# Partial Differerential Equations Thành Nam Phan Winter Semester 2021/2022

Lecture notes TEXed by Thomas Eingartner Saturday  $12^{\rm th}$  February, 2022, 16:37

# Contents

| 1 | Intr                                             | roduction                                | 3   |
|---|--------------------------------------------------|------------------------------------------|-----|
| 2 | Lap 2.1 2.2 2.3                                  | 2.2 Poisson-Equation                     |     |
| 3 | Convolution, Fourier Transform and Distributions |                                          |     |
|   | 3.1                                              | Convolutions                             | 19  |
|   | 3.2                                              | Fourier Transformation                   | 26  |
|   | 3.3                                              | Theory of Distribution                   | 31  |
|   | 3.4                                              | Distribution vs. measures                | 41  |
| 4 | Wea                                              | ak Solutions and Regularity              | 44  |
| 5 | Exis                                             | stence for Poisson's Equation on Domains | 64  |
|   | 5.1                                              | Green's function on the upper half plane | 69  |
|   | 5.2                                              | Green's function for a ball              | 72  |
|   | 5.3                                              | Energy Method                            | 76  |
|   | 5.4                                              | Variational problem for weak solutions   | 83  |
|   | 5.5                                              | Theory of Trace                          | 87  |
|   | 5.6                                              | Final Remarks                            | 95  |
| 6 | Heat Equation                                    |                                          | 99  |
|   | 6.1                                              | Fundamental Solution                     | 99  |
|   | 6.2                                              | Maximum Principle                        |     |
|   | 6.3                                              | Backward heat equation                   | 115 |
| 7 | Way                                              | ve Equation                              | 118 |
|   | 7.1                                              | d'Alembert                               | 118 |
|   | 7.2                                              | Euler-Poisson-Darboux                    |     |
|   |                                                  | 7.2.1 Solution in three dimensions       |     |
|   |                                                  | 7.2.2 Solution in two dimensions         |     |
|   | 7.3                                              | Spectral Method                          |     |
|   | 7.4                                              | Uniqueness                               |     |
|   | 7.5                                              | Propagation of the wave                  |     |
|   | 7.6                                              | Wave vs. Heat Equation                   | 128 |
| 8 | Sch                                              | rödinger Equation                        | 130 |

Please note that I write this lecture notes for my personal use. I may write things differently than presented in the lecture. This script also contains some of my personal solutions for exercises (which may be wrong).

## Chapter 1

# Introduction

A differential equation is an equation of a function and its derivatives.

**Example 1.1** (Linear ODE) Let  $f: \mathbb{R} \to \mathbb{R}$ ,

$$\begin{cases} f(t) = af(t) \text{ for all } t \geqslant 0, a \in \mathbb{R} \\ f(0) = a_0 \end{cases}$$

is a linear ODE (Ordinary differential equation). The solution is:  $f(t) = a_0 e^{at}$  for all  $t \ge 0$ .

**Example 1.2** (Non-Linear ODE)  $f: \mathbb{R} \to \mathbb{R}$ 

$$\begin{cases} f'(t) = 1 + f^2(t) \\ f(0) = 1 \end{cases}$$

Lets consider  $f(t) = \tan(t) = \frac{\sin(t)}{\cos(t)}$ . Then we have

$$f'(t) = \frac{1}{\cos(t)} = 1 + \tan^2(t) = 1 + f^2(t),$$

but this solution only is good in  $(-\pi, \pi)$ . It's a problem to extend this to  $\mathbb{R} \to \mathbb{R}$ .

A PDE (Partial Differential Equation) is an equation of a function of 2 or more variables and its derivatives.

**Remark 1.3** Recall for  $\Omega \subseteq \mathbb{R}^d$  open and  $f: \Omega \to \{\mathbb{R}, \mathbb{C}\}$  the notation of partial derivatives:

- $\partial_{x_i} f(x) = \lim_{h \to 0} \frac{f(x+he_i) f(x)}{h}$ , where  $e_i = (0, 0, \dots, 1, \dots, 0, 0) \in \mathbb{R}^d$
- $D^{\alpha}f(x) = \partial_{x_1}^{\alpha_1} \cdots \partial_{x_d}^{\alpha_d} f(x)$ , where  $\alpha \in \mathbb{N}^d$
- $Df = \nabla f = (\partial x_1, \dots, \partial_{x_d})$
- $\bullet \ \Delta f = \partial_{x_1}^2 + \dots + \partial_{x_d}^2 f$
- $D^k f = (D^{\alpha} f)_{|\alpha|=k}$ , where  $|\alpha| = \sum_{i=1}^d |\alpha_i|$
- $D^2 f = (\partial_{x_i} \partial_{x_j} f)_{1 \leq i, j \leq d}$

**Definition 1.4** Given a function F. Then the equation of the form

$$F(D^k u(x), D^{k-1} u(x), \dots, Du(x), u(x), x) = 0$$

with the unknown function  $u: \Omega \subseteq \mathbb{R}^d \longrightarrow \mathbb{R}$  is called a *PDE of order k*.

- Equations  $\sum_{d} a_{\alpha}(x) D^{\alpha} u(x) = 0$ , where  $a_{\alpha}$  and u are unknown functions are called *Linear PDEs*.
- Equations  $\sum_{|\alpha|=k} a_{\alpha}(x) D^{\alpha} u(x) + F(D^{k-1}u, D^{k-2}u, \dots, Du, u, x) = 0$  are called semi-linear PDEs.

Goals: For solving a PDE we want to

- Find an explizit solution! This is in many cases impossible.
- Prove a well-posted theory (existence of solutions, uniqueness of solutions, continuous dependence of solutions on the data)

We have two notations of solutions:

- 1. Classical solution: The solution is continuous differentiable (e.g.  $\Delta u = f \leadsto u \in C^2$ )
- 2. Weak Solutions: The solution is not smooth/continuous

**Definition 1.5** (Spaces of continous and differentiable functions) Let  $\Omega \subseteq \mathbb{R}^d$  be open

$$\begin{split} C(\Omega) &= \{f: \ \Omega \to \mathbb{R} \mid f \text{ continuous} \} \\ C^k(\Omega) &= \{f: \ \Omega \to \mathbb{R} \mid D^\alpha f \text{ is continuous for all } |\alpha| \leqslant k \} \end{split}$$

Classical solution of a PDE of order  $k \rightsquigarrow C^k$  solutions!

$$L^p(\Omega) = \left\{ f: \ \Omega \to \mathbb{R} \text{ lebesgue measurable } \left| \int_{\Omega} |f|^p d\lambda < \infty, \ 1 \leqslant p < \infty \right\}$$

Sobolev Space:

$$W^{k,p}(\Omega) = \{ f \in L^p(\Omega) \mid \forall \alpha \in \mathbb{N}^n \text{ with } |\alpha| \leq k : D^{\alpha} f \in L^p(\Omega) \text{ exists} \}$$

In this course we will investigate

- Laplace / Poisson Equation:  $-\Delta u = f$
- Heat Equation:  $\partial_t u \Delta u = f$
- Wave Equation:  $\partial_t^2 \Delta u = f$
- Schrödinger Equation:  $i\partial_t u \Delta u = f$

## Chapter 2

# Laplace / Poisson Equation

## 2.1 Laplace Equation

 $-\Delta u = 0$  (Laplace) or  $-\Delta u = f(x)$  (Poisson).

**Definition 2.1** (Harmonic Function) Let  $\Omega$  be an open set in  $\mathbb{R}^d$ . If  $u \in C^2(\Omega)$  and  $\Delta u = 0$  in  $\Omega$ , then u is a harmonic function in  $\Omega$ .

**Theorem 2.2** (Gauss-Green Theorem) Let  $A \subseteq \mathbb{R}^d$  open,  $\vec{F} \in C^1(A, \mathbb{R}^d)$  and  $K \subseteq A$  compact with  $C^1$  boundary. Then

$$\int_{\partial K} \vec{F} \cdot \vec{\nu} \ dS(x) = \int_K \operatorname{div}(\vec{F}) \ dx$$

where  $\nu$  is the outward unit normal vector field on  $\partial K$ . Thus

$$\int_{\partial V} \nabla u \cdot \vec{\nu} \ dS(x) = \int_{V} \operatorname{div}(\nabla u) \ dx = \int_{V} \Delta u(x) \ dx$$

for any  $V \subseteq \Omega$  open.

**Theorem 2.3** (Green's Identities) Let  $A \subseteq \mathbb{R}^d$  open,  $K \subseteq A$  d-dim. compactum with  $C^1$  boundary and  $f, g \in C^2(A)$ 

1. Green's first identity (Integration by parts):

$$\int_{K} \nabla f \cdot \nabla g \, dx = \int_{\partial K} f \frac{\partial g}{\partial \nu} \, dS - \int_{K} f \Delta g \, dx$$

where  $\frac{\partial g}{\partial \nu} = \partial_{\nu} g = \nu \cdot \nabla g$ 

2. Green's second identity:

$$\int_{K} f \Delta g - (\Delta f) g \, dx = \int_{\partial K} \left( f \frac{\partial g}{\partial \nu} - g \frac{\partial f}{\partial \nu} \right) \, dS$$

**Exercise 2.4** Let  $\Omega \subseteq \mathbb{R}^d$  open, let  $f:\Omega \to \mathbb{R}$  be continuous. Prove that if  $\int_B f(x) \ dx = 0$ , then  $u \equiv 0$  in  $\Omega$ .

**Theorem 2.5** (Fundamential Lemma of Calculus of Variations) Let  $\Omega \subseteq \mathbb{R}^d$  open, let  $f \in L^1(\Omega)$ . If  $\int_B f(x) \ dx = 0$  for all  $x \in B_r(x) \subseteq \Omega$ , then f(x) = 0 a.e. (almost everywhere)  $x \in \Omega$ .

**Remark 2.6** (Solving Laplace Equation)  $-\Delta u = 0$  in  $\mathbb{R}^d$ . Consider the case when u is radial, i.e.  $u(x) = v(|x|), v : \mathbb{R} \to \mathbb{R}$ . Denote r = |x|, then

$$\frac{\partial r}{\partial x} = \frac{\partial}{\partial x_i} \left( \sqrt{x_1^2 + \dots + x_d^2} \right) = \frac{2x_i}{2\sqrt{x_1^2 + \dots + x_d^2}} = \frac{x_i}{r}$$

Then

$$\begin{split} \partial_{x_i} u &= \partial_{x_i} v = (\partial_r v) \frac{\partial r}{\partial x_i} = v'(r) \frac{x_i}{r} \\ \partial_{x_i}^2 u &= \partial_{x_i} \left( v(r)' \frac{x_i}{r} \right) = (\partial_{x_i} v(r)') \frac{x_i}{r} + v'(r) \partial_{x_i} \left( \frac{x_i}{r} \right) \\ &= (\partial_r v'(r)) \left( \frac{dr}{\partial_{x_i}} \right) \frac{x_i}{r} + v'(r) \left( \frac{1}{r} - \frac{x_i}{r^2} (\partial_{x_i} r) \right) = v'(r) \frac{x_i^2}{r^2} + v'r(r) \left( \frac{1}{r} - \frac{x_i^2}{r^3} \right) \end{split}$$

So we have  $\Delta u = \left(\sum_{i=1}^d d_{x_i}^2\right) u = v''(r) + v'(r)(\frac{d}{r} - \frac{1}{r})$ Thus  $\Delta u = v'(r) + v(r)\frac{d-1}{r}$ . We consider  $d \ge 2$ . Laplace operator  $\Delta u = 0$  now becomes  $v''(r) + v'(r)\frac{d-1}{r} = 0$ 

$$\Rightarrow \log(v(r))' = \frac{v'(r)}{v(r)} = -\frac{d-1}{r} = -(d-1)(\log r)' \text{ (recall } \log(f)' = \frac{f'}{f})$$

$$\Rightarrow v'(r) = \frac{1}{v^{d-2} + \text{const.}}$$

$$\begin{cases} \frac{const}{r^{d-2}} + constxx + const & , d \geqslant 3 \\ const \log(r) + constxxr + const & , d = 2 \end{cases}$$

**Definition 2.7** (Fundamential Solution of Laplace Equation)

$$\Phi(x) = \begin{cases} -\frac{1}{2\pi} \log(|x|), & d = 2\\ \frac{1}{(d-2)d|B_1|} \frac{1}{|x|^{d-2}}, & d \geqslant 3 \end{cases}$$

Where  $|B_1|$  is the Volume of the ball  $B_1(0) = B(0,1) \subseteq \mathbb{R}^d$ .

**Remark 2.8**  $\Delta\Phi(x) = 0$  for all  $x \in \mathbb{R}^d$  and  $x \neq 0$ .

#### 2.2Poisson-Equation

The Poisson-Equation is  $-\Delta u(x) = f(x)$  in  $\mathbb{R}^d$ . The explicit solution is given by

$$u(x) = (\Phi \star f)(x) = \int_{\mathbb{R}^d} \Phi(x - y) f(y) \ dy = \int_{\mathbb{R}^d} \Phi(y) f(x - y) \ dy$$

This can be heuristically justifyfied with

$$-\Delta(\Phi \star f) = (-\Delta\Phi) \star f = \delta_0 \star f = f$$

**Theorem 2.9** Assume  $f \in C_c^2(\mathbb{R}^d)$ . Then  $u = \Phi \star f$  satisfies that  $u \in C^2(\mathbb{R}^d)$  and  $-\Delta u(x) = f(x)$  for all  $x \in \mathbb{R}^d$ 

*Proof.* By definition we have

$$u(x) = \int_{\mathbb{R}^d} \Phi(y) f(x - y) \, dy.$$

First we check that u is continuous: Take  $x_k \to x_0$  in  $\mathbb{R}^d$ . We prove that  $u(x_n) \xrightarrow{n} u_0$ , i.e.

$$\lim_{n \to \infty} \int_{\mathbb{R}^d} \Phi(y) f(x_n - y) \ dy = \int_{\mathbb{R}^d} \Phi(y) f(x_0 - y) \ dy$$

This follows from the Dominated Convergence Theorem. More precisely:

$$\lim_{n \to \infty} \Phi(y) f(x_n - y) = \Phi(y) f(x_0 - y) \quad \text{for all } y \in \mathbb{R}^d \setminus \{0\}$$

and

$$|\Phi(y)f(x-y)| \leqslant ||f||_{L^{\infty}} \cdot \mathbb{1}(|y| \leqslant R) \cdot |\Phi(y)| \in L^{1}(\mathbb{R}^{d}, dy)$$

where R > 0 depends on  $\{x_n\}$  and supp(f) but independent of y. Now we compute the derivatives:

$$\begin{split} \partial_{x_i} u(x) &= \partial_{x_i} \int_{\mathbb{R}^d} \Phi(y) f(x-y) \ dy = \lim_{h \to 0} \int_{\mathbb{R}^d} \Phi(y) \frac{f(x+he_i-y) - f(x-y)}{h} \ dy \\ (\text{dom. conv.}) &= \int \Phi(y) \partial_{x_i} f(x-y) \ dy \\ \Rightarrow & D^{\alpha} u(x) = \int_{\mathbb{R}^d} \Phi(y) D_x^{\alpha} f(x-y) \ dy \quad \text{for all } |\alpha| \leqslant 2 \end{split}$$

 $D^{\alpha}u(x)$  is continuous, thus  $u\in C^2(\mathbb{R}^d)$ . Now we check if this solves the Poisson-Equation:

$$-\Delta u(x) = \int_{\mathbb{R}^d} \Phi(y)(-\Delta_x) f(x-y) \, dy = \int_{\mathbb{R}^d} \Phi(y)(-\Delta_y) f(x-y) \, dy$$
$$= \int_{\mathbb{R}^d \setminus B(0,\epsilon)} \Phi(y)(-\Delta_x) f(x-y) \, dy + \int_{B(0,\epsilon)} \Phi(y)(-\Delta_x) f(x-y) \, dy \quad (\epsilon > 0 \text{ small})$$

Now we come to the main part. We apply integration by parts (2.3):

$$\int_{\mathbb{R}^{d} \backslash B(0,\epsilon)} \Phi(y)(-\Delta_{y}) f(x-y) \, dy$$

$$= \int_{\mathbb{R}^{d} \backslash B(0,\epsilon)} (\nabla_{y} \Phi(y)) \cdot \nabla_{y} f(x-y) \, dy - \int_{\partial B(0,\epsilon)} \Phi(y) \cdot \frac{\partial f}{\partial \vec{n}} (x-y) \, dS(y)$$

$$= \int_{\mathbb{R}^{d} \backslash B(0,\epsilon)} \underbrace{(-\Delta_{y} \Phi(y))}_{=0} f(x-y) \, dy$$

$$+ \int_{\partial B(0,\epsilon)} \frac{\partial \Phi}{\partial \vec{n}} (y) f(x-y) \, dS(y) - \int_{\partial B(0,\epsilon)} \Phi(y) \frac{\partial f}{\partial \vec{n}} (x-y) \, dS(y)$$

We have that  $\nabla_y \Phi(y) = -\frac{1}{d|B_1|} \frac{y}{|y|^d}$  and  $\vec{n} = \frac{y}{|y|}$  in  $\partial B(0, \epsilon)$ . This leads to

$$\frac{\partial \Phi}{\partial \vec{n}} = \frac{1}{d|B_1|} \frac{1}{|y|^{d-1}} = \frac{1}{d|B_1|\epsilon^{d-1}} \quad \text{for } y \in \partial B(0, \epsilon)$$

Hence:

$$\int_{\partial B(0,\epsilon)} \frac{\partial \Phi}{\partial \vec{n}}(y) f(x-y) \ dS(y) = \frac{1}{d|B_1|\epsilon^{d-1}} \int_{\partial B(0,\epsilon)} f(x-y) \ dS(y)$$
$$= \int_{\partial B(0,\epsilon)} f(x-y) \ dS(y) = \int_{\partial B(x,\epsilon)} f(y) \ dS(y) \xrightarrow{\epsilon \to 0} f(x)$$

We have to regard the following error terms:

$$\left| \int_{B(0,\epsilon)} \Phi(y) (-\Delta_y) f(x-y) \, dy \right| \leq \int_{B(0,\epsilon)} |\Phi(y)| \underbrace{\left| -\Delta_y f(x-y) \right|}_{\leq \|\Delta f\|_{L^{\infty}} \mathbb{1}(|y| \leq R)} \, dy$$

$$\leq \|\Delta f\|_{L^{\infty}} \int_{\mathbb{R}^d} \underbrace{\left| \Phi(y) |\mathbb{1}(|y| \leq R) \right|}_{L^1(\mathbb{R}^d)} \mathbb{1}(|y| \leq \epsilon) \xrightarrow{\epsilon \to 0} 0$$

Where R > 0 depends on x and the support of f but is independent of y.

$$\bullet \left| \int_{\partial B(0,\epsilon)} \Phi(y) \frac{\partial f}{\partial \vec{n}}(x-y) \ dS(y) \right| \leq \|\nabla f\|_{L^{\infty}} \int_{\partial B(0,\epsilon)} |\Phi(y)| \ dy$$

$$\leq \begin{cases} const \cdot \epsilon |\log \epsilon| \to 0, & d = 2\\ const \cdot \epsilon \to 0, & d \geqslant 3 \end{cases}$$

Conclusion:  $-\Delta u(x) = f(x)$  for all  $x \in \mathbb{R}^d$  proved that  $u = \Phi \star f$  and  $f \in C^2_c(\mathbb{R}^d)$ .

Thus, if  $f \in C_c^2(\mathbb{R})$ , then  $u = \Phi \star f$  satisfies  $u \in C^2(\mathbb{R}^2)$  and  $-\Delta u(x) = f(x)$  for all  $x \in \mathbb{R}^d$ .

**Remark 2.10** The result holds for a much bigger class of functions f. For example if  $f \in C_c^1(\mathbb{R})$  we can easily extend the previous proof:

$$\partial_{x_i} u = \int_{\mathbb{R}^d} \Phi(y) \partial_{x_i} f(x - y) \, dy \in C(\mathbb{R}^d) \Rightarrow u \in C^1(\mathbb{R}^d)$$

Consequently:

$$\partial_{x_i}\partial_{x_j}u = \partial_{x_i}\int_{\mathbb{R}^d} \Phi(y)\partial_{x_j}f(x-y)\,dy = \int_{\mathbb{R}^d} \partial_{x_i}\Phi(y)\partial_{x_j}f(x-y)\,dy \in C(\mathbb{R}^d)$$

So we have  $u \in C^2(\mathbb{R}^d)$ . Now we can compute

$$\Delta u = \sum_{i=1}^{d} \int_{\mathbb{R}^d} \partial_{x_i} \Phi(y) \partial_{x_i} f(x-y) \, dy \stackrel{(IBP)}{=} f(x).$$

Exercise 2.11 Extend this to more general functions!

## 2.3 Equations in general domains

**Theorem 2.12** (Mean Value Theorem for Harmonic Functions) Let  $\Omega \subseteq \mathbb{R}$  be open, let  $u \in C^2(\Omega)$  and  $\Delta u = 0$  in  $\Omega$ . Then

$$u(x) = \int_{B(x,r)} u = \int_{\partial B(x,r)} u$$
 for all  $x \in \Omega, B(x,r) \subseteq \Omega$ 

*Proof.* Consider all r > 0 s.t.  $B(x, r) \subseteq \Omega$ ,

$$f(r) = \int_{\partial B(x,r)} u$$

We need to prove that f(r) is independent of r. When it is done, then we immediately obtain

$$f(r) = \lim_{t \to 0} f(t) = u(x)$$

as u is continuous. To prove that, consider

$$f'(r) = \frac{d}{dr} \left( \int_{\partial B(0,r)} u(x+y) \, dS(y) \right)$$

$$= \frac{d}{dr} \left( \int_{\partial B(0,1)} u(x+rz) \, dS(z) \right)$$

$$(\text{dom. convergence}) = \int_{\partial B(0,1)} \frac{d}{dr} [u(x+rz)] \, dS(z)$$

$$= \int_{\partial B(0,1)} \nabla u(x+rz) z \, dS(z)$$

$$= \int_{\partial B(x,r)} \nabla u(y) \frac{y-x}{r} \, dS(y)$$

$$= \frac{1}{|B(x,r)|_{\mathbb{R}^d}} \int_{\partial B(x,r)} \nabla \cdot u(y) \cdot \vec{n_y} \, dS(y)$$

$$(\text{Gauss-Green 2.2}) = \frac{1}{|B(x,r)|_{\mathbb{R}^d}} \int_{B(x,r)} \underbrace{(\Delta u)(y)}_{=0} \, dy = 0$$

**Exercise 2.13** In 1D:  $\Delta u = 0 \Leftrightarrow u'' = 0 \Leftrightarrow u(x) = ax + b$  (Linear Equation)

**Remark 2.14** Recall the polar decomposition. Let  $x \in \mathbb{R}^d$ , x = (r, w), r = |x| > 0,  $\omega \in S^{d-1}$ , then

$$\int_{B(0,r)} g(y) \, dy = \int_0^r \left( \int_{B(0,r)} g(y) \, dS(y) \right) dr$$

**Remark 2.15** We already proved that for u harmonic we have  $u(x) = f_{\partial B(x,r)} u \, dy$ . Now we have

$$\int_{B(x,r)} u(y) \, dy = \int_{B(0,r)} u(x+y) \, dy$$
(Pol. decomposition) 
$$= \int_0^r \left( \int_{\partial B(0,s)} u(x+y) \, dS(y) \right) ds$$

$$= \int_0^r \left( \int_{\partial B(x,s)} u(y) \, dS(y) \right) ds$$
(Mean value property) 
$$= \int_0^r \left( |\partial B(x,s)| \, u(x) \right) ds = |B(x,r)| \, u(x)$$

This implies

$$\oint_{B(x,r)} u(y) \, dy = u(x) \quad \text{for any } B(x,r) \subseteq \Omega.$$

**Remark 2.16** The reverse direction is also correct, namely if  $u \in C^2(\Omega)$  and

$$u(x) = \int_{B(x,r)} u(y) \, dy = \int_{\partial B(x,r)} u(y) \, dy \quad \text{for all } B(x,r) \subseteq \Omega,$$

then u is harmonic, i.e.  $\Delta u = 0$  in  $\Omega$ . (The proof is exactly like before)

**Theorem 2.17** (Maximum Principle) Let  $\Omega \subseteq \mathbb{R}^d$  be open, let  $u \in C^2(\Omega) \cap C(\bar{\Omega})$ ,  $\Delta u = 0$  in  $\Omega$ . Then

- a)  $\max_{x \in \bar{\Omega}} u(x) = \max_{x \in \partial \Omega} u(x)$
- b) Assume that  $\Omega$  is connected. Then if there is a  $x_0 \in \Omega$  s.t.  $u(x_0) = \max_{x \in \bar{\Omega}} u(x)$ , then  $u \equiv const.$  in  $\Omega$ .

*Proof.* Given  $U \subseteq \mathbb{R}^d$  open, we can write  $U = \bigcup_i U_i$ , where  $U_i$  is open and connected.

- b) Assume that  $\Omega$  is connected and there is a  $x_0 \in \Omega$  s.t.  $u(x_0) = \sup_{y \in \Omega} u(x)$ . Define  $U = \{x \in \Omega \mid u(x) = u(x_0)\} = u^{-1}(u(x_0))$ . U is closed since u is continuous. Moreover, U is open by the mean-value theorem. I.e. for all  $x \in U$  there is a r > 0 s.t.  $B(x,r) \subseteq U \subseteq \Omega$ . Since U is connected we get  $U = \Omega$ , so u is constant in  $\Omega$ . On the other hand, if there is no  $x_0 \in \Omega$  s.t.  $u(x_0) = \sup_{x \in \Omega} w$  we have  $\forall x_0 \in \Omega : u(x) < \sup_{x \in \overline{\Omega}} u(x) = \sup_{x \in \partial \Omega} u(x)$
- a) Given  $\Omega \subseteq \mathbb{R}^d$  open, we can write  $\Omega = \bigcup_i \Omega_i$ , where  $\Omega_i$  is open and connected. By b) we have

$$\sup_{x \in \bar{\Omega}_i} u(x) = \sup_{x \in \partial \Omega_i} u(x), \quad \forall i$$

So we can conclude

$$\sup_{x \in \bar{\Omega}} u(x) = \sup_{x \in \partial\Omega} u(x).$$

**Definition 2.18** • If  $\Omega \subseteq \mathbb{R}^d$  is open,  $u \in C^2(\Omega)$ , then u is called *sub-harmonic* if  $\Delta u \ge 0$  in  $\Omega$ .

• If  $\Delta u \leq 0$ , then u is called *super-harmonic*.

**Exercise 2.19** (E 1.4) Let  $\Omega \subseteq \mathbb{R}^d$  be open and  $u \in C^2(\Omega)$  be subharmonic.

a) Prove that u satisfies the Mean Value Inequality

$$\oint_{\partial B(x,r)} u(y) \, dS(y) \geqslant \oint_{B(x,r)} u(y) \, dy \geqslant u(x)$$

for all  $B(x,r) \subseteq \mathbb{R}^d$ .

- b) Assume further that  $\Omega$  is connected and  $u \in C(\bar{\Omega})$ . Prove that u satisfies the strong maximum principle, namely either
  - u is constant in  $\Omega$ , or
  - $\sup_{y \in \partial \Omega} u(y) > u(x)$  for all  $x \in \Omega$ .

My Solution. a) Let  $f(r) = \int_{\partial B(x,r)} u(y) dS(y)$ , then we have

$$\partial_{r} f(r) = \partial_{r} \oint_{\partial B(x,r)} u(y) \, dS(y)$$
(Dom. Convergence) 
$$= \oint_{\partial B(x,r)} \partial_{r} u(y) \, dS(y)$$

$$= \oint_{\partial B(0,1)} \partial_{r} u(x+yr) \, dS(y)$$

$$= \oint_{\partial B(0,1)} \nabla u(x+yr) \cdot y \, dS(y)$$

$$= \oint_{\partial B(x,r)} \nabla u(y) \cdot \frac{y-x}{r} \, dS(y)$$

$$= \oint_{\partial B(x,r)} \nabla u(y) \cdot \vec{n}_{y} \, dS(y)$$
(Gauss-Green) 
$$= \oint_{B(x,r)} \operatorname{div}(\nabla u(y)) \, dS(y)$$

$$= \oint_{B(x,r)} \underbrace{\Delta u(y)}_{\geqslant 0} \, dS(y) \geqslant 0$$

So we can conclude that

$$\oint_{\partial B(x,r)} u(y) \, dS(y) = f(r) \geqslant \lim_{r \to 0} f(r) = u(x).$$

Now regard

$$\int_{B(x,r)} u(y) \, dy = \int_0^r \left( \int_{\partial B(x,r)} u(y) \, dS(y) \right) ds$$

$$= \int_0^r \left( |\partial B(x,r)| \int_{\partial B(x,r)} u(y) \, dS(y) \right) ds$$

$$\geqslant \int_0^r |\partial B(x,r)| \cdot u(x) \, dS(y)$$

$$= u(x) \int_0^r |\partial B(x,r)| \, dS(y) = u(x) |B(x,r)|.$$

Thus we have

$$u(x) \leqslant \int_{B(x,r)} u(y)dy.$$

Finally, lets regard

$$\int_{B(x,r)} u(y) \, dy = \int_0^r \left( |\partial B(x,s)| \oint_{\partial B(x,s)} u(y) \, dS(y) \right) \, ds$$

$$(\partial_r f(r) \geqslant 0) \qquad \leqslant \int_0^r \left( |\partial B(x,s)| \oint_{\partial B(x,r)} u(y) \, dS(y) \right) \, ds$$

$$= \oint_{\partial B(x,r)} u(y) \, dS(y) \int_0^r |\partial B(x,s)| \, ds$$

$$= \oint_{\partial B(x,r)} u(y) \, dS(y) \cdot |B(x,s)|$$

and we conclude

$$\int_{B(x,r)} u(y) \, dy \leqslant \int_{\partial B(x,r)} u(y) \, dS(y).$$

b) Let  $x_0 \in \Omega$  s.t.  $u(x_0) = \sup_{x \in \Omega} u(x)$ . Now,

$$\sup_{x \in \Omega} u(x) = u(x_0) \leqslant \int_{\partial B(x_0, r)} u(y) \, dy$$
$$\leqslant \int_{\partial B(x_0, r)} \sup_{x \in \Omega} u(x) \, dy = \sup_{x \in \Omega} u(x)$$

Since u is continuous we get  $u(y) = u(x_0)$  for all  $y \in B(x_0, r)$ , so u is constant.

**Definition 2.20** The *Poisson Equation* for given f, g on a bounded set is:

$$\begin{cases}
-\Delta u = f, & \text{in } \Omega \\
u = g, & \text{on } \partial\Omega
\end{cases}$$

**Theorem 2.21** (Uniqueness) Let  $\Omega \subseteq \mathbb{R}^d$  be bounded, open and connected. Let  $f \in C(\Omega), g \in C(\partial\Omega)$ . Then there exists at most one solution  $u \in C^2(\Omega) \cap C(\bar{\Omega})$ , s.t.

$$\begin{cases} -\Delta u = f, & \text{in } \Omega \\ u = g, & \text{on } \partial \Omega \end{cases}$$

*Proof.* Assume that we have two solutions  $u_1$  and  $u_2$ . Then  $u := u_1 - u_2$  is a solution to

$$\begin{cases} -\Delta u = 0, & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

By the maximum principle, we know that u=0 in  $\Omega$ . More precisely, by the maximum principle we have  $\forall x \in \Omega$ 

$$\sup_{x \in \Omega} u(x) \leqslant \sup_{x \in \partial \Omega} u(x) = 0 \quad \Rightarrow \quad u(x) \leqslant 0$$

Since -u satisfies the same property we have  $\forall x \in \Omega$ :

$$\sup_{x \in \Omega} (-u(x)) \leqslant \sup_{x \in \partial \Omega} (-u(x)) = 0 \quad \Rightarrow \quad -u(x) \leqslant 0 \quad \Rightarrow \quad u(x) \geqslant 0$$

So we geht u(x) = 0 in  $\Omega$ .

**Exercise 2.22** (Bonus 1) Let  $\Omega$  be open, connected and bounded in  $\mathbb{R}^d$ . Let  $u \in C^2(\Omega) \cap C(\bar{\Omega})$  s.t.

$$\begin{cases} \Delta u = 0, & \text{in } \Omega \\ u = g, & \text{on } \partial \Omega \end{cases}$$

Prove that

a) If  $g \ge 0$  on  $\partial \Omega$ , then  $u \ge 0$  in  $\Omega$ .

b) If  $g \ge 0$  on  $\partial \Omega$  and  $g \ne 0$ , then u > 0 in  $\Omega$ .

**Lemma 2.23** (Estimates for derivatives) If u is harmonic in  $\Omega \subseteq \mathbb{R}^d$ ,  $\alpha \in \mathbb{N}_0^d$ ,  $|\alpha| = N$  and  $B(x_0, r) \subseteq \Omega$ , then

$$|D^{\alpha}u(x)| \le \frac{(c_d N)^N}{r^{d+N}} \int_{B(x,r)} |u| \, dy$$

*Proof.* Induction: Assume  $|\alpha| = N - 1$ , Take  $|\alpha| = N$ 

$$|D^{\alpha}u(x_0)| \le \frac{|S_1|}{|B_1|\frac{r}{N}} \|D^{\beta}u\|_{L^{\infty}(B(x_0,\frac{r}{n}))}, \quad D^{\alpha}u = \partial_{x_i}(D^{\beta}u)_{|\beta|=N-1}$$

Note:  $x \in B(x_0, \frac{r}{N})$ , so  $B(x, \frac{r(N-1)}{N}) \subseteq B(x_0, r)$ . By the induction hypothesis:

$$||D^{\beta}u||_{L^{\infty}(B(x_{0},\frac{r}{N}))} \leq \frac{[c_{d}(N-1)]^{N-1}}{[r^{\frac{(N-1)}{N}}]^{d+N-1}} \int_{B(x_{0},r)} |u| \, dy$$

The conclusion is:

$$|D^{\alpha}u(x_{0})| \leqslant \frac{|S_{1}|}{|B_{1}|\frac{r}{N}} \frac{[c_{d}(N-1)]^{N-1}}{(r\frac{N-1}{N^{d}})^{d+N-1}} \int_{B(x_{0},r)} |u| \, dy$$

$$= \frac{|S_{1}|}{|\beta_{1}|} \frac{c_{d}^{N-1}}{(\frac{r}{N})^{d+N}} \frac{1}{(N-1)^{d}} \int_{B(x_{0},r)} |u| \, dy$$

$$= \frac{|S_{1}|}{|\beta_{1}|} \frac{c_{d}^{N-1}}{(\frac{r}{N})^{d+N}} \frac{1}{N^{d}} \left(\frac{N}{N-1}\right)^{d} \int_{B(x_{0},r)} |u| \, dy$$

$$\leqslant \frac{2^{d}|S_{1}|}{|B_{1}|} \frac{c_{d}^{N-1}N^{N}}{r^{d+N}} \int_{B(x_{0},r)} |u| \, dy \quad \text{if } c_{d} \geqslant \frac{2^{d}|S_{1}|}{|B_{1}|}$$

**Theorem 2.24** (Regularity) Let  $\Omega$  be open in  $\mathbb{R}^d$ . Let  $u \in C(\Omega)$  satisfy  $u(x) = \int_{\partial B} u \, dy$  for any  $x \in B(x,r) \subseteq \Omega$ . Then u is a harmonic function in  $\Omega$ . Moreover,  $u \in C^{\infty}(\Omega)$  and u is analytic in  $\Omega$ .

**Exercise 2.25** (E 1.1: Proof the Gauss–Green formula) Let  $f := (f_i)_1^d \in C^1(\mathbb{R}^d, \mathbb{R}^d)$ . Prove that for every open ball  $B(y, r) \subseteq \mathbb{R}^d$  we have

$$\int_{\partial B(y,r)} f(y) \cdot \nu_y \, dS(y) = \int_{B(y,r)} \operatorname{div} f \, dx.$$

Here  $\nu_y$  is the outward unit normal vector and dS is the surface measure on the sphere.

Solution. We proof this in d=3. Let  $f \in C^1(\mathbb{R}^3)$ 

$$\int_{B(0,1)} \partial_{x_3} f \, dx = \int_{\partial B(0,1)} f x_3 \, dS(x), \quad x = (x_1, x_2, x_3) \in \mathbb{R}^3, \vec{n} = \frac{x}{|x|} \text{ on } \partial B(0,1)$$

$$B(0,1) = \{x_1^2 + x_2^2 + x_3^2 \le 1\}$$
  
=  $\{x_1^2 + x_2^2 \le 1 - \sqrt{1 - x_1^2 - x_2^2} \le x_3 \le \sqrt{1 - x_1^2 - x_2^2}\}$ 

Then:

$$\int_{B(0,1)} \partial_{x_3} f \, dx = \int_{x_1^2 + x_2^2 \le 1} \left( \int_{-\sqrt{1 - x_1^2 - x_2^2} \le x_3 \le \sqrt{1 - x_1^2 - x_2^2}} \partial_{x_3} f \, dx_3 \right) \, dx_1 \, dx_2$$

$$= \int_{x_1^2 + x_2^2 \le 1} \left[ f(x_1, x_2, \sqrt{1 - x_1^2 - x_2^2}) - f(x_1, x_2, -\sqrt{1 - x_1^2 - x_2^2}) \right] \, dx_1 \, dx_2$$

Lets take polar coordinates in 2D:

$$x_1 = r \cos \phi$$
  $r > 0, \phi \in [0, 2\pi)$   
 $x_2 = r \sin \phi$   $\det \frac{\partial (x_1, x_2)}{\partial (r, \phi)} = r$ 

$$(\star) = \int_0^1 \int_0^{2\pi} [f(r\cos\phi, r\sin\phi, r) - f(r\cos\theta, r\sin\phi, -r)] r \, dr \, d\phi$$

On the other hand:

$$\int_{\partial B(0,1)} fx_3 \, dS$$

The polar coordinates in 3D are:

$$x_1 = r \cos \phi \sin \theta$$
  $r > 0, \phi \in (0, 2\pi), \theta \in (0, \pi)$   
 $x_2 = r \sin \phi \sin \theta$  
$$\det \frac{\partial x_1, x_2, x_3}{\partial (r, \phi, t)} = r^2 \sin \theta$$

$$x_3 = \cos \theta$$

Then:

$$(\star\star) = \int_0^{2\pi} \int_0^{\pi} f(\cos\phi\sin\theta, \sin\phi\sin\theta, \cos\theta) \sin\theta\cos\theta \, d\theta \, d\phi$$

$$= \int_0^{2\pi} \left( \int_0^{\frac{\pi}{2}} + \int_{\frac{\pi}{2}}^{\pi} d\theta \right) \, d\phi$$

$$(r = \sin\theta) = \int_0^{2\pi} \int_0^1 f(r\cos\phi, r\sin\phi, \sqrt{1 - r^2}) r \, dr \, d\phi$$

$$- f(r\cos\phi, r\sin\phi, -\sqrt{1 - r^2}) r \, dr \, d\phi$$

**Exercise 2.26** (E 1.2) Let  $u \in C(\mathbb{R}^d)$  and  $\int_{B(x,r)} u \, dy = 0$  for every open ball  $B(x,r) \subseteq \mathbb{R}^d$ . Show that u(x) = 0 for all  $x \in \mathbb{R}^d$ .

My Solution. Assume there is a  $x_0 \in \mathbb{R}^d$  s.t. w.l.o.g.  $u(x_0) > 0$ . Since u is continous there is a ball  $B(x_0, r)$  s.t.  $u(y) > \frac{u(x_0)}{2}$  for all  $y \in B(x_0, r)$ . But then we get

$$\int_{B(x_0,r)} u(y) \, dy \geqslant \int_{B(x_0,r)} \frac{u(x_0)}{2} \, dy = \frac{u(x_0)}{2} \, |B(x_0,r)| > 0.$$

**Exercise 2.27** (E 1.3) Let  $f \in C_c^1(\mathbb{R}^d)$  with  $d \ge 2$  and  $u(x) := (\Phi \star f)(x)$ . Prove that  $u \in C^2(\mathbb{R}^2)$  and  $-\Delta u(x) = f(x)$  for all  $x \in \mathbb{R}^d$  (2.9 was the same for  $f \in C_1(\mathbb{R})$ )

**Theorem 2.28** (Liouville's Theorem) If  $u \in C^2(\mathbb{R}^d)$  is harmonic and bounded, then u = const.

*Proof.* By the bound of the derivative 2.23 we have

$$\begin{aligned} |\partial_{x_i} u(x_0)| &\leqslant \frac{c_d}{r^{d+1}} \int_{B(x_0, r)} |u| \, dy \quad \forall x_0 \in \mathbb{R}^d \, \forall r > 0 \\ &\leqslant \|u\|_{L^{\infty}} \frac{c_d}{r^{d+1}} |B(x_0, r)| \\ &\leqslant \|u\|_{L^{\infty}} \frac{c_d}{r} \xrightarrow{r \to \infty} 0 \end{aligned}$$

Thus  $\partial_{x_i} u = 0$  for all  $i = 1, 2, \dots d$  and u = const. in  $\mathbb{R}^d$ 

**Theorem 2.29** (Uniqueness of solutions to Poisson Equation in  $\mathbb{R}^d$ ) If  $u \in C^2(\mathbb{R}^d)$  is a bounded function and satisfies  $-\Delta u = f$  in  $\mathbb{R}^d$  where  $f \in C_c^2(\mathbb{R}^d)$ , then we have

$$u(x) = \Phi \star f(x) + C = \int_{\mathbb{R}^d} \Phi(x - y) f(y) \, dy + C \quad \forall x \in \mathbb{R}^d$$

where C is a constant and  $\Phi$  is the fundamental solution of the Laplace equation in  $\mathbb{R}^d$ .

*Proof.* If we can prove that v is bounded, then v = const.. We first need to show that  $\Phi \star f$  is bounded.

$$\Phi = \Phi_1 + \Phi_2 = \Phi\mathbb{1}(|x| \leqslant 1) + \Phi(|x| \geqslant 1)$$
$$\Phi \star f = \Phi_1 \star f + \Phi_2 \star f$$

We have  $\Phi_1 \star f \in L^1(\mathbb{R}^d)$  and  $\Phi_2 \star f$  is bounded since  $\Phi \to 0$  as  $|x| \to \infty$  in  $d \ge 3$ .

**Exercise 2.30** (Hanack's inequality) Let  $u \in C^2(\mathbb{R}^d)$  be harmonic and non-negative. Prove that for all open, bounded and connected  $\Omega \subseteq \mathbb{R}^d$ , we have

$$\sup_{x \in \Omega} u(x) \leqslant C_{\Omega} \inf_{x \in \Omega} u(x),$$

where  $C_{\infty}$  is a finite constant depending only on  $\Omega$ .

*Proof.* (Exercise) Hint:  $\Omega = B(x, r)$ . General case cover  $\Omega$  by finitely many balls, one ball is inside  $\Omega$ .

**Exercise 2.31** (E 3.1 Lebesgue Differentiation Theorem) Let  $f \in L^1_{loc}(\mathbb{R}^d)$ . Prove that that for almost every  $x \in \mathbb{R}^d$ :

$$\oint_{B(x,r)} |f(x) - f(y)| \, dy \xrightarrow{r \to 0} 0$$

*Proof.* Clearly the same result holds with  $\mathbb{R}^d \leadsto \Omega \subseteq \mathbb{R}^d$  open. Also it suffices to consider  $f \in L^1(\mathbb{R}^d)$ . From the last time discussion, by a density argument there exists  $r_n \to 0$  s.t.

$$\int_{B(x,r_n)} |f(y) - f(x)| \, dy = 0$$

for a.e.  $x \in \mathbb{R}^d$ . We prove that for all  $\epsilon > 0$ , te set  $A_{\epsilon} = \{x \in \mathbb{R}^d \mid \limsup_{r \to 0} f_{B(x,r)} \mid f(y) - f(x) \mid dy > \epsilon\}$  has measure 0. This will imply that

$$\bigcup_{n=1}^{\infty} A_{\frac{1}{n}} = \left\{ x \in \mathbb{R}^d \mid \limsup_{r \to 0} \int_{B(x,r)} |f(y) - f(x)| \, dy > 0 \right\}$$

has measure 0, which is what wie want to show. First, we show that  $|A_{\epsilon}| = 0$ : Take  $\{f_n\} \subseteq C_c^{\infty}, f_n \to f \text{ in } L^1(\mathbb{R}^d)$ . By the triangle inequality:

$$|f(y) - f(x)| \le |f(y) - f_n(y)| + |f_n(y) - f_n(x)| + |f_n(x) - f(x)|$$

So we get

$$\oint_{B(x,r)} |f(y) - f(x)| dy$$

$$\leqslant \oint_{B(x,r)} |f(y) - f_n(y)| dy + \oint_{B(x,r)} |f_n(y) - f_n(x)| + |f_n(x) - f(x)|$$

$$\Rightarrow \lim_{r \to 0} \sup \dots \leqslant \limsup_{r \to 0} (\dots) + 0 + |f_n(x) - f(x)|$$

Thus, for all  $x \in A_{\epsilon}$ , then:

$$\limsup_{r \to 0} \int_{B(x,r)} |f_n(y) - f(y)| \, dy + |f_n(x) - f(x)| > 2\epsilon$$

Observation: If  $a, b \ge 0$ ,  $a + b > 2\epsilon$  then either  $a > \epsilon$  or  $b > \epsilon$ . Therefore  $A_{\epsilon} \subseteq (S_{n,\epsilon} \bigcup \tilde{S}_{n,\epsilon})$ , where

$$S_{n,\epsilon} = \{x \mid |f_n(x) - f(x)| > \epsilon\}$$

$$\tilde{S}_{n,\epsilon} = \{x \mid \limsup_{r \to 0} \int_{B(x,r)} |f_n(y) - f(y)| \, dy > \epsilon\}$$

Consequently:  $|A_{\epsilon}| \leq |S_{n,\epsilon}| + |\tilde{S}_{n,\epsilon}|$  for all  $n \geq 1$ . By the Markov / Chebyshev inequality:

$$|S_{n,\epsilon}| \leqslant \int_{S_{n,\epsilon}} \frac{|f_n(x) - f(x)|}{\epsilon} \, dx = \int_{\mathbb{R}^d} \frac{|f_n(x) - f(x)|}{\epsilon} \, dx = \frac{\|f_n - f\|_{L^1}}{\epsilon}$$

We want to prove a simpler bound for  $\tilde{S}_{n\epsilon}$ . For all  $x \in \tilde{S}_{n\epsilon}$ :

$$\limsup_{r \to 0} \int_{B(x,r)} |f_n(x) - f(y)| \, dy > \epsilon$$

So there is a  $r_x \in (0,1)$  s.t.

$$\int_{B(x,r_x)=B_x} |f_n(y) - f(y)| \, dy > \epsilon$$

Thus  $\tilde{S}_{n\epsilon} \subseteq \left(\bigcup_{x \in \tilde{S}_{n,\epsilon}} B_x\right)$ .

**Lemma 2.32** (Vitali Covering) If F is a collection of balls in  $\mathbb{R}^d$  with bounded radius, then there exists a sub-collection  $G \subseteq F$  s.t.

• G has disjoint balls

•  $\bigcup_{B \in F} B \subseteq \bigcup_{B \in G} 5B, 5B(x,r) = B(x,5r)$ 

**Remark 2.33** The condition of the boundedness of the radius is necessary. Otherwise, consider  $\{B(0,n)\}_{n=1}^{\infty}$ 

Here consider  $F=\{B_x\}_{x\in \tilde{S}_{n\epsilon}}$ . With the vitali covering leamm there is a  $G\subseteq F$  s.t. G contains disjoint balls and:

$$\tilde{S}_{n,\epsilon} \subseteq \bigcup_{B \in F} B \subseteq \bigcup_{B \in G} 5B$$

So we get

$$|\tilde{S}_{n,\epsilon}| \leqslant |\bigcup_{B \in G} 5B| \leqslant \sum_{B \in G} |5B| = \sum_{B \in G} 5^d |B|$$

On the other hand, for all  $B \in G \subseteq F$ :

$$\oint_{B} |f_{n}(y) - f(y)| \, dy > \epsilon \Rightarrow \int_{B} |f_{n} - f| > \epsilon |B|$$

This implies:

$$\sup_{B \in G} \int_{B} |f_n - f| > \epsilon \sum_{B \in G} |B|$$

Since balls in G are disjoint:

$$\int_{\mathbb{R}^d} \geqslant \int_{\bigcup_{B \in G}} |f_n - f| \, dy > \epsilon \sum_{B \in G} |B| \geqslant \frac{\epsilon}{5^d} |\tilde{S}_{n,\epsilon}|$$

So

$$|\tilde{S}_{n\epsilon}| \leqslant \frac{5^d}{\epsilon} ||f_n - f||_{L^1}$$

In summary:

$$|A_{\epsilon}| \leqslant |S_{n,\epsilon}| + |\tilde{S}_{n,\epsilon}| \leqslant \frac{5^d + 1}{\epsilon} ||f_n - f||_{L^1} \to 0$$

as  $n \to \infty$ . So  $|A_{\epsilon}| = 0$  for all  $\epsilon > 0$ 

- **Remark 2.34** 1. The proof can be done by using the Besicovitch covering lemma: For all  $E \subseteq \mathbb{R}^d$  s.t. E is bounded. Let F = collection of balls s.t. for all  $x \in E$  there is a  $B_x \in F$  s.t. x is the center of  $B_x$ . There is a sub-collection  $G \subseteq F$  s.t.
  - $E \subseteq \bigcup_{B \in G} B$
  - Any point in E belongs to at most  $C_d$  balls in  $C_T$  ( $C_d$  depends only on  $\mathbb{R}^d$ ), i.e.

$$\mathbb{1}_{E}(x) \leqslant \sum_{B \in G} \mathbb{1}_{B}(x) \leqslant C_{d} \mathbb{1}_{E}(x) \forall x$$

2. By a simpler argument we can prove the weak  $L^1$ -estimate:

$$\{x \mid f^{\star}(x) > \epsilon\} \leqslant \frac{c_d}{\epsilon} ||f||_{L^1(\mathbb{R}^d)}$$

(Hardy-Littlewood maximal function)

Exercise 2.35 (E 3.3)  $f \in C_c^{\infty}(\mathbb{R}^d)$ . Prove  $|\hat{f}(k)| \leq \frac{C_N}{(1+|k|)^N}$ 

Solution. Since  $f \in C_c^{\infty}$  we have that  $D^{\alpha}f \in C_c^{\infty}$ . Recall

$$\widehat{D^{\alpha}f}(k) = (-2\pi i k)^{\alpha} \widehat{f}(k)$$

For example

$$\widehat{-\Delta f}(k) = |2\pi i k|^2 \hat{f}(k)$$
 (Induction)  $\leadsto \widehat{(-\Delta)^N} f(k) = |2\pi k|^{2N} \hat{f}(k)$ 

So we can conclude

$$\hat{f}(k) = \frac{\widehat{(-\Delta)^N} f(k)}{|2\pi k|^{2N}} \forall k \in \mathbb{R}^d$$

1. 
$$f \in C_c^{\infty} \subseteq L^1(\mathbb{R}^d) \Rightarrow \hat{f} \in L^{\infty}$$

2. 
$$(-\Delta)^N f \in C_c^{\infty} \subseteq L^1(\mathbb{R}^d) \Rightarrow \widehat{(-\Delta)^N} f \in L^{\infty}$$

Conclusion: 
$$\hat{f}(k) \leqslant \begin{cases} C & \forall k \\ \frac{C_N}{|k|^{2N}} & \forall k \end{cases}$$
 So  $\hat{f}(k) \leqslant \frac{C_N}{(1+|k|)^N}$ 

# Chapter 3

# Convolution, Fourier Transform and Distributions

## 3.1 Convolutions

**Definition 3.1** (Convolution) Let  $f, g : \mathbb{R}^d \to \mathbb{R}$  or  $\mathbb{C}$ .

$$(f \star g)(x) = \int_{\mathbb{R}^d} f(x - y)g(y) \, dy = \int_{\mathbb{R}^d} f(y)g(x - y) \, dy = (g \star f)(x)$$

Remark 3.2 (Properties of the Convolution)

- $f \star g = g \star f$
- $(f \star g) \star h = f \star (g \star h)$  (by Fubini)

**Theorem 3.3** (Young Inequality) If  $f \in L^1(\mathbb{R}^d)$  and  $g \in L^p(\mathbb{R}^d)$ , where  $1 \leq p \leq \infty$ , then  $f \star g \in L^p(\mathbb{R}^d)$  and

$$||f \star g||_{L^p} \leqslant ||f||_{L^1} ||g||_{L^p}.$$

More generally, if  $f \in L^p(\mathbb{R}^d), g \in L^q(\mathbb{R}^d)$ , then  $f \star g \in L^1(\mathbb{R}^d)$ ,

$$||f \star g||_{L^r} \le ||f||_{L^p} ||g||_{L^q},$$

where  $1 \leqslant p, q, r \leqslant \infty$ ,  $\frac{1}{p} + \frac{1}{q} = 1 + \frac{1}{r}$ .

*Proof.* Let  $f \in L^1, g \in L^p$ . With the Hölder Inequality we have:

$$\begin{split} |(f\star g)(x)| &= \left| \int_{\mathbb{R}^d} f(x-y)g(y) \, dy \right| \\ &\leqslant \left( \int_{\mathbb{R}^d} |f(x-y)| \, dy \right)^{\frac{1}{q}} \left( \int_{\mathbb{R}^d} |f(x-x)| |g(y)|^p \, dy \right)^{\frac{1}{p}} \\ &= \|f\|_{L^1}^{\frac{1}{q}} \left( \int_{\mathbb{R}^d} |f(x-x)| |g(y)|^p \, dy \right)^{\frac{1}{p}} \\ \|f\star g\|_{L^p}^p &= \int_{\mathbb{R}^d} |f\star g(x)|^p \, dx \\ &\leqslant \|f\|_{L^1}^{\frac{p}{q}} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} |f(x-y)| |g(y)|^p \, dy \, dx \\ &= \|f\|_{L^1}^{\frac{p}{q}+1} \|g\|_{L^p}^p \end{split}$$

So we have  $||f \star g||_{L^p} \leq ||f||_{L^1} ||g||_{L^p}$ 

**Theorem 3.4** (Smoothness of the Convolution) If  $f \in C_c^{\infty}(\mathbb{R}^d)$ ,  $g \in L^p(\mathbb{R}^d)$ ,  $1 \le p \le \infty$ . Then  $f \star g \in C^{\infty}(\mathbb{R})$  and

$$D^{\alpha}(f \star g) = (D^{\alpha}f) \star g$$

for all  $\alpha = (\alpha_1, \dots, \alpha_d), \alpha_i \in \{0, 1, 2, \dots\}$ 

*Proof.* First we note that  $x \mapsto (f \star g)$  is continous as  $x_n \to x$  in  $\mathbb{R}^d$  since

$$(f \star g)(x_n) = \int_{\mathbb{R}^d} f(x_n - y)g(y) \, dy \xrightarrow{\text{dom. conv.}} \int_{\mathbb{R}^d} f(x - y)g(y) \, dy = (f \star g)(x)$$

We can apply Dominated convergence because

$$f(x_n - y)g(y) \to f(x - y)g(y) \quad \forall y \text{ as } f \text{ is continuous and } x_n \to x$$

and

$$|f(x_n - y) \ g(y)| \le ||f||_{L^{\infty}} |g(y)| \ \mathbb{1}(|y| \le R) \in L^1(\mathbb{R}^d).$$

Where R>0 satisfies  $B(0,R) \supseteq \operatorname{supp} f + \operatorname{sup}_n |x_n|$ . Now we can compute the derivatives:

$$\partial_{x_i}(f \star g)(x) = \lim_{h \to 0} \frac{(f \star g)(x + he_i) - (f \star g)(x)}{h}$$

$$= \lim_{h \to 0} \int_{\mathbb{R}^d} \frac{f(x + he_i - y) - f(x - y)}{h} g(y) \, dy$$
(Dominated Convergence)
$$= \int_{\mathbb{R}^d} \lim_{h \to 0} \frac{f(x + he_i - y) - f(x - y)}{h} g(y) \, dy$$

$$= \int_{\mathbb{R}^d} (\partial_{x_i} f)(x - y) g(y) \, dy$$

We could apply Dominated Convergence since

$$\frac{f(x+he_i-y)-f(x-y)}{h}g(y) \xrightarrow{h\to 0} (\partial_{x_i}f)(x-y)g(y) \quad \text{as } f \in C^1$$

$$\left|\frac{f(x+he_i-y)-f(x-y)}{h}g(y)\right| \leqslant \|\partial_{x_i}f\|_{L^{\infty}}|g(y)| \ \mathbb{1}(|y| \leqslant R) \in L^1(\mathbb{R}^d)$$

where  $B(0,R) \supseteq \operatorname{supp}(f) + B(0,|x|+1)$  and  $\partial_{x_i}(f \star g) = (\partial_{x_i}f) \star g \in C(\mathbb{R}^d)$  since  $\partial_{x_i}f \in C_c^{\infty}(\mathbb{R}^d)$ . By induction we get  $D^{\alpha}(f \star g) = (D^{\alpha}f \star g) \in C(\mathbb{R}^d)$ .

**Remark 3.5** Question: Is there a f s.t.  $f \star g = g$  for all g? In fact there is no regular function f that solves this formally:

$$f \star g = g \Rightarrow \widehat{f \star g} = \hat{g} \Rightarrow \hat{f}\hat{g} = \hat{g} \Rightarrow \hat{f} = 1 \Rightarrow f \text{ is not a regular function!}$$

However, if f is the Dirac-Delta Distribution,  $f = \delta_0$  then  $\delta_0 \star g = g$  for all g. Formally:

$$\delta_0(x) = \begin{cases} 0 & x \neq 0 \\ \infty & x = 0 \\ \int \delta_0 = 1 \end{cases}$$

In fact, if  $f \in L^1(\mathbb{R}^d)$ ,  $\int f = 1$ ,  $f_{\epsilon}(x) = \epsilon^{-d} f(\epsilon^{-1} x)$ , then  $f_{\epsilon} \to \delta_0$  in an appropriate sense and  $f_{\epsilon} \star g \to g$  for all g nice enough.

**Theorem 3.6** (Approximation by convolution) Let  $f \in L^1(\mathbb{R}^d)$ ,  $\int f = 1$ ,  $f_{\epsilon}(x) = \epsilon^{-d} f(\frac{x}{\epsilon})$ . Then for all  $g \in L^p(\mathbb{R}^d)$ , where  $1 \leq p < \infty$ , then

$$f_{\epsilon} \star g \to g \quad \text{in } L^p(\mathbb{R}^d)$$

Proof.

Step 1: Let  $f, g \in C_c(\mathbb{R}^d)$ . Then

$$(f_{\epsilon} \star g)(x) - g(x) = \int_{\mathbb{R}^{d}} f_{\epsilon}(y)g(x - y) \, dy - g(x) \int_{\mathbb{R}^{d}} f_{\epsilon}(y) \, dy$$

$$= \int_{\mathbb{R}^{d}} f_{\epsilon}(y)g(x - y) \, dy - \int_{\mathbb{R}^{d}} f_{\epsilon}(y)g(x) \, dy$$

$$= \int_{\mathbb{R}^{d}} f_{\epsilon}(y)(g(x - y) - g(x)) \, dy$$

$$|(f_{\epsilon} \star g)(x) - g(x)| = \left| \int_{\mathbb{R}^{d}} f_{\epsilon}(y)(g(x - y) - g(x)) \, dy \right|$$

$$\leq \int_{\mathbb{R}^{d}} |f_{\epsilon}(y)||g(x - y) - g(x)| \, dy$$

$$\leq \int_{|y| \leq R_{\epsilon}} |f_{\epsilon}(y)||g(x - y) - g(x)| \, dy$$

$$\leq \left[ \sup_{|z| \leq R} |g(x - z) - g(x)| \right] \underbrace{\int_{|y| \leq R_{\epsilon}} |f_{\epsilon}(y)| \, dy}_{\leq \|f_{\epsilon}\|_{1,1} = \|f\|_{1,1}} \stackrel{\epsilon \to 0}{\longrightarrow} 0$$

We have Dominated Convergence since:

$$(f_{\epsilon} \star q)(x) - q(x) \to 0 \text{ as } \epsilon \to 0$$

and

$$|f_{\epsilon} \star g(x) - g(x)| \leqslant \|f\|_{L^{1}} \sup_{|z| \leqslant R_{\epsilon}} |g(x - z) - g(x)| \leqslant 2\|f\|_{1} \|g\|_{L^{\infty}} \mathbb{1}(|x| \leqslant R_{1}).$$

Where  $B(0, R_1) \supseteq \operatorname{supp}(g) + B(0, R_{\epsilon})$ , thus  $f_{\epsilon} \star g \to g$  in  $L^p(\mathbb{R}^d)$ . To remove the technical assumptions  $f, g \in C_c(\mathbb{R}^d)$ , then we use a density argument. We use the fact that  $C_c(\mathbb{R}^d)$  is dense in  $L^p(\mathbb{R}^d)$ ,  $1 \le p < \infty$ .

Step 2: Let  $g \in C_c(\mathbb{R}^d)$ ,  $g \in L^p(\mathbb{R}^d)$ . Then there is  $\{g_m\} \subseteq L^p(\mathbb{R}^d)$ ,  $g_m \to g$  in  $L^p(\mathbb{R}^d)$ . Then

$$||f_{\epsilon} \star g - g||_{L^{p}} \leq ||f_{\epsilon} \star (g - g_{m})||_{L^{p}} + ||f_{\epsilon} \star g_{m} - g_{m}||_{L^{p}} + ||g_{m} - g||_{L^{p}}$$

$$(Young) \leq ||f_{\epsilon}||_{L^{1}} ||g - g_{m}||_{L^{p}} + ||f_{\epsilon} \star g_{m} - g_{m}||_{L^{p}} + ||g_{m} - g||_{L^{p}}$$

$$\leq ||f||_{L^{1}} ||g - g_{m}||_{L^{p}} + ||f_{\epsilon} \star g_{m} - g_{m}||_{L^{p}} + ||g_{m} - g||_{L^{p}}$$

$$\leq (||f||_{L^{1}} + 1)||g - g_{m}||_{L^{p}} + ||f \star g_{m} - g_{m}||_{L^{p}}$$

So we get:

$$\begin{split} &\limsup_{\epsilon \to 0} \|f_{\epsilon} \star g - g\|_{L^p} \\ &\leqslant (\|f\|_{L^p} + 1) \|g - g_m\|_{L^p} + \underbrace{\limsup_{\epsilon \to 0} \|f_{\epsilon} \star g_m - g_m\|_{L^p}}_{0 \text{ by step 1.}} \xrightarrow{m \to \infty} 0. \end{split}$$

Step 3: Let  $f \in L^1(\mathbb{R}^d)$  and  $g \in L^p(\mathbb{R}^d)$ . Take  $\{f_m\} \subseteq C_c(\mathbb{R}^d)$ , s.t.

$$\begin{cases} F_m \to g \in L^1(\mathbb{R}) \text{ as } m \to \infty \\ \left\{ \int_{\mathbb{R}^d} F_m = 1 (\text{it is possible since } \int_{\mathbb{R}^d}) f = 1 \right\} \end{cases}$$
Define  $F_{m,\epsilon}(x) = \epsilon^{-d} F_m(\epsilon^{-1} x)$  (recall  $f_{\epsilon}(x) = \epsilon^{-d} f(\epsilon^{-1} x)$ ). Then:
$$f_{\epsilon} \star g - g = (f_{\epsilon} - F_{m,\epsilon}) \star g + F_{m,\epsilon} \star g - g$$

$$\Rightarrow \|f_{\epsilon} - g\|_{L^p} \leqslant \|f_{\epsilon} - F_{m,\epsilon} \star g\|_{L^p} + \|F_{m,\epsilon} \star g - g\|_{L^p}$$

$$\stackrel{\text{Young}}{\leqslant} \|f_{\epsilon} - F_{m,\epsilon}\|_{L^1} \|g\|_{L^p} = \|f - F_m\|_{L^1} \|g\|_{L^p}$$

$$\Rightarrow \limsup_{\epsilon \to 0} \|f_{\epsilon} \star g - g\|_{L^p} \leqslant \|f - F_m\|_{L^1} \|g\|_{L^p} = \|f - F_m\|_{L^1} \|g\|_{L^p}$$

**Lemma 3.7**  $C_c(\mathbb{R}^d)$  is dense in  $L^p(\mathbb{R}^d)$ ,  $1 \leq p < \infty$ 

*Proof.* For all  $g \in L^p(\mathbb{R}^d)$  there are step functions  $(g_m)_m$  and  $g_m \to g$  in  $L^p(\mathbb{R}^d)$ ,

$$g_m(x) = \sum_{\substack{\Omega \\ \text{finite sum} \\ \Omega \subset \mathbb{R}^d \text{measurable}}} \chi_{\Omega}(x) a_{\Omega}.$$

We can assume that  $\Omega$  is open and bounded and we want to approximate  $\chi_{\Omega}$  by  $C_c(\mathbb{R}^d)$ .

Lemma 3.8 (Urnson) Define

$$\Omega_{\epsilon} = \{ x \in \Omega \mid \operatorname{dist}(x, \partial \Omega) > \epsilon \}$$

Then there is a  $\eta_{\epsilon} \in C_c(\mathbb{R}^d)$  s.t.

$$\begin{cases} 0 \leqslant \eta(x) \leqslant 1 & \forall x \in \mathbb{R}^d \\ \eta_{\epsilon}(x) = 1 & \text{if } x \in \Omega_{\epsilon} \\ \eta_{\epsilon}(x) = 0 & \text{if } x \notin \Omega \end{cases}$$

**Lemma 3.9** (General Version of Urnson) If  $A, B \subseteq \mathbb{R}^d$ , A closed, B closed,  $A \cap B = \emptyset$ . Then

$$\eta(x) = \frac{\operatorname{dist}(x, A)}{\operatorname{dist}(x, A) + \operatorname{dist}(x, B)}$$

Then  $\eta \in C(\mathbb{R}^d)$ ,  $0 \le \eta \le 1$  and  $\eta = 0$  if  $x \in B$ ,  $\eta = 1$  if  $x \in A$ .

For example, this lemma can be applied to  $A = \overline{\Omega_{\epsilon}} \subsetneq \Omega$  and  $B = \mathbb{R}^d \setminus \Omega$  for  $\Omega \subseteq \mathbb{R}^d$  open.

**Theorem 3.10** (Appendix C4 in Evans) Let  $\Omega$  be open in  $\mathbb{R}^d$  and for  $\epsilon > 0$  define

$$\Omega_{\epsilon} = \{ x \in \Omega \mid \operatorname{dist}(x, \mathbb{R}^d \backslash \Omega) > \epsilon \}$$

Let  $f \in C_c^{\infty}(\mathbb{R}^d)$ ,  $\int_{\mathbb{R}^d} f = 1$ , supp  $f \subseteq B(0,1)$ ,  $f_{\epsilon}(x) = \epsilon^{-d} f(\epsilon^{-1} x)$ . Then supp  $f_{\epsilon} \subseteq B(0,\epsilon)$  and for all  $g \in L_{loc}^p(\Omega)$  (i.e.  $\mathbb{1}_K g \in L^p(\Omega)$  for all  $K \subseteq \Omega$  compact) we have

- a)  $g_{\epsilon}(x) = (f_{\epsilon} \star g)(x) = \int_{\mathbb{R}^d} f_{\epsilon}(x y)g(y) dy \int_{\Omega} f_{\epsilon}(x y)g(y) dy$  is well-defined in  $\Omega_{\epsilon}$  and  $g_{\epsilon} \in C^{\infty}(\Omega_{\epsilon})$ ,
- b)  $g_{\epsilon} \to g$  in  $L_{loc}^p(\Omega)$  if  $1 \leq p < \infty$  and  $g_{\epsilon}(x) \to g(x)$  almost everywhere  $x \in \Omega$ ,
- c) If  $g \in C(\Omega)$ , then  $g_{\epsilon}(x) \to g(x)$  uniformly in any compact subset of  $\Omega$ .

Proof. a)  $D^{\alpha}(g_{\epsilon}) = (D^{\alpha}f_{\epsilon}) \star g \in C(\Omega_{\epsilon})$ 

b) Already proved in  $\mathbb{R}^d$  space.

Corrolary 3.11 (Lebesgue differentiation theorem) If  $f \in L_{loc}^P(\mathbb{R}^d)$ , then

$$\oint_{B(x,\epsilon)} |f(y) - f(x)|^p dy \to 0 \quad \text{as } \epsilon \to 0$$

**Exercise 3.12** (E 2.1) Let  $u \in C^2(\mathbb{R}^2)$  be convex, i.e.

$$tu(x) + u(y)(1-t) \ge u(tx + (1-t)y)$$

for all  $x, y \in \mathbb{R}^d$ ,  $t \in [0, 1]$ .

- a) Prove for all  $x \in \mathbb{R}^d$  that the Hessian matrix H is positive semidifinite.
- b) Prove that u is sub-harmonic in  $\mathbb{R}^d$ .

Solution.

a) In 1D: If u is convex  $\Leftrightarrow u''(x) \ge 0$  for all  $x \in \mathbb{R}$ . In general: Taylor expansion for all  $x, z \in \mathbb{R}^d$ :

$$cu(x) = u(z) + \nabla u(z)(x-z) + \int_0^1 \sum_{|\alpha|=2} D^{\alpha} u(z+s(x-z)) \frac{(x-z)^{\alpha}}{\alpha!} ds$$

Note that we have x = z + s(x - z) if s = 1. Use  $z = tx + (t - 1)y \Rightarrow x - z = (1 - t)(x - y)$ 

$$tu(x) = tu(z) + t\nabla u(z)(1-t)(x-y) + t\int_0^1 \sum_{|\alpha|=2} D^{\alpha}u(z+s(x-z)) \frac{[(1-t)(x-y)]^{\alpha}}{\alpha!} ds$$

$$(1-t)u(y) = (1-t)u(z) + (1-t)\nabla u(z)t(y-x) + (1-t)\int_0^r \sum_{|\alpha|=2} D^{\alpha}u(z+s(y-z))\frac{[t(y-x)]^{\alpha}}{\alpha!} ds$$

$$\Rightarrow tu(x) + (1-t)u(y) = u(z) + t \int_0^1 \dots + (1-t) \int_0^1 \dots$$
$$\Rightarrow t \int_0^1 \dots + (1-t) \int_0^1 \dots \geqslant 0 \forall x, y, t, z = tx + (1-t)y$$

$$t(1-t)^2 \int_0^1 \sum_{|\alpha|=2} D^{\alpha} u(z+s(x-z)) \frac{(x-y)}{\alpha!} \, ds + (1-t)t^2 \int_0^1 \sum_{|\alpha|=2} D^{\alpha} u(z+s(y-z)) \frac{(y-z)^{\alpha}}{\alpha!} \, ds \geqslant 0$$

for all  $x, y \in \mathbb{R}^d, t \in [0, 1], z = tx + (1 - t)y$ . Divides for t(1 - t)

$$(1-t)\int_0^1 \cdots + \int_0^1 \cdots \ge 0$$

Take  $t \to 0$ 

$$\int_0^1 \sum_{|\alpha|=2} D^{\alpha} u(y+s(x-y)) \frac{(x-y)^{\alpha}}{\alpha!} ds \geqslant 0 \forall x, y \in \mathbb{R}^d$$

Take  $y = x + a, a \in \mathbb{R}^d$ 

$$\int_0^1 \sum_{|\alpha|=2} D^{\alpha} u(x+a+sa) \frac{a^{\alpha}}{\alpha!} ds \ge 0 \forall \epsilon > 0, \forall x, a \in \mathbb{R}^d$$

Take  $\epsilon \to 0$ 

$$\int_0^1 \sum_{|\alpha|=2} D^\alpha u(x) \frac{a^\alpha}{\alpha!} \geqslant 0 \Rightarrow \sum_{i,j=1, i \neq j} \partial_{x_i} \partial_{x_j} u(x) a_i a_j + \sum_{i=j=1}^d \partial_{x_i}^2 u(x) \frac{a_i^2}{2}$$

We get

$$\frac{1}{2}a^T H a \geqslant 0 \forall a (a_i)_{i=1}^d \in \mathbb{R}^d$$

b) 
$$H(x) \ge 0 \Rightarrow (\partial_i \partial_j u) \ge 0 \Rightarrow TrH(x) \ge 0 \Rightarrow \sum_{i=1}^d \partial_{x_i}^2 u(x) \ge 0 \Rightarrow \Delta u(x) \ge 0$$

**Exercise 3.13** (E 2.2, Newton's Theorem) Let  $d \ge 3$ .

a) Prove that for all r > 0 and  $x \in \mathbb{R}^d$ , we have

$$\int_{\partial B(x,r)} \frac{dS(y)}{|y|^{d-2}} = \frac{1}{\max(|x|,r)^{d-2}}$$

where dS(y) is the surface measure on the sphere  $\partial B(x,r) \subseteq \mathbb{R}^d$ .

b) Let  $0 \leq f_1, f_2 \in L^1(\mathbb{R}^d)$  be radial functions with  $\int_{\mathbb{R}^d} f_i = M_i$ . Prove that for all  $z_1, z_2 \in \mathbb{R}^d$  we have

$$\int \int_{\mathbb{R}^d} \frac{f_1(x-z_1)f_2(y-z_2)}{|x-y|^{d-2}} \, dx \, dy \leqslant \frac{M_1 M_2}{|z_1-z_2|^{d-2}}$$

Moreover, prove that we have the equality if  $f_1, f_2$  are compactly supported and  $|z_1 - z_2|$  is sufficiently large.

Hint: For a) you may use the mean-value theorem (the function  $\frac{1}{|x|^{d-2}}$  is harmonic in  $\Omega$  if  $0 \notin \Omega$ ). For b) you may use a) and polar coordinates.

Solution. a) Regard d=3. The function  $\frac{1}{|x|}$  is harmonic in  $\mathbb{R}^3\setminus\{0\}$ . We prove

$$f_{\partial B(x,r)} \frac{dS(y)}{|y|} = \frac{1}{\max(|x|,r)}$$

If |x| > r, then  $0 \notin B(x, r + \epsilon)$ . Then

$$y \mapsto \frac{1}{|y|}$$

is harmonic in  $B(x, r + \epsilon)$ . Then by the Mean Value Property:

$$\oint_{\partial B(x,r)} \frac{dS(y)}{|y|} = \frac{1}{|x|}$$

If |x| < r: Then  $\frac{1}{|y|}$  is not harmonic in B(x,r) since  $0 \in B(x,r)$ . Note

$$\oint_{\partial B(x,r)} \frac{dS(y)}{|y|} = \oint_{\partial B(0,r)} \frac{dS(y)}{|x-y|}$$

This function depends on x only via |x|.

$$\dots = \oint_{\partial B(0,r)} \frac{dS(y)}{|Rx - Ry|}$$

for all R rotation SO(3),  $dS(R_y) = dS(y)$ 

$$= \int_{\partial B(0,r)} \frac{dS(y)}{|Rx - y|}$$

$$= \int_{\partial B(0,r)} \frac{dS(y)}{|z - y|}$$
(Radial in z) 
$$= \int_{\partial B(0,|x|)} \left( \int_{\partial B(0,|x|)} \frac{dS(y)}{|z - y|} \right) dS(z)$$
(Fubini) 
$$= \int_{\partial B(0,r)} \left( \int_{\partial B(0,|x|)} \frac{dS(z)}{|z - y|} \right) dS(y)$$
(case 1 since  $|y| = r > |x|$ ) 
$$= \int_{\partial B(0,r)} \frac{1}{|y|} dS(y) = \frac{1}{r}$$

If |x| = r: Continuity:  $x \mapsto \int_{\partial B(0,r)} \frac{dS(y)}{|x-y|}$ 

b)

**Remark 3.14** For  $f \in C^{|\alpha|}, g \in C^{|\beta|}$ :

$$D^{\alpha+\beta}(f\star g)=(D^{\alpha}f)\star(D^{\beta}g)$$

**Lemma 3.15** If  $d \ge 3$  and  $f : \mathbb{R}^d \to \mathbb{R}$  radial. Then:

$$\left(\frac{1}{|x|^{d-2}} \star f\right)(x) = \int_{\mathbb{R}^d} \frac{f(y)}{|x-y|^{d-2}} \, dy = \int_{\mathbb{R}^d} \frac{f(y)}{\max(|x|^{d-2}, |y|^{d-2})} \, dy$$

*Proof.* (d=3) Polar coordinates:

$$\int_{\mathbb{R}^3} \frac{f(y)}{|x-y|} \, dy = \int_0^\infty \left[ \int_{\partial B(0,1)} \frac{d\omega}{|x-rw|} \right] f(r) \, dr$$

$$(a) = \int_0^\infty \left[ \int_{\partial B(0,1)} \frac{d\omega}{\max(|x|,r)} \right] f(r) \, dr$$

$$= \int_{\mathbb{R}^3} \frac{f(y)}{\max(|x|,|y|)} \, dy$$

Now, for d = 3, if f radial and non-negative with the lemma we get

$$(\star) \quad \int_{\mathbb{R}^3} \frac{f(y)}{|x - y|} \, dy = \int_{\mathbb{R}^3} \frac{f(y)}{\max(|x|, |y|)} \, dy \leqslant \int_{\mathbb{R}^3} \frac{f(y)}{|x|} \, dy = \frac{\left(\int_{\mathbb{R}^3} f(y) \, dy\right)}{|x|}$$

Ther

$$\int_{\mathbb{R}^{3}} \int_{\mathbb{R}^{3}} \frac{f_{1}(x-z_{1})f_{2}(y-z_{2})}{|x-y|} dx dy = \int_{\mathbb{R}^{3}} \int_{\mathbb{R}^{3}} \frac{f_{1}(x)f_{2}(y)}{|x+z_{1}-y-z_{2}|} dx dy$$

$$= \int_{\mathbb{R}^{3}} \left( \int_{\mathbb{R}^{3}} \frac{f_{1}(x)}{|x+z_{1}-y-z_{2}|} dx \right) f_{2}(y) dy$$

$$(\star) \qquad \leqslant \int_{\mathbb{R}^{3}} \frac{\left( \int_{\mathbb{R}^{3}} f_{1}(x) dx \right) f_{2}(y)}{|y+z_{2}-z_{1}|} dy$$

$$\leqslant \frac{\left( \int_{\mathbb{R}^{3}} f_{1}\right) \left( \int_{\mathbb{R}^{3}} f_{2}\right)}{|z_{1}-z_{2}|}$$

**Exercise 3.16** (Bonus 2) a) Prove that  $u(x) = \frac{1}{|x|}$  is sub-harmonic in  $\mathbb{R}^2 \setminus \{0\}$ .

b) Prove that if  $f: \mathbb{R}^2 \to \mathbb{R}$  radial, non-negative, measurable:

$$\int_{\mathbb{R}^2} \frac{f(y)}{|x-y|} \, dy \geqslant \int_{\mathbb{R}^2} \frac{f(y)}{\max(|x|,|y|)} \, dy$$

### 3.2 Fourier Transformation

**Definition 3.17** (Fourier Transform) For  $f \in L^1(\mathbb{R}^d)$  define

$$\mathcal{F}f(k) = \hat{f}(k) = \int_{\mathbb{R}^d} f(x)e^{-2\pi i k \cdot x} dx, \quad k \cdot x = \sum_{i=1}^d k_i x_i$$

**Theorem 3.18** (Basic Properties) 1. If  $f \in L^1(\mathbb{R}^d)$ , then  $\hat{f} \in L^{\infty}(\mathbb{R}^d)$  and  $\|\hat{f}\|_{L^{\infty}} \leq \|f\|_{L^1}$ 

2. For all  $f \in L^1(\mathbb{R}^d) \cap L^2(\mathbb{R}^d)$ ,  $\|\hat{f}\|_{L^2} = \|f\|_{L^2}$ . Moreover,  $\mathcal{F}$  can be extended to be a unitary transformation  $L^2(\mathbb{R}^d) \to L^2(\mathbb{R}^d)$  s.t.

$$\|\mathcal{F}g\|_{L^2} = \|f\|_{L^2} \quad \forall f \in L^2(\mathbb{R}^d)$$

3. The inverse of F can be defined as

$$(F^{-1}f)(x) = \check{f}(x) = \int_{\mathbb{R}^d} f(x)e^{2\pi ikx} dk$$

for all  $f \in L^1(\mathbb{R}^d) \cap L^2(\mathbb{R}^d)$ 

4. 
$$\widehat{D^{\alpha}f}(k) = (2\pi i k)^{\alpha} \widehat{f}(k)$$
 as  $(2\pi i k)^{\alpha} f(k) \in L^2(\mathbb{R}^d)$   $(k^{\alpha} = k_1^{\alpha_1} \cdots k_{\alpha}^{\alpha_k})$ 

5. 
$$\widehat{f \star g}(k) = \widehat{f}(k)\widehat{g}(k)$$
 if  $f, g$  are nice enough.

**Theorem 3.19** (Hausdorff-Young-Inequality) Let  $f \in L^p(\mathbb{R}^d)$ . If  $1 \leq p \leq 2$  and  $\frac{1}{p} + \frac{1}{q} = 1$ , then  $\mathcal{F}: L^p(\mathbb{R}^d) \to L^q(\mathbb{R}^d)$  is well-defined and

$$\|\mathcal{F}f\|_{L^q(\mathbb{R}^d)} \leqslant \|f\|_{L^p(\mathbb{R}^d)}.$$

**Remark 3.20** If  $1 \le p \le 2$  and  $f \in L^p(\mathbb{R}^d)$  we can write  $f = f_1 + f_2$  when  $f_1 \in L^1$ ,  $f_2 \in L^2$ , e.g.

$$f = \underbrace{f\mathbb{1}(|f| \geqslant 1)}_{f_1} + \underbrace{f\mathbb{1}(|f| < 1)}_{f_2}$$

$$\int_{\mathbb{R}^d} |f_2|^2 \, dy = \int_{\mathbb{R}^d} |f|^2 \mathbb{1}(|f| < 1) \le \int_{\mathbb{R}^d} |f|^p \, dy < \infty$$
$$\int_{\mathbb{R}^d} |f_1| \, dy = \int_{\mathbb{R}^d} |f| \mathbb{1}(|f| \ge 1) \le \int_{\mathbb{R}^d} |f|^p < \infty$$

thus we can define  $\hat{f} = \hat{f}_1 + \hat{f}_2$  well defined in  $L^{\infty}(\mathbb{R}^d) + L^2(\mathbb{R}^d)$ .

Proof of the Hausdorff-Young-Inequality 3.19. We need Riesz-Thorin interpolation theorem. If  $1 \leq p_0, p_1, q_0, q_1 \leq \infty$ , and  $\Omega \subseteq \mathbb{R}^d$  open and

$$T: L^{p_0}(\Omega) + L^{p_1}(\Omega) \longrightarrow L^{q_0}(\Omega) + L^{q_1}(\Omega)$$

is a linear operator and

$$T: L^{p_0} \to L^{q_0}$$

and  $||T||_{L^{p_i} \to L^{q_i}} \leq 1$  for i = 0, 1. Then,

$$T: L^{p_{\theta}} \to L^{q_{\theta}} \text{ and } ||T||_{L^{p_{\theta}} \to L^{q_{\theta}}} \leq 1$$

for any  $0 < \theta < 1$  where

$$\begin{cases} \frac{1}{p_0} = \frac{\theta}{p_0} + \frac{1-\theta}{p_2} \\ \frac{1}{q_0} = \frac{\theta}{q_0} + \frac{1-\theta}{q_1} \end{cases}.$$

Consider the Fourier Transform

$$F: L^1 + L^1 \rightarrow L^2 + L^\infty$$

and

$$||F||_{L^1 \to L^\infty} \leqslant 1 \text{ as } ||\hat{f}||_{L^\infty} \leqslant ||f||_{L^1} \qquad \forall f p \in L^1$$

$$||F||_{L^2 \to L^2} = 1 \text{ as } ||\hat{f}||_{L^2} = ||f||_{L^2} \qquad \forall f \in L^2$$

$$\Rightarrow ||F||_{L^{p_\theta} \to L^{p_\theta}} \leqslant 1 \qquad \forall \theta \in (0, 1)$$

$$p_0 = 1, p_1 = 2, q_0 = \infty, q_1 = 2$$

$$\frac{1}{p_0} = \frac{\theta}{p_0} + \frac{1 - \theta}{p_2} = \theta + \frac{1 - \theta}{2} = \frac{1 + \theta}{2}$$

$$\frac{1}{q_\theta} = \frac{\theta}{q_0} + \frac{1 - \theta}{q_1} = \frac{1 - \theta}{2}$$

$$\Rightarrow 1 = \frac{1}{p_0} + \frac{1}{q_\theta} = \frac{1 + \theta}{2} + \frac{1 - \theta}{2}$$

**Exercise 3.21** (E 3.2) Let  $1 \leq p, q, r \leq 2$ ,  $\frac{1}{p} + \frac{1}{q} = 1 + \frac{1}{r}$ . Recall that if  $f \in L^p(\mathbb{R}^d)$ ,  $g \in L^q(\mathbb{R}^d)$ , then  $f \star g \in L^r(\mathbb{R}^d)$  by Young's Inequality, and its Fourier transform is well-defined by the Hausdorff-Young inequality. Prove that

$$\widehat{f \star g}(k) = \widehat{f}(k)\widehat{g}(k) \quad \forall k \in \mathbb{R}^d$$

Solution.

Step 1)  $f, g \in C_c^{\infty}(\mathbb{R}^d)$ 

$$\widehat{f \star g}(k) = \int_{\mathbb{R}^d} (f \star g)(x) e^{-2\pi i k x} dx$$

$$= \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} f(x - y) g(y) e^{-2\pi i k x} dx dy$$

$$= \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} f(x - y) e^{-2\pi i k (x - y)} g(y) e^{-2\pi i k y} dx dy$$

$$(z(x) := x - y) = \int_{\mathbb{R}^d} \left( \int_{\mathbb{R}^d} f(z) e^{-2\pi i k z} dz \right) g(y) e^{-2\pi i k y} dy$$

$$= \left( \int_{\mathbb{R}^d} f(z) e^{-2\pi i k z} dz \right) \left( \int_{\mathbb{R}^d} g(y) e^{-2\pi i k y} dy \right) = \hat{f}(k) \hat{g}(k)$$

Step 2)  $f \in L^p, g \in L^q$ , find  $f_n, g_n \in C_c^{\infty}$  s.t.  $f_n \to f$  in  $L^p, g_n \to g$  in  $L^q$ . Then we have  $\widehat{f_n \star g_n} = \widehat{f_n} \widehat{g}_n$  almost everywhere. We get with the Hausdorff-Young Inequality (3.19)

$$\begin{split} \|\widehat{f \star g} - \widehat{f_n \star g_n}\|_{L^{r'}} &\leq \|f \star g - f_n \star g_n\|_{L^r} \\ &= \|(f - f_n) \star g_n + f_n \star (g_n - g)\|_{L^r} \\ &\leq \|(f - f_n) \star g_n\|_{L^r} + \|f_n \star (g_n - g)\|_{L^r} \\ &(\text{Young 3.3}) &\leq \|f - f_n\|_{L^p} \|g_n\|_{L^q} + \|f_n\|_{L^p} \|g_n - g\|_{L^q} \xrightarrow{n \to \infty} 0 \end{split}$$

Moreover:

$$\|\hat{f}_{n}\hat{g}_{n} - \hat{f}\hat{g}\|_{L^{r'}} = \|(\hat{f}_{n}\hat{f})\hat{g}_{n} + \hat{f}(\hat{g}_{n} - \hat{g})\|_{L^{r'}}$$

$$(\text{H\"{o}lder}) \leq \|\hat{f}_{n} - \hat{f}\|_{L^{p'}}\|\hat{g}_{n}\|_{L^{q'}} + \|\hat{f}\|_{L^{q'}}$$

$$(\text{Hausdorff-Young 3.19}) \leq \|f_{n} - f\|_{L^{p}}\|g_{n}\|_{L^{q}} + \|f\|_{L^{p}}\|g_{n} - g\|_{L^{p}} \xrightarrow{n \to \infty} 0$$
So  $\hat{f}_{n}\hat{g}_{n} \to \hat{f}\hat{g}$  in  $L^{r'}$   $\widehat{f} \star g = \hat{f}\hat{g}$  in  $L^{r'}$   $\frac{1}{r'} = \frac{1}{r'} + \frac{1}{r'}$ 

**Remark 3.22** We want to apply the Fourier transform to find the solution of a PDE, e.g. the Poisson-Equation:

$$-\Delta u = f \text{ in } \mathbb{R}^d \Rightarrow |2\pi k|^2 \hat{u}(k) = \hat{f}(k) \Rightarrow \hat{u}(k) = \frac{1}{|2\pi k|^2} \hat{f}(k)$$

If we can find G s.t.  $\hat{G}(k) = \frac{1}{|2\pi k|^2}$ , then

$$\widehat{u}(k) = \widehat{G}(k)\widehat{f}(k) = \widehat{G \star f}$$

$$\Rightarrow u(x) = (G \star f)(x) = \int_{\mathbb{R}^d} G(x - y)f(y) \, dy$$

Thus we need to compute

$$G(x) = \left(\frac{1}{|2\pi k|^2}\right)^{\vee}$$

It turns out for  $d \ge 3$  that

$$G(x) = \frac{1}{d(d-2)|B_1||x|^{d-2}}.$$

In fact G is the fundamential solution of the Laplace Equation. To make it rigorous, we need to compute the Fourier transform of  $\frac{1}{|x|^{\alpha}}$  for  $0 \le \alpha < d$ .

**Theorem 3.23** (Fourier Transform of  $\frac{1}{|x|^{\alpha}}$  for  $0 < \alpha < d$ ) We have formally

$$\widehat{\frac{c_{\alpha}}{|x|^{\alpha}}} = \frac{c_{d-\alpha}}{|k|^{d-\alpha}} \quad \forall \ 0 < \alpha < d$$

Here

$$c_{\alpha} = \pi^{-\frac{d}{2}} \Gamma\left(\frac{\alpha}{2}\right) = \pi^{-\frac{\alpha}{2}} \int_{0}^{\infty} e^{-\lambda} \lambda^{\frac{\alpha}{2} - 1} d\lambda$$

More precisely, for all  $f \in C_c^{\infty}(\mathbb{R}^d)$ ,

$$\frac{c_{\alpha}}{|x|^{\alpha}} \star f = \left(\frac{c_{d-\alpha}}{|k|^{d-\alpha}} \hat{f}(k)\right)^{\vee}$$

Moreover if  $\alpha > \frac{d}{2}$ , then we also have

$$\left(\frac{c_{\alpha}}{|x|^{\alpha}} \star f\right)^{\hat{}} = \frac{c_{d-\alpha}}{|k|^{d-\alpha}} \hat{f}(k).$$

Proof.

$$\begin{split} \frac{c_{\alpha}}{|x|^{\alpha}} &= \frac{1}{|x|^{\alpha}} \pi^{-\frac{\alpha}{2}} \int_{0}^{\infty} e^{-\lambda} \lambda^{\frac{\alpha}{2}-1} \, d\lambda = \int_{0}^{\infty} e^{-\pi \lambda |x|^{2}} \lambda^{\frac{\alpha}{2}-1} \, d\lambda \\ \Rightarrow \frac{\hat{c}_{\alpha}}{|x|^{\alpha}}(k) &= \int_{0}^{\infty} e^{-\pi \lambda |x|^{2}} (k) \lambda^{\frac{\alpha}{2}-1} \, d\lambda = \int_{0}^{\infty} \lambda^{-\frac{d}{2}} e^{-\pi \frac{|k|^{2}}{\lambda}} \lambda^{\frac{\alpha}{2}-1} \, d\lambda \\ (\lambda \to \frac{1}{\lambda}) &= \int_{0}^{\infty} \lambda^{\frac{d}{2}e^{-\pi |k|^{2}\lambda}} \lambda^{-\frac{\alpha}{2}+1} \lambda^{-2} \, d\lambda = \frac{c_{d-\alpha}}{|k|^{d-\alpha}} \end{split}$$

Let  $f \in C_c(\mathbb{R}^d)$ . Then  $\left(\frac{1}{|x|^{\alpha}} \star f\right)(x) = \int_{\mathbb{R}^d} \frac{1}{|x-y|^{\alpha}} f(y) \, dy$  is well defined as  $\frac{1}{|x-y|} \in L^1_{loc}(\mathbb{R}^d, dy)$ . It is bounded

$$\frac{1}{|x|^{\alpha}} \star f = \frac{1}{|x|^{\alpha}} \underbrace{\mathbb{1}(|x| \leqslant 1)}_{\in L^{\infty}(\mathbb{R}^{d})} \star \underbrace{f}_{L^{\infty}} + \underbrace{\frac{1}{|x|}\mathbb{1}(|x| > 1)}_{\in L^{\infty}} \star \underbrace{f}_{\in L^{1}} \in L^{\infty}(\mathbb{R}^{d})$$

When  $|x| \to \infty$ :

$$\left(\frac{1}{|x|^{\alpha}} \star f\right)(x) = \int_{\mathbb{R}^d} \frac{f(y)}{|x-y|^{\alpha}} \, dy = \int_{|y| \leq R} \frac{f(y)}{|x-y|^{\alpha}} \, dy \sim \frac{\int_{\mathbb{R}^d} f(y) \, dy}{|x|^{\alpha}}$$

Note that  $\frac{c_{d-\alpha}}{|k|^{d-\alpha}} \underbrace{\hat{f}(k)}_{\text{bounded}} \in L^1(\mathbb{R}^d).$ 

$$(...)\mathbb{1}(|k| \le 1) + (...)\mathbb{1}(|k| > 1) \frac{1}{|k|^{d-\alpha}} |\hat{f}(k)|\mathbb{1}(|k| \le 1) \le ||f||_{L^{1}} \frac{\mathbb{1}(|k| \le 1)}{|k|^{d-\alpha}} \in L^{1}(\mathbb{R}^{d}, dk)$$
$$\frac{1}{|k|^{d-\alpha}} |\hat{f}(k)|\mathbb{1}(k > 1) \le |\hat{f}(k)| \in L^{2}(\mathbb{R}^{d}, dK) \text{ as } f \in L^{2}(\mathbb{R}^{d})$$

**Lemma 3.24** If  $f \in C_c^{\infty}(\mathbb{R}^d)$ , then  $\hat{f} \in L^1(\mathbb{R}^d)$ 

*Proof.* (Exercise) Hint:  $|\widehat{D^{\alpha}f}| = |2\pi k|^{|\alpha|} |\widehat{f}(k)| \leadsto |\widehat{f}(k)| \leqslant \frac{1}{|k|^{|k|}}$  as  $|k| \to \infty$ .

Compute:

$$\begin{split} \left(\frac{c_{d-\alpha}}{|k|^{d-\alpha}}\hat{f}(k)\right)^{\vee}(x) &= \int_{\mathbb{R}^d} \frac{c_{d-\alpha}}{|k|^{d-\alpha}}\hat{f}(k)e^{2\pi ikx}\,dk \\ &= \int_{\mathbb{R}^d} \left(\int_0^{\infty} e^{-\pi |k|^2\lambda}\lambda^{\frac{d-\alpha}{2}-1}\,d\lambda\right)\hat{f}(k)e^{2\pi ikx}\,dk \\ &= \int_0^{\infty} \left(\int_{\mathbb{R}^d} e^{-\pi |k|^2\lambda}\hat{f}(k)e^{2\pi ikx}\,dk\right)\lambda^{\frac{d-\alpha}{2}-1}\,d\lambda \\ &= \int_0^{\infty} \left(e^{-\pi k^2\lambda}\hat{f}(x)\right)^{\vee}\lambda^{\frac{d-\alpha}{2}-1}\,d\lambda \\ &= \int_0^{\infty} \left(\lambda^{-\frac{d}{2}}e^{-\pi\frac{x^2}{\lambda}}(k)\hat{f}(k)\right)^{\vee}\lambda^{\frac{d-\alpha}{2}-1}\,d\lambda \\ &= \int_0^{\infty} \left(\lambda^{-\frac{d}{2}}e^{-\pi\frac{x^2}{\lambda}}\lambda^{\frac{d-\alpha}{2}-1}\,d\lambda\right) \\ &= \left(\int_0^{\infty} \lambda^{-\frac{d}{2}}e^{-\pi\frac{x^2}{\lambda}}\lambda^{\frac{d-\alpha}{2}-1}\,d\lambda\right) \star f \end{split}$$

Assume  $d > \alpha > \frac{d}{2}$ . Then  $\frac{c_{\alpha}}{|x|^{\alpha}} \star f \in L^{\infty}$  and behaves  $\frac{c_{\alpha}(\int f)}{|x|^{\alpha}}$  as  $|x| \to \infty$ . This implies:

$$\int_{\mathbb{R}^d} \left| \frac{c_\alpha}{|x|^\alpha} \star f \right|^2 \leqslant c + \int_{|x| \geqslant R} \frac{c}{|x|^{2d}} \, dx < \infty$$

Thus the Fourier Transform  $\frac{\widehat{c_{\alpha}}}{|x|^{\alpha}}\star f$  exists. Combining with

$$\frac{c_{\alpha}}{|x|^{\alpha}} \star f = \left(\frac{c_{d-\alpha}}{|f|^{d-\alpha}} \hat{f}(k)\right)^{\vee}$$

$$\Rightarrow \frac{\widehat{c_{\alpha}}}{|x|^{\alpha}} \star f = \frac{c_{d-\alpha}}{|k|^{d-\alpha}} \hat{f}(k)$$

**Remark 3.25** If  $f \in L^p$ ,  $1 \le p \le 2$  is such that  $\tilde{f}_1 + \tilde{f}_2 = f = f_1 + f_2$  with  $f_1, \tilde{f}_1 \in L^1, f_2, \tilde{f}_2 \in L^2$ . Do we have that  $\hat{f}_1 + \hat{f}_2 = \hat{\tilde{f}}_1 + \hat{\tilde{f}}_2 \in L^1 \cap L^2$ ? In fact, from  $f_1 + f_2 = \tilde{f}_1 + \tilde{f}_2$  we get

$$\underbrace{f_1 - \tilde{f}_1}_{\in L^1} = \underbrace{\tilde{f}_2 - f_2}_{\in L^2} \in L^1 \cap L^2$$

$$\Rightarrow \hat{f}_1 - \hat{\tilde{f}}_1 = \hat{\tilde{f}}_2 - \hat{f}_2 \qquad \Rightarrow \qquad \hat{f}_1 + \hat{f}_2 = \hat{\tilde{f}}_1 + \hat{\tilde{f}}_1.$$

**Lemma 3.26** (Fourier Transform of Gaussians) In  $\mathbb{R}^d$ ,

$$\widehat{e^{-\pi|x|^2}} = e^{-\pi|k|^2}$$

More generally for all  $\lambda > 0$ :

$$\widehat{e^{-\pi\lambda^2|x|^2}} = \lambda^{-d} e^{-\pi\frac{|x|^2}{\lambda^2}}$$

(exercise)

Remark 3.27 If  $d \geqslant 3$ 

$$\hat{G}(k) = \frac{1}{|2\pi k|^2}$$

$$\Rightarrow G(x) = \left(\frac{1}{|2\pi k|^2}\right)^{\vee} = \frac{1}{d(d-2)(k)|x|^{d-2}} = \Phi(x)$$

## 3.3 Theory of Distribution

In the following let  $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$ . Let  $\Omega \subseteq \mathbb{R}^d$  be open.

- $D(\Omega) = C_c^{\infty}(\Omega)$  the space of test functions.
- We say that  $\phi_n \to \phi$  in  $D(\Omega)$  if for all  $K \subseteq \Omega$  compact we have that  $\begin{cases} \sup(\phi_n \phi) \subseteq K \text{ for all } n \\ \|D^{\alpha}(\phi_n \phi)\|_{L^{\infty}(K)} \to 0 \text{ as } n \to \infty \text{ for all } \alpha \end{cases}$
- $D'(\Omega) = \{T : D(\Omega) \to \mathbb{K} \text{ linear and continuous} \}$  the space of distributions.

Motivation:  $L^2(\Omega)' = L^2(\Omega), (L^p(\Omega))' = (L^q(\Omega)), \frac{1}{p} + \frac{1}{q} = 1.$ 

**Example 3.28** ("normal functions" are distributions) If  $f \in L^1_{loc}(\Omega)$ , then  $T = T_f$  defined by:

$$T(\phi) = \int_{\Omega} f(x)\phi(x) \, dx$$

is a distribution for all  $\phi \in D(\Omega)$ , i.e.  $T \in D'(\Omega)$ . Indeed, it is clear that  $T(\phi)$  is well-defined for all  $\phi \in D(\Omega)$  and  $\phi \mapsto T(\phi)$  is linear. Let us check that  $\phi \mapsto T(\phi)$  is continuous. Take  $\phi_n \to \phi$  in  $D(\Omega)$  and prove that  $T(\phi_n) \to T(\phi)$ . Since  $\phi_n \to \phi$  in  $D(\Omega)$ , there is a compact K s.t.  $\text{supp}(\phi_n)$ ,  $\text{supp}(\phi) \subseteq K \subseteq \Omega$ .

Question: Why is  $f \mapsto T_f$  injective?

**Theorem 3.29** (Fundamental theorem of calculus of variants) Let  $\Omega \subseteq \mathbb{R}^d$  be open. If  $f, g \in L^1_{loc}(\Omega)$  and  $\int_{\Omega} f \phi \, dy = \int_{\Omega} g \phi \, dy$  for all  $\phi \in D(\Omega)$ , then f = g in  $L^1_{loc}(\Omega)$ 

**Example 3.30** (Dirac delta function) Let  $\Omega \subseteq \mathbb{R}^d$  open and let  $x_0 \in \Omega$ . Define  $T: D(\Omega) \to \mathbb{K}$  by  $T(\phi) = \phi(x_0)$ . Then  $T \in D'(\Omega)$  and we denote it by  $\delta_{x_0}$ . It is clear that  $\phi \mapsto T(\phi) = \phi(x_0)$  is well-defined and linear for all  $\phi \in D(\Omega)$ . Take  $\phi_n \to \phi$  in  $D(\Omega)$  and prove  $T(\phi_n) \to T(\phi)$ , i.e.  $\phi_n(x_0) \to \phi(x_0)$  (obvious.)

**Example 3.31** (Principle Value) The function  $f(x) = \frac{1}{x}$  is not in  $L^1_{loc}(\mathbb{R})$ , but we can still define

$$\int_{\mathbb{R}} f(x)\phi(x) dx = \int_{\mathbb{R}} \frac{\phi(x)}{x} dx$$

for all  $\phi \in D(\mathbb{R})$  s.t.  $\phi(0) = 0$ . In fact,

$$\phi(x) = |\phi(x) - \phi(0)| \le x \sup |\phi'|,$$

so  $\frac{|\phi(x)|}{|x|} \in L^{\infty}(\mathbb{R})$  and compactly supported. So  $\frac{\phi(x)}{x} \in L^{1}(\mathbb{R})$ . Define  $T : D(\mathbb{R}) \to \mathbb{K}$  by

$$T(\phi) = \lim_{\epsilon \to 0} \int_{|x| \ge \epsilon} \frac{\phi(x)}{x} dx \quad \forall \phi \in D(\mathbb{R}) \text{ s.t. } \phi(0) = 0$$

We write  $T = \frac{1}{x}$  and check that  $T \in D'(\mathbb{R})$ : For all  $\epsilon > 0$  we have

$$\left| \frac{\phi(x)}{x} \right| \leqslant \frac{\|\phi\|_{L^{\infty}}}{\epsilon}$$

for all  $|x| \ge \epsilon$  and  $\phi$  is compactly supported. So we get for all  $\epsilon > 0$ :

$$\mathbb{1}(|x| \geqslant \epsilon) \frac{\phi(x)}{x} \in L^1(\mathbb{R}) \leadsto \int_{|x| \geqslant \epsilon} \frac{\phi(x)}{x} \, dx < \infty$$

We can write:

$$\int_{|x| \ge \epsilon} \frac{\phi(x)}{x} \, dx = \int_{|x| \ge 1} \frac{\phi(x)}{x} \, dx + \int_{\epsilon \le |x| \le 1} \frac{\phi(x)}{x} \, dx$$

The second part can be written as:

$$\int_{\epsilon \leqslant |x| \leqslant 1} \frac{\phi(x)}{x} \, dx = \int_{\epsilon}^{1} \frac{\phi(x)}{x} \, dx + \int_{-1}^{-\epsilon} \frac{\phi(x)}{x} \, dx = \int_{\epsilon}^{1} \frac{\phi(x) - \phi(-x)}{x} \, dx$$

Since  $\phi \in C_c^{\infty}(\mathbb{R})$  it holds that  $|\phi(x) - \phi(-x)| \leq 2\|\phi'\|_{L^{\infty}}(x)$ .

$$\Rightarrow \frac{\phi(x) - \phi(-x)}{x} \in L^{\infty}(\mathbb{R}) \Rightarrow \frac{\phi(x) - \phi(-x)}{x} \in L^{1}((0,1))$$
$$\Rightarrow \int_{0}^{1} \frac{\phi(x) - \phi(-x)}{x} dx = \lim_{\epsilon \to 0} \int_{\epsilon}^{1} \frac{\phi(x) - \phi(-x)}{x} dx$$

**Remark 3.32** The function  $\frac{1}{|x|^d}$  is not in  $L^1_{loc}(\mathbb{R}^d)$  but  $\exists T \in D'(\mathbb{R}^d)$  s.t.  $T(\phi) = \int_{\mathbb{R}^d} \frac{\phi(x)}{|x|^d} dx$  for all  $\phi \in C_c^{\infty}(\mathbb{R}^d)$  s.t.  $\phi(0) = 0$ 

**Definition 3.33** (Derivatives of distributions) Let  $\Omega \subseteq \mathbb{R}^d$  and  $T \in D'(\Omega)$ . Define for  $\alpha \in \mathbb{N}^d$ :

$$D^{\alpha}T: D(\Omega) \longrightarrow \mathbb{K}$$
$$\phi \longmapsto (-1)^{|\alpha|}T(D^{\alpha}\phi)$$

Motivation:  $f \in C_c^{\infty}(\Omega)$ 

$$\int_{\Omega} (D^{\alpha} f) \phi = (-1)^{|\alpha|} \int_{\Omega} f(D^{\alpha} \phi)$$

"If the classical derivative exists, then it is the same as the distributional derivative." We write

$$(D^{\alpha}T)(\phi) = T_{D^{\alpha}f}(\phi) = (-1)^{|\alpha|}T_f(D^{\alpha}\phi).$$

**Remark 3.34** For all  $T \in D'(\Omega)$  it holds  $D^{\alpha}T \in D'(\Omega)$  for all  $\alpha \in \mathbb{N}^d$ . Clearly

$$\phi \longmapsto (D^{\alpha}T)(\phi) = (-1)^{|\alpha|}T(D^{\alpha}\phi)$$

is linear. Moreover, if  $\phi_n \to \phi$  in  $D(\Omega)$ , then  $D^{\alpha}\phi_n \to D^{\alpha}\phi$  in  $D(\Omega)$ , so

$$(D^{\alpha}T)(\phi_n) = (-1)^{|\alpha|}T(D^{\alpha}\phi_n) \xrightarrow{n \to \infty} (-1)^{|\alpha|}T(D^{\alpha}\phi) = (D^{\alpha}T)(\phi)$$

**Example 3.35** Consider  $f: x \mapsto |x|$ , then  $f \in C(\mathbb{R})$  but  $f \notin C^1(\mathbb{R})$ . However,

$$f'(x) = g(x) := \begin{cases} 1 & x \ge 0 \\ -1 & x < 0 \end{cases} \in L^1_{loc} \quad \text{in } D'(\mathbb{R})$$

Lets check f'=g, i.e.  $-f(\phi')=f'(\phi)\stackrel{!}{=}g(\phi)$  for all  $\phi\in D(\mathbb{R})$ . Thus we need to prove:

$$-\int_{\mathbb{R}} f(x)\phi'(x) dx = \int_{\mathbb{R}} g(x)\phi(x) dx \quad \forall \phi \in D(\mathbb{R})$$

namely we have to show

$$\underbrace{-\int_{\mathbb{R}} |x|\phi'(x) \, dx}_{:=(\star)} = \int_0^\infty \phi(x) \, dx - \int_{-\infty}^0 \phi(x) \, dx.$$

Now we have

$$(\star) = -\int_0^\infty x \phi'(x) \, dx + \int_{-\infty}^0 x \phi'(x) \, dx.$$

By integration by parts we have

$$\int_0^\infty x \phi'(x) \, dx = \underbrace{[x \phi(x)]_0^\infty}_{-0} - \int_0^\infty \phi(x) \, dx = -\int_0^\infty \phi(x) \, dx$$

and similary

$$\int_{-\infty}^{0} x \phi'(x) dx = -\int_{-\infty}^{0} \phi(x) dx.$$

Thus f' = g in  $D'(\Omega)$ . We claim that  $g' = 2\delta_0$  in  $D'(\mathbb{R})$ . In fact, for all  $\phi \in D(\mathbb{R})$ , then:

$$g'(\phi) = -g(\phi') = -\int_{\mathbb{R}} g\phi' \, dx = -\int_{-\infty}^{0} (-1)\phi' \, dx - \int_{0}^{\infty} (1)\phi' \, dx$$
$$= -\int_{0}^{\infty} \phi' \, dx + \int_{-\infty}^{0} \phi' \, dx = [\phi(0) - \underbrace{\phi(\infty)}_{=0}] + [\phi(0) - \underbrace{\phi(-\infty)}_{=0}]$$
$$= 2\phi(0) = 2\delta_{0}(\phi)$$

So  $q' = 2\delta_0$  in  $D'(\mathbb{R})$ .

**Exercise 3.36** Prove that  $(D^{\alpha}\delta_x)(\phi) = (-1)^{|\alpha|}(D^{\alpha}\phi)(x)$  for all  $\phi \in D(\mathbb{R})$  for all  $x \in \mathbb{R}$ .

**Definition 3.37** (Convergence of distributions) Let  $\Omega \subseteq \mathbb{R}^d$  be open, then

$$T_n \xrightarrow{n \to \infty} T$$

in  $D'(\Omega)$  if  $T_n(\phi) \xrightarrow{n \to \infty} T(\phi)$  for all  $\phi \in D(\Omega)$ .

**Exercise 3.38** Let  $f \in L^1(\mathbb{R}^d)$ ,  $\int f = 1$  For  $\epsilon > 0$ , define  $f_{\epsilon}(x) = \epsilon^{-d} f(\epsilon^{-1} x)$ . Then:  $f_{\epsilon} \to \delta_0$  in  $D'(\Omega)$ .

**Exercise 3.39** Let  $\Omega \subseteq \mathbb{R}^d$  be open and  $T_n \to T$  in  $D'(\Omega)$ . Then:  $D^{\alpha}T_n \to D^{\alpha}T$  in  $D'(\Omega)$  for all  $\alpha = (\alpha_1, \dots, \alpha_d)$ 

**Definition 3.40** (Convolution of distributions) Let  $T \in D'(\mathbb{R})$  and  $f \in L_c^{\infty}(\mathbb{R}^d)$ . Define

$$(T \star f)(y) = T(f_y)$$

We write  $f_y(x) = f(x - y)$  and  $\tilde{f}(x) = f(-x)$ .

**Theorem 3.41** Let  $T \in D'(\mathbb{R})$ . Then for all  $f \in D(\mathbb{R})$ :

1.  $y \mapsto T(f_y)$  is  $C^{\infty}(\mathbb{R}^d)$  and

$$D_y^{\alpha}(T(f_y)) = (D^{\alpha}T)(f_y) = (-1)^{|\alpha|}T(D^{\alpha}f_y)$$

2. If  $g \in L^1(\mathbb{R}^d)$  and g is compactly supported, then

$$\int_{\mathbb{R}^d} g(y) T(f_y) \, dy = T(\underbrace{f \star g}_{\in C_c^{\infty}(\mathbb{R})})$$

*Proof.* 1. We prove that  $y \mapsto T(f_y)$  is continuous. Take  $y_n \to y$  in  $\mathbb{R}^d$ , then:

$$T(f_{y_n}) \to T(f_y)$$

since  $f_{y_n} \to f_y$  in  $D(\mathbb{R}^d)$ . We check this: Since  $f \subseteq C_c^{\infty}(\mathbb{R}^d)$ , it holds that  $\operatorname{supp} f \subseteq B(0,R) \subseteq \mathbb{R}^d$ . Since  $y_n \to y$  in  $\mathbb{R}^d$ . We have  $\sup_n |y_n| < \infty$ . Thus  $f_{y_n}, f_y$  are supported in  $\overline{B(0,R+\sup_n |y_n|)} = K$  compact. Moreover

$$|f_{y_n}(x) - f_y(x)| = |f(x - y_n) - f(x - y)| \le ||\nabla f||_{L^{\infty}} ||y_n - y|| \to 0$$

So we get  $||f_{y_n} - f_y||_{L^{\infty}} \to 0$  Similary:

$$||D^{\alpha}f_{y_n} - D^{\alpha}f_n||_{L^{\infty}} \to 0$$

Exercise 3.42 (E 3.4) Compute the Fourier Transform of the Gaussian.

**Exercise 3.43** (Bonus 3) Let  $f \in L^1(\mathbb{R}^d)$  such that

$$|\hat{f}(k)| \leqslant \frac{C_N}{(1+|k|)^N}$$

for all  $k \in \mathbb{R}^d$ , for all  $N \ge 1$ .  $(C_N \text{ is independent of } k)$ . Prove that  $f \in C^{\infty}(\mathbb{R}^d)$ 

 $(f \in C^{\infty})$  i.e.  $\exists \tilde{f} \in C^{\infty}$  s.t.  $f = \tilde{f}$  a.e.

**Theorem 3.44** Take  $T \in D'(\mathbb{R}), f \in C_c^{\infty}(\mathbb{R}^d) = D(\mathbb{R}^d), f_y(x) = f(x-y)$ 

a) 
$$y \mapsto T(f_y) \in C^{\infty}(\mathbb{R}^d)$$
 and  $D_y^{\alpha}(T(f_y)) = (D^{\alpha}T)(f_y) = (-1)^{|\alpha|}T(D_x^{\alpha}f_y)$ 

b)  $\forall g \in L^1(\mathbb{R}^d)$  and compactly supported

$$\int_{\mathbb{R}^d} g(y)T(f_y) \, dy = T(\underbrace{f \star g}_{\in C^{\infty}})$$

*Proof.* a)  $y \mapsto T(f_y)$  is continuous since  $y_n \to y$  in  $\mathbb{R}^d$ , then  $f_{y_n} \to f_y$  implies  $T(f_{y_n}) \to T(f_y)$ . Let's check that  $y \mapsto T(f_y) \in C^1$ :

$$\lim_{h \to 0} \frac{T(f_{y-he_i}) - T(f_y)}{h} = \lim_{h \to 0} T\left(\frac{f_{y-he_i} - f_y}{h}\right)$$

We have  $\frac{f_{y-he_i}-f_y}{h} \xrightarrow{h \to 0} (\partial_i f)_y$  in  $D(\mathbb{R}^d)$ 

•  $\exists K$  compact set such that  $\operatorname{supp}(f_{y-e_i}-f_y)$ ,  $\operatorname{supp} \partial_i f \subseteq K$  as |h| small.

• 
$$\frac{f_{y-he_i}(x) - f_y(x)}{h} - (\partial_i f)_y(x)$$

$$= \frac{f(x-y+he_i) - f(x-y)}{h} - (\partial_i f)(x-y)$$

$$\left| \int_0^1 \partial_i f(x-y+the_i) dt - \partial_i f(x-y) \right| \xrightarrow{h \to 0} 0 \text{ uniformly in } x$$
Similary:

$$\left| D_x^{\alpha} \left( \frac{f(x-y+he_i) - f(x-y)}{h} - (\partial_i f)(x-y) \right) \right|$$

$$= \left| \frac{D^{\alpha} f(x-y+he_i) - D^{\alpha} f(x-y)}{h} - \partial_i (D^{\alpha} f)(x-y) \right| \xrightarrow{h \to 0} 0$$

uniformly in x. Conclude:

$$\lim_{h \to 0} \frac{T(f_{y-he_i}) - T(f_y)}{h} \xrightarrow{h \to 0} T((\hat{c}_i f)_y) \in C(\mathbb{R}^d)$$

So we geht that  $y \mapsto T(f_y) \in C^1$  and  $-\partial_{y_i} T(f_y) = T((\partial_i f)_y)$ 

By induction:

$$D_y^{\alpha} T(f_y) = (-1)^{|\alpha|} T((D^{\alpha} f)_y) = (D^{\alpha} T)(f_y) \quad \forall \alpha \in \mathbb{N}^d$$

b) Heuristic: T = T(x)

$$\int_{\mathbb{R}^d} g(y)T(f_y) \, dy = \int_{\mathbb{R}^d} g(y) \left( \int_{\mathbb{R}^d} T(x)f(x-y) \, dx \right) \, dy$$
$$= \int_{\mathbb{R}^d} T(x) \left( \int_{\mathbb{R}^d} g(y)f(x-y) \, dy \right) \, dx$$
$$= \int_{\mathbb{R}^d} T(x)(f \star g)(x) \, dx = T(f \star g)$$

Step 1:  $g \in C_c^{\infty}(\mathbb{R}^d)$ 

(Rieman Sum) 
$$\int_{\mathbb{R}^d} g(y)T(f_y) \, dy = \lim_{\Delta_N \to 0} \Delta_N \sum_{j=1}^N g(y_j)T(f_{y_j})$$
$$= \lim_{\Delta_N \to 0} T\left(\Delta_N \sum_{j=1}^N g(y_j)f_{y_j}\right)$$
$$= T(f \star g)$$

because

$$\lim_{\Delta_N \to 0} \Delta_N \sum_{j=1}^N g(y_j) f_{y_j}(x) \to (f \star g)(x) \text{ in } D(\mathbb{R}^d)$$

$$\lim_{\Delta_N \to 0} \Delta_N \sum_{j=1}^N g(y_j) f(x-y_j) \xrightarrow{\text{Riemann}} \int_{\mathbb{R}^d} g(y) f(x-y) \, dy = (f \star g)(x)$$

Proof of:

$$\lim_{\Delta_N \to 0} \Delta_N \sum_{j=1}^N g(y_j) f(x - y_j) \to (f \star g)(x) \text{ in } D(\mathbb{R}^d)$$

1) Since  $f, g \in C_c^{\infty}$  we have  $f \star g \in C_c^{\infty}$ . And we have

$$x \mapsto \Delta_N \sum_{j=1}^N g(y_j) f(x - y_j) \in C^{\infty}$$

since  $f \in C^{\infty}$  supported in  $(\operatorname{supp} g + \operatorname{supp} f)$ . So all functions are  $C_c^{\infty}$  and supported in  $(\operatorname{supp} g + \operatorname{supp} f)$ .

2)

$$\left| \lim_{\Delta_N \to 0} \Delta_N \sum_{j=1}^N g(y_j) f(x - y_j) - \int_{\mathbb{R}^d} g(y) f(x - y) \, dy \right| \xrightarrow{\Delta_N \to 0} 0$$

uniformly in x. (Result from the Riemann-Sum)

3)

$$\left| D_x^{\alpha} (\Delta_N \sum_{j=1}^N g(y_j) f(x-y) - (f \star g)(x)) \right|$$

$$= \left| \Delta_N \sum_{j=1}^N g(y_j) D^{\alpha} f(x-y) - (D^{\alpha} f) \star g(x) \right| \xrightarrow{\Delta_N \to 0} 0$$

uniformly in x for all  $\alpha$ .

