Mechanik

1 Grössen und Einheiten

1.1 Weg

Eine sehr wichtige Grösse in der gesamten Physik ist der Weg. Um die Länge eines Weges zu bestimmen muss man ihn messen. Messen bedeutet vergleichen mit einer Einheit. Das Formelzeichen für den Weg ist s. Die Grundeinheit (SI-Einheit, von französisch Système international d'unités) des Weges ist der Meter. Abgekürzt wird die Einheit mit m. Die Einheit einer physikalischen Grösse schreibt man in eckigen Klammern, also [s] = m.

AUFGABE 1: Bestimmen Sie die Länge der Wege s_1 , s_2 und s_3 .

Lösung $s_1=3,43\,\mathrm{cm},\,s_2=6,28\,\mathrm{cm},\,s_3\approx 10\,\mathrm{cm}$

Aufgabe 2: Die ursprüngliche Definition des Meters definiert ihn als das $4\cdot 10^{-7}$ -fache des Erdumfangs am Äquator.

- a) Welchen Umfang hat die Erde am Äquator (nach dieser Definition)?
- b) Wäre die Erde eine ideale Kugel, wie gross wäre ihr Radius?
- c) Welches Volumen hätte die Erde?

AUFGABE 3: Ein Bildschirm hat eine Diagonale von 15,6". Wie vielen Zentimetern entspricht das? Lösung 39,624 cm

AUFGABE 4: Ein Drucker hat eine Auflösung von 300dpi (dots per inch). Wie viele Punkte druckt er pro Quadratzentimeter?

Lösung Etwa 13900 Punkte.

AUFGABE 5: Ursprünglich wurde das Meter als der 40000000ste Teil des Erdumfangs definiert. Um wie viele Millimeter länger oder kürzer ist das heutige Meter im Vergleich? Tipp: Der Erdumfang ist nach heutiger Messung 40075 km lang.

1.2 Zeit

Um die Zeit t zu messen, orientiert sich die Menschheit schon seit Jahrtausenden an den Gestirnen. Winter- und Sommersonnenwenden wurden schon in der Steinzeit gefeiert. Das Messgerät zur Zeitmessung ist die Uhr. Die SI-Einheit der Zeit ist die Sekunde (s). Traditionell ist die Sekunde der 86 400-ste Teil $(24 \cdot 60 \cdot 60)$ eines Tages. Seit 1967 wird die Sekunde über eine atomare Anregung definiert. Daher auch der Name Atomuhr.

AUFGABE 6: Wie viele Sekunden hat eine Woche? Lösung 604800

AUFGABE 7: Das Universum ist etwa $4.3 \cdot 10^{17}$ s alt. Wie viele Jahre sind das? Lösung 13,6 Milliarden Jahre

1.3 Masse

Eine weitere häufig gebrauchte Grösse ist die Masse m. Ihre SI-Einheit ist das Kilogramm (kg). Anders als bei den anderen Einheiten, hat das Kilogramm noch keine moderne, ausschliesslich auf Naturkonstanten basierende Definition. Das Urkilogramm besteht aus einer Platin-Iridium-Legierung und wird in Paris verwahrt.

AUFGABE 8: Ein Auto hat ein Gewicht von 1,6 T. Wie viele Gramm sind das? Lösung 1600000g

AUFGABE 9: Eine Tintenpatrone mit 10g Tinte kostet 30Fr. Wie viel kostet es einen Buchstaben zu drucken, wenn dafür 3 μ g Tinte verbraucht werden. Lösung 9·10⁻⁶Fr

AUFGABE 10: Eine Idee das Kilogramm neu zu definieren, besteht im Abzählen von Atomen. Jedes Atom hat eine bestimmte Masse. Gesucht ist nun die richtige Anzahl eines bestimmten Atomtyps. Wie viele Atome $^{28}_{14}$ Si (Silizium, mit atomarer Masse 28) benötigt man, für ein Kilogramm? Lösung 2,1500-10²⁵

2 Kinematik

AUFGABE 11: Was verstehen Sie unter Geschwindigkeit? Stellen Sie eine Definition für die Geschwindigkeit auf.

