Osnovi kriptografije

Algoritmi

Bezbednost

- U bitnim programskim sistemima podaci i servisi se moraju očuvati od bezbednosnih pretnji.
- Bezbednost u računarskim sistemima je usko povezana sa pojmom oslonjivosti (dependability).
 - Jer očekujemo da sistem ispuni "obećanje" da isporuči servis
 - Tako da se možemo osloniti na njega

Između ostalog, oslonjivost uključuje:

- <u>Tajnost</u> (confidentiality) informacija se daje samo ovlašćenim (autorizovanim) licima/servisima,
- <u>Integritet</u> (*integrity*) modifikacija podataka zahteva autorizovan pristup.

Tipovi bezbednosnih pretnji

- Tipovi pretnji na nivou mreže:
 - Presretanje (interception) neautorizovana stranka dobije pristup podacima ili servisima. Ovde spada i ilegalno kopiranje podataka.
 - Prekidanje (interruption) servis ili podatak postane nedostupan,
 neupotrebljiv ili uništen. Npr. denial of service (DoS)
 - Modifikacija (modification) neautorizovana izmena podataka ili izmena servisa, koji više nije u skladu sa specifikacijom
 - Fabrikacija (fabrication) generisanje dodatnih podataka ili aktivnosti koji ne bi postojali u normalnim situacijama. Npr. ilegalno ponavljanje ranijeg zahteva za prenos novca ili dodavanja zapisa u datoteku sa lozinkama
- Malver (malware "Malicious Software") je pretnja

Mehanizmi sprovođenja bezbednosti

- Za bezbedan sistem potrebno je definisati bezbednosne zahteve.
 - Bezbednosna politika (security policy) sistema tačno opisuje šta je korisnicima, servisima i računarima u sistemu dozvoljeno, a šta nije.
- **Šifrovanje** (*encryption*) transformiše podatke u format koji nije razumljiv za napadače.
- Autentifikacija (authentication) verifikacija identiteta korisnika, klijenata, servisa, itd.
- Autorizacija (authorization) provera da li korisnik ili servis ima pravo na izvršavanje određene akcije.
- Beleženje istorijata aktivnosti (auditing) upisivanje u dnevnike događaja (uglavnom tekstualne) koji je entitet čemu pristupio i na koji način.
 - Ovaj mehanizam ne obezbeđuje direktnu zaštitu od napada, ali omogućava naknadnu analizu bezbednosnih problema.

Šta je šifrovanje?

- Šifrovanje je transformacija informacije tako da je njeno pravo značenje skriveno.
 - Potrebno je "posebno znanje" da se preuzme informacija.
- Šifrovanje koristi tajne ključeve kao "posebno znanje".
 - Savremeni algoritmi sprečavaju pokušaje otkrivanja ključa grubom silom!

Primer:

- Ako strana A želi da pošalje poruku m strani B, onda da bi zaštitila poruku od bezbednosnih pretnji
 - 1. A će izvršiti šifrovanje (enkripciju) poruke m (dobija se m')
 - 2. A će poslati šifrovanu poruku (m')
 - 3. B će izvršiti dešifrovanje (dekripciju) poruke (m' i dobiće m)

Osnovni pojmovi kriptografije

Definicije

- poruka (P) podatak ili deo podatka koji strana A šalje strani B.
- šifrovana poruka (C) poruka koja je promenjena sa ciljem da bude nerazumljiva za potencijalne napadače.
- ključ (K) tajni podatak koji omogućava stranama da poruke šifriraju.
- šifrovanje (enkripcija) (E) proces u kojem predajna strana modifikuje poruku sa ciljem da ona bude nerazumljiva za potencijalne napadače.
 Rezultat ovog procesa je šifrovana poruka.
- dešifrovanje (dekripcija) (D) proces u kojem se od šifrovane poruke pravi izvorna poruka.

Šifrovanje / dešifrovanje

- Šifrovana poruka treba da spreči akcije uljeza (pretnje bezbednosti): presretanje, modifikaciju i fabrikaciju.
- Dešifrovanje bez posedovanja ključa (treba da) je JAKO otežano!

Primitivan algoritam šifrovanja

 Jednostavna zamena slova je način kodiranja teksta gde se neko slovo zamenjuje drugim, a dekodiranje ponovi zamenu.

