САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Факультет прикладной математики – процессов управления

А. П. ИВАНОВ

ПРАКТИКУМ ПО ЧИСЛЕННЫМ МЕТОДАМ МЕТОД НЬЮТОНА

Методические указания

 $ext{Caнкт-}\Pi$ етербург 2016

ГЛАВА 1. РЕШЕНИЕ СКАЛЯРНЫХ УРАВНЕНИЙ

Для скалярного уравнения

$$f(x) = 0, \quad f(\cdot) \in \mathbb{C}^2(a, b) \tag{1}$$

далее рассматривается задача уточнения корня \bar{x} , локализованного на отрезке [a,b].

§1. Описание метода Ньютона

При наличии хорошего приближения x_k к корню \bar{x} функции $f(\cdot)$ можно использовать метод Ньютона, называемый также методом линеаризации или методом касательных. Расчётные формулы метода могут быть получены путём замены исходного уравнения (1) линейным уравнением в окрестности корня

$$f(x_k) + f'(x_k)(x - x_k) = 0, (1.1)$$

Решение этого уравнения принимается за очередное приближение к искомому корню уравнения

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}. (1.2)$$

Метод Ньютона имеет простую геометрическую интерпретацию:

Рис. 1.

график функции заменяется касательной к нему в точке $(x_k, f(x_k))$ и за очередное приближение x_{k+1} принимается абсцисса точки пересечения её с осью OX. Используя эту интерпретацию легко получить расчётные формулы (1.2) метода Ньютона и вследствие этой интерпретации он именуется также методом касательных.

Здесь x_0 , x_1 , x_3 поледовательные приближения к корню \bar{x} , полученные в результате применения метода Ньютона.

Ясно, что сходимость последовательности $\{x_k\}$ к корню зависит от свойств функции $f(\cdot)$ и не всегда имеет место. Так, легко представить, что уже приближение x_1 не попадает на исходный интервал и процесс итераций останавливается.

Приведём полезную теорему, гарантирующую в некоторых случаях сходимость метода Ньютона.

Теорема 1.1. Если $f(a) \cdot f(b) < 0$, причём f'(x) и f''(x) отличны от нуля (и, следовательно, сохраняют определённые знаки при $x \in [a,b]$), то, исходя из начального приближения $x_0 \in [a,b]$, удовлетворяющего условию $f(x_0) \cdot f''(x_0) > 0$, можно вычислить методом Ньютона по формуле (1.2) единственный корень \bar{x} уравнения (1) с любой степенью точности.

Замечание 1.1. Практическим критерием окончания вычислений является выполнение условия $|x_{n+1}-x_n|<\varepsilon$, где ε – требуемая точность вычисления корня.

Метод Ньютона – удобный способ вычисления корня целой степени. Поскольку задача извлечения корня $\sqrt[n]{c}$ равносильна задаче решения уравнения (1) с функцией $f(x) = x^n - c$, то расчётная формула метода Ньютона приобретает вид

$$x_{k+1} = \frac{n-1}{n}x_k + \frac{c}{nx_k^{n-1}}.$$

Пусть $n=2,\ c=2,\$ и тогда $f(x)=x^2-2.$ Можно принять [a,b]=[1,2]. Проверим выполнение условий теоремы 1.1: $f(1)=-1,\ f(2)=2,\ f'(x)=2x>0,\ f''(x)=2>0$ при $x\in[1,2].$ Положим $x_0=2.$ Поскольку $f(2)\cdot f''(2)=2\cdot 2=4>0,$ то обеспечена сходимость последовательности $\{x_k\}$, получаемой по формуле (1.2) к $\sqrt{2}$: $x_1=\frac{1}{2}(2+1)=1.5;\ x_2=1.41667;\ x_3=1.414216;$

 $x_4 = 1.414214$. Все цифры этого приближения являются верными.

