

Universidade Federal de Roraima Departamento de Ciência da Computação Bacharelado em Ciência da Computação

Software de Apoio ao Diagnóstico de Pneumonia na Infância Utilizando Rede Neural Convolucional Profunda para Reconhecimento de Padrões em Imagens de Raio X

Larissa Santos Silva

Orientador: Prof. Dr. Herbert Oliveira Rocha

Boa Vista – RR

22 de Outubro de 2021

Guia de Apresentação

- 1. Introdução
- 2. Fundamentos Teóricos
- 3. Trabalhos Correlacionados
- 4. Solução Proposta
- 5. Avaliação Experimental
- 6. Considerações Finais e Trabalhos Futuros

Pneumonia

 A pneumonia é uma doença epidêmica provocada por microrganismo.

 Matando mais de 800.000 (oitocentos mil) crianças com menos de 5 (cincos) anos (UNICEF, 2019).

Diagnóstico

 Meios de diagnosticar a pneumonia, tomografia, exame de escarro, ultrassonografia e entre outras.

O principal método utilizado.

Técnicas para auxiliar no diagnóstico da pneumonia

Técnicas como deep learning e machine learning vem progredindo rapidamente e são frequentemente usadas para classificar imagens naturais e diferentes tipos de imagem médica.

Motivação

As imagens de raio x normalmente não é compreensivo.

 Antimicrobianos, estão entre a classe de medicamento mais utilizada, sendo responsável de 20% a 50% de despesas hospitalares (COSTA et al, 2012).

 Alguns métodos baseados em redes neurais convolucionais (CNNs) foram aplicadas com sucesso para classificar doenças.

Definição do Problema

O problema apontado neste trabalho é expresso na seguinte questão:

Como auxiliar médicos utilizando classificação de imagens de raio x do tórax para a realização de diagnóstico de pneumonia infantil?

Objetivo Geral

Projetar, desenvolver e avaliar um sistema computacional para auxiliar os médicos na análise de imagens de radiografia para o diagnóstico de pneumonia infantil, via classificação da anatomia pulmonar e diâmetro cardíaco em imagens de raio x.

Objetivos Específicos

- 1. **Avaliar** modelos de classificação de imagens capaz de identificar ausência ou presença de pneumonia;
- 2. Analisar algoritmos de pré-processamento de imagens;
- 3. **Propor um método para identificar pneumonia** em imagens de raio x do tórax utilizando fatores de modificação da anatomia pulmonar e diâmetro cardíaco;
- 4. **Validar** a solução proposta, através de **testes experimentais** utilizando **banco** de imagens da literatura e **validação de médicos**, com o intuito de examinar a sua eficácia e aplicabilidade.

Guia de Apresentação

- 1. Introdução
- 2. Fundamentos Teóricos
- 3. Trabalhos Correlacionados
- 4. Solução Proposta
- 5. Avaliação Experimental
- 6. Considerações Finais e Trabalhos Futuros

Radiografia do Tórax

- O raio x e o teste de triagem mais solicitado, fornecendo uma janela para o tórax do paciente.
- A razão para ser a triagem mais solicitada.
- Dificuldades encontradas.

Tomografia Computadorizada

- A tomografia computadorizada permitiu a imagem em corte transversal.
- Melhorou a visualização das anormalidades em comparação com as radiografias.
- Útil em pacientes obesos, imunossuprimidos e outros.
- Limitações são varias.

Ultrassonografia

- A ultrassonografia pode ser realizada com qualquer aparelho de ultrassonografia do abdômen.
- Sondas convexas ou micro convexas são as mais adequadas para diagnosticar pneumonia.
- Exame n\u00e3o convencional.
- Dificuldades encontradas.

Visão Computacional

 Visão computação tenta se igualar a visão humana, pois também possui como entrada, uma imagem, contudo a saída é uma exibição de imagem como um todo, ou parcialmente.

 Ferramentas de diagnostico auxiliada por computador (CADx).

Processamento de Imagens

- Os processos de visão computacional, muitas vezes, necessitam de uma etapa de préprocessamento envolvendo processamento de imagens.
- O objetivo do processamento de imagens.

