

Affine Springer Fibers and Level-Rank Duality

Minh-Tâm Quang Trinh

Yale University

- 1 Springer Theory
- 2 Deligne–Lusztig Theory
- 3 Level-Rank Duality

Mainly about joint work with Ting Xue:

arXiv:2311.17106

See also the extended abstract on my website, which we have submitted to FPSAC '25.

- 1 Springer Theor
- 2 Deligne–Lusztig Theory
- 3 Level-Rank Duality

Mainly about joint work with Ting Xue:

See also the extended abstract on my website, which we have submitted to FPSAC '25.

1 Springer Theory Work over C.

G connected reductive group

B Borel subgroup

An element $\gamma \in \mathbf{g} = \text{Lie}(\mathbf{G})$ is regular semisimple iff \mathbf{G}_{γ} is a maximal torus.

In this case, the Springer fiber

$$\mathcal{F}l_{\gamma} = \{g\mathbf{B} \in \mathbf{G}/\mathbf{B} \mid \gamma \in \mathrm{Lie}(g\mathbf{B}g^{-1})\}$$

is a torsor for the Weyl group W.

That is, $\mathcal{F}l_{\gamma}$ forms a W-bundle as we vary γ over the regular semisimple locus of \mathbf{g} .

- Springer Theory Work over C.
- ${f G}$ connected reductive group
- ${f B}$ Borel subgroup

An element $\gamma \in \mathbf{g} = \text{Lie}(\mathbf{G})$ is regular semisimple iff \mathbf{G}_{γ} is a maximal torus.

In this case, the Springer fiber

$$\mathcal{F}l_{\gamma} = \{g\mathbf{B} \in \mathbf{G}/\mathbf{B} \mid \gamma \in \mathrm{Lie}(g\mathbf{B}g^{-1})\}$$

is a torsor for the Weyl group W.

That is, $\mathcal{F}l_{\gamma}$ forms a W-bundle as we vary γ over the regular semisimple locus of \mathbf{g} .

 $\mathbf{G}((z))$ loop group

I Iwahori subgroup of $\mathbf{G}[\![z]\!]$

The affine Springer fibers

$$\mathcal{F}l_{\gamma} = \{g\mathbf{I} \in \mathbf{G}((z))/\mathbf{I} \mid \gamma \in \mathrm{Lie}(g\mathbf{I}g^{-1})\}$$

are not locally constant over the regular semisimple locus of $\mathbf{g}(\!(z)\!)$, but only over certain subsets.

Example Take $G = SL_2$.

If $\gamma = {1 \choose z}$, then $\mathcal{F}l_{\gamma}$ is a single point.

If $\gamma = \begin{pmatrix} z \\ -z \end{pmatrix}$, then $\mathcal{F}l_{\gamma}$ is an *infinite* chain of \mathbf{P}^1 's.

Springer Theory Work over C.

 ${f G}$ connected reductive group

 ${f B}$ Borel subgroup

An element $\gamma \in \mathbf{g} = \text{Lie}(\mathbf{G})$ is regular semisimple iff \mathbf{G}_{γ} is a maximal torus.

In this case, the Springer fiber

$$\mathcal{F}l_{\gamma} = \{g\mathbf{B} \in \mathbf{G}/\mathbf{B} \mid \gamma \in \mathrm{Lie}(g\mathbf{B}g^{-1})\}$$

is a torsor for the Weyl group W.

That is, $\mathcal{F}l_{\gamma}$ forms a W-bundle as we vary γ over the regular semisimple locus of \mathbf{g} .

 $\mathbf{G}((z))$ loop group

I Iwahori subgroup of $\mathbf{G}[\![z]\!]$

The affine Springer fibers

$$\mathcal{F}l_{\gamma} = \{g\mathbf{I} \in \mathbf{G}((z))/\mathbf{I} \mid \gamma \in \mathrm{Lie}(g\mathbf{I}g^{-1})\}$$

are not locally constant over the regular semisimple locus of $\mathbf{g}(\!(z)\!)$, but only over certain subsets.

Example Take $G = SL_2$.

If
$$\gamma = {1 \choose z}$$
, then $\mathcal{F}l_{\gamma}$ is a single point.

If $\gamma = \begin{pmatrix} z \\ -z \end{pmatrix}$, then $\mathcal{F}l_{\gamma}$ is an *infinite* chain of \mathbf{P}^1 's.

 $\mathbf{G}((z))$ loop group

I Iwahori subgroup of $\mathbf{G}[\![z]\!]$

The affine Springer fibers

$$\mathcal{F}l_{\gamma} = \{g\mathbf{I} \in \mathbf{G}((z))/\mathbf{I} \mid \gamma \in \mathrm{Lie}(g\mathbf{I}g^{-1})\}$$

are not locally constant over the regular semisimple locus of $\mathbf{g}(\!(z)\!)$, but only over certain subsets.

Example Take $G = SL_2$.

If $\gamma = {1 \choose z}$, then $\mathcal{F}l_{\gamma}$ is a single point.

If $\gamma = \begin{pmatrix} z \\ -z \end{pmatrix}$, then $\mathcal{F}l_{\gamma}$ is an *infinite* chain of \mathbf{P}^1 's.

Fix a maximal torus $\mathbf{A} \subseteq \mathbf{B}$ and a fraction $\frac{d}{m} > 0$ in lowest terms.

Let
$$\rho^{\vee} = \frac{1}{2} \sum_{\alpha} \alpha^{\vee} \in \frac{1}{2} X_*(\mathbf{A}).$$

$$\mathbf{C}^{\times} \curvearrowright \mathbf{G}((z)) : c \cdot g(z) = \mathrm{Ad}(c^{d\rho^{\vee}})g(c^m z).$$

(Oblomkov–Yun) $\mathcal{F}l_{\gamma}$ is locally constant over

$$\mathbf{g}_{d/m}^{\mathrm{rs}} = \{ \gamma \in \mathbf{g}((z))^{\mathrm{rs}} \mid c \cdot \gamma = c^d \gamma \},$$

and $\mathbf{C}^{\times} \curvearrowright \mathcal{F}l_{\gamma}$ for such γ .

We say these elements are homogeneous of slope $\frac{d}{m}$.

Example Take $\mathbf{B} \subseteq \mathbf{SL}_2$ upper-triangular.

The preceding examples: slopes $\frac{1}{2}$, 1.

Fix a maximal torus $\mathbf{A} \subseteq \mathbf{B}$ and a fraction $\frac{d}{m} > 0$ in lowest terms.

