Министерство образования и науки Российской Федерации Федеральное агентство по образованию Федеральное государственное бюджетное образовательное учреждение высшего образования

«Вятский государственный университет» Факультет автоматики и вычислительной техники Кафедра электронных вычислительных машин

Отчет по лабораторной работе №6 по дисциплине «Организация ЭВМ и систем»

Вариант 4

Выполнил студент группы ИВТ-31_____/Крючков И. С/ Проверил______/Клюкин В.Л./

1. Задание

Определить архитектуру ЭВМ с системой прерываний; разработать структурную схему и алгоритм работы ЭВМ; составить и отладить микропрограмму командного цикла ЭВМ.

Разработать микропрограмму, выполняющую умножение XY (X и Y – целые числа от 0 до 255) путем Y кратного суммирования множимого X.

- 2. Определение структуры и программирование
- 2.1 Форматы данных

X и Y изменяются в пределах от 0 до 255, поэтому любое число можно представить 16 разрядным двоичным кодом без знака

2.2 Программно-доступные регистры

ЭВМ имеет девять программно-доступных регистров: шесть регистров общего назначения (r0-r5), программный счетчик – IP (r6), регистр признаков – FLAGS (r7), содержащий разряд признака нуля (Z), регистр указателя стека – SP (r8), регистр адреса таблицы прерываний – ITR (r9), а также 8-разрядный регистр маски RM.

2.3 Система команд

Название	Мнемоника	Описание	Изменение признака Z
Суммирование	ADD r r*	$r := r + r^*, IP := IP + 1$	+
Вычитание	SUB r r*	$r := r - r^*, IP := IP + 1$	+
Добавление С	ADrC	r := r + C, IP := IP + 1	+
Вычитание С	SB r C	r := r - C, IP := IP + 1	+
Чтение в регистр	LDrA	r := M[A], IP := IP + 1	-
Запись регистра	MV r A	M[A] := r, IP := IP + 1	-
Чтение в регистр с индексацией	LDI r, r*	$r := M[r^*], IP := IP + 1$	-
Запись в стек	PUSH r (SP)	M[SP] := r, SP := SP - 1, IP := IP + 1	-
Чтение из стека	POP r (SP)	SP := SP + 1, r := M[SP], IP := IP + 1	-
Переход	JMP A	IP := A	-
Переход, если нуль	JZ A	Если Z = 1, то IP := A, иначе IP := IP + 1	-
Обращение к подпрограмме	CALL (SP) A	M[SP] := IP, SP := SP - 1, $IP := IP + 1$	-
Загрузка маски	LM A	RM := M[A], IP := IP + 1	-
Сдвиг вправо логический	SHR r r*	$r := r^* / 2$, $IP := IP + 1$	+
Останов	HLT A	IP := A, останов	-
Возврат из прерывающей программы	IRET	SP := SP + 1, RM := M[SP], SP := SP + 1, IP := M[SP]	-

программы В описании системы команд приняты следующие обозначения:

- $r, r^* \in \{r0, r1, \dots r8\}$ программно-доступные регистры: регистр r^* является источником данных, а регистр r приемником результата, но может также служить источником второго операнда
- M[A] ячейка памяти с адресом А
- Знак "+" в описании признаков означает, что устанавливается новое значение признака по результату выполнения команды, а знак "-" свидетельствует о сохранении старого значения признака

3. Кодирование программы и распределение памяти программ и данных

3.1 Коды операций

Название	Мнемоника	Код операции						
Чтение в регистр	LD	0x0B						
Запись регистра	MV	0x0C						
Вычитание	SUB	0x02						
Сложение	ADD	0x01						
Прибавление С	AD	0x09						
Вычитание С	SB	0x0A						
Чтение в регистр с индексацией	LDI	0x10						
Запись в стек	PUSH	0x03						
Чтение из стека	POP	0x04						
Переход если нуль	BEQ	0x06						
Переход	BR	0x05						
Переход если минус	BMI	0x07						
Обращение к подпрограмме	CALL	0x08						
Возврат из прерывающей программы	IRET	0x12						
Загрузка маски	LM	0x11						
Останов	HLT	0x00						

3.2 Распределение памяти

Служебная программа и таблица прерываний

	039	
00:	00000000000000101	SA
01:	00000000111111111	MS
02:	00000000111111111	ASP
03:	00000000000001010	ATI
04:	0000000000100011	AP
05:	0001000100000001	LM AMS
96:	10111000000000010	LD RSP ASP
07:	1011100100000011	LD RATI ATI.
08:	1011011000000100	LD PC AP
09:	000000000000000000	į
0A:	0000000001000011	AP0
0B:	0000000001100000	AP1
0C :	0000000001100010	AP2
0D :	0000000001100100	AP3
ØE:	0000000001100110	AP4
OF:	0000000001101000	AP5
10:	0000000001101010	AP6
11:	0000000001101100	AP7

