

Mahindra University, Hyderabad

École Centrale School of Engineering Minor-I Examinations

SEZZUCAMOZO

Program: B. Tech.

Branch: CM Year: II

Semester: II

Subject: Number Thoery & Cryptography (MA2209)

Date: 25/02/2025

Start Time: 10:00 AM

Max. Marks: 20

Instructions:

1) There are 5 questions, all of which are compulsory.

2) Justify your answer wherever required.

Time Duration: 1.5 Hours

3) You can earn up to 2 additional marks beyond the full score by solving Question 3(b).

Course outcomes (COs)

Upon successful completion of the course students will

- CO 1: Understand the number theoretic foundations of modern cryptography.
- CO 2: Learn about RSA cryptosystem, its implementation and security considerations. Learn different algorithms for primality testing and integer factorization.
- CO 3: Understand the discrete logarithm problem, different algorithms for solving it, and learn about the ElGamal Cryptosystem.
- CO 4: Understand the mathematical foundations of elliptic curves and their applications in cryptography such as El-Gamal cryptosystems based on elliptic curves.
- CO 5: Learn about different Signature Schemes such as RSA and Elgamal.

Q.No.	Questions	Marks	СО	BL	РО	PI
	13 2 4 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1					Code
1	State the following: (a) Kerckhoff's Principle. (b) Primitive Root Theorem. (c) Fermat's Little Theorem. (d) Prime Number Theorem.	4	CO1	L1	PO1	1.1.1
2	 (a) Using Extended Euclidean algorithm find 100⁻¹ (mod 143). (b) Using Fast Powering Algorithm compute 5²⁴⁸ (mod 1000). 	2+2	CO1	L3	P01	1.1.2

Q.No.	Questions	Marks	CO	BL		
3	 (a) Let m ≥ 1 and a be integers. Prove that ab ≡ 1 (mod m) for some integer b if and only if gcd(a, m) = 1. (b) Suppose that m ≡ 1 (mod b), where m and b are positive integers. What integer between 1 and m - 1 is equal to b⁻¹ (mod m)? 	2+2	CO1	L2, L4	P01	A.
4	Bob's RSA public key cryptosystem has modulus $n=247$ and encryption exponent $b=7$. Alice sends Bob the ciphertext $c=90$. Unfortunately, Bob has chosen too small a modulus. Help Eve in decrypting Alice's message.	4	CO2	L3	PO1	1.3.1
5	Solve the following simultaneous systems of congruences using Chinese Remainder Theorem. $x \equiv 4 \pmod{10}, x \equiv 7 \pmod{21}, \text{ and } x \equiv 9 \pmod{11}.$	4	CO1	L3	PO1	1.1.2

BL - Bloom's Taxonomy Levels:

1 - Remembering, 2 - Understanding, 3 - Applying, 4 - Analysing, 5 - Evaluating, 6 - Creating

CO – Course Outcomes PO – Program Outcomes

PI Code - Performance Indicator Code