Wprowadzenie

Cel

Celem jest analiza najpopularniejszych utworów muzycznych w ujeciu czasowym oraz znalezienie potencjlanych wpływów na zmiany. Istotny wpływ na branże muzyczną ma medium które dominuje w danych latach, poddamy analizie również czy ma to wpływ na muzykę. W tym celu zostaną przeanalizowane dane dotyczące notowań listy Hot 100 Billboard od 1958 roku do 2021 roku. Hot 100 Billboard to lista najpopularniejszych utworów (wyliczany na podstawie radia, streamingów oraz sprzedanych płyt)w US

Sposoby słuchania muzyki w przeciągu lat

- 1958 1963 radio, płyty winylowe
- 1964 1979 radio, płyty winylowe, kasety
- 1980 1999 radio, płyty winylowe, kasety, CD
- 2000 2010 radio, płyty winylowe, kasety, CD, MP3
- 2011 2021 radio, płyty winylowe, kasety, CD, MP3, streaming

Dostępność mediów dla ludzi

streaming > mp3 > radio > cd > kasety > płyty winylowe

Charakterystyki niektórych mediów

- streaming artysta ma płacone za każdą odsłuchaną piosenkę tylko wtedy gdy użytkownik przesłucha powyżej 30 sekund
- radio średnio puszczanę są krótsze piosenki oraz bardziej energiczne aby przyciągnąć słuchaczy
- płyty winylowe długość piosenek jest ograniczona do 20 minut
- mp3 era mp3 to era nielegalnego pobierania muzyki z internetu i kopiowania
- · kasety kopiowanie muzyki na kasety było bardzo proste i powszechne

Dane

Został on podzielony na cztery zestawy:

- charts.csv zawiera dane dotyczące notowań wszystkich piosenek, które znalazły się na liście Hot 100 Billboard. Pochodzą
 one z Kaggle zebrane przez Dhruvil Dave
- charts_top_10.csv jest bardziej szczegółowym zestawieniem gdzie zostały uwzględnione tylko 10 pierwszych pozycji z ich cechami o samym utworze. Dane zostały pobrane z Spotify API za pomocą skryptów dostępnych w folderze data_extenders.
- songs.csv zawiera wszystkie piosenki z notowań z najlepszym rankingiem oraz liczbą tygodni na liście. Co ważne piosenki są unikalne, tzn. jeśli piosenka była na liście kilka razy to jest tylko jeden wpis z najwyższym rankingiem, największą liczbą tygodni na liście oraz ostatnim wystąpieniem na liście.
- songs_top_10.csv analogiczny plik do songs.csv tylko z uwzględnieniem tylko 10 pierwszych pozycji z ich cechami o samym utworze.

Opis poszczególnych cech

- date data notowania
- rank pozycja na liście
- title tytuł piosenki
- artist -wykonawca
- last_week pozycja na liście w poprzednim tygodniu
- peak_rank najwyższa pozycja na liście
- weeks_on_chart liczba tygodni na liście
- danceability określa jak łatwo jest tańczyć do utworu (wartosć od 0 do 1)
- energy określa poziom energii w utworze (wartosć od 0 do 1)
- acousticness pewność czy utwór jest akustyczny (wartosć od 0 do 1)
- instrumentalness przewiduje czy utwór nie zawiera wokalu (wartosć od 0 do 1). Wartości powyżej 0.5 są uznawane za instrumentalne, ale wartości powyżej 0.9 wskazują na bardzo wysoki poziom pewności.
- speechiness wykrywa obecność słów mówionych w utworze (wartosć od 0 do 1). Wartosc powyżej 0,66 opisuje ścieżki
 wyłacznie z mówionymi słowami. Wartości między 0,33 a 0,66 opisują utwory zawierające zarówno muzykę, jak i mowę.
- duraton_ms długość utworu w milisekundach

Wczytywanie danych

```
In [ ]: import pandas as pd
import matplotlib.pyplot as plt

base = pd.read_csv('data_sets/charts.csv')
    extended = pd.read_csv('data_sets/charts_top_10.csv')
    songs = pd.read_csv('data_sets/songs.csv')
    extended_songs = pd.read_csv('data_sets/songs_top_10.csv')
```

Analiza eksploracyjna songs.csv

Wcztanie danych

```
In [ ]: songs = pd.read_csv('data_sets/songs.csv')
    songs.columns = ['artysci', 'tytuly', 'data', 'najwyzsza-pozycja', 'liczba-tygodni-w-notowaniu']
    songs.head()
```

Out[]:		artysci	tytuly	data	najwyzsza-pozycja	liczba-tygodni-w-notowaniu
	0	"Groove" Holmes	Misty	1966-09-03	44	11
	1	"Groove" Holmes	What Now My Love	1966-10-15	96	3
	2	"Little" Jimmy Dickens	May The Bird Of Paradise Fly Up Your Nose	1965-12-18	15	10
	3	"Pookie" Hudson	I Know I Know	1963-05-25	96	1
	4	"Weird Al" Yankovic	Amish Paradise	1996-07-13	53	16

Statystyki Opisowe

W całym zestawieniu znajduje się 29 681 utworów unikalnych.

Najwyższa pozycja w rankingu

Średnia wartosć dla najwyższej pozycji to 46 czyli mniej więcej w połowie rankingu. Tak samo sytacja ma się z medianą która jest zbliżona do średniej co potwierdza symetrycznośc danych.

Liczba tygodni w notowaniu

Średnia liczba tygodni w notowaniu to 11. Tak samo sytacja ma się z medianą która jest zbliżona do średniej co potwierdza symetrycznośc danych. Maksymalna liczba tygodni w rankingu to 90.

```
In []: songs.describe().drop(['min'])

Out[]: najwyzsza-pozycja liczba-tygodni-w-notowaniu

count 29681.00000 29681.00000

mean 46.70594 11.124928

std 30.54190 8.309679

25% 18.00000 5.000000
```

Najczęściej występujący utwór w rankingu

10 000000

16.000000

90.000000

```
In [ ]: songs[songs['liczba-tygodni-w-notowaniu'] == songs['liczba-tygodni-w-notowaniu'].max()]
Out[ ]: artysci tytuly data najwyzsza-pozycja liczba-tygodni-w-notowaniu
```

1

46.00000

73.00000

100.00000

50% 75%

max

Szeregi rozdzielcze

Analizy pozycji na liście

Z szeregu rozdzielczego wynika że najczęściej utwory znajdują się 1-5 bo aż 10% utworów. Pozostałe miejsca są tak samo często prawdopodbne około 5%.

