Nondeterministic Bigraphical Reactive Systems for Markov Decision Processes*

Paulius Dilkas [0000-1111-2222-3333] and Michele Sevegnani [1111-2222-3333-4444]

University of Glasgow, Glasgow, UK

Abstract. The abstract should briefly summarize the contents of the paper in 150-250 words.

Keywords: First keyword · Second keyword · Another keyword.

1 Introduction

Definition 1 ([1]). For any finite set X, let Dist(X) denote the set of discrete probability distributions over X. A Markov Decision Process is a tuple $(S, \overline{s}, A, P, L)$, where: S is a finite set of states and $\overline{s} \in S$ is the initial state; A is a finite set of actions; $P: S \times A \to Dist(S)$ is a (partial) probabilistic transition function, mapping state-action pairs to probability distributions over $S; L: S \to 2^P$ is a labelling with atomic propositions.

Definition 2. A reward structure for an MDP $(S, \overline{s}, A, P, L)$ is a pair (ρ, ι) , where $\rho: S \to \mathbb{R}$ is the state reward function, and $\iota: S \times A \to \mathbb{R}$ is the transition reward function.

From [4].

Definition 3 (Concrete place graph with sharing). A concrete place graph with sharing

$$F = (V_F, ctrl_F, prnt_F) : m \to n$$

is a triple having an inner interface m and an outer interface n. These index the sites and regions of the place graph, respectively. F has a finite set $V_F \subset \mathcal{V}$ of nodes, a control map $ctrl_F : V_F \to \mathcal{K}$, and a parent relation

$$prnt_F \subseteq (m \uplus V_F) \times (V_F \uplus n)$$

that is acyclic, i.e., $(v,v) \notin prnt_F^+$ for any $v \in V_F$.

Definition 4 (Composition for place graphs with sharing). If $F: k \to m$ and $G: m \to n$ are two concrete place graphs with sharing with $V_F \cap V_G = \emptyset$, their composite

$$G \circ F = (V, ctrl, prnt) : k \to n$$

^{*} Supported by organization x.

has nodes $V = V_F \uplus V_G$ and control map $ctrl = ctrl_F \uplus ctrl_G$. Its parent relation $prnt \subseteq (k \uplus V) \times (V \uplus n)$ is given by:

$$prnt := prnt_G^{\triangleleft} \uplus prnt_{\circ} \uplus prnt_F^{\triangleright},$$

where

$$\begin{aligned} prnt_F^{\rhd} &= prnt_F \rhd V_F, \\ prnt_G^{\lhd} &= V_G \lhd prnt_G, \\ prnt_{\circ} &= (m \lhd prnt_G) \circ (prnt_F \rhd m). \end{aligned}$$

Definition 5 (Tensor product for place graphs). If $G_0: m_0 \to n_0$ and $G_1: m_1 \to n_1$ are two concrete place graphs with sharing with $V_F \cap V_G = \emptyset$, their tensor product

$$G_0 \otimes G_1 = (V, ctrl, prnt) : m_0 + m_1 \to n_0 + n_1$$

has nodes $V = V_{G_0} \uplus V_{G_1}$ and control map $ctrl := ctrl_{G_0} \uplus ctrl_{G_1}$. Its parent relation $prnt \subseteq [(m_0 + m_1) \uplus V] \times [V \uplus (n_0 + n_1)]$ is defined as

$$prnt_{G_0} \uplus prnt_{G_1}^{(m_0,n_0)},$$

where

Definition 6 (Concrete link graph). A concrete link graph

$$F = (V_F, E_F, ctrl_F, link_F) : X \to Y$$

is a quadruple having an inner face X and an outer face Y, both finite subsets of \mathcal{X} , called respectively the inner and outer names of the link graph. F has finite sets $V_F \subset \mathcal{V}$ of nodes and $E_F \subset \mathcal{E}$ of edges, a control map $\operatorname{ctrl}_F : V_F \to \mathcal{K}$ and a link map

$$link_F: X \uplus P_F \to E_F \uplus Y$$
,

where $P_F := \{(v, i) \mid i \in ar(ctrl_F(v))\}$ is the set of ports of F. Thus (v, i) is the ith port of node v. We shall call $X \uplus P_F$ the points of F, and $E_F \uplus Y$ its links.

The sets of points and the set of ports of a link l are defined by

$$points_F(l) := \{p \mid link_F(p) = l\}, \quad ports_F(l) := points_F(l) \setminus X.$$

An edge is *idle* if it has no points. Identities over name sets are defined by $\mathsf{id}_X = (\emptyset, \emptyset, \emptyset, \mathsf{Id}_X) : X \to X$.

