Europäisches Patentamt

European Patent Office

Office européen des brevets

EP 1 323 775 A1

(12)

EUROPEAN PATENT APPLICATION published in accordance with Art. 158(3) EPC

- (43) Date of publication: 02.07.2003 Bulletin 2003/27
- (21) Application number: 01965558.8
- (22) Date of filing: 06.09.2001

- (51) Int CI.7: **C08L 9/00**, C08L 7/00, C08L 13/00, C08J 3/22
- (86) International application number: PCT/JP01/07743
- (87) International publication number: WO 02/020655 (14.03.2002 Gazette 2002/11)
- (84) Designated Contracting States:

 AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU

 MC NL PT SE TR

 Designated Extension States:

 AL LT LV MK RO SI
- (30) Priority: 06.09.2000 JP 2000270834 28.12.2000 JP 2000403360 28.12.2000 JP 2000403361
- (71) Applicants:
 - JSR Corporation Tokyo 104-8410 (JP)
 - BRIDGESTONE CORPORATION Tokyo 104-0031 (JP)

- (72) Inventors:
 - KONNO, Tomohisa Chuo-ku, Tokyo 104-8410 (JP)
 - UDAGAWA, Yoshiyuki
 Chuo-ku, Tokyo 104-8410 (JP)
 - TADAKI, Toshihiro c/o JSR CORPORATION Chuo-ku, Tokyo 104-8410 (JP)
 - KONDO, Hajime Kodaira-shi, Tokyo 187-0031 (JP)
 - YANAGISAWA, Kazuhiro Kodaira-shi, Tokyo 187-0031 (JP)
- (74) Representative: Whalley, Kevin MARKS & CLERK, 57-60 Lincoln's Inn Fields London WC2A 3LS (GB)
- (54) DIENE RUBBER/INORGANIC COMPOUND COMPOSITE AND METHOD FOR PRODUCING THE SAME AND RUBBER COMPOSITION

(1)

(57) The invention provides a diene-based rubber-inorganic compound composite material comprising a diene-based rubber and at least one inorganic compound selected from silica and a compound represented by the following formula (I):

wM-xSiO_y-zH₂O

consisting of Al, Mg, Ti and Ca or a metal oxide thereof or a metal hydroxide thereof, and w is a number of 1-5, x is a number of 0-10, y is a number of 2-5 and z is a number of 0-10), and a rubber composition comprising the composite material and a crosslinking agent.

(wherein M is at least one metal selected from the group

BEST AVAILABLE COPY

Description

10

30

40

45

50

55

TECHNICAL FIELD

[0001] This invention relates to a diene-based rubber-inorganic compound composite material and a method of producing the same and a rubber composition containing such a composite material, and more particularly to a rubber composition uniformly dispersing inorganic compound particles therein and capable of providing a rubber article having excellent wear resistance and tensile strength. Especially, the invention is utilized in not only a rubber for a tire such as a tire tread or the like but also various rubber articles such as belt, rubber roll, hose and so on.

BACKGROUND ART

[0002] Recently, there is proposed a method wherein an inorganic filler such as silica or the like is used or the inorganic filler and carbon black are used together as a reinforcing agent in a rubber composition for a tire. A tire tread made of a rubber composition containing the inorganic filler or the inorganic filler and carbon black has a low rolling resistance and an excellent steering stability represented by a wet skid resistance. However, there is a problem that wear resistance, tensile strength and so on of a vulcanized rubber are poor.

[0003] Especially, when silica is applied as an inorganic filler, in order to enhance an affinity with a conjugated diene rubber, it is examined to use a conjugated diene rubber introduced with a functional group having an affinity with silica up to now. For instance, there are proposed a hydroxyl group-introduced conjugated diene rubber (WO96/23027), an alkoxysilyl group-introduced conjugated diene rubber (JP-A-9-208623), and an alkoxysilyl group and amino group or hydroxyl group-introduced conjugated diene rubber (JP-A-9-208633). However, the most kind of the conjugated diene rubbers introduced with these functional groups are strong in the interaction with silica, so that they have problems that when being mixed with silica, a poor dispersion of silica is caused, and heat generation in processing is large, and the processability is poor and so on.

[0004] Particularly, when the conjugated diene rubber is milled with the inorganic filler in a dry process to make a rubber composition, the inorganic filler is not sufficiently dispersed into the rubber and hence there is a problem that sufficiently improved properties such as wear resistance and the like are not obtained.

[0005] On the other hand, JP-A-59-49247 and so on propose a method wherein carbon black is compounded and dispersed in an aqueous dispersion containing rubber such as a latex or the like dispersed therein and then coagulated to prepare a carbon black master batch in order to simplify a milling step with carbon black as a reinforcing agent or improve dispersion into rubber. And also, it is attempted to prepare a master batch of silica according to this method, but it is not practically easy to obtain a uniform master batch because silica having a large hydrophilic nature is hardly agglomerated and only the rubber component is preferentially agglomerated and precipitated.

[0006] Further, it is known to obtain a rubber composition by applying only powder of aluminum hydroxide as a reinforcing filler for rubber instead of silica or carbon black and milling with rubber component in a dry process (see a column of Prior Art in JP-A-2000-204197). However, such a rubber composition has a problem that the wear resistance is poor.

[0007] As an improvement of the rubber composition, there are also known (1) application of a combination of silica and/or carbon black and aluminum hydroxide (JP-A-2000-204197, JP-A-2000-302914), and (2) application of a combination of silica and aluminum hydroxide, magnesium hydroxide and so on (JP-A-11-181155). Even in these cases, however, powders of starting materials are milled in a dry process to prepare a rubber composition, so that there is a problem that sufficient wear resistance and tensile strength are not necessarily obtained because aluminum hydroxide and so on are not sufficiently dispersed.

DISCLOSURE OF THE INVENTION

[0008] The invention solves the aforementioned problems of the conventional techniques and is to provide a diene-based rubber-inorganic compound composite material obtained through a step of mixing an aqueous dispersion containing a diene-based rubber dispersed therein with an aqueous dispersion of an inorganic compound such as silica, aluminum hydroxide, kaolin or the like, an aqueous solution of an inorganic salt or the like, and a rubber composition containing such a composite material and uniformly dispersed the inorganic compound and capable of producing a rubber article having excellent wear resistance and tensile strength.

[0009] A first aspect of the invention lies in a diene-based rubber-inorganic compound composite material (hereinafter referred to as a composite material simply) comprising a diene-based rubber and at least one inorganic compound selected from silica and a compound represented by the following formula (I):

 $wM \cdot xSiO_v \cdot zH_2O$

(1)

(wherein M is at least one metal selected from the group consisting of Al, Mg, Ti and Ca or a metal oxide thereof or a metal hydroxide thereof, and w is a number of 1-5, x is a number of 0-10, y is a number of 2-5 and z is a number of 0-10), and produced through a step of mixing an aqueous dispersion of the diene-based rubber with an aqueous dispersion of the inorganic compound.

[0010] A second aspect of the invention lies in a diene-based rubber-inorganic compound composite material comprising a diene-based rubber and an inorganic compound represented by the above formula (I) and produced through a step of mixing an aqueous dispersion of the diene-based rubber with an aqueous solution of an inorganic salt capable of forming the inorganic compound represented by the formula (I).

[0011] A third aspect of the invention lies in a diene-based rubber-inorganic compound composite material comprising a diene-based rubber and an inorganic compound represented by the above formula (I) and produced through a step of mixing an aqueous dispersion of the diene-based rubber with a solution of an organic metal compound capable of forming the inorganic compound represented by the formula (I).

[0012] A fourth aspect of the invention lies in a method of producing a diene-based rubber-inorganic compound composite material which comprises mixing an aqueous dispersion of a diene-based rubber with an aqueous dispersion of an inorganic compound.

[0013] A fifth aspect of the invention lies in a method of producing a diene-based rubber-inorganic compound composite material which comprises a step of mixing an aqueous dispersion of a diene-based rubber with an aqueous dispersion of at least one inorganic compound selected from silica and a compound represented by the following formula (I):

 $wM \cdot xSiO_{v} \cdot zH_{2}O$ (I)

(wherein M is at least one metal selected from the group consisting of Al, Mg, Ti and Ca or a metal oxide thereof or a metal hydroxide thereof, and w is a number of 1-5, x is a number of 0-10, y is a number of 2-5 and z is a number of 0-10). [0014] A sixth aspect of the invention lies in a method of producing a diene-based rubber-inorganic compound com-

posite material which comprises a step of mixing an aqueous dispersion of a diene-based rubber with an aqueous solution of an inorganic salt capable of forming the inorganic compound represented by the formula (I).

[0015] A seventh aspect of the invention lies in a method of producing a diene-based rubber-inorganic compound composite material which comprises a step of mixing an aqueous dispersion of a diene-based rubber with a solution of an organic metal compound capable of forming the inorganic compound represented by the formula (I).

[0016] An eighth aspect of the invention lies in a rubber composition comprising a diene-based rubber-inorganic compound composite material, which comprises a diene-based rubber and at least one inorganic compound selected from silica and a compound represented by the following formula (I):

 $\text{wM-xSiO}_{\text{y}} \cdot \text{zH}_{2}\text{O}$ (I)

(wherein M is at least one metal selected from the group consisting of Al, Mg, Ti and Ca or a metal oxide thereof or a metal hydroxide thereof, and w is a number of 1-5, x is a number of 0-10, y is a number of 2-5 and z is a number of 0-10) and is produced through a step of mixing an aqueous dispersion of the diene-based rubber with an aqueous dispersion of the inorganic compound, and a crosslinking agent.

[0017] A ninth aspect of the invention lies in a rubber composition comprising a diene-based rubber-inorganic compound composite material, which comprises a diene-based rubber and an inorganic compound represented by the formula (I) and is produced through a step of mixing an aqueous dispersion of the diene-based rubber with an aqueous solution of an inorganic salt capable of forming the inorganic compound represented by the formula (I), and a crosslinking agent.

[0018] A tenth aspect of the invention lies in a rubber composition comprising a diene-based rubber-inorganic compound composite material, which comprises a diene-based rubber and an inorganic compound represented by the formula (I) and is produced through a step of mixing an aqueous dispersion of the diene-based rubber with a solution of an organic metal compound capable of forming the inorganic compound represented by the formula (I), and a crosslinking agent.

[0019] The "diene-based rubber" used in the invention is a rubber having a conjugated diene-based monomer unit as a monomer unit constituting rubber and is not particularly limited, but includes natural rubber, butadiene rubber,

15

20

25

30

45

isoprene rubber, styrene-butadiene copolymer rubber, butadiene-isoprene copolymer rubber, butadiene-styrene-isoprene copolymer rubber, acrylonitrile-butadiene copolymer rubber, acrylonitrile-styrene-butadiene copolymer rubber, chloroprene rubber and so on. Among these rubbers, a rubber obtained by polymerizing a conjugated diene monomer and, if necessary, an aromatic vinyl monomer, an olefinic unsaturated nitrile monomer through an emulsion polymerization is particularly preferable, which can include an emulsion-polymerized butadiene rubber, an emulsion-polymerized styrene-butadiene copolymer rubber, an emulsion-polymerized acrylonitrile-butadiene copolymer rubber and an emulsion-polymerized acrylonitrile-styrene-butadiene copolymer rubber. And also, the diene-based rubber may be an oil-extended type or a non-oil extended type.

[0020] As the "aqueous dispersion of diene-based rubber" used in the invention, a diene-based rubber latex obtained by the emulsion polymerization is favorable. This diene-based rubber latex is a dispersion of diene-based rubber particles into an aqueous medium and includes a natural rubber latex, an emulsion obtained by again emulsifying a diene-based synthetic rubber, a diene-based synthetic rubber emulsion produced by polymerizing in an aqueous medium, a dispersion of a diene-based synthetic rubber and so on. These latexes may be used alone or in a combination of two or more, irrespectively of the kind of the diene-based rubber or the kind of the aqueous dispersion.

[0021] As the conjugated diene monomer (hereinafter referred to as "conjugated diene"), mention may be made of 1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 2-chloro-1,3-butadiene, 1,3-pentadiene, isoprene and the like. Among them, 1,3-butadiene and isoprene are favorable, and 1,3-butadiene is more preferable. These conjugated dienes may be used alone or in a combination of two or more.

[0022] As the aromatic vinyl monomer are used aromatic vinyl compounds having no polar group, which include, for example, styrene, α -methylstyrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 2.4-diisopropylstyrene, 2,4-dimethylstyrene, 4-t-butylstyrene, 5-t-butyl-2-methylstyrene, monochlorostyrene, dichlorostyrene, monofluorostyrene and so on. Among them, styrene is favorable. The aromatic vinyl compounds may be used alone or in a combination of two or more.

[0023] As the olefinic unsaturated nitrile monomer, mention may be made of (meth)acrylonitrile, vinylidene cyanide and so on. These monomers having nitrile group may be used alone or in a combination of two or more.

[0024] And also, the diene-based rubber may be a diene-based rubber having a polar group of a heteroatom. This is preferable in view of the dispersibility of the inorganic compound and the reinforcing effect.

[0025] The heteroatom are atoms belonging to 2nd to 4th Periods and Group 5B or 6B in the Periodic Table, which concretely include nitrogen atom, oxygen atom, sulfur atom, phosphorus atom, silicon atom and so on. Among them, nitrogen atom, oxygen atom and so on are favorable. As the polar group containing such a heteroatom, mention may be made of a hydroxyl group, an alkoxysilyl group, an epoxy group, a carboxyl group, a carbonyl group, an oxycarbonyl group, a sulfide group, a disulfide group, a sulfonyl group, a sulfinyl group, a thiocarbonyl group, an imino group, an amino group, an ammonium group, an imido group, an amido group, a hydrazo group, an azo group, a diazo group, an oxygen-containing heterocyclic group, a nitrogen-containing heterocyclic group, auffonyl group, amino group, nitrogen-containing heterocyclic group and alkoxysilyl group are favorable, and the hydroxyl group, amino group, carboxyl group, nitrogen-containing heterocyclic group and alkoxysilyl group are more favorable, and the hydroxyl group or amino group is most favorable.

[0026] The vinyl monomer having the above polar group is not particularly limited and may be a polymerizable monomer having at least one polar group in its molecule. There are concretely mentioned a hydroxyl group-containing vinyl monomer, an amino group-containing vinyl monomer, a nitrile group-containing vinyl monomer, a carboxyl group-containing vinyl monomer, an alkoxysilyl group-containing vinyl monomer and so on. Among them, the carboxyl group-containing vinyl monomer, alkoxysilyl group-containing vinyl monomer and amino group-containing vinyl monomer and so on are favorable. These polar group-containing vinyl monomers may be used alone or in a combination of two or more.

[0027] As the hydroxyl group-containing vinyl monomer among these polar group-containing vinyl monomers, mention may be made of polymerizable monomers having at least one primary, secondary or tertiary hydroxyl group in their molecules. As the hydroxyl group-containing vinyl monomer, there are mentioned, for example, a hydroxyl group-containing unsaturated carboxylic acid monomer, a vinyl ether monomer, vinyl ketone monomer and the like, among which the hydroxyl group-containing unsaturated carboxylic acid monomer is favorable. As the hydroxyl group-containing unsaturated carboxylic acid monomer, mention may be made of derivatives, esters, amides, anhydrides and the like of acrylic acid, methacrylic acid, itaconic acid, fumaric acid, maleic acid and so on, among which ester compounds of acrylic acid, methacrylic acid and so on are favorable.

