COMP 341 Intro to Al Bayesian Networks - Representation

Asst. Prof. Barış Akgün Koç University

Probabilistic Models

- Models describe how (a portion of) the world works
- Models are always simplifications
 - May not account for every variable
 - May not account for all interactions between variables
 - "All models are wrong; but some are useful."
 - George E. P. Box

- What do agents do with probabilistic models?
 - Reason about unknown variables, given evidence
 - Example: explanation (diagnostic reasoning)
 - Example: prediction (causal reasoning)
 - Example: value of information

Probabilistic Models

• A probabilistic model is a joint distribution over a set of variables

$$P(X_1, X_2, \ldots, X_n)$$

• Posterior probabilities are used to reason about the world, ask queries etc.

$$P(X_q|,x_{e1},...,x_{ek})$$

Bayesian Networks

- Two problems with using full joint distribution tables as probabilistic models:
 - Too big to represent($O(d^n)$)
 - Hard to specify
 - Hard to learn anything empirically

- Bayes' nets: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probabilities)
 - A variety of graphical models
 - We describe how variables interact locally
 - Local interactions chain together to give global, indirect interactions

Bayesian Network Example

- If Mehmet is sick or there is an exam or there is a concert, he is likely to get a medical report
- If the weather is bad, Mehmet is likely to get sick. The weather also affects the concert
- Mehmet gets bored if he is sick or misses the concert
- Mehmet is sleepy the next day if he studies for an exam or goes to the concert

Bayesian Network Example

- What is the reason that Mehmet had a Medical Report?
- The weather was bad
- There was an exam
- Mehmet was sleepy
- Mehmet was not bored
- TODO: Tell Mehmet he will not be getting a Make Up!

Bayesian Network Example

P(Exam, Concert, Sickness, Weather, Sleepy, MedicalReport, Boredom) = ?

- Answer queries, e.g., about Mehmet getting a medical report
- Use the full joint distribution
- Simplify by using the chain rule and conditional independence!

Bayesian Network Semantics

- Nodes: variables (with domains)
 - Can be assigned (observed) or unassigned (unobserved)

- Arcs: interactions
 - Directional
 - Indicate "direct influence" between variables
 - Formally: encode conditional independence

Bayesian Network Semantics

- Represented as a directed acyclic graphs
- A set of nodes, one per variable X
- A conditional distribution for each node
 - A conditional distribution for each node given its parents

$$P(X_i|Parents(X_i))$$

- E.g. as a conditional probability table (CPT)
- Description of a noisy "causal" process

Bayes net = Graph Topology (graph) + CPTs

Probabilities in Bayesian Networks

- Bayesian Networks encode joint distributions implicitly
- ... as a product of conditional distributions

P(sunny)

• To get the probability of a full assignment, multiply all the conditionals:

```
P(X_1, X_2, ..., X_n) = \prod_{i=1}^n P(X_i | Parents(X_i))
• E.g. P(+cavity, +catch, -toothache, sunny)
= P(+cavity) \times P(-toothache | +cavity) \times P(+catch | +cavity) \times P(+cavity | +cavity) \times P(+cavity | +cavity | +
```


Example: Coin Flips

$$P(h,t,t,h,t,h) = ??$$

Only distributions whose variables are absolutely independent can be represented by a Bayes 'net with no arcs.

Example: Traffic

• Rain affects traffic

P(R)
Lr	1/

+r	1/4
-r	3/4

+t 3/4

-t 1/4

+t 1/2 -t 1/2

$$P(T,R) = P(T|R) P(R)$$

$$P(-t,+r) = ??$$

Example: House Alarm

- I'm at work, neighbor John calls to say my alarm is ringing, but neighbor Mary doesn't call. Sometimes it's set off by minor earthquakes. Is there a burglar?
- Variables:
 - Burglar, Earthquake, Alarm, JohnCalls, MaryCalls
- A burglar can set the alarm off
- An earthquake can set the alarm off
- The alarm can cause Mary to call
- The alarm can cause John to call
- What does the Bayes Net look like?

Example: House Alarm

Alarm

ш	P(E)	
+e	0.002	
-е	0.998	

John calls

Mary calls

Α	J	P(J A)
+a	+j	0.9
+a	ij	0.1
-a	+j	0.05
-a	-j	0.95

Α	M	P(M A)
+a	+m	0.7
+a	-m	0.3
-a	+m	0.01
-a	-m	0.99

В	Е	Α	P(A B,E)
+b	+e	+a	0.95
+b	+e	-a	0.05
+b	-е	+a	0.94
+b	-е	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	-е	+a	0.001
-b	-е	-a	0.999

