

SPORTON International Inc.

No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C. Ph: 886-3-327-3456 / FAX: 886-3-327-0973 / www.sporton.com.tw

FCC RADIO TEST REPORT

Applicant's company	XAVi Technologies Corporation			
Applicant Address	22F., No. 69, Sec. 2, Guangfu Rd., Sanchong Dist., New Taipei City 24158			
	Taiwan			
FCC ID	RYU-W224Z0			
Manufacturer's company	XAVi Technologies Corporation			
Manufacturer Address	22F., No. 69, Sec. 2, Guangfu Rd., Sanchong Dist., New Taipei City 24158, Taiwan			

Product Name	Wireless module
Brand Name	XAVi
Model No.	W224Z0YYYYY($Y=0\sim9$, $a\sim z$, $A\sim Z$, blank, "-" or "+", for marketing
	purpose.)
Test Rule	47 CFR FCC Part 15 Subpart C § 15.247
Test Freq. Range	2400 ~ 2483.5MHz
Received Date	Nov. 05, 2015
Final Test Date	Dec. 31, 2015
Submission Type	Original Equipment

Statement

Test result included in this report is for the IEEE 802.11n and IEEE 802.11b/g of the product.

The test result in this report refers exclusively to the presented test model / sample.

Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.

The measurements and test results shown in this test report were made in accordance with the procedures and found in compliance with the limit given in ANSI C63.10-2013, 47 CFR FCC Part 15 Subpart C, KDB558074 D01 v04 and KDB 662911 D01 v02r01.

The test equipment used to perform the test is calibrated and traceable to NML/ROC.

Table of Contents

۱.۱	/ERIF	FICATION OF COMPLIANCE	
2. 9	NMU	MARY OF THE TEST RESULT	2
3. (SENE	ERAL INFORMATION	3
	3.1.	Product Details	3
	3.2.	Accessories	4
	3.3.	Table for Filed Antenna	5
;	3.4.	Table for Carrier Frequencies	5
	3.5.	Table for Test Modes	6
	3.6.	Table for Testing Locations	7
	3.7.	Table for Multiple Listing	7
	3.8.	Table for Supporting Units	7
	3.9.	Table for Parameters of Test Software Setting	8
	3.10.	EUT Operation during Test	8
	3.11.	Duty Cycle	8
	3.12.	Test Configurations	9
4 . 1	EST R	RESULT	11
	4.1.	AC Power Line Conducted Emissions Measurement	11
	4.2.	Maximum Conducted Output Power Measurement	15
	4.3.	Power Spectral Density Measurement	17
	4.4.	6dB Spectrum Bandwidth Measurement	24
	4.5.	Radiated Emissions Measurement	35
	4.6.	Band Edge Emissions Measurement	91
	4.7.	Antenna Requirements	159
5. I	LIST C	OF MEASURING EQUIPMENTS	160
6. I	MEAS	SUREMENT UNCERTAINTY	161
API	PEND	DIX A. TEST PHOTOS	A1 ~ A7
Pho	otoar	raphs of EUT v02	

History of This Test Report

VERSION	DESCRIPTION	ISSUED DATE
Rev. 01	Initial issue of report	May 03, 2017
Rev. 02	Updating the CLOSE-UP of photos Updating the external of photos	May 05, 2017
	Rev. 01	Rev. 01 Initial issue of report 1. Updating the CLOSE-UP of photos

Page No. : ii of ii

Project No: CB10604027

1. VERIFICATION OF COMPLIANCE

Product Name :

Wireless module

Brand Name :

XAVi

Model No. :

W224Z0YYYYY(Y=0~9, a~z, A~Z, blank, "-" or "+", for marketing

purpose.)

Applicant:

XAVi Technologies Corporation

Test Rule Part(s) :

47 CFR FCC Part 15 Subpart C § 15.247

Sporton International as requested by the applicant to evaluate the EMC performance of the product sample received on Nov. 05, 2015 would like to declare that the tested sample has been evaluated and found to be in compliance with the tested rule parts. The data recorded as well as the test configuration specified is true and accurate for showing the sample's EMC nature.

Cliff Chang

SPORTON INTERNATIONAL INC.

Page No.

: 1 of 161

2. SUMMARY OF THE TEST RESULT

	Applied Standard: 47 CFR FCC Part 15 Subpart C					
Part	Rule Section	Result	Under Limit			
4.1	15.207	AC Power Line Conducted Emissions	Complies	1.71 dB		
4.2	15.247(b)(3)	Maximum Conducted Output Power	Complies	4.83 dB		
4.3	15.247(e)	Power Spectral Density	Complies	4.39 dB		
4.4	15.247(a)(2)	6dB Spectrum Bandwidth	Complies	-		
4.5	15.247(d)	Radiated Emissions	Complies	0.23 dB		
4.6	15.247(d)	Band Edge Emissions	Complies	0.06 dB		
4.7	15.203	Antenna Requirements	Complies	-		

Page No. : 2 of 161 Issued Date : May 05, 2017

3. GENERAL INFORMATION

3.1. Product Details

Items	Description
Product Type	WLAN (2TX, 2RX)
Radio Type	Intentional Transceiver
Power Type	From host system
Modulation	IEEE 802.11b: DSSS
	IEEE 802.11g: OFDM
	IEEE 802.11n: see the below table
Data Modulation	IEEE 802.11b: DSSS (BPSK / QPSK / CCK)
	IEEE 802.11g/n: OFDM (BPSK / QPSK / 16QAM / 64QAM)
Data Rate (Mbps)	IEEE 802.11b: DSSS (1/ 2/ 5.5/11)
	IEEE 802.11g: OFDM (6/9/12/18/24/36/48/54)
	IEEE 802.11n: see the below table
Frequency Range	2400 ~ 2483.5MHz
Channel Number	11 for 20MHz bandwidth ; 7 for 40MHz bandwidth
Channel Band Width (99%)	IEEE 802.11b: 14.85 MHz
	IEEE 802.11g: 22.58 MHz
	IEEE 802.11n MCS0 (HT20): 21.01 MHz
	IEEE 802.11n MCS0 (HT40): 36.47 MHz
Maximum Conducted Output Power	IEEE 802.11b: 20.45 dBm
	IEEE 802.11g: 25.17 dBm
	IEEE 802.11n MCS0 (HT20): 24.88 dBm
	IEEE 802.11n MCS0 (HT40): 18.00 dBm
Carrier Frequencies	Please refer to section 3.4
Antenna	Please refer to section 3.3

Items	Description		
Beamforming Function	☐ With beamforming	Without beamforming	

Antenna and Band width

Antenna	Single (TX)		
Band width Mode	20 MHz	40 MHz	
IEEE 802.11b	V	Х	
IEEE 802.11g	V	X	
IEEE 802.11n	V	V	

Note: The MIMO transmission mode is correlated.

 Report Format Version: Rev. 02
 Page No. : 3 of 161

 FCC ID: RYU-W224Z0
 Issued Date : May 05, 2017

IEEE 11n Spec.

Protocol	Number of Transmit Chains (NTX)	Data Rate / MCS
802.11n (HT20)	2	MCS 0-15
802.11n (HT40)	2	MCS 0-15

Note 1: IEEE Std. 802.11n modulation consists of HT20 and HT40 (HT: High Throughput).

Then EUT supports HT20 and HT40.

Note 2: Modulation modes consist of below configuration: HT20/HT40: IEEE 802.11n

3.2. Accessories

N/A

 Report Format Version: Rev. 02
 Page No. : 4 of 161

 FCC ID: RYU-W224Z0
 Issued Date : May 05, 2017

3.3. Table for Filed Antenna

Ant.	Brand	Part No.	Antenna Type	Connector	Gain (dBi)	Loss of Cable (dB)	True Gain (dBi)
1	TONGDA	T-543-2020003-2	Dipole Antenna	Reversed SMA	5.00	0.70	4.30
2	TONGDA	T-543-2020003-2	Dipole Antenna	Reversed SMA	5.00	0.70	4.30
3	-	-	Printed Antenna	N/A	4.32	-	4.32

Note: The EUT has three antennas (2TX, 2RX).

Chain 1 (Connect to Ant. 1)

Chain 2 (Connect to Ant. 2 or Ant. 3), only the higher gain antenna "Ant. 3" was tested and recorded in the report.

Chain 1 and Chain 2 could both transmit/receive simultaneously.

3.4. Table for Carrier Frequencies

There are two bandwidth systems.

For 20MHz bandwidth systems, use Channel 1~Channel 11.

For 40MHz bandwidth systems, use Channel 3~Channel 9.

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
	1	2412 MHz	7	2442 MHz
	2	2417 MHz	8	2447 MHz
2400 2492 5MU-	3	2422 MHz	9	2452 MHz
2400~2483.5MHz	4	2427 MHz	10	2457 MHz
	5	2432 MHz	11	2462 MHz
	6	2437 MHz	-	-

 Report Format Version: Rev. 02
 Page No. : 5 of 161

 FCC ID: RYU-W224Z0
 Issued Date : May 05, 2017

3.5. Table for Test Modes

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mode	Data Rate	Channel	Chain
AC Power Line Conducted Emissions	CTX	-	-	-
Maximum Conducted Output Power	11b/CCK	1 Mbps	1/6/11	1+2
	11g/BPSK	6 Mbps	1/6/11	1+2
	11n HT20	MCS0	1/6/11	1+2
	11n HT40	MCS0	3/6/9	1+2
Power Spectral Density	11b/CCK	1 Mbps	1/6/11	1+2
	11g/BPSK	6 Mbps	1/6/11	1+2
	11n HT20	MCS0	1/6/11	1+2
	11n HT40	MCS0	3/6/9	1+2
6dB Spectrum Bandwidth	11b/CCK	1 Mbps	1/6/11	1+2
	11g/BPSK	6 Mbps	1/6/11	1+2
	11n HT20	MCS0	1/6/11	1+2
	11n HT40	MCS0	3/6/9	1+2
Radiated Emissions 9kHz~1GHz	CTX	-	-	-
Radiated Emissions 1GHz~10 th	11b/CCK	1 Mbps	1/6/11	1+2
Harmonic	11g/BPSK	6 Mbps	1/6/11	1+2
	11n HT20	MCS0	1/6/11	1+2
	11n HT40	MCS0	3/6/9	1+2
Band Edge Emissions	11b/CCK	1 Mbps	1/6/11	1+2
	11g/BPSK	6 Mbps	1/6/11	1+2
	11n HT20	MCS0	1/6/11	1+2
	11n HT40	MCS0	3/6/9	1+2

Note: All the specification of test configurations and test modes were based on customer's request. The following test modes were performed for all tests:

For Radiated Emission test:

The EUT can be placed in X axis, Y axis and Z axis. After evaluating, the worst case was found at Z axis, so it's recorded in this report.

For AC Power Line Conducted Emissions and Radiated Emissions 9kHz~1GHz test:

EUT use Ant. 1 + Ant. 3 for measurement.

For Other tests:

EUT use Ant. 3 for measurement, only the higher gain antenna was tested and recorded in the report.

 Report Format Version: Rev. 02
 Page No.
 : 6 of 161

 FCC ID: RYU-W224Z0
 Issued Date
 : May 05, 2017

3.6. Table for Testing Locations

	Test Site Location						
Address:	No.8, L	No.8, Lane 724, Bo-ai St., Jhubei City, Hsinchu County 302, Taiwan, R.O.C.					
TEL:	886-3-	886-3-656-9065					
FAX:	886-3-	656-9085					
Test Site	No.	Site Category	Location	FCC Reg. No.	IC File No.		
03CH01	03CH01-CB SAC Hsin Chu 262045 IC 4086D						
CO01-	-CB Conduction Hsin Chu 262045 IC 4086D						
TH01-0	СВ	OVEN Room	Hsin Chu	-	-		

Open Area Test Site (OATS); Semi Anechoic Chamber (SAC).

3.7. Table for Multiple Listing

The difference for each model is shown as below:

Model Name	Description			
W224Z0YYYYY	(Y=0~9, a~z, A~Z, blank, "-" or "+", for marketing purpose.)			

Note: W224ZO was selected as representative model for the test and its data was recorded in this report.

