

Machine Learning and Signal Processing in MATLAB

Poonna Yospanya

Department of Computer Engineering, KU Sriracha Campus

Acoustic-based predictive maintenance

- Prediction of impending faults of machinery based on recorded audio
- Results could be remaining useful life (RUL), machine health status, or anomalies

- Real-time end-to-end processing pipeline:
 - Audio recording and buffering
 - Framing/segmentation
 - Feature extraction
 - Prediction
 - Reporting
- These processes are constantly running

Deployment vs training

- We use machine learning for fault prediction because fault patterns are generally too complicated to detect algorithmically or heuristically
- A deployed model will be part of the full pipeline:
 - Audio recording and buffering
 - Framing/segmentation
 - Feature extraction
 - Prediction
 - Reporting
- During model training, we'll work with offline recorded audio
 - Framing/segmentation could be done once offline
 - We would then work on refining and hyperparameter tuning the feature extraction and prediction model

Machinery sounds

- Noisy environment with multiple machines running at the same time
- Sounds of rotations, movements, clashing, pumping, punching, etc.

- Signs of faulty equipment
 - Humming/whining
 - Rattling, continuous clicking/tapping
 - Hissing
 - Grinding/scraping
 - Thumping/banging
 - Intermittent knocking
 - Chirping/squealing
 - Etc.

Audio feature extraction

- Using Signal Processing Toolbox
- Time-domain features
 - Level (linear/decibel)
 - Amplitude envelopes
 - Moving average/RMS
- Frequency-domain features
 - FFT (spectrum)
- Time-frequency features
 - STFT (spectrogram)
 - Wavelet transform
 - MFCC
- Dimensionality reduction

Noise reduction

- Might be done as a preprocessing step before feature extraction (or even before framing/segmentation)
- Need to be careful to not also remove useful features from the audio

Techniques

- Frequency selective filtering
- Spectral subtraction
- Spectral gating
- Wiener filtering
- Wavelet denoising
- Adaptive filtering
- ML-based noise reduction

Machine learning models

 With our limited hardware, complex deep learning models are generally not feasible

Regression models could be used for RUL prediction

- But we'll focus on classification models
 - Health status
 - Anomalies
 - Failure modes

Classification models

Support vector machine (SVM)

Decision tree

Ensemble method

Classification models

k-nearest neighbor (kNN)

Neural network

MATLAB Toolboxes

- Signal Processing Toolbox
- DSP System Toolbox
- Audio Toolbox
- Wavelet Toolbox
- Statistics and Machine Learning Toolbox
- Deep Learning Toolbox
- MATLAB Coder/Simulink Coder