Dataflow Analysis Lattices & Solvers

15-411/15-611 Compiler Design

Seth Copen Goldstein

September 29, 2020

Dataflow Analysis

- A framework for proving facts about program
 - Reasons about lots of little facts
 - Little or no interaction between facts
 - Based on all paths through program
- Solve with iterative solver:
 - How do we know it terminates?
 - How do we know whether solution is precise?
 (or even correct?)

Recall: Data Flow Equations

- Let s be a statement
 - succ(s) = {immediate successors of s}
 - Pred(s) = {immediate predecessors of s}
 - In(s) program point just before executing s
 - Out(s) program point just after executing s
- Transfer functions (for forward, must):

$$In(s) = \bigcap_{s' \in \operatorname{pred}(s)} Out(s')$$

$$Out(s) = Gen(s) \cup (In(s) - Kill(s))$$

- Gen(s) set of facts made true by s
- Kill(s) set of facts invalidated by s

Recall: Worklist algorithm (forward)

```
Initialize: in[B] = out[b] = Universe
Initialize: in[entry] = \emptyset
Work queue, W = all Blocks in topological order
while (|W| != 0) {
   remove b from W
   temp = out[b]
   compute In[b]
   compute Out[b]
   if (temp != out[b]) W = W \cup succ(b)
```


Backward, May

$$In(s) = (Out(s) - kill(s)) \cup Gen($$

$$Out(s) = \bigcup_{s' \in succ(s)} In(s')$$

Initialize all to empty set

Data Flow Facts and lattices

- Typically, data flow facts form a lattice
- Example, Available expressions

Lattices

- All our dataflow analyses map program points to elements of a *lattice*.
- A complete lattice L = (S, ≤, ∨, ∧, ⊥, T) is formed by:
 - A set S
 - A partial order ≤ between elements of S.
 - A least element ⊥
 - A greatest element T
 - A join operator V
 - A meet operator ∧

Least Upper Bound & Join

- If L = (S, ≤, V, Λ, ⊥, T) is a complete lattice,
 and e₁ ∈ S and e₂ ∈ S, then
 least upper bound of {e₁, e₂} ≡ e_{lub} = (e₂ V e₁) ∈ S
- V is the "join" operator
- e_{lub}, the least upper bound, has the properties:
 - $-e_1 \le e_{lub}$ and $e_2 \le e_{lub}$
 - For all e' ∈ S, if $e_1 \le e'$ and $e_2 \le e'$, then $e_{lub} \le e'$
- least upper bound of S'⊆S, is pairwise lub of all elements of S'
- For L to be a lattice, for all $S' \subseteq S$, $lub(S') \in S$

Note: lub(S') may not be in S'

Greatest Lower Bound & Meet

- If L = (S, ≤, V, Λ, ⊥, T) is a complete lattice,
 and e₁ ∈ S and e₂ ∈ S, then
 greatest lower bound of {e₁, e₂} ≡ e_{glb} = (e₂ Λ e₁) ∈ S
- A is the "meet" operator
- e_{glb}, the greatest lower bound, has the properties:
 - $-e_{glb} \le e_1$ and $e_{glb} \le e_2$
 - For all e' ∈ S, if $e_1 \le e'$ and $e_2 \le e'$, then $e' \le e_{glb}$
- greatest lower bound of S'⊆S, is pairwise glb of all elements of S'
- For L to be a lattice, for all $S' \subseteq S$, $glb(S') \in S$

Note: glb(S') may not be in S'

Properties of join (and meet)

- Join is idempotent: $x \lor x = x$
- Join is commutative: y V x = x V y
- Join is associative: $x \lor (y \lor z) = (x \lor y) \lor z$
- Join has a multiplicative one:

for all x in S,
$$(\bot \lor x) = x$$

Join has a multiplicative zero:

for all x in S, $(T \lor x) = T$

Properties of join (and meet)

- Join is idempotent: $x \lor x = x$
- Join is commutative: y V x = x V y
- Join is associative: $x \lor (y \lor z) = (x \lor y) \lor z$
- Join has a multiplicative one:

for all
$$x \in S$$
, $(\bot \lor x) = x$

Join has a multiplicative zero:

for all
$$x \in S$$
, $(T \lor x) = T$

- Similarly for meet, but:
 - multiplicative one is T, i.e., for all $x \in S$, $(T \land x) = T$
 - multiplicative zero is \bot , i.e., for all $x \in S$, $(\bot \land x) = T$

Semilattices

- Notice the dataflow analysis we looked at have either the join or meet operator, e.g.,
 - available expressions uses meet: ∧ is intersection
 - liveness uses join: V is union
- If only one of meet or join are defined, we call it a semilattice.

