Теоремы о формальной арифметике

Лемма

 $\vdash 1 = 0$ тогда и только тогда, когда $\vdash \alpha$ при любом α .

Определение

Обозначим за $\psi(x,p)$ формулу, выражающую в формальной арифметике рекурсивное отношение Proof: $\langle \ulcorner \xi \urcorner, p \rangle \in Proof$, если p-rёделев номер доказательства ξ .

Лемма

 $\vdash 1 = 0$ тогда и только тогда, когда $\vdash \alpha$ при любом α .

Определение

Обозначим за $\psi(x,p)$ формулу, выражающую в формальной арифметике рекурсивное отношение Proof: $\langle \ulcorner \xi \urcorner, p \rangle \in Proof$, если p-rёделев номер доказательства ξ .

Обозначим $\pi(x) \equiv \exists p. \psi(x,p)$

Лемма

dash 1=0 тогда и только тогда, когда dash lpha при любом lpha.

Определение

Обозначим за $\psi(x,p)$ формулу, выражающую в формальной арифметике рекурсивное отношение Proof: $\langle \ulcorner \xi \urcorner, p \rangle \in Proof$, если p-rёделев номер доказательства ξ .

Обозначим $\pi(x) \equiv \exists p. \psi(x,p)$

Определение

Формулой Consis назовём формулу $\neg \pi(\overline{1} = 0\overline{})$

Лемма

 $\vdash 1 = 0$ тогда и только тогда, когда $\vdash \alpha$ при любом α .

Определение

Обозначим за $\psi(x,p)$ формулу, выражающую в формальной арифметике рекурсивное отношение Proof: $\langle \ulcorner \xi \urcorner, p \rangle \in Proof$, если p-rёделев номер доказательства ξ .

Обозначим $\pi(x) \equiv \exists p. \psi(x,p)$

Определение

Формулой Consis назовём формулу $\neg \pi(\overline{1=0})$

Неформальный смысл: «формальная арифметика непротиворечива»

Теорема

Если Consis доказуем, то формальная арифметика противоречива.

Доказательство.

(неформально)

Теорема

Если Consis доказуем, то формальная арифметика противоречива.

Доказательство.

(неформально) Формулировка 1 теоремы Гёделя о неполноте арифметики: «если Ф.А. непротиворечива, то недоказуемо $\sigma(\lceil \overline{\sigma} \rceil)$ ».

Теорема

Если Consis доказуем, то формальная арифметика противоречива.

Доказательство.

(неформально) Формулировка 1 теоремы Гёделя о неполноте арифметики: «если Ф.А. непротиворечива, то недоказуемо $\sigma(\lceil \overline{\sigma} \rceil)$ ». То есть, $\forall p. \neg \omega_1(\lceil \overline{\sigma} \rceil, p)$.

Теорема

Если Consis доказуем, то формальная арифметика противоречива.

Доказательство.

(неформально) Формулировка 1 теоремы Гёделя о неполноте арифметики: «если Ф.А. непротиворечива, то недоказуемо $\sigma(\ulcorner \sigma \urcorner)$ ». То есть, $\forall p. \neg \omega_1(\ulcorner \sigma \urcorner, p)$. То есть, если Consis, то $\sigma(\ulcorner \sigma \urcorner)$.

Теорема

Если Consis доказуем, то формальная арифметика противоречива.

Доказательство.

(неформально) Формулировка 1 теоремы Гёделя о неполноте арифметики: «если Ф.А. непротиворечива, то недоказуемо $\sigma(\lceil \overline{\sigma} \rceil)$ ». То есть, $\forall p. \neg \omega_1(\lceil \overline{\sigma} \rceil, p)$. То есть, если Consis, то $\sigma(\lceil \overline{\sigma} \rceil)$. То есть, если Consis, то $\sigma(\lceil \overline{\sigma} \rceil)$. То есть \vdash Consis $\rightarrow \sigma(\lceil \overline{\sigma} \rceil)$.

Теорема

Если Consis доказуем, то формальная арифметика противоречива.

Доказательство.

(неформально) Формулировка 1 теоремы Гёделя о неполноте арифметики: «если Ф.А. непротиворечива, то недоказуемо $\sigma(\lceil \overline{\sigma} \rceil)$ ». То есть, $\forall p. \neg \omega_1(\lceil \overline{\sigma} \rceil, p)$. То есть, если Consis, то $\sigma(\lceil \overline{\sigma} \rceil)$. То есть, если Consis, то $\sigma(\lceil \overline{\sigma} \rceil)$, — и это можно доказать, то есть \vdash Consis $\rightarrow \sigma(\lceil \overline{\sigma} \rceil)$. Однако если формальная арифметика непротиворечива, то $\not\vdash \sigma(\lceil \overline{\sigma} \rceil)$.

