FORMULARIO DI ALGEBRA E GEOMETRIA

I VETTORI

Rappresentazione: una terna di numeri v = (x1, x2, x3), ovvero la distanza del punto P (punta del vettore) da O (l'origine di coordinate (0,0,0)

SOMMA FRA VETTORI E OPERAZIONI PER UNO SCALARE

- v+w = (x1+y1, x2+y2, x3+y3)
- v-w = (x1-y1, x2-y2, x3-y3)
- cv = (cx1, cx2, cx3) ci è un multiplo di v

Proprietà somma

- V + W = W + V COMMUTATIVA
- (v + w) + u = v + (w + u). ASSOCIATIVA
- v + O = v ELEMENTO NEUTRO
- v + (-v) = O

Proprietà prodotto per uno scalare

- a (bv) = (ab) v ASSOCIATIVA
- a(v + w) = av + aw, (a + b) v = av + bv
- 1v = v. ELEMENTO NEUTRO

Queste proprietà definiscono uno spazio vettoriale

IL PRODOTTO SCALARE (è un numero, non un vettore!)

$$< v, w > = x1y1 + x2y2 + x3y3$$

Proprietà del prodotto scalare

- <v,w> = <w,v> COMMUTATIVA
- <v,w+u> = <v,w> + <v,u> DISTRIBUTIVA SECONDO LA SOMMA
- <cv, w> = <v, cw> = c<v,w> DISTRIBUTIVA SECONDO IL PRODOTTO
- $\langle v, v, \rangle >= 0$, è=0 solo se v=0 POSITIVITÀ

LUNGHEZZA

$$||v|| = \sqrt{\langle v, v \rangle} = \sqrt{(x1x1 + x2x2 + x3x3)}$$

PROIEZIONE ORTOGONALE

La proiezione di v su w = $pr(w)v = (\langle v,w \rangle / ||w||^2) w$

DISUGUAGLIANZA DI CAUCHY-SCHWARZ

|<v,w>| <= ||v|| ||w||

DISUGUAGLIANZA TRIANGOLARE

||v+w|| <= ||v|| + ||w||

TEOREMA DI PITAGORA

 $||v+w||^2 = ||v||^2 + ||w||^2$ se e solo se v e w sono ortogonali

ANGOLO

 $\cos\theta = \langle v, w \rangle / (||v|| ||w||)$

Dove θ è compreso tra 0 e π e <v,w>/ ($\|v\| \|w\|$) è un numero compreso a -1 e 1

PRODOTTO VETTORIALE (-> è un vettore, non un numero)

vxw = (x2y3 - x3y2, -x1y3 + x3y1, x1y2 - x2y1)

Proprietà del prodotto vettoriale

- (av + bw)xu = a(vxu) + b(wxu)
- VXW = -WXV
- vxw è un vettore ortogonale sia a v che a w, ovvero (vxw)v= 0 e (vxw)w=0
- vxv=0, vxw=0 <-> w=kw il prodotto vettoriale è nullo quando i vettori sono uno multiplo dell'altro
- $||vxw|| = ||v|| ||w|| \sin \theta$

LE RETTE

Traiettoria di un punto che si muove sempre secondo una certa direzione e verso

Equazione parametrica vettoriale della retta: r: X = P + tA

dove P è il punto della retta all'istante 0 (t=0) e A è un vettore non nullo che indica la direzione.

NB: una retta può avere più equazioni e ad esempio può essere scritta come

$$r: X = P + t(Q-P)$$

Una retta può essere anche vista come il sistema fra le equazioni di due piani

{ax+by+cz+d=0

 ${a'x+b'y+c'z+d'=0}$

I PIANI

Insiemi ortogonali alle rette

Equazione cartesiana di un piano : ax + by + cz + d = 0, con a,b,c diversi da O se d=0 il piano passa per O

Il vettore non nullo n = (a,b,c) è detto vettore normale al piano

MUTUA POSIZIONE DI RETTE E PIANI

Ortogonalità

Una retta di equazione X = P + tA è ortogonale ad un piano di equazione ax+by+cz+d=0 se A è un multiplo del vettore di equazione (a,b,c) normale al piano

Parallelismo

- Due rette sono parallele se e solo se hanno la stessa direzione, ovvero se il loro vettore direzione è l'uno multiplo dell'altro, in altre parole A'=kA (con k diverso da 0). Se oltre che essere parallele hanno anche un punto in comune, le due rette sono coincidenti.
- Due piani sono paralleli se e solo se i loro due vettori normali sono uno multiplo dell'altro, ovvero se n'=kn (con k diverso da 0). Se (a', b', c', d') = k(a,b,c,d), allora i due piani sono coincidenti.
- Una retta e un piano sono paralleli se e solo se il vettore direzione della retta è ortogonale al vettore normale del piano, ovvero se e solo se <A,n>=0. Se retta e piano hanno anche un punto in comune, allora la retta giace sul piano.

