Національний технічний університет України «КПІ ім. Ігоря Сікорського» Факультет інформатики та обчислювальної техніки Кафедра інформаційних систем та технологій

Лабораторна робота № 3

з дисципліни «Спеціальні розділи математики-2. Чисельні методи»

на тему

«Розв'язання систем лінійних алгебраїчних рівнянь (СЛАР) ітераційними методами. Метод простої ітерації. Метод Зейделя»

Виконав:

студент гр. ІС-34

Колосов Ігор

Викладач:

доц. Рибачук Л.В.

Зміст

1. Постановка Задачі

2 Завдання

Якщо матриця не ϵ матрицею із діагональною перевагою, звести систему до еквівалентної, у якій ϵ діагональна перевага (виконати письмово, включити в звіт). Можна, наприклад, провести одну ітерацію метода Гауса, зкомбінувавши рядки з метою отримати нульовий недіагональний елемент у стовпчику.

Розробити програму, що реалізує розв'язання системи методом простої ітерації та методом Зейделя. Обчислення проводити з з кількістю значущих цифр m=6. Для кожної ітерації розраховувати нев'язку r=b-Ax, де x — отриманий розв'язок.

Розв'язати задану систему рівнянь за допомогою програмного забезпечення Mathcad. Навести результат перевірки: вектор нев'язки $r = b - Ax_m$, де x_m — отриманий у Mathcad розв'язок.

Порівняти корені рівнянь, отримані у Mathcad, із власними результатами за допомогою методу середньоквадратичної похибки.

2. Вихідна система рівнянь

10	(2,12 0,42 1,34	0,88	(11,172)
	0,42 3,95 1,87	0,43	0,115
	1,34 1,87 2,98		0,009
	0,88 0,43 0,46		9,349

3. Письмовий етап приведення матриці до діагональної переваги

			ST VICE	
2.6 0.42 1.34 0	2088		Dignie	7 4 13
0.92 3.39 1.48	0 43		TPe46020	
1.39 1.47 2.34	0.46			vermora,
0.38 0.43 0.46	4.49	9.309	naddisou	Jytuco 1.34-
[2,12 0.42 1.34 0.58]	11.172	7 3.9	hepaso lo	
0.42 3.56 1.17 0.43	0.110		e36080 paguy	
0.20 1.60 2.31 0.02	-6.517	i house	suce itemas	besurest
0.43 0.46 4.44	8.349] e e e	nestil.	
1.933 -0.44 -0.2		14.35	Tlepone	Total total
0.42 3.95 1.88	0.43			
0-24 1.66. 2.31	0.02	-0.67	1	
0.44 0.43 0.46	4.94	4.349		
(1.317 -0.450	-0.247	0.127	13.332	1.747 > 1.762
0.42 3.45	1.41	0.43	0.115	2.34 > 5.15
0.28 1.66		0.02	-5.517	2.31 > 1,36
0.44 0.43	ous	444	4.399	4.44 > 1.32
		+ + +		

- 4. Результати трьох та останньої ітерації методу (Із вектором нев'язки)
- Метод Якобі

```
(jacobi) a @ x - b; iteration 1
+0.91410, -0.47586, +2.17940, +5.46723
-> x, with change (x_new - x) 7.46055
+7.46055, +0.02911, -2.41429, +2.10563
```

(jacobi) a @ x - b; iteration 2 +0.01364, -2.50860, +0.03213, -0.83234 -> x, with change (x_new - x) 1.23136 +6.94902, +0.14959, -3.35775, +0.87427

(jacobi) a @ x - b; iteration 3
-0.45374, +0.05140, +1.05586, +0.25997
-> x, with change (x_new - x) 0.63509
+6.94139, +0.78467, -3.37165, +1.06174

(jacobi) a @ x - b; iteration 23
-0.00000, -0.00002, +0.00001, +0.00000
-> x, with change (x_new - x) 0.00001
+7.21770, +1.08341, -4.07630, +0.99249

(jacobi) a @ x - b, change (x_new - x): 0.00001 -0.00000, -0.00002, 0.00001, 0.00000

- Метод Зейделя

```
(seidel) a @ x - b; iteration 1
          +1.47184, -4.75409, +0.01976, +0.00000
      -> x, with change (x new - x) 7.46055
          +7.46055, -0.76416, -2.76946, +0.98790
(seidel) a @ x - b; iteration 2
          -0.73110, -1.51066, +0.00250, +0.00000
      -> x, with change (x new - x) 1.29114
          +6.63691, +0.52698, -3.60601, +1.11277
(seidel) a @ x - b; iteration 3
          -0.18601, -0.58611, -0.00167, +0.00000
      -> x, with change (x new - x) 0.40912
          +7.04604, +0.86593, -3.90025, +1.02934
(seidel) a @ x - b; iteration 14
          -0.00000, -0.00001, -0.00000, +0.00000
      -> x, with change (x new - x) 0.00001
          +7.21771, +1.08341, -4.07631, +0.99249
(seidel) a @ x - b, change (x_new - x): 0.00001, epsilon: 0.00001
 -0.00000, -0.00001, -0.00000, 0.00000
```

