Statistical Computing and Data Visualization in R

Lecture 4

Basic statistical analysis

Statistical Analysis in R

- R provides a large number of functions that implement widely (and not so widely!) used statistical methods and streamline their application.
- We will cover some of those tools, particularly those related simple tests for means, variances and proportions, and for linear regression

 Consider situations where data comes from binomial distributions: Your data x is the number of successes out of n independent and identically distributed trials.

• Examples:

- -x = number of patients in the emergency room that suffer a particular complication, n = total number of patients coming in the emergency.
- x = number of respondents in survey who think
 POTUS is doing a great job, n = total number of people surveyed.

- In this case $x \sim \text{Binomial}(n, \theta)$, where n is the known number of trials and θ is the unknown probability of success in each individual trial.
- The "best" estimator for θ is the observed proportion of successes x/n.
- We often want to test
 - H0: $\theta = \theta_{\theta}$ vs H1: $\theta \neq \theta_{\theta}$ (or $\theta > \theta_{\theta}$ or $\theta < \theta_{\theta}$) → One sample test, θ is unknown but θ_{θ} is a fixed predetermined value)
 - H0: $\theta_1 = \theta_2$ vs H1: $\theta_1 \neq \theta_2$ (or $\theta_1 > \theta_2$ or $\theta_1 < \theta_2$) → Two sample test, both θ_1 and θ_2 are unknown and we have samples (x_1, n_1) and (x_2, n_2) .

Examples:

- Is the proportion of defective pieces being produced by the factory greater than the maximum of θ_{θ} = 3% specified in the contract?
- Do UCSC and UCSB admit Hispanic students at the same rate?
- Is a new needle exchange program effective at reducing the rate of Hepatitis C infection?

For the one-sample test, under H0:

$$\frac{\hat{x} - \theta_0}{\sqrt{\hat{x}(1 - \hat{x})/n}} \sim N(0, 1) \qquad \hat{x} = \frac{x}{n}, \text{ "large" } n$$

For the two-sample test, under H0:

$$\frac{\hat{x}_1 - \hat{x}_2}{\sqrt{\frac{\hat{x}_1(1 - \hat{x}_1)}{n_1} + \frac{\hat{x}_2(1 - \hat{x}_2)}{n_2}}} \sim N(0,1)$$
There are a few different variants, which differ in the denominator

$$\hat{x}_1 = \frac{x_1}{n_1}, \quad \hat{x}_2 = \frac{x_2}{n_2}, \quad \text{"large" } n_1 \text{ and } n_2$$

Implementing one- and two-sample approximate tests of proportions:.

```
> n = c(120, 140)
> x = rbinom(2, n, 1/3)
> prop.test(x,n,alternative="greater")
    2-sample test for equality of proportions with continuity correction
data: x out of n
X-squared = 0.398, df = 1, p-value = 0.2641
alternative hypothesis: greater
95 percent confidence interval:
 -0.05667545 1.00000000
sample estimates:
   prop 1 prop 2
0.3000000 0.2571429
> prop.test(x[1],n[1],1/2)
    1-sample proportions test with continuity correction
data: x[1] out of n[1], null probability 1/2
X-squared = 18.408, df = 1, p-value = 1.783e-05
alternative hypothesis: true p is not equal to 0.5
95 percent confidence interval:
 0.2215321 0.3914945
sample estimates:
0.3
```

The function prop.test() generates an object with a number of attributes.
 This object can be stored in a variable

```
> n = c(120, 140)
> x = rbinom(2, n, 1/3)
> z = prop.test(x,n,alternative="greater")
> names(z)
[1] "statistic" "parameter" "p.value" "estimate" "null.value"
[6] "conf.int" "alternative" "method" "data.name"
```

You can specifically interrogate the value of any of the components of the object:

```
> z$estimate
  prop 1 prop 2
0.3250000 0.3785714
> z$pvalue
[1] 0.7794991
> z$null.value
NULL
> z$method
[1] "2-sample test for equality of proportions with continuity
correction"
> z$null.value
                             Can you explain this?
> z$conf.int
[1] -0.1587387 1.0000000
attr(,"conf.level")
[1] 0.95
```

