Graphic Lasso: Clustering accuracy for precision matrix model

Jiaxin Hu

February 18, 2021

1 With convex penalty L_1 norm

The precision model is stated as

$$\mathbb{E}[S^k] = \Omega^k = \sum_{l=1}^r u_{kl} \Theta^l, \quad k \in [K].$$

Consider the following penalized optimization problem

$$\max_{\boldsymbol{U},\Theta^l} \mathcal{L}_S(\boldsymbol{U},\Theta^l) = -\sum_{k=1}^K \operatorname{tr}(S^k \Omega^k) + \log \det(\Omega^k) + \lambda \left\| \Omega^k \right\|,$$

where U is a membership matrix, and $\{\Theta^l\}$ are irreducible and invertible.

Proposition 1. The loss function \mathcal{L}_S satisfies the conditions for Theorem 3.1, and thus the clustering accuracy for precision matrix model is guaranteed.

Proof. First, we introduce some useful notations.

Given the membership U', let $\hat{\Theta}^l(U') = \arg\max_{U' \Theta^l}$. Particularly, for each $l \in [r]$, we have

$$\hat{\Theta}^l(\boldsymbol{U}') = \underset{\Theta}{\arg\max} - \sum_{k \in I_l'} \langle S^k, \frac{\Theta}{\Theta} \rangle + |I_l'| \log \det(\Theta) + \lambda |I_l'| \|\Theta\|_1,$$
 index I

where $I'_l = \{k : u'_{kl} \neq 0\}$ is the index set for the *l*-th group based on the membership U'. The sample-based loss is defined as

$$F(\mathbf{U}') = \mathcal{L}_S(\mathbf{U}', \hat{\Theta}^l(\mathbf{U}')).$$

Correspondingly, define the population-based loss function as

$$l(\boldsymbol{U}, \Theta^l) = \mathbb{E}_S[\mathcal{L}_S(\boldsymbol{U}, \Theta^l)] = -\sum_{k=1}^K \operatorname{tr}(\Sigma^k \Omega^k) + \log \det(\Omega^k) + \lambda \sum_{k=1}^K \left\| \Omega^k \right\|_1.$$

Given the membership U', let $\tilde{\Theta}^l(U') = \arg \max_{U', \Theta^l}$. Particularly, for each $l \in [r]$, we have

$$\tilde{\Theta}^{l}(U') = \underset{\Theta}{\arg\max} - \sum_{k \in I'_{l}} \langle \Sigma^{k}, \Theta \rangle + |I'_{l}| \log \det(\Theta) + \lambda |I'_{l}| \|\Theta\|_{1}. \tag{1}$$

Then, the population-based loss is defined as

$$G(\mathbf{U}') = l(\mathbf{U}', \tilde{\Theta}^l(\mathbf{U}')).$$

Note that $\hat{\Theta}^l(U')$ and $\tilde{\Theta}^l(U')$ do not have closed forms. But both of them only utilize $|I'_l|$ sample covariance(true covariance) matrices based on the membership.

Next, we verify the functions $F(\cdot)$ and $G(\cdot)$ satisfy the conditions in the Theorem 3.1. Let $\{U, \Theta^l\}$ denote the true membership and precision matrices, and define $\hat{U} = \arg \max_{\boldsymbol{U}} F(\boldsymbol{U})$. We also define the confusion matrix $D = [\![D_{ij}]\!] \in \mathbb{R}^{r \times r}$, where $D_{ij} = \sum_{k=1}^K \boldsymbol{I}\{u_{ki} = \hat{u}_{kj} = 1\}$.

1. (Self-consistency) First, we consider the explicit formulas for $G(\hat{U})$ and G(U).

