MATH-F410 – REP. DES GROUPES & APP. A LA PHYS.

Séances d'exercices 2023-2024

Séance 5 : Représentations des groupes cristallographiques et groupes de Coxeter

- 1. On considère le groupe $R_{\{3,3\}}$ du tétraèdre, c-à-d le sous-groupe fini de SO(3) qui laisse le tétraèdre invariant.
 - (a) Montrer que ce groupe est isomorphe au groupe alterné A_4 , c-à-d le sous-groupe de S_4 formé par les permutations paires.
 - (b) Calculer les classes d'éléments conjugués de $R_{\{3,3\}} \sim A_4$ (attention : deux permutations conjugués dans S_4 ne sont pas nécessairement conjuguées dans A_4).
 - (c) Donner le nombre et les dimensions des représentations irréductibles de $R_{\{3,3\}}$.
- 2. Montrer que le groupe de symétrie complet du triangle équilatéral est engendré par deux réflexions s_1 et s_2 (que l'on choisit arbitrairement parmi les trois réflexions de ce triangle), c'est-à-dire que tout élément du groupe peut s'écrire comme un produit de s_1 et s_2 .

Vérifier que s_1 et s_2 satisfont la relation $(s_1s_2)^3 = e$.

3. On appelle groupe de Coxeter tout groupe engendré par un nombre fini de réflexions s_i (i = 1, ..., n) soumises aux relations suivantes :

$$s_i^2 = e ,$$
 $(s_i s_j)^{m_{ij}} = e ,$ $m_{ij} = m_{ji} \in \mathbb{Z} , \ge 2 .$

A tout groupe de Coxeter, on associe un graphe qui contient n noeuds. Soit deux noeuds i et j:

- si $m_{ij} = 2$ ils sont disconnectés;
- si $m_{ij} = 3$ ils sont reliés par une ligne;
- si $m_{ij} > 3$ ils sont reliés par une ligne labellisée par m_{ij} .
- (a) Montrer que si $m_{ij} = 2$ alors s_i et s_j commutent.
- (b) Vérifier que les groupes dihédraux D_p (qui sont les groupes de symétries complets des polygones réguliers contenant les rotations d'angle $\frac{2\pi k}{p}$ et p réflexions) sont les groupes de Coxeter de graphe

(c) Montrer que le groupe de Coxeter de graphe

est isomorphe à S_{n+1} .

(d) Soit G un groupe de Coxeter cristallographique. Démontrez que m_{ij} ne peut prendre que les valeurs 2,3,4,6.