CLIPPEDIMAGE= JP361091662A PAT-NO: JP361091662A

DOCUMENT-IDENTIFIER: JP 61091662 A TITLE: PROJECTING AND EXPOSING DEVICE

PUBN-DATE: May 9, 1986

INVENTOR-INFORMATION: NAME HORIUCHI, TOSHIYUKI SUZUKI, MASANORI SHIBUYA, MASATO

ASSIGNEE-INFORMATION:

NAME COUNTRY
NIPPON TELEGR & TELEPH CORP <NTT> N/A
NIPPON KOGAKU KK <NIKON> N/A

APPL-NO: JP59211269

APPL-DATE: October 11, 1984

INT-CL_(IPC): G03F007/20; G02B027/18; H01L021/30

US-CL-CURRENT: 396/FOR.710,355/53 ,396/51

ABSTRACT:

PURPOSE: To obtain higher resolution with a thin resist layer by mounting a special stop which has higher transmissivity at the center part than at the peripheral part instead of a uniform stop which determines the size of a secondary light source.

CONSTITUTION: When resist is thin, light from the center part of the secondary light source is not used so as to improve the resolution and only light from the peripheral part of the secondary light source is used for exposure. Consequently, the special stop is, for example, a stop having a annular passing area. In another way, a stop having a distribution of transmissivity is used instead thereof. Its transmissivity is so distributed that the transmissivity is higher toward the periphery and lowest or zero at the center. This special stop is only mounted instead of the aperture stop of the exit of an optical integrator. When a thin resist layer is used, the resolution is higher and higher as a pattern in use is thinner and thinner toward the outside of the secondary light source. For the purpose, only the light from the peripheral part of the secondary light source is used to obtain higher resolution.

⑲ 日本国特許庁(JP)

10 特許出願公開

@ 公開特許公報(A) 昭61-91662

@Int Cl.4 識別記号 庁内整理番号 ❷公開 昭和61年(1986)5月9日 G 03 F 7/20 7124-2H 7529-2H G 02 B 27/18 01 L 21/30 6603-5F 審査請求 未讀求 発明の数 2 (全6頁)

②特 顧 昭59-211269

纽出 願 昭59(1984)10月11日

⑫発 明者 堀 内 敏 行 厚木市小野1839番地 日本電信電話公社厚木電気通信研究 所内 79発 明 渚 鈴 木 雅 則 厚木市小野1839番地 日本電信電話公社厚木電気通信研究 所内 ⑦発 明 者 鉄 谷 東京都千代田区丸の内3丁目2番3号 日本光学工業株式 直 人 会社内

①出 願 人 日本電信電話株式会社 東京都千代田区内幸町1丁目1番6号 ①出 願 人 日本光学工業株式会社 東京都千代田区丸の内3丁目2番3号

⑫代 理 人 弁理士 山川 政樹 外1名

明 福 書

発明の名称 投影館光装置

2. 特許請求の範囲

(1)レチクル上のパターンを投影光学系を介してウエハ上に投影路光する投影路光装置において、前記レチクルを照明する 2 次光源の射出面内強度が中央部強度より大とせる投影路光波のを同辺部強度が中央部後とする投影などを特徴とする投影などを制力を同辺部の光強度より大となるようになしたことを特徴とする特許請求の範囲第1項記載の投影路光波置。

(3)レチクル上のパターンを投影光学系を介してウエハ上に投影露光する投影露光装置において、前記レチクルを照明する 2 次光源の射出面内強度分布を周辺部強度が中央部強度より大とせしめる特殊絞りと 2 次光源の射出面内強度分布に影響を与えない均一致りとを交換可能としたことを特徴と

する投影露光装置。

(4)特殊絞りと均一絞りとは、2次光級面の直後に装着可能であることを特徴とする特許請求の範囲第3項配載の投影群光装置。

(5) 2次光線は、その前面に、2次光線を形成するための均一化光学系に人射する光東の光強度分布を2次光線師の直後に入れる紋りの間口形状、透過率分布に類似させることを可能にする円錐レンズを有することを特徴とする特許請求の範囲第4項記載の投影路光装置。

