Topología Elemental

Alejandro Zubiri

${\rm \acute{I}ndice}$

Chapter 1.	. Nociones Básicas	5
•	njuntos	5
	olas de verdad	6
3. Rela	aciones	7
4. Tipos de funciones		10
5. Topología Euclidiana		11
6. Con	nexidad y conjuntos acotados	12
Chapter 2.	. Bajas Dimensiones	15
Chapter 3.	. Espacios Métricos	17

CHAPTER 1

Nociones Básicas

1. Conjuntos

Cuando definimos algo, tiene que estar definido de forma que cualquier persona esté de acuerdo con dicha definición.

Definición 1. Un conjunto se puede definir por su **extensión**, mencionando todos sus elementos, o por **compresión**, defininiendo la regla que todos los elementos del conjunto deben cumplir.

• Extensión:

$$(1) S = \{1, 2, 3, \dots\}$$

• Comprensión:

$$(2) S = \{x \in \mathbb{N}\}$$

Denotamos los conjuntos por letras mayúsculas, y sus elementos por letras minúsculas.

Si x es un elemento del conjunto S, decimos que $a \in S$, y si no pertenece, $a \notin S$. Es importante tener en cuenta que, a menos que se especifique, el orden de los elementos de un conjunto es irrelevante, solo nos interesan sus elementos. Para especificar orden, podemos utilizar (a,b), que se define como **par** ordenado, tal que

$$(a,b) = (c,d) \iff a = c \land b = d$$

Definición 2. El cardinal de un conjunto es el número de elementos del conjunto, denotado por #S.

Dados dos conjuntos A y B, decimos que A es un subconjunto de B si y solo si

$$(3) \qquad \forall x \in A, x \in B \implies A \subset B$$

Sino, decimos que $A \not\subset B$.

Definición 3. Decimos que A es subconjunto de B si

$$(4) A \subset B \iff (a \in A \implies a \in B)$$

Un ejemplo de conjuntos es el conjunto vacío:

$$\phi/\#\phi = 0$$

Definición 4. Decimos que dos conjuntos A y B son iguales si y solo si

$$(6) A \subset B \land B \subset A$$

1.1. Operaciones con conjuntos.

Definición 5. La unión S de dos conjuntos A y B es

$$(7) S = A \cup B = \{x/x \in A \lor x \in B\}$$

Definición 6. La intersección S de dos conjuntos A y B es

(8)
$$S = A \cap B = \{x/x \in A \land x \in B\}$$

Definición 7. Definimos la diferencia S de A menos B tal que

$$(9) S = A - B = \{x/x \in A \land x \notin B\}$$

Definición 8. La diferencia simétrica entre E y A es

$$(10) A\Delta B = (A - B) \cup (B - A)$$

Definición 9. Definimos el complemento S^c de un conjunto S como

(11)
$$S \cup S^c = E$$
$$S \cap S^c = \phi$$

Siendo E el conjunto total.

Definición 10. Definimos el producto cartesiano entre A y B como

$$A \times B = \{(a, b) : a \in A \land b \in B\}$$

Ejemplos:

- $\emptyset \times B = \emptyset$
- $A \times B \neq B \times A$ (ya que son pares con órdenes diferentes)

Proposición 1. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Demostración. Sea $x \in A \cap (B \cup C) \iff x \in A \land x \in B \cup C$

$$(12) \iff x \in A \land (x \in B \lor x \in C)$$

$$\iff (x \in A \land x \in B) \lor (x \in A \land x \in C)$$

$$\iff x \in A \cap B \lor x \in A \cap C$$

$$\iff x \in (A \cap B) \cup (A \cap C)$$

Proposición 2. $(A \cup B)^c = A^c \cup B^c$

DEMOSTRACIÓN.

(13)
$$x \in A^{c} \cup B^{c} \iff x \in A^{c} \lor x \in B^{c}$$
$$\iff x \notin A \lor x \notin B$$
$$\iff x \notin A \cap B$$
$$\iff x \in (A \cap B)^{c}$$

