____ و ____ ، اجزاء بنیادی جهان مادی هستند. انرژی از راههای گوناگون با ماده ارتباط دارد، چنانکه کاهش ____ خورشید موجب تولید ____ میشود. «غذا» همواره نقش محوری در رشد، تندرسی و زندگی انسان داشته است. پیشرفت دانش و فناوری، موجب افرایش تولید فرآوردههای کشاورزی و دامی و تولید صنعتی غذا شده است. در تولید انبوه، به دلیل فساد مواد غذایی و دشواری نگهداری، حفظ کیفیت و ارزش مواد غذایی، اهمیت به سزایی دارد. همچنین در صنایع غذایی، حجم عظیمی «آب» مصرف میشود و تأمین غذای جامعه را مشکل تر می کند.

خوب است بدانیم صفحه ۵۱؛

- الف) ____ و دردرجه دوم ____ و ___
- ب) با حذف خوراکیهای غیر ضروری (مانند چیپس، پفک، نوشابه) تاحدی امکان تأمین هزینه مصرف انواع ____ در سبد خانوار تأمین میشود. (!!)
 - پ) ۱) توزیع شیر رایگان در مدارس، مهدکودکها، پادگانها و دانشگاهها
 - ۲) دادن علوفه و داروی دامی با قیمت ارزان به دامدار
 - ۳) فرهنگسازی مصرف
- ت) فرهنگسازی استفاده بیشتر از حبوبات (مصرف عدسی یا آش در وعده صبحانه یا عصرانه)، مصرف انواع حبوبات در سالاد.

سرانه مصرف ماده غذایی، مقدار میانگین مصرف آن را به ازای هر فرد در یک گستره زمانی نشان میدهد.

غذا، چیزی فراتر از یک پاسخ به احساس گرسنگی است. مصرف غذا؛

۱) ____ مورد نیاز برای ماهیچهها، ارسال پیامهای عصبی، جابهجایی یونها و مولکولها از دیواره هر یاخته را تأمین میکند.

۲) _____ اولیه برای ساخت و رشد بخشهای مختلف بدن را فراهم می کند. (بخش عمده _____ ، ____ و ____ موجود در بدن از غذا تأمین می شود.) این فرآیندها وابسته به انجام واکنشهای شیمیایی هستند، که دمای بدن را نیز تنظیم و کنترل می کنند. هر کدام از این واکنشها، «آهنگ» ویژهای دارند.

تغذیه درست، شامل وعدههای غذایی است که مخلوط منابع از انواع ذرهها را در بر میگیرد. سوء تغذیه هنگامی رخ مینماید که وعدههای غذایی با کمبود نوع خاصی از این ذرات همراه باشد. از طرفی، افزایش نامناسب برخی مولکولها و یونها در غذا نیز، سبب بیماری خواهد شد.

«غذا، ماده و انرژی»

بدن برای انجام فعالیتهای ارادی و غیرارادی، به ماده و <u>انرژی</u> نیاز دارد. یکی از راههای آزاد شدن انرژی سوختها (مانند بنزین و ...) «سوزاندن» آنها است. هر ماده غذایی نیز انرژی دارد و میزان انرژی به «جرم» آن بستگی دارد.

دمای یک ماده، از چه خبر میدهد؟

دما: کمیتی که میزان _____ و ____اجسام را نشان میدهد.

شکل ۱ صفحه ۵۴:

وقتی به ظرف محتوی آب، گرما داده میشود، به تدریج ____ آن افرایش مییابد تا اینکه سرانجام ____ یا اگر به یخ داده شود، ___ میشود. در این حالتها، با گرفتن گرما، ___ ذرات بیشتر شده و دما ____ میرود یا ___ ماده عوض میشود.

جنبش نامنظم ذرهها:

گاز O مایع O جامد / آب گرم O آب سرد

دمای بالاتر ightarrow میانگین ____ حرکت ذرات بیشتر ightarrow میانگین انرژی ____ ذرات بیشتر

یعنی: دمای ماده؛ معیاری برای توصیف _____ تندی و ____ انرژی جنبشی ذرههای سازنده ماده است.

یکای رایج دما، درجه ____ () اما یکای دما در SI، ___ () است.

_____ = ____ +

ارزش دمایی ۱ درجه سانتی گراد برابر ۱ کلوین

لذا در فرآیندهایی که دما تغییر میکند، $T \triangle \Theta \cap \Delta$ است.

