Topic V: Hypothesis Testing (appendix)

Wei You

Fall, 2023

The Normal Model

Assume $X = (X_1, \dots, X_n)$ is a random sample from $\mathcal{N}(\mu, \sigma)$.

Common Statistics

Based on the sample mean and sample variance $ar{X}$ and S^2 define

$$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}}, \quad T = \frac{\bar{X} - \mu}{S / \sqrt{n}}, \quad V = \frac{n - 1}{\sigma^2} S^2.$$

We know Z has the standard normal distribution, T has the student-t distribution with DoF n-1, and V has the χ^2 distribution with DoF n-1. Moreover, Z and V are independent.

They are natural test statistics when the parameters are replaced by the values in the null hypothesis.

Quantiles

Let $p \in (0,1)$ and $k \in \mathbb{N}$

Quantiles

- ullet z(p) denotes the quantile of order p for the standard normal distribution.
- $t_k(p)$ denotes the quantile of order p for the student-t distribution with DoF k.
- $\chi_k^2(p)$ denotes the quantile of order p for the chi-square distribution with DoF k.

Test of the Mean with Known Variance

One-sample z-test

- When μ is unknown and σ is known. For a conjectured μ_0 , the statistic $Z = \frac{X \mu_0}{\sigma/\sqrt{n}}$ has normal distribution $\mathcal{N}(\frac{\mu \mu_0}{\sigma/\sqrt{n}}, 1)$. The significance level $\alpha \in (0, 1)$ is given.
- $H_0: \mu = \mu_0$ versus $H_1: \mu \neq \mu_0$.
 - Reject H_0 if Z is too big or too small.
 - Define $R = \{\mathbf{x} : Z \leq z(\alpha/2) \text{ or } Z \geq z(1-\alpha/2)\}$. Under H_0 , $\beta(\mu_0) = \mathbb{P}(\mathbf{X} \in R | \mu = \mu_0) = \alpha$. So the significance level (maximum type I error) is α .
- $H_0: \mu \leq \mu_0$ versus $H_1: \mu > \mu_0$.
 - Reject H₀ if Z is too big.
 - Define $R = \{\mathbf{x} : Z \ge z(1-\alpha)\}$. The significance level is $\max_{\mu \le \mu_0} \mathbb{P}(Z \ge z(1-\alpha)) = \alpha$.

Cont.

- p-value: the two-sided test has p-value $2(1 \Phi(|Z|))$. It is the area under the standard normal PDF outside Z and -Z. The left(right)-tailed test has p-value $1 \Phi(Z)$ ($\Phi(Z)$).
- The power function of the two-sided test is

$$\beta(\mu) = \mathbb{P}\left(\frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \in (-\infty, z(\alpha/2) + \frac{\mu_0 - \mu}{\sigma/\sqrt{n}}) \cup (z(1 - \alpha/2) + \frac{\mu_0 - \mu}{\sigma/\sqrt{n}}, \infty)\right).$$

- $\beta(\cdot)$ is decreasing on $(-\infty, \mu_0)$ and increasing on (μ_0, ∞) . $\beta(\mu_0) = \alpha$.
- $\beta(-\infty) = \beta(\infty) = 1$.
- Increasing n or decreasing σ makes the test uniformly more powerful.
- For the left-tailed test, $\beta(\mu) = 1 \Phi\left(z(1-\alpha) + \frac{\mu_0 \mu}{\sigma/\sqrt{n}}\right)$.
 - $\beta(\cdot)$ is increasing; $\beta(\mu_0) = \alpha$; $\beta(-\infty) = 0$ and $\beta(\infty) = 1$.
- Derive the power function for the right-tailed test after class.

