rna_seq_workflow

Shaleigh Smith

9/14/2021

${f RNA ext{-}Seq}$	Workflow

Transcriptomic Data processing

- 1. Data download from SRA.
- 2. Trimming and quality control with TrimGalore.
- 3. Alignment with Kallisto (example alignment for STAR and BBmap included).
- 4. Quantification of kallisto with tximport.
- 5. Differential expression analysis with DESeq2.

Data

Whole genome sequencing & RNA sequencing of human well differentiated liposarcoma Select all samples for SRA selector:

- SRR15320001
- SRR15320004
- SRR15320005
- SRR15320006
- SRR15320007
- SRR15320009
- SRR15320010
- SRR15320008
- SRR15320012

- SRR15320011
- SRR15320002

```
# Download human genome
# https://support.illumina.com/sequencing/sequencing_software/igenome.html
cd ~/Desktop/
pwd
wget http://igenomes.illumina.com.s3-website-us-east-1.amazonaws.com/Homo_sapiens/UCSC/hg38/Homo_sapien
tar -zxvf Homo sapiens UCSC hg38.tar.gz
# GCC path if needed for install: /usr/local/Cellar/qcc/11.2.0/bin/q++-11
# If using STAR for sequence alignment...
# Can only do this and map with 30GB+ of RAM - must use cluster
## Create STAR genome index
STAR --runThreadN 1 \
--runMode genomeGenerate \
--genomeDir ~/Desktop/work/rna_seq/data/star_hg38_index \
--genomeFastaFiles ~/Desktop/work/rna_seq/data/Homo_sapiens/UCSC/hg38/Sequence/WholeGenomeFasta/genome.
--sjdbGTFfile ~/Desktop/work/rna_seq/data/Homo_sapiens/UCSC/hg38/Annotation/Genes/genes.gtf \
--sjdbOverhang 99
# Iterate through project Run IDs
cd ./data/fastq/
pwd
while IFS= read -r i
  do
  echo $i
  # Get SRA IDs for Liposarcoma samples
  # Download data from SRA, put each read into separate files (paired data)
  /Users/sha/sratoolkit.2.11.1-mac64/bin/fastq-dump --accession $i --split-files --gzip -0 ./
  # Can also download manually here:
  # https://www.ebi.ac.uk/ena/browser/view/SRR15320006?show=reads
  # Trim and run FASTQC
  echo ${i}_1.fastq.gz
  echo ${i}_2.fastq.gz
  ~/TrimGalore-0.6.6/trim_galore --path_to_cutadapt ~/.local/bin/cutadapt --q 30 --phred33 --
  # Align reads to reference genome with STAR (on cluster)
  # Spliced Transcripts Alignment to a Reference (STAR) is a fast RNA-seq read mapper...
  # with support for splice-junction and fusion read detection.
  # https://qithub.com/alexdobin/STAR/blob/master/doc/STARmanual.pdf
  # MAPQ=255 is defaut (uniquely mapping reads)
  # Convert sam to bam and sort
  STAR --genomeDir ~/Desktop/work/rna_seq/data/star_hg38_index/ \
```

```
--runThreadN 1 \
  --readFilesIn \{i\}_1\_val_1.fq.gz \{i\}_2\_val_2.fq.gz \
  --outSAMtype BAM SortedByCoordinate \
  --outSAMunmapped Within
  # Create a feature counts matrix
  # The input is specified as reversely stranded (-s 2) and paired end (-p).
  # The fragment length is checked (-P)
  # Only the fragments that have both ends successfully aligned are counted (-B)
  # Chimeric fragments are ignored (-C) as are duplicates (--ignoreDup)
  # Only primary alignments are counted (--primary)
  # Counts are based on gene_id (-g).
  /Users/sha/subread-2.0.3-source/bin/featureCounts -s 2 -p -B -C -P --ignoreDup --primary -a ../Ho
