

there are infinitely many twin primes. The strongest result proved concerning twin primes is that there are infinitely many pairs p and p + 2, where p is prime and p + 2 is prime or the product of two primes (proved by J. R. Chen in 1966).

The world's record for twin primes, as of early 2018, consists of the numbers $2,996,863,034,895 \cdot 2^{1,290,000} \pm 1$, which have 388,342 decimal digits.

Let P(n) be the statement that there are infinitely many pairs of primes that differ by exactly n. The twin prime conjecture is the statement that P(2) is true. Mathematicians working on the twin prime conjecture formulated a weaker conjecture, known as the *bounded gap conjecture*, which asserts that there is an integer N for which P(N) is true. The mathematical community was surprised when Yitang Zhang, a 50-year-old professor at the University of New Hampshire, who had not published a paper since 2001, proved the bounded gap conjecture in 2013. In particular, he showed that there is an integer N < 70,000,000 such that P(N) is true. A team of mathematicians, including Terrance Tao, lowered the Zhang's bound by showing that there is an integer $N \le 246$ for which P(N) is true. Furthermore, they showed that if a certain conjecture was true, it could be shown that $N \le 6$ and that this is the best possible estimate that could be proved using the methods introduced by Zhang.

4.3.6 Greatest Common Divisors and Least Common Multiples

The largest integer that divides both of two integers is called the **greatest common divisor** of these integers.

Definition 2

Let a and b be integers, not both zero. The largest integer d such that $d \mid a$ and $d \mid b$ is called the *greatest common divisor* of a and b. The greatest common divisor of a and b is denoted by gcd(a, b).

The greatest common divisor of two integers, not both zero, exists because the set of common divisors of these integers is nonempty and finite. One way to find the greatest common divisor of two integers is to find all the positive common divisors of both integers and then take the largest divisor. This is done in Examples 10 and 11. Later, a more efficient method of finding greatest common divisors will be given.

EXAMPLE 10 What is the greatest common divisor of 24 and 36?

Solution: The positive common divisors of 24 and 36 are 1, 2, 3, 4, 6, and 12. Hence, gcd(24, 36) = 12.

Source: John D. & Catherine T. MacArthur Foundation

YITANG ZHANG (BORN 1955) Yitang Zhang was born in Shanghai, China, in 1955. When he was ten years old, he learned about famous conjectures, including Fermat's last theorem and the Goldbach conjecture. During the Cultural Revolution he spent ten years working in the fields instead of attending school. However, once this period was over, he was able to attend Peking University, receiving his bachelor's and master's degree in 1982 and 1984, respectively. He moved to the United States, attending Purdue University and completing the work for his Ph.D. in 1991.

After receiving his Ph.D., Zhang could not find an academic position because of the poor job market and disagreements with his thesis advisor. Instead he did accounting work and delivered food for a Queens, New York restaurant; he later worked in Kentucky at Subway restaurants owned by a friend. He even lived in his car while looking for work, but was finally able to obtain an academic job as a lecturer at the University of New Hampshire. He held this position from 1999 until early 2014. From 2009 to 2013, he worked on the bounded

gap conjecture seven days a week, about ten hours a day, until he made his key discovery. His success led the University of New Hampshire to promote him to full professorship. In 2015, however, he accepted the offer of a full professorship at the University of California, Santa Barbara. Zhang was a awarded a MacArthur Fellowship, also known as a Genius Award, in 2014.

EXAMPLE 11 What is the greatest common divisor of 17 and 22?

Solution: The integers 17 and 22 have no positive common divisors other than 1, so that gcd(17, 22) = 1.

Because it is often important to specify that two integers have no common positive divisor other than 1, we have Definition 3.

Definition 3 The integers a and b are relatively prime if their greatest common divisor is 1.

EXAMPLE 12 By Example 11 it follows that the integers 17 and 22 are relatively prime, because gcd(17, 22) = 1.

Because we often need to specify that no two integers in a set of integers have a common positive divisor greater than 1, we make Definition 4.

Definition 4 The integers a_1, a_2, \dots, a_n are pairwise relatively prime if $gcd(a_i, a_i) = 1$ whenever $1 \le i < n$ $j \leq n$.

EXAMPLE 13 Determine whether the integers 10, 17, and 21 are pairwise relatively prime and whether the integers 10, 19, and 24 are pairwise relatively prime.

Solution: Because gcd(10, 17) = 1, gcd(10, 21) = 1, and gcd(17, 21) = 1, we conclude that 10, 17, and 21 are pairwise relatively prime.

Because gcd(10, 24) = 2 > 1, we see that 10, 19, and 24 are not pairwise relatively prime.