[0028] As a concrete example of the hydroxyl group-containing polymerizable monomer, mention may be made of hydroxyalkyl (meth)acrylates such as 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxybropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate and so on; mono(meth)acrylates of polyalkylene glycols (number of alkylene glycol units is, for example, 2-23) such as polyethylene glycol, polypropylene glycol and so on; hydroxyl group-containing unsaturated amides such as N-hydroxyme-

20

35

45 .

thyl (meth)acrylamide, N,N-bis(2-hydroxyethyl) (meth)acrylamide and so on; hydroxyl group-containing vinyl aromatic compounds such as o-hydroxystyrene, m-hydroxystyrene, p-hydroxystyrene, o-hydroxy- α -methylstyrene, m-hydroxy- α -methylstyrene, p-vinylbenzyl alcohol and so on; (meth)allyl alcohol and the like. Among them, the hydroxyalkyl (meth)acrylates and the hydroxyl group-containing vinyl aromatic compounds are favorable. These hydroxyl group-containing polymerizable monomers may be used alone or in a combination of two or more.

[0029] As the nitrile group-containing polymerizable monomer, mention may be made of (meth)acrylonitrile, vinylidene cyanide and so on. These nitrile group-containing vinyl monomers may be used alone or in a combination of two or more.

[0030] As the amino group-containing vinyl monomer, mention may be made of polymerizable monomers having at least one amino group selected from primary, secondary and tertiary amino groups in their molecules. Among them, tertiary amino group-containing vinyl monomers (dialkylaminoalkyl (meth)acrylates, tertiary amino group-containing vinylaromatic compounds and so on) are particularly favorable. These amino group-containing vinyl monomers may be used alone or in a combination of tow or more.

[0031] As the primary amino group-containing vinyl monomer, mention may be made of acrylamide, methacrylamide, p-aminostyrene, aminomethyl (meth)acrylate, aminoethyl (meth)acrylate, aminopropyl (meth)acrylate, aminobutyl (meth)acrylate and so on.

[0032] As the secondary amino group-containing vinyl monomer, mention may be made of (1) anilinostyrenes such as anilinostyrene, β -phenyl-p-anilinostyrene, β -cyano-p-anilinostyrene, β -cyano- β -methyl-p-anilinostyrene, β -chloro-p-anilinostyrene, β -carboxy-p-anilinostyrene, β -carboxy-p-anilinostyrene, β -carboxy-p-anilinostyrene, β -formyl-p-anilinostyrene, β -formyl-p-anilinophenyl-p-anilinostyrene, β -formyl-p-anilinophenyl-p-anilinostyrene, β -formyl-p-anilinophenyl-p-anilinostyrene, β -formyl-p-anilinophenyl-p-anilinophenyl-p-anilinophenyl-p-anilinophenyl-p-anilinophenyl-p-anilinophenyl-p-anilinophenyl-p-anilinophenyl-p-anilinophenyl-p-anilinophenyl-p-anilinophenyl-p-anilinostyrene, β -carboxy-p-anilinostyrene, β -formyl-p-anilinostyrene, β -formyl-p-anilinostyrene, β -formyl-p-anilinostyrene, β -formyl-p-anilinostyrene, β -formyl-p-anilinostyrene, β -formyl-p-anilinostyrene,

[0033] As the tertiary amino group-containing vinyl monomer, mention may be made of N,N-disubstituted aminoalkyl acrylamides, N,N-disubstituted aminoaromatic vinyl compounds, pyridine group-containing vinyl compounds and so on.

[0034] As the N,N-disubstituted aminoacrylate, mention may be made of N,N-dimethylaminomethyl (meth)acrylate, N,N-dimethylaminoethyl (meth)acrylate, N,N-dimethylaminopropyl (meth)acrylate, N,N-dimethylaminobutyl (meth)acrylate, N,N-diethylaminoethyl (meth)acrylate, N,N-diethylaminopropyl (meth)acrylate, N,N-diethylaminobutyl (meth)acrylate, N,N-dibutylaminoethyl (meth)acrylate, N,N-dibutylaminopropyl (meth)acrylate, N,N-dibutylaminopropyl (meth)acrylate, N,N-dibutylaminoethyl (meth)acrylate, N,N-dibutylaminoethyl (meth)acrylate, N,N-dioctylaminoethyl (meth)acrylate; and esters of acrylic acid or methacrylic acid such as acryloylmorpholine and so on. Among them, N,N-dimethylaminoethyl (meth)acrylate, N,N-diethylaminoethyl (meth)acrylate, N,N-die

[0035] As the N,N-disubstituted aminoalkyl acrylamide, mention may be made of acrylamide compounds and methacrylamide compounds such as N,N-dimethylaminomethyl (meth)acrylamide, N,N-dimethylaminoethyl (meth)acrylamide, N,N-dimethylaminopropyl (meth)acrylamide, N,N-diethylaminobutyl (meth)acrylamide, N,N-diethylaminopropyl (meth)acrylamide, N,N-diethylaminobutyl (meth)acrylamide, N-methyl-N-ethylaminoethyl (meth)acrylamide, N,N-dipropylaminoethyl (meth)acrylamide, N,N-dibutylaminoethyl (meth)acrylamide, N,N-dibutylaminopropyl (meth)acrylamide, N,N-dibutylaminopropyl (meth)acrylamide, N,N-dibutylaminopropyl (meth)acrylamide, N,N-dioctylaminopropyl (meth)acrylamide and so on. Among them, N,N-dimethylaminopropyl (meth)acrylamide, N,N-diethylaminopropyl (meth)acrylamide, N,N-dioctylaminopropyl (meth)acrylamide and so on are favorable.

[0036] As the N,N-disubstituted aminoaromatic vinyl compound, mention may be made of styrene derivatives such as N,N-dimethylaminoethyl styrene, N,N-diethylaminoethyl styrene, N,N-dipropylaminoethyl styrene, N,N-dioctylaminoethyl styrene and so on.

[0037] And also, a nitrogen-containing heterocyclic group may be used instead of the amino group. As a nitrogen-containing heterocycle, mention may be made of pyrrole, histidine, imidazole, triazolidine, triazole, triazole, triazole, triazole, pyridine, pyrimidine, pyrazine, indole, quinoline, purine, phenadine, pteridine, melamine and so on. The nitrogen-containing heterocycle may contain the other heteroatom in its ring. As the pyridyl group-containing vinyl compound, mention may be made of 2-vinylpyridine, 3-vinylpyridine, 4-vinylpyridine, 5-methyl-2-vinylpyridine, 5-ethyl-2-vinylpyridine and so on. Among them, 2-vinylpyridine and 4-vinylpyridine are favorable.

[0038] As the epoxy group-containing polymerizable monomer, mention may be made of (meth)allylglycidyl ether, glycidyl (meth)acrylate, 3,4-oxycyclohexyl (meth)acrylate and so on. These epoxy group-containing monomers may

20

25

30

40

50

be used alone or in a combination of two or more.

10

25

30

35

45

55

[0039] As the carboxyl group-containing polymerizable monomer, mention may be made of unsaturated carboxylic acids such as (meth)acrylic acid, maleic acid, fumaric acid, itaconic acid, tetraconic acid, cinnamic acid and so on; non-polymerizable polyvalent carboxylic acids such as phthalic acid, succinic acid, adipic acid and so on; free carboxyl group-containing esters and salts thereof such as monoesters with a hydroxyl group-containing unsaturated compound such as (meth)acryl alcohol, 2-hydroxyethyl (meth)acrylate and the like. Among them, the unsaturated carboxylic acids are favorable. These carboxyl group-containing monomers may be used alone or in a combination of two or more.

[0040] As the alkoxysilyl group-containing polymerizable monomer, mention may be made of (meth)acryloxymethyl methoxysilane, (meth)acryloxymethylmethyl dimethoxysilane, (meth)acryloxymethylmethyl triethoxysilane, (meth)acryloxymethylmethyl diethoxysilane, (meth)acryloxymethyldimethyl ethoxysilane, (meth)acryloxymethyl tripropoxysilane, (meth)acryloxymethylmethyl dipropoxysilane, (meth)acryloxymethyldimethyl propoxysilane, γ -(meth)acryloxypropyl trimethoxysilane, γ -(meth)acryloxypropylmethyl dimethoxysilane, γ -(meth)acryloxypropyldimethyl methoxysilane, γ -(meth)acryloxypropyl tripropoxysilane, γ -(meth)acryloxypropyldimethyl ethoxysilane, γ -(meth)acryloxypropyl tripropoxysilane, γ -(meth)acryloxypropylmethyl dipropoxysilane, γ -(meth)acryloxypropyldimethyl propoxysilane, γ -(meth)acryloxypropylmethyl diphenoxysilane, γ -(meth)acryloxypropyldimethyl phenoxysilane, γ -(meth)acryloxypropyldimethyl benzyloxysilane, γ -(meth)acryloxypropyldimethyl benzyloxypropyldimethyl benzyloxypropyldimethyl benzyloxypropyldimethyl

[0041] A bonding amount of the monomer in the diene-based rubber is properly selected in accordance with the required characteristics. The bonding amount of the conjugated diene monomer is usually 40-100 mass%, preferably 50-90 mass%, more preferably 60-85 mass%, and the bonding amount of the aromatic vinyl monomer is usually 0-60 mass%, preferably 10-50 mass%, more preferably 15-40 mass%. And also, when the diene-based rubber is made of a monomer containing a heteroatom-containing polar group, the bonding amount of the polar group-containing monomer is properly selected in accordance with the magnification of the polarity, but is favorable to be usually 0.01-20 mass%. When the bonding amount of the polar group-containing monomer is less than 0.01 mass%, even if the monomer has a large polarity, the interaction with the inorganic compound is small and it is difficult to obtain the sufficient effect. While, when it exceeds 20 mass%, the strong aggregation with the inorganic compound is caused to make the grocessing difficult. When using a copolymer rubber latex containing each of the monomers in the bonding amount of the aforementioned range, there is obtained a rubber composition having highly balanced properties of wear resistance and further lower heat build-up property and wet skid resistance.

[0042] The polymerization method for the diene-based rubber is not particularly limited and includes a radical polymerization method, an anionic polymerization method, a coordination anionic polymerization method, a cationic polymerization method and the like. As the radical polymerization method, there are a mass polymerization method, a suspension polymerization method, an emulsion polymerization method and the like. In the invention is particularly preferable the emulsion polymerization method wherein a stable emulsified dispersion is provided at the completion of the polymerization because a diene-based rubber latex is used. In this emulsion polymerization can be used a usual polymerization method, which includes a method wherein a given monomer(s) is emulsified in an aqueous medium under the presence of an emulsifyer and then polymerization is started through a radical polymerization initiator and stopped through a short-stop after a given conversion is obtained, and so on.

[0043] As the emulsifyer, mention may be made of an anionic surfactant, a nonionic surfactant, a cationic surfactant, an amphoteric surfactant and so on. And also, a fluorine-based surfactant may be used. These emulsifyers may be used alone or in a combination of two or more. Usually, the anionic surfactant, for example, a long-chain aliphatic acid salt having a carbon number of not less than 10, a rosinate or the like is frequently used. Concretely, mention may be made of potassium salts, sodium salts and the like of capric acid, lauric acid, myristic acid, palmitic acid, oleic acid and stearic acid.

[0044] As the radical polymerization initiator, use may be made of organic peroxides such as benzoyl peroxide, lauroyl peroxide, tert-butyl hydroperoxide, cumene hydroperoxide, paramenthane hydroperoxide, di-tert-butyl peroxide, dicumyl peroxide and the like. And also, there may be used diazo compounds exemplified by azobisisobutyronitrile, inorganic péroxides exemplified by potassium persulfate, redox catalysts exemplified by a combination of the peroxide and ferrous sulfate, and so on. These radical polymerization initiators may be used alone or in a combination of two or more.

[0045] And also, a chain transfer agent may be used for adjusting a molecular weight of the diene-based rubber. As the chain transfer agent, use may be made of alkyl mercaptans such as tert-dodecyl mercaptan, n-dodecyl mercaptan and the like; carbon tetrachloride, thioglycols, diterpene, terpinolene, γ -terpinene and so on.

[0046] In the polymerization for the diene-based rubber, each of the monomers, the emulsifyer, the radical polymerization initiator and the chain transfer agent may be charged into a reaction vessel at once to start polymerization, or

may be continuously or intermittently added in the continuation of the reaction. Such a polymerization can be carried out at 0-100°C by using, for example, an oxygen-removed reaction vessel, and particularly it is favorable to conduct the polymerization at a polymerizing temperature of 0-80°C. On the way of the polymerization reaction, operating conditions such as temperature, stirring and the like may be changed properly. The polymerization system may be continuous or batch. Furthermore, there may be adopted a method wherein a part of the monomer, radical polymerization initiator, chain transfer agent or the like is added at a specified conversion.

[0047] Moreover, as the conversion becomes large, a tendency of gelation is recognized, so that it is favorable to control the conversion with 80%, and particularly it is preferable to stop the polymerization when the conversion is within a range of 30-70%. The stop of the polymerization is carried out by adding a short-stop when a given conversion is obtained. As the short-stop are used an amine compound such as hydroxylamine, diethyl hydroxylamine or the like; a quinone compound such as hydroquinone or the like; and so on. After the stop of the polymerization, a diene-based rubber latex to be used in the invention can be obtained by removing unreacted monomers through a method such as steam distillation or the like, if necessary.

[0048] The diene-based rubber latex can be used by dispersing an extender oil for rubber. The extender oil for rubber is not particularly limited, so that a process oil such as naphtenic, paraffinic or aromatic oil can be used. An amount of the extender oil for rubber dispersed in the diene-based rubber latex is preferable to be 5-100 parts by mass, particularly 10-60 parts by mass based on 100 parts by mass of a diene-based rubber included in the diene-based rubber latex. [0049] The diene-based rubber used in the invention is favorable to have a Moony viscosity [ML₁₊₄(100°C)] of 10-200, particularly 30-150. When the Moony viscosity is less than 10, the properties inclusive of wear resistance are insufficient, while when it exceeds 200, the processability is poor and the milling is difficult. The Moony viscosity may be a value of a rubber without the extender oil or a rubber with the extender oil.

[0050] As the inorganic compound to be mixed with the diene-based rubber is used silica or a compound represented by the following formula (I):

$$\text{wM} \cdot \text{xSiO}_{\text{v}} \cdot \text{zH}_{2}\text{O}$$
 (I)

(wherein M is at least one metal selected from AI, Mg, Ti and Ca or a metal oxide thereof or a metal hydroxide thereof and w is a number of 1-5, x is a number of 0-10, y is a number of 2-5 and z is a number of 0-10). Moreover, the compound of the formula (I) is an inorganic compound but does not include a metal itself.

