Computational Complexity Theory

Lecture 18: Sipser-Gacs-Lautemann theorem;
Classes RP and ZPP;
Perfect matching in RNC

Department of Computer Science, Indian Institute of Science

Recap: Probabilistic Turing Machines

- Definition. A probabilistic Turing machine (PTM) M has two transition functions δ_0 and δ_1 . At each step of computation on input $x \in \{0,1\}^*$, M applies one of δ_0 and δ_1 uniformly at random (independent of the previous steps). M outputs either I (accept) or 0 (reject). M runs in T(n) time if M always halts within T(|x|) steps regardless of its random choices.
- Note. PTMs and NTMs are syntatically similar both have two transition functions. But, semantically, they are quite different

Recap: Probabilistic Turing Machines

- Definition. A probabilistic Turing machine (PTM) M has two transition functions δ_0 and δ_1 . At each step of computation on input $x \in \{0,1\}^*$, M applies one of δ_0 and δ_1 uniformly at random (independent of the previous steps). M outputs either I (accept) or 0 (reject). M runs in T(n) time if M always halts within T(|x|) steps regardless of its random choices.
- Note. The above definition allows a PTM M to <u>not</u> halt on some computation paths defined by its random choices (unless we explicitly say that M runs in T(n) time). More on this later when we define ZPP.

Recap: Class BPP

Definition. A PTM M <u>decides</u> a language L in time T(n) if M runs in T(n) time, and for every x∈{0, I}*,

$$Pr[M(x) = L(x)] \ge 2/3.$$
Success probability

- Definition. A language L is in BPTIME(T(n)) if there's PTM that decides L in O(T(n)) time.
- Definition. BPP = $\bigcup_{c>0}$ BPTIME (n^c).
- Clearly, $P \subseteq BPP$.

Recap: Class BPP

Definition. A PTM M <u>decides</u> a language L in time T(n) if M runs in T(n) time, and for every x∈{0,1}*,

$$\Pr[M(x) = L(x)] \ge 2/3$$

 Definition. A language L is in BPTIME(T(n)) if there's PTM that decides L in O(T(n)) time.

• Definition. BPP = $\bigcup_{c>0}$ BPTIME (n^c).

Bounded-error Probabilistic Polynomial-time

• Clearly, $P \subseteq BPP$.

Remark. The defn of class BPP is robust. The class remains unaltered if we replace 2/3 by any constant strictly greater than (i.e., bounded away from) ½. We'll discuss this next.

Recap: Error reduction for BPP

• Lemma. Let c > 0 be a constant. Suppose L is decided by a poly-time PTM M s.t. $Pr[M(x) = L(x)] \ge \frac{1}{2} + |x|^{-c}$. Then, for every constant d > 0, L is decided by a poly-time PTM M' s.t. $Pr[M'(x) = L(x)] \ge 1 - \exp(-|x|^d)$.

Recap: Alternative definition of BPP

• Definition. A language L in BPP if there's a poly-time \underline{DTM} M(.,.) and a polynomial function q(.) s.t. for every $x \in \{0,1\}^*$,

$$Pr_{r \in_{\mathbb{R}} \{0,1\}^{q(|x|)}} [M(x,r) = L(x)] \ge 2/3.$$

• 2/3 can be replaced by $I - \exp(-|x|^d)$ as before.

Recap: Alternative definition of BPP

• Definition. A language L in BPP if there's a poly-time \underline{DTM} M(.,.) and a polynomial function q(.) s.t. for every $x \in \{0,1\}^*$,

$$Pr_{r \in_{\mathbb{R}} \{0,1\}^{q(|x|)}} [M(x,r) = L(x)] \ge 2/3.$$

- Hence, $P \subseteq BPP \subseteq EXP$.
- Sipser-Gacs-Lautemann. BPP $\subseteq \sum_{2}$. (We'll prove this)
- How large is BPP? Is $NP \subseteq BPP$? i.e., is $SAT \in BPP$?
- Theorem. (Adleman 1978) BPP ⊆ P/poly.
- So, if NP \subseteq BPP then PH = \sum_{1} . (Karp-Lipton)

Recap: Alternative definition of BPP

• Definition. A language L in BPP if there's a poly-time \underline{DTM} M(.,.) and a polynomial function q(.) s.t. for every $x \in \{0,1\}^*$,

$$Pr_{r \in_{\mathbb{R}} \{0,1\}^{q(|x|)}} [M(x,r) = L(x)] \ge 2/3.$$

- Hence, $P \subseteq BPP \subseteq EXP$.
- Sipser-Gacs-Lautemann. BPP $\subseteq \sum_{2}$. (We'll prove this)
- Most complexity theorist believe that P = BPP!
 (More on this later.)

Sipser-Gacs-Lautemann theorem

- We saw that P ⊆ BPP ⊆ EXP. But, is BPP ⊆ NP? Not known! (Yes, people still believe BPP = P.)
- Sipser showed BPP \subseteq PH, Gacs strengthened it to BPP $\subseteq \sum_{2} \cap \bigcap_{2}$, Lautemann gave a simpler proof.
- Theorem. (Sipser-Gacs-Lautemann '83) BPP $\subseteq \sum_{2} \cap \prod_{2}$.

