

LVDS TUNNELING PROTOCOL

& INTERFACE (LTPI) IP- USER GUIDE

Author (s):

Katarzyna Krzewska, Intel Corporation

Kasper Wszolek, Intel Corporation

Executive Summary

This User Guide provides guidelines how to create and run LTPI IP project. Project was created in Intel® Quartus® Prime Standard Edition Version 21.1.0 software and reference implementation was made for Intel® MAX® 10 FPGA devices family.

Table of Contents

Int	roduct	ion	4
1.	Build	d project instruction	4
2.	Run	unit test instruction	5
3.	LTPI	IP top modules	5
	3.1.	LTPI top controller (SCM FPGA) – ltpi_top_controller.sv	7
	3.2.	LTPI top target (HPM FPGA) - ltpi_top_target.sv	g
4.	SMB	us Relay module	10
	4.1.	Relay overview.	10
	4.2.	SMBus relay controller (smbus_relay_controller.sv)	12
	4.2.1	Device Behavior FSM – Controller	12
	4.2.2	. Relay Controller FSM	14
	4.3.	SMBus relay target (smbus_relay_target.sv)	15
	4.3.1	. Device Behavior FSM – Target	15
	4.3.2	2. Relay Target FSM	16
	4.4.	Simulation of example I2C/SMBus transaction waveforms	18
5.	Data	channel module	18
	5.1.	Data channel mailbox Controller registers	19
	5.2.	Programing model flowchart – data channel with mailbox.	21
6.	CSR	module	22
7.	Reso	ource utilization	23
8.	Glos	sary	24
9.	Refe	rences	24
10	. Li	icense	25
11	. А	bout Open Compute Foundation	25

Introduction

LTPI_src.zip archive contains following folders:

- logic
- quartus
- quartus_projects
- rtl
- tests_scripts
- tests

In quartus folder you will find pin assignments and timing constrains for LTPI controller and target project.

In **quartus_projects** folder you will find two subfolders with Quartus [®] Prime projects files: one for LTPI controller device and second one for LTPI target device.

rtl and **logic** folder contains all modules essential to build the correct design.

In **tests** folder you will find unit tests for LTPI IP which are listed in LTPI_test_plan.xlsx In **tests_script** folder you will find script which start simulation tool.

In next chapters there is more detailed description of the LTPI implementation structure and internal modules design, so users could easily adapt it to their own use.

1. Build project instruction

- 1. Run Quartus ® Prime Software (used: Standard Edition Version 21.1.0).
- 2. Open one of projects from quartus_project directory:
 - controller/ltpi_top_controller_quartus.qpf
 - target/ltpi_top_target_quartus.qpf
- 3. Assign FPGA pin allocation file in quartus directory:
 - quartus_ltpi_controller/pinout_assignment_controller.tcl
 - quartus_ltpi_target /pinout_assignment_target.tcl
 - Or through Quartus ® Prime Software (Assignments -> Pin Planer)
- 4. Start Compilation (Processing -> Star Compilation)

2. Run unit test instruction

All project unit test were written using System Verilog Unit Test (SVUnit) framework.

All tests scripts give user the option to choose a simulation tool (between VCS[®] and ModelSim[®]/Questa[®]) by setting appropriate parameters inside script. *E.q. VCS_SIM_EN="ON"*, *MODELSIM_SIM_EN="OFF"*

- 1. Install SVUnit test from http://agilesoc.com/open-source-projects/svunit/
- 2. Set environment variable SVUNIT_INSTALL to SVUnit installation directory (e.g. ../svunit/3.34.1) \$export SVUNIT_INSTALL=path to svunit directory>
- Compile Intel Simulation Model Libraries :
 https://www.intel.com/content/www/us/en/docs/programmable/683870/22-1/compiling-simulation-model-libraries.html
- 4. Install simulation tool (e.g. VCS[®])
- 5. Edit script to use installed simulation tool
- 6. Run script from tests_script directory

