Recent Trends of Meta Learning

Kevin Jeong

DGU AI lab.

chjeong@dongguk.edu

AI가 세계를 지배할 거라는 AI 알못들:

AI가 세계를 지배할 거라는 AI 알못들:

내가 만든 AI:

AI가 세계를 지배할 거라는 AI 알못들:

내가 만든 AI:

What is the Meta Learning?

Why is it fancy?

Research Category

- Machine Learning
 - Supervised Learning
 - Unsupervised Learning
 - Reinforcement Learning
- Meta Learning
 - Meta Supervised Learning
 - Meta Reinforcement Learning

- What about Unsupervised Meta Learning?
 - Not sure, Seems that not much research yet
 - But it is very important!

What is Meta Learning?

Large, diverse data

Broad Generalization

GPT-2

Russakovsky et al. '14

Better Language Models and Their Implications

Ve've trained a large-scale unsupervised anguage model which generates coherent paragraphs of text, achieves state-of-the-art performance on many language modeling penchmarks, and performs rudimentary reading comprehension, machine translation, question answering, and summarization—all without ask-specific training.

Radford et al. '19

Yang et al. '19

What is Meta Learning?

Large, diverse data

Russakovsky et al. '14

Broad Generalization

Better Language Models and Their Implications

We've trained a large-scale unsupervised anguage model which generates coherent baragraphs of text, achieves state-of-the-art performance on many language modeling benchmarks, and performs rudimentary reading comprehension, machine translation, question answering, and summarization—all without ask-specific training.

GPT-2

Radford et al. '19

What if you don't have a large dataset?

What if you want a general-purpose AI system in the real world?

Training data

Van Gogh

Paul Cezanne

Chelsea Finn, Sergey Levine. Meta Learning Tutorials, ICML 2019

Training data

Test datapoint

Van Gogh

By Gogh or Cezanne?

→ Few-Shot Learning

Training Setup

Meta Learning : Maximum Likelihood Estimation

Training Setup

Meta Learning : Maximum Likelihood Estimation

How to Train?

- → Algorithms
- Black-box adaptation
- Non-parametric methods
- Optimizationbased Inference
- Bayesian methods
- ...

Meta Learning

- Few-Shot Learning Perspective
 - Black-Box Adaptation(Model-based Approach)
 - \rightarrow Using Internal Memory like RNN(or External Memory) : SL(O), RL(O)
 - Non-Parametric Method(Metric-based Approach)
 - \rightarrow Learn the metric manifold space(kernel function) : SL(O), RL(X)
 - Optimization-based Inference
 - \rightarrow Optimization of the model parameters : SL(O), RL(O)

Black-Box Adaptation(Model-based Approach)

Figure 7. MANN Architecture.

Non-Parametric Method(Metric-based Approach)

Figure 1: Matching Networks architecture

Optimization-based Inference

Algorithm 1 Model-Agnostic Meta-Learning

Require: $p(\mathcal{T})$: distribution over tasks

Require: α , β : step size hyperparameters

- 1: randomly initialize θ
- 2: while not done do
- 3: Sample batch of tasks $\mathcal{T}_i \sim p(\mathcal{T})$
- 4: for all \mathcal{T}_i do
- 5: Evaluate $\nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$ with respect to K examples
- 6: Compute adapted parameters with gradient descent: $\theta'_i = \theta \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$
- 7: end for
- 8: Update $\theta \leftarrow \theta \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta_i'})$
- 9: end while

Model-Agnostic Meta Learning

- Optimization-based Inference
 - Meta Supervised Learning

Algorithm 2 MAML for Few-Shot Supervised Learning

Require: p(T): distribution over tasks **Require:** α , β : step size hyperparameters

- 1: randomly initialize θ
- 2: **while** not done **do**
- 3: Sample batch of tasks $\mathcal{T}_i \sim p(\mathcal{T})$
- 4: for all \mathcal{T}_i do
- 5: Sample K datapoints $\mathcal{D} = \{\mathbf{x}^{(j)}, \mathbf{y}^{(j)}\}$ from \mathcal{T}_i
- 6: Evaluate $\nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$ using \mathcal{D} and $\mathcal{L}_{\mathcal{T}_i}$ in Equation (2) or (3)
- 7: Compute adapted parameters with gradient descent: $\theta'_i = \theta \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$
- 8: Sample datapoints $\mathcal{D}'_i = \{\mathbf{x}^{(j)}, \mathbf{y}^{(j)}\}$ from \mathcal{T}_i for the meta-update
- 9: **end for**
- 10: Update $\theta \leftarrow \theta \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta_i'})$ using each \mathcal{D}_i' and $\mathcal{L}_{\mathcal{T}_i}$ in Equation 2 or 3
- 11: end while