3.8. Table for Supporting Units

For Test Site No: 03CH01-CB and TH01-CB

Support Unit	Brand	Model	FCC ID
NB	DELL	E4300	DoC
Fixture	Qualcomm	Y9350	MB-CUS531
Adapter	Adapter PSE		N/A

For Test Site No: CO01-CB

Support Unit	Brand	Model	FCC ID
NB	DELL	E6430	DoC
Fixture	Qualcomm	Y9350	MB-CUS531
Adapter	PSE	MU12AF050200-A1	N/A

 Report Format Version: Rev. 02
 Page No. : 7 of 161

 FCC ID: RYU-W224Z0
 Issued Date : May 05, 2017

3.9. Table for Parameters of Test Software Setting

During testing, Channel and Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

Test Software Version	ART2-GUI 2.3							
		Test Frequency (MHz)						
Mode	NCB: 20MHz			NCB: 40MHz				
	2412 MHz	2437 MHz	2462 MHz	2422 MHz	2437 MHz	2452 MHz		
802.11b	15	15.5	16	-	-	-		
802.11g	13	20	14	-	-	-		
802.11n MCS0 HT20	12	20	13	-	-	-		
802.11n MCS0 HT40	-	-	-	9	13	10.5		

3.10.EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

3.11. Duty Cycle

Mode	On Time (ms)	On+Off Time (ms)	Duty Cycle (%)	Duty Factor (dB)	1/T Minimum VBW (kHz)
802.11b	1.000	1.000	100.00	0.00	0.01
802.11g	2.014	2.072	97.20	0.12	0.50
802.11n MCS0 HT20	1.877	1.942	96.64	0.15	0.53
802.11n MCS0 HT40	0.928	0.968	95.80	0.19	1.08

3.12. Test Configurations

3.12.1. AC Power Line Conduction Emissions Test Configuration

Item	Connection	Length	
1	Power cable	No	1.5m
2	RJ-45 cable	No	10m

Page No. : 9 of 161

3.12.2. Radiation Emissions Test Configuration

Item	Connection	Connection Shielded		
1	RJ-45 cable	No	10m	
2	Power cable	No	1.5m	

4. TEST RESULT

4.1. AC Power Line Conducted Emissions Measurement

4.1.1. Limit

For this product which is designed to be connected to the AC power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed below limits table.

Frequency (MHz)	QP Limit (dBuV)	AV Limit (dBuV)		
0.15~0.5	66~56	56~46		
0.5~5	56	46		
5~30	60	50		

4.1.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the receiver.

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

4.1.3. Test Procedures

- Configure the EUT according to ANSI C63.10. The EUT or host of EUT has to be placed 0.4 meter far
 from the conducting wall of the shielding room and at least 80 centimeters from any other
 grounded conducting surface.
- 2. Connect EUT or host of EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connected to the other LISNs. The LISN should provide 50uH/50ohms coupling impedance.
- 4. The frequency range from 150 kHz to 30 MHz was searched.
- 5. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. The measurement has to be done between each power line and ground at the power terminal.

 Report Format Version: Rev. 02
 Page No.
 : 11 of 161

 FCC ID: RYU-W224Z0
 Issued Date
 : May 05, 2017

4.1.4. Test Setup Layout

LEGEND:

- (1) Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- (2) I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- (3) EUT connected to one LISN. Unused LISN measuring port connectors shall be terminated in 50 Ω . LISN can be placed on top of, or immediately beneath, reference ground plane.
- (3.1) All other equipment powered from additional LISN(s).
- (3.2) Multiple outlet strip can be used for multiple power cords of non-EUT equipment.
- (3.3) LISN at least 80 cm from nearest part of EUT chassis.
- (4) Cables of hand-operated devices, such as keyboards, mice, etc., shall be placed as for normal use.
- (5) Non-EUT components of EUT system being tested.
- (6) Rear of EUT, including peripherals, shall all be aligned and flush with rear of tabletop.
- (7) Rear of tabletop shall be 40 cm removed from a vertical conducting plane that is bonded to the ground plane.

4.1.5. Test Deviation

There is no deviation with the original standard.

4.1.6. EUT Operation during Test

The EUT was placed on the test table and programmed in normal function.

 Report Format Version: Rev. 02
 Page No.
 : 12 of 161

 FCC ID: RYU-W224Z0
 Issued Date
 : May 05, 2017

4.1.7. Results of AC Power Line Conducted Emissions Measurement

Temperature	emperature 25°C		62%	
Test Engineer Deven Huang		Phase	Line	
Configuration	CTX			

			0ver	Limit	Read	LISN	Cable		
	Freq	Level	Limit	Line	Level	Factor	Loss	Pol/Phase	Remark
	MHz	dBuV	dB	dBuV	dBuV	dB	dB		
1	0.1557	49.92	-5.77	55.69	39.97	9.93	0.02	LINE	Average
2	0.1557	57.92	-7.77	65.69	47.97	9.93	0.02	LINE	QP
3	0.1806	46.56	-7.90	54.46	36.61	9.93	0.02	LINE	Average
4	0.1806	53.89	-10.57	64.46	43.94	9.93	0.02	LINE	QP
5	0.2050	42.82	-10.58	53.40	32.87	9.93	0.02	LINE	Average
6	0.2050	49.47	-13.93	63.40	39.52	9.93	0.02	LINE	QP
7	0.3673	42.55	-6.01	48.56	32.58	9.93	0.04	LINE	Average
8	0.3673	47.81	-10.75	58.56	37.84	9.93	0.04	LINE	QP
9	0.3914	46.32	-1.71	48.03	36.35	9.93	0.04	LINE	Average
10	0.3914	52.83	-5.20	58.03	42.86	9.93	0.04	LINE	QP
11	0.4127	33.48	-14.11	47.59	23.51	9.93	0.04	LINE	Average
12	0.4127	48.47	-9.12	57.59	38.50	9.93	0.04	LINE	QP
13	0.6173	30.27	-15.73	46.00	20.29	9.94	0.04	LINE	Average
14	0.6173	38.06	-17.94	56.00	28.08	9.94	0.04	LINE	QP

Page No. : 13 of 161 Issued Date : May 05, 2017

Temperature	25℃	Humidity	62%
Test Engineer	Deven Huang	Phase	Neutral
Configuration	СТХ		

			over	LIMIT	кеаа	LTZM	capte		
	Freq	Level	Limit	Line	Level	Factor	Loss	Pol/Phase	Remark
	MHz	dBuV	dB	dBuV	dBuV	dB	dB		
1	0.1557	40.51	-15.18	55.69	30.71	9.78	0.02	NEUTRAL	Average
2	0.1557	51.13	-14.56	65.69	41.33	9.78	0.02	NEUTRAL	QP
3	0.1806	42.24	-12.22	54.46	32.43	9.79	0.02	NEUTRAL	Average
4	0.1806	50.44	-14.02	64.46	40.63	9.79	0.02	NEUTRAL	QP
5	0.2072	42.50	-10.82	53.32	32.69	9.79	0.02	NEUTRAL	Average
6	0.2072	48.40	-14.92	63.32	38.59	9.79	0.02	NEUTRAL	QP
7	0.3673	39.71	-8.85	48.56	29.88	9.79	0.04	NEUTRAL	Average
8	0.3673	45.31	-13.25	58.56	35.48	9.79	0.04	NEUTRAL	QP
9	0.3914	45.56	-2.47	48.03	35.73	9.79	0.04	NEUTRAL	Average
10	0.3914	51.72	-6.31	58.03	41.89	9.79	0.04	NEUTRAL	QP
11	0.4127	32.46	-15.13	47.59	22.63	9.79	0.04	NEUTRAL	Average
12	0.4127	45.16	-12.43	57.59	35.33	9.79	0.04	NEUTRAL	QP
13	2.7648	27.17	-18.83	46.00	17.27	9.85	0.05	NEUTRAL	Average
14	2.7648	34.09	-21.91	56.00	24.19	9.85	0.05	NEUTRAL	QP

Note:

Level = Read Level + LISN Factor + Cable Loss.

4.2. Maximum Conducted Output Power Measurement

4.2.1. Limit

The limit for output power is 30dBm.

4.2.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the power meter.

Power Meter Parameter	Setting
Bandwidth	50MHz bandwidth is greater than the EUT emission bandwidth
Detector	Average

4.2.3. Test Procedures

- 1. Test procedures refer KDB558074 D01 v04 section 9.2.3.2 Measurement using a power meter (PM).
- 2. Multiple antenna systems was performed in accordance with KDB 662911 D01 v02r01 Emissions Testing of Transmitters with Multiple Outputs in the Same Band.
- 3. This procedure provides an alternative for determining the RMS output power using a broadband RF average power meter with a thermocouple detector.

4.2.4. Test Setup Layout

4.2.5. Test Deviation

There is no deviation with the original standard.

4.2.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

 Report Format Version: Rev. 02
 Page No.
 : 15 of 161

 FCC ID: RYU-W224Z0
 Issued Date
 : May 05, 2017

4.2.7. Test Result of Maximum Conducted Output Power

Temperature	24°C	Humidity	60%
Test Engineer	Clemens Fang	Test Date	Dec. 08, 2015

Mode	Eroguopov	Con	ducted Power (Max. Limit	Result		
WIOGE	Frequency	Chain 1	Chain 2	Total	(dBm)	Result	
	2412 MHz	17.19	17.36	20.29	30.00	Complies	
802.11b	2437 MHz	17.49	17.23	20.37	30.00	Complies	
	2462 MHz	17.51	17.37	20.45	30.00	Complies	
	2412 MHz	15.31	15.63	18.48	30.00	Complies	
802.11g	2437 MHz	21.64	22.62	25.17	30.00	Complies	
	2462 MHz	16.65	16.42	19.55	30.00	Complies	
802.11n	2412 MHz	14.14	14.46	17.31	30.00	Complies	
MCS0 HT20	2437 MHz	21.59	22.14	24.88	30.00	Complies	
IVICSO HIZO	2462 MHz	15.58	15.16	18.39	30.00	Complies	
900 11n	2422 MHz	10.63	10.75	13.70	30.00	Complies	
802.11n	2437 MHz	14.83	15.15	18.00	30.00	Complies	
MCS0 HT40	2452 MHz	12.22	12.59	15.42	30.00	Complies	

Page No. : 16 of 161 Issued Date : May 05, 2017

4.3. Power Spectral Density Measurement

4.3.1. Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

4.3.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	Set the span to 1.5 times the DTS channel bandwidth.
RBW	3 kHz ≤ RBW ≤ 100kHz
VBW	≥ 3 x RBW
Detector	Peak
Trace	Max Hold
Sweep Time	Auto couple

4.3.3. Test Procedures

- Test was performed in accordance with KDB558074 D01 v04 for Performing Compliance
 Measurements on Digital Transmission Systems (DTS) section 10.2 Method PKPSD (peak PSD) and
 KDB 662911 D01 v02r01 section In-Band Power Spectral Density (PSD) Measurements option (b)
 Measure and sum spectral maximal across the outputs.
- 2. Use this procedure when the maximum conducted output power in the fundamental emission is used to demonstrate compliance. The EUT must be configured to transmit continuously at full power over the measurement duration.
- 3. Ensure that the number of measurement points in the sweep ≥ 2 x span/RBW (use of a greater number of measurement points than this minimum requirement is recommended).
- 4. Use the peak marker function to determine the maximum level in any 3 kHz band segment within the fundamental EBW.
- 5. The resulting PSD level must be \leq 8 dBm.

4.3.4. Test Setup Layout

 Report Format Version: Rev. 02
 Page No.
 : 17 of 161

 FCC ID: RYU-W224Z0
 Issued Date
 : May 05, 2017

4.3.5. Test Deviation

There is no deviation with the original standard.

