第一章 半导体物理基础

- 1.1 半导体的晶格结构
- 1.2 半导体的电子状态和能带结构
- · 1.3 半导体中的掺杂与载流子
- · 1.4 载流子输运和复合

电子在势能为 U_0 的无限空间中运动,电子间的相互作用可忽略不计

$$\left(-\frac{\hbar^2}{2m}\nabla^2 + U_0\right)\psi = E\psi$$

为简单起见,可选取 $U_0=0$

$$-\frac{\hbar^2}{2m}(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2})\psi(\mathbf{r}) = E\psi(\mathbf{r})$$

$$E = \frac{1}{2m} p^2$$

p = hk k 为电子波矢

电子的能量:
$$E(\mathbf{k}) = \frac{\hbar^2 k^2}{2m}$$

$$k^2 = \frac{2mE}{\hbar^2}$$

$$k^2 = \frac{2mE}{\hbar^2}$$

有:
$$\nabla^2 \psi + k^2 \psi = 0$$

方程的解为:

$$\psi_{k}(\mathbf{r}) = Ae^{i\mathbf{k}\cdot\mathbf{r}}$$
 k 为电子波矢

其中,A为归一化因子,可由归一化条件确定

$$\int_{(V)} \psi_k^* \psi_k d\mathbf{\tau} = 1 \qquad \longrightarrow \qquad \mathbf{A} = \frac{1}{\sqrt{V}}$$

V为空间体积

$$\psi_k(\mathbf{r}) = \frac{1}{\sqrt{V}} \exp(i\mathbf{k} \cdot \mathbf{r})$$

$$k^2 = \frac{2mE}{\hbar^2}$$

电子的能量:

$$E(\mathbf{k}) = \frac{\hbar^2 k^2}{2m}$$

设晶体为一平行六面体,其棱边分别沿三个基矢 a_x 、 a_y 和 a_z 方向, N_x 、 N_y 和 N_z 分别为沿 a_x 、 a_y 和 a_z 方向金属的原胞数,那么,晶体中原胞的总数为:

$$N = N_{x} N_{y} N_{z}$$

$$L_{z} = N_{x} a_{x} L_{y} = N_{y} a_{y} L_{z} = N_{z} a_{z}$$

周期性边界条件(波恩-卡门条件):

$$\psi_k(r) = \psi_k(r+N_\alpha a_\alpha)$$
, $\alpha = x, y, z$

周期性边界条件忽略了 边界的影响,当N足够 大时是一种很好的近似

周期性边界条件: $\psi_k(r) = \psi_k(r+N_\alpha a_\alpha)$, $\alpha = x,y,z$

波函数
$$\psi_k(\mathbf{r}) = \frac{1}{\sqrt{V}} \exp(i\mathbf{k} \cdot \mathbf{r})$$

$$\frac{1}{\sqrt{V}} \exp(i\mathbf{k} \cdot \mathbf{r}) = \frac{1}{\sqrt{V}} \exp[i\mathbf{k} \cdot (\mathbf{r} + N_{\alpha} \mathbf{a}_{\alpha})]$$

 $\exp(i\mathbf{k}\cdot N_{\alpha}\mathbf{a}_{\alpha})=1$

k 的分量具有如下的形式:

$$k_{x} = \frac{2\pi n_{x}}{L_{x}}$$

$$k_{x} = \frac{2\pi n_{x}}{L_{x}} \qquad k_{y} = \frac{2\pi n_{y}}{L_{y}} \qquad k_{z} = \frac{2\pi n_{z}}{L_{z}}$$

$$k_z = \frac{2\pi n_z}{L_z}$$

设平行六面体边长 $L_{\alpha} = N_{\alpha}a_{\alpha}$, $\alpha = x,y,z$

对于宏观物体的 $L_{\alpha} = N_{\alpha}a_{\alpha}$ 由于 N_{α} 很大,k 点分布很密,可以认为是准连续的

晶体中的薛定谔方程

薛定谔方程:
$$\left[-\frac{\hbar^2}{2m}\nabla^2 + V(r)\right]\psi(r) = E\psi(r)$$

晶格周期性势场:
$$V(r) = V(r + R_n)$$

式中
$$R_n = n_1 a_1 + n_2 a_2 + n_3 a_3$$
 是格矢

V(r)由晶格离子势和电子的平均作用势两部分组成 (并非完全忽略电子间的相互作用)

