This key should allow you to understand why you choose the option you did (beyond just getting a question right or wrong). More instructions on how to use this key can be found here.

If you have a suggestion to make the keys better, please fill out the short survey here.

Note: This key is auto-generated and may contain issues and/or errors. The keys are reviewed after each exam to ensure grading is done accurately. If there are issues (like duplicate options), they are noted in the offline gradebook. The keys are a work-in-progress to give students as many resources to improve as possible.

1. Solve the linear inequality below. Then, choose the constant and interval combination that describes the solution set.

$$-10x + 3 \le -4x - 9$$

The solution is $[2.0, \infty)$, which is option A.

- A. $[a, \infty)$, where $a \in [0, 7]$
 - * $[2.0, \infty)$, which is the correct option.
- B. $(-\infty, a]$, where $a \in [-7.8, 1.4]$

 $(-\infty, -2.0]$, which corresponds to switching the direction of the interval AND negating the endpoint. You likely did this if you did not flip the inequality when dividing by a negative as well as not moving values over to a side properly.

- C. $(-\infty, a]$, where $a \in [1.2, 5.3]$
 - $(-\infty, 2.0]$, which corresponds to switching the direction of the interval. You likely did this if you did not flip the inequality when dividing by a negative!
- D. $[a, \infty)$, where $a \in [-5, -1]$
 - $[-2.0,\infty)$, which corresponds to negating the endpoint of the solution.
- E. None of the above.

You may have chosen this if you thought the inequality did not match the ends of the intervals.

General Comment: Remember that less/greater than or equal to includes the endpoint, while less/greater do not. Also, remember that you need to flip the inequality when you multiply or divide by a negative.

2. Solve the linear inequality below. Then, choose the constant and interval combination that describes the solution set.

$$-9x + 4 < 5x - 8$$

The solution is $(0.857, \infty)$, which is option C.

- A. (a, ∞) , where $a \in [-2.01, -0.06]$
 - $(-0.857, \infty)$, which corresponds to negating the endpoint of the solution.
- B. $(-\infty, a)$, where $a \in [0, 0.9]$

 $(-\infty, 0.857)$, which corresponds to switching the direction of the interval. You likely did this if you did not flip the inequality when dividing by a negative!

- C. (a, ∞) , where $a \in [0.27, 1.63]$
 - * $(0.857, \infty)$, which is the correct option.

D. $(-\infty, a)$, where $a \in [-4.5, -0.5]$

 $(-\infty, -0.857)$, which corresponds to switching the direction of the interval AND negating the endpoint. You likely did this if you did not flip the inequality when dividing by a negative as well as not moving values over to a side properly.

E. None of the above.

You may have chosen this if you thought the inequality did not match the ends of the intervals.

General Comment: Remember that less/greater than or equal to includes the endpoint, while less/greater do not. Also, remember that you need to flip the inequality when you multiply or divide by a negative.

3. Solve the linear inequality below. Then, choose the constant and interval combination that describes the solution set.

$$-6 + 7x > 8x \text{ or } -5 + 3x < 6x$$

The solution is $(-\infty, -6.0)$ or $(-1.667, \infty)$, which is option B.

A. $(-\infty, a) \cup (b, \infty)$, where $a \in [-2.33, 4.67]$ and $b \in [6, 7]$

Corresponds to inverting the inequality and negating the solution.

- B. $(-\infty, a) \cup (b, \infty)$, where $a \in [-6, -1]$ and $b \in [-1.67, -0.67]$
 - * Correct option.
- C. $(-\infty, a] \cup [b, \infty)$, where $a \in [-9, -3]$ and $b \in [-8.67, 4.33]$

Corresponds to including the endpoints (when they should be excluded).

D. $(-\infty, a] \cup [b, \infty)$, where $a \in [0.67, 3.67]$ and $b \in [3, 9]$

Corresponds to including the endpoints AND negating.