Если же условия теоремы 1.1 не выполняются или проверка их затруднительна, то очередное "приближение" x_{k+1} может оказаться вне интервала, на котором расположен корень \bar{x} . В этом случае x_{k+1} строится либо методом половинного деления либо методом хорд. В первом случае полагают

$$x_{k+1} = \frac{a_k + b_k}{2},\tag{1.3}$$

во втором -

$$x_{k+1} = a_k - \frac{b_k - a_k}{f(b_k) - f(a_k)} \cdot f(a_k).$$
 (1.4)

Здесь a_k, b_k – левый и правый конец интервала, которому принадлежит корень \bar{x} на предыдущем шаге.

На начальном этапе полагаем $a_0=a,\ b_0=b$. Пусть для определённости $f(a)<0,\ f(b)>0.$ Если $x_1\in[a,b],$ то вычислив $c=f(x_1),$ полагаем $a_1=c,\ b_1=b_0$ при c<0, и $a_1=a_0,\ b_1=c$ при c>0 и повторяем вычисления.

Если же приближение $x_1 \not\in [a,b]$, то применяем формулы (1.3) либо (1.4) и поступаем как и выше: вычисляя $c=f(x_1)$, полагаем $a_1=c$, $b_1=b_0$ при c<0, и $a_1=a_0$, $b_1=c$ при c>0 и применяем метод Ньютона.

§2. О локализации корней

Если в уравнении f(x) = 0 функция $f(\cdot)$ непрерывна, то основой для локализации корня обычно служит следствие из теоремы Коши: если f(a)f(b) < 0, то на интервале [a,b] имеется по крайней мере один корень указанного уравнения (точнее нечётное число корней). Для локализации корня на интервале [a,b] можно применять, например, такие подходы:

• Графический метод. Исходное уравнение (1) приводится к виду g(x) = h(x), строятся графики функций y = g(x) и y = h(x) и определяется интервал оси OX, которому принадлежит абсцисса точки пересечения графиков. Он и используется для уточнения корня.

- Последовательный перебор. Интервал [a,b] разбивается на N равных отрезков и вычисляются значения функции $f(\cdot)$ в точках $x_k = a + kh$, $k = 0, 1, \ldots, N$, где h = (b a)/N. Если при этом найдётся интервал $[x_k, x_{k+1}]$, для которого $f(x_k)f(x_{k+1}) < 0$, то тем самым корень функции будет локализован с точностью h/2. Может оказаться, что функция $f(\cdot)$ не меняет знака на последовательности $\{x_k\}$. Если корень на [a,b] существует, то последнее означает, что шаг h слишком велик и его следует заменить на меньший, полагая, например, N = 2N.
 - Перебор с переменным шагом. Если функция f(x) является Липшицевой, т.е.

$$|f(x') - f(x'')| \le L|x' - x''|, \quad x', x'' \in [a, b],$$

то можно строить последовательность $\{x_k\}$ вида:

$$x_0 = a, \ x_{k+1} = x_k + \frac{|f(x_k)|}{L}.$$

Основанием к этому может служить то, что при f(x) = cx + d, можно принять L = |c| и в этом случае значение x_1 , полученное указанным способом, удовлетворяет уравнению f(x) = 0. Если L неизвестна, то можно её заменить через

$$L_k = \frac{|f(x_k) - f(x_{k-1})|}{|x_k - x_{k-1}|}.$$

• Использование мажорант. Если известны оценки функции $f(\cdot)$ на [a,b], т.е.

$$f^-(x) \le f(x) \le f^+(x),$$

и корни x^- и x^+ этих функций, то

$$\bar{x} \in [\min\{x^-, x^+\}, \max\{x^-, x^+\}].$$

Пример 2.1. Пусть $f(x) = \sin x + x^3 - 2$, $x \in [0, \pi]$. Поскольку на указанном интервале $0 < \sin x < 1$, то в данном случае можно принять: $f^-(x) = x^3 - 2$, $f^+(x) = 1 + x^3 - 2 = x^3 - 1$. Следовательно, $\bar{x} \in [1; \sqrt[3]{2}] \subset [1; 1, 28]$.

