

Year 11 Mathematics Specialist Test 4 2022

Section 1 Calculator Free Trigonometric Functions

STUDENT'S NAME

MARKING KEY

[KRISZYK]

DATE: Wednesday 3rd August

TIME: 30 minutes

MARKS: 34

INSTRUCTIONS:

Standard Items:

Pens, pencils, drawing templates, eraser, approved Formula sheet

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.

1. (3 marks)

Evaluate
$$\cos\left(\frac{5\pi}{12}\right)\sin\left(\frac{7\pi}{12}\right)$$

$$=\frac{1}{2}\left[\sin\left(\frac{51}{12}+\frac{71}{12}\right)-\sin\left(\frac{51}{12}-\frac{71}{12}\right)\right],$$

$$= \frac{1}{2} \left[\sin \left(\frac{12\pi}{12} \right) - \sin \left(-\frac{2\pi}{12} \right) \right]$$

$$= \frac{1}{2} \left[0 - \left(-\frac{1}{2} \right) \right]$$

2. (11 marks)

(a) Solve
$$\cos\left(2x - \frac{\pi}{4}\right) = \frac{1}{2}$$

$$2\pi - \frac{\pi}{4} = \frac{\pi}{3} + 2\pi K$$

$$-\frac{\pi}{3} + 2\pi K$$

$$2\pi = \frac{4\pi + 24\pi K + 3\pi}{12}$$

$$\frac{-4\pi + 24\pi K + 3\pi}{12}$$

$$2\pi = \frac{7\pi + 24\pi R}{12}, \frac{-\pi + 24\pi R}{12}$$

$$)C = \frac{7\pi + 24\pi K}{24}, \frac{-\pi + 24\pi K}{24}$$

where LEZ

[4]

(b) Solve
$$\cos(2\theta) - \cos\theta = 0$$
 for $0 \le x \le 2\pi$

$$2\cos^2\theta - 1 - \cos\theta = 0$$

$$(2\cos\theta+1)(\cos\theta-1)=0$$

$$(OSO = \frac{1}{z} COSO = 1$$

$$\theta = \frac{\pi}{3}, \frac{5\pi}{3}$$
 $\theta = 0, 2\pi$

$$\therefore \theta = 0, \frac{\pi}{3}, \frac{5\pi}{3}, 2\pi$$

(c) Solve
$$3\csc 2\theta = -2\sqrt{3}$$
 for $-180^{\circ} \le x \le 180^{\circ}$

$$cosec 20 = -\frac{2\sqrt{3}}{3}$$

$$cosec 20 = \frac{-2}{\sqrt{3}}$$

:.
$$\sin 20 = -\frac{\sqrt{3}}{2}$$

$$20 = -60, -120, 300, 240$$

$$0 = -30^{\circ}, -60^{\circ}, 150^{\circ}, 120^{\circ}$$

3. (6 marks)

Prove the following.

Q.E.D.

(a)
$$\frac{1}{1 + \tan^2 \theta} = \cos^2 \theta$$

$$LHS = \frac{1}{1 + \frac{\sin^2 \theta}{\cos^2 \theta}} = \frac{\cos^2 \theta}{\cos^2 \theta + \sin^2 \theta}$$

$$= \frac{1}{\frac{\cos^2 \theta + \sin^2 \theta}{\cos^2 \theta}} = \frac{\cos^2 \theta}{\ln \theta}$$

$$= LHS \qquad Q.E.D.$$

(b)
$$\cos(P+Q)\cos(P-Q) = \cos^2 P + \cos^2 Q - 1$$
 [4]
LHS = $(\cos P\cos Q - \sin P\sin Q)(\cos P\cos Q + \sin P\sin Q)$
= $\cos^2 P\cos^2 Q - \sin^2 P\sin^2 Q$
= $\cos^2 P\cos^2 Q - (1-\cos^2 P)(1-\cos^2 Q)$
= $\cos^2 P\cos^2 Q - (1-\cos^2 P)(1-\cos^2 Q)$
= $-1 + \cos^2 P + \cos^2 Q$
= LHS

4. (8 marks)

Prove the following.

