Chapter 3: Structures of Metals & Ceramics

ISSUES TO ADDRESS...

- What is the difference in atomic arrangement between crystalline and noncrystalline solids?
- What features of a metal's/ceramic's atomic structure determine its density?
- How do the crystal structures of ceramic materials differ from those for metals?
- Under what circumstances does a material property vary with the measurement direction?

Chapter 3 - 1

Energy and Packing

Materials and Packing

Crystalline materials...

- atoms pack in periodic, 3D arrays
- typical of: -metals
 - -many ceramics
 - -some polymers

Noncrystalline materials...

- · atoms have no periodic packing
- occurs for: -complex structures
 -rapid cooling
- "Amorphous" = Noncrystalline

Adapted from Fig. 3.41(b), Callister & Rethwisch 4e.

Chapter 3 - 3

DSC profile of amorphous materials

(Differential scanning calorimetry)

Metallic Crystal Structures

 How can we stack metal atoms to minimize empty space?

2-dimensions

Now stack these 2-D layers to make 3-D structures

Chapter 3 - 5

Metallic Crystal Structures

- Tend to be densely packed.
- · Reasons for dense packing:
 - Typically, only one element is present, so all atomic radii are the same.
 - Metallic bonding is not directional.
 - Nearest neighbor distances tend to be small in order to lower bond energy.
- Metals have the simplest crystal structures.

We will examine three such structures...

Simple Cubic Structure (SC)

- Rare due to low packing density (only Po has this structure)
- · Close-packed directions are cube edges.

(Courtesy P.M. Anderson)

Chapter 3 - 7

Atomic Packing Factor (APF)

APF = Volume of atoms in unit cell*

Volume of unit cell

*assume hard spheres

• APF for a simple cubic structure = 0.52

Body Centered Cubic Structure (BCC)

- · Atoms touch each other along cube diagonals.
 - --Note: All atoms are identical; the center atom is shaded differently only for ease of viewing.

ex: Cr, W, Fe (α), Tantalum, Molybdenum

Coordination # = 8

(Courtesy P.M. Anderson)

2 atoms/unit cell: 1 center + 8 corners x 1/8

Chapter 3 - 9

Atomic Packing Factor: BCC

• APF for a body-centered cubic structure = 0.68

Face Centered Cubic Structure (FCC)

- Atoms touch each other along face diagonals.
 - --Note: All atoms are identical; the face-centered atoms are shaded differently only for ease of viewing.

ex: Al, Cu, Au, Pb, Ni, Pt, Ag
• Coordination # = 12

(Courtesy P.M. Anderson)

Adapted from Fig. 3.1(a),

Callister & Rethwisch 4e. 4 atoms/unit cell: 6 face x 1/2 + 8 corners x 1/8

Chapter 3 - 11

Atomic Packing Factor: FCC

• APF for a face-centered cubic structure = 0.74

maximum achievable APF Close-packed directions:

Unit cell contains: $6 \times 1/2 + 8 \times 1/8$

= 4 atoms/unit cell

atoms
unit cell

APF = $\frac{4}{3} \pi (\sqrt{2a/4})^3 \quad \text{volume}$ atom $\frac{\text{volume}}{\text{unit cell}}$

FCC Stacking Sequence

• ABCABC... Stacking Sequence

FCC Unit Cell

Chapter 3 - 13

Hexagonal Close-Packed Structure (HCP)

- ABAB... Stacking Sequence
- 3D Projection

• 2D Projection

- Coordination # = 12
- APF = 0.74
- c/a = 1.633

6 atoms/unit cell

ex: Cd, Mg, Ti, Zn

Theoretical Density, p

Density =
$$\rho = \frac{\text{Mass of Atoms in Unit Cell}}{\text{Total Volume of Unit Cell}}$$

$$\rho = \frac{n A}{V_C N_A}$$

where n = number of atoms/unit cell

A = atomic weight (g/mol)

 V_C = Volume of unit cell = a^3 for cubic

 N_A = Avogadro's number = 6.022 x 10²³ atoms/mol

Chapter 3 - 15

Theoretical Density, p

Atomic Bonding in Ceramics

- · Bonding:
 - -- Can be ionic and/or covalent in character.
 - -- % ionic character increases with difference in electronegativity of atoms.
- · Degree of ionic character may be large or small:

Adapted from Fig. 2.7, Callister & Rethwisch 4e. (Fig. 2.7 is adapted from Linus Pauling, The Nature of the Chemical Bond, 3rd edition. Copyright 1939 and 1940, 3rd edition copyright © 1960 by Cornell University.

