LATEX で作る三角関数表

椎木

2022年6月21日

1 レギュレーション

 0° から 5° , 25° から 30° , 355° から 360° を縦に点が 3 つ並ぶ記号 $(\dot{:})$ で繋ぐ表を作成する. また、計算の為に角度の単位を変換した場合は変換後の単位も表に記す.

2 手法の紹介

2.1 Excel を用いる

Excel で計算した結果を csv2tabular 等を用いて表にする.

		OIN/CO	-0303)				
D2 ▼	× ✓ fx	=SIN(C2	:C362)			_	<u> </u>
A	В	С	D	Е	F	G	Н
1							
2	0	0	0	1	0		
3	1	0.01745	0.01745	0.99985	0.01746		
4	2	0.03491	0.0349	0.99939	0.03492		
5	3	0.05236	0.05234	0.99863	0.05241		
6	4	0.06981	0.06976	0.99756	0.06993		
7	5	0.08727	0.08716	0.99619	0.08749		
8	6	0.10472	0.10453	0.99452	0.1051		
9	7	0.12217	0.12187	0.99255	0.12278		
10	8	0.13963	0.13917	0.99027	0.14054		
11	9	0.15708	0.15643	0.98769	0.15838		
12	10	0.17453	0.17365	0.98481	0.17633		
13	11	0.19199	0.19081	0.98163	0.19438		
14	12	0.20944	0.20791	0.97815	0.21256		
15	13	0.22689	0.22495	0.97437	0.23087		
16	14	0.24435	0.24192	0.9703	0.24933		
17	15	0.2618	0.25882	0.96593	0.26795		
18	16	0.27925	0.27564	0.96126	0.28675		
19	17	0.29671	0.29237	0.9563	0.30573		
20	18	0.31416	0.30902	0.95106	0.32492		
21	19	0.33161	0.32557	0.94552	0.34433		
22	20	0.34907	0.34202	0.93969	0.36397		
23	21	0.36652	0.35837	0.93358	0.38386		
24	22	0.38397	0.37461	0.92718	0.40403		
∢ → Sh	neet1 🕀						

図1 Excel の画面

表1 Excel を用いた三角関数表

$\mathrm{angle} [^{\circ}]$	${\rm angle}[{\rm rad}]$	\sin	cos	tan
0	0	0	1	0
1	0.017453293	0.017452406	0.999847695	0.017455065
2	0.034906585	0.034899497	0.999390827	0.034920769
3	0.052359878	0.052335956	0.998629535	0.052407779
4	0.06981317	0.069756474	0.99756405	0.069926812
5	0.087266463	0.087155743	0.996194698	0.087488664
:	•	•	:	•
25	0.436332313	0.422618262	0.906307787	0.466307658
26	0.453785606	0.438371147	0.898794046	0.487732589
27	0.471238898	0.4539905	0.891006524	0.509525449
28	0.488692191	0.469471563	0.882947593	0.531709432
29	0.506145483	0.48480962	0.874619707	0.554309051
30	0.523598776	0.5	0.866025404	0.577350269
:	•	•	:	:
355	6.195918845	-0.087155743	0.996194698	-0.087488664
356	6.213372137	-0.069756474	0.99756405	-0.069926812
357	6.23082543	-0.052335956	0.998629535	-0.052407779
358	6.248278722	-0.034899497	0.999390827	-0.034920769
359	6.265732015	-0.017452406	0.999847695	-0.017455065
360	6.283185307	-2.4503E-16	1	-2.4503E-16

2.2 trig を用いる

 ${
m trig}$ を用いて三角関数を計算する.角度が 1° 以上の時のコードを省略した為短く見えるが実際は 27 行程ある.

ソースコード 1 trig を用いた表のコード

\usepackage{trig} 1 5 \begin{document} 6 $\left\{ \operatorname{table} \right\}[H]$ 7 \centering $\begin{tabular}{c|ccc}$ 8 9 0 & \DegSin{0} & \DegCos{0} & \DegTan{0} \\ 10 11 $\ensuremath{\mbox{end}\{\ensuremath{\mbox{tabular}}\}}$ \end{table} 12

表 2 trig を用いた三角関数表

$\mathrm{angle} [^{\circ}]$	sin	\cos	tan	
0	0	1	0.0	
1	0.01743	0.99985	0.01743	
2	0.03488	0.99939	0.0349	
3	0.05232	0.99863	0.05238	
4	0.06975	0.99756	0.06992	
5	0.08714	0.99619	0.08748	
÷	:	:	:	
25	0.4226	0.9063	0.46632	
26	0.43835	0.89879	0.48773	
27	0.45398	0.89099	0.50952	
28	0.46945	0.88293	0.5317	
29	0.48479	0.8746	0.5543	
30	0.49998	0.86601	0.57736	
:	:	:	:	
355	-0.08714	0.99619	-0.08748	
356	-0.06975	0.99756	-0.06992	
357	-0.05232	0.99863	-0.05238	
358	-0.03488	0.99939	-0.0349	
359	-0.01743	0.99985	-0.01743	
360	0	1	0.0	

2.3 Lua 言語を用いる

Lua 言語を用いて計算を行う. 純粋な 0° から 360° の表なら for 文が一回で済むため短くなる.