3. 発明の詳細な説明

(産業上の利用分野)

本発明は、半原体集積同路等の製造に要する微 細レジストパターンを形成する投影露光装置に関 するものである。

〔従来の技術〕

第5関に従来の投影離光装置を示す。第5図において、1はランプ、2は楕円反射鏡、3は楕円反射鏡2の第2焦点、4はインプットレンズ、5はオプチカルインテグレーク、6はアウトプット

レンズ、7はコリメーションレンズ、8はレチクル、9は均一絞りとしての開口絞り、10はフィルク、11、12はコールドミラー、13はランプハウス、14はレンズまたはミラーあるいはその組み合わせによりレチクル8上のパターンの像をウェハ上に投影する投影光学系、15はウェハ、16は間口絞りである。

従来、この種の投影電光装置の多くは光源のランプ!として水銀灯を使用し、8線436mm、 h線405mm、i線365mm等の輝線または これらの波長近辺の連続スペクトルを取り出いな 用いている。このため光源のランプ!は高い紅色 が必要であるとともに類光効率や照射均一性を考 えると点光源に近い方が良い。しかし、実際有理 の大きさでしかも強度に分布を持つランプ!から発せ の大きさを得ず、そのようなランプ!から発せら れる光をいかに高効率で、かつ、照射均一性の良 い光に変換するかが課題となる。

第5図に示した装置は従来の代表的な集光方法

照射強度がほぼ均一となる。当然のことながらオ プチカルインテグレータ 5 に入射する光の強度分 布が均一に近ければ、出射光を重畳させたレチク ル 8 の限度分布はより均一になる。オプチカルイ ンテグレータ 5 の出射側には関口紋り 9 がおかれ、 オプチカルインテグレータ 5 の出射側寸法を決め ている。

ランプ1として水銀灯を用いて楕円反射鏡2で 集光する場合、水銀灯の構造が第2図に示め、、 に縦長であり両端が電極となっているため、、 プ1の軸方向の光線を取り出すことができない。 そのため、第5図に示すように、インプルオを のため、第5図に示すように、インプルオを は1の中心部に入る光の強度レンス が落ち、インプルータ 5の中心部に、インプルでは が落ち、インプルータ 5の中心部に、インプルでは が落ち、インプルータ 5の中心部に、インプローク が落ち、オンテクレータ 5 に入る光の強度分布をより一様に というがレータ 5 に入る光の強度分布をより一様に する場合もある。

フィルタ10は、光学系が収差補正されている

を用いた構成の装置であり、楕円反射鏡2の第1 焦点にランプ1を置き、楕円反射鏡2の第2焦点 3 付近に一旦光東を集める。そして、第2 焦点3 とほぼ焦点位置を共有するインプットレンズ4に より光東をほぼ平行光泉に直し、オプチカルイン テグレータ 5 に入れる。オプチカルインテグレー タ5は多数の棒状レンスを束ねたもので、はえの 目レンズとも称される。このオプチカルインテグ レータ5を通すことが照射均一性を高める主因と なっており、インプットレンズイはオプチカルイ ンテグレータ 5 を通る光線のケラれを少なくして 集光効率を高める役目をなす。このオプチカルイ ンテグレータ5を出た光は、アウトプットレンズ 6 およびコリメーションレンズ 7 によって、オプ チカルインテグレータ5の名小レンズから出た光 東がレチクル8上に重畳して当たるよう集光せら れる。オプチカルインテグレータ5に入射せらる る光線は場所による強度分布を有するが、オプチ カルインテグレータ5の各小レンズから出る光が ほぼ等しく重畳せらるる結果、レチクル8上では