Слишком много неформальности

Рассмотрим такой особый Consis':

$$\pi'(x) := \exists p. \psi(x, p) \& \neg \psi(\overline{1 = 0}, p)$$

$$\mathsf{Consis'} := \neg \pi'(\overline{1 = 0})$$

Заметим:

- 1. Если ФА непротиворечива, то $[\![\pi'(x)]\!] = [\![\pi(x)]\!]$:
 - lacktriangle если $x
 eq \lceil 1=0 \rceil$ и $[\![\psi(x,p)]\!]=$ И, то $[\![\psi(\overline{\lceil 1=0 \rceil},p)]\!]=$ Л
 - lacktriangle если $x=\lceil 1=0
 ceil$, то $\psi(\lceil 1=0
 ceil,p)=Л$ при любом p.
- 2. Ho ⊢ Consis'.

Условия выводимости Гильберта-Бернайса-Лёба

Определение

Будем говорить, что формула ψ , выражающая отношение Proof, формула π и формула Consis соответствуют условиям Гильберта-Бернайса-Лёба, если следующие условия выполнены для любой формулы α :

- 1. $\vdash \alpha$ влечет $\vdash \pi(\overline{\ulcorner \alpha \urcorner})$
- 2. $\vdash \pi(\overline{\lceil \alpha \rceil}) \to \pi(\overline{\lceil \pi (\lceil \alpha \rceil) \rceil})$
- 3. $\vdash \pi(\overline{\lceil \alpha \to \beta \rceil}) \to \pi(\overline{\lceil \alpha \rceil}) \to \pi(\overline{\lceil \beta \rceil})$

Невыразимость доказуемости

Определение

$$Th_{\mathcal{S}} = \{ \lceil \alpha \rceil \mid \vdash_{\mathcal{S}} \alpha \}; Tr_{\mathcal{S}} = \{ \lceil \alpha \rceil \mid [\![\alpha]\!]_{\mathcal{S}} = \mathcal{U} \}$$

Лемма

Пусть $D(\lceil \alpha \rceil) = \lceil \alpha(\lceil \alpha \rceil) \rceil$ для любой формулы $\alpha(x)$. Тогда D представима в формальной арифметике.

Теорема

Если расширение Φ .А. $\mathcal S$ непротиворечиво и $\mathcal D$ представима в нём, то $\mathsf{Th}_{\mathcal S}$ невыразимо в $\mathcal S$

Доказательство.

Пусть $\delta(a,p)$ представляет D, и пусть $\sigma(x)$ выражает множество $\mathsf{Th}_\mathcal{S}$ (рассматриваемое как одноместное отношение).

Пусть
$$\alpha(x) := \forall p.\delta(x,p) \to \neg \sigma(p)$$
. Верно ли, что $\lceil \alpha \rceil \in \mathsf{Th}$?

Неразрешимость формальной арифметики

Теорема

Если формальная арифметика непротиворечива, то формальная арифметика неразрешима

Доказательство.

Пусть формальная арифметика разрешима. Значит, есть рекурсивная функция f(x): f(x)=1 тогда и только тогда, когда $x\in \mathsf{Th}_{\Phi,\mathsf{A}}$. То есть, $\mathsf{Th}_{\Phi,\mathsf{A}}$ выразимо в формальной арифметике.

По теореме о невыразимости доказуемости, $\mathsf{Th}_{\Phi.A.}$ невыразимо в формальной арифметике. Противоречие.

Теорема Тарского

Теорема (Тарского о невыразимости истины)

Не существует формулы $\varphi(x)$, что $[\![\varphi(x)]\!] = \mathcal{U}$ (в стандартной интерпретации) тогда и только тогда, когда $x \in \mathit{Tr}_{\Phi A}$.

Доказательство.

Пусть теория \mathcal{S} — формальная арифметика + аксиомы: все истинные в стандартной интерпретации формулы. Очевидно, что $\mathsf{Th}_{\mathcal{S}} = \mathsf{Tr}_{\mathcal{S}} = \mathsf{Tr}_{\Phi A}$. То есть $\mathsf{Tr}_{\Phi A}$ невыразимо в \mathcal{S} .

Пусть φ таково, что $[\![\varphi(x)]\!] = \mathsf{И}$ при $x \in \mathsf{Tr}$. Тогда $\vdash \varphi(x)$, если $x \in \mathsf{Tr}$ и $\vdash \neg \varphi(x)$, если $x \notin \mathsf{Tr}$.

Тогда Tr выразимо в \mathcal{S} . Противоречие.

Теорема Тарского

Теорема (Тарского о невыразимости истины)

Не существует формулы $\varphi(x)$, что $[\![\varphi(x)]\!] = \mathcal{U}$ (в стандартной интерпретации) тогда и только тогда, когда $x \in \mathit{Tr}_{\Phi A}$.

Доказательство.

Пусть теория \mathcal{S} — формальная арифметика + аксиомы: все истинные в стандартной интерпретации формулы. Очевидно, что $\mathsf{Th}_{\mathcal{S}} = \mathsf{Tr}_{\mathcal{S}} = \mathsf{Tr}_{\Phi A}$. То есть $\mathsf{Tr}_{\Phi A}$ невыразимо в \mathcal{S} .

Пусть φ таково, что $[\![\varphi(x)]\!] = \mathsf{И}$ при $x \in \mathsf{Tr}$. Тогда $\vdash \varphi(x)$, если $x \in \mathsf{Tr}$ и $\vdash \neg \varphi(x)$, если $x \notin \mathsf{Tr}$.