- We saw that P ⊆ BPP ⊆ EXP. But, is BPP ⊆ NP? Not known! (Yes, people still believe BPP = P.)
- Sipser showed BPP \subseteq PH, Gacs strengthened it to BPP $\subseteq \sum_{2} \cap \bigcap_{2}$, Lautemann gave a simpler proof.
- Theorem. (Sipser-Gacs-Lautemann '83) BPP $\subseteq \sum_{2} \bigcap \bigcap_{2}$.
- Proof. Observe that BPP = co-BPP (homework). So, it is sufficient to show BPP $\subseteq \sum_2$.

- Theorem. (Sipser-Gacs-Lautemann '83) BPP $\subseteq \sum_{2}$.
- Proof. Let $L \in BPP$. Then, there's a poly-time \underline{DTM} M and a polynomial function q(.) s.t. for every $x \in \{0,1\}^*$,

$$Pr_{r \in_{R} \{0,1\}^{q(|x|)}} [M(x,r) = L(x)] \ge 1 - 2^{-|x|}$$

• Let n = |x| and m = q(n).

- Theorem. (Sipser-Gacs-Lautemann '83) BPP $\subseteq \sum_2$.
- Proof. Let $L \in BPP$. Then, there's a poly-time \underline{DTM} M and a polynomial function q(.) s.t. for every $x \in \{0,1\}^*$,

$$Pr_{r \in_{R} \{0,1\}^{q(|x|)}} [M(x,r) = L(x)] \ge 1 - 2^{-|x|}.$$

• Let n = |x| and m = q(n). Let $A_x \subseteq \{0,1\}^m$ such that $r \in A_x$ iff M(x,r) = 1. Observe that

$$x \in L$$
 \rightarrow $|A_x| \ge (I - 2^{-n}).2^m$ $(A_x \text{ is large})$

$$x \notin L$$
 \longrightarrow $|A_x| \le 2^{-n}.2^m$ $(A_x \text{ is small}).$

- Theorem. (Sipser-Gacs-Lautemann '83) BPP $\subseteq \sum_{2}$.
- Proof. Let $L \in BPP$. Then, there's a poly-time \underline{DTM} M and a polynomial function q(.) s.t. for every $x \in \{0,1\}^*$,

$$Pr_{r \in_{R} \{0,1\}^{q(|x|)}} [M(x,r) = L(x)] \ge 1 - 2^{-|x|}$$
.

• Let n = |x| and m = q(n). Let $A_x \subseteq \{0,1\}^m$ such that $r \in A_x$ iff M(x,r) = 1. Observe that

$$x \in L$$
 \rightarrow $|A_x| \ge (1 - 2^{-n}).2^m$ $(A_x \text{ is large})$

 $x \notin L$ \rightarrow $|A_x| \le 2^{-n}.2^m$ $(A_x \text{ is small}).$

• Idea. If A_x is large then there exists a "small" collection $u_1, ..., u_k \in \{0,1\}^m$ s.t. $\bigcup_{i \in [k]} (A_x \bigoplus_i u_i) = \{0,1\}^m$.

bit-wise Xor

- Theorem. (Sipser-Gacs-Lautemann '83) BPP $\subseteq \sum_{2}$.
- Proof. Let $L \in BPP$. Then, there's a poly-time \underline{DTM} M and a polynomial function q(.) s.t. for every $x \in \{0,1\}^*$,

$$Pr_{r \in_{R} \{0,1\}^{q(|x|)}} [M(x,r) = L(x)] \ge 1 - 2^{-|x|}$$

• Let n = |x| and m = q(n). Let $A_x \subseteq \{0,1\}^m$ such that $r \in A_x$ iff M(x,r) = 1. Observe that

$$x \in L$$
 \rightarrow $|A_x| \ge (I - 2^{-n}).2^m$ $(A_x \text{ is large})$
 $x \notin L$ \rightarrow $|A_x| \le 2^{-n}.2^m$ $(A_x \text{ is small}).$

• Idea. If A_x is large then there exists a "small" collection $u_1, \ldots, u_k \in \{0,1\}^m$ s.t. $\bigcup_{i \in [k]} (A_x \bigoplus u_i) = \{0,1\}^m$. No such collection exists if $|A_x|$ is small.

- Theorem. (Sipser-Gacs-Lautemann '83) BPP $\subseteq \sum_{2}$.
- Proof. Let $L \in BPP$. Then, there's a poly-time \underline{DTM} M and a polynomial function q(.) s.t. for every $x \in \{0,1\}^*$,

$$Pr_{r \in_{R} \{0,1\}^{q(|x|)}} [M(x,r) = L(x)] \ge 1 - 2^{-|x|}.$$

• Let n = |x| and m = q(n). Let $A_x \subseteq \{0,1\}^m$ such that $r \in A_x$ iff M(x,r) = 1. Observe that

$$x \in L$$
 \rightarrow $|A_x| \ge (I - 2^{-n}).2^m$ $(A_x \text{ is large})$
 $x \notin L$ \rightarrow $|A_x| \le 2^{-n}.2^m$ $(A_x \text{ is small}).$

• Idea. If A_x is large then there exists a "small" collection $u_1, \ldots, u_k \in \{0,1\}^m$ s.t. $\bigcup_{i \in [k]} (A_x \bigoplus u_i) = \{0,1\}^m$. Capture this property with a $\sum_{i \in [k]}$ statement.

- Theorem. (Sipser-Gacs-Lautemann '83) BPP $\subseteq \sum_2$.
- Proof. $r \in A_x$ iff M(x, r) = I. Then

$$x \in L$$
 $|A_x| \ge (1 - 2^{-n}).2^m$ (A_x is large)

- $x \notin L$ \rightarrow $|A_x| \le 2^{-n}.2^m$ (A_x is small).
- Set k = m/n + 1
- Obs. If $|A_x| \le 2^{-n} \cdot 2^m$ then for <u>every</u> collection $u_1, \ldots, u_k \in \{0,1\}^m, \ \bigcup_{i \in Ikl} (A_x \bigoplus u_i) \subsetneq \{0,1\}^m$.

