Informe de Retrospectiva del Proyecto

Principios de modelado en Ingeniería Grupo 2

Profesor: Diego Mora Rojas

Integrantes:

Dylan Guerrero González carné:2022016016

Javier Hernández Castillo carné:2022321746

José Fabio Ruiz Morales carné:2023138210

José Luis Vargas Vargas carné:2023058736

Cartago, Costa Rica

Fecha: 30/05/25

Contenido

1.	Resumen Ejecutivo	3
2.	Objetivos Alcanzados	3
	Entregables Completados	3
	Funcionalidades Implementadas	3
3.	Análisis por Sprint	.4
	Sprint 1 (Semanas 1-2): Inicio y Planificación	.4
	Sprint 2 (Semanas 3-4): Arquitectura y Diseño	4
	Sprint 3 (Semanas 5-6): Desarrollo Principal	4
	Sprint 4 (Semanas 7-8): Finalización	.4
4.	Resultados Positivos	5
	Fortalezas del Equipo	5
	Aspectos Técnicos Exitosos	5
5.	Áreas de Mejora Identificadas	6
	Desafíos Encontrados	6
	Oportunidades de Mejora	6
6.	Métricas del Proyecto	7
	Indicadores de Rendimiento	7
	Story Points Completados	7
7.	Lecciones Aprendidas	7
	Insights Clave	7
8.	Recomendaciones para Futuros Proyectos	8
	Mejores Prácticas Identificadas	8
9.	Reconocimientos	8
	Aspectos Destacados del Equipo	8
10) Conclusión	a

1. Resumen Ejecutivo

El proyecto del Sistema de Invernadero Inteligente se completó exitosamente dentro del plazo establecido de 8 semanas. Se logró implementar un sistema funcional que integra hardware y software para el monitoreo y control automatizado de condiciones ambientales en un invernadero portable. Todas las tareas planificadas en el Product Backlog fueron completadas, con dos elementos que requirieron replanificación entre sprints.

2. Objetivos Alcanzados

Entregables Completados

- Documento de Requerimientos del Producto (15 puntos)
- Documento de Arquitectura del Software y Hardware (10 puntos)
- Product Backlog Actualizado (15 puntos)
- Incremento de Producto Funcional (40 puntos)
- Documentación del Código y Manuales (5 puntos)
- Pruebas y Resultados (10 puntos)
- Presentaciones de Demostración

Funcionalidades Implementadas

- Sistema de monitoreo de condiciones ambientales (temperatura, humedad, luminosidad)
- Control automático y manual del techo del invernadero
- Sistema de riego automatizado con alertas de nivel de agua
- Control de iluminación artificial y ventilación
- Captura automática y manual de fotografías con generación de time-lapse
- Sistema de alertas y notificaciones configurables
- Gestión de tickets de soporte técnico
- Interfaz intuitiva compatible con PC

3. Análisis por Sprint

Sprint 1 (Semanas 1-2): Inicio y Planificación

Estado: Completado exitosamente

- Se logró una definición clara de requerimientos mediante sesiones efectivas con el cliente
- El Documento de Requerimientos se completó siguiendo el estándar IEEE 830-1998
- La priorización inicial del Product Backlog fue acertada

Sprint 2 (Semanas 3-4): Arquitectura y Diseño

Estado: Completado exitosamente

- Se diseñó una arquitectura robusta tanto para software como hardware
- Las decisiones arquitectónicas tomadas resultaron apropiadas para el proyecto
- Se definió correctamente la infraestructura de desarrollo

Sprint 3 (Semanas 5-6): Desarrollo Principal

Estado: Completado con replanificación

- Se implementaron las funcionalidades core del sistema
- Reto identificado: Las alertas de abono y alertas de sensores requirieron más tiempo del estimado
- Decisión tomada: Mover estas tareas al Sprint 4 para mantener la calidad

Sprint 4 (Semanas 7-8): Finalización

Estado: Completado exitosamente

- Se completaron las funcionalidades pendientes del Sprint 3
- Se realizaron pruebas del sistema completo
- Se entregó el producto final funcional

4. Resultados Positivos

Fortalezas del Equipo

1. Comunicación Efectiva

- o Las reuniones de revisión de sprint fueron productivas
- o La comunicación con el cliente (profesor) fue clara y constante
- o El equipo mantuvo una comunicación abierta sobre los desafíos

2. Gestión de Roles Scrum

- Product Owner (José Fabio): Excelente gestión de requerimientos y prioridades
- Scrum Master (Dylan): Facilitación efectiva y seguimiento del progreso
- o **Desarrollador (Javier):** Implementación técnica sólida
- Diseñador (José Luis): Interfaces intuitivas y experiencia de usuario exitosa

