Groupes et anneaux I — TDs

Ivan Lejeune

6 décembre 2024

Table des matières

TD1 -	— Rappels d'arithmétique des entiers							4
	Exercices en TD \dots							4
	Exercices supplémentaires et approfondissement							4
TD2 -	— Etude de $\mathbb{Z}/n\mathbb{Z}$,
	Exercices en TD							,
TD3 -	— Introduction à la théorie des groupes							1:
	Exercices en TD							1:
TD4 -	— Introduction à la théorie des anneaux et des corps							2
	Exercices en TD							2

TD1 — Rappels d'arithmétique des entiers

Exercices en TD

Exercice 1.1. Résoudre les exercices du chapitre 1 du poly.

Exercice 1. Pour $n \in \mathbb{Z}$, quand a-t-on 1|n ? n|1 ? 0|n ? n|0 ?

Solution. Pour prouver que a|b, on cherche $k \in \mathbb{Z}$ tel que b = ak.

- Pour k = n, on a $1 \times k = n$ pour tout $n \in \mathbb{Z}$. On a donc toujours 1|n.
- Si $n \notin \{1, -1\}$ alors on n'a pas n|1. On a donc $n|1 \iff n \in \{1, -1\}$.
- L'unique solution à 0|n est n = 0. On a donc $0|n \iff n = 0$.
- Pour k = 0, on a $n \times k = 0$ pour tout $n \in \mathbb{Z}$. On a donc toujours $n \mid 0$.

Exercice 2. Calculer la division euclidienne de 1767 par 18.

Solution. $1767 = 98 \times 18 + 3$.

Exercice 3. Pour quels entiers k a-t-on $k^2 \equiv 2 \pmod{6}$?

Solution. Il suffit de traiter les cas pour $k \equiv i \pmod{6}$ pour $i \in [0, 5]$.

	$k^2 \equiv \dots \pmod{6}$
$k \equiv 0 \pmod{6}$	0
$k \equiv 1 \pmod{6}$	1
$k \equiv 2 \pmod{6}$	4
$k \equiv 3 \pmod{6}$	9 ≡ 3
$k \equiv 4 \pmod{6}$	16 ≡ 4
$k \equiv 5 \pmod{6}$	25 ≡ 1

Il n'y a aucun entier $k \in \mathbb{Z}$ tel que $k^2 \equiv 2 \pmod{6}$.

Exercice 4. Soient deux entiers naturels m, n. Montrer qu'on a l'équivalence :

$$m\mathbb{Z} \subset n\mathbb{Z} \iff n|m$$

Solution. Commençons par réécrire les ensembles comme :

$$m\mathbb{Z} = \{mk, k \in \mathbb{Z}\}, \quad n\mathbb{Z} = \{nk, k \in \mathbb{Z}\}$$

Montrons le sens direct $m\mathbb{Z} \subset n\mathbb{Z} \Longrightarrow n|m$:

Si on a $m\mathbb{Z} \subset n\mathbb{Z}$ alors tout $mk \in m\mathbb{Z}$ peut s'écrire comme élément de $n\mathbb{Z}$. Cela revient à dire que pour tout $mk \in m\mathbb{Z}$, il existe $k' \in \mathbb{Z}$ tel que mk = nk'. En particulier, pour k = 1 on a un $k' \in \mathbb{Z}$ tel que m = nk', soit que n|m.

Montrons le sens indirect $n|m \Longrightarrow m\mathbb{Z} \subset n\mathbb{Z}$.

Si n|m alors il existe $k \in \mathbb{Z}$ tel que nk = m. Alors, pour tout $k' \in \mathbb{Z}$, on a $mk' = nkk' \in n\mathbb{Z}$. Ainsi, on a $m\mathbb{Z} \subset n\mathbb{Z}$

Exercice 5. Pour $a \in \mathbb{Z}$, que vaut $a \wedge 0$? $a \wedge 1$?

Solution. Le plus grand diviseur à la fois de a et 0 est a.

Le plus grand diviseur à la fois de a et 1 est 1.

Exercice 6. Montrer que pour $a, b \in \mathbb{Z}$ on a :

 $a \wedge b = 1 \iff$ il n'existe aucun nombre premier p qui divise à la fois a et b

Solution. Commençons par montrer le sens indirect "il n'existe aucun nombre premier p qui divise à la fois a et b" $\Longrightarrow a \wedge b = 1$:

Réécrivons a et b comme suit :

$$a = 1 \times \prod_i p_i^{q_i}, \quad b = 1 \times \prod_j p_j^{q_j}$$

Comme tous les p_i sont différents de tous les p_j par hypothèse, on a forcément $a \wedge b = 1$. Montrons maintenant le sens direct :

Supposons qu'il existe p premier qui divise à la fois a et b. Alors, par propriété du PGCD, p divise aussi le PGCD de a et b, soit 1. C'est impossible car p > 1.

Alors $a \wedge b = 1 \Longrightarrow$ il n'existe aucun nombre premier p qui divise à la fois a et b.

Exercice 7. Utiliser l'algorithme d'Euclide pour calculer le PGCD de 1071 et 1029

Solution.

$$1071 = 1$$
 $\times 1029$ $+ 42$
 $1029 = 24$ $\times 42$ $+ 21$
 $42 = 2$ $\times 21$ $+ 0$

Exercice 8. Pour $a \in \mathbb{Z}$, que vaut $a \vee 0$? $a \vee 1$?

Solution. Le PPCM de a et 0 vaut 0 car 0 est l'unique multiple de 0. Le PPCM de a et 1 vaut a car pour tout $m \in \mathbb{N}$, si a|m alors 1|m.

Exercice 9. Soient $u, a, b \in \mathbb{Z}$. Montrer qu'on a l'équivalence :

$$u \wedge (ab) = 1 \iff (u \wedge a = 1 \text{ et } u \wedge b = 1)$$

Solution. Montrons le sens direct d'abord :

Réécrivons ab comme $\prod_i p_i^{q_i}$. Comme $u \wedge (ab) = 1$, aucun des facteurs p_i ne divise u. Ainsi, comme a et b ne possèdent aucun facteur autre que les p_i , $u \wedge a = u \wedge b = 1$.

De la même manière pour le sens indirect :

Comme $u \wedge a = u \wedge b = 1$, u ne possède aucun facteur premier en commun ni avec a ni avec b. Ainsi ab qui ne possède que des facteurs de a et b ne possède aucun facteur premier en commun avec u. Donc $u \wedge (ab) = 1$.

Exercice 10. Calculer les décompositions en produit de nombres premiers de 504 et 1540 et en déduire $504 \land 1540$ et $504 \lor 1540$.

Solution. On a

$$504 = 2 \times 252$$

$$= 2 \times 2 \times 126$$

$$= 2^{2} \times 2 \times 63$$

$$= 2^{3} \times 7 \times 9$$

$$= 2^{3} \times 3^{2} \times 7$$

$$1540 = 2 \times 770$$

$$= 2 \times 2 \times 385$$

$$= 2^{2} \times 5 \times 77$$

$$= 2^{2} \times 5 \times 7 \times 11$$

On a alors clairement $504 \wedge 1540 = 2^2 \times 7 = 28$ et $504 \vee 1540 = 2^3 \times 3^2 \times 5 \times 7 \times 11 = 27720$. On peut vérifier qu'on a bien $28 \times 27720 = 776160 = 504 \times 1540$.

Exercice 11. Utiliser l'algorithme d'Euclide étendu pour calculer le PGCD de 186 et 309 et trouver une relation de Bézout entre ces deux nombres.

Exercice 12. Montrer que 14 est inversible modulo 31 et en calculer un inverse. Pour quels entiers x a-t-on $14x \equiv 2 \pmod{31}$?

Exercice 1.2. Résoudre pour $x \in \mathbb{Z}$:

$$\begin{cases} x \equiv 3 \pmod{5} \\ x \equiv 7 \pmod{12} \end{cases}$$

Solution. On a $x \equiv 3 \pmod{5}$ qui nous donne "x finit par 3 ou 8". On calcule alors les valeurs de x qui vérifient $x \equiv 7 \pmod{12}$.

$$x \equiv 7 \pmod{12}$$

 $\equiv 7 + 12 = 19 \pmod{12}$
 $\equiv 7 + 24 = 31 \pmod{12}$
 $\equiv 7 + 36 = 43 \pmod{12}$

Une solution particulière est donc x = 43.

Comme $5 \land 12 = 1$, d'après le théorème chinois, l'ensemble des solutions est :

$$S = \{43 + 60k, k \in \mathbb{Z}\}$$

Exercice 1.3 Congruences. Résoudre pour $x \in \mathbb{Z}$:

$$12x \equiv 9 \pmod{21}$$
 puis $12x \equiv 11 \pmod{21}$

Exercice 1.4 Relations de Bézout. Soit $a, b \in \mathbb{Z}$ tels que $a \wedge b = 1$ et soit au + bv = 1 une relation de Bézout avec $u, v \in \mathbb{Z}$.

- 1) Soit $k \in \mathbb{Z}$ et posons u' = u kb et v' = v + ka. Montrer qu'on a la relation de Bézout : au' + bv' = 1.
- 2) Montrer que toutes les relations de Bézout pour a, b sont de cette forme.

