Name: Kemas Muhamad Kevin

Nim : L200184033

Test 1. NOR Latch

1. Make and simulation this NOR Latch.

2. Based on your simulation.

			OutPut		
	S (Set)	R (Reset)	Q	Q'	
1	0	1	0	1	
2	0	0	0	1	
3	1	0	1	0	
4	0	0	1	0	
5	1	1	0	0	

3. Answer the question.

a. What will happen if we give the condition S = R = 0!

The result of Q and Q' would be detected or constan.

b. Why isn't the condition S = R = 1 used! Because it can break the comparison q = qnot.

Test 2. NAND Latch

1. Make and simulation this NAND Latch.

2. Based on your simulation.

			OutPut		
	S (Set)	R (Reset)	Q	Q'	
1	0	1	1	0	
2	1	1	1	0	
3	1	0	1	0	
4	1	1	0	1	
5	0	0	1	1	

- 3. Answer the question.
 - a. What will happen if we give the condition S = R = 0!

The result of Q and Q' will different.

- b. Why isn't the condition S = R = 0 used! Because it gives the same output.
- 4. Based on analysis circuit at flip-flop. What is your opinion about "flip-flop and latch is used by storage element":

If S=1, R=0. so the result of Q will follow input S although has been changed to zero.

Test 3. Flip-flop RS

2. Based on your simulation.

				OutPut	
	S (Set)	R (Reset)	CLOCK	Q	Q'
1	0	0	0	-	-
2	0	0	1	-	-
3	0	1	0	-	-
4	0	1	1	0	1
5	1	0	0	-	-
6	1	0	1	1	0
7	1	1	0	-	-
8	1	1	1	0	0

3. Answer the question.

a. What will happen if we give the condition S=R=1 and clock change from 1 to $0 \,!$

The result will be zero.

b. How that condition can be ?Because the clock is zero, so if which one between S or R is changed the input, the output will be same.

4. Explain "How does Flip flop RS"! Flip-flop RS does if the clock input is 1 and R or S is 1

Test 4. Flip-flop D

1. Make and simulation this Flip-flop RS.

2. Based on your simulation.

			OutPut		
	D	CLOCK	Q	Q'	
1	0	0	-	-	
2	0	1	0	1	
3	1	0	0	1	
4	1	1	1	0	
5	0	0	1	0	
6	0	1	0	1	
7	1	0	0	1	
8	1	1	1	0	

- 3. Explain how flip-flop D can does!

 If clock is used to store / lock the previous output condition.
- 4. What is the function of NOT gate of Flip-flop D compared Flip-Flop RS! In this case has 2 condition. On U3 has value is NOT D while U4 has value is D, so the result both of them will different result.

Test 5. Flip-flop JK

2. Based on your simulation.

				OutPut	
	J	K	CLOCK	Q	Q'
1	0	0	0	0	1
2	0	0	1	0	1
3	0	1	0	0	1
4	0	1	1	0	1
5	1	0	0	1	0
6	1	0	1	1	0
7	1	1	0	0	1
8	1	1	1	0	1

3. Answer the question.

a. What will happen if we give the condition J = K = 0 and clock rise up (change from 1 to 0)?

Clock will save the previous output condition.

- b. What will happen if J=K=1, clock rise up? The flip-flop can be adjusted or reset.
- 4. Explain "How does Flip flop JK"!

J & K are control input that determine what ever the flip-flop is going to do when receiving increased clock pulse.