Absolute Convergence: Zan absolutely converges if Zlan/ converges.

Conditional Convergence: If Zan converges but Zlant diverges, then

Zan is conditionally convergent.

Leibniz Test (also called Alternating Series Test): Z(-1)^an converges if him an = 0.

1. Determine convergence of \(\frac{2}{\sigma} (-1)^{n-1} \frac{1}{\sigma^{2/3}} \)

Alternating Series so... $\rightarrow \frac{1 \text{ im}}{n + 100} \frac{1}{n^{2/3}} = 0$.. $\frac{20}{n = 1} (-1)^{n-1} \frac{1}{n^{2/3}}$ converges

However, $\sum_{n=1}^{\infty} \left| (-1)^{n-1} \frac{1}{n^{2/3}} \right| = \sum_{n=1}^{\infty} \frac{1}{n^{2/3}}$ is a divergent p-series $(p = \frac{3}{3} = 1)$

.: \(\sum_{n=1}^{\infty} \left(-1 \right)^{\frac{1}{n^2/3}} \) \(\sum_{n=1}^{\infty} \left(-1 \right)^{\frac{1}{n^2/3}}

2. Determine convergence of $\sum_{n=1}^{60} \frac{(-1)^n n^4}{n^3+1}$

Alternating series $\rightarrow 1/m \frac{\Lambda^4}{\Lambda^3 + 1} = 00 \neq 0$

Since $\lim_{n \to \infty} \frac{\Lambda^4}{\Lambda^3 + 1} \neq 0$, $\sum_{n=1}^{\infty} \frac{(-1)^n \Lambda^4}{n^3 + 1}$ diverges by the Alternating Series Test. (could also use Divergence 3. Determine convergence of $\sum_{n=1}^{\infty} \frac{\sin(\frac{\pi n}{4})}{n^2}$

Consider $\mathbb{Z}[|q_n|]$. $\left|\frac{\sin(\frac{\pi}{4})}{n^2}\right| \leq \frac{1}{n^2}$

We know $\sum_{n=1}^{\infty}$ is a convergent p-series (p=271).

Since $\left|\frac{\sin\left(\frac{\pi}{4}\right)}{n^2}\right| \leq \frac{1}{n^2}$, $\sum_{A=1}^{\infty} \left|\frac{\sin\left(\frac{\pi}{4}\right)}{n^2}\right|$ converges by the comparison test.

This shows that \(\frac{50}{\text{N}^2} \) \(\frac{\sin(\frac{\pi}{4})}{\text{N}^2} \) \(\frac{\converges}{\text{absolutely}} \).