

The Crouzeix-Raviart Finite Element Method for a Nonconforming Formulation of the Rudin-Osher-Fatemi Model Problem

Enrico Bergmann Humboldt-Universität zu Berlin June 16. 2021

Table of Contents

Recapitulation

Functions of Bounded Variation Rudin-Osher-Fatemi Model Problem Continuous Problem Discrete Problem

2 Primal-Dual Iteration Primal-Dual Iteration

3 Numerical Examples

Table of Contents

1 Recapitulation

Functions of Bounded Variation

Rudin-Osher-Fatemi Model Problem Continuous Problem Discrete Problem

- 2 Primal-Dual Iteration Primal-Dual Iteration
- 3 Numerical Examples

Let U be an open subset of \mathbb{R}^d . A function $v \in L^1(U)$ is a function of bounded variation iff

$$|v|_{\mathsf{BV}(U)} \coloneqq \sup_{\substack{\phi \in C_C^1(U;\mathbb{R}^d) \\ \|\phi\|_{L^\infty(U)} \leqslant 1}} \int_U v \, \mathsf{div}(\phi) \, \mathrm{d}x < \infty.$$

The space of all such functions is denoted by BV(U).

Let U be an open subset of \mathbb{R}^d . A function $v \in L^1(U)$ is a function of bounded variation iff

$$|v|_{\mathsf{BV}(U)} \coloneqq \sup_{\substack{\phi \in C^1_{\mathsf{C}}(U;\mathbb{R}^d) \\ \|\phi\|_{L^\infty(U)} \leqslant 1}} \int_U v \, \mathsf{div}(\phi) \, \mathrm{d}x < \infty.$$

The space of all such functions is denoted by BV(U). It is a Banach space equipped with the norm $\| \bullet \|_{BV(U)} := \| \bullet \|_{L^1(U)} + | \bullet |_{BV(U)}$.

Let U be an open subset of \mathbb{R}^d . A function $v \in L^1(U)$ is a function of bounded variation iff

$$|v|_{\mathsf{BV}(U)} := \sup_{\substack{\phi \in C^1_{\mathsf{C}}(U;\mathbb{R}^d) \\ \|\phi\|_{L^\infty(U)} \leqslant 1}} \int_U v \, \mathsf{div}(\phi) \, \mathrm{d}x < \infty.$$

The space of all such functions is denoted by BV(U). It is a Banach space equipped with the norm $\| \bullet \|_{BV(U)} := \| \bullet \|_{L^1(U)} + | \bullet |_{BV(U)}$.

We have $W^{1,1}(\Omega) \subset \mathsf{BV}(\Omega)$ with $\|v\|_{\mathsf{BV}(\Omega)} = \|v\|_{W^{1,1}(\Omega)}$ for all $v \in W^{1,1}(\Omega)$.

Hedy Attouch, Giuseppe Buttazzo, and Gérard Michaille. Variational Analysis in Sobolev and BV Spaces. Applications to PDEs and Optimization. Second Edition. Vol. 17. MOS-SIAM Series on Optimization. Philadelphia: Society for Industrial and Applied Mathematics, Mathematical Optimization Society, 2014. ISBN: 978-1-611973-47-1

Lawrence C. Evans and Ronald F. Gariepy. **Measure Theory and Fine Properties of Functions**. CRC Press, 1992. ISBN: 0-8493-7157-0

Table of Contents

Recapitulation

Functions of Bounded Variation

Rudin-Osher-Fatemi Model Problem

Continuous Problem
Discrete Problem

2 Primal-Dual Iteration Primal-Dual Iteration

3 Numerical Examples

Rudin-Osher-Fatemi (ROF) model problem

For a parameter $\alpha \in \mathbb{R}_+$ and an input signal $g \in L^2(\Omega)$ minimize the functional

$$I(v) \coloneqq |v|_{\mathsf{BV}(\Omega)} + \frac{\alpha}{2} ||v - g||_{L^2(\Omega)}^2$$

amongst all $v \in \mathsf{BV}(\Omega) \cap L^2(\Omega)$.

Rudin-Osher-Fatemi (ROF) model problem

For a parameter $\alpha \in \mathbb{R}_+$ and an input signal $g \in L^2(\Omega)$ minimize the functional

$$I(v) := |v|_{\mathsf{BV}(\Omega)} + \frac{\alpha}{2} ||v - g||_{L^2(\Omega)}^2$$

amongst all $v \in \mathsf{BV}(\Omega) \cap L^2(\Omega)$.

Leonid I. Rudin, Stanley Osher, and Emad Fatemi. "Nonlinear total variation based noise removal algorithms". In: **Physica D: Nonlinear Phenomena.** Vol. 60. 1-4. 1992, pp. 259–268. DOI: 10.1016/0167-2789(92)90242-F. URL: https://doi.org/10.1016/0167-2789(92)90242-F

Rudin-Osher-Fatemi (ROF) model problem

For a parameter $\alpha \in \mathbb{R}_+$ and an input signal $g \in L^2(\Omega)$ minimize the functional

$$I(\mathbf{v}) := |\mathbf{v}|_{\mathsf{BV}(\Omega)} + \frac{\alpha}{2} \|\mathbf{v} - \mathbf{g}\|_{L^2(\Omega)}^2$$

amongst all $v \in \mathsf{BV}(\Omega) \cap L^2(\Omega)$.

Leonid I. Rudin, Stanley Osher, and Emad Fatemi. "Nonlinear total variation based noise removal algorithms". In: **Physica D: Nonlinear Phenomena.** Vol. 60. 1-4. 1992, pp. 259–268. DOI: 10.1016/0167-2789(92)90242-F. URL: https://doi.org/10.1016/0167-2789(92)90242-F

Rudin-Osher-Fatemi (ROF) model problem

For a parameter $\alpha \in \mathbb{R}_+$ and an input signal $g \in L^2(\Omega)$ minimize the functional

$$I(v) := |\mathbf{v}|_{\mathsf{BV}(\Omega)} + \frac{\alpha}{2} ||\mathbf{v} - \mathbf{g}||_{L^2(\Omega)}^2$$

amongst all $v \in \mathsf{BV}(\Omega) \cap L^2(\Omega)$.

