P1 Chapter 11: Vectors

Geometric Problems

Solving Geometric Problems

X is a point on AB such that AX:XB=3:1. M is the midpoint of BC. Show that \overrightarrow{XM} is parallel to \overrightarrow{OC} .

$$\overrightarrow{OC} = a + b$$

$$\overrightarrow{XM} = \frac{1}{4}(-a+b) + \frac{1}{2}a = \frac{1}{4}a + \frac{1}{4}b$$

$$= \frac{1}{4}(a+b)$$

 \overrightarrow{XM} is a multiple of \overrightarrow{OC} : parallel.

For any proof question always find the vectors involved first, in this case \overrightarrow{XM} and \overrightarrow{OC} .

The key is to factor out a scalar such that we see the same vector.

The magic words here are "is a multiple of".

Introducing Scalars and Comparing Coefficients

Remember when we had identities

like: $ax^2 + 3x \equiv 2x^2 + bx$

we could compare coefficients, so

that a = 2 and 3 = b.

We can do the same with (non-parallel) vectors!

OACB is a parallelogram, where $\overrightarrow{OA} = a$ and $\overrightarrow{OB} = b$. The diagonals OC and AB intersect at a point X. Prove that the diagonals bisect each other.

(Hint: Perhaps find \overrightarrow{OX} in two different ways?)

By considering the route $O \rightarrow B \rightarrow X$:

$$\overrightarrow{OX} = \mathbf{b} + \lambda \overrightarrow{BA}$$

$$= \mathbf{b} + \lambda(-\mathbf{b} + \mathbf{a}) = \mathbf{b} - \lambda \mathbf{b} + \lambda \mathbf{a}$$

$$= \lambda \mathbf{a} + (1 - \lambda)\mathbf{b}$$

Similarly, considering the line *OC*:

$$\overrightarrow{OX} = \mu \overrightarrow{OC} = \mu(\boldsymbol{a} + \boldsymbol{b}) = \mu \boldsymbol{a} + \mu \boldsymbol{b}$$
$$\therefore \mu \boldsymbol{a} + \mu \boldsymbol{b} = \lambda \boldsymbol{a} + (1 - \lambda) \boldsymbol{b}$$

Comparing coefficients of $a: \mu = \lambda$

Comparing coefficients of \boldsymbol{b} : $\mu = 1 - \lambda$

$$\therefore \mu = \lambda = \frac{1}{2}$$

 \therefore X is the midpoint of each of the diagonals.

We don't know what fraction of the way across \overrightarrow{BA} the point X is, so let λ be the fraction of the way across. We're hoping that $\lambda = \frac{1}{2}$, so that X is exactly halfway across and therefore bisects BA.

We need to use a different scalar constant, this time μ . It is common to use the letters λ and μ for scalars.

Test Your Understanding

In the above diagram, $\overrightarrow{OA} = \boldsymbol{a}$, $\overrightarrow{OB} = \boldsymbol{b}$ and $\overrightarrow{OQ} = \frac{1}{3}\boldsymbol{a}$. We wish to find the ratio OX: XC.

- a) If $\overrightarrow{OX} = \lambda \overrightarrow{OC}$, find an expression for \overrightarrow{OX} in terms of \boldsymbol{a} , \boldsymbol{b} and λ .
- b) If $\overrightarrow{BX} = \mu \overrightarrow{BQ}$, find an expression for \overrightarrow{OX} in terms of \boldsymbol{a} , \boldsymbol{b} and μ .
- c) By comparing coefficients or otherwise, determine the value of λ , and hence the ratio OX:XC.

a	?	
b	į	
С	į	

Test Your Understanding

In the above diagram, $\overrightarrow{OA} = \boldsymbol{a}$, $\overrightarrow{OB} = \boldsymbol{b}$ and $\overrightarrow{OQ} = \frac{1}{3}\boldsymbol{a}$. We wish to find the ratio OX: XC.

- a) If $\overrightarrow{OX} = \lambda \overrightarrow{OC}$, find an expression for \overrightarrow{OX} in terms of \boldsymbol{a} , \boldsymbol{b} and λ .
- b) If $\overrightarrow{BX} = \mu \overrightarrow{BQ}$, find an expression for \overrightarrow{OX} in terms of \boldsymbol{a} , \boldsymbol{b} and μ .
- c) By comparing coefficients or otherwise, determine the value of λ , and hence the ratio OX:XC.

$$\overrightarrow{OX} = \lambda \overrightarrow{OC} = \lambda(\boldsymbol{a} + \boldsymbol{b}) = \lambda \boldsymbol{a} + \lambda \boldsymbol{b}$$

$$\overrightarrow{OX} = \boldsymbol{b} + \mu \ \overrightarrow{BQ} = \boldsymbol{b} + \mu \left(-\boldsymbol{b} + \frac{1}{3}\boldsymbol{a} \right) = \frac{1}{3}\mu\boldsymbol{a} + (1-\mu)\boldsymbol{b} + \text{Expand and collect } \boldsymbol{a} \text{ terms}$$
 and collect \boldsymbol{b} terms, so that we can compare coefficients later.

