1 Derivation of conditional distribution

The probability distribution over a vector $y \in \{-1, +1\}^d$ is given by,

$$p(y|b, w) = \frac{1}{Z} \prod_{i=1}^{d} \exp(b_i y_i) \prod_{(i,j) \in \text{pairs}} \exp(w_{ij} y_i y_j).$$

By conditional probability p(a,b) = p(a|b)p(b)

$$p(y|b, w) = p(y_{i}|y_{-i}, b, w)p(y_{-i}|b, w)$$

$$p(y_{i}|y_{-i}, b, w) = \frac{p(y|b, w)}{p(y_{-i}|b, w)}$$

$$= \frac{p(y|b, w)}{\sum_{y_{i}} p(y|b, w)}$$

$$p(y_{i} = 1, y_{-i}|b, w) = \frac{p(y|b, w)}{p(y_{-i}, y_{i} = -1|b, w) + p(y_{-i}|y_{i} = 1, b, w)}$$

$$Substituting the probability definition$$

$$= \frac{1}{Z(y_{-i})} \frac{\prod_{k=1}^{d} \exp(b_{k}y_{k}) \prod_{(k,j) \in \text{pairs}} \exp(w_{kj}y_{k}y_{j})}{\sum_{y_{k}} \prod_{k=1}^{d} \exp(b_{k}y_{k}) \prod_{(k,j) \in \text{pairs}} \exp(w_{kj}y_{k}y_{j})}$$
(1)

The common terms in the numerator and denominator cancel out, and only the terms that contain i survive. Further we substitute both values of y_i . Note, that the normalizing constant depend on y_{-i}

$$p(y_{i} = 1 | y_{-i}, b, w) = \frac{\exp(b_{i}) \prod_{j \in nb(i)} \exp(w_{ij}y_{j})}{\exp(-b_{i}) \prod_{j \in nb(i)} \exp(-w_{ij}y_{j}) + \exp(b_{i}) \prod_{j \in nb(i)} \exp(w_{ij}y_{j})}$$

$$Since, \exp(a) \exp(b) = \exp(a + b)$$

$$= \frac{\exp(b_{i} + \sum_{j \in nb(i)} w_{ij}y_{j})}{\exp(-b_{i} - \sum_{j \in nb(i)} w_{ij}y_{j}) + \exp(b_{i} + \sum_{j \in nb(i)} w_{ij}y_{j})}$$

$$Dividing \ by \ the \ numerator$$

$$= \frac{1}{1 + \exp(-2(b_{i} + \sum_{j \in nb(i)} w_{ij}y_{j}))}$$

$$= \sigma(2(b_{i} + \sum_{j \in nb(i)} w_{ij}y_{j})) \quad \text{Since}, \ \sigma(x) = 1/(1 + \exp(-x))$$

2 Pseudo-Code for Gibbs Sampling

```
Algorithm 1: Gibbs Sampling
 1 /* Input model parameters and number of iterations
   Input: t_{max}, b, w
 2 Init y^0 \in \mathbb{R}^d;
 3 for t \leftarrow 1 to t_{max} do
       y^t \leftarrow y^{t-1};
       /* Iterate over the dimensions
 5
                                                                                                                                */
       for i \leftarrow 1 to d do
 6
           /* Sample r \in \{-1,1\} from the conditional distribution
 7
           r \backsim P(Y_i|Y_{-i} = y_{-i}^t, b, w) ;
 8
           y_i^t \leftarrow r
 9
       end for
10
11 end for
12 return y^0, ..., y^{t_{max}}
```

3 Samples

Figure 1 – Samples obtained from Gibbs algorithm over 100 iterations for $\tilde{w} \in \{0..1, .2, .3, .4, .5\}$. y initialized as $\{+1\} \in \mathbb{R}^d$

4 Discussion

Given the probability distribution $(y|b,w) \propto \exp(w_{i,j}y_i,y_j)$, we see that for higher values of w_{ij} , the neighbouring pixels are inclined to have the same value. Initially, the images are $\{+1\}^d$ and progressively they form larger regions of pixels with the same values. For large values of $w \geq 0.5$, the images are mostly white, due to the initialization.

5 Mixing Times

Figure 2 – Plot of the E[y] over 100 independent Markov chains for $\tilde{w} \in \{0..1, .2, .3, .4, .5\}$, when initialized with $\{-1\}^d$

6 Discussion

We see that the rate of convergence of E[y] is inversely proportional to the value of w; smaller $w \in \{0, .1, .2, .3, .4\}$ converge to 0 within 100 iterations, while $w \in \{0.4, 0.5\}$ have not yet converged. The quality of samples improves with the number of iterations. Since Gibbs sampling is initialized with $\{-1\}^d$, higher values of w, would want neighbouring pixles to have same values (-1)

7 Fixed Parameter Denoising

Figure 3 – Mean image obtained from Gibbs with w = 0.3 and b = 0.5

Per-pixel Averaged Mean Absolute Error = 0.65397

8 Varying Paramters

The default values of $w_{ij} = 0.3$ and $b_i = 0.5$ give a MAE = 0.65397. From inital analysis, we see that for $\theta_2 > 10$, $\theta_1 > 2$, there is only a marginal improvement or degradation in MAE, as see in Figure. We limit the ranges of $\theta_1 \in [0, .5, 1, 2]$ and $\theta_2 \in [0, .3, 1, 5, 10]$. We use a *Grid Search* over this parameter space to find the best combination. We find that for $\theta_1 = 0.5$ and $\theta_2 = 5$, we get the lowest error.

Lowest Mean Absolute Error: 0.1366

9 Varying w as a function of x

We modify w_{ij} such that it is dependent on x. Thus the new probability distribution $p(y|b,w) \propto \prod_{(i,j) \in pairs} \exp(\theta_2 f(x) y_i y_j)$. Having f(x) term ensures that the samples obtained from the distribution "mimic" the noisy image. This could help preserving the *details* from the noisy input.

For this experiment, we choose f(x) as a convolution operation. $w_{i,j} = \sum_{k \in nb(x_{i,j})} f_k x_k$. The motivation behind this, is that using the neighbourhood of x_{ij} would give a better estimate of the value of the $x_{i,j}$.

We define a Gaussian kernel with filter sizes $f \in \{5, 7, 10, 20\}$ and standard deviation $\sigma \in \{1, 2, 3\}$. We perform a convolution operation on x using this filter with appropriate padding. We take element-wise absolute value and the values bewtween [3, 12] to obtain the final w. We see that a larger kernel size leads to more smoothing with a loss of detail.

Mean Absolute Error = 0.11 (+2%) improvement