done < ../SRR_Acc_List.txt</pre>
# Build BBMap index
/Users/sha/bbmap/bbmap.sh -Xmx20G ref=../Homo_sapiens_UCSC_hg38/Homo_sapiens/UCSC/hg38/Sequence/WholeGe
# Iterate through project Run IDs
cd ./data/fastq/
pwd
while IFS= read -r i
  do
  echo $i
  # Get SRA IDs for Liposarcoma samples
  # Download data from SRA, put each read into separate files (paired data)
  /Users/sha/sratoolkit.2.11.1-mac64/bin/fastq-dump --accession $i --split-files --gzip -0 ./
  # Can also download manually here:
  # https://www.ebi.ac.uk/ena/browser/view/SRR15320006?show=reads
  # Trim and run FASTQC
  echo ${i}_1.fastq.gz
  echo ${i}_2.fastq.gz
  ~/TrimGalore-0.6.6/trim_galore --path_to_cutadapt ~/.local/bin/cutadapt --q 30 --phred33 -o ./ --
  # Align read to reference genome with BBMap
  # BBmap is splice-aware but uses less RAM than STAR
  # minid=0.76: Approximate minimum alignment identity to look for. Higher is faster and less sensitive
  # ambiguous: Set behavior on ambiguously-mapped reads (with multiple top-scoring mapping locations).
  bbmap.sh -Xmx6G path=../bbmap_index/ in=SRR15320001_1_val_1.fq.gz in2=SRR15320001_2_val_2.fq.gz out
  # Convert SAM file to BAM file and sort
  samtools view -S -b ../align/${i}.sam > ../align/${i}.bam
  samtools sort ../align/${i}.bam -o ../align/${i}_sorted.bam
  # Create a feature counts matrix
  # The input is specified as reversely stranded (-s 2) and paired end (-p).
  # The fragment length is checked (-P)
  # Only the fragments that have both ends successfully aligned are counted (-B)
  # Chimeric fragments are ignored (-C) as are duplicates (--ignoreDup)
```

```
# Only primary alignments are counted (--primary)
  # Counts are based on gene_id (-q).
  /Users/sha/subread-2.0.3-source/bin/featureCounts -s 2 -p -B -C -P --ignoreDup --primary -a ../Hor
done < ../SRR_Acc_List.txt</pre>
# Create kallisto index
# Must build from homo sapiens coding sequences (transcriptome of organism of interest)
# Can download from Ensembl FTP Site: http://useast.ensembl.org/info/data/ftp/index.html
kallisto index --index=Homo_sapiens_GRCh38_cds_all_kallisto_index Homo_sapiens.GRCh38.cds.all.fa
# Iterate through project Run IDs
cd ./data/fastq/
pwd
while IFS= read -r i
  do
  echo $i
  # Get SRA IDs for Liposarcoma samples
  # Download data from SRA, put each read into separate files (paired data)
  /Users/sha/sratoolkit.2.11.1-mac64/bin/fastq-dump --accession $i --split-files --gzip -0 ./
  # Can also download manually here:
  {\it \# https://www.ebi.ac.uk/ena/browser/view/SRR15320006?show=reads}
  # Trim and run FASTQC
  echo ${i}_1.fastq.gz
  echo ${i}_2.fastq.gz
  ~/TrimGalore-0.6.6/trim_galore --path_to_cutadapt ~/.local/bin/cutadapt --q 30 --phred33 -o ./ --
  # Run kallisto
  # Get abundance estimates through pseudoalignment
 kallisto quant -i ../kallisto/Homo_sapiens_GRCh38_cds_all_kallisto_index -o ../align/${i} -b 100 --bi
done < ../SRR_Acc_List.txt</pre>
```