$$G(\hat{\boldsymbol{U}}) = l(\hat{\boldsymbol{U}}, \tilde{\Theta}^{l}(\hat{\boldsymbol{U}}))$$

$$= \sum_{l=1}^{r} \left[\sum_{k \in \hat{I}_{l}} -\langle \Sigma^{k}, \tilde{\Theta}^{l}(\hat{\boldsymbol{U}}) \rangle + |\hat{I}_{l}| \log \det(\tilde{\Theta}^{l}(\hat{\boldsymbol{U}})) - \lambda |\hat{I}_{l}| \|\tilde{\Theta}^{l}(\hat{\boldsymbol{U}})\|_{1} \right]$$

$$= \sum_{l=1}^{r} \left[\sum_{a=1}^{r} D_{al} \left(-\langle \Sigma^{a}, \tilde{\Theta}^{l}(\hat{\boldsymbol{U}}) \rangle + \log \det(\tilde{\Theta}^{l}(\hat{\boldsymbol{U}})) - \lambda \|\tilde{\Theta}^{l}(\hat{\boldsymbol{U}})\|_{1} \right) \right],$$

and

$$G(\boldsymbol{U}) = l(\boldsymbol{U}, \tilde{\Theta}^{l}(\boldsymbol{U}))$$

$$= \sum_{l=1}^{r} \left[-|I_{l}|\langle \Sigma^{k}, \tilde{\Theta}^{l}(\boldsymbol{U}) \rangle + |I_{l}| \log \det(\tilde{\Theta}^{l}(\boldsymbol{U})) - \lambda |I_{l}| \|\tilde{\Theta}^{l}(\boldsymbol{U})\|_{1} \right]$$

$$= \sum_{l=1}^{r} \left[\sum_{a=1}^{r} D_{al} \left(-\langle \Sigma^{a}, \tilde{\Theta}^{a}(\boldsymbol{U}) \rangle + \log \det(\tilde{\Theta}^{a}(\boldsymbol{U})) - \lambda \|\tilde{\Theta}^{a}(\boldsymbol{U})\| \right) \right].$$

Define the function

$$h^k(\Theta) = -\langle \Sigma^k, \Theta \rangle + \log \det(\Theta) - \lambda \left\| \Theta \right\|_1.$$

By the definition (1), we know that

$$\tilde{\Theta}^k(\boldsymbol{U}) = \operatorname*{arg\,max}_{\Theta} h^k(\Theta), k = 1, ..., r.$$

Therefore, we have the self-consistency of U, i.e., $G(U') \leq G(U)$.

Next, we want to find the function which links the subtraction $G(\hat{U}) - G(U)$ with the misclassification rate $MCR(\hat{U}, U)$, where $MCR(\hat{U}, U) = \max_{l,a \neq a' \in [r]} \min\{D_{al}, D_{a'l}\}$.

Suppose $MCR(\hat{U}, U) \ge \epsilon$. There exist $l, k \ne k' \in [r]$ such that $\min\{D_{kl}, D_{k'l}\} \ge \epsilon$. Then, we have

$$G(\hat{\boldsymbol{U}}) - G(\boldsymbol{U}) \leq D_{kl} \left(h^k(\tilde{\Theta}^l(\hat{\boldsymbol{U}})) - h^k(\tilde{\Theta}^k(\boldsymbol{U})) \right) + D_{k'l} \left(h^k(\tilde{\Theta}^l(\hat{\boldsymbol{U}})) - h^k(\tilde{\Theta}^{k'}(\boldsymbol{U})) \right)$$

$$\leq \epsilon C(\boldsymbol{U}, \boldsymbol{\Theta}^l, \lambda),$$

where C is a function of the true parameters $\{U, \Theta^l\}$. Need to figure our the explicit form of C in next step.

2. (Bounded difference between sample- and population-based loss) For arbitrary U, consider the absolute subtraction

$$|F(\boldsymbol{U}) - G(\boldsymbol{U})| = |\mathcal{L}_S(\boldsymbol{U}, \hat{\Theta}^l(\boldsymbol{U})) - l(\boldsymbol{U}, \tilde{\Theta}^l(\boldsymbol{U}))|$$

$$\leq |\mathcal{L}_S(\boldsymbol{U}, \hat{\Theta}^l(\boldsymbol{U})) - l(\boldsymbol{U}, \hat{\Theta}^l(\boldsymbol{U}))| + |l(\boldsymbol{U}, \hat{\Theta}^l(\boldsymbol{U})) - l(\boldsymbol{U}, \tilde{\Theta}^l(\boldsymbol{U}))|$$

$$= M_1 + M_2.$$

Conjecture:

For M_1 ,

use Cauchy-Schwarz inequality.

$$M_1 = |\sum_{l=1}^r \sum_{k \in I_l} \langle (\Sigma^k - S^k), \hat{\Theta}^l(\boldsymbol{U}) \rangle| = \max_{k, (ij)} |\Sigma^k_{ij} - S^k_{ij}| C_1(\boldsymbol{U}, \Theta^l, p),$$

where C_1 is a function of the true parameters $\{U, \Theta^l\}$ and the dimension p.