Let
$$\rho^{\vee} = \frac{1}{2} \sum_{\alpha} \alpha^{\vee} \in \frac{1}{2} X_*(\mathbf{A})$$
.

$$\mathbf{C}^{\times} \curvearrowright \mathbf{G}((z)) : c \cdot g(z) = \mathrm{Ad}(c^{d\rho^{\vee}})g(c^m z).$$

(Oblomkov-Yun) $\mathcal{F}l_{\gamma}$ is locally constant over

$$\mathbf{g}_{d/m}^{\mathrm{rs}} = \{ \gamma \in \mathbf{g}((z))^{\mathrm{rs}} \mid c \cdot \gamma = c^d \gamma \},$$

and $\mathbf{C}^{\times} \curvearrowright \mathcal{F}l_{\gamma}$ for such γ .

We say these elements are homogeneous of slope $\frac{d}{m}$.

Example Take $\mathbf{B} \subseteq \mathbf{SL}_2$ upper-triangular.

The preceding examples: slopes $\frac{1}{2}$, 1.

Note that $\mathbf{G}_0 := (\mathbf{G}((z))^{\mathbf{C}^{\times}})^{\circ} \curvearrowright \mathbf{g}_{d/m}^{\mathrm{rs}}$.

(Oblomkov–Yun) Take ${f G}$ simply-connected, simple.

For $\gamma \in \mathbf{g}_{d/m}^{\mathrm{rs}}$ with $\mathcal{F}l_{\gamma}$ proper:

- A perverse filtration P on $H^*_{\mathbf{C}^{\times}}(\mathcal{F}l_{\gamma})$, arising from a Ngô-type global model.
- An action of a rational Cherednik algebra on

$$\mathcal{E}_{\gamma} := \sum_{i,j} \mathsf{x}^i \mathsf{y}^j \ \mathrm{gr}_i^\mathsf{P} \ \mathrm{H}^j_{\mathbf{C}^{\times}} (\mathcal{F} l_{\gamma})^{\pi_0(\mathbf{G}_{0,\gamma})}|_{\epsilon \to 1},$$

where ϵ is a generator of $H_{\mathbf{C}^{\times}}(point)$.

The rational Cherednik algebra is a deformation of $\mathbf{C}W \ltimes \mathcal{D}(\mathbf{a})$, to be denoted $\frac{D^{\mathrm{rat}}_{d/m}}{d/m}$.

Fix a maximal torus $\mathbf{A} \subseteq \mathbf{B}$ and a fraction $\frac{d}{m} > 0$ in lowest terms.

Let $\rho^{\vee} = \frac{1}{2} \sum_{\alpha} \alpha^{\vee} \in \frac{1}{2} X_*(\mathbf{A}).$

$$\mathbf{C}^{\times} \curvearrowright \mathbf{G}((z)) : c \cdot g(z) = \mathrm{Ad}(c^{d\rho^{\vee}})g(c^m z).$$

(Oblomkov–Yun) $\mathcal{F}l_{\gamma}$ is locally constant over

$$\mathbf{g}_{d/m}^{\mathrm{rs}} = \{ \gamma \in \mathbf{g}((z))^{\mathrm{rs}} \mid c \cdot \gamma = c^d \gamma \},\$$

and $\mathbb{C}^{\times} \curvearrowright \mathcal{F}l_{\gamma}$ for such γ .

We say these elements are homogeneous of slope $\frac{d}{m}$.

Example Take $\mathbf{B} \subseteq \mathbf{SL}_2$ upper-triangular.

The preceding examples: slopes $\frac{1}{2}$, 1.

Note that $\mathbf{G}_0 := (\mathbf{G}((z))^{\mathbf{C}^{\times}})^{\circ} \curvearrowright \mathbf{g}_{d/m}^{\mathrm{rs}}$.

(Oblomkov–Yun) Take ${\bf G}$ simply-connected, simple.

For $\gamma \in \mathbf{g}_{d/m}^{\mathrm{rs}}$ with $\mathcal{F}l_{\gamma}$ proper:

- A perverse filtration P on $H^*_{\mathbf{C}^{\times}}(\mathcal{F}l_{\gamma})$, arising from a Ngô-type global model.
- An action of a rational Cherednik algebra on

$$\mathcal{E}_{\gamma} := \sum_{i,j} \mathsf{x}^i \mathsf{y}^j \ \mathrm{gr}_i^\mathsf{P} \ \mathrm{H}^j_{\mathbf{C}^\times} (\mathcal{F} l_{\gamma})^{\pi_0(\mathbf{G}_{0,\gamma})}|_{\epsilon \to 1},$$

where ϵ is a generator of $H_{\mathbf{C}^{\times}}(point)$.

The rational Cherednik algebra is a deformation of $\mathbf{C}W \ltimes \mathcal{D}(\mathbf{a})$, to be denoted $\frac{D^{\mathrm{rat}}_{d/m}}{d/m}$.

Note that $\mathbf{G}_0 := (\mathbf{G}((z))^{\mathbf{C}^{\times}})^{\circ} \curvearrowright \mathbf{g}_{d/m}^{\mathrm{rs}}$.

(Oblomkov–Yun) Take ${\bf G}$ simply-connected, simple. For $\gamma\in {\bf g}^{\rm rs}_{d/m}$ with ${\cal F}l_\gamma$ proper:

- A perverse filtration P on $H^*_{\mathbf{C}\times}(\mathcal{F}l_{\gamma})$, arising from a Ngô-type global model.
- An action of a rational Cherednik algebra on

$$\mathcal{E}_{\gamma} := \sum_{i,j} \mathsf{x}^i \mathsf{y}^j \ \mathrm{gr}_i^{\mathsf{P}} \ \mathrm{H}^j_{\mathbf{C}^{\times}} (\mathcal{F}l_{\gamma})^{\pi_0(\mathbf{G}_{0,\gamma})}|_{\epsilon \to 1},$$

where ϵ is a generator of $H_{\mathbf{C}^{\times}}(point)$.

The rational Cherednik algebra is a deformation of $CW \ltimes \mathcal{D}(\mathbf{a})$, to be denoted $\frac{D_{d/m}^{\mathrm{rat}}}{d/m}$.

$$\begin{array}{ccc} D_{d/m}^{\mathrm{rat}} & \mathrm{U}\mathbf{g} \\ \mathbf{C}[\mathbf{a}] \otimes \mathbf{C}W \otimes \mathbf{C}[\mathbf{a}^*] & \mathrm{U}\mathbf{n}_{-} \otimes \mathbf{C}[\mathbf{a}] \otimes \mathrm{U}\mathbf{n}_{+} \\ & \Delta_{d/m}(\chi) & \Delta(\lambda) \\ & L_{d/m}(\chi) & L(\lambda) \end{array}$$

Problem Give a formula for $E_{\gamma} := \mathcal{E}_{\gamma}|_{y=-1}$, the virtual $D_{d/m}^{\text{rat}}$ -module formed by collapsing H*.

