DAILY ASSESSMENT FORMAT

Date:	02-06-2020	Name:	Neha T
Course:	Network Theory	USN:	4AL18EC035
Topic:	Network theorems	Semester	4 th sem A sec
	Resonance	& Section:	
GitHub	Neha-T		
Repository:			

Report – Report can be typed or handwritten for up to two pages.

Network Theorems

- Intro -In case of complex network, tedious competition will get involved
- To handle this complex network, theorems are used by the Engineers
- There are 9 theorems which are discussed below

> Superposition theorem

- How to use this theorem to do the analysis of linear Bidirectional network
- Note
 - The dependent sources are left as they are
 - The Superposition theorem is not valid in case of non-linear circuit
- Discussed with example problem

> Thevenin's theorem

- Was given by Leon Charles Thevenin who was a French Engineer, developed on 1883
- Why this theorem is needed
 - ❖ If often happens that the element in a circuit is variable while the other elements are fixed, each time the variable element is changed the entire circuit must be analyzed again
 - To avoid this problem, we replace fixed part of the circuit by an Thevenin's equivalent circuit
- Discussed with example problem

Norton's theorem

 Norton's Theorem states that it is possible to simplify any linear circuit, no matter how complex, to an equivalent circuit with just a single current source and parallel resistance connected to a load

Need of this theorem

- **❖** The Norton equivalent circuit is used to represent any network of linear sources and impedances at a given frequency.
- Norton's theorem and its dual, Thevenin's theorem, are widely used for circuit analysis simplification and to study circuit's initial-condition and steady-state response

> Reciprocity theorem

• Need of Reciprocity theorem

- ❖ Reciprocity theorems are used in many electromagnetic applications, such as analyzing electrical networks and antenna systems
- The Reciprocity Theorem is applicable for both AC and DC Circuits
- While applying Reciprocity Theorem, the circuit does not have time varying element

> Millman's theorem

- Millman's theorem is a method to simplify the solution of a circuit
- Specifically, Millman's theorem is used to compute the voltage at the ends of a circuit made up of only branches in parallel
- It is named after Jacob Millman, who proved the theorem

Max Power Transfer theorem

 The maximum amount of power will be dissipated by a load resistance if it is equal to the Thevenin or Norton resistance of the network supplying power

> Compensation theorem

- In Compensation Theorem, the source voltage (V_C) opposes the original current
- Can be stated as the resistance of any network can be replaced by a voltage source, having the same voltage as the voltage drop across the resistance which is replaced

> Tellegen's theorem

- Tellegen's Theorem states that the summation of power delivered is zero for each branch of any electrical network at any instant of time
- It is mainly applicable for designing the filters in signal processing
- It is also used in complex operating systems for regulating stability

Resonance

- Series RLC Circuits
- Parallel RLC Circuits

Date:02-06-2020Name:Neha TCourse:PythonUSN:4AL18EC035Topic:Scraped Website DataSemester4th sem A sec

Report – Report can be typed or handwritten for up to two pages.

- Scrape Real Estate Property Data from the Web
 - Intro
 - process of sorting through overwhelming amounts of data, refine the user's searches and provide a list of relevant information
 - In a realtor's case, it is the go-to tool for organized property listings
 - Request Headers
 - HTTP header that can be used in an HTTP request, and that doesn't relate to the content of the message
 - Under this session
 - Loading the Webpage in Python
 - ❖ Extracting "div" Tags
 - Extracting Addresses, Property Details and elements without Unique Identifiers
 - Saving the Extracted Data in CSV Files

Crawling through Webpages	
Were discussed	