Ten lectures on wavelets

Daubechies, Ingrid.

- 2.7. Parallels with the continuous windowed Fourier transform
- **2.8.** The continuous transforms as tools to build useful operators
- **2.9.** The continuous wavelet transform as a mathematical zoom : The characterization of local regularity

Basic Definition

Metric

A metric is a way of measuring distance between two points.

Definition 2.1. A metric space (\mathcal{M}, d) is a set \mathcal{M} together with a function $d : \mathcal{M} \times \mathcal{M} \rightarrow \mathcal{M}$

 \mathbb{R} called a metric satisfying four conditions:

- 1. $d(x,y) \ge 0$ for all $x,y \in \mathcal{M}$.
- 2. d(x,y) = 0 if and only if x = y.
- 3. d(x,y) = d(y,x) for all $x, y \in \mathcal{M}$.
- 4. $d(x,y) \leq d(x,z) + d(z,y)$ for all $x, y, z \in \mathcal{M}$.

Basic Definition

ball

Definition 2.2. Let (\mathcal{M}, d) be a metric space. The open r-ball centered at x is the set $B_r(x) = \{y \in \mathcal{M} : d(x,y) < r\}$ for any choice of $x \in \mathcal{M}$ and r > 0. A closed r-ball centered at x is the set $\overline{B}_r(x) = \{y \in \mathcal{M} : d(x,y) \le r\}$.

norm

Definition 2.3. A (complex) normed linear space $(\mathcal{V}, \|\cdot\|)$ is a (complex) linear space \mathcal{V} together with a function $\|\cdot\|: \mathcal{V} \to \mathbb{C}$ called a norm satisfying the following conditions:

- 1. $||v|| \ge 0$ for all $v \in \mathcal{V}$.
- 2. ||v|| = 0 if and only if v = 0.
- 3. $\|\lambda v\| = |\lambda| \|v\|$ for all $v \in \mathcal{V}$ and $\lambda \in \mathbb{C}$.
- 4. $||v + w|| \le ||v|| + ||w||$ for all $v, w \in \mathcal{V}$.

References

- [1] Harris, Terri Joan. "HILBERT SPACES AND FOURIER SERIES." (2015)
- [2] Relationship of Fourier series and Hilbert spaces?

https://math.stackexchange.com/questions/184390/relationship-of-fourier-series-and-hilbert-spaces