Viện Toán ứng dụng và Tin học, Trường ĐHBKHN Bài tập môn các mô hình ngẫu nhiên và ứng dụng

♣ Ngày 10 tháng 3 năm 2020

Câu 1: Cho xích Markov $(X_n)_{n\geq 0}$ với không gian trạng thái $\mathbb{I}=\{0,1,2,3\}$ và ma trận xác suất chuyển

$$\mathbb{P} = \begin{bmatrix} 0.5 & 0.3 & 0.2 & 0 \\ \alpha\% & 0.7 - \alpha\% & 0.2 & 0.1 \\ 0.2 & 0.3 & 0.4 & 0.1 \\ 0 & 0.3 & 0 & 0.7 \end{bmatrix}$$

- (a) Tính $P(X_2 = 0|X_0 = 1)$
- (b) Tính $\mathbb{P}^{(n)}$ với n=2,3,4

Câu 2: Cho xích Markov ma trận xác suất chuyển có các trạng thái $\mathbb{I} = \{0, 1, 2, 3\}$

$$\mathbb{P} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0.2 & 0.4 & \alpha\% & 0.4 - \alpha\% \\ 0.3 & 0.3 & 0.2 & 0.2 \\ 0.5 & 0 & 0.3 & 0.2 \end{bmatrix}$$

- (a) Phân loại các trạng thái theo tính liên thông.
- (b) Lớp nào trong các lớp phân loại là lớp đóng.
- (c) Có trạng thái nào là trạng thái hút không.

Câu 3: Cho xích Markov có không gian các trạng thái $\mathbb{I} = \{0,1\}$ và ma trận xác suất chuyển

$$\mathbb{P} = \begin{bmatrix} \alpha\% & 1 - \alpha\% \\ 1 - \beta\% & \beta\% \end{bmatrix}$$

Tìm \mathbb{P}^n với $n \in \mathbb{N}$

Câu 4: Cho xích Markov có không gian các trạng thái $\mathbb{I} = \{0, 1\}$ và ma trận xác suất chuyển

$$\mathbb{P} = \begin{bmatrix} \alpha\% & 1 - \alpha\% \\ 1 - \beta\% & \beta\% \end{bmatrix}$$

- (a) Chứng minh rằng khi đó $Y_n=(X_n,X_{n+1}), n=0,1,2,\cdots$ thì dãy các biến ngẫu nhiễn $(Y_n)_{n\geq 0}$ là một xích Markov.
- (b) Tìm không gian trạng thái và ma trận xác suất chuyển \mathbb{Q} của $(Y_n)_{n\geq 0}$.

Câu 5: Cho $X_0, X_1, \dots, X_n, \dots$ là các biến ngẫu nhiên độc lập có cùng phân phối $P(X_n = -1) = \alpha\%; P(X_n = 1) = 1 - \alpha\%$ Đặt $Y_n = X_n + X_{n+1}; Z_n = X_n \times X_{n+1}$.

- (a) $(Y_n)_{n\geq 0}$ có là xích Markov không, tại sao?
- (b) $(Z_n)_{n\geq 0}$ có là xích Markov không, tại sao?

Kết thúc-