BIGTREETECH

CB2User Manual

Revision Log

Version	Date	Revision	
v1.00	April 24th, 2024	Initial Version	
V1.01	May 28th, 2024	Add account information for minimal version system	

Table of Contents

Re	vision Lo	g	2
1.	Produc	t Profile	4
	1.1.	Feature Highlights	4
	1.2.	Specifications	4
	1.3.	Dimensions	5
2. F	Periphera	al Interface	6
	2.1.	Pin Description	6
3.	Interfac	e Introduction	11
	3.1.	SW1 Button Explanation	11
	3.2.	40 pin GPIO	12
4.	Flashin	g the System	13
	4.1.	Download the System Image	13
	4.2.	Write System to MicroSD Card	13
	4.3.	Writing System onto eMMC	14
	4.3	3.1. Using RKDevTool to Write the eMMC (Windows)	14
	4.3	3.2. Writing System onto eMMC Using a MicroSD Card	17
	4.4.	Erasing eMMC	19
	4.4	1.1. Using RKDevTool to Erase eMMC (Windows)	19
	4.4	1.2. Erasing eMMC After Booting from MicroSD Card	19
5. 8	System C	Configuration	20
5.1	. Using	Ethernet	20
	5.2.	Setting Up WiFi	20
	5.3.	Configuring Overlays	20
	5.4.	Configuring the Display	21
	5.5.	Using SPI to CAN	22
	5.6.	Using CSI Camera and Crowsnest Configuration	22
	5.7.	Using Bluetooth	23
	5.8.	Setting up 3.5mm Headphones Port	25
6.	SSH C	onnect to Device	27
7	Precaut	tions	28

1. Product Profile

The BIGTREETECH CB2, compatible with the Raspberry Pi CM4 form factor, uses two 100-pin high-speed board-to-board (BTB) connectors for easy and quick connection with external expansion baseboards. It offers an alternative with similar IO capabilities, including Micro HDMI, USB, Gigabit Ethernet, DSI, and CSI outputs. Additionally, it features 2.4G and 5G WiFi, Bluetooth 5.2, the Rockchip RK3566 SoC, 2GB LPDDR4 RAM, and 32GB eMMC storage.

1.1. Feature Highlights

· CPU: Rockchip RK3566, quad-core Cortex-A55 @1.8GHz

GPU: Mali-G52 1-Core-2EE

NPU: 0.8 TOPS NPU

RAM: 2GB/4GB LPDDR4

Onboard EMMC

MIPI DSI display support

· Dual-lane MIPI CSI-2 Camera Interface

3x USB 2.0 ports, 1x USB 3.0 port

PCle 2.1 1x1 Lane

Gigabit Ethernet +433Mbps WiFi+BT5.0

· 40-pin GPIO

BTB socket that is completely identical to the one on the Raspberry Pi CM4

1.2. Specifications

Dimensions: 40mm x 55mm

Mounting Dimensions: 33mm x 48mm

Input Voltage: 5V±5%/2A

Output Voltage: 3.3V±2%/100mAOutput Voltage: 1.8V±2%/100mA

WIFI: 2.4G/5G, 802.11 ac/a/b/g/n/ wireless standards

1.3. Dimensions

2. Peripheral Interface

2.1. Pin Description

PIN	Connector	Signal	Description		
1	A connector_01	GND	Description		
2	A connector_02	GND			
3	A connector_03	GBIT MDI3 P			
4	A connector 04	GBIT_MDI3_F			
5	A connector_05	GBIT MDI3 N			
6	A connector_06	GBIT MDI1 N			
7	A connector 07	GND			
8	A connector_08	GND			
9	A connector_09	GBIT_MDI2_N			
10	A connector_10	GBIT_MDI0_N			
11	A connector_11	GBIT_MDI2_P			
12	A connector_12	GBIT_MDI0_P			
13	A connector_13	GND			
14	A connector_14	GND			
15	A connector_15	1000M LED			
16	A connector_16	CAMERAB PDN L			
17	A connector_17	100M LED			
18	A connector_18	SPDIF TX M2			
19	A connector_19	PWM3 IR			
20	A connector_20	NC			
21	A connector_21	WORKING_LEDEN_H			
22	A connector_22	GND			
23	A connector_23	GND			
24	A connector_24	GPIO0_C3			
25	A connector_25	GPIO4_C2			
26	A connector_26	GPIO4_C5			
27	A connector_27	GPIO4_C3			
28	A connector_28	GPIO0_C0			
29	A connector_29	GPIO0_A0			
30	A connector_30	GPIO3_D7			
31	A connector_31	GPIO0_C1			
32	A connector_32	GND			
33	A connector_33	GND			
34	A connector_34	NC			
35	A connector_35	GPIO0_B3			
36	A connector_36	GPIO0_B4			
37	A connector_37	GPIO0_A6			
38	A connector_38	GPIO3_C3			
39	A connector_39	GPIO4_A2			
40	A connector_40	GPIO3_C2			

