東大数学理科後期 2003 年度

1 問題1

1. x > 0 のとき、次の不等式を示せ、

$$x - \frac{x^3}{3!} \le \sin x \le x - \frac{x^3}{3!} + \frac{x^5}{5!}$$

- 2. 曲線 $y = \sin x$ $(0 \le x \le \pi)$ と x 軸で囲まれた図形を x 軸のまわりに一回転してできる立体を考える.この立体を x 軸に垂直な 2n-1 個の平面によって体積が等しい 2n 個の部分に分割する.ただし n は 2 以上の自然数である.
 - (a) これら 2n-1 個の平面と x 軸との交点の x 座標のうち, $\frac{\pi}{2}$ より小さくかつ $\frac{\pi}{2}$ に最も近いものを a_n とする.このとき, $\lim_{n\to\infty}n(\frac{\pi}{2}-a_n)$ を求めよ.
 - (b) 2n-1 個の平面と x 軸との交点の x 座標のうち最も小さいものを b_n とする. 数列 $\{n^pb_n\}$ が $n\to\infty$ のとき 0 でない有限な値に収束するような実数 p の値を求めよ。また,p をそのようにとったとき, $\lim_{n\to\infty} n^pb_n$ を求めよ。

2 問題 2

 $p,\ q,\ N,\ M$ を自然数とする。ただし \sqrt{p} は自然数ではないとする。このとき次の問に答えよ。

- 1. 自然数 I に対してある整数 A, B があって $(\sqrt{p} [\sqrt{p}])^l = A\sqrt{p} + B$ と表せることを示せ、ただし $[\sqrt{p}]$ は \sqrt{p} より小さい整数のうちで最大のものを表す。
- 2. xy 平面において,x 座標および y 座標がともに整数であるような点を格子点という. このとき,直線 $y=\sqrt{px}$ との距離が $\frac{1}{N}$ 以下で x 座標が N 以上であるような格子点がそんざいすることを示せ.

- 3. 双曲線 $y^2 px^2 = q$ の上の点 mathrmP と格子点 Q で、線分 PQ の長さが $\frac{1}{M}$ 以下であるようなものが存在することを示せ、
- 4. p=5, q=2, M=100 として (3) の条件を満たすような格子点 Q を一つ求めよ. すなわち, 格子点 Q であって, 双曲線 $y^2-5x^2=2$ の上の点 P を適当にとれば PQ の長さを $\frac{1}{100}$ いかにすることができるようなものを一つ求めよ. ただし $2.23606 < \sqrt{5} < 2.23607$ を用いてよい.

3 問題3

1. 全ての n について $a_n \ge 2$ であるような数列 $\{a_n\}$ が与えられたとして数列 $\{x_n\}$ に関する漸化式

(A)
$$x_{n+2} - a_{n+1}x_{n+1} + x_n = 0 (n = 0, 1, 2, \cdots)$$

を考える。このとき、自然数 m を一つ決めて固定すれば、漸化式(A)を満たし、 x_0 、 $x_m=1$ であるような数列 $\{x_n\}$ がただ一つ存在することを示せ。また、この数列について $0 < x_n < 1 \ (n=1,2,\cdots,m-1)$ が成り立つことを示せ。ただし m は 3 以上とする。

2. 数列 $\{a_n\}$ と正の定数 b が与えられ、すべての n について $a_n \ge 1 + b$ が成り立つ と家庭して、数列 $\{y_n\}$ に関する漸化式

(B)
$$y_{n+2} - a_{n+1}y_{n+1} + by_n = 0 (n = 0, 1, 2, \dots)$$

を考える。このとき、自然数 m を一つ決めて固定すれば、漸化式 (B) を満たし、 $y_0=0$ 、 $y_m=1$ であるような数列 $\{y_n\}$ がただ一つ存在して $0< y_n<1$ $(n=1,2,\cdots,m-1)$ が成り立つことを示せ、ただし m は 3 以上とする。

3. c を 2 より大きな定数として、全ての n について $a_n \ge e$ が成り立つと仮定する。このとき、c から決まる m によらない正の定数 r で e < 1 を満たすものが存在し、(1) で得られた数列 $\{x_n\}$ は $x_n < r^{m-n}$ $(n = 1, 2, \cdots, m-1)$ を満たすことを示せ。