SISTEMAS DIGITALES UNIDAD 2- ÁLGEBRA BOOLFANA

Departamento de Ingeniería Informática y Ciencias de la Computación

UNIVERSIDAD DE ATACAMA

Tabla de Contenidos

Operaciones y expressions booleanas

El álgebra de Boole son las matemáticas de los sistemas digitales. Es indispensable tener unos conocimientos básicos del álgebra booleana para estudiar y analizar los circuitos lógicos

Definición:

- Variable: es un símbolo (normalmente una letra mayúscula en cursiva) que se utiliza para representar magnitudes lógicas.
 Cualquier variable puede tener un valor de 0 o de 1.
- **El complemento:** es el inverso de la variable y se indica mediante una barra encima de la misma. Por ejemplo, el complement de la variable A es \bar{A} . Si A=1, su complemento es 1.

Suma Y Multiplicación booleana (A + B, AB)

Determinar los valores de A, B, C, y D

- que hacen que el término suma $A + \bar{B} + C + \bar{D}$ sea igual a cero.
- que hacen que el término producto $A\bar{B}C\bar{D}$ sea igual a uno.

Tabla de Contenidos

 Operaciones y expressions booleanas Leyes y reglas del álgebra de boole Teorema DeMorgan

Leyes

Las leyes básicas del álgebra de Boole (las leyes conmutativas de la suma y la multiplicación, y las leyes asociativas de la suma y la multiplicación y la ley distributiva) son las mismas que las del álgebra ordinaria. Cada una de las leyes se ilustra con dos o tres variables, pero el número de variables no está limitado a esta cantidad.

La ley conmutativa de la suma y multiplicación para dos variables se escribe como sigue:

- $\blacksquare A+B=B+A$
- \blacksquare AB = BA

La ley asociativa de la suma y multiplicación para tres variables se escribe como sigue:

- A + (B + C) = (A + B) + C
- A(BC) = (AB)C

La ley distribución para tres variables se escribe como sigue:

- A(B+C) = AB + AC
- Esta ley establece que aplicar la operación OR a dos o más variables y luego aplicar la operación AND al resultado de esa operación y a otra variable aislada, es equivalente a aplicar la operación AND a la variable aislada con cada uno de los sumandos y luego realizar la operación OR con los productos resultantes.

Reglas del álgebra booleana

A, B o C pueden representar una sola variable o una combinación de variables.

- **Regla 1:** A + 0 = A Si aplicamos la operación OR a una variable cualquiera y a 0, el resultado es siempre igual a la variable. Si A es 1, la salida es igual a 1 y, por tanto, igual a A. Si A es 0, la salida es 0 e igualmente idéntica a A.
- **Regla 2:** A + 1 = 1 Si se aplica la operación OR a una variable y a 1, el resultado es siempre igual a 1. Un 1 en una entrada de una puerta OR produce siempre un 1 en la salida, independientemente del valor de la otra entrada.

- **Regla 3:** A * 0 = 0 Si se aplica la operación AND a una variable y a 0, el resultado es siempre igual a 0. Siempre que una de las entradas de una puerta AND sea 0, la salida siempre es 0, independientemente del valor de la otra entrada.
- **Regla 4:** A * 1 = A Si se aplica la operación AND a una variable y a 1, el resultado es siempre igual a la variable. Si la variable A es 0, la salida de la puerta AND será siempre 0, mientras que si A es 1, la salida será 1, dado que las dos entradas son 1

- **Regla 5:** A + A = A Si se aplica la operación OR a una variable consigo misma, el resultado es siempre igual a la variable. Si A es 0, entonces 0 + 0 = 0, mientras que si A es 1, 1 + 1 = 1.
- **Regla 6:** $A + \bar{A} = 1$ Si se aplica la operación OR a una variable y a su complemento, el resultado es siempre igual a 1. Si A es 0, entonces $0 + \bar{0} = 0 + 1 = 1$. Si A es 1, entonces $1 + \bar{1} = 1 + 0 = 1$.

- **Regla 7:** A * A = A Si se aplica la operación AND a una variable consigo misma, el resultado siempre es igual a la variable. Si A = 0, entonces 0 * 0 = 0, y si A = 1, entonces 1 * 1 = 1.
- **Regla 8:** $A * \bar{A} = 0$ Si se aplica la operación AND a una variable y a su complemento, el resultado es siempre igual a 0. Esta regla se basa en que siempre A o \bar{A} será 0, y además en que cuando se aplica un 0 a una de las entradas de una puerta AND, la salida siempre es 0.

