

Rings and Ideals

Filip Zieliński

University of the National Education Commission, Krakow.

2025

Introduction

Definition

A **ring** is a set R equipped with two binary operations denoted (+), (\cdot) satisfying the following conditions:

- **1.** The structure (R, +) is an abelian group.
- 2. $\forall x, y, z \in R : (x \cdot y) \cdot z = x \cdot (y \cdot z)$ (associativity)
- **3.** $\forall x, y, z \in R : x \cdot (y + z) = (x \cdot y) + (x \cdot z) \land (x + y) \cdot z = (x \cdot z) + (y \cdot z)$ (distributivity)

Introduction

Definition

A **ring** is a set R equipped with two binary operations denoted (+), (\cdot) satisfying the following conditions:

- **1.** The structure (R, +) is an abelian group.
- **2.** $\forall x, y, z \in R : (x \cdot y) \cdot z = x \cdot (y \cdot z)$ (associativity)
- 3. $\forall x, y, z \in R : x \cdot (y + z) = (x \cdot y) + (x \cdot z) \land (x + y) \cdot z = (x \cdot z) + (y \cdot z)$ (distributivity)

Additionally:

1. If there exists an identity in a monoid (R, \cdot) , we say that R is a ring with identity

Introduction

Definition

A **ring** is a set R equipped with two binary operations denoted (+), (\cdot) satisfying the following conditions:

- **1.** The structure (R, +) is an abelian group.
- **2.** $\forall x, y, z \in R : (x \cdot y) \cdot z = x \cdot (y \cdot z)$ (associativity)
- 3. $\forall x, y, z \in R : x \cdot (y + z) = (x \cdot y) + (x \cdot z) \land (x + y) \cdot z = (x \cdot z) + (y \cdot z)$ (distributivity)

Additionally:

- 1. If there exists an identity in a monoid (R, \cdot) , we say that R is a ring with identity
- 2. If a monoid (R, ·) is commutative, we say that R is a commutative ring.

Ring Examples

Introduction

Remark

- 1. Later in this presentation, when we refer to a ring we mean commutative ring with identity.
- 2. If binary operations in a ring are implied or natural, we simply write ring *R* and we treat it like a set.

Ring Examples

Introduction

Remark

- 1. Later in this presentation, when we refer to a ring we mean commutative ring with identity.
- 2. If binary operations in a ring are implied or natural, we simply write ring *R* and we treat it like a set.

Example

The following structures are Rings:

1. $(\mathbb{Z}, +, \cdot)$ - Ring of integer numbers.

Ring Examples

Introduction

Remark

- 1. Later in this presentation, when we refer to a ring we mean commutative ring with identity.
- 2. If binary operations in a ring are implied or natural, we simply write ring *R* and we treat it like a set.

Example

The following structures are Rings:

- **1.** $(\mathbb{Z}, +, \cdot)$ Ring of integer numbers.
- **2.** $\mathbb{R}[x_1,\ldots,x_n]$ Ring of polynomials in n variables with real coefficients.

Ideals

Definition

Let R be a ring. Let $I \subseteq R$ be any subset of R. We say, that I is an ideal of ring R if following conditions are satisfied:

- **1.** $\forall a, b \in I : a + b \in I$
- **2.** $\forall r \in R \land a \in I : r \cdot a \in I$

Ideals

Definition

Let R be a ring. Let $I \subseteq R$ be any subset of R. We say, that I is an ideal of ring R if following conditions are satisfied:

- **1.** $\forall a, b \in I : a + b \in I$
- **2.** $\forall r \in R \land a \in I : r \cdot a \in I$

Example

Let $R = \mathbb{Z}$ be a ring of integers. Then

$$I = \{a \in R \mid \exists k \in \mathbb{Z} : a = 3 \cdot k\} = \{\dots, -6, -3, 0, 3, 6, \dots\}$$

is an Ideal of R.

Ideals

Definition

Let R be a ring. Let $I \subseteq R$ be any subset of R. We say, that I is an **ideal of ring** R if following conditions are satisfied:

- **1.** $\forall a, b \in I : a + b \in I$
- **2.** $\forall r \in R \land a \in I : r \cdot a \in I$

Example

Let $R = \mathbb{R}[x,y]$ be a ring of real polynomials in two variables, $C = (x,y) \in \mathbb{R}^2 \mid x-y=0$. Then

$$I = \{ f \in R \mid \forall (x, y) \in C : f(x, y) = 0 \}$$

is an ideal of R.

Properties of Ideals

Theorem

Let R be a ring and let $I, J \subseteq R$ be ideals of R. Then $I \cap J$ is an ideal of R.

Properties of Ideals

Theorem

Let R be a ring and let $I, J \subseteq R$ be ideals of R. Then $I \cap J$ is an ideal of R.

Proof.

Let a,b be any elements of $I\cap J$. Then by definition $a\in I\wedge a\in J\wedge b\in I\wedge b\in J$. Since I is an ideal in R and $a,b\in I$ therefore $a+b\in I$. Same can be applied to get $a+b\in J$. Thus $a+b\in I\cap J$. Since I is an ideal of R then for all $r\in R$ $r\cdot a\in I$. Same can be applied to show that for all $r\in R$ it is true that $r\cdot a\in J$. Now we can state the fact that for all $r\in Rr\cdot a\in I\cap J$ which ends the proof.

Algebraic Sets of an Ideal Geometry of Ideals

Let's focus on a case of polynomial ring $R = \mathbb{R}[x, y]$.

Definition

Let I be an ideal of R. We define V(I) to be the intersection of set of roots of every polynomial in I:

$$V(I) = \{(x,y) \in \mathbb{R}^2 \mid \forall f \in If(x,y) = 0\}$$

Algebraic Sets of an Ideal Geometry of Ideals

Let's focus on a case of polynomial ring $R = \mathbb{R}[x, y]$.

Definition

Let I be an ideal of R. We define V(I) to be the intersection of set of roots of every polynomial in I:

$$V(I) = \{(x,y) \in \mathbb{R}^2 \mid \forall f \in If(x,y) = 0\}$$

Now, we have defined nice connection between ideals of polynomial ring and sets on a real plane.

Geometry od Ideals

KOŁO NAUKOWE

Geometry of Ideals

Example

Let $I = \{(x - 2y) \cdot f \mid f \in R\}$ be an ideal of R. Then

$$V(I) = \{(x,y) \in \mathbb{R}^2 \mid x - 2y = 0\} = \{(x,\frac{1}{2}x) \in \mathbb{R}^2 | x \in \mathbb{R}\}$$

