Lecture 3: Optimal Policy and Bellman Optimality Equation

Shiyu Zhao

Shiyu Zhao

In this lecture:

• Core concepts: optimal state value and optimal policy

• A fundamental tool: Bellman optimality equation (BOE)

Shiyu Zhao 2 / 45

- 1 Motivating examples
- 2 Definition of optimal policy
- 3 BOE: Introduction
- 4 BOE: Preliminaries
 - BOE: Maximization on the right-hand side
 - BOE: Rewrite as v = f(v)
 - Contraction mapping theorem
- 5 BOE: Solution
- 6 BOE: Optimality
- 7 Analyzing optimal policies

Shiyu Zhao 3/45

- 1 Motivating examples
- 2 Definition of optimal policy
- 3 BOE: Introduction
- 4 BOE: Preliminaries
 - BOE: Maximization on the right-hand side
 - BOE: Rewrite as v = f(v)
 - Contraction mapping theorem
- 5 BOE: Solution
- 6 BOE: Optimality
- 7 Analyzing optimal policies

Shiyu Zhao 4/45

Exercise: write out the Bellman equation and solve the state values (set $\gamma=0.9$)

Bellman equations

$$\pi(s_1) = -1 + \gamma v_{\pi}(s_2)$$

$$\pi(s_2) = +1 + \gamma v_{\pi}(s_4)$$

$$\pi(s_3) = +1 + \gamma v_{\pi}(s_4)$$

$$\pi(s_4) = +1 + \gamma v_{\pi}(s_4)$$

State values: $v_{\pi}(s_4) = v_{\pi}(s_3) = v_{\pi}(s_2) = 10, v_{\pi}(s_1) = 8$

Shiyu Zhao 5/45

Exercise: write out the Bellman equation and solve the state values (set $\gamma=0.9$)

Bellman equations:

$$v_{\pi}(s_1) = -1 + \gamma v_{\pi}(s_2),$$

$$v_{\pi}(s_2) = +1 + \gamma v_{\pi}(s_4),$$

$$v_{\pi}(s_3) = +1 + \gamma v_{\pi}(s_4),$$

$$v_{\pi}(s_4) = +1 + \gamma v_{\pi}(s_4).$$

State values: $v_{\pi}(s_4) = v_{\pi}(s_3) = v_{\pi}(s_2) = 10, v_{\pi}(s_1) = 8$

Exercise: calculate the action values of the five actions for s_1

Action values:

$$q_{\pi}(s_1, a_1) = -1 + \gamma v_{\pi}(s_1) = 6.2,$$

$$q_{\pi}(s_1, a_2) = -1 + \gamma v_{\pi}(s_2) = 8,$$

$$q_{\pi}(s_1, a_3) = 0 + \gamma v_{\pi}(s_3) = 9,$$

$$q_{\pi}(s_1, a_4) = -1 + \gamma v_{\pi}(s_1) = 6.2,$$

$$q_{\pi}(s_1, a_5) = 0 + \gamma v_{\pi}(s_1) = 7.2.$$

Shiyu Zhao 6 / 45

Exercise: calculate the action values of the five actions for s_1 Action values:

$$\begin{aligned} q_{\pi}(s_1, a_1) &= -1 + \gamma v_{\pi}(s_1) = 6.2, \\ q_{\pi}(s_1, a_2) &= -1 + \gamma v_{\pi}(s_2) = 8, \\ q_{\pi}(s_1, a_3) &= 0 + \gamma v_{\pi}(s_3) = 9, \\ q_{\pi}(s_1, a_4) &= -1 + \gamma v_{\pi}(s_1) = 6.2, \\ q_{\pi}(s_1, a_5) &= 0 + \gamma v_{\pi}(s_1) = 7.2. \end{aligned}$$

Shiyu Zhao 6/45

Question: While the policy is not good, how can we improve it?

Answer: We can improve the policy based on action values. In particular, the current policy $\pi(a|s_1)$ is

$$\pi(a|s_1) = \begin{cases} 1 & a = a_1 \\ 0 & a \neq a_2 \end{cases}$$

Shiyu Zhao 7/45

Question: While the policy is not good, how can we improve it?

Answer: We can improve the policy based on action values.

In particular, the current policy $\pi(a|s_1)$ is

$$\pi(a|s_1) = \begin{cases} 1 & a = a_2 \\ 0 & a \neq a_2 \end{cases}$$

Shiyu Zhao 7/45

Observe the action values that we obtained just now:

$$q_{\pi}(s_1, a_1) = 6.2, \quad q_{\pi}(s_1, a_2) = 8, \quad q_{\pi}(s_1, a_3) = 9,$$

 $q_{\pi}(s_1, a_4) = 6.2, \quad q_{\pi}(s_1, a_5) = 7.2.$

What if we select the greatest action value? Then, the new policy is

$$\pi_{\text{new}}(a|s_1) = \begin{cases} 1 & a = a_3 \\ 0 & a \neq a_3 \end{cases}$$

Shiyu Zhao

Observe the action values that we obtained just now:

$$q_{\pi}(s_1, a_1) = 6.2, \quad q_{\pi}(s_1, a_2) = 8, \quad q_{\pi}(s_1, a_3) = 9,$$

 $q_{\pi}(s_1, a_4) = 6.2, \quad q_{\pi}(s_1, a_5) = 7.2.$

What if we select the greatest action value? Then, the new policy is

$$\pi_{\mathsf{new}}(a|s_1) = \begin{cases} 1 & a = a_3 \\ 0 & a \neq a_3 \end{cases}$$

Shiyu Zhao 8/45

Question: why doing this can improve the policy?

