2014 TALWAN

International Olympiad in Informatics 2014

13-20th July 2014 Taipei, Taiwan Day-2 tasks

holiday Language: fi-FI

Loma

Jian-Jia suunnittelee seuraavaa lomaansa Taiwaniin. Lomansa aikana Jian-Jia liikkuu kaupungista toiseen ja vierailee niiden nähtävyyksissä.

Taiwanissa on n kaupunkia, jotka kaikki sijaitsevat saman moottoritien varrella. Kaupungit on numeroitu $0, \ldots, n-1$. Kaupungin i, jossa 0 < i < n-1, viereiset kaupungit ovat i-1 ja i+1. Ainoa kaupungin 0 viereinen kaupunki on 1, ja ainoa kaupungin n-1 viereinen kaupunki on n-2.

Jokaisessa kaupungissa on jokin määrä nähtävyyksiä. Jian-Jialla on d päivän loma, ja hän aikoo vierailla mahdollisimman monessa nähtävyydessä. Jian-Jia on jo valinnut kaupungin, josta hän aloittaa lomansa. Joka päivä lomalla Jian-Jia voi joko siirtyä viereiseen kaupunkiin tai vierailla kaikissa nykyisen kaupungin nähtävyyksissä. Hän ei voi kuitenkaan tehdä molempia asioita. Jian-Jia $ei\ koskaan\ vieraile\ saman\ kaupungin\ nähtävyyksissä\ useasti,\ vaikka hän kävisi kaupungissa monta kertaa. Tehtäväsi on auttaa Jian-Jiaa suunnittelemaan loma niin, että hän vierailee mahdollisimman monessa nähtävyydessä.$

Esimerkki

Oletetaan, että Jian-Jian loman kesto on 7 päivää, kaupunkeja on 5 (listattu alla olevassa taulukossa) ja hän aloittaa kaupungista 2. Ensimmäisenä päivänä Jian-Jia vierailee 20 nähtävyydessä kaupungissa 2. Toisena päivänä Jian-Jia siirtyy kaupungista 2 kaupunkiin 3, ja kolmantena päivänä hän vierailee 30 nähtävyydessä kaupungissa 3. Tämän jälkeen Jian-Jia käyttää kolme päivää siirtymiseen kaupungista 3 kaupunkiin 0 ja seitsemäntenä päivänä hän vierailee 10 nähtävyydessä kaupungissa 0. Jian-Jian vierailemien nähtävyyksien yhteismäärä on 20 + 30 + 10 = 60, mikä on suurin mahdollinen määrä nähtävyyksiä, joissa Jian-Jia voi vierailla 7 päivässä aloittaen kaupungista 2.

kaupunki	nähtävyyksien määrä
0	10
1	2
2	20
3	30
4	1

päivä	tapahtuma		
1	vierailu kaupungin 2 nähtävyyksissä		
2	liikkuminen kaupungista 2 kaupunkiin 3		
3	vierailu kaupungin 3 nähtävyyksissä		
4	liikkuminen kaupungista 3 kaupunkiin 2		
5	liikkuminen kaupungista 2 kaupunkiin 1		
6	liikkuminen kaupungista 1 kaupunkiin 0		

päivä	tapahtuma	
7	vierailu kaupungin 0 nähtävyyksissä	

Tehtävä

Toteuta funktio findMaxAttraction, joka laskee suurimman mahdollisen nähtävyyksien määrän, joissa Jian-Jia voi vierailla.

- findMaxAttraction(n, start, d, attraction)
 - n: kaupunkien lukumäärä.
 - start: aloituskaupungin indeksi.
 - d: päivien lukumäärä.
 - attraction: taulukko kokoa n; attraction[i] on kaupungin i nähtävyyksien määrä, missä $0 \le i \le n-1$.
 - Funktion tulee palauttaa suurin mahdollinen määrä nähtävyyksiä, joissa Jian-Jia voi vierailla.

Osatehtävät

Kaikissa osatehtävissä $0 \le d \le 2n + \lfloor n/2 \rfloor$, ja jokaisen kaupungin nähtävyyksien määrä on epänegatiivinen.

Lisärajoitukset:

osatehtävä	pisteet	n	nähtävyyksien määrä kaupungissa (t)	aloituskaupunki
1	7	$2 \le n \le 20$	$0 \le t \le 1000000000$	ei rajoitusta
2	23	$2 \le n \le 100000$	$0 \le t \le 100$	kaupunki 0
3	17	$2 \le n \le 3000$	$0 \le t \le 1000000000$	ei rajoitusta
4	53	$2 \le n \le 100000$	$0 \le t \le 1000000000$	ei rajoitusta

Toteutus

Sinun täytyy palauttaa tarkalleen yksi tiedosto nimeltä holiday.c, holiday.cpp tai holiday.pas. Tämän tiedoston tulee toteuttaa yllä kuvattu funktio käyttäen seuraavia runkoja. Sinun täytyy myös ottaa mukaan otsikkotiedosto holiday.h C/C++-toteutuksessa.

Huomaa, että tulos voi olla suuri ja funktion findMaxAttraction palautusarvo on 64-bittinen kokonaisluku.

C/C++-ohjelma

long long int findMaxAttraction(int n, int start, int d,

```
int attraction[]);
```

Pascal-ohjelma

```
function findMaxAttraction(n, start, d : longint;
attraction : array of longint): int64;
```

Esimerkkitarkistin

Esimerkkitarkastin lukee syötteen seuraavassa muodossa:

- rivi 1: n, start, d.
- rivi 2: attraction[0], ..., attraction[n-1].

Esimerkkitarkastin tulostaa funktion findMaxAttraction palautusarvon.