Homework1

Blue

20230118

1 Plotting in Matlab

(i)

Figure 1: 3D curve

```
(ii)result:17.222032186553953 code:  \begin{array}{l} code: \\ func = @(x)((2*cos(2*x)).^2 + (-sin(x)).^2 + 1).^0.5; \\ integral(func,0,3*pi) \end{array}
```

2 Floating-Point Exceptions

```
 \begin{array}{lll} \bullet & {\rm code:single(exp(500))} & {\rm get:} & \underline{{\rm single}} \ {\rm Inf} \\ & {\rm code:exp(1000)} & {\rm get:} \ {\rm Inf} & (\overline{\rm This\ is\ in\ double\ form)} \end{array}
```

```
• code:1/0 get: Inf The answer makes sense to me.
  code:Inf/-Inf get: NaN
  code:0/0 get: NaN
• code: \exp(100) < \text{Inf} get: \log 1
       -\exp(100) > -Inf
                      get: logical 1
  code:
  code: \exp(100) < \text{NaN}
                       get: logical 0
  code: \exp(100) > \text{NaN}
                       get: logical 0
  code: \exp(100) == \text{NaN}
                        get: logical 0
  code: Inf==NaN get: logical 0
  code: Inf>NaN
                  get: logical 0
  code: Inf<NaN
                  get: logical 0
  code: Inf==-NaN get: logical 0
  code: Inf>-NaN get: logical 0
  code: Inf<-NaN
                   get: \overline{\text{logical}} 0
  conclusion:-Inf<normal number<Inf. Comparison between NaN and normal number or Infs get nothing.
• code: x=0/0
              get: x=NaN
  code:x+100
              get: x=NaN
  code:x-100
             get: x=NaN
  code:x*100
             get: x=NaN
  code:x/100
             get: x=NaN
  code:x/0
          get: x=NaN
  code:x*0
           get: x=NaN
• code: x=1/exp(500); sqrt(x)
                            get: x=2.669190215541276e-109
  code: x=1/exp(750); sqrt(x) get: x=0
  code: x=1/(-exp(750)); sqrt(x) get: x=0
  code:sqrt(+0)
               get: 0
  code:sqrt(-0)
               get: 0
  There is difference between +0 and -0 in MATLAB. The following code shows the difference.
  code: 1/(+0)
              get: x=Inf
  code: 1/(-0) get: x=-Inf
```

3 Algorithm to Compute π

3.1 Using the absolute error we get the following format.

Iteration	Single precision	Double precision	Single error	Double error
1	0.5773503	0.577350269	2.5642424	2.564242384
2	3.21539	3.215390309	0.0737973	0.073797656
3	3.1596599	3.159659942	0.0180672	0.018067289
4	3.1460876	3.146086215	0.004495	0.004493562
5	3.1426797	3.1427146	0.001087	0.001121946
6	3.1420677	3.14187305	0.000475	0.000280396
7	3.1412809	3.141662747	0.0003118	7.00935E-05
8	3.1336737	3.141610177	0.007919	1.7523E-05
9	3.1412809	3.141597034	0.0003118	4.38073E-06
10	3.0441403	3.141593749	0.0974523	1.09523E-06
11	2.9564998	3.141592928	0.1850928	2.74284E-07
12	3.0441403	3.141592726	0.0974523	7.20328E-08
13	0	3.141592672	3.1415927	1.81518E-08
14	NaN	3.141592619	NaN	3.46889E-08
15	NaN	3.141592672	NaN	1.81518E-08

16	NaN	3.141591936	NaN	7.17708E-07
17	NaN	3.141592672	NaN	1.81518E-08
18	NaN	3.141581008	NaN	1.1646E-05
19	NaN	3.141592672	NaN	1.81518E-08
20	NaN	3.141406155	NaN	0.000186499
21	NaN	3.140543492	NaN	0.001049161
22	NaN	3.140006865	NaN	0.001585789
23	NaN	3.134945376	NaN	0.006647278
24	NaN	3.140006865	NaN	0.001585789
25	NaN	3.224515244	NaN	0.08292259
26	NaN	2.791117213	NaN	0.350475441
27	NaN	0	NaN	3.141592654
28	NaN	NaN	NaN	NaN
29	NaN	NaN	NaN	NaN
30	NaN	NaN	NaN	NaN

Figure 2: Single precision and double precision

According to the format above, at the beginning, the round-off error is not large. As the loop runs, t_i becomes smaller and smaller. When i=10 for single precision, and i=19 for double precision, the round-off error is large enough to be the main part of the error. And the estimation becomes less accurate. When t_i becomes so close to 0 that due to round-off error the numerator is 0 at calculation, the answer is 0. That is when i=13 for single precision and i=27 for double precision.

At first the loop doesn't calculate enought times, it may be can be called as a kind of truncation error. Later when the i becomes large enought that the answer approximate the limitation of the round-off systems. The round-off error becomes the dominant error. Each time the loop goes, the round-off error accumulate, and finally the answer becomes 0 and NOT A NUMBER.

