

(11) Publication number:

10242617 A

Generated Document.

PATENT ABSTRACTS OF JAPAN

(21) Application number: 09045838

(51) Intl. Cl.: H05K 3/00 B23K 26/00

(22) Application date: 28.02.97

(30) Priority:

(43) Date of application publication:

11.09.98

(84) Designated contracting

states:

(71) Applicant: MURATA MFG CO LTD

(72) Inventor: YAMAMOTO TAKAHIRO

MORIMOTO MASASHI

(74) Representative:

(54) METHOD AND APPARATUS FOR PROCESSING CERAMIC GREEN SHEET

(57) Abstract:

PROBLEM TO BE SOLVED: To simultaneously, accurately form a plurality of holes for viaholes of a desired shape on a ceramic green sheet by a laser beam.

SOLUTION: A laser beam hole forming apparatus 1 has a laser beam source 2, a condenser lens 3, an X-Y table 4, a laser beam source driving circuit 5, a control circuit 6 and an X-Y table driving circuit 7. A ceramic green sheet 10 of a material to be processed is placed on an upper surface of the table 4. A mask 15 is placed on an upper surface of the sheet 10. A plurality of light transmission units for viaholes of the same shape as holes for desired viaholes are provided at the mask 15. A laser beam L emitted from the source 2 is passed through the

plurality of the units of the mask 15 to emit the sheet 10.

COPYRIGHT: (C)1998,JPO

(19)日本国特許庁 (JP) (12)-公開特許公報 (A) (11)特許出願公開番号

特開平10-242617

(43)公開日 平成10年(1998) 9月11日

(51) Int.Cl.*

識別記号

FΙ

H05K 3/00 B23K 26/00 H 0 5 K 3/00

N

B 2 3 K 26/00

Н

審査請求 有 請求項の数13 OL (全 10 頁)

(21)出願番号

特願平9-45838

(71)出願人 000006231

株式会社村田製作所

(22)出願日

平成9年(1997)2月28日

京都府長岡京市天神二丁目26番10号

(72)発明者 山本 高弘

京都府長岡京市天神二丁目26番10号 株式

会社村田製作所内

(72)発明者 森本 正士

京都府長岡京市天神二丁目26番10号 株式

会社村田製作所内

(74)代理人 弁理士 森下 武一

(54) 【発明の名称】 セラミックグリーンシートの加工方法及びレーザ加工装置

(57)【要約】

【課題】 レーザビームによってセラミックグリーンシ ートに所望の形状のビアホール用穴を複数個同時に髙精 度に形成する。

【解決手段】 レーザビーム穴形成装置 1 は、概略、レ ーザ光源2、集光レンズ3、XYテーブル4、レーザ光 源駆動回路5、制御回路6及びXYテーブル駆動回路7 で構成されている。XYテーブル4の上面に、被加工物 であるセラミックグリーンシート10が載置される。セ ラミックグリーンシート10の上面には、マスク15が 載置される。マスク15には、所望のピアホール用穴と 同形状のピアホール用透光部が複数個設けられている。 レーザ光源2から放射されたレーザビームしは、マスク 15の複数のピアホール用透光部を通過し、セラミック グリーンシート10を照射する。

【特許讃求の範囲】

【請求項1】 テーブルに支持されたセラミックグリー ンシート上に所定のピアホール用透光部を設けたマスク を載置し、レーザ光源から放射されたレーザビームを前 記マスクに照射して前記ピアホール用透光部を通過した レーザビームで前記セラミックグリーンシートにビアホ ール用穴を形成することを特徴とするセラミックグリー ンシートの加工方法。

【請求項2】 前記テーブルによって前記セラミックグ リーンシートを移動させながら前記レーザビーム照射を 10 と、 することを特徴とする請求項し記載のセラミックグリー ンシートの加工方法。

【請求項3】 前記セラミックグリーンシートを所定方 向に連続的に移動させ、移動中のこのセラミックグリー ンシートにレーザビームを照射することを特徴とする請 求項1記載のセラミックグリーンシートの加工方法。

【請求項4】 前記レーザ光源から放射されるレーザビ ームがパルス状のビームであることを特徴とする請求項 1、請求項2又は請求項3記載のセラミックグリーンシ ートの加工方法。

【請求項5】 テーブルに支持されたセラミックグリー ンシート上に所定のビアホール用透光部を設けたマスク を載置し、レーザ光源から放射されたパルス状のレーザ ビームをガルバノミラーで反射させて前記マスクに照射 して前記ピアホール用透光部を通過したレーザビームで 前記セラミックグリーンシートにビアホール用穴を形成 し、前記ガルバノミラーの反射角度を所定方向に変化さ せながら前記レーザビーム照射を繰り返すことを特徴と するセラミックグリーンシートの加工方法。

リーンシートを所定の方向に移動させながら前記パルス 状のレーザビーム照射を繰り返すことを特徴とする請求 項5記載のセラミックグリーンシートの加工方法。

【請求項7】 前記マスクに位置合わせ穴用透光部を更 に設け、前記レーザ光源から放射されたレーザビームを 前記マスクに照射して前記セラミックグリーンシートに ビアホール用穴を形成すると共に、前記位置合わせ穴用 透光部を透過したレーザビームで位置合わせ穴を形成す ることを特徴とする請求項1、請求項2、請求項3、請 求項4、請求項5又は請求項6記載のセラミックグリー ンシートの加工方法。