Piani non paralleli

Due piani non paralleli si intersecano in una retta. Se voglio scrivere un'equazione parametrica per r, chiamo t una delle tre variabili x,y,z del sistema dato dalle due equazioni lineari dei piani e ricavo, dal sistema, le altre due.

Rette sghembe

Due rette sono sghembe se non si intersecano e non sono parallele, cioè se non sono contenute in uno stesso piano.

Rette ortogonali

Due rette sono ortogonali se il loro vettori di direzione sono ortogonali

Piani ortogonali

Due piani si dicono ortogonali se i loro vettori normali sono ortogonali. Sono piani incidenti.

MATRICI

Una matrice mxn è una tabella di m righe e n colonne, formata da mn numeri identificati da un indice ij, dove i indica la riga e j la colonna.

Un numero è nient'altro che una matrice 1x1.

Se m=n, allora si ha una matrice quadrata, la cui diagonale principale è ottenuta dagli elementi di indice a(ii).

Matrice diagonale

È una matrice quadrata che ha le informazioni solo sulla diagonale, cioè tutti gli elementi a(ij) con i diverso da i sono nulli.

Matrice triangolare (superiore)

È una matrice quadrata che ha tutti coefficienti sotto la diagonale principale nulli, cioè a(ij)=0 quando i > j.

Matrice identità I

È una matrice diagonale nxn che ha tutti 1 sulla diagonale principale.

Traccia di una matrice

È il numero che si ottiene sommando i coefficienti della diagonale principale.

Matrici uguali

Due matrici si dicono uguali se hanno entrambe le stesse dimensioni e le stesse entrate.

MATRICE TRASPOSTA

La trasposta di una matrice A mxn, indicata come A^{T} , è una matrice nxm che si ottiene scambiando e righe con le colonne, i cui elementi b(ij) = a(ji).

Proprietà matrice trasposta

- $(A^{T})^{T} = A$
- $(A+C)^T = A^T + C^T$
- $(cA)^{T} = cA^{T}$
- $(AB)^{T} = B^{T}A^{T}$

OPERAZIONI SULLE MATRICI

Siano A e B due matrici mxn

SOMMA

A+B= (a(ij) + b(ij)) -> somma componente per componente.

Proprietà somma

• A+B=B+A COMMUTATIVA

• (A+B)+C = A+(B+C) ASSOCIATIVA

• A+O=A ELEMENTO NEUTRO

A+(-A)=O

MOLTIPLICAZIONE PER UNO SCALARE

cA= (ca(ij)) -> si modifica ciascun componente per il numero.

Ad esempio -A= (-1)A

Proprietà moltiplicazione per uno scalare

• a(bA) = (ab)A ASSOCIATIVA

• a(A+B) = aA+aB, (a+b)A = aA+bA DISTRIBUTIVA

• 1A = A ELEMENTO NEUTRO

Dato che lo spazio delle matrici verifica le proprietà per la somma e per la moltiplicazione per uno scalare, esso è un esempio di spazio vettoriale.

Matrice invertibile

Una matrice A è invertibile se esiste una matrice B tale che AB = BA = I, in questo caso B è detta l'inversa di A e viene denotata come A^{-1} .

NB. Se A,B sono invertibili, allora anche AB è invertibile e vale $(AB)^{-1} = B^{-1}A^{-1}$ e hanno determinante diverso da zero.

Matrice ortogonale

Una matrice quadrata A si dice ortogonale se $A^{T} = A^{-1}$, ovvero $A^{T}A = I$.

Una matrice A è ortogonale se e solo se le sue colonne sono ortogonali fra loro e di norma 1. Vale anche per le righe.

Matrice simmetrica

È una matrice quadrata per cui $A^T=A$, è antisimmetrica se $A^T=-A$.