3.2 Rewrite the equation into the following form:

$$t_{i+1} = \frac{\sqrt{1+t_i^2} - 1}{t_i} \times \frac{1+\sqrt{1+t_i^2}}{1+\sqrt{1+t_i^2}}$$

$$= \frac{t_i^2}{t_i \left(1+\sqrt{1+t_i^2}\right)}$$

$$= \frac{t_i}{1+\sqrt{1+t_i^2}}.$$
(1)

Using the new form, we get the following format:

Iteration	Single precision	Double precision	Single error	Double error
1	0.5773503	0.577350269	2.5642424	2.564242384
2	3.2153902	3.215390309	0.0737976	0.073797656
3	3.1596601	3.159659942	0.0180674	0.018067289
4	3.1460867	3.146086215	0.004494	0.004493562
5	3.142715	3.1427146	0.0011223	0.001121946
6	3.1418734	3.14187305	0.0002807	0.000280396
7	3.1416628	3.141662747	0.0000702	7.00935E-05
8	3.1416101	3.141610177	0.0000175	1.7523E-05
9	3.141597	3.141597034	0.0000044	4.38073E-06
10	3.1415942	3.141593749	0.0000015	1.09518E-06
11	3.1415935	3.141592927	0.0000008	2.73795E-07
12	3.1415935	3.141592722	0.0000008	6.84488E-08
13	3.1415935	3.141592671	0.0000008	1.71122E-08
14	3.1415935	3.141592658	0.0000008	4.27805E-09
15	3.1415935	3.141592655	0.0000008	1.06952E-09
16	3.1415935	3.141592654	0.0000008	2.67381E-10
17	3.1415935	3.141592654	0.0000008	6.6847E-11
18	3.1415935	3.141592654	0.0000008	1.6714E-11
19	3.1415935	3.141592654	0.0000008	4.181E-12
20	3.1415935	3.141592654	0.0000008	1.047E-12
21	3.1415935	3.141592654	0.0000008	2.64E-13
22	3.1415935	3.141592654	0.0000008	6.8E-14
23	3.1415935	3.141592654	0.0000008	2E-14
24	3.1415935	3.141592654	0.0000008	7E-15
25	3.1415935	3.141592654	0.0000008	4E-15
26	3.1415935	3.141592654	0.0000008	4E-15
27	3.1415935	3.141592654	0.0000008	4E-15
28	3.1415935	3.141592654	0.0000008	4E-15
29	3.1415935	3.141592654	0.0000008	4E-15
30	3.1415935	3.141592654	0.0000008	4E-15

Figure 3: Single precision and double precision

As the format shows, the figure is accurate to 6 decimal places using the single precision. The figure is accurate to 14 decimal places using the double precision. Its accuracy improves a lot.

4 Round Off vs Truncation Error

Iteration	Single precision	Double precision	Single error	Double error
1	-0.6924973	-0.692497605	0.0146095	0.014609176
2	-0.7034302	-0.703431597	0.0036766	0.003675184
3	-0.7061806	-0.706186549	0.0009262	0.000920233
4	-0.7068634	-0.706876633	0.0002434	0.000230148
5	-0.7070313	-0.707049239	0.0000755	5.75426E-05
6	-0.7067871	-0.707092395	0.0003197	1.4386E-05
7	-0.7070313	-0.707103185	0.0000755	3.59652E-06
8	-0.703125	-0.707105882	0.0039818	8.99135E-07
9	-0.6875	-0.707106556	0.0196068	2.24792E-07
10	-0.6875	-0.707106725	0.0196068	5.63394E-08

Figure 4: Absolute error as size of h grows

Comparing to the known derivative, which is $-\sin\left(\frac{\pi}{4}\right) = -\frac{\sqrt{2}}{2}$, we get the format above. For single precision, due to round off error, we get the most accurate answer at 5 and 7. For double precision, we get the most accurate answer at more than 10.

5 Well- or Ill-conditioned?

Let y = sin(x), then $\frac{dy}{dx} = cos(x)$

$$\kappa = \sup_{\delta x \neq 0} \frac{||\delta y||/||y||}{||\delta x||/||x||}$$

$$= \sup_{\delta x \neq 0} \frac{\frac{||\delta y||}{||\delta x||}}{\frac{||\delta y||}{||y|/|x|}}$$

$$= \frac{\lim_{\delta x \to 0} \frac{||\delta y||}{||y|/|x|}}{\frac{||y|/|x|}{||y|/|x|}}$$

$$= \frac{y'(x)}{||y|/|x||}.$$
(2)

When x near 0, we get

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1 \tag{3}$$

$$\kappa_{x\to 0} = \lim_{x\to 0} \frac{\cos(x)}{|\sin(x)|/|x|}$$

$$= \frac{\lim_{x\to 0} \cos(x)}{\lim_{x\to 0} \frac{|\sin(x)|}{|x|}}$$

$$= 1.$$
(4)

So $\sin(x)$ is well-conditioned when x near 0. However, when x near 2π . $y'(x) \to 1$, $\sin(x) \to 0$, so

$$\kappa_{x \to 2\pi} = \lim_{x \to 2\pi} \frac{\cos(x)}{|\sin(x)|/|x|}$$

$$= +\infty.$$
(5)

Therefore, when x near $2\pi \sin(x)$ is ill-conditioned.

