Supporting Information to Estimating the Initial Susceptible Fraction in Dengue Dynamics"

Flavio Codeço Coelho

& Luiz Max de Carvalho

A remark on prior distributions and tail behavior of the distribution of R_t

There are a number of approaches to deriving the distribution of R_t . Alternatively to the approach described in the main text (Ederer and Mantel, 1974), one could use the conditional distribution of R_t on Y_{t+1} and Y_t as defined in equation A7 of Nishiura et al. (2010):

$$f_R(R_t) = (Y_t R_t)^{Y_{t+1}} e^{-Y_t R_t} \tag{1}$$

Noticing the kernel of (1) is that of a gamma distribution with $a_2 = Y_{t+1} + 1$ and $b_2 = Y_t$, we obtain a proper density from which to construct $c_{\alpha}(R_t)$, simply by computing the appropriate quantiles of said distribution. This density is

$$f_N(R_t|a_2, b_2) = \frac{b_2^{a_2}}{\Gamma(a_2)} R_t^{a_2 - 1} e^{-b_2 R_t}$$
(2)

In order to decide which approach to take, it may be of use analyzing the variance and tail behavior of the derived distributions for R_t . Consider the case of using a flat Uniform(0,1) prior for θ_t . With $a_0 = b_0 = 1$, $a_1 = a_2$ and $b_1 = b_2 + 1$. The beta prime (inverse beta distribution) will have heavier tails compared to the conditional distribution proposed by Nishiura et al. (2010), thus providing more conservative confidence/credibility intervals. To see that one needs simply take the ratio of the Beta prime and Gamma (unnormalized) densities and evaluate the limit as R_t goes to infinity:

$$\lim_{R_t \to \infty} \frac{f_P(R_t|a_1, b_1)}{f_N(R_t|a_2, b_2)} = \lim_{R_t \to \infty} \frac{e^{Y_t R_t}}{(1 + R_t)^{Y_t + Y_{t+1} + 2}} = \infty$$
(3)

As a side note, the Bayesian approach presented in this paper will give similar results to those of Wilson (1927) and Wilson (1927) for Y_{t+1} and $Y_t >> 1$. Under the flat uniform prior for θ_t , the Bayesian posterior credibility interval is nearly indistinguishable from the confidence interval proposed by Clopper and Pearson (1934) for $Y_{t+1}, Y_t > 20$. Note that the Beta(1, 1) uniform prior for θ_t constitutes a poor prior choice mainly because the induced distribution for R_t is only well-defined for $b_0 > 2$.

An advantage of the Bayesian approach is that one can devise prior distributions for θ_t taking advantage of the intuitive parameterization and flexibility of the beta family of distributions. Prior

elicitation can also be done for R_t and the hyperparameters directly plugged into the prior for θ_t . One can, for example, choose a priori mean and variance for R_t and find a_0 and b_0 that satisfy those conditions. Let m_0 and v_0 be the prior expectation and variance for R_t . After some tedious algebra one finds

$$a_0 = \frac{m_0 v_0 + m_0^3 + m_0^2}{v_0} \tag{4}$$

$$b_0 = \frac{2v_0 + m_0^2 + m_0}{v_0} \tag{5}$$

If one wants only to specify m_0 and a coefficient of variation c^{-1} for R_t a priori, some less boring algebra gives:

$$a_0 = \frac{m_0^3 c^2 + m_0^3 + m_0^2}{m_0^2 c^2} \tag{6}$$

$$b_0 = \frac{2m_0^2c^2 + m^2 + m}{m_0^2c^2} \tag{7}$$

This approach thus makes possible to incorporate epidemiological knowledge about disease biology (e.g. the magnitude of R_0) into the computation of R_t . This may prove particularly important when disease counts are low and/or close to the detection threshold. We provide an R script to perform the above elicitation at https://github.com/fccoelho/paperLM1/blob/master/aux/elicit_Rt_prior.R.

 $^{^{1}}c=\sqrt{v_{0}}/m_{0}.$

Figure 1: Block diagram detailing the stochastic model. Infected individuals with different Dengue viruses are represented by different colors. Infections are also represented by colored arrows matching the virus type.