PRODOTTO DI MATRICI

Siano A una matrice mxn e B una matrice nxp (condizione necessaria affinché due matrici si possano moltiplicare), allora AxB sarà una matrice C mxp, dove c(ij) è definito dal prodotto di una riga per una colonna.

$$c(ij) = a(i1)b(1j) + a(i2)b(2i) + ... + a(in)b(nj).$$

Proprietà del prodotto di matrici

• (AB)C = A(BC) ASSOCIATIVA

• A(B+C) = AB+AC, (A+B)C = AC+BC DISTRIBUTIVA

• A(kB) = k(AB) = (kA)B COMPATIBILITÀ CON IL PRODOTTO

Si noti che in generale il prodotto di matrici non è commutativo.

Altre proprietà

- A°= I
- A¹= A

IL DETERMINANTE DI UNA MATRICE QUADRATA

Il determinante di una matrice A nxn è un numero che definiamo per via induttiva:

- se n=1, A=(a) e det A = a
- se n>1, detA = +a(11)detA(11) -a(21)detA(21) $+...+(-1)^{N+1}a(n1)$ detA(n1)

dove A(i1) è la matrice (n-1)x(n-1) ottenuta dalla matrice A cancellando la prima colonna e la i-esima riga. Si può sviluppare secondo qualsiasi colonna/riga.

Proprietà del determinante

- detA = detA^T
- Se una colonna di A è nulla, allora detA=0
- Se B è la matrice ottenuta scambiando di posto due colonne, allora detB=-detA
- Se due colonne di A sono uguali, allora detA=0
- Se B è la matrice ottenuta da A addizionando ad una colonna un multiplo di un'altra colonna, allora detB=detA
- det(AB) = (detA)(detB) -> Formula di Binet
- **Se** A è invertibile, allora det(A⁻¹) = (detA)⁻¹ -> Ogni matrice invertibile è *non singolare* quindi, dalla formula di Binet (detA)(detA⁻¹) = det(AA⁻¹) = detI = 1

Matrice singolare e non singolare

Una matrice si dice singolare (o degenere) se il suo determinante=0, si dice non singolare se il suo determinante è diverso da 0.

Relazione tra singolarità e invertbilità

Se una matrice A è non singolare, allora è anche invertibile e $A^{-1} = (det A)^{-1}(B^{T})$ dove $B = (b(ij)) = ((-1)^{\frac{1}{2}+j} det A(ij))$.

NB. Se A è una matrice diagonale con determinante diverso da 0, allora A^{-1} è ancora una matrice diagonale con $(A^{-1})(ii) = a^{-1}(-ii)$

MINORE DI UNA MATRICE

Sia A una matrice mxn. Un minore di ordine p di A è una matrice quadrata pxp che si ottiene da A cancellando m-p righe e n-p colonne.

Diremo che il **rango** per minori di A è r, e scriveremo rgA=r, se A ha un minore M di ordine r con detM diverso da 0 e tutti i minori di ordine maggiore di r hanno determinante nullo.

Proprietà

Se A è una matrice quadrata nxn, allora rgA<n se e solo se detA=0

SISTEMI LINEARI E MATRICI

Un sistema di equazione di questa forma è detto sistema (=insieme di equazioni) lineare (= tutte le incognite presenti non hanno potenza superiore a 1.

$$\left\{\begin{array}{ll} a_{1,1}x_1+a_{1,2}x_2+\cdots+a_{1,n}x_n \Rightarrow b_i..., \text{xn: incognite} & \text{bj=termini noti} \\ a_{2,1}x_1+a_{2,2}x_2+\cdots+a_{2,n}x_n=b_2 & \text{a11,...,anm: coefficienti} \\ & \vdots \\ a_{m,1}x_1+a_{m,2}x_2+\cdots+a_{m,n}x_n=b_m \end{array}\right.$$

Se i termini noti sono tutti uguali a zero il sistema di dice *omogeneo*.

$$\mathbf{A}\mathbf{x} = \mathbf{b} \Leftrightarrow \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

Una matrice di questa forma viene detta matrice completa del sistema.

 $x=(x1,...,xn)^{T}$ è una **soluzione** del sistema se le sue componenti soddisfano contemporaneamente tutte le equazioni del sistema.

Indichiamo con Sol(A|b) *l'insieme delle soluzioni del sistema -> quest'ultimo, se il sistema* è *lineare omogeneo, con matrice dei coefficienti A mxn* è *un sottospazio vettoriale di* Rⁿ di dimensione n – rgA.

Una matrice è *compatibile* se ammette almeno una soluzione, quindi se Sol(A|b) è diverso dall'insieme vuoto. Un sistema omogeneo è sempre compatibile perché ammette sempre la soluzione banale O.

