Painel / Meus cursos / SC26EL / 8-Representação de Sistemas em Espaço de Estados

/ Questionário sobre Representação de Sistemas em Espaço de Estados

Iniciado em	sexta, 9 abr 2021, 21:09
Estado	Finalizada
Concluída em	sexta, 9 abr 2021, 21:18
Tempo	8 minutos 42 segundos
empregado	
Notas	28,0/28,0
Avaliar	10.0 de um máximo de 10.0(100%)

Questão **1** Correto

Atingiu 10,0 de 10,0

Considere o circuito da figura abaixo onde u(t) representa uma fonte de corrente CC. Os valores dos componentes são L=1 mH, C=100 μF e R=1 Ω . Obtenha uma representação em espaço de estados para o sistema onde $x_1(t)=i_L(t)=y(t)$ e $x_2(t)=v_C(t)$. Considere 3 algarismos significativos nas respostas.

O sistema tem uma representação na forma:

$$\dot{x} = Ax + Bu$$

$$y = Cx$$

Os elementos a_{ij} da matriz $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ são:

$$a_{11} = 0$$

✓ ,
$$a_{12} = 1000$$

✓ ,
$$a_{21} =$$
-10000

~

Os elementos b_{ij} da matriz $B = \left[egin{array}{c} b_{11} \ b_{21} \end{array}
ight]$ são:

$$b_{11} = 0$$

~

Os elementos c_{ij} da matriz $C = \left[egin{array}{cc} c_{11} & c_{12} \end{array}
ight]$ são:

$$c_{11} = 1$$

~ .

Os polos do sistema, em ordem decrescente, são: $\emph{p}_1 =$

~

Questão **2** Correto

Atingiu 18,0 de 18,0

Considere o circuito da figura abaixo onde u(t) representa uma fonte de corrente CC. Os valores dos componentes são L=1 mH, C=100 μF e R=1 Ω . Considere 3 algarismos significativos nas respostas.

A função de transferência desses sistema é $\mathit{G}(\mathit{s}) = \frac{\mathit{Num}(\mathit{s})}{\mathit{Den}(\mathit{s})}$

O polinômio do numerador de G(s) é Num(s) =

0

✓ s²+

0 **✓** s+

10000000

~

O polinômio do denomidador de G(s) é Den(s) =

1

✓ s^2+

✓ s+ 10000000

~

A partir da função de transferência, os polos do sistema, em ordem decrescente, são: $\emph{p}_1 =$

-1127,017

✓ e **p**₂ = -8872,983

~

A partir da função de transferência G(s), considerando $x_1(t) = y(t)$ pode-se obter uma representação para o sistema em espaço de estados, isto é,

 $\dot{x} = Ax + Bu$

y = Cx

Os elementos a_{ij} da matriz $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ são:

 $a_{11} = 0$

✓ , a₁₂ =

1

✓ , a₂₁ =
 -10000000

✓ e **a**₂₂ =

~

Os elementos b_{ij} da matriz $B = \left[egin{array}{c} b_{11} \ b_{21} \end{array}
ight]$ são:

 $b_{11} = 0$

✓ e *b*₂₁ = 10000000

~

Os elementos c_{ij} da matriz $C = \left[egin{array}{cc} c_{11} & c_{12} \end{array}
ight]$ são:

 $c_{11} = 1$

✓ e c₁₂ =

~

 $oxed{A}$ partir da representação do sistema em espaço de estados, os polos do sistema, em ordem decrescente, são: $oldsymbol{p}_1=$

-1127,017

✓ e **p**₂ =

-8872,983

~

■ Script Python

Seguir para...

Aula 9 - Formas Canônicas e Transformações de Similaridade -