3. LTPI IP top modules

LTPI IP can be configured as controller device (SCM) or as target device (HPM). Top modules for devices are respectively:

- ltpi_top_controller.sv
- ltpi_top_target.sv

Each of top module can be parameterized by user with parameter from table below:

Table 1 LTPI IP top module parameter

Name	Value	Default	Description
		value	
LL_GPIO_RST_VALUE	From 0 to 2 ¹⁶ -1	2 ¹⁶ -1	Mask defining low latency GPIO pin value after reset. Bit position in this this mask corresponds to respective LL GPIO index.
NL_GPIO_RST_VALUE	From 0 to 2 ¹⁰²⁴ -1	2 ¹⁰²⁴ -1	Mask defining normal latency GPIO pin value after reset. Bit

CSR_LIGHT_VER_EN	0 or 1	0	position in this this mask corresponds to respective NL GPIO index. When 0 LTPI IP CSR fully cover CSR in LTPI specification, when 1 LTPI IP CSR are limited. Refer to the Table 5 Registers disabled in CSR versions which CSRs are disabled in light
GPIO_EN	0 or 1	1	version. When 1 - GPIO module is turn on,
			when 0 it is turn off and
			NL_GPIO_CNT is not relevant.
NUM_OF_NLGPIO	From 1 to 1024	1024	Number of normal latency GPIOs.
UART_EN	0 or 1	1	When 1 - UART module is turn on,
			when 0 it is turn off and UART_DEV is
			not relevant.
NUM_OF_UART_DEV	1 or 2	2	Number of UART devices.
SMBUS_EN	0 or 1	1	When 1 - SMBus module is turn on,
			when 0 it is turn off and SMBUS_DEV
			is not relevant.
NUM_OF_SMBUS_DEV	From 1 to 6	6	Number of SMBUS devices.
DATA_CHANNEL_EN	0 or 1	1	When 1 – data channel module is turn
			on, when 0 it is turn off and
			DATA_CHANNEL_MAILBOX_EN is not
			relevant.
DATA_CHANNEL_MAILBOX_EN	0 or 1	1	When 1 data channel controller
			Avalon® bus is control through
			register described in Table 4 Data
			channel mailbox register description,
			otherwise data channels are directly
			connected to external interfaces.

3.1. LTPI top controller (SCM FPGA) – ltpi_top_controller.sv

Figure 1 LTPI top controller diagram.

LTPI top controller include:

- pll_cpu module phase-locked loops with output for internal logic
- i2c_target_avmm_bridge module i2c target ("slave") to Avalon® memory map bridge
- avmm_mux module 1 to 4 Avalon® memory map bus multiplexer
- Itpi_csr_avmm module LTPI Control and Status Register space with software access through Avalon® bus, and hardware access through csr_hw structure
- mgmt_ltpi_top module Management LTPI phy and interfaces

Table 2 LTPI top controller module port definition

Name	Туре	Size	Description
CLK_25M_OSC	Input	1	25MHZ reference clock input
reset_in	Input	1	Reset input
BMC_smb_scl	Inout	1	I2C/SMBus clock signal from BMC
BMC_smb_sda	Inout	1	I2C/SMBus data signal from BMC
lvds_tx_data	Output	1	LVDS data transmitted signal
lvds_tx_clk	Output	1	LVDS clock transmitted signal
lvds_rx_data	Input	1	LVDS data received signal
lvds_rx_clk	Input	1	LVDS clock received signal
aligned	Output	1	HIGH – Received frames are decoded correctly.
NL_gpio_stable	Output	1	Normal latency GPIO Stable indication. It is HIGH
			only for one clock cycle, when all normal latency
			GPIOs were received.
smb_scl	Inout	6	I2C/SMBus clock signal sent/received through
			LTPI
smb_sda	Inout	6	I2C/SMBus data signal sent/received through LTPI
Il_gpio_in	Input	16	Low Latency GPIO input signal sent through LTPI
Il_gpio_out	Output	16	Low Latency GPIO output signal received through
			LTPI
nl_gpio_in	Input	1024	Normal Latency GPIO input signal sent through
			LTPI
nl_gpio_out	Output	1024	Normal Latency GPIO output signal received
			through LTPI
uart_rxd	Input	2	UART receiver signal
uart_cts	Input	2	UART CST flow control signal
uart_txd	Output	2	UART transmitter signal
uart_rts	Output	2	UART RTS flow control signal

3.2. LTPI top target (HPM FPGA) - ltpi_top_target.sv

Figure 2 LTPI top target diagram.

