Aproximace a dynamické algoritmy

Příklad 1: Najděte 2-aproximaci metrického obchodního cestujícího. Využijte toho, že minimální kostra grafu je lehčí než optimální řešení.

Příklad 2: Ukažte, že bez předpokladu metriky (Δ -nerovnosti) není obchodní cestující aproximovatelný.

Příklad 3: Problém MaxE3-SAT je NP-úplný optimalizační problém. Pro CNF formuli, kde každá klauzule obsahuje právě tři různé proměnné, hledáme ohodnocení splňující maximální počet klauzulí (tedy ne nutně celou formuli). Ukažte, že náhodné ohodnocení je 7/8-aproximace.

Příklad 4: Chceme aproximovat hledání vrcholového pokrytí. Spustíme DFS prohledávání a jako pokrytí vezmeme všechny vrcholy, které nejsou listy v DFS-stromě. Jak dobrá je tato aproximace? Pro odhad kvality použijeme velikost vhodného párování.

Příklad 5: Navrhněte aproximaci problému batohu pomocí zaokrouhlování. Jak je tato aproximace dobrá?

Příklad 6: Problém obchodního cestujícího lze triviálně řešit v čase O(n!). Navrhněte dynamický algoritmus běžící v čase $2^{O(n)}$ (tedy sice exponenciální, ale mnohem lepší, $O(n!) = 2^{O(n\log n)}$). Jako stavy výpočtu použijeme nejkratší cesty mezi dvojicemi vrcholů procházející přes dané množiny vrcholů.

Příklad 7: Najděte dynamický algoritmus na řešení konvexního obchodního cestujícího, tedy verzi problému s metrikou a vrcholy tvořícími konvexní n-úhelník. Chceme polynomiální algoritmus.