• Intuition: easy! Actions with greater values are better.

• Math: nontrivial! Will be introduced in this and next lectures!

Shiyu Zhao 9 / 45

- 1 Motivating examples
- 2 Definition of optimal policy
- 3 BOE: Introduction
- 4 BOE: Preliminaries
 - BOE: Maximization on the right-hand side
 - BOE: Rewrite as v = f(v)
 - Contraction mapping theorem
- 5 BOE: Solution
- 6 BOE: Optimality
- 7 Analyzing optimal policies

Shiyu Zhao

The state value could be used to evaluate if a policy is good or not: if

$$v_{\pi_1}(s) \ge v_{\pi_2}(s)$$
 for all $s \in \mathcal{S}$

then π_1 is "better" than π_2 .

The definition leads to many questions:

- Does the optimal policy exist?
- Is the optimal policy unique?
- Is the optimal policy stochastic or deterministic?
- How to obtain the optimal policy?

To answer these questions, we study the Bellman optimality equation

The state value could be used to evaluate if a policy is good or not: if

$$v_{\pi_1}(s) \ge v_{\pi_2}(s)$$
 for all $s \in \mathcal{S}$

then π_1 is "better" than π_2 .

Definition

A policy π^* is optimal if $v_{\pi^*}(s) \geq v_{\pi}(s)$ for all s and for any other policy π .

The definition leads to many questions:

- Does the optimal policy exist?
- Is the optimal policy unique?
- Is the optimal policy stochastic or deterministic?
- How to obtain the optimal policy?

To answer these questions, we study the Bellman optimality equation

The state value could be used to evaluate if a policy is good or not: if

$$v_{\pi_1}(s) \ge v_{\pi_2}(s)$$
 for all $s \in \mathcal{S}$

then π_1 is "better" than π_2 .

Definition

A policy π^* is optimal if $v_{\pi^*}(s) \geq v_{\pi}(s)$ for all s and for any other policy π .

The definition leads to many questions:

- Does the optimal policy exist?
- Is the optimal policy unique?
- Is the optimal policy stochastic or deterministic?
- How to obtain the optimal policy?

To answer these questions, we study the Bellman optimality equation

The state value could be used to evaluate if a policy is good or not: if

$$v_{\pi_1}(s) \ge v_{\pi_2}(s)$$
 for all $s \in \mathcal{S}$

then π_1 is "better" than π_2 .

Definition

A policy π^* is optimal if $v_{\pi^*}(s) \geq v_{\pi}(s)$ for all s and for any other policy π .

The definition leads to many questions:

- Does the optimal policy exist?
- Is the optimal policy unique?
- Is the optimal policy stochastic or deterministic?
- How to obtain the optimal policy?

To answer these questions, we study the Bellman optimality equation.

- 1 Motivating examples
- 2 Definition of optimal policy
- 3 BOE: Introduction
- 4 BOE: Preliminaries
 - BOE: Maximization on the right-hand side
 - BOE: Rewrite as v = f(v)
 - Contraction mapping theorem
- 5 BOE: Solution
- 6 BOE: Optimality
- 7 Analyzing optimal policies

Bellman optimality equation (elementwise form):

$$v(s) = \sum_{a} \pi(a|s) \left(\sum_{r} p(r|s,a)r + \gamma \sum_{s'} p(s'|s,a)v(s') \right), \quad s \in \mathcal{S}$$

Shiyu Zhao

Bellman optimality equation (elementwise form):

$$v(s) = \max_{\pi} \sum_{a} \pi(a|s) \left(\sum_{r} p(r|s, a)r + \gamma \sum_{s'} p(s'|s, a)v(s') \right), \quad s \in \mathcal{S}$$

Shiyu Zhao 13 / 45

Bellman optimality equation (elementwise form):

$$v(s) = \max_{\pi} \sum_{a} \pi(a|s) \left(\sum_{r} p(r|s, a)r + \gamma \sum_{s'} p(s'|s, a)v(s') \right), \quad s \in \mathcal{S}$$
$$= \max_{\pi} \sum_{a} \pi(a|s)q(s, a), \quad s \in \mathcal{S}$$

Bellman optimality equation (elementwise form):

$$\begin{split} v(s) &= \max_{\pi} \sum_{a} \pi(a|s) \left(\sum_{r} p(r|s,a)r + \gamma \sum_{s'} p(s'|s,a)v(s') \right), \quad s \in \mathcal{S} \\ &= \max_{\pi} \sum_{a} \pi(a|s)q(s,a), \quad s \in \mathcal{S} \end{split}$$

Remarks:

- $p(r|s, a), p(s'|s, a), r, \gamma$ are known.
- ullet v(s), v(s') are unknown and to be calculated.
- Is $\pi(s)$ known or unknown?