Partial Order

A partial order is a pair (S, ≤) such that:

```
- \leq \subseteq S \times S
```

- ≤ is reflexive, i.e.,
 - $X \leq X$
- \le is anti-symmetric, i.e., $x \le y$ and $y \le x$ implies x=y
- \le is transitive, i.e., $x \le y$ and $x \le z$ implies $x \le z$

Partial Order, V, A, and Semi-Lattice

 Join, least upper bound, on a semi-lattice defines a partial order:

$$x \le y \text{ iff } x \lor y = y$$

 Meet, greatest lower bound, on a semilattice defines a partial order:

$$x \le y \text{ iff } x \land y = x$$

Useful Lattices

- $(2^S, \subseteq)$ forms a lattice for any set S.
 - -2^{S} is the powerset of S (set of all subsets)
- If (S, \leq) is a lattice, so is (S, \geq)
 - i.e., lattices can be flipped
- A lattice for constant propagation

Semilattice of Liveness

- L=({a,b,x,y,z},⊆,∪, {},{a,b,x,y,z})
 - Only define Join, \cup
 - Least Element, \perp , $\{\}$
 - Greatest Element, T, {a,b,x,y,z}
 - $-x \le y$ means x is subset of y

• more generally, $L=(2^S, \subseteq, \cup, \{\}, S)$

$$L=(2^S,\subseteq,\cup,\{\},S)$$

- Join operator must have the property:
 - $-x \le y \text{ iff } x \lor y=y$
 - Or, in our case, Is it true that: $x \subseteq y$ iff $x \cup y = y$?
- Is $\{\} \perp$, or in our case: is $\{\} \subseteq x$, for all $x \in S$?
- is S T, or in our case is $x \subseteq T$, for all $x \in S$?

Semilattice of Available Expressions

- L=({a+b,a*b,a+1}, ⊇, ∩, {a+b,a*b,a+1},{})
 - Only define Meet, \cap
 - Least Element, \perp , {a+b,a*b,a+1}
 - Greatest Element, T, {}
 - $-x \le y$ means x is superset of y

• In general:

$$L=(2^S, \supseteq, \cap, S, \{\})$$

Monotonicity

- A function f on a partial order is monotonic if $x \le y$ implies $f(x) \le f(y)$
- We call f a transfer function

Monotonicity for Available Expressions

A function f on a partial order is monotonic if
 x ≤ y implies f(x) ≤ f(y)

For
$$x = a \oplus b$$
:
$$Gen = \{a \oplus b\}$$

$$Kill = \{All \text{ expressions using } x\}$$

$$Temp = Gen(s) \cup (In(s) - Kill(s))$$

$$Temp = f_s \left(\bigcap_{s \in pred(s)} Out(s')\right)$$

Termination

- Algorithm terminates because:
 - The lattice has finite height
 - The operations to compute In and Out are monotonic
 - On every iteration either:
 - W gets smaller, or
 - out(s) decreases for some s, i.e.,
 we move down lattice

```
Initialize: in[s] = out[s] = Universe
Initialize: in[entry] = \emptyset
Work queue, W = all Blocks
while (|W| != 0) {
   remove s from W
   temp = out[s]
   compute In[s]
   compute Out[s]
   if (temp != out[s]) W = W \cup succ(s)
```

Lattices (P, ≤)

- Available expressions
 - P = sets of expressions
 - S1 \wedge S2 = S1 \cap S2
 - Top = set of all expressions
- Reaching Definitions
 - P = set of definitions (assignment statements)
 - S1 \wedge S2 = S1 \cup S2
 - Top = empty set

Fixpoints

- We always start with Top
 - Every expression is available, no defns reach this point
 - Most optimistic assumption
 - Strongest possible hypothesis
 (i.e., true of fewest number of states)
- Revise as we encounter contradictions
 - Always move down in the lattice (with meet)
- Result: A greatest fixpoint

Lattices (P, ≤), cont'd

- Live variables
 - P = sets of variables
 - S1 \wedge S2 = S1 \cup S2
 - Top = empty set
- Very busy expressions
 - P = set of expressions
 - S1 \wedge S2 = S1 \cap S2
 - Top = set of all expressions

Forward vs. Backward

```
Out(s) = Top for all s
                                        ln(s) = Top for all s
W := { all statements }
                                        W := { all statements }
repeat
                                        repeat
    Take s from W
                                            Take s from W
   temp := f_s(\cap_{s' \in pred(s)} Out(s')) temp := f_s(\cap_{s' \in succ(s)} In(s'))
    if (temp != Out(s)) {
                                            if (temp != In(s)) {
    Out(s) := temp
                                             In(s) := temp
    W := W \cup succ(s)
                                             W := W \cup pred(s)
until W = ∅
                                        until W = ∅
```

Termination Revisited

How many times can we apply this step:

```
temp := f_s(\Pi_{s' \in pred(s)} Out(s'))
if (temp != Out(s)) { ... }
```

Claim: Out(s) only shrinks

- Proof: Out(s) starts out as top
 - So temp must be ≤ than Top after first step
- Assume Out(s') shrinks for all predecessors s' of s
- Then $\Pi_{s' \in pred(s)}$ Out(s') shrinks
- Since f_s monotonic, $f_s(\Pi_{s' \in pred(s)} Out(s'))$ shrinks

Termination Revisited (cont'd)

