

Para dinostrario pademos usar binomio di Newton con X=y=1 y n, de donde $\frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}$ Hay strus dimostraciones por doble contro y porinducción Problema Caintos subcenjuntos de un conjunto con n elementes complen que tienen una contidad móltiplo de 3 elementos? Sol. El primer paso es observar que el valor buscado $a_{n} = \begin{pmatrix} h \\ 0 \end{pmatrix} + \begin{pmatrix} h \\ 3 \end{pmatrix} + \begin{pmatrix} h \\ 6 \end{pmatrix} + \begin{pmatrix} h \\ q \end{pmatrix} + \dots$ Complementariamente, también explorane mos

- Dos son iguales
- La otra que es distinta, o es uno mayor, o uno menor que los que son iguales.
- Cuando n es múltiplo de 3, el diferente es a_n.
- Cada que a_n es el diferente, se alterna si es el mayor o menor.
- Si n es par, el diferente es mayor, si n es impar, el diferente es menor.

$$a_{n+1}(n+1) + (n+1) + (n+1) + (n+1) + \dots$$
 $a_{n+1}(n) + (n+1) + (n+1) + (n+1) + \dots$
 $a_{n+1}(n) + (n+1) + (n+1) + (n+1) + \dots$
 $a_{n+1}(n) + (n+1) + (n+1) + (n+1) + \dots$
 $a_{n+1}(n) + (n+1) + (n+1) + (n+1) + \dots$
 $a_{n+1}(n) + (n+1) + (n+1) + (n+1) + (n+1) + \dots$
 $a_{n+1}(n) + (n+1) +$

Obs
$$1+\omega+\omega^{2}=0$$
.

Range la Solution, Homanues

 $2^{n}=(1+1)^{n}=(\frac{n}{2})+[\frac{n}{2}]+(\frac{n}{2})$

Duasiones Si tenemos un conjunto X, una su resión es una función Usualmente simplificanos la notación a_(i) por Intuitibamente es tomar términos as, a, a, a, a, an X Problema Sean a y 6 números neales positivos. De Linimos suasiones Eans y Ebn cono signe: Pervisiva do = a bo = b Obs 5.p.9 935 Ont 1 = ant by but 1 = Vonby. Convergentes. CEXISTER LOS CIMITES CIM an y lim by? Si si, icules son? Una explorución computacional sugline. an es decrecture . an 3 on. · Convergen y ambas convergen a limismo. es medente anish reales positivos,

¿ Será an de checiente? ¿ an? Est comple? Si. Para esto se heaviene anton & an .. an decreciente. lana by, es checiente (=7 by+17 by (=> Vbnan > by dicreciente a, 20, 7 a, 7 Acotadas bo ≤ b1 ≤ bz ≤ · · · creciente. La sucesión (an) está acotada interiormente por la suasión { bh? superior mete por trun. 0; 75; 360 6; 41, 400 Como Eans duricime y acotada interiormente, tiene uy limite A « Ebns creciente y acotada superiormente, ", "

Venemos A=B ahora que ¿ Cómo an-bn! 45 anton -Oly-by Unt 1 - but 1 = y an bn antbn an-bn s (=> Janby by & Vanbn Onti Así, an-on -p41 inductivamente lo tanto ant, -but Pov ASÍ lim any - lim bn+1 = A-B 70 lin Onty-but1 = لهجما n-700 h->B A = BSol tanto 5

	Sucesiones he	cup strus.			
_	in } en X sat			orden K	. 51
existe una función f:	XX di	k variables	tal	que	
$d_{n+k} = 1$	J (My , My)	., antk-1)	Para tod	n 170	
Obs. Si re convan los de orden K, entonas	primeros K	términos de	U44 S	uaston.	newhsiva
Det. Pecimos que una		nechslug (1	hear de c	or den K	Si
1 es una tención			\ \		
ant = 4 (an anti,					
Ljuspio La suasion c	$= \beta_1 = 1$	res necursiva,	Uneal a	e groun	1 C, (on