Презентация по лабораторной работе 11

Модель системы массового обслуживания М|М|1

Сидорова Н.А.

19 апреля 2025

Российский университет дружбы народов, Москва, Россия

Объединённый институт ядерных исследований, Дубна, Россия

Общая система

Сеть Петри для самой системы, сервер и генератор заявок описываются отдельными сетями, также здесь есть позиции очередь и обслуженная заявка

Рис. 1: Общая система

Генератор заявок

Сеть Петри для генератора заявок. Имеет позиции текущая заявка, следующая заявка и очередь. Два перехода: распределение поступления заявок и определение поступления заявки в очередь

Рис. 2: Генератор заявок

Сервер

Сеть Петри для сервера. Имеет позиции: очередь, сервер занят, сервер простаивает и заявка выполнена. Переходы: старт и стоп работы сервера.

Рис. 3: Сервер

Декларации

Декларации: определния множеств, инициализация переменных, объявление функций

```
Opulous
VL11.cpn
   Sten: 0
   Time: 0
  ▶ Options
  ► History
  ▼ Declarations
    ▼Standard declarations
      colset BOOL
     colset STRING
    ▼System
      colset UNIT
      vcolset INT = int:
      vcolset Server = with server timed:
      ▼colset JobType = with A | B;
      vcolset lob = record iobType : lobType * AT : INT:
     colset Serverxlob
      vcolset Jobs = list Job:
      var proctime : INT;
      var jobs : Jobs:
      ▼var iob : Job:
      vfun intTime() = IntInf.toInt (time());
      ▼fun newJob() = {iobType =JobType.ran(), AT = intTime()};
      ▼fun expTime (mean: int) =
           let
              val realMean = Real, fromInt mean
              val rv = exponential((1.0/realMean))
             floor (rv+0.5)
```

Моделирование

Моделирование системы

Рис. 5: Моделирование

Observer

Мониторинг параметров очереди. Изменение функции Observer чтобы получить значение задержки в очереди

```
▼Monitors

Dostanovka

▼ Queue Delay

► Type: Data collection

► Nodes ordered by pages

► Predicate

▼ Observer

fun obs (bindelem) = let

fun obsBindElem (Server'Start (1, {job,jobs,proctime})) = (intTime() - (#AT job))

| obsBindElem _ = ~1
in
obsBindElem bindelem
end

► Init function
```

Рис. 6: Observer

Изменение функции Predicate чтобы останавливать мониторинг

```
▼ Monitors

▼ Ostanovka

Type: Break point

► Nodes ordered by pages

▼ Predicate
fun pred (bindelem) =
let
fun predBindElem (Server'Start (1,
{job.jobs,proctime})) = Queue_Delay.count () = 200
| predBindElem _ = false
in
predBindElem bindelem
end

▼ Output Delay
```

Рис. 7: Predicate

Queue Delay.log

Значения файла Queue Delay.log, содержащие значение задержки очереди, счетчик, шаг, время

Код графика

Код для создания графика задержки в очереди

```
Правка Поиск Вид Документ
Файл
                                    Справка
#!/usr/bin/qnuplot -persist
# задаём текстовую кодировку,
# тип терминала, тип и размер шрифта
set encoding utf8
set term pdfcairo font "Arial,9"
# задаём выходной файл графика
set out 'window 1.pdf'
plot "Queue Delay.log" using ($4):($1) with lines
```

Рис. 9: Код графика

График задержки

График задержки в очереди

Рис. 10: График

Queue Delay Real

Добавляем монитор Queue Delay Real и изменяем функцию Observer для действительных значений

```
▼ Monitors

▼ Queue Delay Real

► Type: Data collection

► Nodes ordered by pages

► Predicate

▼ Observer

fun obs (bindelem) = let

fun obsBindElem (Server'Start (1, {job.jobs,proctime})) = Real.fromInt(intTime() - (#AT job))

| obsBindElem _ = ~1.0

in

obsBindElem bindelem

end

► Init function
```

Рис. 11: Queue Delay Real

Queue Delay Real.log

Значения Queue Delay Real.log

Файл	Правка	Поиск	Вид	Документ	Справка
#data	counter	step t	ime		10.70
0.0000	000 1 3 6	53			
0.0000	000 2 6 2	248			
0.0000	000 3 9 2	287			
0.0000	000 4 12	792			
0.0000	000 5 15	1046			
76.000	0000 6 18	3 1126			
0.0000	000 7 21	1344			
98.000	0000 8 27	7 1461			
161.00	00000 9 2	29 1536			
182.00	00000 10	32 159	7		
264.00	00000 11	35 170	Θ		
149.00	00000 12	37 171	8		
129.00	00000 13	39 177	6		
26.000	0000 14 4	13 1821			
210.00	00000 15	46 203	1		

Long Delay Time

Добавляем монитор Long Delay Time и изменяем функцию Observer чтобы посчитать сколько раз задержка превысила заданное значение

```
VLong Delay Time
    Type: Data collection
    Nodes ordered by pages
    Predicate
    Vobserver
    fun obs (bindelem) =
        if IntInf.toInt(Queue_Delay.last()) >= (!longdelaytime)
        then 1
        else 0
        Init function
        Stop
        Ostanovia
```

Рис. 13: Long Delay Time

Новая переменная

Добавляем новую переменную в декларации

- Declarations
 - Standard declarations
 - ▼globref longdelaytime = 200;
 - colset BOOL
 - colset STRING
 - System

Рис. 14: Новая переменная

Код для графика

Код для графика в какие периоды значения задержки в очереди превышали заданное

```
#!/usr/bin/gnuplot -persist
# задаём текстовую кодировку,
# тип терминала, тип и размер шрифта

set encoding utf8
set term pdfcairo font "Arial,9"

# задаём выходной файл графика
set out 'window_2.pdf'
plot [0:][0:1.2] "Long_Delay_Time.log" using ($4):($1) with lines
```

Рис. 15: Код

Long Delay Time log

Значения Long Delay Time log

```
Файл Правка Поиск Вид Документ Справка
#data counter step time
0 1 3 10
1 2 7 503
0 3 10 521
0 4 13 643
1 5 15 726
0 6 18 1395
0 7 21 1505
0 8 24 1627
0 9 27 1826
0 10 30 2011
1 11 42 2322
1 12 45 2478
1 13 47 2570
1 14 50 2628
1 15 52 2646
1 16 56 2903
1 17 58 3009
1 18 60 3084
1 19 62 3096
1 20 64 3128
1 21 67 3274
1 22 69 3333
1 23 71 3356
1 24 75 3532
1 25 77 3535
A 26 79 3565
```

значения задержки в очереди превышали

График в какие периоды значения задержки в очереди превышали заданное