Differential Expression Analysis

```
# Library
library(tidyverse)
library(biomaRt)
library(tximport)
library(rhdf5)
library(DESeq2)

## Warning: package 'BiocGenerics' was built under R version 4.0.5

## Warning: package 'GenomeInfoDb' was built under R version 4.0.5
```

```
library(ComplexHeatmap)
library(circlize)
library(AnnotationDbi)
library(org.Hs.eg.db)
library(ggrepel)
# Import ensembla annotations for the human genome
mart <- biomaRt::useMart(biomart = "ensembl", dataset = "hsapiens_gene_ensembl")</pre>
bio_mart_df <- biomaRt::getBM(mart = mart,</pre>
                          attributes = c("ensembl_transcript_id", "transcript_version", "ensembl_gene_id
                                         "external_gene_name", "description", "transcript_biotype",
                                         "gene_biotype"))
# Combine transcript id and version
bio_df <- bio_mart_df %>%
  mutate(target_id = paste0(ensembl_transcript_id, ".", transcript_version)) %>%
  dplyr::rename(gene_symbol = external_gene_name,
                full name = description,
                biotype = transcript_biotype) %>%
  dplyr::select(-ensembl_transcript_id, -transcript_version)
head(bio df)
     ensembl_gene_id gene_symbol
## 1 ENSG00000210049
                           MT-TF
## 2 ENSG00000211459
                         MT-RNR1
## 3 ENSG00000210077
                           MT-TV
## 4 ENSG00000210082
                         MT-RNR2
## 5 ENSG00000209082
                         MT-TL1
## 6 ENSG0000198888
                          MT-ND1
##
## 1
                                   mitochondrially encoded tRNA-Phe (UUU/C) [Source:HGNC Symbol;Acc:HGNC
## 2
                                           mitochondrially encoded 12S rRNA [Source: HGNC Symbol; Acc: HGNC
## 3
                                     mitochondrially encoded tRNA-Val (GUN) [Source: HGNC Symbol; Acc: HGNC
## 4
                                           mitochondrially encoded 16S rRNA [Source: HGNC Symbol; Acc: HGNC
## 5
                                 mitochondrially encoded tRNA-Leu (UUA/G) 1 [Source: HGNC Symbol; Acc: HGNC
## 6 mitochondrially encoded NADH:ubiquinone oxidoreductase core subunit 1 [Source: HGNC Symbol; Acc: HGNC
##
            biotype
                      gene_biotype
                                            target_id
                            Mt_tRNA ENST00000387314.1
## 1
            Mt_tRNA
## 2
                            Mt_rRNA ENST00000389680.2
            Mt_rRNA
## 3
            Mt_tRNA
                            Mt_tRNA ENST00000387342.1
## 4
            Mt_rRNA
                           Mt_rRNA ENST00000387347.2
## 5
            Mt tRNA
                           Mt tRNA ENST00000386347.1
## 6 protein_coding protein_coding ENST00000361390.2
# Convert kallisto abundance.tsv (or abundance.h5) files into a gene count format for analysis using ei
# Use tximport to summarize transcript counts into gene counts
kallisto_names <- list.dirs("/Users/sha/Desktop/work/rna_seq/data/align/", full.names = FALSE)[-1]
kallisto_dir <- list.dirs("/Users/sha/Desktop/work/rna_seq/data/align/", full.names = TRUE)[-1]
kallisto_files <- file.path(kallisto_dir, "abundance.tsv")</pre>
names(kallisto files) <- kallisto names</pre>
tx_df <- tximport(kallisto_files,</pre>
                  type = "kallisto",
```

```
tx2gene = dplyr::select(bio_df, target_id, gene_symbol),
                  countsFromAbundance ="no")
## Note: importing 'abundance.h5' is typically faster than 'abundance.tsv'
## reading in files with read_tsv
## 1 2 3 4 5 6 7 8 9 10 11
## summarizing abundance
## summarizing counts
## summarizing length
summary(tx_df)
##
                       Length Class Mode
## abundance
                       218141 -none- numeric
## counts
                       218141 -none- numeric
## length
                       218141 -none- numeric
## countsFromAbundance
                             1 -none- character
# Subset output for protein coding genes only
# Round all values (DESEQ does not like fractions/decimals)
count_df <- tx_df$counts %>%
  as.data.frame() %>%
 tibble::rownames_to_column("gene_symbol") %>%
 filter(gene_symbol %in% filter(bio_df, gene_biotype == "protein_coding")$gene_symbol &
           gene_symbol != "") %>%
 mutate_if(is.numeric, round) %>%
  tibble::column_to_rownames("gene_symbol")
head(count_df)
           SRR15320001 SRR15320002 SRR15320004 SRR15320005 SRR15320006 SRR15320007
##
## A1BG
                     1
                                  0
                                              3
                                                          0
                                                                       5
## A1CF
                     0
                                  0
                                              2
                                                           0
                                                                       0
                                                                                   Λ
## A2M
                   117
                                225
                                            995
                                                       2210
                                                                    2283
                                                                                 462
## A2ML1
                                  0
                                              3
                                                                       2
                                                                                   5
                     1