Bellman optimality equation (matrix-vector form):

$$v = \max_{\pi} (r_{\pi} + \gamma P_{\pi} v)$$

where the elements corresponding to s or s^\prime are

$$\begin{split} [r_{\pi}]_s &\triangleq \sum_a \pi(a|s) \sum_r p(r|s,a)r, \\ [P_{\pi}]_{s,s'} &= p(s'|s) \triangleq \sum_a \pi(a|s) \sum_{s'} p(s'|s,a) \end{split}$$

Here \max_{π} is performed elementwise.

Bellman optimality equation (matrix-vector form):

$$v = \max_{\pi} (r_{\pi} + \gamma P_{\pi} v)$$

- BOE is tricky yet elegant!
 - Why elegant? It describes the optimal policy and optimal state value in an elegant way.
 - Why tricky? There is a maximization on the right-hand side, which may not be straightforward to see how to compute.
- This lecture will answer all the following questions
 - Algorithm: how to solve this equation?
 - Existence: does this equation have solutions?
 - Uniqueness: is the solution to this equation unique?

Optimality: how is it related to optimal policy?

Bellman optimality equation (matrix-vector form):

$$v = \max_{\pi} (r_{\pi} + \gamma P_{\pi} v)$$

- BOE is tricky yet elegant!
 - Why elegant? It describes the optimal policy and optimal state value in an elegant way.
 - Why tricky? There is a maximization on the right-hand side, which may not be straightforward to see how to compute.
- This lecture will answer all the following questions:
 - Algorithm: how to solve this equation?
 - Existence: does this equation have solutions?
 - Uniqueness: is the solution to this equation unique?
 - Optimality: how is it related to optimal policy?

- 1 Motivating examples
- 2 Definition of optimal policy
- 3 BOE: Introduction
- 4 BOE: Preliminaries
 - BOE: Maximization on the right-hand side
 - BOE: Rewrite as v = f(v)
 - Contraction mapping theorem
- 5 BOE: Solution
- 6 BOE: Optimality
- 7 Analyzing optimal policies

- 1 Motivating examples
- 2 Definition of optimal policy
- 3 BOE: Introduction
- 4 BOE: Preliminaries
 - BOE: Maximization on the right-hand side
 - BOE: Rewrite as v = f(v)
 - Contraction mapping theorem
- 5 BOE: Solution
- 6 BOE: Optimality
- 7 Analyzing optimal policies

BOE: elementwise form

$$v(s) = \max_{\pi} \sum_{a} \pi(a|s) \left(\sum_{r} p(r|s, a)r + \gamma \sum_{s'} p(s'|s, a)v(s') \right), \quad \forall s \in \mathcal{S}$$

BOE: matrix-vector form $v = \max_{\pi} (r_{\pi} + \gamma P_{\pi} v)$

BOE: elementwise form

$$v(s) = \max_{\pi} \sum_{a} \pi(a|s) \left(\sum_{r} p(r|s, a)r + \gamma \sum_{s'} p(s'|s, a)v(s') \right), \quad \forall s \in \mathcal{S}$$

BOE: matrix-vector form $v = \max_{\pi} (r_{\pi} + \gamma P_{\pi} v)$

Example (How to solve two unknowns from one equation)

Solve two unknown variables $x, a \in \mathbb{R}$ from the following equation:

$$x = \max_{a} (2x - 1 - a^2).$$

To solve them, first consider the right hand side. Regardless the value of x, $\max_a (2x-1-a^2)=2x-1$ where the maximization is achieved when a=0. Second, when a=0, the equation becomes x=2x-1, which leads to x=1. Therefore, a=0 and x=1 are the solution of the equation.

Shiyu Zhao

Fix v'(s) first and solve π :

$$v(s) = \max_{\pi} \sum_{a} \pi(a|s) \left(\sum_{r} p(r|s, a)r + \gamma \sum_{s'} p(s'|s, a)v(s') \right), \quad \forall s \in \mathcal{S}$$

$$= \max_{\pi} \sum_{a} \pi(a|s)q(s, a) = \max_{\pi} \left[\pi(a_1|s)q(s, a_1) + \dots + \pi(a_5|s)q(s, a_5) \right]$$

$$= \max_{c_1, \dots, c_5} \left[c_1 q(s, a_1) + \dots + c_5 q(s, a_5) \right], \quad c_1 + \dots + c_5 = 1$$

Fix v'(s) first and solve π :

$$v(s) = \max_{\pi} \sum_{a} \pi(a|s) \left(\sum_{r} p(r|s, a)r + \gamma \sum_{s'} p(s'|s, a)v(s') \right), \quad \forall s \in \mathcal{S}$$

$$= \max_{\pi} \sum_{a} \pi(a|s)q(s, a) = \max_{\pi} \left[\pi(a_1|s)q(s, a_1) + \dots + \pi(a_5|s)q(s, a_5) \right]$$

$$= \max_{c_1, \dots, c_5} \left[c_1 q(s, a_1) + \dots + c_5 q(s, a_5) \right], \quad c_1 + \dots + c_5 = 1$$

