

EL2520 Control Theory and Practice

Robustness

Elling W. Jacobsen School of Electrical Engineering and Computer Science KTH, Stockholm, Sweden

Todays Learning Outcomes

You should

- understand what robustness implies
- be able to quantify uncertainty using model sets
- be able to analyze robust stability and robust performance, given a model set, for SISO systems

Reference

Mainly based on Chapter 7 in "Multivariable Feedback Control",

S. Skogestad, I. Postlethwaite, Wiley (but slides + ch.6 in course book + Lecture notes 3 suffices)

Classes of uncertainty

Parametric uncertainty:

Model structure known, but some parameters are uncertain

Dynamic uncertainty / unmodelled dynamics:

Some (often high frequency) dynamics is missing, either
 by lack of knowledge/information or in order to get a simpler model

Often, we have a combination of the two.

Convenient to represent in "lumped" form

Uncertainty set – relative uncertainty

The true system $ilde{G}$ is assumed to belong to the model set

$$\Pi_I = \{ G_p(s) = G(s)(1 + W_I(s)\Delta_I(s)) \mid ||\Delta_I||_{\infty} \le 1 \}$$

Here,

- Π_I is a *family* of possible behaviours of the physical plant
- Δ_I is any stable transfer function with gain less than one $(|\Delta_I(i\omega)| \leq 1 \ \forall \psi$
- W_I is the multiplicative uncertainty weight

Robust stability: closed-loop stability for all $G_p \in \Pi_I$

Uncertainty in Nyquist Plot

- The perturbation generates at disc of radius $|W_IL|$ at each frequency
- The nominal loop-gain $L(i\omega)$ is at the center of the disc while the true system is assumed to be within the disc, i.e., the true system \tilde{L} belongs to the set Π_I

Robust stability: relative uncertainty

The global system is stable if w_l and T stable, Δ_I stable, and

$$||W_I T||_{\infty} \le 1 \quad \Leftrightarrow \quad |T(i\omega)| \le |W_I^{-1}(i\omega)| \qquad \forall \omega$$

- follows from Small Gain Theorem (see lecture 2)

Example: uncertain gain

Consider the set of possible models

$$\Pi_I = \{G_p : G_p(s) = kG(s), \quad k \in [1 - \delta, 1 + \delta]\}$$

Standard form representation (with real Δ_{l})

$$k = (1 + W_I \Delta_I), \ \Delta_I \in [-1, 1] \quad \Rightarrow \quad W_I(s) = \delta$$

- note that Δ_I strictly should be real in this case, but we allow it to be complex since we consider a bounded norm $\|\Delta_I\|_{\infty}$ which is defined for all complex Δ_I

Example: uncertain zero location

Nominal plant
$$G(s) = (s_0 + s)G_0(s)$$

Set of possible plants

$$\Pi_I = \{G_p : G(s) = (s_0' + s)G_0(s), s_0' \in [-\delta + s_0, s_0 + \delta]\}$$

Standard form representation (with real Δ_l)

$$(s'_0 + s)G_0(s) = (1 + W_I(s)\Delta_I(s))(s_0 + s)G_0(s) \Rightarrow W_I(s)\Delta_I(s) = \frac{s'_0 - s_0}{s_0 + s}$$

 $\Rightarrow W_I(s) = \frac{\delta}{s_0 + s}$

Alternative approach to obtain weight

Note that the relative uncertainty set

$$\Pi_I = \{G_p(s) = G(s)(1 + W_I(s)\Delta_I(s)) \mid ||\Delta_I||_{\infty} \le 1\}$$

can be re-written as

$$\Pi_I = \left\{ G_p(s) \mid |W_I^{-1} G^{-1} (G_p - G)| \le 1 \right\}$$

Thus, the uncertainty about the system captured by W_I if

$$|W_I(i\omega)| \ge \left| \frac{G_p(i\omega) - G(i\omega)}{G(i\omega)} \right| \qquad \forall G_p \in \Pi_i$$

(must first pick a nominal model G)

Consider the uncertain system: $G_p(s)=\frac{k}{\tau s+1}e^{-\theta s}, \quad k,\theta,\tau\in[2,3]$ with nominal plant $G(s)=\frac{\overline{k}}{\overline{\tau}s+1}$

Sample uncertainties (dotted) and corresponding W_I (dashed)

Consider the following nominal plant and controller

$$G(s) = \frac{3(1-2s)}{(5s+1)(10s+1)}, \quad K(s) = K_c \frac{12.7s+1}{12.7s}$$

and assume that one "extreme" possible plant is

$$G'(s) = \frac{4(1-3s)}{(4s+1)^2}$$

Is the closed-loop robustly stable?

