

GPR on non-trivial data

Mark Blyth

bristol.ac.uk

Week's work

- Redraft the continuations paper
 - Done, but I want another full read
- Test GPR on various different cases
 - Different models
 - Stochastic and deterministic simulations
 - Many and few datapoints
- ✓ Other stuff: tidied up my assortments of codes

Stochasticity

- Looked into stochastic neuron models
 - They're hard requires stochastic calculus, stochastic integrators, etc., which I don't know anything about
- Produce all sorts of non-trivial dynamics
 - Stochastic and coherence resonance
 - P-bifurcations
- Very interesting area, but also another can of worms
- Suggestion: test GPR on deterministic models + noise, then move on to stochastics
 - Start reading a stochastics textbook?

GPR testing

- Set up a script to generate lots of neuron simulations [next slides]
- Working on adding in the simpler kernels I've been playing with
- Goal: test...
 - ▶ four models (FH, HR, HR fast, HH)...
 - with three kernels (SE, modulo, cosine)...
 - with and without noise
- 24 different cases
 - ► The code structure makes it easy to switch between cases
 - Taking a long time to fit each kernel (log-likelihood had an error!)

Neuron models - Fitzhugh Nagumo

Fitzhugh Nagumo, SEKernel

Fitzhugh Nagumo, modulo kernel

Fitzhugh Nagumo, cosine kernel

Neuron models - Hindmarsh Rose fast subsystem

Neuron models - Hodgkin Huxley

Hodgkin Huxley SEKernel

Hodgkin Huxley SEKernel

Neuron models

Codes

CBC code:

https://github.com/MarkBlyth/SingleCellCBC

GPR code:

https://github.com/MarkBlyth/gpr_tests

Can also put presentations on GitHub?

Next steps

- [More] teaching
- Full re-read of paper

then...

- More GPR testing
 - Add more kernels into the testing setup
 - Test everything!