Scilab Textbook Companion for Principles Of Communication Engineering by A. K. Gautam¹

Created by
Prasoon Mishra
B.tech
Electrical Engineering
college of engineering roorkee
College Teacher
Vatsalya Sharma
Cross-Checked by
Lavitha Pereira

July 14, 2017

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Principles Of Communication Engineering

Author: A. K. Gautam

Publisher: S. K. Kataria & Sons, New Delhi

Edition: 3

Year: 2005

ISBN: 81-85749-11-6

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

List of Scilab Codes		4
1	INTRODUCTION	5
2	AMPLITUDE MODULATION	9
3	FREQUENCY AND PHASE MODULATION	22
4	PRINCIPLES OF AM MODULATION	30
5	PRINCIPLES OF FM MODULATION	36
6	DEMODULATION OF AM WAVES	42
7	DEMODULATION OF FM WAVES	45
8	PULSE MODULATION SYSTEMS	50
9	DIGITAL PULSE MODULATION	53

List of Scilab Codes

Exa 1.1	Program to find noise voltage	5
Exa 1.2	Program to find noise power	6
Exa 1.3	Program to equivalent noise	6
Exa 1.4	Program to astimate maximum noise voltage amplitude	7
Exa 1.5	Program to find noise power	7
Exa 1.6	Program to equivalent noise	8
Exa 2.1	Program to calculate total power in the modulated signal	9
Exa 2.2	Program to calculate carrier frequency	9
Exa 2.3	Program to calculate power of carrier signal	10
Exa 2.4	Program to determine antenna current	11
Exa 2.5	Program to calculate modulation index due to second	
	wave	11
Exa 2.6	Program to calculate total sideband power radiated	12
Exa 2.7	Program to calculate total sideband power radiated	13
Exa 2.8	Program to calculate modulation index radiated power	13
Exa 2.9	Program to calculate total power in the modulated signal	14
Exa 2.10	Program to calculate power saving	14
Exa 2.11	Program to calculate signal parameters	15
Exa 2.12	To determine if there is interference	16
Exa 2.13	Program to calculate modulation index	17
Exa 2.14	Program to calculate modulation index	17
Exa 2.15	Program to calculate modulation index	18
Exa 2.16	Program to calculate total power in the modulated signal	18
Exa 2.17	Program to calculate power in the carrier signal	19
Exa 2.18	Program to calculate power in the carrier signal	19
Exa 2.19	Program to calculate modulation index	20
Exa 2.20	Program to calculate modulation index	20
Exa 3.1	Program to calculate deviation and modulation index	22

Exa 3.2	Program to calculate Power dissipated
Exa 3.3	Program to calculate modulation index 24
Exa 3.4	Program to Bandwidth required 24
Exa 3.5	Program to determine equations of FM and PM 25
Exa 3.6	Program to modulation index
Exa 3.7	Program to Bandwidth required
Exa 3.8	Program to calculate deviation to be used
Exa 3.9	Program to calculate modulation index 27
Exa 3.10	Program to determine realtive amplitude of each side-
	band
Exa 3.11	Program to determine realtive amplitude of each side-
	band
Exa 4.1	Program to determine percent increase in signal power
	of a carrier amplitude
Exa 4.2	Program to calculate turn ratio for modulation trans-
	former
Exa 4.3	Program to calculate total RF power
Exa 4.4	Program to calculate carrier power efficiency carrier am-
	plitude
Exa 4.5	Program to calculate equivalent resistance inductor ca-
	pacitor
Exa 4.6	Program to calculate carrier power contents
Exa 4.7	Program to calculate required frequency in two cases . 34
Exa 5.1	Program to calculate capacitive reactance
Exa 5.2	Program to calculate capacitive reactance
Exa 5.4	Program to calculate number of stations
Exa 5.5	Program to calculate carrier swing
Exa 5.6	Program to calculate percentage modulation 38
Exa 5.7	Program to calculate value of capacitance 39
Exa 5.8	Program to determine range of capacitance 40
Exa 5.9	Program to calculate frequency deviation 41
Exa 5.10	Program to calculate bandwidth 41
Exa 6.1	Program to calculate image frequency rejection ratio . 42
Exa 6.2	Program to calculate maximum modulation index 43
Exa 6.3	Program to calculate number of stations
Exa 6.4	Program to calculate number of stations
Exa 7.1	Program to determine slope detector 45