- Theorem. (Sipser-Gacs-Lautemann '83) BPP $\subseteq \sum_{2}$.
- Proof. $r \in A_x$ iff M(x, r) = I. Then

$$x \in L$$
 \rightarrow $|A_x| \ge (1 - 2^{-n}).2^m$ (A_x is large)

$$x \notin L$$
 \longrightarrow $|A_x| \le 2^{-n}.2^m$ (A_x is small).

- Set k = m/n + 1.
- Obs. If $|A_x| \le 2^{-n} \cdot 2^m$ then for <u>every</u> collection $u_1, \ldots, u_k \in \{0,1\}^m, \ \bigcup_{i \in Ikl} (A_x \bigoplus u_i) \subseteq \{0,1\}^m$.
- Proof. As $|A_x|^{\frac{1}{2}} \le 2^{-n} \cdot 2^m$, $|\bigcup_{i \in [k]} (A_x \bigoplus u_i)| \le k \cdot 2^{m-n} < 2^m$ for sufficiently large n.

- Theorem. (Sipser-Gacs-Lautemann '83) BPP $\subseteq \sum_2$.
- Proof. $r \in A_x$ iff M(x, r) = I. Then $x \in L$ $\implies |A_x| \ge (I 2^{-n}) \cdot 2^m$ $(A_x \text{ is large})$ $x \notin L$ $\implies |A_x| \le 2^{-n} \cdot 2^m$ $(A_x \text{ is small})$.
- Set k = m/n + 1.
- Claim. If $|A_x| \ge (I 2^{-n}).2^m$ then there <u>exists</u> a collection $u_1, ..., u_k \in \{0, 1\}^m$ s.t. $\bigcup_{i \in [k]} (A_x \bigoplus u_i) = \{0, 1\}^m$.
- Let us complete the proof of the theorem assuming the claim – we'll proof it shortly.

- Theorem. (Sipser-Gacs-Lautemann '83) BPP $\subseteq \sum_2$.
- Proof. $r \in A_x$ iff M(x, r) = I. Then

$$x \in L$$
 \rightarrow $|A_x| \ge (I - 2^{-n}).2^m$ $(A_x \text{ is large})$

$$x \notin L$$
 \longrightarrow $|A_x| \le 2^{-n}.2^m$ (A_x is small).

- Set k = m/n + 1.
- Claim. If $|A_x| \ge (I 2^{-n}).2^m$ then there <u>exists</u> a collection $u_1, ..., u_k \in \{0, 1\}^m$ s.t. $\bigcup_{i \in [k]} (A_x \bigoplus u_i) = \{0, 1\}^m$.
- The observation and the claim imply the following:

$$x \in L \longrightarrow \exists u_1, ..., u_k \in \{0,1\}^m \quad \bigcup_{i \in [k]} (A_x \bigoplus u_i) = \{0,1\}^m$$

 $x \notin L \longrightarrow \forall u_1, ..., u_k \in \{0,1\}^m \quad \bigcup_{i \in [k]} (A_x \bigoplus u_i) \subsetneq \{0,1\}^m.$

- Theorem. (Sipser-Gacs-Lautemann '83) BPP $\subseteq \sum_2$.
- Proof. $r \in A_x$ iff M(x, r) = I. Then

$$x \in L$$
 \longrightarrow $|A_x| \ge (I - 2^{-n}).2^m$ (A_x is large)
 $x \notin L$ \longrightarrow $|A_x| \le 2^{-n}.2^m$ (A_x is small).

- Set k = m/n + 1.
- Claim. If $|A_x| \ge (I 2^{-n}).2^m$ then there <u>exists</u> a collection $u_1, ..., u_k \in \{0, 1\}^m$ s.t. $\bigcup_{i \in [k]} (A_x \bigoplus u_i) = \{0, 1\}^m$.
- The observation and the claim imply the following:

$$x \in L \longrightarrow \exists u_1, ..., u_k \in \{0,1\}^m \quad \bigcup_{i \in [k]} (A_x \oplus u_i) = \{0,1\}^m.$$

- Theorem. (Sipser-Gacs-Lautemann '83) BPP $\subseteq \sum_2$.
- Proof. $r \in A_x$ iff M(x, r) = 1. Set k = m/n + 1.

$$x \in L \Longrightarrow \exists u_1, ..., u_k \in \{0,1\}^m \quad \bigcup_{i \in [k]} (A_x \bigoplus u_i) = \{0,1\}^m$$

- Theorem. (Sipser-Gacs-Lautemann '83) BPP $\subseteq \sum_2$.
- Proof. $r \in A_x$ iff M(x, r) = 1. Set k = m/n + 1.

$$x \in L \iff \exists u_1, \dots, u_k \in \{0, 1\}^m \quad \bigcup_{i \in [k]} (A_x \bigoplus u_i) = \{0, 1\}^m$$

$$x \in L \iff \exists u_1, \dots, u_k \in \{0, 1\}^m \quad \forall r \in \{0, 1\}^m \quad r \in \bigcup_{i \in [k]} (A_x \bigoplus u_i)$$

- Theorem. (Sipser-Gacs-Lautemann '83) BPP $\subseteq \sum_2$.
- Proof. $r \in A_x$ iff M(x, r) = 1. Set k = m/n + 1.

