DevOps 2TIN Chapter 9

Monitoring & Reporting

Monitoring & Reporting

Monitoring
Metrics
Logs
Monitoring History
Monitoring Tools
Low Risk Releases

Wat is monitoren?

Wat is monitoren?

Metrics

Metrics? -> Meet punten

Dingen zoals:

- Temperatuur van HDDs
- CPU percentage
- Netwerksnelheden
- IO van een HDD

Maar ook:

- Programma logging
- Netwerk logging
- ...

Log files

- /var/log/syslog

Dec 4 08:53:45 ip-172-31-42-222 agent[59527]: 2020-12-04 09:53:45 CET | CORE | WARN | (pkg/coll ector/python/datadog_agent.go:120 in LogMessage) | disk:e5dffb8bef24336f | (disk.py:93) | Unable to get disk metrics for /run/docker/netns/c69b319490b4: [Errno 13] Permission denied: '/run/docker/netns/c69b319490b4'. You can exclude this mountpoint in the settings if it is invalid. Dec 4 08:53:45 ip-172-31-42-222 agent[59527]: 2020-12-04 09:53:45 CET | CORE | WARN | (pkg/coll ector/python/datadog_agent.go:120 in LogMessage) | disk:e5dffb8bef24336f | (disk.py:93) | Unable to get disk metrics for /var/lib/docker/overlay2/bdd2e865c3b8ea3d668fd56cd2468b589eddb92ec2d3cccf8994f3d3a0bc4dc4/merged: [Yvar/lib/docker/overlay2/bdd2e865c3b8ea3d668fd56cd2468b589eddb92ec2d3cccf8994f3d3a0bc4dc4/merged'. You can exclude this mountpoint in ithe settings if it is invalid.

Dec 4 08:53:45 ip-172-31-42-222 agent[59527]: 2020-12-04 09:53:45 CET | CORE | WARN | (pkg/coll ector/python/datadog_agent.go:120 in LogMessage) | disk:e5dffb8bef24336f | (disk.py:93) | Unable to get disk metrics for /run/docker/netns/7c998a975dda: [Errno 13] Permission denied: '/run/docker/netns/7c998a975dda'. You can exclude this mountpoint in the settings if it is invalid.

ubuntu@ip-172-31-42-222:/var/log\$ `

/var/log/kern

name="snap-update-ns.lxd" pid=53437 comm="apparmor parser" Dec 2 07:54:29 ip-172-31-42-222 kernel: [47617.716403] audit: type=1400 audit(1606895669.218:108): app rmor="STATUS" operation="profile replace" info="same as current profile, skipping" profile="unconfined" name="snap.lxd.activate" pid=53438 comm="apparmor_parser" Dec 2 07:54:29 ip-172-31-42-222 kernel: [47617.720163] audit: type=1400 audit(1606895669.222:109): appa rmor="STATUS" operation="profile_replace" info="same as current profile, skipping" profile="unconfined" name="snap.lxd.benchmark" pid=53439 comm="apparmor parser" Dec 2 07:54:29 ip-172-31-42-222 kernel: [47617.723771] audit: type=1400 audit(1606895669.226:110): appa rmor="STATUS" operation="profile replace" info="same as current profile, skipping" profile="unconfined" name="snap.lxd.buginfo" pid=53440 comm="apparmor_parser" Dec 2 07:54:29 ip-172-31-42-222 kernel: [47617.727273] audit: tvpe=1400 audit(1606895669.230:111): appa rmor="STATUS" operation="profile replace" info="same as current profile, skipping" profile="unconfined" name="snap.lxd.check-kernel" pid=53441 comm="apparmor parser" Dec 2 07:54:29 ip-172-31-42-222 kernel: [47617.736972] audit: type=1400 audit(1606895669.238:112): appa rmor="STATUS" operation="profile replace" info="same as current profile, skipping" profile="unconfined" ame="snap.lxd.daemon" pid=53442 comm="apparmor parser'

Logfile

Software type

In computing, a log file is a file that records either events that occur in an operating system or other software runs, or messages between different users of a communication software. Logging is the act of keeping a log. In the simplest case, messages are written to a single log file. Wikipedia

Local logs

Hoe bekijken?