Idea Monodromy of E_{γ} over a certain $\mathbf{c}_{d/m}^{\mathrm{rs}} \subseteq \mathbf{g}_{d/m}^{\mathrm{rs}}$ commutes with the Cherednik action.

Roughly, $\mathbf{c}^{\mathrm{rs}}_{d/m}$ is a transverse slice to $\mathbf{G}_0 \curvearrowright \mathbf{g}^{\mathrm{rs}}_{d/m}$.

The monodromy seems to factor through an algebra from *Deligne–Lusztig theory*.

$$egin{align} D_{d/m}^{
m rat} & {
m U}{f g} \\ {f C}[{f a}] \otimes {f C}W \otimes {f C}[{f a}^*] & {
m U}{f n}_- \otimes {f C}[{f a}] \otimes {
m U}{f n}_+ \\ & \Delta_{d/m}(\chi) & \Delta(\lambda) \\ & L_{d/m}(\chi) & L(\lambda) \\ \end{pmatrix}$$

Problem Give a formula for $E_{\gamma} := \mathcal{E}_{\gamma}|_{y=-1}$, the virtual $D_{d/m}^{\text{rat}}$ -module formed by collapsing H*.

Idea Monodromy of E_{γ} over a certain $\mathbf{c}_{d/m}^{\mathrm{rs}} \subseteq \mathbf{g}_{d/m}^{\mathrm{rs}}$ commutes with the Cherednik action.

Roughly, $\mathbf{c}_{d/m}^{\mathrm{rs}}$ is a transverse slice to $\mathbf{G}_0 \curvearrowright \mathbf{g}_{d/m}^{\mathrm{rs}}$.

The monodromy seems to factor through an algebra from *Deligne–Lusztig theory*.

Deligne–Lusztig studied geometry over finite fields. But up to Tate twist,

$$\operatorname{Gal}(\bar{\mathbf{F}}_q|\mathbf{F}_q) \simeq \hat{\mathbf{Z}} \simeq \operatorname{Gal}(\overline{\mathbf{C}(\!(z)\!)}|\mathbf{C}(\!(z)\!)).$$

Forms of **G** are classified by Dynkin automorphisms in the same way over \mathbf{F}_q as over $\mathbf{C}((z))$.

Much of Oblomkov–Yun's setup generalizes from ${\bf G}$ to any of its forms ${\bf G}_{{\bf C}((z))}$.

The tori $\mathbf{A}, \mathbf{G}_{\gamma}$ generalize to forms $\mathbf{A}_{\mathbf{C}((z))}, \mathbf{G}_{\mathbf{C}((z)),\gamma}$. These have corresponding forms $\mathbf{A}_{\mathbf{F}_{q}}, \mathbf{T}_{\mathbf{F}_{q}}$.

$$\begin{array}{ccc} D_{d/m}^{\mathrm{rat}} & \mathrm{Ug} \\ \\ \mathbf{C}[\mathbf{a}] \otimes \mathbf{C}W \otimes \mathbf{C}[\mathbf{a}^*] & \mathrm{Un}_{-} \otimes \mathbf{C}[\mathbf{a}] \otimes \mathrm{Un}_{+} \\ \\ \Delta_{d/m}(\chi) & \Delta(\lambda) \\ \\ L_{d/m}(\chi) & L(\lambda) \end{array}$$

Problem Give a formula for $E_{\gamma} := \mathcal{E}_{\gamma}|_{y=-1}$, the virtual $D_{d/m}^{\text{rat}}$ -module formed by collapsing H*.

Idea Monodromy of E_{γ} over a certain $\mathbf{c}_{d/m}^{\mathrm{rs}} \subseteq \mathbf{g}_{d/m}^{\mathrm{rs}}$ commutes with the Cherednik action.

Roughly, $\mathbf{c}_{d/m}^{\mathrm{rs}}$ is a transverse slice to $\mathbf{G}_0 \curvearrowright \mathbf{g}_{d/m}^{\mathrm{rs}}$.

The monodromy seems to factor through an algebra from *Deligne–Lusztig theory*.

4

Deligne-Lusztig studied geometry over finite fields.

But up to Tate twist,

$$\operatorname{Gal}(\bar{\mathbf{F}}_q|\mathbf{F}_q) \simeq \hat{\mathbf{Z}} \simeq \operatorname{Gal}(\overline{\mathbf{C}(\!(z)\!)}|\mathbf{C}(\!(z)\!)).$$

Forms of **G** are classified by Dynkin automorphisms in the same way over \mathbf{F}_q as over $\mathbf{C}(\!(z)\!)$.

Much of Oblomkov–Yun's setup generalizes from ${\bf G}$ to any of its forms ${\bf G}_{{\bf C}((z))}$.

The tori $\mathbf{A}, \mathbf{G}_{\gamma}$ generalize to forms $\mathbf{A}_{\mathbf{C}((z))}, \mathbf{G}_{\mathbf{C}((z)),\gamma}$.

These have corresponding forms $\mathbf{A}_{\mathbf{F}_q}, \mathbf{T}_{\mathbf{F}_q}$.

Deligne-Lusztig studied geometry over finite fields. But up to Tate twist,

$$\operatorname{Gal}(\bar{\mathbf{F}}_q|\mathbf{F}_q) \simeq \hat{\mathbf{Z}} \simeq \operatorname{Gal}(\overline{\mathbf{C}(\!(z)\!)}|\mathbf{C}(\!(z)\!)).$$

Forms of G are classified by Dynkin automorphisms in the same way over \mathbf{F}_q as over $\mathbf{C}(\!(z)\!)$.

Much of Oblomkov–Yun's setup generalizes from G to any of its forms $\mathbf{G}_{\mathbf{C}((z))}$.

The tori $\mathbf{A}, \mathbf{G}_{\gamma}$ generalize to forms $\mathbf{A}_{\mathbf{C}(\!(z)\!)}, \mathbf{G}_{\mathbf{C}(\!(z)\!),\gamma}$. These have corresponding forms $\mathbf{A}_{\mathbf{F}_q}, \mathbf{T}_{\mathbf{F}_q}$. 2 Deligne–Lusztig Theory Work over $\bar{\mathbf{F}}_q$ for good q. Forms of \mathbf{G} over \mathbf{F}_q correspond to Frobenius maps

$$F \curvearrowright \mathbf{G}$$
.