Exa 7.2	Program to determine minimum maximum capture and	
	lock frequency	46
Exa 7.3	Program to calculate total gain	46
Exa 7.4	Program to calculate total gain	47
Exa 7.5	Program to calculate number of stations	48
Exa 7.6	Program to determine slope detector	48
Exa 8.1	Program to calculate nyquist sampling rate	50
Exa 8.2	Program to calculate nyquist sampling rate	50
Exa 8.3	Program to calculate nyquist sampling rate elements	
	$transmitted \dots \dots \dots \dots \dots \dots$	51
Exa 9.1	Program to determine output band and minimum re-	
	quired bandwidth	53
Exa 9.2	Program to determine output band and minimum re-	
	quired bandwidth	54
Exa 9.3	Program to determine bitrate	54
Exa 9.4	Program to determine maximum value of bitrate	55
Exa 9.5	Program to determine expression for signal	56
Exa 9.6	Program to print expression for frequency spectrum .	56
Exa 9.7	Program to determine maximum signal to quantisation	
	noise ratio	57
Exa 9.8	Program to number of bits required per sample mini-	
	mum bandwidth for multiplexed signal	57
Exa 9.9	Program to calculate the capacity of a standard tele-	
	phone channel	58

Chapter 1

INTRODUCTION

Scilab code Exa 1.1 Program to find noise voltage

```
1
2    //Exa:1.1
3    clc;
4    clear;
5    close;
6    //Given:
7    b_w=6000000; //bandwidth in hertz
8    T=290; //temperature in kelvin
9    k=1.36*10^-23; //constant
10    R=500//ohms
11    V_n=sqrt(4*k*T*b_w*R);
12    printf("\n\n\t noise voltage = %f v ",V_n);
```

Scilab code Exa 1.2 Program to find noise power

```
1
2  //Exa:1.2
3  clc;
4  clear;
5  close;
6  //Given:
7  bw=1000; //in ohms
8  t=298; //VSWR (unitless)
9  P=1.38*10^-23 * 298*1000*10^12;
10  printf("\n\n\t noise power = %f pW",P);
```

${\it Scilab\ code\ Exa\ 1.3\ Program\ to\ equivalent\ noise}$

```
1 //Exa:1.3
2 clc;
3 clear;
4 close;
5 //Given:
```

```
6  b_w=3000; // bandwidth in hertz
7  T=300; // temperature in kelvin
8  k=1.36*10^-23; // constant
9  Vn=300*10^-6 // ohms
10  R=Vn*Vn/(4*k*T*b_w);
11  printf("\n\n\t equivalent noise resistance = %f ohm ",R);
```

Scilab code Exa 1.4 Program to astimate maximum noise voltage amplitude

Scilab code Exa 1.5 Program to find noise power

```
1
2  //Exa:1.5
3  clc;
4  clear;
5  close;
6  //Given:
7  bw=1000; //in ohms
8  t=298; //VSWR (unitless)
9  k=1.38*10^-23; //constant
10  P=k*298*1000*10^12;
11  printf("\n\n\t noise power = %f pW",P);
```

Scilab code Exa 1.6 Program to equivalent noise

Chapter 2

AMPLITUDE MODULATION

Scilab code Exa 2.1 Program to calculate total power in the modulated signal

```
1
2    //Exa:2.1
3    clc;
4    clear;
5    close;
6    //Given:
7    Pc=500;//poer of carrier
8    m=0.50;//depth
9    Pt=Pc*(1+(m^2)/2)
10    printf("\n\n\t total power of modulated signal = %f W ",Pt);
```

Scilab code Exa 2.2 Program to calculate carrier frequency

```
1
2  //Exa:2.2
3  clc;
4  clear;
5  close;
6  //Given:
7  L=50*10^-6; //henry
8  C=10^-9; //in farads
9  f=1/(2*%pi*sqrt(L*C));
10  printf("\n\n\t total power of modulated signal = %f Hz ",f);
```

Scilab code Exa 2.3 Program to calculate power of carrier signal

```
1
2  //Exa:2.1
3  clc;
4  clear;
5  close;
6  //Given:
7  Pt=20000;//total power
8  m=0.50;//depth
9  Pc=Pt/(1+(m^2)/2)*10^-3;
10  printf("\n\n\t power of carrier signal = %f kW ",Pc);
```

Scilab code Exa 2.4 Program to determine antenna current

```
1
2    //Exa:2.1
3    clc;
4    clear;
5    close;
6    //Given:
7    It=10.25; //total power
8    Ic=9;
9    m=sqrt(2*(It/Ic)-1);
10    printf("\n\n\t depth signal = %f ",m);
11    printf("\n when percent of odulation changed to 6");
12    It=Ic*(1+(m^2)/2);
13    printf("\n\n\t the antenna current = %f A",It);
```

Scilab code Exa 2.5 Program to calculate modulation index due to second wave

```
1
2 //Exa:2.5
3 clc;
4 clear;
5 close;
6 //Given:
```

Scilab code Exa 2.6 Program to calculate total sideband power radiated

```
1
2 //Exa:2.6
3 clc;
4 clear;
5 close;
6 //Given:
7 Pc=50*10^3; //interms of watts
8 m=0.85; //depth
9 Pt=Pc*(1+(m^2)/2);
10 printf("\n\n\t total power of modulated signal = %fkW",Pt/1000);
```