41	A connector_41	GPIO0 C4	
42	A connector_42	GND	
43	A connector_43	GND	
44	A connector 44	GPIO3_C1	
45	A connector_45	GPIO4 A3	
46	A connector_46	GPIO1_A1	
47	A connector_47	GPIO4_C6	
48	A connector_48	GPIO1_A0	
49	A connector_49	GPIO0_C0	
50	A connector_50	GPIO0_C7	
51	A connector_51	GPIO0_D0	DEBUG UART
52	A connector_52	GND	
53	A connector_53	GND	
54	A connector_54	GPIO3_A1	
55	A connector_55	GPIO0_D1	DEBUG UART
56	A connector_56	GPIO4_B3	
57	A connector_57	SDC0-CLK	SDCARD Clock signal
58	A connector_58	GPIO4_B2	
59	A connector_59	GND	
60	A connector_60	GND	
61	A connector_61	SDC0-D3	SDCARD Data3 signal
62	A connector_62	SDC0-CMD	SDCARD CMD signal
63	A connector_63	SDC0-D0	SDCARD Data0 signal
64	A connector_64	NC	
65	A connector_65	GND	
66	A connector_66	GND	
67	A connector_67	SDC0-D1	SDCARD Data1 signal
68	A connector_68	NC ODER DO	000400000000000000000000000000000000000
69	A connector_69	SDC0-D2	SDCARD Data2 signal
70	A connector_70	NC CND	
71 72	A connector_71	GND NC	
73	A connector_72	GPIO0_B5	
74	A connector_73 A connector_74	GND	
75	A connector_75	GPIO3 D2	
76	A connector_76	GPIO3_D2	SDCARD detect
77	A connector_77	VCC_5V	5V IN /2A
78	A connector_78	NC	OV IIV/ZA
79	A connector_79	VCC 5V	5V IN /2A
80	A connector_80	GPIO4 B5	OV 114/2/1
81	A connector_81	VCC_5V	5V IN /2A
82	A connector_82	GPIO4 B4	33,2,,
83	A connector_83	VCC_5V	5V IN /2A
84	A connector_84	3V3	3.3v out /200mA
85	A connector_85	VCC_5V	5V IN /2A
	_		

86	A connector_86	3V3	3.3v out /200mA
87	A connector_87	VCC_5V	5V IN /2A
88	A connector_88	1V8	1.8v out /100mA
89	A connector_89	GPIO3 B4	
90	A connector_90	1V8	1.8v out /100mA
91	A connector_91	NC	
92	A connector_92	PWRON	
93	A connector_93	RECOVERY	
94	A connector_94	NC	
95	A connector_95	GPIO4_A1	
96	A connector_96	NC	
97	A connector_97	GPIO4_A5	
98	A connector_98	GND	
99	A connector_99	PMIC_PWRON	
100	A connector_100	AP-RESET	
101	B connector_1	USB_OTG0_ID	
102	B connector_2	PCIE20_CLKREQn_M2	
103	B connector_3	USB_OTG0_DM	
104	B connector_4	LINEOUTL	
105	B connector_5	USB_OTG0_DP	
106	B connector_6	LINEOUTR	
107	B connector_7	GND	
108	B connector_8	GND	
109	B connector_9	PCIE20_PERSTn_M2	
110	B connector_10	PCIE20_REFCLKP	
111	B connector_11	GPIO4_B0	
112	B connector_12	PCIE20_REFCLKN	
113	B connector_13	GND	
114	B connector_14	GND	
115	B connector_15	MIPI_CSI_RX_D0N	
116	B connector_16	PCIE20_RXP	
117	B connector_17	MIPI_CSI_RX_D0P	
118	B connector_18	PCIE20_RXN	
119	B connector_19	GND	
120	B connector_20	GND MIDL COL DV DAN	
121	B connector_21	MIPI_CSI_RX_D1N	
122	B connector_22	PCIE20_TXP	
123	B connector_23	MIPI_CSI_RX_D1P	
124	B connector_24	PCIE20_TXN	
125	B connector_25	GND	
126	B connector_26	GND MIDL CSL DV CLKON	
127	B connector_27	MIPI_CSI_RX_CLK0N	
128	B connector_28	USB3-DM	
129	B connector_29	MIPI_CSI_RX_CLK0P	
130	B connector_30	USB3-DP	

