

This Page Is Inserted by IFW Operations  
and is not a part of the Official Record

## **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

**IMAGES ARE BEST AVAILABLE COPY.**

**As rescanning documents *will not* correct images,  
please do not report the images to the  
Image Problem Mailbox.**

(19) BUNDESREPUBLIK

DEUTSCHLAND



DEUTSCHES  
PATENTAMT

(12) **Offenlegungsschrift**  
(10) **DE 43 32 028 A 1**

(51) Int. Cl. 6:

**F 16 C 33/66**  
B 60 K 17/04

**DE 43 32 028 A 1**

(21) Aktenzeichen: P 43 32 028.7  
(22) Anmeldetag: 21. 9. 93  
(23) Offenlegungstag: 23. 3. 95

(71) Anmelder:

INA Wälzlagerring Schaeffler KG, 91074  
Herzogenaurach, DE

(72) Erfinder:

Giese, Peter, Dipl.-Ing. Dr., 91074 Herzogenaurach,  
DE

(56) Für die Beurteilung der Patentfähigkeit  
in Betracht zu ziehende Druckschriften:

DE 32 17 241 C2  
DE-PS 9 23 760  
DE 33 24 468 A1  
DE 29 18 601 A1  
DE-OS 23 62 285  
DE-GM 17 49 816  
GB 12 76 810

(54) Radiallager für ein Automatikgetriebe

(55) Für ein Automatikgetriebe eines Kraftfahrzeugs ist zwischen einem inneren Getriebeglied (1) und einem äußeren Getriebeglied (4) ein Wälzlager (8) vorgesehen, über welches Druckmittel einer lastschaltbaren Kupplung (7) zuführbar ist. Das Wälzlager (8) weist einen Innenring (10) und einen Außenring (9) auf, wobei an einem Bord (14) des Innenrings ein Gleitdichtring (16, 17) geführt ist. Durch Ausnehmungen (19, 20) am äußeren Umfang des Gleitdichtrings (16, 17) wird eine Druckentlastung geschaffen, die dafür sorgt, daß bei einer Druckbeaufschlagung der Gleitdichtring (16, 17) sich mit Sicherheit dichtend an eine Innenfläche des Außenrings legt.



**DE 43 32 028 A 1**



Fig. 1



Fig. 2

## Beschreibung

Die Erfindung betrifft ein Automatgetriebe für Kraftfahrzeuge mit zumindest einer lastschaltbaren Kupplung und zumindest zwei mit einer Drehzahldifferenz zueinander rotierenden Getriebegliedern, zwischen welchen ein Radiallager angeordnet ist, wobei im Bereich des Radiallagers aus einem Druckmittelzulaufkanal der auf dem äußeren Getriebeglied angeordneten Kupplung Druckmittel zugeleitet wird.

In Automatgetrieben für Personen- und Nutzkraftfahrzeugen, die aus mehreren Planetentensätzen bestehen, werden die unterschiedlichen Gangstufen unter anderem dadurch geschaltet, daß Getriebeglieder der Planetentensätze über eine schaltbare Kupplung aneinander gekuppelt werden. Im Automatgetrieben sind zur Realisierung einer kompakten Bauweise Getriebeglieder, wie z. B. Wellen oder Naben und Hohlwellen konzentrisch ineinander angeordnet und mittels Radialgleitlagern aufeinander gelagert (Prospekt "ZF-Automatgetriebe 4 HB 18, F43 563-RT" 3438-386). Im Bereich dieser Gleitlagerung wird der lastschaltbaren Kupplung Druckmittel zugeführt, wobei zur Abdichtung des Druckmittelübertritts zwischen den Getriebegliedern Gleitringdichtungen in Form von geschlitzten Kolbenringen angeordnet sind. Diese zumeist aus Sinterwerkstoffen hergestellten Gleitringdichtungen sollen zum einen ausreichend abdichten, zum anderen sollen sie aber auch nicht mit einer Vorspannung ausgelegt sein, die unerwünscht starken Verschleiß an den Anlaufflächen hervorruft. Weiterhin tritt insgesamt bei einer Lagerung der Getriebeglieder mittels eines Gleitlagers unerwünschte Reibung auf, die zu einem vorzeitigen Verschleiß der Gleitlager führen kann.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, die vorgenannten Nachteile zu vermeiden und folglich eine Lagerung der Getriebeglieder zu schaffen, bei der geringe Reibung auftritt und über die das Druckmittel im wesentlichen ohne Druckverluste der lastschaltbaren Kupplung zuführbar ist.