LTPI top target include:

- pll_cpu module- phase-locked loops with output for internal logic
- avmm_mux module 1 to 4 Avalon® memory map bus multiplexer
- avmm_target_model module Avalon® memory map model
- Itpi_csr_avmm module LTPI Control and Status Register space with software access through Avalon®
 bus, and hardware access through csr_hw structure
- mgmt_ltpi_top module Management LTPI phy and interfaces

Table 3 LTPI top target module port definition

Name	Туре	Size	Description
CLK_25M_OSC	Input	1	25MHZ reference clock input
reset_in	Input	1	Reset input
lvds_tx_data	Output	1	LVDS data transmitted signal
lvds_tx_clk	Output	1	LVDS clock transmitted signal
lvds_rx_data	Input	1	LVDS data received signal
lvds_rx_clk	Input	1	LVDS clock received signal
aligned	Output	1	HIGH – Received frames are decoded correctly.
NL_gpio_stable	Output	1	Normal latency GPIO Stable indication. It is HIGH only for one
			clock cycle, when all normal latency GPIOs were received.
smb_scl	Inout	6	I2C/SMBus clock signal sent/received through LTPI
smb_sda	Inout	6	I2C/SMBus data signal sent/received through LTPI
Il_gpio_in	Input	16	Low Latency GPIO input signal sent through LTPI
II_gpio_out	Output	16	Low Latency GPIO output signal received through LTPI
nl_gpio_in	Input	1024	Normal Latency GPIO input signal sent through LTPI
nl_gpio_out	Output	1024	Normal Latency GPIO output signal received through LTPI
uart_rxd	Input	2	UART receiver signal
uart_cts	Input	2	UART CST flow control signal
uart_txd	Output	2	UART transmitter signal
uart_rts	Output	2	UART RTS flow control signal

4. SMBus Relay module

4.1. Relay overview.

The I2C/SMBus SDL and SDA signal states are being captured and controlled by so called I2C/SMBus Relays defined by LTPI specification. The I2C/SMBus Relay block diagram is presented on the **Figure 3**.

Figure 3 SMBus Relay Block Diagram

There are two types of SMBus relays – Controller and Target. Controller SMBus relay is located on SCM FPGA and is connected to controller SMBus device (mostly BMC). Target Relay is a part of HPM FPGA and it is connected to target devices (e.g. temperature sensors, I2C memory's, power management devices).

Figure 4 SMBus relays connection

There are two FSM in SMBus Relay (with different behavior for Target and Controller Devices):

- Device Behavior FSM Determine the state of the controller and target SMBus
- Relay FSM Determine the state of the relay, and drive the target and controller SMBus signals based on the state of the controller and target busses

Main differents between Target and Controller behavior FSM is a way to change states.

In Device Behavior FSM Controller state changes are forced by changes on SMBus line. In the Device Behavior FSM Target - state changes are mainly forced by events which are sent from SCM - Controller devices (ioc_remote).

4.2. SMBus relay controller (smbus_relay_controller.sv)

This module implements an SMBus relay between a single controller and multiple target devices.

The module uses clock stretching on the interface from the SMBus controller to allow time for the target to respond with ACK and read data.

4.2.1. Device Behavior FSM - Controller

Figure 5 Device Behavior Controller FSM

SMBCONTROLLER_STATE_IDLE - This is the reset state. Wait here until a valid START condition is detected on the controller bus.

