

IN THE CLAIMS

1. (Currently Amended) A process for the preparation of a compound of formula I

(I),

wherein

each R₀, independently of any other(s), is halogen, C₁-C₆alkyl, C₂-C₆alkenyl, C₂-C₆alkynyl, C₁-C₆-haloalkyl, cyano-C₁-C₆alkyl, C₂-C₆haloalkenyl, cyano-C₂-C₆alkenyl, C₂-C₆haloalkynyl, cyano-C₂-C₆alkynyl, hydroxy, hydroxy-C₁-C₆alkyl, C₁-C₆alkoxy, nitro, amino, C₁-C₆alkylamino, di(C₁-C₆alkyl)amino, C₁-C₆alkylcarbonylamino, C₁-C₆alkylsulfonylamino, C₁-C₆alkylaminosulfonyl, C₁-C₆alkylcarbonyl, C₁-C₆alkylcarbonyl-C₁-C₆alkyl, C₁-C₆alkoxycarbonyl-C₁-C₆alkyl, C₁-C₆alkylcarbonyl-C₂-C₆alkenyl, C₁-C₆alkoxycarbonyl, C₁-C₆alkoxycarbonyl-C₂-C₆alkenyl, C₁-C₆alkylcarbonyl-C₂-C₆alkynyl, C₁-C₆alkoxycarbonyl-C₂-C₆alkynyl, cyano, carboxy, phenyl or an aromatic ring containing 1 or 2 hetero atoms selected from the group nitrogen, oxygen and sulfur, wherein the latter two aromatic rings may be substituted by C₁-C₃alkyl, C₁-C₃haloalkyl, C₁-C₃alkoxy, C₁-C₃haloalkoxy, halogen, cyano or by nitro; or

R₀, together with the adjacent substituents R₁, R₂ and R₃, forms a saturated or unsaturated C₃-C₆hydrocarbon bridge that may be interrupted by 1 or 2 hetero atoms selected from the group nitrogen, oxygen and sulfur and/or substituted by C₁-C₄alkyl;

R₁, R₂ and R₃ are each independently of the others hydrogen, halogen, C₁-C₆alkyl, C₂-C₆alkenyl, C₂-C₆alkynyl, C₃-C₆cycloalkyl, C₁-C₆haloalkyl, C₂-C₆haloalkenyl, C₁-C₆alkoxycarbonyl-C₂-C₆alkenyl, C₁-C₆alkylcarbonyl-C₂-C₆alkenyl, cyano-C₂-C₆alkenyl, nitro-C₂-C₆alkenyl, C₂-C₆haloalkynyl, C₁-C₆alkoxycarbonyl-C₂-C₆alkynyl, C₁-C₆alkylcarbonyl-C₂-C₆alkynyl, cyano-C₂-C₆alkynyl, nitro-C₂-C₆alkynyl, C₃-C₆halocycloalkyl, hydroxy-C₁-C₆alkyl, C₁-C₆alkoxy-C₁-C₆alkyl, C₁-C₆alkylthio-C₁-C₆alkyl, cyano, C₁-C₄alkylcarbonyl, C₁-C₆alkoxycarbonyl, hydroxy, C₁-C₁₀alkoxy, C₃-C₆alkenyloxy, C₃-C₆alkynyoxy, C₁-C₆haloalkoxy, C₃-C₆haloalkenyloxy, C₁-C₆alkoxy-C₁-C₆alkoxy, mercapto, C₁-C₆alkylthio, C₁-C₆haloalkylthio, C₁-C₆alkylsulfinyl, C₁-C₆alkylsulfonyl, nitro, amino, C₁-C₆alkylamino, di(C₁-C₆alkyl)amino or phenoxy, wherein the phenyl ring may be substituted by C₁-C₃alkyl, C₁-C₃haloalkyl, C₁-C₃alkoxy, C₁-C₃haloalkoxy, halogen, cyano or by nitro;