$$x \in L \Longrightarrow \exists u_1, ..., u_k \in \{0, 1\}^m \quad \bigcup_{i \in [k]} (A_x \bigoplus u_i) = \{0, 1\}^m$$

$$x \in L \Longrightarrow \exists u_1, ..., u_k \in \{0,1\}^m \ \forall r \in \{0,1\}^m \ r \in \bigcup_{i \in [k]} (A_x \bigoplus u_i)$$

$$x \in L \Longrightarrow \exists u_1, ..., u_k \in \{0,1\}^m \ \forall r \in \{0,1\}^m \ \bigvee_{i \in [k]} [r \bigoplus u_i \in A_x]$$

- Theorem. (Sipser-Gacs-Lautemann '83) BPP $\subseteq \sum_{1}$.
- Proof. $r \in A_x$ iff M(x, r) = 1. Set k = m/n + 1.

$$x \in L \Longrightarrow \exists u_1, ..., u_k \in \{0, 1\}^m \quad \bigcup_{i \in [k]} (A_x \bigoplus u_i) = \{0, 1\}^m$$

$$x \in L \longrightarrow \exists u_1, ..., u_k \in \{0,1\}^m \ \forall r \in \{0,1\}^m \ r \in \bigcup_{i \in [k]} (A_x \oplus u_i)$$

$$x \in L \iff \exists u_1, ..., u_k \in \{0,1\}^m \ \forall r \in \{0,1\}^m \ \bigvee_{i \in I \cup I} [r \bigoplus u_i \in A_x]$$

$$x \in L \longrightarrow \exists u_1, ..., u_k \in \{0, 1\}^m \ \forall r \in \{0, 1\}^m \ \lor \left[r \bigoplus u_i \in A_x \right]$$

$$x \in L \longrightarrow \exists u_1, ..., u_k \in \{0, 1\}^m \ \forall r \in \{0, 1\}^m \ \lor M(x, r \bigoplus u_i) = I$$

- Theorem. (Sipser-Gacs-Lautemann '83) BPP $\subseteq \sum_{2}$.
- Proof. $r \in A_x$ iff M(x, r) = I. Set k = m/n + I. $x \in L \Longrightarrow \exists u_1, ..., u_k \in \{0, I\}^m \quad \bigcup_{i \in [k]} (A_x \bigoplus u_i) = \{0, I\}^m \quad x \in L \Longrightarrow \exists u_1, ..., u_k \in \{0, I\}^m \quad \forall r \in \{0, I\}^m \quad r \in \bigcup_{i \in [k]} (A_x \bigoplus u_i) \quad x \in L \Longrightarrow \exists u_1, ..., u_k \in \{0, I\}^m \quad \forall r \in \{0, I\}^m \quad \forall r \in A_x \in L \Longrightarrow \exists u_1, ..., u_k \in \{0, I\}^m \quad \forall r \in \{0, I\}^m \quad \forall r \in A_x \in L \Longrightarrow \exists u_1, ..., u_k \in \{0, I\}^m \quad \forall r \in \{0, I\}^m \quad \forall$
- Think of a DTM N that takes input x, u₁, ..., u_m, r, and outputs I iff M(x, r⊕u_i) = I for some i ∈ [k]. Observe that N is a poly-time DTM.

- Theorem. (Sipser-Gacs-Lautemann '83) BPP $\subseteq \sum_{1}$.
- Proof. $r \in A_x$ iff M(x, r) = I. Set k = m/n + I.

$$x \in L \Longrightarrow \exists u_1, ..., u_k \in \{0, 1\}^m \quad \bigcup_{i \in [k]} (A_x \bigoplus u_i) = \{0, 1\}^m$$

$$x \in L \longrightarrow \exists u_1, ..., u_k \in \{0,1\}^m \ \forall r \in \{0,1\}^m \ r \in \bigcup_{i \in [k]} (A_x \oplus u_i)$$

$$x \in L \longrightarrow \exists u_1, ..., u_k \in \{0, 1\}^m \ \forall r \in \{0, 1\}^m \ \lor \left[r \bigoplus u_i \in A_x\right]$$

$$x \in L \longrightarrow \exists u_1, ..., u_k \in \{0, 1\}^m \ \forall r \in \{0, 1\}^m \ \mathsf{N}(x, \underline{\boldsymbol{u}}, r) = 1.$$

• Therefore,
$$L \in \sum_{2}$$
.

$$\underline{\mathbf{u}} = \{\mathbf{u}_1, ..., \mathbf{u}_k\}$$

- Claim. If $|A_x| \ge (I 2^{-n}).2^m$ then there <u>exists</u> a collection $u_1, ..., u_k \in \{0, 1\}^m$ s.t. $\bigcup_{i \in [k]} (A_x \bigoplus u_i) = \{0, 1\}^m$.
- Proof. The proof of this uses the probabilistic method.