4.3.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

 Report Format Version: Rev. 02
 Page No. : 18 of 161

 FCC ID: RYU-W224Z0
 Issued Date : May 05, 2017

4.3.7. Test Result of Power Spectral Density

Temperature	24°C	Humidity	60%
Test Engineer	Clemens Fang		

Mode	Fraguanay	Powe	r Density (dBm/	/3kHz)	Power Density Limit	Result
WIOGE	Frequency	Chain 1	Chain 2	Total	(dBm/3kHz)	Result
	2412 MHz	-4.41	-5.07	-1.72	6.67	Complies
802.11b	2437 MHz	-1.12	-0.38	2.28	6.67	Complies
	2462 MHz	-4.05	-3.81	-0.92	6.67	Complies
	2412 MHz	-9.03	-8.71	-5.86	6.67	Complies
802.11g	2437 MHz	-2.65	-1.23	1.13	6.67	Complies
	2462 MHz	-6.74	-7.68	-4.17	6.67	Complies
802.11n	2412 MHz	-10.78	-9.27	-6.95	6.67	Complies
MCS0 HT20	2437 MHz	-1.02	-1.21	1.90	6.67	Complies
WC30 HIZO	2462 MHz	-9.66	-8.92	-6.26	6.67	Complies
802.11n	2422 MHz	-16.26	-16.54	-13.39	6.67	Complies
MCS0 HT40	2437 MHz	-11.80	-11.02	-8.38	6.67	Complies
IVICSU HI4U	2452 MHz	-13.93	-14.12	-11.01	6.67	Complies

Note:
$$_{Directional\ Gain\ =\ 10\log } \left[\frac{\sum_{j=1}^{N_{SS}} \left(\sum_{K=1}^{N_{ANT}} g_{j,k} \right)^{2}}{N_{_{ANT}}} \right] = 7.33 dBi > 6 dBi, so limit= 8 - (7.33 - 6) = 6.67 dBm/3 kHz.$$

Note: All the test values were listed in the report.

For plots, only the channel with worse result was shown.

 Report Format Version: Rev. 02
 Page No. : 19 of 161

 FCC ID: RYU-W224Z0
 Issued Date : May 05, 2017

Power Density Plot on Configuration IEEE 802.11b / 2437 MHz / Chain 1

Power Density Plot on Configuration IEEE 802.11b / 2437 MHz / Chain 2

Date: 4 DEC 2015 21:92:35

Page No. : 20 of 161

Power Density Plot on Configuration IEEE 802.11g / 2437 MHz / Chain 1

Date: 4-DEC-2015-21-21-13

Power Density Plot on Configuration IEEE 802.11g / 2437 MHz / Chain 2

Date: 4-DEC-2015 21:22:38

Page No. : 21 of 161

Power Density Plot on Configuration IEEE 802.11n MCS0 HT20 / 2437 MHz / Chain 1

Power Density Plot on Configuration IEEE 802.11n MCS0 HT20 / 2437 MHz / Chain 2

Date: 4 DEC 2015 21:28:55

Page No. : 22 of 161

Power Density Plot on Configuration IEEE 802.11n MCS0 HT40 / 2437 MHz / Chain 1

Power Density Plot on Configuration IEEE 802.11n MCS0 HT40 / 2437 MHz / Chain 2

Date: 4 DEC 2015 21:41:51

Page No. : 23 of 161

4.4. 6dB Spectrum Bandwidth Measurement

4.4.1. Limit

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz.

4.4.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the Spectrum Analyzer.

6dB Spectrum Bandwidth					
Spectrum Parameters	Setting				
Attenuation	Auto				
Span Frequency	> 6dB Bandwidth				
RBW	100kHz				
VBW	≥ 3 x RBW				
Detector	Peak				
Trace	Max Hold				
Sweep Time	Auto				
	99% Occupied Bandwidth				
Spectrum Parameters	Setting				
Span	1.5 times to 5.0 times the OBW				
RBW	1 % to 5 % of the OBW				
VBW	≥ 3 x RBW				
Detector	Peak				
Trace	Max Hold				

4.4.3. Test Procedures

- 1. The transmitter was conducted to the spectrum analyzer in peak hold mode.
- 2. Test was performed in accordance with KDB558074 D01 v04 for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247 section 8.0 DTS 6-dB signal bandwidth option 1.
- 3. Multiple antenna system was performed in accordance with KDB 662911 D01 v02r01 Emissions Testing of Transmitters with Multiple Outputs in the Same Band.
- 4. Measurement perform conducted of each port.
- 5. Measured the spectrum width with power higher than 6dB below carrier.

4.4.4. Test Setup Layout

This test setup layout is the same as that shown in section 4.3.4.

 Report Format Version: Rev. 02
 Page No. : 24 of 161

 FCC ID: RYU-W224Z0
 Issued Date : May 05, 2017

4.4.5. Test Deviation

There is no deviation with the original standard.

4.4.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

 Report Format Version: Rev. 02
 Page No. : 25 of 161

 FCC ID: RYU-W224Z0
 Issued Date : May 05, 2017

4.4.7. Test Result of 6dB Spectrum Bandwidth

Temperature	24°C	Humidity	60%
Test Engineer	Clemens Fang		

Mode	Frequency	6dB Bandwidth (MHz)			ccupied htth (MHz)	Min. Limit	Test Result
	,	Chain 1	Chain 2	Chain 1	Chain 2	(kHz)	
	2412 MHz	9.57	9.80	13.46	13.37	500	Complies
802.11b	2437 MHz	9.57	9.57	14.50	14.85	500	Complies
	2462 MHz	8.58	9.10	13.72	13.46	500	Complies
	2412 MHz	15.13	14.49	16.24	16.24	500	Complies
802.11g	2437 MHz	13.80	14.49	17.45	22.58	500	Complies
	2462 MHz	12.99	14.20	16.24	16.24	500	Complies
900 11=	2412 MHz	15.01	15.13	17.28	17.28	500	Complies
802.11n MCS0 HT20	2437 MHz	14.72	15.01	18.23	21.01	500	Complies
IVIC30 HIZU	2462 MHz	15.88	14.43	17.28	17.37	500	Complies
902 115	2422 MHz	33.86	32.46	36.03	36.03	500	Complies
802.11n MCS0 HT40	2437 MHz	33.86	31.30	36.03	35.75	500	Complies
IVICSU HI4U	2452 MHz	32.58	33.97	36.03	36.47	500	Complies

Note: All the test values were listed in the report.

For plots, only the channel with worse result was shown.

Report Format Version: Rev. 02 FCC ID: RYU-W224Z0

Page No. : 26 of 161 Issued Date : May 05, 2017

6 dB Bandwidth Plot on Configuration IEEE 802.11b / 2462 MHz / Chain 1

Date: 4 DEC 2015 21:58:21

99% Occupied Bandwidth Plot on Configuration IEEE 802.11b / 2437 MHz / Chain 1

Date: 4-DEC-2015 22:32:16

Page No. : 27 of 161

: 28 of 161

6 dB Bandwidth Plot on Configuration IEEE 802.11b / 2462 MHz / Chain 2

Date: 4 DEC 2015 21:58:43

99% Occupied Bandwidth Plot on Configuration IEEE 802.11b / 2437 MHz / Chain 2

Date: 4-DEC-2015 22:32:00

6 dB Bandwidth Plot on Configuration IEEE 802.11g / 2462 MHz / Chain 1

Date: 4-DEC-2015 22:02:29

99% Occupied Bandwidth Plot on Configuration IEEE 802.11g / 2437 MHz / Chain 1

Date: 4-DEC-2015 22:28:28

Page No. : 29 of 161

6 dB Bandwidth Plot on Configuration IEEE 802.11g / 2462 MHz / Chain 2

Date: 4 DEC 2015 22:01:56

99% Occupied Bandwidth Plot on Configuration IEEE 802.11g / 2437 MHz / Chain 2

Date: 4-DEC-2015 22-28-41

6 dB Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / 2437 MHz / Chain 1

Date: 4 DEC 2015 22:04:29

99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / 2437 MHz / Chain 1

Date: 4-DEC-2015 22:23:34

6 dB Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / 2462 MHz / Chain 2

Date: 4-DEC-2015 22:04:28

99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / 2437 MHz / Chain 2

Date: 4-DEC-2015 22:22:54

6 dB Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT40 / 2452 MHz / Chain 1

Date: 4-DEC-2015 22:14:09

99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT40 / 2422 MHz / Chain 1

Date: 4-DEC-2015 22:18:36

6 dB Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT40 / 2437 MHz / Chain 2

Date: 4-DEC-2015 22:12:37

99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT40 / 2452 MHz / Chain 2

Date: 4-DEC-2015 22:16:47

4.5. Radiated Emissions Measurement

4.5.1. Limit

30dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance				
(MHz)	(micorvolts/meter)	(meters)				
0.009~0.490	2400/F(kHz)	300				
0.490~1.705	24000/F(kHz)	30				
1.705~30.0	30	30				
30~88	100	3				
88~216	150	3				
216~960	200	3				
Above 960	500	3				

4.5.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW (Emission in restricted band)	1 MHz / 3MHz for Peak,
	1MHz / 1/T for Average
RBW / VBW (Emission in non-restricted band)	100kHz / 300kHz for peak

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RBW 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RBW 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RBW 120kHz for QP

 Report Format Version: Rev. 02
 Page No. : 35 of 161

 FCC ID: RYU-W224Z0
 Issued Date : May 05, 2017

4.5.3. Test Procedures

For Radiated measurement:

Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 1.5
meter above ground. The phase center of the receiving antenna mounted on the top of a
height-variable antenna tower was placed 1m & 3m far away from the turntable.

- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 m to 4 m) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz VBW and 3MHz RBW for peak reading. Then 1MHz RBW and 1/T VBW for average reading in spectrum analyzer.
- 7. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 8. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 9. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.

For Conducted measurement:

1. Configure the EUT according to KDB558074 D01 v04. The EUT was perform conducted measurement and measurement level added antenna gain shall be comply to section 4.5.1.

 Report Format Version: Rev. 02
 Page No. : 36 of 161

 FCC ID: RYU-W224Z0
 Issued Date : May 05, 2017

4.5.4. Test Setup Layout

For Radiated measurement:

For 9kHz ~30MHz:

For 30MHz~1GHz:

For Above 1GHz:

FCC ID: RYU-W224Z0

Page No. : 37 of 161

For Conducted measurement:

For Above 1GHz only:

4.5.5. Test Deviation

There is no deviation with the original standard.

4.5.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

 Report Format Version: Rev. 02
 Page No. : 38 of 161

 FCC ID: RYU-W224Z0
 Issued Date : May 05, 2017

4.5.7. Results of Radiated Emissions (9kHz~30MHz)

Temperature	24.3°C	Humidity	45%
Test Engineer	Andy Tsai	Configurations	СТХ
Test Date	Dec. 31, 2015		

Freq.	Level	Over Limit	Limit Line	Remark
(MHz)	(dBuV)	(dB)	(dBuV)	
-	-	-	-	See Note

Note:

The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.

Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

 $\label{eq:limits} \mbox{Limit line} = \mbox{specific limits (dBuV)} + \mbox{distance extrapolation factor}.$

 Report Format Version: Rev. 02
 Page No. : 39 of 161

 FCC ID: RYU-W224Z0
 Issued Date : May 05, 2017

4.5.8. Results of Radiated Emissions (30MHz~1GHz)

Temperature	24.3°C	Humidity	45%
Test Engineer	Andy Tsai	Configurations	CTX

Horizontal

	Freq	Level	Limit Line	Over Limit	Read Level			Preamp Factor	T/Pos	A/Pos	Remark	Pol/Phase
_	MHz	$\overline{\mathtt{dBuV/m}}$	$\overline{\mathtt{dBuV/m}}$	——dB	dBu∀	dB	dB/m	——dB	deg	Cm		
1 2 3 4 5	62.98 375.32 454.86 518.88 598.42 650.80	32.13 41.65	46.00 46.00 46.00 46.00	-12.59 -12.12 -14.49 -13.87 -4.35 -10.21	44.08 39.30 35.64 35.22 43.55 36.99	0.46 1.73 1.93 2.09 2.28 2.43	12.27 21.74 23.18 24.17 25.00 25.41	29.40 28.89 29.24 29.35 29.18 29.04	360 360 360 360 360 360	100 100 100 100	Peak Peak Peak Peak Peak Peak	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

 Report Format Version: Rev. 02
 Page No. : 40 of 161

 FCC ID: RYU-W224Z0
 Issued Date : May 05, 2017

	Freq	Level	Limit Line	Over Limit	Read Level			Preamp Factor	T/Pos	A/Pos	Remark	Pol/Phase
	MHz	$\overline{d B u V / m}$	$\overline{dBuV/m}$	——dB	- dBuV	dB	dB/m	——dB	deg	Cm		
1 2 3 4 5 6	40.67 62.98 101.78 109.54 598.42 650.80	35.07 35.18 38.00 38.02 38.92 37.85	43.50 43.50	-5.50	45.16 51.85 49.46 48.56 40.82 39.05	2.28	19.09 12.27 17.10 17.92 25.00 25.41	29.47 29.40 29.26 29.21 29.18 29.04	0 0 0 0 0	400 400 400	QP Peak Peak Peak Peak Peak	VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL

Note:

The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = $20 \log Emission$ level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

Page No. : 41 of 161 Issued Date : May 05, 2017

FCC ID: RYU-W224Z0

4.5.9. Results for Radiated Emissions (1GHz~10th Harmonic)

For Radiated measurement: EUT (without antenna) with 50Ω load

Temperature	24.3°C	Humidity	45%
Test Engineer	Andy Tsai	Configurations	IEEE 802.11b CH 1 / Chain 1+Chain 2
Test Date	Dec. 03, 2015		

Horizontal

	Freq	Level		Over Limit					Remark	A/Pos	T/Pos	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB		CM	deg	
1 2	4824.06 4824.10								_	255 255		HORIZONTAL HORIZONTAL

 Report Format Version: Rev. 02
 Page No. : 42 of 161

 FCC ID: RYU-W224Z0
 Issued Date : May 05, 2017

	Freq	Level		Over Limit					Remark	A/Pos	T/Pos	Pol/Phase
	MHz	dBuV/m	$\overline{\text{dBuV/m}}$	dB	dBuV	dB	dB/m	dB		Cm	deg	
1	4824.02	53.41	54.00	-0.59	48.72	6.29	33.41	35.01	Average	235	131	VERTICAL
2	4824.09	56.15	74.00	-17.85	51.46	6.29	33.41	35.01	Peak	235	131	VERTICAL

Temperature	24.3°C	Humidity	45%
Test Engineer	Andy Tsai	Configurations	IEEE 802.11b CH 6 / Chain 1+Chain 2
Test Date	Dec. 03, 2015		

Horizontal

	Freq	Level		Over Limit						A/Pos	T/Pos Pol/Ph	ase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB		CM	deg	
1 2	4874.04 4874.09								•	270 270	194 HORIZO 194 HORIZO	

	Freq	Level		Over Limit						A/Pos		Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB		Cm	deg	
1	4874.02	56.63	74.00	-17.37	51.76	6.35	33.53	35.01	Peak	219	134	VERTICAL
2	4874.03	53.65	54.00	-0.35	48.78	6.35	33.53	35.01	Average	219	134	VERTICAL

Temperature	24.3°C	Humidity	45%
Test Engineer	Andy Tsai	Configurations	IEEE 802.11b CH 11 / Chain 1+Chain 2
Test Date	Dec. 03, 2015		

Horizontal

	Freq	Level		Over Limit					A/Pos		Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	 CM	deg	
1 2	4923.96 4924.04								264 264		HORIZONTAL HORIZONTAL

	Freq	Level		Over Limit						A/Pos	-	Pol/Phase	
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB		cm	deg		
1	4924.03	53.77	54.00	-0.23	48.72	6.41	33.65	35.01	Average	228	137	VERTICAL	
2	4924.06	56.82	74.00	-17.18	51.77	6.41	33.65	35.01	Peak	228	137	VERTICAL	

: 47 of 161 Page No. FCC ID: RYU-W224Z0 Issued Date : May 05, 2017

Temperature	24.3°C	Humidity	45%
Test Engineer	Andy Tsai	Configurations	IEEE 802.11g CH 1 / Chain 1+Chain 2
Test Date	Dec. 03, 2015		

Horizontal

	Freq	Level		Over Limit					A/Pos	T/Pos	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	CM	deg	
1 2	4827.00 4831.20								251 251		HORIZONTAL HORIZONTAL

Page No. : 48 of 161

	Freq	Level		Over Limit					A/Pos		Pol/Phase
	MHz	dBuV/m	dBuV/m	——dB	dBuV	dB	dB/m	dB	 cm	deg	
1	4818.96 4819.84								274 274		VERTICAL VERTICAL

Temperature	24.3°C	Humidity	45%
Test Engineer	Andy Tsai	Configurations	IEEE 802.11g CH 6 / Chain 1+Chain 2
Test Date	Dec. 03, 2015		

Horizontal

	Freq	Level		Limit					A/Pos	•	ol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	CM	deg	
1 2	4874.60 4879.00								265 265		ORIZONTAL ORIZONTAL

	Freq	Level		Over Limit						A/Pos		Pol/Phase
	MHz	dBuV/m	$\overline{\text{dBuV/m}}$	dB	dBuV	dB	dB/m	dB		cm	deg	
1	4873.70	58.43	74.00	-15.57	53.56	6.35	33.53	35.01	Peak	241	116	VERTICAL
2	4873.80	46.87	54.00	-7.13	42.00	6.35	33.53	35.01	Average	241	116	VERTICAL

Temperature	24.3°C	Humidity	45%
Test Engineer	Andy Tsai	Configurations	IEEE 802.11g CH 11 / Chain 1+Chain 2
Test Date	Dec. 03, 2015		

Horizontal

Freq	Level		Limit						A/Pos		Pol/Phase
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB		CM	deg	
4923.50 4928.80								_	265 265		HORIZONTAL HORIZONTAL

	Freq	Level		Over Limit						A/Pos		Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB		cm	deg	
1	4917.90	58.08	74.00	-15.92	53.07	6.40	33.62	35.01	Peak	263	114	VERTICAL
2	4922.80	45.95	54.00	-8.05	40.94	6.40	33.62	35.01	Average	263	114	VERTICAL

Temperature	24.3°C	Humidity	45%
Tost Engineer	Andv Tsai	Configurations	IEEE 802.11n MCS0 HT20 CH 1 /
Test Engineer	Ariay isai	Configurations	Chain 1+Chain 2
Test Date	Dec. 03, 2015		

Horizontal

			Limit	0ver	Read	Cable/	Antenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB		cm	deg	
		•	•				•					
1	4824.90	44.05	54.00	-9.95	39.36	6.29	33.41	35.01	Average	285	153	HORIZONTAL
_										205	450	HODIZONIAL
2	4826.40	5/.32	74.00	-16.68	52.59	6.30	33.44	35.01	Peak	285	153	HORIZONTAL

	Frea	Level	Over Limit			Remark	A/Pos	T/Pos Pol/Phas	e
			 — dB	 	 			deg deg	_
1	4824.60 4824.80		 	 	 	Peak Average	257 257	124 VERTICAL	

Temperature	24.3°C	Humidity	45%
Tost Engineer	Andy Togi	Configurations	IEEE 802.11n MCS0 HT20 CH 6 /
Test Engineer	Andy Tsai	Configurations	Chain 1+Chain 2
Test Date	Dec. 03, 2015		

Horizontal

			Limit	0ver	Read	Cable	Antenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB		cm	deg	
1	4849.30	56.45	74.00	-17.55	51.67	6.32	33.47	35.01	Peak	285	160	HORIZONTAL
2	4871.40	44.93	54.00	-9.07	40.06	6.35	33.53	35.01	Average	285	160	HORIZONTAL

	Freq	Level		Over Limit						A/Pos	T/Pos Pol/Ph	ase
	MHz	dBuV/m	$\overline{\text{dBuV/m}}$	dB	dBuV	dB	dB/m	dB		Cm	deg —	
1	4872.30	58.62	74.00	-15.38	53.75	6.35	33.53	35.01	Peak	241	116 VERTIC	AL
2	4873.10	46.04	54.00	-7.96	41.17	6.35	33.53	35.01	Average	241	116 VERTIC	AL

Temperature	24.3°C	Humidity	45%
Tost Engineer	Andy Togi	Configurations	IEEE 802.11n MCS0 HT20 CH 11 /
Test Engineer	Andy Tsai	Configurations	Chain 1+Chain 2
Test Date	Dec. 03, 2015		

Horizontal

			Limit	0ver	Read	Cable/	Antenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB		cm	deg	
1	4924.90	56.29	74.00	-17.71	51.24	6.41	33.65	35.01	Peak	285	258	HORIZONTAL
2	4927.40	44.92	54.00	-9.08	39.87	6.41	33.65	35.01	Average	285	258	HORIZONTAL

	Freq	Level		Over Limit					Remark	A/Pos		Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB		CM	deg	
1	4926.10	46.45	54.00	-7.55	41.40	6.41	33.65	35.01	Average	245	121	VERTICAL
2	4926.30	59.93	74.00	-14.07	54.88	6.41	33.65	35.01	Peak	245	121	VERTICAL

Temperature	24.3°C	Humidity	45%
Tost Engineer	Andy Togi	Configurations	IEEE 802.11n MCS0 HT40 CH 3 /
Test Engineer	Andy Tsai	Configurations	Chain 1+Chain 2
Test Date	Dec. 03, 2015		

Horizontal

				0ver						A/Pos		
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB		cm	deg	
1	4823.70	35.65	54.00	-18.35	30.96	6.29	33.41	35.01	Average	277	213	HORIZONTAL
2	4827.40	48.38	74.00	-25.62	43.65	6.30	33.44	35.01	Peak	277	213	HORIZONTAL

	Freq	Level		Over Limit					Remark	A/Pos	T/Pos	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB		Cm	deg	
1	4796.40	54.01	74.00	-19.99	49.40	6.27	33.35	35.01	Peak	257	116	VERTICAL
2	4844.40	43.49	54.00	-10.51	38.71	6.32	33.47	35.01	Average	257	116	VERTICAL

Page No. : 61 of 161

Temperature	24.3°C	Humidity	45%	
Tost Engineer	Andy Togi	Configurations	IEEE 802.11n MCS0 HT40 CH 6 /	
Test Engineer	Andy Tsai	Configurations	Chain 1+Chain 2	
Test Date	Dec. 03, 2015			

Horizontal

	Freq	Level		Over Limit					A/Pos		Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	 cm	deg	
1 2	4869.80 4875.20								252 252		HORIZONTAL HORIZONTAL

	Freq	Level		Over Limit					Remark	A/Pos	T/Pos Pol/Ph	nase
	MHz	dBuV/m	$\overline{\text{dBuV/m}}$	dB	dBuV	dB	dB/m	dB		Cm	deg —	
1	4870.30	54.71	74.00	-19.29	49.84	6.35	33.53	35.01	Peak	250	284 VERTIO	CAL
2	4874.30	43.06	54.00	-10.94	38.19	6.35	33.53	35.01	Average	250	284 VERTIO	CAL

Temperature	24.3°C	Humidity	45%
Tost Engineer	Andy Togi	Configurations	IEEE 802.11n MCS0 HT40 CH 9 /
Test Engineer	Andy Tsai	Configurations	Chain 1+Chain 2
Test Date	Dec. 03, 2015		

Horizontal

			Limit	0ver	Read	Cable	Antenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB		cm	deg	
1	4886.24	47.19	74.00	-26.81	42.28	6.36	33.56	35.01	Peak	273	311	HORIZONTAL
2	4918.56	35.29	54.00	-18.71	30.28	6.40	33.62	35.01	Average	273	311	HORIZONTAL

Page No. : 64 of 161

	Freq	Level		Over Limit						A/Pos		Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB			deg	
1	4899.28	55.54	74.00	-18.46	50.58	6.38	33.59	35.01	Peak	251	221	VERTICAL
2	4902.00	43.13	54.00	-10.87	38.17	6.38	33.59	35.01	Average	251	221	VERTICAL

Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = $20 \log Emission$ level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

For Conducted measurement:

Temperature	24°C	Humidity	60%
Test Engineer	Clemens Fang		

Average

Mode	Eroguanav	Antenna	Spui	ious Level (d	dBm)	Lippit (dPpp)	Marain (dR)
Mode	Frequency	Gain (dBi)	Chain 1	Chain 2	Total	Limit (dBm)	Margin (dB)
	2412 MHz	4.32	-57.79	-53.48	-47.79	-41.20	6.59
802.11b	2437 MHz	4.32	-50.22	-48.72	-42.08	-41.20	0.88
	2462 MHz	4.32	-53.84	-53.45	-46.31	-41.20	5.11
	2412 MHz	4.32	-57.90	-57.80	-50.52	-41.20	9.32
802.11g	2437 MHz	4.32	-56.67	-57.16	-49.58	-41.20	8.38
	2462 MHz	4.32	-57.64	-57.59	-50.28	-41.20	9.08
802.11n	2412 MHz	4.32	-57.76	-57.75	-50.42	-41.20	9.22
MCS0 HT20	2437 MHz	4.32	-57.16	-57.18	-49.84	-41.20	8.64
IVIC30 HIZO	2462 MHz	4.32	-57.55	-57.62	-50.25	-41.20	9.05
802.11n	2422 MHz	4.32	-57.37	-57.68	-50.19	-41.20	8.99
MCS0 HT40	2437 MHz	4.32	-57.46	-57.55	-50.17	-41.20	8.97
1VIC30 1140	2452 MHz	4.32	-57.52	-57.39	-50.12	-41.20	8.92

Peak

Mada	Fraguene.	Antenna	Spur	ious Level (d	dBm)	Lineit (alDue)	Marain (dP)
Mode	Frequency	Gain (dBi)	Chain 1	Chain 2	Total	Limit (dBm)	Margin (dB)
	2412 MHz	4.32	-43.92	-43.47	-36.36	-21.20	15.16
802.11b	2437 MHz	4.32	-41.53	-41.32	-34.09	-21.20	12.89
	2462 MHz	4.32	-43.20	-42.54	-35.53	-21.20	14.33
	2412 MHz	4.32	-43.59	-43.47	-36.20	-21.20	15.00
802.11g	2437 MHz	4.32	-43.21	-43.27	-35.91	-21.20	14.71
	2462 MHz	4.32	-42.92	-43.95	-36.07	-21.20	14.87
802.11n	2412 MHz	4.32	-43.55	-43.87	-36.38	-21.20	15.18
MCS0 HT20	2437 MHz	4.32	-43.51	-43.47	-36.16	-21.20	14.96
IVICSO HIZO	2462 MHz	4.32	-43.30	-43.55	-36.09	-21.20	14.89
902 11n	2422 MHz	4.32	-42.53	-43.70	-35.75	-21.20	14.55
802.11n MCS0 HT40	2437 MHz	4.32	-43.38	-43.71	-36.21	-21.20	15.01
IVIC30 H140	2452 MHz	4.32	-43.50	-43.45	-36.14	-21.20	14.94

Page No. : 66 of 161 Issued Date : May 05, 2017

Date: 4-DEC-2015 14:57:56

Plot on Configuration IEEE 802.11b / 2412 MHz / Peak / Chain 1

Date: 4-DEC-2015; 14:58-41

Page No. : 67 of 161

Plot on Configuration IEEE 802.11b / 2412 MHz / Average / Chain 2

Date: 4-DEC-2015-15-01-11

Plot on Configuration IEEE 802.11b / 2412 MHz / Peak / Chain 2

Date: 4-DEC-2015 14-59-47

Page No. : 68 of 161 Issued Date : May 05, 2017

Plot on Configuration IEEE 802.11b / 2437 MHz / Average / Chain 1

Date: 4-DEC-2015 15:05:54

Plot on Configuration IEEE 802.11b / 2437 MHz / Peak / Chain 1

Date: 4-DEC-2015 15:04:24

Page No. : 69 of 161

Plot on Configuration IEEE 802.11b / 2437 MHz / Average / Chain 2

Date: 4-DEC-2015 15:03:00

Plot on Configuration IEEE 802.11b / 2437 MHz / Peak / Chain 2

Date: 4-DEC-2015 15:03:35

Page No. : 70 of 161

Plot on Configuration IEEE 802.11b / 2462 MHz / Average / Chain 1

Date: 4-DEC-2015 15:04:01

Plot on Configuration IEEE 802.11b / 2462 MHz / Peak / Chain 1

Date: 4-DEC-2015 15:09:15

Page No. : 71 of 161 Issued Date : May 05, 2017

Plot on Configuration IEEE 802.11b / 2462 MHz / Average / Chain 2

Date: 4-DEC-2015-15:12:19

Plot on Configuration IEEE 802.11b / 2462 MHz / Peak / Chain 2

Date: 4-DEC-2015 15:10:49

Page No. : 72 of 161 Issued Date : May 05, 2017

Plot on Configuration IEEE 802.11g / 2412 MHz / Average / Chain 1

Date: 4-DEC-2015 15:33:00

Plot on Configuration IEEE 802.11g / 2412 MHz / Peak / Chain 1

Date: 4-DEC-2015 15:32-22

Page No. : 73 of 161

Plot on Configuration IEEE 802.11g / 2412 MHz / Average / Chain 2

Date: 4-DEC-2015 15:30:00

Plot on Configuration IEEE 802.11g / 2412 MHz / Peak / Chain 2

Date: 4-DEC-2015 15:30:58

Page No. : 74 of 161

Plot on Configuration IEEE 802.11g / 2437 MHz / Average / Chain 1

Date: 4-DEC-2015-15-25-14

Plot on Configuration IEEE 802.11g / 2437 MHz / Peak / Chain 1

Date: 4-DEC-2015; 15-25-44

Page No. : 75 of 161

Plot on Configuration IEEE 802.11g / 2437 MHz / Average / Chain 2

Date: 4-DEC-2015 15:27:50

Plot on Configuration IEEE 802.11g / 2437 MHz / Peak / Chain 2

Date: 4-DEC-2015 15:27:02

Page No. : 76 of 161

Plot on Configuration IEEE 802.11g / 2462 MHz / Average / Chain 1

Date: 4-DEC-2015 15:18:05

Plot on Configuration IEEE 802.11g / 2462 MHz / Peak / Chain 1

Date: 4-DEC-2015 15:17:34

Page No. : 77 of 161 Issued Date : May 05, 2017

Plot on Configuration IEEE 802.11g / 2462 MHz / Average / Chain 2

Date: 4-DEC-2015; 15:15:21

Plot on Configuration IEEE 802.11g / 2462 MHz / Peak / Chain 2

Date: 4-DEC-2015-15-16-00

Page No. : 78 of 161

Plot on Configuration IEEE 802.11n MCS0 HT20 / 2412 MHz / Average / Chain 1

Date: 4-DEC-2015 16:47:12

Plot on Configuration IEEE 802.11n MCS0 HT20 / 2412 MHz / Peak / Chain 1

Date: 4-DEC-2015 16:48-44

Page No. : 79 of 161

Plot on Configuration IEEE 802.11n MCS0 HT20 / 2412 MHz / Average / Chain 2

Date: 4-DEC-2015 16:50-44

Plot on Configuration IEEE 802.11n MCS0 HT20 / 2412 MHz / Peak / Chain 2

Date: 4-DEC-2015 16:49:56

Page No. : 80 of 161 Issued Date : May 05, 2017

Plot on Configuration IEEE 802.11n MCS0 HT20 / 2437 MHz / Average / Chain 1

Date: 4-DEC-2015 16:55:29

Plot on Configuration IEEE 802.11n MCS0 HT20 / 2437 MHz / Peak / Chain 1

Date: 4 DEC 2015 16:54:36

Page No. : 81 of 161 Issued Date : May 05, 2017

Plot on Configuration IEEE 802.11n MCS0 HT20 / 2437 MHz / Average / Chain 2

Date: 4-DEC-2015 16:52:28

Plot on Configuration IEEE 802.11n MCS0 HT20 / 2437 MHz / Peak / Chain 2

Date: 4 DEC 2015 16:53:16

Plot on Configuration IEEE 802.11n MCS0 HT20 / 2462 MHz / Average / Chain 1

Date: 4-DEC-2015 16:58:46

Plot on Configuration IEEE 802.11n MCS0 HT20 / 2462 MHz / Peak / Chain 1

Date: 4-DEC-2015 16:59:56

Page No. : 83 of 161

Plot on Configuration IEEE 802.11n MCS0 HT20 / 2462 MHz / Average / Chain 2

Date: 4-DEC-2015 17:02:59

Plot on Configuration IEEE 802.11n MCS0 HT20 / 2462 MHz / Peak / Chain 2

Date: 4-DEC-2015 17:01:53

: 84 of 161 Page No.

Plot on Configuration IEEE 802.11n MCS0 HT40 / 2422 MHz / Average / Chain 1

Date: 4-DEC-2015 17:09:16

Plot on Configuration IEEE 802.11n MCS0 HT40 / 2422 MHz / Peak / Chain 1

Date: 4-DEC-2015 17:04:12

Page No. : 85 of 161 Issued Date : May 05, 2017

Plot on Configuration IEEE 802.11n MCS0 HT40 / 2422 MHz / Average / Chain 2

Date: 4-DEC-2015 17:05:19

Plot on Configuration IEEE 802.11n MCS0 HT40 / 2422 MHz / Peak / Chain 2

Date: 4-DEC-2015 17:06:45

Page No. : 86 of 161

Plot on Configuration IEEE 802.11n MCS0 HT40 / 2437 MHz / Average / Chain 1

Date: 4-DEC-2015 17:11:52

Plot on Configuration IEEE 802.11n MCS0 HT40 / 2437 MHz / Peak / Chain 1

Date: 4-DEC-2015 17:12:23

Page No. : 87 of 161

Plot on Configuration IEEE 802.11n MCS0 HT40 / 2437 MHz / Average / Chain 2

Date: 4-DEC-2015 17:15:38

Plot on Configuration IEEE 802.11n MCS0 HT40 / 2437 MHz / Peak / Chain 2

Date: 4-DEC-2015 17:14:46

: 88 of 161 Page No.

Plot on Configuration IEEE 802.11n MCS0 HT40 / 2452 MHz / Average / Chain 1

Date: 4-DEC-2015 17:20-41

Plot on Configuration IEEE 802.11n MCS0 HT40 / 2452 MHz / Peak / Chain 1

Date: 4-DEC-2015 17:19:59

Page No. : 89 of 161

Plot on Configuration IEEE 802.11n MCS0 HT40 / 2452 MHz / Average / Chain 2

Date: 4-DEC-2015 17:17:41

Plot on Configuration IEEE 802.11n MCS0 HT40 / 2452 MHz / Peak / Chain 2

Date: 4-DEC-2015 17:18:34

Page No. : 90 of 161

Report No.: FR5N0423-02

4.6. Band Edge Emissions Measurement

4.6.1. Limit

30dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance		
(MHz)	(micorvolts/meter)	(meters)		
0.009~0.490	2400/F(kHz)	300		
0.490~1.705	24000/F(kHz)	30		
1.705~30.0	30	30		
30~88	100	3		
88~216	150	3		
216~960	200	3		
Above 960	500	3		

4.6.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	100 MHz
RBW / VBW (Emission in restricted band)	1MHz / 3MHz for Peak,
	1MHz / 1/T for Average
RBW / VBW (30dBc in any 100 kHz bandwidth emission)	100 kHz / 300 kHz for Peak

4.6.3. Test Procedures

Configure the EUT according to KDB558074 D01 v04. The EUT was perform conducted measurement and measurement level added antenna gain shall be comply to section 4.5.1.

4.6.4. Test Setup Layout

This test setup layout is the same as that shown in section 4.5.4.

4.6.5. Test Deviation

There is no deviation with the original standard.

