Computation with Absolutely No Space Overhead

Lane Hemaspaandra¹ Proshanto Mukherji¹ Till Tantau²

¹Department of Computer Science University of Rochester

²Fakultät für Elektrotechnik und Informatik Technical University of Berlin

Developments in Language Theory Conference, 2003

- 1 The Model of Overhead-Free Computation
 - The Standard Model of Linear Space
 - Our Model of Absolutely No Space Overhead
- The Power of Overhead-Free Computation
 - Palindromes
 - Linear Languages
 - Context-Free Languages with a Forbidden Subword
 - Languages Complete for Polynomial Space
- 3 Limitations of Overhead-Free Computation
 - Linear Space is Strictly More Powerful

- 1 The Model of Overhead-Free Computation
 - The Standard Model of Linear Space
 - Our Model of Absolutely No Space Overhead
- The Power of Overhead-Free Computation
 - Palindromes
 - Linear Languages
 - Context-Free Languages with a Forbidden Subword
 - Languages Complete for Polynomial Space
- Limitations of Overhead-Free Computation
 Linear Space is Strictly More Powerful

- 1 The Model of Overhead-Free Computation
 - The Standard Model of Linear Space
 - Our Model of Absolutely No Space Overhead
- The Power of Overhead-Free Computation
 - Palindromes
 - Linear Languages
 - Context-Free Languages with a Forbidden Subword
 - Languages Complete for Polynomial Space
- 3 Limitations of Overhead-Free Computation
 - Linear Space is Strictly More Powerful

- 1 The Model of Overhead-Free Computation
 - The Standard Model of Linear Space
 - Our Model of Absolutely No Space Overhead
- 2 The Power of Overhead-Free Computation
 - Palindromes
 - Linear Languages
 - Context-Free Languages with a Forbidden Subword
 - Languages Complete for Polynomial Space
- 3 Limitations of Overhead-Free Computation
 - Linear Space is Strictly More Powerful

- Input fills fixed-size tape
- Input may be modified
- Tape alphabet is larger than input alphabet

- Input fills fixed-size tape
- Input may be modified
- Tape alphabet is larger than input alphabet

- Input fills fixed-size tape
- Input may be modified
- Tape alphabet is larger than input alphabet

- Input fills fixed-size tape
- Input may be modified
- Tape alphabet is larger than input alphabet

- Input fills fixed-size tape
- Input may be modified
- Tape alphabet is larger than input alphabet

- Input fills fixed-size tape
- Input may be modified
- Tape alphabet is larger than input alphabet

- Input fills fixed-size tape
- Input may be modified
- Tape alphabet is larger than input alphabet

- Input fills fixed-size tape
- Input may be modified
- Tape alphabet is larger than input alphabet

- Input fills fixed-size tape
- Input may be modified
- Tape alphabet is larger than input alphabet

- Input fills fixed-size tape
- Input may be modified
- Tape alphabet is larger than input alphabet

Linear Space is a Powerful Model

- 1 The Model of Overhead-Free Computation
 - The Standard Model of Linear Space
 - Our Model of Absolutely No Space Overhead
- 2 The Power of Overhead-Free Computation
 - Palindromes
 - Linear Languages
 - Context-Free Languages with a Forbidden Subword
 - Languages Complete for Polynomial Space
- 3 Limitations of Overhead-Free Computation
 - Linear Space is Strictly More Powerful

- Input fills fixed-size tape
- Input may be modified
- Tape alphabet equals input alphabet

- Input fills fixed-size tape
- Input may be modified
- Tape alphabet equals input alphabet

- Input fills fixed-size tape
- Input may be modified
- Tape alphabet equals input alphabet

- Input fills fixed-size tape
- Input may be modified
- Tape alphabet equals input alphabet

- Input fills fixed-size tape
- Input may be modified
- Tape alphabet equals input alphabet

- Input fills fixed-size tape
- Input may be modified
- Tape alphabet equals input alphabet

Turing machine

Intuition

 Tape is used like a RAM module.

