82S2382S123256-Bit ΠL Bipolar PROM

Product Specification

Bipolar Memory Products

DESCRIPTION

The 82S23 and 82S123 are field programmable, which means that custom patterns are immediately available by following the Signetics Generic I fusing procedure. The 82S23 and 82S123 devices are supplied with all outputs at logical Low. Outputs are programmed to a logic High level at any specified address by fusing a Ni-Cr link matrix.

These devices include on-chip decoding and 1 Chip Enable input for memory expansion. They feature either Open-Collector or 3-State outputs for optimization of word expansion in bused organizations.

Ordering information can be found on the following page.

The 82S23 and 82S123 devices are also processed to military requirements for operation over the military temperature range. For specifications and ordering information consult the Signetics Military Data Book.

FEATURES

- Address access time: 50ns max
- Power dissipation: 1.3mW/bit typ
- Input loading: -100µA max
- On-chip address decoding
- One Chip Enable input
- Output options:
 - N82S23: Open-Collector
 - N82S123: 3-State
- No separate fusing pins
- Unprogrammed outputs are Low level
- Fully TTL compatible

APPLICATIONS

- Prototyping/volume production
- Sequential controllers
- Format conversion
- Hardwired algorithms
- Random logic
- Code conversion

PIN CONFIGURATIONS

BLOCK DIAGRAM

256-Bit TL Bipolar PROM (32 imes 8)

82\$23, 82\$123

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
16-pin Plastic DIP 300mil-wide	N82S23 N • N82S123 N
20-pin Plastic Leaded Chip Carrier 350mil-square	N82S23 A • N82S123 A

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V _{CC}	Supply voltage	+7	V _{DC}
V _{IN}	Input voltage	+ 5.5	V _{DC}
V _{ОН} V _О	Output voltage High (82S23) Off-State (82S123)	+ 5.5	V _{DC}
T _A	Operating temperature range	0 to +75	°C
Т _{STG}	Storage temperature range	-65 to +150	°C

DC ELECTRICAL CHARACTERISTICS $0^{\circ}C \leqslant T_{A} \leqslant +75^{\circ}C$, $4.75V \leqslant V_{CC} \leqslant 5.25V$

			LIMITS				
SYMBOL	PARAMETER	TEST CONDITIONS ^{1,2}	Min	Typ ⁵	Max	UNIT	
Input voltage							
V _{IL}	Low	V _{CC} = 4.75V			0.8	V	
V _{IH}	High	$V_{CC} = 5.25V$	2.0			V	
V _{IC}	Clamp	$I_{IN} = -12mA$			-1.2	\ \	
Output voltage							
		CE = Low					
VoL	Low	I _{OUT} = 16mA			0.45	V	
V _{OH}	High	$I_{OUT} = -2mA$	2.4			V	
Input current			-				
I _{IL}	Low	V _{IN} = 0.45V			-100	μΑ	
l _{iH}	High	$V_{IN} = 5.5V$			50	μΑ	
Output current							
lolk	Leakage (82S23)	CE = High, V _{OUT} = 5.5V			40	μΑ	
loz	Hi-Z State (82S123)	\overline{CE} = High, V_{OUT} = 5.5V			40		
		\overline{CE} = High, V_{OUT} = 0.5V		1	-40	1	
los	Short circuit (82S123)3	CE = Low, V _{OUT} = 0V, High stored	-15		-90	m/	
Supply current	.7						
lcc		V _{CC} = 5.25V			96	mA	
Capacitance							
		CE = High, V _{CC} = 5.0V					
CIN	Input	$V_{1N} = 2.0V$		5	1	pF	
Cour	Output	V _{OUT} = 2.0V	1	8		pF	

Notes on following page.

256-Bit TL Bipolar PROM (32 \times 8)

82S23, 82S123

AC ELECTRICAL CHARACTERISTICS $R_1 = 270\Omega$, $R_2 = 600\Omega$, $C_L = 30 pF$, $0^{\circ}C \leqslant T_A \leqslant +75^{\circ}C$, $4.75 V \leqslant V_{CC} \leqslant 5.25 V_{$

SYMBOL PARAMETER			LIMITS				
	PARAMETER	то	FROM	Min	Typ ⁵	Max	UNIT
Access time ⁴	1				•		1
t _{AA}		Output	Address		45	50	ns
t _{CE}		Output	Chip Enable			35	ns
Disable time ⁶							•
t _{CD}		Output	Chip Enable			35	ns

NOTES:

- 1. Positive current is defined as into the terminal referenced.
- 2. All voltages with respect to network ground terminal.
- 3. Duration of short circuit should not exceed 1 second.
- 4. Tested at an address cycle time of $1\,\mu s.$
- 5. Typical values are at $V_{CC} = 5V$, $T_A = +25^{\circ}C$.
- 6. Measured at a delta of 0.5V from Logic Level with $R_1 = 750\Omega$, $R_2 = 750\Omega$ and $C_L = 5pF$.
- 7. Measured with all inputs grounded and all outputs open.

TEST LOAD CIRCUIT

VOLTAGE WAVEFORMS

Package Outlines

PLASTIC LEADED CHIP CARRIER (PLCC)

NO. OF LEADS	PACKAGE CODE	$\theta_{\sf JA}/\theta_{\sf JC}$	DESCRIPTION
20	Α	72/31	350mil-square
28	A	60/24	450mil-square
32	A	58/18	450 × 550mil-rectangular

- Lead material: Olin 194 (Copper Alloy) or equivalent, solder dipped.
- 2. Body material: Plastic (Epoxy).
- 3. Thermal test Fixture: Device soldered to a glass epoxy test board with the dimensions $1.58'' \times 0.75'' \times 0.059''$ with 0.009'' stand off

20-PIN PLASTIC LEADED CHIP CARRIER

Package Outlines

PLASTIC DUAL-IN-LINE PACKAGES

NO. OF LEADS	PACKAGE CODE	$\theta_{\sf JA}/\theta_{\sf JC}$	DESCRIPTION
16	N	76/26	300mil-wide
18	N	63/24	300mil-wide
20	N	60/24	300mil-wide
22	N	56/21	400mil-wide
24	N/N3 ¹	52/20	300mil-wide
24	N	44/18	600mil-wide
28	N	42/16	600mil-wide

PLASTIC DIP

- 1. Lead material: Olin 194 (Copper Alloy) or equivalent, solder dipped.
- 2. Body material: Plastic (Epoxy).
- 3. Thermal test fixture: Device secured in a Textool ZIF socket with 0.04" stand off.

NOTES:

1. Order coded as N3 when both 600mil and 300mil-wide packages are available.

16-PIN PLASTIC DUAL IN-LINE (PDIP)

