BME Gépészmérnöki Kar	SZILÁRDSÁGTAN	Név: Kindlik Dániel		
Műszaki Mechanikai Tanszék	2. HÁZI FELADAT	Neptun kód: AHU27Z		
2024/25 II.	Késedelmes beadás: □ Javítás: □			
Nyilatkozat: Aláírásommal igazolom, hogy szítettem el, az abban leírtak saját megértése	Aláírás: Kinaliz Dancel			

Csak a formai követelményeknek megfelelő feladatokat értékeljük! http://www.mm.bme.hu/targyak/bsc/sziltan

Feladatkitűzés

Az ábrán vázolt szerkezet két rúdja csuklósan kapcsolódik, anyaguk homogén, izotrop, lineárisan rugalmas (rugalmassági modulusz: E=210 GPa; Poisson-tényező: $\nu=0,3$). Az (1)-es rúd keresztmetszete az ábrán látható I-szelvény (I-80-MSZ-325), míg a (2)-es rúdé d külső átmérőjű körgyűrű.

Adatok

L [m]	h [m]	d [mm]	F [kN]	M [kNm]	p [kN/m]	$\varepsilon_a [10^{-4}]$	$\varepsilon_b [10^{-4}]$	$\varepsilon_c [10^{-4}]$	α [°]
1.50	2.50	58	4	1.50	1.75	-5.20	2.50	6	30

(Rész)eredmények

A_z [kN]	x_{max}	[m]	w_{m}	nax [mm]	t_{\min} [mm]	$\varepsilon_y [10^-$	4]	γ_{xz} [10^{-4}]	σ	x [MPa]
-8.93	75	4.5		-4	7.125	7.1	-0.343		11.3	16	-7	8.462
σ_z [MPa	a]	$ au_{xz}$ [1	MPa]	σ_1	[MPa]	σ_2 [MPa]	σ_3 [MP	a]	$\Delta\sigma_{ m e}$ [[MPa]	u_{ϵ}	d [J/cm ³]
102.46	52	91.3	99	14	0.597	0	-116.5	97	34.1	34	0.	1027
$e_{1x}\left[\text{-} \right]$	$e_{:}$	_{1y} [-]	e_{1z} [[-]	e_{2x} [-]	e_{2y} [-]	e_{2z} [-]	e_3	x [-]	e_{3y} [-]	e_{3z} [-]
0.385	0		0.92	29	0	1	0	-0.	9229	0		0.385

Pontozás

Minimumfeladat	Feladatok						Dokumentáció	Összesen
Willimitumeladat	2.	3.	4.	5.	6.	7.	Dokumentacio	OSSZESCII
	/5	/3	/4	/4	/2	/2	/5	/25

(A feladatokban levő egyenletrendszereket egy általam készített **Python** program segítségével oldottam meg, így azoknak csak a megoldása szerepel itt. Emellett a feladathoz szükséges ábrákat a matplotlib könyvtár segítségével ábrázoltam.)

Adatok:

$$\begin{split} L &= 1.5 \; [\mathrm{m}] \quad h = 2.5 \; [\mathrm{m}] \quad d = 58 \; [\mathrm{mm}] \\ F &= 4 \; [\mathrm{kN}] \quad M = 1.5 \; [\mathrm{kNm}] \; p = 1.75 \; [\mathrm{kN/m}] \\ \varepsilon_a &= -5.2 \; [10^{-4}] \quad \varepsilon_b = 2.5 \; [10^{-4}] \quad \varepsilon_c = 6 \; [10^{-4}] \quad \alpha = 30 \; [^{\circ}] \\ E &= 210 \; [\mathrm{GPa}] \quad \nu = 0.3 \; [-] \end{split}$$

1. Feladat:

Az ábrán egy egység megfelel 1 m-nek és 2 kN-nak

A szerkezetünket két részre tudjuk bontani, hogy ki tudjuk számolni a reakcióerőket. Ekkor C-pontban meg fog jelenni egy C vektor, és a két rúdra külön tudunk 3-3 egyensúlyiegyenletet írni. A két rész (1. eset balra, 2. eset jobbra) szabadtest-ábrája:

1. esetben kijövő egyensúlyi egyenletek A pontra vonatkoztatva:

(1)
$$\sum F_x = 0 = C_x$$

(2)
$$\sum F_z = 0 = A_z + C_z + p \cdot L - F$$

(3)
$$\sum M_A = 0 = C_z \cdot L - M - F \cdot 2L - (p \cdot L) \cdot \frac{L}{2}$$

2. esetben kijövő egyensúlyi egyenletek B pontra vonatkoztatva:

