班级:

2016——2017 学年度第一学期

姓名:

北师大二附中西城实验学校八年级数学学科期中检测试题 2016年10月

层级 学号:

一、选择题(每题3分,共30分)

- 1. 使分式 $\frac{x}{x+1}$ 有意义的条件是(
 - A. $x \neq -1$
- B. $x \neq 1$
- C. $x \neq 0$
- D. x+1>0
- 2. 下列各式从左边到右边的变形中,是因式分解的是(

A. a(x + y) = ax + ay

B. $x^2-4x+4=x(x-4)+4$

C. $x^2 - 16 + 3x = (x + 4)(x - 4) + 3x$ D. $10x^2 - 5x = 5x(2x - 1)$

- 3. 如果把分式 $\frac{x+2y}{x+y}$ 中的 x 和 y 都扩大 10 倍,那么分式的值(

A. 扩大 10 倍 B. 缩小 10 倍 C. 是原来的 $\frac{2}{3}$ D. 不变

A. 72° B. 60° C. 50°

A. $\frac{a+1}{b+1} = \frac{a}{b}$ B. $\frac{a-1}{-b} = -\frac{a-1}{b}$ C. $\frac{a-b}{a^2 - b^2} = \frac{1}{a-b}$

5. 下列变形正确的是().

- 6. 如果多项式 $x^2 + ax + b$ 可因式分解为 (x-1)(x+2) ,则 $a \times b$ 的值为 (

- A. a = 1, b = 2 B. a = 1, b = -2 C. a = -1, b = -2
- 7. 请仔细观察用**直尺和圆规**作一个角 $\angle A'O'B'$ 等于已知角 $\angle AOB$ 的示意图,根 据图形全等的知识,说明画出 $\angle A'O'B' = \angle AOB$ 的依据是(
 - A. SSS

B. ASA

- C. AAS
- D. SAS

- 8. 如图, AD 是 $\triangle ABC$ 的角平分线,从点 D 向 AB、AC 两边作垂线段,垂足 分别为E、F,那么下列结论中错误的是

- A .DE=DF B. AE=AF C. BD=CD
- D. $\angle ADE = \angle ADF$

- 9. 如图,正方形 ABCD 的边长为 4,将一个足够大的直角三角板的直角顶点放于点 A 处,该三角板的两条直角边与CD交于点F,与CB延长线交于点E. 四边形AECF的 面积是(
 - A. 16
- B. 12

- 10. △ABC中, AB=AC, E在BC上, D在AE上。则下列说法:
- ①若 E 为 BC 中点,则有 BD=CD;
- ②若 BD=CD,则 E 为 BC 中点:
- ③若 AE LBC,则有 BD=CD;
- ④若 BD=CD,则 AE_BC。 其中正确的有(
- A. (1)(3)(4)
- B. 234
- C. (1)(2)(3)
- D. (1)(2)(3)(4)

二、填空(每题2分,共16分)

- ___时,分式 $\frac{x}{3x-1}$ 值为 0.
- 12. 分解因式: $x^3 x =$

- 14. 如果 x + y = 0, xy = -7, 则 $x^2y + xy^2 =$.
- 15. 如图, 在 $\triangle ABC$ 和 $\triangle DCB$ 中, AB = DC, AC 与 BD 相交于点 E, 若不再添加任 何字母与辅助线,要使 $\triangle ABC \cong \triangle DCB$,则还需增加的一个条件

- 16. 己知, 如图 $\triangle ABC$ 中, AB = 5, AC = 3, 则中线 AD 的取值范围是
- 17. 如图,在 \triangle ABC 中, \angle C=90°,AB=10,AD 是 \triangle ABC 的一条角平分线。若 CD=3, 则△ABD 的面积为
- 18. 在 $\triangle ABC$ 中, 高 $AD \setminus BE$ 所在直线交于 H 点, 若 BH = AC, 则 $\angle ABC$ 的值为_

三、分解因式(本题共12分,每小题4分)

___班级:

19. **(1)**
$$a^4 - a^2b^2$$

(2).
$$4x^3 + 4x^2y + xy^2$$

(3).
$$x^2 + 4x - 21$$

姓名:

____层级___ _学号:

四、解答题(.20-23、25、26 题每题 4 分, 24 题 3 分, 27--29 每题 5 分)

20.计算:
$$\frac{a+2}{a-2} \cdot \frac{1}{a^2+2a}$$

21.计算:
$$(xy-x^2) \div \frac{x-y}{xy}$$

内------请------不------要-----

颞

密-----

22. 计算:
$$\frac{2a-4}{a^2+6a+9} \div \frac{a-2}{a+3} \bullet (a+3)$$

23. 先化简,再求值 $\frac{x^2-9}{x^2+6x+9} \cdot \frac{3x^3+9x^2}{x^2-3x}$,其中 $x=-\frac{1}{3}$

24. 已知: 如图, ∠MON 及边 ON 上一点 A. 在∠MON 内部求作: 点

P,使得 $PA \perp ON$,且点 P 到 $\angle MON$ 两边的距离相等. (请用尺规作图,保留作图痕迹,不要求写出作法,不必证明).

25. 如图, AC=AD, BC=BD, 图中有相等的角吗? 若没有说明理由, 若有请全部找出来, 并证明其中的一组角相等。

26. 已知:如图, E, B, F, C四点在同一直线上, ∠A=∠D=90° BE=FC, AB=DF.

求证: ED = AC

(1) 证明:

(2)解:

- **27.** 如图,已知 $DE \perp AC$, $BF \perp AC$, 垂足分别是 $E \setminus F$, AE = CF, DC //AB,
- (1) 试证明: DE=BF; (2) 连接 DF、BE,猜想 DF 与 BE 的关系? 并证明你的猜想.
- (1) 证明:

(2) 猜想:

证明:

- **28.** 已知:在四边形 ABCD中,过 C作 CE L AB于 E,并且 CD=CB, ∠ABC+∠ADC=180°
- (1) 求证: AC 平分∠BAD;
- (2) 若 AE=9, BE=3, 求 AD 的长

- **29.** . 在 \triangle ABC 中,AB=AC,点 D 是直线 BC 上一点(不与 B、C 重合),以 AD 为一边在 AD 的右侧作 \triangle ADE,使 AE=AD, \angle DAE= \angle BAC.设 \angle BAC= α , \angle BCE= β .
- (2) 如图 2, 你认为 α 、 β 之间有怎样的数量关系? 并说明理由.
- (3) 当点 D 在线段 BC 的**延长线上**移动时,α、β 之间又有怎样的数量关系?请在备用图上画出图形,并直接写出你的结论.

(2)

一、选择题(每题3分,共30分)

- 1. 使分式 $\frac{x}{x+1}$ 有意义的条件是(A
 - A. $x \neq -1$
- B. $x \neq 1$
- C. $x \neq 0$
- D. x+1>0
- 2. 下列各式从左边到右边的变形中,是因式分解的是(D)

$$A. \quad a(x+y) = ax + ay$$

B.
$$x^2-4x+4=x(x-4)+4$$

C.
$$x^2 - 16 + 3x = (x+4)(x-4) + 3x$$
 D. $10x^2 - 5x = 5x(2x-1)$

$$0. \quad 10x^2 - 5x = 5x(2x - 1)$$

(3)

- 3. 如果把分式 $\frac{x+2y}{x+y}$ 中的 x 和 y 都扩大 10 倍,那么分式的值(D)
 - A. 扩大 10 倍 B. 缩小 10 倍 C. 是原来的 $\frac{2}{3}$ D. 不变
- 4. 已知图中的两个三角形全等,则∠1等于(D).
 - A. 72° B. 60° C. 50°

- D. $\frac{(-a-b)^2}{(a+b)^2} = -1$
- 6. 如果多项式 $x^2 + ax + b$ 可因式分解为 (x-1)(x+2) ,则 $a \times b$ 的值为 (B)
 - A. a = 1, b = 2 B. a = 1, b = -2 C. a = -1, b = -2
- D. a = -1, b = 2
- 7. 请仔细观察用**直尺和圆规**作一个角 $\angle A'O'B'$ 等于已知角 $\angle AOB$ 的示意图, 根据图形

全等的知识, 说明画出 $\angle A'O'B' = \angle AOB$ 的依据是(A).

