Week 1

Days 1 – 7

<u>Day 1</u>

Express y in terms of x:

$$2^y \times 8^x = \frac{1}{2\sqrt{2}}$$

Day 2

Simplify:

$$\sqrt{20} + 2\sqrt{45} - \sqrt{80}$$

<u>Day 3</u>

Solve:

$$x^6 + 9x^3 + 8 = 0$$

<u>Day 4</u>

Solve:

$$3^{2x} - 28(3^x) + 27 = 0$$

<u>Day 5</u>

Find the values of k for which the equation $5x^2 - 2x + k = 0$ has exactly one solution

Day 6

Find the range of values of p for which $x^2 + 4x + p = 0$ has no real solutions

<u>Day 7</u>

Solve $x^2 - 3x - 10 > 0$ giving your answer in set notation

Days 8 - 14

Sketch
$$y = (x - 2)(x - 3)(4 - x)$$

<u>Day 9</u>

Find the equation of the straight line with gradient 3 that passes through (2, -4)

Day 10

Given that the distance between (2, y) and (5,7) is $3\sqrt{10}$, show that $y^2 - 14y - 32 = 0$

Day 11

Write down the equation of a circle with centre (5, -6) and radius $2\sqrt{3}$

Find the centre and radius of the circle with equation $x^2 + y^2 + 12x - 4y = 9$

<u>Day 13</u>

Divide $6x^3 + 27x^2 + 14x + 8$ by (x + 4)

<u>Day 14</u>

Given that (x-1) is a factor of $5x^3-9x^2+2x+a$, find the value of a

W	eek	3

Davs	15 -	21

Given that $n \in \mathbb{N}$, prove that $n^2 + 2$ is not divisible by 4

Day 16

Use Pascal's Triangle to find the expansion of $(x + 2y)^4$

<u>Day 17</u>

The coefficient of x^2 in the expansion of $(1+qx)^5$ is 490. Find the values of q

Day 18

Find the value of x in the triangle

<u>Day 19</u>

Simple rule for trig equations

Day 20

Solve for $0 < \theta < 180^\circ$

$$\cos 2\theta = \frac{1}{2}$$

<u>Day 21</u>

Solve, for $0 < \theta < 720^\circ$

 $\sin \theta = 0.3$

Days 22 - 28

Day 22

Solve
$$4\cos^2\theta - 7\sin\theta - 2 = 0$$
 for $0^{\circ} < \theta \le 360^{\circ}$

Day 23

Given that $\sin x \cos y = 3 \cos x \sin y$, express $\tan x$ in terms of $\tan y$

Day 24

Given that c = 3i + 4j and d = i - 2j

find t if $\mathbf{d} - t\mathbf{c}$ is parallel to $-2\mathbf{i} + \mathbf{j}$

Day 25

Given that $\overrightarrow{AB} = \binom{3}{-4}$ and $\boldsymbol{a} = \binom{2}{7}$, find the magnitude of \boldsymbol{b}

Differentiate the following with respect to \boldsymbol{x}

(i)
$$y = 3x^5 + 2x^7$$

(ii)
$$y = 4\sqrt{x} + \frac{2}{x^2}$$

Day 27

$$f(x) = 3x^2 + \frac{24}{x} + 2$$

Find the exact range of values for x for which f(x) is an increasing function

Day 28

Find the x coordinates for the stationary points of the curve $y = 2x^3 - 15x^2 + 24x + 6$

Week 5

Days 29 - 35

Day 29

Given that
$$\theta=3r^2-4r^{-1}$$
 find $\frac{d^2\theta}{dr^2}$

Day 30

The curve with equation $y = ax^2 + bx + 5$ has gradient 0 at (2,1). Find a and b.

Day 31

Work out
$$\int \left(5x^4 - x^{-\frac{3}{2}} - 12x^{-5}\right) dx$$

Day 32

Given that $f'(x) = 2x^3 - \frac{1}{x^2}$ and that f(1) = 2, find f(x).

<u>Day 33</u>

The graph shows $y = x^2(2 - x)$. Find the value of R.

