6th lecture overview

2.4 GRAMMARS	56
2.4.1 Formal grammars	56
2.4.2 Regular grammars	62
3 CONTEXT-FREE LANGUAGES	69
3.1 CONTEXT-FREE GRAMMARS	69
3.1.1 Ambiguity in grammars and languages	69
3.1.2 Simplifying a grammar	76

Lecture overview

2.4 GRAMMARS	56
2.4.1 Formal grammars	56
2.4.2 Regular grammars	62
3 CONTEXT-FREE LANGUAGES	69
3.1 CONTEXT-FREE GRAMMARS	69
3.1.1 Ambiguity in grammars and languages	69
3.1.2 Simplifying a grammar	76

$$G=(\{V, B\}, \{s, b\}, P, V)$$

$$G=(\{V, B\}, \{s, b\}, P, V)$$

$$V \rightarrow sB$$
 $B \rightarrow sB$
 $B \rightarrow bB$
 $B \rightarrow \varepsilon$

$$G=(\{V, B\}, \{s, b\}, P, V)$$

$$V \rightarrow sB$$
 $B \rightarrow sB$
 $B \rightarrow bB$
 $B \rightarrow \varepsilon$

$$G=(\{V, B\}, \{s, b\}, P, V)$$

$$V \rightarrow sB$$

$$B \rightarrow sB$$

$$B \rightarrow sB$$
 $B \rightarrow bB$ $B \rightarrow \varepsilon$

$$B \to \varepsilon$$

$$G=(\{V, B\}, \{s, b\}, P, V)$$

$$V \rightarrow sB$$

$$B \rightarrow sB$$
 $B \rightarrow bB$ $B \rightarrow \varepsilon$

$$B \rightarrow bB$$

$$B \rightarrow \varepsilon$$

$$G=(\{V, B\}, \{s, b\}, P, V)$$

$$V$$
 $V \rightarrow SB$ $B \rightarrow SB$ $B \rightarrow BB \rightarrow \epsilon$

$$G=(\{V, B\}, \{s, b\}, P, V)$$

$$V$$
 $V \rightarrow SB$
 $B \rightarrow SB \quad B \rightarrow bB \quad B \rightarrow \varepsilon$

$$G=(\{V, B\}, \{s, b\}, P, V)$$

$$G=(\{V, B\}, \{s, b\}, P, V)$$

$$V \rightarrow sB$$
 $B \rightarrow sB$
 $B \rightarrow bB$
 $B \rightarrow \varepsilon$

$$G=(\{V, B\}, \{s, b\}, P, V)$$

$$G=(\{V, B\}, \{s, b\}, P, V)$$

$$V \rightarrow sB$$
 $B \rightarrow sB$
 $B \rightarrow bB$

$$B \rightarrow \varepsilon$$

$$G=(\{V, B\}, \{s, b\}, P, V)$$

$$G=(\{V, B\}, \{s, b\}, P, V)$$

If the grammar is extended by production

$$G=(\{V, B\}, \{s, b\}, P, V)$$

If the grammar is extended by production

$$B \rightarrow bV$$

$$G=(\{V, B\}, \{s, b\}, P, V)$$

If the grammar is extended by production

$$B \rightarrow bV$$

NFA $M=(Q, \Sigma, \delta, q_0, F)$

NFA
$$M=(Q, \Sigma, \delta, q_0, F)$$

$$G=(V, T, P, S)$$

NFA
$$M=(Q, \Sigma, \delta, q_0, F)$$

$$G=(V, T, P, S)$$

$$A \rightarrow aB$$
 $A \rightarrow \varepsilon$

NFA
$$M=(Q, \Sigma, \delta, q_0, F)$$

$$G=(V, T, P, S)$$

$$A \rightarrow aB$$
 $A \rightarrow \varepsilon$

1)
$$\Sigma = T$$

NFA
$$M=(Q, \Sigma, \delta, q_0, F)$$

$$G=(V, T, P, S)$$

$$A \rightarrow aB$$
 $A \rightarrow \varepsilon$

1)
$$\Sigma = T$$

2)
$$Q = V$$

NFA
$$M=(Q, \Sigma, \delta, q_0, F)$$

$$G=(V, T, P, S)$$

$$A \rightarrow aB$$
 $A \rightarrow \varepsilon$

1)
$$\Sigma = T$$

2)
$$Q = V$$

3)
$$q_0 = S$$

NFA
$$M=(Q, \Sigma, \delta, q_0, F)$$

$$G=(V, T, P, S)$$

$$A \rightarrow aB$$
 $A \rightarrow \varepsilon$

1)
$$\Sigma = T$$

2)
$$Q = V$$

3)
$$q_0 = S$$

4)
$$\delta(A, a) = \delta(A, a) \cup \{B\}$$

$$A \rightarrow aB$$

NFA
$$M=(Q, \Sigma, \delta, q_0, F)$$

$$G=(V, T, P, S)$$

$$A \rightarrow aB$$
 $A \rightarrow \varepsilon$

$$A \rightarrow aB$$

 $A \rightarrow aC$

$$\delta(A, a) = \{B, C\}$$

NFA
$$M=(Q, \Sigma, \delta, q_0, F)$$

$$G=(V, T, P, S)$$

$$A \rightarrow aB$$
 $A \rightarrow \varepsilon$

1)
$$\Sigma = T$$

2)
$$Q = V$$

3)
$$q_0 = S$$

4)
$$\delta(A, a) = \delta(A, a) \cup \{B\}$$

$$A \rightarrow aB$$

$$A \rightarrow \varepsilon$$

Right-linear grammar

Right-linear grammar

Productions have at most one variable at the **rightmost** place on the right-hand side

Right-linear grammar

Productions have at most one variable at the **rightmost** place on the right-hand side

$$A \rightarrow wB$$

Right-linear grammar

Productions have at most one variable at the **rightmost** place on the right-hand side

$$A \rightarrow WB$$
 $A \rightarrow W$

Right-linear grammar

Productions have at most one variable at the **rightmost** place on the right-hand side

$$A \rightarrow WB$$
 $A \rightarrow W$

Right-linear grammar

Productions have at most one variable at the **rightmost** place on the right-hand side

$$A \rightarrow WB$$
 $A \rightarrow W$

Left-linear grammar

Productions have at most one variable at the **leftmost** place on the right-hand side

Right-linear grammar

Productions have at most one variable at the **rightmost** place on the right-hand side

$$A \rightarrow WB$$
 $A \rightarrow W$

Left-linear grammar

Productions have at most one variable at the **leftmost** place on the right-hand side

$$A \rightarrow Bw$$

Right-linear grammar

Productions have at most one variable at the **rightmost** place on the right-hand side

$$A \rightarrow WB$$
 $A \rightarrow W$

Left-linear grammar

Productions have at most one variable at the **leftmost** place on the right-hand side

$$A \rightarrow BW$$
 $A \rightarrow W$

Right-linear and left-linear grammar 0 (10)*

0 (10)*

$$S \rightarrow 0 A$$

$$S \rightarrow 0 A$$
 $A \rightarrow 10 A$

$$S \to 0 A$$

$$A \to 10 A$$

$$A \to \varepsilon$$

Right-linear grammar

$$S \to 0 A$$

$$A \to 10 A$$

$$A \to \varepsilon$$

Right-linear grammar

$$S \to 0 A$$

$$A \to 10 A$$

$$A \to \varepsilon$$

$$S \rightarrow S10$$

Right-linear grammar

$$S \to 0 A$$

$$A \to 10 A$$

$$A \to \varepsilon$$

$$\begin{array}{c} S \rightarrow S 10 \\ S \rightarrow 0 \end{array}$$

1) <i>S</i> → <i>aA</i>	4) <i>A</i> → <i>abb</i> S
2) S → bc	5) <i>A</i> → <i>cA</i>
3) $S \rightarrow A$	6) $A \rightarrow \varepsilon$

1) S → <i>aA</i>	4) <i>A</i> → <i>abb</i> S
2) S → bc	5) <i>A</i> → <i>cA</i>
3) $S \rightarrow A$	6) $A \rightarrow \varepsilon$

$$A \rightarrow aB$$

$$A \rightarrow \varepsilon$$

1)
$$S \rightarrow aA$$
4) $A \rightarrow abbS$ 2) $S \rightarrow bc$ 5) $A \rightarrow cA$

3)
$$S \rightarrow A$$
 6) $A \rightarrow \varepsilon$

$$A \rightarrow aB$$

$$A \rightarrow \varepsilon$$

1)
$$S \rightarrow aA$$
 4) $A \rightarrow abbS$
2) $S \rightarrow bc$ 5) $A \rightarrow cA$
3) $S \rightarrow A$ 6) $A \rightarrow \varepsilon$

$$A \rightarrow aB$$

$$A \rightarrow \varepsilon$$

1)
$$S \rightarrow aA$$
 4) $A \rightarrow abbS$
2) $S \rightarrow bc$ 5) $A \rightarrow cA$
3) $S \rightarrow A$ 6) $A \rightarrow \varepsilon$

$$A \rightarrow aB$$

$$A \rightarrow \varepsilon$$

1) <i>S</i> → <i>aA</i>	4) <i>A</i> → <i>abb</i> S
2) S → bc	5) <i>A</i> → <i>cA</i>
3) $S \rightarrow A$	6) $A \rightarrow \varepsilon$

$$A \rightarrow aB$$

$$A \rightarrow \varepsilon$$

1)
$$S \rightarrow aA$$
4) $A \rightarrow abbS$ 2) $S \rightarrow bc$ 5) $A \rightarrow cA$ 3) $S \rightarrow A$ 6) $A \rightarrow \varepsilon$

$$A \rightarrow aB$$

 $A \rightarrow \varepsilon$

1)
$$S \rightarrow aA$$
4) $A \rightarrow abbS$ 2) $S \rightarrow bc$ 5) $A \rightarrow cA$ 3) $S \rightarrow A$ 6) $A \rightarrow \varepsilon$

$$A \rightarrow aB$$

$$A \rightarrow \varepsilon$$

1)
$$S \rightarrow aA$$
4) $A \rightarrow abbS$ 2) $S \rightarrow bc$ 5) $A \rightarrow cA$ 3) $S \rightarrow A$ 6) $A \rightarrow \varepsilon$

$$A \rightarrow aB$$

$$A \rightarrow \varepsilon$$

4)
$$A \rightarrow abbS$$

$$A \rightarrow a[bbS]$$

1)
$$S \rightarrow aA$$
4) $A \rightarrow abbS$ 2) $S \rightarrow bc$ 5) $A \rightarrow cA$ 3) $S \rightarrow A$ 6) $A \rightarrow \varepsilon$

$$A \rightarrow aB$$

$$A \rightarrow \varepsilon$$

$$\begin{array}{cc} A & \rightarrow a[bbS] \\ [bbS] \rightarrow b[bS] \end{array}$$

