# <u>LabelDistill: Label-guided Cross-modal Knowledge Distillation for Camera-based 3D Object Detection</u>

Sanmin Kim, Youngseok Kim\*, Sihwan Hwang, Hyeonjun Jeong, and Dongsuk Kum

- Problem/Objective
  - Camera-based 3D Object Detection

- Contribution/Key Idea
  - Novel label-guided cross-modal knowledge distillation
  - Introduce a feature partitioning
  - Improve performance

#### LabelDistill: Label-guided Cross-modal Knowledge Distillation for Camera-based 3D Object Detection

Sanmin Kim, Youngseok Kim\*, Sihwan Hwang, Hyeonjun Jeong, and Dongsuk Kum





(a) Conventional Cross-modal Knowledge Distillation

(b) LabelDistill

- 기존 cross-modality knowledge distillation의 문제점
  - Domain gap이 고려되지 않음
  - LiDAR의 거리에 따른 sparse
  - LiDAR occlusion이 고려되지 않음
  - 각 센서의 complementary하게 distill 못함
    - → feature partitioning으로 보완



#### Method



Feature-level + Response-level + Label-level Distillation

Sanmin Kim, Youngseok Kim\*, Sihwan Hwang, Hyeonjun Jeong, and Dongsuk Kum

#### Method



Feature Partitioning

$$F_{\text{image}} \in \mathbb{R}^{H \times W \times C} = F_{image}^{image}, F_{image}^{lidar}, F_{image}^{label}$$

# LabelDistill: Label-guided Cross-modal Knowledge Distillation for Camera-based 3D Object Detection Sanmin Kim., Youngseok Kim\*, Sihwan Hwang, Hyeoniun Jeong, and Dongsuk Kum

Method



Feature-level distillation

$$\mathcal{L}_{lidar}^{feat} = \frac{1}{N_p} \sum_{i}^{H} \sum_{j}^{W} \mathcal{M}_{ij} \{ F_{ij}^{lidar} - \alpha(F_{ij}^{image}) \}^2$$

$$\begin{array}{c} \text{location } (i,j) \\ \text{object-specific mask } \mathcal{M} \\ \text{module } \alpha, \text{aligns the dimensionality} \end{array}$$

# LabelDistill: Label-guided Cross-modal Knowledge Distillation for Camera-based 3D Object Detection Sanmin Kim. Youngseok Kim\*, Sihwan Hwang, Hyeonjun Jeong, and Dongsuk Kum

Method



Response-level distillation

$$\mathcal{L}_{lidar}^{resp} = \mathcal{L}_{cls}(c_{lidar}, c_{image}) + \mathcal{L}_{bbox}(b_{lidar}, b_{image}),$$

c and b denote the class heatmap and bounding box

# <u>LabelDistill: Label-guided Cross-modal Knowledge Distillation for Camera-based 3D Object Detection</u> Sanmin Kim., Youngseok Kim\*, Sihwan Hwang, Hyeoniun Jeong, and Dongsuk Kum

#### Method



- Label-guided distillation
  - →기존에는 LiDAR의 높은 detect 성능에 불완전성이 간과됨
  - →이를 해결하기 위해 Novel distillation 방법 제시

$$\hat{y} = h(F_{lidar}; \theta_h)$$
  $\longrightarrow$   $F_{label} = h^{-1}(y; \theta_{h^{-1}})$ 

Sanmin Kim, Youngseok Kim\*, Sihwan Hwang, Hyeonjun Jeong, and Dongsuk Kum

### Method - Label-guided distillation



- NN의 non-linearity로 역함수 계산 어려워 **근사**하여 **별도 학습** 
  - 기존 Autoencoder 방식을 차용
    - → 차이점은 scratch로부터 학습x, decoder를 pre-trained 사용

(Encoder) 
$$g(y;\theta_g) = f\Big(q\big(\Phi_{cls}(c_{gt}) + \Phi_{box}(b_{gt})\big)\Big)$$

#### Method - Label-guided distillation



**Table 1:** Evaluation of the autoencoder consists of the label encoder and LiDAR detection head on nuScenes validation set.

|               | mAP ↑ | $\mathbf{NDS} \uparrow$ | $\mathbf{mATE} \downarrow$ | $\mathbf{mAOE}\downarrow$ | $\mathbf{mAVE} \downarrow$ |
|---------------|-------|-------------------------|----------------------------|---------------------------|----------------------------|
| Label Encoder | 94.14 | OO 25                   | 0.192                      | 0.048                     | 0.128                      |
| + LiDAR Head  | 94.14 | 90.23                   | 0.192                      | 0.046                     | 0.126                      |

**Table 6:** Evaluation on the effectiveness of the inverse function approximation. AutoEncoder trains the label encoder and the detection head from the scratch.