131	B connector_31	GND	
132	B connector_32	GND	
133	B connector_33	MIPI CSI RX D2N	
134	B connector_34	MIC1 IN	
135	B connector_35	MIPI CSI RX D2P	
136	B connector_36	MIC2 IN	
137	B connector 37	GND	
138	B connector_38	GND	
139	B connector_39	MIPI CSI RX D3N	
140	B connector_40	MIPI CSI RX CLK1N	
141	B connector_41	MIPI CSI RX D3P	
142	B connector_42	MIPI CSI RX CLK1P	
143	B connector_43	GPIO4 A7	
144	B connector_44	GND	
145	B connector_45	HP_SNS	
146	B connector_46	USB2_HOST2_DP	
147	B connector_47	HP_DET_L	
148	B connector_48	USB2_HOST2_DM	
149	B connector_49	SARADC_VIN2	
150	B connector_50	GND	
151	B connector_51	HCEC	HDMI CEC
152	B connector_52	USB3_HOST1_DP	
153	B connector_53	HHPD	HDMI Hotplug
154	B connector_54	USB3_HOST1_DM	
155	B connector_55	GND	
156	B connector_56	GND	
157	B connector_57	MIPI_DSI_TX0_D0N	
158	B connector_58	USB3_HOST1_SSTXP	
159	B connector_59	MIPI_DSI_TX0_D0P	
160	B connector_60	USB3_HOST1_SSTXN	
161	B connector_61	GND	
162	B connector_62	GND	
163	B connector_63	MIPI_DSI_TX0_D1N	
164	B connector_64	USB3_HOST1_SSRXP	
165	B connector_65	MIPI_DSI_TX0_D1P	
166	B connector_66	USB3_HOST1_SSRXN	
167	B connector_67	GND	
168	B connector_68	GND	
169	B connector_69	MIPI_DSI_TX0_CLKN	
170	B connector_70	HTX2P	HDMI TX2 Positive.
171	B connector_71	MIPI_DSI_TX0_CLKP	
172	B connector_72	HTX2N	HDMI TX2 Negative.
173	B connector_73	GND	
174	B connector_74	GND	
175	B connector_75	MIPI_DSI_TX1_D0N	

176	B connector_76	HTX1P	HDMI TX1 Positive.
177	B connector_77	MIPI_DSI_TX1_D0P	
178	B connector_78	HTX1N	HDMI TX1 Negative.
179	B connector_79	GND	
180	B connector_80	GND	
181	B connector_81	MIPI_DSI_TX1_D1N	
182	B connector_82	HTX0P	HDMI TX0 Positive.
183	B connector_83	MIPI_DSI_TX1_D1P	
184	B connector_84	HTX0N	HDMI TX0 Negative.
185	B connector_85	GND	
186	B connector_86	GND	
187	B connector_87	MIPI_DSI_TX1_CLKN	
188	B connector_88	HTXCP	HDMI CLK Positive.
189	B connector_89	MIPI_DSI_TX1_CLKP	
190	B connector_90	HTXCN	HDMI CLK Negative.
191	B connector_91	GND	
192	B connector_92	GND	
193	B connector_93	MIPI_DSI_TX1_D2N	
194	B connector_94	MIPI_DSI_TX1_D3N	
195	B connector_95	MIPI_DSI_TX1_D2P	
196	B connector_96	MIPI_DSI_TX1_D3P	
197	B connector_97	GND	
198	B connector_98	GND	
199	B connector_99	HSDA	HDMI I2C
200	B connector_100	HSCL	HDMI I2C

3. Interface Introduction

3.1. SW1 Button Explanation

The EMMC will not start when holding the SW1 button for 3 seconds while powering up. Releasing the button allows for programming the EMMC using the RKDevTool.