A. SSS

B. ASA

- C. AAS
- D. SAS

- 8. 如图, AD 是 $\triangle ABC$ 的角平分线,从点 D 向 AB、AC 两边作垂线段, 垂足 分别为E、F,那么下列结论中错误的是(C)

- A .DE=DF B. AE=AF C. BD=CD D. $\angle ADE=\angle ADF$
- (第8题)
- 9. 如图,正方形 ABCD 的边长为 4,将一个足够大的直角三角板的直角顶 点放于点 A 处,该三角板的两条直角边与CD交于点 F,与CB 延长线交于点 E. 四边 形 AECF 的面积是 (A).
 - A. 16
- B. 12
- C. 8
- 10. △ABC 中, AB=AC, E 在 BC 上, D 在 AE 上。则下列说法: ①若 E 为 BC 中点,则有 BD=CD;
 - ②若 BD=CD,则 E 为 BC 中点;
 - ③若 AE LBC,则有 BD=CD;
 - 其中正确的有(D ④若 BD=CD,则 AE⊥BC。
 - A. (1)(3)(4)
- B. 234 C. 123
- D. (1)(2)(3)(4)

二、填空(每题2分,共16分)

- 11. 当 $x_{-}=1/3$ ____时,分式 $\frac{x}{3x-1}$ 值为 0.
- 12. 分解因式: $x^3 x = x(x+1)(x-1)$

- 14. 如果 x + y = 0, xy = -7, 则 $x^2y + xy^2 = 0$.
- 15. 如图, 在 $\triangle ABC$ 和 $\triangle DCB$ 中, AB = DC, AC 与 BD 相交于点 E, 若不再添加任 何字母与辅助线,要使 $\triangle ABC \cong \triangle DCB$,则还需增加的一个条件 略 .

- 16. 己知,如图 $\triangle ABC$ 中, AB = 5, AC = 3,则中线 AD 的取值范围是 (1,4)
- 17. 如图,在 \triangle ABC 中, \angle C=90°,AB=10,AD 是 \triangle ABC 的一条角平分线.若 CD=3, 则△ABD 的面积为_ 15
- 18. 在 $\triangle ABC$ 中, 高 AD、BE 所在直线交于 H 点, 若 BH=AC, 则 $\angle ABC$ 的值为 45 或 135 度

三、分解因式(本题共12分,每小题4分)

- 19. **(1)** $a^4 a^2b^2$ (2). $4x^3 + 4x^2y + xy^2$ (3). $x^2 + 4x 21$

 $=a^{2}(a^{2}-b^{2}).....2$ $\Rightarrow =x(4x^{2}+4xy+y^{2}).....2$ $\Rightarrow =(x+7)(x-3)........4$

 $=a^{2}(a+b)(a-b)......4$ $\Rightarrow =x(2x+y)^{2}......4$

四、解答题(.20-23、25、26 题每题 4 分, 24 题 3 分, 27--29 每题 5 分)

$$\frac{a+2}{\mathbf{20.}$$
计算:
$$\frac{a+2}{a-2} \cdot \frac{1}{a^2+2a}$$

21.计算:
$$(xy-x^2) \div \frac{x-y}{xy} = -xy$$

= 1/a(a+2)

22. 计算:
$$\frac{2a-4}{a^2+6a+9} \div \frac{a-2}{a+3} \bullet (a+3) = 2$$

23. 先化简,再求值
$$\frac{x^2-9}{x^2+6x+9} \cdot \frac{3x^3+9x^2}{x^2-3x}$$
,其中 $x=-\frac{1}{3}$.

= -1

24. 已知:如图, \angle MON 及边 ON 上一点 A. 在 \angle MON 内部求作:点 P,使得 PA \bot ON,且点 P 到 \angle MON 两边的距离相等.(请用尺规作图,保留作图痕迹,不要求写出作法,不必证明).

25. 如图, AC=AD, BC=BD, 图中有相等的角吗?若没有说明理由,若有请全部找出来,并证明其中的一组角相等。

(略)

26. 己知:如图, E, B, F, C四点在同一直线上, ∠A=∠D=90° BE=FC, AB=DF.

