第2章: 关系数据库

Relational Databases

李东博

哈尔滨工业大学 计算学部 物联网与泛在智能研究中心 电子邮件: ldb@hit.edu.cn

2023年春

教学内容1

- ❶ 关系数据模型
 - ▶ 关系数据结构
 - ▶ 关系操作
 - ▶ 关系完整性约束
- ② 关系代数
 - ▶ 基本关系代数操作
 - ▶ 派生关系代数操作
 - ▶ 扩展关系代数操作
- 3 关系演算
 - ▶ 元组关系演算
 - ▶ 域关系演算

2.1 关系数据模型 Relational Data Model

3/79

关系数据模型(Relational Data Model)

- 关系数据模型(relational data model)是一种被广泛使用的实现数据模型(implementation data model)
- 关系数据模型是关系数据库管理系统的模型基础
 - Oracle
 - ► Microsoft SQL Server
 - ▶ IBM DB2
 - MySQL
 - PostgreSQL
 - openGauss
 - SQLite

关系数据模型的三要素

- 关系数据结构
- ② 关系操作
- ③ 关系完整性约束

关系数据模型要素1:关系数据结构

关系数据模型的三要素

- ① 关系数据结构
- ② 关系操作
- ③ 关系完整性约束
 - 关系数据模型使用的唯一数据结构—关系(relation)
 - 不严格地讲,关系就是一张二维表(table)
 - ▶ 行—元组(tuple)/记录(record),表示对象
 - ▶ 列—属性(attribute)/域(field),表示对象的性质

Example (关系)

Student					
PH-001	Nick	М	20	Physics	
CS-001	Elsa	F	19	CS	
CS-002	Ed	М	19	CS	
MA-001	Abby	F	18	Math	
MA-002	Cindy	F	19	Math	

关系(Relation)的数学定义 |

Definition (关系)

设 D_1, D_2, \ldots, D_n 是n个值域(domain), $D_1 \times D_2 \times \cdots \times D_n$ 的子集R称作 D_1, D_2, \ldots, D_n 上的关系(relation),记作 $R(D_1, D_2, \ldots, D_n)$ 。

- R-关系名
- n—关系R的度(degree)
- $(d_1, d_2, ..., d_n) \in R$ —关系R的元组(tuple),其中 d_i 是元组的分量(component)

关系(Relation)的数学定义 II

Example (关系)

 $D_1 =$ 学号集合, $D_2 =$ 姓名集合, $D_3 = \{M, F\}$, $D_4 = \mathbb{N}$, $D_5 =$ 系名集合

Student					
PH-001	Nick	М	20	Physics	
CS-001	Elsa	F	19	CS	
CS-002	Ed	М	19	CS	
MA-001	Abby	F	18	Math	
MA-002	Cindy	F	19	Math	

因为 $Student \subseteq D_1 \times D_2 \times D_3 \times D_4 \times D_5$,所以Studnet是一个关系

关系的正确性

- $D_1 \times D_2 \times \cdots \times D_n$ 的任意子集都是关系,但未必都是正确的关系
- 只有符合客观实际的关系才是正确的关系

Example (不正确的关系)

Student					
PH-001	Nick	М	20	Physics	
CS-001	Elsa	F	19	CS	
CS-002	Ed	М	19	CS	
MA-001	Abby	F	18	Math	
MA-002	Cindy	F	19	Math	
MA-002	Cindy	F	20	Math	

因为一个人不能同时有2个年龄,所以该Student关系是不正确的

8 / 79

关系的属性(Attributes)

Definition (属性)

由于域可能相同,为了加以区分,可为关系 $R(D_1,D_2,\ldots,D_n)$ 的每个域 D_i 起一个不同的名字 A_i ,称作属性(attribute),故关系R常表示为 $R(A_1,A_2,\ldots,A_n)$ 。

Example (属性)

Student				
Sno	Sname	Ssex	Sage	Sdept
PH-001	Nick	М	20	Physics
CS-001	Elsa	F	19	CS
CS-002	Ed	М	19	CS
MA-001	Abby	F	18	Math
MA-002	Cindy	F	19	Math

属性Sno的域是学号集合, 属性Sname的域是姓名集合, 属性Ssex的域是 $\{M,F\}$, 属性Sage的域是 \mathbb{N} , 属性Sdept的域是系名集合

关系的键(Keys)

关系的某些属性集合具有区分不同元组的作用,称作键(key)

Definition (超键)

如果关系的某一组属性的值能唯一标识每个元组,则称该组属性为超键(super key)。

Example (超键)

SC				
Sno	Cno	Grade		
PH-001	1002	92		
PH-001	2003	85		
PH-001	3006	88		
CS-001	1002	95		
CS-001	3006	90		
CS-002	3006	80		
MA-001	1002			

属性集合{Sno, Cno}和{Sno, Cno, Grade}都是关系SC的超键

候选键(Candidate Keys)

Definition (候选键)

如果一个超键的任意真子集都不是超键,则称该超键为候选键(candidate key)。候选键=极小的(minimal)超键。

Example (候选键)

SC				
Sno	Cno	Grade		
PH-001	1002	92		
PH-001	2003	85		
PH-001	3006	88		
CS-001	1002	95		
CS-001	3006	90		
CS-002	3006	80		
MA-001	1002			

{Sno}和{Cno}都不是SC的超键,故{Sno, Cno}是SC的候选键

候选键是关系数据库规范化理论(第5章)中的重要概念! ▶ ◆ ■ ▶ ■ ◆ ○

主键(Primary Keys)

Definition (主键)

每个关系都有至少一个候选键,人为指定其中一个作为主键(primary key)。

Example (主键)

SC				
Sno	Cno	Grade		
PH-001	1002	92		
PH-001	2003	85		
PH-001	3006	88		
CS-001	1002	95		
CS-001	3006	90		
CS-002	3006	80		
MA-001	1002			

因为SC只有一个候选键,即{Sno, Cno},所以SC的主键只能是{Sno, Cno}。xx

外键(Foreign Keys) I

不同关系中的元组可以存在联系,这种联系是通过外键建立起来的

Definition (外键)

设F是关系R的属性子集。若F与关系S的主键K相对应,则称F是R的外键(foreign key)

- R—参照关系(referring relation)
- S—被参照关系(referred relation)
- R与S可以是同一关系(什么情况下可以?)