- Claim. If $|A_x| \ge (I 2^{-n}).2^m$ then there <u>exists</u> a collection $u_1, ..., u_k \in \{0, 1\}^m$ s.t. $\bigcup_{i \in [k]} (A_x \bigoplus u_i) = \{0, 1\}^m$.
- *Proof.* We'll show if $u_1, ..., u_k$ are picked independently and uniformly at random then

$$\Pr_{\underline{\mathbf{u}}} \left[\forall \mathbf{r} \in \{0, 1\}^m \mid \mathbf{r} \in \bigcup_{i \in [k]} (\mathbf{A}_{\mathbf{x}} \bigoplus \mathbf{u}_i) \right] > 0.$$

- Claim. If $|A_x| \ge (I 2^{-n}).2^m$ then there <u>exists</u> a collection $u_1, ..., u_k \in \{0, I\}^m$ s.t. $\bigcup_{i \in [k]} (A_x \bigoplus u_i) = \{0, I\}^m$.
- *Proof.* We'll show if $u_1, ..., u_k$ are picked independently and uniformly at random then

```
\Pr_{\underline{\mathbf{u}}} \left[ \exists \mathbf{r} \in \{0, 1\}^m \ \mathbf{r} \notin \bigcup_{i \in [k]} (\mathbf{A}_{\mathbf{x}} \bigoplus \mathbf{u}_i) \right] < 1.
```

- Claim. If $|A_x| \ge (I 2^{-n}).2^m$ then there <u>exists</u> a collection $u_1, ..., u_k \in \{0, 1\}^m$ s.t. $\bigcup_{i \in [k]} (A_x \bigoplus u_i) = \{0, 1\}^m$.
- *Proof.* We'll show if $u_1, ..., u_k$ are picked independently and uniformly at random then

```
Pr_{\mathbf{u}} [\exists r \in \{0,1\}^m \ r \notin (A_x \oplus u_i) \text{ for every } i \in [k]] < 1.
```

- Claim. If $|A_x| \ge (I 2^{-n}).2^m$ then there <u>exists</u> a collection $u_1, ..., u_k \in \{0, 1\}^m$ s.t. $\bigcup_{i \in [k]} (A_x \bigoplus u_i) = \{0, 1\}^m$.
- *Proof.* We'll show if $u_1, ..., u_k$ are picked independently and uniformly at random then

```
Pr_{\mathbf{u}} [\exists r \in \{0,1\}^m \ r \oplus u_i \notin A_x \text{ for every } i \in [k]] < 1.
```

- Claim. If $|A_x| \ge (I 2^{-n}).2^m$ then there <u>exists</u> a collection $u_1, ..., u_k \in \{0, 1\}^m$ s.t. $\bigcup_{i \in [k]} (A_x \bigoplus u_i) = \{0, 1\}^m$.
- *Proof.* We'll show if $u_1, ..., u_k$ are picked independently and uniformly at random then
 - $Pr_{\underline{u}} [\exists r \in \{0,1\}^m \ r \oplus u_i \notin A_x \text{ for every } i \in [k]] < 1.$
- Fix an $r \in \{0,1\}^m$ (we'll apply a union bound later). Fix an $i \in [k]$. Then, $Pr_{\underline{u}}[r \oplus u_i \notin A_x] \leq 2^{-n}$.

Distributed uniformly inside $\{0,1\}^m$ as r is fixed and u_i is picked uniformly at random from $\{0,1\}^m$.

- Claim. If $|A_x| \ge (I 2^{-n}).2^m$ then there <u>exists</u> a collection $u_1, ..., u_k \in \{0, 1\}^m$ s.t. $\bigcup_{i \in [k]} (A_x \bigoplus u_i) = \{0, 1\}^m$.
- *Proof.* We'll show if $u_1, ..., u_k$ are picked independently and uniformly at random then
 - $Pr_{\underline{u}} [\exists r \in \{0,1\}^m \ r \oplus u_i \notin A_x \text{ for every } i \in [k]] < 1.$
- Fix an $r \in \{0,1\}^m$ (we'll apply a union bound later). Fix an $i \in [k]$. Then, $\Pr_{\underline{u}}[r \bigoplus u_i \notin A_x] \leq 2^{-n}$. As u_1, \ldots, u_k are independent, $\Pr_{\underline{u}}[r \bigoplus u_i \notin A_x]$ for every $i \in [k] \leq 2^{-kn}$.

- Claim. If $|A_x| \ge (I 2^{-n}).2^m$ then there <u>exists</u> a collection $u_1, ..., u_k \in \{0, I\}^m$ s.t. $\bigcup_{i \in [k]} (A_x \bigoplus u_i) = \{0, I\}^m$.
- *Proof.* We'll show if $u_1, ..., u_k$ are picked independently and uniformly at random then
 - $Pr_{\underline{u}} [\exists r \in \{0,1\}^m \ r \oplus u_i \notin A_x \text{ for every } i \in [k]] < 1.$
- Fix an $r \in \{0,1\}^m$ (we'll apply a union bound later). Fix an $i \in [k]$. Then, $\Pr_{\underline{u}}[r \bigoplus u_i \notin A_x] \leq 2^{-n}$. As u_1, \ldots, u_k are independent, $\Pr_{\underline{u}}[r \bigoplus u_i \notin A_x]$ for every $i \in [k]$ $i \in [k]$.

```
k = m/n + 1
```

Proof of the Claim

- Claim. If $|A_x| \ge (I 2^{-n}).2^m$ then there <u>exists</u> a collection $u_1, ..., u_k \in \{0, 1\}^m$ s.t. $\bigcup_{i \in [k]} (A_x \bigoplus u_i) = \{0, 1\}^m$.
- *Proof.* We'll show if $u_1, ..., u_k$ are picked independently and uniformly at random then
 - $Pr_{\underline{u}} [\exists r \in \{0,1\}^m \ r \oplus u_i \notin A_x \text{ for every } i \in [k]] < 1.$
- Fix an $r \in \{0,1\}^m$ (we'll apply a union bound later). Fix an $i \in [k]$. Then, $\Pr_{\underline{u}}[r \bigoplus u_i \notin A_x] \leq 2^{-n}$. As u_1, \ldots, u_k are independent, $\Pr_{\underline{u}}[r \bigoplus u_i \notin A_x]$ for every $i \in [k]$ $i \in [k]$.
- Applying union bound,
 - $Pr_{\underline{u}} [\exists r \in \{0,1\}^m \ r \oplus u_i \notin A_x \text{ for every } i \in [k]] < 2^m 2^{-m}$

