SIGNED MEASURES Def. (Signed Measure): Let X be a set, S a \forall -algebra on X. A Signed MEASURE on X is a function $\mu: S \rightarrow IR$ s.t. $\mu(\phi) = 0$ and it is countably $E_1,...,E_n,... \in \mathcal{I}$ poirurse dissoint $\Rightarrow \mu(\overset{+\infty}{\cup}) = \overset{+\infty}{\triangleright} \mu(E_K)$ u ouley takes finite values!!! À signed measure is continuous under au increasing/decreasing requence of measurable sets: $A_1 \subset \ldots \subset A_m \subset \ldots \in S \Rightarrow \mu(\bigcup_{\kappa=1}^{\infty} A_{\kappa}) = \lim_{\kappa \to +\infty} \mu(A_{\kappa})$ $A_1 \supset \dots \supset A_n \supset \dots \in S \Rightarrow \mu(\bigcup_{\kappa=1}^{\infty} A_{\kappa}) = \lim_{\kappa \to +\infty} \mu(A_{\kappa})$ However, a signed measure fails on the monotonicity!!! Def. (Positive / Negative / Null Set) Let μ be a signed measure on the τ -algebra S, $A \in S$. 1) A is Positive if $\mu(E) > 0 \ \forall ES s.t. E \subseteq A$ 2) A is NEGATIVE if M(E) <0 YES s.t. ESA 3) A is Now if µ(E) = 0 ∀ ES s.t. E⊆A Thu (Hahu Decomposition): Let u be a signed measure on X. Then X = PUN with P, N & S, Pn N 7 \$, P pasitive, N megative (Hahn Decomposition) and this decomposition is unique up to well sets Condlory (Sondan Decomposition): Define $\forall A \in S$ $\mu^+(A) = \mu(A \cap P)$, $\mu^-(A) = \mu(A \cap N)$ (P, N as above). We have $\mu(A) = \mu^+(A) - \mu^-(A)$, $|\mu| := \mu^+(A) + \mu^-(A)$ (Total Variational Measure) Broof (Hahu Decomposition): Uniqueness up to well sets is trivial. We now prove existence $\sup\{\mu(E): E\subseteq M, E\in S\}<+\infty$ (i.e. μ is bounded) AHEZ

```
PROOF OF THE CLAIM:
 By contradiction, suppose that
             \forall M \in S \quad sup \{ \mu(E) : E \subseteq M, E \in S \} = +\infty
  ⇒ JACM s.t. m(E) > 1 + Jn(M)1. Let B=M\A, theu:
               \mu(B) = \mu(M) - \mu(A) \leq \mu(M) - 1 - |\mu(M)| \leq -1
 \Rightarrow |\mu(A)| > 1, |\mu(B)| > 1, moreover we must have that either \sup \{\mu(E) : E \in S, E \subseteq A\} = +\infty or
     \sup \{ \mu(E) : E \in S, E \subseteq B \} = +\infty. We suppose it is B, otherwise we swap A and B.
 ⇒ By iterating we compare B= A1 UB1 with A1, A2 meas.,
     disjoint s.t. A1 1 B1 ≠ φ, |μ (A1)| ≥ 1, sup{μ(E): E CB1}= +∞
 => We find a requence of meas sets, pairwise dissoint
      A_{1}, A_{2}, \ldots \in S s.t. |\mu(A_{K})| \ge 1. But \mu(\bigcup_{k=1}^{N} A_{K}) = \sum_{k=1}^{N} \mu(A_{K})
      and I m (Ax) is NOT a convergence series!!! To
CLAIM:
 VAES, VESO BBES, BGAS.E. M(B)>M(A), VEES,
  E E S, ju (E) >- E
PROOF OF THE CLAIM:
 Let c= sup{n(E): E SA}. Chase B SA s.t.
                  \mu(B) \gg m_{3} \times \left\{ \mu(A), C - \frac{\varepsilon}{2} \right\}
 We claim that such B satisfies the claim: \mu(E) > -E \forall E \subseteq B, otherwise \exists E \subseteq B s.t. \mu(E) \leqslant -E, \mu(B \land E) = \mu(B) - \mu(E) \Rightarrow \mu(B \land E) \geqslant c - \frac{E}{2} + E = c + \frac{3}{2} \frac{1}{4} (c \text{ is an upper bound})
 VAE I =1BEI 1.6. B⊆A, M(B) > M(A), B is positive
PROOF OF THE CLAIM:
 Use the previous claim with E = \frac{1}{K} \Rightarrow A_1 \supseteq B_1 \supseteq B_2 \ldots \supseteq B_K
 \Rightarrow \mu(A) \leqslant \ldots \leqslant \mu(B_K) and \forall E \in S, E \subset B_K, \mu(E) > \frac{1}{K}.
 Take B = \bigcap_{k=1}^{n} B_k, then \mu(B) \gg \mu(A) and B is a positive set.
```

Let now S = sup{ u(E): EE J} < +00, by def.] A1,..., An,...ES

s.t. $\mu(A_K) \rightarrow S$. By the previous claim $\exists B_1,..., B_n,...$ positive sets s.t. $\mu(B_K) \ge \mu(A_K) \Rightarrow \lim_{K \to +\infty} \mu(B_K) = S$. Then take $P = \bigcup_{K=1}^{\infty} B_K$. Let $P_N = \bigcup_{K=1}^{\infty} B_K$, $\mu(P_N) \ge \mu(B_N) \rightarrow S$ $\Rightarrow \mu(P) = S \Rightarrow P$ is positive. Take now $N = X \setminus P$, then N is negative, otherwise $\exists E \subseteq N$ s.t. $\mu(E) > 0 \Rightarrow \mu(P \cup E) = \mu(P) + \mu(E) > S$