Leonid I. Rudin, Stanley Osher, and Emad Fatemi. "Nonlinear total variation based noise removal algorithms". In: **Physica D: Nonlinear Phenomena.** Vol. 60. 1-4. 1992, pp. 259–268. DOI: 10.1016/0167-2789(92)90242-F. URL: https://doi.org/10.1016/0167-2789(92)90242-F

Original picture⁰

Ohttps://homepages.cae.wisc.edu/~ece533/images/cameraman_tif > + = +

Original picture⁰

Input signal

The input signal was created by adding AWGN with a SNR of 20 to the original picture.

$$I(v) \coloneqq |v|_{\mathsf{BV}(\Omega)} + \frac{\alpha}{2} \|v - g\|_{L^2(\Omega)}^2$$

Original picture

Input signal

$$I(\mathbf{v}) := |\mathbf{v}|_{\mathsf{BV}(\Omega)} + \frac{\alpha}{2} \|\mathbf{v} - \mathbf{g}\|_{L^2(\Omega)}^2$$

Original picture

Input signal

$$\alpha = 10^5$$

$$I(v) \coloneqq |\mathbf{v}|_{\mathsf{BV}(\Omega)} + \frac{\alpha}{2} \|v - g\|_{L^2(\Omega)}^2$$

Original picture

Input signal

$$\alpha = 10^3$$

$$\alpha = 10^5$$

$$I(v) \coloneqq |v|_{\mathsf{BV}(\Omega)} + \frac{\alpha}{2} \|v - g\|_{L^2(\Omega)}^2$$

Original picture

Input signal

 $\alpha = 10^3$

$$\alpha = 10^4$$

$$\alpha = 10^5$$

Pascal Getreuer. "Rudin-Osher-Fatemi Total Variation Denoising using Split Bregman". In: Image Processing On Line 2 (2012), pp. 74–95. URL: https://doi.org/10.5201/ipol.2012.g-tvd

Table of Contents

1 Recapitulation

Functions of Bounded Variation Rudin-Osher-Fatemi Model Problem

Continuous Problem

Discrete Problem

② Primal-Dual Iteration Primal-Dual Iteration

3 Numerical Examples

Continuous problem

For a parameter $\alpha \in \mathbb{R}_+$ and an input signal $f \in L^2(\Omega)$ minimize the functional

$$E(v) := \frac{\alpha}{2} ||v||^2 + |v|_{BV(\Omega)} + ||v||_{L^1(\partial\Omega)} - \int_{\Omega} f v \, dx$$

amongst all $v \in \mathsf{BV}(\Omega) \cap L^2(\Omega)$.

Continuous problem

For a parameter $\alpha \in \mathbb{R}_+$ and an input signal $f \in L^2(\Omega)$ minimize the functional

$$E(v) := \frac{\alpha}{2} \|v\|^2 + |v|_{\mathsf{BV}(\Omega)} + \|v\|_{L^1(\partial\Omega)} - \int_{\Omega} fv \, \mathrm{d}x$$

amongst all $v \in \mathsf{BV}(\Omega) \cap L^2(\Omega)$.

Continuous problem

For a parameter $\alpha \in \mathbb{R}_+$ and an input signal $f \in L^2(\Omega)$ minimize the functional

$$E(v) := \frac{\alpha}{2} ||v||^2 + |v|_{BV(\Omega)} + ||v||_{L^1(\partial\Omega)} - \int_{\Omega} f v \, dx$$

amongst all $v \in BV(\Omega) \cap L^2(\Omega)$.

For $f = \alpha g$ the functional E has the same minimizers as

$$I(v) = |v|_{\mathsf{BV}(\Omega)} + \frac{\alpha}{2} ||v - g||_{L^{2}(\Omega)}^{2}$$

in
$$\{v \in \mathsf{BV}(\Omega) \cap L^2(\Omega) \mid ||v||_{L^1(\partial\Omega)} = 0\}.$$

Theorem (Existence and uniqueness of a minimizer)

There exists a unique minimizer $u \in \mathsf{BV}(\Omega) \cap L^2(\Omega)$ for $E(v) = \frac{\alpha}{2} \|v\|^2 + |v|_{\mathsf{BV}(\Omega)} + \|v\|_{L^1(\partial\Omega)} - \int_{\Omega} \mathsf{f} v \, \mathrm{d} x$ amongst all $v \in \mathsf{BV}(\Omega) \cap L^2(\Omega)$.

Theorem (Existence and uniqueness of a minimizer)

There exists a unique minimizer $u \in \mathsf{BV}(\Omega) \cap L^2(\Omega)$ for $E(v) = \frac{\alpha}{2} \|v\|^2 + |v|_{\mathsf{BV}(\Omega)} + \|v\|_{L^1(\partial\Omega)} - \int_{\Omega} \mathsf{fv} \, \mathrm{d}x$ amongst all $v \in \mathsf{BV}(\Omega) \cap L^2(\Omega)$.

Lemma

Let $v \in \mathsf{BV}(\Omega)$. For all $x \in \mathbb{R}^d$, define

$$\tilde{v}(x) := \begin{cases} v(x) & \text{if } x \in \Omega, \\ 0 & \text{if } x \in \mathbb{R}^d \setminus \overline{\Omega}. \end{cases}$$

Then $\tilde{v} \in \mathsf{BV}\left(\mathbb{R}^d\right)$ and $|\tilde{v}|_{\mathsf{BV}\left(\mathbb{R}^d\right)} = |v|_{\mathsf{BV}\left(\Omega\right)} + ||v||_{L^1(\partial\Omega)}.$

Let U be an open subset of \mathbb{R}^d .

Definition (Weak convergence in BV(U))

Let $(v_n)_{n\in\mathbb{N}}\subset \mathsf{BV}(U)$ and $v\in \mathsf{BV}(U)$ with $v_n\to v$ in $L^1(U)$ as $n\to\infty$. Then $(v_n)_{n\in\mathbb{N}}$ converges weakly to v in $\mathsf{BV}(U)$ iff, for all $\phi\in C_0(U;\mathbb{R}^d)$, it holds

$$\int_{U} v_n \operatorname{div}(\phi) dx \to \int_{U} v \operatorname{div}(\phi) dx \quad \text{as } n \to \infty.$$

We write $v_n \rightarrow v$ as $n \rightarrow \infty$.

