          cm=confusion_matrix(y_test,y_predicted)
          \mathsf{cm}
Out[36]: array([[34,
                       0,
                            0,
                                0,
                                    0,
                                         0,
                                             0,
                                                 0,
                                                     0,
                                                          0],
                 [ 0, 31,
                           0,
                                0,
                                        0,
                                                          0],
                                    0,
                                             0,
                                                 0,
                                                     0,
                                    0,
                 [ 0,
                       0, 24,
                                0,
                                         0,
                                             0,
                                                          0],
                                        0,
                                                          0],
                   0,
                        0,
                           0, 33,
                                    0,
                                             0,
                                                 0,
                                                     0,
                   0,
                            0,
                                0,
                                   31,
                                        0,
                        0,
                                             0,
                                                          0],
                   0,
                                                 0,
                        0,
                           0,
                                0,
                                    0, 42,
                                             0,
                                                          1],
                                        0, 34,
                   0,
                       0,
                           0,
                                0,
                                    0,
                                                 0,
                                                          0],
                           0,
                 [ 0,
                                        0,
                        0,
                                0,
                                    0,
                                             0, 46,
                                                     0,
                                                          0],
                                    0,
                                                    34,
                   0,
                        2,
                           0,
                                0,
                                        0,
                                             0,
                                                 0,
                                                          0],
                            0,
                                1,
                        1,
                                    1,
                                         1,
                                                     0, 43]], dtype=int64)
                 [ 0,
                                             0,
                                                 0,
```

```
In [37]: %matplotlib inline
    import matplotlib.pyplot as plt
    import seaborn as sn
    plt.figure(figsize=(10,7))
    sn.heatmap(cm,annot=True)
    plt.xlabel("Y_predicted")
    plt.ylabel("Truth")
```

Out[37]: Text(69.0, 0.5, 'Truth')



```
In [ ]:
```