SPAM DETECTION IN SOCIAL NETWORK

Department: Computer Science And Engineering

Supervisors: Dr. Ayan Seal, Dr. Kusum Kumari Bharti

PDPM
IIIT-DM JABALPUR

Presented by:

Surya Prakash Mourya (2015258)

Raja Nigwal (2015197)

Pradeep Kumar (2015181)

Overview

- Introduction
- Methodology Of Paper
- New Methodologies
- Results
- Conclusion

01INTRODUCTION

- This use of social media has often increase in the spread of unsolicited messages known as spam which is used for marketing, collecting personal information, or just to offend the people.
- Therefore, it is crucial to have a strong spam detection architecture that could prevent these types of messages
- Spam detection in noisy platform such as Twitter is still a problem due to short text and high variability in the language used in social media.

PROBLEM STATEMENT:

How to detect the spam user behaviour based on raw data (different features such as text and various attributes)?

SOLUTION:

Development of a hybrid model which comprises of different machine learning models

O2 METHODOLOGY OF

BEST PREDICTIOIN MODEL

With parameters: C =128, gamma = 0.01330, kernel='sigmoid' For label -1:
Precision = 0.7
Recall = 1,
F_score=0.857

For label 1:

Precision = 1

Recall = 0.833333

F_score=0.909091

HEAT MAP

ACCURACY: 88.89 %

O3 NEW METHODOLOGIES

For label -1:

Precision = 0.995732

Recall = 1.000000

F_score=0.997862

For label 1:

Precision = 1.000000

Recall = 0.976893

F_score=0.988311

HEAT MAP

ACCURACY: 99.63%

For label -1:

Precision = 0.977778

Recall = 0.995885

F_score=0.986748

For label 1:

Precision = 0.968254

Recall = 0.847222

F_score=0.903704

ACCURACY: 97.67%

Parameters:

```
,batch_size=128,
epochs=10,
validation_split=0.2
callbacks= [EarlyStopping(monitor='val_loss',min_delta=0.0001)]
```

ACCURACY: 97.8%

LOSS: 10.9%

04 RESULTS

We found following facts:-

- 1. Random Forest Classifier gives best accuracy(99.63%) for twitter datset
- 2. LSTM gives best accuracy(97.8%) for sms spam dataset.

05 CONCLUSION

- Only using text can be a better idea for spam classification
- A hybrid model of both Random Forest Classifier and LSTM can be used as well for classification

