OCT 15TH, 2024

Modelling an Ammonia Synthesis Process for Hydrogen Economy on APS

APS Academic Competition 2024

Presented by Seonggyun Kim

Overview of the project

- AVEVA Process Simulation (APS) 2023.2 version has been used
- 5 Tutorial videos to guide through each function of APS
- Objective
 - To produce 21,740 kg/h of hydrogen from solar panels and convert them to ammonia product with 114,155.25kg/h mass flow rate
- Part 1 Simulation building (Nov 1st, 2023 Dec 1st, 2023)
- Part 2 Simulation optimization (Dec 4th, 2023 Jan 2nd, 2024)
- Part 3 Pipeline implementation (Jan 3rd, 2024 Feb 2nd, 2024)

Introduction

Background information

- Why Hydrogen fuel?
- Method for conversion to ammonia
- Reversible reaction
 - Forward reaction is exothermic
- Favored high pressure and low temperature
- Typical single-pass conversion is 10%
- Using adiabatic Gibbs free reactor

Figure 1: Block flow diagram for production and transportation of ammonia from hydrogen

Introduction – Part 1

Process design

- Deliverables:
 - Number of solar panel arrays needed to produce ammonia at 1,000,000 tonne/y
 - Thickness of the vessel
 - The single pass-conversion of hydrogen to ammonia
 - Idea for optimization

AVEVA Process Simulation Academic Competition 2023: Contest Problem - Part 1

AVEVA

C-401A/B H _z feed	C-402 A/B N, feed	E-401 H₂ cooler	E-402 N ₂ cooler	E-403 Reactor	E-404 Reactor	R-401 Ammonia	E-405 Reactor	V-401 HP Flash	V-402 LP Flash	C-403 HP recycle	C-404 LP recycle
compressors				Feed	Feed Heater	Converter		Vessel	Vessel	compressor	compressor
	compressor	rs		Preheater			Cooler				

Figure 2: Preliminary Process Flow Diagram for Ammonia Synthesis Plant

Introduction – Part 2

Process optimization

- Base simulation was given for normalization
- Objective function: Net Present Value (NPV) in Economic Summary model
 - Negative value, since the value of product ammonia is not taken into account.
- RawMatl, CapEx, Utilitiy submodels to calculate equipment purchase cost

- Adiabatic Gibbs reactor (GMR)
 - Temperature: 350 400 °C
 - Pressure: 150 200 bar
- Available utilities
 - Cooling water
 - Low-, medium-, and high-pressure steam
 - Hot oil
- Material constraints
- Overall heat transfer coefficients given for different configurations
 - a. Gas Gas U = 100 W/m2/K
 - b. Gas Liquid U = 200 W/m2/K
 - c. Liquid-Liquid U = 500 W/m2/K
 - d. Gas condensing vapor or boiling liquid U = 500 W/m2/K
 - e. Liquid condensing Vapor U = 1000 W/m2/K

Introduction – Part 3

Hydrogen pipeline

- Direct transportation of pressurized hydrogen over a 500-mile pipeline
- Rigorous pipe model (PipRig) to be used
- Minimize Equivalent Annual Operating Cost (EAOC) planned for 6 years
- Pipeline cost calculation

The cost of a new H₂ pipeline is given by the following equation:

Installed Pipeline Cost $[\$/mile] = 5\times10^6 + 1.5\times10^6(D [inch]/6)^{0.7}$

Where D is the pipe diameter in inches. For example, a 3-inch pipe, costs $(5+1.5(3/6)^{0.7}) = 5.92$ million for 1 mile of pipeline. Note that the diameter of pipeline should not be less than 1-inch.

One or more booster compressors may be installed along the pipeline

Seonggyun Kim – Europe

MSs Chemical Engineering for Energy and Environment KTH Royal Institute of Technology, Stockholm, Sweden

PEM Electrolysis

- Simple scale-up by a factor of 8700 to produce enough H2
- For a more realistic cost analysis, scaling up the electrolysis process considering cost, robustness, and safety aspects of the electrical equipment would be more suitable.

