DS 623 PE04

For PE04, you will execute a simple Gram-Schmidt Process in R². Your code in the Jupyter Notebook should have the following properties:

- 1) Input: two independent nonzero vectors v_1 and v_2 in R^2 (i.e., two three-dimensional vectors)
- 2) Output:

a.
$$w_1$$
: $(w_1 = \frac{v_1}{\|v_1\|})$
b. w_2 : $(w_2 = \frac{y_2}{\|y_2\|})$ where $y_2 = v_2 - (v_2 \cdot w_1)w_1)$

3) Verification: verify w_1 and w_2 Have length 1 and the dot product of w_1 and w_2 are zero. (The length and dot product should be close to 1 and 0 respectively.)

For this assignment, you can use any NumPy and SciPy operations. Use three decimal places for non-integer values.

Example)

Enter v1: np.array([2, 1]) Enter v2: np.array([-3, 0])

Output:

Two orthonormal bases are found below.

w1 - np.array([0.894, 0.447]), w2 - np.array([-0.447, 0.894])

Verification:

Length of w1 is 1.000 Length of w2 is 1.000 Dot product is 0.000

If you need more challenge, you can extend it to ${\bf R}^3$ using the following formulae.

a. w_3 : $(w_3 = \frac{y_3}{\|y_3\|})$ where $y_3 = v_3 - (v_3 \cdot w_1)w_1 - (v_3 \cdot w_2)w_2$