Dynamic programming-2 0-1 Knapsack problem

How to pack the bag to maximize total amount without overloading your luggage?

Reminder: Elements of Dynamic Programming

For implementing dynamic programming we should be able to break the original problem to smaller subproblems that have the same structure:

Optimal Substructure

 An optimal solution to a problem can be constructed efficiently from optimal solutions of its subproblems.

Overlapping Subproblems

- A problem has overlapping subproblems if finding its solution involves solving the same subproblem multiple times.
- → DP :Solves problems recursively by combining the solutions to similar smaller overlapping subproblems

Reminder: Memoization

- Memoization is another way to deal with overlapping subproblems in dynamic programming
- After computing the solution to a subproblem, store it in a table and in subsequent calls just do a table lookup.
- With memoization, we implement the algorithm recursively:
 - If we encounter a subproblem we have already seen, we look up the answer
 - If not, we compute the solution and add it to the list of subproblems we have seen.
- Most useful when the algorithm is easiest to implement recursively, especially if we do not need solutions to all subproblems.

Knapsack Problem

- We are given a set of n items, where each item i is specified by a weight w_i (or size s_i) and a value v_i (benefit i).
- We are also given a limit W, the capacity of our knapsack.

<u>Problem</u>: How to pack the knapsack to achieve maximum total value of packed items?

```
Example1: n = 4 (# of elements) W = 5 (maximum capacity) Elements (weight, value) = { (1, 100), (3, 240), (2, 140), (5, 150) } Solution: (2,3), Benefit = 240+140 Example2: n=4, W=4 weights={5, 7, 5, 6} n=4, w=4 weights=\{5, 7, 5, 6\}
```

Knapsack Problem Types

There are two versions of the problem:

- 1. "0-1 knapsack problem" Items are indivisible; you either take an item or not. Some special instances can be solved with dynamic programming
- 2. "Fractional knapsack problem" Items are divisible: you can take any fraction of an item.
- →0-1 means take item or leave it (no fractions). We are going to consider this problem.

The 0-1 Knapsack Problem

- How to apply Dynamic Programming? We have difficulties.
- Difficulty is in characterizing subsets :
 - Find best solution for first k units and use it later no good, as optimal solution doesn't necessarily build on earlier solutions. Why?
 - Find best solution for first k units, within quantity limit
 - Either use previous best at this limit, or new item plus previous best at reduced limit
 - → Previous solution for k has to be changed.
 - → This is contrary to standard Dynamic Programming! We need a different formulation of subsets.

0-1 Knapsack Problem: Example

Weights Benefit values W_i Items This is a knapsack Max weight: W = 20 5 10

0-1 Knapsack problem

Problem: Find

$$\max \sum_{i \in T} b_i \text{ subject to } \sum_{i \in T} w_i \leq W$$

The problem is a "0-1" knapsack problem, because each item must be entirely accepted or rejected

Reminder: Solving 0-1 Knapsack Problem by Brute-force Approach

Let's first try to solve this problem with a straightforward Brute Force algorithm:

- Since there are n items, there are 2^n possible combinations of items.
- We go through all combinations and find the one with highest total value and with total size less than or equal to W
- Complexity will be $O(2^n)$

Example: n= 3, items A,B,C

Possible knapsack contents:

S={Empty, A,B, C, AB, AC, BC, ABC }

 $|S| = 8 = 2^3$

Defining a Subproblem

- We can do better with an algorithm based on dynamic programming
- We need to identify the subproblems carefully.

DP solution should be composed of solutions to subproblems for subsets of k items (1,2,...,k).

 \rightarrow If items are labeled 1..n, then a subproblem would be to find an optimal solution for

 $S_k = \{ items \ labeled \ 1, \ 2, \dots k \}$

Defining a Subproblem

- This is a valid subproblem definition.
- But here is dynamic programming question : can we describe the final solution (S_n) in terms of subproblems (S_k) ?
- Unfortunately the answer is no, we can not do that.
 Why?

Explanation follows....

