

CO₂ Reduction on Nanoporous Copper Alloys

Jeffrey Whitridge, Mitchell Leers, Tyler Lindow

Motivation

1. CO_2 is a major greenhouse gas.

2. CO_2 can be recycled via reduction with copper by converting CO_2 to a variety of useful hydrocarbons fuels.

Overview of Geenhouse Gases: Carbon Dioxide, www.epa.gov/climatechange/ghgemissions/gases/co2.html

Note: All emission estimates from the *Inventory of U.S. Greenhouse Gas Emissions and Sinks:* 1990-2014.

Background

Copper is the best known reduction agent for CO₂ because it is the most thermodynamically favorable at transferring protons from solution to substrate

"How copper catalyzes the electroreduction of copper dioxide into hydrocarbon fuels" Peterson et. al.

Background cont.

Copper orients CO₂ in order to reduce it into different forms

• Multiple pathways allow for the conversion into several hydrocarbon products:

$$2H^+ + 2e^- \rightleftarrows H_2 \quad E_0 = 0.0 \text{ V vs. SHE}$$
 (1)

$$2\text{CO}_2 + 12\text{H}^+ + 12\text{e}^- \rightleftarrows \text{C}_2\text{H}_4 + 4\text{H}_2\text{O}$$
 $E_0 = 0.079 \text{ V vs. SHE}$ (2)

$$CO_2 + 8H^+ + 8e^- \rightleftharpoons CH_4 + 2H_2O \quad E_0 = 0.169 \text{ V vs. SHE}$$
 (3)

$$CO_2 + 2H^+ + 2e^- \rightleftharpoons CO + H_2O \quad E_0 = -0.103 \text{ V vs. SHE}$$
 (4)

$$CO_2 + H^+ + 2e^- \rightleftharpoons HCOO^ E_0 = -0.225 \text{ V vs. SHE}$$
 (5)

		E	Product	# e-	E
Formate H	2	-0.02	Acetaldehyde	10	0.05
Carbon monoxide	2	-0.10	Ethanol HO	12	0.09
Methanol CH 3OH	6	0.03	Ethylene	12	0.08
Glyoxal	6	-0.16	Ho	14	0.46
Methane CH ₄	8	0.17	Acetone	16	-0.14
Acetate	8	-0.26	Allyl alcohol	16	0.11
Glycolaldehyde	8	-0.03	Propionaldehyde	16	0.14
Ethylene glycol	10	0.20	1-Propanol	18	0.21

Kuhl et. al, 2012

Jeff

Background cont.

Fabrication nanostructures (various methods) can further increase efficiency and/or selectivity of conversion.

- a. Increased surface area
- b. Exposed higher order/energy surface plar

Etched nano-flower Xiang et. al, 2008

Dealloying of Al-Cu Qi et. al, 2009

HAADF-STEM planes of gold copper nanostars
Bazan-Diaz et. al, 2015

Jeff

Project Design & Methodology

Project Design: Thought Process

Aimed to use **electrodeposition** to deposit several metals (Zn, Sn, Cu, Ni) to increase CO₂ reduction product formation selectivity.

CO₂ reduction involving never before used alloy for this purpose.

Created a design space to test variables for CO₂ reduction.

Image: http://ssp.physics.upatras.gr/Electrodeposition.html

Our Design Space

Utilizing High Surface Area Structures: Hydrogen Evolution Negative Template

Fig. 3. 3D foam structures of copper (a,c,e), and tin (b,d,f) deposits at different magnifications. The copper and tin foam structures have been prepared by an electrodeposition for 20 s and 5 x respectively. Nanoporous Structures Prepared by an Electrochemical Deposition Process**

By Heon-Cheol Shin, Jian Dong, and Meilin Liu*

Increasing time

Tyler

Methods Summary

- 1. Fabrication of a two electrode (Pt/Cu) cell
- 2. Preparation of pure copper sample and platinum electrode
- 3. Calculation/preparation of metal sulfates (Cu, Sn, or Zn) and sulfuric acid to create electrolyte
- 4. Calibration of power supply to desired current
- 5. Electrodeposition of Cu, Zn, and/or Sn for fixed amounts of time or fixed current

Two electrode (Pt/Cu) cell

6. Wash, dry, store samples for preparation of

Mitch

Methods cont.

1. Characterization

- a. Qualitative Analysis
 - i. SEM/EDX
 - ii. Optical Microscope
- b. Quantitative Analysis
 - i. UV-VIS Reflectance Spectroscopy
 - ii. Optical Microscope
 - iii. Faradaic Efficiency

Gas Chromatograph

ESEM

Mitch

Results & Analysis

Dendritic Copper NanoStructures

A qualitative look at the dendritic nanostructures across different currents shows little observable differences

Tyler

Mass of Deposition

Mass of copper deposited from a copper (II) sulfate electrolytic solution on a copper substrate at different currents.

Scale of samples

CO₂ Reduction NanoPorous Copper Sample

Cu #11 - Before and after CO2 Test (6250x zoom)

Next Tests: Morphologies of various copper alloys

Pure Copper (12,500x)

Pure Tin (6250x)

Pure Zinc (6250x)

Copper-Tin (12,500x) Copper-Tin (391x)

Copper-Zinc (6250x) Copper-Zinc (391x)

Alloy composition vs. pore size

391x SEM

20x Optical (colorized)

Cu-Zn, smaller pores (~.025 - .13 mm)

Cu-only, larger pores (~.05-.15mm)