با هم بیندیشیم صفحه ۵۵:

- ۱- الف) شکل A نمونهای از هوا را در ____ نشان میدهد.
- ۱- ب) شکل B، نمونهای از هوا را در یک روز ____ نشان میدهد.
- ۱- پ) اگر مجموع انرژی جنبشی ذرههای سازنده یک نمونه ماده، همارز با انرژی گرمایی آن باشد؛

انرژی گرمایی ____ بیشتر بوده زیرا ____ آن بیشتر است.

- B ظرف O A ظرف در ظرف O A ظرف الحالف) میانگین تندی مولکولها در ظرف
- ۲- ب) انرژی گرمایی ظرف O A ظرف B (چون ____ آن بیشتر است.)

با هم بیندیشیم ۱: ____ یکسان، دمای ___ متفاوت ← انرژی گرمایی متفاوت

با هم بیندیشیم ۲: ____ یکسان، ___ متفاوت ← انرژی گرمایی متفاوت

نتیجه: انرژی گرمایی یک نمونه ماده، هم به ____ و هم به ____ بستگی دارد.

تذکر: چون کار کردن «تعداد ذرات»، آسان نیست می توان به جای آن، ____ ماده را در نظر گرفت. چنانکه در فیزیک نیز، انرژی جنبشی از رابطه ____ به دست می آید.

تهیه غذا آبپز، تجربه تفاوت «گرما» و «دما»

(است. $(sI)_{ij} = 1 kgm^{T}s^{-T}$). است. (است. $(sI)_{ij} = 1 kgm^{T}s^{-T}$). گرما، صورتی از

از یکای ____ (____) نیز برای بیان مقدار گرما در پزشکی و زیستشناسی و علم تغذیه استفاده میشود.

تعریف ژول:

تعریف کالری: cal = ____ J

انرژی گرمایی: ____ انرژیهای جنبشی ذرات ماده

دما: ____ انرژی جنبشی ذرات ماده

انرژی گرمایی و دما، از ویژگیهای یک «نمونه ماده» (است / نیست) و (میتواند / نمیتواند) برای توصیف آن «ماده» به کار رود.

«گرما»

صورتی از ____ است، که از جسم با ____ بالاتر، به جسم با ____ پایین تر منتقل می شود. داد و ستد گرما، می تواند موجب تغییر ___ مواد شود.

گرما، از ویژگیهای یک «نمونه ماده» ____ و ____ برای توصیف آن «ماده» به کار رود.

گرما، از ویژگیهای یک « ____ » است، و میتواند برای توصیف آن « ____ » به کار رود.

هنگامی که به $\underline{\Upsilon}$ ماده، گرمای یکسان داده شود، لزوماً به یک اندازه ــــــ نمیشوند.

یعنی: دادن گرمای یکسان به دو ماده، (لزوما / حتما) تغییر دمای یکسانی را موجب (میشود/ نمیشود).

مثال: اگر بخواهیم دمای آب و روغن زیتون* (با جرم برابر) به یک اندازه بالا رود، باید به آب، گرمای ____ بدهیم.

* الگوی ساختاری «روغنها» با «چربیها» یکسان است اما تفاوتهایی در ساختار دارند (مانند پیوند دوگانه بیشتر در ساختار زنجیر کربنی ____) که موجب تفاوت در ___ و ___ آنها میشود. چنانکه روغنها در دمای عادی، ___ و چربیها

با هم بیندیشیم صفحه ۵۷: الف) چون ____ موجود در نمونه آب، بسیار ___ از روغن زیتون است.

دلیل: موادی چون آب و اتانول، به دلیل وجود ___ بین مولکولهای خود، گرمای ویژه بالایی دارند. (جدول ۱ صفحه $\Delta \Lambda$).

دمای آب و روغن زیتون، به یک اندازه زیاد ____ است. برای افزایش دمای آب به میزان ۵۰ درجه سانتی گراد، (نسبت به روغن زیتون) گرمای ____ دریافت می کند.

ب) ظرفیت گرمایی (C): ____ لازم برای افرایش ___ ماده به اندازه ___ درجه ___ (یا ۱ ___)

$$C_{H_{\uparrow}O} = \frac{J}{K(I_{\bullet}C_{\bullet})} \bigcirc C_{ohoil} = \frac{J}{K(I_{\bullet}C_{\bullet})}$$

(پ) بستگی دارد به \longrightarrow ماده و ماده (به خاطر تفاوت در نوع می یا نیروهای رومی یا نیروهای بستگی دارد به

هرچه ____ ماده بیشتر باشد، برای رساندن آن به دمای مشخص، ___ بیشتری لازم است.