Step 2: Take  $g \in L^1(\mathbb{R}^d)$  and compactly supported. Then  $\exists \{g_n\} \subseteq C_c^{\infty}(\mathbb{R}^d)$ , supp  $g_n \subseteq \text{supp } g + B(0,1)$  such that  $g_n \to g$  in  $L^1(\mathbb{R}^d)$ . By Step 1:

$$\int_{\mathbb{R}^d} g_n(y) T(f_y) \, dy = T(g_n \star f)$$

Take  $n \to \infty$ :

$$\int_{\mathbb{R}^d} g_n(y) T(f_y) \, dy \to \int_{\mathbb{R}^d} g(y) T(f_y) \, dy$$

since  $g_n \to g$  in  $L^1$  compactly supported and  $y \mapsto T(f_y) \in C^{\infty} \subseteq L^{\infty}(K)$ . Moreover (exercise):

$$\underbrace{g_n \star f}_{\in C^{\infty}} \to g \star f \quad \text{in } D(\mathbb{R}^d)$$

So  $T(g_n \star f) \xrightarrow{n \to \infty} T(g \star f)$ . Finally we optain:

$$\int g(y)T(f_n)\,dy = T(g\star f)$$

**Theorem 3.45** Let  $\Omega \subseteq \mathbb{R}^d$  be open. Let  $T \in D'(\Omega)$  and  $f \in C_c^{\infty}(\Omega)$ . Denote

$$\Omega_f = \{ y \in \mathbb{R}^d \mid \operatorname{supp} f_y = y + \operatorname{supp} f \subseteq \Omega \}$$

a) 
$$y \mapsto T(f_y) \in C^{\infty}(\Omega_f)$$
 and  $D_y^{\alpha}(T(f_y)) = (D^{\alpha}T)(f_y) = (-1)^{|\alpha|}T((D^{\alpha}f)_y)$ 

b) For all  $g \in L^1(\Omega_q)$  compactly supported in  $\Omega_f$  and it holds:

$$\int_{\Omega} g(y)T(f_y) \, dy = T(f \star g).$$

**Theorem 3.46** Let  $T \in D'(\Omega)$  s.t.  $\nabla T = 0$  in  $D'(\Omega)$ . Then: T = const. in  $\Omega$ .

Proof.  $(\Omega = \mathbb{R}^d)$  We show for all  $f \in C_c^{\infty}$  that  $y \mapsto T(f_y) \in C^{\infty}(\mathbb{R}^d)$  and  $\partial_{y_i} T(f_y) = (\partial_j T)(f_y) = 0$  for all  $i = 1, \ldots, d$ . Then by the result of the theorem for  $C^{\infty}$  functions,  $y \mapsto T(f_y) = const$  independent of y. Consequently:

$$T(f_y) = T(f_0) = T(f) \quad \forall y \in \mathbb{R}^d \ \forall f \in C_c^{\infty}(\mathbb{R}^d)$$

For any  $g \in C^{\infty}(\mathbb{R}^d)$ :

$$\left(\int_{\mathbb{R}^d} g \, dy\right) T(f) = \int_{\mathbb{R}^d} g(y) T(f_y) \, dy = T(f \star g) = T(g \star f) = \left(\int_{\mathbb{R}^d} f \, dy\right) T(g)$$

So  $\frac{T(f)}{\int_{\mathbb{R}^d} f}$  is independent of f (as soon as  $\int f \neq 0$ ). So we get that  $T(f) = const \int_{\mathbb{R}^d} f$ , where const is independent of f.

**Remark 3.47** If  $u \in C^1(\mathbb{R}^d)$ , then:

$$u(x+y) - u(x) = \int_0^1 \sum_{j=1}^d y_j (\partial_j u)(x+ty_j) dt = \int_0^1 y \nabla u(x+ty) dt$$

So we get that if  $\nabla u = 0$ , then u(x + y) - u(x) = 0 for all x, y, so u = const.

**Theorem 3.48** (Taylor expansion for distributions) Let  $T \in D'(\mathbb{R}^d)$  and  $f \in C_c^{\infty}(\mathbb{R}^d)$ . Then  $y \mapsto T(f_y) \in C^{\infty}$  and

$$T(f_y) - T(f) = \int_0^1 \sum_{j=1}^d y_j(\partial_j T)(f_{ty}) dt.$$

In particular, if  $g \in L^1_{loc}$  and  $\nabla g \in L^1_{loc}$ , then  $\forall y \in \mathbb{R}^d$ :

$$g(x+y) - g(x) = \int_0^1 g(x+ty)y \, dt$$

for a.e.  $x \in \mathbb{R}^d$ .

*Proof.*  $y \mapsto T(f_y)$  is  $C^{\infty}$  and  $\frac{d}{dt}[T(f_{ty})] = (\nabla T)(f_{ty})y$  So we get

$$T(f_y) - T(f) = \int_0^1 \frac{d}{dt} (T(f_{ty})) dt$$
$$= \int_0^1 (\nabla T)(f_{ty}) y dt$$
$$= \int_0^1 \sum_{j=1}^d (\partial_j T)(f_{ty}) y_j dt$$

**Corrolary 3.49** Let  $g \in L^1_{loc}(\mathbb{R}^d)$  s.t.  $\hat{\sigma}_j g \in L^1_{loc}(\mathbb{R}^d)$  for all  $j = 1, 2, \dots, d$  (i.e.  $g \in W^{1,1}_{loc}(\mathbb{R}^d)$ ). Then for all  $y \in \mathbb{R}^d$ :

$$g(x+y) - g(x) = \int_0^1 y \cdot \nabla g(x+ty) dt$$
$$= \int_0^1 \sum_{j=1}^d y_j \partial g(x+ty) dt$$

for a.e. x.

*Proof.* For all  $f \in C_c^{\infty}$  we have

$$\int_{\mathbb{R}^d} f(x)[g(x+y) - g(x)] dx = \int_{\mathbb{R}^d} g(x)[f(x-y) - f(x)] dx$$

$$= g(f_y) - g(f)$$

$$= \int_0^1 \sum_{j=1}^d y_j (\partial_j g)(f_{ty}) dt$$

$$= \int_0^1 \sum_{j=1}^d y_j \int_{\mathbb{R}^d} \sum_{j=1}^d y_j \left[ \int_{\mathbb{R}^d} (\partial_j g)(x) f_{ty}(x) dx \right]$$

$$= \int_0^1 \sum_{j=1}^d y_i \left[ \int_{\mathbb{R}^d} (\partial_j g)(x + ty) f(x) dx \right] dt$$

$$= \int_{\mathbb{R}^d} f(x) \left[ \int_0^1 \sum_{j=1}^d y_j \partial_j g(x + ty) dt \right] dx$$

For all  $\phi \in C_c^{\infty}$ : = g(x+y) - g(x) a.e.  $x \in \mathbb{R}^d$ .

**Remark 3.50** If  $T \in D'(\Omega)$ ,  $\Omega \subseteq \mathbb{R}^d$  open, if  $y \nabla T = 0$ , then T = const.

**Theorem 3.51** (Equivalence of the classical and distributional derivatives) Let  $\Omega \subseteq \mathbb{R}^d$ . Then the following are equivalent:

1. 
$$T \in D'(\Omega)$$
 s.t.  $\partial_{x_i} T = g_i \in C(\Omega)$  for all  $i = 1, \dots, d$ .

2. 
$$T = f \in C^1(\Omega)$$
 and  $g_i = \partial_{x_i} f$ 

Proof.

 $(2) \Rightarrow (1)$ : If  $T = f \in C^1(\Omega)$ , then:  $\partial_{x_i} f \in C(\Omega)$ .

$$\partial_{x_i} T(\phi) = -T(\partial_{x_i} \phi) = -\int_{\Omega} f(\partial_{x_i} \phi) = \int_{\Omega} (\partial_{x_i} f) \phi$$

for all  $\phi \in D(\Omega)$ , so  $\partial_{x_i} T = \partial_{x_i} f$ .

(1)  $\Rightarrow$  (2): Why is  $T = f \in C^1(\Omega)$ ? As  $\partial_{x_i} f = g_i$ :

$$f(x+y) - f(x) = \int_0^1 \nabla f(x+ty)y \, dt = \int_0^1 \sum_{i=1}^d g_i(x+ty)y_i \, dt$$

So we get

$$f(y) = f(0) + \int_0^1 \sum_{i=1}^d g_i(ty)g_i dt.$$

We expect that  $f \in C^1$  and  $\partial_{x_i} f = g_i$ . But this is not trivial to prove.

$$\frac{f(y+he_i)-f(y)}{h} = \int_0^1 \sum_{i=1}^d \left[g_i(ty+the_i)(y_i+h\delta_{ij})\right] dt$$

$$= \int_0^1 g_i(ty+the_i) dt + \int_0^1 \sum_{j\neq i} \frac{\left[g_i(ty+the_i)-g_i(ty)\right]}{h} y_i dt$$

$$\xrightarrow{h\to 0} \int_0^1 g_i(ty) dt + \text{is difficult ...}$$

Lets take  $\phi \in C_c^{\infty}$ , then:

$$T(\phi_y) - T(\phi) = \int_0^1 \underbrace{\nabla T}_{(g_i)_{i=1}^d} (\phi_{ty}) y \, dt$$

$$= \int_0^1 \sum_{i=1}^d \left( \int_{\Omega} g_i(x) \underbrace{\phi_{ty}}_{=\phi(x-ty)} dx \right) \, dt$$

$$= \int_{\mathbb{R}^d} \left( \sum_{i=1}^d \int_0^1 g_i(x) \phi(x-ty) y_i \, dt \right) \, dx$$

$$= \int_{\mathbb{R}^d} \left( \sum_{i=1}^d \int_0^1 g_i(x+ty) \phi(x) y_i \, dt \right) \, dx$$

$$= \int_{\mathbb{R}^d} \left( \sum_i \int_0^1 g_i(x+ty) y_i \, dt \right) \phi(x) \, dx$$

Integrating against  $\psi(y)$  with  $\psi \in C_c^{\infty}$ :

$$\int_{\mathbb{R}^d} T(\phi_y)\psi(y) \, dy - T(\phi) \int_{\mathbb{R}^d} \psi(y) \, dy$$

$$= \int_{\mathbb{R}^d} \left( \int_{\mathbb{R}^d} \sum_i \int_0^1 g_i(x + ty) y_i \psi(y) \, dt \, dy \right) \psi(x) \, dx$$

$$\Rightarrow T(\phi \star \psi) - T(\phi) \int \psi = \dots$$

$$\Rightarrow \int_{\mathbb{R}^d} T(\psi_y)\phi(y) \, dy - T(\phi) \int \psi = \dots$$

Take  $\psi \in C_c^{\infty}(\mathbb{R}^d)$  such that  $\int \psi = 1$ . Then:

$$T(\phi) = \int_{\mathbb{R}^d} \underbrace{T(\psi_x) - \left(\int_{\mathbb{R}^d} \sum_{i=1}^d \int_0^1 g_i(x+ty)y_i\psi(y) dt dy\right)}_{f(x)} \phi(x) dx$$

for all  $\phi \in C_c^{\infty}$ , so  $T = f \in C(\Omega)$ . Thus  $T = f \in C(\Omega)$  and  $\partial_{x_i} T = g_i \in C(\Omega)$ . Then we need to prove that  $f \in C^1(\Omega)$  and  $\partial_{x_i} f = g_i$  (classical derivative). Since

 $f \in W_{loc}^{1,1}$ :

$$f(x+y) - f(x) = \int_0^1 \sum_{i=1}^d g_i(x+ty)y_i dt \quad \forall x, y$$

In particular:

$$\frac{f(x+he_i) - f(x)}{h} = \int_0^1 \frac{1}{h} \sum_{i=1}^d g_i(x+the_i) h \delta_{ij} dt$$
$$= \int_0^1 g_i(x+the_i) dt \xrightarrow{h \to 0} g_i(x)$$

So we get  $\partial_{x_i} f(x) = g_i(x) \in C(\Omega)$  in the classical sense. So  $f \in C^1(\Omega)$ .

**Definition 3.52** (Sobolev Spaces) Let  $\Omega \subseteq \mathbb{R}^d$  be open. We define for  $1 \leq p \leq \infty$ :

$$W^{1,p}(\Omega) = \{ f \in L^p(\Omega) \mid \partial_{x_i} f \in L^p(\Omega) \ \forall i = 1, \dots, d \}$$

$$W^{k,p}(\Omega) = \{ f \in L^p(\Omega) \mid D^{\alpha} f \in L^p(\Omega) \ \forall |\alpha| \le k \}$$

$$W^{k,p}_{loc}(\Omega) = \{ f \in L^p_{loc}(\Omega) \mid D^{\alpha} f \in L^p_{loc}(\Omega) \ \forall |\alpha| \le k \}$$

**Theorem 3.53** (Approximation of  $W_{loc}^{1,p}(\Omega)$  by  $C^{\infty}(\Omega)$ ) Let  $\Omega \subseteq \mathbb{R}^d$  be open, let  $f \in W_{loc}^{1,p}(\Omega)$ . Then there exists  $\{f_n\} \subseteq C^{\infty}(\Omega)$  such that  $f_n \to f$  in  $W_{loc}^{1,p}(\Omega)$ , i.e. for all  $K \subseteq \Omega$  compact:  $\|f_n - f\|_{L^p(K)} + \sum_{i=1}^d \|\partial_{x_i}(f_n - f)\|_{L^p(K)} \to 0$ .

Proof. Case  $\Omega = \mathbb{R}^d$ : Take  $g \in C_c^{\infty}$ ,  $\int g = 1$ ,  $g_{\epsilon}(x) = \epsilon^{-d}g(\epsilon^{-1}x)$ . Then  $g_{\epsilon} \star f \in C_c^{\infty}$ . Since  $f \in L_{loc}^p(\Omega)$  we have  $g_{\epsilon} \star f \to f$  in  $L_{loc}^p$  as  $\epsilon \to 0$ . Moreover  $\partial_{x_i}(g_{\epsilon} \star f) = (g_{\epsilon} \star \partial_{x_i} f) \xrightarrow{\epsilon \to 0} \partial_{x_i} f$  in  $L_{loc}^p$ . Then we can take  $f_n = g_{\frac{1}{n} \star f}$ .

**Remark 3.54** In general, if we want to compute the distributional derivative  $D^{\alpha}f$ , then we can find  $f_n \to f$  in  $D'(\Omega)$  and compute  $D^{\alpha}f_n$ . Then  $D^{\alpha}f_n \to D^{\alpha}f$  in  $D^{\alpha}(\Omega)$ . As an example we can compute  $\nabla |f|$  with  $f \in W^{1,p}_{loc}(\Omega)$ .

$$(\nabla |f|)(x) = \begin{cases} \nabla f(x) & f(x) > 0\\ -\nabla f(x) & f(x) < 0\\ 0 & f(x) = 0 \end{cases}$$

**Theorem 3.55** (Chain Rule) Let  $G \in C^1(\mathbb{R}^d)$  with  $|\nabla G|$  is bounded. Let  $f = (f_i)_{i=1}^d \subseteq W^{1,p}_{loc}(\Omega)$ . Then  $x \mapsto G(f(x)) \in W^{1,p}_{loc}(\Omega)$  and

$$\partial_{x_i} G(f) = \sum_{k=1}^d (\partial_k G)(f) \cdot \partial_{x_i} f_k$$
 in  $D'(\Omega)$ .

Moreover, if  $G(0) \in L^p(\Omega)$  (i.e. either  $|\Omega| < \infty$  or G(0) = 0), then if  $f = (f_i)_{i=1}^d \subseteq W^{1,p}(\Omega)$ , then  $G(f) \in W^{1,p}(\Omega)$ .

*Proof.* Since  $G \in C^1$  we have that G is bounded in any compact set. Moreover  $\|\nabla G\|_{L^{\infty}} < \infty$  implies:

$$|G(f) - G(0)| \leq \|\nabla G\|_{L^{\infty}} |f| \in L^p_{loc}$$

So  $G(f) \in L^p_{loc}$ . Let us compute  $\partial_{x_i} G(f)$ . Let  $\{f^{(n)}\}_{n=1}^{\infty} \subseteq C^{\infty}$  such that  $f^{(n)} \to f$  in  $W^{1,p}_{loc}$ , then:

$$|G(f^{(n)}) - G(f)| \le ||\nabla G||_{L^{\infty}} |f^{(n)} - f| \to 0 \text{ in } L^p_{loc}$$

So  $G(f^{(n)}) \to G(f)$  in  $L^p_{loc}$ , thus  $\partial_{x_i} G(f^{(n)}) \to \partial_{x_i} G(f)$  in  $D'(\Omega)$ . On the other hand, by the standard Chain-Rule for  $C^1$ -functions:

$$\partial_{x_i} G(f^{(k)}) = \sum_{k=1}^d \underbrace{\partial_k G(f^{(k)})}_{\text{(b.d.} \to \partial_k G(f))} \underbrace{\partial_i f_k^{(n)}}_{\text{($\to \partial_i f_k \text{ in } L^p(\Omega))}} \to \sum_{k=1}^d \partial_k G(f) \partial_i f_k \text{ in } L^p_{loc}(\Omega)$$

Thus

$$\partial_{x_i} G(f) = \sum_{k=1}^d \underbrace{\partial_k G(f)}_{\in L^{\infty}} \underbrace{\partial_i f_k}_{\in L^p_{loc}} \in L^p_{loc} \text{ in } D'(\Omega)$$

So  $G(f) \in W^{1,p}_{loc}(\Omega)$ . Aussume that  $G(0) \in L^p(\Omega)$  (i.e.  $|\Omega| < \infty$  or G(0) = 0). If  $f \in W^{1,p}(\Omega)$ , then  $G(f) \in W^{1,p}(\Omega)$  since

$$|G(f) - G(0)| \le ||\nabla G||_{L^{\infty}}|f| \in L^p \Rightarrow G(f) \in L^p$$

and

$$\partial_{x_i} G(f) = \sum_k \underbrace{\partial_k G}_{\in L^{\infty}} \underbrace{\partial_i f_k}_{\in L^p} \in L^p \Rightarrow G(f) \in W^{1,p}(\Omega)$$

**Theorem 3.56** (Derivative of absolute value) Let  $\Omega \subseteq \mathbb{R}^d$  be open. Let  $f \in W^{1,p}(\Omega)$ . Then  $|f| \in W^{1,p}(\Omega)$  and if f is real-valued:

$$(\nabla |f|)(x) = \begin{cases} \nabla f(x) & f(x) > 0\\ -\nabla f(x) & f(x) < 0\\ 0 & f(x) = 0 \end{cases}$$

*Proof.* Exercise. Hint: Use the Chain-Rule for  $G_{\epsilon}(x) = \sqrt{\epsilon^2 + x^2} - \epsilon \rightarrow |x|$  as  $\epsilon \rightarrow 0$ 

#### 3.4 Distribution vs. measures

Let  $\mu$  be a Borel measure in  $\mathbb{R}^d$  s.t.  $\mu(K) < \infty$  for all compact  $K \subseteq \mathbb{R}^d$ . Then define

$$T:\ D(\mathbb{R}^d) \longrightarrow \mathbb{C}$$
 
$$\phi \longmapsto \int_{\mathbb{R}^d} \phi(x) \, d\mu(x) \quad \forall \phi \in C_c^{\infty}$$

 $\rightsquigarrow$  T is a distribution since if  $\phi_n \to \phi$  in  $D(\Omega)$ , then

$$|T(\phi_n) - T(\phi)| \le \int_{\mathbb{R}^d} |\phi_n - \phi| \, d\mu(x) \le \|\phi_n - \phi\|_{L^{\infty}} \left( \int_K d\mu \right) \xrightarrow{n \to \infty} 0$$

**Example 3.57**  $\partial_0$  in  $D'(\mathbb{R}^d)$  is a Borel probability measure.

**Theorem 3.58** (Positive distributions are measures) Let  $\Omega \subseteq \mathbb{R}^d$  be open, let  $T \in D'(\Omega)$ . Assume  $T \geq 0$ , i.e.  $T(\phi) \geq 0$  for all  $\phi \in D(\Omega)$  satisfying  $\phi(x) \geq 0$  for all x. Then there is a Borel positive measure  $\mu$  on  $\Omega$  such that  $\mu(K) < \infty$  for all  $K \subseteq \Omega$  compact and:

$$T(\phi) = \int_{\Omega} \phi(x) \, d\mu(x) \quad \forall \phi \in D^{(\Omega)}$$

*Proof.* See Lieb-Loss Analysis. Sketch: If  $O \subseteq \mathbb{R}^d$  is open, then

$$\mu(O) = \sup\{T(\phi) \mid \phi \in D(\Omega), 0 \leqslant \phi \leqslant 1, \operatorname{supp} \phi \subseteq O\}$$

For all  $A \subseteq \Omega$  (not necessarily open),

$$\mu(A) = \inf{\{\mu(O) \mid O \text{ open}, A \subseteq O\}}$$

The mapping  $\mu: 2^{\Omega} \to [0, \infty]$  is an outer measure, i.e.

- 1.  $\mu(\emptyset) = 0$
- 2.  $\mu(A) \leq \mu(B)$  if  $A \subseteq B$
- 3.  $\mu\left(\bigcup_{i=1}^{\infty} A_i\right) \leqslant \sum_{i=1}^{\infty} \mu(A_i)$

From the outer measure we can find a  $\sigma$ -algebra  $\Sigma$  and  $\mu$  is a measure on  $\Omega$  s.t. E is measurable iff

$$\mu(E) = \mu(E \cap A) + \mu(E \cap A^{\complement}).$$

So all open sets are measurable, thus outer regularity (by def  $\mu(A) = \inf\{\mu(O) \mid O \text{ open } \supseteq A\}$ ), so inner regularity  $\mu(A) = \sup\{\mu(K) \mid K \text{ compact } \subseteq A\}$ .

**Exercise 3.59** (E 4.1) Prove that if  $T_n \to T$  in  $D'(\mathbb{R}^d)$ , then  $D^{\alpha}T_n \to D^{\alpha}T$  in  $D'(\mathbb{R}^d)$  for all  $\alpha \in \mathbb{N}^d$ .

Exercise 3.60 (E 4.2)

**Exercise 3.61** (E 4.3)  $f \in L^1(\mathbb{R}^d)$ ,  $\int f = 1$   $f_{\epsilon}(x) = \epsilon^{-d} f(\epsilon^{-1} x)$ . Then  $f_{\epsilon} \to \delta_0$  in  $D'(\mathbb{R}^d)$ .

**Exercise 3.62** (E 4.4) Let  $\{f_n\} \subseteq L^1$ , supp  $f \subseteq B(0,1), f_n \to f$  in  $L^1$ . Prove for all  $g \in C_c^{\infty}$  that  $f_n \star g \to f \star g$  in  $D(\mathbb{R}^d)$ .

Solution. Since  $f_n \in L^1$ , supp  $f \subseteq B(0,1)$  and  $g \in C_c^{\infty}$  we have  $f_n \star g \in C_c^{\infty}$  and

$$\operatorname{supp}(f_n \star g) \subseteq (\operatorname{supp} g) + \overline{B(0,1)} = K.$$

Since  $f_n \to f$  in  $L^1$  there is a subsequence  $f_{n_k} \to f$  almost everywhere, so f supp in  $\overline{B(0,1)}$ , so  $f \star g \in C_c^{\infty}$ , supp $(f \star g) \subseteq K$ . We have:

$$|f_n \star g(x) - f \star g(x)| = \left| \int_{\mathbb{R}^d} (f_n(y) - f(y))g(x - y) \, dy \right|$$

$$\leq \int_{\mathbb{R}^d} |f_n(y) - f(y)||g(x - y)| \, dy$$

$$\leq ||g||_{L^{\infty}} ||f_n - f||_{L^1} \xrightarrow{n \to \infty} 0$$

thus  $||f_n \star g - f \star g||_{L^{\infty}} \to 0$ . Similary:

$$\|D^{\alpha}(f_n \star g) - D^{\alpha}(f \star g)\|_{L^{\infty}} = \|f_n \star \underbrace{(D^{\alpha}g)}_{\in C^{\infty}_{c}} - f \star (D^{\alpha}g)\|_{L^{\infty}} \xrightarrow{n \to \infty} 0$$

for all  $\alpha \in \mathbb{N}^d$ , so  $f_n \star g \to f \star g$  in  $D(\mathbb{R}^d)$ .

**Exercise 3.63** (E 4.5) Compute distributional derivatives f', f'' of f(x) = x|x-1|.

Solution. We prove  $f'(x) = g(x) := \begin{cases} 2x - 1 & x > 1 \\ 1 - 2x & x < 1 \end{cases}$ . Take  $\phi \in C_c^{\infty}(\mathbb{R}^d)$ .

$$\begin{split} -f'(\phi) &= \int_{\mathbb{R}^d} f \phi' \, dy \\ &= \int_{-\infty}^1 f \phi' \, dy + \int_1^{\infty} f \phi' \, dy \\ &= [f \phi]_{-\infty}^1 - \int_{-\infty}^1 f' \phi \, dy + [f \phi]_1^{\infty} - \int_1^{\infty} f' \phi \, dy \\ &= [f \phi]_{-\infty}^1 - \int_{-\infty}^1 g \phi \, dy + [f \phi]_1^{\infty} - \int_1^{\infty} g \phi \, dy \\ &= f(1-)\phi(1) - f(1+)\phi(1) - \int_{\mathbb{R}^d} g \phi \, dy \\ &= 0 - \int_{\mathbb{R}^d} g \phi \, dy \end{split}$$

Now we compute f'' = g'. Take  $\phi \in C_c^{\infty}(\mathbb{R}^d)$ :

$$-(g')(\phi) = \int_{\mathbb{R}^d} g\phi' \, dy$$

$$= \int_{-\infty}^1 g\phi' \, dy + \int_1^{\infty} g\phi' \, dy$$

$$= [g(1-) - g(1+)]\phi(1) - \int_{-\infty}^1 g'\phi \, dy - \int_1^{\infty} g'\phi \, dy$$

$$= [g(1-) - g(1+)]\phi(1) - \int_{-\infty}^1 (-2)\phi \, dy - \int_1^{\infty} 2\phi \, dy$$

$$= -2\phi(1) + \int_{-\infty}^{\infty} [2\mathbb{1}_{(-\infty,1)}(x) - 2\mathbb{1}_{(1,\infty)}(x)]\phi(x) \, dx$$

$$= -2\delta_1(\phi) + \int_{-\infty}^{\infty} [2\mathbb{1}_{(-\infty,1)}(x) - 2\mathbb{1}_{(1,\infty)}(x)]\phi(x) \, dx$$

$$\Rightarrow g' = \underbrace{2\delta_1}_{\notin L^1_{loc}} - \underbrace{2\mathbb{1}_{(-\infty,1)} + 2\mathbb{1}_{(1,\infty)}}_{L^1_{loc}}$$

### Chapter 4

## Weak Solutions and Regularity

**Definition 4.1** Consider the linear PDE:

$$\sum_{\alpha} c_{\alpha} D^{\alpha} u(x) = F(x), \quad c_{\alpha} \text{ constant}, F \text{ given}$$

A function u is called a weak solution (a distributional solution) if

$$\sum_{\alpha} c_{\alpha} D^{\alpha} u = F \quad \text{in } D'(\Omega).$$

Namely,

$$\sum_{\alpha} (-1)^{|\alpha|} c_{\alpha} \int_{\Omega} u D^{\alpha} \phi = \int_{\Omega} F \phi, \quad \forall \phi \in D(\Omega)$$

Regularity: Given some condition on the data F, what can we say about the smoothness of u? Can we say that the equation holds in the classical sense? We derived G (the solution of the Laplace Equation) before in two ways:

- 1.  $\Delta G(x) = 0$  for all  $x \neq 0$ , assuming G(x) = G(|x|) and  $d \geq 2$
- 2.  $\hat{G}(k) = \frac{1}{|2\pi k|^2}$  for  $d \ge 3$

**Theorem 4.2** For all  $d \ge 1$  we have  $G \in L^1_{loc}(\mathbb{R}^d)$  and  $-\Delta G = \delta_0$  in  $D'(\mathbb{R}^d)$ .

*Proof.* Take  $\phi \in D(\mathbb{R}^d)$ . Then:

$$(-\Delta G_y)(\phi) = G_y(-\Delta \phi) = \int_{\mathbb{R}^d} G_y(x)(-\Delta \phi)(x) dx$$
$$= \int_{\mathbb{R}^d} G(y - x)(-\Delta \phi)(x) dx$$
$$= [G \star (-\Delta \phi)](y) = (-\Delta)(G \star \phi)(y)$$

Recall for all  $f \in C^2$ ,  $-\Delta(G \star f) = f$  pointwise. So we can conclude  $-\Delta G_y = \delta_y$  in  $D'(\mathbb{R}^d)$ .

**Remark 4.3** In 
$$d = 1$$
,  $G(x) = -\frac{1}{2}|x|$ , so  $-G'(x) = \text{sgn}(x)/2$ , so  $-G''(x) = \delta_0$ .

Remark 4.4 Formally:

$$-\Delta(G_y \star \phi) = (-\Delta G_y) \star \phi(x) = (\delta_0 \star \phi)(x) = \int_{\mathbb{R}^d} \delta_0(y)\phi(x-y) \, dy = \delta_0(\phi(x-\bullet))$$

**Theorem 4.5** (Poisson's equation with  $L^1_{loc}$  data) Let  $f \in L^1_{loc}(\mathbb{R}^d)$  s.t.  $\omega_d f \in L^1(\mathbb{R}^d)$  where

$$\omega_d(x) = \begin{cases} 1 + |x| & d = 1\\ \log(1 + |x|) & d = 2\\ \frac{1}{1 + |x|^{d-2}} & d \geqslant 3, \end{cases}$$

then  $u(x)=(G\star f)(x)\in L^1_{loc}(\mathbb{R}^d)$ . Moreover  $-\Delta u=f$  in  $D'(\mathbb{R}^d)$ . In fact,  $u\in W^{1,1}_{loc}(\mathbb{R}^d)$  and:

$$\partial_{x_i} u(x) = (\partial_{x_i} G) \star f(x) = \int_{\mathbb{R}^d} (\partial_{x_i} G)(x - y) f(y) \, dy$$

**Remark 4.6** We can also replace  $\mathbb{R}^d$  by  $\Omega$  and get  $-\Delta u = f$  in  $D'(\Omega)$ .

Proof of Theorem 4.5. First we check that  $u \in L^1_{loc}$ . Take any Ball  $B(0,R) \subseteq \mathbb{R}^d$ , prove  $\int_{B} |u| dy < \infty$ . We have

$$\begin{split} \int_{B} |u| \, dy &= \int_{B} \left| \int_{\mathbb{R}^{d}} G(x-y) f(y) \, dy \right| \, dx \\ &\leqslant \int_{B} \int_{\mathbb{R}^{d}} |G(x-y)| |f(y)| \, dy \, dx \\ &= \int_{\mathbb{R}^{d}} \left( \int_{B} |G(x-y)| \, dx \right) |f(y)| \, dy \end{split}$$

If  $y \notin B = B(0, R)$ , then by Newtons's theorem (Mean-value theorem):

$$\int_{B(0,R)} |G(x-y)| \, dx = |B(0,R)| |G(y)| \le C|B|\omega_d(y)$$

If  $y \in B$ , then  $|y| \le R$ , so  $|x - y| \le 2R$  if  $x \in B$ .

$$\int_{B(0,R)} |G(x-y)| \, dx \le \int_{|x-y| \le 2R} |G(x-y)| \, dx = \int_{|z| \le 2R} |G(z)| \, dz \le c_R$$

as  $G \in L^1_{loc}$ . Thus

$$\int_{B} |u| \, dy \leqslant c_{B} \int_{|y| \geqslant R} \omega_{d}(y) |f(y)| \, dy + c_{B} \int_{|y| \leqslant R} |f(y)| \, dy < \infty$$

Let us prove  $-\Delta u = f$  in  $D'(\mathbb{R}^d)$ . Take  $\phi \in D(\mathbb{R}^d)$ . Then:

$$(-\Delta u)(\phi) = u(-\Delta \phi)$$

$$= \int_{\mathbb{R}^d} u(x)(-\Delta \phi)(x) dx$$

$$= \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} G(x-y)f(y)(-\Delta \phi)(x) dx dy$$

$$= \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} G(y-x)f(y)(-\Delta \phi)(x) dx dy$$

$$= \int_{\mathbb{R}^d} [G \star (-\Delta \phi)](y)f(y) dy$$

$$= \int_{\mathbb{R}^d} -\Delta (G \star \phi)(y)f(y) dy$$

$$= \int_{\mathbb{R}^d} \phi(y)f(y) dy$$

So  $-\Delta u = f$  in  $D'(\mathbb{R}^d)$ . We check that  $\partial_i G \star f \in L^1_{loc}(\mathbb{R}^d)$ . Note that

$$|\partial_i G(x)| \leqslant c \frac{1}{|x|^{d-1}} \in L^1_{loc}(\mathbb{R}^d)$$

and

$$\int_{B(0,R)} |\partial_i G(x-y)| \, dx \leqslant \begin{cases} C_r \omega_d(y) & |y| \geqslant R \\ C_r & |y| \leqslant R \end{cases}$$

So  $\int_{B(0,R)} |(\partial_i G \star f)|(y) < \infty$  for all R > 0. For all  $\phi \in D(\mathbb{R}^d)$ :

$$-(\partial_{i}u)(\phi) = u(\partial_{i}\phi) = \int_{\mathbb{R}^{d}} u(x)\partial_{i}\phi(x) dx$$

$$= \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} G(x-y)f(y)\partial_{i}\phi(x) dx dy$$

$$= \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} G(y-x)f(y)\partial_{i}\phi(x) dx dy$$

$$= \int_{\mathbb{R}^{d}} (G \star \partial_{i}^{y}\phi)(y)f(y) dy$$

$$= \int_{\mathbb{R}^{d}} (\partial_{i}^{y}G \star \phi)(y)f(y) dy$$

$$= \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} \partial_{i}^{y}G(y-x)f(y)\phi(x) dx dy$$

$$= \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} -(\partial_{i}G)(x-y)f(y)\phi(x) dx dy$$

$$= -\int_{\mathbb{R}^{d}} (\partial_{i}G \star f)(x)\phi(x) dx$$

So  $\partial_i u = \partial_i G \star f \in L^1_{loc}(\mathbb{R}^d)$ . Thus  $u \in L^1_{loc}$ ,  $\partial_i u \in L^1_{loc}$  for all i. So  $u \in W^{1,1}_{loc}(\mathbb{R}^d)$ .  $\blacksquare$  Regularity: We consider the Laplace Equation  $\Delta u = 0$  in  $\mathbb{R}^d$ .

**Lemma 4.7** (Weyl) If  $\Omega \subseteq \mathbb{R}^d$  open and  $T \in D'(\Omega)$  s.t.  $\Delta T = 0$  in  $D'(\Omega)$ , then:  $T = f \in C^{\infty}(\Omega)$  and f is a harmonic function.

Proof.  $(\Omega = \mathbb{R}^d)$ . Take  $\phi \in C_c^{\infty}$ , then  $y \mapsto T(\phi_y) = T(\phi(-y))$  is  $C^{\infty}$  and  $\Delta_y T(\phi_y) = T((\Delta\phi)_y) = (\Delta T)(\phi_y) = 0$ . Take  $g \in C_c^{\infty}$ , g is radial. Then:

$$\int_{\mathbb{R}^d} T(\phi_y) g(y) \, dy \stackrel{\text{(exercise)}}{=} \int_{\mathbb{R}^d} T(\phi) g(y) \, dy = T(\phi) \left( \int_{\mathbb{R}^d} g \, dy \right)$$

**Exercise 4.8** Let  $f \in C^{\infty}(\mathbb{R}^d)$  be a harmonic function and  $g \in C_c^{\infty}$ , g is radial. Then:

$$\int_{\mathbb{R}^d} f(x)g(x) \, dx = f(0) \left( \int_{\mathbb{R}^d} g(x) \, dx \right)$$

On the other hand:

$$\int_{\mathbb{R}^d} T(\phi_y)g(y) \, dy = T(\phi \star g) = T(g \star \phi) = \int_{\mathbb{R}^d} T(g_y)\phi(y) \, dy$$

Take  $\int_{\mathbb{R}^d} g \, dy = 1$ , then:

$$T(\phi) = \int_{\mathbb{R}^d} T(g_y)\phi(y) \, dy$$

For all  $\phi \in C_c^{\infty}$ . Then  $T = T(g_y) \in C^{\infty}$ 

Now lets regard the Poisson Equation  $-\Delta u = f$  in  $D'(\mathbb{R}^d)$ .

**Remark 4.9** Any solution has the form  $u = G \star g + h$  where  $\Delta h = 0$  in  $D'(\mathbb{R}^d)$ . By Weyls Lemma (4.7),  $h \in C^{\infty}$ , then we only need to consider the regularity of  $G \star f$ .

Remark 4.10 The regularity is a local question, namely if we write

$$f = f_1 + f_2 = f\phi + f(1 - \phi),$$

where  $\phi=1$  in a ball B and  $\phi\in C_c^\infty$ . Then  $G\star f=G\star f_1+G\star f_2$ . Here  $f_2=f(1-\phi)=0$  in B. With Weyls Lemma (4.7),  $G\star f_2\in C^\infty$ .

**Theorem 4.11** (Low Regularity of Poisson Equation) Lef  $f \in L^p(\mathbb{R}^d)$  and compactly supported. Then

- a) If  $p \ge 1$ , then
  - $G \star f \in C^1(\mathbb{R}^d)$  if d = 1.
  - $G \star f \in L^q_{loc}(\mathbb{R}^d)$  for any  $q < \infty$  if d = 2.
  - $G \star f \in L^q_{loc}(\mathbb{R}^d)$  for  $q < \frac{d}{d-2}$  if  $d \ge 3$ .
- b) If  $\frac{d}{2} , then <math>G \star f \in C^{0,\alpha}_{loc}(\mathbb{R}^d)$  for all  $0 < \alpha < 2 \frac{d}{p}$ , i.e.

$$|(G \star f)(x) - (G \star f)(y)| \leq C_k |x - y|^{\alpha} \quad \forall x, y \in K$$

with K compact in  $\mathbb{R}^d$ .

c) If p > d, then  $G \star f \in C^{1,\alpha}_{loc}(\mathbb{R}^d)$  for all  $0 < \alpha < 1 - \frac{d}{p}$ .

where G is den fundamental solution of the laplace equation.

**Example 4.12** Let r = |x|

$$u(x) = \omega(r) = \log(|\log(r)|)$$

if  $0 < r < \frac{1}{2}$ , so u is well-defined in  $B = B(0, \frac{1}{2})$ . We conclude:

$$-\Delta_{\mathbb{R}^3} u(x) = -\omega''(r) - \frac{2\omega'(r)}{r} = f(x) \in L^{\frac{3}{2}(B)}$$

But the Theorem (b) tells us that if  $f \in L^{\frac{3}{2}}$  then u is continuous but  $u \notin C(B)$ .

Proof of theorem 4.11. a) (p = 1) Why is  $G \star f \in L^q_{loc}$ ? Recall from the proof of Youngs inequality:

$$\begin{aligned} |(G\star f)(x)| &= \left| \int_{\mathbb{R}^d} G(x-y)f(y) \, dy \right| \\ \text{(H\"{o}lder)} &= \left( \int_{\mathbb{R}^d} |G(x-y)|^q |f(y)| \, yd \right)^{\frac{1}{q}} \left( \int_{\mathbb{R}^d} |f(y)| \, dy \right)^{\frac{1}{q'}} \end{aligned}$$

Where  $\frac{1}{q} + \frac{1}{q'} = 1$ . Then:

$$|(G \star f)(x)|^q \leqslant C \int_{\mathbb{R}^d} |G(x-y)|^q |f(y)| \, dy$$

For any Ball  $B = B(0, R) \subseteq \mathbb{R}^d$ :

$$\int_{B} |G \star f(x)|^{q} dx \leq C \int_{B} \left( \int_{\mathbb{R}^{d}} |G(x-y)|^{q} |f(y)| dy \right) dx$$
$$= C \int_{\mathbb{R}^{d}} \left( \int_{B} |G(x-y)|^{q} dx \right) |f(y)| dy$$

 $G(x) \sim \frac{1}{|x|^{d-2}} \leadsto |G|^q = \frac{1}{|x|^{(d-2)q}} \in L^1_{loc}(\mathbb{R}^d)$  if  $(d-2)q < 2 \Leftrightarrow q < \frac{d}{d-2}$ . Here,  $y \in \operatorname{supp} f$ , so  $|y| \leqslant R_1$ , then  $|x-y| \leqslant R + R$  if  $|x| \leqslant R$ . With  $y \in \operatorname{supp} f$ , this implies:

$$\int_{B(0,R)} |G(x-y)|^q \, dx \le \int_{|z| \le R+R_1} |G(z)|^q \, dz < \infty$$

b)

$$(G \star f)(x) - (G \star f)(y) = \int_{\mathbb{R}^d} (G(x-z) - G(y-z))f(z) dz$$

So

$$|G \star f(x) - (G \star f)(y)| \le C \int_{\mathbb{R}^d} \left| \frac{1}{|x - z|^{d-2}} - \frac{1}{|y - z|^{d-2}} \right| |f(z)| dz$$

for all  $x, y \in \mathbb{R}^d$ :

$$\begin{split} \left| \frac{1}{|x|^{d-2}} - \frac{1}{|y|^{d-2}} \right| &= \left| \left( \frac{1}{|x|} - \frac{1}{|y|} \right) \left( \frac{1}{|x|^{d-3}} + \dots + \frac{1}{|y|^{d-3}} \right) \right| \\ &\leqslant C \frac{||x| - |y||}{|x||y|} \max \left( \frac{1}{|x|^{d-3}}, \frac{1}{|y|^{d-3}} \right) \\ &= C \frac{|x - y|}{|x||y|} \max \left( \frac{1}{|x|^{d-3}}, \frac{1}{|y|^{d-3}} \right) \\ &\leqslant C \max(|x|, |y|)^{1-\alpha} \frac{|x - y|^{\alpha}}{|x||y|} \max \left( \frac{1}{|x|^{d-3}}, \frac{1}{|y|^{d-3}} \right) \end{split}$$

as

$$||x| - |y|| \le \min(|x - y|, \max(|x|, |y|)) \le |x - y|^{\alpha} \max(|x|, |y|)^{1 - \alpha}$$

Thus, for all  $x, y \in \mathbb{R}^d$ :

$$\left| \frac{1}{|x|^{d-2}} - \frac{1}{|y|^{d-2}} \right| \leqslant C|x - y|^{\alpha} \frac{\max(|x|, |y|)^{1-\alpha}}{|x||y|} \max\left(\frac{1}{|x|^{d-3}}, \frac{1}{|y|^{d-3}}\right)$$
$$\leqslant C|x - y|^{\alpha} \max\left(\frac{1}{|x|^{d-2+\alpha}}, \frac{1}{|y|^{d-2+\alpha}}\right)$$

So we get

$$\left| \frac{1}{|x-y|^{d-2}} - \frac{1}{|y-z|^{d-2}} \right| \le C|x-y|^{\alpha} \max\left( \frac{1}{|x-z|^{d-2+\alpha}}, \frac{1}{|y-z|^{d-2+\alpha}} \right)$$

Therefore:

$$\begin{split} |G \star f(x) - G \star f(y)| \\ &\leqslant C \int_{\mathbb{R}^d} |x - y|^{\alpha} \max\left(\frac{1}{|x - z|^{d - 2 + \alpha}}, \frac{1}{|y - z|^{d - 2 + \alpha}}\right) |f(z)| \, dz \\ &\leqslant C |x - y|^{\alpha} \left(\sup_{\xi \in \mathbb{R}^d} \int_{\mathbb{R}^d} \frac{1}{|\xi - z|^{d - 2 + \alpha}} |f(z)| \, dz\right) \end{split}$$

Claim: If  $f \in L^p(\mathbb{R}^d)$  is compactly supported,  $d \ge p > \frac{d}{2}$ , then:

$$\sup_{\xi \in \mathbb{R}^d} \int_{\mathbb{R}^d} \frac{1}{|\xi - z|^{d-2+d}} |f(z)| \, dz < \infty$$

for all  $0 < \alpha < 2 - \frac{d}{p}$ . Assume supp  $f \subseteq \overline{B(0, R_1)}$ . Consider 2 cases:

• If  $|\xi| > 2R_1$ , then:  $|\xi - z| \ge R_1$  for all  $z \in B(0, R_1)$ . Hence:

$$\int_{\mathbb{R}^d} \frac{1}{|\xi - z|^{d-2+\alpha}} |f(z)| \, dz \leqslant \frac{1}{R_1^{d-2+\alpha}} ||f||_{L^1} < \infty$$

• If  $|\xi| \leq 2R_1$ , then:  $|\xi - z| \leq 3R_1$  for all  $z \in B(0, R_1)$ :

$$\begin{split} \int_{\mathbb{R}^{d}} \frac{1}{|\xi - z|^{d - 2 + \alpha}} |f(z)| \, dz & \leq \int_{|\xi - z| \leqslant 3R_{1}} \frac{1}{|\xi - z|^{d - 2 + \alpha}} |f(z)| \, dz \\ & \text{(H\"{o}lder)}, \left(\frac{1}{p} + \frac{1}{q} = 1\right) \quad \leqslant \left(\int_{\mathbb{R}^{d}} |f(z)|^{p} \, dz\right)^{\frac{1}{p}} \\ & \cdot \left(\int_{|\xi - z| \leqslant 3R_{1}} \frac{1}{|\xi - z|^{(d - 2 + \alpha)q}}\right)^{\frac{1}{q}} \\ & = \|f\|_{L^{p}} \left(\int_{|z| \leqslant 3R_{1}} \frac{1}{|z|^{(d - 2 + \alpha)q}} \, dz\right)^{\frac{1}{q}} < \infty \end{split}$$

c)  $(d \ge 3)$  We already know:

$$\partial_i(G \star f) = (\partial_i G \star f) \in L^1_{loc}(\mathbb{R}^d)$$

as  $\omega_d f \in L^1(\mathbb{R}^d)$ . We claim that  $\partial_i G \star f \in C^{0,\alpha}(\mathbb{R}^d)$ . So  $G \star f \in C^{1,\alpha}(\mathbb{R}^d)$  by the equivalence between the classical and the distributional derivatives. Exercise. Hint:

$$|\partial_i G \star f(x) - \partial_i G \star f(y)| \le \int_{\mathbb{R}^d} |\partial_i G(x - z) - \partial_i G(y - z)||f(z)| dz,$$

$$\partial_i G(x) = \frac{-x_i}{d|B_1||x|^d}$$
.  $\rightsquigarrow$  Need to estimate  $|\partial_i G(x) - \partial_i G(y)| \leq C|x-y|^{\alpha}$ .

**Theorem 4.13** (High regularity for Poisson's equation) Let  $f \in C^{0,\alpha}(\mathbb{R}^d)$ ,  $0 < \alpha < 1$  be compactly supported. Then  $G \star f \in C^{2,\alpha}(\mathbb{R}^d)$ .

**Remark 4.14**  $(-\Delta u = f)$  and  $f \in C(\mathbb{R}^d)$  does not imply that  $u \in C^2(\mathbb{R}^d)$ . (exercise)

**Remark 4.15** If  $f \in C^{k,\alpha}(\mathbb{R}^d)$ ,  $k \in \{0,1,\dots\}$ ,  $0 < \alpha < 1$  is compactly supported, then  $G \star f \in C^{k+2,\alpha}(\mathbb{R}^d)$ . This more general statement is a consequence of the theorem since

$$D^{\beta}(G \star f) = G \star \underbrace{(D^{\beta}f)}_{\in C^{0,\alpha}}$$

for all  $\beta = (\beta_1, \dots, \beta_d), |\beta| \leq k$ .

Proof of theorem 4.13. Since  $f \in L^p$  for all  $p \leq \infty$  by the low regularity (4.11) we have  $G \star f \in C^{1,\alpha}$  and  $\partial_i(G \star f) = \partial_i G \star f$  in the classical sense. We will compute the distributional derivatives  $\partial_i \partial_j (G \star f)$  and prove that they are Hölder continuous. Compute  $\partial_j \partial_i (G \star f)$ : For all  $\phi \in C_c^{\infty}(\mathbb{R}^d)$  we have

$$-(\partial_{j}\partial_{i}G \star f)(\phi) = \underbrace{(\partial_{i}(G \star f))}_{\in C}(\partial_{j}\phi)$$

$$= \int_{\mathbb{R}^{d}} ((\partial_{i}G) \star f)(x)\partial_{j}\phi(x) dx$$

$$= \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} \partial_{i}G(x - y)f(y)\partial_{j}\phi(x) dx dy$$

$$= \int_{\mathbb{R}^{d}} f(y) \left[ \int_{\mathbb{R}^{d}} \partial_{i}G(x - y)\partial\phi(x) x \right] dy$$

$$\stackrel{?}{=} \int_{\mathbb{R}^{d}} \Box \phi(y) dy$$

Recall:  $\partial_i G(x) = \frac{-x_i}{d|B_1||x|^d}, \partial_i \partial_j G(x) = \frac{1}{|B_1|} \left[ \frac{x_i x_j}{|x|^2} - \frac{\delta_{ij}}{d} \right] \frac{1}{|x|^d}$ . We have:

$$\int_{\mathbb{R}^d} \partial_i G(x - y) \partial_j \phi(x) \, dx = \lim_{\epsilon \to 0^+} \int_{|x - y| \ge \epsilon} \partial_i G(x - y) \partial_j \phi(x) \, dx$$

By dominated convergence we have  $|\partial_i G(x-y)\partial_j \phi(x)| \in L^1(dx)$ . By the Gauss-Green-Theorem (2.2) for all  $\epsilon > 0$ :

$$\int_{|x-y| \ge \epsilon} \partial_i G(x-y) \partial_j \phi(x) dx$$

$$= \int_{\partial B(y,\epsilon)} \partial_i G(x-y) \phi(x) \omega_j dS(x) - \int_{|x-y| \ge \epsilon} \partial_j \partial_i G(x-y) \phi(x) dx$$

Where  $\omega = \frac{x-y}{|x-y|}$ . For the boundary term:

$$-\int_{\partial B(y,\epsilon)} \partial_i G(x-y)\phi(x)\omega_j \, dS(x) = -\epsilon^{d-1} \int_{\partial B(0,1)} \partial_i G(\epsilon\omega)\phi(y+\epsilon\omega)\omega_j \, d\omega$$

$$(\star) \qquad = \int_{\partial B(0,1)} \frac{1}{d|B_1|} \omega_i \omega_j \phi(y+\epsilon\omega) \, d\omega$$

$$\xrightarrow{\epsilon \to 0} \int_{\partial B(0,1)} \frac{1}{d|B_1|} \omega_i \omega_j \phi(y) \, d\omega$$

$$= \frac{1}{d} \delta_{i,j} \phi(y)$$

(\*) 
$$\partial_i G(x) = \frac{-x_i}{d|B_1||x|d}$$
, so  $\partial_i G(\epsilon \omega) = -\frac{-\omega_i}{d|B_1|} \frac{1}{\epsilon^{d-1}}$ . for all  $|\omega| = 1$ .

Now we split:

$$-\int_{|x-y| \ge \epsilon} \partial_i \partial_j G(x-y) \phi(x) dx$$

$$= -\int_{|x-y| \ge 1} \partial_i \partial_j G(x-y) \phi(x) dx - \int_{1 \ge |x-y| \ge \epsilon} \partial_i \partial_j G(x-y) \phi(x) dx$$

The key observation is:  $\int_{\partial B(0,r)} \partial_i \partial_j G(x) dx = 0$  since

$$\partial_i \partial_j G(x) = \frac{1}{|B_1|} \left( \omega_i \omega_j - \frac{\partial_{ij}}{d} \right) \frac{1}{|x|^d},$$

 $\omega = \frac{x}{|x|}$ . For example if i = 1, j = 2, r = 1:

$$\int_{\partial B(0,1)} \partial_1 \partial_2 G(x) \, dS(x) = \frac{1}{|B_1|} \int_{\partial B(0,1)} \omega_1 \omega_2 \, d\omega,$$

 $\partial B(0,1) = \{\omega \mid |\omega| = 1\}$ . Consider:  $\omega \mapsto R\omega, (\omega_1, \dots, \omega_d) \mapsto (-\omega_1, \omega_2, \dots, \omega_d)$ . Then

$$-\int_{1\geqslant |x-y|\geqslant \epsilon} \partial_i \partial_j G(x-y)\phi(y) \, dx = 0.$$

So

$$-\int_{1\geqslant |x-y|\geqslant \epsilon} \partial_i \partial_j G(x-y)\phi(x) \, dx = -\int_{1\geqslant |x-y|\geqslant \epsilon} \partial_i \partial_j G(x-y)(\phi(x)-\phi(y)) \, dx$$

In summary:

$$\begin{split} \partial_i \partial_j (G \star f)(\phi) &= \int_{\mathbb{R}^d} f(y) \left( \int_{\mathbb{R}^d} \partial_i G(x-y) \partial_j \phi(x) \, dx \right) \, dy \\ &= \int_{\mathbb{R}^d} f(y) \frac{1}{d} \partial_{ij} \phi(y) \, dy \\ &- \int_{\mathbb{R}^d} f(y) \left( \int_{|x-y|>1} \partial_i \partial_j G(x-y) \phi(x) \, dx \right) \\ &- \int_{\mathbb{R}^d} \left[ \lim_{\epsilon \to 0} \int_{1 \geqslant |x-y| \geqslant \epsilon} \underbrace{\frac{\partial_i \partial_j G(x-y) (\phi(x)-\phi(y)) \, dx}{\sum_{|x-y|^d} |x-y| \|\nabla \phi\|_L x \leqslant \frac{C}{|x-y|^{d-1}} \epsilon L^1_{loc}(dx) \forall y} \right] \, dy \\ &= \int_{\mathbb{R}^d} \frac{\delta_{ij}}{d} f(x) \phi(x) \, dx - \int_{\mathbb{R}^d} \phi(x) \left( \int_{|x-y|>1} \partial_i \partial_j G(x-y) f(y) \, dy \right) \, dx \\ &- \int_{\mathbb{R}^d} \phi(x) \left[ \int_{|x-y|\leqslant 1} \partial_i \partial_j G(x-y) (f(y)-f(x)) \, dy \right] \, dx \end{split}$$

Conclusion:

$$\partial_i \partial_j (G \star f)(x) = -\frac{\delta_{ij}}{d} f(x) + \int_{|x-y|>1} \partial_i \partial_j G(x-y) f(y) \, dy$$
$$+ \int_{|x-y|\le 1} \partial_i \partial_j G(x-y) \left( f(y) - f(x) \right) \, dy$$

The first term  $f \in C^{0,\alpha}$ . The second term is also at least  $C^{0,\alpha}$  since  $\partial_i \partial_j G(x)$  is smooth as |x| > 1. We need to prove that the thirt term

$$W_{ij}(x) = \int_{|x-y| \le 1} \partial_i \partial_j G(x-y) (f(y) - f(x)) \, dy$$

is Hölder-continuous,  $|W_{ij}(x) - W_{ij(y)}| \leq C|x - y|^{\alpha}$ . Recall:

$$|\partial_i \partial_j G(x-y)(f(y)-f(x))| \leqslant C \frac{1}{|x-y|^d} |x-y|^\alpha = \frac{C}{|x-y|^{d-\alpha}} \in L^1_{loc}(dy)$$

We write

$$W_{ij}(x) = \int_{|x-y| \le 1} \partial_i \partial_j G(x-y) (f(y) - f(x)) \, dy$$
$$= \int_{|z| \le 1} \partial_i \partial_j G(z) (f(x+z) - f(x)) \, dz$$

So we get:

$$W_{ij} - W_{ij}(y) = \int_{|z| \le 1} \partial_i \partial_j G(z) (f(x+z) - f(y+z) - f(x) + f(y)) dz$$

Easy thought: Use  $\partial_i \partial_j G(z) | \leq \frac{C}{|z|^d}$  and

$$|f(x+z) - f(y+z) - f(x) + f(y)|$$

$$\leq \begin{cases} |f(x+z) - f(x)| + |f(y+z) - f(y)| \leq C|z|^{\alpha} \\ |f(x+z) - f(y+z)| + |f(x) - f(y)| \leq C|x-y|^{\alpha} \end{cases}$$

Thus:

$$|W_{ij}(x) - W_{ij}(y)| \le C \int_{|z| \le 1} \frac{1}{|z|^d} \min(|z|^\alpha, |x - y|^\alpha) \, dz$$

$$\le C \int_{|z| \le 1} \frac{1}{|z|^d} (|z|^\alpha)^\epsilon (|x - y|^\alpha)^{1 - \epsilon}, \quad 0 < \epsilon < 1$$

$$\le C \left( \int_{|z| \le 1} \frac{1}{|z|^{d - \alpha \epsilon}} \right) |x - y|^{\alpha (1 - \epsilon)}$$

$$\le C_\epsilon |x - y|^{\alpha (1 - \epsilon)}$$

thus it is easy to prove  $|W_{ij}(x) - W_{ij}(y)| \leq C_{\alpha}|x - y|^{\alpha}$  for all  $\alpha' \leq \alpha$ . However, to get  $\alpha' = \alpha$  we need a more precise estimate. We split:

$$W_{ij}(x) - W_{ij}(y) = \int_{|z| \le 1} \dots = \int_{|z| \le \min(4|x-y|,1)} + \int_{4|x-y| < |z| \le 1}$$

For the first domain:

$$\int_{|z| \leq 4|x-y|} |\partial_{ij}G(z)||f(x+z) - f(y+z) - f(y) + f(x)| dz$$

$$\leq C \int_{|z| \leq 4|x-y|} \frac{1}{|z|^d} |z|^\alpha dz = const \cdot |x-y|^\alpha$$

For the second domain:

$$\int_{4|x-y|<|z| \le 1} \partial_{ij} G(z) (f(x+z) - f(y+z) + f(y)f(x)) dz$$

$$= \int_{4|x-y|$$

since  $\int_{4|x-y|<|z|\leq 1} \partial_{ij} G(z) dz = 0$ . Then

$$(\ldots) = \int_{4|x-y| < |z-x| \le 1} \partial_{ij} G(z-x) f(z) \, dz - \int_{4|x-y| < |z-y| \le 1} \partial_{ij} G(z-y) f(z) \, dz.$$

Denote  $A = \{z \mid 4|x-y| < |z-x| \le 1\}, B = \{z \mid 4|x-y| < |z-y| \le 1\}.$  Consider

$$\int_{A} \partial_{ij} G(z - x) f(z) dz - \int_{B} \partial_{ij} G(z - y) f(z) dz$$

$$= \int_{A \setminus B} + \int_{B \setminus A} + \int_{A \cap B} (\partial_{ij} G(z - x) - \partial_{ij} G(z - y)) f(z) dz$$

Lets regard the intersection. We have

$$\partial_{ij}G(x) = \frac{1}{|B_1|} \frac{1}{|x|^d} (\omega_i \omega_j - \frac{1}{d} \delta_{ij})$$
$$|\partial_{ij}G(x) - \partial_{ij}G(y)| \le C|x - y| \left(\frac{1}{|x|^{d+1}} + \frac{1}{|y|^{d+1}}\right)$$

Now,

$$|\partial_{ij}G(z-x) - \partial_{ij}G(z-y)| \le C|x-y|\left(\frac{1}{|z-x|^{d+1}} + \frac{1}{|z-y|^{d+1}}\right)$$

So we have

$$\left| \int_{A \cap B} (\partial_{ij} G(z - x) - \partial_{ij} G(z - y)) f(z) dz \right|$$

$$\leq C \int_{A \cap B} |x - y| \left( \frac{1}{|z - x|^{d+1}} + \frac{1}{|z - y|^{d+1}} \right) |f(z)| dz = (\dots)$$

Now we replace f(z) by f(z) - f(x), then:

$$\left| \int_{A \cap B} (\partial_{ij} G(z - x) - \partial_{ij} G(z - y))(f(z) - f(x)) \, dz \right|$$

$$\leq C \int_{A \cap B} |x - y| \left( \frac{1}{|z - x|^{d+1}} + \frac{1}{|z - y|^{d+1}} \right) |z - x|^{\alpha} \, dz$$

$$= C \underbrace{\int_{A \cap B} |x - y| \frac{1}{|z - x|^{d+1-\alpha}} \, dz}_{(I)} + \underbrace{C \int_{A \cap B} |x - y| \frac{1}{|z - y|^{d+1}} |z - x|^{\alpha} \, dz}_{(II)}$$

Now,

$$\begin{split} (I) &\leqslant C|x-y| \int_{4|x-y|<|z-x|\leqslant 1} \frac{1}{|z-x|^{d+1-\alpha}} \, dz \\ &= C|x-y| \int_{4x-y<|z|\leqslant 1} \frac{1}{|z|^{d+1-\alpha}} \, dz \\ &\leqslant C|x-y| \int_{4|x-y|}^{1} \frac{1}{r^{d+1-\alpha}} r^{d-1} \, dr \\ &= C|x-y| \int_{4|x-y|}^{1} \frac{1}{r^{2-\alpha}} \, dr \\ &\leqslant C|x-y| \left[ -1 + \frac{1}{(4|x-y|)^{1-\alpha}} \right] \\ &\leqslant C|x-y|^{\alpha} \end{split}$$

$$\begin{split} (II) &\leqslant C|x-y| \int_{A \cap B} \frac{1}{|z-y|^{d+1}} |z-x|^{\alpha} \, dz \\ &\leqslant C|x-y| \int_{A \cap B} \frac{1}{|z-y|^{d+1}} \left( |z-y|^{\alpha} + |x-y|^{\alpha} \right) \, dz \\ &\leqslant \underbrace{C|x-y| \int_{B} \frac{1}{|z-y|^{d+1-\alpha}} \, dz}_{\text{similar to (I)}} + C|x-y|^{1+\alpha} \int_{B} \frac{1}{|z-y|^{d+1}} \, dz \end{split}$$

and

$$C|x-y|^{1+\alpha} \int_{B} \frac{1}{|z-y|^{d+1}} \, dz \leqslant \int_{4|x-y|} \frac{1}{r^{d+1}} r^{d-1} \, dr \leqslant \frac{C}{|x-y|}$$

Consider  $A \backslash B$ :

$$\left| \int_{A \backslash B} \right| \leqslant C \|f\|_{L^{\infty}} \int_{A \backslash B} \frac{1}{|z - x|^d} \, dz$$

where

$$A = \{z \mid 4|x - y| < |z - x| \le 1\}$$

$$B = \{z \mid 4|x - y| < |z - y| \le 1\}$$

$$A \setminus B = \{z \in A \mid |z - y| \le 4|x - y|\} \cup \{z \in A \mid |z - y| > 1\} = E_1 \cup E_2$$

for

$$E_1 = \{ z \mid |z - y| \le 4|x - y| < |z - x| \le 1 \}$$
  
$$\subseteq \{ z \mid 4|x - y| \le |x - z| \le 5|x - y| \}.$$

 $|x - z| \le |x - y| + |y - z| \le 5|x - y|$  in  $E_1$ . We have

$$\begin{split} \int_{E_1} \frac{1}{|z-x|^d} \, dz &\leqslant \int_{4|x-y| \leqslant |x-z| \leqslant 5|x-y|} \frac{1}{|z-x|^{d-\alpha}} \, dz \\ &= \int_{4|x-y| \leqslant |z| \leqslant 5|x-y|} \frac{1}{|z|^{d-\alpha}} \, dz \\ &= \int_{4|x-y|} \frac{1}{r^d} r^{d-1} \, dr \\ &= \int_{4|x-y|} \frac{1}{r^{1-\alpha}} \, dr \\ &\leqslant C|x-y|^{\alpha} \end{split}$$

Now in  $E_2$ :  $|z - x| \ge |z - y| - |y - x| \ge 1 - |y - x|$ .

$$\int_{E_2} \frac{1}{|z - x|^{d - \alpha}} \, dz \le \int \frac{1}{|z - x|^{d - \alpha}} \, dz = \int_{1 - |x - y|}^{1} \frac{1}{r^{d - \alpha}} r^{d - 1} \, dr$$

$$\le const. \left| 1 - \frac{1}{(1 - |x - y|)^{\alpha}} \right| \le C|x - y|^{\alpha}$$

**Exercise 4.16** (E 5.1) Prove that if f is a harmonic function in  $\mathbb{R}^d$  and  $g \in C_c(\mathbb{R}^d)$  is radial, then

$$\int_{\mathbb{R}^d} f(x)g(x) \, dx = f(0) \int_{\mathbb{R}^d} g(x) \, dx$$

Solution.  $x = r\omega, r > 0, |\omega| = 1$ 

$$\int_{\mathbb{R}^d} f(x)g(x) dx \stackrel{\text{(Polar)}}{=} \int_0^\infty \left( \int_{\partial B(0,1)} f(r\omega)g(r\omega) d\omega \right) dr$$

$$= \int_0^\infty \left( g_0(r) \int_{\partial B(0,1)} f(r\omega) d\omega \right) dr$$
(Mean value theorem (2.12))
$$= \int_0^\infty \left( g_0(r)f(0) \int_{\partial B(0,1)} d\omega \right) dr$$

$$= f(0) \int_0^\infty \left( \int_{\partial B(0,1)} g(r\omega) d\omega \right) dr$$

$$= f(0) \int_{\mathbb{R}^d} g(x) dx$$

**Remark 4.17** Let  $g \in C_c(\mathbb{R}^d)$  be radial. Why is  $\int_{\mathbb{R}^3} \frac{g(x)}{|x|} dx \neq \infty$ ? Because  $f(x) = \frac{1}{|x|}$  is harmonic in  $\mathbb{R}^d \setminus \{0\}$  and sub-harmonic in  $\mathbb{R}^d$ ,  $-\Delta f = c\delta_0$ .

**Exercise 4.18** (E 5.2) Let  $1 \leq p < \infty$ . Let  $\Omega \subseteq \mathbb{R}^d$  be open. Consider the Sobolev Space

$$W^{1,p}(\Omega) = \{ f \in L^p(\Omega) \mid \partial_{x_i} f \in L^p(\Omega), \forall i = 1, 2, \dots, d \}$$

with the norm

$$||f||_{W^{1,p}} = ||f|| + \sum_{i=1}^{d} ||\partial_{x_i} f||_{L^p(\Omega)}.$$

Prove that  $W^{1,p}(\Omega)$  is a Banach space. Here  $x=(x_i)_{i=1}^d\in\mathbb{R}^d$ . Hint: You can use the fact that  $L^p(\Omega)$  is a Banach Space.

Solution.  $W^{1,p}(\Omega) \subseteq L^p(\Omega) \times L^p(\Omega) \cdots \times L^p(\Omega) = (L^p(\Omega))^{d+1}$ . For an element  $f \in W^{1,p}(\Omega)$  we can think of it as  $f \mapsto (f, \partial_1 f, \partial_2 f, \dots, \partial_d f)$ , so  $W^{1,p}(\Omega)$  is a subspace of  $(L^p(\Omega))^{d+1}$ , which is a norm-space. Why is  $W^{1,p}(\Omega)$  closed in  $(L^p(\Omega))^{d+1}$ ? Take  $\{f_n\}_{n=1}^{\infty} \subseteq W^{1,p}(\Omega)$  such that  $f_n \to f$  in  $L^p$  and  $\partial_i f_n \to g_i$  in  $L^p$  for all  $i=1,\dots,d$ . We prove that  $(f,g_1,\dots,g_d) \in W^{1,p}(\Omega)$ , i.e.  $f \in W^{1,p}$  and  $g_i = \partial_i f$  for all  $i=1,\dots,d$ . We know that  $f_n \to f$  in  $L^p(\Omega)$ , so  $f_n \to f$  in  $D'(\Omega)$  and  $\partial_i f_n \to \partial_i f$  in  $D'(\Omega)$ . On the other hand we have  $\partial_i f_n \to g_i$  in  $L^p(\Omega)$ , so  $\partial_i f_n \to g_i$  in  $D'(\Omega)$ . So we get  $\partial_i f = g_i \in L^p(\Omega)$  for all  $i=1,\dots,d$  in  $D'(\Omega)$ . So we can conclude  $f \in W^{1,p}(\Omega)$  and  $\partial_i f = g_i$  for all  $i=1,\dots,d$ .

**Exercise 4.19** (E 5.3) Let f be a real-valued function in  $W^{1,p}(\mathbb{R}^d)$  for some  $1 \le p < \infty$ . Prove that  $|f| \in W^{1,p}(\mathbb{R}^d)$  and

$$(\nabla |f|)(x) = \begin{cases} \nabla f(x) & f(x) > 0 \\ -\nabla f(x) & f(x) < 0 \\ 0 & f(x) = 0 \end{cases}$$

Solution. Consider  $G_{\epsilon}(t) = \sqrt{\epsilon^2 + t^2} - \epsilon$  for  $\epsilon > 0$ ,  $t \in \mathbb{R}$ . Clearly we have  $G_{\epsilon}(t) \to |t|$  as  $\epsilon \to 0$  and

$$G'_{\epsilon}(t) = \frac{2t}{2\sqrt{\epsilon^2 + t^2}} = \frac{t}{\sqrt{\epsilon^2 + t^2}}$$

so  $|G'_{\epsilon}(t)| \leq 1$ ,  $G_{\epsilon}(0) = 0$ . By the chain rule (3.55) we have  $G_{\epsilon}(f) \in W^{1,p}(\mathbb{R}^d)$  and

$$(\partial_i G_{\epsilon}(f))(x) = G'_{\epsilon}(f)\partial_i f(x) = \frac{f(x)}{\sqrt{\epsilon^2 + f^2(x)}}\partial_i f(x) \in L^p(\mathbb{R}^d)$$

for all  $i=1,\ldots,d$ . Note then when  $\epsilon\to 0$  that  $G_\epsilon(f)(x)\to |f(x)|$  pointwise, so  $G_\epsilon(f)\to |f|$  in  $L^p(\mathbb{R}^d)$ .  $|G_\epsilon(f)(x)-G_\epsilon(0)|\leqslant |f(x)|\in L^p(\mathbb{R}^d)$  by dominated convergence.

$$\partial_i G_{\epsilon}(f)(x) = \frac{f(x)}{\sqrt{\epsilon^2 + f^2(x)}} \partial_i f(x) \xrightarrow{\epsilon \to 0} g_i(x) := \begin{cases} \partial f_i(x) & f(x) > 0 \\ -\partial_i f(x) & f(x) < 0 \\ 0 & f(x) = 0 \end{cases}$$
$$|\partial_i G_{\epsilon}(f)(x)| \leqslant \left| \frac{f(x)}{\sqrt{\epsilon^2 + f^2(x)}} \right| |\partial_i f(x)| \leqslant |\partial_i f(x)| \leqslant L^p(\mathbb{R}^d)$$

So we get  $\partial_i G_{\epsilon}(f) \xrightarrow{\epsilon \to 0} g_i$  in  $L^p(\mathbb{R}^d)$  by Dominated Convergence. So we conclude:  $\partial_i(|f|) = g_i \in L^p(\mathbb{R}^d)$  for all  $i = 1, \ldots, d$ , so  $|f| \in W^{1,p}(\mathbb{R}^d)$ ,  $|f| \in L^p$ .

**Exercise 4.20** (E 5.4) Let  $\Omega \subseteq \mathbb{R}^d$  be open and bounded,  $f \in L^1(\Omega)$ ,

$$u(x) = \int_{\Omega} G(x - y) f(y) \, dy$$

Let  $-\Delta u = f$  in  $D'(\Omega)$ ,  $u \in L^1_{loc}(\Omega)$ ,  $f \in L^1_{loc}(\mathbb{R}^d)$  and  $\omega_d f \in L^1(\mathbb{R}^d)$ , where

$$\omega_d(x) = \begin{cases} 1 + |x| & d = 1\\ \log(1 + |x|) & d = 1\\ \frac{1}{(1+|x|)^{d-2}} & d \geqslant 3 \end{cases}$$

Prove that

$$G \star f = \int_{\mathbb{R}^d} G(x - y) f(y) \, dy \in L^1_{loc}(\mathbb{R}^d)$$

and  $-\Delta(G \star f) = f$  in  $D'(\mathbb{R}^d)$ .

Solution. Define  $\tilde{f} = \mathbb{1}_{\Omega}(x)f(x) = \begin{cases} f(x) & x \in \Omega \\ 0 & x \notin \Omega \end{cases}$ . Then

$$u(x) = \int_{\Omega} G(x - y) f(y) dy = \int_{\mathbb{R}^d} G(x - y) \tilde{f}(y) dy = (G \star \tilde{f})(x)$$

We have  $u \in L^1_{loc}(\mathbb{R}^d)$ , so  $u \in L^1(\Omega)$ . Then  $-\Delta u = \tilde{f}$  in  $D'(\mathbb{R}^d)$ , so  $-\Delta u = f$  in  $D'(\Omega)$ . Claim:  $-\Delta u = f$  in  $D'(\mathbb{R}^d)$ , so  $-\Delta u = f$  in  $D'(\Omega)$  if  $\Omega \subseteq \mathbb{R}^d$ ,  $\tilde{f}|_{\Omega} = f$ . Take  $\phi \in C^\infty_c(\Omega)$ . We need:  $(-\Delta u)(\phi) \stackrel{?}{=} \int_{\Omega} f \phi$ . We have  $\phi \in C^\infty_c(\Omega)$ , so  $\phi C^\infty_c(\mathbb{R}^d)$ . This implies:

$$(-\Delta u)(\phi) = \int_{\mathbb{R}^d} \tilde{f}\phi = \int_{\substack{\Omega, \\ \text{supp } \phi \subseteq \Omega}} \tilde{f}\phi = \int_{\Omega} f\phi$$

**Exercise 4.21** (E 5.5) Let  $B = B\left(0, \frac{1}{2}\right) \subseteq \mathbb{R}^3$ . Consider  $u: B \to \mathbb{R}$ , defined by  $u(x) = \log |\log |x||$ .

Prove that the distributional derivative  $f = -\Delta u$  is a function in  $L^{\frac{3}{2}}(B)$ .

Solution.

$$\omega(r) = \log(-\log(r)), \quad \text{for } r \in \left(0, \frac{1}{2}\right)$$

$$\omega'(r) = \frac{1}{-\log(r)} \left(-\frac{1}{r}\right) = \frac{1}{r \log r}$$

$$\omega''(r) = -\frac{1}{(r \log(r))^2} (r \log(r))' = -\frac{\log(r) + 1}{(r \log r)^2}$$

So we have

$$-\Delta u = w''(r) = \frac{1}{(r \log r)^2} - \frac{1}{r^2 \log(r)} = f(r)$$

We show that  $f \in L^{\frac{3}{2}}$ :

$$\int_{B} |f(x)|^{\frac{3}{2}} dx = const \int_{0}^{\frac{1}{2}} \left| \frac{1}{r^{2}(\log r)^{2}} - \frac{1}{r^{2}\log r} \right|^{\frac{3}{2}} r^{2} dr$$

$$\tilde{\leq} \int_{0}^{\frac{1}{2}} \frac{1}{r} \left| \frac{1}{(\log(r))^{2}} - \frac{1}{(\log(r))} \right|^{\frac{3}{2}} dr$$

$$\begin{pmatrix} r = e^{-x}, \\ x \in (\log(2), \infty), \\ dr = -e^{-x} dx \end{pmatrix} \quad \tilde{\leq} \int_{\log(2)}^{\infty} e^{x} \left( \frac{1}{x^{2}} + \frac{1}{x} \right)^{\frac{3}{2}} e^{-x} dx$$

$$\tilde{\leq} \int_{\log(2)}^{\infty} \frac{1}{x^{\frac{3}{2}}} dx < \infty$$

Where  $\tilde{<}$  means up to a constant. Now,  $u(x) = \omega(r) = \log(-\log(r))$ .

$$-\Delta u(x) = f(r) = \frac{1}{r^2(\log(r))^2} - \frac{1}{r^2\log(r)}$$

for all  $x \neq 0, |x| = r < \frac{1}{2}$ . Why is  $-\Delta u(x) = f$  in D'(B)? Take  $\phi \in C_c^{\infty}(B)$ , check:  $\int_B u(-\Delta \phi) = \int_B f \phi$ .

$$\int_{|x|<\frac{1}{2}} u(-\Delta\phi) dx = \lim_{\epsilon \to 0^+} \int_{\epsilon < |x|<\frac{1}{2}} u(x)(-\Delta\phi)(x) dx$$

by Dominated convergence.  $u \in L^1(B)$ . For all  $\epsilon > 0$ :

$$\begin{split} \int_{\epsilon < |x| < \frac{1}{2}} u(x)(-\Delta \phi)(x) \, dx &= \int_{|x| > \epsilon} u(x)(-\Delta \phi)(x) \, dx \\ &= \int_{\partial B(0,\epsilon)} u(x) \nabla \phi(x) \frac{x}{|x|} \, dS(x) + \int_{|x| > \epsilon} \nabla u(x) \nabla \phi(x) \, dx \end{split}$$

The boundary term vanishes as  $\epsilon \to 0$  since

$$\left| u(x)\nabla\phi(x)\frac{x}{|x|} \right| \leqslant \|\nabla\phi\|_{L^{\infty}}|u(x)| = C\log|\log(r)|$$

$$\left| \int_{\partial B(0,\epsilon)} u(x) \nabla \phi(x) \frac{x}{|x|} dS(x) \right| \leq C \int_{\partial B(0,\epsilon)} \log |\log(\epsilon)| dS(x)$$

$$= C \log |\log \epsilon| \underbrace{|\partial B(0,\epsilon)|}_{\sim \epsilon^2} \xrightarrow{\epsilon \to 0} 0$$

$$\int_{|x|>\epsilon} \nabla u(x) \nabla \phi(x) \, dx = \sum_{i=1}^d \int_{|x|>\epsilon} \partial_i u(x) \partial_i \phi(x) \, dx$$

$$= \sum_{i=1}^d \left( -\int_{\partial B(0,\epsilon)} \partial_i u(x) \phi(x) \frac{x_i}{|x|} \, dS(x) - \int_{|x|>\epsilon} \underbrace{\partial_i \partial_i u(x)}_{f(x)} \phi(x) \, dx \right)$$

The boundary term vanishes as  $\epsilon \to 0$  as

$$\left| \int_{\partial B(0,\epsilon)} \partial u(x) \phi(x) \frac{x_i}{|x|} dS(x) \right| \leq \|\phi\|_{L^{\infty}} \int_{\partial B(0,\epsilon)} |\partial_i u(x)| dS(x)$$

$$(\star) \qquad \leq C \frac{1}{|\epsilon \log(r)|} |\partial B(0,\epsilon)| \to 0$$

as  $\epsilon \to 0$ .  $(\star)u = u(r), u(x) = \omega(|x|), \partial_i u(x) = \omega(|x|) \frac{x_i}{|x|}, |\partial_i u(x)| \leq |\omega(|x|)| = \left|\frac{1}{r \log(r)}\right|$ . Finally:

$$\int_{|x|>\epsilon} f(x)\phi(x) dx \xrightarrow{\epsilon \to 0} \int_{\mathbb{R}^d} f(x)\phi(x) dx$$

Since  $f\phi \in L^1$  and Dominated Convergence.

**Exercise 4.22** (Bonus 5) Construct  $u \in L^1(\mathbb{R}^3)$  compactly supported s.t.  $-\Delta u \in L^{\frac{3}{2}}(\mathbb{R}^3)$  and u is not continuous at 0.

Hint: Related to E 5.5.  $u_0(x) = \omega(r) = \log(|\log(r)|)$  if  $0 < r = |x| < \frac{1}{2}$ . Consider  $\chi u_0$  where  $\chi \in C_c^{\infty}$ ,  $\chi = 0$  if  $|x| > \frac{1}{2}$ ,  $\chi = 1$  if  $|x| < \frac{1}{4}$ . You can prove that  $\Delta(\chi u_0) = (\Delta \chi)u_0 + 2\nabla \chi \nabla u_0 + \chi(\underline{\Delta u_0})$  in  $D'(\mathbb{R}^3)$ . (almost everywhere, in distributional

sense, integration by parts)

**Theorem 4.23** (Regularity on Domains) Let  $\Omega \subseteq \mathbb{R}^d$  be open. Assume  $u, f \in D'(\Omega)$  such that  $-\Delta u = f$  in  $D'(\Omega)$ .

- a) If  $f \in L^1_{loc}(\Omega)$ , then
  - $u \in C^1(\Omega)$  if d = 1
  - $u \in L^q_{loc}(\Omega)$  for all  $q < \infty$  if d = 2
  - $u \in L^q_{loc}(\Omega)$  for all  $q < \frac{d}{d-2}$  if  $d \geqslant 3$
- b) If  $f \in L^q_{loc}(\Omega)$ ,  $d \geqslant p < \frac{d}{2}$ , then  $u \in C^{0,\alpha}_{loc}(\Omega)$ , where  $0 < \alpha < 2 \frac{d}{p}$
- c) If  $f \in L^p_{loc}(\Omega), p > d$ , then  $u \in C^{1,\alpha}_{loc}(\Omega)$ , where  $0 \le \alpha < 1 \frac{d}{p}$
- d) If  $f \in C^{0,\alpha}_{loc}(\Omega)$  for some  $0 < \alpha < 1$ , then  $u \in C^{2,\alpha}_{loc}(\Omega)$
- e) If  $f \in C^{m,\alpha}_{loc}(\Omega)$ , then  $u \in C^{m+2,\alpha}_{loc}(\Omega)$

*Proof.* Let  $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$ . Take a ball  $\overline{B} \subseteq \Omega$ . Define  $f_B : \mathbb{R}^d \to \mathbb{K}$ ,

$$f_B(x) = (\mathbb{1}_B f)(x) = \begin{cases} f(x) & x \in B \\ 0 & x \notin B \end{cases}$$

Then if  $f \in L^1_{loc}(\Omega)$ ,  $f_B$  is compactly supported. From the previous theorems:  $G \star f_B \in L^1_{loc}(\mathbb{R}^d)$  and  $-\Delta(G \star f_B) = f_B$  in  $D'(\mathbb{R}^d)$ . On the other hand,  $-\Delta u = f$  in  $D'(\Omega)$ , so  $-\Delta(u - G \star f_B) = 0$  in D'(B). Indeed, for all  $\phi \in C_c^{\infty}(B)$ , then:

$$(-\Delta u)(\phi) = \int_{\Omega} f\phi = \int_{B} f_{B}\phi = -\int_{\mathbb{R}^{d}} f_{B}\phi = (-\Delta)(G \star f_{B})(\phi)$$

Then  $-\Delta u = -\Delta(G \star f_B)$  in D'(B). Then  $u - G \star f_B$  is harmonic in B and by Weyls lemma we have  $u - G \star f_B \in C^{\infty}(B)$ . So the smoothness of u in B is the same to that of  $G \star f$ .

**Exercise 4.24** (E 6.1) Show that if  $\chi \in C^{\infty}(\mathbb{R}^d)$ ,  $f \in W^{1,p}(\mathbb{R}^d)$ ,  $1 \leq p < \infty$ , then  $\chi f \in W^{1,p}_{loc}(\mathbb{R}^d)$  and

$$\partial_i(\chi f) = (\partial_i \chi) f + \chi(\partial_i f)$$
 in  $D'(\mathbb{R}^d)$ 

Solution.  $\chi f \in L^p_{loc}(\mathbb{R}^d)$  obvious.  $\partial(\chi f) \in L^p_{loc}(\mathbb{R}^d)$  is nontrivial but follows from  $\partial_i(\chi f) = \underbrace{(\partial_i \chi) f + \chi(\partial f)}_{L^p}$  in  $D'(\mathbb{R}^d)$ . To compute the distributional derivative

 $\partial_i(\chi f)$ , then: Take  $\phi \in C_c^{\infty}(\mathbb{R}^d)$ :

$$-\int_{\mathbb{R}^d} \chi f(\partial \phi) \, dx = \int_{\mathbb{R}^d} (?) \phi \, dx$$

We have

$$-\int_{\mathbb{R}^d} \chi f(\partial_i \phi) \, dx = -\int_{\mathbb{R}^d} f(\chi \partial_i \phi) \, dx$$

$$(\partial_i (\chi \phi) = \chi \partial_i \phi + (\partial_i \chi) \phi) = -\int_{\mathbb{R}^d} f \left( \partial_i (\chi \phi) - (\partial_i \chi) \phi \right) \, dx$$

$$= -\int_{\mathbb{R}^d} f \partial_i (\underbrace{\chi \phi}_{\in C_c^{\infty}}) \, dx + \int_{\mathbb{R}^d} f(\partial_i \chi) \phi \, dx$$

$$= \int_{\mathbb{R}^d} (\partial_i f) \chi \phi \, dx + \int_{\mathbb{R}^d} f(\partial_i \chi) \phi \, dx$$

$$= \int_{\mathbb{R}^d} ((\partial_i f) \chi + f(\partial_i \chi)) \phi \, dx$$

So 
$$\partial_i(\chi f) = (\partial_i f)\chi + f(\partial_i \chi)$$
 in  $D'(\mathbb{R}^d)$ .

**Remark 4.25** Question: If  $\chi \in C^1(\mathbb{R}^d)$ ,  $f \in W^{1,p}(\mathbb{R}^d)$ . Is this it still correct that  $\partial_i(\chi f) = (\partial_i \chi)f + \chi(\partial_i f)$  in  $D'(\mathbb{R}^d)$ ?

*Proof.* It suffices to show that we still can apply integration by parts.

$$(\star) \quad -\int f\partial_i g \stackrel{?}{=} \int (\partial_i f)g$$

Approximation:  $(\star)$  is correct if  $g \in C_c^{\infty}$ 

• If  $g \in C_c^1$ , there is  $\{g_n\} \subseteq C_c^{\infty}$  s.t.  $g_n \to g$  in  $W_{loc}^{1,p}$ ,  $\frac{1}{p} + \frac{1}{q} = 1$ .

$$\int (\partial_i g) f \stackrel{n \to \infty}{\longleftarrow} - \int \underbrace{f}_{L^p} \underbrace{\partial_i g_n}_{\to \partial_i g \text{ in } L^q} = \int \underbrace{(\partial_i f)}_{\in L^p} \underbrace{g_n}_{\to g \text{ in } L^q} \xrightarrow{n \to \infty} \int (\partial_i f) g \quad \blacksquare$$

**Exercise 4.26** (E 6.2)  $G(x)=-\frac{1}{2\pi}\log|x|$ . Let  $f\in L^p(\mathbb{R}^2)$ , compactly supported. Define  $u(x)=(G\star f)(x)=\int_{\mathbb{R}^2}G(x-y)f(y)\,dy$ 

- 1. If p = 1, then  $u \in L^q_{loc}(\mathbb{R}^2)$  for all  $q < \infty$ .
- 2. If p > 2, then  $u \in C^{1,\alpha}$  with  $0 < \alpha < 1 \frac{2}{p}$ .

Solution. 1. Take any ball B = B(0, R) and:

$$\int_{B} |u(x)|^{q} dx = \int_{B} \left( \int_{\mathbb{R}^{d}} |G(x-y)| |f(y)| dy \right)^{q} dx$$

$$\leq C \int_{B} \left( \int_{\mathbb{R}^{2}} |G(x-y)|^{q} |f(y)| dy \right) dx$$

$$= C \int_{\mathbb{R}^{2}} \left( \int_{B} |G(x-y)|^{q} dx \right) |f(y)| dy$$

Recall from the proof of Youngs inequality:

$$\begin{split} |u(x)| &= \left| \int_{\mathbb{R}^2} G(x-y) f(y) \, dy \right| \\ &\leqslant \int_{\mathbb{R}^2} |G(x-y)| |f(y)| \, dy \\ &\leqslant \left( \int_{\mathbb{R}^2} |G(x-y)|^q |f(y)| \, dy \right)^{\frac{1}{q}} \left( \int_{\mathbb{R}^2} |f(y)| \, dy \right)^{\frac{1}{q}}, \quad \frac{1}{q} + \frac{1}{q'} = 1 \end{split}$$

Assume supp  $f \subseteq \overline{B(0,R)}$ . Then if  $y \in \text{supp } f$  and  $x \in B(0,R)$ , then  $|x-y| \le |x| + |y| \le R + R_1$ . For all  $y \in \text{supp } f$ :

$$\int_{B(0,R)} |G(x-y)|^q dx \le \int_{|x-y| \le R+R_1} |G(x-y)|^q dx$$

$$= \int_{|z| \le R+R_1} |G(z)|^q dz < \infty$$

as  $G \in L^q_{loc}$   $(|G(z)| = \frac{1}{2\pi} |\log(z)| \leqslant \frac{C_{R+R_1,\epsilon}}{|z|^{\epsilon}}$  for all  $|z| \leqslant R + R_1$ ), so

$$\int_{|z| \leq R + R_1} |G(z)|^q \leq C_{R + R_1, \epsilon} \int_{|z| \leq R + R_1} \frac{1}{|z|^{\epsilon q}} \, dz < \infty$$

if  $\epsilon q < 2$ .

2. Recall  $\partial_i u \in L^1_{loc}(\mathbb{R}^2)$  and:

$$\partial_i u(x) = (\partial_i G \star f)(x) = c \int_{\mathbb{R}^2} \frac{x_i - y_i}{|x - y|^2} f(y) \, dy$$

First we show  $\partial_i u \in C^{0,\alpha}$ :

$$|\partial_i u(x) - \partial_i u(z)| = \left| C \int_{\mathbb{R}^2} \left( \frac{x_i - y_i}{|x - y|^2} - \frac{z_i - y_i}{|z - y|^2} \right) f(y) dy \right|$$

$$\leq C \int_{\mathbb{R}^2} \left| \frac{x_i y_i}{|x - y|^2} - \frac{z_i - y_i}{|z - y|^2} \right| |f(y)| dy$$

$$\stackrel{?}{\leq} C|x - y|^{\alpha}$$

Note that

$$\left| \frac{x_i - y_i}{|x - y|^2} - \frac{z_i - y_i}{|z - y|^2} \right| = \left| (x_i - y_i) \left( \frac{1}{|x - y|^2} - \frac{1}{|z - y|^2} \right) + \frac{x_i - z_i}{|z - y|^2} \right|$$

$$\leq |x_i - y_i| \left| \frac{1}{|x - y|^2} - \frac{1}{|z - y|^2} \right| + \frac{|x_i - z_i|}{|z - y|^2}$$

$$\leq C|z - x|^{\alpha} \left( \frac{1}{|x - y|^{1+\alpha}} + \frac{1}{|z - y|^{1+\alpha}} + \frac{|x - z|}{|z - y|^2} \right)$$

Here  $|x_i - z_i| \le |x - z|$  and  $|x_i - y_i| \le |x - y|$  and

$$\begin{split} \underbrace{\left| \frac{1}{|x-y|^2} - \frac{1}{|z-y|^2} \right|}_{\text{sym } x \leftrightarrow z} &= \left| \frac{1}{|x-y|} - \frac{1}{|z-y|} \right| \left| \frac{1}{|x-y|} + \frac{1}{|z-y|} \right| \\ &= \frac{||z-y| - |x-y|}{|x-y||z-y|} \left| \frac{1}{|x-y|} + \frac{1}{|z-y|} \right| \\ &\leqslant |z-x|^{\alpha} \frac{\max(|z-y|, |x-y|)^{1-\alpha}}{|x-y||z-y|} \left( \frac{1}{|x-y|} + \frac{1}{|z-y|} \right) \\ &\leqslant C|z-x|^{\alpha} \left( \frac{1}{|x-y|^{2+\alpha}} + \frac{1}{|z-y|^{2+\alpha}} \right) \end{split}$$

By the symmetrie  $x \leftrightarrow z$ :

$$LHS \leqslant C|z - x|^{\alpha} \left( \frac{1}{|x - y|^{1 + \alpha}} + \frac{1}{|z - y|^{1 + \alpha}} \right) + \frac{|x - y|}{|x - y|^2}$$

$$\Rightarrow LHS \leqslant C \dots + |x - z| \min \left( \frac{1}{|z - y|^2}, \frac{1}{|x - y|^2} \right)$$

$$\leqslant (|x - y| + |z - y|)^{1 - \alpha}$$

$$C|z - x|^{\alpha} \left( \frac{1}{|x - y|^{1 + \alpha}} + \frac{1}{|z - y|^{1 + \alpha}} \right)$$

In summary:

$$\begin{aligned} |\partial_i u(x) - \partial_i u(z)| &\leq C \int_{\mathbb{R}^2} \left| \frac{x_i - y_i}{|x - y|^2} - \frac{z_i - y_i}{|z - y|^2} \right| |f(y)| \, dy \\ &= C|x - y|^{\alpha} \int_{\mathbb{R}^2} \left( \frac{1}{|x - y|^{1+\alpha}} + \frac{1}{|z - y|^{1+\alpha}} \right) |f(y)| \, dy \end{aligned}$$

Consider if  $|x| > 2R_1$ :

$$\int_{\mathbb{R}^2} \frac{1}{|x-y|^{1+\alpha}} |f(y)| \, dy \leqslant \int_{\mathbb{R}^2} \frac{1}{R_1^{1+\alpha}} |f(y)| \, dy \leqslant C$$

supp  $f \subseteq B(0, R_1)$ . If  $|x| < 2R_1$ , then  $|x - y| \le 3R$  if  $y \in B(0, R_1)$ . Hence:

$$\int_{|x-y| \leqslant 3R_1} \frac{1}{|x-y|^{1+\alpha}} |f(y)| \, dy$$

$$\leqslant \left( \int_{|x-y| \leqslant 3R_1} \frac{1}{|x-y|^{(1+\alpha)p'}} \right)^{\frac{1}{p'}} \left( \int |f(y)|^p \, dy \right)^{\frac{1}{p}}$$

$$= \int_{|z| \leqslant 3R_1} \frac{1}{|z|^{(1+\alpha)p'}} \, dz < \infty$$

So 
$$\alpha < 1 - \frac{2}{p}$$
.

**Exercise 4.27** (E 6.3) Let  $f \in C^{0,\alpha}_{loc}$  and  $-\Delta u = f$  in  $D'(\Omega)$ . Prove  $u \in C^{2,\alpha}_{loc}(\Omega)$ .

Solution. Take an open ball  $B \subseteq \bar{B} \subseteq \Omega$ . We prove  $u \in C^{2,\alpha}(B)$ . There is an open  $\Omega_B$  s.t.  $\bar{B} \subseteq \bar{\Omega}_B \subseteq \Omega$ . Then there is a  $\chi_B \in C_c^{\infty}(\mathbb{R}^d)$  s.t.  $\chi_B(x) = 1$  if  $x \in B$  and  $\chi_B(x) = 0$  if  $x \notin \Omega_B$ . Define

$$f_B(x) = \chi_B(x) f(x) : \mathbb{R}^d \to \mathbb{R}$$

We prove that  $f_B \in C^{0,\alpha}(\mathbb{R}^d)$ . Since  $f \in C^{0,\alpha}_{loc}(\Omega)$  we have  $f \in C^{0,\alpha}(\Omega_B)$ , so  $|f(x) - f(y)| \leq C|x - y|^{\alpha}$  for all  $x, y \in \Omega_B$ . Then:

$$|f_{B}(x) - f_{B}(y)| = |\chi_{B}(x)f(x) - \chi_{B}(y)f(y)|$$

$$\leq |(\chi_{B}(x) - \chi_{B}(y))f(x) + \chi_{B}(y)(f(x) - f(y))|$$

$$\leq C|x - y|^{\alpha}||f||_{L^{\infty}(\Omega_{B})} + C||\chi||_{L^{\infty}(\Omega_{B})}||x - y|^{\alpha} \leq C_{\Omega_{B}}||x - y|^{\alpha}$$

What about other cases? If x, y are bot not in  $\Omega_B$ , then  $|f_B(x) - f_B(y)| = 0$ , then if  $x \in \Omega_B$  and  $y \notin \Omega_B$ :  $|f_B(x) - f_B(y)| = |f_B(x)| = |\chi_B(x)||f(x)| = |\chi_B(x) - \chi_B(y)||f(x)| \le C|x-y|^{\alpha}$ . Conclusion:  $|f_B(x) - f_B(y)| \le C|x-y|^{\alpha}$  for all  $x, y \in \mathbb{R}^d$ , i.e.  $f_B \in C^{0,\alpha}(\mathbb{R}^d)$ . Also  $f_B$  is compactly supported. By a theorem in the lecture:  $G \star f_B \in C^{2,\alpha}(\mathbb{R}^d)$ . Finally:  $-\Delta u = f$  in  $D'(\Omega)$ ,  $-\Delta(G \star f_B) = f_B$  in  $D'(\mathbb{R}^d)$ . So we conclude  $-\Delta u = f = f_B = -\Delta(G \star f_B)$  in D'(B).  $-\Delta(u - G \star f_B) = 0$  in D'(B), so  $u - G \star f_B \in C^{\infty}(B)$ , so  $u \in C^{2,\alpha}(B)$ .

Exercise 4.28 (E 6.4)  $u, f \in L^2(\mathbb{R}^d), -\Delta u = f$  in  $D'(\mathbb{R}^d)$ . Prove  $u \in W^{2,2}(\mathbb{R}^d), \|u\|_{W^{2,2}(\mathbb{R}^d)} \le C(\|u\|_{L^2} + \|f\|_{L^2}).$ 

$$\begin{split} W^{2,2}(\mathbb{R}^d) &= \{g \in L^2(\mathbb{R}^d) \mid D^{\alpha}g \in L^2 \text{ for all } |\alpha| \leqslant 2 \} \\ &= \{g \in L^2(\mathbb{R}^d) \mid \widehat{D^{\alpha}g}(k) = (-2\phi i k)^{\alpha} \hat{g}(k) \in L^2(\mathbb{R}^d) \text{ for all } |\alpha| \leqslant 2 \} \\ &= \{g \in L^2(\mathbb{R}^d) \mid (1 + |k|^2) \hat{g}(k) \in L^2(\mathbb{R}^d) \} \end{split}$$

 $\|u\|_{W^{2,2}(\mathbb{R}^d)}$  is comparable  $\int_{\mathbb{R}^d} (1+|k|^2)^2 |\hat{g}(k)|^2 dk$ . If  $D^{\alpha}g \in L^2$ , then  $\widehat{D^{\alpha}g}(k) = (-2\pi i k)^{\alpha} \hat{g}(k)$ . For any  $\phi \in C_c^{\infty}(\mathbb{R}^d)$ :

$$\begin{split} \widehat{D^{\alpha}g}(k)\widehat{\phi}(k), dk &= \int (D^{\alpha}g)\phi = (-1)^{|\alpha|} \int g(D^{\alpha}\phi) \\ &= (-1)^{|\alpha|} \int \overline{\widehat{g}}(k)\widehat{D^{\alpha}}\phi(k) \\ &= (-1)^{|\alpha|} \int \overline{\widehat{g}}(k)(-2\pi i k)^{\alpha}\widehat{\phi}(k) \, dk \end{split}$$

so  $\hat{D}^{\alpha}g(k)=(-1)^{|k|}\hat{g}(k)\overline{(-2\pi ikx)^{\alpha}}=\hat{g}(k)(-2\pi ik)^{\alpha}$ . This implies:

$$\begin{split} \|u\|_{W^{2,2}(\mathbb{R}^d)} &\leqslant C \int_{\mathbb{R}^d} (1+|k|^2)^2 |\hat{u}(k)|^2 \, dk \\ &= C \left( \|u\|_{L^2}^2 + \int_{\mathbb{R}^d} |k|^4 |\hat{u}(k)|^2 \, dk \right) \\ &\leqslant C \left( \|u\|_{L^2}^2 + \|f\|_{L^2}^2 \right) \\ &\leqslant C (\|u\|_{L^2}^2 + \|f||_{L^2})^2 \end{split}$$

**Remark 4.29** (Bonus 6) Let  $f, g \in W^{1,2}(\mathbb{R}^d)$ . Prove that  $fg \in W^{1,1}(\mathbb{R}^d)$  and

$$\partial_i(fg) = (\partial_i f)g + f(\partial_i g)$$
 in  $D'(\mathbb{R}^d)$ 

## Chapter 5

# Existence for Poisson's Equation on Domains

Let  $\Omega \subseteq \mathbb{R}^d$  be open. Consider Poisson's equation.

$$\begin{cases} -\Delta u = f & \text{in } \Omega \\ u = g & \text{on } \partial \Omega \end{cases}$$

for given data (f,g) and u the unknown function.

- Classical solutions:  $f \in C^2(\bar{\Omega}) \leadsto$  explicit representation formula.
- Weak solution:  $f \in L^p(\Omega)$ ,  $g \in L^p(\partial\Omega) \rightsquigarrow u \in W^{2,p}(\Omega)$ . We are going to establish the existence by *Energy Methods*. (Calculus of variations)

**Definition 5.1** ( $C^1$ -Domains) Let  $\Omega \subseteq \mathbb{R}^d$  be open. We say that  $\Omega$  is of class  $C^1$  (i.e.  $\partial \Omega \in C^1$ ) if for all  $x_0 \in \partial \Omega$  there is a bijective function  $h: U \to Q$ , where

- $x_0 \in U$  open in  $\mathbb{R}^d$
- $Q = \{x = (x_1, \dots, x_d) = (x', x_d)\} \in \mathbb{R}^{d-1} \times \mathbb{R} \mid |x'| < 1, |x_d| < 1\}$
- $h \in C^1(\bar{U})$  and  $h^{-1} \in C^1(\bar{Q})$  ( $C^1$ -diffeomorphism)
- h(U) = Q

$$h(U \cap \Omega) = Q_{+} = Q \cap \mathbb{R}^{d}_{+} = \{x = (x', x_{d}) \in Q \mid x_{d} > 0\}$$
  

$$h(U \cap \partial\Omega) = Q_{0} = Q \cap \partial\mathbb{R}^{d}_{+} = \{x = (x', x_{d}) \in Q \mid x_{d} = 0\}$$
  

$$h(U \setminus \bar{\Omega}) = Q_{-} = Q \cap \mathbb{R}^{d}_{-} = \{x = (x', x_{d}) \in Q \mid x_{d} < 1\}$$

(From Brezis' book)

**Remark 5.2** The set Q can be replaced by a ball, i.e.  $\Omega$  is of  $C^1$  if for all  $x_0 \in \partial \Omega$  there is a function  $U \to B(0,1) \subseteq \mathbb{R}^d$ .

- $x_0 \in U$  with  $U \subseteq \mathbb{R}^d$  open.
- $h \in C^1(\bar{U}), h^{-1} \in C^1(\overline{B(0,1)})$
- $h(U \cap \Omega) = B(0,1) \cap \mathbb{R}^d_+, h(U \cap \partial\Omega) = B(0,1) \cap \mathbb{R}^d$ .

**Remark 5.3** (An equivalent definition form Evan's book App. C) Let  $\Omega \subseteq \mathbb{R}^d$  be open. Then  $\Omega$  is  $C^1$  if for all  $x_0 \in \partial \Omega$  there is a r > 0 and a  $C^1$ -function  $\gamma : \mathbb{R}^{d-1} \to \mathbb{R}$  s.t. (upon relabeling and reorienting the axes if necessary) such that:

$$\Omega \cap B(x_0, r) = \{ x = (x', x_d) \in B(x_0, r) \mid x_d < \gamma(x_0) \}$$

Proof of the equivalence of the two definitions.

Def. 2  $\Rightarrow$  Def. 1: In fact, given  $x_0 \in \partial \Omega$  and  $\gamma$  we can define

$$h(x', x_d) = (x', x_d - \gamma(x')) \in C^1(\mathbb{R}^d, \mathbb{R}^d)$$
$$h^{-1}(x', x_d) = (x', x_d + \gamma(x')) \in C^1(\mathbb{R}^d, \mathbb{R}^d)$$

Def. 1  $\Rightarrow$  Def. 2: We need the inverse function theorem and the implicit function theorem. Let  $x_0 \in \partial \Omega$ , let  $h: U \to B(0,1)$  as in Def. 1. Denote  $h = (h_1,h_2,\ldots,h_d)$ . Since h is invertible near  $x_0$ , by the inverse function theorem we have for the Jacobi matrix  $Jh(x_0) = (\partial_j h_i(x_0))_{1 \leqslant i,j \leqslant d}$  is invertible. So we have  $\nabla h_d(x_0) = (\partial_j h_d(x_0))_{1 \leqslant j \leqslant d} \neq \vec{0}^{\mathbb{R}^d}$ , so there is a  $j \in \{1,2,\ldots,d\}$  s.t.  $\partial_j h_d(x_0) \neq 0$ . By relabeling and reorienting the axes, we can assume that  $\partial_d h_d(x_0) > 0$ . By continuity there is a r > 0 such that  $\partial_d h_d(x) > 0$  for all  $x \in B(x_0,r)$ . Define  $\gamma: \mathbb{R}^{d-1} \to \mathbb{R}$  s.t. in  $B(x_0,r)$ :

$$x = (x', x_d) \in \partial\Omega \iff h_d(x', x_d) = 0 \iff x_d = \gamma(x'),$$

 $h_d: \mathbb{R}^d \to \mathbb{R}$ . This gives a solution  $\gamma$  if  $\partial_d h_d > 0$  in  $B(x_0, r)$ . (For implicit function theorem,  $\partial_d h_d(x_0) \neq 0$ ) Question: Why in  $B(x_0, r)$ ?

$$x = (x', x_d) \in \Omega \iff x_d > \gamma(x')$$

Since  $\partial_d h_d(x) > 0$  for all  $x \in B(x_0, r)$  we have that  $x_d \mapsto h_d(x', x_d)$  is strictly increasing, hence

$$x = (x', x_d) \in \Omega$$

$$\iff h(x', x_d) \in \mathbb{R}^d_+$$

$$\iff h_d(x', x_d) > 0 = h_d(x', \gamma(x'))$$

$$\iff x_d > \gamma(x')$$

**Theorem 5.4** (Gauss-Green formula / Integration by parts) Let  $\Omega \subseteq \mathbb{R}^d$  be open and bounded. Then

1. For all  $u, v \in C^1(\bar{\Omega})$ :

$$\int_{\Omega} (\partial_i u)v = -\int_{\Omega} u(\partial_i v) + \int_{\partial\Omega} uvn_i dS,$$

where  $\vec{n} = (n_i)_{i=1}^d$  is the outwarded unit normal vector.

2. For all  $u, v \in C^2(\bar{\Omega})$ :

$$\int_{\Omega} u(-\Delta v) = \int_{\Omega} \nabla u \nabla v - \int_{\partial \Omega} u \frac{\partial v}{\partial \vec{n}} dS$$

where  $\frac{\partial v}{\partial \vec{n}} = \nabla v \vec{n} = \sum_{i=1}^{d} \partial_i v n_i$ .

Classical solutions via Green's function:

$$\begin{cases} -\Delta u = f & \text{in } \Omega \\ u = g & \text{on } \partial \Omega \end{cases}$$

Let  $\Omega \subseteq \mathbb{R}^d$  be open, bounded,  $\partial \Omega \in C^1$ . Assume there exists a  $u \in C^2(\bar{\Omega})$ ,  $f \in C(\bar{\Omega})$ ,  $g \in C(\partial \Omega)$ . Let G be the fundamential solution of the Laplace Equation in  $\mathbb{R}^d$ . We use integration by parts in  $\Omega \setminus B(x, \epsilon)$ :

$$\begin{split} &\int_{\Omega \backslash B(x,\epsilon)} u(y) (-\Delta G)(y-x) \, dy \\ &= \int_{\Omega \backslash B(x,\epsilon)} \nabla u(y) \nabla G(y-x) \, dy - \int_{\partial \Omega \cup \partial B(x,\epsilon)} u(y) \frac{\partial G}{\partial \vec{n}}(y-x) \, dS(y) \\ &\int_{\Omega \backslash B(x,\epsilon)} G(y-x) (-\Delta u)(y) \, dy \\ &= \int_{\Omega \backslash B(x,\epsilon)} \nabla G(y-x) \nabla u(y) \, dy - \int_{\partial \Omega \cup \partial B(x,\epsilon)} G(y-x) \frac{\partial u}{\partial \vec{n}}(y) \, dS(y) \end{split}$$

This implies:

$$\begin{split} &\int_{\Omega \backslash B(x,\epsilon)} \left[ u(y) (-\Delta G(y-x)) - G(y-x) (-\Delta u)(y) \right] \, dy \\ &= -\int_{\partial \Omega \cup \partial B(x,\epsilon)} \left[ u(y) \frac{\partial G}{\partial \vec{n}} (y-x) - G(y,x) \frac{\partial u}{\partial \vec{n}} (y) \right] \, dS(y) \end{split}$$

for all  $x \in \Omega, x \in B(x, \epsilon) \subseteq \Omega$ . When  $\epsilon \to 0$ , then the left hand side converges to  $-\int_{\Omega} G(y-x)f(y)\,dy$  and the right hand side (for  $d \geqslant 2$ ) we have  $\partial_j G(y) = \frac{-y_j}{d|B_1||y|^d}$ , so

$$\frac{\partial G}{\partial \vec{n}} = \nabla G \vec{n} = \nabla G(y) \left( \frac{-y}{|y|} \right) = \sum_{i=1}^{d} \frac{-y_i}{d|B_1||y|^d} \frac{-y_j}{|y|} = \frac{1}{d|B_1||y|^{d-1}} \operatorname{on} \partial B(0, \epsilon)$$

so we have

$$\frac{\partial G}{\partial \vec{n}}(y-x) = \frac{1}{d|B_1|\epsilon^{d-1}}$$

on  $\partial B(x,\epsilon)$ . Hence

$$\int_{\partial B(x,\epsilon)} u(y) \frac{\partial G}{\partial \vec{n}}(y-x) dS(y) = \frac{1}{d|B_1|\epsilon^{d-1}} \int_{\partial B(x,\epsilon)} u(y) dS(y)$$
$$= \int_{\partial B(x,\epsilon)} u(y) dS(y) \xrightarrow{\epsilon \to 0} u(x)$$

On the other hand:

$$\left| \int_{\partial B(x,\epsilon)} G(y-x) \frac{\partial u(y)}{\partial \vec{n}} \, dS(y) \right| \leq C \epsilon^{d-1} \sup_{|z|=\epsilon} |G(z)| \xrightarrow{\epsilon \to 0} 0$$

since  $|G(z)| \le \frac{C}{|z|^{d-2}}$  if  $d \ge 3$ ,  $|G(z)| \le C|\log(z)|$  if d=2 and  $|G(z)| \le C|z|$  if d=1. In summary:

$$-\int_{\Omega} G(y-x)f(y) dy = -\int_{\partial\Omega} \left[ u(y) \frac{\partial G}{\partial \vec{n}}(y-x) - G(y-x) \frac{\partial u}{\partial \vec{n}}(y) \right] dS(y) - u(x)$$

$$\Leftrightarrow u(x) = \int_{\Omega} G(y-x)f(y) dy + \int_{\partial\Omega} \left[ G(y-x) \frac{\partial u}{\partial \vec{n}}(y) - g(y) \frac{\partial G}{\partial \vec{n}}(y-x) \right] dS(y)$$

Problem: We don't know anything about  $\frac{\partial u}{\partial \vec{n}}$  on  $\partial \Omega$ . Trick: We can resolve that by using the *corrector* function:  $\Phi_x = \Phi_x(y)$  which solves:

$$\begin{cases} -\Delta \Phi_x = 0 & \text{in } \Omega \\ \Phi_x(y) = G(y - x) & \text{on } \partial \Omega \end{cases}$$

We assume that  $\Phi_x$  exists.

**Definition 5.5** (Green's function)  $\tilde{G}(x-y) = G(y-x) - \Phi_x(y)$  for all  $x, y \in \Omega$ ,  $x \neq y$ .

**Exercise 5.6** (E 7.1) Let  $\Omega \subseteq \mathbb{R}^d$  be open and bounded with  $C^1$  boundary. For  $x \in \Omega$ , assume there exist  $\Phi_x(y)$ ,  $y \in \bar{\Omega}$ , s.t.

$$\begin{cases} \Delta_y \Phi_x(y) = 0\\ \Phi_x(y) = G(y - x) \end{cases},$$

 $G(z)=rac{1}{d(d-2)|B_1||z|^{d-2}}, d\geqslant 3.$  Prove that  $\Phi_x(y)=\Phi_y(x)$  for all  $x,y\in\Omega$ . Then  $\tilde{G}(x,y)=G(y-x)-\Phi_x(y)$  is symmetric, i.e.  $\tilde{G}(x,y)=\tilde{G}(y,x)$ .

Solution. Assume  $x \neq y$ . Define

$$f(z) = \tilde{G}(x, z) = G(z - x) - \Phi_x(z)$$
  

$$g(z) = \tilde{G}(y, z) = G(z - y) - \Phi_y(z)$$

Integration by parts:

$$\begin{split} \int_{\Omega \setminus (B(x,\epsilon) \cup B(y,\epsilon))} (f\Delta g - g\Delta f) &= \int_{\partial \Omega \cup \partial B(x,\epsilon) \cup \partial B(y,\epsilon)} \left( f \frac{\partial g}{\partial \vec{n_z}} - g \frac{\partial f}{\partial \vec{n_z}} \right) dS(z) \\ &= \int_{\partial B(x,\epsilon) \cup \partial B(y,\epsilon)} \left( f \frac{\partial g}{\partial \vec{n_z}} - g \frac{\partial f}{\partial \vec{n_z}} \right) dS(z) \end{split}$$

Consider  $f \frac{\partial g}{\partial \vec{n_z}}$  on  $\partial B(x, \epsilon)$ . Since g is only singular at y, so  $\left| \frac{\partial g}{\partial \vec{n}} \right| \leqslant C$  on  $\partial B(x, \epsilon)$ . This implies:

$$\int_{\partial B(x,\epsilon)} \left| f \frac{\partial g}{\partial \vec{n_z}} \right| dS(z) \leqslant C \int_{\partial B(x,\epsilon)} |f| dS(z) 
\leqslant C \int_{\partial B(x,\epsilon)} \left( \frac{1}{|x-z|^{d-2}} + \|\Phi_x\|_{L^{\infty}(\Omega)} \right) dS(z) 
\leqslant C \epsilon^{d-1} \left( \frac{1}{\epsilon^{d-2}} + 1 \right) \leqslant C \epsilon \xrightarrow{\epsilon \to 0} 0$$

Consider  $f \frac{\partial g}{\partial \vec{n_z}}$  on  $\partial B(y, \epsilon)$ . Decompose  $\frac{\partial g}{\partial \vec{n}} = \left[\nabla_z G(z-y) - \nabla_z \Phi_y(z)\right] \frac{(z-y)}{|z-y|}$ . Since  $\Phi_y(z)$  is harmonic in  $\Omega$ , we have that

$$\int_{\partial B(y,\epsilon)} \left| f \nabla_z \Phi_y(z) \frac{-(z-y)}{|z-y|} \right| \le C \int_{\partial B(y,\epsilon)} |f| \le C \epsilon^{d-1} \xrightarrow{\epsilon \to 0} 0$$

Thus the main contribution from  $f \frac{\partial g}{\partial \vec{n}}$  is

$$\begin{split} &\int_{\partial B(y,\epsilon)} f(z) \nabla_z G(z-y) \frac{-(z-y)}{|z-y|} \, dS(z) \\ &= \int_{\partial B(y,\epsilon)} f(z) \frac{-(z-y)}{d|B_1||z-y|^d} \frac{-(z-y)}{|z-y|} \, dS(z) \\ &= \frac{1}{d|B_1|\epsilon^{d-1}} \int_{\partial B(y,\epsilon)} f(z) \, dS(z) \\ &= \oint_{\partial B(y,\epsilon)} f(z) \, dS(z) = f(y) \end{split}$$

In summary:

$$\int_{\partial B(x,\epsilon)\cup\partial B(y,\epsilon)} f \frac{\partial g}{\partial \vec{n_z}} dS(z) \xrightarrow{\epsilon\to 0} f(y)$$

Similary:

$$\int_{\partial B(x,\epsilon)\cup\partial B(y,\epsilon)} g \frac{\partial f}{\partial \vec{n_z}} dS(z) \xrightarrow{\epsilon \to 0} g(x)$$

So we have that f(y) = g(x), so

$$f(y) = G(y - x) - \Phi_x(y)$$
  
$$g(x) = G(x - y) - \Phi_y(x).$$

So  $\Phi_x(y) = \Phi_y(x)$  for all  $x \neq y \in \Omega$ . This implies  $\Phi_x(y) = \Phi_y(x)$  for all  $x, y \in \Omega$ .

**Theorem 5.7** Let  $\Omega \subseteq \mathbb{R}^d$  be open, bounded and  $C^1$ . If  $u \in C^2(\Omega)$  solves

$$\begin{cases} -\Delta u = f & \text{in } \Omega \\ u = g & \text{on } \partial\Omega \end{cases},$$

then

$$u(x) = -\int_{\partial\Omega} g(y) \frac{\partial \tilde{G}}{\partial \vec{n_y}}(x, y) \, dS(y) + \int_{\Omega} \tilde{G}(x, y) \, dy$$

*Proof.* We need to prove:

$$\int_{\Omega} \Phi_x(y) f(y) \, dy + \int_{\partial \Omega} \left( -g(y) \frac{\partial \Phi_x(y)}{\partial \vec{n}_y} + G(y - x) \frac{\partial u}{\partial \vec{n}}(y) \right) = 0$$

By integration by parts:

$$\int_{\Omega} \Phi_{x}(y)f(y) \, dy = \int_{\Omega} \Phi_{x}(y)(-\Delta u(y)) \, dy$$

$$= \int_{\Omega} \left[ \Phi_{x}(y)(-\Delta u(y)) + (\Delta \Phi_{x}(y))u(y) \right] \, dy$$

$$(\Delta \Phi_{x}(y) = 0) = \int_{\partial \Omega} \left( -\Phi_{x}(y) \frac{\partial u}{\partial \vec{n}} + \frac{\partial \Phi_{x}(y)}{\partial \vec{n}} \underbrace{u(y)}_{g(y)} \right) dS(y)$$

How can we compute  $\Phi_x(y)$ ? It is not easy for general domains. But let us prove on two cases:

- $\Omega = \mathbb{R}^d_+$  (half-space)
- $\Omega = B(0, r)$  (a ball)

#### 5.1 Green's function on the upper half plane

We use the following notation:

$$\mathbb{R}_{+}^{d} = \{ x = (x_{1}, x_{2}, \dots, x_{d}) = (x', x_{d}) \in \mathbb{R}^{d-1} \times \mathbb{R} \mid x_{d} > 0 \}$$
$$\partial \mathbb{R}_{+}^{d} = \{ x = (x', x_{d}) \mid x_{d} = 0 \} = \mathbb{R}^{d-1} \times \{0\}$$

For all  $x \in \mathbb{R}^d$  we want to find the correction function  $\Phi_x(y)$  with  $y \in \overline{\mathbb{R}^d_+}$  s.t.

$$\begin{cases} +\Delta_y \Phi_x(y) = 0 & \text{in } \mathbb{R}^d_+ \\ \Phi_x(y) = G(y-x) & \text{in } \partial \mathbb{R}^d_+ \end{cases}$$

**Definition 5.8** (Reflection for  $\mathbb{R}^d_+$ ) For all  $x = (x', x_d) \in \mathbb{R}^d$ ,  $\tilde{x} = (x', -x_d) \in \mathbb{R}^d$ , (if  $x \in \mathbb{R}^d_+ \Rightarrow \tilde{x}\mathbb{R}^d_-$ )

Claim:  $\Delta_y \Phi_x(y) = G(y - \tilde{x})$  is a corrector function.

- $\Delta_y \Phi_x(y) = \Delta_y G(y \tilde{x}) = 0$  for all  $y \in \mathbb{R}^d_+$  for all  $x \in \mathbb{R}^d_+$  (as  $\tilde{x} \in \mathbb{R}^d_- = \mathbb{R}^d \setminus \overline{\mathbb{R}^d_+}$ )
- $\Phi_x(y) = G(y \tilde{x}) = G(y x)$  on  $y \in \partial \mathbb{R}^d_+$ . In fact,  $y \in \partial \mathbb{R}^d_+$ , so  $y_d = 0$ , so

$$G(y - \tilde{x}) = G_0(|y - \tilde{x}|) = G_0\left(\sqrt{\sum_{i=1}^{d-1} |x_i - y_i|^2 + |x_d|^2}\right) = G_0(|y - x|)$$

Consider f = 0 and

$$\begin{cases} -\Delta = 0 & \text{in } \mathbb{R}^d_+ \\ u = g & \text{on } \partial \mathbb{R}^d_+ \end{cases}$$

Then we expect

$$u(x) = -\int_{\partial\Omega} g(y) \frac{\partial \tilde{G}}{\partial \vec{n_y}}(x, y) dS(y)$$

We compute

$$\frac{\partial \tilde{G}}{\partial \vec{n_y}}(x-y) = \sum_{j=1}^d \frac{\partial \tilde{G}}{\partial y_j}(x,y)\vec{n_j} = -\frac{\partial \tilde{G}}{\partial y_d}(x,y) = \frac{\partial}{\partial y_d}(G(y-\tilde{x}) - G(y-x)) = \dots$$

because  $\tilde{G}(x,y) = G(y-x) - \Phi_x(y) = G(y-x) - G(y-\tilde{x})$ .

$$\dots = \frac{1}{d|B_1|} \left[ \frac{-(y_d - \tilde{x}_d)}{|y - \tilde{x}|^d} - \frac{-(y_d - x_d)}{|y - x|^d} \right]$$
$$(y \in \partial \mathbb{R}^d_+) = \frac{1}{d|B_1|} \left[ \frac{\tilde{x}_d}{|y - x|} - \frac{x_d}{|y - x|^d} \right] = \frac{-2x_d}{d|B_1||y - x|^d}$$

We expect

$$u(x) = -\int_{\partial \mathbb{R}^d} g(y) \frac{\partial \tilde{G}}{\partial \vec{n_y}}(x, y) \, dS(y) = \int_{\partial \mathbb{R}^d} g(y) \frac{2x_d}{d|B_1||y - x|^d} \, dS(y)$$

**Theorem 5.9** Assume  $g \in C(\mathbb{R}^{d-1}) \cap L^{\infty}(\mathbb{R}^{d-1})$  Then

$$u(x) = \int_{\partial \mathbb{R}^d_+} g(y) K(x, y) \, dS(y)$$

and

$$K(x,y) = \frac{2x_d}{d|B_1||y-x|^d} \quad \text{for all } x \in \mathbb{R}^d_+.$$

satisfies that  $u \in C^{\infty}(\mathbb{R}^d_+) \cap L^{\infty}(\mathbb{R}^d_+)$  and

$$\begin{cases} \Delta u = 0 & \text{in } \mathbb{R}^d_+ \\ \lim_{\substack{x \to 0 \\ x \in \mathbb{R}^d_+}} u(x) = g(x_0) & \forall x_0 \in \partial \mathbb{R}^d_+ \end{cases}$$

*Proof.* Claim: For all  $y \in \partial \mathbb{R}^d_+$ ,  $x \mapsto K(x,y)$  is harmonic in  $\mathbb{R}^d_+$  (i.e.  $\Delta_x K(x,y) = 0$  in  $\mathbb{R}^d_+$ )

• Argument from Evans:

$$K(x,y) = -\frac{\partial}{\partial y_d}, \ \tilde{G}(y-x) = -\frac{\partial}{\partial y_d}(G(y-x) - G(y-\tilde{x}))$$

We know that for all  $x \in \mathbb{R}^d_+$ ,  $y \mapsto \tilde{G}(y,x)$  is haromnic in  $\mathbb{R}^d_+ \setminus \{x\}$ . By symmetry we have  $\tilde{G}(y,x) = \tilde{G}(x,y)$  for all  $x,y \in \mathbb{R}^d_+$ . So for all  $y \in \mathbb{R}^d_+$ ,  $x \mapsto \tilde{G}(y,x)$  is harmonic in  $\mathbb{R}^d_+ \setminus \{y\}$ . Then for all  $y \in \mathbb{R}^d_+$ :  $-\frac{\partial}{\partial y_d} \tilde{G}(y,x) = K(x,y)$  is harmonic  $x \in \mathbb{R}^d_+ \setminus \{y\}$ . By a limit argument, for all  $y \in \partial \mathbb{R}^d_+$ ,  $x \mapsto K(x,y)$  is harmonic for all  $x \in \mathbb{R}^d_+$ .