3.2. 40 pin GPIO

	40Pin-GPIO									
BTT Pi	CB1-eIIC	CB1	PI2/CB2	CM4		CM4	PI2/CB2	CB1	CB1-eMMC	BTT Pi
3. 3 v	9	5 v	5 v	5¥	5 V	5 v				
PC3	NC	NC	GP104_B2	GPIO 2 (I2C1 SDA)		5 v	5 v	5¥	5 v	5 v
PCO	NC	NC	GP104_B3	GPIO 3 (I2C1 SCL)		GND	GND	GND	GND	GND
PC7	PI14	PC7	GP103_A1	GPIO 4 (GPCLKO)		GPIO 14 (UART TX)	GIPIOO_D1	TX	TX	тх
GND	GND	GND	GND	GND	•	GPIO 15 (UART RX)	GIPIOO_DO	RX	RX	RX
PC14	PI15	PC14	GP100_C7	GPIO 17		GPIO 18 (PCM CLK)	G1P100_B0	PC13	P17	PC13
PC12	P16	PC12	GP101_A0	GP10 27		GND	GND	GND	GND	GND
PC10	P14	PC10	GP101_A1	GP10 22		GP10 23	GPIO4_C6	PC11	P15	PC11
3. 3 v	3. 3 v	3. 3 v	3. 3 V	3. 3V		GP10 24	GP104_A3	PC9	P13	PC9
PH7	PH7	РН7	GP103_C1	GPIO 10 (SPIO MOSI)		GND	GND	GND	GND	GND
РН8	РН8	РН8	GP103_C2	GPIO 9 (SPIO MISO)		GPIO 25	GPIOO_C4	NC	NC	PG13
РН6	РН6	PH6	GP103_C3	GPIO 11 (SPIO SCLK)	•	GPIO 8 (SPIO CEO)	GP104_A2	ИC	NC	PG 12
GND	GND	GND	GND	GND	•	GPIO 7 (SPIO CE1)	GP100_A6	PG8	PI11	P19
PC2	NC	NC	GP100_B4	GPIO 0 (EEPROM SDA)	0 0	GPIO 1 (EEPROM SCL)	GIP100_B3	PG7	PI10	PI10
PC4	NC	NC	GP103_D6	GPIO 5		GND	GND	GND	GND	GND
P15	P19	PG6	GP103_D7	GPIO 6		GPIO 12 (PWMO)	GP100_C1	PG9	PI12	PI6
PI14	NC	NC	GP100_C0	GPIO 13 (PWM1)		GND	GND	GND	GND	GND
PC6	PII	PC6	GP104_C5	GPIO 19 (PCM FS)		GPIO 16	GPIOO_AO	NC	NC	PG 1 1
PC15	PI13	PC15	GP100_C3	GPIO 26		GPIO 20 (PCM DIN)	GP104_C3	PH10	PH10	PH4
GND	GND	GND	GND	GND	•	GPIO 21 (PCM DOUT)	GP104_C2	PC8	PI2	PC8

The calculation method for GPIO pins is as follows:

4. Flashing the System

4.1. Download the System Image

Only use the image provided in the link: https://github.com/bigtreetech/CB2/releases

4.2. Write System to MicroSD Card

- 1. Download the balenaEtcher software from [https://www.balena.io/etcher/], install, and run it.
- 2. Insert the MicroSD card via a card reader.

3. Select your downloaded image.

4. Select the MicroSD card and click "Flash" (WRITE the image will format the MicroSD card. Be careful not to select the wrong storage device, otherwise the data will be formatted).

5. Wait for the process to complete.

4.3. Writing System onto eMMC

4.3.1. Using RKDevTool to Write the eMMC (Windows)

Download and unzip RKDevTool from the GitHub repository (https://github.com/bigtreetech/CB2) to your computer. DO NOT insert a MicroSD card.

1. Turn the DIP switch 4 (USBOTG) and 3 (RPIBOOT) to the ON position to enter BOOT mode.

- 2. Then, connect the Type-C cable to the computer.
- 3. Install the driver:

(1) In "Device Manager", if you see "Unknown Device", it indicates that the computer is missing

(2) Open the DriverAssistant tool in the downloaded RKDevTool folder, click "① Uninstall Driver", then click "② Install Driver" to ensure that the latest version of the driver is installed.

(3) After the installation is complete, hold down the "Recovery" button, replug the Type-C cable. "Device Manager" should now recognize a "Rockusb Device", indicating that the driver installation is successful.

4. Open the "RKDevTool" software:

Note: The parameters in the software are set by default as shown in the image. Normally, you only need to set the "④ actual path of the .img system". If the parameters in your software do not match those in the image, manually adjust them to match.

