Generative Models Discriminative vs Generative

Understanding Machine Learning

Naïve Bayes

Generative vs Discriminative

P(Y, X) vs P(Y | X)

• generative-discriminative pair of algorithms: Naïve Bayes and Logistic Regression

generative more difficult ... generate samples

discriminative model

generative model

source

Example: Large Language Models

... auto-regressive models

Different Types of Generative Models

Variational Inference

• Bayesian ...

Recap: Autoencoder

(deep) encoder network
(deep) decoder network
learned together by
minimizing differences
between original input and
reconstructed input
(expressed as losses)

compressed intermediate representation: dimensionality reduction

source

Variational Autoencoder (VAE)

•

VAE relies on a surrogate loss

ELBO

reparameterization trick

from wikipedia

• ...

from wikipedia

Generative Adversarial Networks (GAN)

• ...

• GAN models are known for potentially unstable training and less diversity in generation due to their adversarial training nature.

Flow-Based Methods

• ...

• Flow models have to use specialized architectures to construct reversible transform.

Energy-Based Methods

•

Diffusion Models

• ...

• Diffusion models are inspired by non-equilibrium thermodynamics. They define a Markov chain of diffusion steps to slowly add random noise to data and then learn to reverse the diffusion process to construct desired data samples from the noise. Unlike VAE or flow models, diffusion models are learned with a fixed procedure and the latent variable has high dimensionality (same as the original data).

Image Generation

DALL-E 2

• • •

Stable Diffusion DreamStudio

Literature

papers:

- variational autoencoder
- GAN
- normalizing flows
- latent diffusion

Movie-like Intelligence

emergent capabilities of complex systems almost impossible to foresee

mini examples in contemporary ML:

- large language models
- multi-agent reinforcement learning

one idea: reward is enough

philosophical: emotions or consciousness might also occur as emergent capabilities