E. $(-\infty, \infty)$

Corresponds to the variable canceling, which does not happen in this instance.

General Comment: When multiplying or dividing by a negative, flip the sign.

4. Solve the linear inequality below. Then, choose the constant and interval combination that describes the solution set.

$$7 - 3x < \frac{-9x + 4}{4} \le 8 - 3x$$

The solution is (8.00, 9.33], which is option A.

- A. (a, b], where $a \in [7, 14]$ and $b \in [6.33, 11.33]$
 - * (8.00, 9.33), which is the correct option.
- B. $(-\infty, a) \cup [b, \infty)$, where $a \in [8, 13]$ and $b \in [7.33, 13.33]$

 $(-\infty, 8.00) \cup [9.33, \infty)$, which corresponds to displaying the and-inequality as an or-inequality.

C. [a, b), where $a \in [4, 13]$ and $b \in [5.33, 10.33]$

[8.00, 9.33), which corresponds to flipping the inequality.

- D. $(-\infty, a] \cup (b, \infty)$, where $a \in [-1, 12]$ and $b \in [2.33, 12.33]$
 - $(-\infty, 8.00] \cup (9.33, \infty)$, which corresponds to displaying the and-inequality as an or-inequality AND flipping the inequality.
- E. None of the above.

General Comment: To solve, you will need to break up the compound inequality into two inequalities. Be sure to keep track of the inequality! It may be best to draw a number line and graph your solution.

5. Using an interval or intervals, describe all the x-values within or including a distance of the given values.

Less than 7 units from the number -2.

The solution is (-9,5), which is option C.

A.
$$(-\infty, -9] \cup [5, \infty)$$

This describes the values no less than 7 from -2

B. [-9, 5]

This describes the values no more than 7 from -2

C. (-9,5)

This describes the values less than 7 from -2

D. $(-\infty, -9) \cup (5, \infty)$

This describes the values more than 7 from -2

E. None of the above

You likely thought the values in the interval were not correct.

General Comment: When thinking about this language, it helps to draw a number line and try points.

6. Using an interval or intervals, describe all the x-values within or including a distance of the given values.

Less than 6 units from the number -1.

The solution is (-7, 5), which is option A.

A. (-7,5)

This describes the values less than 6 from -1

B. $(-\infty, -7] \cup [5, \infty)$

This describes the values no less than 6 from -1

C. $(-\infty, -7) \cup (5, \infty)$

This describes the values more than 6 from -1

D. [-7, 5]

This describes the values no more than 6 from -1

E. None of the above

You likely thought the values in the interval were not correct.

General Comment: When thinking about this language, it helps to draw a number line and try points.

7. Solve the linear inequality below. Then, choose the constant and interval combination that describes the solution set.

$$-7 + 4x > 6x$$
 or $-7 + 6x < 9x$

The solution is $(-\infty, -3.5)$ or $(-2.333, \infty)$, which is option D.

A. $(-\infty, a] \cup [b, \infty)$, where $a \in [0.33, 7.33]$ and $b \in [2.5, 6.5]$

Corresponds to including the endpoints AND negating.

B. $(-\infty, a] \cup [b, \infty)$, where $a \in [-5.5, 1.5]$ and $b \in [-6.33, -1.33]$

Corresponds to including the endpoints (when they should be excluded).

C. $(-\infty, a) \cup (b, \infty)$, where $a \in [-2.67, 8.33]$ and $b \in [2.5, 6.5]$

Corresponds to inverting the inequality and negating the solution.

- D. $(-\infty, a) \cup (b, \infty)$, where $a \in [-3.5, 1.5]$ and $b \in [-3.33, 0.67]$
 - * Correct option.
- E. $(-\infty, \infty)$

Corresponds to the variable canceling, which does not happen in this instance.

General Comment: When multiplying or dividing by a negative, flip the sign.

8. Solve the linear inequality below. Then, choose the constant and interval combination that describes the solution set.

$$\frac{8}{4} - \frac{6}{8}x \ge \frac{5}{7}x + \frac{3}{6}$$

The solution is $(-\infty, 1.024]$, which is option C.

