


```
clear all a=3; r^2 = \frac{a^2b^2}{a^2\sin^2(\theta) + b^2\cos^2(\theta)} b=a-1; thita = linspace(0,2*pi,100); rr = a*a*b*b./(a*a*sin(thita).^2 + b*b*cos(thita).^2); r = sqrt(rr); clf h1=polar(thita,r,':r') % set(h1,'color','k','linewidth',5) set(h1,'linewidth',5)
```

```
hHiddenText = findall(gca,'type','text');
Angles = 0 : 30 : 330;
hObjToDelete = zeros( length(Angles)-4, 1 );
k = 0;
for ang = Angles
hObj =
findall(hHiddenText,'string',num2str(ang));
```

```
switch ang
case 0
set(hObj,'string','East','HorizontalAlignment', ...
'Left','Fontsize',20);
case 90
set(hObj,'string','North','VerticalAlignment', ...
'Bottom');
case 180
set(hObj,'string','West','HorizontalAlignment', ...
'Right','Fontsize',20,'rotation',90);
case 270
set(hObj,'string','South','VerticalAlignment','Top');
```

```
otherwise
    k = k + 1;
    hObjToDelete(k) = hObj;
    end
end

delete( hObjToDelete(hObjToDelete~=0) );

saveas(gca,'polar_fig','jpg')
```

梯度向量場的繪製

• 要繪出梯度向量場,先以gradient()計算梯度,然後再以 quiver()繪出圖形

表 7.2.1 gradient() 函數的語法

函 數	說明
[fx,fy]=gradient(zz)	依矩陣 z 計算出每一個資料點的梯度,並把 x 方向的梯度
	設給矩陣 於,把 y 方向的梯度設給矩陣 於
[fx,fy] = gradient(zz,dx,dy)	同上,但 x 軸方向的間距是 dx , y 軸方向的間距是 dy 。利用引數 dx 與 dy 可控制繪圖時,向量場的疏密

表 7.2.2 向量場繪圖函數 quiver() 的用法

函 數	說明
quiver(xx,yy,fx,fy)	在座標為 xx 與 yy 的點上繪出一個箭號,箭號的大小與方向 由矩陣 fx 與矩陣 fy 來決定
quiver(fx,fy)	同上,但每個箭號的間隔大小相等,均為1

• 基隆氣象站觀測當地時間5點到8點的整點 風速資料為,風向為[0°,300°,60°,145°], 風速為[3.2, 1.2, 5.3, 4.0],試以時間軸為X 方向,依風速的大小和方向繪出箭號形式 的風速向量圖。圖形需加入適當的標題、 和座標軸文字說明。 程式名稱為Matlab_學號_0523_A,程式完成

程式名稱為Matlab_學號_0523_A,程式完成後,再執行PUBLISH列印產生pdf檔,並以ML_學號_0523_A為檔案名稱,再將程式和pdf檔上傳繳交。

