HY-360

Αρχεία και Βάσεις Δεδομένων

<u>Φροντιστήριο</u> Κανονικές Μορφές

<u>Κλειστότητα Συναρτησιακών</u> <u>Εξαρτήσεων:</u>

<u>Τι σημαίνει</u>: Το <u>ΣΥΝΟΛΟ</u> των <u>Σ.Ε.</u> που μπορούν να <u>παραχθούν</u> από ένα σύνολο εξαρτήσεων F

Πώς μπορούμε να υπολογίσουμε την κλειστότητα του Ε?

<u>Με τα αξιώματα του Armstrong!</u>

Παράδειγμα εύρεσης Ε[†]

Στην ουσία \mathbf{F}^{t} είναι ίδιο με το \mathbf{F} , απλά περιέχει επιπλέον Σ.Ε. οι οποίες όπως είπαμε ΣΥΝΑΓΟΝΤΑΙ από την \mathbf{F}

Έστω ότι R(A,B,C,D) με $F = \{\{A\} \rightarrow \{B\},\{B,C\} \rightarrow \{D\}\}$

```
F^{+} = \{ \\ \{A\} \rightarrow \{A\}, \{B\} \rightarrow \{B\}, \{C\} \rightarrow \{C\}, \{D\} \rightarrow \{D\}, \{A,B\} \rightarrow \{A,B\}, \\ [...], \\ \{A\} \rightarrow \{B\}, \{A,B\} \rightarrow \{B\}, \{A,D\} \rightarrow \{B,D\}, \{A,C\} \rightarrow \{B,C\}, \\ \{A,C,D\} \rightarrow \{B,C,D\}, \{A\} \rightarrow \{A,B\}, \\ \{A,D\} \rightarrow \{A,B,D\}, \{A,C\} \rightarrow \{A,B,C\}, \{A,C,D\} \rightarrow \{A,B,C,D\}, \\ \{B,C\} \rightarrow \{D\}, [...], \{A,C\} \rightarrow \{D\}, [...] \}
```


Ο προσδιορισμός του συνόλου κλειστότητας \underline{F}^{\dagger} Είναι δαπανηρός αλγοριθμικά

<u>ΚΛΕΙΣΤΟΤΗΤΑ ΣΥΝΟΛΟΥ</u> <u>ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ Χ</u>[±]

Χ+ = Κλειστότητα ενός συνόλου

• Κλειστότητα ενός συνόλου χαρακτηριστικών Χ ως προς το σύνολο των συναρτησιακών εξαρτήσεων F, είναι το σύνολο των χαρακτηριστικών που είναι συναρτησιακά εξαρτώμενα από το σύνολο Χ

'**Ασκηση**:Βρείτε τα κλειδιά της σχέσης

'Εστω η σχέση R(A,B,C,D,E) και το σύνολο ΣΕ
 F={A→B,C→D}

- Εντοπίζω τα γνωρίσματα που δεν βρίσκονται σε κανένα δεξί μέλος των εξαρτήσεων. (A,C,E)
- (ACE)+ $A \rightarrow B$
- ABCE $C \rightarrow D$
- ABCDE , Άρα το ACE είναι κλειδί

Πρωτεύοντα γνωρίσματα: Α,C,E

Μη πρωτεύοντα: Β,D

Αποσύνθεση

- Διάσπαση μίας σχέσης σχήματος που έχει πολλές ιδιότητες σε διάφορα σχήματα με λιγότερες ιδιότητες.
 - Π.χ. η σχέση **ABCD** μπορεί να διασπαστεί σε **ABC CD**

Έστω ένα σχεσιακό σχήμα R.

Ένα σύνολο από σχεσιακά σχήματα R είναι μία αποσύνθεση του R εάν:

 $R = \{ R_1 \cup R_2 \dots \cup R_n \}$

ΠΑΡΑΔΕΙΓΜΑ:

Για **R** (**x,y,z**) έχουμε δύο υποσύνολα

R1(x,z) και **R2(y,z)**

Εάν ενώσουμε το R1 και R2 <u>Παίρνουμε</u> το R Μία αποσύνθεση {R1, R2,, Rk} της σχέσης R με συναρτησιακές εξαρτήσεις F λέγεται αποσύνθεση χωρίς απώλεια πληροφορίας, αν ανεξάρτητα από το περιεχόμενο της R, οι συναρτησιακές εξαρτήσεις εξασφαλίζουν ότι

$$R = R1 \bowtie R2 \bowtie \bowtie Rk$$

Αποσύνθεση με απώλεια

$\left[\begin{array}{c} R \end{array} \right]$	ID	Επώνυμο Όνομα			
	123	Παπαδάκη	Μαρία		
	234	Σταματάκης	Κώστας		
	147	Νικολάου	Μαρία		