Analiza liczby tygodni w notowaniu

Czym więcej tygodni tym mniej utworów utrzymuje się w rankingu. Najczęściej utwory utrzymują się 1-5 tygodni bo aż 8621 czyli prawie 30% utworów. Następnie kolejne 20% utworów zostaje na liście przez 10 tygodni. Wraz z wzrostem tygodni prawdopodobieństwo maleje. Jest to logiczne dla tego typu cechy.

liczba-utworow prawdopodobienstwo

najwyzsza-pozycja		
(0.9, 5.95]	3030	0.102086
(5.95, 10.9]	1980	0.066709
(10.9, 15.85]	1606	0.054109
(15.85, 20.8]	1401	0.047202
(20.8, 25.75]	1348	0.045416
(25.75, 30.7]	1349	0.045450
(30.7, 35.65]	1289	0.043428
(35.65, 40.6]	1313	0.044237
(40.6, 45.55]	1327	0.044709
(45.55, 50.5]	1293	0.043563
(50.5, 55.45]	1411	0.047539
(55.45, 60.4]	1352	0.045551
(60.4, 65.35]	1409	0.047471
(65.35, 70.3]	1349	0.045450
(70.3, 75.25]	1370	0.046157
(75.25, 80.2]	1301	0.043833
(80.2, 85.15]	1340	0.045147
(85.15, 90.1]	1381	0.046528
(90.1, 95.05]	1609	0.054210
(95.05, 100.0]	1223	0.041205

liczba-utworow prawdopodobienstwo

(0.91, 5.45]	8621	0.290455
(5.45, 9.9]	6179	0.208180
(9.9, 14.35]	5798	0.195344
(14.35, 18.8]	3209	0.108116
(18.8, 23.25]	4092	0.137866
(23.25, 27.7]	784	0.026414
(27.7, 32.15]	451	0.015195
(32.15, 36.6]	179	0.006031
(36.6, 41.05]	149	0.005020
(41.05, 45.5]	78	0.002628
(45.5, 49.95]	45	0.001516
(49.95, 54.4]	59	0.001988
(54.4, 58.85]	17	0.000573
(58.85, 63.3]	10	0.000337
(63.3, 67.75]	3	0.000101
(67.75, 72.2]	3	0.000101
(72.2, 76.65]	1	0.000034
(76.65, 81.1]	1	0.000034
(81.1, 85.55]	0	0.000000
(85.55, 90.0]	2	0.000067

Histogramy

```
In []: for i in header_names:
    frequency = songs[i].value_counts(bins=20).sort_index().to_frame()
    frequency.columns = ['liczba-utworow']
    plt.figure(figsize=(20, 10))
    plt.bar(frequency.index.astype(str), frequency['liczba-utworow'], width=0.9, align='center')
    plt.xticks([])
    plt.title(i)
    plt.show()
```


Zmiany w czasie

Pozycja na liście

Na początku rankingu utwory średnio notowane były w połowie, na przełomie lat 70 te wartości spadły do około 40 procent jednak wraz z upływem czasu wartości te znowu wzrosły do około 50 procent.

Liczba tygodni w notowaniu

Liczba tygodni w notowaniu wraz z czasem rośnie. Aż do lat 2000 gdzie następuje spadek. Może to być spowodowane tym że wraz z upływem czasu powstaje coraz więcej utworów i jest coraz więcej konkurencji.

```
In [ ]: for i in header_names:
    songs['year'] = songs['data'].str[:4]
    year_means = songs.groupby('year').mean(i).drop(header_names.drop([i]), axis=1)
    year_means
    year_means.plot.line(figsize=(20, 10))
```


Korelacja między zmiennymi

Można zaobserwować logiczną korelacje czym utwór wyżej w notowaniu tym więcej tygodni w notowaniu. Korelacja jest wysoka i wynosi -0.76 w korelacji spermana.

```
In [ ]: songs['data'] = pd.to_datetime(songs['data'])
    print("Korelacja Pearsona")
    display(songs.corr(method="pearson", numeric_only=True))
    print("Korelacja Spermana")
    display(songs.corr(method="spearman", numeric_only=True))
    plt.figure(figsize=(20, 10))
    tmp = songs.groupby('liczba-tygodni-w-notowaniu').mean('najwyzsza-pozycja')
    plt.scatter(tmp.index, tmp['najwyzsza-pozycja'])
    plt.xlabel('najwyzsza-pozycja')
    plt.ylabel('liczba-tygodni-w-notowaniu')
    plt.show()
```

Korelacja Pearsona

	najwyzsza-pozycja	liczba-tygodni-w-notowaniu
najwyzsza-pozycja	1.000000	-0.709731
liczba-tygodni-w-notowaniu	-0.709731	1.000000
Korelacja Spermana		
	najwyzsza-pozycja	liczba-tygodni-w-notowaniu
najwyzsza-pozycja	1.000000	-0.769456
liczba-tygodni-w-notowaniu	-0.769456	1.000000

Zmiany w zależności od pojawienia się nowego medium

Pozycja na liście

Pozycja na liście w zależności od pojawienia się nowego medium nie zmienia się.

Liczba tygodni w notowaniu

Liczba tygodni w notowaniu w zależności od pojawienia się nowego medium zaczyna rosnąć gdy pojawia się cd. Jednak po pojawieniu się serwisów streamingowych maleje.

```
In []: media = ['0-radio-winyl', '1-kaseta', '2-cd', '3-mp3', '4-streaming']
    media_years = [1958, 1964, 1980, 2000, 2011]
    def get_media_type(year):
        if range(len(media_years)):
            if year < media_years[i]:
                return media[i-1]
        return media[-1]
    songs['typ-medium'] = songs['year'].apply(int).apply(get_media_type)
    for i in header_names:
        media_means = songs.groupby('typ-medium').mean(i).drop(header_names.drop([i]), axis=1)
        media_means.plot.bar(figsize=(20, 10))
        plt.title(i)
        plt.show()</pre>
```


Analiza eksploracyjna songs_top_10.csv

Wczytanie danych

```
In []: songs = pd.read_csv('data_sets/songs_top_10.csv')
    songs['duration_ms'] = songs['duration_ms'].apply(lambda x: x / 1000 / 60)
    songs.rename(columns={'duration_ms': 'duration'}, inplace=True)
    songs.columns = ['artysci','tytul','data', 'akustycznosc', 'tanecznosc', 'czas-trwania-m', 'energia', 'instrume songs.head()
```

