MH1812 Tutorial Chapter 3: Predicate Logic

- Q1: Consider the predicates M(x,y) = "x has sent an email to y", and T(x,y) = "x has called y". The predicate variables x, y take values in the domain $D = \{\text{students in the class}\}$. Express these statements using symbolic logic.
 - 1. There are at least two students in the class such that one student has sent the other an email, and the second student has called the first student.

Solution: We need two predicate variables since at least 2 students are involved, say x and y. There are at least two students in the class becomes

$$x \in D, y \in D$$
.

Then x sent an email to y, that is M(x,y) and y has called x, that is T(y,x), thus

$$M(x,y) \wedge T(y,x)$$
.

Furthermore, we need to take into account the fact that there are at least "two" students, so x and y have to be distinct! Thus the final answer is

$$\exists x \in D, \exists y \in D, x \neq y \land M(x,y) \land T(y,x).$$

2. There are some students in the class who have emailed everyone.

Solution: There are students becomes

$$\exists x \in D$$
,

then x has emailed everyone, that is

$$\exists x \in D, (\forall y \in D, M(x, y)).$$

Note that the order of the quantifiers is important.

Q2: Consider the predicate P(x,y)="x is enrolled in the class y", where x takes values in the domain $S = \{\text{students}\}$, and y takes values in the domain $D = \{\text{courses}\}$. Express each statement by an English sentence.

1. $\exists x \in S, P(x, MH1812).$

Solution: There exists a student such that this student is enrolled in the class MH1812, that is some student enrolled in the class MH1812. \Box

2. $\exists y \in D, P(Carol, y)$.

Solution: There exists a course such that Carol is enrolled in this course, that is, Carol is enrolled in some course, or Carol is enrolled in at least one course. \Box

3. $\exists x \in S, (P(x, MH1812) \land P(x, CZ2002)).$

Solution: There exists a student, such that this student is enrolled in MH1812 and in CZ2002, that is some student is enrolled in both MH1812 and CZ2002. \Box

4. $\exists x \in S, \exists x' \in S, \forall y \in D, ((x \neq x') \land (P(x, y) \leftrightarrow P(x', y))).$

Solution: There exist two distinct students x and x', such that for all courses, x is enrolled in the course if and only if x' is enrolled in the course. In other words, there exist two students which are enrolled in exactly the same courses.

- Q3: Consider the predicate P(x, y, z) = "xyz = 1", for $x, y, z \in \mathbb{R}, x, y, z > 0$. What are the truth values of these statements? Justify your answer.
 - 1. $\forall x, \forall y, \forall z, P(x, y, z)$.

Solution: $\forall x, \forall y, \forall z, P(x, y, z)$ is false: take x = 1 and y = 1, then whenever $z \neq 1$, $xyz = z \neq 1$.

2. $\exists x, \exists y, \exists z, P(x, y, z)$.

Solution: $\exists x, \exists y, \exists z, P(x, y, z)$ is true: take x = y = z = 1.

3. $\forall x, \forall y, \exists z, P(x, y, z)$.

Solution: $\forall x, \forall y, \exists z, P(x, y, z)$ is true: choose any x and any y, then there exists a z, namely $z = \frac{1}{xy}$ such that xyz = 1.

4. $\exists x, \forall y, \forall z, P(x, y, z)$.

Solution: $\exists x, \forall y, \forall z, P(x, y, z)$ is false: one cannot find a single x such that xyz = 1 no matter what are y and z. Assume such x exists, then for any $y_1, z_1 \neq 0$ and $y_1+1, z_1, xy_1z_1 = 1$ and $x(y_1+1)z_1 = 1$ result in valid solution, hence contradiction. \Box

Q4: 1. Express

$$\neg(\forall x, \forall y, P(x,y))$$

in terms of existential quantification.

Solution: We see that $\neg(\forall x, \forall y, P(x, y))$ is a negation of two universal quantifications. Denote $Q(x) = "\forall y, P(x, y)"$, then $\neg(\forall x, Q(x))$ is $(\exists x, \neg Q(x))$, thus

$$\neg(\forall x, \forall y, P(x, y)) \equiv \exists x, \neg(\forall y, P(x, y))$$

and now we iterate the same rule on the next negation, to get

$$\neg(\forall x, \forall y, P(x, y)) \equiv \exists x, \exists y, \neg P(x, y).$$

2. Express

$$\neg(\exists x, \exists y, P(x, y))$$

in terms of universal quantification.

