《模形式初步》勘误表 跨度: 2022 修订版迄今

李文威

2023-12-29

◇ 第 2 页第一行 (仅 PDF 版) 原文 透过过 更正 透过	
\diamond 导言的拓扑空间符号部分原文 $\partial D := D \setminus D^{\circ}$ 更正 $\partial D := \overline{D} \setminus D^{\circ}$ 指正	感谢雷嘉乐
	n[SL(<i>n,R</i>) - 謝雷嘉乐指正
◇ §1.1 第一个脚注 (仅纸本) 原文 [50] 更正 [59] 感	谢孙超超指正
\diamond 命题 1.4.12 关于 $\operatorname{Stab}_{\operatorname{SL}(2,\mathbb{Z})}(\rho)$ 生成元的描述原文 $\binom{-1}{1-1}$ 更正谢余君指正	1 (感
◇ 引理 2.1.5 证明倒数第二行 原文 n! 更正 n! 感谢 Wenju	n Huang 指正
◇ 例 3.5.4 之前的 (i) 原文 线性代群 更正 线性代数群 感	谢杨箐浩指正
$ ◇ 定义 3.6.4 之后的讨论条列第二项 从 "变 α 为 α β …" 之后关于 g^* 的公式 只差一个因子 a^{-k} ." 为止, 所有的 a^{-k} 都应该改成 a^k (共 5 处)$	起,直到" 感谢余君指正
\diamond 等式 (5.2.1) 的下一行原文 $\Gamma \cdot \Gamma \alpha \Gamma$ 更正 $\Gamma' \cdot \Gamma \alpha \Gamma$ 感	谢汤一鸣指正
\diamond 等式 (5.4.1) 的下一行原文 $f(\delta_1\delta_1)$ 更正 $f(\delta_1\delta_2)$ 感	谢汤一鸣指正
定理 6.5.1 证明 将证明中间 "定义 $S_k(\Gamma(N))$ 的线性自同态…" 之前一行的 中的 $\alpha_n(f)$ 改为 $\alpha_n(\varphi)$.	的显示公式
	感谢余君指正

◇ **定理 7.1.2 证明第一行** 在 "命题 2.6.3" 之后加上一条脚注: "该节构造的 Eisenstein

节比较复杂, 详阅 [41, §7.2]."

级数, 其 Fourier 展开和对应的直和分解可以通过解析延拓推及 k = 1, 2 的情形, 细

感谢彭也博指正

◇ 引理 A.1.2 之前两行 原文 … 连续的最粗拓扑 更正 … 连续的最细拓扑 感 谢李钦浩指正

 \diamond 引理 A.1.10 证明第三行 $\boxed{\text{原文}}$ G/K 更正 G/H