(1)
$$F_2 + F_4 + F_6 + ... + F_{2n} = F_{2n+1} + 1$$

$$F_1 + F_2 + F_4 + F_6 + ... + F_{2n} = F_{2n+1}$$

$$F_3 + F_4 + F_5 + ... + F_{2n} = F_{2n+1}$$

$$F_5 + F_4 + F_6 + ... + F_{2n} = F_{2n+1}$$

Fant1

Pousd pur indulys po m:

Padst:
$$m = 0$$
 $F_{n+m} = F_n = F_{n-1} \cdot 0 + F_n \cdot 1 = F_n$
 $(m = 1)$ $F_{n+1} = F_{n-1} + F_n$

Kwk: Zatting, de pravolina olla M-1, m. Poliney dla M+1

$$F_{n+m-1} = F_{n-1} F_{m-1} + F_n F_m$$

$$+ F_{n+m+1} = F_{n-1} F_{m+1} + F_n F_{m+2}$$

$$F_{n+m+1} = F_{n-1} F_{m+1} + F_n F_{m+2}$$

$$F_{n} = \frac{1}{\sqrt{5}!} \left(\left(\frac{1+\sqrt{5}!}{2} \right)^{n} - \left(\frac{1-\sqrt{5}!}{2} \right)^{n} \right) \left| \left(\frac{1-\sqrt{5}!}{2} \right)^{n} \right| \leq 1$$

$$z \text{ tego symbol is } F_{n} \sim \frac{1}{\sqrt{5}!} \left(\frac{1+\sqrt{5}!}{2} \right)^{n}$$

```
Soutovame prez scalame
```

(1) Scalence (posoulouane ciggi an, by dajy posoulouany cigg com)

6, b2 bl 7 (C1 C2 Ch+L)

Ceas: O(k+h)

Max povshvnan: h+l-1

ushitni elevent

na suum viejaa

Mergesout (i,j) (sorthje element) $a_i = a_j$ $a_j = a_n$ if i = j then retrum (a_i) $M \in L(i+j-1)/2$, return Merge (Mergesovt (i,m), Mergesovt (m+1,j))

T(n) - cross driatania procedury Mengerout (uproseccomy) $T(n) = 2T(n/2) + c^{n}n$ f(n) - max lierba poisuman Mengerout

 $f(n) = \int (Ln/2) + \int (n/2) + n - 1$

Dowsd T(n):

2ai.
$$n=2^{k}$$
, $T(4)=d$ (jakes sheld)
 $T(n)=cn+2T(n/2)$
 $=cn+2c(n/2)+4T(n/4)$
 $=cn+cn+cn+...+cn+2^{k}T(n/2^{k})$
 $k=log n$

 $= cn \cdot \log n + n \cdot d$ $= O(n \log n)$

O(n2) - mnoience piseume Mnoience tinb n-cyfronyth O(n1.58)-o algorytm Karacuby O(n log n · log log n) - o algorytm Schanhage - Strassena Algorytm Karacuby (mnorum duryth lierb) A.B & AB - lively N-cyflowey if N < 32 then retim A.B Podvel A na potochi n/2 - cyfrone: $A = A_1 \cdot 2 + A_0$ Podvel B na potochi n/2 - cyfrone: $B = B_1 \cdot 2^{n/2} + B_0$ Mo + AoBo; M1 + A1B1; M2 + (Ao+A1)(Bo+B1) // M2 = AoBo + AOB1 + A1B0 + A1B1

