

Statistical Signal **Processing**

i.i.d: independently identically distributed

1. Math

$\pi \approx 3.14159$	$e \approx 2.71828$	$\sqrt{2} \approx 1.414$	$\sqrt{3} \approx 1.732$
Binome, Trinome		2 2	
$(a \pm b)^2 = a^2$			(a-b)(a+b)
	$\pm 3a^{2}b + 3ab^{2} \pm$		
$(a+b+c)^2 =$	$a^2 + b^2 + c^2 +$	2ab + 2ac + 2bc	2

Folgen und Reihen

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2} \qquad \sum_{k=0}^{n} q^k = \frac{1-q^{n+1}}{1-q} \qquad \sum_{n=0}^{\infty} \frac{\mathbf{z}^n}{n!} = \epsilon$$
Aritmetrische Summenformel Geometrische Summenformel Exponentialreih

$$\begin{array}{lll} \textbf{Mittelwerte} & (\sum \text{ von } i \text{ bis } N) & (\text{Median: Mitte einer geordneten Listr} \\ \overline{x}_{\text{ar}} = \frac{1}{N} \sum x_i & \geq & \overline{x}_{\text{geo}} = \sqrt[N]{\prod x_i} & \geq & \overline{x}_{\text{hm}} = \frac{N}{\sum \frac{1}{x_i}} \\ \text{Arithmetisches} & \text{Geometrisches Mittel} & & \text{Harmonisches} \end{array}$$

$$\begin{array}{ll} \textbf{Ungleichungen:} & \textbf{Bernoulli-Ungleichung:} \ (1+x)^n \geq 1 + nx \\ \big| |x| - |y| \big| \leq |x \pm y| \leq |x| + |y| & \Big| \frac{\underline{x}^\top \cdot \underline{y}}{\text{Cauchy-Schwarz-Ungleichung}} \Big| & \frac{\underline{x}^\top \cdot \underline{y}}{\text{Cauchy-Schwarz-Ungleichung}} \Big| & \frac{\underline{x}^\top \cdot \underline{y}}{\text{Cauchy-Schwarz-Ungleichung}} \Big| & \frac{\underline{y}}{\text{Cauchy-Schwarz-Ungleichung}} \Big| & \frac{\underline{y}}{\text$$

Mengen: De Morgan:
$$\overline{A \cap B} = \overline{A} \uplus \overline{B}$$
 $\overline{A \uplus B} = \overline{A} \cap \overline{B}$

1.1. Exp. und Log. $e^x := \lim_{x \to a} (1 + \frac{x}{x})^n$ $e \approx 2.71828$

	$n \to \infty$,
$a^x = e^{x \ln a}$	$\log_a x = \frac{\ln x}{\ln a}$	$\ln x \le x - 1$
$ ln(x^a) = a ln(x) $	$\ln(\frac{x}{a}) = \ln x - \ln a$	log(1) = 0

1.2. Matrizen $A \in \mathbb{K}^{m \times n}$

 $\dim \mathbb{K} = n = \operatorname{rang} \mathbf{A} + \dim \ker \mathbf{A} \quad \operatorname{rang} \mathbf{A} = \operatorname{rang} \mathbf{A}^{\mathsf{T}}$

1.2.1 Quadratische Matrizen $A \in \mathbb{K}^{n \times n}$ regulär/invertierbar/nicht-singulär $\Leftrightarrow \det(\underline{A}) \neq 0 \Leftrightarrow \operatorname{rang} \underline{A} = n$ singulär/nicht-invertierbar $\Leftrightarrow \det(\underline{A}) = 0 \Leftrightarrow \operatorname{rang} \underline{A} \neq n$

orthogonal $\Leftrightarrow \boldsymbol{A}^{\top} = \boldsymbol{A}^{-1} \Rightarrow \det(\boldsymbol{A}) = \pm 1$

symmetrisch: $\boldsymbol{A} = \boldsymbol{A}^{\top}$ schiefsymmetrisch: $\boldsymbol{A} = -\boldsymbol{A}^{\top}$

1.2.2 Determinante von $A \in \mathbb{K}^{n \times n}$: det(A) = |A| $\begin{bmatrix} A & Q \end{bmatrix}$ $= \det \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{0} & \mathbf{D} \end{bmatrix} = \det (\mathbf{A}) \det (\mathbf{D})$ C D

 $det(\mathbf{A}) = det(\mathbf{A}^T)$ $\det(\mathbf{A}^{-1}) = \det(\mathbf{A})^{-1}$ $\det(\mathbf{A}\mathbf{B}) = \det(\mathbf{A})\det(\mathbf{B}) = \det(\mathbf{B})\det(\mathbf{A}) = \det(\mathbf{B}\mathbf{A})$ Hat \mathbf{A} 2 linear abhäng. Zeilen/Spalten $\Rightarrow |\mathbf{A}| = 0$

1.2.3 Eigenwerte (EW) λ und Eigenvektoren (EV) v

$$\underbrace{\boldsymbol{A}}_{\boldsymbol{v}} = \lambda \underline{\boldsymbol{v}} \quad \det \underbrace{\boldsymbol{A}}_{\boldsymbol{i}} = \prod \lambda_i \quad \operatorname{Sp} \underbrace{\boldsymbol{A}}_{\boldsymbol{i}} = \sum a_{ii} = \sum \lambda_i$$

Eigenwerte: $det(\mathbf{A} - \lambda \mathbf{1}) = 0$ Eigenvektoren: $ker(\mathbf{A} - \lambda_i \mathbf{1}) = \underline{\mathbf{v}}_i$ EW von Dreieck/Diagonal Matrizen sind die Elem. der Hauptdiagonale.

1.2.4 Spezialfall 2×2 Matrix A

$$\det(\underline{A}) = ad - bc
\operatorname{Sp}(\underline{A}) = a + d \qquad \begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{\det \underline{A}} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

$$\frac{\partial \underline{x}^{\top} \underline{y}}{\partial \underline{x}} = \frac{\partial \underline{y}^{\top} \underline{x}}{\partial \underline{x}} = \underline{y} \qquad \frac{\partial \underline{x}^{\top} \underline{A} \underline{x}}{\partial \underline{x}} = (\underline{A} + \underline{A}^{\top}) \underline{x}$$
$$\frac{\partial \underline{x}^{\top} \underline{A} \underline{y}}{\partial \underline{A}} = \underline{x} \underline{y}^{\top} \qquad \frac{\partial \det(\underline{B} \underline{A} \underline{C})}{\partial \underline{A}} = \det(\underline{B} \underline{A} \underline{C}) \left(\underline{A}^{-1}\right)^{\top}$$

1.2.6 Ableitungsregeln ($\forall \lambda, \mu \in \mathbb{R}$)

Linearität:
$$(\lambda f + \mu g)'(x) = \lambda f'(x) + \mu g'(x_0)$$

Produkt: $(f \cdot g)'(x) = f'(x)g(x) + f(x)g'(x)$

 $\left(\frac{f}{g}\right)'(x) = \frac{g(x)f'(x) - f(x)g'(x)}{g(x)^2}$ (NAZ-ZAN

(f(g(x)))' = f'(g(x))g'(x)Kettenregel

1.3. Integrale $\int e^x dx = e^x = (e^x)'$

Partielle Integration:
$$\int uw' = uw - \int u'w$$
Substitution:
$$\int f(g(x))g'(x) dx = \int f(t) dt$$

