

LC²MOS Quad SPST Switches

ADG211A/ADG212A

FEATURES

44V Supply Maximum Rating
±15V Analog Signal Range
Low R_{ON} (115Ω max)
Low Leakage (0.5nA typ)
Break Before Make Switching
Single Supply Operation Possible
Extended Plastic Temperature Range
(-40°C to +85°C)
TTL/CMOS Compatible
Available in 16-Lead DIP/SOIC and
20-Lead PLCC Packages
Superior Second Source:
ADG211A Replaces DG211
ADG212A Replaces DG212

GENERAL DESCRIPTION

The ADG211A and ADG212A are monolithic CMOS devices comprising four independently selectable switches. They are designed on an enhanced LC^2MOS process which gives an increased signal handling capability of \pm 15V. These switches also feature high switching speeds and low R_{ON} .

The ADG211A and ADG212A consist of four SPST switches. They differ only in that the digital control logic is inverted. In multiplexer applications, all switches exhibit break-before-make switching action when driven simultaneously. Inherent in the design is low charge injection for minimum transients when switching the digital inputs.

SWITCHES SHOWN FOR A LOGIC "1" INPUT

PRODUCT HIGHLIGHTS

Extended Signal Range:
 These switches are fabricated on an enhanced LC²MOS process, resulting in high breakdown and an increased analog signal range of ± 15V.

2. Single Supply Operation: For applications where the analog signal is unipolar (0V to 15V), the switches can be operated from a single +15V supply.

3. Low Leakage:

Leakage currents in the range of 500pA make these switches suitable for high precision circuits. The added feature of Break before Make allows for multiple outputs to be tied together for multiplexer applications while keeping leakage errors to a minimum.

ADG211A IN	ADG212A IN	SWITCH CONDITION
0	1	ON
1	0	OFF

Table I. Truth Table

$\textbf{ADG211A/ADG212A} \textbf{—SPECIFICATIONS} \ \substack{(V_{DD} \ = \ +15\text{V}, \ V_{ss} \ = \ -15\text{V}, \ V_L \ = \ 5\text{V}, \ unless \ otherwise} \\ \textbf{noted.})$

		ADG211AKN ADG212AKN		
Parameter	25°C	-40°C to +85°C	Units	Test Conditions
ANALOG SWITCH				
Analog Signal Range	± 15	± 15	Volts	
R_{ON}	115	175	Ωmax	$-10V \leqslant V_S \leqslant +10V, I_{DS} = 1 \text{mA},$ Test Circuit 1
R_{ON} vs. $V_{D}(V_{S})$	20		% typ	
R _{ON} Drift	0.5		%/°C typ	
R _{ON} Match	5		% typ	$V_S = 0V$, $I_{DS} = 1mA$
$I_S(OFF)$	0.5		nA typ	$V_D = \pm 14V$; $V_S = \mp 14V$; Test Circuit 2
OFF Input Leakage	5	100	nA max	
$I_D(OFF)$	0.5		nA typ	$V_D = \pm 14V$; $V_S = \mp 14V$; Test Circuit 2
OFF Output Leakage	5	100	nA max	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
$I_{\mathbf{D}}(\mathrm{ON})$	0.5		nA typ	$V_D = V_S = \pm 14V$; Test Circuit 3
ON Channel Leakage	5	200	nA max	VD-VS- ± 14V, Test chedits
DIGITAL CONTROL	1			
V _{INH} , Input High Voltage		2.4	V min	TTL Compatibility is Independent of V _I
V _{INL} , Input Low Voltage		0.8	V max	1 1 L Companionity is independent of VL
I _{INL} or I _{INH}		1	μA max	
C _{IN} , Digital Input Capacitance	5	1	pF typ	
DYNAMIC CHARACTERISTICS			F- 5F	
topen ¹	30		ns typ	Test Circuit 4
ton ¹	600		ns max	Test Circuit 5
t _{OFF} ¹	450		ns max	Test Circuit 5
OFF Isolation	80		dB typ	$V_S = 10V(p-p); f = 100kHz$
				$R_L = 75\Omega$; Test Circuit 6
Channel-to-Channel Crosstalk	80		dB typ	Test Circuit 7
$C_{S}(OFF)$	5		pF typ	
$C_D(OFF)$	5		pF typ	
$C_S, C_D(ON)$	16		pF typ	
Q _{INJ} , Charge Injection	20		pC typ	$R_S = 0\Omega$; $C_L = 1000 pF$; $V_S = 0V$ Test Circuit 8
POWER SUPPLY				
I_{DD}	0.6		mA typ	Digital Inputs = V_{INL} or V_{INH}
$I_{ m DD}$	1		mA max	
I_{SS}	0.1		mA typ	
\mathbf{I}_{SS}	0.2		mA max	
$I_{\mathbf{L}}$	0.9		mA max	

NOTE

Specifications subject to change without notice.

¹Sample tested at 25°C to ensure compliance.

ADG211A/ADG212A

ABSOLUTE MAXIMUM RATINGS*	Digital Inputs ¹
$(T_A = 25^{\circ}C \text{ unless otherwise stated})$	Voltage at IN V_{SS} -2V to
	$V_{DD} + 2V or$
V_{DD} to V_{SS}	20mA, Whichever Occurs First
V_{DD} to GND	Power Dissipation (Any Package)
V_{SS} to GND	Up to $+75^{\circ}$ C
V_L to GND	Derates above +75°C by 6mW/°C
Analog Inputs ¹	Operating Temperature -40° C to $+85^{\circ}$ C
Voltage at S, D $V_{SS} - 0.3V$ to $V_{DD} + 0.3V$	Storage Temperature Range -65° C to $+150^{\circ}$ C
Continuous Current, S or D 30mA	Lead Temperature (Soldering 10sec) + 300°C
Pulsed Current S or D	NOTE
1ms Duration, 10% Duty Cycle 70mA	¹ Overvoltage at IN, S or D will be clamped by diodes. Current should be limited to the Maximum Rating above.