Diese Aufgabe wird nach dem kennzeichnenden Teil des Anspruchs 1 dadurch gelöst, daß das Radiallager als Wälzlager mit einem auf dem inneren Getriebeglied angeordneten, beidseitig Borde aufweisenden Innenring ausgebildet ist, wobei die Borde des Innenrings von Borden des Außenrings übergriffen werden und an ihren Wälzkörpern zugewandten Stirnflächen Gleitdichtringe führen, die einen im wesentlichen rechteckigen Querschnitt haben, gegenüber einer Umfangsfläche des Innenrings einen Ringspalt bilden und an ihrem Außenumfang, an einem dem Inneren des Wälzlagers abgewandten Teilabschnitt mit einer Ausnehmung versehen sind. Zunächst ist durch die Verwendung eines vorzugsweise als Nadellager ausgebildeten Wälzlagers die Reibung minimiert. Über dieses Wälzlagerring wird in vorteilhafter Weise das zur Betätigung der Kupplung dienende Druckmittel vom inneren in das äußere Getriebeglied geleitet. Die innerhalb des Wälzlagerringes angeordneten, an Borden des Innenrings geführten Gleitdichtringe sorgen dafür, daß das Druckmittel ohne Druckverluste in das äußere Getriebeglied und somit in die Kupplung gelangen kann. Die Funktion dieser als Kolbenringe ausgebildeten Gleitdichtringe ist dadurch wesentlich verbessert, daß sie an ihrer inneren Mantelfläche einen Ringspalt gegenüber dem Innenring des Wälzlagerringes bilden, so daß eine Radialkraft auf den jeweiligen Gleitdichtring wirkt, wenn sich innerhalb des Lagers ein Druck aufbaut. Durch diese radial nach außen wirkende

Kraft wird erreicht, daß sich der Gleitdichtring dichtend an den Außenring anlegt. Tritt eine Leckage am Außen durchmesser des Gleitdichtringes auf, so kann es passieren, daß die Druckkraft auf diesen äußeren Durchmesser des Gleitdichtringes größer ist als diejenige am Innendurchmesser. Wenn dieser Fall eintritt und die Vorspannung des als Kolbenring ausgebildeten Gleitdichtringes nicht sehr hoch ist, legt sich der Gleitdichtring nicht dichtend an das äußere Getriebegerüste an. Um dieses Problem zu beseitigen, ist erfundungsgemäß am Außenumfang, an dem dem Inneren des Wälzlagers abgewandten Teilabschnitt, zumindest eine Ausnehmung vorgesehen. Dadurch ist die am Außendurchmesser befindliche Druckfläche gegenüber der am Innendurchmesser vorhandene Druckfläche reduziert, so daß sich mit Sicherheit der Gleitdichtring dichtend an den Außenring anlegt.

Gemäß Anspruch 2 soll die Ausnehmung als umlaufende schräge Anphasung des Gleittrings ausgebildet sein. Ein derartiger Teilabschnitt für eine Druckentlastung des Gleitdichtrings läßt sich mit einfachen Mitteln herstellen.

Weiterhin soll nach Anspruch 3 die umlaufende Ausnehmung eine, im Längsschnitt des Gleitdichtrings gesetzen, rechteckige Kontur aufweisen. In weiterer Ausgestaltung der Erfindung kann die nach Anspruch 3 ausgebildete ringsförmige Ausnehmung an ihrem den Wälzkörpern abgewandten Teilbereich mit gleichmäßig am Umfang verteilten zinnenartigen Vorsprüngen versehen sein. Durch diese Lösung läßt sich in vorteilhafter Weise eine Druckentlastung erreichen, wobei der Gleitdichtring an seinem Außendurchmesser und an den zinnenartigen Vorsprüngen im Außenring gleitet, so daß aufgrund der nur geringfügig reduzierten Gleitfläche kaum eine Änderung in dessen Verschleißverhalten eintritt.

