Page 22

Amendments to Claims

(Currently Amended): A method for controlling arthropods comprising contacting the arthropods or their environment with an arthropodicidally effective amount of a compound of Formula 1, its N-oxide or agriculturally suitable salts

wherein

A and B are independently O or S;

each J-is independently a phenyl or naphthyl group substituted with 1 to 2 R5 and optionally-substituted with 1 to 3 R6;

or each J is independently a 5 or 6-membered heteroaromatic ring or an aromatic 8-, 9 or 10-membered fused heterobicyclic ring system wherein each ring or ring system is optionally substituted with 1 to 4 R7;

n is 1 to 4;

 R^1 is H; or C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl or C_3 - C_6 cycloalkyl each optionally substituted with one or more substituents selected from the group consisting of halogen, CN, NO2, hydroxy, C1-C4 alkoxy, C1-C4 alkylthio, C1-C4 alkylsulfinyl, C₁-C₄ alkylsulfonyl, C₂-C₄ alkoxycarbonyl, C₁-C₄ alkylamino, C₂-C₈ dialkylamino and C₃-C₆ cycloalkylamino; or

R1 is C2-C6 alkylcarbonyl, C2-C6 alkoxycarbonyl, C2-C6 alkylaminocarbonyl, C3-C8 dialkylaminocarbonyl or C(=A)J;

 R^2 is H, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_3 - C_6 cycloalkyl, C_1 - C_4 alkoxy, C_1 - C_4 alkylamino, C_2 - C_8 dialkylamino, C_3 - C_6 cycloalkylamino, C_2 - C_6 alkoxycarbonyl or C2-C6 alkylcarbonyl;

 R^3 is H; G; C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_3 - C_6 cycloalkyl, each optionally substituted with one or more substituents selected from the group consisting of halogen, G, CN, NO2, hydroxy, C1-C4 alkoxy, C1-C4 haloalkoxy, $C_1-C_4 \text{ alkylthio, } C_1-C_4 \text{ alkylsulfinyl, } C_1-C_4 \text{ alkylsulfonyl, } C_2-C_6 \text{ alkoxycarbonyl, } C_1-C_4 \text{ alkylsulfinyl, } C_1-C_4 \text{ alkylsulfinyl, } C_1-C_4 \text{ alkylsulfinyl, } C_2-C_6 \text{ alkoxycarbonyl, } C_2-C_6 \text{ alkoxycarbony$ C2-C6 alkylcarbonyl, C3-C6 trialkylsilyl, and a phenyl, phenoxy or 5- or 6membered heteroaromatic ring, each ring optionally substituted with one to three

Page 23

substituents independently selected from the group consisting of C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, C₃-C₆ cycloalkyl, C₁-C₄ haloalkyl, C₂-C₄ haloalkenyl, C₂-C₄ haloalkynyl, C₃-C₆ halocycloalkyl, halogen, CN, NO₂, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, C₁-C₄ alkylamino, C₂-C₈ dialkylamino, C₃-C₆ cycloalkylamino, C₃-C₆ (alkyl)cycloalkylamino, C₂-C₄ alkylcarbonyl, C₂-C₆ alkoxycarbonyl, C₂-C₆ alkylaminocarbonyl, C₃-C₈ dialkylaminocarbonyl and C₃-C₆ trialkylsilyl; C₁-C₄ alkoxy; C₁-C₄ alkylamino; C₂-C₈ dialkylamino; C₃-C₆ cycloalkylamino; C₂-C₆ alkoxycarbonyl or C₂-C₆ alkylcarbonyl; or

- R² and R³ can be taken together with the nitrogen to which they are attached to form a ring containing 2 to 6 atoms of carbon and optionally one additional atom of nitrogen, sulfur or oxygen, said ring may be optionally substituted with 1 to 4 substituents selected from the group consisting of C₁-C₂ alkyl, halogen, CN, NO₂ and C₁-C₂ alkoxy;
- G is a 5- or 6-membered nonaromatic carbocyclic or heterocyclic ring, optionally including one or two ring members selected from the group consisting of C(=O), SO or S(O)₂ and optionally substituted with 1 to 4 substituents selected from the group consisting of C₁-C₂ alkyl, halogen, CN, NO₂ and C₁-C₂ alkoxy;
- each R⁴ is independently H, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₆ cycloalkyl, C₁-C₆ haloalkyl, C₂-C₆ haloalkenyl, C₂-C₆ haloalkynyl, C₃-C₆ halocycloalkyl, halogen, CN, NO₂, hydroxy, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, C₁-C₄ haloalkylthio, C₁-C₄ haloalkylsulfinyl, C₁-C₄ haloalkylsulfonyl, C₁-C₄ alkylamino, C₂-C₈ dialkylamino, C₃-C₆ cycloalkylamino, or C₃-C₆ trialkylsilyl; or
- each R⁴ is independently phenyl, benzyl or phenoxy, each optionally substituted with C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, C₃-C₆ cycloalkyl, C₁-C₄ haloalkyl, C₂-C₄ haloalkenyl, C₂-C₄ haloalkynyl, C₃-C₆ halocycloalkyl, halogen, CN, NO₂, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, C₁-C₄ alkylamino, C₂-C₈ dialkylamino, C₃-C₆ cycloalkylamino, C₃-C₆ (alkyl)cycloalkylamino, C₂-C₄ alkylcarbonyl, C₂-C₆ alkoxycarbonyl, C₂-C₆ alkylaminocarbonyl, C₃-C₈ dialkylaminocarbonyl or C₃-C₆ trialkylsilyl;
- each \mathbb{R}^5 is independently \mathbb{C}_1 \mathbb{C}_6 alkyl, \mathbb{C}_2 \mathbb{C}_6 alkenyl, \mathbb{C}_2 \mathbb{C}_6 alkynyl, \mathbb{C}_3 \mathbb{C}_6 eyelealkyl, \mathbb{C}_1 \mathbb{C}_6 halealkyl, \mathbb{C}_2 \mathbb{C}_6 halealkynyl, \mathbb{C}_3 \mathbb{C}_6 halealkyl, \mathbb{C}_3 \mathbb{C}_6 halealkyl, halegen, \mathbb{C}_1 , \mathbb{C}_0 \mathbb{C}_1 , \mathbb{C}_0 \mathbb{C}_1 , \mathbb{C}_0 \mathbb{C}_1 , \mathbb{C}_0 \mathbb{C}_1 , \mathbb{C}_0 alkylsulfinyl, \mathbb{C}_1 \mathbb{C}_0 alkylsulfinyl, \mathbb{C}_1 \mathbb{C}_0 alkylsulfinyl, \mathbb{C}_1 \mathbb{C}_0 halealkylsulfinyl, \mathbb{C}_1 \mathbb{C}_0 halealkylsulfinyl, \mathbb{C}_1 \mathbb{C}_0 halealkylsulfinyl, \mathbb{C}_1 \mathbb{C}_0 halealkylsulfinyl, \mathbb{C}_1 \mathbb{C}_0 alkylamino, \mathbb{C}_2 \mathbb{C}_0 alkylamino, \mathbb{C}_2 \mathbb{C}_0 alkylamino, \mathbb{C}_2 \mathbb{C}_0