(a)
$$\cot\left(\frac{x}{2}\right) + \tan\left(\frac{x}{2}\right) = 2\operatorname{cosec}(x)$$
 [4]

LHS = $\frac{\cos\left(\frac{x}{2}\right)}{\sin\left(\frac{x}{2}\right)} + \frac{\sin\left(\frac{\pi}{2}\right)}{\cos\left(\frac{x}{2}\right)} = \frac{1}{\frac{1}{2}\sin 2\left(\frac{\pi}{2}\right)}$

= $\frac{\cos^{2}\left(\frac{x}{2}\right)}{\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right)} = 2 \times \frac{1}{\sin\left(\frac{\pi}{2}\right)\cos\left(\frac{\pi}{2}\right)}$

= $\frac{1}{\sin\left(\frac{\pi}{2}\right)\cos\left(\frac{\pi}{2}\right)} = 2 \times \frac{1}{\sin\left(\frac{\pi}{2}\right)}$

= $\frac{1}{\sin\left(\frac{\pi}{2}\right)\cos\left(\frac{\pi}{2}\right)} + 2 \cos\theta}{\sin\theta\sin\theta} = 2 \times \frac{1}{\sin\theta\cos\theta}$

= $\frac{1}{\sin\theta\cos\theta} + 2 \cos\theta} + 2 \cos\theta$

= $\frac{1}{1 + 2\cos\theta} + 2 \cos\theta + 2 \cos\theta$

= $\frac{1}{1 + 2\cos\theta} + 2 \cos\theta$

= $\frac{1}{1 + \cos\theta} + 2 \cos\theta$

= $\frac{1}$

5. (6 marks)

(a) Sketch $f(x) = 2\sec(x - 30^{\circ})$ on the graph below.

Simplify $\frac{\sin 6B + \sin 2B}{\sin 6B - \sin 2B}$ (b)

$$= \frac{2 \sin \left(\frac{6B+2B}{2}\right) \cos \left(\frac{6B-2B}{2}\right)}{2 \cos \left(\frac{6B+2B}{2}\right) \sin \left(\frac{6B-2B}{2}\right)}$$

$$= \frac{\sin(4B)\cos(2B)}{\cos(4B)\sin(2B)}$$

T .	-		
Extra	wor	King	nage
Littu	AL OT	-	pus

O

Year 11 Mathematics Specialist Test 1 2022

Section 2 Calculator Assumed Trigonometric Functions

STUDENT'S NAME

MARKING KEY

[KRISZYK]

DATE: Wednesday 3rd August

TIME: 15 minutes

MARKS: 16

INSTRUCTIONS:

Standard Items:

Pens, pencils, drawing templates, eraser, approved Formula sheet

Special Items:

Three calculators, notes on one side of a single A4 page (these notes to be handed in with this

assessment)

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.

6. (5 marks)

Let the angle $\theta = \frac{\pi}{3} - \frac{\pi}{4} = \frac{\pi}{12}$.

(a) Use your calculator to determine an exact value for $\sin\left(\frac{\pi}{12}\right)$. [1]

(b) Use an angle sum or difference identity to show how to obtain the above exact value for $\sin\left(\frac{\pi}{12}\right)$. [4]

$$\sin\left(\frac{\pi}{12}\right) = \sin\left(\frac{\pi}{3} - \frac{\pi}{4}\right)$$

$$= \sin\left(\frac{\pi}{3}\right) \cos\left(\frac{\pi}{4}\right) - \cos\left(\frac{\pi}{3}\right) \sin\left(\frac{\pi}{4}\right)$$

$$= \frac{\sqrt{3}}{2} \times \frac{\sqrt{2}}{2} - \frac{1}{2} \times \frac{\sqrt{3}}{2}$$

$$= \frac{\sqrt{2}(\sqrt{3} - 1)}{4}$$

7. (5 marks)

The clearance, h metres, under a bridge spanning a river estuary varies with the time since midnight, t hours, and is given by $h = 3.6 + 2.7 \sin\left(\frac{\pi t}{6}\right)$.

(a) Sketch the graph of the clearance against time on the axes below.

[3]

(b) Determine the percentage of any 24-hour period during which the clearance under the bridge is no more than two metres. [2]

Solve height
$$\leq 2$$

 $t = 7.211$, 10.788 , 19.211 , 22.788
 $10.788 - 7.211 + 22.788 - 19.211$ × 100

8. (6 marks)

Consider the function $f(t) = 2 \sin t - 5 \cos t$, $t \ge 0$.

(a) Express f(t) in the form $r \sin(t - \alpha)$, where r > 0 and $0 \le \alpha \le \frac{\pi}{2}$ and state the values of r and α , rounded to 2 decimal places. [4]

$$= 2 \sin t - 5 \cos t$$

$$= \sqrt{29} \left(\frac{2}{\sqrt{29}} \sin t - \frac{5}{\sqrt{29}} \cos t \right) \sqrt{29}$$

$$= \sqrt{29} \sin \left(t - \alpha \right)$$

$$= \sqrt{29} \sin \left(t - \alpha \right)$$

$$= \sqrt{29} \sin \left(t - 1.19^{\circ} \right) \sqrt{-1 \text{ degres}}$$

(b) Hence or otherwise determine the minimum value of f(t) and the smallest value of t for this minimum to occur. [2]

min value =
$$-\sqrt{29}$$
 ~ -5.39

OCCURS @ $3TC + 1.19^r$
 $\sim 5.90^r$