Resumen

La Red de Telescopios Cherenkov (Cherenkov Telescope Array (CTA) en inglés) es un proyecto que tiene como objetivo la construcción de un observatorio para la observación de rayos gamma de muy alta energía. Estará compuesto de más de 100 telescopios de imagen de radiación Cherenkov atmosférica (Imaging Atmospheric Cherenkov Telescopess (IACTs) en inglés), de tres tipos (tamaño pequeño, mediano y grande), repartidos en dos emplazamientos, en los hemisferios Norte y Sur, con el propósito de poder cubrir todo el cielo. CTA ha sido diseñado con el objetivo de abarcar un rango de energías desde los 20 GeV hasta los 300 TeV, con una resolución energética y espacial sin precedentes, que le permitirán alcanzar una sensibilidad un orden de magnitud mayor que la actual generación de instalaciones que emplean la técnica de los IACTs.

Esta tesis está dedicada a dos frentes relativos a la preparación de CTA: La puesta en marcha del primer telescopio grande de CTA, el Large Size Telescope (LST)1; y el estudio de la emisión de rayos γ en la Gran Nube de Magallanes (Large Magellanic Cloud (LMC) en inglés) con el objetivo de hacer predicciones de los resultados que se obtendrán tras las observaciones con CTA de esta galaxia, tanto relativo a fuentes astrofísicas de rayos γ , como a una posible detección de señal de aniquilación de materia oscura.

La primera parte de la tesis se centra en el primer prototipo de LST, instalado en el emplazamiento Norte de CTA en la isla de La Palma, cuya primera luz tuvo lugar en Diciembre de 2018. Durante el trabajo de esta tesis, he participado en varias tareas relativas a la puesta en marcha del telescopio. Principalmente, me he dedicado al desarrollo de las herramientas de software para el análisis de los datos del LST, durante su tiempo de operación en solitario. La observación con un solo telescopio Cherenkov requiere de unas técnicas de reconstrucción de eventos específicas, por ello, ha sido necesario desarrollar todo un paquete de herramientas dedicado al LST1, como complemento al software oficial de CTA. Este software ha sido desarrollado y verificado utilizando simulaciones de Monte Carlo especialmente producidas para el LST y, posteriormente, ha podido ser aplicado con éxito a los datos reales recogidos con el LST1 a lo largo de las tres campañas de toma de datos de la Nebulosa del Cangrejo que tuvieron lugar entre Noviembre de 2019 y Febrero de 2020. En el capítulo 4 se presento una descripción completa de la cadena de análisis, y se muestran sus resultados aplicada a simulaciones y a los datos reales del LST1. Además, he desarro-

llado un método alternativo para el cálculo de los parámetros de Hillas de las imágenes de cascadas Cherenkov, que no requiere la aplicación previa de un método de limpieza (o 'cleaning') de las imágenes, y permite recuperar información de cascadas con pocos fotones. Los resultados de este método comparados con el método tradicional, aplicado tanto a simulaciones como a datos reales son presentados también en este capítulo. Además, como trabajo complementario, he participado en algunas tareas relativas a la puesta en marcha de la cámara del LST1, cuya estructura mecánica y parte de la electrónica han sido diseñadas y construidas en el CIEMAT. Los apéndices B, C y D están dedicados a estas tareas, que consistieron en una caracterización de los Application-Specific Integrated Circuits (ASICs) del nivel L1 del sistema de trigger del telescopio, y a la calibración del de dicho sistema de trigger.

La segunda parte de esta tesis está dedicada a una caracterización de la emisión en rayos γ de la LMC a las energías de CTA. El estudio detallado de esta galaxia, con más de 300 horas de observación asignadas, es uno de los principales provectos científicos de CTA. Para poder hacer una estimación de los resultados científicos que se obtendrán con este proyecto, ha sido necesario hacer una recopilación de la información obtenida por otros telescopios (tanto en rayos γ como en otras longitues de onda) de la LMC con el objetivo de construir un modelo de emisión extrapolado a las energías de CTA. El modelo de emisión construido contiene fuentes conocidas de rayos γ , como Nebulosas de Viento de púlsar (Pulsar Wind Nebulae (PWNe)) o remanentes de supernova (Supernova Remnants (SNRs)) detectadas por otros telescopios (H.E.S.S. v Fermi-LAT), una emisión difusa de rayos γ producida por la interacción de rayos cósmicos con el medio interestelar, y una población sintética de PWNe producida con el objetivo de estimar el número de nuevas fuentes de este tipo que podrán ser detectadas por CTA. Este modelo de emisión ha sido utilizado para realizar simulaciones de las observaciones con CTA de la región de la LMC, que después se han ajustado al modelo utilizando un método de máxima verosimilitud para obtener estimaciones de la sensibilidad de CTA a la detección de las diferentes fuentes. El modelo de emisión y los resultados de este ajuste han sido utilizados posteriormente, como un fondo sobre el que estudiar de las posibilidades de CTA para detectar una señal de materia oscura producida por la aniquilación de partículas pesadas que interaccionan débilmente (Weak Interacting Massive Particles (WIMPs)) en la LMC. La descripción del modelo de emisión desarrollado y de las ténicas de simulación y ajuste, así como los resultados obtenidos están contenidos en el capítulo 5 de esta tesis.