Page 24

alkoxycarbonyl, C2 C6 alkylaminocarbonyl, G2-C8 dialkylaminocarbonyl, or C3-C6 triallty sily 1; or

- (R5)2 when attached to adjacent earbon atoms can be taken together as OCF2O, -CF₂CF₂O , or OCF₂CF₂O ;
- each R6 is independently H, halogen, C1-C6 alkyl, C2-C6 alkenyl, C2-C6-alkynyl, C2-C6 eyeloalkyl, C1 G4 alkoxy or C2-C4 alkoxycarbonyl; or
- each R6 is independently a phenyl, benzyl, phenoxy, 5 or 6 membered heteroaromatic ring or an aromatic 8, 9- or 10 membered fused heterobioyelic ring system, each ring optionally substituted with one to three substituents independently selected from the group consisting of C1 C4 alkyl, C2 C4 alkenyl, C2 C4 alkynyl, C3 C6 eyelealkyl, C₁-C₄ halealkyl, C₂-C₄-halealkenyl, C₂-C₄ halealkynyl, C₃-C₆ halocycloalkyl, halogen, CN, NO2, C1-C4 alkoxy, C1-C4 haloalkoxy, C1-C4 alkylthio, C1-C4-alkylsulfinyl, C1-C4-alkylsulfonyl, C1-C4 alkylamino, C2-C8 $\frac{\text{dialkylamino, } C_3 \cdot C_6 \cdot \text{cycloalkylamino, } C_2 \cdot C_6 \cdot \text{(alkyl)cycloalkylamino, } C_2 \cdot C_4}{\text{dialkylamino, } C_3 \cdot C_6 \cdot \text{(alkyl)cycloalkylamino, } C_2 \cdot C_6 \cdot C_6$ alkylearbonyl, C2 G6 alkoxyearbonyl, C2 G6 alkylaminocarbonyl, C2 G8 dialkylaminocarbonyl and C2 C6 trialkylsilyl;
- each R7 is independently H, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C3-C6 cycloalkyl, C_1 - C_6 haloalkyl, C_2 - C_6 haloalkenyl, C_2 - C_6 haloalkynyl, C_3 - C_6 halocycloalkyl, halogen, CN, CO₂H, CONH₂, NO₂, hydroxy, C₁-C₄ alkoxy, C_1 - C_4 haloalkoxy, C_1 - C_4 alkylthio, C_1 - C_4 alkylsulfinyl, C_1 - C_4 alkylsulfonyl, C_1 - C_4 haloalkylthio, C_1 - C_4 haloalkylsulfinyl, C_1 - C_4 haloalkylsulfonyl, C_1 - C_4 alkylamino, C2-C8 dialkylamino, C3-C6 cycloalkylamino, C2-C6 alkylcarbonyl, C2-C6 alkoxycarbonyl, C2-C6 alkylaminocarbonyl, C3-C8 dialkylaminocarbonyl, or C3-C6 trialkylsilyl; or
- each R7 is independently a phenyl, benzyl, benzoyl, phenoxy, 5- or 6-membered heteroaromatic ring or an aromatic 8-, 9- or 10-membered fused heterobicyclic ring system, each ring optionally substituted with one to three substituents independently selected from the group consisting of C1-C4 alkyl, C2-C4 alkenyl, C_2 - C_4 alkynyl, C_3 - C_6 cycloalkyl, C_1 - C_4 haloalkyl, C_2 - C_4 haloalkenyl, C_2 - C_4 haloalkynyl, C_3 - C_6 halocycloalkyl, halogen, CN, NO_2 , C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy, C1-C4 alkylthio, C1-C4 alkylsulfinyl, C1-C4 alkylsulfonyl, C1-C4 alkylamino, C2-C8 dialkylamino, C3-C6 cycloalkylamino, C3-C6 (alkyl)cycloalkylamino, C_2 - C_4 alkylcarbonyl, C_2 - C_6 alkoxycarbonyl, C_2 - C_6 alkylaminocarbonyl, C₃-C₈ dialkylaminocarbonyl and C₃-C₆ trialkylsilyl;

provided that

(1) when A and B-are both O, R2 is H or C1 C2 alkyl, R3 is H or C1 - C3 alkyl and R4 is II, halogen, C1-C6 alkyl, phenyl, hydroxy or C1-C6 alkoxy, then one R5 is other than halogen, C1-C6-alkyl, hydroxy or C1-C6 alkoxy; or

