一、光栅衍射

$$d = a + b$$
 光栅常数

 $d:10^{-5} \sim 10^{-8}$ \pm

光栅的衍射条纹:

单缝衍射和多缝干涉的总效果。

多缝衍射 (双缝, 五缝, 光栅)

五缝衍射的光路图

双缝的衍射条纹

五缝的衍射条纹

光栅的衍射条纹

+ 透射光栅的衍射

光栅常数 d = a+b

二、光栅方程

平行单色光垂直照射光栅平面

$$\frac{2\pi}{\lambda}(a+b)\sin\theta = 2k\pi$$
$$k = 0, \pm 1, \pm 2\cdots$$

光栅方程: 主极大明纹出现

的条件

$$(a+b)\sin\theta = k\lambda$$
$$k = 0, \pm 1, \pm 2, \cdots$$

光栅常数:

 $a+b:10^{-5} \sim 10^{-8} \text{ m}$

条纹最高级数
$$\sin \theta_k = \pm \frac{k\lambda}{d}$$

$$\theta = \pm \frac{\pi}{2}, \quad k = k_{\text{max}} = \frac{d}{\lambda}$$
 in θ

$$\theta = \pm \frac{\pi}{2}, \quad k = k_{\text{max}} = \frac{d}{\lambda}$$

**光栅中狭缝条数越多,明纹越细.

♣ 平行单色光斜照射光栅平面,光栅衍射的光栅方程

$$(a+b)(\sin\theta+\sin\varphi)=k\lambda, \quad k=0, 1, 2, \cdots$$

> "十":入射光线与衍射光线在法线同侧

$$(a+b)(\sin\theta-\sin\varphi)=k\lambda, \quad k=0, 1, 2, \cdots$$

"一":入射光线与衍射光线在法线异侧

三、缺级现象

$$(a+b)\sin\theta = k\lambda$$
$$k = 0, \pm 1, \pm 2, \cdots$$
$$a\sin\theta = k'\lambda$$
$$k' = \pm 1, \pm 2, \cdots$$

缺级的级次为:

$$k = \frac{a+b}{a}k'$$

——缺级条件

例: 波长为 600nm的单色光垂直入射在一光栅上。第二级明纹出现在 $\sin\theta=0.20$ 处,首次缺级为第四级。试求

- (1) 光栅常数;
- (2) 光栅最小狭缝宽度;
- (3) 屏上实际呈现的全部级数。

解: 光栅方程
$$(a+b)\sin\theta = k\lambda$$
 (主极大公式)

(1) 光栅常数
$$d = a + b = \frac{k\lambda}{\sin \theta}$$
 将第二级明纹 $k = 2$, $\sin \theta = 0.20$ 代入,得 $d = 6.0 \times 10 - 6(m)$

(2) 光栅衍射为单缝衍射与多缝干涉的合成结果。 缺级即干涉的主极大恰与单缝衍射的极小重合,即

$$\begin{cases} (a+b)\sin\theta = k\lambda \\ a\sin\theta = k'\lambda \end{cases} \qquad k = \frac{a+b}{a}k$$

$$\begin{cases} (a+b)\sin\theta = k\lambda \\ a\sin\theta = k'\lambda \end{cases} \qquad k = \frac{a+b}{a}$$

据题意,首次缺级为第四级,即 k=4, k'=1

狭缝宽度为
$$a = \frac{1}{4}(a+b) = \frac{d}{4} = 1.5 \times 10^{-6} (m)$$

(3) 由
$$d \sin \theta = k\lambda$$
, 及 $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$

最高级次 $k < \frac{d \sin \pi/2}{\lambda} = \frac{d}{\lambda} = 10$, 考虑到缺级 $k = \pm 4, \pm 8, \cdots$,

实际呈现的全部级次为 $k = 0, \pm 1, \pm 2, \pm 3, \pm 5, \pm 6, \pm 7, \pm 9$.

**四、光栅光谱

衍射光栅的应用: 光栅光谱仪

衍射光谱

$$(a+b)\sin\theta = \pm k\lambda$$
 $(k=0,1,2,\cdots)$

入射光为白光时, λ 不同, θ_{k} 不同,按波长分开形成光谱。

§5 光的偏振

在17世纪初,水手们在游历冰岛后带回了一些冰洲石 (方解石)晶体(CaCO₃)到欧洲,它有一个有趣的性质, 通过晶体看起来,任何东西都成了两个,即呈现两个像。此 现象引起了惠更斯的注意,他在他的著作《光论》里对这现象 进行了很详细的论述。

DE LA LVMIERE.

Où font expliquées

Les causes de ce qui luy arrive

Dans la REFLEXION, & dans la REFRACTION.

Et particulierement

Dans l'etrange REFRACTION

DV CRISTAL DISLANDE,

Par C. H. D. Z.

Avec un Discours de la Cause

DE LA PESANTEVR.

Chez PIERRE VANDER AA, Marchand Libraire,
MDCXC

TREATISE

UN LIGHT

In which are explained
The causes of that which occurs

In REFLEXION, & in REFRACTION.

And particularly

In the strange REFRACTION

OF ICELAND CRYSTAL

By CHRISTIAAN HUYGENS.