Scilab code Exa 2.7 Program to calculate total sideband power radiated

Scilab code Exa 2.8 Program to calculate modulation index radiated power

```
13 printf("\n\n\t total modulation index = %f",mt);
14 PT=Pc*(1+(mt^2)/2);
15 printf("\n\n\t total power of modulated signal = %f kW ",PT);
```

Scilab code Exa 2.9 Program to calculate total power in the modulated signal

```
1
2  //Exa:2.9
3  clc;
4  clear;
5  close;
6  //Given:
7  Pc=500; //in Watts
8  m=0.75; //depth
9  Pt=Pc*(1+(m^2)/2);
10  printf("\n\n\t total power of modulated signal = %f W ",Pt);
```

Scilab code Exa 2.10 Program to calculate power saving

```
1
2 //Exa:2.10
3 clc;
4 clear;
```

Scilab code Exa 2.11 Program to calculate signal parameters

```
1
2  //Exa:2.11
3  clc;
4  clear;
5  clc;
6  close;
7  //Given:
8  //Vt=[50+205msin(5*10^3*pi*t)] cos(2*pi*10^7)V
9  //comparing it with Vt=[Vc+Vesin(Wm*t)] cos(wc*t)V
10  Vc=50;
11  Ve=20;
12  wc=2*%pi*10^7;
13  wm=5*10^3;
```

```
14 fm=500/2;
15 fc=10^7;
16 m=Ve/Vc;
17 Pc=Vc*Vc;
18 Ps=(m*m/4)*Pc*2;
19 Pt=Pc+Ps;
20 printf("\n\n\t carrier frequency =%f",fc);
21 printf("\n\n\t modulating frequency =%f",fm);
22 printf("\n\n\t modulation index =%f",m);
23 printf("\n\n\t Total Power =%f",Pt);
```

Scilab code Exa 2.12 To determine if there is interference

```
clc;
clear;
clear;
//Given:
spacing=20//in Hz
bg=100//in Hz
bw=5//modulated by a signal Hz
printf("\n\n\t first sideband pair %d to 100Hz and 100Hz to %d",(bg-bw),(bg+bw));
//For second pair
bg2=120// in Hz
bw=5//modulated by a signal Hz
printf("\n\n\t second sideband pair %d to 120Hz and 120Hz to %d",(bg2-bw),(bg2+bw));
printf("No overlap occurs");
```

Scilab code Exa 2.13 Program to calculate modulation index

```
1
2 //Exa:2.13
3 clc;
4 clear;
5 close;
6 //Given:
7 Vp=10;//peak voltage in volts
8 Vu=8;//unmodulated carrier value
9 m=(Vp-Vu)/Vu
10 printf("\n\n\t modulation index = %f ",m);
```

Scilab code Exa 2.14 Program to calculate modulation index

```
1
2 //Exa:2.14
3 clc;
4 clear;
5 close;
6 //Given:
7 Smax=5;//maximum span in V
8 Smin=1;//minimum span in V
9 m=(Smax-Smin)/(Smax+Smin);
```

```
10 printf("\n\t modulation index = %f percent",m*100);
```

Scilab code Exa 2.15 Program to calculate modulation index

```
1
2    //Exa:2.15
3    clc;
4    clear;
5    close;
6    //Given:
7    Smax=8; //maximum span in V
8    Smin=0; //minimum span in V
9    m=(Smax-Smin)/(Smax+Smin);
10    printf("\n\n\t modulation index = %f percent", m*100);
;
```

Scilab code Exa 2.16 Program to calculate total power in the modulated signal

```
1
2  //Exa:2.16
3  clc;
4  clear;
5  close;
6  //Given:
```

```
7 Pc=250; //in Watts
8 m=0.9; //depth
9 Pt=Pc*(1+(m^2)/2);
10 printf("\n\n\t total power of modulated signal = %f W ",Pt);
```

Scilab code Exa 2.17 Program to calculate power in the carrier signal

```
1
2  //Exa:2.17
3  clc;
4  clear;
5  close;
6  //Given:
7  Pt=1000; //in Watts
8  m=0.95; //depth
9  Pc=Pt/(1+(m^2)/2);
10  printf("\n\n\t carrier power = %f W ",Pc);
```

Scilab code Exa 2.18 Program to calculate power in the carrier signal

```
1
2 //Exa:2.18
3 clc;
4 clear;
```

```
5 close;
6 //Given:
7 Pt=100; //in Watts
8 m=0.25; //depth
9 Pmax=100//maximum power transmission capable
10 Pc=Pt/(1+(m^2)/2);
11 printf("\n\n\t carrier power = %f W ",Pc);
12 printf("\n\n\t sidebands have the remaining %f W ",Pmax-Pc);
```

