Justin Li Dr. Krehbiel CSCI 161 10/29/20

HW₆

1) a)
$$w = "(())(()())"$$

 $P[1, 4, 5] = true \rightarrow ')', V5$
 $P[1, 5, 3] = false \rightarrow '(', V4)$
 $P[5, 2, 1] = false \rightarrow "())((", {})$
 $P[9, 2, 3] = false \rightarrow "())(()())", {}$

b) Leftmost derivation: V1
$$\rightarrow$$
 V4V3 \rightarrow (V3 \rightarrow (V2V5 \rightarrow (V2V2V5 \rightarrow (V4V5V2V5 \rightarrow (()V5V2V5 \rightarrow (()V2V5 \rightarrow (()V4V5V5 \rightarrow (()(V5V5 \rightarrow (()())V5V5 \rightarrow (()())

Parse Tree:

2) a)
$$S \rightarrow A+A=A$$

 $A \rightarrow AA \mid 1$

b)

3) a) $S \rightarrow SS \mid T \mid abc \mid \epsilon$ $T \rightarrow aTa \mid bTb \mid cTc \mid U$ $U \rightarrow a \mid b \mid c \mid \epsilon$

b)

- 4) a) L(P) accepts strings that are in L = { $a^nb^kc^{2(n-k)} | n >= k, k >= 0$ } For example, P may accept a string with the same number of a's and b's with no c's, or P may accept a string with double the amount of c's as a's with no b's.
 - b) Suppose A is context-free with pumping length p.

Then, by the context-free pumping lemma every s in A of length >= p has a pumpable decomposition.

Let $s = a^{2p}b^pc^{2p}$

Consider any decomposition s = uvxyz with $|vxy| \le p$, |vy| > 0

The key observation is that if you pump only a's b's or c's, then the ratio of the string will no longer be accepted in the language.

Case 1: v or y includes only a's. Then $uvvxyyz = a^{2(p+k)}b^pc^{2p}$ for some k > 0 is not in A, as there are too many a's compared to b's and c's.

Case 2: v or y includes only b's. Then $uvvxyyz = a^{2p}b^{p+k}c^{2p}$ for some k > 0 is not in A, as there are too many b's compared to a's and c's.

Case 3: v or y includes only c's. Then $uvvxyyz = a^{2p}b^pc^{2(p+k)}$ for some k > 0 is not in A, as there are too many c's compared to a's and b's.

This contradicts the pumping lemma, so A is context-sensitive.