

Made By: Youssef Gamal

What is UART

- Universal Asynchronous Receiver & Transmitter
- A Protocol for exchanging serial data between two devices
- Can be simplex , half-duplex , or full-duplex

TX & RX in Arduino

Parallel Vs Serial Transmission

Merits: High speed

Demerits: Many Wires needed

(High Cost)

Merits: Simple (only 2 wires

are used)

Demerits: Low Speed

Timing and Synchronization

• Since UART is Asynchronous (the transmitter and receiver don't share a common clock)

- Will need some configurations btw TX and RX
 - Transmit at the same known speed (Baud Rate)
 - Use the same Frame Structure

Common UART baud rates		
4800		
9600		
19200		
57600		
115200		

UART Frame Format

- Start bit indicates the data is coming
- Data Frame are data you send
 - length (from 5 to 9 bits usually 7 to 8) start with the LSB
- The Parity bit (Optional) Used for Error Checking
- The stop bit(s) indicates the Frame is complete
- In the idle state the line is held high

Start Bit	Data Frame	Parity Bits	Stop Bits
(1 bit)	(5 to 9 Data Bits)	(0 to 1 bit)	(1 to 2 bits)

Verification Using FPGA