外键(Foreign Keys) II

Example (外键)

SC

Sno	Cno	Grade
PH-001	1002	92
PH-001	2003	85
PH-001	3006	88
CS-001	1002	95
CS-001	3006	90
CS-002	3006	80
MA-001	1002	

	Student			
Sno	Sname	Ssex	Sage	Sdept
PH-001	Nick	М	20	Physics
CS-001	Elsa	F	19	CS
CS-002	Ed	М	19	CS
MA-001	Abby	F	18	Math
MA-002	Cindy	F	19	

- SC.Sno和Student.Sno分别表示SC和Student的属性Sno
- SC.Sno是SC的外键,它参照Student.Sno

关系数据模型要素2: 关系操作

关系数据模型的三要素

- 关系数据结构
- ② 关系操作
- ◎ 关系完整性约束
 - 查询操作: 从关系数据库中查找数据
 - 更新操作: 对关系数据库进行更新
 - ▶ 插入元组
 - ▶ 修改元组
 - ▶ 删除元组

查询语言(Query Languages)

查询语言(query language)是用于表示关系操作的语言

查询语言的类型

- 关系代数(relational algebra) (第2.2节)
 - ▶ 使用关系代数表达式明确给出查询的执行过程
- 关系演算(relational calculus) (第2.3节)
 - ▶ 使用谓词逻辑表达式描述查询
 - ▶ 元组关系演算(tuple relational calculus): 谓词逻辑变量是元组
 - ▶ 域关系演算(domain relational calculus): 谓词逻辑变量是域
- 结构化查询语言SQL (第3章)
 - ▶ 具有关系代数和关系演算的双重特点
 - ▶ 集DDL、DML、DCL于一体

16 / 79

关系数据模型要素3: 关系完整性约束

关系数据模型的三要素

- 关系数据结构
- ② 关系操作
- ③ 关系完整性约束
 - 完整性约束(integrity constraints): 关系数据库中的所有数据必须满足的约束条件
 - 完整性约束的类型
 - ① 实体完整性(entity integrity)
 - ② 参照完整性(referential integrity)
 - 用户定义完整性(user-defined integrity)

实体完整性约束 |

实体完整性约束规则

- ① 关系中任意元组的主键值必须唯一(unique)
- ② 关系中任意元组在主键中的属性值非空(not null)
 - ▶ 空值(null)表示值不存在,它既不是0,也不是空串

实体完整性约束 ||

Example (实体完整性约束)

SC				
Sno	Cno	Grade		
PH-001	1002	92		
PH-001	2003	85		
PH-001	3006	88		
CS-001	1002	95		
CS-001	3006	90		
CS-002	3006	80		
MA-001	1002			

- {Sno, Cno}是SC的主键
- 所有元组的Sno和Cno属性值组合必须唯一▶颁示
- 任意元组的Sno和Cno属性值必须非空 Dixin

4 D > 4 P > 4 B > 4 B > B 900

参照完整性约束 |

不同关系中的元组可以存在联系,这种联系是通过外键建立起来的

参照完整性约束规则

设F是关系R的外键,F参照关系S的主键,则R中任意元组的F属性值必须满足以下两个条件之一:

- ① F的值为空
- ② 若F的值不为空,则F的值必须在S中存在

参照完整性约束 ||

Example (参照完整性约束)

SC				
Sno	Cno	Grade		
PH-001	1002	92		
PH-001	2003	85		
PH-001	3006	88		
CS-001	1002	95		
CS-001	3006	90		
CS-002	3006	80		
MA-001	1002			

Student				
Sno	Sname	Ssex	Sage	Sdept
PH-001	Nick	М	20	Physics
CS-001	Elsa	F	19	CS
CS-002	Ed	М	19	CS
MA-001	Abby	F	18	Math
MA-002	Cindy	F	19	

- SC.Sno和Student.Sno分别表示SC和Student的属性Sno
- SC.Sno是SC的外键,它参照Student.Sno
- SC.Sno的属性值集合必须是Student.Sno属性值集合的子集 ▶३३亩

参照完整性约束 |||

Example (参照完整性约束)

9	ìtu	de	nt

Sno	Sname	Ssex	Sage	Sdept
PH-001	Nick	М	20	Physics
CS-001	Elsa	F	19	CS
CS-002	Ed	М	19	CS
MA-001	Abby	F	18	Math
MA-002	Cindy	F	19	

Department

Берагипени				
Dept	Addr			
Physics	B1			
CS	B2			
Math	B3			

- Sdept是Student的外键,它参照Department的Dept属性
- Student中元组的Sdept属性值可以为空,表示该学生的院系未知
- 如果Student中元组的Sdept属性值非空,则该Sdept属性值必须属于Department中Dept的属性值集合

用户定义完整性约束

根据应用需求定义的完整性约束

Example (用户定义完整性约束)

Student						
Sno	Sname	Ssex	Sage	Sdept		
PH-001	Nick	М	20	Physics		
CS-001	Elsa	F	19	CS		
CS-002	Ed	М	19	CS		
MA-001	Abby	F	18	Math		
MA-002	Cindy	F	19	Math		

- Student.Sname不可以为空
- Student.Ssex的值只能是'M'或'F'
- Student.Sage的值必须大于0 → 滚示

关系的模式(Schema)

关系的模式(schema)是对关系的结构与语义的描述

- 关系名、属性名、属性值域、主键、完整性约束、属性依赖关系等
- 关系模式是不经常变化的

Example (关系模式)

Student				
Sno	Sname	Ssex	Sage	Sdept

查看关系模式

- PostgreSQL和openGauss: \d Student
- MySQL: describe Student

关系的实例(Instance)

关系的实例(instance)是关系在某一时刻的取值

- 关系实例必须符合关系模式
- 关系实例是动态变化的

关系模式与关系实例的关系如同面向对象程序设计中类(class)与对 象(object)的关系

Example (关系实例)

Student						
Sno	Sname	Ssex	Sage	Sdept		
PH-001	Nick	М	20	Physics		
CS-001	Elsa	F	19	CS		
CS-002	Ed	М	19	CS		
MA-001	Abby	F	18	Math		
MA-002	Cindy	F	19	Math		

查看关系实例: SELECT * FROM Student;

2.2 关系代数 Relational Algebra

关系代数(Relational Algebra)

- 关系代数是一种使用关系代数表达式来表示查询的语言
- 关系代数表达式明确给出了查询的执行过程
- 关系代数操作的操作数(operand): 关系
- 关系代数操作的结果: 关系
- 关系代数操作的操作符(operator): 选择 σ 、投影 Π 、并 \cup 、差-、笛卡尔积 \times 、重命名 ρ 、交 \cap 、内连接 \bowtie 、外连接 \bowtie 等

