UNIVERSIDADE FEDERAL DE VIÇOSA – UFV DEPARTAMENTO DE ENGENHARIA ELÉTRICA - DEL CURSO DE ENGENHARIA ELÉTRICA

<u>3º PROVA DE ELETROMAGNETISMO APLICADO – ELT 225</u> <u>VALOR: 30 PONTOS</u>

<u>ALUNO:</u> <u>DATA:</u> 09/12/2020

QUESTÕES

- 1 Para a configuração das linhas de transmissão sem perdas mostradas na figura abaixo, determine:
 - a) A potência média dissipada em cada uma das cargas $Z_{L1},\ Z_{L2}$ e $Z_{L3};$
 - b) A razão de onda estacionária S em cada uma das linhas;
 - c) Os locais do primeiro valor máximo e mínimo da tensão na linha de $l_2 = 1$ m;
 - d) Os números totais de valores máximos e mínimos de tensão na linha de $l_3 = 2$ m;
 - e) A tensão e a corrente na metade do comprimento da linha principal $l_1 = 2$ m. (12 pontos)

2 – Medidas em uma linha de transmissão sem perdas indicaram uma taxa de onda estacionária de 3:1, com um máximo localizado a meio comprimento de onda a partir da carga. A que distância (em função de λ) a partir da carga deve-se colocar um estube em aberto e qual deve ser o seu comprimento. (5 pontos)

- 3 Uma linha de transmissão sem perdas, cujo dielétrico é o ar, tem Z $_{o}$ = 75 Ω , 20 m de comprimento e opera na frequência de 32 MHZ. A impedância de entrada é Z_{ent} = 30 Ω . Determine:
 - a) A impedância da carga Z_{I} ;
 - b) Qual é o comprimento de linha que deve ser retirado na extremidade de entrada para que se obtenha uma impedância de entrada $Z_{ent} = 75 + j X_{ent}$, onde $X_{ent} > 0$ e qual o valor numérico de X_n ? (5 pontos)
- 4 Uma linha de transmissão fendida, preenchida com ar, de impedância característica Z_o = 100 Ω , sem perdas, é terminada em uma carga desconhecida, de razão de onda estacionária s = 5, a distância do primeiro valor máximo de tensão da carga é l_{max} = 12,5 cm e do primeiro valor mínimo de tensão l_{min} = 37,5 cm. Determine a frequência da linha e o valor da impedância da carga. Determine agora a frequência e a impedância de outra carga trocando as posições entre o primeiro valor máximo e o mínimo de tensão em l_{min} = 12,5 cm e l_{max} = 37,5 cm, mantendo a mesma razão de onda estacionária s = 5. (5 pontos)
- 5 Dado $\mathbf{H}(z,t) = 2\cos(\mathrm{wt} \beta z)\mathbf{a}_x + 6\cos(\mathrm{wt} \beta z + 120^{\circ})\mathbf{a}_y$ A/m, encontre a polarização e o sentido de rotação. (3 pontos)

OBS: Se usarem a carta de Smith a mesma deve ser encaminhada junto com a prova e os pontos e dados obtidos na resolução da prova devidamente marcados na carta