Scilab code Exa 2.19 Program to calculate modulation index

Scilab code Exa 2.20 Program to calculate modulation index

```
1
2  //Exa:2.20
3  clc;
4  clear;
5  close;
6  //Given:
7  Pc=10; //in terms of watts
8  Pt=12; //in terms of watts
9  m=sqrt(2*(Pt/Pc-1));
10  printf("\n\n\t modualtion index = %f percent", m*100);
;
```

Chapter 3

FREQUENCY AND PHASE MODULATION

Scilab code Exa 3.1 Program to calculate deviation and modulation index

```
1
2 //Exa:3.1
3 clc;
4 clear;
5 close;
6 // Given:
7 \text{ w1=4.8; } // \text{in KHz}
8 v1=2.4;
9 v2=7.2;
10 fm=0.5; //in KHz
11 w2 = w1 * v2 / v1; //in KHz
12 \quad v3=10;
13 \text{ w3=w1*v3/v1};
14 \text{ m1=w1/fm};
15 \text{ m}2=\text{w}2/\text{fm};
16 \text{ m3=w3/fm};
17 printf("\n1) deviation = %f KHz and modulation index
        = \%f", w1, m1);
18 printf("\n 2) deviation = %f KHz and modulation index
```

```
= \%f", w2, m2);
19 printf("\n 3) deviation = \%f KHz and modulation index = \%f", w3, m3);
```

Scilab code Exa 3.2 Program to calculate Power dissipated

```
2 / Exa: 3.2
3 clc;
4 clear;
5 close;
6 // Given:
7 //V=12*\sin(6*10^8*t+5*\sin(1250)*t);
8 // Compairing it with V=A*\sin(wc*t+mf*\sin(wm)*t);
9 \text{ wc} = 6 * 10^8;
10 \text{ wm} = 1250;
11 mf = 5;
12 A = 12;
13 R = 10;
14 Vrms=A/sqrt(2);
15 fc=wc/2/\%pi;
16 fm=wm/2/\%pi;
17 P=Vrms^2/R;
18 printf("\n Fc = %f MHz",fc/10^6);
19 printf("\n Fm = \%fHz",fm);
20 printf("\n Power = %fW",P);
```

Scilab code Exa 3.3 Program to calculate modulation index

Scilab code Exa 3.4 Program to Bandwidth required

```
1
2 //Exa:3.4
3 clc;
4 clear;
5 close;
```

```
6 //Given:
7 w=10;//in KHz
8 wm=2;//in KHz
9 mf=w/wm;
10 Bw=wm*8*2;//for 5 highest coefficient of J in Bessel function is 8
11 printf("\n modulation index = %f ",mf);
12 printf("\n Band width required = %f KHz",Bw);
```

Scilab code Exa 3.5 Program to determine equations of FM and PM

```
1
2 / \text{Exa} : 3.5
3 clc;
4 clear;
5 close;
6 // Given:
7 fc=25*10^6; //in Hz
8 fm=400; //in Hz
9 A=4; //in volts
10 wc = 2 * \%pi * fc;
11 wm = 2 * \%pi * fm;
12 \quad w = 10000;
13 mf = w/fm;
14 printf("\n a) Eq:FM \nV=\%f*sin(\%f*t+\%f*sin(\%f)*t)\",A,
      wc,mf,wm);
15 printf("\n\b)Eq:PM \nV=\%f*sin(\%f*t+\%f*sin(\%f)*t)",
      A,wc,mf,wm);
16 fm2=5*fm;
17 mf12=mf/5;
18 \text{ mf22=mf};
```

```
19 wm=2*%pi*fm2;
20 printf("\n\n c)Eq:FM \nV=%f*sin(%f*t+%f*sin(%f)*t)",
          A,wc,mf12,wm);
21 printf("\n\n d)Eq:FM \nV=%f*sin(%f*t+%f*sin(%f)*t)",
          A,wc,mf22,wm);
```

Scilab code Exa 3.6 Program to modulation index

Scilab code Exa 3.7 Program to Bandwidth required

```
1
2  //Exa:3.7
3  clc;
4  clear;
5  close;
6  //Given:
7  dev=100; //in KHz
8  mod_f=15; //in KHz
9  Bw=2*(dev+mod_f);
10  printf("\n Band width required = %f KHz", Bw);
```

Scilab code Exa 3.8 Program to calculate deviation to be used

```
1
2  //Exa:3.8
3  clc;
4  clear;
5  close;
6  //Given:
7  Bw=150; //in KHz
8  mod_f=10; //in KHz
9  dev=Bw/2 - mod_f;
10  printf("\n deviation to be used = %f KHz", dev);
```