Example (关系代数表达式)

 $\sigma_{Student.Sno=SC.Sno}(Student \times SC)$

- 关系Student和SC是关系代数操作×(笛卡尔积)的操作数
- Student \times SC的结果也是关系,它是关系代数操作 σ (选择)的操作数
- 上述关系代数表达式给出了执行过程: 先执行×操作,后执行σ操作

4 D > 4 D > 4 E > 4 E > E 990

基本关系代数操作

基本关系代数操作

- 🗓 选择σ
- ② 投影∏
- 3 并∪
- 差-
- ⑤ 笛卡尔积×
- 重命名ρ

电影《一代宗师》剧照

除一些特殊查询外,关系代数查询均可以由基本关系代数操作构成

选择操作(Selection)

- 功能: 从一个关系中选出满足给定条件的元组
- 语法: σ_θ(R)
 - ▶ σ—选择操作符
 - ▶ R—关系名
 - ▶ θ—条件表达式,形如A = 10, B > 5的简单逻辑表达式,或由与Λ、 或>、非「逻辑运算构成的复杂逻辑表达式

查询1的结果

CS-002

Example (选择操作)

■ 找出计算机系的全体学生 $\sigma_{Sdept='CS'}(Student)$ \bullet gs

 $\sigma_{Sdept='CS' \land Ssex='M'}(Student)$

Fd

Student Sno Sname Ssex Sage Sdept PH-001 Nick М **Physics** 20 CS-001 F CS Elsa 19 CS-002 CS Ed M 19 MA-001 F Math Abby 18 MA-002 Cindv F Math 19

② 找出计算机系的全体男同学

3110	Silalile	JSEX	Jage	Suept	
CS-001	Elsa	F	19	CS	
CS-002	Ed	М	19	CS	
查询2的结果					
Sno	Sname	Ssex	Sage	Sdept	

M

19

2023年春

CS

投影操作(Projection)

- 功能: 从一个关系中选出指定的列,并去掉重复元组
- 语法: Π₁(R)
 - ► П—投影操作符
 - ▶ R—关系名
 - ▶ L—投影属性列表

Example (投影操作)

■ 找出全体学生的学号和姓名 $\Pi_{Sno,Sname}(Student)$ \bigcirc %

② 找出全部的系 П_{Sdept}(Student) ♪ 減示

_				
C	ŀ۱۱	പപ	nt	
J	ιu	uc	IΙL	

<u>Student</u>				
Sno	Sname	Ssex	Sage	Sdept
PH-001	Nick	М	20	Physics
CS-001	Elsa	F	19	CS
CS-002	Ed	М	19	CS
MA-001	Abby	F	18	Math
MA-002	Cindy	F	19	Math

本治1的社里

旦网工的沿	<u> </u>	
Sno	Sname	查询2的结果
PH-001	Nick	Sdept
CS-001	Elsa	Physics
CS-002	Eric	CS
MA-001	Abby	Math
MA-002	Cindy	

2023年春

并操作(Union)

• 功能: 计算关系R和S的并集

语法: R∪S

▶ R,S—关系名

▶ ∪—并操作符

• 要求:

① R和S必须具有相同个数的属性

② R和S对应属性的值域必须相容

Example (集合并操作)

① 找出计算机系和数学系的学生

 $\sigma_{Sdept='CS'}(Student) \cup \sigma_{Sdept='MA'}(Student)$ (还有什么方法?)

 $\sigma_{Sdept='CS'}(Student)$

	Juept-	CJ (,	
Sno	Sname	Ssex	Sage	Sdept
CS-001	Elsa	F	19	CS
CS-002	Ed	М	19	CS

 $\sigma_{Sdept='MA'}(Student)$

Suept NIA (
Sno	Sname	Ssex	Sage	Sdept	
MA-001	Abby	F	18	Math	
MA-002	Cindy	F	19	Math	

太治1的4里

旦问1的名本								
Sno	Sname	Ssex	Sage	Sdept				
CS-001	Elsa	F	19	CS				
CS-002	Ed	М	19	CS				
MA-001	Abby	F	18	Math				
MA-002	A-002 Cindy		19	Math				

差操作(Difference)

- 功能: 计算关系R和S的差集
- ・ 语法: R − S
 - ▶ R.S—关系名
 - ▶ --差操作符
- 要求:
 - ① R和S必须具有相同个数的属性
 - ② R和S对应属性的值域必须相容

	SC	
Sno	Cno	Grade
PH-001	1002	92
PH-001	2003	85
PH-001	3006	88
CS-001	1002	95
CS-001	3006	90
CS-002	3006	80
MA-001	1002	

Example (差操作)

① 查询选修了1002号课程,但没有选修3006号课程的学生的学号

$$\Pi_{Sno}(\sigma_{Cno='1002'}(SC)) - \Pi_{Sno}(\sigma_{Cno='3006'}(SC)) \quad \blacksquare$$

 $\Pi_{Sno}(\sigma_{Cno='1002'}(SC)) \quad \Pi_{Sno}(\sigma_{Cno='3006'}(SC))$

Sno
PH-001
CS-001
MA-001

=

10.40.45.45.5.000

笛卡尔积操作 |

- 功能: 计算两个关系的笛卡尔积
- 语法: R×S
 - ▶ R, S—关系名
 - ▶ ×--笛卡尔积操作符

笛卡尔积操作 ||

Example (笛卡尔积操作)

Student							
Sno	Sname	Ssex	Sage	Sdept			
PH-001	Nick	М	20	Physics			
CS-001	Elsa	F	19	CS			
CS-002	Ed	М	19	CS			
MA-001	Abby	F	18	Math			
MA-002	Cindy	F	19	Math			

SC							
Sno	Cno	Grade					
PH-001	1002	92					
PH-001	2003	85					
PH-001	3006	88					
CS-001	1002	95					
CS-001	3006	90					
CS-002	3006	80					
MA-001	1002						

Student × SC ▶ 演示

Student.Sno	Sname	Ssex	Sage	Sdept	SC.Sno	Cno	Grade
PH-001	Nick	М	20	Physics	PH-001	1002	92
PH-001	Nick	М	20	Physics	PH-001	2003	85
PH-001	Nick	М	20	Physics	PH-001	3006	88
PH-001	Nick	М	20	Physics	CS-001	1002	95
PH-001	Nick	М	20	Physics	CS-001	3006	90
PH-001	Nick	М	20	Physics	CS-002	3006	80

