

2 Figure 1. Common regression curves used to describe the data from crop-weed competition

- studies in additive design: A) linear; B) polynomial quadratic; C) sigmoid (logistic model); D)
- 4 rectangular hyperbola (Cousens model).

7 Figure 2. Relationship between corn biomass reduction (%) and weed density (plants pot⁻¹)

- 8 described with the rectangular hyperbola model. Red dotted and black solid lines represent *R*.
- 9 brasiliensis and C. benghalensis, respectively

Figure 3. Relationship between maize biomass reduction (%) and weed density (plants pot⁻¹)
fitted with a logistic model. Red dotted lines represent *R. brasiliensis* and black solid line

13 represents *C. benghalensis*.

Figure 4. The relationship between maize biomass reduction (%) and weed density (plants pot⁻¹)

fitted with a polynomial quadratic model. Red dotted lines represent *R. brasiliensis*, and the

black solid line represents *C. benghalensis*.

Figure 5. The relationship between maize biomass reduction (%) and weed density (plants pot⁻¹) fitted with rectangular hyperbola model. Red dotted lines represent *R. brasiliensis*, and the black solid line represents *C. benghalensis*.

Table 1. Corn yield loss (%) model comparison among polynomial quadratic, logistic, and

23 Cousens.

Modela	Cassias	Model Selection ¹	Goodness of Fit ²		
Models	Species	AICc	RMSE	ME	R^2
Polynomial quadratic	C. benghalensis	2.42.1	10.4	0.90	0.89
	R. brasiliensis	343.1	19.4	0.71	0.71
Logistic	C. benghalensis	337.6	12.2	0.85	-
	R. brasiliensis	337.0	13.2	0.58	-
Cousens	C. benghalensis	332.2	12.6	0.92	-
	R. brasiliensis	332.2	12.6	0.64	-

¹Alkeike's information criterion (AIC).

- ²Root mean square error (RMSE), model efficiency (ME), and R-squared (R²). R² is not
- 26 appropriate for nonlinear models (logistic and Cousens)

Table 2. Cousens model parameters estimates, standard error, t-value and P-value of maize

biomass reduction (%) caused by competition of *R. brasiliensis* and *C. benghalensis*.

Parameters ¹	Species	Estimate	Standard Error	t-value	P-value
			- %		
I	R. brasiliensis	50.3	22.6	2.2	0.03
1	C. benghalensis	210.2	88.6	2.4	0.02
4	R. brasiliensis	82.1	23.1	3.6	0.00
А	C. benghalensis	108.6	11.1	9.7	0.00

¹I: represents maize biomass reduction (%) per unit weed density as density approaches 0; A:

30 represents maize biomass reduction (%) as density approaches ∞ (or maximum expected yield

31 loss).

 2 If P<0.05, there is no lack of fit; If P>0.05, there is a lack of fit. *** Significant at <0.01.

Table 3. Logistic model parameters estimates, standard error, t-value and P-value of maize biomass reduction (%) caused by competition of *R. brasiliensis* and *C. benghalensis*.

Parameters ¹	Species	Estimate	Standard	t-value	<i>P</i> -value
		(Error		
1.	R. brasiliensis	-1.5	1.4	-1.1	0.29
b	C. benghalensis	-3.2	5.1	-0.6	0.54
_	R. brasiliensis	0.2	7.4	-<0.0	0.99
C	C. benghalensis	-5.3	7.4	-<0.0	0.98
1	R. brasiliensis	67.2	26.9	2.5	0.02
d	C. benghalensis	93.4	8.4	11.1	0.00
_	R. brasiliensis	1.2	0.7	1.6	0.12
e	C. benghalensis	0.7	0.3	2.1	0.04

 $^{^{1}}b$: slope; c: lower limit (weed competition at low densities); d: upper limit (maximum expected

34

maize biomass reduction, %); e: inflection point (weed density at maize biomass reduction is

^{50%} relative to d.

²If P<0.05, there is no lack of fit; If P>0.05, there is a lack of fit. *** Significant at 0.01; *

³⁹ Significant at 0.1; NS, not significant.

- Table 4. Polynomial quadratic parameters estimates, standard error, t-value and P-value of maize
- biomass reduction (%) caused by competition of *R. brasiliensis* and *C. benghalensis*.

Parameters ¹	Species	Estimate	Standard Error	t-value	P-value
			%		
Intercept	R. brasiliensis	-0.7	7.7	-0.1	0.92
	C. benghalensis	4.9	6.1	0.8	0.43
Slope	R. brasiliensis	35.5	9.1	3.8	0.00
	C. benghalensis	65.5	7.3	9.0	0.00
Quadratic	R. brasiliensis	-5.4	2.2	-2.5	0.02
	C. benghalensis	-11.1	1.7	-6.4	0.00

- 42 **Intercept: intercept at Y-value when density equals zero; Slope: the slope of the equation;
- 43 *quadratic*: the quadratic term of the equation.
- 2 If P<0.05, there is no lack of fit; If P>0.05, there is a lack of fit. *** Significant at 0.01; *
- 45 Significant at 0.1; NS, not significant.

Table 5. Nested model selection criteria and goodness of fit of Cousens model parameters I and A of maize biomass reduction (%) with

47 R. brasiliensis and C. benghalensis.

		Model Selection ¹			Goodnes of fit ²	
Cousens Models	Species	F-test		AICc	RSME	ME
		F-value	P-value	AICC	KSME	IVIE
Different I and A (Full)	R. brasiliensis C. benghalensis	-	-	332.2	13.3	0.92 0.64
Similar I and A (Red. I)	R. brasiliensis C. benghalensis	32.3	0.00	368.2	22.2	0.84
Similar I but different A (Red. II)	R. brasiliensis C. benghalensis	4.1	0.05	333.9	14.0	0.97 0.69
Similar A but different I (Red. III)	R. brasiliensis C. benghalensis	0.7	0.40	330.4	13.4	0.98 0.95

¹F-test model selection; P<0.05: significant different models; P>0.05: non-significant different models. Alkeike's information criterion

56 (AIC);

²Root mean square error (RMSE) and model efficiency (ME).

Table 6. Cousens model parameters estimates, standard error, t-value and P-value of corn yield loss (%) caused by competition of *R. brasiliensis* and *C. benghalensis*.

Parameters ¹	Species	Estimate	Standard Error	t-value	P-value
T	R. brasiliensis	37.0	6.2	5.9	0.00
1	C. benghalensis	228.3	100.2	2.3	0.03
A	R. brasiliensis C. benghalensis	106.1	10.3	10.3	0.00

¹ I: represents maize biomass reduction (%) per unit weed density as density approaches 0; A:

- represents maize biomass reduction (%) as density approaches ∞ (or maximum expected yield
- 62 loss).

58

59

 2 If P<0.05, there is no lack of fit; If P>0.05, there is a lack of fit. *** Significant at <0.01.