被長の光だけを通すためのものであり、コールドミラー11.12は光路を曲げて装置の高さを低くするとともに、長波艮光熱線を透過させる役と プハウス13の冷却可能部分に吸収させる役目を担う。レチクル8を照射した光は投影光学系14を通り、レチクル8上の微幅パターンの像がウェハ15上のレジストに投影露光転写される。投影光学系14の中には明口数を決定する絞り16が存在する。

従来の投影館光装剤の構成は第5図に示した以外にも多数あるが、模式的には第6図のごとく、 光源17、第1集光光学系18、均一化光学系1 9、第2集光光学系20、レチクル8、投影光学系14、ウェハ15の順に配列されている。

第1集光光学系18は第5図の例で楕円反射線 2およびインプットレンズ4に相当する部分であ り、楕円線のほか球面鏡、平面鏡、レンズ等を適 当に配置し、光源から出る光東をできるだけ効率 よく均一化光学系19に入れる役目を持つ。また、 均一化光学系19は第2図のオプチカルインテグ レータ 5 に相当する部分であり、その他として光ファイバや多面体プリズム等が使用されることもある。

第2 築光光学系 2 0 は第 5 図のアウトブットレンズ 6 およびコリメーションレンズ 7 とに相当する部分であり、均一化光学系 1 9 の出射光を重量させ、また、像面テレセントリック性を確保する。この他、光東が光軸平行に近い個所に第 5 図のフィルタ 1 0 に相当するフィルタが挿入され、また、コールドミラー 1 1 1 2 に相当する反射鏡も、場所は一義的でないが、挿入される。

このように構成された装置においてレチクル 8 から光が来る側を見た場合、光の性質は、第 2 集 光光学系 2 0 を通して均一化光学系 1 9 から出てくる光の性質となり、均一化光学系 1 9 の出射側が見掛け上の光源に見える。このため、上記のような構成の場合、一般に均一化光学系 1 9 の出射側 2 4 を 2 次光源と称している。

レチクル 8 がウエハ 1 5 上に投影せらるる時、 投影露光パターンの形成特性、すなわち、解像度

源面を見た時の張る角をレチクル8に入射する光 の範囲としてとらえ半角をすとし照明光のコヒー レンシイσをσ=sin φ/sin θ a で定義し た場合、パターン形成特性はNAとoで決定せら るるものと従来考えていた。次にNAおよびoと パターン形成特性との関連について詳細に説明す る。NAが大きい程解像度は上がるが、焦点深度 が浅くなり、また、投影光学系14の収差のため 広露光領域の確保が難しくなる。ある程度の露光 領域と焦点深度(例えば10mm角、±1μm) がないと実際のLSI製造等の用途に使えないた め、従来の装置ではNA=0.35程度が限界となっ ている。一方、4値は主としてパターン斯面形状 , 焦点深度に関係し、断面形状と相関を持って解 復度に関与する。σ値が小さくなるとパターンの 淵が強調されるため、断面形状は衝壁が垂直に近 づいて良好なパターン形状となるが、細かいパタ ーンでの解像性が悪くなり解像し得る魚点範囲が 狭くなる。逆にσ値が大きいと細かいパターンで の解像性、解像し得る焦点範囲が若干良くなるが、 や焦点深度等は、投影光学系14の開口数およびレチクル8を照射する光の性状、すなわち、2次光顔24の性状によって決まる。第7図は第6図に示した投影露光装置におけるレチクル照明光線, 結像光線に関する説明図である。

第7図において、投影光学系14は通常内部に 関口絞り16を有しており、レチクル8を通った 光が通過し得る角度0aを規制するとともにウェ ハ15上に落射する光線の角度0を決めている。

一般に投影光学系の間口数NAと称しているのは、NA=sinので定義される角度であり、投影倍率を1/mとすると、sinの角度であり、投影倍率を1/mとすると、sinの種の装置においての間係にある。またこの種の装置において活った。または、では、では、ないのでは、ないでは、ないのでは、ないでは、ないのでは、ないのでは、ないでは、ないのでは、ないでは、ないでは、