1)
$$S \rightarrow aA$$
4) $A \rightarrow abbS$ 2) $S \rightarrow bc$ 5) $A \rightarrow cA$ 3) $S \rightarrow A$ 6) $A \rightarrow \varepsilon$

$$A \rightarrow aB$$

$$A \rightarrow \varepsilon$$

4)
$$A \rightarrow abbS$$

$$A \rightarrow a[bbS]$$

$$[bbS] \rightarrow b[bS]$$

$$[bS] \rightarrow bS$$

1)
$$S \rightarrow aA$$
4) $A \rightarrow abbS$ 2) $S \rightarrow bc$ 5) $A \rightarrow cA$ 3) $S \rightarrow A$ 6) $A \rightarrow \varepsilon$

$$A \rightarrow aB$$

$$A \rightarrow \varepsilon$$

4)
$$A \rightarrow abbS$$

$$A \rightarrow a[bbS]$$

$$[bbS] \rightarrow b[bS]$$

$$[bS] \rightarrow bS$$

$$A \Rightarrow abbS$$

1)
$$S \rightarrow aA$$
4) $A \rightarrow abbS$ 2) $S \rightarrow bc$ 5) $A \rightarrow cA$ 3) $S \rightarrow A$ 6) $A \rightarrow \varepsilon$

$$A \rightarrow aB$$

$$A \rightarrow \varepsilon$$

4)
$$A \rightarrow abbS$$

$$A \rightarrow a[bbS]$$

$$[bbS] \rightarrow b[bS]$$

$$[bS] \rightarrow bS$$

$$A \Rightarrow abbS$$

$$A \Rightarrow a[bbS] \Rightarrow ab[bS] \Rightarrow abbS$$

1) <i>S</i> → <i>aA</i>	4) A → abbS
2) S → bc	5) <i>A</i> → <i>cA</i>
3) $S \rightarrow A$	6) $A \rightarrow \varepsilon$

$$A \rightarrow aB$$

$$A \rightarrow \varepsilon$$

1)
$$S \rightarrow aA$$
4) $A \rightarrow abbS$ 2) $S \rightarrow bc$ 5) $A \rightarrow cA$ 3) $S \rightarrow A$ 6) $A \rightarrow \varepsilon$

$$A \rightarrow aB$$

$$A \rightarrow \varepsilon$$

2)
$$S \rightarrow bc$$

1)
$$S \rightarrow aA$$
4) $A \rightarrow abbS$ 2) $S \rightarrow bc$ 5) $A \rightarrow cA$ 3) $S \rightarrow A$ 6) $A \rightarrow \varepsilon$

$$A \rightarrow aB$$

$$A \rightarrow \varepsilon$$

1)
$$S \rightarrow aA$$
4) $A \rightarrow abbS$ 2) $S \rightarrow bc$ 5) $A \rightarrow cA$ 3) $S \rightarrow A$ 6) $A \rightarrow \varepsilon$

$$A \rightarrow aB$$

$$A \rightarrow \varepsilon$$

2)
$$S \rightarrow bc$$

$$S \rightarrow bc[\varepsilon]$$

1)
$$S \rightarrow aA$$
4) $A \rightarrow abbS$ 2) $S \rightarrow bc$ 5) $A \rightarrow cA$ 3) $S \rightarrow A$ 6) $A \rightarrow \varepsilon$

$$A \rightarrow aB$$

$$A \rightarrow \varepsilon$$

2)
$$S \to bc$$

$$S \to bc[\varepsilon]$$

$$[\varepsilon] \to \varepsilon$$

1)
$$S \rightarrow aA$$
4) $A \rightarrow abbS$ 2) $S \rightarrow bc$ 5) $A \rightarrow cA$ 3) $S \rightarrow A$ 6) $A \rightarrow \varepsilon$

$$A \rightarrow aB$$

$$A \rightarrow \varepsilon$$

2)
$$S \to bc$$

$$[\varepsilon] \to bc[\varepsilon]$$

1)
$$S \rightarrow aA$$
4) $A \rightarrow abbS$ 2) $S \rightarrow bc$ 5) $A \rightarrow cA$ 3) $S \rightarrow A$ 6) $A \rightarrow \varepsilon$

$$A \rightarrow aB$$

 $A \rightarrow \varepsilon$

2)
$$S \to bc$$

$$[\varepsilon] \to bc[\varepsilon]$$

$$S \rightarrow b[c\varepsilon]$$

1)
$$S \rightarrow aA$$
4) $A \rightarrow abbS$ 2) $S \rightarrow bc$ 5) $A \rightarrow cA$ 3) $S \rightarrow A$ 6) $A \rightarrow \varepsilon$

2) $S \rightarrow bc$

$$A \rightarrow aB$$

 $A \rightarrow \varepsilon$

$$S \rightarrow bc[\varepsilon]$$

 $[\mathcal{E}]$

$$\begin{array}{ccc} S & \rightarrow b[c\varepsilon] \\ [c\varepsilon] & \rightarrow c[\varepsilon] \end{array}$$

1)
$$S \rightarrow aA$$
4) $A \rightarrow abbS$ 2) $S \rightarrow bc$ 5) $A \rightarrow cA$ 3) $S \rightarrow A$ 6) $A \rightarrow \varepsilon$

$$A \rightarrow aB$$

$$A \rightarrow \varepsilon$$

2)
$$S \rightarrow bc$$

$$[\varepsilon] \rightarrow \varepsilon$$

$$\begin{array}{ccc} S & \to b[c\varepsilon] \\ [c\varepsilon] & \to c[\varepsilon] \end{array}$$

1)
$$S \rightarrow aA$$
4) $A \rightarrow abbS$ 2) $S \rightarrow bc$ 5) $A \rightarrow cA$ 3) $S \rightarrow A$ 6) $A \rightarrow \varepsilon$

$$A \rightarrow aB$$

$$A \rightarrow \varepsilon$$

2)
$$S \rightarrow bc$$

$$[\varepsilon] \rightarrow \varepsilon$$

$$\begin{array}{ccc} S & \to b[c\varepsilon] \\ [c\varepsilon] & \to c[\varepsilon] \end{array}$$

$$S \Rightarrow bc$$

1)
$$S \rightarrow aA$$
4) $A \rightarrow abbS$ 2) $S \rightarrow bc$ 5) $A \rightarrow cA$ 3) $S \rightarrow A$ 6) $A \rightarrow \varepsilon$

$$A \rightarrow aB$$

$$A \rightarrow \varepsilon$$

2)
$$S \rightarrow bc$$

$$[\varepsilon] \rightarrow \varepsilon$$

$$\begin{array}{ccc} S & \rightarrow b[c\varepsilon] \\ [c\varepsilon] & \rightarrow c[\varepsilon] \end{array}$$

$$S \Rightarrow bc$$

$$S \Rightarrow b[c\varepsilon] \Rightarrow bc[\varepsilon] \Rightarrow bc$$

1)
$$S \rightarrow aA$$
4) $A \rightarrow abbS$ 2) $S \rightarrow bc$ 5) $A \rightarrow cA$ 3) $S \rightarrow A$ 6) $A \rightarrow \varepsilon$

$$A \rightarrow aB$$

$$A \rightarrow \varepsilon$$

1)
$$S \rightarrow aA$$
4) $A \rightarrow abbS$ 2) $S \rightarrow bc$ 5) $A \rightarrow cA$ 3) $S \rightarrow A$ 6) $A \rightarrow \varepsilon$

$$A \rightarrow aB$$

$$A \rightarrow \varepsilon$$

3)
$$S \rightarrow A$$

1)
$$S \rightarrow aA$$
4) $A \rightarrow abbS$ 2) $S \rightarrow bc$ 5) $A \rightarrow cA$ 3) $S \rightarrow A$ 6) $A \rightarrow \varepsilon$

$$A \rightarrow aB$$

$$A \rightarrow \varepsilon$$

3)
$$S \rightarrow A$$

1)
$$S \rightarrow aA$$
4) $A \rightarrow abbS$ 2) $S \rightarrow bc$ 5) $A \rightarrow cA$ 3) $S \rightarrow A$ 6) $A \rightarrow \varepsilon$

$$A \rightarrow aB$$

$$A \rightarrow \varepsilon$$

3)
$$S \rightarrow A$$

1)
$$S \rightarrow aA$$
4) $A \rightarrow abbS$ 2) $S \rightarrow bc$ 5) $A \rightarrow cA$ 3) $S \rightarrow A$ 6) $A \rightarrow \varepsilon$

$$A \rightarrow aB$$

$$A \rightarrow \varepsilon$$

3)
$$S \rightarrow A$$

1)
$$S \rightarrow aA$$
4) $A \rightarrow abbS$ 2) $S \rightarrow bc$ 5) $A \rightarrow cA$ 3) $S \rightarrow A$ 6) $A \rightarrow \varepsilon$

$$A \rightarrow aB$$

$$A \rightarrow \varepsilon$$

3)
$$S \rightarrow A$$
 $S \rightarrow cA$

1)
$$S \rightarrow aA$$
4) $A \rightarrow abbS$ 2) $S \rightarrow bc$ 5) $A \rightarrow cA$ 3) $S \rightarrow A$ 6) $A \rightarrow \varepsilon$

$$A \rightarrow aB$$

$$A \rightarrow \varepsilon$$

3)
$$S \to A$$

$$S \to cA$$

$$S \to \varepsilon$$

1)
$$S \rightarrow aA$$
4) $A \rightarrow abbS$ 2) $S \rightarrow bc$ 5) $A \rightarrow cA$ 3) $S \rightarrow A$ 6) $A \rightarrow \varepsilon$

$$A \rightarrow aB$$

$$A \rightarrow \varepsilon$$

3)
$$S \rightarrow A$$

$$S \rightarrow cA$$

$$S \rightarrow \varepsilon$$

$$S \rightarrow a[bbS]$$

- 1) $S \rightarrow aA$
- 5) $A \rightarrow cA$
- 6) $A \rightarrow \varepsilon$

2) $S \rightarrow bc$

- 1) $S \rightarrow aA$
- 5) $A \rightarrow cA$
- 6) $A \rightarrow \varepsilon$

2)
$$S \rightarrow bc$$

1)
$$S \rightarrow aA$$
 $2a)$ $S \rightarrow b[c\varepsilon]$

5)
$$A \rightarrow cA$$
 2b) $[c\varepsilon] \rightarrow c[\varepsilon]$

6)
$$A \rightarrow \varepsilon$$
 2c) $[\varepsilon] \rightarrow \varepsilon$

1)
$$S \rightarrow aA$$
 $2a$) $S \rightarrow b[c\varepsilon]$ 5) $A \rightarrow cA$ $2b$) $[c\varepsilon] \rightarrow c[\varepsilon]$ 6) $A \rightarrow \varepsilon$ $2c$) $[\varepsilon] \rightarrow \varepsilon$

3) $S \rightarrow A$

1)
$$S \rightarrow aA$$
 $2a)$ $S \rightarrow b[c\varepsilon]$ 5) $A \rightarrow cA$ $2b) [c\varepsilon] \rightarrow c[\varepsilon]$ 6) $A \rightarrow \varepsilon$ $2c) [\varepsilon] \rightarrow \varepsilon$

3)
$$S \rightarrow A$$

1)
$$S \rightarrow aA$$
 $2a)$ $S \rightarrow b[c\varepsilon]$ $3a)$ $S \rightarrow a[bbS]$ 5) $A \rightarrow cA$ $2b)$ $[c\varepsilon] \rightarrow c[\varepsilon]$ $3b)$ $S \rightarrow cA$ 6) $A \rightarrow \varepsilon$ $2c)$ $[\varepsilon] \rightarrow \varepsilon$ $3c)$ $S \rightarrow \varepsilon$

1)
$$S \rightarrow aA$$
 $2a$) $S \rightarrow b[c\varepsilon]$ $3a$) $S \rightarrow a[bbS]$ 5) $A \rightarrow cA$ $2b$) $[c\varepsilon] \rightarrow c[\varepsilon]$ $3b$) $S \rightarrow cA$ 6) $A \rightarrow \varepsilon$ $2c$) $[\varepsilon] \rightarrow \varepsilon$ $3c$) $S \rightarrow \varepsilon$

4) *A* → *abbS*

1)
$$S \rightarrow aA$$
 $2a$) $S \rightarrow b[c\varepsilon]$ $3a$) $S \rightarrow a[bbS]$ 5) $A \rightarrow cA$ $2b$) $[c\varepsilon] \rightarrow c[\varepsilon]$ $3b$) $S \rightarrow cA$ 6) $A \rightarrow \varepsilon$ $2c$) $[\varepsilon] \rightarrow \varepsilon$ $3c$) $S \rightarrow \varepsilon$

1)
$$S \rightarrow aA$$
 $2a$) $S \rightarrow b[c\varepsilon]$ $3a$) $S \rightarrow a[bbS]$ $4a$) $A \rightarrow a[bbS]$ 5) $A \rightarrow cA$ $2b$) $[c\varepsilon] \rightarrow c[\varepsilon]$ $3b$) $S \rightarrow cA$ $4b$) $[bbS] \rightarrow b[bS]$ 6) $A \rightarrow \varepsilon$ $2c$) $[\varepsilon] \rightarrow \varepsilon$ $3c$) $S \rightarrow \varepsilon$ $4c$) $[bS] \rightarrow bS$

1)
$$S \rightarrow aA$$
 $2a$) $S \rightarrow b[c\varepsilon]$ $3a$) $S \rightarrow a[bbS]$ $4a$) $A \rightarrow a[bbS]$ 5) $A \rightarrow cA$ $2b$) $[c\varepsilon] \rightarrow c[\varepsilon]$ $3b$) $S \rightarrow cA$ $4b$) $[bbS] \rightarrow b[bS]$ 6) $A \rightarrow \varepsilon$ $2c$) $[\varepsilon] \rightarrow \varepsilon$ $3c$) $S \rightarrow \varepsilon$ $4c$) $[bS] \rightarrow bS$

