A pontbeli derivált fogalma

1. Definíció. Tegyük fel, hogy $\emptyset \neq A \subseteq \mathbb{R}$. Az $a \in A$ pont az A halmaz belső pontja, ha

$$\exists K(a), hogy K(a) \subseteq A.$$

Az int A szimbólummal jelöljük az A halmaz belső pontjainak a halmazát.

2. Definíció. $Az \ f \in \mathbb{R} \to \mathbb{R}$ függvény $az \ a \in \operatorname{int} \mathcal{D}_f$ pontban differenciálható (vagy deriválható), ha

$$\exists$$
 és véges a $\lim_{x\to a} \frac{f(x)-f(a)}{x-a}$ határérték.

Ezt a határértéket az f'(a) szimbólummal jelöljük, és az f függvény a pontbeli deriváltjának (vagy differenciálhányadosának) nevezzük, azaz

$$f'(a) := \lim_{x \to a} \frac{f(x) - f(a)}{x - a} \in \mathbb{R}.$$

Ezt a tényt a következőképpen fogjuk jelölni: $f \in D\{a\}$.

Megjegyzések.

1. A fenti definícióban szereplő határértéket az h=x-a helyettesítéssel gyakran így írjuk fel:

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}.$$

2. Ha $f \in \mathbb{R} \to \mathbb{R}$ és $a \in \text{int } \mathcal{D}_f$, akkor az

$$F(x) := \frac{f(x) - f(a)}{x - a}$$
 $\left(x \in \mathcal{D}_f \setminus \{a\}\right)$

függvényt az f függvény az a ponthoz tartozó különbséghányados-függvényének vagy differenciahányados-függvényének nevezzük.

3. A derivált definíciójában 0/0-típusú kritikus határértékről van szó.

A differenciálhatóság erősebb megkötés, mint a folytonosság.

- 1. Tétel (A folytonosság és a deriválhatóság kapcsolata). Tegyük fel, hogy $f \in \mathbb{R} \to \mathbb{R}$ és $a \in \operatorname{int} \mathcal{D}_f$. Ekkor
 - $a) \ f \in D\{a\} \implies f \in C\{a\},$
 - b) Az állítás megfordítása nem igaz.

Az érintő fogalma

Az előzőek alapján, ha $f \in D\{a\}$, akkor az (a, f(a)) és az (x, f(x)) pontokon átmenő szelőegyeneseknek van "határegyenese", ha $x \to a$. Függvény grafikonjának (mint sikbeli halmaznak) az érintőjén éppen ezt az egyenest célszerű érteni. Az $f \in D\{a\}$ függvény esetén a szóban forgó egyenes átmegy az (a, f(a)) pontban és a meredeksége f'(a).

3. Definíció. $Az f \in \mathbb{R} \to \mathbb{R}$ függvény grafikonjának az (a, f(a)) po ntban van érintője, ha $f \in D\{a\}$. Az f függvény grafikonjának (a, f(a)) p ontbeli érintőjén az

$$y = f'(a) \cdot (x - a) + f(a)$$

egyenletű egyenest értjük.

Vegyük észre, hogy a f'(a) definíciójában szereplő határérték véges, ezért az érintő nem lehet párhuzamos az y-tengellyel.

Megjegyzés. Érdemes meggondolni, hogy a kör és a parabola érintőjének a fenti definíciója ekvivalens a középiskolában geometriai úton megadott definícióval.

Deriválási szabályok

- 2. Tétel (Algebrai műveletekre vonatkozó deriválási szabályok). Tegyük fel, hogy $f, g \in \mathbb{R} \to \mathbb{R}$ és $f, g \in D\{a\}$ valamilyen $a \in \operatorname{int}(\mathcal{D}_f \cap \mathcal{D}_g)$ pontban. Ekkor
 - 1. a szorzó konstansokat ki tudjuk emelni a deriválásból, azaz

$$cf \in D\{a\}$$
 és $(cf)'(a) = cf'(a)$ $(c \in \mathbb{R})$

2. tagokból álló függvényeket tagonként deriválhatjuk, azaz

$$f + g \in D\{a\}$$
 és $(f + g)'(a) = f'(a) + g'(a)$,

3. egy szorzat deriváltja az az összeg, amelynek tagjai az egyik tényező deriváltja megszorozva a másik tényezővel, azaz

$$f \cdot g \in D\{a\}$$
 és $(f \cdot g)'(a) = f'(a)g(a) + f(a)g'(a),$

4. ha még a $g(a) \neq 0$ feltétel is teljesül, akkor

$$\frac{f}{g} \in D\{a\}$$
 és $\left(\frac{f}{g}\right)'(a) = \frac{f'(a)g(a) - f(a)g'(a)}{g^2(a)}$.

megszorozzuk a beiso fuggveny derivanjavar.