• A direct proof:

$$K(x,y) = \frac{2x_d}{d|B_1|} \frac{1}{|x-y|^d}$$

for all  $x \in \mathbb{R}^d_+$ ,  $y \in \partial \mathbb{R}^d_+$ . For  $i \neq d$ ,  $x = (x_1, \dots, x_d)$ ,

$$\begin{split} \partial_{x_i} K(x,y) &= \frac{2x_d}{d|B_1|} \frac{(-d)}{|x-y|^{d+1}} \frac{x_i - y_i}{|x-y|} = \frac{-2x_d}{|B_1|} \frac{x_i - y_i}{|x-y|^{d+2}} \\ \partial_{x_i}^2 K(x,y) &= -\frac{2x_d}{|B_1|} \left[ \frac{1}{|x-y|^{d+1}} - \frac{(d+2)}{|x-y|^{d+3}} (x_i - y_i) \frac{(x_i - y_i)}{|x-y|} \right] \\ &= -\frac{2x_d}{|B_1|} \left[ \frac{1}{|x-y|^{d+1}} - \frac{(d+2)}{|x-y|^{d+4}} (x_i - y_i)^2 \right] \end{split}$$

Moreover:

$$\begin{split} \partial_{x_d} K(x,y) &= \frac{2}{d|B_1|} \frac{1}{|x-y|^d} + \frac{2x_d}{d|B_1|} (-d) \frac{(x_d - y_d)}{|x-y|^{d+2}} \\ (y_d = 0) &= \frac{2}{d|B_1|} \frac{1}{|x-y|^d} + \frac{2x_d^2}{|B_1||x-y|^{d+2}} \\ \partial_{x_d}^2 K(x,y) &= \frac{-2}{|B_1|} \frac{(x_d - y_d)}{|x-y|^{d+2}} + \frac{4x_d}{|B_1||x-y|^{d+2}} - \frac{2(d+2)|B_1|}{x} \frac{(x_d - y_d)}{|x-y|^{d+4}} \end{split}$$

Then:

$$\Delta_{x}K(x,y) = \sum_{i=1}^{d-1} \partial_{x_{i}}^{2}K(x,y) + \partial_{x_{i}}^{2}K(x,y)$$

$$= -\frac{2x_{d}}{|B_{1}|} \left[ \frac{d-1}{|x-y|^{d+2}} - (d+2) \sum_{i=1}^{d-1} \frac{(x_{i}-y_{i})^{2}}{|x-y|^{d+4}} + \frac{1+2}{|x-y|^{d+2}} - \frac{(d+2)x_{d}(x_{d}-y_{d})}{|x-y|^{d+4}} \right]$$

$$= -\frac{2x_{d}}{|B_{1}|} \left[ \frac{d+2}{|x-y|^{d+2}} - (d+2) \frac{1}{|x-y|^{d+4}} \left( \sum_{i=1}^{d} |x_{i}-y_{i}|^{2} \right) \right] = 0$$

for all  $x \in \mathbb{R}^d_+, \ y \in \partial \mathbb{R}^d_+$ . Claim (exercise) for all  $x \in \mathbb{R}^d_+$ ,

$$\int_{\partial \mathbb{R}^d_{\perp}} K(x, y) \, dy = 1$$

Consider

$$u(x) = \int_{\partial \mathbb{R}^d_+} K(x, y) g(y) \, dy, \quad x \in \mathbb{R}^d_+$$

Since  $g \in L^{\infty}(\mathbb{R}^{d-1}) = L^{\infty}(\partial \mathbb{R}^d_+)$  and  $K(x,y) \ge 0$ , hence

$$|u(x)| \le \left(\int_{\partial \mathbb{R}^d_+} K(x, y) \, dy\right) \|g\|_{L^{\infty}}$$

Thus  $||u||_{L^{\infty}} \leq ||g||_{L^{\infty}}$ . Moreover

$$D_x^{\alpha} u(x) = \int_{\partial \mathbb{R}^d} D_x^{\alpha} K(x, y) g(y) \, dy$$

bounded, so  $u \in C^{\infty}(\mathbb{R}^d_+)$ ,  $x \mapsto K(x,y)$  is smooth as  $x \neq y$ .

$$\Delta_x u(x) = \int_{\partial \mathbb{R}^d_+} \underbrace{\Delta_x K(x, y)}_{=0} g(y) \, dy = 0$$

So u is harmonic in  $\mathbb{R}^d_+$ .  $(\Rightarrow u \in C^{\infty}$  by Weyl's lemma). Take  $x_0 \in \partial \mathbb{R}^d_+$  and  $x \in \mathbb{R}^d_+$ . Then:

$$|u(x) - g(x_0)| = \left| \int_{\partial \mathbb{R}^d_+} K(x, y) (g(y) - g(x_0)) \, dy \right|$$

$$\leq \int_{\partial \mathbb{R}^d_+} K(x, y) |g(y) - g(x_0)| \, dy$$

$$= \underbrace{\int_{|y - x_0| \leq L|x - x_0|}}_{(I)} + \underbrace{\int_{|y - x_0| > L|x - x_0|}}_{(II)}$$

$$(I) = \int_{|y-x_0| \le L|x-x_0|} K(x,y)|g(y) - g(x_0)| \, dy$$
$$= \sup_{|y-x_0| \le L|x-x_0|} |g(y) - g(x_0)| \xrightarrow{x \to x_0} 0 \quad \forall L > 0$$

(II): If 
$$|y - x_0| > L|x - x_0|$$
, then  $|y - x| > \frac{1}{2}|y - x_0| > \frac{L}{2}|x - x_0|$  if  $L \ge 2$ .
$$\int_{|y - x_0| > |L|x - x_0|} K(x, y)|g(y) - g(x_0)| \, dy \le C \int_{y \in \partial \mathbb{R}^d_+} \frac{x_d}{|x_0 - y|} \, dy$$

$$Cx_d \int_{\substack{z \in \mathbb{R}^{d-1} \\ |z| > L|x - x_0|}} \frac{1}{|z|^d} \, dz = const. \frac{x_d}{L|x - x_0|} \le \frac{const.}{L} \xrightarrow{L \to \infty} 0$$

$$x_d = |x_d - (x_0)_d| \le |x - x_0|$$

#### 5.2 Green's function for a ball

Let B = B(0,1). For all  $x \in B$ , for all  $y \in \bar{B}$  we want to find the corrector function  $\Phi_x(y)$  s.t.

$$\begin{cases} \Delta_y \Phi_x(y) = 0 & \text{in } B \\ \Phi_x(y) = G(y - x) & \text{on } \partial B \end{cases}$$

where for  $d \ge 3$ :  $G(z) = \frac{1}{d(d-2)|B_1||z|^{d-2}}$ .

**Definition 5.10** (Reflection / Duality through the sphere  $\partial B$ ) For all  $x \in \mathbb{R}^d \setminus \{0\}$  we define  $\tilde{x} = \frac{x}{|x|^2}$ . Clearly we have for all  $x \in B$  that if |x| < 1, then  $|\tilde{x}| = \left|\frac{x}{|x|^2}\right| = \frac{1}{|x|} > 1$ , so  $\tilde{x} \notin \bar{B}$ 

**Lemma 5.11** For  $d \ge 3$  the function  $\Phi_x(y) = G(|x|(y-\tilde{x}))$  is a corrector function.

Proof.

$$\Phi_x(y) = \frac{1}{d(d-2)|B_1||x|^{d-2}|y - \tilde{x}|^{d-2}}$$

for all  $x \in B, x \neq 0$ , for all  $y \in \overline{B}$ . Then clearly  $y \mapsto \Phi_x(y)$  is harmonic in B (Since  $\frac{1}{|z|^{d-2}}$  is harmonic in  $\mathbb{R}\setminus 0$ ). Let's check the boundary: Let  $y \in \partial B$ , i.e. |y| = 1. Then

$$\begin{aligned} ||x|(y-\tilde{x})| &= |x| \left| y - \frac{x}{|x|^2} \right| \\ &= |x| \sqrt{|y|^2 - 2\frac{xy}{|x|^2} + \left| \frac{x}{|x|^2} \right|^2} \\ &= \sqrt{|x|^2 |y|^2 - 2xy + 1} \\ (|y| &= 1) &= \sqrt{|x|^2 - 2xy + |y|^2} = |x - y| \end{aligned}$$

Thus  $\Phi_x(y) = G(|x||y - \tilde{x}|) = G(y - x)$  for all  $0 \neq x \in B$ , for all  $y \in \partial B$ . Let's compute the Poisson kernel: If want to solve

$$\begin{cases} -\Delta u = 0 & \text{in } B \\ u = g & \text{on } \partial B \end{cases}$$

then

$$u(x) = -\int_{\partial B} \frac{\partial \tilde{G}}{\partial \vec{n}_y}(x, y) g(y) dS(y).$$

$$\tilde{G}(x,y) = G(y-x) - \Phi_x(y) = G(y-x) - G(|x|(y-\tilde{x})) \text{ for all } x \in B \setminus \{0\}, \ y \in \bar{B}.$$

$$\frac{\partial \tilde{G}}{\partial \vec{n}_y} = \sum_{i=1}^d \partial_{y_i} \tilde{G}y_i$$

Here

$$\begin{split} \partial_{y_i} \tilde{G} &= \partial_{y_i} G(y-x) - \partial_{y_i} [G(|x|(y-\tilde{x}))] \\ &= \frac{-(y_i-x_i)}{d|B_1||y-x|^d} + \frac{y_i-\tilde{x}_i}{d|B_1||x|^{d-2}|y-\tilde{x}|^d} \\ \Rightarrow \frac{\partial \tilde{G}}{\partial \vec{n}_y} &= \sum_{i=1}^d [\dots] y_i \\ &= \frac{-y(y-x))}{d|B_1||y-x|^d} + \frac{y(y-\tilde{x})}{d|B_1||x|^{d-2}|y-\tilde{x}|^d} \\ &= \frac{1}{d|B_1||y-x|^d} (-y(y-x) + y(y-\tilde{x})|x|^2) \\ &= \frac{1}{d|B_1||y-x|^d} [-|y|^2 + xy + |y|^2|x|^2 - xy] \\ &= \frac{-1+|x|^2}{d|B_1||y-x|^d} \end{split}$$

as  $y \in \partial B$ .

**Theorem 5.12** (Poisson Formula for a Ball) Let  $B=B(0,1), g\in C(\partial B)$ . Define for all  $x\in B$ :

$$u(x) = \int_{\partial B} K(x, y)g(y) dS(y),$$

 $K(x,y) = -\frac{\partial \tilde{G}}{\partial \vec{n}_y}(x,y) = \frac{1-|x|^2}{d|B_1||y-x|^d} \text{ for all } x \in B, \text{ for all } y \in \partial B. \text{ Then } u \in C^\infty(B),$   $\Delta u = 0 \text{ and for all } x_0 \in \partial B \text{ we have } \lim_{x \in B} x_0 \ u(x) = g(x_0). \text{ This holds for all } d \geqslant 2.$ 

*Proof.* We need to check:

- 1. For all  $y \in \partial B$ ,  $x \mapsto K(x, y)$  is harmonic in B.
- 2.  $\int_{\partial B} K(x,y)\,dS(y)=1$  for all  $x\in B$  (exercise)

Now for all  $x \in B$ , for all  $y \in \partial B$ :

$$K(x,y) = \frac{1 - |x|^2}{d|B_1||y - x|^d}$$

$$\partial_{x_i} K(x,y) = \frac{-2x_i}{d|B_1|} \frac{1}{|x - y|^d} - \frac{1 - |x|^2}{|B_1|} \frac{x_i - y_i}{|x - y|^{d+2}}$$

$$\partial_{x_i}^2 K(x,y) = -\frac{2}{d|B_1|} \frac{1}{|x - y|^d} + \frac{2x_i}{|B_1|} \frac{x_i - y_i}{|x - y|^{d+2}} + \frac{2x_i}{|B_1|} \frac{x_i - y_i}{|x - y|^{d+2}}$$

$$-\frac{1 - |x|^2}{|B_1|} \frac{1}{|x - y|^{d+2}} + \frac{1 + |x|^2}{|B_1|} (d+2) \frac{(x_i - y_i)^2}{|x - y|^{d+4}}$$

$$\Delta_x K = \sum_{i=1}^d \partial_{x_i}^2 K = -\frac{2}{|B_1|} \frac{1}{|x - y|^d} + \frac{4x(x - y)}{|B_1||x - y|^{d+2}}$$

$$-\frac{d(1 - |x|^2)}{|B_1|} \frac{1}{|x - y|^{d+2}} + (d+2) \frac{1 - |x|}{|B_1|} \frac{1}{|x - y|^{d+2}}$$

$$= \frac{2}{|B_1||x - y|^{d+2}} [-|x|^2 + 2xy - |y|^2 + 2|x|^2 - 2xy + 1 - |x|^2]$$

$$= \frac{2}{|B_1||x - y|^{d+2}} [-|x|^2 + 2xy - |y|^2 + 2|x|^2 - 2xy + 1 - |x|^2]$$

 $1-|y|^2=0$  as  $y\in\partial B$ . Thus  $\Delta_x K(x,y)=0$ , for all  $x\in B$ , for all  $y\in\partial B$ .

$$|u(x)| = \left| \int_{\partial B} K(x, y) g(y) \, dS(y) \right| \le ||g||_{L^{\infty}(\partial B)}$$

 $\int_{\partial B} K(x,y), dS(y) = ||g||_{L^{\infty}},$ 

$$\Delta_x u(x) = \int_{\partial B} \underbrace{\Delta_x K(x, y)}_{\Omega} g(y) dS(y) = 0$$

Take  $x \in B$ ,  $x \to x_0 \in \partial B$ .

$$|u(x) - g(x_0)| = \left| \int_{\partial B} K(x, y) (g(y) - g(x_0)) \, dS(y) \right|$$

$$\leq \int_{A_1} + \int_{A_2} K(x, y) |g(y) - g(x_0)| \, dS(y),$$

where

$$A_1 = \{ y \in \partial B \mid |y - x_0| \le |x - x_0|^{\alpha} \}$$

$$A_2 = \{ y \in \partial B \mid |y - x_0| > |x - x_0|^2 \}$$

On  $A_1$  we have:

$$\int_{A_1} \dots \leqslant \sup_{\substack{|z-x_0| \leqslant |x-x_0|^{\alpha} \\ z \in \partial B}} \int_{\partial B} K(x,y) \, dS(y) \xrightarrow{x \to x_0} 0$$

since  $G \in C(\partial B)$ . On  $A_2$ :

$$|y - x_0| > |x - x_0|^{\alpha}$$

$$\Rightarrow |y - x| \ge |y - x_0| - |x - x_0| \ge |x - x_0|^{\alpha} - |x - x_0| \ge \frac{1}{2}x - x_0^{\alpha}$$

if  $\alpha < 1$  and  $|x - x_0|$  small. So we get

$$K(x,y) = \frac{1 - |x|^2}{d|B_1||x - y|^d} \le C \frac{1 - |x|^2}{|x - x_0|^{d\alpha}} \le C|x - x_0|^{1 - d\alpha}$$

Thus

$$\int_{A_2} K(x,y) |g(y)-g(x_0)| \, dS(y) \leqslant C \|g\|_{L^\infty} |x-x_0|^{1-d\alpha} \xrightarrow{x \to x_0} 0$$

if 
$$1 - d\alpha > 0 \Leftrightarrow \alpha < \frac{1}{d}$$
.

**Exercise 5.13** (E 7.2) Define  $\mathbb{R}^d_+ = \{(x', x_d) \in \mathbb{R}^{d-1} \times \mathbb{R} \mid x_d > 0\}$ . Let  $K(x, y) = \frac{2x_d}{d|B_1||x-y|^d}$  for all  $x \in \mathbb{R}^d_+, y \in \partial \mathbb{R}^d_+ = \{(y', 0) \mid y' \in \mathbb{R}^{d-1}\} \simeq \mathbb{R}^{d-1}$ . Prove

$$\int_{\partial \mathbb{R}^d_+} K(x, y) \, dS(y) = 1 \quad \forall x \in \mathbb{R}^d_+$$

Solution. Denote  $x=(x',x_d),\,y=(y',0),\,x',y'\in\mathbb{R}^{d-1},\,x_d>0.$ 

$$\int_{\partial \mathbb{R}^d_+} K(x,y) \, dS(y) = \int_{\mathbb{R}^{d-1}} \frac{2x_d}{d|B_1| \left(|x'-y'|^2 + x_d^2\right)^{\frac{d}{2}}} \, dy' = \dots$$

as 
$$|x - y| = |(x' - y', x_d)| = \sqrt{|x' - y'|^2 + x_d^2}$$
.

$$(y' - x' \mapsto y') \qquad \dots = \int_{\mathbb{R}^{d-1}} \frac{2x_d}{d|B_1| (|y'|^2 + x_d^2)^{\frac{d}{2}}} dy'$$

$$(y' = x_d z) \qquad = \int_{\mathbb{R}^{d-1}} \frac{2x_d}{d|B_1| (x_d^2(|z|^2 + 1))^{\frac{d}{2}}} (x_d^{d-1}) dz$$

$$= \int_{\mathbb{R}^{d-1}} \frac{2}{d|B_1| (|z|^2 + 1)^{\frac{d}{2}}} dz$$

$$= \int_0^\infty \frac{2\omega_{d-1}}{d|B_1|} \frac{1}{(r^2 + 1)^{\frac{d}{2}}} r^{d-2} dr$$

$$= \frac{2\omega_{d-1}}{\omega_d} \int_0^\infty \frac{1}{(r^2 + 1)^{\frac{d}{2}}} r^{d-2} dr$$

Set d = 2:  $\omega_1 = 1, |\omega_2| = 2\pi$ 

$$\frac{2}{\pi} \int_0^\infty \frac{1}{r^2 + 1} dr = \frac{2}{\pi} \int_0^{\frac{\pi}{2}} \frac{1}{(\tan t)^2 + 1} [(\tan t)^2 + 1] dt = 1$$

we we set  $r = \tan t, t \in \left(0, \frac{\pi}{2}\right), \frac{dr}{dt} = (\tan t)' = 1 + (\tan t)^2$ 

For d = 3:

$$\frac{2\cdot 2\pi}{4\pi} \int_0^\infty \frac{1}{(r^2+1)^{\frac{3}{2}}} r \, dr = \int_0^\infty \frac{d}{dr} \left[ \frac{-1}{(r^2+1)^{\frac{1}{2}}} \right] dr = \frac{-1}{(r^2+1)^{\frac{1}{2}}} \bigg]_0^\infty = 1$$

**Exercise 5.14** (7.3) Let  $g \in C(\partial \mathbb{R}^d_+) \cap L^{\infty}(\partial \mathbb{R}^d_+)$   $(\partial \mathbb{R}^d_+ \simeq \mathbb{R}^{d-1})$ .

$$u(x) = \int_{\partial \mathbb{R}^d_+} K(x, y) g(y) dS(y)$$
  $K(x, y) = \frac{2x_d}{d|B_1||x - y|^d}, x \in \mathbb{R}^d_+$ 

Prove that if g(y) = |y|, if  $|y| \le 1$ , then  $|\nabla u|$  is unbounded in  $B(0,r) \cap \mathbb{R}^d_+$  for all r > 0.

Solution.

$$\begin{split} \partial_{x_d} u(x) &= \int_{\partial \mathbb{R}^d_+} \partial x_d K(x,y) g(y) \, dy \quad \forall x \in \mathbb{R}^d_+ \\ &= \frac{2}{d|B_1|} \int_{\partial \mathbb{R}^d_+} \left[ \frac{1}{|x-y|^d} - \frac{dx_d^2}{|x-y|^{d+2}} \right] g(y) \, dy \\ &= \frac{2}{d|B_1|} \int_{\partial \mathbb{R}^d_+} \frac{1}{|x-y|^{d+2}} [|x-y|^2 - dx_d^2] g(y) \, dy \\ &= \frac{2}{d|B_1|} \int_{\partial \mathbb{R}^d_+} \frac{1}{(|x'-y'| + x_d^2|^{\frac{d+2}{2}}} \left[ |y'|^2 - (d-1)x_d^2 \right] g(y) \, dy \end{split}$$

Assume that  $\partial_d u$  is bounded in  $B(0,r) \cap \mathbb{R}^d_+$  Then:

$$|u(0, x_d) - \underbrace{u(0, 0)}_{q(0)=0}| \le C|x_d|$$

if  $x_d$  small. Consider:

$$\begin{split} \limsup_{x_d \to 0^+} \frac{u(0, x_d)}{x_d} &= \limsup_{x_d \to 0^+} c \int_{\mathbb{R}^{d-1}} \frac{1}{(|y'|^2 + x_d^2)^{\frac{d}{2}}} g(y) \, dy' \\ &\geqslant \int_{\mathbb{R}^{d-1}} \frac{1}{|y'|^d} g(y) \, dy = \int_{|y'| \leqslant 1} + \int_{|y'| > 1} \\ &\quad to \int_{\mathbb{R}^{d-1}} \frac{1}{|y'|^{d-1}} \, dy' = \infty \end{split}$$

**Exercise 5.15** (Bonus 7) Recall the Poisson kernel on a ball  $B(0,r) \subseteq \mathbb{R}^d$ :

$$K(x,y) = \frac{r^2 - |x|^2}{d|B_1|r} \frac{1}{|x - y|^d}$$

for all  $x \in B(0,r)$ ,  $y \in \partial B(0,r)$ . Prove:

$$\int_{\partial B(0,r)} K(x,y) \, dS(y) = 1$$

for all  $x \in B(0,r)$ . (It suffices if you can prove d=2 and d=3)

## 5.3 Energy Method

Consider  $u \in C^2(\Omega)$  for  $\Omega \subseteq \mathbb{R}^d$  open, bounded and with  $C^1$  boundary and

$$\begin{cases} -\Delta u = f & \text{in } \Omega \\ u = g & \text{on } \partial \Omega. \end{cases}$$

Take  $\phi \in C_c^{\infty}(\Omega)$ , then by integration by parts:

$$0 = \int_{\Omega} (-\Delta u - f)\phi = \int_{\Omega} \nabla u \nabla \phi - \int_{\Omega} f \phi$$

Key observation: This is the derivative of the energy functional

$$E(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 - \int_{\Omega} f u$$

If u is a minimizer of E, then it solves the equation  $-\Delta u = f$  in  $\Omega$ . The boundary condition u = g does not appear on E, but this is encoded in the set of *admissible* functions. (The set of candidates of solutions). For the classical solutions, we have

**Theorem 5.16** (Dirichlet's principle) Let  $\Omega \subseteq \mathbb{R}^d$  be open, bounded with  $C^1$ -boundary. Let  $f \in C(\bar{\Omega})$  and  $g \in C(\partial B)$ . Then the following statements are equivalent:

1. 
$$u \in C^2(\bar{\Omega})$$
 solves 
$$\begin{cases} -\Delta u = f & \text{in } \Omega \\ u = g & \text{on } \partial \Omega \end{cases}$$

2. u is a minimizer of the variational problem  $E = \inf_{v \in A} E(v)$ , where

$$E(v) = \frac{1}{2} \int_{\Omega} |\nabla v|^2 - \int_{\Omega} fv,$$

$$A = \{ v \in C^2(\bar{\Omega}) \mid v = g \text{ on } \partial\Omega \}.$$

Moreover there is at most a solution / minimizer (uniqueness).

*Proof.* The result holds even for complex-valued functions. Let us write the proof for real-valued functions.

1.  $\Rightarrow$  2.: Let  $u \in C^2(\bar{\Omega})$  be a solution of  $\begin{cases} -\Delta u = f & \text{in } \Omega \\ u = g & \text{on } \partial \Omega \end{cases}$ . Then we prove  $E(u) \leqslant E(v)$  for all  $v \in A$ . If  $v \in A$ , then u - v = 0 on  $\partial \Omega$ . Using this and  $-\Delta u = f$  in  $\Omega$ , we have:

$$\begin{aligned} 0 &= \int_{\Omega} (-\Delta u - f) \cdot (u - v) \, dy \\ (\text{Part. Int.}) &= \int_{\Omega} \nabla u (\nabla u - \nabla v) \, dy - \int_{\Omega} f(u - v) \, dy \\ &= \left[ \frac{1}{2} \int_{\Omega} |\nabla u|^2 \, dy - \int_{\Omega} fu \, dy \right] - \left[ \frac{1}{2} \int_{\Omega} |\nabla v|^2 \, dy - \int_{\Omega} fv \, dy \right] \\ &+ \frac{1}{2} \int_{\Omega} |\nabla u|^2 + \frac{1}{2} \int_{\Omega} \\ &= E(u) - E(v) + \frac{1}{2} \underbrace{\int_{\Omega} |\nabla u - \nabla v|^2}_{\geqslant 0} \end{aligned}$$

 $E(u) \leq E(v)$ , so u is a minimizer of  $\inf_{v \in A} E(v)$ . Moreover u is the unique minimizer on A. Since E(u) = E(v) we have  $\int_{\Omega} |\nabla (u - v)|^2 = 0$ , so u - v = const., so u - v = 0 in  $\bar{\Omega}$ .

2.  $\Rightarrow$  1.: Assume that u is a minimizer of  $\inf_{v \in A} E(v)$ . Then  $E(u) \leq E(v)$  for all  $v \in A$ . Take  $\phi \in C_c^{\infty}(\Omega)$ , then  $u + t\phi \in A$  for all  $t \in \mathbb{R}$ .

$$\begin{split} &\Rightarrow E(u) \leqslant E(u+t\phi) \text{ for all } t \in \mathbb{R} \\ &\Rightarrow t \mapsto E(u+t\phi) \text{ has a minimizer at } t=0 \\ &\Rightarrow 0 = \frac{d}{dt} E(u+t\phi)|_{t=0} \\ &= \frac{d}{dt} \left(\frac{1}{2} \int_{\Omega} |\nabla u + t \nabla \phi|^2 - \int_{\Omega} f(u+t\phi) \right) \bigg|_{t=0} \\ &= \frac{d}{dt} \left(\frac{1}{2} \int_{\Omega} |\nabla u|^2 + t^2 |\nabla \phi|^2 + 2t \nabla u \nabla \phi - \int_{\Omega} f(u+t\phi) \right) \bigg|_{t=0} \\ &\int_{\Omega} \nabla u \nabla \phi - \int_{\Omega} f \phi = \int_{\Omega} (-\Delta u - f) \phi \\ &\text{ for all } \phi \in C_c^{\infty}(\Omega). \text{ So } -\Delta u - f = 0 \text{ in } \Omega \text{ and } u = g \text{ since } u \in A. \end{split}$$

Direct method of calculus of variations. Think  $f: \mathbb{R} \to \mathbb{R}$ ,  $f \in C(\mathbb{R})$ ,  $f(x) \to \infty$  as  $|x| \to \infty$ . There is a  $x_0 \in \mathbb{R}$  s.t.  $f(x_0) = \inf_{x \in \mathbb{R}} f(x)$ .

Step 1:  $E = \inf_{x \in \mathbb{R}} f(x) > -\infty$ 

Step 2: Take a minizing sequence  $\{x_n\} \subseteq \mathbb{R}$ ,  $f(x_n) \to E$ . Up to a subsequence  $x_n \to x_0$  in  $\mathbb{R}$  (compactness)

Step 3: Lower semicontinuity  $E = \liminf_{n \to \infty} f(x_n) \ge f(x_0)$ 

If we apply the direct method to  $\inf_{v \in A} E(v)$ ,

$$E(v) = \frac{1}{2} \int_{\Omega} |\nabla v|^2 - \int_{\Omega} f v,$$

 $A = \{ v \in C^2(\bar{\Omega}), v = g \text{ on } \partial\Omega \}$ 

Step 1: Easy  $E = \int_{v \in A} E(v) > -\infty$ 

Step 2: There is a minimizing sequence  $\{v_n\} \subseteq A$  s.t.  $E(v_n) \to E$ . We don't know if there is a subsequence of  $\{v_n\}$  that converges to  $u \in A$ . The lack of compactness is a serious problem! We need to find the right set A! Consider again

$$\begin{cases} -\Delta u = f & \text{in } \Omega \\ u = g & \text{on } \partial \Omega \end{cases}$$

Consider the simple case g=0.  $\Delta u-f$  in  $\Omega\Leftrightarrow \nabla u\nabla\phi$ ... The right set A should be  $A=\{v\mid \int_{\Omega}|\nabla v|^2<\infty, v=0 \text{ on }\partial\Omega\}$ . Rigorously we take  $W_0^{1,2}(\Omega)=\overline{C_c^\infty(\Omega)}W^{1,2}(\Omega)$  (Notation:  $H_0^1=W_0^{1,2},H^1=W^{1,2}$ ) Recall that  $W^{1,p}$  is a banach space with norm  $\|f\|_{W^{1,p}(\Omega)}=\|f\|_{L^p(\Omega)}+\|\nabla f\|_{L^p(\Omega)}$ . We know that  $C_c^\infty(\Omega)$  is dense in  $W_{loc}^{1,p}(\Omega)$ , i.e. for all  $u\in W_{loc}^{1,p}(\Omega)$  there is  $\|u_n\|\subseteq C_c^\infty$  s.t.  $u_n\to u$  in  $W^{1,p}(K)$  for all  $K\subseteq\Omega$  compact. However in general  $C_c^\infty(\Omega)$  is not dense in  $W^{1,p}(\Omega)$ , i.e.  $W_0^{1,p}(\Omega)=\overline{C_c^\infty(\Omega)}W^{1,p}(\Omega)\subsetneq W^{1,p}(\Omega)$ . Clearly  $W_0^{1,p}$  is a closed subspace of  $W^{1,p}(\Omega)\to W_0^{1,p}(\Omega)$  is a Banach space with  $\|\cdot\|_{W^{1,p}(\Omega)}$ . Why does  $W_0^{1,p}(\Omega)$  encode the 0-boundary condition? Note that by definition for all  $u\in W_0^{1,p}(\Omega)$  there is a sequence  $\{u_n\}\subseteq C_c^\infty(\Omega), u_n\to u$  in  $W^{1,p}(\Omega)$  up to a subsequence  $u_n(x)\to u(x)$  for almost every  $x\in\Omega$ . Note  $u_n|_{\partial\Omega}=0$   $\to u|_{\partial\Omega}=0$  since  $\partial\Omega$  must be of 0-measure.

**Theorem 5.17** (Characterization for  $W_0^{1,p}$ ) Let  $\Omega$  be open, bounded with  $C^1$ -boundary. Let  $u \in W^{1,p}(\Omega) \cap C(\bar{\Omega})$ . Then the following statements are equivalent:

- a) u = 0 on  $\partial \Omega$
- b)  $u \in W_0^{1,p}(\Omega)$

(Later we will remove the condition  $C(\bar{\Omega})$  by introducing the *Trace operator*.)

**Remark 5.18** If d=1, it holds that  $W^{1,p} \subseteq C(\bar{\Omega})$ . Then the theorem gives a full characterization for  $W_0^{1,p}$ , but if  $d \ge 2$ , then in general  $W^{1,p} \nsubseteq C(\Omega)$ . (later)

Proof of theorem 5.17.

 $a) \Rightarrow b$ :

**Lemma 5.19** If  $u \in W^{1,p}(\Omega)$  and supp  $u \subseteq \Omega$ , then  $u \in W_0^{1,p}(\Omega)$ .

Proof. Since  $K := \operatorname{supp} u$  is a compact subset in  $\Omega$ , we can find a function  $\chi \in C_c^{\infty}(\Omega)$ ,  $\chi = 1$  on K. Moreover since  $u \in W^{1,p}(\Omega)$ , there is a sequence  $\{u_n\} \subseteq C_c^{\infty}(\Omega)$  s.t.  $u_n \to u$  in  $W_{loc}^{1,p}(\Omega)$ . We claim that  $\chi u_n \to \chi u$  in  $W_{loc}^{1,p}(\Omega)$ . (exercise,  $\nabla(\chi u) = \nabla \chi u + \chi \nabla u$ ). This implies  $\chi u_n \to u$  in  $W^{1,p}(\operatorname{supp} \chi)$ , thus  $\chi u_n \to u$  in  $W^{1,p}(\Omega)$ , so  $u \in W_0^{1,p}(\Omega)$ .

Assume  $u \in W^{1,p}(\Omega) \cap C(\bar{\Omega})$  and u = 0 on  $\partial\Omega$ . Take  $G \in C^1(\mathbb{R})$  s.t.  $|G(t)| \leq t$  for all t, G(t) = t if  $t \geq 2$  and G(t) = 0 if  $t \leq 1$ . Then let

$$u_n(x) := \frac{1}{n} G(nu(x)) \in W^{1,p}(\Omega)$$

$$\stackrel{\text{(Chain-rule)}}{\Rightarrow} \quad \nabla u_n(x) = \frac{1}{n} G'(nu(x)) n \nabla u(x) = G'(nu(x)) \nabla u(x)$$

Moreover,  $u_n$  is compactly supported in  $\Omega$ , so  $u_n \in W_0^{1,p}(\Omega)$  by the lemma and  $u_n \to u$  in  $W^{1,p}(\Omega)$ , so  $u \in W_0^{1,p}(\Omega)$  since  $W_0^{1,p}$  is a closed space. Recall that  $u \in C(\bar{\Omega})$  and u = 0 on  $\partial \Omega$ . Thus for all  $\epsilon > 0$  there is a compact  $K_\epsilon \subseteq \Omega$  s.t.  $\sup_{x \in \Omega \setminus K_\epsilon} |u(x)| \le \epsilon$ . For any given  $n \in \mathbb{N}$ ,  $u_n(x) \neq 0$ , so  $G(nu(x)) \neq 0$ . This implies n|u(x)| > 1, hence  $|u(x)| > \frac{1}{n}$ . Thus  $u_n(x) = 0$  for all x such that  $|u(x)| \le \frac{1}{n}$ , so  $\sup u_n \subseteq K_{\frac{1}{n}}$  compact in  $\Omega$ . Next, let us check  $u_n \to u$  in  $W^{1,p}(\Omega)$ .

$$\int_{\Omega} |u_n(x) - u(x)|^p \, dx \to 0$$

since  $u_n(x) = \frac{1}{n}G(nu(x)) \xrightarrow{n \to \infty} u(x)$  for all  $x \in \Omega$  and  $|u_n(x)| \leq \frac{1}{n}|G(nu(x))| \leq \frac{1}{n}|nu(x)| \leq |u(x)| \in L^p(\Omega)$ .

$$\int_{\Omega} |\nabla u_n(x) - \nabla u(x)|^p dx = \int_{\Omega} |G'(nu(x)) - 1|^p |\nabla u(x)|^p dx \to 0$$

as  $|G'(v(x)) - 1| \to 0$  for all x s.t.  $u(x) \neq 0$  and  $\nabla u(x) = 0$  on  $\{x \mid u(x) = 0\}$ . (exercise)

(b)  $\Rightarrow$  (a): Let  $u \in W^{1,p}(\Omega) \cap C(\overline{\Omega})$  and  $u \in W_0^{1,p}(\Omega)$ . Then we prove u = 0 on  $\partial\Omega$ . Lets regard the case  $\Omega = Q_+ = \{(x',x_d) \mid \mathbb{R}^{d-1} \times \mathbb{R} \mid |x'| < 1, 0 < x_d < 1\}$ . We prove that if  $u \in W_0^{1,p}(Q_+) \cap C(\overline{Q_+})$ , then u = 0 on  $Q_0 = \{(x',0) \mid x' \in \mathbb{R}^{d-1}, |x'| < 1\}$ . Since  $u \in W_0^{1,p}(Q_+)$  there is  $\{u_n\} \subseteq C_c^{\infty}(Q_+)$  s.t.  $u_n \to u$  in  $W^{1,p}(Q_+)$  for all  $x = (x',x_d) \in Q_+$ , then:

$$u_n(x', x_d) = \underbrace{u_n(x', 0)}_{=0} + \int_0^{x_d} \partial_d u_n(x', t) dt$$

Hence

$$|u_n(x',x_d)| \le \int_0^{x_d} |\partial_d u_n(x',t)| dt$$

This implies:

$$\int_{0 < x_d < \epsilon} \int_{|x'| \le 1} |u_n(x', x_d)| \, dx' \, dx_d$$

$$\leq \int_{0 < x_d < \epsilon} \int_{|x'| < 1} \left( \int_0^{x_d} |\partial_d u_n(x', t)| \, dt \right) \, dx' \, dx_d$$

$$\leq \epsilon \int_{|x'| < 1} \int_0^{\epsilon} |\partial_d u_n(x', t)| \, dx' \, dt$$

$$\Rightarrow \frac{1}{\epsilon} \int_0^{\epsilon} \int_{|x'| \leq 1} |u_n(x', x_d)| \, dx' \, dx_d \leq \int_0^{\epsilon} \int_{|x'| < 1} |\partial_d u_n(x', x_d)| \, dx' \, dx_d$$

for all  $n \in \mathbb{N}$ ,  $\epsilon > 0$ . Take now  $n \to \infty$ , use  $u_n \to u$  in  $W^{1,p}(\Omega)$ . Then:

$$\frac{1}{\epsilon} \int_0^{\epsilon} \int_{|x'| \leq 1} |u(x', x_d)| \, dx' \, dx_d \leq \int_0^{\epsilon} \int_{|x'| < 1} |\partial_x u_n(x', x_d)| \, dx' \, dy$$

for all  $\epsilon > 0$ . Take  $\epsilon \to 0$ :

$$\int_{|x'| \le 1} |u(x', 0)| \, dx' \le 0$$

here we use  $u \in C(\bar{\Omega})$  for the left side and Dominated Convergence for the right side. Thus u(x',0)=0 for all  $|x'|\leqslant 1$ , i.e. u=0 on  $\partial\Omega$ . Let's regard the general case: Let  $\Omega$  be open, bounded and with  $C^1$ -boundary. Lets define local charts By definition for all  $x\in\partial\Omega$ , there is a  $U_x$  open, such there is a bijective map  $h:U_x\to Q$ , and  $h,h^{-1}$  are  $C^1$ . Then clearly  $\partial\Omega\subseteq\bigcup_{x\in\partial\Omega}U_x$ . Since  $\partial\Omega$  is compact, there is a finite subcover  $\{U_i\}_{i=1}^N$  s.t.  $\partial\Omega\subseteq\bigcup_{i=1}^NU_i$ . We can find  $U_0$  open s.t.  $\bar{U}_0\subseteq\Omega$  and  $\Omega\subseteq\bigcup_{i=0}^NU_i$ .

**Lemma 5.20** There is a sequence  $\{x_i\}_{i=0}^N \subseteq C^{\infty}(\mathbb{R}^d)$  s.t.

- 1.  $\chi_i \ge 0$ ,  $\sum_{i=0}^{N} \chi_i = 1$  in  $\mathbb{R}^d$  ( $\{\chi_i\}$  is a partition of unity)
- 2. For all i = 1, ..., N, supp  $\chi_i$  is in  $U_i$ , i.e.  $\chi_i \in C_c^{\infty}(U_i)$ .
- 3. i = 0, supp  $\chi_0 \subseteq \mathbb{R}^d \setminus \partial \Omega$  and  $\chi_0 \setminus \Omega \in C_c^{\infty}(\Omega)$ . (exercise)

Given  $u \in W_0^{1,p}(\Omega) \cap C(\bar{\Omega})$ . Then  $u = \sum_{i=0}^N \chi_i u$ , where  $\chi_i \geqslant 0$ ,  $\chi_0 \in C_c^{\infty}(\Omega)$ ,  $\chi_i \in C_c^{\infty}(U_i)$ . Since  $\chi_0 u$  is supported in a copact set inside  $\Omega$ ,  $\chi_0 u = 0$  on  $\partial \Omega$ . It remains to show that for all  $i = 1, \dots, N$ ,  $\chi_i u = 0$  on  $U_i \cap \partial \Omega$ . Then  $\chi_i u(h^{-1}x) \in W_0^{1,p}(Q) \cap C(\bar{\Omega})$ . This implies  $\chi_i u(h^{-1}x) = 0$  on  $Q_0$ , so  $\chi_i u(x) = 0$  on  $U_i \cap \partial \Omega$ . Why  $W_0^{1,p}(U_i \cap \Omega) \to W_0^{1,p}(Q_+)$ . If  $v \in W_0^{1,p}(U_i \cap \Omega)$ , then  $v_n \to v, v_n \in C_c^{\infty}$ .  $v_n \circ h^{-1} \to v \circ h^{-1} \Rightarrow v \circ h^{-1} \in W_0^{1,p}(Q_+)$ 

**Exercise 5.21** (E 8.1) Let  $u \in W^{1,1}_{loc}(\mathbb{R}^d)$ . Let  $B = u^{-1}(\{0\})$ . Prove that  $\nabla u(x) = 0$  for a.e.  $x \in B$ .

Solution. We have already seen that if  $f,g\in W^{1,1}_{loc}(\mathbb{R}^d)$ , then  $\max(f,g)\in W^{1,1}_{loc}$ . This implies that if  $u=u^+-u^-\in W^{1,1}_{loc}$ , then  $u^+,v^+\in W^{1,1}_{loc}$  since  $u^+=\max(u,0)$  and  $u^-=\max(-u,0)$ . We have that  $\nabla u=\nabla u^+-\nabla u^-$ . Claim:

$$\nabla u^{+} = \begin{cases} 0 & u(x) \leq 0 \\ \nabla u & u(x) > 0 \end{cases} \quad \nabla u^{-} = \begin{cases} 0 & u(x) \geq 0 \\ \nabla u & u(x) < 0 \end{cases}$$

$$\int_{\mathbb{R}^d} (\partial_i u^+) \phi = -\int_{\mathbb{R}^d} u^+ \partial_i \phi = -\int_{\{u(x) \le 0\}} 0 \partial_i \phi - \int_{\{u(x) > 0\}} u \partial_i \phi$$
$$= \int_{\{u(x) \le 0\}} 0 \phi + \int_{\{u(x) > 0\}} \partial_i u \phi$$

Alternative way: We showed for  $f \in W^{1,p}(\mathbb{R}^d)$ , that

$$\nabla |f|(x) = \begin{cases} (\nabla f)(x) & f(x) > 0\\ -(\nabla f)(x) & f(x) < 0\\ 0 & f(x) = 0 \end{cases}$$

 $u_+ = \frac{1}{2}(u+|u|)$ . Hence  $\nabla u_+ = \frac{1}{2}(\nabla u + \nabla |u|)$ . Remark: If  $A \subseteq \mathbb{R}$  has measure zero, then  $\nabla u 1_{\{u(x) \in A\}} = 0$  a.e. (Th. 6.19 Lieb-Loss Analysis)

**Exercise 5.22** (E 8.2) Let  $\Omega, U \subseteq \mathbb{R}^d$  be open,  $U \cap \Omega \neq \emptyset$ ,  $u \in W_0^{1,p}(\Omega)$ ,  $1 \leq p < \infty$ ,  $\chi \in C_c^{\infty}(U)$ . Prove:  $\chi u \in W_0^{1,p}(\Omega \cap U)$  Hint: Recall  $W_0^{1,p}(\Omega) = \overline{C_c^{\infty}(\Omega)}^{\|\cdot\|_{W^{1,p}}}$ 

Solution. By definition there is a sequence  $(u_n)_{n\in\mathbb{N}}\subseteq C_c^\infty(\Omega)$  s.t.  $u_n\xrightarrow[n\to\infty]{\|\cdot\|_{W^{1,p}}}u$ , i.e.

$$||u_n - u||_p + ||\nabla u_n - \nabla u||_p \xrightarrow{n \to \infty} 0.$$

Define  $f_n: \mathbb{R}^d \to \mathbb{C}$ ,  $f_n(x) := u_n(x)\chi(x)$ . Note  $f_n \in C_c^{\infty}(\Omega \cap U)$  for all  $n \in \mathbb{N}$ . Claim:  $(f_n)_{n \in \mathbb{N}}$  is Cauchy with respect to  $\|\cdot\|_{W^{1,p}}$ . Proof:

$$||f_n - f_m||_p = ||\chi(u_n - u_m)||_p \le ||\chi||_{\infty} \underbrace{||u_n - u_m||_p}_{n,m\to\infty} \xrightarrow{n,m\to\infty} 0$$

$$\nabla f_n = \nabla(\chi u_n) = (\nabla \chi)u_n + \chi \nabla u_n$$

$$\|\nabla f_n - \nabla f_m\|_p \leqslant \|\nabla \chi(u_n - u_m)\|_p + \|\chi(\nabla u_n - \nabla u_m)\|_p$$

$$\leqslant \|\nabla \chi\|_{\infty} \underbrace{\|u_n - u_m\|_p}_{n, m \to \infty} + \underbrace{\|\chi\|}_{<\infty} \underbrace{\|\nabla u_n - \nabla u_m\|_p}_{n, m \to \infty} \xrightarrow{n, m \to \infty} 0$$

Thus, there is a  $f \in W_0^{1,p}(\Omega \cap U)$  s.t.  $||f_n - f||_{W^{1,p}} \xrightarrow{n \to \infty} 0$ . We know:

$$||f_n - \chi u||_{L^p} = ||\chi u_n - \chi u||_p$$

$$\leq ||\chi||_{\infty} \underbrace{||u_n - u||_p}_{\to 0} \xrightarrow{n \to \infty} 0$$

Since limits in  $L^p$  are unique, we get  $\chi u = f \in W_0^{1,p}(\Omega \cup U)$ .

**Exercise 5.23** (E 8.3) Let  $\Omega, U \subseteq \mathbb{R}^d$  open and bounded,  $h: \overline{U} \to \overline{\Omega}$   $C^1$ -diffeomorphisms,  $u \in W_0^{1,p}(\Omega), \ 1 \leqslant p < \infty$ . Prove  $(x \mapsto u(h(x)) \in W_0^{1,p}(U)$ .

Solution. Since  $u \in W_0^{1,p}(\Omega)$  there is a sequence  $(u_n)_{n \in \mathbb{N}} \subseteq C_c^{\infty}(\Omega)$  s.t.

$$||u - u_n||_p + ||\nabla u - \nabla u_n||_p \xrightarrow{n \to \infty} 0$$

Define for all  $n \in \mathbb{N}$   $f_n : U \to \mathbb{C}$ ,  $f_n(x) = u_n(h(x))$ . Note  $f_n \in C_c^1(U)$ . Claim 1:  $(f_n)_{n \in \mathbb{N}}$  is Cauchy wrt.  $\|\cdot\|_{W^{1,p}}$ .

$$||f_n - f_m||_p^p = \int_U |u_n(h(x)) - u_m(h(x))|^p dx$$

$$= \int_\Omega |u_n(y) - u_m(y)|^p dy \underbrace{|\det(Dh^{-1})(y)|}_{\leqslant C < \infty} \xrightarrow{n, m \to \infty} 0$$

$$(\nabla f_n)(x) = \nabla (u_n(h(x))) = (\nabla u_n)(h(x))(Dh)(x)$$

$$\|\nabla f_n - \nabla f_m\|_p^p = \int_U \left| \left[ (\nabla u_n)(h(x)) - (\nabla u_m)(h(x)) \right] \underbrace{(Dh)(x)}_{bdd} \right|^p dx$$

$$\leqslant C \int_U \left| (\nabla u_n)(h(x)) - (\nabla u_m)(h(x)) \right|^p dx$$

$$= C \int_\Omega \left| (\nabla u_n)(y) - (\nabla u_m)(y) \right|^p \underbrace{\det Dh^{-1}(y)}_{\leqslant \tilde{C}} dx \xrightarrow{n,m \to 0} 0$$

Claim 2:  $||f_n - u \circ h||_p \xrightarrow{n \to \infty} 0$ .

$$||f_n - u \circ h||_p = \int_U |u_n(h(x)) - u(h(x))|^p dx$$

$$= \int_\Omega |u_n(y) - u(y)|^p \underbrace{\det Dh^{-1}(y)}_{\leqslant C} dy \xrightarrow{n \to \infty} 0$$

Conclusion: Since  $(f_n)_{n\in\mathbb{N}}\subseteq C^1_c(U)$  is Cauchy with respect to  $\|\cdot\|_{W^{1,p}}$ , there is a  $f\in W^{1,p}_0(U)$  s.t.  $f_n\xrightarrow[\|\cdot\|_{W^{1,p}}]{}f$ . Since limits in  $L^p$  are unique by claim 2 we get  $u\circ h=f\in W^{1,p}_0(U)$ .

**Exercise 5.24** (E 8.4) Let  $\Gamma \subseteq \mathbb{R}^d$  be compact,  $\{U_i\}_{i=1}^N$  open s.t.  $\Gamma \subseteq \bigcup_{i=1}^N U_i$ . Prove: There exists  $\{\chi_i\}_{i=0}^N \subseteq C^{\infty}(\mathbb{R}^d)$  s.t.

- 1.  $\chi_i \geqslant 0$  for all  $i, \sum_{i=0}^N \chi_i = 1$
- 2.  $\operatorname{supp}(\chi_i) \subseteq U_i \text{ for all } i \in \{1, \dots, N\}$
- 3.  $\operatorname{supp}(\chi_0) \subseteq \mathbb{R}^d \backslash \Gamma$

Solution. WLOG assume that  $U_i \neq \emptyset$  for all i. If  $\Gamma \neq 0$ , then  $\chi_0 = 1$  does the job. Now suppose  $\Gamma \neq \emptyset$ . Let  $\psi \in C_c^{\infty}(B_1(0)), \psi \geqslant 0, \int \psi = 1, \psi|_{B_{\frac{1}{2}}(0)} > 0$  and for  $\epsilon > 0$  let  $\psi_{\epsilon}(x) = \frac{1}{\epsilon^d} \psi\left(\frac{x}{\epsilon}\right)$ , so  $\int \psi_{\epsilon} = 1$ . Define

$$\tilde{d} := \sup\{\tilde{\tilde{d}} > 0 \mid \forall x \in \Gamma \exists i \in \{1, \dots, N\} \text{ s.t. } \operatorname{dist}(x, U_i^c) \geqslant \tilde{\tilde{d}}\}$$

Claim 1:  $\tilde{d} > 0$  Suppose this was not true. Then there is a sequence  $(x_n)_{n \in \mathbb{N}} \subseteq \Gamma$  s.t. for all  $i \in \{1, ..., N\}$ ,

$$\operatorname{dist}(x_n, U_i^c) < \frac{1}{n}$$

Since  $\Gamma$  is compact, there is a subsequence, which we call  $x_n$  again, s.t.  $x_n \xrightarrow{n \to \infty} \bar{x}$  for asome  $\Gamma$ . By  $\Gamma \subseteq \bigcup_{i=1}^N U_i$  there is a  $\epsilon_{\bar{x}} > 0$  and  $i \in \{1, \dots, N\}$  s.t.  $B_{\epsilon_{\bar{x}}}(\bar{x}) \subseteq U_i \notin \mathbb{R}$ . Define  $d := \min\{\tilde{d}, 1\} > 0$ . For all  $\epsilon > 0$ , for all  $A \subseteq \mathbb{R}^d$ :  $(A)_{\epsilon} := \{x \in A \mid \operatorname{dist}(x, A^c) \ge \epsilon\}$ . for every  $i \in \{1, \dots, N\}$  define  $\phi_i : U_i \to [0, \infty)$  by

$$\phi_i(x) := \mathbb{1}_{(U_i \cap B_R(0))_{\frac{d}{4}}} \star \phi_{\frac{d}{4}}$$

Note  $\phi_i \in C_c^{\infty}(U_i)$  and  $(U_i \cap B_R(0))_{\frac{d}{4}} \subseteq (\operatorname{supp}(\phi_i))^0$ . Define  $\phi_0 : \mathbb{R}^d \setminus \Gamma \to [0, \infty)$  by  $\phi_0(x) = \mathbb{1}_{(\mathbb{R}^1 \setminus \Gamma)_{\frac{d}{4}}} \star \psi_{\frac{d}{4}}$ . Again,  $\phi_0 \in C^{\infty}(\mathbb{R}^d \setminus \Gamma)$ ,  $\operatorname{supp}(\phi_0))^0 \supseteq (\mathbb{R}^d \setminus \Gamma)_{\frac{d}{4}}$ ,  $\operatorname{supp}(\phi_0) \subseteq \mathbb{R}^d \setminus \Gamma$ . Claim 2: For all  $x \in \mathbb{R}^d$  there is a  $i \in \{0, 1, \dots, N\} : \phi_i(x) > 0$ . Proof: By construction, we know for  $i \in \{1, \dots, N\}$  that  $\phi_i$  is > 0 on  $(U_i \cap B_R(0))_{\frac{d}{4}}$ . Moreover  $\phi_0 > 0$  on  $(\mathbb{R}^d \setminus \Gamma)_{\frac{d}{4}}$  thus, we are done if we can show that  $\bigcup_{i=1}^N (U_i \cap B_R(0))_{\frac{d}{4}} \cup \mathbb{R}^d \setminus \Gamma$ .

 $(\mathbb{R}^d \setminus \Gamma)_{\frac{d}{4}} = \mathbb{R}^d$ . Suppose there is a  $x \in \mathbb{R}^d \setminus A$ . Then  $\operatorname{dist}(x, \Gamma) < \frac{d}{4}$ . Since  $\Gamma \subseteq B_{\frac{R}{2}}(0)$  and R > 2 and  $d \leq 1$ .

$$|x-0| \le \operatorname{dist}(x,\Gamma) + \frac{R}{2} < \frac{d}{4} + \frac{R}{2} = R - \frac{d}{4} - \frac{R}{2} + \frac{d}{2} < R - \frac{d}{4} - \frac{2}{2} + \frac{1}{2} < R - \frac{d}{4}$$

Thus  $x \in (B_R(c))_{\frac{d}{4}}$ . Thus, we are done if we can show that  $x \in (U_i)_{\frac{d}{4}}$  for some  $i \in \{1, \ldots, N\}$ . Since  $\operatorname{dist}(x, \Gamma) < \frac{d}{4}$ , there is a  $y \in \Gamma$  s.t.  $|x - y| < \frac{d}{4}$ . By definition of  $\tilde{d}$  there is a  $i \in \{1, \ldots, N\}$  s.t.  $\operatorname{dist}(y, U_i^c) \geqslant \tilde{d} \geqslant d$ , i.e. for all  $z \in U_i^c$  we have  $|y - z| \geqslant d$ . We get

$$|x-z| \geqslant |\underbrace{|x-y|}_{\leq \frac{d}{4}} - \underbrace{|y-z|}_{\geqslant d}| \geqslant \frac{3d}{4} < \frac{d}{4}$$

This implies  $\operatorname{dist}(x,U_i^c) > \frac{d}{4}$ , so  $x \in (U_i)_{\frac{d}{4}} \notin$ . Define for all  $i \in \{0,\ldots,N\} : \chi_i : \mathbb{R}^d \to [0,\infty)$  by

$$\chi_i(x) = \frac{\phi_i(x)}{\sum_{j=0}^{N} \phi_j(x)}$$

 $\chi_i$  is well-defined by Claim 2 and  $\chi_i \in C^{\infty}(\mathbb{R}^d)$ . Also note that  $\sum \chi_i = 1$ ,  $\chi_i \geq 0$ , which implies 1. Furthermore, since  $\operatorname{supp}(\phi_i) \subseteq U_i$ , we have  $\operatorname{supp}(\chi_i) \subseteq U_i$  for all  $i \in \{1, \ldots, N\}$ , which implies 2. Finally, since  $\operatorname{supp}(\phi_0) \subseteq \mathbb{R}^d \setminus \Gamma$ , we get  $\operatorname{supp}(\chi_0) \subseteq \mathbb{R}^d \setminus \Gamma$ . This implies 3.

## 5.4 Variational problem for weak solutions

$$\begin{cases} -\Delta u = f & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

("formally") for all  $\phi \in C_c^{\infty}(\Omega)$ , then

$$\int_{\Omega} \nabla u \nabla \phi = \int_{\Omega} f \phi$$

if  $\nabla u \in L^2$ ,  $f \in L^2$ . By a density argument:

$$\int_{\Omega} \nabla u \nabla \phi = \int_{\Omega} f \phi$$

for all  $\phi \in \overline{C_c^{\infty}(\Omega)}^{H^1(\Omega)} = H_0^1(\Omega)$ .

**Theorem 5.25** (Poincare inequality) There is a C > 0 s.t.

$$C \int_{\Omega} |\nabla v|^2 \geqslant \int_{\Omega} |v|^2$$

for all  $v \in H_0^1(\Omega)$ .

**Remark 5.26**  $H^1(\Omega)$  with  $||v||_{H^1(\Omega)} = (||v||_{L^2}^2 + ||\nabla v||_{L^2}^2)^{\frac{1}{2}}$  is a Hilbert-Space. This implies that  $H^1_0(\Omega) \subseteq H^1(\Omega)$  is also a Hilbert space. By the Poincare inequality (5.25) we have for all  $v \in H^1_0(\Omega)$ :

$$||v||_{H^1(\Omega)} \ge ||\nabla v||_{L^2} \ge \frac{1}{2c} ||v||_{L^2} + \frac{1}{2} ||\nabla v||_{L^2} \ge \frac{1}{C^1} ||v||_{H^1(\Omega)}$$

We can think of  $H_0^1(\Omega)$  as a Hilbert space with  $||v||_{H_0^1(\Omega)} := ||\nabla v||_{L^2(\Omega)}$ .

