第三章 线性规划及其原始一对偶算法(II)

3.5 线性规划的对偶理论

先从一个简单的例子谈起。

例子:某工厂在计划期内要安排生产 I、II 两种产品,已知生产单位产品所需要的设备台时及 A、B 两种原材料的消耗,如下表:

	I	II	
设备	1	2	8台时
原材料 A	4	0	16
原材料 B	0	4	12

该工厂每生产一件产品 I 可获利 2,每生产一件产品 II 可获利 3。问应该如何安排生产计划使该工厂获利最大?

设 x_1 、 x_2 分别表示 I、II 的产量,则该问题的数学模型为:

max
$$z = 2x_1 + 3x_2$$

s.t. $x_1 + 2x_2 \le 8$
 $4x_1 \le 16$
 $4x_2 \le 12$
 $x_1, x_2 \ge 0$

用单纯形方法可以求得最优解为: $x_1*=4, x_2*=2$, 最优值为z*=14。

假设:该工厂的决策者决定不生产产品 I、II,而将其所有资源出租或外售。这时工厂的决策者就要考虑给每种资源定价的问题。设用 y_1, y_2, y_3 分别表示出租单位设备台时的租金和出让单位原材料 A,B 的附加额,则

min
$$\omega = 8y_1 + 16y_2 + 12y_3$$

s.t. $y_1 + 4y_2 \ge 2$
 $2y_1 + 4y_3 \ge 3$
 $y_i \ge 0, i = 1,2,3$

也可以用单纯形方法求得最优解为: $y_1^* = \frac{3}{2}, y_2^* = \frac{1}{8}, y_3^* = 0$, 最优值为 $\varpi^* = 14$ 。

显然:

 $(8-x_1*-2x_2*)=0$ 且 $y_1*>0$,即 $(8-x_1*-2x_2*)y_1*=0$ ——原始约束紧,对偶变量松

 $(16-4x_1^*)=0$ 且 $y_2^*>0$,即 $(16-4x_1^*)y_2^*=0$ ——原始约束紧,对偶变量松

 $(12-4x_2^*)>0$ 且 $y_3^*=0$,即 $(12-4x_2^*)y_3^*=0$ 原始约束松,对偶变量紧同样,对称的,

 $x_1*>0$ 且 $(y_1*+4y_2*-2)=0$,即 $x_1*\cdot(y_1*+4y_2*-2)=0$ ——原始变量松,对偶约束紧

 x_2 *>0且($2y_1$ *+ $4y_3$ *-3)=0,即 x_2 *·($2y_1$ *+ $4y_3$ *-3)=0——原始变量松,对偶约束紧

最终达到平衡,原始一对偶目标函数取值相等,得到原始一对偶最优解。 这就是所谓的"互补松弛性"

互补松弛性

原始与对偶规划之间存在者拉锯式争夺:

一个问题里的某个约束越紧,另一个问题中对应的变量就越松;最终的平衡 表示式,就是x和y是原始一对偶问题最优解的充分必要条件,这就是所谓的**互 补松弛性条件**

定理 3.13 (互补松弛性条件) x 和 y 分别为原始一对偶可行解,则它们分别是原始一对偶最优解 \Leftrightarrow 对一切 i 和 j 有:

$$u_i = y_i (a_i^T x - b_i) = 0$$

 $v_j = (c_j - A_j^T y) x_j = 0$

证明:显然,对一切i和j有: $u_i \ge 0, v_j \ge 0$ 。定义

$$u = \sum_{i} u_i, \quad v = \sum_{i} v_j$$

则
$$u=0 \Leftrightarrow u_i=0$$
 (对一切 i)
$$v=0 \Leftrightarrow v_j=0$$
 (对一切 j)
$$mu+v=c^Tx-b^Ty$$
 所以, $u_i=0$ (对一切 i) 且 $v_j=0$ (对一切 j) $\Leftrightarrow u=0$ 且 $v=0$