Defining a Subproblem

Example:

- Assume that the best set of items for k=3: $S_k = \{l_0, l_1, l_2\}$ is $\{l_0, l_1, l_2\}$.
- But, the best set of items from $S_{k+1} = \{I_0, I_1, I_{2}, I_3\}$ may be $\{I_0, I_2, I_3\} \neq \{I_0, I_1, I_2\}$.
- In this example, the optimal solution, {I₀, I₂, I₃},
 does NOT build upon the previous optimal solution.
- Instead it builds upon the solution $\{I_0, I_2\}$, which is really the optimal subset of $\{I_0, I_1, I_2\}$

Defining a Subproblem: Example 1

Consider the previous example :

```
n = 4 (# of elements)

W = 5 (maximum capacity)

Elements (weight, value) = {(1, 100), (3, 240), (2, 140), (5, 250)}

k=1, Solution :Item 4

k=k+1=2, Solution :Items 2 and 3

\rightarrow Item 4 is not part of k=2 solution.
```

Defining a Subproblem: Example 2

$ \mathbf{w}_1 = 2 $	$\mathbf{w}_2 = 4$	$w_3 = 5$	$w_4 = 3$	
$b_1=3$	$b_2=5$	$b_3 = 8$	$b_4 = 4$	

Max weight: W = 20

Items in S_4 : 1,2,3,4

Total weight=14

Maximum benefit=20

$\begin{bmatrix} w_1 = 2 \\ b_1 = 3 \end{bmatrix}$	$w_3 = 5$ $b_3 = 8$	$w_5 = 9$ $b_5 = 10$
	-	

Items in $S_5: 1,2,3,5$

Total weight: 20

Maximum benefit: 26

Solution for S_4 is not part of the solution for $S_5!!!$

Adding another Parameter to Subproblems

- As we have seen, the solution for S_4 is not part of the solution for S_5
- So our definition of a subproblem is not valid and we need another one!
- Let's add another parameter: w, which will represent the exact total weight for each subset of items.

The problem is:

How to find an optimal solution for the combination (k, w)?

Warning: W and w are different! W represents the total capacity, w represents a quantity that must be optimized for each choice of k.

Recursive Formulation for Subproblems

• The subproblems will then be to compute the elements of a matrix V[k,w].

```
→We have to optimize:
```

```
S_k = \{\text{items labeled 1, 2, ... } k\} \text{ in a knapsack of size } w
```

Assuming we know V[i, j], where i=0,1, 2, ... k-1, j=0,1,2, ... w, how to derive V[k,w]?

```
V[k, w] = Matrix (Table) value for choices k and w.
```

- >Find these values using previous entries in the table.
- This is Memoization!

Recursive Formulation for Subproblems

$$V[k, w] = \begin{cases} V[k-1, w] & \text{if } w_k > w \\ \max\{V[k-1, w], V[k-1, w-w_k] + b_k\} & \text{else} \end{cases}$$

The best subset of S_k that has the total weight $\leq w$, either contains item k or not. Two cases :

- First case: $w_k > w$. Item k can't be part of the solution, since if it was, the total weight would be > w.
- Second case: $w_k \le w$. Then the item k can be in the solution, and we choose the case with greater (max) value.

Recursive Formulation of Subproblems: Explanation

The formulation means that, the best subset of S_k that has total weight w is one of the two:

- 1) the best subset of S_{k-1} that has total weight w, or
- 2) the best subset of S_{k-1} that has total weight $w-w_k$ plus the value of item k
- \rightarrow The best subset of S_k that has the total weight w, either contains item k or not(Notice the similarity with shortest paths solution).
- First case: $w_k > w$. Item k can't be part of the solution, since if it was, the total weight would be > w, which is unacceptable
- Second case: $w_k \le w$. Then item k can be in the solution, and we choose the case with greater value.

0-1 Knapsack Algorithm

Input: Sets of items S and w weights. Weights and values are stored in separate arrays. Output: Total value of best set items in a valid knapsack.

