Quantified Palaeotopographic & Palaeogeographic Maps for the Phanerozoic with the PANALESIS Plate Tectonic Model

22nd Swiss Geoscience Meeting Basel, 9th November 2024

> Florian Franziskakis¹, Christian Vérard, Grégory Giuliani

The PANALESIS model

Covering 100% of the Earth surface

600 – 000 Ma (v0)

888 – 000 Ma (v1)

Dual control approach

Not openly accessible...yet!

Approaches to palaeogeography #1

Reconstruction at 280 Ma

Elevation (m)	Environment(s)	Geological evidence
10,000 to 4,000	Collisional mountains	High-temperature, high-pressure metamorphics
4,000 to 2,000	Andean-type mountains	Andesites/granodiorites in a continental setting
2,000 to 1,000	Island arc volcanoes	Andesites/granodiorites in a marine setting
	Intracontinental rift shoulders	Adjacent fanglomerates
1,000 to 200	Rift valley	Basalts, lake deposits in grabens
	Some forearc ridges	Tectonic mélanges
200 to sea level	Coastal plains	Alluvial complexes
	Lower river systems	Major floodplain complexes
	Delta tops	Swamps and channel sands
Sea level to −50	Inner shelves	Heterogeneous marine sediments
	Reef-dammed shelves	Bahamian-type carbonates
	Delta fronts	Topset silts and sands
−50 to −200	Outer shelves	Fine sediments, most bioproductites
	Some epeiric basins	Fine clastics or carbonates
	Pro-deltas	Foreset silts and proximal turbidites
−200 to −4,000	Continental slope/rise	Slump/contourite facies
	Mid-ocean ridges	Oceanic crust less than 60 million years old
	Pro-delta fans	Bottomset clays and distal turbidites
−4,000 to −6,000	Ocean floors	Pelagic sequences on oceanic crust
−6,000 to −12,000	Ocean trenches	Turbidites on pelagic sequences

Semi-quantitative, flat seafloor

Approaches to palaeogeography #2

Reconstructions at 30 & 50 Ma

Manual process, user-knowledge driven

Palaeogeography: Approach #3

Automated, quantitative & synthetic palaeogeography

(1) Geological Features: 165Ma example

(2) Profile/Nodes: Collision Profile

Synthetic profiles based on current day topography (Vérard 2017).

Lateral movement & elevation variation.

function of age of feature line from the model.

(2) Profile/Nodes: Passive Margin Profile

Synthetic profiles based on current day topography (Vérard 2017).

Lateral movement & elevation variation.

function of age of feature line from the model.

(2) Profile/Nodes: 165 Ma example

(3) Palaeo-DEM interpolation: 165 Ma example

0.1°x0.1° map

Z=0m is relative to what a present-day topography would yield.

Accuracy strongly dependant on interpolation method

(4) Palaeogeography: 165 Ma example

Oceanic volume calculated (below z=0m)

Sea-level corrected to reach full oceanic volume (reference = present-day)

Correction of elevation with Airy model of isostasy

Phanerozoic Sea Level Reconstructions

Estimating Uncertainties

Spatial resolution $(1 - 1.5^{\circ})$ Temporal resolution $(\pm 5\text{Ma})$

Vérard (2022)

Synthetic topographic values and profiles

Vérard (2017)

Interpolation method performance impact on oceanic volume/sea level (>200m)

Franziskakis et al. (in prep)

Poster just outside this room! (P25.3)

Ability to capture sea-level variations (± 60 m)

Conclusion & Outlook

Unique approach to reconstruct palaeogeography, only possible with the PANALESIS model.

Many uncertainties, not all of them fully quantified. <u>Propagation of error still to be looked at</u>.

Ongoing transition to open-source software & open data, <u>challenges in</u> <u>reproducibility of results</u>.

Future enhancements to include climate & mantle feedback on topography.

References

- Aminov, J., Dupont-Nivet, G., Ruiz, D., & Gailleton, B. (2023). Paleogeographic reconstructions using QGIS: Introducing Terra Antiqua plugin and its application to 30 and 50 Ma maps. Earth-Science Reviews, 240, 104401. https://doi.org/10.1016/j.earscirev.2023.104401
- Haq, B. (2018). Triassic Eustatic Variations Reexamined. GSA Today, 28(12), 4–9. https://doi.org/10.1130/GSATG381A.1
- Haq, B., & Schutter, S. R. (2008). A Chronology of Paleozoic Sea-Level Changes. Science, 322(5898), 64–68. https://doi.org/10.1126/science.1161648
- Haq, B. U., Hardenbol, J., & Vail, P. R. (1987). Chronology of Fluctuating Sea Levels Since the Triassic. Science, 235(4793), 1156–1167. https://doi.org/10.1126/science.235.4793.1156
- Marcilly, C. M., Torsvik, T. H., & Conrad, C. P. (2022). Global Phanerozoic sea levels from paleogeographic flooding maps. Gondwana Research, 110, 128–142. https://doi.org/10.1016/j.gr.2022.05.011
- Vérard, C., Hochard, C., Baumgartner, P. O., Stampfli, G. M., & Liu, M. (2015). Geodynamic evolution of the Earth over the Phanerozoic: Plate tectonic activity and palaeoclimatic indicators. Journal of Palaeogeography, 4(2), 167–188. https://doi.org/10.3724/SP.J.1261.2015.00072
- Vérard, C. (2017). Statistics of the Earth's Topography. OALib, 04(06), 1–50. https://doi.org/10.4236/oalib.1103398
- Vérard, C. (2019). Panalesis: Towards global synthetic palaeogeographies using integration and coupling of manifold models. *Geological Magazine*, 156(2), Article 2. https://doi.org/10.1017/S0016756817001042
- Vérard, C. (2024). On greenhouse and icehouse climate regimes over the Phanerozoic. Terra Nova, 36(4), 292–297. https://doi.org/10.1111/ter.12711