Transfer reactions with Be-Li isotopes near the drip-line

LISE Workshop 2024

M. Lozano-González, A. Matta, B. Fernández-Domínguez, J. Lois-Fuentes, F. Delaunay on behalf on the E748 collaboration

IGFAE-USC and LPC-Caen

Overview of the exotic Be-Li region

Be and Li isotopes close to the neutron drip line have been extensively studied due to their exotic properties.

Two prime examples can be showcased:

¹¹Li is a neutron-rich nuclei displaying a 2n halo structure.

Overview of the exotic Be-Li region

Be and Li isotopes close to the neutron drip line have been extensively studied due to their exotic properties.

Two prime examples can be showcased:

¹¹Be presents parity inversion: g.s has **positive** parity when negative expected.

I. Talmi and I. Unna, PRL 4 (1960).

Recently gathered information

During the MUST2 @ RIKEN campaign, an unexpected **reduction** of the cross-section was observed in $^{9,11}\text{Li}(d, ^3\text{He})^{8,10}\text{He}$ reactions.

A. Matta et al., PRC 92 (2015).

Possible explanations:

• Role of the many-body interactions.

During the MUST2 @ RIKEN campaign, an unexpected **reduction** of the cross-section was observed in 9,11 Li(d, 3 He) 8,10 He reactions.

Possible explanations:

- Role of the many-body interactions.
- Overestimation of the nuclear overlap ^{9,11}Li|^{8,10}He⟩.

Collect more $d\sigma/d\Omega$ data!

Reactions to be studied

E748 at GANIL during the MUST2@LISE campaign. Neutron and proton removal reactions from ^{10,12}Be beams have been performed to probe key nuclei:

• 10 Be(d, t) 9 Be: Benchmark reaction. n-occupancy in $p_{3/2}$.

E748 at GANIL during the MUST2@LISE campaign. Neutron and proton removal reactions from ^{10,12}Be beams have been performed to probe key nuclei:

- 10 Be(d, t) 9 Be: Benchmark reaction. n-**occupancy** in $p_{3/2}$.
- 10 Be(d, 3 He) 9 Li: $p_{3/2}$ proved but on the proton side.

Reactions to be studied

E748 at GANIL during the MUST2@LISE campaign. Neutron and proton removal reactions from ^{10,12}Be beams have been performed to probe key nuclei:

- ¹⁰Be(d, t) ⁹Be: Benchmark reaction. n-**occupancy** in $p_{3/2}$.
- 10 Be(d, 3 He) 9 Li: $p_{3/2}$ proved but on the proton side.
- 12Be(d, t)11Be: higher orbital $p_{1/2}$.

Reactions to be studied

E748 at GANIL during the MUST2@LISE campaign. Neutron and proton removal reactions from ^{10,12}Be beams have been performed to probe key nuclei:

- ¹⁰Be(d, t) ⁹Be: Benchmark reaction. n-**occupancy** in $p_{3/2}$.
- 10 Be(d, 3 He) 9 Li: $p_{3/2}$ proved but on the proton side.
- ¹²Be(d, t) ¹¹Be: higher orbital $p_{1/2}$.
- 12Be(d, 3He)11Li: same p-orbital as before.

Experimental setup for E748

Traditional **solid target** experiment @ D6. Below a sketch of the setup:

A **common** procedure is employed in all the reactions. Different gates are applied in a sequential manner, as follows:

 Heavy ID: Only distinction in Z: separation of Be from Li residuals, but not along isotopic chain.

Analysis at a glance

A **common** procedure is employed in all the reactions. Different gates are applied in a sequential manner, as follows:

2. Light ID: Using only stopped particles in Si layer, but low TOF resolution. Separation of t-3He attained with kinematics!

> Missing mass technique: $E_{\text{beam}} + (E, \theta)_{\text{Lab}} \rightarrow \mathbf{E_x}$

Elastic ¹⁰Be(d, d) ¹⁰Be

Serves as a test of the analysis, allowing us to ascertain the **normalization** factors N_t and N_b .

- Modern models (Haixia and DA1p) adjust better to the data.
- Failure at low and high angles.
- Overall agreement in magnitude.

Likely to be a miscalculation in **efficiency**

Neutron removal: ¹⁰Be(d, t) ⁹Be

Only the **ground state** is accessible. Angular distributions are determined in the interval $\theta_{CM} \in [5, 20]^{\circ}$.

Theoretical calculations with DWBA:

- DAEHNICK + PANG OMPs.
- Only single-particle overlaps.
- Finite range calculation.

Best fit is
$$\ell = 1$$

with $j = 3/2$.
 $\Rightarrow C^2S = 2.21(9)$

Neutron removal: ¹⁰Be(d, t) ⁹Be

In light of those results, two conclusions may be drawn:

- ⁹Be **g.s** tagged as 3/2 state.
- $C^2S = 2.21(9) < 4$ could be due to:
 - \Rightarrow Strength shared with other excited states.
- Excellent agreement with D. L. Auton et al. Nucl. Phys. A1 (1970):

$$C^2S = 2.19(48)$$

Proton removal: ¹⁰Be(d, ³He)⁹Li

E748 can be compared with a recent experiment carried out at the Acculinna facility. For the E_x :

Our experiment @ 30 AMeV

E. Y. Nikolskii et al. @ 42 AMeV

Recently published: NIMPR B 541 (2023)

A **second** excited state is observed!

Proton removal: ¹⁰Be(d, ³He)⁹Li

Angular distributions for the **ground state** are extracted:

Our experiment, $\theta_{CM} \in [6, 14]^{\circ}$

Again
$$\ell = 1 \implies 3/2^-$$
.
 $C^2S = 3.26(26)$

Acculinna one, $\theta_{CM} \in [3,13]^{\circ}$

Original publication: $C^2S = 1.74$

Proton removal: ¹⁰Be(d, ³He)⁹Li

Angular distributions for the ground state are extracted:

Our experiment, $\theta_{CM} \in [6, 14]^{\circ}$

Again
$$\ell = 1 \implies 3/2^-$$
.
 $C^2S = 3.26(26)$

Reanalyis of Acculinna's data

$$\ell = 1 \implies C^2S = 3.13(6)$$

Different **input parameters** in the models!

Proton removal: ¹²Be(d, ³He)¹¹Li

Two states are populated despite low stats. Angular distribution for **g.s** in $\theta_{CM} \in [10, 20]^{\circ}$

- Further developments are needed, but a tentative $\ell=1$ shape is recognized for the g.s $\Longrightarrow 3/2^-$.
- J^{π} not known for state at 2.3 MeV \implies feasible in the future?

Conclusions and outlook

We investigated several proton and neutron pick-up reactions on ^{10,12}Be:

- ${}^{10}\text{Be}(d,t){}^{9}\text{Be}$ shows a clear $p_{3/2}$ orbital with $C^2S=2.21(9)$.
- In 10 Be $(d, {}^{3}$ He $){}^{9}$ Li three states are present and g.s. tagged as $p_{3/2}$.
- In 12 Be $(d, {}^{3}$ He) 11 Li a tentative $p_{3/2}$ could be assigned to the g.s.

Future prospects

Extract $\frac{d\sigma}{d\Omega}$ for **excited** states.

In-detail study of ¹²Be(d, t) ¹¹Be.

Comprehensive analysis of the employed reaction model.

Thanks for your attention!	
And special thanks to the E748 collaboration.	

Csl on or off?

So far, studied excited states are compressed in the DSSD layer:

Beam ID

Using Caviar to CATS1 TOF and energy loss in IC

18

Kinematic lines