(4)
$$\sum F_x = 0 = -C_x + B_x$$

(5)
$$\sum F_z = 0 = -C_z + B_z$$

$$(6) \sum M_B = 0 = M_B + B_x \cdot h$$

A két egyenletrendszer megoldása:

$$A_z = \underline{-8.9375 \; [\mathrm{kN}]}$$

$$B_x = \underline{0 \text{ [kN]}}$$

$$B_z = \underline{10.3125 \text{ [kN]}}$$

$$M_B = 0 [kN]$$

$$C_x = \underline{0 \text{ [kN]}}$$

$$C_z = \underline{10.3125 \text{ [kN]}}$$

2. Feladat:

Ahhoz hogy meg tudjuk határozni w(x)-et először meg kell adnunk az (1)-es rúd hajlítónyomatéki igénybevételét: A szerkezetet három részre tudjuk bontani, így a függvény:

	I.	II.	III.
	0 < x < 1.5	1.5 < x < 3	3 < x < 4.5
M_h	$-M - p \cdot x \cdot \frac{x}{2} =$	$-M - p \cdot L \cdot (x - \frac{L}{2}) - A_z \cdot (x - L) =$	$-M - p \cdot L \cdot (x - \frac{L}{2}) - A_z \cdot (x - L) - C_z \cdot (x - 2L) =$
	$= -0.875x^2 - 1.5 \text{ [kNm]}$	=6.315x - 12.9375 [kNm]	= 18 - 4x [kNm]

Az egyenletekből adódó függvény:

Az (1)-es rúd lehajlásfüggvényének meghatározásához felhasználhatjuk az alábbi összefüggéseket:

$$-I \cdot E \cdot w''(x) = M_h(x) \rightarrow -I \cdot E \cdot w'(x) = \int M_h(x) \rightarrow -I \cdot E \cdot w(x) = \iint M_h(x)$$

Ezek az összefüggések a rúd egészén igazak, úgyhogy felírom a hajlítónyomaték-függvény három szakaszának szükséges alakjait:

	I. $(w_1''(x), w_1'(x), w_1(x))$	II. $(w_2''(x), w_2'(x), w_2(x))$	III. $(w_3''(x), w_3'(x), w_3(x))$
$M_h(x)$	$-0.875x^2 - 1.5$	6.315x - 12.9375	18 - 4x
$\int M_h(x)$	$-0.2917x^3 - 1.5x + C_{11}$	$3.15625x^2 - 12.9375x + C_{21}$	$-2x^2 + 18x + C_{31}$
$\int \int M_h(x)$	$-0.072917x^4 - 0.75x^2 + C_{11}x + C_{12}$	$1.052083x^3 - 6.46875x^2 + C_{21}x + C_{22}$	$-0.667x^3 + 9x^2 + C_{31}x + C_{32}$

Az egyenletekben az integrálás miatt megjelenő ismeretleneket a peremfeltételekből kijövő egyenletrendszerrel tudjuk kiszámolni, itt elhagyhatjuk a $-I \cdot E$ szorzót.

A peremfeltételek:

$$w_1(L) = 0 \quad w_2(L) = 0 \quad w_2(2L) = 0 \quad w_3(2L) = 0 \quad w_1'(L) = w_2'(L) \quad w_2'(2L) = w_3'(2L)$$

Ezek alapján be tudunk helyettesíteni az x-ek helyére számokat, és 6db egyenletünk jön ki.

Az egyenletrendszer megoldása:

$$C_{11} = 3.4688 \ \ C_{12} = -3.1465 \ \ C_{21} = 12.539 \ \ C_{22} = -7.8047 \ \ C_{31} = -33.8672 \ \ C_{32} = 38.6016$$

Az így kijövő eredményeket fel tudjuk használni w(x) és $\varphi(x)$ függvény meghatározásához:

$$w(x) = -\frac{1}{I \cdot E} \cdot \iint M_h(x)$$
 $\varphi(x) = -\frac{1}{I \cdot E} \cdot \int M_h(x)$

	I.	II.	III.
	0 < x < 1.5	1.5 < x < 3	3 < x < 4.5
w(x)	$0.446x^4 + 4.59x^2 - 21.231x + 19.259$	$-6.439x^3 + 39.593x^2 - 76.748x + 47.77$	$4.08x^3 - 55.0863x^2 + 207.2909x - 236.269$
$\varphi(x)$	$1.785x^3 + 9.181x - 21.2312$	$-19.318x^2 + 79.187x - 76.748$	$12.2414x^2 - 110.173x + 207.291$

