OBSERVACIONES DEL RETO 3

Martín Rincón Cod 201914114 Mariana Ruiz Cod 202011140

	Máquina 1	Máquina 2
Procesadores	Intel(R) Core(TM) i5-	Intel(R) Core(TM) i3-
	9300H CPU @ 2.40GHz	1005G1 CPU @ 1.20GHz
	2.40 GHz	1.19 GHz
Memoria RAM (GB)	16GB	8GB
Sistema Operativo	Windows 10 64-bits	Windows 10 Pro 64 bits

Tabla 1. Especificaciones de las máquinas para ejecutar las pruebas de rendimiento.

<u>Las mediciones se hicieron sobre el set de datos small ya que una de las maquinas no pudo cargar el siguiente set de datos en menos de 5 minutos.</u>

Carga del catálogo

Análisis de complejidad:

Se realizan varias cargas sobre listas, MAPs, y RBTs durante la carga; en cada una de estas estructuras se cargan los n eventos ingresados. En el caso de los maps se usa linear probing, en el caso en que cada uno de los n eventos tiene un artista_id diferente se tendrían n pares key-value; si se dan n colisiones, entonces se ejecutarían 1+2+...+n-1+n pasos, de modo que la complejidad seria O(n^2). Por otra parte, sabemos que las inserciones en la lista y los RBTs tienen complejidad O(n), de modo que la complejidad total de la carga de datos es O(n^2).

Carga del catálogo

Máquina	Consumo de Datos [kB]	Tiempo de Ejecución [ms]
1	183222.02	15808.07
2	102624 24	16217.05

Tabla 2. Comparación de consumo de datos y tiempo de ejecución para carga de catálogo para ambas máquinas

Requerimiento 1 (Grupal)

Análisis de complejidad: En el peor de los casos, el parámetro 1 abarca a todos los eventos, de modo que se tendrán que recorrer todos para verificar que cumplan la segunda condición; esto se traduce en complejidad O(nlogn), ya que se hacen n consultas en el RBT, y la complejidad de cada consulta es O(logn). Para este requerimiento se utiliza una función adicional que traduce las entradas del usuario a str que se utilizan en la función principal.

Sin embargo esta función tiene complejidad temporal O(1), por lo que no suman nada a la complejidad total del requerimiento.

Requerimiento 1

Má	quina	Consumo de Datos [kB]	Tiempo de Ejecución [ms]
	1	29	1053.76
	2	13,73	1149,73

Tabla 3. Comparación de consumo de datos y tiempo de ejecución del requerimiento 1 para ambas máquinas

Requerimiento 2 (Martín Rincón)

Análisis de complejidad:

Con el mismo argumento que para el requerimiento 1, si el rango de Liveness abarca todos los eventos, entonces se hacen n comparaciones, por lo que la complejidad es O(nlogn).

Requerimiento 2

Máquina	Consumo de Datos [kB]	Tiempo de Ejecución [ms]
1	26.32	1043.92
2	12.70	1217.259

Tabla 4. Comparación de consumo de datos y tiempo de ejecución del requerimiento 2 para ambas máquinas

Requerimiento 3 (Mariana Ruiz)

Análisis de complejidad:

Se usa el mismo argumento que en el requerimiento anterior, pero sobre Valence. La complejidad es O(nlogn).

Requerimiento 3

Máquina	Consumo de Datos [kB]	Tiempo de Ejecución [ms]
1	25.364	894.4
2	13,09	1059,90

Tabla 5. Comparación de consumo de datos y tiempo de ejecución del requerimiento 3 para ambas máquinas

Requerimiento 4 (Grupal)

Análisis de complejidad:

En este requerimiento se tiene una inserción en un MAP con estructura de datos Linear Probing; si el rango de tiempo abarca todos los eventos y cada evento tiene diferente artista, entonces la inserción de los n elementos en el map artistas tendrá complejidad O(n^2). El otro conjunto importante de operaciones es el recorrido de los n elementos, pero este tiene complejidad O(n), por lo tanto, la complejidad temporal de esta función será O(n^2). Para este requerimiento se utiliza una función adicional que traduce las entradas del usuario a una lista de tuplas con el nombre, el tempo mínimo y el tempo máximo que se utilizan en la función principal. Sin embargo, esta función tiene complejidad temporal O(1), por lo que no suma nada a la complejidad total del requerimiento.

Requerimiento 4

Máquina	Consumo de Datos [kB]	Tiempo de Ejecución [ms]
1	21.06	2039.12
2	14,306	1920,96

Tabla 6. Comparación de consumo de datos y tiempo de ejecución del requerimiento 4 para ambas máquinas