当V(r)=0, 即为自由电子的特例。

布洛赫定理

- ・目的
 - 描述周期性势场中,电子运动的一般性特点
- ・布洛赫定理
 - 当势场具有晶格周期性 $V(r) = V(r + R_n)$

$$\psi(\mathbf{r}+\mathbf{R}_n)=e^{i\mathbf{k}\cdot\mathbf{R}_n}\psi(\mathbf{r})$$

当平移晶格矢量 R_n 时,波函数只增加了位相因子 $e^{ik\cdot R_n}$

布洛赫定理

$$\psi(\mathbf{r}+\mathbf{R}_n)=e^{i\mathbf{k}\cdot\mathbf{R}_n}\psi(\mathbf{r})$$

根据布洛赫定理可以把波函数写成:

$$\psi(\mathbf{r}) = e^{i k \cdot r} u(\mathbf{r})$$

其中u(r) 具有与晶格同样周期性,即:

$$u(r+R_m)=u(r)$$

称为<mark>布洛赫函数(Bloch wavefunction)</mark>,是薛定谔方程 在周期势场V(r)中的本征函数,用布洛赫波函数描述的电 子称为布洛赫电子

如果将u置为常数,那么这时电子的行为就像自由电子并可 用一平面波来描述。

布洛赫函数

在周期性势场中运动的电子波函数具有调幅平面波的形式, 调幅因子是与晶格周期性形同的周期函数

$$\psi(r) = e^{i k \cdot r} u(r)$$
 —— 布洛赫函数

$$u(r+R_n)=u(r)$$
 实线快变函数

布洛赫函数

被周期函数所调幅的平面波形式

$$\psi(\mathbf{r}) = e^{i k \cdot r} u(\mathbf{r})$$

平面波:

自由粒子在晶体中传播的行波, 平面波因子反映了电子在各个原 胞之间的共有化运动

周期函数

使得其振幅由一个原胞到另外一个原胞周期性地振荡反映了单个原胞中电子的运动

布洛赫函数的形式分析

- ・布洛赫函数包括两项
 - 行波项
 - 原胞内部项
- ・求解方法
 - 1、以行波项为基态,引入晶格微扰求原胞项
 - 2、以各原子的电子能态为基态,引入各原子给予的行波相位项作加权组合成为布洛赫函数
- ・分別是近自由电子近似和紧束缚近似模型

周期性势场下波动方程求解基本思路

・近自由电子近似

- 以自由电子为基态,将周期性势场作为微扰处理,结果近似于自由电子
- 适合固体原子外壳层价电子能带的近似

・紧束缚模型

- 以束缚电子能级为基态,将其他原子的作用作为微扰处理,结果近似于束缚电子
- 适合固体原子内壳层电子能带的近似

紧束缚近似:原子能级与能带的对应关系

近自由电子近似

布里渊区与能带

每个布里渊区内部的能级是准连续的 布里渊区边界能级发生突变

波函数与能量本征值的周期性

· k变化一个倒格矢, 将完全不影响本征值

将平移算符T作用于 $\psi_k(r)$,则有:

$$T_{R_m}\psi_k(\mathbf{r})=\psi_k(\mathbf{r}+\mathbf{R}_m)=e^{i\mathbf{k}\cdot\mathbf{R}_m}\psi_k(\mathbf{r})$$

将平移算符T作用于 $\psi_{k+G}(r)$,则有:

$$T_{R_m}\psi_{k+G}(\mathbf{r})=e^{i(\mathbf{k}+\mathbf{G})\cdot\mathbf{R}_m}\psi_{k+G}(\mathbf{r})=e^{i\mathbf{k}\cdot\mathbf{R}_m}\psi_{k+G}(\mathbf{r})$$

与 $\psi_k(r)$ 有共同的本征值 $e^{ik\cdot R_m}$, 所以k+G与k是等价的, 即

$$\psi_{n,k}(\mathbf{r}) = \psi_{n,k+G}(\mathbf{r})$$
 $E_n(\mathbf{k}) = E_n(\mathbf{k} + \mathbf{G})$