Chapter 3 - 17

Ceramic Crystal Structures

Oxide structures

- oxygen anions larger than metal cations
- close packed oxygen in a lattice (usually FCC)
- cations fit into interstitial sites among oxygen ions

Factors that Determine Crystal Structure

1. Relative sizes of ions – Formation of stable structures:

T__↑ m, p values to achieve charge neutrality

Chapter 3 - 19

Coordination Number and Ionic Radii

• Coordination Number increases with $\frac{r_{\text{cation}}}{r_{\text{anion}}}$

Computation of Minimum Cation-Anion Radius Ratio

• Determine minimum $r_{\text{cation}}/r_{\text{anion}}$ for an octahedral site (C.N. = 6)

$$2r_{\text{anion}} + 2r_{\text{cation}} = 2\sqrt{2}r_{\text{anion}}$$

$$r_{\text{anion}} + r_{\text{cation}} = \sqrt{2}r_{\text{anion}}$$
 $r_{\text{cation}} = (\sqrt{2} - 1)r_{\text{anion}}$

$$\frac{r_{\text{cation}}}{r_{\text{anion}}} = \sqrt{2} - 1 = 0.414$$

Chapter 3 - 21

Bond Hybridization

Bond Hybridization is possible when there is significant covalent bonding

- hybrid electron orbitals form
- For example for SiC
 - $X_{\rm Si} = 1.8$ and $X_{\rm C} = 2.5$

% ionic character = 100 {1-exp[-0.25 $(X_{Si} - X_C)^2$]} = 11.5%

- ~ 89% covalent bonding
- Both Si and C prefer sp³ hybridization
- · Therefore, for SiC, Si atoms occupy tetrahedral sites

Example Problem: Predicting the Crystal Structure of FeO

· On the basis of ionic radii, what crystal structure would you predict for FeO?

Cation	Ionic radius (nm)
AI3+	0.053
Fe ²⁺	0.077
Fe ³⁺	0.069
Ca2+	0.100

Al 3+	0.053
Fe ²⁺	0.077
Fe ³⁺	0.069
Ca ²⁺	0.100

Anion	
O ² -	0.140
CI-	0.181
F-	0.133

· Answer:

$$\frac{r_{\text{cation}}}{r_{\text{anion}}} = \frac{0.077}{0.140}$$
$$= 0.550$$

based on this ratio, -- coord # = 6 because 0.414 < 0.550 < 0.732

-- crystal structure is NaCl

Data from Table 3.4, Callister & Rethwisch 4e.

Chapter 3 - 23

Rock Salt Structure

Same concepts can be applied to ionic solids in general. Example: NaCl (rock salt) structure

Adapted from Fig. 3.5, Callister & Rethwisch 4e. $r_{\text{Na}} = 0.102 \text{ nm}$

 $r_{\rm Cl} = 0.181 \ \rm nm$

 $r_{\rm Na}/r_{\rm Cl} = 0.564$

: cations (Na+) prefer octahedral sites

MgO and FeO

MgO and FeO also have the NaCl structure

So each Mg²⁺ (or Fe²⁺) has 6 neighbor oxygen atoms

Chapter 3 - 25

AX Crystal Structures

AX-Type Crystal Structures include NaCl, CsCl, and zinc blende

Cesium Chloride structure:

Adapted from Fig. 3.6, Callister & Rethwisch 4e.

So each Cs⁺ has 8 neighbor Cl⁻

AX₂ Crystal Structures

Fluorite structure

- Calcium Fluorite (CaF₂)
- · Cations in cubic sites
- UO₂, ThO₂, ZrO₂, CeO₂
- Antifluorite structure –
 positions of cations and
 anions reversed

Chapter 3 - 27

ABX₃ Crystal Structures

Density Computations for Ceramics

Number of formula units/unit cell

$$\Gamma = \frac{n(SA_C + SA_A)}{V_C N_A}$$
Avogadro's number

 SA_{c} = sum of atomic weights of all cations in formula unit SA_{a} = sum of atomic weights of all anions in formula unit

Chapter 3 - 29

Densities of Material Classes

15

Polymorphic Forms of Carbon

Diamond

- tetrahedral bonding of carbon
 - · hardest material known
 - very high thermal conductivity
- large single crystals gem stones
- small crystals used to grind/cut other materials
- diamond thin films
 - hard surface coatings used for cutting tools, medical devices, etc.