Theorem

Let $v \in L^1(U)$ and $(v_n)_{n \in \mathbb{N}} \subset \mathsf{BV}(U)$ with $\sup_{n \in \mathbb{N}} |v_n|_{\mathsf{BV}(U)} < \infty$ and $v_n \to v$ in $L^1(U)$ as $n \to \infty$. Then $v \in \mathsf{BV}(U)$ and $|v|_{\mathsf{BV}(U)} \leqslant \liminf_{n \to \infty} |v_n|_{\mathsf{BV}(U)}$. Furthermore, $v_n \to v$ in $\mathsf{BV}(U)$.

Theorem

Let $v \in L^1(U)$ and $(v_n)_{n \in \mathbb{N}} \subset \mathsf{BV}(U)$ with $\sup_{n \in \mathbb{N}} |v_n|_{\mathsf{BV}(U)} < \infty$ and $v_n \to v$ in $L^1(U)$ as $n \to \infty$. Then $v \in \mathsf{BV}(U)$ and $|v|_{\mathsf{BV}(U)} \leqslant \liminf_{n \to \infty} |v_n|_{\mathsf{BV}(U)}$. Furthermore, $v_n \to v$ in $\mathsf{BV}(U)$.

Let U be a bounded Lipschitz domain.

Theorem

Let $(v_n)_{n\in\mathbb{N}}\subset \mathsf{BV}(U)$ be bounded. Then there exists some subsequence $(v_{n_k})_{k\in\mathbb{N}}$ of $(v_n)_{n\in\mathbb{N}}$ and $v\in \mathsf{BV}(U)$ such that $v_{n_k}\to v$ in $L^1(U)$ as $k\to\infty$.

Let $f_1, f_2 \in L^2(\Omega)$. For $\ell \in \{1, 2\}$, let $u_\ell \in \mathsf{BV}(\Omega) \cap L^2(\Omega)$ minimize

$$E_\ell(v) := \frac{\alpha}{2} \|v\|^2 + |v|_{\mathsf{BV}(\Omega)} + \|v\|_{L^1(\partial\Omega)} - \int_\Omega f_\ell v \, \mathrm{d}x$$

amongst all $v \in \mathsf{BV}(\Omega) \cap L^2(\Omega)$. Then

$$||u_1-u_2|| \leq \frac{1}{\alpha}||f_1-f_2||.$$

Let $f_1, f_2 \in L^2(\Omega)$. For $\ell \in \{1, 2\}$, let $u_\ell \in \mathsf{BV}(\Omega) \cap L^2(\Omega)$ minimize

$$E_{\ell}(v) := \frac{\alpha}{2} ||v||^2 + |v|_{\mathsf{BV}(\Omega)} + ||v||_{L^1(\partial\Omega)} - \int_{\Omega} f_{\ell} v \, \mathrm{d}x$$

amongst all $v \in BV(\Omega) \cap L^2(\Omega)$. Then

$$||u_1-u_2|| \leqslant \frac{1}{\alpha}||f_1-f_2||.$$

Sören Bartels. Numerical Methods for Nonlinear Partial Differential Equations. Vol. 47. Springer Series in Computational Mathematics. Springer International Publishing, 2015. ISBN: 978-3-319-13796-4. DOI: 10.1007/978-3-319-13797-1, Chapter 10, p. 297-319.

Let $f_1, f_2 \in L^2(\Omega)$. For $\ell \in \{1, 2\}$, let $u_\ell \in \mathsf{BV}(\Omega) \cap L^2(\Omega)$ minimize

$$E_{\ell}(v) := \frac{\alpha}{2} \|v\|^2 + |v|_{\mathsf{BV}(\Omega)} + \|v\|_{L^1(\partial\Omega)} - \int_{\Omega} f_{\ell} v \, \mathrm{d}x$$

amongst all $v \in BV(\Omega) \cap L^2(\Omega)$. Then

$$||u_1-u_2|| \leqslant \frac{1}{\alpha}||f_1-f_2||.$$

Sören Bartels. Numerical Methods for Nonlinear Partial Differential Equations. Vol. 47. Springer Series in Computational Mathematics. Springer International Publishing, 2015. ISBN: 978-3-319-13796-4. DOI: 10.1007/978-3-319-13797-1, Chapter 10, p. 297-319.

Let $f_1, f_2 \in L^2(\Omega)$. For $\ell \in \{1, 2\}$, let $u_\ell \in \mathsf{BV}(\Omega) \cap L^2(\Omega)$ minimize

$$E_{\ell}(v) := \frac{\alpha}{2} \|v\|^2 + |v|_{\mathsf{BV}(\Omega)} + \|v\|_{L^1(\partial\Omega)} - \int_{\Omega} f_{\ell} v \, \mathrm{d}x$$

amongst all $v \in BV(\Omega) \cap L^2(\Omega)$. Then

$$||u_1-u_2|| \leqslant \frac{1}{\alpha}||f_1-f_2||.$$

Sören Bartels. Numerical Methods for Nonlinear Partial Differential Equations. Vol. 47. Springer Series in Computational Mathematics. Springer International Publishing, 2015. ISBN: 978-3-319-13796-4. DOI: 10.1007/978-3-319-13797-1, Chapter 10, p. 297-319.

Table of Contents

Recapitulation

Functions of Bounded Variation Rudin-Osher-Fatemi Model Problem Continuous Problem

Discrete Problem

- 2 Primal-Dual Iteration Primal-Dual Iteration
- 3 Numerical Examples

Let \mathcal{T} be a regular triangulation of Ω .

