$\underset{\mathrm{Exam}\ 2}{\mathrm{CMPEN}}\ 270-\mathrm{Fall}\ 2015$

Name: PSU ID:

1.	. (3 pts.) Assuming a word size of 5 bits, interpret 10110 as a 2's complement number.										
	a) -9		b) -10		(c) -5		d) 22		e) None of the above	
2.	(3 pts.) Assuming a word representation of -9.					d size of 5 bits, determine the 2's compleme					
	a) 11011 b		b) 10) 10111		c) 10110		d) 11001		e) None of the above.	
3.	(4 pts.) He				_	puts do the c) 31		_		in a 32:1 mux have? e) None of the above	
4.	(3 pts.) How many 2:1 muxes does it take to build a 32:1 mux?										
	a) 3		b) 7		•	c) 15		d) 31		e) None of the above.	
	questio	Questions 5-7 concern the construction of a bit-slice of a comparator. The questions will ask you to complete the entries in the truth table below denoted by a, b , and c .									
	G_{in}	L_{in}	E_{in} 1	$\frac{x}{1}$	y	G_{out}	L_{oi}	ut	E_{out}		
	$\frac{0}{1}$	0	0			a	b				
	1	0	1	0	0		U		\overline{c}		
5.	(2 pts.)What is the value of a?										
	a) 0		b) 1		(e) x					
6.	. (2 pts.) What is the value of b ?										
	a) 0		b) 1		(c) x					
7.	(2 pts.) What is the value of c ?										
	a) 0	b) 1		(c) x						

You are given the following 4:16 decoder built from 2:4 decoders. Unfortunately, the student who built it wired the select lines in a most unusual fashion. Its your job to label each output with the index which selects it. Most of the outputs have been omitted for clarity.

- 8. (3 pts.) What is the value of the output labeled A?
 - a) y_1
- b) y_2
- c) y_4
- d) y_8

d) y_{12}

- e) None of the above
- 9. (3 pts.) What is the value of the output labeled B?
 - a) y_1
- b) y_6
- c) y_9
- e) None of the above
- 10. **(5 pts.)** Which line of pseudo-code is equivlent to the following piece of hardware. Y is a 4-bit binary number.

- a) if (5 < Y) then Z = X+3 else Z = Y+5;
- b) if (6 < Y) then Z = Y+3 else Z = Y+5;
- c) if (6 > Y) then Z = X+3 else Z = Y+5;
- d) if (5 > Y) then Z = Y+3 else Z = Y+5;

You have a digital design which calls for a circuit which performs the following task (written as a C if/then statement). You have decided on the architecture. Its your job to design to complete the truth table for the the glue-logic box (only an arbitrary portion of the complete truth table is shown).

G6	G12	G18	select
0	0	0	a
1	1	0	b
1	0	1	c

- 11. (3 pts.) What is the (decimal) value of a in the truth table?
 - a) 0
- b) 1
- c) 2
- 12. (3 pts.) What is the (decimal) value of b in the truth table?
 - a) 0
- b) 1
- c) 2
- d) 3

d) 3

e) x

e) x

- 13. (3 pts.) What is the (decimal) value of c in the truth table?
 - a) 0
- b) 1
- c) 2
- d) 3
- e) x

				\mathbf{S}	\mathbf{R}	Q+	J	K	Q+
D	Q+	\mathbf{T}	Q+	0	0	Q	0	0	Q
0	0	0	Q	0	1	0	0	1	0
1	1	1	Q'	1	0	1	1	0	1
	-		•	1	1	X	1	1	Q'

For questions 14-19 use the following figure. Assume that initial value of \overline{Q} is 0 (as shown in the figure), and that the outputs, after a period of rapid toggling, end-up at 0.

- 14. (3 pts.) What is the value of Q1 at time 25
 - a) 0
- b) 1
- c) toggling
- d) unknown
- 15. (2 pts.) What is the value of Q1 at time 35
 - a) 0
- b) 1
- c) toggling
- d) unknown
- 16. (1 pt.) What is the value of Q1 at time 65
 - a) 0
- b) 1
- c) toggling
- d) unknown
- 17. (2 pts.) What is the value of Q2 at time 25
 - a) 0
- b) 1
- c) toggling
- d) unknown
- 18. (1 pts.) What is the value of Q2 at time 45
 - a) 0
- b) 1
- c) toggling
- d) unknown

For problems 19-23 use the following figure and timing diagram. You should assume that all the devices process 5-bits data values.

- 19. (5 pts.) What is the value of Q at time 15?
 - a) 0
- b) 3
- c) 6
- d) 9
- e) none of the above
- 20. (4 pts.) What is the value of P at time 25?
 - a) 2
- b) 9
- c) 12
- d) 15
- e) none of the above
- 21. (3 pts.) What is the value of A_1 at time 35?
 - a) 5
- b) 9
- c) 12
- d) 18
- e) none of the above
- 22. (2 pts.) What is the value of M at time 45?
 - a) 2
- b) 5
- c) 11
- d) 12
- e) none of the above
- 23. (1 pts.) What is the value of Q at time 55?
 - a) 5
- b) 11
- c) 12
- d) 14
- e) none of the above