

Statistik II, SoSe 23

26.6.23, Aktuelles, Statistisches Testen, t-Test, Teil 2

Simone Abendschön

Inhalte heute

- Abschluss Hypothesentests:
 - T-Test für abhängige Stichproben
 - Signifikanzniveaus
 - Fehlerarten
- Lineare Regression, Teil 1
 - Wiederholung bivariates Regressionsmodell
- Schriftliche Evaluation der Veranstaltung

Lernziele

- Sie können t-Tests für abhängige Stichproben durchführen
- Sie verstehen, wozu man eine lineare Regressionsanalyse macht
- Sie verstehen, wie ein (bivariates)
 Regressionsmodell geschätzt wird

Varianten des t-Tests

Quelle: Eigene Darstellung

Übungsfragen (HA/Tutorium)

3. Durchführung t-Test (Annahme homogene Varianzen) für ein fiktives Beispiel: mittlere Lebenszufriedenheit von Männern und Frauen in einer Befragung von 42 Leuten (gemessen von 0 gar nicht zufrieden bis 10 sehr zufrieden)

Ist der Unterschied statistisch signifikant?

	Frauen	Männer
n	20	22
\bar{x}	7,5	6,5
s ²	1,2	1,3

Übungsfrage 3 - Lösung

(i) 1. Hypothese und Signifikanzniveau

 H_0 : Es gibt keine Mittelwertdifferenz = Die Lebenszufriedenheit von Männern und Frauen ist gleich hoch

 H_1 : Es gibt eine Mittelwertdifferenz zwischen 2 Gruppen in der Population = Die Lebenszufriedenheit von Männern und Frauen unterscheidet sich

$$H_0: \mu_1-\mu_2=0 \ \Rightarrow \ \mu_1=\mu_2$$

$$H_1: \mu_1-\mu_2
eq 0 \Rightarrow \mu_1
eq \mu_0$$

(i) 2.Ablehnungsbereich

Frage nach einem Unterschied ⇒ ungerichtete Hypothese:

$$rac{lpha}{2} = rac{0.05}{2} = 0,025$$

$$1 - \frac{\alpha}{2} = 1 - 0,025 = 0,975$$

Freiheitsgrade t-test:

$$Df = (n_1 - 1) + (n_2 - 1) = n_1 + n_2 - 2 = 20 + 22 - 2 = 40$$

In t-Tabelle nachschauen nach bei 0,975 und 40: $t_{krit}=\pm 2,021$

Übungsfrage - Lösung

(i) 3.Berechnung der Prüfgröße

$$egin{aligned} t_{40} &= rac{(ar{x}_1 - ar{x}_2)}{\hat{\sigma}_{(ar{x}_1 - ar{x}_2)}} \ \hat{\sigma}_{(ar{x}_1 - ar{x}_2)} &= \sqrt{rac{(n_1 - 1) \cdot s_1^2 + (n_2 - 1) \cdot s_2^2}{n_1 + n_2 - 2}} \cdot \sqrt{rac{1}{n_1} + rac{1}{n_2}} \ &= \sqrt{rac{(20 - 1) \cdot 1, 2 + (22 - 1) \cdot 1, 3}{20 + 22 - 2}} \cdot \sqrt{rac{1}{20} + rac{1}{22}} pprox 1,829 \ \ t_{40} &= rac{(ar{x}_1 - ar{x}_2)}{1,829} = rac{(7,5 - 6,5)}{1,829} = rac{1}{1,829} pprox 0,55 \end{aligned}$$

Übungsfrage - Lösung

(i) 4.Interpretation der Ergebnisse

$$t_{40} = 0,55$$

$$t_{krit}=2,021$$

 H_0 bleibt weiterhin bestehen

Es gibt keinen statistisch signifikanten Unterschied zwischen der mittleren Lebenszufriedenheit von Frauen im Vergleich zu Männern.

Varianten des t-Tests

Quelle: Eigene Darstellung

Ergänzung: t bei Varianzungleichheit

- (NICHT KLAUSURRELEVANT)
- Annahme, dass Varianzen in beiden GG identisch (Varianzhomogenität), ansonsten Korrektur notwendig (kann man ebenfalls testen, Levene-Test als F-Test)
- Bei heterogenen Varianzen wird ein statistisch angepasster t-Test berechnet (mit Welch-Korrektur im Nenner):

$$t = \sqrt{\frac{s_1^2}{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

T-test bei abhängigen Stichproben

- Abhängige (oder gepaarte bzw. verbundene) Daten, "Stichproben": von jeder Person liegen zwei Messungen vor → Berechnung von t berücksichtigt die Differenz der Wertepaare
- Bei abhängigen Messungen muss man davon ausgehen, dass die einzelnen Messungen korrelieren
- Durch korrelierte Messungen können Verzerrungen bei der Berechnung der Prüfgrößen entstehen, deshalb eigenes Verfahren

T-Test abhängige Stichproben

Mittelwert: \bar{x}_A Varianz s_A^2

Ist die Veränderung im Mittelwert überzufällig?