For all
$$v_{CR} \in CR^1(\mathcal{T})$$
,

$$|v_{\text{CR}}|_{\text{BV}(\Omega)} = \|\nabla_{\text{NC}}v_{\text{CR}}\|_{L^{1}(\Omega)} + \sum_{F \in \mathcal{E}(\Omega)} \|[v_{\text{CR}}]_{F}\|_{L^{1}(F)}.$$

In particular, $CR^1(\mathcal{T}) \subset BV(\Omega)$.

$$E(v_{\mathsf{CR}}) = \frac{\alpha}{2} \|v_{\mathsf{CR}}\|^2 + |v_{\mathsf{CR}}|_{\mathsf{BV}(\Omega)} + \|v_{\mathsf{CR}}\|_{L^1(\partial\Omega)} - \int_{\Omega} \mathsf{f} v_{\mathsf{CR}} \, \mathrm{d}x$$

$$|v_{\mathsf{CR}}|_{\mathsf{BV}(\Omega)} + \|v_{\mathsf{CR}}\|_{L^1(\partial\Omega)} = \|\nabla_{\mathsf{NC}}v_{\mathsf{CR}}\|_{L^1(\Omega)} + \sum_{F \in \mathcal{E}} \|[v_{\mathsf{CR}}]_F\|_{L^1(F)}$$

$$E(v_{\text{CR}}) = \frac{\alpha}{2} \|v_{\text{CR}}\|^2 + |v_{\text{CR}}|_{\text{BV}(\Omega)} + \|v_{\text{CR}}\|_{L^1(\partial\Omega)} - \int_{\Omega} f v_{\text{CR}} \, \mathrm{d}x$$

$$|v_{\mathsf{CR}}|_{\mathsf{BV}(\Omega)} + \|v_{\mathsf{CR}}\|_{L^1(\partial\Omega)} = \|\nabla_{\mathsf{NC}}v_{\mathsf{CR}}\|_{L^1(\Omega)} + \sum_{F \in \mathcal{E}} \|[v_{\mathsf{CR}}]_F\|_{L^1(F)}$$

$$E(v_{\text{CR}}) = \frac{\alpha}{2} \|v_{\text{CR}}\|^2 + |v_{\text{CR}}|_{\text{BV}(\Omega)} + \|v_{\text{CR}}\|_{L^1(\partial\Omega)} - \int_{\Omega} f v_{\text{CR}} \, \mathrm{d}x$$

$$|v_{\mathsf{CR}}|_{\mathsf{BV}(\Omega)} + ||v_{\mathsf{CR}}||_{L^{1}(\partial\Omega)} = ||\nabla_{\mathsf{NC}}v_{\mathsf{CR}}||_{L^{1}(\Omega)} + \sum_{F \in \mathcal{E}} ||[v_{\mathsf{CR}}]_{F}||_{L^{1}(F)}$$

Discrete problem

For a parameter $\alpha \in \mathbb{R}_+$ and an input signal $f \in L^2(\Omega)$ minimize the functional

$$E_{\mathsf{NC}}(v_{\mathsf{CR}}) := \frac{\alpha}{2} \|v_{\mathsf{CR}}\|^2 + \|\nabla_{\mathsf{NC}} v_{\mathsf{CR}}\|_{L^1(\Omega)} - \int_{\Omega} f v_{\mathsf{CR}} \, \mathrm{d}x$$

amongst all $v_{CR} \in CR_0^1(\mathcal{T})$.

$$E(v_{\text{CR}}) = \frac{\alpha}{2} \|v_{\text{CR}}\|^2 + |v_{\text{CR}}|_{\text{BV}(\Omega)} + \|v_{\text{CR}}\|_{L^1(\partial\Omega)} - \int_{\Omega} f v_{\text{CR}} \, \mathrm{d}x$$

$$|v_{\mathsf{CR}}|_{\mathsf{BV}(\Omega)} + ||v_{\mathsf{CR}}||_{L^{1}(\partial\Omega)} = ||\nabla_{\mathsf{NC}}v_{\mathsf{CR}}||_{L^{1}(\Omega)} + \sum_{F \in \mathcal{E}} ||[v_{\mathsf{CR}}]_{F}||_{L^{1}(F)}$$

Discrete problem

For a parameter $\alpha \in \mathbb{R}_+$ and an input signal $f \in L^2(\Omega)$ minimize the functional

$$E_{\mathsf{NC}}(v_{\mathsf{CR}}) := \frac{\alpha}{2} \|v_{\mathsf{CR}}\|^2 + \|\nabla_{\mathsf{NC}} v_{\mathsf{CR}}\|_{L^1(\Omega)} - \int_{\Omega} f v_{\mathsf{CR}} \, \mathrm{d}x$$

amongst all $v_{CR} \in CR_0^1(\mathcal{T})$.

There exists a unique minimizer $u_{CR} \in CR_0^1(\mathcal{T})$ for $E_{NC}(v_{CR}) := \frac{\alpha}{2} \|v_{CR}\|^2 + \|\nabla_{NC}v_{CR}\|_{L^1(\Omega)} - \int_{\Omega} fv_{CR} \, \mathrm{d}x$ amongst all $v_{CR} \in CR_0^1(\mathcal{T})$.

There exists a unique minimizer $u_{CR} \in CR_0^1(\mathcal{T})$ for $E_{NC}(v_{CR}) := \frac{\alpha}{2} \|v_{CR}\|^2 + \|\nabla_{NC}v_{CR}\|_{L^1(\Omega)} - \int_{\Omega} fv_{CR} \, \mathrm{d}x$ amongst all $v_{CR} \in CR_0^1(\mathcal{T})$.

There exists a unique minimizer $u_{CR} \in CR_0^1(\mathcal{T})$ for $E_{NC}(v_{CR}) := \frac{\alpha}{2} \|v_{CR}\|^2 + \|\nabla_{NC}v_{CR}\|_{L^1(\Omega)} - \int_{\Omega} fv_{CR} \, \mathrm{d}x$ amongst all $v_{CR} \in CR_0^1(\mathcal{T})$.