                                                           0
                                  0
                                              2
                                                           0
                                                                       2
## A3GALT2
                     0
                                                                                    0
                     7
## A4GALT
                                178
                                             16
                                                          10
                                                                      12
                                                                                   3
##
           SRR15320008 SRR15320009 SRR15320010 SRR15320011 SRR15320012
## A1BG
                                  2
                     2
                                              0
                                                           1
## A1CF
                     0
                                  0
                                              5
                                                          0
                                                                       0
                  1253
                                           1469
                                                        121
                                                                     495
## A2M
                                648
## A2ML1
                     3
                                                                       0
                                 4
                                              1
                                                          1
## A3GALT2
                     1
                                 0
                                              1
                                                          2
                                                                       6
## A4GALT
                    13
                                 22
                                             19
                                                          18
                                                                      26
# Save
\#write.table(count_df, "./data/count/kallisto_counts.txt", sep = "\t", row.names = T, quote = F)
```

```
# Create sample annotation df for conditions input
clin_df <- read.delim("./data/SraRunTable.txt", sep = ",")</pre>
clin_df <- clin_df %>%
 dplyr::select(Run, tissue) %>%
 arrange(Run) %>%
 mutate_if(is.character, ~ gsub(" ", "_", .)) %>%
 mutate(tissue = factor(tissue, levels = c("Normal_fat","Liposarcoma")))
clin_df
##
             Run
                      tissue
## 1 SRR15320001 Liposarcoma
## 2 SRR15320002 Normal_fat
## 3 SRR15320004 Liposarcoma
## 4 SRR15320005 Liposarcoma
## 5 SRR15320006 Normal_fat
## 6 SRR15320007 Liposarcoma
## 7 SRR15320008 Normal fat
## 8 SRR15320009 Liposarcoma
## 9 SRR15320010 Liposarcoma
## 10 SRR15320011 Liposarcoma
## 11 SRR15320012 Liposarcoma
# Read in count data
count_df <- read.delim("./data/count/kallisto_counts.txt")</pre>
# Check order
clin_df$Run == colnames(count_df) #TRUE
# Create DESeq2 data set
de_data_df <- DESeqDataSetFromMatrix(countData = count_df,</pre>
                                   colData = clin_df,
                                    design = ~ tissue)
head(de_data_df)
## class: DESeqDataSet
## dim: 6 11
## metadata(1): version
## assays(1): counts
## rownames(6): A1BG A1CF ... A3GALT2 A4GALT
## rowData names(0):
## colnames(11): SRR15320001 SRR15320002 ... SRR15320011 SRR15320012
## colData names(2): Run tissue
# Remove genes that do not have counts greater than 2 in at least 2 of the samples (columns)
dim(de_data_df)
## [1] 19379
```

```
de_data_df <- de_data_df[rowSums(counts(de_data_df) >= 2) >= 2]
dim(de_data_df)
## [1] 15805
                11
# Confirm that all samples are labelled correctly
as.data.frame(colData(de_data_df))
##
                       Run
                                tissue
## SRR15320001 SRR15320001 Liposarcoma
## SRR15320002 SRR15320002 Normal_fat
## SRR15320004 SRR15320004 Liposarcoma
## SRR15320005 SRR15320005 Liposarcoma
## SRR15320006 SRR15320006 Normal_fat
## SRR15320007 SRR15320007 Liposarcoma
## SRR15320008 SRR15320008 Normal_fat
## SRR15320009 SRR15320009 Liposarcoma
## SRR15320010 SRR15320010 Liposarcoma
## SRR15320011 SRR15320011 Liposarcoma
## SRR15320012 SRR15320012 Liposarcoma
### Exploratory data analysis of DESeq2 matrix with transformation
# Estimate size factors
# The size factor is the median ratio of the sample over a pseudosample: for each gene, the geometric m
deseq_eda <- estimateSizeFactors(de_data_df)</pre>
# Apply regularized-logarithm transformation
rld <- rlog(deseq_eda, blind = FALSE)</pre>
# Apply variance stabilizing transformation
vsd <- vst(deseq_eda, blind = FALSE)</pre>
# Create new data frame three normalization methods for all samples
deseq_eda <- bind_rows(</pre>
  as_data_frame(log2(counts(deseq_eda, normalized=TRUE)[, (1:8)])) %>%
         mutate(transform = "log2(x + 1)"),
  as_data_frame(assay(vsd)[, (1:8)]) %>% mutate(transform = "vst"),
  as_data_frame(assay(rld)[, (1:8)]) %>% mutate(transform = "rlog"))
# Compare transformation visually
ggplot(deseq_eda, aes(x = SRR15320001, y = SRR15320002)) +
  geom_bin2d(bins = 40) +
  coord_fixed() +
  facet_grid( . ~ transform) +
  scale_fill_continuous(limits = c(0, 2000), breaks = seq(0, 2000, by = 500)) +
  ggtitle("SRR15320001 vs. SRR15320002")+
  theme_classic() +
  theme(plot.title = element_text(hjust = 0.5),
       panel.grid.major = element_line())
```