【請求項8】 前記マスクが、前記レーザビームの反射 率が高い材料からなることを特徴とする請求項1、請求 項2、請求項3、請求項4、請求項5、請求項6又は請 求項7記載のセラミックグリーンシートの加工方法。

【請求項9】 前記レーザ光源がCO,レーザであるC とを特徴とする請求項1、請求項2、請求項3、請求項 4、請求項5、請求項6、請求項7又は請求項8記載の セラミックグリーンシートの加工方法。

脂製キャリアフィルムで一面を支持されたキャリアフィ ルム付きセラミックグリーンシートであることを特徴と する請求項1、請求項2、請求項3、請求項4、請求項 5、請求項6、請求項7、請求項8又は請求項9記載の セラミックグリーンシートの加工方法。

【請求項11】 レーザ光源と、

前記レーザ光源を駆動するレーザ光源駆動回路と、 マスクを上に配置した被加工物を載置するテーブルと、 前記テーブルを所定方向に移動させるテーブル駆動回路

前記レーザ光源駆動回路及び前記テーブル駆動回路に制 御信号を送る制御回路と、

前記レーザ光源と前記マスクの間に配置され、前記レー ザ光源から放射されたレーザビームを集光する集光レン ズと、

を備えたことを特徴とするレーザ加工装置。

【請求項12】 レーザ光源と

前記レーザ光源を駆動するレーザ光源駆動回路と、 マスクを上に配置した被加工物を載置するテーブルと、

20 前記テーブルに臨んで配置されたガルバノミラーと、 前記ガルバノミラーの反射角度を所定方向に変化させる ガルバノミラー駆動回路と、

前記レーザ光源駆動回路及び前記ガルバノミラー駆動回 路に制御信号を送る制御回路と、

前記レーザ光源と前記ガルバノミラーの間に配置され、 前記レーザ光源から放射されたレーザビームを集光する **生光レンズと**

を備えたことを特徴とするレーザ加工装置。

【請求項13】 前記テーブルを所定方向に移動させる 【請求項6】 前記テーブルによって前記セラミックグ 30 テーブル駆動回路を設けたことを特徴とする請求項12 記載のレーザ加工装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、セラミックグリー ンシートの加工方法及びレーザ加工装置に関する。 [0002]

【従来の技術】積層型電子部品は、層間の電気的接続が 必要な場合、セラミックグリーンシートにピアホール (via hole)を設けて接続を行なっている。こ のビアホール用の穴を形成する加工法として、従来より 金型とピンを用いた打ち抜き加工がある。しかし、打ち 抜き加工は、金型とピンの寸法精度が穴の精度を左右 し、穴径が100μm以下の場合は精度が著しく悪くな るという問題があった。また、金型やピンは比較的寿命 が短く、高価な金型やピンを定期的に交換する必要があ り、さらに、異なる品種の電子部品毎に金型を交換しな ければならず、その交換作業が煩雑であった。

【0003】とのため、穴径が80μm程度のピアホー ル用穴の精密加工をすることができるレーザビームによ 【請求項10】 前記セラミックグリーンシートが、樹 50 る穴形成法が提案されている。この方法には、ガルパノ

ムの照射方向を変え、テーブル上に載置されたセラミッ クグリーンシートに対するレーザビーム照射位置を適宜 変化させて広範囲に穴形成をする方法や、レーザビーム の照射方向は変えないで、セラミックグリーンシートを 載置しているテーブルを移動させて広範囲に穴形成をす る方法等がある。レーザビームの径は、所望のビアホー ルの穴径と同径(80μm程度)になるように設定さ れ、このレーザビームをセラミックグリーンシートにマ スクを介することなく直接照射することで所望の穴径の 10 ビアホール用穴を形成する。しかし、この場合、レーザ ビームが直接セラミックグリーンシートに照射されるた め、レーザビームが斜めに照射されると穴形状が歪むと いう問題がある。また、1ショットの照射で一つのビア ホール用穴しか形成されないため、生産性が悪いという 問題がある。

【0004】そこで、この対策として、図8に示す方法 が提案されている。このレーザビーム穴形成方法は、例 えば円形のピアホール用透光部82aを所定数有するマ スク82をテーブル87上に載置したセラミックグリー 20 ンシート84からかなり離した状態でセットし、レーザ 光源81からマスク82に向けて所定数のピアホール用 透光部82 a よりも大径のレーザビームしを照射し、所 定数のピアホール用透光部82aを通過したレーザビー ムしを集光レンズ83を介してセラミックグリーンシー ト84亿所定形状で照射させ、セラミックグリーンシー ト84の照射領域Lc内に円形のビアホール用穴を複数 個同時形成する方法である。

[0005]

【発明が解決しようとする課題】しかしながら、従来の 30 レーザビームによる穴形成は、マスク82をセラミック グリーンシート84からかなり離した状態で行うもので あったため、セラミックグリーンシートに円形ビアホー ル用穴を複数個同時形成しようとする場合、図9に示す ように、例えばマスク82中央部に設けられた円形ビア ホール用透光部82aを通過したレーザビームLは所望 の形状との誤差の小さい真円度の良いピアホール用穴8 5を形成することができるが、マスク82周辺部に設け られた円形ピアホール用透光部82aを通過したレーザ ビームしは所望の形状との誤差の大きい真円度の悪い (略楕円)ピアホール用穴86しか形成することができ ない。従って、真円度が良いビアホール用穴を形成する には、1ショットのレーザビームでピアホール用穴を一 個しか形成することができず、加工費用が高くなるとい う問題、又は、ピアホール用穴を複数個形成するための 高価な特殊集光レンズを用いなければならず、加工設備 が高くなるという問題があった。