PEM Electrolysis

- Flowsheet equations to calculate:
 - solar farm area
 - reactor/vessel thicknesses
 - single pass conversion
- Variable references to monitor/specify different process parameters

Stream table

Table 1. Simulation result obtained from the .simx file

	tuble 1. Simulation result obtained from the .simx file										
Stream no.	1	2	3	4	5	6	7	8	9	10	11
Model name in APS	S1	S2	S4	S5	S6	S8	S13	S22	S19	S24	S17
Temperature [°C]	80.00	307.96	270.80	25.00	217.50	313.60	430.44	50	297.31	50.63	33.86
Pressure [bar]	8.9	35.6	150	7	28	150	149.3	149.2	150	150	17.24
Vapor fraction	1	1	1	1	1	1	1	1	1	1	0
Mass flow [kg/h]	21,745	21,745	21,745	101,446	101,446	101,446	1,935,029	9,035	13,889	1,797,949	114,155
Mole flow [kmol/h]	10,787	10,787	10,787	3,614	3,614	3,614	170,919	817	898	162,500	6,705
Mole fraction											
Hydrogen	1	1	1	0	0	0	0.5448	0.5693	0.1545	0.5693	0.0005
Nitrogen	0	0	0	0.995	0.995	0.995	0.1818	0.1900	0.0445	0.1900	0.0001
Ammonia	0	0	0	0	0	0	0.2527	0.2191	0.7895	0.2191	0.9993
Argon	0	0	0	0.005	0.005	0.005	0.0207	0.0216	0.0115	0.0216	0.0001

Table 2. Reference data given in the problem description

Stream no.	1	2	3	4	5	6	7	8	9	10	11
Temperature [°C]	80	308	270.8	25	217.5	313.6	430.4	50	296.9	50.6	34
Pressure [bar]	8.9	35.6	150	7	28	150	149.3	149.2	150	150	17.24
Vapor fraction	1	1	1	1	1	1	1	1	1	1	0
Mass flow [kg/h]	21,740	21,740	21,740	101,426	101,426	101,426	1,930,310	9,012	13,827	1,793,316	114,155
Mole flow [kmol/h]	10,785	10,785	10,785	3,613	3,613	3,613	170,471	814	894	162,058	6,705
Mole fraction											
Hydrogen	1	1	1	0	0	0	0.5447	0.5693	0.155	0.5693	0.0005
Nitrogen	0	0	0	0.995	0.995	0.995	0.1818	0.19	0.0447	0.19	0.0001
Ammonia	0	0	0	0	0	0	0.2528	0.2191	0.7888	0.2191	0.9993
Argon	0	0	0	0.005	0.005	0.005	0.0207	0.0216	0.0115	0.0216	0.0001

 Obtained stream properties/composition matched the reference data almost exactly.

Suggestions for optimization

- Compressors
 - Adjust compression ratios to reduce power use while keeping final pressure.
- Reactor
 - Temperature: Balance to avoid slow reactions or thermodynamic penalties.
 - Pressure: Optimize for minimal power demand or cost.
- Flash Vessels
 - Tune pressures for better separation or lower costs.
- Heat Integration
 - Use reactor heat to preheat feed, saving on utilities.
 - ~500 MW heating from 68 to 368 °C
 - ~660 MW cooling from 430 to 50 °C

Approach

- Heat Recovery with Steam
 - Used low- and high-pressure steam to recover heat from reactor outlet, reducing utility costs.
 - LPS: saturated at 150 °C
 - HPS: saturated at 254 °C
 - Excess steam exported for additional value.
- Reactor Inlet P/T Optimization
 - Case studies showed optimal inlet temperature at 200 bar.
 - Optimized heat exchanger temperatures.
- Feed Compressors
 - Optimized with Electricity consumption as the objective function

Approach – Heat Recovery

From 500 MW heating demand and 660 mw cooling demand

To 160 MW cooling demand

There is enough temperature difference to drive heat exchange

But not as simple as that.. why?

- a. Gas Gas U = 100 W/m2/K
- b. Gas Liquid U = 200 W/m2/K
- c. Liquid-Liquid U = 500 W/m2/K
- d. Gas condensing vapor or boiling liquid U = 500 W/m2/K
- e. Liquid condensing Vapor U = 1000 W/m2/K

Heat integration – Base case

Flowsheet

Blue: Cooling water

Red: High- and low- pressure steam

saturated liquid

saturated vapor

Pink: Hot circulating oil

Heat exchanger optimization

Economic summary

Table 2. Economic summary: consumed or produced utilities in optimized and the base case.

