МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Лабораторная работа 2.4.1

Определение теплоты испарения жидкости

Выполнил:

Гисич Арсений

Б03-109

1 Аннотация

Цель работы: 1) измерение давления насыщенного пара жидкости при разной температуре; 2) вычисление по полученным данным теплоты испарения с помощью уравнения Клапейрона-Клаузиуса.

2 Теоретические сведения

Теплоту парообразования жидкостей можно измерить непосредственно при помощи калориметра. Такой метод, однако, не позволяет получить точных результатов из-за неконтролируемых потерь тепла, которые трудно сделать малыми. В настоящей работе для определения теплоты испарения применен косвенный метод, основанный на формуле Клапейрона–Клаузиуса:

$$\frac{dP}{dT} = \frac{L}{T(V_2 - V_1)}. (1)$$

Здесь P — давление насыщенного пара жидкости при температуре T, T — абсолютная температура жидкости и пара, L — теплота испарения жидкости, V_2 — объем пара, V_1 — объем жидкости. Найдя из опыта $\frac{dP}{dT}$, T, V_2 и V_1 , можно определить L путем расчета. Величины L, V_2 и V_1 в формуле (1) должны относиться к одному и тому же количеству вещества; мы будем относить их к одному молю.

В нашем приборе измерения производятся при давлениях ниже атмосферного. В этом случае задача существенно упрощается.

Обратимся теперь к V_2 , котрое в дальнейшем будем обозначать просто V. Объём V связан давлением и температурой уравнением Ван-дер-Ваальса:

$$\left(P + \frac{a}{V^2}\right)(V - b) = RT.$$

В уравнении Ван-дер-Ваальса величиной b следует пренебречь. Пренебрежение членом $\frac{a}{V^2}$ по сравнению с P вносит ошибку менее 3%. При давлении ниже атмосферного ошибки становятся ещё меньше. Таким образом, при давлениях ниже атмосферного уравнение Ван-дер-Ваальса для насыщенного пара мало отличается от уравнения Клапейрона. Положим поэтому

$$V = \frac{RT}{P}. (2)$$

Подставляя (2) в (1), пренебрегая V_1 и разрешая уравнение относительно L, найдём

$$L = \frac{RT^2}{P} \frac{dP}{dT} = -R \frac{d(\ln P)}{d(1/T)}.$$
 (3)

3 Методика измерений

Схема установки изображена на рисунке 1. Наполненный водой резервуар 1 играет роль термостата. Нагревание термостата производится спиралью 2, подогреваемой электрическим током. Для охлаждения воды в термостате через змеевик 3 пропускается водопроводная вода. Вода в термостате перемешивается воздухом, поступающим через трубку 4. Температура воды измеряетс я термометром 5. В термостат погружен запаянный прибор 6 с исследуемой жидкостью. Над ней находится насыщенный пар (перед заполнением прибора воздух из него был откачан). Давление насыщенного пара определяется по ртутному манометру, соединенному с исследуемым объемом. Отсчет показаний манометра производится при помощи микроскопа.

Рис. 1: Схема установки для определения теплоты испарения

4 Используемое оборудование

- 1. Термостат; $\delta_{\mathrm{T}} = 0, 1$ °C
- 2. Герметичный сосуд, заполненый исследуемой жидкостью (водой); $\delta_{\rm m\kappa} = 0,02~{\rm mm}$
- 3. Отсчётный микроскоп; $\delta_{\text{mt}} = 0,05$ мм

5 Результаты измерений и обработка данных

Начальные условия:

$$h_1 = 6,8 \text{ cm}$$

$$h_2 = 4,98$$
 см

$$\Delta h = 1,82 \; \mathrm{cm}$$

$$T_0 = 21$$
 °C

Результаты измерения давления при нагревании:

T,° C	22	23	24	25	26	27	28	29	30
h_2, c_{M}	4,90	4,86	4,77	4,70	4,64	4,56	4,52	4,46	4,34
$\Delta h, \text{cm}$	1,98	2,06	2,24	2,38	2,50	2,66	2,74	2,86	3,10
$P, \Pi a$	2639,34	2745,98	2985,92	3172,54	3332,5	3545,78	3652,42	3812,38	4132,3

31	32	33	34	35	36	37	38	39	40
4,24	4,17	4,10	4,00	3,84	3,78	3,61	$3,\!50$	3,39	3,30
3,30	3,44	3,58	3,78	4,10	4,22	4,56	4,78	5,00	5,18
4398,9	4585,52	4772,14	5038,74	5465,3	5625,26	6078,48	6371,74	6665	6904,94

Результаты измерения давления при охлаждении:

T,° C	22	23	24	25	26	27	28	29	30
h_2, c_M	4,91	4,84	4,80	4,70	4,63	4,52	4,44	4,36	4,30
$\Delta h, \text{cm}$	1,96	2,10	2,18	2,38	2,52	2,74	2,90	3,06	3,18
$P, \Pi a$	2612,68	2799,3	2905,94	3172,54	3359,16	3652,42	3865,7	4078,98	4238,94

31	32	33	34	35	36	37	38	39	40
4,24	4,14	4,06	3,92	3,83	3,74	3,62	3,53	3,36	3,30
3,30	3,50	3,66	3,94	4,12	4,30	4,54	4,72	5,06	5,18
4398,9	4665,5	4878,78	5252,02	5491,96	5731,9	6051,82	6291,76	6744,98	6904,94

Полученные графики зависимости:

Рис. 2:

Полученные значения:

	Нагрев	Охлаждение
$\frac{dP}{dT}$	$239,56 \pm 3,55$	$239,61 \pm 3,50$
$\frac{d(\ln P)}{d(1/T)}$	$-4994, 15 \pm 584, 51$	$-4984, 49 \pm 585, 49$

Рис. 3:

По формуле (3) находим L. Погрещность для первого способа определяется по формуле:

$$\delta_L = \sqrt{\left(\frac{\delta_P}{P}\right)^2 + 4\left(\frac{\delta_T}{T}\right)^2 + \left(\frac{\delta_{\frac{dP}{dT}}}{\frac{dP}{dT}}\right)^2} \cdot L$$

Полученные значения L:

	Нагрев	Охлаждение		
$L, rac{\mathrm{M}\mathrm{Д}\mathrm{ж}}{\mathrm{\kappa}\mathrm{r}}$	$2,79 \pm 0,06$	$2,75 \pm 0,06$		
$L, \frac{\text{МДж}}{\kappa \Gamma}$	$2,31 \pm 0,27$	$2,30 \pm 0,27$		

6 Обсуждение результатов и выводы

В работе изучалась зависимость давления насыщенного пара воды от температуры. По полученным данным искалась разными способами удельная теплота парообразования воды. Результаты, полученные при нагревании и охлаждении совпадают. Использованный в работе метод измерения теплоты испарения с помощью зависимости P-T позволяет достичь точности измерений в 2% против 12% при испорьзовании $\ln P-1/T$ координат. Основной вклад в погрешность вносят инструментальные погрешности и погрешность опре-

деления коэффициэнтов методом наименьштх квадратов. Но в сравнении с табличным значением теплоты испарения воды $(2,26\ \frac{\text{МДж}}{\text{кr}})$ первый способ имеет более существенные расхождения, которые обусловленны тем, что он учитывает зависимость теплоты испарения от температуры, а второй способ даёт значение сразу на всём интервале температур.