Exercices supplémentaires et approfondissement

Exercice 1.5 Inversibilité modulo un entier. Est-ce que 18 est inversible modulo 49? Si oui, en calculer un inverse. Mêmes questions avec 42 modulo 135.

Exercice 1.6 Cubes. Soient $a, b \in \mathbb{N}^*$ premiers entre eux, tels que le produit ab est un cube (c'est-à-dire s'écrit n^3 pour un $n \in \mathbb{N}$). Montrer que a et b sont tous les deux des cubes.

Exercice 1.7 Racine. Soit $n \in \mathbb{N}$ qui n'est pas le carré d'un entier. Montrer que \sqrt{n} est irrationnel.

Exercice 1.8 De gros gros nombres.

- 1) Quels sont les restes des divisions euclidiennes de 10^{100} par 13 et 19?
- 2) Quel est le reste de la division euclidienne de 10^{100} par $247=13\times19$? En déduire que $10^{99}+1$ est divisible par 247.

Exercice 1.9 Le petit théorème de Fermat pour les enfants. Soit un entier $n \in \mathbb{N}^*$. On considère n petits disques répartis uniformément sur un cercle comme sur la figure suivante (avec n=9). On considère un entier $a \in \mathbb{N}$ et on imagine qu'on dispose de a couleurs différentes. Un coloriage est une façon d'assigner une des a couleurs à chaque disque.

- 1) Combien y a-t-il de coloriages différents?
- 2) Soit C un coloriage. On obtient d'autres coloriages en faisant tourner C d'un angle multiple de $2\pi/n$. Soit k le nombres de coloriages différents qu'on obtient ainsi. Montrer que k est un diviseur de n. Combien y a-t-il de coloriages pour lesquels k = 1?
- 3) Supposons maintenant que n = p est un nombre premier. Déduire des questions précédentes que p divise $a^p a$.

Exercice 1.10 Coefficients binomiaux. Soit un entier $n \ge 2$. Montrer que si n divise tous les coefficients binomiaux $\binom{n}{k}$ avec 0 < k < n alors n est premier.

Exercice 1.11. Un **triplet pythagoricien** est un triplet (a, b, c) d'entiers naturels non nuls qui vérifient l'équation :

$$a^2 + b^2 = c^2$$

Dit autrement, par le théorème de Pythagore, a, b, c sont les longueurs des côtés d'un triangle rectangle. Le triplet pythagoricien le plus connu est (3,4,5).

1) Soit (a, b, c) un triplet pythagoricien et $k \in \mathbb{N}^*$. Montrer que (ka, kb, kc) est aussi un triplet pythagoricien.

Dans tout l'exercice on dira qu'un triplet pythagoricien (a,b,c) est **primitif** s'il n'existe aucun entier $k \ge 2$ qui divise à la fois a,b et c (ou dit autrement, si $a \land b \land c = 1$).

Les 3 parties de l'exercice sont indépendantes

Partie 1 La formule d'Euclide. Soient deux entiers m, n avec $m > n \ge 1$. On pose

(*)
$$a = m^2 - n^2$$
, $b = 2mn$, $c = m^2 + n^2$.

- 2) Montrer que (a, b, c) est un triplet pythagoricien.
- 3) On suppose que m et n sont de parités différentes (c'est-à-dire que l'un est pair et l'autre impair) et premiers entre eux.
 - a) Déterminer la parité de a, de b, de c.
 - b) Montrer qu'il n'existe aucun nombre premier p qui divise à la fois a et c.
 - c) En déduire que (a, b, c) est un triplet pythagoricien primitif.

Partie 2 Intermède.

4) Soient deux entiers $x, y \in \mathbb{N}^*$ tels que $x \wedge y = 1$ et tels que le produit xy est le carré d'un entier. Montrer que x et y sont des carrés d'entiers.

Partie 3 Classification des triplets pythagoriciens. Soit (a,b,c) un triplet pythagoricien primitif.

- 5) Montrer que $a \wedge c = 1$.
- 6) Pour un entier k, quels sont les restes possibles pour k^2 dans la division euclidienne par 4? On justifiera.
- 7) Déduire de la question précédente que a et b sont de parités différentes, puis que c est impair.
- 8) Quitte à échanger les rôles joués par a et b on peut supposer que a est impair et que b est pair, ce qu'on fait maintenant. Montrer que $(c-a) \land (c+a) = 2$.
- 9) Montrer que le produit de $\frac{c+a}{2}$ et $\frac{c-a}{2}$ est un carré, et déduire de la question 4) qu'il existe des entiers m, n avec $m > n \ge 1$ tels que (a, b, c) est de ma forme (*).
- 10) Parmi les triangles rectangles dont les 3 côtés sont de longueurs entières, déterminer tous ceux qui ont un côté de longueur 17.

TD2 — Etude de $\mathbb{Z}/n\mathbb{Z}$

Exercices en TD

Exercice 2.1 En cercle. Soit $n \in \mathbb{N}^*$. On note

$$\mathbb{U}_n = \{ z \in \mathbb{C} \mid z^n = 1 \}$$

l'ensemble des racines n-ièmes de l'unité. Montrer que l'application

$$f: \mathbb{Z} \to \mathbb{U}_n$$

$$k \mapsto \exp\left(\frac{2ik\pi}{n}\right)$$

passe au quotient par la relation de congruence modulo n et induit l'application

$$g: \mathbb{Z}/n\mathbb{Z} \to \mathbb{U}_n$$

$$\overline{k} \mapsto \exp\left(\frac{2ik\pi}{n}\right).$$

Montrer que g est bijective.

Solution. On a g bijective par construction.

Exercice 2.2 Inversibles. Faire la liste des éléments inversibles de $\mathbb{Z}/14\mathbb{Z}$ et calculer leurs inverses. Même chose avec $\mathbb{Z}/20\mathbb{Z}$.

Solution. Pour $\mathbb{Z}/14\mathbb{Z}$, les inversibles sont les éléments qui ne divisent pas 14, soit :

$$\{\overline{1}, \overline{3}, \overline{5}, \overline{9}, \overline{1}1, \overline{1}3\}$$
 ou $\{\overline{1}, \overline{3}, \overline{5}, \overline{-5}, \overline{-3}, \overline{-1}\}$

On a donc :

$$1^{-1} \equiv 1 \pmod{14}$$

$$3^{-1} \equiv 5 \pmod{14}$$

$$5^{-1} \equiv 3 \pmod{14}$$

$$-5^{-1} \equiv -3 \pmod{14}$$

$$-3^{-1} \equiv -5 \pmod{14}$$

$$-1^{-1} \equiv -1 \pmod{14}$$

Pour $\mathbb{Z}/20\mathbb{Z}$, les inversibles sont les éléments qui ne divisent pas 20, soit :

$$\{\overline{1}, \overline{3}, \overline{7}, \overline{9}, \overline{11}, \overline{13}, \overline{17}, \overline{19}\}$$
 ou $\{\overline{1}, \overline{3}, \overline{7}, \overline{9}, \overline{-9}, \overline{-7}, \overline{-3}, \overline{-1}\}$

On a donc:

$$1^{-1} \equiv 1 \pmod{20}$$

$$3^{-1} \equiv 7 \pmod{20}$$

$$7^{-1} \equiv 3 \pmod{20}$$

$$9^{-1} \equiv 9 \pmod{20}$$

$$-9^{-1} \equiv 9 \pmod{20}$$

$$-7^{-1} \equiv -3 \pmod{20}$$

$$-3^{-1} \equiv -7 \pmod{20}$$

$$-1^{-1} \equiv -1 \pmod{20}$$

Exercice 2.3 Puissance. On se place dans $\mathbb{Z}/41\mathbb{Z}$. Calculer $\overline{2}^{2023}$

Solution. Comme 41 est premier, 2 est inversible dans $\mathbb{Z}/41\mathbb{Z}$. Par le petit théorème de Fermat, on a

$$2^{40} \equiv 1 \pmod{41}$$

On a donc

$$2^{2023} = 2^{50 \times 40 + 23} = (2^{40})^{50} \times 2^{23} \equiv 2^{23} \pmod{41}$$

Pour calculer 2^{23} , on utilise la méthode piétonne :

$$\overline{2}^1 = \overline{2}$$

$$\overline{2}^2 = \overline{4}$$

$$\overline{2}^3 = \overline{8}$$

$$\overline{2}^4 = \overline{16}$$

$$\overline{2}^5 = \overline{32}$$

$$\overline{2}^6 = \overline{23}$$

$$\overline{2}^7 = \overline{5}$$

$$\overline{2}^8 = \overline{10}$$

$$\overline{2}^9 = \overline{20}$$

$$\overline{2}^{10} = \overline{40}$$

On en conclut alors que $\overline{2}^{20} = \overline{1}$ et alors

$$\overline{2}^{2023} = \overline{2}^{23} = \overline{2}^3 = \overline{8}$$

Exercice 2.4 Sous-groupes. Quels sous-groupes de $\mathbb{Z}/1000\mathbb{Z}$ contiennent $\overline{120}$?