SRR15320001 vs. SRR15320002

SRR15320001 vs. SRR15320004

SRR15320002 vs. SRR15320006


```
### Exploratory data analysis of DESeq matrix with sample comparison
# This will asses overall similarity between samples
# As shown in the above plots this similarity might not be as expected
# Calculate the euclidean distance between samples
deseq_distance <- dist(t(assay(rld)))
deseq_distance</pre>
```

```
##
               SRR15320001 SRR15320002 SRR15320004 SRR15320005 SRR15320006
## SRR15320002
                  297.7160
                  164.0792
## SRR15320004
                               256.4884
## SRR15320005
                  137.2563
                               284.9863
                                            153.4614
                  136.2246
                               265.3061
                                            101.0151
## SRR15320006
                                                        136.1942
## SRR15320007
                  119.2113
                               286.8889
                                            136.0561
                                                        129.8038
                                                                     109.1608
                  131.1255
                                                        145.2741
                                                                     101.2123
## SRR15320008
                               300.2149
                                            140.6991
## SRR15320009
                  128.9992
                                                        136.0384
                               274.5189
                                            127.2853
                                                                     100.0010
## SRR15320010
                  134.0189
                                            134.9080
                                                        137.5094
                               280.1184
                                                                     119.1829
## SRR15320011
                  193.0612
                               213.5031
                                            138.8931
                                                        180.6102
                                                                     154.5112
## SRR15320012
                  221.5021
                               213.8302
                                            179.0983
                                                        210.0676
                                                                     189.2476
##
               SRR15320007 SRR15320008 SRR15320009 SRR15320010 SRR15320011
## SRR15320002
## SRR15320004
## SRR15320005
## SRR15320006
## SRR15320007
## SRR15320008
                  107.3435
```

```
## SRR15320010
                  126.0245
                              135.9556
                                          123.8325
## SRR15320011
                  173.9061
                              194.3734
                                          164.4699
                                                      164.5721
## SRR15320012
                  204.4379
                              221.0412
                                          194.2668
                                                      205.2472 154.2133
# Create annotation for the heatmap
deseq_ha <- HeatmapAnnotation(df = dplyr::select(clin_df, tissue),</pre>
                              col = list(tissue = c("Normal_fat" = "darkred",
                                                    "Liposarcoma" = "darkblue")))
# Visualize with heatmap
deseq_heat <- Heatmap(as.matrix(deseq_distance),</pre>
                   top_annotation = deseq_ha,
                   show_column_names = F,
                   show_row_names = T,
                   cluster_rows = T,
                   cluster_columns = T,
                   clustering_method_columns = 'complete',
                   clustering_method_rows = "complete",
                   row_names_gp = gpar(fontsize = 8),
                   heatmap_legend_param = list(title = "Distance"),
                   col = colorRamp2(c(min(deseq_distance), max(deseq_distance)), c("darkorchid4", "whit
```