Constructing Bayesian networks

- 1. Choose an ordering of variables $X_1, X_2, ..., X_n$
- 2. For i = 1 to n
 - add X_i to the network
 - select parents from $X_1, X_2, ..., X_{i-1}$ such that:

$$P(X_i|Parents(X_i)) = P(X_i|X_1, X_2, ..., X_{i-1})$$

• This choice of parents guarantees:

$$P(X_1, X_2, ..., X_n) = \prod_{i=1}^n P(X_i | X_1, X_2, ..., X_{i-1}) \text{ (chain rule)}$$
$$= \prod_{i=1}^n P(X_i | Parents(X_i)) \text{ (by construction)}$$

- Ordering matters!
- Recall that a causal structure is often simpler (rule of thumb!)
- This is just a way to build valid networks and is not too useful in practice (unless you have a good ordering and prune after the construction)

• Suppose we choose the ordering M, J, A, B, E

$P(J \mid M) = P(J)$?	No
$P(A \mid J, M) = P(A \mid J)? P(A \mid J, M) = P(A)?$	No
$P(B \mid A, J, M) = P(B \mid A)$?	Yes
$P(B \mid A, J, M) = P(B)$?	No
$P(E \mid B, A, J, M) = P(E \mid A)$?	No
$P(E \mid B, A, J, M) = P(E \mid A, B)$?	Yes

Size of a Bayes Net

- Joint dist. table size for n variables with largest domain size d:
 O(dⁿ)
- Size of a Bayes Net. with *n* nodes where each variable has no more than *k* parents:

```
O(n \cdot d^{k+1})
```

If k << n, then a huge difference! (Exponential to linear)

• For burglary net, 1 + 1 + 4 + 2 + 2 = 10 numbers (vs. $2^5-1 = 31$)

Causality

- Do BNs always represent causality?
 - No!
- Both are valid
- Topology encodes conditional independence, not causality
- Same joint distribution can be encoded by many different BNs
- When Bayes' nets reflect the true causal patterns:
 - Often simpler (nodes have fewer parents)
 - Often easier to think about
 - Often easier to elicit from experts

Bayesian Network Recap

- Represented as directed acyclic graphs
- A set of nodes, one per variable X
- Implicitly encode the joint probability distribution as a product of local conditional distributions

$$P(X_1, X_2, ..., X_n) = \prod_{i=1}^n P(X_i | Parents(X_i))$$

 Connections do not have to represent causality! (But better if they do)

$$P(X|A_1 \dots A_n)$$

Independence in a BN

$$X \perp \!\!\! \perp Y | Z$$

$$\forall x, y, z : P(x, y|z) = P(x|z)P(y|z)$$

$$\forall x, y, z : P(x|z, y) = P(x|z)$$

Are two nodes independent given certain evidence?

- Question: are X and Z necessarily independent?
 - No!
 - X can influence Z, Z can influence X (via Y)
 - E.g. low pressure -> rain -> traffic
 - They could be independent: how?

Counter Example:

$$P(+y | +x) = 1, P(-y | -x) = 1$$

 $P(+z | +y) = 1, P(-z | -y) = 1$
 $P(X,Y,Z) = P(X)$
 $P(X,Z) = P(X) \neq P(X)P(Z)$ (in general)

$$P(X,Y,Z) = P(X)P(Y|X)P(Z|Y)$$
 (from the BN) $P(X,Z) = \sum_i P(X)P(Y=y_i|X)P(Z|Y=y_i)$ (marginalize) $P(X,Z) = P(X)\sum_i P(Y=y_i|X)P(Z|Y=y_i) \stackrel{?}{=} P(X)P(Z)$ (defn. independence) $P(Z) \stackrel{?}{=} \sum_i P(Y=y_i|X)P(Z|Y=y_i)$ -> Not in general!

Causal Chains

• This configuration is a causal chain

- Is X independent of Z given Y?
 - Yes!

$$P(X,Y,Z) = P(X)P(Y|X)P(Z|Y)$$

$$P(Z|X,Y) = \frac{P(X,Y,Z)}{P(X,Y)} = \frac{P(X)P(Y|X)P(Z|Y)}{P(X)P(Y|X)} = P(Z|Y)$$

• Evidence along the chain "blocks" influence

$X \perp \!\!\! \perp Y|Z$ $\forall x, y, z : P(x, y|z) = P(x|z)P(y|z)$ $\forall x, y, z : P(x|z, y) = P(x|z)$

Common Cause

$$X \perp \!\!\! \perp Y | Z$$

$$\forall x, y, z : P(x, y|z) = P(x|z)P(y|z)$$

$$\forall x, y, z : P(x|z, y) = P(x|z)$$

- Are X and Z independent?
 - No!

