ANALISIS DATA PEGAWAI UNTUK MEMPREDIKSI GAJI BERDASARKAN FAKTOR-FAKTOR SPESIFIK DENGAN PENDEKATAN MACHINE LEARNING

LAPORAN PROYEK II

Ditujukan sebagai salah satu syarat

Untuk memperoleh nilai pada kegiatan Proyek II

Program Studi DIV Teknik Informatika

Oleh

Bachtiar Ramadhan (1204077)

Nur Tri Ramadhanti Adiningrum (1204061)

PROGRAM DIPLOMA IV TEKNIK INFORMATIKA POLITEKNIK POS INDONESIA BANDUNG

2021

LEMBAR PERSETUJUAN

ANALISIS DATA PEGAWAI UNTUK MEMPREDIKSI GAJI BERDASARKAN FAKTOR-FAKTOR SPESIFIK DENGAN PENDEKATAN MACHINE LEARNING

LAPORAN PROYEK 2

Program Studi DIV Teknik Informatika

Oleh

Bachtiar Ramadhan (1204077) Nur Tri Ramadhanti Adiningrum (1204061)

Telah disetujui dan diserahkan

Bandung, 2022

Pembimbing

Syafrial Fachri Pane, S.T., M.T.I., EBDP

NIK: 117.88.233

SURAT PERNYATAAN TIDAK MELAKUKAN PLAGIARISME

Saudara yang bertanda tangan dibawah ini:

Ketua Kelompok : Bachtiar Ramadhan (1.20.4.077)

Anggota : Nur Tri Ramadhanti Adiningrum (1.20.4.061)

Judul Laporan : ANALISIS DATA PEGAWAI UNTUK

MEMPREDIKSI GAJI BERDASARKAN FAKTOR-FAKTOR SPESIFIK DENGAN PENDEKATAN

MACHINE LEARNING

Menyatakan bahwa kami tidak melakukan tindakan peniruan, penjiplakan ataupun penyalinan skripsi karya ilmiah yang telah ada. Apabila kami terbukti melakukan tindakan tersebut, maka kami bersedia menerima sanksi yang diberikan sesuai dengan ketentuan yang ditetapkan dan berlaku di Program Studi Diploma IV

Teknik Informatika Politeknik Pos Indonesia.

Yang membuat pernyataan, Yang membuat pernyataan,

Ketua Kelompok Anggota Kelompok

Bachtiar Ramadhan

Nur Tri Ramadhanti Adiningrum

1.20.4.077

NPM 1.20.4.061

ABSTRAK

Perusahaan tidak dapat dipisahkan dengan tenaga kerja. Salah astu aspek yang berpengaruh terhadap kemajuan sebuah perusahaan adalah kinerja karyawannya. Pemberian gaji yang sesuai adalah salah satu faktor penting untuk mendongkrak kinerja tenaga kerja. Sangat disayangkan, perkembangan perusahaan saat ini belum memliki suatu media keputusan untuk melakukan prediksi gaji karyawan berdasarkan kualitas data. Penelitian ini bertujuan untuk mengetahui prediksi gaji karyawan berdasarkan faktor-faktor spesifik. Dalam penelitian ini, faktor-faktor yang dilakukan pengujian diantaranya variabel independen berupa Age, JobLevel, TotalWorkingYears, dan YearsAtCompany. Kemudian variabel dependen berupa MonthlyIncome. Teknik analisis data menggunakan analisis regresi linear multivariat yang digunakan untuk melakukan prediksi gaji karyawan. Hasil prediksi gaji karyawan akan ditampilkan berbasis web base. Model yang dibuat berhasil melewati semua pengujian dalam langkah validasi model, sehingga dapat disimpulkan bahwa model yang dibuat dapat berperforma baik untuk memprediksi gaji karyawan. Hasil prediksi gaji karyawan dapat digunakan menjadi bentuk aplikasi berbasis web base dengan menggunakan framework Django. Dengan aplikasi tersebut, admin dapat melakukan prediksi gaji karyawan dengan mudah dan dengan cepat.

Kata Kunci : Prediksi Gaji, Regresi linear Multivariat, Faktor Spesifik, Web base

ABSTRACK

The company cannot be separated from the workforce. One aspect that affects the progress of a company is the performance of its employees. Providing an appropriate salary is one of the important faktors to boost the performance of the workforce. Unfortunately, the current development of the company does not have a decision media to predict employee salaries based on data quality. This study aims to determine the prediction of employee salaries based on specific faktors. In this study, the faktors that were tested included independent variables in the form of Age, JobLevel, TotalWorkingYears, and YearsAtCompany. Then the dependent variable is MonthlyIncome. The data analysis technique used multivariate linear regression analysis which was used to predict employee salaries. The results of employee salary predictions will be displayed on a webbase. The model created successfully passed all the tests in the model validation step, so it can be concluded that the model created can perform well for predicting employee salaries. The results of employee salary predictions can be used as a form of web-based application using the Django framework. With this application, admins can predict employee salaries easily and quickly.

Keywords: Salary Prediction, Multivariate Linear Regression, Specific Faktors, Web base

KATA PENGANTAR

Puji syukur kami panjatkan kehadirat Allah SWT, karena atas berkat dan rahmat-Nya lah kami dapat menyelesaikan kegiatan Proyek 2 berupa penyusunan laporan yang berjudul "ANALISIS DATA PEGAWAI UNTUK MEMPREDIKSI GAJI BERDASARKAN FAKTOR-FAKTOR SPESIFIK DENGAN PENDEKATAN *MACHINE LEARNING*" dengan baik.

Dalam kesempatan kali ini tidak lupa kami mengucapkan terimakasih kepada semua pihak yang telah memberikan bantuan moral dan spiritual langsung maupun tidak langsung dalam kami menyelesaikan laporan ini, terutama kepada:

- 1. Orang tua dengan dukungan doanya.
- 2. Bapak DR. Ir. Agus Purnomo., M.T. selaku Direktur Politeknik Pos Indonesia.
- 3. Bapak M. Yusril Helmi Setyawan, S. Kom., M. Kom. selaku Ketua Program Studi DIV Teknik Informatika.
- 4. Bapak Roni Andarsyah S.T., M. Kom. selaku Koordinator Proyek 2 Teknik Informatika.
- 5. Bapak Syafrial Fachri Pane, S.T., M.T.I.,EBDP. selaku Pembimbing Proyek 2 yang telah memberikan pengarahan dan membimbing kami
- 6. Bapak Roni Habibi, S.Kom., M.T. selaku Dosen Penguji Proyek 2
- 7. Serta semua pihak yang tidak dapat kami sebutkan satu persatu.

Kami menyadari bahwa laporan ini masih jauh dari kategori sempurna. Namun, kami sudah berusaha semampu kami. Oleh karena itu, kami sangat mengharapkan masukan baik saran maupun kritik yang membangun untuk kesempurnaan laporan yang akan datang.

Bandung, 2022

Penulis

DAFTAR ISI

LEMB <i>A</i>	AR PERSETUJUAN	ii
SURAT	PERNYATAAN TIDAK MELAKUKAN PLAGIARISME	iii
ABSTR	AK	iv
ABSTR/	1 <i>CK</i>	v
KATA I	PENGANTAR	vi
DAFTA	R ISI	vii
DAFTA	R GAMBAR	X
DAFTA	R TABEL	xii
BAB I F	PENDAHULUAN	1
1.1	Latar Belakang	1
1.2	Identifikasi Masalah	2
1.3	Tujuan Penelitian	2
1.4	Manfaat Penelitian	3
1.5	Ruang Lingkup	3
1.6	Sistematika Penulisan	3
BAB II	LANDASAN TEORI	5
2.1.	Tinjauan Studi	5
2.1	.1 Penelitian Terkait	5
BAB III	ANALISIS DAN PERANCANGAN	20
3.1	Analisis Sistem	20
3.1	.1 Analisis Sistem Yang Sedang Berjalan	21
3.1	.2 Analisis Sistem Yang Akan Dibangun	21
3.2	Perancangan Sistem (UML)	23
3.2	.1 Use case Diagram	24
3.2	.2 Class diagram	31
3.2	.3 Sequence Diagram	32
3.2	.4 Collaboration Diagram	37
3.2	.5 Activity Diagram	39
3.2	.6 Statechart Diagram	43

3.2.7	Component Diagram	47
3.2.8	Deployment Diagram	47
3.3 Per	ancangan Database	48
3.3.1	CDM (Conceptual Data Model)	48
3.3.2	PDM (Physical Data Model)	49
3.3.3	ERD (Entity Relationship Diagram)	49
3.4 Str	uktur Menu	50
3.5 An	tarmuka (<i>Interface</i>)	50
3.5.1	Antarmuka Halaman Depan	50
3.5.2	Antarmuka Halaman Login	51
3.5.3	Antarmuka Halaman Registrasi	51
3.5.4	Antarmuka Halaman Dashboard	52
3.5.5	Antarmuka Halaman Prediksi	52
3.5.6	Antarmuka Halaman Hasil Prediksi	53
3.5.7	Antarmuka Halaman Data Pegawai	53
3.5.8	Antarmuka Halaman Tambah Data Pegawai	54
3.5.9	Antarmuka Halaman Edit Data Pegawai	54
3.5.10	Antarmuka Halaman Visualisasi	55
3.6 An	alisis Kebutuhan	55
3.6.1	Kebutuhan Fungsional (Functional Requirements)	55
3.6.2	Kebutuhan Non-Fungsional (Non-Functional Requirements)	56
BAB IV IMP	PLEMENTASI DAN PENGUJIAN	58
4.1 Im	plementasi Aplikasi	58
4.1.1	Implementasi Proses Login	58
4.1.2	Implementasi Proses Registrasi	60
4.1.3	Implementasi Proses Prediksi Gaji	62
4.1.4	Implementasi Proses Hasil Prediksi Gaji	64
4.1.5	Implementasi Proses CRUD Data Pegawai	66
4.1.6	Implementasi Proses Menampilkan Visualisasi	73
4.2 Im	plementasi Model <i>Machine learning</i>	76
4.2.1	Himpunan Data	76
4.2.2	Proses Data Mining & Pengetahuan	83
423	Evaluasi Data	90

4.3 Per	ngujian dan Hasil Pengujian	105
4.3.1	Pengujian dan Hasil Pengujian Proses Login Admin	105
4.3.2	Pengujian dan Hasil Pengujian Proses Pengolahan Data	106
4.3.3	Pengujian dan Hasil Pengujian Proses Prediksi Gaji	107
4.3.4	Pengujian dan Hasil Pengujian Proses Visualisasi	109
4.3.5	Pengujian dan Hasil Pengujian Proses Logout	110
BAB V KES	IMPULAN DAN SARAN	111
5.1 Ke	simpulan	111
5.2 Sar	an	112
DAFTAR PU	JSTAKA	113
LAMPIRAN		116
CODE CO	VERAGE	116
Code Co	overage Folder Prediksi	116
Code Co	overage Folder PrediksiGaji	116
GLOSARI	UM	116
Glosariu	ım Non-Teknis	116
Glosariu	ım Teknis	117
TAREL - TA	REI.	118

DAFTAR GAMBAR

Gambar 3. 1 Flowmap Pemrosesan Gaji	21
Gambar 3. 2 Flowmap Proses Login Admin	22
Gambar 3. 3 Flowmap Proses Prediksi Gaji Pegawai	23
Gambar 3. 4 Use case Diagram	24
Gambar 3. 5 Class diagram	31
Gambar 3. 6 Sequence Diagram Login Admin	32
Gambar 3. 7 Sequence Diagram Registrasi	33
Gambar 3. 8 Sequence Diagram Melakukan Prediksi Gaji	34
Gambar 3. 9 Sequence Diagram Melakukan Pengolahan Data	35
Gambar 3. 10 Sequence Diagram Melakukan Visualisasi Data	36
Gambar 3. 11 Sequence Diagram logout admin	37
Gambar 3. 12 Collaboration Diagram Melakukan Login	37
Gambar 3. 13 Collaboration Diagram Registrasi	38
Gambar 3. 14 Collaboration Diagram Melakukan Prediksi Gaji	38
Gambar 3. 15 Collaboration Diagram Melakukan Visualisasi Data	38
Gambar 3. 16 Collaboration Diagram Melakukan Visualisasi Data	39
Gambar 3. 17 Activity Diagram Login Admin	39
Gambar 3. 18 Activity Diagram Registrasi	40
Gambar 3. 19 Activity Diagram Melakukan Pengolahan Data	41
Gambar 3. 20 Activity Diagram Melakukan Prediksi Gaji	42
Gambar 3. 21 Activity Diagram Melakukan Visualisasi	42
Gambar 3. 22 Activity Diagram Logout Admin	43
Gambar 3. 23 Statechart Diagram Login Admin	44
Gambar 3. 24 Statechart Diagram Registrasi	44
Gambar 3. 25 Statechart Diagram Melakukan Prediksi	45
Gambar 3. 26 Statechart Diagram Pengolahan Data	45
Gambar 3. 27 Statechart Diagram Visualisasi	46
Gambar 3. 28 Component Diagram	47
Gambar 3. 29 Deployment Diagram	48
Gambar 3. 30 Conceptual Data Model	48
Gambar 3. 31 Physical Data Model	49
Gambar 3. 32 Entity Relationship Diagram	49
Gambar 3. 33 Struktur Menu Aplikasi	50
Gambar 3. 34 Halaman Depan Sistem	50
Gambar 3. 35 Halaman Login Sistem	51
Gambar 3. 36 Halaman Registrasi Sistem	51
Gambar 3. 37 Halaman Dashboard Sistem	52
Gambar 3. 38 Halaman Prediksi Sistem	52
Gambar 3. 39 Halaman Hasil Prediksi Sistem	53
Gambar 3. 40 Halaman Data Pegawai Sistem	53
Gambar 3. 41 Halaman Tambah Data Pegawai Sistem	
Gambar 3. 42 Halaman Edit Data Pegawai Sistem	54

Gambar 3. 43 Halaman Visualisasi Sistem	55
Gambar 4. 1 Flowmap Login Aplikasi	60
Gambar 4. 2 Flowmap Registrasi Aplikasi	62
Gambar 4. 3 Flowmap Prediksi Gaji	65
Gambar 4. 4 Flowmap Prediksi Gaji	
Gambar 4. 5 Flowmap Menampilkan Visualisasi Data	76
Gambar 4. 6 Visualisasi Data Training	82
Gambar 4. 7 Visualisasi Data Testing	89
Gambar 4. 8 Model OLS	90
Gambar 4. 9 Nilai P-Values Dari Variabel Independen	93
Gambar 4. 10 Model OLS	94
Gambar 4. 11 Grafik Asumsi Linear	96
Gambar 4. 12 Grafik Distribusi Residual	97
Gambar 4. 13 Tabel Matriks Pearson Korelasi	100
Gambar 4. 14 Tabel VIF	101
Gambar 4. 15 Homoskedastisitas	104
Gambar 4. 16 Pengujian dan Hasil Pengujian Proses Login Admin	105
Gambar 4. 17 Pengujian dan Hasil Pengujian Proses Pengolahan Data	106
Gambar 4. 18 Pengujian dan Hasil Pengujian Proses Prediksi Gaji	107
Gambar 4. 19 Pengujian dan Hasil Pengujian Proses Visualisasi	109
Gambar 4. 20 Pengujian dan Hasil Pengujian Proses Logout	110

DAFTAR TABEL

Tabel 2. 1 Hasil Tinjauan Dari Penelitian Terkait	5
Tabel 3. 1 Definisi Aktor	
Tabel 3. 2 Definisi Use case	25
Tabel 3. 3 Skenario Use case Machine learning	2 <i>e</i>
Tabel 3. 4 Skenario Use case Login Admin	
Tabel 3. 5 Skenario Use case Registrasi	27
Tabel 3. 6 Skenario Use case Melakukan Prediksi Gaji Karyawan	
Tabel 3. 7 Skenario Use case Melakukan Visualisasi Data	
Tabel 3. 8 Skenario Use case Melakukan Pengolahan Data	
Tabel 3. 9 Skenario Use case Logout Admin	
Tabel 3. 10 Perangkat Keras Yang Digunakan	56
Tabel 3. 11 Perangkat Lunak Yang Digunakan	57
Tabel 4. 1 Hasil pengujian proses login admin	
Tabel 4. 2 Hasil pengujian proses pengolahan data	106
Tabel 4. 3 Hasil pengujian proses prediksi gaji	108
Tabel 4. 4 Hasil pengujian proses visualisasi	
Tabel 4. 5 Hasil pengujian proses logout	

BABI

PENDAHULUAN

1.1 Latar Belakang

Perkembangan ilmu pengetahuan dan teknologi pada Revolusi Industri 4.0 semakin berkembang pesat. Revolusi Industri 4.0 sendiri mulai terjadi melalui rekayasa intelegensia dan *internet of thing* sebagai tulang punggung pergerakan dan konektivitas antara manusia dengan mesin[1]. Sehingga, terdapat penggabungan teknologi digital dan internet dengan industri konvensional, yang bertujuan untuk meningkatkan produktivitas, efisiensi dan layanan konsumen secara signifikan[2]. Era revolusi ini akan mendisrupsi berbagai kegiatan diberbagai bidang seperti pada bidang teknologi, ekonomi, sosial, dan politik[1]. Saat ini, kehidupan berada diawal revolusi yang secara mendasar mengubah cara hidup, bekerja, dan berhubungan satu sama lain [3].

Perubahan karakteristik pekerjaan adalah salah satu dampak tersendiri dari datangnya revolusi industri 4.0[4]. Karakteristik pekerjaan yang berubah akan mendisrupsi pekerjaan yang telah ada dan menggantikanya dengan pekerjaan dengan karakteristik baru [5]. Karakteristik baru pada pekerjaan juga membutuhkan kompetensi baru kepada para pekerja[6]. Tentunya perusahaan harus siap untuk saling bersaing dengan perusahaan yang lain[7]. Selanjutnya, perusahaan perlu memiliki keunggulan dan manajemen yang efektif untuk menghadapi persaingan tersebut[7]. Dengan demikian salah astu aspek yang berpengaruh besar terhadap kemajuan dan keberhasilan sebuah perusahaan adalah kinerja karyawannya[7]. Walaupun perusahaan tersebut memiliki teknologi yang canggih, namun tidak terdapat tenaga kerja didalamnya, perusahaan tidak akan dapat mencapai tujuannya[7].

Oleh karena itu, penentuan gaji yang tepat oleh perusahaan kepada karyawan adalah salah satu faktor yang berpengaruh secara internal terhadap kemajuan perusahaan. Selain itu, perusahaan juga harus bersedia mengeluarkan gaji bonus bagi karyawannya yang telah bekerja dengan maksimal dan sesuai dengan apa yang dibutuhkan oleh sebuah perusahaan. Sangat disayangkan, perkembangan perusahaan saat ini belum memliki suatu media keputusan untuk melakukan

prediksi gaji karyawan berdasarkan kualitas data.

Karakteristik dataset yang digunakan untuk memprediksi gaji karyawan terdiri dari parameter-parameter berdasarkan faktor-faktor spesifik. Selanjutnya faktor-faktor tersebut akan diuji validitas dan korelasinya menggunakan pendekatan *machine learning*. Faktor-faktor tersebut akan diambil berdasarkan pedoman interpretasi koefisien korelasi [8]. Untuk menentukan faktor yang dominan terhadap prediksi gaji, maka koefisien korelasi yang akan digunakan adalah tingkat hubungan sedang, kuat, dan sangat kuat. Metode yang digunakan pada *machine learning* yaitu *regression*. *Regression* digunakan untuk melakukan prediksi gaji karyawan. Tentunya hasil prediksi gaji karyawan perlu divisualisasikan secara *realtime* untuk dapat digunakan oleh perusahaan dalam menentukan keputusan dengan cepat. Visualisasi hasil prediksi tersebut akan ditampilkan berbasis *web base* dengan *framework* Django.