Маски и основная программа

```
13: 0000000011111111 | MO.....
14: 0000000000000000 [M1......
15: 0000000000000000 [M2......
16: 0000000000000000 [M3.....
17: 0000000000000000 | M4......
18: 0000000000000000 | M5......
19: 0000000000000000 | M6......
1A: 0000000000000000 | M7......
1B: 0000000000000000 | ......
1C: 0000000000000000 |......
1D: 0000000000000000 |.....
1E: 0000000000000000 |.....
1F: 0000000000000000 |......
20: 0000000000101110 |AM.....
21: 0000000000000011 N.....
22: 0000000000001000 |S......
23: 0001000100010010 |LM AMP......
24: 1011010100100000 |LD R5 AAM.....
25: 1011010000100001 | LD R4 AN.....
26: 0000001000110011 | SUB R3 R3.....
27: 0001000000010101 |LDI R1 (R5)+..
28: 0000000100110001 | ADD R3 R1.....
29: 1010010000000001 |SB R4 1.....
2A: 0000011000101100 | BEQ......
2B: 0000010100100111 | BR.....
2C: 1100001100100010 | MV R3 AS.....
2D: 0000000000000101 | HLT.....
2E: 0000000000000011 | T1......
2F: 0000000000000000 | T2......
30: 0000000000000101 [T3......
```

Прерывающая программа РО

```
40: 0000000000000111 |X......
41: 00000000000000010 |Y......
42: 0000000000000000 |Z.......
43: 0001000100010011 |LM AMO......
44: 0000001101110000 | PUSH RP.......
45: 0000001100000000 | PUSH RO......
46: 0000001100010000 | PUSH R1.......
47: 0000001100100000 | PUSH R2......
48: 0000001000100010 | R2:=0 (Z).....
49: 1011000001000000 |LD RO AX......
4A: 0000011001010001 |BEQ X=0?......
4B: 1011000101000001 |LD R1 AY......
4C: 0000011001010001 | BEQ Y=0?.....
4D: 0000000100100000 | ADD R2 R0 (Z:=Z + X)..
4E: 1010000100000001 |R1 - 1 (Y:=Y-1)......
4F: 0000011001010001 | BEQ (Y = 0?)......
50: 0000010101001101 |BR......
51: 1100001001000010 | MV R2 AZ.......
52: 0000010000100000 | POP R2.......
53: 0000010000010000 | POP R1........
54: 0000010000000000 | POP RO........
55: 0000010001110000 | POP RP.......
56: 0001001000000000 | IRET......
```

Прерывающие программы Р1 – Р7

4. Разработка структуры и алгоритма работы

4.1 Граф-схема микропрограммы командного цикла

4.2 Микропрограмма командного цикла (выборка команды и установка

признаков)																	
00: 571 E E 0	0 00	1 1	1	996	C 000	0	0	1	1	0	00	1	1	0	1	0	1
01: 533 0 E 0	9 99j	1 1	1 j	001	9 000	0	0	1	1	0	00	1	1	0	1	1	1
02: 143 0 6 0	9 99j	1 1	o j	000	E 000	0	0	1	1	0	00	1	1	0	1	1	1
03: 337 0 6 0	1 00j	0 1	1 j	000	E 000	0	0	1	1	0	00	1	1	0	1	1	1
04: 203 6 6 1	9 99j	1 1	o j	03F	3 100	1	0	1	1	0	00	1	1	0	1	1	1
05: 337 0 C 0	1 00j	0 1	1 j	007	3 001	1	0	1	1	0	00	0	1	0	1	1	1
06: 345 E F 0	1 00j	1 1	1 j	000	2 000	0	0	1	1	0	00	1	0	0	1	1	1
07: 345 E F 0	1 00j	1 1	1 j	003	C 000	0	0	1	1	0	00	1	0	0	1	1	1
08: 533 0 C 0	9 99j	1 1	1 j	008	9 000	0	0	1	1	0	00	1	1	0	1	1	1
09: 131 C C 0	9 99j	1 1	1 j	000	2 000	0	0	1	1	0	00	0	1	0	1	1	1
0A: 343 0 7 0 °	1 00j	1 1	1 j	000	E 000	0	0	1	1	0	00	1	1	0	1	1	1
0B: 133 0 0 0 °	1 00j	1 1	1 j	00E	3 000	1	0	1	1	0	01	1	1	0	1	1	1
OC: 133 0 0 0 °	1 00j	1 1	1 j	004	3 001	0	0	1	1	0	01	1	1	0	1	1	1
OD: 503 0 7 1	1 01 j	1 1	1 j	004	3 000	0	1	1	1	0	00	1	1	0	1	1	1
0E: 303 0 7 1	1 00	1 1	-1 <u>į</u>	004	3 000	0	1	1	1	0	00	1	1	0	1	1	1

5.4 Микропрограмма командного цикла (IRET, INT)

5.5 Диаграмма переключения

6. Вывод

В ходе лабораторной работы была разработана и изучена учебная ЭВМ. В ходе выполнения лабораторной работы была изучена система и добавлена система прерываний. Добавленная система прерываний может получать 8 запросов на прерывание. Запросы имеют приоритет, выражаемый позицией

запроса в регистре запросов от 7 до 0, чем ниже значение, тем выше приоритет. Для запрета или разрешения обработки запроса существует маска. Так, если некоторый бит маски равен 1, то соответствующий запрос (располагающийся в соответствующем бите регистра запросов) обработан не будет. Таким образом были запрещены любые прерывания в служебной программе. После обработки бит обработанного запроса устанавливается в 0 для устранения возможности повторной обработки запроса