Funnel Potential

- Reaction coordinate is the difference in center of mass (COM) between the guest and host molecule.
- Below I separated the z and the x-y plane. The r_z will be used for the biasing with umbrella sampling (or metadynamics) and r_{xy} will be used to apply the funnel potential

$$r_z = \vec{r}_{com}(guest)_z - \vec{r}_{com}(host)_z$$

 $r_{xy} = \vec{r}_{com}(guest)_{xy} - \vec{r}_{com}(host)_{xy}$

- User specified parameters for the funnel potential
 - \circ α
 - \circ Z_{cc}
 - \circ k_{wall}
 - o R_{cylinder}

Boundary of funnel at a given location on z

$$R_{funnel}(r_z) = (z_{cc} - |r_z|) \times \tan \alpha + R_{cylinder}$$

• Flat-bottom potential when guest is ${\bf r}_z \leq z_{cc}$, i.e., inside the funnel section

$$U_{funnel} = \frac{1}{2} k_{wall} (r_{xy} - R_{funnel})^2$$

• Flat-bottom potential when guest is ${\bf r}_z>z_{cc}$, i.e., inside the cylinder section

$$U_{cylinder} = \frac{1}{2} k_{wall} (r_{xy} - R_{cylinder})^2$$

Flat-bottom potential of the whole "funnel"

$$U_{wall}(r_z) = \begin{cases} U_{funnel}(r_z) & \text{if } r_z \le z_{cc} \\ U_{cyclinder}(r_z) & \text{otherwise} \end{cases}$$