SRR15320009

deseq_heat

108.5663

104.5714


```
### Compare with PCA
# Create PCA object to be plotted with ggplot
plot_pca <- plotPCA(rld, intgroup = c("tissue"), returnData = TRUE)</pre>
# Calculate and round variance for plotting
percentVar <- round(100 * attr(plot_pca, "percentVar"))</pre>
# Plot PCA
deseq_pca_1 <- ggplot(plot_pca, aes(x = PC1, y = PC2, color = tissue)) +</pre>
  geom_point(size = 2.5) +
  xlab(paste0("PC1: ", percentVar[1], "% variance")) +
  ylab(paste0("PC2: ", percentVar[2], "% variance")) +
  coord_fixed() +
  scale_color_manual(values = c("darkred", "darkblue")) +
  ggtitle("DESeq2 PCA") +
  theme_classic() +
  theme(plot.title = element_text(hjust = 0.5),
        panel.grid.major = element_line())
deseq_pca_1
```


Make sure that normal is the first level in the sample factor
This is to ensure the log2 fold change is calculated over the control (when results are called at ran
levels(de_data_df\$tissue)

```
## [1] "Normal_fat" "Liposarcoma"
# Check to insure all samples are correct
as.data.frame(colData(de_data_df))
                       Run
                                tissue
## SRR15320001 SRR15320001 Liposarcoma
## SRR15320002 SRR15320002 Normal_fat
## SRR15320004 SRR15320004 Liposarcoma
## SRR15320005 SRR15320005 Liposarcoma
## SRR15320006 SRR15320006 Normal_fat
## SRR15320007 SRR15320007 Liposarcoma
## SRR15320008 SRR15320008 Normal_fat
## SRR15320009 SRR15320009 Liposarcoma
## SRR15320010 SRR15320010 Liposarcoma
## SRR15320011 SRR15320011 Liposarcoma
## SRR15320012 SRR15320012 Liposarcoma
# Run the DESeq analysis against raw counts
de_final_df <- DESeq(de_data_df)</pre>
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
## -- replacing outliers and refitting for 485 genes
## -- DESeq argument 'minReplicatesForReplace' = 7
## -- original counts are preserved in counts(dds)
## estimating dispersions
## fitting model and testing
results(de_final_df)
## log2 fold change (MLE): tissue Liposarcoma vs Normal fat
## Wald test p-value: tissue Liposarcoma vs Normal fat
## DataFrame with 15805 rows and 6 columns
##
            baseMean log2FoldChange
                                         lfcSE
                                                     stat
                                                             pvalue
                                                                         padj
##
            <numeric>
                           <numeric> <numeric> <numeric> <numeric> <numeric> <numeric>
## A1BG
            1.302020
                           -0.314635 1.535480 -0.204910 0.837642
```

