Queensland University of Technology

MZB221

Electrical Engineering Mathematics

Professor Nicholas Buttle

Dinal Atapattu

November 11, 2023

Contents

1	Infi	nite Series	5				
	1.1	Sequences, Infinite Series, Convergence	Ę				
	1.2	Taylor polynomials, Taylor series, Radius of convergence					
	1.3	Introduction to Fourier series	5				
	1.4	Constructing Fourier series					
2	Vec	tor Calculus	7				
	2.1	Introduction to Vector Calculus, div, grad, curl	7				
		2.1.1 Scalar Fields					
	2.2	Review of Multiple Integration, Change of Variables					
	2.3	Introduction to cylindrical and spheroidal coordinates, integration					
	2.4	Line Integrals, Surface Integrals					
3 Dif	Diff	erential Equations					
	3.1	Introduction to Laplace transform, Strategy for Solving Linear ODEs	6				
		3.1.1 Definition of the Laplace Transform	6				
	3.2	Further Properties of Laplace Transforms, solving more complicated initial value problems	8				
	3.3	Non-Linear first-order ODEs, Phase lines, Stability, Bi-Furcation	S				
	3.4	Linear Systems of ODEs, Exact Solutions, Classification, Non-Homogeneous Systems	6				
	3.5	Non-Linear Systems of ODEs, Phase Plane, Nullclines, Stability	6				
4	Pra	ctice Exams	11				

4 CONTENTS

Infinite Series

- 1.1 Sequences, Infinite Series, Convergence
- 1.2 Taylor polynomials, Taylor series, Radius of convergence
- 1.3 Introduction to Fourier series
- 1.4 Constructing Fourier series

Vector Calculus

2.1 Introduction to Vector Calculus, div, grad, curl

2.1.1 Scalar Fields

A scalar field is a function

$$f: \mathbf{R}^n \to \mathbf{R}$$

$$n=2$$
 $f=f(x,y)$

- 2 independent variables x, y
- f is a function that has x and y as inputs and a single real number as the output

Phyiscal examples of scalar fields are

- The temperature T(x, y, z), the pressure p(x, y, z), the density $\rho(x, y, z)$ of a fluid
- Concentration of a pollutant in a lake c(x, y, z)
- Height of a surface or a mountain h(x,y)
- Charge density $\rho(x,y,z)$, electrical potential V(x,y,z)

Partial Derivatives

For $f: \mathbb{R}^2 \to \mathbb{R}$

$$\frac{\partial f}{\partial x} = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h}, \frac{\partial f}{\partial y} = \lim_{h \to 0} \frac{f(x,y+h) - f(x,y)}{h}$$

- f_x is the rate of change of f in the x-direction (y is constant) (and vice-versa)
- Geometrically, f_x and f_y are the slopes of the surface z = f(x, y) in the x and y directions.

For $f: \mathbb{R}^3 \to \mathbb{R}$

$$\frac{\partial f}{\partial x} = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h}, \frac{\partial f}{\partial y} = \lim_{h \to 0} \frac{f(x,y+h) - f(x,y)}{h}$$
$$\frac{\partial f}{\partial z} \lim_{h \to 0} \frac{f(z+h,y) - f(z,y)}{h}$$

No equivalent geometric representation as "surface" (f(x,y,z)) is a 4-dimensional hypersolid

Directional Derivative of a Scalar Field

- 2.2 Review of Multiple Integration, Change of Variables
- 2.3 Introduction to cylindrical and spheroidal coordinates, integration
- 2.4 Line Integrals, Surface Integrals

Differential Equations

- 3.1 Introduction to Laplace transform, Strategy for Solving Linear ODEs
- 3.1.1 Definition of the Laplace Transform

The Laplace Transform of the function f(t) is defined as

$$\mathcal{L}\{f(t)\} = \int_0^\infty e^{-st} f(t) dt$$

for values of s that the integral converges The notation F(s) is often used to represent $\mathcal{L}\{f(t)\}$

- 3.2 Further Properties of Laplace Transforms, solving more complicated initial value problems
- 3.3 Non-Linear first-order ODEs, Phase lines, Stability, Bi-Furcation
- 3.4 Linear Systems of ODEs, Exact Solutions, Classification, Non-Homogeneous Systems
- 3.5 Non-Linear Systems of ODEs, Phase Plane, Nullclines, Stability

Practice Exams

Show that $f(x) = \frac{1}{x-2}$ about x = 3 is

$$f(x) = \sum_{n=0}^{\infty} (-1)^n (x-3)^n, 3 - R < x < 3 + R$$

$$f'(x) = \frac{1}{(x-2)^2} \qquad f''(x) = \frac{-2}{(x-2)^3} \qquad f'''(x) = \frac{6}{(x-2)^4}$$

$$f'(3) = \frac{1}{(3-2)^2} \qquad f''(3) = \frac{-2}{(3-2)^3} \qquad f'''(3) = \frac{6}{(3-2)^4}$$

$$f''(3) = 1 \qquad f''(3) = -2 \qquad f'''(3) = 6$$

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n$$

For