Day 34

Rewrite each statement using logarithms or powers

(i)
$$3^{-2} = \frac{1}{9}$$

(ii)
$$a^4 = b$$

(iii)
$$\log_4 16 = 2$$

(iv)
$$\log_x y = z$$

Day 35

Solve the equation

$$\log_{10} 4 + 2 \log_{10} x = 2$$

Days 36 - 42

Solve $2^x e^{x+1} = 3$ giving your answer as an exact value

Day 37

The temperature T°C of a cup of tea is given by $T = 55e^{-\frac{t}{8}} + 20$, $t \ge 0$ where t is time in minutes

- (a) State the starting temperature of the tea
- (b) Find the time it takes for the tea to cool to 50°C, to 2 decimal places

Day 38

Prove that there exist no integers a and b for which 21a + 14b = 1

Prove that if ab is irrational then at least one of a or b must be irrational

Day 40

Express $\frac{16x-1}{(3x+2)(x-1)}$ as partial fractions

Day 41

The equation $|6-x| = \frac{1}{2}x + k$ has no solutions. Find the range of values of k

Day 42

Given that $f(x) = e^x + 3$, find $f^{-1}(x)$, and draw f(x) and $f^{-1}(x)$ on the same axes, indicating any intersections and equations of asymptotes.

Week 7

Days 43 - 49

Day 43

Given that y = f(x) is drawn below, sketch the graphs of |f(x)| and f(|x|)

Day 44

The first 3 terms of an arithmetic sequence are:

4,
$$2k$$
, $5k - 10$

Show that the sum of the first n terms is a square number

Day 45

In a geometric series $S_{\infty} = \frac{8}{7}S_6$

Find the possible values of r

Given that $a_1=3$ and $a_{n+1}=\frac{a_n-3}{a_n-2} \mathrm{find} \sum_{r=1}^{100} a_r=a_1+a_2+\cdots+a_{100}$

Day 47

Find the binomial expansion of $(4 + 5x)^{\frac{1}{2}}$ up to and including the x^2 term

Day 48

Given that θ is small and measured in radians, find an approximate value for $\frac{1-\cos 4\theta}{2\theta \sin 3\theta}$

Day 49

The area of the sector is 11cm^2 0 r

Given that the perimeter of the sector is 4 times the length of the arc AB, find the value of r.

Week 8

Days 50 - 56

Day 50

Prove that
$$\frac{cosec \ x - \cot x}{1 - \cos x} \equiv cosec \ x$$

Day 51

Show that $\tan\theta=\pm\frac{1}{\sqrt{k'}}$, where k is an integer to be found if $3\tan^2\theta+4\sec^2\theta=5$

Day 52

Given that $\tan\frac{\pi}{4}=1$ and $\tan\frac{\pi}{8}=\sqrt{2}-1$ use the addition formula for tan to find an exact value for $\tan\frac{3\pi}{8}$

Solve for $0 \le x \le \frac{\pi}{2}$

 $4\sin x = \sec x$

Day 54

Prove that $cosec 2x + \cot 2x \equiv \cot x$

Day 55

Given that $7\cos\theta + 24\sin\theta = R\cos(\theta - \alpha)$ find the value of R and the value of α to 2 dp in degrees.

Day 56

Find the cartesian equation of the curve with parametric equations $x = \sin t$ and $y = \sin 2t$

Week 9

Days 57 - 63

Day 57

Find where the curve with parametric equations $x=t^2+t$ and y=4t+4 , t>0, crosses the line with equation y=x-6

Day 58

1.
$$\frac{d}{dx}(e^x)$$

$$2. \quad \frac{d}{dx}(2^x)$$

$$3. \quad \frac{d}{dx}(\ln x)$$

$$4. \quad \frac{d}{dx}(\sin x)$$

$$5. \quad \frac{d}{dx}(\cos x)$$

6.
$$\frac{d}{dx}(\tan x)$$

7.
$$\frac{d}{dx}(\sec x)$$

8.
$$\frac{d}{dx}(\cot x)$$

9.
$$\frac{d}{dx}(cosec x)$$

Day 59

The Chain Rule

$$f(blah) \rightarrow f'(blah) \times blah'$$

e.g. find f'(x):

1.
$$f(x) = (x^4 + 7x)^5$$

$$2. f(x) = e^{\sin x + x^2}$$

3.
$$f(x) = \ln(3x^2 + 4)$$

The Product Rule

If
$$y = uv$$
, then $\frac{dy}{dx} = uv' + vu'$

e.g differentiate $y = \sin(x^2) \ln(\cos x)$

Day 61

The Quotient Rule

If
$$y = \frac{u}{v}$$
, then $\frac{dy}{dx} = \frac{vuv - uvv}{v^2}$

e.g find
$$\frac{dy}{dx}$$
 when $y = \frac{\sin x}{e^{2x}}$

Day 62

Given that $x=2\sin t$ and $y=\sqrt{2}\cos 2t$, show that $\frac{dy}{dx}=k\sin t$ where k is a constant to be found.