A	В	C	D	\mathbf{E}	F	G	Н	Ι	J	K	L	\mathbf{M}
0	1	2	3	4	5	6	7	8	9	10	11	12
N	О	Р	Q	R	S	Т	U	V	W	X	Y	Z
13	14	15	16	17	18	19	20	21	22	23	24	25

ASCII kodovi

Binary	Oct	Dec	Hex	Glyph
010 0000	040	32	20	space
010 0001	041	33	21	!
010 0010	042	34	22	"
010 0011	043	35	23	#
010 0100	044	36	24	\$
010 0101	045	37	25	%
010 0110	046	38	26	&
010 0111	047	39	27	100
010 1000	050	40	28	(
010 1001	051	41	29)
010 1010	052	42	2A	*
010 1011	053	43	2B	+
010 1100	054	44	2C	,
010 1101	055	45	2D	-
010 1110	056	46	2E	-
010 1111	057	47	2F	1
011 0000	060	48	30	0
011 0001	061	49	31	1
011 0010	062	50	32	2
011 0011	063	51	33	3
011 0100	064	52	34	4
011 0101	065	53	35	5
011 0110	066	54	36	6
011 0111	067	55	37	7
011 1000	070	56	38	8
011 1001	071	57	39	9
011 1010	072	58	ЗА	:
011 1011	073	59	3B	÷
011 1100	074	60	3C	<
011 1101	075	61	3D	=
011 1110	076	62	3E	>
011 1111	077	63	3F	?

Binary	Oct	Dec	Hex	Glyph	
100 0000	100	64	40	@	
100 0001	101	65	41	Α	
100 0010	102	66	42	В	
100 0011	103	67	43	С	
100 0100	104	68	44	D	
100 0101	105	69	45	Е	
100 0110	106	70	46	F	
100 0111	107	71	47	G	
100 1000	110	72	48	Н	
100 1001	111	73	49	- 1	
100 1010	112	74	4A	J	
100 1011	113	75	4B	К	
100 1100	114	76	4C	L	
100 1101	115	77	4D	М	
100 1110	116	78	4E	N	
100 1111	117	79	4F	0	
101 0000	120	80	50	Р	
101 0001	121	81	51	Q	
101 0010	122	82	52	R	
101 0011	123	83	53	S	
101 0100	124	84	54	Т	
101 0101	125	85	55	U	
101 0110	126	86	56	V	
101 0111	127	87	57	W	
101 1000	130	88	58	Х	
101 1001	131	89	59	Υ	
101 1010	132	90	5A	Z	
101 1011	133	91	5B	[
101 1100	134	92	5C	١	
101 1101	135	93	5D]	
101 1110	136	94	5E	Λ	
101 1111	137	95	5F	_	

Binary	Oct	Dec	Hex	Glyph
110 0000	140	96	60	•
110 0001	141	97	61	а
110 0010	142	98	62	b
110 0011	143	99	63	С
110 0100	144	100	64	d
110 0101	145	101	65	е
110 0110	146	102	66	f
110 0111	147	103	67	g
110 1000	150	104	68	h
110 1001	151	105	69	i
110 1010	152	106	6A	j
110 1011	153	107	6B	k
110 1100	154	108	6C	- 1
110 1101	155	109	6D	m
110 1110	156	110	6E	n
110 1111	157	111	6F	0
111 0000	160	112	70	р
111 0001	161	113	71	q
111 0010	162	114	72	r
111 0011	163	115	73	s
111 0100	164	116	74	t
111 0101	165	117	75	u
111 0110	166	118	76	v
111 0111	167	119	77	w
111 1000	170	120	78	х
111 1001	171	121	79	у
111 1010	172	122	7A	z
111 1011	173	123	7B	{
111 1100	174	124	7C	- 1
111 1101	175	125	7D	}
111 1110	176	126	7E	~

Primer

```
function out = ShiftCipher(in, shift)
for k = 1 : length(in)
    s = in(k);
    if s >= 'a' && s <= 'z'
        s = mod(s - 'a' + shift, 26) + 'a';
    elseif s >= 'A' && s <= 'Z'
        s = mod(s - 'A' + shift, 26) + 'A';
    else
    end
    out(k) = char(s);
end</pre>

A B C D E F G H I J K L M

O 1 2 3 4 5 6 7 8 9 10 11 12

N O P Q R S T U V W X Y Z

13 14 15 16 17 18 19 20 21 22 23 24 25
```

```
>> p = 'Danas je lep dan. Za 3 dana se prognozira sneg!'
p =
Danas je lep dan. Za 3 dana se prognozira sneg!

>> c = ShiftCipher(p,4)
c =
Herew ni pit her. De 3 here wi tvskrsdmve wrik!

>> p2 = ShiftCipher(c,-4)
p2 =
Danas je lep dan. Za 3 dana se prognozira sneg!
```

Neke druge tehnike ...

