## **Introduction to Machine Learning**

# **Boosting Gradient Boosting with Trees 1**





#### Learning goals

- Examples for GB with trees
- Understand relationship between model structure and interaction depth

## **GRADIENT BOOSTING WITH TREES**

Trees are most popular BLs in GB.

#### Reminder: advantages of trees

- No problems with categorical features.
- No problems with outliers in feature values.
- No problems with missing values.
- No problems with monotone transformations of features.
- Trees (and stumps!) can be fitted quickly, even for large *n*.
- Trees have a simple, built-in type of variable selection.

GB with trees inherits these, and strongly improves predictive power.



#### Simulation setting:

- Given: one feature *x* and one numeric target variable *y* of 50 observations.
- x is uniformly distributed between 0 and 10.
- y depends on x as follows:  $y^{(i)} = \sin(x^{(i)}) + \epsilon^{(i)}$  with  $\epsilon^{(i)} \sim \mathcal{N}(0, 0.01)$ ,  $\forall i \in \{1, \dots, 50\}$ .



**Aim:** we want to fit a gradient boosting model to the data by using stumps as base learners.

Since we are facing a regression problem, we use *L*2 loss.



## **EXAMPLE 1/2**

**Iteration 0:** initialization by optimal constant (mean) prediction  $\hat{f}^{[0](i)}(x) = \bar{y} \approx 0.2$ .

| i  | x <sup>(i)</sup> | y <sup>(i)</sup> | $\hat{f}[0]$ |
|----|------------------|------------------|--------------|
| 1  | 0.03             | 0.16             | 0.20         |
| 2  | 0.03             | -0.06            | 0.20         |
| 3  | 0.07             | 0.09             | 0.20         |
| :  | :                | :                | :            |
| 50 | 9.69             | -0.08            | 0.20         |





## **EXAMPLE 1/3**

**Iteration 1:** (1) Calculate pseudo-residuals  $\tilde{r}^{[m](i)}$  and (2) fit a regression stump  $b^{[m]}$ .

| i  | x <sup>(i)</sup> | y <sup>(i)</sup> | $\hat{f}^{[0]}$ | $\tilde{r}^{[1](i)}$ | $\hat{b}^{[1](i)}$ |
|----|------------------|------------------|-----------------|----------------------|--------------------|
| 1  | 0.03             | 0.16             | 0.20            | -0.04                | -0.17              |
| 2  | 0.03             | -0.06            | 0.20            | -0.25                | -0.17              |
| 3  | 0.07             | 0.09             | 0.20            | -0.11                | -0.17              |
| :  | :                | :                | :               | :                    | :                  |
| 50 | 9.69             | -0.08            | 0.20            | -0.27                | 0.33               |





(3) Update model by  $\hat{t}^{[1]}(x) = \hat{t}^{[0]}(x) + \hat{b}^{[1]}$ .

#### Repeat step (1) to (3):





#### Repeat step (1) to (3):





#### Repeat step (1) to (3):





This website shows on various 3D examples how tree depth and number of iterations influence the model fit of a GBM with trees.





Model structure directly influenced by depth of  $b^{[m]}(\mathbf{x})$ .

$$f(\mathbf{x}) = \sum_{m=1}^{M} \alpha^{[m]} b^{[m]}(\mathbf{x})$$

Remember how we can write trees as additive model over paths to leafs.

With stumps (depth = 1),  $f(\mathbf{x})$  is additive model (GAM) without interactions:

$$f(\mathbf{x}) = f_0 + \sum_{i=1}^p f_i(x_i)$$



$$f(\mathbf{x}) = f_0 + \sum_{j=1}^{p} f_j(x_j) + \sum_{j \neq k} f_{j,k}(x_j, x_k)$$

with  $f_0$  being a constant intercept.







**/ 2** 

## Simulation setting:

- Features  $x_1$  and  $x_2$  and numeric y; with n = 500
- x<sub>1</sub> and x<sub>2</sub> are uniformly distributed between -1 and 1

• 
$$y^{(i)} = x_1^{(i)} - x_2^{(i)} + 5\cos(5x_2^{(i)}) \cdot x_1^{(i)} + \epsilon^{(i)}$$
 with  $\epsilon^{(i)} \sim \mathcal{N}(0, 1)$ 

• We fit 2 GB models, with tree depth 1 and 2, respectively.





/ 3

## GBM with interaction depth of 1 (GAM)

No interactions are modelled: Marginal effects of  $x_1$  and  $x_2$  add up to joint effect (plus the constant intercept  $\hat{f_0} = -0.07$ ).











/ 4

## GBM with interaction depth of 2

Interactions between  $x_1$  and  $x_2$  are modelled: Marginal effects of  $x_1$  and  $x_2$  do NOT add up to joint effect due to interaction effects.





x1 = -0.999x2 = -0.998

> x1 = 0.999 x2 = 0.99y = -1.6