1.2 Identifikasi Masalah

Berikut adalah identifikasi permasalahan dari penelitian ini:

- Bagaimana menganalisis karakteristik data gaji karyawan pada perusahaan?
- 2. Bagaimana cara menganalisis uji validitas dan korelasi dari dataset gaji karyawan pada perusahaan?
- 3. Bagaimana cara membuat model prediksi gaji karyawan yang tepat?
- 4. Bagaimana cara melakukan visualisasi data dari hasil model prediksi gaji karyawan?

1.3 Tujuan Penelitian

Tujuan penilitian ini sebagai berikut :

- 1. Menganalisis data kepegawaian yang berkaitan dengan gaji karyawan.
- 2. Menganalisis uji validitas dan korelasi dari dataset gaji yang terdiri dari parameter gaji pegawai dan faktor-faktor terhadap prediksi gaji.
- 3. Membuat model prediksi dengan pendekatan *machine learning* menggunakan regresi.

4. Merancangan sistem berbasis web base dengan framework Django?

1.4 Manfaat Penelitian

Manfaat penilitian ini sebagai berikut :

- Sebagai wadah untuk memberikan inovasi baru dalam hal melakukan prediksi gaji karyawan.
- 2. Bagi perusahaan, penelitian ini diharapkan dapat membantu dalam menentukan keputusan yang tepat dalam penentuan gaji karyawan di masa yang akan datang.
- 3. Penelitian ini dapat menjadi memberikan kontribusi untuk melakukan pengembangan lebih lanjut.

1.5 Ruang Lingkup

Ruang lingkup pada penelitian ini sebagai berikut :

- 1. Dataset yang digunakan adalah gaji karyawan yang terdiri dari parameterparameter yang spesifik.
- 2. *Framework* yang digunakan untuk membuat visualisasi prediksi dari *machine learning* yaitu Django.
- 3. Metode regresi digunakan untuk menguji korelasi dari parameter yang digunakan untuk memprediksi gaji karyawan.

1.6 Sistematika Penulisan

Dalam laporan ini, terdapat dari lima bab yang mana setiap bab-nya memiliki pembahasan yg berbeda-beda. Berikut ini adalah pemaparan setiap bab.

BAB I PENDAHULUAN

Bab ini menjelaskan terkait dengan bagaimana cara untuk melakukan prediksi gaji karyawan.

2. BAB II LANDASAN TEORI

Bab ini menjelaskan keterhubungan penelitian-penelitian terdahulu yang mengkaji prediksi gaji dengan pendekatan *machine learning*.

3. BAB III ANALISIS DAN PERANCANGAN

Bab ini menjelaskan analisa dataset dalam menguji validitas dan korelasi terhadap parameter untuk memprediksi gaji karyawan dan merancang visualisasi hasil prediksi menggunakan *framework* djanggo.

4. BAB IV IMPLEMENTASI

Bab ini hasil prediksi gaji karyawan dengan menggunakan metode *machine learning* dan visualisasi menggunakan *framework* djanggo.

5. BAB V KESIMPULAN DAN SARAN

Bab ini berisikan kesimpulan dan saran dari penelitian yang sudah dilakukan.

BABII

LANDASAN TEORI

2.1. Tinjauan Studi

Pada sebuah upaya dalam melakukan suatu analisis, maka dibutuhkan suatu panduan ataupun rujukan serta dukungan untuk setiap hasil analisis yang sudah ada sebelumnya. Yang tentunya panduan atau rujukan tersebut akan berkaitan dengan suatu analisis yang sedang dilakukan. Hasil dari penelitian-penelitian terdahulu tersebut terdiri dari topik dan pembahasan hasil penelitian yang telah dilakukan sebelumnya.

2.1.1 Penelitian Terkait

Tabel 2. 1 Hasil Tinjauan Dari Penelitian Terkait

No.	Area Penelitian	Karakteristik Data	Metode	Hasil Penelitian
1.	Gaji karyawan	Data gaji pegawai	Machine	Teknik model analisis
	berdasar	dengan	learning.	data menggunakan
	pengalaman	pengalaman lama		model analisis regresi
	lama	bekerja, variabel		linear untuk
	bekerja.[7]	gaji, variabel masa		pengetahui pengaruh
		kerja.		variable bebas
				terhadap variabel
				terikat. Dari hasil
				prediksi gaji karyawan
				berdasarkan
				pengalaman lama
				bekerja, terdapat
				pengaruh positif dan
				signifikan antara gaji
				dan masa kerja

				terhadap kinerja
				karyawan.
			16 11	5 11.1
2.		_	Machine	Penelitian ini
	perusahaan	informasi	learning.	menggunakan model
	pelayaran PT.	perusahaan. Data		Cross Industry
	BULL.[9]	sekunder: data		Standard Process for
		historis harga		Data Mining (CRISP-
		saham 2019-2020		DM). Dari prediksi
		dari Yahoo Finance		harga saham, hasil
		dan Laporan		penelitian
		Tahunan Bursa		menunjukkan terdapat
		Efek Indonesia.		selisih antara harga
		Purposive		penutupan saham
		sampling:		luaran data testing
		perusahaan		dengan harga
		pelayaran PT.		penutupan saham
		BULL. Quota		aktual yang ada di
		sampling: data		bursa saham.
		time series periode		
		harian, variabel		
		harga pembukaan,		
		variabel harga		
		tertinggi, variabel		
		harga terendah,		
		variabel harga		
		penutupan, variabel		
		volume saham		
		selama 1 tahun 2		
		bulan (Juni 2019 –		
		Juli 2020).		
		,		

3.	Harga	Data sembako DKI	Machine	Model yang digunakan
	sembilan bahan	Jakarta (1 Januari	learning.	dalam penelitian yaitu
	pokok di DKI	2016 – 31		regresi linier berganda.
	Jakarta.[10]	Desember 2019).		Dari hasil prediksi
		Variabel tanggal,		yang telah dilakukan,
		variabel komoditas,		persentase sumbangan
		variabel pasar,		pengaruh variabel
		variabel harga.		bebas terhadap
				variabel terikat sebesar
				84,2%, sedangkan
				sisanya sebesar 15,8%
				dimana dipengaruhi
				oleh variabel yang tak
				dimasukkan dalam
				penelitian ini.
4.	Harga rumah	Studi documenter	Machine	Model dalam membuat
4.	dari 2 website	web scrapping 2	learning.	prediksi adalah metode
	jual beli	web scrapping 2 website (1 Oktober	tearning.	regresi linear. Dari
	rumah.[11]	2020 – 31 Oktober		hasil penerapan
	Tumam.[11]	2020 – 31 Oktober 2020). Variabel		prediksi harga rumah,
		luas lahan, variabel		pengolahan awal data
		luas bangunan,		yang dilakukan pada
		variabel banyaknya		data set 7442 data
		kamar tidur,		menjadi 794 data
		ŕ		
		variabel banyaknya kamar mandi,		sangat mempengaruhi dalam tingkat akurasi
		variabel		prediksi harga rumah.
		ketersediaan		Adapun hasil akurasi
		tempat parkir		terbaik menghasilkan
		mobil.		tingkat akurasi prediksi
		moon.		ingkai akurasi picuiksi

5.	Pengadaan inventaris barang.[12]	Data Inventarsi Barang Dinas Pariwisata Pemuda dan Olahraga Kota Tasikmalaya 2012 – 2016. Variabel kode barang, variabel tahun, variabel harga barang.	Machine learning.	sebesar 0.8859830993050699 atau 88%. Namun, memiliki nilai galat cukup tinggi sebesar 259171.91 atau Rp. 259.171,91. Model yang digunakan dalam penelitian adalah metode regresi linier. Dari prediksi yang dilakukan, prediksi harga barang minimal yaitu sebesar 3011855.102, dan prediksi harga barang maksimal yaitu sebesar 23752745.511. Hasil
				akurasi RMSE adalah 0.934.
6.	Prediksi kasus	Data yang dipakai	Machine	Penelitian ini
	Covid-19 di	dari databooks	learning.	menggunakan model
	Indonesia.[13]	yang terdiri dari		backpropagation dan
		atribut total kasus,		regresi linear. Dari
		kasus sembuh,		hasil simulasi Matlab
		kasus meninggal		dengan tiga fungsi
		dan kasus aktif,		pelatihan yaitu
		pada penelitian ini		traincgb didapatkan
		hanya		nilai rata-rata error yaitu sebesar
				yaitu sebesar

		menggunakan data		0,017107, dengan
		kasus aktif.		fungsi pelatihan
				traingd didapatkan
				nilai rata-rata error
				sebesar -0,55116 serta
				fungsi pelatihan
				traingdx didapatkan
				nilai rata-rata error
				sebesar -3,82202
				sehingga dapat
				disimpulkan fungsi
				pelatihan yang paling
				konvergen yaitu fungsi
				pelatihan terhadap
				traingdx dengan nilai
				rata-rata error paling
				kecil.
7.	Prediksi Harga	Dalam penelitian	Machine	Digunakan tiga model
	Emas.[14]	ini, data yang	learning	dalam penelitian ini,
		digunakan berasal		yaitu regresi linear,
		dari internet.		backpropagation, dan
		Kriteria atau		fuzzy mamdani. Hasil
		variabel yang		dari ketiga model
		digunakan dalam		menunjukkan bahwa
		penelitian ini, yaitu		korelasi dari regresi
		harga buka, harga		linear sangat bagus,
		beli (Input) dan		yaitu 0,929. Dan nilai
		harga jual (Output).		korelasi tertinggi dari
				ketiga metode berasal
				dari metode

				backpropagation. Hal
				ini terbukti bahwa
				dalam memprediksi
				harga emas
				menggunakan
				backpropagation lebih
				sedikit errornya ± 0.05 .
				, , , , , , , , , , , , , , , , , , ,
8.	Prediksi	Data yang	Machine	Dalam penelitian ini
	Besaran	digunakan adalah	learning	model yang digunakan
	Pendapatan	data besaran		adalah regresi linear
	Daerah.[15]	pendapatan		sederhana.
		Kabupaten Deli		Berdasarkan proses
		Serdang tahun		hasil perhitungan yang
		2017 dan 2018,		dilakukan, diketahui
		yang akan dibagi		nilai prediksi besaran
		menjadi 2 bulan,		pendapatan daerah
		Triwulan (3 bualn),		dinas pendapatan
		Caturwulan (4		daerah Kab. Deli
		bulan), 1 semester		Serdang. Dengan
		(6 bulan) dan 1		menggunakan
		tahun (12 bulan).		algoritma regresi linear
				sederhana, dinilai
				dapat memprediksi
				besaran pendapatan
				daerah dinas
				pendapatan daerah
				Kab. Deli Serdang
				untuk tahun berikutnya
				sehingga program-
				program yang telah
				untuk tahun berikutnya sehingga program-

				direncanakan
				sebelumnya oleh dinas
				pendapatan dapat
				berjalan denagn lancar,
				dan juga dapat
				membuat program-
				program yang baru
				agar dapat
				meningkatkan
				pendapatan daerah
				untuk memajukan
				daerah tersebut.
9.	Prediksi	Data produksi kopi	Machine	Dalam penelitian ini
	Tingkat	diperoleh dari BPS	learning	model yang digunakan
	Produksi	Kabupaten		adalah model regresi
	Kopi.[16]	Manggarai dengan		linear sederhana.
		mengambil data		Berdasarkan hasil
		produksi kopi lima		penelitian dan
		tahun terakhir yaitu		pembahasan tentang
		dari tahun 2011 –		prediksi tingkat
		2015.		produksi kopi
				menggunakan regresi
				linear sederhana maka
				dapat disimpukan
				bahwa data yang
				digunakan untuk
				memprediksi kopi
				merupakan data time
				series, dan setelah
				melakukan

				perhitungan prediksi
				pada tahun 2011 –
				2015 nilai tertinggi
				pada tahun 2015
				sebesar 1.537,38 ton
				dan nilai terendah pada
				tahun 2011 sebesar
				1.109,944 ton. Setelah
				dilakukan pengujian
				menggunakan MSE
				dan MAPE diperoleh
				nilai MSE 43,112%
				dan MAPE 20,001%
				sehingga pengyjian
				menggunakan MAPE
				jauh lebih baik dalam
				menghitung akurasi
				prediksi produksi kopi.
10.	Peramalan	Data didapat dari	Machine	Model yang digunakan
	Penerimaan	laman web	learning	dalam penelitian
	Mahasiswa	Universitas		adalah model regresi
	Baru	Samudra. Data		linear sederhana. Dapat
	Universitas	diambil dari data		disimpulkan bahwa
	Samudra.[17]	mahasiswa yang		penggunaan metode
		diterima 5 tahun		forecasting
		sebelumnya.		(peramalan) untuk
				melakukan peramalan
				jumlah PMB yang akan
				masuk ke Universitas
				Sambudra pada 1 tahun

				yang akan datang dapat
				dikatakan bermanfaat
				dan jumlah error yang
				didapat juga tidak
				terlalu besar sehingga
				peramalan ini dapat
				dipertimbangan untuk
				universitas agar pihak
				universitas dapat
				meningkatkan
				berbagai hal untuk
				mempertimbangkan
				apa-apa saja yang yang
				harus ditingkatkan agar
				penerimaan mahasiswa
				baru pada tahun
				selanjutnya dapat
				meningkat.
11.	Prediksi gaji	Data position,	Machine	Model yang digunakan
	menggunakan	level, salary.	learning	adalah model regresi
	teknik regresi.	Variabel <i>position</i> ,		linear dan regresi
	[18]	variabel <i>level</i> , dan		polinomial. emilih gaji
	[20]	variabel <i>salary</i> .		dari grafik x-y
		variaber saver y.		membutuhkan banyak
				percobaan karena
				•
				mungkin ada lebih dari
				satu grafik yang sesuai.
				Prediksi ini benar
				hingga waktu tertentu.
				Akurasi dapat

				diperoleh dengan
				menerapkan regresi k-
				terdekat.
12.	Analisis	Variabel pada Mad	chine	Model yang digunakan
	empiris teknik	dataset employee lear	ning	adalah Simple Linear
	regresi	salary : salary,		Regression (SLR) dan
	berdasarkan	total years of		Multiple Linear
	harga rumah	experience,		Regression (MLR).
	dan prediksi	certification, lead.		Multiple Linear
	gaji. [19]	Variabel pada		Regression baik
	gaji. [17]	dataset house		daripada Simple Linear
		prices : price,		Regression. Karena
		sqft_living,		pada data House price,
		bedrooms,		MLR memiliki R-
		bathrooms,		Square 0,67 dan SLR
		sqft_living15,		0,49. Serta pada data
		sqft_lot,		prediksi gaji, MLR
		sqft_above,		memiliki R-Square
		sqft_basement.		0,92 dan SLR 0,75.
13.	Analisis	Data perusahaan Mad	chine	Metode yang
	korelasi antara	manufaktur A- lear	ning	digunakan dalam
	gaji dan	share China dari		penelitian ini yaitu
	efisiensi	tahun 2012 -2016.		multiple regression.
	inovasi	Explanatory		Monetary salary dan
	enterprise	variable :		equity salary of senior
	berdasarkan	Monetary salary of		managers, ordinary
	psikologi	senior manager,		employee salary, dan
	entrepreneur.	Senior		the internal salary gap
	[20]	management		of the senior
		salary, Ordinary		management team

		employee salary,		semuanya berkorelasi
		Salary gap within		positif secara
		the senior		signifikan pada tingkat
		management team,		1% dengan efisiensi
		Salary gap between		inovasi perusahaan.
		senior managers		Korelasi antara salary
		and ordinary		gap antara senior
		employees.		managers dan ordinary
		Explained variable		employees dengan
		: Enterprise		enterprise innovation
		innovation		efficiency tidak jelas.
		efficiency. Control		Koefisien korelasi
		variable :		regresi antar variabel
		Enterprise size,		berada dalam kisaran
		Return on assets,		yang dapat diterima,
		Asset-liability		menunjukkan bahwa
		ratio, Years of		model yang digunakan
		establishment,		tidak memiliki
		Dummy variable.		multikolinearitas yang
				signifikan.
14.	Regresi linear	Dataset dari	Machine	Model dalam
	bivariat simpel	BMKG Kabupaten	learning	penelitian ini adalah
	dan aplikasinya	Cilacap dari bulan		menggunakan metode
	pada data cuaca	Januari 2009 -		regresi linear bivariat
	di Cilacap.[21]	Februari 2014. Dua		simple. Model
		variabel respon :		peramalan untuk Y1
		curah hujan (Y1),		adalah $Y_{(1)} = -894,130$
		kelembaban udara		+ 45,892X yang berarti
		suatu wilayah (Y2)		jika tempertur udara
		terhadap satu		naik sebesar satu

		variabel resp	on :		derajat Celcius maka
		temperatur	udara		curah hujan akan naik
		(X).			sebesar 45,892mm
					serta nilai rata-rata
					error bulanan = -
					0,00697mm dan
					$MDE_{E(1)} = 151,2132.$
					Model peramalan
					untuk Y2 adalah $Y_{(2)} =$
					78,0433+0,1581X
					yang artinya jika
					tempertur udara naik
					sebesar satu derajat
					Celcius maka
					kelembaban udara
					akan naik 0,1581
					persen seta nilai rata-
					rata error bulanan =
					0,000441 persen dan
					$MD_{E(2)} = 1,206636.$
15.	Analisis regresi	Data 1	Dinas	Machine	Model yang digunakan
	linier berganda	Pertanian		learning	dalam penelitian ini
	dalam estimasi	Kehutanan			adalah regresi liner
	produktivitas	Perkebunan	dan		berganda. Berdasarkan
	tanaman padi	Peternakan			model regresi didapat
	di Kabupaten	Kabupaten			80,46% faktor-faktor
	Karawang.[22]	Karawang.			produktivitas padi.
		Variabel teri	kat :		Variabel-variabel yang
		produktivitas	padi		mempengaruhi
		(kw/ha).	Data		peningkatan jumlah

		produktivitas padi		produktivitas padi
		dihasilkan dari data		yaitu variabel produksi
		produksi dibagi		dan curah hujan,
		luas panen.		sedangkan variabel-
		Variabel bebas :		variabel yang
		yaitu produksi, luas		mempengaruhi
		panen, luas tanam,		penurunan jumlah
		rata-rata curah		produktivitas yaitu
		hujan, dan rata-rata		variabel luas panen,
		hari hujan		luas tanam, dan hari
				hujan. kesalahan relatif
				regresi yang diperoleh
				yaitu 4,642%.
16.	Model regresi	Variabel bebas :	Machine	Model yang digunakan
10.	multivariat	Umur, Jenis	learning	dalam penelitian
	analisis	kelamin, Status	rearming	adalah analisis
	kesejahteraan	perkawinan,		multivariate yaitu
	pedagang kaki	Tingkat pendidikan		analisis regresi linier
	lima	terakhir, Status		dan <i>logistic ordinal</i> .
	berdasarkan	migrasi, Tipe		Variabel yang
	karakteristik	rumah, Sifat		signifikan berpengaruh
	sosial	layanan pedagang		terhadap rata-rata
	ekonomi. [23]	kaki lima, Curahan		pendapatan pedagang
		jam kerja per hari,		kaki lima adalah
		Lama menjalankan		tingkat pendidikan,
		usaha, Jumlah		curahan jam kerja, dan
		tenaga		jumlah tenaga kerja
		kerja/karyawan		diluar tenaga kerja
		diluar tenaga kerja		keluarga yang ikut
		keluarga yang		membantu. Model

membantu menjalankan usaha, Jumlah tenaga kerja keluarga yang membantu menjalankan usaha, Ketersediaan buku untuk pembukuan kegiatan usaha, Status Registrasi Usaha. Jenis dagangan, Sarana fisik pedagang kaki lima. Alternatif sumber pendapatan di luar pekerjaan sebagai PKL. Variabel dependen Tingkat Kesejahteraan, dijabarkan dalam variabel: Pendapatan Status responden, Pekerjaan, dikelompokkan dalam: pekerja berusaha sendiri; berusaha sendiri dibantu oleh pekerja

pendapatan rata-rata kaki lima pedagang adalah Y = -1.982 +0.654pendidikan 0.134curahan jam kerja + 0.817Jumlah tenaga kerja non Variabel keluarga. berpengaruh yang signifikan terhadap status pekerjaan pedagang kaki lima yaitu status perkawinan, sifat layanan dagangan, curahan jam kerja, serta jumlah tenaga kerja diluar tenaga kerja keluarga. Model dugaan yang menjelaskan status pekerjaan pedagang kaki lima yaitu G(x) =-16.308 - 0.519 status kawin + 0,739 sifat layanan + 1,19663 curahan jam kerja -1,062 Jumlah tenaga kerja non keluarga.

sementara/tidak		
dibayar; berusaha		
sendiri dibantu oleh		
pekerja		
permanen/dibayar;		
Karyawan/ Pekerja;		
Pekerja tidak		
dibayar.		