		Optimized			Base case		
Utility	Consum	otion	Cost [M\$/yr]	Consum	ption	Cost [M\$/yr]	
Cooling water	15461.90	m3/h	11.75	59013.80	m3/h	44.83	
HP Steam		-	-	639.00	t/h	196.59	
Hot circulating oil	4674.46	t/h	111.79	6422.22	t/h	153.59	
Electricity	62.59	MW	88.74	56.75	MW	80.47	
	Product	tion	Value [M\$/yr]	Produc	tion	Value [M\$/yr]	
*HP Steam	142.91	t/h	43.97		-	-	
*LP Steam	149.61	t/h	41.51		-	-	
Total utility cost [M\$/yr]			212.27			475.48	
Net utility cost [M\$/yr]			126.80				

- While the base case consumes high-pressure steam (HPS) as a heating medium,
 high- and low-pressure steam are net produced in the optimized process.
- (Net utility cost) = (Total utility cost) (Product value of exported steam)
- Cost of the feed nitrogen was not considered.
- Steam products that only exist in the optimized process are denoted with an asterisk (*).

Economic summary

Table 3. Economic summary: Equipment purchase cost.

	F	D	Purchase	Cost [\$]
	Equipment	Description	Optimized	Base Case
Compressors	K1	1 st H2 compressor	15,850,519	15,893,849
	K2	2 nd H2 compressor	17,732,989	15,767,202
	К3	1 st N2 compressor	3,538,104	2,866,120
	K4	2 nd N2 compressor	3,252,911	3,571,250
	K5	HP recycle compressor	1,705,770	2,191,338
	K6	LP recycle compressor	4,985,516	3,950,181
Heat Exchangers	E1	H2 feed intercooler	661,656	670,323
	E2	N2 feed intercooler	76,123	65,364
	E3	Feed preheater (HPS)	5,466,952	15,881,835
	E4	Feed preheater (HCO)	14,797,899	19,502,624
	E5	Product cooler	23,751,651	43,974,321
	*E6	HPS production	5,706,349	-
	*E7	LPS production	7,606,498	-
	*E8	Feed preheater (LPS)	2,841,077	-
Reactor/Vessels	R1	Ammonia synthesis reactor	27,265,267	26,737,454
	V1	HP separation vessel	1,298,001	1,023,348
	V2	LP separation vessel	31,233	31,215
*Pumps	*P1	HPS pump	9,959	-
	*P2	LPS pump	7,169	
Total Purchase Cost [M\$]		136.59	152.13

• Equipment that were added to the base case are denoted with an asterisk (*).

Flowsheet

- "The H₂ should be delivered to the point of use (500 miles from its generation point) at 480 bar."
- My interpretation: 480 bar at the end of the pipeline.
- H₂ from solar farm at 8.9 bar
- 5-stage compression with compression ratio = 2.4
- Hydrogen is very hard to compress
- Three main variables:
 - Pipeline 1 pressure drop
 - Pipeline 2 pressure drop
 - Position of the booster station

Optimization – Intercooler temperatures

Optimization – Pipeline pressure drop and booster station location

Economic summary and conclusion

Table 1. Economic summary: consumed utilities in the optimized pipeline system

Utility	Consum	otion	Cost [M\$/yr]			
Cooling water						
CW1	0.3570	m³/hr	0.98			
CW2	0.2534		0.69			
CW3	0.2561		0.70			
CW4	0.2318		0.63			
	1.0982		3.00			
Electricity						
K1	11.72	MW	16.63			
K2	10.62		15.06			
К3	10.86		15.40			
K4	11.49		16.29			
K5	13.58		19.25			
К6	8.99		12.74			
	67.26		95.38			
Total	Total Utility Cost					

Table 2. Economic summary: Equipment purchase cost.

	Equipment	Description	Purchase Cost [M\$]
Compressors	K1	Compression stage 1	11.32
	K2	Compression stage 2	10.63
	К3	Compression stage 3	10.78
	K4	Compression stage 4	11.17
	K5	Compression stage 5	12.41
	K6	Booster compressor station	9.57
Heat Exchangers	E1	Intercooling b/w K1 and K2	0.45
	E2	Intercooling b/w K2 and K3	0.66
	E3	Intercooling b/w K3 and K4	1.01
	E4	Intercooling b/w K4 and K5	1.97
Pipeline	PIR1	1st Segment	1939.39
	PIR2	2nd Segment	1408.38
	•	Total Purchase Cost [M\$]	3417.76

Pipeline EAOC = 718.1 M\$
 vs 306.6 M\$ (NH3 process)

EAOC [\$/y] = Total Fixed Capital Investment [\$]/6 y + Total Operating Cost [\$/y]

- Using ammonia as a hydrogen carrier is economically a better option than direct transport of pressurized hydrogen.
- There's a catch:
 - Liquid ammonia transport by ships emits CO2
 - Ammonia cracking (or decomposition) to get H2 back
 - Energy intensive
 - Endothermic
 - Requires good catalysts

Q&A