Adapted from Fig. 3.16, Callister & Rethwisch 4e.

Chapter 3 - 31

Polymorphic Forms of Carbon (cont)

Graphite

layered structure – parallel hexagonal arrays of carbon atoms

- weak van der Waal's forces between layers
- planes slide easily over one another -- good lubricant

Polymorphic Forms of Carbon (cont) Fullerenes and Nanotubes

- Fullerenes spherical cluster of 60 carbon atoms, C₆₀
 - Like a soccer ball
- Carbon nanotubes sheet of graphite rolled into a tube
 - Ends capped with fullerene hemispheres

Chapter 3 - 33

Polymorphism BCC→ FCC→ BCC

 Two or more distinct crystal structures for the same material (allotropy/polymorphism)

titanium α, β-Ti carbon

diamond, graphite

· Most engineering materials are polycrystals

color inset pages of . Callister 5e. (Fig. K is courtesy of Paul E. Danielson, Teledyne Wah Chang Albany)

· Nb-Hf-W plate with an electron beam weld.

• Each "grain" is a single crystal.

- · If grains are randomly oriented, overall component properties are not directional.
- Grain sizes typ. range from 1 nm to 2 cm (i.e., from a few to millions of atomic layers).

Chapter 3 - 35

Isotropic

A light tower next to the football field in Koreatech

Crystals as Building Blocks

Some engineering applications require single crystals:

-- diamond single crystals for abrasives

(Courtesy Martin Deakins, GE Superabrasives, Worthington, OH. Used with permission.) Fig. 9.40(c), Callister & Rethwisch 4e. (Fig. 9.40(c) courtesy of Pratt and Whitney).

-- turbine blades

- Properties of crystalline materials often related to crystal structure.
 - Ex: Quartz fractures more easily along some crystal planes than others.

(Courtesy P.M. Anderson)

Czochralski method of silicon https://youtu.be/xftnhfa-Dmo

Crystal Systems

Unit cell: smallest repetitive volume which contains the complete lattice pattern of a crystal.

14 Bravais Lattices in 3D

Point Coordinates

Point coordinates for unit cell center are

a/2, b/2, c/2 ½½½½

Point coordinates for unit cell corner are 111

Translation: integer multiple of lattice constants → identical position in another unit cell

Chapter 3 - 41

Crystallographic Directions

Algorithm

- 1. Vector repositioned (if necessary) to pass through origin.
- 2. Read off projections in terms of unit cell dimensions *a*, *b*, and *c*
- 3. Adjust to smallest integer values
- 4. Enclose in square brackets, no commas [uvw]

ex: 1, 0,
$$\frac{1}{2}$$
 => 2, 0, 1 => [201]

-1, 1, 1 \Rightarrow [$\overline{1}$ 11] where overbar represents a negative index

families of directions < uvw> angle bracket> The C

But of divection

Linear Density

• Linear Density of Atoms \equiv LD = $\frac{\text{Number of atoms}}{\text{Unit length of direction vector}}$

Rethwisch 4e.

ex: linear density of Al in [110] direction

$$a = 0.405 \text{ nm}$$

Chapter 3 - 43

Drawing HCP Crystallographic Directions (i)

Algorithm (Miller-Bravais coordinates)

- 1. Remove brackets
- 2. Divide by largest integer so all values are ≤ 1
- 3. Multiply terms by appropriate unit cell dimension a (for a_1 , a_2 , and a_3 axes) or c (for z-axis) to produce projections
- 4. Construct vector by stepping off these projections

Drawing HCP Crystallographic Directions (ii)

• Draw the $[\overline{1}\overline{2}13]$ direction in a hexagonal unit cell.

Algorithm

 a_1 a_2 a_3 z

1. Remove brackets

-2 1

3

2. Divide by 3

 $-\frac{1}{3}$ $-\frac{2}{3}$ $\frac{1}{3}$

3. Projections

 $-\frac{a}{3}$ $-\frac{2a}{3}$ $\frac{a}{3}$

4. Construct Vector

start at point o

proceed -a/3 units along a_1 axis to point p -2a/3 units parallel to a_2 axis to point q a/3 units parallel to a_3 axis to point r c units parallel to z axis to point s

[$\bar{1}\bar{2}13$] direction represented by vector from point o to point s

Chapter 3 - 45

Determination of HCP Crystallographic Directions (ii)

Adapted from p. 74, Callister & Rethwisch 4e.

