

Functions

Date Planned ://	CBSE Pattern
Actual Date of Attempt : / /	Level – 0

1. Find the domain of each of the following functions given by:

$$(i) f(x) = \frac{1}{\sqrt{1-\cos x}}$$

(ii)
$$f(x) = \frac{1}{\sqrt{x+|x|}}$$

(iii)
$$f(x) = x \mid x \mid$$

(iv)
$$f(x) = \frac{x^3 - x + 3}{x^2 - 1}$$
 (v) $f(x) = \frac{3x}{28 - x}$

$$(v) f(x) = \frac{3x}{28 - x}$$

2. Find the range of the following functions given by

(i)
$$f(x) = \frac{3}{2 - x^2}$$

$$f(x) = \frac{3}{2 - x^2}$$
 (ii) $f(x) = 1 - |x - 2|$ (iii) $f(x) = |x - 3|$ (iv) $f(x) = 1 + 3\cos 2x$

$$f(x) = |x-3|$$

(iv)
$$f(x) = 1 + 3\cos 2x$$

Redefine the function $f(x) = |x-2| + |2+x|, -3 \le x \le 3$. 3.

If $f(x) = \frac{x-1}{x+1}$, $\forall x \in R - \{0, \pm 1\}$ then show that: 4.

(i)
$$f\left(\frac{1}{x}\right) = -f(x)$$
 (ii) $f\left(-\frac{1}{x}\right) = \frac{-1}{f(x)}$

If $f(x) = \sqrt{x}$ and g(x) = x be two functions defined in the domain $R^+ \cup \{0\}$, then find the value of : 5.

(i)
$$(f+g)(x)$$

(ii)
$$(f-g)(x)$$

iii)
$$(fg)(x$$

$$(f+g)(x)$$
 (ii) $(f-g)(x)$ (iii) $(fg)(x)$ (iv) $(\frac{f}{g})(x)$

Find the domain and range of the function $f(x) = \frac{1}{\sqrt{x-5}}$. 6.

If $f(x) = y = \frac{\alpha x - b}{cx - a}$, $\forall x \in R - \left\{ \frac{a}{c} \right\}$ & $a^2 \neq bc$ then prove that f(y) = x. 7.

Choose the correct alternative. Only one choice is correct.

Let n(A) = m and n(B) = n. Then, the total number of non-empty relations that can be defined from 8. A to B is:

i

(A)
$$m^n$$

(B)
$$n^{m}$$
 –

(D)
$$2^{mn}$$
 –

If $[x]^2 - 5[x] + 6 = 0$, where [.] denotes the greatest integer function, then : 9.

(A)
$$x \in [3, 4]$$

$$x \in [3, 4]$$
 (B) $x \in (2, 3]$

(C)
$$x \in [2, 3]$$

(D)
$$x \in [2, 4]$$

Range of $f(x) = \frac{1}{1 - 2\cos x}$ is: 10.

(A)
$$\left[\frac{1}{3}, 1\right]$$

[B)
$$\left[-1, \frac{1}{3} \right]$$

(A)
$$\left[\frac{1}{3}, 1\right]$$
 (B) $\left[-1, \frac{1}{3}\right]$ (C) $\left(-\infty, -1\right] \cup \left[\frac{1}{3}, \infty\right]$ (D) $\left[-\frac{1}{3}, 1\right]$

$$\left[-\frac{1}{3},1\right]$$

Let $f(x) = \sqrt{1 + x^2}$, then: 11.

(A)
$$f(xy) = f(x) \cdot f(y)$$

(B)
$$f(xy) \ge f(x) \cdot f(y)$$

(C)
$$f(xy) \le f(x) \cdot f(y)$$

12. Domain of
$$\sqrt{a^2 - x^2} (a > 0)$$
 is :

(-a, a) **(B)** [-a, a] **(C)** [0, a]

(D) (-a,0]

13. If
$$f(x) = ax + b$$
, where a and b are integers, $f(-1) = -5$ and $f(3) = 3$, then a and b are equal to:

a = -3, b = -1 **(B)** a = 2, b = -3

a = 0, b = 2

a = 2, b = 3

The domain of the function f defined by $f(x) = \sqrt{4-x} + \frac{1}{\sqrt{x^2-1}}$ is equal to : 14.

(A)

 $\left(-\infty,\,1\right)\cup\left(1,\,4\right]\quad\text{(B)}\qquad \left(-\infty,\,-1\right]\cup\left(1,\,4\right]\quad\text{(C)}\qquad \left(-\infty,\,-1\right)\cup\left[1,\,4\right]\quad\text{(D)}\qquad \left(-\infty,\,-1\right)\cup\left[1,\,4\right]$

The domain and range of the real function f defined by $f(x) = \frac{4-x}{x-4}$ is given by : 15.

(A) Domain = R, Range = $\{-1, 1\}$ (B) Domain = R, Range = R

Domain = $R - \{4\}$, Range $R - \{-1\}$ (C)

(D) Domain = $R - \{4\}$, Range = $\{-1, 1\}$

The domain and range of real function f defined by $f(x) = \sqrt{x-1}$ is given by : 16.

(A) Domain = $(1, \infty)$, Range = $(0, \infty)$ (B) Domain = $\lceil 1, \infty \rceil$, Range = $(0, \infty)$

(C) Domain = $(1, \infty)$, Range = $[0, \infty)$

Domain = $\lceil 1, \infty \rceil$, Range = $\lceil 0, \infty \rceil$ (D)

The domain of the function f given by $f(x) = \frac{x^2 + 2x + 1}{x^2 - x - 6}$. 17.

> (A) $R - \{3, -2\}$ **(B)**

 $R - \{-3, 2\}$ (C)

R - [3, -2] **(D)** R - (3, -2)

The domain and range of the function f given by f(x) = 2 - |x-5| is: 18.

> Domain = R^+ , Range = $(-\infty, 1]$ (A)

(B) Domain = R, Range = $[-\infty, 2]$

(C) Domain = R, Range = $(-\infty, 2)$ (D) Domain = R^+ , Range = $(-\infty, 2]$

The domain for which the functions defined by $f(x) = 3x^2 - 1$ and g(x) = 3 + x are equal to: 19.

 $\left| -1, \frac{4}{3} \right|$ (B) $\left| 1, \frac{4}{3} \right|$ (C) $\left| -1, -\frac{4}{3} \right|$ (D) $\left[-2, -\frac{4}{3} \right]$

Let f and g be two real functions given by : 20.

 $f = \{(0, 1), (2, 0), (3, -4), (4, 2), (5, 1)\}$ and $g = \{(1, 0), (2, 2), (3, -1), (4, 4), (5, 3)\}$, then the domain of f . g is given by ____

Let $f = \{(2, 4), (5, 6), (8, -1), (10, -3)\}$ and $g = \{(2, 5), (7, 1), (8, 4), (10, 13), (11, 5)\}$ 21. be two-real functions. Then, match the following:

	Column - 1	Column - 2		
(i)	f-g	(a)	$\left\{ \left(2, \frac{4}{5}\right), \left(8, \frac{-1}{4}\right), \left(10, \frac{-3}{13}\right) \right\}$	
(ii)	f + g	(b)	$\{(2, 20), (8, -4), (10, -39)\}$	
(iii)	f . g	(c)	{(2, -1), (8, -5), (10, -16)}	
(iv)	f/g	(d)	{(2, 9), (8, 3), (10, -10)}	

The domain of f-g, f+g, f . g, $\frac{f}{g}$ is domain of $f \cap$ domain of g. Then, find their images.