1)
$$S \rightarrow aA$$
 $2a$) $S \rightarrow b[c\varepsilon]$ $3a$) $S \rightarrow a[bbS]$ $4a$) $A \rightarrow a[bbS]$ 5) $A \rightarrow cA$ $2b$) $[c\varepsilon] \rightarrow c[\varepsilon]$ $3b$) $S \rightarrow cA$ $4b$) $[bbS] \rightarrow b[bS]$ 6) $A \rightarrow \varepsilon$ $2c$) $[\varepsilon] \rightarrow \varepsilon$ $3c$) $S \rightarrow \varepsilon$ $4c$) $[bS] \rightarrow bS$

	a	b	C	
S	A, [bbS]	[c ε]	A	1
[<i>cε</i>]			[ε]	0
[arepsilon]				1
A	[bbS]		A	1
[bbS]		[<i>bS</i>]		0
[<i>bS</i>]		S		0

$$A \rightarrow aB$$

 $A \rightarrow \varepsilon$

$$A \rightarrow aB$$

 $A \rightarrow \varepsilon$

$$A \rightarrow wB$$

 $A \rightarrow w$

$$A \rightarrow aB$$

 $A \rightarrow \varepsilon$

$$A \rightarrow wB$$

 $A \rightarrow w$

1)
$$[\varepsilon] \to \varepsilon$$

$$A \rightarrow w$$

$$A \rightarrow aB$$

 $A \rightarrow \varepsilon$

$$A \rightarrow wB$$

 $A \rightarrow w$

1)
$$[\varepsilon] \to \varepsilon$$
 $A \to w[\varepsilon]$

$$A \rightarrow w$$

$$A \rightarrow aB$$

 $A \rightarrow \varepsilon$

$$A \rightarrow wB$$

 $A \rightarrow w$

1)
$$[\varepsilon] \to \varepsilon$$
 $A \to w[\varepsilon]$

$$A \rightarrow W$$

2)
$$A \rightarrow a_1 [a_2 ... a_n B]$$

$$A \rightarrow a_1 \dots a_n B$$

$$A \rightarrow aB$$

 $A \rightarrow \varepsilon$

$$A \rightarrow wB$$

 $A \rightarrow w$

1)
$$[\varepsilon] \to \varepsilon$$
 $A \to w[\varepsilon]$

$$A \rightarrow w$$

2)
$$A \rightarrow a_1 [a_2... a_n B]$$

 $[a_2... a_n B] \rightarrow a_2 [a_3... a_n B]$

$$A \rightarrow a_1 \dots a_n B$$

$$A \rightarrow aB$$

 $A \rightarrow \varepsilon$

$$A \rightarrow wB$$

 $A \rightarrow w$

1)
$$[\varepsilon] \to \varepsilon$$
 $A \to w[\varepsilon]$

$$A \rightarrow w$$

2)
$$A \rightarrow a_1 [a_2... a_n B]$$

 $[a_2... a_n B] \rightarrow a_2 [a_3... a_n B]$
 $[a_3... a_n B] \rightarrow a_3 [a_4... a_n B]$

$$A \rightarrow a_1 \dots a_n B$$

$$A \rightarrow aB$$

 $A \rightarrow \varepsilon$

$$A \rightarrow wB$$

 $A \rightarrow w$

1)
$$[\varepsilon] \to \varepsilon$$
 $A \to w[\varepsilon]$

$$A \rightarrow w$$

2)
$$A \rightarrow a_1 [a_2... a_n B]$$

 $[a_2... a_n B] \rightarrow a_2 [a_3... a_n B]$
 $[a_3... a_n B] \rightarrow a_3 [a_4... a_n B]$

$$A \rightarrow a_1 \dots a_n B$$

$$A \rightarrow aB$$

 $A \rightarrow \varepsilon$

$$A \rightarrow wB$$

 $A \rightarrow w$

1)
$$[\varepsilon] \to \varepsilon$$
 $A \to w[\varepsilon]$

$$A \rightarrow w$$

2)
$$A \rightarrow a_1 [a_2... a_n B]$$

 $[a_2... a_n B] \rightarrow a_2 [a_3... a_n B]$
 $[a_3... a_n B] \rightarrow a_3 [a_4... a_n B]$

 $[a_i... a_n B] \rightarrow a_i [a_{i+1}... a_n B]$

$$A \rightarrow a_1 \dots a_n B$$

$$A \rightarrow aB$$

 $A \rightarrow \varepsilon$

$$A \rightarrow wB$$

 $A \rightarrow w$

1)
$$[\varepsilon] \to \varepsilon$$
 $A \to w[\varepsilon]$

$$A \rightarrow w$$

2)
$$A \rightarrow a_1 [a_2... a_n B]$$

 $[a_2... a_n B] \rightarrow a_2 [a_3... a_n B]$
 $[a_3... a_n B] \rightarrow a_3 [a_4... a_n B]$
 \vdots
 $[a_i... a_n B] \rightarrow a_i [a_{i+1}... a_n B]$

$$A \rightarrow a_1 \dots a_n B$$

$$A \rightarrow aB$$

 $A \rightarrow \varepsilon$

$$A \rightarrow wB$$

 $A \rightarrow w$

1)
$$[\varepsilon] \to \varepsilon$$
 $A \to w[\varepsilon]$

$$A \rightarrow w$$

2)
$$A \rightarrow a_1 [a_2... a_n B]$$

 $[a_2... a_n B] \rightarrow a_2 [a_3... a_n B]$
 $[a_3... a_n B] \rightarrow a_3 [a_4... a_n B]$

 $[a_i... a_n B] \rightarrow a_i [a_{i+1}... a_n B]$

 $[a_{n-1}a_n B] \rightarrow a_{n-1} [a_n B]$

$$A \rightarrow a_1 \dots a_n B$$

$$A \rightarrow aB$$

 $A \rightarrow \varepsilon$

$$A \rightarrow wB$$

 $A \rightarrow w$

1)
$$[\varepsilon] \to \varepsilon$$
 $A \to w[\varepsilon]$

$$A \rightarrow W$$

2)
$$A \rightarrow a_1 [a_2... a_n B]$$

 $[a_2... a_n B] \rightarrow a_2 [a_3... a_n B]$
 $[a_3... a_n B] \rightarrow a_3 [a_4... a_n B]$

 $[a_i... a_n B] \rightarrow a_i [a_{i+1}... a_n B]$

 $[a_{n-1}a_n B] \rightarrow a_{n-1} [a_n B]$
 $[a_n B] \rightarrow a_n B$

$$A \rightarrow a_1 \dots a_n B$$

$$A \rightarrow aB$$

 $A \rightarrow \varepsilon$

$$A \rightarrow wB$$

 $A \rightarrow w$

1)
$$[\varepsilon] \to \varepsilon$$
 $A \to w[\varepsilon]$

$$A \rightarrow w$$

2)
$$A \rightarrow a_1 [a_2... a_n B]$$

 $[a_2... a_n B] \rightarrow a_2 [a_3... a_n B]$
 $[a_3... a_n B] \rightarrow a_3 [a_4... a_n B]$

 $[a_i... a_n B] \rightarrow a_i [a_{i+1}... a_n B]$

 $[a_{n-1}a_n B] \rightarrow a_{n-1} [a_n B]$

 $[a_n B] \rightarrow a_n B$

$$A \rightarrow a_1 \dots a_n B$$

3)
$$A \rightarrow y$$

$$A \rightarrow B, B \rightarrow y$$

ε-NFA

ε-NFA

$$A \rightarrow BW$$

 $A \rightarrow W$

ε-NFA

$$A \rightarrow BW$$

 $A \rightarrow W$

ε-NFA

$$A \rightarrow BW$$

 $A \rightarrow W$

$$P' = \{ A \rightarrow \alpha^R \mid A \rightarrow \alpha \text{ belongs to } P \}$$

E-NFA

$$A \rightarrow BW$$

 $A \rightarrow W$

$$P' = \{ A \rightarrow \alpha^R \mid A \rightarrow \alpha \text{ belongs to } P \}$$

 $L(G') = L(G)^R$

E-NFA

$$A \rightarrow BW$$

 $A \rightarrow W$

1) We construct a right-linear grammar G'=(V, T, P', S)

$$P' = \{ A \rightarrow \alpha^R \mid A \rightarrow \alpha \text{ belongs to } P \}$$

 $L(G') = L(G)^R$

2) We construct an NFA M which accepts $L(M) = L(G') = L(G)^R$

E-NFA

$$A \rightarrow Bw$$
 $A \rightarrow w$

$$P' = \{ A \rightarrow \alpha^R \mid A \rightarrow \alpha \text{ belongs to } P \}$$

 $L(G') = L(G)^R$

- 2) We construct an NFA M which accepts $L(M) = L(G') = L(G)^R$
- 3) We construct an ε -NFA M' which accepts $L(M') = L(M)^R = L(G')^R = L(G)$

ε-NFA

$$A \rightarrow Bw$$
 $A \rightarrow w$

$$P' = \{ A \rightarrow \alpha^R \mid A \rightarrow \alpha \text{ belongs to } P \}$$

 $L(G') = L(G)^R$

- 2) We construct an NFA M which accepts $L(M) = L(G') = L(G)^R$
- 3) We construct an ε -NFA M' which accepts $L(M') = L(M)^R = L(G')^R = L(G)$
 - NFA *M* is rearranged to have a single accepting state

E-NFA

$$A \rightarrow Bw$$
 $A \rightarrow w$

$$P' = \{ A \rightarrow \alpha^R \mid A \rightarrow \alpha \text{ belongs to } P \}$$

 $L(G') = L(G)^R$

- 2) We construct an NFA M which accepts $L(M) = L(G') = L(G)^R$
- 3) We construct an ε -NFA M' which accepts $L(M') = L(M)^R = L(G')^R = L(G)$
 - NFA *M* is rearranged to have a single accepting state
 - initial state ε-NFA M' = accepting state NFA M

E-NFA

 $A \rightarrow Bw$ $A \rightarrow w$

$$P' = \{ A \rightarrow \alpha^R \mid A \rightarrow \alpha \text{ belongs to } P \}$$

 $L(G') = L(G)^R$

- 2) We construct an NFA M which accepts $L(M) = L(G') = L(G)^R$
- 3) We construct an ε -NFA M' which accepts $L(M') = L(M)^R = L(G')^R = L(G)$
 - NFA *M* is rearranged to have a single accepting state
 - initial state *ε*-NFA *M* = accepting state NFA *M*
 - accepting state *ε*-NFA *M* = initial state NFA *M*

ε-NFA

 $A \rightarrow Bw$ $A \rightarrow w$

1) We construct a right-linear grammar G'=(V, T, P', S)

$$P' = \{ A \rightarrow \alpha^R \mid A \rightarrow \alpha \text{ belongs to } P \}$$

 $L(G') = L(G)^R$

- 2) We construct an NFA M which accepts $L(M) = L(G') = L(G)^R$
- 3) We construct an ε -NFA M' which accepts $L(M') = L(M)^R = L(G')^R = L(G)$
 - NFA *M* is rearranged to have a single accepting state
 - initial state *ε*-NFA *M*^{*}
- = accepting state NFA M

- accepting state *ε*-NFA *M*^{*}

= initial state NFA M

- transitions NFA M'

= reversed transitions of NFA M

Left-linear grammar $G_L=(\{S\}, \{0, 1\}, \{S \rightarrow S \mid 10 \mid 0\}, S)$

Left-linear grammar $G_L=(\{S\}, \{0, 1\}, \{S \rightarrow S \ 10 \mid 0\}, S)$ Generates the language $O(10)^*$

Left-linear grammar $G_L=(\{S\}, \{0, 1\}, \{S \rightarrow S \ 10 \mid 0\}, S)$ Generates the language $O(10)^*$

We construct a right-linear grammar $G_D = (\{S\}, \{0, 1\}, \{S \rightarrow 01 \ S \mid 0\}, S)$


```
Left-linear grammar G_L=(\{S\}, \{0, 1\}, \{S \rightarrow S \ 10 \mid 0\}, S)
Generates the language O(10)^*
```

We construct a right-linear grammar $G_D = (\{S\}, \{0, 1\}, \{S \rightarrow 01 \ S \mid 0\}, S)$ Generates the language $(01)^*0$

Left-linear grammar $G_L=(\{S\}, \{0, 1\}, \{S \rightarrow S \ 10 \mid 0\}, S)$ Generates the language $O(10)^*$