4.6.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

 Report Format Version: Rev. 02
 Page No.
 : 91 of 161

 FCC ID: RYU-W224Z0
 Issued Date
 : May 05, 2017

Report No.: FR5N0423-02

4.6.7. Test Result of Band Edge and Fundamental Emissions

Temperature	24°C	Humidity	60%
Test Engineer	Clemens Fang		

Average

Mode	Frequency	Antenna	Bandedge Level (dBm)			Limit (dPm)	Marain (dD)
		Gain (dBi)	Chain 1	Chain 2	Total	Limit (dBm)	Margin (dB)
802.11b	2412 MHz	4.32	-52.48	-47.25	-41.79	-41.20	0.59
	2437 MHz	4.32	-52.08	-47.76	-42.07	-41.20	0.87
	2462 MHz	4.32	-48.58	-48.70	-41.31	-41.20	0.11
802.11g	2412 MHz	4.32	-49.23	-48.03	-41.26	-41.20	0.06
	2437 MHz	4.32	-50.11	-47.75	-41.44	-41.20	0.24
	2462 MHz	4.32	-48.25	-49.15	-41.35	-41.20	0.15
902 11n	2412 MHz	4.32	-50.41	-48.58	-42.07	-41.20	0.87
802.11n MCS0 HT20	2437 MHz	4.32	-50.19	-47.66	-41.41	-41.20	0.21
	2462 MHz	4.32	-47.72	-51.55	-41.90	-41.20	0.70
802.11n MCS0 HT40	2422 MHz	4.32	-50.75	-47.74	-41.66	-41.20	0.46
	2437 MHz	4.32	-51.44	-48.24	-42.22	-41.20	1.02
	2452 MHz	4.32	-48.42	-48.80	-41.28	-41.20	0.08

Peak

I CUK		T					
Mode	Frequency	Antenna	Bandedge Level (dBm)			Limit (dPm)	Marain (dP)
		Gain (dBi)	Chain 1	Chain 2	Total	Limit (dBm)	Margin (dB)
802.11b	2412 MHz	4.32	-41.84	-40.03	-33.51	-21.20	12.31
	2437 MHz	4.32	-40.00	-40.73	-33.02	-21.20	11.82
	2462 MHz	4.32	-39.61	-40.42	-32.67	-21.20	11.47
802.11g	2412 MHz	4.32	-32.67	-32.18	-25.09	-21.20	3.89
	2437 MHz	4.32	-36.24	-32.27	-26.49	-21.20	5.29
	2462 MHz	4.32	-32.09	-36.50	-26.43	-21.20	5.23
900 11=	2412 MHz	4.32	-35.46	-34.26	-27.49	-21.20	6.29
802.11n MCS0 HT20	2437 MHz	4.32	-36.21	-31.56	-25.96	-21.20	4.76
	2462 MHz	4.32	-32.70	-37.99	-27.25	-21.20	6.05
802.11n	2422 MHz	4.32	-35.90	-35.75	-28.49	-21.20	7.29
	2437 MHz	4.32	-37.28	-33.30	-27.52	-21.20	6.32
MCS0 HT40	2452 MHz	4.32	-33.52	-35.29	-26.99	-21.20	5.79

Report Format Version: Rev. 02 FCC ID: RYU-W224Z0 Page No. : 92 of 161 Issued Date : May 05, 2017

Plot on Configuration IEEE 802.11b / 2412 MHz / Average / Chain 1

Date: 4-DEC-2015 11:22:03

Plot on Configuration IEEE 802.11b / 2412 MHz / Peak / Chain 1

Date: 4-DEC-2015 11:21:09

Page No. : 93 of 161

Plot on Configuration IEEE 802.11b / 2412 MHz / Average / Chain 2

Date: 4-DEC-2015 11:19:56

Plot on Configuration IEEE 802.11b / 2412 MHz / Peak / Chain 2

Date: 4-DEC-2015 11:20:17

Page No. : 94 of 161

Plot on Configuration IEEE 802.11b / 2437 MHz / Average / Chain 1

Date: 4-DEC-2015 11:44:28

Plot on Configuration IEEE 802.11b / 2437 MHz / Peak / Chain 1

Date: 4-DEC-2015 11:51:46

Page No. : 95 of 161

Plot on Configuration IEEE 802.11b / 2437 MHz / Average / Chain 2

Date: 4-DEC-2015 11:48:19

Plot on Configuration IEEE 802.11b / 2437 MHz / Peak / Chain 2

Date: 6.DEC.2015 11:49:48

Page No. : 96 of 161

Plot on Configuration IEEE 802.11b / 2462 MHz / Average / Chain 1 $\,$

Date: 8.DEC.2015 12:95:04

Plot on Configuration IEEE 802.11b / 2462 MHz / Peak / Chain 1

Date: 4-DEC-2015 12:03:15

Page No. : 97 of 161

Plot on Configuration IEEE 802.11b / 2462 MHz / Average / Chain 2

Control of the Contro

Plot on Configuration IEEE 802.11b / 2462 MHz / Peak / Chain 2

Date: 4-DEC-2015 12-02-24

Page No. : 98 of 161

Plot on Configuration IEEE 802.11g / 2412 MHz / Average / Chain 1

Date: 4-DEC-2015 13:41:02

Plot on Configuration IEEE 802.11g / 2412 MHz / Peak / Chain 1

Date: 4-DEC-2015 13:42:17

Page No. : 99 of 161 Issued Date : May 05, 2017

Plot on Configuration IEEE 802.11g / 2412 MHz / Average / Chain 2

Date: 4-DEC-2015 13:41:23

Plot on Configuration IEEE 802.11g / 2412 MHz / Peak / Chain 2

Date: 4-DEC-2015 13:41:47

Page No. : 100 of 161 Issued Date : May 05, 2017

Plot on Configuration IEEE 802.11g / 2437 MHz / Average / Chain 1

Date: 4-DEC-2015 13:49:47

Plot on Configuration IEEE 802.11g / 2437 MHz / Peak / Chain 1

Date: 4-DEC-2015 13:50:15

Page No. : 101 of 161 Issued Date : May 05, 2017

Plot on Configuration IEEE 802.11g / 2437 MHz / Average / Chain 2

Date: 4-DEC-2015 13:47:56

Plot on Configuration IEEE 802.11g / 2437 MHz / Peak / Chain 2

Date: 4-DEC-2015 13:48:23

Page No. : 102 of 161 Issued Date : May 05, 2017

Plot on Configuration IEEE 802.11g / 2462 MHz / Average / Chain 1

Date: 4-DEC-2015 13:54:56

Plot on Configuration IEEE 802.11g / 2462 MHz / Peak / Chain 1

Date: 4-DEC-2015 13:55:40

: 103 of 161 Page No. Issued Date : May 05, 2017

Plot on Configuration IEEE 802.11g / 2462 MHz / Average / Chain 2

Plot on Configuration IEEE 802.11g / 2462 MHz / Peak / Chain 2

Date: 4-DEC-2015 13:56-23

Page No. : 104 of 161 Issued Date : May 05, 2017

Plot on Configuration IEEE 802.11n MCS0 HT20 / 2412 MHz / Average / Chain 1

Date: 4-DEC-2015 14:01:09

Plot on Configuration IEEE 802.11n MCS0 HT20 / 2412 MHz / Peak / Chain 1

Date: 4-DEC-2015 14:01:53

Page No. : 105 of 161 Issued Date : May 05, 2017

Plot on Configuration IEEE 802.11n MCS0 HT20 / 2412 MHz / Average / Chain 2

Date: 4-DEC-2015 13:59:56

Plot on Configuration IEEE 802.11n MCS0 HT20 / 2412 MHz / Peak / Chain 2

Date: 4-DEC-2015, 14-02-49

: 106 of 161 Page No. Issued Date : May 05, 2017

Plot on Configuration IEEE 802.11n MCS0 HT20 / 2437 MHz / Average / Chain 1

Date: 4-DEC-2015 14-04-52

Plot on Configuration IEEE 802.11n MCS0 HT20 / 2437 MHz / Peak / Chain 1

Date: 4 DEC 2015 14:09:38

Page No. : 107 of 161 Issued Date : May 05, 2017

Plot on Configuration IEEE 802.11n MCS0 HT20 / 2437 MHz / Average / Chain 2

Date: 4-DEC-2015 14-08-01

Plot on Configuration IEEE 802.11n MCS0 HT20 / 2437 MHz / Peak / Chain 2

Date: 4-DEC-2015 14:10:23

Page No. : 108 of 161 Issued Date : May 05, 2017

Plot on Configuration IEEE 802.11n MCS0 HT20 / 2462 MHz / Average / Chain 1

Date: 4-DEC-2015 14:12:17

Plot on Configuration IEEE 802.11n MCS0 HT20 / 2462 MHz / Peak / Chain 1

Date: 4-DEC-2015 14:15:00

: 109 of 161 Page No.

Issued Date : May 05, 2017

Plot on Configuration IEEE 802.11n MCS0 HT20 / 2462 MHz / Average / Chain 2

Date: 4-DEC-2015 14:13:20

Plot on Configuration IEEE 802.11n MCS0 HT20 / 2462 MHz / Peak / Chain 2

Date: 4-DEC-2015 14:13:58

: 110 of 161 Page No. Issued Date : May 05, 2017

Plot on Configuration IEEE 802.11n MCS0 HT40 / 2422 MHz / Average / Chain 1

Date: 4-DEC-2015, 14-25-17

Plot on Configuration IEEE 802.11n MCS0 HT40 / 2422 MHz / Peak / Chain 1

Date: 4-DEC-2015 14:27:00

Page No. : 111 of 161 Issued Date : May 05, 2017

Plot on Configuration IEEE 802.11n MCS0 HT40 / 2422 MHz / Average / Chain 2

Date: 4-DEC-2015 14:24:02

Plot on Configuration IEEE 802.11n MCS0 HT40 / 2422 MHz / Peak / Chain 2

Date: 4-DEC-2015 14:28:26

Page No. : 112 of 161 Issued Date : May 05, 2017

Plot on Configuration IEEE 802.11n MCS0 HT40 / 2437 MHz / Average / Chain 1

Date: 4 DEC-2015 17:32:58

Plot on Configuration IEEE 802.11n MCS0 HT40 / 2437 MHz / Peak / Chain 1

Date: 4-DEC-2015 17:33:32

Page No. : 113 of 161 Issued Date : May 05, 2017

Plot on Configuration IEEE 802.11n MCS0 HT40 / 2437 MHz / Average / Chain 2

Date: 4-DEC-2015 17:31:56

Plot on Configuration IEEE 802.11n MCS0 HT40 / 2437 MHz / Peak / Chain 2

Date: 4-DEC-2015 17:34:41

Page No. : 114 of 161 Issued Date : May 05, 2017

Plot on Configuration IEEE 802.11n MCS0 HT40 / 2452 MHz / Average / Chain 1

0.30X330405245X4536545

Date: 4-DEC-2015 14:48:26

Page No. : 115 of 161 Issued Date : May 05, 2017

Plot on Configuration IEEE 802.11n MCS0 HT40 / 2452 MHz / Average / Chain 2

Plot on Configuration IEEE 802.11n MCS0 HT40 / 2452 MHz / Peak / Chain 2

Date: 4-DEC-2015; 14:47:41

Page No. : 116 of 161 Issued Date : May 05, 2017

Report No.: FR5N0423-02

For Emission not in Restricted Band

Temperature	24°C	Humidity	60%
Test Engineer	Clemens Fang		

Chain 1

Mode	Frequency		Measurement Level (dBm)	Limit (dBc)	Margin (dB)
802.11b	2412 MHz	30MHz~2400MHz	-35.72	-18.05	17.67
		2390MHz~2400MHz	-35.11	-18.05	17.06
		2483.5MHz~2500MHz	-55.59	-18.05	37.54
		2500MHz~26500MHz	-47.84	-18.05	29.79
	2462 MHz	30MHz~2400MHz	-52.17	-18.05	34.12
		2390MHz~2400MHz	-54.69	-18.05	36.64
		2483.5MHz~2500MHz	-45.96	-18.05	27.91
		2500MHz~26500MHz	-47.52	-18.05	29.47
	2412 MHz	30MHz~2400MHz	-32.7	-19.35	13.35
		2390MHz~2400MHz	-30.07	-19.35	10.72
		2483.5MHz~2500MHz	-55.32	-19.35	35.97
000 11		2500MHz~26500MHz	-46.61	-19.35	27.26
802.11g		30MHz~2400MHz	-54.32	-19.35	34.97
	2462 MHz	2390MHz~2400MHz	-54.67	-19.35	35.32
		2483.5MHz~2500MHz	-43.69	-19.35	24.34
		2500MHz~26500MHz	-47.48	-19.35	28.13
	2412 MHz	30MHz~2400MHz	-39.9	-19.19	20.71
802.11n MCS0 HT20		2390MHz~2400MHz	-35.73	-19.19	16.54
		2483.5MHz~2500MHz	-55.37	-19.19	36.18
		2500MHz~26500MHz	-47.69	-19.19	28.5
	2462 MHz	30MHz~2400MHz	-54.82	-19.19	35.63
		2390MHz~2400MHz	-55.05	-19.19	35.86
		2483.5MHz~2500MHz	-42.79	-19.19	23.6
		2500MHz~26500MHz	-47.53	-19.19	28.34
	2422 MHz	30MHz~2400MHz	-35.99	-29.24	6.75
		2390MHz~2400MHz	-33.68	-29.24	4.44
802.11n MCS0 HT40		2483.5MHz~2500MHz	-55.45	-29.24	26.21
		2500MHz~26500MHz	-48.12	-29.24	18.88
	2452 MHz	30MHz~2400MHz	-54.43	-29.24	25.19
		2390MHz~2400MHz	-54.31	-29.24	25.07
		2483.5MHz~2500MHz	-40.52	-29.24	11.28
		2500MHz~26500MHz	-47.93	-29.24	18.69