Page 25

- (2) Jis other than an optionally 1,2,3 thiadiazole.
- (3) when J is an optionally substituted 5 membered-heteroaromatic ring, then R2 and R2 are taken together with the nitrogen to which they are attached to form a ring containing 2 to 6 atoms of carbon and optionally one additional atom of nitrogen, sulfur-or oxygen, said ring may be optionally substituted with 1 to 4 substituents selected from the group consisting of C1-C2-alkyl, halogen, CN, NO2-and C1-C2 alkoxy.
- (Withdrawn): The method of Claim 1 wherein J is a phenyl group substituted with 1 to 2 R5 and optionally substituted with 1 to 3 R6.
 - (Withdrawn): The method of Claim 2 wherein

A and B are both O;

n is 1 to 2;

- R^1 is H, C_1 - C_4 alkyl, C_2 - C_4 alkenyl, C_2 - C_4 alkynyl, C_3 - C_6 cycloalkyl, C_2 - C_6 alkylcarbonyl or C2-C6 alkoxycarbonyl;
- R^2 is H, C_1 - C_4 alkyl, C_2 - C_4 alkenyl, C_2 - C_4 alkynyl, C_3 - C_6 cycloalkyl, C_2 - C_6 alkylcarbonyl or C_2 - C_6 alkoxycarbonyl;
- \mathbb{R}^3 is \mathbb{C}_1 - \mathbb{C}_6 alkyl, \mathbb{C}_2 - \mathbb{C}_6 alkenyl, \mathbb{C}_2 - \mathbb{C}_6 alkynyl or \mathbb{C}_3 - \mathbb{C}_6 cycloalkyl each optionally substituted with one or more substituents selected from the group consisting of halogen, CN, C1-C2 alkoxy, C1-C2 alkylthio, C1-C2 alkylsulfinyl and C1-C2 alkylsulfonyl;
- one of the R4 groups is attached to the phenyl ring at the 2-position or 5-position, and said R4 is C1-C4 alkyl, C1-C4 haloalkyl, halogen, CN, NO2, C1-C4 alkoxy, C1-C4 haloalkoxy, C_1 - C_4 alkylthio, C_1 - C_4 alkylsulfinyl, C_1 - C_4 alkylsulfonyl, C_1 - C_4 haloalkylthio, C1-C4 haloalkylsulfinyl, or C1-C4 haloalkylsulfonyl;
- each R⁵ is independently C₁-C₄ haloalkyl, CN, NO₂, C₁-C₄ haloalkoxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, C₁-C₄ haloalkylthio, C₁-C₄ haloalkylsulfinyl, C1-C4 haloalkylsulfonyl or C2-C4 alkoxycarbonyl; or
- (R⁵)₂ when attached to adjacent carbon atoms can be taken together as -OCF₂O-, -CF2CF2O- or -OCF2CF2O-; and
- each R6 is independently H, halogen, C1-C4 alkyl, C1-C2 alkoxy or C2-C4 alkoxycarbonyl, or
- each R6 is independently a phenyl or a 5- or 6-membered heteroaromatic ring, each ring optionally substituted with C1-C4 alkyl, C2-C4 alkenyl, C2-C4 alkynyl, C3-C6 cycloalkyl, C_1 - C_4 haloalkyl, C_2 - C_4 haloalkenyl, C_2 - C_4 haloalkynyl, C_3 - C_6 halocycloalkyl, halogen, CN, NO2, C1-C4 alkoxy, C1-C4 haloalkoxy, C1-C4 alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, C₁-C₄ alkylamino, C₂-C₈ dialkylamino, C_3 - C_6 cycloalkylamino, C_3 - C_6 (alkyl)cycloalkylamino, C_2 - C_4

Page 26

alkylcarbonyl, C_2 - C_6 alkoxycarbonyl, C_2 - C_6 alkylaminocarbonyl, C_3 - C_8 dialkylaminocarbonyl or C_3 - C_6 trialkylsilyl.

4. (Withdrawn): The method of Claim 3 wherein

R1 and R2 are both H;

R³ is C₁-C₄ alkyl optionally substituted with halogen, CN, OCH₃, or S(O)_pCH₃; each R⁴ is independently H, CH₃, CF₃, OCF₃, OCHF₂, S(O)_pCF₃, S(O)_pCHF₂, CN or halogen;

each R⁵ is independently CF₃, OCF₃, OCHF₂, S(O)_pCF₃, S(O)_pCHF₂, OCH₂CF₃, OCF₂CHF₂, S(O)_pCH₂CF₃ or S(O)_pCF₂CHF₂;

each R⁶ is independently H, halogen or methyl; or phenyl, pyrazole, imidazole, triazole, pyridine or pyrimidine, each ring optionally substituted with C₁-C₄ alkyl, C₁-C₄ haloalkyl, halogen or CN; and

p is 0, 1 or 2.

