Министерство науки и высшего образования РФ ФГБОУ ВО «Тверской государственный университет» Математический факультет Направление 02.03.01 Математика и компьютерные науки Профиль «Математическое и компьютерное моделирование»

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

Случайные блуждания с неоднородной цепью Маркова

Автор: Шевцова Наталья Андреевна
Научный руководитель: д. фм. н. Цирулёв А.Н.

Допущен к защите:	
Руководитель ООП:	
	_ Цветков В. П

Оглавление

	Вв	едение	3
1 Случайные блуждания на прямой		учайные блуждания на прямой	5
	1.1	Случайные блуждания с дискретным временем	5
	1.2	Одномерное уравнение Фоккера-Планка	6
2	Ma	гематическое моделирование случайных блужданий	10
	2.1	Случайные блуждания и цепи Маркова	10
	2.2	Компьютерное моделирование однородной цепи Маркова	11
	2.3	Компьютерное моделирование неоднородной цепи Маркова	13
	Заключение		15
	Приложение		16
	Литература		

Введение

Данная работа приурочена математической модели процесса случайных изменений - случайным блужданиям с неоднородной цепью Маркова. Марковские случайные процессы названы по имени известного российского математика А. А. Маркова (1856-1922), который много занимался случайными процессами и внес большой вклад в развитие этой области. В дальнейшем основы этой теории явились исходной базой общей теории случайных процессов, а также важнейших прикладных наук. В настоящее время теория случайных блужданий и Марковских процессов обширно используются в самых различных областях [1, 2].

Благодаря простоте и наглядности математического аппарата, высокой достоверности и точности получаемых решений, особое внимание Марковские процессы приобрели у специалистов, занимающихся исследованием операций и теорией принятия оптимальных решений [4, 3].

Актуальность работы объясняется достоверным и наглядным характером решаемых с помощью случайных блужданий и неоднородных цепей Маркова задач.

Цель дипломной работы:

Изучить теорию случайных блужданий и цепей Маркова;

Применить математическое моделирование случайных блужданий к решению задач на применение уравнения Фоккера-Планка и марковских процессов.

Для достижения этой цели были поставлены следующие задачи:

Изучить учебную и научную литературу;

Получить уравнение Фоккера-Планка методом случайных блужданий;

Исследовать однородную и неоднородную цепи Маркова методом случайных блужданий на примерах составления программы на языке $C^{\#}$.

Объектом исследования являются случайные блуждания и цепи Маркова.

Предмет исследования применение методов теории случайных блужданий с неоднородной цепью Маркова.

Структура исследования: работа состоит из введения, двух глав, заключения и списка использованной литературы. В первой главе представлен теоретический материал (определения, формулы, теоремы), необходимый нам для практического использования. Вторая глава является заключительной в дипломной работе, она посвящена применению случайных блужданий с цепью Маркова при решении задач.

Изложение известных теоретических вопросов в Γ лаве 1 ориентировано источники [1, 2, 4, 3] из списка литературы.

Глава 1

Случайные блуждания на прямой

1.1 Случайные блуждания с дискретным временем

Рассмотрим простейшую математическую модель [1] случайного блуждания. Пусть точечная частица может совершать только один тип движений: в дискретные моменты времени $t_0, t_1, ...$ частица совершает скачок вдоль прямой так, что в момент времени t_{n+1} она оказывается в точке, отстоящей от на единичное расстояние влево или вправо от точки, где она находилась в момент времени t_n . Без ограничения общности можно считать, что координата частицы в любой момент врмени есть целое число. Введем на прямой некоторое начало отсчета и будем писать $\xi_j = m$, если в момент времени t_j частица находилась в точке m, здесь j = 0, 1, 2, ... и $m = 0, \pm 1, \pm 2, ...$

Предположим, что блуждание имеет случайный характер: прыжок вправо частица совершает с вероятностью p, прыжок влево – с вероятностью q. При этом любые другие перемещения невозможны, так что p+q=1. Примем также, что вероятности скачков не зависят от положения частицы и предыстории её движения.

