Chapitre 1 : Nombres réels

Activité 1 chapitre 1 : quelques constructions de nombres réels

Cette activité est largement inspirée de la \ll Situation $1 \gg p.20$ du livre (collection Barbazo).

Objectif : apprendre à placer sur la droite des réels des points dont les abscisses sont de différentes natures (entiers, rationnels, irrationnels).

Partie 1: construction d'entiers

Construire la droite des réels puis placer sur cette droite les points A, B et C d'abscisses respectives -2, 3 et 5.

Partie 2 : construction de nombres rationnels

- 1. Construire la droite des réels.
- 2. En utilisant uniquement une règle non graduée et un compas, construire le point D d'abscisse $\frac{1}{2}$. Justifier soigneusement votre construction (quelle construction géométrique avez-vous utilisé?).
- 3. En déduire la construction du point E d'abscisse $\frac{5}{2}$.
- 4. On souhaite maintenant construire le point F d'abscisse $\frac{2}{3}$. Pour cela, on a commencé la figure suivante :

Placer sur la droite graduée ci-dessus le point F d'abscisse $\frac{2}{3}$ en utilisant uniquement une règle non graduée et un compas et en s'aidant de la droite violette. Justifier soigneusement votre construction (quel théorème de géométrie avez-vous utilisé ?).

5. En vous inspirant de la question précédente, construire sur la droite des réels ci-dessous le point G d'abscisse $\frac{7}{5}$.

Remarque 1. nombre qui peut	Cette méthode s'écrire sous l	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	acer tous of p est un e	les points dont entier relatif et	l'abscisse est un q est un entier	n nombre rationne naturel non nul.	l, c'est-à-dire un

Partie 3 : construction de nombres irrationnels de la forme \sqrt{a} où a n'est pas le carré d'un entier

- 1. Pourquoi suppose-t-on dans cette partie que a n'est pas le carré d'un entier ?
- 2. On souhaite construire le point G d'abscisse $\sqrt{2}$ (qui est un nombre irrationnel). Pour cela, on construit un carré de côté OI.

Placer sur la droite graduée le point G d'abscisse $\sqrt{2}$ en utilisant uniquement une règle non graduée et un compas et en s'aidant du carré tracé. Justifier soigneusement votre construction (quel théorème de géométrie avez-vous utilisé?).

3. Quel nombre irrationnel la figure ci-dessous permet-elle de construire ?

4. Expliquer comment construire le nombre irrationnel $\sqrt{13}$.