Comparing coefficients: $\lambda = \frac{1}{3}\mu$ and $\lambda = 1 - \mu$, $\lambda = \frac{1}{4}$. If $\overrightarrow{OX} = \frac{1}{4}$ \overrightarrow{OC} , then OX: XC = 1: 3.

Area of a Triangle

$$\overrightarrow{AB} = 3\mathbf{i} - 2\mathbf{j}$$
 and $\overrightarrow{AC} = \mathbf{i} - 5\mathbf{j}$. Determine $\angle BAC$.

Strategy:

5

Area of a Triangle

$$\overrightarrow{AB} = 3\mathbf{i} - 2\mathbf{j}$$
 and $\overrightarrow{AC} = \mathbf{i} - 5\mathbf{j}$. Determine $\angle BAC$.

Strategy: Find 3 lengths of triangle then use cosine rule to find angle.

A clever student might at this point realise that we can divide all the lengths by $\sqrt{13}$ without changing $\angle BAC$, giving a $1:1:\sqrt{2}$ triangle (one of our 'special' triangles!), and thus instantly getting $\angle BAC=45^\circ$. But let's use a more general method of using the **cosine rule**:

$$a = \sqrt{13}, b = \sqrt{13}, c = \sqrt{26}$$

 $13 = 13 + 26 - 2 \times \sqrt{13} \times \sqrt{26} \times \cos(A)$
 $\cos(A) = \frac{1}{\sqrt{2}} \rightarrow A = 45^{\circ}$

Exercise 11.5

Pearson Pure Mathematics Year 1/AS Pages 89-90

Extension

1

[STEP 2010 Q7]

Relative to a fixed origin O, the points A and B have position vectors \boldsymbol{a} and \boldsymbol{b} , respectively. (The points O, A and B are not collinear.) The point C has position vector \boldsymbol{c} given by

$$\boldsymbol{c} = \alpha \boldsymbol{a} + \beta \boldsymbol{b},$$

where α and β are positive constants with $\alpha + \beta < 1$. The lines OA and BC meet at the point P with position vector \boldsymbol{p} and the lines OB and AC meet at the point Q with position vector \boldsymbol{q} . Show that

$$\boldsymbol{p} = \frac{\alpha a}{1 - \beta}$$

and write down q in terms of α , β and b.

Show further that the point R with position vector r given by

$$r = \frac{\alpha a + \beta b}{\alpha + \beta},$$

lies on the lines OC and AB.

The lines OB and PR intersect at the point S. Prove that $\frac{OQ}{BQ} = \frac{OS}{BS}$.

Click here for the solution: http://www.mathshelper.co.uk/STEP%202010%20Solutions.pdf (go to Q7)

Homework Exercise

1 In the diagram, $\overrightarrow{WX} = \mathbf{a}$, $\overrightarrow{WY} = \mathbf{b}$ and $\overrightarrow{WZ} = \mathbf{c}$. It is given that $\overrightarrow{XY} = \overrightarrow{YZ}$. Prove that $\mathbf{a} + \mathbf{c} = 2\mathbf{b}$.

2 *OAB* is a triangle. *P*, *Q* and *R* are the midpoints of *OA*, *AB* and *OB* respectively.

OP and OR are equal to \mathbf{p} and \mathbf{r} respectively.

a Find \overrightarrow{iOB}

ii \overrightarrow{PQ}

b Hence prove that triangle *PAQ* is similar to triangle *OAB*.

- 3 OAB is a triangle. $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$. The point M divides OA in the ratio 2:1. MN is parallel to OB.
 - **a** Express the vector \overrightarrow{ON} in terms of **a** and **b**.
 - **b** Show that AN: NB = 1:2

4 *OABC* is a square. *M* is the midpoint of *OA*, and *Q* divides *BC* in the ratio 1:3.

AC and MQ meet at P.

- **a** If $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OC} = \mathbf{c}$, express \overrightarrow{OP} in terms of **a** and **c**.
- **b** Show that P divides AC in the ratio 2:3.

Homework Exercise

5 In triangle ABC the position vectors of the vertices A, B and C are $\binom{5}{8}$, $\binom{4}{3}$ and $\binom{7}{6}$. Find:

$$\mathbf{a} \mid \overrightarrow{AB} \mid$$

 $\mathbf{b} |\overrightarrow{AC}|$

 $\mathbf{c} \mid \overrightarrow{BC} \mid$

d the size of $\angle BAC$, $\angle ABC$ and $\angle ACB$ to the nearest degree.

6 OPQ is a triangle.

$$2\overrightarrow{PR} = \overrightarrow{RQ} \text{ and } 3\overrightarrow{OR} = \overrightarrow{OS}$$

 $\overrightarrow{OP} = \mathbf{a} \text{ and } \overrightarrow{OQ} = \mathbf{b}.$

- a Show that $\overrightarrow{OS} = 2\mathbf{a} + \mathbf{b}$.
- **b** Point *T* is added to the diagram such that $\overrightarrow{OT} = -\mathbf{b}$.