OPERAZIONI ELEMENTARI DI RIGA (->se si effettuano, l'insieme delle soluzioni non cambia)

- Scambiare di posto due righe
- Moltiplicare una riga per uno scalare non nullo
- Sommare ad una riga il multiplo di un'altra riga

MATRICE RIDOTTA A SCALA

Una matrice di questa forma è detta ridotta a scala.

p1,p2,pr sono i *perni* della matrice.

Un sistema lineare di m equazioni e n incognite si dice ridotto a scala se la sua matrice è ridotta a scala.

ALGORITMO DI GAUSS (per ridurre a scala una matrice)

- <u>Passo 0</u>: Sistemare in basso le eventuali righe nulle (e a sx e eventuali colonne nulle)
- Passo 1: Cercare il perno della prima riga e con operazioni di tipo 3 rendere nulli gli elementi ad esso sottostanti
- Passo 2: Ripetere il passo 1 per le righe successive
- NB. Nei vari passaggi posso sempre usare operazioni del tipo 1 e del tipo 2

TEOREMA DI ROUCHE' - CAPELLI

Sia A una matrice mxn

- -Ax=b è compatibile <-> rgA = rg(A,b)
- -la dimensione dello spazio delle soluzioni è uguale a n-rgA
- -se m=n, allora Ax=b ha un'unica soluzione, quindi rgA = n <-> A è non singolare

SISTEMI OMOGENEI

Ax=O ha sempre la soluzione banale.

- -ha soluzioni diverse da 0 <-> rgA<n
- -se m<n ha sempre soluzioni non banali
- -se m=n, Ax=b ha soluzioni non banali <-> A è singolare

RANGO

Il <u>rango</u> di una matrice A è uguale a numero di righe r diverse da zero in una sua riduzione a scala ottenuta mediante l'algoritmo di Gauss.

Data una matrice A mxn chiamiamo <u>rango per righe</u> di A il numero di righe linearmente indipendenti, chiamiamo <u>rango per colonne</u> di A il numero di colonne linearmente indipendenti

Osservazioni

• Le righe linearmente indipendenti di una matrice ridotte a scala sono r, cioè il numero di righe non nulle, lo stesso vale per le colonne -> questo numero non cambia nel fare la riduzione a scala

SISTEMI RIDOTTI

Un sistema lineare ridotto Sx=d di m equazioni e n incognite presenta i seguenti casi

Caso 1: r < m e d è diverso da 0 per almeno un valore -> il sistema non ammette soluzioni

Caso 2A: d = 0 e r=n -> il sistema ammette un'unica soluzione

Caso 2B: d = 0 e r<n -> il sistema ammette infinite soluzioni

Conseguenze:

Se A è quadrata m=n

- Se Ax=b ha solamente una soluzione <-> detA è diverso da 0 (perché rgA=n e rg(A,b)=n)
- Se detA=0 il sistema o non ha soluzioni o dim Sol(A|b)>0

VARIABILI DI UN SISTEMA

In un sistema lineare ridotto a scala, possiamo distinguere tra variabili *basiche* (= corrispondenti alle colonne che contengono un elemento di testa) e variabili *libere* (=corrispondenti alle colonne senza elementi di testa).

COMBINAZIONI LINEARI

Un vettore v appartenente a Rⁿ si dice combinazione lineare dei vettori v1, ..., vk che appartengono a

Rⁿ se esistono a1, ..., ak coefficienti appartenenti a R, tali che:

$$v = a1v1 + a2v2 + ... + akvk$$

La combinazione lineare è detta non banale se almeno uno dei coefficienti è diverso da 0.

SPAZIO GENERATO

Lo spazio generato dai vettori v1, ..., vk appartenenti a Rⁿ è l'insieme di tutti i vettori che si ottengono come combinazioni lineari di v1, ..., vk:

GENERATORI

Un insieme di vettori v1, ..., vk appartenenti a Rⁿ si dice insieme di generatori di Rⁿ se

$$L(v1, ..., vk) = R^n$$

Cioè se ogni vettore di Rⁿ è combinazione lineare di v1, ..., vk. Cioè v1, ..., vk generano Rⁿ.

DIPENDENZA E INDIPENDENZA LINEARE

I vettori v1, ..., vk appartenenti a Rⁿ si dicono *linearmente dipendenti* se esistono a1, ..., ak coefficienti appartenenti a R, almeno uno dei quali diverso da 0, tali che

$$a1v1 + a2v2 + ... + akvk = 0$$

Cioè se il vettore nullo può essere scritto come combinazione non banale di v1, ..., vk.

I vettori si dicono *linearmente indipendenti* se non sono linearmente dipendenti, cioè se per scriverli come combinazione lineare del vettore nullo, i coefficienti a1, ..., ak sono tutti uguali a 0.

Ovvero l'unica combinazione lineare di v1, ..., vk che è uguale al vettore nullo è quella banale.

CRITERIO PER VETTORI DI Rº

Dati v1, ..., vk appartenenti a R^n , possiamo formare la matrice n x k A = (v1, ..., vk) che ha per colonne i vettori dati.

Ogni combinazione lineare dei vettori v1, ..., vk si può esprimere come prodotto di matrici:

$$x1v1 + x2v2 + ... + xkvk = Ax$$
, dove $x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$

Conseguenze e riformulazioni

1. I vettori v1, ..., vk appartenenti a Rⁿ sono linearmente dipendenti se e solo se esiste una soluzione con x diverso da 0 del sistema lineare omogeneo Ax = O -> rgA < k

- 2. I vettori v1, ..., vk appartenenti a R^n sono linearmente indipendenti se e solo se l'unica soluzione del sistema lineare omogeno Ax = O è quella banale x = O -> rgA = k
- 3. Un vettore b appartiene a L (v1, ..., vk) se e solo se il sistema lineare Ax = b è compatibile, cioè se Sol (A|b) non è l'insieme vuoto -> rgA = rg(A|b) -> rgA = n
- 4. k vettori di Rⁿ sono linearmente indipendenti se e solo se la corrispondente matrice n x k A ha rango k (ciò richiede che k <= n)
- 5. Se k >n, k vettori di Rⁿ sono linearmente dipendenti (non vale il contrario!)
- 6. k vettori di Rⁿ generano Rⁿ se e solo se la matrice A n x k ha rango n. Questo richiede che k >=n

BASE

Una base di Rⁿ è un insieme ordinato di generatori linearmente indipendenti di Rⁿ.

Una base ortogonale di Rⁿ è una base i cui vettori sono a due a due ortogonali.

Una base ornormale di Rn è una base ortogonale i cui vettori hanno tutti lunghezza 1.

Una *base canonica* di Rⁿ è indicata con *C* ed è formata da tutti i vettori e1, ..., en, essa è ortonormale.

- Ogni base di Rⁿ è formata fa esattamente n vettori
- n vettori in Rⁿ sono una base se e solo se la matrice A nxn è non singolare -> detA diverso da 0

EQUAZIONI CARTESIANE per L (v1, ..., vk)

W = L(v1, ..., vk) -> voglio vedere quali vettori b = (b1, b2, b3) appartenenti a R3 appartengono a W. Questo succede se esistono scalari x1, x2, x3 tali che b = x1v1 + x2v2 + x3v3 cioè se il sistema lineare Ax = b è compatibile, dove A è la matrice con colonne v1, v2, v3. -> voglio che rgA = rg(A|b).

COORDINATE

Se $\mathbf{B} = (v1, ..., vn)$ è una base di Rⁿ, allora ogni vettore v appartenente a Rⁿ si può scrivere in modo unico come v = a1v1 + + anvn, cioè come combinazione lineare dei vettori di B, infatti se

$$v = a1v1 + + anvn = b1v1 + ... + bnvn$$

allora si ottiene che

$$(a1 - b1) v1 + ... + (an - bn) vn = O$$
 quindi ai=bi.

I coefficienti della combinazione lineare sono detti le <u>coordinate</u> di v rispetto alla base **B**, e si indicano con

$$[v]B = (a1, ..., an)^{\top}$$

SOTTOSPAZI

Molti sottoinsiemi di Rⁿ hanno proprietà analoghe a quelle di Rⁿ stesso. Un sottoinsieme W non vuoto di Rⁿ si dice <u>sottospazio vettoriale</u> se

- 1. O appartiene a W
- 2. Per ogni v, w appartenenti a W, v + w appartiene ancora a W
- 3. Per ogni v appartenente a W e per ogni a appartenente a R, av appartiene a W

In questo caso si dice che W è *chiuso* rispetto alle operazioni di somma e di moltiplicazione per scalare di Rⁿ.