*Proof.* (Of the Poincare inequality (5.25)) We need to prove:

$$\exists C > 0: \quad C \int_{\Omega} |\nabla v|^2 \geqslant \int_{\Omega} |v|^2 \quad \forall v \in H_0^1(\Omega)$$

$$\Leftrightarrow \quad \exists C > 0: \quad C \int_{\Omega} |\nabla v|^2 \geqslant \int_{\Omega} |v|^2 \quad \forall v \in C_c^{\infty}(\Omega)$$

Assume by contradiction that this does not hold, i.e. there is no C>0 s.t. the statement holds. Thus there is a sequence  $\{v_n\}\subseteq C_c^\infty(\Omega)$  s.t.

$$\int_{\Omega} |v_n|^2 = 1, \quad \int_{\Omega} |\nabla v_n|^2 \xrightarrow{n \to \infty} 0$$

Since  $v_n \in C_c^2(\Omega)$  we can extend  $v_n$  by 0 outside  $\Omega$ , so  $v_n \in C_c^{\infty}(\mathbb{R}^d)$ . Then:

$$\int_{\mathbb{R}^d} |v_n|^2 = 1, \quad \int_{\mathbb{R}^d} |\nabla v_n|^2 \to 0, \quad \text{supp } v_n \subseteq \Omega$$

By the Fourier transform:

$$\int_{\mathbb{R}^d} |\hat{v}_n(k)|^2 \, dk = 1, \quad \int_{\mathbb{R}^d} |2\pi k|^2 |\hat{v}_n(k)|^2 \, dk \to 0, \quad \text{supp } v_n \subseteq \Omega$$

We prove that

$$\int_{\mathbb{R}^d} |\hat{v}_n(k)|^2 \, dk \to 0$$

We write

$$\int_{\mathbb{R}^d} |\hat{v}_n(k)| \, dk = \int_{|k| \le \epsilon} + \int_{|k| > \epsilon}$$

First, for all  $\epsilon > 0$ :

$$\int_{|k|>\epsilon} |\hat{v}_n(k)|^2 \leqslant \int_{\mathbb{R}^d} \frac{|k|^2}{\epsilon^2} |\hat{v}_n(k)|^2 dk \xrightarrow{n\to\infty} 0$$

Second:

$$\int_{|k| \leqslant \epsilon} |\hat{v}_n(k)|^2 dk \leqslant \left( \int_{|k| \leqslant \epsilon} 1 dk \right)^{\frac{1}{q}} \left( \int_{|k| \leqslant \epsilon} |\hat{v}_n(k)|^{2p} dk \right)^{\frac{1}{p}}, \quad 1 < p, q < \infty$$

$$\leqslant C \epsilon^{\frac{d}{q}} \|\hat{v}_n\|_{L^{2p}}^2, \quad \frac{1}{p} + \frac{1}{q} = 1 \text{ and } 1 \leqslant r \leqslant 2$$

Moreover, since  $\Omega$  is bounded,

$$\|v_n\|_{L^r} \leqslant \left(\int_{\Omega} |v_n|^r\right)^{\frac{1}{r}} \leqslant \|1_{\Omega}\|_{L^s} \|v_n\|_{L^2}^{1-\theta} \leqslant C_{\Omega} \quad \forall 1 \leqslant r \leqslant 2.$$

Thus we can take r < 1 but close to 1. Then p is sufficiently large, so q is close to 1. Then

$$\int_{|k| \leqslant \epsilon} |\hat{v}_n(k)|^2 \leqslant C\epsilon^{\frac{d}{q}} \|\hat{v}_n\|_{L^{2p}}^2 \leqslant C\epsilon^{\frac{d}{q}} \|v_n\|_{L^r}^2 \leqslant C\epsilon^{\frac{d}{q}}$$

Conclusion:

$$\int_{\mathbb{R}^d} |\hat{v}_n(k)|^2 = \int_{|k| \leqslant \epsilon} + \int_{|k| > \epsilon} \leqslant C\epsilon^{\frac{d}{q}} + \int_{|k| > \epsilon} \xrightarrow{n \to \infty} C\epsilon^{\frac{d}{q}} \xrightarrow{\epsilon \to 0} 0$$

which contradicts to the assumtion  $\|\hat{v}\|_{L^2} = \|v\|_{L^2} = 1$ .

**Exercise 5.27** Let  $\Omega \subseteq \mathbb{R}^d$  be open, bounded with  $C^1$ -boundary. Let  $u \in W^{1,p}(\Omega)$ , for some  $1 \leq p < \infty$ . Then the following is equivalent:

a)  $u \in W_0^{1,p}(\Omega)$ 

b) 
$$\tilde{u}(x) = \begin{cases} u(x) & x \in \Omega \\ 0 & x \in \mathbb{R}^d \setminus \Omega \end{cases} \in W^{1,p}(\mathbb{R}^d)$$

**Theorem 5.28** (Dirichlet, Riemann, Poincare, Hilbert) Let  $\Omega \subseteq \mathbb{R}^d$  be open, bounded with  $C^1$ -boundary. Let  $f \in L^2(\Omega)$ . Then there exists a unique solution  $u \in H_0^1(\Omega)$  of the variational problem

$$\int_{\Omega} \nabla u \nabla \phi = \int_{\Omega} f \phi$$

for all  $\phi \in H_0^1(\Omega)$ .  $(\Rightarrow -\Delta u = f \text{ in } D'(\Omega))$ . Moreover, u is the unique minimizer of

$$\inf_{v \in H_0^1(\Omega)} \left( \frac{1}{2} \int_{\Omega} |\nabla v|^2 - \int_{\Omega} fv \right)$$

*Proof.* Let us prove that there is a solution  $u \in H_0^1(\Omega)$  for  $\inf_{v \in H_0^1(\Omega)} E(v)$ ,  $E(v) = \frac{1}{2} \int_{\Omega} |\nabla v|^2 - \int_{\Omega} fv$ .

Step 1: We prove  $E > -\infty$ . Take  $v \in H_0^1(\Omega)$ . By the Poincaré and Hölder inequalities:

$$\begin{split} E(v) &= \frac{1}{2} \int_{\Omega} |\nabla v|^2 - \int_{\Omega} f v \\ &\geqslant \frac{1}{2C} \|v\|_{L^2(\Omega)} - \|f\|_{L^2(\Omega)} \|v\|_{L^2(\Omega)} \\ &\geqslant \frac{1}{2C} \|v\|_{L^2(\Omega)}^2 - \left(\frac{1}{4C} \|v\|_{L^2(\Omega)}^2 + C \|f\|_{L^2(\Omega)}^2\right) \\ &\geqslant -C \|f\|_{L^2(\Omega)}^2 > -\infty \end{split}$$

We can also bound:

$$\begin{split} E(v) &= \frac{1}{2} \int_{\Omega} |\nabla v|^2 - \int_{\Omega} f v \\ &\geqslant \frac{1}{4} \int_{\Omega} |\nabla v|^2 - \frac{1}{4C} \int_{\Omega} |v|^2 - \|f\|_{L^2} \|v\|_{L^2} \\ &\geqslant \frac{1}{4} \int_{\Omega} |\nabla v|^2 - C \|f\|_{L^2}^2 \end{split}$$

Step 2: We can take a minimizing sequence  $\{v_n\}\subseteq H_0^1(\Omega)$  s.t.  $E(v_n)\xrightarrow{n\to\infty} E$ . Then:

$$\frac{1}{4} \int_{\Omega} |\nabla v_n|^2 \leqslant E(v_n) + C ||f||_{L^2}^2 \longrightarrow const.$$

So  $|\nabla v_n|$  is bounded in  $L^2(\Omega)$ . We know that  $H_0^1(\Omega)$  is a Hilbert space with norm  $||v||_{H_0^1(\Omega)} = ||\nabla v||_{L^2(\Omega)}$  (and the norm is equivalent to the  $H^1$ -norm). Thus  $\{v_n\}$  is bounded in  $H_0^1(\Omega)$ .

**Remark 5.29** (Reminder from functional analysis) Let H be a Hilbert space. We say that  $v_n \to v$  if  $||v_n - v|| \to 0$  and  $v_n \to v$  weakly in H if  $\langle v_n, \phi \rangle \to \langle v, \phi \rangle$  for all  $\phi \in H$ .

**Theorem 5.30** (Banach-Alaoglu) If H is a Hilbert space and  $\{v_n\}$  is a bounded sequence, then there is a subsequence  $\{v_{n_k}\}$  s.t.  $v_{n_k} \to v$  weakly in H.

**Remark 5.31**  $-v_n \to v \text{ in } H \text{ iff } f(v_n) \to f(v) \text{ for all } f \in H^* = \mathcal{L}(H, \mathbb{R}).$ 

- If  $v_n \to v$  in H, then:  $\liminf_{n\to\infty} ||v_n|| \ge ||v||$  (Fatous Lemma)

In fact, for all  $\phi \in H \langle v_n, \phi \rangle \to \langle v, \phi \rangle$  and  $|\langle v_n, \phi \rangle| \leq ||v_n|| ||\phi||$ . This implies

$$\frac{|\langle v, \phi \rangle|}{\|\phi\|} \leqslant \liminf_{n \to \infty} \|v_n\|.$$

So we get

$$\|v\| = \sup_{\phi \neq 0} \frac{\langle v, \phi \rangle|}{\|\phi\|} \leqslant \liminf_{n \to \infty} \|v_n\|$$

By the Banach-Alaoglu theorem (5.30), up to a subsequence,  $v_n \to u$  weakly in  $H_0^1(\Omega)$ . We prove that u is a minimizer for  $\mathcal{E}$ 

$$E \longleftarrow \mathcal{E}(v_n) = \frac{1}{2} \int |\nabla v_n|^2 - \int f v_n$$

- Since  $v_n \to u$  in  $H_0^1(\Omega)$  we have that

$$\liminf_{n \to \infty} \|v_n\|_{H_0^1(\Omega)}^2 \geqslant \|u\|_{H_0^1(\Omega)}^2$$

So we have

$$\liminf_{n\to\infty} \int_{\Omega} |\nabla v_n|^2 \geqslant \int_{\Omega} |\nabla u|^2.$$

– Consider the functional  $\mathcal{L}: \phi \in H_0^1(\Omega) \to \int_{\Omega} f \phi$ . We claim that  $\mathcal{L}$  is continuous. In fact:

$$|\mathcal{L}| = \left| \int_{\Omega} f \phi \right| \leqslant \|f\|_{L^{2}} \|\phi\|_{L^{2}} \leqslant C \|f\|_{L^{2}} \|\nabla f\|_{L^{2}} = C \|f\|_{L^{2}} \|\phi\|_{H_{0}^{1}(\Omega)}$$

Thus from  $v_n \to v$  in  $H_0^1(\Omega)$  we get  $\mathcal{L}(v_n) \to \mathcal{L}(u)$ , thus  $\int_{\Omega} f v_n \to \int_{\Omega} f u$ .

Conclusion:  $E = \liminf \mathcal{E}(v_n) \geqslant \mathcal{E}(u)$ , so u is a minimizer for  $\mathcal{E}$ .

Step 3: Uniqueness. If E has 2 minimizers  $u_1, u_2$  we can prove that  $u_1 = u_2$ . This is because of the convexity:

$$0 \geqslant \frac{\mathcal{E}(u_1) + \mathcal{E}(u_2)}{2} - \mathcal{E}\left(\frac{u_1 + u_2}{2}\right)$$

$$= \frac{1}{8} \left[ 2 \int_{\Omega} |\nabla u_1|^2 + 2 \int_{\Omega} |\nabla u_2|^2 - \int_{\Omega} |\nabla (u_1 + u_2)|^2 \right]$$

$$= \frac{1}{8} \int_{\Omega} |\nabla u_1 - \nabla u_2|^2 \geqslant 0$$

This implies that  $\nabla(u_1 - u_2) = 0$ , so  $u_1 - u_2 = const = c_0$ . Since  $u_1, u_2 \in H_0^1(\Omega)$ , we have that  $u_1 - u_2 \in H_0^1(\Omega)$  and  $c_0 \in C(\overline{\Omega})$ . Hence  $c_0 = 0$  on  $\partial\Omega$ , so  $c_0 = 0$ .

**Remark 5.32** We can also prove directly that there is a unique  $u \in H_0^1(\Omega)$  s.t.

$$\int_{\Omega} \nabla u \nabla \phi = \int_{\Omega} f \phi \quad \forall \phi \in H_0^1(\Omega)$$

by Riesz theorem. So we get  $\langle u, \phi \rangle_{H_0^1(\Omega)} = \mathcal{L}(\phi)$ .

Recall the corrector function for the unit ball:

$$\phi_x(y) = G(|x||y - \tilde{x}|), \quad \tilde{x} = \frac{x}{|x|^2}$$

This is ok if  $x \neq 0$ . When  $x \rightarrow 0$ :

$$G(|x|(y-\tilde{x})) = G\left(\underbrace{|x|y-\frac{x}{|x|}}\right)G(z), \quad |z|=1$$

is well-defined as G is radial. Question: If  $u \in H^1(\Omega)$ , then how can we define  $u|_{\partial\Omega}$ ?

### 5.5 Theory of Trace

**Theorem 5.33** (Trace Operator) Let  $\Omega \subseteq \mathbb{R}^d$  be open, bounded with  $C^1$  boundary. Then there is a unique linear bounded operator  $T: H^1(\Omega) \to L^2(\partial\Omega)$  such that

- If  $u \in H^1(\Omega) \cap C(\overline{\Omega})$ , then  $Tu = u|_{\partial\Omega}$  in the usual restriction sense.
- There is a C > 0 s.t.  $||Tu||_{L^2(\partial\Omega)} \leq C||u||_{H^1(\Omega)}$  for all  $u \in H^1(\Omega)$

**Theorem 5.34** If  $u \in H^1(\Omega)$ , then  $u \in H^1_0(\Omega)$  is equivalent to Tu = 0 in  $L^2(\partial\Omega)$ .  $(H^1_0(\Omega) = T^{-1}(\{0\}))$ . The we can discuss about

$$\begin{cases} -\Delta u = f & \text{in } \Omega \\ u|_{\partial\Omega} = g & \text{on } \partial\Omega \end{cases}$$

**Lemma 5.35** (Trace inequality on  $\mathbb{R}^d_+$ ) if  $u \in C_c^{\infty}(\mathbb{R}^d)$ , then:

 $\|u|_{\partial\mathbb{R}^d_{+}}\|_{L^2(\partial\mathbb{R}^d_{+})}\leqslant C\|u\|_{H^1(\mathbb{R}^d)}\quad\text{with }C>0\text{ independent of }u.$ 

Proof.  $x = (x', x_d) \in \mathbb{R}^{d-1} \times \mathbb{R}$ .

$$|u(x',0)|^{2} = -\int_{0}^{\infty} \partial_{d}(|u(x',x_{d})|^{2}) dx_{d}$$

$$= -\int_{0}^{\infty} 2\partial_{d}u(x',x_{d})u(x',x_{d}) dx_{d}$$

$$\leq \int_{0}^{\infty} [|\partial_{d}u(x',x_{d})|^{2} + |u(x',x_{d})|^{2}] dx_{d}$$

This implies:

$$\int_{\mathbb{R}^{d-1}} |u(x',0)|^2 dx' \le \int_{\mathbb{R}^{d-1}} \left( \int_0^\infty [\dots] dx_d \right) dx'$$

$$= \int_{\mathbb{R}^d} \left[ |\partial_d u|^2 + |u|^2 \right] = ||u||_{H^1(\mathbb{R}^d_+)}^2$$

Corrolary 5.36 If  $u \in H^1(Q)$  and u is compactly supported, then:

$$||u||_{L^2(Q_0)} \le ||u||_{H^1(Q_+)}$$

Here

$$\begin{split} Q &= \{x = (x', x_d) \in \mathbb{R}^{d-1} \times \mathbb{R} \mid |x'| < 1, |x_d| < 1\} \\ Q_+ &= \{x = (x', x_d) \in Q \mid x_d > 0\} \\ Q_0 &= \{x = (x', x_d) \in Q \mid x_d = 0\}. \end{split}$$

*Proof.* We extend u by 0 outside of Q, so  $u \in H^1(\mathbb{R}^d)$ .

**Theorem 5.37** (Extension) If  $\Omega \subseteq \mathbb{R}^d$  is open, bounded with  $C^1$ -boundary, then there is a bounded linear operator  $B: H^1(\Omega) \to H^1(\mathbb{R}^d)$  s.t.

- $Bu|_{\Omega} = u$  for all  $u \in H^1(\Omega)$
- $||Bu||_{H^1(\mathbb{R}^d)} \le C||u||_{H^1(\Omega)}$  and  $||Bu||_{L^2(\mathbb{R}^d)} \le C||u||_{L^2(\Omega)}$ .

Proof of Theorem 5.33. Since  $\partial\Omega$  is  $C^1$  there are open sets  $\{U_i\}_{i=1}^N\subseteq\mathbb{R}^d$  such that  $\partial\Omega\subseteq\bigcup_{i=1}^NU_i$  and for all i there is a  $C^1$ -diffeomorphism  $h_i:U_i\to Q$  s.t.  $h_i(U_i)=Q$ ,  $h_i(U_i\cap\Omega)=Q_+$ ,  $h_i(U_i\cap\partial\Omega)=Q_+$ . Then there exists a partition of unity  $\{\theta_i\}_{i=0}^N\subseteq C^\infty(\mathbb{R}^d)$  s.t.

- 1.  $\sum_{i=0}^{N} \theta_i = 1$  for all  $x \in \mathbb{R}^d$
- 2. For all i = 1, ..., N:  $\theta_i \in C_c^{\infty}(U_i)$
- 3. supp  $\theta_0 \subseteq \mathbb{R}^d \setminus \partial \Omega$  (in particular  $\theta_0|_{\Omega} \in C_c^{\infty}(\Omega)$ )

Then given  $u \in H^1(\Omega)$ , we can write  $u = \sum_{i=0}^N u_i$ , where  $u_i = \theta_i u$ . By the extension theorem (5.37),  $u \longrightarrow$  extended to  $Bu \in H^1(\mathbb{R}^d)$ , thus

$$Bu = \sum_{i=0}^{N} \theta_i(Bu) = \sum_{i=0}^{N} v_i, \quad v_i = \theta_i(Bu)$$

Then  $v_i \in H^1(\mathbb{R}^d)$  and  $v_i$  is compactly supported in  $U_i$  for all  $i=1,2,\ldots,N$  and  $\operatorname{supp} v_0 \subseteq \mathbb{R}^d \backslash \partial \Omega, \ v_i \in H^1(\mathbb{R}^d)$  and compactly supported inside  $U_i$ . This implies  $\tilde{v}_i(y) = v_i(h_i^{-1}(y)) \in H^1(Q)$  and compactly supported inside  $Q, y \in Q$ . Thus  $\|\tilde{v}_i\|_{L^2(Q_0)} \leqslant C \|\tilde{v}_i\|_{H^1(Q_+)}$ . So we have  $\|v_i\|_{L^2(\partial \Omega)} \leqslant C \|\tilde{v}_i\|_{L^2(Q_0)} \leqslant C' \|\tilde{v}\|_{H^1(Q_+)} \leqslant C'' \|v_i\|_{H^1(U_i \cap \Omega)}$ . Thus:

$$||u||_{L^{2}(\partial\Omega)} = \left|\left|\sum_{i=1}^{N} v_{i}\right|\right|_{L^{2}(\partial\Omega)} \leqslant \sum_{i=1}^{N} ||v_{i}||_{L^{2}(\partial\Omega)} \leqslant \sum_{i=1}^{N} C'' ||v_{i}||_{H^{1}(U_{i}\cap\Omega)}$$
$$= C'' \sum_{i=1}^{N} ||\theta_{i}u||_{H^{1}(\Omega)} \leqslant C'' \sum_{i=1}^{N} C||u||_{H^{1}(\Omega)}$$

This proof works for  $u \in C(\bar{\Omega})$ . This implies

$$||u||_{L^2(\partial\Omega)} \leq C||u||_{H^1(\Omega)}$$
 for all  $u \in H^1(\Omega) \cap C(\bar{\Omega})$ .

This allows us to define

$$T: H^1(\Omega) \longrightarrow L^2(\partial\Omega)$$
  
 $u \longmapsto u|_{\partial\Omega}$ 

by continuity. I.e. for all  $u \in H^1(\Omega)$  there is  $\{u_n\} \subseteq H^1(\Omega) \cap C(\bar{\Omega})$  s.t.  $u_n \to u$  in  $H^1_0$ . Then  $Tu_n \to Tu$  in  $L^2(\partial\Omega)$ .

**Lemma 5.38** (Extension for Q) Let  $u \in H^1(Q_+)$ . Then we define  $Bu: Q \to \mathbb{R}$  by

$$Bu(x) = \begin{cases} u(x) & x \in Q_{+} \\ -u(x', -x_{d}) & x \in Q_{-} \end{cases},$$

 $x=(x,x_d).$  Then  $Bu\in H^1(Q)$  and  $Bu|_{Q^+}=u,\ \|Bu\|_{L^2(Q)}^2=2\|u\|_{L^2(Q_+)}^2,\ \|\nabla(Bu)\|_{L^2(Q)}^2=\|\nabla u\|_{L^2(Q_+)}^2$ 

*Proof.* It is obvious  $Bu|_{Q^+} = u$  and

$$\int_{Q} |Bu|^{2} = \int_{Q_{+}} |Bu|^{2} \int_{Q_{-}} |Bu|^{2}$$

$$= \int_{Q} |u|^{2} + \int_{Q_{-} = \{(x, -x_{d}) | (x, x_{d}) \in Q_{+} \}} |u(x, -x_{d})|^{2}$$

$$= 2 \int_{Q_{+}} |u|^{2}$$

We prove:

$$\nabla(Bu)(x) = \begin{cases} \nabla u(x) & u \in Q_+ \\ \nabla u(x', -x_d) & u \in Q_- \end{cases}$$

First,  $\partial_d Bu(x) = \partial_d u(x', -x_d)$  if  $x \in Q_-$ . Take  $\phi \in C_c^{\infty}(Q)$ , then:

$$\begin{split} \int_Q (Bu(x))(\partial_d \phi)(x) \, dx &= \int_{Q_+} u \partial_d \phi + \int_{Q_-} -u(x',-x_d) \partial_d [\phi(x',x_d)] \, dx \\ (x \to -x_d) &= \int_{Q_+} u \partial_d \phi + \int_{Q_+} [u(x',x_d)(\partial_d \phi)(x',-x_d)] \, dx \\ &\stackrel{(\phi \notin C_c^\infty(Q_+))}{\approx} - \int_{Q_+} (\partial_d u) \phi(x) + \int_{Q_+} (\partial_d u(x',x_d)) \phi(x',-x_d) \, dx \\ &= - \int_{Q_+} (\partial_d u) \phi(x) + \int_{Q_-} \partial_d u(x',-x_d) \phi(x',x_d) \, dx \\ &= - \int_Q f \phi, \quad \text{where } f(x) = \begin{cases} \partial_d u & x \in Q_+ \\ -\partial_d u(x',-x_d) & x \in Q_- \end{cases} \end{split}$$

We prove  $\int_{Q_+} u \partial_d \tilde{\phi} = -\int_{Q_+} (\partial_d u) \tilde{\phi}$  where  $\tilde{\phi}(x, x_d) = \phi(x, x_d) - \phi(x, -x_d)$ ,  $\tilde{\phi} \notin C_c^{\infty}(Q_+)$ . Define  $\eta_{\epsilon} = 0$  when  $|x_d| \leqslant \epsilon$ ,  $\eta_{\epsilon} = 1$  if  $|x_d| \geqslant 2\epsilon$ ,  $\eta_{\epsilon} \in C^{\infty}$ ,  $\eta_{\epsilon}(x', x_d) = \eta_0(x', \frac{x_d}{\epsilon})$ ,  $\eta_0 = \begin{cases} 1 & |x_d| \geqslant 2 \\ 0 & |x_d| \geqslant 1 \end{cases}$ . We have

$$\int_{Q_+} u \partial_d (\eta_{\epsilon} \tilde{\phi}) = -\int_{Q_+} \partial_d u (\eta_{\epsilon} \tilde{\phi})$$

We take  $\epsilon \to 0$ ,

$$\int_{Q_+} (\partial_d u)(\eta_{\epsilon} \tilde{\phi}) \to \int_{Q_+} (\partial_d u) \tilde{\phi}$$

by dominated convergence

$$\begin{split} \int_{Q_{+}} u \partial_{d} (\eta_{\epsilon} \tilde{\phi}) &= \int_{Q_{+}} u (\partial_{d} \eta_{\epsilon}) \tilde{\phi} + \int_{Q_{+}} u \eta_{\epsilon} \partial_{d} \tilde{\phi} \\ \int_{Q_{+}} u \eta_{\epsilon} \partial_{d} \tilde{\phi} &\xrightarrow{\epsilon \to 0} u \partial_{d} \tilde{\phi} \end{split}$$

by dominated convergence.

$$\left| \int_{Q_{+}} u(\partial_{d}\eta_{\epsilon}) \tilde{\phi} \right| = \left| \int_{Q} u \frac{1}{\epsilon} (\partial_{d}\eta_{0}) \left( x, \frac{x_{d}}{\epsilon} \right) \tilde{\phi} \right|$$

$$\left( \begin{vmatrix} \tilde{\phi}(x', x_{d}) | \\ = |\phi(x, x_{d}) - \phi(x, x_{d}) | \\ \leqslant \|\partial_{d}\phi\|_{L^{\infty}} |x_{d}| \end{vmatrix} \right) \leqslant \frac{1}{\epsilon} \|\partial_{d}\eta_{0}\|_{L^{\infty}} \int_{Q_{+} \cap \{x_{d} \leqslant 2\epsilon\}} |u| \underbrace{|\tilde{\phi}|}_{\leqslant C|x_{d}|\leqslant C\epsilon}$$

$$(\text{Dominated cv } u \in L^{1}(Q_{+})) \leqslant C \int_{Q_{+} \cap \{0 < x_{d} \leqslant 2\epsilon\}} |u| \xrightarrow{\epsilon \to 0} 0$$

where  $u \in L^2(Q_+)$  because  $u \in H^1(Q_+)$ .

**Exercise 5.39** (E 9.1) Let  $\Omega$  be open, bounded with  $C^1$ -boundary. Let  $u \in H_0^1(\Omega)$ ,  $f \in L^2(\Omega)$ . Show that the following statements are equivalent:

- 1)  $-\Delta u = f$  in  $D'(\Omega)$
- 2)  $\int \nabla u \nabla \phi = \int f \phi$  for all  $\phi \in H_0^1$
- 3)  $E = \inf_{v} \left( \frac{1}{2} \int_{\Omega} |\nabla v|^2 \int_{\Omega} fv \right)$

Solution.

1)  $\Rightarrow$  2) From  $-\Delta u = f$  in  $D'(\Omega)$  we get that

$$\int_{\Omega} u(-\Delta\phi) \, dx = \int_{\Omega} f\phi \, dx$$

for all  $\phi \in C_c^{\infty}(\Omega)$ .

Claim: For  $u \in H_0^1, \phi \in C_c^{\infty}$  we can apply integration by parts, namely

$$\int_{\Omega} u(-\Delta\phi) \, dx = \int_{\Omega} \nabla u \nabla\phi \, dx.$$

Density argument:  $u \in H_0^1 = \overline{C_c^{\infty}(\Omega)}^{\|\cdot\|_{H^1}}$ , so there is a sequence  $\{u_n\} \subseteq C_c^{\infty}(\Omega)$  s.t.  $u_n \to u$  in  $H^1(\Omega)$ . Since  $u_n, \phi \in C_c^{\infty}(\Omega)$ , then by the integration by parts:

$$\int_{\Omega} u_n(-\Delta\phi) \, dx = \int_{\Omega} (\nabla u_n) \nabla\phi \, dx \quad \forall n$$

Take  $n \to \infty$ , then,

$$\int_{\Omega} u(-\Delta\phi) \, dx = \int_{\Omega} (\nabla u) \nabla\phi \, dx$$

as  $u_n \to u$  and  $\nabla u_n \to \nabla u$  in  $L^2$ .

Claim: If  $\int_{\Omega} \nabla u \nabla \phi \, dx = \int_{\Omega} f \phi \, dx$  for all  $\phi \in C_c^{\infty}(\Omega)$ , then  $\int_{\Omega} \nabla u \nabla \phi \, dx = \int_{\Omega} f \phi \, dx$  for all  $\phi \in H_0^1$ . (Given  $\nabla u, f \in L^2$ ). With density argument: For all  $\phi \in H_0^1$  there is a sequence  $\{\phi_n\} \subseteq C_c^{\infty}(\Omega)$  s.t.  $\phi_n \to \phi$  in  $H^1$ . Then:

$$\int_{\Omega} \nabla u \nabla \phi_n \, dx = \int_{\Omega} f \phi_n \, dx$$

for all n. Take  $n \to \infty$ :

$$\int \nabla u \nabla \phi \, dx = \int f \phi \, dx$$

as  $\phi_n \to \phi$ ,  $\nabla \phi_n \to \nabla \phi$  in  $L^2$ .

 $(2) \Rightarrow 3)$  We show  $E(u) \leqslant E(v)$  for all  $v \in H_0^1$ , i.e.

$$\frac{1}{2} \int_{\Omega} |\nabla u|^2 - \int_{\Omega} f u \, dx \leqslant \frac{1}{2} \int_{\Omega} |\nabla v|^2 - \int_{\Omega} f v \, dx$$

for all  $v \in H_0^1$ . Write v = u + w, then:

$$\begin{split} E(v) &= \frac{1}{2} \int |\nabla v|^2 \, dx - \int f v \, dx \\ &= \frac{1}{2} \int_{\Omega} |\nabla (u+w)|^2 \, dx - \int_{\Omega} f(u+w) \, dx \\ &= \frac{1}{2} \int_{\Omega} \left[ |\nabla u|^2 + |\nabla w|^2 + 2\nabla u \nabla w \right] \, dx - \int_{\Omega} f u + f w \, dx \\ &= E(u) + \frac{1}{2} \int_{\Omega} |\nabla w|^2 \, dx + \left( \underbrace{\int_{\Omega} \nabla u \nabla w \, dx - \int_{\Omega} f w \, dx}_{=0} \right) \end{split}$$

as  $w = v - u \in H_0^1$  (by (2))

$$3) \Rightarrow 1)$$

$$E(u) \leqslant E(u + t\phi)$$

for all  $\phi \in H_0^1$  (or  $C_c^{\infty}$ ) for all  $t \in \mathbb{R}$ . This implies:

$$\frac{d}{dt}E(u+t\phi)|_{t=0} = 0$$

Here

$$\begin{split} E(u+t\phi) &= \frac{1}{2} \int_{\Omega} |\nabla(u+t\phi)|^2 \, dx - \int_{\Omega} f(u+t\phi) \, dx \\ &= \frac{1}{2} \int_{\Omega} |\nabla u|^2 + t^2 |\nabla \phi|^2 + 2t \nabla u \nabla \phi \, dx - \int_{\Omega} f(u+t\phi) \, dx \\ &= E(u) + t \left[ \int_{\Omega} \nabla u \nabla \phi \, dx - \int_{\Omega} f \phi \, dx \right] + t^2 \int_{\Omega} |\nabla \phi|^2 \, dx \end{split}$$

This implies

$$\frac{d}{dt}E(u+t\phi)|_{t=0} = \int_{\Omega} \nabla u \nabla \phi \, dx - \int_{\Omega} f \phi \, dx$$

and we can conclude

$$\int_{\Omega} \nabla u \nabla \phi \, dx = \int_{\Omega} f \phi \, dx$$

for all  $\phi \in H_0^1$  or  $C_c^{\infty}$ . So we get

$$\int_{\Omega} u(-\Delta\phi) \, dx = \int_{\Omega} f\phi \, dx$$

for all  $\phi \in C_c^{\infty}$  and hence

$$-\Delta u = f$$

in  $D'(\Omega)$ . This implies 1).

Exercise 5.40 (E 9.2)

$$Q = \{(x', x_d) \mid |x'| < 1, |x_d| < 1\}$$

Given  $u \in H^1(Q_+)$ , define  $Bu: Q \to \mathbb{R}$  as

$$Bu(x) = \begin{cases} u(x) & x \in Q_+ \\ u(\tilde{x}) & x \in Q_- \end{cases},$$

 $x = (x', x_d) \Leftrightarrow \tilde{x} = (x', -x_d), x \in Q_- \Leftrightarrow \tilde{x} \in Q_+$ . In the lectures:

$$\partial_d(Bu)(x) = \begin{cases} \partial_d u(x) & x \in Q_+ \\ -(\partial_d u)(\tilde{x}) & x \in Q_- \end{cases}$$

This implies  $\partial_d(Bu) \in L^2(Q)$ .

1. For all i = 1, ..., d - 1, then:

$$\partial_i(Bu)(x) = \begin{cases} \partial_i u(x) & x \in Q_+ \\ \partial_i u(\tilde{x}) & x \in Q_- \end{cases}$$

2. Example  $u \in H^2(Q_+)$  but  $Bu \notin H^2(Q)$ .

Solution. 1. For all  $\phi \in C_c^{\infty}(Q)$ :

$$\int_{O} Bu(x)\partial_{i}\phi(x) = \int_{O_{+}} u(x)\partial_{i}\phi(x) + \int_{O_{-}} u(\tilde{x})\partial_{i}\phi(x)$$

Write  $\vec{n} = (n_1, \dots, n_d)$ . Here:

$$\int_{Q_{+}} u(x)\partial_{i}\phi(x) dx = \int_{Q_{+}} -\partial_{i}u(x)\phi(x) dx + \int_{\partial Q_{+}} u(x)\phi(x)n_{i} dS$$

$$\int_{Q_{-}} u(x', -x_{d})\partial_{i}\phi(x', x_{d}) dx' dx_{d} = -\int_{Q_{+}} u(x', x_{d})\partial\phi(x', -x_{d}) dx' dx_{d}$$

$$= \int_{Q_{+}} \partial_{i}u(x)\phi(\tilde{x}) - \int_{\partial Q_{+}} u\phi n_{i} dS$$

$$= \int_{Q_{-}} -\partial_{i}u(\tilde{x})\phi(x) - \int_{\partial Q_{+}} u\phi n_{i} dS$$

with  $d(-x_d) = d(x_d)$ . Conclude:

$$\begin{split} \int_Q (Bu)(x)\partial_i\phi(x)\,dx &= \int_{Q_+} (-\partial_i u)(x)\phi(x) + \int_{Q_-} (-\partial_i u)(\tilde x)\phi(x) \\ &= \int_Q -h(x)\phi(x)\,dx, \quad h(x) = \begin{cases} \partial_i u(x), & x\in Q_+\\ \partial_i u(\tilde x), & x\in Q_- \end{cases} \end{split}$$

for all  $\phi \in C_c^{\infty}(Q)$ , so  $\partial_i(Bu) \in L^2$  for all  $i = 1, 2, \dots, d-1$ . Thus  $Bu \in H^1(Q)$ .

2. 1D: Take  $Q_+(0,1), Q_-=(-1,0), Q_0=\{0\}, Q=(-1,1), \ u(x)=x$  in  $Q_+=(0,1), \ Bu(x)=u(x)=-x$  if  $x\in Q_-=(-1,0),$  i.e. Bu(x)=|x| if  $x\in Q=(-1,1).$  We know

$$(Bu)'(x) = \begin{cases} 1 & x \in (0,1) \\ -1 & x \in (-1,0) \end{cases} \in L^2(-1,1)$$

i.e.  $Bu \in H^1(Q)$ .

$$(Bu)''(x) = 2\delta_0(x)$$

in D'(Q) but  $\notin L^2(-1,1)$ , i.e.  $Bu \notin H^2(Q)$ . Question: Given  $u \in H^2(Q_+)$ , can we find an extension  $Bu \in H^2(Q)$  Yes! E.g. u(x) = x in (0,1), so Bu(x) = x in (-1,1). In general:  $u \in H^2(Q) \leadsto \tilde{u} \in H^2(Q)$  but  $\nabla u = 0$  on  $\partial Q_+$ .

**Exercise 5.41** (Bonus 8) Assume  $u \in H^2(Q_+)$  and  $\begin{cases} u = 0 \\ \nabla u = 0 \end{cases}$  on  $\partial Q_+$  Prove that  $Bu \in H^2(Q)$ . (Reflection extension) (Ok in 1D)

**Remark 5.42** If  $u \in H^2(Q_+)$ , then  $\nabla u \in H^1(Q_+)$ , so  $\nabla u|_{\partial Q_+}$  by trace theory. In general:  $\Omega \subseteq \mathbb{R}^d$ ,  $C^2$ -boundary condition, then the same result holds.

**Remark 5.43** In 1D:  $\begin{cases} u \in H^2(0,1) \\ u(0) = 0 \\ u'(0) = 0 \end{cases}, \ u|_{Q_0} \in L^2(Q_0), \ \text{1D: } Q_0 = \{0\}. \ \text{In general: }$ 

If  $u \in H^1(0,1)$ , then u(0) is determined by trace theory. If  $u \in H^2(0,1)$ , u'(0) is determined. Sobolev:

$$H^1(0,1) \subseteq C([0,1])$$
  
 $H^2(0,1) \subseteq C^1([0,1])$ 

**Lemma 5.44** (Poincare inequality) Let  $\Omega$  be open, bounded connected with  $C^1$ -boundary. Then for all  $g \in L^2(\partial\Omega)$  s.t.  $g \neq constant$  there is a C > 0 s.t.

$$||u||_{L^2(\Omega)} \leqslant C||\nabla u||_{L^2(\Omega)}$$

for all  $u \in M$ , where

$$M = \{ v \in H^1(\Omega) \mid v|_{\partial\Omega} = g \}.$$

*Proof.* We assume that the statement does not hold true. Then there is a sequence  $\{u_n\} \subseteq H^1(\Omega), \ u_n|_{\partial\Omega} = g$  s.t.

$$\|\nabla u_n\|_{L^2(\Omega)} \to 0, \quad \|u_n\|_{L^2(\Omega)} = 1.$$

Since  $\{u_n\}$  is bounded in  $H^1(\Omega)$ , by the Banach-Alaoglu theorem (5.30), up to a subsequence

$$u_n \to u_0$$
 weakly in  $H^1(\Omega)$ 

Since  $\nabla u_n \to 0$  strongly in  $L^2$  and  $\nabla u_n \to \nabla u_0$  weakly in  $L^2$ , we have  $\nabla u_0 = 0$ , so  $u_0|_{\partial\Omega} = const$ . (here we need  $\Omega$  to be connected), so  $u_0|_{\partial\Omega} = const$ . On the other hand, note that M is convex and closed in  $H^1(\Omega)$  since the trace operator  $T: H^1(\Omega) \to L^2(\partial\Omega)$  is continuous. Therefore, M is also weakly closed in  $H^1(\Omega)$  by the Hahn-Banach theorem. Thus from  $\{u_n\} \subseteq M$ ,  $u_n \to u_0$  weakly in  $H^1(\Omega)$  we get that  $u_0 \in M$ , so  $u_0|_{\partial\Omega} = g$ . We get a contradiction since  $g \neq const$ 

**Theorem 5.45** (Solution for Poisson Equation with inhomogeneous boundary condition) Let  $\Omega$  be open, bounded with  $C^1$ -boundary. Let  $f \in L^2(\Omega)$ ,  $g \in L^2(\partial\Omega)$ . There there is a unique  $u \in H^1(\Omega)$  s.t.

$$\begin{cases} -\Delta u = f & \text{in } D'(\Omega) \\ u|_{\partial\Omega} = g & \text{on } \partial\Omega \end{cases}$$

Here  $u|_{\partial\Omega}=T(u)\in L^2(\partial\Omega)$  is defined by the trace operator. Moreover if  $\Omega$  is connected and  $g\neq constant$ , then u is the unique minimizer for the variational problem

$$E = \inf_{v \in M} \frac{1}{2} \int_{\Omega} |\nabla v|^2 - \int_{\Omega} f v,$$

where  $M = \{v \in H^1(\Omega), v|_{\partial\Omega} = g \text{ on } \partial\Omega\}$ 

*Proof.* First let us assume that  $\Omega$  is connected and  $g \neq const.$ 

Step 1: We prove that  $E = \int_{v \in M} E(v)$  has a minimizer. By Poincares Inequality (5.44), for all  $v \in M$ :

$$\begin{split} E(v) &= \frac{1}{2} \int_{\Omega} |\nabla v|^2 - \int_{\Omega} f v \\ \text{(H\"older)} & \geqslant \frac{1}{2} \|\nabla v\|_{L^2(\Omega)}^2 - \|f\|_{L^2(\Omega)} \|v\|_{L^2(\Omega)} \\ \text{(Poincar\'e 5.44)} & \geqslant \frac{1}{2} \|\nabla v\|_{L^2(\Omega)}^2 - C \|f\|_{L^2(\Omega)} \|\nabla v\|_{L^2(\Omega)} \\ & \geqslant \frac{1}{4} \|\nabla v\|_{L^2(\Omega)} - C \|f\|_{L^2(\Omega)} \end{split}$$

Thus  $E = \inf_{v \in M} E(v) > -\infty$ . Moreover, taking a minimizing sequence  $\{v_n\} \subseteq M$ ,  $E(v_n) \to E$ , we find that  $\|\nabla v_n\|_{L^2(\Omega)}$  is bounded, and hence  $\|v_n\|_{H^1(\Omega)}$  is bounded (by Poincaré inequality) again. By Banach-Alaoglu (5.30), up to a subsequence we have  $v_n \to u$  weakly in  $H^1(\Omega)$ . Hence

$$\begin{cases} \limsup_{n \to \infty} \int_{\Omega} |\nabla v_n|^2 \geqslant \int_{\Omega} |\nabla u|^2 & \text{as } \nabla v_n \to \nabla u \text{ in } L^2 \\ \int_{\Omega} v_n f \to \int_{\Omega} u f & \text{as } v_n \to u \text{ in } L^2 \end{cases}$$

Note that  $\{v_n\} \subseteq M$ ,  $v_n \to u$  in  $H^1(\Omega)$  and M is weakly closed in  $H^1(\Omega)$  (as argued in the proof of Poincare inequality), therefore  $u \in M$ . This means that u is a minimizer for  $E = \inf_{v \in M} E(v)$ .

Step 2: Now we prove that if u is a minimizer for E, then  $-\Delta u = f$  in  $D'(\Omega)$ . In fact, for all  $\phi \in C_c^{\infty}(\Omega)$  we have

$$E(u) \le E(u + t\phi) \quad \forall t \in \mathbb{R}$$

because  $u + t\phi \in M$ . So we get that

$$0 = \frac{d}{dt}E(u + t\phi)|_{t=0} = \int_{\Omega} \nabla u \nabla \phi - \int_{\Omega} f\phi$$

Thus

$$\int_{\Omega} u(-\Delta \phi) = \int_{\Omega} \nabla u \nabla \phi, = \int_{\Omega} f \phi \quad \forall \phi \in C_c^{\infty}(\Omega).$$

So  $-\Delta u = f$  in  $D'(\Omega)$ .

Step 3: We prove that Poissons equation has at most one solution. Assume that  $u_1$ ,  $u_2$  are 2 solutions. Then  $u = u_1 - u_2$  solves

$$\begin{cases} -\Delta u = 0 \text{ in } \Omega \\ u|_{\partial\Omega} = 0 \text{ on } \Omega \end{cases}$$

so u = 0.

Step 4: If  $g = c_0$  is a constant, then Poissons equation can be rewritten with  $\tilde{u} = u - c_0$ :

$$\begin{cases} -\Delta u = f & \text{in } \Omega \\ u|_{\partial\Omega} = c_0 & \text{on } \Omega \end{cases} \Leftrightarrow \begin{cases} -\Delta \tilde{u} = f & \text{in } \Omega \\ \tilde{u} = 0 & \text{on } \Omega \end{cases}$$

If  $\Omega$  is not connected, then by considering connected components of  $\Omega$  we can prove that Poisson's equation always has a unique solution (for all  $f \in L^2(\Omega), g \in L^2(\partial\Omega)$ ).

#### 5.6 Final Remarks

We can describe  $H_0^1(\Omega)$  as the kernel of the trace operator  $T: H^1(\Omega) \to L^2(\partial\Omega)$ 

**Theorem 5.46** Let  $\Omega \subseteq \mathbb{R}^d$  be open, bounded with  $C^1$ -boundary. Then:

$$H_0^1(\Omega) = \{ u \in H^1(\Omega) \mid T(u) = 0 \text{ on } \partial \Omega \}$$

Recall that if  $u \in H^1(\Omega) \cap C(\overline{\Omega})$ , then  $T(u) = u|_{\partial\Omega}$  is the usual restriction. In this case we recover a result proved before.

Recall that the varionational characterization of the Poisson equation

$$\begin{cases} -\Delta u = f & \text{in } \Omega \\ u = g & \text{on } \partial \Omega \end{cases}$$

is

$$\int_{\Omega} \nabla u \nabla \phi = \int_{\Omega} f \phi \quad \forall \phi \in M$$

where  $M = \{v \in H^1(\Omega) \mid v = g \text{ on } \partial\Omega\}$  In fact, if  $u \in H^2(\Omega)$  and

$$\int_{\Omega} \nabla u \nabla \phi = \int_{\Omega} f \phi \quad \forall \phi \in H^1(\Omega)$$

Then u satisfies the Neumann condition:

$$\frac{\partial u}{\partial n} = \nabla u \cdot \vec{n} = 0 \text{ on } \partial \Omega$$

(justification ...)

For the exercises of sheet 10: Let  $\Omega=(a,b)\subseteq\mathbb{R}$  be an open bounded interval. For every  $u\in H^1(\Omega)$  the values u(a) and u(b) are determined uniquely by trace theory, or by Sobolev's embedding theorem. Recall: If  $u\in H^1((a,b))\leadsto\partial\Omega=\{a,b\}$  counting measure iff  $g\in L^2(\partial\Omega)$  i.e. g(a)=g(b) are well-defined.

**Exercise 5.47** (E 10.1) a) Prove  $H^1(\mathbb{R}) \subseteq (C(\mathbb{R}) \cap L^{\infty}(\mathbb{R}))$ 

Hint: You can use Fourier Transform

b) 
$$H^1(\Omega) \subseteq C(\Omega)$$

Solution. a) Let  $u \in H^1(\mathbb{R})$ . Then  $u, u' \in L^2(\mathbb{R}) \Leftrightarrow \hat{u}(k)(1 + |2\pi k|) \in L^2(\mathbb{R})$ . Thus:

$$u(x) = \int_{\mathbb{R}} \hat{u}(k)e^{2\pi ikx} dk \in C(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$$

if  $\hat{u} \in L^1(\mathbb{R})$ . So we have to show  $\hat{u} \in L^1(\mathbb{R})$ .

$$\begin{split} \int_{\mathbb{R}} |\hat{u}(k)| &= \int_{\mathbb{R}} \frac{|g(k)|}{1 + |2\pi k|} \\ &\leqslant \left( \int_{\mathbb{R}} |g(k)|^2 \, dk \right) \left[ \int_{\mathbb{R}} \left( \frac{1}{1 + |2\pi k|} \right)^2 \, dk \right]^{\frac{1}{2}} < \infty \end{split}$$

b) Given  $u \in H^1(\Omega)$ , then there is an extension  $\tilde{u} \in H^1(\mathbb{R})$ . By a)  $\tilde{u} \in C(\mathbb{R})$ , so  $u = \tilde{u}|_{\tilde{\Omega}} \in C(\bar{\Omega})$ . Remak: We have  $\|u\|_{L^{\infty}(\Omega)} \leq C\|u\|_{H^1(\Omega)}$ , where  $\Omega = (a,b)$  or  $\mathbb{R}$  (but only in 1D)

Recall: If  $\Omega \subseteq \mathbb{R}^d (d \ge 1)$  open, bounded with  $C^1$ -boundary. Then

$$||u||_{L^2(\Omega)} \leq C||\nabla u||_{L^2(\Omega)} \quad \forall u \in H_0^1(\Omega)$$

Actually the same bound holds if  $u \in H^1(\Omega)$  and  $u|_{\Gamma} = 0$  for an open subset  $\Gamma \subseteq \partial \Omega$ . In 1D we have:

**Exercise 5.48** (E 10.2 (Poincare inequality)) Let  $u \in H^1(\Omega)$ , u(a) = 0. Prove that there exists a constant C > 0 such that

$$||u||_{L^2(\Omega)} \leq C||u'||_{L^2(\Omega)}$$

Solution. Let  $u \in C^1(\bar{\Omega})$  and u(a) = 0. Then:

$$u(x) = u(a) + \int_0^x u'(t) dt \quad \forall x \in (a, b)$$

$$\Rightarrow |u(x)| \le \int_a^x |u'(t)| dt \le \int_a^b |u'(t)| dt = ||u'||_{L^1(\Omega)} \le C||u'||_{L^2(\Omega)}$$

as  $\Omega$  is bounded. This implies:

$$\frac{1}{C} \|u\|_{L^2(\Omega)} \le \|u\|_{L^{\infty}(\Omega)} \le C \|u'\|_{L^2(\Omega)}$$

To extend this for  $u \in H^1(\Omega)$ , we can use a density argument. More precisely, for all  $u \in H^1(\Omega)$  there is a sequence  $\{u_n\} \subseteq C^1(\bar{\Omega})$  s.t  $u_n \to u$  in  $H^1(\Omega)$ . Then:

$$||u||_{L^{2}(\Omega)} = \lim_{n \to \infty} ||u_{n}||_{L^{2}(\Omega)} \le C \lim_{n \to \infty} ||u'_{n}||_{L^{2}(\Omega)} = C ||u'||_{L^{2}(\Omega)}$$

Recall: For all  $f \in W_{loc}^{1,1}(O)$  with O in  $\mathbb{R}^d$  we have

$$f(x) - f(y) = \int_0^1 \nabla f(y + t(x - y))(x - y) dt$$

if  $x,y\in O,\,y+t(x-y)\in O$  for all  $t\in [0,1].$  For 1D: If  $u\in H^1(a,b)$ :

$$u(x) - u(y) = \int_{y}^{x} u'(t) dt \quad \forall x, y \in (a, b)$$

**Exercise 5.49** (E 10.3 (Poincare inequality)) Let  $u \in H^2(\Omega)$  and  $f \in L^2(\Omega)$ . Prove that the following statements are equivalent:

a) u solves the equation:

$$\begin{cases} -u'' = f & \text{in } D'(\Omega) \\ u'(0) = u'(1) = 0 \end{cases}$$

b)

$$\int_{\Omega} u'\phi' = \int_{\Omega} f\phi$$

for all  $\phi \in H^1(\Omega)$ .

Here  $u \in H^2(\Omega) \Rightarrow u' \in H^1(\Omega) \Rightarrow u'(0), u'(1)$  determined uniquely by trace theorem / Sobolev inequality  $H^1(\Omega) \subseteq C(\bar{\Omega})$ 

Solution.

b)  $\Rightarrow$  a) For all  $\phi \in C_c^{\infty}(\Omega)$ :

$$\int_{\Omega} f\phi = \int_{\Omega} u'\phi' = -\int_{\Omega} u\phi''$$

This implies -u''=f in  $D'(\Omega)$  a.e. Thus for all  $\phi\in H^1(\Omega)$ :

$$\int_{\Omega} f\phi = \int_{\Omega} -u''\phi = \int_{\Omega} u'\phi' - [u'\phi]_a^b$$

By b) we conclude  $0 = [u'\phi]_a^b = u'(b)\phi(b) - u'(a)\phi(a)$  for all  $\phi \in H^1(\Omega)$ . We can choose  $\phi \in H^1(\Omega)$  s.t.  $\phi(a) = 0$ ,  $\phi(b) = 1$ . This implies  $\phi'(b) = 0$ . Similarly, we can chose  $\phi \in H^1(\Omega)$  s.t.  $\phi(a) = 1$ ,  $\phi(b) = 0$ . This implies u'(a) = 0.

a)  $\Rightarrow$  b) From a) and Integration by parts:

$$\int_{\Omega} f\phi = \int_{\Omega} -u''\phi = \int_{\Omega} u'\phi' - \underbrace{[u'\phi]_a^b}_{=0 \text{ as } u'(a)=u'(b)=0}$$

This implies:

$$\int_{\Omega} f\phi = \int_{\Omega} u'\phi' \quad \forall \phi \in H^1(\Omega)$$

**Exercise 5.50** (E 10.4 (Robin boundary condition)) Let  $f \in L^2(\Omega)$ .

a) Prove that there exists a unique  $u \in M := \{\phi \in H^1(\Omega), u(a) = 0\}$  s.t.

$$\int_{\Omega} u'\phi' = \int_{\Omega} f\phi \quad \forall \phi \in M$$

b) Prove that the above function u is the unique solution to the equation

$$\begin{cases} -u'' = f & \text{in } D'(\Omega) \\ u(a) = 0 & u'(b) = 0 \end{cases}$$

Solution. a) By 10.2 we have

$$\|\phi\|_{L^2(\Omega)} \leqslant C \|\phi'\|_{L^2(\Omega)} \quad \forall \phi \in M$$

Thus:  $(M, \|\phi\|_M := \|\phi'\|_{L^2(\Omega)})$  is a Hilbert space. More precisely, we know  $(M, \|\cdot\|_M)$  is a closed subspace of  $H^1 \leadsto$  a Hilbert space. And  $\|\cdot\|_M$  is comparable to  $\|\cdot\|_{H^1}$ . By Riesz representation theorem there is a unique  $u \in M$  s.t.  $\langle \phi, u \rangle_M = F(\phi)$  for all  $\phi \in M$ . We use this for

$$F(\phi) = \int_{\Omega} f\phi \quad \forall \phi \in M$$

Here  $|F(\phi)| \leq ||f||_{L^2} ||\phi||_{L^2}$ .

b) Let  $u \in M$  be the solution in (a) i.e.

$$\int_{\Omega} f\phi = \int_{\Omega} u'\phi' \quad \forall \phi \in M$$

Then we prove that u solves

$$\begin{cases} -u'' = f & \text{in } D'(\Omega) \\ u(a) = u'(b) = 0 \end{cases}$$

Since  $u \in M$  we have  $u \in H^1(\Omega)$  and u(a) = 0. From

$$\int_{\Omega} f\phi = \int_{\Omega} u'\phi' \quad \forall \phi \in M$$

we get for all  $\phi \in C_c^{\infty}(\Omega)$ :

$$\int_{\Omega} f\phi = \int_{\Omega} u'\phi' = \int_{\Omega} -u\phi''$$

So we get -u'' = f in  $D'(\Omega)$ . Since  $f \in L^2(\Omega) \Rightarrow u'' \in L^2(\Omega) \Rightarrow u \in H^2(\Omega)$  $\Rightarrow u' \in H^1(\Omega) \Rightarrow u'(b)$  is uniquely determined. For all  $\phi \in M$ :

$$\int_{\Omega} f\phi = \int_{\Omega} -u''\phi = \int_{\Omega} u'\phi' - \left(u'(b)\phi(b) - u'(a)\phi(a)\right) \quad \text{as } \phi \in M$$

and  $\int_{\Omega} f \phi = \int_{\Omega} u' \phi'$ . This implies:

$$u'(b)\phi(b) = 0 \quad \forall \phi \in M$$

Take  $\phi(x) = \frac{x-a}{b-a} \in M$ ,  $\phi(b) = 1$ . Uniqueness of the solution: Take u s.t.

$$\begin{cases} -u'' = f & \text{in } D'(\Omega) \\ u(a) = u'(b) = 0 \end{cases}$$

This implies  $u \in H^2(\Omega)$ . By integration by parts: For all  $\phi \in H^1(\Omega)$ ,  $\phi(a) = 0$ .

$$\int_{\Omega} f \phi = \int_{\Omega} -u'' \phi = \int u' \phi' \quad \forall \phi \in M$$

Thus  $u \in M$  and

$$\int_{\Omega} f\phi = \int_{\Omega} u'\phi' \quad \forall \phi \in M.$$

**Exercise 5.51** (Bonus 9) Prove that the solution u in Problem E 10.4 is the unique minimizer for the minimization problem:

$$E = \inf_{v \in M} \left( \int_{\Omega} |v'|^2 - \int_{\Omega} fv \right)$$

## Chapter 6

# Heat Equation

## 6.1 Fundamental Solution

$$\begin{cases} \partial_t u = \Delta u & (x,t) \in \mathbb{R}^d \times (0,\infty) \\ u = g & (x,t) \in \mathbb{R}^d \times \{0\} \end{cases}$$

The fundamential solution is:

$$\Phi(x,t) = \frac{1}{(4\pi t)^{\frac{d}{2}}} e^{-\frac{|x|^2}{4t}}, \quad x \in \mathbb{R}^d, t > 0$$

We have:

$$\begin{cases} \partial_t \Phi = \Delta \Phi & (x,t) \in \mathbb{R}^d \times (0,\infty) \\ \int_{\mathbb{R}^d} \Phi(x,t) \, dx = 1 & \forall t > 0 \\ \lim_{t \to 0} \Phi(x,t) = \delta_0(x) & \text{in } D'(\mathbb{R}^d) \end{cases}$$

**Theorem 6.1** If  $g \in C(\mathbb{R}^d) \cap L^{\infty}(\mathbb{R}^d)$ , then

$$u(x,t) := \int_{\mathbb{R}^d} \Phi(x-y,t)g(y) \, dy$$

satisfies

- (i)  $u \in C^{\infty}(\mathbb{R}^d \times (0, \infty))$
- (ii)  $\partial_t u = \Delta u$  for all  $(x,t) \in \mathbb{R}^d \times (0,\infty)$
- (iii)  $\lim_{t\to 0} u(x,t) = g(x)$  for all  $x \in \mathbb{R}^d$

**Notation 6.2** For functions of (x,t) we introduce the following notation for different regularity in x and t.

$$f \in C_1^2 \Leftrightarrow f, D_x f, D_x^2 f, \partial_t f \in C$$

**Theorem 6.3** (Nonhomogeneous problem) Let  $f \in C_1^2(\mathbb{R}^d, [0, \infty))$  be compactly supported. Define

$$u(x,t) = \int_0^t \int_{\mathbb{R}^d} \Phi(x-y,t-s) f(y,s) \, dy \, ds$$

Then

(i) 
$$u \in C_1^2(\mathbb{R}^d \times (0, \infty))$$

(ii) 
$$\partial_t u = \Delta u + f$$
 for all  $x \in \mathbb{R}^d, t > 0$ 

(iii) 
$$\lim_{t\to 0} u(x,t) = 0$$
 for all  $x \in \mathbb{R}^d$ .

*Proof.* We write

$$u(x,t) = \int_0^t \int_{\mathbb{R}^d} \Phi(y,s) f(x-y,t-s) \, dy \, ds$$

With the Leibniz integral rule we get

$$\partial_t u(x,t) = \int_0^t \int_{\mathbb{R}^d} \Phi(y,s) \partial_t f(x-y,t-s) \, dy \, ds + \int_{\mathbb{R}^d} \Phi(y,s) f(x-y,0) \, dy$$

and

$$\partial_{ij}u(x,t) = \int_0^t \int_{\mathbb{R}^d} \Phi(y,s) \partial_{ij} f(x-y,t-s) \, dy.$$

This shows that  $\partial_t u$ ,  $\partial_{ij} u$  are in  $C(\mathbb{R}^d \times (0,\infty))$ . Next we calculate:

$$\partial_t u - \Delta u = \int_0^t \int_{\mathbb{R}^d} \Phi(y, s) (\partial_t - \Delta_x) f(x - y, t - s) \, dy \, ds + \int_{\mathbb{R}^d} \Phi(y, s) f(x - y, 0) \, dy$$

$$= \underbrace{\int_{\epsilon}^t \int_{\mathbb{R}^d} \Phi(y, s) (\partial_t - \Delta_x) f(x - y, t - s) \, dy \, ds}_{=:I_{\epsilon}}$$

$$+ \underbrace{\int_0^t \int_{\mathbb{R}^d} \Phi(y, s) (\partial_t - \Delta_x) f(x - y, t - s) \, dy \, ds}_{J_{\epsilon}}$$

$$+ \underbrace{\int_{\mathbb{R}^d} \Phi(y, s) f(x - y, 0) \, dy}_{L}$$

Then

$$|J_{\epsilon}| \leq \|(\partial_{t} - \Delta_{x})f\|_{L^{\infty}} \int_{0}^{\epsilon} \int_{\mathbb{R}^{d}} \Phi(y,s) \, dy \, ds \leq C\epsilon \xrightarrow{\epsilon \to 0} 0$$

$$I_{\epsilon} = \int_{\epsilon}^{t} \int_{\mathbb{R}^{d}} \Phi(y,s)(-\partial_{s} - \Delta_{y})f(x-y,t-s) \, dy \, ds$$

$$(Green (2.3)) = \int_{\epsilon}^{t} \int_{\mathbb{R}^{d}} \underbrace{(\partial_{s} - \Delta_{y})\Phi(y,s)}_{=0} f(x-y,t-s) \, dy \, ds$$

$$-\left[\int_{\mathbb{R}^{d}} \Phi(y,s)f(x-y,t-s)\right]_{s=\epsilon}^{s=t}$$

This implies:

$$I_{\epsilon} + K = \int_{\mathbb{R}^d} \Phi(y, \epsilon) f(x - y, t - \epsilon) \, dy$$

$$\xrightarrow{\epsilon \to 0} \int_{\mathbb{R}^d} \delta_0(y) f(x - y, t) \, dy = f(x, t)$$

Thus

$$\partial_t u - \Delta u = f(x,t) \quad \forall (x,t) \in \mathbb{R}^d \times (0,\infty)$$

Finally:

$$||u(\cdot,t)||_{L^{\infty}} \leqslant ||f||_{L^{\infty}} \int_0^t \int_{\mathbb{R}^d} \Phi(y,s) \, dy \, ds = ||f||_{L^{\infty}} t \xrightarrow{t \to 0} 0$$

**Exercise 6.4** If f, g are given as above, then

$$u(x,t) = \int_{\mathbb{R}^d} \Phi(x-y,t)g(y) \, gy + \int_0^t \int_{\mathbb{R}^d} \Phi(x-y,t-s)f(y,s) \, ds$$

solves

$$\begin{cases} \partial_t - \Delta u = f \\ u(\cdot, t) = g \end{cases}$$

**Remark 6.5** (Duhamel formula) Consider the ODE  $\partial_t w(t) = Aw(t)$  for all  $A \in \mathbb{R}$ . Then the solution is

$$w(t) = e^{tA}w(0).$$

More generally: If  $\partial_t w(t) = Aw(t) + f(t)$ , then

$$\partial_t(e^{-tA}w(t)) = e^{-tA}(\partial_t w(t) - Aw(t)) = e^{-tA}f(t) = e^{-tA}f(t)$$

$$\Rightarrow \qquad e^{-tA}w(t) = w(0) + \int_0^t e^{-sA}f(s) \, ds$$

$$\Rightarrow \qquad w(t) = e^{tA}w(0) + \int_0^t e^{(t-s)A}f(s) \, ds$$

More generally, if A is an operator (independent of time) then:

$$\partial_t w(t) = Aw(t) + f(t)$$

$$\Rightarrow \qquad w(t) = e^{tA}w(0) + \int_0^t e^{(t-s)A}f(s) \, ds$$

Application: If  $A = \Delta$ , then the operator  $e^{t\Delta}$  has kernel

$$e^{t\Delta}(x,y) = \Phi(x-y,t) = \frac{1}{(4\pi t)^{\frac{d}{2}}} e^{-\frac{|x-y|^2}{4t}}.$$

This is called the *heat kernel*.