Test of the Mean with Unknown Variance

One-sample *t*-test

- If σ is unknown, we cannot use Z as a test statistic.
- A natural thought is to replace σ by S, the sample SD. Let $T=\frac{\bar{X}-\mu_0}{S/\sqrt{n}}$. If $\mu=\mu_0$ (under H_0), then $T\sim t_{n-1}$. Similarly, consider tests of significance level α .
 - $H_0: \mu = \mu_0$ versus $H_0: \mu \neq \mu_0$. We reject it when T is too small or too large. Let $R = \{\mathbf{x}: T < t_{n-1}(\alpha/2) \text{ or } T > t_{n-1}(1-\alpha/2)\}$. The significance level is $\mathbb{P}(\mathbf{X} \in R | \mu = \mu_0) = \alpha$.
 - $H_0: \mu \leq \mu_0$ versus $H_0: \mu > \mu_0$. Let $R = \{\mathbf{x}: T > t_{n-1}(1-\alpha)\}$. The significance level is $\max_{\mu \leq \mu_0} \mathbb{P}(\mathbf{X} \in R) = \mathbb{P}(\mathbf{X} \in R | \mu = \mu_0) = \alpha$. Similar for $H_0: \mu \geq \mu_0$.
 - The p-value of the tests are $2(1-F_{t,n-1}(|T|))$ (two-sided) and $1-F_{t,n-1}(T)$ (left-tailed).
 - The power function cannot be computed explicitly.

Tests for Standard Deviation of Normal Models

Equal-tailed chi-squared test

- From previous examples, the key to construct a test statistic is to make sure that
 - Its distribution is known under H_0 .
 - The value of the statistic is closely related to whether H_0 is true.
- Consider normal samples with unknown σ and want to test $\sigma=\sigma_0$. Let $V=\frac{n-1}{\sigma_0^2}S^2$. If $\sigma=\sigma_0$, then $V\sim\chi_{n-1}^2$.
- Consider $H_0: \sigma = \sigma_0$ versus $H_1: \sigma \neq \sigma_0$.
 - We reject H_0 if V is too small or too large.
 - For $\alpha \in (0,1)$, let $R = \{\mathbf{x} : V < \chi^2_{n-1}(\alpha/2) \text{ or } V > \chi^2_{n-1}(1-\alpha/2) \}$. Its significance level is $\mathbb{P}(V \in R | \sigma = \sigma_0) = \alpha$.
- The one-sided tests follow similarly. Try to derive the p-value of given x.

The Test for Non-normal Population

Normal approximation of non-normal population

- Consider X_i drawn from Bernoulli(p). Want to test p.
- Use the statistic $Y = \sum_{i=1}^{n} X_i$. Under $H_0: p = p_0$, $Y \sim Binom(n, p)$. For given α , let $R = \{\mathbf{x}: Y < b_{n,p_0}(\alpha/2) \text{ or } Y > b_{n,p_0}(1-\alpha/2)\}$. Its significance level is α .
- The one-sided test and their power functions follow analogously.
- When n is large, $Z = \frac{Y np_0}{\sqrt{np_0(1-p_0)}}$ is approximately standard normal under H_0 . We can use $R = \{Z < z(\alpha/2) \cup Z > z(1-\alpha/2)\}$.
- The same approximation can be used for any distribution if you want to test their means. Simply use Z, T, V and the quantiles.

Two-sample Normal Model: Test Means with Known Variances

Suppose $\boldsymbol{X}=(X_1,\ldots,X_{n_1})$ and $\boldsymbol{Y}=(Y_1,\ldots,Y_{n_2})$ are random samples from $\mathcal{N}(\mu_x,\sigma_x)$ and $\mathcal{N}(\mu_y,\sigma_y)$.

- We want to test want to test $H_0: \mu_x = \mu_y$ (or $\mu_x \leq \mu_y$).
- Conditions: independent populations; normal distribution, or n_1 and n_2 large enough; known σ_x and σ_y .
- Use

$$Z = \frac{\bar{X} - \bar{Y} - (\mu_x - \mu_y)}{\sqrt{\sigma_x^2 / n_1 + \sigma_y^2 / n_2}}$$

which has standard normal distribution when $\mu_x = \mu_y$.