Page No. : 117 of 161 Issued Date : May 05, 2017

Report No.: FR5N0423-02

Chain 2

Mode	Frequency		Measurement Level	Limit (dBc)	Margin (dB)
			(dBm)	, ,	
802.11b	2412 MHz	30MHz~2400MHz	-29.92	-18.06	11.86
		2390MHz~2400MHz	-28.3	-18.06	10.24
		2483.5MHz~2500MHz	-55.34	-18.06	37.28
		2500MHz~26500MHz	-48.02	-18.06	29.96
	2462 MHz	30MHz~2400MHz	-55.41	-18.06	37.35
		2390MHz~2400MHz	-55.19	-18.06	37.13
		2483.5MHz~2500MHz	-46.73	-18.06	28.67
		2500MHz~26500MHz	-47.39	-18.06	29.33
	2412 MHz	30MHz~2400MHz	-28.98	-18.89	10.09
		2390MHz~2400MHz	-26.73	-18.89	7.84
		2483.5MHz~2500MHz	-54.93	-18.89	36.04
		2500MHz~26500MHz	-48.44	-18.89	29.55
802.11g	2462 MHz	30MHz~2400MHz	-55.74	-18.89	36.85
		2390MHz~2400MHz	-54.12	-18.89	35.23
		2483.5MHz~2500MHz	-46.32	-18.89	27.43
		2500MHz~26500MHz	-47.66	-18.89	28.77
	2412 MHz	30MHz~2400MHz	-29.93	-19.1	10.83
		2390MHz~2400MHz	-28.75	-19.1	9.65
		2483.5MHz~2500MHz	-53.48	-19.1	34.38
802.11n MCS0 HT20		2500MHz~26500MHz	-47.96	-19.1	28.86
	2462 MHz	30MHz~2400MHz	-56.69	-19.1	37.59
		2390MHz~2400MHz	-55.66	-19.1	36.56
		2483.5MHz~2500MHz	-48.41	-19.1	29.31
		2500MHz~26500MHz	-47.77	-19.1	28.67
	2422 MHz	30MHz~2400MHz	-36.4	-28.87	7.53
		2390MHz~2400MHz	-33.44	-28.87	4.57
		2483.5MHz~2500MHz	-55.56	-28.87	26.69
802.11n		2500MHz~26500MHz	-47.78	-28.87	18.91
MCS0 HT40	2452 MHz	30MHz~2400MHz	-54.49	-28.87	25.62
		2390MHz~2400MHz	-54.15	-28.87	25.28
		2483.5MHz~2500MHz	-43.17	-28.87	14.3
		2500MHz~26500MHz	-48.01	-28.87	19.14

Page No.

: 118 of 161

Issued Date : May 05, 2017

For Emission not in Restricted Band

Plot on Configuration IEEE 802.11b / Reference Level / Chain 1

Plot on Configuration IEEE 802.11b / 2412 MHz / 30MHz~2400MHz (down 30dBc) / Chain 1

Date: 4 DEC 2015 18:20:03

Page No. : 119 of 161 Issued Date : May 05, 2017

Plot on Configuration IEEE 802.11b / 2412 MHz / 2390MHz \sim 2400MHz (down 30dBc) / Chain 1

Plot on Configuration IEEE 802.11b / 2412 MHz / 2483.5MHz~2500MHz (down 30dBc) / Chain 1

Date: 4 DEC 2015 18:27:43

Page No. : 120 of 161 Issued Date : May 05, 2017

Plot on Configuration IEEE 802.11b / 2412 MHz / 2500MHz \sim 26500MHz (down 30dBc) / Chain 1

Plot on Configuration IEEE 802.11b / CH 2462 MHz / 30MHz~2400MHz (down 30dBc) / Chain 1

Date: 4-DEC-2015 18:32:54

Page No. : 121 of 161 Issued Date : May 05, 2017

Plot on Configuration IEEE 802.11b / 2462 MHz / 2390MHz \sim 2400MHz (down 30dBc) / Chain 1

Plot on Configuration IEEE 802.11b / 2462 MHz / 2483.5MHz~2500MHz (down 30dBc) / Chain 1

Date: 4-DEC-2015 18:31:33

Page No. : 122 of 161 Issued Date : May 05, 2017

Plot on Configuration IEEE 802.11b / CH 2462 MHz / 2500MHz~26500MHz (down 30dBc) / Chain 1

Date: 4-DEC-2015 18:30:26

Plot on Configuration IEEE 802.11g / Reference Level / Chain 1

Date: 4-DEC-2015 17:56-40

Plot on Configuration IEEE 802.11g / 2412 MHz / 30MHz~2400MHz (down 30dBc) / Chain 1

Date: 4 DEC 2015 19:16:24

Page No. : 124 of 161 Issued Date : May 05, 2017

Plot on Configuration IEEE 802.11g / 2412 MHz / 2390MHz \sim 2400MHz (down 30dBc) / Chain 1

Plot on Configuration IEEE 802.11g / 2412 MHz / 2483.5MHz~2500MHz (down 30dBc) / Chain 1

Date: 4-DEC-2015 19:18:22

Page No. : 125 of 161 Issued Date : May 05, 2017

Plot on Configuration IEEE 802.11g / 2412 MHz / 2500MHz \sim 26500MHz (down 30dBc) / Chain 1

Plot on Configuration IEEE 802.11g / 2462 MHz / 30MHz~2400MHz (down 30dBc) / Chain 1

Date: 4-DEC-2015 19-25-43

Page No. : 126 of 161 Issued Date : May 05, 2017

Plot on Configuration IEEE 802.11g / 2462 MHz / 2390MHz \sim 2400MHz (down 30dBc) / Chain 1

Plot on Configuration IEEE 802.11g / 2462 MHz / 2483.5MHz~2500MHz (down 30dBc) / Chain 1

Date: 4-DEC-2015 19:23:53

Page No. : 127 of 161 Issued Date : May 05, 2017

Plot on Configuration IEEE 802.11g / 2462 MHz / 2500MHz~26500MHz (down 30dBc) / Chain 1

Date: 4-DEC-2015 19:23:15

Plot on Configuration IEEE 802.11n MCS0 HT20 / Reference Level / Chain 1

Date: 4 DEC 2015 17:58:00

Plot on Configuration IEEE 802.11n MCS0 HT20 / 2412 MHz / 30MHz~2400MHz (down 30dBc) / Chain 1

Date: 4-DEC-2015; 19:30:32

Page No. : 129 of 161 Issued Date : May 05, 2017

Plot on Configuration IEEE 802.11802.11n MCS0 HT20 / 2412 MHz / 2390MHz~2400MHz (down 30dBc) / Chain 1

Plot on Configuration IEEE 802.11n MCS0 HT20 / 2412 MHz / 2483.5MHz~2500MHz (down 30dBc) / Chain 1

Report Format Version: Rev. 02

: 130 of 161 Page No. FCC ID: RYU-W224Z0 Issued Date : May 05, 2017

Plot on Configuration IEEE 802.11n MCS0 HT20 / 2412 MHz / 2500MHz \sim 26500MHz (down 30dBc) / Chain 1

Date: 4-DEC-2015 19:35:39

Plot on Configuration IEEE 802.11n MCS0 HT20 / 2462 MHz / 30MHz~2400MHz (down 30dBc) / Chain 1

Date: 4-DEC-2015 19:40:33

Page No. : 131 of 161 Issued Date : May 05, 2017

Plot on Configuration IEEE 802.11n MCS0 HT20 / 2462 MHz / 2390MHz~2400MHz (down 30dBc) / Chain 1

Plot on Configuration IEEE 802.11n MCS0 HT20 / 2462 MHz / 2483.5MHz \sim 2500MHz (down 30dBc) / Chain 1

Report Format Version: Rev. 02 FCC ID: RYU-W224Z0

Page No. : 132 of 161 Issued Date : May 05, 2017

Plot on Configuration IEEE 802.11n MCS0 HT20 / 2462 MHz / 2500MHz \sim 26500MHz (down 30dBc) / Chain 1

Date: 4-DEC-2015 19:38:34

Page No. : 133 of 161 Issued Date : May 05, 2017

Plot on Configuration IEEE 802.11n MCS0 HT40 / Reference Level / Chain 1

Date: 4-DEC-2015 18:04:45

Plot on Configuration IEEE 802.11n MCS0 HT40 / 2422 MHz / 30MHz~2400MHz (down 30dBc) / Chain 1

Date: 4-DEC-2015 19:44:08

Page No. : 134 of 161 Issued Date : May 05, 2017

Plot on Configuration IEEE 802.11n MCS0 HT40 / 2422 MHz / 2390MHz~2400MHz (down 30dBc) / Chain 1

Plot on Configuration IEEE 802.11n MCS0 HT40 / 2422 MHz / 2483.5MHz \sim 2500MHz (down 30dBc) / Chain 1

Report Format Version: Rev. 02 FCC ID: RYU-W224Z0 Page No. : 135 of 161 Issued Date : May 05, 2017

Plot on Configuration IEEE 802.11n MCS0 HT40 / 2422 MHz / 2500MHz \sim 26500MHz (down 30dBc) / Chain 1

Date: 4-DEC-2015 19:46:36

Plot on Configuration IEEE 802.11n MCS0 HT40 / 2452 MHz / 30MHz~2400MHz (down 30dBc) / Chain 1

Date: 4-DEC-2015 19:50:35

Page No. : 136 of 161 Issued Date : May 05, 2017

Plot on Configuration IEEE 802.11n MCS0 HT40 / 2452 MHz / 2390MHz~2400MHz (down 30dBc) / Chain 1

Plot on Configuration IEEE 802.11n MCS0 HT40 / 2452 MHz / 2483.5MHz \sim 2500MHz (down 30dBc) / Chain 1

Report Format Version: Rev. 02 FCC ID: RYU-W224Z0 Page No. : 137 of 161 Issued Date : May 05, 2017

Plot on Configuration IEEE 802.11n MCS0 HT40 / 2452 MHz / 2500MHz \sim 26500MHz (down 30dBc) / Chain 1

Date: 4-DEC-2015 19:48-05

Page No. : 138 of 161 Issued Date : May 05, 2017

Plot on Configuration IEEE 802.11b / Reference Level / Chain 2

Plot on Configuration IEEE 802.11b / 2412 MHz / 30MHz~2400MHz (down 30dBc) / Chain 2

Date: 4 DEC 2015 20:05:08

Page No. : 139 of 161 Issued Date : May 05, 2017

Plot on Configuration IEEE 802.11b / 2412 MHz / 2390MHz \sim 2400MHz (down 30dBc) / Chain 2

Plot on Configuration IEEE 802.11b / 2412 MHz / 2483.5MHz~2500MHz (down 30dBc) / Chain 2