**Theorem 6.6** ( $L^2$ -data) For every  $g \in L^2(\mathbb{R}^d)$ , define

$$u(t,x) = \int_{\mathbb{R}^d} \Phi(x-y,t)g(y) \, dy$$

Then  $u \in C^{\infty}(\mathbb{R}^d \times (0, \infty))$  and it solves the heat equation

$$\begin{cases} \partial_t u = \Delta_x u & \mathbb{R}^d \times (0, \infty) \\ \lim_{t \to 0} u(\cdot, t) = g & \text{in } L^2(\mathbb{R}^d) \end{cases}$$

*Proof.* Recall the heuristic computation from the heat equation using the Fourier transform

$$\begin{array}{ll} \partial_t u(x,t) = \Delta_x u(x,t) \\ \Leftrightarrow & \partial_t \hat{u}(k,t) = -|2\pi k|^2 \hat{u}(k,t) \\ \Leftrightarrow & \partial_t (e^{t|2\pi k|^2} \hat{u}(k,t)) = 0 \\ \Leftrightarrow & e^{t|2\pi k|^2} \hat{u}(k,t) = \hat{u}(k,0) = \hat{g}(k) \\ \Leftrightarrow & \hat{u}(k,t) = e^{-t|2\pi k|^2} \hat{g}(k) = \hat{\Phi}(k,t) \hat{g}(k) = \widehat{\Phi \star g} \\ \Leftrightarrow & u(x,t) = \Phi \star g = \int_{\mathbb{R}^d} \Phi(x-y,t) g(y) \, dy \end{array}$$

Here we only need the direction  $\Leftarrow$  which is rigorous if  $g \in L^2(\mathbb{R}^d)$ . From the Fourier transform, it is also easy to check that  $u(\cdot,t) \to g$  in  $L^2$  as  $t \to 0$  (exercise). To see the smoothness, note that for all t > 0, and for all  $m \in \mathbb{N}$ :

$$(1 + |2\pi k|^m)\hat{u}(k,t) = \underbrace{(1 + |2\pi k|^m)e^{-t|2\pi k|^2}}_{\in L^\infty} \underbrace{\hat{g}(k)}_{\in L^2} \in L^2$$

This implies  $u(\cdot,t) \in H^m(\mathbb{R}^d)$  for all  $m \ge 1$ , so  $u(\cdot,t) \in C^\infty(\mathbb{R}^d)$  by Sobolev embedding (see below). This argument can also be used to show that  $u \in C^\infty(\mathbb{R}^d \times (0,\infty))$  (exercise)

**Theorem 6.7** (Sobolev embedding) If  $m > \frac{d}{2}$ , then  $H^m(\mathbb{R}^d) \subseteq (C(\mathbb{R}^d) \cap L^{\infty}(\mathbb{R}^d))$ .

*Proof.* We write for all  $u \in H^m(\mathbb{R}^d)$ :

$$\hat{u}(k) = \underbrace{\hat{u}(k)(1 + |2\pi k|^m)}_{\in L^2 \text{ as } u \in H^m} \underbrace{\frac{1}{1 + |2\pi k|^m}}_{\in L^2 \text{ as } m > \frac{d}{2}}$$

This implies  $\hat{u}(k) \in L^1(\mathbb{R}^d)$  and finally  $u = (\hat{u})^{\vee} \in (C(\mathbb{R}^d) \cap L^{\infty}(\mathbb{R}^d))$ .

**Exercise 6.8** (E 11.1) Let  $g \in L^2(\mathbb{R}^d)$ ,

$$u(x,t) = \int_{\mathbb{R}^d} \Phi(x-y,t)g(y) dy,$$
  $\Phi(x,t) = \frac{1}{(4\pi t)^{\frac{d}{2}}} e^{-\frac{|x|^2}{4t}}$ 

be the fundamential solution of the heat equation

$$\begin{cases} \partial_t u - \Delta_x u = 0 & \forall (x, t) \in \mathbb{R}^d \times (0, \infty) \\ u(x, t) \to g(x) & \text{as } t \to 0. \end{cases}$$

Prove that

- a)  $u \in C^{\infty}(\mathbb{R}^d \times (0, \infty))$ .
- b)  $||u(\cdot,t) g||_{L^2(\mathbb{R}^d)} \xrightarrow{t \to 0^+} 0$
- c) If  $g \in H^1(\mathbb{R}^d)$ , then  $||u(\cdot,t) g||_{L^2(\mathbb{R}^d)} \le C\sqrt{t}$  as  $t \to 0^+$ .

Solution. a) We prove for all t > 0:

$$u(x,t)\in \bigcap_{m\geqslant 1}H^m(\mathbb{R}^d)\subseteq C^\infty(\mathbb{R}^d)$$

We use the Fourier transform:

$$\hat{\Phi}(k,t) = e^{-t|2\pi k|^2}$$

Recall  $\widehat{e^{-\pi|x|^2}} = e^{-\pi|k|^2}$ . From this we get  $\widehat{e^{-\pi\lambda|x|^2}} = \lambda^{-\frac{d}{2}} e^{-\frac{\pi|k|^2}{\lambda}}$ . Then:

$$\widehat{e^{-\frac{|x|^2}{4t}}} = \widehat{e^{-\pi \frac{1}{4\pi t}|x|^2}} = \left(\frac{1}{4\pi t}\right)^{-\frac{d}{2}} e^{-\pi|k|^2 4\pi t} = (4\pi t)^{\frac{d}{2}} e^{-t|2\pi k|^2}$$

Hence:

$$\hat{u}(k,t) = \hat{\Phi}(k,t)\hat{g}(k) = e^{-t|2\pi k|^2}\hat{g}(k) \in L^1(\mathbb{R}^d, dk) \quad \forall t > 0$$

This implies:

$$u(x,t) = \int_{\mathbb{R}^d} e^{-t|2\pi k|^2} \hat{g}(k) e^{2\pi i k x} dk \quad \forall (x,t) \in \mathbb{R}^d \times (0,\infty)$$

Consequently:

$$D_x^{\alpha}u(x,t) = \int_{\mathbb{R}^d} \underbrace{e^{-t|2\pi k|^2} \hat{g}(k)(2\pi i k)^{\alpha}}_{L^1(\mathbb{R}^d,dk)} e^{2\pi i k x} \, dk \in C(\mathbb{R}^d,(0,\infty))$$

$$D_t^{\alpha} u(x,t) = \int_{\mathbb{R}^d} (-|2\pi k|^2)^{\alpha} e^{-t|2\pi k|^2} \hat{g}(k) e^{2\pi i k x} \, dk \in C(\mathbb{R}^d, (0, \infty))$$

Also:

$$\begin{split} \partial_t u - \Delta_x u \\ &= \int_{\mathbb{R}^d} -|2\pi k|^2 e^{-t|2\pi k|^2} \hat{g}(k) e^{2\pi i k x} \, dk + \int_{\mathbb{R}^d} e^{-t|2\pi k|^2} \hat{g}(k) |2\pi i k|^2 e^{2\pi i k x} \, dk \\ &= 0 \end{split}$$

b) Finally:

$$\int_{\mathbb{R}^d} |u(x,t) - g(x)|^2 = \int_{\mathbb{R}^d} |\hat{u}(k,t) - \hat{g}(k)|^2 dk$$

$$= \int_{\mathbb{R}^d} \underbrace{|e^{-t|2\pi k|^2} - 1|^2}_{\in [0,1]} \underbrace{|\hat{g}(k)|^2}_{\in L^1(\mathbb{R}^d)} dk \xrightarrow{t \to 0} 0$$

by dominated convergence. Now,

$$\int_{\mathbb{R}^d} |u(x,t)|^2 dx = \int_{\mathbb{R}^d} |\hat{u}(k,t)|^2 dk$$

$$= \int_{\mathbb{R}^d} \underbrace{e^{-2t|2\pi k|^2}}_{\in [0,1] \text{ and } \xrightarrow{t \to 0} 0} |\hat{g}(k)|^2 dk \xrightarrow{t \to \infty} 0$$

c) Assume  $g \in H^1(\mathbb{R}^d) \Leftrightarrow \int_{\mathbb{R}^d} (1+|2\pi k|^2) |\hat{g}(k)|^2 dk < \infty$ . We claim for all  $s \ge 0$  that  $|1-e^{-s}| \le \min(1,Cs) \le C\sqrt{s}$ : We have that  $s \mapsto \left|\frac{1-e^{-s}}{s}\right|$  is bounded and continuous in [0,1] as  $\left|\frac{1-e^{-s}}{s}\right| \to 1$ , so  $\frac{1-e^{-s}}{s} \le C$  for all  $s \in [0,1]$ .

$$\int_{\mathbb{R}^d} |u(x,t) - g(x)|^2 dx = \int_{\mathbb{R}^d} \underbrace{\left| 1 - e^{-t|2\pi k|^2} \right|^2}_{\leqslant C(t|2\pi k|^2)} |\hat{g}(k)|^2 dk$$

$$\leqslant C \int_{\mathbb{R}^d} t|2\pi k|^2 |\hat{g}(k)|^2 dk$$

$$\leqslant Ct \|g\|_{H^1}^2 \quad \forall t > 0$$

Step 1: Spectral problem:

$$\begin{cases} -\Delta u_n = \lambda_n u_n & \text{in } \Omega \\ u_n|_{\partial\Omega} = 0 \end{cases}$$

**Lemma 6.9** There is a  $\lambda_n > 0$ ,  $\lambda_n \xrightarrow{n \to \infty} \infty$  and an orthonormal family  $\{u_n\} \subseteq L^2(\Omega)$  s.t.  $u_n \in H^1_0(\Omega) \cap C^\infty(\Omega)$  solving this eigenvalue equation.

Step 2:

$$\begin{cases} \partial_t - \Delta_x u = 0 \\ u(x,0) = g(x) \end{cases} \Rightarrow \begin{cases} \partial_t \langle u_n, u \rangle_{L^2(\Omega)} = \langle u_n, \Delta_x u \rangle = \langle \Delta_x u_n, u \rangle = -\lambda_n \langle u_n, u \rangle \\ \langle u_n, u \rangle_{t=0} = \langle u_n, g \rangle \end{cases}$$

$$\Rightarrow \langle u_n, u \rangle = e^{-t\lambda_n} \langle u_n, g \rangle \qquad \forall t > 0, \forall n = 1, 2, \dots$$

$$\Rightarrow \qquad u = \sum_{n=0}^{\infty} \langle \rangle = -\sum_{n=0}^{\infty} e^{-t\lambda_n} \langle \rangle u$$

Example 6.10  $\Omega = (0, 1),$ 

$$\begin{cases} -u_n'' = \lambda_n u_n & \text{in } (0,1) \\ u(0) = u(1) = 0 \end{cases}$$

has solution

$$\begin{cases} u_n(x) = \sqrt{2}\sin(\pi nx) & n = 1, 2, \dots \\ \lambda_n = (\pi_n)^2 \end{cases}.$$

has a solution:

$$u(x,t) = \sum_{n=1}^{\infty} e^{-t\lambda_n} \underbrace{\langle u_n, g \rangle}_{g_n} u_n(x) = \sum_{n=1}^{\infty} e^{-t\pi^2 n^2} g_n \sin(\pi n x),$$
$$\int_0^1 \sin(n\pi x)^2 dx = \frac{1}{2} \quad \forall n > 1$$
$$g_n = \sqrt{2} \langle u_n, g \rangle = 2 \int_0^1 \sin(\pi n x) g(x) dx$$

Exercise 6.11 (E 11.2) Consider the heat equation in a bounded domain

$$\begin{cases} \partial_t u(x,t) = \Delta_x u(x,t) & \forall x \in \Omega, t > 0 \\ u(x,t) = 0 & \forall x \in \partial\Omega, t > 0 \\ u(x,0) = g(x) & \forall x \in \Omega \end{cases}$$

Let us focus on the simlest case  $\Omega=(0,1).$  Prove that for every  $g\in C^1_c(0,1),$  the function

$$u(x,t) = \sum_{n=1}^{\infty} g_n e^{-t\pi^2 n^2} \sin(n\pi x),$$
  $g_n = 2 \int_0^1 g(y) \sin(n\pi y) dy$ 

is a classical solution to the above heat equation.

Solution. Direct proof of heat equation.  $g \in C^1_c(0,1) \subseteq H^1_0(0,1), \Rightarrow \sum_n \pi^2 n^2 |g_n|^2 = c\|g'\|_{L^2(0,1)}^2 < \infty$ , so  $\sum_n |g_n| < \infty$ .

$$u(x,0) = \underbrace{\sum_{n=1}^{\infty} g_n \sin(\pi nx)}_{\in C[0,1]} = g(x) \quad \forall x \in [0,1]$$

From  $u(x,t) = \sum_{n=1}^{\infty} e^{-tn^2\pi^2} g_n \sin(\pi nx)$  we get

$$\begin{cases} \partial_t u(x,t) = \sum_{n=1}^{\infty} (-n^2 \pi^2) e^{-t\pi^2 n^2} g_n \sin(\pi n x) & \forall t > 0, \forall x \in (0,1) \\ \Delta_x u(x,t) = \sum_{n=1}^{\infty} e^{-t\pi^2 n^2} g_n [-(\pi n)^2] \sin(\pi n x) & \forall t > 0, \forall x \in (0,1) \end{cases}$$

So 
$$\partial_t u - \Delta_x u = 0$$
 for all  $t > 0, x \in (0, 1)$ 

**Exercise 6.12** (E 11.3) Let  $g(t) = e^{-\frac{1}{t^2}}$  and denote  $g^{(n)}(t)$  the *n*-th derivative of g. Define

$$u(x,t) = \sum_{n=0}^{\infty} \frac{g^{(n)}(t)}{(2n)!} x^{2n}, \quad \forall x \in \mathbb{R}, t > 0$$

Prove that u is a classical solution to the heat equation

$$\begin{cases} \partial_t u(x,t) = \Delta_x u(x,t) & \forall x \in \mathbb{R}, t > 0 \\ \lim_{t \to 0} u(x,t) = 0 & \forall x \in \mathbb{R} \end{cases}$$

Solution. Formally:

$$\begin{cases} \partial_t u = \sum_{n=0}^{\infty} \frac{g^{(n+1)}(t)}{(2n)!} x^{2n} \\ -\Delta_x u = \sum_{n=1}^{\infty} \frac{g^{(n)}}{(2n)!} (2n)(2n-1) x^{2n-2} = \sum_{n=1}^{\infty} \frac{g^{(n)}(t)}{(2n-2)!} x^{2n-2} = \sum_{m=0}^{\infty} \frac{g^{(m+1)(t)}}{(2m)!} x^{2m} \end{cases}$$

This implies  $\partial_t u = \Delta_x u$  (if the series are convergent)  $(x,t) \in B \times \left[\epsilon, \frac{1}{\epsilon}\right]$  for  $B \subset \mathbb{R}$  bounded,  $\epsilon > 0$ . Also

$$g(t) = e^{-\frac{1}{t^2}} \xrightarrow{t \to 0^+} e^{-\infty} = 0$$

$$g'(t) = e^{-\frac{1}{t^2}} \left(\frac{2}{t^3}\right) \xrightarrow{t \to 0^+} 0$$

$$g''(t) = e^{\frac{1}{t^2}} \left(-\frac{3!}{t^4} + \frac{2}{t^3}\right) \xrightarrow{t \to 0^+} 0$$

$$g'''(t) = e^{-\frac{1}{t^2}} \left(\frac{4!}{t^5} - \frac{3!}{t^4} + \frac{2}{t^3}\right)$$

Let's proof the convergence of the series:

$$u(x,t) = \sum_{n=0}^{\infty} \frac{g^{(n)}(t)}{(2n)!} x^{2n}$$

converges absolutely for  $|x| \leq C, t \in \left[\epsilon, \frac{1}{\epsilon}\right], \epsilon > 0$ . By induction,

$$g^{(n)}(t) = e^{-\frac{1}{t^2}} \underbrace{\left(\frac{(n+1)!}{t^{n+2}} - \frac{n!}{t^{n+1}} + \frac{(n+1)!}{t^n} - \dots\right)}_{\text{pol in } (\frac{1}{t}), \text{ all cos bounded by } (n+1)} (-1)^{n-1}$$

This implies

$$|g^{(n)}(t)| \le e^{-\frac{1}{t^2}} [(n+2)!] \left(\frac{1}{t^{n+2}} + 1\right), \quad \frac{1}{t^s} \le \left(\frac{1}{t^{n+2}} + 1\right) \forall s = 0, 1, \dots, n+2$$

Thus

$$\sum_{n\geqslant 0} \left| \frac{g^{(n)}}{(2n)!} x^{2n} \right| \leqslant \sum_{n\geqslant 0} e^{-\frac{1}{t^2}} \frac{(n+2)!}{(2n)!} \left( \frac{1}{t^{n+2}} + 1 \right) x^{2n}$$

(1)

$$\sum_{n\geqslant 0} \frac{(n+2)!}{(2n)!} x^{2n} = \sum_{n\geqslant 0} \frac{1}{(n+3)(n+4)\cdots(2n)}$$

$$\leqslant \sum_{n\geqslant 0} \frac{1}{n^{n-2}} x^{2n}$$

$$\leqslant \sum_{n\geqslant M} + \sum_{n\geqslant M} \frac{1}{M^{n-2}} x^{2n}$$

$$M^2 \sum_{n} \left(\frac{x^2}{M}\right)^n$$

$$\leqslant m^2 \frac{1}{1 - \left(\frac{x^2}{M}\right)}$$

(2) 
$$t \in [\epsilon, \frac{1}{\epsilon}]$$
, so  $\frac{1}{t} \leqslant \frac{1}{\epsilon}$ , so  $\frac{1}{t^{n+2}} \leqslant \frac{1}{\epsilon^{n+2}} \longrightarrow \sum_{n \geqslant 0} \frac{(n+2)!}{(2n)!} \frac{1}{t^{n+2}} x^{2n} \leqslant \sum_{n \geqslant 0} \frac{1}{n^{n-2}} \frac{1}{\epsilon^{n-2}} x^{2n}$ 

**Remark 6.13**  $|u(x,t)| \leq \exp\left(\frac{cx^2}{t}\right) \rightsquigarrow \text{unphysical solution. Violates } |u(x,t)| \leq Ce^{C|x|^2} \text{ for all } \forall (x,t) \in \mathbb{R} \times [0,T]$ 

Exercise 6.14 (Bonus 10) Consider

$$u(x,t) = \int_{\mathbb{R}^d} \Phi(x-y,t)g(y) \, dy$$

where  $\Phi(x,t) = \frac{1}{(4\pi t)^{\frac{d}{2}}} e^{-\frac{x^2}{4t}}$ . Assume  $g \in C_c^{\infty}(\mathbb{R}^d)$ . Prove or disprove that

$$||u(\cdot,t) - g||_{L^2(\mathbb{R}^d)} \leqslant C_n t^n$$

as  $t \to 0^+$  for all  $n = 1, 2, \dots$ 

## 6.2 Maximum Principle

Recall the Poisson equation  $-\Delta u \leq 0$  in  $\Omega \subseteq \mathbb{R}^d$  open, bounded. Then

$$\sup_{\bar{\Omega}} u(x) = \sup_{\partial \Omega} u(x).$$

**Theorem 6.15** (Maximum principle for bounded sets) Let  $\Omega \subseteq \mathbb{R}^d$  be open and bounded. Let T > 0 and define

$$\Omega_T = \Omega \times (0, T),$$
  
$$\partial^* \Omega_T = (\bar{\Omega} \times \{0\}) \cup (\partial \Omega \times [0, T])$$

If  $u \in C_1^2(\Omega_T) \cap C(\bar{\Omega}_T)$  solves  $\partial_t u - \Delta_x u \leq 0$  in  $\Omega_T$ , then

$$\max_{\overline{\Omega_T}} u = \max_{\partial^{\star} \Omega_T} u.$$

*Proof.* We will use Hopf's argument which is simpler that the mean-value theorem (there exists a mean-value theorem for heat equation, but it is complicated and we will not discuss it). Firstly, to illustrate the principle, we proof the maximum principle for the Poisson Equation: Asumme  $u \in C^2(\Omega) \cap C(\bar{\Omega})$ 

Step 1) Assume  $\Delta u > 0$  in  $\Omega$ . Since  $\bar{\Omega}$  is compact, there is a  $x_0 \in \bar{\Omega}$  s.t.  $u(x_0) = \max_{x \in \bar{\Omega}} u(x)$ . We prove that  $x_0 \in \partial \Omega$ . In fact, if  $x_0 \in \Omega$ , then since  $x_0$  is a (local) maximizer of u in  $\Omega$ , we have  $\Delta u(x_0) \leq 0$ , which contradicts to the assumption that  $\Delta u > 0$  in  $\Omega$ . Thus  $x_0 \in \partial \Omega$ , and hence

$$\max_{x \in \bar{\Omega}} u(x) = u(x_0) \leqslant \max_{x \in \partial \Omega} u(x).$$

Step 2) Now assume  $\Delta u \ge 0$  in  $\Omega$ . Define

$$u_{\epsilon}(x) = u(x) + \epsilon |x|^2, \quad \epsilon > 0.$$

Then,  $\Delta u_{\epsilon} > 0$  in  $\Omega$ , hence by Step 1 and

$$u \le u_{\epsilon} \le u + \epsilon \sup_{x \in \bar{\Omega}} |x|^2$$

we have

$$\begin{split} \max_{x \in \bar{\Omega}} u(x) &\leqslant \max_{x \in \bar{\Omega}} u_{\epsilon}(x) \leqslant \max_{x \in \partial \Omega} u_{\epsilon}(x) \\ &\leqslant \max_{x \in \partial \Omega} u(x) + \epsilon \left( \sup_{x \in \bar{\Omega}} |x|^2 \right) \xrightarrow{\epsilon \to 0} \max_{x \in \partial \Omega} u(x) \end{split}$$

Proof for the heat equation:

Step 1) Assume  $u \in C_1^2(\Omega \times (0,T]) \cap C(\bar{\Omega} \times [0,T])$  and

$$\partial_t u - \Delta_x u < 0$$

in  $\Omega \times (0,T]$ . Then, because of compactness, there is  $(x_0,t_0) \in \overline{\Omega} \times [0,T]$  s.t.

$$u(x_0, t_0) = \max_{(x,t)\in\bar{\Omega}\times[0,T]} u(x,t).$$

We prove that  $(x_0, t_0) \in \partial^* \Omega_T$ . Assume by contradiction that  $(x_0, t_0) \notin \partial^* \Omega_T$ , then  $x_0 \in \Omega$  and  $t_0 \in (0, T]$ . Since  $x \mapsto u(x, t_0)$  has a (local) maximizer  $x_0 \in \Omega$  we have that  $\Delta_x u(x_0, t_0) \leq 0$ . Since  $t \mapsto u(x_0, t)$  has a (local) maximizer  $t_0 \in (0, T]$  we have that  $\partial_t u(x_0, t_0) \geq 0$ . This implies:

$$(\partial_t u - \Delta_x u)(x_0, t_0) \geqslant 0$$

which is a contradiction to the assumption. Thus  $(x_0, t_0) \in \partial^* \Omega_T$ , i.e.  $\max_{\bar{\Omega}_T} u = \max_{\partial^* \Omega_T} u$ .

Step 2) Assume  $u \in C_1^2(\Omega \times (0,T)) \cap C(\bar{\Omega} \times [0,T])$  and

$$\partial_t u - \Delta_x u \leqslant 0 \quad \text{in } \Omega \times (0, T).$$

Let  $\tilde{T} \in (0,T)$  and for  $\epsilon > 0$ :

$$u_{\epsilon}(x,t) = u(x,t) + \epsilon |x|^2.$$

Then:  $u_{\epsilon} \in C_1^2(\Omega \times (0, T']) \cap C(\bar{\Omega} \times [0, \tilde{T}])$  and  $\partial_t u_{\epsilon} - \Delta_x u_{\epsilon} < 0$  in  $\Omega \times (0, \tilde{T}]$ . By Step 1:

$$\max_{\bar{\Omega}_{\bar{T}}} u_{\epsilon} \leqslant \max_{\bar{\partial}^{\star} \Omega_{\bar{T}}} u_{\epsilon}$$

$$\stackrel{\epsilon \to 0}{\Rightarrow} \qquad \max_{\bar{\Omega}_{\bar{T}}} u \leqslant \max_{\bar{\partial}^{\star} \Omega_{\bar{T}}} u$$

$$\stackrel{\tilde{T} \to T}{\Rightarrow} \qquad \max_{\bar{\Omega}_{T}} u \leqslant \max_{\bar{\partial}^{\star} \Omega_{T}} u$$

**Theorem 6.16** (Maximum principle for  $\Omega = \mathbb{R}^d$ ) Let  $\Omega_T = \mathbb{R}^d \times (0,T)$ ,  $\bar{\Omega}_T = \mathbb{R}^d \times [0,T]$ . Let  $u \in C_1^2(\Omega_T) \cap C(\bar{\Omega}_T)$  such that

- $\partial_t u \Delta_x u \leq 0$  in  $\Omega_T$
- $u(x,t) \leq Me^{M|x|^2}$  for all  $(x,t) \in \bar{\Omega}_T$

Then

$$\sup_{(x,t)\in\bar{\Omega}_T}u(x,t)=\sup_{x\in\mathbb{R}^d}u(x,0).$$

Proof.

Step 1: For all  $y \in \mathbb{R}^d$  and  $\epsilon > 0$  define

$$v(x,t) = u(x,t) - \frac{\epsilon}{(T+\epsilon-t)^{\frac{d}{2}}} \exp\left(\frac{|x-y|^2}{4(T+\epsilon-t)}\right)$$

This implies

$$\partial_t v - \Delta_x v = \partial_t u - \Delta_x u \leqslant 0$$

in  $\Omega_T$ . For  $U = B(y, r), U_T = U \times (0, T), \bar{U}_T = \bar{U} \times [0, T], \partial^* U_T = (U \times \{0\}) \cup (\partial U \times [0, T])$ , by the maximum principle for U bounded we have

$$\max_{\bar{U}_T} v \leqslant \max_{\partial^* U_T} v$$

Let us bound  $\max_{\partial^* U_T} v$ .

• On  $U \times \{0\}$  we use  $v \leq u$  and hence

$$\max_{x \in \bar{U}} v(x,0) \leqslant \max_{x \in \bar{U}} u(x,0) \leqslant \max_{x \in \mathbb{R}^d} u(x,0).$$

• On  $\partial U \times [0,T]$  we use  $|x-y|=r \Rightarrow |x| \leq |y|+r$ .

$$\begin{split} v(x,t) &= u(x,t) - \frac{\epsilon}{(T+\epsilon-t)^{\frac{d}{2}}} \exp\left(\frac{|x-y|^2}{4(T+\epsilon-t)}\right) \\ &\leqslant M e^{M(|y|+r)^2} - \frac{\epsilon}{(T+\epsilon)^{\frac{d}{2}}} \exp\left(\frac{r^2}{4(T+\epsilon)}\right) \xrightarrow{r\to\infty} -\infty \end{split}$$

if  $M < \frac{1}{4(T+\epsilon)}$ . In particular, we can choose r large s.t.

$$\max_{\substack{x \in \partial U \\ t \in [0,T]}} v(x,t) \leqslant \max_{x \in \mathbb{R}^d} u(x,0).$$

In summary, if  $M < \frac{1}{4(T+\epsilon)}$ , then:

$$u(y,t) - \frac{\epsilon}{(T+\epsilon-t)^{\frac{d}{2}}} = v(y,t) \leqslant \max_{\bar{U}_T} v \leqslant \max_{x \in \mathbb{R}^d} u(x,0)$$

This holds for all  $(y,t) \in \mathbb{R}^d \times [0,T]$ . Thus,

$$\max_{\mathbb{R}^d \times [0,T]} u \leqslant \frac{\epsilon}{(T+\epsilon-t)^{\frac{d}{2}}} + \max_{x \in \mathbb{R}^d} u(x,0)$$

Taking  $\epsilon \to 0$  we conclude that if  $M < \frac{1}{4T}$ ,

$$\max_{\mathbb{R}^d \times [0,T]} u \le \max_{x \in \mathbb{R}^d} u(x,0)$$

Step 2: For general T, we denote  $T_1 = \frac{T}{N}, N \in \mathbb{N}$  s.t.  $M < \frac{4}{T_1}$ . Then by step 1:

$$\max_{\mathbb{R}^d \times [0,T_1]} u \leqslant \max_{x \in \mathbb{R}^d} u(x,0)$$

$$\max_{\mathbb{R}^d \times [T_1,2T_1]} u \leqslant \max_{x \in \mathbb{R}^d} u(x,T_1) \leqslant \max_{x \in \mathbb{R}^d} u(x,0)$$

$$\vdots$$

$$\max_{\mathbb{R}^d \times [(N-1)T_1,NT_1]} \leqslant \max_{x \in \mathbb{R}^d} u(x,(N-1)T_1) \leqslant \max_{x \in \mathbb{R}^d} u(x,0)$$

$$\Rightarrow \max_{\mathbb{R}^d \times [0,T]} u \leqslant \max_{x \in \mathbb{R}^d} u(x,0)$$

**Remark 6.17** The condition  $u \leq Me^{M|x|^2}$  is necessary, otherwise there are solutions  $u \neq 0$  s.t. u(x,0) = 0

**Theorem 6.18** (Uniqueness) If  $u \in C_1^2(\mathbb{R}^d \times (0,T)) \cap C(\mathbb{R}^d \times [0,T])$  and

$$u(x,t) \leq Me^{M|x|^2}$$
 in  $\mathbb{R}^d \times [0,T]$ ,  
 $\partial_t u - \Delta_x u = 0$  in  $\mathbb{R}^d \times (0,T)$ ,  
 $u(x,0) = 0$  in  $\mathbb{R}^d$ 

Then u = 0 in  $\mathbb{R}^d \times [0, T]$ .

*Proof.* Use the maximum principle for u and -u.

**Remark 6.19** If  $u(\cdot,t) \in L^2(\mathbb{R}^d)$ , the proof of uniquness can be done without the maximum principle. Heuristically:

$$\frac{d}{dt} \int_{\mathbb{R}^d} |u(x,t)|^2 dt = 2 \int_{\mathbb{R}^d} (\partial_t u) u \, dx = 2 \int_{\mathbb{R}^d} \Delta_x u u \, dx = -2 \int_{\mathbb{R}^d} |\nabla_x u|^2 \, dx \le 0$$

This implies

$$e(t) := \int_{\mathbb{R}^d} |u(x,t)|^2 dx$$

is descreasing. Hence, if e(0) = 0, then e(t) = 0 for all  $t \ge 0$ . This argument will be helpful below for the heat backward equation.

#### Remark 6.20 The heat equation

$$\begin{cases} \partial_t u - \Delta_x u = 0 \\ u(t=0) = g \end{cases}$$

is a well-posed problem:

- Existence
- Uniqueness
- Stability (solution depends continuously on data)

For the latter issue, by the maximum principle we have

$$||u(\cdot,t)||_{L^{\infty}} \leq ||u(\cdot,0)||_{L^{\infty}} \quad \forall t$$

or in the  $L^2$ -situation:

$$||u(\cdot,t)||_{L^2} \le ||u(\cdot,0)||_{L^2} \quad \forall t$$

On the other hand, the heat backward equation

$$\begin{cases} \partial_t u - \Delta_x u = 0 \\ u(t = T) = g \end{cases}$$

is *not* well-posed.

- Non-Existence: In general, the existence requires some special property on g, e.g. g is very smooth (only  $g \in C(\mathbb{R}^d) \cap L^{\infty}(\mathbb{R}^d)$  or  $g \in L^2(\mathbb{R}^d)$  is not enough)
- Uniqueness: On the other hand, the uniqueness still holds.

**Lemma 6.21** If  $e \in C^2(0,T)$ ,  $e(t) \ge 0$ ,  $e'(t) \le 0$ ,  $e''(t) \ge 0$  and  $|e'(t)|^2 \le e(t)e''(t)$  for  $t \in [0,T]$  and e(T) = 0, then  $e \equiv 0$ .

*Proof.* Since e is monotonly decreasing and e(T) = 0 there is a  $t_0 \in [0,T]$  s.t.  $e(t_0) = 0$  and e(t) > 0 if  $t \le t_0$ . We need to prove that  $t_0 = 0$ . Assume by contradiction  $0 < t_0 \le T$ , then for  $t \in (0,t_0)$  define  $f(t) := \log e(t)$ . Then

$$f'(t) = \frac{e'(t)}{e(t)}$$

$$\Rightarrow f''(t) = \frac{e''(t)e(t) - |e'(t)|^2}{e(t)^2} \ge 0$$

This means that f is convex, so for all  $t_1, t_2 \in (0, t_0)$  and  $\tau \in (0, 1)$ :

$$f(\tau t_1 + (1 - \tau)t_2) \le \tau f(t_1) + (1 - \tau)f(t_2)$$

$$\Rightarrow e(\tau t_1 + (1 - \tau)t_2) \le e(t_1)^{\tau} e(t_2)^{1 - \tau}$$

Now,  $e(\tau t_1 + (1-\tau)t_2) \xrightarrow{t_2 \to t_0} 0$  and  $\tau \to 1$  implies  $e(t_1) = 0$  for all  $t_1 \in (0, t_0)$  which is a contradiction.

**Theorem 6.22** If  $u \in C_1^2(\mathbb{R}^d \times [0,T]) \cap C^1(H^1(\mathbb{R}^d) \times [0,T])$  and

$$\begin{cases} \partial_t u - \Delta_x u = 0 & \text{in } \mathbb{R}^d \times (0, T) \\ u(x, T) = 0 \end{cases}$$

Then u = 0 in  $\mathbb{R}^d \times [0, T]$ .

Proof. Recall

$$e(t) = \int_{\mathbb{R}^d} |u(x,t)|^2 dx.$$

Then,

$$\begin{split} e'(t) &= 2 \int_{\mathbb{R}^d} u \partial_t u \, dx = 2 \int_{\mathbb{R}^d} u \Delta_x u \, dx = -2 \int_{\mathbb{R}^d} |\nabla_x u|^2 \, dx \\ e''(t) &= -4 \int_{\mathbb{R}^d} \nabla_x u \nabla_x (\partial_t u) = 4 \int_{\mathbb{R}^d} \Delta_x u \partial_t u \, dx = 4 \int_{\mathbb{R}^d} |\Delta_x u|^2 \, dx \geqslant 0 \end{split}$$

and hence

$$|e'(t)|^2 = 4 \left| \int_{\mathbb{R}^d} u \Delta_x u \, dx \right|^2 \le 4 \left( \int_{\mathbb{R}^d} |u|^2 \, dx \right) \left( \int_{\mathbb{R}^d} |\Delta_x u|^2 \, dx \right) = e(t)e''(t)$$

Then the statement follows with lemma 6.21.

Some remarks about the eat equation in unbounded domains:

$$\begin{cases} \partial_t u - \Delta_x u = 0 & \text{in } \mathbb{R}^d \times (0, \infty) \\ u(x, 0) = 0 & \text{(i.e. } \lim_{t \to 0} u(x, t) = 0 \forall x \in \mathbb{R}^d) \end{cases}$$

There is a classical solution  $0 \neq u \in C^1(\mathbb{R}^d \times (0, \infty))$ . An example is

$$u(x,t) = \sum_{n=0}^{\infty} \frac{g^{(n)}(t)}{(2n)!} x^{2n}, \quad g(t) = e^{-\frac{1}{t^2}}$$

(s.t.  $g \to 0$  as  $t \to 0$ ). Note

$$g(t) = e^{-\frac{1}{t^2}},$$

$$g'(t) = \frac{2}{t^3}g(t)$$

$$g''(t) = \left(\frac{2}{t^3}\right)'g(t) + \frac{2}{t^3}\frac{2}{t^3}g(t)$$

$$g^{(n)}(t) = P_n\left(\frac{1}{t}\right)g(t)$$

where

$$\begin{cases} P_0 = 1 \\ P_{n+1}\left(\frac{1}{t}\right) = \left(P_n\left(\frac{1}{t}\right)\right)' + \left(\frac{2}{t^3}\right)P_n\left(\frac{1}{t}\right) = A_1P_n + A_2P_n, \begin{cases} A_1 = \partial_t \\ A_2 = \frac{2}{t^3} \end{cases} \\ P_{n+1} = (A_1 + A_2)P_n = (A_1 + A_2)(A_1 + A_2)P_{n-1} = \end{cases}$$

This implies:

$$P_n = (A_1 + A_2)^n P_0 = \sum_{\sigma \in \{1,2\}^n} A_{\sigma(1)} A_{\sigma(2)} \cdots A_{\sigma(n)} P_0$$

$$A_1\left(\frac{\alpha}{t^s}\right) = \frac{-s\alpha}{t^{s+1}} \to A_1$$

Multiple coefficients by a factors and + power by 1

$$A_2\left(\frac{\alpha}{t^s}\right) = \frac{2\alpha}{t^{s+3}} \to A_2$$

Mul Cof by a factor 2 and + power by 3

$$|\underbrace{A_{\sigma(1)}\cdots A_{\sigma(n)}, 1}_{k \text{ times } A_2, \ n-k \text{ times } A_1}| \leqslant \frac{2^k}{t^{3k}} \leqslant \frac{2^k}{t^{3k}} \frac{(3n)^{n-k}}{t^{n-k}} = \frac{2^k (3n)^{n-k}}{t^{n+2k}}$$

This implies

$$|P_n\left(\frac{1}{t}\right)| \leqslant \max_{0 \leqslant k \leqslant n} \frac{2^n 2^k (3n)^{n-k}}{t^{n+2k}}$$

Thus:

$$\sum_{n} \left| \frac{g^{(n)}(t)}{(2n)!} x^{2n} \right| \leq \sum_{n} \max_{0 \leq k \leq n} \frac{2^{n} 2^{k} (3n)^{n-k}}{t^{n+2k} (2n)!} \frac{e^{-\frac{1}{t^{2}}}}{1} x^{2n}$$

$$\leq \sum_{n} \max \frac{2^{n} 2^{k} (3n)^{n-k}}{t^{n+2k} (2n)!} (k!) (2t^{2})^{k} e^{-\frac{1}{2t^{2}}} x^{2n}$$

$$= \sum_{n} \frac{2^{n} 2^{k} 2^{k} (3n)^{n-k} (k!)}{(2n)! t^{n}} e^{-\frac{1}{2t^{2}}} x^{2n}$$

$$\leq \sum_{n} \frac{(c_{n})^{n}}{(2n)! t^{n}} e^{-\frac{1}{2t^{2}}} x^{2n}$$

$$\leq \sum_{n} \frac{c^{n}}{n! t^{n}} e^{-\frac{1}{2t^{2}}} x^{2n}$$

$$\leq \sum_{n} \frac{e^{\frac{cx^{2}}{t}} - \frac{1}{2t^{2}}}{n! t^{n}}$$

Where we used that

$$e^s = \sum_k \frac{s^k}{k!} \geqslant \frac{s^k}{k!}$$

for all  $s \ge 0$  implies

$$e^{-\frac{1}{2t^2}} = \frac{1}{e^{\frac{1}{2t^2}}} \le \frac{1}{(\frac{1}{2t^2})^{\frac{1}{H}}} = k!(2t^2)^k.$$

We conclude:

- u(x,t) is well-defined,  $x \in \mathbb{R}^d$ , t > 0 real? to heat equation.
- $u(x,t) \to 0$  as  $t \to 0$  for all  $x \in \mathbb{R}^d$ .

**Exercise 6.23** (E 12.1) Let  $\Omega \subseteq \mathbb{R}^d$  be open and  $u \in C^2(\Omega)$ . Assume that  $x_0 \in \Omega$  is a local maximizer of u, namely there exists some r > 0 such that  $u(x_0) \ge u(x)$  for all  $x \in B_r(x_0) \subseteq \Omega$ .

(a) Prove that the Hessian matrix  $H = (D^{\alpha}u(x_0))_{|\alpha|=2}$  is negative semi-definite, namely

$$yHy \leq 0$$

for all  $y \in \mathbb{R}^d$ .

(b) Prove that  $\Delta u(x_0) \leq 0$ 

Hint: Recall that we used (b) for the maximum principle by Hopf's method.

Solution. (a) In 1D this is obvious. If  $x_0$  is a local minimizer of u, then  $u'(x_0) = 0$ ,  $u''(x_0) \leq 0$  (Taylor expansion).

In d dimensions:

$$\phi(t) = u(x_0 + t\xi) \quad \xi \in \mathbb{R}^d, t \in \mathbb{R}, |t| \text{ small}$$

So 0 is a local maximizer of  $\phi$ . This implies

$$0 = \phi'(0) = \nabla u(x_0)\xi \quad \forall \xi \in \mathbb{R}^d \Rightarrow H \leqslant 0$$

$$\phi''(0) = \lim_{t \to 0} \frac{\phi'(t) - \phi'(0)}{t} = \lim_{t \to 0} \frac{(\nabla u(x_0 + t\xi) - \nabla u(x_0))\xi}{t}$$
$$= \lim_{t \to 0} \sum_{i=1}^d \frac{(\partial_i u(x_0 + t\xi) - \partial_i u(x_0))\xi_i}{t} = \sum_{i=1}^d \sum_{j=1}^d \partial_j \partial_i u(x_0)\xi_j \xi_i = \langle \xi, H\xi \rangle,$$

$$H = (\partial_i \partial_j u(x_0))_{i,j=1}^d.$$

(b) Consequently

$$\Delta u(x_0) = \sum_{i=1}^d \partial_i \partial_i u(x_0) = \text{Tr}(H) \le 0$$

**Exercise 6.24** (E 12.2) Let  $\Omega \subseteq \mathbb{R}^d$  be open and bouned. We prove the maximum principle for a general elliptic operator

$$Lu(x) = \sum_{i,j=1}^{d} a_{ij}(x)\partial_i\partial_j u(x) + \sum_{i=1}^{d} b_i(x)\partial_j u(x),$$

 $a_{ij}, b_i \in C(\bar{\Omega}), \ A(x) = (a_{ij}(x))_{i,j=1}^d \ge 1$  (as matrices). Prove that if  $Lu(x) \ge 0$  for all  $x \in \Omega$  and  $u \in C^2(\Omega) \cap C(\bar{\Omega})$ , then

$$\max_{x \in \bar{\Omega}} u(x) = \max_{x \in \partial \Omega} u(x).$$

Solution.

Step 1: Assume Lu(x) > 0 for all  $x \in \Omega$ : Since  $u \in C(\bar{\Omega})$  there is a  $x_0 \in \bar{\Omega}$  s.t.

$$u(x_0) = \max_{x \in \bar{\Omega}} u(x).$$

We prove  $x_0 \in \partial \Omega$ . Assume by contradiction that  $x_0 \notin \partial \Omega$ , so  $x_0 \in \Omega$  is a local maximizer. We prove  $Lu(x_0) \leq 0$ . Note:

$$Lu(x_0) = \sum_{i,j=1}^{d} a_{ij}(x_0) \partial_i \partial_j u(x_0) + \sum_{i=1}^{d} b_i(x_0) \partial_i u(x_0)$$
  
=  $\text{Tr}[A(x_0)H(x_0)] + B(x_0) \underbrace{\nabla u(x_0)}_{=0} \le 0 \quad \text{?}$ 

$$A(x_0) = (a_{ij}(x_0))_{i,j=1}^d$$
,  $B(x_0) = (b_i(x_0))_{i=1}^d$ , where  $\text{Tr}[AH] = \sum_i (AH)_{ii} = \sum_i A_{ij} H_{ij}$ 

General fact: If  $A \ge 0, B \ge 0$  (matrices), then  $Tr(AB) \ge 0$ .

• 
$$A = (\sqrt{A})^2 \Rightarrow \text{Tr}(AB) = \text{Tr}((\sqrt{A})^2 B) = \text{Tr}(\underbrace{\sqrt{A}B\sqrt{A}}_{>0}) \ge 0$$

• Spectral theorem:  $A \ge 0$ , then there are eigenvectors  $(\alpha_i)$  and eigenvalues  $\lambda_i \ge 0$  s.t.

$$\operatorname{Tr}(AB) = \sum_{i} \langle \alpha_i, AB\alpha_i \rangle = \sum_{i} \underbrace{\lambda_i}_{\geq 0} \underbrace{\langle \alpha_i, B\alpha_i \rangle}_{\geq 0} \geq 0$$

• General Case:  $Lu(x) \ge 0$  for all  $x \in \Omega$ . Assume that there is a  $v \in C^2(\Omega) \cap C(\bar{\Omega})$  s.t. Lv(x) > 0 for all  $x \in \Omega$ . Define for all  $\epsilon > 0$   $u_{\epsilon} = u + \epsilon v$ . Then  $Lu_{\epsilon}(x) = Lu(x) + \epsilon Lv(x) > 0$  for all  $x \in \Omega$ . By Step 1,

$$\max_{x \in \bar{\Omega}} u_{\epsilon}(x) \leqslant \max_{x \in \partial \Omega} u_{\epsilon}(x)$$

$$\xrightarrow{\epsilon \to 0} \max_{x \in \bar{\Omega}} u(x) \leqslant \max_{x \in \partial \Omega} u(x)$$

What v? First  $v(x) = x^2 = x_1^2 + \cdots + x_d^2$ 

$$Lv(x) = \sum_{ij} a_{ij}(x) 2\delta_{ij} + \sum_{i} b_{i}(x) 2x_{i}$$

not clear to be  $\geq 0$ .

$$v(x) = x^{2n} \quad n \text{ large}$$

$$v(x) = x_1^{2n} \longrightarrow Lv(x) = a_{11}(x)2n(2n+1)x_1^{2n-2} + b_1(x)2nx_1^{2n-1}$$

$$\geqslant 2nx_1^{2n-2}[(2n-1) + \underbrace{b_1(x)x_1}_{\text{b.d. in }\bar{\Omega}}] \geqslant 0 \quad \forall x \in \bar{\Omega}$$

if n is large enough.

$$v(x) = (x_1 + R)^{2n}$$

where R > 0 large s.t.  $x_1 + R \ge 1$  for all  $\forall x \in \bar{\Omega}$ . This implies

$$Lv(x) \ge 2n\underbrace{(x_1+R)^{2n-2}}_{>0} [\underbrace{2n-1+b_1(x)(x_1+R)}_{>0}] > 0$$

for all  $x \in \bar{\Omega}$  if n is large.

Exercise 6.25 (E 12.3) Consider the inhomogeneous heat equation

$$\begin{cases} \partial_t u - \Delta_x u = f(x, t) & \text{in } \mathbb{R}^d \times (0, T) \\ u(t = 0) = g & \text{in } \mathbb{R}^d \end{cases},$$

 $f \in C_1^2(\mathbb{R}^d \times (0,T))$  and compactly supported and  $g \in C(\mathbb{R}^d \times [0,T]) \cap L^{\infty}(\mathbb{R}^d \times [0,T])$ . Assume that there exists a solution  $u \in C_1^2(\mathbb{R}^d \times (0,T)) \cap C(\mathbb{R}^d \times [0,T])$  satisfying

$$u(x,t) \leqslant Me^{M|x|^2}, \quad (x,t) \in \mathbb{R}^d \times [0,T].$$

Prove that

$$\max_{(x,t)\in\mathbb{R}^d\times[0,T]}|u(x,t)|\leqslant \|g\|_{L^\infty}+T\|f\|_{L^\infty}.$$

Solution.

Step 1: There is at most one solution u.

Step 2:

$$u(x,t) = \int_{\mathbb{R}^d} \phi(x-y,t)g(y) \, dy + \int_0^t \int_{\mathbb{R}^d} \phi(x-y,t-s)f(y,s) \, dy \, ds$$

This implies:

$$\begin{split} \|u\|_{L^{\infty}} &\leqslant \int_{\mathbb{R}^{d}} \phi(x-y,t) \|g\|_{L^{\infty}} \, dy + \int_{0}^{t} \int_{\mathbb{R}^{d}} \phi(x-y,t-s) \|f\|_{L^{\infty}} \, dy \, ds \\ \Rightarrow & \|u\|_{L^{\infty}_{x,t}} \leqslant \int_{\mathbb{R}^{d}} \phi(x-y,t) \|g\|_{L^{\infty}} \, dy + \int_{0}^{T} \int_{\mathbb{R}^{d}} \phi(x-y,t-s) \|f\|_{L^{\infty}} \, dy \, ds \\ &= \|g\|_{L^{\infty}_{x}} + T \|f\|_{L^{\infty}_{x,t}} \end{split}$$

This is optimal! E.g. g = 0, f = 1, u(x, t) = u(t).

$$\begin{cases} u' = 1 \\ u(0) = 0 \end{cases} \Rightarrow u(t) = t$$

**Exercise 6.26** (Bonus 11) Denote for all  $u \in C^2(\Omega) \cap C(\bar{\Omega})$ :

$$Lu(x) = \sum_{i,j=1}^{d} a_{ij}(x)\partial_i \partial_j u(x)$$

where  $a_{ij} \in C(\bar{\Omega})$  s.t.  $A(x) = (a_{ij}(x)) \ge 1$ . Prove that if  $\Omega \subseteq \mathbb{R}^d$  is open and bounded,  $u \in C_1^2(\bar{\Omega} \times [0,T])$  and

$$\begin{cases} \partial_t u - Lu \leqslant 0 & \text{in } \Omega \times (0, T) \\ u(t=0) = 0 \\ u(x \in \partial \Omega) = 0 \end{cases}$$

Prove that  $u(x,t) \leq 0$  for all  $(x,t) \in \bar{\Omega} \times [0,T]$ .

## 6.3 Backward heat equation

Theorem 6.27 (Instability)

There exist functions  $u_{\epsilon} \in C_1^2(\mathbb{R}^d \times (0,T)) \cap C^1(H^1(\mathbb{R}^d) \times [0,T])$  s.t.

$$\partial_t u_{\epsilon} - \Delta_x u_{\epsilon} = 0$$
 in  $\mathbb{R}^d \times [0, T]$ 

with:

$$\|u_{\epsilon}(\bullet,T)\|_{L^{2}(\mathbb{R}^{d})} \xrightarrow{\epsilon \to 0^{+}} 0, \quad \|u_{\epsilon}(\bullet,0)\|_{L^{2}(\mathbb{R}^{d})} \xrightarrow{\epsilon \to 0^{+}} \infty.$$

*Proof.* Recall by Fourier Transform

$$\partial_t \hat{u}(k,t) + |2\pi k|^2 \hat{u}(k,t) = 0$$

$$\Leftrightarrow \qquad \partial_t (e^{|2\pi k|^2 t} \hat{u}(k,t)) = 0$$

$$\Rightarrow \qquad e^{|2\pi k|^2 t} \hat{u}(k,t) = u(k,0)$$

$$\Rightarrow \qquad \hat{u}(k,t) = e^{-t|2\pi k|^2} \hat{u}(k,0)$$

$$\Rightarrow \qquad \hat{u}(k,0) = e^{T|2\pi k|^2} (k,T).$$

Now we can take

$$\hat{u}_{\epsilon}(k,t) = \mathbb{1}\left(|k| \leqslant \frac{1}{\epsilon}\right)\epsilon^{d+1} dk$$

Then,

$$\begin{split} \|u(\bullet,T)\|_{L^2(\mathbb{R}^d)}^2 &= \int_{\mathbb{R}^d} \hat{u}_{\epsilon}(k,t) \, dk = \lambda^d (\{|k| \leqslant \epsilon^{-1}\}) \epsilon^{d+1} \sim \epsilon \xrightarrow{\epsilon \to 0} 0 \\ \|u(\bullet,0)\|_{L^2(\mathbb{R}^d)}^2 &= \int_{\mathbb{R}^d} e^{2T|2\pi k|^2} \mathbb{1}(|k| \leqslant \epsilon^{-1}) \epsilon^{d+1} \, dk \\ &\geqslant \int_{\frac{\epsilon}{2} \leqslant |k| \leqslant \frac{\epsilon}{2}} e^{2T|2\pi k|^2} \mathbb{1}(|k| \leqslant \epsilon^{-1}) \epsilon^{d+1} \, dk \tilde{\geqslant} e^{2T\epsilon^{-2}} \epsilon \xrightarrow{\epsilon \to 0} \infty \end{split}$$

**Remark 6.28** This means that a small error of the data at t = T may cause a large error of the output t = 0.

Theorem 6.29 (Regularized solution)

Assume that  $u \in C_1^2(\mathbb{R}^d \times (0,T)) \cap C^1(H^1(\mathbb{R}^d),[0,T])$ 

$$\begin{cases} \partial_t u - \Delta_x u = 0 & \text{in } \mathbb{R}^d \times (0, T) \\ u(x, T) = g(x) & \text{in } \mathbb{R}^d \end{cases}$$

Then from given data  $g_{\epsilon} \in L^2(\mathbb{R}^d)$  s.t.

$$\|g_{\epsilon} - g\|_{L^2(\mathbb{R}^d)} \leqslant \epsilon$$

we construct a solution  $\tilde{u}_{\epsilon}$  s.t.

$$\sup_{t \in [0,T]} \|\tilde{u}_{\epsilon}(\bullet,t) - u(\bullet,t)\|_{L^{2}(\mathbb{R}^{d})} \xrightarrow{\epsilon \to 0} 0$$

*Proof.* Clearly we should not choose  $\tilde{u}_{\epsilon}$  to solve

$$\begin{cases} \partial_t u_{\epsilon} - \Delta_x u_{\epsilon} = 0 \\ u_{\epsilon}(t = T) = g_{\epsilon} \end{cases},$$

i.e.

$$\hat{u}_{\epsilon}(k,t) = e^{(T-t)|2\pi k|^2} \hat{g}_{\epsilon}(k).$$

Rather we take

$$\hat{u}_{\epsilon}(k,t) = e^{(T-t)|2\pi k|^2} \hat{g}_{\epsilon}(k) \mathbb{1}(|k| \leq \delta_{\epsilon}^{-1})$$

Where  $\delta_{\epsilon} \to 0$  (chosen later). Then we have for all  $t \in [0, T]$ :

$$\begin{split} \|u_{\epsilon}(\bullet,t) - u(\bullet,t)\|_{L^{2}(\mathbb{R}^{d})}^{2} &= \int_{\mathbb{R}^{d}} e^{2(T-t)|2\pi k|^{2}} |\hat{g}_{\epsilon}(k)\mathbb{1}(|k| \leqslant \delta_{\epsilon}^{-1}) - \hat{g}(k)|^{2} \, dk \\ &\leqslant 2 \int_{\mathbb{R}^{d}} e^{2T|2\pi k|^{2}} |\hat{g}_{\epsilon}(k) - \hat{g}(k)|\mathbb{1}(|k| \leqslant \delta_{\epsilon}^{-1}) \, dk \\ &+ 2 \int_{\mathbb{R}^{d}} \underbrace{e^{2T|2\pi k|^{2}} |\hat{g}(k)|^{2}}_{|\hat{u}(k,0)|^{2}} \mathbb{1}(|k| > \delta_{\epsilon}^{-1}) \, dk = (\mathrm{I}) + (\mathrm{II}) \end{split}$$

We have

$$\begin{split} &(\mathrm{I})\leqslant 2\int_{\mathbb{R}^d}e^{c\delta_{\epsilon}^{-2}}|\hat{g}_{\epsilon}(k)-\hat{g}(k)|^2\,dk=2e^{c\delta_{\epsilon}^{-2}}\epsilon^{-2}\longrightarrow 0 & \text{if }\delta_{\epsilon}\gg \frac{1}{\sqrt{|\log\epsilon|}}\\ &(\mathrm{II})=2\int_{\mathbb{R}^d}|\hat{u}(k,0)|^2\mathbb{1}(|k|\geqslant \delta_{\epsilon}^{-1})\,dk\leqslant 2\int_{\mathbb{R}^d}|k|^2\delta_{\epsilon}^2|\hat{u}(k,0)|^2\,dk \end{split}$$

Thus chosing  $\frac{1}{\sqrt{|\log \epsilon|}} \ll \delta_{\epsilon} \ll 1$ , e.g.  $\delta_{\epsilon} = (|\log \epsilon|)^{-\frac{1}{4}}$ .

$$\sup_{t \in [0,T]} \|u_{\epsilon}(\bullet,t) - u(\bullet,t)\|_{L^{2}(\mathbb{R}^{d})} \leq (\mathrm{I}) + (\mathrm{II}) \xrightarrow{\epsilon \to 0} 0$$

**Remark 6.30** In application, both u and g are unknown. Only  $g_{\epsilon}$  is given. So we have to construct  $\tilde{u}_{\epsilon}$  using only information from  $g_{\epsilon}$ .

