Nama	Utech
Name:	
Roll No.:	Comment of the
Invigilator's Signature:	

CS/B.Tech (CE)/SEM-4/CE-405/2010 2010 STRUCTURAL DESIGN – I

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP – A (Multiple Choice Type Questions)

- 1. Choose the correct alternatives for any ten of the following: $10 \times 1 = 10$
 - i) According to IS : 456-2000, the modulus of elasticity of concrete $E_{\rm C}$ (in N/mm 2) is
 - a) 5700 $\sqrt{f_{ck}}$
- b) 500 $\sqrt{f_{ck}}$
- c) $5000~f_{ck}$
- d) $5000 \sqrt{f_{ck}}$.
- $\begin{array}{ll} \hbox{ii)} & \hbox{Lever arm coefficient in working stress method depends} \\ & \hbox{on} \end{array}$
 - a) σ_{cbc} only
- b) σ_{st} only
- c) both of σ_{cbc} and σ_{st}
- d) none of these.

4207 [Turn over

CS/B.Tech (CE)/SEM-4/CE-405/2010

- iii) Limit state of serviceability of concrete section should satisfy
 - a) cracking, deflection, maximum compression
 - b) cracking only
 - c) deflection and cracking
 - d) deflection and maximum compression.
- iv) The minimum percentage of tension reinforcement in RCC beam is
 - a) $0.85/f_{y}$
- b) 0.4

c) 4·0

- d) $40 S_v / f_u d$.
- - a) top fibre
- b) bottom fibre
- c) side fibre
- d) top and bottom fibre.
- vi) Concrete cover for longitudinal reinforcing bars in a beam for moderate exposure is
 - a) diameter of bar
 - b) 30 mm
 - c) both (a) & (b)
 - d) 5 mm more than maximum nominal size of aggregate.

- three times the effective depth of the slab a)
- b) 300 mm

a)

c)

is

a)

c)

a)

b)

c)

d)

ix)

4

8

6 mm

10 mm

75 mm

100 mm

125 mm

200 mm.

- larger of (a) & (b) c)
- d) smaller of (a) & (b)

CS/B.Tech (CE)/SEM-4/CE-405/2010

- c) 1/6 of slab thickness
- d) 1/8 of slab thickness.
- xii) Uniformly distributed live load on floors of dwelling houses is generally taken as
 - a) 1 kN/m^2 b) 2 kN/m^2 c) 3 kN/m^2 d) 4 kN/m^2 .
- xiii) The expression for factored load for the combination of D.L & L.L for Limit state of collapse is
 - a) (D.L + L.L) b) 1.5 D.L + L.L
 - c) 1.2 (D.L + L.L) d) None of these.
- xiv) The development Length L_d for deformed bars of steel grade Fe 415 when used with M20 grade concrete is
 - a) 47 Φ b) 64·47 Φ
 - c) 71.8Φ d) 75.2Φ .

(' Φ ' denotes the diameter of the deformed bars)

- xv) According to IS: 456-2000, slenderness ratio for a short column is
 - a) less than 3 b) between 3 and 12
 - c) more than 12 d) none of these.

Answer any *three* of the following.

- 2. Calculate the moment capacity of the rectangular beam of M25 grade of concrete and Fe 415 grade of steel. Cross section of beam is 250×400 . Beam is provided with 3 nos. 16 mm. dia bars.
- 3. What are the basic differences between limit state and working stress method of design?
- 4. Find out the moment resisting capacity of the T-beam section of following sectional properties :

Width of flange = 1250 mm, Thickness of flange = 125 mm, Width of the web = 250 mm, Effective depth = 650 mm, Area of steel = 2000 mm^2 .

Assume M20 grade of concrete and Fe 415 grade of steel.

- 5. Find out the load carrying capacity of a column of 250×450 size, having an effective length of 4 m. Column is reinforced with 4 nos. 16 Tor bars.
- 6. Define limit state of a structure. What are different limit states?
- 7. Differentiate between balance, under and over reinforced section with the help of stress diagram.

GROUP - C

Answer any *three* of the following.

- 8. Design a rectangular beam for an effective span of 6 m. The superimposed load is 50 kN/m and the size of the beam is limited to $30 \text{ cm} \times 50 \text{ cm}$ overall. Use M-20 grade concrete, Fe 415 grade HYSD steel bars and support width = 300 mm each.
- 9. A 3-span continuous RC slab of clear span 3 m each, supported on 250 mm thick masonry walls. The slab is subjected to a live load of intensity 4 kN/m² and a dead load (due to floor finish, ceiling plaster, partitions etc.) of 1.5 kN/m² in addition to its self weight. Using suitable coefficients, determine critical BM(s) & design the slab only in flexure. Consider mild exposure condition and M-20 & Fe 415 grade material. Show the reinforcement details in neat sketch. Apply any method of design.
- 10. Design a floor slab with clear internal dimensions $3 \text{ m} \times 5 \text{ m}$, discontinuous on two adjacent edges and supported by 250 mm thick load bearing walls all round, is to be designed by IS code limit state method.

Assume live load = 4.0 kN/m^2 , use M-20 and Fe 415.

4207

- 11. Design a reinforced concrete column, 400 mm² to carry an ultimate load of 1000 kN at an eccentricity of 160 mm. Use M 20 & Fe 415. Show the reinforcement details in neat sketch. Apply IS method.
- 12. Design a square footing for a column of ($250~mm \times 250~mm$) to carry an axial load of 1200 kN. The footing is placed on a soil having bearing capacity of $100~kN/m^2$. Use M-20 & Fe-415 grade materials.
- 13. Design a dog-legged staircase with a space of $2\cdot4\times4\cdot6$ (clear dimensions) for a RC framed residential building having floor to floor height = 3 m. Assume live load is 4 kN/m^2 . Use M-20 & Fe-415 and any method of design.

4207 7 [Turn over