ECGR 4101/5101 -> Lecture 3

PORTD. DR. BIT. BD & bother do be LEDI # define SWI PORTA. PORT. BITO #define LED1 PORTD. DR. BIT. BO # KEDS # define LED_OFF # define LED1 = LED-ON; if (SW1==0) LEDI = LED-ON; IF (!SWI) LEDI = LEDON; examined code on pages 18 819 make two #delines "SwitcH_15-OPF" #define SWITCH_IS_OFF 1 # dofine SWITCH_13.0N O if (BWI == SWITCH_IS_OFF)

LEDI = LED-ON;

ECGR 4101/5101

LECTUPE 3

Resolution of Vreft - Vreft ZNbits each bit Vvol+ = tside of your ADC conversion Vref = - side of your ADC conversion Usually Vref = OV Usually Vreft = Vcc Nbits = what you store 8-bit 10-bits 12-bit

Cg. Devesas board 3.3v
8 bits of resolution
vesolution of = 3.3v = 0.01289v
each bit: = 12.9 mV ("mV per step")

Board = 3.3V 12 bits of resolution resolution of = 0.000800566 V each bit ECGR 4101/5101 LECTURE 3 (assume Vref-=0V) Vreft = 5.0V Vin = 2.2V N= digital code That represents 2.2V 10 bit ADC = 450.62 € -> 0000111000010b 194 OXIC2

ECGR 4101/5101

LECTURE 3

5

Battery life = Capacity current 200 m Ahr = 20 hrs 10 mA 200MAhr 400 mAhrs 200 withis 1.5 3.0 V

Batteries

Battery ≡ >1 cell

Cell can be modeled as ideal voltage source with a series resistance

Series resistance induces a voltage drop as current rises

How long will it last?

Cells can be modeled as having a constant capacity (1 amp-hour = 3600 coulombs = 3600 amp-seconds) (less accurate)

Battery life (hours) = capacity (amp-hours)/current (amps)

Can also predict life based on discharge plot (more accurate)

What if voltage or current isn't right?

Can put cells in series (add voltages) or parallel (add currents)

Can use a voltage regulator (linear or switch-mode)

Battery Power

A 800 mAhr battery will power a device that draws 200mA for how long?

800 mAhr / 200mA = 4 hr

Practice: 720 mAhr cell phone battery will power a phone that draws 4 mA average for how long?