パターン断面の側壁傾斜がゆるく、厚いレジストの場合、断面形状は台形ないし三角形となる。このため従来の投影器光装置では、比較的バランスのとれたσ値として、σ=0.5~0.7に固定設定されており、実験的にσ=0.3等の条件が試みられているにすぎない。σ値を設定するには2次光源24の光源面の大きさを決めれば良いため、一般に2次光源24の光源面の直後にσ値設定用の円形開口絞り9を置いている。

〔発明が解決しようとする問題点〕

このような従来の装置においては、レチクル8を照射する光の性質を制御するのがコヒーレンシイの値だけであるため、焦点深度、領域内均一性、線幅制御性等各種条件を満たしつつ微細パターンを形成しようとすると、NAとのとによって決まる限界があった。したがって、投影光学系14の閉口数NAと2次光線24の大きさが決まると、パターン形成特性が自動的に決り、さらに解像性能を高めることはできなかった。

本発明はこのような点に指みてなされたもので

あり、その目的とするところは、投影光学系の開口数とレチクル照射用 2 次光源の大きさを固定した後のパターン解像性能をさらに向上させる投影器光装置を提供することにある。

(問題点を解決するための手段)

このような目的を達成するために本発明は、従来装置が用いていた2次光源の大きさを決める円形絞りの代わりに円輪状透過部を有する形状等中央部に対して周辺部の透過率が高くなるようにした特殊絞りを装着可能としたものである。

(作用)

本発明においては、レジストが薄い場合、解像 度向上のために 2 次光源の中心部の光を用いず 2 次光源の周辺部の光のみによって露光する。

(実施例)

本発明に係わる投影露光装置に適用される特殊 絞りとしての2次光源制御用絞りの各実施例を第 1図~第4図に示す。

第1図に示す絞りは円輪状に通過域を有する絞りであり、照射光の透過率が高い石英、フッ化カ

n.

照明光とパターン解像性との間に上記のごとき 関係があるから、薄いレジスト層の場合には、 2 次光源の外側迄使う程細かいパターン迄解像する。 したがって、さらに一歩進めて、細かいパターン

ルシウム、フッ化リチウム等の基板にクロム等の 遮光体を蒸着することによって作製することがで きる。また第2図回に示す絞りは透過率に分布を 有する絞りである。この透過率の分布は、第2図 10に示すように、周辺に近づく程法過率が高く中 心に近づくと低透過率あるいは完全遮光となる紋 りである。この絞りは、第1図に示す絞り同様に、 透過基仮に遮光体を径方向に厚さ分布を持たせて 付着させることにより作製することができる。な お第2図的に示す曲線は、円の周辺に近づく程法 遇率が高くなる曲級であれば何でもよい。第3図 に示す絞りは周辺部のみに数個又はそれ以上の多 数個の小開口を有する絞りであり、金属仮等に穴 をあけることにより作製できる。また、第4図に 示す絞りは第1図に示した絞りに近いものを簡便 に金属板等をくりぬいて作製するため、円輪閉口 節の一部につなぎの部分を入れたものである。

本発明の構成は、第5回または第6回に示した 従来装置の構成と同じでよく、開口絞り9の代わ りに第1回~第4回に示した絞りを装着すればよ

迄解像するために必要な2次光源の周辺部の光だけを用いれば、一層の高解像度化がはかれる。

第1図~第4図に示した絞りを用いた本発明に 係わる投影露光装置では、2次光源の中心部の光 を用いず 2 次光顔の周辺の光のみによって露光す ることができるので、レジストを輝くすれば、従 来の装置ではとうてい得られなかった微細結晶の パターンを得ることができる。例えば、波長36 5 n.mのi線を用い、投影倍率1/10,投影光 学系14の間口数0.35. レジストOFPR800 , 0.5μm厚でパターン形成を行なうと、従来の 円形開口絞りでσ=0.5とした装置条件では、線 帽0.5μm、ピッチ1μmのラインアンドスペー スまでしか解像し得ないが、第1図に示した円輪 状開口紋りを使用した木発明の投影露光装置の一 実施例によれば、緑幅 0 .4μm,ピッチ 0 .8μm のラインアンドスペースまで解像し得ることが確 認されている。円輪状開口絞りにおいてはできる だけ外側の光線だけを使うようにする程高解像性 となるので、円輪閉口絞りの外形。内径により効

