Лабораторная работа № 1. (2024, весна) Дискретная математика для программистов (для 2 курса МО). Множества и бинарные отношения. Вариант 41.

1) Проверить (доказать или опровергнуть) свойства для конечных множеств. Данные к варианту.

 $A \setminus B = A \cap \overline{B}$ $A \setminus (A \setminus B) = A \cap B$ $B \cup (A \setminus B) = A \cup B$ $B \cap (A \setminus B) = \emptyset$ $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$

2) Для множества целых чисел Z предложить отношение эквивалентности, ровно один из классов которого конечен.

$$R = \{(x, y) \mid x, y \in \{0\} \lor x, y \in Z \setminus \{0\}\}\$$

Рефлексивность:

- Если x = 0, то пара $(0, 0) \in R$
- Если $x \neq 0$, то пара $(x, x) \in R$

Таким образом, отношение R является рефлексивным.

Симметричность:

- Если x = y = 0, то пара $(0, 0) \in R$
- Если $x \neq 0$ и $y \neq 0$, то пара $(x, y) \in R$ и $(y, x) \in R$

Таким образом, отношение R является симметричным для каждой пары элементов.

Транзитивность:

- Если x = y = z = 0, то пара $(0, 0) \in R$
- Если $x \neq 0$, $y \neq 0$ и $z \neq 0$, то пары (x, y) и $(y, z) \in R$, и (x, z) также будет принадлежать отношению R

Таким образом, отношение R является транзитивным для каждой пары элементов.

3) На множестве M = {-3, -2, -1, 0, 1, 2, 3} задано бинарное отношение R = {(x, y) ∈ M × M: |x + y| делится на 3 с остатком 1}. Задать отношение матрицей и графом. Определить свойства отношения R: рефлексивность, симметричность, антисимметричность, транзитивность. Построить для отношения R: обратное отношение R⁻¹; рефлексивное замыкание R^r; симметричное замыкание R^s; транзитивное замыкание R⁺; рефлексивно-симметрично-транзитивное замыкание R^{*}.