3. Tétel (Összetett függvény deriváltja). Tegyük fel, hogy $f, g \in \mathbb{R} \to \mathbb{R}$ és valamilyen $a \in \operatorname{int} \mathcal{D}_g$ pontban $g \in D\{a\}$, továbbá $f \in D\{g(a)\}$. Ekkor $f \circ g \in D\{a\}$, és

$$(f \circ g)'(a) = f'(g(a)) \cdot g'(a).$$

- 4. Tétel (Inverz függvény deriváltja). Legyen I egy nyílt intervallum, és $f:I\to\mathbb{R}$. Tegyük fel, hogy
 - a) f szigorúan monoton és folytonos az I intervallumon,
 - b) valamilyen $a \in I$ pontban $f \in D\{a\}$ és $f'(a) \neq 0$.

Ekkor az f^{-1} függvény deriválható a b = f(a) pontban és

$$(f^{-1})'(b) = \frac{1}{f'(a)} = \frac{1}{f'(f^{-1}(b))}.$$

5. Tétel (Hatványsor összegfüggvényének deriváltja). Legyen $a \in \mathbb{R}$ és $\alpha_n \in \mathbb{R}$ (n = 0, 1, ...). Tegyük fel, hogy a

$$\sum_{n=0} \alpha_n (x-a)^n \qquad (x \in \mathbb{R})$$

hatványsor R konvergenciasugara pozitív, és jelölje f az összegfüggvényét:

$$f(x) := \sum_{n=0}^{+\infty} \alpha_n (x - a)^n \qquad (x \in K_R(a)).$$

Ekkor minden $x \in K_R(a)$ pontban $f \in D\{x\}$ és

$$f'(x) = \sum_{n=1}^{+\infty} n\alpha_n (x-a)^{n-1} \qquad (x \in K_R(a)).$$

A deriváltfüggvény

4. Definíció. Ha $f \in \mathbb{R} \to \mathbb{R}$ és $\{x \in \text{int } \mathcal{D}_f \mid f \in D\{x\}\}\} \neq \emptyset$, akkor az

$$\{x \in \operatorname{int} \mathcal{D}_f \mid f \in D\{x\}\} \ni x \mapsto f'(x)$$

függvényt az f deriváltfüggvényének (vagy differenciálhányados-függvényének) nevezzük, és az f' szimbólummal jelöljük.

2. előadás

Egyoldali pontbeli deriváltak

1. Definíció. Legyen $f \in \mathbb{R} \to \mathbb{R}$ és $a \in \mathcal{D}_f$ olyan pont, hogy $\exists \delta > 0 \colon [a, a + \delta) \subseteq \mathcal{D}_f$. Azt mondjuk, hogy az f függvény jobbról differenciálható (vagy jobbról deriválható) az a pontban, ha

$$\exists$$
 és véges a $\lim_{x \to a+0} \frac{f(x) - f(a)}{x - a}$ határérték.

Ezt a határértéket az $f'_{+}(a)$ szimbólummal jelöljük, és az f függvény a pontbeli jobb oldali deriváltjának (vagy differenciálhányadosának) nevezzük, azaz

$$f'_{+}(a) := \lim_{x \to a+0} \frac{f(x) - f(a)}{x - a} \in \mathbb{R}.$$

Az f függvény bal oldali differenciálhatóságát az a pontban hasonlóan értelmezzük, és az $f'_{-}(a)$ szimbólummal jelöljük az a pontbeli bal oldali deriváltját.

Az előző jelölés értelmében, ha $f(x) = |x| \quad (x \in \mathbb{R})$, akkor $f'_{-}(0) = -1$ és $f'_{+}(0) = 1$.

Az egyoldali függvényhatárértékeknél tanultak szerint világos, hogy

$$f \in D\{a\} \iff \exists f'_{-}(a), \exists f'_{+}(a) \text{ és } f'_{-}(a) = f'_{+}(a) (= f'(a)).$$

Mikor deriválható az f függvény az 'a' pontban?

$$f(x) := \begin{cases} b(x), & \text{ha } x < a \ (x \in \mathcal{D}_b), \\ A, & \text{ha } x = a, \\ j(x), & \text{ha } x > a \ (x \in \mathcal{D}_j) \end{cases}$$

$$\boxed{ \text{I.} \quad \exists \lim_{a \to 0} b, \ \exists \lim_{a \to 0} j \quad \text{\'es} \quad \lim_{a \to 0} b = A = \lim_{a \to 0} j } \ .$$

Az I. feltétel azt jelenti, hogy $f \in C\{a\}$, ami szükséges ahhoz, hogy $f \in D\{a\}$ teljesüljön.

