

Pattern Recognition Chapter 7: Overview of statistical Methods

Prof. Dr.-Ing. Uwe Sörgel soergel@ifp.uni-stuttgart.de

- Introduction to statistical methods in pattern recognition and image analysis
- Tasks and solution strategies
- The feature space
- Taxonomy of statistical methods
- Overfitting Problem

Statistical methods of image analysis I

- Objects are not primarily described by models, but by statistical properties
 of the sensor data in relation to the objects
- Requires a model of statistical properties
- Purpose: Recognition of objects → Classification
- Learning of properties from examples → "Machine Learning"
- Model knowledge may be considered *implicitly* by the selection of suitable features for the classification.

Statistical methods of image analysis II

- Objects correspond to connected regions that are assigned to a certain category.
- Classification can also be seen as a form of segmentation ("semantic segmentation").
- Usually, post-processing of the classification results is required, for example, by morphological operators.
- Output can serve as the basis for high-level processing in knowledge based image analysis.

Contents

- Introduction to statistical methods in pattern recognition and image analysis
 - Tasks and solution strategies
 - The feature space
 - Taxonomy of statistical methods
- Overfitting Problem

Statistical methods: Task I

- Given:
 - Image primitives P_i , $i \in [0, ... N-1]$
 - Pixels or image regions (from segmentation))
 - Features \mathbf{x}_i for every primitive P_i with $\mathbf{x}_i = [x_{il}, x_{i2}, ..., x_{iD}]^T$
 - Derived from sensor data (cf. lecture "Features")
 - Usually real numbers, quantization can lead to discrete values (e.g. grey value: 8 bit → 0, 1, ..., 255)
 - D is the dimension of the feature vector
 - Features may be derived from multiple sensors \Rightarrow Data fusion

■ifp

Statistical methods: Task II

- Wanted:
 - Information about type / class C_i of every primitive P_i
 - Discrete set of M classes: $C_i \in \{C^1, \dots C^M\}$
 - Representation: every class C^j is assigned to a "class label" j, e.g. $C^j \longleftrightarrow 1$, $C^2 \longleftrightarrow 2$, ...
 - The *superscript* index refers to the label of the *class*, whereas *subscript* index indicates the class a *primitive* is assigned to.
 - "Closed world assumption": There are no other classes except the given ones.
 - Binary classification: Special case for M = 2
 - For example: C^I = "object", C^2 = "background" class labels: often $\{0,1\}$ or $\{-1,1\}$ for $\{C^2,C^I\}$

Statistical methods: Task III

- Result of classification:
 - Label image \mathbb{C} , whose "grey value" C_i at pixel i indicates the class label of the corresponding image primitive
- Example (differentiation of forest types from a satellite image):

spectral information (implicit)

thematic information (explicit)

■ifp

Statistical methods: Probabilistic approach I

- Both the features x and the class labels C are considered to be random variables.
- The joint distribution of \mathbf{x} and C is described by the **probability density** $p(\mathbf{x}, C)$, whose parameters can be determined from training data.
- C is determined so that the conditional probability $p(C|\mathbf{x})$ for the class label C given the observed data \mathbf{x} is maximized:

maximum a posteriori (MAP)

$$C = \underset{C}{\operatorname{argmax}} \left(p\left(C \middle| \mathbf{x}\right) \right)$$

Statistical methods: Probabilistic approach II

- MAP corresponds to the minimization of classification errors
- Example (two-class-problem, single feature *x*):
 - The probability for classification errors corresponds the sum of the colored areas.
 - Blue: Probability for assigning a feature x to C_2 although it belongs to C_1 .
 - Sum of green and red areas: Probability for assigning a feature x to C_1 although it belongs to C_2 .
 - Variation of threshold leads to change of red area, while the sum of green and blue areas is constant.
 - At position x_0 holds $p(x,C_1) = p(x,C_2) \Rightarrow p(C_1|x) = p(C_2|x)$, there is the red area 0 and therefore **the probability for a classification error is minimal**.