Fix v'(s) first and solve π :

$$v(s) = \max_{\pi} \sum_{a} \pi(a|s) \left(\sum_{r} p(r|s, a)r + \gamma \sum_{s'} p(s'|s, a)v(s') \right), \quad \forall s \in \mathcal{S}$$

$$= \max_{\pi} \sum_{a} \pi(a|s)q(s, a) = \max_{\pi} \left[\pi(a_1|s)q(s, a_1) + \dots + \pi(a_5|s)q(s, a_5) \right]$$

$$\stackrel{:}{=} \max_{c_1, \dots, c_5} \left[c_1q(s, a_1) + \dots + c_5q(s, a_5) \right], \quad c_1 + \dots + c_5 = 1$$

Fix v'(s) first and solve π :

$$\begin{split} v(s) &= \max_{\pi} \sum_{a} \pi(a|s) \left(\sum_{r} p(r|s,a)r + \gamma \sum_{s'} p(s'|s,a)v(s') \right), \quad \forall s \in \mathcal{S} \\ &= \max_{\pi} \sum_{a} \pi(a|s)q(s,a) = \max_{\pi} \left[\pi(a_1|s)q(s,a_1) + \dots + \pi(a_5|s)q(s,a_5) \right] \\ &\doteq \max_{c_1,\dots,c_5} \left[c_1 q(s,a_1) + \dots + c_5 q(s,a_5) \right], \qquad c_1 + \dots + c_5 = 1 \end{split}$$

Example (How to solve $\max_{\pi} \sum_{a} \pi(a|s)q(s,a)$)

Suppose $q_1,q_2,q_3\in\mathbb{R}$ are given. Find c_1^*,c_2^*,c_3^* solving

$$\max_{c_1, c_2, c_3} c_1 q_1 + c_2 q_2 + c_3 q_3.$$

where $c_1 + c_2 + c_3 = 1$ and $c_1, c_2, c_3 \ge 0$.

Answer: Suppose $q_3 \geq q_1,q_2$. Then, the optimal solution is $c_3^*=1$ and $c_1^*=c_2^*=0$. That is because for any c_1,c_2,c_3

$$q_3 = (c_1 + c_2 + c_3)q_3 = c_1q_3 + c_2q_3 + c_3q_3 \ge c_1q_1 + c_2q_2 + c_3q_3.$$

Inspired by the above example, considering that $\sum_a \pi(a|s) = 1$, we have

$$\begin{aligned} v(s) &= \max_{\pi} \sum_{a} \pi(a|s) \left(\sum_{r} p(r|s, a)r + \gamma \sum_{s'} p(s'|s, a)v(s') \right), \quad \forall s \in \mathcal{S} \\ &= \max_{\pi} \sum_{a} \pi(a|s)q(s, a) \\ &= \max_{a \in \mathcal{A}(s)} q(s, a) \end{aligned}$$

where the optimality is achieved when

$$\pi(a|s) = \begin{cases} 1 & a = a^* \\ 0 & a \neq a^* \end{cases}$$

where $a^* = \arg \max_a q(s, a)$.

Shiyu Zhao 20/4

Outline

- 1 Motivating examples
- 2 Definition of optimal policy
- 3 BOE: Introduction
- 4 BOE: Preliminaries
 - BOE: Maximization on the right-hand side
 - BOE: Rewrite as v = f(v)
 - Contraction mapping theorem
- 5 BOE: Solution
- 6 BOE: Optimality
- 7 Analyzing optimal policies

Shiyu Zhao 21 / 45

The BOE is $v = \max_{\pi} (r_{\pi} + \gamma P_{\pi} v)$. Let

$$f(v) := \max_{\pi} (r_{\pi} + \gamma P_{\pi} v)$$

Then, the Bellman optimality equation becomes

$$v = f(v)$$

where

$$[f(v)]_s = \max_{\pi} \sum_{a} \pi(a|s)q(s,a), \quad s \in \mathcal{S}$$

This equation looks very simple. How to solve it?

Shiyu Zhao 22/45

The BOE is $v = \max_{\pi} (r_{\pi} + \gamma P_{\pi} v)$. Let

$$f(v) := \max_{\pi} (r_{\pi} + \gamma P_{\pi} v)$$

Then, the Bellman optimality equation becomes

$$v = f(v)$$

where

$$[f(v)]_s = \max_{\pi} \sum_{a} \pi(a|s)q(s,a), \quad s \in \mathcal{S}$$

This equation looks very simple. How to solve it?

The BOE is $v = \max_{\pi} (r_{\pi} + \gamma P_{\pi} v)$. Let

$$f(v) := \max_{\pi} (r_{\pi} + \gamma P_{\pi} v)$$

Then, the Bellman optimality equation becomes

$$v = f(v)$$

where

$$[f(v)]_s = \max_{\pi} \sum_{a} \pi(a|s)q(s,a), \quad s \in \mathcal{S}$$

This equation looks very simple. How to solve it?