[-4-53]

Algorithm

- 1. Vector repositioned (if necessary) to pass through origin.
- Read off projections in terms of threeaxis (a₁, a₂, and z) unit cell dimensions a and c
- 3. Adjust to smallest integer values
- 4. Enclose in square brackets, no commas, for three-axis coordinates [u'v'w']
- 5. Convert to four-axis Miller-Bravais lattice coordinates using equations below:

$$u = \frac{1}{3}(2u\ell - v\ell) \quad v = \frac{1}{3}(2v\ell - u\ell)$$
$$t = -(u + v) \qquad w = w\ell$$

6. Adjust to smallest integer values and enclose in brackets [uvtw]

Determination of HCP Crystallographic Directions (ii)

Determine indices for green vector

Example a_1 a_2

- 1. Reposition not needed
- 2. Projections *a a* 0*c* 1 1 0
- 3. Reduction 1 1 0
- 4. Brackets [110]
- 5. Convert to 4-axis parameters

$$u = \frac{1}{3}[(2)(1) - (1)] = \frac{1}{3} \qquad v = \frac{1}{3}[(2)(1) - (1)] = \frac{1}{3}$$
$$t = -(\frac{1}{3} + \frac{1}{3}) = -\frac{2}{3} \qquad w = 0$$

6. Reduction & Brackets

$$1/3, 1/3, -2/3, 0 \Rightarrow 1, 1, -2, 0 \Rightarrow [11\overline{2}0]$$

Chapter 3 - 47

z

Quiz

 Sketch a tetragonal unit cell, and within that cell indicate locations of the ½ 1 ½ and ¼ 1 ¾ point coordinates.

Quiz

- Within a cubic unit cell, sketch the following directions:
 - (a) $[\bar{1}10]$,
- (e) $[\overline{I}\overline{I}I]$,
- (b) $[\overline{1}\overline{2}1]$,
- (f) [122],
- (c) $[0\overline{1}2]$,
- (g) $[1\overline{2}\overline{3}], \epsilon$
- (d) $[1\bar{3}3]$,
- (h) [103].

Chapter 3 - 49

Crystallographic Planes

Crystallographic Planes

- · Miller Indices: Reciprocals of the (three) axial intercepts for a plane, cleared of fractions & common multiples. All parallel planes have same Miller indices.
- Algorithm
 - terms of a, b, c
 - 2. Take reciprocals of intercepts
 - 3. Reduce to smallest integer values
 - 4. Enclose in parentheses, no commas i.e., (hkl)

Chapter 3 - 51

Crystallographic Planes

			. 3. 3.	
exa	<u>ample</u>	а	b	С
1.	Intercepts	1	1	∞
2.	Reciprocals	1/1	1/1	1/∞
	·	1	1	0
3.	Reduction	1	1	0
4	Miller Indices	(110)		
4.	willer maices	(110)		
exa	<u>ample</u>	а	b	С
1.	Intercepts	1/2	∞	∞
	-			
2.	Reciprocals	1/1/2	1/∞	1/∞
		2	0	0
3.	Reduction	2	0	0
4.	Miller Indices	(100)	_	
т.	Willier Hidioes	(100))
		(20	ו טס)	

Crystallographic Planes

Family of Planes {hkl} Curly bracket

Ex:
$$\{100\} = (100), (010), (001), (\bar{1}00), (0\bar{1}0), (00\bar{1})$$

Chapter 3 - 53

Crystallographic Planes (HCP)

In hexagonal unit cells the same idea is used

<u>example</u>		a_1	a_2	a_3	C
1.	Intercepts	1	∞	-1	1
2.	Reciprocals	1	1/∞	-1	1
		1	0	-1	1
3.	Reduction	1	0	-1	1

4. Miller-Bravais Indices (1011)

Adapted from Fig. 3.24(b), Callister & Rethwisch 4e.

Crystallographic Planes

- We want to examine the atomic packing of crystallographic planes
- Iron foil can be used as a catalyst. The atomic packing of the exposed planes is important.
 - a) Draw (100) and (111) crystallographic planes for Fe.
 - b) Calculate the planar density for each of these planes.

Chapter 3 - 55

Planar Density of (100) Iron

Solution: At T < 912°C iron has the BCC structure.

Planar Density of (111) Iron

Chapter 3 - 57

X-Ray Diffraction

Electromagnetic Spectrum

- · Diffraction gratings must have spacings comparable to the wavelength of diffracted radiation.
- Can't resolve spacings < λ
- Spacing is the distance between parallel planes of atoms.

X-Rays to Determine Crystal Structure

• Incoming X-rays diffract from crystal planes.

