THERMO-HYDRAULIC PERFORMANCE OF A PLATE HEAT EXCHANGER USING CuO-Al₂O₃/WATER HYBRID NANOFLUIDS

A project report

Submitted in partial fulfilment of the requirements for the award of the degree

BACHELOR OF TECHNOLOGY IN MECHANICAL ENGINEERING

By

DUMPA NAVEEN 19215A0304

Under the guidance of

Dr. V. MURALI KRISHNA
Professor and HOD, Mechanical Engineering

Department of Mechanical Engineering B. V. RAJU INSTITUTE OF TECHNOLOGY (AUTONOMOUS)

(NBA and NAAC Accredited, Approved By AICTE and Affiliated to JNTUH)
Vishnupur, Narsapur, Medak District - 502 313

2021-22

Department of Mechanical Engineering B. V. RAJU INSTITUTE OF TECHNOLOGY (AUTONOMOUS)

(NBA and NAAC Accredited, Approved By AICTE and Affiliated to JNTUH)
Vishnupur, Narsapur, Medak District - 502 313

CERTIFICATE

This is to certify that the project entitled "THERMO-HYDRAULIC PERFORMANCE OF A PLATE HEAT EXCHANGER USING CuO-Al2O3/WATER HYBRID NANOFLUIDS" is the bonafide work done by

DUMPA NAVEEN 19215A0304

in the Department of Mechanical Engineering, B. V. Raju Institute of Technology, Narsapur, Medak (Dist) and submitted to Jawaharlal Nehru Technological University, Hyderabad in partial fulfilment of the requirements for the award of B. Tech degree in Mechanical Engineering in the academic year 2020-21. This work has been carried out under my guidance.

(Dr. V. Murali Krishna) Guide (Dr. V. Murali Krishna) Head of Department

External Examiner

DECLARATION

We hereby declare that the entire project work embodied in this dissertation entitled "THERMO-HYDRAULIC PERFORMANCE OF A PLATE HEAT EXCHANGER USING CuO-Al2O3/WATER HYBRID NANOFLUIDS" has been independently carried out by us. As per my knowledge, no part of this work has been submitted for any degree in any institution, university, and organization previously.

DUMPA NAVEEN

ACKNOWLEDGEMENT

We would like express my deep sense of gratitude to **Dr. V. Murali Krishna**, **Professor and HOD**, **Mechanical Engineering** for his constant guidance throughout our project work. I would like to again thank him for keeping our moral high throughout the duration of the project work.

We also express our sincere thanks to **Dr. K. Lakshmi Prasad, Principal**, **BVRIT**, for encouraging and providing us with needed opportunity to accomplish our project.

DUMPA NAVEEN

ABSTRACT

With the development of thermal engineering and industrial intensification, more efficient and compact heat transfer systems are needed. Therefore, many efforts have been devoted to improving the heat transfer equipment design. The plate heat exchanger (PHE) is widely used in many applications including food processing, heating and cooling applications and chemical industry for its high efficiency and compactness (low volume/surface ratio). Also during the recent times, hybrid nanofluids have appeared as a innovative group of working fluids for many heat transfer applications owing to special heat carrying characteristics. It is found from the literature review that no work has been reported on thermo-hydraulic performance of a plate heat exchanger using CuO-Al2O3/water hybrid nanofluids In view of the importance, a numerical study is carried out to examine the heat transfer and pressure drop characteristics for laminar flow of CuO- Al2O3/water hybrid nanofluids as coolants in a plate heat exchanger under forced convection conditions in the present work. The thermo-physical properties of hybrid nanofluids are estimated using the law of mixtures and correlations available in the literature for different volume fractions of nanoparticles. The heat transport rate and pumping power features of PHE is to be numerically investigated using CuO- Al2O3/water hybrid nanofluids for different mass flow rates, with the volume fractions ranging from 1% to 3%. Also the numerical results are obtained to determine rate of heat transfer and pressure drop for flow of Al2O3-water, and CuO-water mono nanofluids and pure water in the PHE under identical conditions of mass flow rate and volume fraction of nanoparticles in nanofluid. The performance of CuO-Al2O3/water hybrid nanofluids is to be compared. Also the performance of PHE with CuO-Al2O3/water hybrid nanofluid is compared with Al2O3-water, CuO-water and pure water, hybrid nanofluid is to be compared with CuO-water mono nanofluids and base fluid water for heat transfer and pressure drop. The numerical results obtained for mono nanofluids are to be compared with experimental data available in the literature to validate the present model.