Definition of Overhead-Free Computations

Definition

A Turing machine is overhead-free if

- it has only a single tape,
- writes only on input cells,
- writes only symbols drawn from the input alphabet.

Definition

A language $L \subseteq \Sigma^*$ is in

DOF if L is accepted by a deterministic overhead-free machine with input alphabet Σ ,

 $\mathsf{DOF}_{\mathsf{poly}}$ if L is accepted by a deterministic overhead-free machine with input alphabet Σ in polynomial time

NOF is the nondeterministic version of DOF.

NOF_{poly} is the nondeterministic version of DOF_{poly}.

Definition

A language $L \subseteq \Sigma^*$ is in

DOF if L is accepted by a deterministic overhead-free machine with input alphabet Σ ,

 ${\sf DOF_{poly}}$ if L is accepted by a deterministic overhead-free machine with input alphabet Σ in polynomial time.

NOF is the nondeterministic version of DOF,

NOF_{poly} is the nondeterministic version of DOF_{poly}

Definition

A language $L \subseteq \Sigma^*$ is in

DOF if L is accepted by a deterministic overhead-free machine with input alphabet Σ ,

 $\mathsf{DOF}_{\mathsf{poly}}$ if L is accepted by a deterministic overhead-free machine with input alphabet Σ in polynomial time.

NOF is the nondeterministic version of DOF,

NOF $_{\mathsf{poly}}$ is the nondeterministic version of DOF $_{\mathsf{poly}}$

Definition

A language $L \subseteq \Sigma^*$ is in

DOF if L is accepted by a deterministic overhead-free machine with input alphabet Σ ,

 $\mathsf{DOF}_{\mathsf{poly}}$ if L is accepted by a deterministic overhead-free machine with input alphabet Σ in polynomial time.

NOF is the nondeterministic version of DOF,

NOF_{poly} is the nondeterministic version of DOF_{poly}.

Simple Relationships among Overhead-Free Computation Classes

- 1 The Model of Overhead-Free Computation
 - The Standard Model of Linear Space
 - Our Model of Absolutely No Space Overhead
- 2 The Power of Overhead-Free Computation
 - Palindromes
 - Linear Languages
 - Context-Free Languages with a Forbidden Subword
 - Languages Complete for Polynomial Space
- 3 Limitations of Overhead-Free Computation
 - Linear Space is Strictly More Powerful

Palindromes

Linear Languages Forbidden Subword **Complete Languages**

Palindromes Can be Accepted in an Overhead-Free Way

Algorithm

Phase 1:

Compare first and last bit Place left end marker Place right end marker

Phase 2:

Compare bits next to end markers Find left end marker Advance left end marker Find right end marker Advance right end marker

Palindromes Linear Languages Forbidden Subword Complete Languages

Palindromes Can be Accepted in an Overhead-Free Way

Algorithm

Phase 1:

Compare first and last bit
Place left end marker
Place right end marker

Phase 2:

Compare bits next to end markers
Find left end marker
Advance left end marker
Find right end marker
Advance right end marker

Palindromes

Linear Languages Forbidden Subword Complete Languages

Palindromes Can be Accepted in an Overhead-Free Way

Algorithm

Phase 1:

Compare first and last bit Place left end marker Place right end marker

Phase 2:

Compare bits next to end markers
Find left end marker
Advance left end marker
Find right end marker
Advance right end marker

Palindromes Linear Languages

Forbidden Subword **Complete Languages**

Palindromes Can be Accepted in an Overhead-Free Way

Algorithm

Phase 1:

Compare first and last bit Place left end marker Place right end marker

Phase 2:

Compare bits next to end markers

Find left end marker Advance left end marker Find right end marker Advance right end marker

Palindromes

Linear Languages Forbidden Subword **Complete Languages**

Palindromes Can be Accepted in an Overhead-Free Way

Algorithm

Phase 1:

Compare first and last bit Place left end marker Place right end marker

Phase 2:

Compare bits next to end markers Find left end marker

Advance left end marker Find right end marker Advance right end marker

Palindromes Can be Accepted in an Overhead-Free Way

Algorithm

Phase 1:

Compare first and last bit Place left end marker Place right end marker

Phase 2:

Palindromes

Linear Languages Forbidden Subword **Complete Languages**

Palindromes Can be Accepted in an Overhead-Free Way

Algorithm

Phase 1:

Compare first and last bit Place left end marker Place right end marker

Phase 2:

Palindromes Can be Accepted in an Overhead-Free Way

Algorithm

Phase 1:

Compare first and last bit Place left end marker Place right end marker

Phase 2:

Palindromes

Linear Languages Forbidden Subword **Complete Languages**

Palindromes Can be Accepted in an Overhead-Free Way

Algorithm

Phase 1:

Compare first and last bit Place left end marker Place right end marker

Phase 2:

Compare bits next to end markers Find left end marker

Advance left end marker Find right end marker Advance right end marker

Palindromes Can be Accepted in an Overhead-Free Way

Algorithm

Phase 1:

Compare first and last bit Place left end marker Place right end marker

Phase 2:

Palindromes

Linear Languages Forbidden Subword **Complete Languages**

Palindromes Can be Accepted in an Overhead-Free Way

Algorithm

Phase 1:

Compare first and last bit Place left end marker Place right end marker

Phase 2:

Palindromes

Linear Languages Forbidden Subword Complete Languages

Palindromes Can be Accepted in an Overhead-Free Way

Algorithm

Phase 1:

Compare first and last bit Place left end marker Place right end marker

Phase 2:

Palindromes Can be Accepted in an Overhead-Free Way

Algorithm

Phase 1:

Compare first and last bit Place left end marker Place right end marker

Phase 2:

Compare bits next to end markers
Find left end marker

Advance left end marker Find right end marker Advance right end marker

Palindromes Can be Accepted in an Overhead-Free Way

Algorithm

Phase 1:

Compare first and last bit Place left end marker Place right end marker

Phase 2:

Palindromes

Linear Languages Forbidden Subword **Complete Languages**

Palindromes Can be Accepted in an Overhead-Free Way

Algorithm

Phase 1:

Compare first and last bit Place left end marker Place right end marker

Phase 2:

Palindromes Can be Accepted in an Overhead-Free Way

Algorithm

Phase 1:

Compare first and last bit Place left end marker Place right end marker

Phase 2:

Relationships among Overhead-Free Computation Classes

Outline

- 1 The Model of Overhead-Free Computation
 - The Standard Model of Linear Space
 - Our Model of Absolutely No Space Overhead
- 2 The Power of Overhead-Free Computation
 - Palindromes
 - Linear Languages
 - Context-Free Languages with a Forbidden Subword
 - Languages Complete for Polynomial Space
- 3 Limitations of Overhead-Free Computation
 - Linear Space is Strictly More Powerful

A Review of Linear Grammars

Definition

A grammar is linear if it is context-free and there is only one nonterminal per right-hand side.

Example

 $G_1 \colon S \to 00S0 \mid 1 \text{ and } G_2 \colon S \to 0S10 \mid 0.$

Definition

A grammar is deterministic if "there is always only one rule that can be applied."

Example

 $G_1: S \rightarrow 00S0 \mid 1$ is deterministic. $G_2: S \rightarrow 0S10 \mid 0$ is not deterministic

A Review of Linear Grammars

Definition

A grammar is linear if it is context-free and there is only one nonterminal per right-hand side.

Example

 $G_1: S \to 00S0 \mid 1 \text{ and } G_2: S \to 0S10 \mid 0.$

Definition

A grammar is deterministic if "there is always only one rule that can be applied."

Example

 $G_1: S \rightarrow 00S0 \mid 1$ is deterministic.

 $G_2: S \rightarrow 0S10 \mid 0$ is not deterministic.

Deterministic Linear Languages Can Be Accepted in an Overhead-Free Way

Theorem

Every deterministic linear language is in DOF_{poly}.

Metalinear Languages Can Be Accepted in an Overhead-Free Way

Definition

A language is metalinear if it is the concatenation of linear languages.