Remork:

We have the following:

Thu. (Radon-Nikodym for Signed Measures): Zet X be a set, S a ∇ -algebra on X, $\mu: X \to [0, +\infty)$ a positive and finite measure. Let $\nu: S \to IR$ be a signed measure with $\nu \ll \mu$. Then $\exists w \in L^{1}(\mu)$ s.t.:

 $v(E) = \int_{E} w(x) d\mu(x) \quad \forall E \in S$

Broof:

Let $X = P \cup N$ be a Hahu decomposition for V. Then let $V^+(A) := \mu(A \wedge P)$, $V^- := \mu(A \wedge N)$. We have $V^+ << \mu$, $V^- << \mu$

We know that, given $p \in [1, +\infty]$, we can define a map $\phi: L^{q}(\mu) \rightarrow (L^{p}(\mu))'$ s.t. $\phi(v) = Tv$, $Tv(\mu) := \int_{X} u(x)v(x) d\mu(x)$ $\forall u \in L^{q}(\mu)$, and we also know that ϕ is an isometric insection (if p=1, we make some additional assumption on μ). This map is actually an isomorphism, and now we can prove it.

Proposition:

If μ is a finite weasure and $p \in [1, +\infty)$, then ϕ as above is surjective (therefore it is an isometric isomorphism).

Broof:

Take $T \in (L^p(\mu))^!$. We need to show that $\exists v \in L^q(\mu)$ s.t. T = Tv. Let $E \in S$, define $v(E) := T(1_E)$. Then v is a signed measure on S: $v(\phi) = o(trivially),$

 $A, B \in S$ s.t. $A \cap B = \phi \Rightarrow v(A \cup B) = T(1_{A \cup B}) = T(1_{A \cup B})$ $= T(\mathcal{A}_A) + T(\mathcal{A}_B) = V(A) + V(B),$ $A_1, A_2, A_3, \dots \in S$ pointre disjoint $\Rightarrow 1 + 0 + 0 = 1 + 0 = 0$ (converges in Lr(n)) $\Rightarrow \sqrt{(\bigcup_{\kappa=0}^{\infty} A_{\kappa})} = T\left(\underbrace{1}_{\kappa=0}^{\infty} A_{\kappa} \right) = \lim_{\kappa \to \infty} \underbrace{1}_{\kappa=0}^{\infty} A_{\kappa} = \lim_{\kappa \to \infty} T\left(\underbrace{\sum_{\kappa=0}^{\infty} A_{\kappa}}_{\kappa} \right)$ = $\lim_{N\to+\infty} \sum_{k=0}^{\infty} T(\mathcal{1}_{A_{k}}) = \lim_{N\to+\infty} \sum_{k=0}^{\infty} V(A_{k}) \Rightarrow V << \mu$ $\Rightarrow \mu(E) = 0 \Rightarrow 1_E \sim 0 \Rightarrow T(1_E) = T(0) = 0$ By Radon-Nikodym] v E L (u) s.t. v(E) = T(1/E) $= \int v(x) d\mu(x) = \int v(x) d\mu(x).$ \Rightarrow in general we have $T(s) = \int_{X} v(x) s(x) d\mu(x) \forall s simple$ function (combination of characteristic functions) \Rightarrow simple functions are deuse in $L^{\infty}(\mu)$, so the result still holds \\ s \in L^\infty (\mu). We now prove that \(v \in L^q(\mu) \) so that the result holds $\forall s \in L^p(\mu)$ CASE 1<p<+0: Consider $E_n = \{ \times \in \times : | v(x)| < n \}, s_n(x) = \mathcal{L}_{E_n}(x) \cdot | v(x)|^{\frac{q-2}{2}} sgn v(x)$ \Rightarrow $s_n \in L^{\infty}(\mu)$, $p = \frac{9}{9-1}$, then we have: $T(s) = \int_{E_{n}} |v(x)|^{9} d\mu(x) \leq ||T||_{L^{p}} ||S_{n}||_{L^{p}(\mu)}$ $= \|T\|_{(L^p)^{\frac{1}{2}}} \left(\int_{\mathbb{R}^n} |v(x)|^q d\mu(x) \right)^{\frac{1}{q-1}} \implies \left(\int_{\mathbb{R}^n} |v(x)|^q d\mu(x) \right)^{\frac{1}{q}} \leqslant \|T\|_{(L^p)^{\frac{1}{2}}}$ $\frac{1}{m \to +\infty} \left(\int_{X} |v(x)|^{9} d\mu(x) \right)^{\frac{1}{9}} \Rightarrow \|v\|_{L^{9}(\mu)} \leqslant \|T\|_{(L^{p})^{1}}$

 $C_{ASE} p = 1: |T(1_{E})| = |\int_{E} v(x) dx| \leq ||T||_{(L^{1})^{1}} \cdot ||1_{E}||_{L^{1}} = ||T||_{(L^{1})^{1}} \cdot \mu(E)$ $\Rightarrow \left| \frac{1}{\mu(E)} \int_{E} v(x) dx \right| \leq ||T||_{(L^{1})^{1}} \Rightarrow v(x) \leq ||T||_{(L^{1})^{1}} \cdot f_{n} \mu - a.e. \times E \times A$ $\Rightarrow ||v||_{L^{\infty}(\mu)} \leq ||T||_{(L^{1})^{1}}$