Problem-solving

To show that T, P and S lie on the same straight line you need to show that any **two** of the vectors \overrightarrow{TP} , \overrightarrow{TS} or \overrightarrow{PS} are parallel.

Prove that points T, P and S lie on a straight line.

Challenge

OPQR is a parallelogram.

N is the midpoint of PQ and M is the midpoint of QR.

 $\overrightarrow{OP} = \mathbf{a}$ and $\overrightarrow{OR} = \mathbf{b}$. The lines ON and OM intersect the diagonal PR at points X and Y respectively.

- **a** Explain why $\overrightarrow{PX} = -j\mathbf{a} + j\mathbf{b}$, where j is a constant.
- **b** Show that $\overrightarrow{PX} = (k-1)\mathbf{a} + \frac{1}{2}k\mathbf{b}$, where k is a constant.
- **c** Explain why the values of j and k must satisfy these simultaneous equations: k-1=-j $\frac{1}{2}k=j$
- **d** Hence find the values of *j* and *k*.
- e Deduce that the lines ON and OM divide the diagonal PR into 3 equal parts.

Homework Answers

1
$$\overrightarrow{XY} = \mathbf{b} - \mathbf{a}$$
 and $\overrightarrow{YZ} = \mathbf{c} - \mathbf{b}$, so $\mathbf{b} - \mathbf{a} = \mathbf{c} - \mathbf{b}$.
Hence $\mathbf{a} + \mathbf{c} = 2\mathbf{b}$.

- 2 a i 2r ii ı
 - b Sides of triangle OAB are twice the length of sides of triangle PAQ and angle A is common to both SAS.
- 3 **a** $\frac{2}{3}$ **a** $+\frac{1}{3}$ **b**
 - **b** $\overrightarrow{AN} = \frac{1}{3}(\mathbf{b} \mathbf{a}), \overrightarrow{AB} = \mathbf{b} \mathbf{a}, \overrightarrow{NB} = \frac{2}{3}(\mathbf{b} \mathbf{a})$ so AN: NB = 1:2.
- 4 a $\frac{3}{5}$ a + $\frac{2}{5}$ c
 - **b** $\overrightarrow{AP} = -\mathbf{a} + \frac{3}{5}\mathbf{a} + \frac{2}{5}\mathbf{c} = \frac{2}{5}(\mathbf{c} \mathbf{a}),$ $\overrightarrow{PC} = \mathbf{c} - (\frac{3}{5}\mathbf{a} + \frac{2}{5}\mathbf{c}) = \frac{3}{5}(\mathbf{c} - \mathbf{a}) \text{ so } AP : PC = 2 : 3$
- 5 **a** $\sqrt{26}$ **b** $2\sqrt{2}$ **c** $3\sqrt{2}$
 - d $\angle BAC = 56^{\circ}$, $\angle ABC = 34^{\circ}$, $\angle ACB = 90^{\circ}$

6
$$\mathbf{a}$$
 $\overrightarrow{OR} = \mathbf{a} + \frac{1}{3}(\mathbf{b} - \mathbf{a}) = \frac{2}{3}\mathbf{a} + \frac{1}{3}\mathbf{b},$
 $\overrightarrow{OS} = 3\overrightarrow{OR} = 3(\frac{2}{3}\mathbf{a} + \frac{1}{3}\mathbf{b}) = 2\mathbf{a} + \mathbf{b}$

b
$$\overrightarrow{TP} = \mathbf{a} + \mathbf{b}, \overrightarrow{PS} = \frac{1}{3}(\mathbf{b} - \mathbf{a}) + \frac{2}{3}(2\mathbf{a} + \mathbf{b}) = \mathbf{a} + \mathbf{b}$$

 \overrightarrow{TP} is parallel (and equal) to \overrightarrow{PS} and they have a point, P , in common so T , P and S lie on a straight line.

Challenge:

$$\overrightarrow{PR} = \mathbf{b} - \mathbf{a}, \overrightarrow{PX} = j(\mathbf{b} - \mathbf{a}) = -j\mathbf{a} + j\mathbf{b}$$

b
$$\overrightarrow{ON} = \mathbf{a} + \frac{1}{2}\mathbf{b}, \overrightarrow{PX} = -\mathbf{a} + k(\mathbf{a} + \frac{1}{2}\mathbf{b}) = (k-1)\mathbf{a} + \frac{1}{2}k\mathbf{b}$$

c Coefficients of \mathbf{a} and \mathbf{b} must be the same in both expressions for \overrightarrow{PX}

Coefficients of **a**: k-1=-j; Coefficients of **b**: $j=\frac{1}{2}k$

d Solving simultaneously gives
$$j = \frac{1}{3}$$
 and $k = \frac{2}{3}$

e
$$PX = \frac{1}{3}PR$$
.
By symmetry, $\overrightarrow{PX} = \overrightarrow{YR} = \overrightarrow{XY}$, so ON and OM divide PR into 3 equal parts.