Capstone Final Project

Berat Bozkurt

Video Link:

https://drive.google.com/file/d/1RwdzStHDpD09nMRa4IcC60BzX6nvlX3O/view

Background

Classification of articles on specific types of cancer by looking at the abstracts

- Leukaemia
- Non-Hodgkin Lymphoma
- Bladder Cancer
 - Thyroid Cancer

2 Past Model

- CatBoostClassifier
- Convolutional Neural Network (CNN)

2 More Model

- RandomForestClassifier
- Long-Short Term Memory (LSTM)

Cat Boost

0:	learn:	0.9644511	tot	al: 5.49s	remaining:	2m 39s
1:	learn:	0.7580971	tot	al: 11.3s	remaining:	2m 38s
2:	learn:	0.6224037	tot	al: 15.8s	remaining:	2m 22s
3:	learn:	0.5305688	tot	al: 21.5s	remaining:	2m 19s
4:	learn:	0.4598252	tot	al: 27s	remaining:	2m 14s
5:	learn:	0.4076880	tot	al: 32.8s	remaining:	2m 11s
6:	learn:	0.3645890	tot	al: 37.3s	remaining:	2m 2s
7:	learn:	0.3293235	tot	al: 42.7s	remaining:	1m 57s
8:	learn:	0.3036073	tot	al: 48s	remaining:	1m 52s
9:	learn:	0.2788366	tot	al: 52.4s	remaining:	1m 44s
10:	learn:	0.2620795	tot	al: 56.9s	remaining:	1m 38s
11:	learn:	0.2465066	tot	al: 1m 2s	remaining:	1m 33s
12:	learn:	0.2322181	tot	al: 1m 6s	remaining:	1m 26s
13:	learn:	0.2200928	tot	al: 1m 10s	remaining:	1m 20s
14:	learn:	0.2105664	tot	al: 1m 15s	remaining:	1m 15s
15:	learn:	0.2026067	tot	al: 1m 20s	remaining:	1m 10s
16:	learn:	0.1983615	tot	al: 1m 24s	remaining:	1m 4s
17:	learn:	0.1913409	tot	al: 1m 29s	remaining:	59.9s
18:	learn:	0.1866337	tot	al: 1m 34s	remaining:	54.5s
19:	learn:	0.1816165	tot	al: 1m 38s	remaining:	49.25
20:	learn:	0.1765551	tot	al: 1m 43s	remaining:	44.45
21:	learn:	0.1742230	tot	al: 1m 47s	remaining:	39.1s
22:	learn:	0.1695757	tot	al: 1m 52s	remaining:	34.1s
23:	learn:	0.1667856	tot	al: 1m 57s	remaining:	29.35
24:	learn:	0.1643047	tot	al: 2m 1s	remaining:	24.45
25:	learn:	0.1611411	tot	al: 2m 5s	remaining:	19.3s
26:	learn:	0.1593874	tot	al: 2m 10s	remaining:	14.5s
27:	learn:	0.1578821	tot	al: 2m 14s	remaining:	9.61s
28:	learn:	0.1544903	tot	al: 2m 21s	remaining:	4.865
29:	learn:	0.1534716	tot	al: 2m 25s	remaining:	0us
		precision	recall	f1-score	support	
	0	1.00	0.94	0.97	13853	
	1	0.95	0.99	0.97	67966	
	2	0.96	0.90	0.93	18432	
	3	1.00	0.94	0.97	14924	
20	curacy			0.96	115175	
	ro avg	0.98	0.94	0.96	115175	
weight	_	0.96	0.96	0.96	115175	
METRILL	cu avg	0.50	0.50	0.50	1131/3	