Let $K := \left\{ \Lambda \in L^{\infty} \left(\Omega; \mathbb{R}^2 \right) \, \middle| \, |\Lambda(\bullet)| \leqslant 1 \text{ a.e. in } \Omega \right\}$ and, for all $(\nu_{\mathsf{CR}}, \Lambda_0) \in \mathsf{CR}^1_0(\mathcal{T}) \times P_0 \left(\mathcal{T}; \mathbb{R}^2 \right)$,

$$L(v_{\mathsf{CR}}, \Lambda_0) := \int_{\Omega} \Lambda_0 \cdot \nabla_{\mathsf{NC}} v_{\mathsf{CR}} \, \mathrm{d}x + \frac{\alpha}{2} \|v_{\mathsf{CR}}\|^2 - \int_{\Omega} \mathit{f}v_{\mathsf{CR}} \, \mathrm{d}x - \mathit{I}_{\mathcal{K}}(\Lambda_0).$$

There exists a unique minimizer $u_{CR} \in CR_0^1(\mathcal{T})$ for $E_{NC}(v_{CR}) := \frac{\alpha}{2} \|v_{CR}\|^2 + \|\nabla_{NC}v_{CR}\|_{L^1(\Omega)} - \int_{\Omega} fv_{CR} \, \mathrm{d}x$ amongst all $v_{CR} \in CR_0^1(\mathcal{T})$.

Let $K := \left\{ \Lambda \in L^{\infty} \left(\Omega; \mathbb{R}^2 \right) \, \middle| \, |\Lambda(\bullet)| \leqslant 1 \text{ a.e. in } \Omega \right\}$ and, for all $(\nu_{\mathsf{CR}}, \Lambda_0) \in \mathsf{CR}^1_0(\mathcal{T}) \times P_0 \left(\mathcal{T}; \mathbb{R}^2 \right)$,

$$L(v_{\mathsf{CR}}, \Lambda_0) := \int_{\Omega} \Lambda_0 \cdot \nabla_{\mathsf{NC}} v_{\mathsf{CR}} \, \mathrm{d}x + \frac{\alpha}{2} \|v_{\mathsf{CR}}\|^2 - \int_{\Omega} f v_{\mathsf{CR}} \, \mathrm{d}x - I_{\mathsf{K}}(\Lambda_0).$$

There exists a unique minimizer $u_{CR} \in CR_0^1(\mathcal{T})$ for $E_{NC}(v_{CR}) := \frac{\alpha}{2} \|v_{CR}\|^2 + \|\nabla_{NC}v_{CR}\|_{L^1(\Omega)} - \int_{\Omega} fv_{CR} \, \mathrm{d}x$ amongst all $v_{CR} \in CR_0^1(\mathcal{T})$.

Let $K := \left\{ \Lambda \in L^{\infty}\left(\Omega; \mathbb{R}^2\right) \big| \, |\Lambda(\bullet)| \leqslant 1 \text{ a.e. in } \Omega \right\}$ and, for all $(\nu_{\mathsf{CR}}, \Lambda_0) \in \mathsf{CR}^1_0(\mathcal{T}) \times P_0\left(\mathcal{T}; \mathbb{R}^2\right)$,

$$L(v_{\mathsf{CR}}, \Lambda_0) := \int_{\Omega} \Lambda_0 \cdot \nabla_{\mathsf{NC}} v_{\mathsf{CR}} \, \mathrm{d}x + \frac{\alpha}{2} \|v_{\mathsf{CR}}\|^2 - \int_{\Omega} f v_{\mathsf{CR}} \, \mathrm{d}x - I_{\mathsf{K}}(\Lambda_0).$$

There exists a unique minimizer $u_{CR} \in CR_0^1(\mathcal{T})$ for $E_{NC}(v_{CR}) := \frac{\alpha}{2} \|v_{CR}\|^2 + \|\nabla_{NC}v_{CR}\|_{L^1(\Omega)} - \int_{\Omega} fv_{CR} \, \mathrm{d}x$ amongst all $v_{CR} \in CR_0^1(\mathcal{T})$.

Let $K:=\left\{\Lambda\in L^\infty\left(\Omega;\mathbb{R}^2\right)\big|\,|\Lambda(ullet)|\leqslant 1$ a.e. in $\Omega\right\}$ and, for all $(\nu_{\mathsf{CR}},\Lambda_0)\in\mathsf{CR}^1_0(\mathcal{T})\times P_0\left(\mathcal{T};\mathbb{R}^2\right)$,

$$L(v_{\mathsf{CR}}, \Lambda_0) := \int_{\Omega} \Lambda_0 \cdot \nabla_{\mathsf{NC}} v_{\mathsf{CR}} \, \mathrm{d}x + \frac{\alpha}{2} \|v_{\mathsf{CR}}\|^2 - \int_{\Omega} f v_{\mathsf{CR}} \, \mathrm{d}x - I_{\mathsf{K}}(\Lambda_0).$$

Minimax problem

Find
$$\left(\tilde{\textit{u}}_{CR},\bar{\Lambda}_{0}\right)\in\mathsf{CR}_{0}^{1}(\mathcal{T})\times\textit{P}_{0}\!\left(\mathcal{T};\mathbb{R}^{2}\right)$$
 such that

$$L(\tilde{\textit{u}}_{CR},\bar{\Lambda}_0) = \inf_{\textit{v}_{CR} \in CR_0^1(\mathcal{T})} \sup_{\Lambda_0 \in \textit{P}_0(\mathcal{T};\mathbb{R}^2)} L(\textit{v}_{CR},\Lambda_0).$$

$$L(v_{\mathsf{CR}}, \Lambda_0) := \int_{\Omega} \Lambda_0 \cdot \nabla_{\mathsf{NC}} v_{\mathsf{CR}} \, \mathrm{d}x + \frac{\alpha}{2} \|v_{\mathsf{CR}}\|^2 - \int_{\Omega} \mathsf{f} v_{\mathsf{CR}} \, \mathrm{d}x - I_{\mathcal{K}}(\Lambda_0)$$