Scilab code Exa 3.9 Program to calculate modulation index

```
1
2    //Exa:3.9
3    clc;
4    clear;
5    close;
6    //Given:
7    Bw=12; // in    KHz
8    Mod_mn=300;
9    Mod_mx=3000;
10    dev=6; // in    KHz
11    m1={(Bw-dev)*1000}/Mod_mn;
12    m2={(Bw-dev)*1000}/Mod_mx;
13    printf("\n 1) modulation indexat 300Hz = %f ",m1);
14    printf("\n 2) modulation indexat 3000Hz = %f ",m2);
```

Scilab code Exa 3.10 Program to determine realtive amplitude of each sideband

```
15 printf("\n Thirdsideband pairs : J3 = \%f", j3);
```

Scilab code Exa 3.11 Program to determine realtive amplitude of each sideband

```
1
2 / Exa : 3.11
3 clc;
4 clear;
5 close;
6 // Given:
7 \text{ mf} = 1.0;
8 fc=1; //in MHz
9 fm=10; //in KHz
10 //According the bessels Function table
11 \quad j0 = 0.22
12 j1=0.58;
13 \quad j2=0.35;
14 j3=0.13;
15 \quad j4 = 0.03
16 printf("\n Firstsideband pairs :J1 = \%f",j1);
17 printf("\n Secondsideband pairs : J2 = \%f", j2);
18 printf("\n Thirdsideband pairs : J3 = \%f", j3);
19 printf("\n Forthsideband pairs : J4 = \%f", j4);
```

Chapter 4

PRINCIPLES OF AM MODULATION

Scilab code Exa 4.1 Program to determine percent increase in signal power of a car

```
1
2 //Exa:4.1
3 clc;
4 clear;
5 close;
6 //Given:
7 //Ec^2=Pk
8 printf("\n After 100 percent modulation energy gets doubled");
9 printf("\n So, \n (2Ec)^2=4*Pk");
10 printf("4*Pk/2=2Pk The SIGNAL POWER GETS DOUBLED \N THIS IS TYPICAL OF DIGITAL MODULATION SYSTEM WITH ON-OFF Keys OR OOK signal");
```

 ${\bf Scilab}\ {\bf code}\ {\bf Exa}\ {\bf 4.2}\ {\bf Program}\ {\bf to}\ {\bf calculate}\ {\bf turn}\ {\bf ratio}\ {\bf for}\ {\bf modulation}\ {\bf transformer}$

```
1
2  //Exa:4.2
3  clc;
4  clear;
5  close;
6  //Given:
7  Ebb=2000; //in volts
8  i=2.5; //in Amps
9  Pr=1600; //in ohms
10  Rm=Ebb/i;
11  tr=Pr/Rm;
12  printf("\n turn ratio = %d:1 ",tr);
```

Scilab code Exa 4.3 Program to calculate total RF power

```
1
2  //Exa:4.3
3  clc;
4  clear;
5  close;
6  //Given:
7  diss=1000;//in watts
```

```
8 eff=0.75;
9 m=0.50;
10 Po=eff*diss*4;
11 Dc=Po+diss;
12 printf("\n DC power = %fW ",Dc);
13 Pt=Po*(1+m/4);
14 printf("\n Total RF power = %fW ",Pt);
```

Scilab code Exa 4.4 Program to calculate carrier power efficiency carrier amplitud

Scilab code Exa 4.5 Program to calculate equivalent resistance inductor capacitor

```
1
2 / Exa : 4.5
3 clc;
4 clear;
5 close;
6 // Given:
7 Vcc=12.5; //in volts
8 Po=2.5; //in watts
9 R1 = 50;
10 f=27.5*10^6; //in hz
11 Ri=Vcc^2/2/Po;
12 n=R1/Ri;
13 printf("\n 1) equivalent ressitance = %fohm ",Ri);
14  Xl=Ri*sqrt(n-1);
15 1=X1/(2*\%pi*f);
16 printf("\n 2) indutance = %f microhenry", 1*10^6);
17 Xc=Ri*n/sqrt(n-1);
18 c=1/{Xc*(2*%pi*f)};
19 printf("\n 3) capacitance = \%f pF", c*10^12);
```

Scilab code Exa 4.6 Program to calculate carrier power contents

```
1
2  //Exa:4.6
3  clc;
4  clear;
5  close;
6  //Given:
7  Pc=1500; //in watts
8  m1=0.7;
9  m2=0.5;
10  P=m1^2*Pc/4;
11  printf("\n 1) Pusb=Plsb= %fW ",P);
12  P=m2^2*Pc/4;
13  printf("\n 2) Pusb=Plsb= %fW ",P);
```