We say that $G = G^F$ is a finite group of Lie type. F-stable Levis $\mathbf{L} \subseteq G$ correspond to Levis $\mathbf{L} \subseteq G$.

Deligne–Lusztig introduced varieties † $Y_{\mathbf{L}}^{\mathbf{G}}$ such that

$$G o H_c^*(Y_{\mathbf{L}}^{\mathbf{G}}) o L.$$

Induction map $R_L^G: K_0(L) \to K_0(G)$:

$$\label{eq:RLG} R_L^G(\pmb{\lambda}) = \sum\nolimits_i {(- 1)^i {\bf{H}}_c^i(Y_{\bf{L}}^{\bf{G}})[\pmb{\lambda}]}.$$

[†] Actually, $Y_{\mathbf{L}}^{\mathbf{G}}$ depends on a parabolic $\mathbf{P}\supseteq\mathbf{L}$.

2 Deligne–Lusztig Theory Work over $\bar{\mathbf{F}}_q$ for good q. Forms of \mathbf{G} over \mathbf{F}_q correspond to Frobenius maps

$$F \curvearrowright \mathbf{G}$$
.

We say that $G = G^F$ is a finite group of Lie type. F-stable Levis $L \subseteq G$ correspond to Levis $L \subseteq G$.

Deligne–Lusztig introduced varieties † $Y_{\rm L}^{\bf G}$ such that

$$G o H_c^*(Y_{\mathbf{L}}^{\mathbf{G}}) o L.$$

Induction map $R_L^G: K_0(L) \to K_0(G)$:

$$R_L^G(\lambda) = \textstyle\sum_i {(-1)^i} \mathbf{H}_c^i(Y_\mathbf{L}^\mathbf{G})[\lambda].$$

[†] Actually, $Y_{\mathbf{L}}^{\mathbf{G}}$ depends on a parabolic $\mathbf{P}\supseteq\mathbf{L}$.

(Broué-Malle) For m-regular maximal tori \mathbf{T} , a specific algebra $H_T^G(\mathbf{q})$ such that

$$H_T^G(\zeta_m) = \bar{\mathbf{Q}}W_T^G$$
, where $W_T^G = N_G(T)/T$.

They conjecture:

- 1 $H_T^G(q) \otimes \bar{\mathbf{Q}}_{\ell} \simeq \operatorname{End}_G(\mathrm{H}_c^*(Y_{\mathbf{T}}^{\mathbf{G}})[1_T]).$
- 2 As a virtual $(G, H_T^G(q))$ -bimodule,

$$R_T^G(1_T) = \sum_{\substack{\rho \in \operatorname{Irr}(G) \\ (\rho, R_T^G(1_T)) \neq 0}} \varepsilon_{T, \rho}(\rho \otimes \chi_{T, \rho, q})$$

where $\varepsilon_{T,\rho} \in \{\pm 1\}$ and $\chi_{T,\rho} \in \operatorname{Irr}(W_T^G)$. (And $\chi_{T,\rho,q} \in \operatorname{K}_0(H_T^G(q))$ corresponds to $\chi_{T,\rho}$.) 2 Deligne–Lusztig Theory Work over $\bar{\mathbf{F}}_q$ for good q. Forms of \mathbf{G} over \mathbf{F}_q correspond to Frobenius maps

$$F \curvearrowright \mathbf{G}$$
.

We say that $G = \mathbf{G}^F$ is a finite group of Lie type. F-stable Levis $\mathbf{L} \subseteq \mathbf{G}$ correspond to Levis $\mathbf{L} \subseteq G$.

Deligne–Lusztig introduced varieties † $Y_{\mathbf{L}}^{\mathbf{G}}$ such that

$$G o H_c^*(Y_{\mathbf{L}}^{\mathbf{G}}) o L.$$

Induction map $R_L^G: K_0(L) \to K_0(G)$:

$$R_L^G(\lambda) = \sum_i (-1)^i \mathcal{H}_c^i(Y_L^G)[\lambda].$$

[†] Actually, $Y_{\mathbf{L}}^{\mathbf{G}}$ depends on a parabolic $\mathbf{P}\supseteq\mathbf{L}$.

(Broué–Malle) For m-regular maximal tori ${\bf T},$ a specific algebra ${\cal H}_T^G({\bf q})$ such that

$$H_T^G(\zeta_m) = \bar{\mathbf{Q}}W_T^G$$
, where $W_T^G = N_G(T)/T$.

They conjecture:

- 1 $H_T^G(q) \otimes \bar{\mathbf{Q}}_{\ell} \simeq \operatorname{End}_G(\mathrm{H}_c^*(Y_{\mathbf{T}}^{\mathbf{G}})[1_T]).$
- 2 As a virtual $(G, H_T^G(q))$ -bimodule,

$$R_T^G(1_T) = \sum_{\substack{\rho \in \operatorname{Irr}(G) \\ (\rho, R_T^G(1_T)) \neq 0}} \varepsilon_{T, \rho}(\rho \otimes \chi_{T, \rho, q})$$

where $\varepsilon_{T,\rho} \in \{\pm 1\}$ and $\chi_{T,\rho} \in \operatorname{Irr}(W_T^G)$. (And $\chi_{T,\rho,q} \in \operatorname{K}_0(H_T^G(q))$ corresponds to $\chi_{T,\rho}$.) (Broué–Malle) For m-regular maximal tori \mathbf{T} , a specific algebra $H_T^G(\mathbf{q})$ such that

$$H_T^G(\zeta_m) = \bar{\mathbf{Q}}W_T^G$$
, where $W_T^G = N_G(T)/T$.

They conjecture

- 1 $H_T^G(q) \otimes \bar{\mathbf{Q}}_{\ell} \simeq \operatorname{End}_G(\mathrm{H}_c^*(Y_{\mathbf{T}}^{\mathbf{G}})[1_T]).$
- 2 As a virtual $(G, H_T^G(q))$ -bimodule,

$$R_T^G(1_T) = \sum_{\substack{\rho \in \text{Irr}(G) \\ (\rho, R_T^G(1_T)) \neq 0}} \varepsilon_{T, \rho}(\rho \otimes \chi_{T, \rho, q})$$

where $\varepsilon_{T,\rho} \in \{\pm 1\}$ and $\chi_{T,\rho} \in \operatorname{Irr}(W_T^G)$. (And $\chi_{T,\rho,q} \in \operatorname{K}_0(H_T^G(q))$ corresponds to $\chi_{T,\rho}$.) Back to Springer. $(\mathbf{A}_{\mathbf{F}_q}, \mathbf{T}_{\mathbf{F}_q} \leftrightarrow \mathbf{A}_{\mathbf{C}(\!(z)\!)}, \mathbf{G}_{\mathbf{C}(\!(z)\!), \gamma})$

It turns out that **A** and **T** are 1- and m-regular. Moreover, $\pi_1(\mathbf{c}_{d/m}^{\mathrm{rs}})$ is the braid group of W_T^G .