R1

ID	Όνομα
123	Μαρία
234	Κώστας
147	Μαρία

R2

Επώνυμο	Όνομα
Παπαδάκη	Μαρία
Σταματάκης	Κώστας
Νικολάου	Μαρία

Θα προσπαθήσουμε να R1 🖂 R2

R2

ID	Όνομα	
123	Μαρία	
234	Κώστας	
147	Μαρία	

R1

Επώνυμο	Όνομα
Παπαδάκη	Μαρία
Σταματάκης	Κώστας
Νικολάου	Μαρία

D1 :e:e	D2	
ID R1 join	R2 Επώνυμο	Όνομα
123	Παπαδάκη	Μαρία
123	Νικολάου	Μαρία
234	Σταματάκης	Κώστας
147	Νικολάου	Μαρία
147	Παπαδάκη	Μαρία

Αρχική	Σχέση

ID	Επώνυμο	Όνομα
123	Παπαδάκη	Μαρία
234	Σταματάκης	Κώστας
147	Νικολάου	Μαρία

ΔΥΟ παραπάνω Πλειάδες!!!! Θεώρημα: Δεδομένης μιας σχέσης R και ενός συνόλου ΣΕ F οι οποίες πληρούνται στην R, μια αποσύνθεση της R στις σχέσεις R1 και R2 δεν πάσχει από απώλεια πληροφορίας αν τουλάχιστον μία από τις ακόλουθες ΣΕ είναι λογική συνέπεια των ΣΕ στο F

Παράδειγμα

Έστω ότι η ΣΕ Β \rightarrow C ισχύει στη σχέση R(ABC).

Η R αποσυντίθεται στις

Πάσχει από απώλεια πληροφορίας η αποσύνθεση αυτή?

Λύση

 $Head(R1) \cap Head(R2) = B$

Πρέπει να δείξουμε ότι ισχύει μία από τις ΣΕ

(δες το Θεώρημα στη διαφάνεια 11)

$$(1)B \rightarrow AB$$

$$(2)B \rightarrow BC$$

Από την $B \rightarrow C$ εξάγεται η $B \rightarrow BC$ με χρήση του κανόνα επαύξησης.

Άρα η αποσύνθεση <u>δεν</u> πάσχει από απώλεια πληροφορίας

Αποσύνθεση χωρίς απώλειες – ΠΑΡΑΔΕΙΓΜΑ!!!!

• Παράδειγμα:

R = { Τίτλος, Έτος, Διάρκεια, Είδος, Όνομα Ηθοποιού, Διεύθυνση, Έτος Γέννησης}

```
Τίτλος Έτος → Διάρκεια
Τίτλος Έτος → Είδος
(Όνομα Ηθοποιού) → Διεύθυνση
(Όνομα Ηθοποιού) → (Έτος Γέννησης)
```

 $R1 \cap R2 = \{Tithos, Etos\}$

Υπερκλειδί για την <u>**R1**</u> άρα αποσύνθεση χωρίς απώλειες

R1 = {**Τίτλος, Έτος**, Διάρκεια, Είδος}

R2 = {**Τϊτλος, Έτος**, Όνομα Ηθοποιού, Διεύθυνση, Έτος Γέννησης} Υποθέστε ότι αποσυνθέτουμε το σχήμα:

$$R = \{ A, B, C, D, E \} \sigma \epsilon$$

$$R1 = \{ A, B, C \}$$

$$R2 = \{ A, D, E \}$$

Βρίσκουμε R1 R2 :

 $R1 \cap R2 = A$

Και ισχύει το παρακάτω σύνολο F από λειτουργικές εξαρτήσεις:

$$A \rightarrow BC$$
 $CD \rightarrow E$
 $B \rightarrow D$
 $E \rightarrow A$

$$R1 = {\underline{A}, B, C}$$

$$R2 = {A, D, E}$$

 $A \rightarrow BC$

Λαμβάνουμε υπόψη ότι ισχύει ότι:

 $A \rightarrow BC$

Συνεπώς το Α είναι κλειδί για το R1.