- (Withdrawn): The method of Claim 4 wherein R³ is i-propyl or t-butyl.
- 6. (Canceled).
- 7. (Currently Amended): The method of Claim 6 1 wherein

J is a 5- or 6-membered heteroaromatic ring selected from the group consisting of J-1, J-2, J-3, J-4 and J-5, wherein J-1 and J-2 are optionally substituted with 1 to 3 R³ and J-3, J-4 and J-5 are substituted with R³

Q is O, S or NR7; and

W, X, Y and Z are independently N or CR⁷, provided that in J-4 and J-5 at least one of W, X, Y or Z is N.

8. (Currently Amended): The method of Claim 6 or 7 wherein

A and B are O;

n is 1 to 2;

R¹ is H, C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, C₂-C₆ alkylcarbonyl or C₂-C₆ aikoxycarbonyl;

Page 27

- R^2 is H, C_1 - C_4 alkyl, C_2 - C_4 alkenyl, C_2 - C_4 alkynyl, C_3 - C_6 cycloalkyl, C_2 - C_6 alkylcarbonyl or C2-C6 alkoxycarbonyl;
- R³ is H; or C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl or C₃-C₆ cycloalkyl each optionally substituted with one or more substituents selected from the group consisting of halogen, CN, C1-C2 alkoxy, C1-C2 alkylthio, C1-C2 alkylsulfinyl and C_1 - C_2 alkylsulfonyl;
- one of the R⁴ groups is attached to the phenyl ring at the 2-position, and said R⁴ is C₁-C₄ alkyl, C₁-C₄ haloalkyl, halogen, CN, NO₂, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C_1 - C_4 alkylthio, C_1 - C_4 alkylsulfinyl, C_1 - C_4 alkylsulfonyl, C_1 - C_4 haloalkylthio, C_1 - C_4 haloalkylsulfinyl or C_1 - C_4 haloalkylsulfonyl; and
- each R7 is independently H, C1-C4 alkyl, C1-C4 haloalkyl, halogen, CN, NO2, C1-C4 haloalkoxy, C_1 - C_4 alkylthio, C_1 - C_4 alkylsulfinyl, C_1 - C_4 alkylsulfonyl, C_1 - C_4 haloalkylthio, C1-C4 haloalkylsulfinyl, C1-C4 haloalkylsulfonyl or C2-C4 alkoxycarbonyl; or a phenyl or a 5- or 6-membered heteroaromatic ring, each ring optionally substituted with C1-C4 alkyl, C2-C4 alkenyl, C2-C4 alkynyl, $C_3-C_6 \ \text{cycloalkyl}, \ C_1-C_4 \ \text{haloalkyl}, \ C_2-C_4 \ \text{haloalkenyl}, \ C_2-C_4 \ \text{haloalkynyl}, \ C_3-C_6 \ \text{cycloalkyl}, \ C_3-C_6 \ \text{cycloalkyl}, \ C_1-C_4 \ \text{haloalkyl}, \ C_2-C_4 \ \text{haloalkynyl}, \ C_3-C_6 \ \text{cycloalkyl}, \ C_3-C_6 \ \text{cycloa$ halocycloalkyl, halogen, CN, NO2, C1-C4 alkoxy, C1-C4 haloalkoxy, C1-C4 alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, C₁-C₄ alkylamino, C₂-C₈ dialkylamino, C3-C6 cycloalkylamino, C3-C6 (alkyl)cycloalkylamino, C2-C4 alkylcarbonyl, C2-C6 alkoxycarbonyl, C2-C6 alkylaminocarbonyl, C3-C8 dialkylaminocarbonyl or C3-C6 trialkylsilyl.
 - (Currently Amended): The method of Claim 8 wherein J is selected from the 9. group consisting of pyridine, and pyrimidine, pyrazole, imidazole, triazoles, thiophene and thiazole, each optionally substituted with 1 to 3 R7.
- (Currently Amended): The method of Claim 9 wherein
- J is selected from the group consisting of pyridine, and pyrimidine, pyrazole, thiophene and thiazole, each optionally substituted with 1 to 3 R7;

R1 and R2 are both H;

- R³ is C₁-C₄ alkyl optionally substituted with halogen, CN, OCH₃, or S(O)_pCH₃; each R4 is independently H, CH3, CF3, OCF3, OCHF2, S(O)pCF3, S(O)pCHF2, CN or halogen;
- each R⁷ is independently H, halogen, CH₃, CF₃, OCHF₂, S(O)_pCF₃, S(O)_pCHF₂, OCH₂CF₃, OCF₂CHF₂, S(O)_pCH₂CF₃, S(O)_pCF₂CHF₂; or phenyl, pyrazole, imidazole, triazole, pyridine or pyrimidine, each ring optionally substituted with C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy, C_1 - C_4 alkylthio, C1-C4 alkylsulfinyl, C1-C4 alkylsulfonyl, halogen or CN; and p is 0, 1 or 2.