笛卡尔积操作

- 笛卡尔积的作用仅仅是将R和S中的元组无条件地连接起来
- 笛卡尔积操作通常和选择操作一起使用, 即连接(join)

Example (笛卡尔积操作与选择操作结合)

● 查询已选课学生的信息

 $\sigma_{Student.Sno=SC.Sno}(Student \times SC)$ • ***

查询1的结果

Student.Sno	Sname	Ssex	Sage	Sdept	SC.Sno	Cno	Grade
PH-001	Nick	М	20	Physics	PH-001	1002	92
PH-001	Nick	М	20	Physics	PH-001	2003	85
PH-001	Nick	М	20	Physics	PH-001	3006	88
CS-001	Elsa	F	19	CS	CS-001	1002	95
CS-001	Elsa	F	19	CS	CS-001	3006	90
CS-002	Ed	М	19	CS	CS-002	3006	80
MA-001	Abby	F	18	Math	MA-001	1002	

35 / 79

重命名操作(Renaming)

- 功能: 修改关系名和(或)属性名
- 语法:
 - $ρ_{B \leftarrow A}(R)$: 将关系R的属性A更名为B
 - ② ρ_S(R): 将关系R更名为S
 - ρ_{S(A₁,A₂,...,A_n)}(R): 将关系R更名为S, 并将R的全部属性更名为A₁,A₂,...,A_n
- 当把一个关系和它自身进行自连接(self-join)时,需要区分同一个关系的两个副本。在这种情况下,重命名操作发挥着重要作用。

Example (重命名操作)

- 事关系SC的属性名Grade修改为ScoreρScore←Grade(SC)ρ
- ② 找出和Elsa在同一个系学习的学生的学号和姓名 $\Pi_{S2.Sno,S2.Sname}(\sigma_{S1.Sname='Elsa'}\wedge S1.Sdept=S2.Sdept(\rho_{S1}(Student)) \times \rho_{S2}(Student)))$ ① ※示
- ③ ★★ 找出3006号课程的最高分(课后练习)

基本关系代数习题 |

使用关系代数运算器² 在数据库(Database Systems The Complete Book -Exercise 2.4.1)上完成下列习题

选择

- What PC models have a speed of at least 3.00 and ram of at least 1024MB?
- What PC models have a speed of at least 3.00 or ram of at least 1024MB?

投影

- What are the manufacturers?
- What models does the manufacturer A produce?
- Find the model numbers of all color laser printers

并

• Find the model numbers and price of all PC's and all laptops

基本关系代数习题 ||

差

• Find the manufacturers that sell laptops but not PC's

笛卡尔积

- What manufactures make laptops with a hard disk of at least 100GB?
- What PC models with a price less than \$500 does the manufacturer A produce?

重命名

- Rename the hd attribute of a PC to ssd
- ♦ ★★ Find the model numbers of all printers that are cheaper than the printer model 3002

²https://dbis-uibk.github.io/relax

派生关系代数操作

- 目的: 只用基本关系代数操作来编写复杂查询是非常繁琐的, 因此 我们引入派生(derived)关系代数操作来简化查询编写
- 任何一项派生关系代数操作都可以用基本关系代数操作来表示

派生关系代数操作

- ① 交∩
- ② θ连接×θ
- ③ 自然连接⋈
- ∮ 外连接: 左外连接≥
 、右外连接≥
 、全外连接≥
- ⑤ 反连接▷
- ⑥ 除÷

交操作(Intersection)

- 功能: 计算关系R和S的交集
- 语法: R∩S
 - ▶ R,S—关系名
 - ▶ ∩—交操作符
- 要求:
 - R和S必须具有相同个数的属性
 - ② R和S对应属性的值域必须相容
- 等价变换: $R \cap S = R (R S)$

Example

① 查询既选修了1002号课程,又选修了3006号课程的学生的学号 $\Pi_{Sno}(\sigma_{Cno='1002'}(SC)) \cap \Pi_{Sno}(\sigma_{Cno='3006'}(SC))$ ① 注意

$$\Pi_{Sno}(\sigma_{Cno='1002'}(SC))$$
 $\Pi_{Sno}(\sigma_{Cno='3006'}(SC))$ 查询1的结果 Sno Sno PH-001 CS-001 CS-001 CS-001

 θ 连接(θ -Join) I

- 功能: 将关系R和S中满足给定连接条件θ的元组进行连接
- 语法: R ⋈_θ S
 - ▶ ⋈──内连接操作符
 - ▶ θ—连接条件,条件表达式的语法与选择操作条件相同
- R × S的结果包含R和S中的全部属性, 同名属性加关系名前缀

θ 连接(θ -Join) II

Example (θ连接)

Student					
Sno	Sname	Ssex	Sage	Sdept	
PH-001	Nick	М	20	Physics	
CS-001	Elsa	F	19	CS	
CS-002	Ed	М	19	CS	
MA-001	Abby	F	18	Math	
MA-002	Cindy	F	19	Math	

	SC	
Sno	Cno	Grade
PH-001	1002	92
PH-001	2003	85
PH-001	3006	88
CS-001	1002	95
CS-001	3006	90
CS-002	3006	80
MA-001	1002	

Student ⋈_{Student}.Sno=SC.Sno SC → 演示

Student.Sno	Sname	Ssex	Sage	Sdept	SC.Sno	Cno	Grade
PH-001	Nick	М	20	Physics	PH-001	1002	92
PH-001	Nick	М	20	Physics	PH-001	2003	85
PH-001	Nick	М	20	Physics	PH-001	3006	88
CS-001	Elsa	F	19	CS	CS-001	1002	95
CS-001	Elsa	F	19	CS	CS-001	3006	90
CS-002	Ed	М	19	CS	CS-002	3006	80
MA-001	Abby	F	18	Math	MA-001	1002	

 θ 连接(θ -Join)

Property

$$R \bowtie_{\theta} S = \sigma_{\theta}(R \times S)$$

Example

 查询计算机系学生的选课情况,列出学号、姓名、课号、得分 Π_{Student.Sno,Sname},Cno,Grade(σ_{Sdept='}CS'(Student ⋈_{Student.Sno=SC.Sno}SC))

Student $\bowtie_{Student.Sno=SC.Sno}$ SC

Student.Sno	Sname	Ssex	Sage	Sdept	SC.Sno	Cno	Grade
PH-001	Nick	М	20	Physics	PH-001	1002	92
PH-001	Nick	М	20	Physics	PH-001	2003	85
PH-001	Nick	М	20	Physics	PH-001	3006	88
CS-001	Elsa	F	19	CS	CS-001	1002	95
CS-001	Elsa	F	19	CS	CS-001	3006	90
CS-002	Ed	М	19	CS	CS-002	3006	80
MA-001	Abby	F	18	Math	MA-001	1002	