Example

TRIPLE-PALINDROME = $\{uvw \mid u, v, \text{ and } w \text{ are palindromes}\}$

Theorem

Every metalinear language is in NOFpoly

Metalinear Languages Can Be Accepted in an Overhead-Free Way

Definition

A language is metalinear if it is the concatenation of linear languages.

Example

TRIPLE-PALINDROME = $\{uvw \mid u, v, \text{ and } w \text{ are palindromes}\}.$

Theorem

Every metalinear language is in NOFpoly

Metalinear Languages Can Be Accepted in an Overhead-Free Way

Definition

A language is metalinear if it is the concatenation of linear languages.

Example

TRIPLE-PALINDROME = $\{uvw \mid u, v, \text{ and } w \text{ are palindromes}\}.$

Theorem

Every metalinear language is in NOFpoly.

Relationships among Overhead-Free Computation Classes

Outline

- 1 The Model of Overhead-Free Computation
 - The Standard Model of Linear Space
 - Our Model of Absolutely No Space Overhead
- 2 The Power of Overhead-Free Computation
 - Palindromes
 - Linear Languages
 - Context-Free Languages with a Forbidden Subword
 - Languages Complete for Polynomial Space
- 3 Limitations of Overhead-Free Computation
 - Linear Space is Strictly More Powerful

Definition of Almost-Overhead-Free Computations

Definition

- A Turing machine is almost-overhead-free if
 - it has only a single tape,
 - writes only on input cells,
 - writes only symbols drawn from the input alphabet plus one special symbol.

Definition of Almost-Overhead-Free Computations

Definition

- A Turing machine is almost-overhead-free if
 - it has only a single tape,
- writes only on input cells,
- writes only symbols drawn from the input alphabet plus one special symbol.

Definition of Almost-Overhead-Free Computations

Definition

- A Turing machine is almost-overhead-free if
- it has only a single tape,
- writes only on input cells,
- writes only symbols drawn from the input alphabet plus one special symbol.

Context-Free Languages with a Forbidden Subword Can Be Accepted in an Overhead-Free Way

Theorem

Let L be a context-free language with a forbidden word. Then $L \in \mathsf{NOF}_{\mathsf{poly}}$.

→ Skip proof

Context-Free Languages with a Forbidden Subword Can Be Accepted in an Overhead-Free Way

Theorem

Let L be a context-free language with a forbidden word. Then $L \in \mathsf{NOF}_{\mathsf{poly}}$.

Proof.

Every context-free language can be accepted by a nondeterministic almost-overhead-free machine in polynomial time.

Relationships among Overhead-Free Computation Classes

Outline

- 1 The Model of Overhead-Free Computation
 - The Standard Model of Linear Space
 - Our Model of Absolutely No Space Overhead
- 2 The Power of Overhead-Free Computation
 - Palindromes
 - Linear Languages
 - Context-Free Languages with a Forbidden Subword
 - Languages Complete for Polynomial Space
- 3 Limitations of Overhead-Free Computation
 - Linear Space is Strictly More Powerful

Overhead-Free Languages can be PSPACE-Complete

Theorem

DOF contains languages that are complete for PSPACE.

▶ Proof details

Relationships among Overhead-Free Computation Classes

Outline

- 1 The Model of Overhead-Free Computation
 - The Standard Model of Linear Space
 - Our Model of Absolutely No Space Overhead
- 2 The Power of Overhead-Free Computation
 - Palindromes
 - Linear Languages
 - Context-Free Languages with a Forbidden Subword
 - Languages Complete for Polynomial Space
- 3 Limitations of Overhead-Free Computation
 - Linear Space is Strictly More Powerful

Some Context-Sensitive Languages Cannot be Accepted in an Overhead-Free Way

Theorem

 $DOF \subseteq DLINSPACE$.

Theorem

 $NOF \subseteq NLINSPACE$.

The proofs are based on old diagonalisations due to Feldman, Owings, and Seiferas.

Relationships among Overhead-Free Computation Classes

Candidates for Languages that Cannot be Accepted in an Overhead-Free Way

Conjecture

DOUBLE-PALINDROMES ∉ DOF.