[0051] As a concrete example of the compound of the formula (I), mention may be made of alumina (Al_2O_3) such as γ -alumina, α -alumina or the like; an alumina monohydrate ($Al_2O_3 \cdot H_2O$) such as boehmite, diaspore or the like; aluminum hydroxide ($Al(OH)_3$) such as gibbsite, bayerite or the like; magnesium oxide ($Al(OH)_3$), magnesium hydroxide ($Al(OH)_2$), calcium oxide ($Al(OH)_3$), calcium hydroxide ($Al(OH)_2$), aluminum magnesium oxide ($Al(OH)_2$), itanium white ($Al(OH)_2$), such as rutile, anatase or the like; titanium black ($Al(OH)_2$), calcined clay ($Al(OH)_2$), kaolin ($Al(OH)_2$), pyrophyllite ($Al(OH)_2$), bentonite ($Al(OH)_2$), calcined clay ($Al(OH)_2$), talc ($Al(OH)_2$), attapulgite ($Al(OH)_2$), aluminum silicate ($Al(OH)_$

[0052] Among the compounds of the formula (I), a compound represented by the following formula (II):

(wherein m is a number of 0-4 and n is a number of 0-4) is particularly favorable. As a concrete example of such a compound, mention may be made of alumina such as γ -alumina, α -alumina or the like; aluminum monohydrate such as boehmite, diaspore or the like; aluminum hydroxide such as gibbsite, bayerite or the like; calcined clay, kaolin, pyrophyllite, bentonite and so on.

[0053] And also, silica is not particularly limited, and silica generally used as a filler in a rubber composition can be used. Concretely, silica having a nitrogen adsorption specific surface area (BET value) of 50-650 g/m², preferably 100-400 g/m² is favorable.

[0054] The inorganic compound used in the invention is favorable to have a particle size of not more than 10 μ m, preferably not more than 3 μ m. As the particle size of the inorganic compound becomes large, it unfavorably tends to degrade fatigue resistance and wear resistance of rubber.

[0055] Moreover, powdery inorganic compounds used in the invention may be used alone or in an admixture of two or more.

25

30

35

[0056] An amount of the inorganic compound introduced into the diene-based rubber-inorganic compound composite material obtained by the method of the invention is favorable to be within a range of 5-200 parts by mass per 100 parts by mass of the diene-based rubber in the composite material. When the introduction amount is less than 5 parts by mass, the improvement of gripping performance on wet road surface is hardly obtained, while when the introduction amount exceeds 200 parts by mass, there are unfavorably caused problems that the dispersibility of the inorganic compound into the diene-based rubber is degraded and the composite material becomes considerably hard and the production of the composite material is difficult and the like.

[0057] The "dispersion of inorganic compound" in the invention may be one obtained by dispersing the aforementioned inorganic compound into an aqueous medium such as water or the like through stirring. For instance, the inorganic compound, for example, commercially available powder of silica (SiO₂), alumina (Al₂O₃) such as γ -alumina, α -alumina or the like; an alumina monohydrate (Al₂O₃·H₂O) such as boehmite, diaspore or the like; aluminum hydroxide (Al(OH)₃) such as gibbsite, bayerite or the like; magnesium oxide (MgO), magnesium hydroxide (Mg(OH)₂), calcium oxide (CaO), calcium hydroxide (Ca(OH)₂), aluminum magnesium oxide (MgO·Al₂O₃), titanium white (TiO₂) such as rutile, anatase or the like; titanium black (TiO_{2n-1}), calcined clay, kaolin, pyrophyllite, bentonite, talc, attapulgite, aluminum silicate (Al₂SiO₅, Al₄·3SiO₄·5H₂O₇ or the like), magnesium calcium silicate, magnesium silicate, calcium silicate-aluminosilicate or the like can be finely dispersed into the aqueous medium such as water or the like through shear stirring. In this case, there can be used, for example, a colloid mill, an oscillation mill, a homogenizer, a dyno mill, a tube mill, a super-mill or the like.

[0058] And also, the "dispersion of inorganic compound" may be prepared by adding an acid or an alkali to an aqueous solution of an inorganic salt capable forming the inorganic compound of the formula (I). As a concrete preparation method for the dispersion of the inorganic compound, (1) a compound obtained by gelating a basic aluminum salt through heating and neutralizing with a base, or (2) an alumina gel obtained by adding and neutralizing with an aluminum salt such as aluminum chloride and an aluminate, or (3) a precipitate of aluminum hydroxide formed by reacting an aluminate with a mineral acid or the like or reacting an aluminum salt such as aluminum sulfate with an alkali such as caustic soda or the like can be finely dispersed into an aqueous medium such as water or the like through shear stirring likewise the above case.

[0059] The inorganic salt is not particularly limited unless it can form the inorganic compound of the formula (I), and may be at least one inorganic salt selected from the group consisting of metal salts and oxo acid salts of metals. For instance, there are mentioned (1) aluminum salts such as aluminum chloride, aluminum nitrate, aluminum sulfate, basic aluminum chloride, basic aluminum sulfate, aluminum polychloride and the like; (2) calcium nitrite, calcium sulfate, calcium chloride, magnesium chloride (hexahydrate), magnesium nitrate (hexahydrate), magnesium sulfate, titanium trichloride, titanium tetrachloride and the like; (3) an aluminate (oxo acid salt of aluminum) such as sodium aluminate, and so on. Then, an aqueous solution of the inorganic salt is prepared and, if necessary, a pH of the aqueous solution is adjusted with a mineral acid or an alkali, and mixed with the diene-based rubber latex. Such compounds may be used alone or in an admixture of two or more.

[0060] And also, an alumina sol prepared by deflocculating an alumina gel made from sodium aluminate, aluminum sulfate or the like through a method as disclosed in JP-B-40-8409 or the like can be used as an aqueous dispersion. [0061] Furthermore, the "dispersion of inorganic compound" can be prepared by adding water, an acid or an alkali to a solution of an organic metal compound capable of forming the inorganic compound of the formula (I). As the organic metal compound, mention may be made of various metal alkoxides such as triethoxy aluminum, tripropoxy aluminum, diethoxy magnesium, dipropoxy magnesium, tetraethoxy titanium and tetrapropoxy titanium, or organic metal compounds wherein at least one of the alkoxides is substituted with a hydrolyzable halogen such as chlorine or the like, and alkylsilicates and so on. And also, the solution of the organic metal compound is mainly a solution dissolved in an organic solvent. As the organic solvent, it is favorable to use a water-soluble methanol, ethanol, isopropanol, ethylene glycol, dimethyl acetoamide, methyl ethyl ketone or the like. The inorganic compound can be formed by reacting the solution of the organic metal compound with water to hydrolyze the organic metal compound or by condensing the resulting hydrolyzate. In the reaction between the organic metal compound and water, an acid or an alkali may be added alone or as an aqueous solution, if necessary, in order to promote condensation reaction. And also, the solution of the organic metal compound may be mixed with an aqueous solution of the above inorganic salt to prepare a dispersion of an inorganic compound.

[0062] In addition, the "dispersion of inorganic compound" can be prepared by adding and reacting an alkali (for example, aqueous solution of sodium hydroxide or the like) to a metal shown in the formula (I) (for example, Al or the like). In this case, one metal may be used, or two or more metals may be used.

[0063] Next, the above aqueous dispersion of the inorganic compound is mixed with an aqueous dispersion of the diene-based rubber. The term "aqueous dispersion" used herein means that the rubber component or the inorganic compound is not necessarily required to be completely dissolved in water and includes a mixed solution after the emulsion polymerization, or a colloidal solution of the inorganic compound.

[0064] Especially, the aqueous dispersion of the inorganic compound is favorable to have pH of 8.5-11 or 2-4. In this

10

15

25

30

40

45

case, it is desirable to readjust pH before the formation of the rubber composition by mixing with the other compounding chemicals and the like.

[0065] And also, silicon salt (silicon chloride or the like) and/or oxo acid salt of silicon (silicate of sodium silicate) can be added to the aqueous dispersion. In this case, the silicate and aluminum salt or aluminate may be mixed as the same aqueous solution with the latex or may be prepared into separate aqueous solutions and mixed with the latex.

[0066] In any case, the diene-based rubber-inorganic compound composite material according to the invention can be produced by mixing the dispersion of the diene-based rubber with the dispersion of the inorganic compound, or through a step of mixing the aqueous dispersion of the diene-based rubber with the aqueous solution of the inorganic salt capable of forming the inorganic compound of the formula (I) or the solution of the organic metal compound capable of forming the inorganic compound of the formula (I) as mentioned above.

[0067] Then, the diene-based rubber-inorganic compound composite material is usually taken out from a mixture of the aqueous dispersion of the diene-based rubber and the aqueous dispersion of the inorganic compound or the aqueous solution of the inorganic compound. As a method of taking out the diene-based rubber-inorganic compound composite material from a mixed solution of the aqueous dispersion of the diene-based rubber and the aqueous dispersion of the inorganic compound or the aqueous solution of the inorganic compound, there can be used a method wherein it is taken out as a coagulated mass likewise a general coagulation method, or a method wherein the aqueous medium is removed by a method such as heating, pressure reducing or the like. The former method is preferable in a point that a more uniform diene-based rubber-inorganic compound composite material can be obtained. In each of these methods, pH of the mixed solution may be previously adjusted, if necessary. And also, an emulsified mass of an extender oil for rubber usually used may be mixed to take out an oil-extended rubber-inorganic compound composite material. [0068] As the coagulation method, for example, the diene-based rubber-inorganic compound composite material can be coagulated as a crumb by adding (1) sodium chloride, potassium chloride which are components constituting an electrolyte, (2) a salt of a polyvalent metal such as calcium, magnesium, zinc, aluminum or the like, e.g. calcium chloride, magnesium chloride, zinc chloride, aluminum chloride, calcium nitrate, magnesium nitrate, zinc nitrate, aluminum nitrate, magnesium sulfate, zinc sulfate, aluminum sulfate or the like, and/or, if necessary, (3) hydrochloric acid, nitric acid, sulfuric acid or the like. Among them, the salt of the polyvalent metal such as calcium, magnesium, aluminum or the like is favorable, and calcium chloride, magnesium chloride and magnesium sulfate are particularly preferable. They may be used alone or in a combination of two or more.

[0069] In this case, fine inorganic compound may be flocculated by using a polymer flocculating agent (particularly anionic and nonionic among anionic, nonionic and cationic). Particularly, temperature, pH and the like are not limited when the diene-based rubber-inorganic compound composite material is coagulated as a crumb or co-coagulated, but it is favorable that in order to reduce inorganic salt remaining in the resulting diene-based rubber-inorganic compound composite material, the temperature is controlled above 10°C and the pH value is controlled to a range of 2-14 (particularly acidic side, e.g. pH = 3-6).

[0070] A method of drying a coagulated mass after the diene-based rubber and the inorganic compound are cocoagulated is not particularly limited. For example, there is a method wherein the coagulated mass is washed with
water to remove the emulsifyer, the electrolyte and the like and then subjected to a hot drying, a drying under vacuum
or the like to remove water. In this way can be produced a composite material wherein the inorganic compound is
uniformly dispersed in the diene-based rubber. As the method of removing the aqueous medium from the mixture,
there are mentioned a method wherein the mixed solution is subjected to a cast drying and dried under vacuum, a
drying method through a drum dryer and so on.

[0071] When the diene-based rubber-inorganic compound composite material produced by the method of the invention is put into a practical use, it is usually compounded with a crosslinking agent including of a vulcanizing agent and the like to form a rubber composition, and may be further compounded with the other rubber component, a reinforcing filler, the other filler, a coupling agent, a vulcanization accelerator, an aliphatic acid and the like.

[0072] The crosslinking agent to be compounded in the rubber composition according to the invention includes a vulcanizing agent such as sulfur, other sulfur-containing compound or the like, or a crosslinking agent containing no sulfur such as a peroxide or the like, but the vulcanizing agent, particularly sulfur is favorable. The crosslinking agent is favorable to be compounded in an amount of 0.5-10 parts by mass, preferably 1-6 parts by mass based on 100 parts by mass of the rubber component.

[0073] The other rubber component to be compounded in the rubber composition according to the invention is not particularly limited, but includes styrene-butadiene copolymer rubber, butadiene rubber, isoprene rubber, butadiene-isoprene copolymer rubber, acrylonitrile-butadiene copolymer rubber, acrylonitrile-styrene-butadiene copolymer rubber, acrylic rubber, butyl rubber, natural rubber, chloroprene rubber and so on. Further, the diene-based rubber having a heteroatom-containing functional group used in the invention can be additionally used as the other rubber component.

[0074] As the reinforcing filler, mention may be made of carbon black, silica and inorganic fillers represented by the above formula (I). As the carbon black, there are channel black, furnace black, acetylene black, thermal black and so

15

20

30

35

45

on in accordance with production methods, all of which blacks can be used. The carbon black is favorable to have a nitrogen adsorption specific surface area (BET value) of not less than 70 m²/g and a dibutyl phthalate absorption (DBP) of not less than 90 ml/100 g.

[0075] When the BET value is less than 70 m²/g, it is difficult to obtain a sufficient wear resistance, and as the BET value becomes too large, low fuel consumption property tends to be degraded. Considering the wear resistance and low fuel consumption property, a more preferable range of the BET value is 90-180 m²/g. Moreover, the BET value is a value measured according to ASTM D3037-88. On the other hand, when the DBP value is less than 90 ml/100 g, the sufficient wear resistance is hardly obtained, and as the DBP value becomes too large, the elongation at break of the rubber composition is degraded. Considering the wear resistance and low fuel consumption property, a more preferable range of the DBP value is 100-180 ml/100 g. Moreover, the DBP value is a value measured according to JIS K6221-1982 (method A).

[0076] The silica is not particularly limited and can be used by properly selecting from those usually used for the reinforcement of rubber such as dry-process silica, wet-process silica (precipitated silica) and so on, but the wet-process silica is favorable. The silica is preferable to have a nitrogen adsorption specific surface area (BET value) of 100-300 m²/g considering the wear resistance and low fuel consumption property. Moreover, the BET value is a value measured according to ASTM D4820-93 after being dried at 300°C for 1 hour.

[0077] In the invention, only the carbon black may be used, or only the silica may be used, or the carbon black and the silica may be used together. And also, an amount of the reinforcing filler compounded is preferable to be a range of 5-85 parts by mass based on 100 parts by mass of the rubber component from a viewpoint of the balance among the wear resistance, wet performances and low fuel consumption and so on.

[0078] As the other filler, mention may be made of calcium carbonate, magnesium carbonate and so on.

