Review midterm 1

Hanying

HW 4 common mistakes

Sample mean / Population mean

Sample mean is a descriptive statistics. $\bar{X} = \frac{\sum_{i=1}^{N} X_i}{N}$.

Population mean (Expectation) Population mean is a population parameter. Theoretically, it represents mean of an infinite number of realizations of X. Computationally, $\mu_x = E(X) = \sum_x x * P(X = x)$.

HW2 Exercise 2

The table below tabulates the number of errors detected on the 100 disks produced in a day.

Number of Defects	Number of Disks
0	41
1	31
2	15
3	8
4	5

Calculate the mean number of errors detected on the 100 disks.

$$(41*0+31*1+15*2+8*3+5*4)/100 = 1.05$$

HW2 Exercise 1

There are n=12 numbers in a sample, and the mean is $\bar{x}=24$. The minimum of the sample is accidentally changed from 11.9 to 1.19. Is it possible to determine the direction (increase/decrease) in which the mean \bar{x} changes? And how much the mean changes? If so, by how much does it change? If not, why not?

The original mean is 24, which means the original total is 12 * 24 = 288.

The new total is 288 - 11.9 + 1.19 = 277.79. So, the mean is 277.29/12 = 23.1075, so the mean decreased by 24 - 23.1075 = 0.8925.

HW2 Exercise 3

A certain reaction was run several times using each of two catalysts, A and B. The catalysts are supposed to control the yield of an undesireable side product. Results, in units of percentage yield, for 25 runs of catalyst A and 23 runs of catalyst B are given below and also in Catalysts.csv.

In question (c), we obtained that the mean of observed catalyst A is 4.148, and the mean of observed catalyst B is 4.073913. Calculate the mean of combined data from the summary measures in part (c) along with the sample sizes.

(25(4.148) + 23(4.074))/48 = 4.112542.

Probability (HW 3 Exercise 1)

A geneticist is studying two genes. Each gene can be either dominant or recessive. A collection of 100 individuals is categorized and found to have 58 individuals with both genes dominant, 6 individuals with both genes recessive and a total of 70 Gene 2 dominant individuals.

X	Gene 2 Dominant	Gene 2 Recessive	Total
Gene 1 Dominant	58	24	82
Gene 1 Recessive	12	6	18
Total	70	30	100

Marginal probability $P(A) = \frac{n(A)}{n}$.

Example: What is the probability that a randomly sampled individual from this study has Gene 1 dominant? 82/100 = 0.82.

And
$$P(A \text{ and } B) = \frac{n(A \text{ and } B)}{n}$$

Example: What is the probability that a randomly sampled individual from this group has Gene 1 and Gene 2 dominant?

$$58/100 = 58/100.$$

Or
$$P(A \text{ or } B) = \frac{n(A \text{ or } B)}{n} = P(A) + P(B) - P(A \text{ and } B)$$

Example: What is the probability that a randomly sampled individual from this group has Gene 1 or Gene 2 dominant?

$$(58 + 24 + 12)/100 = 94/100.$$

$$82/100 + 70/100 - 58/100 = 94/100.$$

When P(A or B) = P(A) + P(B)? - Mutually exclusive.

X	Gene 2 Dominant	Gene 2 Recessive	Total
Gene 1 Dominant	58	24	82
Gene 1 Recessive	12	6	18
Total	70	30	100

Conditional probability $P(A|B) = \frac{P(A \text{ and } B)}{P(B)}$.

$$(P(A \text{ and } B) = P(B) * P(A|B).)$$

Example: What is the probability that a randomly sampled individual from this study has Gene 2 dominant, given that we know they have Gene 1 dominant?

$$P(Gene2Dom|Gene1Dom) = 58/82 = 0.7073.$$

Independence

A and B are independent

$$\iff P(A|B) = P(A)$$

$$\iff P(B|A) = P(B)$$

$$\iff P(A \text{ and } B) = P(A) \times P(B)$$

Example: The genes are said to be in linkage equilibrium if the event that Gene 1 is dominant is independent of the event that Gene 2 is dominant. Are these genes in linkage equilibrium in this group of 100 individuals?

in linkage equilibrium \iff Gene 1 is dominant is independent of the event that Gene 2 \iff P(Gene 2 Dominant|Gene 1 Dominant) = <math>P(Gene2Dominant).

 $P(\text{Gene 2 Dominant}|\text{Gene 1 Dominant}) = 0.7073 \neq P(\text{Gene2Dominant}) = 0.70.$

Not in linkage equilibrium.

X	Gene 2 Dominant	Gene 2 Recessive	Total
Gene 1 Dominant	??		
Gene 1 Recessive		6	
Total	70		100

Independence

$$A \text{ and } B \text{ are independent}$$

$$\iff P(A|B) = P(A)$$

$$\iff P(B|A) = P(B)$$

$$\iff P(A \text{ and } B) = P(A) \times P(B)$$

Example: . How many individuals in this sample would have both genes dominant if the event of Gene 1 dominant is independent of the event of Gene 2? Make sure to show how you calculated your answer.