PRAC2. Com realitzar la neteja i l'ànalisi de dades

Robert Carles i Marqueño i Arnau Janot Baró

```
library('tinytex')
options(tinytex.verbose = TRUE)
# Requeriments
if (!require('dplyr')) install.packages('dplyr'); library(dplyr)
if (!require('dbscan')) install.packages('dbscan'); library(dbscan)
if (!require('gridExtra')) install.packages('gridExtra'); library(gridExtra)
if (!require('ggplot2')) install.packages('ggplot2'); library(ggplot2)
if (!require('grid')) install.packages('grid'); library(cluster)
if (!require('cluster')) install.packages('cluster'); library(cluster)
if (!require('fpc')) install.packages('fpc'); library(fpc)
if (!require('ggfortify')) install.packages('ggfortify'); library(ggfortify)
if (!require('tidyverse')) install.packages('tidyverse'); library(tidyverse)
if (!require('Stat2Data')) install.packages('Stat2Data'); library('Stat2Data')
if (!require('factoextra')) install.packages('factoextra'); library('factoextra')
if (!require('corrplot')) install.packages('corrplot'); library('corrplot')
if (!require('polycor')) install.packages('polycor'); library('polycor')
# Funció multiplot
multiplot <- function(..., plotlist = NULL, file, cols = 1, layout = NULL) {</pre>
  require(grid)
 plots <- c(list(...), plotlist)</pre>
  numPlots = length(plots)
  if (is.null(layout)) {
   layout <- matrix(seq(1, cols * ceiling(numPlots/cols)),</pre>
                 ncol = cols, nrow = ceiling(numPlots/cols))
}
if (numPlots == 1) {
print(plots[[1]])
} else {
grid.newpage()
pushViewport(viewport(layout = grid.layout(nrow(layout), ncol(layout))))
for (i in 1:numPlots) {
  matchidx <- as.data.frame(which(layout == i, arr.ind = TRUE))</pre>
  print(plots[[i]], vp = viewport(layout.pos.row = matchidx$row,
                                  layout.pos.col = matchidx$col))
```

```
}
}
```

1. Descripció del dataset

Els sistemes de lloguer de bicicletes (Bicing a Barcelona, Girocleta a Girona) han tingut un èxit notori als darrers anys i s'ha mostrat com una mesura indispensable cap a la reducció de l'emissió de gasos d'efecte hivernacle a les grans ciutats.

Tot i la bona rebuda per part dels consumidors, val a dir que un servei d'aquestes característiques no és senzill de gestionar. És per això que ens hem proposat identificar alguns aspectes importants per anticipar el comportament de la demanda.

Ens fem les següents preguntes:

- A. Hi ha més demanda de bicicletes els caps de setmana?
- B. L'estiu és l'època de l'any amb més demanda?
- C. L'hora i les condicions climàtiques (temperatura, humitat, velocitat del vent) influeixen en el nombre de bicicletes llogades?

2. Integració i selecció

La font del joc de dades és Kaggle, i es poden trobar els arxius al següent enllaç:

https://www.kaggle.com/datasets/aguado/bike-rental-data-set-uci?resource=download

Carreguem l'arxiu d'entrenament (train) amb el nom bikes.

```
bikes <- read.csv("train.csv", sep=";")</pre>
```

Revisem l'estructura original de bikes.

```
str(bikes)
```

```
7689 obs. of 12 variables:
  'data.frame':
   $ id
                : int
                       3 4 5 7 8 9 10 11 12 13 ...
##
   $ year
                : int
                       2012 2011 2012 2011 2011 2011 2012 2011 2011 2011 ...
##
   $ hour
                : int
                       23 8 2 20 17 19 23 22 14 13 ...
                       3 3 1 3 3 2 2 3 3 1 ...
##
   $ season
                : int
##
   $ holiday
                       0 0 0 0 0 0 0 0 0 0 ...
                : int
##
   $ workingday: int
                       0 0 1 1 1 1 1 1 1 0 ...
                       2 1 1 3 3 2 2 1 1 2 ...
##
   $ weather
               : int
##
  $ temp
                : num
                       23.8 27.9 20.5 25.4 26.2 ...
                       27.3 31.8 24.2 28.8 28.8 ...
##
   $ atemp
                : num
   $ humidity : int
                       73 57 59 83 89 39 78 94 53 72 ...
   $ windspeed : num 11 0 0 20 0 ...
##
   $ count
                : int 133 132 19 58 285 326 75 160 134 94 ...
```

Hi ha 12 variables i 7689 registres.