- 4 ロ ト 4 週 ト 4 差 ト 4 差 ト - 差 - 釣 Q C

等值连接(Equi-join)

等值连接(equi-join): 连接条件 θ 仅涉及相等比较的 θ 连接

自然连接(Natural Join) I

- 功能: 设 $\{A_1, A_2, ..., A_k\}$ 是关系R和S的同名属性集合 $R.A_1 = S.A_1 \land R.A_2 = S.A_2 \land \cdots \land R.A_k = S.A_k$ ① 从连接结果中去掉重复的同名属性(为什么?)
- · 语法: R ⋈ S

自然连接(Natural Join) II

Example (自然连接)

Student					
Sno	Sname	Ssex	Sage	Sdept	
PH-001	Nick	М	20	Physics	
CS-001	Elsa	F	19	CS	
CS-002	Ed	М	19	CS	
MA-001	Abby	F	18	Math	
MA-002	Cindy	F	19	Math	

	SC	
Sno	Cno	Grade
PH-001	1002	92
PH-001	2003	85
PH-001	3006	88
CS-001	1002	95
CS-001	3006	90
CS-002	3006	80
MA-001	1002	

Student ⋈ SC ▶演示

Sno	Sname	Ssex	Sage	Sdept	Cno	Grade
PH-001	Nick	М	20	Physics	1002	92
PH-001	Nick	М	20	Physics	2003	85
PH-001	Nick	М	20	Physics	3006	88
CS-001	Elsa	F	19	CS	1002	95
CS-001	Elsa	F	19	CS	3006	90
CS-002	Ed	М	19	CS	3006	80
MA-001	Abby	F	18	Math	1002	

自然连接与θ连接的区别

	自然连接	θ连接
连接条件	隐含给出	明确给出
连接结果的属性	去除重复的同名属性	保留重复的同名属性

Example (自然连接)

① 查询计算机系学生的选课情况,列出学号、姓名、课号、得分 $\Pi_{Sno,Sname,Cno,Grade}(\sigma_{Sdept='CS'}(Student imes SC))$

Student × SC

Sno	Sname	Ssex	Sage	Sdept	Cno	Grade
PH-001	Nick	М	20	Physics	1002	92
PH-001	Nick	М	20	Physics	2003	85
PH-001	Nick	М	20	Physics	3006	88
CS-001	Elsa	F	19	CS	1002	95
CS-001	Elsa	F	19	CS	3006	90
CS-002	Ed	М	19	CS	3006	80
MA-001	Abby	F	18	Math	1002	

内连接(Inner Join)

- 前面讲的连接都属于内连接(inner join)
- R和S的内连接 $(R \bowtie_{\theta} S$ 或 $R \bowtie S)$ 的结果只包含R和S中满足连接条件的元组
- R和S中不满足连接条件的元组均不会出现在连接结果中

Example (内连接)

查询选过课的学生的学号和姓名П_{Sno,Sname}(Student ⋈ SC)

Student ⋈ SC

Stadent A Se						
Sno	Sname	Ssex	Sage	Sdept	Cno	Grade
PH-001	Nick	М	20	Physics	1002	92
PH-001	Nick	М	20	Physics	2003	85
PH-001	Nick	М	20	Physics	3006	88
CS-001	Elsa	F	19	CS	1002	95
CS-001	Elsa	F	19	CS	3006	90
CS-002	Ed	М	19	CS	3006	80
MA-001	Abby	F	18	Math	1002	

因为Student × SC是内连接,所以学生MA-002不会出现在连接结果中

外连接(Outer Join) I

- 除了要在R和S的连接结果中保留满足连接条件的全部元组外,在 某些情况下,我们还需要在连接结果中保留R或(和)S中的不满足连 接条件的元组
- 在这种情况下,仅用内连接无法完成查询,因此引入外连接(outer join)

外连接(Outer Join) II

Example (外连接)

● 查询全体学生的选课情况(含未选课的学生)

Student					
Sno	Sname	Ssex	Sage	Sdept	
PH-001	Nick	М	20	Physics	
CS-001	Elsa	F	19	CS	
CS-002	Ed	М	19	CS	
MA-001	Abby	F	18	Math	
MA-002	Cindy	F	19	Math	

,		
	SC	
Sno	Cno	Grade
PH-001	1002	92
PH-001	2003	85
PH-001	3006	88
CS-001	1002	95
CS-001	3006	90
CS-002	3006	80
MA-001	1002	

想要的查询结果

Student.Sno	Sname	Ssex	Sage	Sdept	SC.Sno	Cno	Grade
PH-001	Nick	М	20	Physics	PH-001	1002	92
PH-001	Nick	М	20	Physics	PH-001	2003	85
PH-001	Nick	М	20	Physics	PH-001	3006	88
CS-001	Elsa	F	19	CS	CS-001	1002	95
CS-001	Elsa	F	19	CS	CS-001	3006	90
CS-002	Ed	М	19	CS	CS-002	3006	80
MA-001	Abby	F	18	Math	MA-001	1002	
MA-002	Cindy	F	19	Math			

外连接的分类

- 左外连接(left outer join)
- 右外连接(right outer join)
- 全外连接(full outer join)

左外θ连接(Left Outer θ-Join) I

指定R为左关系(left relation), S为右关系(right relation)

- 功能:
 - ① 将R和S中满足给定连接条件 θ 的元组进行连接,即计算 $R \bowtie_{\theta} S$
 - ② 对于R中不满足给定连接条件θ的元组,左外连接结果中也包含该元组,只不过S中属性的值都为空(null)
- 语法: R ⋈_θ S
 - ▶ ☑—左外连接操作符

左外θ连接(Left Outer θ-Join) II

Example (左外θ连接)

● 查询全体学生的选课情况(含未选课的学生) Student ≥ Student. Sno=SC. Sno SC

Student $\bowtie_{Student.Sno=SC.Sno} SC$

Student.Sno	Sname	Ssex	Sage	Sdept	SC.Sno	Cno	Grade
PH-001	Nick	М	20	Physics	PH-001	1002	92
PH-001	Nick	М	20	Physics	PH-001	2003	85
PH-001	Nick	М	20	Physics	PH-001	3006	88
CS-001	Elsa	F	19	CS	CS-001	1002	95
CS-001	Elsa	F	19	CS	CS-001	3006	90
CS-002	Ed	М	19	CS	CS-002	3006	80
MA-001	Abby	F	18	Math	MA-001	1002	
MA-002	Cindy	F	19	Math			

Question

为什么没有左内θ连接?