SMBCONTROLLER_STATE_START - A start condition was detected on the controller bus, the FSM stays here and clock-stretches the controller bus as required until the target bus has 'caught up' and then issued a start condition.

SMBCONTROLLER_STATE_CONTROLLER_ADDR – In this state the 7 bits target address and the read/write bit are received. Leave this state when all 8 bits have been received and the clock has been driven low again by the controller.

SMBCONTROLLER_STATE_TARGET_ADDR_ACK - SCL signal is driven low during this state to clock-stretch while awaiting an ACK from the target bus. Always enter this state after a SCL falling edge. Leave this state on SCL falling edge and when the ack/nack bit has been sent or when unexpected stop/start condition occurred.

SMBCONTROLLER_STATE_CONTROLLER_CMD - Received the 8 bits SMBus command (the first data byte after the address is called the 'command' in SMBus Specification). Always enter this state after an SCL falling edge. Leave this state when all 8 bits have been received and the clock has been driven low again by the controller.

SMBCONTROLLER_STATE_TARGET_CMD_ACK, SMBCONTROLLER_STATE_TARGET_WRITE_ACK - SCL signal is driven low during this state to clock-stretch while awaiting an ACK from the target bus. Always enter this state after an SCL falling edge. Leave this state when the ack/nack bit has been sent and the clock has been driven low again by the controller.

SMBCONTROLLER_STATE_CONTROLLER_WRITE – Enter the state after write command - received a byte to write to the target device. Always enter this state after a SCL falling edge, leave this state when 8 bites were sent to target devices and clock has been driven low again by the controller.

SMBCONTROLLER_STATE_TARGET_READ – Enter this state after read command and after a SCL falling edge, leave this state after received byte from target device.

SMBCONTROLLER_STATE_CONTROLLER_READ_ACK – Enter this state after a SCL falling edge, leave this state when the ack/nack bit has been received and the controller drive SCL low again.

SMBCONTROLLER_STATE_STOP - Enter this state to indicate a STOP condition should be sent to the target bus. Once the STOP has been sent on the target bus, we return to the idle state and wait for another start condition. We can enter this state if a stop condition has been received on the controller bus, or if we expect a start condition on the controller busses. We do not wait to see a stop condition on the controller bus before issuing the stop on the target bus and proceeding to the IDLE state

SMBCONTROLLER_STATE_STOP_THEN_START - While waiting to send a STOP on the target bus, we receive a new start condition on the controller busses. Must finish sending the stop condition on the target bus, then send a start condition on the target bus.

4.2.2. Relay Controller FSM

Figure 6 Relay Controller FSM

4.3. SMBus relay target (smbus_relay_target.sv)

4.3.1. Device Behavior FSM - Target

Figure 7 Device Behavior Target FSM

SMBCONTROLLER_STATE_IDLE - This is the reset state. Wait here until a valid START condition is detected on the controller bus.

SMBCONTROLLER_STATE_START - A start condition was detected on the controller bus.

SMBCONTROLLER_STATE_CONTROLLER_ADDR - In this state the 7 bits target address and the read/write bit are received. Leave this state when all 8 bits have been received and the clock has been driven low again by the controller.

SMBCONTROLLER_STATE_TARGET_ADDR_ACK - Enter this state after a SCL falling edge Target send ACK on the bus, leave this state when the ack/nack bit has been sent and the clock has been driven low.

SMBCONTROLLER_STATE_CONTROLLER_CMD - Received the 8 bits SMBus command (the first data byte after the address is called the 'command' in SMBus Specification). Always enter this state after an SCL falling edge. Leave this state when all 8 bits have been received and the clock has been driven low again by the controller. **SMBCONTROLLER_STATE_TARGET_CMD_ACK, SMBCONTROLLER_STATE_TARGET_WRITE_ACK** – Enter this state on clock falling edge and after target received command byte. Target send ACK on bus, leave this state when the ack/nack bit has been sent and the clock has been driven low.