Convolutional Neural Network

2

3

accuracy macro avg

weighted avg

```
Epoch 1/10
2100/2100 - 600s - loss: 0.1037 - accuracy: 0.9645 - val_loss: 0.0665 - val_accuracy: 0.9786 - 600s/epoch - 286ms/step
2100/2100 - 754s - loss: 0.0423 - accuracy: 0.9863 - val loss: 0.0690 - val accuracy: 0.9778 - 754s/epoch - 359ms/step
Epoch 3/10
2100/2100 - 774s - loss: 0.0167 - accuracy: 0.9949 - val loss: 0.0819 - val accuracy: 0.9780 - 774s/epoch - 369ms/step
Epoch 4/10
2100/2100 - 778s - loss: 0.0068 - accuracy: 0.9978 - val_loss: 0.1130 - val_accuracy: 0.9758 - 778s/epoch - 371ms/step
Epoch 5/10
2100/2100 - 733s - loss: 0.0043 - accuracy: 0.9986 - val_loss: 0.1409 - val_accuracy: 0.9729 - 733s/epoch - 349ms/step
Epoch 6/10
2100/2100 - 723s - loss: 0.0040 - accuracy: 0.9986 - val_loss: 0.1441 - val_accuracy: 0.9759 - 723s/epoch - 344ms/step
Epoch 7/10
2100/2100 - 680s - loss: 0.0029 - accuracy: 0.9991 - val loss: 0.1665 - val accuracy: 0.9742 - 680s/epoch - 324ms/step
Epoch 8/10
2100/2100 - 734s - loss: 0.0027 - accuracy: 0.9991 - val loss: 0.1466 - val accuracy: 0.9758 - 734s/epoch - 350ms/step
Epoch 9/10
2100/2100 - 754s - loss: 0.0025 - accuracy: 0.9993 - val loss: 0.1487 - val accuracy: 0.9755 - 754s/epoch - 359ms/step
Epoch 10/10
2100/2100 - 720s - loss: 0.0022 - accuracy: 0.9993 - val_loss: 0.1604 - val_accuracy: 0.9761 - 720s/epoch - 343ms/step
                                               precision
                                                             recall f1-score
                                                                                support
                                                     0.99
                                                               0.98
                                                                          0.98
                                                                                   13853
                                            1
                                                     0.98
                                                               0.98
                                                                          0.98
                                                                                    67966
```

0.94

0.98

0.97

0.98

0.95

0.98

0.97

0.98

0.95

0.98

0.98

0.97

0.98

18432

14924

115175

115175 115175

Random Forest

	precision	recall	f1-score	support
BladderCancer	0.99	0.94	0.96	9235
Leukemia	0.93	0.99	0.96	45311
NonHodgkinLymphoma	0.97	0.81	0.89	12288
ThyroidCancer	0.99	0.93	0.96	9949
accuracy			0.95	76783
macro avg	0.97	0.92	0.94	76783
weighted avg	0.95	0.95	0.95	76783

LSTM

Epoch 1/5 2100/2100	- 1291s - l	oss: 0.798	5 - accuracy:	0.6764	- val_loss:	0.3330 -	val_accuracy:	0.8314 -	1291s/epoch -	- 615ms/step
Epoch 2/5 2100/2100	- 1318s - l	oss: 0.168	2 - accuracy:	0.9260	- val_loss:	0.0848 -	val_accuracy:	0.9737 -	1318s/epoch	- 628ms/step
Epoch 3/5 2100/2100	- 1298s - l	oss: 0.064	7 - accuracy:	0.9801	- val_loss:	0.0706 -	val_accuracy:	0.9779 -	1298s/epoch -	- 618ms/step
Epoch 4/5 2100/2100	- 1217s - l	oss: 0.050	3 - accuracy:	0.9842	- val_loss:	0.0750 -	val_accuracy:	0.9763 -	1217s/epoch	- 580ms/step
Epoch 5/5 2100/2100	- 1173s - l	oss: 0.038	7 - accuracy:	0.9881	- val_loss:	0.0816 -	val_accuracy:	0.9759 -	1173s/epoch -	- 558ms/step
Accuracy:	97.69%									

	precision	recall	f1-score	support
0	0.97	0.98	0.98	9235
1	0.98	0.98	0.98	45311
2	0.95	0.95	0.95	12288
3	0.99	0.98	0.98	9949
			0.00	76703
accuracy			0.98	76783
macro avg	0.97	0.97	0.97	76783
weighted avg	0.98	0.98	0.98	76783

Confusion Matrix

Model Tuning

- 1. For the traditional machine learning algorithms (CatBoostClassifier and Random Forest Classifier), use <u>grid search</u> to tune the hyperparameters.
- 2. For the deep learning algorithms (CNN and LSTM), <u>manually</u> tune the hyperparameters by experimenting With different values and evaluating the models' performance on the validation set.

Traditional Machine Learning vs Deep Learning

- Deep learning is better for text classification because it can automatically learn features from raw text data
- Artificial neural networks can extract increasingly complex features as data passes through layer

DEMO

The Abstract

The lack of prospective randomized clinical trials for most management topics in differentiated the yroid cancer forces us to make management recommendations based on retrospective observational data, which are often incomplete, subject to selection bias, and conflicting. Therefore, it is not surprising that many aspects of thyroid cancer management remain controversial and not well defined. This review will examine the controversies surrounding 3 important topics in thyroid cancer management: the option of thyroid lobectomy as initial therapy, the use of preoperative neck imaging to optimize the completeness of the initial surgery, and the selective use of radioactive iodine for remnant ablation, adjuvant treatment, or treatment for known persistent or recurrent disease. As thyroid cancer management moves toward a much more risk-adapted approach to personalized recommend ations, clinicians and patients must balance the risks and benefits of the potential options to ar rive at a plan that is optimized regarding both patient preferences/values and the philosophy/experience of the local disease management team.

Class

ThyroidCancer with the percentage of 99.728966

Modelling

Thanks