Deep image clustering

1. Clustering은 어떨 때 필요한가?

우리가 일반적으로 알고있는 clustering은 classification 테스크에 가까움

일례로, ImageNet challenge의 경우 1000개의 label을 가지는 이미지를 classification하고. 정확도를 대결

하지만 label이 존재하는 데이터를 이용하는 classification의 경우, supervised learning의 한계를 가지고 있음

- label이 주어지지 않은 이미지는 어떻게 분류해야 할까?
- 좀 더 General 한 분류작업을 할 수 있지 않을까?
- label 데이터에 bias가 존재한다면?
 - e.g. 농구 라벨을 가지는 이미지에는 흑인이 많이 포함돼 있음 → 흑인을 농구로 분류함
- → 이러한 한계는 unsupervised learning을 이용한 clustering이 해결해 줄 수 있음 라벨(bias)을 제거하고, 직접 만들자!

2. Concept of Deep image clustering

ECCV 2018 에서 발표된.

"Deep Clustering for Unsupervised Learning of Visual Features" 논문을 통해 Deep image clustering이 어떻게 이루어지는지 살펴보자!

Convolution network는 이미지 내 특정 속성, 정보들을 정량화 하여 표현할 수 있음

- 입력 이미지를 아무런 가공 없이 분류하는 것은 불가능
- 입력 이미지에서 무언가 공통된 특성을 가지는 패턴 혹은 정보들을 정량적으로 표현이 필요
- convnet은 이미지를 고정된 차원의 벡터 공간으로 맵핑해 주는 역할을 함 (feature vector)

일반적인 Image classifier

- 일반적인 Image classifier는 convnet을 통해 image feature vector를 추출하고, fully-connected NN을 통하여 입력 이미지가 특정 class에 속할 확률을 계산
- convnet의 각 convolution layer의 kernel 들은, 이미지 내 특정한 패턴을 추출해 주는 역할을 함

classification을 위한 convnet의 학습은 어떻게 이루어 질까?

 $\min_{ heta,W} rac{1}{N} \sum_{n=1}^N \ell(g_W(f_ heta(x_n)),y_n)$

- x_n : $X=\{x_1,x_2,\ldots,x_N\}$ 의 원소로 N개의 이미지를 가진 데이터셋에 속함
- y_n : 이미지의 label로 클래스가 K개 있다면 각 원소가 [0,1]에 속하는 K차원 벡터
- ℓ : negative log-softmax로 cross-entropy와 동일함
- $f_{ heta}$: 입력 이미지를 d차원 벡터로 맵핑. heta는 convnet의 파라미터를 뜻함
- g_W : d차원 벡터를 K차원 벡터로 맵핑. W는 분류기의 파라미터

• 이미 주어진 label을 사용하여 학습을 하기 때문에 supervised learning 임

논문에서 제안하는 Image clustering 방법

과정

- Image classification과 마찬가지로 입력이미지를 convnet에 통과시켜 feature vector를 획득
- Convnet에 의해 생성된 feature vector들에 대해 K-means clustering을 수행하여
 학습 이미지들을 k개의 pseudo-labeling 부여 및 학습

K-means 를 사용하여, convnet 출력 결과들의 clustering

$$egin{array}{l} \min_{C \in \mathbb{R}^{d imes k}} rac{1}{N} \sum_{n=1}^N \min_{y_n \in \{0,1\}^k} \|f_{ heta}(x_n) - Cy_n\|_2^2 \end{array}$$

- C : centroid matrix로 $f_{\theta}(x_n)$ 의 차원이 d라면, $d \times K$ 차 원의 행렬. K는 centroid의 수.
- y_n : 구하고자 하는 pseudo-label
- ullet Clustering을 통해 C를 구하고, 이를 통해 y_n 을 구함

학습은 어떻게..?

- clustering 결과로 얻은 K개의 pseudo-label의 개수 분포와, 학습 데이터셋의 class 별 분포를 cross-entropy loss를 이용하여 일치시킴
- (의견) 입력 이미지 하나하나에 대해 소속 class에 대한 loss를 계산하는 것이 아닌, 전체 데이터의 분포를 GT와 일치시키는 것 → unsupervised learning?

