Maps
$$f: X \rightarrow Y$$
 (X, Y sets)

 C invage of ∞

inf=f(x)={f(x)|xeX}=y

primage of y is $f^{-1}(y) = \{x \in X \mid f(\infty) = y\}$ (y \(Y \)

<u>Nefinition 3.3:</u> $f:X \longrightarrow Y$ is <u>injective</u> if distinct elements \longrightarrow distinct elements (equiv. if $f(x_1) = f(x_2)$ then $x_1 = x_2$)

Note: f is injective $\Leftrightarrow \forall y \in Y$ the preimage f'(y) is empty or singleton.

<u>Definition 3.4:</u> f:X → Y is <u>surjective</u> (<u>onto</u>) if f(x)=Y, i.e \ \ y \ e \ \ ∃ \times \ X \ s.t. \ f(\times) = y.

Note: f is suggetine $\Leftrightarrow f^{-1}(y) \neq \emptyset \quad \forall y \in Y$.

<u>Definition 3.5:</u> $f: X \longrightarrow Y$ is <u>bijuline</u> (on 1-1 correspondence) if f is injective & surjective (i.e. $f^{-1}(y)$ is a singleton $\forall y \in Y$).

Definition 3.6: Assume $X \xrightarrow{f} Y \xrightarrow{g} Z$. Then the <u>composite</u> map $g \circ f$ (or simply g f) is the map $X \to Z$ given by $(g f)(x) = g(f(x)) \forall x \in X$. $((f \circ g)(y) = f(g(y))??)$

Example: Let
$$X = Y = Z = R$$
, $f(x) = x^2$, $g(x) = x + 1$. Then $(gf)(x) = g(f(x)) = g(x^2) = x^2 + 1$

$$(fg)(x) = f(g(x)) = f(x + 1) = (x + 1)^2$$

$$= x^2 + 2x + 1.$$
So $fg \neq gf$

<u>Definition 3.7</u>: Let X be a set. The <u>identity map</u> $|_X$ on \mathcal{H}_x is $|_X: X \longrightarrow X$ given by $I_{x}(x) = x \forall x \in X$

Esecutible: 1x: 1 1 1 1

<u>Cenuma 3.8:</u> (1) Let f: X → Y. Then fo 1x = f and 1, of = f (2) Let $X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} W$. Then $h \circ (g \circ f) = (h \cdot g) \cdot f$ (so "o" is associative)

Proof: (1) clear

(2)
$$(h \circ (g \circ f))(x) = h((g \circ f)(x)) = h(g(f(x)))$$

 $((h \circ g) \circ f)(x) = (h \circ g)(f(x)) = h(g(f(x)))$
 $\forall x \in X$

<u>Definition 3.9:</u> Let $f: X \longrightarrow Y$. Then $g: Y \longrightarrow X$ is <u>inverse</u> of f (we write $f = g^{-1}$) if fg = 1, and gf = 1x If such g exists then f is invertible

<u>Proposition 3.10:</u> $f: X \longrightarrow Y$ is invertible \Leftrightarrow f is a bijection.

Proof: (=) suppose f is invent., so g as in 3 g wints. need to show f is inj + surj my: let ye Y. Jake x=q(y) (g:Y→X). thun $f(x) = f(g(y)) = (f \circ g)(y)$ by 3.9, 1, (y) = y

inj: suppose
$$f(x_1) = f(x_2)$$
.
then $g(f(x_1)) = g(f(x_2))$
 $(g \circ f)(x_1) = (g \circ f)(x_2)$
 $|_{X}(x_1) = |_{X}(x_2)$
 $x_1 = x_2$

(\Leftarrow) suppose f is bij. = inj. + snj. Then for every ye Y the primage $f^{-1}(y)$ is a singleton, so $f^{-1}(y) = x$ for some $x \in X$. Define $g: Y \longrightarrow X$ as $g(y) = f^{-1}(y) \forall y \in Y$. Then $fg = I_Y$ and $gf = I_X$ (check!), so g is the inverse of f.

<u>Proposition 3.11:</u> Let $f: X \longrightarrow Y$ and $g: Y \longrightarrow Z$ be bijective. Then $gf: X \longrightarrow Z$ is a bijection and $(gf)^{-1} = f^{-1}g^{-1}$

Proof: Park 2 only:
$$(f^{-1}g^{-1})(gf) = f^{-1}(g^{-1}g) f = f^{-1} \cdot 1_{7} \circ f = f^{-1} \cdot f = 1_{x}$$

$$(gf)(f^{-1}g^{-1}) = g(ff^{-1})g^{-1} = g \circ 1_{x} \circ g^{-1} = g \circ g^{-1} = 1_{z}$$