- Tekstualne poruke nisu jedine u računarskoj komunikaciji, i kodiranje zamenom slova nije dovoljno sigurno.
 - Ako se koristi ShiftCipher dovoljno je probati 26 slučajeva!
- Kriptografija koristi binarnu predstavu poruka.
- Često se u algoritmima kodiranja koristi ekskluzivno ILI, tj. binarna operacija (XOR)

<u>Tablica istinitosti za XOR:</u>

$$0 \oplus 0 = 0$$

$$0 \oplus 1 = 1$$

$$1 \oplus 0 = 1$$

$$1 \oplus 1 = 0$$

Osobine (x, y su biti):

$$x \oplus 0 = x$$

$$x \oplus 1 = ^{\sim}x$$

$$(x \oplus y) \oplus y = x$$

"Binarna podloga" - One-Time Pad algoritam

- Posmatramo niz bita koji čine poruku p.
- "Binarna podloga" k je ključ slučajno izabran niz bita iste dužine kao poruka.
- Poruku "postavimo na podlogu" i dobijamo kodiranu poruku: $c=p\oplus k$
 - Operacija XOR se primenjuje na svaki par bita k_i i p_i
 - Kodirana poruka je u obliku gde se teško može rekonstruisati neka dodatna informacija o originalnoj poruci.
- Prijemna strana takođe poseduje isti ključ i poruku postavlja na podlogu: $p_2=c\oplus k=(p\oplus k)\oplus k=p$
- Osobine algoritma: čini kodiranu poruku bezbednom, koristi ključ dužine poruke, i ponovna upotreba ključa je rizična.
 - Primernom XOR operacije na kodirane poruke c_1 i c_2 dobija se $(c_1 \oplus k) \oplus (c_2 \oplus k) = c_1 \oplus c_2$, tako da se uticaj ključa gubi i otkrivaju se mesta gde poruke c_1 i c_2 imaju iste bite.

Primer

Poruka: ONETIMEPAD

• Ključ: TBFRGFARFM

• **Šifrovana poruka:** IPKLPSFHGQ

Dešifrovanje:

- Ključ TBFRGFARFM dešifruje poruku u ONETIMEPAD
- Ključ POYYAEAAZX dešifruje poruku u SALMONEGGS
- Ključ BXFGBMTMXM dešifruje poruku u GREENFLUID

Rad sa blokovima i ulančavanje

- Prema prethodnom algoritmu za dugačku poruku je potreban dugačak ključ (što je nezgrapno!)
- Stoga se kod simetrične kriptografije koriste:
 - Kraći ključevi, i
 - Poruke se "seckaju" na blokove bita (ključ se primenjuje na svaki od blokova)
- Dodatno, "ulančavanje blokova" je tehnika koja sprečava da isti blokovi daju isto šifrovan rezultat.
 - Obrada narednog bloka koristi rezultat obrade prethodnog bloka
- Praktični algoritmi su dosta složeniji u odnosu na prethodni algoritam ...

Šifrovanja pomoću ključeva

Šifrovanje (kodovanje)

$$C = E_k(P)$$

- Generiše kodiranu poruku na osnovu originalne poruke i tajnog ključa
- Dešifrovanje (dekodovanje)

$$P = D_k(C)$$

- Generiše originalnu poruku na osnovu kodirane poruke i tajnog ključa
- Važne osobine:
 - Nemoguće je naći ključ K ako su poznate poruka P i kodirana poruka C
 - Nemoguće je naći drugi ključ K' za koji bi bilo $E_K(P)=E_{K'}(P)$
- Podele algoritama šifrovanja
 - Simetrična kriptografija
 - Asimetrična kriptografija

Veliki brojevi

- Upotreba stvarno velikih brojeva
 - 1 od 2⁶¹ šansi da neko osvoji loto i da ga udari grom u istom danu
 - 2⁹² atoma je u prosečnom ljudskom telu
 - 2¹²⁸ mogućih vrednosti u 128-bitnom ključu
 - 2¹⁷⁰ atoma na planeti
 - 2¹⁹⁰ atoma na Suncu
 - 2²³³ atoma u galaksiji
 - 2²⁵⁶ mogućih vrednosti u 256-bitnom ključu

Da li možemo "silom" dešifrovati poruku?