We construct a right-linear grammar $G_D = (\{S\}, \{0, 1\}, \{S \rightarrow 01 \ S \mid 0\}, S)$ Generates the language (01)*0

We rearrange the grammar to the form $A \rightarrow aB$, $A \rightarrow \epsilon$


```
Left-linear grammar G_L=(\{S\}, \{0, 1\}, \{S \rightarrow S \ 10 \mid 0\}, S)
Generates the language O(10)^*
```

We construct a right-linear grammar $G_D = (\{S\}, \{0, 1\}, \{S \rightarrow 01 \ S \mid 0\}, S)$ Generates the language (01)*0

```
We rearrange the grammar to the form A \to aB, A \to \varepsilon
S \to 0 [1S] | 0 [\varepsilon], [1S] \to 1S, [\varepsilon] \to \varepsilon
```


Left-linear grammar $G_L=(\{S\}, \{0, 1\}, \{S \rightarrow S \ 10 \mid 0\}, S)$ Generates the language $O(10)^*$

We construct a right-linear grammar $G_D = (\{S\}, \{0, 1\}, \{S \rightarrow 01 \ S \mid 0\}, S)$ Generates the language $(01)^*0$

We rearrange the grammar to the form $A \to aB$, $A \to \varepsilon$ $S \to 0$ [1S] | 0 [ε], [1S] $\to 1S$, [ε] $\to \varepsilon$

Left-linear grammar $G_L=(\{S\}, \{0, 1\}, \{S \rightarrow S \ 10 \mid 0\}, S)$ Generates the language $O(10)^*$

We construct a right-linear grammar $G_D = (\{S\}, \{0, 1\}, \{S \rightarrow 01 \ S \mid 0\}, S)$ Generates the language $(01)^*0$

We rearrange the grammar to the form $A \to aB$, $A \to \varepsilon$ $S \to 0$ [1S] | 0 [ε], [1S] $\to 1S$, [ε] $\to \varepsilon$

Left-linear grammar $G_L=(\{S\}, \{0, 1\}, \{S \rightarrow S \ 10 \mid 0\}, S)$ Generates the language $O(10)^*$

We construct a right-linear grammar $G_D = (\{S\}, \{0, 1\}, \{S \rightarrow 01 \ S \mid 0\}, S)$ Generates the language $(01)^*0$

We rearrange the grammar to the form $A \to aB$, $A \to \varepsilon$ $S \to 0$ [1S] | 0 [ε], [1S] $\to 1S$, [ε] $\to \varepsilon$

Left-linear grammar $G_L=(\{S\}, \{0, 1\}, \{S \rightarrow S \ 10 \mid 0\}, S)$ Generates the language $O(10)^*$

We construct a right-linear grammar $G_D = (\{S\}, \{0, 1\}, \{S \rightarrow 01 \ S \mid 0\}, S)$ Generates the language $(01)^*0$

We rearrange the grammar to the form $A \to aB$, $A \to \varepsilon$ $S \to 0$ [1S] | 0 [ε], [1S] $\to 1S$, [ε] $\to \varepsilon$

Left-linear grammar $G_L=(\{S\}, \{0, 1\}, \{S \rightarrow S \ 10 \mid 0\}, S)$ Generates the language $O(10)^*$

We construct a right-linear grammar $G_D = (\{S\}, \{0, 1\}, \{S \rightarrow 01 \ S \mid 0\}, S)$ Generates the language (01)*0

We rearrange the grammar to the form $A \to aB$, $A \to \varepsilon$ $S \to 0$ [1S] | 0 [ε], [1S] $\to 1S$, [ε] $\to \varepsilon$

Left-linear grammar $G_L=(\{S\}, \{0, 1\}, \{S \rightarrow S \ 10 \mid 0\}, S)$ Generates the language $O(10)^*$

We construct a right-linear grammar $G_D = (\{S\}, \{0, 1\}, \{S \rightarrow 01 \ S \mid 0\}, S)$ Generates the language (01)*0

We rearrange the grammar to the form $A \to aB$, $A \to \varepsilon$ $S \to 0$ [1S] | 0 [ε], [1S] $\to 1S$, [ε] $\to \varepsilon$

Left-linear grammar $G_L=(\{S\}, \{0, 1\}, \{S \rightarrow S \ 10 \mid 0\}, S)$ Generates the language $O(10)^*$

We construct a right-linear grammar $G_D = (\{S\}, \{0, 1\}, \{S \rightarrow 01 \ S \mid 0\}, S)$ Generates the language (01)*0

We rearrange the grammar to the form $A \to aB$, $A \to \varepsilon$ $S \to 0$ [1S] | 0 [ε], [1S] $\to 1S$, [ε] $\to \varepsilon$

Left-linear grammar $G_L=(\{S\}, \{0, 1\}, \{S \rightarrow S \ 10 \mid 0\}, S)$ Generates the language $O(10)^*$

We construct a right-linear grammar $G_D = (\{S\}, \{0, 1\}, \{S \rightarrow 01 \ S \mid 0\}, S)$ Generates the language (01)*0

We rearrange the grammar to the form $A \to aB$, $A \to \varepsilon$ $S \to 0$ [1S] | 0 [ε], [1S] $\to 1S$, [ε] $\to \varepsilon$

Left-linear grammar $G_L=(\{S\}, \{0, 1\}, \{S \rightarrow S \ 10 \mid 0\}, S)$ Generates the language $O(10)^*$

We construct a right-linear grammar $G_D = (\{S\}, \{0, 1\}, \{S \rightarrow 01 \ S \mid 0\}, S)$ Generates the language (01)*0

We rearrange the grammar to the form $A \to aB$, $A \to \varepsilon$ $S \to 0$ [1S] | 0 [ε], [1S] $\to 1S$, [ε] $\to \varepsilon$

$$A \rightarrow BW$$

 $A \rightarrow W$

$$A \rightarrow BW$$

 $A \rightarrow W$

$$A \rightarrow BW$$

 $A \rightarrow W$

NFA

1) We construct an ε -NFA M which accepts $L(M) = L^R$

$$A \rightarrow BW$$

 $A \rightarrow W$

- 1) We construct an ε -NFA M which accepts $L(M) = L^R$
- 2) We construct a right-linear grammar G

$$A \rightarrow BW$$

 $A \rightarrow W$

- 1) We construct an ε -NFA M which accepts $L(M) = L^R$
- 2) We construct a right-linear grammar G generating the language $L(G) = L(M) = L^R$

$$A \rightarrow BW$$

 $A \rightarrow W$

- 1) We construct an ε -NFA M which accepts $L(M) = L^R$
- 2) We construct a right-linear grammar G generating the language $L(G) = L(M) = L^R$
- 3) Right-hand sides of productions are reversed

$$A \rightarrow BW$$

 $A \rightarrow W$

- 1) We construct an ε -NFA M which accepts $L(M) = L^R$
- 2) We construct a right-linear grammar G generating the language $L(G) = L(M) = L^R$
- 3) Right-hand sides of productions are reversed The constructed grammar *G'* is a left-linear grammar

Constructing a left-linear grammar from an NFA

$$A \rightarrow BW$$

 $A \rightarrow W$

NFA

- 1) We construct an ε -NFA M which accepts $L(M) = L^R$
- 2) We construct a right-linear grammar G generating the language $L(G) = L(M) = L^R$
- Right-hand sides of productions are reversed The constructed grammar G' is a left-linear grammar generating the language $L(G') = L(G)^R = L(M)^R = L$

Lecture overview

2.4 GRAMMARS	56
2.4.1 Formal grammars	56
2.4.2 Regular grammars	62
3 CONTEXT-FREE LANGUAGES	69
3.1 CONTEXT-FREE GRAMMARS	69
3.1.1 Ambiguity in grammars and languages	69
3.1.2 Simplifying a grammar	76

$$E \rightarrow E \odot E \qquad E \rightarrow a$$

$$E \rightarrow a$$

$$E \rightarrow E \odot E \qquad E \rightarrow a$$

$$E \rightarrow a$$

$$E \rightarrow E \odot E \qquad E \rightarrow a$$

$$E \rightarrow a$$

Derivation (1)

$$E \rightarrow E \odot E \qquad E \rightarrow a$$

$$E \rightarrow a$$

Derivation (1)

<u>E</u>

$$E \rightarrow E \odot E$$
 $E \rightarrow a$

$$a \odot a \odot a$$

Derivation (1)

$$E \rightarrow E \odot E$$
 $E \rightarrow a$

E

a O a O a

Derivation (1)

<u>E</u>

$$E \rightarrow E \odot E \qquad E \rightarrow a$$

a⊙a⊙a

Derivation (1)

<u>E</u>

Derivation (1)

<u>E</u>

Derivation (1)

<u>E</u>

$$E \rightarrow E \odot E \qquad E \rightarrow a$$

$$E \qquad a \odot a \odot a$$

$$E \qquad \bullet \qquad E$$

Derivation (1)

$$E \rightarrow E \odot E \qquad E \rightarrow a$$

a O a O a

Derivation (1)

$$E \rightarrow E \odot E$$
 $E \rightarrow a$

a O a O a

Derivation (1)

<u>E</u> <u>E</u> ⊙ E ⊙ E

$$E \rightarrow E \odot E$$
 $E \rightarrow a$

a O a O a

Derivation (1)

<u>E</u>

<u>E</u> ⊙ E

 $\underline{E} \odot E \odot E$

a ⊙ <u>E</u> ⊙ E

$$E \rightarrow E \odot E \qquad E \rightarrow a$$

a O a O a

Derivation (1)

<u>E</u> ⊙ E <u>E</u> ⊙ E ⊙ E a ⊙ <u>E</u> ⊙ E

$$E \rightarrow E \odot E \qquad E \rightarrow a$$

a O a O a

Derivation (1)

<u>E</u>

<u>E</u> ⊙ E

 $\underline{E} \odot E \odot E$

a ⊙ <u>E</u> ⊙ E

a ⊙ a ⊙ <u>E</u>

a o a o a

a O a O a

$$E \rightarrow E \odot E \qquad E \rightarrow a$$

Derivation (1)

<u>E</u>

<u>E</u> ⊙ E

 $\underline{E} \odot E \odot E$

a ⊙ <u>E</u> ⊙ E

a ⊙ a ⊙ <u>E</u>

a o a o a

a O a O a

$$E \rightarrow E \odot E \qquad E \rightarrow a$$

Derivation (1)

E

<u>E</u> ⊙ E

 $\underline{E} \odot E \odot E$

a ⊙ <u>E</u> ⊙ E

a ⊙ a ⊙ <u>E</u>

a ⊙ a ⊙ a

Derivation (2)

a O a O a

$$E \rightarrow E \odot E \qquad E \rightarrow a$$

$$E \rightarrow a$$

Derivation (1)

<u>E</u> ⊙ E

 $\underline{E} \odot E \odot E$

a ⊙ <u>E</u> ⊙ E

a ⊙ a ⊙ <u>E</u>

a ⊙ a ⊙ a

Derivation (2)

E

$$E \rightarrow E \odot E$$
 $E \rightarrow a$

a O a O a

Derivation (1)

<u>E</u>

<u>E</u> ⊙ E

 $\underline{E} \odot E \odot E$

a ⊙ <u>E</u> ⊙ E

a ⊙ a ⊙ <u>E</u>

a ⊙ a ⊙ a

Derivation (2)

<u>E</u>

$$E \rightarrow E \odot E$$
 $E \rightarrow a$

a O a O a

Derivation (1)

<u>E</u>

<u>E</u> ⊙ E

 $\underline{E} \odot E \odot E$

a ⊙ <u>E</u> ⊙ E

a ⊙ a ⊙ <u>E</u>

a o a o a

Derivation (2)

E

<u>E</u>

$$E \rightarrow E \odot E \qquad E \rightarrow a$$

$$E \rightarrow a$$

a O a O a

Derivation (1)

<u>E</u> ⊙ E

 $\underline{E} \odot E \odot E$

a ⊙ <u>E</u> ⊙ E

a ⊙ a ⊙ <u>E</u>

a O a O a

Derivation (2)

$$E \rightarrow E \odot E \qquad E \rightarrow a$$

$$E \rightarrow a$$

a O a O a

Derivation (1)

<u>E</u> ⊙ E

 $\underline{E} \odot E \odot E$

a ⊙ <u>E</u> ⊙ E

a ⊙ a ⊙ <u>E</u>

a O a O a

Derivation (2)