2. Tablas de verdad

Una tabla de verdad nos permite analizar como se comportan dos proposiciones: Se puede deducir

$$\begin{array}{c|cccc}
p & q & p \lor q \\
\hline
V & V & V \\
V & F & V \\
F & V & V \\
F & F & F
\end{array}$$

$$\begin{array}{c|ccc} p & q & p \wedge q \\ \hline V & F & F \\ F & V & F \\ F & F & F \\ V & V & V \\ \end{array}$$

$$\begin{array}{c|cccc} p & q & p \Longrightarrow q \\ \hline V & V & V \\ V & F & F \\ F & V & V \\ F & F & V \end{array}$$

que $p \implies q \iff \neg p \lor q$. Con esto, también podemos deducir que

$$(p \implies q) \iff (\neg q \implies \neg p)$$

DEFINICIÓN 11. Sea $S \subset \mathbb{R}$, una función $f: S \to \mathbb{R}$ es continua en $a \subset S$ si:

$$(14) \qquad \forall \varepsilon > 0 \exists \delta > 0 / |f(x) - f(a)| < \varepsilon \implies |x - a| < \delta$$

Definición 12. Sea $S \subset \mathbb{R}$. S es abierto si:

$$(15) \qquad \forall x \in S \exists I \subset S/I = (x - \delta, x + \delta)/\delta > 0$$

Proposición 3. La unión de abiertos es un abierto.

Demostración. Sea S_i cada conjunto abierto. Sabemos que

$$(16) \forall x \in S_i \exists \delta > 0/(x - \delta, x + \delta) \subset S$$

Sea U la unión de los conjuntos:

$$(17) U = S_1 \cup S_2 \cdots \cup S_n = \{x/x \in S_1 \vee \cdots \vee x \in S_n\}$$

Sabemos que para cada punto $x \exists \delta > 0/(x - \delta, x + \delta) \in S_i$. Por tanto, estos subintervalos estarán contenidos en la unión, y por tanto esta es abierta.

Proposición 4. La intersección finita de abiertos es abierta

Demostración. Vamos a definir dos casos:

- Caso 1: La intersección es \emptyset . Como sabemos que \emptyset es abierto, se cumple.
- Caso 2: La intersección no es \emptyset .

La intersección estará formada por una serie de conjuntos no nulos que sabemos que contienen intervalos abiertos $\forall x$. Sea $\delta/\delta = min(\delta_1, \ldots, \delta_n)$. Como este δ es el más pequeño, estará contenido en todos los abiertos para todos los puntos, y por tanto lo estará también en la intersección.

2.1. Continuidad por conjuntos abiertos. Vamos a definir el concepto de preimagen:

Definición 13. Sea $f: D \to C$ una función y $S \subset C$. La preimagen de S bajo f, escrita como $f^{-1}(S)$ es el subconjunto de D definido como:

(18)
$$f^{-1}(S) = \{x \in D/f(x) \in S\}$$

Sea $f: S \to T/U, V \subset T$

3. Relaciones

Existen dos tipos de relaciones:

- De orden
- De equivalencia

Una relación R de A en B es cualquier subconjunto de $A \times B$:

$$R \subset A \times B$$

Y denotamos $(a, b) \in R$ por a R b, diciendo que a está relacionado con b.

- **3.1. Relaciones de equivalencia.** Podemos hablar de relaciones **internas** (a = b) o **externas** $(a \neq b)$. Sea $A \neq \phi$, una relación de equivalencia definida sobre A es una relación que satisface las siguientes propiedades:
 - (1) $\forall x \in A, \ x \sim x \text{ (reflexiva)}.$
 - (2) Dados x e y en A, si $x \sim y$, entonces $y \sim x$ (simetría).
 - (3) Dados $x \sim y$, e $y \sim z$, entonces $x \sim z$ (transitiva).

Todo esto se lee como x equivalente a y. Todas estas propiedades se deben cumplir. Para escribir esto como subconjuntos del producto cartesiano:

$$x \sim x \equiv (x, x) \in \sim$$

Si tenemos un conjunto A, y este esta dividido en subconjuntos disjuntos, entonces dados dos elementos en A, estos son equivalentes sí y solo sí ambos pertenecen al mismo subconjunto.

$$S_i \subset A, x \sim y \iff x, y \in S_i : A = S_1 \cap \cdots \cap S_n$$

Ejemplos: Tomamos en \mathbb{Z} , dado un entero n > 1, entonces definimos para $a, b \in \mathbb{Z}$,

$$a \equiv b \mod_n \iff n|b-a$$

a congruente con b módulo n. Esto define una relación de equivalencia en \mathbb{Z} de módulo n. Debemos demostrar que esa relación cumple las propiedades definidas anteriormente para poder afirmar que es de equivalencia.