هر کمیتی که از ویژگیهای ماده باشد، (میتواند/ نمیتواند) برای توصیف ان به کار رود

ظرفیت گرمایی؛ از ویژگیهای نمونه ماده ____ و (میتواند/ نمیتواند) برای توصیف آن ماده به کار رود.

گرمای ویژه؛ از ویژگیهای یک نمونه ماده ____ و ___ برای توصیف آن ماده به کار میرود.

ظرفیت گرمایی، به نوع ماده بستگی ____ و به مقدار ماده بستگی ____.

گرمای ویژه، به نوع ماده بستگی ____ و به مقدار ماده بستگی ____.

خود را بیازمایید صفحه ۵۸:

۱- ــــــ مییابد. باگذشت زمان، چای، (همه/ بخشی) از انرژی گرمایی خود را (به/ از) محیط (میدهد/ میگیرد) پس ــــــ و ـــــــ انرژی جنبشی ذرات آن، ــــــ مییابد. (کاهش ــــــ و ــــــ نمونه)

دلیل: گرما، از جایی که ____ تر است (دمای ____) به جایی که ___ است (دمای ____) حرکت میکند. دمای چای (C) از دمای محیط (C) ____ است و با ___ انرژی گرمایی، با آن «_____» میشود.

۲- گرما را می توان هم ارز با آن مقدار انرژی (گرمایی ادمایی) داشت که به دلیل تفاوت در انرژی (گرمایی ادما) جاری می شود.

۳- ماده اصلی تشکیل دهنده هر دو، ____ است، پس به مقدار ____ موجود در آنها توجه می کنیم. نان، ___ کمتری دارد، چون ___ شده است، پس ___ با محیط هم دما می شود.

نتیجه: **«آهنگ»** تغییر دمای مواد مختلف (مبادله ____ با ____) یکسان ____.

نکته: هنگام مبادله گرما بین دو «ماده»؛ (اگر از هدر رفت یا اتلاف گرما چشمپوشی کنیم) مقدار گرمایی که ماده با دمای ردت می دهد، $|Q_A| = |Q_B|$ برابر با مقدار گرمایی است که ماده با دمای _____ می گیرد.

یعنی قدر مطلق ____ مبادله شده در آن دو، ___ است.

140 (4 10. (4 18. (1 18. (1

 $|Q_A| = |Q_B| \Rightarrow$ دراه اول:

راه دوم: (هنگام تغییر فاز قابل استفاده نیست.)

دمای تعادل:

$$\theta = \frac{m_1 c_1 \theta_1 + m_7 c_7 \theta_7}{m_1 c_1 + m_7 c_7} = \frac{\sum (mc\theta)}{\sum mc}$$

تمرین ۲: به آلیاژی از تیتانیم و نیکل به جرم ۴.۲ گرم، مقدار ۲۱ ژول گرما دادیم و دمای آن $\mathring{\cdot}$ سانتی گراد افزایش یافت. $C_{Ni}= \checkmark/\$\Delta(J.g^{-1}.°C^{-1})$ جه تقریب، چند درصد جرم این آلیاژ را نیکل تشکیل داده است؟ $C_{Ni}= \checkmark/\Delta(J.g^{-1}.°C^{-1})$ ۷۱.۵ ($\mathring{\cdot}$ ۲۸.۶ ($\mathring{\cdot}$ ۴۹.۲ ($\mathring{\cdot}$ ۳۷.۶ ($\mathring{\cdot}$ ۳۷.۶ ($\mathring{\cdot}$ ۲۸.۶ ($\mathring{\cdot}$ ۴۹.۲ ($\mathring{\cdot}$ ۳۷.۶ ($\mathring{\cdot}$ ۲۸.۶ ($\mathring{\cdot}$ ۲۸.۶ ($\mathring{\cdot}$ ۳۷.۶ ($\mathring{\cdot}$ ۲۸.۶ ($\mathring{\cdot}$ ۲۸.۶ ($\mathring{\cdot}$ ۳۷.۶ ($\mathring{\cdot}$ ۲۸.۶ ($\mathring{\cdot}$ ۲۸.۶ ($\mathring{\cdot}$ ۳۷.۶ ($\mathring{\cdot}$ ۲۸.۶ ($\mathring{\cdot}$ ۲۸.۶ ($\mathring{\cdot}$ ۳۷.۶ ($\mathring{\cdot$