Άρα η αποσύνθεση είναι χωρίς απώλειες συνδέσμου

Normalization - Κανονικοποίηση

<u>Βασική Λειτουργία</u> :

Δέχεται ως ΕΙΣΟΔΟ το σχεσιακό σχήμα μία βάσης δεδομένων και εφαρμόζει σειρά ελέγχων προκειμένου να διαπιστώσει εάν ανήκει ή όχι σε κάποια κανονική μορφή

Είδη κανονικών μορφών: 1^η, 2^η, 3^η, 4^η

<u>Γιατί εφαρμόζουμε κανονικοποίηση (Σκοπός):</u>

Προσπαθούμε να μετασχηματίσουμε ένα σχεσιακό σχήμα σε μία νέα μορφή, η οποία να είναι απαλλαγμένη από ανωμαλίες εισαγωγής, διαγραφής και τροποποίησης εγγράφων.

Τι παρατηρούμε αναφορικά με τη μορφή του σχεσιακού σχήματος παρακάτω;

ΠΑΡΑΔΕΙΓΜΑ:

Υπάρχει <u>κάποια ανωμαλία</u> εισαγωγής, διαγραφής ή τροποποίησης εγγράφων;

Y_ID	E_ID	ΥΕπώνυμο	ΕΌνομα	ΕΤοπος	Ώρες
AH 123456	123	Νικολάου	Γέφυρα	Πάτρα	34
AH 234567	56	Παπαδόπουλος	Γήπεδο	Πειραιάς	28
AZ 345678	123	Νικολάου	Γέφυρα	Πάτρα	5
AK 123456	34	Κανάκη	Π. Κέντρο	Ιωάννινα	76
AH 123458	56	Κουκος	Γήπεδο	Πειραιάς	56

Ανωμαλία διαγραφής:

Όταν διαγραφεί ένα έργο θα έχει ως αποτέλεσμα να διαγραφούν οι εργαζόμενοι σε αυτό

Υπάλληλος (Employee)

Παράδειγμα Έργο (Project)

Y_ID	Όνομα	Επώνυμο]	E_ID	Ε_Όνομα	E_Tó
AH 123456	Κώστας	Νικολάου		123	Γέφυρα	Πάτρ
	Í			56	Γήπεδο	Πειρ
AK 123456	Μαρία	Κανάκη		34	Π.κέντρο	Ιωάν
AH_123458	Δημήτρης	Κούκος				
Er	mployee	(1,N)	Works_On	1,M)	Project]
		Y ID	E ID	HOUF	≀S I	

<u>Ορισμός:</u> Πλήρης/Ολική Σ.Ε. (Full FD)

- <u>Ολική</u> Σ.Ε. είναι μια Σ.Ε. $X \rightarrow Y$ όπου το Y εξαρτάται πλήρως από το X.
- (Δηλαδή εάν αφαιρέσουμε καποιο γνώρισμα από το X) τότε η Σ.Ε. X→ Y δεν θα ισχύει πια.

- <u>Παράδειγμα:</u> (Υπάλληλος_ID, Έργο_ID) > Ώρες
- (Αν αφαιρέσουμε το Έργο_ID η Σ.Ε. Υπάλληλος_ID → Ώρες δεν ισχύει)
- (Αν αφαιρέσουμε το γνώρισμα Υπάλληλος_ID η Σ.Ε. Έργο_ID → Ώρες <u>δεν ισχύει</u>)

<u>Ορισμός:</u> Μερική Σ.Ε. (Partial FD)

Μερική Σ.Ε. είναι μια Σ.Ε. $X \rightarrow Y$ που δεν είναι ολική/πλήρης.

(Δηλαδή εάν αφαιρέσουμε κάποιο γνώρισμα από το X) τότε η Σ.Ε. X→ Y θα συνεχίσει να ισχύει.

- Παράδειγμα:
 - Σ.Ε.: (Υπάλληλος_ID, Έργο_ID) → ΌνομαΥπαλλήλου
- (Αν αφαιρέσουμε το Έργο_ID τότε η Σ.Ε.

Υπάλληλος_ID -> ΌνομαΥπαλλήλου

εξακολουθεί να ισχύει!