							-	
22.	A real	valued function	f(x) sa	tisfies the funct	ion equa	tion $f(x-y) = f$	f(x) f(y) -	f(a-x)f(a+y) where a
	is a giv	en constant and	f(0) = 1	, f(2a - x) is ed	qual to :			
	(A)	f(a) + f(a - x)	(B)	f(-x)	(C)	-f(x)	(D)	f(x)
23.	If the s	et A contains 5	elements	and the set B c	ontains (6 elements, then	the nur	mber of one-one and onto
	mappir	ngs from A to B i	s :					
	(A)	720	(B)	120	(C)	0	(D)	None of these
24.	If A = {	1, 2, 3, , <i>n</i> }	and B {a	, b). Then, the n	umber of	f surjections fror	m A into	B is:
	(A)	$^{n}P_{2}$	(B)	2 ⁿ –2	(C)	2 ⁿ –1	(D)	$n^2 - n$
25.	If <i>f</i> : <i>R</i>	$\rightarrow R$ be defined	by $f(x)$	$=\frac{1}{x}, \ \forall \ x \in R \ . \ T$	hen, f is	:		
	(A)	one-one	(B)	into	(C)	bijective	(D)	f is not defined
26.	Which	of the following f	unctions	s from Z into Z a	re bijecti	ions?		
	(A)	$f(x) = x^3$	(B)	$f\left(x\right)=x+2$	(C)	$f\left(x\right)=2x+1$	(D)	$f\left(x\right)=x^2+1$
27.	If f: R	$\rightarrow R$ be the fund	ctions de	fined by $f(x) =$	$x^3 + 5$, 1	then $f^{-1}(x)$ is:		
	(A)	$(x+5)^{1/3}$	(B)	$(x-5)^{1/3}$	(C)	$\left(5-x\right)^{1/3}$	(D)	5 – <i>x</i>
28.	If <i>f</i> : A	$\rightarrow B$ and $g: B$	$\rightarrow C$ be	the bijective fund	ction, the	en $(gof)^{-1}$ is:		
	(A)	$f^{-1}og^{-1}$	(B)	fog	(C)	$g^{-1}of^{-1}$	(D)	gof
29.	If <i>f</i> : Λ	$I \to R$ be the fu	nction d	lefined by $f(x)$	$=\frac{2x-1}{2}$	and $g: Q \to R$	be and	other function defined by
	g(x) =	x + 2. Then, (ga)	of $\left(\frac{3}{2}\right)$ is:					
	(A)	1	(B)	1	(C)	$\frac{7}{2}$	(D)	None of these
30.	If <i>f</i> : [0,	$1] \rightarrow [0, 1]$ be d	efined by	$f\left(x\right) = \begin{cases} x, \\ 1 - x, \end{cases}$	if x is r	ational , then (f rational	of)x is:	
	(A)	constant	(B)	1 + <i>x</i>	(C)	X	(D)	None of these
31.	If f:R	$-\left\{\frac{3}{5}\right\} \to R \text{ be de}$	efined by	$f\left(x\right) = \frac{3x+2}{5x-3},$	then :			

(A) $f^{-1}(x) = f(x)$ (B) $f^{-1}(x) = -f(x)$ (C) (fof)x = -x (D) $f^{-1}(x) = \frac{1}{19} f(x)$

(A)

Functions

Date Planned ://	Daily Tutorial Sheet-1	Expected Duration: 90 Min
Actual Date of Attempt : / /	Level-1	Exact Duration :

Note (A): Questions having asterisk marked against them may have more than one correct

	answer.	
1.	The domain of definition of the function	$f\left(x\right) = \frac{1}{x^{\log_{10} x}} $ is:

	(A)	$(0,1) \cup (1,\infty)$	(B)	(O, ∞)	(C)	[0, ∞)	(D)	$[0,1) \cup (1,\infty)$	
2.	If f (x) is	s defined on (0,	1), then t	he domain of g	$f(x) = f(e^{-x})$	e^{x}) + $f(\log_{e} x)$	is:		

[0, 1]

(9, 27)

(D)

(D)

None of these

None of these

(A)
$$(-1, e)$$
 (B) $(1, e)$ (C) $(-e, -1)$ (D) $(-e, 1)$
3. The domain of definitions of $f(x) = \log_{10} \log_{10} \log_{10} x$ is: $\rightarrow n \ times \leftarrow$

(A)
$$(10^n, \infty)$$
 (B) $(10^{n-1}, \infty)$ **(C)** $(10^{n-2}, \infty)$ **(D)** None of these

4. Let
$$f(x) = 4\cos\sqrt{x^2 - \frac{\pi^2}{9}}$$
. Then, the range of $f(x)$ is:

(C)

(A) [-1,1] (B) [-4,4] (C) [0,1] (D) None of these

5. The function
$$f(x) = \frac{\sqrt{|\tan x| + \tan x}}{\sqrt{3x}}$$
 is defined for:

(A)
$$R - \left\{ \frac{1}{3} \right\}$$

(C)
$$R^+ - \left\{ n\pi + \frac{\pi}{2} \middle| n \in I^+ \right\}$$
 (D) None of these

6. Let
$$f(x) = |x-2| + |x-3| + |x-4|$$
 and $g(x) = f(x+1)$. Then:

(A)
$$g(x)$$
 is an even function (B) $g(x)$ is an odd function (C) $g(x)$ is neither even nor odd (D) $g(x)$ is periodic

7. The minimum value of
$$f(x) = |x-1| + |x-2| + |x-3|$$
 is equal to:

(A) 1 (B) 2 (C) 3 (D) 0
8. The domain of the function:
$$f(x) = \log_3 \left[-(\log_3 x)^2 + 5\log_3 x - 6 \right]$$
 is:

8. The domain of the function:
$$f(x) = \log_3 \left[-(\log_3 x)^2 + 5\log_3 x - 6 \right]$$
 is: **(A)** $(0, 9) \cup (27, \infty)$ **(B)** $[9, 27]$ **(C)** $(9, 27)$ **(D)** None of these

9. The range of the function
$$f(x) = \sin \left[\log \left(\frac{\sqrt{4 - x^2}}{1 - x} \right) \right]$$
 is:

(A)
$$[0, 1]$$
 (B) $(-1, 0)$ **(C)** $[-1.1]$ **(D)** $(-1, 1)$

- **10.** The range of the function $f(x) = \frac{5}{3-x^2}$ is:
 - (A) $\left(-\infty, 0\right) \cup \left[\frac{5}{3}, \infty\right]$

(B) $\left(-\infty, 0\right) \cup \left(\frac{5}{3}, \infty\right)$

(C) $\left(-\infty, 0\right] \cup \left[\frac{5}{3}, \infty\right]$

- (D) None of these
- 11. Which of the following when simplified reduces to unity?
 - I. $\log_{1.5} \log_4 \log_{\sqrt{3}} 81$

II. $\log_2 \sqrt{6} + \log_2 \sqrt{\frac{2}{3}}$

III. $-\frac{1}{6}\log_{\frac{\sqrt{3}}{2}}\left(\frac{64}{27}\right)$

IV. $\log_{3.5} (1 + 2 + 3 \div 6)$

The correct choice is:

- (A) I only
- (B) II and IV only (C)
- (C) I and III only
- (D) All the above

- **12.** If $\log_6 \log_2 \left[\sqrt{4x + 2} + 2\sqrt{x} \right] = 0$, then *x* is:
 - **(A)** 1/2
- **(B)** 1/4
- **(C)** 1/16
- (D) None of these
- **13.** The number of values of x which satisfy: $\log 4 + \left(1 + \frac{1}{2x}\right) \log 3 = \log \left(\frac{1}{3^x} + 27\right)$.
 - **(A)** 0
- B) :
- **(C)** 3

(B)

(D)

(D) None of these

14. The correct plot of y = |x-1| + 2|x-3| is:

15. The domain of the function $f(x) = \sqrt{\log_{10} \left(\frac{5x - x^2}{4}\right)}$ is $x \in :$

(A) [1, 4]

(C)

- **(B)** (1, 4)
- **(C)** (0, 5)
- **(D)** [0, 5]

Date Planned ://	Daily Tutorial Sheet-2	Expected Duration: 90 Min
Actual Date of Attempt : / /	Level-1	Exact Duration :

The domain of the function $f(x) = \frac{\sqrt{-\log_{0.3}(x-1)}}{\sqrt{-x^2+2x+8}}$ is: 16.

(A)

(-2, 4)

(C) [2, 4) (D)

None of these

The range of $f(x) = \sqrt{|x| - x}$ is: 17.

[0, ∞)

(C) (-∞, 0)

(D)

The range of $f(x) = \frac{\sin \pi \left[x^2 - 1 \right]}{x^4 + 1}$ is {[.] represents greatest integer function} $f(x) \in \mathbb{R}$ 18.

