# The cross-ISP traffic and performance tradeoff in VoD system

May 4, 2011

### VoD System Model

- There are M ISPs: ISP 1, ISP 2, ISP 3,..., ISP M.
- The peer number and average peer upload bandwidth in different ISPs:
  - the peer number: We use the ON-OFF model. There are totally  $N_i$  peers (who have installed the software for VoD streaming) in ISP i. A part of  $N_i$  peers stays offline. The probability that a peer stays offline is  $\pi_0$ . The probability that there are  $N_i^{off} = x$  peers offline is  $P(N_i^{off} = x) = C_{N_i}^{N_i} \pi_0^{x} (1 \pi_0)^{N_i x}$ .
  - The online peers are downloading chunks and uploading chunks in the system.
  - the average peer upload bandwidth in ISP i is  $U_i$ .
- The time is slotted. In a time slot *T*, peers play one chunk. Peers need to download at least one chunk in a time slot, if more than one chunk is downloaded in a time slot, prefetching strategy is adopted.

#### Chunk Demand in ISP i

- A total of J constant-length chunks to be shared:  $C_1, C_2, ..., C_J$ .
- At time slot  $\mathcal{T}$ , peers download the chunks that will be played in time slot  $\mathcal{T}+1$ .
- In ISP i, at time slot T, there are  $m_i^j$  peers downloading chunk j, and there are  $m_i^0$  offline peers.  $m_i^0 + m_i^1 + ... + m_i^J = N_i$ . Say peers are in state 0, 1, 2, ..., J as peers are offline, downloading chunk 1, downloading chunk 2,...,downloading chunk J. The probability that peers are in some state is  $\pi_j$  for state j.  $\sum_{i=0}^J \pi_j = 1$ .
- The probability that there are  $m_i^j(0 \le j \le J)$  peers in state j is  $P(m_i^0, m_i^1, ..., m_i^J) = N_i! \frac{\pi_0^{n_i^0}}{m_i^{n_i^0}} ... \frac{\pi_J^{n_j^J}}{m_i^{n_j^J}}.$
- The probability that there are  $m_i^j$  peers downloading chunk  $j(1 \le j \le J)$  is  $P(m_i^j) = C_{N_i}^{m_i^j} \pi_i^{m_i^j} (1 \pi_j)^{N_i m_i^j}$ .



### The chunk popularity in VoD system



#### Chain for user behavior.jpg

- User behaviors can be modeled by the state transition of peers. Based on the Markov Chain model for user behavior, we can calculate the equilibrium state distribution for peer state,  $(\pi_0, \pi_1, ..., \pi_{J-1}, \pi_J)$ . We can get the chunk popularity from this.
- User behaviors: Joining, Departures, Random seek.

#### Define performance metrics

- The resource used to serve chunk *j* is from peers or from servers.
- At a time slot, m<sub>i</sub><sup>j</sup> peers demand chunk j, let b<sub>j</sub> denote the number of peers that have cached the demanded chunk before (have played chunk j before when no prefetching strategy is adopted), let w<sub>j</sub> denote the copies of chunk j that online peers can upload.
- The needed server capacity to satisfy the demand for chunk j is  $U_{sj} = maxm_i^j b_j w_j, 0$ . The total needed server capacity is  $U_s = \sum_{j=1}^J U_{sj}$ .
- If the server capacity is given as  $U_s$ , the probability of chunk missing for streaming is  $P = \frac{\sum_{j=1}^{J} U_{sj} U_s}{N_i m_i^0}$ .



#### chunk distribution in a peer's cache

- the chunk distribution in a peer's cache relates to two aspects
  - a peer's sojourn time in VoD system
  - the chunk popularity
- How to calculate the chunk distribution
  - A video has J chunks,  $C_1, C_2, ..., C_J$ .
  - We assume that when a peer becomes offline from a video for sometime, the buffer that stores the chunks of the video is replaced by other videos' chunks.
  - For a peer, the probability for its ON duration of t time units is  $P(t) = (1 \pi_0)^t \cdot \pi_0$ .
  - Assuming no prefetching, a peer stays online for time t, the chunk
    distribution in a peer online for t can be calculated based on the path
    of state transitions in time t. e.g. When a peer's state transits from
    state 3 to state 5 to state 6, it has chunk 3, 5, 6 in its buffer.
  - With the chunk popularity and the peers' sojourn time, we can calculate the chunk distribution in a peer's cache.



## chunk distribution in a peer's cache



#### Chunk Supply

- Calculate the chunk supply from peers
  - relates to the chunk distribution in peers' cache and peer scheduling and chunk scheduling.

#### Next step work

- Based on the chunk distribution in peers' cache, and a specific peer selection and chunk scheduling, calculate the chunk supply  $w_j$ .
- Calculate the cross-ISP chunk demand and supply based on locality biased-overlay.