Algorithm Knapsack01

```
for w = 0 to W
 V[0, \mathbf{w}] = 0
for i = 1 to n
 V[i,0] = 0
for i = 1 to n
 for w = 0 to W
      if w_i \le w // item i can be part of the solution
            if b_i + V[i-1, w-w_i] > V[i-1, w]
                   V[i, w] = b_i + V[i-1, w-w_i]
             else
                   V[i,w] = V[i-1,w]
      else V[i,w] = V[i-1,w] // W_i > w
```

Explanation of 0-1 Knapsack Algorithm

- Initializations for empty knapsack:
 First for-loop: We go through all the possible sizes of our knapsack until W and if item i is equal to 0, which is "V[0,w]", maximum value is 0. Because when i = 0, this means that we are not taking any item.
- Second for-loop: $i=1\ to\ n$. We go through all the items from 1 to n and if the knapsack's size is equal to 0, which is "V[i, 0]". Corresponding values is again 0. Because when w=0, this means that we can't put anything in the knapsack
- The outer if and else conditions inside the third for loop $(w_i \le w)$ check if the knapsack can hold the current item or not.
- The inner if and else conditions check if the current value is bigger than the previous value so as to maximize the values the knapsack can hold.

Knapsack 0-1 Problem – Run Time

for
$$w = 0$$
 to W

$$B[0,w] = 0$$

for $i = 1$ to n

$$B[i,0] = 0$$

for $i = 1$ to n

$$for $w = 0$ to $w = 0$$$

What is the running time of this algorithm?

$$T(n)=O(W)+O(n)+O(n*W)$$
$$=O(n*W)$$

Run Time Comparison

- Remember that the brute-force algorithm takes O(2ⁿ)
- When comparing complexities, we find that depending on W, either the dynamic programming algorithm is more efficient or the brute force algorithm could be more efficient.
- For example, for n=5, W=100000, brute force is preferable, but for n=30 and W=1000, the dynamic programming solution is preferable:

Case1: n=5: $2^n = 32$, n*W = 500000

Case2: $n=30: 2^n = 1073741824$, n*W=30000

Tracing 0-1 Knapsack Algorithm: Example(1)

Consider the following sample data:

```
Input:

n = 4 (# of elements)

W = 5 (max weight,capacity)

Elements: (weight, benefit)
(2,3), (3,4), (4,5), (5,6)

Output:

The table ( matrix) V
```

Example (2)

Initialize first row and column to 0.

i∖₩	0	1	2	3	4	5
0	0	0	0	0	0	0
1						
2						
3						
4						

for
$$\mathbf{w} = 0$$
 to \mathbf{W}
 $\mathbf{V}[0, \mathbf{w}] = 0$

Example (3)

$i \setminus w$	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0					
2	0					
3	0					
4	0					

for
$$i = 1$$
 to n

$$V[i,0] = 0$$

Recursive computations: use line 0 to calculate line 1, use line 1 to calculate line 2, etc. ... until all lines are calculated.

Example (4)

Note: All matrix computations can be simplified as:

$$V(i,j) = max \{ V(i-1,j), b_i + V(i-1,j-w_i) \}$$

i\w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0				
2 _	0					
3	0					
4	0					

Items:

$$i=1$$
 4: (5,6)

$$b_i = 3$$

$$w_i=2$$

$$w=1$$

$$w-w_i = -1$$

if
$$w_i \le w$$
 // item i can be part of the solution
if $b_i + V[i-1,w-w_i] > V[i-1,w]$

$$V[i,w] = b_i + V[i-1,w-w_i]$$
else

$$V[i,w] = V[i-1,w]$$

$$V[i,w] = V[i-1,w]$$

else $V[i,w] = V[i-1,w] // w_i > w$, so accept this.

Example (5)

```
1: (2,3)
```

```
if \mathbf{w_i} \leftarrow \mathbf{w} // item i can be part of the solution if \mathbf{b_i} + \mathbf{V[i-1,w-w_i]} > \mathbf{V[i-1,w]} // Yes \mathbf{V[i,w]} = \mathbf{b_i} + \mathbf{V[i-1,w-w_i]} else \mathbf{V[i,w]} = \mathbf{V[i-1,w]} else \mathbf{V[i,w]} = \mathbf{V[i-1,w]} // \mathbf{w_i} > \mathbf{w} Note: that \mathbf{V(i,j)} = \mathbf{max} \{ \mathbf{V(i-1,j)}, \mathbf{b_i} + \mathbf{V(i-1,j-w_i)} \}
```

Example (6)