Solution. Les sous-groupes de $\mathbb{Z}/1000\mathbb{Z}$ sont les $\langle \overline{d} \rangle$ avec $d \in \mathbb{N}^*$ un diviseur de 1000. On sait que $1000 = 2^3 5^3$. Alors, les diviseurs positifs de 1000 sont les $2^a 5^b$ avec $a, b \in \{0, 1, 2, 3\}$. Or

$$\langle \overline{d} \rangle = \left\{ \overline{0}, \overline{d}, \overline{2d}, \dots, \overline{(e-1)d} \right\}$$

avec $e = \frac{1000}{d}$. Dono

$$\overline{120} \in \langle \overline{d} \rangle \iff 120 \in \{0, d, 2d, \dots, (e-1)d\}$$
$$\iff d \mid 120$$

On sait que d divise 1000 et 120 donc il divise 1000 \wedge 120 = 40. On a donc les sous-groupes de $\mathbb{Z}/1000\mathbb{Z}$ contenant $\overline{120}$ sont

$$\langle \overline{1} \rangle, \langle \overline{2} \rangle, \langle \overline{4} \rangle, \langle \overline{5} \rangle, \langle \overline{8} \rangle, \langle \overline{10} \rangle, \langle \overline{20} \rangle, \langle \overline{40} \rangle$$

Exercice 2.5 Théorème de Wilson. Le but de cet exercice est de démontrer le théorème de Wilson : pour un entier $n \ge 2$, on a :

$$n \text{ est premier} \iff (n-1)! \equiv -1 \pmod{n}$$

- 1. Soit p un nombre premier.
 - (a) Quels éléments $x \in (\mathbb{Z}/p\mathbb{Z}) \setminus \{\overline{0}\}$ sont égaux à leur inverse?

(b) En calculant le produit de tous les éléments de $(\mathbb{Z}/p\mathbb{Z}) \setminus \{\overline{0}\}$, montrer qu'on a :

$$(p-1)! \equiv -1 \pmod{p}$$

2. Soit n un nombre composé. Montrer que :

$$(n-1)! \not\equiv -1 \pmod{n}$$

En déduire le théorème de Wilson.

Solution.

- 1. Soit p un nombre premier.
 - (a) Soit $x \in (\mathbb{Z}/p\mathbb{Z}) \setminus {\overline{0}}$. On a :

$$x = x^{-1} \iff x^2 = \overline{1}$$

$$\iff x^2 - \overline{1} = \overline{0}$$

$$\iff (x - \overline{1})(x + \overline{1}) = \overline{0}$$

$$\iff x - \overline{1} = \overline{0} \text{ ou } x + \overline{1} = \overline{0} \text{ (car } p \text{ est premier)}$$

$$\iff x = \overline{1} \text{ ou } x = \overline{-1}$$

Conclusion : les $x \in \mathbb{Z}/p\mathbb{Z}$ égaux à leur inverse sont $\overline{1}$ et $\overline{-1}$.

(b) Dans le produit :

$$\overline{1} \times \overline{2} \times \cdots \times \overline{p-1}$$

tous les éléments se simplifient avec leur inverse par paires sauf les éléments égaux à leur propre inverse.

Par la question précédente, on a donc :

$$\overline{1} \times \overline{2} \times \cdots \times \overline{p-1} = \overline{1} \times \overline{-1} = \overline{-1}$$

On en déduit :

$$(p-1)! \equiv -1 \pmod{p}$$

2. Soit n un nombre composé.

On procède par l'absurde. Supposons que $(n-1)! \equiv -1 \pmod{n}$.

Il existe donc $k \in \mathbb{Z}$ tel que :

$$(n-1)! = kn - 1$$

On en déduit que :

$$kn - (n-1)! = 1$$
 (1)

Comme n est composé, on peut écrire n = ab avec 1 < a, b < n.

Comme a|(n-1)!, pn peut voir (1) comme une relation de Bézout entre n et a qui montre que $n \wedge a = 1$, ce qui est absurde car $n \wedge a = a \neq 1$.

Autre raisonnement :

On écrit n = ab avec 1 < a, b < n.

 \triangleright Cas 1 : $a \neq b$

Dans ce cas, on voit apparaître a et b à des places différentes dans le produit (n-1)! et donc ab divise (n-1)!. Alors $(n-1)! \equiv 0 \pmod{n}$.

 \triangleright Cas 2 : a = b, soit $n = a^2$.

Dans ce cas, on voit apparaître a et 2a à des places différentes dans le produit (n-1)! (à condition que a > 2) et donc a^2 divise (n-1)!. Alors $(n-1)! \equiv 0 \pmod{n}$.

Si a = 2, on a n = 4 et alors (3!) = $6 \not\equiv -1 \pmod{4}$.

Exercice 2.6 Une formule de Gauss. Soit un entier $n \in \mathbb{N}^*$. On veut montrer qu'on a :

$$\sum_{d|n} \varphi(d) = n$$

- 1. Vérifier que la formule est vraie pour n = 12.
- 2. Soit d un diviseur de n. On note $e = \frac{n}{d}$. Montrer qu'il y a $\varphi(e)$ entiers $a \in \{1, \dots, n\}$ tels que $a \wedge n = d$.
- 3. Conclure.

Solution. 1. Pour n = 12, on a :

$$\sum_{d|12} \varphi(d) = \varphi(1) + \varphi(2) + \varphi(3) + \varphi(4) + \varphi(6) + \varphi(12)$$

$$= 12$$

Donc la formule est vraie pour n = 12.

2. Pour $a \in \{1, ..., n\}$ tel que $a \wedge n = d$, on a $d \mid a$ et donc il existe un entier k tel que a = kd. Alors, on a

$$(kd) \wedge (ed) = d$$

d'où $k \wedge e = 1$.

De plus, comme $a \in \{1, ..., n\}$, on a nécessairement $k \in \{1, ..., e\}$.

On a montré que :

$$(a \in \{1, \dots, n\} \mid a \land n = d) \implies (\exists k \in \{1, \dots, e\} \mid k \land = 1, a = kd)$$

La réciproque (←) est aussi vraie, il suffit de faire le même raisonnement.

Il y a donc autant d'entiers $a \in \{1, ..., n\}$ tels que $a \land n = d$ que d'entiers $k \in \{1, ..., e\}$.

Or, il y a $\varphi(e)$ entiers $k \in \{1, \dots, e\}$ tels que $k \wedge e = 1$.

Alors, il y a $\varphi(e)$ entiers $a \in \{1, ..., n\}$ tels que $a \wedge n = d$.

3. On partitionne l'ensemble $\{1,\ldots,n\}$ suivant le pgcd avec n, ce pgcd est alors un diviseur d de n.

On a donc :

$$\{1,\ldots,n\} = \bigsqcup_{d|n} \{a \in \{1,\ldots,n\} \mid a \land n = d\}$$

Par le point précédent, on sait que les ensembles $\{a \in \{1, ..., n\} \mid a \land n = d\}$ sont disjoints et leur réunion est $\{1, ..., n\}$.

On peut réécrire cette somme dans un autre ordre en utilisant l'involution $d\mapsto \frac{n}{d}$ de l'ensemble des diviseurs de n. On obtient :

$$\sum_{d|n} \varphi(d) = n$$

Exercices supplémentaires, et approfondissement

Exercice 2.7 Equations.

- 1. Résoudre dans $\mathbb{Z}/37\mathbb{Z}$ l'équation $\overline{7}x + \overline{5} = \overline{1}$.
- 2. Résoudre dans $\mathbb{Z}/37\mathbb{Z}$ l'équation $x^2 \overline{6}x + \overline{10} = \overline{0}$.

Exercice 2.8 Un exercice de baccalauréat (filière C, académie de Paris, juin 1978). Dans l'anneau $\mathbb{Z}/91\mathbb{Z}$ (dont les éléments sont notés $\overline{0}, \overline{1}, \dots, \overline{90}$),

1. discuter, suivant la valeur du paramètre $a\in\mathbb{Z}/91\mathbb{Z},$ l'équation

$$ax = \overline{0}$$

2. résoudre l'équation

$$x^2 + \overline{2}x - \overline{3} = \overline{0}$$

TD3 — Introduction à la théorie des groupes

Exercices en TD

Exercice 3.1 Groupes. Ces choses-ci sont-elles des groupes?

- $(2\mathbb{Z}, +)$
- $(2\mathbb{Z}, \times)$
- L'ensemble des fonctions de [0,1] dans \mathbb{R} , muni de l'addition des fonctions.
- L'ensemble des fonctions continues de [0,1] dans \mathbb{R} , muni de l'addition des fonctions.
- L'ensemble des matrices $n \times n$ inversibles et à coefficients entiers, muni du produit matriciel.
- L'ensemble des parties d'un ensemble E, muni de l'union.
- L'ensemble des permutations $\sigma \in \mathfrak{S}_6$ telles que $\sigma^2 = \mathsf{Id}$, muni de la composition.

Solution.

