Mineração de padrões sequenciais em voos nacionais

Aluno: Philipp Matthews Rodrigues Mendonça

Orientador: Eduardo Ogasawara

Motivação e Resumo

- · Base de dados de voos nacionais(VRA).
- · Análise de impacto de atrasos em voos.
- · Análise de sequências frequentes.
- · Linguagem R e pacote ArulesSequence.

Análise de sequências frequentes

- Busca de sequências que se repetem em diversas transações.
- · Geração de regras para as sequências.
- · Arranjo de "carrinho de compras":

EventID: Identificador de um evento, evento esse que pode se repetir muitas vezes no tempo.

SequenceID: Identificador temporal de quando um evento se repetiu.

ItemList: Lista dos itens correspondentes a aquele evento.

Análise de sequências frequentes

```
SBEG2009/01/01 05 3 1783 1705 1697
SBEG2009/01/01 16 3 3305 3891 1641
SBEG2009/01/02 05 3 1633 1705 1783
SBEG2009/01/02 15 1 1867
SBEG2009/01/02 17 2 3545 3749
SBEG2009/01/03 05 2 1705 1783
SBEG2009/01/03 15 1 1867
SBEG2009/01/03 16 2 3305 1641
SBEG2009/01/03 20 1 1938
SBEG2009/01/04 05 2 1705 1783
SBEG2009/01/04 15 1 1867
SBEG2009/01/04 16 1 3305
SBEG2009/01/04 20 1 1938
SBEG2009/01/05 05 2 1705 1783
SBEG2009/01/05 15 1 1867
SBEG2009/01/05 16 1 3891
SBEG2009/01/05 17 1 3545
SBEG2009/01/06 05 3 1705 1783 1697
SBEG2009/01/06 15 1 1867
SBEG2009/01/06 16 1 3891
SBEG2009/01/06 18 1 1631
SBEG2009/01/06 20 1 1938
SBEG2009/01/07 05 4 1633 1705 1783 1697
SBEG2009/01/07 15 1 1867
```

Análise de sequências frequentes

- Suporte(X): Probabilidade de uma transação conter X.
- Confiança(X → Y): Probabilidade condicional de uma transação que contém X conter Y também.
- Lift(X, Y): Indica se X e Y tem correlação positiva(>1), negativa(<1) ou independente(=1).

Base de Dados

- Diversas informações dos voos nacionais de janeiro de 2009 a fevereiro de 2015:
 - Total de voos: 3067327
 - Voos atrasados: 676756
 - Transações geradas: 416878
 - · Aeroportos: 17
- Adequação dos dados para o padrão de entrada da técnica de mineração e do algoritmo usado.

Base de Dados

```
CREATE OR REPLACE VIEW public.v voos atrasados AS
SELECT v.dataaero,
    v.horavoo.
    count (v.numerovoo) AS num,
    string agg(v.numerovoo::text, ' '::text) AS codigos
   FROM ( SELECT concat(v1.aeroportopartida, "substring" (to char(v1.partidaprevista, 'YYYY/MM/DD'::text), 1, 10)) AS dataaero,
            "substring" (to char (v1.partidaprevista, 'HH24:MI:SS'::text), 1, 2) AS horavoo,
            v1.numerovoo,
           v1.aeroportopartida AS aeroporto,
           v1.tempoatrasopartida AS atraso
           FROM voo v1
        UNION ALL
         SELECT concat(v2.aeroportochegada, "substring"(to char(v2.chegadaprevista, 'YYYY/MM/DD'::text), 1, 10)) AS dataaero,
            "substring" (to char (v2.chegadaprevista, 'HH24:MI:SS'::text), 1, 2) AS horavoo,
            v2.numerovoo,
            v2.aeroportochegada AS aeroporto,
           v2.tempoatrasochegada AS atraso
           FROM voo v2) v
 WHERE v.aeroporto::text = 'SBGR'::text AND v.atraso > 14::double precision
  GROUP BY v.dataaero, v.horavoo
  ORDER BY v.dataaero, v.horavoo;
```

Código em R

· Input da base de dados e análise de suporte:

Código em R

· Calculo do valor ideal de suporte:

```
#Curva para valor ideal de Suporte
xp \leftarrow c(seq(0.05, 0.50, 0.01))
yp \leftarrow c(length(which(tsupport >= 0.05)), length(which(tsupport >= 0.06)), length(which(tsupport >= 0.07)),
        length(which(t\support >= 0.08)),length(which(t\support >= 0.09)),length(which(t\support >= 0.10)),
        length(which(t\$support >= 0.11)),length(which(t\$support >= 0.12)),length(which(t\$support >= 0.13)),
        length(which(t\$support >= 0.14)),length(which(t\$support >= 0.15)),length(which(t\$support >= 0.16)),
        length(which(t\$support >= 0.17)),length(which(t\$support >= 0.18)),length(which(t\$support >= 0.19)),
        length(which(t\support >= 0.20)),length(which(t\support >= 0.21)),length(which(t\support >= 0.22)),
        length(which(t\support >= 0.23)),length(which(t\support >= 0.24)),length(which(t\support >= 0.25)),
        length(which(t\support >= 0.26)),length(which(t\support >= 0.27)),length(which(t\support >= 0.28)),
        length(which(tsupport >= 0.29)), length(which(tsupport >= 0.30)), length(which(tsupport >= 0.31)),
        length(which(t\support >= 0.32)),length(which(t\support >= 0.33)),length(which(t\support >= 0.34)),
        length(which(t\support >= 0.35)),length(which(t\support >= 0.36)),length(which(t\support >= 0.37)),
        length(which(tsupport >= 0.38)), length(which(tsupport >= 0.39)), length(which(tsupport >= 0.40)),
        length(which(t\$support >= 0.41)).length(which(t\$support >= 0.42)),length(which(t\$support >= 0.43)),
        length(which(tsupport >= 0.44)), length(which(tsupport >= 0.45)), length(which(tsupport >= 0.46)),
        length(which(tsupport >= 0.47)), length(which(tsupport >= 0.48)), length(which(tsupport >= 0.49)),
        length(which(t$support >= 0.50))
xz = curvature.max(xp, yp)
```