Shiyu Zhao 22 / 45

Outline

- 1 Motivating examples
- 2 Definition of optimal policy
- 3 BOE: Introduction
- 4 BOE: Preliminaries
 - BOE: Maximization on the right-hand side
 - BOE: Rewrite as v = f(v)
 - Contraction mapping theorem
- 5 BOE: Solution
- 6 BOE: Optimality
- 7 Analyzing optimal policies

Shiyu Zhao

Some concepts:

• Fixed point: $x \in X$ is a fixed point of $f: X \to X$ if

$$f(x) = x$$

• Contraction mapping (or contractive function): f is a contraction mapping if

$$||f(x_1) - f(x_2)|| \le \gamma ||x_1 - x_2||$$

where $\gamma \in (0,1)$.

- γ must be strictly less than 1 so that many limits such as $\gamma^k \to 0$ as $k \to 0$ hold.
- Here $\|\cdot\|$ can be any vector norm.

Some concepts:

• Fixed point: $x \in X$ is a fixed point of $f: X \to X$ if

$$f(x) = x$$

• Contraction mapping (or contractive function): f is a contraction mapping if

$$||f(x_1) - f(x_2)|| \le \gamma ||x_1 - x_2||$$

where $\gamma \in (0,1)$.

- γ must be strictly less than 1 so that many limits such as $\gamma^k \to 0$ as $k \to 0$ hold.
- Here $\|\cdot\|$ can be any vector norm.

Examples to demonstrate the concepts.

Example

• x = f(x) = 0.5x, $x \in \mathbb{R}$.

It is easy to verify that x=0 is a fixed point since $0=0.5\times 0$. Moreover,

$$f(x) = 0.5x$$
 is a contraction mapping because

$$\|0.5x_1 - 0.5x_2\| = 0.5\|x_1 - x_2\| \le \gamma \|x_1 - x_2\|$$
 for any $\gamma \in [0.5, 1)$.

Examples to demonstrate the concepts.

Example

- $x=f(x)=0.5x, x\in\mathbb{R}$. It is easy to verify that x=0 is a fixed point since $0=0.5\times 0$. Moreover, f(x)=0.5x is a contraction mapping because $\|0.5x_1-0.5x_2\|=0.5\|x_1-x_2\|\leq \gamma\|x_1-x_2\| \text{ for any } \gamma\in[0.5,1).$
- x=f(x)=Ax, where $x\in\mathbb{R}^n, A\in\mathbb{R}^{n\times n}$ and $\|A\|\leq\gamma<1$. It is easy to verify that x=0 is a fixed point since 0=A0. To see the contraction property,

 $\|Ax_1 - Ax_2\| = \|A(x_1 - x_2)\| \le \|A\| \|x_1 - x_2\| \le \gamma \|x_1 - x_2\|.$ Therefore, f(x) = Ax is a contraction mapping.

Theorem (Contraction Mapping Theorem)

For any equation that has the form of x=f(x), if f is a contraction mapping, then

- Existence: there exists a fixed point x^* satisfying $f(x^*) = x^*$.
- Uniqueness: The fixed point x^* is unique.
- Algorithm: Consider a sequence $\{x_k\}$ where $x_{k+1} = f(x_k)$, then $x_k \to x^*$ as $k \to \infty$. Moreover, the convergence rate is exponentially fast.

For the proof of this theorem, see the book.

Shiyu Zhao 26 / 45

Examples:

• x=0.5x, where f(x)=0.5x and $x\in\mathbb{R}$ $x^*=0$ is the unique fixed point. It can be solved iteratively by

$$x_{k+1} = 0.5x_k$$

• x = Ax, where f(x) = Ax and $x \in \mathbb{R}^n$, $A \in \mathbb{R}^{n \times n}$ and ||A|| < 1 $x^* = 0$ is the unique fixed point. It can be solved iteratively by

$$x_{k+1} = Ax_k$$

Shiyu Zhao 27 / 45

Examples:

• x=0.5x, where f(x)=0.5x and $x\in\mathbb{R}$ $x^*=0$ is the unique fixed point. It can be solved iteratively by

$$x_{k+1} = 0.5x_k$$

• x=Ax, where f(x)=Ax and $x\in\mathbb{R}^n, A\in\mathbb{R}^{n\times n}$ and $\|A\|<1$ $x^*=0$ is the unique fixed point. It can be solved iteratively by

$$x_{k+1} = Ax_k$$

Shiyu Zhao 27/45

Outline

- 1 Motivating examples
- 2 Definition of optimal policy
- 3 BOE: Introduction
- 4 BOE: Preliminaries
 - BOE: Maximization on the right-hand side
 - BOE: Rewrite as v = f(v)
 - Contraction mapping theorem
- 5 BOE: Solution
- 6 BOE: Optimality
- 7 Analyzing optimal policies

Shiyu Zhao 28 / 45

Contraction property of BOE

Let's come back to the Bellman optimality equation:

$$v = f(v) = \max_{\pi} (r_{\pi} + \gamma P_{\pi} v)$$

For the proof of this lemma, see our book.

Shiyu Zhao

Contraction property of BOE

Let's come back to the Bellman optimality equation:

$$v = f(v) = \max_{\pi} (r_{\pi} + \gamma P_{\pi} v)$$

Theorem (Contraction Property)

f(v) is a contraction mapping satisfying

$$||f(v_1) - f(v_2)|| \le \frac{\gamma}{\|v_1 - v_2\|}$$

where γ is the discount rate!

For the proof of this lemma, see our book.

