From Inconsistency to Unity: A Benchmarking Framework for Unsupervised RUL Domain Adaptation

Appendix

I. DATASET DETAILS

Dataset		Training	Validation	Test	
	1	$TRAIN_1 - TRAIN_{80}$	$TRAIN_{81} - TRAIN_{100}$	$Test_1 - Test_{100}$	
C-MAPSS	2	$TRAIN_1 - TRAIN_{208}$	Train ₂₀₉ - Train ₂₆₀	$Test_1 - Test_{259}$	
C-MAF 33	3	Train ₁ - Train ₈₀	Train ₈₁ - Train ₁₀₀	$Test_1 - Test_{100}$	
	4	$TRAIN_1 - TRAIN_{199}$	$TRAIN_{200} - TRAIN_{249}$	$TEST_1 - TEST_{248}$	
	1	BEARING ₁ , BEARING ₂	BEARING ₃	Bearing ₄ – Bearing ₇	
FEMTO	2	DEARING1, DEARING2	BEARINGS		
	3	Bearing ₁	Bearing ₂	BEARING3	
	1				
XJTU-SY	SY 2 BEARING ₁ , BEARING ₂		Bearing ₃	Bearing ₄ , Bearing ₅	
	3				

TABLE I

SPLIT ASSIGNMENTS PER DATASET: TRAIN $_i$ denotes the i^{th} entity from the original C-MAPSS training split and Test $_i$ the i^{th} entity from the original test split. Bearing $_i$ denotes the i^{th} bearing of the respective condition in FEMTO and XJTU-SY respectively.

	XJTU-SY	Cond1	Cond2	Cond3
	Cond1	-	$1 \rightarrow 2$	$1 \rightarrow 3$
	Cond2	$2 \rightarrow 1$	-	$2 \rightarrow 3$
•	Cond3	$3 \rightarrow 1$	$3 \rightarrow 2$	-

FEMTO	Cond1	Cond2	Cond3
Cond1	-	$1 \rightarrow 2$	$1 \rightarrow 3$
Cond2	$2 \rightarrow 1$	-	$2 \rightarrow 3$
Cond3	$3 \rightarrow 1$	$3 \rightarrow 2$	-

C-MAPSS	Cond1	Cond2	Cond3	Cond4			
Cond1	-	$1 \rightarrow 2$	$1 \rightarrow 3$	$1 \rightarrow 4$			
Cond2	$2 \rightarrow 1$	-	$2 \rightarrow 3$	$2 \rightarrow 4$			
Cond3	$3 \rightarrow 1$	$3 \rightarrow 2$	-	$3 \rightarrow 4$			
Cond4	$4 \rightarrow 1$	$4 \rightarrow 2$	$4 \rightarrow 3$	-			
TADLEII							

TABLE II

INVESTIGATED ADAPTATION TASKS: EACH ROW REPRESENTS A LABELED SOURCE DATASET AND EACH COLUMN AN UNLABELED TARGET DATASET.

Dataset		Bearing						
		1	2	3	4	5	6	7
	1	407	544	521	840	2306	479	995
FEMTO	2	819	192	257	248	252	213	163
	3	132	116	306	-	-	-	-
	1	28	32	61	52	36	-	-
XJTU-SY	2	238	65	128	4	121	-	-
	3	749	614	342	1418	74	-	-
TABLE III								

FIRST-TIME-TO-PREDICT FOR THE BEARINGS IN FEMTO AND XJTU-SY.

II. HYPERPARAMETER DETAILS

	Hyperparameter	Sampling	Boundaries		
	Learning Rate	loguniform	$[10^{-5}, 10^{-2}]$		
	# Layers	choice	[1, 10]		
1D-CNN	p Dropout	uniform	[0, 0.5]		
ID-CNN	# Feature Channels	choice	$\{16, 32, 34\}$		
	Kernel Size	choice	${3,5,8}$		
	# FC Units	choice	$\{16, 32, 64, 128\}$		
•	Learning Rate	loguniform	$[10^{-5}, 10^{-2}]$		
	# Layers	choice	[1, 3]		
LSTM	p Dropout	uniform	[0, 0.5]		
	Hidden Size	choice	$\{16, 32, 34\}$		
	# FC Units	choice	{16, 32, 64, 128}		
TABLE IV					

THE HYPERPARAMETER SEARCH SPACE FOR THE BACKBONE NETWORKS.

	Hyperparameter	Sampling	Boundaries
	Learning Rate	loguniform	$[10^{-5}, 10^{-2}]$
DANN	# Layers Domain Disc	choice	[1, 3]
	DANN Factor	loguniform	[0.1, 10.0]
	Learning Rate	loguniform	$[10^{-5}, 10^{-2}]$
MMD	# Kernels	choice	[1, 5]
	MMD Factor	loguniform	[0.1, 10.0]
	Learning Rate	loguniform	$[10^{-5}, 10^{-2}]$
Consistency	# Layers Domain Disc	choice	[1, 3]
	Consistency Factor	loguniform	[0.1, 1.0]
	Learning Rate	loguniform	$[10^{-5}, 10^{-2}]$
Conditional DANN	# Layers Domain Disc	choice	[1, 3]
Conditional DAM	DANN Factor	loguniform	[0.1, 10.0]
	Dynamic Adaptive Factor	uniform	[0.1, 0.9]
	Learning Rate	loguniform	$[10^{-5}, 10^{-2}]$
Conditional MMD	# Kernels	choice	[1, 5]
Conditional MIMID	MMD Factor	loguniform	[0.1, 10.0]
	Dynamic Adaptive Factor	uniform	[0.1, 0.9]
Latent Alignment	Learning Rate	loguniform	$[10^{-5}, 10^{-2}]$
Latent Angilinent	$\alpha_h, \alpha_{d,d}, \alpha_{d,l}, \alpha_{d,f}$	loguniform	[0.1, 10.0]
	Learning Rate	loguniform	$[10^{-5}, 10^{-2}]$
AdaRUL	# Generator Updates	choice	[1, 10]
AuaKUL	# Discriminator Updates	choice	[5, 50]
	# Layers Domain Disc	choice	[1, 3]
Pseudo Labels	Learning Rate	loguniform	$[10^{-5}, 10^{-2}]$
	TABLE V	•	

THE HYPERPARAMETER SEARCH SPACE FOR THE APPROACHES.

