Matemática Discreta 2 **Curso 2008**

Universidad de la República Facultad de Ingeniería Instituto de Matemática y Estadística

Soluciones del segundo parcial de Matemática Discreta 2. 28 DE JUNIO DE 2008.

Ejercicio 1. Si G es un grupo, denotamos por $\hat{G} = \{g^2 : g \in G\}$ el conjunto de los cuadrados en G.

- i) Probar que si G es abeliano entonces \hat{G} es un subgrupo de G.
 - 1) Tenemos que $e = e^2 \in G$
 - 2) Si $g_1^2, g_2^2 \in \hat{G}$ entonces $g_1^2 g_2^2 = (g_1 g_2)^2$ (igualdad válida para grupos abelianos). 3) Si $g^2 \in \hat{G}$ entonces $(g_2)^{-1} = (g^{-1})^2 \in \hat{G}$.

Las tres condiciones anteriores aseguran que $\hat{G} < G$.

ii) Probar que si $(xy)^3 = x^3y^3$ para todo $x, y \in G$ entonces \hat{G} es un subgrupo de G.

Observar que las partes 1) y 3) valen para todo grupo, por lo tanto solo hace falta chequear que es cerrado por producto.

Como $(xy)^3 = x^3y^3 \Rightarrow x^2y^2 = (yx)^2$ lo cual prueba que \hat{G} es cerrado por el producto, por lo anteriormente mencionado $\hat{G} < G$.

iii) Si $G = S_3$, ¿Es \hat{G} un subgrupo de G?

Los cuadrados son pares así que $\hat{G} \subset A_3$, como A_3 es abeliano, entonces $\hat{G} < A_3 < S_3$.

iv) Si $G = D_4$, ¿Es \hat{G} un subgrupo de G?

Composición de una simetría consigo misma da la identidad, composición de una rotación que fija el cuadrado consigo misma da la identidad ó r (donde r es la rotación de 180° con centro en el centro del cuadrado). Así que $\hat{G} = \{id, r\}$ como $r \circ r = id$, en este caso también resulta ser \hat{G} un subgrupo de G.

Ejercicio 2. Sea G un grupo y N un subgrupo de G, definimos el centralizador de N como $C(N) = \{ g \in G : gn = ng \ \forall n \in N \}.$

i) Probar que si $N \triangleleft G$ entonces $C(N) \triangleleft G$.

Observar que $C(N) = \bigcap_{n \in N} C_n$ donde C_n es el centralizador de n, como $C_n < G$ e intersección de subgrupos es subgrupo, resulta C(N) < G.

Si $x \in C(N), g \in G$ y $n \in N$ entonces $(gxg^{-1})n = gx(g^{-1}ng)g^{-1} = g(g^{-1}ng)xg^{-1} = n(gxg^{-1})$ por lo tanto $C(N) \lhd G$ (en el segundo igual usamos que $g^{-1}ng \in N$ por ser $N \lhd G$ y usamos que $x \in C(N)$).

- ii) Decimos que un subgrupo N de G es característico si para todo automorfismo $\varphi \in Aut(G)$ se cumple que $\varphi(N) \subset N$ (se recuerda que $\varphi(N) = {\varphi(n) : n \in N}$).
 - a) Probar que si N es un subgrupo característico entonces $\varphi(N) = N$. Consideremos el automorfismo φ^{-1} , como N es característico $\varphi^{-1}(N) \subset N$ asi que $N \subset$ $\varphi(N)$ lo cual prueba la otra inclusión que faltaba.
 - b) Probar que si N es un subgrupo característico de G entonces C(N) también lo es. Sea $x \in C(N), \varphi \in Aut(G)$ y $n \in N$, por la parte anterior sabemos que $n = \varphi(n')$ con $n' \in N$ entonces $\varphi(x)n = \varphi(x)\varphi(n') = \varphi(xn') = \varphi(n'x) = \varphi(n')\varphi(x) = n\varphi(x)$ por lo tanto $\varphi(x) \in C(N)$.

Ejercicio 3.

- i) Sea $\phi: G_1 \to G_2$ un morfismo de grupos. Probar que si $x, y \in G_1$ $\phi(x) = \phi(y)$ si y solo si existe $k \in Ker(\phi)$ tal que x = ky.
 - (\Rightarrow) Si $k=xy^{-1}$ entonces $\phi(k)=\phi(x)\phi(y)^{-1}=\phi(x)\phi(x)^{-1}=e_2$ asi que $k\in Ker(\phi)$
 - (\Leftarrow) Si x = ky con $k \in Ker(\phi)$ entonces $\phi(x) = \phi(k)\phi(y) = \phi(y)$ pues $\phi(k) = e_2$ dado que $k \in Ker(\phi)$.
- ii) Si $|Ker\phi| = n$ y $h \in Im(\phi)$, probar que $\phi^{-1}(h)$ tiene n elementos.
 - Sea $h = \phi(y)$ con $y \in G_1$ y consideremos $f : Ker(\phi) \longrightarrow \phi^{-1}(h)$ tal que f(k) = ky. Por la parte anterior f está bien definida y es sobreyectiva, además si $f(k_1) = f(k_2) \Rightarrow k_1y = k_2y \Rightarrow k_1 = k_2$ por lo tanto f es una biyección.
- iii) Mostrar que los únicos elementos de orden finito en $(\mathbb{R}^*, .)$ son 1 y -1 $(\mathbb{R}^*$ es el conjunto de reales no nulos y la operación el producto usual de números reales).
 - Si |x| < 1 entonces $|x|^n < 1$ para todo $n \in \mathbb{Z}^+$ (por lo tanto $x^n \neq 1$ para todo $n \in \mathbb{Z}^+$).
 - Si |x| > 1 entonces $|x|^n > 1$ para todo $n \in \mathbb{Z}^+$ (por lo tanto $x^n \neq 1$ para todo $n \in \mathbb{Z}^+$).
 - Si |x| = 1 entonces x = 1 ó -1, ambos tienen orden finito.
- iv) Demostrar que los únicos subgrupos finitos de $(\mathbb{R}^*,.)$ son $\{1\}$ y $\{1,-1\}$.
 - Sea H fuese un subgrupo finito de \mathbb{R}^* y sea $x \in H$, como $|H| < \infty$ tenemos que x tiene que tener orden finito así que x = 1 ó -1. Así que $H \subset \{1, -1\}$ por lo tanto $H = \{1\}$ ó $\{1, -1\}$.
- v) Si G es finito, $\phi: G \to \mathbb{R}^*$, probar que $Im\phi = \{1\}$ ó $\{1, -1\}$. Concluir que $\sum_{g \in G} \phi(g) = |G|$ ó 0. $Im(\phi) < \mathbb{R}^*$ pues ϕ es un morfismo, y como G es finito, $Im(\phi)$ también lo será, así que por la parte anterior $Im\phi = \{1\}$ ó $\{1, -1\}$.
 - Si $Im(\phi)=\{1\}$ entonces $\phi(g)=1$ para todo $g\in G$ asi que en este caso $\sum_{g\in G}\phi(g)=\sum_{g\in G}1=|G|.$
 - Si $Im(\phi) = \{1, -1\}$, sabemos por la parte 2 que $\#\phi^{-1}(-1) = \#Ker(\phi) = \#\phi^{-1}(1)$ (es decir, la mitad de los elementos de G van a parar al 1 y la otra mitad al -1) y por lo tanto $\sum_{g \in G} \phi(g) = 0$.