Robust regression via Maximum Mean Discrepancy

Pierre Alquier

New Trends in Statistical Learning II Porquerolles, June 2022

Contents

- Some problems with the likelihood and how to fix them
 - Some problems with the likelihood
 - Minimum Distance Estimation (MDE)
- 2 Regression with MMD
 - A difficulty with semi-parametric models
 - Robust regression with MMD

Contents

- Some problems with the likelihood and how to fix them
 - Some problems with the likelihood
 - Minimum Distance Estimation (MDE)
- 2 Regression with MMD
 - A difficulty with semi-parametric models
 - Robust regression with MMD

The Maximum Likelihood Estimator (MLE)

Let X_1, \ldots, X_n be i.i.d in \mathcal{X} from a probability distribution P_0 .

Statistical inference:

- propose a model $(P_{\theta}, \theta \in \Theta)$, assume $P_0 = P_{\theta_0}$.
- compute $\hat{\theta}_n = \hat{\theta}_n(X_1, \dots, X_n)$.

Letting p_{θ} denote the density of P_{θ} , then

$$\hat{\theta}_n^{MLE} = \underset{\theta \in \Theta}{\operatorname{arg max}} L_n(\theta), \text{ where } L_n(\theta) = \prod_{i=1}^n p_{\theta}(X_i).$$

Example : $P_{(m,\sigma)} = \mathcal{N}(m,\sigma^2)$ then

$$\hat{m} = \frac{1}{n} \sum_{i=1}^{n} X_i \text{ and } \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \hat{m})^2.$$

MLE not unique / not consistent

Example:

$$p_{\theta}(x) = \frac{\exp(-|x-\theta|)}{2\sqrt{\pi|x-\theta|}},$$

MLE not unique / not consistent

Example:

$$p_{\theta}(x) = \frac{\exp(-|x-\theta|)}{2\sqrt{\pi|x-\theta|}},$$

$$L_n(\theta) = \frac{\exp\left(-\sum_{i=1}^n |X_i - \theta|\right)}{(2\sqrt{\pi})^n \prod_{i=1}^n \sqrt{|X_i - \theta|}}.$$

MLE fails in the presence of outliers

What is an outlier?

Huber proposed the contamination model : with probability ε , X_i is not drawn from P_{θ_0} but from Q that can be anything :

$$P_0 = (1 - \varepsilon)P_{\theta_0} + \varepsilon Q.$$

Example : $P_{\theta} = \mathcal{U}nif[0, \theta]$, then

$$L_n(\theta) = \frac{1}{\theta^n} \prod_{i=1}^n \mathbb{1}_{\{0 \le X_i \le \theta\}} \Rightarrow \hat{\theta} = \max_{1 \le i \le n} X_i.$$

In the case of the following contamination, the MLE is extremely far from the truth :

$$P_0 = (1 - \varepsilon).Unif[0, 1] + \varepsilon.\mathcal{N}(10^{10}, 1)...$$

Minimum Distance Estimation

Empirical distribution :
$$\hat{P}_n := \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$$
.

Minimum Distance Estimation (MDE)

Let $d(\cdot, \cdot)$ be a metric on probability distributions.

$$\hat{\theta}_d := \operatorname*{arg\,min}_{\theta \in \Theta} d\left(P_{\theta}, \hat{P}_n\right).$$

Wolfowitz, J. (1957). The minimum distance method. The Annals of Mathematical Statistics.

Idea : MDE with an adequate d leads to robust estimation.

Bickel, P. J. (1976). Another look at robustness: a review of reviews and some new developments. *Scandinavian Journal of Statistics*. Discussion by Sture Holm.

Parr, W. C. & Schucany, W. R. (1980). Minimum distance and robust estimation. JASA.

Yatracos, Y. G. (1985). Rates of convergence of minimum distance estimators and Kolmogorov's entropy. *Annals of Statistics*.

Integral Probability Semimetrics

Integral Probability Semimetrics (IPS)

Let \mathcal{F} be a set of real-valued, measurable functions and put

$$d_{\mathcal{F}}(P,Q) = \sup_{f \in \mathcal{F}} \left| \mathbb{E}_{X \sim P}[f(X)] - \mathbb{E}_{X \sim Q}[f(X)] \right|.$$

Müller, A. (1997). Integral probability metrics and their generating classes of functions. *Applied Probability*.