#		Storage	Address	Name	Path
1	7		0x00000000	Loader	\MiniLoaderAll.bin
2	V	EMMC	0x00000000	System	actual path of the .img system

- ①Find the path where the downloaded RKDevTool is located.
- ②Open the RKDevTool tool.
- ③The software will recognize a "LOADER" or "MASKROOM" device.
- ④ Select the system to be written (the OS image must be unzipped as a .img file beforehand; RKDevTool does not support directly writing compressed .xz files).
- ⑤Check "Write by Address".
- ⑥Click "Run" to start writting the system.
- 7 "Download image OK" indicates that the system has been successfully burned.
- 5. After writing is complete, toggle the USB OTG switch to the OFF position to boot normally. Note: Files on the eMMC cannot be accessed by the computer like those on a MicroSD card, so you cannot modify the system.cfg configuration file to set up the WiFi network. Instead, use an Ethernet cable or USB-to-UART connection to configure the terminal.

4.3.2. Writing System onto eMMC Using a MicroSD Card

- 1. First, write the system onto the MicroSD card. Then, insert the MicroSD card into the motherboard's card slot and wait for the system to boot.
- 2. Connect to the system terminal via Ethernet cable, WiFi, or USB to UART, and log in to the system.

login: biqu password: biqu

Execute the command sudo nand-sata-install. In the interface that pops up, select "2 Boot From eMMC - system on eMMC" and then select "OK"

(1) Select "Yes" to start erasing and writing the system onto the eMMC.

(2) Choose the filesystem "1 ext4" and then select "OK".

(3) Wait for the writing process to complete.

(4) Upon completion, you will be prompted whether to power off. Select "Power off" to shut down the system.

(5) After the system has powered down, disconnect the power supply, remove the MicroSD card, and then reconnect power. The system should now boot from the eMMC.

4.4. Erasing eMMC

When using a MicroSD card as the system card instead, it's best to erase the data on the eMMC to prevent the motherboard from booting from it by mistake.

4.4.1. Using RKDevTool to Erase eMMC (Windows)

- 1. Refer to the steps in "4.3.1 Using RKDevTool to Write the eMMC (Windows)" to connect the motherboard to the computer.
- 2. Open the "RKDevTool".

- 1) Find the path where the downloaded RKDevTool is located.
- ②Open the RKDevTool.
- ③The software will recognize a "LOADER" device. If it recognizes "MASKROOM," it indicates there is no data in the eMMC, hence no erase operation is necessary.
- 4 Click "Advanced Function."
- ⑤Click "EraseAll" to begin erasing data from the eMMC.
- 6"Erasing sectors success" indicates the erasure is complete.

4.4.2. Erasing eMMC After Booting from MicroSD Card

- 1. Refer to the steps in "4.3.2 Writing System onto eMMC Using a MicroSD Card" and log into the system terminal.
- 2. Run the command sudo mkfs /dev/mmcblk1 and then enter "y" to confirm.

5. System Configuration

5.1. Using Ethernet

Ethernet is plug-and-play and requires no additional setup.

5.2. Setting Up WiFi

After the system image has been written, the MicroSD card will have a FAT32 partition recognized by the computer. In this partition, there is a "system.cfg" file. Open it and replace "Your SSID" with your actual WiFi name and "Your Password" with the actual password.

5.3. Configuring Overlays

Open the "armbianEnv.txt" file in the BOOT partition and set the values for overlays. The configuration file supports only one line of overlays at a time; if multiple overlays are enabled, only the last line will take effect. If you need multiple overlays, place the contents of multiple configurations on the same line separated by a space. For example, if you need to use a DSI screen, MCP2515 SPI to CAN module, and I2C1 simultaneously:

overlays=dsi mcp2515 i2c1

5.4. Configuring the Display

1. Open the "armbianEnv.txt" file in the BOOT partition.

- 2. The default overlay is set to "hdmi," meaning the system uses an HDMI screen by default. This can be changed to match the actual screen being used, such as:
 - "hdmi": HDMI screen
 - · "dsi": DSI screen
 - · "tft_35": SPI Screen

For "tft_35", there is also a "tft35_spi_rotate" parameter for system-level screen rotation, with default "0" meaning no rotation, other options include "90", "180", "270".

Note: Only one screen type can be used at a time.

3. To configure KlipperScreen, open the `system.cfg` file in the BOOT partition. Set the screen type with the parameter `ks_src`, and the rotation angle with `ks_angle`.