For one-sample situations, an exact test is also implemented

```
> prop.test(x[1],n[1],1/3)
    1-sample proportions test with continuity correction
data: x[1] out of n[1], null probability 1/3
X-squared = 0.45937, df = 1, p-value = 0.4979
alternative hypothesis: true p is not equal to 0.3333333
95 percent confidence interval:
 0.2215321 0.3914945
sample estimates:
 р
0.3
> binom.test(x[1],n[1],1/3)
    Exact binomial test
data: x[1] and n[1]
number of successes = 36, number of trials = 120, p-value = 0.4981
alternative hypothesis: true probability of success is not equal to
0.3333333
95 percent confidence interval:
 0.2197565 0.3903961
sample estimates:
probability of success
                   0.3
```

Repeat with n small and check the difference in p-values.

- Consider now the same situation, but where measurements correspond to continuous values (height, temperature, weight)
- We again assume that observations are collected independently, but now we assume that they are coming from a normal distribution with unknown mean(s) and variance(s).

- Again, we have two cases:
 - One sample test: Is the average concentration of a contaminant in n = 10 samples below the <u>known</u> EPA standard?

$$x_i \sim N(\mu, \sigma^2)$$
 H0: $\mu = \mu_0$ vs H1: $\mu \neq \mu_0$

– Two sample test: Is the average yield per acre of maize the same under the new fertilizer as it was under the old one (both estimated from data)?

$$X_i \sim N(\mu_x, \sigma_x^2)$$
 $Y_i \sim N(\mu_y, \sigma_y^2)$

H0:
$$\mu_x = \mu_y$$
 vs H1: $\mu_x > \mu_y$

For the one-sample test, under H0:

$$\frac{\overline{x} - \mu_0}{s / \sqrt{n}} \sim N(0,1)$$
 $\overline{x} = \frac{x}{n}, \quad s^2 = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}$

For the two-sample test, under H0:

$$\frac{\overline{x} - \overline{y}}{S\sqrt{\frac{1}{n_x} + \frac{1}{n_y}}} \sim N(0,1)$$
Assumes equal variances (i.e., $\sigma_x = \sigma_y$)
Other variants for $\sigma_x \neq \sigma_y$ and paired tests

$$\overline{X} = \frac{1}{n_x} \sum_{i=1}^{n_x} X_i, \quad \overline{y} = \frac{1}{n_y} \sum_{i=1}^{n_y} y_i, \quad s^2 = \frac{\sum_{i=1}^{n_x} (X_i - \overline{X})^2 + \sum_{i=1}^{n_x} (y_i - \overline{y})^2}{n_x + n_y - 2}$$

• Similarly, you can easily conduct one-sample and two-sample tests of means for data from a normal distribution:

```
> x = rnorm(56, 5, 2)
> y = rnorm(74, 4.5, 1.5)
> t.test(x, y)
    Welch Two Sample t-test
data: x and y
t = 1.4501, df = 83.526, p-value = 0.07539
alternative hypothesis: true difference in means is greater than 0
95 percent confidence interval:
 -0.07518682
                     Tnf
sample estimates:
mean of x mean of y
 4.937603 4.426350
> t.test (x, mu=4.85)
    One Sample t-test
data: x
t = 0.27939, df = 55, p-value = 0.781
alternative hypothesis: true mean is not equal to 4.85
95 percent confidence interval:
 4.309221 5.565985
sample estimates:
mean of x
 4.937603
```

You can carry out tests equal-variance t-tests, as well as paired t-tests:

```
> t.test(x, y, var.equal =TRUE, alternative="greater")
    Two Sample t-test
data: x and v
t = 0.48736, df = 128, p-value = 0.3134
alternative hypothesis: true difference in means is greater than 0
95 percent confidence interval:
 -0.4051416
                   Tnf
sample estimates:
mean of x mean of v
 5.068840 4.900004
> x = rnorm(60, 5, 2)
> y = rnorm(60, 4.5, 1.5)
> t.test (x, y, paired=TRUE)
    Paired t-test
data: x and y
t = 2.3085, df = 59, p-value = 0.02449
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 0.1042614 1.4610188
sample estimates:
mean of the differences
              0.7826401
```