- Θα δούμε τις κανονικές μορφές που φαίνονται στο σχήμα
- Η <u>επόμενη κανονική</u> μορφή είναι <u>πιο αυστηρή</u> από την προηγούμενη
- <u>Η μία κανονική μορφή</u> προκύπτει από την άλλη

1ⁿ Κανονική Μορφή (1NF – 1st Normal Form)

Για να φέρουμε ένα πίνακα σε 1ⁿ κανονική μορφή,
 Θα πρέπει να απομακρύνουμε τις
 επαναλαμβανόμενες ομάδες πεδίων, έτσι ώστε η τομή μιας γραμμής και μιας στήλης του πίνακα, να αντιστοιχεί πάντα σε μια απλή τιμή.

2ⁿ Κανονική Μορφή (2NF – 2nd Normal Form)

Για να φέρουμε ένα πίνακα σε 2ⁿ κανονική μορφή, θα πρέπει πρώτα να τον φέρουμε σε 1ⁿ κανονική μορφή και στην συνέχεια να απομακρύνουμε όλες τις μερικές συναρτησιακές εξαρτήσεις (partial dependencies) που υφίστανται ανάμεσα στα πεδία του

3ⁿ Κανονική Μορφή (3NF – 3nd Normal Form)

Για να φέρουμε ένα πίνακα σε 3ⁿ κανονική μορφή, θα πρέπει πρώτα να τον φέρουμε σε 2ⁿ κανονική μορφή και στην συνέχεια να απομακρύνουμε όλες τις μεταβατικές συναρτησιακές εξαρτήσεις (transitive dependencies) που υφίστανται ανάμεσα στα πεδία του.

BCNF (Boyce Codd Normal Form)

Η BCNF μπορεί να θεωρηθεί ως μια πιο αυστηρά διατυπωμένη 3NF. Δηλαδή, ένας πίνακας που βρίσκεται σε BCNF βρίσκεται αυτόματα και σε 3NF – το αντίστροφο όμως δεν ισχύει.

25

1η κανονική μορφή – 1ΝΕ

Μία σχέση είναι σε 1ⁿ κανονική μορφή αν τα γνωρίσματά της λαμβάνουν ΜΟΝΟ ΑΤΟΜΙΚΕΣ (απλές, αδιαίρετες) τιμές.

ΠΡΟΣΟΧΗ!!!!!!

ΑΠΑΓΟΡΕΥΟΝΤΑΙ τα <u>σύνθετα γνωρίσματα</u> και τα <u>πλειότιμα</u>

Σύνθετο

Πλειότιμο

Not 1NF

ID	Επώνυμο	Όνομα	Διεύθυνση	Hobby
AH 123456	Νικολάου	Κώστας	Αλαμάνας 20, 75400	Cart, Bowling
AH 234567	Παπαδόπουλος	Γιώργος	Ελ. Βενιζέλου 36Α, 13410	Sailing
AZ 345678	Νικολάου	Μιχάλης	Λ. Δημοκρατίας 12, 71409	BasketBall, Music
AK 123456	Κανάκη	Χαρούλα	Σουλίου 36, 35410	Trekking, Canyoning

Κανονικές Μορφές - 1NF

• <u>Περιορισμοί</u>

- Δεν περιέχονται σύνθετα γνωρίσματα
- Και Δεν περιέχονται πλειότιμα γνωρίσματα

<u>1NF</u>

Αλλά έχουμε επανάληψη

πληροφορίας

Κάθε πλειάδα διασπάστηκε σε περισσότερες: 1 πλειάδα για κάθε διαφορετική τιμή του πλειότιμου γνωρίσματος

ID	Επώνυμο	Όνομα	Δ_Οδός	Δ_Αριθμός	Δ_ΤΚ	Hobby
AH 123456	Νικολάου	Κώστας	Αλαμάνας	20	75400	Cart
AH 123456	Νικολάου	Κώστας	Αλαμάνας	20	75400	Bowling
AH 234567	Παπαδόπουλος	Γιώργος	Ελ. Βενιζέλου	36A	13410	Sailing
AZ 345678	Νικολάου	Μιχάλης	Λ. Δημοκρατίας	12	71409	BasketBall
AZ 345678	Νικολάου	Μιχάλης	Λ. Δημοκρατίας	12	71409	Music
AK 123456	Κανάκη	Χαρούλα	Σουλίου	36	35410	Trekking
AK 123456	Κανάκη	Χαρούλα	Σουλίου	36	35410	Canyoning