Scilab code Exa 4.7 Program to calculate required frequency in two cases

```
1
2 //Exa:4.7
3 clc;
4 clear;
5 close;
6 //Given:
7 Fc=540;//in kHz
8 Fif=455;//in kHz
9 Flo=Fc+Fif;
10 printf("\n 1) when local oscillator tracks above frequency of received frequency \n Flo= %fKHz ", Flo);
11 Flo=Fc-Fif;
12 printf("\n 1) when local oscillator tracks below frequency of received frequency \n Flo= %fKHz ",
```

Flo);

PRINCIPLES OF FM MODULATION

Scilab code Exa 5.1 Program to calculate capacitive reactance

```
1
2  //Exa:5.1
3  clear;
4  close;
5  //Given:
6  n=9;
7  gm=12*10^-3;
8  X=n/gm;
9  printf("\n capacitive reactance = %fohm ",X);
```

Scilab code Exa 5.2 Program to calculate capacitive reactance

```
1
2  //Exa:5.1
3  clear;
4  close;
5  //Given:
6  fn=5*10^7; //in ohms
7  gm=(9*10^-3)/8;
8  C=50*10^-12;
9  Cx=gm/2*%pi*fn;
10  r=sqrt(1+Cx/C);
11  u=0.0173*fn;
12  Fv=2*u;
13  printf("\n frequency variation = %f MHz", Fv/10^6);
```

Scilab code Exa 5.4 Program to calculate number of stations

```
1
2   //Exa:5.4
3   clc;
4   clear;
5   close;
6   //Given:
7   Fd=40; //in kHz
8   Fc=101.6; //in MHz
9   Fm=8; //in KHz
10   Fs=2*Fd;
11   mf=Fd/Fm;
12   FH=(Fc*1000+Fd)/1000;
13   FL=(Fc*1000-Fd)/1000;
14   printf("\n\t carrer swing = %f",Fs);
15   printf("\n modulation index = %f",mf);
```

```
16 printf("\n\t Highest frequency = %f MHz", FH);
17 printf("\n\t lowest frequency = %f MHz", FL);
```

Scilab code Exa 5.5 Program to calculate carrier swing

```
1
2 / \text{Exa} : 5.5
3 clc;
4 clear;
5 close;
6 // Given:
7 Fmx = 107.218; //in MHz
8 Fmn=107.196; //in MHz
9 fm=4; //in Khz
10 swing=Fmx-Fmn; //in MHz
11 fd=swing/2;
12 fc = Fmx - fd;
13 m = (fd*10^3)/fm;
14 printf("\nt carrer swing = %f MHz", swing);
15 printf("\n frequency deviation = \%f KHz",fd*10^3);
16 printf("\n career frequency = \%f",fc);
17 printf("\n modulation index = \%f",m);
```

Scilab code Exa 5.6 Program to calculate percentage modulation

```
1
2  //Exa:5.6
3  clc;
4  clear;
5  close;
6  //Given:
7  Fmx=88; //in MHz
8  Fmn=108; //in MHz
9  fd=15; //in kHz
10  m1=fd/75;
11  m2=fd/25;
12  printf("\n percentage modulation = %f", m1*100);
13  printf("\n percentage modulation = %f", m2*100);
```

Scilab code Exa 5.7 Program to calculate value of capacitance

```
15 printf("\n\t value of capacitance = %f nF", Ceq*10^9)
;
16 printf("\n lower value of capacitance = %f nF", lv
     *10^9);
17 printf("\n higher value of capacitance = %f nF", hv
     *10^9);
```

Scilab code Exa 5.8 Program to determine range of capacitance

```
1 //EX:5.8
2 clc;
3 clear;
4 close;
5 //Given:
6 R=90*10^3; //in Kohms
7 C=100*10^-12; //in pF
8 g1=2800*10^-6;
9 g2=4300*10^-6;
10 lv=g1*R*C;
11 hv=g2*R*C;
12 printf("\n lower value of capacitance = %f nf",lv *10^9);
13 printf("\n higher value of capacitance = %f nF",hv *10^9);
```

 ${\bf Scilab} \ {\bf code} \ {\bf Exa} \ {\bf 5.9} \ {\bf Program} \ {\bf to} \ {\bf calculate} \ {\bf frequency} \ {\bf deviation}$

```
1
2  //Exa:5.9
3  clc;
4  clear;
5  close;
6  //Given:
7  Pd=10; //in  degrees
8  Fm=100; //in  Hz
9  fd=Pd*(%pi/180)*Fm;
10  printf("\n frequency deviation = %f KHz",fd*10^-3);
```

Scilab code Exa 5.10 Program to calculate bandwidth

```
1
2  //Exa:5.10
3  clear;
4  close;
5  //Given:
6  m=2.4;
7  BW=2*(m+1);
8  printf("\n bandwidth = %ffm ",BW);
```

