Graduate Trade (II): ECON 8433

Sergey Nigai University of Colorado Boulder Fall Semester 2020

Plan

Week	TOPIC
Week 1	Introduction to Structural Gravity Equation
Week 2	Calibration and Estimation
Week 3	Mapping Models to the Data
Week 4	Designing Counterfactual Experiments in General Equilibrium
Week 5	Presentations (I) and Catch-up
Week 6	Heterogeneous Firms (I)
Week 7	Heterogeneous Firms (II)
Week 8	Ricardian Models
Week 9	Multi-Sector Models
Week 10	Global Value Chains
Week 11	Presentations (II) and Catch-up
Week 12	Extensions: Demand Side
Week 13	Extensions: Supply Side
Week 14	Extensions: Migration and Geography
Week 15	Presentations (III) and Catch-up

Plan

Week	TOPIC
Week 1	Introduction to Structural Gravity Equation
Week 2	Calibration and Estimation
Week 3	Mapping Models to the Data
Week 4	Designing Counterfactual Experiments in General Equilibrium
Week 5	Presentations (I) and Catch-up
Week 6	Heterogeneous Firms (I)
Week 7	Heterogeneous Firms (II)
Week 8	Ricardian Models
Week 9	Multi-Sector Models
Week 10	Global Value Chains
Week 11	Presentations (II) and Catch-up
Week 12	Extensions: Demand Side
Week 13	Extensions: Supply Side
Week 14	Extensions: Migration and Geography
Week 15	Presentations (III) and Catch-up

Presentation Sign-up

- Presentations are on Nov. 2 and Nov 4
- Sign-up here: https://docs.google.com/spreadsheets/ d/10dA0T0SM5-jAULrxz5e3ttZpK7nB8zdpAoBj4IMjLK0/ edit?usp=sharing

Calibration of Multi-sector Models

- ► In general, it would be challenging to estimate all primitives of a multi-country, multi-industry model of trade
- ▶ Instead, it has become a convention to use the hat algebra approach. Recall the following identity for an arbitrary variable *a*:

$$\widehat{a}=\frac{a'}{a},$$

where a' is a counterfactual value of a

We will rewrite the model in hat terms

Calibration

$$\widehat{c}_{i}^{j} = \widehat{w}_{i}^{\gamma_{i}^{j}} \prod_{k} (\widehat{P}_{i}^{k})^{\eta_{i}^{k,j}} \tag{1}$$

$$\widehat{P}_{i}^{j} = \left(\sum_{n} \pi_{ni} (\widehat{c}_{n}^{j} \widehat{\tau}_{ni}^{j})^{-\theta^{j}}\right)^{-\frac{1}{\theta^{j}}}$$
(2)

$$\pi_{in}^{j'} = \pi_{in}^{j} \left(\frac{\widehat{c}_{i}^{j} \widehat{\tau}_{in}^{j}}{\widehat{p}_{n}^{j}} \right)^{-\theta^{j}}$$
 (3)

$$Y_{i}^{j'} = \sum_{k} \eta_{i}^{j,k} \sum_{n} \pi_{in}^{k'} Y_{n}^{k'} + \alpha_{i}^{j} I_{i}^{j'}$$
 (4)

$$I_i' = (L_i w_i) \widehat{w}_i + D_i \tag{5}$$

$$D_{i} = \sum_{i} \sum_{n} \pi_{ni}^{j'} Y_{i}^{j'} - \sum_{i} \sum_{n} \pi_{in}^{j'} Y_{n}^{j'}$$
 (6)

Calibration

We need to calibrate benchmark values of the following parameters:

- ▶ Value added share: γ_i^j
- ▶ Input-output shares: $\eta_i^{k,j}$
- ightharpoonup Benchmark trade shares: π^{j}_{in}
- ightharpoonup Consumption shares: α_i^j
- ightharpoonup Value added: $(L_i w_i)$
- Deficits: D_i
- ▶ Trade elasticity: θ^j (from the literature)

Calibration

- ► Let us consider at least 2 sectors, e.g., manufacturing and services. You may choose to consider more.
- Use WIOD data on sectoral trade flows for 2005 (CANVAS)
- Combine WIOD with Socio-Economic Accounts for 2005 (CANVAS)
- ► Calibrate the relevant parameters
- Export all parameters to MATLAB

Multi-sector models

- ▶ Let us consider at least 2-sectors: Manufacturing and Services
- ▶ Use WIOD data on sectoral trade flows for 2005
- ► Combine WIOD with Socio-Economic Accounts for 2005
- ► Calibrate the relevant parameters

With the relevant parameters in hand:

- Solve the model with two sectors (keep your codes general enough to extend it to J-sector case)
- Use the model to quantify how nominal and real wages would have to adjust to eliminate trade imbalances? How do you interpret these results?