• ID Número identificador. (Primary Key)

- YEAR Any (2011 o 2012)
- HOUR Hora del dia (de 0 a 23)
- **SEASON** Estació climàtica (1 = hivern, 2 = primavera, 3 = estiu, 4 = tardor)
- HOLIDAY Si el dia és festiu
- WORKINGDAY Si el dia és laboral (ni festiu ni cap de setmana)
- WEATHER quatre categories de millor (1) a pitjor (4)
- TEMP Temperatura en graus Celsius
- ATEMP Sensació tèrmica en graus Celsius
- HUMIDITY Humitat relativa
- WINDSPEED velocitat del vent (km/h)
- COUNT total de bicicletes llogades en aquella franja temporal

Si ens hi fixem, totes les variables apareixen interpretades com a numèriques. No obstant, n'hi ha dues binàries (holiday i workingday) i dues categòriques (season i weather) que han estat codificades.

Fem les modificacions petinents per a que el dataset compleixi els requisits pertinents.

```
# Guardem el joc de dades original
bikes_original <- bikes

# Variables binàries
bikes$holiday <- as.factor(bikes$holiday)
bikes$workingday <- as.factor(bikes$workingday)

# Vaiables categòriques [opcional: millor per a les visualitzacions]
seasons <- c('Hivern','Primavera','Estiu','Tardor')
weathers <- c('Molt Bo', 'Bo', 'Dolent', 'Molt Dolent')

for (i in 1:4) {
   bikes$season[bikes$season == i] <- seasons[i]
   bikes$weather[bikes$weather == i] <- weathers[i]
}

bikes$season <- as.factor(bikes$season)
bikes$weather <- as.factor(bikes$weather)</pre>
```

Ara sí, el nostre joc de dades conté 8 variables numèriques, 2 binàries i 2 categòriques.

3. Neteja de les dades

Comprovem que les dades no contiguin valors NA o buits.

```
# Valors NA colSums(is.na(bikes))
```

```
##
            id
                      year
                                  hour
                                             season
                                                        holiday workingday
                                                                                weather
##
             0
                                     0
                                                  0
                                                              0
                                                                           0
                                                                                       0
                         0
                                                          count
##
          temp
                     atemp
                              humidity
                                         windspeed
                                      0
                                                  0
##
             0
                         0
```

```
# Valors buits
colSums(bikes=="")
```

```
##
            id
                      year
                                  hour
                                             season
                                                        holiday workingday
                                                                                 weather
##
             0
                          0
                                      0
                                                  0
                                                               0
                                                                                        0
##
                              humidity
                                         windspeed
                                                          count
          temp
                     atemp
##
                          0
                                      0
                                                               0
             0
```

Les dades estan netes.

Fem una primera aproximació a les dades.

