CSE215 Foundations of Computer Science

State University of New York, Korea

Instructor: Zhoulai Fu

- Plan:
 - Proof by contradiction
 - Proof by contraposition

Contradiction

My shield can block all spears

Proof by contradiction

You are asked to prove P and you feel ~P is ridicules

Prove: There is no greatest integer

- Proof.
 - We use proof by contradiction.
 - Assume there exists a greatest integer.
 - Let G denote the greatest integer. We have
 - (A): for any integer n, n <=G.
 - But G + 1 is an integer satisfying G+1>G. This contradicts with (A)
 - Therefore, there does not exist a greatest integer
- QED.

$\sqrt{2}$ is irrational

- Proof.
 - We use proof by contradiction.
 - Assume sqrt(2) is a rational number, namely:
 - (A) there exists two integers m, n such that sqrt(2)=m/n, and m and n have no common factors.
 - Thus m² = 2 n². Thus, m² is even. Thus m must be even (otherwise m² becomes odd).
 - Thus m = 2k for some integer k. Thus, n ^2= 2 k^2. Thus n^2 is even and therefore n must be even.
 - But the fact that m and n are both even contradicts with (A)
 - Therefore sqrt(2) must be irrational.
- QED.

Prove: For any prime number p and natural number n,

If p|n, then $p \nmid (n+1)$.

- Proof.
 - We use proof by contradiction
 - Assume:
 - (A) there exists a prime p and a natural number n, such that p | n and p | (n+1)
 - Since p | n, n = pk for some integer k
 - Since p | (n+1), n+1=pk' for some integer k'
 - Thus 1 = p (k' k). Thus p = 1 which contradicts with the fact p is a prime.
 - Therefore (A) is false
- QED

Summary so far

- To prove P is true, we can prove ~P -> False
- In other words, we assume ~P and try to derive a contradiction

Break

Exercises

Exercise 1

If $a, b \in \mathbb{Z}$, then $a^2 - 4b - 3 \neq 0$.

Exercise 2: Prove the following

Suppose $x \in \mathbb{R}$. If $x^2 + 5x < 0$ then x < 0.

Exercise 3: Prove the following

Suppose $x \in \mathbb{R}$. If $x^3 - x > 0$ then x > -1.

Exercise 4

Prove If $a, b \in \mathbb{Z}$, then $a^2 - 4b \neq 2$.