4 D > 4 A > 4 B > 4 B > B 9 9 9

左外自然连接(Left Outer Natural Join) I

指定R为左关系(left relation), S为右关系(right relation)

- 功能:
 - 将R和S中满足自然连接条件的元组进行连接,即计算RθS
 - ② 对于R中不满足自然连接条件θ的元组,左外自然连接结果中也包含该元组,只不过那些在S而不在R中的属性的值都为空(null)
- 语法: R ⋈ S
 - ▶ ☑—左外连接操作符

左外自然连接(Left Outer Natural Join) II

Example (左外自然连接)

■ 找出没选过课的同学的学号和姓名

 $\Pi_{Sno,Sname}(\sigma_{Cno=NULL}(Student \bowtie SC))$

Student.Sno	Sname	Ssex	Sage	Sdept	Cno	Grade
PH-001	Nick	М	20	Physics	1002	92
PH-001	Nick	М	20	Physics	2003	85
PH-001	Nick	М	20	Physics	3006	88
CS-001	Elsa	F	19	CS	1002	95
CS-001	Elsa	F	19	CS	3006	90
CS-002	Ed	М	19	CS	3006	80
MA-001	Abby	F	18	Math	1002	
MA-002	Cindy	F	19			

右外连接(Right Outer Join)

指定R为左关系(left relation), S为右关系(right relation)

右外θ连接

- 功能:
 - lacktriangle 将R和S中满足给定连接条件heta的元组进行连接,即计算R $\bowtie_{ heta} S$
 - ② 对于S中不满足给定连接条件θ的元组,右外连接结果中也包含该元组,只不过R中属性的值都为空(null)
- 语法: R ⋈_A S
 - ▶ ⋈—右外连接操作符

右外自然连接

- 功能:
 - 将R和S中满足自然连接条件的元组进行连接,即计算RNS
 - ② 对于S中不满足自然连接条件的元组,右外自然连接结果中也包含该元组,只不过那些在R而不在S中的属性的值都为空(null)
- 语法: R ⋈ S
 - ▶ ⋈—右外连接操作符

全外连接(Full Outer Join)

指定R为左关系(left relation), S为右关系(right relation)

全外θ连接

- 功能:
 - lacktriangle 将R和S中满足给定连接条件heta的元组进行连接,即计算R $\bowtie_{ heta} S$
 - ② 对于R中不满足给定连接条件θ的元组,全外连接结果中也包含该元组,只不过S中属性的值都为空(null)
 - ③ 对于S中不满足给定连接条件θ的元组,全外连接结果中也包含该元组,只不过R中属性的值都为空(null)
- 语法: R 对_A S
 - ▶ 」▼二一全外连接操作符

全外自然连接: 定义留作练习

Property

- $R \bowtie_{\theta} S = (R \bowtie_{\theta} S) \cup (R \bowtie_{\theta} S)$
- $R \bowtie S = (R \bowtie S) \cup (R \bowtie S)$

4□ ▶ 4回 ▶ 4 三 ▶ 4 三 ▶ 9 9 9

反连接(Anti Join) I

指定R为左关系, S为右关系

θ反连接

- 功能:
 - 1 找出R中不满足与S的连接条件θ的元组
- 语法: R ▷_θ S
 - ▶ ▷ 反连接操作符

自然反连接

- 功能:
 - 找出R中不满足与S的自然连接条件的元组
- 语法: R ▷ S

反连接(Anti Join) II

Example (反连接)

❶ 找出没选过课的同学的学号和姓名Π_{Sno,Sname}(Student ▷ SC)) ●※示

Student					
Sno	Sname	Ssex	Sage	Sdept	
PH-001	Nick	М	20	Physics	
CS-001	Elsa	F	19	CS	
CS-002	Ed	М	19	CS	
MA-001	Abby	F	18	Math	
MA-002	Cindy	F	19	Math	

SC					
Sno	Cno	Grade			
PH-001	1002	92			
PH-001	2003	85			
PH-001	3006	88			
CS-001	1002	95			
CS-001	3006	90			
CS-002	3006	80			
MA-001	1002				

Student ⊳ SC					
Sno	Sname	Ssex	Sage	Sdept	
MA-002	Cindy	F	19	Math	

除(Division)

- 目的: 我们经常要做下面这种查询: 找出选修了所有课程的学生。用基本关系代数操作来编写这种查询非常不便,因此引入除操作。
- 整数除法: 设x和y为正整数, x÷y的商是使得yz $\leq x$ 的最大的整数z
- 关系除法
 - ▶ R÷S的结果是一个关系,它只包含R中的属性,但不包含S中的属性
 - R÷S的结果是使得S×T⊂R的最大的关系T
- 语法: R÷S
 - ▶ :--除操作符

Sno	Cno]			
PH-001	1002				
PH-001	2003]	Cno]	Sno
PH-001	3006	ŀ	1002	=	PH-001
CS-001	1002	•	3006	_	CS-001
CS-001	3006		3000	J	C3-001
CS-002	3006				
MA-001	1002	1			

除(Division)

Example (除)

■ 找出选修了所有课程的学生的学号

$$\Pi_{Sno,Cno}(SC) \div \Pi_{Cno}(Course)$$

 $\Pi_{Sno,Cno}(SC)$

Sno	Cno
PH-001	1002
PH-001	2003
PH-001	3006
CS-001	1002
CS-001	3006
CS-002	3006
MA-001	1002

÷

:

查询1的结果 Sno PH-001

4□ > 4□ > 4□ > 4 = > 4 = > = 90

派生关系代数习题 |

使用关系代数运算器³ 在数据库(Database Systems The Complete Book - Exercise 2.4.1)上完成下列习题

交

- ullet Find the manufacturers that sell both laptops and PC's heta连接
 - Find those pairs of PC models that have both the same speed and RAM. A pair should be listed only once
 - 2 * Find those hard-disk sizes that occur in two or more PC's
 - ★★ Find the PC model with the highest available speed
 - ④ ★★ Find the manufacturers of PC's with at least three different speeds 的 继 接
- 自然连接
 - What manufacturers make laptops with a hard disk of at least 100GB?
 - ★ Explain the result of Product ⋈ Printer

李东博 (CS@HIT) 第2章: 关系数据库 2023年春 62/79

派生关系代数习题 ||

左外连接

- Execute $Product \bowtie PC$
- ② ** Find the PC model with the highest available speed (第2次出现,上一次怎么做的?)