Another way to find the greatest common divisor of two positive integers is to use the prime factorizations of these integers. Suppose that the prime factorizations of the positive integers a and b are

$$a = p_1^{a_1} p_2^{a_2} \cdots p_n^{a_n}, \ b = p_1^{b_1} p_2^{b_2} \cdots p_n^{b_n},$$

where each exponent is a nonnegative integer, and where all primes occurring in the prime factorization of either a or b are included in both factorizations, with zero exponents if necessary. Then gcd(a, b) is given by

$$\gcd(a, b) = p_1^{\min(a_1, b_1)} p_2^{\min(a_2, b_2)} \cdots p_n^{\min(a_n, b_n)},$$

where min(x, y) represents the minimum of the two numbers x and y. To show that this formula for gcd(a, b) is valid, we must show that the integer on the right-hand side divides both a and b, and that no larger integer also does. This integer does divide both a and b, because the power of each prime in the factorization does not exceed the power of this prime in either the factorization of a or that of b. Further, no larger integer can divide both a and b, because the exponents of the primes in this factorization cannot be increased, and no other primes can be included.

EXAMPLE 14

Because the prime factorizations of 120 and 500 are $120 = 2^3 \cdot 3 \cdot 5$ and $500 = 2^2 \cdot 5^3$, the greatest common divisor is

$$\gcd(120, 500) = 2^{\min(3, 2)} 3^{\min(1, 0)} 5^{\min(1, 3)} = 2^2 3^0 5^1 = 20.$$

Prime factorizations can also be used to find the **least common multiple** of two integers.

Definition 5

The least common multiple of the positive integers a and b is the smallest positive integer that is divisible by both a and b. The least common multiple of a and b is denoted by lcm(a, b).

The least common multiple exists because the set of integers divisible by both a and b is nonempty (because ab belongs to this set, for instance), and every nonempty set of positive integers has a least element (by the well-ordering property, which will be discussed in Section 5.2). Suppose that the prime factorizations of a and b are as before. Then the least common multiple of a and b is given by

$$lcm(a, b) = p_1^{\max(a_1, b_1)} p_2^{\max(a_2, b_2)} \cdots p_n^{\max(a_n, b_n)}$$

where max(x, y) denotes the maximum of the two numbers x and y. This formula is valid because a common multiple of a and b has at least $\max(a_i, b_i)$ factors of p_i in its prime factorization, and the least common multiple has no other prime factors besides those in a and b.

EXAMPLE 15

What is the least common multiple of $2^33^57^2$ and 2^43^3 ?

Solution: We have

$$lcm(2^{3}3^{5}7^{2}, 2^{4}3^{3}) = 2^{\max(3, 4)}3^{\max(5, 3)}7^{\max(2, 0)} = 2^{4}3^{5}7^{2}.$$

Theorem 5 gives the relationship between the greatest common divisor and least common multiple of two integers. It can be proved using the formulae we have derived for these quantities. The proof of this theorem is left as Exercise 31.

THEOREM 5

Let a and b be positive integers. Then

$$ab = \gcd(a, b) \cdot \operatorname{lcm}(a, b).$$

The Euclidean Algorithm 4.3.7

Computing the greatest common divisor of two integers directly from the prime factorizations of these integers is inefficient. The reason is that it is time-consuming to find prime factorizations. We will give a more efficient method of finding the greatest common divisor, called the **Euclidean algorithm.** This algorithm has been known since ancient times. It is named after the

◁

ancient Greek mathematician Euclid, who included a description of this algorithm in his book The Elements.

Before describing the Euclidean algorithm, we will show how it is used to find gcd(91, 287). First, divide 287, the larger of the two integers, by 91, the smaller, to obtain

$$287 = 91 \cdot 3 + 14$$
.

Any divisor of 91 and 287 must also be a divisor of $287 - 91 \cdot 3 = 14$. Also, any divisor of 91 and 14 must also be a divisor of $287 = 91 \cdot 3 + 14$. Hence, the greatest common divisor of 91 and 287 is the same as the greatest common divisor of 91 and 14. This means that the problem of finding gcd(91, 287) has been reduced to the problem of finding gcd(91, 14).

Next, divide 91 by 14 to obtain

$$91 = 14 \cdot 6 + 7$$
.

Because any common divisor of 91 and 14 also divides $91 - 14 \cdot 6 = 7$ and any common divisor of 14 and 7 divides 91, it follows that gcd(91, 14) = gcd(14, 7).

Continue by dividing 14 by 7, to obtain

$$14 = 7 \cdot 2$$
.

Because 7 divides 14, it follows that gcd(14, 7) = 7. Furthermore, because gcd(287, 91) =gcd(91, 14) = gcd(14, 7) = 7, the original problem has been solved.

We now describe how the Euclidean algorithm works in generality. We will use successive divisions to reduce the problem of finding the greatest common divisor of two positive integers to the same problem with smaller integers, until one of the integers is zero.

The Euclidean algorithm is based on the following result about greatest common divisors and the division algorithm.

LEMMA 1

Let a = bq + r, where a, b, q, and r are integers. Then gcd(a, b) = gcd(b, r).

Proof: If we can show that the common divisors of a and b are the same as the common divisors of b and r, we will have shown that gcd(a, b) = gcd(b, r), because both pairs must have the same greatest common divisor.

So suppose that d divides both a and b. Then it follows that d also divides $\frac{a - bq}{a - bq} = r$ (from Theorem 1 of Section 4.1). Hence, any common divisor of a and b is also a common divisor of b and r.

Likewise, suppose that d divides both b and r. Then d also divides bq + r = a. Hence, any common divisor of b and r is also a common divisor of a and b.

Consequently, gcd(a, b) = gcd(b, r).

©bilwissedition Ltd. & Co KG/Alamy Stock Photo

EUCLID (325 B.C.E. – 265 B.C.E.) Euclid was the author of the most successful mathematics book ever written, *The Elements*, which appeared in over 1000 different editions from ancient to modern times. Little is known about Euclid's life, other than that he taught at the famous academy at Alexandria in Egypt. Apparently, Euclid did not stress applications. When a student asked what he would get by learning geometry, Euclid explained that knowledge was worth acquiring for its own sake and told his servant to give the student a coin "because he must make a profit from what he learns."

Suppose that a and b are positive integers with $a \ge b$. Let $r_0 = a$ and $r_1 = b$. When we successively apply the division algorithm, we obtain

$$\begin{array}{ll} r_0 &= r_1q_1 + r_2 & 0 \leq r_2 < r_1, \\ r_1 &= r_2q_2 + r_3 & 0 \leq r_3 < r_2, \\ & \vdots & \\ \vdots & \vdots & \\ r_{n-2} &= r_{n-1}q_{n-1} + r_n & 0 \leq r_n < r_{n-1}, \\ r_{n-1} &= r_nq_n. \end{array}$$

Eventually a remainder of zero occurs in this sequence of successive divisions, because the sequence of remainders $a = r_0 > r_1 > r_2 > \cdots \ge 0$ cannot contain more than a terms. Furthermore, it follows from Lemma 1 that

$$\gcd(a, b) = \gcd(r_0, r_1) = \gcd(r_1, r_2) = \dots = \gcd(r_{n-2}, r_{n-1})$$
$$= \gcd(r_{n-1}, r_n) = \gcd(r_n, 0) = r_n.$$

Hence, the greatest common divisor is the last nonzero remainder in the sequence of divisions.

EXAMPLE 16 Find the greatest common divisor of 414 and 662 using the Euclidean algorithm.

Solution: Successive uses of the division algorithm give:

$$662 = 414 \cdot 1 + 248$$

$$414 = 248 \cdot 1 + 166$$

$$248 = 166 \cdot 1 + 82$$

$$166 = 82 \cdot 2 + 2$$

$$82 = 2 \cdot 41$$

Hence, gcd(414, 662) = 2, because 2 is the last nonzero remainder. We can summarize these steps in tabular form.

 $r_i \quad r_{i+1} \quad q_{i+1} \quad r_{i+2}$ 414 1 248 662 1 248 414 1 166 2 248 166 1 82 3 166 82 2 2 4 82 2 41 0

The Euclidean algorithm is expressed in pseudocode in Algorithm 1.

```
ALGORITHM 1 The Euclidean Algorithm.
procedure gcd(a, b): positive integers)
x := a
y := b
while y \neq 0
     r := x \bmod y
     x := y
     y := r
return x\{\gcd(a,b) \text{ is } x\}
```

In Algorithm 1, the initial values of x and y are a and b, respectively. At each stage of the procedure, x is replaced by y, and y is replaced by x mod y, which is the remainder when x is divided by v. This process is repeated as long as $y \neq 0$. The algorithm terminates when y = 0, and the value of x at that point, the last nonzero remainder in the procedure, is the greatest common divisor of a and b.

We will study the time complexity of the Euclidean algorithm in Section 5.3, where we will show that the number of divisions required to find the greatest common divisor of a and b, where $a \ge b$, is $O(\log b)$.

gcds as Linear Combinations 4.3.8

An important result we will use throughout the remainder of this section is that the greatest common divisor of two integers a and b can be expressed in the form

sa + tb,

where s and t are integers. In other words, gcd(a, b) can be expressed as a **linear combination** with integer coefficients of a and b. For example, gcd(6, 14) = 2, and $2 = (-2) \cdot 6 + 1 \cdot 14$. We state this fact as Theorem 6.

THEOREM 6

BÉZOUT'S THEOREM If a and b are positive integers, then there exist integers s and t such that gcd(a, b) = sa + tb.

Definition 6

If a and b are positive integers, then integers s and t such that gcd(a, b) = sa + tb are called Bézout coefficients of a and b (after Étienne Bézout, a French mathematician of the eighteenth century). Also, the equation gcd(a, b) = sa + tb is called *Bézout's identity*.

We will not give a formal proof of Theorem 6 here (see Exercise 36 in Section 5.2 and [Ro10] for proofs). We will present two different methods that can be used to find a linear combination of two integers equal to their greatest common divisor. (In this section, we will assume that a linear combination has integer coefficients.)

The first method proceeds by working backward through the divisions of the Euclidean algorithm, so this method requires a forward pass and a backward pass through the steps of the Euclidean algorithm. We will illustrate how this method works with an example. The main

© Chronicle/Alamy Stock

ÉTIENNE BÉZOUT (1730–1783) Bézout was born in Nemours, France, where his father was a magistrate. Reading the writings of the great mathematician Leonhard Euler enticed him to become a mathematician. In 1758 he was appointed to a position at the Académie des Sciences in Paris; in 1763 he was appointed examiner of the Gardes de la Marine, where he was assigned the task of writing mathematics textbooks. This assignment led to a four-volume textbook completed in 1767. Bézout is well known for his six-volume comprehensive textbook on mathematics. His textbooks were extremely popular and were studied by many generations of students hoping to enter the École Polytechnique, the highly regarded engineering and science school. His books were translated into English and used in North America, including at Harvard.

His most important original work was published in 1779 in the book Théorie générale des équations algébriques, where he introduced important methods for solving simultaneous polynomial equations in many unknowns. The most well-known result in this book is now called Bézout's theorem, which in its general

form tells us that the number of common points on two plane algebraic curves equals the product of the degrees of these curves. Bézout is also credited with inventing the determinant (which was called the Bézoutian by the noted English mathematician James Joseph Sylvester). He was considered to be a kind person with a warm heart, although he had a reserved and somber personality. He was happily married and a father.

Links

advantage of the second method, known as the **extended Euclidean algorithm**, is that it uses one pass through the steps of the Euclidean algorithm to find Bézout coefficients of a and b, unlike the first method, which uses two passes. To run this extended Euclidean algorithm we set $s_0 = 1$, $s_1 = 0$, $t_0 = 0$, and $t_1 = 1$ and let

$$s_j = s_{j-2} - q_{j-1}s_{j-1}$$
 and $t_j = t_{j-2} - q_{j-1}t_{j-1}$

for j = 2, 3, ..., n, where the q_j are the quotients in the divisions used when the Euclidean algorithm finds gcd(a, b), as shown in the text. We can prove by strong induction (see Exercise 44 in Section 5.2, or see [Ro10]) that $gcd(a, b) = s_n a + t_n b$.

EXAMPLE 17 Express gcd(252, 198) = 18 as a linear combination of 252 and 198 by working backwards through the steps of the Euclidean algorithm.

Solution: To show that gcd(252, 198) = 18, the Euclidean algorithm uses these divisions:

$$252 = 198 \cdot 1 + 54$$

$$198 = 54 \cdot 3 + 36$$

$$54 = 36 \cdot 1 + 18$$

$$36 = 18 \cdot 2 + 0$$
.

We summarize these steps in tabular form:

j	r_{j}	r_{j+1}	q_{j+1}	r_{j+2}
0	252	198	1	54
1	198	54	3	36
2	54	36	1	18
3	36	18	2	0

Using the next-to-last division (the third division), we can express gcd(252, 198) = 18 as a linear combination of 54 and 36. We find that

$$18 = 54 - 1 \cdot 36$$
.

The second division tells us that

$$36 = 198 - 3 \cdot 54$$
.

Substituting this expression for 36 into the previous equation, we can express 18 as a linear combination of 54 and 198. We have

$$18 = 54 - 1 \cdot 36 = 54 - 1 \cdot (198 - 3 \cdot 54) = 4 \cdot 54 - 1 \cdot 198.$$

The first division tells us that

$$54 = 252 - 1 \cdot 198$$
.

Substituting this expression for 54 into the previous equation, we can express 18 as a linear combination of 252 and 198. We conclude that

$$18 = 4 \cdot (252 - 1 \cdot 198) - 1 \cdot 198 = 4 \cdot 252 - 5 \cdot 198$$

completing the solution.

The next example shows how to solve the same problem posed in the previous example using the extended Euclidean algorithm.

EXAMPLE 18 Express gcd(252, 198) = 18 as a linear combination of 252 and 198 using the extended Euclidean algorithm.

Solution: Example 17 displays the steps the Euclidean algorithm uses to find gcd(252, 198) = 18. The quotients are $q_1 = 1$, $q_2 = 3$, $q_3 = 1$, and $q_4 = 2$. The desired Bézout coefficients are the values of s_4 and t_4 generated by the extended Euclidean algorithm, where $s_0 = 1$, $s_1 = 0$, $t_0 = 0$, and $t_1 = 1$, and

$$s_j = s_{j-2} - q_{j-1}s_{j-1}$$
 and $t_j = t_{j-2} - q_{j-1}t_{j-1}$

for j = 2, 3, 4. We find that

$$s_2 = s_0 - s_1 q_1 = 1 - 0 \cdot 1 = 1$$
, $t_2 = t_0 - t_1 q_1 = 0 - 1 \cdot 1 = -1$, $s_3 = s_1 - s_2 q_2 = 0 - 1 \cdot 3 = -3$, $t_3 = t_1 - t_2 q_2 = 1 - (-1)3 = 4$, $s_4 = s_2 - s_3 q_3 = 1 - (-3) \cdot 1 = 4$, $t_4 = t_2 - t_3 q_3 = -1 - 4 \cdot 1 = -5$.

Because $s_4 = 4$ and $t_4 = -5$, we see that $18 = \gcd(252, 198) = 4 \cdot 252 - 5 \cdot 198$. We summarize the steps of the extended Euclidean algorithm in a table:

j	r_{j}	r_{j+1}	q_{j+1}	r_{j+2}	s_j	t_j
0	252	198	1	54	1	0
1	198	54 36	3	36	0	1
2	54	36	1	18	1	-1
3	36	18	2	0	-3	4
4					4	-5

We will use Theorem 6 to develop several useful results. One of our goals will be to prove the part of the fundamental theorem of arithmetic asserting that a positive integer has at most one prime factorization. We will show that if a positive integer has a factorization into primes, where the primes are written in nondecreasing order, then this factorization is unique.

First, we need to develop some results about divisibility.

LEMMA 2 If a, b, and c are positive integers such that gcd(a, b) = 1 and $a \mid bc$, then $a \mid c$.

Proof: Because gcd(a, b) = 1, by Bézout's theorem there are integers s and t such that

$$sa + tb = 1$$
.

Multiplying both sides of this equation by c, we obtain

$$sac + tbc = c$$
.

We can now use Theorem 1 of Section 4.1 to show that $a \mid c$. By part (ii) of that theorem, $a \mid tbc$. Because $a \mid sac$ and $a \mid tbc$, by part (i) of that theorem, we conclude that a divides sac + tbc. Because sac + tbc = c, we conclude that $a \mid c$, completing the proof.

We will use the following generalization of Lemma 2 in the proof of uniqueness of prime factorizations. (The proof of Lemma 3 is left as Exercise 64 in Section 5.1, because it can be most easily carried out using the method of mathematical induction, covered in that section.)

LEMMA 3 If p is a prime and $p \mid a_1 a_2 \cdots a_n$, where each a_i is an integer, then $p \mid a_i$ for some i.

We can now show that a factorization of an integer into primes is unique. That is, we will show that every integer can be written as the product of primes in nondecreasing order in at most one way. This is part of the fundamental theorem of arithmetic. We will prove the other part, that every integer has a factorization into primes, in Section 5.2.

Proof (of the uniqueness of the prime factorization of a positive integer): We will use a proof by contradiction. Suppose that the positive integer n can be written as the product of primes in two different ways, say, $n = p_1 p_2 \cdots p_s$ and $n = q_1 q_2 \cdots q_t$, where each p_i and q_j is prime such that $p_1 \le p_2 \le \cdots \le p_s$ and $q_1 \le q_2 \le \cdots \le q_t$.

When we remove all common primes from the two factorizations, we have

$$p_{i_1}p_{i_2}\cdots p_{i_u}=q_{j_1}q_{j_2}\cdots q_{j_v}$$

where no prime occurs on both sides of this equation and u and v are positive integers. By Lemma 3 it follows that p_{i_1} divides q_{j_k} for some k. Because no prime divides another prime, this is impossible. Consequently, there can be at most one factorization of n into primes in nondecreasing order.

Lemma 2 can also be used to prove a result about dividing both sides of a congruence by the same integer. We have shown (Theorem 5 in Section 4.1) that we can multiply both sides of a congruence by the same integer. However, dividing both sides of a congruence by an integer does not always produce a valid congruence, as Example 19 shows.

EXAMPLE 19 The congruence $14 \equiv 8 \pmod{6}$ holds, but both sides of this congruence cannot be divided by 2 to produce a valid congruence because 14/2 = 7 and 8/2 = 4, but $7 \not\equiv 4 \pmod{6}$.

Although we cannot divide both sides of a congruence by any integer to produce a valid congruence, we can if this integer is relatively prime to the modulus. Theorem 7 establishes this important fact. We use Lemma 2 in the proof.

THEOREM 7

Let m be a positive integer and let a, b, and c be integers. If $ac \equiv bc \pmod{m}$ and gcd(c, m) = 1, then $a \equiv b \pmod{m}$.

Proof: Because $ac \equiv bc \pmod{m}$, $m \mid ac - bc = c(a - b)$. By Lemma 2, because $\gcd(c, m) = 1$, it follows that $m \mid a - b$. We conclude that $a \equiv b \pmod{m}$.

Exercises

- 1. Determine whether each of these integers is prime.
 - **a**) 21

b) 29d) 97

c) 71e) 111

- **f**) 143
- 2. Determine whether each of these integers is prime.
 - **a**) 19

b) 27

c) 93

d) 101

e) 107

- **f**) 113
- **3.** Find the prime factorization of each of these integers.
 - **a**) 88
- **b**) 126
- **c**) 729

- **d**) 1001
- e) 1111
- **f**) 909,090

- **4.** Find the prime factorization of each of these integers.
 - **a**) 39 **d**) 143
- e) 289
- **f**) 899
- **5.** Find the prime factorization of 10!.
- *6. How many zeros are there at the end of 100!?
 - 7. Express in pseudocode the trial division algorithm for determining whether an integer is prime.
 - **8.** Express in pseudocode the algorithm described in the text for finding the prime factorization of an integer.
 - **9.** Show that $a^m + 1$ is composite if a and m are integers greater than 1 and m is odd. [*Hint*: Show that x + 1 is a factor of the polynomial $x^m + 1$ if m is odd.]

- **10.** Show that if $2^m + 1$ is an odd prime, then $m = 2^n$ for some nonnegative integer n. [Hint: First show that the polynomial identity $x^m + 1 = (x^k + 1)(x^{k(t-1)}$ $x^{k(t-2)} + \cdots - x^k + 1$ holds, where m = kt and t
- *11. Show that log₂ 3 is an irrational number. Recall that an irrational number is a real number x that cannot be written as the ratio of two integers.
 - **12.** Prove that for every positive integer n, there are n consecutive composite integers. [Hint: Consider the n consecutive integers starting with (n + 1)! + 2.1
- *13. Prove or disprove that there are three consecutive odd positive integers that are primes, that is, odd primes of the form p, p + 2, and p + 4.
 - 14. Which positive integers less than 12 are relatively prime to 12?
- 15. Which positive integers less than 30 are relatively prime
- **16.** Determine whether the integers in each of these sets are pairwise relatively prime.
 - a) 21, 34, 55
- **b**) 14, 17, 85
- c) 25, 41, 49, 64
- **d)** 17, 18, 19, 23
- 17. Determine whether the integers in each of these sets are pairwise relatively prime.
 - a) 11, 15, 19
- **b**) 14, 15, 21
- **c)** 12, 17, 31, 37
- **d)** 7, 8, 9, 11
- 18. We call a positive integer **perfect** if it equals the sum of its positive divisors other than itself.
 - a) Show that 6 and 28 are perfect.
 - **b)** Show that $2^{p-1}(2^p-1)$ is a perfect number when $2^p - 1$ is prime.
- **19.** Show that if $2^n 1$ is prime, then *n* is prime. [*Hint*: Use the identity $2^{ab} - 1 = (2^a - 1) \cdot (2^{a(b-1)} + 2^{a(b-2)} + \dots +$ $2^a + 1$).]
- 20. Determine whether each of these integers is prime, verifying some of Mersenne's claims.
 - a) $2^7 1$
- **b**) $2^9 1$
- **c**) $2^{11} 1$
- **d**) $2^{13} 1$

The value of the **Euler** ϕ -function at the positive integer n is defined to be the number of positive integers less than or equal to *n* that are relatively prime to *n*. For instance, $\phi(6) = 2$ because of the positive integers less or equal to 6, only 1 and 5 are relatively prime to 6. [*Note:* ϕ is the Greek letter phi.]

- **21.** Find these values of the Euler ϕ -function.
 - a) $\phi(4)$
- **b**) $\phi(10)$
- c) $\phi(13)$
- **22.** Show that *n* is prime if and only if $\phi(n) = n 1$.
- **23.** What is the value of $\phi(p^k)$ when p is prime and k is a positive integer?
- 24. What are the greatest common divisors of these pairs of integers?
 - a) $2^2 \cdot 3^3 \cdot 5^5, 2^5 \cdot 3^3 \cdot 5^2$
 - **b)** $2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13, 2^{11} \cdot 3^9 \cdot 11 \cdot 17^{14}$
 - **c**) 17, 17¹⁷
- **d**) $2^2 \cdot 7.5^3 \cdot 13$
- e) 0, 5
- **f**) $2 \cdot 3 \cdot 5 \cdot 7, 2 \cdot 3 \cdot 5 \cdot 7$

- 25. What are the greatest common divisors of these pairs of integers?
 - a) $3^7 \cdot 5^3 \cdot 7^3$, $2^{11} \cdot 3^5 \cdot 5^9$
 - **b**) $11 \cdot 13 \cdot 17, 2^9 \cdot 3^7 \cdot 5^5 \cdot 7^3$
 - c) 23^{31} , 23^{17}
 - **d)** $41 \cdot 43 \cdot 53, 41 \cdot 43 \cdot 53$
 - e) $3^{13} \cdot 5^{17}$, $2^{12} \cdot 7^{21}$
 - **f**) 1111, 0
- 26. What is the least common multiple of each pair in Exercise 24?
- 27. What is the least common multiple of each pair in Exercise 25?
- 28. Find gcd(1000, 625) and lcm(1000, 625) and verify that $gcd(1000, 625) \cdot lcm(1000, 625) = 1000 \cdot 625.$
- **29.** Find gcd(92928, 123552) and lcm(92928, 123552), and verify that $gcd(92928, 123552) \cdot lcm(92928, 123552) =$ 92928 · 123552. [Hint: First find the prime factorizations of 92928 and 123552.]
- **30.** If the product of two integers is $2^73^85^27^{11}$ and their greatest common divisor is 2³3⁴5, what is their least common multiple?
- **31.** Show that if a and b are positive integers, then ab = ab $gcd(a, b) \cdot lcm(a, b)$. [*Hint*: Use the prime factorizations of a and b and the formulae for gcd(a, b) and lcm(a, b) in terms of these factorizations.]
- **32.** Use the Euclidean algorithm to find
 - a) gcd(1, 5).
- **b**) gcd(100, 101).
- c) gcd(123, 277).
- **d**) gcd(1529, 14039).
- e) gcd(1529, 14038).
- **f**) gcd(11111, 111111).
- 33. Use the Euclidean algorithm to find
 - **a)** gcd(12, 18).
- **b**) gcd(111, 201).
- c) gcd(1001, 1331).
- **d)** gcd(12345, 54321).
- e) gcd(1000, 5040).
- **f**) gcd(9888, 6060).
- 34. How many divisions are required to find gcd(21, 34) using the Euclidean algorithm?
- 35. How many divisions are required to find gcd(34, 55) using the Euclidean algorithm?
- *36. Show that if a and b are both positive integers, then $(2^a - 1) \bmod (2^b - 1) = 2^a \bmod b - 1.$
- *37. Use Exercise 36 to show that if a and b are positive integers, then $gcd(2^{a} - 1, 2^{b} - 1) = 2^{gcd(a, b)} - 1$. [Hint: Show that the remainders obtained when the Euclidean algorithm is used to compute $gcd(2^a - 1, 2^b - 1)$ are of the form $2^r - 1$, where r is a remainder arising when the Euclidean algorithm is used to find gcd(a, b).
 - **38.** Use Exercise 37 to show that the integers $2^{35} 1$, $2^{34} 1$, $2^{33} - 1$, $2^{31} - 1$, $2^{29} - 1$, and $2^{23} - 1$ are pairwise relatively prime.
 - **39.** Using the method followed in Example 17, express the greatest common divisor of each of these pairs of integers as a linear combination of these integers.
 - **a**) 10, 11
- **b)** 21, 44
- c) 36, 48

- **d**) 34, 55
- **e)** 117, 213
- **f**) 0, 223

- **g**) 123, 2347
- **h**) 3454, 4666
- i) 9999, 11111

- **40.** Using the method followed in Example 17, express the greatest common divisor of each of these pairs of integers as a linear combination of these integers.
 - **a)** 9, 11 **d**) 21, 55
- **b**) 33, 44 e) 101, 203
- **c**) 35, 78 **f**) 124, 323

