WHAT IS CLAIMED IS:

1. Antiatherosclerotic agents represented by Formulas I or II:

$$R_2$$
 R_3
 R_4
 R_4
 R_5
 R_1
 R_4
 R_4
 R_5
 R_5
 R_4
 R_4
 R_5
 R_5

П

wherein

5

15

R is

wherein R_9 , R_{10} , R_{11} , R_{12} , R_{13} , and R_{14} are each, independently, hydrogen or a lower alkyl of 1-6 carbon atoms;

 R_6 , and R_7 are each, independently, hydrogen, lower alkyl of 1-6 carbon atoms, or CH_2COOR_8 , where R_8 is a lower alkyl of 1-6 carbon atoms; and

20 X is O or S;

 R_1 is hydrogen or a lower alkyl of 1-6 carbon atoms; R_2 , R_3 , and R_4 are each, independently, hydrogen or halogen; and R_5 is a lower alkyl of 1-6 carbon atoms; or a pharmaceutically acceptable salt thereof.

2. The antiatherosclerotic agent of claim 1, wherein:

R is

5 wherein:

R₉, R₁₀, R₁₁, R₁₂, R₁₃, and R₁₄ are each, independently, hydrogen or lower alkyl of 1 to 6 carbon atoms;

 R_6 and R_7 are, each independently, lower alkyl of 1 to 6 carbon atoms; and X is O or S;

10 R₁ is hydrogen;

20

 R_2 , R_3 , and R_4 are each, independently, hydrogen or halogen; and R_5 is a lower alkyl of 1 to 6 carbon atoms; or a pharmaceutically acceptable salt thereof.

- The antiatherosclerotic agent of claim 1, which is 1-(5-chloro-2-methyl-phenyl)-3-(thiazol-2-yl)-thiourea.
 - 4. The antiatherosclerotic agent of claim 1, which is 1-(benzothiazol-2-yl)-3-(5-chloro-2 methyl-phenyl)-thiourea.
 - 5. The antiatherosclerotic agent of claim 1, which is 1-(5-chloro-2-methyl-phenyl)-3-(naphtho[2,1-d]thiazol-2-yl)-thiourea.
 - 6. The antiatherosclerotic agent of claim 1, which is 1-(5-chloro-2-methyl-phenyl)-3-(4-methyl-oxazol-2-yl)-thiourea.

- 7. The antiatherosclerotic agent of claim 1, which is 1-(5-chloro-2-methyl-phenyl)-3-(5-methyl-[1,3,4]thiadiazol-2-yl)-thiourea.
- 5 8. The antiatherosclerotic agent of claim 1, which is 1-(5-chloro-2-methyl-phenyl)-3-(1-methyl-1H-pyrazol-3-yl)-thiourea.
 - 9. The antiatherosclerotic agent of claim 1, which is 1-(5-chloro-2-methyl-phenyl)-3-(1H-pyrazol-3-yl)-thiourea.
 - 10. The antiatherosclerotic agent of claim 1, which is 1-(5-chloro-2-methyl-phenyl)-3-(1,3,5-trimethyl-1H-pyrazol-4-yl)-thiourea.

10

25

- 11. The antiatherosclerotic agent of claim 1, which is 1-(5-chloro-2-methyl-phenyl)15 3-(4-methyl-thiazol-2-yl)-thiourea.
 - 12. The antiatherosclerotic agent of claim 1, which is 1-(5-chloro-2-methyl-phenyl)-3-(4,5-dimethyl-thiazol-2-yl)thiourea.
- 20 13. The antiatherosclerotic agent of claim 1, which is {2-[3-(5-chloro-2-methyl-phenyl)-thioureido]-thiazol-4-yl}-acetic acid ethyl ester.
 - 14. The antiatherosclerotic agent of claim 1, which is 1-(5-chloro-2-methyl-phenyl)-3-(3-methyl-isothiazol-5-yl)-thiourea.
 - 15. The antiatherosclerotic agent of claim 1, which is 1-(5-chloro-2-methyl-phenyl)-3-(2-methyl-benzothiazol-5-yl)-thiourea.
- 16. The antiatherosclerotic agent of claim 1, which is 1-(5-chloro-2-methyl-phenyl)-30 3-(5-ethyl-[1,3,4]thiadiazol-2-yl)-thiourea.
 - 17. The antiatherosclerotic agent of claim 1, which is 1-(2-chloro-6-methyl-phenyl)-3-(1,3,5-trimethyl-1H-pyrazol-4-yl)-thiourea.

