A Presentation on

An Interpretable Machine Learning Approach for Identification of the Risk Factors of Early-Stage Overweight and Obesity

Authors Information

Priyanka Roy Amrita Das Tipu

Department of Computer Science and Engineering

Presented By: Amrita Das Tipu

Outline

Introduction

Motivation and Objectives

Contributions

Related Works

Proposed Pipeline

Result Analysis

Conclusion and Future Work

Introduction

 Overweight and obesity are medical conditions characterized by abnormal or excessive fat accumulation posing primary and secondary health risks (WHO)

Global Buzzword:

- ➤ Linked to several **NCDs and comorbidities**
- ➤ Increase the risk of developing various **chronic diseases**, including cardiovascular diseases, diabetes, musculoskeletal disorders, and certain cancers.
- **Body Mass Index (BMI)** is commonly used indicator for classifying overweight and obesity.

 weight

Fig. 1: Comorbidities

Motivation

- **Alarming Facts** from WHO:
 - ➤ Obesity rates tripled globally since 1975
 - ➤ 39 million children under 5 years of age and nearly 40% of adults were overweight or obese in 2020
 - ➤ Prevalence of overweight and obesity will increase to **around 50% by 2030**
- ➤ In Bangladesh, over 2% children, 32% females, and 18% males were obese in 2020 [1]
- ➤ Necessitates the **early-stage identification** of obesity and its **risk factors** as it allows for timely interventions, lifestyle modifications, and preventive measures
- ➤ Machine Learning (ML) has the potential to transform this by ensuring the evidence-based decision-making

Objectives

Detecting

• Identifying early-stage overweight and obesity will pave the way to enhance quality of life

Analyzing

• Applying various data preprocessing techniques to analyze and improve the performance of the black-box ML methods

Reducing Complexity

• Utilizing feature selection algorithms to identify the most significant feature contributing to the model outcome

Balancing

• Balancing the imbalanced data and applying different XAI tools to add model explainability

Contributions

Generalized pipeline for earlystage overweight and obesity identification utilizing the power of ensemble ML models

Identified risk factors and variables causing overweight and obesity

Achieved 99.58% accuracy and 1.00 AUC score

Transforming opaque ML algorithms into transparent glass-box models by adding the flavor of model explainability

Related Works

Author	Dataset	Feature	Best Performing Algorithm	Accuracy (%)
Rodríguez et al. [2]	Private	14	Random Forest	77.69
Taghiyev et al. [3]	Custom	26	Hybrid (DT and LR)	91.42
Solomon et al. [4]	UCI [5]	16	Hybrid (GB, XGB and MLP)	97.16
De-La-Hoz-Correa et al. [6]	UCI	16	Decision tree (J48)	97.40 (Precision score)
Kaur et al. [7]	UCI	13	Gradient Boosting	98.11

Table 1: Recent Existing Works

Dataset Description

- "Estimation of Obesity Levels Based On Eating Habits and Physical Condition" from the UCI Machine Learning Repository [5]
- 2111 records with no missing values
- Consists of **16 attributes** and target class *NObesity*
- For binary classification
 - \circ **0 (normal)** for BMI < 25
 - 1 (risk) for BMI \geq 25
- Fig. 2 represents the imbalanced nature of the dataset

Fig. 2: Imbalanced Nature of the Dataset Used

Proposed Pipeline

PID: 389

Proposed Pipeline

- Data Collection
- Data Preprocessing
- Feature Selection
- Handling Imbalanced Data
- Training & Testing
- Performance Evaluation
- Result & Discussion
- Model Explainability

Proposed Pipeline Contd.

Fig. 3: Proposed Pipeline

ML Algorithms

- Linear Model
 - ➤ Logistic Regression (LR): Comparatively simple and most effective for binary classification
- Tree Based Model
 - ➤ Decision Tree (DT): Adaptable and intuitive data interpretation segmenting the feature space into different areas
 - ➤ Random Forest (RF): Combines multiple DTs to improve generalization performance and is able to handle large datasets and reduce overfitting

Proposed Ensemble Classifier

- Stacking Ensemble Model (STEM)
- Weak-learners: LR, KNN, DT are chosen because they can handle high-dimensional data and learn intrinsic patterns
- Predictions of weak-learners are feed into the meta-learner RF
- Output of meta-learner is the final prediction

Fig. 4: Proposed STEM model

Result Analysis

PID: 389

Algorithm	Parameters
LR	C = 1.0, max_iter = 100, random_state = 42
RF	n_estimators = 100, bootstrap = True, max_depth = None
DT	Criterion = 'gini', splitter = 'best', random_state = 42
STEM	Weak-learner: LR, KNN (n_neighbors = 7, p = 2, leaf_size = 30, metric = 'minkowski'), DT Meta-learner: RF

