Incircles and Excircles

Proposition 1. Let A, O, and B be distinct points. A point P in $\text{int} \angle AOB$ is on the bisector of $\angle AOB$ if and only if $\overline{PX} \equiv \overline{PY}$, where X is the foot of P on \overrightarrow{OB} .

<u>Proof.</u> Suppose P has this property. Now $\triangle OPX$ and $\triangle OPY$ are right, with $\overline{PX} \equiv \overline{PY}$ and $\overline{OP} \equiv \overline{OP}$. By the HL Theorem, $\triangle OPX \equiv \triangle OPY$, and thus $\angle XOP \equiv \angle YOP$. So P is on the bisector of $\angle AOB$.

Conversely, suppose P is on the bisector of $\angle AOP$, and let X be the foot of P on \overrightarrow{OA} and Y the foot of P on \overrightarrow{OB} . Now $\triangle XOP \equiv \triangle YOP$ by AAS, so that $\overrightarrow{PX} \equiv \overrightarrow{PY}$.

Construction 2 (Incircle Theorem). Let A, B, and C be distinct points. Then we have the following.

- 1. The bisectors of the interior angles of $\triangle ABC$ are concurrent at a point O, called the incenter of the triangle.
- 2. The feet of O on the sides of $\triangle ABC$ lie on a circle, called the incircle of $\triangle ABC$, which is centered at O and tangent to the sides of $\triangle ABC$.

Proof. Let $\overrightarrow{AA'}$ be the bisector of $\angle BAC$. By the Crossbar Theorem this ray cuts \overline{BC} at a point A''. Let $\overline{BB'}$ be the bisector of $\angle ABC$; again by the Crossbar Theorem this ray cuts $\overline{AA''}$ at a point O. Let X, Y, and Z be the feet of O on \overrightarrow{AC} , \overrightarrow{AB} , and \overrightarrow{BC} , respectively. Since O is on the bisectors of $\angle BAC$ and $\angle ABC$, we have $\overrightarrow{OX} \equiv \overrightarrow{OY}$ and $\overrightarrow{OY} \equiv \overrightarrow{OZ}$; thus $\overrightarrow{OX} \equiv \overrightarrow{OZ}$, and so O is also on the bisector of $\angle BCA$. Thus the bisectors of the interior angles of $\triangle ABC$ are concurrent at O.

Now X, Y, and Z are the feet of O on the sides of $\triangle ABC$, and we've seen that $\overline{OX} \equiv \overline{OY} \equiv \overline{OZ}$. Thus the circle $\mathcal{C}_O(X)$ contains X, Y, and Z, and moreover is tangent to the sides of $\triangle ABC$ at X, Y, and Z.

Construction 3 (Excircle Theorem). Let A, B, and C be distinct points forming $\triangle ABC$. Then we have the following.

- 1. The bisector of the interior angle at A and the exterior angles at B and C are concurrent at a point O, called the excenter of $\triangle ABC$ at A.
- 2. The feet of O on the (extended) sides of $\triangle ABC$ lie on a circle, called the excircle of $\triangle ABC$ at A, which is centered at O and tangent to the sides of $\triangle ABC$.

Proof. Essentially the same as the proof of the Incircle Theorem. \Box

To every triangle we can associate four special circles: the incircle, and one excircle for each vertex. These circles are tangent to all three (extended) sides of the circle.

Proposition 4. Any circle which is tangent to all three (extended) sides of a triangle is either the incircle or one of the excircles.