TABLE 17.1 Standard Reduction Potentials at 25 °C

IADEL IV.I	Standard Neduction Fotentials at 25 C					
	Reduction Half-Reaction	E° (V)				
Stronger	F ₂ (g) + 2 e ⁻	→ 2 F ⁻ (aq)	2.87	Weaker		
oxidizing	H2O2(aq) + 2H+(aq) + 2e-	> 2 H ₂ O(I)	1.78	reducin		
agent	$MnO_4^-(aq) + 8H^+(aq) + 5e^-$	\longrightarrow Mn ²⁺ (aq) + 4 H ₂ O(I)	1.51	agent		
A	Cl ₂ (g) + 2 e ⁻	> 2 Cl⁻(aq)	1.36			
4	Cr2O,2-(aq) + 14H+(aq) + 6e	$r \longrightarrow 2 \operatorname{Cr}^{3+}(aq) + 7 \operatorname{H}_2O(1)$	1.33			
	$O_2(g) + 4H^+(aq) + 4e^-$	> 2 H ₂ O(I)	1.23			
	Br ₂ (aq) + 2 e ⁻	> 2 Br⁻(aq)	1.09			
	Ag *(aq) + e-	→ Ag(s)	0.80			
	Fe3+(aq) + e-	\longrightarrow Fe ²⁺ (aq)	0.77			
	$O_2(g) + 2H^+(aq) + 2e^-$	$\longrightarrow H_2O_2(aq)$	0.70			
	1 ₂ (s) + 2 e ⁻	> 2 l⁻(aq)	0.54			
	$O_2(g) + 2 H_2O(l) + 4 e^-$	→ 4 OH - (aq)	0.40			
	Cu 2+(aq) + 2 e-	> Cu(s)	0.34			
	Sn ⁴⁺ (aq) + 2 e ⁻	\longrightarrow Sn ²⁺ (aq)	0.15			
	2 H*(aq) + 2 e-	→ H ₂ (g)	0			
	Pb ²⁺ (aq) + 2e ⁻	→ Pb(s)	- 0.13			
	Ni 2+(aq) + 2 e-	→ Ni(s)	- 0.26			
	Cd2+(aq) + 2 e-	—→ Cd(s)	- 0.40			
	Fe ²⁺ (aq) + 2 e ⁻	→ Fe(s)	- 0.45			
	Zn ²⁺ (aq) + 2 e ⁻	→ Zn(s)	- 0.76			
	2 H ₂ O(I) + 2 e ⁻	\longrightarrow H ₂ (g) + 2 OH ⁻ (aq)	- 0.83			
	Al 3+(aq) + 3 e-	\longrightarrow Al(s)	- 1.66			
Weaker	Mg ²⁺ (aq) + 2 e ⁻	\longrightarrow Mg(s)	- 2.37	Stronge		
oxidizing	Na +(aq) + e-	→ Na(s)	- 2.71	reducin		
agent	Li *(aq) + e*	\longrightarrow Li(s)	- 3.04	agent		

Table 17-1 Chemistry, 5/e
© 2008 Pearson Prentice Hall, Inc.

Image: https://www.premedhq.com/reduction-potential-and-cell-potential Tyler

Tuning Pore Size with Alloy Composition

Sen et. al, 2014

Tyler

Using Pore Size to Approximate Surface Area

Using geometrical calculation we find that on a ~0.1cm² copper substrate:

Nanoporous Cu 0.9cm² surface area

9x!

Measurement closely approximate double layer capacitance surface areas (Sen et. al, 2014)

Geometrical surface area approximation using assumption of close packed structure and 3 layer hydrogen bubble template (Sen et. al, 2014)

Final Tests: Developing a dendritic Zn-Sn-Cu Alloy

3125x

12500x

Energy Dispersive X-ray Spectrograph of Cu-Zn-Sn alloy

Preliminary Cu-Zn-Sn Tests: UV-VIS Reflectance

Reflectance vs Wavelength of Cu-Sn-Zn and Cu-only

Conclusions

Which samples would we want to run for future CO₂ reduction tests?

Multi-layer hydrogen evolution/3-D porous template

Current density

Cu 100mA 1min

Cu 500mA 1min

Pore Size/Nanostructure Planes

Time of deposition

Alloy composition

Cu-Zn 200mA 5 min

Cu-Zn 200mA 30s Tyler

Implications/Future Work

Further testing is necessary for standardization of sample preparation

Account for sources of error in order to gain better measurements of quantitative data

Additional quantitative measurements such as UV · VIS reflectivity, GC, pore size, faradaic efficiency, and DLC to continue defining "best" conditions.

Further controlling nanostructures

Application in a useful CO₂ reduction device

Cyclic Voltammetry - Double Layer Capacitance

- Sen et. al, 2014

What were some of our takeaways in doing this project?

Acknowledgements

Thank you to:

Mentor: Professor, Dr. David Fenning

Postdoctoral Fellow, Dr. Alireza Kargar

- Electrochemistry Troubleshooting, Dr. Arnold J. Forman
- All faculty and TAs involved in NANO 120B

Additional References

Hirunsit, Pussana, Wiwaporn Soodsawang, and Jumras Limtrakul. "CO2 Electrochemical Reduction to Methane and Methanol on Copper-Based Alloys: Theoretical Insight." *The Journal of Physical Chemistry C* 119.15 (2015): 8238-8249.

Hori, Yoshio, et al. "Electrocatalytic process of CO selectivity in electrochemical reduction of CO 2 at metal electrodes in aqueous media." *Electrochimica Acta* 39.11 (1994): 1833-1839.

Shin, H-C., and Meilin Liu. "Three-Dimensional Porous Copper—Tin Alloy Electrodes for Rechargeable Lithium Batteries." *Advanced Functional Materials* 15.4 (2005): 582-586.

Thank You! Questions?

Additional Slides

CO₂ Reduction of Dendritic/Porous Copper Alloys

CO₂ Reduction Efficiency

Stability Test over 1 hour