Statistical methods: Non-probabilistic approach

- Probabilities are not modeled directly
- The goal is to find the optimal separating surface between the classes in feature space on the basis of training data.
- Different criteria for optimality, e.g.
 - "Maximum margin": Maximize distance of the separating surface from the nearest training points.
 - Minimize the training error
- The class *C* an image primitive is determined according to the position of ist feature vector **x** relative to the separating surface.

- Introduction to statistical methods in pattern recognition and image analysis
 - Tasks and solution strategies
 - The feature space
 - Taxonomy of statistical methods
 - Overfitting Problem

The feature space I

- For every image primitive (pixel, segment), a feature vector $\mathbf{x} = [x_1, x_2, \dots x_D]^T$ is determined from sensor data.
- x can be interpreted as a point in a D-dimensional feature space.
- Example: Color image with three channels (R,G,B):

The components of x may be derived from different sensors
 ⇒ D > 100 can occur!

■ifp

The feature space II

- Image primitives (pixel, segments) of the same class have similar properties, therefore their feature vectors are "close" in feature space.
- Consequently, the classes correspond to clusters in feature space.
- Training: Search for the clusters and determine their parameters.
- Classification: Every image primitive is assigned to the most similar cluster in feature space.

The feature space III

$$\mathbf{x} = [x_1, x_2]^T$$

$$C \in \{C^1, C^2\}$$

- On the basis of x_1 alone, C^1 and C^2 cannot be separated properly.
- Increase the dimension of the feature space
 → C¹ and C² can be seperated
- The selection of the features is crucial for the success of the classification.
- In remote sensing, for example, each multi-spectral image corresponds to one dimension of the feature space.
- Selection of the features: often based on model knowledge
- Learning of features → deep learning

■ifp

Problem: Too many features/dimensions

- Curse of Dimensionality
 - Huge data amount required for training
 - ullet If we have D features with Q possible values per feature
 - $\rightarrow Q^D$ probabilities need to be determined!

In order to maintain the same density of training data in the feature space, the data volume increases exponentially with dimension D, here (Q = 10):

1-dim: 10¹
 2-dim: 10²
 3-dim: 10³

The feature space: Summary

- Methods of statistical image analysis are differentiated according to
 - The way in which the clusters are determined
 - The parameters used to describe the clusters in feature space
 - The methods used to determining the parameters
 - The methods used for assigning a primitive to a particular class
- In principle, a larger amount of features could be considered to increase the prospects for a good classification result.
- However, the more features are used, the more training data are required.
 - → One should avoid the use of heavily correlated features.

- Introduction to statistical methods in pattern recognition and image analysis
 - Tasks and solution strategies
 - The feature space
 - Taxonomy of statistical methods
 - Overfitting Problem

Taxonomy of statistical methods I

1. According to the image primitives that are classified:

- Pixel-based classification
- Segment-based classification (also referred to as object-based classification, which is a bit misleading)

2. According to the requirements w.r.t. training data:

- Supervised classification or supervised learning
- Unsupervised classification or unsupervised learning

3. According to the classification procedure:

- Individual classification of the image primitives: image primitives are considered to be independent
- Simultaneous classification of all image primitives: modelling of dependencies → Consideration of context

Taxonomy of statistical methods II

4. According to the type of the statistical model:

- Probabilistic methods: Classification on the basis of probabilities (or related concepts)
 - Generative methods: Based on a model of the joint distribution $p(C, \mathbf{x})$ of features and classes; synthetic data sets can be *generated* by appropriate sampling techniques.
 - Discriminative methods: Such methods directly model the posterior probability $p(C|\mathbf{x})$; it is not possible to generate synthetic data sets by sampling from $p(C|\mathbf{x})$.
- Non-probabilistic methods: Prediction of the class labels without modelling any probabilities; these methods are often referred to as discriminative classifiers as well.

Taxonomy of statistical methods III

5. According to the models used in probabilistic methods:

- Parametric techniques: Require assumptions about the distributions of the data and/or the classes; the parameters of the corresponding analytical functions for the probability densities are estimated from training data.
- Non-parametric techniques: No assumptions about distributions are made, but the probabilities are derived directly from training data.