Mittelwert: \bar{x}_B Varianz s_B^2

T-test bei abhängigen Stichproben

Beispiel: Wissen über gesunde Ernährung von Schüler*innen vor und nach einer Infoveranstaltung (Skala von 0 bis 10)

ID	Wert vor der Veranstaltung	Wert nach der Veranstaltung	Differenz
1	6	8	2
2	4	7	3
3	5	10	5
4	5	8	3
5	4	7	3
6	6	8	2
	Mittelwert: 5	Mittelwert: 8	Mittelwert der Differenzen: 3

Quelle: Eigene Darstellung

Wh. Wie wird Prüfgröße t berechnet?

Abhängige Stichproben

$$t = \frac{\bar{x}_d - \mu_d}{\hat{\sigma}_{\bar{x}_d}} = \frac{\bar{x}_d - 0}{\hat{\sigma}_{\bar{x}_d}} = \frac{\bar{x}_d}{\hat{\sigma}_{\bar{x}_d}}$$

Standardfehler d. Mittelwert der Differenzen muss aus den Daten geschätzt werden

T-Test bei abhängigen Stichproben

- 1. Formulierung der Hypothesen
- 2. Bestimmung des Ablehnungsbereiches
- 3. Bestimmung der Prüfgröße
- 4. Interpretation / Schlussfolgerung

1. Formulierung der Hypothesen

Nullhypothese: (MW-)Unterschied ist zufällig zustande gekommen

(Es gibt keinen Unterschied zwischen dem mittleren Wissen vor und nach der Veranstaltung)

$$H_0$$
: $\mu_1 = \mu_2$

Alternativ-/Forschungshypothese: (MW-)Unterschied ist überzufällig zustande gekommen (Es gibt einen Unterschied im mittleren Wissen vor und nach der Veranstaltung)

Signifikanzniveau: 5%

2. Bestimmung Ablehnungsbereich

Signifikanzniveau wird auf 0,05 festgelegt (Das Risiko, H_0 auf Grund des Stichprobenergebnisses abzulehnen, obwohl diese in der Grundgesamtheit gilt, wird mit 5% festgelegt)

 \rightarrow d.h. in unserem Beispiel: t_{krit} (2,571, siehe t-tabelle für df=5)

3. Bestimmung Prüfgröße

$$\mathsf{t} = \frac{x_d - \mu_d}{\hat{\sigma}_{\bar{x}_d}} = \frac{x_d - 0}{\hat{\sigma}_{\bar{x}_d}} = \frac{x_d}{\hat{\sigma}_{\bar{x}_d}}$$
 Grundannahme Nullhypothese

Geschätzter Standardfehler d. Mittelwerts der Differenzen

3. Bestimmung Prüfgröße

$$t = \frac{\bar{x}_d - \mu_d}{\hat{\sigma}_{\bar{x}_d}} = \frac{\bar{x}_d - 0}{\hat{\sigma}_{\bar{x}_d}} = \frac{\bar{x}_d}{\hat{\sigma}_{\bar{x}_d}}$$

Standardfehler d. Mittelwerts der Differenzen:

Geschätzte $\hat{\sigma}_{\bar{x}_d} = \frac{\hat{\sigma}_d}{\sqrt{n}}$ Standardabweichung der mittleren Different der mittleren Differenz

Schätzung Standardabweichung Mittelwerts der Differenzen:

$$\hat{\sigma}_d = \sqrt{\frac{\sum_{i=1}^n (d_i - \bar{x}_d)^2}{n-1}}$$

$$= \sqrt{\frac{(2-3)^2 + (3-3)^2 + (5-3)^2 + (3-3)^2 + (3-3)^2 + (2-3)^2}{6-1}} = \sqrt{\frac{1+0+4+0+0+1}{5}} = \sqrt{\frac{6}{5}} = 1,10$$

3. Bestimmung Prüfgröße

$$t = \frac{\bar{x}_d - \mu_d}{\hat{\sigma}_{\bar{x}_d}} = \frac{\bar{x}_d - 0}{\hat{\sigma}_{\bar{x}_d}} = \frac{\bar{x}_d}{\hat{\sigma}_{\bar{x}_d}}$$

