### Máquinas de Turing

#### Fabio Martínez Carrillo

#### Autómatas

Escuela de Ingeniería de Sistemas e Informatica Universidad Industrial de Santander - UIS

21 de noviembre de 2017











### Agenda

MT para calculo de Funciones de enteros

Técnicas de programación para las máquinas de Turing

3 Extensiones de la máquina de Turing básica

### MT para calculo de Funciones

#### Sistema Unario/ Unitario

Es el sistema de numeración más simple que existe para representar los números naturales.

- Para representar a N, se repite N veces un simbolo.
- Este sistema es típicamente utilizado para calcular funciones en la MT

### Ejemplo

Desarrollar una MT que calcule la función suma h(n, m) = n + m con  $n, m \ge 1$ , en el sistema unario. La función recibe entradas  $1^n 0 1^m$  y se debe generar la salida  $1^{n+m}$ 

### Solución propuesta

#### Ejemplo

Desarrollar una MT que calcule la función suma h(n, m) = n + m con  $n, m \ge 1$ , en el sistema unario. La función recibe entradas  $1^n 0 1^m$  y se debe generar la salida  $1^{n+m}$ 



Máquinas de Turing son utiles como reconocedores de lenguajes, solucionadores de problemas, pero también permite procesar funciones de enteros con valor

### Sustracción Propia

- Cada entero se representa por un único caracter.
- m-n = max(m-n,0) es m-n si  $m \ge n$ . Cero en otro caso.
- La cinta inicia con un conjunto de valores 0<sup>m</sup>10<sup>n</sup>
- La máquina parará cuando el contenido de la cinta es  $0^{max(m-n,0)}$

#### Funciones con enteros

- M encuentra repetidamente el 0 más a la izquierda que queda y lo reemplaza por un espacio en blanco.
- A continuación, se mueve hacia la derecha, en busca de un 1.
- Después de encontrar un 1, continúa moviéndose hacia la derecha hasta que llega a un 0, que sustituye por un 1.
- M vuelve entonces a moverse hacia la izquierda, buscando el 0 más a la izquierda, el cual identifica cuando encuentra un espacio en blanco a su izquierda, y luego se mueve una casilla hacia la derecha

Cual es la especificación de la MT?

#### Funciones con enteros

- M encuentra repetidamente el 0 más a la izquierda que queda y lo reemplaza por un espacio en blanco.
- A continuación, se mueve hacia la derecha, en busca de un 1.
- Después de encontrar un 1, continúa moviéndose hacia la derecha hasta que llega a un 0, que sustituye por un 1.
- M vuelve entonces a moverse hacia la izquierda, buscando el 0 más a la izquierda, el cual identifica cuando encuentra un espacio en blanco a su izquierda, y luego se mueve una casilla hacia la derecha

#### Cual es la especificación de la MT?

$$MT = (\{q_0, q_1, q_2, q_3, q_4, q_5, q_6\}, \{0, 1\}, \{0, 1, B\}, \delta, q_0, B)$$

|        |               | Símbolo       | _             |
|--------|---------------|---------------|---------------|
| Estado | 0             | 1             | В             |
| $q_0$  | $(q_1,B,R)$   | $(q_5,B,R)$   | _             |
| $q_1$  | $(q_1, 0, R)$ | $(q_2, 1, R)$ | _             |
| $q_2$  | $(q_3, 1, L)$ | $(q_2, 1, R)$ | $(q_4,B,L)$   |
| $q_3$  | $(q_3, 0, L)$ | $(q_3, 1, L)$ | $(q_0,B,R)$   |
| $q_4$  | $(q_4, 0, L)$ | $(q_4,B,L)$   | $(q_6, 0, R)$ |
| $q_5$  | $(q_5,B,R)$   | $(q_5,B,R)$   | $(q_6,B,R)$   |
| $q_6$  | _             | _             | _             |



### MT como generadores de lenguaje



Genera cadenas con un número par de a's:  $L = \{a^{2i}; i \ge 1\}$ 

### MT para Macros ó subrutinas



Subrutina de traslación a la izquierda para el lenguaje:  $\Sigma$  :  $\{a,b,c\}$ 

Entrada:  $b \underline{a_1} \cdots a_{k-1} a_k b$   $\uparrow \overline{\downarrow} \qquad \uparrow \uparrow \uparrow$ Salida:  $a_1 a_2 \cdots a_k \quad b \quad b$ 

### Cual lenguaje genera?



### Cual lenguaje genera?



genera todas las cadenas binarias (cadenas de ceros y unos)

### Lenguaje de una Maquina de Turing

Sea  $M=(Q,\Sigma,\Gamma,\delta,q_0,B,F)$  entonces L(M) es el conjunto de cadenas w de  $\Sigma^*$  tales que  $q_0w\vdash^*\alpha p\beta$  donde  $p\in F$ 

El conjunto de lenguajes que podemos aceptar utilizando una **MT** a menudo se denominan **lenguajes recursivamente enumerables** 

#### Criterio por parada

No exisite ningún movimiento, i.e., esta en un estado q señalando a X y  $\delta(q,X)$  no esta definida

## Técnicas de programación para las máquinas de Turings

### Agenda

MT para calculo de Funciones de enteros

Técnicas de programación para las máquinas de Turing

3 Extensiones de la máquina de Turing básica

#### Almacenamiento en el estado

#### Podemos almacenar una cantidad finita de datos

- La unidad de control consta de un estádo de "control" q, y tres datos: A, B y C.
- ullet El estado se considera una tupla: [q, A, B, C]



# MT que recuerde en su unidad de control el primer simbolo: $01^* + 10^*$

$$M = (Q, \{0,1\}, \{0,1,B\}, \delta, [q_0,B], [q_1,B])$$

•  $\{q_0, q_1\}$  estados de control.  $q_0$  indica que no se ha leido el primer simbolo.  $q_1$  indica que no hay otro simbolo igual.

