Numerične metode 2 - definicije, tr
ditve in izreki

Oskar Vavtar po predavanjih profesorice Marjetke Knez2020/21

Kazalo

1	Teorija aproksimacije	3
2	Enakomerna aproksimacija zveznih funkcij s polinomi	5
3	Aproksimacija po metodi najmanjših kvadratov	7
4	Interpolacija	9
	4.1 Lagrangeeva oblika zapisa interpolacijskega polinoma	. 9
	4.2 Newtonova oblika zapisa interpolacijskega polinoma	. 11

1 Teorija aproksimacije

Definicija 1.1 (Aproksimacijska shema). Z X označimo (realni) vektorski prostor, katerega elemente želimo aproksimirati, $S \subseteq X$ označuje podprostor oz. podmnožico, v kateri iščemo aproksimant. Aproksimacijska shema je operator $A: X \to S$, ki vsakemu elementu $f \in X$ priredi aproksimacijski element $\tilde{f} = Af \in S$.

Definicija 1.2 (Optimalni aproksimacijski problem). Naj bo X vektorski prostor z normo $\| \bullet \|$, $S \subseteq X$. Za $f \in X$ iščemo $\tilde{f} \in S$, da je

$$||f - \tilde{f}|| = \inf_{s \in S} ||f - s|| =: \operatorname{dist}(f, S).$$

Definicija 1.3. Recimo, da je $S = S_n$, kjer je n dimenzija. Zanima nas, ali za $f \in X$ in $\tilde{f}_n \in S_n$ napaka $||f - \tilde{f}_n||$ konvergira proti 0, ko gre $n \to \infty$. Če je to res, je aproksimacijska shema konvergentna.

Če gledamo zaporedje podprostorov $S_n \subset X$, mora veljati, da z večanjem svobodnih parametrov postane S_n gost v X. Za polinome to sledi iz Weierstrassovega izreka.

Izrek 1 (Weierstrassov izrek). Naj bo $f \in \mathcal{C}([a,b])$ poljubna funkcija. Potem $\forall \varepsilon > 0$ obstaja polinom p, da je

$$||f - p||_{\infty, [a,b]} < \varepsilon.$$

Drugače povedano:

$$\operatorname{dist}_{\infty}(f, \mathbb{P}_n) \xrightarrow{n \to \infty} 0.$$

Definicija 1.4 (Bernsteinov polinom).

$$\mathcal{B}_n f(x) = \sum_{i=0}^n f(\frac{i}{n}) \cdot B_i^n(x),$$

kjer je B_i^n Bernsteinov bazni polinom:

$$B_i^n(x) := \binom{n}{i} x^i (1-x)^{n-1}, \quad i = 0, 1, \dots, n$$

Da se pokazati, da gre $\|f - \mathcal{B}_f\|_{\infty, [0,1]} \xrightarrow{n \to \infty} 0$. Bernsteinov aproksimacijski polinom nam poda en možen način aproksimacije funkcije f (na [0,1]).

Definicija 1.5 (Bernsteinov aproksimacijski operator). $\mathcal{B}_n : \mathcal{C}([a,b]) \to \mathbb{P}_n, \ f \mapsto \mathcal{B}_n f$:

$$\mathcal{B}_n f(x) = \sum_{i=0}^n f\left(a + \frac{i}{n}(b-a)\right) \cdot B_i^n(\frac{x-a}{b-a})$$

$$||f - \mathcal{B}_n f||_{\infty, [a,b]} = \max_{x \in [a,b]} |f(x) - \mathcal{B}_n f(x)|$$

2 Enakomerna aproksimacija zveznih funkcij s polinomi

Problem 2.1. Za dano $f \in \mathcal{C}([a,b])$ iščemo polinom $p^* \in \mathbb{P}_n$, za katerega velja

$$||f - p^*||_{\infty, [a,b]} = \min_{p \in \mathbb{P}_n} ||f - p||_{\infty, [a,b]} = \min_{p \in \mathbb{P}_n} \max_{x \in [a,b]} |f(x) - p(x)|.$$

Ta problem sodi pod optimalne aproksimacijske probleme. Polinom p^* imenujemo polinom najboljše enakomerne aproksimacije¹ za f na [a,b]. Problem je nelinearen.

Izrek 2. Naj bo $f \in \mathcal{C}([a,b])$. Če je polinom $p \in \mathbb{P}_n$ takšen, da residual r = f - p doseže svojo normo $||r||_{\infty, [a,b]}$ alternirajoče v vsaj n+2 točkah $x_i \in [a,b], a \leq x_0 < x_1 < \ldots < x_{n+1} \leq b$, potem je p p.n.e.a. za f na [a,b].

Natančneje: Če obstaja n+2 točk $x_i \in [a,b]$, da je $||r||_{\infty,[a,b]} = |r(x_i)|$ za $i=0,1,\ldots,n+1$, in $r(x_i)\cdot r(x_{i+1})<0$ za $i=0,1,\ldots,n$, potem je $p\in\mathbb{P}_n$ p.n.e.a. za f na [a,b].