[0079] A coupling agent is not particularly limited, but a silane coupling agent is favorable. As the silane coupling agent, mention may be made of vinyl trichlorosilane, vinyl triethoxysilane, vinyl tris(β -methoxy-ethoxy) silane, β -(3,4-epoxycyclohexyl)-ethyl trimethoxysilane, γ -glycidoxypropyl trimethoxysilane, γ -glycidoxypropyl trimethoxysilane, N-(β -aminoethyl)- γ -aminopropyl trimethoxysilane, N-(β -aminoethyl)- γ -aminopropyl trimethoxysilane, N-(β -aminoethyl)- γ -aminopropyl trimethoxysilane, γ -chloropropyl trimethoxysilane, γ -mercaptopropyl trimethoxysilane, γ -aminopropyl trimethoxysilane, γ -trimethoxysilane, γ -trimethoxysilyl propyl dimethyl thiocarbamyl tetrasulfide, γ -trimethoxysilyl propyl benzothiazyl tetrasulfide and so on. As the coupling agent is compounded, the wear resistance or tan δ is more improved. The amount of the coupling agent compounded is favorable to be not more than 20 parts by mass, particularly not more than 15 parts by mass (usually not less than 1 part by mass) based on 100 parts by mass of the inorganic compound included in the rubber composition or 100 parts by mass in total of the inorganic compound and the inorganic filler additionally compounded such as the reinforcing filler or the like.

[0080] As the vulcanization accelerator, use may be made of an aldehyde ammonia system, a guanidine system, a thiourea system, a thiazol system, a dithiocarbamic acid system and so on. It is favorable to be compounded in an amount of 0.5-15 parts by mass, particularly 1-10 parts by mass based on 100 parts by mass of the rubber component.

[0081] The aliphatic acids include an aliphatic acid, an ester compound thereof and so on. As the aliphatic acid, a higher aliphatic acid is favorable and is usually a monocarboxylic acid having a carbon number of not less than 10 (preferably not less than 12, usually not more than 20), which may be a saturated aliphatic acid or an unsaturated aliphatic acid, but the saturated aliphatic acid is preferable in view of a weather resistance. As such an aliphatic acid, mention may be made of palmitic acid, stearic acid, oleic acid, linolic acid, linolenic acid and so on.

[0082] As the ester compound of the aliphatic acid, an ester of an alcohol compound with the above higher aliphatic acid is favorable. The carbon number of the alcohol compound is not particularly limited, but it is usually about 1-10. And also, an ester of a lower aliphatic acid (carbon number of about 1-10) with a higher alcohol (carbon number of not less than about 10 but not more than about 20) may be used.

[0083] The rubber composition according to the invention may be further compounded with an extender oil for rubber such as naphthenic, paraffinic, aromatic process oils and the like. As the extender oil, the aromatic or naphthenic process oil is favorable. Furthermore, zinc oxide, an accelerator activator, an antioxidant, a processing aid and the like may be compounded in proper amounts.

[0084] A rubber article can be manufactured by using the rubber composition according to the invention as follows. That is, the diene-based rubber-inorganic compound composite material and, if necessary, the other rubber component, and the reinforcing agent such as silica, carbon black, carbon-silica dual phase filler or the like, the extender oil for rubber, the other compounding agents are first milled at a temperature of 70-180°C by using a milling machine such as a Banbury mixer or the like. Thereafter, the milled mass is cooled and further compounded with a vulcanizing agent such as sulfur or the like, a vulcanization accelerator and so on in a Banbury mixer, a mixing rolls or the like and then shaped into a given form. Then, the thus shaped body is cured at 140-180°C to obtain a required rubber vulcanizate or a rubber article.

[0085] This rubber vulcanizate has excellent tensile strength, wear resistance, wet skid resistance, rebound resilience

15

20

30

35

40

45

50

and the like. And also, an uncured rubber has a good processability. Therefore, the rubber compositions according to the invention can be used as a rubber article in various fields owing to its excellent properties. For example, they can be used for a tread, a base tread, a sidewall, an abrasion and the like of tires for large-size vehicles and passenger cars; industrial goods such as a rubber roll, a rice husking roll, a belt, a hose, a sponge, a rubber sheet, a rubberized cloth and the like; footwear members such as transparent shoes, general-purpose color shoes, a sponge shoe hottom and the like; sanitary goods such as a sanitary skin, medical supplies and so on. They are particularly suitable as a tire tread for an automobile.

BEST MODE FOR CARRYING OUT THE INVENTION

[0086] The invention will be concretely described with respect to the following examples below.

- 1. Synthesis of diene-based rubber (extended with an oil and not extended with oil)
- (1) Synthesis of oil-extended diene-based rubber

10

15

20

35

40

45

50

55

[0087] Into a polymerization vessel purged with nitrogen are charged 200 parts by mass of water, 4.5 parts by mass of rosin acid soap, given compounding amounts of butadiene and other monomers shown in Table 1 (unit is parts by mass, provided that a total amount of monomers is 100 parts by mass), and 0.3 part by mass of t-dodecylmercaptan. Thereafter, a temperature of the polymerization vessel is set to 5°C, and 0.1 part by mass of p-menthane hydroperoxide as a polymerization initiator, 0.07 part by mass of sodium ethylenediamine tetraacetate, 0.05 part by mass of ferrous sulfate heptahydrate and 0.15 part by mass of sodium formaldehyde sulphoxylate are added to start polymerization, and when a conversion reaches 60%, diethylhydroxyamine is added to stop the polymerization. Then, unreacted monomers are recovered by steam stripping to obtain each aqueous dispersion of diene-based rubbers having a solid content of about 21%.

[0088] Thereafter, each aqueous dispersion of the diene-based rubber is mixed with an emulsified mass containing 37.5 parts by mass of an aromatic oil (made by Fuji Kosan Co., Ltd. trade name "Fukkol-Aromax#3") based on 100 parts by mass of the solid content in the dispersion and coagulated with sulfuric acid and sodium chloride to form a crumb, which is washed with water and dried in a hot dryer to obtain an oil-extended diene-based rubber (A to J in Table 1). The monomer bonding content (bonding contents of styrene, monomer containing carboxylic acid group, monomer containing amino group and nitrile group, monomer containing hydroxyl group, butyl acrylate and monomer containing alkoxysilyl group) and Mooney viscosity of the oil-extended diene-based rubbers (A to J in Table 1, which are shown by "Polymer" in Tables 6-13) are measured by the following methods to obtain results as shown in Table 1.

- (a) Bound styrene content (mass%); It is measured from a calibration curve prepared by an infrared absorption spectroscopy.
- (b) Contents of 1,2-vinyl bond and 1,4-trans bond of butadiene unit (mass%); They are measured by an infrared absorption spectroscopy (Morello's method).
- (c) Bonding content of monomer containing carboxylic acid group (mass%); It is measured by neutralization titration after the rubber is dissolved in toluene and purified by subjecting to reprecipitation with methanol two times and dried under vacuum and then the rubber is dissolved in chloroform.
- (d) Bonding content of monomer containing amino group and nitrile group (mass%); It is measured from a nitrogen content through an elementary analysis after the rubber is dissolved in toluene and purified by subjecting to reprecipitation with methanol two times and dried under vacuum.
- (e) Bonding content of monomer containing hydroxyl group (mass%); It is measured by ¹H-NMR at 270 MHz after the rubber is dissolved in toluene and purified by subjecting to reprecipitation with methanol two times and dried under vacuum
- (f) Bonding content of butyl acrylate (mass%); It is measured by ¹³C-NMR at 270 MHz after the rubber is dissolved in toluene and purified by subjecting to reprecipitation with methanol two times and dried under vacuum.
- (g) Bonding content of monomer containing alkoxysilyl group (mass%); It is measured by ¹H-NMR at 270 MHz after the rubber is dissolved in toluene and purified by subjecting to reprecipitation with methanol two times and dried under vacuum.
- (h) Mooney viscosity [ML₁₊₄(100°C)]; It is measured at a measuring temperature of 100°C according to JIS K6300-1994 after 4 minutes through a preliminary heating for 1 minute.
- (2) Synthesis of diene-based rubber (not extended with oil)

[0089] Into a polymerization vessel purged with nitrogen are charged 200 parts by mass of water, 4.5 parts by mass

of rosin acid soap, given compounding amounts of butadiene and other monomers shown in Table 2 (unit is parts by mass, provided that a total amount of monomers is 100 parts by mass), and 0.3 part by mass of t-dodecylmercaptan. Thereafter, a temperature of the polymerization vessel is set to 5°C, and 0.1 part by mass of p-menthane hydroperoxide as a polymerization initiator, 0.07 part by mass of sodium ethylenediamine tetraacetate, 0.05 part by mass of ferrous sulfate heptahydrate and 0.15 part by mass of sodium formaldehyde sulphoxylate are added to start polymerization, and when a conversion reaches 60%, diethylhydroxyamine is added to stop the polymerization. Then, unreacted monomers are recovered by steam stripping to obtain each aqueous dispersion of diene-based rubbers having a solid content of 21%.

[0090] Thereafter, each aqueous dispersion of the diene-based rubbers (K to T in Table 2) is coagulated with sulfuric acid and sodium chloride to form a crumb, which is dried in a hot dryer to obtain a diene-based rubber (K to T in Table 2, which are shown by "Polymer" in Tables 6-13). The bound styrene content and Mooney viscosity of the diene-based rubbers (K to T in Table 2) are measured by the aforementioned methods to obtain results as shown in Table 2.

2. Production of composite material

15

20

30

35

40

(1) Use of aqueous dispersion of oil-extended diene-based rubber (A to J in Table 1)

[0091] Each of the aqueous dispersions of oil-extended diene-based rubbers (A to J in Table 1) is mixed with an emulsified mass containing 37.5 parts by mass of an aromatic oil based on 100 parts by mass of the solid content in the dispersion (Moreover, total amount of rubber and oil is 137.5 parts by mass, see Table 3). Furthermore, the mixture is mixed with an aqueous dispersion formed by dispersing 30 parts by mass of each of inorganic compounds shown in Table 5, 6, 7, 11 and 13 (aluminum hydroxide, alumina monohydrate and so on) in 200 parts by mass of water in a homomixer. Moreover, the compounding method and compounding ratio of the rubber and the inorganic compound are shown by compounding recipe A and compounding recipe D in Table 3, wherein the kind of the inorganic compound used is shown in Tables 6 and 7 (compounding recipe A) and Table 11 (compounding recipe D) and Table 13 (compounding recipe A and D).

[0092] Then, the resulting mixture is coagulated with calcium chloride to form a crumb while adjusting pH to 4-5 with sulfuric acid, which is washed with water and dried in a hot dryer to obtain an oil-extended diene-based rubber-inorganic compound composite material (composite materials of various combinations shown in Tables 3, 6, 7 and 13).

[0093] The thus obtained composite material is ashed by heating in an electric furnace at 640°C for 8 hours. An introduction amount of the inorganic compound calculated from the resulting ash content is 30 parts by mass in either compounding recipe A and D as converted into the inorganic compound based on 100 parts by mass of the diene-based rubber (see compounding recipe A and D in Table 3).

- (2) Use of aqueous dispersion of diene-based rubber not extended with oil (K to T in Table 2)
 - [0094] The same procedure as in the above case (1) is repeated except that 37.5 parts by mass of the aromatic oil used in the above case (1) of the aqueous dispersion of the oil-extended diene-based rubber is not used and the inorganic compound is used in an amount of 20 parts by mass or 50 parts by mass (see Table 3) to obtain non oil-extended diene-based rubber-inorganic compound composite materials (composite materials of various combinations shown in compounding recipe B and C in Table 3, Tables 8, 9 (compounding recipe B), Table 10 (compounding recipe C) and Table 13 (compounding recipe B and C)).

[0095] Furthermore, composite materials shown in Table 3 (compounding recipe E) and Tables 12 and 13 (compounding recipe E) are produced by the same manner as mentioned above in case of diene-based rubbers (not extended with oil) made of E-BR and NR. In these composite materials, the introduction amount of the inorganic compound calculated from the ash content is shown in Table 3.

- (3) Case through in-Situ ①
- [0096] The aqueous dispersion of the diene-based rubber (A to T in Tables 1 and 2) is mixed with an emulsified mass containing 37.5 parts by mass of an aromatic oil based on 100 parts by mass of the solid content in the dispersion or a dispersion omitting the oil. Further, it is mixed with a given amount of an aqueous solution of 20 mass% sodium aluminate (compounding recipe A and D: 110 parts by mass, compounding recipe B: 75 parts by mass, compounding recipe C: 185 parts by mass, compounding recipe E: 105 parts by mass) (see Tables 6, 8, 10-13).
 - [0097] Then, the resulting mixture is coagulated with aluminum sulfate to form a crumb while adjusting pH to 4-5 with sulfuric acid, which is washed with water and dried in a hot dryer to obtain an oil-extended or non oil-extended diene-based rubber-inorganic compound composite material (see compounding recipe A to D in Table 3, and Tables 6, 8, 10-13). The introduction amount of the inorganic compound calculated from the ash content of the resulting

composite material is shown in Table 3 as converted by aluminum hydroxide (trade name, Higilite H-43M, made by Showa Denko Co., Ltd.).

(4) Case through in-Situ ②

[0098] The aqueous dispersion of the diene-based rubber (A to T in Tables 1 and 2) is mixed with an emulsified mass containing 37.5 parts by mass of an aromatic oil based on 100 parts by mass of the solid content in the dispersion or a dispersion omitting the oil. Further, it is mixed with an aqueous solution formed by adding 180 parts by mass of sodium hydroxide to a given amount of an aqueous solution of 20 mass% sodium aluminate (compounding recipe A and D: 110 parts by mass, compounding recipe B: 75 parts by mass, compounding recipe C: 185 parts by mass, compounding recipe E: 105 parts by mass) and adjusting pH to 14 (see Tables 6, 8, 10-13).

[0099] Then, the resulting mixture is coagulated with aluminum sulfate to form a crumb while adjusting pH to 4-5 with sulfuric acid, which is washed with water and dried in a hot dryer to obtain an oil-extended or non oil-extended diene-based rubber-inorganic compound composite material (see compounding recipe A to D in Table 3, and Tables 6, 8, 10-13). The introduction amount of the inorganic compound calculated from the ash content of the resulting composite material is shown in Table 3 as converted by aluminum hydroxide (Higilite H-43M).

3. Rubber composition and evaluation of its properties

[0100] A comparison test is conducted between a case using the above produced composite material (Examples 1-175, see Tables 6-13) and a case of dry-milling starting components by the conventional method (Comparative Examples 1-115, see Tables 6-13). In each comparative example of the latter case, starting components shown in Table 4 (not composite material) are compounded and milled at two-stage step of first stage and second stage and cured to obtain a given rubber composition and a rubber article. Moreover, the followings are used as a starting component shown in the same table. N339: trade name "Seast KH", carbon black, made by Tokai Carbon Co., Ltd. Silica: trade name "Nipsil AQ", made by Nippon Silica Industrial Co., Ltd. Aromatic oil: trade name "Fukkol-Aromax#3", made by Fuji Kosan Co., Ltd. 6C: trade name "Nocrac 6C", made by Ohuchi Shinko Chemical Industrial Co., Ltd. Si69: trade name "Si69", made by Degusa AG

DPG: diphenylguanidien, trade name "Nocceler D", made by Ohuchi Shinko Chemical Industrial Co., Ltd. DM: dibenzothiazyl disulfide, trade name "Nocceler DM", made by Ohuchi Shinko Chemical Industrial Co., Ltd. NS: N-t-butyl-2-benzothiazoyl sulfenamide, trade name "Nocceler NS-F', made by Ohuchi Shinko Chemical Industrial

[0101] In each example of the former case, the same milling as in the above case is conducted by using each composite material shown in Table 3 (for example, a composite material made of 137.5 parts by mass of oil-extended diene-based rubber and 30 parts by mass of inorganic compound in compounding recipe A of Table 3 or the like) instead of diene-based rubber and inorganic compound shown in Table 4 (comparative example) (for example, a mixture of 137.5 parts by mass of oil-extended diene-based rubber and 30 parts by mass of inorganic filler in compounding recipe A of table 4). The milling method of first stage and second stage is as follows.