【0006】そこで、本発明の目的は、セラミックグリ ーンシートに所望形状のピアホール用穴を精度良く複数

ミラーを利用してレーザ光源から放射されたレーザビー トの加工方法及びレーザ加工装置を提供するととにあ る。

[0007]

【課題を解決するための手段と作用】以上の目的を達成 するため、本発明に係るセラミックグリーンシートの加 工方法は、テーブルに支持されたセラミックグリーンシ ート上に所定のビアホール用透光部を設けたマスクを載 置し、レーザ光源から放射されたレーザビームを前記マ スクに照射して前記ビアホール用透光部を通過したレー ザビームで前記セラミックグリーンシートにビアホール 用穴を形成することを特徴とする。

【0008】ことに、レーザ光源からのレーザビーム は、連続状ビーム又はバルス状ビームのいずれであって もよいが、パルス状ビームにすることにより、穴明け加 工の際に被加工物であるセラミックグリーンシートの温 度上昇が抑えられる。また、マスクの材料には、例えば レーザビームの反射率が高い材料が使用され、レーザ光 源としてはCO,レーザが使用され、セラミックグリー ンシートとしては樹脂製キャリアフィルムで一面を支持 されたキャリアフィルム付きセラミックグリーンシート が使用される。これにより、マスクに照射されたレーザ ビームのうち不必要な部分は完全にマスクによって遮断 されると共に、ビアホール用及び位置合わせ穴用透光部 を通過したレーザビームのエネルギーが効率良くセラミ ックグリーンシートに吸収され、より高精度に所望の形 状のビアホール用穴及び位置合わせ穴が形成される。

【0009】以上の方法により、マスクとセラミックグ リーンシートが接しているため、マスクに設けられたビ アホール用透光部の形状と略等しい形状のビアホール用 穴がセラミックグリーンシートに形成され、マスク周辺 部に設けられたビアホール用透光部を通過したレーザビ ームであっても、所望の形状のピアホール用穴が精度良 く形成される。

【0010】また、本発明に係るセラミックグリーンシ ートの加工方法は、テーブルによってセラミックグリー ンシートを移動させながらレーザビーム照射をすること を特徴とする。あるいは、セラミックグリーンシートを 所定方向に連続的に移動させ、移動中のこのセラミック グリーンシートにレーザビームを照射することを特徴と 40 する。以上の方法により、セラミックグリーンシートに ビアホール用穴が連続して形成され、より生産性が向上 する。

【0011】また、本発明に係るセラミックグリーンシ ートの加工方法は、テーブルに支持されたセラミックグ リーンシート上に所定のピアホール用透光部を設けたマ スクを載置し、レーザ光源から放射されたパルス状のレ ーザビームをガルバノミラーで反射させて前記マスクに、 照射して前記ビアホール用透光部を通過したレーザビー ムで前記セラミックグリーンシートにピアホール用穴を 個同時に形成することができるセラミックグリーンシー 50 形成し、前記ガルバノミラーの反射角度を所定方向に変

化させながら前記レーザビーム照射を繰り返すことを特

【0012】以上の方法により、ガルバノミラーの反射 角度を所定方向に変化させながらレーザビーム照射を繰 り返すことにより、広面積のレーザピーム照射可能エリ アが確保され、セラミックグリーンシートの移動が必要 最小限に抑えられる。とのとき、前記テーブルによって 前記セラミックグリーンシートを所定の方向に移動させ ながら前記パルス状のレーザビーム照射を繰り返すこと により、さらに、加工時間が短縮化される。

【0013】さらに、本発明に係るセラミックグリーン シートの加工方法は、マスクに、位置合わせ穴用透光部 を更に設け、前記レーザ光源から放射されたレーザビー ムを前記マスクに照射して前記セラミックグリーンシー トにピアホール用穴を形成すると共に、前記位置合わせ 穴用透光部を透過したレーザビームで位置合わせ穴を形 成することを特徴とする。これにより、ビアホール用穴 と位置合わせ穴が同一工程で形成されるため、位置合わ せ穴とピアホール用穴間の相対的位置精度が高くなり、 後工程の導体パターン形成や積層の精度が向上する。

【0014】また、本発明に係るレーザ加工装置は、レ ーザ光源と、前記レーザ光源を駆動するレーザ光源駆動 回路と、マスクを上に配置した被加工物を載置するテー ブルと、前記テーブルを所定方向に移動させるテーブル 駆動回路と、前記レーザ光源駆動回路及び前記テーブル 駆動回路に制御信号を送る制御回路と、前記レーザ光源 と前記マスクの間に配置され、前記レーザ光源から放射 されたレーザビームを集光する集光レンズとを備えたと とを特徴とする。