E

<u>E</u> ⊙ E

a ⊙ <u>E</u>

$$E \rightarrow E \odot E \qquad E \rightarrow a$$

$$E \rightarrow a$$

Derivation (1)

<u>E</u> ⊙ E

 $\underline{E} \odot E \odot E$

a ⊙ <u>E</u> ⊙ E

a ⊙ a ⊙ <u>E</u>

a O a O a

Derivation (2)

E

<u>E</u> ⊙ E

a ⊙ <u>E</u>

$$E \rightarrow E \odot E \qquad E \rightarrow a$$

$$E \rightarrow a$$

Derivation (1)

<u>E</u> ⊙ E

 $\underline{E} \odot E \odot E$

a ⊙ <u>E</u> ⊙ E

a ⊙ a ⊙ <u>E</u>

a O a O a

Derivation (2)

E

<u>E</u> ⊙ E

a ⊙ <u>E</u>

a ⊙ <u>E</u> ⊙ E

$$E \rightarrow E \odot E$$

$$E \rightarrow a$$

a o a o a

Derivation (1)

E

<u>E</u> ⊙ E

 $\underline{E} \odot E \odot E$

a ⊙ <u>E</u> ⊙ E

a ⊙ a ⊙ <u>E</u>

a o a o a

Derivation (2)

<u>E</u>

<u>E</u> ⊙ E

a ⊙ <u>E</u>

a ⊙ <u>E</u> ⊙ E

$$E \rightarrow E \odot E$$

$$E \rightarrow a$$

a ⊙ a ⊙ a

Derivation (1)

E

<u>E</u> ⊙ E

 $\underline{E} \odot E \odot E$

a ⊙ <u>E</u> ⊙ E

a ⊙ a ⊙ <u>E</u>

a O a O a

Derivation (2)

E

<u>E</u> ⊙ E

a ⊙ <u>E</u>

a ⊙ <u>E</u> ⊙ E

a ⊙ a ⊙ <u>E</u>

a O a O a

$$E \rightarrow E \odot E$$

$$E \rightarrow a$$

Derivation (1)

<u>E</u>

<u>E</u> ⊙ E

 $\underline{E} \odot E \odot E$

a ⊙ <u>E</u> ⊙ E

a ⊙ a ⊙ <u>E</u>

a O a O a

Derivation (2)

E

<u>E</u> ⊙ E

a ⊙ <u>E</u>

a ⊙ <u>E</u> ⊙ E

a ⊙ a ⊙ <u>E</u>

a O a O a

$$E \rightarrow E \odot E$$

$$E \rightarrow a$$

Derivation (1)

E

<u>E</u> ⊙ E

 $E \odot E \odot E$

a ⊙ <u>E</u> ⊙ E

a ⊙ a ⊙ <u>E</u>

a o a o a

Derivation (2)

E

<u>E</u> ⊙ E

a ⊙ <u>E</u>

a ⊙ <u>E</u> ⊙ E

a ⊙ a ⊙ <u>E</u>

a O a O a

$$E \rightarrow E \odot E \qquad E \rightarrow a$$

$$E \rightarrow a$$

Derivation (1)

<u>E</u> ⊙ E

 $\underline{E} \odot E \odot E$

a ⊙ <u>E</u> ⊙ E

a ⊙ a ⊙ <u>E</u>

a O a O a

Derivation (2)

<u>E</u>

<u>E</u> ⊙ E

a ⊙ <u>E</u>

a ⊙ <u>E</u> ⊙ E

a ⊙ a ⊙ <u>E</u>

a⊙a⊙a

Derivation (3)

<u>E</u>

E ⊙ <u>E</u>

 $E \odot E \odot \underline{E}$

 $E \odot \underline{E} \odot a$

<u>E</u> ⊙ a ⊙ a

a o a o a

a O a O a

$$E \rightarrow E \odot E \qquad E \rightarrow a$$

$$E \rightarrow a$$

Derivation (1)

<u>E</u>

<u>E</u> ⊙ E

<u>E</u> ⊙ E ⊙ E

a ⊙ a ⊙ <u>E</u>

a ⊙ a ⊙ a

Derivation (4)

E **⊙** *E*

<u>E</u> ⊙ a

 $a \odot \underline{E} \odot E$ $E \odot \underline{E} \odot a$

<u>E</u> ⊙ a ⊙ a

a o a o a

Derivation (2)

<u>E</u> ⊙ E

a ⊙ <u>E</u>

a ⊙ <u>E</u> ⊙ E

a ⊙ a ⊙ <u>E</u>

a⊙a⊙a

Derivation (3)

<u>E</u>

E ⊙ <u>E</u>

 $E \odot E \odot \underline{E}$

E ⊙ <u>*E*</u> ⊙ a

<u>E</u> ⊙ a ⊙ a

a o a o a

$$E \rightarrow E \odot E \qquad E \rightarrow a$$

$$E \rightarrow a$$

Derivation (1)

E <u>E</u> ⊙ E <u>E</u> ⊙ E ⊙ E a ⊙ <u>E</u> ⊙ E a ⊙ a ⊙ <u>E</u> a O a O a

Derivation (4)

E ⊙ <u>E</u> <u>E</u> ⊙ a $E \odot \underline{E} \odot a$ <u>E</u> ⊙ a ⊙ a a o a o a

Derivation (2)

<u>E</u> ⊙ E a ⊙ <u>E</u> a ⊙ <u>E</u> ⊙ E a ⊙ a ⊙ <u>E</u> a O a O a

Derivation (3)

<u>E</u> **E ⊙ <u>E</u>** $E \odot E \odot \underline{E}$ $E \odot \underline{E} \odot a$ **<u>E</u> ⊙ a ⊙ a** a o a o a

$$E \rightarrow E \odot E \qquad E \rightarrow a$$

$$E \rightarrow a$$

Derivation (1)

E <u>E</u> ⊙ E <u>E</u> ⊙ E ⊙ E a ⊙ <u>E</u> ⊙ E a ⊙ a ⊙ <u>E</u> a O a O a

Derivation (4)

E ⊙ <u>E</u> <u>E</u> ⊙ a $E \odot \underline{E} \odot a$ <u>E</u> ⊙ a ⊙ a a O a O a

Derivation (2)

<u>E</u> ⊙ E a ⊙ <u>E</u> a ⊙ <u>E</u> ⊙ E a ⊙ a ⊙ <u>E</u> a O a O a

Derivation (3)

<u>E</u> *E* ⊙ <u>*E*</u> $E \odot E \odot \underline{E}$ $E \odot \underline{E} \odot a$ **<u>E</u>** ⊙ a ⊙ a a o a o a

generating a string by leftmost derivations

$$E \rightarrow E \odot E \qquad E \rightarrow a$$

a ⊙ a ⊙ a

Derivation (1)

<u>E</u> <u>E</u>⊙ E <u>E</u>⊙ E⊙ E a⊙ <u>E</u>⊙ E a⊙ a⊙ <u>E</u> a⊙ a⊙ a

Derivation (4)

Derivation (2)

<u>E</u> <u>E</u>⊙ E a⊙ <u>E</u> a⊙ <u>E</u>⊙ E a⊙ a⊙ <u>E</u> a⊙ a⊙ a

Derivation (3)

E E ⊙ E ⊙ E E ⊙ E ⊙ a E ⊙ a ⊙ a a ⊙ a ⊙ a

generating a string by leftmost derivations

a ⊙ a ⊙ a

Derivation (1)

Derivation (4)

E © E © a
E © a © a
E © a © a
a © a © a

Derivation (2)

<u>E</u> <u>E</u>⊙ E a⊙ <u>E</u> a⊙ <u>E</u>⊙ E a⊙ a⊙ <u>E</u> a⊙ a⊙ a

Derivation (3)

<u>E</u> E⊙ <u>E</u>⊙ <u>E</u> E⊙ <u>E</u>⊙ a <u>E</u>⊙ a⊙ a a⊙ a⊙ a

generating a string by leftmost derivations

$$E \rightarrow E \odot E \qquad E \rightarrow a$$

a⊙a⊙a

Derivation (1)

Derivation (4)

Derivation (2)

Derivation (3)

generating a string by leftmost derivations

generating a string by rightmost derivations

Derivation (1) \underline{E} $\underline{E} \odot E$ $\underline{E} \odot E \odot E$ $\underline{a} \odot \underline{E} \odot E$ $\underline{a} \odot \underline{a} \odot \underline{E}$ $\underline{a} \odot \underline{a} \odot \underline{a}$

Derivation (2)

<u>E</u> E ⊙ <u>E</u> E ⊙ E ⊙ <u>E</u> E ⊙ a ⊙ a <u>E</u> ⊙ a ⊙ a a ⊙ a ⊙ a

Derivation (3)

generating a string by leftmost derivations

generating a string by rightmost derivations

a o a o a

a o a o a

a o a o a

Postupak (4)

 $\underline{E} \\
\underline{E} \\
\bigcirc E \\
\bigcirc a \\
\bigcirc$

Postupak (1)

<u>E</u> E ⊙ <u>E</u> E ⊙ a E ⊙ <u>E</u> ⊙ a <u>E</u> ⊙ a ⊙ a a ⊙ a ⊙ a

a o a o a

<u>E</u> ⊙ E

Derivation (4)

<u>E</u> E⊙<u>E</u> E⊙a E⊙<u>E</u>⊙a E⊙a⊙a a⊙a⊙a Derivation (2)

<u>E</u> <u>E</u> ⊙ E a ⊙ <u>E</u> ⊙ E a ⊙ a ⊙ <u>E</u> a ⊙ a ⊙ a **Derivation (3)**

<u>E</u> E ⊙ <u>E</u> ⊙ <u>E</u> E ⊙ <u>E</u> ⊙ a <u>E</u> ⊙ a ⊙ a a ⊙ a ⊙ a

generating a string by leftmost derivations

generating a string by rightmost derivations

A context-free grammar **G** is ambiguous

A context-free grammar **G** is ambiguous

if a string $w \in L(G)$ can be generated by more than one parse tree

A context-free grammar **G** is ambiguous

if a string $w \in L(G)$ can be generated by more than one parse tree

or

A context-free grammar **G** is ambiguous

if a string $w \in L(G)$ can be generated by more than one parse tree

or if a string $w \in L(G)$ can be generated by more than one leftmost derivation

A context-free grammar **G** is ambiguous

if a string $w \in L(G)$ can be generated by more than one parse tree

or if a string $w \in L(G)$ can be generated by more than one leftmost derivation

or

A context-free grammar **G** is ambiguous

if a string $w \in L(G)$ can be generated by more than one parse tree

or if a string $w \in L(G)$ can be generated by more than one leftmost derivation

or if a string $w \in L(G)$ can be generated by more than one rightmost derivation

A string w is ambiguous for grammar G

A string w is ambiguous for grammar G

if a string $w \in L(G)$ can be generated by more than one parse tree

A string w is ambiguous for grammar G

if a string $w \in L(G)$ can be generated by more than one parse tree

A language *L* is inherently ambiguous

A string w is ambiguous for grammar G

if a string $w \in L(G)$ can be generated by more than one parse tree

A language *L* is inherently ambiguous

if L cannot be generated by an unambiguous grammar G

A string w is ambiguous for grammar G

if a string $w \in L(G)$ can be generated by more than one parse tree

A language *L* is inherently ambiguous

if L cannot be generated by an unambiguous grammar G (all its grammars are ambiguous)

$$L_n = L_1 \cup L_2 = \{ a^n b^n c^m d^m \mid n \ge 1, m \ge 1 \} \cup \{ a^n b^m c^m d^n \mid n \ge 1, m \ge 1 \}$$

$$L_n = L_1 \cup L_2 = \{ a^n b^n c^m d^m \mid n \ge 1, m \ge 1 \} \cup \{ a^n b^m c^m d^n \mid n \ge 1, m \ge 1 \}$$

$$L(G_n) = L(G_1) \cup L(G_2)$$

$$L_n = L_1 \cup L_2 = \{ a^n b^n c^m d^m \mid n \ge 1, m \ge 1 \} \cup \{ a^n b^m c^m d^n \mid n \ge 1, m \ge 1 \}$$

$$L(G_n) = L(G_1) \cup L(G_2)$$

$$a^nb^nc^nd^n \in L$$

$$L_n = L_1 \cup L_2 = \{ a^n b^n c^m d^m \mid n \ge 1, m \ge 1 \} \cup \{ a^n b^m c^m d^n \mid n \ge 1, m \ge 1 \}$$

$$L(G_n) = L(G_1) \cup L(G_2)$$

```
a^nb^nc^nd^n \in L

a^nb^nc^nd^n \in L(G_1) and a^nb^nc^nd^n \in L(G_2)
```