Solution: We repeat the same procedure with the negation of two existential quantifications, by setting this time $Q(x) = "\exists y, P(x,y)"$:

$$\neg(\exists x, \exists y, P(x, y)) \equiv \neg(\exists x, Q(x))$$

$$\equiv \forall x, \neg Q(x)$$

$$\equiv \forall x, \neg(\exists y, P(x, y))$$

$$\equiv \forall x, \forall y, \neg P(x, y).$$

- Q5: Consider the predicate P(x,y) = "x is enrolled in the class y", where x takes values in the domain $S = \{\text{students}\}$, and y takes values in the domain $C = \{\text{courses}\}$. Form the negation of these statements:
 - 1. $\exists x, (P(x, MH1812) \land P(x, CZ2002)).$

Solution: We have

$$\neg(\exists x, (P(x, \text{MH1812}) \land P(x, \text{CZ2002}))$$

$$\equiv \forall x, \neg(P(x, \text{MH1812}) \land P(x, \text{CZ2002}))$$

$$\equiv \forall x, \neg P(x, \text{MH1812}) \lor \neg P(x, \text{CZ2002})$$

where the first equivalence is the negation of quantification, and the second equivalence De Morganś law. \Box

2. $\exists x, \exists y, \forall z, ((x \neq y) \land (P(x, z) \leftrightarrow P(y, z))).$

Solution:

$$\begin{split} \neg(\exists x,\exists y,\forall z,((x\neq y)\land (P(x,z)\leftrightarrow P(y,z)))) \\ \equiv &\forall x,\neg(\exists y,\forall z,((x\neq y)\land (P(x,z)\leftrightarrow P(y,z)))) \\ \equiv &\forall x,\forall y,\neg(\forall z,((x\neq y)\land (P(x,z)\leftrightarrow P(y,z)))) \\ \equiv &\forall x,\forall y,\exists z,\neg((x\neq y)\land (P(x,z)\leftrightarrow P(y,z))) \\ \equiv &\forall x,\forall y,\exists z,\neg(x\neq y)\lor\neg(P(x,z)\leftrightarrow P(y,z)) \end{split}$$

using three times the negation of quantification, and lastly the De Morgan's law. Next $\neg(x \neq y) \equiv (x = y)$ and using that

$$P(x,z) \leftrightarrow P(y,z) \equiv (P(x,z) \to P(y,z)) \land (P(y,z) \to P(x,z))$$

we get

$$\neg(P(x,z) \leftrightarrow P(y,z)) \equiv \neg(P(x,z) \to P(y,z)) \lor \neg(P(y,z) \to P(x,z))$$

so that, using the Conversion theorem to get $\neg(\neg P(x,z) \lor P(y,z)) = P(x,z) \land \neg P(y,z)$ OR $\neg(\neg P(y,z) \lor P(x,z)) = P(y,z) \land \neg P(x,z)$

$$\neg(\exists x, \exists y, \forall z, ((x \neq y) \land (P(x, z) \leftrightarrow P(y, z))))$$

$$\equiv \forall x, \forall y, \exists z, (x = y) \lor [(P(x, z) \lor P(y, z)) \land (\neg P(x, z) \lor \neg P(y, z))]$$

$$\mathbf{Note}: \ (P(x, z) \land \neg P(y, z)) \lor (P(y, z) \land \neg P(x, z))$$

$$\equiv (P(x, z) \lor P(y, z)) \land (\neg P(x, z) \lor \neg P(y, z)).$$

When many steps are involved, it is often a good idea to check the sanity of the answer. If we look at $\neg(P(x,z)\leftrightarrow P(y,z))$, it is false exactly when P(x,z) and P(y,z) are taking the same truth value (either both true or both false). Now we look at $(P(x,z)\vee P(y,z))\wedge (\neg P(x,z)\vee \neg P(y,z))$: when P(x,z) and P(y,z) are taking the same value, we get false, and true otherwise. This makes sense!

Q6: Show that $\forall x \in D, P(x) \to Q(x)$ is equivalent to its contra-positive.

Solution: For every instantiation of $x, (\forall x \in D, P(x) \to Q(x))$ is a proposition, thus we can use the conversion theorem:

$$(\forall x \in D, P(x) \to Q(x))$$

$$\equiv (\forall x \in D, \neg P(x) \lor Q(x))$$

$$\equiv (\forall x \in D, Q(x) \lor \neg P(x))$$

$$\equiv (\forall x \in D, \neg \neg Q(x) \lor \neg P(x))$$

$$\equiv (\forall x \in D, \neg Q(x) \to \neg P(x)).$$

Q7: Show that

$$\neg(\forall x, P(x) \to Q(x)) \equiv \exists x, P(x) \land \neg Q(x).$$

Solution:

$$\neg(\forall x, P(x) \to Q(x))$$

$$\equiv \exists x, \neg(P(x) \to Q(x))$$

$$\equiv \exists x, \neg(\neg P(x) \lor Q(x))$$

$$\equiv \exists x, \neg \neg P(x) \land \neg Q(x)$$

$$\equiv \exists x, P(x) \land \neg Q(x)$$