Introduction to Data Science for Biology

UMass Boston Spring 2016

We Are Awash in Data

₩ FiveThirtyEight

Politics

Sports

Science & Health

Económics

Culture

First episode: Elections podcast

2016 FLECTION

The Republican Party May Be Failing

BY NATE SILVER

THE LATEST

T-00 PH

You'd Have To Be Pretty Dumb To Fix A Tennis Match This Week

5:55 PW

Elections Podcast: One Week To lowa

633 PM

What Do Anti-Abortion Demonstrators Want (Besides An End To Abortion)?

4:39 PM

The Republican Party May Be Failing

231 FM

Spurs-Warriors Is The Best Defense-Offense Clash In NBA History

12:55 PM

Tom Brady Couldn't Take The Pressure

INTERACTIVES

Primary Forecasts

UPDATED 4 HOURS AGO

Chance of winning lowa

		FORECAST	POLLS PLUS FORECAST
9	Clinton	674	80%
0	Sanders	33%	20%
0	O'Malley	<19	<15

SEE FORECASTS FOR MORE PRIMARIES

NFL Predictions

UPDATED 1 DAY AGO.

21

Chance of winning the Super Bowl

*	Carolina	58% -
4	Denver	41%

TENNED

2016 Primary Forecasts

The odds and polls for presidential primaries and caucuses, updated daily.

Read more: How this works =

UPDATED 6:43 PM EST : JAN 25, 2018

lowa Republican caucuses

According to our latest polls-only forecast, Donald Trump has a 56% chance of winning the Iowa caucuses.

Brady's greatness hasn't expired, but Pats ca it forever

PATRIOTS SCOREBOARD

Scoreboard

Sun, Jan 24

AFC Championship

Final 1 2 3 4 Tot New England 6 3 3 6 18 Denver 7 10 0 3 20

Preview Box Gameview Recap

Leader New England Denver

Passing T. Brady 310 P. Manning 176
Rushing T. Brady 13 C. Anderson 72
Receiving R. Gronkowski 144 E. Sanders 62

Leaders

Pass Yds:	T. Brady	4770
Pass TDs:	T. Brady	36
Rush Yds:	L. Blount	703
Rush TDs:	L. Blount	6
Rec Yds:	R. Gronkowski	1176
Rec TDs:	R. Grankowski	11
Int:	L. Ryan	4
Sacks:	C. Jones	12.5

AFC East Division

Team	W.	L	T	Pct
xy-New England	12	4	0	.750
New York	10	6	0	.625
Buffalo	8	8	0	.500
Miami	6	10	0	.375

Full Standings

25 Best Jobs For Work-Life Balance (2015) Grandow Team | October 20, 2015

Maintaining a healthy work-life balance can be tough in today's work environment, but some jobs.

1. Data Scientist

- Work-Life Balance Rating: 4.2
- Salary: \$114,808
- Number of Job Openings: 1,315

1. Data Scientist

- Work-Life Balance Rating: 4.2.
- Salary: \$114,808
- Number of Job Openings: 1,315

SYNTENIC ASSEMBLIES FOR CG15386

	STATENIC ASSEMBLIES FOR CG15386
MD106	ATGCTTAGTAATCCCTACTTTAAGTCCGTTTTGTGGCTGATTGGCTTCGGAGGAATGGG
NEWC	ATGCTTAGTAATCCTTACTTTAAATCCGTTTTGTGGCTGATTGGCTTCGGAGGAATGGG
W501	ATGCTTAGTAATCCCTACTTTAAGTCCGTTTTGTGGCTGATTGGCTTCGGAGGAATGGG
MD199	ATGCTTAGTAATCCCTACTTTAAGTCCGTTTTGTGGCTGATTGGCTTCGGAGGAATGGG
C1674	ATGCTTAGTAATCCCTACTTTAAGTCCGTTTTGTGGCTGATTGGCTTCGGAGGAATGGG
SIM4	ATGCTTAGTAATCCCTACTTTAAGTCCGTTTTGTGGCTGATTGGCTTCGGAGGAATGGG
MD106	CTACGGCCTAATGGTGCTAACAGAGCCGAACGTCGACAAAATAGAGCGCATCAAAGCCT
NEWC	CTACGGCCTAATGGTGCTAACCGAGCCGAACGTCGACAAAATAGAGCGCATCAAAGCCT
W501	CTACGGCCTAATGGTGCTAACCGAGCCGAACGTCGACAAAATAGAGCGCATCAAAGCCT
MD199	CTACGGCCTAATGGTGCTAACCGAGCCGAACGTCGACAAAATAGAGCGCATCAAAGCCT
C1674	CTACGGCCTAATGGTGCTAACCGAGCCGAACGTCGACAAAATAGAGCGCATCAAAGCCT
SIM4	CTACGGCCTAATGGTGCTAACCGAGCCGAACGTCGACAAAATAGAGCGCATCAAAGCCT
MD106	CCGTTTCAAGTACCAAACTGAGTGCGGATGAGCAGCGAAAGGCTCTGTTTATGAAGAAG
NEWC	CCGTTTCAAGTACCAAACTGAGTGCGGATGAGCAGCGAAAGGCTCTGTTTATGAAGAAG
W501	CCGTTTCAAGTACCAAACTGAGTGCGGATGAGCAGCGAAAGGCTCTGTTTATGAAGAAG
MD199	CCGTTTCAAGTACCAAACTGAGTGCGGATGAGCAGCGAAAGGCTCTGTTTATGAAGAAG
C1674	CCGTTTCAAGTACCAAACTGAGTGCGGATGAGCAGCGAAAGGCTCTGTTTATGAAGAAG
SIM4	CCGTTTCAAGTACCAAACTGAGTGCGGATGAGCAGCGAAAGGCTCTGTTTATGAAGAAG
WD 1 0 6	
MD106	CTGCAGGAGGCGTCCACCACCAGTGCCCCAATCTACAGGTCAGCGGCCGAGAAATAG
NEWC	CTGCAGGAGGCGTCCACCAGTGCCCCAATCTACAGGTCATCGGCCGAGAAATAG
W501	CTGCAGGAGGCGTCCACCACCACTGCCCCAATCTACAGGTCATCGGCCGAGAAATAG
MD199	CTGCAGGAGGCGTCCACCAGTGCCCCAATCTACAGGTCAGCGGCCGAGAAATAG
C1674	CTGCAGGAGGCGTCCACCAGTGCCCCAATCTACAGGTCAGCGGCCGAGAAATAG
SIM4	CTGCAGGAGGCGTCCACCACCAGTGCCCCAATCTACAGGTCAGCGGCCGAGAAATAG