R_2 may additionally be phenyl, naphthyl or a 5- or 6-membered aromatic ring that may contain 1 or 2 hetero atoms selected from the group nitrogen, oxygen and sulfur, wherein the phenyl ring, the naphthyl ring and the 5- or 6-membered aromatic ring may be substituted by halogen, C_3 - C_8 cycloalkyl, hydroxy, mercapto, amino, cyano, nitro or by formyl; and/or the phenyl ring, the naphthyl ring and the 5- or 6-membered aromatic ring may be substituted by C_1 - C_6 alkyl, C_1 - C_6 alkoxy, hydroxy- C_1 - C_6 alkyl, C_1 - C_6 alkoxy- C_1 - C_6 alkyl, C_1 - C_6 alkoxy- C_1 - C_6 alkoxy, C_1 - C_6 alkylcarbonyl, C_1 - C_6 alkylthio, C_1 - C_6 alkylsulfinyl, C_1 - C_6 alkylsulfonyl, mono- C_1 - C_6 alkylamino, di- C_1 - C_6 alkylamino, C_1 - C_6 alkylcarbonylamino, C_1 - C_6 alkylcarbonyl(C_1 - C_6 alkyl)amino, C_2 - C_6 alkenyl, C_3 - C_6 alkenyloxy, hydroxy- C_3 - C_6 alkenyl, C_1 - C_6 alkoxy- C_2 - C_6 alkenyl, C_1 - C_6 alkoxy- C_3 - C_6 alkenyloxy, C_2 - C_6 alkenylcarbonyl, C_2 - C_6 alkenylthio, C_2 - C_6 alkenylsulfinyl, C_2 - C_6 alkenylsulfonyl, mono- or di- C_2 - C_6 alkenylamino, C_1 - C_6 alkyl(C_3 - C_6 alkenyl)amino, C_2 - C_6 alkenylcarbonylamino, C_2 - C_6 alkenylcarbonyl(C_1 - C_6 alkyl)amino, C_2 - C_6 alkynyl, C_3 - C_6 alkynyloxy, hydroxy- C_3 - C_6 alkynyl, C_1 - C_6 alkoxy- C_3 - C_6 alkynyl, C_1 - C_6 alkoxy- C_4 - C_6 alkynyloxy, C_2 - C_6 alkynylcarbonyl, C_2 - C_6 alkynylthio, C_2 - C_6 alkynylsulfinyl, C_2 - C_6 alkynylsulfonyl, mono- or di- C_3 - C_6 alkynylamino, C_1 - C_6 alkyl(C_3 - C_6 alkynyl)amino, C_2 - C_6 alkynylcarbonylamino or by C_2 - C_6 alkynylcarbonyl(C_1 - C_6 alkyl)amino; and/or the phenyl ring, the naphthyl ring and the 5- or 6-membered aromatic ring may be substituted by halo-substituted C_1 - C_6 alkyl, C_1 - C_6 alkoxy, hydroxy- C_1 - C_6 alkyl, C_1 - C_6 alkoxy- C_1 - C_6 alkyl, C_1 - C_6 alkoxy- C_1 - C_6 alkoxy, C_1 - C_6 alkylcarbonyl, C_1 - C_6 alkylthio, C_1 - C_6 alkylsulfinyl, C_1 - C_6 alkylsulfonyl, mono- C_1 - C_6 alkylamino, di- C_1 - C_6 alkylamino, C_1 - C_6 alkylcarbonylamino, C_1 - C_6 alkylcarbonyl(C_1 - C_6 alkyl)amino, C_2 - C_6 alkenyl, C_3 - C_6 alkenyloxy, hydroxy- C_3 - C_6 alkenyl, C_1 - C_6 alkoxy- C_2 - C_6 alkenyl, C_1 - C_6 alkoxy- C_3 - C_6 alkenyloxy, C_2 - C_6 alkenylcarbonyl, C_2 - C_6 alkenylthio, C_2 - C_6 alkenylsulfinyl, C_2 - C_6 alkenylsulfonyl, mono- or di- C_2 - C_6 alkenylamino, C_1 - C_6 alkyl(C_3 - C_6 alkenyl)amino, C_2 - C_6 alkenylcarbonylamino, C_2 - C_6 alkenylcarbonyl(C_1 - C_6 alkyl)amino, C_2 - C_6 alkynyl, C_3 - C_6 alkynyloxy, hydroxy- C_3 - C_6 alkynyl, C_1 - C_6 alkoxy- C_3 - C_6 alkynyl, C_1 - C_6 alkoxy- C_4 - C_6 alkynyloxy, C_2 - C_6 alkynylcarbonyl, C_2 - C_6 alkynylthio, C_2 - C_6 alkynylsulfinyl, C_2 - C_6 alkynylsulfonyl, mono- or di- C_3 - C_6 alkynylamino, C_1 - C_6 alkyl(C_3 - C_6 alkynyl)amino, C_2 - C_6 alkynylcarbonylamino or C_2 - C_6 alkynylcarbonyl(C_1 - C_6 alkyl)amino; and/or the phenyl ring, the naphthyl ring and the 5- or 6-membered aromatic ring may be substituted by a radical of formula $COOR_{50}$, $CONR_{51}$, $SO_2NR_{53}R_{54}$ or SO_2OR_{55} , wherein R_{50} , R_{51} , R_{52} , R_{53} , R_{54} and R_{55} are each independently of the others C_1 - C_6 alkyl, C_2 - C_6 alkenyl or C_3 - C_6 alkynyl or halo-, hydroxy-, alkoxy-, mercapto-, amino-, cyano-, nitro-, alkylthio-, alkylsulfinyl- or alkylsulfonyl-substituted C_1 - C_6 alkyl, C_2 - C_6 alkenyl or C_3 - C_6 alkynyl; and n is 0, 1 or 2,