При анализе случайных блужданий частицы удобно пользоваться понятием (случайной) траектории её движения за n шагов. Она представ-

ляет собой набор точек $(j,\xi_j), j=0,1,...,n$, на двумерной координатной плоскости, в котором первая координата — это номер члена последовательности , т.е. по сути момент времени t=j, а вторая — (случайная) величина, значение которой равно координате частицы в момент времени t=j. Для наглядности удобно соединить точки траектории отрезками прямых, на графике получится непрерывная ломаная из n звеньев, координаты узлов которой суть $(j,\xi_j), j=0,1,...,n$. При этом возможное смещение частицы за один прыжок, $\xi_j-\xi_{j-1}, j=0,1,...,n$, также является независимой случайной величиной, принимающей значение 1 с вероятность p и -1 с вероятностью q.

Заметим, что можно рассматривать общий случай, когда частица с некоторыми вероятностями (их сумма равна единице) совершает скачки не только в соседние точки, но и в более отдаленные. Однако в этом общем подходе методы математического моделирования случайных блужданий принципиально не меняются, поэтому в данной работе практически рассматриваются (исключительно для наглядности и экономии вычислительных ресурсов) случайные блуждания только при сделанных выше предположениях.

Итак, математической моделью движения частицы является последовательность случайных величин. Эта модель применяется в математической физике двояким образом. В следующем разделе данной главы показано, как случайные блуждания позволяют найти решения уравнения Фоккера-Планка, которое возникает во многих приложениях: статистической механике, теории диффузии и т.д. С другой стороны, широкий класс цепей Маркова с дискретным временем моделируется случайными блужданиями и наоборот. В следующей главе этот вопрос рассмотрен подробнее вместе с конкретными примерами. допускающими численное моделирование.

1.2 Одномерное уравнение Фоккера-Планка

Пусть частица движется по целочисленным точкам прямой с шагом h=1 вправо с вероятностью p и влево с вероятностью q=1-p. Через

n шагов вероятность обнаружить частицу в точке $m \in \mathbb{Z}$ равна

$$P(n,m) = \binom{n}{\frac{n+m}{2}} p^{\frac{n+m}{2}} q^{\frac{n-m}{2}},$$

если на нулевом шаге частица находилась в точке 0, т.е. выполнено начальное условие

$$P(0,0) = 1.$$

Рис. 1.1: Красным цветом отмечены достижимые точки при условии P(n,m) > 0 (точка m достижима на шаге n). Это условие эквивалентно условию одинаковой четности n и m (т. е. $n = m \pmod 2$). Синим цветом отмечены достижимые точки при условии P(n+1,m) > 0.

Из Рис. 1.1 очевидны рекуррентные соотношения

$$P(n+1,m) = pP(n,m-1) + qP(n,m+1),$$

$$P(n+2,m) = p^2P(n,m-2) + 2pqP(n,m) + q^2P(n,m+2).$$

Из последнего соотношения найдем разностное уравнение

$$P(n+2,m) - P(n,m) =$$

$$= p^{2}P(n,m-2) + (2pq-1)P(n,m) + q^{2}P(n,m+2)$$

$$= \alpha P(n,m) - \beta \left[P(n,m+2) - P(n,m-2) \right]$$

$$+ \gamma \left[P(n,m+2) - 2P(n,m) + P(n,m-2) \right],$$

в котором коэффициенты должны удовлетворять системе уравнений

$$\gamma - \beta = q^2$$
, $\alpha - 2\gamma = 2pq - 1$, $\gamma + \beta = p^2$.