A. $[a, \infty)$, where $a \in [-3.02, 0.98]$

 $[-1.024, \infty)$, which corresponds to switching the direction of the interval AND negating the endpoint. You likely did this if you did not flip the inequality when dividing by a negative as well as not moving values over to a side properly.

B. $(-\infty, a]$, where $a \in [-3.02, -0.02]$

 $(-\infty, -1.024]$, which corresponds to negating the endpoint of the solution.

C. $(-\infty, a]$, where $a \in [-0.98, 3.02]$

* $(-\infty, 1.024]$, which is the correct option.

D. $[a, \infty)$, where $a \in [-0.98, 2.02]$

 $[1.024, \infty)$, which corresponds to switching the direction of the interval. You likely did this if you did not flip the inequality when dividing by a negative!

E. None of the above.

You may have chosen this if you thought the inequality did not match the ends of the intervals.

General Comment: Remember that less/greater than or equal to includes the endpoint, while less/greater do not. Also, remember that you need to flip the inequality when you multiply or divide by a negative.

9. Solve the linear inequality below. Then, choose the constant and interval combination that describes the solution set.

$$-8 + 4x < \frac{44x - 7}{6} \le 8 + 7x$$

The solution is None of the above., which is option E.

A. $(-\infty, a) \cup [b, \infty)$, where $a \in [-0.95, 5.05]$ and $b \in [-32.5, -23.5]$

 $(-\infty, 2.05) \cup [-27.50, \infty)$, which corresponds to displaying the and-inequality as an or-inequality and getting negatives of the actual endpoints.

B. (a, b], where $a \in [2.05, 9.05]$ and $b \in [-30.5, -21.5]$

(2.05, -27.50], which is the correct interval but negatives of the actual endpoints.

C. [a, b), where $a \in [-1.95, 4.05]$ and $b \in [-29.5, -21.5]$

[2.05, -27.50), which corresponds to flipping the inequality and getting negatives of the actual endpoints.

D. $(-\infty, a] \cup (b, \infty)$, where $a \in [-1.95, 3.05]$ and $b \in [-28.5, -25.5]$

 $(-\infty, 2.05] \cup (-27.50, \infty)$, which corresponds to displaying the and-inequality as an or-inequality AND flipping the inequality AND getting negatives of the actual endpoints.

E. None of the above.

* This is correct as the answer should be (-2.05, 27.50].

General Comment: To solve, you will need to break up the compound inequality into two inequalities. Be sure to keep track of the inequality! It may be best to draw a number line and graph your solution.

10. Solve the linear inequality below. Then, choose the constant and interval combination that describes the solution set.

$$\frac{8}{3} - \frac{4}{4}x < \frac{3}{6}x + \frac{3}{7}$$

The solution is $(1.492, \infty)$, which is option A.

A. (a, ∞) , where $a \in [0.9, 3]$

* $(1.492, \infty)$, which is the correct option.

B. $(-\infty, a)$, where $a \in [0.49, 2.49]$

 $(-\infty, 1.492)$, which corresponds to switching the direction of the interval. You likely did this if you did not flip the inequality when dividing by a negative!

C. (a, ∞) , where $a \in [-1.6, -0.5]$

 $(-1.492, \infty)$, which corresponds to negating the endpoint of the solution.

D. $(-\infty, a)$, where $a \in [-2.49, 0.51]$

 $(-\infty, -1.492)$, which corresponds to switching the direction of the interval AND negating the endpoint. You likely did this if you did not flip the inequality when dividing by a negative as well as not moving values over to a side properly.

E. None of the above.

You may have chosen this if you thought the inequality did not match the ends of the intervals.

General Comment: Remember that less/greater than or equal to includes the endpoint, while less/greater do not. Also, remember that you need to flip the inequality when you multiply or divide by a negative.