■ **Regla 9:** $\bar{A} = A$ El complemento del complemento de una variable es siempre la propia variable. El complemento de la variable A es \bar{A} y el complemento de \bar{A} será de nuevo A, que es la variable original

$$A = 0 \qquad \qquad \overline{\overline{A}} = 1 \qquad \qquad \overline{\overline{A}} = 0 \qquad \qquad A = 1 \qquad \overline{\overline{A}} = 0$$

$$\overline{\overline{A}} = A$$

Comprobar la regla 10

$$A + AB = A$$

Α	В	AB	A + AB
0	0	0	0
0	1	0	0
1	0	0	1
1	0	0	1

Solución

$$A + AB = A(1 + B)$$
(Ley distribución)
= $A * 1$ (Regla 2) (1)
= A (Regla 4)

Α	В	AB	A + AB
0	0	0	0
0	1	0	0
1	0	0	1
1	0	0	1

Tabla de Contenidos

 Operaciones y expressions booleanas Leyes y reglas del álgebra de boole Teorema DeMorgan

Teorema DeMorgan:

1. El complemento de un producto de variables es igual a la suma de los complementos de las variables.

$$\overline{XY} = \bar{X} + \bar{Y} \tag{2}$$

2. El complemento de una suma de variables es igual al producto de los complementos de las variables.

$$\overline{X+Y} = \bar{X}\bar{Y} \tag{3}$$

$$X$$
 Y
 \overline{XY}
 $\overline{XY$

Entradas		Salida	
X	Y	\overline{XY}	$\overline{X} + \overline{Y}$
0	0	1	1
0	1	1	1
1	0	1	1
1	1	0	0

$X \longrightarrow X \longrightarrow X + Y$	$\equiv \begin{array}{c} X - \circ \\ Y - \circ \end{array} - \overline{X}\overline{Y}$
NOR	Negativa-AND

Entradas		Salida	
X	Y	$\overline{X+Y}$	\overline{XY}
0	0	1	1
0	1	0	0
1	0	0	0
1	1	0	0

Aplicar el teorema DeMorgan a:

$$\overline{\overline{A+B\overline{C}}+D\overline{(E+\overline{F})}}$$

Aplicar el teorema DeMorgan a:

$$\overline{A+B\overline{C}}+D\overline{(E+\overline{F})}$$

- **Paso 1:** Identificamos los términos a los que se pueden aplicar los teorema de DeMorgan y consideramos cada término como una única variable, por lo que establecemos $\overline{A + B\overline{C}} = X$ y $D(\overline{E + \overline{F}}) = Y$
- **Paso 2:** Siguiendo el orden propuesto por el teorema $\overline{X+Y} = \overline{X}\overline{Y}$ nos quedaría:

$$\overline{\overline{A+B\overline{C}}+D(\overline{E+\overline{F})}}=\overline{\overline{A+B\overline{C}}}+\overline{D(\overline{E+\overline{F})}}$$

■ **Paso 3:** Utilizamos la regla 9 ($\bar{A} = A$) para eliminar la bara doble sobre el término de la izquierda (esto no es parte del teorema de DeMorgan):

$$\overline{\overline{A+BC}} + \overline{D(E+\overline{F})} = (A+B\overline{C})(\overline{D(E+\overline{F})})$$

■ **Paso 4:** Aplicando el teorema de DeMorgan al segundo término:

$$(A+B\overline{C})\overline{(D(E+\overline{F}))} = (A+B\overline{C})(\overline{D}+(\overline{E+\overline{F}}))$$

■ **Paso 5:** Aplicando la regla 9 al último término para borrar la doble ba<u>rra:</u>

$$(A+B\overline{C})(D\overline{(E+\overline{F})})=(A+B\overline{C})(\overline{D}+E+\overline{F})$$

Resultado

$$\overline{\overline{A+B\overline{C}}} + D\overline{(E+\overline{F})} = (A+B\overline{C})(\overline{D}+E+\overline{F})$$

TALLER

Envie la expresión matemática, tabla de verdad, y diseño compuertas lógicas para los siguientes casos.

Comprobar las reglas 11 y 12

- (A + B)(A + C) = A + BC
- $A + \bar{A}B = A + B$

Aplicar teorema de DeMorgan a:

- $\blacksquare \overline{\overline{A+B}} + \overline{\overline{C}}$
- $\blacksquare \overline{(A+B)\overline{CD}+E+\overline{F}}$