Итеративная последовательность метода Ньютона в соответствии с формулой (1.2) для этого уравнения имеет вид:

$$x_{k+1} = x_k - \frac{\sin x_k + x_k^3 - 2}{\cos x_k + 3x_k^2}.$$

ГЛАВА 2. МЕТОД НЬЮТОНА ДЛЯ РЕШЕНИЯ СИ-СТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

§1. Изложение метода

Рассмотрим систему нелинейных уравнений

$$F(x) = 0, \ F(x), \ x \in \mathbb{R}^n, \tag{1.1}$$

и предположим, что существует вектор $\bar{x} \in D \subset R^n$, являющийся решением системы (1.1). Будем считать, что $F(x) = (f_1(x), f_2(x), \dots, f_n(x))^T$, причём $f_i(\cdot) \in \mathbb{C}^1(D) \ \forall i$.

Разложим F(x) в окрестности точки $\bar{x}\colon F(x)=F(x^0)+F'(x^0)(x-x^0)+o(\|x-x^0\|).$ Здесь

$$F'(x) = \frac{\partial F(x)}{\partial x} = \begin{bmatrix} \frac{\partial f_1(x)}{\partial x_1}, & \frac{\partial f_1(x)}{\partial x_2}, & \dots & \frac{\partial f_1(x)}{\partial x_n} \\ \frac{\partial f_2(x)}{\partial x_1}, & \frac{\partial f_2(x)}{\partial x_2}, & \dots & \frac{\partial f_2(x)}{\partial x_n} \\ \dots & \dots & \dots & \dots \\ \frac{\partial f_n(x)}{\partial x_1}, & \frac{\partial f_n(x)}{\partial x_2}, & \dots & \frac{\partial f_n(x)}{\partial x_n} \end{bmatrix}$$

называется матрицей Якоби, а её определитель – якобианом системы (1.1). Исходное уравнение заменим следующим: $F(x^0) + F'(x^0)(x-x^0) = 0$. Считая матрицу Якоби $F'(x^0)$ неособой, разрешим это уравнение относительно x: $\hat{x} = x^0 - [F'(x)]^{-1}F(x^0)$. И вообще положим

$$x^{k+1} = x^k - [F'(x^k)]^{-1}F(x^k). (1.2)$$

При сделанных относительно $F(\cdot)$ предположениях имеет место сходимость последовательности $\{x^k\}$ к решению системы со скоростью геометрической прогрессии при условии, что начальное приближение x^0 выбрано из достаточно малой окрестности решения \bar{x} .

При дополнительном предположении $F(\cdot) \in \mathbb{C}^2[a,b]$ имеет место квадратичная сходимость метода, т.е.

$$||x^{k+1} - \bar{x}|| \le \omega ||x^k - \bar{x}||^2.$$

Сформулируем теорему.

Теорема 1.1. Пусть в некоторой окрестности решения \bar{x} системы (1.1) функции $f_i(\cdot) \in \mathbb{C}^2[a,b]$ и якобиан системы отличен от нуля в этой окрестности. Тогда существует δ -окрестность точки \bar{x} такая, что при любом выборе начального приближения x^0 из этой окрестности последовательность $\{x^k\}$ не выходит из неё и имеет место квадратичная сходимость этой последовательности.

Замечание 1.1. В качестве критерия окончания процесса итераций обычно берут условие: $||x^{k+1} - x^k|| < \varepsilon$.

Замечание 1.2. Сложность метода Ньютона – в обращении матрицы Якоби. Вводя обозначение $\delta x^k = x^{k+1} - x^k$ получаем для вычисления δx^k СЛАУ

$$\frac{\partial F(x^k)}{\partial x} \cdot \delta x^k = -F(x^k),\tag{1.3}$$

откуда и находим искомую поправку δx^k , а затем и следующее приближение $x^{k+1} = x^k + \delta x$ к решению \bar{x} . Очевидно, что это значительно сокращает количество арифметических операций для построения очередного приближения.