Conjecture (T-Xue)

- 1 $\pi_1(\mathbf{c}_{d/m}^{\mathrm{rs}}) \curvearrowright \mathcal{E}_{\gamma}$ factors through $H_T^G(1)$.
- 2 As a virtual $(D_{d/m}^{\text{rat}}, H_T^G(1))$ -bimodule,

$$E_{\gamma} = \sum_{\substack{\rho \in \operatorname{Irr}(G) \\ (\rho, R_A^G(1_A)) \neq 0 \\ (\rho, R_T^G(1_T)) \neq 0}} \varepsilon_{T\rho}(\Delta_{d/m}(\chi_{A,\rho}) \otimes \chi_{T,\rho,1}).$$

 † In general, $D_{d/m}^{\mathrm{rat}}$ is defined using $W_{A}^{G}.$

Back to Springer. $(\mathbf{A}_{\mathbf{F}_q}, \mathbf{T}_{\mathbf{F}_q} \leftrightarrow \mathbf{A}_{\mathbf{C}(\!(z)\!)}, \mathbf{G}_{\mathbf{C}(\!(z)\!),\gamma})$

It turns out that ${\bf A}$ and ${\bf T}$ are 1- and m-regular.

Moreover, $\pi_1(\mathbf{c}_{d/m}^{rs})$ is the braid group of W_T^G .

Conjecture (T-Xue)

- 1 $\pi_1(\mathbf{c}_{d/m}^{\mathrm{rs}}) \curvearrowright \mathcal{E}_{\gamma}$ factors through $H_T^G(1)$.
- 2 As a virtual $(D_{d/m}^{\text{rat}}, H_T^G(1))$ -bimodule,[†]

$$E_{\gamma} = \sum_{\substack{\rho \in \operatorname{Irr}(G) \\ (\rho, R_A^G(1_A)) \neq 0 \\ (\rho, R_T^G(1_T)) \neq 0}} \varepsilon_{T\rho}(\Delta_{d/m}(\chi_{A,\rho}) \otimes \chi_{T,\rho,1}).$$

[†] In general, $D_{d/m}^{\text{rat}}$ is defined using W_A^G .

Theorem (T-Xue) True in these cases:

- m is the (twisted) Coxeter number of $\mathbf{G}_{\mathbf{C}((z))}$.
- $(\mathbf{G}_{\mathbf{C}((z))}, m) = (^2A_2, 2), (C_2, 2), (G_2, 3), (G_2, 2).$

Under a conjecture of OY, true in further cases.

Example Take $G_{\mathbf{C}(\!(z)\!)}$ split, m its Coxeter number.

 $\chi_{A,\rho}$ runs over characters $\chi_{\wedge^k(\mathbf{a})}$ of W_A^G .

 $\chi_{T,\rho}$ runs over all characters of $W_T^G = \mathbf{Z}/m\mathbf{Z}$. In $K_0(D_{d/m}^{\text{rat}})$,

$$\begin{split} [E_{\gamma}] &= \sum_{k} (-1)^{k} [\Delta_{d/m}(\chi_{\wedge^{k}(\mathbf{a})})] \\ &= [L_{d/m}(\chi_{\mathsf{triv}})]. \end{split}$$

Cf. the BGG resolution of Berest–Etingof–Ginzburg.

 $\text{Back to Springer.} \hspace{0.5cm} (\mathbf{A}_{\mathbf{F}_q}, \mathbf{T}_{\mathbf{F}_q} \leftrightarrow \mathbf{A}_{\mathbf{C}(\!(z)\!)}, \mathbf{G}_{\mathbf{C}(\!(z)\!), \gamma})$

It turns out that A and T are 1- and m-regular.

Moreover, $\pi_1(\mathbf{c}_{d/m}^{rs})$ is the braid group of W_T^G .

Conjecture (T-Xue)

- 1 $\pi_1(\mathbf{c}_{d/m}^{\mathrm{rs}}) \curvearrowright \mathcal{E}_{\gamma}$ factors through $H_T^G(1)$.
- 2 As a virtual $(D_{d/m}^{\text{rat}}, H_T^G(1))$ -bimodule,[†]

$$E_{\gamma} = \sum_{\substack{\rho \in \operatorname{Irr}(G) \\ (\rho, R_A^G(1_A)) \neq 0 \\ (\rho, R_T^G(1_T)) \neq 0}} \varepsilon_{T\rho}(\Delta_{d/m}(\chi_{A,\rho}) \otimes \chi_{T,\rho,1}).$$

 $^{^{\}dagger}$ In general, $D_{d/m}^{\rm rat}$ is defined using $W_A^G.$

Theorem (T-Xue) True in these cases:

- m is the (twisted) Coxeter number of $\mathbf{G}_{\mathbf{C}(\!(z)\!)}$.
- $(\mathbf{G}_{\mathbf{C}((z))}, m) = (^2A_2, 2), (C_2, 2), (G_2, 3), (G_2, 2).$

Under a conjecture of OY, true in further cases.

Example Take $G_{\mathbf{C}((z))}$ split, m its Coxeter number.

 $\chi_{A,\rho}$ runs over characters $\chi_{\wedge^k(\mathbf{a})}$ of W_A^G .

 $\chi_{T,\rho}$ runs over all characters of $W_T^G = \mathbf{Z}/m\mathbf{Z}$.

In $K_0(D_{d/m}^{\text{rat}})$,

$$\begin{split} [E_{\gamma}] &= \sum_{k} (-1)^{k} [\Delta_{d/m}(\chi_{\wedge^{k}(\mathbf{a})})] \\ &= [L_{d/m}(\chi_{\mathsf{triv}})]. \end{split}$$

Cf. the BGG resolution of Berest–Etingof–Ginzburg.

Theorem (T-Xue) True in these cases:

- m is the (twisted) Coxeter number of $\mathbf{G}_{\mathbf{C}(\!(z)\!)}$.
- $(\mathbf{G}_{\mathbf{C}((z))}, m) = (^2A_2, 2), (C_2, 2), (G_2, 3), (G_2, 2).$

Under a conjecture of OY, true in further cases.