· 根据这个结论,k和k+G本质上描述的是同一量子态

晶体中能带的形成

晶体的能带结构

紫色线: 拓展区表达

黄色区域:简约区表达

绿色线:周期布里渊区表达

每一个能带的单个状态都对应一个独立的简约波矢

对一个简约波矢则有一系列能量不同的状态

指明一个状态: 1) 属于哪个能带 2) 简约波矢

有效质量

- ・ 精确求解半导体中的E(k)-k关系比较复杂
- · 对半导体而言一般起作用的主要是能带底部或顶部的电子, 因此只要掌握能带底或顶附近(能带极值附近)的E(k)-k 关系就够了。在能带底附近泰勒展开

$$E(k) = E(0) + \left(\frac{dE}{dk}\right)_{k=0} k + \frac{1}{2} \left(\frac{d^2E}{dk^2}\right)_{k=0} k^2 + \cdots$$

$$E(k) - E(0) = \frac{1}{2} \left(\frac{d^2 E}{dk^2} \right)_{k=0} k^2 \qquad \Leftrightarrow \frac{1}{\hbar^2} \left(\frac{d^2 E}{dk^2} \right)_{k=0} = \frac{1}{m_n^*}$$

$$E(k)-E(0)=\frac{\hbar^2k^2}{2m^*}$$
 m_n^* 为能带底电子的有效质量,为正值

同理,也可引入能带顶的电子有效质量,为负值

有效质量

自由电子质量:

$$\frac{1}{m} = \frac{1}{\hbar^2} \frac{d^2 E}{dk^2}$$

品体中电子的有效质量(将晶格周期性势场对电子的作用考虑到有效质量中,电子在外力作用下的运动规律可以不涉及内部势场的作用)

$$\frac{1}{m_{\alpha}^*} = \frac{1}{\hbar^2} \frac{\partial^2 E}{\partial k_{\alpha}^2}$$

有效质量小, 曲线陡峭 有效质量大, 曲线平坦

近满带和空穴

- · 满带中缺少了电子, 称作近满带
- 将近满带的导电性完全等效于一个假想的粒子,它带有正电荷q,具有正有效质量,这个粒子称为空穴
- · 空穴概念的引入使得满带顶附近 缺少一些电子的问题和导带底有 少数电子的问题十分相似,这两 中情况下产生的导电性分别称为

空穴导电性和电子导电性

• 电子和空穴统称为载流子

导体、绝缘体、半导体中 电子填充情况

载流子: 导带电子+价带空穴

半导体的基本能带结构

·以Si为例

- 存在一系列满带,左图 下面的能带为最上面的 满带,称为<mark>价带</mark>
- <mark>价带</mark>之上,有一系列空带,最低空带称为<mark>导带</mark>
- 导带和价带间能量区间 称为带隙(禁带),带隙(禁带)宽度 E_g
 - ・ *E*。的值等于导带底减去价带顶的能量差值

半导体的本征热激发

- 在高纯半导体材料中,当温度较高时
 - 电子受热激发,从价带跃迁到导带
 - 价带产生空穴,导带产生电子
 - 空穴数目等于电子数目
 - 这种电子和空穴统称本征载流子
- ・本征载流子
 - -与温度有关,温度越高,数目越大 $n=Ne^{-\frac{E_g}{2k_BT}}$

$$n = Ne^{-\frac{E_g}{2k_BT}}$$

- -与带隙宽度有关,一般半导体 E_g < 2 eV
- 根据载流子浓度与温度的关系,可以得到带隙

半导体的本征光吸收

- ・测定能隙的最佳方法之一是光吸收
 - 能量合适的光可以激发价带电子跃迁到导带
 - ·形成电子-空穴对,称为本征光吸收
 - · 基本条件是光子能量大于阈值:

$$\hbar\omega \geq E_g$$

$$\lambda \leq \frac{2\pi\hbar c}{E_g}$$

$$-$$
 最大波长称为本征吸收边
$$\lambda_0 = \frac{2\pi\hbar c}{E_\sigma} \qquad \lambda_0(\mu m) = \frac{1.2396}{E_\sigma(eV)}$$

直接带隙和间接带隙

典型:

GaAs

InP

GaN

典型:

Si

Ge

C

GaP

竖直跃迁 (直接带隙材料)

