

Facultad de Ingeniería

Laboratorio de Dispositivos y Circuitos Electrónicos (6654)

Profesor: Zapata Rosales Arturo Ing.

Semestre 2018-1

Práctica No. 9

Diodo Zener

Grupo 13

Brigada: 7

Vivar Colina Pablo

Ciudad Universitaria Abril de 2018.

1. Marco teórico

1.1. Valor Eficaz

Se denomina valor eficaz al valor cuadrático medio de una magnitud eléctrica. El concepto de valor eficaz se utiliza especialmente para estudiar las formas de onda periódicas, a pesar de ser aplicable a todas las formas de onda, constantes o no. En ocasiones se denomina con el extranjerismo RMS (del inglés, root mean square).(?)

Imagenes/Sine_wave_voltages.png

Figura 1: RMS

1.2. Seguidor de Voltaje o tensión

Es aquel circuito que proporciona a la salida la misma tensión que a la entrada. Presenta la ventaja de que la impedancia de entrada es elevada, la de salida prácticamente nula, y es útil como un buffer, para eliminar efectos de carga o para adaptar impedancias (conectar un dispositivo con gran impedancia a otro con baja impedancia y viceversa) y realizar mediciones de tensión de un sensor con una intensidad muy pequeña que no afecte sensiblemente a la medición.(?)

Figura 2: Amplificador operacional en modo seguidor de tensión (?)

2. Desarrollo

2.1. Circuito

Para el primer circuito se midió la salida con la entrada no inversora del op amp 741, fué alimentado con dos fuentes de 15 [V]:

Figura 3: 741 como seguidor de voltaje polarizado con 2 fuentes independientes

De la figura ?? podemos apreciar los siguientes valores, recordando que la ecuación de ganacia para éste circuito es de $G = -\frac{R_1}{R_2}$.

- $V_1 = 1[V]$
- $V_2 = 10[V]$
- Ángulo=180
- Ganancia=+10;

2.2. Experimento

Para el segundo experimento se midió la respuesta de la salida usando la entrada no inversora del OpAmp 741 y se alimentó con 30 [V] y usando un

Figura 4: 741 como seguidor de voltaje polarizado con 1 fuente (divisor de voltaje)

divisor de voltaje. Ésto se puede ver en la figura ?? y los resultados obtenidos fueron los siguientes.

- $V_1 = 1$ [V]
- $V_2=12.5 [V]$
- ángulo=0
- Ganancia =12.5

3. Evidencias Experimento

En la figura ?? se puede apreciar los apuntes sobre los experimentos.

4. Conclusiones

Logramos apreciar el funcionamiento del Amplificador operacional como buffer, y sus diferencias en cuánto como es polarizado, esto es importante como características de diseño ya que el circuito es aparentemente equivalente pero se obtienen diferentes respuestas.

Figura 5: Circuitos realizados en el laboratorio