Example Take $\mathbf{G}_{\mathbf{C}(\!(z)\!)}$ split, m its Coxeter number. $\chi_{A,\rho}$ runs over characters $\chi_{\wedge^k(\mathbf{a})}$ of W_A^G . $\chi_{T,\rho}$ runs over all characters of $W_T^G = \mathbf{Z}/m\mathbf{Z}$.

$$[E_{\gamma}] = \sum_{k} (-1)^{k} [\Delta_{d/m}(\chi_{\wedge^{k}(\mathbf{a})})]$$

In $K_0(D_{d/m}^{\text{rat}})$,

Cf. the BGG resolution of Berest–Etingof–Ginzburg

3 Level-Rank Duality Compare E_{γ} given by

(1)
$$\sum_{\rho} \varepsilon_{T,\rho}(\Delta_{d/m}(\chi_{A,\rho}) \otimes \chi_{T,\rho,1})$$

with $R_A^G(1_A) \otimes_{\bar{\mathbf{Q}}_{\ell}G} R_T^G(1_T)$ given by

(2)
$$\sum_{\rho} \varepsilon_{T,\rho}(\chi_{A,\rho,q} \otimes \chi_{T,\rho,q}).$$

The Knizhnik–Zamolodchik functor

$$\mathsf{KZ} : \mathsf{Rep}(D^{\mathrm{rat}}_{d/m}) \to \mathsf{Rep}(H^G_A(\zeta_m))$$

sends $\mathsf{KZ}(\Delta_{d/m}(\chi)) = \chi_{\zeta_m}$. Thus an analogy:

$$\boxed{\mathbf{F}_q : (q,q) :: \mathbf{C}(\!(z)\!) : (\zeta_m, 1)}$$

The symmetry between A and T led us to new discoveries about the Harish–Chandra theory of G.

3 Level-Rank Duality Compare E_{γ} given by

(3)
$$\sum_{\rho} \varepsilon_{T,\rho}(\Delta_{d/m}(\chi_{A,\rho}) \otimes \chi_{T,\rho,1})$$

with $R_A^G(1_A) \otimes_{\bar{\mathbf{Q}}_{\ell}G} R_T^G(1_T)$ given by

(4)
$$\sum_{\rho} \varepsilon_{T,\rho}(\chi_{A,\rho,q} \otimes \chi_{T,\rho,q}).$$

The Knizhnik–Zamolodchik functor

$$\mathsf{KZ}: \mathsf{Rep}(D^{\mathrm{rat}}_{d/m}) \to \mathsf{Rep}(H^G_A(\zeta_m))$$

sends $\mathsf{KZ}(\Delta_{d/m}(\chi)) = \chi_{\zeta_m}$. Thus an analogy:

$$\boxed{ \mathbf{F}_q : (q,q) :: \mathbf{C}(\!(z)\!) : (\zeta_m, 1) }$$

The symmetry between A and T led us to new discoveries about the Harish–Chandra theory of G.

Let Uch(G) be the set of *unipotent* irreps of G, which occur in $R_T^G(1_T)$ for some maximal torus \mathbf{T} .

(Broué–Malle–Michel) Fix a positive integer l.

• $\mathbf{L} \subseteq \mathbf{G}$ is l-split iff $\mathbf{L} = Z_{\mathbf{G}}(\mathbf{S})^{\circ}$, where

S is a torus with |S| a power of $\Phi_l(q)$.

• $\lambda \in \text{Uch}(L)$ is l-cuspidal iff $(\lambda, R_M^G(\mu)) = 0$ for any l-split $M \neq L$.

As we run over pairs (\mathbf{L}, λ) up to conjugacy,

$$Uch(G) = \coprod Uch(G)_{\mathbf{L},\lambda},$$

where $Uch(G)_{\mathbf{L},\lambda} = \{ \rho \mid (\rho, R_L^G(\lambda)) \neq 0 \}.$

For l=1, these are classical Harish-Chandra series.

3 Level-Rank Duality Compare E_{γ} given by

(3)
$$\sum_{\rho} \varepsilon_{T,\rho}(\Delta_{d/m}(\chi_{A,\rho}) \otimes \chi_{T,\rho,1})$$

with $R_A^G(1_A) \otimes_{\bar{\mathbf{Q}}_{\ell}G} R_T^G(1_T)$ given by

(4)
$$\sum_{\rho} \varepsilon_{T,\rho}(\chi_{A,\rho,q} \otimes \chi_{T,\rho,q}).$$

The Knizhnik–Zamolodchik functor

$$\mathsf{KZ} : \mathsf{Rep}(D^{\mathrm{rat}}_{d/m}) \to \mathsf{Rep}(H^G_A(\zeta_m))$$

sends $\mathsf{KZ}(\Delta_{d/m}(\chi)) = \chi_{\zeta_m}$. Thus an analogy:

$$\mathbf{F}_q : (q,q) :: \mathbf{C}((z)) : (\zeta_m, 1)$$

The symmetry between A and T led us to new discoveries about the Harish–Chandra theory of G.

7

Let Uch(G) be the set of *unipotent* irreps of G, which occur in $R_T^G(1_T)$ for some maximal torus \mathbf{T} .

(Broué–Malle–Michel) Fix a positive integer l.

- $\mathbf{L} \subseteq \mathbf{G}$ is l-split iff $\mathbf{L} = Z_{\mathbf{G}}(\mathbf{S})^{\circ}$, where
 - **S** is a torus with |S| a power of $\Phi_l(q)$.
- $\lambda \in \text{Uch}(L)$ is l-cuspidal iff $(\lambda, R_M^G(\mu)) = 0$ for any l-split $M \neq L$.

As we run over pairs (\mathbf{L}, λ) up to conjugacy,

$$Uch(G) = \coprod Uch(G)_{\mathbf{L},\lambda},$$

where $Uch(G)_{\mathbf{L},\lambda} = \{ \rho \mid (\rho, R_L^G(\lambda)) \neq 0 \}.$

For l=1, these are classical Harish-Chandra series.

Let Uch(G) be the set of *unipotent* irreps of G, which occur in $R_T^G(1_T)$ for some maximal torus T.

(Broué-Malle-Michel) Fix a positive integer l.

• $\mathbf{L} \subseteq \mathbf{G}$ is l-split iff $\mathbf{L} = Z_{\mathbf{G}}(\mathbf{S})^{\circ}$, where

S is a torus with |S| a power of $\Phi_l(q)$.

• $\lambda \in \text{Uch}(L)$ is l-cuspidal iff $(\lambda, R_M^G(\mu)) = 0$ for any l-split $M \neq L$.