F(x) - C	f(x)	f'(x)
$\frac{1}{q+1}x^{q+1}$	x^q	qx^{q-1}
$\frac{2\sqrt{ax^3}}{3}$	\sqrt{ax}	$\frac{\frac{a}{2\sqrt{ax}}}{\frac{1}{x}}$ $e^{ax}(ax+1)$
$x \ln(ax) - x$	$\ln(ax)$	$\frac{1}{r}$
$\frac{1}{a^2}e^{ax}(ax-1)$	$x \cdot e^{ax}$	$e^{ax}(ax+1)$
$\frac{a^x}{\ln(a)}$	a^x	$a^x \ln(a)$
$-\cos(x)$	$\sin(x)$	$\cos(x)$
$\cosh(x)$	$\sinh(x)$	$\cosh(x)$
$-\ln \cos(x) $	tan(x)	-1

$$\int e^{at} \sin(bt) dt = e^{at} \frac{a \sin(bt) + b \cos(bt)}{a^2 + b^2}$$

$$\int \frac{dt}{\sqrt{at + b}} = \frac{2\sqrt{at + b}}{a} \qquad \int t^2 e^{at} dt = \frac{(ax - 1)^2 + 1}{a^3} e^{at}$$

$$\int t e^{at} dt = \frac{at - 1}{a^2} e^{at} \qquad \int x e^{ax^2} dx = \frac{1}{2a} e^{ax^2}$$

1.3.1 Volumen und Oberfläche von Rotationskörpern um x-Achse $V = \pi \int_{a}^{b} f(x)^{2} dx$ $O = 2\pi \int_{a}^{b} f(x) \sqrt{1 + f'(x)^2} dx$

2. Probability Theory Basics

2.1. Kombinatorik

Mögliche Variationen/Kombinationen um k Elemente von maximal n Elementen zu wählen bzw. k Elemente auf n Felder zu verteilen:

	Mit Reihenfolge	Reihenfolge egal
Mit Wiederholung	n^k	$\binom{n+k-1}{k}$
Ohne Wiederholung	$\frac{n!}{(n-k)!}$	$\binom{n}{k}$

Permutation von n mit jeweils k gleichen Elementen: $\frac{n!}{k! \cdot k! \cdot k! \cdot k! \cdot k!}$

Binomialkoeffizient $\binom{n}{k} = \binom{n}{n-k} = \frac{n!}{k! \cdot (n-k)!}$

 $\binom{n}{0} = 1$ $\binom{n}{1} = n$ $\binom{4}{2} = 6$ $\binom{5}{2} = 10$ $\binom{6}{2} = 15$

2.2. Der Wahrscheinlichkeitsraum (Ω, \mathbb{F}, P)

Ergebnismenge	$\Omega = \left\{\omega_1, \omega_2, \ldots\right\}$	Ergebnis $\omega_j \in \Omega$
Ereignisalgebra	$\mathbb{F} = \{A_1, A_2, \ldots\}$	Ereignis $A_i \subseteq \Omega$
Wahrscheinlichkeitsmaß	$P:\mathbb{F}\to[0,1]$	$P(A) = \frac{ A }{ \Omega }$

2.3. Wahrscheinlichkeitsmaß P

$$\mathsf{P}(A) = \frac{|A|}{|\Omega|} \qquad \qquad \mathsf{P}(A \cup B) = \mathsf{P}(A) + \mathsf{P}(B) - \mathsf{P}(A \cap B)$$

2.3.1 Axiome von Kolmogorow

Nichtnegativität: $P(A) \ge 0 \Rightarrow P : \mathbb{F} \mapsto [0, 1]$ Normiertheit:

Additivität:

 $P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)$ wenn $A_i \cap A_i = \emptyset$, $\forall i \neq j$

2.4. Bedingte Wahrscheinlichkeit

Bedingte Wahrscheinlichkeit für A falls B bereits eingetreten ist:

 $P_B(A) = P(A|B) = \frac{P(A \cap B)}{P(B)}$

Totale Wahrscheinlichkeit: $\ \ \, \mathsf{P}(A) = \sum_{i \in I} \mathsf{P}(A|B_i) \, \mathsf{P}(B_i)$

Satz von Bayes:

Multiplikationssatz: $P(A \cap B) = P(A|B) P(B) = P(B|A) P(A)$

2.5. Zufallsvariable

 $X: \Omega \mapsto \Omega'$ ist Zufallsvariable, wenn für jedes Ereignis $A' \in \mathbb{F}'$ im Bildraum ein Ereignis A im Urbildraum F existiert, sodass $\{\omega \in \Omega | X(\omega) \in A'\} \in \mathbb{F}$

2.6. Distribution

Abk.	Zusammenhang
pdf	$f_X(x) = \frac{\mathrm{d}F_X(x)}{\mathrm{d}x}$
cdf	$F_X(x) = \int_{-\infty}^x f_X(\xi) \mathrm{d}\xi$
	pdf

Joint CDF: $F_{X,Y}(x,y) = P(\{X \le x, Y \le y\})$

2.7. Relations between $f_{\mathbf{X}}(x), f_{\mathbf{X},\mathbf{Y}}(x,y), f_{\mathbf{X}\mid\mathbf{Y}}(x|y)$

$$f_{X,Y}(x,y) = f_{X\mid Y}(x,y) f_{Y}(y) = f_{Y\mid X}(y,x) f_{X}(x)$$

$$\int_{-\infty}^{\infty} f_{X,Y}(x,\xi) \, \mathrm{d}\xi = \int_{-\infty}^{\infty} f_{X\mid Y}(x,\xi) f_{Y}(\xi) \, \mathrm{d}\xi = f_{X}(x)$$

$$\underbrace{\int_{-\infty}^{\infty} f_{X,Y}(x,\xi) \, \mathrm{d}\xi}_{\text{Marginalization}} = \underbrace{\int_{-\infty}^{\infty} f_{X\mid Y}(x,\xi) f_{Y}(\xi) \, \mathrm{d}\xi}_{\text{Total Probability}}$$

2.8. Bedingte Zufallsvariablen

Ereignis A gegeben:	$F_{X A}(x A) = P(\{X \le x\} A)$
ZV Y gegeben:	$F_{X Y}(x y) = P(\{X \le x\} \{Y = y\})$
	$p_{X Y}(x y) = \frac{p_{X,Y}(x,y)}{p_{Y}(y)}$
	$f_{X\mid Y}(x y) = \frac{f_{X,Y}(x,y)}{f_{Y}(y)} = \frac{\mathrm{d}F_{X\mid Y}(x y)}{\mathrm{d}x}$

2.9. Unabhängigkeit von Zufallsvariablen

 X_1, \dots, X_n sind stochastisch unabhängig, wenn für jedes $\underline{x} \in \mathbb{R}^n$ gilt:

$$\begin{aligned} &F_{X_1,\cdots,X_n}(x_1,\cdots,x_n) = \prod_{i=1}^n F_{X_i}(x_i) \\ &p_{X_1,\cdots,X_n}(x_1,\cdots,x_n) = \prod_{i=1}^n p_{X_i}(x_i) \\ &f_{X_1,\cdots,X_n}(x_1,\cdots,x_n) = \prod_{i=1}^n f_{X_i}(x_i) \end{aligned}$$

3. Common Distributions

3.1. Binomialverteilung $\mathcal{B}(n,p)$ mit $p \in [0,1], n \in \mathbb{N}$ Folge von n Bernoulli-Experimenten

p: Wahrscheinlichkeit für Erfolg k: Anzahl der Erfolge

$$p_X(k) = B_{n,p}(k) = \begin{cases} \binom{n}{k} p^k (1-p)^{n-k} & k \in \{0,\dots,n\} \\ 0 & \text{sonst} \end{cases}$$

3.2. Normalverteilung

 $\mu \in \mathbb{R}$

Charakt. Funktion

Var[X] = Cov[X, X]

3.3. Sonstiges

Erwartungswert

Gammadistribution $\Gamma(\alpha, \beta)$: $E[X] = \frac{\alpha}{\beta}$

Exponential: $f(x, \lambda) = \lambda e^{-\lambda x}$ $E[X] = \lambda^{-1}$ $Var[X] = \lambda^{-2}$

