Sampling People, Records, & Networks

Jim Lepkowski, PhD **Professor & Research Professor Emeritus** Institute for Social Research, University of Michigan Research Professor. Joint Program in Survey Methodology, University of Maryland

Unit 5

- I Systematic selection
- 2 Intervals with fractions
- 3 List order
- 4 Uncertainty estimation

- Unit 1: Sampling as a research tool
- Unit 2: Mere randomization
- Unit 3: Saving money
- Unit 4: Being more efficient
- Unit 5: Simplifying sampling
 - I Systematic selection
 - 2 Intervals with fractions
 - 3 List order
 - 4 Uncertainty estimation
- Unit 6: Some extensions & applications

- The problem
- Rounding
- Circular list
- Fractional interval

- Unit 1: Sampling as a research tool
- Unit 2: Mere randomization
- Unit 3: Saving money
- Unit 4: Being more efficient
- Unit 5: Simplifying sampling
 - I Systematic selection
 - 2 Intervals with fractions
 - 3 List order
 - 4 Uncertainty estimation
- Unit 6: Some extensions & applications

- The problem
- Rounding
- Circular list
- Fractional interval

- To repeat the process, first determine the sampling interval k = N / n
- Select a random number (RN) from I to k
- Add k repeatedly
- Suppose, for example, there were N = 12,000 dwellings in a city and a sample of n = 500 is required
 - k = 12,000/500 = 24
 - Take a RN from 01 to 24, say 03
 - Take the third dwelling, and every 24th thereafter: 3, 27, 51, etc.

- The problem
- Rounding
- Circular list
- Fractional interval

- But what do we do in the more common situation where k is not an integer?
- Examples:
 - N = 9, n = 2, and k = 4.5
 - N = 952, n = 200, and k = 4.76
 - N = 170,345, n = 1,250, and k = 136.272

- The problem
- Rounding
- Circular list
- Fractional interval

- But what do we do in the more common situation where k is not an integer?
- Examples:
 - N = 9, n = 2, and k = 4.5
 - N = 952, n = 200, and k = 4.76
 - N = 170,345, n = 1,250, and k = 136.272
- Consider three alternatives ...

- The problem
- Rounding
- Circular list
- Fractional interval

- First, round the fractional interval
- For example, when N = 9, n = 2, take k = 4 or 5

- The problem
- Rounding
- Circular list
- Fractional interval

- First, round the fractional interval
- For example, when N = 9, n = 2, take k = 4 or 5
 - If k = 4 and RN = I, the sample is the three elements I,
 5, 9.
 - If RN = 2, 3, or 4, the sample has only two elements
 - If k = 5 and RN = 1, 2, 3, or 4, the sample has two elements
 - If RN = 5, the sample has only one element

- The problem
- Rounding
- Circular list
- Fractional interval

- First, round the fractional interval
- For example, when N = 9, n = 2, take k = 4 or 5
 - If k = 4 and RN = I, the sample is the three elements I,
 5, 9.
 - If RN = 2, 3, or 4, the sample has only two elements
 - If k = 5 and RN = 1, 2, 3, or 4, the sample has two elements
 - If RN = 5, the sample has only one element
- What would happen if N = 952 and n = 200?
 - Rounding k to 5, RN's 1, 2, 3, & 4 select 191, and RN 5 selects 190 neither sample size is 200!

- The problem
- Rounding
- Circular list
- Fractional interval

- First, round the fractional interval
- For example, when N = 9, n = 2, take k = 4 or 5
 - If k = 4 and RN = I, the sample is the three elements I,
 5, 9.
 - If RN = 2, 3, or 4, the sample has only two elements
 - If k = 5 and RN = 1, 2, 3, or 4, the sample has two elements
 - If RN = 5, the sample has only one element
- What would happen if N = 952 and n = 200?
 - Rounding k to 5, RN's 1, 2, 3, & 4 select 191, and RN 5 selects 190 neither sample size is 200!
- What about for N = 170,345 and n = 1,250?
 - The sample size can be either 1252 or 1253

- The problem
- Rounding
- Circular list
- Fractional interval

- First, round the fractional interval
- For example, when N = 9, n = 2, take k = 4 or 5
 - If k = 4 and RN = 1, the sample is the three elements 1, 5, 9.
 - If RN = 2, 3, or 4, the sample has only two elements
 - If k = 5 and RN = 1, 2, 3, or 4, the sample has two elements
 - If RN = 5, the sample has only one element
- What would happen if N = 952 and n = 200?
 - Rounding k to 5, RN's 1, 2, 3, & 4 select 191, and RN 5 selects 190 neither sample size is 200!
- What about for N = 170,345 and n = 1,250?
 - The sample size can be either 1252 or 1253
- Rounding thus has the problem that the sample size is not fixed, and we don't get the target sample size!

