MARK SCHEME

Question	Scheme	Marks
number		
1 (a)	$l = r\theta \Rightarrow l = 13 \times 2 = 26 \text{ (cm)}$	B1
		[1]
(b)	$A = \frac{\theta}{2}r^2 = \frac{2}{2} \times 13^2 = 169 \text{ (cm}^2\text{)}$	M1A1
		[2]
		Total 3 marks
(a)		
B1	l=26	
(b)		
M1	Use of $A = \frac{\theta}{2}r^2$ or $A = \frac{1}{2}rl$ or $A = \frac{l^2}{2\theta}$	
A1	A = 169	

Question number	Scheme	Marks	
2 (a)	Line l_1 $m = \frac{-8}{4} = -2$ $y - 8 = -2(x) \Rightarrow y + 2x = 8$	M1A1	
	Line l_2 $m = \frac{-4}{6} = -\frac{2}{3}$ $y - 4 = -\frac{2}{3}(x) \Rightarrow 3y + 2x = 12$	A1	
		[3]	
(b)	$x \ge 0$ $y + 2x \le 8$ $3y + 2x \ge 12$ Accept < and >	B1B1ftB1ft [3]	
Total 6 marks			
(a)			
M1	Calculating the gradient of either l_1 or l_2		
A1	y + 2x = 8		
A1	3y + 2x = 12		
	NB If both are correct but not in the form $ax + by = c$ then award A	1A0	
(b)	For all 3 marks accept $<$ and $>$ instead of \le and \ge		
B1	$x \ge 0$		
B1ft	$y + 2x \le 8$ oe (ft l_1)		
B1ft	$3y + 2x \ge 12$ oe (ft l_2)		