Out[]:		artysci	tytul	data	akustycznosc	tanecznosc	czas- trwania-m	energia	instrumentalnosc	wykonanie- na-zywo	slownosc
	0	"Weird Al" Yankovic	White & Nerdy (Parody of "Ridin'" by Chamillio	2006-10-21	0.0986	0.791	2.844000	0.613	0.000000	0.0765	0.0763
	1	uicide boy	And to Those I Love, Thanks for Sticking Ar	2019-03-09	0.1240	0.792	2.808167	0.511	0.000090	0.1400	0.0409
	2	'68 Comeback	Peepin' & Hidin' / Baby What You Want Me to Do	1983-03-12	0.0247	0.373	3.904883	0.691	0.024800	0.2120	0.0316
	3	'Til Tuesday	Voices Carry	1985-07-13	0.0282	0.583	4.392883	0.574	0.000002	0.1140	0.0239
	4	*NSYNC	(God Must Have Spent) A Little	1999-03-06	0.4490	0.375	4.024883	0.527	0.000000	0.3050	0.0507

Statystyki opisowe

Z średnich wynika że:

- najpopularniejsze utwory przeważnie nie są akustyczne
- najpopularniejsze utwory przeważnie nie są tylko instrumentalne
- najpopularniejsze utwory przeważnie są taneczne

More Time On Yo...

- najpopularniejsze utwory przeważnie są energiczne
- najpopularniejsze utwory przeważnie nie są wykonaniem na żywo
- średnia długość najpopularniejszych utworów to 3 minuty i 45 sekund

```
In [ ]: songs.describe()
```

Out[]:

	akustycznosc	tanecznosc	czas-trwania-m	energia	instrumentalnosc	wykonanie-na-zywo	slownosc
count	4919.000000	4919.000000	4919.000000	4919.000000	4919.000000	4919.000000	4919.000000
mean	0.297914	0.616230	3.763728	0.607293	0.035143	0.180851	0.069266
std	0.277637	0.154301	1.237129	0.199012	0.145608	0.152402	0.076969
min	0.000008	0.000000	0.655033	0.003420	0.000000	0.012400	0.000000
25%	0.052750	0.518000	2.991225	0.463000	0.000000	0.085950	0.032000
50%	0.206000	0.630000	3.695550	0.623000	0.000006	0.124000	0.040700
75%	0.506500	0.727000	4.306983	0.765000	0.000523	0.233000	0.065100
max	0.994000	0.988000	39.984283	0.994000	1.000000	0.996000	0.929000

Utwory z maksimum i minimum wartości

```
In []: header_names = songs.columns[3:]
    for i in header_names:
        max = songs[songs[i].max() == songs[i]]
        if(len(max) == 1):
            print(f"Maximum wartości {i}")
            display(max)
        min = songs[songs[i].min() == songs[i]]
        if(len(min) == 1):
            print(f"Minimum wartości {i}")
            display(min)
```

Minimum wartości akustycznosc

	artysci	tytul	data	akustycznosc	tanecznosc	czas- trwania-m	energia	instrumentalnosc	wykonanie-na- zywo	slownosc
3926	TV Girl	Lovers Rock	1985-04-13	0.000008	0.559	3.565333	0.871	0.00545	0.096	0.0397
		, , ,								

Maximum wartości tanecznosc

	artysci	tytul	data	akustycznosc	tanecznosc	czas- trwania-m	energia	instrumentalnosc	wykonanie-na- zywo	slownosc
4664	Tone- Loc	Funky Cold Medina	1989-05-06	0.0755	0.988	4.136	0.633	0.000002	0.0668	0.0888

Minim	um wartości	tanecznosc								
	artysci	tytul	data	akustycznosc	tanecznosc	czas- trwania-m	energia	instrumentalnosc	wykonanie- na-zywo	slownosc
4812	White Noise Baby Sleep, White Noise for Babies	Clean White Noise - Loopable with no fade	1998-04-04	0.791	0.0	1.5038	0.00342	1.0	0.111	0.0
Maxim	um wartości	czas-trwan	nia-m							
	artysci	tytul	data	akustycznosc	tanecznosc	czas- trwania-m	energia	instrumentalnosc	wykonanie- na-zywo	slownosc
1006	DJ Kay Slay, Sheek Louch, Styles P, Dave East,	Rolling 110 Deep (feat. Sheek Louch, Styles P,	2019-11-02	0.268	0.576	39.984283	0.978	0.0	0.688	0.356
Minim	um wartości	czas-trwan	nia-m							
	artysci	tytul	data	akustycznosc	tanecznosc	czas- trwania-m	energia	instrumentalnosc	wykonanie- na-zywo	slownosc
3154	Like It's 2	Preludes, Op. 8: Prelude No. 0 in C# Mino	1961-08-28	0.985	0.381	0.655033	0.151	0.923	0.0848	0.0542
Minim	um wartości artysci	energia tytul	data	akustycznosc	tanecznosc	czas-	energia	instrumentalnosc	wykonanie-	slownosc
						trwania-m			na-zywo	
4812	White Noise Baby Sleep, White Noise for Babies	Clean White Noise - Loopable with no fade	1998-04-04	0.791	0.0	1.5038	0.00342	1.0	0.111	0.0
Maxim	um wartości	instrument	alnosc							
	artysci	tytul	data	akustycznosc	tanecznosc	czas- trwania-m	energia	instrumentalnosc	wykonanie- na-zywo	slownosc
4812	White Noise Baby Sleep, White Noise for Babies	Clean White Noise - Loopable with no fade	1998-04-04	0.791	0.0	1.5038	0.00342	1.0	0.111	0.0
Maxim	um wartości	wykonanie-	na-zywo							
i	artysci	tytul	data	akustycznosc	tanecznosc	czas- trwania-m	energia	instrumentalnosc	wykonanie- na-zywo	slownosc
355	Bee Gees Stream	slands In The I - Live At The IGM Grand/	1989-09-30	0.0965	0.751	3.77445	0.746	0.000003	0.996	0.029
Minim	um wartości	wykonanie-	na-zywo							
	artysci	tytul	data	akustycznosc	tanecznosc	czas- trwania-m	energia	instrumentalnosc	wykonanie- na-zywo	slownosc
4128		Charlie Brown - 2007 Remaster Stereo Single Ve	1959-04-13	0.604	0.485	2.355117	0.751	0.000001	0.0124	0.15
Maxim	um wartości	slownosc								
	artysci	tytul	data al	kustycznosc ta	anecznosc	czas- trwania-m	energia	instrumentalnosc	wykonanie-na- zywo	slownosc
1170	Dickie Goodman	Convention 19	972-11-18	0.795	0.533	5.159333	0.63	0.0	0.188	0.929
Minim	um wartości	slownosc								
	artysci	tytul	data	akustycznosc	tanecznosc	czas- trwania-m	energia	instrumentalnosc	wykonanie- na-zywo	slownosc
4812	White Noise Baby Sleep, White Noise for Babies	Clean White Noise - Loopable with no fade	1998-04-04	0.791	0.0	1.5038	0.00342	1.0	0.111	0.0