ソースコード 2 Lua 言語を用いた表のコード

```
\usepackage{luacode}
 1
 2
     \left\{ \operatorname{luacode} \right\}
 3
        function to(i)
 4
          j=i*math.pi/180
          return tostring(i).." & "..tostring(j).." & "..tostring(math.sin(j)).." & "..tostring(math.cos(j)).." & "..tostring(math.cos(j))..."
 5
               .tan(j)).." \setminus \setminus \setminus"
 6
        end
 7
 8
        function fg()
          v=""
 9
10
          11
          for i=0,5,1 do
12
            v = v..to(i)
13
          end
14
          v=v..m
          for i=25,30,1 do
15
16
            v = v..to(i)
17
          end
18
          v=v..m
19
          for i=355,360,1 do
20
             v = v..to(i)
21
          \quad \text{end} \quad
22
          tex.sprint("\\ \\ newcommand {\\\ \ \ } {"..v.."}")
23
        end
     \end{luacode*}
24
     \directlua{ fg() }
25
     \begin{document}
26
     \begin{table}[H]
27
28
        \centering
29
        \caption{Lua言語を用いた三角関数表}
       \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array}
30
          angle [\$^\circ ] \& angle [rad] \& sin \& cos \& tan \setminus \land hline
31
32
          \backslash sd
33
          //
34
        \ensuremath{\mbox{end}\{\ensuremath{\mbox{tabular}}\}}
     \ensuremath{\mbox{end}\{\ensuremath{\mbox{table}}\}}
35
     \end{document}
```

表3 Lua 言語を用いた三角関数表

$\mathrm{angle} [^{\circ}]$	angle[rad]	sin	cos	tan
0	0.0	0.0	1.0	0.0
1	0.017453292519943	0.017452406437284	0.99984769515639	0.017455064928218
2	0.034906585039887	0.034899496702501	0.9993908270191	0.034920769491748
3	0.05235987755983	0.052335956242944	0.99862953475457	0.052407779283041
4	0.069813170079773	0.069756473744125	0.99756405025982	0.06992681194351
5	0.087266462599716	0.087155742747658	0.99619469809175	0.087488663525924
:	÷	:	:	:
25	0.43633231299858	0.4226182617407	0.90630778703665	0.466307658155
26	0.45378560551853	0.43837114678908	0.89879404629917	0.48773258856586
27	0.47123889803847	0.45399049973955	0.89100652418837	0.50952544949443
28	0.48869219055841	0.46947156278589	0.88294759285893	0.53170943166148
29	0.50614548307836	0.48480962024634	0.8746197071394	0.55430905145277
30	0.5235987755983	0.5	0.86602540378444	0.57735026918963
:	÷ :	<u>:</u>	i:	:
355	6.1959188445799	-0.087155742747658	0.99619469809175	-0.087488663525924
356	6.2133721370998	-0.069756473744125	0.99756405025982	-0.06992681194351
357	6.2308254296198	-0.052335956242944	0.99862953475457	-0.052407779283042
358	6.2482787221397	-0.034899496702501	0.9993908270191	-0.034920769491748
359	6.2657320146596	-0.017452406437284	0.99984769515639	-0.017455064928219
360	6.2831853071796	-2.4492935982947e-16	1.0	$-2.4492935982947\mathrm{e}\text{-}16$

3 各手法の評価

各手法の長所及び短所を表 4 にまとめた.

Excel を用いた時の長所はなによりも簡単であるところだろう. 誰にでも作れるし、時間もそれほどかからない. Excel 自体は有料ツールだが、OpenOffice や Python で csv ファイルを書き出すなど無料で出来る方法もあり、間違いのない方法である. ただし、私のように Excel が苦手だと有効数字の設定方法がよくわからず、-2.4503E-16 みたいな値が出てきてしまう。

trig の長所として IATeX で完結するとあるが、あんなのを何回も書いているのはしんどいので、ソースコード3のようなプログラムを利用した。IATeX で完結はしていないが計算自体は IATeX でできているし、頑張ってタイピングするのも良いと思う。ただ、普通に有効数字が小さいと思う。

Lua の長所はきれいに書ける点が大きいかと思う。また、精度も良く、Lua でプログラムしているため拡張性も高い。文量に関しても多くの場合で最も短くできる。短所は難しい上に Lual $\Delta T_{\rm EX}$ でしか使えないところだろう。 ${\rm pLaTeX}$ が本格的にやばいかもという話という記事がちょっとバズるなどして、 ${\rm Lual}\Delta T_{\rm EX}$ に注目されつつあるが、学会のテンプレート等は未だに ${\rm pLaTeX}$ が多く、乗り換えるのも容易ではない。こうした普及率の面からも簡単に勧められる手法とは言いにくい。

表 4 各手法の長所と短所

	手法	長所	短所
2.1	Excel	簡単	IATEX で完結しない,Excel に詳しい必要がある
2.2	trig	I₄T _E X で完結する	文量が多い、精度が良くない
2.3	Lua	LuaIATEX で完結する,きれいに書ける	難しい

ソースコード 3 trig 用の.cpp ファイル

```
#define REP(i,m,n) for(ll i=(ll)(m);i<(ll)(n);i++)
    #define rep(i,n) REP(i,0,n)
 3
    void ptrig(int n){
 5
      cout << n << " \& \DegSin{" << n << " } \& \DegTan{" << n << " } \\\" << ndl;
 6
    }
 7
    int main() {
8
      rep(i,6){
9
10
        ptrig(i);
11
12
      REP(i,25,31){
13
        ptrig(i);
14
      }
15
      REP(i,355,361){
16
        ptrig(i);
17
      }
18
```

4 結論

Excel を用いる手法がおすすめである.