

Module: 3D Vision

Project: 3D recovery of urban scenes

Session 2

Carles Bosch Gloria Haro

Goal: compute the homography that relates to images

Algorithms:

- Robust normalized DLT algorithm (algebraic method).
- Gold-Standard algorithm (geometric method).
- Camera calibration using a planar pattern.

Applications:

- Image mosaics (panoramas).
- Augmented reality.
- Logo insertion in an image.

Homographies

A homography relates two images:

- of the same plane in the 3D scene;
- taken with a camera rotating about its centre;
- taken with the same static camera varying its focal length;
- the whole scene is far away from the camera.

Image mosaics

Geometric algorithm: It minimizes the reprojection error

$$\min_{\hat{H},\hat{x}_i,\hat{x}_i'}\sum_i d([x_i],[\hat{x}_i])^2 + d([x_i'],[\hat{x}_i'])^2 \text{ s. t. } \hat{x}_i' = \hat{H}\hat{x}_i \forall i$$

where different matchings $x_i \longleftrightarrow x_i'$ are the data, [.] is the projectionn operator to Euclidean coordinates.

The above problem simplifies to the non-constrained minimization problem:

$$\min_{\hat{H},\hat{x}_i} \sum_{i} d([x_i],[\hat{x}_i])^2 + d([x_i'],[\hat{H}\hat{x}_i])^2$$

Mandatory tasks:

- Function that estimates the homography with the normalized DLT algorithm given n > 4 image correspondences.
- Complete the RANSAC function and the lab2.m file.
- Compute an image mosaic with four different sets of data; compare and comment the results (why it works or it does not work in the different cases).
- Estimation of the homogaphy with the Gold-Standard algorithm.

Optional tasks:

- Complete the code on camera calibration using a planar pattern and answer (in the report) two questions raised in the file lab2.m.
- Change the virtual object (cube) by another simple geometric 3D object (e.g. pyramid).
- Add a logo to an image (flat surface).

Language: Matlab

Provided functions: lab2.m, apply_H_v2.m, euclid.m, optical_center.m, plot_camera, ransac_homography_adaptive_loop.m, vgg_gui_H.m, vgg_scatter_plot.m, view_direction.m, sift functions. lab2.m is the guided file with the different steps of the lab session.

To Do:

- Complete the code in lab2.m as indicated in the same file
- Complete the code in ransac_homography_adaptive_loop.m as indicated
- Write the function homography2d.m
- (Write the function gs_errfunction.m)
- (Complete the code on camera calibration)
- (Add a logo to an image using the DLT algorithm)

Evaluation

To deliver **before 9am of the day before** the next lab session:

- Code deliverable:
 - READY TO BE LAUNCHED on the provided images
- Short document (10 pages):
 - Results
 - Problems and comments
 - Conclusions

Evaluation

Grading:

• Report(including answers to questions): **2.5 points**

• DLT function: **2.5 points**

• RANSAC: 1.5 points

• 4 mosaics: 1 point

• Gold-Standard algorithm: **2.5 points**

• Optional calibration: + 2 points

Optional change virtual object: + 0.2 points

• Optional add logo to an image: + 0.6 points