Gyakori eset, amikor b balról, j jobbról folytonos a-ban és b(a) = j(a) = A. Világos, hogy ekkor az I. feltétel teljesül. Fordítva, ha az I. feltétel teljesül, akkor a

II.
$$b'_{+}(a) = j'_{+}(a)$$
.

Ekkor $f'(a)=b'_+(a)=j'_+(a)$. Ha $b\in D\{a\}$ és $j\in D\{a\}$, akkor a II. feltétel ekvivalens, azzal, hogy b'(a)=j'(a).

Magasabb rendű deriváltak

Ha valamely valós-valós függvénynek létezik a deriváltfüggvénye, akkor természetes módon felvethetjük annak újbóli deriválhatóságát, és így eljuthatunk a *többször deriválható függ-vények* és a *magasabb rendű deriváltak* fogalmához. A rekurzió módszerét alkalmazzuk. Először a kétszer deriválhatóság fogalmát definiáljuk.

- 2. Definíció. Legyen $f \in \mathbb{R} \to \mathbb{R}$ és $a \in \text{int } \mathcal{D}_f$. Azt mondjuk, hogy f kétszer deriválható az a pontban (jelölése: $f \in D^2\{a\}$), ha
 - $\exists r > 0 : f \in D(K_r(a)), \text{ \'es}$
 - $az \ f' \ deriváltfüggvény \ deriválható \ a-ban, \ azaz \ f' \in D\{a\}.$

Legyen ekkor

$$f''(a) := \left(f'\right)'(a)$$

az f függvény a-beli második deriváltja.

Ha $H := \{x \in \operatorname{int} \mathcal{D}_f \mid f \in D^2\{x\}\} \neq \emptyset$, akkor $H \ni x \mapsto f''(x)$ az f függvény **második deriváltfüggvénye**, amit röviden az f'' szimbólummal jelölünk.

Jelölések. A deriváltakra és a deriváltfüggvényekre a következő jelöléseket is fogjuk használni:

$$f^{(1)}(a) := f'(a)$$
 és $f^{(1)} := f'$,

$$f^{(2)}(a) := f''(a)$$
 és $f^{(2)} := f''$.

Megállapodunk abban is, hogy $f^{(0)}(a) := f(a)$ és $f^{(0)} := f$.

Indukcióval értelmezzük az n-szeri deriválhatóságot és az n-edik deriváltat. Tegyük fel, hogy valamely $n \in \mathbb{N}$ esetében már értelmeztük azt, hogy valamely $f \in \mathbb{R} \to \mathbb{R}$ függvény mikor deriválható (n-1)-szer egy $a \in \operatorname{int} \mathcal{D}_f$ pontban (jelölése: $f \in D^{n-1}\{a\}$), továbbá azt is, hogy mikor létezik és mi az (n-1)-edik deriváltfüggvénye. Ha ez utóbbi létezik, akkor jelöljük azt az $f^{(n-1)}$ szimbólummal.

- 3. Definíció. Legyen $f \in \mathbb{R} \to \mathbb{R}$, $a \in \operatorname{int} \mathcal{D}_f$, és tegyük fel, hogy valamely $n = 2, 3, \ldots$ esetén létezik az $f^{(n-1)}$ -gyel jelölt (n-1)-edik deriváltfüggvény. Azt mondjuk, hogy f n-szer deriválható az a pontban (jelölése: $f \in D^n\{a\}$), ha
 - $\exists r > 0 : f \in D^{n-1}(K_r(a)), \text{ \'es}$
 - $az \ f^{(n-1)} \ deriváltfüggvény \ deriválható \ a-ban, \ azaz \ f^{(n-1)} \in D\{a\}.$

Legyen ekkor

$$f^{(n)}(a) := (f^{(n-1)})'(a)$$

az f függvény a-beli n-edik deriváltja.

Ha $H := \{x \in \operatorname{int} \mathcal{D}_f \mid f \in D^n\{x\}\} \neq \emptyset$, akkor $H \ni x \mapsto f^{(n)}(x)$ az f függvény $\mathbf{n\text{-}edik}$ deriváltfüggvénye, amit röviden az $f^{(n)}$ szimbólummal jelölünk.