Understanding Modern Genomic Epidemiology Lecture 3

JOSEPH FAUVER, PH.D.

ASSISTANT PROFESSOR

UNMC COPH DEPARTMENT OF EPIDEMIOLOGY

5/7/2025

What does this look like?

"Wet" lab:

- Clinical samples/Microbial isolation
- RNA or DNA extraction
- Library preparation
- Next-Generation Sequencing

<u>"Dry" lab:</u>

- Data processing
- Primary genomic analyses
- Data interpretation
- Submission to repositories

Preparing to run a Nextstrain build

- Next-Generation Sequencing Data -> Consensus Sequence Generation
 - Data types (.fastq, .fasta, .bam)
 - Reference mapping
 - Variant calling
- Identifying relevant data sources/repositories for contextual data
 - Pathoplexus
 - NCBI GenBank (SRA, Virus, Microbe)
 - GISAID
 - PlsmoDB
 - BacWGSTdb

Genomes + Metadata = Start of Nextstrain Build

1	Α	В	С	D	E	F	G	Н	K	R	S	Alignment View		Anno	otatio
1	strain	virus	accession	date	region	country	state	division	segment	latitude	longitude			G .	
2	AF196835	wnv	AF196835	1999-XX-X	North Ame	USA	NY	NY/Bronx	genome	42.1657	-74.9481	← → ⊝ Extra	ct	Ø R	C.
3	AF206518	wnv	AF206518	1999-XX-X	North Ame	USA	CT	CT/Fairfie	genome	41.5978	-72.7554		70		500
4	DQ211652	wnv	DQ211652	1999-XX-X	North Ame	USA			genome			Consensus			_
5	EF530047	wnv	EF530047	2000-XX-X	North Ame	USA			genome			Identity		**	
6	EF571854	wnv	EF571854	1999-XX-X	North Ame	USA			genome			599. HM488232			
7	EF657887	wnv	EF657887	2000-XX-X	North Ame	USA			genome			600. KJ501491			
8	FJ527738	wnv	FJ527738	2001-XX-X	North Ame	USA	LA	LA	genome	31.1695	-91.8678	601. KJ501291		-1	
9	GQ379156	wnv	GQ379156	2001-07-X	North Ame	USA			genome			602. KX547415 603. KX547617		- 1	
10	GQ379157	wnv	GQ379157	2008-08-X	North Ame	USA	CA	CA	genome	36.1162	-119.682	604. HQ671724			
11	GQ379158	wnv	GQ379158	2007-08-X	North Ame	USA	CA	CA	genome	36.1162	-119.682	605. KX547165			
12	GQ379159	wnv	GQ379159	2008-08-X	North Ame	USA	CA	CA	genome	36.1162	-119.682	606. KJ501304		2.0	- 135
13	GQ379161	wnv	GQ379161	2006-02-X	North Ame	USA			genome			607. KX547400 608. KX547570		-1	
14	HM538578	wnv	HM538578	2001-XX-X	North Ame	USA	CT	CT	genome	41.5978	-72.7554	609. HM488251			- 10
15	HM538579	wnv	HM538579	2003-XX-X	North Ame	USA	CT	CT	genome	41.5978	-72.7554	610. KX547549	Diameter 1		-10
16	HM538580	wnv	HM538580	2005-XX-X	North Ame	USA	CT	CT	genome	41.5978	-72.7554	611. KX547289		- 1	
17	HM538581	wnv	HM538581	2007-XX-X	North Ame	USA	CT	CT	genome	41.5978	-72.7554	612. MH170270 613. KX547588			555
18	HM538582	wnv	HM538582	2004-XX-X	North Ame	USA	IL	IL	genome	40.3495	-88.9861	614. KX547170			- 100
19	HM538583	wnv	HM538583	2004-XX-X	North Ame	USA	IL	IL	genome	40.3495	-88.9861	615. KX547525		- 11	1
20	HM756655	wnv	HM756655	2003-XX-X	North Ame	USA	CT	CT	genome	41.5978	-72.7554	616. KX547477 617. KX547610			
21	HM756674	wnv	HM756674	2004-XX-X	North Ame	USA	NY	NY	genome	42.1657	-74.9481	618, KX547010	-		
22	HQ596519	wnv	HQ596519	1999-XX-X	North Ame	USA			genome			619. KJ501422			
23	HQ671736	wnv	HQ671736	2001-XX-X	North Ame	USA	NY	NY	genome	42.1657	-74.9481	620. KX547413	13 c		
24	HQ671737	wnv	HQ671737	2002-XX-X	North Ame	USA	NY	NY	genome	42.1657	-74.9481	621. OQ721300 622. HM488214			_
25	HQ671738	wnv	HQ671738	2004-XX-X	North Ame	USA	NY	NY	genome	42.1657	-74.9481	623. HM488216			
26	HQ671739	wnv	HQ671739	2004-XX-X	North Ame	USA	NY	NY	genome	42.1657	-74.9481	624. HM756666			
27	HQ671740	wnv	HQ671740	2005-XX-X	North Ame	USA	NY	NY	genome	42.1657	-74.9481	625. KX547439			
28	HQ671741	wnv	HQ671741	2006-XX-X	North Ame	USA	NY	NY	genome	42.1657	-74.9481	626. HM538583 627. MH166915			-
29	HQ671743	wnv	HQ671743	2003-XX-X	North Ame	USA	IL	IL	genome	40.3495	-88.9861	628. KX547429	-		
30	HQ671744	wnv	HQ671744	2005-XX-X	North Ame	USA	IL	IL	genome	40.3495	-88.9861	629. KX547238		- 1	
	HQ671745		HQ671745	2006-XX-X	North Ame	USA	11	IL	genome	40.3495	-88.9861	630. KX547432			11

