COMP2610/6261 - Information Theory Assignmenture Perophetic to in a many Help

https://eduassistpro.github.

25 September, 2018

- From SFE to Arithmetic Coding
- Assignment Project Exam Help
 - Intervals for Sequences
 - Co
 - Puhttps://eduassistpro.github.
- Arithmetic Coding: Decoder Add WeChat edu_assist_pr
- 4 Adapting Distributions On-The-Fly

Interval Codes (Recap)

Shannon-Fano-Elias Coding method:

- Order the alphabet A.
- Represent distribution p cumulative distribution F Help construct code by finding intervals of width $\frac{p_i}{2}$ that lie in each symbol interval $[F(a_{i-1}), F(a_i))$

Intervals and Prefix Codes (Recap)

The set of numbers in [0, 1) that start with a given sequence of bits

Assignment Project Exam Help

https://eduassistpro.github.

This inter

Prefix property (interval/form): Once you aid u_assiston, property you cannot pick any codeword in the codewor

$$\left[0.b_1b_2...b_n, 0.b_1b_2...b_n + \frac{1}{2^n}\right)$$

- From SFE to Arithmetic Coding
- Assignment Project Exam Help
 - Intervals for Sequences
 - Co
 - Puhttps://eduassistpro.github.
- Arithmetic Coding: Decoder Add WeChat edu_assist_pr
- 4 Adapting Distributions On-The-Fly

Interval Coding Blocks

```
What if we apply SFE coding to blocks of an ensemble X?
```

Example: Let $\mathcal{A} = \{ aa, ab, ba, bb \}$ with $\mathbf{p} = (0.2, 0.6, 0.1, 0.1)$.

Assignment Project Exam Help

https://eduassistpro.github.

Interval Coding Blocks

What if we apply SFE coding to blocks of an ensemble X?

Example: Let $A = \{aa, ab, ba, bb\}$ with $\mathbf{p} = (0.2, 0.6, 0.1, 0.1)$.

Assignment Project Exam Help

ab

https://eduassistpro.github.

Extend to longer sequences

Interval Coding Blocks

What if we apply SFE coding to blocks of an ensemble X? **Example**: Let $A = \{aa, ab, ba, bb\}$ with $\mathbf{p} = (0.2, 0.6, 0.1, 0.1)$. Assignment Project Exam Help Code ab https://eduassistpro.github. Extend to longer sequences This workedd WeChat edu_assist_pr Need P(x) for all x • Total $|A|^N$ values for length N Huffman has similar complexity but 0001 shorter codes.

Arithmetic Coding: A Bird's Eye View

Basic idea of arithmetic coding follows SFE coding

A SFE Coding Arithmetic coding Project Sequence In outputs project Sequence In output S

Key s'https://eduassistpro.github.

Add WeChat edu_assist_produput Binary string corresponding

to chosen interval to chosen interval

Arithmetic Coding: A Bird's Eye View

Basic idea of arithmetic coding follows SFE coding

A SEE Coding Arithmetic coding Project Sequence In Octobres Project Sequen

Key s'https://eduassistpro.github.

 $\text{Output} \overset{\text{Use}}{\underset{\text{binary string corresponding}}{\text{VeChat edu_assist_production}}} \overset{\text{Use}}{\underset{\text{ing}}{\text{VeChat edu_assist_production}}} \\ \text{Output} \overset{\text{Use}}{\underset{\text{binary string corresponding}}{\text{VeChat edu_assist_production}}} \overset{\text{Use}}{\underset{\text{ing}}{\text{VeChat edu_assist_production}}} \\ \text{Output} \overset{\text{Use}}{\underset{\text{binary string corresponding}}{\text{VeChat edu_assist_production}}} \\ \text{Output} \overset{\text{Use}}{\underset{\text{binary string corresp$

Output first $\ell(x_i)$ bits of midpoint of interval

Output first $\ell(x_1 x_2 \dots x_N)$ bits of midpoint of interval

Arithmetic Coding: Summary

Assignment Project Exam Help

- We do **not** compute a symbol coding for *X* and then concatenate
- we https://eduassistpro.github.
- We do not assume that each of the x_i
 - ► Not restricted to extended insembles edu_assist_pr

