PA-1019

SEAT No.	:	

[Total No. of Pages: 2

[5902]-43

S.Y. B.Sc. (Computer Science) MATHEMATICS (Paper - I)

MTC-241: Computational Geometry

(2019 Pattern) (Semester - IV) (24221)

Time: 2 Hours] [Max. Marks: 35

Instructions to the candidates:

- 1) All questions are compulsory.
- 2) Figures to the right indicate full marks.
- 2) Non-programmable scientific calculator is allowed.

Q1) Attempt any Five of the following:

 $[5 \times 2 = 10]$

- a) Find homogenous co-ordinate of point A = [1, 2].
- b) If $A(\triangle ABC) = 5$ sq. unit is reflected through y = x line, find Area of transformed object.
- c) Find Foreshortening factor f_y of the transformation Matrix for Axonometric projection.

$$[T] = \begin{bmatrix} 0.5 & 0.43 & 0 & 0 \\ 0 & 0.86 & 0 & 0 \\ 0.86 & 0.25 & 0 & 0 \\ 0.58 & 0.75 & 0 & 1 \end{bmatrix}$$

- d) Find direction cosines of the plane x + y + z = 0.
- e) Write types of all Axonometric parallel projections.
- f) Define projection in three-Dimensional space.
- g) Find Initial point of part of circle $x^2 + y^2 = 16$ in second quadrant.

P.T.O.

Q2) Attempt any three of the following:

 $[3 \times 5 = 15]$

a) Show that 2×2 matrix $[T] = \begin{bmatrix} 2t & \frac{1}{t} \\ t & \frac{1}{t} \end{bmatrix}$

represents pure rotation in two-Dimensional space.

- b) If circle $(x-1)^2 + (y+1)^2 = 9$ is transformed by translation in X-direction by 2 and Y-direction by 3 then find centre of transformed circle.
- c) Find concatenated transformation matrix for the following sequence of transformation, First shearing in Y-direction proportional to x and z co-ordinate with 1 and 3 units respectively. Followed by Reflection through xz plane (i.e. y = 0 plane).
- d) Obtain transformation matrix to Reflect the object through plane x = -2.
- e) Develop the bottom view of the line segment AB where $A = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}$.

Q3) Attempt any one of the following:

 $[1 \times 10 = 10]$

- a) Find the parametric equation of Be'zier curve determine by four control points B_0 [0 2], B_1 [2 3] B_2 [3 2] and B_3 [2 0]. Also find position vectors of the point on the curve corresponding to parametric values t = 0.2, 0.4, 0.6.
- b) i) Generate equispaced 3 points on the circle $x^2 + y^2 = 36$ in second quadrant only.
 - ii) Write the transformation matrix for dimetric projection with

$$f_z = \frac{3}{8}(\theta > 0, \phi > 0).$$

SEAT No. :

PA-1020

[Total No. of Pages: 4

[5902]-44

S.Y. B.Sc. (Computer Science) MATHEMATICS

MTC - 242: Operations Research

(2019 Pattern) (Semester - IV) (Paper - II) (24222)

Time: 2 Hours] [Max. Marks: 35

Instructions to the candidates:

- 1) All questions are compulsory.
- 2) Figures to the right indicates full marks.
- 3) Non-programmable scientific calculator is allowed.

Q1) Attempt any Five of the following:

 $[5 \times 2 = 10]$

a) Use north-west corner rule to obtain Initial Basic Feasible Solution of the following transportation problem:

Destination	D ₁	D ₂	D_3	Supply
→ Origin ↓				
O.	5	1	8	12
0,	2	4	0	14
O ₃	3	6	7	4
Demand	9	10	11	

b) Write dual form of the following Linear Programming Problem:

Minimize
$$Z = 10 x_1 + 6x_2 + 2x_3$$

Subject to:

$$-x_1 + x_2 + x_3 \ge 1$$
$$3x_1 + x_2 - x_3 \ge 2$$
$$x_1, x_2, x_3 \ge 0$$

c) Solve following assignment problem for Maximization:

$\begin{array}{c} \text{Jobs} \rightarrow \\ \text{Persons} \downarrow \end{array}$	Ι	II	III
A	1	4	5
В	2	3	3
С	3	1	2

- d) What is degeneracy in the transportation problem?
- e) Write the mathematical formulation of assignment problem.
- f) Write the standard form of following Linear Programming Problem:

$$Minimize Z = x_1 + x_2 + x_3$$

Subject to:

$$x_1 - 3x_2 + 4x_3 = 5$$

$$x_1 - 2x_2 \le 3$$

$$2x_1 - x_3 \ge 4$$

$$x_1, x_2, x_3 \ge 0$$

g) Draw the feasible region for the following constraints:

Maximize
$$Z = 3x + 2y$$

Subject to:

$$x - y \le 1$$
$$x + y \ge 3$$
$$x, y \ge 0$$

Q2) Attempt any three of the following:

 $[3\times5=15]$

a) Obtain Initial Basic Feasible Solution of the following transportation problem by Vogel's approximation method.

Warehouses	$\mathbf{W}_{_{1}}$	\mathbf{W}_{2}	W_3	W_4	Supply
\rightarrow	5355.	593	6220	30	
Factory ↓					
F_{1}	30	25	40	20	100
F_2	29	26	35	40	250
F_3	31	33	37	30	150
Requirement	90	160	200	50	

b) Solve the following assignment problem:

	A	В	C	D	Е
\mathbf{M}_{1}	4	6	10	5	6
M ₂	7	4	-	5	4
M_3	-	6	9	6	2
M_4	9	3	7	2	3

c) Solve the following linear programming problem by graphically:

Maximize
$$Z = 3x + 5y$$

Subject to:

$$x + 2y \le 2000$$

$$x + y \le 1500$$

$$y \le 600$$

$$x, y \ge 0$$

d) Solve the following Linear Programming Problem by Big-M method.

Maximize
$$Z = x + 4y$$

S.t.

$$x + 2y \le 2$$

$$4x + 3y \ge 12$$

$$x, y \ge 0$$

e) Solve following assignment problem for minimum cost:

	I	II	III	IV	V
1	3	8	2	10	3
2	8	7	2	9	7
3	6	4	2	7	5
4	8	4	2	3	5
5	9	10	6	9	10

Q3) Attempt any one of the following:

 $[1 \times 10 = 10]$

a) Obtain optimal solution of the following Transportation Problem by modified distribution method.

1	2	1	4
20		10	
3	3	2	1
	20	20	10
4	2	5	9
	20		

Also obtain alternate optimal solution

b) Solve the following linear programming problem by simplex method:

Maximize
$$Z = 3x_1 + 2x_2 + 5x_3$$

Subject to:

$$x_1 + 2x_2 + x_3 \le 430$$
$$3x_1 + 2x_3 \le 460$$

$$x_1 + 4x_2 \le 420$$

$$x_1, x_2, x_3 \ge 0$$