Definition 7 (Concrete bigraph with sharing). A concrete bigraph

$$F = (V_F, E_F, ctrl_F, prnt_F, link_F) : \langle k, X \rangle \to \langle m, Y \rangle$$

consists of a concrete place graph with sharing $F^P = (V_F, ctrl_F, prnt_F) : k \to m$ and a concrete link graph $F^L = (V_F, E_F, ctrl_F, link_F) : X \to Y$. We write the concrete bigraph with sharing as $F = (F^P, F^L)$.

Definitions: support translation, lean-support equivalence, concretion, abstraction.

More definitions: level, normalised levels, occurrence, matching, concrete occurrence, underlying graph

Stochastic bigraphs [2]

From PhD thesis [3]

Definition 8 (reaction rule). A reaction rule is a pair

$$R = (R: m \to J, R': m \to J),$$

sometimes written as $R \longrightarrow R'$, where R is the redex and R' the reactum, and R is solid. The rule generates all the ground reaction rules (r, r'), where $r = (R \otimes \operatorname{id}_Y) \circ d$ and $r' = (R' \otimes \operatorname{id}_Y) \circ d$ for some discrete ground parameter $d : \epsilon \to \langle m, Y \rangle$. The reaction relation $\longrightarrow \triangleright_R$ over ground bigraphs is defined by

$$g \longrightarrow_{\mathsf{R}} g' \text{ iff } g = Dr \text{ and } g' = Dr'$$

for some bigraph D and some ground reaction rule (r, r') generated from R.

Definition 9 (bigraphical reactive system (BRS)). A bigraphical reactive system consists of a pair $(\mathcal{B}, \mathcal{R})$, where \mathcal{B} is a set of agents and \mathcal{R} is a set of reaction rules defined over \mathcal{B} . It has a reaction relation

which will be written \longrightarrow when \mathcal{R} is understood. We write $(\mathcal{B}(\Sigma), \mathcal{R})$ when the elements of \mathcal{B} are Σ -sorted.

1.1 New stuff

Definition 10 (probabilistic reaction rule). A probabilistic reaction rule R is a triple (R, R', p), sometimes written $R \stackrel{p}{\longrightarrow} R'$, where (R, R') is a reaction rule and $p \in [0, 1]$ is a probability.

Define NBRS

Lemma: any MDP can be expressed as an NBRS

Changes from PBRS: each reaction rule annotated with an action name (probabilities normalised over each action separately) and an integer reward/cost, predicates get a reward/cost, too.

2 Jupyter interface & visualisations

We introduce a convenient graphical user interface for working with bigraphs via Jupyter notebooks.

Example 1. Consider an MDP $(S, \overline{s}, A, P, L)$, where... Look at Figure 1.

Fig. 1. The full transition system of Example 1.

 ${\bf Fig.\,2.}$ The BigraphER Jupyter interface with syntax highlighting.

Fig. 3. ...

Fig. 4. ...

```
BigraphEx: Bigraph Evaluator & Rewriting

Version: 1.7.0

Date: 1.7.0
```

Fig. 5. ...

Listing 1.1. ...

```
atomic ctrl S0 = 0;
atomic ctrl S1 = 0;
atomic ctrl S2 = 0;
atomic ctrl S3 = 0;
\mathbf{big} initial = S0;
big heads = S2;
big tails = S3;
action a
  react to Temp = S0 -[1.]-> S1;
  react loopHeads = S2 - [1.] - S2;
  react loop Tails = S3 - [1.] - > S3;
end
action b[1]
  react to Init = S1 -[0.7] -> S0;
  react loop = S1 -[0.3]-> S1;
end
action c
  react to Heads = S1 -[0.5] -> S2;
  react to Tails = S1 -[0.5] -> S3;
begin nbrs
  init initial;
  rules = [ {toTemp, toInit, loop, toHeads,
  toTails, loopHeads, loopTails} ];
  preds = { initial, heads[3], tails };
end
```

3 Exporting to PRISM

Transitions, state rewards, transition rewards

4 Case study in autonomous agents

References

1. Giaquinta, R., Hoffmann, R., Ireland, M., Miller, A., Norman, G.: Strategy synthesis for autonomous agents using PRISM. In: Dutle, A., Muñoz, C.A., Narkawicz, A. (eds.) NASA Formal Methods - 10th International Symposium, NFM 2018, Newport

- News, VA, USA, April 17-19, 2018, Proceedings. Lecture Notes in Computer Science, vol. 10811, pp. 220–236. Springer (2018). https://doi.org/10.1007/978-3-319-77935-5_16, https://doi.org/10.1007/978-3-319-77935-5_16
- 3. Sevegnani, M.: Bigraphs with sharing and applications in wireless networks. Ph.D. thesis, University of Glasgow, UK (2012), http://theses.gla.ac.uk/3742/
- 4. Sevegnani, M., Calder, M.: Bigraphs with sharing. Theor. Comput. Sci. **577**, 43–73 (2015). https://doi.org/10.1016/j.tcs.2015.02.011, https://doi.org/10.1016/j.tcs.2015.02.011