Formulas

• The function t.test() can also accept formula objects:

```
> x = rnorm(56, 5, 2)
> y = rnorm(74, 4.5, 1.5)
> z = c(x, y)
> g = factor(c(rep(1, length(x)), rep(2, length(y))))
> t.test(z \sim q)
 Welch Two Sample t-test
data: z by q
t = 2.3177, df = 100.17, p-value = 0.0225
alternative hypothesis: true difference in means is not equal
t.o 0
95 percent confidence interval:
 0.1000213 1.2890438
sample estimates:
mean in group 1 mean in group 2
       5.075129
                        4.380596
```

- The symbol ~ should be read as "explained by".
- Formulas are also useful for streamlined plotting (try plot $(z \sim g)$ and compare the output with that of boxplot (x, y)).

Test of variances

 You can carry out similar tests for the variances instead of the means (this is a less frequent problem)

```
- One sample: H0: \sigma = \sigma_0 vs H0: \sigma \neq \sigma_0

- Two samples: H0: \sigma_x = \sigma_y vs H0: \sigma_x \neq \sigma_y
```

In R you use the function var.test()

```
> x = rnorm(56, 5, 2)
> y = rnorm(74, 4.5, 1.5)
> var.test(x, y)

    F test to compare two variances

data: x and y
F = 1.8361, num df = 55, denom df = 73, p-value = 0.01532
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
    1.124134 3.052659
sample estimates:
ratio of variances
    1.836106
```

- Even though the previous tests assume normality, they are typically quite robust to the lack of it. Nonetheless, if the data is heavily skewed they might produce misleading results.
- Nonparametric tests avoid assumptions about the distribution of the data and are more generally applicable. The tradeofff is that they tend to have a lower power (i.e., they are more likely to miss a small signal in the data)

- One of the most popular classes of nonparametric tests is the Wilcoxon/Mann-Whitney test.
- These procedures use the ranks of the observations to construct the test statistic.
 - The smallest observation has a rank of 1, the second smallest has a rank of 2, etc.
 - If two observations have the same value, their rank is the average of the ranks they would have taken.

 The Wilcoxon test is analogous to the one sample t test:

H0: $\mu = \mu_0$ vs H1: $\mu \neq \mu_0$ (or $\mu < \mu_0$ or $\mu > \mu_0$) where μ is the median of the distribution of the data.

• The test statistic is given by the sum of the (signed) ranks of the observations below μ_0 .

 The Mann-Whitney test is analogous to a twosample t test

H0: $\mu_1 = \mu_2$ vs H1: $\mu_1 \neq \mu_2$ (or $\mu_1 < \mu_2$ or $\mu_1 > \mu_2$) where μ_1 and μ_2 are the medians of both distributions.

 Again, the test is based on the the differences of ranks.

Both nonparametric tests are implemented in R through the wilcox.test() function:

```
> x = rnorm(56, 5, 2)
> y = rnorm(74, 4.2, 1.5)
> wilcox.test(x, y)
 Wilcoxon rank sum test with continuity correction
data: x and y
W = 2457, p-value = 0.07064
alternative hypothesis: true location shift is not equal to 0
> t.test(x, y)
 Welch Two Sample t-test
data: x and y
t = 1.793, df = 106, p-value = 0.07582
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -0.05107093 1.01728721
sample estimates:
mean of x mean of y
 4.772491 4.289383
```

- A contingency table displays the joint frequency distribution of two or more categorical variables.
 - Think about it as an array with K dimensions, one per categorical variable. The size of each dimension corresponds to the number of categories for that variable.
- Categorical variables in R should be encoded as factors rather than numbers or characters.
- Count table can be generated using the table () or the xtabs () command.

