Lista de exercícios B

Exercício 1

Realize as conversões entre os sistemas de numeração abaixo. Atenção, não adianta apenas preencher as tabelas, sem haver o desenvolvimento de cada conversão!

- 1. 0b100011010000 para decimal;
- 2. 0b100011010000 para hexadecimal;
- 3. 0b100011010000 para octal;
- 4. 4357 para binário;
- 5. 4357 para hexadecimal;
- 6. **4357** para octal;
- 7. 0x56B para binário;
- 8. 0x56B para decimal;
- 9. 0x56B para octal;
- 10. 06354 para binário;
- 11. 06354 para decimal;
- 12. 06354 para hexadecimal.

Exercício 2

Codifique os números inteiros decimais conforme solicitado abaixo, **considerando palavras de dez bits**. Todos os resultados devem ser, ao final, escritos em hexadecimal. Atenção, deve haver o desenvolvimento de cada conversão!

- 1. 502 para sinal-magnitude (SM);
- 2. 502 para complemento-de-um (CD1);

- 3. 502 para complemento-de-dois (CD2);
- 4. -502 para sinal-magnitude (SM);
- 5. -502 para complemento-de-um (CD1);
- 6. -502 para complemento-de-dois (CD2);
- 7. 643 para sinal-magnitude (SM);
- 8. 643 para complemento-de-um (CD1);
- 9. 643 para complemento-de-dois (CD2);
- 10. -643 para sinal-magnitude (SM);
- 11. -643 para complemento-de-um (CD1);
- 12. -643 para complemento-de-dois (CD2).

Exercício 3

Escreva o valor em decimal dos números codificados em SM/CD1/CD2 abaixo e representados em binário/octal/hexadecimal. Considere que as palavras já estejam com a quantidade correta de bits. Atenção, deve haver o desenvolvimento de cada conversão!

- 1. 0b11101100 codificado em sinal-magnitude (SM);
- 2. 0657 codificado em complemento-de-um (CD1);
- 3. 0x835 codificado em sinal-magnitude (SM);
- 4. 0x835 codificado em complemento-de-um (CD1);
- 5. 0x835 codificado em complemento-de-dois (CD2);
- 6. 0x735 codificado em complemento-de-dois (CD2);

Exercício 4

Converta a sequência de dígitos hexadecimais abaixo para ASCII, usando a tabela disponível aqui.

5072ed6e63697065205068696c6970206d6f72726520616f7320393920616e6f73

Exercício 5

Agora, considere um filme descomprimido com resolução 4K, resolução de cores de 24 bpp, taxa de quadros de 60 fps e exatos 35 minutos de duração. Qual é o tamanho desse filme em bytes?

Exercício 6

Considere o sinal analógico abaixo, que dura exatamente um segundo. Faça a digitalização desse sinal, considerando resolução de cinco bits, taxa de amostragem a cada 0.2 seg (ou 1/0.2=5 Hertz), começando no instante t=0. Dica: na quantização, o valor do sinal deve ser o mais possível de algum dos valores da tabela abaixo!

Sequência de bits	Valor de tensão
00000	-1,0000
00001	-0,9355
00010	-0,8710
00011	-0,8065
00100	-0,7419
00101	-0,6774
00110	-0,6129
00111	-0,5484
01000	-0,4839
01001	-0,4194
01010	-0,3548
01011	-0,2903
01100	-0,2258
01101	-0,1613
01110	-0,0968
01111	-0,0323
10000	0,0323
10001	0,0968
10010	0,1613
10011	0,2258
10100	0,2903
10101	0,3548
10110	0,4194
10111	0,4839
11000	0,5484
11001	0,6129
11010	0,6774
11011	0,7419
11100	0,8065
11101	0,8710
11110	0,9355
11111	1,0000