MATH 270: Homework #8

Jesse Farmer

24 November 2004

- 1. Find the residues of the following functions at the indicated points:
 - (a) $\frac{e^z-1}{\sin z}$ at z=0

Both $e^z - 1$ and $\sin z$ have zeros of order 1 at z = 0, so the residue at z = 0 is 0.

(b) $\frac{1}{e^z-1}$ at z=0

 $e^z - 1$ has a zero of order 1 at z = 0, but all derivatives are non-zero, so the residue at z = 0 is given by $1/e^z$ evaluated at z = 0, i.e., it has a residue of 1.

(c) $\frac{z+2}{z^2-2z}$ at z=0

 $\lim_{z\to 0} z \frac{z+2}{z^2-2z} = -1$, so this is the desired residue.

(d) $\frac{1+e^z}{z^4}$ at z=0

 z^4 has a zero of order 4, so the residue is $\phi^{(3)}(0)/3!$ where $\phi(z) = 1 + e^z$. Evaluated at z = 0 this is $\frac{1}{6}$.

- 2. Evaluate $\int_{\gamma} \frac{dz}{(z+1)^3}$ for the following curves:
 - (a) γ is a circle of radius 2 centered at 0.

Let $f(z) = \frac{1}{(z+1)^3}$ and $\phi(z) = 1$, then

$$\operatorname{Res}_{z=-1} \frac{1}{(z+1)^3} = \frac{\phi^{(z)}(1)}{2!} = 0$$

By the Residue Theorem the integral is therefore 0.

(b) γ is a square with vertices at 0, 1, 1+i, and i.

This region contains no singularities and so the integral is 0.

3. Show using Cauchy's inequalities that the Laurent-Taylor series of a holomorphic function on $\Omega \setminus \{z_0\}$, where z_0 is a removable singularity or a pole, converges in $0 < |z - z_0| < R$ where $D(z_0, R) \subset \Omega$, and that

$$f(z) = \sum_{k=-n}^{\infty} a_k (z - z_0)^k$$

This question confuses me because it seems like exactly what DDSF proved in class, namely, that if f has a pole or a removable singularity at z_0 then on $D(z,0) \setminus \{z_0\}$ there is some holomorphic function h such that

$$f(z) = \frac{a_{-n}}{(z - z_0)^n} + \dots + \frac{a_{-1}}{z - z_0} + h(z)$$

The first (finite) number of terms do not affect the convergence of anything since they are finite, and h(z) is holomorphic precisely because it can be expressed as a convergent power-series. At what point are Cauchy's inequalities necessary?

4. Show the convergence of the series

$$\sum_{k=-\infty}^{\infty} a_k (z-z_0)^k$$

on $D(z_0, R) \setminus \{z_0\}$ where

$$a_k = \frac{1}{2\pi i} \int_{\partial D(z_0, R/2)} \frac{f(\zeta)}{(\zeta - z_0)^{k+1}} d\zeta$$

I do not understand why it is sufficient to prove this statement for R/2, so instead I will do it for any two curves below.

5. Deduce Laurent's theorem from these results.

If I remember to draw a picture of what I'm talking about in the morning, then that will go a long way toward explaining what I'm about to try and articulate – I'm pretty sure this is a normal thing to do anyhow. Let γ_1 and γ_2 be two circles with radius r_1 and r_2 such that $r_1 < |z - z_0| < r_2$. Fix z in this region and let γ_3 be a segment joining γ_1 and γ_2 that does not pass through z. Let γ be the path that first traverses γ_2 , then γ_3 , then γ_1 in reverse order, and back again along γ_3 in reverse order. Clearly γ as constructed like this, i.e., $\gamma = \gamma_2 + \gamma_3 - \gamma_1 - \gamma_3$, is homotopic to a neighborhood γ' of z as the points of self-intersection are homotopic to a point. f is holomorphic in this neighborhood, so by Cauchy's integral formula

$$f(z) = \frac{1}{2\pi i} \int_{\gamma'} \frac{f(\zeta)}{\zeta - z} d\zeta$$

$$= \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta - z} d\zeta$$

$$= \frac{1}{2\pi i} \int_{\gamma_2} \frac{f(\zeta)}{\zeta - z} d\zeta + \frac{1}{2\pi i} \int_{\gamma_3} \frac{f(\zeta)}{\zeta - z} d\zeta - \frac{1}{2\pi i} \int_{\gamma_1} \frac{f(\zeta)}{\zeta - z} d\zeta - \frac{1}{2\pi i} \int_{\gamma_3} \frac{f(\zeta)}{\zeta - z} d\zeta$$

$$= \frac{1}{2\pi i} \int_{\gamma_2} \frac{f(\zeta)}{\zeta - z} d\zeta - \frac{1}{2\pi i} \int_{\gamma_1} \frac{f(\zeta)}{\zeta - z} d\zeta$$

But $\frac{f(\zeta)}{\zeta - z}$ itself is also holmorphic on γ_2 , so that

$$\frac{1}{2\pi i} \int_{\gamma_2} \frac{f(\zeta)}{\zeta - z} d\zeta = \frac{1}{2\pi i} \int_{\gamma_2} \sum_{k=0} a_k (z - z_0)^k d\zeta = \sum_{k=0}^{\infty} \left[\int_{\gamma_2} a_k d\zeta \right] (z - z_0)^k$$

since $(z-z_0)^k$ is bounded on γ_2 . From Cauchy's formula we know that $a_k = \frac{f(\zeta)}{(\zeta-z)^{k+1}}$, and that this series converges uniformly on γ_2 , so the portion consisting of positive powers of n is proven for the laurent expansion.

Anyhow, it's getting late. The portion with the negative parts is done the same way, except that the fact that the powers of n are negative guarantee that it converges *outside* the radius r_1 , i.e., if a power-series in z has a radius of convergence R then the corresponding power-series in 1/z converges in 1/R, but since R is arbitrarily small, this new power-series converges outside the disc rather than inside – it has a lower limit of 1/R and no upper-limit in terms of convergence.

I don't understand why part 2 is different from the extra-credit, though. This part shows that the Laurent series with the given coefficients converges to f in particular, while part 2 seems to just say that it converges, but not to what specifically. Why not simply prove the former, which implies the latter?