AUFGABE 12: Welche Geschwindigkeit haben Sie auf Ihrem morgendlichen Schulweg? Überlegen Sie für jeden Teilweg (Fussweg, Bus/Bahn, ...).

- Wie weit ist der Weg?
- Wie lange brauchen ich für den Weg?

Berechnen Sie daraus die Durchschnittsgeschwindigkeiten der Teilwege. Wie gross ist die höchste Geschwindigkeit auf Ihrem Weg?

Stellen Sie Ihren Schulweg in einem Koordinatensystem graphisch dar. Tragen Sie auf er x-Achse die Zeit auf und auf der y-Achse den Weg auf.

AUFGABE 13: Ein Velofahrer braucht für eine 18 km lange Strecke 45 min. Wie hoch ist seine Durchschnittsgeschwindigkeit?

Lösung 24 km/h

AUFGABE 14: Ein Floss treibt mit konstanter Geschwindigkeit auf einem Fluss. Die Fliessgeschwindigkeit des Flusses ist 1 m/s. Wie weit ist das Floss nach einer Stunde gekommen?

Lösung 3600 m

AUFGABE 15: Wie lange braucht das Licht für die Entfernung von

- a) der Sonne zur Erde (der mittlere Abstand ist $1.5 \cdot 10^{11}$ m),
- b) der Erde zum Mond (mittlerer Abstand 3,84 · 10⁸ m)?

Lösung a) 500 s, b) 1,28 s

AUFGABE 16: Wie weit ist ein Lichtjahr (ein Lichtjahr ist die Strecke die das Licht in einem Jahr im Vakuum zurücklegt)?

Lösung 9,4608 · 10¹⁵ m

AUFGABE 17: Geben Sie für die vier folgenden Weg-Zeit-Diagramme an, ob die Geschwindigkeit v_1 zum Zeitpunkt t_1 grösser, kleiner oder gleich der Geschwindigkeit v_2 zum Zeitpunkt t_2 ist.

AUFGABE 18: Lassen Sie einen Gegenstand (Stein, Metallmutter oder etwas anderes kleines schweres) aus verschiedenen Höhen fallen und messen Sie die Zeit, die es zum Herunterfallen benötigt (Fallzeit).

Erstellen Sie eine Tabelle, in die Sie die Messwerte eintragen. Messen Sie für fünf verschiedene Höhen und wiederholen Sie die Messungen einige Male (Sie bekommen dadurch Übung und die Messwerte werden genauer). Berechnen Sie für jede Fallhöhe den Mittelwert der Fallzeit und tragen Sie diese in ein Weg-Zeit-Diagramm (x-Achse Zeit, y-Achse Weg) ein.

Können Sie einen Zusammenhang zwischen Fallhöhe und Fallzeit feststellen? Was müsste man in diesem Experiment verbessern?

AUFGABE 19: Schauen Sie sich das Video an und übernehmen Sie die Messwerte in eine Tabelle. Zwischen jedem Bild vergeht 0,1 Sekunden. Zeichnen Sie die Messwerte in ein Weg-Zeit-Diagramm ein.

Kennen Sie die Form dieser Kurve? Wie gross ist die Konstante?

AUFGABE 20: Ein Zug beschleunigt auf einer Hochgeschwindigkeitsstrecke aus dem Stand mit einer Beschleunigung von 2 m/s^2 .

- a) Welche Geschwindigkeit hat er nach 1 min erreicht?
- b) Welche Strecke hat er bis dahin zurückgelegt?

Lösung a) 120 m/s, b) 3600 m

AUFGABE 21: Ein Auto beschleunigt gradlinig gleichförmig in 5s von 0km/h auf 100km/h. Wie gross ist die Beschleunigung?

Lösung 5,56 m/s²

AUFGABE 22: Ein Auto fährt geradlinig gleichförmig mit einer Geschwindigkeit von 120km/h auf der Autobahn.