5.5. Using SPI to CAN

Open the "armbianEnv.txt" file in the BOOT partition and add "mcp2515" to the overlays configuration.

5.6. Using CSI Camera and Crowsnest Configuration

For both RPi v1.3 ov5647 and RPi v2 imx219 cameras, no specific configuration in "armbianEnv.txt" is required as they are plug-and-play. "crowsnest.conf" file configuration is as follows:

device: /dev/video0 # The CSI camera node is fixed as video0

custom_flags: --format=UYVY # The current system's CSI camera does not support the default YUYV, so it needs to be set to the supported UYVY format.

5.7. Using Bluetooth

1. To scan for Bluetooth devices, enter the following command, and a list of Bluetooth devices will appear as shown below:

bluetoothctl --timeout 15 scan on

```
TX errors 0 dropped 0 overruns 0 carrier 0 collisi
root@Hurakan:~# bluetoothctl --timeout 15 scan on
Discovery started
[CHG] Controller 50:41:1C:F1:1B:DD Discovering: yes
[NEW] Device 61:81:3F:1B:B0:79 61-81-3F-1B-80-79
[NEW] Device 67:06:15:E1:7A:62 67-06-15-E1-7A-62
[NEW] Device 78:77:40:B5:D8:02 78-77-40-B5-D8-02
[NEW] Device 61:C5:14:23:27:CC 61-C5-14-23-27-CC
[NEW] Device 61:C5:14:23:27:CC 61-C5-14-23-27-CC
[NEW] Device 66:D8:78:63:4F:CD 6F-D8-78-63-4F-CD
[NEW] Device 65:D8:78:63:4F:CD 6F-D8-78-63-4F-CD
[NEW] Device 51:22:49:FC:CF:C1 51-22-49-FC-CF-C1
[NEW] Device 73:B9:D8:2D:F1:08 73-B9-D8-2D-F1-08
```

2. Find your Bluetooth device, for example, if your device name is "HONOR xSport PRO", locate the corresponding Bluetooth MAC ID as shown below.

```
[CHG] Device 42:70:F4:03:91:BA ManufacturerData Value:
10 07 7a 1f 3b 4d ef 5c 68
[CHG] Device 4E:B0:A9:B4:33:11 RSSI: -75
[CHG] Device 45:69:88:00:E0:7B RSSI: -92
[CHG] Device 7F:E1:35:CF:F8:A3 RSSI: -77
[CHG] Device 4E:B0:A9:B4:33:11 RSSI: -88
[CHG] Device 4E:B0:A9:B4:33:11 RSSI: -88
[CHG] Device 04:7A:0B:19:E7:AF ManufacturerData Value:
0a 10 ff ff ff 64 93 15 36 c3 sc de 20 11 08 08 ....d..6.\...
10 17 25 34
[NEW] Device 10:90:FA:50:CD:4F HONOR XSport PR0
[CHG] Device 04:7A:0B:19:E7:AF Class: 0x000a0110
[CHG] Device 04:7A:0B:19:E7:AF Icon: computer
[CHG] Device 04:7A:0B:19:E7:AF UUIDS: 0000fdaa-0000-1000-8000-00805f9b34fb
[CHG] Device 04:7A:0B:19:E7:AF UUIDS: 00001105-0000-1000-8000-00805f9b34fb
[CHG] Device 04:7A:0B:19:E7:AF UUIDS: 00001106-0000-1000-8000-00805f9b34fb
[CHG] Device 04:7A:0B:19:E7:AF UUIDS: 00001106-0000-1000-8000-00805f9b34fb
[CHG] Device 04:7A:0B:19:E7:AF UUIDS: 00001106-0000-1000-8000-00805f9b34fb
[CHG] Device 04:7A:0B:19:E7:AF UUIDS: 00001110-0000-1000-8000-00805f9b34fb
[CHG] Device 04:7A:0B:19:E7:AF UUIDS: 00001112-0000-1000-8000-00805f9b34fb
[CHG] Device 04:7A:0B:19:E7:AF UUIDS: 000011200-0000-1000-8000-00805f9b34fb
[CHG] Device 04:7A:0B:19:E7:AF UUIDS: 000011200-0000-1000-8000-00805f9b34fb
[CHG] Device 04:7A:0B:19:E7:AF UUIDS: 000011200-0000-1000-8000-00805f9b34fb
```