A modo de introducción y puesta en contexto de la temática de la tesis, los tres primeros capítulos están dedicados al estado-del-arte de la astrofísica de rayos γ (capítulo 1), las ténicas de detección y actual generación de telescopios de rayos γ (capítulo 2), y a una descripción detallada de CTA (capítulo 3).

Abstract

The Cherenkov Telescope Array (CTA) is an ambitious project with the aim to build an observatory for the detection of very high energy γ -rays. It will be integrated by more than 100 Imaging Atmospheric Cherenkov Telescopess (IACTs), in three sizes (small, medium, large), situated in two locations, one for each hemisphere, with the purpose of covering the full sky. CTA has been designed to achieve an energy range from 20 GeV to 300 TeV, with energy and agular resolution without precedents, which will allow to reach sensitivities one order of magnitude better than the current generation of IACT facilities. This thesis is dedicated to two subjects relative to the preparation of CTA for operation: The commissioning of the first Large Size Telescope (LST) of CTA; and the study of the very high energy emissión from the Large Magellanic Cloud (LMC) at the energies of CTA, in order to make predictions on the results that will be obtained from the survey of this galaxy, relative both to astrophysical γ -ray sources and to the detection of a possible signal from Dark Matter (DM) annihilation.

The first part of the thesis is focused on the first prototype of the LST, installed in the CTA North site, in La Palma island, which first light occurred in December 2018. During the time of this thesis, I have participated in several tasks relative to the commissioning of the LST1, mainly related to the development of the software tools for the analysis of the telescope data during its single telescope operations. Observations with a single IACT require dedicated event reconstruction techniques, thus, a specific tool package has been developed for LST1, as a complement to the offical CTA software. The analysis chain has been developed and verified using Monte Carlo simulations specially produced for the LST1, and afterwards it has been successfully applied to real data taken during the three observation campaigns of the Crab Nebula, which took place between November 2019 and February 2020. In chapter 4 I give a description of the analysis tools, together with the results when applied to simulations and to real data from the Crab campaigns. In addition, I have developed an alternative method for the calculation of the Hillas parameters of Cherenkov showers, which do not require a cleaning method of the shower images, allowing to recover information from showers with low number of photons. The results of this method, compared to the traditional method which performs a tailcuts cleaning, applied both to simulations and to real data are also presented in this chapter. As a complementary work, I have participated

in some activities related to the commissioning of the LST1 camera, which mechanical structure and some parts of the electronics were designed and produced at CIEMAT. Appendices B, C and D are dedicated to these tasks, consisting on a characterization of the Application-Specific Integrated Circuits (ASICs) for the L1 trigger system, and the calibration of such trigger system.

The second part of the thesis is dedicated to a characterization of the γ -ray emission of the LMC at the energies of CTA. A deep survey of this galaxy, with more than 300 hours of assigned observation time, is one of the Key Science Projects (KSPs) of CTA. To perform an estimation of the future scientific results which will be provided by this survey, it has been necessary to collect the results obtained by other telescopes (γ -rays and other wavelenghts) of the LMC, to build an emission model extrapolated to the energies of CTA. The emission model produced is composed by known γ -ray sources, such as Pulsar Wind Nebulae (PWNe) and Supernova Remnants (SNRs) detected by other telescopes (H.E.S.S. and Fermi-LAT), a diffuse γ -ray emission produced by Cosmic Rays (CRs) interacting with the Interstellar Medium (ISM), and a synthetic population of PWNe produced with the purpose of estimate the number of new of such sources that will be detected by CTA. This emission model has been used to simulate observations of the region of interest of the LMC with CTA, which afterwards has been fitted to the model with a maximum likelihood method to obtain results on the sensitivity of CTA to the detection of the different sources. The emission model and the results of this fitting has been used afterwards as a baryonic background for the study of the possibilities of CTA to detect a DM signal produced by the annihilation of Weak Interacting Massive Particles (WIMPs). The description of the emission model developed, the analysis and simulation techniques, and the results obtained are presented in chapter 5.

As an introduction and provide context for this thesis, the first three chapters are dedicated to the State-of-the-Art of γ -ray Astrophysics (chapter 1), detection techniques and current generation of γ -ray instruments (chapter 2) and a detailed description of CTA (chapter 3).