(A)

[–1, 1]

The domain of the function $f(x) = \frac{\tan 2x}{6\cos x + 2\sin 2x}$ is: 19.

 $R - \left\{ \left(2n+1\right) \frac{\pi}{2} : n \in Z \right\}$ (A)

(B) $R - \left\{ (2n+1)\frac{\pi}{4} : n \in Z \right\}$

(C) $R - \left\{ \left\{ (2n+1)\frac{\pi}{2} : n \in Z \right\} \cup \left\{ (2n+1)\frac{\pi}{4} : n \in Z \right\} \right\}$

If $f(x) = \log \frac{1+x}{1-x}$ and $g(x) = \frac{3x+x^3}{1+3x^2}$ then (fog) (x) is equal to: 20.

> (A) f(x)

(B) 2f(x)

(C)

(D)

4f(x)

 $f(x) = \begin{cases} \begin{bmatrix} x \end{bmatrix} & \text{if } -3 < x \le -1 \\ |x| & \text{if } -1 < x < 1 \text{ then } \{x : f(x) \ge 0\} \text{ is equal to:} \\ ||x| & \text{if } 1 < x < 3 \end{cases}$

(A) (-1, 3) **(B)** [-1, 3)

(C) (-1, 3]

3f(x)

(D)

[-1, 3]

If $f(x) = \frac{x-1}{x+1}$, then f(2x) is:

(A) $\frac{f(x)+1}{f(x)+3}$ (B) $\frac{3f(x)+1}{f(x)+3}$ (C) $\frac{f(x)+3}{f(x)+1}$ (D) $\frac{f(x)+3}{3f(x)+1}$

Let f(x) = x and g(x) = |x| for all $x \in R$. Then the function $\phi(x)$ satisfying 23.

$$\left[\phi\left(x\right)-f\left(x\right)\right]^{2}+\left[\phi\left(x\right)-g\left(x\right)\right]^{2}=0$$
 is:

 $\phi(x) = x, x \in [0, \infty)$

- $\phi(x) = x, x \in R$
- $\phi(x) = -x, x \in (-\infty, 0]$ (C)
- **(D)** $\phi(x) = x + |x|, x \in R$
- If $f(x) = \frac{1}{2} \left[3^x + 3^{-x} \right]$, $g(x) = \frac{1}{2} \left[3^x 3^{-x} \right]$, then f(x) g(y) + f(y) g(x) is equal to: 24.
- f(x + y) (B) g(x + y)
- (C) 2f(x)
- 2g(x)

The domain of $f(x) = \frac{1}{|\sin x| + \sin x}$ is: 25.

(A)

 $\bigcup_{n\in Z} \left(\left(2n+1\right)\pi, \left(2n+2\right)\pi \right)$ (B)

 $\bigcup_{n\in\mathcal{I}}\left(2n\pi,\left(2n+1\right)\pi\right)$

- (D)
- The domain of $\sin \log \left[\frac{\sqrt{4-x^2}}{1-x} \right]$ is: 26.
 - (A) (-1, 1)
- (B) (-2, 1)
- (C) (-2, -1)
- (D) (1, 2)

For Questions 27 - 29

- Statement-1 is True, Statement-2 is True and Statement-2 is a correct explanation for Statement-1 (A)
- (B) Statement-1 is True, Statement-2 is True and Statement-2 is NOT a correct explanation for Statement-1
- (C) Statement-1 is True, Statement-2 is False
- (D) Statement-1 is False, Statement-2 is True

codomain B and $f(x) = g(x) \forall x \in A$.

- 27. **Statement 1**: If f(x) = log(x-2) + log(x-3) and g(x) = log(x-2)(x-3) then f(x) = g(x). **Statement 2**: Two functions f(x) and g(x) are said to be equal if they are defined on same domain A and
- 28. **Statement 1**: f(x) = |x-3| + |x-4| + |x-7| where 4 < x < 7 is an identity function.
 - **Statement 2**: $f: A \rightarrow A$ defined by f(x) = x is an identity function.
- **Statement 1**: The domain of the function $f(x) = \sqrt{x [x]}$ is R^+ . 29.
 - **Statement 2**: The domain of the function $\sqrt{f(x)}$ is $\{x: f(x) \ge 0\}$.
- If $f(x) = \sin \left[\pi^2 \right] x + \sin \left[-\pi^2 \right] x$, where [.] denotes the greatest integer function, then: 30.

- (A) $f\left(\frac{\pi}{2}\right) = 1$ (B) $f(\pi) = 2$ (C) $f\left(\frac{\pi}{4}\right) = 1$

- (D) None of these

Date Planned ://	Daily Tutorial Sheet-3	Expected Duration: 90 Min
Actual Date of Attempt : / /	Level-1	Exact Duration :

31. Graph of y = f(x) is as given below. Which function among the following is period?

(A)
$$\frac{1}{2} \left(\left| f(x) \right| + f(x) \right)$$

(B)
$$\frac{1}{2} \left(\left| f(x) \right| - f(x) \right)$$

- (C) |f(x)|
- **(D)** f(-|x|)
- **32.** The correct graph of $y = \frac{|\log_2 x|}{\log_2 x}$ is:

33. The graph of $y = x^{\log_X 2}$ is:

 \odot

(

*34. The graph of the function y = f(x) is as shown in figure. Then which one of the following is correct?

(A) |y| = sgn(f(x))

(B) |y| = sgn(-f(x))

(C) |y| = |f(|x|)|

(D)

35. The graph y = f(x) is as shown:

The graph of y = f(-|x|) is:

(B)

(C)

(D)

36. The graph of y = f(x) is given below:

then the graph of y = |f(|x|)| is:

(D) None of these

37. Draw the following curves:

(i)
$$y = |x^2| -2x - 3|$$

(ii)
$$|x| + |y| = 1$$

(iii)
$$|y| = |\log|x|$$

(iv)
$$y = \sqrt{2 - x^2}$$

The range of the function $f(x) = \frac{1}{2 - \cos 3x}$ is: 38.

(A)
$$y \in \left(\frac{1}{3}, 1\right)$$

(B)
$$y \in \left[\frac{1}{3}, 1\right]$$

$$y \in \left(\frac{1}{3}, 1\right)$$
 (B) $y \in \left[\frac{1}{3}, 1\right]$ (C) $y \in \left(-\frac{1}{3}, 1\right)$

39. The range of the function
$$f(x) = \frac{x^2 + 2x + 3}{x}$$
 is:

(A)
$$y \in R$$

(B)
$$y \in \left[-2\sqrt{3} + 2, 2\sqrt{3} + 2 \right]$$

(C)
$$y \in (-\infty, -2\sqrt{3} + 2] \cup [2\sqrt{3} + 2, \infty)$$

40. The range of the function
$$f(x) = \frac{x^2 - 2}{x^2 - 3}$$
 is:

(A)
$$\left(-\infty, \frac{2}{3}\right] \cup \left(1, \infty\right)$$

(C)
$$y \in \left(\frac{2}{3}, 1\right)$$

41. The function
$$f(x) = \log \left(\frac{1+x}{1-x}\right)$$
 satisfies the equation:

(A)
$$f(x+2)-2 f(x+1)+ f(x) = 0$$

(B)
$$f(x+1) + f(x) = f(x(x+1))$$

(C)
$$f(x_1) f(x_2) = f(x_1 + x_2)$$

$$f(x_1) f(x_2) = f(x_1 + x_2)$$
 (D) $f(x_1) + f(x_2) = f(\frac{x_1 + x_2}{1 + x_1 x_2})$

42. The graph of the function y = f(x) is symmetrical about the line x = 2, then:

$$(A) f(x+2) = f(x-2)$$

(B)
$$f(2+x)=f(2-x)$$

(C)
$$f(x) = f(-x)$$

The range of the function $f(x) = [\sin x + \cos x]$ (where [x] denotes the greatest integer function) is $f(x) \in \mathbb{R}$ 43.