40 (Milling method of first stage)

[0102] The above obtained diene-based rubber and diene-based rubber-inorganic compound composite material are used and milled with rubber ingredients (compounding agents) in a first column of Table 4 according to a compounding recipe of Table 4 in a laboratory plastomill (made by Toyo Seiki Seisakusho) at a maximum temperature of 160°C.

(Milling method of second stage)

[0103] The thus obtained rubber composition is used and milled with rubber ingredients in a second column of Table 4. In this case, however, the milling is carried out in the same method as mentioned above except that a maximum temperature is 100°C.

[0104] The rubber composition obtained in the above method is cured at 160°C for 15 minutes to obtain a vulcanizate, and the following properties of the vulcanizate are evaluated to obtain results as shown in Tables 6-12 and Table 13 summarizing them.

① Tensile properties: A test piece of pattern No. 3 is used and a tensile strength Tb (MPa) is measured according to JIS K6251-1993 under conditions that a measuring temperature is 25°C and a tensile rate is 500 mm/min, and also a tensile stress (M_{300}) at an elongation of 300% is measured.

30

45

50

- ② Wear resistance: An abrasion loss is calculated at a slip rate of 25% by using a Lambourn abrasion tester. The measuring temperature is 25°C. A reciprocal of the abrasion loss is represented by an index on the basis that the comparative example is 100, wherein the larger the index value, the better the wear resistance.
- ③ Low heat build-up property: Tan δ (50°C) is measured at a temperature of 50°C and a strain of 5% and a frequency of 15 Hz by using a viscoelasticity measuring apparatus (made by Rheometrix). The smaller the tan δ (50°C), the lower the heat build-up property.
- 4 Rebound resilience: It is measured at a temperature of 25°C by a Dunlop tripsometer (BS903).

Table 1

di			Oil-ex	tended	rubbers						
Oil-extended	diene-based rubber	Α	E	В	С	D	F	G	Н	ı	J
Feed	butadiene	58	66	57.5	57	57	57	57	51	56	57.5
amount (part by	styrene	42	26	42	42	42	42	42	42	42	42
mass)	acrylonitrile		8								
	2-hydroxyethyl methacrylate			0.5							
	diethylaminoethyl methacrylate				1						
	4-vinylpyridine					1					
	methacrylic acid					1	1				
	itaconic acid							1			
	butyl acrylate								7		
	methacrylamide									2	
	γ- methacryloxypropyl methacrylate										0.5
Bonding	styrene	35	20	35	35	35	35	35	35	35	35
content (mass %)	acrylonitrile		10								
(111433 70)	2-hydroxyethyl methacrylate			0.3							
	diethylaminoethyl methacrylate				0.7						
	4-vinylpyridine					0.6					
	methacrylic acid						0.8				
	itaconic acid							0.6			
	butyl acrylate					}			4		
	methacrylamide									0.9	
	γ- methacryloxypropyl methacrylate										0.4
Extender oil	(part by mass)	37.5	37.5	37.5	37.5	37.5	37.5	37.5	37.5	37.5	37.5
Mooney viso	cosity after oil	50	52	48	51	52	49	48	53	51	52

Table 2

			No	n-oil ex	tended r	ubber		•				
5	Diene-ba	sed rubber	К	N	L	М	0	Р	a	R	s	T.
	Feed amount	butadiene	72	76	71.5	71	71	100	92	99.5	99	99
	(part by mass)	styrene	28	16	28	28	28					
		acrylonitrile		8					8			
10		2-hydroxyethyl methacrylate			0.5					0.5		
		diethylaminoethyl methacrylate				1					1	
15		itaconic acid					1					1
	Bonding content	styrene	23.5	13	23.5	23.5	23.5	0	0	0	0	0
	(mass %)	acrylonitrile		10					10			
20	·	2-hydroxyethyl methacrylate			0.3					0.3		
٠		diethylaminoethyl methacrylate				0.7					0.7	
25		itaconic acid					0.6					0.6
2.5	Mooney viscosity		50	48	47	51	48	48	50	50	52	49

Table 3

20	

35

40

Components constituting composite material/ compounding recipe	Α	В	С	D	Ε
Diene-based rubber					
oil-extended diene based rubber A-J	137.5			137.5	
non-oil extended diene based rubber K-T		100	100		
E-BR					70
NR					30
Inorganic compound	30	20	50	30	20

45

50

Table 4

	Milling stages	Compounding recipe	Α	В	С	D	Ε
5	First stage	oil-extended diene-based rubber	137.5			137.5	
		non-oil extended diene based rubber		100	100		
		E-BR					70
		NR					30
10		N339 .	60	40		30	40
		silica				30	
		inorganic compound	30	20	50	30	20
15		aromatic oil		10	10		10
		stearic acid	2	2	2	2	2
		6C .	1	1	1	1	1
		Si69				3	1
20	Second stage	ZnO	3	.3	3	3	3
		DPG	0.8	0.8	1.2	0.8	0.8
		DM	1	1	1.5	1	1
25		NS	1	1	1	1 .	1
•		sulfur	1.5	1.5	1.5	1.5	1.5
	unit: nart b	y mass					

Table 5

Chemical name	Maker	Trade mark	Average particle size (μm)
Aluminum hydroxide (gibbsite)	Showa Denko Co., Ltd.	Higilite H-43M	0.6
Alumina monohydrate (boehmite)	Condea Japan Co., Ltd.	PURAL200	0.14
γ-alumina	Baikowski	Baikalox CR125	0.3
Kaolin clay	J.M.HUBER	Polyfil DL	1.0
Calcined clay	J.M.HUBER	Polyfil 40	1.2
Magnesium hydroxide	Kyowa Kagaku Kogyo Co., Ltd.	Kisma 5A	0.8
Titanium oxide (anatase)	Ishihara Sangyo Kaisha Ltd.	Tipaque A-100	0.15
Aluminum hydroxide in situ(1)	from sodium aluminate		
Aluminum hydroxide in situ②	from aluminum sulfate		

50		40	35		 30	25	20	15	. 10	5
Compounding recipe A	be A			H	<u>Table 6</u>					
Inorganic compound Aluminum hydroxid	Aluminum hy	droxide (gibbsite)	ite)							-
Blending method	DRY									
	Comparative Example 1	Comparative Example 2	Comparative Example 3	Comparative Example 4	Comparative Example 5	Comparative Example 6	Comparative Example 7	Comparative Example 8	Comparative C Example 9	Comparative Example 10
Polymer	A	В	U	Ω	B	Œ,	G	Н	I	J
Tb	20.1	21.7	21.4	21.3	21.6	21.0	21.4	20.9	21,1	22.1
Wear resistance	100	110	109	108	115	107	109	108	108	113
Blending method	Aqueous dispersion	ersion								
	Example 1	Example 2	Example 3	Example 4	Example 5	Example 6	Example 7	Example 8	Example 9	Example 10
Polymer	Ą	B	Э	D	ਜ	ц	O	H	I	-
Tb	21.8	23.8	23.2	23.3	23.5	22.8	23.1	22.9	23.0	24.2
Wear resistance	119	134	130	130	141	128	130	129	128	140
Blending method	in situ 🛈									
	Example 11	Example 12	Example 13	Example 14	Example 15	Example 16	Example 17	Example 18	Example 19	Example 20
Polymer	А	В	C	D	Ħ	Ľ.	ß	H	1	-
Tb	24.1	26.0	25.7	25.8	25.8	24:9	25.7	25.0	24.9	26.5
Wear resistance	183	221	210	208	237	204	207	201	202	230
Blending method	in situ (2)									
	Example 21	Example 22	Example 23	Example 24	Example 25	Example 26	Example 27	Example 28	Example 29	Example 30
Polymer	Υ	æ	C	Ω	Ε	Р	G	H	ĭ	r
Tb	23.9	25.9	25.4	25.7	25.8	24.6	25.3	25.1	24.8	26.4
Wear resistance	167	186	183	181	197	180	181	179	180	191
Inorganic compound		Alumina hydrate (boehmite)								
Blending method						Aqueous dispersion	ersion			
	Comparative Example 11	Comparative Comparative Example 11 Example 12	Comparative Example 13	Comparative Comparative Comparative Example 13 Example 14	Comparative Example 15	Example 31	Example 32	Example 33	Example 34	Example 35
Polymer	А	В	C	Е	Ö	A	В	ບ	Ξ	ტ
Tb	22.1	23.1	23.0	22.9	23.4	24.0	25.3	25.4	25.3	25.7
Wear resistance	100	109	108	112	107	108	121	119	125	118

Table 7 Tabl	recipe A und 'r-alumina DRY Comparative Example 16 A 21.2 100 I00 Comparative Example 21 A A 21.5 100 A A A A A A A A A A A A A A A A A A	Comparative Example 17 B 22.4 107	Comparative C 22.6 107 Comparative C Example 23	30	25	_	20	15	10	_5
Table 7 Tabl	11ve 16 16 16 16 16 16 16 1	Comparative (Example 17 B B 22.4	Comparative C 22.6 107 Comparative C C Example 23	Ta						
Aducous dispersion Aducous dispersion Aducous dispersion Aducous dispersion Comparative	11ve 16 16 16 16 16 16 16 1	Comparative (Example 17 B B 22.4	Comparative C 22.6 107 COmparative C C Example 23		ble 7					
Second	tive clay	Comparative (Example 17 B B 22.4 107	Comparative C 22.6 107 C Comparative C C C C C C C C C C C C C C C C C C C							
Aquecous dispersion Aquecous A	11ve 16ve 17ve 17ve 17ve 17ve 17ve 17ve 17ve 17	Comparative (Example 17 B B 22.4	Comparative C 22.6 107 Comparative C Comparative C Example 23							-
Comparative Compara	Comparative Example 16 A 21.2 100 Calcined clay DRY Comparative Example 21 A 21.5 100 Kaolin DRY Comparative Example 26 A A A A A A 21.5	Comparative (Example 17 B B 22.4	Comparative C Example 18 1 22.6 107 Comparative C			squeous dispe	rsion			
A	A 21.2 100 Calcined clay DRY Comparative Example 21 A 21.5 100 Kaolin DRY Comparative Example 26 A A A A A A A A A A A A A A A A A A A	B 22.4 107	22.6 107 Comparative (Comparative (Sxample 19			Example 37	Example 38		Example 40
Comparative	21.2 100 Calcined clay DRY Comparative Example 21 A 21.5 100 Kaolin DRY Comparative Example 26 A A A A A A A A A A A A A A A A A A A	107	22.6 107 Comparative (Example 23	ョ	ڻ	A	Ф	C	H .	2 2
Calcined clay 107 107 110 108 110 118 110 1122 110 1122 110 110 1122 110 110 110 1122 110 11	Calcined clay DRY Comparative Example 21 A 21.5 100 Kaolin DRY Comparative Example 26 A A A 21.5 A A A A 21.5	107	107 Comparative Comparative Co	22.1	22.5	23.4	24.6	24.6	124.7	120
Aqueous dispersion Comparative Compara	Calcined clay DRY Comparative Example 21 A 21.5 100 Kaolin DRY Comparative Example 26 A A 21.5		Comparative C Example 23	110	108	110	118	011	771	NAT
Argueous dispersion Comparative Compar	DRY Comparative Example 21 A 21.5 100 Kaolin DRY Comparative Example 26 A A 21.5		Comparative (Example 23							
Comparative	ymer Comparative Example 21 Ymer A 21.5 ar resistance 100 rganic compound Kaolin nding method DRY Comparative Example 26 ymer A 21.5		Comparative (Example 23		/	Agueous dispe	rsion			
Action Comparative Compa	ymer A 21.5 ar resistance 100 rganic compound Kaolin nding method DRY Comparative Example 26 ymer A 21.5	Comparative 17	_	Comparative 6	Comparative Example 25	Example 41	Example 42	Example 43	-+	Example 45
State Comparative Compar	ar resistance 100 rganic compound Kaolin nding method DRY Comparative Example 26 ymer A 21.5	R R	ت:	П	Ü	Ą	В	C	E	9
Standing method DRY 100 107 106 111 108 109 118 117 120 145 120	ar resistance 100 rganic compound Kaolin nding method DRY Comparative Example 26 ymer A 21.5	22.6	22.3	22.3	22.4	23.3	24.7	24.5	24.7	24.5
Example 26 Example 27 Example 28 Example 30 Example 46 Example 49 Example 49 Example 40 Example 50 Exa	method Kaolin DRY Comparative Example 26 A A 21.5	107	106	111	108	109	118	117	120	116
DRY Comparative Comparat	method DRY Comparative Example 26 A A 21.5									
Comparative	Comparative Example 26 A A 21.5					Aqueous disp	rsion			
Statuce A	A 21.5	Comparative Example 27	Comparative Example 28	Comparative Example 29	Comparative Example 30	Example 46	Example 47	Example 48	Example 49	Example 50
Stance 100 107 106 111 108 109 118 117 120 120	000000000000000000000000000000000000000	В	U	Ξ	ß	A	В	C	Ш	5
Comparative	000000000000000000000000000000000000000	22.6	22.3	22.3	22.4	23.3	24.7	24.5	24.7	24.5
Comparative		107	106	111	108	109	118	117	120	al I
DRY Comparative Comparat		rdroxide								
Comparative Comp						Aqueous disp	ersion			
A B C B G A B C B G A B C B G A B C B G A B C B C B C B C B C B C B C B C B C B	Comparative Example 31	Comparative Example 32	Comparative Example 33	Comparative Example 34	Comparative Example 35		Example 52	Example 53	Example 54	Example 55
Solution	4	В	U		ß		В	ပ	Ξ	0
istance 100 116 114 120 115 122 143 140 145 145 compound Titanium oxide (auatase) method DRY Comparative Comparative Comparative Comparative Example 39 Example 40 Example 56 Example 57 Example 59 Example 59 Example 50		22.6	22.4	22.2	22.5	21.9	23.8	23.5	23.7	23.8
Compound Titanium oxide (anatase)	ar resistance	116	114	120	115	122	143	140	145	138
DRY Comparative Comparat	organic compound Titanium oxid	e (anatase)								
Comparative Comparative Comparative Example 39 Example 50 Example 57 Example 58 Example 59 Example 59 Example 50 Example 50 <th< td=""><td>lending method DRY</td><td></td><td></td><td></td><td></td><td>Aqueous disp</td><td>ersion</td><td></td><td></td><td></td></th<>	lending method DRY					Aqueous disp	ersion			
A B C E G A B C E 22.5 23.4 23.5 24.1 23.2 24.5 24.3 24.3 istance 100 107 108 111 106 108 122 120 125	Comparative Example 36	Comparative Example 37	Comparative Example 38	Comparative Example 39	Comparative Example 40	Example 56	Example 57	Example 58	Example 59	Example 60
istance 100 107 108 111 106 108 122 24.5 24.3 24.3 istance 22.5 23.4 23.5 24.1 23.2 24.5 24.3 24.3	A	æ	U	Щ	Ð		В	ບ	Ξ	5
ar resistance 100 107 108 111 106 108 122 120 125		23.4	23.4	23.5	24.1	23.2	24.5	24.3	24.3	24.4
	Wear resistance 100	107	108	111	106	108	122	120	125	120