| Label Encoder Training         | mAP ↑ | $\mathbf{NDS}\uparrow$ | $\mathbf{mATE} \downarrow$ | $\mathbf{mASE}\downarrow$ | $\mathbf{mAOE}\downarrow$ |
|--------------------------------|-------|------------------------|----------------------------|---------------------------|---------------------------|
| AutoEncoder                    | 34.9  | 46.7                   | 0.656                      | 0.270                     | 0.476                     |
| LabelEnc [14]                  | 34.8  | 46.8                   | 0.658                      | 0.267                     | 0.479                     |
| Inverse Function Approximation | 36.8  | 48.1                   | 0.646                      | 0.263                     | 0.474                     |

Sanmin Kim, Youngseok Kim\*, Sihwan Hwang, Hyeonjun Jeong, and Dongsuk Kum

## Training - Two step training



| Set        | Method                         | Backbone          | Size              | mAP  | NDS         | mATE  | mASE  | mAOE  | mAVE  | mAAE  |
|------------|--------------------------------|-------------------|-------------------|------|-------------|-------|-------|-------|-------|-------|
|            | BEVDet4D [17]                  | ResNet50          | 256×704           | 32.3 | 45.3        | 0.674 | 0.272 | 0.503 | 0.429 | 0.208 |
|            | BEVDepth [29]                  | ResNet50          | $256{\times}704$  | 33.3 | 44.1        | 0.683 | 0.276 | 0.545 | 0.526 | 0.226 |
|            | BEVStereo [28]                 | ResNet50          | $256{\times}704$  | 34.4 | 44.9        | 0.659 | 0.276 | 0.579 | 0.503 | 0.216 |
|            | VEDet <sup>†</sup> [4]         | ResNet50          | $384{\times}1056$ | 34.7 | 44.3        | 0.726 | 0.282 | 0.542 | 0.555 | 0.198 |
| ion        | PETR v2 [36]                   | ResNet50          | $256{\times}704$  | 34.9 | 45.6        | 0.700 | 0.275 | 0.580 | 0.437 | 0.187 |
| /alidation | $FB-BEV^{\dagger}$ [31]        | ResNet50          | $256{\times}704$  | 35.0 | 47.9        | 0.642 | 0.275 | 0.459 | 0.391 | 0.193 |
| Val        | AeDet <sup>†</sup> [10]        | ResNet50          | $256{\times}704$  | 35.8 | 47.3        | 0.655 | 0.273 | 0.493 | 0.427 | 0.216 |
|            | P2D [24]                       | ResNet50          | $256{\times}704$  | 37.4 | 48.6        | 0.631 | 0.272 | 0.508 | 0.384 | 0.212 |
|            | BEVFormer v2 <sup>†</sup> [61] | ResNet50          | $640{\times}1600$ | 38.8 | 49.8        | 0.679 | 0.276 | 0.417 | 0.403 | 0.189 |
|            | SOLOFusion [45]                | ResNet50          | $256{\times}704$  | 40.6 | 49.7        | 0.609 | 0.284 | 0.650 | 0.315 | 0.204 |
|            | LabelDistill                   | ResNet50          | $256{\times}704$  | 41.9 | <b>52.8</b> | 0.582 | 0.258 | 0.413 | 0.346 | 0.220 |
|            | DETR3D <sup>†</sup> [56]       | ResNet101         | $900 \times 1600$ | 34.9 | 43.4        | 0.716 | 0.268 | 0.379 | 0.842 | 0.200 |
|            | BEVDepth [29]                  | ${\rm ResNet}101$ | $512{\times}1408$ | 40.6 | 49.0        | 0.626 | 0.278 | 0.513 | 0.489 | 0.226 |
| n          | BEVFormer [30]                 | ResNet101         | $900 \times 1600$ | 41.6 | 51.7        | 0.673 | 0.274 | 0.372 | 0.394 | 0.198 |
| Validation | VEDet <sup>†</sup> [4]         | ResNet101         | $512{\times}1408$ | 43.2 | 52.0        | 0.638 | 0.275 | 0.362 | 0.498 | 0.191 |
| alid       | PolarFormer [23]               | ${\rm ResNet}101$ | $900 \times 1600$ | 43.2 | 52.8        | 0.648 | 0.270 | 0.348 | 0.409 | 0.201 |
|            | P2D [24]                       | ${\rm ResNet}101$ | $512{\times}1408$ | 43.3 | 52.8        | 0.619 | 0.265 | 0.432 | 0.364 | 0.211 |
|            | Sparse4D [33]                  | ${\rm ResNet}101$ | $900 \times 1600$ | 43.6 | 54.1        | 0.633 | 0.279 | 0.363 | 0.317 | 0.177 |
|            | LabelDistill                   | ResNet101         | $512{\times}1408$ | 45.1 | 55.3        | 0.579 | 0.252 | 0.331 | 0.357 | 0.207 |
| Test       | BEVDepth* [29]                 | ConvNeXt-B        | $900 \times 1600$ | 47.5 | 56.1        | 0.474 | 0.259 | 0.463 | 0.432 | 0.134 |
| Te         | LabelDistill                   | ConvNeXt-B        | $900 \times 1600$ | 52.6 | 61.0        | 0.443 | 0.241 | 0.339 | 0.370 | 0.136 |