1		$\langle \alpha \alpha \rangle$
	•	(1)
T	•	(2,3)

$$w_i=2$$

$$w=3$$

$$w-w_i = 1$$

$$\begin{split} &\text{if } \textbf{w}_i \mathrel{<=} \textbf{w} \text{ // item } i \text{ can be part of the solution} \\ &\text{if } b_i + V[i\text{-}1,w\text{-}w_i] > V[i\text{-}1,w] \text{ // yes} \\ &V[i,w] = b_i + V[i\text{-}1,w\text{-}w_i] \\ &\text{else} \\ &V[i,w] = V[i\text{-}1,w] \\ &\text{else } V[i,w] = V[i\text{-}1,w] \text{ // } w_i > w \end{split}$$

Example (7)

- 1: (2,3)
- 2: (3,4)
- 3: (4,5)

i\w	0	1	2	3	4	5
0	0	0	0 ~	0	0	0
1	0	0	3	3	→ 3	
2	0					
3	0					
4	0					

$$i=1$$
 4: (5,6)
 $b_i=3$
 $w_i=2$
 $w=4$

$$w-w_i = 2$$

$$\begin{split} &\text{if } \mathbf{w_i} \mathrel{<=} \mathbf{w} \: / \text{item i can be part of the solution} \\ &\text{if } b_i + V[i\text{-}1,w\text{-}w_i] > V[i\text{-}1,w] \: \: / / \: Yes \\ &V[i,w] = b_i + V[i\text{-}1,w\text{-}w_i] \\ &\text{else} \\ &V[i,w] = V[i\text{-}1,w] \\ &\text{else } V[i,w] = V[i\text{-}1,w] \: \: / / \: w_i > w \end{split}$$

Example (8)

- 1: (2,3)
- 2: (3,4)
- 3: (4,5)

$i \setminus w$	0	1	2	3	4	5
0	0	0	0	0 -	0	0
1	0	0	3	3	3	3
2	0					
3	0					
4	0					

$$i=1$$
 4: (5,6) $b_i=3$

$$w_i=2$$

$$w=5$$

$$w-w_i = 3$$

$$\begin{split} &\text{if } \textbf{w}_i \mathrel{<=} \textbf{w} \text{ // item i can be part of the solution} \\ &\text{if } b_i + V[i\text{-}1,w\text{-}w_i] > V[i\text{-}1,w] \text{ // Yes} \\ &V[i,w] = b_i + V[i\text{-}1,w\text{-}w_i] \\ &\text{else} \\ &V[i,w] = V[i\text{-}1,w] \\ &\text{else } V[i,w] = V[i\text{-}1,w] \text{ // } w_i > w \end{split}$$

Example (9)

- 1: (2,3)
- 2: (3,4)
- 3: (4,5)

$i \setminus w$	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0				
3	0					
4	0					

$$i=2$$
 4: (5,6)

$$b_i=4$$

$$w_i=3$$

$$w=1$$

$$w-w_i = -2$$

$$\begin{split} &\text{if } w_i <= w \text{ // item i can be part of the solution} \\ &\text{if } b_i + V[i\text{-}1,w\text{-}w_i] > V[i\text{-}1,w] \\ &V[i,w] = b_i + V[i\text{-}1,w\text{-}w_i] \\ &\text{else} \\ &V[i,w] = V[i\text{-}1,w] \\ &\text{else } V[i,w] = V[i\text{-}1,w] \text{ // } w_i > w \end{split}$$

Example (10)

1		(2)
	•	(2.5)
_	•	(-,-)

$$b_i=4$$
 $w_i=3$

$$w_i=3$$

$$w=2$$

$$w-w_i = -1$$

$$\begin{split} &\text{if } w_i <= w \text{ // item i can be part of the solution} \\ &\text{if } b_i + V[i\text{-}1,w\text{-}w_i] > V[i\text{-}1,w] \\ &V[i,w] = b_i + V[i\text{-}1,w\text{-}w_i] \\ &\text{else} \\ &V[i,w] = V[i\text{-}1,w] \\ &\text{else } V[i,w] = V[i\text{-}1,w] \text{ // } w_i > w \end{split}$$

Example (11)