A1CF

0.503052

2.545968 3.499705 0.727481 0.466931

NΑ

```
## A2M
         770.970491
                       ## A2MI.1
         1.783860
                       0.729162 1.419215 0.513778 0.607407
                                                                NΑ
## A3GALT2 1.510469
                       1.402293 1.892471 0.740986 0.458702
                                                                NA
## ZXDC
           26.3745
                      -0.4457435 0.572139 -0.779083
                                                  0.435931 0.999876
## ZYG11B
           36.7254
                     -0.1022934 0.999063 -0.102389 0.918448 0.999876
## ZYX
           182.8157
                     0.5199805 0.693291 0.750018 0.453244 0.999876
## ZZEF1
                      165.0703
## ZZZ3
            51.2117
                      -0.1402562 0.787024 -0.178211 0.858557 0.999876
# Call results
# Contrast: a character vector with exactly three elements:
# 1. the name of a factor in the design formula
# 2. the name of the numerator level for the fold change
# 3. the name of the denominator level for the fold change (simplest case)
de_res_df <- results(de_final_df, contrast = c("tissue", "Liposarcoma", "Normal_fat"))</pre>
de_res_df
## log2 fold change (MLE): tissue Liposarcoma vs Normal_fat
## Wald test p-value: tissue Liposarcoma vs Normal fat
## DataFrame with 15805 rows and 6 columns
##
          baseMean log2FoldChange
                                   lfcSE
                                                    pvalue
                                             stat
                                                              padj
##
          <numeric>
                       <numeric> <numeric> <numeric> <numeric> <numeric>
## A1BG
          1.302020
                       -0.314635 1.535480 -0.204910 0.837642
## A1CF
          0.503052
                       2.545968 3.499705 0.727481 0.466931
## A2M
                       770.970491
## A2ML1
         1.783860
                      0.729162 1.419215 0.513778 0.607407
                                                                NA
## A3GALT2 1.510469
                       1.402293 1.892471 0.740986 0.458702
                                                                NA
## ...
              . . .
                            . . .
                                    . . .
                                             . . .
                                                      . . .
           26.3745 -0.4457435 0.572139 -0.779083 0.435931 0.999876
## ZXDC
## ZYG11B
          36.7254
                      -0.1022934 0.999063 -0.102389 0.918448 0.999876
                      ## ZYX
           182.8157
## ZZEF1
           165.0703
                      ## ZZZ3
          51.2117
                      -0.1402562 0.787024 -0.178211 0.858557 0.999876
# Review Comparisons
mcols(de_res_df, use.names = TRUE)
## DataFrame with 6 rows and 2 columns
##
                      type
                                    description
##
                <character>
                                    <character>
               intermediate mean of normalized c..
## baseMean
## log2FoldChange
                   results log2 fold change (ML..
                   results standard error: tiss..
## lfcSE
                   results Wald statistic: tiss..
## stat
## pvalue
                   results Wald test p-value: t..
                   results BH adjusted p-values
## padj
### Review Summary
summary(de res df, alpha = 0.01)
```

```
## out of 15805 with nonzero total read count
## adjusted p-value < 0.01
## LFC > 0 (up)
                      : 0, 0%
## LFC < 0 (down)
                      : 0, 0%
## outliers [1]
                      : 258, 1.6%
## low counts [2]
                      : 2739, 17%
## (mean count < 3)
## [1] see 'cooksCutoff' argument of ?results
## [2] see 'independentFiltering' argument of ?results
# Save
write.table(as.data.frame(de res df) %% tibble::rownames to column("gene symbol"),
            "./deseq2_liposarcoma_results.txt", sep = "\t", row.names = F, quote = F)
# Visualize significance
# Use adjusted p value threshold of 0.1 due to low number of significantly regulated genes
# Also indicate genes of interest
vol df <- as.data.frame(de res df) %>%
 tibble::rownames_to_column("gene_symbol") %>%
  mutate(threshold = case_when(log2FoldChange > 0 & padj < 0.1 ~ "up_sig",</pre>
                               log2FoldChange < 0 & padj < 0.1 ~ "down_sig",</pre>
                               TRUE ~ "not_sig"))
# Volcano plot
vol_plot <- ggplot(vol_df, aes(x = log2FoldChange, y = -log10(pvalue))) +</pre>
  geom_point(aes(col = threshold), size = 1, alpha = 0.9) +
  ggtitle("Liposarcoma vs. Normal Fat") +
 theme_classic() +
  theme(plot.title = element_text(hjust = 0.5),
        panel.grid.major = element_line()) +
  scale_colour_manual(values = c("red3", "grey", "blue", "black"),
                       breaks = c("up_sig", "not_sig", "down_sig", "other"),
                       labels = c("Up", "N.S.", "Down", "Other")) +
  geom_text_repel(data = filter(vol_df, padj < 0.1 | gene_symbol %in% c("CDK4", "MDM2", "PPARG", "CEBPA</pre>
                  aes(label = gene_symbol), size = 2) +
 labs(col = "Significance\np.adj < 0.1")</pre>
vol plot
```