summary(bikes)

```
##
                          year
                                          hour
                                                            season
                                                                        holiday
          id
##
    Min.
           :
                 3
                     Min.
                            :2011
                                     Min.
                                            : 0.00
                                                      Estiu
                                                                :1943
                                                                        0:7466
    1st Qu.: 2771
                     1st Qu.:2011
                                     1st Qu.: 6.00
                                                      Hivern
                                                                :1901
                                                                        1: 223
                     Median:2011
##
    Median: 5477
                                    Median :12.00
                                                      Primavera:1920
##
    Mean
           : 5463
                     Mean
                            :2011
                                     Mean
                                            :11.57
                                                      Tardor
                                                                :1925
##
    3rd Qu.: 8186
                     3rd Qu.:2012
                                     3rd Qu.:18.00
##
    Max.
           :10886
                            :2012
                                     Max.
                                            :23.00
                     Max.
##
    workingday
                   weather
                                     temp
                                                                     humidity
                                                     atemp
    0:2481
                       :1981
                                                        : 0.76
                                                                         : 0.00
##
               Во
                               Min.
                                       : 0.82
                                                Min.
                                                                 Min.
                                                                 1st Qu.: 46.00
##
    1:5208
               Dolent: 586
                               1st Qu.:13.94
                                                1st Qu.:16.66
##
               Molt Bo:5122
                               Median :20.50
                                                Median :24.24
                                                                 Median: 62.00
##
                               Mean
                                       :20.27
                                                        :23.70
                                                                 Mean
                                                                         : 61.77
                                                Mean
##
                                                                  3rd Qu.: 77.00
                               3rd Qu.:26.24
                                                 3rd Qu.:31.06
##
                                       :41.00
                                                        :45.45
                                                                         :100.00
                               Max.
                                                Max.
                                                                 Max.
##
      windspeed
                          count
##
    Min.
           : 0.000
                      Min.
                             : 1.0
##
    1st Qu.: 7.002
                      1st Qu.: 41.0
##
    Median :12.998
                      Median :145.0
                             :191.4
           :12.802
##
    Mean
                      Mean
##
    3rd Qu.:16.998
                      3rd Qu.:283.0
           :56.997
                             :977.0
##
    Max.
                      Max.
```

Mostrem la distribució de les variables numèriques.

Mostrem la distribució de les variables categòriques i numèriques.

```
# Variables categòriques
categoric_var<-c("season", "weather", "holiday", "workingday")</pre>
plotList <- list()</pre>
for(i in 1:length(categoric_var)){
  # Taula recompte
  hawk_cat <- table(bikes[categoric_var[i]])</pre>
  # Dataframe per visualitzar
  data <- data.frame(</pre>
    category=names(hawk_cat),
    count=round(as.numeric(hawk_cat)*100/sum(hawk_cat),digits = 2)
  )
  data$fraction <- data$count / sum(data$count)</pre>
  data$ymax <- cumsum(data$fraction)</pre>
  data$ymin <- c(0, head(data$ymax, n=-1))</pre>
  data$labelPosition <- (data$ymax + data$ymin) / 2</pre>
  data$label <- paste0(data$category, "\n value: ", data$count)</pre>
  # Grāfica
  ggp_geom1 <- ggplot(data, aes(ymax=ymax, ymin=ymin, xmax=4, xmin=3, fill=category)) +</pre>
    geom_rect() +
    geom_label( x=3.5, aes(y=labelPosition, label=label), size=3) +
    ggtitle(categoric_var[i]) +
```

```
scale_fill_brewer(palette=4) +
  coord_polar(theta="y") +
  xlim(c(2, 4)) +
  theme_void() +
  theme(legend.position = "none")

# L'afegim a la plotlist
  plotList[[i]] <- ggp_geom1
}
multiplot(plotlist = plotList, cols = 2)</pre>
```

holiday season value: 2.9 **Tardor** Estiu value: 25.04 value: 25.27 Primavera Hivern value: 24.97 value: 24.72 0 value: 97.1 workingday weather Во 0 value: 25.76 value: 32.27 Dolent Molt Bo value: 7.62 value: 66.61 value: 67.73

Observacions inicials

- id La clau primària. Els indicadors de mesura central no són d'interès. El nombre màxim (10886) és superior el nombre de registres (7689), senyal que el dataset original s'ha seccionat en dos de forma aleatòria.
- yearLes dades pertanyen al 2011 i 2012.
- hour + season Ambdues variables estan repartides equitativament.
- holiday + workingday Com ja sabem, s'observen més dies no festius que festius (2.9%); també més laborals (67.73%) que no laborals.
- weather No apareix cap registre amb un temps molt dolent. La majoria d'ells ha tingut molt bones condicions climàtiques (66.61%).

- temp + atemp La temperatura mitjana és de 20.27°C, mentre que la sensació tèrmica és de 23.7°C.
- humidity La humitat mitjana és de 61.77 i la seva distribució es concentra a la franja de 35-80.
- windspeed La velocitat del vent ronda els 13 km/h i la seva distribució apunta a que deuen haver-hi alguns valors atípics.
- count De mitjana es lloguen 191 bicicletes per cada lot de temps. Mentre que el menor registre ha estat una sola bicicleta, el rècord n'han estat 977. Donada la diferència entre mitjana i mediana, valdrà la pena revisar la presència d'outliers. S'arriba a la mateixa conclusió observant el gràfic de violí.

