Chapter 4

Introducing Topoi

4.1 Subobjects

Definition 4.1.1. A subobject of d is an equivalence class of monic arrows into d.

We are using a new notion of equivalence. Start with the idea that a subobject is simply a monic arrow into d. Now write that $f \subseteq g$ iff these is an arrow $h: a \to b$ making

commute

Now say that $f \cong g$ iff $f \subseteq g$ and $g \subseteq f$.

Here, $g \circ h = f$ and $f \circ i = g$

Exercise 4.1.1. We wish to show that in the above diagram, a and b are isomorphic. Substituting each of our 'commuting' equations into the other in turn yields

$$f \circ i \circ h = f$$
,

$$g \circ h \circ i = g$$
.

Since both f and g are monic, left-cancel to get

$$i \circ h = 1_a$$

$$h \circ i = 1_b$$
.

Conclude that h and i are monic and mutual inverses. Thus a and b are isomorphic.

Exercise 4.1.2. Now we wish to show that \cong in this sense is indeed an equivalence relation.

- 1. reflexivity: $f \cong f$ for $f: a \to b$ since there is an arrow $1_a: a \to a$, and the relationship $a \subseteq a$ is reflexive.
- 2. symmetry: If $f \cong g$ then $f \subseteq g$ and $g \subseteq f$. So by the symmetry of the word 'and' we have that $g \cong f$.
- 3. transitivity: Suppose $f \cong g$ and if $g \cong k$. Then from the first relation we know $f \subseteq g$ and $g \subseteq f$. From the second we know $g \subseteq k$ and $k \subseteq g$.

Since $f \subseteq g$ and $g \subseteq k$, $f \subseteq k$. And since $k \subseteq g$ and $g \subseteq f$, $k \subseteq f$.

Since $f \subseteq k$ and $k \subseteq f$, conclude $f \cong k$.

Exercise 4.1.3. Suppose that [f] = [f'] and [g] = [g'].

- (\Rightarrow) Suppose $f \subseteq g$. Since $f \cong f'$, $f' \subseteq f$. Then $f' \subseteq g'$
- (\Leftarrow) Suppose $f' \subseteq g'$. Since $f \cong f'$, $f \subseteq f'$ Then $f \subseteq g$.

Conclude $f \subseteq g$ iff $f' \subseteq g'$. In other words \subseteq is stable under \cong .

Exercise 4.1.4.

$$Sub(D) \cong P(D)$$

Definition 4.1.2. The naming arrow for f

Exercise 4.1.5. For any element $x: 1 \to a$ of a,

$$ev \circ \langle \lceil f \rceil, x \rangle = f \circ x$$

4.2 Classifying Subobjects

We are seeking to generalize the situation where a subset $A \subseteq D$ has a characteristic function $\chi_A : D \to \{0,1\}$, where

$$\chi_A(x) = \begin{cases} 1 & x \in A \\ 0 & x \notin A. \end{cases}$$

In fact the functions from $D \to \{0,1\}$ are in bijection with all possible subsets of D. Then given an $f: D \to \{0,1\}$ we define A_f as the subset determined by f, and then we have

is a pullback.

Definition 4.2.1. If C is a category with a terminal object 1, then a *subobject classifier* consist of an object Ω , and an arrow $true: 1 \to \Omega$.

The Ω axiom is that for any monic $f:a\to d$ there is a unique arrow $\chi_f:d\to\Omega$ so that

is a pullback square.

The arrow χ_f is the *characteristic arrow* of f.

Definition 4.2.2. For any a there is a unique arrow $!: a \to 1$. The composite $true \circ !$ yields an arrow denoted $true_a$:

Exercise 4.2.1. Plugging $true: 1 \to \Omega$ into definition 4.2.1 gives:

$$\begin{array}{ccc}
1 & \xrightarrow{true} & \Omega \\
\downarrow & & & \downarrow \\
1 & \xrightarrow{true} & \Omega
\end{array}$$

and we see that ! must be the identity $1_1:1\to 1$. So for the diagram to be a pullback square we must have

$$\chi_{true} \circ true = true \circ 1_1 = true$$

and therefore

$$\chi_{true} = 1_{\Omega}.$$

Exercise 4.2.2. Plugging $1_{\Omega}: \Omega \to \Omega$ into definition 4.2.1 gives

To be a pullback we must have $\chi_{1_{\Omega}} \circ 1_{\Omega} = true \circ !$. Or

$$\chi_{1_{\Omega}} = true_{\Omega}$$

using the notation of definition 4.2.2.

Exercise 4.2.3. For any $f: a \to b$, since $!_a: a \to 1$ is unique:

We must have $!_b \circ f = !_a$. Thus

commutes, or $true \circ !_b \circ f = true \circ !_a$. Therefore using definition 4.2.2,

$$true_b \circ f = true_a$$
.

4.3 Definition of Topos

Definition 4.3.1. An *elementary topos* is a category which

- 1. is finitely complete.
- 2. is finitely co-complete.
- 3. has exponentiation.
- 4. has a subobject classifier.

