Topic 3 – Kinetic Particle Theory & Simple Molecular Structure

3.1 Changes in Physical State (1.1, 1.2, 1.3)

States of matter

States of matter

- 1. Solid
- 2. Liquid
- 3. **Gas**

Properties

State		Properties	
	Shape (fixed)	Volume (fixed)	Compressibility
Solid	$\sqrt{}$	V	×
Liquid	×	V	×
Gas	×	×	√

Kinetic particle theory

All matter is made up of tiny particles in constant random motion

- Describes state of matter
- Explains differences in properties of solids, liquids, gases
- Explains changes in state of matter

Shape

State	Solid	Liquid	Gas
Arrangement	Closely packed, orderly manner	Disorderly manner	Spread far apart
Forces of attraction	Very strong	Strong	Very weak
Kinetic energy	Very low – vibrate about fixed positions	Low – × held in fixed positions	High – a lot, \times held in fixed positions
Movement	× move about freely	Slide past each other throughout liquid	Move about rapidly in any direction

Volume – compressibility

voidine compressi			
State	Solid	Liquid	Gas
Compressibility	×	×	V
Particles	Very close to one another	 Further away from one another Still packed quite closely together 	 A lot of space between them Can be forced to move closer together

Changes in state of matter

Sublimation | Solid | Evaporation, boiling | Gas | Condensation |

Movement of particles

Process	Start	Change	End
Melting	 Energy absorbed Energy → kinetic energy Particles vibrate faster about fixed positions 	 Temperature high enough (melting point), vibration sufficient to overcome forces of attraction Particles break away from fixed positions 	 Particles no longer in fixed positions Substance is now liquid Particles move freely throughout liquid
Freezing	 Energy released Particles lose kinetic energy, move more slowly 	 Temperature low enough (freezing point), × enough energy to move freely Particles start to settle into fixed positions 	 All particles settled into fixed positions Substance is now solid Particles only vibrate about fixed positions
Boiling	 Energy absorbed Energy → kinetic energy Particles start to move faster 	Temperature high enough, enough energy to overcome forces of attraction	 Particles spread far apart Substance is now gas Particles move about in any direction
Condensation	Energy released	Particles lose energy, move more slowly	 Movement of particles slow enough change → liquid
Sublimation	Energy absorbed	Particles at surface of solidenough energy to break away from solid	Particles escape as gas

Curve – heating curve & cooling curve

Differences between boiling & evaporation

Difference	Boiling	Evaporation
Temperature	Only at boiling point	Below boiling point
Part of liquid	Throughout	Only at surface
Rate	Rapid	Slow

Temperature ranges:

3.2 Diffusion (1.4)

Diffusion: movement of particles from region of high \rightarrow low concentration Factors affecting rate of diffusion

Factor	Explanation
1. Relative molecular mass (m_r)	Low molecular masses diffuse faster
2. Temperature	Particles gain more energy → move faster

Gas: diffusion of bromine gas \rightarrow air

Experiment	Process
Start	 Gas jar of air (colourless) inverted on top of gas jar of bromine vapour (reddishbrown) Cover: separate gas jars
End	 Few minutes after removing cover, colour of gas in both gas jars looks same throughout Homogenous mixture of air & bromine Air & bromine made up of tiny particles moving randomly Bromine particles air particles

Liquid: diffusion of potassium manganate(VII) → water

Experiment	Process
Start	Put small crystal of potassium manganate(VII) into beaker of water
End	Crystal dissolves → deep purple solution at bottom of beaker Diffusion slowly: solution → uniformly purple

Differences in rates of diffusion of ammonia (NH₃) & hydrogen chloride (HCl)

• Chemical equation of reaction:

$$NH_3 + HCl \longrightarrow NH_4Cl$$
 (white ring)

- White ring: nearer to the end with hydrogen chloride
 - → ammonia particles move faster than hydrogen chloride particles

3.3 Simple Molecular Structure and its Physical Properties (7.2)

Simple molecular structures

→ exist as simple molecules

Physical property	Explanation	
1. Melting & boiling point : low	 Molecules held together by weak intermolecular forces → little energy to overcome Liquids / gases at room temperature Volatile (evaporate easily) 	
2. Solubility:water: insolubleorganic solvent: soluble	 Oil: dissolves in dichloromethane, insoluble in water Exceptions: soluble in water (a) alcohol (b) sugar (c) oxygen gas (d) chlorine gas 	
3. Electricity conductivity: × conduct	 No charged particles Not free moving / mobile 	

Typical questions

1. Explain why elements with simple molecular structure cannot conduct electricity.

Simple molecular structures do not have any ① free moving ② ions or electrons to conduct electricity. Simple molecular structures are electrically neutral.

2. A student uses the set up shown below to determine the rate of diffusion of some gases. The time taken for 100cm³ of each gas to diffuse through the diffusion plug at room temperature and pressure is shown below.

<u> </u>	
Gas	Time / s
methane (CH ₄)	100
neon (Ne)	114
carbon monoxide (CO)	132
oxygen (O ₂)	141
nitrogen (N ₂)	?

(a) Suggest the time that 100 cm³ nitrogen would take to diffuse out from the apparatus. Explain why.

132s. 100cm³ nitrogen has the same relative molecular mass as carbon monoxide, i.e. 28. Hence it diffuses the same rate as carbon monoxide, i.e. requires 132s to diffuse out from the apparatus.

(b) Name a gas which will diffuse faster than any of the gases shown in the table.

Hydrogen gas (H₂)

(c) Why is this apparatus unsuitable for finding the rate of diffusion of ammonia gas?

Ammonia gas is **very soluble** in water. It would dissolve in the water instead of diffusing through the porous plug.

(d) The experiment was repeated using 40° C water in the new setup. Suggest the time taken for 100 cm^3 nitrogen to diffuse out from this new apparatus. Explain why.

Less than 132s.

The higher the temperature, the higher that rate of diffusion. As temperature increases, particles gain more energy. They can move faster, hence increasing the rate of diffusion. Thus, nitrogen will diffuse faster and take a shorter time at 40°C.