Κανονικές Μορφές - 1NF

ID	Επώνυμο	Όνομα	Δ_Οδός	Δ_Αριθμός	Δ_ΤΚ
AH 123456	Νικολάου	Κώστας	Αλαμάνας	20	75400
AH 234567	Παπαδόπουλος	Γιώργος	Ελ. Βενιζέλου	36A	13410
AZ 345678	Νικολάου	Μιχάλης	Λ. Δημοκρατίας	12	71409
AK 123456	Κανάκη	Χαρούλα	Σουλίου	36	35410

ID	Hobby
AH 123456	Cart
AH 123456	Bowling
AH 234567	Sailing
AZ 345678	BasketBall
AZ 345678	Music
AK 123456	Trekking
AK 123456	Canyoning

1NF

Με διάσπαση σε περισσότερους πίνακες για τα πλειότιμα γνωρίσματα

<u>• Περιορισμοί</u>

- Δεν περιέχονται σύνθετα γνωρίσματα
- Και Δεν περιέχονται πλειότιμα γνωρίσματα

2η κανονική μορφή – 2NF

Προκύπτει από την 1^η Κανονική Μορφή

Όλα τα πεδία που ΔΕΝ ανήκουν στο πρωτεύον κλειδί του πίνακα, ΕΞΑΡΤΩΝΤΑΙ ΣΥΝΑΡΤΗΣΙΑΚΩΣ

MONO

από τα πεδία του πρωτεύοντος κλειδιού

Η εξάρτηση είναι <u>ΠΛΗΡΗΣ</u> ΣΥΝΑΡΤΗΣΙΑΚΗ-FULL DEPENDENCY

Μετασχηματισμός Πίνακα σε 2NF

- Διάσπαση σε μικρότερους πίνακες, ώστε τα πεδία που δεν ανήκουν στο πρωτεύον κλειδί του, να τοποθετηθούν ΜΑΖΙ με τα πεδία του πρωτεύοντος κλειδιού,με τα οποία συσχετίζονται μέσω πλήρους συναρτησιακής εξάρτησης.

Δηλαδή, δημιουργούμε τόσους πίνακες όσες είναι και οι πλήρεις συναρτησιακές εξαρτήσεις (ffd) των πεδίων του πίνακα, και τοποθετούμε σ'αυτούς, τα πεδία που συμμετέχουν σε αυτές τις εξαρτήσεις.

2η κανονική μορφή – 2NF

<u>Περιορισμοί</u>

1) 1NF

KAI

2) Κάθε γνώρισμα που <u>δεν είναι μέρος</u> ενός υποψήφιου κλειδιού εξαρτάται συναρτησιακά από **ολόκληρο το κλειδί** και όχι από ένα μέρος του κλειδιού.

Εξαρτήσεις της μορφής:

Πρωτεύον (όχι-κλειδί) -> Μη πρωτεύον

Παραβιάζουν το 2NF

2η κανονική μορφή

Y_ID	E_ID	ΥΕπώνυμο	ΕΌνομα	ΕΤόπος	Ώρες
AH 123456	123	Νικολάου	Γέφυρα	Πάτρα	34
AH 234567	56	Παπαδόπουλος	Γήπεδο	Πειραιάς	28
AZ 345678	123	Νικολάου	Γέφυρα	Πάτρα	5
AK 123456	34	Κανάκη	Π. Κέντρο	Ιωάννινα	76
AH 123458	56	Κούκος	Γήπεδο	Πειραιάς	56

Πλήρεις Συναρτησιακές Εξαρτήσεις-Full Functional Dependencies

1. Y_ID, E_ID \rightarrow Ω ρες

2. Y_ID → ΥΕπώνυμο

3. E_ID \rightarrow Εόνομα, ΕΤόπος

NOT 2NF

П.χ.