4. Wichtige Parameter

4.1. Erwartungswert (1. zentrales Moment)

gibt den mittleren Wert einer Zufallsvariablen an

$$\begin{array}{cccc} \mu_X = \mathsf{E}[X] = \sum\limits_{x \in \Omega'} x \cdot \mathsf{P}_X(x) & \stackrel{\wedge}{=} & \int\limits_{\mathbb{R}} x \cdot f_X(x) \, \mathrm{d}x \\ & & \\ \mathsf{diskrete} \, X \colon \! \Omega \! \to \! \Omega' & \mathsf{stetige} \, X \colon \! \Omega \! \to \! \mathbb{R} \end{array}$$

 $E[\alpha X + \beta Y] = \alpha E[X] + \beta E[Y]$ $X \le Y \Rightarrow E[X] \le E[Y]$ $\mathsf{E}[X^2] = \mathsf{Var}[X] + \mathsf{E}[X]^2$

E[X Y] = E[X] E[Y], falls X und Y stochastisch unabhängig

4.1.1 Für Funktionen von Zufallsvariablen g(x)

$$\mathsf{E}[g(\mathsf{X})] = \sum_{x \in \Omega'} g(x) \, \mathsf{P}_{\mathsf{X}}(x) \quad \stackrel{\triangle}{=} \quad \int\limits_{\mathbb{R}} g(x) \, f_X(x) \, \mathrm{d}x$$

4.2. Varianz (2. zentrales Moment)

ist ein Maß für die Stärke der Abweichung vom Erwartungswert

$$\sigma_X^2 = \operatorname{Var}[X] = \operatorname{E}\left[(X - \operatorname{E}[X])^2\right] = \operatorname{E}[X^2] - \operatorname{E}[X]^2$$

$$Var[\alpha X + \beta] = \alpha^2 Var[X]$$

$$\begin{bmatrix} n \\ \nabla V_{0}[X] \end{bmatrix} = \sum_{i=1}^{n} C_{i}[X_{i}[X]]$$

$$\operatorname{Var}\left[\sum_{i=1}^{N}X_{i}\right] = \sum_{i=1}^{N}\operatorname{Var}[X_{i}] + \sum_{j\neq i}\operatorname{Cov}[X_{i},X_{j}]$$
Standard Abusinburgs — $\sqrt{\operatorname{Var}[X]}$

4.3. Kovarianz

Maß für den linearen Zusammenhang zweier Variablen

$$Cov[X, Y] = E[(X - E[X])(Y - E[Y])^{\top}] =$$

= $E[X Y^{\top}] - E[X] E[Y]^{\top} = Cov[Y, X]$

 $Cov[\alpha X + \beta, \gamma Y + \delta] = \alpha \gamma Cov[X, Y]$ Cov[X + U, Y + V] = Cov[X, Y] + Cov[X, V] + Cov[U, Y] + Cov[U, V]

$$\begin{array}{l} \textbf{4.3.1 Korrelation} = \textbf{standardisierte Kovarianz} \\ \rho(X,Y) = \frac{\text{Cov}[X,Y]}{\sqrt{\text{Var}[X]\cdot \text{Var}[Y]}} = \frac{C_{X},y}{\sigma_{X}\cdot \sigma_{y}} \qquad \rho(X,Y) \in [-1;1] \end{array}$$

4.3.2 Kovarianzmatrix für
$$\underline{z} = (\underline{x}, \underline{y})^{\top}$$

$$\operatorname{Cov}[\underline{z}] = \underline{C}_{\underline{z}} = \begin{bmatrix} C_{X} & C_{XY} \\ C_{XY} & C_{Y} \end{bmatrix} = \begin{bmatrix} \operatorname{Cov}[X, X] & \operatorname{Cov}[X, Y] \\ \operatorname{Cov}[Y, X] & \operatorname{Cov}[Y, Y] \end{bmatrix}$$

Immer symmetrisch: $C_{xy} = C_{yx}!$ Für Matrizen: $C_{xy} = C_{yx}^{\top}$

5. Estimation

5.1. Estimation

Statistic Estimation treats the problem of inferring underlying characteristics of unknown random variables on the basis of observations of outputs of those random variables.

Sample Space Ω Sigma Algebra $\mathbb{F} \subseteq 2^\Omega$ nonempty set of outputs of experiment set of subsets of outputs (events)

Probability $P : \mathbb{F} \mapsto [0, 1]$ Random Variable $X: \Omega \mapsto \mathbb{X}$ mapped subsets of Ω Observations: x_1, \ldots, x_N

single values of Xpossible observations of X

Unknown parameter $\theta \in \Theta$ Estimator $T: \mathbb{X} \mapsto \Theta$

Observation Space X

parameter of propability function $T(X) = \hat{\theta}$, finds $\hat{\theta}$ from X

unknown parm. θ R.V. of param. Θ

estimation of param. $\hat{\theta}$ estim. of R.V. of parm $T(X) = \hat{\Theta}$

5.2. Quality Properties of Estimators

Consistent: If
$$\lim_{N \to \infty} T(x_1, \dots, x_N) = \theta$$
 Bias $\mathrm{Bias}(T) := \mathsf{E}[T(X_1, \dots, X_N)] - \theta$

unbiased if Bias(T) = 0 (biased estimators can provide better estimates than unbiased estimators.)

Variance $Var[T] := E[(T - E[T])^2]$

5.3. Mean Square Error (MSE)

The MSE is an extension of the Variance $Var[T] := E[(T - E[T])^2]$

$$\begin{aligned} \mathsf{MSE:} \ \varepsilon[\mathit{T}] &= \mathsf{E}\left[(\mathit{T} - \theta)^2 \right] = \mathsf{Var}(\mathit{T}) + (\mathrm{Bias}[\mathit{T}])^2 \\ &= \! \mathsf{E}[(\hat{\theta} - \theta)^2] \end{aligned}$$

If Θ is also r.v. \Rightarrow mean over both (e.g. Bayes est.):

Mean MSE:
$$E[(T(X) - \Theta)^2] = E[E[(T(X) - \Theta)^2 | \Theta = \theta]]$$

5.3.1 Minimum Mean Square Error (MMSE)

Minimizes mean square error: $\arg \min \mathsf{E} \left[(\hat{\theta} - \theta)^2 \right]$

$$\mathsf{E}\left[(\hat{\theta}-\theta)^2\right] = \mathsf{E}[\theta^2] - 2\hat{\theta}\,\mathsf{E}[\theta] + \hat{\theta}^2$$

$$\text{Solution: } \frac{\mathrm{d}}{\mathrm{d}\hat{\theta}} \, \mathsf{E} \left[(\hat{\theta} - \theta)^2 \right] \stackrel{!}{=} 0 = -2 \, \mathsf{E}[\theta] + 2 \hat{\theta} \quad \Rightarrow \hat{\theta}_{\mathsf{MMSE}} = \mathsf{E}[\theta]$$

5.4. Maximum Likelihood

Given model $\{\mathbb{X}, \mathbb{F}, \mathsf{P}_{\theta}; \theta \in \Theta\}$, assume $\mathsf{P}_{\theta}(\underline{x})$ or $f_{\mathsf{X}}(\underline{x}, \theta)$ for observed data x. Estimate parameter θ so that the likelihood $L(x, \theta)$ or $L(\theta | X = x)$ to obtain x is maximized

Likelihood Function: (Prob. for θ given \underline{x})