by reaction of a compound of formula II

wherein

R_0 , R_1 , R_2 , R_3 and n are as defined and X is a leaving group, with malonic acid dinitrile in an inert diluent in the presence of a palladium catalyst and a base, which process comprises using as the base a hydroxide of an alkali metal or a mixture of hydroxides of alkali metals and using as the palladium catalyst a palladium(II) dihalide, palladium(II) acetate, palladium(II) sulfate, bis(triphenylphosphine)palladium(II) dichloride, bis(tricyclopentylphosphine)palladium(II) dichloride, bis(tricyclohexylphosphine)palladium(II) dichloride, bis(dibenzylideneacetone)palladium(0) or tetrakis(triphenylphosphine)palladium(0).

2. (Original) A process according to claim 1, wherein, in the compound of formula II, X is halogen; $R_{10}S(O)_2O^-$ wherein R_{10} is methyl, halomethyl, $C_4F_9-(n)$, phenyl or phenyl substituted from one to three times by halogen, methyl or by halomethyl; or is mono-, di- or tri-arylmethoxy.

3. (Original) A process according to claim 2, wherein X is chorine, bromine, iodine, $CF_3S(O)_2O^-$ (triflate), $CF_3(CF_2)_3S(O)_2O^-$ (nonaflate), p-tolyl-S(O)₂O⁻ (tosylate), $(C_6H_5)_2CHO^-$, $(CH_3-C_6H_4)_2CHO^-$, $(C_6H_5)_3CO^-$ (trityl) or $(CH_3-C_6H_4)_3CO^-$.

4. (Original) A process according to claim 3, wherein X is chlorine, bromine or iodine.

5. (Cancelled)

6. (Original) A process according to claim 1, wherein the palladium catalyst is prepared *in situ* from palladium(II) or palladium(0) compounds by complexing with phosphine ligands.

7. (Original) A process according to claim 1, wherein the palladium catalyst is used in an amount of from 0.001 to 100 mol% based on the compound of formula II.

8. (Original) A process according to claim 1, wherein as diluent there is used an aliphatic, cycloaliphatic or aromatic hydrocarbon, an aliphatic halo hydrocarbon, a nitrile, an ether, an alcohol, a

ketone, an ester or a lactone, an N-substituted lactam, an amide, an acyclic urea, a sulfoxide or water or a mixture of those diluents.

9. (Original) A process according to claim 8, wherein as an aromatic hydrocarbon there is used an ether, an N-substituted lactam, an amide, an acyclic urea or a sulfoxide.

10. (Original) A process according to claim 9, wherein N-methylpyrrolidone is used.

11. (Original) A process according to claim 1, wherein as base there is used sodium hydroxide or potassium hydroxide or a mixture of sodium hydroxide and potassium hydroxide.

12. (Original) A process according to claim 11, wherein sodium hydroxide is used as the base.

13. (Original) A process according to claim 10, wherein the base is used in an equivalent amount or in an excess of from 2 to 10 equivalents in relation to malonic acid dinitrile.

14. (Original) A process according to claim 1, wherein the reaction is carried out at a temperature of from 0° to 250°C.

15. (Original) A process according to claim 1, wherein the reaction of the malonic acid dinitrile with a compound of formula II is carried out at elevated pressure.