Y_ID → Υεπώνυμο

Πρωτεύον γνώρισμα (όχι κλειδί)→ μη πρωτεύον

ΕΙΟ → Εόνομα, ΕΤόπος

Πρωτεύον γνώρισμα (όχι κλειδί)→ μη πρωτεύον

ПАРАВІАZOYN THN 2NF

2η κανονική μορφή

Y_ID	ΥΕπώνυμο
AH 123456	Νικολάου
AH 234567	Παπαδόπουλος
AZ 345678	Νικολάου
AK 123456	Κανάκη
AH 123458	Κούκος

E_ID	ΕΌνομα	ΕΤόπος
123	Γέφυρα	Πάτρα
56	Γήπεδο	Πειραιάς
34	Π. Κέντρο	Ιωάννινα

Y_ID	<u>E_ID</u>	Ώρες
AH 123456	123	34
AH 234567	56	28
AZ 345678	123	5
AK 123456	34	76
AH 123458	56	56

Στο παράδειγμα μας οι 3 Πλήρεις Συναρτησιακές Εξαρτήσεις-Full Functional Dependencies

1. Y_ID, E_ID \rightarrow Ώρες

2. Y_ID → ΥΕπώνυμο

3. E_ID \rightarrow Εόνομα, Ετόπος

οδήγησαν στην δημιουργία των τριών παραπάνω πινάκων

Κανονικές Μορφές - 3NF

• <u>Περιορισμοί</u>

- Eίναι 2NF
- Και δεν υπάρχουν μεταβατικές εξαρτήσεις
 - Av A \rightarrow B, τότε δεν υπάρχει B \rightarrow C, όπου B, C μη πρωτεύοντα
- Εξαρτήσεις της μορφής

Mη-πρωτεύον → Mη-πρωτεύον παραβιάζουν το 3NF

Y_ID	Τμήμα	ΥΕπώνυμο	ΤΌνομα	ΥΤοπος	T_Mngr
A1	1	Νικολάου	Λογιστήριο	Πάτρα	A34
A2	2	Παπαδόπουλος	Πελάτες	Πειραιάς	C28
ВЗ	3	Παράσχος	Τεχνικό	Πάτρα	A5
C24	4	Κανάκη	Σχεδιαστήριο	Ιωάννινα	B76
C26	2	Νικολάου	Πελάτες	Πειραιάς	C28

Not 3NF Υ_id→ Τμήμα Τμήμα→ ΤΟνομα Αλλά από μεταβατικότητα: Υ_id→ ΤΟνομα

Κανονικές Μορφές - 3NF

• <u>Περιορισμοί</u>

- Eívai 2NF
- Και δεν υπάρχουν μεταβατικές εξαρτήσεις

περιέχει εξαρτήσεις, μόνο από υποψήφια κλειδιά ή το προσδιοριζόμενο να είναι μέρος κλειδιού.

Καταλήγω κάθε σχέση να

- Εξαρτήσεις της μορφής Μη-πρωτεύον → Μη-πρωτεύον το 3NF

Y_ID	Τμήμα	ΥΕπώνυμο	ΥΤοπος
A1	1	Νικολάου	Πάτρα
A2	2	Παπαδόπουλος	Πειραιάς
В3	3	Παράσχος	Πάτρα
C24	4	Κανάκη	Ιωάννινα
C26	2	Νικολάου	Πειραιάς

3NF Με διάσπαση

Τμήμα	ΤΌνομα	T_Mngr
1	Λογιστήριο	A34
2	Πελάτες	C28
3	Τεχνικό	A5
4	Σχεδιαστήριο	B76

Κανονικές Μορφές - 3NF

• Παράδειγμα

- Αριθμός Παραγγελίας → Κωδικός Πελάτη
- Κωδικός Πελάτη → Πόλη Πελάτη
 Και υπάρχει η μεταβατικότητα
 Αριθμός Παραγγελίας → Πόλη Πελάτη

ΑριθμόςΠαραγγελίας	ΚωδικόςΠελάτη	ΠόληΠελάτη
124/2010	C142	Ηράκλειο
138/2010	C139	Θεσσαλονίκη
221/2010	C127	Πάτρα
253/2010	C139	Θεσσαλονίκη
391/2010	C142	Ηράκλειο

-Η μετατροπή σε 3NF, οδηγεί σε διάσπαση:

ΚωδικόςΠελάτη	ΠόληΠελάτη
C142	Ηράκλειο
C139	Θεσσαλονίκη
C127	Πάτρα

ΑριθμόςΠαραγγελίας	ΚωδικόςΠελάτη
124/2010	C142
138/2010	C139
221/2010	C127
253/2010	C139
391/2010	C142

Κάθε σχέση στην BCNF είναι επίσης 3NF,αλλά δεν ισχύει πάντα το αντίστροφο.