The value of the function $f(x) = 3 \sin \left(\sqrt{\frac{\pi^2}{16} - x^2} \right)$ lies in the interval: 44.

$$\left[-\frac{\pi}{4}, \frac{\pi}{4}\right] \qquad \textbf{(B)} \qquad \left[0, \frac{3}{\sqrt{2}}\right] \qquad \textbf{(C)} \qquad \left(-3, 3\right)$$

45. If f(1) = 1, f(n+1) = 2 f(n) + 1 and $n \ge 1$, then f(n) is equal to:

(A)
$$2^n + 1$$

(C)
$$2^n - 1$$

(D)
$$2^{n-1}-1$$

Date Planned ://	Daily Tutorial Sheet-4	Expected Duration: 90 Min
Actual Date of Attempt : / /	Level-1	Exact Duration :

- **46.** The function $f(x) = \cos\left(\log\left(x + \sqrt{x^2 + 1}\right)\right)$ is:
 - (A) even
- B) odd
- (C) constant
- (D) None of these

47. $f(x) = (\sin x^7) e^{x^5} Sgnx^9$ is:

lacksquare

(A) an even function

(B) an odd function

(C) neither even nor odd

- (D) None of these
- **48.** Which of the following functions is an odd function:

(A) f(x) = constant

- **(B)** $f(x) = \sin x + \cos x$
- (C) $f(x) = \sin\left(\log\left(x + \sqrt{x^2 + 1}\right)\right)$
- **(D)** $f(x) = 1 + x + 2x^3$
- **49.** If $f(x) = \sin^2 x + \sin^2 \left(x + \frac{\pi}{3}\right) + \cos x \cos \left(x + \frac{\pi}{3}\right)$ and $g\left(\frac{5}{4}\right) = 1$ then (gof)(x) is equal to:

- (A)
- B)
- (C) sin x
- **(D)** None of these

50. The function $f(x) = \sin\left(\frac{\pi x}{n!}\right) - \cos\left(\frac{\pi x}{(n+1)!}\right)$ is:

(A) non-periodic

- **(B)** periodic, with period 2 (n!)
- (C) periodic, with period (n + 1)
- (D) None of these
- 51. The period of the function $f(x) = \frac{\sin x + \sin 2x + \sin 4x + \sin 5x}{\cos x + \cos 2x + \cos 4x + \cos 5x}$ is:

- (A) $\frac{\pi}{2}$
- **(B)** $-\frac{1}{2}$
- (C) T
- (D) None of these
- **52. Statement 1:** The function $f(x) = \sin x$ is symmetric about the line x = 0.

Statement 2: Every even function is symmetric about *y*-axis.

- (A) Statement-1 is True, Statement-2 is True and Statement-2 is a correct explanation for Statement-1
- (B) Statement-1 is True, Statement-2 is True and Statement-2 is NOT a correct explanation for Statement-1
- (C) Statement-1 is True, Statement-2 is False
- (D) Statement-1 is False, Statement-2 is True
- **53.** Which of the following function has period π :

(A) $\left|\sin x\right| + \left|\cos x\right|$

- **(B)** $\sin^4 x + \cos^4 x$
- (C) $\sin(\sin x) + \sin(\cos x)$
- $(D) \quad \frac{1+2\cos x}{\sin x \left(2+\sec x\right)}$

- (A) $f(x) = \tan(3x - 2)$
- $f(x) = \{x\}$, (where {.}) denotes the fractional part of x) (B)
- $f(x) = x + \cos x$

 $f(x) \cdot g(x) \cdot h(x)$ is:

(D)
$$f(x) = 1 - \frac{\cos^2 x}{1 + \tan x} - \frac{\sin^2 x}{1 + \cot x}$$

55. If
$$f(x) = \frac{1}{1-x}$$
, $g(x) = f[f(x)]$ and $h(x) = f[f(x)]$, $\forall x \in R - \{0, 1\}$ then the value of

- (A)
- (C) 0
- (D) None of these
- The period of function $\frac{\left|\sin x\right| + \left|\cos x\right|}{\left|\sin x \cos x\right| + \left|\sin x + \cos x\right|}$ is: 56.

- (A) π
- (C) 2π
- (D)
- **57**. **Statement-1:** Function $f(x) = \sin(x + 3\sin x)$ is periodic

Statement-2: If g(x) is periodic then f(g(x)) periodic

- (A) Statement-1 is True, Statement-2 is True and Statement-2 is a correct explanation for Statement-1
- (B) Statement-1 is True, Statement-2 is True and Statement-2 is NOT a correct explanation for Statement-1
- Statement-1 is True, Statement-2 is False (C)
- Statement-1 is False, Statement-2 is True (D)
- The period of the function $f(x) = \sin^4 x + \cos^4 x$ is: 58.
 - (A)
- (B) $\frac{\pi}{2}$
- **(C)** 2 π
- (D) None of these
- If $f(x) = \sin(\sqrt{[\lambda]}x)$ is a periodic function with period π , where $[\lambda]$ denotes the greatest integer less 59.

than or equal to λ , is π , then:

- (A)
- $\lambda \in [4, 5)$ **(B)** $\lambda \in [4, 5]$ **(C)** $\lambda = 4, 5$
- (D) None of these
- If $f(x) = \frac{\sin \pi x}{\{x\}}$, then f(x) is: {[.] denotes greatest integer function}.

- (A) Periodic with fundamental period 1
- (B) Even

(C) Range is singleton (D) None of these

Date Planned ://	Daily Tutorial Sheet-5	Expected Duration: 90 Min
Actual Date of Attempt : / /	Level-1	Exact Duration :

If $2f(x-1)-f\left(\frac{1-x}{x}\right)=x$, then f(x) is: 61.

(A) $\frac{1}{3} \left[2(1+x) + \frac{1}{1+x} \right]$

(B) $2(x-1) + \frac{1-x}{x}$

 $x^2 + \frac{1}{x^2} + 3$

- (D) None of these
- Suppose f is a real function f(x + f(x)) = 4 f(x) and f(1) = 4. Then the value of f(21) is: 62.

- (A) 16
- (C)
- (D) 105
- If $\sum_{r=0}^{21} f\left(\frac{r}{11} + 2x\right) = \text{constant } \forall x \in R \text{ and } f(x) \text{ is periodic, then period of } f(x) \text{ is:}$ 63.
 - **(B)** 1/11 (D)

- If $h(x) = \log_{10} x$ then the value of $\sum_{n=1}^{89} h(\tan n^{\circ}) =$
 - (A)
- (C)
- (D) None of these

4

If $f(x) + 2f\left(\frac{1}{x}\right) = 3x$, $x \neq 0$ and $S = \left\{x \in R : f(x) = f(-x)\right\}$; then S: 65.

- (A) contains exactly one element
- (B) contains exactly two elements
- (C) contains more than two elements
- (D) is an empty set
- 66. Let $f(x) = min\{x, x^2\}$, for every $x \in R$. Then:

(A)
$$f(x) = \begin{cases} x, & x \ge 1 \\ x^2, & 0 \le x < 1 \\ x, & x < 0 \end{cases}$$

(B)
$$f(x) = \begin{cases} x^2, & x \ge 1 \\ x, & x < 1 \end{cases}$$

(C)
$$f(x) = \begin{cases} x, & x \ge 1 \\ x^2, & x < 1 \end{cases}$$

(D)
$$f(x) = \begin{cases} x^2, & x \ge 1 \\ x, & 0 \le x < 1 \\ x^2, & x < 0 \end{cases}$$

The function $f(x) = \max\{(1-x), (1+x), 2\}, x \in (-\infty, \infty)$ is equivalent to: 67.

(A)
$$f(x) = \begin{cases} 1 - x, & x \le -1 \\ 2, & -1 < x < 1 \\ 1 + x, & x \le -1 \end{cases}$$

$$f(x) = \begin{cases} 1 - x, & x \le -1 \\ 2, & -1 < x < 1 \\ 1 + x, & x \le -1 \end{cases}$$
(B)
$$f(x) = \begin{cases} 1 + x, & x \le -1 \\ 2, & -1 < x < 1 \\ 1 - x, & x \ge 1 \end{cases}$$

(C)
$$f(x) = \begin{cases} 1 - x, & x \le -1 \\ 1, & -1 < x < 1 \\ 1 + x, & x \ge 1 \end{cases}$$

Paragraph for Questions 68 - 70

Let a function f(x) be such that $f(x) = |x^2 - 3| - 2|$.