DEMODULATION OF AM WAVES

Scilab code Exa 6.1 Program to calculate image frequency rejection ratio

```
1
2 / Exa : 6.1
3 clc;
4 clear;
5 close;
6 // Given:
7 f1=1000; //in KHz
8 f2=25; //in MHz
9 IF=455//in KHz
10 Q = 100;
11 fs1=f1+2*IF;
12 p1=fs1/f1 - f1/fs1;
13 a1 = sqrt(1 + Q^2 * p1^2);
14 printf("\n\t (a)image frequency is %f KHz \n
      rejection ratio is %f dB",fs1,20*log10(a1));
15 fs2=f2+2*IF/1000;
16 p2=fs2/f2 - f2/fs2;
17 a2=sqrt(1+Q^2*p2^2);
18 printf("\n\t (b)image frequency is %f KHz \n
```

```
rejection ratio is %f dB",fs2,20*log(a2));
```

Scilab code Exa 6.2 Program to calculate maximum modulation index

```
1
2 / Exa : 6.2
3 clc;
4 clear;
5 close;
6 // Given:
7 R1=110; // in Kohm
8 R2=220; //in kohm
9 R3=470; //in kohm
10 R4=1; //in Mohm
11 Rc=R1+R2;
12 \quad Zin = (R4*1000*R2*R3) / (R2*R3+R3*R4*1000+R4*R2*1000) +
      R1;
13 Mmax=Zin/Rc;
14 printf("\n\n\t maximum modulation index = %f percent
      ",Mmax*100);
```

Scilab code Exa 6.3 Program to calculate number of stations

```
1 2 //Exa:6.3
```

```
3 clc;
4 clear;
5 close;
6 //Given:
7 BWt=100; //in kHz
8 Fh=5; //in KHz
9 n=BWt/(2*Fh);
10 printf("\n\t number of stations = %f",n);
```

Scilab code Exa 6.4 Program to calculate number of stations

```
1
2  //Exa:6.4
3  clc;
4  clear;
5  close;
6  //Given:
7  Fmax=3; //in kHz
8  Bw=20; //in MHz
9  Bs=2*Fmax*1000;
10  n=(20*1000000) /Bs;
11  printf("\n\t number of stations = %f",n);
```

DEMODULATION OF FM WAVES

Scilab code Exa 7.1 Program to determine slope detector

```
1
2 //Exa:7.1
3 clc;
4 clear;
5 close;
6 //Given:
7 deviation=3;//in KHz
8 roll_off=6;//in KHz
9 full_dev=deviation*roll_off;
10 half_dev=full_dev/2;
11 printf("\n full deviation = %f dB\tcorresponds to 12.6mV",-full_dev);
12 printf("\n half deviation = %f dB\tcorresponds to 35.5mV",-half_dev);
```

Scilab code Exa 7.2 Program to determine minimum maximum capture and lock frequence

```
2 / Exa : 7.2
3 clc;
4 clear;
5 close;
6 // Given:
7 free_f=5.8; //in MHz
8 lock1=17; //in percent
9 lock2=23;//in percent
10 lock_feq=lock1*free_f/100;
11 min1=free_f-lock_feq;
12 max1=free_f+lock_feq;
13 printf("\n1)Lock range is from %fMHz to %fMHz",min1
      ,max1);
14 lock_feq=lock2*free_f/100;
15 min2=free_f-lock_feq;
16 max2=free_f+lock_feq;
17 printf("\n 2) Lock range is from %fMHz to %fMHz", min2
     ,max2);
```

Scilab code Exa 7.3 Program to calculate total gain

```
1
2  //Exa:7.3
3  clc;
4  clear;
5  close;
6  //Given:
7  lim_signal=30*10^-3; //in mV
8  in_sig=5*10^-6; //in uV
9  to=lim_signal/in_sig;
10  t=20*log10(to);
11  printf("\n total gain= %fdB",t);
```

Scilab code Exa 7.4 Program to calculate total gain

```
1
2  //Exa:7.4
3  clc;
4  clear;
5  close;
6  //Given:
7  lim_signal=20*10^-3; //in mV
8  in_sig=2*10^-6; //in uV
9  to=lim_signal/in_sig;
10  t=20*log10(to);
11  printf("\n total gain= %fdB",t);
```

Scilab code Exa 7.5 Program to calculate number of stations

```
1
2 //Exa:7.5
3 clc;
4 clear;
5 close;
6 //Given:
7 F=6*10^6;
8 each=400*10^3;
9 n=F/each;
10 printf("\n total number of stations= %fstations",n);
```

Scilab code Exa 7.6 Program to determine slope detector

```
1
2 //Exa:7.6
3 clc;
4 clear;
5 close;
6 //Given:
7 deviation=3;//in KHz
8 roll_off=6;//in KHz
9 full_dev=deviation*roll_off;
```

