EXERCICE I - CYCLE DÉCRIT PAR UN GAZ PARFAIT n = 1 mol d'un gaz perfort (PV = n2T) État initial: Pa = 2 bar $V_{A} = 14 L = 14.10^{-3} m^{3}$ Trois transformations (1) A-B: détente volonc qui dons le son volume $P_s = P_A (= P)$ V_B - 2V_A (L) B -> C : compression is other juga an volume VA $T_{g} = T_{c} (= T)$ $V_c = V_A$ (3) C -> A : refroidiskment isochon jusqu'ic l'état A. $V_A = V_C (-V)$ Question 1: Valeur de To = Ta = ? Exprimer TA en Jonation de M, PA et YA . Expiner TB en fonction de TA.

L c'tat A est un état d'épullère. la loi d'état s'applique: PAVA = nRTA $\Rightarrow \qquad T_{A} = \frac{P_{A}V_{A}}{nR}$ Leital Best lui aussi un c'éat d'épuilibre: $P_{8} V_{5} = mRT_{8}$ $= P_{A}$ $= 2V_{A}$ d \hat{a} $2P_AV_A = mRT_B$ $= nRT_A$ Or trave enjin: InRTA = nRTB => T_B = LTA La compression rocheme s'effectue donc à la température On peut auxi calculu: $P_c = m RT_c = 2mRT_a = 2mRT_a = 2mRT_a = V_c$ d'où Pe-2PA

Ti reste à exquinse a roultet en fontion de
$$Y$$

Definition de $Y = X = C_{p}$

Relation de Mayer $\Rightarrow C_{p} = C_{v} = nR$

(I) $\Rightarrow C_{p} = YC_{v}$

(I) $\Rightarrow C_{p} = YC_{v}$

(I')

On side C_{v} den (II'):

On substitue le résultet dons (I'):

 $C_{p} = YC_{v} = YC_{v}$

On substitue a résultet dons (I'):

 $C_{p} = YC_{v} = YC_{v}$

On substitue a résultet dons (I'):

 $C_{p} = YC_{v} = YC_{v}$

Faire a résultet dons (I'):

 $C_{p} = YC_{v} = YC_{v}$

Forman au calcul de Q_{s} : I vagit d'une transformation isochan.

 $C_{s} = C_{v} = C_{v} = C_{v}$
 $C_{r} = C_{v} = C_{r}$
 $C_{r} = C_{r}$

sat DU = Q + W On nous demande donc de montrer que: DU = U(A) - U(A) - O = Q, + V, Q2 + W2 = 0 puisque Q2 = -W2 $+Q_3 + W_3$ Il suffit donc de dimentrer: Q, + W, + Q, +W, -0 À VERIFIER $\frac{\nabla nRTA}{V-1} - nRTA - nRTA + 0 = \frac{\nabla nRTA}{V-1} - nRTA - nRTA$ = nRTA (X-1) - nRTA = nRTA (X-1) - nRTA= MKTA - MRTA =0 CQFD Conne Mende, on a pue pour un aych, DU - O