ALGEBRA E LOGICA MATEMATICA 5/2/2008 PARTE DI ALGEBRA

Esercizio 1

Sia $f : A \rightarrow B$ un'applicazione.

- Sia ρ una relazione di equivalenza su B, provare che la relazione σ definita su A ponendo $(a_1,a_2) \in \sigma$ se e solo se $(f(a_1),f(a_2)) \in \rho$ è una relazione di equivalenza su A
- Nel caso particolare in cui A=R, B=Z, f associa ad ogni numero reale la sua parte intera e ρ è la relazione di congruenza modulo 4, descrivere la classe di equivalenza di ½ rispetto a σ .
- Data una relazione di equivalenza τ su A la relazione κ definita su B ponendo (b₁,b₂)∈ κ se e solo se esistono a₁,a₂ ∈ A tali che f(a₁)=b₁,f(a₂)=b₂ e (a₁,a₂)∈τ è une relazione di equivalenza su B? Sempre o talvolta?

Esercizio 2

Sia <Z₁₅,+, $\cdot>$ l'anello delle classi di resti modulo 15. Sia U il sottoinsieme di Z₁₅ costituito dalle classi che ammettono inverso rispetto al prodotto e verificare che U è un gruppo rispetto all'usuale prodotto \cdot di Z₁₅, e che l'insieme

 $H=\{[1]_{15},[2]_{15},[4]_{15},[8]_{15}\}$ forma un sottogruppo normale di U.

Dimostrare che l'applicazione $f: \langle U, \cdot \rangle \rightarrow \langle Z_2, + \rangle$ definito ponendo $f(h)=[0]_2$ per ogni $h \in H$ e $f(k)=[1]_2$ per ogni elemento k di U che non sta in H è un omomorfismo di gruppi.

([a] 15 e [a] 2 denotano rispettivamente le classi di resti di a modulo 15 e modulo 2.)

TRACCIA DI SOLUZIONE.

Esercizio 1

Proviamo che σ gode delle proprietà:

- riflessiva : infatti $(a,a) \in \sigma$ in quanto essendo ρ riflessiva $(f(a),f(a)) \in \rho$,
- simmetrica: sia $(a_1,a_2) \in \sigma$, allora $(f(a_1),f(a_2)) \in \rho$ e per la simmetria di ρ $(f(a_e),f(a_1)) \in \rho$ da cui $(a_2,a_1) \in \sigma$,
- transitiva: sia $(a_1,a_2) \in \sigma$ e $(a_2,a_3) \in \sigma$, allora $(f(a_1),f(a_2)) \in \rho$ e $(f(a_2),f(a_3)) \in \rho$ e per la transitività di ρ , $(f(a_1),f(a_3)) \in \rho$ da cui $(a_1,a_3) \in \sigma$,

dunque ρ è una relazione di equivalenza su A.

Nel caso particolare in cui A=R, B=Z, f:R \to Z associ ad ogni numero reale la sua parte intera e ρ sia la relazione di congruenza modulo 4, sia x un elemento della σ -classe di ½, questo implica che f(x)=f(1/2) (mod 4) ovvero f(x)=0 (mod 4) ovvero x=4h+r₁ ove h è intero e r₁ è un numero reale con 0 \le r₁<1, viceversa se x=4h+r₁ si ha f(x)=4h=0=f(1/2) (mod 4), dunque la della σ -classe di ½ è {4h+r₁ | h \in Z, r₁ \in R, 0 \le r₁<1}.

Se f non è suriettiva la relazione κ non è riflessiva, infatti non esiste alcun elemento associato da κ ad un be B\f(A). Se invece f è suriettiva la κ gode della proprietà riflessiva in quanto per ogni be B=f(A) esiste un ae A tale che f(a)=b e (a,a) e \tau. Inoltre κ è sempre simmetrica in quanto se (b₁,b₂)e κ esistono a₁,a₂e A tali che f(a₁)= b₁, f(a₂)= b₂ e (a₁,a₂)e \tau ma allora per la simmetria di τ si ha anche (a₂,a₁)e \tau. Supponiamo ora che sia (b₁,b₂)e κ e (b₂,b₃)e κ , la prima dice che esistono a₁,a₂e A tali che f(a₁)= b₁, f(a₂)= b₂ e (a₁,a₂)e \tau, dalla seconda abbiamo che esistono a'₂,a₃e A tali che f(a'₂)= b2₁, f(a₃)= b₃ e (a'₂,a₃)e \tau e dunque solo se f è iniettiva e quindi a₂=a₂ possiamo dedurre (a₁,a₃)e \tau e quindi (b₁,b₃)e κ . La κ dunque non è in generale una relazione di equivalenza ma lo è nel caso f sia una relazione biunivoca.

