Лекция по математическому анализу №2.

Чудинов Никита (группа 145)

7 сентября 2015

Определение 1 (Признак д'Аламбера). Если для ряда \sum_{1}^{∞} существует такое число q, 0 < q < 1, что, начиная с некоторого момента $\left| \frac{a_{n+1}}{a_n} \right| \leqslant q$, то данный ряд абсолютно сходится. Если же, начиная с некоторого номера $\left| \frac{a_{n+1}}{a_n} \right| > 1$, то ряд расходится.

Следствие. Пусть $\sum_{1}^{\infty} a_n$; $a_n > 0 \ \forall n$. Если $\exists \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lambda$, то:

- 1. при $\lambda < 1$ ряд сходится;
- 2. при $\lambda > 1$ ряд расходится;
- 3. при $\lambda = 1$ ряд может как сходиться, так и расходиться.

Пример.

$$\sum_{1}^{\infty} \frac{2^{n}}{n!}; \ a_{n} = 2^{n} n!; \ a_{n+1} = \frac{2^{n+1}}{(n+1)!} = \frac{2 \cdot 2^{n}}{(n+1)n!};$$
$$\lim_{n \to \infty} \frac{a_{n+1}}{a_{n}} = \frac{2}{\infty} = 0.$$

Ряд сходится.

Пример.

$$\sum_{1}^{\infty} \frac{1}{n}; \lim_{n \to \infty} \frac{a_{n+1}}{a_n} \to 1 = \lambda.$$

Ряд, по этому признаку, может как сходиться, так и расходиться.

Определение 2 (Признак Коши). Пусть для ряда $\sum_{1}^{\infty} a_n$; $a_n \geqslant 0 \ \forall n \ \exists \lim_{n \to \infty} \sqrt[n]{a_n} = \lambda$. Тогда:

- 1. при $\lambda < 1$ ряд сходится;
- 2. при $\lambda > 1$ ряд расходится;
- 3. при $\lambda = 1$ ряд может как сходиться, так и расходиться.

Пример.

$$\sum_{1}^{\infty} \left(\frac{n}{n+2}\right)^{n^2};$$

$$\lambda = \lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} \left(\frac{n}{n+2}\right)^n = \frac{1}{\lim_{n \to \infty} \left(1 + \frac{2}{n}\right)^n} = \frac{1}{e^2} < 1.$$

Теорема. Если $\exists \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lambda, \ mo \ \exists \lim_{n \to \infty} \sqrt[n]{a_n} = \lambda.$

Определение 3 (Признак Гаусса). Пусть дан ряд $\sum_{1}^{\infty} a_n$; $a_n > 0 \ \forall n$. Если можно выразить

$$\frac{a_n}{a_{n+1}} = \alpha + \frac{\beta}{n} + \dots + \frac{\gamma_n}{n^{\lambda}}; \ \lambda > 1; \ |\gamma_n| < M \ \forall n;$$

Тогда:

- 1. При $\alpha > 1$ ряд сходится;
- 2. При $\alpha < 1$ ряд расходится;
- 3. При $\alpha = 1$:
 - (a) При $\beta > 1$ ряд сходится;
 - (b) При $\beta \leqslant 1$ ряд расходится.

Пример.

$$\sum_{1}^{\infty} \frac{1}{n}; \ \frac{a_n}{a_{n+1}} = 1 + \frac{1}{n} \Rightarrow \ 3(\mathbf{6}) \ \Rightarrow \text{ряд расходится}.$$

Определение 4 (Знакочередующиеся ряды). *Знакочередующимися* называются ряды вида:

$$\sum_{1}^{\infty} (-1)^{n+1} a_n; \ a_n > 0 \ \forall n.$$

Теорема (Лейбниц). Если у знакочередующегося ряда $\sum_{1}^{\infty} (-1)^{n+1} a_n$; $a_n > 0 \ \forall n$; a_n монотонно стремится к 0 ($a_n \searrow 0$), то ряд сходится.

Следствие. Если $S = \sum_{1}^{\infty} (-1)^{n+1} a_n$; $a_n > 0 \ \forall n$, то $S_{2n} \leqslant S \leqslant S_{2n+1} \ \forall n$.

Определение 5 (Признак Дирихле). Рассмотрим ряд вида $\sum_{1}^{\infty} a_n b_n$. Если:

- 1. $\left|\sum_{k=1}^{n} b_{k}\right| \leqslant M \; \forall k, n$ частная сумма ограничена;
- 2. a_n монотонно стремится к 0;

то ряд сходится.

Следствие (Признак Абеля). Рассмотрим ряд вида $\sum_{1}^{\infty} a_n b_n$. Если:

- 1. $\sum_{1}^{\infty} b_n$ сходится;
- 2. a_n монотонная ограниченная последовательность; то ряд сходится.