Находим $\alpha=0\,,\;\beta=(p-q)/2\,,\;\gamma=\left(p^2+q^2\right)/2\,,$ так что разностное уравнение примет вид

$$P(n+2,m) - P(n,m) =$$

$$= -\frac{p-q}{2} \left[P(n,m+2) - P(n,m-2) \right]$$

$$+ \frac{p^2 + q^2}{2} \left[P(n,m+2) - 2P(n,m) + P(n,m-2) \right]. (1.1)$$

P(n,m) — функция двух независимых целочисленных переменных. Положим

$$t_n = \tau n, x_m = hm, f(t_n, x_m) = P(n, m).$$

Функция $f(t_n, x_m)$ задана на решетке координатной плоскости (t, x) и может рассматриваться как ограничение на решетку некоторой дважды непрерывно дифференцируемой функции f(t, x), для которой разностное уравнение (1.1) можно записать в виде

$$\frac{f(t+2\tau,x) - f(t,x)}{2\tau} = \frac{1}{2\tau} = -h\frac{p-q}{\tau} \frac{f(t,x+2h) - f(t,x-2h)}{4h} + h^2 \frac{p^2 + q^2}{\tau} \frac{f(t,x+2h) - 2f(t,x) + f(t,x-2h)}{4h^2}.$$

При малых значениях временного шага τ и пространственного шага h последнее уравнение является конечно-разностной аппроксимацией уравнения Фоккера-Планка

$$\frac{\partial f}{\partial t} = -k \frac{\partial f}{\partial x} + D \frac{\partial^2 f}{\partial x^2}, \qquad (1.2)$$

в котором коэффициенты скорости процесса (k) и диффузии (D) выражаются через вероятности перехода и величины шагов по формулам

$$k = h \frac{p-q}{\tau}, \quad D = h^2 \frac{p^2 + q^2}{\tau}.$$

Шаги τ и h на самом деле связаны ($\tau=ah$) совместным выбором точности аппроксимации для производных по времени и производных по координатам. Поэтому, если k и D заданы, то величины p и h выражаются

через них однозначно (при выборе коэффициента пропорциональности a в соответствии с характерными величинами производных в конкретной задаче).

Таким образом, математическое моделирование случайного блуждания методом Монте-Карло в квадрате $0 \le n, m \le N$ (N- число шагов при одном испытании) с начальными условиями $P(0,m) = p_m^{(0)}$ дает приближенное решение уравнения Фоккера-Планка (1.2) с начальными условиями f(0,x) в некотором прямоугольнике $0 \le t \le T$, $-X \le x \le X$ $(T=N\tau, X=Nh)$.

Глава 2

Математическое моделирование случайных блужданий

2.1 Случайные блуждания и цепи Маркова

Случайные блуждания на дискретном множестве могут рассматриваться как цепь Маркова с дискретным временем. Рассмотрим для простоты стационарный марковский процесс с дискретным временем. Его общий вид

$$p^{(k+1)} = p^{(k)}P,$$

где $p^{(k)}$ — распределение вероятностей на k-ом шаге, а P — матрица переходных вероятностей. В подробной записи в общем случае

где..., $p_{n_1}, p_{n_2}, p_{n_3}, p_{n_4}, \ldots$ — вероятности нахождения частицы в точках ..., $n_1, n_2, n_3, n_4, \ldots$ одномерной целочисленной решетки на прямой. Элементы p_{ij} любой строки матрицы P неотрицательны, а их сумма $\sum_{j=-\infty}^{+\infty} p_{ij} = 1$ для любого номера i. Если частица перед переходом была в позиции i (с условной вероятностью p_i), то p_{ij} — вероятность перехода в позицию j.

Если переходные вероятности не зависят от номера шага, то цепь Маркова называется однородной. В противном случае случайный процесс и соответствующую цепь Маркова называют неоднородными.