CONTENTS

Chapter No.	Page
Certificate	ii
Declaration	iii
Acknowledgement	iv
Abstract	v
List of figures	viii
List of tables	X
1. INTRODUCTION	1
1.1. Background	1
1.2. Nano-particles	2
1.3. Nanofluids	3
1.4. Preparation methods for nanofluids	4
1.4.1. Single-step preparation process	4
1.4.2. Two-step preparation process	4
1.5. Application of computational fluid dynamics	5
1.6. Objectives of the present work	5
2. LITERATURE REVIEW	6
2.1. Literature survey	6
2.2. Scope of the present work	13
3. MODELING OF PLATE HEAT EXCHNAGER	14
3.1. Physical model	14
3.2. Modelling of plate heat exchanger	15
4. PROPERTIES OF NANOFLUIDS AND HYBRID NANOFLUIDS	18
4.1. Properties of nanoparticles and water	18
4.2. Properties of mono nanofluids	18
4.3. Properties of CuO-Al ₂ O ₃ -/H ₂ O hybrid nanofluid	19
5. CFD ANALYSIS OF PLATE HEAT EXCHANGER	21
5.1. Computational fluid dynamics	21
5.1.1. CFD methodology	21
5.1.1.1. Pre-processor	21
5.1.1.2. Solver	22
5.1.1.3. Post processor	22

5.1.2. Finite volume method	22
5.1.3. Finite element method	22
5.1.4. Finite difference method	23
5.2. Governing equations	23
5.2.1. Continuity equation	23
5.2.2. Momentum equation	23
5.2.3. Energy equation	23
5.3. Boundary conditions	24
5.4. Schemes to calculate face value for variables	24
5.4.1. Central difference scheme	24
5.4.2. The upwind scheme	24
5.4.3. The exact solution	24
5.4.4. The exponential scheme	24
5.4.5. The hybrid scheme	25
5.5. Fluent analysis	25
5.6. Solution convergence	34
6. RESULTS AND DISCUSSION	36
6.1. Variation of Overall HTC with Re for CuO/H2O andAl ₂ O ₃ /H ₂ O nanofluids	38
6.2. Effect of Re on Nu for hybrid nanofluid of CuO-Al ₂ O ₃ -H ₂ O	40
6.3. Effect of Re on pressure drop for nanofluids and water	42
7. CONCLUSIONS	44
REFERENCES	45

LIST OF FIGURES

	Page No.
Fig.1.1. Plate heat exchanger	2
Fig.1.2. Two-step preparation process of nanofluids	4
Fig.3.1. Schematic of Plate heat exchanger	14
Fig.3.2. Start window in ANSYS 19.2	15
Fig.3.3. Coordinate system ANSYS 19.2	15
Fig.3.4. Dimension system in ANSYS 19.2	16
Fig.3.5. 2D diagram in ANSYS 19.2	16
Fig.3.6. Extruded sketch in ANSYS 19.2	17
Fig.5.1. Standalone system	25
Fig.5.2. Design of modular window	25
Fig.5.3. Extruded body in design modular	26
Fig.5.4. Performing Boolean operation in design modular	26
Fig.5.5. Meshing window	27
Fig.5.6. Edge sizing mesh of plates	27
Fig.5.7. Meshing of plate heat exchanger	28
Fig.5.8. Statistics of mesh	28
Fig.5.9. Named sections of plate heat exchanger	29
Fig.5.10. Setup window	29
Fig.5.11. Selection of models	30
Fig.5.12. Creating of working fluid	30
Fig.5.13. Boundary conditions of inlet	31
Fig.5.14. Boundary conditions of outlet	31
Fig.5.15. Boundary condition of heat wall	31
Fig.5.16. Boundary conditions of end wall	32
Fig.5.17. Reference values of inlet	32
Fig.5.18. Initialization of solution.	32
Fig.5.19. Running the calculation	33
Fig.5.20. Scaled residuals for obtaining convergence	33
Fig.5.21. Contours for convergence	34
Fig.5.22. Scaled residuals of CuO-water solution	34
Fig.5.23. Scaled residuals of Al ₂ O ₃ -water solution	35

Fig.5.24. Scaled residuals of Cuo-Al ₂ O ₃ -water	35
Fig.6.1. The geometry of the heat exchanger in CFD setup	36
Fig.6.2. Surface heat transfer contour of cold fluid wall	37
Fig.6.3. Surface heat transfer contour of hot fluid wall	37
Fig.6.4. Variation of Uo with Re for CuO-H2O nanofluid	39
Fig.6.5. Variation of Uo with Re for Al ₂ O ₃ /H ₂ O nanofluid	39
Fig.6.6. Influence of Re on Uo for 1% volume concentration	40
Fig.6.7. Influence of Re on Uo for 2% volume concentration	41
Fig.6.8. Influence of Re on Uo for 3% volume concentration	41
Fig.6.9. Effect of Re on pressure drop at 1% concentration	42
Fig.6.10. Effect of Re on pressure drop at 2% concentration	43
Fig.6.11. Effect of Re on pressure drop at 3% concentration	43

LIST OF TABLES

	Page No.
Table 4.1 Thermo-physical properties of nanoparticles and water	18
Table 4.2 Thermo-physical properties CuO-water nanofluid	19
Table 4.3 Thermo-physical properties Al ₂ O ₃ -water nanofluid	19
Table 4.4 Thermo-physical properties CuO-Al ₂ O ₃ -H ₂ O nanofluid	20