- Introduction to statistical methods in pattern recognition and image analysis
- Tasks and solution strategies
- The feature space
- Taxonomy of statistical methods
- Overfitting Problem

Discriminant function: Usually a linear function

- Often we strive to find a so-called discriminant function, which separates optimally the classes in feature space (geometric interpretation: hyper plane)
- The simplest and most common model is a **linear combination** of the input feature vectors \mathbf{x} of dimension D:

$$C(\mathbf{w}, \mathbf{x}) = w_0 + w_1 x_1 + ... + w_D x_D = w_0 + \sum_{i=1}^{D} w_i x_i = w_0 + \mathbf{w}^T \cdot \mathbf{x}$$

ifp

Problem: Overfitting

ullet Consider the task to approximate a set of given data points ${\bf x}$ by some polynomial of degree ${\bf M}$:

$$y(\mathbf{w}, \mathbf{x}) = w_0 + w_1 x + w_2 x^2 + ... + w_M x^M = \sum_{i=0}^{M} w_i x^i$$

© Bishop, 2006

Example of N=10 observations of input variable x along with the corresponding target variable t. The green curve shows the (unknown) function $sin(2\pi x)$ used to generate the data. Our goal is to predict the value of t for some new value of x.

Problem: Overfitting - Least squares as objective

• In case of least squares constraint the objective function is:

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=0}^{N} (y(x_n, \mathbf{w}) - t_n)^2 \qquad y(\mathbf{w}, \mathbf{x}) = \sum_{i=0}^{M} w_i x^i$$

• We yield for different choices of *M*:

The solution M=9 yields minimal error according to least squares; unfortunately this is due undesired **overfitting**

© Bishop, 2006

Regularization: Idea

- Too tight approximation to **data** involves the danger of **overfitting**.
- Hence, we add a **model term** to the objective function, which prevents overfitting by <u>enforcing some desired property of the optimal solution</u>.
- This desired property depends on our purpose at hand, e.g. yield
 - As few as possible significant polygon coefficients (i.e., weights) of small magnitude
 - Preferably straight contours of roads
 - Preferably right-angled building footprints
 - •
- The hyper parameter *λ* weights these terms, it needs to be chosen carefully (often additional pre-training step like cross validation)

$$\tilde{E}(\mathbf{w}) = \text{data term} + \lambda \cdot \text{model term}$$

Problem: Overfitting - Regularization I

 ${}^{\bullet}$ We add a term that is typically chosen to impose a penalty on the complexity of w

$$\tilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=0}^{N} (y(x_n, \mathbf{w}) - t_n)^2 + \frac{\lambda}{2} ||\mathbf{w}||$$

- Occam's Razor: "Select hypothesis with the fewest assumptions!"
- We yield for different choice of λ :

Problem: Overfitting - Regularization II

	$\lambda = 0$		$\lambda = 1$
	$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$
w_0^{\star}	0.35	0.35	0.13
w_1^{\star}	232.37	4.74	-0.05
w_2^{\star}	-5321.83	-0.77	-0.06
w_3^{\star}	48568.31	-31.97	-0.05
w_4^{\star}	-231639.30	-3.89	-0.03
w_5^{\star}	640042.26	55.28	-0.02
w_6^{\star}	-1061800.52	41.32	-0.01
w_7^{\star}	1042400.18	-45.95	-0.00
w_8^{\star}	-557682.99	-91.53	0.00
w_9^{\star}	125201.43	72.68	0.01

For $\lambda = 0$ (left in table) one yields very large values of coefficients, whereas for large λ small coefficients.

© Bishop, 2006

Problem: Overfitting – Regularization III

$$\tilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=0}^{N} (y(x_n, \mathbf{w}) - t_n)^2 + \frac{\lambda}{2} \sum_{j=1}^{M} |w_j|^q$$

• The right term is often called p-norm or L^p -norm (q=p)

$$\sum_{j=1}^{M} \left| \boldsymbol{w}_{j} \right|^{\rho} \doteq \left\| \boldsymbol{\mathbf{w}} \right\|_{\rho}$$

• We yield for different choice of p or q:

© Bishop, 2006