3 a me vanue 1.3. Начиная с некоторого шага k_0 решают стационарную СЛАУ

$$\frac{\partial F(x^{k_0})}{\partial x} \cdot \delta x^k = -F(x^k).$$

Данное видоизменение носит название модифицированный метод Ньютона.

Замечание 1.4. (О выборе начального приближения). Пусть вектор-функция $\Phi(\lambda,x)$ такова, что $\Phi(1,x)=F(x)$, а система $\Phi(0,x)=0$ может быть решена. Тогда разбивая [0,1] на N частей решают методом Ньютона набор из N систем

$$\Phi(i/N, x) = 0, \ i = \overline{1, N},$$

принимая для каждой следующей системы в качестве начального приближения решение предыдущей системы.

§2. Пример решения системы методом Ньютона

Рассмотрим задачу решения системы нелинейных уравнений с точностью $\varepsilon = 0.001$:

$$\begin{cases} \sin(2x - y) - 1.2x = 0.4; \\ 0.8x^2 + 1.5y^2 = 1. \end{cases}$$

Отделение корней проведём графически (см. рисунок 2).

Рис. 2.

Второе уравнение системы геометрически суть эллипс с полуосями $\left(\frac{\sqrt{5}}{2},\frac{\sqrt{6}}{2}\right)$. Кривую, соответствующую первому уравнению, строим по точкам в диапазоне $x\in[-1.5;\ +1.5]$.

Система имеет, судя по рисунку, четыре решения. Уточним одно из них, расположенное в четвёртой четверти, приняв в качестве начального приближения значения $x_0 = 0.4; \ y_0 = -0.75.$

$$\begin{cases} f_1(x,y) = \sin(2x-y) - 1.2x - o.4; \\ f_2(x,y=0.8x^2 + 1.5y^2 - 1. \end{cases}$$

Имеем далее:

$$\begin{cases} (f_1(x,y))'_x = 2\cos(2x - y) - 1.2; \\ (f_2(x,y))'_x = 1.6x, \\ (f_1(x,y))'_y = -\cos(2x - y); \\ (f_2(x,y))'_y = 3y. \end{cases}$$

Уточнение корней будем вести методом Ньютона с учётом замечания 1.2:

$$\begin{cases} x_{n+1} = x_n + g_n; \\ y_{n+1} = y_n + h_n, \end{cases}$$

где g_n и h_n – решение СЛАУ (1.3):

$$\begin{cases} (f_1(x_n, y_n))'_x g_n + (f_1(x_n, y_n))'_y h_n = -f_1(x_n, y_n); \\ (f_2(x_n, y_n))'_x g_n + (f_2(x_n, y_n))'_y h_n = -f_2(x_n, y_n). \end{cases}$$

Отсюда последовательно получаем:

$$\begin{cases} x_1 = 0.50; \\ y_1 = -0.733, \end{cases} \begin{cases} x_2 = 0.4940; \\ y_2 = -0.7083, \end{cases}$$
$$\begin{cases} x_3 = 0.4913; \\ y_3 = -0.7339, \end{cases} \begin{cases} x_4 = 0.4912; \\ y_4 = -0.7335. \end{cases}$$

Поскольку три первые знака после запятой установились, процесс вычислений заканчиваем (см. замечание 1.1).

ОГЛАВЛЕНИЕ

Гла	ва 1. Решение скалярных уравнений	2
§ 1.	Описание метода Ньютона	2
§ 2.	О локализации корней	4
Гла	ва 2. Метод Ньютона для решения систем нелиней-	
	ных уравнений	7
§ 1.	Изложение метода	7
§ 2.	Пример решения системы методом Ньютона	9