1. Перевести из 10 в 16 систему 12345678, 1000000

Решение:

Переведем число 12345678 в шестнадцатеричную систему счисления:

Переведем целую часть:

12345678 / 16 = 771604 и остаток 14 (Е)

771604 / 16 = 48225 и остаток 4

48225 / 16 = 3014 и остаток 1

3014 / 16 = 188 и остаток 6

188 / 16 = 11 и остаток 12 (С)

11 / 16 = 0 и остаток 11 (В)

Соберем остатки в обратном порядке: 12345678 = ВС614Е

Переведем число 1000000 в шестнадцатеричную систему счисления:

Переведем целую часть:

1000000 / 16 = 62500 и остаток 0

62500 / 16 = 3906 и остаток 4

3906 / 16 = 244 и остаток 2

244 / 16 = 15 и остаток 4

15 / 16 = 0 и остаток 15 (F)

Соберем остатки в обратном порядке: 1000000 = F4240

2. Перевести из 16 в 10 систему 12345678, 1000000

Решение:

Переведем число 12345678 в десятичную систему счисления:

Переведем целую часть: $1 \times 16^7 + 2 \times 16^6 + 3 \times 16^5 + 4 \times 16^4 + 5 \times 16^3 + 6 \times 16^2 + 7 \times 16^1 + 8 \times 16^0 = 305419896$

Таким образом, 12345678 в 16 системе = 305419896 в 10 системе

Переведем число 1000000 в десятичную систему счисления:

Переведем целую часть:
$$1 \times 16^6 + 0 \times 16^5 + 0 \times 16^4 + 0 \times 16^3 + 0 \times 16^2 + 0 \times 16^1 + 0 \times 16^0 = 16777216$$

Таким образом, 1000000 в 16 системе = 16777216 в 10 системе.

3. Записать в виде логического выражение ответ Винни Пуха: "Сгущенного молока и меда и можно без хлеба"

Решение:

Допустим: молоко = A, мёд = B, хлеб = C, тогда логическое выражение будет выглядеть следующим образом: A && B && !C

4. Доказать тождества $A \to B = !A \| B, A \leftrightarrow B = (A \&\& B) \| (!A \&\& !B),$ таблицы истинности на Си можно распечатать**

Решение:

$$A \rightarrow B = !A || B$$
 это импликация

В	$A \rightarrow B$
0	1
1	1
0	0
1	1
	0

!A	В	!A B
1	0	1
1	1	1
0	0	0
0	1	1

 $A \leftrightarrow B = (A \&\& B) \parallel (!A \&\& !B)$ это эквивалентность

A	В	$A \leftrightarrow B$
0	0	1
0	1	0
1	0	0
1	1	1

A	В	A && B
0	0	0
0	1	0
1	0	0
1	1	1

!A	!B	!A && !B
1	1	1
1	0	0
0	1	0
0	0	0

A && B	!A && !B	(A && B) (!A && !B)
0	1	1
0	0	0
0	0	0
1	0	1

Таким образом $A \leftrightarrow B = (A \&\& B) \parallel (!A \&\& !B)$

5. Найти эквивалент для ⊕?

⊕ - XOR, исключающая или (также пишется как: ^)

A	В	A ⊕ B A ^ B
0	0	0
0	1	1
1	0	1
1	1	0

!A	В	!A && B
1	0	0
1	1	1
0	0	0
0	1	0

A	!B	A && !B
0	1	0
0	0	0
1	1	1
1	0	0

!A && B	A && !B	(!A && B) (A && !B)
0	0	0
1	0	1
0	1	1
0	0	0

Таким образом $A \oplus B = (!A \&\& B) \parallel (A \&\& !B)$

6. * Упростить выражение:

$$X = (B \to A) \cdot \overline{(A + B)} \cdot (A \to C)$$

Избавляемся от импликаций:

$$X = (!B \parallel A) \cdot !A \cdot !B \cdot (!A \parallel C)$$