Západočeská univerzita v Plzni Fakulta aplikovaných věd

DIPLOMOVÁ PRÁCE

Semidefinitní programování v kombinatorické optimalizaci

Autor: Ondřej Špaček

Vedoucí práce: Doc. Ing. Roman Čada, Ph.D.

Plzeň, 2020

ProhlášeníProhlašuji, že jsem svou diplomovou práci vypracoval samostatně s použitím odborné literatury uvedené v seznamu, který je uveden na konci této práce. V Plzni dne

podpis

Poděkování

Především bych chtěl poděkovat svému vedoucímu diplomové práce Doc. Ing. Romanu Čadovi, Ph.D. za spoustu času, který mi věnoval a cenné rady při řešení problémů spojených s vypracováním diplomové práce.

Abstrakt

Klíčová slova

Abstract

Keywords

Použité značky a symboly

Obsah

Ú۶	rod	2
Ι	Teorie	3
1	Základní geometrické pojmy	4
	1.1 Přímky a úsečky	4
	1.2 Affiní množiny	4
	1.3 Konvexní množiny	5
	1.4 Kužely	5
	1.5 Nadroviny a poloprostory	6
	1.6 Polyedry a polytopy	7
2	Lineární programování	9
	2.1 Formulace úlohy	9
	2.2 Dualita	9
	2.3 Komplementární skluzovost	9
3	Semidefinitní programování	10
4	Kuželové programování	11
II	Kombinatorické úlohy	12
5	Shannonova kapacita	13
6	Maximální řez	14
7	Problém obchodního cestujícího	15

OBSAH		1	
III	Implementace	16	
8]	Lovászova theta funkce	17	
9	Maximální řez	18	
Závěr		19	

$\acute{\mathbf{U}}\mathbf{vod}$

Část I

Teorie

Kapitola 1

Základní geometrické pojmy

1.1 Přímky a úsečky

Mějme dva body $x_1, x_2 \in \mathbb{R}^n$ takové, že $x_1 \neq x_2$ a parametr $\theta \in \mathbb{R}^n$. Potom výraz

$$y = \theta x_1 + (1 - \theta)x_2 \tag{1.1}$$

popisuje **přímku** procházející body x_1 a x_2 . Pro $\theta = 0$ dostáváme bod x_2 a pro $\theta = 1$ bod x_1 . Omezíme-li θ na interval $\langle 0, 1 \rangle$, dostaneme **úsečku** s koncovými body x_1 a x_2 . Výraz 1.1 lze přepsat do tvaru

$$y = x_2 + \theta(x_1 - x_2),$$

který můžeme interpretovat jako součet počátečního bodu x_2 a nějakého násobku směrového vektoru $x_1 - x_2$.

1.2 Affiní množiny

Říkáme, že $C \subseteq \mathbb{R}^n$ je **afinní množina**, jestliže přímka procházející libovolnými dvěma různými body z C leží v C. Tedy C obsahuje lineární kombinace libovolných dvou bodů z C, jestliže součet koeficientů lineární kombinace je roven jedné. To lze zobecnit i pro více než dva body. Lineární kombinace $\theta_1x_1+\cdots+\theta_kx_k$ bodů x_1,\ldots,x_k taková, že $\theta_1+\cdots+\theta_k=1$, se nazývá **afinní kombinace** bodů x_1,\ldots,x_k . Indukcí z definice afinní množiny lze snadno ukázat, že pokud C je afinní množina, $x_1,\ldots,x_k\in C$ a $\theta_1+\cdots+\theta_k=1$, potom bod $\theta_1x_1+\cdots+\theta_kx_k\in C$.

Nechť C je afinní množina a $x_0 \in C$, potom množina

$$V = C - x_0 = \{x - x_0 \mid c \in C\}$$

je **vektorový prostor**, tj. množina, která je uzavřená na sčítání a násobení skalárem.