Esercizio 2.

Gli elementi invertibili di Z_{15} sono le classi che hanno un rappresentante primo con 15 e dunque U={[1] $_{15}$,[2] $_{15}$,[4] $_{15}$,[7] $_{15}$,[8] $_{15}$,[11] $_{15}$,[13] $_{15}$,[14] $_{15}$ }. U è un gruppo in quanto il prodotto di due elementi invertibili è sempre un elemento invertibile e le altre proprietà di gruppo sono ovviamente soddisfatte.

H è il sottogruppo ciclico di U generato da [2] ₁₅ (ovvero è formato da tutte e sole le potenze di [2] ₁₅, è quindi è chiuso rispetto al prodotto e questo baste essendo un sottoinsieme finito a garantire che è sottogruppo). U è un gruppo abeliano e quindi ogni suo sottogruppo, in particolare H è normale.

La f è un'applicazione da U a \mathbb{Z}_2 , bisogna quindi far vedere che conserva le operazioni ovvero che presi comunque $[x]_{15},[y]_{15}\in U$, $f([x]_{15}[y]_{15})=f([x]_{15})+f([y]_{15})$. Se $[x]_{15},[y]_{15}\in H$ si ha ovviamente $[x]_{15}[y]_{15}\in H$ e dunque $f([x]_{15}[y]_{15})=[0]_2=f([x]_{15})+f([y]_{15})$.

Dalla tavola di moltiplicazione di U si vede subito che se $[x]_{15}$, $[y]_{15}$ \in U\H si ha $[x]_{15}[y]_{15}$ \in H e dunque $f([x]_{15}[y]_{15})$ = $[0]_2$ = $[1]_2$ + $[1]_2$ = $f([x]_{15})$ + $f([y]_{15})$ e si vede anche che se $[x]_{15}$ \in H ed $[y]_{15}$ \in U\H si ha $[x]_{15}[y]_{15}$ \in U\H e dunque $f([x]_{15}[y]_{15})$ = $[1]_2$ = $[0]_2$ + $[1]_2$ = $f([x]_{15})$ + $f([y]_{15})$. Dunque la f è un omomorfismo. Il tutto poteva essere

svolto molto più rapidamente osservando che il gruppo quoziente U/H è un gruppo di ordine 2, che c'è un omomorfismo naturale π_H da U ad U/H ed U/H è isomorfo a Z_2 mediante un isomorfismo ϕ che manda H in $[0]_2$ e U\H in $[1]_2$. E' immediato che $f=\pi_{H^o}\phi$ e dunque è un omomorfismo di U su Z_2 .

ALGEBRA E LOGICA MATEMATICA 5/2/2008 PARTE DI LOGICA

Esercizio 1

Verificare che l'insieme di f.b.f. $\{\sim A, \sim A \Rightarrow (B \lor C), B \Rightarrow (A \lor C)\}$ è soddisfacibile. Trovare una formula di logica proposizionale f(A,B,C) che non sia una contraddizione, non sia A e tale che l'insieme di f.b.f. $\{\sim A, \sim A \Rightarrow (B \lor C), B \Rightarrow (A \lor C), f(A,B,C)\}$ sia insoddisfacibile. La formula A è una conseguenza semantica di $\{\sim A \Rightarrow (B \lor C), B \Rightarrow (A \lor C), f(A,B,C)\}$? Verificare il risultato trovato tramite la risoluzione.

Esercizio 2

Si consideri la f.b.f.

$$\mathcal{A}_1^2(x,y) \Rightarrow \sim \forall z \, \mathcal{A}_1^2(f_1^2(x,z),f_1^2(y,z)).$$

Trovare una interpretazione in cui la formula sia vera ed una in cui sia soddisfacibile ma non vera.

Determinare la forma di Skolem della sua chiusura universale e dire se la formula così trovata è soddisfacibile (ovvero se esiste una interpretazione in cui è vera).