BAB III

ANALISIS DAN PERANCANGAN

Pada bab ini akan dijelaskan mengenai analisis sistem yang berjalan, analisis sistem yang akan dibangun, perancangan sistem (UML), dan perancangan database. Aplikasi website untuk prediksi gaji pegawai ini merupakan aplikasi yang menggunakan beberapa *software* yaitu Visual Studio Code, Framework Django, Jupyter Notebook, Tableau, PHPMyAdmin, dan XAMPP. Dengan aplikasi ini nantinya dapat membantu admin untuk melakukan prediksi gaji pegawai berdasarkan pengalaman lama bekerja.

3.1 Analisis Sistem

Analisis sistem ialah penjabaran dari suatu sistem informasi yang utuh ke berbagai macam bagian-bagian komponennya yang bertujuan untuk mengevaluasi permasalahan atau kendala yang terjadi pada suatu sistem, sehingga nantinya dapat dilakukan perbaikan ataupun pengembangan pada sistem tersebut.

Perancangan sistem merupakan kegiatan merancang dan mendesain suatu sistem yang baik yang dimana kegiatan tersebut adalah langkah-langkah operasi dalam proses pengolahan data dan prosedur-prosedur untuk mendukung operasi sistem tersebut. Tujuan dari perancangan sistem ialah untuk memenuhi kebutuhan para pemakai sistem serta memberikan gambaran yang jelas dan rancang bangun yang lengkap kepada programmer dan ahli-ahli yang terlibat didalamnya.

Pada bagian ini, dibahas tentang analisis prosedur yang digambarkan dalam bentuk *flowmap* BPMN, pengkodean, analisis sistem fungsional, dan analisis sistem non fungsional yang meliputi perangkat keras dan perangkat lunak yang digunakan. Selain itu pada bagian ini juga akan dibahas mengenai analisis user yang terlibat dalam aplikasi tersebut. Tahapan ini sangat penting dalam membantu melanjutkan tahapan yang selanjutnya yaitu tahapan perancangan.

3.1.1 Analisis Sistem Yang Sedang Berjalan

Pada sub bab ini akan dijelaskan mengenai proses prediksi gaji pegawai yang sedang berjalan. Analisa sistem yang sedang berjalan bertujuan untuk mengetahui dan menggambarkan lebih lanjut mengenai bagaimana cara kerja sistem tersebut. Sistem yang berjalan saat ini menjelaskan tentang *flowmap* proses prediksi gaji pegawai. *Flowmap* tersebut merupakan gambaran alur proses prediksi gaji pegawai yang sedang berjalan pada aplikasi yang nantinya akan dibangun.

Gambar 3. 1 Flowmap Pemrosesan Gaji

3.1.2 Analisis Sistem Yang Akan Dibangun

Pada sub bab ini akan dijelaskan mengenai aplikasi website prediksi gaji pegawai berdasarkan faktor-faktor spesifik akan dibangun. Analisa sistem yang sedang berjalan memiliki tujuan untuk memberikan gambaran dan mengetahui lebih lanjut bagaimana cara kerja sistem tersebut. Strategi yang digunakan dalam menganalisis sistem yang akan dibangun ini, adalah dengan membongkar atau menterjemahkan dalam bentuk *flowmap* BPMN.

3.1.2.1 Flowmap Login

Pada bagian ini menjelaskan tentang *flowmap* proses *login* admin untuk masuk ke aplikasi website prediksi gaji. *Flowmap* tersebut merupakan gambaran alur proses *login* admin yang akan dibangun pada aplikasi ini.

Gambar 3. 2 Flowmap Proses Login Admin

Keterangan:

- 1. Admin dapat membuka Aplikasi Prediksi Gaji Pegawai.
- 2. Aplikasi menampilkan halaman login.
- 3. Admin dapat melakukan penginputan *username* serta *password*.
- 4. Setelah itu, sistem dapat melakukan pengecekan apakah *username* serta *password* yang diinputkan admin valid atau tidak.
- 5. Jika *username* dan *password* sesuai, maka admin dapat masuk ke halaman .utama aplikasi. Sedangkan jika *username* dan *password* tidak sesuai, maka admin akan tetap berada di halaman *login*.

3.1.2.2 Flowmap Prediksi Gaji

Pada bagian ini menjelaskan tentang *flowmap* proses prediksi gaji pegawai yang dilakukan oleh admin. *Flowmap* tersebut merupakan gambaran alur proses prediksi gaji pegawai oleh admin yang akan dibangun pada aplikasi ini.

Gambar 3. 3 Flowmap Proses Prediksi Gaji Pegawai

Keterangan:

- 1. Admin dapat melakukan *login*.
- 2. Setelah admin berhasil *login*, aplikasi akan menampilkan halaman *dashboard*.
- 3. Setelah itu, admin dapat memilih menu Prediksi untuk beralih ke halaman prediksi.
- 4. Pada halaman prediksi, admin dapat menginputkan angka berupa variabel independent (usia, level pekerjaan, total tahun bekerja, dan tahun di perusahaan) pada form yang disediakan.
- 5. Setelah diinputkan, aplikasi akan menampilkan hasil prediksi gaji pegawai.

3.2 Perancangan Sistem (UML)

UML adalah singkatan dari Unified Modeling Language yang didefinisikan sebagai sekumpulan alat yang digunakan untuk melakukan abstraksi terhadap sebuah sistem atau *software* berbasis objek. UML juga dapat dikatakan sebagai bahasa spesifikasi standar yang digunakan untuk mendokumentasikan, menspesifikasikan, dan membangun suatu sistem perangkat lunak.

UML adalah suatu bentuk metodologi untuk mengembangkan sistem OOP dan sekelompok perangkat *tools* untuk mendukung pengembangan sistem tersebut.

Sehingga, UML juga dapat menjadi salah satu cara untuk mempermudah dalam melakukan pengembangan aplikasi yang berkelanjutan. Oleh karenanya, UML juga dapat menjadi suatu alat bantu untuk transfer ilmu tentang sistem yang akan dikembangkan dari satu developer ke developer lainya.

3.2.1 Use case Diagram

Use case diagram yaitu suatu gambaran graphical untuk memodelkan seluruh proses bisnis berdasarkan perspektif pengguna sistem dari beberapa atau semua aktor, use case, dan interaksi yang memperkenalkan suatu sistem. Use case diagram secara sederhana merupakan sebuah sarana bantu untuk melakukan pendefinisian apa yang ada di luar sistem (aktor) dan apa yang harus dilakukan oleh sistem yang sedang dikembangkan.

Gambar 3. 4 Use case Diagram

a. Definisi Aktor

Pada bagian ini akan dijelaskan aktor-aktor yang terlihat dalam (judul proyek).

Tabel 3. 1 Definisi Aktor

No	Aktor	Deskripsi
1	Admin	• Login
		Melakukan Prediksi Gaji
		Melakukan Pengolahan Data

	Melakukan Visualisasi	Data
	• Logout	

b. Definisi Use case

Tabel 3. 2 Definisi *Use case*

No	Aktor	Deskripsi
1	Machine learning	Merupakan aktivitas interaksi antara manusia dengan mesin. Dalam hal ini, admin membuat model prediksi <i>Machine learning</i> .
2	Login	Merupakan aktivitas <i>login</i> yang dilakukan oleh admin. Sebelum admin masuk ke aplikasi ia harus melakukan <i>login</i> terlebih dahulu.
3	Registrasi	Merupakan aktivias registrasi yang dilakukan oleh admin. Apabila admin belum memiliki akun, maka admin harus melakukan registrasi terlebih dahulu.
4	Melakukan Prediksi Gaji	Merupakan aktivitas memprediksi gaji karyawan yang dilakukan oleh admin dengan parameter lama bekerja seorang karyawan.
5	Melakukan Pengolahan Data	Merupakan aktivitas insert, read, update dan delete data karyawan yang dilakukan oleh admin.

6	Menampilkan Visualisasi Data	Merupakan aktivitas visualisasi grafik data karyawan yang dilakukan oleh admin.
7	Logout	Merupakan aktivitas <i>logout</i> yang dilakukan oleh admin. Admin dapat keluar dari aplikasi jika telah selesai melakukan pekerjaan pada aplikasi.

c. Skenario Use case

Skenario *use case* diharapkan setelah berjalannya fungsional *use case*. Selain itu juga diberikan ulasan yang berkaitan dengan tanggapan dari sistem atas suatu aksi yang dilakukan oleh aktor. Setiap *use case* akan diberikan sebuah scenario yang akan menjelaskan secara detail interaksi yang ada di dalamnya.

Tabel 3. 3 Skenario Use case Machine learning

Identifikasi	
Nomor	1
Nama	Machine learning
Tujuan	Pembuatan model prediksi
Deskripsi	
Aktor	Admin
Skenario Utama	1
Kondisi Awal	

Aksi Aktor	Reaksi Sistem
Membuat model prediksi	Melakukan olah data gaji
	karyawan
Kondisi Akhir	Masuk pada aplikasi

Tabel 3. 4 Skenario *Use case Login* Admin

Identifikasi	
Nomor	1
Nama	Login
Tujuan	Sebelum masuk pada aplikasi
Deskripsi	1
Aktor	Admin
Skenario Utama	
Kondisi Awal	
Aksi Aktor	Reaksi Sistem
Input username dan password	Mengecek data dan menentukan aktor tersebut admin atau user
Kondisi Akhir	Masuk pada aplikasi

Tabel 3. 5 Skenario $Use\ case\ Registrasi$

Identifikasi	
Nomor	1
Nama	Registrasi

Tujuan	Membuat akun admin
Deskripsi	
Aktor	Admin
Skenario Utama	
Kondisi Awal	
Aksi Aktor	Reaksi Sistem
• Input username, dan password	Menyimpan data admin atau user
Kondisi Akhir	Masuk pada halaman login

Tabel 3. 6 Skenario *Use case* Melakukan Prediksi Gaji Karyawan

Identifikasi			
Nomor	1		
Nama	Melakukan Predikis Gaji Karyawan		
Tujuan	Melakukan Predikis Gaji Karyawan		
Deskripsi			
Aktor	Admin		
Skenario Utama			
Kondisi Awal			
Aksi Aktor	Reaksi Sistem		
Menginput Data	Melakukan Prediksi Gaji		
Kondisi Akhir	Admi dapat memprediksi gaji		

Tabel 3. 7 Skenario *Use case* Melakukan Visualisasi Data

Identifikasi	
Nomor	1
Nama	Melakukan Visualisasi Data
Tujuan	Melakukan visualisasi data karyawan
Deskripsi	
Aktor	Admin
Skenario Utama	'
Kondisi Awal	
Aksi Aktor	Reaksi Sistem
Input data karyawan	Menampilkan grafik visualisasi data karyawan
Kondisi Akhir	Admin dapat memvisualisasikan data

Tabel 3. 8 Skenario *Use case* Melakukan Pengolahan Data

Identifikasi	
Nomor	1
Nama	Melakukan Pengolahan Data
Tujuan	Melakukan pengolahan data karyawan
Deskripsi	
Aktor	Admin

Skenario Utama		
Kondisi Awal		
Aksi Aktor	Reaksi Sistem	
• Insert, read, update, dan delete	Mengubah data karyawan yang	
data karyawan.	diubah oleh admin	
Kondisi Akhir	Admin dapat mengelola data	

Tabel 3. 9 Skenario *Use case Logout* Admin

Identifikasi	
Nomor	1
Nama	Logout
Tujuan	Keluar dari aplikasi
Deskripsi	
Aktor	Admin
Skenario Utama	
Kondisi Awal	
Aksi Aktor	Reaksi Sistem
Menekan tombol <i>logout</i>	Melakukan proses keluar dari aplikasi
Kondisi Akhir	Keluar dari aplikasi

3.2.2 Class diagram

Class diagram ialah diagram UML yang mendeskripsikan suatu struktur dari sebuah sistem yang dibuat dari kelas-kelas dengan relasi - relasinya. Class diagram juga dapat menggambarkan jenis-jenis objek yang terdapat pada sistem dan berbagai hubungan statis yang terdapat di antara mereka. Class diagram ini dapat menunjukkan properti dan operasi sebuah kelas serta batasan-batasan yang terdapat dalam hubungan-hubungan objek tersebut.

Gambar 3. 5 Class diagram

3.2.3 Sequence Diagram

Sequence Diagram adalah diagram yang mendeskripsikan serta menjelaskan suatu interaksi objek yang berdasarkan urutan waktu. Interaksi tersebut diawali dari apa yang memicu aktivitas tersebut, proses dan perubahan apa saja yang terjadi secara internal dan output apa yang dihasilkan. Sequence Diagram dapat digunakan untuk menggambarkan urutan atau prosedur yang harus dilakukan untuk dapat menghasilkan sesuatu seperti pada use case diagram.

A. Sequence Diagram Login Admin

Berikut ini merupakan *Sequence Diagram Login* Admin menjelaskan hubungan antara admin pada aplikasi.

Berikut Sequence Diagram Login Admin pada gambar.

Gambar 3. 6 Sequence Diagram Login Admin

- 1. Admin menginputkan *username* dan *password* di halaman *login*.
- 2. Validasi *username* dan *password* diteruskan ke Controller *login*.
- 3. Controller *login* mengambil data ke database data admin untuk validasi *login*.
- 4. Jika *username* dan *password* valid pada data admin maka akan ditampilkan halaman *dashboard*.
- 5. Jika *username* dan *password* tidak valid pada data admin maka akan ditampilkan halaman *login*.

B. Sequence Diagram Melakukan Registrasi

Berikut ini merupakan *Sequence Diagram* Registrasi Admin menjelaskan hubungan antara admin pada aplikasi.

Berikut Sequence Diagram Melakukan Registrasi pada gambar.

Gambar 3. 7 Sequence Diagram Registrasi

- 1. Admin menginputkan data admin di halaman registrasi.
- 2. Mengambil data oleh Controller registrasi.
- 3. Controller *login* mengirimkan data ke data admin kemudian data tersebut disimpan.
- 4. Jika data admin telah tersimpan pada data admin maka akan ditampilkan halaman *login*.

C. Sequence Diagram Melakukan Prediksi Gaji

Berikut ini merupakan *Sequence Diagram* melakukan predikis gaji menjelaskan hubungan antara admin dan aplikasi. Admin dapat melakukan prediksi gaji dengan cara menginput data.

Berikut Sequence Diagram Melakukan Prediksi Gaji pada gambar.

Gambar 3. 8 Sequence Diagram Melakukan Prediksi Gaji

- 1. Admin menginputkan independen dalam bentuk angka.
- 2. Sistem melakukan perhitungan prediksi gaji.
- 3. Controller prediksi mengirim data ke database data pegawai dan memproses data.
- 4. Hasil data yang dihitung akan ditampilkan pada halaman hasil prediksi.

D. Sequence Diagram Melakukan Pengolahan Data

Berikut ini merupakan *Sequence Diagram* mengelola data menjelaskan hubungan antara admin pada aplikasi. Admin dapat insert, read, update, dan delete pada data alat.

Halaman Data Controller Data Pegawai Pegawai 2. Mengambil data 3. Menginsert data 4. Mengirim hasil inset data 5. Menampilkan halaman data 6. Melakukan update data 7. Mengambil data 8. Mengupdate data 9. Mengirim hasil update data 10. Menampilkan halaman data 11. Melakukan hapus data 12. Mengambil data 13. Menghapus data 14. Mengirim hasil hapus data 15. Menampilkan halaman data

Berikut Sequence Diagram Melakukan Pengolahan Data pada gambar.

Gambar 3. 9 Sequence Diagram Melakukan Pengolahan Data

- 1. Admin memilih menu yang akan dikelola pada menu di halaman data pegawai. Menu yang ada yaitu tambah data, update data, dan hapus data.
- 2. Halaman data pegawai mengambil data (baik antara input, update atau hapus) untuk diteruskan ke controller data pegawai.
- 3. Controller data pegawai mengirim hasil olah data ke data pegawai.
- 4. Data pegawai mengirim hasil olah data ke controller data pegawai.
- 5. Controller data pegawai menampilkan halaman data pegawai.

E. Sequence Diagram Melakukan Visualisasi Data

Berikut ini merupakan *Sequence Diagram* melakukan visualisasi data menjelaskan hubungan antara admin pada aplikasi.

Berikut Sequence Diagram Melakukan Visualisasi Data pada gambar.

Gambar 3. 10 Sequence Diagram Melakukan Visualisasi Data

Keterangan:

- 1. Admin memilih menu halaman visualisasi pada dashboard.
- 2. *Dashboard* mengirim perintah memilih menu visualisasi ke controller visualisasi.
- 3. Controller visualisasi menampilkan halaman visualisasi.

F. Sequence Diagram Melakukan Logout

Berikut ini merupakan *Sequence Diagram logout* Admin menjelaskan hubungan antara admin pada aplikasi.

Berikut Sequence Diagram logout Admin pada gambar.

Gambar 3. 11 Sequence Diagram logout admin

Keterangan:

- 1. Admin memilih menu *logout* pada *dashboard*.
- 2. *Dashboard* mengirim perintah memilih menu *logout* ke controller *logout*.
- 3. Controller *logout* melakukan proses *logout* kemudian menuju untuk menampilkan halaman awal.

3.2.4 Collaboration Diagram

Collaboration Diagram dapat dipakai untuk memodelkan interaksi antar objek yang ada di dalam sistem. Berbeda dari Sequence Diagram yang lebih menunjukkan kronologis dari operasi-operasi yang dilakukan, Collaboration Diagram ini lebih fokus pada pemahaman atas keseluruhan operasi yang dilakukan oleh objek.

A. Collaboration Diagram Melakukan Login

Gambar 3. 12 Collaboration Diagram Melakukan Login

B. Collaboration Diagram Melakukan Registrasi

Gambar 3. 13 Collaboration Diagram Registrasi

C. Collaboration Diagram Melakukan Prediksi Gaji

Gambar 3. 14 Collaboration Diagram Melakukan Prediksi Gaji

D. Collaboration Diagram Melakukan Pengolahan Data

Gambar 3. 15 Collaboration Diagram Melakukan Visualisasi Data

E. Collaboration Diagram Melakukan Visualisasi Data

Gambar 3. 16 Collaboration Diagram Melakukan Visualisasi Data

3.2.5 Activity Diagram

Activity Diagram dapat didefinisikan sebagai diagram yang menggambarkan tentang berbagai aktifitas yang terjadi pada suatu sistem. Activity Diagram adalah suatu teknik yang digunakan untuk mendeskripsikan logika procedural, proses bisnis serta aliran kerja dalam banyak kasus. Activity Diagram menggambarkan berbagai alir aktivitas dalam sistem yang sedang dirancang, bagaimana masingmasing alir berawal, hasil akhir yang mungkin terjadi, hingga bagaimana mereka berakhir.