5. Копія розв'язку задачі у Mathcad; Вектор нев'язки

$$\begin{aligned} \text{jacobi} &= \begin{pmatrix} 7.218 \\ 1.083 \\ -4.076 \\ 0.992 \end{pmatrix} \quad b^{\text{T}} - \text{A-jacobi} &= \begin{pmatrix} 2.708 \times 10^{-6} \\ 1.531 \times 10^{-5} \\ -1.176 \times 10^{-5} \\ -1.113 \times 10^{-6} \end{pmatrix} \\ \text{seidel} &= \begin{pmatrix} 7.218 \\ 1.083 \\ -4.076 \\ 0.992 \end{pmatrix} \quad b^{\text{T}} - \text{A-seidel} &= \begin{pmatrix} 3.852 \times 10^{-6} \\ 1.112 \times 10^{-5} \\ 2.466 \times 10^{-8} \\ 0 \end{pmatrix} \\ \text{sol} &:= 1 \text{solve} (\text{A}, \text{b}^{\text{T}}) = \begin{pmatrix} 7.218 \\ 1.083 \\ -4.076 \\ 0.992 \end{pmatrix} \quad b^{\text{T}} - \text{A-sol} &= \begin{pmatrix} 0 \\ 0 \\ 0 \\ -1.776 \times 10^{-15} \end{pmatrix} \end{aligned}$$

6. Порівняння власного розв'язку та розв'язку отриманого у Mathcad

python_sol :=
$$(7.21770 \ 1.08341 \ -4.07630 \ 0.99249)$$

python_sol^T - sol =
$$\begin{pmatrix} -8.577 \times 10^{-6} \\ -6.312 \times 10^{-6} \\ 1.137 \times 10^{-5} \\ 1.111 \times 10^{-6} \end{pmatrix}$$

