Last name	
First name	

LARSON—MATH 550—CLASSROOM WORKSHEET 20 Pascal's Triangle.

Concepts & Notation

- Sec. 5.1. Binomial coefficients, Pascal's triangle.
- 1. Draw several level's of Pascal's Triangle.

Let $\binom{n}{m}$ be the number of m-subsets of an n-set.

2. Find $\binom{3}{1}$.

3. Find $\binom{3}{2}$.

5.	Find	$\binom{n}{n-1}$
٠.	1 III a	(n-1)

6. How should we define $\binom{n}{0}$?

7. Find a formula for $\binom{n}{m}$ $(0 \le m \le n, m, n \in \mathbb{Z})$.

8. Can you prove it?

9. Draw 5 levels of a Pascal-style triangle where the 0^{th} (top) level is the single number $\binom{0}{0}$, and where the n^{th} level is the (n+1) numbers $\binom{n}{0}$, $\binom{n}{1}$, ... $\binom{n}{n}$.

10. What would you need to show in order to *prove* that this triangle is the same as Pascal's triangle?