- The problem
- Rounding
- Circular list
- Fractional interval

- Second solution is one some people prefer
- Treat the list as circular
 - As beore, calculate the interval k = N / n, and round up or down, say to k^*
 - Choose a RN anywhere from I to N at random
 - Then start counting every k*th thereafter
 - Keep going until exactly n elements are selected
- But what if you get to the end of the list before you have n elements?

- The problem
- Rounding
- Circular list
- Fractional interval

- Answer: "wrap"
 - Think about the list like it is a clock:

- The problem
- Rounding
- Circular list
- Fractional interval

- Suppose n = 5 and N = 12, or k = 12/5 = 2.4
 - Round to [k] = 2, and choose random start 7:

- The problem
- Rounding
- Circular list
- Fractional interval

- Take every 2 after starting at 7 ...
 - And then 9 ... and then 11 ... and then ...

- The problem
- Rounding
- Circular list
- Fractional interval

- ... and then ... I
 - And then 3 ... and then ...

- The problem
- Rounding
- Circular list
- Fractional interval

- ... and then ... I
 - And then 3 ... and then ... STOP because n = 5

- The problem
- Rounding
- Circular list
- Fractional interval

- Remember, start anywhere on the list ...
 - ... and wrap

- The problem
- Rounding
- Circular list
- Fractional interval

- Third, there's another more widely used technique that uses the fraction
- Suppose that N = 23 and n = 5, so that k = 23/5 = 4.6
- As we've seen, if [k] = 5 is applied, n = 4 or 5

	1	2	3	4	5
1	1	2	3	4	5
2	6	7	8	9	10
3	11	12	13	14	15
4	16	17	18	19	20
5	21	22	23		

- The problem
- Rounding
- Circular list
- Fractional interval

- Here, use the fractional interval ...
 - Choose a random start from 0.1 to 4.6
 - But how do you do that?

- The problem
- Rounding
- Circular list
- Fractional interval

- Here, use the fractional interval ...
 - Choose a random start from 0.1 to 4.6
 - But how do you do that?
- One way is with a table of random numbers
- Since we need a number from 0.1 to 4.6, why not choose a random number from 01 to 46
- Suppose the number is 35
- "Insert" a decimal to make it fractional: 3.5

- The problem
- Rounding
- Circular list
- Fractional interval

- Here, use the fractional interval ...
 - Choose a random start from 0.1 to 4.6
 - But how do you do that?
- One way is with a table of random numbers
- Since we need a number from 0.1 to 4.6, why not choose a random number from 01 to 46
- Suppose the number is 35
- "Insert" a decimal to make it fractional: 3.5

 $\frac{3}{8} + \frac{6}{4}$

- Alternatively, generate a UNIFORM random number from zero to 1 in statistical software, say 0.76087
- Multiply by 4.6, and get 3.5

- The problem
- Rounding
- Circular list
- Fractional interval

- But then what?
 - Do systematic counting ...
 - But "count" every 4.6 ...

- The problem
- Rounding
- Circular list
- Fractional interval

- But then what?
 - Do systematic counting ...
 - But "count" every 4.6 ...
 - Starting with (1) 3.5, we 'count' to (2) 3.5 + 4.6 = 8.1

$$\frac{3}{8} + \frac{6}{4}$$

- The problem
- Rounding
- Circular list
- Fractional interval

- But then what?
 - Do systematic counting ...
 - But "count" every 4.6 ...
 - Starting with (I) 3.5, we 'count' to (2) 3.5 + 4.6 = 8.1 ...
 - And again, (3) $8.1 + 4.6 = 12.7 \dots$