- (4) Es reflexiva: dado un $a \in \mathbb{Z}$, n|a-a, ya que a-a=0, entonces a es congruente con $a \mod_n \forall a \in \mathbb{Z}$.
- (5) Es simétrica: dados dos $a, b \in \mathbb{Z}$, si $a \equiv b \mod_n \iff n|b-a$, entonces $n|a-b \iff b \equiv a \mod_n$.
- (6) Es transitiva: dados $a, b, c \in \mathbb{Z}/a \equiv b \mod_n y$ $b \equiv c \mod_n$, entonces n|b-a y n|c-b, por tanto b-a=nx y c-b=ny, entonces $c-a=n(x+y)=nz \implies n|c-a$.

Como cumple con las propiedades, es una relación de equivalencia. Si n > 1, ¿cuáles son las clases de equivalencia de la congruencia módulo n? Sean $a, b \in \mathbb{Z}$, y los dividimos entre n:

$$a = q_1 n + r_1 : 0 \le r_1 < n$$

$$b = q_2 n + r_2 : 0 \le r_2 < n$$

¿Qué pasa si a es congruente con b módulo n? Entonces, n|b-a, y $b-a=n(q_2-q_1)+r_2-r_1$. Si n|b-a, entonces $\exists m \in \mathbb{Z} : b-a=nm \implies nm=(q_2-q_1)n+r_2-r_1 \implies n(m-q_2+q_1)=r_2-r_1$. Pero como $0 \le |r_2-r_1| < n$. Sabiendo que $r_2-r_1=kn$, y $r_2-r_1 < n$, entonces la única posibilidad es que k=0. Esto implica que $\frac{n}{a}$ y $\frac{n}{b}$ tienen el mismo resto. Vamos a demostrar ahora el recíproco: Supongamos ahora que a=qn+r y b=q'n+r. Entonces, b-a=n(q'-q) es decir, n|b-a, y por tanto, $a\sim b \mod_n$ Con esto podemos afirmar para $a\in\mathbb{Z}$,

$$[a] = \{b \in \mathbb{Z} : n\%a = n\%b\}$$

Es decir, el conjunto de todos los b congruentes con a módulo n. Como los residuos de dividir un entero entre n van desde [0, n-1], las clases son las clases de $[0], [1], \ldots, [n-1]$. Entonces la clase de un número r es

$$[r] = \{qn + r : q \in \mathbb{Z}\}$$

Por ejemplo, si dividimos un número entre 3, solo podemos obtener resto 0, 1 o 2.

Teorema 1. Sea $A \neq \phi$ y ~ una relación de equivalencia sobre A. Entonces

$$a \sim b \iff [a] = [b]$$

$$a \nsim b \iff [a] \cap [b] = \phi$$

Demostración. Supongamos que $a \sim b$. Sea $x \in [a]$, entonces $x \sim a$. Como es una relación de equivalencia, $x \sim b$ y por tanto $x \in [b]$, y por tanto, como se cumple para todo elemento, [a] = [b]. Supongamos [a] = [b]. Por la reflexividad, $b \in [b]$, entonces $b \in [a]$, y por tanto $a \sim b$. Para la segunda parte, si $x \in [a] \cap [b] \iff x \sim a$ y $x \sim b \iff a \sim b$. Por tanto, dos clases de equivalencia de una misma relación o son iguales o son disjuntas. Sea X un conjunto. Una partición de X es un conjunto P cuyos elementos son subconjuntos de $X = \bigcup A : A \in P$ y $A \in P \land B \in P \implies A \cap B = \phi$.

3. RELACIONES

9

Corolario Si \sim es una relación de equivalencia definida sobre A, entonces el conjunto de todas las clases de equivalencia distintas es una partición.

Vamos a tomar en el plano \mathbb{R}^2 , decimos que dos puntos P y Q son equivalentes (o están relacionados) sí y solo sí la distancia de P al origen es la distancia de Q al origen, donde $\vec{O} = (0,0)$. Vamos a ver si cumple las propiedades:

$$P \sim Q \iff d(P, O) = d(Q, O)$$

- (7) Es reflexivo: $P \sim P \iff d(P, O) = d(P, O)$. Esto se cumple por sí mismo.
- (8) Es simétrico: $P \sim Q \iff d(P,O) = d(Q,O)$, y se cumple que como $d(Q,O) = d(P,O) \iff Q \sim P$.
- (9) Es transitivo: $P \sim Q \iff d(P,O) = d(Q,O)$. Si $Q \sim R \iff d(Q,O) = d(R,O)$, entonces si sustituimos tenemos que $d(P,O) = d(R,O) \iff P \sim R$.