- assumptions required in order to ensure that $d_{\mathcal{F}}(P,Q) = 0 \Rightarrow P = Q$ (that is, $d_{\mathcal{F}}$ is a metric).
- assumptions required in order to ensure that $d_{\mathcal{F}} < +\infty$.

Non-asymptotic bound for MDE

Theorem 1

- X_1, \ldots, X_n i.i.d from P_0 ,
- for any $f \in \mathcal{F}$, $\sup_{x \in \mathcal{X}} |f(x)| \leq 1$.

Then

$$\mathbb{E}\left[d_{\mathcal{F}}(P_{\hat{\theta}_{d_{\mathcal{F}}}},P_0)\right] \leq \inf_{\theta \in \Theta} d_{\mathcal{F}}(P_{\theta},P_0) + 4.\mathrm{Rad}_{n}(\mathcal{F}).$$

Rademacher complexity

$$\operatorname{Rad}_n(\mathcal{F}) := \sup_P \mathbb{E}_{Y_1, \dots, Y_n \sim P} \mathbb{E}_{\epsilon_1, \dots, \epsilon_n} \left[\sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^n \epsilon_i f(Y_i) \right].$$

where $\epsilon_1, \ldots, \epsilon_n$ are i.i.d Rademacher variables :

$$\mathbb{P}(\epsilon_1 = 1) = \mathbb{P}(\epsilon_1 = -1) = 1/2.$$

Example 1 : set of indicators

$$\mathbb{1}_{A}(x) = \begin{cases} 1 & \text{if } x \in A, \\ 0 & \text{if } x \notin A. \end{cases}$$

Reminder - Vapnik-Chervonenkis dimension

Assume that $\mathcal{F} = \{\mathbb{1}_A, A \in \mathcal{A}\}$ for some $\mathcal{A} \subseteq \mathcal{P}(\mathcal{X})$,

- $S_{\mathcal{F}}(x_1,\ldots,x_n) := \{(f(x_1),\ldots,f(x_n)), f \in \mathcal{F}\},$
- $VC(\mathcal{F}) := \max \{ n : \exists x_1, \dots, x_n, |S_{\mathcal{F}}(x_1, \dots, x_n)| = 2^n \}.$

Theorem (Bartlett and Mendelson)

$$\operatorname{Rad}_n(\mathcal{F}) \leq \sqrt{\frac{2.\operatorname{VC}(\mathcal{F})\log(n+1)}{n}}.$$

Bartlett, P. L. & Mendelson, S. (2002). Rademacher and Gaussian complexities: Risk bounds and structural results. *JMLR*.

Example 1: KS and TV distances

Two classical examples:

- $\mathcal{A} = \{\text{all measurable sets in } \mathcal{X}\}$, then $d_{\mathcal{F}}(\cdot, \cdot)$ is the total variation distance $\mathrm{TV}(\cdot, \cdot)$.
 - $VC(\mathcal{F}) = +\infty$ when $|\mathcal{X}| = +\infty$,
 - in general, $\operatorname{Rad}_n(\mathcal{F}) \to 0$.
- $\mathcal{X} = \mathbb{R}$, $\mathcal{A} = \{(-\infty, x], x \in \mathbb{R}\}$, then $d_{\mathcal{F}}(\cdot, \cdot)$ is the Kolmogorov-Smirnov distance $\mathrm{KS}(\cdot, \cdot)$.
 - KS distance was actually proposed by S. Holm for robust estimation,
 - $VC(\mathcal{F}) = 1$.

$$\mathbb{E}\left[\mathrm{KS}(P_{\hat{\theta}_{\mathrm{KS}}}, P_0)\right] \leq \inf_{\theta \in \Theta} \mathrm{KS}(P_{\theta}, P_0) + 4.\sqrt{\frac{2\log(n+1)}{n}}.$$

Example 2: Maximum Mean Discrepancy (MMD)

• Let $(\mathcal{H}, \langle \cdot, \cdot \rangle_{\mathcal{H}})$ be a RKHS with kernel

$$k(x,y) = \langle \phi(x), \phi(y) \rangle_{\mathcal{H}}.$$

- If $\|\phi(x)\|_{\mathcal{H}} = k(x,x) \leq 1$ then $\mathbb{E}_{X \sim P}[\phi(X)]$ is well-defined .
- The map $P \mapsto \mathbb{E}_{X \sim P}[\phi(X)]$ is one-to-one if k is *characteristic*.
- For example, $k(x,y) = \exp(-\|x-y\|^2/\gamma^2)$ works.

