Solution 1

KNOWN: Diameter, resistance and current flow for a wire. Convection coefficient and temperature of surrounding oil.

FIND: Steady-state temperature of the wire. Time for the wire temperature to come within 1°C of its steady-state value.

SCHEMATIC:

ASSUMPTIONS: (1) Constant properties, (2) Wire temperature is independent of x.

PROPERTIES: Wire (given): $\rho = 8000 \text{ kg/m}^3$, $c_p = 500 \text{ J/kg·K}$, k = 20 W/m·K, $R'_e = 0.01 \Omega/\text{m}$.

ANALYSIS: Since

Bi =
$$\frac{h(r_0/2)}{k}$$
 = $\frac{500 \text{ W/m}^2 \cdot K(2.5 \times 10^{-4} \text{m})}{20 \text{ W/m} \cdot K}$ = 0.006 < 0.1

the lumped capacitance method can be used. The problem has been analyzed in Example 1.4, and without radiation the steady-state temperature is given by

$$\pi \operatorname{Dh}(T-T_{\infty}) = I^2R'_e$$
.

Hence

$$T = T_{\infty} + \frac{I^2 R'_e}{\pi Dh} = 25^{\circ}C + \frac{(100A)^2 0.01\Omega/m}{\pi (0.001 \text{ m})500 \text{ W/m}^2 \cdot \text{K}} = 88.7^{\circ}C.$$

With no radiation, the transient thermal response of the wire is governed by the expression (Example 1.4)

$$\frac{\mathrm{dT}}{\mathrm{dt}} = \frac{\mathrm{I}^2 \mathrm{R'_e}}{\rho c_{\mathrm{p}} \left(\pi \mathrm{D}^2 / 4\right)} - \frac{4\mathrm{h}}{\rho c_{\mathrm{p}} \mathrm{D}} \left(\mathrm{T} - \mathrm{T_{\infty}}\right).$$

With $T = T_i = 25^{\circ}C$ at t = 0, the solution is

$$\frac{T - T_{\infty} - \left(I^{2}R'_{e} / \pi Dh\right)}{T_{i} - T_{\infty} - \left(I^{2}R'_{e} / \pi Dh\right)} = exp\left(-\frac{4h}{\rho c_{p}D}t\right).$$

Substituting numerical values, find

$$\frac{87.7 - 25 - 63.7}{25 - 25 - 63.7} = \exp\left(-\frac{4 \times 500 \text{ W/m}^2 \cdot \text{K}}{8000 \text{ kg/m}^3 \times 500 \text{ J/kg} \cdot \text{K} \times 0.001 \text{ m}} t\right)$$

$$t = 8.31\text{s}.$$

COMMENTS: The time to reach steady state increases with increasing ρ , c_p and D and with decreasing h.

Solution 2

KNOWN: One-dimensional wall, initially at a uniform temperature, T_i , is suddenly exposed to a convection process (T_{∞}, h) . For wall #1, the time $(t_1 = 100s)$ required to reach a specified temperature at x = L is prescribed, $T(L_1, t_1) = 315$ °C.

FIND: For wall #2 of different thickness and thermal conditions, the time, t_2 , required for $T(L_2, t_2) = 28^{\circ}C$.

SCHEMATIC:

ASSUMPTIONS: (1) One-dimensional conduction, (2) Constant properties.

ANALYSIS: The properties, thickness and thermal conditions for the two walls are:

Wall	L(m)	$\alpha(\text{m}^2/\text{s})$	$k(W/m \cdot K)$	$T_i(^{\circ}C)$	$T_{\infty}(^{\circ}C)$	$h(W/m^2 \cdot K)$
			50	300	400	200
2	0.40	25×10^{-6}	100	30	20	100

The dimensionless functional dependence for the one-dimensional, transient temperature distribution, Eq. 5.38, is

$$\theta^* = \frac{T(x,t) - T_{\infty}}{T_i - T_{\infty}} = f(x^*, Bi, Fo)$$

where

$$x^* = x/L$$
 Bi = hL/k Fo = $\alpha t/L^2$.

If the parameters x^* , Bi, and Fo are the same for both walls, then $\theta_1^* = \theta_2^*$. Evaluate these parameters:

Wall	х*	Bi	Fo	θ*
1	1	0.40	0.150	0.85
2	1	0.40	$1.563 \times 10^{-4} t_2$	0.85

where

$$\theta_1^* = \frac{315 - 400}{300 - 400} = 0.85$$
 $\theta_2^* = \frac{28.5 - 20}{30 - 20} = 0.85.$

It follows that

Fo₂ = Fo₁
$$1.563 \times 10^{-4} t_2 = 0.150$$

 $t_2 = 960s$.