- Termodinamička ograničenja ...
 - Iz fizike: energija potrebna da se postavi vrednost bita (0 ili 1) je ne manja od kT, gde je:
 - k Bolcmanova konstanta (1.38*10⁻²³ J/K)
 - T je apsolutna temperatura sistema
 - Ako je T = 3.2K (ambijentalna temperatura u svemiru)
 - $kT = 4.4*10^{-23} \text{ J}$
 - U godini dana Sunce emituje 1.21*10³⁴ J
 - Dovoljno da provrtimo 187-bitni brojač
 - Akumulacija energije Sunca u 32 godine je dovoljna da provrtimo 192-bitni brojač
 - Supernova proizvodi 10⁴⁴ J u okruženju
 - Dovoljno da provrtimo 219-bitni brojač
 - 256-bitni brojač zahteva 2³⁷ = 137.438.953.472 puta više energije!!!

Simetrična kriptografija

- Drugo ime: kriptografski sistemi sa deljenim ključem
- Koristi isti ključ za šifrovanje i dešifrovanje
- Da bi komunikacija bila bezbedna, ključevi moraju biti tajni (kao i kod svih kriptografskih sistema)
- Oznaka za deljeni ključ: $K_{A,B}$

$$C=E_{K_{A,B}}\left(P
ight) \quad \longleftarrow$$
 Na predajnoj strani

$$P = D_{K_{A,B}}\left(C
ight) \;\; \longleftarrow$$
 Na prijemnoj strani

AES

- AES (Advanced Encryption Standard) je javno dostupan i besplatan algoritam šifrovanja simetričnim ključem.
 - koristi ključ od 128, 192 ili 256 bita, a blokove dužine 128 bita.
- Nastao 2001. nakon 4-godišnjeg takmičenja i saradnje: američke vlade, privatne industrije i naučnika za izbor najboljeg algoritma koji je:
 - Bezbedan otporan na kriptoanalizu, ispravnosti matematike, slučajnosti izlaza, itd.
 - Jeftin brz i ima male memorijske zahteve
 - Dobrih karakteristika jednostavan, fleksibilan, pogodan za hardversku i softversku implementaciju.
- Zamenio 3DES algoritam

Asimetrična kriptografija

- Odvojeni ključevi za šifrovanje i dešifrovanje
 - Svaki od učesnika u komuniciji ima dva ključa: javni ključ i tajni ključ.
 - Tajni ključ K_D (zove se i privatan ključ) se nikome ne daje.
 - Javni ključ K_E može posedovati svako.
- Ovakvi sistemi zovu i "sistemi sa javnim ključevima"
- Princip rada:
 - Proces šifriranja koristi javni ključ K_E da napravi šifrovanu poruku
 - Takvu poruku može da "pročita" samo proces dešifrovanja koji koristi tajni ključ.

$$P = D_{K_D} \left(E_{K_E} \left(P \right) \right)$$

Računanje po modulu

Primer

$$(23 + 7) \mod 11 = 30 \mod 11 = (2*11 + 8) \mod 11 = 8$$

- Koristi se u nekim algoritmima šifrovanja
- Osobine:
 - $(a+b) \bmod n = ((a \bmod n) + (b \bmod n)) \bmod n$
 - $-ab \mod n = ((a \mod n)(b \mod n)) \mod n$
 - $-a^b \mod n = (a \mod n)^b \mod n$
 - $-xn \mod n = 0$

Prosti brojevi

- Prosti brojevi su prirodni brojevi deljivi samo sa 1 i samim sobom.
- Primer: 1, 2, 3, 5, 7, 11, 13, ...
 - Npr. 6 nije prost broj jer je $6 = 2 \cdot 3$
- Generisanje velikog prostog broja treba da proveri da li je slučajno izabran broj prost.
 - Postoje algoritmi koji ovo testiraju

RSA

- RSA algoritam šifrovanja asimetričnim ključem
- Algoritam se oslanja na broj koji je proizvod 2 velika prosta broja
 - Dovoljno je velik da niko ne može otkriti činioce u razumno dugom vremenskom periodu.
 - Npr. broj sa 2048 bita je dovoljno velik.
- Naziv je dobio po tvorcima: Ronald Rivest, Adi Shamir i Leonard Adelman.

