EAIiIB	Ewa Stachów		Rok	Grupa	Zespół
Informatyka	Weronika Olch	a	II	3	6
Pracownia	Temat:				Nr ćwiczenia:
FIZYCZNA					
WFiIS AGH	Elektroliza				35
Data wykonania:	Data oddania:	Zwrot do poprawki:	Data oddania:	Data zaliczenia:	OCENA:
05.11.2016	09.11.2016				

Ćwiczenie nr 35: Elektroliza

1 Cel ćwiczenia

Wyznaczanie równoważnika elektrochemicznego miedzi oraz stałej Faradaya w doświadczeniu z elektrolizą wodnego roztworu CuSO₄

2 Wstęp teoretyczny

Elektroliza zachodzi w układach, w których występują substancje zdolne do jonizacji, czyli rozpadu na jony. Samo zjawisko jonizacji może być wywołane zarówno przyłożonym napięciem elektrycznym, jak i zjawiskami nie generowanymi bezpośrednio przez prąd – dysocjacją elektrolityczną, autodysocjacją, wysoką temperaturą czy działaniem silnego promieniowania.

By zobojętnić jon na elektrodzie, musi przepłynąć ładunek równy $w\dot{e}$, gdzie e - ładunek elementarny elektronu, a w - wartościowość jonu. Liczbę atomów które wydzieliły się na elektrodzie możemy wyznaczyć jako stosunek całkowitego ładunku ($I\dot{t}$) do ładunku pojedynczego jonu (we)

$$N = \frac{It}{we} \tag{1}$$

Aby obliczyć masę osadzonych atomów, mnożymy ich ilość przez masę jednego atomu. Masę pojedynczego atomu można wyznaczyć jako stosunek masy molowej do liczby Avogadra, stąd

$$m = N \frac{\mu}{N_A} = \frac{\mu}{weN_A} It \tag{2}$$

Zauważamy, że masa wydzielonej substancji jest proporcjonalna do natężenia prądu I, czasu przepływu prądu t oraz współczynnika oznaczanego k i zwanego elektrochemicznym równoważnikiem substancji.

$$k = \frac{\mu}{weN_A} \tag{3}$$

Iloczyn eN_A wyraża ładunek potrzebny do wydzielenie jednego gramorównoważnika chemicznego substancji. Oznacza się go zwykle jako F i nazywa stałą Faradaya. Ze wzoru (3) wynika jego zależność od k:

$$F = \frac{\mu}{wk} \tag{4}$$

Nie należy mylić elektrolizy z procesami zachodzącymi w ogniwie galwanicznym. W elektrolizie energia elektryczna zamieniana jest na chemiczną, a w ogniwie galwanicznym kierunek przemian energetycznych jest przeciwny, tzn. energia chemiczna w procesie reakcji redoks zamieniana jest na energię elektryczną, co objawia się generowaniem prądu w obwodzie łączącym elektrody ogniwa. Ze względu na odwrotny przebieg procesu w ogniwach galwanicznych katoda jest naładowana dodatnio, a anoda ujemnie, jednak procesy chemiczne zachodzące na obu ogniwach mają podobny charakter.

3 Układ pomiarowy

Przyrządy

- Naczynie do elektrolizy siarczanu miedzi CuSO₄ z miedzianymi elektrodami w kształcie równoległych płyt, oddalonych od siebie o kilka centymetrów (rys. 1).
- Zasilacz napięcia stałego
- Amperomierz
- Opornica suwakowa
- Waga elektroniczna

Rysunek 1: Schemat obwodu elektrycznego

4 Wyniki pomiarów

czas elektrolizy	t	=	30	min
natężenie prądu	I	=	0,5	A
masa katody przed elektrolizą	m_1	=	93,828	g
masa katody po elektrolizie	m_2	=	94,134	g
masa wydzielonej miedzi	$m = m_2 - m_1$	=	0,306	g
masa anod przed elektrolizą	M_{1A}	=	126,699	g
	M_{1B}	=	122,350	g
masa anod po elektrolizie	M_{2A}	=	126,520	g
	M_{2B}	=	122,213	g
zmiana masy anod	$M = M_2 - M_1$	=	0,316	g

Dane określające niepewność przyrządów:

Klasa amperomierza			0,5	
Używany zakres amperomierza			0,75	A
Niepewność graniczna wagi (znamionowa)	Δm	=	0,001	g
Niepewność pomiaru masy	u(m)	=	0,00058	g

