QUIZ 3: 90 Minutes

Last Name:	
First Name:	
RIN:	
Section:	

Answer **ALL** questions.

NO COLLABORATION or electronic devices. Any violations result in an F. NO questions allowed during the test. Interpret and do the best you can.

GOOD LUCK!

Circle at most one answer per question.

10 points for each correct answer

Total

100

1. The first 2 questions refer to the following experiment.

There are two identical bags. One contains 3 white and 1 black ball; the other 1 white and 3 black balls. You pick a bag randomly (probability $\frac{1}{2}$ for each bag) and then randomly pick one of the balls in the bag (probability $\frac{1}{4}$ for each ball). You got a white ball. Let X be the number of white balls in the other bag. (The **information** that you got a white ball is very important.)

What is $\mathbb{E}[X]$ (expected value)?

- A 1
- $\boxed{\mathbf{B}} \frac{6}{4}$
- $\boxed{C} \frac{10}{4}$
- D 2
- $\boxed{\mathrm{E}} \frac{5}{4}$
- **2.** What is Var(X) (variance)?
 - $\boxed{\mathbf{A}} \ \frac{2}{4}$
 - $\boxed{\mathrm{B}} \frac{3}{4}$
 - C 1
 - $\boxed{D} \frac{5}{4}$
 - $\boxed{\mathrm{E}} \frac{6}{4}$
- **3.** A game costs x to play. You toss 4 fair coins. If you get *more* heads than tails, you win and get back 10 + x for a *profit* of 10. Otherwise, you lose and get nothing back, so your *loss* is x. What is an expression for your expected profit in dollars?
 - $\boxed{\mathbf{A}} \ 10 \times \frac{1}{2} x \times \frac{1}{2}$
 - $\boxed{\mathrm{B}} \frac{50 11x}{16}$
 - $\boxed{\text{C}} \frac{60 10x}{16}$
 - $\boxed{\mathbf{D}} \ \frac{50-x}{16}$
 - $\boxed{\mathrm{E}} \frac{60-x}{16}$

- **4.** A Martian couple continues to have children until they have 2 males (not necessarily in a row). On Mars, males are twice as likely as females. Assume children are *independent*. Let X be the number of children this couple will have. What is $\mathbb{E}[X]$, the expected number of children this couple will have?
 - A 2
 - B 3
 - C 2.5
 - D 3.5
 - E 4
- 5. You toss 5 independent fair coins. What is the probability that you will get 4 or more heads?
 - $\boxed{\mathbf{A}} \begin{pmatrix} 5 \\ 4 \end{pmatrix} \times \frac{1}{2^5}$
 - $\boxed{\mathbf{B}} \ \frac{3}{16}$
 - $\boxed{C} \frac{5}{32}$
 - $\boxed{D} \ \frac{1}{4}$
 - $\boxed{\mathrm{E}} \frac{9}{32}$
- **6.** Step 1: Toss 9 fair coins. Step 2: if you got more heads than tails in Step 1, toss 9 more coins and stop; if you get fewer heads than tails in Step 1, stop. Let X be the number of heads you toss. What is $\mathbb{E}[X]$?
 - A 6.25
 - B 6.75
 - C 7.25
 - D 9
 - E 8

7. Language $\mathcal{L}_1 = \{\text{all } \underline{non\text{-}empty} \text{ strings in which the number of 1's is even} \}$. Which finite automaton solves this problem, i.e. the YES-set (set of accepted strings) for the automaton is \mathcal{L}_1 ?

8. Language $\mathcal{L}_2 = \{\underline{all} \text{ strings in which the number of 1's is even} \}$ which CFG solves this problem - i.e., generates the strings in \mathcal{L}_2 ?

 $\boxed{\mathbf{A} \mid S \to \varepsilon \mid 0S \mid S0 \mid 11S \mid S11}$

 $\boxed{\mathbf{B} \mid S \to \varepsilon \mid 0S \mid S0 \mid 1S1}$

 $\boxed{\mathbf{C} \mid S \to \varepsilon \mid 0S \mid 11S}$

 $\boxed{\mathbf{D} \mid S \to \varepsilon \mid 1S \mid S1 \mid 0S0}$

 $\boxed{\mathbf{E}} \: S \to \varepsilon \mid 0 \mid 11 \mid SS$

- **9.** Which of the following is <u>countable</u>?
 - A The set of real numbers.
 - B A language (a possibly infinite set of *finite* strings).
 - \fbox{C} The set of all subsets of \Bbb{N} .
 - $\boxed{\mathrm{D}}$ The set of all functions from \mathbb{R} to \mathbb{R} .
 - [E] The set of all functions from \mathbb{N} to \mathbb{N} .
- 10. Which of the following is \underline{not} a valid way to show that a set S is countable:
 - \fbox{A} Show an onto function from \Bbb{N} to S.
 - $\boxed{\mathsf{B}}$ Show a 1-to-1 function from \mathbb{N} to S.
 - $\boxed{\mathbb{C}}$ Show a bijection from \mathbb{N} to S.
 - $\boxed{\mathrm{D}}$ Show there does not exist a 1-to-1 function from $\mathbb N$ to S.
 - \fbox{E} Show a 1-to-1 function from S to $\Bbb N$.

SCRATCH