朴素贝叶斯算法与K近邻算法 Naïve Bayes Algorithms

目录

1. 朴素贝叶斯法回顾

- 1.1 朴素贝叶斯法的学习与分类
- 1.2 朴素贝叶斯法分类样例
- 1.3 贝叶斯估计
- 2. K近邻算法简介(KNN)
- 3. Pytorch安装指引
- 4. 作业

1.1 朴素贝叶斯法的学习与分类

考虑一个分类问题,我们希望根据动物的某些特征($X = (x_1, x_2, ..., x_n$))来区分猫(y = 1)和狗(y = 0)。

● 判别模型

- 找到将猫和狗分开的决策边界或分类原则。
- 为了分类一只新动物,判别模型会检查它落在决策边界的哪一边,并直接做出决定。
- 直接估计后验概率 p(y|x) 。

● 生成模型

- 分别学习猫和狗的特征模型。
- 要对新动物进行分类,将其与猫/狗模型进行匹配,并查看它看起来更像哪个模型。
- 估计先验概率 p(y) 和条件概率 p(x|y),根据贝叶斯定理计算后验概率 p(y|x)。

1.1 朴素贝叶斯法的学习与分类

朴素贝叶斯

思想: 朴素贝叶斯假设, 又称条件独立性假设

对于特征
$$X = (x_1, x_2, ..., x_n)$$
,满足 $x_i \perp x_j \mid y \ (i \neq j)$
$$p(X \mid y) = p(x_1, x_2, ..., x_n \mid y) = \prod_{j=1}^n p(x_j \mid y)$$

Motivation: 简化运算

条件独立假设,用于分类的特征在分类模型确定的条件下是条件独立的。

1.1 朴素贝叶斯法的学习与分类

朴素贝叶斯法

思想: 朴素贝叶斯假设, 又称条件独立性假设

做法:根据贝叶斯定理来估计每个类别的后验概率。

$$p(y|x) = \frac{p(x,y)}{p(x)} = \frac{p(x|y)p(y)}{p(x)} = \frac{p(x|y)p(y)}{\sum_{i} p(x|y_{i})p(y_{i})} \propto p(x|y)p(y)$$

对于样本X,朴素贝叶斯法的目标是找到

$$y = \arg \max_{y} p(y|X) = \arg \max_{y} \frac{p(X, y)}{p(X)} = \arg \max_{y} p(X|y)p(y)$$
$$= \arg \max_{y} \prod_{i} p(x_{i}|y) p(y)$$

作为X的分类结果。

1.2例子

例 4.1 试由表 4.1 的训练数据学习一个朴素贝叶斯分类器并确定 $x=(2,S)^{\mathrm{T}}$ 的类标记 y。表中 $X^{(1)}$, $X^{(2)}$ 为特征,取值的集合分别为 $A_1=\{1,2,3\}$, $A_2=\{S,M,L\}$,Y 为类标记, $Y\in C=\{1,-1\}$ 。

-	~ · · · · · · · · · · · · · · · · · · ·														
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$X^{(1)}$	1	1	1	1	1	2	2	2	2	2	3	3	3	3	3
$X^{(2)}$	S	M	M	S	S	S	M	M	L	L	L	M	M	L	L
Y	-1	-1	1	1	-1	-1	-1	1	1	1	1	1	1	1	-1

训练数据

表 11

1.2例子

$$\begin{split} &P(Y=1)=\frac{9}{15},\ \ P(Y=-1)=\frac{6}{15}\\ &P(X^{(1)}=1|Y=1)=\frac{2}{9},\ \ P(X^{(1)}=2|Y=1)=\frac{3}{9},\ \ P(X^{(1)}=3|Y=1)=\frac{4}{9}\\ &P(X^{(2)}=S|Y=1)=\frac{1}{9},\ \ P(X^{(2)}=M|Y=1)=\frac{4}{9},\ \ P(X^{(2)}=L|Y=1)=\frac{4}{9}\\ &P(X^{(1)}=1|Y=-1)=\frac{3}{6},\ \ P(X^{(1)}=2|Y=-1)=\frac{2}{6},\ \ P(X^{(1)}=3|Y=-1)=\frac{1}{6}\\ &P(X^{(2)}=S|Y=-1)=\frac{3}{6},\ \ P(X^{(2)}=M|Y=-1)=\frac{2}{6},\ \ P(X^{(2)}=L|Y=-1)=\frac{1}{6}\\ & \forall$$

$$P(Y=1)P(X^{(1)}=2|Y=1)P(X^{(2)}=S|Y=1) = \frac{9}{15} \cdot \frac{3}{9} \cdot \frac{1}{9} = \frac{1}{45}$$

$$P(Y=-1)P(X^{(1)}=2|Y=-1)P(X^{(2)}=S|Y=-1) = \frac{6}{15} \cdot \frac{2}{6} \cdot \frac{3}{6} = \frac{1}{15}$$

因为 $P(Y = -1)P(X^{(1)} = 2|Y = -1)P(X^{(2)} = S|Y = -1)$ 最大,所以 y = -1。

1.3 贝叶斯估计

思考: 在前面的分类算法中,如果测试样例中的特征没有在训练集中出现会造成什么结果?