- $(2\mathbb{Z}, +)$ est un groupe car :
 - Il est non vide : $0 \in 2\mathbb{Z}$.
 - Il est stable par l'addition : si $a, b \in 2\mathbb{Z}$, alors $a + b \in 2\mathbb{Z}$.
 - Il est stable par l'opposé : si $a \in 2\mathbb{Z}$, alors $-a \in 2\mathbb{Z}$.
- $(2\mathbb{Z}, \times)$ n'est pas un groupe car $0 \notin 2\mathbb{Z}$.
- L'ensemble des fonctions de [0,1] dans \mathbb{R} , muni de l'addition des fonctions, est un groupe.
- L'ensemble des fonctions continues de [0,1] dans \mathbb{R} , muni de l'addition des fonctions, est un groupe.
- L'ensemble des matrices $n \times n$ inversibles et à coefficients entiers, muni du produit matriciel, n'est pas un groupe car l'inverse d'une matrice à coefficients entiers n'est pas forcément à coefficients entiers.
- L'ensemble des parties d'un ensemble E, muni de l'union, n'est pas un groupe car il n'est pas stable par l'opposé.
- L'ensemble des permutations $\sigma \in \mathfrak{S}_6$ telles que $\sigma^2 = \mathsf{Id}$, muni de la composition, n'est un groupe car il n'est pas commutatif.

Exercice 3.2 Tarte à la crème. Soit G un groupe tel que tout $x \in G$ vérifie $x^2 = e$. Démontrer que G est abélien.

Solution. On veut montrer que pour tout $x, y \in G$, xy = yx. Soient $x, y \in G$. Alors:

$$(xy)^{2} = e \implies xyxy = e$$

$$\implies xyxyy = y$$

$$\implies xyx = y$$

$$\implies xyxx = yx$$

$$\implies xy = yx$$

Comme $(xy)^2 = e$, on a bien xy = yx.

Exercice 3.3 Petits groupes. Déterminer toutes les tables de multiplication possibles pour des groupes d'ordre ≤ 5 . (On se gardera d'utiliser le théorème de Lagrange.)

12

- Vous devez trouver (au nom des éléments près) un seul groupe d'ordre 1, un seul d'ordre 2, un seul d'ordre 3, deux de l'ordre 4 et un seul d'ordre 5.
- Remarquez que tous ces groupes sont abéliens.

Solution. On va dresser les tables de multiplication pour les groupes d'ordre 1, 2, 3, 4 et 5. On peut retrouver ces tables à partir des "règles de sudoku".

• Pour l'ordre 1, il n'y a qu'un groupe : $\{e\}$, de table :

$$\begin{array}{c|c} \times & e \\ \hline e & e \end{array}$$

• Pour l'ordre 2, il n'y a qu'un groupe : $\{e, a\}$, de table :

• Pour l'ordre 3, il n'y a qu'un groupe : $\{e, a, b\}$, de table :

×	e	a	b
e	e	a	b
a	a	b	e
b	b	e	a

• Pour l'ordre 4, il y a deux groupes :

×	e	a	b	c					b	
	e					e	e	a	b	c
	a				et	a	a	e	c	b
b	b	c	e	a					e	
c	c	e	a	b		c	c	b	a	e

• Pour l'ordre 5, il y a un seul groupe :

×	e	a	b	c	d
e	e	a	b	c	d
a	a	b	c	d	e
b	b	c	d	e	a
c	c	d	e	a	b
d	$egin{array}{c} e \\ a \\ b \\ c \\ d \end{array}$	e	a	b	c

Exercice 3.4 Sous-groupes. Lister tous les sous-groupes du groupe symétrique \mathfrak{S}_3 .

Solution. Commençons par expliciter tous les éléments de \mathfrak{S}_3 :

$$\mathfrak{S}_3 = \{e, (1\ 2), (1\ 3), (2\ 3), (1\ 2\ 3), (1\ 3\ 2)\}$$

Les sous-groupes de \mathfrak{S}_3 sont :

- Les groupes triviaux :
 - $\{e\}$, le groupe trivial.
 - \mathfrak{S}_3 , le groupe symétrique.
- Les sous-groupes engendrés par un élément :
 - $\langle (1 \ 2) \rangle = \{e, (1 \ 2)\},\$
 - $\langle (1\ 3) \rangle = \{e, (1\ 3)\},\$
 - $\langle (2\ 3) \rangle = \{e, (2\ 3)\},\$
 - $\langle (1\ 2\ 3) \rangle = \{e, (1\ 2\ 3), (1\ 3\ 2)\},\$
 - $--\langle (1\ 3\ 2)\rangle = \langle (1\ 2\ 3)\rangle.$
- Les sous-groupes engendrés par plus d'un élément engendrent tout le groupe.

Exercice 3.5 24 heures chrono (contrôle continu 2023-2024).

- 1. Montrer que le groupe $\mathbb{Z}/24\mathbb{Z}$ a autant de générateurs que de sous-groupes. Faire la liste des générateurs. Faire la liste des sous-groupes, en décrivant chaque sous-groupe de la manière la plus explicite possible.
- 2. Montrer que le groupe $(\mathbb{Z}/24\mathbb{Z})^{\times}$ peut être engendré par 3 de ses éléments.
- 3. Lister les sous-groupes d'ordre 2 du groupe $(\mathbb{Z}/24\mathbb{Z})^{\times}$.
- 4. Donner un exemple de sous-groupe d'ordre 4 du groupe $(\mathbb{Z}/24\mathbb{Z})^{\times}$. (Bonus : lister tous les sous-groupes d'ordre 4 de $(\mathbb{Z}/24\mathbb{Z})^{\times}$.)

Solution.

1. Les générateurs de $\mathbb{Z}/24\mathbb{Z}$ sont exactement :

$$\overline{1}, \overline{5}, \overline{7}, \overline{11}, \overline{-11}, \overline{-7}, \overline{-5}, \overline{-1}$$

Les sous-groupes de $\mathbb{Z}/24\mathbb{Z}$ sont :

$$\begin{split} &\langle \overline{1} \rangle = \mathbb{Z}/24\mathbb{Z}, \\ &\langle \overline{2} \rangle = \{ \overline{0}, \overline{2}, \overline{4}, \dots, \overline{22} \}, \\ &\langle \overline{3} \rangle = \{ \overline{0}, \overline{3}, \overline{6}, \dots, \overline{21} \}, \\ &\langle \overline{4} \rangle = \{ \overline{0}, \overline{4}, \overline{8}, \overline{12}, \overline{16}, \overline{20} \}, \\ &\langle \overline{6} \rangle = \{ \overline{0}, \overline{6}, \overline{12}, \overline{18} \}, \\ &\langle \overline{8} \rangle = \{ \overline{0}, \overline{8}, \overline{16} \} \langle \overline{12} \rangle & = \{ \overline{0}, \overline{12} \}, \\ &\langle \overline{24} \rangle = \{ \overline{0} \}. \end{split}$$

Il y en a autant.

2. On a

car

$$(\mathbb{Z}/24\mathbb{Z})^{\times} = \langle \overline{5}, \overline{7}, \overline{-1} \rangle$$

$$\overline{5} \times \overline{7} = \overline{11}$$

$$\overline{5} \times \overline{-1} = \overline{-5}$$

$$\overline{7} \times \overline{-1} = \overline{-7}$$

$$\overline{5} \times \overline{7} \times \overline{-1} = \overline{-11}$$

3. Un sous-groupe d'ordre 2 est de la forme

$$\langle a \rangle = \{\overline{1}, a\}$$

avec $a \neq \overline{1}, a^2 = \overline{1}$. Or, $\forall a \in (\mathbb{Z}/24\mathbb{Z})^{\times}$, on a $a^2 = 1$. Alors, les sous-groupes d'ordre 2 de $(\mathbb{Z}/24\mathbb{Z})^{\times}$ sont :

$$\langle \overline{5} \rangle = \{ \overline{1}, \overline{5} \},$$

$$\langle \overline{7} \rangle = \{ \overline{1}, \overline{7} \},$$

$$\langle \overline{11} \rangle = \{ \overline{1}, \overline{11} \},$$

$$\langle \overline{-11} \rangle = \{ \overline{1}, \overline{-11} \},$$

$$\langle \overline{-7} \rangle = \{ \overline{1}, \overline{-7} \},$$

$$\langle \overline{-5} \rangle = \{ \overline{1}, \overline{-5} \},$$

$$\langle \overline{-1} \rangle = \{ \overline{1}, \overline{-1} \}.$$

4. Un exemple de sous-groupe d'ordre 4 est

$$\langle \overline{5}, \overline{7} \rangle = \{ \overline{1}, \overline{5}, \overline{7}, \overline{11} \}$$

Exercice 3.6 Union de sous-groupes (contrôle continu 2023-2024).

- 1. Soit G un groupe et H, K deux sous-groupes de G. Montrer que $H \cup K$ est un sous-groupe de G si et seulement si $H \subseteq K$ ou $K \subseteq H$.
- 2. Donner un exemple de groupe G et de trois sous-groupes H, K, L de G qui sont tous les trois différents de G et tels que $G = H \cup K \cup L$.

Exercice 3.7 Morphismes de groupes?. Ces choses-là sont-elles des morphismes de groupes?