A. Activity Diagram Login Admin

Gambar 3. 17 Activity Diagram Login Admin

- 1. Admin menginput username dan password.
- 2. Aplikasi melakukan validasi username dan password.

- 3. Jika valid akan menampilkan halaman dashboard.
- 4. Jika tidak valid menampilkan pesan *username* dan *password* tidak valid.

B. Activity Diagram Melakukan Registrasi Admin

Gambar 3. 18 Activity Diagram Registrasi

- 1. Admin menginput data admin.
- 2. Aplikasi menyimpan data admin.
- 3. Aplikasi menampilkan halaman login.

C. Activity Diagram Melakukan Pengolahan Data

Gambar 3. 19 Activity Diagram Melakukan Pengolahan Data

- 1. Admin melakukan olah data seperti insert, update, dan delete data.
- 2. Aplikasi melakukan proses olah data yang dilakukan.
- 3. Aplikasi mengirim data yang diolah ke database pegawai.
- 4. Aplikasi menampilkan data hasil create/update/delete.

D. Activity Diagram Melakukan Prediksi Gaji

Gambar 3. 20 Activity Diagram Melakukan Prediksi Gaji

Keterangan:

- 1. Admin menginputkan variabel independent dalam bentuk angka pada form prediksi.
- 2. Aplikasi melakukan proses perhitungan prediksi gaji.
- 3. Aplikasi menampilkan hasil prediksi.

E. Activity Diagram Melakukan Visualisasi

Gambar 3. 21 Activity Diagram Melakukan Visualisasi

Keterangan:

- 1. Admin memilih menu visualisasi.
- 2. Aplikasi melakukan proses menampilkan visualisasi.
- 3. Aplikasi menampilkan halamann visualisasi.

F. Activity Diagram Logout Admin

Gambar 3. 22 Activity Diagram Logout Admin

Keterangan:

- 1. Admin memilih menu logout.
- 2. Aplikasi melakukan proses *logout* aplikasi.
- 3. Aplikasi menampilkan halaman awal aplikasi.

3.2.6 Statechart Diagram

Statechart Diagram dapat menggambarkan transisi dan perubahan keadaan (dari satu state ke state lainnya) dari suatu objek pada sistem sebagai akibat dari stimuli yang diterimanya. Pada umumnya Statechart Diagram dapat menjelaskan atau menggambarkan class tertentu (satu class dapat memiliki lebih dari satu Statechart Diagram).

A. Statechart Diagram Login Admin

Gambar 3. 23 Statechart Diagram Login Admin

B. Statechart Diagram Registrasi Admin

Gambar 3. 24 Statechart Diagram Registrasi

C. Statechart Diagram Melakukan Prediksi

Gambar 3. 25 Statechart Diagram Melakukan Prediksi

D. Statechart Diagram Pengolahan Data

Gambar 3. 26 Statechart Diagram Pengolahan Data

E. Statechart Diagram Visualisasi

Gambar 3. 27 Statechart Diagram Visualisasi

3.2.7 Component Diagram

Component diagram dapat menggambarkan struktur dan hubungan antar komponen piranti lunak, termasuk ketergantungan (dependency) diantaranya. Komponen piranti lunak atau yang biasa disebut dengan perangkat lunak adalah modul berisi code, baik berisi source code maupun binary code, baik library maupun executable, baik yang muncul pada compile time, link time, maupun runtime. Pada umumnya komponen dapat terbentuk dari beberapa class dan atau package, tapi dapat juga dibentuk dari komponen-komponen yang lebih kecil.

Gambar 3. 28 Component Diagram

3.2.8 Deployment Diagram

Deployment/physical diagram menggambarkan detail bagaimana suatu komponen di-deploy dalam infrastruktur sistem, dimana komponen akan terletak (pada mesin, server atau piranti keras apa), dan bagaimana kemampuan jaringan pada lokasi tersebut, spesifikasi, server, serta hal-hal lain yang bersifat fisik. Sebuah node terdiri dari server, workstation, atau piranti keras lain yang digunakan untuk melakukan deploy komponen dalam lingkungan sebenarnya. Hubungan antar node (misalnya TCP/IP) dan requirement dapat pula didefinisikan dalam diagram ini. (Dharwiyanti: 2003)

Gambar 3. 29 Deployment Diagram

3.3 Perancangan Database

Perancangan database merupakan proses untuk menentukan dan pengaturan data yang dibutuhkan untuk mendukung rancangan sistem, agar teciptanya pemrosesan data yang lebih efisien. Struktur tabel meliputi nama tabel, tipe data, nama atribut dan data relasi seperti primary dan foreign key.

3.3.1 CDM (Conceptual Data Model)

Gambar 3. 30 Conceptual Data Model

3.3.2 PDM (Physical Data Model)

Gambar 3. 31 Physical Data Model

3.3.3 ERD (Entity Relationship Diagram)

Gambar 3. 32 Entity Relationship Diagram

3.4 Struktur Menu

Struktur menu ialah bentuk umum dari suatu rancangan aplikasi dalam memudahkan pengguna untuk menjalankan aplikasi. Sehingga saat menjalankan aplikasi, pengguna tidak mengalami kesulitan dalam memilih menumenu yang diinginkan. Berikut adalah struktur menu dari aplikasi Prediksi Gaji Pegawai secara keseluruhan:

Gambar 3. 33 Struktur Menu Aplikasi

3.5 Antarmuka (Interface)

Impelementasi sistem memiliki bagian berupa pemaparan mengenai tampilan pada sistem serta kegunaan dari setiap halaman. Implementasi dari hasil perancanggan menggunakan bahasa pemrograman python dengan framework Django.

3.5.1 Antarmuka Halaman Depan

Gambar 3. 34 Halaman Depan Sistem

Gambar diatas merupakan implementasi dari halaman depan sistem. Pada halaman ini, *user* dapat menekan button "*Login*" pada navbar untuk masuk ke dalam sistem.

3.5.2 Antarmuka Halaman Login

Gambar 3. 35 Halaman Login Sistem

Gambar diatas merupakan implementasi dari halaman *login*. Sebelum masuk ke halaman *dashboard*, *user* harus menginputkan *username* dan *password* yang sesuai. Jika sesuai, maka *user* akan di arahkan ke halaman *dashboard*. Jika tidak *user* akan diminta kembali memasukkan *username* dan *password* yang sesuai.

3.5.3 Antarmuka Halaman Registrasi

Gambar 3. 36 Halaman Registrasi Sistem

Gambar diatas merupakan implementasi dari halaman registrasi. Jika *user* belum memiliki akun untuk masuk sistem, maka *user* dapat melakukan registrasi dengan cara menginputkan *username* dan *password* lalu menekan tombol register.

3.5.4 Antarmuka Halaman Dashboard

Gambar 3. 37 Halaman Dashboard Sistem

Gambar diatas merupakan implementasi dari halaman *dashboard* dari sistem yang dirancang. Pada bagian navbar, terdapat pilihan submenu untuk mengakses suatu halaman yang lainnya. Pilihan submenu tersebut terdiri dari Prediksi, Data Pegawai, Visualisasi, dan *Logout*.

3.5.5 Antarmuka Halaman Prediksi

Gambar 3. 38 Halaman Prediksi Sistem

Gambar diatas merupakan implementasi dari halaman prediksi dari sistem yang dirancang. Pada halaman ini, terdapat form untuk melakukan prediksi gaji pegawai. *User* dapat menginputkan angka berupa usia, job level, total tahun bekerja, dan total tahun bekerja di perusahan ke dalam form untuk mengetahui hasil prediksi gaji pegawai. Kemudian *user* dapat menekan button "Lakukan

Prediksi" untuk melihat hasil prediksi berdasarkan tahun yang diinputkan.

3.5.6 Antarmuka Halaman Hasil Prediksi

Gambar 3. 39 Halaman Hasil Prediksi Sistem

Gambar diatas merupakan implementasi dari halaman hasil prediksi dari sistem yang dirancang. Pada halaman ini, akan ditampilkan hasil prediksi gaji dari user yang sebelumnya telah menginputkan angka tahun pada form prediksi.

3.5.7 Antarmuka Halaman Data Pegawai

Prediksi Gaji I	Prediksi Gaji Pegawai Prediksi Data Pegawai Visualisasi Logout						
	DATA PEGAWAI Kembali						
	Berikut adalah list data pegawai.					[+] Tambah Pegawai	
	ld	Age	JobLevel	MonthlyIncome	TotalWorkingYears	YearsAtCompany	Action
	2	38.0		8463			Edit Delete
	3	45.0		9724	25		Edit Delete
	4	36.0		5914			Edit Delete
	5	34.0		2579			Edit Delete
	6	38.0		4230			Edit Delete
	7	39.0	1	2232	7	3	Edit Delete

Gambar 3. 40 Halaman Data Pegawai Sistem

Gambar diatas merupakan implementasi dari halaman data pegawai dari sistem yang dirancang. Pada halaman ini, akan ditampilkan data dalam bentuk tabel yang terdiri dari atribut Id, Age, JobLevel, MonthlyIncome, dan Action. *Record* yang ditampilkan terdiri dari 439 *record*. Terdapat *button* Tambah Pegawai yang berfungsi untuk menambah data pegawai, *button* Edit berfungsi

untuk mengubah suatu *record* yang dipilih, dan *button* Delete untuk menghapus suatu *record* yang dipilih.

3.5.8 Antarmuka Halaman Tambah Data Pegawai

Gambar 3. 41 Halaman Tambah Data Pegawai Sistem

Gambar diatas merupakan implementasi dari halaman tambah data pegawai dari sistem yang dirancang. Pada halaman ini, akan ditampilkan form tambah data untuk menambah data pegawai. *User* dapat menginputkan Age, Job Level, Monthly Income, Total Working Years, dan Years At Company pada form. Lalu *user* dapat menekan *button* Simpan untuk menyimpan data yang diinputkan. *User* dapat menekan *button* Batal untuk me-*reset* data yang diinputkan pada form.

3.5.9 Antarmuka Halaman Edit Data Pegawai

Prediksi Gaji Pegawai Prediksi	Data Pegawai Visualisasi Logout			
	EDIT DATA	Kembali		
	Silahkan edit data pegawai.			
	Age:	Total Working Years :		
	38,0	6		
	Job Level :	Years At Company :		
	2	5		
	Monthly Income:			
	8463	Simpan Batal		
	© 202	21 Copyright: ABACH DAN DHANTI		

Gambar 3. 42 Halaman Edit Data Pegawai Sistem

Gambar diatas merupakan implementasi dari halaman edit data pegawai dari

sistem yang dirancang. Pada halaman ini, akan ditampilkan form edit data untuk mengubah data pegawai. *User* dapat menginputkan Age, Job Level, Monthly Income, Total Working Years, dan Years At Company pada form. Lalu *user* dapat menekan *button* Simpan untuk menyimpan data yang telah diubah. *User* dapat menekan *button* Batal untuk me-*reset* data yang diinputkan pada form.

Prediksi Gaji Pegawai Prediksi Data Pegawai Visualisasi Logout VISUALISASI DATA PEGAWAI Berikut adalah visualisasi data pegawai PLOT DATA TRAINING PLOT DATA TRAINING Age 600 2 4 0 10 20 30 40 110 20 30 40 Veser At Company PLOT DATA TESTING

3.5.10 Antarmuka Halaman Visualisasi

Gambar 3. 43 Halaman Visualisasi Sistem

Gambar diatas merupakan implementasi dari halaman visualisasi dari sistem yang dirancang. Pada halaman ini, akan ditampilkan bentuk visualisasi prediksi antara Monthly Income dengan Age, Job Level, Total Working Years, Years At Company. Visualisasi terdiri dari Plot Data Testing, dan Linearitas

3.6 Analisis Kebutuhan

Analisis kebutuhan adalah langkah awal untuk menentukan gambaran perangkat yang akan dihasilkan ketika pengembang melaksanakan sebuah proyek pembuatan perangkat lunak. Selain itu, Analisa kebutuhan adalah suatu proses untuk mendapatkan informasi, mode, spesifikasi tentang perangkat lunak.

3.6.1 Kebutuhan Fungsional (Functional Requirements)

Analisis kebutuhan fungsional merupakan suatu kebutuhan yang berhubungan dengan berbagai kebutuhan sistem yang akan dirancang. Dimana kebutuhan ini menjabarkan mengenai fungsi-fungsi yang dapat mendukung jalannya sistem, adapun kebutuhan fungsional yang akan dibuat yaitu terdiri dari 3 (tiga) proses sesuai dengan urutan sebagai berikut:

- 1. *Login* admin (user masuk ke aplikasi menggunakan *username* dan *password*);
- 2. Prediksi gaji pegawai yang dilakukan oleh Admin.
- 3. Melakukan crate, read, update dan delete pada data pegawai.

3.6.2 Kebutuhan Non-Fungsional (Non-Functional Requirements)

Analisis kebutuhan non-fungsional dilakukan untuk mengetahui spesifikasi kebutuhan untuk sistem. Spesifikasi kebutuhan non-fungsional ini melibatkan analisis perangkat keras/hardware, analisis perangkat lunak/software, serta analisis pengguna/user. Adapun kebutuhan non-fungsional yang didapatkan adalah sebagai berikut:

A. Perangkat Keras (Hardware) Yang Digunakan

Tabel 3. 10 Perangkat Keras Yang Digunakan

No	Nama Perangkat	Spesifikasi	Keterangan
1	Hardisk	200 GB	Media untuk menyimpan data aplikasi yang dibuat
2	Memory	4 GB	Memory System yang digunakan
3	Processor	AMD A4-9120 RADEON R3, 4 COMPUTE CORES 2C+2G 2.20 GHz	Untuk kecepatan transfer data dari sistem yang sangat bergantung pada kecepatan prosesor komputer
4	Infrastruktur jaringan	PC	Mengolah, menginput serta menghasilkan <i>output</i> data ataupun informasi yang sesuai dengan keinginan pengguna (<i>user</i>)

B. Perangkat Lunak (Software) Yang Digunakan

Tabel 3. 11 Perangkat Lunak Yang Digunakan

No	Tools / Software	Fungsi	Keterangan
1.	Windows 10	Sistem Operasi	Sistem Operasi yang
		Sistem Operasi	digunakan
2.	XAMPP 3.2.4	Web server	Membuka web server
3.	Python	Bahasa Pemograman	Bahasa pemograman yang
		Bunusu i emograman	digunakan
4.	Lucidchart	Software Pendukung	Media dalam pembuatan
		Software Tendakung	flowmap
5.	Visual Studio Code	Software Pendukung	Media penulisan coding
6.	Jupyter Notebook	Software Pendukung	Media penulisan coding
7.	PDF, Microsoft Office	Document	Media untuk membuat
/.	Word	Document	laporan
8.	Google Crome	Browser	Media untuk mencari
		Biowsei	informasi

C. Pengguna (*User*)

Aplikasi yang akan dirancang ini digunakan dalam lingkup bisnis sebuah perusahaan dibagian pengelolaan data gaji pegawai. Aplikasi ini melibatkan Admin sebagai pengelola data gaji pegawai pada perusahaan tersebut.

BAB IV

IMPLEMENTASI DAN PENGUJIAN

Setelah data dan sistem dianalisis dan didesain secara rinci, maka selanjutnya adalah tahapan implementasi. Implementasi dapat diartikan sebagai proses melaksanakan penerapan dari ide atau konsep yang telah disusun. Dengan begitu, implementasi tidak hanya sekedar melakukan penerapan suatu konsep, tetapi juga merupakan suatu rencana kegiatan yang telah tersusun untuk mencapai tujuan kegiatan. Pada tahap implementasi ini mencakup uji coba sistem dan penerapan antarmuka yang telah dirancang sebelumnya.

Perancangan sistem yang telah dibuat akan dilakukan penerapannya ke dalam bentuk web base. Dengan menggunakan software multiplatform, sistem dapat dirancang sesuai dengan perencanaan yang telah disusun. Perancangan ini meliputi penerapan antarmuka sistem ke dalam bentuk web base dan pengujian pada sistem yang telah dibuat. Pengujian sistem bertujuan untuk mengetahui tingkat keberhasilan berjalannya suatu sistem yang dibuat.

Tahap implementasi adalah tahapan yang penting dalam pembuatan sebuah sistem. Dengan adanya tahap ini, dapat diketahui suatu kendala dan seperti apa sistem yang telah dirancang tersebut dapat berjalan. Sehingga, jika ditemukannya suatu kendala pada sistem, sistem yang dibuat dapat diperbaiki kembali sesuai tujuan yang akan dicapai.

4.1 Implementasi Aplikasi

Pada bagian implementasi aplikasi, dipaparkan kode-kode pada setiap proses berjalannya sistem yang telah dibangun. Pada bagian ini, pemaparan pola desain arsitektur dalam sistem. Arsitektur tersebut ialah Views dan Template serta URL.

4.1.1 Implementasi Proses Login

A. Views

@login required

```
def dashboardView(request):
    return render(request, 'dashboard.html')
```

Dekoraktor *login_*required berfungsi untuk masuk ke laman *login* pada *framework* Django. Fungsi *dashboard*View digunakan untuk menampilkan halaman *dashboard*.html yang ada di Template yaitu ke halaman *login*.

B. Template

```
<h1 class="h4 text-light mb-4">
    <b>SELAMAT DATANG !</b>
    </h1>
    <div class="sidebar-brand-text mx-3 text-light">
    Silahkan inputkan username dan password
       </div>
       <br/>
       </div>
       <form class="text-light" method="POST">
          {% csrf_token %} {{form.as_p}}
       <button>Login
       <br/>
       <div align="center"class="sidebar-brand-text mx-3 text-</pre>
light">
          Belum memiliki akun? Silahkan daftar.
       </div>
href="http://127.0.0.1:8000/prediksi/register/"class="text
info"> Mendaftar!</a>
       </div>
       <div class="float-right">
       <a href=http://127.0.0.1:8000 class="btn btn-secondary</pre>
btn-sm">Kembali</a>
       </div>
       </form>
```

Kode diatas merupakan tampilan dari halaman *login*. Terdapat form yang berisikan inputan *username* dan *password*. Selain itu tedapat link "Mendaftar!" untuk melakukan registrasi.

C. URL

path('login/',LoginView.as_view(),name="login_url");

Kode diatas merupakan URL untuk mengakses halaman login.

D. Logika Fungsi Login

Gambar 4. 1 Flowmap Login Aplikasi

Keterangan:

- 1. Aplikasi menampilkan halaman login.
- 2. User menginputkan username dan password.
- 3. Aplikasi melakukan validasi *username* dan *password* dengan menyesuaikan pada database data admin.
- 4. Jika valid akan menampilkan halaman dashboard.
- 5. Jika tidak valid akan menampilkan kembali ke halaman *login*.
- 6. Selesai

4.1.2 Implementasi Proses Registrasi

A. Views

```
def registerView(request):
    if request.method == "POST":
        form = UserCreationForm(request.POST)
```

Fungsi registerView digunakan untuk menampilkan halaman register.html yang ada di Template yaitu ke halaman registrasi. Metode yang digunakan adalah POST. Jika berhasil registrasi, maka akan dibalikan ke halaman *login*.

B. Template

Kode diatas merupakan tampilan dari halaman register. Terdapat form yang berisikan inputan *username* dan *password* yang akan dibuat. Metode yang digunakan adalah POST.

C. URL

```
path('register/', views.registerView, name="register_url"),
```

Kode diatas merupakan URL untuk mengakses halaman registrasi.