Proof of the Claim

- Claim. If $|A_x| \ge (I 2^{-n}).2^m$ then there <u>exists</u> a collection $u_1, ..., u_k \in \{0, 1\}^m$ s.t. $\bigcup_{i \in [k]} (A_x \bigoplus u_i) = \{0, 1\}^m$.
- *Proof.* We'll show if $u_1, ..., u_k$ are picked independently and uniformly at random then
 - $Pr_{\underline{u}} [\exists r \in \{0,1\}^m \ r \oplus u_i \notin A_x \text{ for every } i \in [k]] < 1.$
- Fix an $r \in \{0,1\}^m$ (we'll apply a union bound later). Fix an $i \in [k]$. Then, $\Pr_{\underline{u}}[r \bigoplus u_i \notin A_x] \leq 2^{-n}$. As u_1, \ldots, u_k are independent, $\Pr_{\underline{u}}[r \bigoplus u_i \notin A_x]$ for every $i \in [k]$ $i \in [k]$.
- Applying union bound,
 - $Pr_{\underline{u}} [\exists r \in \{0,1\}^m \ r \oplus u_i \notin A_x \text{ for every } i \in [k]] < 1.$

Complete derandomization of BPP?

- Can the Sipser-Gacs-Lautemann theorem be strengthened? How low in the PH does BPP lie?
- Theorem. (Nisan & Wigderson 1988,..., Umans 2003) If there's a $L \in DTIME(2^{O(n)})$ and a constant $\varepsilon > 0$ such that any circuit C_n that decides $L \cap \{0,1\}^n$ requires size $2^{\varepsilon n}$, then BPP = P.

Complete derandomization of BPP?

- Can the Sipser-Gacs-Lautemann theorem be strengthened? How low in the PH does BPP lie?
- Theorem. (Nisan & Wigderson 1988,..., Umans 2003) If there's a $L \in DTIME(2^{O(n)})$ and a constant $\varepsilon > 0$ such that any circuit C_n that decides $L \cap \{0,1\}^n$ requires size $2^{\varepsilon n}$, then BPP = P.

- Caution: Shouldn't interpret this result as "randomness is useless".

Classes RP, co-RP and ZPP

Class RP

Class RP is the <u>one-sided error</u> version of BPP.

Definition. A language L is in RTIME(T(n)) if there's a
 PTM M that decides L in O(T(n)) time such that

$$x \in L \longrightarrow Pr[M(x) = 1] \ge 2/3$$

$$x \notin L \longrightarrow Pr[M(x) = 0] = I.$$

- Definition. RP = $\bigcup_{c>0}$ RTIME (n^c).
- Clearly, RP ⊆ BPP.

Class RP

- Class RP is the <u>one-sided error</u> version of BPP.
- Definition. A language L is in RTIME(T(n)) if there's a
 PTM M that decides L in O(T(n)) time such that

$$x \in L$$
 \longrightarrow $Pr[M(x) = 1] \ge 2/3$
 $x \notin L$ \longrightarrow $Pr[M(x) = 0] = 1.$

- Definition. RP = $\bigcup_{c>0}$ RTIME (n^c).

 Randomized Poly-time.
- Clearly, $RP \subseteq BPP$.

Remark. The defn of class RP is robust. The class remains unaltered if we replace 2/3 by $|x|^{-c}$ for any constant c > 0. The succ. prob. can then be amplified to $I-\exp(-|x|^d)$.

(Easy Homework)

Class RP

Class RP is the <u>one-sided error</u> version of BPP.

Definition. A language L is in RTIME(T(n)) if there's a
 PTM M that decides L in O(T(n)) time such that

$$x \in L \implies Pr[M(x) = 1] \ge 2/3$$

$$x \notin L \longrightarrow Pr[M(x) = 0] = I.$$

- Definition. RP = $\bigcup_{c>0}$ RTIME (n^c).
- Clearly, RP \subseteq BPP. Obs. RP \subseteq NP. (Easy Homework)

 Recall, we don't know whether BPP \subseteq NP.

Class co-RP

- Definition. $co-RP = \{L : \overline{L} \in RP\}$.
- Obs. A language L is in co-RP if there's a PTM M that decides L in poly-time such that

```
x \in L \longrightarrow Pr[M(x) = 1] = 1

x \notin L \longrightarrow Pr[M(x) = 0] \ge 2/3.
```

• Obs. co-RP ⊆ BPP.

Class co-RP

- Definition. $co-RP = \{L : \overline{L} \in RP\}$.
- Obs. A language L is in co-RP if there's a PTM M that decides L in poly-time such that

$$x \in L$$
 \longrightarrow $Pr[M(x) = I] = I$
 $x \notin L$ \longrightarrow $Pr[M(x) = 0] \ge 2/3.$

• Obs. co-RP \subseteq BPP.

Is RP∩co-RP in P? Not known!