- 1. $f: \mathbb{Z} \to \mathbb{Z}^*, n \mapsto 2^n$.
- 2. $g: \mathbb{C}^* \to \mathbb{C}^*, z \mapsto z^3$.
- 3. $h: \mathbb{Z}/10\mathbb{Z} \to \mathbb{Z}, \overline{k} \mapsto k$.
- 4. $i: GL_2(\mathbb{R}) \to \mathbb{R}, A \mapsto tr(A)$.
- 5. $j: \mathbb{Z}/3\mathbb{Z} \to \mathbb{Z}/6\mathbb{Z}, \overline{k} \mapsto \tilde{k}$.
- 6. $k: \mathfrak{S}_4 \to \mathfrak{S}_4, \sigma \mapsto \sigma(1\ 2)$.
- 7. $l: \mathfrak{S}_4 \to \mathfrak{S}_4, \sigma \mapsto (1\ 2)\sigma(1\ 2)$.

Solution.

- 1. f n'est pas définie.
- 2. g est un morphisme de groupes car

$$g(z_1z_2) = (z_1z_2)^3 = z_1^3 z_2^3 = g(z_1)g(z_2).$$

- 3. h n'est pas définie
- 4. i n'est pas un morphisme de groupes car $tr(I_2) = 2 \neq 0$.
- 5. j n'est pas un morphisme de groupes car $j(\overline{1} + \overline{2}) = 0 \neq 1 + 2 = j(\overline{1}) + j(\overline{2})$.
- 6. k n'est pas un morphisme de groupes car $k(Id) = (1\ 2) \neq Id$.
- 7. *l* est un morphisme de groupes car

$$l(\sigma_1 \sigma_2) = (1 \ 2)(\sigma_1 \sigma_2)(1 \ 2)$$

= (1 \ 2)\sigma_1(1 \ 2)(1 \ 2)\sigma_2(1 \ 2)
= \ l(\sigma_1)l(\sigma_2).

Exercice 3.8 Exo 15.

Solution.

1. Le sous groupe engendré par $\overline{3}$ est

$$H = {\overline{3}, \overline{9}, \overline{5}, \overline{4}, \overline{1}}$$

et le sous-groupe engendré par $\overline{1}0$ est

$$K = \{\overline{10}, \overline{1}\}$$

On vérifie alors les trois propriétés :

(i) Si $x \in H$, alors le couple $(x,\overline{1})$ convient. Sinon, $x \in \{\overline{2},\overline{6},\overline{7},\overline{8},\overline{10}\}$. On a alors

$$x = \overline{2} \equiv x = \overline{9}0 \implies (\overline{9}, \overline{1}0)$$

$$x = \overline{6} \equiv x = \overline{5}0 \implies (\overline{5}, \overline{1}0)$$

$$x = \overline{7} \equiv x = \overline{4}0 \implies (\overline{4}, \overline{1}0)$$

$$x = \overline{8} \equiv x = \overline{3}0 \implies (\overline{3}, \overline{1}0)$$

$$x = \overline{10} \implies (\overline{1}, \overline{10})$$

La première propriété est donc vérifiée pour tout $x \in G$.

- (i) On a bien $H \cap K = \{1\}$.
- (i) Le groupe $\mathbb{Z}/p\mathbb{Z}$ est toujours abélien donc on a bien que tous les éléments de H et K commutent entre eux.
- 2. Commençons par montrer que les ensembles

$$H = G_1 \times \{e_2\}, \quad K = \{e_1\} \times G_2$$

sont bien des sous-groupes de G, soit qu'ils vérifient les trois propriétés :

- $e_G \in H$,
- Si $x, y \in H$, alors $xy \in H$,
- Si $x \in H$, alors $x^{-1} \in H$.

Montrons-les:

- $e_G = (e_{G_1}, e_{G_2}) \in H \text{ car } e_{G_1} \in G_1.$
- Soient $x = (x_1, e_{G_2})$ et $y = (y_1, e_{G_2})$ alors

$$xy = (x_1y_1, e_{G_2}) \in H$$

 $\operatorname{car} x_1 y_1 \in G_1.$

• Soit $x = (x_1, e_{G_2})$, alors

$$x^{-1} = (x_1^{-1}, e_{G_2}) \in H$$

car
$$x_1^{-1} \in G_1$$
.

De même pour K.

On a montré que ces deux ensembles sont bien des sous-groupes de G, montrons maintenant qu'ils vérifient les trois propriétés demandées :

- (i) Soit $x = (x_1, x_2) \in G$, alors le couple $(x_1, e_{G_2}), (e_{G_1}, x_2)$ convient.
- (i) Il est clair que $H \cap K = \{(e_{G_1}, e_{G_2})\} = e_G$.
- (i) Comme le produit se fait terme à terme et que tout élément de G_i commute avec $\{e_i\}$, on a bien que tous les éléments de H et K commutent entre eux.
- 3. On note H et K les sous-groupes de G.
 - (a) On procède par l'absurde. Supposons qu'il existe deux écritures de x=yz=y'z'. Alors on a

$$yz = y'z'$$

$$\equiv y^{-1}yz = y^{-1}y'z'$$

$$\equiv z = y^{-1}y'z'$$

Or $z \in K$ donc $y^{-1}y'z' \in K$. Comme $z' \in K$, on a $y^{-1}y' \in K$. Or $y, y' \in H$ donc $y^{-1}y' \in H$. On a donc $y^{-1}y' \in H \cap K = \{e\}$ donc y = y'. Il en est de même pour z. L'écriture est donc unique.

(b) On a déjà montré au point précédent que l'écriture est unique et donc tout élément de G peut s'écrire de manière unique comme yz avec $y \in H$ et $z \in K$ donc on peut considérer l'application

$$f: H \times K \to G$$

 $(x,y) \mapsto xy$

qui est bijective d'après (i) et le point précédent.

Montrons maintenant que c'est un morphisme de groupes : Soient $(x,y),(x',y') \in H \times K$, on a :

$$f((x,y)(x',y')) = f((xx',yy'))$$

$$= xx'yy'$$

$$= xyx'y'$$

$$= f(x,y)f(x',y')$$

donc f est un morphisme de groupes.

En conclusion, G est isomorphe à $H \times K$.

Remarque. Via l'isomorphisme $G = H \times K$, on a correspondance entre les sous-groupes

$$H \leftrightarrow H \times \{e\}, \quad K \leftrightarrow \{e\} \times K$$

On retrouve donc le cas de la question 2.

 $\textbf{Remarque.} \ \, \text{En appliquant \`a la question 1, on obtient un isomorphisme de groupes}:$

$$(\mathbb{Z}/11\mathbb{Z})^{\times} \simeq \langle \overline{3} \rangle \times \langle \overline{10} \rangle$$
$$\simeq (\mathbb{Z}/5\mathbb{Z}) \times (\mathbb{Z}/2\mathbb{Z})$$

On verra plus tard que pour p premier, le groupe $(\mathbb{Z}/p\mathbb{Z})^{\times}$ est cyclique (d'ordre p-1), donc $(\mathbb{Z}/p\mathbb{Z})^{\times} \simeq \mathbb{Z}/(p-1)\mathbb{Z}$. Notamment,

$$(\mathbb{Z}/11\mathbb{Z})^{\times} \simeq \mathbb{Z}/10\mathbb{Z}$$

 $\simeq \mathbb{Z}/5\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$

d'après le théorème des restes chinois (car 5 et 2 sont premiers entre eux).

Remarque. Il existe des groupes finis qui ne sont pas isomorphes à un produit direct de groupes cycliques, par exemple \mathfrak{S}_3 , car un produit de groupes cycliques est abélien.

En revance, c'est un fait (pas trivial) que tout groupe fini abélien est isomorphe à un produit de groupes cycliques.

4. On se place dans le groupe \mathfrak{S}_3 . On considère alors

$$H = \langle (1 \ 2) \rangle = \{ (1 \ 2), \mathsf{Id} \},$$

$$K = \langle (1 \ 2 \ 3) \rangle = \{ (1 \ 2 \ 3), (1 \ 3 \ 2), \mathsf{Id} \}$$

On a tout de suite (ii) qui est vérifié.

Il manque (1 3), (2 3) à "former". Or

$$(1\ 3) = (1\ 2)(1\ 2\ 3),$$

 $(2\ 3) = (1\ 2)(1\ 3\ 2)$

Donc (i) est vérifié.

En revanche, on a $(1\ 2)(1\ 2\ 3) \neq (1\ 2\ 3)(1\ 2)$ donc (iii) n'est pas vérifié.

Exercice 3.9 Exo 12. Enoncé à remplir.

Solution.

1. On veut montrer l'égalité

$$\overbrace{\sigma(i_1 \ i_2 \cdots i_k) \sigma^{-1}}^{\alpha} = \overbrace{(\sigma(i_1) \ \sigma(i_2) \ \dots \ \sigma(i_k))}^{\beta}$$

Soit $j \in \{1, ..., n\}$. Procédons par cas :

 \triangleright Cas $1: j \notin \{\sigma(i_1), \ldots, \sigma(i_k)\}.$

Alors $\beta(j) = j$. On calcule

$$\alpha(j) = \sigma(i_1 \ i_2 \cdots i_k)\sigma^{-1}(j)$$
$$= \sigma(\sigma^{-1}(j))$$

Donc $\alpha(j) = \beta(j)$.

 \triangleright Cas 2 : $j = \sigma(i_r)$ pour un $r \in \{1, \ldots, k\}$.