Zur weiteren Erläuterung der Erfindung wird auf die Zeichnungen verwiesen, in der drei Ausführungsbeispiele vereinfacht dargestellt sind. Es zeigen:

40 Fig. 1 eine Teilansicht eines Druckmittelübertritts zwischen einem als Welle ausgebildeten Getriebeglied und einem als Hohlwelle ausgebildeten äußeren Getriebeglied, wobei unterschiedliche Ausbildungen von Gleitdichtringen verwendet werden und

45 Fig. 2 einen Längsschnitt durch eine Anordnung eines Gleitdichtrings, der in der nach Fig. 1 dargestellten Anordnung Verwendung finden soll.

In der Fig. 1 ist mit 1 eine als inneres Getriebeglied dienende Welle bezeichnet, die eine Axialbohrung 2 und eine Radialbohrung 3 aufweist.

Weiterhin ist ein Teilabschnitt einer Hohlwelle 4 dargestellt, die mit einer radialen Druckmittelbohrung 5 versehen ist. Diese Wellenanordnung ist für ein nicht näher dargestelltes Automatgetriebe eines Kraftfahrzeugs vorgesehen, wobei die Vollwelle 1 und die Hohlwelle 4 mit unterschiedlichen Antriebselementen des Automatgetriebes oder des Drehmomentwandlers verbunden sein können, wie es aus dem gattungsbildenden Stand der Technik hervorgeht. Die Axialbohrung 2 und die Radialbohrung 3 sind an ein nicht näher dargestelltes Steuersystem angeschlossen, wobei die radiale Druckmittelbohrung 5 über eine Leitung 6 zu einer schematisch dargestellten Betätigungsleitung einer lastschaltbaren Kupplung 7 führt. Zwischen der als äußeres Getriebeglied dienenden Hohlwelle 4 und der Welle 1 ist ein doppelreihiges Nadellager 8 angeordnet, das einen spanlos hergestellten Außenring 9 und einen ebenfalls spanlos hergestellten Innenring 10 aufweist. Die Reihen

von Wälzkörpern 11 sind in einem Käfig 12 geführt.

Sowohl der Außenring 9 als auch der Innenring 10 weisen spanlos geformte Borde 13 bzw. 14 auf. Der Bord 13 des Außenrings 9 übergreift dabei den Bord 14 des Innenrings 10. An einer den Wälzkörpern 11 zugewandten Stirnfläche des Bords 14 liegt jeweils ein Gleitdichtring 16 an, der mit seiner äußeren Umfangsfläche am Außenring 9 gleitet und einen im wesentlichen rechteckigen Querschnitt aufweist. Beide Gleitdichtringe 16 und 17 bilden an ihrer inneren Umfangsfläche einen 10 Ringspalt 18, in den das über die Axialbohrung 2 und die Radialbohrung 3 zugeführte Druckmittel gelangt. Der in der linken Bildhälfte dargestellte Gleitdichtring 16 weist an seinem äußeren Umfang, und zwar dem Inneren des Nadellagers 8 abgewandt, eine umlaufende 15 rechteckige Ausnehmung auf. Anstelle dieser im Querschnitt gesehen rechteckigen Ausnehmung 19 ist der Gleitdichtring 17 mit seiner schrägen Anphasung 20 versehen.

In der Fig. 2 ist eine weitere Variante eines mit 21 20 bezeichneten Gleitdichtrings dargestellt, wobei dieser eine Ausnehmung 22 aufweist, die durch zinnenartige, gleichmäßig am Umfang verteilte Vorsprünge 23 unterbrochen ist.

