\setReal	\mathbb{R}
\setNatural	IN
\setInteger	\mathbb{Z}
\setComplex	C
\setRational	$\mathbb Q$
A \define B	$A \coloneqq B$
A \reverseDefine B	A =: B
A \demand B	$A\stackrel{!}{=} B$
\function {f}{X}{Y}	$f \colon X \to Y$
A\separate B	$A\;,\qquad B$
\set {1,\ldots ,n}{}	$\{1,\ldots,n\}$
\set {k\in \setNatural }{k \leq n}	$\{k \in \mathbb{N} \mid k \le n\}$
\curlyBrackets {\frac {x}{y}}	$\left\{\frac{x}{y}\right\}$
\boxBrackets {\frac {x}{y}}	$\left[rac{x}{y} ight]$
\roundBrackets {\frac {x}{y}}	$\left(\frac{x}{y}\right)$
\angleBrackets {\frac {x}{y}}	$\left\langle \frac{x}{y} \right\rangle$
\floorBrackets {\frac {x}{y}}	$\left\lfloor \frac{x}{y} \right\rfloor$
\ceilBrackets {\frac {x}{y}}	$\left\lceil \frac{x}{y} \right\rceil$
\absolute {x^2}	$ x^2 $
\norm {v^2_n}	$ v_n^2 $
\inverse {M}	M^{-1}
\dotProduct {v}{w}	$(v \cdot w)$
\scalarProduct {v}{w}	$\langle v,w \rangle$
\crossProduct {v}{w}	$v \times w$

lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:	$\left. \frac{x}{y} \right _{y=x}$
\timeDerivative {r}	\dot{r}
\timeSecondDerivative {r}	\ddot{r}
\timeThirdDerivative {r}	\ddot{r}
\infinitesimal	d
\infinitesimal {x}	$\mathrm{d}x$
\leibnizDerivative {f(x)}{x}	$\frac{\mathrm{d}f(x)}{\mathrm{d}x}$
\leibnizDerivative [n]{f(x)}{x}	$\frac{\mathrm{d}^n f(x)}{\mathrm{d} x^n}$
\leibnizPartialDerivative {f(x,y)}{x}	$\frac{\partial f(x,y)}{\partial x}$
\leibnizPartialDerivative	$\partial^n f(x,y)$
[n]{f(x,y)}{x}	$\frac{\partial^n f(x,y)}{\partial x^n}$
<pre>\leibnizDerivativeOperator {x}{}</pre>	$\frac{\mathrm{d}}{\mathrm{d}x}$
\leibnizDerivativeOperator {x}{f(x)}	$\frac{\mathrm{d}}{\mathrm{d}x} f(x)$
\leibnizPartialDerivativeOperator {x}{}	$\frac{\partial}{\partial x}$
lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:	$\frac{\partial}{\partial x} f(x, y)$
lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:	$\frac{\mathrm{d}}{\mathrm{d}x} f(x) \bigg _{x_0}$
\leibnizPartialDerivativeOperatorValue {s}{f(s,y)}{x}	$\frac{\partial}{\partial s} f(s, y) \Big _x$
\integral {t_0}{t}{f(s)}{s}	$\int_{t_0}^t f(s) \mathrm{d}s$
$\label{linear_loss} $$ \indefiniteIntegral $\{f(x)\}\{x\}$ $$$	$\int f(x) \mathrm{d}x$
$\label{linear_loss} $$ \indefiniteIntegralValue $$ {f(x)}{x}_{x_0}$$ $$$	$\int f(x) \mathrm{d}x \bigg _{x_0}$
\gradient U	$\operatorname{grad} U$
\curl A	$\operatorname{rot} A$

\divergence B	$\operatorname{div} B$
\laplacian \varphi	\Deltaarphi
\vector {A}	$ec{A}$
\vectorX \separate \vectorY \separate \vectorZ	$ec{i}, \qquad ec{j}, \qquad ec{k}$
\diagonalMatrix {v_1,\ldots ,v_n}	$\operatorname{diag}\left(v_{1},\ldots,v_{n}\right)$
\transpose {A}	A^{T}
\jacobian	D
\jacobian \Phi	$\mathrm{D}\Phi$
12.58\appendUnit {m^2}	$12.58\mathrm{m}^2$
a_n \converges a	$a_n \longrightarrow a$
a_n \converges [n\converges \infty] a	$a_n \xrightarrow{n \longrightarrow \infty} a$