Alors

$$\alpha(j) = \sigma(i_1 \ i_2 \cdots i_k) \underbrace{\sigma^{-1}(\sigma(i_r))}_{i_r}$$
$$= \sigma(i_{r+1})$$

D'autre part,

$$\beta(j) = (\sigma(i_1) \ \sigma(i_2) \ \dots \ \sigma(i_k))(\sigma(i_r))$$
$$= \sigma(i_{r+1})$$

Donc $\alpha(j) = \beta(j)$.

Conclusion : on a $\forall j \in \{1, ..., n\}, \alpha(j) = \beta(j) \text{ donc } \alpha = \beta$.

Remarque. Soient deux ensembles E et F de cardinal fini n. Soit $\sigma: E \to F$ une bijection.

Soit $f \in \text{Bij}(E)$. Alors, $\sigma f \sigma^{-1}$ est une bijection de F.

Slogan : " $\sigma f \sigma^{-1}$, c'est comme f, après avoir renommé les éléments".

En effet, notons $E = \{x_1, \dots, x_n\}$ et $F = \{y_1, \dots, y_n\}$ avec $\sigma(x_i) = y_i$.

Si $f(x_i) = x_i$ alors

$$(\sigma f \sigma^{-1})(y_i) = (\sigma f)(x_i) = \sigma(f(x_i)) = \sigma(x_j) = y_j$$

et

$$(\sigma f \sigma^{-1})(y_i) = y_i$$

2. Il suffit de montrer que toutes les transpositions adjacentes $(1\ 2),(2\ 3),\ldots,(n-1\ n)$ sont dans

$$\langle (1\ 2), (1\ 2\ \cdots\ n) \rangle$$

(car par le cours, les transpositions adjacentes engendrent \mathfrak{S}_n).

On a

$$(1 \ 2 \cdots n)(1 \ 2)(1 \ 2 \cdots n)^{-1} = (2 \ 3)$$

 $(1 \ 2 \cdots n)(2 \ 3)(1 \ 2 \cdots n)^{-1} = (3 \ 4)$

etc.

donc toutes les transpositions adjacentes sont dans $((1\ 2), (1\ 2\ \cdots\ n))$.

Conclusion : $\mathfrak{S}_n = \langle (1 \ 2), (1 \ 2 \cdots n) \rangle$.

Remarque. Le sous-groupe engendré par $(i \ j), (1 \ 2 \cdots n)$ est déterminé dans un autre pdf. Pour le cas

$$S = \langle (1\ 3), (1\ 2\ 3\ 4) \rangle$$

On a $S \simeq D_4$, le groupe diédral d'ordre 8.

Plus précisément, on a un morphisme de groupes

$$F{:}D_4 \to S_4$$

$$f \mapsto \sigma_f$$

où σ_f est la restriction de f à $\{1,2,3,4\}$. Alors S = Im(F).

Exercice 3.10 Exo 13. Enoncé à remplir.

Solution. Soient s_1, s_2 deux réflexions de \mathbb{R}^2 .

Sens indirect : Si $s_1 = s_2$ alors $s_1 s_2 = s_2 s_1$.

Si $s_1 = -s_2$ alors $s_1 s_2 = s_1(-s_1) = s_1 \circ (-s_1) = -s_1 \circ s_1 = -\operatorname{Id}$. et $s_2 s_1 = (-s_1) \circ s_1 = -s_1 \circ s_1 = -\operatorname{Id}$.

Sens direct : On suppose que $s_1s_2 = s_2s_1$.

Ecrivons $s_1 = s_{\Delta_1}$ et $s_2 = s_{\Delta_2}$ avec Δ_1 et Δ_2 deux droites linéaires de \mathbb{R}^2 .

On sait par le cours que

$$s_1s_2 = r_{-2\theta}$$

où θ est l'angle orient de Δ_1 vers Δ_2 .

De même, on a

$$s_2 s_1 = r_{+2\theta}$$

On obtient donc que $r_{-2\theta} = r_{+2\theta}$ donc il existe $k \in \mathbb{Z}$ tel que $-2\theta = 2\theta + 2k\pi$ donc $\theta = -k\frac{\pi}{2}$.

On a donc soit $\Delta_1 = \Delta_2$, soit $\Delta_1 = \Delta_2^{\perp}$ (orthogonalité).

Le premier donne $s_1 = s_2$, le second donne $s_1 = -s_{\Delta_2}$ donc $s_1 = -s_{\Delta_2} = s_2$.

En effet, c'est un fait générale que

$$s_{\Delta^{\perp}} = -s_{\Delta}$$

Pour se convaincre, choisissons une base e, f avec e dans Δ et f dans Δ^{\perp} . Alors la matrice de s_{Δ} est

$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

et la matrice de $-s_\Delta$ est

$$\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

c'est la matrice de $s_{\Delta^{\perp}}$.

Exercice 3.11 Centre du groupe diédral. Déterminer le centre du groupe diéedral D_n , pour $n \in \mathbb{N}^*$.

Solution.

 \triangleright Pour $n \le 2$, le groupe D_n est abélien donc

$$Z(D_n) = D_n$$

 \triangleright Pour $n \ge 3$, on a

$$r^k s = sr^{-k}$$

pour tout $k \in \{0, ..., n-1\}$.

 \triangleright Soit r une rotation. Alors, pour tout $k \in \{0, \dots, n-1\}$, on a

$$r^k s = sr^{-k}$$

Donc pour que $r \in Z(D_n)$, il faut que r soit une rotation telle que $r^k = r^{-k}$ pour tout $k \in \{0, \ldots, n-1\}$. Alors, r est une rotation d'angle 0 ou π .

 \triangleright Avec les notations du cours, on peut montrer qu'aucune réflexion n'est dans le centre de D_n . Par exemple, on montre que pour $k \in \{0, \ldots, n-1\}$, on a $r^k s$ qui ne commute pas avec r.

$$r(r^k s) = r^{k+1} s$$

$$(r^k s) r = r^{k-1} s$$

Ces éléments sont différents car $r\neq r^{-1}$ pour $n\geq 3.$ Ainsi les seuls éléments dans le centre de D_n

$$Z(D_n) = \{ \operatorname{Id}, r^{\frac{n}{2}} \}, \quad n \text{ pair},$$

 $Z(D_n) = \{ \operatorname{Id} \}, \quad n \text{ impair}.$

TD4 — Introduction à la théorie des anneaux et des corps

Exercices en TD

Exercice 4.1 Un corps exotique. On définit sur l'ensemble \mathbb{R}^2 une addition

$$(x,y) + (x',y') = (x+x',y+y')$$

et une multiplication

$$(x,y)\cdot(x',y') = (xx'-yy',xy'+x'y.)$$

Montrer que \mathbb{R}^2 muni de ces deux lois est un corps.

Solution. Il faut montrer que \mathbb{R}^2 muni de ces deux lois est un corps, soit que c'est un anneau commutatif dans lequel tout élément non nul est inversible.

▷ Commençons par montrer que c'est un anneau.

Il faut vérifier les 4 axiomes :

- 1. On sait que \mathbb{R}^2 muni de l'addition par composantes est un groupe abélien.
- 2. On vérifie que la multiplication est associative :

$$((x,y)\cdot(x',y'))\cdot(x'',y'') = (xx'-yy',xy'+x'y)\cdot(x'',y'')$$

$$= ((xx'-yy')x''-(xy'+x'y)y'',(xx'-yy')y''+(xy'+x'y)x'')$$

$$= (x(x'x''-y'y'')-y(y'x''+x'y''),x(x'y''+x'y'')+y(x'x''-y'y''))$$

$$= (x(x'x''-y'y'')-y(y'x''+x'y''),x(x'y''+x'y'')+y(x'x''-y'y''))$$

$$= (x,y)\cdot(x',y')\cdot(x'',y'').$$

3. On vérifie qu'il existe un élément neutre pour la multiplication :

$$(x,y) \cdot (1,0) = (x \cdot 1 - y \cdot 0, x \cdot 0 + y \cdot 1)$$

= (x,y) .

4. On vérifie la distributivité de la multiplication par rapport à l'addition :

$$(x,y) \cdot ((x',y') + (x'',y'')) = (x,y) \cdot (x' + x'', y' + y'')$$

$$= (x(x' + x'') - y(y' + y''), x(y' + y'') + y(x' + x''))$$

$$= (xx' - yy' + xx'' - yy'', xy' + xy'' + yx' + yx'')$$

$$= (xx' - yy', xy' + x'y) + (xx'' - yy'', xy'' + x'y'')$$

$$= (x,y) \cdot (x',y') + (x,y) \cdot (x'',y'').$$

▷ Montrons maintenant que cet anneau est commutatif.

Il faut vérifier que la multiplication est commutative :

$$(x,y) \cdot (x',y') = (xx' - yy', xy' + x'y)$$

= $(x'x - y'y, x'y + xy')$
= $(x',y') \cdot (x,y)$.

▷ Montrons enfin que tout élément non nul est inversible.