DEFINICIÓN 14. Sea $A \neq \phi$ y ~ una relación de equivalencia sobre A. Entonces $\forall a \in A$, el conjunto $[a] = \{x \in A : a \sim x\}$ se llama la clase de equivalencia de a.

Definición 15. El conjunto de todas las clases de equivalencia que define la relación \sim sobre A, se llama el conjunto cociente de la relación y se denota por

$$(19) A/\sim$$

Para la congruencia de módulo n en \mathbb{Z} :

$$\frac{\mathbb{Z}}{\sim} = \{[0], [1], \dots, [n-1]\} \equiv \mathbb{Z}_n$$

Definición 16. $f: X \to Y$ es una función si y solo si:

- (1) Para cada elemento $x \in X \exists y \in y : (x,y) \in f$
- (2) $(x,y) \in f \land (x,z) \in F \implies y=z$

 $Si(x,y) \in f$, escribimos f(x) = y. El conjunto X se llama **dominio** de la función, y el conjunto Y se llama **rango** o **codominio** o **conjunto de llegada** de f. Además, la **imagen** de f es el conjunto

$$Im(f) = \{ y \in Y : (\exists x \in X)(f(x) = y) \} \subset Y$$
$$Dom(f) = X$$

Por ejemplo, para buscar el dominio de la función f dada por la fórmula

$$f(x) = \sqrt{x^2 - 1} : x \in \mathbb{R}$$

Necesitamos saber el conjunto de valores de x para los cuales f(x) existe. Es decir, para los cuales $\sqrt{x^2-1}$ tiene sentido. En este caso, esto se cumple cuando

$$x^2 - 1 \ge 0 \implies |x| \ge 1$$

Dado un conjunto $A \subset X$, definimos

$$f(A) = \{ f(x)/x \in A \}$$

y además, definimos la **preimagen** de un conjunto $B \subset Y$:

$$f^{-1}(B) = \{x \in X : f(x) \in B\}$$

Es decir, teniendo $y \subset Y$:

$$f^{-1}(y) = \{x \in X : f(x) = y\}$$

(20)
$$f^{-1}(\{y\}) = \{x \in X : f(x) \in \{y\}\}\$$

$$f(x) \in \{y\} \iff f(x) = y$$

4. Tipos de funciones

Sea $f: X \to Y$. f es **injectiva** (o 1:1) si y solo si:

$$f(x_1) = f(x_2) \implies x_1 = x_2 \ \forall x_1, x_2 \in X$$

O, equivalentemente

$$x_1 \neq x_2 \implies f(x_1) \neq f(x_2)$$

Una función es sobreyectiva si y solo si:

$$Im(f) = Y$$

Es decir, $\forall y \in Y \exists x \in X : f(x) = y$ Si ocurren ambas propiedades, la función es **biyectiva**. Con esto podemos deducir que:

• $f: A \to B. \# A = \# B \iff f$ es biyectiva.

Sea $f: X \to Y$ una función biyectiva. Sea $g: Y \to X: g(y) = x \iff f(x) = y$. ¿g define una función de $Y \to X$? Es decir, ¿ $\forall y \in Y$, existe un único $x \in X: g(y) = x$? Dado $y \subset Y$, sabemos que $\exists x \in X: f(x) = y$, ya que f es sobreyectiva. Entonces g(y) = x. Demostremos que si $\exists ! x \in X: g(y) = x$. Esto se cumple ya que f es inyectiva. Por tanto, tenemos una función $g: Y \to X: g(y) = x \iff f(x) = y$. Esta función se llama la **inversa** de f y la denotamos por f^{-1} .

$$f^{-1}: Y \to X: f^{-1}(y) = x \iff f(x) = y$$

Definición 17. Sean $f: X \to Y$, $g: Y \to Z$ dos funciones. Definimos la composición de f con g como la función $g \circ f: X \to Z: (g \circ f)(x) = g(f(x))$.

Esto se puede entender como un producto de funciones no conmutativo, pero sí es asociativa:

$$h\circ (g\circ f)=(h\circ g)\circ f$$

Si $f: X \to Y$ es biyectiva, entonces

$$(f \circ f^{-1})(y) = y \iff (f^{-1} \circ f)(x) = x$$

La función que cumple que $f(x) = x \forall x$ se llama la función **identidad**:

$$id: X \to X$$

Sea X un conjunto no vacío. $f: X \to Y$ una función sobreyectiva. Definimos la siguiente relación:

dados $x_1, x_2 \in X$, decimos que $x_1 \sim x_2 \iff f(x_1) = f(x_2)$. ¿Es una relación de equivalencia?

- Reflexiva: $f(x) = f(x) \iff x \sim x$
- Simétrica: $x_1 \sim x_2 \implies f(x_1) = f(x_2) \iff f(x_2) = f(x_1) \iff x_2 \sim x_1$
- Transitiva: $x_1 \sim x_2 \wedge x_2 \sim x_1 \implies f(x_1) = f(x_2), f(x_2) = f(x_3) \implies f(x_1) = f(x_3) \implies x_1 \sim x_3$

Consideremos el conjunto cociente $\frac{X}{\sim}$, es decir, el conjunto formado por todas las clases de equivalencia. Entonces, ¿existe una biyección entre X/\sim e Y? Sea $\hat{f}:X/\sim\to Y:\hat{f}([x])=f(x)$ \hat{f} está bien definida ya que $[x_1]=[x_2]\implies x_1\sim x_2\implies f(x_1)=f(x_2)$. Por tanto, $\hat{f}([x_1])=\hat{f}([x_2])$. Por tanto todos los elementos de $\frac{X}{\sim}$ tienen imagen y esta es única. Dado $y\in Y$, como f es sobreyectiva $\exists x\in X:y=f(x)$, pero como $f(x)=\hat{f}([x])$, entonces dado $y\in Y$ existe $[x]\in \frac{X}{\sim}:\hat{f}([x])=y$. Además, podemos definir la función $\pi:X\to \frac{X}{\sim}$ como la **proyección canónica**.

$$\pi(x) = [x] \forall x \in X$$

Definición 18. Sea X un conjunto no vacío. Una colección ${\bf T}$ de subconjuntos X se dice que es una topología sobre X si

- (1) X y el conjunto vacío ϕ pertenecen a \mathbf{T} .
- (2) La unión de cualquier número (finito o infinito) de conjuntos de T pertenece a T.
- (3) La intersección de dos conjuntos cualesquiera de T pertenece a T

El par (X, \mathbf{T}) se llama **espacio topológico**. Por la propiedad 3 y mediante inducción, se puede demostrar que si A_i conjuntos están en \mathbf{T} , entonces

$$\bigcap A_i \in \mathbf{T}$$

La pertenencia no es transitiva

DEFINICIÓN 19. Sea X no vacío, y \mathbf{T} la colección de todos los subconjuntos de X. Entonces \mathbf{T} es una topología discreta sobre X, y (X,\mathbf{T}) es un espacio discreto. Si para un espacio topológico, se cumple que $\forall x \in X, \{x\} \in \mathbf{T}$, entonces \mathbf{T} es una topología discreta. La topología formada por (X,ϕ) es la topología indiscreta.

El conjunto X de la definición anterior puede ser cualquier conjunto no vacío, por tanto, hay una cantidad infinita de espacios discretos para cada conjunto no vacío X.

DEFINICIÓN 20. Dado un espacio topológico (X, \mathbf{T}) , los elementos de \mathbf{T} se llaman **conjuntos abiertos**.

Definición 21. Sea (X, \mathbf{T}) un espacio topológico. Un subconjunto S de X es cerrado en (X, \mathbf{T}) si su complemento es abierto.

DEFINICIÓN 22. Sea $X \neq \phi$. Una topología \mathbf{T} sobre X es llamada topología cofinita si y solo si los conjuntos cerrados de X son, X y todos los subconjuntos finitos de X. Por tanto, los conjuntos abiertos son ϕ y todos los subconjuntos de X con complemento finito.

$$T_{cof} = \{ A \subseteq X : X - A \text{ es finito o } A = \phi \}$$

Un subconjunto de X es abierto si su complemento es finito.

5. Topología Euclidiana

Definición 23. Un subconjunto $S \subset \mathbb{R}$ se llamaba abierto en la topología euclidiana de \mathbb{R} si y solo si

$$\forall x \in S \exists a, b \in \mathbb{R} : a < b \land x \in (a, b) \subseteq S$$

Otra forma de formular esto es

$$\forall x \in S \exists \delta > 0 : (x - \delta, x + \delta) \subseteq S$$

5.1. Conjuntos abiertos y cerrados. Los intervalos abiertos (r, s) son abiertos, ya que $\forall x \in (r, s) \exists \delta > 0 : (x - \delta, x + \delta) \subset (r, s)$.

Propiedades

- $\mathbb{R}, \phi, \mathbb{Z}$ son abiertos.
- $(a,b), (-\infty,a), (a,\infty)$ son abiertos.
- \mathbb{Q} no es ni abierto ni cerrado.
- Un subconjunto $S \subset \mathbb{R}$ es abierto si y solo si es la unión de intervalos abiertos.

Definición 24. Base de una topología Una colección B de subconjuntos abiertos de X es una base de T si y solo si, cada conjunto abierto es una unión de elementos de B, es decir:

$$\forall D \in \mathbf{T} \exists \{S_i\} \subset B : D = \bigcup S_i$$

Se cumplirá que B es una base de una topología sobre X si:

- $X = \bigcup_{S \in B} S$
- Para todo $S_1, S_2 \in B$, el conjunto $S_1 \cap S_2$ es una unión de elementos de B.

Otra forma de demostrar si algo es una base de una topología es la siguiente:

$$\forall x \in A \subset \mathbf{T} \exists S \in B : x \in S \subseteq A$$

Sean B_1 y B_2 bases de T_1 y T_2 respectivamente. $T_1 = T_2$ si y solo si:

- $\forall S \in B_1, x \in S, \exists S' \in B_2 : x \in S' \subseteq S$
- $\forall S \in B_2, x \in S, \exists S' \in B_1 : x \in S' \subseteq S$

DEFINICIÓN 25. Sea A un subconjunto de un espacio topológico (X, \mathbf{T}) . Un punto $x \in X$ se llama punto límite de A si y solo si, todo conjunto abierto U que contiene a x contiene también otro punto de A diferente de x, es decir, si $U \cap A - \{x\} \neq \phi$. Si $x \notin A$, basta con verificar si para todo conjunto abierto, $U \cap A \neq \phi$. Si la topología contiene el singular de un elemento x, entonces x nunca puede ser punto límite de ningún subconjunto.

Con esto podemos llegar a un criterio para demostrar si un conjunto es cerrado:

DEFINICIÓN 26. Un conjunto A es cerrado si y solo si todos los puntos límites de A pertenecen a A.

DEFINICIÓN 27. La clausura de un conjunto A, denominado como \bar{A} , se define como A unido con sus puntos límites, es decir, $\bar{A} = A \cup A'$. Además, será el cerrado más pequeño que contenga a A.

DEFINICIÓN 28. Un subconjunto D de un espacio topológico (X, \mathbf{T}) es denso en X si y solo si $\overline{D} = X$.

Proposición 5. Sea $D \subset (X, \mathbf{T})$. Entonces, D es denso en X, si y solo si, todo subconjunto abierto y no vacío de X interseca (no trivialmente) a D, es decir, $U \neq \phi, U \cap D \neq \phi$.

DEFINICIÓN 29. Sea $(X, \mathbf{T}), V$ un subconjunto de X y $p \in V$. V es una vecindad de P si y solo si existe un abierto A tal que $p \in A \subseteq V$. Con esta definición se cumple que:

• $En \mathbb{R}$, los intervalos abiertos (y cerrados) que contengan a p, son vecindades de este.

Proposición 6. Un punto $x \in X$ es punto límite de S si y solo si toda vecindad de x contiene un punto de S diferente de x.

- TEOREMA 2. (1) Sea S un subconjunto de un ET. Entonces S es cerrado si y solo si, para cada $x \in X S$ existe una vecindad V de x tal que $V \subseteq X S$.
 - (2) Sea A un subconjunto de un ET. Entonces $A \in \mathbf{T}$ si y solo si, para cada $x \in A$ existe una vecindad V de x tal que $V \subseteq A$.
 - (3) Sea A un subconjunto de un ET. Entonces $A \in \mathbf{T}$ si y solo si, para $x \in A$ existe un $V \in \mathbf{T}$ tal que $x \in V \subseteq A$.

6. Conexidad y conjuntos acotados

Sea S un subconjunto de \mathbb{R} . Si existe $\alpha \in S$ tal que para todo $x \in S, x \leq \alpha$, se dice que α es el máximo de S (y análogo para el mínimo). $S \subset \mathbb{R}$, se dice que S está acotado superiormente si y solo si, existe un $c \in \mathbb{R}$ tal que $\forall x \in S, x \leq c$ (análogo para acotado inferiormente). S es un conjunto acotado si y solo si tiene cota inferior y superior. Si S está acotado superiormente, entonces la menor cota superior se llama **supremo** de S, denotado por sup(S). El máximo será el supremo de S si este está en S.

• Si S está acotado superiormente y S es cerrado, entonces $sup(S) \in S$.

DEFINICIÓN 30. Sea (X, \mathbf{T}) un espacio topológico. Este es conexo si y solo si los únicos subconjuntos abiertos y cerrados son X y ϕ .

Por tanto, \mathbb{R} es un espacio topológico conexo.

Vamos a pasar a una definición que nos permite saber si dos espacios topológicos son equivalentes.

Definición 31. Dados dos espacios topológicos, estos son homeomorfos is existe una función $f: X \to Y$ que satisface:

- f es biyectiva.
- Para cada $U \in T_2, f^{-1}(U) \in T_1$
- Para cada $V \in T_1, f^{-1}(V) \in T_2$

La función f es un homemorfismo entre (X, \mathbf{T}_1) y (Y, \mathbf{T}_2) , y escribimos $(X, \mathbf{T}_1) \equiv (Y, \mathbf{T}_2)$

Con esto podemos llegar a que dos intervalos (a, b) y (c, d) son homeomorfos, y que cualquier intervalo abierto es homeomorfo a \mathbb{R} .

Definición 32. Una propiedad topológica es una propiedad de un espacio topológico que se conserva mediante un homeomorfismo.

Es decir, si un espacio tiene una propiedad, y ese espacio es homeomorfo a otro espacio, este otro espacio también tiene esa propiedad.

De aquí sigue que

TEOREMA 3. Cualquier espacio topológico homeomorfo a un espacio conexo es conexo.

Con estas propiedades, y teniendo la definición usual de $\varepsilon-\delta$ de continuidad, podemos definir la condición para una función continua:

TEOREMA 4. Una función $f: \mathbb{R} \to \mathbb{R}$ es continua si y solo si, para todo $U \subset \mathbb{R}$, $f^{-1}(U)$ es un conjunto abierto de \mathbb{R} .

Y en genérico para dos espacios topológicos:

TEOREMA 5. Sea (X, \mathbf{T}_1) y (Y, \mathbf{T}_2) dos espacios topológicos. $f: X \to Y$ es una función continua respecto a ambas topologías si y solo si, $U \in \mathbf{T}_2$, $f^{-1}(U) \in \mathbf{T}_1$

TEOREMA 6 (Lema del pegamento). Sea $X = A \cup B$, donde A, B son subconjuntos cerrados de X. Sean $f: A \to Y$ y $g: B \to Y$ funciones continuas. Si f(x) = g(x) para todo $x \in A \cap B$, entonces $h: X \to Y$ definida por h(x) = f(x) si $x \in A$ y h(x) = g(x) si $x \in B$, es continua.

CHAPTER 2

Bajas Dimensiones

Dados dos subconjuntos A y B, decimos que son separados si y solo si

- $A \cap B = \phi$
- Ninguno de los dos contiene un punto de acumulación del otro: $\bar{A} \cap B = A \cap \bar{B} = \phi$

Definición 33. Un subconjunto A de un espacio topológico X es disconexo si existen subconjuntos abiertos G y H de X tal que:

- $G \cap A \neq \phi \ y \ H \cap A \neq \phi$
- $(G \cap A) \cap (H \cap A) = G \cap H = \phi$
- $\bullet \ (G\cap A)\cup (H\cap A)=G\cup H=A$

 $A\ es\ conexo\ si\ y\ solo\ si\ no\ es\ disconexo.$

CHAPTER 3

Espacios Métricos

Definición 34. Sea un conjunto X. Una función $d: X \times X \to \mathbb{R}$ es una métrica o una función distancia sobre X si d cumple que:

- $d(x,y) > 0 \forall x, y \in X$. $d(x,y) = 0 \iff x = y$.
- $\bullet \ d(x,y) = d(y,x)$
- $\forall x, y, z \in X, d(x, z) \le d(x, y) + d(y, z)$

 $Al\ par\ (X,d)\ se\ le\ llama\ espacio\ m\'etrico.$