BST Balance

Learning Objectives

- Think about the runtime of basic binary tree operations.
- Understand the motivation behind binary search tree balance.
- Implement a rotation.

Outline

Runtime

Balanced Trees

Rotations

Runtime

How long do Binary Search Tree operations take?

Find

Find(5)

Number of operations = O(Depth)

Which nodes will be faster to search for in the following tree?

Example I

Depth can be as bad as *n*.

Outline

Runtime

<u>Balanced Trees</u>

Rotations

Example II

Depth can be much smaller.

Balance

Want left and right subtrees to have approximately the same size.

Balance

- Want left and right subtrees to have approximately the same size.
- Suppose perfectly balanced:

Balance

- Want left and right subtrees to have approximately the same size.
- Suppose perfectly balanced:
 - Each subtree half the size of its parent.
 - After $\log_2(n)$ levels, subtree of size 1.
 - Operations run in $O(\log(n))$ time.

Insertions and deletions can destroy balance!

1

Outline

Runtime

Balanced Trees

3 Rotations

Rebalancing

Idea: Rearrange tree to maintain balance.

Rebalancing

Idea: Rearrange tree to maintain balance. Problem: How do we rearrange tree while maintaining order?

Rotations

A < Y < B < X < C

Implementation

RotateRight(X)

 $P \leftarrow X$. Parent

```
Y ← X.Left
B ← Y.Right
Y.Parent ← P
P.AppropriateChild ← Y
X.Parent ← Y, Y.Right ← X
B.Parent ← X, X.Left ← B
```

Rotate the tree by yourself

RotateRight(X)

 $P \leftarrow X$.Parent

 $Y \leftarrow X$.Left

 $B \leftarrow Y.$ Right

Y.Parent $\leftarrow P$

P.AppropriateChild $\leftarrow Y$

X.Parent $\leftarrow Y$, Y.Right $\leftarrow X$

B.Parent $\leftarrow X$, X.Left $\leftarrow B$

Next Time

How to keep a tree balanced. AVL trees.