- Περιορισμοί
 - όταν για κάθε συναρτησιακή εξάρτηση $X \to Y$ ισχύει ένα από τα εξής:
 - είτε $Y \in X$ (τετριμμένη περίπτωση) ή
 - Χ περιέχει το κλειδί της R
 - (Eívai 3NF)
- Δηλαδή, δεν πρέπει ένα χαρακτηριστικό να έχει συναρτησιακή εξάρτηση από ένα άλλο χαρακτηριστικό που δεν είναι (ή περιέχει) το κλειδί.

Δηλαδή το **αριστερό μέρος** κάθε μη τετριμμένης ΣΕ πρέπει να περιέχει ένα κλειδί, δηλαδή το Χ να είναι υπερκλειδί του σχήματος R

- Έστω σχήμα R={A,B,C,D,E,F}
 - Κλειδί: ΑΒ
 - Επιτρέπονται μόνο
 - $AB \rightarrow AB$, $AB \rightarrow A$, $AB \rightarrow B$
 - ABC \rightarrow D, ABCD \rightarrow EF κλπ.
 - Π.χ. <u>δεν</u> επιτρέπονται
 - $A \rightarrow CD, DE \rightarrow F$, $BCD \rightarrow EF$

- Διάσπαση σε BCNF- Αλγόριθμος
 - Για κάθε σχήμα σχέσης R
 - Βρες μια μη τετριμμένη συναρτησιακή εξάρτηση, που παραβιάζει τον BCNF ορισμό.
 - Έστω $X \to Y$, (όπου X δεν περιέχει ούτε είναι κλειδί) και $X \cap Y = \emptyset$.
 - Διάσπαση του σχήματος R σε δύο νέα, έτσι ώστε:
 - R1 να έχει γνωρίσματα τα X ∪ Y
 - R2 να έχει γνωρίσματα τα R Y.
 - Μέχρι να μην υπάρχουν σχήματα σχέσεων που παραβιάζουν τον BCNF ορισμό.

- <u>Παράδειγμα 1</u>:
 - Κλειδί: {ΙΟΣυμβουλος, ΙΟΜηχανικος}
 - Συναρτησιακές εξαρτήσεις:
 - {IDΣυμβουλος, IDΜηχανικος} → IDΕργου
 - IDΕργου → Αντικείμενο

Δεν είναι BCNF (ούτε καν 3NF). Η εξάρτηση

IDΕργου→Αντικείμενο Παραβιάζει τον BCNF ορισμό.

ΙΟΕργου	ΙΟΣυμβουλος	ΙΟΜηχανικος	Αντικείμενο
E12	Σ12	M13	A111
E12	Σ34	M13	A111
E12	Σ65	M45	A111
E28	Σ28	M67	A678
E28	Σ71	M67	A678
E67	Σ43	M35	A904

ΙΟΕργου	Ι <u></u> Συμβουλος	Ι <u></u> ΟΜηχανικος	Αντικείμενο
E12	Σ12	M13	A111
E12	Σ34	M13	A111
E12	Σ65	M45	A111
E28	Σ28	M67	A678
E28	Σ71	M67	A678
E67	Σ43	M35	A904

Οι συναρτησιακές εξαρτήσεις: $\{IDΣυμβουλος, IDΜηχανικος\} \rightarrow IDΕργου$ $IDΕργου \rightarrow Αντικείμενο$

ΙΟΕργου	ΙDΣυμβουλος	ΙΟΜηχανικος
E12	Σ12	M13
E12	Σ34	M13
E12	Σ65	M45
E28	Σ28	M67
E28	Σ71	M67
E67	Σ43	M35

Διάσπαση σε δύο σχέσεις {Ι<mark>DΣυμβουλος, ΙDΜηχανικος</mark>, ΙDΕργου} {ΙDΕργου, Αντικείμενο} Ώστε να έχουμε BCNF μορφή

ΙΟΕργου	Αντικείμενο
E12	A111
E28	A678
E67	A904

- Παράδειγμα 2:
 - Κλειδί: {Πελάτης, Συναλλαγή}
 - Συναρτησιακές εξαρτήσεις:
 - ΥποΚατ → ΟνομαΥΚ, ΑπόθεμαΥΚ
 - Συναλλαγή → ΥποΚατ, ΠοσόΣ
 - Δεν εξαρτάται πλήρως από κλειδί

Δεν είναι BCNF R (ούτε καν 3NF). Και οι δύο εξαρτήσεις παραβιάζουν τον BCN ορισμό.

