Trabajo Práctico 2

1) Dados los siguientes operadores lineales

$$T_1: \mathbb{R}^2 \to \mathbb{R}^2$$
 tal que $T_1(x,y) = (-x,-y)$

$$T_2: \mathbb{R}^2 \to \mathbb{R}^2$$
 tal que $T_2(x, y) = (-x, y)$

$$T_3: \mathbb{R}^2 \to \mathbb{R}^2$$
 tal que $T_3(x,y) = (x,-y)$

Para cada uno de ellos determina la matriz asociada respecto a la base canónica de \mathbb{R}^2

- 2) Dadas las transformaciones lineales:
 - a) $T: \mathbb{R}^2 \to \mathbb{R}^3$, tal que T(x,y) = (2y, 2x, x+y) con $\alpha = \{(-1,1), (1,-2)\}$ base de \mathbb{R}^2 y $\beta = \{(-1,0,-1), (0,2,0), (0,-1,-1)\}$ base de \mathbb{R}^3 . Determina $[T]_{\alpha}^{\beta}$

b)
$$T: \mathbb{R}^4 \to \mathbb{R}^{2 \times 1}$$
 tal que $T(x, y, z, t) = \begin{pmatrix} x - y \\ 2t - z \end{pmatrix}$ y
$$\alpha = \{(1, 0, 0, 2), (0, 1, -1, 0), (1, 0, 1, 1), (-1, 0, 0, -1)\}, \ \beta = \left\{\begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} -2 \\ -5 \end{pmatrix}\right\}$$

bases de \mathbb{R}^4 y $\mathbb{R}^{2\times 1}$ respectivamente

- i) Determina $A = [T]^{\beta}_{\alpha}$.
- ii) Usando A, responde. $\xi(1,1,-2,-1)\in\operatorname{Nu}\left(T\right)?$
- c) $T: \mathbb{C}^2 \longrightarrow \mathbb{C}^3$ (con $\mathbb{K} = \mathbb{C}$) tal que T(x,y) = (x+y,iy,x+2y) siendo α' , β' las bases canónicas de \mathbb{C}^2 y \mathbb{C}^3 respectivamente.
 - i) Determina $A = [T]_{\alpha'}^{\beta'}$
 - ii) ¿Qué relación tiene la matriz A con la matriz obtenida en el ejercicio 2 de la guía 2 de T.L.?

d)
$$T: \mathbb{C}^{3\times 1} \longrightarrow \mathbb{C}^2$$
 (con $\mathbb{K} = \mathbb{C}$) tal que $T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = (x+y,y+z)$ y
$$\alpha = \left\{ \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\} \text{ base de } \mathbb{C}^{3\times 1}, \ \beta = \{(i,0),(2,-1)\} \text{ base de } \mathbb{C}^2.$$
Determina $[T]_{\alpha}^{\beta}$

- 3) Dado $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ operador lineal tal que T(x,y,z) = (x-2y,y+z,z) y $\alpha = \{(1,0,1),(0,-1,1),(2,0,1)\} \subset \mathbb{R}^3, \ \beta = \{(-1,0,1),(0,0,1),(0,1,0)\} \subset \mathbb{R}^3.$ Determina
 - a) $A = [T]^{\beta}_{\alpha}$. Usando A calcula T(1, -2, 0)
 - b) $B = [T]^{\alpha}_{\beta}$. Responde ; B = A? Usando la matriz B calcula T(1, -2, 0) y compara con el resultado obtenido en el apartado anterior .