- Equation $f(x) = \lambda$ has 2 solutions if : 68.
 - (A)
- (B)
- (C) $1 < \lambda < 2$
- (D) $\lambda \geq 2$

- 69. Equation $f(x) = \lambda$ has 4 solutions if :
 - $\lambda = 2.0$
- (B)
- (C) $1 \le \lambda \le 2$
- (D) $1 < \lambda < 2$

- 70. Equations $f(x) = \lambda$ has 8 solutions if :
 - (A)
- **(B)** $\lambda = 2$
- (C) $1<\lambda<2$
- (D) $0 < \lambda < 1$
- For the equation $\log_{3\sqrt{x}} x + \log_{3x} \sqrt{x} = 0$, which of the following do not hold good? 71.
 - (A) No real solution

(B) One prime solution

(C) One integral solution

- (D) None of these
- If $x \in [0, 2\pi]$, then $y_1 = \frac{\sin x}{|\sin x|}$, $y_2 = \frac{|\cos x|}{\cos x}$ are identical functions for $x \in \mathbb{R}$ 72.

- I. $\left(0, \frac{\pi}{2}\right)$ II. $\left(\frac{\pi}{2}, \pi\right)$ III. $\left(\pi, \frac{3\pi}{2}\right)$ IV. $\left(\frac{3\pi}{2}, 2\pi\right)$
- (A)
- **(B)** I, III
- I, IV
- The range of the function $f(x) = \sin \left[\log \left(\frac{\sqrt{4 x^2}}{1 x} \right) \right]$ is: **73**.

- (A) [0, 1]
- **(B)** (-1, 0) **(C)** [-1.1]
- (D) (-1, 1)
- If $f(x) + 2 f(1 x) = x^2 + 2$, $\forall x \in R$, then f(x) is given as:

- $\frac{(x-1)^2}{3}$ (B) $\frac{(x-2)^2}{3}$ (C) x^2-1
- (D)
- Let $f: R \to R$ be a function defined by $f(x) = \frac{|x|^3 + |x|}{1 + x^2}$, then the graph of f(x) lies in the : 75.
 - (A) I and II quadrants

(B) I and III quadrants

(C) II and III quadrants (D) III and IV quadrants

Functions

Date Planned ://	Daily Tutorial Sheet-6	Expected Duration: 90 Min
Actual Date of Attempt : / /	Level-2	Exact Duration :

76. The domain of definition of
$$f(x) = \log_2\left(-\log_{1/2}\left(1 + \frac{1}{x^{1/4}}\right) - 1\right)$$
 is :

(A)

If $f(x) = \frac{x}{\sqrt{1+x^2}}$ then the value of (fofof) (x) is:

(A)
$$\frac{2x}{\sqrt{1+3x^2}}$$
 (B) $\frac{x}{\sqrt{1+3x^2}}$ (C) $\frac{x}{1+3x^2}$ (D) $\frac{2x}{1+3x^2}$

(B)
$$\frac{x}{\sqrt{1+3}}$$

$$C) \qquad \frac{x}{1+3x^2}$$

(D)
$$\frac{2x}{1+3x^2}$$

The given function $f(x) = \frac{a^x - 1}{x^n(a^x + 1)}$ is: *78.

(A) Odd, if n is even (B) Even if n is odd

(C) Neither even nor odd

(D) None of these

79. Draw the following curves:

$$y = [\sin[x]] \ \forall \ x \in [-2\pi, 2\pi]$$
 (ii) $y = [x] + \sqrt{x - [x]}$ (iii)

$$y = [x] + \sqrt{x - [x]}$$

$$|y| = |1 + e^{|x|} - e - x$$

Construct the graph of the function y = f(x - 1) + f(x + 1) where $f(x) = \begin{cases} I - |x| & \text{where } |x| \le I \\ 0 & \text{where } |x| > I \end{cases}$ 80.

Let $f(x) = \frac{ax + b}{cx + d}$. Then the fof f(x) = x provided that: 81.

$$(B) d = a$$

(C)
$$a = b = c = d = 1$$
 (D) $a = b = 1$

$$a = b = 1$$

If $b^2 - 4ac = 0$, a > 0, then the domain of the function $f(x) = \log(ax^3 + (a+b)x^2 + (b+c)x + c)$ is : 82.

(A)
$$R - \left\{-\frac{b}{2a}\right\}$$

(B)
$$R - \left\{ \left\{ -\frac{b}{2a} \right\} \cup \left\{ x \mid x \ge -1 \right\} \right\}$$

$$\odot$$

(C)
$$R - \left\{-\frac{b}{2a}\right\} \cap \left(-1, \infty\right)$$

If f(x) is defined on [0, 1] by the rule $f(x) = \begin{cases} x, & \text{if } x \text{ is rational} \\ 1 - x, & \text{if } x \text{ is irrational} \end{cases}$ 83.

Then for all $x \in [0,1]$, f(f(x)) is:

constant

(C)

If f(x) is a function such that f(x+y) = f(x) + f(y) and f(1) = 7 then $\sum_{r=1}^{11} f(r)$ is equal to: 84.

(A) 7n/2

7(n+1)/2(B)

(C) 7n(n+1) (D)

Let f be a real valued function defined by $f(x) = \frac{e^x - e^{-|x|}}{e^x + e^{|x|}}$, then range of f(x) is : 85.

(A)

[0, 1]

(C)

[0, 1/2)

Date Planned ://	Daily Tutorial Sheet-7	Expected Duration: 90 Min
Actual Date of Attempt ://	Level-2	Exact Duration :

86. The domain of the function	$f(x) = \sqrt{x}$	$\left(\frac{1}{\sin x} - 1\right)$	is
---------------------------------------	-------------------	-------------------------------------	----

(A)
$$\left(2n\pi, 2n\pi + \frac{\pi}{2}\right), \forall n \in I$$

(B)
$$(2n\pi, (2n+1)\pi), \forall n \in I$$

(C)
$$((2n-1)\pi, 2n\pi), \forall n \in I$$

Total number of solutions of $2^{X} + 3^{X} + 4^{X} - 5 = 0$ is : 87.

(A)	C

(D) Infinitely many

The number of roots of the equation $3^{|x|}\{|2-|x||\}=1$ is: 88.

(A)

(B)

(D)

If $f: R \to R$ is a function satisfying the property f(2x+7)+f(2x+3)=2, $\forall x \in R$, then the period of 89. **(** f(x) is:

(B)

(C)

(D)

Number of integral values of x which satisfying the equation, $9^{\log_3(\log_2 x)} = \log_2 x - (\log_2 x)^2 + 1$ is: 90.

(A)

(C)

(D) None of these

The value of $E=81^{\log_{0.\overline{3}}\left(\frac{1}{\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}}\right)}$ is simplified to. 91.

(A) 16 (B)

(C) 2

1/2 (D)

Range of $f(x) = \log_{\sqrt[3]{10}} \left(\sqrt{5} \left(2 \sin x + \cos x \right) + 5 \right)$ is : 92.

(B) [0, 3] **(C)** $\left[-\infty, \frac{1}{3}\right]$

(D)

Which of the following function is not periodic, where [.] denotes greatest integer function : 93.

 $f(x) = 1^{[x]} + (-1)^{[x]}$ (A)

(B) $g(x) = 1^{\left[5x\right]} + (-1)^{\left[5x\right]}$

 $h(x) = 2^{\left[x\right]} - \left(-2\right)^{\left[x\right]}$

(D) $\phi(x) = 1^{\left[x\right]} - (-1)^{\left[x\right]}$

If A is domain of $f(x) = \ln\left(\left(x^3 - 6x^2 + 11x - 6\right)\left(x\right)\left(e^X - 5\right)\right)$ and B is the range of $g(x) = \sin^2\frac{x}{4} + \cos\frac{x}{4}$. 94. Then find $A \cap B$.

(A) (0, 2)

(B) (0, 1) (C) (1, 2)

None of these (D)

Let $f(k) = \frac{k}{2009}$ and $g(k) = \frac{f^4(k)}{\left[1 - f(k)\right]^4 \left[f(k)\right]^4}$, then the sum $\sum_{k=0}^{2009} g(k)$ is: 95.