3. To connect to a Bluetooth device, enter the following command, connection success is shown as below

bluetoothctl connect E0:9D:FA:50:CD:4F

(1) If there's an issue while connecting, as shown below, please restart the Bluetooth device and repeat steps 1 and 2 to connect.

```
[CHG] Device 04:7A:08:19:E7:AF Class: 0x000a0110
[CHG] Device 04:7A:08:19:E7:AF Icon: computer
[CHG] Device 04:7A:08:19:E7:AF UUIDS: 0000fdaa-0000-1000-8000-00805f9b34fb
[CHG] Device 04:7A:08:19:E7:AF UUIDS: 00001105-0000-1000-8000-00805f9b34fb
[CHG] Device 04:7A:08:19:E7:AF UUIDS: 00001103-0000-1000-8000-00805f9b34fb
[CHG] Device 04:7A:08:19:E7:AF UUIDS: 00001103-0000-1000-8000-08005f9b34fb
[CHG] Device 04:7A:08:19:E7:AF UUIDS: 00001103-0000-1000-8000-08005f9b34fb
[CHG] Device 04:7A:08:19:E7:AF UUIDS: 00001112-0000-1000-8000-08005f9b34fb
[CHG] Device 04:7A:08:19:E7:AF UUIDS: 00001142-0000-1000-8000-08005f9b34fb
[CHG] Device 04:7A:08:19:E7:AF UUIDS: 00001147-0000-1000-8000-08005f9b34fb
[CHG] Device 04:7A:08:19:E7:AF UUIDS: 00001147-0000-1000-8000-08005f9b34fb
[CHG] Device 04:7A:08:19:E7:AF UUIDS: 00001147-0000-1000-8000-08005f9b34fb
[CHG] Device 04:7A:08:19:E7:AF UUIDS: 0000144f-0000-1000-8000-08005f9b34fb
[CHG] Device 04:7A:08:19:E7:AF UUIDS: 0000144f-0000-1000-8000-00805f9b34fb
[CHG] Device 04:7A:08:19:E7:AF UUIDS: 000014f-0000-1000-8000-00805f9b34fb
[CHG]
```

(2) If there's an issue while connecting, as shown below, please enter the following commands and then repeat steps 1 and 2:

bluetoothctl remove <u>E0:9D:FA:50:CD:4F</u> (Your Bluetooth device's corresponding MAC ID)

rfkill block bluetooth

sleep 3s

rfkill unblock bluetooth

pulseaudio -k

pulseaudio -start

```
[DEL] Device 40:60:97:F3:85:D6 40-60-97-F3-85-D6
root@bigtreetech-cb2:~# bluetoothctl connect E0:9D:FA:50:CD:4F
Attempting to connect to E0:9D:FA:50:CD:4F
[CHG] Device E0:9D:FA:50:CD:4F Connected: yes
[CHG] Device E0:9D:FA:50:CD:4F UUIDs: 0000110b-0000-1000-8000-00805f9b34fb
[CHG] Device E0:9D:FA:50:CD:4F UUIDs: 0000110c-0000-1000-8000-00805f9b34fb
[CHG] Device E0:9D:FA:50:CD:4F UUIDs: 0000110e-0000-1000-8000-00805f9b34fb
[CHG] Device E0:9D:FA:50:CD:4F UUIDs: 000011e-0000-1000-8000-00805f9b34fb
[CHG] Device E0:9D:FA:50:CD:4F ServicesResolved: yes
Failed to connect: org.bluez.Error.Failed
root@bigtreetech-cb2:~# bluetoothctl remove E0:9D:FA:50:CD:4F
[DEL] Device E0:9D:FA:50:CD:4F HONOR xSport PRO
Device has been removed
root@bigtreetech-cb2:~# rfkill block bluetooth
```

4. If you exit voice playback during the use of Bluetooth and cannot reuse it, manually delete the corresponding playback process. Use the ps command to view the process number, then use kill -9 process_number to delete the corresponding playback process.

```
biqu@bigtreetech-cb2:~$ ps

PID TTY TIME CMD

2094 pts/0 00:00:00 bash

2270 pts/0 00:00:00 aplay

2347 pts/0 00:00:00 ps

biqu@bigtreetech-cb2:~$ kill -9 2270
```