- 18. The antiatherosclerotic agent of claim 1, which is 1-(4-chloro-2-methyl-phenyl)-3-(1,3,5-trimethyl-1H-pyrazol-4-yl)-thiourea.
- ✓ 19. The antiatherosclerotic agent of claim 1, which is 1-(4-chloro-2-methyl-phenyl)5 3-(4-methyl-oxazol-2-yl)-thiourea.
 - √ 20. The antiatherosclerotic agent of claim 1, which is 1-(2-chloro-6-methyl-phenyl)3-(4-methyl-oxazol-2-yl)-thiourea.
- 10 21. The antiatherosclerotic agent of claim 1, which is 3-(5-chloro-2-methyl-phenyl)1-ethyl-1-(1,3,5-trimethyl-1H-pyrazol-4-yl)-thiourea.
 - 22. The antiatherosclerotic agent of claim 1, which is (E)-1-(5-chloro-2-methyl-phenyl)-2-methyl-3-(1,3,5-trimethyl-1H-pyrazol-4-yl)-isothiourea.
 - 23. The antiatherosclerotic agent of claim 1, which is 3-(5-chloro-2-methyl-phenyl)-1-ethyl-2-methyl-1-(1,3,5-trimethyl-1H-pyrazol-4-yl)-isothiourea.
- 24. A method of treating atherosclerosis in a mammal in need thereof, which comprises administering to said mammal an anti-atherosclerotic effective amount of a compound represented by Formulas I or II:

$$\begin{array}{c|c} R_2 & CH_3 & R_1 \\ R_3 & N & N \\ R_4 & H & S \end{array}$$

15

$$R_2$$
 R_3
 R_4
 R_4
 R_5
 R_5

1

R is

5 -

10

$$R_{11}$$
 R_{11}
 R_{12}
 R_{14}
 R_{14}
 R_{15}
 R_{16}
 R_{17}
 R_{11}
 R_{11}
 R_{11}
 R_{11}
 R_{12}
 R_{12}
 R_{14}
 R_{14}
 R_{15}
 R_{16}
 R_{17}
 R_{18}
 R_{19}
 R_{19}
 R_{19}
 R_{19}
 R_{19}
 R_{11}
 R_{11}
 R_{11}
 R_{12}
 R_{12}

wherein R_9 , R_{10} , R_{11} , R_{12} , R_{13} , and R_{14} are each, independently, hydrogen or a lower alkyl of 1-6 carbon atoms;

R₆, and R₇ are each, independently, hydrogen, lower alkyl of 1-6 carbon atoms, or CH₂COOR₈, where R₈ is a lower alkyl of 1-6 carbon atoms; and

X is O or S;

- R₁ is hydrogen or a lower alkyl of 1-6 carbon atoms;
 R₂, R₃, and R₄ are each, independently, hydrogen or halogen; and
 R₅ is a lower alkyl of 1-6 carbon atoms;
 or a pharmaceutically acceptable salt thereof.
- 25. A method of elevating the HDL concentration in a mammal in need thereof, which comprises administering to said mammal an effective amount of a compound represented by Formulas I or II:

I

R is

5

10

$$R_{11}$$
 R_{11}
 R_{12}
 R_{12}
 R_{14}
 R_{14}
 R_{14}
 R_{15}
 R_{16}
 R_{17}
 R_{19}
 R_{19}
 R_{10}
 R_{10}
 R_{10}
 R_{12}
 R_{12}
 R_{12}

wherein R₉, R₁₀, R₁₁, R₁₂, R₁₃, and R₁₄ are each, independently, hydrogen or a lower alkyl of 1-6 carbon atoms;