1			1
	•		≺ 1
1	•	(~,	$\mathcal{I}_{\mathcal{I}}$

$i\backslash W$	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	→ 4		
3	0					
4	0					

$$b_i=4$$

$$w_i=3$$

$$w=3$$

$$w-w_i = 0$$

$$\begin{split} &\text{if } \mathbf{w}_i \mathrel{<=} \mathbf{w} \: / / \text{ item i can be part of the solution} \\ & \quad \text{if } b_i + V[i\text{-}1, w\text{-}w_i] > V[i\text{-}1, w] \\ & \quad V[i, w] = b_i + V[i\text{-}1, w\text{-}w_i] \\ & \quad \text{else} \\ & \quad V[i, w] = V[i\text{-}1, w] \\ & \quad \text{else } V[i, w] = V[i\text{-}1, w] \: / / \: w_i > w \end{split}$$

Example (12)

- 1: (2,3)
- 2: (3,4)
- 3: (4,5)

$i \setminus w$	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0 _	3	3	3	3
2	0	0	3	4	→ 4	
3	0					
4	0					

$$b_i=4$$

$$w_i=3$$

$$w=4$$

$$w-w_i = 1$$

$$\begin{split} &\text{if } \mathbf{w_i} <= \mathbf{w} \text{ // item i can be part of the solution} \\ &\text{if } b_i + V[i\text{-}1,w\text{-}w_i] > V[i\text{-}1,w] \\ &V[i,w] = b_i + V[i\text{-}1,w\text{-}w_i] \\ &\text{else} \\ &V[i,w] = V[i\text{-}1,w] \\ &\text{else } V[i,w] = V[i\text{-}1,w] \text{ // } w_i > w \end{split}$$

Example (13)

- 1: (2,3)
- 2: (3,4)
- 3: (4,5)

i\w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3 _	3	3	3
2	0	0	3	4	4	→ 7
3	0					
4	0					

$$b_i=4$$

$$w_i=3$$

$$w=5$$

$$w-w_i = 2$$

$$\begin{split} &\text{if } \mathbf{w}_i \mathrel{<=} \mathbf{w} \: / / \text{ item i can be part of the solution} \\ & \quad \text{if } b_i + V[i\text{-}1, w\text{-}w_i] > V[i\text{-}1, w] \\ & \quad V[i, w] = b_i + V[i\text{-}1, w\text{-}w_i] \\ & \quad \text{else} \\ & \quad V[i, w] = V[i\text{-}1, w] \\ & \quad \text{else } V[i, w] = V[i\text{-}1, w] \: / / \: w_i > w \end{split}$$

Example (14)

Items:	
1101115.	

1 • / /	
1 1 /	1
1. (4,	J

i∖w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	10	13	14	4	7
3	0	0	3	4		
4	0					

$$=3$$
 4: (5.6)

$$b_i = 5$$

$$w_i=4$$

$$w = 1..3$$

$$\begin{split} & \text{if } w_i <= w \text{ // item i can be part of the solution} \\ & \text{if } b_i + V[i\text{-}1,w\text{-}w_i] > V[i\text{-}1,w] \\ & V[i,w] = b_i + V[i\text{-}1,w\text{-}w_i] \\ & \text{else} \\ & V[i,w] = V[i\text{-}1,w] \\ & \text{else } V[i,w] = V[i\text{-}1,w] \text{ // } w_i > w \end{split}$$

Example (15)

1 .	2)
Ι.	1
⊥ •	\mathcal{I}

$$i=3$$
 4: (5,6)
 $b_i=5$
 $w_i=4$
 $w=4$

$$w-w_i=0$$

$$\begin{split} &\text{if } \mathbf{w_i} \mathrel{<=} \mathbf{w} \: / / \text{ item i can be part of the solution} \\ &\text{if } \mathbf{b_i} + V[i\text{-}1, \mathbf{w}\text{-}\mathbf{w_i}] > V[i\text{-}1, \mathbf{w}] \\ &V[i, \mathbf{w}] = \mathbf{b_i} + V[i\text{-}1, \mathbf{w}\text{-}\mathbf{w_i}] \\ &\text{else} \\ &V[i, \mathbf{w}] = V[i\text{-}1, \mathbf{w}] \\ &\text{else } V[i, \mathbf{w}] = V[i\text{-}1, \mathbf{w}] \: / / \: \mathbf{w_i} > \mathbf{w} \end{split}$$