- A descending chain in a lattice is a sequence
 - x0 ⊒ x1 ⊒ x2 ⊒ ...
- The height of a lattice is the length of the longest descending chain in the lattice
- Then, dataflow must terminate in O(nk) time
 - n = # of statements in program
 - k = height of lattice
 - assumes meet operation takes O(1) time

Order Matters

- Acyclic
- Cycles, nesting depth

Distributive Data Flow Problems

By monotonicity, we also have

$$f(x \sqcap y) \le f(x) \sqcap f(y)$$

A function f is distributive if

$$f(x \sqcap y) = f(x) \sqcap f(y)$$

15-411/611

Benefit of Distributivity

Joins lose no information

$$\begin{array}{l} k(h(f(\top)\sqcap g(\top))) = \\ k(h(f(\top))\sqcap h(g(\top))) = \\ k(h(f(\top)))\sqcap k(h(g(\top))) \end{array}$$

Accuracy of Data Flow Analysis

- Ideally, we would like to compute the meet over all paths (MOP) solution:
 - Let f_s be the transfer function for statement s
 - If p is a path $\{s_1, ..., s_n\}$, let $f_p = f_n; ...; f_1$
 - Let path(s) be the set of paths from the entry to s

$$MOP(s) = \sqcap_{p \in path(s)} f_p(\top)$$

 If a data flow problem is distributive, then solving the data flow equations in the standard way yields the MOP solution

What Problems are Distributive?

- Analyses of how the program computes
 - Live variables
 - Available expressions
 - Reaching definitions
 - Very busy expressions

All Gen/Kill problems are distributive

A Non-Distributive Example

Constant propagation

• In general, analysis of what the program computes is not distributive

CP Lattice, Transfer, Meet

Order Matters

- Assume forward data flow problem
 - Let G = (V, E) be the CFG
 - Let k be the height of the lattice
- If G acyclic, visit in topological order
 - Visit head before tail of edge
- Running time O(|E|)
 - No matter what size the lattice

Order Matters — Cycles

- If G has cycles, visit in reverse postorder
 - Order from depth-first search
- Let Q = max # back edges on cycle-free path
 - Nesting depth
 - Back edge is from node to ancestor on DFS tree
- Then if $\forall x$, $f(x) \le x$ (sufficient, but not necessary)
 - Running time is O((Q + 1) |E|)
 - Note direction of depends on top vs. bottom

Flow-Sensitivity

- Data flow analysis is flow-sensitive
 - The order of statements is taken into account
 - i.e., we keep track of facts per program point
- Alternative: Flow-insensitive analysis
 - Analysis the same regardless of statement order
 - Standard example: types

Terminology Review

- Must vs. May
 - (Not always followed in literature)
- Forwards vs. Backwards
- Flow-sensitive vs. Flow-insensitive
- Distributive vs. Non-distributive

Another Approach: Elimination

- Recall in practice, one transfer function per basic block
- Why not generalize this idea beyond a basic block?
 - "Collapse" larger constructs into smaller ones, combining data flow equations
 - Eventually program collapsed into a single node!
 - "Expand out" back to original constructs, rebuilding information

Lattices of Functions

- Let (P, ≤) be a lattice
- Let M be the set of monotonic functions on P
- Define $f \le_f g$ if for all x, $f(x) \le g(x)$
- Define the function f □ g as
 - $(f \sqcap g)(x) = f(x) \sqcap g(x)$

• Claim: (M, \leq_f) forms a lattice

Elimination Methods: Conditionals

$$f_{\text{ite}} = (f_{\text{then}} \circ f_{\text{if}}) \sqcap (f_{\text{else}} \circ f_{\text{if}})$$

$$\begin{aligned} & \text{Out(if)} = f_{\text{if}}(\text{In(ite)})) \\ & \text{Out(then)} = (f_{\text{then}} \circ f_{\text{if}})(\text{In(ite)})) \\ & \text{Out(else)} = (f_{\text{else}} \circ f_{\text{if}})(\text{In(ite)})) \end{aligned}$$

Elimination Methods: Loops

Elimination Methods: Loops (cont)

- Let f = f o f o ... o f (i times)
 f = id
- Let

$$g(j) = \sqcap_{i \in [0..j]} (f_{\text{head}} \circ f_{\text{body}})^i \circ f_{\text{head}}$$

- Need to compute limit as j goes to infinity
 - Does such a thing exist?
- Observe: $g(j+1) \le g(j)$

Height of Function Lattice

- Assume underlying lattice (P, ≤) has finite height
 - What is height of lattice of monotonic functions?
 - Claim: At most | P | ×Height(P)

• Therefore, g(j) converges

Non-Reducible Flow Graphs

- Elimination methods usually only applied to *reducible* flow graphs
 - Ones that can be collapsed
 - Standard constructs yield only reducible flow graphs
- Unrestricted goto can yield non-reducible graphs

15-411/611

Comments

- Can also do backwards elimination.
 - Not quite as nice (regions are usually single *entry* but often not single *exit*)
- For bit-vector problems, elimination efficient
 - Easy to compose functions, compute meet, etc.
- Elimination originally seemed like it might be faster than iteration
 - Not really the case