Министерство образования Республики Беларусь

Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Факультет информационных технологий и управления Кафедра интеллектуальных информационных технологий

РАСЧЕТНАЯ РАБОТА

по дисциплине «Традиционные и интеллектуальные информационные технологии» на тему

Задача исследования ориентированного графа на рефлексивность, антирефлексивность, частичную рефлексивность

Выполнил Корсак И.А. студент группы

021704

Проверил Витязь В.С

Минск 2021

Цель: Получить навыки формализации и обработки информации с использованием семантических сетей

Задача: Исследовать ориентированного графа на рефлексивность, антирефлексивность, частичную рефлексивность

1 Список понятий

- 1. Графовая структура (абсолютное понятие) это такая одноуровневая реляционная структура, объекты которой могут играть роль либо вершины, либо связки:
 - а. Вершина (относительное понятие, ролевое отношение);
 - b. Связка (относительное понятие, ролевое отношение).

- 2. Графовая структура с ориентированными связками (абсолютное понятие)
 - а. Ориентированная связка (относительное понятие, ролевое отношение) связка, которая задается ориентированным множеством.

- 3. Гиперграф (абсолютное понятие) это такая графовая структура, в которой связки могут связывать только вершины:
 - а. Гиперсвязка (относительное понятие, ролевое отношение);
 - b. Гипердуга (относительное понятие, ролевое отношение) ориентированнаягиперсвязка;
 - с. Гиперребро (относительное понятие, ролевое отношение) неориентированнаягиперсвязка.

- 4. Псевдограф (абсолютное понятие) это такой гиперграф, в котором все связки должны быть бинарными:
 - а. Бинарная связка (относительное понятие, ролевое отношение) –гиперсвязка арности 2;
 - b. Ребро (относительное понятие, ролевое отношение) неориентированная гиперсвязка;
 - с. Дуга (относительное понятие, ролевое отношение) ориентированная гиперсвязка;
 - d. Петля (относительное понятие, ролевое отношение) бинарная связка, у которой первый и второй компоненты совпадают.

5. Мультиграф (абсолютное понятие) – это такой псевдограф, в котором не может быть петель:

6. Граф (абсолютное понятие) — это такой мультиграф, в котором не может быть кратных связок, т.е. связок у которых первый и второй компоненты совпадают:

7. Ориентированный граф (абсолютное понятие) - это такой граф, в котором все связки являются дугами:

8. Рефлексивный граф (относительное понятие) – это псевдограф, с каждой вершиной которого связана петля графа.

9. Антирефлексивный граф (относительное понятие) – это граф, в котором отсутствуют петли.

10. Частично рефлексивный граф (относительное понятие) – это псевдограф, в котором присутствуют петли, но они не связаны со всем вершинами графа.

2 Тестовые примеры

Во всех тестах графы будет приведены в сокращенной форме со скрытыми ролями элементов графа.

2.1 Tect 1

Вход:

Необходимо исследовать ориентированный граф на рефлексивность, антирефлексивность, частичную рефлексивность.

Выход:

Данный граф является антирефлексивным.

2.2 Тест 2

Вход:

Необходимо исследовать ориентированный граф на рефлексивность, антирефлексивность, частичную рефлексивность.

Выход:

Данный граф является рефлексивным.

2.3 Тест 3

Вход:

Необходимо исследовать ориентированный граф на рефлексивность, антирефлексивность, частичную рефлексивность.

Выход:

Данный граф является частично рефлексивным.

2.4 Тест 4

Вход:

Необходимо исследовать ориентированный граф на рефлексивность, антирефлексивность, частичную рефлексивность.

Выход:

Данный граф является антирефлексивным.

2.5 Тест 5

Вход:

Необходимо найти все доминирующие вершины ориентированного графа.

Выход:

Данный граф является рефлексивным.

3 Описание алгоритма

1. Задание входного графа и множества непроверенных вершин

Переменные изменятся следующим образом:

- graph получит в качестве значения sc-узел ориентированного графа;
- _not_checked_vertices получит в качестве значения множество непроверенных вершин обрабатываемого графа
- _curr_vertex получит в качестве значения текущую проверяемую вершину. Проверку начнем с вершины A

2. Проверка вершины А

По мере работы алгоритма необходимо проверить на рефлексивные свойства все вершины графа: пока множество непроверенных вершин не станет пустым. Порядок проверки вершин не важен.

Проверим первой вершину А. Нас интересует есть ли среди ребер вершины петли.

Вершина А связана с вершиной В и А. Следовательно, среди ребер данной вершины имеется петля.

Добавляем вершину А во множество вершин, имеющих рефлексивные свойства.

Удаляем вершину А из множества непроверенных вершин.

3. Проверка вершины В

Проверим первой вершину В. Нас интересует есть ли среди ребер вершины петли. Вершина В связана с вершиной В. Следовательно, среди ребер данной вершины имеется петля.

Добавляем вершину В во множество вершин, имеющих рефлексивные свойства.

Удаляем вершину В из множества непроверенных вершин.

Множество непроверенных вершин оказалось пусто, следовательно, все вершины проверены.

Сравним мощность множества вершин, обладающих рефлексивными свойствами с количеством вершин в графе. Все вершины графа составляют множество вершин, обладающих рефлексивными свойствами. Делаем вывод, что граф рефлексивный.

Удаляем множество непроверенных вершин, множество вершин, обладающих свойствами рефлексивности, переменную текущей проверяемой вершины.

4. Результат работы алгоритма

4 Список литературы

OSTIS GT [В Интернете] // База знаний по теории графов OSTIS GT. - 2011 г.. - http://ostisgraphstheo.sourceforge.net/index.php/Заглавная_страница.

Харарри Ф. Теория графов [Книга]. - Москва : Едиториал УРСС, 2003.