- If $|Z|>z(1-\alpha/2)$, then p-value is less than α . Equivalently, H_0 is rejected at significance level α .
- We seldom mention power in practice, which is usually hard to analyze.

Two-sample *t*-test

Example: We observe X_1, \ldots, X_{n_1} , and Y_1, \ldots, Y_{n_2} , want to test $H_0: \mu_x - \mu_y = \delta$ (or similar hypotheses).

- Conditions: independent populations; normal distribution, or n_1 and n_2 large enough; unknown variances.
- Equal variance: use pooled estimator: $S_{xy}^2 = \frac{\sum_{i=1}^{n_1} (X_i \bar{X})^2 + \sum_{i=1}^{n_2} (Y_i \bar{Y})^2}{n_1 + n_2 2}$ (from HW4, it is UMVUE!); it this a unbiased estimator for the variance of two populations, whether or not they have the same mean.
- Unequal variance: use S_x^2 and S_y^2 .
- Use

$$T = \frac{\bar{X} - \bar{Y} - \delta}{S_{xy}\sqrt{1/n_1 + 1/n_2}} \quad \text{for equal variance,}$$

$$V = \frac{\bar{X} - \bar{Y} - \delta}{\sqrt{S_x^2/n_1 + S_y^2/n_2}} \quad \text{for unequal variance.}$$

Two-sample *t*-test

For the equal-V case,

- Under H_0 , T follows a t-distribution $n_1 + n_2 2$.
- If $T < t_{n_1+n_2-2}(\alpha/2)$ or $T > t_{n_1+n_2-2}(1-\alpha/2)$, then p-value is less than α .

For the unequal case,

• Under H_0 , V approxiamtely follows a t-distribution with DoF

$$\frac{(S_x^2/n_1 + S_y^2/n_2)^2}{(S_x^2/n_1)^2/(n_1 - 1) + (S_y^2/n_2)^2/(n_2 - 1)}.$$

This approximation is better done when both n_1 and n_2 are larger than 5. The test is called the Welch's t-test.

Two-sample Paired *t*-test

Example: Similar to the previous example, observe $(X_1, Y_1), \ldots, (X_n, Y_n)$, want to test $H_0: \mu_x = \mu_y$ (or $\mu_x \leq \mu_y$).

- Conditions: correlated populations; normal distribution, or n large enough.
- This time, we use

$$T = \frac{\bar{X} - \bar{Y}}{S_{x-y}/\sqrt{n}}.$$

Under H_0 , it is t-distribution with DoF n-1. How is it different from the unpaired version?

Two-sample F-test

Example: Observe X_1, \ldots, X_{n_1} , and Y_1, \ldots, Y_{n_2} , want to test $H_0: \sigma_x^2/\sigma_y^2 = \rho$ $(H_0: \sigma_x^2/\sigma_y^2 > \rho)$.

- Normal population or large samples
- Under H_0 , $F = \frac{S_x^2}{\rho S_y^2}$ follows a F distribution with DoF $n_1 1$ and $n_2 1$.
- For one-sided test, if $F < F_{n_1-1,n_2-1}(\alpha)$, reject H_0 .
- For two-sided test, if $F < F_{n_1-1,n_2-1}(\alpha/2)$ or $F > F_{n_1-1,n_2-1}(1-\alpha/2)$, reject H_0 .

χ^2 -test for One-sample Bernoulli Model

Example: Suppose X_1, \ldots, X_n is a random sample from Bernoulli distribution with p. We want to test H_0 : $p = p_0$.