RSA algoritam

- 1. Izabrati 2 velika (najmanje 1024 bita svaki) različita prosta broja p i q
- 2. Izračunati n=pq
- 3. Izračunati r = (p 1)(q 1)
- 4. Izabrati mali broj e tako da su e i r uzajamno prosti (nemaju zajedničke delioce, sem 1)
- 5. Izračunati d kao inverzan element za množenje, tj. da je ed mod r = 1
- 6. RSA javni ključ je tada par $K_E = (e, n)$
- 7. RSA privatni ključ je $K_D = (d, n)$
- 8. Funkcije šifrovanja i dešifrovanja su:

$$E_{K_E}(m) = c = m^e \mod n$$
$$D_{K_D}(c) = c^d \mod n$$

Primer (sa malim brojevima)

- 1. Izabrati: p = 17 i q = 29
- 2. Izračunati n = pq = 493
- 3. Izračunati r = (p-1)(q-1) = 448
- 4. Izabrati mali broj e=5 jer su 5 i 448 uzajamno prosti.
- 5. Izračunati d=269 provera: $ed \mod r = (5 \cdot 269 \mod 448) = 1345 \mod 448 = (3 \cdot 448 + 1) \mod 448 = 1$
- 6. RSA javni ključ je $K_E = (5, 493)$
- 7. RSA privatni ključ je $K_D = (269, 493)$
- 8. Primer šifrovanja i dešifrovanja:

$$E_{K_E}(327) = 327^5 \mod 493 = 3.738.856.210.407 \mod 493 = 259$$

 $D_{K_D}(259) = 259^{269} \mod 493 = \dots = 327$

Detalji RSA algoritma

- Kako računati sa velikim brojevima (sa velikim brojem cifara)?
- Kako pronaći veliki prost broj u kratkom vremenu?
- Kako izračunati e tako da bude uzajamno prost sa r?
- Kako sračunati d da zadovolji formulu $ed \mod r = 1$?
- Ako je d velik broj kako računati x^d u kratkom vremenu?
- Kako znamo da su $E_{K_F}(x)$ i $D_{K_D}(x)$ inverzne funkcije?

Aritmetika velikih brojeva

- Brojevi koji se ovde pominju ne mogu stati u 64-bitne registre.
- Srećom, postoje biblioteke koje vrše takve proračune
 - npr. Python programski jezik podržava aritmetiku velikih brojeva
- Dodatno, aritmetika u RSA koristi račun po modulu tako da se međurezultati mogu ograničiti.
 - npr. $x^d \mod n$ može da ima međurezultate u intervalu [0, n-1].

Generisanje velikih prostih brojeva

- Generišemo slučajan neparan veliki broj i proverimo da li je prost.
 - npr. Miller-Rabin test se koristi za proveru da li je broj prost
- Veliki prosti brojevi nisu retki
 - Teorema prostih brojeva: šansa da veliki brojm bude prost broj iznosi 1 u $\ln m$.
 - Npr. za 1024 bitni broj treba probati oko 710 brojeva ($\ln 2^{1024} = 710$).

Uzajamno prosti brojevi

- Dva prirodna broja su uzajamno prosti ako nemaju zajednički delilac veći od 1.
- Euklidov algoritam nalazi najveći zajednički delilac:
 - U osnovi, algoritam za brojeve e i r nalazi najveći zajednički delilac g tako što računa g=ei+rj, gde su i i j celi brojevi i jedan od njih može biti negativan.

Primer: zajednički delilac za 30 i 18 je 6.

$$6 = 30i + 18j, i = -1, j = 2.$$

- Složenost algoritma je $O(\log_2 e)$
- Algoritam se primenjuje za nalaženje e tako što proba redom sa prostim brojevima koji su manji od r
 - Ima oko $r/\ln r$ prostih brojeva manjih od r, ali r ima najviše $\log_2 r$ faktora tako da su solidne šanse da se e brzo pronađe.
- Takođe, rezultat Euklidovog algoritma se koristi za računanje d.

