DISEÑO CON CURVAS SCHADE Y REGULACION

FUENTE DE ALIMENTACIÓN CON FILTRO A CAPACITOR

Transformador: 220V/9V+9Vef con punto medio; I2ef=0.5A; Vpk=12.7

Especificaciones de la Fuente: Vo=9V; Io=170mA; %ripp<=5%

DISEÑO DE LA FU	<u>ENTE</u>				
DEFINIENDO RL					
RL=Vo/Io	RL=53Ω	Tomando ri=10%RL	ri=5,3Ω		
SELECCIÓN DEL C	APACITOR				
ωRLC=11	Co=660uF	Tomando 20% de tol.	C=Co+20%Co	C=792u F	Usamos C=1000u F
Correccion ωRLC	ωRLC=16,6	En caso más	favorable %ripp=	=4%	
VERIFICAR EL VA	LOR DE CONTIN	IUA			
Rectif onda comp con punto medio n=2	nωRLC=33,3	10%RL/ n=5%	ImD=Io/2	ImD=85 mA	
Vo/Vpk=74%	Para nuestro transformador (no lo diseñamos)	Vo=9,4V (Cerca de lo requerido)			
SELECCIÓN DE DI	ODOS				
lefD/ImD=2,2	lefD=187mA	lpkD/ lmD=6,2	IpkD=500mA		
lpkON(no rep)=Vpk/ri	IpkON=2,4A	VpkINV=2V pk	VpkINV=26V aprox		

Seleccionamos los diodos rectificadores 1N4007 que verifican los parámetros necesarios.

Maximum Ratings and Electrical Characteristics (@TA = +25°C unless otherwise specified.)

Single phase, half wave, 60Hz, resistive or inductive load.

Characteristic	Symbol	1N4001	1N4002	1N4003	1N4004	1N4005	1N4006	1N4007	Unit
Peak Repetitive Reverse Voltage	V _{RRM}								
Working Peak Reverse Voltage	V _{RWM}	50	100	200	400	600	800	1000	V
DC Blocking Voltage	V_R		1 1 1 1 1 1 1						
RMS Reverse Voltage	V _{R(RMS)}	35	70	140	280	420	560	700	V
Average Rectified Output Current (Note 1) @ T _A =+75°C	lo				1.0				Α
Non-Repetitive Peak Forward Surge Current 8.3ms	IFSM	IESM 30							Α
Single Half Sine-Wave Superimposed on Rated Load	IFSM	30						^	
Forward Voltage @ I _F = 1.0A	V _{FM}	_{FM} 1.0				V			
Peak Reverse Current @T _A = +25°C	5.0								
at Rated DC Blocking Voltage @ T _A = +100°C	RM				50				μА
Typical Junction Capacitance (Note 2)	Ci	C _i 15 8			pF				
Typical Thermal Resistance Junction to Ambient	R _B JA 100			K/W					
Maximum DC Blocking Voltage Temperature				°C					
Operating and Storage Temperature Range	T _{J.} T _{STG}			_	65 to +15	0			°C

Leads maintained at ambient temperature at a distance of 9.5mm from the case.
Measured at 1.0 MHz and applied reverse voltage of 4.0V DC.
EU Directive 2002/95/EC (RoHS). All applicable RoHS exemptions applied, see EU Directive 2002/95/EC Annex Notes.

Armamos el prototipo del esquema final:

Luego de armar el circuito al realizar las primeras mediciones se notó que la tensión de salida era un poco alta para el requerimiento de 9V necesario por lo que corregimos el circuito aumentando la ri a 6.8ohm, colocando la que disponemos de 5W.