- We have mentioned this test. Define the statistic $Z=\frac{\sum_{i=1}^n X_i-np_0}{\sqrt{np_0(1-p_0)}}$. It is approximately normal for large n. So we reject it if $|Z|\geq z(1-\alpha/2)$.
- Equivalently, $R = \left\{V = Z^2 > \chi_1^2 (1 \alpha)\right\}$
- Simple algebra implies

$$V = \frac{\left(\sum_{i=1}^{n} X_i - np_0\right)^2}{np_0} + \frac{\left(\sum_{i=1}^{n} (1 - X_i) - n(1 - p_0)\right)^2}{n(1 - p_0)}$$
$$= \frac{(O_0 - E_0)^2}{E_0} + \frac{(O_1 - E_1)^2}{E_1}.$$

χ^2 -test for Multi-sample Bernoulli Model

Now for multi-sample. Let $X_i = (X_{i,1}, \dots, X_{i,n_i})$ be a random sample from Bernoulli population i for $i \in \{1, \dots, m\}$.

- The completely specified case
 - The null hypothesis H_0 : the probabilities are (p_1, \ldots, p_m) .
 - Define

$$V = \sum_{i=1}^{m} \left(\frac{\left(\sum_{j=1}^{n_i} X_{i,j} - n_i p_i\right)^2}{n_i p_i} + \frac{\left(\sum_{j=1}^{n_i} (1 - X_{i,j}) - n_i (1 - p_i)\right)^2}{n_i (1 - p_i)} \right)$$
$$= \sum_{i=1}^{m} \frac{(O_i - E_i)^2}{E_i} \approx \chi_m^2.$$

- The test statistic measures the discrepancy between the expected and observed frequencies, over all outcomes and all samples.
- The DoF here is m.
- Reject if $V > \chi_m^2 (1 \alpha)$.

χ^2 -test for Multi-sample Bernoulli Model

Let $X_i = (X_{i,1}, \dots, X_{i,n_i})$ be a random sample from Bernoulli population i for $i \in \{1, \dots, m\}$.

- The equal probability case
 - The null H_0 : $p_1 = p_2 = \cdots = p_m$.
 - Under H_0 , the m samples can be combined to form one large sample of Bernoulli trials. Thus, a natural approach is to estimate p and then define the test statistic that measures the discrepancy between the expected and observed frequencies.
 - We can consider the test statistic

$$V = \sum_{i=1}^{m} \left(\frac{(\sum_{j=1}^{n_i} X_{i,j} - n_i p)^2}{n_i p} + \frac{(\sum_{j=1}^{n_i} (1 - X_{i,j}) - n_i (1 - p))^2}{n_i (1 - p)} \right)$$

where $p = \frac{1}{n} \sum_{i=1}^{m} \sum_{j=1}^{n_i} X_{i,j}$ is the total frequency.

- It can be shown that $V \sim \chi^2_{m-1}$ approximately.
- We lose one DoF because we have to estimate p.

χ^2 -test for One-sample Multinomial Model

- One-sample multinomial test: X_1, \ldots, X_n drawn from multinomial trials with outcome possible outcomes (a_1, \ldots, a_k) . Want to test H_0 : the probabilities are (f_1, \ldots, f_k) with $\sum_{j=1}^k f_j = 1$.
- Construct

$$V = \sum_{j=1}^{k} \frac{(O_j - E_j)^2}{E_j}.$$

where $O_j = \sum_{i=1}^n \mathbb{1}_{X_i = a_j}$ is the observations of a_j , and $E_j = nf_j$ is the expected number of observations of a_j .

- Bernoulli is the special case of k=2.
- Approximately, $V \sim \chi^2_{k-1}$. (See Theorem 6.9, Jun Shao for details.)
- Can you generalize it to multi-sample case? And test equal PMF? Hint: DoFs are m(k-1) and (m-1)(k-1).

Goodness of Fit Tests

- The one-sample multinomial model can be used to test whether a sample is drawn from a particular distribution.
- Example: Observe X_1, \ldots, X_n , want to test $H_0: X_i \sim \mathcal{N}(0,1)$. We can partition \mathbb{R} into, say, 10 regions denoted A_j .
 - The null hypothesis is $\mathbb{P}(X \in A_j) = \mathbb{P}(Z \in A_j)$ for all j.
 - Use the multinomial χ^2 test.
- We usually want to partition the domain \mathbb{R} as much as possible, but make sure each region should have more than 5 samples.
- If it is not a single distribution but a parametric family, say, $\mathcal{N}(\mu, \sigma)$, then estimate μ and σ first and then proceed as above.