Definition - MMD

$$\begin{aligned} \mathrm{MMD}_{k}(P,Q) &= \sup_{\|f\|_{\mathcal{H}} \leq 1} \left| \mathbb{E}_{X \sim P}[f(X)] - \mathbb{E}_{X \sim Q}[f(X)] \right| \\ &= \left\| \mathbb{E}_{X \sim P}[\phi(X)] - \mathbb{E}_{X \sim Q}[\phi(X)] \right\|_{\mathcal{H}}. \end{aligned}$$

Example 2 : MMD

$$\mathcal{F} = \{ f \in \mathcal{H} : \|f\|_{\mathcal{H}} \le 1 \} \Rightarrow \operatorname{Rad}_n(\mathcal{F}) \le \sqrt{\frac{\sup_x k(x, x)}{n}}.$$

Theorem 2

For k bounded by 1 and characteristic,

$$\mathbb{E}\left[\mathrm{MMD}_{k}(P_{\hat{\theta}_{\mathrm{MMD}_{k}}}, P_{0})\right] \leq \inf_{\theta \in \Theta} \mathrm{MMD}_{k}(P_{\theta}, P_{0}) + \frac{2}{\sqrt{n}}.$$

Joint work with Badr-Eddine Chérief-Abdellatif (Oxford).

Chérief-Abdellatif, B.-E. and Alquier, P. Finite Sample Properties of Parametric MMD Estimation: Robustness to Misspecification and Dependence. Bernoulli, 2022.

Example 2: MMD

We actually have

$$\mathrm{MMD}_k^2(P_{\theta},\hat{P}_n) = \mathbb{E}_{X,X'\sim P_{\theta}}[k(X,X')] - \frac{2}{n}\sum_{i=1}^n \mathbb{E}_{X\sim P_{\theta}}[k(X_i,X)] + \frac{1}{n^2}\sum_{1\leq i,j\leq n}k(X_i,X_j)$$
 and so

$$egin{aligned} &
abla_{ heta} \mathrm{MMD}_{k}^{2}(P_{ heta}, \hat{P}_{n}) \ &= 2\mathbb{E}_{X,X'\sim P_{ heta}} \left\{ \left[k(X,X') - rac{1}{n} \sum_{i=1}^{n} k(X_{i},X)
ight]
abla_{ heta} [\log p_{ heta}(X)]
ight\} \end{aligned}$$

that can be approximated by sampling from P_{θ} .

Example 2 : MMD

Dziugaite, G. K., Roy, D. M., & Ghahramani, Z. (2015). Training generative neural networks via maximum mean discrepancy optimization. *UAI 2015*.

define the estimator and used it to train GANs.

Briol, F. X., Barp, A., Duncan, A. B., & Girolami, M. (2019). Statistical Inference for Generative Models with Maximum Mean Discrepancy. *Preprint arXiv*:1906.05944.

assumptions $\Rightarrow \sqrt{n}(\hat{\theta}_{\text{MMD}_k} - \theta_0) \rightsquigarrow \mathcal{N}(0, V_0(k)).$

Example 3: Wasserstein

Another classical metric belongs to the IPS family :

$$\mathrm{W}_{\delta}(P,Q) = \sup_{f: \mathcal{X} \to \mathbb{R} top \mathrm{Lip}(f) \leq 1} \left| \mathbb{E}_{X \sim P}[f(X)] - \mathbb{E}_{X \sim Q}[f(X)] \right|$$

where
$$\operatorname{Lip}(f) := \sup_{x \neq y} |f(x) - f(y)| / \delta(x, y)$$
.

- In general, $\operatorname{Rad}_n(\mathcal{F}) \to 0$, so will not converge in full generality as with MMD and KS.
- However, nice results can be proven under additional assumptions:

Bernton, E., Jacob, P. E., Gerber, M. & Robert, C. P. (2019). On parameter estimation with the Wasserstein distance. *Information and Inference : A Journal of the IMA*.