Example (16)

1		2)
	()	→ 1
1.	(4)	,

$$i=3$$
 4: (5,6)
 $b_i=5$
 $w_i=4$
 $w=5$
 $w-w_i=1$

$$\begin{split} &\text{if } \textbf{w}_i \mathrel{<=} \textbf{w} \: / / \text{ item i can be part of the solution} \\ & \quad \text{if } b_i + V[i\text{-}1, w\text{-}w_i] > V[i\text{-}1, w] \\ & \quad V[i, w] = b_i + V[i\text{-}1, w\text{-}w_i] \\ & \quad \text{else} \\ & \quad V[i, w] = V[i\text{-}1, w] \\ & \quad \text{else } V[i, w] = V[i\text{-}1, w] \: / / \: w_i > w \end{split}$$

Example (17)

i∖w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	0	13	4	5	7
4	0	0	3	4	5	

$$\begin{split} &if \ w_i <= w \ /\!/ \ item \ i \ can \ be \ part \ of \ the \ solution \\ &if \ b_i + V[i\text{-}1,w\text{-}w_i] > V[i\text{-}1,w] \\ &V[i,w] = b_i + V[i\text{-}1,w\text{-}w_i] \\ &else \\ &V[i,w] = V[i\text{-}1,w] \\ &else \ V[i,w] = V[i\text{-}1,w] \ /\!/ \ w_i > w \end{split}$$

$$b_i = 6$$

$$w_i = 5$$

$$w = 1..4$$

Example (18)

i∖w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4	5	7
4	0	0	3	4	5	→ 7

$$b_i = 6$$

$$w_i = 5$$

$$w=5$$

$$w-w_i=0$$

$$\begin{split} &\text{if } \textbf{w}_i \mathrel{<=} \textbf{w} \text{ // item i can be part of the solution} \\ &\text{if } b_i + V[i\text{-}1,w\text{-}w_i] > V[i\text{-}1,w] \\ &V[i,w] = b_i + V[i\text{-}1,w\text{-}w_i] \\ &\text{else} \\ &V[i,w] = V[i\text{-}1,w] \\ &\text{else } V[i,w] = V[i\text{-}1,w] \\ &\text{// } w_i > w \end{split}$$

Comments

- The maximum value of benefit that can be obtained for optimal packing is 7.
- This algorithm only finds the max possible value (Total benefit)that can be carried in the knapsack
- To know the items that make this maximum value, an addition to this algorithm is necessary
- All we need is to trace back the computations for the maximum value in the table

5/5/2021 41

How to find actual Knapsack Items

- All of the information we need is in the table.
- *V*[*n*,*W*] is the maximal value of items that can be placed in the Knapsack.
- Let i=n and k=W
 if V[i,k] ≠ V[i-1,k] then
 mark the ith item as in the knapsack
 i = i-1, k = k-w_i
 else
 i = i-1 // Assume the ith item is not in the knapsack
 // Could it be in the optimally packed knapsack?

Finding the Items

i∖w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4	5	7
4	0	0	3	4	5	7

Items:

$$k=5$$

$$b_i = 6$$

$$w_i = 5$$

$$V[i,k] = 7$$

$$V[i-1,k] = 7$$

while
$$i,k > 0$$

if
$$V[i,k] \neq V[i-l,k]$$
 then

mark the i^{th} item as in the knapsack

$$i = i-1, k = k-w_i$$

else
$$i = i - 1$$

Finding the Items (2)

$i\backslash V$	<i>I</i> 0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4	5	7
4	0	0	3	4	5	7

Items:

$$k=5$$

i=4 |

$$b_i = 6$$

$$w_i = 5$$

$$V[i,k] = 7$$

$$V[i-1,k] = 7$$

while i,k > 0

if
$$V[i,k] \neq V[i-l,k]$$
 then

mark the i^{th} item as in the knapsack

$$i = i-1, k = k-w_i$$

else

$$i = i-1$$

Finding the Items (3)

$i\backslash V$	<u> </u>	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4	5	7
4	0	0	3	4	5	7

while i,k > 0 if $V[i,k] \neq V[i-1,k]$ then mark the i^{th} item as in the knapsack $i=i-1, k=k-w_i$ else i=i-1