Multi-strain dynamics

In order to validate the estimates derived in the paper, we simulated multi-strain Dengue dynamics by means of a stochastic 4-serotype SIR model with cross-immunity as described below. The model permits up to 4 dengue infections with reduced susceptibility after the first Dengue episode due to cross immunity. Immunity to each serotype is considered complete and permanent. Figure xx depicts all possible states and state-transitions included in the model.

Let S be individuals susceptible to all 4 types of dengue, I_i infectious with Dengue type i and R_i individuals recovered from Dengue type i. Infectious individuals already on their secondary and later Dengue infections are represented by multiple indices. For example, $I_{[23]1}$ is an individual which has had Dengues type 2 and 3 in the past – and therefore is immune to them – and is currently transmitting Dengue 1. The index outside the bracket denotes current infection. Recovered individuals indices denote their immunity, so for instance R_{123} is an individual which is immune to Dengue types 1, 2 and 3, but not to 4. Let $I_{*i} = \sum I_{[...]i}$ with [...] representing exposure history of the infected individual which can vary from 0 to 3 in length. All individuals are born to the S state and birth and death rates are equal.

The possible state-transitions and their propensities are listed in table 1.

The model is implemented as a continuous time Markov jump process. Let

$$\overrightarrow{X}(t) = [S(t), I_1(t), I_2(t), \dots, R_{1234}(t)]$$

be the state of the system at the time t. The system is written as a forward Kolmogorov differential

Table 1: State-transitions and propensities: $P(\Delta X(t)|X(t))$. The transitions are summarized below. Fully expanded, the system contemplates 64 possible state transitions, as can be verified in figure 1.

Transition	Propensity	State Change	Description
$S \to I_i$	βSI_{*i}	$\Delta S(t) = -1, \ \Delta I_i(t) = 1$	Primary infection
$I_i \to R_i$	σI_i	$\Delta I_i(t) = -1, \ \Delta R_i(t) = 1$	Primary recovery
$R_i \to I_{[i]j}$	$\beta \delta R_i I_{*j}$	$\Delta R_i(t) = -1, \Delta I_{[i]j}(t) = 1$	Secondary infection
$I_{[i]j} \to R_{ij}$	$\sigma I_{[i]j}$	$\Delta I_{[i]j}(t) = -1, \Delta R_{ij}(t) = 1$	Secondary recovery
$R_{ij} \to I_{[ij]k}$	$\beta \delta R_{ij} I_{*k}$	$\Delta R_{ij}(t) = -1, \Delta I_{[ij]k}(t) = 1$	Tertiary infection
$I_{[ij]k} \to R_{ijk}$	$\sigma I_{[ij]k}$	$\Delta I_{[ij]k}(t) = -1, \Delta R_{ijk}(t) = 1$	Tertiary recovery
$R_{ijk} \to I_{[ijk]l}$	$\beta \delta R_{ijk} I_{*l}$	$\Delta R_{ijk}(t) = -1, \Delta I_{[ijk]l}(t) = 1$	Quaternary infection
$I_{[ijk]l} \to R_{ijkl}$	$\sigma I_{[ijk]l}$	$\Delta I_{[ijk]l}(t) = -1, \ \Delta R_{ijkl}(t) = 1$	Quaternary recovery
$\rightarrow S$	μN	$\Delta S = 1$	Birth
$All \rightarrow$	μN	$\Delta A l l = -1$	Death

equation, which in matrix form looks like

$$\frac{dP_X(t)}{dt} = QP_X(t) \tag{8}$$

Where $P_X(t)$ is the matrix of transition probabilities (given in table 1) and Q is the generator matrix, whose non-zero values are also given in table 1 (in the state change column). The full formula and matrices are ommitted due to their large sizes.

References

Clopper, C. and Pearson, E. S. (1934). The use of confidence or fiducial limits illustrated in the case of the binomial. *Biometrika*, pages 404–413.

Ederer, F. and Mantel, N. (1974). Confidence limits on the ratio of two poisson variables. *American Journal of Epidemiology*, 100(3):165–167.

Nishiura, H., Chowell, G., Heesterbeek, H., and Wallinga, J. (2010). The ideal reporting interval for an epidemic to objectively interpret the epidemiological time course. *J R Soc Interface*, 7(43):297–307.

Wilson, E. B. (1927). Probable inference, the law of succession, and statistical inference. *Journal of the American Statistical Association*, 22(158):209–212.