MDE and robustness

Reminder

$$\mathbb{E}\left[d_{\mathcal{F}}(P_{\hat{\theta}_{d_{\mathcal{F}}}},P_0)\right] \leq \inf_{\theta \in \Theta} d_{\mathcal{F}}(P_{\theta},P_0) + 4.\mathrm{Rad}_n(\mathcal{F}).$$

Huber's contamination model : $P_0 = (1 - \varepsilon)P_{\theta_0} + \varepsilon Q$.

$$\begin{split} d_{\mathcal{F}}(P_{\theta_{\mathbf{0}}},P_{\mathbf{0}}) &= \sup_{f \in \mathcal{F}} \left| \mathbb{E}_{X \sim P_{\theta_{\mathbf{0}}}} f(X) - (1-\varepsilon) \mathbb{E}_{X \sim P_{\theta_{\mathbf{0}}}} f(X) - \varepsilon \mathbb{E}_{X \sim Q} f(X) \right| \\ &= \sup_{f \in \mathcal{F}} \left| \varepsilon \mathbb{E}_{X \sim P_{\theta_{\mathbf{0}}}} f(X) - \varepsilon \mathbb{E}_{X \sim Q} f(X) \right| \\ &= \varepsilon . d_{\mathcal{F}}(P_{\theta_{\mathbf{0}}},Q) \leq 2\varepsilon \quad \text{if for any } f \in \mathcal{F}, \sup_{x} |f(x)| \leq 1 \end{split}$$

Corollary - in Huber's contamination model

$$\mathbb{E}\left[d_{\mathcal{F}}(P_{\hat{\theta}_{d_{\mathcal{F}}}}, P_{\theta_0})\right] \leq 4\varepsilon + 4.\mathrm{Rad}_n(\mathcal{F}).$$

MDE and robustness: toy experiment

Model : $\mathcal{N}(\theta, 1)$, X_1, \ldots, X_n i.i.d $\mathcal{N}(\theta_0, 1)$, n = 100 and we repeat the exp. 200 times. Kernel $k(x, y) = \exp(-|x - y|)$.

	$\hat{ heta}_{ extit{ extit{MLE}}}$	$\hat{ heta}_{\mathrm{MMD}_{\pmb{k}}}$	$\hat{ heta}_{ ext{KS}}$
mean abs. error	0.081	0.094	0.088

Now, $\varepsilon = 2\%$ of the observations drawn from a Cauchy.

mean abs. error	0.276	0.095	0.088
-----------------	-------	-------	-------

Now, $\varepsilon=1\%$ are replaced by 1,000.

mean abs. error	10.008	0.088	0.082

Contents

- Some problems with the likelihood and how to fix them
 - Some problems with the likelihood
 - Minimum Distance Estimation (MDE)
- 2 Regression with MMD
 - A difficulty with semi-parametric models
 - Robust regression with MMD

Regression with MMD

What follows is based on a joint paper with Mathieu Gerber (Bristol).

Alquier, P. and Gerber, M. (2020). *Universal Robust Regression via Maximum Mean Discrepancy*. Preprint arXiv, submitted.

Examples

We observe independent pairs $(X_1, Y_1), \ldots, (X_n, Y_n)$.

- Gaussian linear regression model :
 - $Y_i = \theta^T X_i + \varepsilon_i, \ \varepsilon_i \sim \mathcal{N}(0, \sigma^2).$
 - can we rewritten as $Y_i \sim \mathcal{N}(\theta^T X_i, \sigma^2)$.
- Gaussian nonlinear regression model (heteroskedastic) :
 - $Y_i = G(\theta_1^T X_i) + \varepsilon_i$, $\varepsilon_i \sim \mathcal{N}(0, (\theta_2^T X_t)^2)$.
 - can we rewritten as $Y_i \sim \mathcal{N}(G(\theta^T X_i), (\theta_2^T X_t)^2)$.
- **3** Poisson regression : $Y_i = \mathcal{P}(\exp(\theta^T X_i))$.
- ologistic, gamma, binomial, whateveryouwant regression...