- ·跃迁对应于导带底和价带顶在k空间相同点
 - 根据跃迁矩阵元的计算,跃迁须满足<mark>能量守恒</mark> 外,还有<mark>准动量守恒关</mark>系准则
 - ・视光引入的电磁场为微扰元

$$\hbar k' - \hbar k = \hbar k_p$$

- ·但是光子动量很小,对于1微米波长的光,波矢 10⁴cm⁻¹
- ・布里渊区尺度为108cm-1
- 竖直跃迁选择定则:近似为 $k >> k_p$

$$k' = k$$

载流子跃迁过程

InSb (铟锑材料的光吸收)

非竖直跃迁 (间接带隙材料)

- ·对应于导带底和价带顶在k空间不同点
 - 此时本征吸收边附近的光吸收是非竖直跃迁
 - ・单纯依靠吸收光子不能使电子从价带顶跃到导带底
 - 必须吸收光子同时,伴随吸收或发射一个声子
 - 能量守恒关系
 - · 电子能量差=光子能量±声子能量

$$E_c(k') - E_v(k) = E_P \pm E_A \approx E_P$$

- 准动量守恒

$$\hbar k' - \hbar k = \hbar k_p \pm \hbar q \approx \pm \hbar q$$

光子、电子和声子过程: 属二级过程,几率小, 远低于竖直跃迁

载流子跃迁过程

电子-空穴对复合发光

- · 光吸收的逆过程,即导带电子跃迁到价带空能级,电子与空穴复合,发射光子
 - 一般情况下发射光子能量约等于带隙宽度
 - · 原因: 电子集中于导带底, 而空穴集中于价带顶
 - 直接带隙材料发光几率远高于间接带隙半导体
 - ・制作发光器件、得用直接带隙半导体
 - 发光波长确定于带隙宽度

半导体的禁带宽度

Table 1 Energy gap between the valence and conduction bands (i = indirect gap; d = direct gap)

Crystal	Gap	$E_{ m g},{ m eV}$		ezi (Chillian Santan S	Austrom Asia	$E_{ m g},{ m eV}$	
		0 K	300 K	Crystal	Gap	0 K	300 K
Diamond	i	5.4	DESIGNERAL DE PERSONAL DE LA CONTRACTION DE LA C	SiC(hex)	i i	3.0	
Si	i	1.17	1,11	Te	d	0.33	
Ge	i	0.744	0.66	$\mathrm{HgTe^{a}}$	d	-0.30	
αSn	d	0.00	0.00	Pbs	d	0.286	0.34 - 0.37
InSb	d	0.23	0.17	\mathbf{PbSe}	i	0.165	0.27
InAs	d	0.43	0.36	${ m PbTe}$	i	0.190	0.29
InP	d	1.42	1.27	CdS	d	2.582	2.42
GaP	i	2.32	2.25	CdSe	d	1.840	1.74
CaAs	d	1.52	1.43	CdTe	d	1.607	1.44
GaSb	d	0.81	0.68	SnTe	d	0.3	0.18
AlSb	i	1.65	1.6	$\mathrm{Cu}_2\mathrm{O}$	d	2.172	_

^{*}HgTe is a semimetal; the bands overlap.

禁带宽度与温度的关系

- ・禁带宽度的大小与温度有关
 - 变化不大,从0K到室温300K,大约减小10%
 - 原因:
 - ・热膨胀,晶格常数增大,周期势场发生变化
 - ・晶格振动增大,对能带结构有所影响
 - 禁带宽度与温度在室温范围里呈线性关系,在非常低温下,呈二次方关系,可由Varnish经验公式描述

$$E_g(T) = E_g(0) - \frac{\alpha T^2}{T + \beta}$$
 $E_g(0)$ 、 α 、 β 为跟材料相关的常数

禁带宽度与温度的关系

$$E_g(T) = E_g(0) - \frac{\alpha T^2}{T + \beta}$$

	Ge	Si	GaAs
E _g (0) [eV]	0.7437	1.166	1.519
α [eV/K]	4.77 x 10 ⁻⁴	4.73 x 10 ⁻⁴	5.41 x 10 ⁻⁴
β [K]	235	636	204

Temperature (K)

近自由电子近似得到的E-k曲线

有效质量和能带宽度的关系

- · 有效质量与能量函数对 k 的二次微商成反比,对宽窄不同的各个能带, E(k) 随 k 的变化情况不同,能带越窄,二次微商越小,有效质量越大。
- 内层电子的能带窄,有效质量大;外层电子的能带宽,有效质量小
- · 空穴有效质量大, 电子有效质量小