Az ábráról láthatjuk, hogy a legnagyobb lehajlás x = 4.5-nél következik be:

$$x_{max} = \underline{\underline{4.5[\mathrm{m}]}}$$
 $w_{max} = w(4.5) = \underline{\underline{-47.12[\mathrm{mm}]}}$

3. Feladat:

$$\sigma_F = 240 [\text{MPa}] \quad \lambda_0 = 105 \quad \sigma_{kr} = 308 - 1.14 \lambda$$

A $\sigma-\lambda$ diagram 3 részből fog állni: Folyáshatár, Tetmajer-egyenes és Euler-hiperbola

A diagram ábrázolásához meg kell adnunk a folyáshatár és Tetmajer-egyenes váltópontját, valamint az Euler-hiperbola egyenletét:

$$240 = 308 - 1.14\lambda_F \rightarrow \lambda_F = 59.65$$

Euler-hiperbola egyenlete: $\left(\frac{\pi}{\lambda}\right)^2 \cdot 2E$

A méretezés elvégzéséhez tegyük fel, hogy az Euler-tartományban vagyunk:

$$F_t = \left(\frac{\pi}{c \cdot L}\right)^2 \cdot I_2 \cdot E$$

 $F_t = 3 \cdot |C_z|$ mivel háromszoros biztonságot akarunk

c=2 mivel alul be van fogva a rúd, felül pedig szabadon mozoghat

$$I_2 = \frac{(d^4 - (d-2t)^4) \cdot \pi}{64}$$
mivel körgyűrűről beszélünk

Az egyenleteket összevonva és átrendezve: $t_{min} = 7.05 \approx 7.1 [\text{mm}]$

Így λ karcsúság értéke:

$$\lambda = \frac{L_0}{i_2} = \frac{c \cdot L}{\sqrt{\frac{I_2}{A}}}$$

Ezek alapján $\lambda = \underline{275.1774} > \lambda_0$, tehát helyes volt a feltételezésünk

Kinalod Daniel

4. Feladat:

A nyúlásmérő-bélyegek elhelyezkedése miatt célszerű nevezések: $\varepsilon_x=\varepsilon_a$ és $\varepsilon_z=\varepsilon_c$

 ε_y és γ_{xz} megadására ezek alapján használhatunk két egyenletet:

$$\varepsilon_b = \varepsilon_a \cdot \cos^2(\alpha) + \varepsilon_b \cdot \sin^2(\alpha) + \frac{\gamma_{xz}}{2} \cdot \sin(2\alpha) \to \gamma_{xz} = 11.316 \left[10^{-4} \right]$$

$$\varepsilon_y = -\frac{\nu \cdot (\varepsilon_x + \varepsilon_z)}{1 - \nu} \to \varepsilon_y = -0.343 [10^{-4}]$$

Ezek alapján az alakváltozási tenzor: $\boldsymbol{\varepsilon} = \begin{bmatrix} \varepsilon_x & 0 & \frac{1}{2}\gamma_{xz} \\ 0 & \varepsilon_y & 0 \\ \frac{1}{2}\gamma_{xz} & 0 & \varepsilon_z \end{bmatrix} = \begin{bmatrix} -5.2 & 0 & 5.658 \\ 0 & -0.343 & 0 \\ 5.658 & 0 & 6 \end{bmatrix} \begin{bmatrix} 10^{-4} \end{bmatrix}$

A Hooke-törvény segítségével meg tudjuk adni a feszültségi tenzort:

$$\boldsymbol{\sigma} = \frac{E}{1+\nu} \cdot \left(\boldsymbol{\varepsilon} + \frac{\nu}{1-2\nu} \cdot \boldsymbol{\varepsilon}_1 \cdot \mathbf{E} \right)$$

$$\varepsilon_1 = \frac{\Delta V}{V} = tr(\boldsymbol{\varepsilon}) = \varepsilon_x + \varepsilon_y + \varepsilon_z = \underbrace{0.457 \big[10^{-4} \big]}_{\text{L}}$$

Ezek alapján az feszültségi tenzor: $\boldsymbol{\sigma} = \begin{bmatrix} \sigma_x & 0 & \tau_{xz} \\ 0 & \sigma_y & 0 \\ \tau_{xz} & 0 & \sigma_z \end{bmatrix} = \begin{bmatrix} -78.462 & 0 & 91.399 \\ 0 & 0 & 0 \\ 91.399 & 0 & 102.462 \end{bmatrix} [\text{MPa}]$

$$\sigma_I = tr(\boldsymbol{\sigma}) = \underline{24[\text{MPa}]}$$

$$\sigma_{II} = \sigma_x \cdot \sigma_z - \tau_{xz}^2 = \underline{-16393 \left[\text{MPa}^2 \right]}$$

$$\sigma_{III} = det(\boldsymbol{\sigma}) = \underline{\underline{0}}$$

5. Feladat:

 $\boldsymbol{\sigma}$ mátrixból láthatjuk, hogy \underline{e}_2 főirány és Y pont ismert.