Minimax problem

Find
$$(\tilde{u}_{CR}, \bar{\Lambda}_0) \in CR_0^1(\mathcal{T}) \times P_0(\mathcal{T}; \mathbb{R}^2)$$
 such that

$$L(\tilde{\textit{u}}_{CR},\bar{\Lambda}_0) = \inf_{\textit{v}_{CR} \in CR^1_0(\mathcal{T})} \sup_{\Lambda_0 \in \textit{P}_0(\mathcal{T};\mathbb{R}^2)} L(\textit{v}_{CR},\Lambda_0).$$

$$L(v_{\mathsf{CR}}, \Lambda_0) := \int_{\Omega} \Lambda_0 \cdot \nabla_{\mathsf{NC}} v_{\mathsf{CR}} \, \mathrm{d}x + \frac{\alpha}{2} \|v_{\mathsf{CR}}\|^2 - \int_{\Omega} \mathit{f}v_{\mathsf{CR}} \, \mathrm{d}x - \mathit{I}_{\mathcal{K}}(\Lambda_0)$$

Minimax problem

Find
$$(\tilde{u}_{CR}, \bar{\Lambda}_0) \in CR_0^1(\mathcal{T}) \times P_0(\mathcal{T}; \mathbb{R}^2)$$
 such that

$$L(\tilde{\textit{u}}_{CR},\bar{\Lambda}_0) = \inf_{\textit{v}_{CR} \in CR^1_0(\mathcal{T})} \sup_{\Lambda_0 \in \textit{P}_0(\mathcal{T};\mathbb{R}^2)} L(\textit{v}_{CR},\Lambda_0).$$

This problem has a solution $(\tilde{u}_{CR}, \bar{\Lambda}_0) \in CR_0^1(\mathcal{T}) \times (P_0(\mathcal{T}; \mathbb{R}^2) \cap K).$

$$L(v_{\mathsf{CR}}, \Lambda_0) := \int_{\Omega} \Lambda_0 \cdot \nabla_{\mathsf{NC}} v_{\mathsf{CR}} \, \mathrm{d}x + \frac{\alpha}{2} \|v_{\mathsf{CR}}\|^2 - \int_{\Omega} \mathsf{f} v_{\mathsf{CR}} \, \mathrm{d}x - I_{\mathcal{K}}(\Lambda_0)$$

Minimax problem

Find $\left(\tilde{\textit{u}}_{CR},\bar{\Lambda}_{0}\right)\in CR_{0}^{1}(\mathcal{T})\times\textit{P}_{0}\left(\mathcal{T};\mathbb{R}^{2}\right)$ such that

$$L(\tilde{\textit{u}}_{CR},\bar{\Lambda}_0) = \inf_{\textit{v}_{CR} \in CR^1_0(\mathcal{T})} \sup_{\Lambda_0 \in \textit{P}_0(\mathcal{T};\mathbb{R}^2)} L(\textit{v}_{CR},\Lambda_0).$$

This problem has a solution $(\tilde{u}_{CR}, \bar{\Lambda}_0) \in CR_0^1(\mathcal{T}) \times (P_0(\mathcal{T}; \mathbb{R}^2) \cap K).$

R. Tyrrell Rockafellar. Convex Analysis. New Jersey: Princeton University Press, 1970. ISBN: 0-691-08069-0

Theorem (Equivalent characterizations)

For a function $\tilde{u}_{CR} \in CR_0^1(\mathcal{T})$ the following statements are equivalent.

- (i) \tilde{u}_{CR} solves the discrete problem.
- (ii) There exists $\bar{\Lambda}_0 \in P_0(\mathcal{T}; \mathbb{R}^2)$ with $|\bar{\Lambda}_0(\bullet)| \leqslant 1$ a.e. in Ω s.t.

$$\bar{\Lambda}_0(\bullet)\cdot\nabla_{NC}\tilde{\textit{u}}_{CR}(\bullet) = |\nabla_{NC}\tilde{\textit{u}}_{CR}(\bullet)| \quad \text{ a.e. in } \Omega$$

and

$$\left(\bar{\Lambda}_0, \nabla_{\mathsf{NC}} \textit{v}_{\mathsf{CR}}\right) = \left(\textit{f} - \alpha \tilde{\textit{u}}_{\mathsf{CR}}, \textit{v}_{\mathsf{CR}}\right) \quad \textit{for all } \textit{v}_{\mathsf{CR}} \in \mathsf{CR}^1_0(\mathcal{T}).$$

(iii) For all $v_{CR} \in CR_0^1(\mathcal{T})$,

$$(f - \alpha \tilde{u}_{CR}, v_{CR} - \tilde{u}_{CR}) \leq \|\nabla_{NC} v_{CR}\|_{L^1(\Omega)} - \|\nabla_{NC} \tilde{u}_{CR}\|_{L^1(\Omega)}.$$

Table of Contents

Recapitulation
 Functions of Bounded Variation
 Rudin-Osher-Fatemi Model Probler

Discrete Problem

2 Primal-Dual Iteration Primal-Dual Iteration

3 Numerical Examples

Input: $(u_0, \Lambda_0) \in CR_0^1(\mathcal{T}) \times P_0(\mathcal{T}; \overline{B_{\mathbb{R}^2}}),$

Input: $(u_0, \Lambda_0) \in CR_0^1(\mathcal{T}) \times P_0(\mathcal{T}; \overline{B_{\mathbb{R}^2}}), \ \tau > 0,$

Input: $(u_0, \Lambda_0) \in \mathsf{CR}_0^1(\mathcal{T}) \times P_0(\mathcal{T}; \overline{B_{\mathbb{R}^2}}), \ \tau > 0,$ Initialize $v_0 := 0$ in $\mathsf{CR}_0^1(\mathcal{T}).$

Input:
$$(u_0, \Lambda_0) \in CR_0^1(\mathcal{T}) \times P_0(\mathcal{T}; \overline{B_{\mathbb{R}^2}}), \ \tau > 0,$$

Initialize $v_0 := 0$ in $CR_0^1(\mathcal{T}).$
for $j = 1, 2, ...$

$$\tilde{u}_j := u_{j-1} + \tau v_{j-1}, \qquad \Lambda_j := \frac{\Lambda_{j-1} + \tau \nabla_{\mathsf{NC}} \tilde{u}_j}{\max\{1, |\Lambda_{j-1} + \tau \nabla_{\mathsf{NC}} \tilde{u}_j|\}},$$

Input:
$$(u_0, \Lambda_0) \in CR_0^1(\mathcal{T}) \times P_0(\mathcal{T}; \overline{B_{\mathbb{R}^2}}), \ \tau > 0,$$