Class ZPP

- Recall that PTMs are allowed to <u>not</u> halt on some computation paths defined by its random choices.
- We say that a PTM M has expected running time T(n) if the expected running time of M on input x is at most T(n) for all x ∈ {0,1}ⁿ.

Class ZPP

- Recall that PTMs are allowed to <u>not</u> halt on some computation paths defined by its random choices.
- We say that a PTM M has expected running time T(n) if the expected running time of M on input x is at most T(n) for all $x \in \{0,1\}^n$.
- Definition. A language L is in ZTIME(T(n)) if there's a PTM M s.t. on every input x, M(x) = L(x) whenever M halts, and M has expected running time O(T(n)).
- Definition. ZPP = ∪ ZTIME (n^c).
 Zero-error Probabilistic Poly-time.

Class ZPP

- Definition. A language L is in ZTIME(T(n)) if there's a PTM M s.t. on every input x, M(x) = L(x) whenever M halts, and M has expected running time O(T(n)).
- Definition. ZPP = $\bigcup_{c>0}$ ZTIME (n^c).
- Problems in ZPP are said to have poly-time <u>Las Vegas</u> <u>algorithms</u>, whereas those in BPP are said to have polytime <u>Monte-Carlo algorithms</u>.
- Theorem. $ZPP = RP \cap co RP \subseteq BPP$. (Assignment)
- Note. If P = BPP then P = ZPP = BPP.

Randomness brings in simplicity

- The use of randomness helps in designing simple and efficient algorithms for many problems.
- We'll see one such algorithm in this lecture, namely an efficient randomized, <u>parallel</u> algorithm to check if a given bipartite graph has a perfect matching.

Class RNC

- The use of randomness helps in designing simple and efficient algorithms for many problems.
- We'll see one such algorithm in this lecture, namely an efficient randomized, <u>parallel</u> algorithm to check if a given bipartite graph has a perfect matching.
- Definition. A language L is in RNCⁱ if there's a randomized $O((\log n)^i)$ -time parallel algorithm M that uses $n^{O(1)}$ parallel processors s.t. for every $x \in \{0,1\}^*$,

$$x \in L$$
 \longrightarrow $Pr[M(x) = I] \ge 2/3, $x \notin L$ \longrightarrow $Pr[M(x) = 0] = I.$$

Here, n is the input length.

Class RNC

- The use of randomness helps in designing simple and efficient algorithms for many problems.
- We'll see one such algorithm in this lecture, namely an efficient randomized, <u>parallel</u> algorithm to check if a given bipartite graph has a perfect matching.
- Definition. RNC = $\bigcup_{i>0}$ RNCⁱ.
- RNC stands for Randomized NC. We can alternatively define RNC using (uniform) circuits.

- Let PerfectMatching = {Bipartite graph G : G has a perfect matching}.
- Theorem. (Lovasz 1979) PerfectMatching ∈ RNC².
- The input $G = (L \cup R, E)$ is given as a $n \times n$ biadjacency matrix $A = (a_{ij})_{i,j \in n}$, where n = |L| = |R|.

- Let PerfectMatching = {Bipartite graph G : G has a perfect matching}.
- Theorem. (Lovasz 1979) PerfectMatching ∈ RNC².
- The input $G = (L \cup R, E)$ is given as a $n \times n$ biadjacency matrix $A = (a_{ij})_{i,j \in n}$, where n = |L| = |R|.

 $a_{ij} = I$ if there's an edge from the i-th vertex in L to the j-th vertex in R, otherwise $a_{ii} = 0$.

- Let PerfectMatching = {Bipartite graph G : G has a perfect matching}.
- Theorem. (Lovasz 1979) PerfectMatching ∈ RNC².
- The input $G = (L \cup R, E)$ is given as a $n \times n$ biadjacency matrix $A = (a_{ij})_{i,j \in n}$, where n = |L| = |R|.
- Algorithm.
- 1. Construct $B = (b_{ij})_{i,j \in n}$ as follows: If $a_{ij} = 0$, then $b_{ij} = 0$. Else, pick b_{ij} independently and uniformly <u>at random</u> from [2n].
- 2. Compute det(B).
- 3. If $det(B) \neq 0$ output "yes", else output "no".

- Let PerfectMatching = {Bipartite graph G : G has a perfect matching}.
- Theorem. (Lovasz 1979) PerfectMatching ∈ RNC².
- The input $G = (L \cup R, E)$ is given as a $n \times n$ biadjacency matrix $A = (a_{ij})_{i,j \in n}$, where n = |L| = |R|.
- Algorithm. (RNC² algorithm)
- 1. Construct $B = (b_{ij})_{i,j \in n}$ as follows: If $a_{ij} = 0$, then $b_{ij} = 0$. Else, pick b_{ij} independently and uniformly <u>at random</u> from [2n]. (This can be done using n^2 processors.)
- 2. Compute det(B). (determinant is in NC², Csanky '76)
- 3. If $det(B) \neq 0$ output "yes", else output "no".

- Let PerfectMatching = {Bipartite graph G : G has a perfect matching}.
- Theorem. (Lovasz 1979) PerfectMatching ∈ RNC².
- Correctness of the Algorithm.
- 1. Define $X = (x_{ij})_{i,j \in n}$ as follows: If $a_{ij} = 0$, then $x_{ij} = 0$. Else, x_{ij} is a formal variable.
- 2. $\det(X) = \sum_{\sigma \in S_n} (-1)^{sign(\sigma)} \prod_{i \in [n]} x_{i \sigma(i)}$.
- S_n is the set of all permutations on [n].