Page 28

- 11. (Original): The method of Claim 10 wherein J is a pyridine optionally substituted with 1 to 3 R⁷.
- 12. (Original): The method of Claim 11 wherein one \mathbb{R}^7 is a phenyl optionally substituted with \mathbb{C}_1 - \mathbb{C}_4 alkyl, \mathbb{C}_1 - \mathbb{C}_4 haloalkyl, halogen or $\mathbb{C}\mathbb{N}$.
- 13. (Original): The method of Claim 11 wherein one \mathbb{R}^7 is a pyrazole, imidazole, triazole, pyridine or pyrimidine, each ring optionally substituted with C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, halogen or CN.
- 14. (Original): The method of Claim 10 wherein J is a pyrimidine optionally substituted with 1 to 3 R⁷.
- 15. (Original): The method of Claim 14 wherein one \mathbb{R}^7 is a phenyl optionally substituted with C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, halogen or CN.
- 16. (Original): The method of Claim 14 wherein one \mathbb{R}^7 is a pyrazole, imidazole, triazole, pyridine or pyrimidine, each ring optionally substituted with \mathbb{C}_1 - \mathbb{C}_4 alkyl, \mathbb{C}_1 - \mathbb{C}_4 haloalkyl, halogen or $\mathbb{C}\mathbb{N}$.
 - 17. (Canceled).
 - 18. (Canceled).
 - 19. (Canceled).
 - 20. (Canceled).
- 21. (Currently Amended): The method of Claim 1 comprising a compound of Formula 1 selected from the group consisting of: which is

3 methyl N (1 methylethyl) 2-[[4 (trifluoremethyl)benzoyl]amino] benzamide,

2-methyl N-[2 methyl 6-[[(1 methylethyl)amine]earbonyl]phenyl] 4-

(trifluoromethyl)benzamide, and

- 2-methyl-N-[2-methyl-6-[[(1-methylethyl)amino]carbonyl]phenyl]-6-(trifluoromethyl)-3-pyridinecarboxamide.
- 22. (Currently Amended): A compound of Formula 1, its N-oxides and agriculturally suitable salts

wherein

A and B are independently O or S;

Page 29

- each-J is independently a phenyl or naphthyl group substituted with 1 to 2 R⁵ and optionally substituted with 1 to 3 R⁶;
- or each J is independently a 5 or 6-membered heteroaromatic ring or an aromatic 8,9or 10 membered fused heterobicyclic ring system wherein each ring or ring system is optionally substituted with 1 to 4 R⁷;

n is 1 to 4;

- R¹ is H; or C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl or C₃-C₆ cycloalkyl each optionally substituted with one or more substituents selected from the group consisting of halogen, CN, NO₂, hydroxy, C₁-C₄ alkoxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, C₂-C₄ alkoxycarbonyl, C₁-C₄ alkylamino, C₂-C₈ dialkylamino and C₃-C₆ cycloalkylamino; or
- R1 is C₂-C₆ alkylcarbonyl, C₂-C₆ alkoxycarbonyl, C₂-C₆ alkylaminocarbonyl, C₃-C₈ dialkylaminocarbonyl or C(=A)J;
- R^2 is H, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_3 - C_6 cycloalkyl, C_1 - C_4 alkoxy, C_1 - C_4 alkylamino, C_2 - C_6 dialkylamino, C_3 - C_6 cycloalkylamino, C_2 - C_6 alkoxycarbonyl or C_2 - C_6 alkylcarbonyl;
- R³ is H; C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₆ cycloalkyl, each optionally substituted with one or more substituents selected from the group consisting of halogen, CN, NO₂, hydroxy, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, C₂-C₆ alkoxycarbonyl, C₂-C₆ alkylcarbonyl, C₃-C₆ trialkylsilyl, and a phenoxy ring optionally substituted with one to three substituents independently selected from the group consisting of C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, C₃-C₆ cycloalkyl, C₁-C₄ haloalkyl, C₂-C₄ haloalkenyl, C₂-C₄ haloalkynyl, C₃-C₆ halocycloalkyl, halogen, CN, NO₂, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, C₁-C₄ alkylamino, C₂-C₆ dialkylamino, C₃-C₆ cycloalkylamino, C₃-C₆ (alkyl)cycloalkylamino, C₂-C₆ dialkylamino, C₂-C₆ alkoxycarbonyl, C₂-C₆ alkylaminocarbonyl, C₃-C₆ dialkylamino; C₂-C₆ alkoxycarbonyl or C₂-C₆ alkylamino; C₂-C₆ a
- R^2 and R^3 can be taken together with the nitrogen to which they are attached to form a ring containing 2 to 6 atoms of carbon and optionally one additional atom of nitrogen, sulfur or oxygen, said ring may be optionally substituted with 1 to 4 substituents selected from the group consisting of C_1 - C_2 alkyl, halogen, CN, NO₂ and C_1 - C_2 alkoxy;
- each R⁴ is independently H, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₆ cycloalkyl, C₁-C₆ haloalkyl, C₂-C₆ haloalkenyl, C₂-C₆ haloalkynyl, C₃-C₆ halocycloalkyl, halogen, CN, NO₂, hydroxy, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy,

Page 30

 C_1 - C_4 alkylthio, C_1 - C_4 alkylsulfinyl, C_1 - C_4 alkylsulfonyl, C_1 - C_4 haloalkylsulfinyl, C_1 - C_4 haloalkylsulfinyl, C_1 - C_4 haloalkylsulfonyl, C_1 - C_4 alkylamino, C_2 - C_8 dialkylamino, C_3 - C_6 cycloalkylamino, or C_3 - C_6 trialkylsilyl; or