What is next?

- NGS data, consensus sequence generation, data repositories
- Description of Nextstrain (what it is, what it isn't, how it works, etc.)
- Basics of phylogenetic tree interpretations

Preparing to run a Nextstrain build

Overview of Nextstrain

- What is Nextstrain
- How is it used

• Augur

- Data filtration
- Multi-sequence alignment from sequences.fasta file
- Phylogenetic analysis
- Refinement/annotation

Auspice

Nextstrain

Nextstrain Real-time tracking of pathogen evolution

The core Nextstrain team is

Please see the team page for more details.

- Software package that uses interaction phylogenetic analysis to inform pathogen surveillance for many important infectious diseases (SARS-CoV-2, Influenza, mPox, Lassa, etc.)
- Open source software- depends on community members to maintain and update builds that provide "real-time" snapshot of pathogen genomics
- Quick (once you know how to use it), adaptable, accurate, open-sourced, program that has become the standard for routine phylogenetic analysis for genomic epidemiolgy

Nextstrain- Landing Page

About us

An open-source project to harness the scientific and public health potential of pathogen genome data

✗ Open source tooling

Bioinformatic workflows, analysis tools and visualization apps for use by the community

* Core pathogens

Continually updated views of a range of pathogens maintained by the Nextstrain team

■ Nextclade

In-browser phylogenetic placement, clade assignment, mutation calling and sequence quality checks

SARS-CoV-2

Up-to-date analyses and a range of resources for SARS-CoV-2, the virus responsible for COVID-19 disease

Nextstrain Groups

Datasets and narratives shared by research labs, public health entities and others

Featured analyses

Nextstrain- Core Build

Nextstrain- Custom Build

Nextstrain- An Abundance of Information

Creating a phylogenetic workflow

Exploring SARS-CoV-2 evolution ≥

Creating a bacterial phylogenetic workflow

Writing a narrative

Analyzing genomes with Nextclade

- Using a pathogen repository
- Creating a pathogen repository

HOW-TO GUIDES

- **⊞** Bioinformatics

Home View page source

Installing Nextstrain

O Hint

Before installing, we recommend you read about the parts of Nextstrain.

The following instructions describe how to install the full suite of Nextstrain's software tools. including:

- · Nextstrain CLI, for access to other tools and management of workflows
- · Augur, for bioinformatic analysis of pathogen genomes
- Auspice, for interactive visualization of pathogen evolution

When completed, you'll be ready to run Nextstrain workflows.

Table of Contents

- Installation steps
 - Install Nextstrain CLI
 - Set up a Nextstrain runtime
 - Try running Augur and Auspice
- Next steps
- · Alternate installation methods
- Managing an existing installation

Installation steps

Steps vary by runtime option (Docker, Conda, ambient) and host interface (macOS, Windows (WSL), Windows (PowerShell), Linux). For help choosing, refer to our Frequently Asked Questions (FAQ), such as:

What's a runtime?