Instrument Settings

- Source
 - Cu K_a
- · Type of measurement
 - Coupled 2θ
 - Detector scan
 - Etc.

Coupled 20 Measurements

- In "Coupled 2θ" Measurements:
 - The incident angle ω is always ½ of the detector angle 2θ .
 - The x-ray source is fixed, the sample rotates at θ °/min and the detector rotates at 2θ °/min.
- Angles
 - The incident angle (ω) is between the X-ray source and the sample.
 - The diffracted angle (2θ) is between the incident beam and the detector.
 - In plane rotation angle (Φ)

Chapter 3 -

- ✓ For every set of planes, there will be a small percentage of crystallites that are properly oriented to diffract
- ✓ Basic assumptions of powder diffraction:
 - For every set of planes, there is an equal number of crystallites that will diffract
- There is a statistically relevant number of crystallites

https://www.list.lu/fileadmin//files/Event/sites/tudor/files/event/4_Presentation_ Dr_Yves_Fleming.pdf

Bragg's law and Peak Positions.

$\lambda = 2d_{hkl}\sin\theta$

- For parallel planes of atoms, with a space $d_{\rm hkl}$ between the planes, constructive interference only occurs when Bragg's law is satisfied.
 - X-ray wavelengths λ are:
 - Cu K $_{\alpha 1}$ =1.540598 Å and Cu K $_{\alpha 2}$ =1.544426 Å Or Cu K $_{\alpha (avg)}$ =1.54278 Å
 - d_{hkl} is dependent on the lattice parameter (atomic/ionic radii) and the crystal structure

Chapter 3 -

- 1. W filament generate electrons (cathode)
- 2. Electrons heat Cu target (anode)
- 3. Cu target generate x-ray

Diffraction pattern for polycrystalline α -iron (BCC)

Adapted from Fig. 3.40, Callister 4e.

Chapter 3 - 65

Lattice spacing

The value of d, the distance between adjacent planes in the set (hkl), may be found from the following equations.

Rhombohedral:

$$\frac{1}{d^2} = \frac{(h^2 + k^2 + l^2)\sin^2\alpha + 2(hk + kl + hl)(\cos^2\alpha - \cos\alpha)}{a^2(1 - 3\cos^2\alpha + 2\cos^3\alpha)}$$

Orthorhombic:
$$\frac{1}{d^{2}} = \frac{h^{2}}{a^{2}} + \frac{k^{2}}{b^{2}} + \frac{l^{2}}{c^{2}}$$

$$Monoclinic: \frac{1}{d^{2}} = \frac{1}{\sin^{2}\beta} \left(\frac{h^{2}}{a^{2}} + \frac{k^{2}\sin^{2}\beta}{b^{2}} + \frac{l^{2}}{c^{2}} - \frac{2hl\cos\beta}{ac} \right)$$

$$Triclinic\colon \ \frac{1}{d^2} = \frac{1}{V^2} \left(S_{11} h^2 \, + \, S_{22} k^2 \, + \, S_{33} l^2 \, + \, 2 S_{12} h k \, + \, 2 S_{23} k l \, + \, 2 S_{13} h l \right)$$

Selection rules for cubic (hkl) S (hkl) S (hkl) 221,300 10 310 12 | 222

Chapter 3 -

Review of Systematic Absences in the Diffraction Patterns of 4 Cubic Structures

SUMMARY

- · Atoms may assemble into crystalline or amorphous structures.
- Common metallic crystal structures are FCC, BCC, and HCP.
 Coordination number and atomic packing factor are the same for both FCC and HCP crystal structures.
- We can predict the density of a material, provided we know the atomic weight, atomic radius, and crystal geometry (e.g., FCC, BCC, HCP).
- Interatomic bonding in ceramics is ionic and/or covalent.
- Ceramic crystal structures are based on:
 - -- maintaining charge neutrality
 - -- cation-anion radii ratios.
- Crystallographic points, directions and planes are specified in terms of indexing schemes. Crystallographic directions and planes are related to atomic linear densities and planar densities.

Chapter 3 - 69

SUMMARY

- Materials can be single crystals or polycrystalline.
 Material properties generally vary with single crystal orientation (i.e., they are anisotropic), but are generally non-directional (i.e., they are isotropic) in polycrystals with randomly oriented grains.
- Some materials can have more than one crystal structure. This is referred to as polymorphism (or allotropy).
- X-ray diffraction is used for crystal structure and interplanar spacing determinations.