右外连接

■ Execute Product \sim PC

全外连接

■ Execute Product > PC

除

• What manufacturers make all types of products (PC, laptop, and printer)?

³https://dbis-uibk.github.io/relax

扩展关系代数操作

● 目的: 用基本关系代数操作能够实现的查询功能有限, 为了增强关系代数的查询表示能力, 我们引入扩展(extended)关系代数操作

扩展关系代数操作

- 🐧 分组操作γ
- ② 赋值操作=

分组操作(Group-By)

目的: 我们经常需要对数据进行统计,例如统计每名学生的选课数和平均分。基本关系代数操作无法实现这种功能,因此需要引入分组操作。

• 功能:

- 根据指定的分组属性,对一个关系中的元组进行分组,分组属性值相同元组的分为一组
- ② 对每个组中元组的非分组属性的值进行聚集(aggregation)—计数count、求最小值min、求最大值max、求和sum、求平均值avg
- ⑤ 聚集函数只作用于非空(null)值, count(*)除外(它计算分组内所有元组的数量)

	SC	
Sno	Cno	Grade
PH-001	1002	92
PH-001	2003	85
PH-001	3006	88
CS-001	1002	95
CS-001	3006	90
CS-002	3006	80
MA-001	1002	

每名学生的选课数和平均分

母石子	母石子生的远体级和十均分					
Sno	Amount	AvgGrade				
PH-001	3	88.3				
CS-001	2	92.5				
CS-002	1	80				
MA-001	1					

分组操作(Group-By)

- 语法: γ_{L;agg}(R)
 - ▶ γ—分组操作符
 - ▶ R—关系名
 - ▶ L—分组属性列表,用逗号分隔
 - agg—聚集函数表达式列表,用逗号分隔,每个聚集函数表达式形如sum(score) → TotalScore (计算score属性值的和,并将结果命名为属性TotalScore)

Example (分组聚集)

统计每个系的男生人数和女生人数

 γSdept,Ssex;count(*)→Amt(Student)

② 统计每名已选课学生的选课数和平均分

 $\gamma_{Sno;count(*) \rightarrow Amt,avg(Grade) \rightarrow Score(SC)}$

 SC

 Sdept
 Ssex
 Amt

 Physics
 M
 1

 CS
 F
 1

 CS
 M
 1

 Math
 F
 2

查询2的结果					
Sno	Amt	Score			
PH-001	3	88.3			
CS-001	2	92.5			
CS-002	1	80			
ΜΛ 001	1				

赋值操作(Assignment)

- 目的: 仅用一个关系代数表达式来编写复杂查询通常会太冗长,不 易理解。为了便于理解,需要将一个冗长的关系代数查询表达式分解为一系列简单的表达式,这需要暂存一些中间结果。
- 功能: 将关系代数查询表达式的结果赋值给临时关系
- 语法: R = expr
 - ▶ R—临时关系名
 - ▶ =--赋值操作符
 - ▶ expr—关系代数查询表达式

扩展关系代数习题 |

使用关系代数运算器⁴ 在数据库(Database Systems The Complete Book - Exercise 2.4.1)上完成下列习题

分组

- 4 How many models does every manufacturer have?
- Output
 When it is a sum of the sum
- ③ ** Find those hard-disk sizes that occur in two or more PC's (第2次出现,上一次是怎么做的?)
- ★★ What manufacturers make all types of products (PC, laptop, and printer)? (第2次出现,上一次是怎么做的?)

赋值

• ** What manufacturers make all types of products (PC, laptop, and printer)? (第3次出现,以前两次是怎么做的?)

2.3 关系演算 Relational Calculus

元组关系演算(Tuple Relational Calculus)

元组关系演算(tuple relational calculus)用形如 $\{t|P(t)\}$ 的表达式表示查询

- t: 元组变量(tuple variable)
- P: 谓词(predicate)
- 元组关系演算表达式的结果是所有使谓词P为真的元组t的集合

记法

- t[A]: 元组t中属性A的值
- t∈R: t是关系R中的元组
- A: 合取
- V: 析取
- ¬: 否定
- ⇒: 蕴含, A ⇒ B ≡ ¬A ∨ B: "如果A为真,则B为真"
- ∀: 全称量词,∀t(Q(t))为真当且仅当任意元组t均使谓词Q为真
- \exists : 存在量词, $\exists t(Q(t))$ 为真当且仅当存在元组t使谓词Q为真

2023年春

元组关系演算

Example (元组关系演算)

- ① 找出计算机系的全体学生 $\{t|t \in Student \land t[Sdept] = 'CS'\}$
- ② 找出计算机系和数学系的学生 $\{t|t \in Student \land (t[Sdept] = 'CS' \lor t[Sdept] = 'MA')\}$
- ③ 找出全体学生的学号和姓名 $\{t|\exists s \in Student(t[Sno] = s[Sno] \land t[Sname] = s[Sname])\}$
- ④ 查询既选修了1002号课程,又选修了3006号课程的学生的学号 $\{t|\exists s \in SC\exists s' \in SC(t[Sno] = s[Sno] = s'[Sno] \land s[Cno] = '1002' \land s'[Cno] = '3006'))\}$
- **⑤** 查询选修了1002号课程,但没有选修3006号课程的学生的学号 $\{t|\exists s \in SC(s[Sno] = t[Sno] \land s[Cno] = '1002') \land \forall s' \in SC(\neg(s'[Sno] = t[Sno] \land s'[Cno] = '3006')))\}$ 或 $\{t|\exists s \in SC(s[Sno] = t[Sno] \land s[Cno] = '1002') \land \forall s' \in SC(s'[Sno] = t[Sno] \implies s'[Cno] \neq '3006'))\}$

元组关系演算

Example (元组关系演算)

- ① 查询已选课学生的学号和姓名 $\{t|\exists s \in Student \exists r \in SC(t[Sno] = s[Sno] = r[Sno] \land t[Sname] = s[Sname])\}$
- ② 找出没选过课的同学的学号和姓名 $\{t|\exists s \in Student \forall r \in SC(t[Sno] = s[Sno] \land t[Sname] = s[Sname] \land s[Sno] \neq r[Sno])\}$
- ③ 找出选修了所有课程的学生的学号 $\{t | \exists s \in SC \forall c \in Course(t[Sno] = s[Sno] \land s[Cno] = c[Cno])\}$
- 查询选修了CS-001号同学选修的所有课程的同学的学号 $\{t|\forall s\in SC(\exists s'\in SC(s'[Sno]=t[Sno]\land((s[Sno]='CS-001')\Longrightarrow(s'[Cno]=s[Cno])))\}$

