Universidad de la República - Facultad de Ingeniería - IMERL. Matemática Discreta 2

Examen - 11 de julio de 2017. Duración: 3 horas y media.

N° de examen	Cédula	Apellido y nombre

Ejercicio 1.

- a. Enunciar y demostrar la Identidad de Bézout.
- b. Deducir el Lema de Euclides.
- **c**. Hallar todos los $x \in \mathbb{Z}$ que cumplan:

$$\begin{cases} 5x \equiv 1 & \pmod{47} \\ x \equiv 21^{44} & \pmod{19} . \end{cases}$$

Ejercicio 2.

- a. Sea G un grupo y $g \in G$ un elemento de orden finito.
 - i) Probar que si $k \in \mathbb{Z}$ entonces

$$o\left(g^k\right) = \frac{o(g)}{\operatorname{mcd}(o(g), k)}.$$

- ii) Deducir que o $(g^k) = o(g)$ si y sólo si mcd(k, o(g)) = 1.
- **b**. Sabiendo que el grupo U(p) de invertibles módulo un primo p es cíclico, probar que existen $\varphi(p-1)$ raíces primitivas módulo p.

Ejercicio 3.

- a. i) Probar que 103 es un número primo.
 - ii) Probar que g=5 es una raíz primitiva módulo el primo p=103.
 - iii) Sabiendo que $g^{102} \equiv 1752 \pmod{103^2}$, probar que g es una raíz primitiva módulo p^2 .
 - iv) Probar que g es una raíz primitiva módulo p^k para cada k > 2.
- b. i) Describir el método de intercambio de claves de Diffie-Hellman.
 - ii) Mostrar que en el método Diffie-Hellman ambos participantes llegan a la misma clave.

Ejercicio 4.

- a. Describir todos los elementos de $(U(15), \times)$ indicando su orden y cuál es su inverso.
- **b.** Describir todos los homomorfismos de $(\mathbb{Z}_4, +)$ en $(U(15), \times)$. Indicar cuáles son inyectivos.
- c. i) Encontrar un homomorfismo inyectivo $f: (\mathbb{Z}_2, +) \to (U(15), \times)$ y un homomorfismo inyectivo $g: (\mathbb{Z}_4, +) \to (U(15), \times)$ tales que $\operatorname{Im}(f) \cap \operatorname{Im}(g) = \{1\}$.
 - ii) Probar que la función $h: (\mathbb{Z}_2 \times \mathbb{Z}_4, +) \to (U(15), \times)$ dada por

$$h(a,b) = f(a) q(b)$$

es un homomorfismo.

iii) ¿Es el homomorfismo h un isomorfismo?