

UNIVERSIDADE FEDERAL DA GRANDE DOURADOS Profa Karla Lima

Cálculo III

05 de Julho de 2017

(1) Calcule as integrais iteradas:

a)
$$\int_{1}^{4} \int_{0}^{2} (6x^{2}y - 2x) dy dx$$

b)
$$\int_{0}^{2} \int_{0}^{4} y^{3} e^{2x} dy dx$$

c)
$$\int \int_{R} \frac{xy^2}{x^2+1} dA$$
, onde $R = [0,1] \times [-3,3]$.

d)
$$\int \int_R x e^{xy} dA$$
, onde $R = [1, 3] \times [0, 1]$.

e)
$$\int \int_R (x \cos x + y) dA$$
, onde $R = [0, \pi] \times [0, 1]$.

f)
$$\int_0^1 \int_x^{2x} (2x + 4y) dy dx$$
.

g)
$$\int_{1}^{e} \int_{\ln x}^{1} x dy dx$$
.

(2) Calcule $\int \int_R (2x+1)dA$, onde R é a região limitada por $x=y^2-1, x=5, y=-1$ e y=2.

(3) Calcule $\int \int_R y dA$, onde R é a região do primeiro quadrante compreendida pelo círculo $x^2+y^2=25$ e a reta x+y=5.

(4) Mude a ordem de integração e calcule as integrais abaixo: a) $\int_0^1 \int_{3y}^3 e^{x^2} dx dy$

a)
$$\int_{0}^{1} \int_{3y}^{3} e^{x^{2}} dx dy$$

b)
$$\int_0^4 \int_{\sqrt{x}}^2 \frac{1}{y^3 + 1} dy dx$$

- (5) Usando coordenadas polares, calcular: a) $\int \int_R \frac{dA}{1+x^2+y^2}$, onde R é a região do segundo quadrante delimitada pela circunferência $x^2 + y^2 = 4$.

b) $\int \int_R \sqrt{x^2 + y^2} dA$, onde R é a região delimitada por $x^2 + y^2 = 1$ e $x^2 + y^2 = 9$.

(6) Através da transformação $\frac{x}{a}=u,\,\frac{y}{b}=v\,\left(a,b>0\right)$ transformamos:

a região elíptica
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1$$
 na região circular $u^2 + v^2 \le 1$.

Ao efetuar integrações em regiões elípticas, primeiro transformamos esta região em uma região circular e depois aplicamos a transformada em coordenadas polares da seguinte maneira:

$$u = r\cos\theta \Rightarrow \frac{x}{a} = u = r\cos\theta \Rightarrow x = ra\cos\theta$$

$$v = r \sin \theta \Rightarrow \frac{y}{b} = v = r \sin \theta \Rightarrow y = rb \sin \theta.$$

Portanto, a mudança a coordenadas polares de uma região elíptica é dada por

$$(x,y) = (ar\cos\theta, br\sin\theta), \quad \theta \in [0,2\pi) \quad e \quad r \in [0,1].$$

- a) Calcule o Jacobiano dessa mudança de variáveis.
- b) Calcule a integral $\int \int_R \sqrt{16x^2 + 9y^2} dA$, onde R é a região envolvida pela elipse $\frac{x^2}{3^2} + \frac{y^2}{4^2} = 1$.
- c) Calcule $\int \int_R xy dA$, onde R é a região delimitada por $\frac{x^2}{4} + \frac{y^2}{9} = 1$.
- (7) Usando coordenadas polares, determine o volume do sólido que está acima do cone $z=\sqrt{x^2+y^2}$ e abaixo da esfera $x^2+y^2+z^2=1$. A região de integração é $D=\left\{(x,y)/x^2+y^2\leq \frac{1}{2}\right\}$.

Gabarito: Em breve