求证: ED = AC

证明: ∵BE=FC,

∴BE+BF=FC+BF, 即 EF=BC,

::∠A=∠D=90°,

在RTABC和RTDFE中,

EF = CB

AB = DF

, ∴△ABC≌△DFE (HL) ,

∴∠E=∠C.

27. 如图,已知 $DE \perp AC$, $BF \perp AC$, 垂足分别是 $E \setminus F$, AE = CF, DC //AB,

(1) 试证明: *DE=BF*; (2) 连接 *DF*、*BE*, 猜想 *DF* 与 *BE* 的关系? 并证明你的猜想.

- (1) 证明: ∵AE=CF,
- ∴ AE+EF=CF+EF,
- ∴AF=CE,
- ∵DE⊥AC, BF⊥AC,
- ∴∠AFB=∠DEC=90°,
- ∵DC // AB,
- ∴∠DCE=∠BAF,

在△AFB 和△CED 中

 $\angle BAF = \angle DCE$

AF = CE

∠AFB=∠DEC

∴ △AFB≌ △CED,

∴DE=EF;

DF=BE, DF//BE,

证明: : DE L AC, BF L AC,

- ∴DE//BF,
- ∵DE=BF,
- :.四边形 DEBF 是平行四边形,
- ∴DF=BE, DF//BE.
- **28.** 己知:在四边形 ABCD中,过 C作 CE ⊥ AB 于 E, 并且 CD=CB, ∠ABC+∠ADC=180°
- (1) 求证: AC 平分∠BAD;
- (2) 若 AE=9, BE=3, 求 AD 的长

证明: (1)

作 CF LAD, 交 AD 延长线与 F

∵∠CDF+∠ADC=180°

∠ABC+∠ADC=180°

- ∴∠CDF=∠ABC, 即∠EBC=∠CDF
- ∵CE⊥AB, 那么∠CEB=∠CFD=90°

在△CFD 和△CEB 中,

{ ∠CEB=∠CFD ∠EBC=∠CDF CD=CB

- ∴ △CDF≌ △CBE(AAS)
- ∴CE=CF
- ∵CF⊥AD, CE⊥AB, CE=CF
- ∴AC 平分∠BAD
- (2) ∵AC 平分∠BAD
- :. \sec=\EAC

在 \triangle CFA 和 \triangle CEA 中,

{∠CEA=∠CFA

∠FAC=∠EAC

AC=AC

- ∴△CFA≌△CEA. (AAS)
- ∴AF=AE=9

△CDF≌△CBE

∴DF=BE=3

AD=AF-FD=9-3=6

- **29.** . 在 \triangle ABC 中,AB=AC,点 D 是直线 BC 上一点(不与 B、C 重合),以 AD 为一边在 AD 的右侧作 \triangle ADE,使 AE=AD, \angle DAE= \angle BAC.设 \angle BAC= α , \angle BCE= β .
- (2) 如图 2, 你认为 α、β 之间有怎样的数量关系? 并说明理由.
- (3) 当点 D 在线段 BC 的**延长线上**移动时, α 、 β 之间又有怎样的数量关系?请在备用图上画出图形,并直接写出你的结论.

- (2) $\alpha + \beta = 180^{\circ}$

理由:

- ∵∠BAC=∠DAE,
- ∴∠BAC ∠DAC=∠DAE ∠DAC.

即∠BAD=∠CAE.

在ABD与ACE中,

AB=AC ∠BAD=∠CAE AD=AE

- ∴△ABD≌△ACE,
- ∴∠B=∠ACE.
- $\therefore \angle B + \angle ACB = \angle ACE + \angle ACB$.
- ∴∠B+∠ACB= β ,
- $\therefore \alpha + \angle B + \angle ACB = 180^{\circ}$,
- ∴α+β=180°;

当点 D 在射线 BC 上时, α+β=180°;

- ∵∠BAC=∠DAE,
- ∴∠BAD=∠CAE,
- ∴AB=AC, AD=AE,

祖

Ì

H H ∴△ABD≌△ACE (SAS),

∴∠B=∠ACE,

::∠BAC+∠B+∠BCA=180°,

 $\therefore \angle BAC + \angle BCE = \angle BAC + \angle BCA + \angle ACE = \angle BAC + \angle BCA + \angle B = 180^{\circ}$,

∴ α+β=180°;