ALGORITMUSOK TERVEZÉSE ÉS ELEMZÉSE

4. Gyakorlat

DINAMIKUS PROGRAMOZÁS

- Dynamic programming (DP)
 - Richard Bellman
- Általában optimalizálási feladatoknál
- Részfeladatokra osztás
 - A részfeladatok nem függetlenek
 - Ilyenkor a D&Q stratégia többet dolgozna
- "programozás": táblázatos módszer
 - A részfeladatok eredményeit táblázatban tároljuk
- Általában a feladatoknak sokféle megoldása lehet
 - Ebből 1 optimálist keresünk

DP ALGORITMUS SZERKEZETE

- 4 fő lépés
 - 1) Jellemezzük az optimális megoldás szerkezetét
 - 2) Rekurzív módon definiáljuk az optimális megoldás értékét
 - 3) Kiszámítjuk az optimális megoldás értékét alulról felfelé történő módon
 - 4) A kiszámított információk alapján megszerkesztünk egy optimális megoldást
- A 4. lépés elhagyható, ha csak az optimális értéket keressük
- A 4. lépéshez 3. lépés során kiegészítő információkat tárolunk

DP – MIKOR ÉRDEMES HASZNÁLNI??

- Ha a megoldandó feladat optimálási részstruktúra tulajdonságú
- Az optimális megoldás a részfeladatok optimális megoldásait is tartalmazza

ISMÉTLÉS: LEGRÖVIDEBB UTAK MINDEN CSÚCSPÁRRA

- Vizsgáljuk meg az eddig látott módszereket
- Dijkstra algoritmus
 - Futtassuk a Dijkstra algoritmust a gráf összes csúcsára, mint startcsúcsra
 - Ritka gráf esetén: O(n * (n + m) * log n) = O(n² * log n)
 - Sűrű gráfok esetén: O(n * (n + n²) * log n) = O(n³ log n)
- Sor alapú Bellman-Ford algoritmus
 - Futtassuk a sor alapú BF algoritmust a gráf összes csúcsára, mint startcsúcsra
 - Ritka gráf esetén: O(n * n * m) = O(n³)
 - Sűrű gráfokra: O(n⁴)

FLOYD-WARSHALL ALGORITMUS

- Csúcsmátrixos reprezentációval használjuk
- D és π mátrixok
- D_{ii} az i és j csúcs közti legrövidebb út hosszát tartalmazza
- π_{ij} az i és j közti legrövidebb úton j megelőzője
- Belső csúcs:
 - Egy p = $\langle v_1, v_2, ..., v_k \rangle$ út belső csúcsa minden v_1 -től és v_k -tól különböző csúcs
- n lépésben határozza meg a legrövidebb utakat
 - A k. lépésben D_{ii}^(k) i és j közti optimális út hosszát tartalmazza
 - Úgy, hogy a belső csúcsok címkéje legfeljebb k
- Negatív összsúlyú kör esetén a D mátrix főátlójában negatív értékek jelennek meg

FLOYD-WARSHALL ALGORITMUS D ÉS π MÁTRIXOK

$$D_{ij}^{(0)} = \begin{cases} 0, \text{ ha } i = j \\ w(i,j), \text{ ha } (i,j) \in G.E \land i \neq j \\ \infty, \text{ ha } i \neq j \land (i,j) \notin G.E \end{cases}$$
$$\pi_{ij}^{(0)} = \begin{cases} 0, \text{ ha } i = j \\ i, \text{ ha } (i,j) \in G.E \land i \neq j \\ 0, \text{ ha } i \neq j \land (i,j) \notin G.E \end{cases}$$

$$\begin{split} D_{ij}^{(k)} &= \begin{cases} D_{ik}^{(k-1)} + D_{kj}^{(k-1)}, \text{ ha } D_{ij}^{(k-1)} > D_{ik}^{(k-1)} + D_{kj}^{(k-1)} \\ D_{ij}^{(k-1)} \text{ k\"{u}l\"{o}nben} \end{cases} \\ \pi_{ij}^{(k)} &= \begin{cases} \pi_{kj}^{(k-1)}, \text{ ha } D_{ij}^{(k-1)} > D_{ik}^{(k-1)} + D_{kj}^{(k-1)} \\ \pi_{ij}^{(k-1)} \text{ k\"{u}l\"{o}nben} \end{cases} \end{split}$$

Elég egy mátrixpár, a k. sor és oszlop nem változik a (k-1). és k. lépés között

FLOYD-WARSHALL ALGORITMUS

Θ(n³)

ISMÉTLÉS: CYK ALGORITMUS

- CYK parser
- Adott egy Chomsky 2-es típusú CNF grammatika és egy input szó
- Kérdés, hogy a szó levezethető-e a grammatika szabályaival
- Szintaxis fa építés

	1	2	3	4	5	6
6	S					
5	S	S				
4	В	Ø	В			
3	Ø	Ø	Ø	Ø		
2	A, U	Ø	V	Ø	C, W	
1	A, X	A, X	Z	Z	С, Ү	С, Ү
	a	a	b	b	$^{\mathrm{c}}$	c