Mit dem in der Fig. 1 dargestellten Nadellager lassen sich die Reibleistungsverluste erheblich verringern. In vorteilhafter Weise wird das in der Axialbohrung 2 und der Radialbohrung 3 anstehende Druckmittel über das Nadellager der Kupplung 7 zugeleitet. In vorteilhafter Weise sind die Gleitdichtringe 16 und 17 bzw. 21 unmittelbar in das Nadellager 8 integriert, so daß ein Übertritt 30 des Druckmittels zwischen den Getriebegliedern 1 und 4 ohne Druckverluste realisierbar und eine sowohl als Lagerung als auch als Abdichtung dienende Einheit in das Getriebe integrierbar ist. Mittels der Ausnehmungen 19, 20 und 22 und des Ringspaltes 18 werden die druckabhängig an den Gleitdichtringen 16, 17 und 21 auftretenden Radialkräfte so beeinflußt, daß stets die nach außen wirkende Radialkraft am größten ist. Die Flächenverhältnisse für die Außenfläche  $A_a$  und für die 40 Innenfläche  $A_i$  können in vorteilhafter Weise folgendermaßen sein:  $0,2 \leq A_i \leq 1$ . Hieraus folgt für die druckwirksame Breite  $b_a$  am Außendurchmesser des Gleitdichtringes:

$$0,2 \times \frac{d_i}{d_a} \leq \frac{b_a}{b_i} \leq 1 \times \frac{d_i}{d_a}$$

45

- 18 Ringspalt
- 19 Ausnehmung
- 20 Anphasung
- 21 Gleitdichtring
- 22 Ausnehmung
- 23 Vorsprung

5

#### Patentansprüche

1. Automatgetriebe für Kraftfahrzeuge mit zumindest einer lastschaltbaren Kupplung (7) und zumindest zwei mit einer Drehzahldifferenz zueinander rotierenden Getriebegliedern (1 und 4), zwischen welchen ein Radiallager (8) angeordnet ist, wobei im Bereich des Radiallagers (8) aus einem im inneren Getriebeglied (1) vorgesehenen Druckmittelzulaufkanal (2, 3) der auf dem äußeren Getriebeglied (4) angeordneten Kupplung (7) Druckmittel zugeleitet wird, dadurch gekennzeichnet, daß das Radiallager als Wälzlager (8) mit einem auf dem inneren Getriebeglied (1) angeordneten, beidseitig Borde (14) aufweisenden Innenring (10) ausgebildet ist, wobei die Borde (14) des Innenrings (10) von Borden (13) eines Außenrings (9) übergriffen werden und an ihren Wälzkörpern (11) zugewandten Stirnflächen Gleitdichtringe (16, 17, 21) führen, die einen im wesentlichen rechteckigen Querschnitt haben, gegenüber einer Umfangsfläche des Innenrings (10) einen Ringspalt (18) bilden und an ihrem Außenumfang, an einem dem Inneren des Wälzlagers (8) abgewandten Teilabschnitt mit zumindest einer Ausnehmung (19, 20, 22) versehen sind.

2. Automatgetriebe nach Anspruch 1, dadurch gekennzeichnet, daß die Ausnehmung als umlaufende schräge Anphasung (20) des Gleitdichtrings (17) ausgebildet ist.

3. Automatgetriebe nach Anspruch 1, dadurch gekennzeichnet, daß die umlaufende Ausnehmung (19) eine im Längsschnitt des Gleitdichtrings (16) gesehen, rechteckige Kontur aufweist.

4. Automatgetriebe nach Anspruch 3, dadurch gekennzeichnet, daß ein axialer Teilbereich der Ausnehmung (22) mit gleichmäßig am Umfang verteilten zinnenartigen Vorsprüngen (23) versehen ist.

---

Hierzu 1 Seite(n) Zeichnungen

---

#### Bezugszeichenliste

50

- 1 Welle
- 2 Axialbohrung
- 3 Radialbohrung
- 4 Hohlwelle
- 5 radiale Druckmittelbohrung
- 6 Leitung
- 7 schaltbare Kupplung
- 8 Nadellagerung
- 9 Außenring
- 10 Innenring
- 11 Wälzkörper
- 12 Käfig
- 13 Bord von 9
- 14 Bord von 10
- 15 Stirnfläche
- 16 Gleitdichtring
- 17 Gleitdichtring +

55

60

65