- The problem
- Rounding
- Circular list
- Fractional interval

- But then what?
 - Do systematic counting ...
 - But "count" every 4.6 ...
 - Starting with (I) 3.5, we 'count' to (2) 3.5 + 4.6 = 8.1 ...
 - And again, (3) $8.1 + 4.6 = 12.7 \dots$
 - And again, (4) $12.7 + 4.6 = 17.3 \dots$

- The problem
- Rounding
- Circular list
- Fractional interval

- But then what?
 - Do systematic counting ...
 - But "count" every 4.6 ...
 - Starting with (1) 3.5, we 'count' to (2) 3.5 + 4.6 = 8.1 ...
 - And again, (3) 8.1 + 4.6 = 12.7 ...
 - And again, (4) $12.7 + 4.6 = 17.3 \dots$
 - And again, (5) $17.3 + 4.6 = 21.9 \dots$

- The problem
- Rounding
- Circular list
- Fractional interval

- But then what?
 - Do systematic counting ...
 - But "count" every 4.6 ...
 - Starting with (1) 3.5, we 'count' to (2) 3.5 + 4.6 = 8.1 ...
 - And again, (3) 8.1 + 4.6 = 12.7 ...
 - And again, (4) 12.7 + 4.6 = 17.3 ...
 - And again, (5) $17.3 + 4.6 = 21.9 \dots$
 - And just to be sure, one more time gives us, (5) 21.9
 + 4.6 = 26.5!

- The problem
- Rounding
- Circular list
- Fractional interval

- But then what?
 - Do systematic counting ...
 - But "count" every 4.6 ...
 - Starting with (I) 3.5, we 'count' to (2) 3.5 + 4.6 = 8.1 ...
 - And again, (3) $8.1 + 4.6 = 12.7 \dots$
 - And again, (4) $12.7 + 4.6 = 17.3 \dots$
 - And again, (5) $17.3 + 4.6 = 21.9 \dots$
 - And just to be sure, one more time gives us, (5) 21.9
 + 4.6 = 26.5!
 - Oops! We're off the list!

- The problem
- Rounding
- Circular list
- Fractional interval

- But before we got off the list, we had n=5 "selections"
 - 3.5, 8.1, 12.7. 17.3, and 21.9
- What do we do with the decimals, though?

- The problem
- Rounding
- Circular list
- Fractional interval

- But before we got off the list, we had n=5 "selections"
 - 3.5, 8.1, 12.7. 17.3, and 21.9
- What do we do with the decimals, though?
 - Truncate to the whole number
 - That is, our selections are
 - 3.5, 8.1, 12.7. 17.3, and 21.9 -

- The problem
- Rounding
- Circular list
- Fractional interval

- But before we got off the list, we had n= 5
 "selections"
 - 3.5, 8.1, 12.7. 17.3, and 21.9
- What do we do with the decimals, though?
 - Truncate to the whole number
 - That is, our selections are
 - 3.5, 8.1, 12.7. 17.3, and 21.9 -
- We have chosen elements 3, 8, 12, 17, 21!

RS	01	02	03	04	05	06	07	08	09	1 0	1 1	1 2	1 3	1 4	1 5
	4 7	4 8	4 9	5 0	5 1	5 2	5 3	5 4	5 5	5 6	5 7	5 8	5 9	60	61
	93	94	9 5	96	97	98	99	100	10 1	10 2	10 3	104	10 5	10 6	10 7
	13 9	140	141	142	143	144	14 5	146	147	14 8	149	15 0	151	15 2	15 3
	18 5	18 6	187	18 8	189	19 0	19 1	192	19 3	194	19 5	19 6	197	198	19 9
	231	23 2	23 3	234	23 5	23 6	237	23 8	23 9						

RS	3 2	3 3	34	3 5	3 6	3 7	3 8	3 9	4 0	41	4 2	4 3	4 4	4 5	4 6
	7 8	7 9	80	81	8 2	8 3	84	8 5	8 6	8 7	88	89	90	91	92
	12 4	12 5	12 6	12 7	12 8	12 9	13 0	131	13 2	13 3	13 4	13 5	13 6	137	13 8
	17 0	17 1	17 2	17 3	17 4	17 5	17 6	17 7	17 8	17 9	180	181	18 2	18 3	184
	21 6	21 7	21 8	21 9	22 0	221	22 2	22 3	22 4	22 5	22 6	22 7	22 8	22 9	23 0