- each R⁴ is independently phenyl, benzyl or phenoxy, each optionally substituted with C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, C₃-C₆ cycloalkyl, C₁-C₄ haloalkyl, C₂-C₄ haloalkenyl, C₂-C₄ haloalkynyl, C₃-C₆ halocycloalkyl, halogen, CN, NO₂, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, C₁-C₄ alkylamino, C₂-C₈ dialkylamino, C₃-C₆ cycloalkylamino, C₃-C₆ (alkyl)cycloalkylamino, C₂-C₄ alkylcarbonyl, C₂-C₆ alkoxycarbonyl, C₂-C₆ alkylaminocarbonyl, C₃-C₈ dialkylaminocarbonyl or C₃-C₆ trialkylsilyl;
- each R⁵ is independently C₁-C₆ haloalkyl, C₂-C₆ haloalkenyl, C₂-C₆ haloalkynyl, C₃-C₆ haloalkyl, C₁-C₄ haloalkoxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfinyl, C₁-C₄ haloalkylthio, C₁-C₄ haloalkylsulfinyl, C₁-C₄ haloalkylsulfinyl, C₁-C₄ haloalkylsulfinyl, C₁-C₄ alkoxycarbonyl, C₁-C₄ alkylamino, C₂-C₈ dialkylamino, C₂-C₆ alkylamino, C₂-C₆ alkylaminocarbonyl, or C₃-C₈ dialkylaminocarbonyl; or

(R⁵)₂ attached to adjacent carbon atoms can be taken together as -OCF₂O , -CF₂CF₂O , or -OCF₂CF₂O ;

- each R⁶ is independently II, halogen, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₆ eyeloalkyl, C₁-C₄ alkoxy or C₂-C₄ alkoxycarbonyl, or
- each R⁶ is independently a phonyl, benzyl, phonoxy, 5 or 6 membered heteroaromatic ring or an aromatic 8, 9- or 10 membered fused heterobicyclic ring system, each ring optionally substituted with one to three substituents independently selected from the group consisting of C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, C₃-C₆ eyeloalkyl, C₁-C₄ haloalkyl, C₂-C₄ haloalkenyl, C₂-C₄ haloalkynyl, C₃-C₆ haloeyeloalkyl, halogen, CN, NO₂, C₁-C₄ alkenyl, C₄-C₄ haloalkenyl, C₄-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, C₁-C₄ alkylamino, C₃-C₈ dialkylamino, C₃-C₆ cycloalkylamino, C₃-C₆ (alkyl)cycloalkylamino, C₂-C₄ alkylaminocarbonyl, C₃-C₈ dialkylaminocarbonyl or C₃-C₆ trialkylsilyl;
- each R⁷ is independently H, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₆ cycloalkyl, C₁-C₆ haloalkyl, C₂-C₆ haloalkenyl, C₂-C₆ haloalkynyl, C₃-C₆ haloalkyl, halogen, CN, CO₂H, CONH₂, NO₂, hydroxy, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, C₁-C₄ haloalkylthio, C₁-C₄ haloalkylsulfinyl, C₁-C₄ haloalkylsulfonyl, C₁-C₄ alkylamino, C₂-C₆ dialkylamino, C₂-C₆ alkylamino, C₂-C₆ alkylaminocarbonyl, C₂-C₆ alkoxycarbonyl, C₂-C₆ alkylaminocarbonyl, C₃-C₈ dialkylsilyl; or

Page 31

each R⁷ is independently a phenyl, benzyl, benzoyl, phenoxy or 5- or 6-membered heteroaromatic ring or an 8-, 9- or 10-membered fused heterobicyclic ring system, each ring optionally substituted with one to three substituents independently selected from the group consisting of C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, C₃-C₆ cycloalkyl, C₁-C₄ haloalkyl, C₂-C₄ haloalkenyl, C₂-C₄ haloalkynyl, C₃-C₆ halocycloalkyl, halogen, CN, NO₂, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, C₁-C₄ alkylamino, C₂-C₈ dialkylamino, C₃-C₆ cycloalkylamino, C₃-C₆ (alkyl)cycloalkylamino, C₂-C₄ alkylaminocarbonyl, C₂-C₆ alkoxycarbonyl, C₂-C₆ alkylaminocarbonyl, C₃-C₈ dialkylaminocarbonyl and C₃-C₆ trialkylsilyl;

provided that

- (i) at least one R4 and at least one R7, when R7 is present, are other than H;
- (ii) J is other than an optionally substituted 1,2,3 thindiazole;
- (iii) (ii) when J is an optionally substituted pyridine and R² is H, R³ is other than H or CH₃;
- (iv) (iii) when J is an optionally substituted pyridine, then R⁷ cannot be CONH₂, C₂-C₆ alkylaminocarbonyl or C₃-C₈ dialkylaminocarbonyl; and
- (v) (iv) when J is an optionally substituted pyrazole, tetrazole or pyrimidine, then \mathbb{R}^2 and \mathbb{R}^3 cannot both be hydrogen; and
- (vi) when J is an optionally substituted 5 membered heterearomatic ring, then R² and R³ are taken together with the nitrogen to which they are attached to form a ring containing 2 to 6 atoms of carbon and optionally one additional atom of nitrogen, sulfur or oxygen, said ring may be optionally substituted with 1 to 4 substituents selected from the group consisting of C₁ C₂ alkyl, halogen, CN, NO₂ and C₁ C₂ alkoxy.
 - 23. (Withdrawn): The compound of Claim 22 wherein J is a phenyl group substituted with 1 to 2 R⁵ and optionally substituted with 1 to 3 R⁶.
 - 24. (Withdrawn): The compound of Claim 23 wherein

A and B are both O;

n is 1 to 2:

- R^1 is H, C_1 - C_4 alkyl, C_2 - C_4 alkenyl, C_2 - C_6 alkynyl, C_3 - C_6 cycloalkyl, C_2 - C_6 alkylcarbonyl or C_2 - C_6 alkoxycarbonyl;
- R² is H, C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₆ alkynyl, C₃-C₆ cycloalkyl, C₂-C₆ alkylcarbonyl or C₂-C₆ alkoxycarbonyl;
- R³ is C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl or C₃-C₆ cycloalkyl each optionally substituted with one or more substituents selected from the group consisting of halogen, CN, C₁-C₂ alkoxy, C₁-C₂ alkylthio, C₁-C₂ alkylsulfinyl and C₁-C₂ alkylsulfonyl;

Page 32

- one of the R^4 groups is attached to the phenyl ring at the 2-position or 5-position, and said R^4 is C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, halogen, CN, NO₂, C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy, C_1 - C_4 alkylthio, C_1 - C_4 alkylthio, C_1 - C_4 haloalkylsulfinyl or C_1 - C_4 haloalkylsulfonyl;
- each R^5 is independently C_1 - C_4 haloalkyl, CN, NO_2 , C_1 - C_4 haloalkoxy, C_1 - C_4 alkylthio, C_1 - C_4 alkylsulfinyl, C_1 - C_4 haloalkylsulfinyl, C_1 - C_4 haloalkylsulfinyl, C_1 - C_4 haloalkylsulfonyl or C_2 - C_4 alkoxycarbonyl; or
- $(R^5)_2$ when attached to adjacent carbon atoms can be taken together as -OCF₂O-, -CF₂CF₂O- or -OCF₂CF₂O-; and
- each R⁶ is independently H, halogen, C₁-C₄ alkyl, C₁-C₂ alkoxy or C₂-C₄ alkoxycarbonyl, or
- each R6 is independently a phenyl or a 5- or 6-membered heteroaromatic ring, each ring optionally substituted with C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, C₃-C₆ cycloalkyl, C₁-C₄ haloalkyl, C₂-C₄ haloalkenyl, C₂-C₄ haloalkynyl, C₃-C₆ halocycloalkyl, halogen, CN, NO₂, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, C₁-C₄ alkylamino, C₂-C₈ dialkylamino, C₃-C₆ cycloalkylamino, C₃-C₆ (alkyl)cycloalkylamino, C₂-C₄ alkylcarbonyl, C₂-C₆ alkoxycarbonyl, C₂-C₆ alkylaminocarbonyl, C₃-C₈ dialkylaminocarbonyl or C₃-C₆ trialkylsilyl.
- 25. (Withdrawn): The compound of Claim 24 wherein R¹ and R² are both H;
- R³ is C₁-C₄ alkyl optionally substituted with halogen, CN, OCH₃, S(O)_pCH₃; each R⁴ is independently H, CH₃, CF₃, OCF₃, OCHF₂, S(O)_pCF₃, S(O)_pCHF₂, CN or halogen;
- each R⁵ is independently CF₃, OCF₃, OCHF₂, S(O)_pCF₃, S(O)_pCHF₂, OCH₂CF₃, OCF₂CHF₂, S(O)_pCH₂CF₃ or S(O)_pCF₂CHF₂;
- each R⁶ is independently H, halogen or methyl; or phenyl, pyrazole, imidazole, triazole, pyridine or pyrimidine, each ring optionally substituted with C₁-C₄ alkyl, C₁-C₄ haloalkyl, halogen or CN; and

p is 0, 1 or 2.

- 26. (Withdrawn): The compound of Claim 25 wherein R³ is *i*-propyl or *t*-butyl.
- 27. (Canceled).
- 28. (Currently Amended): The compound of Claim 27 22 wherein J is a 5 or 6-membered heteroaromatic ring selected from the group consisting of J-1, J-2, J-3, J-4 and J-5, J-1 and J-2 optionally substituted with 1 to 3 R⁷ and J-3, wherein J-4 and J-5 substituted with R⁷

Page 33

$$\begin{array}{c|ccccc}
Q-X & X=Y & X=Y \\
\hline
 & Z & & & & & & & & & & & \\
\hline
 & & & & & & & & & & & & & \\
\hline
 & & & & & & & & & & & & & \\
\hline
 & & & & & & & & & & & & & \\
\hline
 & & & & & & & & & & & & & \\
\hline
 & & & & & & & & & & & & & \\
\hline
 & & & & & & & & & & & & \\
\hline
 & & & & & & & & & & & & \\
\hline
 & & & & & & & & & & & & \\
\hline
 & & & & & & & & & & & \\
\hline
 & & & & & & & & & & & \\
\hline
 & & & & & & & & & & & \\
\hline
 & & & & & & & & & & & \\
\hline
 & & & & & & & & & & \\
\hline
 & & & & & & & & & & \\
\hline
 & & & & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & & & \\
\hline
 & & & & & & & & & & \\
\hline
 & & & & & & & & & & \\
\hline
 & & & & & & & & & & \\
\hline
 & & & & & & & & & & \\
\hline
 & & & & & & & & & & \\
\hline
 & & & & & & & & & & \\
\hline
 & & & & & & & & & & \\
\hline
 & & & & & & & & & & \\
\hline
 & & & & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & &$$

Q is O, S or NR7; and

W, X, Y and Z are independently N or CR7, provided that in J-4 and J-5 at least one of W, X, Y or Z is N.