- a) Wie weit kommt es in drei Sekunden?
- b) Vor einem Tunnel bremst der Fahrer das Auto in zwei Sekunden auf 100 km/h ab. Wie gross ist die Beschleunigung?
- c) Der Tunnel ist 140 m lang. Wie lange braucht das Auto durch den Tunnel?
- d) Zeichnen Sie ein *v-t*-Diagramm und ein *a-t*-Diagramm der Aufgabe.

Lösung a) 100 m, b) $-2.8 \,\mathrm{m/s^2}$, c) $5 \,\mathrm{s}$

AUFGABE 23: Sie sehen ein Experiment mit einem Wasserstrahl.

- a) Schreiben Sie sich Fragen auf, die Ihnen zu diesem Experiment einfallen.
- b) Diskutieren Sie Ihre Fragen mit Ihrem Nachbarn und versuchen Sie Antworten auf Ihre Fragen zu finden.

Tipp: Es ist immer gut eine Skizze des Experiments anzufertigen.

AUFGABE 24: Ein Tropfen Wasser fällt aus einer Höhe von 50 Zentimeter zu Boden. Wie lange braucht der Wassertropfen um die Erde zu erreichen? Lösung 0,32s

AUFGABE 25: Nehmen Sie an, Sie leben in einer Welt ohne Schwerkraft. Was müssten Sie bei einer Wasserschlacht mit Wasserpistolen beachten?

AUFGABE 26: Nehmen Sie an, ein Tropfen eines Wasserstrahls kommt mit einer Geschwindigkeit von 2 m/s parallel zum Boden aus einem Schlauch.

Welche Strecke s_x legt der Tropfen in horizontaler Richtung zurück? Welche Strecke s_y legt der Tropfen in Richtung des Bodens zurück?

a) Füllen Sie die Tabelle:

Δt (s)	s_x (m)	s_y (m)
0,1		
0,2		
0,3		
0,1 0,2 0,3 0,4		
0,5		

b) Zeichen Sie den Wasserstrahl mit Hilfe der berechneten Werte.

AUFGABE 27: In Aufgabe 23 haben Sie einen Experiment mit einem Wasserstrahl gesehen. Beantworten Sie zu diesem Experiment folgende Fragen:

- a) Wie lange fällt ein Wassertropfen des Wasserstrahls bis dieser den Boden erreicht.
- b) Wie hoch ist die Geschwindigkeit des Wasserstrahls beim Austritt aus der Flasche.

AUFGABE 28: Ein Ball wird mit einer Geschwindigkeit von 30 m/s nach oben geworfen, und fällt durch die Fallbeschleunigung wieder zu Boden.

- a) Zeichnen Sie den Wurf in ein Beschleunigungs-Zeit-, ein Geschwindigkeits-Zeitund ein Weg-Zeit-Diagramm.
- b) Wie lange braucht der Ball bis zum höchsten Punkt?
- c) Wie hoch steigt der Ball insgesamt?
- d) Der Ball soll 50 m hoch kommen. Mit welcher Geschwindigkeit v_0 muss er hochgeworfen werden?

Lösung b) 3 s, c) 45 m, d) 31,6 m/s

AUFGABE 29: Ein Kaugummi wird horizontal aus dem Fenster ($h=3\,\mathrm{m}$) eines fahrenden Zuges ($v_{Zug}=120\,\mathrm{km/h}$) gespuckt. Die Spuckgeschwindigkeit ist $3\,\mathrm{m/s}$. Wo fällt das Kaugummi zu Boden?

Musterlösungen

LÖSUNG 1: Der Weg s_1 sollte 3,43 cm lang sein.

Der Weg s_2 beschreibt einen Kreis mit einem Radius von 1 cm. Sollte also 6,28 cm lang sein. Der Weg s_3 beschreibt dreiviertel eine Ellipse mit einem Radius von 1 cm und einem Radius von 3 cm. Dieser Weg sollte etwa 10 cm lang sein.