【0015】また、本発明に係るレーザ加工装置は、レ ーザ光源と、前記レーザ光源を駆動するレーザ光源駆動 回路と、マスクを上に配置した被加工物を載置するテー ブルと、前記テーブルに臨んで配置されたガルバノミラ ーと、前記ガルバノミラーの反射角度を所定方向に変化 させるガルバノミラー駆動回路と、前記レーザ光源駆動 回路及び前記ガルバノミラー駆動回路に制御信号を送る 制御回路と、前記レーザ光源と前記ガルバノミラーの間 に配置され、前記レーザ光源から放射されたレーザビー ムを集光する集光レンズとを備えたことを特徴とする。 このとき、前記テーブルを所定方向に移動させるテープ 40 ル駆動回路を設ける。

【0016】以上の構成からなるレーザ加工装置によ り、セラミックグリーンシートに所定形状のピアホール 用穴が精度良く複数個同時に形成される。

[0017]

【発明の実施の形態】以下、本発明に係るセラミックグ リーンシートの加工方法及びレーザ加工装置の実施形態 について添付図面を参照して説明する。各実施形態にお いて同一部品及び同一部分には同じ符号を付した。

ように、レーザビーム穴形成装置1は、概略、レーザ光 源2、集光レンズ3、XYテーブル4、レーザ光源駆動 回路5、制御回路6及びXYテーブル駆動回路7で構成 されている。

【0019】レーザ光源2は、パルス発振のCO,レー ザ等が用いられ、レーザ光源駆動回路5からの駆動信号 によってビームスポットが円形のレーザビームしを放射 する。レーザ光源2から放射されるレーザビームしは、 照射エリア内でエネルギー密度が略一定になるように設 10 定されている。レーザビームLのパルス幅は 4 秒又はm 秒のオーダー、出力は10'~10'₩のオーダーで、加 工を行なうセラミックグリーンシートの厚み及び材質等 によって任意に設定される。例えば、100μ秒で0. 4kW、あるいは40μ秒で5kWに設定される。バル ス状のレーザビームを使用することによって、被加工物 であるセラミックグリーンシート10の穴明け加工時の 温度上昇を抑えることができる。

【0020】 X Y テーブル 4 の上面に、被加工物である セラミックグリーンシート10が載置される。とのセラ 20 ミックグリーンシート10は、セラミック粉末を結合剤 等と共に混練してスラリー状にしたものである。結合剤 の材料としては、使用するレーザ光源2の波長帯のレー ザビームLの吸収率が高い材料が用いられている。これ は、セラミックグリーンシート10に効率良くレーザビ ームのエネルギーを吸収させるためである。このような セラミックグリーンシート10は、ドクターブレード法 等により樹脂製キャリアフィルム12の上面に所定の厚 みで塗布して形成される。なお、セラミックグリーンシ ート10は、ビアホール用穴が形成された後、導体パタ 30 ーン形成工程でその上面に導電ベーストが所定のバター ンで印刷される。とのとき、ビアホール用穴内にも導電 ペーストが充填され、内導体が形成される。キャリアフ ィルム12は、その後のセラミックグリーンシート10 の積層工程で剥離される。

【0021】セラミックグリーンシート10の上面に は、マスク15が載置される。このマスク15は、図2 に示すように、1ショット分のレーザビーム照射領域S を縦横にマトリクス状に配置しており、各照射領域Sは セラミックグリーンシート10に形成しようとするピア ホール用穴の径と等しい径の円形のビアホール用透光部 15aを複数個(第1実施形態では5個)設けている。 さらに、マスク15の隅部には、例えば十字形状をした 位置合わせ穴用透光部 15 b が設けられている。との位 置合わせ穴用透光部15bは、後工程のセラミックグリ ーンシート10上への導体パターン形成工程やセラミッ クグリーンシート 10の積層工程での位置合わせに利用 される位置合わせ穴をセラミックグリーンシート 10に 形成するためのものである。

【0022】透光部15a、15bは、レーザピームし 【0018】[第1実施形態、図1~図3]図1に示す 50 を通過させることができる透明部材又は半透明部材、あ 20

30

るいは穴等にて形成されている。マスク15に透光部1 5a, 15bを明ける場合には、エッチング、放電加 工、微細ドリリングで行う。マスク15の精度はセラミ ックグリーンシート10の加工精度に影響するため、精 度よくマスク15を加工することが好ましい。 通常マス ク15の加工精度は±20μm以内にすることができ る。マスク15の材質としては、使用するレーザ光源2 の波長帯のレーザビームしの反射率が高く、レーザビー ムしによる損傷に対して強いものが選択される。例え ば、レーザ光源2がCO,レーザの場合は、マスク15 の材料として、Cu、ベリリウム銅、真鍮、ステンレス 鋼、モリブデン合金等が用いられる。場合によってはA g、Au、AI等を用いてもよい。ステンレス鉧はテー ブルに固定し易くするために、着磁性のものが好まし

7 ____

【0023】XYテーブル4は、XYテーブル駆動回路 7からの駆動信号によってセラミックグリーンシート1 0をXY方向に移動させることができる。また、制御回 路6は、加工制御用プログラムを内蔵したマイクロコン ピュータにて構成されている。