 R_6 , and R_7 are each, independently, hydrogen, lower alkyl of 1-6 carbon atoms, or CH_2COOR_8 , where R_8 is a lower alkyl of 1-6 carbon atoms; and

X is O or S;

- R₁ is hydrogen or a lower alkyl of 1-6 carbon atoms;
 R₂, R₃, and R₄ are each, independently, hydrogen or halogen; and R₅ is a lower alkyl of 1-6 carbon atoms;
 or a pharmaceutically acceptable salt thereof.
- 26. A method of treating dyslipoproteinemia in a mammal in need thereof, which comprises administering to said mammal an anti-dyslipoproteinemic effective amount of a compound represented by Formulas I or II:

I

R is

$$R_{11}$$
 R_{11}
 R_{11}
 R_{12}
 R_{14}
 R_{14}
 R_{14}
 R_{15}
 R_{16}
 R_{17}
 R_{19}
 R

wherein R_9 , R_{10} , R_{11} , R_{12} , R_{13} , and R_{14} are each, independently, hydrogen or a lower alkyl of 1-6 carbon atoms;

10

R₆, and R₇ are each, independently, hydrogen, lower alkyl of 1-6 carbon atoms, or CH₂COOR₈, where R₈ is a lower alkyl of 1-6 carbon atoms; and

X is O or S;

- R₁ is hydrogen or a lower alkyl of 1-6 carbon atoms;
 R₂, R₃, and R₄ are each, independently, hydrogen or halogen; and
 R₅ is a lower alkyl of 1-6 carbon atoms;
 or a pharmaceutically acceptable salt thereof.
- 27. A method of treating cardiovascular disease in a mammal in need thereof, which comprises administering to said mammal an anti-cardiovascular disease effective amount of a compound represented by Formulas I or II:

T

R is

5

10

$$R_{11}$$
 R_{11}
 R_{12}
 R_{14}
 R_{14}
 R_{14}
 R_{15}
 R_{16}
 R_{17}
 R_{11}
 R_{11}
 R_{11}
 R_{12}
 R_{12}
 R_{12}
 R_{14}
 R_{14}
 R_{15}
 R_{16}
 R_{17}
 R_{18}
 R_{19}
 R_{19}
 R_{19}
 R_{11}
 R_{11}
 R_{12}
 R_{12}

wherein R₉, R₁₀, R₁₁, R₁₂, R₁₃, and R₁₄ are each, independently, hydrogen or a lower alkyl of 1-6 carbon atoms;

R₆, and R₇ are each, independently, hydrogen, lower alkyl of 1-6 carbon atoms, or CH₂COOR₈, where R₈ is a lower alkyl of 1-6 carbon atoms; and

X is O or S;

- R₁ is hydrogen or a lower alkyl of 1-6 carbon atoms;
 R₂, R₃, and R₄ are each, independently, hydrogen or halogen; and
 R₅ is a lower alkyl of 1-6 carbon atoms;
 or a pharmaceutically acceptable salt thereof.
- 20 28. A pharmaceutical composition, which comprises an antiatherosclerotic agent represented by Formulas I or II:

T

R is

$$R_{11}$$
 R_{11}
 R_{12}
 R_{14}
 R_{14}
 R_{14}
 R_{15}
 R_{16}
 R_{17}
 R_{19}
 R

wherein R_9 , R_{10} , R_{11} , R_{12} , R_{13} , and R_{14} are each, independently, hydrogen or a lower alkyl of 1-6 carbon atoms;

10

5

 R_6 , and R_7 are each, independently, hydrogen, lower alkyl of 1-6 carbon atoms, or CH_2COOR_8 , where R_8 is a lower alkyl of 1-6 carbon atoms; and

X is O or S;

R₁ is hydrogen or a lower alkyl of 1-6 carbon atoms;
R₂, R₃, and R₄ are each, independently, hydrogen or halogen; and
R₅ is a lower alkyl of 1-6 carbon atoms;
or a pharmaceutically acceptable salt thereof.