Discrete:
$$L(x_1, \dots, x_N; \theta) = P_{\theta}(x_1, \dots, x_N)$$

Continuous: $L(x_1,\ldots,x_N;\theta)=f_{X_1,\ldots,X_N}(x_1,\ldots,x_N,\theta)$ If N observations are Identically Independently Distributed (i.i.d.):

$$L(\underline{\boldsymbol{x}}, \theta) = \prod_{i=1}^{N} \mathsf{P}_{\theta}(x_i) = \prod_{i=1}^{N} f_{X_i}(x_i)$$

ML Estimator (Picks
$$\theta$$
): $T_{\text{ML}}: X \mapsto \operatorname*{argmax}_{\theta \in \Theta} \{L(X, \theta)\} = \theta$

$$= \underset{\theta \in \Theta}{\operatorname{argmax}} \{ \log L(\underline{X}, \theta) \} \stackrel{\text{i.i.d.}}{=} \underset{\theta \in \Theta}{\operatorname{argmax}} \{ \sum \log L(x_i, \theta) \}$$

Find Maximum:
$$\frac{\partial L(\underline{x},\theta)}{\partial \theta} = \left. \frac{\mathrm{d}}{\mathrm{d}\theta} \log L(x;\theta) \right|_{\theta = \hat{\theta}} \stackrel{!}{=} 0$$

Solve for θ to obtain ML estimator function $\hat{\theta}_{\mathrm{MI}}$

Check quality of estimator with MSE

Maximum-Likelihood Estimator is Asymptotically Efficient. However, there might be not enough samples and the likelihood function is often not known

5.5. Uniformly Minimum Variance Unbiased (UMVU) Estimators (Best unbiased estimators)

Best unbiased estimator: Lowest Variance of all estimators.

Fisher's Information Inequality: Estimate lower bound of variance if

- $L(x,\theta) > 0, \forall x, \theta$
- $L(x, \theta)$ is diffable for θ
- $\int_{\mathbb{X}} \frac{\partial}{\partial \theta} L(x, \theta) dx = \frac{\partial}{\partial \theta} \int_{\mathbb{X}} L(x, \theta) dx$

$$g(x,\theta) = \frac{\partial}{\partial \theta} \log L(x,\theta) = \frac{\frac{\partial}{\partial \theta} L(x,\theta)}{L(x,\theta)} \qquad \mathsf{E}[g(x,\theta)] = 0$$

$$I_{\mathsf{F}}(\theta) := \mathsf{Var}[g(\mathsf{X}, \theta)] = \mathsf{E}[g(x, \theta)^2] = - \, \mathsf{E}\left[rac{\partial^2}{\partial \theta^2} \log L(\mathsf{X}, \theta)
ight]$$

Cramér-Rao Lower Bound (CRB): (if T is unbiase

$$\mathsf{Var}[T(X)] \geq \left(\frac{\partial \, \mathsf{E}[T(X)]}{\partial \theta}\right)^2 \, \frac{1}{I_{\mathsf{F}}(\theta)} \qquad \mathsf{Var}[T(X)] \geq \frac{1}{I_{\mathsf{F}}(\theta)}$$

For N i.i.d. observations: $I_{\rm E}^{(N)}(x,\theta) = N \cdot I_{\rm E}^{(1)}(x,\theta)$

$$\begin{array}{l} \textbf{5.5.1 Exponential Models} \\ \text{If } f_X(x) = \frac{h(x) \exp\left(a(\theta)t(x)\right)}{\exp(b(\theta))} \text{ then } I_F(\theta) = \frac{\partial a(\theta)}{\partial \theta} \, \frac{\partial E[t(X)]}{\partial \theta} \end{array}$$

Some Derivations: (check in exam)

Uniformly: Not diffable \Rightarrow no $I_F(\theta)$

Normal
$$\mathcal{N}(\theta, \sigma^2)$$
: $g(x, \theta) = \frac{(x - \theta)}{\sigma^2}$ $I_{\mathsf{F}}(\theta) = \frac{1}{\sigma^2}$

Binomial $\mathcal{B}(\theta, K)$: $g(x, \theta) = \frac{x}{\theta} - \frac{K - x}{1 - \theta}$ $I_{\mathsf{F}}(\theta) = \frac{K}{\theta(1 - \theta)}$

5.6. Bayes Estimation (Conditional Mean)

A Priori information about $\hat{\theta}$ is known as probability $f_{\Theta}(\theta; \sigma)$ with random variable Θ and parameter σ . Now the conditional pdf $f_{X\mid\Theta}(x,\theta)$ is used to find θ by minimizing the mean MSE instead of uniformly MSE. Mean MSE for Θ : $\mathbb{E}\left[\mathbb{E}[(T(X) - \Theta)^2 | \Theta = \theta]\right]$

Conditional Mean Estimator:

$$\begin{split} & T_{\text{CM}}: x \mapsto \mathbf{E}[\Theta | X = x] = \int_{\Theta} \theta \cdot f_{\Theta | X}(\theta | x) \, \mathrm{d}\theta \\ & \text{Posterior } f_{\Theta | \underline{X}}(\theta | \underline{x}) = \frac{f_{\underline{X} | \Theta}(\underline{x}) f_{\theta}(\theta)}{\int_{\Theta} f_{X, \xi}(\underline{x}, \xi) \, \mathrm{d}\xi} = \frac{f_{\underline{X} | \theta}(\underline{x}) f_{\theta}(\theta)}{f_{X}(x)} \end{split}$$

Hint: to calculate $f_{\Theta|X}(\theta|\underline{x})$: Replace every factor not containing θ , such as $\frac{1}{f_{Y}(x)}$ with a factor γ and determine γ at the end such that $\int_{\Theta} f_{\Theta|\underline{X}}(\theta|\underline{x}) d\theta = 1$ MMSE: $E[Var[X | \Theta = \theta]]$

$$\begin{split} & \text{Multivariate Gaussian: } X, \Theta \sim \mathcal{N} \quad \Rightarrow \sigma_X^2 = \sigma_{X \mid \Theta = \theta}^2 + \sigma_{\Theta} \\ & \mathcal{T}_{\text{CM}} : x \mapsto \text{E}[\Theta \mid X = x] = \mu_{\Theta} + \mathcal{L}_{\Theta, X} \underbrace{C_X^{-1}(\underline{x} - \mu_{X})} \end{split}$$

$$\mathbb{E}\left[\|T_{\mathsf{CM}} - \Theta\|_{2}^{2}\right] = \operatorname{tr}(\tilde{\boldsymbol{C}}_{\theta \mid X}) = \operatorname{tr}(\tilde{\boldsymbol{C}}_{\Theta} - \tilde{\boldsymbol{C}}_{\Theta, X}\tilde{\boldsymbol{C}}_{X}^{-1}\tilde{\boldsymbol{C}}_{X, \Theta})$$

Orthogonality Principle:

$$T_{\mathsf{CM}}(\underline{X}) - \Theta \perp h(\underline{X}) \quad \Rightarrow \quad \mathsf{E}[(T_{\mathsf{CM}}(\underline{X}) - \Theta)h(\underline{X})] = 0$$

MMSE Estimator: $\hat{\theta}_{MMSE} = \arg \min MSE$

minimizes the MSE for all estimators

5.7. Example:

Estimate mean θ of X with prior knowledge $\theta \in \Theta \sim \mathcal{N}$: $X \sim \mathcal{N}(\theta, \sigma_{X \mid \Theta = \theta}^2)$ and $\Theta \sim \mathcal{N}(m, \sigma_{\Theta}^2)$

$$\hat{\theta}_{\mathsf{CM}} = \mathsf{E}[\Theta | \underline{X} = \underline{x}] = \frac{N \sigma_{\Theta}^2}{\sigma_{X}^2 | \Theta = \theta^{+N} \sigma_{\Theta}^2} \hat{\theta}_{\mathsf{ML}} + \frac{\sigma_{X}^2 | \Theta = \theta}{\sigma_{X}^2 | \Theta = \theta^{+N} \sigma_{\Theta}^2} m$$

For N independent observations $x_i\colon \hat{\theta}_{\mathrm{ML}} = \frac{1}{N}\sum x_i$ Large $N\Rightarrow$ ML better, small $N\Rightarrow$ CM better

6. Linear Estimation

t is now the unknown parameter θ , we want to estimate u and \underline{x} is the input vector... review regression problem $y=A\underline{x}$ (we solve for \underline{x}), here we solve for \underline{t} , because \underline{x} is known (measured)! Confusing...

