2019年全国硕士研究生入学统一考试 (数学 III)

一、选择题 (1-8小题,每小题 4分,共 32分)				
1. 当 $x \to 0$ 时, 若 $x - \tan x$ 与 x^k 是同阶无穷小, 则 $k = ($).				
	(A) 1	(B) 2	(C) 3	(D) 4
2	已知方程 $x^5 - 5x + k = 0$ 有三个不同的实根,则 k 的取值范围是 ().			
			(C)(-4,0)	
3.	3. 已知微分方程 $y'' + ay' + by = ce^x$ 的通解为 $y = (C_1 + C_2 x)e^{-x} + e^x$			
•	次为().			
	(A) 1,0,1	(B) 1, 0, 2	(C) 2, 1, 3	(D) 2, 1, 4
	$v_{n} = v_{n} + v_{n$			
4.	若级数 $\sum_{n=1}^{\infty} n u_n$ 绝对收敛, $\sum_{n=1}^{\infty} \frac{v_n}{n}$ 条件收敛, 则().			
	(A) $\sum_{n=1}^{\infty} u_n v_n$ 条件收敛 (C) $\sum_{n=1}^{\infty} u_n v_n$ 收敛		(B) $\sum_{n=1}^{\infty} u_n v_n$ 绝对收敛	
			(D) $\sum_{n=1}^{\infty} u_n v_n$ 发散	
5 .	设 A 是四阶矩阵, A^* 为其伴随矩阵, 若线性方程组 $Ax = 0$ 的基础解系中只有两			
	个向量,则 $r(A^*) = ($).			
	(A) 0	(B) 1	(C) 2	(D) 3
6.	. 设 A 是三阶实对称矩阵, E 是三阶单位矩阵,若 $A^2+A=2E$,且 $ A =4$,则 次型 x^TAx 的规范形是 ().			
	(A) $y_1^2 + y_2^2 + y_3^2$	(B) $y_1^2 + y_2^2 - y_3^2$	(C) $y_1^2 - y_2^2 - y_3^2$	(D) $-y_1^2 - y_2^2 - y_3^2$
7.	设 A, B 为随机事件,则 $P(A) = P(B)$ 的充分必要条件是 ().			
•	(A) $P(A \cup B) = P(A) + P(B)$ (C) $P(A\overline{B}) = P(B\overline{A})$		(B) $P(AB) = P(A)P(B)$	
			(D) $P(AB) = P(\overline{AB})$	
Ω	设随机亦是 $V = V$ 相互独立 日均限从正太公左 $N(u, \sigma^2)$ 则 $D(V = V > 1)$ ()			
U.	设随机变量 X 与 Y 相互独立, 且均服从正态分布 $N(\mu, \sigma^2)$.则 $P\{ X - Y < 1\}$ ()			
	(A) 与 <i>μ</i> 无关, 而与	σ^2 有关	(B) 与 μ 有关, 而与	σ^2 无关
	(C) 与 μ , σ^2 都有关		(D) 与 μ , σ^2 都无关	1

二、填空题(本题共6小题,每小题4分,满分24分,把答案填在题中横线上)

1.
$$\lim_{n \to \infty} \left(\frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \dots + \frac{1}{n \times (n+1)} \right)^n = \underline{\hspace{1cm}}$$

- **2.** 曲线 $y = x \sin x + 2 \cos x$ ($-\frac{\pi}{2} < x < \frac{3\pi}{2}$) 的拐点坐标是______.
- **3.** 已知函数 $f(x) = \int_1^x \sqrt{1+t^4} dt$, 则 $\int_0^1 x^2 f(x) dx = \underline{\hspace{1cm}}$.
- **4.** 以 P_A , P_B 分别表示 A, B 两个商品的价格. 设商品 A 的需求函数 $Q_A = 500 P_A^2 P_A P_B + 2P_B^2$, 则当 $P_A = 10$, $P_B = 20$ 时, 商品 A 的需求量对自身价格弹性 $\eta_{AA}(\eta_{AA} > 0) = ______.$
- **5.** 已知矩阵 $A = \begin{pmatrix} 1 & 0 & -1 \\ 1 & 1 & -1 \\ 0 & 1 & a^2 1 \end{pmatrix}$, $b = \begin{pmatrix} 0 \\ 1 \\ a \end{pmatrix}$. 若线性方程组 Ax = b 有无穷多解, 则 a =_______.
- **6.** 设随机变量 X 的概率密度为 $f(x) = \begin{cases} \frac{x}{2}, & 0 < x < 2 \\ 0, & \text{其他} \end{cases}$, F(x) 为其分布函数, E(X) 其数学期望,则 $P\{F(X) > E(X) 1\} =$ ______.
- 三、解答题(1-5 题每题 10 分, 6-9 题每题 11 分, 共 94 分)
- **1.** 已知函数 $f(x) = \begin{cases} x^{2x}, & x > 0 \\ xe^x + 1, & x \le 0 \end{cases}$, 求 f'(x), 并求函数 f(x) 的极值.
- **2.** 设函数 f(u,v) 具有二阶连续的偏导数, 函数 z = xy f(x+y,x-y), 求 $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2}$. 于是