We Are Awash in Data

Data Takes Many Forms

- Athletic performance
- Timeseries of polls
- Sequence Data
- Measurements of physical properties
- Maps (often with many layers) with information
- Timings of events
- Images
- Network descriptions
- Plain text

Data is at the Center of Biology

Classical Tools Not Up to the Task

Classical Tools Not Up to the Task

Introduction to Data Science for Biology

Who Are You?

Our Semester

Learn how to create efficient understandable datasets for biological research

YEAR	MONTH	DAY DATE	SITE T	RANSECT SP_CODE	0-20 IN	20-40 IN	40-20 OFF
2013	7	247/24/2013	BAKER	1HOAM	1	1	2
2013	7	247/24/2013	BAKER	1CAIR	1	1	1
2013	7	247/24/2013	BAKER	1CABO	0	1	1
2013	7	247/24/2013	BAKER	1ASFO	0	6	7
2013	7	247/24/2013	BAKER	2HOAM	1	3	2
2013	7	247/24/2013	BAKER	2CAIR	2	8	11
2013	7	247/24/2013	BAKER	2CABO	0	1	2
2013	7	247/24/2013	BAKER	2CAMA	1	9	5
2013	7	247/24/2013	BAKER	2ASFO	0	4	6
2013	7	247/24/2013	BAKER	2ASRU	0	0	1

Learn common programming language(s) associated with data science

Build a vocabulary of visualization tools that enable students to see what their data means

This is How I Know I Failed You

Develop an understanding of how to manipulate data for the purposes of seeing useful patterns

TRIED LEARNING R

DIDN'T INSTALL DPLYR

Understand how to unify data from disparate sources to build a larger picture of biological phenomena

Understand how to unify data from disparate sources to build a larger picture of biological phenomena

lusterDist_0.09

Learn basic analytical tools for deriving statistical inference from data

This Class

Course Web Page

The Byrnes Lab Home Members Research Publications Prospective Students Resources Teaching Introduction to Data Science for Biology Weekly Schedule: Tuesday & Thursday 11-12:30, Lab Wednesday 12:30-3:30 Type and press enter to search. Instructor: Jarrett Byrnes Recent Posts Email: jarrett.byrnes@umb.edu New Paper: Biodiversity Change & Office Hours: Prof. Byrnes will hold office hours Thursday from 2:00-3:30 Human Impacts in the See Reef Life in Your Back Yand. TA: Jillian Dunic New Paper: Biodiversity enhances Office Hours:TBD ecosystem multifunctionality Talking Xelps and Climate Change at the Course Objectives: New England Aquations Learn how to create efficient understandable datasets for biological research. Floating Forests: A Kelp Citizen Science . 2. Build a vocabulary of visualization tools that enable students to see what their data means. Recent Comments 3. Develop an understanding of how to manipulate data for the purposes of seeing Piecewise structural equation modeling useful patterns. in ecological research [4. Understand how to unify data from disparate sources to build a larger picture of sample(SCOLDGY) on SEM biological phenomena. Archives 5. Learn basic analytical tools for deriving statistical inference from data. July 2015. Learn common programming languages associated with data science June 2015

http://byrneslab.net/teaching/data_science/

"Text"book & Weekly Readings

http://r4ds.had.co.nz/

Lab

Coding!

• TA: Jillian Dunic

Guided examples and then challenge problems

Assignments

- Weekly problem sets
 - Variable in scope!
 - May involve elements of your final project
- Can be started in lab
 - Will highlight concepts from that week

Final Project

- Analysis of a data set of your choosing
 - From your own work
 - Found data
- Data mashups encouraged!
 - Bring together multiple public sources of data
- Proposals due in two weeks
 - What data will you be using?
 - What question do you want to answer?

Next Time: Data Collection, Entry, and How to Make Your Data Usable

(and have future you avoid wanting to kill now you)

(And listed to the Not So Standard Deviations Podcast)