		T	\top	e 95							e 100		4				e 10.5				
5		1		Example 95	0	26.1	123				Example 100		25.4	137			Example 105		26.1	121	
10				Example 94	z	26.4	129				Example 99	z	25.2	149			Example 104	z	26.1	127	
15				Example 93	X	26.6	122				Example 98	Σ	25.2	139			Example 103	M	26.3	119	
20			ersion	Example 92	Т	Z6.7	124			ersion	Example 97	1	25.5	4		ersion	Example 101 Example 102	1	26.4	123	
25			Aqueous dispersion	Example 91	Ж	25.6	111			Aqueous dispersion	Example 96	Ж	24.4	120		Aqueous dispersion	Example 101	×	25.2	110	
30 E				Comparative Example 65	0	24.4	110				Comparative Example 70	0	23.8	118			Comparative Example 75	0	24.9	107	
<i>30</i>	d			Comparative Example 64		24.1	114				Comparative Example 69	Z	24.1	126			Comparative Example 74		25.3	112	
35				Comparative Example 63	M	24.5	109				Comparative Example 68	Σ	24.2	119			Comparative Example 73		25.1	107	
40				Comparative Example 62	T	24.2	110	1	ALUXIUC.		Comparative Example 67	L	24.2	120	e (anatase)		Comparative Example 72	L	25.3	108	
45	B	Kaolin	DRY	parative	 -	73.3	001		Inorganic compound imagnesium nymon	DRY	Comparative Example 66	×	23.2	100	Titanium oxide (anatase)	DRY	parative	X	24.2	101	
50	Compounding recipe B	Inorganic compound Kaolin	method		-		istance		compound					istance	Inorganic compound					sistance	
55	Compor	Inorganic	Blending method		APolymer	Ę	Wear resistance		morgani	Blending method		Polymer	130	Wear resistance	Inorganie	Blending		Polvmer		Wear resistance	

				110					120						125				
5				Example 110	0	15.9	228		xample 120	0	22.6	387			Example 125	0	20.3	165	
							_		9 E							-		-	
10				Example 109	Z	15.7	267		Example 11	z	22.5	420			Example 124	z	6.61	189	
15				Example 108	M	15.8	225		Example 118 Example 119	M	23.0	386			Example 123	M	20.7	172	
. 20			rsion	Example 107	Г	16.1	231			٦	22.7	394		rsion	Example 122	u	20.5	174	
			Aqueous dispersion	Example 106	K	13.4	169	in situ (2)	Example 116 Example 117	К	20.4	312		Aqueous dispersion	Example 121	M	18.4	143	
ss 22 Table 10				Comparative Example 80	0	11.7	144			0	23.5	402			Comparative Example 85	0	14.0	137	
30 E	1			Comparative Example 79	Z	11.8	184		Example 114	Z	23.7	433			Comparative Example 84	Z	13.7	149	
. 35		ite)		Comparative Example 78	M	12.1	149		Example 113 Example 114 Example 115	Σ	23.8	398			Comparative Example 83	M	14.3	139	
40		droxide (gibbsite)		Comparative Example 77	7	12.0	153		Example 112	Ĺ	24.1	407	ate (boehmite)		Comparative Example 82	Τ .	14.1	140	
45	pe C	Aluminum hy	DRY	Comparative (Example 76	Ж	9.1	100	in situ (I)	Example 111 Example 112	K	22.0	331	Alumina hydr	DRY	Comparative (Example 81	K	11.9	100	i
50	Compounding recipe C	Inorganic compound Aluminum hydroxid	Blending method		Polymer		Wear resistance	Blending method		Polymer		Wear resistance	Inorganic compound Alumina hydrate (boehmite)	Blending method		Polymer		Wear resistance	
55	ට	Ę	Bie		Pol	Tb	We	Ble		Poj	£	ĕ.	li G	Die l		P	e	ĕ	

5 10			8 Example 129 Example 130	EGG	24.5 24.5	140 129	2000	Example 138 Example 139 Example 140	4	177 168			13 Example 144 Example 145	EGG	25.9 26.3	136 128			8 Example 149 Example 150	E	26.3 25.9	137 130			3 Example 154 Example 155	E	25.7 25.8	F
. 15			Example 128	ပ	24.9	131			26.2	165			Example 143	C	26.0	130			Example 148	C	25.8	130			Example 15	U	25.9	122
20		ersion	Example 127	£	24.8	133		Example 136 Example 137	26.5	168		ersion	Example 141 Example 142	В	26.0	129		ersion	Example 147	В	. 26.0	132		ersion	Example 152 Example 153	В	26.1	701
25		Aqueous dispersion	Example 126	A	23.6	112	in situ (2)	Example 1.30	25.5	137		Aqueous dispersion	Example 141	A	25.2	111		Aqueous dispersion	Example 146		25.1	114		Aqueous dispersion	Example 151	A	24.7	106
Table 11			Comparative Example 90	Ð	23.1	114	10.1	Example 133	26.6	173			Comparative Example 95	G	25.1	113			Comparative Example 100	Ğ	24.0	111			Comparative Example 105	G	24.0	112
30 E			Comparative Example 89	田	22.5	124	100	Example 134	26.2	182			Comparative Example 94	Э	24.9	120			Comparative Example 99	B	23.8	116			Comparative Example 104	В	23.8	116
35	(2)		Comparative Example 88	U	22.9	115	1001	Example 133	26.4	171			Comparative Example 93	ວ	25.2	112			Comparative Example 98		24.1	110			Comparative Example 103	U	24.0	110
40	Iroxide (gibbaite)	9	Comparative Example 87	В	23.0	118	,	Example 132	26.4	176	te (boehmine)		Comparative Example 92	В	25.1	115			Comparative Example 97	В	23.9	114			Comparative Example 102	В	24.2	110
45 [°]	Aluminum hyo	DRY	Comparative (Example 86	A	21.7	100	in situ (I	Example 151	25.6	151	Alumina hydrate (boeh	DRY	Comparative (Example 91		24.1	001	y-alumina	DRY	Comparative Example 96	\vdash	22.8	100	Calcined clay	DRY	Comparative Comparative Example 101		22.7	100
50	Compounding recipe D Inorganic compound [Alun	$\overline{}$								stance	Inorganic compound					stance	Inorganic compound					stance	Inorganic compound)			chance
<i>55</i>	Compou	Blending method		Polymer	Tb	Wear resistance	Blending method	Polymer	To	Wear resistance	Inorganic	Blending method		Polymer	<u>T</u>	Wear resistance	Inorganic	Blending method		Polymer	Tb	Wear resistance	Inorganic	Blending method		Polymer	To	Wear resistance

			160				·	170					_	: 175			
5		_	Example 160	H	21.5	118		Example 170	T	24.2	4			Example 175	T	23.0	117
10			Example 159 E	S	21.3	125		Example 169	S	24.6	150			Example 173 Example 174 F	S	23.2	120
15			Example 158	R	21.0	119		Example 168	æ	24.5	145		-		R	23.4	116
20		persion	Example 157	δ	21.3	122		5 Example 167	0	24.4	147		persion	Example 172	0	23.3	118
25		Aqueous dispersion	Example 156	д	19.7	108	in situ ②	5 Example 166	Ь	22:3	128		Aqueous dispersion	Example 171	ч	21.8	105
s Table 12			Comparative Example 110	F	20.0	110		Example 164 Example 165	T	24.6	147			Comparative Example 115	₽	21.4	107
			Comparative Example 109	S	1.61	114			S	24.4	156			Comparative Example 114	S	21.1	110
. · · · · · · · · · · · · · · · · · · ·	ite)		Comparative Example 108	R	6.61	110		Example 163	æ	24.5	149			Comparative Example 113	2	21.5	108
40	froxide (gibbs		Comparative Example 107	0	20.2	111		Example 162	ď	24.9	153	ate (boehmite)		Comparative Example 112	ď	21.5	107
45 四 임	Aluminum hydroxide (gibbsite)	DRY	Comparative Comparative Example 107	Ы	18.6	100	in situ 🛈	Example 161 Exam	а	7.22	131	Alumina hydrate (boehmite)	DRY	Comparative Example 111	Ь	20.4	100
Ompounding recipe	Inorganic compound	-			/	Wear resistance	Blending method				Wear resistance	Inorganic compound	Blending method				Wear resistance
55	Inorgani	Blendin		Polymer	-T-	Wear re	Blendin		Polymer	1p	Wear re	Inorgan	Blendin		Polymer	Tb	Wear re

5	Anatasc	aqueous		23.2	108		25.2	110						!				
	An	DRY		22.5	100		24.2	100										
10	Magnesium	A aqueous		21.9	122		24.4	120								-		
	Mag	DRY		20.9	100		23.2	100										
15	Kaolin	aqueous	_	23.9	116		25.6	111										
20	×	DRY		21.4	100		23.3	100										
20	Calcined clay	aqueous		23.3	109		25.1	108					24.7	105				
25	Calc	DRY		21.5	100		23.9	100					22.7	100				
so Table 13	7-alumina	aqueous		23.4	110		,24.9	107	·				25.1	114				
Tab Se	γ.	DRY		21.2	001		23.5	100					22.8	100				
35	Boehmite	aqueous		24.0	108		26.1	107		18.4	143		25.2	111		21.8	105	
	M	RS OF		22.1	100		24.1	100		11.9	100		24.1	100		20.4	100	
40		(2) ujis uj		23.9	191		25.4	140		20.4	312		25.5	137		22.3	128	
45	Gibbsite	in situ 🛈		24.1	183		25.9	143		22.0	331		25.6	151		22.7	131	
	8	aqueous		21.8	119		23.2	112		13.4	169		23.6	112		19.7	108	
50		DRY		20.1	100		22.1	100		9.1	100		21.7	100		18.6	100	
55	Inorganic	compound	Compounding recipe A	To	Wear resistance	Compounding recipe B	Tb	Wear resistance	Compounding recipe C Polymer K	Tb	w ear resistance	Compounding recipe D Polymer A	176	Wear resistance	Compounding recipe E	£	Wear resistance	

[0105] As shown in Tables 6-13, all examples are large in Tb value (tensile strength) and wear resistance as compared with the corresponding comparative examples and excellent in any performances. Particularly, in case of in-Situ ① and ②, the value of Tb and wear resistance become larger, and it has been confirmed that any performances are very excellent. And also, it is particularly seen from Table 13 that the tensile strength and wear resistance are considerably improved in gibbsite (aluminum hydroxide) and kaolin among the given inorganic compounds as compared with drytype milling (Comparative Examples). Moreover, it has been found that boehmite and calcined clay are very excellent in the effect of improving the Tb value, and magnesium hydroxide is very excellent in the wear resistance.

[0106] As mentioned above, in the vulcanized rubbers made of the rubber compositions each containing the composite according to the invention, the tensile strength and wear resistance are very excellent and the dispersibility of the inorganic compound into the diene-based rubber composition and the vulcanized rubber is very good.

[0107] Then, an embodiment using colloidal silica or alumina sol as an inorganic compound in the composite material will be described.

(1) Production of SBR latex

10

15

25

30

35

40

45

50

55

[0108] As SBR latex used in the following examples and comparative examples, synthesis is carried out based on a cold recipe of E-SBR polymerization recipe examples in Table 10.1, page 300 of "Production Process of New Polymers" published by Kogyo Chosakai (edited by Yasuharu Saeki and Shinzo Omi). Moreover, monomers for SBR (BR) are charged at a ratio shown in Table 14 and reaction thereof is progressed at a polymerization temperature of 5°C. At a time that conversion reaches 60%, N,N-dimethyl dithiocarbamate is added to stop polymerization. Thereafter, SBR (BR) latex is obtained by recovering unreacted monomers through an evaporator.

(2) Production of rubbery polymer

[0109] A part of the latex obtained in the above item (1) is sampled and coagulated with sulfuric acid and salt to form a crumb, and a solid matter is dried to obtain a rubbery copolymer. The microstructure and Mooney viscosity are measured with respect to this copolymer. The results are shown in Table 14.

Table 14

Copolymer late	ex		ABC	
Feed amount (part by mass)	butadiene	71	59	100
	29	41	0	
Bonding content (wt %)	styrene content	24.0	35.5	0.0
Mooney viscosity (ML ₁₊₄ , 100	°C)	49	51	50
Concentration of copolymer (9	%)	20	20	20

(3) Production of master batch

[0110] The SBR (BR) latex obtained in the above item (2) is blended with colloidal silica or alumina sol shown in Table 15 at a blending ratio shown in Table 16, stirred with a mechanical stirrer for 30 minutes, and neutralized with a diluted sulfuric acid. Then, a master batch is obtained by drying through a drum drier having a surface temperature of 130°C to remove water.

Table 15

Commercially available grade name	Manufacturer	Particle size (mm)	Specific surface area (m²/g)	SiO ₂ (%)	Al ₂ O ₃ (%)	pН
Snowtex 30	Nissan Chemical Industries, Ltd.	15	200	30.4	-	9.9
Snowtex C	Nissan Chemical Industries, Ltd.	15	200	20.4	-	8.8
Snowtex O	Nissan Chemical Industries, Ltd.	15	200	20.5	. -	2.9

Table 15 (continued)

5	Commercially available grade name	Manufacturer	Particle size (mm)	Specific surface area (m²/g)	SiO ₂ (%)	Al ₂ O ₃ (%)	рН
	Snowtex S	Nissan Chemical Industries, Ltd.	10	300	30.5	-	9.8
10	Snowtex XS	Nissan Chemical Industries, Ltd.	5	560	20.3	-	9.2
	Snowtex UP	Nissan Chemical Industries, Ltd.	20 (chain)	150	20.3	-	10.4
	LUDOX HS-30	DuPont	1.2	220	30.0	-	9.8
15	LUDOX SM-30	DuPont	8	345	30.0		10.0
	LUDOX TM-40	DuPont	19	140	40.0	-	9.0
	Alumina sol-200	Nissan Chemical Industries, Ltd.	100×10	300	-	10.8	4.7
20	Alumina sol-520	Nissan Chemical Industries, Ltd.	15	200	-	20.5	4.0

Table 16

Master batch sample	Colloidal solution use	ed, amount (g)	Latex, a	mount (g)	SiO ₂ (phr)	Al ₂ O ₃ (phr)
a	Snowtex 30	164.5	Α	500	50	-
b	Snowtex C	245.1	Α	500	50	-
С	Snowtex O	243.9	Α	500	50	-
d	Snowtex S	163.9	Α	500	50	-
е .	Snowtex XS 2	46.3	Α	500	50	-
f	Snowtex UP	246.3	Α	· 500	50	-
g	LUDOX HS-30	166.7	Α	500	. 50	-
h	LUDOX SM-30	166.7	Α	500	50	-
i	LUDOX TM-40	125.0	. А	500	50	-
j	Alumina sol-200	463.0	Α	500	-	50
k ·	Alumina sol-520	243.9	Α	500	-	50
I	Snowtex 30	164.5	В	500	50	
· m	Snowtex 30	164.5	С	500	50	_
n	Snowtex S	163.9	В	500	50	_
0	Snowtex S	163.9	C ·	500	50	-
р	Snowtex 30	82.2	Α	500	25	-
q	Snowtex S	82.0	Α	500	25	

Examples 176-198 and Comparative Examples 116-132

[0111] Rubber compositions are prepared according to compounding recipes shown in Table 17 by using master batches a-q obtained in the above item (3) with respect to examples and rubbery polymers A-C obtained in the above item (2) with respect to comparative examples. With respect to the resulting rubber compositions, a Mooney viscosity (comp ML₁₊₄(100°C)) is measured, while tensile properties, low heat build-up property and rebound resilience are measured with respect to vulcanized rubbers to obtain results as shown in Table 18.