【0024】とのレーザビーム穴形成装置1において、 レーザ光源2から放射されたレーザビームしは集光レン ズ3によって集光され、照射領域Sと略等しい照射エリ アを有したビームスポットLb(図2参照)でマスク1 5を照射するととができる。マスク15に照射されたレ ーザビームLのうち不必要な部分は、完全にマスク15 によって遮断される。一方、ビアホール用透光部15a や位置合わせ穴用透光部 1 5 b を通過したレーザビーム しは、セラミックグリーンシート10に照射され、その エネルギーが効率良くシート10に吸収される。この照 射により、セラミックグリーンシート1.0の照射部分が 溶融、気化して所望のピアホール用穴や位置合わせ穴が 同一工程で形成される。このため、位置合わせ穴とビア ホール用穴間の相対的位置精度が高くなり、後工程の導 体パターン形成や積層の精度を向上させることができ る。また、位置合わせ穴を別工程で形成する必要がなく なり、製造期間の短縮を図ることができる。

【0025】次に、このレーザビーム穴形成装置1を用 いたセラミックグリーンシート10の加工方法について 説明する。キャリアフィルム12付きセラミックグリー ンシート10を、吸着ヘッド等を利用してセラミックグ リーンシート10を上に向けてXYテーブル4に載置す る。このとき、XYテーブル4のXY軸とセラミックグ リーンシート10の2辺が略平行になるようにする。さ らに、吸着ヘッド等を利用してXYテーブル4のXY軸 とマスク15の2辺が略平行になるようにして、マスク 15をセラミックグリーンシート10上に載置する。

【0026】次に、XYテーブル4を適宜移動させて作 業開始位置を決定する初期設定を行なう。との初期設定

分がレーザビームLの光軸下に位置するようにXYテー ブル4を移動させることによって行う。初期設定後、制 御回路6からXYテーブル駆動回路7に制御信号を送 り、XYテーブル駆動回路7からの駆動信号によってX Yテーブル4を駆動させてマスク15を例えばX方向に 所定の速度で移動させ、同方向の移動量が最初の穴形成 位置に達したところで、制御回路6からレーザ駆動回路 5 に制御信号を送り、レーザ駆動回路5からの駆動信号 によってレーザ光源2を駆動させて移動中のマスク15 の照射領域Sの一つに向かってパルス状のレーザビーム Lを1ショットだけ照射する。このとき、マスク15に 対するレーザビームLの入射角 θ (図1参照)が、最大 20°程度までになるように設定することが望ましい。 入射角 θ が と の 範囲内 で あれば、 形成された ビアホール 用穴の形状や位置の精度が、レーザビーム Lをマスク1 5に垂直(入射角が0°)に照射した場合に形成される ビアホール用穴と比較して殆ど差異がないからである。 【0027】図3に示すように、照射領域5のビアホー ル用透光部 1 5 a を通過したレーザビームしは、セラミ ックグリーンシート10にピアホール用穴10aを形成 する。このとき、マスク15とセラミックグリーンシー ト10が接しているので、ビアホール用透光部15aの 形状と等しい形状のピアホール用穴10aがセラミック グリーンシート10に形成される。 すなわち、照射領域 Sの中央部に設けられた1個のピアホール用透光部15 aを通過したレーザビームLはビアホール用透光部15 aの加工精度と略等しい真円度の良いビアホール用穴1 0 a を形成することは勿論のこと、照射領域 S の周辺部 に設けられた4個のビアホール用透光部15aを通過し たレーザピームしであっても、ピアホール用透光部15 aの加工精度と略等しい真円度の良いピアホール用穴1 0 a を形成することができる。 こうして、 真円度の良い ビアホール用穴10aを複数個同時形成することができ る。また、キャリアフィルム12にもピアホール用穴1 0 a に連通する貫通穴12 a が形成される。以後、所定 の移動量毎にレーザビームしを1ショット毎断続的に照 射して、セラミックグリーンシート10に所定数のピア ホール用穴10 aを形成する。同様にして、位置合わせ 穴用透光部 15 b を通過したレーザビームしによって加 工精度の優れた位置合わせ穴がシート10に形成され

【0028】レーザビームLのパルス幅はμ秒又はm秒 のオーダーであるため、1ショットのレーザビームによ るビアホール用穴10aの形成は瞬時で完了するため、 穴形成毎にXYテーブル4を必らずしも停止させる必要 はなく、セラミックグリーンシート10を連続的に移動 させながら、ビアホール用穴10aを順次形成すること ができる。セラミックグリーンシート10に所定数のビ アホール用穴10aを形成した後は、XYテーブル4を はマスク15の辺又は角を検出し、マスク15の所定部 50 停止して、マスク15を吸着ヘッド等を利用してセラミ

10

ックグリーンシート10上から外し、加工を終了する。 - *【0030】表1は、レーザピーム穴形成装置1を使用 【0029】以上の方法において、マスク15とセラミ ックグリーンシート10が接しているので、マスク15 に設けられたピアホール用透光部 15aや位置合わせ穴 用透光部 1 5 b の形状と略等しい形状のピアホール用穴 10aや位置合わせ穴がセラミックグリーンシートに形 成され、マスク周辺部に設けられたピアホール用透光部 15 aを通過したレーザビームしであっても、真円度の 良いビアホール用穴10aを形成することができる。

してセラミックグリーンシート10にピアホール用穴1 0 a を形成した場合の評価結果を示すものである。表1 中、加工精度は、穴径が100μmのピアホール用穴を 明けたときの位置精度である。比較のため、従来のレー ザによる穴明け方法の評価結果も併せて記載している。 [0031]