(A) 2009

(C) 1005 (D) 1004

Date Planned ://	Daily Tutorial Sheet-8	Expected Duration: 90 Min
Actual Date of Attempt : / /	Level-2	Exact Duration :

Actua	al Date o	of Attempt : / _	_/		Level-2	2		Exact Duration	:
96.	A fund	of Attempt:/_	et of natu	iral numbers to	integers	defined by $f($	$n = \begin{cases} \frac{n-1}{2} \\ -\frac{n}{2} \end{cases}$	when n is even	d is:
	(A)	one-one but no	t onto		(B)	onto but not	one-one		
	(C)	one-one and or	nto both		(D)	neither one-o	ne nor on	to	
97.	Let g:	$R \to R$ be given	by $g(x)$	= 3 + 4x.					\odot
	If $g^n(x)$	x) = $gogoog(x)$	x), then g	$e^{-n}(x) = $ (where	$g^{-n}(x)$	denotes inverse	e of <i>gⁿ</i> (<i>x</i>)))	
	(A)	$\left(4^{n}-1\right)+4^{n}x$	(B)	$(x+1) 4^{-n} - 1$	(C)	$(x+1)4^n-1$	(D)	$(4^{-n}-1)x +$	4 ⁿ
98.	Total r	number of solutio	ns of the	equation sin πχ	$\alpha = \ell n_e $	x is:			(
	(A)	8	(B)	10	(C)	9	(D)	6	•
99.	Total ı	number of soluti	ons of th	ne equation x^2	-4-[x]	= 0 are : (wh	ere [.] der	notes the great	test integer
	functio			•			-	, and the second	$\mathbf{E}^{\mathbf{r}}$
	(A)	1	(B)	2	(C)	3	(D)	4	\sim
100.	The pe	eriod of the functi	ion $f(x)$	$= 4 \sin^4 \left(\frac{4x - 4\pi}{6\pi^2} \right)$	$\frac{3\pi}{}$ + 2c	$\cos\left(\frac{4x-3\pi}{3\pi^2}\right)$ is	S:		\odot
	(A)	$\frac{3\pi^2}{4}$	(B)	$\frac{3\pi^3}{4}$	(C)	$\frac{4\pi^2}{3}$	(D)	$\frac{4\pi^3}{3}$	
101.	The ra	inge of $f(x) = \frac{2}{1}$	$\frac{+x-[x]}{-x+[x]}$	is:					\odot
	(A)	[0, 1)	(B)	[2, ∞)	(C)	[0, 1) \cup (1, 2]	(D)	R ⁺	
102.	The nu	umber of roots of	the ques	tion 1+ $\log_2(1 -$	$-x)=2^{-1}$	^x is:			\odot
	(A)	0	(B)	1	(C)	2	(D)	many	•
103.	The ra	nge of the function	on $f(x)$	$= 3 \sin x - 2$	cos x i	s :			()
		[−2, √ 13]					(D)	[-3, 2]	•

 $. \left((\sqrt{7})^{\log_{25} 7} - 125^{\log_{25} 6} \right), \text{ then value of } \log_2 x \text{ is equal to :}$ (A) (D) (B) (C) -1None of these 1

*105. If f(x) = 0 be a polynomial whose coefficients are all ± 1 and whose roots are all real, then degree of f(x)can be:

 \odot (A) 2 (C) 1 (B) 3 (D)

Date Planned ://	Daily Tutorial Sheet-9	Expected Duration: 90 Min
Actual Date of Attempt : / /	Level-2	Exact Duration :

Let $f(x) = \sec^{-1} \left[1 + \cos^2 x \right]$, where [.] denotes the greatest integer function. Then, the range of f(x) is:

- (C) $\{\sec^{-1}1, \sec^{-1}2\}$ (D) None of these

If T_1 is the period of the function $y = e^{3(x-[x])}$ and T_2 is the period of the function $y = e^{3x-[3x]}$ ([.] 107. denotes the greatest integer function), then:

- **(B)** $T_1 = \frac{T_2}{T_1}$
- (C) $T_1 = 3T_2$
- (D) None of these

If $f(x) = \frac{4^x}{4^x + 2}$, then $f(\frac{1}{97}) + f(\frac{2}{97}) + \dots + f(\frac{96}{97})$ is equal to:

- **(D)** -1

The domain of the function $f(x) = \log_{10}(\sqrt{x-4} + \sqrt{6-x})$ is 109.

- (A) [4, 6]
- (B) $(-\infty, 6)$
- (C) (2,3)
- (D) None of these

Given, $\log_a x = \alpha$; $\log_b x = \beta$; $\log_c x = \gamma \& \log_d x = \delta(x \neq 1)$, $a, b, c, d \in \mathbb{R}^+ - \{1\}$ then $\log_{abcd} x$ has the 110. value equal to:

- - $\frac{1}{\alpha\beta\gamma\delta} \qquad \qquad \textbf{(B)} \qquad \frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} + \frac{1}{\delta} \qquad \textbf{(C)} \qquad \frac{1}{\frac{1}{\alpha} + \frac{1}{\alpha} + \frac{1}{\alpha}} \qquad \textbf{(D)}$
- None of these

111. If $f(x) = \log\left(\frac{1+x}{1-x}\right)$, -1 < x < 1, then $f\left(\frac{3x+x^3}{1+3x^2}\right) - f\left(\frac{2x}{1+x^2}\right)$ is:

- $\left[f(x) \right]^3$ (B) $\left[f(x) \right]^2$ (C) -f(x)

The period of the function f(x) which satisfies the relation f(x) + f(x+4) = f(x+2) + f(x+6) is: 112.

- None of these

If $f(x) = -\frac{x|x|}{1+x^2}$, then $f^{-1}(x)$ equals:

- $\sqrt{\frac{|x|}{1-|x|}} \qquad \qquad \textbf{(B)} \quad \left(\operatorname{sgn}\left(-x\right)\right) \sqrt{\frac{|x|}{1-|x|}} \quad \textbf{(C)} \qquad -\sqrt{\frac{x}{1-x}} \qquad \qquad \textbf{(D)} \qquad \left(\operatorname{sgn}\left(x\right)\right) \sqrt{\frac{|x|}{1+|x|}}$

The number of integral solutions of the equation $4\log_{x/2}(\sqrt{x}) + 2\log_{4x}(x^2) = 3\log_{2x}(x^3)$ is: 114.

- (A)

The domain of the function $f(x) = \log_{\left[x + \frac{1}{2}\right]} \left|x^2 - 5x + 6\right|$ is: (where [.] denotes the greatest integer function)

- $x \in \left[\frac{3}{2}, 2\right] \cup (2, 3) \cup (3, \infty)$
- **(B)** $x \in \left[\frac{3}{2}, \infty\right]$

(C) $x \in \left[\frac{1}{2}, \infty\right]$

(D) None of these

Date Planned ://	Daily Tutorial Sheet-10	Expected Duration: 90 Min
Actual Date of Attempt : / /	Level-2	Exact Duration :

If [.] denotes the greatest integer function, then the value of $\sum_{r=1}^{100} \left[\frac{1}{2} + \frac{r}{100} \right]$ is : 116.

- (A) 49
- (B) 50
- (C)
- 52

The function $f(x) = \sqrt{\cos(\sin x)} + \sin^{-1}\left(\frac{1+x^2}{2x}\right)$ is defined for :

- $x \in \{-1, 1\}$ **(B)** $x \in [-1, 1]$ **(C)** $x \in R$

Draw the graph of $|y| = (\{x\} - 1)^2$. 118.

The function $f(x) = \frac{\sec^{-1} x}{\sqrt{x - [x]}}$, where [x] denotes the greatest integer less than or equal to x is defined for 119.

all x belonging to :

(A) R **(B)** $R - \{(-1, 1) \cup \{n \mid n \in Z\}\}$

 $R^+ - (0, 1)$

(D) $R^+ - \{ n \mid n \in N \}$

The domain of the function : $f(x) = \log_3 \left[-(\log_3 x)^2 + 5\log_3 x - 6 \right]$ is : 120.