Items:

$$k=5$$

i=3

$$b_i = 5$$

$$w_i=4$$

$$V[i,k] = 7$$

$$V[i-1,k] = 7$$

Finding the Items (4)

$i\backslash W$	<i>y</i> 0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3 ←	3	3	3
2	0	0	3	4	4	\ 7/
3	0	0	3	4	5	7
4	0	0	3	4	5	7

while i,k > 0 if $V[i,k] \neq V[i-1,k]$ then mark the i^{th} item as in the knapsack $i = i-1, k = k-w_i$ else i = i-1

$$\frac{2}{4}$$
: (5.6)

$$k=5$$

$$b_i=4$$

$$w_i = 3$$

$$V[i,k] = 7$$

$$V[i-1,k] = 3$$

$$k - w_i = 2$$

Finding the Items (5)

i∖w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4	5	7
4	0	0	3	4	5	7

while i,k > 0 if $V[i,k] \neq V[i-1,k]$ then mark the i^{th} item as in the knapsack $i = i-1, k = k-w_i$ else i = i-1

$$k=2$$

$$b_i=3$$

$$w_i=2$$

$$V[i,k] = 3$$

$$V[i-1,k] = 0$$

$$k - w_i = 0$$

Finding the Items (6)

i\w	0	1	2	3	4	5
0	0	0	0	0	0	0
$\boxed{1}$	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4	5	7
4	0	0	3	4	5	7

while i,k > 0

if $V[i,k] \neq V[i-l,k]$ then mark the n^{th} item as in the knapsack $i=i-l, \ k=k-w_i$ else i=i-l

Items:

$$i=0$$
 4: (5,6)

$$k=0$$

The optimal knapsack should contain {1, 2}

Finding the Items (7)

i\w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4	5	7
4	0	0	3	4	5	7

Items:

The optimal knapsack should contain items (1, 2)

while i,k > 0 // No,stop
if
$$V[i,k] \neq V[i-1,k]$$
 then
mark the n^{th} item as in the knapsack
 $i=i-1, k=k-w_i$
else
 $i=i-1$

Knapsack Problem: Applications

- Applicable in most resource allocation problems where there are financial or other constraints:
 - Resource allocation with financial constraints
 - Construction and scoring of heterogeneous test sets (If each question has a different value, how to maximize the mark?)
 - Selection of capital investments
- Finding the least wasteful way to cut raw materials.
- Computer games : Pick the most valuable set of items from a treasure to carry.

```
// A Dynamic Programming based c++ solution for 0-1 Knapsack
#include<iostream>
using namespace std;
int max(int a, int b) { return (a > b)? a : b; }
// Returns the maximum value that can be put in a knapsack of capacity W
int knapSack(int W, int wt[], int val[], int n)
 int i, w;
 int K[n+1][W+1];
 // Build table K[][] in bottom up manner
 for (i = 0; i \le n; i++)
    for (w = 0; w \le W; w++)
    \{ if (i==0 \parallel w==0) \}
         K[i][w] = 0;
       else if (wt[i-1] \le w)
          K[i][w] = max(val[i-1] + K[i-1][w-wt[i-1]], K[i-1][w]);
       else
          K[i][w] = K[i-1][w];
  return K[n][W];
```

5/5/2021

```
// Driver
  int main()
    int val[] = \{2,3,4,5\};
    int wt[] = \{3,4,5,6\};
    int W = 5;
    int n = sizeof(val)/sizeof(val[0]);
    //cout<<n<<endl;
    cout << "Max. Knapsac Value = " << knapSack(W, wt, val, n);
    return 0;
  //Max. Knapsac Value = 7
```

5/5/2021

Conclusion

- Dynamic programming is a technique for making a sequence of interrelated decisions.
- "Programming": A tabular method (not writing computer code)
- It may be used to solve dynamic optimization problems, where the problem can be split into overlapping subproblems
- It requires formulating an appropriate recursive relationship for each individual subproblem
- When the solution can be recursively described in terms of optimal partial solutions, we can store these partial solutions and re-use them as necessary(Memoization).
- Running times are usullly better than Brute Force and other naïve algorithms. Example:

0-1 Knapsack problem: O(W*n) vs. O(2ⁿ)

5/5/2021