	Hyperparameter	C-MAPSS	FEMTO	XJTU-SY	
	Learning Rate	0.00146	0.00048	0.00005	
	# Layers	2	5	2	
1D-CNN	p Dropout	0.1	0.2	0.2	
	# Feature Channels	32	64	64	
	Kernel Size	3	7	7	
	# FC Units	32	64	64	
	Learning Rate	0.00046	-	-	
	# Layers	1	-	-	
LSTM	p Dropout	0.2	-	-	
	Hidden Size	16	-	-	
	# FC Units	16	-	-	
TABLE VI					

THE HYPERPARAMETERS FOR THE BACKBONE NETWORKS.

	Hyperparameter	C-MAPSS	FEMTO	XJTU-SY	
	Learning Rate	0.00002	0.00052	0.00024	
DANN	# Layers Domain Disc	3	3	1	
	DANN Factor	8.0	5.7	0.1	
	Learning Rate	0.00198	0.00657	0.00003	
MMD	# Kernels	3	1	4	
	MMD Factor	1.1	4.9	0.2	
	Learning Rate	0.0081	0.00224	0.00136	
Consistency	# Layers Domain Disc	2	1	3	
	Consistency Factor	0.5	1.0	0.7	
	Learning Rate	0.00001	0.00015	0.00023	
Conditional DANN	# Layers Domain Disc	3	2	3	
Conditional DANN	DANN Factor	5.7	0.3	1.1	
	Dynamic Adaptive Factor	0.3	0.2	0.5	
	Learning Rate	0.00042	0.00087	0.00012	
Conditional MMD	# Kernels	2	4	1	
Conditional MIMID	MMD Factor	0.4	0.1	0.1	
	Dynamic Adaptive Factor	0.3	0.7	0.2	
Latent Alignment	Learning Rate	0.000234	0.00546	0.00025	
Latent Angimient	$\alpha_h, \alpha_{d,d}, \alpha_{d,l}, \alpha_{d,f}$	1.1	3.2	0.1	
	Learning Rate	0.00014	0.00012	0.00001	
AdaRUL	# Generator Updates	7	9	5	
Auakul	# Discriminator Updates	20	10	25	
	# Layers Domain Disc	3	2	2	
Pseudo Labels	Learning Rate	0.00085	0.00584	0.0002	
TABLE VII					

THE HYPERPARAMETERS FOR THE APPROACHES.

III. FIRST-TIME-TO-PREDICT CALCULATION

$$h(\mathbf{a}_{ij}) = \text{Kurtosis}(||\mathbf{a}_{ijk}||_2, \forall k), \quad \mathbf{a}_{ijk} \in \mathbb{R}^2$$
 (1)

$$h(\mathbf{a}_{ij}) = \text{KURTOSIS}(||\mathbf{a}_{ijk}||_2, \forall k), \quad \mathbf{a}_{ijk} \in \mathbb{R}^2$$

$$t^{\text{EARLY}} = \frac{1}{5|\mathcal{X}^{\text{TR}}|} \sum_{x \in \mathcal{X}^{\text{TR}}} |x|$$

$$t^{\text{EARLY}}_i = \begin{cases} t^{\text{EARLY}}, & t^{\text{EARLY}} \leq 0.5|x_i| \\ 0.1|x_i|, & t^{\text{EARLY}} > 0.5|x_i| \end{cases}$$

$$h^*_i = 2\sigma(h(\mathbf{a}_{ij}), j < t^{\text{EARLY}}_i)$$

$$\bar{h}_i = \mu(h(\mathbf{a}_{ij}), j < t^{\text{EARLY}}_i)$$

$$t^{\text{EARLY}}_i = h(\mathbf{a}_{ij}), j < t^{\text{EARLY}}_i)$$

$$t^{\text{EARLY}}_i = h(\mathbf{a}_{ij}), j < t^{\text{EARLY}}_i$$

$$t_i^{\text{EARLY}} = \begin{cases} t^{\text{EARLY}}, & t^{\text{EARLY}} \le 0.5|x_i| \\ 0.1|x_i|, & t^{\text{EARLY}} > 0.5|x_i| \end{cases}$$

$$(3)$$

$$h_i^* = 2\sigma(h(\mathbf{a}_{ij}), j < t_i^{\text{EARLY}})$$
 (4)

$$\bar{h}_i = \mu(h(\mathbf{a}_{ij}), j < t_i^{\text{EARLY}}) \tag{5}$$

$$h'(\mathbf{a}_{ij}) = |h(\mathbf{a}_{ij}) - \bar{h}_i| \tag{6}$$

$$FTTP_i = \min t, \text{ subject to } h'(\mathbf{a}_{it}) > h_i^* \land h'(\mathbf{a}_{i(t-1)}) > h_i^*$$
(7)