 $\Leftrightarrow u + v = 0 \Leftrightarrow c^T x - b^T y = 0 \Leftrightarrow x \pi y$ 是原始一对偶问题最优解。

注: 上述定理隐含着下述事实:

- 对最优解 *x* 和 *y* ,如果对偶中一个约束取严格等式,则原始规划中对 应的变量取值必须为 0;
- 对称地,如果一个非负变量取值为正值,则其对应的约束必取等式。 所以,称之为**互补松弛性。**

Farkas 引理

Farkas 引理描述了 R^n 中向量间的一种基本关系。在某种意义下,它反映了对偶的本质。

给定一组向量 $a_i \in R^n$ ($i = 2, \dots, m$) 由这组向量 $\{a_i\}$ 生成的锥记为 $C(a_i)$:

$$C(a_i) = \{x \in \mathbb{R}^n : x = \sum_{i=1}^m y_i a_i, y_i \ge 0, i = 1, 2, \dots, m\}$$

即 $\{a_i\}$ 非负线性组合。

给定向量的一个集合 $\{a_i\}_{i=1,2,\cdots,k}$ 及另外一个向量 $c\in R^n$,"如果对一切向量 $y\in R^n$,若 y 在 $\{a_i\}_{i=1,2,\cdots,k}$ 有非负投影,那么 y 在 c 上也有非负投影"

定理 3.14 (Farkas 引理) 给定一组向量 $a_i \in R^n (i=,2,\cdots,m)$ 及向量 $c \in R^n$,则有:

$$a_i^T y \ge 0, i = 1, 2, \dots m \Rightarrow c^T y \ge 0 \Leftrightarrow c \in C(a_i)$$

证明: " \leftarrow " 给定一组向量 $a_i \in R^n (i=,2,\cdots,m)$ 及向量 $c \in R^n$ 且 $c \in C(a_i)$,要证明: 对于 $y \in R^n$, 若 $a_i^T y \ge 0, i=1,2,\cdots m$, 则必有 $c^T y \ge 0 \Leftrightarrow c \in C(a_i)$ 。 事实上,

$$\operatorname{III} c^T y = \sum_{i=1}^m y_i a_i^T y \ge 0 \ .$$

"⇒" 给定一组向量 $a_i \in R^n (i=,2,\cdots,m)$ 及向量 $c \in R^n$,满足: 对于 $y \in R^n$,若 $a_i^T y \ge 0, i=1,2,\cdots m$,则一定有 $c^T y \ge 0 \Leftrightarrow c \in C(a_i)$,要证明必有: $c \in C(a_i)$ 。事实上,可考察下述线性规划问题:

$$\min c^T y$$
 $a_i^T y \ge 0, i = 1, 2, \dots, m$ (LP) y无限制

:: y=0 是一个可行解, :: (LP)可行。又 $:: a_i^T y \ge 0, i = 1, 2, \cdots, m 及 c^T y \ge 0$, :: (LP) 有界, :: (LP)的对偶问题:

$$\max 0$$

$$A_j^T x = c_j, j = 1, 2, \dots, n$$

$$x \ge 0$$
(LP)

其中

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} = \begin{pmatrix} a_1^T \\ a_2^T \\ \vdots \\ a_m^T \end{pmatrix} = (A_1, A_2, \dots, A_n)$$

一定有可行解,即存在 $x \ge 0$,使得 $A_j^T x = c_j, j = 1, 2, \cdots, n$,即

$$c_1 = a_{11}x_1 + a_{21}x_2 + \dots + a_{m1}x_m$$

$$c_2 = a_{12}x_1 + a_{22}x_2 + \dots + a_{m2}x_m$$
.....

$$c_n = a_{1n} x_1 + a_{2n} x_2 + \dots + a_{mn} x_m$$

所以

$$c = \begin{pmatrix} a_{11} \\ a_{12} \\ \vdots \\ a_{1n} \end{pmatrix} x_1 + \begin{pmatrix} a_{21} \\ a_{22} \\ \vdots \\ a_{2n} \end{pmatrix} x_2 + \dots + \begin{pmatrix} a_{m1} \\ a_{m2} \\ \vdots \\ a_{mn} \end{pmatrix} x_m$$
$$= x_1 a_1 + x_2 a_2 + \dots + x_m a_m = \sum_{i=1}^m x_i a_i$$