SMBCONTROLLER_STATE_CONTROLLER_WRITE - Enter the state after write command - received a byte to write to the target device. Always enter this state after a SCL falling edge, leave this state when 8 bites were sent to target devices and clock has been driven low again by the controller.

SMBCONTROLLER_STATE_TARGET_READ - Enter this state after read command, and after a SCL falling edge, leave this state after sent data byte from target device.

SMBCONTROLLER_STATE_CONTROLLER_READ_ACK - Enter this state after a SCL falling edge, leave this state when the ack/nack bit has been received and the clock has been driven low again by the controller.

SMBCONTROLLER_STATE_STOP -- Enter this state to indicate a STOP condition should be sent to the target bus. Once the STOP has been sent on the target bus, we return to the idle state and wait for another start condition. We can enter this state if a stop condition has been received on the controller bus, or if we expect a start condition on the controller busses. We do not wait to see a stop condition on the controller bus before issuing the stop on the target bus and proceeding to the IDLE state

4.3.2.Relay Target FSM

Duration each of *_WAIT_TIMEOUT states depends from SMBus SPEED (100k/400k). Timing parametr (timeout) determine how long to hold target SCL low or high before proceeding to next state.

Figure 8 Relay Target FSM

4.4. Simulation of example I2C/SMBus transaction waveforms

Figure 9 I2C/SMBus transaction waveforms

5. Data channel module

To use date channel module user must turn it on (parameter DATA_CHANNEL_EN = 1). There are two data channel options implemented – with or without mailbox (parameter DATA_CHANNEL_MAILBOX_EN). Parametrization make the LTPI IP more flexible by allowing the user to decide, how data channel is connected and used.

When mailbox option is turned on, data channel controller module is guided by register from **Table 4 Data channel mailbox register description** otherwise data channels are directly connected to external interfaces – simplest solution with less Logic Element utilization.

Figure 10 LTPI Data Channel with mailbox option Overview

5.1. Data channel mailbox Controller registers

Data channel mailbox Controller registers are available through Avalon[®] interface connected to LTPI IP used as Controller device.

Table 4 Data channel mailbox register description

Offset	Name	Туре	Bit field Definition
0x400	REQ_CMD	RW	Request Command
0x401	REQ_TAG	RW	Request TAG
0x402	REQ_BEN	RW	Request Byte Enable
0x404	REQ_ADDR0	RW	Request Address [7:0]
0x405	REQ_ADDR1	RW	Request Address [15:8]
0x406	REQ_ADDR2	RW	Request Address [23:16]
0x407	REQ_ADDR3	RW	Request Address [31:24]
0x408	REQ_DATA0	RW	Request Data [7:0]
0x409	REQ_DATA1	RW	Request Data [15:8]

0x40A	REQ_DATA2	RW	Request Data	[23:16]		
0x40B	REQ_DATA3	RW	Request Data [31:24]			
0x40C	RESP_CMD	R	Response Command			
0x40D	RESP_TAG	R	Response ⁻	ΓAG		
0x40E	RESP_BEN	R	Response Byte	Enable		
0x40F	RESP_ STATUS	R	Response St	tatus		
0x410	RESP_ADDR0	R	Response Addr	ess [7:0]		
0x411	RESP_ ADDR1	R	Response Address [15:8]			
0x412	RESP_ ADDR2	R	Response Address [23:16]			
0x413	RESP_ ADDR3	R	Response Address [31:24]			
0x414	RESP_ DATA0	R	Response Dat	a [7:0]		
0x415	RESP_ DATA1	R	Response Data	a [15:8]		
0x416	RESP_ DATA2	R	Response Data	[23:16]		
0x417	RESP_ DATA3	R	Response Data	[31:24]		
		R	Response Ready 0			
0x418	STATUS	RW	Response Read 1			
		R	Request Ready	2		
		RW	Request Write	3		

5.2. Programing model flowchart – data channel with mailbox.

The following flowchart illustrates the recommended programing models for sending a request and receiving response when the AVMM mailbox is being used for example by the BMC through I2C to AVMM bridge.