Standardfehler d. Mittelwerts der Differenzen:

$$\hat{\sigma}_{\bar{x}_d} = \frac{\hat{\sigma}_d}{\sqrt{n}}$$

Schätzung Standardabweichung Mittelwerts der Differenzen:

$$\hat{\sigma}_d = \sqrt{\frac{\sum_{i=1}^n (d_i - \bar{x}_d)^2}{n-1}}$$

$$= \sqrt{\frac{(2-3)^2 + (3-3)^2 + (5-3)^2 + (3-3)^2 + (3-3)^2 + (2-3)^2}{6-1}} = \sqrt{\frac{1+0+4+0+0+1}{5}} = \sqrt{\frac{6}{5}} = 1,10$$

$$t = \frac{\bar{x}_d}{\frac{\hat{\sigma}_d}{\sqrt{n}}} \longrightarrow t = \frac{3}{\frac{1,1}{\sqrt{6}}} = 6,67$$

4. Interpretation

Da t_{emp} >t_{krit} (2,57, siehe t-tabelle für df=5) kann die Nullhypothese abgelehnt werden. Forschungshypothese wird akzeptiert.

Das heißt, wir gehen in unserem Beispiel davon aus, dass die mittlere Differenz von 3 Skalenpunkten nach der Infoveranstaltung nicht zufällig entstanden sein wird und dass eine durchschnittliche Veränderung auch für die Grundgesamtheit erwartet wird.

Voraussetzung t-Tests

- Zufallsstichprobe
- (pseudo-)metrisches Skalenniveau der Variablen
 (→ für nominales Skalenniveau: Chi-Quadrat-Test)
- (annähernde) Normalverteilung des Merkmals in der Grundgesamtheit

 ermöglicht Vergleich zwischen 2 Gruppen (→ für Vergleiche zwischen mehr Gruppen: Varianzanalyse mit F-Test - gleiche Logik, ähnliches Vorgehen)

Hypothesentests und Fehler

- Wir nutzen Stichprobendaten, um eine statistische Entscheidung im Rahmen von Hypothesentests zu treffen, die ihrerseits die Grundlage für inhaltliche Schlussfolgerungen darstellen
- Aber: Da unsere Stichprobendaten
 Zufallsauswahlen repräsentieren, sind zufällige
 Abweichungen und damit Fehlentscheidungen
 möglich
- → Fehler 1. Art (Alpha-Fehler) und Fehler 2. Art (Beta-Fehler)

Fehler 1. und 2. Art

	In Grundgesamtheit gilt die		
		H_0	H_A
Entscheidung aufgrund der Stichprobe	H_0	Richtige Entscheidung	eta-Fehler
	H_A	lpha-Fehler	Richtige Entscheidung

Übung Signifikanzniveaus, p-Werte

Entscheidung über H₀ beruht auf berechneter Prüfgröße (z.B. z-Statistik, t-Statistik...)

Was heißt das? Ergänzen Sie:

- Hypothesentest "signifikant": H₀ wird ...?
- Hypothesentest "nicht signifikant" (n.s.): H₀ wird …?

Wh. Signifikanzniveaus und p-Werte

Entscheidung über H₀ beruht auf berechneter Prüfgröße (z.B. z-Statistik, t-Statistik, etc.)

Was heißt das?

- "signifikant": H₀ wird abgelehnt
- "nicht signifikant" (n.s.): H₀ wird beibehalten

Übungen Signifikanzniveaus, p-Werte

- α und p-Wert verweisen auf Irrtumswahrscheinlichkeit bzw. die Wahrscheinlichkeit eines Fehlers 1. Art/Typ-I-Fehler, also die Nullhypothese fälschlicherweise....?
- p< .05 : Die Wahrscheinlichkeit für den empirischen Befund, wenn die ... gültig ist, ist kleiner als 5 Prozent

- α und p-Wert verweisen auf Irrtumswahrscheinlichkeit bzw. die Wahrscheinlichkeit eines Typ-I Fehlers, also die Nullhypothese fälschlicherweise abzulehnen
- p<.05: Die Wahrscheinlichkeit für den empirischen Befund, wenn die Nullhypothese gültig ist, ist kleiner als 5 Prozent

Übungen

Treffen die folgenden Aussagen zu oder nicht?

- Wenn sich ein Stichprobenmittelwert für α = 0.01 im Ablehnungsbereich befindet, befindet sich dieser Stichprobenmittelwert *immer* auch für α = 0.05 im Ablehnungsbereich.
- Wenn sich ein Stichprobenmittelwert für α = 0.05 im Ablehnungsbereich befindet, befindet sich dieser Stichprobenmittelwert *immer* auch für α = 0.01 im Ablehnungsbereich.