3. Adaptabilidad

- El equipo respondió bien cuando se identificó la necesidad de replanificar tareas
- Se mantuvo la calidad del producto a pesar de los ajustes de cronograma

4. Documentación Técnica

- o Se produjo documentación completa y de alta calidad
- o Los manuales de usuario resultaron claros y útiles

Aspectos Técnicos Exitosos

- Integración efectiva entre hardware y software
- Implementación robusta del sistema de alertas y notificaciones
- Interfaz de usuario intuitiva
- Sistema de almacenamiento local eficiente

5. Áreas de Mejora Identificadas

Desafíos Encontrados

1. Estimación de Tiempo

- Problema: Las alertas de abono y sensores requirieron más tiempo del estimado
- o Impacto: Necesidad de replanificar entre Sprint 3 y Sprint 4
- Aprendizaje: La complejidad de las notificaciones configurables fue subestimada

2. Complejidad Técnica

- Las funcionalidades de alertas involucraron más lógica de negocio de la prevista
- La integración con diferentes tipos de sensores presentó retos adicionales

Oportunidades de Mejora

1. Planificación

- o Incluir más tiempo de buffer para funcionalidades complejas
- o Realizar análisis más detallado de dependencias técnicas

2. Estimación

- o Considerar la complejidad de integración en las estimaciones
- o Involucrar más al equipo técnico en la estimación de story points

3. Gestión de Riesgos

- Identificar tempranamente las funcionalidades de mayor riesgo técnico
- o Implementar prototipos rápidos para validar complejidad

6. Métricas del Proyecto

Indicadores de Rendimiento

- Velocidad del Equipo: Consistente a lo largo de los sprints
- Burndown: Ligera desviación en Sprint 3, corregida en Sprint 4
- Calidad: Sin defectos críticos en el producto final
- Satisfacción del Cliente: Todas las funcionalidades solicitadas fueron entregadas

Story Points Completados

- **Sprint 1:** 0 puntos (Documentación de requerimientos)
- **Sprint 2:** 0 puntos (Arquitectura)
- **Sprint 3:** 127 puntos (Desarrollo principal menos alertas)
- **Sprint 4:** 162 puntos (Finalización + alertas pendientes)
- Total: 289 puntos completados

7. Lecciones Aprendidas

Insights Clave

1. Flexibilidad en la Planificación

- La metodología Scrum permitió adaptarse efectivamente a los cambios
- Mover tareas entre sprints no comprometió la entrega final

2. Importancia de la Comunicación Temprana

- Identificar problemas en el Sprint 3 permitió tomar decisiones proactivas
- o La transparencia del equipo fue fundamental para el éxito

3. Valor de la Revisión Continua

- o Las retrospectivas intermedias ayudaron a ajustar el rumbo
- o El feedback del cliente fue invaluable para refinar funcionalidades

4. Complejidad de la Integración Hardware-Software

- Los proyectos que combinan hardware y software requieren consideraciones especiales
- La sincronización entre componentes físicos y digitales presenta desafíos únicos

8. Recomendaciones para Futuros Proyectos

Mejores Prácticas Identificadas

1. Planificación

- Dedicar más tiempo en Sprint 1 para análisis de complejidad técnica
- o Crear prototipos tempranos para funcionalidades críticas
- o Incluir buffers de tiempo para integraciones complejas

2. Gestión de Equipo

- Mantener comunicación diaria más estructurada
- o Implementar sesiones de pair programming para tareas complejas
- o Realizar revisiones de código más frecuentes

3. Gestión de Producto

- Priorizar funcionalidades de mayor riesgo técnico en sprints tempranos
- o Involucrar al cliente en demostraciones más frecuentes
- o Documentar decisiones técnicas de manera más detallada

9. Reconocimientos

Aspectos Destacados del Equipo

- Trabajo en Equipo: Excelente colaboración y apoyo mutuo durante los desafíos
- Compromiso: Dedicación constante para entregar un producto de calidad
- Profesionalismo: Manejo maduro de los cambios de planificación
- Innovación: Soluciones creativas para los retos técnicos encontrados

10. Conclusión

El proyecto del Sistema de Invernadero Inteligente representa un éxito tanto técnico como metodológico. A pesar de los desafíos encontrados con las alertas de abono y sensores, el equipo demostró capacidad de adaptación y compromiso con la calidad.

La experiencia proporcionó valiosos aprendizajes sobre:

- Gestión de proyectos complejos que integran hardware y software
- Importancia de la comunicación efectiva en equipos Scrum
- Valor de la flexibilidad en la planificación sin comprometer objetivos

El producto final cumple con todos los requerimientos establecidos y proporciona una base sólida para futuras iteraciones y mejoras.

Preparado por: Equipo Scrum - Grupo 2

Revisado por: Dylan Guerrero González (Scrum Master) Aprobado por: José Fabio Ruiz Morales (Product Owner)