- $(0, 9) \cup (27, \infty)$ **(B)** [9, 27]
- (C) (9, 27)
- (D) None of these

The function $f(x) = \sec \left[\log \left(x + \sqrt{1 + x^2} \right) \right]$ is: 121.

- (A)
- Odd
- (C) Constant
- (D) None of these

122. Let f(x+y)+f(x-y)=2f(x)f(y), $\forall y \in R$ and f(0)=k, then:

- f(x) is even, if k = 1
- II. f(x) is odd, if k = 0
- III. f(x) is always odd
- IV. f(x) is neither even nor odd for any value of k

The correct choice is:

- (A) 1, 111
- (B) П, Ш
- (C) 1, 11
- (D) III, IV

123. Let f be a real valued function such that for any real x

$$f(15+x) = f(15-x)$$
 and $f(30+x) = -f(30-x)$

Then which of the following statements is true?

(A) f is odd and periodic

- (B) f is odd but not periodic
- (C) f is even and periodic
- (D) f is even nut not periodic

If $f(x) = \sin\{[x+5] + \{x-\{x-\{x\}\}\}\}\}$ for $x \in \left[0, \frac{\pi}{4}\right]$ is invertible, where {.} and [.] represent fractional 124.

part and greatest integer functions respectively, then $f^{-1}(x)$ is :

- $\sin^{-1} x$ I.

- $\frac{\pi}{2} \cos^{-1} x$ III. $\sin^{-1} \{x\}$ IV. $\cos^{-1} \{x\}$

The correct choice is:

- (A) 1, 11, 111
- (B) П, Ш
- (C) III, IV
- (D) None of these

Statement 1: Let $f: r - \{3\}$ be a function given by $f(x+10) = \frac{f(x)-5}{f(x)-3}$, then f(10) = f(50). 125.

Statement 2: f(x) is a periodic function.

- (A) Statement-1 is True, Statement-2 is True and Statement-2 is a correct explanation for Statement-1
- (B) Statement-1 is True, Statement-2 is True and Statement-2 is NOT a correct explanation for Statement-1
- (C) Statement-1 is True, Statement-2 is False
- (D) Statement-1 is False, Statement-2 is True

Functions

Date Planned ://	Daily Tutorial Sheet - 11	Expected Duration: 90 Min
Actual Date of Attempt ://_	Numerical Value Type for JEE Main	Exact Duration:

- **126.** Let f(x) be a polynomial of degree 6 with leading coefficient 2009. Suppose further, that f(1) = 1, f(2) = 3, f(3) = 5, f(4) = 7, f(5) = 9, f'(2) = 2, then the sum of all the digits of f(6) is:
- **127.** Let $f(x) = x^3 3x + 1$. Find the number of different real solution of the equation f(f(x)) = 0

128. If the domain of
$$f(x) = \sqrt{12 - 3^x - 3^{3-x}} + \sin^{-1}\left(\frac{2x}{3}\right)$$
 is $[a, b]$, then $a = \dots$

- 129. The number of elements in the range of the function : $y = \sin^{-1} \left[x^2 + \frac{5}{9} \right] + \cos^{-1} \left[x^2 \frac{4}{9} \right] \text{ where [.] denotes the greatest integer function is:}$
- **130.** The number of integers in the range of function $f(x) = [\sin x] + [\cos x] + [\sin x + \cos x]$ is (where [.] = denotes greatest integer function)
- **131.** For all real number x, let $f(x) = \frac{1}{201\sqrt{1-x^{2011}}}$. Find the number of real roots of the equation $f(f(\dots,f(x)),\dots) = \{-x\}$. Where f is applied 2013 times and $\{.\}$ denotes fractional part function.
- 132. Let $f(x,y) = x^2 y^2$ and g(x,y) = 2xy. Such that $(f(x,y))^2 - (g(x,y))^2 = \frac{1}{2}$ and $f(x,y) \cdot g(x,y) = \frac{\sqrt{3}}{4}$. Find the number of ordered pairs (x,y)?
- **133.** Let $f(x) = \frac{x+5}{\sqrt{x^2+1}} \forall x \in R$, then the smallest integral value of k for which $f(x) \le k \ \forall x \in R$ is :
- **134.** The number of roots of equation : $\left(\frac{(x-1)(x-3)}{(x-2)(x-4)} e^x \right) \left(\frac{(x+1)(x+3)e^x}{(x+2)(x+4)} 1 \right) (x^3 \cos x) = 0$
- 135. Let $f(x) = x^2 bx + c$, b is an odd positive integer. Given that f(x) = 0 has two prime numbers as roots and b + c = 35. If the least value of $f(x) \forall x \in R$ is λ , then $\left[\left|\frac{\lambda}{3}\right|\right]$ is equal to (where [.] denotes greatest integer function)
- **136.** If f(x) is an even function, then the number of distinct real numbers x such that $f(x) = f\left(\frac{x+1}{x+2}\right)$ is:
- **137.** If $\sum_{r=1}^{n} [\log_2 r] = 2010$, where [.] denotes greatest integer function, then the sum of the digits of n is:
- 138. Let P(x) be a cubic polynomial with leading co-efficient unity. Let the remainder when P(x) is divided by $x^2 5x + 6$ equals 2 times the remainder when P(x) is divided by $x^2 5x + 4$. If P(0) = 100, find the sum of the digits of P(5):
- **139.** Let $f(x) = x^2 + 10x + 20$. Find the number of real solution of the equation f(f(f(f(x)))) = 0
- **140.** Polynomial P(x) contains only terms of odd degree. When P(x) is divided by (x-3), then remainder is 6. If P(x) is divided by (x^2-9) then remainder is g(x). Find the value of g(2).

Functions

Date Planned :/_/_	Daily Tutorial Sheet - 1	Expected Duration: 90 Min
Actual Date of Attempt : / /	JEE Main (Archive)	Exact Duration:

1. If
$$f:[1,\infty] \to [2,\infty]$$
 is given by $f(x) = x + \frac{1}{x}$, then $f^{-1}(x)$ equals: [2001]

(A)
$$\frac{x + \sqrt{x^2 - 4}}{2}$$
 (B) $\frac{x}{1 + x^2}$ (C) $\frac{x - \sqrt{x^2 - 4}}{4}$ (D) $1 + \sqrt{x^2 - 4}$

2. If
$$f(x) = \cos(\log x)$$
, then $f(x) f(y) - \frac{1}{2} \left[f\left(\frac{x}{y}\right) + f(xy) \right]$ has the value: [1983]

(A) -1 (B)
$$\frac{1}{2}$$
 (C) -2 (D) None of these

3. The domain of the function
$$f(x) = \frac{\sin^{-1}(x-3)}{\sqrt{9-x^2}}$$
 is: [2004]

(A) [1, 2] (B) [2, 3) (C) [2, 3] (D) [1, 2)

4. The domain of
$$\sin^{-1} \left[\log_3 \left(\frac{x}{3} \right) \right]$$
 is: [2002]

(A)
$$[1, 9]$$
 (B) $[-1, 9]$ (C) $[-9, 1]$ (D) $[-9, -1]$

5. Let
$$f: (0, 1) \to R$$
 be defined by $f(x) = \frac{b-x}{1-bx}$, where b is a constant such that $0 < b < 1$. Then: [2011]

(A)
$$f$$
 is not invertible on $(0, 1)$

(B)
$$f \neq f^{-1}$$
 on (0, 1) and $f'(b) = \frac{1}{f'(0)}$

(C)
$$f \neq f^{-1}$$
 on (0, 1) and $f'(b) = \frac{1}{f'(0)}$

(D)
$$f^{-1}$$
 is differentiable on (0, 1)

6. Let
$$f(x) = x^2$$
 and $g(x) = \sin x$ for all $x \in R$. Then the set of all x satisfying $(fogogof)(x) = (gogof)(x)$, where $(fog)(x) = f(g(x))$ is:

(A)
$$\pm \sqrt{n\pi}, n \in \{0, 1, 2, \ldots\}$$
 (B) $\pm \sqrt{n\pi}, n \in \{1, 2, \ldots\}$

(C)
$$\frac{\pi}{2} + 2n\pi, n \in \{-2, -1, 0, 1, 2, \ldots\}$$
 (D) $2n\pi, n \in \{\ldots, -2, -1, 0, 1, 2, \ldots\}$

7. Let
$$S = \{1, 2, 3, 4\}$$
. The total number of unordered pairs of disjoint subsets of S is equal to : [2010]

(D)

41

Let $f(x) = \frac{x^2 - 6x + 5}{x^2 - 5x + 6}$ 8.