NB. Il sistema deve essere non limitato. Se ci sono variabili x1, ..., xn elevate a potenza o sottoposte a funzioni del tipo sin,log,cos, e, $\sqrt{\ }$, il sottospazio non è vettoriale.

Tutti i ssv di Rⁿ sono scrivibili come Sol (A, O) (=eq. cartesiana) oppure come L (v1, ..., vk) (=eq. parametrica)

DIMENSIONE

La dimensione di R^n è il numero di vettori che compongono una sua base, quindi R^n ha dimensione n poiché la base canonica è composta da n elementi.

MUTUA POSIZIONE DI RETTE E PIANI (II)

Due piani

alfa: ax + by + cz + d = 0 e beta: a'x + b'y + c'z + d' = 0

Valuto i loro sistemi A (-> quello senza d) e (A | b) (-> quello con d) scritti in forma matriciale

Possono essere:

Paralleli

$$rgA = 1 e rg(A,b) = 2$$

Alfa ∩ beta non è l'insieme vuoto perché i ranghi sono diversi

Incidenti (Ovvero si incontrano in una retta, NON in un punto)

$$rgA = 2 e rg(A,b) = 2$$

dim alfa \cap beta = 3-2 = 1

Coincidenti

$$rgA = 1 e rg(A,b) = 1$$

dim alfa \cap beta = 3-1= 2

Una retta e un piano

r:
$$\{a'x + b'y + c'z = -d'$$
 e un piano alfa: $ax + by + cz = -d$
 $\{a''x + b''y + c''z = -d''$

Li scrivo in forma matriciale e analizzo i ranghi di A (-> quello senza d) e (A | b) (-> quello con d). Studio $r \cap alfa$, cioè Sol(A, b)

Possono essere:

Paralleli

Se
$$rgA = 2 e rg(A,b) = 3$$

alfa ∩ r è l'insieme vuoto, piano e retta non si intersecano

· r giace su alfa

Se
$$rgA = 2 e rg(A,b) = 2$$

alfa \cap r non è l'insieme vuoto -> dim a \cap r = 3 - rgA = 1

• Incidenti (si incontrano in un punto)

Se
$$rgA = 3 e rg(A,b) = 3$$

 $a \cap r$ è diverso dall'insieme vuoto -> dim $a \cap r = 3$ - rgA = 0 -> $a \cap r = P(x, y, z)$

Due rette

Una retta r :
$$\{ax + by + cz = -d\}$$
 e una retta s: $\{a"x + b"y + c"z = -d"\}$ $\{a"x + b"y + c"z = -d"\}$

Li scrivo in forma matriciale e analizzo i ranghi di A (-> quello senza d) e (A | b) (-> quello con d).

Possono essere:

Coincidenti

$$rgA = 2 e rg(A,b) = 2$$

 $r \cap s$ diverso dall'insieme vuoto, dim $r \cap s = 3 - rgA = 1$

Incidenti (in un punto P)

$$rgA = 3 e rg(A,b) = 3$$

 $r \cap s \stackrel{.}{e}$ diverso dall'insieme vuoto -> dim $r \cap s = 3 - rgA = 0 -> r \cap s = P(x,y,z)$

Parallele

$$rgA = 2 e rg(A,b) = 3$$

Se dim
$$Sol(A|O) = 1$$
 cioè n - rgA = 1 cioè rgA = 2

Sghembe

$$rgA = 3 e rg(A, b) = 4$$

Se dim Sol(A|O) = 0 cioè n-rgA = 0 cioè rgA = 3

EQUAZIONE PARAMETRICA VETTORIALE DEL PIANO

Posso scrivere l'equazione del piano passante per 3 punti non allineati

- -Imponendo il passaggio per i tre punti e per un guarto punto X (x,y,z)
- -Valuto se il sistema ha soluzione non banale -> Valuto il determinante di quella matrice per individuare quando $\grave{e}=0$

Ovvero

- 1) P0, P1, P2 non sono allineati, ovvero non sono multipli tra loro cioè w1 = P1 P2 e w2 = P2 P0 sono linearmente indipendenti
- 2) La condizione detM = 0 con M 3x3 = (P1-P0, P2,P0, X-P0) dice che la terza riga di M è combinazione lineare delle prime due, ovvero dipende da esse
- 3) detM=0 dà l'equazione del piano passante per i 3 punti, si può anche scrivere X P0 = sw1 + tw2 ovvero X = P0 + sw1 + tw2 (-> equazione parametrica vettoriale del piano)