Discutere la verità della formula $\forall z \, \mathcal{A}_1^2(f_1^2(x,z), f_1^2(y,z)) \Rightarrow \sim \mathcal{A}_1^2(x,y)$.

TRACCIA DI SOLUZIONE.

Esercizio 1

Per verificare che l'insieme di f.b.f. $\{\sim A, \sim A \Rightarrow (B \lor C), B \Rightarrow (A \lor C)\}$ è soddisfacibile basta trovare modello per l'insieme cioè un assegnamento di valori di verità delle lettere enunciative che occorrono nelle formule che renda vere tutte e tre le formule dell'insieme. Ovviamente affinché sia $v(\sim A)=1$ deve essere v(A)=1 e quindi $v(B\lor C)=1$, per cui v(B)=1 o v(C)=1, inoltre se v(B)=1 allora affinché $v(B\Rightarrow (A\lor C))=1$ deve essere $v(A\lor C)=1$ e quindi v(C)=1. Ci sono quindi due modelli per il nostro insieme:

- 1) v(A)=0, v(B)=0, v(C)=1
- 2) v(A)=0, v(B)=1, v(C)=1.

Una formula f(A,B,C) che non sia una contraddizione né A e tale che $\{\neg A, \neg A \Rightarrow (B \lor C), B \Rightarrow (A \lor C), f(A,B,C)\}$ sia insoddisfacibile è ad esempio $\neg (\neg A \Rightarrow (B \lor C)) \equiv \neg A \land \neg B \land \neg C$, tale formula è infatti la negazione di una formula dell'insieme e non può esistere alcun assegnamento che soddisfi insieme f(A,B,C) e $\neg A \Rightarrow (B \lor C)$ e non è una contraddizione perché ha il modello v(A) = v(B) = v(C) = 0. La formula A è conseguenza semantica di $\{\neg A \Rightarrow (B \lor C), B \Rightarrow (A \lor C), f(A,B,C)\}$, infatti sappiamo che dato un insieme Γ di f.b.f. una f.b.f. \mathcal{B} è conseguenza semantica di Γ se e solo se $\Gamma \cup \{\neg \mathcal{B}\}$ è insoddisfacibile , dunque dal fatto che $\{\neg A, \neg A \Rightarrow (B \lor C), B \Rightarrow (A \lor C), f(A,B,C)\} = \{\neg A \Rightarrow (B \lor C), B \Rightarrow (A \lor C), f(A,B,C)\} \cup \{\neg A\}$ sia insoddisfacibile segue che $\neg \neg A \equiv A$ è conseguenza semantica di $\{\neg A \Rightarrow (B \lor C), B \Rightarrow (A \lor C), f(A,B,C)\}$.

Per ritrovare questo risultato tramite la risoluzione , visto che come sappiamo la risoluzione è corretta e completa per reputazione dobbiamo provare che l'insieme $\{\sim\!A \Longrightarrow (B \lor C), B \Longrightarrow (A \lor C), f(A,B,C)\} \cup \{\sim\!A\}$ è insoddisfacibile ovvero che dall?insieme delle formule precedenti scritte in forma a clausole possiamo ricavare la clausola vuota .

La formula $\sim A \Rightarrow (B \lor C)$ in forma a clausole si riduce all'unica clausola $\{A,B,C\}$, la formula $B \Rightarrow (A \lor C)$ in forma a clausole si riduce all'unica clausola $\{A, \sim B,C\}$, la formula f(A,B,C) che abbiamo scelto essere $\sim A \land \sim B \land \sim C$ è l'insieme delle tre clausole $\{\sim A\}, \{\sim B\}, \{\sim C\}$ ed inoltre abbiamo la formula $\sim A$ che è a sua volta una sola clausola già presente nell'insieme. Abbiamo dunque l'insieme di clausole $\{\{A,B,C\}, \{A,\sim B,C\}, \{\sim A\}, \{\sim B\}, \{\sim C\}\}$, per risoluzione dalla prima e seconda clausola ricaviamo $\{A,C\}$, da questa e da $\{\sim A\}$ ricaviamo la clausola $\{C\}$ che con la clausola $\{\sim C\}$ dà la clausola vuota.

