TEORÍA DE CONJUNTOS

Probabilidades II-24

Nociones y notaciones

Es usual que los conjuntos se representen por letras mayúsculas A, B, C, ... y los elementos por letras minúsculas, a, b, c... Se usa la notación $x \in A$ para indicar que el elemento x pertenece al conjunto A, es decir x es uno de los elementos de A, y la notación $x \notin A$ para indicar que el elemento x no pertenece al conjunto A.

Leer e interpretar!!!!

$$A \subseteq B \equiv \forall x (x \in A \Rightarrow x \in B)$$

$$A \nsubseteq B \equiv \exists x (x \in A \land x \notin B)$$

$$A = B \Leftrightarrow \forall x (x \in A \Leftrightarrow x \in B)$$

$$A = \emptyset \text{ si } \forall x (x \notin A)$$

Operaciones

Si A y B son conjuntos se define el conjunto unión de A con B por:

$$A \cup B = \{x | x \in A \lor x \in B\}.$$

Si A y B son conjuntos se define el conjunto intersección de A con B por:

$$A \cap B = \{x | x \in A \land x \in B\}.$$

Operaciones

Si A y B son conjuntos se define el conjunto diferencia de A con B por:

$$A \setminus B = \{x | x \in A \land x \notin B\}.$$

Si Ω es un conjunto y $A\subset \Omega$ se define el conjunto complemento de A respecto a Ω por

$$\sim A = \Omega \setminus A$$
.

Propiedades

Propiedades de la Unión

- Conmutatividad $A \cup B = B \cup A$.
- Asociatividad $(A \cup B) \cup C = A \cup (B \cup C)$.
- Identidad $A \cup \emptyset = A$.
- Medio Excluido $\Omega = A \cup \sim A$.
- Otras $A \subseteq A \cup B$.

Propiedades de la Intersección

- Conmutatividad $A \cap B = B \cap A$.
- Asociatividad $(A \cap B) \cap C = A \cap (B \cap C)$.
- Identidad $A \cap \Omega = A$.
- Contradicción $A \cap \sim A = \emptyset$.
- Otras $A \cap B \subseteq A$.

Propiedades

Distributividad

$$\bullet \ A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$$

$$\bullet \ A\cap (B\cup C)=(A\cap B)\cup (A\cap C).$$

Leyes de De Morgan

$$\bullet \sim (A \cup B) = \sim A \cap \sim B.$$

•
$$\sim (A \cap B) = \sim A \cup \sim B$$
.

Absorción

$$\bullet \ A \cup (A \cap B) = A.$$

$$\bullet \ A \cap (A \cup B) = A.$$

Otras

•
$$A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$$
.

•
$$A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$$
.

Propiedades: Cardinalidad

• Si
$$A \subseteq B \Rightarrow |A| \le |B|$$

• Si
$$A \cap B = \emptyset \Rightarrow |A \cup B| = |A| + |B|$$

• Si
$$|A| = n \Rightarrow |P(A)| = 2^n$$

• Si
$$|A| = n, |B| = m \Rightarrow |A \times B| = mn$$

Ejercicios

Dados los conjuntos A y B exprese $A \cup B$ primero como unión de tres conjuntos disjuntos y segundo como unión de dos conjuntos disjuntos.

Sean A, B, C conjuntos cualesquiera. Probar:

- $A \cup (A \cap B) = A$
- $A \cup B = B \cup (A \setminus B)$ y $B \cap (A \setminus B) = \emptyset$

Dada la siguiente lista de relaciones establezca si son verdaderas y dé una explicación al respecto.

$$(A \setminus B) \cup C = (A \cup C) \setminus (B \cup C)$$

٧

$$\bullet \overline{(A \cup B)} \cap C = C \setminus C \cap (A \cup B)$$

$$A \cup (A \cap B) = A$$

Doble inclusión

 $A \subseteq A \cup (A \cap B)$ propiedad

$$x \in A \cup (A \cap B)$$

- $\rightarrow x \in A \lor x \in A \cap B$
- $\rightarrow x \in A \lor (x \in A \land x \in B)$
- $\rightarrow x \in A \land (x \in A \lor x \in B)$
- $\rightarrow x \in A$

$$A \cup (A \cap B) \subseteq A$$

$$A \cup B = B \cup (A \setminus B) \text{ y } B \cap (A \setminus B) = \emptyset$$

Prueba directa

$$B \cup (A - B) = B \cup (A \cap \overline{B})$$
$$= (B \cup A) \cap (B \cup \overline{B})$$
$$= (A \cup B) \cap \Omega$$
$$= A \cup B$$

$$B \cap (A - B) = B \cap (A \cap \overline{B}) = (B \cap A) \cap \overline{B}$$
$$= A \cap (B \cap \overline{B}) = A \cap \emptyset = \emptyset$$

Ejercicios

Para disfrutar el último partido de la selección nacional, un grupo de estudiantes del TEC organizan una carne asada, a la que llevan pollo, carne de res y carne de cerdo. Indique cuál pudo haber sido es el mayor y el menor número de estudiantes que participaron en la carne asada si se sabe que:

- i. cada participante comió al menos de un tipo de carne.
- i. 8 de los participantes comieron pollo.
- iii. 12 de los participantes comieron carne de res.
- iv. 9 de los participantes comieron carne de cerdo.
- v. Solo 3 personas comieron los tres tipos de carne.

$$T = a + b + c + d + e + f + 3$$

T es mínimo si d = e = f = 0,

13 es la cantidad mínima

$$T = 23 - a - b - c$$

T es máximo si a = b = c = 0

a lo sumo asistieron 23

¿Dónde te ubicas?

Gracías por su atención!