Definicija 2.1. Naj bo $E = \{x_i; a \le x_0 < x_1 < \ldots < x_{n+1} \le b\}$. Definirajmo minimaks za f na E:

$$M_n(f, E) = \min_{p \in \mathbb{P}_n} \max_{x \in E} |f(x) - p(x)|$$

Polinom, pri katerem je ta minimum dosežen, imenujemo p.n.e.a. za f na množici E. Dobimo ga tako, da rešimo sistem linearnih enačb:

$$f(x_i) - p(x_i) = (-1)^i m, \quad i = 0, 1, \dots, n+1$$

kjer so neznanke koeficienti polinoma p ter število m.²

¹Od tu naprej p.n.e.a.

²Imamo n+2 enačb za n+2 neznank.

Algoritem (Remesov postopek). Vhodni podatki: funkcija f, interval [a,b], stopnja n, toleranca ε

Ponavljaj k = 0, 1, 2, ...

1. Poišči polinom ${p_k}^* \in \mathbb{P}_n,$ ki zadošča pogojem

$$f(x_i) - p_k^*(x_i) = (-1)^i m, \quad i = 0, 1, \dots, n+2$$

2. Poišči ekstrem residuala $r_l=f-{p_k}^*,$ torej poišči $u\in[a,b],$ da bo

$$|r_k(u)| = ||r_k||_{\infty, [a,b]}$$

3. Če je $|r_k(u)| - |m| < \varepsilon$, potem končaj in vrni $p^* = p_k^*$.

Opomba. Da se dokazati, da zaporedje polinomov, ki ga tvori Remesov postopek konvergira proti p.n.e.a. p^* . Hitrost konvergence je linearna.

3 Aproksimacija po metodi najmanjših kvadratov

Definicija 3.1. Naj bo X vektorski prostor nad \mathbb{R} s skalarnim produktom $\langle \bullet, \bullet \rangle$, s kvadratno normo $\| \bullet \|_2 = \sqrt{\langle \bullet, \bullet \rangle}$. $S \subseteq X$ je končnodimenzionalen podprostor v X, definiran kot

$$S = \mathcal{L}in\{\varphi_1, \varphi_2, \dots, \varphi_n\}, \quad \dim S = n.$$

Za izbran $f \in X$ iščemo $f * \in S$, da velja

$$||f - f^*||_2 = \min_{s \in S} ||f - s||_2.$$

 f^* imenujemo element najboljše aproksimacije po metodi najmanjših kvadratov. 3

Izrek 3. Naj bo $S \subseteq X$. Element $f^* \in S$ je element najboljše aproksimacije po MNK za $f \in X$ natanko tedaj, ko je $f - f^* \perp S$.

Posledica. Iz izreka sledi konstrukcija. Naj bodo $\varphi_1, \varphi_2, \dots, \varphi_n$ baza podprostora S.

$$f^* = \sum_{j=1}^n \alpha_j \varphi_j,$$

 $(\alpha_j)_{j=1}^n$ so neznani koeficienti. Veljati mora $f-f^*\perp S,$ torej $f-f^*\perp\varphi_i$ $\forall i=1,2,\ldots,n.$ Na podlagi tega dobimo

$$\begin{bmatrix} \langle \varphi_1, \varphi_2 \rangle & \cdots & \langle \varphi_n, \varphi_1 \rangle \\ \vdots & \ddots & \vdots \\ \langle \varphi_1, \varphi_n \rangle & \cdots & \langle \varphi_n, \varphi \rangle \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix} = \begin{bmatrix} \langle f, \varphi_1 \rangle \\ \vdots \\ \langle f, \varphi_n \rangle \end{bmatrix}.$$

Ta sistem enačb imenujemo Gramov oz. normalni sistem. Numerilno ta sistem rešimo z razcepom Choleskega. Levo matriko imenujemo Gramova matrika. Gramova matrika $G = (\langle \varphi_j, \varphi_i \rangle)_{i,j=1}^n$ je simetrična pozitivno definitna matrika.

 $^{^{3}}e.n.a.$ po MNK

Algoritem (Gram-Schmidt). Vhodni podatki: baza $\{\psi_1, \psi_2, \dots, \psi_n\}$. Izhod: Ortonormirana baza $\{\varphi_1, \varphi_2, \dots, \varphi_n\}$.

4 Interpolacija

Problem 4.1. Podane so vrednosti izbrane funkcije f v n+1 paroma različnih točkah x_0, x_1, \ldots, x_n na realni osi⁴, iščemo pa neko preprostejšo funkcijo q, ki zadošča pogojem

$$f(x_i) = g(x_i), \quad i = 0, 1, \dots, n.$$

Problem 4.2 (Polinomska interpolacija). Imejmo funkcijo $f \in \mathcal{C}([a,b])$ in zaporedje točk

 $a \le x_0 < x_1 < \ldots < x_n \le b$. Iščemo polinom $p = a_0 + a_1 x + \ldots + a_n x^n \in \mathbb{P}_n$, ki zadošča pogojem

$$p(x_i) = f(x_i), \quad i = 0, 1, \dots, n.$$

4.1 Lagrangeeva oblika zapisa interpolacijskega polinoma

Definicija 4.1 (Lagrangeevi bazni polinomi).

