Statistics II: Introduction to Inference

Problem set 1

In all the following problems, X_1, \ldots, X_n represent a random sample of size n from a distribution F_{θ} . The specific form of the family F_{θ} will be provided in each individual problem.

- 1. Let F_{θ} be Binomial (m, ρ) where $\theta = \rho$.
 - (a) Consider the class of linear estimators of ρ , i.e., the estimators of the form $T_{\mathbf{l}}(\mathbf{X}) = \sum_{j=1}^{n} l_{j}X_{j}$, $l_{j} \in \mathbb{R}, \ j = 1, \ldots, n$. Find conditions on $\mathbf{l} = (l_{1}, \ldots, l_{n})'$ under which $T_{\mathbf{l}}(\mathbf{X})$ is an unbiased estimator of ρ .

[Let l^* be a choice of l which satisfies the condition obtained in part (a). Then the estimator obtained by replacing l by l^* in $T_l(\mathbf{X})$ is called a linear unbiased estimator of ρ .]

- (b) Find the variance of $T_1(\mathbf{X})$. Denote it by σ_1^2 .
- (c) Minimize σ_1^2 with respect to 1 subject to the constraint obtained in part (a).

[Let the solution obtained in part (c) be l^* . The estimator obtained by replacing l by l^* in $T_l(\mathbf{X})$ is called the Best Liner Unbiased Estimator (BLUE).]

- (d) Is the BLUE same as the UMVUE of ρ ?
- 2. Let F_{θ} be some distribution with mean μ and variance σ^2 (i.e., $E(X_1) = \mu$ and $var(X_1) = \sigma^2$), and $\theta = (\mu, \sigma^2)$. Find the BLUE for μ .
- 3. Let F_{θ} be exponential(λ) distribution with the pdf

$$f_{\lambda}(x) = \lambda \exp\{-\lambda x\}, \quad \lambda > 0, \ x > 0,$$

and $\theta = \lambda$.

- (a) Find the UMVUE of the population mean $\psi(\theta) = \theta^{-1}$.
- (b) Is it an efficient estimator?
- 4. Let F_{θ} be Poisson(λ) distribution and $\theta = \lambda$.
 - (a) Find the UMVUE of θ .
 - (b) Is it an efficient estimator?
- 5. Let F_{θ} be uniform $(0, \theta)$ distribution. The highest order statistics $X_{(n)} = \max\{X_1, \dots, X_n\}$ is a complete and sufficient statistic (CSS) for this class of distributions. Can you identify the UMVUE of θ ?
- 6. Let F_{θ} be $normal(\mu, \sigma^2)$ and $\theta = (\mu, \sigma^2)$. Consider the class of estimators of the form

$$S_{a_n}^2 = \frac{\sum_{i=1}^n (X_i - \bar{X}_n)^2}{a_n}, \quad a_n > 0.$$

Find the estimator which minimizes the MSE in estimating σ^2 in this class. What is the bias associated with the best estimator?

[Let
$$\chi = \sum_{i=1}^n (X_i - \bar{X}_n)^2$$
. You may use the fact that $E(\chi) = (n-1)\sigma^2$ and $var(\chi) = 2(n-1)\sigma^4$]

1

- 7. Let F_{θ} be normal (μ, σ^2) and $\theta = (\mu, \sigma^2)$.
 - (a) Find the UMVUE of μ .
 - (b) Find the UMVUE of σ^2 .
- 8. Let F_{θ} be $normal(\mu, 1)$ and $\theta = \mu$. Consider the class of linear estimators $T_{\mathbf{l}}(\mathbf{X})$ for μ . Show that minimizing the MSE of $T_{\mathbf{l}}(\mathbf{X})$ with respect to \mathbf{l} does not lead to a valid estimator.
- 9. The waiting time (in whole minutes) for a bus is distributed as a Poisson(λ) distribution. We are interested in estimating the probability that the waiting time is at least one minute, i.e.,

$$\psi(\lambda) = P(X \ge 1) = 1 - \exp(-\lambda).$$

To estimate this probability, we propose collecting the waiting times of n individuals, denoted as X_1, \ldots, X_n . Assuming X_1, \ldots, X_n are independently distributed, find an unbiased estimator of $\psi(\lambda)$.

10. Suppose n = 10 individuals throw a biased die independently, continuing until they roll a *six*. The number of tosses for each person are as follows:

We are interested in estimating the probability of rolling a six, denoted as p. Find the UMVUE of p.