D. Logika Fungsi Registrasi

Gambar 4. 2 Flowmap Registrasi Aplikasi

Keterangan:

- 1. Aplikasi menampilkan halaman registrasi.
- 2. User menginputkan username dan password.
- 3. Aplikasi akan menyimpan data *username* dan *password* ke database data pegawai.
- 4. Selesai

4.1.3 Implementasi Proses Prediksi Gaji

A. Views

```
def predict(request):
    context={'a':1}
    return render(request, 'predict.html', context)
```

Fungsi predict digunakan untuk menampilkan halaman predict.html yang ada di Template yaitu ke halaman prediksi.

B. Template

```
<h1 class="h4 text-light mb-4"><b>PREDIKSI GAJI
PEGAWAI</b></h1>
<div class="sidebar-brand-text mx-3 text-light"> Silahkan
inputkan tahun dalam bentuk angka </div><br>
</div>
{% block content %}
   <form class="user" method="POST" action="result">
   {% csrf_token %}
  <div class="form-group">
   <input type="float" name="Age" id="Age" class="form-</pre>
control" placeholder="Inputkan Usia" autocomplete="off"
required ><br>
   <input type="integer" name="JobLevel" id="JobLevel"</pre>
class="form-control" placeholder="Inputkan Job Level"
autocomplete="off" required ><br>
    <input type="integer" name="YearsAtCompany"</pre>
id="YearsAtCompany" class="form-control" placeholder="Inputkan
Total Tahun Bekerja" autocomplete="off" required ><br>
    <input type="integer" name="TotalWorkingYears"</pre>
id="TotalWorkingYears" class="form-
control" placeholder="Inputkan Total Tahun Bekerja Di
Perusahaan" autocomplete="off" required >
     </div>
     <div class="form-row">
     <div class="form-group col-md-12">
     <input_type="submit" value="Lakukan Prediksi" class="btn</pre>
btn-block bg-success text-light">
     </div>
     </div>
     {% endblock %}
                  </form>
                   {{ result }}
```

Kode diatas merupakan tampilan dari halaman prediksi gaji. Terdapat form yang berisikan inputan usia, job level, total tahun bekerja, dan total tahun bekerja di perusahan. Selain itu tedapat button "Lakukan Prediksi" untuk melakukan proses prediksi.

C. URL

```
url('predict', views.predict, name='predict')
```

Kode diatas merupakan URL untuk mengakses halaman prediksi gaji.

4.1.4 Implementasi Proses Hasil Prediksi Gaji

A. Views

```
def result(request):
    print(request)
    tahun = float(request.POST.get('tahun'))

model = pd.read_pickle('./models/model3.pickle')
    result = model.predict([[tahun]])

return render(request, 'result.html', {'result': result})
```

Fungsi result digunakan untuk menampilkan halaman result.html yang ada di Template yaitu ke halaman hasil prediksi.

B. Template

Kode diatas merupakan tampilan dari halaman hasil prediksi gaji. Terdapat form yang berisikan inputan *username* dan *password*. Selain itu tedapat hasil dari perhitungan prediksi gaji.

C. URL

url('result', views.result, name='result')

Kode diatas merupakan URL untuk mengakses halaman hasil prediksi.

D. Logika Fungsi Prediksi Gaji

Gambar 4. 3 Flowmap Prediksi Gaji

Keterangan:

- 1. Aplikasi menampilkan halaman utama.
- 2. User memilih menu prediksi gaji.
- 3. Aplikasi menampilkan halaman prediksi gaji.
- 4. User menginputkan variabel independen pada form di halaman prediksi gaji.
- 5. Aplikasi melakukan proses perhitungan prediksi gaji.
- 6. Aplikasi menampilkan hasil prediksi.
- 7. Selesai.

4.1.5 Implementasi Proses CRUD Data Pegawai

1. Implementasi Menampilkan Data

A. Views

```
def view(request):
    pegawai = Pegawai.objects.all()
    return render(request, "view.html", {'pegawai': pegawai})
```

Fungsi view digunakan untuk menampilkan halaman view.html yang ada di Template yaitu ke halaman data pegawai.

B. Template

```
<h5>Berikut adalah list data pegawai. </h5>
</div>
  <div class="float-right">
   <a href="http://127.0.0.1:8000/pgw" class="btn btn-dark</pre>
btn-sm"><b>[+] Tambah Pegawai</b></a>
  </div>
  <br>
  <hr>>
<thead class="thead-dark">
  Id
   Age
   JobLevel
   MonthlyIncome
   TotalWorkingYears
   YearsAtCompany
   Action
  </thead>
 {% for pegawai in pegawai %}
  {{ pegawai.id }}
   {{ pegawai.Age }}
   {{ pegawai.JobLevel }}
   {{ pegawai.MonthlyIncome }}
   {{ pegawai.TotalWorkingYears }}
```

```
{td>{{ pegawai.YearsAtCompany }}

<a href="/edit/{{ pegawai.id }}"><span class="btn btn-success">Edit</span></a>
<a href="/delete/{{ pegawai.id }}"><span class="btn btn-danger">Delete</span></a>
```

Kode diatas merupakan tampilan dari halaman hasil prediksi gaji. Terdapat form yang berisikan inputan *username* dan *password*. Selain itu tedapat hasil dari perhitungan prediksi gaji.

C. URL

```
path('view/', views.view),
```

Kode diatas merupakan URL untuk mengakses halaman data pegawai.

2. Implementasi Proses Tambah Data Pegawai

A. Views

Fungsi pgw digunakan untuk menampilkan halaman haltambah.html yang ada di Template yaitu ke halaman tambah data pegawai.

B. Template

```
<h4>Silahkan masukan data pegawai.</h4>
<hr>
  <form action="/pgw/" id="form-tambah" method="POST">
  {% csrf_token %}
  <div class="float-left">
    <div class="form-row">
     <div class="form-group col-md-6">
      <label for=" "><strong>Age :</strong></label>
      <div>{{ form.Age }}</div>
      </div>
     </div>
    <div class="form-row">
     <div class="form-group col-md-6">
      <label for=" "><strong>Job Level : </strong></label>
      <div>{{ form.JobLevel }}</div>
     </div>
    </div>
    <div class="form-row">
     <div class="form-group col-md-13">
      <label for=" "><strong>Monthly Income :
</strong></label>
      <div>{{ form.MonthlyIncome }}</div>
       </div>
       </div>
      </div>
      <div class="float-right">
      <div class="form-row">
    <div class="form-group col-md-12">
    <label for=" "><strong>Total Working Years :
</strong></label>
      <div>{{ form.TotalWorkingYears }}</div>
      </div>
      </div>
       <div class="form-row">
      <div class="form-group col-md-12">
      <label for=" "><strong>Years At Company :
/strong></label>
```

Kode diatas merupakan tampilan dari halaman tambah data pegawai. Terdapat form yang berisikan inputan Age, Job Level, Monthly Income, Total Working Years, dan Years At Company. Selain itu tedapat button simpan untuk proses menyimpan data dan button batal untuk mereset data.

C. URL

```
path('pgw/', views.pgw),
```

Kode diatas merupakan URL untuk mengakses halaman tambah pegawai.

3. Implementasi Proses Edit Data Pegawai

A. Views

```
def edit(request, id):
    pegawai = Pegawai.objects.get(id=id)
    return render(request, 'edit.html', {'pegawai': pegawai})

def update(request, id):
    pegawai = Pegawai.objects.get(id=id)
    form = PegawaiForm(instance=pegawai)

if request.method == 'POST':
    form = PegawaiForm(request.POST, instance=pegawai)
    if form.is_valid():
        form.save()
```

```
return redirect('/view')
return render(request, 'view.html', {'form': form})
```

Fungsi edit digunakan untuk menampilkan halaman edit.html yang ada di Template yaitu ke halaman edit data pegawai. Fungsi update digunakan untuk melakukan fungsi edit. Metode yang digunakan adalah POST. Jika fungsi tersebut berhasil dilakukan maka hasil update akan dialihkan ke halaman data pegawai.

B. Template

```
<h4>Silahkan edit data pegawai.</h4>
  <form action="/update/{{pegawai.id}}" class="post-form"</pre>
method="POST">
  <input type="hidden" name="id" id="id" required</pre>
maxlength="20" value="{{ pegawai.id }}"/>
   {% csrf_token %}
   <div class="float-left">
    <div class="form-row">
     <div class="form-group col-md-15">
      <label for="kode_produk"><strong>Age :</strong></label>
   <input type="number" class="form-control" name="Age"</pre>
value="{{ pegawai.Age }}">
     </div>
    </div>
   </div>
   <div class="form-row">
    <div class="form-group col-md-15">
     <label for="jenis_produk"><strong>Job Level :
</strong></label>
    <div>
   <input type="number" class="form-control" name="JobLevel"</pre>
value="{{ pegawai.JobLevel }}">
   </div>
    </div>
     </div>
     <div class="form-row">
     <div class="form-group col-md-15">
```

```
<label for="jenis_produk"><strong>Monthly Income :
</strong></label>
   <div>
   <input type="number" class="form-</pre>
control" name="MonthlyIncome" value="{{ pegawai.MonthlyIncome
}}">
   </div>
  </div>
    </div>
     <div class="float-right">
     <div class="form-row">
     <div class="form-group col-md-15">
    <label for="jenis_produk"><strong>Total Working Years :
</strong></label>
     <div>
     <input type="number" class="form-</pre>
control" name="TotalWorkingYears" value="{{
pegawai.TotalWorkingYears }}">
     </div>
    </div>
     </div>
    <div class="form-row">
    <div class="form-group col-md-15">
   <label for="jenis_produk"><strong>Years At Company :
</strong></label>
     <div>
     <input type="number" class="form-</pre>
control" name="YearsAtCompany" value="{{
pegawai.YearsAtCompany }}">
     </div>
     </div>
     </div>
     <hr>>
    <div class="form-group">
   <button type="submit" class="btn btn-</pre>
primary">Simpan</button>
   <button type="reset" class="btn btn-danger">Batal</button>
     </div>
    </div>
  </form>
```

Kode diatas merupakan tampilan dari halaman edit data pegawai. Terdapat form yang berisikan inputan Age, Job Level, Monthly Income, Total Working Years, dan Years At Company. Selain itu tedapat button simpan untuk proses menyimpan data yang telah diedit dan button batal untuk mereset data.

C. URL

```
path('edit/<int:id>', views.edit),
path('update/<int:id>', views.update),
```

Kode diatas merupakan URL untuk mengakses halaman edit pegawai, dan update untuk proses update.

4. Implementasi Proses Hapus Data Pegawai

A. Views

```
def delete(request, id):
    pegawai = Pegawai.objects.get(id=id)
    pegawai.delete()
    return redirect("/view")
```

Fungsi delete digunakan untuk melakukan fungsi hapus data. Jika data berhasil terhapus maka hasil data yang terhapus akan dialihkan ke halaman data pegawai.

B. URL

```
path('delete/<int:id>', views.delete),
```

Kode diatas merupakan URL untuk melakukan proses hapus data.

5. Logika Fungsi CRUD

Gambar 4. 4 Flowmap Prediksi Gaji

Keterangan:

- 1. Aplikasi menampilkan halaman data pegawai.
- 2. User melakukan kelola data seperti insert, edit, dan hapus data pegawai.
- 3. Aplikasi melakukan proses kelola data pegawai yang dilakukan.
- 4. Aplikasi mengirim data yang dikelola ke database data pegawai.
- 5. Aplikasi menampilkan data hasil insert, edit, dan hapus data pegawai.
- 6. Selesai

4.1.6 Implementasi Proses Menampilkan Visualisasi

A. Views

```
def visualisasi(request):
    return render(request, 'visualisasi.html')
```

Fungsi visualisasi digunakan untuk menampilkan halaman visualisasi.html yang ada di Template yaitu ke halaman visualisasi.

B. Template

```
<div class="float-left">
  <h5>Berikut adalah visualisasi data pegawai </h5>
</div>
 <br>
 <hr>>
 <div class='tableauPlaceholder' id='viz1640335357904'</pre>
style='position: relative'>
    <object class='tableauViz' style='display:none;'>
    <param name='host url'</pre>
value='https%3A%2F%2Fpublic.tableau.com%2F'/>
    <param name='embed code version' value='3' />
    <param name='site_root' value='' />
    <param name='name'</pre>
value='SalaryVSYearsExperience4/Dashboard8'/>
    <param name='tabs' value='no' />
    <param name='toolbar' value='yes' />
    <param name='animate transition' value='yes' />
    <param name='display_static_image' value='yes' />
    <param name='display_spinner' value='yes' />
    <param name='display_overlay' value='yes' />
    <param name='display_count' value='yes' />
    <param name='language' value='en-US' />
    <param name='filter' value='publish=yes' />
   </object>
 </div>
 <script type='text/javascript'>
  var divElement =
document.getElementById('viz1640335357904');
  var vizElement =
divElement.getElementsByTagName('object')[0];
 if ( divElement.offsetWidth > 800 )
    vizElement.style.minWidth='600px';
    vizElement.style.maxWidth='900px';
    vizElement.style.width='100%';
    vizElement.style.minHeight='127px';
    vizElement.style.maxHeight='527px';
    vizElement.style.height=(divElement.offsetWidth*0.75)+'px';
    else if ( divElement.offsetWidth > 500 )
```

```
vizElement.style.minWidth='600px';
      vizElement.style.maxWidth='900px';
      vizElement.style.width='100%';
     vizElement.style.minHeight='127px';
      vizElement.style.maxHeight='527px';
      vizElement.style.height=(divElement.offsetWidth*0.75)+'px
      else
        vizElement.style.width='100%';
        vizElement.style.height='727px';
        var scriptElement =
document.createElement('script');
        scriptElement.src =
https://public.tableau.com/javascripts/api/viz_v1.js';
        vizElement.parentNode.insertBefore(scriptElement,
vizElement);
        </script>
      </div>
```

Kode diatas merupakan tampilan dari halaman visualisasi. Visualisasi tersebut dibuat dari platform Tableau yang telah dirancang sebelumnya.

C. URL

```
url('visualisasi', views.visualisasi, name='visualisasi'),
```

Kode diatas merupakan URL untuk mengakses halaman visualisasi.

VISUALISASI DATA User Aplikasi Mulai Halaman Utama Pilih Visualisasi Halaman Visualisasi

D. Logika Fungsi Menampilkan Visualisasi Data

Gambar 4. 5 Flowmap Menampilkan Visualisasi Data

Keterangan:

- 4. Aplikasi menampilkan halaman utama.
- 5. User memilih menu visualisasi.
- 6. Aplikasi menampilkan halaman visualisasi.
- 7. Selesai.

4.2 Implementasi Model Machine learning

Pada bagian implementasi model *machine learning*, dipaparkan kode-kode dalam proses analisis data pegawai berdasarkan pengalaman lama bekerja. Selain analisis data, dilakukan juga pembuatan model prediksi gaji pegawai.

4.2.1 Himpunan Data

Pada tahap ini, hal yang dilakukan adalah memahami dan mempersiapkan data yang dikenal dengan istilah *Data Preprocessing*. Metode yang digunakan dalam *Data Preprocessing* pada model ini adalah *Data Cleaning*. Berikut kode programnya:

```
# Basic Library
[1]
     import pandas as pd
     import numpy as np
      # Data Visualization
     import matplotlib.pyplot as plt
     from mpl toolkits.mplot3d import Axes3D
     import seaborn as sns
     from scipy.stats import skew
      # Model Building
     from sklearn.linear model import LinearRegression
     import statsmodels.api as sm
[2]
     df_train = pd.read_csv('E:\Data_Urang\Mata Kuliah\Semester 3\PROJECT
     II\Project New\PROJECT-2\dataset\employee_attrition_train.csv')
     df_train
[3]
     df_train.info()
[4]
     # Encoder BusinessTravel Variable
      # converting type of columns to 'category'
     df train['BusinessTravel']=
     df train['BusinessTravel'].astype('category')
      # Assigning numerical values and storing in another column
     df_train['BusinessTravel'] = df_train['BusinessTravel'].cat.codes
      # Encoder Department Variable
     df_train['Department'] = df_train['Department'].astype('category')
      # Assigning numerical values and storing in another column
     df train['Department'] = df train['Department'].cat.codes
      # Encoder EducationField Variable
```

```
df_train['EducationField']=
df train['EducationField'].astype('category')
# Assigning numerical values and storing in another column
df train['EducationField'] = df train['EducationField'].cat.codes
# Encoder Gender Variable
df train['Gender'] = df train['Gender'].astype('category')
# Assigning numerical values and storing in another column
df train['Gender'] = df train['Gender'].cat.codes
# Encoder JobRole Variable
df train['JobRole'] = df train['JobRole'].astype('category')
# Assigning numerical values and storing in another column
df train['JobRole'] = df train['JobRole'].cat.codes
# Encoder MaritalStatus Variable
df train['MaritalStatus'] = df train['MaritalStatus'].astype('category')
# Assigning numerical values and storing in another column
df train['MaritalStatus'] = df train['MaritalStatus'].cat.codes
# Encoder Over18 Variable
df train['Over18'] = df train['Over18'].astype('category')
# Assigning numerical values and storing in another column
df train['Over18'] = df train['Over18'].cat.codes
# Encoder OverTime Variable
df train['OverTime'] = df train['OverTime'].astype('category')
# Assigning numerical values and storing in another column
df_train['OverTime'] = df_train['OverTime'].cat.codes
```

```
df train
[5]
     df_train.isnull().values.any()
     df_train.isnull().sum()
[6]
    Age = df_train['Age']
[7]
      Age.describe()
     df_train.Age = df_train.Age.fillna(value=df_train.Age.mean())
[8]
[9]
     DailyRate = df train['DailyRate']
      DailyRate.describe()
[10] df train.DailyRate= df train.DailyRate.fillna
      (value=df train.DailyRate.mean())
     DistanceFromHome = df train['DistanceFromHome']
[11]
      DistanceFromHome.describe()
[12] df_train.DistanceFromHome= df_train.DistanceFromHome.fillna
      (value=df_train.DistanceFromHome.mean())
[13] df train clean = df train
      df train clean.isnull().values.any()
[14] df train clean.isnull().sum()
[15] def plotCorrelationMatrix(df train clean, graphWidth):
      df train clean = df train clean[[col for col in df train clean if
      df train clean[col].nunique() > 1]] # keep columns where there are more
      than 1 unique values
      if df train clean.shape[1] < 2:</pre>
      print(f'No correlation plots shown: The number of non-NaN or constant
      columns ({df train clean.shape[1]}) is less than 2')
      return
      corr = df train clean.corr()
      plt.figure(num=None, figsize=(graphWidth, graphWidth), dpi=80,
      facecolor='w', edgecolor='k')
      corrMat = plt.matshow(corr, fignum = 1)
```

```
plt.xticks(range(len(corr.columns)), corr.columns, rotation=90)
      plt.yticks(range(len(corr.columns)), corr.columns)
      plt.gca().xaxis.tick bottom()
      plt.colorbar(corrMat)
      plt.title(f'Correlation Matrix for Data Training', fontsize=15)
      plt.show()
      plotCorrelationMatrix(df train clean, 8)
[16] df train clean.corr().abs()
[17] df train clean.columns
[18] df train clean = df train clean.drop(['Attrition', 'BusinessTravel',
      'DailyRate', 'Department', 'DistanceFromHome', 'Education',
      'EducationField', 'EmployeeCount', 'EmployeeNumber',
      'EnvironmentSatisfaction', 'Gender', 'HourlyRate', 'JobInvolvement',
      'JobRole', 'JobSatisfaction', 'MaritalStatus', 'MonthlyRate',
      'NumCompaniesWorked','Over18', 'OverTime', 'PercentSalaryHike',
      'PerformanceRating', 'RelationshipSatisfaction', 'StandardHours',
      'StockOptionLevel', 'TrainingTimesLastYear',
      'WorkLifeBalance', 'YearsInCurrentRole', 'YearsSinceLastPromotion',
      'YearsWithCurrManager'], axis=1)
[19] df train clean.corr()
[20] x train = df train clean[['Age', 'JobLevel', 'TotalWorkingYears',
     'YearsAtCompany']]
      y_train = df_train_clean[['MonthlyIncome']]
[21] df_train_clean.to_csv('E:\Data_Urang\Mata Kuliah\Semester 3\PROJECT
      II\Project New\PROJECT-2\dataset\employee attrition train clean.csv')
```

- Line 1: Untuk mengimport library yang dibutuhkan.
- Line 2 : Mengimport data ke pyhton kemudian disimpan dalam variabel dengan nama df_train.Line 3 : Untuk mengimport library pymysql.
- Line 3 : Menampilkan info detail tabel/data yang disimpan.
- Line 4 : Melakukan encoder, karena *machine learning* tidak bisa membaca korelasi dari suatu variabel jika nilainya bernilai object/string.