1. Training → 2. Estimation

Training: We observe y and $\underline{\boldsymbol{x}}$ (knowing both) and then based on that we try to estimate y given x (only observe x) with a linear model $\hat{u} = \mathbf{x}^{\top} \mathbf{t}$

Estimation:
$$\hat{y} = \underline{x}^{\top}\underline{t} + m$$
 or $\hat{y} = \underline{x}^{\top}\underline{t}$

Given: N observations (y_i, x_i) , unknown parameters t, noise m

$$\underline{\boldsymbol{y}} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} \quad \underline{\boldsymbol{X}} = \begin{bmatrix} \underline{\boldsymbol{x}}_1^\top \\ \vdots \\ \underline{\boldsymbol{x}}_n^\top \end{bmatrix} \quad \text{Note: } \hat{y} \neq y!$$

Problem: Estimate y based on given (known) observations \underline{x} and unknown parameter t with assumed linear Model: $\hat{y} = x^{\top} t$

Note
$$y = \underline{\boldsymbol{x}}^{\top}\underline{\boldsymbol{t}} + m \to y = \underline{\boldsymbol{x}}'^{\top}\underline{\boldsymbol{t}}'$$
 with $\underline{\boldsymbol{x}}' = \begin{pmatrix} \underline{\boldsymbol{x}} \\ 1 \end{pmatrix}$, $t' = \begin{pmatrix} \underline{\boldsymbol{t}} \\ m \end{pmatrix}$

Sometimes in Exams: $\hat{y} = x^{\top}t \Leftrightarrow \hat{x} = T^{\top}y$ estimate \underline{x} given y and unknown T

6.1. Least Square Estimation (LSE)

Tries to minimize the square error for linear Model: $\hat{y}_{1S} = x^{\top} t_{1S}$ Least Square Error: $\min \left[\sum_{i=1}^{N} (y_i - \underline{x}_i^{\top} \underline{t})^2 \right] = \min_{\underline{t}} \left\| \underline{y} - \underline{X}\underline{t} \right\|$

$$t_{\mathsf{LS}} = (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{X}^{\top} \boldsymbol{y}$$

$$\hat{y}_{lS} = X\underline{t}_{LS} \in span(X)$$

Orthogonality Principle: N observations $x_i \in \mathbb{R}^d$ $Y - XT_{1S} \perp \operatorname{span}[X] \Leftrightarrow Y - XT_{1S} \in \operatorname{null}[X^{\top}]$, thus $\mathbf{X}^{\top}(\mathbf{Y} - \mathbf{X}\mathbf{T}_{1S}) = 0$ and if $N > d \wedge \text{rang}[\mathbf{X}] = d$: $T_{\mathsf{LS}} = (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{Y}$

6.2. Linear Minimum Mean Square Estimator (LMMSE)

Estimate y with linear estimator t, such that $\hat{y} = t^{\top}x + m$ Note: the Model does not need to be linear! The estimator is linear!

$$\hat{y}_{\mathsf{LMMSE}} = \mathop{\arg\min}_{t,m} \mathsf{E} \left[\left\| \underline{\boldsymbol{y}} - (\underline{\boldsymbol{t}}^{\top} \underline{\boldsymbol{x}} + m) \right\|_{2}^{2} \right]$$

If Random joint variable
$$\underline{\boldsymbol{z}} = \begin{pmatrix} \underline{\boldsymbol{x}} \\ y \end{pmatrix}$$
 with

$$\underline{\underline{\mu}}_{\underline{\underline{z}}} = \begin{pmatrix} \underline{\underline{\mu}}_{\underline{\underline{w}}} \\ \mu_y \end{pmatrix} \text{ and } \underline{C}_{\underline{\underline{z}}} = \begin{bmatrix} \underline{C}_{\underline{\underline{w}}} & \underline{c}_{\underline{w}y} \\ c_{y\underline{w}} & c_y \end{bmatrix} \text{ then }$$

LMMSE Estimation of
$$y$$
 given x is
$$\hat{y} = \mu_y + \underline{c}_{y\underline{w}} \underline{C}_{\underline{w}}^{-1} (\underline{x} - \underline{\mu}_{\underline{w}}) = \underbrace{\underline{c}_{y\underline{w}} \underline{C}_{\underline{w}}^{-1} \underline{x} - \underline{\mu}_y + \underline{c}_{y\underline{w}} \underline{C}_{\underline{w}}^{-1} \underline{\mu}_{\underline{w}}}_{=m}$$
 Variance σ^2 for $\mathcal{N}(\mu, \sigma^2) : \hat{\sigma}_{\mathrm{ML}}^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2$

$$\text{Minimum MSE: E}\left[\left\|\underline{\underline{y}}-(\underline{\underline{x}}^{\top}\underline{\underline{t}}+m)\right\|_{2}^{2}\right]=c_{y}-c_{y\underline{\underline{x}}}C_{\underline{\underline{x}}}^{-1}\underline{c}_{\underline{\underline{x}}\underline{t}}$$

Hint: First calculate \hat{y} in general and then set variables according Multivariate: $\underline{\hat{y}} = \underline{T}_{LMMSE}^{\top} \underline{x}$ $\underline{T}_{LMMSE}^{\top} = \underline{C}_{y\underline{x}}\underline{C}_{x}^{-1}$

If
$$\underline{\mu}_z = \underline{0}$$
 then

Estimator
$$\hat{y} = \underline{c}_{y,\underline{x}} \underline{C}_{\underline{x}}^{-1} \underline{x}$$

Minimum MSE: $\mathbf{E}[c_{y,\underline{x}}] = c_y - \underline{t}^{\top}\underline{c}_{\underline{x}}$

6.3. Matched Filter Estimator (MF)

For channel y = hx + v, Filtered: $t^{\top}y = t^{\top}hx + t^{\top}v$ Find Filter \underline{t}^{\top} that maximizes SNR $= \frac{\|\underline{h}x\|}{\|x\|}$

$$\underline{\boldsymbol{t}}_{\mathsf{MF}} = \max_{\boldsymbol{t}} \left\{ \frac{\mathsf{E}\left[\left(\underline{\boldsymbol{t}}^{\top}\underline{\boldsymbol{h}}\boldsymbol{x}\right)^{2}\right]}{\mathsf{E}\left[\left(\underline{\boldsymbol{t}}^{\top}\underline{\boldsymbol{v}}\right)^{2}\right]} \right\}$$

In the lecture (estimate h)

$$\underline{T}_{\mathsf{MF}} = \max_{T} \left\{ \frac{\left| \mathbf{E} \left[\underline{\hat{\boldsymbol{h}}}^H \underline{\boldsymbol{h}} \right] \right|^2}{\operatorname{tr} \left[\mathsf{Var} \left[\underline{T} \underline{\boldsymbol{n}} \right] \right]} \right\}$$

 $\hat{\underline{h}}_{\mathsf{MF}} = T_{\mathsf{MF}} y$ $T_{\mathsf{MF}} \propto C_h S^H C_n^{-1}$