^{*}COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one Absolute Maximum Rating may be applied at any one time.

CAUTION

ESD (electrostatic discharge) sensitive device. The digital control inputs are diode protected; however, permanent damage may occur on unconnected devices subject to high energy electrostatic fields. Unused devices must be stored in conductive foam or shunts. The protective foam should be discharged to the destination socket before devices are removed.

PIN CONFIGURATIONS

DIP, SOIC

ORDERING GUIDE

Model	Temperature Range	Package Option*
ADG211AKN	$-40^{\circ}\text{C to} + 85^{\circ}\text{C}$	N-16
ADG211AKR	$-40^{\circ}\text{C to} + 85^{\circ}\text{C}$	R-16A
ADG211AKP	$-40^{\circ}\text{C to} + 85^{\circ}\text{C}$	P-20A
ADG212AKN	-40°C to +85°C	N-16
ADG212AKR	-40°C to $+85^{\circ}\text{C}$	R-16A
ADG212AKP	-40°C to $+85^{\circ}\text{C}$	P-20A

^{*}N = Plastic DIP; R = 0.15" Small Outline IC (SOIC);

P = Plastic Leaded Chip Carrier (PLCC).

ADG211A/ADG212A—Typical Performance Characteristics

The switches can comfortably operate anywhere in the 10V to 15V single or dual supply range, with only a slight degradation in performance. The following graphs show the relevant performance curves. The test circuits and test conditions are given in a following section, "Test Circuits."

Figure 1. R_{ON} as a Function of $V_D(V_S)$: Dual \pm 15 Supplies

Figure 2. R_{ON} as a Function of $V_D(V_S)$: Single + 15V Supply

Figure 3. R_{ON} as a Function of V_D (V_S): Dual \pm 10V Supplies

Figure 4. R_{ON} as a Function of $V_D(V_S)$: Single + 10V Supply

Figure 5. Leakage Current as a Function of Temperature (Note: Leakage Current Reduces as the Supply Voltages Reduce)

Figure 6. Trigger Levels vs. Power Supply Voltage, Dual or Single Supply Voltage

Typical Performance Characteristics—ADG211A/ADG212A

Figure 7. t_{ON} vs. Supply Voltage, (Dual Supply)

Figure 9. t_{OFF} vs. Supply Voltage, (Dual Supply)

Figure 11. Off Isolation and Channel-to-Channel Crosstalk vs. Supply Voltage

Figure 8. t_{ON} vs. Supply Voltage, (Single Supply)

Figure 10. t_{OFF} vs. Supply Voltage, (Single Supply)

Figure 12. Charge Injection vs. Source Voltage (V_S) for Dual and Single 15V Supplies

ADG211A/ADG212A—Typical Performance Characteristics

Figure 13. Charge Injection vs. Source Voltage for Dual and Single 10V Supplies

Figure 14. I_{DD} vs. Supply Voltage, (Dual Supply)

Figure 15. ISS vs. Supply Voltage, (Dual Supply)

the digital input and switch "ON" condition

Figure 16. I_{DD} vs. Supply Voltage, (Single Supply)

TERMINOLOGY

R_{ON}	Ohmic resistance between terminals OUT and S	t_{OFF}	Delay time between the 50% and 90% points of
R _{ON} Match	Difference between the R _{ON} of any two channels		the digital input and switch "OFF" condition
I_{S} (OFF)	Source terminal leakage current when the switch	t _{OPEN}	"OFF" time measured between 50% points of
	is off		both switches, which are connected as a multi-
I_D (OFF)	Drain terminal leakage current when the switch		plexer, when switching from one address state to
	is off		another
$I_D(ON)$	Leakage current that flows from the closed switch	V_{INI}	Maximum Input Voltage for a Logic Low
	into the body	V_{INH}	Minimum Input Voltage for a Logic High
$V_{D}(V_{S})$	Analog voltage on terminal D, S	$I_{INL}(I_{INH})$	Input current of the digital input
C _S (OFF)	Switch input capacitance "OFF" condition	V_{DD}	Most positive voltage supply
$C_{\mathbf{D}}$ (OFF)	Switch output capacitance "OFF" condition	V_{SS}	Most negative voltage supply
C_{IN}	Digital input capacitance	$V_{\mathbf{L}}$	Logic supply voltage
$C_D, C_S(ON)$	Input or output capacitance when the switch	I_{DD}	Positive supply current
	is on	I_{SS}	Negative supply current
t _{ON}	Delay time between the 50% and 90% points of		

Test Circuits—ADG211A/ADG212A

*BOTH THE BUFFER AND INVERTER SHOULD HAVE THE SAME PROPAGATION DELAY.

– 15V

Test Circuit 4

Test Circuit 5

Test Circuit 6. Off Isolation

Test Circuit 7. Channel-to-Channel Crosstalk

ADG211A/ADG212A

Test Circuit 8. Charge Injection

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

16-Pin Plastic (N-16)

16-Lead Narrow Body SOIC (R-16A)

20-Terminal Plastic Leaded Chip Carrier (P-20A)

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.