Afinní množinu C lze vyjádřit jako

$$C = V + x_0 = \{v + x_0 \mid v \in V\},\$$

kde V je vektorový prostor a x_0 je počátek. Poznamenejme, že vektorový prostor V asociovaný s afinní množinou C nezávisí na volbě počátku x_0 . **Dimenze** afinního množiny $C = V + x_0$ je definována jako dimenze vektorového prostoru $V = C - x_0$, kde x_0 je libovolný prvek z C. Množina všech affiních kombinací bodů množiny $C \subseteq \mathbb{R}^n$ se nazývá **affiní obal** množiny C. Affiní obal množiny C budeme značit

aff
$$C = \{\theta_1 x_1 + \dots + \theta_k x_k \mid x_1, \dots, x_k \in C, \theta_1 + \dots + \theta_k = 1\}$$
.

Affiní obal je nejmenší affiní množina, která obsahuje množinu C. Tedy, jestliže S je affiní množina taková, že $C \subseteq S$, potom **aff** $C \subseteq S$.

1.3 Konvexní množiny

Říkáme, že množina C je **konvexní**, jestliže úsečka mezi libovolnými dvěma body z C leží také v C. Jinak řečeno, jestliže pro libovolné dva body $x_1, x_2 \in C$ a libovolné $\theta \in \langle 0, 1 \rangle$ platí, že $\theta x_1 + (1-\theta)x_2 \in C$. Poznamenejme, že každá afinní množina je zároveň konvexní množinou. Podobně jako affiní kombinaci definujeme **konvexní kombinaci** bodů x_1, \ldots, x_k jako $\theta_1 x_1 + \cdots + \theta_k x_k$, kde $\theta_1 + \cdots + \theta_k = 1, \theta_i \geq 0$ pro $i = 1, \ldots, k$. **Konvexní obal** množiny C je množina všech konvexních kombinací bodů z množiny C, značíme

conv
$$C = \{\theta_1 x_1 + \dots + \theta_k x_k \mid x_i \in C, \theta_i \ge 0, i = 1, \dots, k, \theta_1 + \dots + \theta_k = 1\}.$$

Analogicky, konvexní obal množiny C je nejmenší konvexní množina, která obsahuje množinu C. Pro představu viz obrázek 1.1.

1.4 Kužely

Množina C se nazývá **kužel**, jestliže pro každé $x \in C$ a $\theta \geq 0$ platí, že $\theta x \in C$. Je-li C navíc konvexní, pak se C nazývá **konvexní kužel**. Tedy C je konvexní kužel, jestliže pro libovolné $x_1, x_2 \in C$ a $\theta_1, \theta_2 \geq 0$ platí, že $\theta_1 x_1 + \theta_2 x_2 \in C$. Říkáme, že bod ve tvaru $\theta_1 x_1 + \cdots + \theta_k x_k$, kde $\theta_1, \ldots, \theta_k \geq 0$ je **kuželovou kombinací** bodů x_1, \ldots, x_k . Dále, pokud x_i leží v konvexním kuželu množiny C, potom libovolná kuželová kombinace bodu x_i leží rovněž

(a) Množina bodů C

(b) conv C

Obrázek 1.1: Konvexní obal množiny

v konvexním kuželu množiny C. Platí, že množina C je konvexní kužel právě tehdy, když C obsahuje všechny kuželové kombinace svých bodů. **Kuželový obal** množiny C je množina, která obsahuje všechny kuželové kombinace množiny C, tj.

$$\{\theta_1 x_1 + \dots + \theta_k x_k \mid x_i \in C, \theta_i > 0, i = 1, \dots, k\}.$$

Kuželový obal množiny C je zároveň nejmenší konvexní kužel, který obsahuje množinu C. Pro představu viz obrázek 1.2.