Figure 11 Request/Response programing model flowchart

6. CSR module

Parametrization make the LTPI IP more flexible by allowing the user to decide, how to use CSR module.

There are two versions of LTPI CSR module: full – with access to all registers in CSR memory space and light – with limited access to CSR memory space and less Logic Element utilization.

CSR files for both versions were generated by using PeakRDL-regblock toolchain and written in SystemRDL language -https://accellera.org/downloads/standards/systemrdl.

User can easily change the contend of CSR registers (e.g. default value or excluded registers) by generating RDL file or editing predefined files.

PeakRDL-regblock installing instruction: https://peakrdl-regblock.readthedocs.io/en/latest/index.html#

In rtl -> modules -> RDL directory there is script which can be used to generate CSR SystemVerilog package files (csr_gen.py) and there are two predefine RDL files:

- CSR_regs_full.rdl
- CSR_regs_light.rdl

In **Table 5 Registers disabled in CSR versions** you can find description which registers are included in each predefined CSR versions.

Table 5 Registers disabled in CSR versions

Address Offset		CSR Version			
Address Offset	Registers Name				
0x00	LTPI Link Status	Ø	Ø		
0x04	LTPI Detect Capabilities Local	Ø	Ø		
0x08	LTPI Detect Capabilities Remote	Ø	Ø		
0x0C	LTPI Platform ID Local	Ø	Ø		
0x10	LTPI Platform ID Remote	Ø	×		
0x14	LTPI Advertise Capabilities Local Low	Ø			
0x18	LTPI Advertise Capabilities Local High	\square	Ø		
0x1C	LTPI Advertise Capabilities Remote Low	Ø			
0x20	LTPI Advertise Capabilities Remote High	Ø	☑		
0x24	LTPI Default Configuration Low	Ø	Ø		

0x28	LTPI Default Configuration High	\square	
0x2C	LTPI Link Alignment Error Counter	Ø	×
0x30	LTPI Link Lost Error Counter	V	×
0x34	LTPI CRC Error Counter	V	×
0x38	Unknown Comma Error Counter	V	×
0x3C	Link Speed Timeout Error Counter	V	×
0x40	Link Configure/Accept Timeout Error Counter		×
0x44	Link Training RX Frames Counter Low	Ø	×
0x48	Link Training RX Frames Counter High	V	×
0x4C	Link Training TX Frames Counter Low	V	×
0x50	Link Training TX Frames Counter High	V	×
0x54	Operational RX Frames Counter	V	×
0x58	Operational TX Frames Counter	V	×
0x80	LTPI Link Control	V	V

7. Resource utilization

Table 6 Resource utilization - LTPI IP Controller

MODULES	Submodule	Submodule options	LTPI IP settings	LC	Reg.	LTPI IP settings	LC	Reg.	LTPI IP settings - without dynamic PLL	LC	Reg.
ltni ocr		full version	EN	1954	1109						
ltpi_csr		light version				EN	497	360	EN	497	360
	mgmt_data_channel	with mailbox	EN	1318	1084						
		direct mm				EN	378	296	EN	380	296
	mgmt_gpio	max:1024 NL, 16 LL	EN - 1024 NL	36	14	EN - 16 NL	37	14	EN - 16 NL	36	14
mgmt_ltpi_top	mgmt_phy_top			3066	1623		1840	1098		1590	950
	mgmt_smbus	max: 6 smbus	EN - 6 SMBUS	1870	715	EN - 1 SMBUS	307	119	EN - 1 SMBUS	307	119
	mgmt_uart	max: 2 uart	EN - 2 UART	31	16	EN - 2 UART	35	22	EN - 2 UART	35	22
·					4561		3094	1909		2845	1761