RESULTADOS DE LA FUENTE	
SALIDA	
Adoptamos una RL=56ohm	
CON IL=0A	CON RL=56ohm
Vo=	Vo=
	IL=
RIPPLE	
CON IL=0A	CON RL=56ohm
Vr(pk)=376mV	Vr(pk)=
Vr(ef)=235mV	Vr(ef)=
Vr(ef)/Vo=0,0261	%ripp=2,6% < 5%
REGULACION	
Si {Vo(IL=0)-Vo(RL=56ohm)}/Vo(IL= 0)=	% R =

ETAPAS DE REGULACION

Para todos los reguladores se optó por una tensión de salida de 5V y para nuestra RL=560hm

REGULADOR PARALELO

Se eligió el diodo zener 1N4733 de 5.1V, una corriente mínima de 1mA y potencia max de 1W:

Absolute Maximum Ratings * Ta = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
P _D	Power Dissipation @ TL ≤ 50°C, Lead Length = 3/8"	1.0	W
'	Derate above 50°C	6.67	mW/°C
T _J , T _{STG}	Operating and Storage Temperature Range	-65 to +200	°C

^{*} These ratings are limiting values above which the serviceability of the diode may be impaired.

Electrical Characteristics Ta = 25°C unless otherwise noted

Device	V _Z (V) @ I _Z		(Note 1)	Test Current		ener Imp	edance		kage rent	Non-Repetitive Peak Reverse
Device	Min.	Тур.	Max.	I _Z (mA)	Z_Z@I_Z (Ω)	Z_{ZK} @ I _{ZK} (Ω)	I _{ZK} (mA)	Ι _R (μ A)	V _R (V)	Current I _{ZSM} (mA) (Note 2)
1N4728A 1N4729A	3.135 3.42	3.3 3.6	3.465 3.78	76 69	10 10	400 400	1	100 100	1	1380 1260
1N4730A 1N4731A 1N4732A	3.705 4.085 4.465	3.9 4.3 4.7	4.095 4.515 4.935	64 58 53	9 9 8	400 400 500	1 1	50 10 10	1	1190 1070 970
1N4733A	4.845	5.1	5.355	49	7	550	1	10	1	890
1N4735A 1N4736A 1N4737A	5.32 5.89 6.46 7.125	6.2 6.8 7.5	5.86 6.51 7.14 7.875	45 41 37 34	2 3.5 4	700 700 700	1 1 0.5	10 10 10 10	3 4 5	730 660 605
1N4738A 1N4739A 1N4740A 1N4741A 1N4742A	7.79 8.645 9.5 10.45 11.4	8.2 9.1 10 11 12	8.61 9.555 10.5 11.55 12.6	31 28 25 23 21	4.5 5 7 8 9	700 700 700 700 700 700	0.5 0.5 0.25 0.25 0.25	10 10 10 5 5	6 7 7.6 8.4 9.1	550 500 454 414 380

Para los cálculos redondeamos a una tensión de ripple de \pm 0.5V pico (peor de los casos):

DISEÑO REG PARALE	<u>LO</u>			
1N4733	5,1V - 1W	Izm=1 mA		
Para Vo(p)=5V y RL=56ohm	IL=110mA aprox			
Si Vi(p)=9 +/- 0,5V	24ohm < R < 30ohm			
Optamos por una R=27ohm	Que tendría una corriente max de 165mA aprox	P=736 mW		
SI 4 resistencias de 100ohm en paralelo	I(c/u)=42,1mA	P(c/ u)=171r	nW	
Optamos por 4 resist	tencias en paralelo de 100	ohm a 1/4	4W	

Esquema final:

RESULTADOS REG PARALE	<u>LO</u>	
CON IL=0A	CON RL=5	6ohm
Vo(p)	Vo(p)	
	lo(p)	
RIPPLE		
CON IL=0A	CON RL=5	6ohm
Vr(pk)=376mV	Vr(pk))=376mV
Vr(ef)=235mV	Vr(ef)	=235mV
Vr(ef)/Vo=0,0261	%rip	o =
REGULACION DE LINEA		
deltaVo(p)/deltaVi(p)=		
REGULACION DE CARGA		
deltaVo(p)/deltaIL(p)=		
PORCENTAJE DE REGULACI	ON	
{Vo(IL=0)- Vo(RL=56ohm)}/Vo(IL=0)	%R=	

REGULADOR SERIE

Se usó nuevamente el diodo zener 1N4733 y el transistor 2N2222 con una corriente máxima de colector que se adapta a nuestro requerimiento de

