# Circuits linéaires du 1<sup>er</sup>ordre en régime transitoire

#### **Définitions**

#### Définition : Régimes établis

On définit les régimes établis (aussi appelés permanents)

stationnaire dans lequel les grandeurs électrocinétiques (u, i, q) sont stationnaires,

sinusoïdal établi dans lequel elles varient toutes sinusoïdalement à la même pulsation  $\omega: u(t) = U_m \cos \omega t$ .

#### Définition : Régimes transitoire et libre

On nomme *régime transitoire* l'évolution d'un système entre deux régimes établis. Pour un dipôle, Il s'agit d'une *charge* (resp. *décharge*) si l'énergie (électrostatique ou magnétique) du dipôle croît (resp. décroît).

On nomme *régime libre* l'évolution en l'absence de source d'énergie.

#### Définition : Ordre d'un circuit

Un circuit linéaire est dit **du p<sup>e</sup>ordre** si ses grandeurs électrocinétiques obéissent à une équation différentielle linéaire du p<sup>e</sup>ordre.

#### Fonction échelon

#### **Définition: Fonction échelon**

On nomme échelon (fonction de Heaviside) la fonction discontinue en 0 définie par :

$$t < 0 : H(t) = 0$$
  $t \ge 0 : H(t) = 1$ 

On appelle *réponse* à *un échelon d'une grandeur* l'évolution temporelle de cette grandeur dans un système soumis à une excitation constante par morceaux et discontinue. La grandeur étudiée est alors solution d'une équation différentielle dont le second membre s'exprime à l'aide de la fonction échelon.

### $Exemple\ charge\ d'un\ condensateur\ initialement\ d\'echarg\'e$



#### Portraits de phase

#### Définition : Portraits de phase

On nomme *espace des phases* d'une grandeur x qui évolue temporellement le plan d'abscisse x et d'ordonnée  $\dot{x}$ .

Une courbe x(t),  $\dot{x}$  particulière est une *trajectoire dans l'espace des phases*.

La représentation de différentes trajectoires constitue un portrait de phase.

### Propriétés générales

### Caractéristiques

- le sens de parcours est déterminé dans chaque quadrant : la trajectoire est parcourue dans le sens horaire
- elle intersecte l'axe  $\dot{x} = 0$  orthogonalement (si la dérivée seconde  $\frac{d^2x}{dt^2}$  est non nulle à cet instant)

#### Équation canonique

# Circuits linéaires du 1<sup>er</sup>ordre en régime transitoire

### **Équation canonique**

**Toutes** les grandeurs électrocinétiques d'un circuit linéaire du premier ordre obéissent, en régime transitoire vers un état stationnaire, à la même équation dite *canonique*. On a :

$$\dot{x} + \frac{x}{\tau} = \frac{X_{\infty}}{\tau},$$

où:

- x est une tension, intensité, charge...
- $\tau > 0$  est la constante de temps du circuit,
- $X_{\infty}$  est la valeur asymptotique de x en régime stationnaire, déterminée en utilisant les modèles asymptotiques des dipôles en régime stationnaire.
- pour une charge de condensateur :  $u_{c\infty} = E$ , pour une décharge  $u_{c\infty} = 0$ .

#### Résolution

### Théorème : Solution de l'équation différentielle canonique

L'*unique* solution de l'équation canonique du premier ordre *vérifiant*  $x(0) = X_0$  se met sous la forme :

$$x(t) = X_{\infty} + (X_0 - X_{\infty}) e^{-t/\tau}.$$



#### Exercice

- 1. Tracer l'allure de la courbe  $u_c(t)$  si le condensateur a une capacité  $C=1\,\mu\text{F}$ , porte initialement la charge  $Q=5\cdot 10^{-6}\,\text{C}$ , et qu'on l'alimente avec une alimentation stabilisée avec  $E=-2\,\text{V}$ , au travers d'une sésistance  $R=1\,\text{k}\Omega$ .
- 2. En déduire la valeur de  $\frac{du_c}{dt}$  à t = 0.
- 3. Sur la courbe ci-contre, distinguer les différents régimes transitoires et établis (ou permanents).



#### Conditions initiales

### Continuité de l'énergie

Les conditions initiales de l'équation différentielle sont déterminées par la *continuité de l'énergie emmagasinée* par le dipôle. Dans un *condensateur*, la charge q et la tension  $u_C$  seront toujours continues.

### Exercice : Charge et décharge d'un condensateur

# Circuits linéaires du 1<sup>er</sup>ordre en régime transitoire

Déterminer, en utilisant les modèles asymptotiques des dipôles en régime stationnaire, les valeurs de *i*, *u<sub>R</sub>*, *u<sub>C</sub>* et de *q* quand l'interrupteur est en position 1 et quand il est en position 2 depuis longtemps.



- 2. (a) K est en position 2 depuis un temps long. Il est basculé en 1 à t = 0. Déterminer  $u_C(t), q$  et i(t).
  - (b) K est en position 1 depuis un temps long. Il est basculé en 2 à t = 0. Déterminer  $u_C(t)$  et i(t).
- 3. On rajoute un résistor de résistance R' en parallèle du condensateur. Le circuit a désormais deux mailles. Déterminer la nouvelle constante de temps du circuit et la nouvelle valeur maximale de  $u_C$  et en déduire l'allure de la courbe.
- 4. Préciser, parmi les grandeurs  $i, u_C, q, u$ , lesquelles sont continues.

#### Courbes générales : charge

charge q ou tension  $u_{\rm C}$   $X_{\infty}$  100% 63%  $X_{0}$  t



### Courbes générales : décharge







#### Décharge

#### Dissipation de l'énergie

Lors de la décharge d'un dipôle RC série, l'énergie électrostatique initialement stockée est *entièrement dissipée* par effet Joule dans le résistor.

#### Charge

#### Accumulation d'énergie

Lors de la *charge*, sous la tension E constante, d'un dipôle série RC de  $u_C = 0$  à  $u_C = E$ , le générateur fournit une énergie  $\mathscr{E}_{\text{gen}}$  au dipôle qui se répartit pour moitié entre :

- l'énergie électrostatique  $\mathscr{E}_{\text{élec}} = \frac{CE^2}{2}$ , emmagasinée dans le condensateur,
- l'énergie dissipée par effet Joule dans le résistor  $\mathcal{E}_J$ .

$$\mathcal{E}_{gen} = \mathcal{E}_{élec} + \mathcal{E}_{J}$$
  $\mathcal{E}_{J} = \mathcal{E}_{élec} = \mathcal{E}_{gen}/2$ .

Points communs et différences entre le RL et le RC

- 1. Proposer un montage permettant d'étudier la «charge» et la «décharge» d'un dipôle RL, utilisant entre autres un générateur idéal de tension.
- 2. Établir l'équation différentielle d'évolution de l'intensité. En déduire l'expression de la constante de temps. Comparer sa variation avec *R* au cas du dipôle *RC*.
- 3. Préciser quelle grandeur doit être continue et résoudre l'équation différentielle pour la charget et la décharge.
- 4. Tracer les allures des courbes correspondantes.

#### Indispensable

# Indispensable

- déterminations des régimes asymptotiques avec les équivalents (interrupteurs ouverts ou fermés)
- forme générale de la solution du 1<sup>er</sup>ordre et sa courbe
- les interprétations énergétiques