Shiyu Zhao

Applying the contraction mapping theorem gives the following results.

Theorem (Existence, Uniqueness, and Algorithm)

For the BOE $v=f(v)=\max_{\pi}(r_{\pi}+\gamma P_{\pi}v)$, there always exists a solution v^* and the solution is unique. The solution could be solved iteratively by

$$v_{k+1} = f(v_k) = \max_{\pi} (r_{\pi} + \gamma P_{\pi} v_k)$$
 (1)

This sequence $\{v_k\}$ converges to v^* exponentially fast given any initial guess v_0 . The convergence rate is determined by γ .

Important: The algorithm in (1) is called the value iteration algorithm. We will analyze it in the next lecture! This lecture focuses more on the fundamental properties.

Shiyu Zhao 30 / 45

Applying the contraction mapping theorem gives the following results.

Theorem (Existence, Uniqueness, and Algorithm)

For the BOE $v=f(v)=\max_{\pi}(r_{\pi}+\gamma P_{\pi}v)$, there always exists a solution v^* and the solution is unique. The solution could be solved iteratively by

$$v_{k+1} = f(v_k) = \max_{\pi} (r_{\pi} + \gamma P_{\pi} v_k)$$
 (1)

This sequence $\{v_k\}$ converges to v^* exponentially fast given any initial guess v_0 . The convergence rate is determined by γ .

Important: The algorithm in (1) is called the value iteration algorithm. We will analyze it in the next lecture! This lecture focuses more on the fundamental properties.

Shiyu Zhao 30 / 45

Outline

- 1 Motivating examples
- 2 Definition of optimal policy
- 3 BOE: Introduction
- 4 BOE: Preliminaries
 - BOE: Maximization on the right-hand side
 - BOE: Rewrite as v = f(v)
 - Contraction mapping theorem
- 5 BOE: Solution
- 6 BOE: Optimality
- 7 Analyzing optimal policies

Shiyu Zhao 31/45

Suppose v^* is the solution to the Bellman optimality equation. It satisfies

$$v^* = \max_{\pi} (r_{\pi} + \gamma P_{\pi} v^*)$$

Suppose

$$\tau^* = \arg\max_{\pi} (r_{\pi} + \gamma P_{\pi} v^*)$$

Then

$$v^* = r_{\pi^*} + \gamma P_{\pi^*} v^*$$

Therefore, π^* is a policy and $v^* = v_{\pi^*}$ is the corresponding state value.

Is π^* the optimal policy? Is v^* the greatest state value can be achieved?

Shiyu Zhao 32/45

Suppose v^* is the solution to the Bellman optimality equation. It satisfies

$$v^* = \max_{\pi} (r_{\pi} + \gamma P_{\pi} v^*)$$

Suppose

$$\pi^* = \arg\max_{\pi} (r_{\pi} + \gamma P_{\pi} v^*)$$

Then

$$v^* = r_{\pi^*} + \gamma P_{\pi^*} v^*$$

Therefore, π^* is a policy and $v^*=v_{\pi^*}$ is the corresponding state value.

Is π^* the optimal policy? Is v^* the greatest state value can be achieved?

Shiyu Zhao 32/45

Suppose \boldsymbol{v}^* is the solution to the Bellman optimality equation. It satisfies

$$v^* = \max_{\pi} (r_{\pi} + \gamma P_{\pi} v^*)$$

Suppose

$$\pi^* = \arg\max_{\pi} (r_{\pi} + \gamma P_{\pi} v^*)$$

Then

$$v^* = r_{\pi^*} + \gamma P_{\pi^*} v^*$$

Therefore, π^* is a policy and $v^* = v_{\pi^*}$ is the corresponding state value.

Is π^* the optimal policy? Is v^* the greatest state value can be achieved?

Shiyu Zhao 32 / 45

Suppose \boldsymbol{v}^* is the solution to the Bellman optimality equation. It satisfies

$$v^* = \max_{\pi} (r_{\pi} + \gamma P_{\pi} v^*)$$

Suppose

$$\pi^* = \arg\max_{\pi} (r_{\pi} + \gamma P_{\pi} v^*)$$

Then

$$v^* = r_{\pi^*} + \gamma P_{\pi^*} v^*$$

Therefore, π^* is a policy and $v^* = v_{\pi^*}$ is the corresponding state value.

Is π^* the optimal policy? Is v^* the greatest state value can be achieved?

Shiyu Zhao 32 / 45

Theorem (Policy Optimality)

Suppose that v^* is the unique solution to $v=\max_\pi(r_\pi+\gamma P_\pi v)$, and v_π is the state value function satisfying $v_\pi=r_\pi+\gamma P_\pi v_\pi$ for any given policy π , then

$$v^* \ge v_{\pi}, \quad \forall \pi$$

For the proof, please see our book.

Now we understand why we study the BOE. That is because it describes the optimal state value and optimal policy.

Shiyu Zhao 33/45

Theorem (Policy Optimality)

Suppose that v^* is the unique solution to $v=\max_\pi(r_\pi+\gamma P_\pi v)$, and v_π is the state value function satisfying $v_\pi=r_\pi+\gamma P_\pi v_\pi$ for any given policy π , then

$$v^* \ge v_{\pi}, \quad \forall \pi$$

For the proof, please see our book.