	Πελάτης	Συναλλαγή	ΠοσόΣ	ΥποΚατ	ΟνομαΥΚ	ΑποθεμαΥΚ
	П12	Σ1312	4060	YK13	Καβάλα	450
IF	-∏14	Σ1434	230	YK14	Καλαμάτα	720
	П78	Σ4565	4600	YK45	Ξάνθη	316
	E26	Σ6728	2670	YK67	Ρέθυμνο	412
	E67	Σ1371	13784	YK13	Καβάλα	450

R1

ΥποΚατ	ΟνομαΥΚ	ΑποθεμαΥΚ
YK13	Καβάλα	450
YK14	Καλαμάτα	720
YK45	Ξάνθη	316
YK67	Ρέθυμνο	412

R2'

Πελάτης	Συναλλαγή	ΠοσόΣ	ΥποΚατ
П12	Σ1312	4060	YK13
П14	Σ1434	230	YK14
П78	Σ4565	4600	YK45
E26	Σ6728	2670	YK67
E67	Σ1371	13784	YK13

- Παράδειγμα 2, μετά από διάσπαση:
- Η εξάρτηση ΥποΚατ → ΟνομαΥΚ, ΑπόθεμαΥΚ οδήγησε στην διάσπαση του R σε R1 και R2'.
- -Η εξάρτηση Συναλλαγή \rightarrow ΥποΚατ, ΠοσόΣ παραβιάζει τον BCNF ορισμό στην R2'.

(Γιατί το αριστερό μέρος κάθε μη τετριμμένης ΣΕ πρέπει να περιέχει ένα κλειδί. Ξέρουμε από την θεωρία, ότι μία σχέση R σε ένα σχεσιακό σχήμα με ΣΕ F είναι σε κανονική μορφή BCNF αν ισχύει η παρακάτω ιδιότητα: για οποιαδήποτε $\Sigma E X \rightarrow A$ του F^{\dagger} η οποία διατηρείται στην F^{\dagger} για την οποία F^{\dagger} F^{\dagger}

- Παράδειγμα 2, μετά από νέα διάσπαση:
 - Η εξάρτηση Συναλλαγή → ΥποΚατ, ΠοσόΣ οδήγησε στην διάσπαση του R2' σε R2 και R3.
 - Οι συναρτησιακές εξαρτήσεις διατηρήθηκαν αλλά όλες οι σχέσεις είναι σε BCNF μορφή.

R1

ΥποΚατ	ΟνομαΥΚ	ΑποθεμαΥΚ
YK13	Καβάλα	
YK14	Καλαμάτα	43 8
YK45	Ξάνθη	316
YK67	Ρέθυμνο	412

R2

_Συναλλαγή	ΠοσόΣ	ΥποΚατ
Σ1312	4060	YK13
Σ1434	230	YK14
Σ4565	4600	YK45
Σ6728	2670	YK67

R3

Πελάτης	Συναλλαγή
П12	Σ1312
П14	Σ1434
П78	Σ4565
E26	Σ6728
E67	Σ1371

- Κανονικοποίηση
 - Μια σχέση σε 3NF διασπάται σε ένα σύνολο από σχέσεις της BCNF μορφής <u>όταν</u> αφαιρεθούν από τον πίνακα, όσα χαρακτηριστικά δεν εξαρτώνται πλήρως από κλειδιά.

Κανονικές Μορφές

- 1NF
 - Όχι σύνθετα και πλειότιμα γνωρίσματα
- 2NF
 - Μόνο Πλήρεις συναρτησιακές εξαρτήσεις
- 3NF
 - Όχι μεταβατικές συναρτησιακές εξαρτήσεις
- BCNF
 - Μόνο περιορισμοί κλειδιού

Κανονικές Μορφές

• Οδηγούμενοι σε πιο περιοριστική κανονική μορφή, αναγκαζόμαστε να διασπάσουμε την αρχική σχέση

σε περισσότερες. • Πρακτικά, οι περισσότερες σχέσεις σε 3NF είναι και

σε BCNF.

• H1NF και 2NF δεν είναι ικανοποιητικές για να χαρακτηρίσουμε μια βάση «καλά σχεδιασμένη».
- H3NF και BCNF εξαλείφουν προβλήματα που σχετίζονται

με ενημερώσεις.

• HBCNF μορφή ίσως να μην είναι εφικτή, αλλά η 3NF υπάρχει πάντα.