Теоретическое домашнее задание от 01.10 Дифференциальные уравнения и динамические системы

Глеб Минаев @ 204 (20.Б04-мкн)

3 октября 2021 г.

Задача 5. Пусть γ_1 и γ_2 — два различных решения задачи Коши для уравнений y'=f(x,y) для входных данных (x_0,y_0) . Тогда рассмотрим функции

$$\delta := \gamma_2 - \gamma_1$$
 $g(x, y) := f(x, y + \gamma_1(x)) - f(x, \gamma_1(y)).$

Понятно, что g определена и непрерывна в той же окрестности точки (x_0, y_0) , а δ — нетривиальное (т.е. $\neq 0$) решение задачи Коши для уравнения y' = g(x, y) для входных данных (x_0, y_0) . При этом

$$|g(x,y)| = |f(x,y + \gamma_1(x)) - f(x,\gamma_1(y))| \le \varphi(|y|).$$

Следовательно,

$$|\delta'| \leqslant \varphi(|\delta|), \qquad \frac{\delta'}{\varphi(|\delta|)} \in [-1; 1].$$

Поскольку $\delta(0)=0$, но $\delta\not\equiv 0$, то есть некоторые a и b, что $\delta(a)$, что $\delta(a)=0$, $\delta((a;b])>0$. Действительно, мы живём в некоторой окрестности (x_0,y_0) , а множество точек, где $\delta\not=0$, есть тоже открытое множество, то оно является дизъюнктным объединением интервалов (при этом не вся окрестность, так как $\delta(0)=0$). Т.е. есть интервал (любой интервал из описанного разбиения), где $\delta\not=0$, а на концах $\delta=0$ (если определено; но точно определено хотя бы в одном из концов, так как иначе данный интервал совпадает с окрестностью, в которой мы живём). Тогда сузив интервал с одного из концов, получаем интервал (a;b), где $\delta((a;b))>0$, $\delta(a)=0$ и $\delta(b)>0$ (есть также вариант, где $\delta<0$ на (a;b], но там задача очевидна). Тогда мы имеем, для всякого $t\in(a;b)$, что

$$\int_{t}^{b} \frac{\delta'}{\varphi(|\delta|)} dx = \int_{t}^{b} \frac{1}{\varphi(\delta(x))} d\delta(x) = \int_{\delta(t)}^{\delta(b)} \frac{1}{\varphi(\lambda)} d\lambda,$$

и при этом

$$\left| \int_t^b \frac{\delta'}{\varphi(|\delta|)} dx \right| \leqslant \int_t^b \left| \frac{\delta'}{\varphi(|\delta|)} \right| dx \leqslant \int_t^b 1 dx = |b - t| \leqslant |b - a|.$$

Но тогда

$$+\infty = \int_{\delta(a)}^{\delta(b)} \frac{1}{\varphi(\lambda)} d\lambda = \lim_{t \to a^+} \int_{\delta(t)}^{\delta(b)} \frac{1}{\varphi(\lambda)} d\lambda \leqslant \lim_{t \to a^+} |b - a| = |b - a|$$

— противоречие. Значит δ тривиально, т.е. $\gamma_1 = \gamma_2$, т.е. (x_0, y_0) — точка единственности.