- Let PerfectMatching = {Bipartite graph G : G has a perfect matching}.
- Theorem. (Lovasz 1979) PerfectMatching ∈ RNC².
- Correctness of the Algorithm.
- 1. Define $X = (x_{ij})_{i,j \in n}$ as follows: If $a_{ij} = 0$, then $x_{ij} = 0$. Else, x_{ij} is a formal variable.
- 2. $det(X) = \sum_{\sigma \in S_n} (-1)^{sign(\sigma)} \prod_{i \in [n]} x_{i \sigma(i)}$.
- Obs. $det(X) \neq 0$ \iff G has a perfect matching.

- Let PerfectMatching = {Bipartite graph G : G has a perfect matching}.
- Theorem. (Lovasz 1979) PerfectMatching ∈ RNC².
- Correctness of the Algorithm.
- 1. Define $X = (x_{ij})_{i,j \in n}$ as follows: If $a_{ij} = 0$, then $x_{ij} = 0$. Else, x_{ij} is a formal variable.
- 2. $det(X) = \sum_{\sigma \in S_n} (-1)^{sign(\sigma)} \prod_{i \in [n]} x_{i \sigma(i)}$.
- Obs. $det(X) \neq 0$ \iff G has a perfect matching.

Polynomial in the x_{ii} variables.

- Let PerfectMatching = {Bipartite graph G : G has a perfect matching}.
- Theorem. (Lovasz 1979) PerfectMatching ∈ RNC².
- Correctness of the Algorithm.
- 1. Define $X = (x_{ij})_{i,j \in n}$ as follows: If $a_{ij} = 0$, then $x_{ij} = 0$. Else, x_{ij} is a formal variable.
- 2. $\det(X) = \sum_{\sigma \in S_n} (-1)^{sign(\sigma)} \prod_{i \in [n]} x_{i \sigma(i)}$.
- Obs. $det(X) \neq 0$ \iff G has a perfect matching.
- In the algorithm, we set $x_{ij} = b_{ij}$, where b_{ij} is picked randomly from [2n] if $x_{ij} \neq 0$, otherwise $b_{ii} = 0$.

- Let PerfectMatching = {Bipartite graph G : G has a perfect matching}.
- Theorem. (Lovasz 1979) PerfectMatching ∈ RNC².
- Correctness of the Algorithm.
- 1. Define $X = (x_{ij})_{i,j \in n}$ as follows: If $a_{ij} = 0$, then $x_{ij} = 0$. Else, x_{ij} is a formal variable.
- 2. $\det(X) = \sum_{\sigma \in S_n} (-1)^{sign(\sigma)} \prod_{i \in [n]} x_{i \sigma(i)}$.
- Obs. $det(X) \neq 0$ \iff G has a perfect matching.
- If det(X) = 0 then det(B) = 0. (So, the algorithm has one-sided error.)

- Let PerfectMatching = {Bipartite graph G : G has a perfect matching}.
- Theorem. (Lovasz 1979) PerfectMatching ∈ RNC².
- Correctness of the Algorithm.
- 1. Define $X = (x_{ij})_{i,j \in n}$ as follows: If $a_{ij} = 0$, then $x_{ij} = 0$. Else, x_{ij} is a formal variable.
- 2. $\det(X) = \sum_{\sigma \in S_n} (-1)^{sign(\sigma)} \prod_{i \in [n]} x_{i \sigma(i)}$.
- Obs. $det(X) \neq 0$ \iff G has a perfect matching.
- If $det(X) \neq 0$, what is the probability that $det(B) \neq 0$?

Schwartz-Zippel lemma

• Lemma. (Schwartz 1980, Zippel 1979) Let $f(x_1, ..., x_n) \neq 0$ be a multivariate polynomial of (total) degree at most d over a field F. Let $S \subseteq F$ be finite, and $(a_1, ..., a_n) \in S^n$ such that each a_i is chosen independently and uniformly at random from S. Then,

$$\Pr_{(a_1,...,a_n)\in_r S^n} [f(a_1,...,a_n) = 0] \le d/|S|.$$

 Proof idea. Roots are far fewer than non-roots. Use induction on the number of variables.

(Homework / reading exercise)

- Let PerfectMatching = {Bipartite graph G : G has a perfect matching}.
- Theorem. (Lovasz 1979) PerfectMatching ∈ RNC².
- Correctness of the Algorithm.
- 1. Define $X = (x_{ij})_{i,j \in n}$ as follows: If $a_{ij} = 0$, then $x_{ij} = 0$. Else, x_{ij} is a formal variable.
- 2. $\det(X) = \sum_{\sigma \in S_n} (-1)^{sign(\sigma)} \prod_{i \in [n]} x_{i \sigma(i)}$.
- Obs. $det(X) \neq 0$ \iff G has a perfect matching.
- If det(X) ≠ 0, then Pr[det(B) ≠ 0] ≥ ½ as degree of det(X) = n (by the Schwartz-Zippel lemma).

• Theorem. (Mulmuley, Vazirani, Vazirani 1987) Finding a maximum matching in a general graph is in RNC².

Is finding maximum matching in NC? Open!

- Theorem. (Mulmuley, Vazirani, Vazirani 1987) Finding a maximum matching in a general graph is in RNC².
- Is finding maximum matching in NC? Open!
- Theorem. (Fenner, Gurjar, Thierauf 2016; Svensson, Tarnawski 2017) Finding a maximum matching in a general graph is in quasi-NC.

In $O((\log n)^3)$ time using exp($O((\log n)^3)$) processors,