Synthèse sur les limites de fonctions Page 186

Limites

- Pour $n \in \mathbb{N}^*$: $\lim_{n \to +\infty} x^n = +\infty$.
- Si *n* est impair, $\lim_{x \to -\infty} x^n = -\infty$;
- si *n* est pair, $\lim_{x \to -\infty} x^n = +\infty$.
- Pour $n \in \mathbb{N}^*$:

$$\lim_{x \to -\infty} \frac{1}{x^n} = \lim_{x \to +\infty} \frac{1}{x^n} = 0 \text{ et } \lim_{x \to 0} \frac{1}{x^n} = +\infty.$$

- Si *n* impair, $\lim_{\substack{x\to 0\\x<0}}\frac{1}{x^n}=-\infty$; si *n* pair, $\lim_{\substack{x\to 0\\x<0}}\frac{1}{x^n}=+\infty$.
- $\lim_{x \to -\infty} k = \lim_{x \to +\infty} k = k$
- $\lim_{x \to +\infty} \sqrt{x} = +\infty$
- $\lim_{x \to -\infty} e^x = 0$ et $\lim_{x \to +\infty} e^x = +\infty$

Limites d'une fonction

a et L sont des réels.

• Si $\lim_{x \to +\infty} f(x) = L$ ou $\lim_{x \to -\infty} f(x) = L$

• Si $\lim_{x \to a} f(x) = +\infty$ ou $\lim_{x \to a} f(x) = -\infty$ alors asymptote verticale d'équation x = a.

alors asymptote horizontale d'équation y = L.

Croissances comparées

$$\lim_{x\to+\infty}\frac{\mathrm{e}^x}{x^n}=+\infty \,(n\in\mathbb{N}^*)$$

$$\lim_{x\to -\infty} x^n e^x = 0 \ (n \in \mathbb{N}^*)$$

$$\lim_{x \to +\infty} \frac{e^x}{\sqrt{x}} = +\infty$$

Asymptotes

Théorèmes de comparaison

Le réel a peut être remplacé par $-\infty$ ou $+\infty$; $L \in \mathbb{R}$ \bullet

- Si $f(x) \le g(x)$ et $\lim_{x \to a} f(x) = +\infty$, alors $\lim_{x \to a} g(x) = +\infty$
- Si $f(x) \le g(x)$ et $\lim_{x \to a} f(x) = -\infty$, alors $\lim_{x \to a} g(x) = -\infty$
- · Théorème des gendarmes
- Si $f(x) \le g(x) \le h(x)$ et $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L$, alors $\lim_{x \to a} g(x) = L$.

Formes indéterminées

$$<\!<\!\infty-\infty$$
; $<\!<\!\infty\times0$; $<\!<\!\infty\times0$; $<\!<\!\infty\times0$;

Fonction composée u suivie de v $v \circ u$ telle que $v \circ u(x) = v(u(x))$

Exemple de calcul d'une limite

$$\lim_{x \to +\infty} (-2x) = -\infty \text{ et } \lim_{X \to -\infty} e^X = 0 \text{ donc } \lim_{x \to +\infty} e^{-2x} = 0$$