**Table 3:** Comparison to other LiDAR-guided cross-modal knowledge distillation strategies. †: methods with CBGS.

| Model                        | Baseline    | Image Size        | Backbone           | $mAP$ ( $\Delta$ ) | NDS $(\Delta)$ |
|------------------------------|-------------|-------------------|--------------------|--------------------|----------------|
| UniDistill [71]              | BEVDet      | 704×256           | ResNet50           | 29.6 (3.2)         | 39.3 (3.2)     |
| BEVDistill [6]               | BEVDepth    | $704 \times 256$  | ResNet50           | 33.0 (1.3)         | 45.2(1.2)      |
| TiG-BEV [20]                 | BEVDepth    | $704 \times 256$  | ResNet50           | 36.6 (3.7)         | 46.1(3.0)      |
| BEVSimDet [70]               | BEVFusion-C | $704 \times 256$  | ResNet50           | 37.3 (1.7)         | 43.8(2.6)      |
| $X^3KD^{\dagger}$ [25]       | BEVDepth    | $704 \times 256$  | ResNet50           | 39.0 (3.1)         | 50.5(3.3)      |
| DistillBEV $^{\dagger}$ [59] | BEVDepth    | $704 \times 256$  | ResNet50           | 40.3 (3.9)         | 51.0(2.6)      |
| LabelDistill                 | BEVDepth    | $704 \times 256$  | ResNet50           | 41.9 (5.1)         | 52.8 (4.5)     |
| UVTR [27]                    | -           | $1600 \times 900$ | ResNet101          | 39.2 (1.3)         | 48.8 (0.5)     |
| BEVDistill <sup>†</sup> [6]  | BEVFormer   | $1600 \times 900$ | ResNet101          | 41.7 (1.2)         | 52.4(1.8)      |
| TiG-BEV [20]                 | BEVDepth    | $1408 \times 512$ | ${\rm ResNet} 101$ | 43.0 <b>(2.4)</b>  | 51.4(2.3)      |
| DistillBEV $^{\dagger}$ [59] | BEVDepth    | $1408 \times 512$ | ${\rm ResNet} 101$ | 45.0 (2.3)         | 54.7(3.1)      |
| LabelDistill                 | BEVDepth    | $1408 \times 512$ | ResNet101          | 45.1 (2.4)         | 55.3 (3.7)     |

**Table 4:** Ablation study on the proposed method. LiDAR, Label, and Partition represent LiDAR distillation, label distillation, and feature partitioning, respectively.

|     | LiDAR | Label        | Partition    | mAP ↑ | $\mathbf{NDS}\uparrow$ | $\mathbf{mATE}\downarrow$ | $\mathbf{mASE} \downarrow$ |
|-----|-------|--------------|--------------|-------|------------------------|---------------------------|----------------------------|
| (a) |       |              |              | 33.6  | 44.8                   | 0.694                     | 0.273                      |
| (b) | ✓     |              |              | 35.4  | 48.6                   | 0.648                     | 0.262                      |
| (c) | ✓     | $\checkmark$ |              | 37.0  | 49.5                   | 0.663                     | 0.258                      |
| (d) | ✓     | $\checkmark$ | $\checkmark$ | 37.9  | 50.1                   | 0.641                     | 0.256                      |



**Fig. 4:** Illustration of BEV feature maps in the inference stage.  $F_{image}^{image}$  is undistilled image feature,  $F_{image}^{lidar}$  is lidar-distilled image feature, and  $F_{image}^{label}$ , label-distilled image feature, and  $F_{label}$  denotes label feature from the label encoder.

**Table 5:** Experiments on different channel ratio for the feature partitioning.

| Cha                 | annel R             |                     | m AP ↑ | NDS + | m ATE  | $\mathbf{mASE}\downarrow$ |  |
|---------------------|---------------------|---------------------|--------|-------|--------|---------------------------|--|
| $F_{lidar}^{image}$ | $F_{label}^{image}$ | $F_{image}^{image}$ | mai    | NDS   | maie , |                           |  |
| 1                   | 3                   | 2                   | 36.6   | 48.8  | 0.655  | 0.260                     |  |
| 3                   | 1                   | 2                   | 37.1   | 49.4  | 0.646  | 0.258                     |  |
| 2                   | 2                   | 2                   | 37.6   | 49.6  | 0.643  | 0.256                     |  |



**Fig. 5:** Comparison of the baseline (BEVDepth) and our approach. The blue circles in the BEV view highlight cases that demonstrate the advantages of our approach, including: 1) higher recall, 2) more accurate localization, and 3) fewer false positives.