$$\ell_{0,n}(x) = \frac{(x-x_1)(x-x_2)\dots(x-x_n)}{(x_0-x_1)(x_0-x_2)\dots(x_0-x_n)}$$

$$\ell_{1,n}(x) = \frac{(x-x_0)(x-x_2)\dots(x-x_n)}{(x_1-x_0)(x_1-x_2)\dots(x_1-x_n)}$$

$$\vdots$$

$$\ell_{n,n}(x) = \frac{(x-x_0)(x-x_1)\dots(x-x_{n-1})}{(x_n-x_0)(x_n-x_1)\dots(x_n-x_{n-1})}$$

i-ti Lagrangeev bazni polinom lahko posplošimo kot

$$\ell_{i,n}(x) = \prod_{\substack{j=0 \ j \neq i}}^{n} \frac{x - x_j}{x_i - x_j}, \quad i = 0, 1, \dots, n$$

Velja:

$$\ell_{i,n}(x_j) = \begin{cases} 1; & i = j \\ 0; & i \neq j \end{cases}$$

 $^{{}^4\}mathrm{To}$ so interpolacijske točke.

Lema 4.1. Polinomi $\ell_{i,n}$, $i = 0, 1, \ldots, n$ so baza za \mathbb{P}_n .

Trditev 4.1 (Lagrangeeva oblika zapisa interpolacijskega polinoma).

$$p(x) = \sum_{i=0}^{n} f(x_i) \ell_{i,n}(x)$$

Lema 4.2. Če je $f \in \mathbb{P}_n$, potem je

$$\sum_{i=0}^{n} f(x_i)\ell_{i,n}(x) = f(x).$$

Posledica. Lagrangeevi bazni polinomi tvorijo *particija* oz. *razčlenitev* enote:

$$\sum_{i=0}^{n} \ell_{i,n}(x) = 1.$$

Izrek 4. Naj bo $a \leq x_0 < x_1 < \ldots < x_n \leq b, \ f \in \mathcal{C}^{n+1}([a,b])$ in $p(x) = \sum_{i=0}^n f(x_i)\ell_{i,n}(x) \text{ interpolacijski polinom za } f \text{ na točkah } x_0, x_1, \ldots, x_n.$ Potem $\forall x \in [a,b]$ obstaka nek $\xi_x \in (a,b)$, da velja

$$f(x) - p(x) = \frac{f^{(n+1)}(\xi_x)}{(n+1)!} \omega(x),$$

$$\omega(x) = (x - x_0)(x - x_1) \dots (x - x_n), \quad \omega \in \mathbb{P}_{n+1}.$$

Opomba. Za poljuben $x \in [a, b]$ torej velja

$$||f(x) - p(x)||_{\infty, [a,b]} \le \frac{1}{(n+1)!} ||\omega(x)||_{\infty, [a,b]} \cdot ||f^{(n+1)}(x)||_{\infty, [a,b]}$$

4.2 Newtonova oblika zapisa interpolacijskega polinoma

Problem 4.3. Za bazo v kateri bomo interpolacijski polinom izrazili, izberemo *prestavljene potence*:

$$1, x-x_0, (x-x_0)(x-x_1), (x-x_0)(x-x_1)(x-x_2), \dots, (x-x_0)(x-x_1)\dots(x-x_{n-1})$$

$$p(x) = \sum_{i=0}^{n} c_i(x - x_0)(x - x_1) \dots (x - x_{i-1})$$

Iščemo c_i , i = 0, 1, ..., n, da bo $p(x_i) = f(x_i) \ \forall i$.

Definicija 4.2. Deljiva diferenca $[x_0, x_1, ..., x_k]f$ je vodilni koeficient interpolacijskega polinoma stopnje k^5 , ki se s funkcijo f ujema v točkah $x_0, x_1, ..., x_k$. Sledi

$$p_l(x) = p_{k-1}(x) + [x_0, x_1, \dots, x_k] f(x - x_0)(x - x_1) \dots (x - x_{k-1}).$$

Trditev 4.2 (Newtonova oblika zapisa interpolacijskega polinoma).

$$p(x) = \sum_{i=0}^{n} [x_0, x_1, \dots, x_i] f(x - x_0) (x - x_1) \dots (x - x_{i-1})$$

Izrek 5 (Rekurzivna formula za deljene diference). Naj bodo x_0, x_1, \ldots, x_k paroma različne točke na x-osi. Tedaj je

$$[x_0, x_1, \dots, x_k]f = \frac{[x_1, x_2, \dots, x_k]f - [x_0, x_1, \dots, x_{k-1}]f}{x_k - x_0}.$$

 $^{{}^5{\}rm Koeficient}$ pri potenci $x^k.$

Algoritem (Hornerjev algoritem). Vhodni podatki:

- \bullet x_0, x_1, \ldots, x_n
- d_0, x_1, \ldots, d_n
- *x*

Izhod: v_0