Math 635 Leture 34

Thomas Cohn

4/9/21

Pontryagin Classes

Observe: $\mathrm{Pf}|_{\mathrm{so}(n)}: \mathrm{so}(n) \to \mathbb{R}$ (for n even) is $\mathrm{Ad}_{\mathrm{SO}(n)}$ -invariant. So $\mathrm{Pf}(\Omega)$ is independent of choice of frame, where Ω is the curvature matrix with respect to that frame. We also have the Chern-Weil morphism:

$$\underbrace{\left\{\operatorname{Ad}_{\operatorname{SO}(n)} \text{invariant polynomials on } \operatorname{so}(n)\right\}}_{I(\operatorname{so}(n))} \to \Omega^*(M)$$

where $p \mapsto p(\Omega)$. An amazing fact is that $p(\Omega)$ is always closed! So we get $I(so(n)) \to H_{dR}^*(M)$, the deRham cohomology.

Ex: Elements of I(so(r)) are Pontryagin polynomials. Let $A \in so(r)$ be skew-symmetric (as usual, with r even). We claim that $A^T = -A$ implies the characteristic polynomial is even.

$$\det(\lambda I - A) = \sum_{k=0}^{r/2} \lambda^{r-2k} P_k(A)$$

where $P_k(A)$ is homogeneous, and of degree 2r.

We can apply this idea to a rank-r vector bundle $\mathcal{E} \to M$. The idea is to use a metric on each fiber of \mathcal{E} to get an orthonormal frame, and then the connection to get curvature forms. We get $P_r(\Omega)$, a differential form of degree 4r. (Ω is the curvature matrix w.r.t. the orthonormal moving frame.) $[P_r(\Omega)] \in H^{4r}(M)$.

Thm: The cohomology classes are independent of the connection chosen – they're purely topological, and associated to \mathcal{E} .

So Gauss-Bonnet implies that $[\mathcal{K}dV] \in H^n(M)$ is independent of the metric.

Now, back to Gauss-Bonnet. We want to show

$$\int\limits_{M} \mathscr{K} dV = \frac{\operatorname{Vol}(S^{n})}{2} \chi(M) \qquad \text{using} \qquad \int\limits_{M} \mathscr{K} dV = \int\limits_{M} N^{*}(dV_{S^{n}})$$

where N is the Gauss spherical map.

Degree Theory: What happens when you pullback a top-degree form. (See Lee Differentiable Manifolds page 457.)

Preliminary (but still important) result:

Thm: Let M be a compact, connected, oriented manifold. (Note: It must have empty boundary.) Then the integration map

$$\int_{M}: H^{n}(M) \to \mathbb{R}$$
$$[\omega] \mapsto \int_{M} \omega$$

is an isomorphism! (We know it's well-defined by Stokes' theorem.) As a result, dim $H^n(M) = 1$.

Proof: We'll work with compactly-supported forms in open sets. Observe that \int_M is nonzero $-\int_M d\operatorname{Vol}>0$. We know \int_M is a linear map. So we need to show $\forall \omega \in \Omega^n(M)$ such that $\int_M \omega=0$, $\exists \eta \in \Omega^{n-1}(M)$ such that $d\eta=\omega$.

Step 1: Assume $\omega \in \Omega_0^n(\mathbb{R}^n)$ such that $\int_{\mathbb{R}^n} \omega = 0$. Then we claim $\exists \eta \in \Omega_0^{n-1}(\mathbb{R}^n)$ such that $d\eta = \omega$. Observe that the homotopy axiom implies $H^k(\mathbb{R}^n) = 0$ for k > 0, so such an η exists, and the claim is that η can be chosen to have compact support. For this, see Lemma 17.27 in Lee.

Now, back to the manifold case. Let $\{U_i\}$ be a finite cover M (possible by compactness) such that $\forall i, U_i \cong \mathbb{R}^n$ diffeomorphically. WOLOG if $M_k = U_1 \cup \cdots \cup U_k$, then $M_k \cap U_{k+1} = \emptyset$. (Use M's connectedness, and renumber the U_i if necessary. If no such U_i existed, then union all of them, and we would have two disjoint open sets that cover M, making it disconnected. Oops!)

Introduction: If $\omega \in \Omega_0^n(M_k)$ is such that $\int_{M_k} \omega = 0$, then $\exists \eta \in \Omega_0^{n-1}(M_k)$ such that $d\eta = \omega$. For k = 1, see the previous claim. Then use induction and a partition of unity to complete the proof. (See Lee for the full details.)

Defn: Let $F: M_1 \to M_2$ be smooth, where M_1 and M_2 are compact, connected, oriented manifolds of the same dimension, dim $M_1 = \dim M_2 = n$. Consider $F^*: H^n(M_2) \to H^n(M_1)$. By the previous result, we know that $\dim H^n(M_2) = \dim H^n(M_1) = 1$. Thus, F^* is multiplication by a scalar, and that number is called the degree of F.

 $\forall c \in H^n(M_2), \, \int_{M_1} F^*(c) = \deg F \int_{M_2} c.$ That is,

$$H^{n}(M_{2}) \xrightarrow{F^{*}} H^{n}(M_{1})$$

$$\downarrow^{\int_{M_{2}}} \qquad \downarrow^{\int_{M_{1}}}$$

$$\mathbb{R} \xrightarrow{\text{mult. by deg } F} \mathbb{R}$$

Thm: Let $q \in M_2$ be a regular value of F. Write $F^{-1}(q) = \bigcup_{i=1}^{N} \{p_i\}$. This is a zero-manifold and compact, so it's the finite disjoint union of points. Define

$$(-1)^{p_i} = \begin{cases} 1 & dF_p \text{ preserves orientation} \\ -1 & \text{otherwise} \end{cases}$$

Then

$$\deg(F) = \sum_{i=1}^{n} (-1)^{p_i} \in \mathbb{Z}$$

Proof: F is a local diffeomorphism at each p_i . So we can argue that $\exists V$ a neighborhood of q and U_i a neighborhood of each p_i such that $F|_{U_i}^V$ is a diffeomorphism. That is, F is evenly covered at q. Let $\omega \in \Omega_0^n(V)$ be a bump function such that $\int_V \omega = \int_{M_2} \omega = 1$ (by extending ω to 0 on M_2 outside of V). What is $\int_{M_1} F^* \omega$? Well, it's equal to $\deg(F) \cdot 1 = \deg(F)$. But $F^{-1}(V)$ is the union of the U_i 's, so

$$\int_{M_1} F^*(\omega) = \sum_{i=1}^N \int_{U_i} (F|_{U_i})^* \omega = \sum_{i=1}^N (-1)^{p_i}$$
=±1 by diffeo invariance of integrals

Cor: Gauss-Bonnet reduces to the (purely topological) statement $deg(N) = \frac{1}{2}\chi(M)$ $(N: M \to S^n)$ is the Gauss map).

Observe:

- 1. If $F, F': M_1 \to M_2$ are homotopic, then $\deg(F) = \deg(F')$, because $F^* = (F')^*$.
- 2. If $M_1 = \partial W$, and $F: M_1 \to M_2$ extends to $\tilde{F}: W \to M_2$, hen the degree of F is 0.

$$M_1 \xrightarrow{F} M_2$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad$$

Prove this by using Stokes theorem to show $F^* = 0$.