! This class has been made inactive. No posts will be allowed until an instructor reactivates the class.

stop following 13 views

Actions ▼

Problem 10.3(b)

- 3. Posterior computations for the binomial model: suppose $y_1 \sim Bin(n_1, p_1)$ is the number of successfully treated patients under an experimental new drug, and $y_2 \sim \text{Bin}(n_2, p_2)$ is the number of successfully treated patients under the standard treatment. Assume that y_1 and y_2 are independent and assume independent beta prior densities for the two probabilities of success. Let $n_1 = 10, y_1 = 6$, and $n_2 = 20, y_2 = 10$. Repeat the following for several different beta prior specifications.
 - (a) Use simulation to find a 95% posterior interval for p₁ p₂ and the posterior probability that $p_1 > p_2$.
 - (b) Numerically integrate to estimate the posterior probability that p₁ > p₂.

I'm having trouble doing this in R. I graphed both beta distributions and the difference between them in Desmos, but I don't think the plot makes sense visually. I'm looking at the uploaded code but I wasn't sure what to put for the functions? How close is it supposed to be to the probability from problem 10.3(a)? My answers differ by ~ 0.08 , but it's not from the uploaded code so I'm not sure if it's right. I also tried integrating "manually", but since $\hat{p}_1=rac{6}{10}=0.6$ and $\hat{p}_2=rac{10}{20}=0.5$, the probability that $p_1>p_2$ intuitively should be (0.5,1] and my answer was outside this range.

hw5

good question 0 Edit

Updated 2 years ago by Charles Hwang

the students' answer, where students collectively construct a single answer

Click to start off the wiki answer

followup discussions for lingering questions and comments

Start a new followup discussion

Compose a new followup discussion