LÖSUNG 2:

a) Der Umfang am Äquator wäre $4\cdot 10^7$ m. Das sind $4\cdot 10^4$ km, also $40\,000$ km.

b)

$$U = 2 \cdot \pi \cdot r \rightarrow r = \frac{U}{2 \cdot \pi} = \frac{40000 \text{ km}}{2 \cdot \pi} = 6366,2 \text{ km}$$

c)

$$V = \frac{4}{3} \cdot \pi \cdot r^3 = 1,08 \cdot 10^{12} \,\text{km}^3 = 1,08 \cdot 10^{21} \,\text{m}^3$$

LÖSUNG 3: Ein Zoll sind 2,54 cm. Damit sind 15,6" gleich 39,624 cm.

LÖSUNG 4: Ein Inch sind 2,54 cm (so wie ein Zoll). Dann kommen 118 Punkte auf einen Zentimeter. Das bedeutet 13924 Punkte auf einen Quadratzentimeter.

LÖSUNG 6:

$$60 \cdot 60 \cdot 24 \cdot 7 = 604800$$

LÖSUNG 7: Ein Jahr hat etwa 365,25 Tage. Das sind 31557600 Sekunden. Damit ist das Universum etwa $1,36 \cdot 10^{10}$ Jahre alt. Das sind 13,6 Milliarden Jahre.

LÖSUNG 8:

$$m = 1.6 \,\mathrm{T} = 1600 \,\mathrm{kg} = 1600 \,000 \,\mathrm{g}$$

LÖSUNG 9:

$$\frac{3\,\mu\text{g}}{10\,\text{g}} \cdot 30\,\text{Fr} = \frac{3 \cdot 10^{-9}\,\text{kg}}{10 \cdot 10^{-3}\,\text{kg}} \cdot 30\,\text{Fr} = 9 \cdot 10^{-6}\,\text{Fr}$$

LÖSUNG 10: 1 Mol dieses Silizium Isotops wiegt 28 g. Also benötigt man $\frac{1000\,\mathrm{g}}{28\,\mathrm{g/mol}} = 35,714$ mol dieses Isotops. Das sind $35,714\,\mathrm{mol}\cdot6,02\cdot10^{23}\,\mathrm{mol}^{-1} = 2,1500\cdot10^{25}\,\mathrm{Atome}.$

LÖSUNG 13:

$$\bar{v} = \frac{\Delta s}{\Delta t} = \frac{18 \,\mathrm{km}}{0.75 \,\mathrm{h}} = 24 \,\mathrm{km/h}$$

LÖSUNG 14:

$$\Delta s = \bar{v} \cdot \Delta t = 1 \,\mathrm{m/s} \cdot 3600 \,\mathrm{s} = 3600 \,\mathrm{m}$$

LÖSUNG 15:

a)

$$\Delta t = \frac{1.5 \cdot 10^{11} \,\mathrm{m}}{3 \cdot 10^8 \,\mathrm{m/s}} = 500 \,\mathrm{s}$$

b)

$$\Delta t = \frac{3,84 \cdot 10^8 \,\mathrm{m}}{3 \cdot 10^8 \,\mathrm{m/s}} = 1,28 \,\mathrm{s}$$

LÖSUNG 16:

$$\Delta t = 1 \text{ a} = 60 \cdot 60 \cdot 24 \cdot 365 = 31536000 \text{ s}$$

 $\Delta s = v \cdot \Delta t = 3 \cdot 10^8 \text{ m/s} \cdot 31536000 \text{ s} = 9,4608 \cdot 10^{15} \text{ m}$

LÖSUNG 17:

a) $v_1 > v_2$ $|v_1| > |v_2|$

b) $v_1 = v_2$ $|v_1| = |v_2|$

c) $v_1 < v_2$ $|v_1| > |v_2|$

d) $v_1 > v_2$ $|v_1| < |v_2|$

LÖSUNG 20:

a)

$$v = v_0 + a \cdot \Delta t = 2 \,\mathrm{m/s}^2 \cdot 60 \,\mathrm{s} = 120 \,\mathrm{m/s}$$

b)

$$\Delta s = v_0 \cdot \Delta t + \frac{1}{2} \cdot a \cdot (\Delta t)^2 = 0.5 \cdot 2 \,\text{m/s}^2 \cdot (60 \,\text{s})^2 = 3600 \,\text{m}$$

