Count Sensitivity Proofs

March 22, 2020

Definition 1. Let \mathcal{X} be the universe of possible rows (individuals) and let $I: \mathcal{X} \to \{0,1\}$ be a predicate on rows. Let $x \in \mathcal{X}^n$ be a dataset. Then a count over x is defined as

$$q(x) = \sum_{i=1}^{n} I(x_i).$$

Definition 2. Let q_1, \ldots, q_k be a series of counts with predicates I_1, \ldots, I_k . These counts are disjoint for every row in the database if only one of them evaluates to 1. In other words, they are disjoint if $\forall x_i \in \mathcal{X}$,

$$\sum_{j=1}^{k} I_j(x_i) = 1.$$

1 Neighboring Definition: Change One

1.1 ℓ_1 -sensitivity

Theorem 1. A single count query has ℓ_1 -sensitivity 1 in the change-one model. A series of k disjoint counts has ℓ_1 -sensitivity 2 in the change-one model.

Proof. Let q be a count query with predicate I, and let x' be equal to x with point x_i changed to x'_i . Then,

$$|q(x') - q(x)| = \left| \sum_{j=1}^{n} I(x'_j) - \sum_{j=1}^{n} I(x_j) \right|$$

$$= \left| \sum_{\{i \in [n] | i \neq j\}} I(x_j) + I(x'_i) - \sum_{\{i \in [n] | i \neq j\}} I(x_j) - I(x_i) \right|$$

$$= \left| I(x'_i) - I(x_i) \right|$$

$$\leq 1.$$

Consider a series of k disjoint count queries $\mathbf{q} = \{q_1, \dots, q_k\}$ on the same databases x and x'. Note that since the counts are disjoint, x_i and x'_i can at most each increment a single one of the k counts by 1. Call the count that x_i impacts q_i , and the count that x'_i impacts q_j . Then,

$$\begin{aligned} \left| \mathbf{q}(x) - \mathbf{q}(x') \right| &= \left| \left(q_1(x) - q_1(x') \right) + \dots + \left(q_k(x) - q_k(x') \right) \right| \\ &= \left| \left(q_i(x) - q_i(x') \right) + \left(q_i(x) - q_j(x') \right) \right| \\ &\leq 2 \end{aligned}$$

1.2 ℓ_2 -sensitivity

Theorem 2. A single count query has ℓ_2 -sensitivity 1 in the change-one model. A series of k disjoint counts has ℓ_2 -sensitivity 2 in the change-one model.

Proof. From the proof of Theorem 1, the difference between counts on two neighboring databases is at most 1. Squaring this gives the same value. For a series of k disjoint counts,

$$|\mathbf{q}(x) - \mathbf{q}(x')|_2 = |(q_1(x) - q_1(x'))^2 + \dots + (q_k(x) - q_k(x'))^2|$$

$$\leq |1^2 + 1^2|$$

$$= 2$$

2 NEIGHBORING DEFINITION: ADD/DROP ONE

2.1 ℓ_1 -sensitivity

Theorem 3. A single count query has ℓ_1 -sensitivity 1 in the add/drop-one model. A series of k disjoint counts also has ℓ_1 -sensitivity 1 in the add/drop-one model.

Proof. Let q be a count query with predicate I, and let x' be equal to database x with point x_i removed. Then

$$|q(x) - q(x')| = \left| \sum_{j=1}^{n} I(x_j) - \sum_{\{i \in [n] | i \neq j\}} I(x_j) \right|$$

$$= \left| \sum_{\{i \in [n] | i \neq j\}} I(x_j) + I(x_i) - \sum_{\{i \in [n] | i \neq j\}} I(x_j) \right|$$

$$< 1.$$

A nearly identical argument holds for adding a point.

Consider a series of k disjoint count queries $\mathbf{q} = \{q_1, \dots, q_k\}$ and consider database x' equal to database x with point x_i removed. Note that only a single one of the k queries will be affected by the change from x to x', so

$$|\mathbf{q}(x) - \mathbf{q}(x')| = |(q_1(x) - q_1(x')) + \dots + (q_k(x) - q_k(x'))|$$

$$< 1.$$

The same argument holds for x' equal to x with a single point added.

2.2 ℓ_2 -sensitivity

Theorem 4. A single count query has ℓ_2 -sensitivity 1 in the add/drop-one model. A series of k disjoint counts also has ℓ_2 -sensitivity 1 in the add/drop-one model.

Proof. Squaring the sensitivity bounds from Theorem 3 gives 1 as an upper bound on the ℓ_2 sensitivity for both a single count and a series of k disjoint counts.