Make sure that you treat categorical variables as factors:

```
> arth = read.table("arthritis.txt", header=T)
> arth
  ID Treatment
                 Sex Age Improved
1 57
     Treated
               Male
                     2.7
                             Some
2 46 Treated Male 29
                            None
3 77 Treated Male 30
                             None
  17 Treated Male 32
                         Marked
> is.factor(arth[,2])
[1] TRUE
> summary(arth[,2:4])
 Treatment
               Sex
                            Age
Placebo: 43 Female: 59
                        Min.
                               :23.00
Treated:41 Male :25
                        1st Qu.:46.00
                        Median :57.00
                        Mean :53.36
                        3rd Ou.:63.00
                        Max. :74.00
```

By having categorical variables defined as factors you can easily construct tables:

```
> arth = read.table("arthritis.txt", header=T)
> table(arth[,2], arth[,3])
         Female Male
            32 11
 Placebo
 Treated
           27 14
> table(arth[,2], arth[,3], arth[,5])
, , = Marked
         Female Male
            6
 Placebo
 Treated 16
, , = None
         Female Male
 Placebo
            19 10
 Treated
           6 7
, , = Some
         Female Male
 Placebo
 Treated
```

 There is a version of the function that works with formula objects:

 xtabs can produce sparse 2D tables (useful for large datasets!)

- Let's focus on two-way contingency tables (i.e., those that involve the joint distribution of two variables)
- A common question of interest is whether these two variables are independent, i.e., whether P(X = a, Y = b) = P(X = a)P(Y = b).
- Example: Is smoking more than two cigarettes a day associated with the development of cancer?

Your data would look something like this

		Cancer?		
		Yes	No	
Smoke?	Yes	n ₁₁	n ₁₂	
	No	n ₂₁	n ₂₂	

 How would you expect the table to look like if the two variables where independent?

 First compute the margins (row and column sums to the observed values)

		Cancer?		
		Yes	No	
Smoke?	Yes	n ₁₁	n ₁₂	$n_{1\bullet} = n_{11} + n_{12}$
	No	n ₂₁	n ₂₂	$n_{2\bullet} = n_{21} + n_{22}$
		$n_{\bullet 1} = n_{11} + n_{21}$	$n_{\bullet 2} = n_{12} + n_{22}$	$n_{\bullet \bullet} = n_{11} + n_{12}$
				+ n ₂₁ + n ₂₂

 Create a table that has the same margins but where entries are independent

		Cancer?		
		Yes	No	
Smoke?	Yes	n _{1•} n _{•1} /n _{••}	n ₁ •n _{•2} /n _{••}	$n_{1\bullet} = n_{11} + n_{12}$
	No	n _{2•} n _{•1} /n _{••}	n ₂ •n ₂ /n	$n_{2\bullet} = n_{21} + n_{22}$
		$n_{\bullet 1} = n_{11} + n_{21}$	$n_{\bullet 2} = n_{12} + n_{22}$	$n_{\bullet \bullet} = n_{11} + n_{12}$
				+ n ₂₁ + n ₂₂

Check that the sums of rows and columns are the same as in the original table!

 The test statistic is the difference between the observed and the expected values

$$\sum_{i=1}^{2} \sum_{j=1}^{2} \frac{\left(n_{i,j} - \frac{n_{i} \cdot n_{\cdot j}}{n_{\cdot \cdot}}\right)^{2}}{\frac{n_{i} \cdot n_{\cdot j}}{n_{\cdot \cdot}}} \sim \chi_{1}^{2} \quad \text{Valid as long as } \frac{n_{i} \cdot n_{\cdot j}}{n_{\cdot \cdot}} \text{ is not too small}$$

- This is the Pearson's χ^2 test.
- The same idea can be used for two-way contingency tables with more than two levels each. The number of degrees of freedom for the χ^2 distribution is (r-1)(c-1) (c = number of columns, r = number of rows).

• You can run this test using the function chisq.test():

Testing for higher order tables requires the use of GLMs.