Rendered into English
By SILVANUS P. THOMPSON.

MACMILLAN AND CO., LIMITED ST. MARTIN'S STREET, LONDON MCMXII.

由于惠更斯猜想光波与声波一样是纵波,因此,他想出的简单波动理论不能对这现象给出解释。之后,由于牛顿的微粒说占据上风,因此这个现象一直没有得到充分的解释。

光的干涉、衍射 ——> 光的波动性

光的偏振 ——> 光波是横波

横波与纵波 的区别

一、自然光和线偏振光

● 自然光:一般光源发出的光,包含各个方向的光矢量在所有可能的方向上的振幅都相等。可以把光矢量分解为互相垂直的两个光矢量分量。

注意 1. 二互相垂直方向是 任选的.

2. 各光矢量间无固定的相位关系.

$$I_x = I_y = \frac{1}{2}I_0$$

偏振光(线偏振光或完全偏振光)光振动只沿某一固定方向的光。

● 部分偏振光:某一方向的光振动 比与之垂直方向上的光振动占优势的 光为部分偏振光.

Ⅱ分量占优

符号表示

二、起偏和检偏

- ◆ **二向色性:某些物质能吸收某一方向的光振动,而只让与这个方向垂直的光振动通过,这种性质称二向色性.
- ◈ 偏振片:涂有二向色性材料的透明薄片.
- ◈ 偏振化方向:当自然光照射在偏振片上时,它只让某一特定方向的光通过,这个方向叫此偏振片的偏振化方向.

◆ 起偏器:使自然光成为线偏振光的装置.

检偏器:检查某一光是否为偏振光的装置.

三、马吕斯定律(1808年)

1808年, 法兰西学术院提议, 1810年物理奖比赛的题目 为"对于双折射给出数学理论,并且做实验证实"。法国科 学家马吕斯决定参与竞争。他做实验观察,日光照射于卢森 堡宫的玻璃窗,然后被玻璃反射出来的光束,假若入射角度 达到某特定数值,则这反射光与惠更斯观察到的折射光具有 类似的性质,他称这性质为"偏振"性质,并总结出马吕斯 定律:

$$I = I_0 \cos^2 \alpha$$

三、马吕斯定律(1808年)

例 有两个偏振片,一个用作起偏器,一个用作检偏器。当它们偏振化方向间的夹角为 30° 时,一束单色自然光穿过它们,出射光强为 I_1 ; 当它们偏振化方向间的夹角为 60° 时,另一束单色自然光穿过它们, 出射光强为 I_2 ,且 $I_1 = I_2$. 求两束单色自然光的强度之比 .

解 设两束单色自然光的强度分别为 I_{10} 和 I_{20} .

经过起偏器后光强分别为
$$\frac{I_{10}}{2}$$
 和 $\frac{I_{20}}{2}$

经过检偏器后
$$I_1 = \frac{I_{10}}{2}\cos^2 30^\circ$$
 $I_2 = \frac{I_{20}}{2}\cos^2 60^\circ$

$$: I_1 = I_2 \quad : \frac{I_{10}}{I_{20}} = \frac{\cos^2 60^\circ}{\cos^2 30^\circ} = \frac{1}{3}$$

四、布儒斯特定律

光反射与折射时的偏振

入射面:入射光线和法线所成的平面.

- ◆ 反射光 部分偏振光,垂直于入射面的振动大于平行于入射面的振动.
- ◆ 折射光 部分偏振光,平行于入射面的振动大于垂直于入射面的振动.

理论和实验证明: 反射光的偏振化程度与入射角有关.

布儒斯特定律(1815年)

当
$$\tan i_0 = \frac{n_2}{n_1}$$
 时,

讨论: (1) 反射光和折射光互相垂直.

$$\frac{\sin i_0}{\sin \gamma} = \frac{n_2}{n_1} \qquad \tan i_0 = \frac{n_2}{n_1} = \frac{\sin i_0}{\cos i_0}$$

$$\cos i_0 = \sin \gamma = \cos(\frac{\pi}{2} - \gamma)$$

$$i_0 + \gamma = \frac{\pi}{2}$$

i_0 : 布儒斯特角,或起偏角

(2) 根据光的可逆性,当入射光以 γ 角从 n_2 介质入射于界面时,此 γ 角即为布儒斯特角.

$$\cot i_0 = \frac{n_1}{n_2} = \tan(\frac{\pi}{2} - i_0) = \tan \gamma$$

讨论: 反射和折射光的偏振态

(起偏角 i_0)

例 一自然光自空气射向一块平板玻璃,入射角为布儒斯特角 i_0 ,问在界面2的反射光是什么光?

注意:一次起偏垂直入射面的振动仅很小部分被反射,所以反射,所以反射,所以反射偏振光很弱.

一般应用玻璃片堆产生偏振光.

对于一般的光学玻璃,反射光的强度约占入射光强度的7.5%,大部分光将透过玻璃.

(A)

玻璃门表面的 反光很强

(B)

用偏光镜减弱 了反射偏振光

(C)

用偏光镜消除了 反射偏振光 使 玻璃门内的人物 清晰可见

