

Examen II

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

Ingeniería de Servidores Examen II

Los Del DGIIM, losdeldgiim.github.io

Arturo Olivares Martos

Granada, 2025

Asignatura Ingeniería de Servidores.

Curso Académico 2024/25.

Grado Doble Grado en Ingeniería Informática y Matemáticas.

Grupo Único.

Profesor Pablo García Sánchez.

Descripción Examen de la Convocatoria Ordinaria.

Fecha 16 de Junio de 2025.

Duración 2 horas y media.

El examen iba acompañadado de 20 preguntas tipo test de verdadero o falso, que se encuentran en el banco de preguntas ofrecido en la web. Los enunciados pueden estar redactados de forma distinta a los originales.

Ejercicio 1 (1 punto). Tenemos un programa que usa el procesador y la GPU, de forma que de todo el tiempo de ejecución del mismo, se usan un 40 % y un 60 % de forma respectiva. Queremos comprobar un componente para mejorar los tiempos de ejecución del programa, podemos elegir entre:

- Comprar una GPU el doble de rápido por 300 euros.
- Comprar una CPU el triple de rápido por 200 euros.

Justifique cual escogería según las relaciones prestaciones/coste. ¿Si pudiésemos mejorar cada componente de forma infinita, con cuál obtendríamos mayor ganancia?

Ejercicio 2 (2 puntos). Tras ejecutar dos algoritmos estocásticos de Inteligencia Artificial: un algoritmo genético (GA) y un algoritmo de búsqueda tabú (TS), hemos obtenido los tiempos de la siguiente tabla (se encuentran en segundos):

GA	TS
2	3
10	20
15	5
2	20
10	9

¿Con qué algoritmo se obtienen mejores resultados (es decir, menores tiempos de ejecución)? Queremos estar seguros al 90 % de que la opción escogida es la mejor. Se adjunta la tabla con la que poder calcular $t_{\frac{\alpha}{2},n-1}$:

df	0,20	0,10	0,05	0,02	0,01
1	3,0777	6,3138	12,7062	31,8205	63,6567
2	1,8856	2,9200	4,3027	6,9646	9,9248
3	1,6377	2,3534	3,1824	4,5407	5,8409
4	1,5332	2,1318	2,7764	3,7469	4,6041
5	1,4759	2,0150	2,5706	3,3649	4,0321
6	1,4598	1,9432	2,4469	3,1427	3,7074

Ejercicio 3 (1 punto). ¿Qué es el punto teórico de saturación de un servidor? ¿Cómo se calcula?

Ejercicio 4 (2 puntos). Tras mejor un servidor durante un día, hemos observado 21600 peticiones entrantes, de las cuales hemos podido obtener los siguientes datos sobre información de CPU, Memoria y Disco:

Por cada visita realiza al servidor, se realzan de media 5, 4 y 3 visitas, de forma respectiva. Además, suponiendo que las colas de dichos componentes se encuentran vacías, estos tardan de media 0,02, 0,01 y 0,03 segundos de media.

Realizando todas las hipótesis oportunas, responda a las siguientes preguntas:

- a) ¿Se encuentra el servidor saturado? ¿Por qué?
- b) Calcule el porcentaje de utilización de cada componente.
- c) ¿Cuánto tiempo pasa de media una petición que entra al servidor? ¿Cuál sería el tiempo mínimo de respuesta del servidor?
- d) ¿Cuánto espera de media un trabajo en cada dispositivo?
- e) ¿Cuántos clientes hay de media en el servidor?