Brzo računanje celobrojnog stepena nekog broja

• Brzi algoritam računa izraz $x^d \mod n$ u $\Theta(\log_2 d)$ vremenu upotrebom tehnike ponavljanja stepenovanja

$$-$$
 za d parno $x^d = \left(x^{\frac{d}{2}}\right)^2$, a

$$-$$
 za d neparno $x^d = \left(x^{\frac{d-1}{2}}\right)^2 \cdot x$

Hibridni sistemi šifrovanja

- Primena RSA algoritma na duge poruke zahteva dosta vremena i tada je nepraktična.
- Hibridno rešenje predlaže da strane koje su u komunikaciji inicijalno razmene ključ koji će se koristi za simetrično šifrovanje i dešifrovanje poruka (npr. AES algoritam). Za inicijalno slanje takvog ključa se može upotrebiti algoritam za asimetrično šifrovanje i dešifrovanje poruka (npr. RSA algoritam). Znači:
 - prva poruka sadrži simetričan ključ šifrovan RSA algoritmom, a
 - ostale poruke se šifruju AES algoritmom.

Hash funkcije

- Služe za "žigosanje poruke" prave žig na osnovu poruke
- Hash funkcija H je jednosmerna funkcija
 - na osnovu žiga se ne može rekonstruisati poruka
- Važne osobine
 - Slaba otpornost na koliziju za poruku m se ne može naći poruka m' za koju je H(m)=H(m')
 - Jaka otpornost na koliziju nemoguće naći dve poruke m i m' za koje će biti H(m)=H(m')
- Primer: MD5 (Message Digest 5)
 - MD5 (Message Digest 5) staro/prevaziđeno
 - od poruke proizvoljne dužine pravi jedinstveni 128-bitni message digest
 - SHA-256 skoriji, dobar izbor
 - **—** ...

Digitalni potpis hash-om

Koraci su sledeći:

- A napravi h=H(m) gde je H hash funkcija, m poruka a h message digest
- A kodira h svojim privatnim ključem
- A pošalje i m i h (h je malo u odnosu na m)
- B primi *m* i *h*
- B napravi $h_B = H(m)$
- B dekodira h (javnim ključem od A) i uporedi ga sa $h_{\rm B}$ (treba da budu jednaki)

DSA algoritam (Digital Signature Algorithm)

DSA algoritam - parametri

- p prost broj duzine L bitova (L je u interval 512,1024)
- **q** 160-bitni prost faktor od p-1
- $\mathbf{g} = h^{((p-1)/q) \mod(p)}$ gde je h bilo koji factor manji od p-1 takav da je $h^{((p-1)/q) \mod(p)}$ vece od 1
- x broj manji od q
- $y = g^x \mod(p)$

h=H(m) je jednosmerna hes funkcija Secure Hash Algorithm – ovo je odredjena standardom

Parametri p, q i g su javni I mogu biti dostupni svima u mrezi Privatni kljuc je x, a javni y.

DSA algoritam - koraci

- 1. A generiše slučajan broj k manji od q
- 2.A generiše

```
r=(g^k \mod(p)) \mod(q)

s=(k^{-1}*(H(m)+x*r)) \mod(q)
```

Parametri r i s su potpis od A i oni se šalju B

3. B verifikuje potpis tako sto izracunava w=s⁻¹mod(q)
u1=(H(m)*w)mod(q)
u2=(r*w)mod(q)
v=((g^{u1}*y^{u2})mod(p))mod(q)
Ako je v=r, tada je potpis ispravan

Primeri

DSA algoritam - primer

DSA algoritam – Alisa generiše

```
k = 5  # generiše: 0 < k < q
r = 8  # računa: r = (g**k mod p) mod q = (9**5 mod 23) mod 11
i = 9  # računa se: k*i mod q = 1: 5*i mod 11 = 1
s = 3  # računa se: s = i*(h+r*x) mod q = 9*(3+8*7) mod 11
{8,3}  # digitalni potpis: {r,s}</pre>
```

DSA algoritam – Bob izračunava

(r,s) = (8,3) - digitalni potpis

```
h = 3  # hash vrednost poruke
w = 4  # računa: s*w mod q = 1 ( 3*4 mod 11 = 1)
u1 = 1  # računa: u1 = h*w mod q = 3*4 mod 11 = 1
u2 = 10  # računa: u2 = r*w mod q = 8*4 mod 11 = 10
```

PROVERA POTPISA

```
v = 8  # računa: v = (((g**u1)*(y**u2)) \mod p) \mod q  # = (((9**1)*(4**10)) \mod 23) \mod 11 = 8  # verification passed
```