3.6 线性规划的原始一对偶算法

一、算法的基本思路

线性规划的原始一对偶算法是线性规划的一个一般的算法,它实际上是由某些网络问题的一个特殊算法发展起来的,并且由它可以产生一系列与组合优化有关问题的一些特殊算法。

考虑线性规划问题及其对偶问题:

$$\min z = c^T x$$
 $\max \varpi = b^T y$
s.t. $Ax = b \ge 0$ (LP) s.t. $A^T y \le c$ (D) y 无限制

互补松弛性条件: x和y分别为原始一对偶可行解,则它们分别是原始一对偶最优解 \Leftrightarrow 对一切i和i有:

$$y_i(a_i^T x - b_i) = 0 (1)$$

$$(c_j - A_j^T y)x_j = 0 (2)$$

显然,(1)对任何可行解都成立,只要讨论(2)。假定 y 是(D)的可行解,我们的目标是设法找出(LP)的一个可行解 x ,使得当 c_j - $A_j^T y > 0$ 时,有 $x_j = 0$,那么 x 和 y 将分别是原始一对偶最优解。

但是,由于 y 不一定是(D)的一个最优解,所以,这样(LP)的可行解 x 不一定能够找到。不过,对于给定的(D)的可行解 y ,我们可以找出一个 "适合互补松 弛性条件(2),且最接近(LP)的可行解的向量 x ",并根据该 x 对(LP)的可行性的 "破坏程度"调整(D)的可行解,得到(D)的一个新的可行解 y ——线性规划的原始一对偶算法的基本思路。

二、线性规划的原始一对偶算法

线性规划的原始一对偶算法实际上是对偶算法,开始时y是(D)的可行解, 迭代过程始终保持对偶可行性。

1. 算法基本过程

$$\min z = c^T x \qquad \max \varpi = b^T y$$
s.t. $Ax = b \ge 0$ (LP)
$$x \ge 0 \qquad y$$
无限制
$$J = \{j : A_j^T y = c_j\}$$

$$\min \xi = \sum_{i=1}^m x_i^a$$
s.t. $\sum_{j \in J} a_{ij} x_j + x_i^a = b_i, i = 1, 2, \cdots, m$

$$x_j \ge 0, \quad j \in J$$

$$x_j \ge 0, \quad j \notin J$$

$$x_i \ge 0, \quad i = 1, 2, \cdots, m$$

$$x_i^a \ge 0, \quad i = 1, 2, \cdots, m$$

$$x_i^a \ge 0, \quad i = 1, 2, \cdots, m$$

$$x_i^a \ge 0, \quad i = 1, 2, \cdots, m$$

$$x_i^a \ge 0, \quad i = 1, 2, \cdots, m$$

$$x_i^a \ge 0, \quad i = 1, 2, \cdots, m$$

$$x_i^a \ge 0, \quad i = 1, 2, \cdots, m$$

$$x_i^a \ge 0, \quad i = 1, 2, \cdots, m$$

$$x_i^a \ge 0, \quad i = 1, 2, \cdots, m$$

用单纯形类方法求解(RP), 若:

- (RP)的最优值 $\xi_{ont} = 0$,则得到(LP)和(D)的最优解,算法终止;
- (RP)的最优值 $\xi_{\text{opt}} > 0$,设 \overline{y} 是(DRP)的最优解,若 $A_j^T \overline{y} \le 0, j \notin J$,则(D)无上界,从而(LP)不可行,算法终止;

• 否则,取
$$heta \leq heta_1 = \min_{\substack{A_j^T y > 0, \ j
otin J}} \left\{ \frac{c_j - A_j^T y}{A_j^T \overline{y}} \right\}, \quad y := y + heta^{-1}$$

