Probeschedule Latest Results

25 April 2019, 25/04/2019

By *Henri Branken* MatogenAl

Results of API Updates

Results of API updates:

- As a result of eto and etc data having much better integrity, I no longer flag consecutive etc entries that are identical.
- I do, however, still flag for consecutive eto entries that are identical (more on this in a later slide).

Bar Graph Rectified

Fine-tuning etcp deviation

- By "<u>etcp deviation</u>" we mean the percentage deviation of etcp away from the expected crop water usage, etc.
- Setting the maximum percentage deviation above which we flag samples has a noticeable effect on the final results.
- In the following we compare results if ETCP_PERC_DEVIATION is 30% and 50%.

ETCP PERC DEVIATION = 30%

ETCP PERC DEVIATION = 30%

ETCP PERC DEVIATION = 30%

ETCP PERC DEVIATION = 50%

ETCP PERC DEVIATION = 50%

ETCP PERC DEVIATION = 50%

Left: 30%. Right: 50%.

Report for the entir	e SET of probes:	
Rain perturbing etcp	+	714/5908
Software simulation	10.05%	594/5908
`Possible` irrigation	7.13%	421/5908
Null profile value	12.36%	730/5908
Profile data blip	0.91%	54/5908
Large profile dip	1.51%	89/5908
Etcp is positive	12.81%	757/5908
Etcp larger than allowed maximum	0.00%	0/5908
Etcp suspiciously low ———————————————————————————————————	 6.96%	411/5908
Etcp suspiciously high	33.26%	1965/5908
Ratio of etcp over eto exceeds KCP_MAX	0.00%	0/5908
kcp deviation too big	0.17%	10/5908
kcp is NaN	95.04%	5615/5908
Faulty or Missing Heat Units	0.00%	0/5908
Imputed eto	0.00%	0/5908
Stuck or faulty eto	18.20%	1075/5908
eto exceeds ETO_MAX	0.00%	0/5908
Faulty etc	0.34%	20/5908
etc exceeds ETCP_MAX	0.00%	0/5908

Rain perturbing etcp	12.09%	714/5908
Software simulation	10.05%	594/5908
`Possible` irrigation	7.13%	421/5908
Null profile value	12.36%	730/5908
Profile data blip	0.91%	54/5908
Large profile dip	1.51%	89/5908
Etcp is positive	12.81%	757/5908
Etcp larger than allowed maximum	0.00%	0/5908
Etcp suspiciously low	 5.13%	303/5908
Etcp suspiciously high	31.77%	1877/5908
Ratio of etcp over eto exceeds KCP_MAX	0.00%	0/5908
kcp deviation too big	0.36%	21/5908
kcp is NaN	91.91%	5430/5908
Faulty or Missing Heat Units	0.00%	0/5908
Imputed eto	0.00%	0/5908
Stuck or faulty eto	18.20%	1075/5908
eto exceeds <u>ETO_MAX</u>	0.00%	0/5908
Faulty etc	0.34%	20/5908
etc exceeds ETCP_MAX	0.00%	0/5908

Additional (more sophisticated) Logic when Refining the kcp Trendline

 For every iteration, verify whether the new smoothed trendline better approximates the majority of the probes' individual kcp datasets.

```
Probe Information
            Number of | Number of | Number of
Iteration | healthy probes | Improvements | Deterioriations | n_imp >= n_det
  [0, 1]
                                                                  True
  [1, 2]
                                                                  True
  [2, 3]
                                                                  True
                                                                    True
  [4, 5]
                                                                 ≻False
```

Complementary table to the previous one:

- Notice how we succeeded in removing 4 "bad" Probes from the dataset.
- Additionally, we also require the r-square between the trendline and scatter plot to decrease in order to proceed with a probe removal.
- Keep in mind a smaller r-square value means a "better" trendline fit.

H							
Screening Report							
+	+	++-		+	++		
1	n scatter	cco	scatter	delta	probe_id		
iter	points	r-squared	r-squared	scatter r-sqr	removed		
+	+	++-		+	++		
0	478	0.0518844	0.1005873	-	1 - 1		
1	424	0.0492342	0.0992430	-0.0013444	──P-370		
2	384	0.0463118	0.0970331	-0.0022099	──P-392		
3	315	0.0448074	0.0954229	-0.0016102	→ P-372		
4	179	0.0521010	0.0920653	-0.0033576	P-384		
	L	L .	V				

.gif Animation showing progression of trendline (Notice Upper-Left Annotations)

Comparing Removed versus Remaining datapoints.

Animation of remaining three "Healthy" Probes:

Previous 5 slides correspond to ETCP_PERC_DEVIATION = **50%**

- Results vary for different values of ETCP_PERC_DEVIATION.
- Consider the following table when ETCP_PERC_DEVIATION = 30%.
- Notice that we cannot even remove 1 probe.

No .gif animation this time, because logic check is **not satisfied** at the first iteration.

Therefore we end up where we originally started. (There is no change since the initial smoothed trendline.)

Comparing "Removed" versus Remaining datapoints for ETCP_PERC_DEVIATION = 30%.

Remaining Questions:

- @Jac, are you still satisfied with RAIN_THRESHOLD = 2mm? (In other words, flag all samples for which rain > 2mm. See the next slide.)
- Clearly, the results are sensitive depending on the value specified for ETCP_PERC_DEVIATION. Do you have a preferred value in the [30%; 50%] range of values?
- What is an optimal API_START_DATE? Currently, the API_START_DATE is set to 2017-01-01.
- I have coded the API_END_DATE to be equal to yesterday's date. (I assume this is acceptable?)

Flagged Rain Events (Ouplaas, Kromfontein):

Remaining Questions:

- I make the assumption that Jac wants to apply this software to any set of probes satisfying the following condition:
 - All the probes in the probe set (for a given cultivar) come from
 one hemisphere only, which can be either the Northern or
 Southern hemisphere. Therefore, the individual probe datasets
 have the "same season starting date" for the given cultivar.
 - By extension of the above, the probes in the probe set cannot be a combination of Southern hemisphere and Northern hemisphere probes... In such a case the season starting date would differ for different probes, and the current coding would have to be extensively modified...
- @Jac, please comment on the above.

To keep in mind:

- The following parameters will vary depending on the specific cultivar we are considering:
 - ETO_MAX (which is an educated guess)
 - KCP_MAX (which is an educated guess)
 - TEMPERATURE_BASE (educated guess or some theoretical value?)
 - BEGINNING_SEASON_MONTH (will depend whether we are working with Northern or Southern hemisphere probes)
- It is possible for consecutive eto entries that are identical to still be legitimate eto entries.
- Despite the fact given above, I still flag any consecutive identical eto entries. I therefore err on the side of caution, rather than to err on the side of carelessness.

Time required for execution of scripts:

- The total time required (starting from fetching the raw data via the API) to execute the scripts for the current set of <u>7</u> Probes on <u>Henri's Laptop</u> is:
 - 2 minutes and 15 seconds.

