Assembly and Investigation of *Trichoderma*Strains Conferring Resistance to Soils with High Salt and Hydrocarbon Content Connor Burbridge

November 22, 2021

Background on Trichoderma

- Trichoderma is an opportunistic symbiotic fungi that colonizes plant roots
- ► This fungus has been shown to provide several benefits to plants including:
 - Increased resistance to abiotic and biotic stressors
 - Facilitating nutrient uptake
 - Increased germination rates
- We seek to understand the mechanisms behind these benefits

What is unique to this work?

- ► Two interesting strains have been identified in the prairie regions of Canada
- ► These srains are DC1 and Tsth20
- ► Have been shown to increase crop tolerance to soils with high salt and high hydrocarbon content
- We would like to know more about these strains by identifying important secondary metabolites such as polyketides, non-ribosomal peptide synthetases as well as effector and signalling peptides
- ► However, we do not have assemblies for these strains and they have yet to be truly classified

Proposed Methods

Preliminary Results

- We currently have preliminary results from Illumina data only
- Nanopore data is ready but has not been processed yet
- ► Results will be shown for Illumina assembly's of DC1 and Tsth20 along with preliminary annotation results

Results: Assembly Metrics

Strain	Total Contigs	Total Length	Largest Contig	GC%	N50	L50
Tsth20	815	41.67 Mb	1.63 Mb	47.30	478.22 Kb	26
DC1	416	38.60 Mb	1.71 Mb	47.95	229.00 Kb	47
T. asp.	419	37.46 Mb	3.82 Mb	47.34	2.12 Mb	7
T. atr.	29	36.14 Mb	5.62 Mb	49.75	2.01 Mb	6
T. cit.	533	33.21 Mb	3.29 Mb	52.44	1.84 Mb	7
T. gam.	172	37.90 Mb	1.83 Mb	48.95	679.39 Kb	18
T. har.	532	40.98 Mb	4.08 Mb	47.61	2.41 Mb	7
T. ree.	77	33.39 Mb	3.75 Mb	52.82	1.21 Mb	9
T. vir.	93	39.02 Mb	3.45 Mb	49.25	1.83 Mb	8

Results: Interesting Regions of Low GC Content

- ► Low GC content means low diversity of amino acids
- ▶ Why do these regions exist? Do they code for anything?

Results: Annotation of Signalling and Effector Proteins

- ► Initial annotation of these strains shows a promising number of effector and signalling proteins
- Current annotation is an awkward mapping of different annotation programs including InterProScan, SignalP and EffectorP
- ► However, future work will include a more robust annotation approach using AntiSmash

Future Work

- With newly generated Nanopore sequencing, re-run everything from the beginning
- ► Large amount of new RNAseq data on NCBI can be utilized for more accurate/robust annotation
- Hybrid assemblies should be more contiguous and complete
- Annotation of secondary metabolites via AntiSmash will provide more valulable information
- Comparative analysis with closely related Trichoderma strains
- ▶ Open to other ideas as well!

Computer Science MSc.

- How is this related to computer science?
- ▶ Plan to identify gaps in existing procedures where improvements could be made
- ▶ Potentially generate a pipeline for similar automated analyses

Questions, comments, thoughts?

- Other things to discuss:
 - Courses for next term
 - ▶ Potential other committee members