2. 算法

初始化: 求(D)的一个可行解 y^0 , k := 0;

第 1 步: 求 y^k 的允许列集合 $J_k = \{j : A_i^T y^k = c_i\};$

第 2 步:构造(RP)和(DRP),用单纯形类方法求解(RP),得到(RP)的最优值 ξ_{opt} 和最有解 x^k 及(DRP)的最优解 y ;

第 5 步: 计算
$$\theta_1 = \min_{\substack{A_j^T y > 0, \ j \notin J}} \left\{ \frac{c_j - A_j^T y}{A_j^T y} \right\}$$
, 取 $\theta \le \theta_1$, 令 $y^{k+1} \coloneqq y^k + \theta y$,

定理 3.15 设 y 是(D)的一个可行解, $J=\{j:A_j^Ty=c_j\}$ 是 y 对应的允许列集合, y 是 (DRP)的最优解,且(RP)的最优值 $\xi_{\rm opt}>0$:

- (2) 若 $\exists j \notin J$ 使得 $A_j^T y > 0$,要维持 $y^* = y + \theta y$ 的可行性, θ 的最大取值为

$$\theta_{1} = \min_{\substack{A_{j}^{T}y > 0, \\ j \notin J}} \left\{ \frac{c_{j} - A_{j}^{T}y}{A_{j}^{T}\overline{y}} \right\}$$

并且新的费用为 $w^* = b^t y + \theta_1 b^T y = w + \theta_1 b^T y > w$ 。

3. 算法初始可行解的求法

- (1)当 $c \ge 0$ 时,取y = 0即可。
- (2)) 当 $c \ge 0$ 不成立时: 在原始问题(LP)中引进变量 x_{n+1} 和增加一个约束:

$$x_1 + x_2 + \dots + x_n + x_{n+1} = b_{m+1}$$

其中 b_{m+1} 大于(LP)的任意可行解 $x = (x_1, x_2, \cdots, x_n)^T$ 的分量 x_1, x_2, \cdots, x_n 之和,且在目标函数中对应的费用取 $c_{n+1} = 0$:

min
$$c^{T} x + 0 \cdot x_{n+1}$$

s.t. $a_{i}^{T} x = b_{i}, i = 1, 2, \dots, m$
 $x_{1} + x_{2} + \dots + x_{n} + x_{n+1} = b_{m+1}$
 $x_{i} \ge 0 (i = 1, 2, \dots, n, n+1)$ (LP')

显然(LP')与(LP)具有相同的最有解,而(LP')的对偶为:

$$\max \varpi = b^{T} y + b_{m+1} y_{m+1}$$
s.t. $A_{j}^{T} y + y_{m+1} \le c_{j}, j = 1, 2, \dots, m$ (D')
$$y_{m+1} \le 0$$

(D')有一个可行解:

$$y_i = 0, i = 1, 2, \dots, m$$

 $y_{m+1} = \min\{c_i \mid 1 \le j \le m\} < 0$

4. 原始一对偶算法的几点说明

在每一次迭代,都可以由前一次迭代得到的最有解开始求解(RP),因此这是非常方便的。可以如此做的原因是:每次迭代结束时,即在J里又在(RP)的最优基里的变量,此时不可能离开J。

定理 3.16 (RP)最优基里每个允许列,在下一次迭代开始时它仍然保持是允许的。证明:在一次迭代结束时,如果 A_i 是在(RP)的最有基里,那么它的检验数(在(RP)的相对费用)为:

$$\lambda_{j} = A_{j}^{T} \overline{y} = 0$$

所以:
$$A_i^T y^* = A_i^T y + \theta_1 A_i^T y = A_i^T y = c_i$$

所以: j仍保留在J中。

即:不仅从前一次的可行解开始迭代,而且由于不可能产生基的列变为非允许列的麻烦,所以可以用修正的单纯形算法求解。

定理 3.17 线性规划的上述原始一对偶算法在有限时间内能够得到(LP)的解。