For M_2 , note that $l(U,\Theta)$ is a convex function of Θ and thus l is local Lipschitz. We may have

$$M_2 \leq \max_{l \in [r]} \sup_{\Theta^l} \left| \frac{\partial}{\partial \Theta^l} l(\boldsymbol{U}, \Theta^l) \right| \left\| \hat{\Theta}^l(\boldsymbol{U}) - \tilde{\Theta}^l(\boldsymbol{U}) \right\|_{\max}$$

Also, we can consider $\max_{l \in [r]} \sup_{\Theta^l} \left| \frac{\partial}{\partial \Theta^l} l(\boldsymbol{U}, \Theta^l) \right| = C_2(\boldsymbol{U}, \Theta^l, \lambda)$, where C_2 is the function of the true parameters $\{U, \Theta^l\}$ and tuning parameter λ . Since $\hat{\Theta}^l$ is the sample-based estimation and $\tilde{\Theta}^l$ is the population-based estimation, my conjecture is that $\left\|\hat{\Theta}^l(\boldsymbol{U}) - \tilde{\Theta}^l(\boldsymbol{U})\right\|_{---} =$ $C_3(\max_{k,(ij)} |\Sigma_{ij}^k - S_{ij}^k|).$

Therefore, we bound the difference as

$$|F(\boldsymbol{U}) - G(\boldsymbol{U})| \le C'(\boldsymbol{U}, \Theta^l, p, \lambda)C''(\max_{k,(ij)} |\Sigma_{ij}^k - S_{ij}^k|),$$

and then we can utilize of residual to find a $p(t) = \mathbb{P}(|F(U) - G(U)| \ge t) \to 0$ as $t \to \infty$.

2 Misclassification error

We explore the perturbed version of the self-consistency in this section.

Lemma 1 (Self-consistency of U). Suppose $MCR(\hat{U}, U) \geq \epsilon$ and the minimal gap between $\{\Theta^l\}$ denoted δ is positive. For $\lambda \leq C' \left(\frac{\log p}{n}\right)^{1/2}$ with some constant C', we have the perturbation version of the self-consistency.

$$G(\hat{\boldsymbol{U}}) - G(\boldsymbol{U}) \leq -\frac{\epsilon}{4\tau^2}\delta^2 + \epsilon\lambda\sqrt{p}C\left(\frac{p\log p}{n}\right)^{1/2} < 0.$$

Proof. Suppose $MCR(\hat{U}, U) \geq \epsilon$. Let $\{U, \Theta^l\}$ denote the true parameters, and $\Theta^l = (\Sigma^l)^{-1}$. Define the function

$$h^k(\Theta) = -\langle \Sigma^k, \Theta \rangle + \log \det(\Theta) - \lambda \left\| \Theta \right\|_1.$$

(0228) Try to prove Delta^k is bounded by delta, the minimal gap between true Theta_k and Theta_l. Intuitively, this should hold provided (a) true Theta k are quite distinct from each other, and (b) penalization lambda is small; (c) MCR is not too large.

(Think about why. What happens if the two groups (k,l) have one member in each, and lambda=0) There exist $l, k \neq k' \in [r]$ such that $\min\{D_{kl}, D_{k'l}\} \geq \epsilon$. Then, we have

$$G(\hat{\boldsymbol{U}}) - G(\boldsymbol{U}) \leq D_{kl} \left(h^k(\tilde{\Theta}^l(\hat{\boldsymbol{U}})) - h^k(\tilde{\Theta}^k(\boldsymbol{U})) \right) + D_{k'l} \left(h^{k'}(\tilde{\Theta}^l(\hat{\boldsymbol{U}})) - h^{k'}(\tilde{\Theta}^{k'}(\boldsymbol{U})) \right)$$

