Groupes

QCOP GRP. 1

Soient $(G_1, *_1), (G_2, *2)$ deux groupes.

Soit $f: G_1 \longrightarrow G_2$ un morphisme entre ces deux groupes.

- **1.** Définir « f est un morphisme de $(G_1, *_1)$ dans $(G_2, *_2)$ ».
- 2. Introduire les notations nécessaires et fournir des démonstrations pour déterminer :
 - a) l'image par f de l'élément neutre de G_1 ;
 - **b)** l'image par f du symétrique d'un élément de G_1 ;
 - c) l'image par f de x^n pour $x \in G_1$ et $n \in \mathbb{Z}$.
- 3. a) Définir le noyau de f et donner la caractérisation de l'injectivité de f par son noyau.
 - **b)** Écrire la définition et la propriété précédentes dans le cas des groupes $(\mathbb{R}, +)$ et (\mathbb{R}^*, \times) .

QCOP GRP.2

QCOP GRP.3

Soient $(G_1, *_1)$, $(G_2, *_2)$ deux groupes. Soit fun morphisme de $(G_1, *_1)$ dans $(G_2, *_2)$.

- **1.** Soit $H_1 \subset G_1$. Définir « H_1 est un sousgroupe de G_1 ».
- **2.** Soit H_2 un sous-groupe de G_2 . Montrer que $f^{\langle -1 \rangle}[H_2]$ est un sous-groupe de G_1 .
- **3.** Soit B un sous-groupe de \mathbb{Z}^2 . Montrer, à l'aide du résultat précédemment établi, que $H := \left\{ x \in \mathbb{Z} \mid (x,0) \in B \right\}$ est un sous-groupe de \mathbb{Z} .

Soient $(G_1, *_1)$, $(G_2, *_2)$ deux groupes. Soit fun morphisme de $(G_1, *_1)$ dans $(G_2, *_2)$.

- **1.** Soit $H_2 \subset G_2$. Définir « H_2 est un sousgroupe de G_2 ».
- **2.** Soit H_1 un sous-groupe de G_1 . Montrer que $f[H_1]$ est un sous-groupe de G_2 .
- **3.** Montrer que $\left(\left\{-1,1\right\},\times\right)$ est un sousgroupe de \mathbb{R}^* à l'aide de la question précédente.

QCOP GRP.4

Soient $(G_1, *_1)$, $(G_2, *_2)$ deux groupes. Soit f un morphisme de $(G_1, *_1)$ dans $(G_2, *_2)$.

- 1. Énoncer et démontrer une condition nécessaire et suffisante d'injectivité de f.
- 2. a) Montrer que

f est un morphisme de $(\mathbb{Z},+)$ dans $(\mathbb{Z},+)$ \iff $\Big[orall n \in \mathbb{Z}, \ f(n) = n \, f(1) \Big].$

b) Quels sont les morphismes de $(\mathbb{Z}, +)$ dans $(\mathbb{Z}, +)$ injectifs?