return 2"M1 + 2"/2 (M2 - M0 - M1) + Mo

=> AoB, + A, Bo = M2 - M0 - M1

Wynik unozenia $A \cdot B = (A_1 \cdot 2^{n/2} + A_0)(B_1 \cdot 2^{n/2} + B_0)$ $= A_1 B_1 \cdot 2^n + (A_1 B_0 + A_0 B_1) \cdot 2^{n/2} + A_0 B_0$ T(n) - cras mnovenia lint n-cyfronych 3T (n/2) to cas potueby na hymnoscine lice Mo, M1, M2 2 podaneys algorytum T(n) = 3T(n/2) + cn= cn + 3 c (n/2) + 9 T (n/4) = $cn + \frac{3}{7}cn + \frac{9}{4}cn + \frac{3^{k+1}}{2^{k+1}}cn + \prod T(n/2^k) \cdot 3^k$ (k = log n) $T(n) \leq n^{\log_2 3} \left(T(1) + \frac{\frac{2}{3}c}{1 - \frac{2}{3}} \right) = C \cdot n^{\log_2 3} = O\left(n^{\log_2 3}\right) \approx O\left(n^{1.58}\right)$

 $NWD(a,b) = max\{delN: dla \land dlb\}$ (dla $a,b \in N \cup \{og\}$) $NWW(a,b) = min\{celN: alc \land blc\}$

Pongisse operage sg synetyme, t_i . NWD $(a_ib) = NWD(b_ia)$ on $NWW(a_il) = NWW(b_ia)$. $NWD(a_i0) = 0$

Algorytm Evhlidesa

NWD (a,b):

While b>0: $(a,b) \leftarrow (b,a)$ MOD b)

MuD $\leftarrow a$ MWD $\leftarrow a$

Lement: Niech (a_i, b_i) to wartori ($a_i b_i$) $a_i = -b_i$ italical algorithm Eulericles a. Jestli i > 0 over $a_i < F_{k+1}$ lub $b_i < F_{k}$, to: $a_{i+1} < F_k \quad \text{lub} \quad b_{i-1} < F_{k-1}.$

Z lematr mynihe, že jedi ao, bo < Fra, to algorytm Eulilidesa nylomýc co najmijej n ituacji, czyli jesti ao, bo to liceby n-cyfrome to liceby n-cyfrome to liceba iteracji algorytm Eulilidesa jest O(n).

Dowsd lemeth

Jereli $b_i < F_{k+1}$ to $a_{i+1} = b_i < F_{k}$.

Jereli $b_i > F_{k+1}$ to $a_i < F_{k+1}$, when $b_{i+1} = a_i \text{ Mod } b_i = a_i - \frac{a_i}{b_i} b_i \le a_i - b_i < F_{k+1} - F_k = F_{k-1}$.

Porsienouy algorytus Eulidesa dla a, b EN wytiene me tylles NWD (a,b), ale wuntei: $x_i y \in \mathbb{Z}$: x a + y b = NWD(a,b), (|x| < b, |y| < a)Prystad: a=245, 6=168 itaacja 245 245-168=77 168 168-2-77=14 77-5-14=7 7-7=0 tutaj cofany sij od ostatny do pierung itemy: algorytum Euthidesa. 2najdowane x, y: 77 - 5 - 14 = 7(77-5, (168-2.77) = 7 (11,77-5.168 G11.(245-168) - 5.168 = 7 11.245-16.168 wige x = 11, y = -16

Piersiten Zn = {0,1,2,..., N-13, cigli abise rest

Diatomia & Zn: tn, on, cyli a +, b = (a+b) MOD n a n b = (a-6) MOD n

Element admony to a taling of, it at a a a a a = 1. Kirdy a - 1 mod in istrije, jah to policy:?

Lemat: Jeste NWD (a, n) >1, to a -1 MOD n me isturge.

Doued: d= NWD (ain), utedy dla doudness a: dla'a i dla =>

=> ala'na \$1 => a' \$ a 1 mod n.

Lemat: Jesti a L n, cyli NWD (a,n)=1, to a 1 mod n istury. Donid: Podskriany a i n v algorytm Eulilidesa za a i b, algorythm by line $X_1y \in \mathbb{Z}$: $xa + yb = NND(\alpha_1n) = 1$, zatem $x^*na = 1$, zatem $a^{-1} = x \mod N$.

* a 16 ornaine weglishive present linky of i b