Inherently ambiguous language

$$L_n = L_1 \cup L_2 = \{ a^n b^n c^m d^m \mid n \ge 1, m \ge 1 \} \cup \{ a^n b^m c^m d^n \mid n \ge 1, m \ge 1 \}$$

$$L(G_n) = L(G_1) \cup L(G_2)$$

$$a^n b^n c^n d^n \in L$$

$$a^n b^n c^n d^n \in L(G_1) \text{ and } a^n b^n c^n d^n \in L(G_2)$$

anbncndn - ambiguous string

Resolving ambiguity

Changing the language

Resolving ambiguity

Changing the grammar
Changing the language

$$G_1 = (\{E, T\}, \{a, \odot\},$$

$$G_1 = \{E, T\}, \{a, \odot\}, \{E \rightarrow E \odot T \mid T, T \rightarrow a\}, E$$

$$G_1 = \{E, T\}, \{a, \odot\}, \{E \rightarrow E \odot T \mid T, T \rightarrow a\}, E$$

$$G_1 = (\{E, T\}, \{a, \odot\}, \{E \rightarrow E \odot T \mid T, T \rightarrow a\}, E)$$

$$G_1 = (\{E, T\}, \{a, \odot\}, \{E \rightarrow E \odot T \mid T, T \rightarrow a\}, E)$$

$$G_1 = (\{E, T\}, \{a, \odot\}, \{E \rightarrow E \odot T \mid T, T \rightarrow a\}, E)$$

$$G_1 = (\{E, T\}, \{a, \odot\}, \{E \rightarrow E \odot T \mid T, T \rightarrow a\}, E)$$

$$G_1 = (\{E, T\}, \{a, \odot\}, \{E \rightarrow E \odot T \mid T, T \rightarrow a\}, E)$$

$$G_1 = \{\{E, T\}, \{a, \odot\}, \{E \rightarrow E \odot T \mid T, T \rightarrow a\}, E\}$$

$$G_2 = \{ \{E, T\}, \{a, \odot\}, \{E \rightarrow T \odot E \mid T, T \rightarrow a\}, E \}$$

$$G_1 = \{\{E, T\}, \{a, \odot\}, \{E \rightarrow E \odot T \mid T, T \rightarrow a\}, E\}$$

$$G_2$$
= $(\{E, T\}, \{a, \odot\}, \{E \rightarrow T \odot E \mid T, T \rightarrow a\}, E)$

$$G_1 = \{\{E, T\}, \{a, \odot\}, \\ \{E \rightarrow E \odot T \mid T, T \rightarrow a\}, \\ E\}$$

$$G_2 = (\{E, T\}, \{a, \odot\}, \{E \rightarrow T \odot E \mid T, T \rightarrow a\}, E)$$

$$G_1 = \{\{E, T\}, \{a, \odot\}, \{E \rightarrow E \odot T \mid T, T \rightarrow a\}, E\}$$

$$G_2$$
= $(\{E, T\}, \{a, \odot\}, \{E \rightarrow T \odot E \mid T, T \rightarrow a\}, E)$

$$G_1 = \{\{E, T\}, \{a, \odot\}, \\ \{E \rightarrow E \odot T \mid T, T \rightarrow a\}, \\ E\}$$

$$G_2$$
= $(\{E, T\}, \{a, \odot\}, \{E \rightarrow T \odot E \mid T, T \rightarrow a\}, E)$

$$G_1 = \{ \{E, T\}, \{a, \odot\}, \\ \{E \rightarrow E \odot T \mid T, T \rightarrow a\}, \\ E \}$$

$$G_2$$
= $(\{E, T\}, \{a, \odot\}, \{E \rightarrow T \odot E \mid T, T \rightarrow a\}, E)$

$$G_1 = (\{E, T\}, \{a, \odot\}, \{E \rightarrow E \odot T \mid T, T \rightarrow a\}, E)$$

$$G_2$$
= $(\{E, T\}, \{a, \odot\}, \{E \rightarrow T \odot E \mid T, T \rightarrow a\}, E)$

$$G_1 = \{\{E, T\}, \{a, \odot\}, \{E \rightarrow E \odot T \mid T, T \rightarrow a\}, E\}$$

$$G_2 = (\{E, T\}, \{a, \odot\}, \{E \rightarrow T \odot E \mid T, T \rightarrow a\}, E)$$

$$G_1 = (\{E, T\}, \{a, \odot\}, \{E \rightarrow E \odot T \mid T, T \rightarrow a\}, E)$$

$$G_1 = (\{E, T\}, \{a, \odot\}, \{E \rightarrow E \odot T \mid T, T \rightarrow a\}, E)$$

$$G_2$$
= $(\{E, T\}, \{a, \odot\}, \{E \rightarrow T \odot E \mid T, T \rightarrow a\}, E)$

$$\underline{E}$$

$$\underline{T} \odot E$$

$$a \odot \underline{E}$$

$$a \odot \underline{T} \odot E$$

$$a \odot a \odot \underline{E}$$

$$a \odot a \odot \underline{E}$$

$$a \odot a \odot \underline{A}$$

$$G_1 = \{\{E, T\}, \{a, \odot\}, \{E \rightarrow E \odot T \mid T, T \rightarrow a\}, E\}$$

$$G_2$$
= $(\{E, T\}, \{a, \odot\}, \{E \rightarrow T \odot E \mid T, T \rightarrow a\}, E)$

<u>E</u>	<u>E</u>
$\underline{T} \odot E$	$T \odot \underline{E}$
$a \odot \underline{E}$	$T \odot T \odot \underline{E}$
$a \odot \underline{T} \odot \underline{E}$	$T \odot T \odot \underline{T}$
$a \odot a \odot \underline{E}$	$T \odot \underline{T} \odot a$
$a \odot a \odot \underline{T}$	$\underline{T} \odot a \odot a$
$a \odot a \odot a$	$a \odot a \odot a$

$$G = (\{S, B\}, \{if, then, else\},$$


```
G = (\{S, B\}, \{\text{if, then, else}\}, \{S \rightarrow \text{if } B \text{ then } S \text{ else } S \mid \text{if } B \text{ then } S, B \rightarrow \text{true } | \text{ false}\}, S)
```



```
G = (\{S, B\}, \{\text{if, then, else}\}, \{S \rightarrow \text{if } B \text{ then } S \text{ else } S \mid \text{if } B \text{ then } S, B \rightarrow \text{true } | \text{ false}\}, S)
```

if B then if B then S else S


```
G = (\{S, B\}, \{\text{if, then, else}\}, \{S \rightarrow \text{if } B \text{ then } S \text{ else } S \mid \text{if } B \text{ then } S, B \rightarrow \text{true } | \text{ false}\}, S)
```

if B then if B then S else S

<u>S</u>


```
G = (\{S, B\}, \{\text{if, then, else}\}, \{S \rightarrow \text{if } B \text{ then } S \text{ else } S \mid \text{if } B \text{ then } S, B \rightarrow \text{true } | \text{ false}\}, S)
```

if B then if B then S else S

<u>S</u> if *B* then <u>S</u>


```
G = (\{S, B\}, \{\text{if, then, else}\}, \{S \rightarrow \text{if } B \text{ then } S \text{ else } S \mid \text{if } B \text{ then } S, B \rightarrow \text{true } | \text{ false}\}, S)
```

if B then if B then S else S


```
G = (\{S, B\}, \{\text{if, then, else}\}, \{S \rightarrow \text{if } B \text{ then } S \text{ else } S \mid \text{if } B \text{ then } S, B \rightarrow \text{true } | \text{ false}\}, S)
```

if B then if B then S else S

if B then S else S

S

$$G = (\{S, B\}, \{\text{if, then, else}\}, \{S \rightarrow \text{if } B \text{ then } S \text{ else } S \mid \text{if } B \text{ then } S, B \rightarrow \text{true } | \text{ false}\}, S)$$

if B then if B then S else S

$$G = (\{S, B\}, \{\text{if, then, else}\}, \{S \rightarrow \text{if } B \text{ then } S \text{ else } S \mid \text{if } B \text{ then } S, B \rightarrow \text{true } | \text{ false}\}, S)$$

if B then if B then S else S


```
G = (\{S, B\}, \{\text{if, then, else}\}, \{S \rightarrow \text{if } B \text{ then } S \text{ else } S \mid \text{if } B \text{ then } S, B \rightarrow \text{true } | \text{ false}\}, S)
```

if B then if B then S else S

$$G = (\{S, B\}, \{\text{if, then, else}\}, \{S \rightarrow \text{if } B \text{ then } S \text{ else } S \mid \text{if } B \text{ then } S, B \rightarrow \text{true } | \text{ false}\}, S)$$

if B then if B then S else S

if B then S else S

<u>S</u> if B then <u>S</u> else S

$$G = (\{S, B\}, \{\text{if, then, else}\}, \{S \rightarrow \text{if } B \text{ then } S \text{ else } S \mid \text{if } B \text{ then } S, B \rightarrow \text{true } | \text{ false}\}, S)$$

if B then if B then S else S

if B then S else S

if B then S else S if B then if B then S else S

$$G = (\{S, B\}, \{\text{if, then, else}\}, \{S \rightarrow \text{if } B \text{ then } S \text{ else } S \mid \text{if } B \text{ then } S, B \rightarrow \text{true } | \text{ false}\}, S)$$

if B then if B then S else S

if B then S else S

if B then S else S if B then if B then S else S

S

$$G = (\{S, B\}, \{\text{if, then, else}\}, \{S \rightarrow \text{if } B \text{ then } S \text{ else } S \mid \text{if } B \text{ then } S, B \rightarrow \text{true } | \text{ false}\}, S)$$

if B then if B then S else S

if B then S else S

if B then S else S if B then if B then S else S

$$G = (\{S, B\}, \{\text{if, then, else}\}, \{S \rightarrow \text{if } B \text{ then } S \text{ else } S \mid \text{if } B \text{ then } S, B \rightarrow \text{true } | \text{ false}\}, S)$$

if B then if B then S else S

if B then S else S

if B then S else S if B then if B then S else S

if true then if false then PRINT("X") else PRINT("Y")

if true then if false then PRINT("X") else PRINT("Y")

```
if true then
if false then
PRINT("X")
else
PRINT("Y")
```


if true then if false then PRINT("X") else PRINT("Y")

```
if true then
if false then
PRINT("X")
else
PRINT("Y")
```

```
if true then
if false then
PRINT("X")
else PRINT("Y")
```


$$G_1 = (\{ S, S_1, S_2, B\}, \{if, then, else\}, \}$$

$$G_1 = \{ \{S, S_1, S_2, B\}, \{\text{if, then, else}\}, \{S \rightarrow S_1 \mid S_2 \}$$


```
G_1 = \{\{S, S_1, S_2, B\}, \{\text{if, then, else}\}, \{S \rightarrow S_1 \mid S_2 \\ S_1 \rightarrow \text{if } B \text{ then } S_1 \text{ else } S_2 \}
```



```
G_1 = \{\{S, S_1, S_2, B\}, \{\text{if, then, else}\}, \\ \{S \rightarrow S_1 \mid S_2 \\ S_1 \rightarrow \text{if } B \text{ then } S_1 \text{ else } S_2 \\ S_2 \rightarrow \text{if } B \text{ then } S \mid \text{if } B \text{ then } S_1 \text{ else } S_2 \}, \\ S\}
```



```
G_1 = (\{S, S_1, S_2, B\}, \{\text{if, then, else}\}, \{S \rightarrow S_1 \mid S_2 \\ S_1 \rightarrow \text{if } B \text{ then } S_1 \text{ else } S_2 \\ S_2 \rightarrow \text{if } B \text{ then } S \mid \text{if } B \text{ then } S_1 \text{ else } S_2 \},
S)
```



```
G_1 = \{\{S, S_1, S_2, B\}, \{\text{if, then, else}\}, \\ \{S \rightarrow S_1 \mid S_2 \\ S_1 \rightarrow \text{if } B \text{ then } S_1 \text{ else } S_2 \\ S_2 \rightarrow \text{if } B \text{ then } S \mid \text{if } B \text{ then } S_1 \text{ else } S_2 \}, \\ S\}
```



```
G_{1} = \{\{S, S_{1}, S_{2}, B\}, \{\text{if, then, else}\}, \\ \{S \rightarrow S_{1} \mid S_{2} \\ S_{1} \rightarrow \text{if } B \text{ then } S_{1} \text{ else } S_{2} \\ S_{2} \rightarrow \text{if } B \text{ then } S \mid \text{if } B \text{ then } S_{1} \text{ else } S_{2} \}, \\ S\}
```



```
G_{1} = \{\{S, S_{1}, S_{2}, B\}, \{\text{if, then, else}\}, \\ \{S \rightarrow S_{1} \mid S_{2} \\ S_{1} \rightarrow \text{if } B \text{ then } S_{1} \text{ else } S_{2} \\ S_{2} \rightarrow \text{if } B \text{ then } S \mid \text{if } B \text{ then } S_{1} \text{ else } S_{2} \}, \\ S\}
```

