INTRODUCTION

In this project our aim is to design very basic ATM(Automated Teller Machine) using Verilog HDL and to implement our ATM design on the BASYS FPGA board.

MATERIALS

- ISE design suite 14.7 (for programming verilog)
- BASYS FPGA BOARD

PROCEDURE

- 1. ASM chart of the assignment is created to understand
 - Inputs: rst, clk, BTN1, BTN2, BTN3, SW
 - States: ATM_MENU, IDLE, LOCK, MONEY, PASS_CHG_1, PASS_CHG_2, PASS_CHG_3, PASS_ENT_1, PASS_ENT_2, PASS_ENT_3, PASS_NEW, WARNING
 - Outputs LED's, SSD

- 2. Project's "state transition" (atm_code.v) parts are implemented on verilog HDL with 3 always statement:
 - o 1 sequential always statement for state transitions and
 - 1 combinatorial always statement for next state definitions.
 - 1 sequential always statement for locking our ATM for desired second according to related state.
- 3. Project's outputs are assigned another combinatorial always statement. (top module.v and related given modules and pins.ucf file for implementing design on FPGA board)
 - 1 combinatorial always statement for FPGA outputs (LED's and SW)

SIMULATION RESULTS

Simulation screenshots based on simulation scenario.

a.Reset Circuit

b.Inset the debit card by pressing BTN3

c.Enter the password correctly and go to the ATM menu state.

d.Go to the money operation state by pressing BTN3 AND e. Deposit 5 into your account

f.Go back to the ATM menu state by pressing BTN1

g. Go to password change state by pressing BTN2

h.Enter your current password correctly

i.Enter the new password

J. Log out from the ATM by pressing BTN1

K. Inset the debit card by pressing BTN3

L. Enter the password wrong for 3 times

M. Inset the debit card by pressing BTN3

N.Enter the password correctly and go to the ATM menu state

O. Go to the money operation state by pressing BTN3 AND P. Withdraw 4 from your account

Q. Withdraw 2 from your account

R.Go back to the ATM menu state by pressing BTN1

S. Go to the password change state by pressing BTN2

T. Enter a current password wrong for 3 times

Name	Value	 3,000 ns	3,200 ns	3,400 ns	3,600 ns	3,800 ns	4,000 ns	4,200 ns	4,400 ns	4,600 ns	4,800 ns
l∰ rst	0										
₹ clk	0										
1 BTN3	0										
1 BTN2	0										
l BTN1	0										
▶ 👹 SW(3:0)	1110					1110					
▶ N LED[7:0]	00000001		11111111		X			000000	01		
▶ 🎇 digit4[6:0]	0110001		0111000		X			01100	D1		
▶ ™ digit3[6:0]	0001000					0001000					
▶ ™ digit2[6:0]	1111010		1111001		X			11110	10		
▶ 🌃 digit1[6:0]	1000010		1110001		X			10000	10		
current_state(3:0)	0000		0100		X			0000			
▶ 👹 balance[15:0]	0000000000000000					000000000000000000001					
▶ 👹 password[3:0]	1001					1001					

IMPLEMENTATION DETAILS

FOR Synthesis

Device Utilization Summary (estimated values)								
Logic Utilization	Used	Available	Utilization					
Number of Slices	172	960	17%					
Number of Slice Flip Flops	167	1920	8%					
Number of 4 input LUTs	323	1920	16%					
Number of bonded IOBs	28	108	25%					
Number of GCLKs	2	24	8%					

• Percentage of the utilized 4 input LUTs are 16% for synthesis

Clock information for synthesis

• Delay of the circuit is 17.608 ns which is assumed by the synthesis

FOR Implementation

				,					
Device Utilization Summary [_1]									
Logic Utilization	Used	Available	Utilization	Note(s)					
Number of Slice Flip Flops	167	1,920	8%						
Number of 4 input LUTs	250	1,920	13%						
Number of occupied Slices	182	960	18%						
Number of Slices containing only related logic	182	182	100%						
Number of Slices containing unrelated logic	0	182	0%						
Total Number of 4 input LUTs	321	1,920	16%						
Number used as logic	250								
Number used as a route-thru	71								
Number of bonded <u>IOBs</u>	28	108	25%						
Number of BUFGMUXs	2	24	8%						
Average Fanout of Non-Clock Nets	3.28								

• Percentage of the utilized 4 input LUTs are 16% for implementation

Clock information for implementation

• Delay of the circuit is 18.809 ns which is assumed by the implementation