- Line 5 : Cek apakah ada data yang kosong pada tabel..
- Line 6 : Cek berapa *record* yang terdapat data yag kosong.
- Line 7 : Membuat variabel Age yang berisikan atribut age, kemudian cek deskripsi variabel Age.
- Line 8 : Melakukan pengisian data kosong pada variabel Age dengan nilai mean-nya.
- Line 9 : Membuat variabel DailyRate yang berisikan atribut DailyRate, kemudian cek deskripsi variabel DailyRate.
- Line 10 : Melakukan pengisian data kosong pada variabel DailyRate dengan nilai mean-nya.
- Line 11: Membuat variabel DistanceFromHome yang berisikan atribut DistanceFromHome, kemudian cek deskripsi variabel DistanceFromHome.
- Line 12 : Melakukan pengisian data kosong pada variabel DistanceFromHome dengan nilai mean-nya.
- Line 13: Membuat variabel df_train_clean yang berisikan data df_train, kemudian cek apakah masih terdapat data yang kosong atau tidak.
- Line 14 : Cek berapa *record* yang terdapat data yag kosong.
- Line 15: Membuat heatmap antar variabel yang terdapat dalam variabel df_train_clean.
- Line 16: Membuat tabel korelasi antar variabel.
- Line 17 : Menampilkan kumpulan variabel yang terdapat dalam df_train_clean.
- Line 18: Melakukan drop variabel yang tidak diperlukan.
- Line 19: Membuat tabel korelasi setelah proses drop variabel.
- Line 20: Menetapkan variabel independent (sumbu x) yaitu variabel Age, JobLevel, TotalWorkingYears, dan YearsAtCompany. Kemudian menetapkan variabel variabel dependen (sumbu y) yaitu MonthlyIncome.
- Line 21: Melakukan export data ke format file csv.

A. Visualisasi Data Training

```
plt.style.use('ggplot')

plt.rcParams['figure.figsize'] = (12,8)

[23] vis_train = pd.read_csv('E:\Data_Urang\Mata Kuliah\Semester 3\PROJECT
    II\Project New\PROJECT-2\dataset\employee_attrition_train_clean.csv')

vis_train = vis_train.drop(['Unnamed: 0'], axis=1)

sns.pairplot(vis_train, x_vars = ['Age', 'JobLevel',
    'TotalWorkingYears', 'YearsAtCompany'], y_vars = 'MonthlyIncome',
    height=5, aspect=0.7)

[24] sns.heatmap(vis_train.corr(), annot=True)
```


Gambar 4. 6 Visualisasi Data Training

Keterangan:

- Line 22: Membuat style untuk diagram plot.
- Line 23: Melakukan import data kemudian disimpan dalam variabel vis_train. Drop kolom yang tidak diperlukan. Kemudian menentukan variabel x dan y untuk diagram plot.
- Line 24 : Membuat heatmap untuk melihat korelasi antar variabel.

4.2.2 Proses Data Mining & Pengetahuan

Pada tahapan Proses Data Mining hal yang dilakukan adalah memilih metode yang sesuai dengan karakter data yang dikenal dengan istilah Modelling. Pada model ini digunakan Proses Data Mining Prediction. Pada tahapan Pengetahuan hal yang dilakukan adalah memahami model dan pengetahuan yang sesuai sehingga dapat memilih model. Model yang digunakan adalah Linear Regression menggunakan Scikit Learn.

```
df test = pd.read csv('E:\Data Urang\Mata Kuliah\Semester3\PROJECT
      II\Project New\PROJECT-2\dataset\employee attrition test.csv')
      df_test
[26] # Encoder BusinessTravel Variable
      # converting type of columns to 'category'
      df test['BusinessTravel'] =
      df test['BusinessTravel'].astype('category')
      # Assigning numerical values and storing in another column
      df test['BusinessTravel'] = df_test['BusinessTravel'].cat.codes
      # Encoder Department Variable
      df test['Department'] = df test['Department'].astype('category')
      # Assigning numerical values and storing in another column
      df_test['Department'] = df_test['Department'].cat.codes
      # Encoder EducationField Variable
      df test['EducationField'] =
      df_test['EducationField'].astype('category')
      # Assigning numerical values and storing in another column
      df_test['EducationField'] = df_test['EducationField'].cat.codes
      # Encoder Gender Variable
      df_test['Gender'] = df_test['Gender'].astype('category')
```

```
# Assigning numerical values and storing in another column
      df test['Gender'] = df test['Gender'].cat.codes
      # Encoder JobRole Variable
      df test['JobRole'] = df test['JobRole'].astype('category')
      # Assigning numerical values and storing in another column
      df test['JobRole'] = df test['JobRole'].cat.codes
      # Encoder MaritalStatus Variable
      df test['MaritalStatus'] =
      df test['MaritalStatus'].astype('category')
      # Assigning numerical values and storing in another column
      df_test['MaritalStatus'] = df_test['MaritalStatus'].cat.codes
      # Encoder Over18 Variable
      df test['Over18'] = df test['Over18'].astype('category')
      # Assigning numerical values and storing in another column
      df_test['Over18'] = df_test['Over18'].cat.codes
      # Encoder OverTime Variable
      df test['OverTime'] = df test['OverTime'].astype('category')
      # Assigning numerical values and storing in another column
      df test['OverTime'] = df test['OverTime'].cat.codes
      df test
[27] df test.isnull().values.any()
[28] df test.isnull().sum()
[29] # Missing Value in Age
      Age = df test['Age']
      df test.Age = df test.Age.fillna(value=df test.Age.mean())
```

```
# Missing Value in DailyDate
      DailyRate = df test['DailyRate']
      df test.DailyRate =
      df test.DailyRate.fillna(value=df test.DailyRate.mean())
      # Missing Value in DistanceFromHome
      DistanceFromHome = df test['DistanceFromHome']
      df test.DistanceFromHome =
      df test.DistanceFromHome.fillna(value=df test.DistanceFromHome.mean()
      # Missing Value in BusinessTravel
      BusinessTravel = df test['BusinessTravel']
      df test.BusinessTravel =
      df test.BusinessTravel.fillna(value=df test.BusinessTravel.mean())
      # Missing Value in MartialStatus
      MaritalStatus = df test['MaritalStatus']
      df test.MaritalStatus
      df_test.MaritalStatus.fillna(value=df_test.MaritalStatus.mean())
[30] df test.isnull().values.any()
[31] df_test.isnull().sum()
[32] # Eliminasi Variabel yang Tidak akan digunakan
      df_test_clean
                       =
                            df_test.drop(['BusinessTravel',
                                                                'DailyRate',
      'Department', 'DistanceFromHome',
                                           'Education',
                                                           'EducationField',
      'EmployeeCount', 'EmployeeNumber', 'EnvironmentSatisfaction', 'Gender',
      'HourlyRate', 'JobInvolvement', 'JobRole', 'JobSatisfaction', 'MaritalSta
      tus', 'MonthlyRate', 'NumCompaniesWorked', 'Over18', 'OverTime', 'PercentS
      alaryHike', 'PerformanceRating', 'RelationshipSatisfaction', 'StandardHo
      urs', 'StockOptionLevel', 'TrainingTimesLastYear', 'WorkLifeBalance', 'Ye
      arsInCurrentRole','YearsSinceLastPromotion','YearsWithCurrManager'],
      axis=1)
```

```
[33]
     df test clean.corr().abs()
     x_test = df_test_clean[['Age', 'JobLevel', 'TotalWorkingYears',
[34]
      'YearsAtCompany']]
      y_test = df_test_clean[['MonthlyIncome']]
[35] df_test_clean.to_csv('E:\Data_Urang\Mata Kuliah\Semester
      II\Project New\PROJECT-2\dataset\employee attrition test clean.csv')
[36] vis_test = pd.read_csv('E:\Data_Urang\Mata Kuliah\Semester 3\PROJECT
      II\Project New\PROJECT-2\dataset\employee_attrition_test_clean.csv')
      vis_test = vis_test.drop(['Unnamed: 0'], axis=1)
      sns.pairplot(vis test,
                                 x vars
                                                    ['Age',
                                                                'JobLevel',
      'TotalWorkingYears', 'YearsAtCompany'], y_vars = 'MonthlyIncome',
     height=5, aspect=0.7)
[37] sns.heatmap(vis test.corr(), annot=True)
[38] regressor = LinearRegression()
     persamaan = regressor.fit(x train, y train)
     print(regressor.coef)
     print(regressor.intercept )
[39] y pred = regressor.predict(x test)
     print(y pred)
[40] vis_test['MonthlyIncome Prediction'] = y_pred.tolist()
     vis test
[41] vis test.to excel('E:\Data Urang\Mata
                                             Kuliah\Semester
                                                                  3\PROJECT
      II\Project New\PROJECT-2\dataset\employee_vis_test.xlsx')
```

• Line 25 : Melakukan import data testing kemudian disimpan dalam variabel df_test.

- Line 26: Melakukan encoder, karena machine learning tidak bisa membaca korelasi dari suatu variabel jika nilainya bernilai object/string.
 Line 27: Cek apakah masih terdapat data yang kosong atau tidak.
- Line 28 : Cek apakah ada data yang kosong pada tabel.
- Line 29 : Membuat variabel kemudian melakukan pengisian data kosong pada variabel dengan nilai mean-nya.
- Line 30 : Cek apakah masih terdapat data yang kosong atau tidak.
- Line 31: Cek apakah ada data yang kosong pada tabel.
- Line 32 : Melakukan drop variabel yang tidak diperlukan.
- Line 33: Membuat tabel korelasi setelah proses drop variabel.
- Line 34: Menetapkan variabel independent (sumbu x) yaitu variabel Age, JobLevel, TotalWorkingYears, dan YearsAtCompany. Kemudian menetapkan variabel variabel dependen (sumbu y) yaitu MonthlyIncome.
- Line 35 : Melakukan export data ke format file csv.
- Line 36: Melakukan import data kemudian disimpan dalam variabel vis_train. Drop kolom yang tidak diperlukan. Kemudian menentukan variabel x dan y untuk diagram plot.
- Line 37 : membuat heatmap untuk melihat korelasi antar variabel.
- Line 38: Membuat variabel regressor yang isinya metode LinearRegression, kemudian membuat variabel persamaan yang isinya terdapat method regressor.fit dengan parameternya x_train dan y_train. Dari model tersebut didapat nilai koefisien dari variabel Independen. Nilai koefisien dari Age adalah -5,054 yang berarti tiap karyawan yang mengalami pertambahan satu tahun umur kerja, maka akan mengalami penurunan gaji sebesar 5,054. Nilai koefisien dari JobLevel adalah 3871,7530 yang berarti tiap karyawan yang mengalami pertambahan satu tingkat job level akan mengalami kenaikan gaji sebesar 3871,7530. Nilai koefisien TotalWorkingYears adalah 46,9405 yang berarti tiap karyawan yang mengalami pertambahans satu tahun pengalaman bekerja akan mengalami kenaikan kerja sebesar 46,9405. Nilai koefisien

YearsAtCompany adalah -9,8460 yang berarti tiap karyawan yang mengalami pertambahan satu tahun akan mengalami penurunan gaji sebesar 9,8460.

• Line 39 : Mencari konstanta/intercept menggunakan regressor, kemudian ditampilkan.

Intecept merupakan sebuah koefisien dari sebuah persamaan model regresi linear. Untuk kasus ini, berarti untuk variabel X yang bernilai nol atau karyawan yang belum berpengalaman kerja, karyawan tersebut akan menerima gaji sebesar 26611 per tahunnya.

• Line 40: Melakukan prediksi data testing menggunkana model *machine learning*. Kemudian buat kolom baru yang Bernama MonthlyIncome Prediction yang berisikan nilai prediksi.

Berikut persamaan umum dari model linear regresi multivariabel :

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_{3} + \beta_4 X_4 + \ldots + \beta_n X_n$$

 β_0 adalah nilai intersept dari persamaan linear, dan β_1 , β_2 , β_3 sampai dengan β_n adalah konstanta dari variabel independen. Berdasarkan nilai koefisien variabel independen dan Intersept didapat, maka persamaan regresi linear multivariabel sebagai berikut :

$$Y = -1728 - 5,054X_1 + 3871,7530X_2 + 46,9405X_3 - 9,8460X_4$$

Y = Variabel Dependen yaitu MonthlyIncome

 X_1 = Variabel Independen pertama yaitu Age

 X_2 = Variabel Independen kedua yaitu JobLevel

 X_3 = Variabel Independen ketiga yaitu TotalWorkingYears

 X_4 = Variabel Independen keempat yaitu YearsAtCompany

Maka dapat disimpulkan, persamaan regresi linear multivariabel sebagai berikut :

$$MonthlyIncome = -1728 - 5,054(Age) + 3871,7530(JobLevel) + \\ 46,9405(TotalWorkingYears) - 9,8460(YearsAtCompany)$$

• Line 41 : Melakukan export data setelah prediksi ke dalam format file excel.

A. Visualisasi Data Testing

```
[36] vis_test = pd.read_csv('E:\Data_Urang\Mata Kuliah\Semester 3\PROJECT
II\Project New\PROJECT-2\dataset\employee_attrition_test_clean.csv')
vis_test = vis_test.drop(['Unnamed: 0'], axis=1)

sns.pairplot(vis_test, x_vars = ['Age', 'JobLevel',
    'TotalWorkingYears', 'YearsAtCompany'], y_vars = 'MonthlyIncome',
    height=5, aspect=0.7)

[37] sns.heatmap(vis_test.corr(), annot=True)
```


Gambar 4. 7 Visualisasi Data Testing

- Line 36 : Melakukan import data kemudian disimpan dalam variabel vis_train. Drop kolom yang tidak diperlukan. Kemudian menentukan variabel x dan y untuk diagram plot.
- Line 37 : membuat heatmap untuk melihat korelasi antar variabel.

4.2.3 Evaluasi Data

Pada tahap ini hal yang dilakukan adalah melakukan evaluasi terhadap analisis model dan kinerja metode.

A. Validasi Model

```
[42] X = df train clean[['Age', 'JobLevel',
      'TotalWorkingYears', 'YearsAtCompany']]
     X = sm.add constant(X) # adding a constant
     olsmod = sm.OLS(df train['MonthlyIncome'], X).fit()
     print(olsmod.summary())
```

Dep. Variable:	Month]	.yIncome	R-squared:		0.	.909
Model:			Adj. R-square	d:	0.	.909
Method:	Least	Squares	F-statistic:		25	571.
Date:	Mon, 10 3	lan 2022	Prob (F-stati	stic):	(9.00
Time:	1	0:58:11	Log-Likelihoo	d:	-894	14.9
No. Observations:		1029	AIC:		1.790	2+04
Df Residuals:		1024	BIC:		1.792	2+04
Df Model:		4				
Covariance Type:	no	nrobust				
	coef	std err	t	P> t	[0.025	0.975
const	-1728.5202	230.587	-7.496	0.000	-2180.998	-1276.04
Age	-5.0543	6.905	-0.732	0.464	-18.605	8.496
JobLevel	3871.7530	65.635	58.989	0.000	3742.958	4000.548
TotalWorkingYears	46.9406	11.733	4.001	0.000	23.917	69.96
YearsAtCompany	-9.8460	9.767	-1.008	0.314	-29.012	9.32
Omnibus:		12.798	Durbin-Watson	:	2	.069
Prob(Omnibus):		0.002	Jarque-Bera (JB):		15.262	
Skew:			Prob(JB):		0.000485	
Kurtosis:			Cond. No.		213.	

Gambar 4. 8 Model OLS

Notes: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

• Line 42: Membuat variabel x yang berisikan atribut Age, JobLevel, TotalWorkingYears dan YearsAtCompany. Variabel X digunakan utnuk melihat validasi model *machine learning* dengan model OLS.

B. Uji F (ANOVA)

F-test atau ANOVA (Analysis of Variance) dalam regresi multi-linear dapat digunakan untuk menentukan apakah model kompleks yang dibuat berkinerja lebih baik daripada model yang lebih sederhana (misalnya model dengan hanya satu variabel independent). Dengan uij-F dapat dievaluasi signifikansi model yang dibuat dengan menghitung probabilitas pengamatan statistic-F yang setidaknya setinggi nilai yang diperoleh model yang dbuat. Mirip dengan skor R2, dapat dengan mudah mendapatkan statistic F dan probabilitas statistic F tersebut dengan mengakses atribut .fvalues dan .f_pvalues dari model yang dibuat seperti di bawah ini.

```
[43] print('F-statistic:', olsmod.fvalue)

print('Probability of observing value at least as high as
F-statistic:', olsmod.f_pvalue)
```

F-statistic: 2570.622889791836 Probability of observing value at least as high as F-statistic: 0.0

Keterangan:

• Line 43: Untuk menampilkan nilai F-statistik dan P-value dari model *machine learning* dengan model OLS.

a. P-Value

P-Value adalah nilai probabilitas yang dapat diartikan sebagai besarnya peluang (probabilitas) yang diamati dari statistic uji. Variabel independen (Age, JobLevel, TotalWorkingYears, YearsAtCompany)

mempunyai nilai p-value dibawah 0.05, hal ini menandakan ia signifikan melakukan prediksi variabel dependen (MonthlyIncome).

b. Fs

Fs adalah hasil akhir dari analisis ANOVA. Nilai Fs ini yang dikenal dengan F hitung dalam pengujian hipotesa dibandingkan dengan nilai p-value. Jika Fs > P-value, maka dapat dinyatakan bahwa secara simultan (bersama-sama) variabel dependen dan variabel independen berpengaruh signifikan terhadap permintaan. Hipotesa yang didapat dari tabel ANOVA di atas adalah:

- H0 = Variabel independen secara simultan bukan penjelas yg signifikan terhadap variabel dependen (Model tidak cocok).
- H1 = Variabel independen secara simultan merupakan penjelas yang siginifikan terhadap variabel dependen (Model cocok).

Berdasarkan tabel diatas, dapat diketahui bahwa Fs > P-value, yang artinya hipotesa yang dapat diambil adalah terima H1 dan tolak H0. Dapat dikatakan, variabel Independen (Age, JobLevel, TotalWorkingYears, YearsAtCompany) dan MonthlyIncome berpengaruh signifikan terhadap permintaan. Pada taraf signifikansi 5% (0,05), H0 ditolak karena nilai probabilitasnya yaitu 0,00 yang berarti dibawah dari 5%. Maka dapat disimpulkan, model yang dipakai cocok.

C. Uji-t

Statistik-t adalah koefisien dibagi dengan kesalahan standarnya. Kesalahan standar adalah perkiraan deviasi standar koefisien, jumlahnya bervariasi di setiap kasus. Ini dapat dianggap sebagai ukuran ketetapan yang digunakan untuk mengukur koefisien regresi. Sama seperti uji-F, nilai-p menunjukkan probabilitas untuk melihat hasil yang ekstrim seperti yang dimiliki oleh model yang dibuat. Selain itu, uji-t juga bisa mendapatkan nilai p untuk seluruh variabel dengan memanggil .pvalues atribut pada model.

