Class 09: PDB

AUTHOR Loreen A17059289

PDB Statistics:

The PDB is the main database for structural information on biomolecules.

```
db <- read.csv("Data Export Summary.csv", row.names = 1)
db</pre>
```

	X.ray	EM	NMR	Multiple.methods
Neutron Other				
Protein (only)	154,766	10,155	12,187	191
72 32				
Protein/Oligosaccharide	9,083	1,802	32	7
1 0				
Protein/NA	8,110	3,176	283	6
0 0				
Nucleic acid (only)	2,664	94	1,450	12
2 1				
Other	163	9	32	0
0 0				
Oligosaccharide (only)	11	0	6	1
0 4				
	Total			
Protein (only)	177,403			
Protein/Oligosaccharide	10,925			
Protein/NA	11,575			
Nucleic acid (only)	4,223			
0ther	204			
Oligosaccharide (only)	22			

Q1: What percentage of structures in the PDB are solved by X-Ray and Electron Microscopy.

```
xray.total <- sum(as.numeric(gsub(",", "", db$X.ray)))
em.total <- sum(as.numeric(gsub(",", "", db$EM)))
em.total</pre>
```

[1] 15236

```
xray.total
```

[1] 174797

Write a function to get rid of repetitive code:

```
# x is the input.
sum_comma <- function(x) {
    # Substitute the comma and covert to numeric.
    sum(as.numeric(gsub(",", "", x)))
}
sum_comma(db$X.ray)</pre>
```

[1] 174797

```
sum_comma(db$EM)
```

[1] 15236

```
sum_comma(db$Total)
```

[1] 204352

For Xray:

```
sum_comma(db$X.ray) / sum_comma(db$Total)
```

[1] 0.8553721

For EM:

```
sum_comma(db$EM) / sum_comma(db$Total)
```

[1] 0.07455763

Q2: What proportion of structures in the PDB are protein?

round(sum_comma(db\$Total[1]) / sum_comma(db\$Total), 2)

[1] 0.87

Q3: Type HIV in the PDB website search box on the home page and determine how many HIV-1 protease structures are in the current PDB?

skip

Visualizing the HIV-1 protease structure:

Q4: Water molecules normally have 3 atoms. Why do we see just one atom per water molecule in this structure?

This structure is too low a resolution to see H atoms. You need a sub Angstrom resolution to see Hydrogen.

Q5: There is a critical "conserved" water molecule in the binding site. Can you identify this water molecule? What residue number

does this water molecule have?

HOH308

Working with Structures in R

We can use the bio3d package to read and perform bioinformatics calculations on PDB structures.

```
library(bio3d)
pdb <- read.pdb("1hsg")</pre>
 Note: Accessing on-line PDB file
pdb
Call:
        read.pdb(file = "1hsg")
   Total Models#: 1
     Total Atoms#: 1686, XYZs#: 5058 Chains#: 2 (values: A
B)
     Protein Atoms#: 1514 (residues/Calpha atoms#: 198)
     Nucleic acid Atoms#: 0 (residues/phosphate atoms#: 0)
    Non-protein/nucleic Atoms#: 172 (residues: 128)
     Non-protein/nucleic resid values: [ HOH (127), MK1 (1) ]
   Protein sequence:
POITLWORPLVTIKIGGOLKEALLDTGADDTVLEEMSLPGRWKPKMIGGIGGFIKVROYD
QILIEICGHKAIGTVLVGPTPVNIIGRNLLTQIGCTLNFPQITLWQRPLVTIKIGGQLKE
ALLDTGADDTVLEEMSLPGRWKPKMIGGIGGFIKVROYDOILIEICGHKAIGTVLVGPTP
      VNIIGRNLLTQIGCTLNF
+ attr: atom, xyz, segres, helix, sheet,
        calpha, remark, call
```

attributes(pdb)

```
$names
[1] "atom" "xyz" "seqres" "helix" "sheet" "calpha"
"remark" "call"

$class
[1] "pdb" "sse"

head(pdb$atom)
```

```
type eleno elety alt resid chain resno insert
                                                  Х
                                                              У
Z 0
1 ATOM
                                             <NA> 29.361 39.686
           1
                 N < NA >
                          PR0
                                  Α
                                         1
5.862 1 38.10
2 ATOM
           2
                CA <NA>
                          PR0
                                             <NA> 30.307 38.663
                                  Α
                                         1
5.319 1 40.62
                                             <NA> 29.760 38.071
3 ATOM
           3
                 C <NA>
                          PR0
                                  Α
                                         1
4.022 1 42.64
4 ATOM
           4
                          PR0
                                             <NA> 28.600 38.302
                 0 <NA>
                                  Α
3.676 1 43.40
                                             <NA> 30.508 37.541
5 ATOM
           5
                CB <NA>
                          PR0
                                  Α
                                         1
6.342 1 37.87
6 ATOM
           6
                CG <NA>
                          PR0
                                  Α
                                         1
                                             <NA> 29.296 37.591
7.162 1 38.40
  segid elesy charge
1 <NA>
            Ν
                <NA>
2 <NA>
            C
                <NA>
3
  <NA>
            C
                <NA>
4 <NA>
            0
                <NA>
5
  <NA>
            C
                <NA>
```

Read an ADK structure:

C

<NA>

<NA>

```
adk <- read.pdb("6s36")</pre>
```

Note: Accessing on-line PDB file PDB has ALT records, taking A only, rm.alt=TRUE

adk

```
Call: read.pdb(file = "6s36")
   Total Models#: 1
     Total Atoms#: 1898, XYZs#: 5694 Chains#: 1 (values: A)
     Protein Atoms#: 1654 (residues/Calpha atoms#: 214)
     Nucleic acid Atoms#: 0 (residues/phosphate atoms#: 0)
     Non-protein/nucleic Atoms#: 244 (residues: 244)
     Non-protein/nucleic resid values: [ CL (3), HOH (238), MG
(2), NA (1) ]
   Protein sequence:
MRIILLGAPGAGKGTQAQFIMEKYGIPQISTGDMLRAAVKSGSELGKQAKDIMDAGKLVT
DELVIALVKERIAQEDCRNGFLLDGFPRTIPQADAMKEAGINVDYVLEFDVPDELIVDKI
VGRRVHAPSGRVYHVKFNPPKVEGKDDVTGEELTTRKDD0EETVRKRLVEYH0MTAPLIG
      YYSKEAEAGNTKYAKVDGTKPVAEVRADLEKILG
+ attr: atom, xyz, segres, helix, sheet,
        calpha, remark, call
Perform a prediction of flexibility with a technique called NMA(normal
code analysis):
 # Perform flexibility prediction
 m <- nma(adk)
 Building Hessian... Done in 0.047 seconds.
 Diagonalizing Hessian... Done in 0.499 seconds.
```

http://localhost:7150/

plot(m)

Write out. "movie" (a.k.a trajectory) of the motion for viewing in M0lstar:

Q7: How many amino acid residues are there in this pdb object?

198

Q8: Name one of the two non-protein residues?

HOH

Q9: How many protein chains are in this structure?

2