LÖSUNG 21:

$$\Delta v = v_1 - v_0 = 100 \text{ km/h} = 27.8 \text{ m/s}$$

$$a = \frac{\Delta v}{\Delta t} = \frac{27.8 \text{ m/s}}{5 \text{ s}} = 5.56 \text{ m/s}^2$$

LÖSUNG 22:

a) Das Auto kommt 100 m weit.

$$v = \frac{\Delta s}{\Delta t} \rightarrow \Delta s = v \cdot \Delta s = 33.3 \,\text{m/s} \cdot 3 \,\text{s} = 100 \,\text{m}$$

b) Die Beschleunigung ist $-2.8 \,\mathrm{m/s^2}$.

$$a = \frac{\Delta v}{\Delta t} = \frac{-5.5 \,\text{m/s}}{2 \,\text{s}} = -2.8 \,\text{m/s}$$

c) Das Auto braucht 5 Sekunden durch den Tunnel.

$$v = \frac{\Delta s}{\Delta t} \rightarrow \Delta t = \frac{\Delta s}{v} = \frac{140 \text{ m}}{27.8 \text{ m/s}} = 5 \text{ s}$$

LÖSUNG 28:

b) Am höchsten Punkt ist die Geschwindigkeit v=0. Wir können also schreiben $0=v_0+a\cdot t \to t=-\frac{v_0}{a}=\frac{30\,\mathrm{m/s}}{10m/s^2}=3\,\mathrm{s}.$

c) Dies kann auf drei unterschiedlichen Wegen bestimmt werden.

- Man bestimmt die Fläche im *v-t-*Diagramm.

$$-\bar{v} = \frac{1}{2} \cdot (v_0 + v_1) \rightarrow s = \bar{v} \cdot t = 15 \,\text{m/s} \cdot 3 \,\text{s} = 45 \,\text{m}$$

- Oder
$$s = v_0 \cdot t + \frac{1}{2} \cdot a \cdot t^2 = 30 \,\text{m/s} \cdot 3 \,\text{s} + 0.5 \cdot (-10 \,\text{m/s}^2) \cdot (3 \,\text{s})^2 = 90 \,\text{m} - 45 \,\text{m} = 45 \,\text{m}$$

d)

$$v^{2} = v_{0}^{2} + 2 \cdot a \cdot \Delta s \rightarrow v_{0} = \sqrt{v^{2} - 2 \cdot a \cdot \Delta s} = \sqrt{0 \,\text{m/s} - 2 \cdot (-10 \,\text{m/s}^{2}) \cdot 50 \,\text{m}} = \sqrt{1000 \,\text{m}^{2}/\text{s}^{2}} = 31,6 \,\text{m/s}$$

LÖSUNG 29: Zuerst berechnen wir das Fallen des Kaugummi im Schwerefeld der Erde. Es gilt: $s = v_{0z} \cdot t + \frac{1}{2} \cdot a \cdot t^2$. Horizontal meint $v_0z = 0$. $\rightarrow t = \sqrt{\frac{2 \cdot s}{a}} = \sqrt{\frac{2 \cdot 3 \, \text{m}}{10 \, \text{m/s}^2}} = 0,77 \, \text{s}$ Das Kaugummi hat die gleiche Geschwindigkeit wie der Zug $v_x = 120 \, \text{km/h} = 33,3 \, \text{m/s}$. $\rightarrow s_x = v_x \cdot t = 33,3 \, \text{m/s} \cdot 0,77 \, \text{s} = 25,7 \, \text{m}$. $s_y = v_y \cdot t = 3 \, \text{m/s} \cdot 0,77 \, \text{s} = 2,3 \, \text{m}$