6 Code

6.1 Plotting in Matlab

```
1  t = 0:0.01:3*pi;
2  x = sin(2*t);
3  y = cos(t);
4  z = t;
5  plot3(x,y,z,'blue-')
6  grid on;
7  xlabel('x');
8  ylabel('y');
9  zlabel('z');
10  title('Plot_of_domain_omega','FontSize',12)
11  func=@(x)((2*cos(2*x)).^2+(-sin(x)).^2+1).^0.5;
12  integral(func,0,3*pi)
```

6.2 Floating-Point Exceptions

The code is presented in the answer.

6.3 Algorithm to Compute π

```
Sp=zeros(30,1, 'single');
   Dp=zeros(30,1);
   Spe=zeros(30,1,'single');
   Dpe=zeros(30,1);
   ts = single(1/(sqrt(3)));
   td=1/sqrt(3);
   Sp(1)=ts;
   Spe(1) = abs(single(pi) - ts);
   Dp(1)=td;
   Dpe(1)=abs(pi-td);
10
   for i = 2:30
11
       ts = (calt(ts));
12
       Sp(i)=ts*6*(2^{(i-1)});
13
       Spe(i) = abs((pi) - ts *6*(2^(i-1)));
14
```

```
td=calt(td);
15
        Dp(i) = td *6*(2^{(i-1)});
16
        Dpe(i) = abs(pi - td *6*(2^(i-1)));
17
   end
18
   Sp
   Spe
20
   Dp
21
   Dpe
22
   x=zeros(30);
   for i = 1:30
24
        x(i)=i;
25
   end
26
   plot(x, Spe, x, Dpe)
27
    title ( \ 'Absolute \_ error \_ as \_ number \_ of \_ iteration \_ grows \ ')
28
   ylabel('Precision_error')
29
   xlabel('number_{\sqcup}of_{\sqcup}iteration')
   legend ('Single precision error', 'double precision error')
31
32
33
   function x=calt(t)
34
   x = (sqrt(1+t^2)-1)/t;
36
```

6.3.1 The improved code

```
Sp=zeros (30,1, 'single');
   Dp=zeros(30,1);
   Spe=zeros(30,1,'single');
   Dpe=zeros(30,1);
   ts = single(1/(sqrt(3)));
   td=1/sqrt(3);
   Sp(1)=ts;
   Spe(1)=abs(single(pi)-ts);
   Dp(1)=td;
   Dpe(1)=abs(pi-td);
10
    for i = 2:30
11
         ts = (calt(ts));
12
        Sp(i)=ts*6*(2^{(i-1)});
13
         Spe(i)=abs((pi)-ts*6*(2^(i-1)));
14
         td=calt(td);
15
        Dp(i) = td *6*(2^{(i-1)});
16
        Dpe(i) = abs(pi - td*6*(2^(i-1)));
17
   end
18
   \operatorname{Sp}
19
   Spe
   Dp
   Dpe
22
   x=zeros(30);
23
   for i = 1:30
24
        x(i)=i;
25
   end
26
   plot(x, Spe, x, Dpe)
27
    title(Absolute_{\square}error_{\square}as_{\square}number_{\square}of_{\square}iteration_{\square}grows')
   ylabel ('Precision ⊥ error')
   xlabel ('number of iteration')
```

```
\begin{array}{ll} _{31} & legend ( 'Single \_ precision \_ error', 'double \_ precision \_ error') \\ _{32} & function \ x=calt (t) \\ _{33} & x=t / (sqrt (t^2+1)+1); \\ _{34} & end \end{array}
```

6.4 Round off vs Truncation Error

```
Sp=zeros(30,1,'single');
   Dp=zeros(30,1);
   Spe=zeros (30,1, 'single');
   Dpe=zeros(30,1);
   ts = single(1/(sqrt(3)));
   td=1/sqrt(3);
   Sp(1)=ts;
   Spe(1) = abs(single(pi) - ts);
   Dp(1)=td;
   Dpe(1)=abs(pi-td);
10
   for i = 2:30
        ts = (calt(ts));
12
       Sp(i)=ts*6*(2^{(i-1)});
13
        Spe(i)=abs((pi)-ts*6*(2^(i-1)));
        td=calt(td);
15
       Dp(i) = td *6*(2^{(i-1)});
16
       Dpe(i) = abs(pi - td*6*(2^(i-1)));
17
   end
   Sp
19
   Spe
20
   Dp
21
   Dpe
   x=zeros(30);
23
   for i = 1:30
24
       x(i)=i;
25
   end
   plot (x, Spe, x, Dpe)
27
   title ('Absolute uerror uas unumber of iteration grows')
   ylabel('Precision_error')
   xlabel ('number of iteration')
   legend ('Single precision error', 'double precision error')
31
32
33
   function x=calt(t)
   x = (sqrt(1+t^2)-1)/t;
35
   end
36
```