## Machine Learning

## Group Project

### Please Mind: Updated Schedule

| #       | Calendar Week | Date                  | Weekday | From     | То       |
|---------|---------------|-----------------------|---------|----------|----------|
| 1       | 40            | Oct. 6 <sup>th</sup>  | Friday  | 02:15 PM | 05:30 PM |
| 2       | 41            | Oct. 13 <sup>th</sup> | Friday  | 08:15 AM | 11:30 AM |
| 3       | 43            | Oct. 27 <sup>th</sup> | Friday  | 08:15 AM | 11:30 AM |
| 4       | 44            | Nov. 3 <sup>rd</sup>  | Friday  | 08:15 AM | 15:45 PM |
| PROJECT | 50            | Dec. 15 <sup>th</sup> | Friday  | 08:15 AM | 11:30 AM |
| EXAM    | 51            | Dec. 22 <sup>nd</sup> | Friday  | 08:30 AM | 09:30 AM |

Dr. Jan P. Portisch

Machine Learning

### Grading

- Written Exam (70%)
  - individual assignment
  - closed-book
  - tests your concept understanding
- Group Project (30%)
  - assigned groups
  - open-book
  - tests your ability to apply learned contents





### **Group Project**

- Teams of four students
  - realize a data mining project
  - present the project result to other students
     10 minutes presentation + 5 minutes Q&A
  - hand in the presentation slides and notebook upfront
- Goals
  - gain practical experience with the complete data mining process
  - apply and learn about preprocessing and data mining methods

### **Group Project Timeline**

### There are two deliverables to be provided by December 10<sup>th</sup>.

- One notebook together with your data (zipped) that can be run easily on any PC.
- One presentation slide deck (PDF or PPTX) that is used for the presentation. You are allowed to create "backup slides" taht are not submitted.

### You present on December 15th.

- Everybody must present; everybody must understand the full project.
- You may be asked to show and run (parts of) your submitted notebook.
- Everybody must be able to explain the notebook.

# The Data Mining Process Knowledge Discovery in Databases



## CRISP-DM Process Model Cross Industry Standard Process for Data Mining



- Use model in business context
- keep iterating in order to maintain an improve model

### **About Your Presentation**

- Your colleagues are your audience choose an appropriate level of complexity and language.
- Your colleagues do neither know your data nor its context. Introduce your tasks and decisions accordingly.
- Don't overwhelm your audience with complexity.
- Present your task in an appealing manner, and use suitable visualizations.
- Your slides and notebooks must be in English but you can present in German or English language.
- All group members must present.
- There may be questions targeted to specific group members.
- All group members must understand their code and be able to provide a "walk-through".

#### **Use/Business Case**

- What is the context?
- What is to be predicted?
- How can such an ML algorithm be helpful

#### **Use/Business Case**

- What is the context?
- What is to be predicted?
- How can such an ML algorithm be helpful

#### Nature of the Data

- What attributes are available and what do they mean?
- What is the Data Type of the attributes?
- What are the dataset statistics?
- What are (interesting) statistical patterns in the data?
  - Unbalanced data
  - Missing values
  - Outliers
  - etc.
- Are the class labels equally distributed?

### **Preprocessing and Transformation**

- What transformations did you apply?
  - e.g., binning, normalization
- Why did you settle for this kind of transformation?

### **Data Mining**

- How did you model the problem?
- What algorithms did you try out?
- Why?

#### **Parameter Tuning**

- What was your setup to determine optimal parameters?
- What were the optimal parameters for the algorithms you chose?

#### **Evaluation**

- What was your evaluation setup?
- What is a baseline solution?
- How did your algorithms perform?
- Which algorithm performed best (and why)?
- Did others also work on the data? How was their performance?

#### Discussion of the Results

- How do you judge the results?
- How hard was the task?
- Are there any recommendations to improve the data?
- What could be done to improve the results?

### **Group Project**

#### **Group 1**

Béla Gallin

Joscha Stähle

Samira Kuklinski

Maximilian Knapczyk

#### **Group 3**

Paul Linus Klarer

**Yonis Teubner** 

Lucas Guttensohn

Daria Ermantraut

#### **Group 5**

Ana Margaride dos Santos Teixeira

Jeremias Matthies

Lukas Strickler

Adrian von Auenmüller

#### **Group 2**

Louis Hefter

Philipp Strauss

Samuel Sonnenwald

Lucette Kohl

#### **Group 4**

Lean Henriques Fürst

**Tobias Tronicek** 

Naja Pia Lehmann

Lars Christian Gauch

#### **Group 6**

Hakon Rosenberger

Lisa Sterner

Tim Strohmenger

17

Leo Waigel

### Group 1: Bank Marketing

#### **Dataset**

https://archive.ics.uci.edu/dataset/222/bank+marketing

### Group 2: Finding Rich Americans

#### **Dataset**

http://archive.ics.uci.edu/dataset/2/adult

### Group 3: Determining the Quality of Wine

#### **Dataset**

http://archive.ics.uci.edu/dataset/186/wine+quality

## Group 4: Predicting the Chance of a Heart Attack

#### **Dataset**

https://www.kaggle.com/datasets/rashikrahmanpritom/heart-attack-analysis-prediction-dataset

# Group 5: Predicting the Salaries of Data Scientists

#### **Dataset**

https://www.kaggle.com/datasets/arnabchaki/data-science-salaries-2023/data

### Group 6: Predicting Airline Delays

#### **Dataset**

https://www.kaggle.com/datasets/jimschacko/airlines-dataset-to-predict-a-delay/discussion