6.4. Example

with $\underline{H} = (h_{m,k}) \in \mathbb{C}^{M \times K}$ $(m \in \mathbf{Linear Channel Model} \ \underline{y} = \underline{S}\underline{h} + \underline{n} \ \text{with}$ $(m \in [1, M], k \in [1, K])$ $\underline{\boldsymbol{h}} \sim \mathcal{N}(0, \boldsymbol{C_h})$ and $\underline{\underline{\boldsymbol{n}}} \sim \widetilde{\mathcal{N}(0, \boldsymbol{C_n})}$

Linear Estimator $oldsymbol{T}$ estimates $\hat{oldsymbol{h}} = oldsymbol{T} oldsymbol{y} \in \mathbb{C}^{MK}$

$$\mathbf{T}_{\text{MMSE}} = \mathbf{C}_{\underline{h}\underline{y}}\mathbf{C}_{\underline{y}}^{-1} = \mathbf{C}_{\underline{h}}\mathbf{S}^{\text{H}}(\mathbf{S}\mathbf{C}_{\underline{h}}\mathbf{S}^{\text{H}} + \mathbf{C}_{\underline{n}})^{-1}$$

$$T_{\text{ML}} = \underline{T}_{\text{Cor}} = (\underline{S}^{\text{H}}\underline{C}_{\underline{n}}^{-1}\underline{S})^{-1}\underline{S}^{\text{H}}\underline{C}_{\underline{n}}^{-1}$$

$$T_{\text{MF}} \propto \underline{C}_{\underline{h}}\underline{S}^{\text{H}}\underline{C}_{\underline{n}}^{-1}$$
For Assumption $S^{\text{H}}S = N\sigma^2 1$ for and C_{T}

For Assumption $\underline{S}^{n}\underline{S} = N\sigma_{s}^{2}\underline{1}_{K\times M}$ and $\underline{C}_{\underline{n}} = \sigma_{\eta}^{2}\underline{1}_{N\times M}$			
Estimator Averaged Squared Bias		Variance	
ML/Correlator	0	$KM \frac{\sigma_{\eta}^2}{N\sigma_s^2}$	
Matched Filter	$\sum\limits_{i=1}^{KM} \lambda_i \left(rac{\lambda_i}{\lambda_1} - 1 ight)^2$	$\sum_{i=1}^{KM} \left(\frac{\lambda_i}{\lambda_1}\right)^2 \frac{\sigma_\eta^2}{N\sigma_s^2}$	
MMSE	$\sum_{i=1}^{KM} \lambda_i \left(\frac{1}{1 + \frac{\sigma_\eta^2}{\lambda_i N \sigma_s^2}} - 1 \right)^2$	$\sum_{i=1}^{KM} \frac{1}{\left(1 + \frac{\sigma_{\eta}^2}{\lambda_i N \sigma_s^2}\right)^2} \frac{\sigma_{\eta}^2}{N \sigma_s^2}$	

6.5. Estimators

Upper Bound: Uniform in $[0; \theta] : \hat{\theta}_{MI} = \frac{2}{N} \sum x_i$ Probability p for $\mathcal{B}(p, N)$: $\hat{p}_{\mathsf{ML}} = \frac{x}{N}$ $\hat{p}_{\mathsf{CM}} = \frac{x+1}{N+2}$

Mean
$$\mu$$
 for $\mathcal{N}(\mu,\sigma^2)$: $\hat{\mu}_{\mathsf{ML}}^2 = \frac{1}{N}\sum_{i=1}^N x_i$

7. Gaussian Stuff

7.1. Gaussian Channel

Channel:
$$Y = hs_i + N$$
 with $h \sim \mathcal{N}, N \sim \mathcal{N}$
$$L(y_1, ..., y_N) = \prod_{i=1}^n f_{Y_i}(y_i, h)$$

$$f_{Y_i}(y_i, h) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2}(y_i - hs_i)^2\right)$$

$$\hat{h}_{ML} = \underset{h}{\operatorname{argmin}} \{ \left\| \underline{\boldsymbol{y}} - h\underline{\boldsymbol{s}} \right\|^2 \} = \underline{\underline{\boldsymbol{s}}^{\top}\underline{\boldsymbol{y}}}_{\underline{\boldsymbol{s}}^{\top}\underline{\boldsymbol{s}}}$$

If multidimensional channel: y = Sh + n:

$$L(\underline{\boldsymbol{y}},\underline{\boldsymbol{h}}) = \frac{1}{\sqrt{\det(2\pi\underline{\boldsymbol{C}})}} \exp\left(-\frac{1}{2}(\underline{\boldsymbol{y}} - \underline{\boldsymbol{S}}\underline{\boldsymbol{h}})^{\top}\underline{\boldsymbol{C}}^{-1}(\underline{\boldsymbol{y}} - \underline{\boldsymbol{S}}\underline{\boldsymbol{h}})\right)$$
$$l(\underline{\boldsymbol{y}},\underline{\boldsymbol{h}}) = \frac{1}{2}\left(\log(\det(2\pi\underline{\boldsymbol{C}}) - (\underline{\boldsymbol{y}} - \underline{\boldsymbol{S}}\underline{\boldsymbol{h}})^{\top}\underline{\boldsymbol{C}}^{-1}(\underline{\boldsymbol{y}} - \underline{\boldsymbol{S}}\underline{\boldsymbol{h}})\right)$$

$$\frac{\mathrm{d}}{\mathrm{d}h}(\underline{y} - \underline{S}\underline{h})^{\top}\underline{C}^{-1}(\underline{y} - \underline{S}\underline{h}) = -2\underline{S}^{\top}\underline{C}^{-1}(\underline{x} - \underline{S}\underline{h})$$

Gaussian Covariance: if
$$Y \sim \mathcal{N}(0, \sigma^2), N \sim \mathcal{N}(0, \sigma^2)$$
: $Q_Y = \text{Cov}[Y, Y] = \text{E}[(Y - \mu)(Y - \mu)^\top] = \text{E}[YY^\top]$

For Channel Y = Sh + N: $E[YY^{\top}] = SE[hh^{\top}]S^{\top} + E[NN^{\top}]$

7.2. Multivariate Gaussian Distributions

A vector \mathbf{x} of n independent Gaussian random variables x_i is jointly Gaussian. If $\underline{\mathbf{x}} \sim \mathcal{N}(\boldsymbol{\mu}_{\underline{\mathbf{v}}}, \underline{\boldsymbol{C}}_{\underline{\mathbf{x}}})$:

$$\begin{split} f_{\underline{\mathbf{x}}}(\underline{\boldsymbol{x}}) &= f_{x_1,...,x_n}(\mathbf{x}_1,...,\mathbf{x}_n) = \\ &= \frac{1}{\sqrt{\det(2\pi\underline{C}_{\underline{\mathbf{x}}})}} \exp\left(-\frac{1}{2}\left(\underline{\boldsymbol{x}} - \underline{\boldsymbol{\mu}}_{\underline{\mathbf{x}}}\right)^{\top}\underline{C}_{\underline{\mathbf{x}}}^{-1}\left(\underline{\boldsymbol{x}} - \underline{\boldsymbol{\mu}}_{\underline{\mathbf{x}}}\right)\right) \end{split}$$

Affine transformations $\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{b}$ are jointly Gaussian with $\underline{\mathbf{y}} \sim \mathcal{N}(\underline{\underline{\boldsymbol{A}}}\underline{\boldsymbol{\mu}}_{\underline{\mathbf{v}}} + \underline{\boldsymbol{b}}, \underline{\underline{\boldsymbol{A}}}\underline{\boldsymbol{C}}_{\underline{\mathbf{x}}}\underline{\underline{\boldsymbol{A}}}^\top)$

