Omega Cross-Section

Martin Sobotzik

Mainz, March 2019

Institute for Nuclear Physics Johannes Gutenberg University of Mainz

Figure 1: Olis Cross Section; Dip at about $cos(\theta) = -0.3$

Figure 2: Increased number of bins to 40; now there is still a dip at $cos(\theta) = -0.3$ but also a peak at $cos(\theta) = -0.5$

Figure 3: Both Cross Sections are shown.

Figure 4: Cross Section and efficiency. There is an efficiency drop at $\cos(\theta) \approx -0.3$

Taking a closer Look

$$\omega \to \gamma \ \pi^0$$

Closer look at:

- ω
- Bachelor Photon
- π⁰
- \bullet $\gamma\gamma$

- Proton
- $cos(\theta) = [-0.35, -0.25]$ Dip
- $cos(\theta) = [-0.45, -0.35]$ Peak

and compare MC with Beamtime Data (both reconstructed)

What was used?:

- Prompt Random Subtraktion
- w_taggW ("TaggW");
- w_mass_Cut("ggg.M()>700");
- cut_KCut("KinFitProb > 0.2 && nCandsInput == 4 && copl_angle <

Figure 5: Red: MC; Blue Beamtime Data; Protons for $cos(\theta_{\omega}) = [-0.35, -0.25]$; Right Side are fitted data

Figure 6: Red: MC; Blue Beamtime Data; Protons for $cos(\theta_{\omega}) = [-0.45, -0.35]$; Right Side are fitted data

Figure 7: $cos(\theta_{fit})$ vs. $cos(\theta_{gen})$ for all protons.

Figure 8: $\cos(\theta_{fit})$ vs. $\cos(\theta_{gen})$ for all ω .

Conclusion

Unfolding

- \bullet μ is the *true* distribution given by nature
- detector effects are then described by the response function R. (inefficiencies, bias and smearing)
- This results in the distribution ν .

$$u_i = \sum_{j=1}^M R_{ij} \mu_j$$

 With infinite statistics, it would be possible to recover the original distribution by inverting the response matrix

$$\mu = R^{-1}\nu$$

What is Unfolding?

- Using MC we can train the unfolding algorithm
- Create a 2D-Hist with $\cos(\theta_{\omega})$ of all generated and all reconstructed ω (ω which are generated but not reconstructed are label miss)
- \bullet Then we can solve for μ iteratively

Figure 9: Example for a working Unfolding Algorithm

Figure 9: Example for a working Unfolding Algorithm

Figure 9: Example for a working Unfolding Algorithm

Figure 10: Folded; same cuts

Figure 11: Distribution of the ω in center of mass frame

Figure 12: Flat ω was used. MC fitted data were folded.