【表1】

夷 1

	実施例	従来のレーザに よる穴明け方法
加工精度 (μm)	± 2 0	± 4 0

【0032】表1より、第1実施形態の場合の加工精度 は、マスク15の加工精度に等しい±20μmであるこ とが認られ、この数値は従来の加工方法の場合よりも優 20 れている。さらに、同時多穴加工において、高価な費用 を要する光学系を必要とせず、また、マスク15の加工 精度がセラミックグリーンシート 10の穴明け加工精度 となるためテーブルの位置決め精度は比較的低くてもよ いので設備費用を抑えることができる。

【0033】[第2実施形態、図4]図4に示すよう に、レーザビーム穴形成装置31は、概略、レーザ光源 32、集光レンズ33、反射ミラー34、ガルバノミラ -35、固定テーブル36、シート搬送ローラ37a、 37b、レーザ光源駆動回路40、制御回路41及びガ ルバノミラー駆動回路42で構成されている。レーザ光 源32、集光レンズ33、レーザ光源駆動回路40は、 前記第1実施形態と同様のものである。制御回路41 は、加工制御用プログラムを内蔵したマイクロコンピュ ータにて構成されている。

【0034】ガルバノミラー35は図4中矢印A方向及 び矢印A方向に対して垂直なB方向に揺動可能であり、 ガルバノミラー駆動回路42からの駆動信号によってそ の反射角度を変化させ、セラミックグリーンシート45 に対するレーザビーム照射位置を適宜変化させ、セラミ 40 アホール用穴が形成される。 ックグリーンシート45上をスキャンすることができ

【0035】セラミックグリーンシート45は、樹脂製 キャリアフィルム46で一面を支持されている。このセ ラミックグリーンシート45は、セラミック粉末を結合 剤等と共に混練してスラリー状にしたものを、ドクター ブレード法等により帯状のキャリアフィルム46の上面 に所定の厚みで塗布して形成される。この帯状のセラミ ックグリーンシート45は、シート搬送ローラ37a. 37bによって搬送され、固定テーブル36上に送り込 50

まれる。なお、キャリアフィルム46はセラミックグリ ーンシート45の積層の工程で剥離されるものである。 【0036】セラミックグリーンシート45の上面に は、マスク50が載置される。このマスク50は、前記 第1実施形態のマスク15と同様に、1ショット分のレ ーザビーム照射領域Sを縦横にマトリクス状に配置して おり、各照射領域Sはセラミックグリーンシート45に 形成しようとするビアホール用穴の径と等しい径の円形 のビアホール用透光部を複数個設けている。マスク50 のサイズは、ガルバノミラー35のスキャン領域と略等 しいサイズに設定するが好ましい。

【0037】とのレーザビーム穴形成装置31におい て、レーザ光源32から放射されたレーザビームLは集 光レンズ33によって集光され、反射ミラー34を介し てガルバノミラー35に導かれる。ガルバノミラー35 で反射されたレーザビームしは、マスク50の照射領域 Sと略等しい照射エリアを有したビームスポットLbで マスク50を照射することができる。そして、マスク5 Oの透光部50aを通過したレーザビームLが、レーザ 波長帯での吸収率の高いセラミックグリーンシート45 に効率良く吸収される。との照射により、セラミックグ リーンシート45の照射部分が溶融、気化して所望のビ

【0038】次に、このレーザビーム穴形成装置31を 用いたセラミックグリーンシート45の加工方法につい て説明する。帯状のキャリアフィルム46付きセラミッ クグリーンシート45を、シート搬送ローラ37a, 3 7 bを利用して固定テーブル36上に送り込んだ後、一 担シート搬送ローラ37a, 37bの回転を停止する。 固定テーブル36上に載置されたセラミックグリーンシ ート45上に、吸着ヘッド等を利用してマスク50を載 習する。

【0039】マスク50の辺又は角を検出し、ガルバノ

40

ミラー35を適宜動かせて作業開始位置を決定する反射 角度の初期設定を行なう。初期設定後、ガルバノミラー 35で反射されたレーザビームの照射位置が所定の方向 に変化するように、ガルバノミラー35の反射角度を一 定速度で変位させ、変位量が最初の穴形成位置に達した ところでマスク50に向かってパルス状のレーザビーム しをしショットだけ照射する。

11 -

【0040】マスク50に設けられた複数の照射領域S のうちの一つの照射領域Sの透光部を通過したレーザビ ームしは、セラミックグリーンシート45にピアホール 用穴を形成する。このとき、マスク50とセラミックグ リーンシート45が接しているので、マスク50の透光 部の形状と等しい形状のビアホール用穴がセラミックグ リーンシート45に形成される。こうして、特殊レンズ 等の高価な設備を用いることなく真円度の良いビアホー ル用穴を複数個同時形成することができる。以後、所定 の変位量毎にレーザビームしを1ショット毎に断続的に 照射してセラミックグリーンシート45に所定数のビア ホール用穴を形成する。

