Elli Kiiski

An exercise from the course History of Mathematics University of Helsinki

Fibonacci sequence and golden ratio

The famous Fibonacci sequence starts with 1, 1, 2, 3, 5, 8, 13... and its members have the relationship $F_{n+1} - F_n = F_{n-1}$. Based on this, let's prove that

$$\lim_{n\to\infty}\frac{F_{n+1}}{F_n}=\Phi\,,$$
 where Φ is the golden ratio.

By the relationship above

$$F_{n+1} - F_n = F_{n-1} \quad \Leftrightarrow \quad \frac{F_{n+1}}{F_n} - 1 = \frac{F_{n-1}}{F_n} \quad \Leftrightarrow \quad \frac{F_{n+1}}{F_n} = 1 + \frac{F_{n-1}}{F_n}$$

and using this result recursively, we get

$$\begin{split} \frac{F_{n+1}}{F_n} &= 1 + \frac{F_{n-1}}{F_n} = 1 + \frac{1}{\frac{F_n}{F_{n-1}}} = 1 + \frac{1}{1 + \frac{F_{n-1}}{F_{n-2}}} \\ &= 1 + \frac{1}{1 + \frac{1}{\frac{F_{n-2}}{F_{n-1}}}} = 1 + \frac{1}{1 + \frac{1}{1 + \frac{F_{n-2}}{F_{n-3}}}} = 1 + \frac{1}{1 + \frac{1}{1 + \dots}} \,, \end{split}$$

which is a known form for golden ratio Φ .