- From SFE to Arithmetic Coding
- Assignment Project Exam Help
 - Intervals for Sequences
 - Co
 - Puhttps://eduassistpro.github.
- Arithmetic Coding: Decoder Add WeChat edu_assist_pr
- 4 Adapting Distributions On-The-Fly

Say N = 2 and we want to code x_1x_2

And the interval for $p(x_1x_2)$

• we https://eduassistpro.github.

decompose joint into conditional probabilities

Say N=2 and we want to code x_1x_2

And the interval for $p(x_1x_2)$

- we https://eduassistpro.github.
 - decompose joint into conditional probabilities
 - p(·|xAis(ust another except by alistriction u_assist_p)
 so we can compute intervals as per SFE

Say N=2 and we want to code x_1x_2

And the interval for $p(x_1x_2)$

- we https://eduassistpro.github.
 - decompose joint into conditional probabilities
 - p(-|xAisdistand volve exceptival tries of u_assist_pr
 - so we can compute intervals as per SFE
 - we can find an interval for $p(x_2|x_1)$ within the interval for x_1
 - ▶ normal SFE computes the interval within [0, 1) by default

Example: Suppose $A = \{a, b, c\}$ and p(a) = 0.25, p(b) = 0.5, p(c) = 0.25

Like with SFE coding, we'd begin by slicing up [0,1) into three subintervals: $Assignment\ Project\ Exam\ Help$

https://eduassistpro.github.

Example: Suppose $A = \{a, b, c\}$ and p(a) = 0.25, p(b) = 0.5, p(c) = 0.25

Like with SFE coding, we'd begin by slicing up [0,1) into three subintervals: Assignment Project Exam Help https://eduassistpro.github. Add WeChat edu_assist_pr

So e.g. we treat [0.25, 0.75) as the interval for b

Suppose the first symbol is b, and p(a|b) = 0.25, p(b|b) = 0.5, p(c|b) = 0.25

Assignment Project Exam Help

https://eduassistpro.github.

Suppose the first symbol is b, and p(a|b) = 0.25, p(b|b) = 0.5, p(c|b) = 0.25

To code ba, bb, bc, now slice up [0.25, 0.75), the interval for b itself: Assignment Project Exam Help

https://eduassistpro.github.

Suppose the first symbol is b, and p(a|b) = 0.25, p(b|b) = 0.5, p(c|b) = 0.25

Assignment Project Exam Help

To code ba, bb, bc, now slice up [0.25, 0.75), the interval for b itself:

https://eduassistpro.github. Add WeChatoedu_assist_pro.github.

For ba we choose the interval of length p(a|b) = 0.25 times the length of the enclosing interval (0.75 - 0.25 = 0.5), i.e. (0.25)(0.5) = 0.125

Arithmetic Coding: End of Stream Symbol

Assignment Project Examplelp

We add thi

- e.g. https://eduassistpro.gith ເປັ່ນ b.
- Implicitly we think of ab as actually being ab□

End of stream is to de with the cache the company assist_properties special symbol

```
Example: Suppose A = \{a, b, c, \Box\} and p(a) = 0.25, p(b) = 0.5, p(c) = 0.15, p(\Box) = 0.1
```

Aissitist of the property of the state of th

https://eduassistpro.github.

```
Example: Suppose A = \{a, b, c, \Box\} and p(a) = 0.25, p(b) = 0.5, p(c) = 0.15, p(\Box) = 0.1
```


Now suppose that $p(\cdot|b)$ stays the same as $p(\cdot)$

If the first symbol is b, we carve the interval for b into four pieces:

Assignment Project Exam Help

https://eduassistpro.github.

Now suppose that $p(\cdot|b)$ stays the same as $p(\cdot)$

If the first symbol is b, we carve the interval for b into four pieces: Assignment Project Exam Help https://eduassistpro.github. Add WeChatedu_assist_pr

Exact same idea as before, just with special symbol □

Arithmetic Coding for Arbitrary Sequences

These ideas generalise to arbitrary length sequences

• We don't even need to know the sequence length beforehand!

Assignment Project Exam Help
As we see more symbols, we slice the appropriate sub-interval of [0, 1)
based on t

* Ter https://eduassistpro.github.