Inteligência Artificial

Redes Neurais Convulsionais - CNN

Samoyed (16); Papillon (5.7); Pomeranian (2.7); Arctic fox (1.0); Eskimo dog (0.6); white wolf (0.4); Siberian husky (0.4) Convolutions and ReLU Max pooling Convolutions and ReLU Max pooling Convolutions and ReLU Red Blue Green

Redes Neurais Recorrentes - RNN

Guia de Apresentação

- 1. Introdução
- 2. Fundamentos Teóricos
- 3. Trabalhos Correlacionados
- 4. Solução Proposta
- 5. Avaliação Experimental
- 6. Considerações Finais e Trabalhos Futuros

- 1. Automated detection of COVID-19 cases using deep neural networks with X-ray images (OZTURK, 2020).
 - E proposto um sistema de classificação binaria (COVID vs nofindings) e multiclasse (COVID vs no-findings vs Pneumonia).
 - Modelo DarkCovidNet.
 - 500 (quinhentas) imagens de classe normal e 500 (quinhentas) imagens de raio x do tórax frontal de classe pneumonia.
 - 127 (cento e vinte e sete) imagens de raio x com diagnostico de Covid – 19.
 - Acurácia de 98,08% e 87,02%.

- 2. Attention-Guided Convolutional Neural Network for Detecting Pneumonia on Chest X-Rays (LI et al, 2019).
 - Apresentam um modelo melhorado de Mask R-CNN (HE et al.,2017), RetinaNet (LIN et al., 2017) e o método proposto em (TEAM, 2018) de rede neural convolucional (CNN) para detecção de pneumonia.
 - Processamento de imagens e aprendizado de transferência.
 - 8.964 (oito mil e novecentos e sessenta e quatro) imagens de raio x do tórax marcada com pneumonia e 20.025 (vinte mil e vinte e cinco) imagens sem pneumonia.
 - Acurácia de 0.262 $Accuracy = \frac{1}{|thresholds|} \sum_{t} \frac{TP(t)}{TP(t) + FP(t) + FN(t)}$

- 3. Diagnosis of Chest Diseases in X-Ray images using Deep Convolutional Neural Network (CHAUDHARY et al.,2019).
 - É apresentado e avaliado uma rede neural profunda, capaz de classificar 15 doenças torácicas.
 - Camadas convolucionais, ativações de Unidades Lineares Retificadas (ReLU), camada de pooling e camada totalmente conectada.
 - 112.120 (cento e doze mil e cento e vinte) imagens, contidas 15 (quinze) classes diferentes.
 - Acurácia de 89,77%.

- 4. Using Convolutional Neural Nets And Tensorflow To Detects The Presence Of Pneumonia In A Patient (Gonsalves, 2021).
 - Concepção, desenvolvimento e implementação de um modelo de rede neural convolucional.
 - Para a construção do modelo foram usadas as combinações de redes neurais convolucionais e camadas de Max-Pooling.
 - 5.863 (cinco mil e oitocentos e sessenta e três) imagens de raio x do tórax.
 - Acurácia de 91,35%.

Tabela 1 – Classificação dos artigos por técnicas.

Artigos	Técnicas					
	RNC	AT	TPI	Filtros	Dataset	Acurácia
Trabalho 1	X			X	Cohen JP (COHEN et al., 2020) e ChetX-ray8 (WANG et al., 2017)	98,08% e 87,02%
Trabalho 2	X			X	ChestX-Ray14 (WANG et al., 2017)	89,77%
Trabalho 3	X	X			RSNA (AMERICA, 2018)	72%
Trabalho 4	X	X		X	Chest Xray (MOONEY, 2018)	91.35%

Fonte: Própria do autor.

Rede Neural Convolucional – RNC Aprendizado de Transferência – AT Técnica de Processamento de Imagem – TPI

Guia de Apresentação

- 1. Introdução
- 2. Fundamentos Teóricos
- 3. Trabalhos Correlacionados
- 4. Solução Proposta
- 5. Avaliação Experimental
- 6. Considerações Finais e Trabalhos Futuros

Solução Proposta

Solução Proposta

Ferramentas e Implementações

- O código foi escrito em Python.
- Flask, front end.
- Tensorflow, usado para analisar imagens, definir e executar computação usando tensores.
- Para que o sistema suporte grande quantidade de dados foi utilizado o numpy.
- Keras, modelagem de redes neurais.

Imagens do banco de dados

 Organizadas em 3 (três) diretórios: o treinamento, teste e validação.

Fonte: Própria do autor.

Imagens da arquitetura de Gonsalves e Ye (2021)

- Modelo criado do zero.
- Estrutura sequencial, onde sequencia cada camada do modelo, para isso foi usada a camada de conv2d e maxpool.
- Função de ativação Unidades Lineares Retificadas (ReLU).

Fonte: (GONSALVES; YE, 2021)

Mapa de recursos para uma imagem de pneumonia

- Demostra aplicação de filtros na imagem com pneumonia.
- Na primeira camada e retida quase toda forma da imagem.
- Camada de ativação acabam se tornando mais complexa.
- Alguns filtros não estão sendo ativados.