Mohr-körök segítségével meg tudjuk adni $\sigma_{1,2}\text{-t}$ is:

$$\sigma_K = \frac{\sigma_x + \sigma_y}{2} \qquad R = \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xz}^2}$$

 $X(\sigma_x, \tau_{xz}) \quad Y(\sigma_y, 0) \quad Z(\sigma_z, \tau_{xz})$

Az ábra segítségével:

$$\sigma_1 = \sigma_K + R = \underline{140.597[\text{MPa}]}$$

$$\sigma_2 = \underline{0[\text{MPa}]}$$

$$\sigma_3 = \sigma_K - R = \underline{-116.597[\text{MPa}]}$$

Az 1-es főfeszültséghez tartozó főirány: $\varphi_1 = \operatorname{atan}\left(\frac{\sigma_1 - \sigma_x}{\tau_{xz}}\right) \rightarrow \underline{e}_1 = \begin{bmatrix} \cos(\varphi_1) \\ 0 \\ \sin(\varphi_1) \end{bmatrix} = \begin{bmatrix} 0.385 \\ 0 \\ 0.923 \end{bmatrix}$

Az 2-es főfeszültséghez tartozó főirány ismert: $\underline{e}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$

Az 3-as főfeszültséghez tartozó főirány: $\underline{e}_3=\underline{e}_1\times\underline{e}_2=\begin{bmatrix}-0.9223\\0\\0.385\end{bmatrix}$

Ellenőrzés:

Ellenőrhetünk sajátérték-sajátvektor számítással:

Sajátértékek:

$$det(\boldsymbol{\sigma} - \lambda \cdot \mathbf{E}) = det \begin{pmatrix} \begin{bmatrix} -78.462 - \lambda & 0 & 91.399 \\ 0 & -\lambda & 0 \\ 91.399 & 0 & 102.462 - \lambda \end{bmatrix} \end{pmatrix} =$$

$$= (-78.462 - \lambda) \cdot (-\lambda) \cdot (102.462 - \lambda) - (91.399) \cdot (-\lambda) \cdot (91.399) = 0$$

$$\lambda_3 = -116.597 \checkmark \quad \lambda_2 = 0 \checkmark \quad \lambda_1 = 140.597 \checkmark$$

Sajátvektorok:

$$\begin{bmatrix} -78.462 - \lambda_{1,2,3} & 0 & 91.399 \\ 0 & -\lambda_{1,2,3} & 0 \\ 91.399 & 0 & 102.462 - \lambda_{1,2,3} \end{bmatrix} \cdot \underline{e}_{1,2,3} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\underline{e}_1 = \begin{bmatrix} 0.385 \\ 0 \\ 0.923 \end{bmatrix} \checkmark \quad \underline{e}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \checkmark \quad \underline{e}_3 = \begin{bmatrix} -0.9223 \\ 0 \\ 0.385 \end{bmatrix} \checkmark$$

6. Feladat:

Mohr-féle egyenértékű feszültség: $\sigma_e^{Mohr} = \sigma_1 - \sigma_3 = 257.193 [\text{MPa}]$

HMH-féle egyenértékű feszültség:
$$\sigma_e^{HMH} = \sqrt{\frac{(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2}{2}} = \underline{\underline{223.059[\text{MPa}]}}$$

A kettő különbsége: $\Delta\sigma=\sigma_e^{Mohr}-\sigma_e^{HMH}=\underline{34.134[\text{MPa}]}$

7. Feladat:

Alakváltozási energiasűrűség értéke:

$$u = \frac{\boldsymbol{\sigma} : \boldsymbol{\varepsilon}}{2} = \frac{\sigma_x \cdot \varepsilon_x + \tau_{xz} \cdot \gamma_{xz} + \sigma_z \cdot \varepsilon_z}{2} = \underline{0.10285 \big[\text{J/cm}^3 \big]}$$

Hidrosztatikus alakváltozási komponens:

$$u_h = \frac{(\frac{1}{3}\sigma_1 \cdot \mathbf{E}) : (\frac{1}{3}\varepsilon_1 \cdot \mathbf{E})}{2} = \frac{1}{6}\sigma_1 \cdot \varepsilon_1 = \underline{1.82857 \cdot 10^{-4} [\text{J/cm}^3]}$$

Ezek alapján a deviátoros alakváltozási komponens:

$$u_d = u - u_h = 0.10267 [J/cm^3]$$