[44] print(olsmod.pvalues)

Gambar 4. 9 Nilai P-Values Dari Variabel Independen

Keterangan:

• Line 44 : Untuk menampilkan nilai p-values dari variabel independen.

Hipotesa yang dapat diambil adalah:

H0 = Variabel independen tidak berpengaruh signifikan

H1 = Variabel independen berpengaruh signifikan.

 $\alpha = 0.05$ (Taraf signifikansi)

Berdasarkan uji-t dapat diambil hipotesa sebagai berikut :

- Nilai variabel X₁ (Age) berada di atas taraf signifikansi yang berarti terima H1.
- Nilai variabel X₂ (JobLevel) berada di bawah taraf signifikansi yang berarti terima H0.
- Nilai variabel X₃ (TotalWorkingYears) di bawah taraf signifikansi yang berarti terima H0.
- Nilai variabel X₄ (YearsAtCompany) di atas taraf signifikansi yang berarti terima H1.

Berdasarkan hipotesa di atas, dapat disimpulan variabel independen JobLevel dan TotalWorkingYears adalah variabel yang tidak mempengaruhi variabel dependen. Sedangkan variabel independen Age dan YearsAtCompany adalah variabel yang mempengaruhi variabel dependen.

D. R-Square

R2-Square adalah sebuah nilai yang menyatakan seberapa sesuai hasil prediksi model mendekati data yang sebenarnya. Semakin besar r2-square, maka hasil prediksi semakin dekat dengan data yang sebenarnya, artinya sama saja dengan semakin mendekati 1, maka semakin baik model tersebut.

	OLS Regress	sion Results						
Dep. Variable:	MonthlyIncome	R-squared:	0.909					
Model:	OLS	Adj. R-squared:	0.909					
Method:	Least Squares	F-statistic:	2571.					
Date:	Mon, 10 Jan 2022	Prob (F-statistic):	0.00					
Time:	10:58:11	Log-Likelihood:	-8944.9					
No. Observations:	1029	AIC:	1.790e+04					
Df Residuals:	1024	BIC:	1.792e+04					
Df Model:	4							
Covariance Type:	nonrobust							

Gambar 4. 10 Model OLS

Berdasarkan tabel ANOVA, nilai koefisien determinasi (R-Square) adalah 0,909 atau 90,9%. Maka, MonthlyIncome dipengarui oleh faktor Age dan YearsAtCompany sebesar 0,909 atau 90,9%. Nilai sisa dari koefisien determinasi adalah 0.091 atau 9,1% dipengaruhi oleh faktor lain yang tidak diketahui.

E. Pengujian Asumsi

Untuk memvalidasi model *machine learning* dilakukan dengan analisis residual. Berikut adalah daftar pengujian atau asumsi yang akan lakukan untuk mengetahui validitas model :

 Line 45: Mengimport data kemudian disimpan dalam variabel df_test_new. Setelah itu melakukan drop atribut. Melakukan kolom baru dengan nama MonthlyIncome Prediction yang berisikan dengan hasil prediksi. Kemudian dibuat juga kolom residual untuk menyimpan nilai residualnya.

a. Linearitas

Dengan linearitas dapat diasumsikan bahwa terdapat hubungan linear antara variabel bebas dan variabel terikat. Dengan menggunakan plot pencar dapat diketahui perbandingan nilai prediksi dengan nilai sebenarnya.

```
[46] # Plotting the observed vs predicted values
    sns.lmplot(x='MonthlyIncome', y='MonthlyIncome
    Prediction', data=df_test_new, fit_reg=False,
    size=5)

# Plotting the diagonal line

line_coords = np.arange(vis_test[['MonthlyIncome',
    'MonthlyIncome Prediction']].min().min()-10,

vis_test[['MonthlyIncome', 'MonthlyIncome
    Prediction']].max().max()+10)

plt.plot(line_coords, line_coords, # X and y
    points

color='darkorange', linestyle='--')

plt.ylabel('Predicted MonthlyIncome', fontsize=14)

plt.xlabel('Actual MonthlyIncome', fontsize=14)

plt.title('Linearity Assumption', fontsize=16)

plt.show()
```


Gambar 4. 11 Grafik Asumsi Linear

• Line 46: Untuk menampilkan grafik linearitas dari perbandingan nilai MonthlyIncome dengan MonthlyIncomePrediction.

Plot sebar menenujukkan sisa yang tersebar merata di sekitar garis diagonal, sehingga dapat diasumsikan bahwa ada hubungan linier antara variable independent dan dependen.

b. Normalitas

Berdasarkan asumsi diatas, dapat dikatakan istilah kesalahan model terdistribusi tidak normal. Memeriksa normalitas residual dengan memplotnya ke dalam histogram dan melihat nilai p dan uji normalitas Anderson-Darling dengan menggunakan normal_ad() fungsi dari statsmodel untuk menghitung p-value dan kemudian membandingkannya dengan threshold 0,05. Jika p-value yang diperoleh lebih tinggi dari threshold maka dapat diasumsikan bahwa residual terdistribusi normal. Jika p-value yang diperoleh lebih kecil dari threshold, maka dapat diasumsikan bahwa residual terdistribusi tidak normal.

[47] from statsmodels.stats.diagnostic import normal_ad

```
# Performing the test on the residuals
p_value = normal_ad(df_test_new2['residual'])[1]
print('p-value from the test Anderson-Darling test
below 0.05 generally means non-normal:', p_value)

# Plotting the residuals distribution
plt.subplots(figsize=(8, 4))
plt.title('Distribution of Residuals',
fontsize=18)
sns.distplot(df_test_new2['residual'])
plt.show()

# Reporting the normality of the residuals
if p_value < 0.05:
print('Residuals are not normally distributed')
else:
print('Residuals are normally distributed')</pre>
```


Gambar 4. 12 Grafik Distribusi Residual

 Line 47: Mengimport fungsi normal_ad untuk mencari nilai normalitas. Kemudian dibuat grafik batang distribusi dari residual data.

Dapat diketahui hipotesa sebagai berikut :

H0 = Residual terdistribusi normal.

H1 = Residual terdistribusi secara tidak normal.

Dari hasil perhitungan diatas, dapat diketahui bahwa nilai p-value yang dihitung menggunakan metode Anderson-Darling adalah 0,00032261. Angka tersebut berada di bawah nilai threshold yang ditentukan yaitu 0,05, yang berarti tolah H0 terima H1 atau dapat dikatakan residual terdistribusi secara tidak normal. Sehingga disimpulakn asumsi normalitas terpenuhi.

c. Multikolinieritas

Dari hasil asumsi diatas, dapat dikatakan bahwa prediktor yang digunakan dalam regresi berkorelasi satu sama lain. Untuk mengidentifikasi apakah ada korelasi antara prediktor, dapat dihitung koefisien korelasi Pearson antara setiap kolom dalam data menggunakan corr() fungsi dari kerangka data Pandas. Kemudian dapat divisualisasikan sebagai peta panas menggunakan heatmap() fungsi dari seaborn.

```
mask = np.zeros_like(corr, dtype=np.bool)
np.fill_diagonal(mask, val=True)
# Initialize matplotlib figure
fig, ax = plt.subplots(figsize=(4, 3))
# Generate a custom diverging colormap
cmap = sns.diverging_palette(220, 10,
as cmap=True, sep=100)
cmap.set_bad('grey')
# Draw the heatmap with the mask and correct
aspect ratio
sns.heatmap(corr, mask=mask, cmap=cmap, vmin=-1,
vmax=1, center=0, linewidths=.5)
fig.suptitle('Pearson correlation coefficient
matrix', fontsize=14)
ax.tick_params(axis='both', which='major',
labelsize=10)
# fig.tight_layout()
```


Gambar 4. 13 Tabel Matriks Pearson Korelasi

• Line 48 : Untuk mencari nilai korelasi antar variabel dan membuat tabel matriks korelasi.

Masalah multikolinearitas itu muncul jika terdapat hubungan yang sempurna pada satu ada lebih variabel independen dalam model. Pengujian multikolinearitas dapat dilakukan dengan melihat nilai koefisien P-if nya.

```
[49] from patsy import dmatrices

from statsmodels.stats.outliers_influence import
variance_inflation_factor

#find design matrix for linear regression model using
'rating' as response variable

y, X = dmatrices('MonthlyIncome ~
Age+JobLevel+TotalWorkingYears+YearsAtCompany',
data=vis_test, return_type='dataframe')
```

```
#calculate VIF for each explanatory variable

vif = pd.DataFrame()

vif['VIF'] = [variance_inflation_factor(X.values, i)
  for i in range(X.shape[1])]

vif['variable'] = X.columns

#view VIF for each explanatory variable

vif
```

variable	VIF	
Intercept	28.655370	0
Age	1.690786	1
JobLevel	2.489052	2
TotalWorkingYears	4.140803	3
YearsAtCompany	1.739893	4

Gambar 4. 14 Tabel VIF

• Line 49: Untuk mencari nilai VIF variabel independen dan VIF intersep.

Berdasarkan gambar di atas dapat dilihat nilai variabel Age, JobLevel, TotalWorkingYears, YearsAtCompany memiliki nilia kurang dari 10 sehingga dengan menggunakan tingkat signifikansi sebesar 0,05 dapat disimpulkan bahwa pada data tersebut tidak terdapat multikolinearitas pada variabel-variabel prediktor.

d. Autokorelasi

Autokorelasi adalah korelasi kesalahan (residual) dari waktu ke waktu. Digunakan ketika data dikumpulkan dari waktu ke waktu untuk

mendeteksi apakah ada autokorelasi. Autokorelasi terjadi jika residual dalam satu periode waktu terkait dengan residual di periode lain. Autokorelasi dapat dideteksi dengan melakukan uij Durbin-Watson untuk menentukan apakah ada korelasi positif atau negative. Pada langkah ini akan dilakukan perhitungan skor Durbin-Watson menggunakan durbin_watson() fungsi dari statsmodel yang dibuat, kemudian menilainya dengan kondisi sebagai berikut:

- 1. Jika skor Durbin-Watson kurang dari 1,5 maka terdapat autokorelasi positif dan asumsi tidak terpenuhi.
- 2. Jika skor Durbin-Watson antara 1,5 2,5 maka tidak ada autokorelasi dan asumsi puas.
- 3. Jika skor Durbin-Watson lebih dari 2,5 maka terdapat autokorelasi negative dan asumsi tidak puas.

```
from statsmodels.stats.stattools import
   durbin_watson

durbinWatson =
   durbin_watson(df_test_new2['residual'])

print('Durbin-Watson:', durbinWatson)

if durbinWatson < 1.5:
   print('Signs of positive autocorrelation', '\n')

print('Assumption not satisfied')

elif durbinWatson > 2.5:
   print('Signs of negative autocorrelation', '\n')

print('Assumption not satisfied')

else:
   print('Little to no autocorrelation', '\n')

print('Assumption satisfied')
```

 Line 50: Mengimport fungsi durbin_watson, kemudian fungsi tersebut digunakan untuk mencari nilai autokorelasi dari nilai residualnya.

Didapat hasil perhitungannya adalah 2,160636228. Dapat diasumsikan bahwa terdapat sedikit atau tidak ada autokorelasi, yang berarti asumsi puas.

e. Homoskedastisitas

Dari hasil di atas, ini mengasumsikan homoskedastisitas, yang merupakan varian yang sama dalam istilah kesalahan. Heteroskedastisitas/pelanggaran homoskedastisitas terjadi ketika model tidak memiliki varian genap di seluruh istilah kesalahan. Untuk mendeteksi homoskedastisitas, dapat dilakukan berupa memplot residual dan melihat apakah variansnya tampak seragam.

```
[51] # Plotting the residuals

plt.subplots(figsize=(8, 4))

plt.scatter(x=df_test_new2.index,
    y=df_test_new2.residual, alpha=0.8)

plt.plot(np.repeat(0, len(df_test_new2.index)+2),
    color='darkorange', linestyle='--')

plt.ylabel('Residual', fontsize=14)

plt.xlabel('Week', fontsize=14)

plt.title('Homescedasticity Assumption', fontsize=16)

plt.show()
```


Gambar 4. 15 Homoskedastisitas

• Line 51 : Untuk membuat penyebaran residual pada grafik apakah variansnya seragam atau tidak.

Dari grafik scatterplot di atas, terlihat titik-titik menyebar secara acak, serta tersebar baik di atas maupun di bawah angka 0 (nol) pada sumbu Y. Maka dapat diambil kesimpulan bahwa tidak terdaat gejala heteroskedastisitas pada model regresi yang digunakan.

F. Prediksi Gaji

```
[52] # Urutan Inputan : Age, JobLevel (1-5), TotalWorkingYears,
YearsAtCompany
salary_pred = regressor.predict([[20, 1, 3, 1]])
print("Gaji yang terprediksi pada pegawai perbulan yang
bekerja sepanjang tahun tersebut adalah ",salary_pred)
```

Keterangan:

• Line 52: Menentukan prediksi gaji dengan parameter Age = 20 tahun, JobLevel = 1, TotalWorkingYears = 3 tahun, dan YearsAtCompany = 1 tahun menggunakan metode pada variabel regressor, kemudian simpan di variabel MonthlyIncome. Menampilkan nilai dari variabel MonthlyIncome.

4.3 Pengujian dan Hasil Pengujian

Pada bagian pengujian dan hasil pengujian aplikasi, dipaparkan pengujian pada setiap proses berjalannya sistem yang telah dibangun. Dalam melakukan proses pengujian ini digunakan extension Selenium IDE. Berikut adalah pengujian dan hasil pengujian sistem :

4.3.1 Pengujian dan Hasil Pengujian Proses Login Admin

	Command	Target	Value
1	√ open	http://127.0.0.1:8000/	
2	✓ set window size	1382x784	
3	✓ click	linkText=Login	
4	√ type	id=id_username	abahchan
5	✓ click	id=id_password	
6	√ type	id=id_password	abah211200
7	✓ click	css=button	

Gambar 4. 16 Pengujian dan Hasil Pengujian Proses Login Admin

Pada gambar diatas menunjukkan bahwa pengujian proses *login* admin pada aplikasi prediksi gaji pegawai tidak mengalami error yang ditandai deklarasi command, target dan *value*-nya berwarna hijau. Artinya proses *login* admin pada aplikasi ini telah berjalan dengan baik. Berikut disertakan tabel hasil pengujian proses *login* admin :

Tabel 4. 1 Hasil pengujian proses login admin

No.	Proses	Status
1.	open on http://127.0.0.1:8000/	OK (20:21:04)
2.	setWindowSize on 1382x784	OK (20:21:04)
3.	click on linkText=Login	OK (20:21:04)
4.	type on id=id_username with value abahchan	OK (20:21:07)
5.	click on id=id_password	OK (20:21:08)
6.	type on id=id_password with value abah211200	OK (20:21:09)
7.	click on css=button	OK (20:21:10)

8. 'Login Admin' completed successfully20:21:10	20:21:10
---	----------

4.3.2 Pengujian dan Hasil Pengujian Proses Pengolahan Data

Gambar 4. 17 Pengujian dan Hasil Pengujian Proses Pengolahan Data

Pada gambar diatas menunjukkan bahwa pengujian proses pengolahan data pada aplikasi prediksi gaji pegawai tidak mengalami error yang ditandai deklarasi command, target dan *value*-nya berwarna hijau. Artinya proses pengolahan data pada aplikasi ini telah berjalan dengan baik. Berikut disertakan tabel hasil pengujian proses pengolahan data :

Tabel 4. 2 Hasil pengujian proses pengolahan data

No.	Proses	Status
1.	open on http://127.0.0.1:8000/	OK (21:33:17)
2.	setWindowSize on 1382x784	OK (21:33:18)
3.	click on linkText=Login	OK (21:33:19)
4.	type on id=id_username with value abahchan	OK (21:33:21)
5.	click on id=id_password	OK (21:33:22)
6.	type on id=id_password with value abah211200	OK (21:33:23)
7.	click on css=button	OK (21:33:24)

8.	click on linkText=Data Pegawai	OK (21:33:26)
9.	doubleClick on linkText=Data Pegawai	OK (21:33:28)
10.	click on css=.btn > b	OK (21:33:30)
11.	click on id=id_Age	OK (21:33:31)
12.	type on id=id_Age with value 32	OK (21:33:32)
13.	click on id=id_JobLevel	OK (21:33:32)
14.	type on id=id_JobLevel with value 2	OK (21:33:33)
15.	click on id=id_MonthlyIncome	OK (21:33:34)
16.	click on id=id_TotalWorkingYears	OK (21:33:35)
17.	type on id=id_TotalWorkingYears with value 5	OK (21:33:36)
18.	click on id=id_YearsAtCompany	OK (21:33:37)
19.	type on id=id_YearsAtCompany with value 2	OK (21:33:37)
20.	click on id=id_MonthlyIncome	OK (21:33:37)
21.	type on id=id_MonthlyIncome with value 5436	OK (21:33:37)
22.	click on css=.btn-primary	OK (21:33:38)
23.	'Kelola Data' completed successfully20	21:33:38

4.3.3 Pengujian dan Hasil Pengujian Proses Prediksi Gaji

	Command	Target	Value
1	√ open	http://127.0.0.1:8000/	
2	✓ set window size	1382x784	
3	✓ click	linkText=Login	
4	√ type	id=id_username	abahchan
5	✓ click	id=id_password	
6	√ type	id=id_password	abah211200
7	✓ click	css=button	
8	✓ click	linkText=Prediksi	
9	✓ click	id=Age	
10	√ type	id=Age	32
11	✓ click	id=JobLevel	
12	√ type	id=JobLevel	2
13	✓ click	id=YearsAtCompany	
		id=VooroAfCompony	c .