December 4, 2020 ▼

Windows:

*nix:

Event viewer

Severity Everything ▼

Service kernel ▼

Cockpit

default.elx - Event Log Explorer

Webmin

Local logs

U Networking

System Information

System hostname

Operating system

Webmin vertion

Theme version

Time on system Kernel and CPU

Processor information System uptime

Running processes

CPU load averages

Package updates

Recent Webmin logins

Real memory Virtual memory Local disk space

72%

Log aggregatie

Hoe bekijken?

- ELK Stack
 - Graylog
 - Nagios Log server
 - Splunk

Monitoring History

Van hardware monitoring tot Al-Ops.

Waar het begon ->
Simple Network Monitoring Protocol
Est. 1988

Elk apparaat/software kon MiBs hebben:

Management information Base file:

Definieert metrics

Monitoring History

Van hardware monitoring tot Al-Ops.

Waar het begon -> Simple Network Monitoring Protocol Est. 1988

Elk apparaat/software kon MiBs hebben:

Management information Base file:

Definieert metrics

Eerste tools aggregeerde enkel (SNMP) data en toonde die

Voorbeelden:

- Munin
- PRTG (in het begin)

Monitoring Tools

Volgende generatie ging ook iets met de monitoring data doen:

Maar nog steeds heel erg focussed op hardware en "klassieke" servers

Alerting Tools

Voorbeelden:

- PRTG (nu)
- Nagios
- Check_mk

Om beter en diepgaander te kunnen monitoren:
Introductie **Agent software**

Volgende generatie ging meer op "internet" tools focussen en dus external

monitoring doen

Voorbeelden:

- Pingdom
- Freshping
- Uptimerobot

Overlap met testtools Zoals Webpagetest.org

APM is born! Est +-2012

Mix van voorgaande met Business Logic en predictive /proactive monitoring

-Zabbix/Datadog/New Relic ...

Application performance management

In the fields of information technology and systems management, application performance management is the monitoring and management of performance and availability of software applications. APM strives to detect and diagnose complex application performance problems to maintain an expected level of service. Wikipedia

Source:

https://en.wikipedia.org/wiki/Application_performance_management

Al ops Est +-2016

Mix van voorgaande met Business Logic en predictive /proactive monitoring

BigPanda/Dynatrace/Anodot ...

Source:

https://en.wikipedia.org/wiki/Artificial_Intelligence_for_IT_Operations

Doel van logging:

Generating real-time feedback!

Monitoring in functie van deployment

- Applicaties updaten brengen extra uitdagingen met zich mee
 - Downtime tijdens update (of na update?)
 - Bugs
 - Rollback is niet eenvoudig
 - Alles of niets
- Naast klassieke monitoring van servers, services, logs, .. monitoren in functie van deployments
 - Extra data & real time feedback op de deploy fase

=> Low(er) risk releases!

Classic deploys

Pros: Simple, fast, cheap

Cons: Risk, outages, slow rollback, unemployment

Rolling deploys

Pros: Simple, cheap, relatively simple to rollback, less risk than basic deployment.

Cons: App/DB needs to support both new and old artifacts.

Manual checks/verification at each increment could take a long time.

Testing as a Metric!

Blue/Green deploys

Pros:

- Simple, fast, well understood.
- Less risk relative to other deployment strategies
- Rapid rollback

Cons:

- complex and expensive
- coverage may not identify all anomalies

Blue/Green deploys

Testing as a Metric!

Canary deploys

Pros:

- Deploy in small phases
- Test in production with real users & use cases
- Cheaper than blue/green,Fast and safe rollback

Cons:

- Scripting canary deployments can be complex
- Required monitoring & instrumentation (APM, Log, Infra, End User, ...) for testing in production

20%

Canary deploys

V1.3(D) = 73%

Testing as a Metric!

A/B Testing

Pros:

Fast, easy, and cheap way to test new features in production. Lots of tools exist to enable this.

Cons:

- Experiments can sometimes break the app/service/user experience.
- Scripting AB tests can be complex.
- Database compatibility (schema changes, backward compatibility)

Before

Live

V1.0

After

Live

V1.2 (B) = 71%

V1.2(C) = 63%

V1.0(A) = 71%

Source: https://harness.io/2018/02/blue-green-vs-canary-deployments/

Recap

PLURALSIGHT

Title: Continuous Monitoring: The Big Picture

Big picture overview of Monitoring in the DevOps story. [45mins]

Title: Centralized Logging with the Elastic Stack

Introduction to the ELK stack. [2h21mins]

Assignments?

No assignments!