2.2 Компьютерное моделирование однородной цепи Маркова

В данном разделе на примере рассматривается компьютерное моделирование однородной цепи Маркова методом случайных блужданий. В качестве примера рассмотрим как цепь Маркова случайные блуждания на целочисленном отрезке $[0,3] \subset \mathbb{Z}$ со следующими условиями:

- ullet в любой из внутренних точек 1 и 2 частица на каждом шаге переходит с вероятностью q=1-p в левую точку и с вероятностью p в правую точку;
- в любой из граничных точек 0 и 3 частица с вероятностью 1 отскакивает во внутреннюю точку.

Эти блуждания представляют собой стационарный предельно-периодический марковский процесс с дискретным временем и описываются $o\partial hopo\partial ho\ddot{u}$ цепью Маркова вида $p^{(k+1)} = p^{(k)}P$ или, подробнее,

$$(p_0 p_1 p_2 p_3)^{(k+1)} = (p_0 p_1 p_2 p_3)^{(k)} \begin{pmatrix} 0 & 1 & 0 & 0 \\ q & 0 & p & 0 \\ 0 & q & 0 & p \\ 0 & 0 & 1 & 0 \end{pmatrix}, \quad q = 1 - p,$$

где $p^{(k)} = (p_0 \ p_1 \ p_2 \ p_3)^{(k)}$ — вероятности нахождения частицы на k-ом шаге в точках $0,1,2,\ 3$ соответственно.

Поскольку вероятность положения частицы на k-ом шаге,

$$p^{(k)} = p^{(0)}P^k,$$

определяется только степенью матрицы переходных вероятностей, то этот пример может быть описан аналитически с применением системы аналитических вычислений Maple. Рассматриваемый процесс называют стационарным, потому что матрица переходных вероятностей P не зависит от номера шага. Этот процесс оказывается предельно-периодическим с периодом 2 в том смысле, что последовательность $\{P^k\}_{k=1}^{\infty}$ имеет два частичных предела в зависимости от четности k:

$$\lim_{k\to\infty} P^{2k} = \begin{pmatrix} \frac{p^2-2p+1}{p^2-p+1} & 0 & \frac{p}{p^2-p+1} & 0 \\ 0 & \frac{1-p}{p^2-p+1} & 0 & \frac{p^2}{p^2-p+1} \\ \frac{p^2-2p+1}{p^2-p+1} & 0 & \frac{p}{p^2-p+1} & 0 \\ 0 & \frac{1-p}{p^2-p+1} & 0 & \frac{p^2}{p^2-p+1} \end{pmatrix} = P^{\text{even}},$$

$$\lim_{k\to\infty} P^{2k+1} = \begin{pmatrix} 0 & \frac{1-p}{p^2-p+1} & 0 & \frac{p^2}{p^2-p+1} \\ \frac{p^2-2p+1}{p^2-p+1} & 0 & \frac{p}{p^2-p+1} & 0 \\ 0 & \frac{1-p}{p^2-p+1} & 0 & \frac{p^2}{p^2-p+1} \\ \frac{p^2-2p+1}{p^2-p+1} & 0 & \frac{p}{p^2-p+1} & 0 \end{pmatrix} = P^{\text{odd}},$$

Эти матрицы отличаются друг от друга только перестановками строк $1\leftrightarrow 2,\ 3\leftrightarrow 4.$ В каждой строке сумма элементов равна 1. Кроме того,

$$P^{\text{odd}} = PP^{\text{even}} = P^{\text{even}}P, \qquad P^{\text{even}} = PP^{\text{odd}} = P^{\text{odd}}P,$$

но $P^2 \neq I$. Противоречия здесь нет, поскольку

$$\det P^{\text{even}} = \det P^{\text{odd}} = 0,$$

что является следствием существования частичных пределов.