All marginal PDFs are Gaussian as well

Contour Lines

Ellipsoid with central point E[y] and main axis are the eigenvectors of

7.3. Conditional Gaussian

$$\begin{array}{l} \underline{A} \!\sim\! \mathcal{N}(\underline{\mu}_{\underline{A}}, \underline{C}_{\underline{A}}), \underline{B} \!\sim\! \mathcal{N}(\underline{\mu}_{\underline{B}}, \underline{C}_{\underline{B}}) \\ \Rightarrow (\underline{A}|\underline{B} \!=\! b) \sim \mathcal{N}(\underline{\mu}_{A|B}, \underline{C}_{\underline{A}|\underline{B}}) \end{array}$$

Conditional Mean:

$$\mathsf{E}[\underline{A}|\underline{B} = \underline{b}] = \underline{\mu}_{A|B=\underline{b}} = \underline{\mu}_{A} + \underline{C}_{\underline{A}\underline{B}} \ \underline{C}_{BB}^{-1} \ (\underline{b} - \underline{\mu}_{B})$$

Conditional Variance:
$$C_{\underline{A}|\underline{B}} = C_{\underline{A}\underline{A}} + C_{\underline{A}\underline{B}} C_{\underline{B}\underline{B}}^{-1} C_{\underline{B}\underline{A}}$$

7.4. Misc

If CDF of gaussian distribution given $\Phi(z) \sim \mathcal{N}(0,1)$ then for X $\mathcal{N}(1,1)$ the CDF is given as $\Phi(x-\mu_x)$

8. Sequences

8.1. Random Sequences

Sequence of a random variable. Example: result of a dice is RV. roll a dice several times is a random sequence.

8.2. Markov Sequence $X_n:\Omega\to X_n$

Sequence of memoryless state transitions with certain probabilities. state: f_{X1} (x₁)

2. state: $f_{X_2 | X_1}(x_2 | x_1)$

n. state: $f_{X_n \mid X_{n-1}}(x_n \mid x_{n-1})$

8.3. Hidden Markov Chains

Problem: states X_i are not visible and can only be guessed indirectly as a random variable Y_i .

State-transision pdf $f_{X_n \mid X_{n-1}}$

$$\mathit{f}_{\underline{\mathsf{X}}_{n}|\underline{\mathsf{Y}}_{n}} \propto \mathit{f}_{\underline{\mathsf{Y}}_{n}|\underline{\mathsf{X}}_{n}} \cdot \int_{\mathbb{X}} \mathit{f}_{\underline{\mathsf{X}}_{n}|\underline{\mathsf{X}}_{n-1}} \cdot \mathit{f}_{\underline{\mathsf{X}}_{n-1}|\underline{\mathsf{Y}}_{n-1}} \, \mathrm{d}\underline{\mathtt{x}}_{n-1}$$

9. Recursive Estimation

9.1. Kalman-Filter

recursively calculates the most likely state from previous state estimates and current observation. Shows optimum performance for Gauss-Markov

State space:

$$\begin{array}{l} \mathbf{\underline{x}}_n = \mathbf{\underline{G}}_n \mathbf{\underline{x}}_{n-1} + \mathbf{\underline{B}} \mathbf{\underline{u}}_n + \mathbf{\underline{v}}_n \\ \mathbf{\underline{y}}_n = \mathbf{\underline{H}}_n \mathbf{\underline{x}}_n + \mathbf{\underline{w}}_n \end{array}$$

With gaussian process/measurement noise $\underline{v}_n/\underline{w}_n$ Short notation: $\mathbf{E}[\underline{x}_n|\underline{y}_{n-1}] = \hat{\underline{x}}_{n|n-1}$ $\mathbf{E}[\underline{x}_n|\underline{y}_n] = \hat{\underline{x}}_{n|n}$ $\mathrm{E}[\underline{\boldsymbol{y}}_n|\underline{\boldsymbol{y}}_{n-1}] = \underline{\hat{\boldsymbol{y}}}_{n|n-1} \quad \mathrm{E}[\underline{\boldsymbol{y}}_n|\underline{\boldsymbol{y}}_n] = \underline{\hat{\boldsymbol{y}}}_{n|n}$

1. step: Prediction

$$\begin{split} & \text{Mean: } \underline{\hat{x}}_{n \mid n-1} = \underline{G}_n \underline{\hat{x}}_{n-1 \mid n-1} \\ & \text{Covariance: } \underline{C}_{\underline{w}_{n \mid n-1}} = \underline{G}_n \underline{C}_{\underline{w}_{n-1 \mid n-1}} \underline{G}_n^\top + \underline{C}_{\underline{v}} \end{split}$$

$$\begin{array}{l} \text{Mean: } \underline{\hat{x}}_{n|n} = \underline{\hat{x}}_{n|n-1} + \underbrace{K}_n \left(\underline{y}_n - \underbrace{H}_n \underline{\hat{x}}_{n|n-1}\right) \\ \text{Covariance: } \underline{C}_{\underline{x}_{n|n}} = \underline{C}_{\underline{x}_{n|n-1}} + \underbrace{K}_n \underbrace{H}_n \underline{C}_{\underline{x}_{n|n-1}} \end{array}$$

correction:
$$E[X_n \mid \Delta Y_n =$$

$$\underline{\hat{x}}_{n|n} = \underbrace{\hat{x}_{n|n-1}}_{\text{estimation E}[\mathsf{X}_n \mid Y_{n-1} = y_{n-1}]} + \underbrace{K_n \left(\underline{y}_n - \underline{\mathcal{H}}_n \hat{\underline{x}}_{n|n-1}\right)}_{\text{innovation: } \Delta y_n}$$

With optimal Kalman-gain (prediction for $\underline{\boldsymbol{x}}_n$ based on Δy_n)

$$\mathbf{K}_{n} = \mathbf{C}_{\underline{\boldsymbol{x}}_{n|n-1}} \mathbf{H}_{n}^{\top} (\mathbf{H}_{n} \mathbf{C}_{\underline{\boldsymbol{x}}_{n|n-1}} \mathbf{H}_{n}^{\top} + \mathbf{C}_{\underline{\boldsymbol{w}}_{n}})^{-1}$$

Innovation: closeness of the estimated mean value to the real value $\Delta \underline{\underline{y}}_n = \underline{\underline{y}}_n - \underline{\hat{y}}_{n|n-1} = \underline{\underline{y}}_n - \underline{H}_n \underline{\hat{x}}_{n|n-1}$

$$\label{eq:loss_energy} \begin{array}{|c|c|c|c|c|c|c|} \textbf{Init: } \underline{\hat{\boldsymbol{x}}}_{0|-1} = \mathsf{E}[\mathsf{X}_0] & \sigma_{0|-1}^2 = \mathsf{Var}[\mathsf{X}_0] \end{array}$$

MMSE Estimator:
$$\hat{\underline{x}} = \int \underline{x}_n f_{X_n \mid Y_{(n)}} (\underline{x}_n | \underline{y}_{(n)}) d\underline{x}_n$$

For non linear problems: Suboptimum nonlinear Filters: Extended KF, Unscented KF. ParticleFilter

9.2. Extended Kalman (EKF)

Linear approximation of non-linear
$$g, h$$

$$\underline{\boldsymbol{x}}_n = g_n(\underline{\boldsymbol{x}}_{n-1}, \underline{\boldsymbol{v}}_n) \qquad \underline{\boldsymbol{v}}_n \sim \mathcal{N}$$

$$\boldsymbol{y}_n = h_n(\underline{\boldsymbol{x}}_{n-1}, \underline{\boldsymbol{w}}_n) \qquad \underline{\boldsymbol{w}}_n \sim \mathcal{N}$$

9.3. Unscented Kalman (UKF)

Approximation of desired PDF $f_{X_n|Y_n}(x_n|y_n)$ by Gaussian PDF.