【0041】レーザビームLのパルス幅はμ秒又はm秒 のオーダーであるため、1ショットのレーザビームによ るビアホール用穴の形成は瞬時で完了するため、穴形成 毎にガルバノミラー35を必ずしも停止させる必要はな く、ガルバノミラー35の反射角度を連続的に変化させ ながら、ピアホール用穴を順次形成することができる。 【0042】セラミックグリーンシート45に所定数の ビアホール用穴を形成した後は、マスク50を吸着ヘッ ド等を利用してセラミックグリーンシート45上から外 す。次に、シート搬送ローラ37a,37bを回転駆動 させ、セラミックグリーンシート45を図中矢印C方向 30 に所定の距離だけ搬送した後、再びローラ37a.37 bの回転を停止させ、固定テーブル36上にセラミック グリーンシート45の次のビアホール用穴形成部分を送 り込む。こうして、セラミックグリーンシート45はロ ール状のままで、ビアホール用穴形成を連続して行なう ことができる。以上のように、ガルバノミラーの反射角 度を所定方向に変化させながらレーザビーム照射を繰り 返すことにより、広面積のレーザビーム照射可能エリア が確保され、セラミックグリーンシートの移動が必要最 小限に抑えられる。

【0043】[第3実施形態、図5]第3実施形態のレ ーザビーム穴形成装置は、前記第1実施形態において説 明したXYテーブルと第2実施形態において説明したガ ルバノミラーを組み合わせたものである。すなわち、図 5に示すように、レーザビーム穴形成装置61は、概 略、レーザ光源32、集光レンズ33、反射ミラー3 4、ガルバノミラー35、XYテーブル4、レーザ光源 駆動回路40、制御回路62、ガルバノミラー駆動回路 42及びXYテーブル駆動回路7で構成されている。

内蔵したマイクロコンピュータにて構成されている。と の制御回路62は、レーザ光源駆動回路40を介してレ ーザ光源32を制御し、XYテーブル駆動回路7を介し てXYテーブル4を制御し、かつ、ガルバノミラー駆動 回路42を介してガルバノミラー35を制御する。レー ザ光源32とXYテーブル4とガルバノミラー35は、 制御回路62によって同期して駆動される。

12

【0045】このレーザビーム穴形成装置61を用いた セラミックグリーンシート 10の加工方法について説明 する。キャリアフィルム12付きセラミックグリーンシ ート10を、吸着ヘッド等を利用してセラミックグリー ンシート10を上に向けてXYテーブル4に載置する。 このとき、XYテーブル4のXY軸とセラミックグリー ンシート10の2辺が略平行になるようにする。さら に、吸着ヘッド等を利用してXYテーブル4のXY軸と マスク15の2辺が略平行になるように、マスク15を セラミックグリーンシート10上に載置する。

【0046】次に、XYテーブル4を適宜移動させて作 業開始位置を決定する初期設定を行う。この位置決めは マスク15の辺又は角を検出し、マスク15の所定部分 がガルバノミラー35のスキャン領域に位置するように XYテーブル4を移動させることによって行う。次に、 マスク15の辺又は角を検出し、ガルバノミラー35を 適宜動かせて作業開始位置を決定する反射角度の初期設 定を行う。

【0047】以上の初期設定の後、制御回路62によっ てガルバノミラー35とXYテーブル4の両方を同期し て駆動させる。ガルバノミラー35で反射されたレーザ ビームしの照射位置が所定の方向に変化するようにガル バノミラー35の反射角度を一定速度で変位させると共 に、マスク15が所定方向に移動するようにXYテーブ ル4を所定速度で移動させる。ガルバノミラー35の変 位量及びXYテーブル4の移動量が、最初の穴形成位置 に達したところで、マスク15に向かってバルス状のレ ーザビームしを1ショットだけ照射する。

【0048】マスク15に設けられた複数の照射領域の うち、一つの照射領域Sの透光部を通過したレーザビー ムしは、セラミックグリーンシート10亿ピアホール用 穴を形成する。このとき、マスク15とセラミックグリ ーンシート10が接しているので、マスク15の透光部 の形状と等しい形状のビアホール用穴がセラミックグリ ーンシート10に髙精度に形成される。こうして、真円 度の高いピアホール用穴を複数個同時に形成することが できる。

【0049】以上のように、ガルバノミラー35とXY テーブル4を同期して駆動させてレーザビームしを照射 させることで、ビアホールが用穴の穴明け加工速度をさ らに向上させることができる。

【0050】 [他の実施形態] なお、本発明に係るセラ 【0044】制御回路62は、加工制御用プログラムを 50 ミックグリーンシートの加工方法及びレーザ加工装置は 前記実施形態に限定するものではなく、その要旨の範囲内で種々に変更することができる。

【0051】レーザビームのスポット形状は、ビアホール用穴や位置決め穴を形成し得るエネルギー密度を有する範囲で任意の形状に設定してもよい。例えば、セラミックグリーンシートに多数個のビアホール用穴を1列又は2列に形成したい場合には、図6及び図7に示すように、レーザ光源から放射されたレーザビームを矩形状のスリットを設けたアパーチャを通過させることによって整形し、マスク15上を矩形状のビームスポットしりで10照射するようにしてもよい。このようにレーザビームのスポット形状を矩形状に変形させることで、グリーンシートに連続的に照射する場合、照射領域が重なることがないため、より効率よく、ビアホール用穴を形成することができる。これに対し、従来の円形状のビームスポットでは、隣り合う円弧状の照射領域が重なる。

