# Power and Energy Considerations for Machine Learning Systems

Jae-Won Chung April 2<sup>nd</sup>, 2024







### About the Speaker

#### Jae-Won Chung

- Third year PhD student here
- Advised by Professor Mosharaf Chowdhury
- Making energy a first-class systems optimization metric
- But I know a little bit about power as well

#### **Zuckerberg's Meta Is Spending Billions to Buy 350,000 Nvidia H100 GPUs**

In total, Meta will have the compute power equivalent to 600,000 Nvidia H100 GPUs to help it develop next-generation AI, says CEO Mark Zuckerberg.



By Michael Kan January 18, 2024





(David Paul Morris/Bloomberg via Getty Images)

#### Data Center Planning

#### A couple considerations

- Land
- Building
- Racks
- Cooling
- Power delivery



### Data Center Planning

#### A couple considerations

- Land
- Building
- Racks
- Cooling
- Power delivery

#### 350,000 H100 GPUs?

- One GPU's TDP is 700 W
- 245 MW in total
- 200,000 average households
- Four Ann Arbors

Then, do we allocate 245 MW for GPU power?



20 seats on an airplane



Fully booked!



A passenger has on average a 95% chance of showing up



105% overbooked!



#### Data Center Power Oversubscription

#### Will all the 350,000 H100 GPUs consume 700 W all the time?

Probably not – Average power draw will be lower.

#### Is it the exact same problem as airplane overbooking?

- The extra time axis It's airplane overbooking over time.
- The variability of power draw should be considered.



#### Should We Oversubscribe Power?

#### LLM training



Average power is close to TDP High power variability

Hard to run multiple jobs to reduce variability

#### LLM inference



Average power has 20% headroom
High power variability but has clear patterns
Can run multiple servers to reduce variability

#### Should We Oversubscribe Power?

#### LLM training



Average power is close to TDP High power variability

Hard to run multiple jobs to reduce variability



Average power has 20% headroom

High power variability but has clear patterns

Can run multiple servers to reduce variability

# Preventing Power From Exceeding Cap

#### **GPU Power Limiting**

**BLOOM 176B Inference** 



Limited power reduction (only peak)

#### **GPU Frequency Locking**

**BLOOM 176B Inference** 





Reduces power over all phases

#### Power Oversubscription Policy

| Workload            | Ratio      | Priority    |
|---------------------|------------|-------------|
| Summarize<br>Search | 25%<br>25% | Low<br>High |
| Chat                | 50%        | 50:50       |

Inference cluster with mixed-priority workloads



Two-threshold policy

#### Evaluation

What happens as we oversubscribe more and more power?



Can add 30% more servers with very little throughput degradation

#### **Zuckerberg's Meta Is Spending Billions to Buy 350,000 Nvidia H100 GPUs**

In total, Meta will have the compute power equivalent to 600,000 Nvidia H100 GPUs to help it develop next-generation AI, says CEO Mark Zuckerberg.



By Michael Kan January 18, 2024





(David Paul Morris/Bloomberg via Getty Images)

### Power vs. Energy



We're billed by the amount of energy (electricity) we use. Power oversubscription doesn't optimize energy.

# ML Energy Consumption

#### Some numbers

- IT consumes 7-8 % of global electricity today<sup>[1]</sup>
- Amazon consumed ~11.9 GWh to train one 200B LLM<sup>[2]</sup>
  - Enough to power more than 1000 US households for a year
- Models are periodically re-trained to keep it up to date<sup>[3]</sup>

<sup>[1] &</sup>quot;Digital Economy and Climate Impact – White Paper," Schneider Electric, 2021

<sup>[2] &</sup>quot;Constraint-driven Innovation (CIDR keynote)," Hamilton, 2024

<sup>[3] &</sup>quot;Applied Machine Learning at Facebook: A Datacenter Infrastructure Perspective," Hazelwood et al., 2018

#### Understanding GPU Energy Consumption

#### Energy to Accuracy (ETA) for DNN training

- Energy needed to reach the user-specified target accuracy
- Energy-counterpart of Time to Accuracy (TTA)

#### Understanding GPU Energy Consumption





#### Understanding GPU Energy Consumption





### Relationship Between Time and Energy



Results from training DeepSpeech2 on LibriSpeech on an NVIDIA VI 00 GPU. Similar trends found across 6 DL workloads and 4 GPU generations.

### Relationship Between Time and Energy



Results from training DeepSpeech2 on LibriSpeech on an NVIDIA V I 00 GPU. Similar trends found across 6 DL workloads and 4 GPU generations.

### Relationship Between Time and Energy



Which yellow point is the best?

 $Cost = \eta \cdot ETA + (1 - \eta) \cdot MaxPower \cdot TTA$ 

Time to Accuracy (Seconds)

# Finding the Pareto Frontier

#### Batch size and power limit optimization decoupled

- Find the best batch size across retraining jobs
- Find the best power limit for one batch size during training

$$Cost = \frac{\eta}{\eta} \cdot ETA + (1 - \frac{\eta}{\eta}) \cdot MaxPower \cdot TTA$$

#### Multi-Armed Bandit formulation

- Learns a stochastic function from batch size to cost
- Automatically trades off exploration and exploitation

#### Zeus in Action



### Zeus Leads to Large Benefits



15 ~ 76% energy reduction Up to 60% time reduction

# Is Zeus Good Enough for Large Models?



# Energy Bloat

#### Not all Joules count

- A portion of energy doesn't contribute to throughput
- Removing such energy bloat doesn't affect throughput

#### Two sources of energy bloat

- Intrinsic to one training pipeline
- Extrinsic to one training pipeline

# Intrinsic Energy Bloat



# Intrinsic Energy Bloat

Some computations run at maximum speed and waste energy



F = Forward, B = BackwardDrawn to scale for GPT-3, measured on NVIDIA A40 GPUs.

# Intrinsic Energy Bloat

Some computations run at maximum speed and waste energy



F = Forward, B = BackwardDrawn to scale for GPT-3, measured on NVIDIA A40 GPUs.

# Extrinsic Energy Bloat



# Extrinsic Energy Bloat





# Extrinsic Energy Bloat





# Iteration Time-Energy Pareto Frontier



# Iteration Time-Energy Pareto Frontier



#### An Iterative Solution





Only leave critical edges (computations)



Only leave critical edges (computations)

**Backward** 



**Forward** 

Any s-t cut represents a way to reduce the DAG's end-to-end execution time by I



Any s-t cut represents a way to reduce the DAG's end-to-end execution time by I

Edge cut capacity ⇔ Energy increase

### Perseus in Action



### Perseus in Action



### Perseus Pushes the Frontier



### Perseus Pushes the Frontier



### Conclusion

Power is a growing bottleneck for data centers that deserves careful management

Energy is a new first-class software systems metric that is worth optimizing

We're always looking for great collaboration! https://ml.energy