$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2} = 1 - 3f_{11}^{"} - f_{22}^{"}.$$

- **3.** 设函数 y(x) 是微分方程 $y'-xy = \frac{1}{2\sqrt{x}}e^{\frac{x^2}{2}}$ 满足条件 $y(1) = \sqrt{e}$ 的特解.
 - (1) 求 *ν*(*x*) 的表达式;
 - (2) 设平面区域 $D = \{(x, y) | 1 \le x \le 2, 0 \le y \le y(x) \}$, 求 D 绕 x 轴旋转一周所形成的旋转体的体积.
- **4.** 求曲线 $y = e^{-x} \sin x (x \ge 0)$ 与 x 轴之间形成图形的面积.

(1) 证明: 数列
$$\{a_n\}$$
 单调减少, 且 $a_n = \frac{n-1}{n+2} a_{n-2} (n=2,3,\cdots)$; (2) 求极限 $\lim_{n\to\infty} \frac{a_n}{a_{n-1}}$.

6. 已知向量组 I:
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 4 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 1 \\ 0 \\ 4 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 1 \\ 2 \\ a^2 + 3 \end{pmatrix}$; 向量组 II: $\beta_1 = \begin{pmatrix} 1 \\ 1 \\ a + 3 \end{pmatrix}$, $\beta_2 = \begin{pmatrix} 1 \\ 1 \\ a + 3 \end{pmatrix}$, $\beta_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ a + 3 \end{pmatrix}$, $\beta_4 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ a + 3 \end{pmatrix}$, $\beta_5 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ a + 3 \end{pmatrix}$, $\beta_6 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ a + 3 \end{pmatrix}$, $\beta_9 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ a + 3 \end{pmatrix}$, $\beta_9 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ a + 3 \end{pmatrix}$, $\beta_9 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ a + 3 \end{pmatrix}$, $\beta_9 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$, $\beta_9 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$, $\beta_9 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$, $\beta_9 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$, $\beta_9 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$, $\beta_9 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$, $\beta_9 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$, $\beta_9 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$, $\beta_9 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$, $\beta_9 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$, $\beta_9 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$, $\beta_9 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$, $\beta_9 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$, $\beta_9 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$, $\beta_9 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$, $\beta_9 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$, $\beta_9 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$, $\beta_9 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$, $\beta_9 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$, $\beta_9 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$, $\beta_9 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$, $\beta_9 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $\beta_9 =$

$$\begin{pmatrix} 0 \\ 2 \\ 1-a \end{pmatrix}$$
, $\beta_3 = \begin{pmatrix} 1 \\ 3 \\ a^2+3 \end{pmatrix}$. 若向量组 I 和向量组 II 等价, 求常数 a 的值, 并将 β_3 用

 α_1 , α_2 , α_3 线性表示.

7. 已知矩阵
$$A = \begin{pmatrix} -2 & 2 & 1 \\ 2 & x & -2 \\ 0 & 0 & -2 \end{pmatrix}$$
 与 $B = \begin{pmatrix} 2 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & y \end{pmatrix}$ 相似.

(1) 求 x, y 之值; (2) 求可逆矩阵 P, 使得 $P^{-1}AP = B$.

8. 已知矩阵
$$A = \begin{pmatrix} -2 & 2 & 1 \\ 2 & x & -2 \\ 0 & 0 & -2 \end{pmatrix}$$
与 $B = \begin{pmatrix} 2 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & y \end{pmatrix}$ 相似.

(1) 求 x, y 之值; (2) 求可逆矩阵 P, 使得 $P^{-1}AP = B$.

- **9.** 设随机变量 X, Y 相互独立, X 服从参数为 1 的指数分布, Y 的概率分布为: $P\{Y = -1\} = p$, $P\{Y = 1\} = 1 p$, (0 . 令 <math>Z = XY.
 - (1) 求 Z 的概率密度; (2) p 为何值时, X, Z 不相关; (3) 此时, X, Z 是否相互独立.

10. 设总体
$$X$$
 的概率密度为 $f(x) = \begin{cases} \frac{A}{\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, & x \ge \mu \\ 0, & x < \mu \end{cases}$, 其中 μ 是已知参数, σ 是

未知参数,A是常数, X_1, X_2, \cdots, X_n 是来自总体 X 的简单随机样本.

- (1) 求常数 A 的值;
- (2) 求 σ^2 的最大似然估计量.