Código em R

· Criação da regra de mineração

```
## Regra para mineração
r2 <- ruleInduction(s1, confidence = 0, control = list(verbose = TRUE))
summary(r2)
dr2 <- as(r2, "data.frame")
is.redundant(r2, measure = "lift")</pre>
```

Regras por aeroporto:

Aeroportos	Regras na faixa de suporte	Número total de regras	Número de transações
SBBE	0	35	7642
SBBR	6	2276	25050
SBCF	0	71	18647
SBCT	0	131	15041
SBEG	0	45	7186
SBFL	0	18	7918
SBFZ	0	24	11609
SBGL	5	1356	22036
SBGO	0	23	7399
SBGR	7	5036	30835
SBKP	0	27	14102
SBPA	0	235	15170
SBRF	0	59	13740
SBRJ	0	68	16415
SBSP	0	1623	23439
SBSV	4	579	19176
SBVT	0	1	8814

Regras SBGL na faixa de suporte:

	rule	support *	confidence ‡	lift ‡
463	<{1793}> => <{1825}>	0.16903344	0.5040984	1.757902
669	<{1793}> => <{1805}>	0.16674301	0.4972678	1.839891
869	<{1793}> => <{1735}>	0.16262025	0.4849727	1.758630
782	<{1876}> => <{1793}>	0.15574897	0.5862069	1.748210
1217	<{1793}> => <{1348}>	0.15208429	0.4535519	1.864602

Regras SBGL na faixa de suporte:

	rule	support *	confidence ‡	lift ‡
463	<{1793}> => <{1825}>	0.16903344	0.5040984	1.757902
669	<{1793}> => <{1805}>	0.16674301	0.4972678	1.839891
869	<{1793}> => <{1735}>	0.16262025	0.4849727	1.758630
782	<{1876}> => <{1793}>	0.15574897	0.5862069	1.748210
1217	<{1793}> => <{1348}>	0.15208429	0.4535519	1.864602

Todos os voos com mesma origem, todas as regras intra aeroporto.

Regras SBGR na faixa de suporte:

	rule [‡]	support *	confidence ‡	lift ‡
1659	<{3504}> => <{3507}>	0.1717033	0.5364807	1.8867533
3854	<{1648}> => <{1872}>	0.1712454	0.7056604	1.7335908
4134	<{1872}> => <{1814}>	0.1611722	0.3959505	1.1993841
3862	<{1792}> => <{1872}>	0.1584249	0.7119342	1.7490036
3876	<{3504}> => <{1872}>	0.1565934	0.4892704	1.2019871
4699	<{1872}> => <{1606}>	0.1565934	0.3847019	1.6034141
3860	<{1743}> => <{1872}>	0.1501832	0.7522936	1.8481543

Regras SBGR na faixa de suporte:

	rule [‡]	support *	confidence ‡	lift ‡
1659	<{3504}> => <{3507}>	0.1717033	0.5364807	1.8867533
3854	<{1648}> => <{1872}>	0.1712454	0.7056604	1.7335908
4134	<{1872}> => <{1814}>	0.1611722	0.3959505	1.1993841
3862	<{1792}> => <{1872}>	0.1584249	0.7119342	1.7490036
3876	<{3504}> => <{1872}>	0.1565934	0.4892704	1.2019871
4699	<{1872}> => <{1606}>	0.1565934	0.3847019	1.6034141
3860	<{1743}> => <{1872}>	0.1501832	0.7522936	1.8481543

Voo 1872 tem como Aeroporto de origem o SBGL, gerando as regras em vermelho como "cross" aeroporto.

Perguntas?

https://www.flickr.com/photos/colins-airplane-photos/28996035283/in/photostream/

Referências

- ANAC, 2015a. Agência Nacional de Aviação Civil. Technical Report. http://www.anac.gov.br/.
- ANAC, 2015b. Anuário Estatístico do Transporte 2014. Technical Report. http://www2.anac.gov.br/estatistica/anuarios.asp.
- DECEA, 2015. Departamento de Controle do Espaço Aéreo. Technical Report. http://www.decea.gov.br/.
- Han, J., Kamber, M., Pei, J., 2011. Data Mining: Concepts and Techniques, Third Edition. Morgan Kaufmann, Waltham, Mass.. 3 edition edition.
- Sternberg A., Carvalho D., Murtac L., Soares J., Ogasawara E., 2016, An Analysis of Brazilian Flight Delays Based on Frequent Patterns.