RS	01	02	03	04	05	06	07	08	09	1 0	1 1	1 2	1 3	14	1 5
	4 7	4 8	4 9	5 0	5 1	5 2	5 3	5 4	5 5	5 6	5 7	5 8	5 9	60	61
	9 3	94	9 5	96	97	98	99	10 0	101	102	10 3	10 4	10 5	106	107
	13 9	140	141	14 2	14 3	14 4	14 5	14 6	147	14 8	14 9	15 0	151	15 2	15 3
	18 5	186	187	188	189	19 0	191	19 2	19 3	194	19 5	19 6	197	198	19 9
	231	23 2	23 3	23 4	23 5	23 6	237	23 8	23 9						
RS	3 2	3 3	3 4	35	3 6	3 7	3 8	3 9	4 0	4 1	4 2	4 3	4 4	4 5	4 6
	7 8	7 9	80	81	8 2	8 3	84	8 5	8 6	8 7	88	89	90	91	9 2
	12 4	12 5	12 6	127	12 8	12 9	13 0	131	13 2	13 3	134	13 5	13 6	13 7	13 8
	17 0	171	17 2	173	17 4	17 5	17 6	17 7	17 8	17 9	180	181	182	183	184
	21 6	21 7	21 8	219	22 0	221	22 2	22 3	22 4	22 5	22 6	22 7	22 8	22 9	23 0

RS	01	02	03	04	05	06	07	08	09	1 0	1 1	1 2	1 3	1 4	1 5
	4 7	4 8	4 9	5 0	51	5 2	5 3	5 4	5 5	5 6	5 7	5 8	5 9	60	61
	93	94	9 5	9 6	97	98	99	100	101	10 2	10 3	104	10 5	10 6	10 7
	13 9	140	141	142	143	144	14 5	14 6	147	14 8	149	15 0	151	15 2	15 3
	18 5	18 6	187	18 8	189	19 0	191	19 2	19 3	194	19 5	19 6	197	19 8	19 9
	231	23 2	23 3	234	235	23 6	237	23 8	23 9						

RS	3 2	3 3	34	3 5	3 6	3 7	3 8	3 9	4 0	41	4 2	4 3	4 4	4 5	4 6
	7 8	7 9	80	81	8 2	8 3	84	8 5	8 6	8 7	88	89	90	91	92
	12 4	12 5	12 6	12 7	12 8	12 9	13 0	131	13 2	13 3	13 4	13 5	13 6	137	13 8
	17 0	17 1	17 2	17 3	17 4	17 5	17 6	17 7	17 8	17 9	180	181	18 2	18 3	184
	21 6	21 7	21 8	21 9	22 0	221	22 2	22 3	22 4	22 5	22 6	22 7	22 8	22 9	23 0

- The problem
- Rounding
- Circular list
- Fractional interval

$\frac{3}{8} + \frac{6}{4}$

What does this all mean?

Element	Random start	No. of RS's	f
1	10-19	10	1/4.6
2	20-29	10	1/4.6
3	30-39	10	1/4.6
4	40-46,01-03	10	1/4.6
5	04-13	10	1/4.6
23	01-09,46	10	1/4.6

- The problem
- Rounding
- Circular list
- Fractional interval

$\frac{3}{8} + \frac{6}{4}$

What does this all mean? Simple method that is epsem

Element	Random start	No. of RS's	f
1	10-19	10	1/4.6
2	20-29	10	1/4.6
3	30-39	10	1/4.6
4	40-46,01-03	10	1/4.6
5	04-13	10	1/4.6
23	01-09,46	10	1/4.6

Unit 5

- I Systematic selection
- 2 Intervals with fractions
- 3 List order
- 4 Uncertainty estimation

- Unit 1: Sampling as a research tool
- Unit 2: Mere randomization
- Unit 3: Saving money
- Unit 4: Being more efficient
- Unit 5: Simplifying sampling
 - I Systematic selection
 - 2 Intervals with fractions
 - 3 List order
 - 4 Uncertainty estimation
- Unit 6: Some extensions & applications