S


```
G_1 = \{\{S, S_1, S_2, B\}, \{\text{if, then, else}\}, \\ \{S \rightarrow S_1 \mid S_2 \\ S_1 \rightarrow \text{if } B \text{ then } S_1 \text{ else } S_2 \\ S_2 \rightarrow \text{if } B \text{ then } S \mid \text{if } B \text{ then } S_1 \text{ else } S_2 \}, \\ S\}
```



```
G_1 = \{\{S, S_1, S_2, B\}, \{\text{if, then, else}\}, \\ \{S \rightarrow S_1 \mid S_2 \\ S_1 \rightarrow \text{if } B \text{ then } S_1 \text{ else } S_2 \\ S_2 \rightarrow \text{if } B \text{ then } S \mid \text{if } B \text{ then } S_1 \text{ else } S_2 \}, \\ S\}
```



```
G_1 = \{\{S, S_1, S_2, B\}, \{\text{if, then, else}\}, \\ \{S \rightarrow S_1 \mid S_2 \\ S_1 \rightarrow \text{if } B \text{ then } S_1 \text{ else } S_2 \\ S_2 \rightarrow \text{if } B \text{ then } S \mid \text{if } B \text{ then } S_1 \text{ else } S_2 \}, \\ S\}
```



```
G_1 = (\{S, S_1, S_2, B\}, \{\text{if, then, else}\}, \{S \rightarrow S_1 \mid S_2 \\ S_1 \rightarrow \text{if } B \text{ then } S_1 \text{ else } S_2 \\ S_2 \rightarrow \text{if } B \text{ then } S \mid \text{if } B \text{ then } S_1 \text{ else } S_2 \},
S)
```



```
G_1 = (\{S, S_1, S_2, B\}, \{\text{if, then, else}\}, \{S \rightarrow S_1 \mid S_2 \\ S_1 \rightarrow \text{if } B \text{ then } S_1 \text{ else } S_2 \\ S_2 \rightarrow \text{if } B \text{ then } S \mid \text{if } B \text{ then } S_1 \text{ else } S_2 \},
S)
```

if B then if B then S else S

 $\frac{S}{S_2}$ if *B* then $\frac{S}{S_2}$ if *B* then $\frac{S}{S_2}$ if *B* then if *B* then $\frac{S}{S_1}$ else $\frac{S}{S_2}$

 $((a)\odot(a))\odot(a)$

$$((a) \odot (a)) \odot (a)$$

$$((a) \odot (a)) \odot (a)$$

$$((a)\odot(a))\odot(a)$$

$$(a) \odot ((a) \odot (a))$$

$$G_3 = (\{ E \}, \{ a, \odot, (,) \},$$

$$((a)\odot(a))\odot(a)$$

$$G_3 = \{\{E\}, \{a, \odot, (,)\}, \{E \rightarrow (E) \odot (E) \mid a\}, E\}$$


```
((a) \odot (a)) \odot (a)
```

$$G_3 = \{\{E\}, \{a, \odot, (,)\}, \{E \rightarrow (E) \odot (E) \mid a\}, E\}$$

```
((a) \odot (a)) \odot (a)
```


$$((a) \odot (a)) \odot (a)$$

$$G_3 = \{\{E\}, \{a, \odot, (,)\}, \{E \rightarrow (E) \odot (E) \mid a\}, E\}$$

$$((a) \odot (a)) \odot (a)$$

E

$$((a) \odot (a)) \odot (a)$$

$$G_3 = \{\{E\}, \{a, \odot, (,)\}, \{E \rightarrow (E) \odot (E) \mid a\}, E\}$$

$$((a) \odot (a)) \odot (a)$$


```
((a) \odot (a)) \odot (a)
```

$$G_3 = \{\{E\}, \{a, \odot, (,)\}, \{E \rightarrow (E) \odot (E) \mid a\}, E\}$$

```
((a) \odot (a)) \odot (a)
```



```
((a) \odot (a)) \odot (a)
```

$$G_3 = \{\{E\}, \{a, \odot, (,)\}, \{E \rightarrow (E) \odot (E) \mid a\}, E\}$$

```
((a) \odot (a)) \odot (a)
```


$$((a) \odot (a)) \odot (a)$$

$$G_3 = \{\{E\}, \{a, \odot, (,)\}, \{E \rightarrow (E) \odot (E) \mid a\}, E\}$$

$$((a) \odot (a)) \odot (a)$$

$$((a) \odot (a)) \odot (a)$$

$$G_3 = \{\{E\}, \{a, \odot, (,)\}, \{E \rightarrow (E) \odot (E) \mid a\}, E\}$$

$$((a) \odot (a)) \odot (a)$$

$$(a) \odot ((a) \odot (a))$$

E

$$((a) \odot (a)) \odot (a)$$

$$G_3 = \{ \{ E \}, \{ a, \odot, (,) \}, \{ E \rightarrow (E) \odot (E) | a \}, E \}$$

$$((a) \odot (a)) \odot (a)$$

$$((a) \odot (a)) \odot (a)$$

$$G_3 = \{\{E\}, \{a, \odot, (,)\}, \{E \rightarrow (E) \odot (E) \mid a\}, E\}$$

$$((a) \odot (a)) \odot (a)$$

$$((a) \odot (a)) \odot (a)$$

$$G_3 = \{\{E\}, \{a, \odot, (,)\}, \{E \rightarrow (E) \odot (E) \mid a\}, E\}$$

$$((a) \odot (a)) \odot (a)$$

(a)⊙((a)⊙(a))

Goal

- Goal
 - any symbol of G is used in at least one derivation

- Goal
 - any symbol of *G* is used in at least one derivation
- A symbol X of grammar G = (V, T, P, S) is useful

- Goal
 - any symbol of G is used in at least one derivation
- A symbol X of grammar G = (V, T, P, S) is useful

$$s \stackrel{*}{\Rightarrow} \alpha x \beta \stackrel{*}{\Rightarrow} w$$

- Goal
 - any symbol of G is used in at least one derivation
- A symbol X of grammar G = (V, T, P, S) is useful

$$s \stackrel{*}{\Rightarrow} \alpha X \beta \stackrel{*}{\Rightarrow} w$$

A symbol X of grammar G = (V, T, P, S) is alive

- Goal
 - any symbol of G is used in at least one derivation
- A symbol X of grammar G = (V, T, P, S) is useful

$$s \stackrel{*}{\Rightarrow} \alpha X \beta \stackrel{*}{\Rightarrow} w$$

A symbol X of grammar G = (V, T, P, S) is alive

$$X \stackrel{*}{\Rightarrow} W_X$$

- Goal
 - any symbol of G is used in at least one derivation
- A symbol X of grammar G = (V, T, P, S) is useful

$$s \stackrel{*}{\Rightarrow} \alpha X \beta \stackrel{*}{\Rightarrow} w$$

A symbol X of grammar G = (V, T, P, S) is alive

$$X \stackrel{*}{\Rightarrow} W_X$$

• A symbol X of grammar G = (V, T, P, S) is reachable

- Goal
 - any symbol of G is used in at least one derivation
- A symbol X of grammar G = (V, T, P, S) is useful

$$s \stackrel{*}{\Rightarrow} \alpha X \beta \stackrel{*}{\Rightarrow} w$$

A symbol X of grammar G = (V, T, P, S) is alive

$$X \stackrel{*}{\Rightarrow} W_X$$

• A symbol X of grammar G = (V, T, P, S) is reachable

$$s \stackrel{*}{\Rightarrow} \alpha x \beta$$

alive + reachable ≠ useful

alive + reachable ≠ useful

$$X \stackrel{*}{\Rightarrow} W_X$$

alive + reachable ≠ useful

$$X \stackrel{*}{\Rightarrow} W_X$$

$$s \stackrel{*}{\Rightarrow} \alpha x \beta$$

alive + reachable ≠ useful

$$X \stackrel{*}{\Rightarrow} W_X$$

$$s \stackrel{*}{\Rightarrow} \alpha x \beta$$

At least one string α or β contains a dead symbol

alive + reachable ≠ useful

$$X \stackrel{*}{\Rightarrow} W_X$$

$$s \stackrel{*}{\Rightarrow} \alpha x \beta$$

At least one string α or β contains a dead symbol There is no derivation

alive + reachable ≠ useful

$$X \stackrel{*}{\Rightarrow} W_X$$

$$s \stackrel{*}{\Rightarrow} \alpha x \beta$$

At least one string α or β contains a dead symbol There is no derivation

$$s \Rightarrow \alpha x \beta \Rightarrow w$$

Unit productions

- Unit productions
 - productions of the form

- Unit productions
 - productions of the form

$$A \rightarrow B$$

- Unit productions
 - productions of the form

$$A \rightarrow B$$

ε-productions

- Unit productions
 - productions of the form

$$A \rightarrow B$$

- ε-productions
 - productions of the form

- Unit productions
 - productions of the form

$$A \rightarrow B$$

- ε-productions
 - productions of the form

$$A \rightarrow \varepsilon$$

Chomsky normal form

- Chomsky normal form
 - all productions have the form

- Chomsky normal form
 - all productions have the form

$$A \rightarrow BC$$

- Chomsky normal form
 - all productions have the form

$$A \rightarrow BC$$

$$A \rightarrow a$$

- Chomsky normal form
 - all productions have the form

$$A \rightarrow BC$$

$$A \rightarrow a$$

Greibach normal form

- Chomsky normal form
 - all productions have the form

$$A \rightarrow BC$$

$$A \rightarrow a$$

- Greibach normal form
 - all productions have the form

- Chomsky normal form
 - all productions have the form

$$A \rightarrow BC$$

$$A \rightarrow a$$

- Greibach normal form
 - all productions have the form

$$A \rightarrow a \alpha$$

1)
$$S \rightarrow a S a$$
 4) $A \rightarrow c B d$

4)
$$A \rightarrow c B c$$

2)
$$S \rightarrow b A d$$
 5) $A \rightarrow a A d$

5)
$$A \rightarrow a A \alpha$$

3)
$$S \rightarrow c$$

6)
$$B \rightarrow dAf$$

1)
$$S \rightarrow a S a$$
 4) $A \rightarrow c B d$

4)
$$A \rightarrow c B c$$

2)
$$S \rightarrow b A d$$
 5) $A \rightarrow a A d$

5)
$$A \rightarrow a A \alpha$$

3)
$$S \rightarrow c$$

6)
$$B \rightarrow dAf$$

1)
$$S \rightarrow a S a$$
 4) $A \rightarrow c B d$

4)
$$A \rightarrow c B c$$

2)
$$S \rightarrow b A d$$
 5) $A \rightarrow a A d$

5)
$$A \rightarrow a A d$$

3)
$$S \rightarrow c$$

6)
$$B \rightarrow dAf$$

$$A \Rightarrow \dots A \dots$$

1)
$$S \rightarrow a S a$$
 4) $A \rightarrow c B d$

4)
$$A \rightarrow c B c$$

2)
$$S \rightarrow b A d$$
 5) $A \rightarrow a A d$

5)
$$A \rightarrow a A \alpha$$

3)
$$S \rightarrow c$$

6)
$$B \rightarrow dAf$$

$$A \Rightarrow \dots B \dots$$

1)
$$S \rightarrow a S a$$

2)
$$S \rightarrow b A d$$

3)
$$S \rightarrow c$$

$$A \Rightarrow \dots B \dots$$

$$A \Rightarrow \dots A$$

1)
$$S \rightarrow a S a$$

3)
$$S \rightarrow c$$

$$A \Rightarrow \dots A \dots$$

Property of alive symbols

Property of alive symbols

If all right-hand symbols $X_1, X_2, ..., X_n$ are alive:

Property of alive symbols

If all right-hand symbols $X_1, X_2, ..., X_n$ are alive:

$$A \rightarrow X_1 X_2 \dots X_n$$

Property of alive symbols

If all right-hand symbols $X_1, X_2, ..., X_n$ are alive:

$$A \rightarrow X_1 X_2 \dots X_n$$

then a left-hand variable A is also alive

Property of alive symbols

If all right-hand symbols $X_1, X_2, ..., X_n$ are alive:

$$A \rightarrow X_1 X_2 \dots X_n$$

then a left-hand variable A is also alive

$$X_i \stackrel{*}{\Rightarrow} W_i, W_i \in T^*$$

Property of alive symbols

If all right-hand symbols $X_1, X_2, ..., X_n$ are alive:

$$A \rightarrow X_1 X_2 \dots X_n$$

then a left-hand variable A is also alive

$$X_i \stackrel{*}{\Rightarrow} W_i, W_i \in T^*$$

$$A \Rightarrow X_1 X_2 ... X_n \stackrel{*}{\Rightarrow} W_1 W_2 ... W_n$$

1)
$$S \rightarrow a A B S$$

4)
$$A \rightarrow c S A$$

7)
$$B \rightarrow c S B$$

2)
$$S \rightarrow b C A C d$$
 5) $A \rightarrow c C C$

5)
$$A \rightarrow C C C$$

8)
$$C \rightarrow c S$$

3)
$$A \rightarrow b A B$$

6)
$$B \rightarrow b A B$$

9)
$$C \rightarrow c$$

1)
$$S \rightarrow a A B S$$

4)
$$A \rightarrow c S A$$

7)
$$B \rightarrow c S B$$

2)
$$S \rightarrow b C A C d$$
 5) $A \rightarrow c C C$

5)
$$A \rightarrow c C C$$

8)
$$C \rightarrow c S$$

3)
$$A \rightarrow b A B$$

6)
$$B \rightarrow b A B$$

9)
$$C \rightarrow c$$

1)
$$S \rightarrow a A B S$$

4)
$$A \rightarrow c S A$$

7)
$$B \rightarrow c S B$$

2)
$$S \rightarrow b C A C d$$
 5) $A \rightarrow c C C$

5)
$$A \rightarrow C C C$$

8)
$$C \rightarrow c S$$

3)
$$A \rightarrow b A B$$

6)
$$B \rightarrow b A B$$

9)
$$C \rightarrow c$$

1)
$$S \rightarrow a A B S$$

4)
$$A \rightarrow c S A$$

7)
$$B \rightarrow c S B$$

2)
$$S \rightarrow b C A C d$$
 5) $A \rightarrow c C C$

5)
$$A \rightarrow c C C$$

8)
$$C \rightarrow c S$$

3)
$$A \rightarrow b A B$$

6)
$$B \rightarrow b A B$$

9)
$$\mathbf{C} \rightarrow \mathbf{c}$$

1)
$$S \rightarrow a A B S$$

2)
$$S \rightarrow b C A C d$$

3)
$$A \rightarrow b A B$$

4)
$$A \rightarrow c S A$$

5)
$$A \rightarrow C C C$$

6)
$$B \rightarrow b A B$$

7)
$$B \rightarrow c S B$$

8)
$$C \rightarrow c S$$

9)
$$C \rightarrow c$$

$$AliveList = \{ C \}$$

1)
$$S \rightarrow a A B S$$

4)
$$A \rightarrow c S A$$

7)
$$B \rightarrow c S B$$

2)
$$S \rightarrow b C A C d$$
 5) $A \rightarrow c C C$

5)
$$A \rightarrow c C C$$

8)
$$C \rightarrow c S$$

3)
$$A \rightarrow b A B$$

6)
$$B \rightarrow b A B$$

9)
$$C \rightarrow c$$

$$AliveList = \{ C, A \}$$

1)
$$S \rightarrow a A B S$$

2)
$$S \rightarrow b C A C d$$
 5) $A \rightarrow c C C$

3)
$$A \rightarrow b A B$$

4)
$$A \rightarrow c S A$$

5)
$$A \rightarrow c C C$$

6)
$$B \rightarrow b A B$$

7)
$$B \rightarrow c S B$$

8)
$$C \rightarrow c S$$

9)
$$C \rightarrow c$$

$$AliveList = \{ C, A \}$$

1)
$$S \rightarrow a A B S$$

4)
$$A \rightarrow c S A$$

7)
$$B \rightarrow c S B$$

2)
$$S \rightarrow b C A C d$$
 5) $A \rightarrow c C C$

5)
$$A \rightarrow c C C$$

8)
$$C \rightarrow c S$$

3)
$$A \rightarrow b A B$$

6)
$$B \rightarrow b A B$$

9)
$$C \rightarrow c$$

$$AliveList = \{ C, A, S \}$$

1)
$$S \rightarrow a A B S$$

4)
$$A \rightarrow c S A$$

7)
$$B \rightarrow c S B$$

2)
$$S \rightarrow b C A C d$$
 5) $A \rightarrow c C C$

5)
$$A \rightarrow c C C$$

8)
$$C \rightarrow c S$$

3)
$$A \rightarrow b A B$$

6)
$$B \rightarrow b A B$$

9)
$$C \rightarrow c$$

$$AliveList = \{ C, A, S \}$$

1)
$$S \rightarrow a A B S$$

2)
$$S \rightarrow b C A C d$$

3)
$$A \rightarrow b A B$$

1)
$$S \rightarrow a A B S$$

4)
$$A \rightarrow c S A$$

7)
$$B \rightarrow c S B$$

2)
$$S \rightarrow b C A C d$$
 5) $A \rightarrow c C C$

5)
$$A \rightarrow c C C$$

8)
$$C \rightarrow c S$$

3)
$$A \rightarrow b A B$$

6)
$$B \rightarrow b A B$$

9)
$$\mathbf{C} \rightarrow \mathbf{c}$$

$$AliveList = \{ C, A, S \}$$

1)
$$S \rightarrow aABS$$

2)
$$S \rightarrow b C A C d$$

3)
$$A \rightarrow b A B$$

1)
$$S \rightarrow a A B S$$

4)
$$A \rightarrow c S A$$

7)
$$B \rightarrow c S B$$

2)
$$S \rightarrow b C A C d$$
 5) $A \rightarrow c C C$

5)
$$A \rightarrow c C C$$

8)
$$C \rightarrow c S$$

3)
$$A \rightarrow b A B$$

6)
$$B \rightarrow b A B$$

9)
$$C \rightarrow c$$

$$AliveList = \{ C, A, S \}$$

2)
$$S \rightarrow b C A C d$$

3)
$$A \rightarrow b A B$$

1)
$$S \rightarrow a A B S$$

4)
$$A \rightarrow c S A$$

7)
$$B \rightarrow c S B$$

2)
$$S \rightarrow b C A C d$$
 5) $A \rightarrow c C C$

5)
$$A \rightarrow c C C$$

8)
$$C \rightarrow c S$$

3)
$$A \rightarrow b A B$$

6)
$$B \rightarrow b A B$$

9)
$$C \rightarrow c$$

$$AliveList = \{ C, A, S \}$$

2)
$$S \rightarrow b C A C d$$

1)
$$S \rightarrow a A B S$$

4)
$$A \rightarrow c S A$$

7)
$$B \rightarrow c S B$$

2)
$$S \rightarrow b C A C d$$

5)
$$A \rightarrow c C C$$

8)
$$C \rightarrow c S$$

3)
$$A \rightarrow b A B$$

6)
$$B \rightarrow b A B$$

9)
$$\mathbf{C} \rightarrow \mathbf{c}$$

$$AliveList = \{ C, A, S \}$$

2)
$$S \rightarrow b C A C d$$

4)
$$A \rightarrow c S A$$

5)
$$A \rightarrow C C C$$

6)
$$B \rightarrow b A B$$

1)
$$S \rightarrow a A B S$$

4)
$$A \rightarrow c S A$$

7)
$$B \rightarrow c S B$$

2)
$$S \rightarrow b C A C d$$
 5) $A \rightarrow c C C$

5)
$$A \rightarrow C C C$$

8)
$$C \rightarrow c S$$

3)
$$A \rightarrow b A B$$

6)
$$B \rightarrow b A B$$

9)
$$C \rightarrow c$$

$$AliveList = \{ C, A, S \}$$

2)
$$S \rightarrow b C A C d$$

4)
$$A \rightarrow c S A$$

5)
$$A \rightarrow C C C$$

1)
$$S \rightarrow a A B S$$

4)
$$A \rightarrow c S A$$

7)
$$B \rightarrow c S B$$

2)
$$S \rightarrow b C A C d$$
 5) $A \rightarrow c C C$

5)
$$A \rightarrow c C C$$

8)
$$C \rightarrow c S$$

3)
$$A \rightarrow b A B$$

6)
$$B \rightarrow b A B$$

9)
$$C \rightarrow c$$

$$AliveList = \{ C, A, S \}$$

2)
$$S \rightarrow b C A C d$$

4)
$$A \rightarrow c S A$$

7)
$$B \rightarrow c S B$$

8)
$$C \rightarrow c S$$

9)
$$C \rightarrow c$$

1)
$$S \rightarrow a A B S$$

4)
$$A \rightarrow c S A$$

7)
$$B \rightarrow c S B$$

2)
$$S \rightarrow b C A C d$$

5)
$$A \rightarrow c C C$$

8)
$$C \rightarrow c S$$

3)
$$A \rightarrow b A B$$

6)
$$B \rightarrow b A B$$

9)
$$C \rightarrow c$$

$$AliveList = \{ C, A, S \}$$

2)
$$S \rightarrow b C A C d$$

4)
$$A \rightarrow c S A$$

5)
$$A \rightarrow c C C$$

8)
$$C \rightarrow c S$$

9)
$$C \rightarrow c$$

OldAliveList = \emptyset ;


```
OldAliveList = \emptyset;
NewAliveList = { A \mid A \rightarrow w \text{ and } w \in T^* };
```



```
OldAliveList = \emptyset;

NewAliveList = { A \mid A \rightarrow w \text{ and } w \in T^* };

while (OldAliveList!= NewAliveList)
```



```
OldAliveList = \emptyset;

NewAliveList = { A \mid A \rightarrow w \text{ and } w \in T^* };

while (OldAliveList!= NewAliveList)

{
```



```
OldAliveList = ∅;

NewAliveList = { A | A→w and w∈ T* };

while (OldAliveList!= NewAliveList)

{

OldAliveList = NewAliveList;
```



```
OldAliveList = ∅;
NewAliveList = { A | A→w and w∈ T* };

while (OldAliveList!= NewAliveList)
{
OldAliveList = NewAliveList;
NewAliveList =
```



```
OldAliveList = ∅;
NewAliveList = { A | A→w and w∈ T* };

while (OldAliveList!= NewAliveList)
{
OldAliveList = NewAliveList;
NewAliveList =
OldAliveList ∪
```



```
OldAliveList = \emptyset;

NewAliveList = \{A \mid A \rightarrow w \text{ and } w \in T^*\};

\frac{\text{while } (OldAliveList != NewAliveList)}{\{ \\ OldAliveList = NewAliveList; \\ NewAliveList = \\ OldAliveList \cup \\ \{A \mid A \rightarrow \alpha \text{ and } \alpha \in (T \cup OldAliveList)^*\}; \}
```



```
OldAliveList = \emptyset;

NewAliveList = \{A \mid A \rightarrow w \text{ and } w \in T^*\};

\frac{\text{while } (\text{OldAliveList}! = \text{NewAliveList})}{\{}
OldAliveList = \text{NewAliveList};
\text{NewAliveList} = \\
OldAliveList \cup \\
\{A \mid A \rightarrow \alpha \text{ and } \alpha \in (T \cup OldAliveList)^*\};
\}
```



```
OldAliveList = \emptyset;

NewAliveList = { A \mid A \rightarrow w \text{ and } w \in T^* };

while (OldAliveList!= NewAliveList)

{ OldAliveList = NewAliveList;

NewAliveList = OldAliveList \cup

{ A \mid A \rightarrow \alpha \text{ and } \alpha \in (T \cup OldAliveList)^* };

}

AliveList = NewAliveList;
```