9.4. Particle-Filter

For non linear state space and non-gaussian noise

Non-linear State space:

$$\underline{\underline{x}}_n = g_n(\underline{x}_{n-1}, \underline{v}_n) \\ \underline{y}_n = h_n(\underline{x}_{n-1}, \underline{w}_n)$$

$$\begin{aligned} & \textbf{Posterior Conditional PDF:} \ f_{X_n \mid Y_n}(x_n \mid y_n) \propto \overbrace{f_{Y_n \mid X_n}(y_n \mid x_n)} \\ & \cdot \int \limits_{\mathbb{X}} \underbrace{f_{X_n \mid X_{n-1}}(x_n \mid x_{n-1})}_{\text{state transition}} \underbrace{f_{X_{n-1} \mid Y_{n-1}}(x_{n-1} \mid y_{n-1})}_{\text{last conditional PDF}} \mathrm{d}x_{n-1} \end{aligned}$$

N random Particles with particle weight w_n^i at time r

Monte-Carlo-Integration:
$$I = \mathsf{E}[g(\mathsf{X})] \approx I_N = \frac{1}{N} \sum_{i=1}^N \tilde{g}(x^i)$$

Importance Sampling: Instead of $f_X(x)$ use Importance Density $q_X(x)$ $I_N = \frac{1}{N} \sum_{i=1}^{N} \tilde{w}^i g(x^i)$ with weights $\tilde{w}^i = \frac{f_X(x^i)}{g_X(x^i)}$

If $\int f_{X_n}(x) dx \neq 1$ then $I_N = \sum_{i=1}^N \tilde{w}^i g(x^i)$

9.5. Conditional Stochastical Independence $P(A \cap B|E) = P(A|E) \cdot P(B|E)$

Given
$$Y$$
, X and Z are independent if $f_{Z\mid Y,X}(z|y,x)=f_{Z\mid Y}(z|y)$ or

$$\begin{split} f_{X,Z\mid Y}(x,z|y) &= f_{Z\mid Y}(z|y) \cdot f_{X\mid Y}(x|y) \\ f_{Z\mid X,Y}(z|x,y) &= f_{Z\mid Y}(z|y) \text{ or } f_{X\mid Z,Y}(x|z,y) = f_{X\mid Y}(x|y) \end{split}$$

10. Hypothesis Testing

making a decision based on the observations

10.1. Definition

Null hypothesis $H_0: \theta \in \Theta_0$ (Assumed first to be true) Alternate hypothesis $H_1: \theta \in \Theta_1$ (The one to proof) Descision rule $\varphi: \mathbb{X} \to [0,1]$ with

 $\varphi(x)=1$: decide for H_1 , $\varphi(x)=0$: decide for H_0 Error level α with $E[d(X)|\theta] \le \alpha, \forall \theta \in \Theta_0$

Error	Decision Reality	H_1 false (H_0 true)	H_1 true (H_0 false)
Type			

1 (FA)	H_1 rejected	True Negative	False Negativ
False			(Type 2)
Alarm	$(H_0 \text{ accepted})$	$P = 1 - \alpha$	$P = \beta$

2 (DE)
$$H_1$$
 accepted False Positive (Type 1) True Positive

Detection (
$$H_0$$
 rejected) $P = \alpha$ $P = 1 - \beta$ Error

Power: Sensitivity/Recall/Hit Rate: $\frac{TP}{TP+FN} = 1 - \beta$

Specificity/True negative rate: $\frac{TN}{FP+TN} = 1 - \alpha$

Precision/Positive Prediciton rate: TP Accuracy: $\frac{TP+TN}{P+N} = \frac{2-\alpha-\beta}{2}$

10.1.1 Design of a test

Cost criterion $G_{\varphi}:\Theta\to [0,1], \theta\mapsto \mathsf{E}[d(X)|\theta]$

False Positive lower than α : $G_d(\theta)|_{\theta \in \Theta_0} \leq \alpha, \forall \theta \in \Theta_0$ False Negative small as possible: $\max\{G_d(\theta)|_{\theta\in\Theta_1}\}, \forall \theta\in\Theta_1$

10.2. Sufficient Statistics

Sufficiency for a test T(X) means that no other test statistic, i.e., function of the observations x, contains additional information about the parameter θ to be estimated:

$$f_{X\mid T}(x|T(x)=t,\theta)=f_{X\mid T}(x|T(x)=t)$$

11. Tests

11.1. Neyman-Pearson-Test

The best test of P_0 against P_1 is

$$d_{\mathsf{NP}}(x) = \begin{cases} 1 & R(x) > c \\ \gamma & R(x) = c \\ 0 & R(x) < c \end{cases} \qquad \begin{aligned} & \mathsf{Likelihood\text{-Ratio:}} \\ R(x) &= \frac{f_X(x;\theta_1)}{f_X(x;\theta_0)} \end{aligned}$$

$$\gamma = \frac{\alpha - P_0(\{R > c\})}{P_0(\{R = c\})}$$
 Errorlevel α

Steps: For α calculate x_{α} , then $c = R(x_{\alpha})$

 ${\sf Maximum\ Likelihood\ Detector:} \quad d_{\sf ML}(x) =$ **ROC Graphs:** plot $G_d(\theta_1)$ as a function of $G_d(\theta_0)$

11.2. Bayes Test (MAP Detector)

Prior knowledge on possible hypotheses: $P(\{\theta \in \Theta_0\}) + P(\{\theta \in \Theta_0\})$ Θ_1 $\}$) = 1, minimizes the probability of a wrong decision.

$$d_{\mathsf{Bayes}} = \begin{cases} 1 & \frac{f_X(x|\theta_1)}{f_X(x|\theta_0)} > \frac{c_0 \, \mathsf{P}(\theta_0|x)}{c_1 \, \mathsf{P}(\theta_1|x)} \\ 0 & \mathsf{otherwise} \end{cases} = \begin{cases} 1 & \mathsf{P}(\theta_1|x) > \mathsf{P}(\theta_0|x) \\ 0 & \mathsf{otherwise} \end{cases}$$

Risk weights c_0 , c_1 are 1 by default.

If $P(\theta_0) = P(\theta_1)$, the Bayes test is equivalent to the ML test

Multiple Hypothesis
$$d_{\mathsf{Bayes}} = \begin{cases} 0 & x \in \mathbb{Z} \\ 1 & x \in \mathbb{Z} \\ 2 & x \in \mathbb{Z} \end{cases}$$

11.3. Linear Alternative Tests

$$d: \mathbb{X} \to \mathbb{R}, \underline{\boldsymbol{x}} \mapsto \begin{cases} 1 & \underline{\boldsymbol{w}}^{\top}\underline{\boldsymbol{x}} - w_0 > 0 \\ 0 & \text{otherwise} \end{cases}$$

Estimate normal vector \underline{w}^{\top} , which separates $\mathbb X$ into $\mathbb X_0$ and $\mathbb X_1$ $\log R(\underline{x}) = \frac{\ln(\det(\underline{C}_0))}{\ln(\det(\underline{C}_1))} + \frac{1}{2}(\underline{x} - \underline{\mu}_0)^{\top}\underline{C}_0^{-1}(\underline{x} - \underline{\mu}_0) - \frac{1}{2}(\underline{x} - \underline{\mu}_0)$

$$-\frac{1}{2}(\underline{x} - \mu_1)^{\top} \underline{C}_1^{-1}(\underline{x} - \mu_1) = 0$$

For 2 Gaussians, with $\underline{C}_0 = \underline{C}_1 = \underline{C}$: $\underline{w}^\top = (\underline{\mu}_1 - \underline{\mu}_0)^\top \underline{C}$ and constant translation $w_0 = \frac{(\underline{\mu}_1 - \underline{\mu}_0)^\top \underline{C}(\underline{\mu}_1 - \underline{\mu}_0)}{2}$

 \mathbb{X}_0 : null-hypothesis \mathbb{X}_1 : alternative hypothesis