Soit $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$. On cherche $(x',y') \in \mathbb{R}^2$ tel que $(x,y) \cdot (x',y') = (1,0)$. On a donc

$$\begin{cases} xx' - yy' &= 1 \\ xy' + x'y &= 0 \end{cases}$$

$$\iff \begin{pmatrix} x & -y \\ y & x \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\iff \frac{1}{x^2 + y^2} \begin{pmatrix} x & y \\ -y & x \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\iff \begin{pmatrix} x' \\ y' \end{pmatrix} = \frac{1}{x^2 + y^2} \begin{pmatrix} x & y \\ -y & x \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{x}{x^2 + y^2} \\ \frac{-y}{x^2 + y^2} \end{pmatrix}$$

On pose alors

$$(x',y') = \left(\frac{x}{x^2+y^2}, \frac{-y}{x^2+y^2}\right).$$

et on vérifie que $(x,y) \cdot (x',y') = (1,0)$.

Ce corps est \mathbb{C} :

$$\mathbb{R}^2$$
 \mathbb{C} $(x,y) \longleftrightarrow x+iy$

Exercice 4.2 Entiers de Gauss. On définit l'ensemble des entiers de Gauss :

$$\mathbb{Z}[i] = \{a + ib \mid a, b \in \mathbb{Z}\}.$$

- 1. Montrer que $\mathbb{Z}[i]$ est un sous-anneau de \mathbb{C} . Est-il commutatif? Est-il un intègre? Est-il un corps?
- 2. Pour $z = a + ib \in \mathbb{Z}[i]$, on pose

$$N(z) = |z|^2 = a^2 + b^2$$

qu'on appelle la norme. Montrer qu'on a

$$\forall z, z' \in \mathbb{Z}[i], \quad N(zz') = N(z)N(z').$$

- 3. Montrer que si $z \in \mathbb{Z}[i]$ est inversible si et seulement si N(z) = 1. Identifier le groupe des inversibles de $\mathbb{Z}[i]$.
- 4. Soient $m, n \in \mathbb{N}$. Montrer que si m et n peuvent être écrits comme somme de deux carrés, alors leur produit mn aussi.
- 5. Soit maintenant l'ensemble des rationnels de Gauss :

$$\mathbb{Q}(i) = \{a + ib \in \mathbb{C} \mid a, b \in \mathbb{Q}\}.$$

Montrer qu'il s'agit d'un sous-corps de \mathbb{C} .

Solution. On se place dans

$$\mathbb{Z}[i] = \{a + ib \mid a, b \in \mathbb{Z}\}.$$

- 1. On montre facilement que c'est un sous-anneau de $\mathbb C$ en vérifiant les axiomes.
 - \triangleright On a bien $0 \in \mathbb{Z}[i]$
 - \triangleright On a bien $\mathbb{Z}[i]$ stable par addition.
 - \triangleright On a bien $\mathbb{Z}[i]$ stable par passage à l'opposé.
 - \triangleright On a bien $1 \in \mathbb{Z}[i]$
 - \triangleright On a bien $\mathbb{Z}[i]$ stable par multiplication.

Donc $\mathbb{Z}[i]$ est un sous-anneau de \mathbb{C} .

Cet anneau est bien commutatif car \mathbb{C} l'est. De même pour l'intégrité. Par contre, $\mathbb{Z}[i]$ n'est pas un corps car $2 \in \mathbb{Z}[i]$ n'est pas inversible.

2. On sait que

$$\forall z, z' \in \mathbb{C}, \quad |zz'| = |z||z'|.$$

et donc

$$N(zz') = N(z)N(z').$$

3. ▷ Montrons d'abord le sens direct.

On suppose que $z \in \mathbb{Z}[i]$ est inversible. Alors, il existe $z' \in \mathbb{Z}[i]$ tel que zz' = 1.

En utilisant la question précédente, on a

$$N(zz') = N(z)N(z') = 1.$$

Comme $N(z) \in \mathbb{N}$ et $N(z') \in \mathbb{N}$, on a

$$N(z) = N(z') = 1.$$

▶ Montrons maintenant le sens réciproque.

On suppose que N(z) = 1.

Alors z = a + ib avec $a, b \in \mathbb{Z}$ et $a^2 + b^2 = 1$. Alors

$$(a+ib)(a-ib)=1.$$

Donc a + ib est inversible dans $\mathbb{Z}[i]$, d'inverse a - ib.

Pour $a, b \in \mathbb{Z}$, on a

$$a^2 + b^2 = 1 \iff (a,b) \in \{(1,0), (0,1), (-1,0), (0,-1)\}.$$

Donc les inversibles de $\mathbb{Z}[i]$ sont

$$\mathbb{Z}[\beth]^{\times} = \{1, -1, i, -i\} = \mathbb{U}_4.$$

(groupe cyclique d'ordre 4, engendré par i ou -i)

4. Formule magique vue à la question 2 :

$$(a^2 + b^2)(a'^2 + b'^2) = (aa' - bb')^2 + (ab' + ba')^2.$$

5. C'est clair que $\mathbb{Q}(i)$ est un sous-corps de \mathbb{C} , montrons simplement l'axiome de stabilité par passage à l'inverse.

Pour $a, b \in \mathbb{Q}$, si $a + ib \neq 0$, alors

$$\frac{1}{a+ib} = \frac{a}{a^2+b^2} - i\frac{b}{a^2+b^2} \in \mathbb{Q}(i).$$

Exercice 4.3 Nilpotents. Soit A un anneau commutatif. On dit qu'un élément $x \in A$ est nilpotent s'il existe $n \in \mathbb{N}$ tel que $x^n = 0$.

- 1. Donner un exemple d'un anneau commutatif A et d'un élément nilpotent $x \in A$ non nul.
- 2. Montrer que si x est nilpotent et que y est n'importe quel élément de A, alors xy est nilpotent.
- 3. Montrer que l'ensemble des éléments nilpotents de A est un sous-groupe de A. Est-ce un sous-anneau ?
- 4. Montrer que si x est nilpotent alors 1-x est inversible.
- 5. Soient $u, x \in A$ tel que u est inversible et x est nilpotent. Montrer que u + x est inversible.

Solution.

1. On considère

$$A = \mathbb{Z}/4\mathbb{Z}$$

alors $x = \overline{2} \neq \overline{0}$ est nilpotent car $x^2 = \overline{4} = \overline{0}$.

2. Soit $x \in A$ nilpotent (d'ordre n) et $y \in A$. Alors

$$(xy)^n = x^n y^n = 0.$$

- 3. Soit N l'ensemble des éléments nilpotents de A. Vérifions les axiomes :
 - \triangleright On a bien $0 \in N$ car $0^1 = 0$.
 - \triangleright Soit $x \in N$. Alors il existe $n \in \mathbb{N}$ tel que $x^n = 0$. Alors $(-x)^n = (-1)^n x^n = 0$, donc $-x \in N$.
 - ightharpoonup Soit $x,y\in N.$ Alors il existe $n,m\in\mathbb{N}$ tels que $x^n=0$ et $y^m=0.$ Alors

$$(x+y)^{n+m} = \sum_{k=0}^{n+m} \binom{n+m}{k} x^k y^{n+m-k}$$
$$= \sum_{k=0}^{n} \binom{n+m}{k} x^k y^{n+m-k} + \sum_{k=n+1}^{n+m} \binom{n+m}{k} x^k y^{n+m-k}$$
$$= 0.$$

Comme 1 n'est pas nilpotent, N n'est pas un sous-anneau.

- **Remarque.** C'est un idéal de A par la question 2.
- \triangleright Soit $x \in A$ nilpotent. Alors il existe $n \in \mathbb{N}$ tel que $x^n = 0$. Alors

$$(1-x)(1+x+x^2+\cdots+x^{n-1})=1-x^n=1.$$

Donc 1 - x est inversible, d'inverse $1 + x + x^2 + \dots + x^{n-1}$.

 \triangleright Soit $u, x \in A$ tel que u est inversible et x est nilpotent. Alors

$$u + x = u(1 + u^{-1}x) = u(1 - (-u^{-1}x)).$$

Comme $-u^{-1}x$ est nilpotent par la question 4, $1 - (-u^{-1}x)$ est inversible, donc u + x est inversible (produit de deux éléments inversibles).

Exercice 4.4 Anneaux intègres finis. Soit A un anneau intègre fini. Montrer que A est un corps.

Solution. Commençons par montrer que tout élément non nul est inversible.

▶ Montrons maintenant que tout élément non nul est inversible.

Soit $a \in A \setminus \{0\}$. Considérons la multiplication à gauche par a:

$$\begin{array}{c|cc} \times a & a \\ \hline a_1 & a_1 a \\ a_2 & a_2 a \\ \vdots & \vdots \\ a_n & a_n a \end{array}$$

avec a_1, \ldots, a_n les éléments de A (distincts).

Alors la multiplication à gauche par a est une bijection de A sur A. Donc il existe $b \in A$ tel que ba = 1. Donc a est inversible.

Comme a est quelconque, tout élément non nul de A est inversible.

Donc A est un corps.

Autre rédaction possible : Soit $a \in A \setminus \{0\}$. Considérons les puissances de a :

$$1, a, a^2, \dots$$

Comme A est fini, il existe $n,m\in\mathbb{N}$ tels que $a^n=a^{n+m}$. Alors $a^n(1-a^m)=0$. Comme A est intègre, on a $1-a^m=0$, donc $a^m=1$.

