PROBLEMAS 5.6

En los problemas 1 al 8 escriba $\binom{x}{y} \in \mathbb{R}^2$ en términos de la base dada.

1.
$$\binom{2}{2}$$
, $\binom{5}{-1}$

2.
$$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
, $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$

1.
$$\begin{pmatrix} 2 \\ 2 \end{pmatrix}$$
, $\begin{pmatrix} 5 \\ -1 \end{pmatrix}$ 2. $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ 3. $\begin{pmatrix} 2 \\ -3 \end{pmatrix}$, $\begin{pmatrix} 3 \\ -2 \end{pmatrix}$ 4. $\begin{pmatrix} 4 \\ -4 \end{pmatrix}$, $\begin{pmatrix} 5 \\ -5 \end{pmatrix}$

4.
$$\begin{pmatrix} 4 \\ -4 \end{pmatrix}$$
, $\begin{pmatrix} 5 \\ -5 \end{pmatrix}$

5.
$$\binom{5}{7}$$
, $\binom{3}{-4}$

6.
$$\begin{pmatrix} 0 \\ -6 \end{pmatrix}$$
, $\begin{pmatrix} -6 \\ 1 \end{pmatrix}$

5.
$$\begin{pmatrix} 5 \\ 7 \end{pmatrix}$$
, $\begin{pmatrix} 3 \\ -4 \end{pmatrix}$ 6. $\begin{pmatrix} 0 \\ -6 \end{pmatrix}$, $\begin{pmatrix} -6 \\ 1 \end{pmatrix}$ 7. $\left\{ \begin{pmatrix} -7 \\ -9 \end{pmatrix}, \begin{pmatrix} 4 \\ 10 \end{pmatrix} \right\}$

8.
$$\binom{a}{c}$$
, $\binom{b}{c}$, donde $ad - bc \neq 0$

De los problemas 9 al 15 escriba $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3$ en términos de la base dada.

9.
$$\begin{pmatrix} -5 \\ 5 \\ 2 \end{pmatrix}$$
, $\begin{pmatrix} -2 \\ 1 \\ -3 \end{pmatrix}$, $\begin{pmatrix} -2 \\ 2 \\ -1 \end{pmatrix}$ **10.** $\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ **11.** $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$

$$\mathbf{10.} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

11.
$$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
, $\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$

12.
$$\begin{pmatrix} -5 \\ -2 \\ -2 \end{pmatrix}$$
, $\begin{pmatrix} 5 \\ 5 \\ 3 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$

12.
$$\begin{pmatrix} -5 \\ -2 \\ -2 \end{pmatrix}$$
, $\begin{pmatrix} 5 \\ 5 \\ 3 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$ 13. $\begin{pmatrix} 5 \\ -5 \\ -7 \end{pmatrix}$, $\begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}$, $\begin{pmatrix} 2 \\ -5 \\ 2 \end{pmatrix}$

$$14. \quad \begin{pmatrix} 1 \\ -4 \\ 2 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$$

14.
$$\begin{pmatrix} 1 \\ -4 \\ 2 \end{pmatrix}$$
, $\begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$ 15. $\left\{ \begin{pmatrix} 3 \\ 0 \\ 4 \end{pmatrix}, \begin{pmatrix} -2 \\ -5 \\ -2 \end{pmatrix}, \begin{pmatrix} 4 \\ 4 \\ -5 \end{pmatrix} \right\}$

De los problemas 16 al 20 escriba los polinomios $a_0 + a_1x + a_2x^2$ en \mathbb{P}_2 en términos de la base dada.

16.
$$\{x, 1+x, 1+x^2\}$$

17.
$$\{1 + x + 4x^2, -3 + 4x - 2x^2, 3 - 2x + 4x^2\}$$

18.
$$\{-2-4x-x^2, -4+4x-4x^2, -1+5x+5x^2, -1+5x+15^2\}$$

19.
$$\{x + x^2, 3x + 2x^2, 1 + x + x^2\}$$

20.
$$\{x^2, -1 - x + x^2, -x\}$$

21. En
$$\mathbb{M}_{22}$$
 escriba la matriz $\begin{pmatrix} 3 & 3 \\ 3 & 3 \end{pmatrix}$ en términos de la base $\left\{ \begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 2 & 0 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 4 \end{pmatrix} \right\}$

22. En
$$\mathbb{R}^2$$
 suponga que $(\mathbf{x})_{B_1} = \begin{pmatrix} -6 \\ -3 \end{pmatrix}$, donde $B_1 = \left\{ \begin{pmatrix} -2 \\ 3 \end{pmatrix}, \begin{pmatrix} -5 \\ -1 \end{pmatrix} \right\}$. Escriba \mathbf{x} en términos de la base $B_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \end{pmatrix}$.

23. En
$$\mathbb{R}^2$$
 suponga que $(\mathbf{x})_{B_1} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$, donde $B_1 = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$, $\begin{pmatrix} -2 \\ 3 \end{pmatrix}$. Escriba \mathbf{x} en términos de la base $B_2 = \left\{ \begin{pmatrix} 0 \\ 3 \end{pmatrix}, \begin{pmatrix} 5 \\ -1 \end{pmatrix} \right\}$.