MAXIMUM RATINGS ($T_A = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Value	Unit
Collector - Emitter Voltage	V _{CEO}	40	Vdc
Collector - Base Voltage	V _{CBO}	75	Vdc
Emitter - Base Voltage	V _{EBO}	6.0	Vdc
Collector Current - Continuous	Ic	600	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	P _D	625 5.0	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	1.5 12	W mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

110mA: L

Por el amplio rango de ganancia, Vce y temperatura que nos proporciona el fabricante, se optó por aproximar gráficamente un Hfe de entre 200 y 300, mediante la característica Hfe/Ic:

Figure 3. DC Current Gain

Además debido a la caída de tensión Vbe del transistor, se optó por agregar 2 diodos 1N4007 en serie con el zener para levantar la tensión de base 1.4V más

DISEÑO DEL REG S	<u>ERIE</u>			
1N4733	5,1V - 1W	Izm=1m A		
2N2222	beta 200 a 300 (se toma 250)	IcM=600 mA		
Para Vo(s)=5V y RL=56ohm	IL=110mA aprox			
Si $Vi(s)=9 +/- 0.5V$	18ohm $< R < 1,5$ Kohn	n		
Optamos por una R=1Kohm	Que tendria una corriente max de 3mA aprox	P=9mW		
Usamos 1Kohm a 1/4W				
Que aseguraría una corriente por el zener	1,56mA < Iz < 3mA	Suficiente ni se destr como los d	uya tan	

Quedando el esquema final:

RESULTADOS REG PARALE	LO
CON IL=0A	CON RL=56ohm
Vo(s)	Vo(s)
	lo(s)
RIPPLE	
CON IL=0A	CON RL=56ohm
Vr(pk)=376mV	Vr(pk)=376mV
Vr(ef)=235mV	Vr(ef)=235mV
Vr(ef)/Vo=0,0261	%ripp=
REGULACION DE LINEA	
deltaVo/deltaVi=	
REGULACION DE CARGA	
deltaVo/deltaIL=	
PORCENTAJE DE REGULAC	ION
{Vo(IL=0)- Vo(RL=56ohm)}/Vo(IL=0)	%R=

REGULADOR LINEAL INTEGRADO

Se eligió el regulador 78L05 en su encapsulado TO-220 de 5V de salida a una

corriente máxima de 1.5A:

electrical characteristics at specified virtual junction temperature, $V_{\rm I}$ = 10 V, $I_{\rm O}$ = 500 mA (unless otherwise noted)

PARAMETER	TEST CONDITIONS	-+	μ Α7805C			UNIT
PARAMETER	TEST CONDITIONS	ΤJ [†]	MIN	TYP	MAX	ONIT
Output voltage	I _O = 5 mA to 1 A, V _I = 7 V to 20 V,	25°C	4.8	5	5.2	V
Output voltage	PD ≥ 12 M	0°C to 125°C	4.75		5.25	V
Input voltage regulation	V _I = 7 V to 25 V	25°C		3	100	mV
input voltage regulation	V _I = 8 V to 12 V	25 0		1	50	IIIV
Ripple rejection	V _I = 8 V to 18 V, f = 120 Hz	0°C to 125°C	62	78		dB
Output voltage regulation	I _O = 5 mA to 1.5 A	25°C		15	100	-l mV l
Output voltage regulation	I _O = 250 mA to 750 mA	25-0		5	50	
Output resistance	f = 1 kHz	0°C to 125°C		0.017		Ω
Temperature coefficient of output voltage	$I_O = 5 \text{ mA}$	0°C to 125°C		-1.1		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz	25°C		40		μV
Dropout voltage	I _O = 1 A	25°C		2		V
Bias current		25°C		4.2	8	mA
Bigg gurrant shangs	V _I = 7 V to 25 V	000 1 10500			1.3	mA
Bias current change	$I_O = 5$ mA to 1 A	0°C to 125°C			0.5	IIIA
Short-circuit output current		25°C		750		mA
Peak output current		25°C		2.2		Α

[†] Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output.

Y se agregaron capacitores de filtrado a la salida y entrada del mismo:

