INVERSE TRIGONOMETRIC FUNCTIONS CLASS XII

Inverse Sine Function

Recall that for a function to have an inverse, it must be a one-to-one function and pass the Horizontal Line Test.

 $f(x) = \sin x$ does not pass the Horizontal Line Test and must be restricted to find its inverse.

Sin *x* has an inverse function on this interval.

The **inverse sine function** is defined by

$$y = \arcsin x$$
 if and only if $\sin y = x$.
Angle whose sine is x

The domain of $y = \arcsin x$ is [-1, 1].

The range of $y = \arcsin x$ is $[-\pi/2, \pi/2]$.

Example:

- a. $\arcsin \frac{1}{2} = \frac{\pi}{6}$ $\frac{\pi}{6}$ is the angle whose sine is $\frac{1}{2}$.
- b. $\sin^{-1} \frac{\sqrt{3}}{2} = \frac{\pi}{3}$ $\sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}$ This is another way to write $\arcsin x$.

Inverse Cosine Function

 $f(x) = \cos x$ must be restricted to find its inverse.

Cos *x* has an inverse function on this interval.

The **inverse cosine function** is defined by

$$y = \arccos x$$
 if and only if $\cos y = x$.
Angle whose cosine is x

The domain of $y = \arccos x$ is [-1, 1].

The range of $y = \arccos x$ is $[0, \pi]$.

Example:

a.) $\arccos \frac{1}{2} = \frac{\pi}{3}$ $\frac{\pi}{3}$ is the angle whose cosine is $\frac{1}{2}$.

b.)
$$\cos^{-1}\left(-\frac{\sqrt{3}}{2}\right) = \frac{5\pi}{6}$$
 $\cos\frac{5\pi}{6} = -\frac{\sqrt{3}}{2}$
This is another way to write $\arccos x$.

Inverse Tangent Function

 $f(x) = \tan x$ must be restricted to find its inverse.

Tan *x* has an inverse function on this interval.

The **inverse tangent function** is defined by

$$y = \arctan x$$
 if and only if $\tan y = x$.
Angle whose tangent is x

The domain of $y = \arctan x$ is $(-\infty, \infty)$.

The range of $y = \arctan x$ is $[-\pi/2, \pi/2]$.

Example:
a.)
$$\arctan \frac{\sqrt{3}}{3} = \frac{\pi}{6}$$
 $\frac{\pi}{6}$ is the angle whose tangent is $\frac{\sqrt{3}}{3}$.

b.)
$$\tan^{-1}\sqrt{3} = \frac{\pi}{3}$$
 $\tan \frac{\pi}{3} = \sqrt{3}$
This is another way to write $\arctan x$.

Composition of Functions:

$$f(f^{-1}(x)) = x$$
 and $(f^{-1}(f(x))) = x$.

Inverse Properties:

If $-1 \le x \le 1$ and $-\pi/2 \le y \le \pi/2$, then $\sin(\arcsin x) = x$ and $\arcsin(\sin y) = y$.

If $-1 \le x \le 1$ and $0 \le y \le \pi$, then $\cos(\arccos x) = x$ and $\arccos(\cos y) = y$.

If x is a real number and $-\pi/2 < y < \pi/2$, then $\tan(\arctan x) = x$ and $\arctan(\tan y) = y$.

Example: tan(arctan 4) = 4

Example:

a.
$$\sin^{-1}(\sin(-\pi/2)) = -\pi/2$$

b.
$$\sin^{-1} \left[\sin \left(\frac{5\pi}{3} \right) \right]$$

 $\frac{5\pi}{3}$ does not lie in the range of the arcsine function, $-\pi/2 \le y \le \pi/2$.

However, it is coterminal with $\frac{5\pi}{3} - 2\pi = -\frac{\pi}{3}$ which does lie in the range of the arcsine function.

$$\sin^{-1}\left[\sin\left(\frac{5\pi}{3}\right)\right] = \sin^{-1}\left[\sin\left(-\frac{\pi}{3}\right)\right] = -\frac{\pi}{3}$$

Example:

Find the exact value of $\tan\left(\arccos\frac{2}{3}\right)$.

Let
$$u = \arccos \frac{2}{3}$$
, then $\cos u = \frac{\text{adj}}{\text{hyp}} = \frac{2}{3}$.

$$\tan\left(\arccos\frac{2}{3}\right) = \tan u = \frac{\text{opp}}{\text{adj}} = \frac{\sqrt{5}}{2}$$