会影响到后验概率的计算结果,使分类产生偏差。解决这一问题的方法是采用**贝叶斯估计**。具体地,估计特征 x_k 的条件概率为:

 $p(x_k|y_i) = \frac{C(x_k, y_i) + \lambda}{C(y_i) + K(x_k)\lambda}$

估计 y_i 的概率计算为:

$$p(y_i) = \frac{C(y_i) + \lambda}{N + K(y_i)\lambda}$$

式中C表示符合条件的样本个数, K(x)为特征x的取值种类数, $\lambda \geq 0$ 。等价于在随机变量各个取值的频数上赋予一个正数 $\lambda \geq 0$ 。当 $\lambda = 0$ 时就是极大似然估计。一般取 $\lambda = 1$,这时 称为<mark>拉普拉斯平滑</mark> (Laplacian smoothing)。

1.3 贝叶斯估计例子

$$P(Y=1) = \frac{10}{17}, \quad P(Y=-1) = \frac{7}{17}$$

$$P(X^{(1)} = 1|Y = 1) = \frac{3}{12}, \quad P(X^{(1)} = 2|Y = 1) = \frac{4}{12}, \quad P(X^{(1)} = 3|Y = 1) = \frac{5}{12}$$
 $P(X^{(2)} = S|Y = 1) = \frac{2}{12}, \quad P(X^{(2)} = M|Y = 1) = \frac{5}{12}, \quad P(X^{(2)} = L|Y = 1) = \frac{5}{12}$
 $P(X^{(1)} = 1|Y = -1) = \frac{4}{9}, \quad P(X^{(1)} = 2|Y = -1) = \frac{3}{9}, \quad P(X^{(1)} = 3|Y = -1) = \frac{2}{9}$
 $P(X^{(2)} = S|Y = -1) = \frac{4}{9}, \quad P(X^{(2)} = M|Y = -1) = \frac{3}{9}, \quad P(X^{(2)} = L|Y = -1) = \frac{2}{9}$
 $P(Y = 1)P(X^{(1)} = 2|Y = 1)P(X^{(2)} = S|Y = 1) = \frac{10}{17} \cdot \frac{4}{12} \cdot \frac{2}{12} = \frac{5}{153} = 0.0327$
 $P(Y = -1)P(X^{(1)} = 2|Y = -1)P(X^{(2)} = S|Y = -1) = \frac{7}{17} \cdot \frac{3}{9} \cdot \frac{4}{9} = \frac{28}{459} = 0.0610$
由于 $P(Y = -1)P(X^{(1)} = 2|Y = -1)P(X^{(2)} = S|Y = -1)$ 最大,所以 $Y = -1$.

· K-近邻(KNN)算法—KNN处理分类问题

半径大小 表示 K值大小

k-nearest neighbours classifier:

$$f(q) = maj\left(g\left(\Phi_{X,k}(q)\right)\right)$$

其中:

 $\Phi_{X,k}(q)$: 返回训练集X中距离q最近

的k个样本

 $g(\cdot)$: 返回(训练)样本的标签

 $maj(\cdot)$: 返回众数

· K-近邻(KNN)算法—KNN处理分类问题:步骤

Document number	I	buy	an	apple	 friend	has	emotion
train 1	1	1	1	1	 0	0	happy
train 2	1	0	0	1	 0	0	happy
train 3	0	0	0	1	 0	0	sadness
test 1	0	0	1	1	 1	1	?

2. 相似度计算: 计算test1与每个train的距离

欧氏距离:

$$\begin{aligned} d(train1, test1) &= \sqrt{(1-0)^2 + (1-0)^2 + \dots + (0-1)^2} = \sqrt{6}; \\ d(train2, test1) &= \sqrt{(1-0)^2 + (1-0)^2 + \dots + (0-1)^2} = \sqrt{8}; \\ d(train3, test1) &= \sqrt{(0-0)^2 + (0-0)^2 + \dots + (0-1)^2} = \sqrt{9}; \end{aligned}$$

(也可以使用其他距离度量方式)

3. 类别计算: 最相似的k个样本之标签的众数

若k=1, test1的标签即为train1的标签happy;

若k=3, test1的标签为train1,train2,train3的标签中数量较多的,即为happy。

- · K-近邻(KNN)算法—KNN参数设置
- ・采用不同的距离度量方式(见下一页)
- · 通过验证集对参数(k值)进行调优
 - · 如果k值取的过大, 学习的参考样本更多, 会引入更多的噪音, 所以可能存在欠拟合的情况;
 - · 如果k值取的过小,参考样本少,容易出现过拟合的情况
 - ・关于k的经验公式: 一般取 $k = \sqrt{N}$, N为训练集实例个数, 大家可以尝试一下
- ・权重归一化