Заметим, что в полусумме $(P^{\text{even}}+P^{\text{odd}})/2$ все строки одинаковы и $p_0^{(1)}+p_1^{(1)}+p_2^{(1)}+p_3^{(1)}=1.$ Отсюда видно, что при $k\to\infty$ математическое ожидание положения частицы (n=0,1,2,3) стремится к значению

$$M[n] = \frac{1}{2(p^2 - p + 1)} \left\{ 0 \cdot (p^2 - 2p + 1) + 1 \cdot (1 - p) + 2 \cdot p + 3 \cdot p^2 \right\} = \frac{1 + p + 3p^2}{2(p^2 - p + 1)}.$$

Положим p = 0, 3, тогда $M[n] \approx 0,9937$.

Математическое моделирование методом Монте-Карло дает тот же самый результат. Код программы на языке $C^{\#}$, которая реализует метод Монте-Карло, приведен в Приложении. Результаты испытания изображены графически на Рис. 2.1

2.3 Компьютерное моделирование неоднородной цепи Маркова

Так же как в предыдущем разделе, рассмотрим случайные блуждания на отрезке $[0,3]\subset\mathbb{Z}$ с вероятностями p и q перехода вправо и влево соответственно из внутренних точек 1 и 2.

Граничные условия изменим следующим образом: в точке n=3 на четном шаге k=2m вероятность отскока равна p_1 , а вероятность задержки равна $q_1, p_1+q_1=1$; в точке n=0 частица переходит вправо с вероятностью 1. На нечетном шаге частица испытывает отскок от любой из граничных точек с вероятностью 1.

В результате мы получим нестационарную (вероятность перехода зависит от номера шага) цепь Маркова. Этот случайный процесс не будет предельно-периодическим, поэтому одним испытанием с числом шагов t можно найти математическое ожидание, но не само распределение

$$\lim_{k\to\infty} \left(p_0 \ p_1 \ p_2 \ p_3 \right)^{(k)}.$$

Рис. 2.1: На графике изображены предельные случайные блуждания в одном испытании для шагов $100001 \leqslant N \leqslant 100060$. Периодичность отсутствует: правильное распределение возникает только в результате множественных испытаний и усреднения. Математическое ожидание можно получить с хорошей точностью при одном испытании, усреднив результаты для $100001 \leqslant N \leqslant 101000$.

В таких ситуациях метод Монте-Карло оказывается единственно возможный.

Для получения результата с точностью 0,01 нужно (в данной конкретной задаче) провести серию из $N=4\cdot 100=400$ испытаний с числом шагов t=10000 и найти это распределение как $p_i^{(t)}=s_i^{(t)}/N$, где $s_i^{(t)}$ — число попаданий в точку $i\in[0,3]$. Математическое ожидание будет равно

 $M[n] = 0 \cdot p_0^{(t)} + 1 \cdot p_1^{(t)} + 2 \cdot p_2^{(t)} + 3 \cdot p_3^{(t)}.$

Необходимые изменения в программе RandomWalks.cs очевидны.

РЕЗУЛЬТАТЫ МОДЕЛИРОВАНИЯ: РАСПРЕДЕЛЕНИЕ И МАТОЖИДАНИЕ

Заключение

В работе получены следующие основные результаты:

- 1. Построен прямой способ вывода уравнения Фоккера-Планка посредством предельного перехода в методе случайных блужданий.
- 2. Разработаны и выполнены на языке $C^{\#}$ алгоритмы математического моделирования однородных и неоднородных цепей Маркова с дискретным временем.
- 3. Рассмотрены конкретные примеры математического моделирования цепей Маркова, причем для однородной цепи проведено сравнение численного моделирования с аналитическим решением.

Приложение

Программная реализация метода Монте-Карло

Литература

- [1] Б.В. Гнеденко. Курс теории вероятностей. М: Едиториал УРСС, 2005, 448с.
- [2] И.В. Волком и др.. Случайные процессы. Изд-во МВТУ им Баумана, 2015, 436с.
- [3] Ф. Спицер. Принципы случайного блуждания. М: Мир, 1969, 292с.
- [4] Дж. Кемени, Дж. Снелл. *Конечные цепи Маркова*. М: Мир, 1970, 356с.