29. (Currently Amended): The compound of Claim 27 or Claim 28 wherein A and B are O;

n is 1 to 2;

R¹ is H, C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, C₂-C₆ alkylcarbonyl or C₂-C₆ alkoxycarbonyl;

R² is H, C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₆ alkynyl, C₃-C₆ cycloalkyl, C₂-C₆ alkylcarbonyl or C₂-C₆ alkoxycarbonyl;

R³ is H; or C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl or C₃-C₆ cycloalkyl each optionally substituted with one or more substituents selected from the group consisting of halogen, CN, C₁-C₂ alkoxy, C₁-C₂ alkylthio, C₁-C₂ alkylsulfinyl and C₁-C₂ alkylsulfonyl;

one of the R^4 groups is attached to the phenyl ring at the 2-position, and said R^4 is C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, halogen, CN, NO₂, C_1 - C_4 alkoxy, C_1 - C_4 haloalkylsulfinyl, C_1 - C_4 alkylsulfonyl, C_1 - C_4 haloalkylsulfinyl or C_1 - C_4 haloalkylsulfonyl; and

each R⁷ is independently H, C₁-C₄ alkyl, C₁-C₄ haloalkyl, halogen, CN, NO₂, C₁-C₄ haloalkoxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, C₁-C₄ haloalkylthio, C₁-C₄ haloalkylsulfinyl, C₁-C₄ haloalkylsulfonyl or C₂-C₄ alkoxycarbonyl; or a phenyl or a 5- or 6-membered heteroaromatic ring, each ring optionally substituted with C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, C₃-C₆ cycloalkyl, C₁-C₄ haloalkyl, C₂-C₄ haloalkenyl, C₂-C₄ haloalkynyl, C₃-C₆ halocycloalkyl, halogen, CN, NO₂, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, C₁-C₄ alkylamino, C₂-C₈ dialkylamino, C₃-C₆ cycloalkylamino, C₃-C₆ (alkyl)cycloalkylamino, C₂-C₈ dialkylaminocarbonyl, C₂-C₅ alkoxycarbonyl, C₂-C₅ alkylaminocarbonyl, C₃-C₈ dialkylaminocarbonyl or C₃-C₆ trialkylsilyl.

Page 34

- 30. (Currently Amended): The compound of Claim 29 wherein J is selected from the group consisting of pyridine, and pyrimidine, pyrazole, imidazole, triazoles, thiophene and thiazole, each optionally substituted with 1 to 3 R⁷.
- 31. (Currently Amended): The compound of Claim 30 wherein
- J is selected from the group consisting of pyridine, and pyrimidine, pyrazole, thiopheno and thiazole, each optionally substituted with 1 to 3 R⁷;

R1 and R2 are both H;

R³ is C₁-C₄ alkyl optionally substituted with halogen, CN, OCH₃ or S(O)_pCH₃; each R⁴ is independently H, CH₃, CF₃, OCF₃, OCHF₂, S(O)_pCF₃, S(O)_pCHF₂, CN or halogen;

- each R⁷ is independently H, halogen, CH₃, CF₃, OCHF₂, S(O)_pCF₃, S(O)_pCHF₂, OCH₂CF₃, OCF₂CHF₂, S(O)_pCH₂CF₃, or S(O)_pCF₂CHF₂; or phenyl, pyrazole, imidazole, triazole, pyridine or pyrimidine, each ring optionally substituted with C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, halogen or CN; and p is 0, 1 or 2.
- 32. (Original): The compound of Claim 31 wherein J is a pyridine optionally substituted with 1 to 3 R⁷.
- 33. (Original): The compound of Claim 32 wherein one \mathbb{R}^7 is a phenyl optionally substituted with \mathbb{C}_1 - \mathbb{C}_4 alkyl, \mathbb{C}_1 - \mathbb{C}_4 haloalkyl, halogen or $\mathbb{C}\mathbb{N}$.
- 34. (Original): The compound of Claim 32 wherein one R^7 is a pyrazole, imidazole, triazole, pyridine or pyrimidine, each ring optionally substituted with C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, halogen or CN.
- 35. (Original): The compound of Claim 31 wherein J is a pyrimidine optionally substituted with 1 to 3 R⁷.
- 36. (Original): The compound of Claim 35 wherein one \mathbb{R}^7 is a phenyl optionally substituted with \mathbb{C}_1 - \mathbb{C}_4 alkyl, \mathbb{C}_1 - \mathbb{C}_4 haloalkyl, halogen or $\mathbb{C}\mathbb{N}$.
- 37. (Original): The compound of Claim 35 wherein one R^7 is a pyrazole, imidazole, triazole, pyridine or pyrimidine, each ring optionally substituted with C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, halogen or CN.
 - 38. (Canceled).
 - 39, (Canceled).
 - 40. (Canceled).
 - 41. (Canceled).
- 42. (Currently Amended): The compound of Claim 22 selected from the group eonsisting of: which is

3 methyl A (1 methylethyl) 2 [[4 (trifluoromethyl)benzoyl]amino] benzamide,

Page 35

2-methyl-N (2-methyl-6 [[(1-methylethyl)mnino]carbonyl]phenyl]-4-(trifluoromethyl)benzamide, mid 2-methyl-N-[2-methyl-6-[[(1-methylethyl)amino]carbonyl]phenyl]-6-(trifluoromethyl)-3-pyridinecarboxamide.

(Original): An arthropodicidal composition comprising an arthropodicidally 43. effective amount of a compound of Formula 1 as described in Claim 1 and at least one additional component selected from the group consisting of surfactants, solid diluents and liquid diluents.