Model-Agnostic Meta Learning

- Optimization-based Inference
 - Meta Supervised Learning

Algorithm 2 MAML for Few-Shot Supervised Learning

```
Require: p(\mathcal{T}): distribution over tasks
Require: \alpha, \beta: step size hyperparameters
  1: randomly initialize \theta
       while not done do
             Sample batch of tasks \mathcal{T}_i \sim p(\mathcal{T})
            for all \mathcal{T}_i do
                 Sample K datapoints \mathcal{D} = \{\mathbf{x}^{(j)}, \mathbf{y}^{(j)}\} from \mathcal{T}_i
 5:
 6:
                 Evaluate \nabla_{\theta} \mathcal{L}_{\mathcal{T}_{\delta}}(f_{\theta}) using \mathcal{D} and \mathcal{L}_{\mathcal{T}_{\delta}} in Equation (2)
                 or (3)
                 Compute adapted parameters with gradient descent:
 7:
                 \theta_i' = \theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})
                 Sample datapoints \mathcal{D}'_i = \{\mathbf{x}^{(j)}, \mathbf{y}^{(j)}\} from \mathcal{T}_i for the
 8:
                meta-update
            end for
            Update \theta \leftarrow \theta - \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta_i'}) using each \mathcal{D}_i'
```

and $\mathcal{L}_{\mathcal{T}_i}$ in Equation 2 or 3

11: end while

Model-Agnostic Meta Learning

- Optimization-based Inference
 - Meta Supervised Learning

Algorithm 2 MAML for Few-Shot Supervised Learning

```
Require: p(\mathcal{T}): distribution over tasks
Require: \alpha, \beta: step size hyperparameters
  1: randomly initialize \theta
       while not done do
            Sample batch of tasks \mathcal{T}_i \sim p(\mathcal{T})
            for all \mathcal{T}_i do
                 Sample K datapoints \mathcal{D} = \{\mathbf{x}^{(j)}, \mathbf{y}^{(j)}\} from \mathcal{T}_i
 5:
 6:
                 Evaluate \nabla_{\theta} \mathcal{L}_{\mathcal{T}_{\delta}}(f_{\theta}) using \mathcal{D} and \mathcal{L}_{\mathcal{T}_{\delta}} in Equation (2)
                 or (3)
                 Compute adapted parameters with gradient descent:
 7:
                 \theta_i' = \theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})
                 Sample datapoints \mathcal{D}'_i = \{\mathbf{x}^{(j)}, \mathbf{y}^{(j)}\} from \mathcal{T}_i for the
 8:
                meta-update
 9:
            end for
            Update \theta \leftarrow \theta - \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta'_i}) using each \mathcal{D}'_i
10:
            and \mathcal{L}_{\mathcal{T}_i} in Equation 2 or 3
```

11: end while

- Meta Learning
 - Generic Learning

$$\theta^* = \operatorname*{argmax}_{\theta} \mathcal{L}(\theta, \mathcal{D}^{train})$$
$$= f_{learn}(\mathcal{D}^{train})$$

Generic Meta Learning

$$\theta^* = \operatorname*{argmax} \sum_{i=1}^n \mathcal{L}(\phi_i, \mathcal{D}_i^{test})$$
where $\phi_i = f_{\theta}(\mathcal{D}_i^{test})$

- Meta Learning
 - Generic Learning

$$\theta^* = \operatorname*{argmax}_{\theta} \mathcal{L}(\theta, \mathcal{D}^{train})$$
$$= f_{learn}(\mathcal{D}^{train})$$

Generic Meta Learning

$$\theta^* = \operatorname*{argmax} \sum_{i=1}^n \mathcal{L}(\phi_i, \mathcal{D}_i^{test})$$
 where $\phi_i = f_{\theta}(\mathcal{D}_i^{test})$

- Meta Reinforcement Learning
 - Reinforcement Learning

$$heta^* = \operatorname*{argmax}_{ heta} \mathbb{E}_{\pi_{ heta}(au)}[R(au)]$$

$$= f_{RL}(\mathcal{M})$$

$$\mathcal{M} = \{S, \mathcal{A}, \mathcal{P}, r\}$$

Meta Reinforcement Learning

$$heta^* = rgmax \sum_{i=1}^n \mathbb{E}_{\pi_{\phi_i}(\tau)}[R(\tau)]$$
 where $\phi_i = f_{\theta}(\mathcal{M}_i)$

• What's the mathematics formulations meaning?

- Meta-RL with recurrent policies(Black-box adaptation)
- Meta-RL as an optimization problem → MAML
- Meta-RL as partially observed RL(POMDP)
 - Variational inference for meta-RL
 - Specific instantiation : PEARL
- Challenge of meta learning(★★★★)
 - Meta-Overfitting → One of strategies: Unsupervised meta learning
 - Memorization → One of strategies : Online meta learning

• Are these really various tasks?

• Are these really various tasks?

We need Unsupervised Meta Learning!

→ Using Self-supervision, Active Learning etc.

• Are these really various tasks?

• Are these really various tasks?

Figure 1: The process of creation of the training and validation data of the meta-training task \mathcal{T} . (top) Supervised MAML: We start from a dataset where the samples are labeled with their class. The training data is created by sampling N distinct classes C_{L_i} , and choosing a random sample x_i from each. The validation data is created by choosing a different sample x_i' from the same class. (bottom) UMTRA: We start from a dataset of unlabeled data. The training data is created by randomly choosing N samples x_i from the dataset. The validation data is created by applying the augmentation function \mathcal{A} to each sample from the training data. For both MAML and UMTRA, artificial temporary labels $1, 2 \dots N$ are used.

Challenge 2 : Memorization

Do persons or animals really learn that way?

Meta Learning

Challenge 2 : Memorization

Do persons or animals really learn that way?

Meta Learning

Online Meta Learning

More Advanced Research Studies for Strong AI?

To be continue...!