果はおのおの異なってくるが、いずれの場合も単純な円形開口に比較すると高解像となる。また、第2図~第4図に示した紋りを用いてもそれぞれ透過光の分布に応じた効果を生じ、これら以外の形状でも外側で高透過性を有する形状ならば何でもよい。

さらに本発明によれば、解像性が上がるとともに焦点深度が深くなることが確認されている。 例えば、上記レジストパターンの場合、 0.4 μ m ラインアンドスペースで ± 0.5 μ m 以上の焦点深度となる。 従来は 0.5 μ m ラインアンドスペースで ± 1 μ m 以上の焦点深度となる。 従来は 0.5 μ m ラインアンドスペースで も ± 0.5 μ m 程度であり、かなりの改善がはかれる。

このような特殊絞りを装置に固定設置することも可能であるが、前述のようにレジスト膜厚が厚い場合には、2次光源の中心部付近を使用した方が有利になることもあるので、従来の円形開口絞り等の均一絞りと特殊絞りを交換可能としておけばより便利である。

央部に対して周辺部の透過率が高くなるようにした特殊なりを装着することにより、薄いレジスト層に従来より微細なパターンをより深い焦点深度で形成することができるので、半導体集積回路等の製造に適用すれば大幅な集積度向上がはかれる。また本発明はこのような特殊被りで、膜厚の厚いレジストにも対応できる効果がある。

4. 図面の簡単な説明

第1図~第4図は本発明に係わる投影館光装置 に適用される特殊紋りとしての2次光源制御用紋 りを示す平面図、第5図は従来の代妻的な投影館 光装置を示す構成図、第6図はその模式的構成図、 第7図はそのレチクル照明光線、結像光線に関す る説明図である。

1・・・・ランプ、2・・・・楕円反射鏡、3・・・・第2焦点、4・・・・インプットレンズ、5・・・・オプチカルインテグレータ、6・・・・アウトプットレンズ、7・・・・コリメーションレンズ、8・・・・レチクル、9,16・・・

また、装置を第5図のごとく構成し、オプチカ ルインテグレータ5の前に円錐レンズを着脱可能 とし、オプチカルインテグレータ5に入る光の分 布を円錐レンズの着脱により周辺円輪状と中央集 中型とに切換え可能とし、従来の円形紋り等の均 一級り使用時と特殊級り使用時とで使い分けられ るようにすれば、光線の使用効率を落とさずに使 い分けができる。さらにインプットレンズ4を交 換できるようにして焦点距離、設置位置を変え、 オプチカルインテグレータ5に入る光束の大きさ を変えられるようにしても築光効率を改善できる。 第5図に基づき一般的に言うと、特殊絞り使用時 に特殊絞りの透過部分形状に類似した形状の光束 に第1集光光学系18により集光し、この光束を 均一化光学系19に入れるようにすれば、本発明 はより有効である。

(発明の効果)

以上説明したように本発明は、従来装置が用いていた2次光源の大きさを決める円形絞り等の均 一紋りの代わりに円輪状透過部を有する形状等中

・閉口絞り、10・・・・フィルタ、11, 12 ・・・・コールドミラー、13・・・・ランプハ ウス、14・・・・投影光学系、15・・・・ウ エハ、17・・・・光源、18・・・・第1集光 光学系、19・・・・均一化光学系、20・・・ ・第2集光学系、24・・・・2次光源。

特許出願人 日本電信電話公社 同上 日本光学工業株式会社

代理人 山川政樹(ほか1名)

特開昭61-91662(6)