As we run over pairs (\mathbf{L}, λ) up to conjugacy,

$$Uch(G) = \coprod Uch(G)_{L,\lambda},$$

where $Uch(G)_{L,\lambda} = \{ \rho \mid (\rho, R_L^G(\lambda)) \neq 0 \}.$

For l = 1, these are classical *Harish-Chandra series*.

Generalizing our discussion for maximal tori:

Broué–Malle define a Hecke algebra $H_{L,\lambda}^G(\mathsf{q})$ such that

$$H_{L,\lambda}^G(\zeta_l) = \bar{\mathbf{Q}}W_{L,\lambda}^G$$
, where $W_{L,\lambda}^G = N_G(L,\lambda)/L$.

They conjecture:

- 1 $H_{L,\lambda}^G(q) \otimes \bar{\mathbf{Q}}_{\ell} = \operatorname{End}_G(\mathrm{H}_c^*(Y_{\mathbf{L}}^{\mathbf{G}})[\lambda]).$
- 2 As a virtual $(G, H_{L,\lambda}^G(q))$ -bimodule,

$$R_L^G(\lambda) = \sum_{\rho \in \mathrm{Uch}(G)_{\mathbf{L},\lambda}} \varepsilon_{L,\lambda,\rho}(\rho \otimes \chi_{L,\lambda,\rho,q})$$

where $\varepsilon_{L,\lambda,\rho} \in \{\pm 1\}$ and $\chi_{L,\lambda,\rho} \in \operatorname{Irr}(W_{L,\lambda}^G)$.

•

Generalizing our discussion for maximal tori:

Broué–Malle define a Hecke algebra $H_{L,\lambda}^G(\mathsf{q})$ such that

$$H_{L,\lambda}^G(\zeta_l) = \bar{\mathbf{Q}}W_{L,\lambda}^G$$
, where $W_{L,\lambda}^G = N_G(L,\lambda)/L$.

They conjecture:

- $1 \quad H_{L,\lambda}^G(q) \otimes \bar{\mathbf{Q}}_{\ell} = \mathrm{End}_G(\mathrm{H}_c^*(Y_{\mathbf{L}}^{\mathbf{G}})[\lambda]).$
- 2 As a virtual $(G, H_{L,\lambda}^G(q))$ -bimodule,

$$R_L^G(\lambda) = \sum_{\rho \in \mathrm{Uch}(G)_{\mathbf{L},\lambda}} \varepsilon_{L,\lambda,\rho}(\rho \otimes \chi_{L,\lambda,\rho,q})$$

where $\varepsilon_{L,\lambda,\rho} \in \{\pm 1\}$ and $\chi_{L,\lambda,\rho} \in \operatorname{Irr}(W_{L,\lambda}^G)$.

Via the decomposition map

$$\chi \mapsto \chi_{\zeta_m} : \operatorname{Irr}(W_{L,\lambda}^G) \to \mathrm{K}_0(H_{L,\lambda}^G(\zeta_m)),$$

we partition $Irr(W_{L,\lambda}^G)$ into *blocks*, describing how $H_{L,\lambda}^G(\zeta_m)$ fails to be semisimple.

Conjecture (T–Xue) Fix l, m.

Fix an *l*-cuspidal (\mathbf{L}, λ) and *m*-cuspidal (\mathbf{M}, μ) .

1 The set

$$\begin{split} \{\chi_{L,\lambda,\rho} \mid \rho \in \operatorname{Uch}(G)_{\mathbf{L},\lambda} \cap \operatorname{Uch}(G)_{\mathbf{M},\mu}\}, \\ resp. \quad \{\chi_{M,\mu,\rho} \mid \rho \in \operatorname{Uch}(G)_{\mathbf{L},\lambda} \cap \operatorname{Uch}(G)_{\mathbf{M},\mu}\}, \end{split}$$

is a union of $H_{L,\lambda}^G(\zeta_m)$ -, resp. $H_{M,\mu}^G(\zeta_l)$ -blocks.

2 The indexing induces a matching of blocks.

Generalizing our discussion for maximal tori: Broué–Malle define a Hecke algebra $H^G_{L,\lambda}(\mathsf{q})$ such that

$$H_{L,\lambda}^G(\zeta_l) = \bar{\mathbf{Q}}W_{L,\lambda}^G, \text{ where } W_{L,\lambda}^G = N_G(L,\lambda)/L.$$

They conjecture:

- 1 $H_{L,\lambda}^G(q) \otimes \bar{\mathbf{Q}}_{\ell} = \operatorname{End}_G(\mathrm{H}_c^*(Y_{\mathbf{L}}^{\mathbf{G}})[\lambda]).$
- 2 As a virtual $(G, H_{L,\lambda}^G(q))$ -bimodule,

$$R_L^G(\lambda) = \sum_{\rho \in \mathrm{Uch}(G)_{\mathbf{L},\lambda}} \varepsilon_{L,\lambda,\rho}(\rho \otimes \chi_{L,\lambda,\rho,q})$$

where $\varepsilon_{L,\lambda,\rho} \in \{\pm 1\}$ and $\chi_{L,\lambda,\rho} \in \operatorname{Irr}(W_{L,\lambda}^G)$.

8

Via the decomposition map

$$\chi \mapsto \chi_{\zeta_m} : \operatorname{Irr}(W_{L,\lambda}^G) \to \mathrm{K}_0(H_{L,\lambda}^G(\zeta_m)),$$

we partition $\operatorname{Irr}(W_{L,\lambda}^G)$ into *blocks*, describing how $H_{L,\lambda}^G(\zeta_m)$ fails to be semisimple.

Conjecture (T–Xue) Fix l, m.

Fix an *l*-cuspidal (\mathbf{L}, λ) and *m*-cuspidal (\mathbf{M}, μ) .

1 The set

$$\{\chi_{L,\lambda,\rho} \mid \rho \in \mathrm{Uch}(G)_{\mathbf{L},\lambda} \cap \mathrm{Uch}(G)_{\mathbf{M},\mu}\},$$
resp.
$$\{\chi_{M,\mu,\rho} \mid \rho \in \mathrm{Uch}(G)_{\mathbf{L},\lambda} \cap \mathrm{Uch}(G)_{\mathbf{M},\mu}\},$$

is a union of $H_{L,\lambda}^G(\zeta_m)$ -, resp. $H_{M,\mu}^G(\zeta_l)$ -blocks.

