Key Properties for Tractability

#1 Compositionality

#2 Link Between Chain Rule and Triangular Jacobians

#3 Free to Choose Directionality

#2 Chain Rule and Triangular Jacobians

Autoregressive flows:

$$x_d = \tau(u_d; c(\mathbf{u}_{\leq d}))$$

Invertible transformer

Arbitrary conditioner (my not be inwhibh)

 $A_{1} = T_{1}(\vec{u}) = T_{1}(u_{1})$ $A_{2} = T_{2}(\vec{u}) = T_{1}(u_{2})$ $A_{3} = T_{2}(\vec{u}) = T_{1}(u_{2})$ $A_{4} = T_{2}(\vec{u}) = T_{1}(u_{2})$ $A_{5} = T_{1}(u_{1})$ $A_{6} = T_{1}(u_{1})$ $A_{7} = T_{1}(u_{1})$ $A_{8} = T_{1}(u_{1})$ $A_{1} = T_{2}(u_{1})$ $A_{2} = T_{3}(u_{1})$ $A_{3} = T_{2}(u_{1})$ $A_{4} = T_{1}(u_{1})$ $A_{5} = T_{1}(u_{1})$ $A_{7} = T_{1}(u_{1})$ $A_{8} = T_{1}(u_{1})$ $A_{1} = T_{2}(u_{1})$ $A_{1} = T_{2}(u_{1})$ $A_{2} = T_{3}(u_{1})$ $A_{3} = T_{4}(u_{1})$ $A_{4} = T_{5}(u_{1})$ $A_{1} = T_{2}(u_{1})$ $A_{2} = T_{3}(u_{1})$ $A_{3} = T_{4}(u_{1})$ $A_{4} = T_{5}(u_{1})$ $A_{5} = T_{5}(u_{1})$ $A_{7} = T_{7}(u_{1})$ $A_{8} = T_{1}(u_{1})$ $A_{1} = T_{2}(u_{1})$ $A_{2} = T_{3}(u_{1})$ $A_{3} = T_{4}(u_{1})$ $A_{4} = T_{5}(u_{1})$ $A_{5} = T_{5}(u_{1})$ $A_{7} = T_{7}(u_{1})$ $A_{8} = T_{1}(u_{1})$ $A_{1} = T_{2}(u_{1})$ $A_{2} = T_{3}(u_{1})$ $A_{3} = T_{4}(u_{1})$ $A_{4} = T_{5}(u_{1})$ $A_{7} = T_{7}(u_{1})$ $A_{8} = T_{8}(u_{1})$ $A_{1} = T_{1}(u_{1})$ $A_{2} = T_{3}(u_{1})$ $A_{3} = T_{4}(u_{1})$ $A_{4} = T_{5}(u_{1})$ $A_{5} = T_{6}(u_{1})$ $A_{7} = T_{7}(u_{1})$ $A_{8} = T_{8}(u_{1})$ $A_{8} = T_$

Diagram taken from Eric Jang's blog: https://blog.evjang.com/2018/01/nf2.html

 $(x_3) = (x_3)$ $(x_3) = (x_3)$

 $T_i \notin \overline{U} = T_i(u_i ... u_i)$

#2 Chain Rule and Triangular Jacobians

Autoregressive flows:

$$x_d = \tau(u_d; c(\mathbf{u}_{< d}))$$

Can be shown to be *universally expressive* due to their connection to the chain rule of probability.

$$p(\mathbf{x}) = \prod_{d} p(x_d | \mathbf{x}_{< d})$$

Diagram taken from Eric Jang's blog: https://blog.evjang.com/2018/01/nf2.html

#2 Chain Rule and Triangular Jacobians

Autoregressive flows:

$$x_d = \tau(u_d; c(\mathbf{u}_{< d}))$$

Are efficient to implement due to having a triangular Jacobian

(O(D) determinant).

$$egin{bmatrix} rac{\partial au}{\partial oldsymbol{z_1}}(oldsymbol{z_1}^{oldsymbol{N_1}};oldsymbol{h}_1) & oldsymbol{0} \ oldsymbol{L}(oldsymbol{z}) & \ddots & oldsymbol{N_2} \ oldsymbol{L}(oldsymbol{z}) & rac{\partial au}{\partial oldsymbol{z_{/\!D}}}(oldsymbol{z_{/\!D}};oldsymbol{h}_D) igg] \ oldsymbol{N_2} \ oldsymbol{N_3} \ oldsymbol{N_2} \ oldsymbol{N_2} \ oldsymbol{N_2} \ oldsymbol{N_2} \ oldsymbol{N_2} \ oldsymbol{N_2} \ oldsymbol{N_3} \ oldsymbol{N_4} \ oldsymbol{N_2} \ oldsymbol{N_3} \ oldsymbol{N_4} \$$

Computing determinant of AR flows

 $J_{T} = \frac{\partial T_{1}}{\partial u_{1}} \frac{\partial T_{2}}{\partial u_{2}} = 0$ $\frac{\partial T_{1}}{\partial u_{2}} = 0$ $\frac{\partial T_{1}}{\partial u_{2}} = 0$ $\frac{\partial T_{2}}{\partial u_{3}} = 0$ $\frac{\partial T_{1}}{\partial u_{3}} = 0$

Lower trianguler m Det erminant? i71

matrin.

Ti

Ti

Jui

A=1

#2 Chain Rule and Triangular Jacobians

Autoregressive flows:

$$x_d = \tau(u_d; c(\mathbf{u}_{< d}))$$

The autoregressive structure yields both expressivity and practicality.

Diagram taken from Eric Jang's blog: https://blog.evjang.com/2018/01/nf2.html

Types of Auto-regressive flows

Affine functions

$$\chi_{i} = \frac{T(u_{i}, C(u_{2i}))}{L(u_{i}, C(u_{2i}))} = \frac{\lambda_{i} u_{i} + \beta_{i}}{\lambda_{i} + \beta_{i}}$$

$$h_{i} = \frac{T(\chi_{i}, C(u_{2i}))}{\Delta_{i}} = \frac{\chi_{i} - \beta_{i}}{\Delta_{i}}$$

$$\log |T| = \frac{\lambda_{i} - \beta_{i}}{\lambda_{i}}$$

$$A_{i} = \frac{1}{C_{1}} \left(u_{1}, u_{2}, ... u_{i-1} \right)$$

$$A_{i} = \frac{1}{C_{2}} \left(u_{1}, u_{2}, ... u_{i-1} \right)$$

$$A_{i} = \frac{1}{C_{2}} \left(u_{1}, ... u_{i-1} \right)$$

Combination-based transformers

- Monotonic differentiable functions τ_1, \dots, τ_K , example sigmoid, tanh, leaky ReLU HER
- Positive weights $w_1, \dots w_K$
- Then, $\tau(u) = \sum_k w_k \tau_k(u)$ is also bijective.
- Combine with composability and construct multi-layer monotonic NN

Implementing Conditioners

Separate networks for each 1 D is grall

Recurrent conditioners

C(u,···ui) = hi & RNN state (bi,··· Mi-L

RNN(hi; Ui) the hire 1-

Masked conditioners

$$C_i = T(u...u_{i-1})$$
 Transfor

Ci = (4, -- . 40) (Masking)

. 1

Composition with permutations

Key Properties for Tractability

#1 Compositionality

#2 Link Between Chain Rule and Triangular Jacobians

#3 Free to Choose Directionality