Match the Column I with Column II and make the correct option from the codes given below. [2007] 🏠

	Column I		Column II
I.	If $-1 < x < 1$, then $f(x)$ satisfies	(p)	0 < f(x) < 1
II.	If $1 < x < 2$, then $f(x)$ satisfies	(q)	f(x) < 0
III.	If $3 < x < 5$, then $f(x)$ satisfies	(r)	f(x) > 0
IV.	If $x > 5$, then $f(x)$ satisfies	(s)	f(x) < 1

Codes:

	I	Ш	Ш	IV		ı	Ш	Ш	IV
(A)	q	р	r	r	(B)	p	q	q	р
(C)	S	р	q	r	(D)	р	r	q, r	S

9. Let
$$f(x) = \begin{cases} x, & \text{if } x \text{ is rational} \\ 0, & \text{if } x \text{ is irrational} \end{cases}$$
 and $g(x) = \begin{cases} 0, & \text{if } x \text{ is rational} \\ x, & \text{if } x \text{ is irrational} \end{cases}$

Then, f - g is: [2005]

(A) one-one and onto (B) neither one-one nor onto

(C) many one and onto (D) one-one and onto

10. If X and Y are two non-empty sets, where
$$f: X \to Y$$
, is function is defined such that [2005]

$$f(C) = \{f(x): x \in C\}$$
 for $C \subseteq X$ and $f^{-1}(D) = \{x: f(x) \in D\}$ $D \subseteq Y$. For any $A \subseteq Y$ and $B \subseteq Y$, then

(A)
$$f^{-1}\{f(A)\}=A$$

(B)
$$f^{-1}\{f(A)\}=A \text{ only if } f(X)=Y$$

(C)
$$f\{f^{-1}(B)\}=B \text{ only if } B\subseteq f(x)$$
 (D) $f^{-1}\{f(B)\}=B$

(D)
$$f^{-1}\{f(B)\}=B$$

For Questions 11-13 [2007]

- (A) Statement-1 is True, Statement-2 is True and Statement-2 is a correct explanation for Statement-1
- (B) Statement-1 is True, Statement-2 is True and Statement-2 is NOT a correct explanation for Statement-1
- Statement-1 is True, Statement-2 is False (C)
- (D) Statement-1 is False, Statement-2 is True
- Let F (x) be an indefinite integral of $\sin^2 x$. 11.

Statement 1: The function F(x) satisfies $F(x + \pi) = F(x)$ for all real x.

Statement 2: $\sin^2(x+\pi) = \sin^2 x$ for all real x.

Let $f(x) = 2 + \cos x$ for all real x. 12.

Statement 1: For each real t, there exists a point c in $[t, t + \pi]$ such that f'(c) = 0.

Statement 2: $f(t) = f(t + 2\pi)$ for each real t.

13. Statement 1: The curve $y = -\frac{x^2}{2} + x + 1$ is symmetric with respect to the line x = 1

Statement 2: A parabola is symmetric about its axis.

14. Let f be a real-valued function defined on the interval (-1,1) such that

 $e^{-X} f(x) = 2 + \int_{0}^{X} \sqrt{t^4 + 1} dt$, $\forall x \in (-1,1)$ and let f^{-1} be the inverse function of f. Then $[f^{-1}(2)]'$ is equal to:

- (A)
- **(B)** 1/
- **C)** 1/
- **(D)** 1/e
- [2010]
- **15.** Let $E_1 = \left\{ x \in \mathbb{R} : x \neq 1 \text{ and } \frac{x}{x-1} > 0 \right\}$ and $E_2 = \left\{ x \in E_1 : \sin^{-1} \left(\log_e \left(\frac{x}{x-1} \right) \right) \text{ is a real number} \right\}$.

(Here, the inverse trigonometric function $\sin^{-1} x$ assumes values in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.) Let $f: E_1 \to \mathbb{R}$ be the

function defined by $f(x) = \log_e \left(\frac{x}{x-1}\right)$ and $g: E_2 \to \mathbb{R}$ be the function defined by

$$g(x) = \sin^{-1}\left(\log_{e}\left(\frac{x}{x-1}\right)\right).$$

[2018]

	List- I		List- II
P.	The range of f is	1.	$\left(-\infty, \frac{1}{1-e}\right] \cup \left[\frac{e}{e-1}, \infty\right)$
Q.	The range of g contains	2.	(0, 1)
R.	The domain of f contains	3.	$\left[-\frac{1}{2},\frac{1}{2}\right]$
S.	The domain of g is	4.	$(-\infty, 0) \cup (0, \infty)$
		5.	$\left(-\infty, \frac{e}{e-1}\right]$
		6.	$(-\infty, 0) \cup \left(\frac{1}{2}, \frac{e}{e-1}\right]$

The correct option is:

- (A) $P \to 4$; $Q \to 2$; $R \to 1$; $S \to 1$
- **(B)** $P \to 3$; $Q \to 3$; $R \to 6$; $S \to 5$
- (C) $P \to 4$; $Q \to 2$; $R \to 1$; $S \to 6$
- **(D)** $P \to 4$; $Q \to 3$; $R \to 6$; $S \to 5$

Functions

Date Planned ://	Daily Tutorial Sheet - 1	Expected Duration: 90 Min
Actual Date of Attempt : / /	JEE Advanced (Archive)	Exact Duration:

1. Let $f(x) = \sin\left(\frac{\pi}{6}\sin\left(\frac{\pi}{2}\sin x\right)\right)$ for all $x \in R$ and $g(x) = \frac{\pi}{2}\sin x$ for all $x \in R$. Let (fog)(x) denotes

f[g(x)] and (*gof*) (x) denotes g[f(x)]. Then, which of the following is (are) true? [2015]

(A) Range of
$$f$$
 is $\left[-\frac{1}{2}, \frac{1}{2}\right]$

(B) Range of fog is
$$\left[-\frac{1}{2}, \frac{1}{2}\right]$$

(C)
$$\lim_{x \to 0} \frac{f(x)}{g(x)} = \frac{\pi}{6}$$

(D) There is $x \in R$ such that (gof)(x) = 1

2. Let
$$f: \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \to R$$
 be given by $f(x) = \left[\log\left(\sec x + \tan x\right)\right]^3$. Then:

- (A) f(x) is an odd function
- **(B)** f(x) is a one-one function
- (C) f(x) is an onto function
- **(D)** f(x) is an even function

3. Find the range of values of
$$t$$
 for which $2\sin t = \frac{1-2x+5x^2}{3x^2-2x-1}$, $t \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. [2005]

- **4.** If function $f(x) = x^3 + e^{x/2}$ and $g(x) = f^{-1}(x)$, then the value of g'(1) is [2009]
- 5. A function $f: IR \to IR$, where IR, is the set of real numbers, is defined by $f(x) = \frac{\alpha x^2 + 6x 8}{\alpha + 6x 8x^2}$. Find the interval of values of α for which f is onto. Is the functions one-to-one for $\alpha = 3$? Justify your answer.
- 6. Let f be a one-one function with domain $\{x, y, z\}$ and range $\{1, 2, 3\}$. It is given that exactly one of the following statements is true and the remaining two are false f(x) = 1, $f(y) \ne 1$, $f(z) \ne 2$ determine $f^{-1}(1)$. [1982]
- 7. Find the natural number 'a' for which $\sum_{k=1}^{n} f(a+k) = 16(2^{n}-1)$, where the function 'f' satisfies the relation f(x+y) = f(x)f(y) for all natural numbers x, y and further f(1) = 2. [1992]
- 8. Show that the value of $\frac{\tan x}{\tan 3x}$, wherever defined never lies between $\frac{1}{3}$ and 3. [1992]