Histogramy i szeregi rozdzielcze

```
In [ ]: for i in header_names:
             frequency = songs[i].value_counts(bins=10).sort_index().to_frame()
             frequency.columns = ['liczba utworów']
             frequency['prawdopodobienstwo'] = frequency / frequency.sum()
             print(frequency)
             songs[i].hist(bins=10)
             plt.show()
                               liczba utworów prawdopodobienstwo
        akustycznosc
        (-0.001986, 0.0994]
                                         1723
                                                          0.350274
         (0.0994, 0.199]
                                          685
                                                          0.139256
         (0.199, 0.298]
                                           529
                                                          0.107542
         (0.298, 0.398]
                                           387
                                                          0.078675
         (0.398, 0.497]
(0.497, 0.596]
                                           343
                                                          0.069730
                                           292
                                                          0.059362
         (0.596, 0.696]
                                           306
                                                          0.062208
         (0.696, 0.795]
                                           310
                                                          0.063021
         (0.795, 0.895]
                                           243
                                                          0.049400
         (0.895, 0.994]
                                           101
                                                          0.020533
         1750 -
         1500
         1250
         1000
          750
          500
          250
             0
                             0.2
                                          0.4
                                                      0.6
                                                                               1.0
                 0.0
                                                                  0.8
                               liczba utworów prawdopodobienstwo
        tanecznosc
         (-0.001988, 0.0988]
                                                          0.000203
                                            1
         (0.0988, 0.198]
                                           16
                                                          0.003253
         (0.198, 0.296]
                                                          0.027038
                                          133
        (0.296, 0.395]
                                                          0.065054
                                          320
         (0.395, 0.494]
                                          559
                                                          0.113641
         (0.494, 0.593]
                                          979
                                                          0.199024
```

1219

1089

492

111

0.247815

0.221386

0.100020

0.022566

(0.593, 0.692]

(0.692, 0.79]

(0.79, 0.889]

(0.889, 0.988]

liczba utworów prawdopodobienstwo

czas-trwania-m		
(0.615, 4.588]	4047	0.822728
(4.588, 8.521]	855	0.173816
(8.521, 12.454]	11	0.002236
(12.454, 16.387]	3	0.000610
(16.387, 20.32]	1	0.000203
(20.32, 24.253]	0	0.000000
(24.253, 28.186]	1	0.000203
(28.186, 32.118]	0	0.000000
(32.118, 36.051]	0	0.000000
(36.051, 39.984]	1	0.000203

liczba utworów prawdopodobienstwo

energia		
(0.001429999999999998, 0.102]	32	0.006505
(0.102, 0.202]	97	0.019719
(0.202, 0.301]	232	0.047164
(0.301, 0.4]	443	0.090059
(0.4, 0.499]	673	0.136816
(0.499, 0.598]	771	0.156739
(0.598, 0.697]	864	0.175645
(0.697, 0.796]	806	0.163854
(0.796, 0.895]	711	0.144542
(0.895, 0.994]	290	0.058955

liczba utworów prawdopodobienstwo

instrumentalnosc		
(-0.002, 0.1]	4610	0.937182
(0.1, 0.2]	78	0.015857
(0.2, 0.3]	28	0.005692
(0.3, 0.4]	23	0.004676
(0.4, 0.5]	26	0.005286
(0.5, 0.6]	19	0.003863
(0.6, 0.7]	23	0.004676
(0.7, 0.8]	28	0.005692
(0.8, 0.9]	50	0.010165
(0.9, 1.0]	34	0.006912

liczba utworów prawdopodobienstwo

wykonan:	ie-na-zywo		
(0.0104	, 0.111]	2093	0.425493
(0.111,	0.209]	1448	0.294369
(0.209,	0.307]	601	0.122179
(0.307,	0.406]	427	0.086806
(0.406,	0.504]	116	0.023582
(0.504,	0.603]	77	0.015654
(0.603,	0.701]	79	0.016060
(0.701,	0.799]	29	0.005896
(0.799,	0.898]	20	0.004066
(0.898,	0.996]	29	0.005896

slownosc		
(-0.0019290000000000002, 0.0929]	4124	0.838382
(0.0929, 0.186]	431	0.087619
(0.186, 0.279]	176	0.035780
(0.279, 0.372]	124	0.025208
(0.372, 0.464]	46	0.009351
(0.464, 0.557]	11	0.002236
(0.557, 0.65]	4	0.000813
(0.65, 0.743]	0	0.000000
(0.743, 0.836]	1	0.000203
(0.836, 0.929]	2	0.000407

Liczba utworów instrumentalnych

97% utworów jest bez wokalu

```
In [ ]: frequency = songs['instrumentalnosc'].value_counts(bins=[0, 0.5, 1]).to_frame()
    frequency.columns = ['liczba']
    frequency['prawdopodobienstwo'] = frequency / frequency.sum()
    display(frequency)
    songs['instrumentalnosc'].hist(bins=[0, 0.5, 1])
    plt.show()
```

liczba prawdopodobienstwo

instrumentalnosc

(-0.001, 0.5]	4765	0.968693
(0.5, 1.0]	154	0.031307

Liczba utworów na żywo

Według Spotify wartości powyżej 0.8 oznaczają że utwór jest wykonaniem na żywo. 99% utworów nie jest wykonaniem na żywo

```
In []: frequency = songs['wykonanie-na-zywo'].value_counts(bins=[0, 0.8, 1]).to_frame()
    frequency.columns = ['liczba']
    frequency['prawdopodobienstwo'] = frequency / frequency.sum()
    display(frequency)
    songs['wykonanie-na-zywo'].hist(bins=[0, 0.5, 1])
    plt.show()
```

liczba prawdopodobienstwo

wykonanie-na-zywo

(-0.001, 0.8]	4870	0.990039
(0.8. 1.01	49	0.009961

Liczba utworów wokalnych

Spotify wyznacza 3 przedziały slownosc:

- 0.33 0.66 utwór zawiera zarówno muzykę jak i mowę
- 0.66 1 w utworze dominuje mowa (na przykład rap)
- 0 0.33 utwory w których nie dominuje mowa

Z naszych danych wynika że:

- 97% utworów jest muzyką bez dominującego mowy
- 2% utworów jest muzyką z dominującym mową
- 0.06% utworów jest nagraniem mowy

```
In []: frequency = songs['slownosc'].value_counts(bins=[0, 0.33, 0.66, 1]).to_frame()
    frequency.columns = ['liczba']
    frequency['prawdopodobienstwo'] = frequency / frequency.sum()
    display(frequency)
    songs['slownosc'].hist(bins=[0, 0.33, 0.66, 1])
    plt.show()
```

liczba prawdopodobienstwo

slownosc		
(-0.001, 0.33]	4806	0.977028
(0.33, 0.66]	110	0.022362
(0.66, 1.0]	3	0.000610

Zmiany w czasie

```
In []: for i in header_names:
    songs['year'] = songs['data'].str[:4]
    header_names.drop([i])
    year_means = songs.groupby('year').mean(i).drop(header_names.drop([i]), axis=1)
    year_means.plot.line(figsize=(20, 10))
    plt.show()
```


Korelacje

Nie widać wiekszych zależności pomiedzy dannymi

```
In []: print("Korelacja Pearsona")
    display(songs.corr(method="pearson", numeric_only=True))
    print("Korelacja Spearmana")
    display(songs.corr(method="spearman", numeric_only=True))
```

Korelacja Pearsona

	akustycznosc	tanecznosc	czas-trwania-m	energia	instrumentalnosc	wykonanie-na-zywo	slownosc
akustycznosc	1.000000	-0.346747	-0.242227	-0.569202	0.041216	0.038596	-0.148198
tanecznosc	-0.346747	1.000000	0.053738	0.231485	-0.045281	-0.133997	0.201106
czas-trwania-m	-0.242227	0.053738	1.000000	0.085679	-0.020960	-0.030882	0.026001
energia	-0.569202	0.231485	0.085679	1.000000	-0.049198	0.113110	0.166033
instrumentalnosc	0.041216	-0.045281	-0.020960	-0.049198	1.000000	0.006724	-0.057682
wykonanie-na-zywo	0.038596	-0.133997	-0.030882	0.113110	0.006724	1.000000	0.093211
slownosc	-0.148198	0.201106	0.026001	0.166033	-0.057682	0.093211	1.000000

Korelacja Spearmana

	akustycznosc	tanecznosc	czas-trwania-m	energia	instrumentalnosc	wykonanie-na-zywo	slownosc
akustycznosc	1.000000	-0.293229	-0.311664	-0.524238	-0.056981	0.065993	-0.244956
tanecznosc	-0.293229	1.000000	0.113436	0.192513	0.040837	-0.172533	0.321378
czas-trwania-m	-0.311664	0.113436	1.000000	0.112899	0.110898	-0.105089	0.004163
energia	-0.524238	0.192513	0.112899	1.000000	0.020446	0.070204	0.339717
instrumentalnosc	-0.056981	0.040837	0.110898	0.020446	1.000000	-0.082153	-0.110165
wykonanie-na-zywo	0.065993	-0.172533	-0.105089	0.070204	-0.082153	1.000000	0.061345
slownosc	-0.244956	0.321378	0.004163	0.339717	-0.110165	0.061345	1.000000

Szeregi czasowe (zmiany w zależności od pojawienia się nowego medium)

- akustyczność z czasem spada
- tanecznosc z czasem delikatnie rośnie
- liczba utworow instrumentalnych bez wokalu po pojawieniu się kaset spada
- slownosc z pojawieniem się mp3 rośnie

```
In []: media = ['0-radio-winyl', '1-kaseta', '2-cd', '3-mp3', '4-streaming']
    media_years = [1958, 1964, 1980, 2000, 2011]
    def get_media_type(year):
        if r in range(len(media_years)):
            if year < media_years[i]:
                return media[i-1]
        return media[-1]
    songs['typ-medium'] = songs['year'].apply(int).apply(get_media_type)
    for i in header_names:
        media_means = songs.groupby('typ-medium').mean(i).drop(header_names.drop([i]), axis=1)
        media_means.plot.bar(figsize=(20, 10))
        plt.title(i)
        plt.show()</pre>
```


Testy Statysyczne

Wczytanie danych

```
In [ ]: import pandas as pd
from scipy import stats
import matplotlib.pyplot as plt
songs = pd.read_csv('data_sets/songs.csv')
songs.columns = ['artysci', 'tytuly', 'data', 'najwyzsza-pozycja', 'liczba-tygodni-w-notowaniu']
display(songs.head())

songs_top_10 = pd.read_csv('data_sets/songs_top_10.csv')
songs_top_10['duration_ms'] = songs_top_10['duration_ms'].apply(lambda x: x / 1000 / 60)
songs_top_10.rename(columns={'duration_ms': 'duration'}, inplace=True)
songs_top_10.columns = ['artysci','tytul','data', 'akustycznosc', 'tanecznosc', 'czas-trwania-m', 'energia', 'i
display(songs_top_10.head())
```

	artysci	tytuly	data	najwyzsza-pozycja	liczba-tygodni-w-notowaniu
0	"Groove" Holmes	Misty	1966-09-03	44	11
1	"Groove" Holmes	What Now My Love	1966-10-15	96	3
2	"Little" Jimmy Dickens	May The Bird Of Paradise Fly Up Your Nose	1965-12-18	15	10
3	"Pookie" Hudson	I Know I Know	1963-05-25	96	1
4	"Weird Al" Yankovic	Amish Paradise	1996-07-13	53	16

	artysci	tytul	data	akustycznosc	tanecznosc	czas- trwania-m	energia	instrumentalnosc	wykonanie- na-zywo	slownosc
0	"Weird Al" Yankovic	White & Nerdy (Parody of "Ridin'" by Chamillio	2006-10-21	0.0986	0.791	2.844000	0.613	0.000000	0.0765	0.0763
1	uicide boy	And to Those I Love, Thanks for Sticking Ar	2019-03-09	0.1240	0.792	2.808167	0.511	0.000090	0.1400	0.0409
2	'68 Comeback	Peepin' & Hidin' / Baby What You Want Me to Do	1983-03-12	0.0247	0.373	3.904883	0.691	0.024800	0.2120	0.0316
3	'Til Tuesday	Voices Carry	1985-07-13	0.0282	0.583	4.392883	0.574	0.000002	0.1140	0.0239
4	*NSYNC	(God Must Have Spent) A Little More Time On Yo	1999-03-06	0.4490	0.375	4.024883	0.527	0.000000	0.3050	0.0507

Wprowadzenie MP3 a liczba tygodni na liście

Na wykresach widać że średnia liczba tygodni notowaniu zwiększyła się wraz z wprowadzeniem MP3. Sprawdzimy czy jest to różnica statystycznie istotna.

Wybór testu

Mamy dwie próby niezależne, skale przedziałową, musimy sprawdzić czy dane są opisane rozkłądem normalnym. W tym celu użyjemy testu Shapiro-Wilka (populacja ma więcej niz 5000 więc do testu użyjemy próby test ten może być użyty). Jeśli dane nie są opisane rozkładem normalnym, użyjemy testu nieparametrycznego Mann-Whitneya. Jeśli dane są opisane rozkładem normalnym, użyjemy testu t-Studenta.

Test Shapiro-Wilka

```
H_0 - dane są opisane rozkładem normalnym H_1 - dane nie są opisane rozkładem normalnym lpha=0.5
```

```
In []: data = songs['liczba-tygodni-w-notowaniu']
    sample = data.sample(n=1000)
    stat, p_value = stats.shapiro(sample)
    print("Statystyka testowa:", stat)
    print("Wartość p-value:", p_value)
    alpha = 0.05
    if p_value > alpha:
        print("Dane wydają się pochodzić z rozkładu normalnego.")
    else:
        print("Dane nie wydają się pochodzić z rozkładu normalnego.")
```

```
Statystyka testowa: 0.9122944474220276
Wartość p-value: 1.4227778535152196e-23
Dane nie wydają się pochodzić z rozkładu normalnego.
```

Wybór testu c.d.

Z testu Shapiro-Wilka wynika, że dane nie są opisane rozkładem normalnym, więc użyjemy testu nieparametrycznego Mann-Whitneya.

Test Mann-Whitneya

```
H_0 - nie ma istotnej różnicy pomiedzy dwoma populacjiami H_1 - istnieje istotna różnica pomiedzy dwoma populacjami Grupa 1 - przed mp3(do 2000) Grupa 2 - po mp3(od 2000) \alpha=0.5
```

```
In []: songs['data'] = pd.to_datetime(songs['data'])
  data1 = songs[songs['data'] < '2000-01-01']
  data2 = songs[songs['data'] >= '2000-01-01']
  stat, p_value = stats.mannwhitneyu(data1['liczba-tygodni-w-notowaniu'], data2['liczba-tygodni-w-notowaniu'])
  print("Statystyka testowa U:", stat)
  print("Wartość p-value:", '%.10f' % p_value)
  alpha = 0.05
  if p_value > alpha:
       print("Brak istotnych różnic między grupami.")
  else:
       print("Obserwowane różnice między grupami są istotne.")
```

```
Statystyka testowa U: 91431488.0
Wartość p-value: 0.0000501768
Obserwowane różnice między grupami są istotne.
```

Wnioski

P-value jest mniejsze od α , więc odrzucamy H_0 na rzecz H_1 . Istnieje istotna różnica w liczbie tygodni na liście przed i po wprowadzeniu mp3. Po wprowadzeniu mp3 liczba tygodni na liście jest większa i może to być spowodowane nowym medium słuchania muzyki. Może to wynikać z zwiększenia dostępności do muzyki co za tym idzie większą liczbą słuchaczy.

Pojawienie się nowych instrumentów i technologi a muzyka akustycza

Wraz z pojawieniem się nowych instrumentów i technologi muzyka stała się bardziej elektroniczna, zaczeły pojawiać się nowe instrumenty. Według wykresów widać ustępstwo muzyki akustycznej. Sprawdzimy czy jest to różnica statystycznie istotna. Wprowadzenie nowych instrumetów szacuje się na rok 1960/1970.

Wybór testu

Tak jak poprzednio sprawdzimy czy dane są opisane rozkłądem normalnym (test Shapiro-Wilka). Jeśli dane nie są opisane rozkładem normalnym, użyjemy testu nieparametrycznego Mann-Whitneya. Jeśli dane są opisane rozkładem normalnym, użyjemy testu t-Studenta.

Test Shapiro-Wilka

```
H_0 - dane są opisane rozkładem normalnym H_1 - dane nie są opisane rozkładem normalnym lpha=0.5
```

```
In []: data = songs_top_10['akustycznosc']
    sample = data.sample(n=1000)
    stat, p_value = stats.shapiro(sample)
    print("Statystyka testowa:", stat)
    print("Wartość p-value:", p_value)
    alpha = 0.05
    if p_value > alpha:
        print("Dane wydają się pochodzić z rozkładu normalnego.")
    else:
        print("Dane nie wydają się pochodzić z rozkładu normalnego.")
```

```
Statystyka testowa: 0.8743888139724731
Wartość p-value: 1.2748580599969561e-27
Dane nie wydają się pochodzić z rozkładu normalnego.
```

Wybór testu c.d.

Ponownie dane nie są opisane rozkładem normalnym dlatego wybieramy test nieparametryczny Mann-Whitneya.

Test Mann-Whitneya

```
H_0 - nie ma istotnej różnicy pomiedzy dwoma populacjiami H_1 - istnieje istotna różnica pomiedzy dwoma populacjami Grupa 1 - przed 1965(przed instrumentami elektrycznymi) Grupa 2 - po 1965(po instrumentami elektrycznymi) lpha=0.5
```

```
In []: songs_top_10['data'] = pd.to_datetime(songs_top_10['data'])
    data1 = songs_top_10[songs_top_10['data'] < '1965-01-01']
    data2 = songs_top_10[songs_top_10['data'] >= '1965-01-01']
    stat, p_value = stats.mannwhitneyu(data1['akustycznosc'], data2['akustycznosc'])
    print("Statystyka testowa U:", stat)
    print("Wartość p-value:", '%.10f' % p_value)
    alpha = 0.05
    if p_value > alpha:
        print("Brak istotnych różnic między grupami.")
    else:
        print("Obserwowane różnice między grupami są istotne.")
```

```
Statystyka testowa U: 2252126.5
Wartość p-value: 0.0000000000
Obserwowane różnice między grupami są istotne.
```

Wnioski

P-value jest mniejsze niż alpha więc odrzucamy H_0 na rzecz H_1 . Istnieje istotna różnica w akustyczności utworów przed nowymi instrumentami oraz po. Po wprowadzeniu nowych instrumentów muzyka stała się bardziej elektroniczna.

Serwisy Streamingowe a muzyka

Od 2010 roku serwisy streamingowe zaczeły dominować na rynku muzyki. Zmienił sie sposób dystrybucji muzyki oraz zarobku dla artystów. Od tego czasu liczy się przyciągnięcie słuchacza przez conajmniej 30 sekund. Niektórzy twierdzą że spowodowało to coraz więcej muzyki z szybko wchodzącym wokalem oraz dominującym wokalem. Sprawdzmy czy jest to różnica statystycznie istotna na podstawie liryczność, instrumentalności oraz długości trwania utworu.

Słowność a serwisy streamingowe

Wybór testu

Powtarzamy krok pierwszy z poprzednich testów.

Test Shapiro-Wilka

```
H_0 - dane są opisane rozkładem normalnym H_1 - dane nie są opisane rozkładem normalnym lpha=0.5
```

```
In []: data = songs_top_10['slownosc']
    sample = data.sample(n=1000)
    stat, p_value = stats.shapiro(sample)
    print("Statystyka testowa:", stat)
    print("Wartość p-value:", p_value)
    alpha = 0.05
    if p_value > alpha:
        print("Dane wydają się pochodzić z rozkładu normalnego.")
    else:
        print("Dane nie wydają się pochodzić z rozkładu normalnego.")
```

```
Statystyka testowa: 0.6045840978622437
Wartość p-value: 7.959375277364961e-43
Dane nie wydają się pochodzić z rozkładu normalnego.
```

Wybór testu c.d.

Dane ponownie nie wydają się pochodzić z testu normalnego. Dlatego wybieramy test nieparametryczny Mann-Whitneya.

Test Mann-Whitneya

```
H_0 - nie ma istotnej różnicy pomiedzy dwoma populacjiami H_1 - istnieje istotna różnica pomiedzy dwoma populacjami Grupa 1 - przed 2010 (przed serwisami streamingowymi) Grupa 2 - po 2010 (po serwisami streamingowymi) \alpha=0.5
```

```
In [ ]: songs_top_10['data'] = pd.to_datetime(songs_top_10['data'])
    data1 = songs_top_10[songs_top_10['data'] < '2010-01-01']
    data2 = songs_top_10[songs_top_10['data'] >= '2010-01-01']
    stat, p_value = stats.mannwhitneyu(data1['slownosc'], data2['slownosc'])
    print("Statystyka testowa U:", stat)
    print("Wartość p-value:", '%.10f' % p_value)
    alpha = 0.05
    if p_value > alpha:
        print("Brak istotnych różnic między grupami.")
    else:
        print("Obserwowane różnice między grupami są istotne.")
```

```
Statystyka testowa U: 785510.5
Wartość p-value: 0.0000000000
Obserwowane różnice między grupami są istotne.
```

Wątpliwości

Według testu są różnice pomiedzy dwoma populacjiami, jednak według wykresów nie ma dużej różnicy w liryczności utworów pomiedzy wprowadzeniem mp3 a serwisami streamingowymi. Sprawdzmy to jeszcze raz ale tym razem w przypadku grupy 2 weźmiemy przedział 2000-2010. Być może popełniliśmy błąd I rodzaju.

Test Mann-Whitneya

```
H_0 - nie ma istotnej różnicy pomiedzy dwoma populacjiami H_1 - istnieje istotna różnica pomiedzy dwoma populacjami Grupa 1 - 2000-2010 (przed serwisami streamingowymi, po mp3) Grupa 2 - po 2010 (po serwisami streamingowymi)
```

 $\alpha = 0.5$

```
In [ ]: songs_top_10['data'] = pd.to_datetime(songs_top_10['data'])
    datal = songs_top_10[songs_top_10['data'] < '2010-01-01']
    datal = datal[datal['data'] >= '2000-01-01']
    data2 = songs_top_10[songs_top_10['data'] >= '2010-01-01']
    stat, p_value = stats.mannwhitneyu(datal['slownosc'], data2['slownosc'])
    print("Statystyka testowa U:", stat)
    print("Wartość p-value:", '%.10f' % p_value)
    alpha = 0.05
    if p_value > alpha:
        print("Brak istotnych różnic między grupami.")
    else:
        print("Obserwowane różnice między grupami są istotne.")
```

```
Statystyka testowa U: 184358.5
Wartość p-value: 0.2221349121
Brak istotnych różnic między grupami.
```

Wnioski z drugiego testu

P-value jest większe niż alpha więc nie odrzucamy H_0 . W takim razie nie ma zmiany pomiedzy wprowadzeniem mp3 a wprowadzeniem serwisów streamingowych. Sprawdzmy czy jest różnica statystyczna miedzy wprowadzeniem mp3 a lirycznością.

Test Mann-Whitneya

 H_0 - nie ma istotnej różnicy pomiedzy dwoma populacjiami

 ${\it H}_1$ - istnieje istotna różnica pomiedzy dwoma populacjami

```
Grupa 1 - przed 2000
```

Grupa 2 - po 2000

 $\alpha = 0.5$

```
In [ ]: songs_top_10['data'] = pd.to_datetime(songs_top_10['data'])
    data1 = songs_top_10[songs_top_10['data'] < '2000-01-01']
    data2 = songs_top_10[songs_top_10['data'] >= '2000-01-01']
    stat, p_value = stats.mannwhitneyu(data1['slownosc'], data2['slownosc'])
    print("Statystyka testowa U:", stat)
    print("Wartość p-value:", '%.10f' % p_value)
    alpha = 0.05
    if p_value > alpha:
        print("Brak istotnych różnic między grupami.")
    else:
        print("Obserwowane różnice między grupami są istotne.")
```

```
Statystyka testowa U: 1211966.0
Wartość p-value: 0.0000000000
Obserwowane różnice między grupami są istotne.
```

Wnioski po testach slownosci

Po wprowadzeniu serwisów streamingowych liryczność utworów się nie zmieniła, proces ten zaczął pojawiać się już po wprowadzeniu mp3. Czyli pierwszy test prawdopodobnie był błędny.

Instrumentalność a serwisy streamingowe

Ponownie porównamy dane z roku 2000-2010 z danymi po 2010. Jest to bardziej wiarygodne.

Wybór testu

Powtarzamy krok pierwszy z poprzednich testów.

Test Shapiro-Wilka

```
H_0 - dane są opisane rozkładem normalnym H_1 - dane nie są opisane rozkładem normalnym lpha=0.5
```

```
In []: data = songs_top_10['instrumentalnosc']
    sample = data.sample(n=1000)
    stat, p_value = stats.shapiro(sample)
    print("Statystyka testowa:", stat)
    print("Wartość p-value:", p_value)
    alpha = 0.05
    if p_value > alpha:
        print("Dane wydają się pochodzić z rozkładu normalnego.")
    else:
        print("Dane nie wydają się pochodzić z rozkładu normalnego.")
```

```
Statystyka testowa: 0.24663591384887695
Wartość p-value: 0.0
Dane nie wydają się pochodzić z rozkładu normalnego.
```

Wybór testu c.d.

Dane ponownie nie pochodzą z rozkłądu normalnego wybieramy zatem test nieparametryczny Mann-Whitneya.

Test Mann-Whitneya

```
H_0 - nie ma istotnej różnicy pomiedzy dwoma populacjiami H_1 - istnieje istotna różnica pomiedzy dwoma populacjami Grupa 1 - 2000 - 2010 (przed serwisami streamingowym, po mp3) Grupa 2 - po 2010 (po serwisami streamingowymi) lpha=0.5
```

```
In [ ]: songs_top_10['data'] = pd.to_datetime(songs_top_10['data'])
    data1 = songs_top_10[songs_top_10['data'] < '2010-01-01']
    data1 = data1[data1['data'] >= '2000-01-01']
    data2 = songs_top_10[songs_top_10['data'] >= '2010-01-01']
    stat, p_value = stats.mannwhitneyu(data1['instrumentalnosc'], data2['instrumentalnosc'])
    print("Statystyka testowa U:", stat)
    print("Wartość p-value:", '%.10f' % p_value)
    alpha = 0.05
    if p_value > alpha:
        print("Brak istotnych różnic między grupami.")
    else:
        print("Obserwowane różnice między grupami są istotne.")
```

```
Statystyka testowa U: 199417.5
Wartość p-value: 0.1822215346
Brak istotnych różnic między grupami.
```

Wnioski

Ponownie obserwujemy brak różnic miedzy erą mp3 a serwisami streamingowymi

Długość utworu a serwisy streamingowe

Wybór testu

Powtarzamy krok pierwszy z poprzednich testów.

Test Shapiro-Wilka

```
H_0 - dane są opisane rozkładem normalnym H_1 - dane nie są opisane rozkładem normalnym lpha=0.5
```

```
In []: data = songs_top_10['czas-trwania-m']
    sample = data.sample(n=1000)
    stat, p_value = stats.shapiro(sample)
    print("Statystyka testowa:", stat)
    print("Wartość p-value:", p_value)
    alpha = 0.05
    if p_value > alpha:
        print("Dane wydają się pochodzić z rozkładu normalnego.")
    else:
        print("Dane nie wydają się pochodzić z rozkładu normalnego.")
```

```
Statystyka testowa: 0.4842694401741028
Wartość p-value: 0.0
Dane nie wydają się pochodzić z rozkładu normalnego.
```

Wybór testu c.d.

Dane ponownie nie pochodzą z rozkłądu normalnego wybieramy zatem test nieparametryczny Mann-Whitneya.

Test Mann-Whitneya

```
H_0 - nie ma istotnej różnicy pomiedzy dwoma populacjiami H_1 - istnieje istotna różnica pomiedzy dwoma populacjami Grupa 1 - 2000 - 2010 (przed serwisami streamingowym, po mp3) Grupa 2 - po 2010 (po serwisami streamingowymi) \alpha=0.5
```

```
In []: songs_top_10['data'] = pd.to_datetime(songs_top_10['data'])
    data1 = songs_top_10[songs_top_10['data'] < '2010-01-01']
    data1 = data1[data1['data'] >= '2000-01-01']
    data2 = songs_top_10[songs_top_10['data'] >= '2010-01-01']
    stat, p_value = stats.mannwhitneyu(data1['czas-trwania-m'], data2['czas-trwania-m'])
    print("Statystyka testowa U:", stat)
    print("Wartość p-value:", '%.10f' % p_value)
    alpha = 0.05
    if p_value > alpha:
        print("Brak istotnych różnic między grupami.")
    else:
        print("Obserwowane różnice między grupami są istotne.")
```

```
Statystyka testowa U: 256234.5
Wartość p-value: 0.0000000000
Obserwowane różnice między grupami są istotne.
```

Wnioski

Tym razem po wprowadzeniu serwisów streamingowych zaszły różnice pomiedzy długością utworów. Po wprowadzeniu serwisów streamingowych utwory stały się krótsze.

Wnioski z wpływu serwisów streamingowych

Po wprowadzeniach serwisów streamingowych nie widać dużych zmian w utworach. Jedyną istotną zmiana jest długość utworu. Jednak może on być spowodowany innym czynnikiem.

Wnioski końcowe

- Wraz z pojawieniem się nowych instrumentów muzycznych muzyka stała się bardziej elektroniczna, może to być spowodowane właśnie tymi instrumentami.
- Wraz z wprowadzeniem mp3 muzyka stała się bardziej liryczna oraz dłużej gości na listach najpopularniejszych utworów. Może to być spowodowane większą dostępnością do muzyki.
- Wprowadzenie serwisów streamingowych nie miało dużego wpływu na muzykę pod kątem badanych cech. Jedyną zmianą jest długość utworów, które stały się krótsze. Jednak może to być spowodowane innym czynnikiem. Przewidywania specjalistów mogą być błędne.
- Rozkład normalny nie wystepuje dla żadnej z cech, dlatego używaliśmy testów nieparametrycznych.
- Muzyka popularana która gości na listach przebojów jest przewaźnie taneczna, energiczna, nieakustyczna, z wokalem i nie jest wykonaniem na żywo.
- Liczba tygodni na liście a pozycja na liście jest ze sobą zkorelowana

Kroki na przyszłość

Do danych można było by dodać gatunki muzyczne oraz zobaczyć ich zmiane w czasie oraz wpływ na poszczególne cechy