Test of Independence

- Observe discrete samples (X_1, Y_1) , ..., (X_n, Y_n) , want to test H_0 : X is independent of Y.
- Build a frequency table of X and Y. Say $\#\{X=a_i,Y=b_j\}=M_{ij}$, and the marginal frequency $M_{\cdot j}$ and $M_{i\cdot}$.
- Construct the following test statistics:

$$V = \sum_{i=1}^{I} \sum_{j=1}^{J} \frac{(M_{ij} - M_{i.}M_{.j}/n)^{2}}{M_{i.}M_{.j}/n}.$$

The limiting distribution of V is $\chi^2_{(I-1)(J-1)}$. How to find the DoF? (I-1)(J-1)=IJ-(I-1)-(J-1)-1.

For continuous random variables, first group them by a partition.

A Non-Parametric Test – Kolmogorov-Smirnov Test

If we do not specify the family of distribution, we many consider the following hypotheses

$$H_0: F=F_0, \quad \text{versus} \quad H_1: F \neq F_0.$$

Let F_n be the empirical cdf (sufficient statistic!) and let

$$D_n(F) = \sup_{x} |F_n(x) - F(x)|.$$

Intuitively, if H_0 were true, one would expect $D_n(F_0)$ should be small.

Kolmogorov-Smirnov Test

The statistic $D_n(F_0)$ is called the Kolmogorov-Smirnov statistic. The rejection region is $D_n(F_0) > c$. Furthermore, for t > 0

$$\lim_{n \to \infty} \mathbb{P}(\sqrt{n}D_n(F) \le t) = 1 - 2\sum_{j=1}^{n} (-1)^{j-1} e^{-2j^2 t^2}.$$

Union-Intersection Tests

If the null hypothesis can be expressed as

$$H_0: \theta \in \bigcap_{\gamma \in \Gamma} \Theta_{\gamma}$$

Consider the test: $H_{0,\gamma}:\theta\in\Theta_{\gamma}$ v.s. $H_{1,\gamma}:\theta\in\Theta_{\gamma}^{c}$. If the rejection region for text γ is $\{\mathbf{x}:T_{\gamma}(\mathbf{x})\in R_{\gamma}\}$, then the rejection region for the test is

$$\bigcup_{\gamma \in \Gamma} \{ \mathbf{x} : T_{\gamma}(\mathbf{x}) \in R_{\gamma} \}$$

Example: (Normal LRT revisit) For a sample from $\mathcal{N}(\mu, \sigma^2)$.

Test $H_0: \mu = \mu_0 = \{\mu : \mu \leq \mu_0\} \cap \{\mu : \mu \geq \mu_0\}$ versus $H_1: \mu \neq \mu_0$.

Reject
$$H_0$$
 if $\frac{\bar{x} - \mu_0}{S/\sqrt{n}} \ge t^*$ or $\frac{\bar{x} - \mu_0}{S/\sqrt{n}} \le -t^*$

Intersection-Union Tests

If the null hypothesis can be expressed as

$$H_0: \theta \in \bigcup_{\gamma \in \Gamma} \Theta_{\gamma}$$

Consider the test: $H_{0,\gamma}: \theta \in \Theta_{\gamma}$ v.s. $H_{1,\gamma}: \theta \in \Theta_{\gamma}^{c}$. If the rejection region for test γ is $\{\mathbf{x}: T_{\gamma}(\mathbf{x}) \in R_{\gamma}\}$, then the rejection region for the test is

$$\bigcap_{\gamma \in \Gamma} \{ \mathbf{x} : T_{\gamma}(\mathbf{x}) \in R_{\gamma} \}$$