北京航空航天大学 2011 - 2012 学年 第二学期期末

离散数学

《组 合 数 学》

班 级______ 学 号 _____

姓 名______ 成 绩 _____

2012年6月4日

班号	号学号	姓名_	万	龙 绩
	《组合数学	学》斯	用末考试卷	
注意事项 : 1、考试时间 120 分钟、闭卷。				
2 、第一题的答案直接填写在题目留出的空白,第二题之后,答题写在 后面的空白页上,请标明 题号。				
-,	填空题 (每空 5分,共 35分)		
(1)	7 颗不同颜色珠子做成一条项链	, 其中有	ī 3颗红、i	黄、绿珠子任意
	2个都不能相邻,共能够有		种项链	构成样式。
(2)	构造 {1,2 ,,8} 的排列		, 其逆序列	儿是 6,6,1,4,
	2 , 1 , 0 , 0.			
(3)	对于大小为 2n 的多重集 {n ?a	, 1, 2, 3,	, n}揉	文它的 n-组合数
	=			
(4)	方程 X ₁ +X ₂ +X ₃ +X ₄ =30, 共有 _		个满足 x₁:	2, x ₂ 0, x ₃ -5,
	x4 9的整数解。			
(5)	一个厨师会做 n 种菜品,要想原	用这 n 种	中菜品做成 10	00 桌酒席,且任
	何一桌酒 席的 菜品 不会完 釒	≧出 现在	: 另一桌 上	, 则 n 最少为
(6)	设hո是方程 e₁+e₂+…+e ҝ=n的〗	E整数解的	的个数 ,序列	اً h ₀ , h ₁ ,, الم
	的生成函数是			

(7) 令 m 和 n 是非负整数 m n。有 m+n 个人排成一队进入电影院,电

影票为 50 元,这 m+n 人中有 m 个人只有 50 元纸币, n 个人只有 100 元纸币。售票处采用一个空的售票箱。人们能够排队总有零钱可找的列队方式数为 ______。

二、证明:证明对任意给定的 52 个整数,存在其中的两个整数,要么两者的和能被 100整除,要么两者的差能被 100整除。(共 10分)

三、有两台机器 A和B以及若干项需要运行的任务,每个任务在一台机器上运行。采用(k:a,b)表示编号 k任务可以在机器 A的a模式或机器 B的b模式运行,每台机器切换模式需要重启一次。当机器初始为关机状态,每台机器有 9种不同的模式,需要执行 11项任务:(0:0,1)、(1:0,4)、(2:1,2)、(3:1,5)、(4:3,6)、(5:4,7)、(6:4,8)、(7:5,4)、(8:5,8)、(9:6,7)、(10:8,7)时,这 11项任务按照一定顺序在 2台机器上调度,机器启动的最小次数是多少?(给出求解过程)。(共 10分)

四、求多重集 $\{1 \cdot a, 2 \cdot b, 3 \cdot c, 4 \cdot d\}$ 存在多少种循环排列,对除 a 以外每种类型的字母, 该类型的所有字母不连续出现, 即不出现包含 bb、ccc、dddd的循环排列(求出最后数值)。(12分)

五、确定方程 $5x_1+6x_2+x_3+x_4=289$,满足 x_1 0, x_2 0, 0 x_3 4, 0 x_4 5 的整数解个数。(8分)

六、求解初始值为 $h_0=0$ 的递推关系 $h_n=2h_{n-1}-n+2^n$ (n>=1)。(12 分)

七、用匹配算法确定图 1 中二分图的最大匹配,并找出使得 |S|=|M的覆盖 S。(共 13分) (1)假设 M¹={(x 3,y3), (x4,y4), (x5,y5)},给出计算最大匹配 M*过程(需要给出每步二分图标注结果、交错路径 及匹配 M¹)。(10分) (2)给出求解过程(1)得出的最大匹配 M*以及使得 |S|=|M|覆盖集 S。(3分)