【0052】マスクに設けるピアホール用透光部や付置 合わせ穴用透光部の数又は形状は任意であり、例えば円 形や十字形の他に、矩形、三角形、楕円、異形等であっ てもよい。さらに、前記実施形態のマスク15は、照射 領域Sを複数個備えたものであるが、必らずしもこれに 限定されるものではなく、照射領域Sを一つしか備えな いものであってもよい。との場合は、予めマスクをセラ ミックグリーンシート(又はキャリアフィルム)上に載 置せず、セラミックグリーンシートを移動させて穴形成 位置に達する毎に、セラミックグリーンシートの移動を 一担停止した後、マスクをセラミックグリーンシート (又はキャリアフィルム)上に載置し、穴形成後はマス クを外すという操作を繰り返すことになる。あるいは、 固定テーブルとマスクとの間に隙間を設けて固定し、そ 30 の隙間にセラミックグリーンシートを挿通させて移動し てもよい。

【0053】さらに、レーザ光源から放射される1本のレーザビームを複数本のレーザビームに分岐させ、複数のビームスポットでマスクの透過部を照射してもよい。 これにより、さらに穴明けのスピードをアップさせることができる。

[0054]

【発明の効果】以上の説明で明らかなように、本発明によれば、セラミックグリーンシート上に所定のビアホーはのは、マスクを載置したので、マスクに設けられたビアホール用透光部の形状と略等しい形状のビアホール用穴がセラミックグリーンシートに形成され、マスク周辺部に設けられたビアホール用透光部を通過したレーザビームであっても、所望の形状のビアホール用でなどできる。そして、マスクに設けた透光部の形状と同じ形状の穴がセラミックグリーンシートに形成することができる。そして、マスクに設けた透光部の形状と同じ形状の穴がセラミックグリーンシートに形成することができるので、従来のレーザ加工方法では困難であった異形状の穴も形成で面図。「図6】レーザと来のレーザ加工方法では困難であった異形状の穴も形成で面図。

価な費用を要する光学系を必要とせず、また、マスクの加工精度がセラミックグリーンシートの穴明け加工精度となるため、テーブルの位置決め精度は比較的低くてもよいので設備費用を抑えることができる。

14

【0055】また、移動中のセラミックグリーンシート にレーザビームを照射させることにより、連続してセラミックグリーンシートにビアホール用穴を形成することができ、より量産に適した方法が得られる。さらに、パルス状のレーザビームを使用することによって、被加工物であるセラミックグリーンシートの穴明け加工時の温度上昇を抑えることができる。

【0056】また、レーザ光源から放射されたレーザビームをガルバノミラーで反射させてマスクに照射させることにより、広面積のレーザビーム照射可能エリアが確保される。この結果、セラミックグリーンシートの移動を必要最小限に抑えることができ、加工効率の向上と時間短縮を図ることができる。また、このとき、セラミックグリーンシートを設置したテーブルも同期して移動させることにより、さらに、大幅な時間短縮を図ることができる。

【0057】また、ビアホール用穴と位置合わせ穴を同一工程で形成することにより、位置合わせ穴とビアホール用穴間の相対的位置精度が高くなり、後工程の導体バターン形成や積層の精度を向上させることができる。また、位置合わせ穴を別工程で形成する必要がなくなり、製造期間の短縮を図ることができる。

【0058】また、マスクの材料としてレーザビームの 反射率が高い材料を使用し、レーザ光源としてCO,レーザを使用し、セラミックグリーンシートとして樹脂製キャリアフィルムで一面を支持されたキャリアフィルム 付きセラミックグリーンシートを使用することにより、マスクに照射されたレーザビームのうち不必要な部分は 完全にマスクによって遮断されると共に、ビアホール用及び位置合わせ穴用透光部を通過したレーザビームのエネルギーが効率良くセラミックグリーンシートに吸収され、より高精度に所望の形状のビアホール用穴及び位置合わせ穴を形成することができる。

【図面の簡単な説明】

【図1】本発明に係るレーザ加工装置の第1実施形態を 示す概略構成図。

【図2】図1に示したマスクを示す平面図。

【図3】レーザビームによるビアホール用穴形成を示す 断面図。

【図4】本発明に係るレーザ加工装置の第2実施形態を 示す概略構成図。

【図5】本発明に係るレーザ加工装置の第3実施形態を 示す概略構成図。

【図6】レーザビームのビームスポットの変形例を示す 平面図。

0 【図7】レーザビームのビームスポットの別の変形例を

示す平面図。

【図8】従来のレーザ加工装置の概略構成図。

【図9】従来のレーザ加工装置によって形成されたビア

ホール用穴の平面図。

【符号の説明】

- 1…レーザビーム穴形成装置
- 2…レーザ光源
- 3…集光レンズ
- 4…XYテーブル
- 5…レーザ光源駆動回路
- 6…制御回路
- 7…XYテーブル駆動回路
- 10…セラミックグリーンシート
- 10a…ピアホール用穴
- 12…キャリアフィルム
- 15…マスク

- * 15 a ···ビアホール用透光部 --
 - 15b…位置合わせ穴用透光部
 - 31…レーザビーム穴形成装置
 - 32…レーザ光源
 - 33…集光レンズ
 - 35…ガルバノミラー
 - 36…固定テーブル
 - 37a, 37b…シート撤送ローラ
 - 40…レーザ光源駆動回路
- 10 41…制御回路
 - 42…ガルバノミラー駆動回路
 - 45…セラミックグリーンシート
 - 46…キャリアフィルム
 - 50…マスク
 - 62…制御回路
- * L…レーザビーム

【図1】

【図2】

【図7】

[図6]

【図8】

【図9】