Liposarcoma vs. Normal Fat


```
# Apply shrinkage to logFC
# See difference in visualization
# Calculate row means across samples
mean_norm <- rowMeans(counts(de_final_df, normalized=TRUE)[, de_final_df$tissue == "Liposarcoma"])</pre>
mean tumor <- rowMeans(counts(de final df, normalized=TRUE)[, de final df$tissue == "Normal fat"])
### Normal vs. Tumor
# Log Fold change
lfc_comp <- lfcShrink(de_final_df, coef = "tissue_Liposarcoma_vs_Normal_fat", type = "apeglm")</pre>
## using 'apeglm' for LFC shrinkage. If used in published research, please cite:
##
       Zhu, A., Ibrahim, J.G., Love, M.I. (2018) Heavy-tailed prior distributions for
       sequence count data: removing the noise and preserving large differences.
##
       Bioinformatics. https://doi.org/10.1093/bioinformatics/bty895
# Add row names to log fold change data frame
lfc_comp <- cbind(as.data.frame(lfc_comp), mean_norm, mean_tumor)</pre>
# Visualize significance
# Use adjusted p value threshold of 0.1 due to low number of significanlty regulated genes
# Also indicate genes of interest
lfc_vol_df <- lfc_comp %>%
  tibble::rownames to column("gene symbol") %>%
  mutate(threshold = case_when(log2FoldChange > 0 & padj < 0.1 ~ "up_sig",</pre>
```

```
log2FoldChange < 0 & padj < 0.1 ~ "down_sig",</pre>
                                TRUE ~ "not_sig"))
# Volcano plot
lfc_vol_plot <- ggplot(lfc_vol_df, aes(x = log2FoldChange, y = -log10(pvalue))) +</pre>
  geom_point(aes(col = threshold), size = 1, alpha = 0.9) +
  ggtitle("Liposarcoma vs. Normal Fat") +
  theme_classic() +
  theme(plot.title = element_text(hjust = 0.5),
        panel.grid.major = element_line()) +
  scale_colour_manual(values = c("red3", "grey", "blue", "black"),
                        breaks = c("up_sig", "not_sig", "down_sig", "other"),
                        labels = c("Up", "N.S.", "Down", "Other")) +
  geom_text_repel(data = filter(lfc_vol_df, padj < 0.1 |</pre>
                                   gene_symbol %in% c("CDK4", "MDM2", "PPARG", "CEBPA") |
                                   log2FoldChange > 2),
                  aes(label = gene_symbol), size = 2) +
  labs(col = "Significance\np.adj < 0.1")</pre>
lfc_vol_plot
```

Liposarcoma vs. Normal Fat

