Seismic Resistant Design of Steel Structures

Homework #1 Due: 3/12/2018

- 1. Read the reference papers shown in Item 3 below. Please write down, at least, three different types of equation (from reference 1), which show the relationship between ductility ratio, μ , nonlinear displacement ratio, $C_R(C_R = \frac{S_d^{inelastic}}{S_d^{elastic}})$, and strength reduction factor, $R(R = \frac{mS_a^{elastic}}{F_v})$.
- 2. Please utilize the file "ResponseSpectrum.xls" in the folder of this homework. There are five elastic acceleration response spectra with 5% damping ratio and their associated nonlinear displacement response spectra with the strength reduction factor R equal to 3 and 5. The F_y shown in that Excel file is the yield strength of single degree of freedom systems.

Please answer following questions:

- a. What are the peak ground accelerations (PGA) shown in these five acceleration response spectra? (The unit of the acceleration response spectra is g).
- b. Please normalize these five acceleration response spectra to spectral acceration=0.33g for the shortest period. Then, plot these five acceleration response spectra in one figure, in which the abscissa is the vibration periods varying from 0 to 6 seconds.
- c. Refer to the latest edition of the Taiwan Seismic Building Code, explain the meanings of α_y , F_u and constant 1.4 shown in the equation $\frac{V}{W} = \frac{S_{aD}}{1.4\alpha_u F_u}$.
- d. According to the Taiwan Seismic Building Code, please plot three curves to show the relationships of V/W vs. T, V*/W vs. T and V_M/W vs. T. Please use the following data while plot these three curves: I=1.0, $\alpha_y=1.0$, $S_1^D=0.48$, $S_S^D=0.78$, $S_1^M=0.55$ and $S_S^M=0.88$. F_u is computed for the special moment resisting frame (R=4.8). T is the vibration period varying from 0 to 6 seconds.
- e. First, please calculate the averaged acceleration response spectra for the five acceleration response spectra mentioned in Question 2b. Second, divide the averaged acceleration response spectrum by the corresponding value of V/W obtained from Question 2d. Finally, please compare those quotients with the value of $1.4\alpha_y F_u$ and discuss the trend of variation of those quotients while the vibration period varies from 0 to 6 seconds.
- f. Please plot each one, and the average, of the five linear displacement response spectra ($S_d^{elastic}$) by using the five normalized linear acceleration

response spectra found in Question 2b. (*Hint*: assume $PS_a = S_a$)

g. Please use $S_d^{elastic}$ obtained from Question 2f and $S_d^{inelastic}$ given in the file "ResponseSpectrum.xls" to plot their ratio $C_R = S_d^{inelastic}/S_d^{elastic}$ as R equal to 3 and 5. Please compare the computed C_R with the deflection amplification factors suggested in References 2 and 3.

3. References:

- (1) Miranda, E. and Bertero V., 1994, Evaluation of strength reduction factors for earthquake resistant design, *Earthquake Spectra*, 10(2), 357-379.
- (2) Chia-Ming Uang and Ahmed Maarouf, (1994), Deflection amplification factor for seismic design provisions, *Journal of Structural Engineering*, Vol. 120, No. 8.
- (3) Chia-Ming Uang (1991), Establishing R(or R_w) and C_d factors for building seismic provisions, *Journal of Structural Engineering*, Vol. 117, No. 1.