Revisem la presència de valors atípics.

```
# Boxplot ggplot2
ggplot(gather(bikes[numeric_var1],key="Variable", value="Valor"),aes(x=Variable, y=Valor, fill=Variable
geom_boxplot()+
theme(legend.position="none", axis.text.x = element_blank()) +
scale_fill_brewer(palette="Pastel1") +
facet_wrap(.~Variable, scales="free")
```



```
# OUTLIERS

# COUNT

outliers_count <- boxplot.stats(bikes$count)$out
length(outliers_count)</pre>
```

[1] 219

```
# WINDSPEED
outliers_windspeed <- boxplot.stats(bikes$windspeed)$out
length(outliers_windspeed)</pre>
```

[1] 154

Hi ha 219 outliers a count i windspeed en té 154.

Enlloc de prescindir de tot el registre, imputarem el valor que es troba a la punta del bigoti superior del diagrama de caixa. És a dir, imputarem el nou valor màxim un cop borrats els valors superiors a aquest.

```
# IMPUTACIÓ DE VALORS

# COUNT
bikes[bikes$count %in% outliers_count,"count"] <- NA
bikes[is.na(bikes$count),"count"] <- max(na.omit(bikes$count))

# WINDSPEED
bikes[bikes$windspeed %in% outliers_windspeed,"windspeed"] <- NA
bikes[is.na(bikes$windspeed),"windspeed"] <- max(na.omit(bikes$windspeed))</pre>
```

4. Anàlisi de les dades

4.1. Selecció dels grups de dades

Per a respondre a les preguntes A i B s'emprarà la variable count i, respectivament, workingday i season.

L'última qüestió (C), en canvi, requereix un estudi holístic de les variables. Per tant, començarem fent un estudi de les **correlacions** entre les diferents variables per a identificar problemes de colinealitat alhora que observem les variables que més influeixen en el nombre de bicicletes llogades. Amb aquest subconjunt de dades, provarem de generar un **model de regressió lineal múltiple** i quantificarem el seu ajust.

4.2. Comprovació de la normalitat i homogeneïtat de la variància

```
ggplot(bikes, aes(x=count)) +
  geom_density(fill="darkslategray2", alpha=0.4) +
  ggtitle("Distribució de count") +
  xlab('count') +
  ylab('Densitat')
```

Distribució de count

La distribució de count no és normal. Tot i haver tractat outliers, s'observa un pic desplaçat cap a l'esquerra i unes dades molt disperses. En tot cas, si tenim en compte el teorema del límit central (TLC) i sabem que tenim més de 30 mostres (bastantes més), podem assumir que la mitjana de count es distribueix de forma normal.

• L'homogeneïtat de les dades. Pregunta A.

```
# Subdataframes
bikes_work <- bikes[bikes$workingday == 1,]</pre>
bikes_fest <- bikes[bikes$workingday == 0,]</pre>
# Test d'igualtat de variàncies, 95
var.test(bikes_work$count, bikes_fest$count, conf.level = 0.95)
##
##
   F test to compare two variances
##
## data: bikes_work$count and bikes_fest$count
## F = 1.0389, num df = 5207, denom df = 2480, p-value = 0.2712
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.9705829 1.1111785
## sample estimates:
## ratio of variances
##
             1.038931
```

Donat que p > 0.05, acceptem la igualtat de variàncies entre els dies laborals i caps de setmana.

• L'homogeneïtat de les dades. Pregunta B.

```
# Subdataframes
bikes_Summer <- bikes[bikes$season == "Estiu",]</pre>
bikes_NotSummer <- bikes[bikes$season != "Estiu",]</pre>
# Test d'igualtat de variàncies, 95
var.test(bikes_Summer$count, bikes_NotSummer$count, conf.level = 0.95)
##
## F test to compare two variances
##
## data: bikes Summer$count and bikes NotSummer$count
## F = 1.2294, num df = 1942, denom df = 5745, p-value = 1.49e-08
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 1.143913 1.323131
## sample estimates:
## ratio of variances
##
             1.229446
```

Donat que p < 0.05, rebutgem la igualtat de variàncies entre l'estiu i la resta d'estacions.