Exercice 4.5 L'anneau $\mathbb{Z}[\sqrt{2}]$. On définit :

$$\mathbb{Z}\left[\sqrt{2}\right] = \left\{a + b\sqrt{2} \mid a, b \in \mathbb{Z}\right\}.$$

- 1. Montrer que $\mathbb{Z}\big[\sqrt{2}\,\big]$ est un sous-anneau de $\mathbb{R}.$
- 2. Montrer que $\mathbb{Z}[\sqrt{2}]$ n'est pas isomorphe à l'anneau des entiers de Gauss $\mathbb{Z}[i]$.
- 3. Montrer que le groupe $\mathbb{Z}\big[\sqrt{2}\big]^{\times}$ est infini.

Solution.

- 1. Vérifions les axiomes :
 - \triangleright On a bien $Z[\sqrt{2}]$ un groupe abélien pour l'addition.
 - \triangleright On a bien $0 \in \mathbb{Z}[\sqrt{2}]$.
 - \triangleright Soit $z = a + b\sqrt{2}, z' = a' + b'\sqrt{2} \in \mathbb{Z}[\sqrt{2}]$. Alors

$$zz'(a+b\sqrt{2})(a'+b'\sqrt{2})=aa'+2bb'+(ab'+ba')\sqrt{2}\in\mathbb{Z}\big[\sqrt{2}\big].$$

Donc $\mathbb{Z}[\sqrt{2}]$ est un sous-anneau de \mathbb{R} .

2. Montrons que $\mathbb{Z}\big[\sqrt{2}\big]$ n'est pas isomorphe à $\mathbb{Z}[i].$

Regardons l'ensemble des solutions de l'équation $x^2 = -1$.

Pour $\mathbb{Z}[\sqrt{2}]$, on a aucune solution.

Pour $\mathbb{Z}[i]$, on a x = i.

Donc $\mathbb{Z}[\sqrt{2}]$ n'est pas isomorphe à $\mathbb{Z}[i]$.

Autre rédaction, il y a bien une bijection

$$\varphi : \mathbb{Z}[i] \longrightarrow \mathbb{Z}[\sqrt{2}]$$

 $a + ib \longmapsto a + b\sqrt{2}$

Cette bijection est un isomorphisme de groupes :

$$\varphi((a+ib) + (a'+ib)) = \varphi((a+a') + i(b+b'))$$

$$= (a+a') + (b+b')\sqrt{2}$$

$$= (a+b\sqrt{2}) + (a'+b'\sqrt{2})$$

$$= \varphi(a+ib) + \varphi(a'+ib).$$

Mais φ n'est pas un morphisme d'anneaux car

$$\varphi(i \times i) = \varphi(-1) = -1$$

 $\varphi(i) \times \varphi(i) = \sqrt{2} \times \sqrt{2} = 2.$

Cela ne montre pas que $\mathbb{Z}[\sqrt{2}]$ n'est pas isomorphe à $\mathbb{Z}[i]$ en tant qu'anneaux, simplement que φ n'est pas un morphisme d'anneaux.

Montrons que $\mathbb{Z}[\sqrt{2}]$ n'est pas isomorphe à $\mathbb{Z}[i]$ en tant qu'anneaux.

Par l'absurde, supposons qu'il existe un isomorphisme d'anneaux $f: \mathbb{Z}[i] \to \mathbb{Z}[\sqrt{2}]$. Alors

$$f(i)^2 = f(i^2) = f(-1) = -1.$$

donc $(f(i))^2 = -1$ donc $f(i) = \pm i$. Absurde car $f(i) \in \mathbb{Z}[\sqrt{2}]$ et $i \notin \mathbb{Z}[\sqrt{2}]$.

3. Comme

$$\left(1+\sqrt{2}\right)\left(-1+\sqrt{2}\right)=1$$

on a que $1 + \sqrt{2}$ est inversible.

On en déduit que

$$\forall n \in \mathbb{N}, \quad (1+\sqrt{2})^n \in \mathbb{Z}[\sqrt{2}]^{\times}.$$

Comme ils sont tous distincts, $\mathbb{Z}[\sqrt{2}]^{\times}$ est infini.

Remarque. Cela donne une autre preuve du fait que $\mathbb{Z}[\sqrt{2}]$ et $\mathbb{Z}[i]$ ne sont pas isomorphes en tant qu'anneaux, puisque $\mathbb{Z}[i]^{\times}$ est fini.

En effet, si $f:A\to B$ est un isomorphisme d'anneaux, alors il induit un isomorphisme de groupes $f^\times:A^\times\to B^\times$.

Remarque. On peut montrer que

$$\mathbb{Z}\left[\sqrt{2}\right]^{\times} = \left\{\varepsilon\left(1+\sqrt{2}\right)^{n} \mid \varepsilon \in \{-1,1\}, n \in \mathbb{Z}\right\}.$$

Exercice 4.6 Idéaux et inversibles. Enoncé à remplir

Solution. Soit A un anneau commutatif.

- 1. Evident
- 2. Deux cas:
 - \triangleright Si I=A, alors $1\in I$ et 1 est inversible.
 - \triangleright Si I contient un inversible $u \in A^{\times}$, alors $u^{-1}u \in I$ (car I est un idéal) et donc $1 \in I$ et donc I = A.
- 3. Soit $a \in A$
 - \triangleright Si (a) = A, alors $1 \in (a)$ et donc il existe $b \in A$ tel que ab = 1, donc a est inversible.
 - \triangleright Si a est inversible, alors (a) = A par la question 2
- 4. On suppose que $A \neq \{0\}$.
 - \triangleright On suppose que A est un corps.

Soit I un idéal de A qui n'est pas $\{0\}$.

Alors I contient un élément non nul a qui est inversible car A est un corps. Donc I = A.

 \triangleright On suppose que les seuls idéaux de A sont $\{0\}$ et A.

Soit $a \in A \setminus \{0\}$.

L'idéal (a) est non nul, donc (a) = A.

Donc a est inversible. Donc A est un corps.

Exercice 4.7 Un corps. Pouvez-vous construire un corps K qui contient \mathbb{C} comme sous-corps et tel qu'il existe $\alpha \in K \setminus \mathbb{C}$ tel que $\alpha^2 = i$?

Solution. NON! Il existe déjà un $z \in \mathbb{C}$ tel que $z^2 = 1$.

$$z = e^{i\frac{\pi}{4}} = \frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}.$$

Supposons qu'il existe un corps K contenant \mathbb{C} comme sous-corps et tel qu'il existe $\alpha \in K \setminus \mathbb{C}$ tel que $\alpha^2 = 1$.

Alors $\alpha^2 = z^2$ et donc $\alpha = z$ ou $\alpha = -z$ car un corps est intègre.

Donc $\alpha \in \mathbb{C}$, contradiction.

Exercice 4.8 Idéaux des polynômes à facteurs relatifs. On travaille dans l'anneau $\mathbb{Z}[X]$.

- 1. Montrer que l'idéal (2, X) n'est pas principal.
- 2. Soit I l'ensemble des polynômes $f \in \mathbb{Z}[X]$ tels que f(1) et f(-1) soient pairs. Montrer que I est un idéal de $\mathbb{Z}[X]$ et donner des générateurs de I.

On pourra commencer par faire les échauffements suivant :

- (a) Soit $I = \{ f \in \mathbb{R}[X] \mid f(1) = 0 \}$. Montrer que c'est un idéal de $\mathbb{R}[X]$ et en donner un système de générateurs.
- (b) Pareil avec $\mathbb{R} \rightsquigarrow \mathbb{Z}$.

Solution.

1. On a que

$$A = (2, X) = \{2k + k'X \mid k, k' \in \mathbb{Z}\}.$$

Supposons que A est principal. Alors il existe $f \in A$ tel que A = (f). Donc $2 \in (f)$ et $X \in (f)$.

Plus précisément, on a f|2 et f|X, donc

$$f \in \{1, -1, 2, -2\}, \text{ et } f \in \{1, -1, X, -X\}$$

Donc $f \in \{1, -1\}$. En particulier, on a $1 \in (2, X)$, ce qui veut dire qu'il existe $u, v \in \mathbb{Z}[X]$ tels que 1 = 2u + Xv. En evaluant en X = 0, on a 1 = 2u(0), contradiction.

- 2. Echauffements:
 - (a) I est clairement un sous-groupe de $\mathbb{R}[X]$, montrons qu'il est stable par multiplication. Soit $f \in I$ et $g \in \mathbb{R}[X]$. Alors

$$(fg)(1) = f(1)g(1)$$

est pair. Donc $fg \in I$.

Donc I = (X - 1).

(b) Même raisonnement pour montrer que I est un idéal. On a I = (X - 1) car on peut effectuer la division euclidienne de f par X - 1.

On peut facilement vérifier que cet ensemble est un idéal de $\mathbb{Z}[X]$.

Soit $f \in I$, on écrit sa division euclidienne par X - 1:

$$f = (X - 1)q + r, \quad q \in \mathbb{Z}[X], r \in \mathbb{Z}.$$

donc r = f(1) est pair et alors il existe $k \in \mathbb{Z}$ tel que

$$f = (X - 1)q + 2k.$$

Alors $f \in (X-1,2)$.

On a montré que $I\subset (X-1,2)$. Montrons maintenant que $(X-1,2)\subset I$. Comme $X-1\in I$ et $2\in I$, on a $(X-1,2)\subset I$. Donc I=(X-1,2).