Esercizio 2

Una interpretazione in cui la formula $\mathcal{A}_1^2(x,y) \Rightarrow \neg \forall z \, \mathcal{A}_1^2(f_1^2(x,z),f_1^2(y,z))$ sia vera molto semplice è del seguente tipo: su un qualsiasi dominio D si prende come funzione f_1^2 una qualsiasi operazione binaria su D e come relazione \mathcal{A}_1^2 la relazione vuota, allora nessun assegnamento di valori alle variabili soddisfa $\mathcal{A}_1^2(x,y)$ e quindi l'antecedente della formula è falso e la formula è vera.

Un'altra interpretazione è la seguente: prendiamo come dominio Z come operazione f_1^2 l'usuale prodotto su Z e come predicato $\mathcal{A}_1^2(x,y)$ il predicato x<y. La formula

diventa allora : "se x è minore di y allora non per tutti gli z xz<yz". Tale formula è soddisfatta da tutti gli assegnamenti s per cui s(x)>s(y), se invece s(s)< s(y) qualsiasi sia il valore s(z) esiste un assegnamento s' tale che s'(x)=s(x), s'(y)=s(y) con s'(z)=0 per cui non accade che (s')*(xz)<(s')*(yz) in quanto (s')*(xz)=0=(s')*(yz). Una interpretazione in cui la formula è soddisfacibile ma non vera è ad esempio la seguente: prendiamo come dominio Z come operazione f_1^2 l'usuale somma su Z e come predicato $\mathcal{A}_1^2(x,y)$ il predicato x=y. La formula dice allora : "se x è uguale ad y allora non per tutti gli z x+z=y+z", è ovviamente soddisfatta da tutti gli assegnamenti s per cui $s(x)\neq s(y)$, ma non è soddisfatta dagli assegnamenti s' per cui s'(x)=s'(y), in quanto non esiste alcun assegnamento s" tale che s''(x)=s'(x)=s''(y)=s''(y) per cui (s'')*(x+z) non è uguale a (s'')*(y+z).

La chiusura universale della formula considerata è

 $\forall x \forall y (\mathcal{A}_1^2(x,y) \Rightarrow \sim \forall z \, \mathcal{A}_1^2(f_1^2(x,z),f_1^2(y,z)) \text{ la cui forma normale prenessa è} \\ \forall x \forall y \exists z (\mathcal{A}_1^2(x,y) \Rightarrow \sim \mathcal{A}_1^2(f_1^2(x,z),f_1^2(y,z)). \text{ La forma di Skolem è allora} \\ \forall x \forall y \exists z (\mathcal{A}_1^2(x,y) \Rightarrow \sim \mathcal{A}_1^2(f_1^2(x,f_2^2(x,y)),f_1^2(y,f_2^2(x,y))). \end{aligned}$

Poiché esiste una interpretazione in cui la formula di partenza è vera, in tale interpretazione la chiusura universale della formula è vera è quindi a maggior ragione soddisfacibile e noi sappiamo che la forma di Skolem di una forma soddisfacibile è soddisfacibile, quindi a formula in forma di Skolem cha abbiamo scritto è soddisfacibile , ovvero esiste una interpretazione in cui è soddisfacibile (e quindi vera essendo una f.b.f. chiusa).

Ricordiamo che la formula $(A \Rightarrow B) \Leftrightarrow (\sim B \Rightarrow \sim A)$ è una tautologia nella logica proposizionale e dunque la f.b.f

 $(\mathcal{A}_1^2(x,y) \Rightarrow \sim \forall z \, \mathcal{A}_1^2(f_1^2(x,z),f_1^2(y,z))) \Leftrightarrow (\forall z \, \mathcal{A}_1^2(f_1^2(x,z),f_1^2(y,z)) \Rightarrow \sim \mathcal{A}_1^2(x,y))$ ottenuta da questa sostituendo la lettera A con la f.b.f. $\mathcal{A}_1^2(x,y)$ e la lettera B con la f.b.f. $\sim \forall z \, \mathcal{A}_1^2(f_1^2(x,z),f_1^2(y,z))$, essendo un esempio di tautologia, è logicamente valida e dunque $\forall z \, \mathcal{A}_1^2(f_1^2(x,z),f_1^2(y,z)) \Rightarrow \sim \mathcal{A}_1^2(x,y)$ è una formula logicamente equivalente a $\mathcal{A}_1^2(x,y) \Rightarrow \sim \forall z \, \mathcal{A}_1^2(f_1^2(x,z),f_1^2(y,z))$ e quindi come quest'ultima è soddisfacibile, ma non logicamente valida.