Übung

- 1. Wenn sich ein Stichprobenmittelwert für α = 0.01 im Ablehnungsbereich befindet, befindet sich dieser Stichprobenmittelwert *immer* auch für α = 0.05 im Ablehnungsbereich. Richtig, denn ein Stichprobenmittelwert > 2.58 ist immer auch > 1.96
- Wenn sich ein Stichprobenmittelwert für α = 0.05 im Ablehnungsbereich befindet, befindet sich dieser Stichprobenmittelwert immer auch für α = 0.01 im Ablehnungsbereich. Falsch, denn ein Stichprobenmittelwert > 1.96 ist nicht notwendigerweise auch > 2.58 (er könnte z.B. den Wert 2.4 annehmen)

Einheit heute, 2. Teil

- Lineare Regression, Teil 1 (Wdh. von Statistik I)
 - Um was geht's bei Regressionsanalysen überhaupt? (Grundlagen, Logik, Möglichkeiten)
 - Bivariates Regressionsmodell

Ergänzende Materialien:

- Folien aus Stat I
- Lehrbrief Kapitel 4
- Lernmodul 4

Zwischenstand

Was können wir mit bivariaten Analysen leisten?

Zusammenhänge zwischen 2 Variablen beschreiben und auf statistische Signifikanz prüfen

- Kreuztabellen und die damit verbundenen Maße (Chi-Quadrat, Cramers V) können Auskunft über Zusammenhänge zwischen zwei (nicht-metrischen) Variablen liefern
- Korrelationskoeffizienten (z.B. Pearsons r) beschreiben die Stärke eines linearen Zusammenhangs zweier Variablen
- Mittelwertvergleiche mit T-Testverfahren können testen, ob der Unterschied zwischen zwei Mittelwerten statistisch signifikant ist

Zusammenfassung

Was können bisherige Analyseverfahren nicht leisten?

- Überprüfen, inwieweit ein abhängiges Merkmal womöglich noch von weiteren Variablen abhängig ist
- Kausalitätsrichtung zwischen Variablen untersuchen
- → Multivariate Verfahren, v.a. Regressionsanalyse

Multivariate Analysen

- Multivariate Analysen beziehen mehr als 2 Variablen in Analysen ein
- Klassische Unterscheidung zwischen
- (1) Strukturentdeckenden/dimensionsreduzierenden Verfahren, z.B. Faktoren-/Hauptkomponentenanalyse und Clusteranalyse
- (2) Strukturprüfenden Verfahren, z.B. Regressionsanalyseverfahren
 - Können für die Einflüsse möglicher Drittvariablen kontrollieren
 - Können eine abhängige Variable durch mehrere unabhängige Variablen "erklären"

- Mit Regressionsanalysen adressiert man zwei Fragen:
 - (1) Wie gut erklären bestimmte Faktoren (unabhängige Variablen) die Varianz einer abhängigen Variable?
 - (2) Welchen Einfluss üben die einzelnen Faktoren auf diese abhängige Variable aus (unter Konstanthalten des Einflusses der anderen unabhängigen Variablen)?
- Damit lassen sich (theoretisch entwickelte) Hypothesen über die Beeinflussungsstruktur bestimmter Variablen auf andere Variablen prüfen
- Beispiel?

- Korrelationsanalyse behandelt X und Y "gleichwertig", d.h.
 - Unterscheidung Explanans (uV) und Explanandum (aV) spielt statistisch keine Rolle
- Regressionsanalytische Terminologie: Y ist Explanandum/Kriterium, X ist Explanans/Prädiktor
- Y soll durch X erklärt bzw. vorhergesagt bzw. auf X "zurückgeführt" werden

Tabelle 46: Unterschiedliche Bezeichnungen für Variablen der Regressionsanalyse

Abhängige Variable (y)	Unabhängige Variable (x)
Erklärte Variable	Erklärende Variable
Kriteriums(variable)	Prädiktor(variable)
Endogene Variable	Exogene Variable
Regressand	Regressor

Quelle: Eigene Darstellung

Tabelle aus Lehrbrief, Kapitel 4

- Hauptfunktion:
- 1) Statistische Methode, um den Einfluss mehrerer unabhängiger Variablen (uV) auf eine abhängige Variable (aV) zu untersuchen
- 2) Informations reduktion dieser Untersuchung auf wenige Kennzahlen (z.B. \propto , β und R^2)
- Formal:
- 1) Misst den Einfluss von (einer) uV (X) auf eine aV (Y)
- 2) Die einzelnen Ausprägungen von Y hängen funktional von den jeweiligen Ausprägungen der X-Variable(n) ab:
 - Y = f(X)

Was ist:

- die Richtung
- die Stärke
- die statistische Signifikanz

... des Einflusses von X auf Y?