Problem in these examples

Regression model

In general, we will consider a parametric model $(P_{\theta})_{\theta \in \Theta}$, a function $g: (\Lambda \times \mathcal{X}) \to \Theta$ and

$$Y_i|X_i=x\sim P_{g(\lambda,x)}.$$

Until now, MMD estimation allows us to model the distributions, not conditional distributions.

	truth	model	empirical
x	P_X^{0}	Q_{μ}	$\hat{P}_X^{0} = \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$
Y X	$P_{Y X}^{0}$	$P_{g(\lambda,X)}$	NA
(X,Y)	$P^{0} = P_X^{0} P_{Y X}^{0}$	$R_{(\mu,\lambda)} = Q_{\mu} P_{g(\lambda,X)}$	$\hat{P}^{0} = \frac{1}{n} \sum_{i=1}^{n} \delta(X_i, Y_i)$

Various approaches

	truth	model	empirical
X	P_X^{0}	Q_{μ}	$\hat{P}_X^{0} = \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$
Y X	$P_{Y X}^{0}$	$P_{g(\lambda,X)}$	NA
(X,Y)	$P^{0} = P_X^{0} P_{Y X}^{0}$	$R_{(\mu,\lambda)} = Q_{\mu} P_{g(\lambda,X)}$	$\hat{P}^{0} = \frac{1}{n} \sum_{i=1}^{n} \delta_{(X_i, Y_i)}$

Fix a kernel k((x, y), (x', y')). 3 approaches :

- - ightarrow what is the effect of a misspecification in Q_{μ} ?
- $\textbf{2} \ \mathsf{semi-parametric} \ \textbf{1} : \widehat{(Q,\lambda)} = \mathsf{arg} \, \mathsf{min}_{(Q,\lambda)} \, \mathsf{MMD}_k(QP_{g(\lambda,X)}, \hat{P}^{\textbf{0}}).$
 - → we dont know how to minimize this.
- 3 semi-parametric 2 : $\hat{\lambda} = \arg\min_{\lambda} \mathrm{MMD}_{k}(\hat{P}_{X}^{0}P_{g(\lambda,X)}, \hat{P}^{0}).$
 - → our approach.

Explicit minimization problem

$$\widehat{\lambda} = \operatorname*{\mathsf{arg\,min}}_{\lambda} \mathcal{C}(\lambda) := \mathrm{MMD}_{k}(\widehat{P}_{X}^{0}P_{g(\lambda,X)},\widehat{P}^{0}).$$

$$C(\lambda) = \frac{1}{n} \sum_{i,j=1}^{n} \mathbb{E}_{Y \sim P_{g(\lambda,X_{i})}, Y' \sim P_{g(\lambda,X_{j})}} k((X_{i}, Y), (X_{j}, Y'))$$

$$- \frac{2}{n} \sum_{i,j=1}^{n} \mathbb{E}_{Y \sim P_{g(\lambda,X_{i})}} k((X_{i}, Y), (X_{j}, Y_{j}))$$

$$+ \frac{1}{n} \sum_{i,j=1}^{n} k((X_{i}, Y_{i}), (X_{j}, Y_{j}))$$

We also proposed an approximation $\tilde{\lambda}$ of this estimator by removing the non-diagonal terms. We have an asymptotic theory for $\tilde{\lambda}$.

Theoretical results: fixed design

$$\widehat{\lambda} = \operatorname*{\mathsf{arg\,min}}_{\lambda} \mathcal{C}(\lambda) := \mathrm{MMD}_{k}(\widehat{P}_{X}^{0}P_{g(\lambda,X)},\widehat{P}^{0}).$$

$\mathsf{Theorem}$

Assume |k| < 1. Then

$$\mathbb{E}_{Y_1,\dots,Y_n} \left[\text{MMD}_k(\hat{P}_X^0 P_{g(\hat{\lambda},X)}, \hat{P}_X^0 P_{Y|X}^0) \right]$$

$$\leq \min_{\lambda} \text{MMD}_k(\hat{P}_X^0 P_{g(\lambda,X)}, \hat{P}_X^0 P_{Y|X}^0) + \frac{2}{\sqrt{n}}.$$

The result is a relatively easy adaptation of the general theory of MMD.

Theoretical results: fixed design

Theorem

Assume:

- |k| < 1,
- 2 $k((x,y),(x',y')) = k_1(x,x')k_2(y,y')$, with associated RKHS \mathcal{H}_1 and \mathcal{H}_2 .
- **3** for any $f_2 \in \mathcal{H}_2$, for any $\lambda \in \Lambda$, $f_1(x) := \mathbb{E}_{Y \sim P_{g(\lambda, x)}}[f_2(Y)]$ satisfies $f_1 \in \mathcal{H}_1$.

