Note

The Size of Uniquely Colorable Graphs

Хи Ѕнаол

Department of Mathematics, Shanghai Teachers' University, Shanghai, China

Communicated by the Editor

Received May 24, 1988

The graphs considered here are finite, simple, undirected, and loopless. As usual, let G be a graph, V(G) and E(G) its vertex set and edge set, respectively. If $V' \subset V$, then G[V'] denotes the subgraph of G induced by V'. A k-coloring of G is the partitioning of G into G into G color classes so that no two vertices of the same class are adjacent. If every G-coloring of G induces the same partition of G induces the

The graphs called q-trees are defined by recursion: the smallest q-tree is the complete graph K_{q+1} and a q-tree with n+1 vertices, where n>q is obtained from a q-tree with n vertices and K_{q+1} by overlapping in Kq. It is easy to show that the q-tree is uniquely (q+1)-colorable.

THEOREM. Let G be a uniquely k-colorable graph with order n and size m; then

$$m \ge (k-1) n - k(k-1)/2$$

and the bound is the best possible.

Proof. Suppose that the color classes are $V_1, ..., V_k$. By the Theorem in [2], $G[V_i \cup V_j]$ is connected for $i, j = 1, ..., k, i \neq j$. So

$$|E(G[V_i \cup V_j])| \ge |V_i \cup V_j| - 1;$$
319

320 XU SHAOJI

FIGURE 1

thus

$$|E(G)| = \sum_{i \neq j} |E(G[V_i \cup V_j])|$$

$$\geqslant \sum_{i \neq j} |V_i \cup V_j| - k(k-1)/2$$

$$= (k-1) \sum_{i \neq j} |V_i| - k(k-1)/2$$

$$= (k-1)n - k(k-1)/2.$$

Because the size of a (k-1)-tree with order n is (k-1)n-k(k-1)/2, the proof is completed.

We can construct many uniquely k-colorable graphs with order n and size (k-1)n-k(k-1)/2. Let G be a uniquely k-colorable graph with order n-1 and size (k-1)(n-1)-k(k-1)/2. We take k-1 vertices from k-1 color classes and add a vertex adjacent to them. Then the resultant graph is a uniquely k-colorable graph with order n and size (k-1)n-k(k-1)/2.

Now we ask the following question: if G is a uniquely k-colorable graph with order n and size (k-1)n-k(k-1)/2, does the equality $\delta(G)=k-1$ hold? The answer is no, as shown in Fig. 1. But for such a graph G it is easy to get the inequality $\delta(G) \le 2k-3$. Can it be improved?

At last we raise the following

Conjecture. If G is uniquely k-colorable graph with order n and size (k-1) n - k(k-1)/2, then G contains a K_k as its subgraph.

REFERENCES

- 1. B. Bollobás, Uniquely colorable graphs, J. Combin. Theory Ser. B 25 (1978), 54-61.
- D. CARTWRIGHT AND F. HARARY, On colorings of signed graphs, Elem. Math. 23 (1968), 85-89.