Date: 4-DEC-2015 20:06:20

Page No. : 140 of 161 Issued Date : May 05, 2017

Plot on Configuration IEEE 802.11b / 2412 MHz / 2500MHz~26500MHz (down 30dBc) / Chain 2

Plot on Configuration IEEE 802.11b / CH 2462 MHz / 30MHz~2400MHz (down 30dBc) / Chain 2

Date: 4-DEC-2015 20:18:15

Page No. : 141 of 161 Issued Date : May 05, 2017

Plot on Configuration IEEE 802.11b / 2462 MHz / 2390MHz~2400MHz (down 30dBc) / Chain 2

Plot on Configuration IEEE 802.11b / 2462 MHz / 2483.5MHz~2500MHz (down 30dBc) / Chain 2

Date: 4-DEC-2015 20:17:01

Page No. : 142 of 161 Issued Date : May 05, 2017

Plot on Configuration IEEE 802.11b / CH 2462 MHz / 2500MHz~26500MHz (down 30dBc) / Chain 2

Date: 4-DEC-2015 20:16:02

Page No. : 143 of 161

Issued Date : May 05, 2017

Plot on Configuration IEEE 802.11g / Reference Level / Chain 2

Plot on Configuration IEEE 802.11g / 2412 MHz / 30MHz~2400MHz (down 30dBc) / Chain 2

Date: 4-DEC-2015 20:30:28

Page No. : 144 of 161 Issued Date : May 05, 2017

Plot on Configuration IEEE 802.11g / 2412 MHz / 2390MHz \sim 2400MHz (down 30dBc) / Chain 2

Plot on Configuration IEEE 802.11g / 2412 MHz / 2483.5MHz~2500MHz (down 30dBc) / Chain 2

Date: 4-DEC-2015 20:31:45

Page No. : 145 of 161 Issued Date : May 05, 2017

Plot on Configuration IEEE 802.11g / 2412 MHz / 2500MHz \sim 26500MHz (down 30dBc) / Chain 2

Plot on Configuration IEEE 802.11g / 2462 MHz / 30MHz~2400MHz (down 30dBc) / Chain 2

Date: 4-DEC-2015 20:38-00

Page No. : 146 of 161 Issued Date : May 05, 2017

Plot on Configuration IEEE 802.11g / 2462 MHz / 2390MHz~2400MHz (down 30dBc) / Chain 2

Plot on Configuration IEEE 802.11g / 2462 MHz / 2483.5MHz~2500MHz (down 30dBc) / Chain 2

Date: 4-DEC-2015 20:34:59

Page No. : 147 of 161 Issued Date : May 05, 2017

Plot on Configuration IEEE 802.11g / 2462 MHz / 2500MHz \sim 26500MHz (down 30dBc) / Chain 2

Date: 4-DEC-2015 20:34:12

Page No. : 148 of 161 Issued Date : May 05, 2017

Plot on Configuration IEEE 802.11n MCS0 HT20 / Reference Level / Chain 2

Plot on Configuration IEEE 802.11n MCS0 HT20 / 2412 MHz / 30MHz~2400MHz (down 30dBc) / Chain 2

Date: 4-DEC-2015 20:39:32

Page No. : 149 of 161 Issued Date : May 05, 2017

Plot on Configuration IEEE 802.11802.11n MCS0 HT20 / 2412 MHz / 2390MHz \sim 2400MHz (down 30dBc) / Chain 2

Date: 4-DEC-2015 20:40:08

Plot on Configuration IEEE 802.11n MCS0 HT20 / 2412 MHz / 2483.5MHz \sim 2500MHz (down 30dBc) / Chain 2

Date: 4 DEC 2015 20:42:35

Page No. : 150 of 161 Issued Date : May 05, 2017

Plot on Configuration IEEE 802.11n MCS0 HT20 / 2412 MHz / 2500MHz \sim 26500MHz (down 30dBc) / Chain 2

Date: 4-DEC-2015 20:43:13

Plot on Configuration IEEE 802.11n MCS0 HT20 / 2462 MHz / 30MHz~2400MHz (down 30dBc) / Chain 2

Date: 4 DEC 2015 20:46:35

Page No. : 151 of 161 Issued Date : May 05, 2017

Plot on Configuration IEEE 802.11n MCS0 HT20 / 2462 MHz / 2390MHz~2400MHz (down 30dBc) / Chain 2

Plot on Configuration IEEE 802.11n MCS0 HT20 / 2462 MHz / 2483.5MHz~2500MHz (down 30dBc) / Chain 2

Report Format Version: Rev. 02

: 152 of 161 Page No. FCC ID: RYU-W224Z0 Issued Date : May 05, 2017

Plot on Configuration IEEE 802.11n MCS0 HT20 / 2462 MHz / 2500MHz \sim 26500MHz (down 30dBc) / Chain 2

Date: 4-DEC-2015, 20-45-00

Page No. : 153 of 161 Issued Date : May 05, 2017

Plot on Configuration IEEE 802.11n MCS0 HT40 / Reference Level / Chain 2

Plot on Configuration IEEE 802.11n MCS0 HT40 / 2422 MHz / 30MHz~2400MHz (down 30dBc) / Chain 2

Date: 4-DEC-2015 19:59:55

Page No. : 154 of 161 Issued Date : May 05, 2017

Plot on Configuration IEEE 802.11n MCS0 HT40 / 2422 MHz / 2390MHz~2400MHz (down 30dBc) / Chain 2

Plot on Configuration IEEE 802.11n MCS0 HT40 / 2422 MHz / 2483.5MHz \sim 2500MHz (down 30dBc) / Chain 2

Report Format Version: Rev. 02 FCC ID: RYU-W224Z0 Page No. : 155 of 161 Issued Date : May 05, 2017

Plot on Configuration IEEE 802.11n MCS0 HT40 / 2422 MHz / 2500MHz \sim 26500MHz (down 30dBc) / Chain 2

Date: 4-DEC-2015 19:57:59

Plot on Configuration IEEE 802.11n MCS0 HT40 / 2452 MHz / 30MHz~2400MHz (down 30dBc) / Chain 2

Date: 4-DEC-2015 19:53:20

Page No. : 156 of 161 Issued Date : May 05, 2017

Plot on Configuration IEEE 802.11n MCS0 HT40 / 2452 MHz / 2390MHz~2400MHz (down 30dBc) / Chain 2

Plot on Configuration IEEE 802.11n MCS0 HT40 / 2452 MHz / 2483.5MHz \sim 2500MHz (down 30dBc) / Chain 2

Report Format Version: Rev. 02 FCC ID: RYU-W224Z0 Page No. : 157 of 161 Issued Date : May 05, 2017

Plot on Configuration IEEE 802.11n MCS0 HT40 / 2452 MHz / 2500MHz \sim 26500MHz (down 30dBc) / Chain 2

Date: 4-DEC-2015 19-55-25

Page No. : 158 of 161 Issued Date : May 05, 2017

Report No.: FR5N0423-02

4.7. Antenna Requirements

4.7.1. Limit

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

4.7.2. Antenna Connector Construction

Please refer to section 3.3 in this test report; antenna connector complied with the requirements.

Report No.: FR5N0423-02

5. LIST OF MEASURING EQUIPMENTS

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
EMI Test Receiver	R&S	ESCS 30	100355	9kHz ~ 2.75GHz	Apr. 22, 2015	Conduction (CO01-CB)
LISN	F.C.C.	FCC-LISN-50-16-2	04083	150kHz ~ 100MHz	Dec. 08, 2015	Conduction (CO01-CB)
LISN	Schwarzbeck	NSLK 8127	8127478	9kHz ~ 30MHz	Nov. 13, 2015	Conduction (CO01-CB)
COND Cable	Woken	Cable	01	150kHz ~ 30MHz	May 25, 2015	Conduction (CO01-CB)
Software	Audix	E3	6.120210n	-	N.C.R.	Conduction (CO01-CB)
BILOG ANTENNA	Schaffner	CBL6112D	37880	20MHz ~ 2GHz	Sep. 03, 2015	Radiation (03CH01-CB)
Horn Antenna	EMCO	3115	00075790	750MHz ~ 18GHz	Oct. 22, 2015	Radiation (03CH01-CB)
Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170252	15GHz ~ 40GHz	Jul. 21, 2015	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8447D	2944A10991	0.1MHz ~ 1.3GHz	Feb. 24, 2015	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8449B	3008A02310	1GHz ~ 26.5GHz	Jan. 12, 2015	Radiation (03CH01-CB)
Pre-Amplifier	WM	TF-130N-R1	923365	26GHz ~ 40GHz	Feb.10, 2015	Radiation (03CH01-CB)
Spectrum Analyzer	R&S	FSP40	100056	9kHz ~ 40GHz	Oct. 27, 2015	Radiation (03CH01-CB)
EMI Receiver	Agilent	N9038A	MY52260123	9kHz ~ 8.4GHz	Jan. 21, 2015	Radiation (03CH01-CB)
RF Cable-low	Woken	Low Cable-1	N/A	30 MHz ~ 1 GHz	Nov. 02, 2015	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-16	N/A	1 GHz ~ 18 GHz	Nov. 02, 2015	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-17	N/A	1 GHz ~ 18 GHz	Nov. 02, 2015	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-40G-1	N/A	18GHz ~ 40 GHz	Nov. 02, 2015	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-40G-2	N/A	18GHz ~ 40 GHz	Nov. 02, 2015	Radiation (03CH01-CB)
Loop Antenna	Teseq	HLA 6120	24155	9kHz - 30 MHz	Mar. 12, 2015*	Radiation (03CH01-CB)
Spectrum analyzer	R&S	FSV40	100979	9kHz~40GHz	Dec. 12, 2014	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-7	1 GHz – 26.5 GHz	Nov. 02, 2015	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-8	1 GHz – 26.5 GHz	Nov. 02, 2015	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-9	1 GHz – 26.5 GHz	Nov. 02, 2015	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-10	1 GHz – 26.5 GHz	Nov. 02, 2015	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-6	1 GHz – 26.5 GHz	Nov. 02, 2015	Conducted (TH01-CB)
Power Sensor	Agilent	U2021XA	MY53410001	50MHz~18GHz	Nov. 02, 2015	Conducted (TH01-CB)

Note: Calibration Interval of instruments listed above is one year.

N.C.R. means Non-Calibration required.

 Report Format Version: Rev. 02
 Page No. : 160 of 161

 FCC ID: RYU-W224Z0
 Issued Date : May 05, 2017

[&]quot;*" Calibration Interval of instruments listed above is two years.

Report No.: FR5N0423-02

Page No.

: 161 of 161

Issued Date : May 05, 2017

6. MEASUREMENT UNCERTAINTY

Test Items	Uncertainty	Remark
Conducted Emission (150kHz \sim 30MHz)	3.2 dB	Confidence levels of 95%
Radiated Emission (30MHz \sim 1,000MHz)	3.6 dB	Confidence levels of 95%
Radiated Emission (1GHz ~ 18GHz)	3.7 dB	Confidence levels of 95%
Radiated Emission (18GHz \sim 40GHz)	3.5 dB	Confidence levels of 95%
Conducted Emission	1.7 dB	Confidence levels of 95%

Appendix A. Test Photos

FCC ID: RYU-W224Z0 Page No. : A1 of A7

1. Photographs of Conducted Emissions Test Configuration

FRONT VIEW

REAR VIEW

FCC ID: RYU-W224Z0 Page No. : A2 of A7

CLOSE-UP VIEW

FCC ID: RYU-W224Z0 Page No. : A3 of A7

2. Photographs of Radiated Emissions Test Configuration

Test Configuration: 30MHz~1GHz

FRONT VIEW

REAR VIEW

FCC ID: RYU-W224Z0 Page No. : A4 of A7

CLOSE-UP VIEW

FCC ID: RYU-W224Z0 Page No. : A5 of A7

Test Configuration: Above 1GHz

FRONT VIEW

REAR VIEW

FCC ID: RYU-W224Z0 Page No. : A6 of A7

CLOSE-UP VIEW

FCC ID: RYU-W224Z0 Page No. : A7 of A7