Initialize $v_0 := 0$ in $CR_0^1(\mathcal{T}).$
for $j = 1, 2, ...$

$$\tilde{u}_j := u_{j-1} + \tau v_{j-1}, \qquad \Lambda_j := \frac{\Lambda_{j-1} + \tau \nabla_{\mathsf{NC}} \tilde{u}_j}{\max\{1, |\Lambda_{j-1} + \tau \nabla_{\mathsf{NC}} \tilde{u}_j|\}},$$

solve

$$\frac{1}{\tau} a_{\mathsf{NC}}(u_j, \bullet) + \alpha(u_j, \bullet) = \frac{1}{\tau} a_{\mathsf{NC}}(u_{j-1}, \bullet) + (f, \bullet) - (\Lambda_j, \nabla_{\mathsf{NC}} \bullet)$$
in $\mathsf{CR}^1_0(\mathcal{T})$ for u_i ,

1000 TEV (E)

Input:
$$(u_0, \Lambda_0) \in CR_0^1(\mathcal{T}) \times P_0(\mathcal{T}; \overline{B_{\mathbb{R}^2}}), \ \tau > 0,$$

Initialize $v_0 := 0$ in $CR_0^1(\mathcal{T}).$
for $j = 1, 2, ...$

$$\tilde{u}_j := u_{j-1} + \tau v_{j-1}, \qquad \Lambda_j := \frac{\Lambda_{j-1} + \tau \nabla_{\mathsf{NC}} \tilde{u}_j}{\max \{1, |\Lambda_{j-1} + \tau \nabla_{\mathsf{NC}} \tilde{u}_j|\}},$$

solve

$$\frac{1}{\tau} a_{\mathsf{NC}}(u_j, \bullet) + \alpha(u_j, \bullet) = \frac{1}{\tau} a_{\mathsf{NC}}(u_{j-1}, \bullet) + (f, \bullet) - (\Lambda_j, \nabla_{\mathsf{NC}} \bullet)$$

in $CR_0^1(\mathcal{T})$ for u_j , and set

$$v_j := \frac{u_j - u_{j-1}}{\tau}.$$

Input:
$$(u_0, \Lambda_0) \in CR_0^1(\mathcal{T}) \times P_0(\mathcal{T}; \overline{B_{\mathbb{R}^2}}), \ \tau > 0,$$

Initialize $v_0 := 0$ in $CR_0^1(\mathcal{T}).$
for $j = 1, 2, ...$

$$\tilde{u}_j := u_{j-1} + \tau v_{j-1}, \qquad \Lambda_j := \frac{\Lambda_{j-1} + \tau \nabla_{\mathsf{NC}} \tilde{u}_j}{\max\{1, |\Lambda_{j-1} + \tau \nabla_{\mathsf{NC}} \tilde{u}_j|\}},$$

solve

$$\frac{1}{\tau} a_{\mathsf{NC}}(u_j, \bullet) + \alpha(u_j, \bullet) = \frac{1}{\tau} a_{\mathsf{NC}}(u_{j-1}, \bullet) + (f, \bullet) - (\Lambda_j, \nabla_{\mathsf{NC}} \bullet)$$

in $CR_0^1(\mathcal{T})$ for u_i , and set

$$v_j := \frac{u_j - u_{j-1}}{\tau}.$$

Input:
$$(u_0, \Lambda_0) \in CR_0^1(\mathcal{T}) \times P_0(\mathcal{T}; \overline{B_{\mathbb{R}^2}}), \ \tau > 0,$$

Initialize $v_0 := 0$ in $CR_0^1(\mathcal{T}).$
for $j = 1, 2, ...$

$$\tilde{u}_j := u_{j-1} + \tau v_{j-1}, \qquad \Lambda_j := \frac{\Lambda_{j-1} + \tau \nabla_{\mathsf{NC}} \tilde{u}_j}{\max\{1, |\Lambda_{j-1} + \tau \nabla_{\mathsf{NC}} \tilde{u}_j|\}},$$

solve

$$\frac{1}{\tau} \mathsf{a}_{\mathsf{NC}}(\mathit{u}_{j}, \bullet) + \alpha(\mathit{u}_{j}, \bullet) = \frac{1}{\tau} \mathsf{a}_{\mathsf{NC}}(\mathit{u}_{j-1}, \bullet) + (f, \bullet) - (\Lambda_{j}, \nabla_{\mathsf{NC}} \bullet)$$

in $CR_0^1(\mathcal{T})$ for u_i , and set

$$v_j := \frac{u_j - u_{j-1}}{\tau}.$$

Input:
$$(u_0, \Lambda_0) \in CR_0^1(\mathcal{T}) \times P_0(\mathcal{T}; \overline{B_{\mathbb{R}^2}}), \tau > 0$$
, Initialize $v_0 := 0$ in $CR_0^1(\mathcal{T})$.

for $j = 1, 2, ...$

$$\tilde{u}_j := u_{j-1} + \tau v_{j-1}, \qquad \Lambda_j := \frac{\Lambda_{j-1} + \tau \nabla_{\mathsf{NC}} \tilde{u}_j}{\max\{1, |\Lambda_{j-1} + \tau \nabla_{\mathsf{NC}} \tilde{u}_j|\}},$$

solve

$$\frac{1}{\tau}a_{\mathsf{NC}}(u_j,\bullet) + \alpha(u_j,\bullet) = \frac{1}{\tau}a_{\mathsf{NC}}(u_{j-1},\bullet) + (f,\bullet) - (\Lambda_j, \nabla_{\mathsf{NC}}\bullet)$$

in $CR_0^1(\mathcal{T})$ for u_i , and set

$$v_j := \frac{u_j - u_{j-1}}{\tau}.$$

Input:
$$(u_0, \Lambda_0) \in CR_0^1(\mathcal{T}) \times P_0(\mathcal{T}; \overline{B_{\mathbb{R}^2}}), \ \tau > 0$$
, Initialize $v_0 := 0$ in $CR_0^1(\mathcal{T})$.