Gambar 4. 18 Pengujian dan Hasil Pengujian Proses Prediksi Gaji

Pada gambar diatas menunjukkan bahwa pengujian proses prediksi gaji pada aplikasi prediksi gaji pegawai tidak mengalami error yang ditandai deklarasi command, target dan *value*-nya berwarna hijau. Artinya proses prediksi gaji pada aplikasi ini telah berjalan dengan baik. Berikut disertakan tabel hasil pengujian proses prediksi gaji :

Tabel 4. 3 Hasil pengujian proses prediksi gaji

No.	Proses	Status
1.	open on http://127.0.0.1:8000/	OK (21:39:03)
2.	setWindowSize on 1382x784	OK (21:39:04)
3.	click on linkText=Login	OK (21:39:04)
4.	type on id=id_username with value abahchan	OK (21:39:06)
5.	click on id=id_password	OK (21:39:07)
6.	type on id=id_password with value abah211200	OK (21:39:07)
7.	click on css=button	OK (21:39:07)
8.	click on linkText=Prediksi	OK (21:39:07)
9.	type on id=Age with value 32	OK (21:39:12)
10.	click on id=JobLevel	OK (21:39:13)
11.	type on id=JobLevel with value 2	OK (21:39:14)
12.	click on id=YearsAtCompany	OK (21:39:15)
13.	type on id=YearsAtCompany with value 5	OK (21:39:16)
14.	click on id=TotalWorkingYears	OK (21:39:17)
15.	type on id=TotalWorkingYears with value 2	OK (21:39:18)
16.	click on css=.btn-block	OK (21:39:19)
17.	'Prediksi Gaji' completed successfully	21:39:20

4.3.4 Pengujian dan Hasil Pengujian Proses Visualisasi

Gambar 4. 19 Pengujian dan Hasil Pengujian Proses Visualisasi

Pada gambar diatas menunjukkan bahwa pengujian proses visualisasi pada aplikasi prediksi gaji pegawai tidak mengalami error yang ditandai deklarasi command, target dan *value*-nya berwarna hijau. Artinya proses visualisasi pada aplikasi ini telah berjalan dengan baik. Berikut disertakan tabel hasil pengujian proses visualisasi:

Tabel 4. 4 Hasil pengujian proses visualisasi

No.	Proses	Status
1.	open on http://127.0.0.1:8000/	OK (21:44:48)
2.	setWindowSize on 1382x784	OK (21:44:48)
3.	click on linkText=Login	OK (21:44:48)
4.	type on id=id_username with value abahchan	OK (21:44:50)
5.	click on id=id_password	OK (21:44:51)
6.	type on id=id_password with value abah211200	OK (21:44:52)
7.	click on css=button	OK (21:44:53)
8.	click on linkText=Visualisasi	OK (21:44:54)
9.	'Visualisasi Data' completed successfully	21:44:56

4.3.5 Pengujian dan Hasil Pengujian Proses Logout

Gambar 4. 20 Pengujian dan Hasil Pengujian Proses Logout

Pada gambar diatas menunjukkan bahwa pengujian proses *logout* pada aplikasi prediksi gaji pegawai tidak mengalami error yang ditandai deklarasi command, target dan *value*-nya berwarna hijau. Artinya proses *logout* pada aplikasi ini telah berjalan dengan baik. Berikut disertakan tabel hasil pengujian proses *logout*:

Tabel 4. 5 Hasil pengujian proses logout

No.	Proses	Status
1.	open on http://127.0.0.1:8000/	OK (11:40:46)
2.	setWindowSize on 1382x784	OK (11:40:46)
3.	click on linkText=Login	OK (11:40:46)
4.	type on id=id_username with value abahchan	OK (11:40:49)
5.	click on id=id_password	OK (11:40:50)
6.	type on id=id_password with value abah211200	OK (11:40:51)
7.	click on css=button	OK (11:40:52)
8.	click on linkText=Visualisasi	OK (11:40:53)
9.	'Visualisasi Data' completed successfully	11:40:56

BAB V

KESIMPULAN DAN SARAN

5.1 Kesimpulan

Berdasarkan hasil analisis dan pembahasan yang telah dilakukan dapat disimpulkan beberapa poin yaitu :

- Hasil dari analisis karakteristik data gaji karyawan, didapatkan parameter yang berkaitan dengan gaji karyawan yaitu Age, JobLevel, TotalWorkingYears, dan YearsAtCompany. Parameter-parameter tersebut dipilih berdasarkan pedoman interpretasi koefisien korelasi dari nilai yang sedang hingga sangat kuat.
- 2. Model yang dibuat berhasil melewati semua pengujian dalam langkah validasi model, sehingga kami dapat menyimpulkan bahwa model kami dapat berperforma baik untuk memprediksi gaji karyawan dengan menggunakan empat variabel independen, yaitu Age, JobLevel, TotalWorkingYears, dan YearsAtCompany. Korelasi yang didapatkan yaitu Age sebesar 0,43; JobLevel sebesar 0,94; TotalWorkingYears sebesar 0,77; dan YearsAtCompany sebesar 0,48.
- 3. Model prediksi yang dirancang dengan menggunakan *machine learning* dengan pendekatan regresi, didapatkan model prediksi gaji karyawan, dimana MonthlyIncome sebagai variabel dependen dan Age, JobLevel, TotalWorkingYears, dan YearsAtCompany variabel independen. Berdasarkan model yang diambil dari model OLS kami mendapatkan nilai akurasi sebesar 0,909. Akurasi tersebut merupakan nilai akurasi yang baik, sehingga dapat dikatakan model *machine learning* dapat berperforma baik untuk memprediksi gaji.
- 4. Berdasakan uji validitas, nilai akurasi 0,909 menunjukkan bahwa MonthlyIncome dipengaruhi oleh faktor independen (Age, YearsAtCompany) sebesar 0,909 atau 90,9%. Nilai sisa dari akurasi tersebut adalah 0,091 atau 9,1% yang artinya MonthlyIncome dipengaruhi oleh faktor lain yang tidak diketahui sebesar 9,1%.

5. Visualisasi data dari hasil model prediksi gaji karyawan dapat digunakan menjadi bentuk aplikasi berbasis *web base* dengan menggunakan *framework* Django. Dengan aplikasi tersebut, admin dapat melakukan prediksi gaji karyawan dengan mudah dan dengan cepat.

5.2 Saran

Saran yang dapat disampaikan pada peneliti yang akan melanjutkan dan mengembangkan penelitian ini adalah :

- 1. Pembuatan model prediksi yang digunakan dapat lebih beragam untuk membandingkan performa antara model satu dengan model yang lainnya.
- 2. Sumber data yang digunakan kurang maksimal. Pada penelitian ini, hanya didapatkan real yang berasal dari Kaggle. Diharapkan kedepannya dapat menggunakan data real langsung dari perusahaan.

DAFTAR PUSTAKA

- [1] Prasetyo B and Trisyanti U, "REVOLUSI INDUSTRI 4.0 DAN TANTANGAN PERUBAHAN SOSIAL", *Journal of Proceedings Series*, no. 5, pp. 22-27, Nov. 2018, doi: http://dx.doi.org/10.12962/j23546026.y2018i5.4417
- [2] H. Prasetyo and W. Sutopo, "Perkembangan Keilmuan Teknik Industri Menuju Era Industri 4.0", *Seminar dan Konferensi Nasional IDEC*, vol. 2017, pp. 488-495, May .2017, doi: https://idec.ft.uns.ac.id/wp-content/uploads/2017/11/Prosiding2017 ID069.pdf
- [3] O. C. Pangaribuan and I. Irwansyah, "Media Cetak Indonesia di Era Revolusi Industri 4.0," *Jurnal Pewarta Indonesia*, vol. 1, no. 2, pp. 134–145, Oct. 2019, doi: https://dx.doi.org/10.25008/jpi.v1i2.11
- [4] A. A. Shahroom and N. Hussin, "Industrial Revolution 4.0 and Education," *International Journal of Academic Research in Business and Social Sciences*, vol. 8, no. 9, pp. 314-319, Oct. 2018, doi: https://doi.org/10.24114/jh.v10i1.14138
- [5] S. Kergroach, "Industry 4.0: New Challenges And Opportunities For The Labour Market," *Foresight and STI Governance*, vol. 11, no. 4, pp. 6–8, 2017, doi: http://dx.doi.org/10.17323/2500-2597.2017.4.6.8
- [6] M. I. Manda and S. ben Dhaou, "Responding to the challenges and opportunities in the 4th industrial revolution in developing countries", *PervasiveHealth: Pervasive Computing Technologies for Healthcare*, Part F148155, pp. 244–253, 2019, doi: http://dx.doi.org/10.1145/3326365.3326398
- [7] Y. Adrianova Eka Tuah and Anyan, "IMPLEMENTASI MODEL REGRESI LINEAR SEDERHANA UNTUK PREDIKSI GAJI BERDASARKAN PENGALAMAN LAMA BEKERJA", *Journal Education and Technology*, vol. 1, no. 2, pp. 56-70 Dec. 2020, doi: https://doi.org/10.31932/jutech.v1i2.1289
- [8] Tamrin A.S, Rumapea Patar, Mambo R, "PENGARUH PROFESIONALISME KERJA PEGAWAI TERHADAP TINGKAT KEPUASAN PELANGGAN PADA KANTOR PT. TASPEN CABANG MANADO", *Jurnal Administrasi Publik*, vol. 3, no. 46, pp. 1-9 2017, doi: https://ejournal.unsrat.ac.id/index.php/JAP/article/view/16283
- [9] E. P. Ariesanto Akhmad, "Data Mining Menggunakan Regresi Linear untuk Prediksi Harga Saham Perusahaan Pelayaran," *Jurnal Aplikasi Pelayaran dan Kepelabuhanan*, vol. 10, no. 2, p. 120, Dec. 2020, doi: https://dx.doi.org/10.30649/japk.v10i2.83
- [10] K. Puteri and A. Silvanie, "MACHINE LEARNING UNTUK MODEL PREDIKSI HARGA SEMBAKO DENGAN METODE REGRESI LINIER BERGANDA", Jurnal Nasional Informatika, vol. 1, no. 2, pp. 82-94, Oct. 2020, doi: https://ejournal-ibik57.ac.id/index.php/junif/article/view/134

- [11] A. Saiful, S. Andryana, and A. Gunaryati, "Prediksi Harga Rumah Menggunakan Web ScrappingDan *Machine learning* Dengan Algoritma Linear Regression", *Jurnal Teknik Informatika dan Sistem Informasi*, vol. 8, no. 1, pp. 41-50, Mar. 2012, doi: https://jurnal.mdp.ac.id/index.php/jatisi/article/download/701/219/
- [12] M. W. Pertiwi and R. E. Indrajit, "Metode Regresi Linier Untuk Prediksi Pengadaan Ilmu Pengetahuan Inventaris Barang", Simposium Nasional dan Teknologi (SIMNASIPTEK) 2017, 1, 1, 2017, vol. no. pp. 27-30, doi https://seminar.bsi.ac.id/simnasiptek/index.php/simnasiptek-2017/article/view/114
- [13] W. Wahyudin and H. Purwanto, "PREDIKSI KASUS COVID-19 DI INDONESIA MENGGUNAKAN METODE BACKPROPAGATION DAN REGRESI LINEAR," *Journal of Information System, Applied, Management, Accounting and Research*, vol. 5, no. 2, p. 331, May 2021, doi: https://doi.org/10.52362/jisamar.v5i2.420
- [14] N. Nafi'iyah, "Perbandingan Regresi Linear, Backpropagation Dan Fuzzy Mamdani Dalam Prediksi Harga Emas," *Seminar Nasional Inovasi Dan Aplikasi Teknologi Di Industri (SENIATI)* 2016, vol. 2, pp. 291-296, Mar. 2016, doi: https://ejournal.itn.ac.id/index.php/seniati/article/download/840/767/
- [15] F. Ginting, E. Buulolo, and E. R. Siagian, "IMPLEMENTASI ALGORITMA REGRESI LINEAR SEDERHANA DALAM MEMPREDIKSI BESARAN PENDAPATAN DAERAH (STUDI KASUS: DINAS PENDAPATAN KAB. DELI SERDANG)," *KOMIK (Konferensi Nasional Teknologi Informasi dan Komputer)*, vol. 3, no. 1, Nov. 2019, doi: http://dx.doi.org/10.30865/komik.v3i1.1602
- [16] P. Katemba and K.D. Rosita, "PREDIKSI TINGKAT PRODUKSI KOPI MENGGUNAKAN REGRESI LINEAR", *Jurnal Ilmiah Flash*, vol. 3, pp. 42-51, Jun. 2017, doi: http://jurnal.pnk.ac.id/index.php/flash/article/view/136/79
- [17] T. N. Putri, A. Yordan, and D. H. Lamkaruna, "Peramalan Penerimaan Mahasiswa Baru Universitas Samudra Menggunakan Metode Regresi Linear Sederhana," *Jurnal Teknologi Informtika*, vol. 2, no. 1, Mar. 2019, doi: http://jurnal.ummu.ac.id/index.php/J-TIFA/article/view/237/149
- [18] D. Sayan, B. Rupashri, M. Ayush, "SALARY PREDICTION USING REGRESSION TECHNIQUES.", *Proceedings of Industry Interactive, Innovations in Science, Engineering & Technology, Jan. 2020, doi: https://dx.doi.org/10.2139/ssrn.3526707*
- [19] U. Bansal, A. Narang, A. Sachdeva, I. Kashyap, and S. P. Panda, "Empirical Analysis Of Regression Techniques By House Price And Salary Prediction," *IOP Conference Series: Materials Science and Engineering*, vol. 1022, no. 1, pp. 1-13, Jan. 2021, doi: https://iopscience.iop.org/article/10.1088/1757-899X/1022/1/012110
- [20] X. Pan, X. Wan, H. Wang, and Y. Li, "The Correlation Analysis Between Salary Gap and Enterprise Innovation Efficiency Based on the Entrepreneur Psychology," *Frontiers in*

- *Psychology*, vol. 11, Aug. 2020, doi: https://www.frontiersin.org/articles/10.3389/fpsyg.2020.01749/full
- [21] S. Dan and B. Pratikno, "REGRESI LINEAR BIVARIAT SIMPEL DAN APLIKASINYA PADA DATA CUACA DI CILACAP", *JMP*, vol. 6, no. 1, pp. 45-52, Jun. 2014, doi: http://dx.doi.org/10.20884/1.jmp.2014.6.1.2902
- [22] T. N. Padilah and R. I. Adam, "ANALISIS REGRESI LINIER BERGANDA DALAM ESTIMASI PRODUKTIVITAS TANAMAN PADI DI KABUPATEN KARAWANG", *Jurnal Pendidikan Matematika dan Matematika*, vol. 5, no. 2, pp. 117-128, Dec. 2019, doi: https://jurnal.umj.ac.id/index.php/fbc/article/view/3333
- [23] P.E.N. Desak, S. Made, "UNIVERSITAS UDAYANA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA", *Conference: Prosiding Seminar Nasional Matematika II*, vol. 2, pp. 43-54, Oct. 2016, doi: https://simdos.unud.ac.id/uploads/file-penelitian-1-dir/24a473ea40f085c51398cd47 7f586a3a.pdf

LAMPIRAN

CODE COVERAGE

Code Coverage Folder Prediksi

No	Halaman	Running Statement	Missing Statement	Excluded	Percent
1	Views.py	4	65	0	6%
2	Urls.py	2	2	0	50%
3	Tests.py	1	0	0	100%
4	Models.py	8	2	0	80%
5	Forms.py	2	4	0	33%
6	Apps.py	4	0	0	100%
7	Admin.py	1	0	0	100%

Code Coverage Folder PrediksiGaji

No	Halaman	Running Statement	Missing Statement	Excluded	Percent
1	Asgi.py	4	0	0	100%
2	Settings.py	21	0	0	100%
3	Urls.py	3	3	0	50%
4	Wsgi.py	4	0	0	100%

GLOSARIUM

Glosarium Non-Teknis

No	Istilah	Keterangan	
1	OOP	Object Oriented Programing adalah paradigma	
		pemrograman yang berorientasi objek	
2	Linear Regresi	Linear Regresi Berganda adalah metode statistik yang	
	Berganda	digunakan untuk melakukan peramalan dengan banyak	
		faktor.	

3	Linear Regresi	Linear Regresi Sederhana adalah metode statistic yang
	Sederhana	digunakan untuk melakukan peramalan dengan 2
		faktor.

Glosarium Teknis

No	Istilah	Keterangan	
	Python		
1	import	Digunakan untuk mengimpor sebagian isi modul serta	
		bukan keseluruhan isi modul.	
2	fields	Sebuah ruang disebuah GUI window yang berfungsi untuk	
		memasukkan sebuah teks atau angka.	
3	class	Sebuah <i>blueprint</i> (cetakan) dari objek (atau instance) yang	
		dibuat.	
4	path()	Memberi tahu baris perintah folder mana yang perlu dicari	
		saat mencari file.	
5	url()	Pintu pertama masuk user ke aplikasi pada python.	
6	def	Fungsi yang berisi perintah atau baris kode yang	
		dikelompokkan menjadi satu kesatuan.	
7	render()	Mengambil RequestContext	
8	request	Melempar parameter dalam URL sampai mengirim header	
		khusus dan verifikasi SSL	

TABEL - TABEL

1. Tabel Definisi Aktor

No	Aktor	Deskripsi
1	Admin	• Login
		 Melakukan Prediksi Gaji
		Melakukan Pengolahan Data
		Melakukan Visualisasi Data
		• Logout

2. Tabel Definisi Use case

No	Aktor	Deskripsi
1	Machine learning	Merupakan aktivitas interaksi
		antara manusia dengan mesin.
		Dalam hal ini, admin membuat
		model prediksi Machine learning.
		Merupakan aktivitas login yang
2	Login	dilakukan oleh admin. Sebelum
		admin masuk ke aplikasi ia harus
		melakukan <i>login</i> terlebih dahulu.
	Registrasi	Merupakan aktivias registrasi
		yang dilakukan oleh admin.
3		Apabila admin belum memiliki
		akun, maka admin harus
		melakukan registrasi terlebih
		dahulu.
4	Melakukan Prediksi Gaji	Merupakan aktivitas memprediksi
		gaji karyawan yang dilakukan
		oleh admin dengan parameter
		lama bekerja seorang karyawan.

5	Melakukan Pengolahan Data	Merupakan aktivitas insert, read, update dan delete data karyawan yang dilakukan oleh admin.
6	Menampilkan Visualisasi Data	Merupakan aktivitas visualisasi grafik data karyawan yang dilakukan oleh admin.
7	Logout	Merupakan aktivitas <i>logout</i> yang dilakukan oleh admin. Admin dapat keluar dari aplikasi jika telah selesai melakukan pekerjaan pada aplikasi.

3. Tabel Skenario Use case Machine learning

Identifikasi	
Nomor	1
Nama	Machine learning
Tujuan	Pembuatan model prediksi
Deskripsi	
Aktor	Admin
Skenario Utama	
Kondisi Awal	
Aksi Aktor	Reaksi Sistem
Membuat model prediksi	Melakukan olah data gaji
	karyawan
Kondisi Akhir	Masuk pada aplikasi

4. Tabel Skenario Use case Login

Identifikasi		
Nomor	1	
Nama	Registrasi	
Tujuan	Membuat akun admin	
Deskripsi	-	

119

Aktor	Admin
Skenario Utama	
Kondisi Awal	
Aksi Aktor	Reaksi Sistem
• Input username, dan password	Menyimpan data admin atau user
Kondisi Akhir	Masuk pada halaman login

5. Tabel Skenario $Use\ case\ Registrasi$

Identifikasi		
Nomor	1	
Nama	Registrasi	
Tujuan	Membuat akun admin	
Deskripsi		
Aktor	Admin	
Skenario Utama		
Kondisi Awal		
Aksi Aktor	Reaksi Sistem	
• Input username, dan password	Menyimpan data admin atau	
	user	
Kondisi Akhir	Masuk pada halaman login	

6. Tabel Skenario *Use case* Melakukan Prediksi Gaji Karyawan

Identifikasi		
Nomor	1	
Nama	Melakukan Predikis Gaji Karyawan	
Tujuan	Melakukan Predikis Gaji Karyawan	
Deskripsi		
Aktor	Admin	
Skenario Utama		
Kondisi Awal		
Aksi Aktor	Reaksi Sistem	
Menginput Data	Melakukan Prediksi Gaji	

Kondisi Akhir	Admi dapat memprediksi gaji

7. Tabel Skenario Use case Melakukan Visualisasi Data

Identifikasi	
Nomor	1
Nama	Melakukan Visualisasi Data
Tujuan	Melakukan visualisasi data
	karyawan
Deskripsi	
Aktor	Admin
Skenario Utama	
Kondisi Awal	
Aksi Aktor	Reaksi Sistem
Input data karyawan	Menampilkan grafik
	visualisasi data karyawan
Kondisi Akhir	Admin dapat memvisualisasikan
	data

8. Tabel Skenario Use case Melakukan Pengolahan Data

Identifikasi			
Nomor	1		
Nama	Melakukan Pengolahan Data		
Tujuan	Melakukan pengolahan data		
	karyawan		
Deskripsi			
Aktor	Admin		
Skenario Utama			
Kondisi Awal			
Aksi Aktor	Reaksi Sistem		
Insert, read, update, dan delete	Mengubah data karyawan yang		
data karyawan.	diubah oleh admin		
Kondisi Akhir	Admin dapat mengelola data		

121

9. Tabel Skenario Use case Logout

Identifikasi		
Nomor	1	
Nama	Logout	
Tujuan	Keluar dari aplikasi	
Deskripsi		
Aktor	Admin	
Skenario Utama		
Kondisi Awal		
Aksi Aktor	Reaksi Sistem	
Menekan tombol <i>logout</i>	Melakukan proses keluar dari	
	aplikasi	
Kondisi Akhir	Keluar dari aplikasi	