- From SFE to Arithmetic Coding
- Assignment Project Exam Help
 - Intervals for Sequences
 - Co
 - Puhttps://eduassistpro.github.
- Arithmetic Coding: Decoder Add WeChat edu_assist_pr
- 4 Adapting Distributions On-The-Fly

Arithmetic Coding: Codeword Generation

Ance we've seen the entire spuepee we end up with interval [Help]

https://eduassistpro.github.

Arithmetic Coding: Codeword Generation

Pince we've seen the entire stouence; we and up with interval [Help]
How to output a codeword?

- As per SF https://eduassistpro.github. As b
 - contained in the codeword interval

Add WeChat edu_assist_pr process the entire sequence

Arithmetic Coding: Codeword Generation Example

In previous example with input b, we'd stop in the interval for $b\Box$, i.e. [0.7, 0.75)

Assignment Project Exam Help https://eduassistpro.github. Add WeChat edu_assist_pr

Arithmetic Coding: Codeword Generation Example

In previous example with input b, we'd stop in the interval for $b\Box$, i.e. [0.7, 0.75)

Assignment Project Exam Help https://eduassistpro.github. Add WeChatedu_assist_pr

Output the first $\lceil \log_2 1/0.05 \rceil + 1 = 6$ bits, i.e. 101110

Midpoint is $0.725 = 10111\overline{0011}$, and $p(b\Box) = (1/2) \cdot (0.1) = 0.05$

- From SFE to Arithmetic Coding
- Assignment Project Exam Help
 - Intervals for Sequences
 - Co
 - Puhttps://eduassistpro.github.
- Arithmetic Coding: Decoder Add WeChat edu_assist_pr
- 4 Adapting Distributions On-The-Fly

Arithmetic Coding: Formal Encoder

Formally, we compute the interval [u, v) for a generic sequence as follows:

Arithmetic Coding of stream $x_1 x_2 \dots$

Assignment Project Exam Help $p \leftarrow v - u$

• comhttps://eduassistpro.github.

- Compute $U_n(a_i|x_1,...,x_{n-1}) = \bigcup_{i'=1} p(x_n = a_{i'}|x_1,...,x_{n-1})$
- $v \leftarrow u + p \cdot U_n(x_n | x_1, ..., x_{n-1})$
- * "- Add WeChat edu_assist_pr

 - if $x_n = \square$, terminate

Output first $\ell(x_1 x_2 \dots x_N) = \lceil \log 1/p \rceil + 1$ bits of (u + v)/2

Here, L_n , U_n just compute the appropriate lower and upper bounds, as per SFE coding

We rescale these based on the current interval length

- From SFE to Arithmetic Coding
- Assignment Project Exam Help
 - Intervals for Sequences
 - Co
 - Puhttps://eduassistpro.github.
- Arithmetic Coding: Decoder Add WeChat edu_assist_pr
- 4 Adapting Distributions On-The-Fly

Decoding

How do we decode a sequence of bits?

Assignment Project Exam Help • Carve out [0, 1) based on initial distribution

- Ke https://eduassistpro.github.
- Out
- · Carve Auchor ropy to every and endu_assist_pr

We can stop once we have containment in interval for \Box

Decoding: Example

```
Suppose p(a) = 0.5, p(b) = 0.125, p(c) = 0.25, p(\Box) = 0.125 for every Assignment Project Exam Help Decode 0110111:
```

```
https://eduassistpro.github.
```

```
Suppose p(a) = 0.5, p(b) = 0.125, p(c) = 0.25, p(\Box) = 0.125 for every Assignment Project Exam Help Decode 0110111:
```

```
o https://eduassistpro.github.
```

```
Suppose p(a) = 0.5, p(b) = 0.125, p(c) = 0.25, p(\Box) = 0.125 for every Assignment Project Exam Help Decode 0110111:
```

```
0 https://eduassistpro.github.
01 [0.011, 0.100)<sub>2</sub> [0.37 bol c
```

```
Suppose p(a) = 0.5, p(b) = 0.125, p(c) = 0.25, p(\Box) = 0.125 for every Assignment Project Exam Help Decode 0110111:
```

```
nttps://eduassistpro.github.
```

```
Suppose p(a) = 0.5, p(b) = 0.125, p(c) = 0.25, p(\Box) = 0.125 for every Assignment Project Exam Help Decode 0110111:
```

```
Suppose p(a) = 0.5, p(b) = 0.125, p(c) = 0.25, p(\Box) = 0.125 for every Assignment Project Exam Help Decode 0110111:
```