Тогда Tr выразимо в \mathcal{S} . Противоречие.

Однако, если взять $D=\mathbb{R}$, истина становится выразима (алгоритм Тарского).

Положительные результаты про исчисления.

Что можно сделать для разрешимости исчисления предикатов?

▶ По теореме о полноте можем рассматривать (\models) вместо (\vdash). Напомним: $\models \alpha$, если для всех $M = \langle D, F, P, E \rangle$ выполнено $M \models \alpha$.

Что можно сделать для разрешимости исчисления предикатов?

- ▶ По теореме о полноте можем рассматривать (\models) вместо (\vdash). Напомним: $\models \alpha$, если для всех $M = \langle D, F, P, E \rangle$ выполнено $M \models \alpha$.
- Что мешает:
 - 1. слишком сложные формулы кванторы по бесконечным множествам;
 - 2. слишком больше разнообразие D, включая несчётные;
 - 3. даже $D=\mathbb{N}$ в формальной арифметике представляет проблему.

Что можно сделать для разрешимости исчисления предикатов?

- ▶ По теореме о полноте можем рассматривать (\models) вместо (\vdash). Напомним: $\models \alpha$, если для всех $M = \langle D, F, P, E \rangle$ выполнено $M \models \alpha$.
- ▶ Что мешает:
 - 1. слишком сложные формулы кванторы по бесконечным множествам;
 - 2. слишком больше разнообразие D, включая несчётные;
 - 3. даже $D=\mathbb{N}$ в формальной арифметике представляет проблему.
- Будем последовательно бороться:
 - 1. упростим формулу (борьба с кванторами);
 - 2. заменим произвольное D на какое-то рекурсивно-перечислимое множество, устроенное некоторым фиксированным образом (борьба с разнообразием D);
 - 3. устроим правильный перебор, позволяющий быстро находить решения, если они есть (борьба с бесконечностью D).

Шаги рассуждения

- 1. Упростим формулу поверхностные кванторы всеобщности, сколемизация.
- **2**. Заменяем *D*.
- 3. Правильный перебор

Упрощаем формулу α . Сколемизация

1. Предварённая форма (поверхностные кванторы) — *для примера* возьмём чередующиеся:

$$\beta := \forall x_1. \exists x_2. \forall x_3. \exists x_4 \dots \forall x_{n-1}. \exists x_n. \varphi$$

2. Убрать кванторы существования: заменим x_{2k} функциями Сколема $e_{2k}(x_1,x_2,\ldots,x_{2k-1})$. Получим:

$$\gamma := \forall x_1. \forall x_3... \forall x_{n-1}. \varphi[x_2 := e_2(x_1), x_4 := e_4(x_1, x_3), ..., x_n := e_n(x_1, x_3, ..., x_{n-1})]$$

3. ДНФ (c конъюнктов, в каждом d(c) дизъюнктов):

$$\delta := \forall x_1. \forall x_3 \dots \forall x_{n-1}. \bigwedge_{c} \left(\bigvee_{i=\overline{1,d(c)}} (\neg) P_i(\theta_i) \right)$$

4. Исходная задача: проверка $\vdash \alpha$. Это эквивалентно $\vdash \beta$. Эквивалентно $\models \beta$. Эквивалентно выполнимости δ при всех D (найдутся e_i , что $[\![\delta]\!] = \mathsf{N}$).

Шаги рассуждения

- 1. Упростим формулу поверхностные кванторы всеобщности, сколемизация.
- 2. Заменяем *D*.
- 3. Правильный перебор

Эрбранов универсум.

Определение

```
H_0(\varphi) — все константы в формуле \varphi (либо особая константа а, если констант в \varphi нет) H_{k+1}(\varphi) - H_k(\varphi) и все функции от значений H_k(\varphi) (как строки) H = \cup H_n(\varphi) — основные термы.
```

Пример

$$P(a) \lor Q(f(b)):$$

$$H_0 = \{a, b\}$$

$$H_1 = \{a, b, f(a), f(b)\}$$

$$H_2 = \{a, b, f(a), f(b), f(f(a)), f(f(b))\}$$
...
$$H = \{f^{(n)}(x) \mid n \in \mathbb{N}_0, x \in \{a, b\}\}$$

Выполнимость не теряется. Заменяем D на H

Теорема

Формула выполнима тогда и только тогда, когда она выполнима на Эрбрановом универсуме.

Доказательство.

 (\Rightarrow) Пусть $M\models \forall \overline{x}. \varphi$. Тогда построим отображение eval : $H\to M$ (смысл названия вдохновлён языками программирования: eval("f(f(b))") перейдёт в f(f(b)), где f и b — из M).

Предикатам дадим согласованную оценку:

 $P_H(t_1, \ldots, t_n) = P_M(eval(t_1), \ldots, eval(t_n))$. Очевидно, любая формула сохранит своё значение, кванторы всеобщности по меньшему множеству также останутся истинными.

(⇐) Очевидно.