- Are X and Z independent given Y?
 - Yes!

$$P(Z|X,Y) = \frac{P(X,Y,Z)}{P(X,Y)} = \frac{P(Y)P(X|Y)P(Z|Y)}{P(X,Y)} = \frac{P(X,Y)P(Z|Y)}{P(X,Y)} = P(Z|Y)$$

• Observing the cause "blocks" influence between effects

Common Effect

$$X \perp \!\!\! \perp Y|Z$$

$$\forall x, y, z : P(x, y|z) = P(x|z)P(y|z)$$

$$\forall x, y, z : P(x|z, y) = P(x|z)$$

- Are X and Z independent?
 - Yes!

$$P(X,Z) = \sum_{i} P(X,Y = y_{i},Z) = \sum_{i} P(X)P(Z)P(Y = y_{i}|X,Z) = \sum_{i} \frac{P(X)P(Z)P(X,Z|Y=y_{i})P(Y)}{P(X,Z)}$$
$$= \frac{P(X)P(Z)}{P(X,Z)} \sum_{i} P(X,Z|Y = y_{i})P(Y) = \frac{P(X)P(Z)}{P(X,Z)} P(X,Z) = P(X)P(Z)$$

- Are X and Z independent given Y?
 - No!
 - Seeing Y puts X and Z in competition as the explanation

$$P(Z|X,Y) = \frac{P(X,Y,Z)}{P(X,Y)} = \frac{P(X)P(Z)P(Y|Z,X)}{P(X)P(Y|X)} = \frac{P(Z)P(Y|Z,X)}{P(Y|X)} \neq P(Z|Y) \text{ (inequality holds in general)}$$

Seeing evidence "activates" influence

3-Node Cond. Indep. Recap

 $X \perp \!\!\! \perp Y | Z$ $\forall x, y, z : P(x, y|z) = P(x|z)P(y|z)$ $\forall x, y, z : P(x|z, y) = P(x|z)$

	Causal Chain	Common Cause	Common Effect
	$X \longrightarrow Y \longrightarrow Z$	X	(X) (Z) (Y)
X			
X			

General Case

• Any complex example can be analyzed using these three canonical cases

• General question: In a given BN, are two variables independent (given evidence)?

Solution: Analyze the graph

$R \! \perp \! \! \! \perp \! \! \! \! \! B$	Yes
--	-----

$$R \! \perp \! \! \! \perp \! \! B | T$$
 No

$$R \! \perp \! \! \! \perp \! \! B | T'$$
 No

R: Rain

T: Traffic

D: Roof drip

S: Sadness

$$T \perp \!\!\! \perp D$$

No, common cause

$$T \bot\!\!\!\!\bot D | R$$

Yes

$$T \perp \!\!\! \perp D | R, S$$

No, common effect

$L \perp \!\!\! \perp T$	$^{\prime} T$	Yes
$L / \perp \!\!\!\perp \!\!\!\perp L$	1	163

$$L \bot\!\!\!\bot B$$
 Yes

$$L \! \perp \! \! \! \perp \! \! B | T$$

$$L \! \perp \! \! \perp \! \! B | T'$$
 No

$$L \! \perp \! \! \perp \! \! B | T, R$$
 Yes

Reachability

- Recipe: shade evidence nodes, look for paths in the resulting graph
- Attempt 1: if two nodes are connected by an undirected path not blocked by a shaded node, they are conditionally independent
- Almost works, but not quite
 - Where does it break?
 - Answer: the v-structure at T doesn't count as a link in a path unless "active"

Active / Inactive Paths

- Question: Are X and Y conditionally independent given evidence variables {Z}?
 - Yes, if X and Y "d-separated" by Z
 - Consider all (undirected) paths from X to Y
 - No active paths = independence!

- A path is active if each triple is active:
 - Causal chain A → B → C where B is unobserved (either direction)
 - Common cause A ← B → C where B is unobserved
 - Common effect (aka v-structure)
 A → B ← C where B or one of its descendants is observed
- All it takes to block a path is a single inactive segment

Inactive Triples

D-Separation

- Query: $X_i \perp \!\!\! \perp X_j | \{X_{k_1}, ..., X_{k_n}\}$?
- lacktriangle Check all (undirected!) paths between X_i and X_j
 - If one or more active, then independence not guaranteed

$$X_i \perp X_j | \{X_{k_1}, ..., X_{k_n}\}$$

Otherwise (i.e. if all paths are inactive),
 then independence is guaranteed

$$X_i \perp \!\!\! \perp X_j | \{X_{k_1}, ..., X_{k_n}\}$$

Markov Blanket

- Each node is conditionally independent of all others given its *Markov Blanket*
- Markov Blanket: parents + children + children's parents

Summary

- Bayesian networks provide a natural representation for conditional independence
- Topology + CPTs = compact representation of joint distribution
- Guaranteed independencies of distributions can be deduced from BN graph structure
- Generally easy for domain experts to construct