7. Лістинг розв'язку Mathcad

8. Лістинг програми

```
import numpy as np
from lib_print import *
np.set_printoptions(precision=6, suppress=True, floatmode="fixed")
```

```
def is strictly diagonally dominant(matrix):
    for i in range(matrix.shape[0]):
        if abs(matrix[i, i]) <= np.sum(np.abs(matrix[i, :])) -</pre>
abs(matrix[i, i]):
            return False
    return True
# за завданням
vector b = np.array([11.172, 0.115, 0.009, 9.349]).T
matrix a = np.array([
 [2.12, 0.42, 1.34, 0.88],
 [0.42, 3.95, 1.87, 0.43],
 [1.34, 1.87, 2.98, 0.46],
 [0.88, 0.43, 0.46, 4.44],
])
# результат допрограмового етапу
matrix a = np.array([
    [1.787, -0.758, -0.277, 0.127],
    [0.42, 3.95, 1.87, 0.43],
    [0.28, 1.66, 2.31, 0.02],
    [0.88, 0.43, 0.46, 4.44]])
vector b = np.array([13.332, 0.115, -5.577, 9.349])
print(is strictly diagonally dominant(matrix a))
a = matrix a.copy()
b = vector b.copy()
n = a.shape[0]
print(printer(a, f"{ANSI.Styles.BOLD} Matrix A{ANSI.Styles.RESET}",
default style=ANSI.Styles.ITALIC), end="\n\n")
print(printer(b.reshape(-1, 1), f"{ANSI.Styles.BOLD} Vector
b{ANSI.Styles.RESET}", default style=ANSI.Styles.ITALIC), end="\n\n")
def jacobi(a, b, epsilon=1e-5, max iterations=1000):
```

```
print strouput = f" {ANSI.Styles.BOLD}{ANSI.FG.BLUE}JACOBI
ALGORYTHM{ANSI.Styles.RESET}\n\n"
    default print style = ANSI.FG.BRIGHT BLACK
    n = a.shape[0]
    D inv = np.diag(1 / np.diag(a))
    iteration matrix = np.eye(n) - D inv @ a
    iteration vector = D inv @ b
    x = np.zeros like(b)
    print highlights diag = [highlight([(i, i) for i in
range(a.shape[0])], ANSI.FG.BLUE, 1, f"{ANSI.Styles.BOLD}Diagonal ")]
    print highlights not diag = [highlight([(i, i) for i in
range(a.shape[0])], ANSI.FG.BRIGHT BLACK, 1,
f"{ANSI.Styles.BOLD}Diagonal ")]
    print strouput += printer(D inv, ANSI.Styles.BOLD +" (jacobi) D
inverted", print highlights diag,
default style=ANSI.Styles.ITALIC+ default print style,
formatting="+0.5f") + "n"
    __print_strouput += printer(iteration matrix, ANSI.Styles.BOLD +"
(jacobi) iteration matrix ", print highlights not diag,
formatting="+0.5f", default style=ANSI.Styles.ITALIC) + "\n\n"
    print strouput += printer(iteration vector.reshape(-1, 1),
ANSI.Styles.BOLD +" (jacobi) iteration vector ",
default style=ANSI.Styles.ITALIC) + '\n\n'
    for i in range(max iterations):
        x \text{ new} = \text{iteration matrix } @ x + \text{iteration vector}
        error = np.max(np.abs(x new - x))
        print strouput += "\n" + printer((a @ x new - b).reshape(-1,
1), f"\n\n{ANSI.Styles.BOLD} (jacobi) a @ x - b; iteration {1+i:2d}
{ANSI.Styles.RESET}", formatting= "+0.5f",
default style=ANSI.FG.BRIGHT BLACK+ANSI.Styles.ITALIC, pre_row_str="
") + " \setminus n"
        __print_strouput += printer(x_new.reshape(-1, 1),
```

```
f"{ANSI.Styles.BOLD} -> x, with change (x new - x) {ANSI.FG.RED}
{error:0.5f} ", [], "+0.5f",
default style=ANSI.Styles.ITALIC+ANSI.FG.BRIGHT BLACK, pre row str="
       if error < epsilon:</pre>
            print strouput += printer((a @ x new - b).reshape(-1, 1),
f"\n\n{ANSI.Styles.BOLD} (jacobi) a @ x - b, change (x new - x):
{ANSI.FG.RED} {error:0.5f}{ANSI.Styles.RESET}",
default style=ANSI.FG.GREEN+ANSI.Styles.ITALIC, formatting="0.5f")
           print( print strouput)
           return x new
        x = x new
    return x
def seidel(a, b, epsilon=1e-5, max iterations=1000):
   n = a.shape[0]
   x = np.zeros like(b)
    print strouput = f" {ANSI.Styles.BOLD}{ANSI.FG.BLUE}Seidel
ALGORYTHM{ANSI.Styles.RESET}"
    for k in range(max iterations):
        x new = np.zeros like(x)
        for i in range(n):
            sum1 = sum(a[i,j] * x_new[j] for j in range(i))
            sum2 = sum(a[i,j] * x[j] for j in range(i+1, n))
            x \text{ new[i]} = (b[i] - sum1 - sum2) / a[i,i]
        error = np.max(np.abs(x new - x))
        __print_strouput += "\n" + printer((a @ x_new - b).reshape(-1,
```

```
1), f"\n\n{ANSI.Styles.BOLD} (seidel) a @ x - b; iteration {1+k:2d}
{ANSI.Styles.RESET}", formatting= "+0.5f",
default style=ANSI.FG.BRIGHT BLACK+ANSI.Styles.ITALIC, pre row str="
") + " \setminus n"
        __print_strouput += printer(x_new.reshape(-1, 1),
f"{ANSI.Styles.BOLD}
                       -> x, with change (x new - x) {ANSI.FG.RED}
{error:0.5f} ", [], "+0.5f",
default style=ANSI.FG.BRIGHT BLACK+ANSI.Styles.ITALIC, pre row str="
")
       if error < epsilon:</pre>
           break
        x = x new
    print strouput += printer((a @ x new - b).reshape(-1, 1),
f''(ANSI.Styles.BOLD) \n\n (seidel) a @ x - b, change (x new - x):
{ANSI.FG.RED} {error:0.5f}{ANSI.Styles.RESET}, {ANSI.FG.BLUE}epsilon:
{epsilon:0.5f}", default style=ANSI.Styles.ITALIC+ANSI.FG.GREEN,
formatting="0.5f")
   print( print strouput)
   return x
sei = seidel(a.copy(), b.copy())
print()
jac = jacobi(a.copy(), b.copy())
print(printer((jac).reshape(-1, 1), f"{ANSI.Styles.BOLD}\n\n (jacobi)
{ANSI.FG.RED} {ANSI.Styles.RESET}",
default style=ANSI.Styles.ITALIC+ANSI.FG.GREEN, formatting="0.5f"),
print(printer((sei).reshape(-1, 1), f"{ANSI.Styles.BOLD}\n\n (seidel)
{ANSI.FG.RED} {ANSI.Styles.RESET}",
default style=ANSI.Styles.ITALIC+ANSI.FG.GREEN, formatting="0.5f"))
```