Level description: Year 7

In Year 7 students explore the diversity of life on Earth and continue to develop their understanding of the role of classification in ordering and organising information. They use and develop models to represent and analyse the flow of energy and matter through ecosystems and explore the impact of changing components within these systems . They investigate relationships in the Earth-sun-moon system and use models to predict and explain events. They extend their understanding of the particulate nature of matter and explore how interactions of matter and energy at the sub-microscopic scale determine macroscopic properties . They consider the effects of multiple forces when explaining changes in an object's motion. Students make accurate measurements and analyse relationships between system components. They construct and use models to test hypotheses about phenomena at scales that are difficult to study directly and use these observations and other evidence to draw conclusions . They begin to understand the relationship between science and society and appreciate the need for ethical and cultural considerations when acquiring data .

Inquiry questions can help excite students' curiosity and challenge their thinking. Following are examples of inquiry questions that could be used to prompt discussion and exploration:

- Mosquitoes are so annoying! What would the impact be if we got rid of them?
- What would Australian ecosystems look like without fire?
- How do simple machines make our lives easier?
- Why is being able to separate mixtures important?
- How have systems of classification changed over time? How do they differ across cultures?

Achievement standard: Year 7

By the end of Year 7 students explain how biological diversity is ordered and organised. They represent flows of matter and energy in ecosystems and predict the effects of environmental changes. They model cycles in the Earth-sun-moon system and explain the effects of these cycles on Earth phenomena. They represent and explain the effects of forces acting on objects. They use particle theory to explain the physical properties of substances and develop processes that separate mixtures. Students identify the factors that can influence development of and lead to changes in scientific knowledge. They explain how scientific responses are developed and can impact society. They explain the role of science communication in shaping viewpoints, policies and regulations. Students plan and conduct safe, reproducible investigations to test relationships and aspects of scientific models. They identify potential ethical issues and intercultural considerations required for field locations or use of secondary data. They use equipment to generate and record data with precision. They select and construct appropriate representations to organise data and information. They process data and information and analyse it to describe patterns, trends and relationships. They identify possible sources of error in methods and identify unanswered questions in conclusions and claims. They identify evidence to support their conclusions and construct arguments to support or dispute claims. They select and use language and text features appropriately for their purpose and audience when communicating their ideas and findings.