For all BJTs, assume: $\left|V_{BE,on}\right|=0.7V, \beta=100, \text{ and } \left|V_{CE,sat}\right|=0.1V \text{ (use } V_T=25mV).$

For all MOSFETs, assume: $|V_{TH}| = 1V$ and $\mu C_{ox} \frac{W}{L} = 1000 \frac{\mu A}{V^2}$.

Q1: Consider the circuit shown to the right. Assume $\frac{W}{L} = 100$, $R_{G1} = 82k\Omega$, $R_{G2} = 18k\Omega$, $R_{S1} = 200\Omega$, $R_D = 15k\Omega$, and $V_{DD} = 10V$.

- a) What is the DC drain current, I_D , for the transistor?
- b) What are the minimum and maximum voltages (i.e., voltage swing) at the drain terminal of the transistor?
- c) Draw the small signal equivalent circuit and calculate g_m .
- d) What is the voltage gain, $A_v = \frac{v_{out}}{v_{in}}$, for the circuit?
- e) What are the input and output resistances of the circuit as indicated on the schematic.

Resistor values are: $R_{B1}=R_{BB}=100k\Omega$, $R_{B2}=50k\Omega$, $R_{S}=10k\Omega$, $R_{E1}=R_{E2}=1k\Omega$, $R_{C}=5k\Omega$, and $R_{L}=10k\Omega$.

Q3: For the circuits shown below, assume the transistors are biased with $I_D = 1mA$ in the active region. Draw the AC (not small-signal) circuit for each case and identify each stage. Calculate the overall voltage gain, $A_v = \frac{v_{out}}{v_s}$, input resistance R_{in} , and output resistance R_{out} for each circuit using formulas provided inside the cover of the textbook. Write down the full expressions before inserting component values.

Resistor values are:

$$R_{G1}=R_{G2}=500k\Omega,$$
 $R_{D1}=R_{D2}=10k\Omega,$ $R_{S1}=5k\Omega,$ $R_{L}=2k\Omega,$ and $R_{S}=100k\Omega.$

Note: The current source for circuit *a* is a DC current source.