Name	Formula	Explain
Standard score	$X' = \frac{X - \mu}{\sigma}$	μ is the mean and σ is the standard deviation
Feature scaling	$X' = \frac{X - X_{min}}{X_{max} - X_{min}}$	X_{min} is the min value and X_{max} is the max value

• K-近邻(KNN)算法——不同的度量公式 距离公式:

Lp**距离(所有距离的总公式):**

$$L_{p}(x_{i}, x_{j}) = \left\{ \sum_{l=1}^{n} \left| x_{i}^{(l)} - x_{j}^{(l)} \right|^{p} \right\}^{\frac{1}{p}}$$

p=1: 曼哈顿距离;

p=2: 欧氏距离,最常见。

例 3.1 已知二维空间的 3 个点 $x_1 = (1,1)^{\mathrm{T}}, x_2 = (5,1)^{\mathrm{T}}, x_3 = (4,4)^{\mathrm{T}}$,试求在 p 取不同值时, L_p 距离下 x_1 的最近邻点。

解 因为 x_1 和 x_2 只有第一维的值不同,所以 p 为任何值时, $L_p(x_1,x_2)=4$ 。而

$$L_1(x_1, x_3) = 6$$
, $L_2(x_1, x_3) = 4.24$, $L_3(x_1, x_3) = 3.78$, $L_4(x_1, x_3) = 3.57$

于是得到: p 等于 1 或 2 时, x_2 是 x_1 的最近邻点; p 大于等于 3 时, x_3 是 x_1 的最近邻点。

余弦相似度:

$$\cos\left(\frac{1}{A},\frac{1}{B}\right) = \frac{\overrightarrow{A} \cdot \overrightarrow{B}}{\left|\frac{1}{A}\right|\left|\frac{1}{B}\right|}, \quad \mathbf{其P}_{A} \rightarrow \mathbb{A} \xrightarrow{B} \overline{\mathcal{R}}$$
 表示**两个文本特征向量**;

余弦值作为衡量两个个体间差异的大小的度量 为正且值越大,表示两个文本差距越小,为负代表差距越大,请 大家自行脑补两个向量余弦值

- 6.1 K-近邻(KNN)算法—KNN算法效率
- 假设训练集有N个样本,测试集有M个样本,每个样本是一个V维的向量。
- 如果使用线性搜索的话, 那么k-NN的时间花销就是O(N*M*V)。
- · 改善: KD树(感兴趣可自行尝试)

实验任务

- □ 用朴素贝叶斯算法和KNN算法完成分类任务。
- □ 详见【第6次作业.pdf】
- □ 本次作业作为练习,不需要提交

PyTorch V.S. TensorFlow

AI 顶会统计: 2018年使用 TensorFlow 的研究者有 55% 转向使用 PyTorch, 而使用 PyTorch 的研究者有 85% 选择继续使用 PyTorch。PyTorch 框架因其简洁易上手等特点近年来深受研究 机构人员青睐, TensorFlow 则在大型工程项目中使用较多。

1.1 PyTorch 安装

官网: https://pytorch.org

CPU 版安装(无 Nvidia 显卡): 直接在官网主页选择配置

,然后复制生成的 Command 粘贴到终端运行(注意需提前激活 Python 虚拟环境)。

PyTorch Build	Stable (1.11.0)	Preview (Nigh	itly)	LTS (1.8.2)
Your OS	Linux	Mac		Windows
Package	Conda	Pip	LibTorch	Source
Language	Python		C++/Java	
Compute Platform	CUDA 10.2	CUDA 11.3	ROCm 4.5.2 (bet	a) CPU
Run this Command:	pip3 install torc	h torchvision torcha	udio	

1.1 PyTorch 安装

GPU 版安装: 先在终端使用 nvidia-smi 命令查看当前显卡 支持的 CUDA 版本

NVIDIA-SMI 5	12.77 Driver	Version: 512.77	CUDA Versio	on: 11.6
GPU Name Fan Temp P	TCC/WDDM erf Pwr:Usage/Cap	A 100 A		Uncorr. ECC Compute M. MIG M.
	GeForce WDDM P8 12W / 160W	 00000000:01:00.0 On 982MiB / 6144MiB 	E 27	N/A N/A Default N/A

然后在主页选择 CUDA xx.x 生成 Command 命令, PyTorch CUDA 的版本不能高于显卡支持的 CUDA 版本。

Linux 和 MacOS 同理,在主页选择对应 OS 选项即可。

1.1 PyTorch 安装

安装完成后验证是否安装成功:在终端键入 python,进入 python 交互环境。

- CPU 版直接执行 import torch, 如无报错即安装成功。
- GPU 版执行 import torch 后,执行 torch.cuda.is_available(),
 如返回 True 说明 GPU 版 PyTorch 安装成功。

```
(pytorch) PS C:\Users\yanghl> python
Python 3.8.5 (default, Sep 3 2020, 21:29:08) [MSC v.1916 64 bit (AMD64)] :: Anaconda, Inc. on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> import torch
>>> torch.cuda.is_available()
True
```

PyTorch 安装到此结束,更多内容可参考官方文档:

https://pytorch.org/docs/stable/index.html