NAME: Niklas Kampe

ISMT S-136 Time Series Analysis with Python

Part I of Assignment 8

Let

$$x_t = w_t,$$

 $y_t = w_t + \theta w_{t-1} + u_t,$

where w_t and u_t are independent white noise series with variances σ_w^2 and σ_u^2 , respectively.

- (a) Find autocorrelation functions (ACFs) of x_t and y_t.
- (b) Show that x_t and y_t are jointly stationary and find the cross-correlation function (CCF), ρ_{xy}(h), in terms of σ_w, σ_u, and θ.

SOLUTION:

(i)
$$P_{x}(h) = (orr(x_{eth}, x_{e})) = \frac{(ov(x_{eth}, x_{e}))}{4 (x_{eth}, x_{e})} = \frac{3 (4xh, t)}{4 (x_{eth}, x_{e})} = \frac{3 (4xh, t)}{4$$

$$P_{xy}(s,t) = \begin{cases} \frac{\theta^2 \sigma_{xx}^2}{\sigma_{xx}^2 + \sigma_{xx}^2} & \text{if } hx - 1 \\ \frac{\sigma_{xy}^2}{\sigma_{xx}^2 + \sigma_{yx}^2} & \text{if } hx - 0 \end{cases} \Rightarrow \frac{x_1}{\sigma_{xx}^2 + \sigma_{yx}^2} \text{ and } y \in \text{greatly stationary}$$

$$0 \quad \text{else}$$