Review for the Final Exam

Final Exam

- Final exam is on Feb, 3rd at 13:30
- Cumulative, but will emphasize more on the second half of the semester
- Same format as before: short answer, true/false + Programming sections.

Summary of what we have learned

Fundamental Storage Data Structures

- Arrays
- Linked Lists
- Trees

High-Level, Abstract Data Types

- List (sorted, unsorted), Stack, Queue
- BST (Binary Search Tree), AVL
- Priority Queue, Heap
- Hash Table
- Graph

Comparison

Data structure	Add	Search	remove
Unsorted array	O(1)	O(N)	O(N)
Sorted array	O(N)	O(log N)	O(N)
BST (balanced/worst)	O(log N)/O(N)	O(log N)/O(N)	O(log N)/O(N)
Heap	O(log N)	-	O(log N)
Hash table	O(1)	O(1)	O(1)

Summary of what we have learned

Fundamental Algorithms

- Recursion
- Sorting (simple sorting, merge sort, quick sort, heap sort)
- Tree traversal
- Graph Search (DFS, BFS), shortest path

C++ specific knowledge

- Classes, Templates, Exceptions, Overloading
- Constructors, destructors
- C++ std provides implementations of many data structutes we've learned

How to Prepare

- Study lecture slides and text book
 - Study lecture slides first. If anything is unclear, refer to the textbook
 - Make sure you understand all the questions in the slides
- Study the practice Final Exam
- Study online exercise questions
- Study lab materials
- Study programming projects

Heap and Priority queue

- What is priority queue? How is it different from a standard queue?
- What is a heap? What are its properties? How is it different from a BST? How is a heap stored?
- How to perform add and remove in a heap?
- Understand bubbleUp and bubbleDown, and be able to write down code for them.
- What are the costs of add and remove with a heap? How does this compare to using sorted array?

Hash Table

- What is a hash function? What is a hash table?
- What are the advantages / disadvantages of hash table compared to other data structures?
- How to compute the hash function?
- What is collision? How to handle collision?
- Open addressing: linear probing, quadratic probing, double hashing
- Separate chaining
- What is load factor? Why is it important?
- Understand the analysis of successful and unsuccessful search in hash tables.

Graphs

- Graph terminologies
- Directed / Undirected, Connected / Unconnected,
- Weighted / Unweighted
- How is a graph typically stored?
- Graph traversal
 - Depth-First Search (DFS): implementation
 - Breadth-First Search (BFS): implementation
 - Shortest-distance in a weighted graph (Dijkstra's algorithm)

- Simple sorting algorithms: O(N²)
 - Selection sort
 - Insertion sort
 - Bubble sort
- Advanced sorting algorithms: O(N log N)
 - Merge sort and merge() operation
 - Quick sort and partition() operation
 - Heap sort and heapify() operation
- Their best, worst and average case running times

Comparison

Sort	Best case	Average case	Worst case
Selection sort	$O(N^2)$	$O(N^2)$	$O(N^2)$
Insertion sort	O(N)	$O(N^2)$	$O(N^2)$
Bubble sort	O(N)	$O(N^2)$	$O(N^2)$
Merge sort	O(N log N)	O(N log N)	O(N log N)
Quick sort	O(N log N)	O(N log N)	$O(N^2)$
Heap sort	O(N log N)	O(N log N)	O(N log N)

Sample Questions

- Find the <u>second</u> largest element in an unsorted array.
- Implement binary search in a sorted array.
- Search / Insertion in a BST
- Find the predecessor / successor of any node in a BST
- Implement bubbleUp / bubbleDown
- Check if a binary tree is a heap or not; is a BST or not.
- Print out vertices in a graph in DFS and BFS order
- Implement Bubble / Selection / Insertion sort
- Implement merge(), partition(), heapify() methods
- Find the shortest path from s to t in a graph
- Find a cycle in a graph
- Find all connected components in a graph