2 The indexing induces a matching of blocks.

Via the decomposition may

$$\chi \mapsto \chi_{\zeta_m} : \operatorname{Irr}(W_{L,\lambda}^G) \to \mathrm{K}_0(H_{L,\lambda}^G(\zeta_m)),$$

we partition $\operatorname{Irr}(W_{L,\lambda}^G)$ into *blocks*, describing how $H_{L,\lambda}^G(\zeta_m)$ fails to be semisimple.

Conjecture (T–Xue) Fix l, m.

Fix an l-cuspidal (\mathbb{L}, λ) and m-cuspidal (\mathbb{M}, μ) .

1 The se

$$\{\chi_{L,\lambda,\rho} \mid \rho \in \operatorname{Uch}(G)_{\mathbf{L},\lambda} \cap \operatorname{Uch}(G)_{\mathbf{M},\mu}\},$$
resp.
$$\{\chi_{M,\mu,\rho} \mid \rho \in \operatorname{Uch}(G)_{\mathbf{L},\lambda} \cap \operatorname{Uch}(G)_{\mathbf{M},\mu}\},$$

is a union of $H_{L,\lambda}^G(\zeta_m)$ -, resp. $H_{M,\mu}^G(\zeta_l)$ -blocks.

2 The indexing induces a matching of blocks.

Theorem (T–Xue) (1), (2) are compatible with block sizes for essentially all G, l, m with G exceptional.

Conjecture (T–Xue) In the preceding setup:

3 Via KZ functors, the bijection in (2) lifts to a derived equivalence between category-O blocks of appropriate rational Cherednik algebras.

Theorem (T–Xue) (1), (2), (3) hold for $G = GL_n$ when l, m are coprime.

Theorem (T–Xue) (1), (2) are compatible with block sizes for essentially all G, l, m with G exceptional.

Conjecture (T–Xue) In the preceding setup:

3 Via KZ functors, the bijection in (2) lifts to a derived equivalence between category-O blocks of appropriate rational Cherednik algebras.

Theorem (T–Xue) (1), (2), (3) hold for $G = GL_n$ when l, m are coprime.

Note that $W_{L,\lambda}^{\mathrm{GL}_n} \simeq S_N \ltimes \mathbf{Z}_l^N$ for some N, etc.

$$\operatorname{\mathsf{Rep}}(H_{L,\lambda}^{\operatorname{GL}_n}(\zeta_m))$$
 and $\operatorname{\mathsf{Rep}}(H_{M\mu}^{\operatorname{GL}_n}(\zeta_l))$

can be interpreted in terms of higher-level Fock spaces

$$\bigoplus_{\substack{\vec{s} \in \mathbf{Z}^l \\ |\vec{s}| = s}} \Lambda_{\mathsf{q}}^{\vec{s}} \xleftarrow{\sim} \Lambda_{\mathsf{q}}^s \xrightarrow{\sim} \bigoplus_{\substack{\vec{r} \in \mathbf{Z}^m \\ |\vec{r}| = s}} \Lambda_{\mathsf{q}}^{\vec{r}}.$$

Above, $\Lambda_{\mathsf{q}}^{\vec{s}} \simeq \bigoplus_{N} \mathrm{K}_{0}(S_{N} \ltimes \mathbf{Z}_{l}^{N}) \otimes \mathbf{Q}(\mathsf{q})$, etc.

Our conjectures generalize level-rank duality from GL_n to arbitrary G.

Theorem (T–Xue) (1), (2) are compatible with block sizes for essentially all G, l, m with G exceptional.

Conjecture (T–Xue) In the preceding setup:

3 Via KZ functors, the bijection in (2) lifts to a derived equivalence between category-O blocks of appropriate rational Cherednik algebras.

Theorem (T–Xue) (1), (2), (3) hold for $G = GL_n$ when l, m are coprime.

9

Note that $W_{L,\lambda}^{\mathrm{GL}_n} \simeq S_N \ltimes \mathbf{Z}_l^N$ for some N, etc.

$$\operatorname{\mathsf{Rep}}(H_{L,\lambda}^{\operatorname{GL}_n}(\zeta_m))$$
 and $\operatorname{\mathsf{Rep}}(H_{M\mu}^{\operatorname{GL}_n}(\zeta_l))$

can be interpreted in terms of higher-level $Fock\ spaces$

$$\bigoplus_{\substack{\vec{s} \in \mathbf{Z}^l \\ |\vec{s}| = s}} \Lambda_{\mathsf{q}}^{\vec{s}} \xleftarrow{\sim} \Lambda_{\mathsf{q}}^s \xrightarrow{\sim} \bigoplus_{\substack{\vec{r} \in \mathbf{Z}^m \\ |\vec{r}| = s}} \Lambda_{\mathsf{q}}^{\vec{r}}.$$

Above,
$$\Lambda_{\mathsf{q}}^{\vec{s}} \simeq \bigoplus_{N} \mathrm{K}_{0}(S_{N} \ltimes \mathbf{Z}_{l}^{N}) \otimes \mathbf{Q}(\mathsf{q}), \ etc.$$

Level-rank duality of Frenkel, Uglov, Chuang-Miyachi, Rouquier-Shan-Varagnolo-Vasserot...

Our conjectures generalize level-rank duality from GL_n to arbitrary G.

Note that $W_{L,\lambda}^{\mathrm{GL}_n} \simeq S_N \ltimes \mathbf{Z}_l^N$ for some N, etc.

$$\operatorname{\mathsf{Rep}}(H_{L,\lambda}^{\operatorname{GL}_n}(\zeta_m))$$
 and $\operatorname{\mathsf{Rep}}(H_{M\mu}^{\operatorname{GL}_n}(\zeta_l))$

can be interpreted in terms of higher-level Fock spaces

$$\bigoplus_{\substack{\vec{s} \in \mathbf{Z}^l \\ |\vec{s}| = s}} \Lambda_{\mathsf{q}}^{\vec{s}} \overset{\sim}{\longleftarrow} \Lambda_{\mathsf{q}}^{s} \xrightarrow{\sim} \bigoplus_{\substack{\vec{r} \in \mathbf{Z}^m \\ |\vec{r}| = s}} \Lambda_{\mathsf{q}}^{\vec{r}}.$$

Above, $\Lambda_{\mathsf{q}}^{\vec{s}} \simeq \bigoplus_{N} \mathrm{K}_{0}(S_{N} \ltimes \mathbf{Z}_{l}^{N}) \otimes \mathbf{Q}(\mathsf{q}), \ etc.$

Level-rank duality of Frenkel, Uglov, Chuang–Miyachi, Rouquier–Shan–Varagnolo–Vasserot...

Our conjectures generalize level-rank duality from GL_n to arbitrary G.

Thank you for listening.