Question 4

You have recently started in the market research division of a box company in Tustin, CA. As one of your first tasks, Randy, the head of market research, asks you to analyze the following data from a recent poll of 5,000 Californians:

Question: If you were to purchase boxes in the next few months, would you prefer corrugated or uncorrugated cardboard for your boxes?

gender	age bucket	urbanicity	California Population	Respondents	Prefer Corrugated	
male	18 to 35	urban	4,815,108	252	164	
female	18 to 35	urban	4,151,623	260	145	
male	18_to_35	rural	2,342,416	234	156	
female	18_to_35	rural	1,854,720	228	123	
male	36_to_64	urban	6,676,992	678	451	
female	36_to_64	urban	6,259,680	714	373	
male	36_to_64	rural	3,338,496	684	434	
female	36_to_64	rural	2,543,616	568	293	
male	65_plus	urban	1,516,234	354	225	
female	65_plus	urban	1,608,023	428	224	
male	65_plus	rural	741,888	260	168	
female	65 plus	rural	927.360	341	187	

For your convenience, the individual-level responses from the poll are provided in "poll_responses.csv" which you should have received along with this exam (yes responses are coded as 1 and no responses as 0 in the file). The questions below can be answered with or without this additional data.

Part A. What is your best estimate for the percentage of Californians who prefer corrugated cardboard for their boxes? What is the 95% confidence interval for this estimate? Please show your work.

In [13]: import statsmodels #you seem to need this AND the next line

```
#from statsmodels.stats.proportion import proportions ztest
          import pandas as pd
 In [8]: poll = pd.read csv("poll responses.csv")
         poll.head(2)
 Out[8]:
             gender age_bucket urbanicity prefer_corrugated
              male
                     18_to_35
                                 urban
                     18_to_35
                                 urban
                                                   1
          1
              male
 In [9]: | x = poll.prefer corrugated
         x.head(4) #need a few more rows to properly see it
 Out[9]: 0
              1
              1
         1
              1
         Name: prefer corrugated, dtype: int64
In [14]: count = x.sum()
          nobs = x.count()
          statsmodels.stats.proportion.proportion confint(\
                     count, nobs, alpha=0.05, method='normal')
          #alpha is significance level; #method is normal for Z test
          #lower bound, upper bound of 95% confidence interval
Out[14]: (0.5748433633316954, 0.6021212437468888)
```

Part B. Are men and women significantly different in their likelihood to prefer corrugated cardboard?

```
First, we will sove this with a z test, since that's the way I did it on the exam. Then we will sove it
            with a t test, since that can also be permissible.
Two sample proportion z test
  In [11]:
            #first we start to do the analogy to a SQL where clause to get the genders set
            poll[poll["gender"] == 'male'].head(3)
  Out[11]:
                gender age_bucket urbanicity prefer_corrugated
             0
                         18_to_35
                                     urban
                 male
                         18_to_35
                                                        1
                 male
                                     urban
                 male
                         18_to_35
                                     urban
                                                        1
  In [12]: poll[poll["gender"] == 'female'].head(3)
  Out[12]:
                  gender age_bucket urbanicity prefer_corrugated
                          18_to_35
             252 female
                                       urban
             253 female
                          18_to_35
                                      urban
                                                          1
             254
                 female
                          18_to_35
                                       urban
  In [15]: | #now we need to 'select' for only the 'prefer corrugated' column
            poll[poll["gender"] == 'male']['prefer corrugated'].head(3)
  Out[15]: 0
                  1
            1
                  1
            Name: prefer_corrugated, dtype: int64
  In [16]: poll[poll["gender"]=='female']['prefer corrugated'].head(3)
  Out[16]: 252
                    1
            253
                    1
            254
                   1
            Name: prefer corrugated, dtype: int64
  In [17]: | #we'll store these as variables for easier use later
             men = poll[poll["gender"] == 'male']['prefer corrugated']
             women = poll[poll["gender"] == 'female']['prefer corrugated']
  In [18]: | #now for use in the proportions test, we need to make a mini dataframe
             #counts is the number of successes
             #in a binomial setup where it's just 1s and 0s, we can just use sum() to get t
             #nobs is the total number of trials, len() can work, though I chose to use cou
             nts()
             gender polls = pd.DataFrame({
                 "count": [men.sum(), women.sum()], #those that prefer corrugated
                  "nobs": [men.count(), women.count()]
                 }, index=['men', 'women'])
  In [19]: gender polls
  Out[19]:
                    count nobs
               men 1598 2462
             women 1345 2539
  In [20]:
```

```
women 1345 2539

#now we use this to feed into the stats test
#for some odd reason if you say gender_polls.count it will blow up...
#so you have to say gender_polls['count']
statsmodels.stats.proportion.proportions_ztest(gender_polls['count'], gender_polls['nobs'])
#z score, p-value
```

```
Out[20]: (8.573032591956961, 1.0079496366897543e-17)
```

So we can def reject the null, if we have a 8.57 z score, and p value with 16 zeros in front.

Let's also see how this would work for a t-test. Two sample mean t test

```
In [22]: from scipy import stats
```

count nobs proportion

0.65

0.53

men 1598 2462

women 1345 2539

```
In [23]: #you may be surprised, but we can actually use our work from above
#when we defined 'men' and 'women' to be the arrays of 1s and 0s for who
#preferred corrugated, siloed out for men and women, respectively
stats.ttest_ind(men, women)
Out [23]: Ttest_indResult(statistic=8.635004923552513, pvalue=7.790736712355893e-18)
```

So as we might expect, there's a little difference using the t distribution, but you can still see basically we have a 8.63 t score for whatever the degress of freedom were and a very low p value.

What this test is saying in both the z and t examples above is that there is a very low chance that

we'd see a differnece this wide between men and women by a mere random fluctuation.

```
So we can reject the null, and say there's probably a 'there, there'!
```

```
gender_polls['proportion'] = round(gender_polls['count'] / gender_polls['nobs'
],2)
gender_polls
Out[24]:
```

In [24]: #btw, just for the heck of it, let me show you what those numbers really were: