Midterm

1) Why are energy and momentum conserved in the S	Standard Model? What would it mean
if we found evidence for non-conservation of Energy	? What about non-conservation of Mo-
mentum?	(3 points)

2) What are three major consequences of combining QM and Relativity? (3 points)

3) GZK cutoff energy

(5 points)

High-energy cosmic rays (high energy protons), lose energy by interacting with CMB photons by producing a neutral pion:

$$p + \gamma_{\text{CMB}} \rightarrow p + \pi_0$$
.

The proton energy at which this process can occur is called the GZK cutoff. Estimate the GZK cutoff energy. The energy of CMB photons is 10^{-13} GeV (which follows from the measurement of CMB temperature of about 2.7 K). Use 0.1 GeV for the mass of the pion and 1 GeV for the mass of the proton

4) Neutrino masses. The seesaw mechanism is a proposed source for neutrino masses. In this scenario the neutrino would get a mass from the following diagram. (2 points) Describing the interaction of a neutrino(ν) with a Higgs boson (h). What is the dimension of the coupling constant associated with this diagram?

5) Why do we label particle states by momentum?	(2 points)
6) Why is the weak interaction so much weaker than the electromagnetic interactions?	ction at low (2 points)
7) What are three restrictions to particle interactions that are a consequence ga ance?	auge invari- (3 points)
	_

8) Lorentz Transforms

(5 points)

a) How does a massive particle $|p^{\mu},\sigma\rangle$ transform under a general Lorentz transformation (Λ^{ν}_{μ}) ?

- b) How does a massive particle $|p^{\mu},\sigma\rangle$ transform under a little group transformation (W_{μ}^{ν}) ?
- c) How does a mass-less particle $|p^\mu,\sigma\rangle$ transform under a general Lorentz transformation (Λ^ν_μ) ?
- d) How does a mass-less particle $|p^{\mu},\sigma\rangle$ transform under a little group transformation (W^{ν}_{μ}) ?

9) $ee \rightarrow \tau\tau$ scattering

(5 points)

- a) At high energy $(E_{CM} >> m_{\tau})$, what is the dependence of the $ee \to \tau\tau$ cross section on E_{CM} ?
- b) Sketch a graph of $\frac{\sigma(ee \to \tau\tau)}{\sigma(ee \to \mu\mu)}$ as a function of E_{CM} from $2 \times m_{\mu}$ to 1 TeV (= 1000 GeV).

10) Muon decays:	(10 points
a) The muon decays via the weak interaction, At low energy (imated as a point-like interaction. Draw the diagram describ assuming a point-like weak interaction.	
b) What are the dimensions of the coupling constant, associated	I to this diagram ?
c) How does the decay rate Γ (decays/unit time) depend on the	muon mass ?

d) The muon has a mass of ~ 0.1 GeV and a lifetime of $\sim 1 \mu s$. The tau lepton has a mass of ~ 1 GeV. Estimate the lifetime of the tau lepton in μs .

e) Suppose that the photon could couple at the same vertex to the muon and the electron. the muon could decay as $\mu \to e\gamma$. Estimate the ratio of the μ lifetime in this world to to our world without this interaction.	
11) Can the SM have interactions between fermions and massive particles with Spin 3	8 ? If
not, why not. What about interactions between mass-less Spin 3 particles and fermion not, why not. $(2 p$	

13) List or draw a diagram of the particles in the Standard model. What is the spin of each particle?	(3 points)
14) How many generators does the Lorentz group have? What transformations do they correspond to?	(2 points)
15) Neutrino interactions	(2 points)
Assuming lepton universality, would you expect a difference between the way v_e with matter? Justify your answer by drawing the leading order diagrams for $v_e + e$ $v_\mu + e \rightarrow v_\mu + e$.	and ν_{μ} interact

16) A new force.	(5 points)
Assume there is another force of nature felt by electrons associated with the exchange boson of mass 1 TeV (= 1000 GeV).	
a) Estimate an upper limit on the range of this new force in meters.	
b) Assume that this new X boson could also decay to spin-1/2 dark matter particles	$S \psi_{DM}$. At low
energies (« 1 TeV) the X interaction can be described by a point-like interact the coupling constant associated to dark matter scattering $e\psi_{DM} \rightarrow e\psi_{DM}$. (A coupling at high energies is the same as for EM)	ion. Estimate

c) Assume there was a direct $X \to e\mu$ interaction. This would allow the muon to decay via $\mu^- \to e^- e^+ e^-$. Draw the corresponding diagram and estimate the impact of the muon lifetime

from this process. How does it compare to the lifetime in the standard model?