Table 7 Resource utilization - LTPI IP Target

MODULES	Submodule	Submodule options	LTPI IP settings	LC	Reg.	LTPI IP settings	LC	Reg.	LTPI IP settings - without dynamic PLL	LC	Reg.
ltni oor		full version	EN	1967	1113						
ltpi_csr		light version				EN	507	364	EN	508	364
	mgmt_data_channel	with mailbox	EN	683	591						
		direct mm				EN	378	293	EN	376	293
	mgmt_gpio	max:1024 NL, 16 LL	EN - 1024 NL	39	15	EN - 16 NL	39	15	EN - 16 NL	39	15
mgmt_ltpi_top	mgmt_phy_top			3066	1626		1955	1162		1698	1014
	mgmt_smbus	max: 6 smbus	EN - 6 SMBUS	2009	745	EN - 1 SMBUS	326	124	EN - 1 SMBUS	328	124
	mgmt_uart	max: 2 uart	EN - 2 UART	30	16	EN - 2 UART	35	22	EN - 2 UART	37	22
					4106		3240	1980		2986	1832

8. Glossary

LVDS - Low-Voltage Differential Signaling

LTPI - LVDS Tunneling Protocol & Interface

OCP - Open Compute Project

DC-SCM - Data Center Secure Control Module

SCM - Secure Control Module

HPM - Host Processor Module

BMC - Board Management Controller

FSM - Finite State Machine

CSR - Control and Status Register

AVMM - Avalon® Memory-Mapped

9. References

DC-SCM 2.0 LVDS Tunneling Protocol & Interface Specification (LTPI):

https://drive.google.com/file/d/1qo3ZVEtWUtg7tULW7kpMHCg7OUNkWOOR/view

SystemRDL: https://accellera.org/downloads/standards/systemrdl

PeakRDL-regblock: https://peakrdl-regblock.readthedocs.io/en/latest/index.html#

SVUnit: http://agilesoc.com/open-source-projects/syunit/

10. License

OCP encourages participants to share their proposals, specifications and designs with the community. This is to promote openness and encourage continuous and open feedback. It is important to remember that by providing feedback for any such documents, whether in written or verbal form, that the contributor or the contributor's organization grants OCP and its members irrevocable right to use this feedback for any purpose without any further obligation.

It is acknowledged that any such documentation and any ancillary materials that are provided to OCP in connection with this document, including without limitation any white papers, articles, photographs, studies, diagrams, contact information (together, "Materials") are made available under the Creative Commons Attribution-ShareAlike 4.0 International License found here: https://creativecommons.org/licenses/by-sa/4.0/, or any later version, and without limiting the foregoing, OCP may make the Materials available under such terms.

As a contributor to this document, all members represent that they have the authority to grant the rights and licenses herein. They further represent and warrant that the Materials do not and will not violate the copyrights or misappropriate the trade secret rights of any third party, including without limitation rights in intellectual property. The contributor(s) also represent that, to the extent the Materials include materials protected by copyright or trade secret rights that are owned or created by any third-party, they have obtained permission for its use consistent with the foregoing. They will provide OCP evidence of such permission upon OCP's request. This document and any "Materials" are published on the respective project's wiki page and are open to the public in accordance with OCP's Bylaws and IP Policy. This can be found at http://www.opencompute.org/participate/legal-documents/. If you have any questions please contact OCP.

11. About Open Compute Foundation

At the core of the Open Compute Project (OCP) is its Community of hyperscale data center operators, joined by telecom and colocation providers and enterprise IT users, working with vendors to develop open innovations that, when embedded in product are deployed from the cloud to the edge. The OCP Foundation is responsible for fostering and serving the OCP Community to meet the market and shape the future, taking hyperscale led innovations to everyone. Meeting the market is accomplished through open designs and best practices, and with data center facility and IT equipment embedding OCP Community-developed innovations for efficiency, at-scale operations and sustainability. Shaping the future includes

investing in strategic initiatives that prepare the IT ecosystem for major changes, such as AI & ML, optics, advanced cooling techniques, and composable silicon. Learn more at www.opencompute.org.

