

VIENNA UNIVERSITY OF TECHNOLOGY

Modeling and Solving Constrained Optimization Problems

Energy-Cost Aware Scheduling

Jonas Ferdigg BSc. (01226597)

4 Model

4.1 Formulation

We added an artificial root node v_0 to our graph and edges $(v_0, i) : i \in V$ from the root node to every other node with weight 0:

- T Set of tasks. Artificial 0-Task added for which resource usage is 0.
- S Set of servers
- P Ordered set of time slots

4.2 Constants

- ct_i : CPU requirement for task $i \in T$
- mt_i : Memory requirement for task $i \in T$
- ot_i : I/O requirement for task $i \in T$
- st_i : Earliest start time of task $i \in T$
- et_i : Latest end time for task $i \in T$
- dt_i : Duration of task $i \in T$
- cs_j : CPU capacity of server $j \in S$
- ms_j : Memory capacity of server $j \in S$
- os_j : I/O capacity of server $j \in S$

4.3 Variables

• x_{sp} : Variable which indicates which tasks run on which server in which timeslot. An empty set indicates that no task is running on that server.

4.4 Domain Constraints

$$\forall s \in S : \forall p \in P : x_{sp} \in \mathcal{P}(T) \tag{1}$$

4.5 Constraints

$$\forall s \in S : \forall p \in P : \sum_{i \in x_{sp}} ct_i \le cs_p \tag{2}$$

$$\forall s \in S : \forall p \in P : \sum_{i \in x_{sp}} mt_i \le ms_p \tag{3}$$

$$\forall s \in S : \forall p \in P : \sum_{i \in x_{sp}} ot_i \le os_p \tag{4}$$

4.6 Objective

$$\min \sum_{e \in E} w_e x_e$$