25

30

35

45

Table 17-1

				Compounding recipe 1
5	Stage	first milling	master batch SBR prepared	150(100)
			carbon black	0
			silica	0(50)
			aromatic oil	10
10			stearic acid	2
			silane coupling agent Si69	5
			6C	1
15	Stage	final	ZnO	3
			DPG	1
			DM ·	1
		:	NS	1
20			sulfur	1.5

Table 17-2

			Compounding recipe 2	Compounding recipe 3	Compounding recipe 4
Stage	first milling	master batch SBR prepared	125(100)	125(100)	100(80)
		NR ·	0	0	20
		carbon black .	25	25	25
		silica	0(25)	0(25)	5(25)
	*	silane coupling agent Si69	0	2.5	2.5
		aromatic oil	10	10	10
		stearic acid	2	2	2
		6C	1	1	1
Stage	final	ZnO	3	3	3
		DPG	0.8	0.8	0.8
		DM	1	1	· 1
		NS	1	1	1
		sulfur	2.5	1.5	1.5

		12	Example 183	ے			2	29.2	16.9	0.122	45	72.1		24	Example 190	×			2	20.6	9.0	0.169	59	45.5
5		=	Example 182	.00			2	26.0	17.2	0.136	48	67.0	1	23	Example 189				2	8.5	5.3	0.09	62	52.9
10		10	Example 181	4			2	26.5	13.8	0.122	48	62.8		22	Comparative Example 124		А	aluminum hydroxide powder	2	5.3	4.2	0.086	65	31.1
15		6	Example 180	ə			2	30.3	18.4	0.119	43	82.4		21	Example C . 188	0			2	27.6	17.3	0.111	46	7.67
	•	8	Example 179	q			7	29.0	17.7	0.123	45	78.3		20	Example E	. 0			2	30.7	18.0	0.130	43	76.0
20	r	2	Example 178	ပ			2	27.3	15.5	0.121	. 64	68.7		19	Example E	E			2	23.4	15.5	0.107	51	67.2
25		9	Example 177	q.			2	26.6	15.5	0.133	48	70.3		18	Example F 185				2	26.0	16.4	0.128	47	4.49
23	18-1	5	Example 176	æ			2	24.3	16.1	0.122	. 49	65.7		17	Comparative L Example 123		ပ	ΚQ	2	23.5	13.1	0.124	45	122.6
30	<u>Table 18-1</u>	4	Comparative Example 119		В	KQ	3	28.0	14.3	0.131	43	97.5		16	Comparative Con Example Ex		æ	KQ	2	26.6	14.1	0.141	39	118.5
35		3	Comparative Example 118		В	KQ	2	25.7	13.7	0.136	41	120.9		15	Comparative Com Example Ex		U	AQ	2	16.3	12.8	0.129 0	49	73.3
40		2	comparative Example 117		A	AQ	3	19.0	13.9	0.137	47	61.1		4	arative Comp mple Exa 20		B	AQ	2	19.6	3.7	149 0	43	1.1
45		1	Comparative C Example 116		A	AQ	2	17.5	13.3	0.143	45	72.0		13 1	Example Comparative C Example Example 184			*	2	22.5 19	13.2	0.129 0.1	53 4	54.1 7
50		Evaluation No. of properties		Master batch SBR (BR)	Copolymer	Kind of silica	Milling stage	Fracture properties Tb	M ₃₀₀	Low heat build-up property Tan o	Rebound resilience (%)	comp ML1+4 (100°C)		Evaluation No. of properties		Master batch SBR (BR)	Copolymer	Kind of silica	Milling stage	erties Tb	M ₃₀₀		Rebound resilience (%)	comp ML1+4 (100°C)

Nipsil AQ, made by Nippon Silica Industrial Co., Ltd. Nipsil KQ, made by Nippon Silica Industrial Co., Ltd.

45 50	40	35	30	25	20	15	. 10	5
	-		<u>Table 18-2</u>	7,1				
Evaluation No. of properties	25	16	27	28	29	30	31	32
	Comparative Example 125	Comparative Example 126	Example 191	Example 192	Comparative Example 127	Comparative Example 128	Example 193	Example 194
Master batch SBR (BR)			ત્વ	P			а	P
Copolymer	A	A			A	A		
Kind of silica	AQ	KQ			ÄQ	KQ		
Fracture properties Tb	18.5	26.2	25.8	30.1	19.3	27.4	26.9	30.8
M ₃₀₀	13.8	14.1	16.2	18.0	14.2	14.5	16.4	18.3
Low heat build-up property Tan G	0.147	0.139	0.126	0.130	0.151	0.145	0.129	0.133
Rebound resilience (%)	40	37	. 45	40	42	38	46	41
comp ML1+4 (100°C)	85.3	113.6	68.7	79.0	66.5	91.3	62.1	73.8
Evaluation No. of properties	33	34	35	36	37	38	39	40
	Comparative Example 129	Comparative Example 130	Example 195	Example 196	Comparative Example 131	Comparative Example 132	Example 197	Example 198
Master batch SBR (BR)			ជ	þ			E	0
Copolymer	A	Ą			U	U		
Kind of silica	AQ	KQ			AQ	KQ		
Fracture properties Tb	20.2	27.8	27.3	31.0	18.5	25.2	25.0	29.3
M ₃₀₀ .	14.6	14.8	16.6	18.5	13.7	14.0	16.3	18.1
Low heat build-up property Tan o	0.144	0.140	0.120	0.125	0.130	0.123	0.108	0.114
Rebound resilience (%)	44	40	48	43	48	45	50	47
comp ML1+4 (100°C)	70.9	96.4	8.99	7.8.7	71.5	98.4	65.3	78.0
							7	

Nipsil AQ, made by Nippon Silica Industrial Co., Ltd. Nipsil KQ, made by Nippon Silica Industrial Co., Ltd.

[0112] According to the invention, the dispersibility of the inorganic compound into the diene-based rubber can be considerably improved by using a master batch obtained by mixing an aqueous dispersion of a diene-based rubber with an aqueous dispersion of an inorganic compound. Particularly, when silica is used as the inorganic compound, the Mooney viscosity can be largely reduced while maintaining good tensile properties, low heat-build-up property and rebound resilience. Therefore, the milling number and milling time of rubber-silica mixture can be decreased, whereby the effect of improving the productivity can be obtained.

[0113] Next, an embodiment using fine particles of aluminum hydroxide having a gibbsite structure as an inorganic compound below:

[0114] The diene-based rubbers (oil extension and non-oil extension) used in the following examples and comparative examples are shown in Table 19. They correspond to Tables 1 and 2.

Table 19

	St (%)	Third monomer	Oil extending amount (phr)
Polymer A	35	-	37.5
Polymer B	35	hydroxyethyi methacrylate	37.5
Polymer C	35	diethylaminoethyl methacrylate	37.5
Polymer E	35	acrylonitrile	37.5
Polymer G	35	itaconic acid	37.5
Polymer K	23.5	-	0
Polymer L	23.5	hydroxyethyl methacrylate	0
Polymer N	23.5	acrylonitrile	0

[0115] As the inorganic compound, aluminum hydroxide (Higilite H-43M, made by Showa Denko Co., Ltd. particle size: $0.72 \, \mu m$, BET surface area: $6.4 \, m^2/g$) is pulverized by using a planetary ball mill to obtain fine particles having a particle size: $0.38 \, \mu m$ and a BET surface area: $12.1 \, m^2/g$. 40 g of the fine particles are added with 160 g of distilled water in a colloid mill to form a slurry. And also, the fine particles are directly milled in the compounding without forming the slurry in the comparative examples.

[0116] Moreover, the particle size is determined by the following method for the measurement through a centrifugal settlement analysis. Measuring apparatus: super-fine particle size analytical meter through highspeed disc centrifugal process (name of measuring apparatus: BI-DIP, made by BROOKHAVEN INSTRUMENTS CORPORATION)

Measuring method: A sample is added with a small amount of a surfactant and mixed with an aqueous solution of 20 volume% ethanol to form a dispersion having a sample concentration of 200 mg/l, which is sufficiently dispersed in a super-sonic homogenizer to obtain a specimen. After a revolution number of the apparatus is set to 8,000 rpm and a spinning solution (pure water, 24°C) is added, 0.5 ml of a specimen dispersion is poured to start measurement. A weight average diameter (Dw) of a coagulate calculated by a photoelectric settlement method is rendered into a value of particle size. Examples 199-209, Comparative Examples 133-143

[0117] Rubber compositions are prepared according to compounding recipes A, B, D shown in Table 20 by using the polymer shown in Table 19, and the aforementioned slurry of fine particles of aluminum hydroxide having the gibbsite structure with respect to the examples or by compounding aluminum hydroxide (Higilite H-43M) or its finely pulverized product as it is with respect to the comparative examples, and then the tensile strength and wear resistance are measured to obtain results shown in Tables 21 to 23. Moreover, the wear resistance is represented by an index on the basis that Comparative Examples 1, 41 and 86 are used as a control, respectively.

[0118] As seen from Tables 21 to 23, when aluminum hydroxide having the gibbsite structure is finely pulverized, the reinforcing property is improved, and further when the aqueous dispersion is used to form the composite, the dispersibility is improved, and hence the tensile strength and wear resistance are considerably improved as compared with those of the respective comparative example.

55

15

20

25

Table 20

			Uni	t: part b	y mass
5	Milling stage	Compounding recipe	Α	В	D
	1st	oil-extended SBR	137.5		137.5
		non-oil extended SBR		100	
		N339 (Seast KH)	60	40	30
10		Nipsil AQ			30
		aluminum hydroxide	30	20	30
		aromatic oil		10	
15		stearic acid	2	2	2
9		6C	1	1	1
		Si69			3
	2nd	ZnO	3	3	3
20		DPG '	0.8	0.8	0.8
		DM	1	1	1
		NS	1	1	1
25		sulfur	1.5	1.5	1.5

Table 21

			Ia	DIG Z I					
0	Compounding re	cipe A							
U	Inorganic filler	Aluminum hydroxide (gibbsite) (fine particle size)							
	Blending method	DRY				-			
5		Comparative Example 133	Comparative Example 134	Comparative Example 135	Comparative Example 136	Comparative Example 137			
	Polymer	Α	В	С	E	G			
	ТЬ	21.5	22.9	22.4	22.5	22.3			
)	Wear resistance	113	124	120	127	119			
	Blending method	Aqueous dispersion							
5		Example 199	Example 200	Example 201	Example 202	Example 203			
	Polymer	Α .	В	С	E	G			
	Tb	24.0	25.1	24.6	24.9	24.5			
	Wear resistance	130	145	138	148	137			

Table 22

	Compounding recipe B						
5	Inorganic Aluminum hydroxide (gibbsite) (fine particle size)						
	Blending method	nding DRY Aqueous dispersion			rsion		
10		Comparative Example 138	Comparative Example 139	Comparative Example 140	Example 204	Example 205	Example 206
	Polymer	К	L	N	К	L	N
	Tb	23.0	24.8	24.3	25.1	26.8	26.5
15	Wear resistance	109	125	120	130	141	144

Table 23

				Table 20	•			
Compo	Compounding recipe D							
Inorga filler	nic	Aluminum hydroxide (gibbsite) (fine particle size)						
Blendi metho	U	DRY .			Aqueous dispersion			
		Comparative Example 141	Comparative Example 142	Comparative Example 143	Example 207	Example 208	Example 209	
Polym	er	. А	В	E	Α	. В	E	
Tb		22.9	24.5	24.1	25.0	26.5	26.3	
Wear resista	nce	108	112	133	131	146	150	

35 INDUSTRIAL APPLICABILITY

[0119] In the diene-based rubber-inorganic compound composite material and/or rubber composition according to the invention, the dispersibility of the inorganic compound into the diene-based rubber is very excellent, so that there can be provided a vulcanized rubber (rubber article) having very excellent rubber properties such as wear resistance, tensile strength and the like. Particularly, when using an aqueous solution of an inorganic salt or a solution of an organometallic compound capable of forming the inorganic compound of the formula (I), the dispersibility is more excellent, and hence there can be provided a rubber composition having very excellent rubber properties such as wear resistance, tensile strength and the like.

Claims

40

45

50

1. A diene-based rubber-inorganic compound composite material comprising a diene-based rubber and at least one inorganic compound selected from silica and a compound represented by the following formula (I):

$$\text{wM-xSiO}_{\text{y}} \cdot \text{zH}_{2}\text{O}$$
 (I)

(wherein M is at least one metal selected from the group consisting of Al, Mg, Ti and Ca or a metal oxide thereof or a metal hydroxide thereof, and w is a number of 1-5, x is a number of 0-10, y is a number of 2-5 and z is a number of 0-10), and produced through a step of mixing an aqueous dispersion of the diene-based rubber with an aqueous dispersion of the inorganic compound.