#### Funciones de transición

- $\delta([q_0, B], a) = ([q_1, a], a, R)$
- $\delta([q_1, a], \bar{a}) = ([q_1, a], \bar{a}, R)$
- $\delta([q_1, a], B) = ([q_1, B], B, R)$

### Pistas Multiples

la cinta de una máquina de Turing está compuesta por varias pistas. Cada pista puede almacenar un símbolo, y el alfabeto de cinta de la MT consta de tuplas.

• El símbolo es [X, Y, Z]

|       |   | Alı | mace | stado | A | q   A B C |  |  |  |  |
|-------|---|-----|------|-------|---|-----------|--|--|--|--|
| Pista | 1 |     |      |       |   | X         |  |  |  |  |
| Pista | 2 |     |      |       |   | Y         |  |  |  |  |
| Pista | 3 |     |      |       |   | Z         |  |  |  |  |

### Multiples pistas

- Los simbolos de la cinta se representan como vectores con k componentes.
- simula que la cinta tenga k pistas
- Simbolos de la cinta son blancos, excepto para una pista



#### Marcadores

- La pista extra es usada para marcar ciertas posiciones.
- En esta cinta, casi todos los simbolos permanecen blancos excepto para ciertas posiciones de interes.

### Multiples pistas: Ejemplo

Copia la entrada w infinitamente.

#### **Estados**

- q Marca la posición y recuerda el simbolo de entrada visto.
- p Corre hacia la derecha, recuerda el simbolo visto y busca un simbolo en blanco
  - Cuando encuentra el simbolo, remplaza el blanco por el simbolo en cache.
  - Se mueve entonces a la izquierda
  - nos movemos al estado r
- r Hacemos recorrido a la izquierda buscando el marcador.
- Removemos el simbolo e iniciamos nuevamente

Estados tienen la forma [x, Y] con x como los estados y Y los valores de  $\{0, 1, 2\}$ 

### Simbolos de la cinta [U, V]

- U tiene el marcador X o el simbolo B
- V tiene los simbolos de entrada o B

### Funciones de transición

- $\delta([q, B], [B, a]) = ([p, a], [X, a], R)$
- $\delta([p, a], [B, b]) = ([p, a], [B, b], R)$
- $\delta([p, a], [B, a]) = ([p, a], [B, a], R)$
- $\delta([p, a], [B, B]) = ([r, B], [B, a], L)$
- $\delta([r, B], [B, a]) = ([r, B], [B, a], L)$
- $\delta([r, B], [B, b]) = ([r, B], [B, b], L)$
- $\delta([r,B],[X,a]) = ([q,B],[B,a],R)$















### Agenda

1 MT para calculo de Funciones de enteros

- Técnicas de programación para las máquinas de Turing
- Extensiones de la máquina de Turing básica

### Extensiones de la máquina de Turing básica

### Máquina de Turing de varias cintas



- Una unidad de control (estado)
- Un número finito de cintas
- Las cintas tienen los espacios en blancos y contienen simbolos de entrada

### Máquina de Turing de varias cintas

- La entrada, una secuencia finita de símbolos de entrada, se coloca en la primera cinta.
- Todas las casillas de las demás cintas contienen espacios en blanco.
- La unidad de control se encuentra en el estado inicial.
- La cabeza de la primera cinta apunta al extremo izquierdo de la entrada.
- Las cabezas de las restantes cintas apuntan a una casilla arbitraria

#### Movimiento MT de varias cintas

Depende del estado y del símbolo señalado por cada una de las cintas.

#### En un movimiento ...

- La unidad de control entra en un nuevo estado, que podría ser el mismo
- En cada cinta, se escribe un nuevo símbolo de cinta en la casilla señalada por la cabeza.
- Cada una de las cabezas de las cintas realizan un movimiento, que puede ser hacia la izquierda, hacia la derecha o estacionario.

### Simulando MT de varias cintas como una MT de una

- Usar 2k bandas
- Cada cinta es representada por una banda
- La cabecera es representada por una banda adicional.



### Tiempo de Ejecución: Complejidad temporal

Para una entrada w es el número de pasos que una Máquina M realiza antes de pararse.

- La complejidad temporal es T(n), que es el máximo para todas las entradas w de longitud n
- Permite mantener el tiempo de ejecución polinómico
- La diferencia entre un tiempo polinómico y otro mas rápido permite separar los problemas que se pueden resolver con una computadora.

El tiempo invertido por la MT de una cinta para simular n movimientos de la MT de k cintas M es  $O(n^2)$ .

### Maquinas de Turing no Deterministas (MTN)

Tiene una función de transición  $\delta$  tal que para el estado q y el simbolo de la cinta X,  $\delta(q, X)$  es el conjunto de tuplas:

$$\{(q_1, Y_1, D_1), (q_2, Y_2, D_2), \dots, (q_k, Y_k, D_k)\}$$

Se puede en cada paso cual de las tuplas será el siguiente movimiento.

#### Lenguaje de Aceptación

*M* acepta una entrada *w* si existe cualquier secuencia de movimientos que lleva desde la configuración inicial con w como entrada hasta una configuración con un estado de aceptación.

# Muchas gracias por su atención