 Didactic tutorials with standard dataset to assist in learning the basic usage, language, and approach of Nextstrain

- ^ Dr. Shaun Cross will provide in-depth video on how to work through the Nextstrain tutorial
- Additional documentation for building custom Nextstrain builds (in-person training)

- Modular phylogenetic workflow that is run through Snakemake
- Inputs are sequences.fasta file (genomes) and metadata.tsv (metadata)
- Custom builds will also need to edit standard "config" files Augur will use:
 - Colors.tsv
 - Lat_longs.tsv
 - Reference_genome.gb
 - auspice_config.json

- What augur does
 - Prepare pathogen sequences and metadata
 - Align sequences
 - Construct a phylogeny from aligned sequences
 - Annotate the phylogeny with inferred ancestral pathogen dates, sequences, and traits
 - Export the annotated phylogeny and corresponding metadata into auspice-readable format (JSON)

- Prepare pathogen sequences and metadata
- Align sequences
- Construct a phylogeny from aligned sequences
- Annotate the phylogeny with inferred ancestral pathogen dates, sequences, and traits
- Export the annotated phylogeny and corresponding metadata into auspice-readable format (JSON)

- Prepare pathogen sequences and metadata
- Align sequences (Nextstrain uses MAFFT)
- Construct a phylogeny from aligned sequences
- Annotate the phylogeny with inferred ancestral pathogen dates, sequences, and traits
- Export the annotated phylogeny and corresponding metadata into auspice-readable format (JSON)

MSA- Multi-Sequence Alignment

- Phylogenetic methods are used to determine the evolutionary relationship of organisms based on variations at sequence level (polymorphisms)
 - Due to polymorphisms, sequences derived from common ancestors (homologs) have distinct levels (%) of similarity
 - Only homologous sequences can be compared, and their variations can be used to determine how closely/distantly related the organisms are to each other
 - Goal is to get homologous sites arranged in columns.

DENV1 AAAAGTCAGGTCAAACGCAGCTATTGGAGCAGTGTTCGTTGATGAAAATCA
DENV2 AAAGGTGAGAAGCAATGCAGCCTTGGGGGGCCATATTCACTGATGAGAACAA
DENV3 AAAGGTCAGAACTAACGCAGCCATGGGCGCCGTTTTCACAGAGGGAGAACCA
DENV4 AAAAGTTAGATCAAACGCAGCCATAGGCGCAGTCTTTCAGGAAGAACAGGG
ZIKV CAAGGTGCGCAGCAATGCAGCACTGGGAGCAATATTTGAAGAGGGAAAAAAGA
WNV AAAAGTCAACAGTAATGCCGCCCTAGGAGCGATGTTTGAAGAACAGAACCA
YFV AAAAGTCCGAAGTCATGCAGCCATTGGAGCTTACCTGGAAGAACAAGAACA
POWV GAAGGTGAGGTCCAACGCTGCTCTAGGTGCATGGTCGGATGAACAGAACAA

Alignments of homologous sequences are the input into building a phylogenetic tree!

- Annotate the phylogeny with inferred ancestral pathogen dates, sequences, and traits
- Export the annotated phylogeny and corresponding metadata into auspice-readable format (JSON)

Building Phylogenies in Nextstrain

• IQ-TREE

- Maximum-likelihood (ML)***; Fast
- ***There are A LOT of ways to make phylogenetic trees

Building Phylogenies in Nextstrain

- IQ-TREE
 - Maximum-likelihood (ML); Fast
- TreeTime
 - Also ML much faster than Bayesian!
 - What it does:
 - estimate discrete ancestral states
 - infer evolution models
 - reroot trees to maximize temporal signals
 - estimate molecular clock phylogenies
 - estimate population size histories
- You can use TreeTime independently
 - https://github.com/neherlab/treetime
 - https://treetime.biozentrum.unibas.ch/

- Annotate the phylogeny with inferred ancestral pathogen dates, sequences, and traits
- Export the annotated phylogeny and corresponding metadata into auspice-readable format (JSON)

Export the annotated phylogeny and corresponding metadata into auspice-readable format (JSON)

Auspice- interactive phylogenetic visualization

 Inputs .json files exported from augor

Nextstrain- Useful Links

Glossary:

<u>https://docs.nextstrain.org/en/latest/reference/glossary.html#term-Nextstrain</u>
<u>-CLI</u>

Website: https://nextstrain.org/

GitHub: https://github.com/nextstrain

Auspice: https://auspice.us/

Detailed Augur explanation:

https://docs.nextstrain.org/en/latest/learn/augur-to-auspice.html

What is next?

- NGS data, consensus sequence generation, data repositories
- Description of Nextstrain (what it is, what it isn't, how it works, etc.)
- Basics of phylogenetic tree interpretations

Questions?

Reach out via email: <u>ifauver@unmc.edu</u>