Conjecture

 $\{ww \mid w \in \{0,1\}^*\} \notin NOF.$

Proving the first conjecture would show DOF \subsetneq NOF.

Candidates for Languages that Cannot be Accepted in an Overhead-Free Way

Theorem

DOUBLE-PALINDROMES \in DOF.

Conjecture

 $\{ww \mid w \in \{0,1\}^*\} \notin NOF.$

Proving the first conjecture would show DOF ⊊ NOF

Summary

- Overhead-free computation is a more faithful model of fixed-size memory.
- Overhead-free computation is less powerful than linear space.
- Many context-free languages can be accepted by overhead-free machines.
- We conjecture that all context-free languages are in NOF_{poly}.
- Our results can be seen as new results on the power of linear bounded automata with fixed alphabet size.

- A. Salomaa.
 Formal Languages.
 - Academic Press, 1973.
- E. Dijkstra.

 Smoothsort, an alternative for sorting in situ.

 Science of Computer Programming, 1(3):223–233, 1982
- E. Feldman and J. Owings, Jr.
 A class of universal linear bounded automata
 Information Sciences, 6:187–190, 1973.
- P. Jančar, F. Mráz, M. Plátek, and J. Vogel. Restarting automata.
 - ◆ロ → ◆昼 → ◆ 夏 → 夏 | 章 | 夕 Q で

- A. Salomaa.
 Formal Languages.
 - Academic Press, 1973.
- E. Dijkstra.
 - Smoothsort, an alternative for sorting in situ.
 - Science of Computer Programming, 1(3):223–233, 1982.
- E. Feldman and J. Owings, Jr.
 A class of universal linear bounded automata
 Information Sciences, 6:187–190, 1973.
- P. Jančar, F. Mráz, M. Plátek, and J. Vogel. Restarting automata.
 - FCT Conference 1995, LNCS 985, pages 282–292. 1995

Formal Languages.

Academic Press, 1973.

Smoothsort, an alternative for sorting in situ. *Science of Computer Programming*, 1(3):223–233, 1982.

- E. Feldman and J. Owings, Jr.
 A class of universal linear bounded automata. *Information Sciences*, 6:187–190, 1973.
- P. Jančar, F. Mráz, M. Plátek, and J. Vogel. Restarting automata.

Formal Languages.

Academic Press, 1973.

E. Dijkstra.

Smoothsort, an alternative for sorting in situ. *Science of Computer Programming*, 1(3):223–233, 1982.

E. Feldman and J. Owings, Jr.
A class of universal linear bounded automata.
Information Sciences, 6:187–190, 1973.

P. Jančar, F. Mráz, M. Plátek, and J. Vogel. Restarting automata.

FCT Conference 1995, LNCS 985, pages 282-292. 1995.

Appendix Outline

- Appendix
 - Complete Languages
 - Improvements for Context-Free Languages
 - Abbreviations

Overhead-Free Languages can be PSPACE-Complete

Theorem

DOF contains languages that are complete for PSPACE.

Proof.

- Let $A \in DLINSPACE$ be PSPACE-complete. Such languages are known to exist.
- ② Let M be a linear space machine that accepts $A \subseteq \{0, 1\}^*$ with tape alphabet Γ.
- **3** Let $h: \Gamma \to \{0, 1\}^*$ be an isometric, injective homomorphism.
- Then h(L) is in DOF and it is PSPACE-complete.

Improvements

Theorem

- $\ \, \textbf{DCFL} \subseteq \mathsf{DOF}_{\mathsf{poly}}.$
- $\textbf{2} \ \mathsf{CFL} \subseteq \mathsf{NOF}_{\mathsf{poly}}.$

Explanation of Different Abbreviations

DOF	Deterministic Overhead-Free.
NOF	Nondeterministic Overhead-Free.
DOF _{poly}	Deterministic Overhead-Free, polynomial time.
DOF _{poly}	Nondeterministic Overhead-Free, polynomial time.

Table: Explanation of what different abbreviations mean.