There is a constant $C(k_1)$ that depends only on k_1 such that

$$\mathbb{E}\left[\mathrm{MMD}_{k}(P_{X}^{0}P_{g(\hat{\lambda},X)},P^{0})\right]$$

$$\leq \min_{\lambda} \mathrm{MMD}_{k}(P_{X}^{0}P_{g(\lambda,X)},P^{0}) + \frac{C(k_{1})\sqrt{2}+3}{\sqrt{n}}.$$

Kernels satisfying our conditions

For any $f_2 \in \mathcal{H}_2$, for any $\lambda \in \Lambda$, $f_1(x) := \mathbb{E}_{Y \sim P_{g(\lambda,x)}}[f_2(Y)]$ satisfies $f_1 \in \mathcal{H}_1$.

- not easy.
- famous paper claiming that it is true regardless of $P_{g(\lambda,x)}$, + erratum.
- derivations in our paper to provide examples: 10 pages.
 Take home message: Matérn kernels + a transformation of the inputs work for all the classical regression models.

Numerical examples: linear regression

τ	type	n	$\beta_{\text{ols},n}$	$\beta_{\mathrm{lad},n}$	$\beta_{\text{rob},n}$	$\hat{\beta}_n$	$\tilde{\beta}_n$
		100	0.372	0.353	0.350	0.355	0.334
0		1 000	0.116	0.092	0.104	0.108	0.107
		5 000	0.053	0.039	0.046	0.049	0.047
		100	0.464	0.339	0.385	0.350	0.342
1	Y	1 000	0.181	0.094	0.106	0.105	0.097
		5 000	0.103	0.043	0.049	0.054	0.051
		100	0.647	0.351	0.359	0.337	0.333
2	Y	1 000	0.241	0.097	0.110	0.114	0.115
		5 000	0.175	0.039	0.047	0.051	0.052
		100	0.724	0.331	0.343	0.329	0.320
3	Y	1 000	0.309	0.100	0.108	0.113	0.110
		5 000	0.250	0.043	0.048	0.053	0.055
		100	0.870	0.356	0.374	0.342	0.338
1	X	1 000	0.836	0.111	0.105	0.104	0.096
		5 000	0.818	0.065	0.049	0.054	0.052
		100	1.575	0.400	0.347	0.337	0.331
2	X	1 000	1.467	0.160	0.110	0.112	0.115
		5 000	1.401	0.119	0.046	0.051	0.052
		100	1.838	0.442	0.344	0.331	0.323
3	X	1 000	1.805	0.216	0.108	0.113	0.109
		5 000	1.771	0.183	0.048	0.054	0.056

Table 1: Results for the Gaussian linear regression model. For each experimental setting we report the RMSE over 25 replications.

Numerical examples: gamma regression

ϵ	n	$\theta_{ m mle}$	θ_{rob}	$\hat{\theta}_n$	$\tilde{\theta}_n$
	100	0.478	0.425	0.501	0.498
0%	1 000	0.123	0.120	0.142	0.144
	5000	0.055	0.053	0.067	0.069
	100	0.394	0.398	0.521	0.521
1%	1 000	0.250	0.108	0.149	0.148
	5 000	0.350	0.049	0.071	0.070
	100	0.395	0.381	0.539	0.545
2%	1 000	0.353	0.113	0.146	0.145
	5000	0.551	0.056	0.073	0.073
	100	0.441	0.407	0.471	0.475
3%	1 000	0.349	0.119	0.157	0.158
	5 000	0.631	0.069	0.076	0.078

ϵ	n	$\beta_{\rm mle}$	$\beta_{\rm rob}$	$\hat{\beta}_n$	$\tilde{\beta}_n$
	100	0.308	0.306	0.444	0.443
0%	1 000	0.087	0.093	0.132	0.133
	5 000	0.041	0.043	0.061	0.063
	100	0.297	0.313	0.473	0.475
1%	1 000	0.114	0.098	0.132	0.133
	5 000	0.070	0.042	0.061	0.059
	100	0.302	0.301	0.490	0.493
2%	1 000	0.120	0.094	0.127	0.127
	5 000	0.105	0.046	0.066	0.067
	100	0.296	0.296	0.403	0.406
3%	1 000	0.119	0.091	0.138	0.136
	5 000	0.129	0.044	0.067	0.069

Figure 1: Results for the Gamma regression model. For each experimental setting, we report the mean square error over 25 replications.

La fin

終わり

ありがとう ございます。