Now we understand why we study the BOE. That is because it describes the optimal state value and optimal policy.

Shiyu Zhao 33/45

Optimal policy

What does an optimal policy π^* look like?

$$\pi^*(s) = \arg\max_{\pi} \sum_{a} \pi(a|s) \underbrace{\left(\sum_{r} p(r|s, a)r + \gamma \sum_{s'} p(s'|s, a)v^*(s')\right)}_{q^*(s, a)}$$

Optimal policy

What does an optimal policy π^* look like?

$$\pi^*(s) = \arg \max_{\pi} \sum_{a} \pi(a|s) \underbrace{\left(\sum_{r} p(r|s, a)r + \gamma \sum_{s'} p(s'|s, a)v^*(s')\right)}_{q^*(s, a)}$$

Theorem (Greedy Optimal Policy)

For any $s \in \mathcal{S}$, the deterministic greedy policy

$$\pi^*(a|s) = \begin{cases} 1 & a = a^*(s) \\ 0 & a \neq a^*(s) \end{cases}$$

is an optimal policy solving the BOE. Here,

$$a^*(s) = \arg\max_{a} q^*(a, s),$$

where $q^*(s, a) \doteq \sum_r p(r|s, a)r + \gamma \sum_{s'} p(s'|s, a)v^*(s')$.

Outline

- 1 Motivating examples
- 2 Definition of optimal policy
- 3 BOE: Introduction
- 4 BOE: Preliminaries
 - BOE: Maximization on the right-hand side
 - BOE: Rewrite as v = f(v)
 - Contraction mapping theorem
- 5 BOE: Solution
- 6 BOE: Optimality
- 7 Analyzing optimal policies

What factors determine the optimal state value and optimal policy?

It can be clearly seen from the BOE

$$v(s) = \max_{\pi} \sum_{a} \pi(a|s) \left(\sum_{r} p(r|s,a)r + \gamma \sum_{s'} p(s'|s,a)v(s') \right)$$

that there are three factors:

- System model: p(s'|s, a), p(r|s, a)
- Reward design: r
- Discount rate: 1

We next show how r and γ can affect the optimal policy.

Shiyu Zhao 36/45

What factors determine the optimal state value and optimal policy? It can be clearly seen from the BOE

$$v(s) = \max_{\pi} \sum_{a} \pi(a|s) \left(\sum_{r} \frac{p(r|s, a)r}{p(s'|s, a)} + \gamma \sum_{s'} \frac{p(s'|s, a)v(s')}{p(s'|s, a)} \right)$$

that there are three factors:

- System model: p(s'|s,a), p(r|s,a)
- ullet Reward design: r
- Discount rate: γ

We next show how r and γ can affect the optimal policy.

Shiyu Zhao 36/45

What factors determine the optimal state value and optimal policy? It can be clearly seen from the BOE

$$v(s) = \max_{\pi} \sum_{a} \pi(a|s) \left(\sum_{r} p(r|s,a)r + \gamma \sum_{s'} p(s'|s,a)v(s') \right)$$

that there are three factors:

- System model: p(s'|s, a), p(r|s, a)
- ullet Reward design: r
- Discount rate: γ

We next show how r and γ can affect the optimal policy.

Shiyu Zhao 36 / 45

The optimal policy and the corresponding optimal state value are obtained by solving the BOE.

	1	2	3	4	5
1	5.8	5.6	6.2	6.5	5.8
2	6.5	7.2	8.0	7.2	6.5
3	7.2	8.0	10.0	8.0	7.2
4	8.0	10.0	10.0	10.0	8.0
5	7.2	9.0	10.0	9.0	8.1

(a)
$$r_{\rm boundary} = r_{\rm forbidden} = -1$$
, $r_{\rm target} = 1$, $\gamma = 0.9$

The optimal policy dares to take risks: entering forbidden areas!!

Shiyu Zhao 37 / 45

If we change $\gamma=0.9$ to $\gamma=0.5$

(b) The discount rate is $\gamma=0.5$. Others are the same as (a).

The optimal policy becomes shorted-sighted! Avoid all the forbidden areas!

Shiyu Zhao 38 / 45

If we change γ to 0

(c) The discount rate is $\gamma = 0$. Others are the same as (a).

The optimal policy becomes extremely short-sighted! Also, choose the action that has the greatest *immediate reward*! Cannot reach the target!

Shiyu Zhao 39 / 45

If we increase the punishment when entering forbidden areas: change

$$r_{\rm forbidden} = -1$$
 to $r_{\rm forbidden} = -10$

(d) $r_{\rm forbidden} = -10$. Others are the same as (a).

The optimal policy would also avoid the forbidden areas.

What if we change $r \to ar + b$?

For example,

$$r_{\text{boundary}} = r_{\text{forbidden}} = -1, \quad r_{\text{target}} = 1, \quad r_{\text{otherstep}} = 0$$

becomes

$$r_{\text{boundary}} = r_{\text{forbidden}} = 0, \quad r_{\text{target}} = 2, \quad r_{\text{otherstep}} = 1$$

The optimal policy remains the same!