The relative error is around 0.33 for low frequencies and 5.25 at high frequencies. Fitted weight

$$W_I(s) = \frac{10s + 0.33}{(10/5.25)s + 1}$$

Uncertainty weight W_I and complementary sensitivities for two different controller gains

The system with K_c =1.13 (T1) is not robustly stable, whereas it is robustly stable with K_c =0.31 (T2).

Frequency domain specifications

• Include relative uncertainty in weight $W_T(s)$

Uncertain number of RHP poles

- The requirement that the perturbation $\Delta_I(s)$ is stable implies that G(s) and $G_p(s)$ must have the same number of RHP poles in Π_I
- To model uncertain number of RHP poles, define model set

$$\Pi_{iI} = \{ G_p(s) = G(s)(1 + W_{iI}(s)\Delta_I(s))^{-1} \mid ||\Delta_I||_{\infty} \le 1 \}$$

• Corresponds to feedback around $\Delta_I(s)$

– feedback can make poles cross the imaginary axis even if the perturbation $\Delta_I(s)$ itself is stable

Uncertain pole location

$$G_p(s) = \frac{1}{s-p}, \quad p \in [-3, 1]$$

Select nominal model

$$G(s) = \frac{1}{s+1}$$

• With $\Delta_I \in [-1, 1]$ and

$$W_{iI} = \frac{2}{s+1}$$

we cover all $G_p(s)$ in the model set Π_{iI}

– note that it also in this case would suffice with a real Δ_I but that we must allow it to be complex to use the Small Gain Theorem

Robust stability with inverse uncertainty

As before, we write the block-diagram with uncertainty on the form

- From the block diagram on slide 16 we find $u_{\Delta} = W_{iI}(s)S(s)y_{\Delta}$,
- hence $M = W_{iI}S$ and the Small Gain Theorem then gives RS if

$$||W_{iI}S||_{\infty} < 1$$

Robust performance

Assume nominal performance specified in terms of the sensitivity function

$$|W_P S| \leq 1 \quad \forall \omega$$

Robust performance if

$$|W_P S_p| \leq 1$$
 for all ω and all S_p

We have

$$W_P S_p = W_P \frac{1}{1 + L_p} = \frac{W_P}{1 + L + W_I \Delta L}$$

Worst-case Δ is such that 1+L and $W_1\Delta$ L point in opposite directions

$$|W_P S_p| \le \frac{|W_P|}{|1 + L| - |W_I L|} = \frac{|W_P S|}{1 - |W_I T|} \quad \forall \omega$$

Robust performance cont' d

Robust performance

$$|W_P S_p| = \frac{|W_P S|}{1 - |W_I T|} \le 1$$

Can be expressed as

$$|W_P S| + |W_I T| \le 1 \quad \forall \omega$$

Sometimes approximated by the *mixed* sensitivity constraint

$$\left\| \begin{pmatrix} W_P S \\ W_I T \end{pmatrix} \right\|_{\infty} \leq 1$$

Robust stability and performance

In summary

nominal performance
$$|W_PS| \leq 1 \quad \forall \omega$$
 robust stability $|W_IT| \leq 1 \quad \forall \omega$ robust performance $|W_PS| + |W_IT| \leq 1 \quad \forall \omega$

Note that nominal performance and robust stability with rel. unc. implies

$$|W_P S| + |W_I T| \leq 2 \quad \forall \omega$$

(i.e. robust performance cannot be "too bad").

Holds only in SISO case!

Summary

Robust stability

closed-loop stability holds for all models within uncertainty set, including the true system

Can guarantee robustness if we model (or bound) uncertainty

- usually model as relative uncertainty
- but, also other uncertainty models, e.g., inverse multiplicative uncertainty, possible

Relative uncertainty imposes constraints on T, inverse uncertainty constraints on S

Robust performance: satisfy bounds on sensitivity function S for all plants in the model set