5.8. Setting up 3.5mm Headphones Port

1. Enter the command: aplay -I

Check for the corresponding sound card, as shown in the image (the sound card for the headphone port shown in the image corresponds to card 0).

```
[ General system configuration (beta): armbian-config ]

Last login: Wed Apr 10 02:18:28 UTC 2024 on tty1
root@bigtreetech-cb2:~#
root@bigtreetech-cb2:~#
root@bigtreetech-cb2:~#
root@bigtreetech-cb2:~#
root@bigtreetech-cb2:~# aplay -l

**** ist of PtxVACK Hardware Devices *****
card 0: rockchiprk809co [rockchip,rk809-codec], Subdevices: 1/1

Subdevice #0: subdevice #0
card 1: rockchipt [rockchip,bt], device 0: fe420000.i2s-bt-sco-pcm bt-sco-pcm-0 [fe420000.i2s-bt-sco-pcm bt-sco-pcm-0 [fe420000.i2s-bt-sco-pcm-0 [fe420000.i
```

2. Enter the command:

amixer -c 0 contents (0 represents the card 0 found in the previous aplay -l command)

Check the settings for playback and recording channels, as shown in the image.

```
root@bigtreetech-cb2:~#
```

3. Enter the command:

amixer -c 0 cset numid=1 3

Set the playback channel, as shown in the image.

```
root@bigtreetech-cb2:~#
root@bigtreetech-cb2:~#
root@bigtreetech-cb2:~#
amixer -c 0 cset numid=1 3
numid=1,iface=MIXER,name='Playback Path'
; type=ENUMERATED,access=rw-----,values=1,items=11
; Item #0 '0FF'
; Item #1 'RCV'
; Item #2 'SPK'
; Item #3 'HP'
; Item #4 'HP_NO_MIC'
; Item #5 'BT'
; Item #6 'SPK_HP'
; Item #6 'SPK_HP'
; Item #8 'RING_HP'
; Item #9 'RING_SPK'
; Item #9 'RING_SPK_HP'
; values=3
root@bigtreetech-cb2:~#
```

4. Enter the command:

amixer -c 0 cset numid=2 1

Set the recording channel, as shown in the image.

```
: Values=3
root@bigtreetech-cb2:~#
root@bigtreetech-cb2:~# amixer -c 0 cset numid=2 1
numid=2,iface=MIXER,name='Capture MIC Path'
; type=ENUMERATED,access=rw-----,values=1,items=2
; Item #0 'MIC OFF'
; Item #1 'Main Mic'
: values=1
root@bigtreetech-cb2:~# ■
```

5. Enter the following command to play audio, with the audio file directory xxx and the audio file name xxxxx.wav:

```
aplay -D plughw:0,0 /xxx/xxxxx.wav
```

6. Enter the following command to record (where 10 represents recording for 10 seconds), storing the recording in directory xxx, file name xxxx.wav:

```
sudo arecord -Dhw:0,0 -d 10 -f cd -r 44100 -c 2 -t wav /xxx/xxxx.wav
```

7. Enter the following command to play the recording:

```
aplay -D plughw:0,0 /xxx/xxxx.wav
```

6. SSH Connect to Device

- 1. Install the SSH software Mobaxterm: https://mobaxterm.mobatek.net/download-home-edition.html
- 2. After powering on, wait for the system to boot, which typically takes about 1 to 2 minutes.
- 3. Once the device is connected to WiFi or an Ethernet cable is plugged in, it will automatically be assigned an IP address.
- 4. Access the router management interface to find the device's IP (it should be BTT-CB2 here).

5. Open Mobaxterm and click "Session", and click "SSH", inset the device IP into Remote host and click "OK" (Note: your computer and the device needs to be in the same network).

6. Login as: biqu password: biqu

7. Precautions

- 1. About 10 seconds after powering on, the system enters the kernel phase. At this time, the blue light stays on, and the green light flashes continuously, indicating that the system is running normally.
- 2. Klipper OS:

Root administrator:

Login: root
Password: root

BIQU user: Login: biqu Password: biqu

Minimal OS:

Root administrator:

Login: root Password: root

Minimal OS is a standard Armbian startup process, It only has the administrator account `root`. After the first boot, the system will guide the user to create their own ordinary account in the terminal.

- 3. The PCIe M.2 interface does not support hot-plugging; the solid-state drive must be connected in advance for the device to be recognized.
- 4. When booting from eMMC, do not insert a MicroSD card. When booting from a MicroSD card, it is necessary to erase the data in the eMMC.

If you need further resources for this product, you can find them at [GitHub](https://github.com/bigtreetech/). If you cannot find what you need, you may contact our after-sales support(service005@biqu3d.com).

If you encounter any other problems during use or have suggestions or feedback, please contact us. Thank you for choosing BIGTREETECH products.