Day 63

Find an expression for $\frac{dy}{dx}$ in terms of x and y:

$$3y^2 - 2y + 2xy = x^3$$

Week 10

Days 64 - 70

Day 64

Given that
$$V=rac{1}{3}\pi r^3$$
 and that $rac{dV}{dt}=8$, find $rac{dr}{dt}$ when $r=3$

Day 65

Use the graphs of the iterative functions to decide whether the root will converge or diverge

Day 66

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Using $x_1 = 1$ as a first approximation as a root of $2x^3 + x^2 - 1 = 0$, find a 2nd approximation, using the Newton-Raphson method.

Day 67

Integrate the following:

(a)
$$\int \cos x \ dx$$

(b)
$$\int sec^2 x \ dx$$

(c)
$$\int e^x dx$$

(d)
$$\int \frac{1}{x} dx$$

(e)
$$\int 3\sin x \ dx$$

(f)
$$\int 4 \sec x \tan x \ dx$$

Day 68 *TRY $y = \cdots$ *

Integrate the following:

(a)
$$\int \sin(2x+1) \ dx$$

(b)
$$\int 4e^{3x} dx$$

(c)
$$\int 3 \sec 4x \tan 4x \ dx$$

$$(d) \qquad \int (3x+2)^5 \ dx$$

Day 69

$$\int \sin^2 x \ dx$$

Day 70 *General patterns*

$$\int \frac{2x+1}{x^2+x} dx$$

$$\int \cos x \, e^{\sin x} dx$$

Week 11

Days 71 – 77

<u>Day 71</u>

$$\int 2\cos 3x \, \sin^4 3x \, dx$$

<u>Day 72</u>

$$\int \frac{x+1}{x} dx$$

$$\int \frac{x+1}{x-1} dx$$

<u>Day 73</u>

$$\int 2x\sin(3x-1)dx$$

<u>Day 74</u>

$$\int \ln x \, dx$$

Use the substitution u=x+1 to find $\int x\,\sqrt{x+1}\,dx$

<u>Day 76</u>

Solve
$$(x+x^2)\frac{dy}{dx} = y(1+2x)$$

<u>Day 77</u>

Solve
$$(1+x^2)\frac{dy}{dx} = x \sec y$$

Week 12

Days 78 - 84

Day 78

Given that A has coordinates (5,0,3) and B has coordinates (4,2,k), and the distance AB=3, find the values of k.

Day 79

Find the angle that $\mathbf{a} = 2\mathbf{i} - 3\mathbf{j} - \mathbf{k}$ makes with the positive y axis.

Day 80

Given that 3i + (p+2)j + 120k = pi - qj + 4pqrk

find the values of p, q and r

Exam Questions

Day 81

(a) Show that the equation

$$4\cos\theta - 1 = 2\sin\theta\tan\theta$$

can be written in the form

$$6\cos^2\theta - \cos\theta - 2 = 0$$

(4)

Given that $k \in \mathbb{Z}^+$

(a) show that $\int_{k}^{3k} \frac{2}{(3x-k)} dx$ is independent of k,

Day 83 and 84

A curve C has equation

$$y = x^2 - 2x - 24\sqrt{x}, \qquad x > 0$$

(a) Find (i) $\frac{dy}{dx}$

(ii)
$$\frac{d^2y}{dx^2}$$
 (3)

(b) Verify that C has a stationary point when x = 4

(2)

(c) Determine the nature of this stationary point, giving a reason for your answer.

