MLE for Poisson Process with Increasing Rate

Aresh Pourkavoos

July 27, 2024

Observe time range [0,T), obtain events at times $\mathbf{t} = (t_1,\ldots,t_n)$, where $n \geq 1, 0 < t_1 < \ldots < t_n < T$ Events generated by Poisson process with rate function $\lambda:[0,T)\to[0,\infty)$

Log-likelihood of observation: $\ell(\lambda; \mathbf{t}) = \sum_{i=1}^{n} \ln(\lambda(t_i)) - \int_{0}^{T} \lambda(t) dt$ If λ unrestricted, can obtain arbitrarily high $\ell(\lambda; \mathbf{t})$ by concentrating value around observations Instead, assume λ (non-strictly) increasing: how to maximize $\ell(\lambda; \mathbf{t})$ (equivalently, minimize $-\ell(\lambda; \mathbf{t})$)? Given increasing λ , may define increasing λ' as follows:

$$\lambda'(t) = \begin{cases} 0 & t \in [0, t_1) \\ \lambda(t_i) & t \in [t_i, t_{i+1}) \text{ for } 1 \le i \le n \text{ (convention: } t_{n+1} = T) \end{cases}$$

Intuition: replace rate before first event with 0, extend rate at each event to the right until next event Then $\lambda'(t) \leq \lambda(t)$ for all t, so $\int_0^T \lambda'(t) dt \leq \int_0^T \lambda(t) dt$, and $\lambda'(t_i) = \lambda(t_i)$ for all i, so $\sum_{i=1}^n \ln(\lambda'(t_i)) = \sum_{i=1}^n \ln(\lambda(t_i))$ Thus $\ell(\lambda'; \mathbf{t}) \geq \ell(\lambda; \mathbf{t})$, so search space may be restricted to all such λ' :

if MLE among λ' does not exist, it does not exist in general, and if it does, it is MLE in general From here, λ assumed to be of this form

 λ may be parameterized by $\lambda_1 = \lambda(t_1), \ldots, \lambda_n = \lambda(t_n)$ Then $\ell(\lambda; \mathbf{t}) = \sum_{i=1}^n \ln(\lambda_i) - \sum_{i=1}^n s_i \lambda_i$, where $s_i = t_{i+1} - t_i > 0$ λ increasing, so $0 < \lambda_1 \leq \ldots \leq \lambda_n$

Lemma: Let f be a convex function over convex $C \subseteq \mathbb{R}^n$, let $D \subseteq \mathbb{R}^n$ be closed and convex, and suppose $C \cap D$ is nonempty. If f attains min over C at $\mathbf{x} \notin D$, then f attains min over $C \cap D$ at some $\mathbf{w} \in \partial D$.

Proof: Let y be a point in $C \cap D$ where f is minimized. Then the segment between x and y intersects ∂D (if $\mathbf{y} \in \partial D$, at \mathbf{y} itself). Call this intersection \mathbf{z} . Then $f(\mathbf{z}) \leq f(\mathbf{y})$ by convexity.

Apply lemma with $C = (\mathbb{R}^+)^n$, $D = \{ \lambda = (\lambda_1, \dots, \lambda_n) \in \mathbb{R}^n \mid \lambda_1 \leq \dots \leq \lambda_n \}$

WTS: if unconstrained problem has $\lambda_i > \lambda_{i+1}$ for some i, then constrained problem has $\lambda_i = \lambda_{i+1}$ (for one of those i, not an arbitrary one at first) Next, WTS

Integral of MLE is underside of convex hull of $\{(t_i,i)\mid 0\leq i\leq n+1\}$ $(t_0=0)$ May help find bias/variance