특징

- convnet의 weight들을 normal distribution에서 무작위로 추출해서 구성하였을 때 도, 12%의 clustering 성능을 보여줌
 - 즉 무작위한 kernel의 특성을 기반으로 나름 feature vector를 추출 했다는 것
- 학습 시간의 1/3 가량을 K-means clustering 연산에 사용

3. 꿀팁 of Deep image clustering

Image preprocessing

- Unsupervised learning을 이용한 분류 방법에서는 color 요소가 특징 추출에 방해가 된다고 함
 - 。 입력 이미지에 sobel filter를 적용하여 color를 제거하고 contrast를 향상시킴

• RGB 입력 vs Sobel filtered 입력

 두 입력에 대해서 각각 Convnet을 학습 시켰을 때, 첫번째 layer의 conv kernerl을 시각화 해보면,

RGB 입력에 대한 kernel(좌)은 패턴보다 색상 위주 정보에 대한 학습 결과를 알 수 있고,

Sobel filtered 입력에 대한 kernel(P)은 패턴에 치중된 정보들을 학습함을 알 수 있음

4. Performance evaluation

Rank	Model	Accuracy ↑	NMI	ARI	Train set	Backbone	Extra Training Data	Paper	Code	Result	Year	Tags
1	SPICE*	0.918	0.850	0.836	Train	ResNet- 18	×	SPICE: Semantic Pseudo-labeling for Image Clustering	0	Ð	2021	
2	RUC	0.903				ResNet- 18	~	Improving Unsupervised Image Clustering With Robust Learning	0	Ð	2020	
3	IMC-SwAV (Best)	0.897	0.818	0.8	Train	ResNet- 18	×	Information Maximization Clustering via Multi-View Self- Labelling	0	Ð	2021	
4	IMC-SwAV (Avg+-)	0.891	0.811	0.79	Train	ResNet- 18	×	Information Maximization Clustering via Multi-View Self- Labelling	0	Ð	2021	
5	SCAN	0.883	0.797	0.772	Train	ResNet- 18	×	SCAN: Learning to Classify Images without Labels	0	€	2020	
6	SCAN (Avg)	0.876	0.787	0.758	Train	ResNet- 18	×	SCAN: Learning to Classify Images without Labels	0	Ð	2020	
7	Single-Noun Prior	0.853	0.731	0.702	Train+Test	ViT-B-32	~	The Single-Noun Prior for Image Clustering		Ð	2021	
8	ConCURL	0.846	0.762	0.715	Train		×	Representation Learning for Clustering via Building Consensus	0	Ð	2021	
9	MMDC	0.820	0.703			ResNet18	×	Multi-Modal Deep Clustering: Unsupervised Partitioning of Images	O	Ð	2019	
10	IDFD	0.815	0.711	0.663	Train+Test	ResNet- 18	✓	Clustering-friendly Representation Learning via Instance Discrimination and Feature Decorrelation	0	Ð	2020	
11	TSUC	0.81	-	-	Train	ResNet- 18	~	Mitigating Embedding and Class Assignment Mismatch in Unsupervised Image Classification	0	Ð	2020	
12	сс	0.79	0.705	0.637	Train+Test	ResNet34	×	Contrastive Clustering	0	Ð	2020	
13	DHOG	0.666	0.585	0.492	Train+Test	ResNet- 18	~	DHOG: Deep Hierarchical Object Grouping		Ð	2020	
14	DCCM	0.623	0.496	0.408	Train+Test	AlexNet	~	Deep Comprehensive Correlation Mining for Image Clustering	0	Ð	2019	
15	IIC	0.617	0.511	0.411	Train+Test	ResNet- 34	~	Invariant Information Clustering for Unsupervised Image Classification and Segmentation	O	Ð	2018	
16	DAC	0.522	0.4	0.301	Train+Test	ConvNet	~	Deep Adaptive Image Clustering	0	Ð	2017	
17	DeepCluster	0.374	-	-	Train+Test	ResNet- 34	~	Deep Clustering for Unsupervised Learning of Visual Features	0	Ð	2018	

Reference

- Caron, M., Bojanowski, P., Joulin, A., & Douze, M. (2018). Deep clustering for unsupervised learning of visual features. In Proceedings of the European conference on computer vision (ECCV) (pp. 132-149).
- O'Mahony, N., Campbell, S., Carvalho, A., Harapanahalli, S., Hernandez, G. V., Krpalkova, L., ... & Walsh, J. (2019, April). Deep learning vs. traditional computer

vision. In *Science and information conference* (pp. 128-144). Springer, Cham.ISO 690