1.5 Nadroviny a poloprostory

Nadrovina je množina ve tvaru

$$\left\{x \mid a^T x = b\right\},\,$$

kde $a \in \mathbb{R}^n$, $a \neq 0$ a $b \in \mathbb{R}$. Analyticky se na nadrovinu koukáme jako na množinu všech řešení netriviální lineární rovnice. Geometricky zase jako na množinu všech bodů takových, že mají konstantní skalární součin s normálovým vektorem a. Konstanta b značí posunutí nadroviny od počátku. Nadrovinu také můžeme vyjádřit jako

$${x \mid a^T(x - x_0) = 0} = x_0 + {v \mid a^Tv = 0},$$

(a) Množina bodů C

Obrázek 1.2: Kuželový obal množiny

kde x_0 je libovolný bod této nadroviny a $\{v \mid a^T v = 0\}$ je množina všech vektorů, které jsou kolmé k normálovému vektoru a. Nadrovina je tedy množina, která obsahuje bod x_0 a libovolný bod ve tvaru $x_0 + v$, kde v je vektor, který je kolmý k normálovému vektoru a. Pro ilustraci v \mathbb{R}^2 viz obrázek 1.3a.

Nadrovina dělí \mathbb{R}^n na dva poloprostory. Množina

$$\{x \mid a^T x \le b\}$$
, resp. $\{x \mid a^T x < b\}$,

kde $a \neq 0$ se nazývá (uzavřený) **poloprostor**, resp. **otevřený poloprostor**. Je to tedy množina všech řešení netriviální lineární nerovnice. Podobně jako nadrovinu, můžeme poloprostor vyjádřit ve tvaru

$$\{x \mid a^T(x - x_0) \le 0\}, \text{ resp. } \{x \mid a^T(x - x_0) < 0\},$$

kde $a \neq 0$ a x_0 je libovolný bod z nadroviny $\{x \mid a^Tx = b\}$. Poloprostor tedy obsahuje bod x_0 a libovolný bod $x_0 + v$, kde v je vektor, který s vnějším normálovým vektorem svírá tupý nebo pravý úhel. Tato interpretace je v \mathbb{R}^2 ilustrována na obrázku 1.3b. Ještě poznamenejme, že poloprostory jsou konvexní množiny, ale samozřejmě nejsou affiní.

1.6 Polyedry a polytopy

(b) Poloprostor

Obrázek 1.3: Nadrovina a poloprostor v $\mathbb{R}^2.$

Kapitola 2

Lineární programování

2.1 Formulace úlohy

Úlohou lineárního programování rozumíme minimalizaci nebo maximalizaci lineární **účelové funkce** vzhledem k lineárním **omezením**, kde tato omezení mohou být dána soustavou lineární rovnic a nerovnic. Úlohu lineárního programování lze formulovat v několika tvarech, které se liší zadáním omezení. Úloha lineárního programování ve **standardním tvaru** má svá omezení dána soustavou lineárních rovnic Ax = b. Tedy

$$\min\left\{c^T x \mid Ax = b, x \ge 0\right\},\tag{LP-P}$$

kde $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^n$, $x \in \mathbb{R}^n$ a $c \in \mathbb{R}^n$. Přípustná množina řešení je průnikem affiního prostoru, který je definován soustavou rovnic Ax = b a **nezáporného ortantu**, tj. množiny $\{x \in \mathbb{R}^n \mid x_i \geq 0, i = 1, \dots, n\}$. Obě tyto množiny jsou konvexní a tedy i jejich průnik je rovněž konvexní množina. Dále, protože přípustnou množinu máme popsanou soustavou konečně mnoha lineárních rovnic a nerovnic, geometricky se na úlohu LP-P můžeme koukat jako na minimalizaci lineární funkce přes polyedr, který je definován touto soustavou.

2.2 Dualita

2.3 Komplementární skluzovost

Kapitola 3 Semidefinitní programování

Kapitola 4 Kuželové programování

Část II Kombinatorické úlohy

Kapitola 5 Shannonova kapacita

Kapitola 6 Maximální řez

Kapitola 7

Problém obchodního cestujícího

Část III Implementace

Kapitola 8 Lovászova theta funkce

Kapitola 9 Maximální řez

Závěr