SmartFridge

Alice Deng, Michael Deng, Barry Plunkett, Stephanie Shi

CIS 550

Basic Problems & Goals

"What recipes can I make Search by ingredient with X ingredients?" "What ingredients do I 2. Search by recipe need to make Y recipe?" "What recipes satisfy **Z** 3. Filter by nutrition nutrition requirement?"

Preview

Datasets

We develop a web app enabling users to readily interpret information combined from **two** discrete data sources stored in **four** relations.

1. Eight Portions (JSON)

Recipes <> Ingredients Recipes <> Pictures

Wrangling

- Conversion from JSON to CSV
- Locating pics from hashed urls
- Structured prediction model

2. USDA (CSV)

Ingredients <> Nutrition

Entity Resolution

- String processing on ingredient names
- Fuzzy string matching for ingredient matching

Recipes
180,000 tuples

80,000 t

Ingredients
1.5 million t

9,000 t

More on Wrangling / Entity Resolution

Structured Prediction Model

- Allows storage of ingredients in normalized schema
- Extracts meaningful information from raw 'natural language ingredients'
 - Quantity, name, unit

Source: NYT Ingredient Phrase Tagger

String Processing

- On USDA ingredient names:
 - To lowercase
 - Remove dashes
 - Replace abbrevs / shorthands with full words

Fuzzy String Matching

- For ingredient matching
- Various attempts
 - Levenshtein distance
 - Normalized Levenshtein distance (by length)
 - Tokenized strings

Quantity Normalization

- For amount matching
- Examples:
 - teaspoon -> tsp
 - ounce -> oz
 - tablespoon -> tbsp

4-Relation Schema

Schema Design (3NF)

Demo

Application Stack

OracleDB

(AWS RDS for Oracle)

Express

React / Redux / Material UI

Node.js

Example: Complex Query

```
SELECT Q.TITLE AS TITLE, Q.RID AS RID, Z.LINK AS PICTURE_LINK FROM (SELECT
G.RID, G.TITLE
FROM
    (SELECT L.RID, L.TITLE
    FROM
        (SELECT RID, P.TITLE, T.TOTAL_COUNT, P.COUNT, P.COUNT /
T.TOTAL_COUNT AS SCORE
        FROM
        (SELECT RID, R.TITLE AS TITLE, COUNT(RID) AS COUNT
        FROM INGREDIENTS I NATURAL JOIN RECIPES R WHERE I.USDA_ID IN(16091,
1009, 19074, 18157)
        GROUP BY RID, R.TITLE) P
        NATURAL JOIN (SELECT RID, COUNT(*) AS TOTAL_COUNT FROM INGREDIENTS
GROUP BY RID) T
    ORDER BY L.SCORE DESC) G
WHERE ROWNUM < 51) Q LEFT JOIN IMAGES Z ON Z.RID = Q.RID
```

Performance

	Description
OHARV	Deceription
OUCIV	DESCRIBUION

Get recipes by OR of ingredients

Get recipes by AND of ingredients

Get recipes by OR (sort by relevance)

Get recipes by name (starts with)

Get recipes by name (fuzzy)

Original

43 seconds

6 seconds

59 seconds

12 seconds

Crashes

Optimized

.02 seconds

.01 seconds

.03 seconds

.02 seconds

.3 seconds

Technical Challenges

Data Cleaning & Use of third-party packages & machine learning
 Query Optimization
 Use of third-party packages & machine learning
 Creating indices, Browser-side filtering

3. Fuzzy String Search

Reimplementation with caching

Thank You!

Questions?