常见半导体导带底的有效质量

・导帯底 k_0 附近将E(k)展开,并引入有效质量

$$E(k) = E(k_0) + \frac{\hbar^2 (k_x - k_{0x})^2}{2m_x^*} + \frac{\hbar^2 (k_y - k_{0y})^2}{2m_y^*} + \frac{\hbar^2 (k_z - k_{0z})^2}{2m_z^*}$$

- k₀ 为零时,有效质量往往是各向同性的
- k₀ 不为零时,有效质量则往往是各向异性的
 - ・对称轴方向的有效质量称纵向有效质量 m_l
 - ・垂直于对称轴的称为横向有效质量 m_t

Ge、Si的椭球等能面和导带底有效质量

• Ge

- 导带底位置: 布里渊区 的 *L* 点 (111)方向
- $-m_{l}$: 1.64 m_{0}
- $-m_t$: 0.082 m_0
- Si
 - 与带底位置: 布里渊区 的靠近 X 点 (100)方向
 - $-m_l$: 0.98 m_0
 - $-m_t$: 0.19 m_0

半导体价带顶的能带结构图

a是不计入自旋-轨 道作用;

b是考虑自旋-轨道 耦合分裂的情况

常见半导体价带顶的轻重空穴带

- · 锗、硅和III-V族化合物的价带顶都是简并 的
 - 重空穴能带弯曲小, 轻空穴能带弯曲大
 - 价带因简并问题,有效质量形式复杂,等能面为 扭曲的球面
 - 不同的方向对应的有效质量不同

价带顶有效质量

$$E = E_v(0) - \frac{\hbar^2}{2m_0} \left\{ Ak^2 \pm \left[B^2 k^4 + C^2 \left(k_x^2 k_y^2 + k_y^2 k_z^2 + k_z^2 k_x^2 \right) \right]^{1/2} \right\}$$
 轻重空穴
$$E = E_v(0) - \Delta - \frac{\hbar^2}{2m_0} Ak^2$$
 自旋分裂能带

	Α	В	С	∆(eV)
Si	4	1.1	4.1	0.044
Ge	13	8.3	12.5	0.29
GaAs	7	4.5	6.2	0.341

直接带隙半导体的电子、空穴有效质量

Crystal	Electron m_e/m	Heavy hole m_{kh}/m	$\substack{\text{Light hole}\\ m_{lk}/m}$	Split-off hole m_{soh}/m	Spin-orbit Δ, eV
				The second se	33.33.33.33.33.33.33.33.33.33.33.33.33.
InSb	0.015	0.39	0.021	(0.11)	0.82
InAs	0.026	0.41	0.025	0.08	0.43
InP	0.073	0.4	(0.078)	(0.15)	0.11
GaSb	0.047	0.3	0.06	(0.14)	0.80
GaAs	0.066	0.5	0.082	0.17	0.34
Cu_2O	0.99		0.58	0.69	0.13

$$\epsilon_v(hh) \cong -\hbar^2 k^2 / 2m_{hh}$$
; $\epsilon_v(lh) \cong -\hbar^2 k^2 / 2m_{lh}$;
 $\epsilon_v(soh) \cong -\Delta - \hbar^2 k^2 / 2m_{soh}$.

一个收集半导体材料参数的网站

http://www.matprop.ru/

作业

1. 某一维晶格, 晶格常数为a, 势函数为

$$V(x) = \cos \frac{4\pi x}{a} (eV)$$

利用近自由电子近似模型,计算其第一个和第二个禁带的带隙宽度。

作业

- 2. 设有一晶格常数为a的一维晶体,电子在其中 运动;
- (1)求布里渊区边界2π/a处自由电子的能量;
- (2)请解释:布洛赫能带理论相比于索末菲自由电子模型,主要区别在前者增加的对什么的考虑;以及简单说明近自由电子近似的大致思想;

(.)设周期性势场为

$$V(x) = -V_0 \cos\left(\frac{4\pi x}{a}\right) \cos\left(\frac{2\pi x}{a}\right)$$

其中 $V_0>0$,利用近自由电子近似,求布里渊区边界 π/a 、 $2\pi/a$ 、 $3\pi/a$ 处的能隙;