- 4) Determina explícitamente la transformación lineal
 - a) $T: \mathbb{R}^2 \to \mathbb{R}^{3\times 1}$ tal que su matriz asociada respecto de las bases

$$\alpha = \{(1, -1), (2, 0)\} \subset \mathbb{R}^2 \text{ y } \beta = \left\{ \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -2 \\ -2 \\ 3 \end{pmatrix} \right\} \subset \mathbb{R}^{3 \times 1} \text{ es}$$

$$A = \left(\begin{array}{cc} -2 & 6\\ 2 & 0\\ -1 & 2 \end{array}\right)$$

b) $T: \mathbb{R}^3 \to \mathbb{R}^3$ tal que su matriz asociada respecto de las bases

$$\alpha = \left\{ \left(0, -1, 0\right), \left(1, 0, 0\right), \left(1, 0, -1\right) \right\} \subset \mathbb{R}^3 \ \text{y} \ \beta = \left\{ \left(2, 0, 0\right), \left(0, -1, 0\right), \left(0, 0, 1\right) \right\} \subset \mathbb{R}^3 \text{ es}$$

$$A = \begin{pmatrix} 0 & 0 & -\frac{3}{2} \\ 1 & \frac{1}{2} & \frac{1}{2} \\ 4 & 0 & 0 \end{pmatrix} \in \mathbb{R}^{3 \times 3}. \text{ Verifica que } T(2, 1, 1) = (3, 0, -4)$$

c) $T: \mathbb{R}^{2\times 2} \to \mathbb{R}^3$ tal que su matriz asociada a la transformación lineal respecto

de las bases
$$\alpha = \left\{ \begin{pmatrix} 0 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} \right\} \subset \mathbb{R}^{2 \times 2}$$
 y

$$\beta = \{(-1, 1, 0), (1, 0, 1), (0, 0, -1)\} \subset \mathbb{R}^3 \text{ es } A = \begin{pmatrix} 0 & 0 & -1 & 0 \\ -1 & 0 & 0 & 1 \\ -1 & 0 & 0 & 0 \end{pmatrix} \in \mathbb{R}^{3 \times 4} \text{ . Usando}$$

A responde.
$$\zeta$$
 $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \in \text{Nu}(T)$? Verifica usando la definición T

d) $T:\mathbb{C}^2\to\mathbb{C}^3$ tal que su matriz asociada a la transformación lineal respecto de las bases $\alpha = \{(1,i),(i,0)\} \subset \mathbb{C}^2 \text{ y } \beta = \{(1,0,i),(0,-1,0),(-i,-i,0)\} \subset \mathbb{C}^3 \text{ es}$

$$\begin{pmatrix} 1 & i \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & i \\ 0 & 1 \\ -1 & 0 \end{pmatrix} \in \mathbb{R}^{3 \times 2}. \text{ Verifica que } T(1, i) = (1 + i, i, i)$$

5) Dada $[T]_{\alpha}^{\beta} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix} \in \mathbb{R}^{4\times 3}$, matriz asociada a la transformación lineal

$$T: \mathbb{R}^{3\times 1} \to \mathbb{R}^{2\times 2}$$
 respecto de α base canónica de $\mathbb{R}^{3\times 1}$ y

$$T: \mathbb{R}^{3\times 1} \to \mathbb{R}^{2\times 2} \text{ respecto de } \alpha \text{ base canónica de } \mathbb{R}^{3\times 1} \text{ y}$$

$$\beta = \left\{ \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix}, \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \right\} \subset \mathbb{R}^{2\times 2}$$

- a) Sin determinar explícitamente T, encuentra el subespacio Im(T) y comprueba que dim Im (T) = rg(A), siendo $A = [T]_{\alpha}^{\beta}$
- b) Sin determinar Nu (T) responde $\begin{pmatrix} 2 \\ 2 \\ 0 \end{pmatrix} \in \text{Nu}(T)$?

- 6) Usando las matrices obtenidas en el ejercicio 1), determina la imagen del segmento de extremos A(1,2), B(3,4) (obteniendo el transformado de sus extremos)
- 7) Dado $T: \mathbb{R}^2 \to \mathbb{R}^2$ operador lineal tal que transforma el triángulo ABC en el triángulo A'B'C' como se indica en la siguiente figura:

- a) Determina explícitamente T sabiendo que T(A) = A', T(B) = B', T(C) = C'
- b) Determina la matriz asociada a T respecto de la base canónica de \mathbb{R}^2 .
- c) Usando la matriz obtenida en el apartado anterior, determina en qué se transforma el trapecio rectángulo de vértices M=(1,-1), N=(2,-1), P=(3,-2), Q=(1,-2). Representa gráficamente.