Trecho do código do arquivo app.py

```
6
7    app = Flask(__name__)
8
9    # routes
10    @app.route("/", methods=['GET', 'POST'])
11    def main():
12         return "teste"
13
14
15    if __name__ =='__main__':
16         app.run(debug = True)
```

```
def predict_label(img_path):
    img = image.load_img(img_path, target_size=(300,300))
    i = image.img_to_array(img)
    i = np.expand_dims(i, axis=0)

images = np.vstack([i])
    p = model.predict(images, batch_size = 10)

return p[0]
```

Interface

Guia de Apresentação

- 1. Introdução
- 2. Fundamentos Teóricos
- 3. Trabalhos Correlacionados
- 4. Solução Proposta
- 5. Avaliação Experimental
- 6. Considerações Finais e Trabalhos Futuros

- O estudo foi conduzido aplicando o método proposto sobre o dataset público Chest Xray (MOONEY, 2018) e avaliado por meio de questionários por profissionais da área de saúde.
- As validações foram conduzidas em um ambiente virtual gratuito chamado Colab.
- GPU contém Nvidia K80s, T4s, P4s e P100s. Quando as GPU são usadas são disponibilizadas 12.72GB RAM e 68.40GB de disco temporário.

Avalição proposta, investigasse as seguintes questões de pesquisa (QP):

- QP1 : O sistema proposto consegue identificar e classificar a pneumonia com eficiência?
- QP2 : A acurácia e a precisão do sistema proposto é suficiente para provar sua confiabilidade?
- QP3 : O sistema proposto é capaz de contribuir com os profissionais da área?

Visando responder as questões da pesquisa, a execução deste experimento foi divida em 3 (três) partes:

• Questão de pesquisa 1 (QP1), foi avaliado o modelo de classificação do trabalho proposto por Gonsalves e Ye (2021) (que é adotado na solução proposta).

Figura 1 - Previsão incorreta da imagem.

Classificação de Imagem de Raio X

Insira a imagem : Escother asquivo Menhum arquivo selectionado

Subarral

Predição: Pneumonia

Fonte: Própria do autor.

Figura 2 - Previsão correta da pneumonia na imagem.

Classificação de Imagem de Raio X

Escother arguing | Northurn arquiro estecionado

Predição: Pneumonia

• Questão de pesquisa 2 (QP2), foi definido algumas métricas tais como a perda de validação (model loss) e a precisão que são métricas fundamentais.

Grande variação, na precisão e perda, devido a camada dropout que fez com que os neurônios aleatórios fossem desligados e o préprocessamento de que ajudou o modelo a não memorizar os dados de treinamento, assim não se ajustando.

Figura 1 - Gráficos da acurácia e perda do modelo proposto.

- Para medir o desempenho do modelo, em vários pontos do corte, foi utilizado a área (UAC) sob a curva ROC, que obteve uma UAC de 64%.
- A probabilidade de que o modelo classifique um exemplo positivo aleatório e mais alto do que um exemplo negativo aleatório.

Figura 2 - Gráfico da curva roc do modelo.

 Questão de pesquisa 3 (QP3), o sistema proposto foi avaliado em termo de suporte e eficiência com profissionais da área da saúde via questionário, usando resposta na escala de Likert.

Figura 1 - Gráfico QP3

QP3: Diagnosticar pneumonia a partir de radiografias é uma tarefa desafiadora? (de 0 a 5).

Fonte: Própria do autor.

QP6: Qual seria o seu nível de confiança em usar um sistema web capaz de identificar a presença de pneumonia com a de precisão de mais de 75%? (de 0 a 5).

43

Guia de Apresentação

- 1. Introdução
- 2. Fundamentos Teóricos
- 3. Trabalhos Correlacionados
- 4. Solução Proposta
- 5. Avaliação Experimental
- 6. Considerações Finais e Trabalhos Futuros

Considerações Finais e Trabalhos Futuros

- O presente trabalho apresentou o desenvolvimento de um sistema computacional.
- Os experimentos Mostraram que o sistema é uma solução viável na forma de auxiliar os profissionais de saúde no diagnóstico de pneumonia infantil de forma ágil.
- Vale ressaltar que o raio x infantil e o adulto não tem nenhuma diferença anatômica, pois o que difere e a quantidade de radiação exposta.
- Como trabalhos futuros, planeja-se estudar métodos para distinguir imagem de raio x do tórax que contém pneumonia e coronavírus.

Obrigado pela atenção!

laryysantos18@gmail.com