$$\leq D_{kl} \left(h^k(\tilde{\Theta}^l(\hat{\boldsymbol{U}})) - h^k(\Theta^k) \right) + D_{k'l} \left(h^{k'}(\tilde{\Theta}^l(\hat{\boldsymbol{U}})) - h^{k'}(\Theta^k) \right),$$

$$(2)$$

where the second inequality follows the fact that $h^k(\Theta^k) \leq h^k(\tilde{\Theta}^k(U))$ since $h^k(\tilde{\Theta}^k(U))$ is the maximizer of $h^k(\Theta)$ by the definition. For simplicity, let $\hat{\Theta}$ denote $\tilde{\Theta}^l(\hat{U})$. Define $\Delta^k = \hat{\Theta} - \Theta^k$. Consider the function

$$f^k(t) = \log \det(\Theta^k + t\Delta),$$

and by Taylor expansion we have

$$f^k(1) - f^{k'}(0) = \langle \Sigma^k, \Delta^k \rangle - \operatorname{vec}(\Delta^k)^T \int_0^1 (1 - v)(\Theta^k + v\Delta^k)^{-1} \otimes (\Theta^k + v\Delta^k)^{-1} dv \operatorname{vec}(\Delta^k).$$

Then, we have

$$h^{k}(\tilde{\Theta}^{k}) - h^{k}(\hat{\Theta}^{k}) = \langle \Sigma^{k}, \Delta^{k} \rangle - f^{k}(1) + f^{k}(0) - \lambda \left(\left\| \Theta^{k} \right\|_{1} - \left\| \hat{\Theta} \right\|_{1} \right)$$

$$\geq A_{1} - |A_{2}|,$$

where

$$A_1 = \operatorname{vec}(\Delta^k)^T \int_0^1 (1-v)(\Theta^k + v\Delta^k)^{-1} \otimes (\Theta^k + v\Delta^k)^{-1} dv \operatorname{vec}(\Delta^k) \text{ here is not the delta in } A_2 = \lambda \left(\left\| \Theta^k \right\|_1 - \left\| \hat{\Theta} \right\|_1 \right).$$

By Guo's paper, we know that

$$A_1 \ge \frac{1}{4\tau^2} \left\| \Delta^k \right\|_F^2,$$

where $\max_{k \in [r]} \varphi_{\max}(\Theta^k) \le \tau < \infty$. Also note that

$$|A_2| \le \lambda \left\| \Theta^k - \hat{\Theta} \right\|_1 \le \lambda \sqrt{p} \left\| \Delta^k \right\|_F$$

p2: we can not find the lower bound for min||Delta||. For example, if the Delta in pink has min||Delta^k||, and we plug the upper bound of min|| Delta|| in the constrain for lambda $|A_2| \leq \lambda \left\|\Theta^k - \hat{\Theta} \right\|_1 \leq \lambda \sqrt{p} \left\|\Delta^k \right\|_F$. (green parts), then the pink part may not smaller than 0.

Plug the inequalities (3) and (4) in to the inequality (2), we obtain that

$$G(\hat{\boldsymbol{U}}) - G(\boldsymbol{U}) \leq D_{kl} \left(-\frac{1}{4\tau^2} \left\| \Delta^k \right\|_F^2 + \lambda \sqrt{p} \left\| \Delta^k \right\|_F \right) + D_{k'l} \left(-\frac{1}{4\tau^2} \left\| \Delta^{k'} \right\|_F^2 + \lambda \sqrt{p} \left\| \Delta^{k'} \right\|_F \right).$$

Intuitively, if we have λ very small, then we obtain the perturbation version of self-consistency. By a straightforward calculation, if we have

$$\lambda \le \frac{1}{4\tau^2 \sqrt{p}} \min_{k \in [r]} \left\| \Delta^k \right\|_F,\tag{5}$$

then the perturbation version of self-consistency holds. Recall our previous conclusion for the Ω estimation. If $\lambda = \mathcal{O}\left(\left(\frac{\log p}{n}\right)^{1/2}\right)$, we have not directly applicable. Your earlier result (0115.pdf) for Omega is und

 $\min_{k \in [r]} \left\| \Delta^k \right\|_F \leq C \left(\frac{p \log p}{n} \right)^{1/2} \text{ penalized optimization, but not under penalized optimization. (?)}$

Extension should be easy though.