- g) 2002, 2339
- **h**) 3457, 4669
- i) 10001, 13422
- 41. Use the extended Euclidean algorithm to express gcd(26, 91) as a linear combination of 26 and 91.
- **42.** Use the extended Euclidean algorithm to express gcd(252, 356) as a linear combination of 252 and 356.
- **43.** Use the extended Euclidean algorithm to express gcd(144, 89) as a linear combination of 144 and 89.
- **44.** Use the extended Euclidean algorithm to express gcd(1001, 100001) as a linear combination of 1001 and 100001.
- 45. Describe the extended Euclidean algorithm using pseu-
- **46.** Find the smallest positive integer with exactly *n* different positive factors when n is
 - **a**) 3.
- **b**) 4.
- **c**) 5.
- **d**) 6. e) 10.
- **47.** Can you find a formula or rule for the *n*th term of a sequence related to the prime numbers or prime factorizations so that the initial terms of the sequence have these values?
 - **a**) 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, ...
 - **b**) 1, 2, 3, 2, 5, 2, 7, 2, 3, 2, 11, 2, 13, 2, ... **c**) 1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 6, 2, 4, ...

 - **d**) 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, ...
 - e) 1, 2, 3, 3, 5, 5, 7, 7, 7, 7, 11, 11, 13, 13, ...
 - **f**) 1, 2, 6, 30, 210, 2310, 30030, 510510, 9699690, 223092870, ...
- **48.** Can you find a formula or rule for the *n*th term of a sequence related to the prime numbers or prime factorizations so that the initial terms of the sequence have these values?
 - **a**) 2, 2, 3, 5, 5, 7, 7, 11, 11, 11, 11, 13, 13, ... **b**) 0, 1, 2, 2, 3, 3, 4, 4, 4, 4, 5, 5, 6, 6, ...

 - **c**) 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, ...
 - **d**) 1, -1, -1, 0, -1, 1, -1, 0, 0, 1, -1, 0, -1, 1, 1, ...
 - e) 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, ...
 - **f**) 4, 9, 25, 49, 121, 169, 289, 361, 529, 841, 961, 1369, ...
- **49.** Prove that the product of any three consecutive integers is divisible by 6.

- **50.** Show that if a, b, and m are integers such that m > 2 and $a \equiv b \pmod{m}$, then gcd(a, m) = gcd(b, m).
- *51. Prove or disprove that $n^2 79n + 1601$ is prime whenever n is a positive integer.
- **52.** Prove or disprove that $p_1p_2 \cdots p_n + 1$ is prime for every positive integer n, where p_1, p_2, \dots, p_n are the n smallest prime numbers.
- 53. Show that there is a composite integer in every arithmetic progression ak + b, k = 1, 2, ..., where a and b are positive integers.
- **54.** Adapt the proof in the text that there are infinitely many primes to prove that there are infinitely many primes of the form 3k + 2, where k is a nonnegative integer. [Hint: Suppose that there are only finitely many such primes q_1, q_2, \dots, q_n , and consider the number $3q_1q_2 \cdots q_n - 1.$
- 55. Adapt the proof in the text that there are infinitely many primes to prove that there are infinitely many primes of the form 4k + 3, where k is a nonnegative integer. [Hint: Suppose that there are only finitely many such primes q_1, q_2, \dots, q_n , and consider the number $4q_1q_2 \cdots q_n - 1.$
- *56. Prove that the set of positive rational numbers is countable by setting up a function that assigns to a rational number p/q with gcd(p,q) = 1 the base 11 number formed by the decimal representation of p followed by the base 11 digit A, which corresponds to the decimal number 10, followed by the decimal representation of q.
- *57. Prove that the set of positive rational numbers is countable by showing that the function K is a one-toone correspondence between the set of positive rational numbers and the set of positive integers if $K(m/n) = p_1^{2a_1} p_2^{2a_2} \cdot \dots \cdot p_s^{2a_s} q_1^{2b_1-1} q_2^{2b_2-1} \cdot \dots \cdot q_t^{2b_t-1}$, where gcd(m,n) = 1 and the prime-power factorizations of *m* and *n* are $m = p_1^{a_1} p_2^{a_2} \cdot \dots \cdot p_s^{a_s}$ and $n = q_1^{b_1} q_2^{b_2} \cdot \dots \cdot q_t^{b_t}$.

Solving Congruences

Self Study

4.4.1 Introduction

Solving linear congruences, which have the form $ax \equiv b \pmod{m}$, is an essential task in the study of number theory and its applications, just as solving linear equations plays an important role in calculus and linear algebra. To solve linear congruences, we employ inverses modulo m. We explain how to work backwards through the steps of the Euclidean algorithm to find inverses modulo m. Once we have found an inverse of a modulo m, we solve the congruence $ax \equiv b \pmod{m}$ by multiplying both sides of the congruence by this inverse.