for $j = 1, 2, ...$

$$\tilde{u}_j := u_{j-1} + \tau v_{j-1}, \qquad \Lambda_j := \frac{\Lambda_{j-1} + \tau \nabla_{\mathsf{NC}} \tilde{u}_j}{\max\{1, |\Lambda_{j-1} + \tau \nabla_{\mathsf{NC}} \tilde{u}_j|\}},$$

solve

$$\frac{1}{\tau} \mathsf{a}_{\mathsf{NC}}(\mathit{u}_{j}, \bullet) + \alpha(\mathit{u}_{j}, \bullet) = \frac{1}{\tau} \mathsf{a}_{\mathsf{NC}}(\mathit{u}_{j-1}, \bullet) + (f, \bullet) - (\Lambda_{j}, \nabla_{\mathsf{NC}} \bullet)$$

in $CR_0^1(\mathcal{T})$ for u_i , and set

$$v_j := \frac{u_j - u_{j-1}}{\tau}.$$

Input:
$$(u_0, \Lambda_0) \in CR_0^1(\mathcal{T}) \times P_0(\mathcal{T}; \overline{B_{\mathbb{R}^2}}), \ \tau > 0,$$

Initialize $v_0 := 0$ in $CR_0^1(\mathcal{T}).$
for $j = 1, 2, ...$

$$\tilde{u}_j := u_{j-1} + \tau v_{j-1}, \qquad \Lambda_j := \frac{\Lambda_{j-1} + \tau \nabla_{\mathsf{NC}} \tilde{u}_j}{\max \{1, |\Lambda_{j-1} + \tau \nabla_{\mathsf{NC}} \tilde{u}_i|\}},$$

solve

$$\frac{1}{\tau} \mathsf{a}_{\mathsf{NC}}(\mathit{u}_{j}, \bullet) + \alpha(\mathit{u}_{j}, \bullet) = \frac{1}{\tau} \mathsf{a}_{\mathsf{NC}}(\mathit{u}_{j-1}, \bullet) + (f, \bullet) - (\Lambda_{j}, \nabla_{\mathsf{NC}} \bullet)$$

in $CR_0^1(\mathcal{T})$ for u_i , and set

$$v_j := \frac{u_j - u_{j-1}}{\tau}.$$

Input:
$$(u_0, \Lambda_0) \in CR_0^1(\mathcal{T}) \times P_0(\mathcal{T}; \overline{B_{\mathbb{R}^2}}), \ \tau > 0, \ \varepsilon_{\mathsf{stop}} > 0$$
Initialize $v_0 := 0$ in $CR_0^1(\mathcal{T})$.

for $j = 1, 2, \ldots$

$$\tilde{u}_j := u_{j-1} + \tau v_{j-1}, \qquad \Lambda_j := \frac{\Lambda_{j-1} + \tau \nabla_{\mathsf{NC}} \tilde{u}_j}{\max\{1, |\Lambda_{j-1} + \tau \nabla_{\mathsf{NC}} \tilde{u}_j|\}},$$

solve

$$\frac{1}{\tau} a_{\mathsf{NC}}(u_j, \bullet) + \alpha(u_j, \bullet) = \frac{1}{\tau} a_{\mathsf{NC}}(u_{j-1}, \bullet) + (f, \bullet) - (\Lambda_j, \nabla_{\mathsf{NC}} \bullet)$$

in $CR_0^1(\mathcal{T})$ for u_j , and set

$$v_j := \frac{u_j - u_{j-1}}{\tau}$$
. Terminate iteration if $|||v_j||| < \varepsilon_{\mathsf{stop}}$.

Theorem (Convergence of the primal-dual iteration)

Let $u_{CR} \in CR_0^1(\mathcal{T})$ solve the discrete problem, $\bar{\Lambda}_0 \in P_0(\mathcal{T}; \mathbb{R}^2)$ satisfy $|\bar{\Lambda}_0(\bullet)| \leq 1$ a.e. in Ω as well as

$$\bar{\Lambda}_0(\bullet) \cdot \nabla_{\mathsf{NC}} \textit{u}_{\mathsf{CR}}(\bullet) = |\nabla_{\mathsf{NC}} \textit{u}_{\mathsf{CR}}(\bullet)| \quad \textit{a.e. in } \Omega$$

and

$$(\bar{\Lambda}_0, \nabla_{\mathsf{NC}} v_{\mathsf{CR}}) = (f - \alpha u_{\mathsf{CR}}, v_{\mathsf{CR}}) \quad \textit{for all } v_{\mathsf{CR}} \in \mathsf{CR}^1_0(\mathcal{T}),$$

and $\tau \in (0,1]$. Then the iterates $(u_j)_{j \in \mathbb{N}}$ of the primal-dual iteration converge to u_{CR} in $L^2(\Omega)$.

Beweis skizzieren und insbesondere auf meine Hypothesen bzgl Wahl von τ eingehen und für Prolongation argumentieren, da initiale Fehler da sind etc wohl auch Konvergenztheorem aufführen, Bereich für τ kurz erläutern, vielleicht beim groben erläutern der Beweisidee

drüber nachdenken, was hier gezeigt werden soll. Idealerweise viele subsections mit Themenbereichen (f01, cam, termCrit, tau...) termination criteria experiments only in the end if questions arise, only mention the possible termination criteria and that they seem equally valid (except for energy difference)

show tau experiments

energy during a iteration (convergence of subsequences from above, i.e. also choose one exampe with osscilating convergence) find good alpha for denoising

show adaptive mesh for camerman and maybe for square to show the working of the refinement indicator

vom Kapitel continuous problem auch die Konstruktion einer exakten Lösung anreißen

L2 Sprünge vielleicht auswerten (bleiben sie konstant..., if we consider them, it becomes conforming

Verfeinerungsindikator, strikte Konvexität, EGLEB alles hier genau dann, wenn danach ein Plot dazu kommen soll.

Probably etaJumps and etaVol Vergleich und eta und Fehler in einem getrennten Plot, in einem gesamt Plot dann irgendwann, wo

tien schicken spätestens am Wochenende vor der Präsi, CC vor der Präsi die fertige Präsi + akuteller Stand der Arbeit schicken