5 Opracowanie wyników

Aby obliczyć współczynnik elektrochemiczny k korzystamy ze wzoru:

$$k = \frac{m}{It} = \frac{0,306}{0,5 \cdot 30 \cdot 60} \frac{g}{A \cdot s} = 0,340 \cdot 10^{-3} \frac{g}{A \cdot s}$$

Korzystając z otrzymanej wartości współczynnika k i wzoru obliczamy doświadczalną wartość stałej Faradaya ze wzoru;

$$F = \frac{\mu}{wk} = \frac{63,58}{2 \cdot 0,340 \cdot 10^{-3}} \frac{C}{mol} = 93500 \frac{C}{mol},$$

gdzie μ to masa molowa miedzi 63, 5 $\frac{g}{mol}$, a w to wartościowość miedzi równa 2. Korzystając z otrzymanej wartości stałej Faradaya F, obliczamy doświadczalną wartość ła-

dunku elementarnego:

$$e = \frac{F}{N_A} = \frac{93500}{6,0222 \cdot 10^{23}} \ C = 1,552 \cdot 10^{-19} \ C,$$

gdzien N_A to liczba Avogadra, która jest wielkością stałą informującą o liczbie cząsteczek lub atomów zawartych w jednym molu substancji.

6 Obliczanie niepewności pomiarowej

Niepewność pomiaru czasu przyjmujemy u(t) = 5s, ze względu na opóźnioną reakcję przy włączaniu stopera.

Mimo, iż niepewność pomiaru wagi wynosiła 0,001g my przyjmujemy ją jako:

$$u(m) = 0,005g$$

Związane jest to z możliwością niedokładnego wysuszenia elektrod, niedokładnego ich przepłukania lub zanieczyszczenia samego elektrolitu.

Aby policzyć niepewność wartości ładunku elektrycznego, który przepłynął przez elektrolit musimy znać niepewność pomiaru natężenia:

$$u(I) = \frac{\text{klasa amperomierza} \cdot \text{zakres}}{100} = 3,75 \cdot 10^{-3} A$$

A zatem niepewność wartości ładunku elektrycznego wynosi:

$$u(e) = t \cdot u(I) = 1800 \cdot 3.75 \cdot 10^{-3} C = 2.539 C$$

Niepewność względna i bezwzględna równoważnika elektrochemicznego

$$\frac{u(k)}{k} = \sqrt{\left[\frac{u(m)}{m}\right]^2 + \left[\frac{u(I)}{I}\right]^2} = \sqrt{\left[\frac{0,005}{0,306}\right]^2 + \left[\frac{0,00375}{0,5}\right]^2} \approx 0,018$$
$$u(k) = \frac{u(k)}{k} \cdot k = 0,018 \cdot 0,340 \cdot 10^{-3} \approx 0,0061 \cdot 10^{-3} \frac{g}{A \cdot s}$$

Niepewność względna i bezwzględna stałej Faradaya oraz ładunku elementarnego

$$\frac{u(F)}{F} = \sqrt{\left[\frac{u(\mu)}{\mu}\right]^2 + \left[\frac{u(k)}{k}\right]^2} = \sqrt{\left[\frac{u(k)}{k}\right]^2} = \frac{u(k)}{k} = \frac{u(e)}{e}$$

$$u(F) = F\frac{u(k)}{k} = 96500 \cdot 0,018 = 1700,93 \frac{C}{mol}$$

$$u(e) = e\frac{u(k)}{k} = 1,552 \cdot 10^{-19} \cdot 0,018 = 0,028 \cdot 10^{-19} C$$

7 Podsumowanie wyników

	wartość	wartość	różnica	niepewność	niepewność
	tablicowa	wyznaczona			względna [%]
$k\left[\frac{mg}{A\cdot s}\right]$	0,329	0,340	0,011	0,0061	1,8
$F\left[\frac{C}{mol}\right]$	96500	93500	3000	1700,97	1,8
$e[10^{-19}C]$	1,602	1,552	0,05	0,028	1,8

8 Wnioski

- Masa anod uległa zmniejszeniu, a masa katody zwiększeniu.
- Wyznaczone wielkości stałej Faradaya, równoważnika elektrochemicznego miedzi oraz ładunku elementarnego nie mieszczą się w granicach błędu. Wyjaśnia to zapewne możliwość powstanie sporego błędu przypadkowego, jak np. niedokładne wysuszenie płytek, niedokładne ich opłukanie lub zanieczyszczenie elektrolitu.
- Elektrolity mogą być dobrymi przewodnikami.