Egy egyszerű példa

Keressük a 15x-x² függvény maximumát!

Az x változó értéke 0 és 15 között lehet. Az egyszerűség kedvéért x csak egész értékeket vehet fel.

A kromoszómákat 4 génből építjük fel:

Egész Bináris kód

Az N értéke (populáció mérete) legyen 6.

A rekombinációs valószínűség P_r =0,7 és a mutációs valószínűség P_m =0,001.

A fitness függvény: $f(x)=15x-x^2$

Generálunk véletlenszerűen 6 db 4 bites sztringet, amelyek 0-ból és 1-ből épülnek fel:

kromoszóma	kromoszóma	decodolt integer	Kromoszóma	Fitness érték, %
címe	sztring	szám	fitness értéke	
X1	1100	12	36	16,5
X2	0100	4	44	20,2
X3	0001	1	14	6,4
X4	1110	14	14	6,4
X5	0111	7	56	25,7
X6	1001	9	54	24,8

A következő lépés minden egyedi kromoszóma fitnesz értékének kiszámítása. A létrehozott populáció átlagos fitnesz függvény értéke 36. Ezután használjuk a szelekciós, rekombinációs és mutációs operátorokat.

Használjuk a rulett szelekciót (roulette wheel selection):

A következő módon előállítjuk a rulett kereket felhasználva az átlagos fitnesz értékeket.

x1: 16,5%

x2: 20,2%

x3: 6,4%

x4: 6,4%

x5: 25,3%

x6: 24,8%

A [0,100] intervallumon generálunk véletlenszerűen és ahová esik az érték azt a kromoszómát választjuk.

Pl. a két szülő legyen így kiválasztva x6 és x2, x1 és x5, illetve x2 és x5.

x1i 1100 f=36

x2i 0100 f=44

x3i 0001 f=14

x4i 1110 f=14

x5i 0111 f=56

x6i 1001 f=54

Rekombináció:

x6 10 01	01 00 x2	x6'	1000	0101	x2'
x1 1 100	0 111 x5	x1'	1111	0100	x5'
x2 0100	0111 x5				

Mutáció:

- x6' 1000
- x2' 0101
- x1' 1111 1011 x1''
- x5' 0100
- x2 01**0**0 0110 x2"
- x5 0111

Új egyedek:

- x1i+1 1000 **f=56** → 8
- x2i+1 0101 f=50
- x3i+1 1011 f=44
- x4i+1 0100 f=44
- x5i+1 0110 f=54
- x6i+1 0111 **f=56** → 7