4.3. Aplicació de proves estadístiques

4.3.1 Contrasts d'hipòtesi

• A) Hi ha més demanda de bicicletes els caps de setmana?

1. Pregunta de recerca

La demanda de bicicletes és significativament superior el cap de setmana?

2. Hipòtesi nul·la i l'alternativa

```
H_0: \mu_{capde} = \mu_{laboral}

H_1: \mu_{capde} > \mu_{laboral}
```

mean of x mean of y ## 189.6709 185.7251

3. Test de dues mostres independents sobre la mitjana amb variàncies desconegudes iguals

Hem obtingut un valor p > 0.05. No podem rebutjar la hipòtesi nul·la.

4. Conclusió

La demanda no és significativament superior durants els caps de setmana.

```
# Mitjanes de count per workingday
mean_count_df <- bikes %>%
  group_by(workingday) %>%
  summarize(mean=mean(count))
# Grāfica count + workingday
ggplot(bikes, aes(x=count, fill=workingday)) +
  geom density(alpha=0.4) +
  scale_fill_discrete(name = "Dia laboral") +
  ggtitle("Distribució de count en funció de workingday") +
 xlab('count') +
 ylab('Densitat')+
  geom_vline(data = mean_count_df, aes(
   xintercept = mean, color = workingday),linetype = "dashed", size=0.8)+
  guides(color = FALSE, size = FALSE)
## Warning: Using 'size' aesthetic for lines was deprecated in ggplot2 3.4.0.
## i Please use 'linewidth' instead.
## This warning is displayed once every 8 hours.
## Call 'lifecycle::last_lifecycle_warnings()' to see where this warning was
## generated.
## Warning: The '<scale>' argument of 'guides()' cannot be 'FALSE'. Use "none" instead as
## of ggplot2 3.3.4.
## This warning is displayed once every 8 hours.
## Call 'lifecycle::last_lifecycle_warnings()' to see where this warning was
## generated.
```

Distribució de count en funció de workingday

• B) Hi ha més demanda de bicicletes a l'estiu?

1. Pregunta de recerca

La demanda de bicicletes és significativament superior el cap de setmana?

2. Hipòtesi nul·la i l'alternativa

 H_0 : $\mu_{estiu} = \mu_{altre}$ H_1 : $\mu_{estiu} > \mu_{altre}$

3. Test de dues mostres independents sobre la mitjana amb variàncies desconegudes diferents

t.test(bikes_Summer\$count, bikes_NotSummer\$count, var.equal = FALSE, alternative = "greater", conf.leve

Hem obtingut un valor p < 0.05. Rebutgem la hipòtesi nul·la.

*4. Conclusió**

L'estiu és l'estació de l'any que registra una demanda significativament superior a la resta.

```
# Mitjanes de count per season
mean_count_df <- bikes %>%
    group_by(season) %>%
    summarize(mean=mean(count))

# Gràfica count + season
ggplot(bikes, aes(x=count, fill=season)) +
    geom_density(alpha=0.4) +
    scale_fill_discrete(name = "Estació") +
    ggtitle("Distribució de count en funció de season") +
    xlab('count') +
    ylab('Densitat')+
    geom_vline(data = mean_count_df, aes(
        xintercept = mean, color = season),linetype = "dashed", size=0.8)+
    guides(color = FALSE, size = FALSE)
```

Distribució de count en funció de season

4.3.2 Anàlisi de correlacions Estudiem la correlació i colinealitat de les variables:

```
corr_df <- bikes_original[2:12]
corr <- hetcor(corr_df,use="complete.obs")
corrplot.mixed(corr=corr$correlations)</pre>
```