PULSE MODULATION SYSTEMS

Scilab code Exa 8.1 Program to calculate nyquist sampling rate

```
1
2    //Exa:8.1
3    clc;
4    clear;
5    close;
6    //Given:
7    Bw=12; //in    KHz
8    Nr=2*Bw;
9    printf("\n Nyquist sampling rate = %f KHz", Nr);
```

Scilab code Exa 8.2 Program to calculate nyquist sampling rate

```
1
2 //Exa:8.2
3 clc;
4 clear;
5 close;
6 //Given:
7 Bw=3300;//in Hz
8 resol=10;//bits per sample
9 Nr=2*Bw;//samples per second
10 Brate=Nr*resol;
11 DigBw=5*Brate;
12 printf("\n Nyquist sampling rate = %f Hz",Nr);
13 printf("\n Bit rate is = %f bits/sec",Brate);
14 printf("\n Digital bandwidth = %f KHz",DigBw/1000);
```

Scilab code Exa 8.3 Program to calculate nyquist sampling rate elements transmitte

DIGITAL PULSE MODULATION

Scilab code Exa 9.1 Program to determine output band and minimum required bandwidt

Scilab code Exa 9.2 Program to determine output band and minimum required bandwidt

```
1
2 / Exa : 9.2
3 clc;
4 clear;
5 close;
6 // Given:
7 // Output = (sin(wa)t)(sin(wc)t)
               = [\sin(2 pi5*10^6 t)] [\sin(2 pi70*10^6 t)]
               =1/2[\cos(2\pi i *65*10^6 t) - \cos(2\pi i *75*10^6 t)]
9 //
10 w1 = 65; //in MHz
11 w2 = 75; //in MHz
12 F = w2 - w1;
13 printf("\n Minimum lower side frequecy = %fMHz", w1);
14 printf("\n Maximum upper side frequency = %fMHz", w2)
15 printf("\n Minimum nyquist bandwidth = \%fMHz",F);
16 printf("\n Baud rate = %fMegabaud",F);
```

Scilab code Exa 9.3 Program to determine bitrate

1

```
2  //Exa:9.3
3  clc;
4  clear;
5  close;
6  //Given:
7  Bw=4000; //in Hz
8  nQl=128; //i.e. =2^7; // quantizing levels
9  NyqR=2*Bw;
10  n=7;
11  Total_bpersmple=8;
12  total_smples=NyqR*Total_bpersmple;
13  printf("\n nyquist sampling rate = %fHz",NyqR);
14  printf("\n Bit rate = %fKb/sec",total_smples);
```

Scilab code Exa 9.4 Program to determine maximum value of bitrate

```
1
2 //Exa:9.4
3 clc;
4 clear;
5 close;
6 //Given:
7 Pe=10^-5;
8 v=0.5;
9 n=2*10^-6;
10 x=3.02; //at erfc(x)=2*10^-5 at x=3.02
11 T=(x^2*n)/(4*v^2);
12 B=1/T;
13 printf("\n Minimum Time Period= %f 10^-6",T*10^6);
14 printf("\n Maximum Bit rate = %fKb/sec",B/10^3);
```

Scilab code Exa 9.5 Program to determine expression for signal

```
1
2  //Exa:9.5
3  clc;
4  clear;
5  close;
6  //Given:
7  //v1(t)=10cos(2000*pi*t)+4sin(200*pi*t);
8  //BPF=800Hz to 1200Hz
9  printf("Since v2=v1+0.1*v1^2 and");
10  printf("\n BPF=800Hz to 1200Hz ");
11  printf("\n So,v3(t)=10*cos(2000*pi*t)+4*sin(2200*pi*t)-4*sin(1800*pi*t)");
```

Scilab code Exa 9.6 Program to print expression for frequency spectrum

```
1
2  //Exa:9.6
3  clc;
4  clear;
5  close;
6  //Given:
7  Ts=3;//in dB
```

Scilab code Exa 9.7 Program to determine maximum signal to quantisation noise rati

Scilab code Exa 9.8 Program to number of bits required per sample minimum bandwidt

```
1
2 //Exa:9.8
3 clc;
4 clear;
5 close;
6 //Given:
7 SQNR=20;
8 Nq=3*10^-4; //in Watts
9 S=sqrt(12*3*10^-4);
10 M=(3.8+3.8)/S; // -3.8V to 3.8V signal variation
11 n=log2(M);
12 printf("Number of bits per sample %f",n);
```

 ${f Scilab\ code\ Exa\ 9.9}$ Program to calculate the capacity of a standard telephone chan

```
1
2    //Exa:9.9
3    clc;
4    clear;
5    close;
6    //Given:
7    SNR=32;
8    Actual_snr=10^(SNR/10);
9    w1=300; //in Hz
10    w2=3400; //in Hz
11    w=w2-w1;
12    c=w*log2(1+Actual_snr);
13    printf("\n Capacity=%f bits/sec",c);
```