72 / 79

域关系演算(Domain Relational Calculus)

- 域关系演算(domain relational calculus)表达式与元组关系演算表达式的定义类似,不同之处是表达式中使用域变量(domain variable),而不是元组变量
- 域关系演算表达式的一般形式为 $\{(x_1, x_2, ..., x_n) | P(x_1, x_2, ..., x_n)\}$
 - ► X1, X2,..., Xn: 域变量
 - ▶ P: 域关系演算公式
 - ▶ 域关系演算表达式的结果是所有使 $P(x_1, x_2, ..., x_n)$ 为真的元组 $(x_1, x_2, ..., x_n)$ 的集合
- 记法
 - ▶ (x₁, x₂,...,x_n): 域变量x₁, x₂,...,x_n构成的元组
 - ▶ $(x_1, x_2, ..., x_n) \in R$: $(x_1, x_2, ..., x_n)$ 是关系R中的元组
 - ▶ ∧: 合取
 - ▶ ∨: 析取
 - ▶ ¬: 否定
 - ▶ ⇒: 蕴含
 - ▶ ∀: 全称量词
 - ▶ ∃: 存在量词

域关系演算

Example (域关系演算)

- ① 找出计算机系的全体学生 $\{(n, m, s, a, d) | (n, m, s, a, d) \in Student \land d = 'CS'\}$
- ② 找出计算机系和数学系的学生 $\{(n, m, s, a, d) | (n, m, s, a, d) \in Student \land (d = 'CS' \lor d = 'MA')\}$
- ③ 找出全体学生的学号和姓名 $\{(n,m)|\exists s,a,d((n,m,s,a,d)\in Student)\}$
- ④ 查询既选修了1002号课程,又选修了3006号课程的学生的学号 $\{(n)|\exists g((n,'1002',g)\in SC) \land \exists g'((n,'3006',g')\in SC))\}$
- ⑤ 查询选修了1002号课程,但没有选修3006号课程的学生的学号 $\{(n)|\exists g((n,'1002',g)\in SC) \land \forall g'(\neg((n,'3006',g')\in SC)))\}$

◆ロト 4両ト 4 章 ト 4 章 ト 章 めなべ

域关系演算

Example (域关系演算)

- ④ 查询已选课学生的学号和姓名 $\{(n,m)|\exists s,a,d((n,m,s,a,d)\in Student) \land \exists c,g((n,c,g)\in SC)\}$
- ② 找出没选过课的同学的学号和姓名 $\{(n,m)|\exists s,a,d((n,m,s,a,d)\in Student)\land \forall c,g(\neg((n,c,g)\in SC))\}$
- ③ 找出选修了所有课程的学生的学号 $\{n | \forall c (\exists t((c,t) \in Course) \land \exists g((n,c,g) \in SC))\}$
- **④** 查询选修了CS-001号同学选修的所有课程的同学的学号 $\{(n)|\forall c(\exists g,g'((('CS-001',c,g) \in SC)) ⇒ ((n,c,g') \in SC))\}$

4□ > 4□ > 4□ > 4□ > 4□ > 4□

总结

- ❶ 关系数据模型
 - ▶ 关系数据结构:关系、属性、键
 - ▶ 关系操作:查询操作、更新操作(插入、修改、删除)、查询语言(关系代数、关系演算、SQL)
 - ▶ 关系完整性约束:实体完整性、参照完整性、用户定义完整性
- ② 关系代数
 - ト 基本关系代数操作: 选择 σ 、投影 Π 、笛卡尔积 \times 、并U、差-、重命 $a\rho$
 - ▶ 派生关系代数操作: 交 \cap 、内连接 \bowtie , 自然连接 \bowtie 、外连接(左外连接 \bowtie 、右外连接 \bowtie 、全外连接 \bowtie)、除÷
 - 扩展关系代数操作:分组操作γ、赋值操作=
- ❸ 关系演算
 - ▶ 元组关系演算
 - ▶ 域关系演算
- 在线练习: https://dbis-uibk.github.io/relax

←□▶←□▶←□▶←□▶
□▶←□▶←□▶

76 / 79

习题 |

- 用基本关系代数操作表示下列关系代数表达式
 - ► R ⋈ S
 - ► *R* ÷ *S*
 - $\triangleright R \bowtie S$
- ② 判断下列命题是否成立。若不成立,请给出反例。
 - $\bullet \ \sigma_{\theta_1}(\sigma_{\theta_2}(R)) = \sigma_{\theta_2}(\sigma_{\theta_1}(R)) = \sigma_{\theta_1 \wedge \theta_2}(R)$
 - $\square_{L_1}(\Pi_{L_2}(R)) = \Pi_{L_1}(R)$

 - $\bullet \ \sigma_{\theta}(R \cap S) = \sigma_{\theta}(R) \cap S = R \cap \sigma_{\theta}(S)$
 - $\sigma_{\theta}(R-S) = \sigma_{\theta}(R) S = R \sigma_{\theta}(S)$

→□▶→□▶→□▶→□▶ □ 900

习题 ||

③ 设关系R(A,B)中包含r > 0个元组,关系S(B,C)中包含s > 0个元组,求下列关系代数表达式的结果中元组数的最小值和最大值

关系代数表达式	元组数最小值	元组数最大值
$\sigma_{A < B}(R)$		
$\Pi_A(R)$		
$R\bowtie S$		
$R \bowtie S$		
$R \bowtie S$		
$\Pi_B(R) \cup \Pi_B(S)$		
$\Pi_B(R) \cap \Pi_B(S)$		
$\Pi_B(R) - \Pi_B(S)$		
$R \div \Pi_B(S)$		
$\gamma_{A;count(B)\to D}(R)$		

习题 |||

- 设属性K是关系R的主键,写一个关系代数表达式来验证R的实例 是否违反实体完整性约束,说明如何用该关系代数表达式的结果来 完成验证。
- 设属性K是关系R的主键,关系S的外键F参照R.K,写一个关系代数表达式来验证R和S的实例是否违反参照完整性约束,说明如何用该关系代数表达式的结果来完成验证。
- ◎ 在课上用的College数据库上,用关系代数查询3006号课程的最高分
 - 方法1: 只用基本关系代数操作
 - ▶ 方法2: 用外连接