# Chapter 7

# Wave Equation

### 7.1 d'Alembert

Wave equation:

$$\begin{cases} \partial_t^2 u - \Delta_x u = 0 & x \in \mathbb{R}^d, t > 0 \\ u = g, \partial_t u = h & x \in \mathbb{R}^d, t = 0 \end{cases}$$

In d = 1:

$$\begin{cases} \partial_t^2 u - \partial_x^2 u = 0, & (x,t) \in \mathbb{R} \times (0,\infty) \\ u = g, \partial_t u = h, & x \in \mathbb{R}, t = 0 \end{cases}$$

Key idea: Factorization:

$$\partial_t^2 - \partial_x^2 = (\partial_t + \partial_x)(\partial_t - \partial_x).$$

Then, if we denote  $v = (\partial_t - \partial_x)u$ , we get the transport equation

$$(\partial_t + \partial_x)v = 0.$$

This implies

$$v(x,t) = a(x-t), \quad a(x) = v(x,0)$$

From this we get the inhomogeneous transport equation

$$(\partial_t - \partial_x)u = a(x - t).$$

Now we decompose  $u = u_1 + u_2$ , where

$$\begin{cases} (\partial_t - \partial_x)u_1 = 0\\ (\partial_t - \partial_x)u_2 = a(x - t) \end{cases}.$$

Like above, we get  $u_1 = b(x + t)$  and an explicit choice of  $u_2$  is

$$u_2(x,t) = \frac{1}{2} \int_{x-t}^{x+t} a(y) \, dy$$

Thus,

$$u(x,t) = b(x+t) + \frac{1}{2} \int_{x-t}^{x+t} a(y) \, dy$$

Let's compute a and b:

$$b(x) = u(x,0) = g(x)$$
  
 
$$a(x) = v(x,0) = (\partial_t u - \partial_x u)_{t=0} = h - g'.$$

**Exercise 7.1** (E 13.1, d'Alembert formula) For d = 1 let  $g \in C^2(\mathbb{R}^d)$ ,  $h \in C^1(\mathbb{R})$  and define u by the d'Alembert formula

$$u(x,t) = \int_{x-t}^{x+t} (h(y) - g'(y)) \, dy + g(x+t)$$
$$= \frac{1}{2} [g(x+t) + g(x-t)] + \frac{1}{2} \int_{x-t}^{x+t} h(y) \, dy.$$

Then:

- $u \in C^2(\mathbb{R} \times (0, \infty))$
- $\bullet \ \partial_t^2 u \partial_r^2 u = 0$
- $u = g, \partial_t u = h \text{ when } t \to 0$

Solution. We can compute the derivative by regarding  $\int_x^{x+t} + \int_{x-t}^x$  and  $\int_t^{x+t} + \int_{x-t}^t$ :

$$\partial_t u = \frac{1}{2} \left( g'(x+t) - g'(x+t) \right) + \frac{1}{2} \left( h(x+t) + h(x-t) \right)$$

$$\partial_t^2 u = \frac{1}{2} \left( g''(x+t) + g''(x+t) \right) + \frac{1}{2} \left( h'(x+t) - h'(x-t) \right)$$

$$\partial_x u = \frac{1}{2} \left( g'(x+t) + g'(x-t) \right) + \frac{1}{2} \left( h(x+t) - h(x-t) \right)$$

$$\partial_x^2 u = \frac{1}{2} \left( g''(x+t) + g''(x-t) \right) + \frac{1}{2} \left( h'(x+t) - h''(x-t) \right) = \partial_t^2 u$$

Now,

$$\lim_{t \to 0} u = \frac{1}{2} (g(x) + g(x)) + \frac{1}{2} \int_{x}^{x} h = g(x)$$
$$\lim_{t \to 0} \partial_{t} u = \frac{1}{2} (g'(x) - g'(x)) + \frac{1}{2} (h(x) + h(x)) = h(x).$$

**Remark 7.2** If  $g \in C^k$  and  $h \in C^{k-1}$ , then  $u \in C^k$  (but not better).

Now, let's apply the Reflection Method. Replace  $\mathbb{R}$  by  $\mathbb{R}_+ = (0, \infty)$  and assume

$$\begin{cases} \partial_t^2 u - \partial_x^2 u = 0 & \mathbb{R}_+ \times (0, \infty) \\ u = g, \partial_t u = h & \text{on } \mathbb{R}_+ \times \{t = 0\}, g(0) = h(0) = 0 \\ u = 0 & \text{on } \{x = 0\} \times \{t > 0\} \end{cases}$$

Define

$$\tilde{u}(x,t) = \begin{cases} u(x,t), & x \geqslant 0, t \geqslant 0 \\ -u(-x,t), & x \leqslant 0, t \geqslant 0 \end{cases}$$
$$\tilde{g}(x) = \begin{cases} g(x) & x \geqslant 0 \\ -g(-x) & x \leqslant 0 \end{cases}$$
$$\tilde{h}(x) = \begin{cases} h(x) & x \geqslant 0 \\ -h(-x) & h \leqslant 0 \end{cases}$$

Then

$$\begin{cases} \partial_t^2 \tilde{u} - \partial_x^2 \tilde{u} = 0 & \text{in } \mathbb{R} \times (0, \infty) \\ \tilde{u} = \tilde{g}, \partial_t \tilde{u} = \tilde{h} & \text{on } \mathbb{R} \times \{t = 0\} \end{cases}.$$

By d'Alembert formula

$$\tilde{u}(x,t) = \frac{1}{2} \left[ \tilde{g}(x+t) + \tilde{g}(x-t) \right] + \frac{1}{2} \int_{x-t}^{x+t} \tilde{h}(y) \, dy$$

This imples

$$u(x,t) = \begin{cases} \frac{1}{2} [g(x+t) + g(x-t)] + \frac{1}{2} \int_{x-t}^{x+t} h(y) \, dy & x \ge t \ge 0 \\ \frac{1}{2} [g(x+t) - g(t-x)] + \frac{1}{2} \int_{t-x}^{x+t} h(y) \, dy & t \ge x \ge 0 \end{cases}.$$

This is the solution of the heat equation in  $\mathbb{R}_+ \times (0, \infty)$ .

### 7.2 Euler-Poisson-Darboux

$$(\star) \begin{cases} \partial_t^2 u - \Delta_x u = 0 & \text{in } \mathbb{R}^d \times (0, \infty) \\ u = g, \partial_t u = h & \mathbb{R}^d \times \{t = 0\} \end{cases}$$

Idea: Averaging of u over sphere  $\leadsto$  1D problem. Define for  $x \in \mathbb{R}^d, t > 0, r > 0$ ,

$$U_r(x,t) := \int_{\partial B(x,r)} u(y,t) \, dS(y)$$
$$G_r(x) := \int_{\partial B(x,r)} g(y) \, dS(y)$$
$$H_r(x) := \int_{\partial B(x,r)} h(y) \, dS(y)$$

**Lemma 7.3** (Euler-Poisson-Darboux equation) If  $u \in C^2(\mathbb{R}^d \times [0, \infty))$  solves  $(\star)$ , then for all  $x \in \mathbb{R}^d$ :

• 
$$(r,t) \mapsto U \in C^2([0,\infty) \times [0,\infty)])$$

$$\bullet \begin{cases}
\partial_t^2 U - \partial_r^2 U - \frac{d-1}{r} \partial_r U = 0 & \text{in } \mathbb{R}_+ \times \mathbb{R}_+ \\
U = G, \partial_t U = H & \text{on } \mathbb{R}_+ \times \{t = 0\}
\end{cases}$$

Note that  $\partial_r^2 + \frac{d-1}{r} \partial_r$  is the radial part of  $\Delta$ .

*Proof.* We compute for r > 0:

$$\begin{split} \partial_r U_r(x,t) &= \partial_r \int_{\partial B(x,r)} u(y,t) \, dS(y) \\ &= \partial_r \int_{\partial B(0,1)} u(x+rz,t) \, dS(z) \\ &= \int_{\partial B(0,1)} \nabla u(x+rz,t) z \, dS(z) \\ &= \int_{\partial B(x,r)} \nabla u(y,t) \frac{y-x}{r} \, dS(y) \\ &= \int_{\partial B(x,r)} \frac{\partial u(y,t)}{\partial \vec{n}} \, dS(y) \\ &= \int_{\partial B(x,r)} \int_{B(x,r)} \Delta_x u(y,t) \, dy \\ \left( |B(0,r)| &= \frac{r}{d} |\partial B(0,r)| \right) &= \frac{r}{d} \int_{B(x,r)} \Delta_x u(y,t) \, dy \end{split}$$

(The computation is similar to the proof of the mean-value theorem for the Poisson equation.) We compute the second derivative

$$\begin{split} \partial_r^2 U_r(x,t) &= \partial_r \left[ \frac{r}{d} \oint_{B(x,r)} \Delta_x u(y,t) \, dy \right] \\ \left( |B(0,r)| = r^d |B(0,1)| \right) &= \partial_r \left[ \frac{1}{d|B_1|r^{d-1}} \int_{B(x,r)} \Delta_x u(y,t) \, dy \right] \\ \text{Now, } \partial_r \frac{1}{d|B_1|r^{d-1}} &= \frac{-d+1}{d|B_1|r^d} = -\frac{d-1}{d|B(0,r)|} \text{ and } \\ \partial_r \int_{B(x,r)} \Delta_x u(y,t) \, dS(y) &= \partial_r \int_{B(0,r)} \Delta_x u(x+ry,t) \, dy \\ \left( \text{Green 2.3} \right) &= \partial_r \int_{\partial B(0,1)} \nabla_x u(x+ry,t) \frac{y}{|y|} \, dS(y) \\ \left( |y| = 1 \right) &= \int_{\partial B(0,1)} \partial_r \nabla_x u(x+ry,t) y \, dS(y) \\ &= \int_{\partial B(0,1)} \Delta_x u(x+ry,t) \, dS(y) \\ \left( y \cdot y = |y|^2 = 1 \right) &= \int_{\partial B(0,1)} \Delta_x u(x+ry,t) \, dS(y) \\ &= \int_{\partial B(x,r)} \Delta_x u(y,t) \, dS(y) \end{split}$$

Now with the product rule we get

$$\begin{split} \partial_r^2 U_r(x,t) &= -\left(\frac{d-1}{d}\right) \oint_{B(x,r)} \Delta_x u(y,t) \, dy \\ &+ \frac{1}{d|B_1|r^{d-1}} \int_{\partial B(x,r)} \Delta_x u(y,t) \, dS(y) \\ &= -\left(\frac{d-1}{d}\right) \oint_{B(x,r)} \Delta_x u(y,t) \, dy \\ &+ \oint_{\partial B(x,r)} \Delta_x u \, dS(y) \end{split}$$

And, since u is a solution,

$$\partial_t^2 U = \partial_t^2 \oint_{\partial B(x,r)} u \, dS(y) = \oint_{\partial B(x,r)} (\partial_t^2 u) \, dS(y) = \oint_{\partial B(x,r)} (\Delta_x u) \, dS(y).$$

So we can conclude

$$\partial_t^2 U - \partial_r^2 U - \frac{d-1}{d}U = 0$$

the above computation also shows that  $U \in C^2(\mathbb{R}_+ \times [0, \infty))$ . Moreover

$$\partial_r U_r(x,t) \xrightarrow{r \to 0^+} 0$$

$$\partial_r^2 U_r(x,t) \xrightarrow{r \to 0^+} \left(\frac{1}{d} - 1\right) \Delta_x u + \Delta_x u = \frac{1}{d} \Delta_x u$$

This implies that  $U \in C^2([0,\infty) \times [0,\infty))$ . Finally, when t=0,

$$\begin{cases} u = g \\ \partial_t = h \end{cases} \Rightarrow \begin{cases} U = G \\ \partial_t U = H \end{cases}.$$

We showed that it is a neccessary condition for u to solve the Euler-Poisson-Darboux equation. Now we try to actually solve the equation. In general, this is easier for odd d than for even d. We will consider the cases d = 2, 3.

#### 7.2.1 Solution in three dimensions

Now, for r > 0 let  $\tilde{U} = rU$ ,  $\tilde{G} = rG$ ,  $\tilde{H} = rH$ . Then

$$\begin{cases} \partial_t^2 \tilde{U} - \partial_r^2 \tilde{U} = 0 & \text{in } \mathbb{R}_+ \times (0, \infty) \\ \tilde{U} = \tilde{G}, \partial_t \tilde{U} = \tilde{H} & \text{when } t = 0 \\ \tilde{U} = 0 & \text{when } r = 0 \end{cases}$$

Then, by d'Alembert's formula, for  $0 \le r \le t$  we have

$$\begin{split} \tilde{U}_r(x,t) &= \frac{1}{2} \left[ \tilde{G}(r+t) - \tilde{G}(t-r) \right] + \frac{1}{2} \int_{t-r}^{t+r} \tilde{H}(y) \, dy. \\ \Rightarrow \quad U_r(x,t) &= \frac{1}{2} \left[ \frac{\tilde{G}(r+t) - \tilde{G}(t-r)}{r} \right] + \frac{1}{2r} \int_{t-r}^{t+r} \tilde{H}(y) \, dy \end{split}$$

Now, taking  $r \to 0$  we get

$$u(x,t) = \tilde{G}'(t) + \tilde{H}(t)$$

$$= \partial_t \left( t \oint_{\partial B(x,t)} g(y) \, dS(y) \right) + t \oint_{\partial B(x,t)} h(y) \, dS(y)$$

Using

$$\oint_{\partial B(x,t)} g(y) dS(y) = \oint_{\partial B(0,1)} g(x+tz) dS(z)$$

we get

$$\partial_t \oint_{\partial B(x,t)} g(y) \, dS(y) = \oint_{\partial B(0,1)} \nabla g(x+tz) z \, dz$$

$$= \oint_{\partial B(x,t)} \nabla g(y) \left(\frac{y-x}{t}\right) \, dS(y)$$

$$\Rightarrow \quad \partial_t \left(t \oint_{\partial B(x,t)} g(y) \, dS(y)\right) = \oint_{\partial B(x,t)} \left(g + \nabla g(y-x)\right) \, dS(y)$$

From that we get:

**Remark 7.4** (Kirchhoff's formula in 3D) For all  $x \in \mathbb{R}^3$ , t > 0:

$$u(x,t) = \int_{\partial B(x,t)} (g(y) + \nabla g(y-x) + th(y)) \ dS(y)$$

**Exercise 7.5** (E 13.3) Let  $g \in C_c^2(\mathbb{R}^3)$ ,  $h \in C_c^1(\mathbb{R}^3)$ . Assume that  $u \in C^2(\mathbb{R}^3 \times [0,\infty])$  satisfies the wave equation

$$\begin{cases} \partial_t^2 u - \Delta_x u = 0 & \forall x \in \mathbb{R}^3, t > 0 \\ u(x, 0) = g(x), \partial_t u(x, 0) = h(x) & \forall x \in \mathbb{R}^3 \end{cases}$$

Prove that there exists a constant C > 0 such that

$$|u(x,t)| \leqslant \frac{C}{t}, \quad \forall x \in \mathbb{R}^3, t > 0.$$

Solution.

Step 1: Assume

$$(\star) \quad u(x,t) = \int_{\partial B_{\mathbb{P}^3}} (g(y) + \nabla g(y)(y-x) + th(y)) \ dS(y)$$

Assume supp  $g, h \subseteq B(0, R)$ . Then

$$\begin{aligned} |u(x,t)| &\leqslant \frac{1}{|\partial B(x,t)|} \int_{\partial B_{\mathbb{R}^3}(x,t)} \left( \|g\|_{L^{\infty}} + \|\nabla g\|_{L^{\infty}} t + t \|h\|_{L^{\infty}} \right) \mathbb{1}(|y| \leqslant R) \, dS(y) \\ &= \frac{C(1+t)}{t^2} \leqslant \frac{C}{t} \quad \text{as } t \geqslant 1 \end{aligned}$$

and

$$|u(x,t)| \le C \int_{\partial B(x,t)} \le C$$

if  $t \leq 1$ .

Step 2: Why is u given by  $(\star)$ ? This follows from the uniqueness of the solution of the wave equation. In fact, if g, h are compactly supported, then for all  $t \in [0, T]$ , u(x, t) supported in  $B(0, R_T)$  a finite ball.

#### 7.2.2 Solution in two dimensions

The transformation  $\tilde{U} = rU$  does not work! The idea is to think of the 2D problem as 3D problem with  $x_3$  hidden. We write  $\bar{u}(x_1, x_2, x_3, t) = u(x_1, x_2, t)$ . Then we get

$$\begin{cases} \partial_t^2 \bar{u} - \Delta_x \bar{u} = 0 & \text{in } \mathbb{R}^d \times (0, \infty) \\ \bar{u} = \bar{g}, \partial_t \bar{u} = \bar{h} & \text{on } \mathbb{R}^3 \times \{t = 0\} \end{cases}$$

With Kirchhoff's formula:

$$u(x,t) = \bar{u}(\bar{x},t) = \partial_t \left( t \oint_{\partial \bar{B}(\bar{x},t)} \bar{g}(y) d\bar{S}(y) \right) + t \int_{\partial \bar{B}(\bar{x},t)} \bar{h} \, d\bar{S}(y)$$

123

**Remark 7.6** Let  $\gamma(y) = (t^2 - |y - x|^2)^{\frac{1}{2}}, y \in B(x, t)$ , then

$$\begin{split} \int_{\partial \bar{B}(\bar{x},t)} \bar{g} \, d\bar{S} &= \frac{1}{4\pi t^2} \int_{\partial \bar{B}(\bar{x},t)} \bar{g} \, d\bar{S}(y) \\ &= \frac{1}{4\pi t^2} \int_{B(x,t)} g(y) 2(1 + |\nabla \gamma|^2)^{\frac{1}{2}} \, dy \\ &= \frac{1}{4\pi t^2} \int_{B(x,r)} g(y) \frac{2t}{\sqrt{t^2 - |y - x|^2}} \, dy \\ &= \frac{t}{2} \int_{B(x,t)} \frac{g(y)}{\sqrt{t^2 - |y - x|^2}} \, dy \end{split}$$

Similarly:

$$\int_{\partial B(\bar{x},t)} \bar{h} \, d\bar{S}(y) = \frac{t}{2} \int_{B(x,t)} \frac{h(y)}{\sqrt{t^2 - |y - x|^2}} \, dy$$

This implies:

$$u(x,t) = \partial_t \left( \frac{t^2}{2} \oint_{B(x,t)} \frac{g(y)}{(t^2 - |y - x|^2)^{\frac{1}{2}}} \, dy \right) + \frac{t^2}{2} \oint_{B(x,r)} \frac{h(y)}{(t^2 - |y - x|^2)^{\frac{1}{2}}} \, dy$$

$$= (I) + (II)$$

$$(I) = \partial_t \left( \frac{1}{2} t \oint_{B(0,1)} \frac{g(x + tz)}{(1 - |z|^2)^{\frac{1}{2}}} \, dz \right)$$

$$= \oint_{B(0,1)} \frac{g(x + tz)}{(1 - |z|^2)^{\frac{1}{2}}} \, dz + t \oint_{B(0,1)} \frac{\nabla g(x + tz)z}{(1 - |z|^2)^{\frac{1}{2}}} \, dz$$

$$= t \oint_{B(x,t)} \frac{g(y)}{\sqrt{t^2 - |y - x|^2}} \, dy + t \oint_{B(x,r)} \frac{\nabla g(y)(y - x)}{\sqrt{t^2 - |y - x|^2}} \, dy$$

**Exercise 7.7** (E 13.2, Poisson formula for 2D) For  $x \in \mathbb{R}^2$ , t > 0,  $g \in C^2(\mathbb{R}^2)$ ,  $h \in C^2(\mathbb{R}^2)$  let

$$u(x,t) = \frac{t}{2} \int_{B(x,t)} \frac{g(y) + \nabla g(y)(y-x) + th(y)}{(t^2 - |y-x|^2)^{\frac{1}{2}}} \, dy.$$

Prove that  $u \in C^2(\mathbb{R}^2 \times (0, \infty))$  and

$$\begin{cases} \partial_t^2 - \Delta_x u = 0 & \forall x \in \mathbb{R}^2, t > 0 \\ \lim_{t \to 0^+} u(x, t) = g(x), \lim_{t \to 0^+} \partial_t u(x, t) = h(x), & \forall x \in \mathbb{R}^2 \end{cases}$$

Solution. Let  $\bar{x} = (x, x_3) \in \mathbb{R}^3$ ,  $\bar{u}(\bar{x}, t) = u(x, t)$ . We claim that

$$(\star) \quad \bar{u}(\bar{x},t) = \partial_t \left( t \oint_{\partial \bar{B}(\bar{x},t)} \bar{g} \, d\bar{S}(y) \right) + t \oint_{\partial \bar{B}(x,t)} \bar{h} \, d\bar{S}$$

where  $\bar{B}(\bar{x},t)$  is a ball in 3D,  $\bar{g}(\bar{x}) = g(x)$ ,  $\bar{h}(\bar{x}) = h(x)$ . From 7.6 we have

$$\int_{\partial \bar{B}(\bar{x},t)} \bar{g}\,d\bar{S} = \frac{t}{2} \int_{B_{\mathbb{R}^2}(x,t)} \frac{g(y)}{\sqrt{t^2 - |x-y|^2}} \,dy$$

Now,

RHS of 
$$(\star) = \partial_t \left( \frac{t^2}{2} \oint_{B_{\mathbb{R}^2}} \frac{g(y)}{\sqrt{t^2 - |x - y|^2}} dy \right) + \frac{t^2}{2} \oint_{B_{\mathbb{R}^2}(x,t)} h(y) dy$$

$$?? = \partial_t \frac{t}{2} \frac{g(y) + \nabla g(y)(y - x)}{\sqrt{t^2 - |x - y|^2}} + \frac{t^2}{2} \oint_{B_{\mathbb{R}^2}(x,t)} h(y) dy$$

3D-Problem: We claim that if  $\bar{g} \in C^3(\mathbb{R}^3)$ ,  $\bar{h} \in C^2(\mathbb{R}^3)$  and

$$\bar{u}(\bar{x},t) = \partial_t \left( t \oint_{\partial B_{\mathbb{R}^2}(\bar{x},t)} \bar{g} \right) + t \int_{\partial B_{\mathbb{R}^2}(\bar{x},t)} \bar{h},$$

then  $\bar{u} \in C^2(\mathbb{R}^3 \times (0, \infty))$  and

$$\begin{cases} \partial_t^2 \bar{u} - \Delta_{\bar{x}} u = 0 & \text{in } \mathbb{R}^3 \times (0, \infty) \\ \bar{u} = \bar{g}, \partial_t \bar{u} = \bar{h} & \text{in } \mathbb{R}^3 \times \{t = 0\} \end{cases}$$

Proof:

Step 1: Assume  $\bar{g} = 0$ ,  $\bar{u}(\bar{x}, t) = t \int_{\partial B(\bar{x}, t)} \bar{h}$ . Lemma (from lecture):

$$\partial_r \int_{\partial B(\bar{x},r)} \bar{h} = \frac{r}{d} \oint_{B(\bar{x},r)} \Delta \bar{h}, \quad d = 3$$

 $(\bar{U} = \int_{B(\bar{x},r)} u(x,t))$  Hence:

$$\partial_t \bar{u}(x,t) = \partial_t \left( t \oint_{\partial B(\bar{x},t)} \bar{h} \right) = \oint_{\partial B(\bar{x},t)} \bar{h} + t \frac{t}{3} \oint_{B(x,t)} \Delta \bar{h}$$

$$\partial_t^2 \bar{u}(x,t) = \frac{t}{3} \oint_{B(\bar{x},t)} \Delta \bar{h} + \frac{2}{3} t \oint_{B(x,t)} \Delta \bar{h} + \frac{t^2}{3} \oint_{B(\bar{x},t)} \Delta \bar{h}$$

Where we have

$$\frac{t^2}{3} \oint_{B(\bar{x},t)} \Delta \bar{h} = \frac{1}{|B_1|3t} \int_{B(\bar{x},t)} \Delta \bar{h}$$

$$\partial_t(\dots) = -\frac{1}{|B_1|3t^2} \int_{B(\bar{x},t)} \Delta \bar{h} + \frac{1}{|B_1|3t} \int_{\partial B(\bar{x},t)} \Delta \bar{h}$$

$$= -\frac{t}{3} \oint_{B(\bar{x},t)} \Delta \bar{h} + t \oint_{\partial B(\bar{x},t)} \Delta \bar{h}$$

So we get

$$\begin{split} \partial_t^2 \bar{u}(x,t) &= \frac{t}{3} \int_{B(\bar{x},t)} \Delta \bar{h} + \frac{2}{3} t \int_{B(x,t)} \Delta \bar{h} - \frac{t}{3} \int_{B(\bar{x},t)} \Delta \bar{h} + t \int_{\partial B(\bar{x},t)} \Delta \bar{h} \\ &= t \int_{\partial B(\bar{x},t)} \Delta \bar{h} \end{split}$$

This implies

$$\Delta_{\bar{x}}\bar{u}(x,t) = \Delta_{\bar{x}}\left(t \oint_{\partial B(\bar{x},t)} \bar{h}\right) = \Delta_{x}\left(t \oint_{\partial B(0,t)} \bar{h}(\bar{x}+y) dS(y)\right)$$
$$= t \oint_{\partial B(0,t)} \Delta \bar{h}(\bar{x}+y) dS(y) = t \oint_{\partial B(\bar{x},t)} \Delta \bar{h} = \partial_{t}^{2}\bar{u}$$

Thus,  $\partial_t \bar{u} - \Delta_{\bar{x}} \bar{u} = 0$  in  $\mathbb{R}^3 \times (0, \infty)$ . Moreover,

$$\bar{u}(x,t) = t \oint_{\partial B(\bar{x},t)} \bar{h} \xrightarrow{t \to 0} 0$$

and

$$\partial_t \bar{u}(x,t) = \int_{\partial B(\bar{x},t)} \bar{h} + \frac{t^2}{3} \int_{B(x,t)} \Delta \bar{h} \xrightarrow{t \to 0} \bar{h}(\bar{x}) \quad \checkmark$$

Step 2: General Case:  $\bar{g} \neq 0$ . Assume h = 0, then

$$\bar{u}(\bar{x},t) = \partial_t \left( t \oint_{\partial B_{\mathbb{R}^3}} \bar{g} \right)$$

By Step 1,  $v(\bar{x},t) \coloneqq t \int_{\partial B_{\mathbb{R}^3}(0,\infty)} \bar{g}$  satisfies

$$\begin{cases} \partial_t^2 - \Delta_{\bar{x}} v = 0 & \text{in } \mathbb{R}^3 \times (0, \infty) \\ v = 0 \text{ and } \partial_t v = \bar{g} & \text{in } \mathbb{R}^3 \times \{t = 0\} \end{cases}$$

Then  $\bar{u} = \partial_t \bar{v}$ . This implies

$$\partial_t^2 \bar{u} - \Delta_{\bar{x}} \bar{u} = \partial_t^3 \bar{v} - \Delta_{\bar{x}} \partial_t \bar{v} = \partial_t (\underbrace{\partial_t^2 \bar{v} - \Delta_{\bar{x}} \bar{v}}_{=0}) = 0 \quad \text{in } \mathbb{R}^3 \times (0, \infty)$$

and

$$\bar{u}(t=0) = \partial_t \bar{v}(t=0) = \bar{g},$$

$$\partial_t \bar{u}(t=0) = \partial_t^2 \bar{v}(t=0) = t \int_{\partial B(\bar{x},t)} \Delta \bar{g} \bigg|_{t=0} = 0$$

Step 3: Consider the case  $g \neq 0, h \neq 0$ :

$$\bar{u} = \underbrace{\partial_t \left( t \oint_{\partial B(\bar{x},t)} \bar{g} \right)}_{\bar{u}_2} + \underbrace{t \oint_{\partial B(\bar{x},t)} h}_{\bar{u}_2}$$

Now we have

$$\begin{cases} \partial_t^2 \bar{u}_1 - \Delta_{\bar{x}} \bar{u}_1 = 0 & \text{in } \mathbb{R}^3 \times (0, \infty) \\ \bar{u}_1 = \bar{g}, \partial_t \bar{u}_1 = 0 & \text{in } \mathbb{R}^3 \times \{t = 0\} \end{cases}$$

and

$$\begin{cases} \partial_t^2 \bar{u}_2 - \Delta_{\bar{x}} \bar{u}_2 = 0 & \text{in } \mathbb{R}^3 \times (0, \infty) \\ \bar{u}_2 = 0, \partial_t \bar{u}_2 = h & \text{in } \mathbb{R}^3 \times (0, \infty) \end{cases}.$$

This implies

$$\begin{cases} \partial_t^2 \bar{u} - \Delta_{\bar{x}} \bar{u} = 0 & \text{in } \mathbb{R}^3 \times (0, \infty) \\ \bar{u} = \bar{g}, \partial_t \bar{u} = \bar{h} & \text{in } \mathbb{R}^3 \times (0, \infty) \end{cases}.$$

### 7.3 Spectral Method

Let  $\Omega \subseteq \mathbb{R}^d$  be open and bounded.

$$\begin{cases} \partial_t^2 u - \Delta_x u = 0 & \text{in } \Omega \times (0, \infty) \\ u = g, \partial_t u = h & \text{when } t = 0 \\ u = 0 & \text{when } x \in \partial \Omega \end{cases}$$

 $-\Delta$  has eigenvecors  $(e_i)_{i=1}^{\infty}$  with eigenvalues  $(\lambda_i)_{i=1}^{\infty}$ , i.e.

$$\begin{cases} -\Delta e_i = \lambda_i e_i \\ e_i|_{\partial\Omega} = 0 \end{cases}$$

s.t.  $\lambda_1 < \lambda_2 \leqslant \cdots \leqslant \lambda_i \to \infty$  and  $(e_i)_{i \in \mathbb{N}}$  is an orthonormal basis for  $L^2(\Omega)$ . We write

$$u(x,t) = \sum_{i \in \mathbb{N}} a_i(t)e_i(x)$$

This implies:

$$a_i''(t) + \lambda_i a_i(t) = 0$$
(ODE)  $\Rightarrow a_i(t) = a_i(0) \cos(\sqrt{\lambda_i}t) + \frac{a_i'(0)}{\sqrt{\lambda_i}} \sin(\sqrt{\lambda_i}t)$ 

Here  $a_i(0)$ ,  $a'_i(0)$  is determined by

$$\begin{cases} g = u(t=0) = \sum_{i=1}^{\infty} a_i(0)e_i(x) \\ h = \partial_t u(t=0) = \sum_{i=1}^{\infty} a_i'(0)e_i(x) \end{cases} \Rightarrow \begin{cases} a_i(0) = \langle e_i, g \rangle \\ a_i'(0) = \langle e_i, h \rangle \end{cases}$$

## 7.4 Uniqueness

For  $\Omega \subseteq \mathbb{R}^d$  open and bounded with  $C^1$ -boundary regard

$$\begin{cases} \hat{c}_t^2 u - \Delta_x u = 0 & \text{in } \Omega \times (0, T) \\ u = 0, \hat{c}_t u = 0 & \text{in } \Omega \times \{t = 0\} \\ u = 0 & \partial \Omega \times [0, T] \end{cases}$$

If  $u \in C^2(\bar{\Omega} \times [0, T])$ , then u = 0.

Proof. Let

$$e(t) = \int_{\Omega} (|\partial_t u|^2 + |\nabla_x u|^2) dx$$

has e'(t) = 0. This implies e(t) = e(0) = 0, so  $\partial_t u = 0$  and hence u = 0.

The same result holds for  $\mathbb{R}^d$ , i.e.

$$\begin{cases} \partial_t^2 u - \Delta_x u = 0 & \mathbb{R}^d \times (0, T) \\ u = 0, \partial_t = 0 & \mathbb{R}^d \times \{t = 0\} \end{cases}$$

and  $u \in C^2(H^2(\mathbb{R}^d),[0,T])$  (i.e.  $u(t, \bullet) \in H^2(\mathbb{R}^d)$  and  $t \mapsto u(t, \bullet)$  continuous).

### 7.5 Propagation of the wave

**Theorem 7.8** Assume that  $u \in C^2(\mathbb{R}^d \times [0, \infty)$  and

$$\begin{cases} \partial_t^2 u - \Delta_x u = 0 & \mathbb{R}^d \times (0, \infty) \\ u = 0, \partial_t u = 0 & B(x_0, t_0) \times \{t = 0\} \end{cases}$$

Then u(x,t) = 0 for  $x \in B(x_0, t_0 - t)$ .

*Proof.* Let for  $t \in [0, t_0]$ 

$$e(t) = \int_{B(x_0, t_0 - t)} (|\partial_t u|^2 + |\nabla_x u|^2) dx$$

This implies

$$\begin{split} e'(t) &= \int_{B(x_0,t_0-t)} 2(\partial_t u \partial_t^2 u + \nabla_x u \partial_t \nabla_x u) - \int_{\partial B(x_0,t_0-t)} (|\partial_t u|^2 + |\nabla_x u|^2) \, dS \\ &= \int_{B(x_0,t_0-t)} 2(\partial_t u \partial_t^2 u - \Delta_x u \partial_t u) + \int_{\partial B(x_0,t_0-t)} \left[ 2(\nabla_x u \vec{n}) \partial_t u - |\partial_t u|^2 - |\nabla_x u|^2 \right] dS \\ &= \int_{B(x_0,t_0-t)} 2(\partial_t u \underbrace{(\partial_t^2 u - \Delta_x u)}_{=0}) + \int_{\partial B(x_0,t_0-t)} \underbrace{\left[ 2(\nabla_x u \vec{n}) \partial_t u - |\partial_t u|^2 - |\nabla_x u|^2 \right]}_{\leq 0} \, dS \end{split}$$

where we used

$$|2(\nabla_x u\vec{n})\partial_t u| \leq 2|\nabla_x u||\partial_t u| \leq |\nabla_x u|^2 + |\partial_t u|^2.$$

Thus  $e'(t) \leq 0$  for all  $t \in (0, t_0)$ , so  $e(t) \leq e(0) = 0$  (as u = 0,  $\partial_t u = 0$  in  $B(x_0, t_0) \times \{t = 0\}$ ). This implies e(t) = 0 for all  $t \in (0, t_0)$ , so

$$\begin{cases} \hat{\sigma}_t u = 0 & x \in B(x_0, t_0 - t) \\ u = 0 & x \in B(x_0, t_0 - t) \times \{t = 0\} \end{cases}.$$

So we get that u=0 for  $x \in B(x_0,t_0-t)$  for all  $t \in (0,t_0)$  and u=0 for  $x \in B(x_0,t_0-t)$  for all  $t \in [0,t_0]$ . (More precisely  $u(x_0,t_0)=0$ )

## 7.6 Wave vs. Heat Equation

**Notation 7.9** For  $g \in L^2(\mathbb{R}^d)$ , t > 0 we write  $e^{t\Delta}g \in L^2(\mathbb{R}^d)$  for

$$\widehat{e^{t\Delta}}g(k) = e^{-t|2\pi k|^2}\widehat{g}(k)$$

$$\Leftrightarrow (e^{t\Delta}g)(x) = \frac{1}{(4\pi t)^{\frac{d}{2}}} \int_{\mathbb{R}^d} e^{-\frac{|x-y|^2}{4t}} g(y) \, dy$$

$$\widehat{\frac{1}{(4\pi t)^{\frac{d}{2}}}e^{-\frac{|x|^2}{4t}}} = e^{-t|2\pi k|^2}$$

Heat Equation:

Wave Equation:

• Improves smoothness, i.e.  $g \in L^2(\mathbb{R})$  imples  $e^{t\Delta}g \in \bigcap_{m\geqslant 1} H^m(\mathbb{R}^d) \subseteq C^{\infty}(\mathbb{R}^d)$  for all t>0.

No improvement of smoothnesPropagation: Speed is finite

• Propagation: Speed is  $\infty$ .

t=0:  $g\in C_c^{\infty}$ 

t > 0:  $e^{t\Delta}g$  does not have compact support

129

## Chapter 8

# Schrödinger Equation

$$\begin{cases}
-i\partial_t u - \Delta_x u = 0 & \text{in } \mathbb{R}^d \times (0, \infty) \\
u(x, 0) = g(x) & x \in \mathbb{R}^d
\end{cases}$$

Formally  $-i\partial_t = \frac{1}{i}\frac{d}{dt} = \frac{d}{d(it)} \Rightarrow \partial_\xi u - \Delta_x u = 0, \ \xi = it \rightsquigarrow$  Heat equation with imaginary time. From the heat equation

$$\begin{cases} \partial_t u - \Delta_x u = 0 \\ u(x,0) = g(x) \end{cases} \Rightarrow u(x,t) = (e^{t\Delta}g)(x) = \frac{1}{(4\pi t)^{\frac{d}{2}}} \int_{\mathbb{R}^d} e^{-\frac{|x-y|^2}{4t}} g(y)$$

$$\Rightarrow \begin{cases}
-i\partial_t u - \Delta_x u = 0 \\
u(x,0) = g(x)
\end{cases} \Rightarrow u(x,t) = (e^{it\Delta}g)(x) = \frac{1}{(4\pi i t)^{\frac{d}{2}}} \int_{\mathbb{R}^d} e^{i\frac{|x-y|^2}{4t}} g(y) \, dy$$

if  $g \in L^1$ .

**Theorem 8.1** (Fourier for Schrödinger Solution) For  $g \in L^1(\mathbb{R}^d) \cap L^2(\mathbb{R}^d)$ , define

$$(e^{it\Delta}g)(x) = \frac{1}{(4\pi i t)^{\frac{d}{2}}} \int_{\mathbb{R}^d} e^{i\frac{|x-y|^2}{4t}} g(y) \, dy$$

Then  $\|e^{it\Delta}g\|_{L^2(\mathbb{R}^d)} = \|g\|_{L^2(\mathbb{R}^d)}$ . Consequently, for all  $g \in L^2(\mathbb{R}^d)$  we can define  $e^{it\Delta}g \in L^2(\mathbb{R}^d)$  by a density argument. Moreover,

$$\widehat{e^{it\Delta}g(k)} = e^{-it|2\pi k|^2}\hat{g}(k)$$

for almost every  $k \in \mathbb{R}^d$ .

Proof. Fourier transform of Gaussian:

$$\frac{1}{(4\pi t)^{\frac{d}{2}}}\widehat{e^{-\frac{|x|^2}{4t}}} = e^{-t|2\pi k|^2}, \quad t > 0$$

Key point: This formula also holds if  $t \in \mathbb{C}$  and  $\Re(t) > 0$ . For all  $\epsilon > 0$  consider

$$(e^{(it+\epsilon)\Delta}g)(x) = \left(e^{-(it+\epsilon)|2\pi k|^2}\hat{g}(k)\right)^{\vee}(x) = (\hat{G}_{\epsilon}g)^{\vee} = (G_{\epsilon} \star g)(x)$$

where

$$G_{\epsilon}(x) = \frac{1}{(4\pi(it+\epsilon))^{\frac{d}{2}}} e^{-\frac{|x|^2}{4(it+\epsilon)}}.$$

Since  $g \in L^1(\mathbb{R}^d)$ :

$$(G_{\epsilon} \star g)(x) = \frac{1}{(4\pi(it+\epsilon))^{\frac{d}{2}}} \int_{\mathbb{R}^d} e^{-\frac{|x-y|^2}{4(it+\epsilon)}} g(y) \, dy$$
$$\longrightarrow \frac{1}{(4\pi it)^{\frac{d}{2}}} \int_{\mathbb{R}^d} e^{-\frac{|x-y|^2}{4it}} g(y) \, dy = (e^{it\Delta}g)(x)$$

for all  $x \in \mathbb{R}^d$ . Moreover,

$$||G_{\epsilon} \star g||_{L^{2}(\mathbb{R}^{d})} = ||\widehat{G_{\epsilon} \star g}||_{L^{2}(\mathbb{R}^{d})} = ||\widehat{G}_{\epsilon}\widehat{g}||_{L^{2}(\mathbb{R}^{d})} = \left(\int_{\mathbb{R}^{d}} \left|e^{-(it+\epsilon)|2\pi k|^{2}}\right|^{2} ||\widehat{g}(k)|^{2} dk\right)^{\frac{1}{2}}$$

$$= \left(\int_{\mathbb{R}^{d}} e^{-\epsilon|2\pi k|^{2}} ||\widehat{g}(k)|^{2} dk\right)^{\frac{1}{2}} \xrightarrow{\epsilon \to 0^{+}} \left(\int_{\mathbb{R}^{d}} ||\widehat{g}(k)|^{2}\right)^{\frac{1}{2}} = ||g||_{L^{2}(\mathbb{R}^{d})}$$

as  $g \in L^2(\mathbb{R}^d)$ . Thus,  $G_{\epsilon} \star g \to e^{it\Delta}g$  pointwise. With Fatou:

$$\liminf_{\epsilon \to 0^+} \|G_{\epsilon} \star g\|_{L^2(\mathbb{R}^d)} \geqslant \|e^{it\Delta}g\|_{L^2(\mathbb{R}^d)}$$

Thus,  $e^{it\Delta}g \in L^2(\mathbb{R}^d)$  and  $\|e^{it\Delta}g\|_{L^2(\mathbb{R}^d)} \leq \|g\|_{L^2(\mathbb{R}^d)}$ . To get the equality:

$$\widehat{G_{\epsilon} \star g}(k) = e^{-(it+\epsilon)|2\pi k|^2} \underbrace{\widehat{g}(k)}_{L^2} = \underbrace{e^{-\epsilon|2\pi k|^2}}_{\in [0,1]} \left( e^{-it|2\pi k|^2} \widehat{g}(k) \right) \xrightarrow{\epsilon \to 0^+} e^{it|2\pi k|^2} \widehat{g}(k)$$

in  $L^2(\mathbb{R}^d, dk)$ . Thus  $G_{\epsilon} \star g$  converges in  $L^2(\mathbb{R}^d)$ . Then up to a subsequence  $\epsilon \to 0^+$ , we can assume that

$$(G_{\epsilon} \star g)(x) \xrightarrow{\epsilon \to 0^+} H(x)$$

almost everywhere. (Dominated convergence) We already proved  $G_{\epsilon} \star g \to e^{it\Delta}g$  pointwise, so  $e^{it\Delta}g = H$ , i.e.  $G_{\epsilon} \star g \to e^{it\Delta}$  in  $L^2(\mathbb{R}^d)$ . Conclude

$$||g||_{L^2(\mathbb{R}^d)} \stackrel{\epsilon \to 0}{\longleftrightarrow} ||G_{\epsilon} \star g||_{L^2(\mathbb{R}^d)} \stackrel{\epsilon \to 0^+}{\longleftrightarrow} ||e^{it\Delta}g||_{L^2}.$$

This implies  $||e^{it\Delta}g||_{L^2(\mathbb{R}^d)} = ||g||_{L^2(\mathbb{R}^d)}$  for all  $g \in L^1(\mathbb{R}^d) \cap L^2(\mathbb{R}^d)$ . For  $g \in L^2(\mathbb{R}^d)$  there is a sequence  $\{g_n\} \subseteq L^1 \cap L^2$  s.t.  $g_n \to g$  in  $L^2(\mathbb{R}^d)$ . Then

$$\|e^{it\Delta}g_n - e^{it\Delta}g_m\|_{L^2} = \|e^{it\Delta}\underbrace{(g_n - g_m)}_{L^1 \cap L^2} = \|g_n - g_m\|_{L^2} \to 0$$

as  $m, n \to \infty$ . So  $e^{it\Delta}g_n$  is a Cauchy sequence in  $L^2$ , so it has a limit which we define as  $e^{it\Delta}g$ . Why the limit  $e^{it\Delta}g$  is independent of the choice of  $g_n$ : If we have 2 different sequences  $\{g_n\}, \{\tilde{g}_n\} \subseteq L^1 \cap L^2$ , then  $g_n, \tilde{g}_n \to g$  in  $L^2(\mathbb{R}^d)$ . Then

$$\|e^{it\Delta}g_n - e^{it\Delta}\tilde{g}_n\|_{L^2(\mathbb{R}^d)} = \|e^{it\Delta}\underbrace{(g_n - \tilde{g}_n)}_{L^1 \cap L^2}\|_{L^2} = \|g_n - \tilde{g}_n\|_{L^2} \xrightarrow{n \to \infty} 0$$

 $\rightarrow \lim_{n\to\infty} e^{it\Delta}g_n = \lim_{n\to\infty} e^{it\Delta}\tilde{g}_n$ . Finally, we have  $g \in L^2(\mathbb{R}^d), g_n \in L^1 \cap L^2 \to g$  in  $L^2$ .

$$\widehat{e^{it\Delta}}q(k) \overset{n\to\infty}{\longleftarrow} \widehat{e^{it\Delta}q_n}(k) = e^{-it|2\pi k|^2} \hat{q}_n(k) \xrightarrow{n\to\infty} e^{-it|2\pi k|^2} \hat{q}(k)$$

in 
$$L^2(\mathbb{R}^d)$$
.

Theorem 8.2 (Long term behaviour)

1. If 
$$g \in L^1(\mathbb{R}^d)$$
, then  $(e^{it\Delta}g)(x) = \frac{1}{(4\pi i t)^{\frac{d}{2}}} \int_{\mathbb{R}^d} e^{i\frac{|x-y|^2}{4t}} g(y) dy$ . This implies

$$||e^{it\Delta}g||_{L^{\infty}(\mathbb{R}^d)} \leqslant \frac{1}{(4\pi t)^{\frac{d}{2}}}||g||_{L^1(\mathbb{R}^d)} \xrightarrow{t \to \infty} 0.$$

On the other hand, for all  $g \in L^2(\mathbb{R}^d)$ ,  $\|e^{it\Delta}g\|_{L^2} = \|g\|_{L^2}$ . Exercise 8.3: If  $g \in L^1 \cap L^2$  then  $\|e^{it\Delta}g\|_{L^p} \to 0$  for all 2 .

2. For all bounded sets  $\Omega$ , for all  $g \in L^2(\mathbb{R}^d)$  we have  $\|\mathbb{1}_{\Omega}e^{it\Delta}g\|_{L^2(\mathbb{R}^d)} \to 0$  as  $t \to \infty$ . Equivalently, for all R > 0:

$$\int_{|x| \leqslant R} |(e^{it\Delta}g)(x)|^2 dx \xrightarrow{t \to \infty} 0$$

(RAGE theorem)

*Proof.* 1. With the Fourier transform of  $e^{it\Delta g}$  (Theorem 8.1) we get

$$\|e^{it\Delta}g-g\|_{L^2}^2 = \|\widehat{e^{it\Delta}g}-\widehat{g}\|_{L^2}^2 = \int_{\mathbb{R}^d} \underbrace{(e^{-it|2\pi k|^2}-1)}_{\substack{\underline{t}\to 0\\\mathrm{bd.\ by\ }2\forall t}} |\underbrace{\widehat{g}(k)}_{\in L^2}|^2\,dk \xrightarrow{\underline{t}\to 0} 0$$

by dominated convergence.

2. Decompose  $g = g_1 + g_2$ , then  $e^{it\Delta}g = e^{it\Delta}g_1 + e^{it\Delta}g_2$ . Take  $g_1 \in L^1$ , then by 1. we have

$$\|e^{it\Delta}g_1\|_{L^{\infty}} \leqslant \frac{\|g_1\|_{L^1}}{|4\pi t|^{\frac{d}{2}}} \xrightarrow{t \to \infty} 0$$

$$\Rightarrow \int_{|x| \leqslant R} |(e^{it\Delta}g_1)(x)|^2 \leqslant \frac{CR^d \|g_1\|_{L^1}}{|4\pi t|^{\frac{d}{2}}} \xrightarrow{t \to \infty} 0$$

On the other hand, with a good choice of  $g_2$ :

$$\|e^{it\Delta}g_2\|_{L^2(\mathbb{R}^d)} = \|g_2\|_{L^2(\mathbb{R}^d)} \to 0$$

$$\Rightarrow \int_{|x| \le R} |(e^{it\Delta}g_2)(x)|^2 dx \le \|e^{it\Delta}g_2\|_{L^2(\mathbb{R}^d)}^2 \to 0$$

Conclusion:

$$\int_{|x| \leqslant R} |(e^{it\Delta}g)(x)|^2 dx \leqslant 2 \int_{|x| < R} |(e^{it\Delta}g_1)(x)|^2 + 2 \int_{|x| \leqslant R} |e^{it\Delta}g_2(x)|^2 \xrightarrow{t \to \infty} 0$$

**Exercise 8.3** (E 13.4) Let  $g \in L^2(\mathbb{R}^d) \cap L^1(\mathbb{R}^d)$ . Let  $u : \mathbb{R}^d \times \mathbb{R} \to \mathbb{C}$  be the solution of the Schrödinger equation with the initial data g, namely

$$u(x,t) = (e^{it\Delta}g)(x) = \frac{1}{(4\pi it)^{\frac{d}{2}}} \int_{\mathbb{R}^d} e^{\frac{i|x-y|}{4t}} g(y) \, dy.$$

Prove that for all  $2 \leq p \leq \infty$  we have

$$\lim_{t\to\infty} \|u(\bullet,t)\|_{L^p(\mathbb{R}^d)} = 0.$$

Solution. We already know:

$$\|e^{it\Delta}g\|_{L^{\infty}} \leqslant \frac{\|g\|_{L^{1}}}{(4\pi t)^{\frac{d}{2}}} \xrightarrow{t\to 0} 0$$
$$\|e^{it\Delta}q\|_{L^{2}} = \|q\|_{L^{2}}$$

Now, interpolation for all 2 gives

$$\|e^{it\Delta}g\|_{L^p} \leqslant \|e^{it\Delta}g\|_{L^2}^{\theta} \|e^{it\Delta}g\|_{L^\infty}^{1-\theta} \xrightarrow{t\to\infty} 0,$$

for  $\theta \in (0,1)$ .

**Exercise 8.4** (Bonus 12) Assume  $g \in L^p(\mathbb{R}^d)$ , for some 1 . Prove that for all <math>t > 0,  $e^{it\Delta}g$  is well-defined and belongs to  $L^{p'}(\mathbb{R}^d)$  where  $\frac{1}{p} + \frac{1}{p'} = 1$ . Moreover:

$$||e^{it\Delta}g||_{L^{p'}} \xrightarrow{t\to\infty} 0$$

Hint: You can use Riesz-Thorin interpolation theorem.

**Lemma 8.5** If  $g \in L^2(\mathbb{R}^d)$ , then for all  $\epsilon > 0$  we can write  $g = g_1 + g_2$ ,  $g, g_2 \in L^2$ ,  $g_1 \in L^1$ . s.t.  $\|g_2\|_{L^2} \leq \epsilon$  and  $\|g_1\|_{L^1} \leq C_{\epsilon}$ .

Proof.

$$g = \underbrace{g\mathbb{1}(|g| > L)}_{g_1} + \underbrace{g\mathbb{1}(|g| \leqslant L)}_{g_2}$$

Now  $g \in L^2$ , then  $g_2 \in L^2$  and

$$\int_{\mathbb{R}^d} |g_2|^2 = \int_{\mathbb{R}^d} |g|^2 \mathbb{1}(|g| \leqslant L) \xrightarrow{L \to 0} 0$$

and  $g_1 \in L^1$  since

$$\int_{\mathbb{R}^d} |g_1| = \int_{\mathbb{R}^d} |g| \mathbb{1}(|g| > L) \le \int_{\mathbb{R}^d} |g| \frac{|g|}{L} = \frac{1}{L} \int_{\mathbb{R}^d} |g|^2 < \infty$$

Consequently:

$$\int_{|x| \leqslant R} |(e^{it\Delta}g)(x)|^2 dx \leqslant 2 \int_{|x| \leqslant R} |e^{it\Delta}g_1(x)|^2 + 2 \int_{|x| \leqslant R} |e^{it\Delta}g_2(x)|^2$$

$$\leqslant CR^d \left(\frac{\|g\|_{L^1}}{t^{\frac{d}{2}}}\right) + \|g_2\|_{L^2}^2$$

$$\leqslant \frac{C_{\epsilon}R^d}{t^d} + \epsilon^2 \xrightarrow{t \to \infty} \epsilon^2 \xrightarrow{\epsilon \to 0} 0$$

**Theorem 8.6** If  $g \in C_c^{\infty}(\mathbb{R}^d)$ , then

$$u(x,t) = \frac{1}{(4\pi t)^{\frac{d}{2}}} \int_{\mathbb{R}^d} e^{\frac{i|x-y|^2}{4t}} g(y) \, dy,$$

 $x \in \mathbb{R}^d, t > 0$ . satisfies  $u \in C^{\infty}(\mathbb{R}^d \times (0, \infty))$  and

$$\begin{cases} -i\partial_t u - \Delta_x u = 0 & \text{in } \mathbb{R}^d \times (0, \infty) \\ \lim_{t \to 0} u(x, t) = g(x) \text{ uniformly } x \in \mathbb{R}^d \end{cases}$$

Proof.

$$\begin{split} \hat{u}(k,t) &= e^{-it|2\pi k|^2} \hat{g}(k) \quad \forall k \in \mathbb{R}^d, \forall t > 0 \\ \Rightarrow \quad \widehat{D^{\alpha}u}(k,t) &= e^{-it|2\pi k|^2} (2\pi ik)^{\alpha} \hat{g}(k), \quad (2\pi ik)^{\alpha} = \prod_{j=1}^d (2\pi ik_j)^{\alpha_j} \\ \Rightarrow \quad \|\widehat{D^{\alpha}u}(k,t)\|_{L^1(\mathbb{R}^d,dk)} &= \int_{\mathbb{R}^d} |(2\pi ik)^{\alpha}| |\hat{g}(k)| \, dk \leqslant \int_{\mathbb{R}^d} |k|^{|\alpha|} |\hat{g}(k)| \, dk < \infty \end{split}$$

as  $|\hat{g}(k)| \leq \frac{C_n}{(1+|k|)^N}$  for all  $N \geq 1$ . This implies  $D^{\alpha}u(\bullet,t) \in C(\mathbb{R}^d) \cap L^{\infty}(\mathbb{R}^d)$ . Moreover,

$$\partial_t \hat{u}(k,t) = e^{-it|2\pi k|^2} \hat{g}(k) \underbrace{(-i|2\pi k|^2)}_{\in L^1(\mathbb{R}^d, dk)}$$

 $\leadsto t \mapsto u(x,t) \in C^1$ . Similary  $t \mapsto u(x,t) \in C^m$  for all  $m \geqslant 1$ .

$$-i\partial_t \widehat{u - \Delta_x} u = (-i)e^{-it|2\pi k|^2} (-i|2\pi k|^2)\hat{g}(k) + e^{-it|2\pi k|^2} |2\pi k|^2 \hat{g}(k) = 0.$$

$$\Rightarrow$$
  $-i\partial_t u - \Delta_x u = 0$  almost everywhere in  $\mathbb{R}^d$ 

$$\Rightarrow$$
  $-i\partial_t u - \Delta_x u = 0$  everywhere in  $\mathbb{R}^d$ 

Before we proved  $u(x,t)=(e^{it\Delta}g)(x)\to g(x)$  in  $L^2(\mathbb{R}^d)$ . Here we can do better:

$$\int_{\mathbb{R}^d} |\hat{u}(k,t) - \hat{g}(k)| dk = \int_{\mathbb{R}^d} |\underbrace{e^{-it|2\pi k|^2} - 1}_{t \to +0}| \underbrace{|\hat{g}(k)|}_{\in L^1} \xrightarrow{t \to 0} 0$$

So we get

$$\sup_{x \in \mathbb{R}^d} |u(x,t) - g(x)| \xrightarrow{t \to 0} 0.$$

**Theorem 8.7** 1. If  $g \in H^2(\mathbb{R}^d)$ , then  $u = e^{it\Delta}g$  satisfies

•  $-i\frac{d}{dt}u(\bullet,t)$  exists as a function in  $L^2(\mathbb{R}^d)$  and  $=\Delta_x u$  for all t>0.

$$\left(-i\frac{d}{dt}u(\bullet,t) = \frac{u(\bullet,t+h) - u(\bullet,t)}{h} \xrightarrow{h\to 0} \Delta_x u = e^{it\Delta}\underbrace{(\Delta g)}_{\in L^2} \in L^2(\mathbb{R}^d)\right)$$

- $u(\bullet,t) \xrightarrow{t\to 0} g$  in  $L^2$ .
- 2. If  $g \in L^2(\mathbb{R}^d)$ , then  $u = e^{it\Delta}g$  satisfies:

$$-i\frac{d}{dt}\langle\phi,u\rangle_{L^2} = \langle\Delta\phi,u\rangle_{L^2} \quad \forall \phi \in C_c^{\infty}(\mathbb{R}^d) \text{ (or } \phi \in H^2(\mathbb{R}^d))$$

(Here  $-i\frac{d}{dt} = \Delta_x u$  is meant in distributional sense)

Proof. 1. 
$$g \in H^2(\mathbb{R}^d)$$
,

$$\begin{split} & \left\| \frac{u(\bullet, t+h) - u(\bullet, t)}{h} e^{it\Delta}(\Delta g) \right\|_{L^{2}(\mathbb{R}^{d})}^{2} = \left\| \frac{u(\bullet, t+h) - \widehat{u(\bullet, t)}}{h} e^{it\Delta}(\Delta g) \right\|_{L^{2}(k, dk)}^{2} \\ & = \int_{\mathbb{R}^{d}} \left| \frac{e^{-(t+h)|2\pi k|^{2}} \widehat{g}(k) - e^{-it|2\pi k|^{2}} \widehat{g}(k)}{h} - e^{-it|2\pi k|^{2}} |2\pi k|^{2} \widehat{g}(k) \right|^{2} dk \\ & = \int_{\mathbb{R}^{d}} \underbrace{\left| (-i) \frac{(e^{-ih|2\pi k|^{2}} - 1)}{h} + |2\pi k|^{2} \right|^{2} |\widehat{g}(k)|^{2}}_{h \to 0} dk \xrightarrow{h \to 0} 0 \end{split}$$

by Dominated Convergence,  $|\ldots| \leqslant C|k|^2|\hat{(k)}|^2 \in L^1$ . We have

$$(-i)\frac{e^{-ih|2\pi k|^2} - 1}{h} \xrightarrow{h \to 0} (-i)^2 |2\pi k|^2 = -|2\pi k|^2$$

and  $|\ldots| \leqslant C|k|^2$ . Also

$$\hat{u} = \widehat{e^{it\Delta}g} = e^{-it|2\pi k|^2} \hat{g}(k)$$

$$\Rightarrow |2\pi k|^2 \hat{u}(k) = e^{-it|2\pi k|^2} \underbrace{|2\pi k|^2 \hat{g}(k)}_{\in L^2(dk)} \in L^2(dk)$$

$$\Rightarrow \widehat{\Delta_x u} = \widehat{e^{it\Delta}(\Delta g)}$$

$$\Rightarrow \Delta_x u = e^{it\Delta}(\Delta g)$$

#### 2. $g \in L^2$ :

$$\begin{split} -i\frac{d}{dt} &= \langle \phi, u \rangle = -i\frac{d}{dt} \int_{\mathbb{R}^d} \underbrace{\frac{\widehat{\phi}(k)}{\widehat{\phi}(k)}}_{\leqslant \frac{C_N}{(1+|k|)^N} \forall N \geqslant 1} e^{-it|2\pi k|^2} \widehat{g}(k) \, dk \\ &= \int_{\mathbb{R}^d} \overline{\widehat{\phi}(k)} (-|2\pi k|^2) \widehat{g}(k) \, dk \\ &= \int_{\mathbb{R}^d} \widehat{\Delta \phi} \widehat{g} = \langle \Delta \phi, g \rangle_{L^2} \end{split}$$

Spectral technique: If  $\mathcal{H}$  is a Hilbertspace (separable) and  $A:D(A)\to\mathcal{H}$  is a self-adjoint  $A=A^*$ , i.e.

$$\begin{cases} \langle u, Av \rangle = \langle Au, v \rangle \\ D(A) = D(A^{\star}) \end{cases}$$

where

$$D(A^*) = \{ u \in \mathcal{H} \mid \langle u, Av \rangle = \langle A^*u, v \rangle \}$$
$$= \left\{ u \in \mathcal{H} \middle| \sup_{v \in D(A)} \frac{|\langle u, Av \rangle}{\|v\|_{\mathcal{H}}} < \infty \right\}$$

Then we can define a unitary operator  $e^{-itA}: \mathcal{H} \to \mathcal{H}$  with  $t \in \mathbb{R}$ . Moreover, for all  $g \in \mathcal{H}$ ,  $u = e^{-itA}g$  solves

$$\begin{cases} i\partial_t u = Au \\ u(t \to 0) = g \end{cases}$$

(Stone Theorem) (eg  $A = -\Delta$ )

**Theorem 8.8** (Spectral theorem) If A is a self-adjoint operator on a separable Hilbert space, then, there is a unitary operator  $U: \mathcal{H} \to L^2(\Omega)$  s.t.  $UAU^* = M_f$  on  $L^2(\Omega)$ , where  $M_f$  is a multipilication operator of a real-value function  $f: \Omega \to \mathbb{R}$ :

$$(M_f)(\phi)(x) = f(x)\phi(x)$$

for all  $x\in\Omega, \forall\phi\in L^2(\Omega)$ . Consequence:  $Ue^{-itA}U^\star=e^{-itM_f}$  (multipilication) on  $L^2(\Omega)$  where

$$(e^{-itM_f}\phi)(x) = e^{-itf(x)}\phi(x)$$

for all  $x \in \Omega$ ,  $\phi \in L^2(\Omega)$ .

**Example 8.9**  $A = -\Delta$  on  $\mathcal{H} = L^2(\mathbb{R}^d)$ ,  $U = \mathcal{F}$  (Fourier Transform),  $\mathcal{F}(-\Delta)\mathcal{F}^* = |2\pi k|^2$  multiplication.

$$\mathcal{F}(e^{-itA}\phi) = e^{-it|2\pi k|^2}\hat{\phi}(k)$$

**Example 8.10** Consider  $A = -\Delta + V(x)$  in  $L^2(\mathbb{R}^d)$ ,  $V(x) \in C_c^{\infty}(\mathbb{R}^d)$  or  $V(x) = |x|^2$ . If V is nice, then A can be defined  $D(A) \to L^2(\mathbb{R}^d)$  as a self-adjoint operator.  $\to e^{-itA} = e^{-it(-\Delta+v)}$  is well-defined as a unitary operator for all  $t \in \mathbb{R}$ . In particular, for all  $g \in L^2$ ,  $u = e^{-it(-\Delta+v)}g$  solves

$$\begin{cases} i\partial_t u = (-\Delta + v)u\\ u(t \to 0) = g \end{cases}$$

Scattery Theory:  $e^{-it(-\Delta+v)}g$  as  $t\to\infty$ .

1. RAGE: If  $-\Delta + V$  has no eigenfunction, then

$$\frac{1}{T} \int_0^T \int_{|x| \leq R} \left| \left( e^{-it(-\Delta + v)} g \right) (x) \right|^2 dx dt \xrightarrow{T \to 0} 0$$

2. (Asymptotic completeness) If  $0 \le V \in C_c^{\infty}$  is small, then there is a unitary operator U on  $L^2$  s.t. for all  $g \in L^2$ :

$$\left\| e^{-it(-\Delta+v)}g - e^{-it\Delta}(Ug) \right\|_{L^2(\mathbb{R}^d)} \xrightarrow{t \to \infty} 0$$