(2)

Week 13

Days 85 - 91

Day 85

Figure 4

Figure 4 shows a sketch of the curve with equation $x^2 - 2xy + 3y^2 = 50$

(a) Show that
$$\frac{dy}{dx} = \frac{y - x}{3y - x}$$

(4)

Day 86

The value, £V, of a vintage car t years after it was first valued on 1st January 2001, is modelled by the equation

$$V = Ap^t$$
 where A and p are constants

Given that the value of the car was £32 000 on 1st January 2005 and £50 000 on 1st January 2012

(a) (i) find p to 4 decimal places,

$$g(x) = \frac{2x+5}{x-3} \qquad x \geqslant 5$$

(a) Find gg(5).

(2)

Day 88

Relative to a fixed origin O,

the point A has position vector $(2\mathbf{i} + 3\mathbf{j} - 4\mathbf{k})$,

the point B has position vector $(4\mathbf{i} - 2\mathbf{j} + 3\mathbf{k})$,

and the point C has position vector $(a\mathbf{i} + 5\mathbf{j} - 2\mathbf{k})$, where a is a constant and a < 0

D is the point such that $\overrightarrow{AB} = \overrightarrow{BD}$.

(a) Find the position vector of D.

(2)

(a) "If m and n are irrational numbers, where $m \neq n$, then mn is also irrational."

Disprove this statement by means of a counter example.

(2)

Day 90

(ii) A sequence u_1, u_2, u_3, \dots is defined by

$$u_{n+1} = \frac{1}{u_n}, \quad u_1 = \frac{2}{3}$$

Find the exact value of $\sum_{r=1}^{100} u_r$

(3)

$$f(x) = -3x^3 + 8x^2 - 9x + 10, \quad x \in \mathbb{R}$$

- (a) (i) Calculate f(2)
 - (ii) Write f(x) as a product of two algebraic factors.

(3)

Week 14

Days 92 - 98

Day 92

$$f(x) = 2x^2 + 4x + 9 \qquad x \in \mathbb{R}$$

(a) Write f(x) in the form $a(x+b)^2 + c$, where a, b and c are integers to be found.

(3)

(b) Sketch the curve with equation y = f(x) showing any points of intersection with the coordinate axes and the coordinates of any turning point.

(3)

Day 93

Figure 2

Figure 2 shows a sketch of part of the curve with equation y = x(x + 2)(x - 4).

The region R_1 shown shaded in Figure 2 is bounded by the curve and the negative x-axis.

(a) Show that the exact area of R_1 is $\frac{20}{3}$

(4)

Given that a > b > 0 and that a and b satisfy the equation

$$\log a - \log b = \log(a - b)$$

(a) show that

$$a = \frac{b^2}{b - 1}$$

(3)

Day 95

The curve C, in the standard Cartesian plane, is defined by the equation

$$x = 4\sin 2y \qquad \frac{-\pi}{4} < y < \frac{\pi}{4}$$

The curve C passes through the origin O

(a) Find the value of $\frac{dy}{dx}$ at the origin.

(2)

Figure 1

Figure 1 shows a sector AOB of a circle with centre O, radius 5 cm and angle $AOB = 40^{\circ}$

The attempt of a student to find the area of the sector is shown below.

Area of sector =
$$\frac{1}{2}r^2\theta$$

= $\frac{1}{2} \times 5^2 \times 40$
= 500 cm^2

- (a) Explain the error made by this student.
- (b) Write out a correct solution.

(2)

(1)

Day 97

Figure 3

Figure 3 shows a sketch of the curve with equation $y = \sqrt{x}$

The point P(x, y) lies on the curve.

The rectangle, shown shaded on Figure 3, has height y and width δx .

Calculate

$$\lim_{\delta x \to 0} \sum_{x=4}^{9} \sqrt{x} \, \delta x$$

(3)

Figure 4

Figure 4 shows a sketch of the graph of y = g(x), where

$$g(x) = \begin{cases} (x-2)^2 + 1 & x \le 2 \\ 4x - 7 & x > 2 \end{cases}$$

(a) Find the value of gg(0).

(2)

Week 15

Days 99 - 100

Day 99

(i) Find the value of

$$\sum_{r=4}^{\infty} 20 \times \left(\frac{1}{2}\right)^r$$

(3)

Day 100

1. Given

$$2^x \times 4^y = \frac{1}{2\sqrt{2}}$$

express y as a function of x.

(3)