

Administrative Matters HW5 is assigned and due Mon Nov 22nd • Most of it is as team, but prob 1 & 2 are individual

2

4

3

How do we Simulate this Effect?

- Synopsys Doesn't Have a Clue
 - Sad reality is wireload model is a S.W.A.G.
 - Might as well go ask the local fortune teller if your circuit is going to work
- Need to extract the value of parasitic capacitance from actual layout of the circuit.
 - Since parasitics are dominated by wiring, the wiring has to be routed to extract it.
 - · Need to perform APR first!

What is an APR (Auto Place & Route) Block? ➤ Netlist mapped to standard logic cells (from synthesis tool) is read into a CAD tool.

➤ Standard Cells (typically of a fixed height) are placed by an automated program in cell rows (Place) > Then they are interconnected (Route)

7 8

What is a Parasitic Extractor

• Does it remove the parasitics?

9

- Quit asking stupid questions..."I cannot change the laws of physics Captain"
- No, it just reads all the geometries of the interconnecting and overlapping metal layers that wire up the standard cells in the APR blocks
- It analyzes these geometries and extracts the value of the parasitic capacitances

What is Done with These Values?

SDF Files in Timing Back-Annotation

Extracted Parasitic values used here

pre-layout post-layout what interconners the following and post-layout what interced the following and post-layout what is the following and post-layo

10

Post Layout Simulation

- This whole process of analyzing with extracted parasitics is often referred to as "back annotation"
- Back annotation of parasitics can be to dynamic or static timing analysis tools
 - Static timing analysis tools are like what Synopsys does
 - Timing reports like Synopsys shows for max and min paths
 - NanoTime (also a Synopsys tool) is a really good static timing analysis tool
 - ModelSim can accept .SDF files for back annotation of parasitics.
 - Now you would re-run some/all of your tests with this timing back annotated. (This is dynamic simulation)

What Does This SDF File Look Like?

Example

(DELIAVETLE (SDEVESSION *2.1*)
(DESTON *my_destgn*)
(PECCEGN *post *5-ucl. 1-2.0*)
(PECCEGN *post *

11 12

3

13 14

How Do I Use SDF with Verilog?

- Back annotate SDF to your post-synthesis (gate level) netlist simulation.
 - Now you will be simulating with accurate timing
 - Simulate your test suite (or a least a large fraction of it)
 - Simulate at typical delays to sanity check the whole environment
 - Simulate at max delays to stress setup times
 - Simulate at min delays to stress hold times
- Verilog contains a directive: **\$sdf_annotate** to control .SDF back annotation.

```
$sdf_annotate ("sdf_file" [ , [ module_instance ] [ , [
  "config_file" ]
[ , [ "log_file" ] [ , [ "mtm_spec" ]
[ , [ "scale_factors" ] [ , [ "scale_type" ] ] ] ] ] ] );
```

How Do I Use SDF with Verilog?

Example: Your APR tool created 3 separate files for max/typ/min delays of your digital core (dig_core). (sss=slow,slow,slow PVT), (fff=fast,fast,fast PVT)

Inside the testbench code you apply the SDF to the instance of the digital core. You have 3 such **\$sdf_annotate** lines and just comment out the ones you are not simulating.

module testbench();

// \$sdf_annotate("~ehoffman\verilog\dig_core_sss.sdf",testbench.idig_core); \$sdf_annotate("~ehoffman\verilog\dig_core_fff.sdf",testbench.idig_core); // \$sdf_annotate("~ehoffman\verilog\dig_core_typ.sdf",testbench.idig_core);

dig_core idig_core(.clk(clk), .por_n(por_n), .dst(dst), ...
.

endmodule

16

15

Δ