What matters is not the absolute reward values! It is their relative values!

Analyzing optimal policies (optional)

Theorem (Optimal Policy Invariance)

Consider a Markov decision process with $v^* \in \mathbb{R}^{|\mathcal{S}|}$ as the optimal state value satisfying $v^* = \max_{\pi} (r_{\pi} + \gamma P_{\pi} v^*)$. If every reward r is changed by an affine transformation to ar + b, where $a, b \in \mathbb{R}$ and a > 0, then the corresponding optimal state value v' is also an affine transformation of v^* :

$$v' = av^* + \frac{b}{1 - \gamma} \mathbf{1},$$

where $\gamma \in (0,1)$ is the discount rate and $\mathbf{1} = [1,\ldots,1]^T$. Consequently, the optimal policies are invariant to the affine transformation of the reward signals.

The proof is given in my book.

Meaningless detour?

9.0 8.1 10.0 10.0

(a) Optimal policy

(b) Not optimal

Shiyu Zhao 43 / 45

Meaningless detour?

(a) Optimal policy

(b) Not optimal

Question: Why does the optimal policy not take meaningless detours? We don't punish for taking detours because $r_{\text{otherstep}} = 0$.

Shiyu Zhao 43 / 45

Meaningless detour?

Question: Why does the optimal policy not take meaningless detours? We don't punish for taking detours because $r_{\rm otherstep}=0$.

Answer: Wrong! We do punish by using the discount rate!

Policy (a): return =
$$1 + \gamma 1 + \gamma^2 1 + \dots = 1/(1 - \gamma) = 10$$
.

Policy (b): return =
$$0 + \gamma 0 + \gamma^2 1 + \gamma^3 1 + \dots = \gamma^2 / (1 - \gamma) = 8$$
.

Shiyu Zhao 43/45

Meaningless detour?

(a) Optimal policy

Question: Why does the optimal policy not take meaningless detours? We don't punish for taking detours because $r_{\rm otherstep}=0$.

Answer: Wrong! We do punish by using the discount rate!

Policy (a): return = $1 + \gamma 1 + \gamma^2 1 + \dots = 1/(1 - \gamma) = 10$.

Policy (b): return = $0 + \gamma 0 + \gamma^2 1 + \gamma^3 1 + \dots = \gamma^2 / (1 - \gamma) = 8.1$

Shiyu Zhao 43/45

Bellman optimality equation:

• Elementwise form:

$$v(s) = \max_{\pi} \sum_{a} \pi(a|s) \underbrace{\left(\sum_{r} p(r|s, a)r + \gamma \sum_{s'} p(s'|s, a)v(s')\right)}_{q(s, a)}, \quad \forall s \in \mathcal{S}$$

• Matrix-vector form:

$$v = \max_{\pi} (r_{\pi} + \gamma P_{\pi} v)$$

Questions about the Bellman optimality equation:

- Existence: does this equation have solutions?
 - Yes, by the contraction mapping Theorem
- Uniqueness: is the solution to this equation unique?
 - Yes, by the contraction mapping Theorem
- Algorithm: how to solve this equation?
 - Iterative algorithm suggested by the contraction mapping Theorem
- Optimality: why we study this equation
 - Because its solution corresponds to the optimal state value and optimal policy.

Finally, we understand why it is important to study the BOE

Questions about the Bellman optimality equation:

- Existence: does this equation have solutions?
 - Yes, by the contraction mapping Theorem
- Uniqueness: is the solution to this equation unique?
 - Yes, by the contraction mapping Theorem
- Algorithm: how to solve this equation?
 - Iterative algorithm suggested by the contraction mapping Theorem
- Optimality: why we study this equation
 - Because its solution corresponds to the optimal state value and optimal policy.

Finally, we understand why it is important to study the BOE!

Questions about the Bellman optimality equation:

- Existence: does this equation have solutions?
 - Yes, by the contraction mapping Theorem
- Uniqueness: is the solution to this equation unique?
 - Yes, by the contraction mapping Theorem
- Algorithm: how to solve this equation?
 - Iterative algorithm suggested by the contraction mapping Theorem
- Optimality: why we study this equation
 - Because its solution corresponds to the optimal state value and optimal policy.

Finally, we understand why it is important to study the BOE!

Questions about the Bellman optimality equation:

- Existence: does this equation have solutions?
 - Yes, by the contraction mapping Theorem
- Uniqueness: is the solution to this equation unique?
 - Yes, by the contraction mapping Theorem
- Algorithm: how to solve this equation?
 - Iterative algorithm suggested by the contraction mapping Theorem
- Optimality: why we study this equation
 - Because its solution corresponds to the optimal state value and optimal policy.

Finally, we understand why it is important to study the BOE

Questions about the Bellman optimality equation:

- Existence: does this equation have solutions?
 - Yes, by the contraction mapping Theorem
- Uniqueness: is the solution to this equation unique?
 - Yes, by the contraction mapping Theorem
- Algorithm: how to solve this equation?
 - Iterative algorithm suggested by the contraction mapping Theorem
- Optimality: why we study this equation
 - Because its solution corresponds to the optimal state value and optimal policy.

Finally, we understand why it is important to study the BOE!