Observacions

• No s'ha detectat cap correlació entre la festivitat o *laboralitat* i el nombre de bicis llogades. Tampoc és massa significativa la variable windspeed ni season.

```
# Mitjanes de count per holiday
mean_count_df <- bikes %>%
  group_by(holiday) %>%
  summarize(mean=mean(count))

# Grâfica count + holiday
ggplot(bikes, aes(x=count, fill=holiday)) +
  geom_density(alpha=0.4) +
  scale_fill_discrete(name = "Festiu") +
  ggtitle("Distribució de count en funció de holiday") +
  xlab('count') +
  ylab('Densitat')+
  geom_vline(data = mean_count_df, aes(
      xintercept = mean, color = holiday),linetype = "dashed", size=0.8)+
  guides(color = FALSE, size = FALSE)
```

Distribució de count en funció de holiday

• Les variables que fan augmentar count de forma més notòria són l'hora i la temperatura/sensació tèrmica - seguits de l'any. En canvi, a mesura que augmenta la humitat disminueix la demanda.

```
# Discretitzem la variable hora
bikes$segment_horari <- cut(bikes$hour, breaks = c(-1, 8, 16, 23),
                               labels = c("Matinada", "Matí", "Vespre"))
# Mitjanes de count per segment_horari
mean_count_df <- bikes %>%
  group_by(segment_horari) %>%
  summarize(mean=mean(count))
# Grāfica count + segment_horari
ggplot(bikes, aes(x=count, fill=segment_horari)) +
  geom_density(alpha=0.4) +
  scale_fill_discrete(name = "Segment Horari") +
  ggtitle("Distribució de count en funció de segment_horari") +
  xlab('count') +
  ylab('Densitat')+
  geom_vline(data = mean_count_df, aes(
   xintercept = mean, color = segment_horari),linetype = "dashed", size=0.8)+
  guides(color = FALSE, size = FALSE)
```

Distribució de count en funció de segment_horari


```
# Al haver només dos anys, el visualitzem igual
bikes$year <- as.factor(bikes$year)</pre>
# Mitjanes de count per year
mean_count_df <- bikes %>%
  group_by(year) %>%
  summarize(mean=mean(count))
# Grāfica count + year
ggplot(bikes, aes(x=count, fill=year)) +
  geom_density(alpha=0.4) +
  scale_fill_discrete(name = "Any") +
  ggtitle("Distribució de count en funció de year") +
  xlab('count') +
  ylab('Densitat')+
  geom_vline(data = mean_count_df, aes(
    xintercept = mean, color = year),linetype = "dashed", size=0.8)+
  guides(color = FALSE, size = FALSE)
```

Distribució de count en funció de year

La demanda és major al 2012. Unes dades molt prometedores de cara al negoci!

- La major correlació es troba entre la temperatura i la sensació tèrmica (el 99%). Per tant, podrem prescindir d'alguna d'elles.
- **4.3.3 Regressió lineal múltiple** Per últim, estimarem per mínims quadrats ordinaris un model lineal que expliqui la variable counten funció de les variables year, hour, temp i humidity:

```
model <- lm(count~year+hour+temp+humidity, data = bikes)
summary(model)</pre>
```

```
##
## Call:
## lm(formula = count ~ year + hour + temp + humidity, data = bikes)
##
## Residuals:
##
       Min
                1Q
                    Median
                                 3Q
                                        Max
##
   -308.88
            -92.10
                    -24.83
                              60.08
                                     568.75
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 25.23822
                            7.89227
                                      3.198
                                             0.00139 **
## year2012
               76.51509
                            3.11037
                                     24.600
                                             < 2e-16 ***
## hour
                7.73457
                            0.23590
                                     32.787
                                              < 2e-16 ***
                7.31309
                            0.20018
                                     36.532
                                             < 2e-16 ***
## temp
```

```
## humidity -1.81998    0.08405 -21.655 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 135.6 on 7684 degrees of freedom
## Multiple R-squared: 0.3855, Adjusted R-squared: 0.3852
## F-statistic: 1205 on 4 and 7684 DF, p-value: < 2.2e-16</pre>
```

Observacions

- Donat un p-valor inferior a 2.2e-16, podem afirmar que totes les variables escollides són significatives. Aquest resultat, de fet, és coherent amb els resultats de l'apartat anterior.
- El coeficient de determinació indica que **només un 38.55**% de la variància de les observacions **queda explicada** pel model lineal.

6. Conclusions finals