with high probability. This implies that when $\lambda \leq C' \left(\frac{\log p}{n}\right)^{1/2}$, the λ satisfies the condition (5) with high probability. Finally, we obtain the perturbation version of self-consistency,

$$\begin{split} G(\hat{\boldsymbol{U}}) - G(\boldsymbol{U}) &\leq -\frac{\epsilon}{4\tau^2} \left\| \boldsymbol{\Theta^k} - \boldsymbol{\Theta^{k'}} \right\|_F^2 + \epsilon \lambda \sqrt{pC} \left(\frac{p \log p}{n}\right) \frac{\text{red part is lambda * \sqrt(p)*}}{(\text{IDelta_kl+l\Delta_k'l})} \\ &\leq -\frac{\epsilon}{4\tau^2} \delta^2 + \epsilon \lambda \sqrt{pC} \left(\frac{p \log p}{n}\right)^{1/2}, \\ &\text{Try to bound the red part in terms of delta.} \end{split}$$

where δ is the minimal gap between Θ^l .

The final bound is a function of delta.

Remark 1. When $\lambda=0$, the subtraction G(U)-G(U) for away from Theta K; the case without penalty. provided (a) MCR is not too large, (b) lambda is small enough; (c) the gap between Theta_I and Theta_K is large enough

Remark 2. The difficulty of the proof comes from that $\tilde{\Theta}^l(U)$ does not have a closed form. In other literatures, they usually consider the true Θ^l rather than $\tilde{\Theta}^l(U)$ under the true membership. The possible reason is that the properties (such as singular value, minimal gap) of Θ^l are easy to describe while it is hard to tell the properties of $\hat{\Theta}^l(U)$ (except it is an optimizer). Therefore, I introduce the true precision matrices in the proof in step (2). As a result, the upper bound becomes related with the precision matrices estimation $\|\Delta\|_F = \|\hat{\Theta} - \Theta^k\|_F$, and thus the control for λ is required.

3 Others

Theorem 3.1 (General property for loss function to guarantee the clustering accuracy). Let $\{\mathcal{C}, M_k\}$ denote the true parameters, and $\mathcal{L}_{\mathcal{Y}}(\mathcal{C}', M_k')$ denote the sample-based loss function. Define the sample-based loss function with respect to M'_k as

$$F(\mathbf{M}_k') = \mathcal{L}_{\mathcal{Y}}(\hat{\mathcal{C}}(\mathbf{M}_k'), \mathbf{M}_k'),$$

where

$$\hat{\mathcal{C}}(M'_k) = \arg\max_{\mathcal{C}} \mathcal{L}_{\mathcal{Y}}(\mathcal{C}, M'_k).$$

Correspondingly, define the population-based loss function with respect to M'_k as

$$G(\mathbf{M}'_k) = l(\tilde{\mathcal{C}}(\mathbf{M}'_k), \mathbf{M}'_k),$$

where

$$l(\mathcal{C}, M_k) = \mathbb{E}_{\mathcal{Y}}[\mathcal{L}_{\mathcal{Y}}(\mathcal{C}, M_k)], \quad and \quad \tilde{\mathcal{C}}(M_k') = \operatorname*{arg\,max}_{\mathcal{C}} l(\mathcal{C}, M_k').$$

Suppose the loss function satisfies the following properties

1. (Self-consistency to M_k) Suppose $MCR(M'_k, M_k) \ge \epsilon$ for $\epsilon > 0$. We have

$$G(\mathbf{M}'_k) - G(\mathbf{M}_k) < -C(\epsilon),$$

where $C(\cdot)$ takes positive values.

2. (Bounded difference between sample- and population-based loss) The difference between samplebased and population-based loss function is bounded in probability, i.e.,

$$p(t) = \mathbb{P}(|F(\mathbf{M}'_k) - G(\mathbf{M}'_k)| > t) \to 0, \quad as \quad t \to \infty.$$

Let $\{\hat{M}_k\}$ be the maximizer of $F(M_k)$. Then, we have the following clustering accuracy, for any $\epsilon > 0$,

$$\mathbb{P}(MCR(\hat{\boldsymbol{M}}_k, \boldsymbol{M}_k) \ge \epsilon) \le p\left(\frac{C(\epsilon)}{2}\right).$$