Alphabet:

- An alphabet is a finite, non-empty set of symbols
- We use the symbol ∑ (sigma) to denote an alphabet
- ☐ Examples: Click to add text Click to add text
 - ightharpoonup Binary: $\Sigma = \{0,1\}$
 - \triangleright All lower case letters: $\sum = \{a,b,c,..z\}$
 - \triangleright Alphanumeric: $\Sigma = \{a-z, A-Z, 0-9\}$
 - Engineering classes: ∑ = {1st Yr, 2nd Yr, 3rd Yr, Final Yr}

Central concepts of computer theory

Strings:

- □ A **string** or **word** is a finite sequence of symbols chosen from ∑
- □ Empty string is donated by ε (epsilon) or λ (lambda).

Length of a String:

- It is the number of meaningful symbols/alphabets (non- ε) present in a string.
- Length of a string w, denoted by "|w|".
 - **E.g.**, if x = 010100 then |x| = 6
 - If $x = 01 \varepsilon 0 \varepsilon 1 \varepsilon 00 \varepsilon$ then |x| = ?
- If |W|= 0, it is called an **empty string** (Denoted by λ or ε)
- xy = concatenation of two strings x and y

Powers of an alphabet:

Let \sum be an alphabet.

Kleene Closure:

- Kleene closure (A.K.A Kleene operator or Kleene star)
- Definition: The Kleene closure, ∑*, is an unary operator on a set of symbols or strings, ∑, that gives the infinite set of all possible strings of all possible lengths over ∑ including ε.
- □ **Representation** $-\sum^* = \sum_0 \cup \sum_1 \cup \sum_2 \cup \dots$ where \sum_p is the set of all possible strings of length p.

Kleene Plus Closure:

- Kleene plus closure (A.K.A Positive Closure)
- Definition: The set ∑+ is the infinite set of all possible strings of all possible lengths over ∑ excluding ε.
- □ Representation $-\sum^{+}=\sum_{1}\cup\sum_{2}\cup\ldots$ (or) $\sum^{+}=\sum^{*}-\{\epsilon\}$
- □ **Example** ¬ If $\sum = \{a, b\}$, then $\sum^+ = \{a, b, aa, ab, bb, ba,$

Language:

□ A language is a subset of \sum^* for some alphabet \sum . It can be finite or infinite.

Examples:

1. Let L be *the* language of all strings consisting of *n* 0's followed by *n* 1's:

$$L = \{\epsilon, 01, 0011, 000111, \ldots\}$$

2. Let L be *the* language of all strings of with equal number of 0's and 1's:

$$L = \{\epsilon, 01, 10, 0011, 1100, 0101, 1010, 1001, \ldots\}$$

- 3. If the language takes all possible strings of length 2 over $\Sigma = \{a, b\}$, then L = $\{ab, bb, ba, bb\}$
- Ø denotes the Empty language
- Let L = {ε}; Is L=Ø?

The Membership Problem

Given a string $w \in \Sigma^*$ and a language L over Σ , decide whether or not $w \in L$.

Example:

Let w = 100011

Q) Is $w \in \text{the language of strings with equal number of 0s and 1s?}$