The last bit here is actually redundant (inherited from +1 bit in midpoint representation)

From SFE to Arithmetic Coding

Assignment Project Exam Help

- Intervals for Sequences
- Co
- https://eduassistpro.github.
- Arithmetic Coding: Decoder Add WeChat edu_assist_pr
- 4 Adapting Distributions On-The-Fly

Adaptive Probabilities

So far we assume the sequence of probabilities are given in advance

Assignment Project Exam Help

https://eduassistpro.github.

Adaptive Probabilities

So far we assume the sequence of probabilities are given in advance

Assignment Project Exam Help

- Bet
- The https://eduassistpro.github.
 Bet $(\theta \mid h + h, t + t)$
- The Add val Work Cochatoedu_assist_pr

$$p(x = h|n_h, n_t, m_h, m_t) = \frac{m_h + n_h}{m_h + n_h + m_t + n_t}$$

Dirichlet Model

A **Dirichlet distribution** is a generalisation of the Beta distribution to more than two outcomes. Its parameter is a vector $\mathbf{m} = (m_1, \dots, m_K)$ Table powered as written counts for each symbol a_1, \dots, a_K .

https://eduassistpro.github.

Dirichlet Model

A **Dirichlet distribution** is a generalisation of the Beta distribution to more Ahan two outcomes. Its parameer is a vector m E(m annk) can be p

https://eduassistpro.github.i Can impl

Flexible Add WeChat edu_assist_preduction of English Land Choose m to be frequency of English Land Choose m to be frequ

- $\sum_{k} m_{k}$ Large = Stable; Small = Responsive

title

Example: Start with $m_h = m_t = 1$ and observe sequence hht.

Assignment Project Exam Help viz. Laplace's Rule, where
$$\epsilon$$
 means empty string

why? Behttps://eduassistpro.github.

Add
$$WeCh_{0,1}^{p(h|h)} = \frac{1+1}{0+1}$$
 edu_assist_properties $p(t|h) = \frac{0+1}{1+0+1+1} = 1/3$

We'll assume this learning is only for non □ symbols

assume □ occurs with fixed probability each time

Possible outcomes a, b, □

Assignment Project Exam Help

```
Probabil https://eduassistpro.github.
```

We start off with virtual counts $m_a = m_b = 1$

Possible outcomes a, b, □

Assignment Project Exam Help

Observa Probabil https://eduassistpro.github.

Add WeChat edu_assist_pr

Seeing b makes us update $p(a|b) = (0.85) \cdot (1/3) \approx 0.28$, and $p(b|b) = (0.85) \cdot (2/3) \approx 0.57$. We keep $p(\Box|b) = p(\Box)$.

Possible outcomes a, b, \square

Assignment Project Exam Help

Observa

Probabil https://eduassistpro.githibb.

Encoder Output: 1

Add WeChat edu_assist_pr

Seeing bb makes us update $p(a|bb)=(0.85)\cdot(1/4)\approx 0.21$, and $p(b|bb)=(0.85)\cdot(3/4)\approx 0.64$ Now the first bit is unambiguously 1

Possible outcomes a, b, □

Assignment Project Exam_Help

```
\begin{array}{c} \textbf{Observa} \\ \textbf{https://eduassistpro.github.} \\ \textbf{Probabil} \\ |_{\textbf{bbb}} \approx ( \ . \ , \ . \ , \ . \ ) \\ \end{array}
```

Encoder Attidd WeChat edu_assisti_pr

Possible outcomes a, b, □

On seeing a, we can fill in three further bits unambiguously

Possible outcomes a, b, □

To terminate, we find midpoint of 0.100111100... and 0.100111110...

Arithmetic Coding: Example (MacKay, Figure 6.4)

00000

Summary and Reading

Main Points

Assignificating Project Fix am Help

https://eduassistpro.github.

- Predictive distributions:
 - Add We Chat edu_assist_pr
 - Beta and Dirichlet priors = virtual counts

Reading

Section 6.2 of MacKay