Table 2: Hyperparameter Settings for the Algorithms

Algorithm	Class	Precision	Recall	F1-Score	Avg. Acc. (%)
LR	0 1	0.39 0.85	0.10 0.97	0.16 0.91	83.22
RF	0 1	0.90 0.97	0.82 0.98	0.86 0.97	95.74
DT	0 1	0.84 0.97	0.85 0.97	0.84 0.97	95.04
STEM	0 1	0.88 0.97	0.87 0.98	0.87 0.98	95.98

Table 3: Performance on Imbalanced Dataset

On Imbalanced Dataset

- Tuned parameters for each classifier
- Although the accuracy surpassed 90% except LR, the scores from other metrices clearly denotes the fluctuating poor performance in terms of stability for both majority and minority classes
- STEM achieved the highest accuracy of 95.98% even at the imbalanced dataset however Table 3 indicates scope for further improvements

Feature Selection

- Fig. 5 represents the final **10 significant features** extracted by the Recursive Feature

 Elimination (RFE) algorithm
- Ranked in descending order depending on individual **importance score**
- Reduced the dataset dimensionality and, therefore, related model complexity

Fig. 5: Feature Ranking According to Importance Score

After Applying Proposed Pipeline

- The proposed **STEM surpassed** other existing ML models significantly by securing **99.58%** accuracy
- The Precision, Recall, and F1-scores demonstrates the reliable performance for both the majority and minority classes with nearly a perfect score for each metric
- Fig. 6 further illustrates the robustness and stability of the model (AUC = 1.00)

Algorithm	Class	Precision	Recall	F1- Score	Avg. Acc. (%)
LR	0 1	0.83 0.87	0.89 0.80	0.86 0.83	84.76
RF	0 1	0.97 1.00	1.00 0.96	0.98 0.98	98.18
DT	0 1	0.97 0.98	0.98 0.96	0.97 0.97	97.20
STEM	0 1	1.00 0.99	0.99 1.00	1.00 1.00	99.58

Table 4: Performance after Applying Proposed Pipeline

Fig. 6: Comparison of AUC-ROC Curves (before and after applying proposed pipeline)

PID: 389 Result Analysis Contd.

Applying XAI

- Almost identical features indicating Weight,
 Height, CAEC, NCP, CH2O, Age, and FAF most significant contributors
- The SHAP force plot illustrates the individual feature contributions to the model outcome.
- Fig. 8 denotes that a young person of 25 years with 110.9 kgs and 166.5 cm height has a 100% chance to suffer from obesity

Weight Height CAEC NCP FAF Family_history CH2O Age TUE MTRANS SMOKE Class 0 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.4t Feature Class 1 mean(|SHAP value|) (average impact on model output magnitude)

Fig. 7: Comparison between Extracted Features (RFE and SHAP)

Fig. 8: SHAP Force Plot

Conclusion and Future Works

- Proposed an **effective generalized pipeline** including feature selection, dataset balancing and proposed STEM model
- Achieved the best **accuracy score of 99.58%** and AUC score of 1.0
- Identified the root causes behind overweight and obesity
- Future directions?
 - Federated machine learning
 - More Diversified Datasets

References

- 1. National Institute of Population Research and Training (NIPORT), "Bangladesh demographic and health survey 2017–18," *The DHS Program*, 2020.
- 2. E. Rodríguez, E. Rodríguez, L. Nascimento, A. F. da Silva, and F. A. S. Marins, "Machine learning techniques to predict overweight or obesity," in *IDDM*, 2021, pp. 190–204.
- 3. A. Taghiyev, A. A. Altun, and S. Caglar, "A hybrid approach based on machine learning to identify the causes of obesity," *Journal of Control Engineering and Applied Informatics*, vol. 22, no. 2, pp. 56–66, 2020.
- 4. D. D. Solomon, S. Khan, S. Garg, G. Gupta, A. Almjally, B. I. Alabduallah, H. S. Alsagri, M. M. Ibrahim, and A. M. A. Abdallah, "Hybrid majority voting: Prediction and classification model for obesity," *Diagnostics*, vol. 13, no. 15, 2023.
- 5. F. M. Palechor and A. de la Hoz Manotas, "Dataset for estimation of obesity levels based on eating habits and physical condition in individuals from colombia, peru and mexico," *Data in Brief*, vol. 25, p. 104344, 2019.
- 6. E. De-La-Hoz-Correa, F. E. Mendoza-Palechor, A. De-La-Hoz-Manotas, R. C. Morales-Ortega, and S. H. Beatriz Adriana, "Obesity level estimation software based on decision trees," *Journal of Computer Science*, vol. 15, no. 1, pp. 67–77, Jan 2019.
- 7. R. Kaur, R. Kumar, and M. Gupta, "Predicting risk of obesity and meal planning to reduce the obese in adulthood using artificial intelligence," *Endocrine*, vol. 78, no. 3, pp. 458–469, 2022.

Thank you

Any Question?