- 2. A diene-based rubber-inorganic compound composite material according to claim 1, wherein the aqueous solution of the inorganic compound is prepared by adding an acid or an alkali to an aqueous solution of an inorganic salt capable of forming the compound of the formula (I).
- 3. A diene-based rubber-inorganic compound composite material_according to claim 2, wherein the inorganic salt is at least one selected from metal salts and oxo acid salts of metals.
 - 4. A diene-based rubber-inorganic compound composite material according to claim 3, wherein the metal constituting the metal salt or oxo acid salt of metal is aluminum.
 - 5. A diene-based rubber-inorganic compound composite material according to claim 1, wherein the aqueous solution of the inorganic compound is prepared by adding water, an acid or an alkali to a solution of an organometallic compound capable of forming the compound of the formula (I).
- 6. A diene-based rubber-inorganic compound composite material according to claim 1, wherein the aqueous solution of the inorganic compound is prepared by adding an alkali to a metal shown in the formula (I).
 - 7. A diene-based rubber-inorganic compound composite material comprising a diene-based rubber and at least one inorganic compound selected from silica and a compound represented by the following formula (I):

$$\text{wM} \cdot \text{xSiO}_{\text{y}} \cdot \text{zH}_{2}\text{O}$$
 (I)

- (wherein M is at least one metal selected from the group consisting of AI, Mg, Ti and Ca or a metal oxide thereof or a metal hydroxide thereof, and w is a number of 1-5, x is a number of 0-10, y is a number of 2-5 and z is a number of 0-10), and produced through a step of mixing an aqueous dispersion of the diene-based rubber with an aqueous solution of an inorganic salt capable of forming the inorganic compound represented by the formula (I).
- 8. A diene-based rubber-inorganic compound composite material according to claim 7, wherein the inorganic salt is at least one of metal salts and oxo acid salts of metals.
 - A diene-based rubber-inorganic compound composite material according to claim 8, wherein the metal constituting the metal salt or the oxo acid salt of the metal is aluminum.
- 10. A diene-based rubber-inorganic compound composite material comprising a diene-based rubber and at least one inorganic compound selected from silica and a compound represented by the following formula (I):

$$\text{wM-xSiO}_{\text{v}} \cdot \text{zH}_{2}\text{O}$$
 (I)

(wherein M is at least one metal selected from the group consisting of AI, Mg, Ti and Ca or a metal oxide thereof or a metal hydroxide thereof, and w is a number of 1-5, x is a number of 0-10, y is a number of 2-5 and z is a number of 0-10), and produced through a step of mixing an aqueous dispersion of the diene-based rubber with a solution of an organometallic compound capable of forming the inorganic compound represented by the formula (I).

- 11. A diene-based rubber-inorganic compound composite material according to any one of claims 1 to 10, wherein a diene-based rubber latex synthesized by an emulsion polymerization is used as the aqueous solution of the dienebased rubber.
- 12. A diene-based rubber-inorganic compound according to any one of claims 1 to 10, wherein the diene-based rubber is a diene-based rubber containing a polar group with a heteroatom.
 - 13. A diene-based rubber-inorganic compound composite material according to claim 12, wherein the polar group is a hydroxyl group, an oxy group, an alkoxysilyl group, an epoxy group, a carboxyl group, a carbonyl group, an oxycarbonyl group, a sulfide group, a disulfide group, a sulfonyl group, a sulfinyl group, a thiocarbonyl group, an imino group, an amino group, a nitrile group, an ammonium group, an imido group, an amido group, a hydrazo group, an azo group or a diazo group.

10

20

40

45

14. A diene-based rubber-inorganic compound composite material according to any one of claims 1 to 13, wherein the compound of the formula (I) is a compound represented by the following formula (II):

 $Al_2O_3 \cdot mSiO_2 \cdot nH_2O$

(II)

(wherein m is a number of 0-4 and n is a number of 0-4).

- 15. A method of producing a diene-based rubber-inorganic compound composite material which comprises mixing an aqueous dispersion of a diene-based rubber with an aqueous dispersion of an inorganic compound.
 - 16. A method of producing a diene-based rubber-inorganic compound composite material according to claim 15, wherein a solvent of the aqueous dispersion is water.
- 15 17. A method of producing a diene-based rubber-inorganic compound composite material according to claim 15, wherein the aqueous dispersion of the inorganic compound has a pH of 8.5-11.
 - 18. A method of producing a diene-based rubber-inorganic compound composite material according to claim 15, wherein the aqueous dispersion of the inorganic compound has a pH of 2-4.
 - 19. A method of producing a diene-based rubber-inorganic compound composite material which comprises a step of mixing an aqueous dispersion of a diene-based rubber with an aqueous dispersion of at least one inorganic compound selected from silica and a compound represented by the following formula (I):

 $\text{wM}\cdot\text{xSiO}_{\text{v}}\cdot\text{zH}_2\text{O}$ (I)

- (wherein M is at least one metal selected from the group consisting of Al, Mg, Ti and Ca or a metal oxide thereof or a metal hydroxide thereof, and w is a number of 1-5, x is a number of 0-10, y is a number of 2-5 and z is a number of 0-10).
- 20. A method of producing a diene-based rubber-inorganic compound composite material according to claim 19, wherein the aqueous solution of the inorganic compound is prepared by adding an acid or an alkali to an aqueous solution of an inorganic salt capable of forming the compound of the formula (I).
- 21. A method of producing a diene-based rubber-inorganic compound composite material according to claim 20, wherein the inorganic salt is at least one selected from metal salts and oxo acid salts of metals.
- 22. A method of producing a diene-based rubber-inorganic compound composite material according to claim 21, wherein the metal constituting the metal salt or oxo acid salt of metal is aluminum.
 - 23. A method of producing a diene-based rubber-inorganic compound composite material according to claim 19, wherein the aqueous solution of the inorganic compound is prepared by adding water or an acid or an alkali to an aqueous solution of an organic metal compound capable of forming the compound of the formula (I):
 - 24. A method of producing a diene-based rubber-inorganic compound composite material according to claim 19, wherein the aqueous solution of the inorganic compound is prepared by adding an alkali to the metal shown in the formula (I).
- 25. A method of producing a diene-based rubber-inorganic compound composite material which comprises a step of mixing an aqueous dispersion of a diene-based rubber with an aqueous solution of an inorganic salt capable of forming a compound represented by the following formula (I):

 $vM \cdot vSiO_y \cdot zH_2O$ (I)

(wherein M is at least one metal selected from the group consisting of Al, Mg, Ti and Ca or a metal oxide or a metal

20

25

30

35

hydroxide, and w is a number of 1-5, x is a number of 0-10, y is a number of 2-5 and z is a number of 0-10).

- 26. A method of producing a diene-based rubber-inorganic compound composite material according to claim 25, wherein the inorganic salt is at least one selected from metal salts and oxo acid salts of metals.
- 27. A method of producing a diene-based rubber-inorganic compound composite material according to claim 26, wherein the metal constituting the metal salt or oxo acid salt of metal is aluminum.
- 28. A method of producing a diene-based rubber-inorganic compound composite material which comprises a step of mixing an aqueous dispersion of a diene-based rubber with a solution of an organic metal compound capable of forming a compound represented by the following formula (I):

$$\text{wM-xSiO}_{\text{v}} \cdot \text{zH}_{2}\text{O}$$
 (I)

15

30

35

40

45

50

5

10

(wherein M is at least one metal selected from the group consisting of Al, Mg, Ti and Ca or a metal oxide thereof or a metal hydroxide thereof, and w is a number of 1-5, x is a number of 0-10, y is a number of 2-5 and z is a number of 0-10).

- 29. A method of producing a diene-based rubber-inorganic compound composite material according to any one of claims 19 to 28, wherein a diene-based rubber latex synthesized by an emulsion polymerization is used as the aqueous solution of the diene-based rubber.
- 30. A method of producing a diene-based rubber-inorganic compound composite material according to any one of claims 19 to 29, which further comprises a step of co-coagulating the diene-based rubber and the inorganic compound with an electrolyte containing a metal salt and filtering and drying.
 - 31. A method of producing a diene-based rubber-inorganic compound composite material according to any one of claims 19 to 30, wherein the diene-based rubber is a diene-based rubber containing a polar group with a heteroatom.
 - 32. A method of producing a diene-based rubber-inorganic compound composite material according to claim 31, wherein the polar group is a hydroxyl group, an oxy group, an alkoxysilyl group, an epoxy group, a carboxyl group, a carbonyl group, an oxycarbonyl group, a sulfide group, a disulfide group, a sulfonyl group, a sulfinyl group, a thiocarbonyl group, an imino group, an amino group, a nitrile group, an ammonium group, an imido group, an amido group, a hydrazo group, an azo group or a diazo group.
 - 33. A method of producing a diene-based rubber-inorganic compound composite material according to any one of claims 15 to 28, wherein the compound of the formula (I) is a compound represented by the following formula (II):

$$Al_2O_3 \cdot mSiO_2 \cdot nH_2O$$
 (II)

(wherein m is a number of 0-4 and n is a number of 0-4).

34. A rubber composition comprising a diene-based rubber-inorganic compound composite material, which comprises a diene-based rubber and at least one inorganic compound selected from silica and a compound represented by the following formula (!):

 $\text{wM}\cdot\text{xSiO}_{\text{v}}\cdot\text{zH}_{2}\text{O}$ (I)

(wherein M is at least one metal selected from the group consisting of Al, Mg, Ti and Ca or a metal oxide thereof or a metal hydroxide thereof, and w is a number of 1-5, x is a number of 0-10, y is a number of 2-5 and z is a number of 0-10) and is produced through a step of mixing an aqueous dispersion of the diene-based rubber with an aqueous dispersion of the inorganic compound, and a crosslinking agent.

- 35. A rubber composition according to claim 34, wherein the aqueous solution of the inorganic compound is prepared by adding an acid or an alkali to an aqueous solution of an inorganic salt capable of forming the compound of the formula (I).
- 36. A rubber composition according to claim 35, wherein the inorganic salt is at least one selected from metal salts and oxo acid salts of metals.
 - 37. A rubber composition according to claim 36, wherein the metal constituting the metal salt or oxo acid salt of metal is aluminum.
 - 38. A rubber composition according to claim 34, wherein the aqueous solution of the inorganic compound is prepared by adding water, an acid or an alkali to a solution of an organometallic compound capable of forming the compound of the formula (I).
- 39. A rubber composition according to claim 34, wherein the aqueous solution of the inorganic compound is prepared by adding an alkali to a metal shown in the formula (I).
 - 40. A rubber composition comprising a diene-based rubber-inorganic compound composite material, which comprises a diene-based rubber and an inorganic compound represented by the following formula (I):

$$wM \cdot xSiO_y \cdot zH_2O$$
 (I)

- (wherein M is at least one metal selected from the group consisting of AI, Mg, Ti and Ca or a metal oxide thereof or a metal hydroxide thereof, and w is a number of 1-5, x is a number of 0-10, y is a number of 2-5 and z is a number of 0-10) and is produced through a step of mixing an aqueous dispersion of the diene-based rubber with an aqueous solution of an inorganic salt capable of forming the inorganic compound represented by the formula (I), and a crosslinking agent.
- 41. A rubber composition according to claim 40, wherein the inorganic salt is at least one selected from metal salts and oxo acid salts of metals.
 - 42. A rubber composition according to claim 41, wherein the metal constituting the metal salt or oxo acid salt of metal is aluminum.
 - 43. A rubber composition comprising a diene-based rubber-inorganic compound composite material, which comprises a diene-based rubber and an inorganic compound represented by the following formula (I):

$$wM \cdot xSiO_y \cdot zH_2O$$
 (I)

- (wherein M is at least one metal selected from the group consisting of Al, Mg, Ti and Ca or a metal oxide thereof or a metal hydroxide thereof, and w is a number of 1-5, x is a number of 0-10, y is a number of 2-5 and z is a number of 0-10) and is produced through a step of mixing an aqueous dispersion of the diene-based rubber with a solution of an organic metal compound capable of forming the inorganic compound represented by the formula (I), and a crosslinking agent.
- 44. A rubber composition according to any one of claims 34 to 43, wherein a diene-based rubber latex synthesized by an emulsion polymerization is used as the aqueous solution of the diene-based rubber.
- 45. A rubber composition according to any one of claims 34 to 43, wherein the diene-based rubber is a diene-based rubber containing a polar group with a heteroatom.
- 46. A rubber composition according to claim 45, wherein the polar group is a hydroxyl group, an oxy group, an alkoxysilyl group, an epoxy group, a carboxyl group, a carbonyl group, an oxycarbonyl group, a sulfide group, a disulfide group, a sulfonyl group, a sulfinyl group, a thiocarbonyl group, an imino group, an amino group, a nitrile group, an ammonium group, an imido group, an amido group, a hydrazo group, an azo group or a diazo group.

10

20

35

45

47. A rubber composition according to any one of claims 34 to 46, wherein the compound of the formula (I) is a compound represented by the following formula (II): $Al_2O_3 \cdot mSiO_2 \cdot nH_2O$ **(l)** 5 (wherein m is a number of 0-4 and n is a number of 0-4). 48. A rubber composition according to any one of claims 34 to 47, wherein the diene-based rubber-inorganic compound 10 composite material is included in an amount of not less than 10 mass%, and the crosslinking agent is a vulcanizing agent, and further a reinforcing filler is contained. 49. A rubber composition according to claim 48, wherein the reinforcing filler contains at least one of carbon black and silica. 15 50. A rubber composition according to any one of claims 34 to 49, which further contains a silane coupling agent. 51. A rubber composition according to any one of claims 34 to 50, which further contains an aliphatic acid. 20 25 30 35 45

50

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP01/07743

A CLAS	SIFICATION OF SUBJECT MATTER							
Int.Cl' C08L9/00, C08L7/00, C08L3/00, C08J3/22								
According to International Potent Clearification (TRC)								
According to International Patent Classification (IPC) or to both national classification and IPC								
B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols)								
Int	.CL ⁷ C08L9/00, C08L7/00, C08L1	cd by classification symbols)						
	20027, 007, 20027, 007, 20022	13/00, 60803/22						
 								
Documenta	tion searched other than minimum documentation to t	he extent that such documents are included	in the fields secrebed					
			an and notes acaremen					
Electronic d	ata base consulted during the international search (na	me of data base and, where practicable sea	irch terms used)					
Derv	went WPLI "C08L9/00", "C08L7/00"	, "C08J3/22", "DISPERSION"	in abstract					
İ								
		•	• •					
C. DOCU	MENTS CONSIDERED TO BE RELEVANT							
Category*	Citation of document with indication when							
Carcgory	Citation of document, with indication, where	appropriate, of the relevant passages	Relevant to claim No.					
	JP 50-052145 A (Agency of Indu Technology),	istrial Science and						
	09 May, 1975 (09.05.75),							
A	Claims; page 1, lower right co	1-51						
	(Family: none)							
	JP 62-256835 A (Toyoda Gosei C	'n 1+d)						
	09 November, 1987 (09.11.87),	.o., Hea.,,						
A _.	Claims		1-51					
	(Family: none)							
		}						
		·						
		İ	•					
	•							
 _								
Further	documents are listed in the continuation of Box C.	See patent family annex.	•					
Special	calegories of cited documents:	"I" later document published after the inter	national filing date or					
consider	nt defining the general slate of the art which is not ed to be of particular relevance	priority date and not in conflict with the	anniication hus cited to					
"E" earlier d	ocument but published on or after the international filing	"X" understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be						
"L" documen	nt which may throw doubts on priority claim(s) or which is	considered novel or cannot be considered step when the document is taken alone	ed to involve an inventive					
cited to	establish the publication date of another citation or other cason (as specified)	Y document of particular relevance: the claimed invention annual bar						
"O" documen	nt referring to an oral disclosure, use, exhibition or other	combined with one or more other such documents such						
means	nt published prior to the international filing date but later	combination being obvious to a person:	skilled in the art					
than the priority date claimed								
Date of the actual completion of the international search Date of mailing of the international search report								
29 October, 2001 (29.10.01) 06 November, 2001 (06.11.01)								
Name and ma	iling address of the ISA/	Authorized officer						
Japar	nese Patent Office	}	j					
Facsimile No.		Telephone No.	Į					
Telephone No. Telephone No.								

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record.

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

EADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.