ME 620: Fundamentals of Artificial Intelligence

Lecture 14: Propositional Logic

Shyamanta M Hazarika

Biomimetic Robotics and Artificial Intelligence Lab Mechanical Engineering and M F School of Data Sc. & AI IIT Guwahati

Logic as a KR & R Language

- A Logic is a formal language, with precisely defined syntax and semantics
 - supports sound inference.
 - Independent of domain of application.
- □ Different logics exist, which allow one to represent different kinds of things.
 - allow more or less efficient inference.
 - propositional logic, predicate logic, temporal logic, modal logic, description logic..

Advantages of Logic for KR

- ☐ Similar to declarative languages:
 - compact
 - task-independent
 - modular representation
 - reusable, flexible, maintainable
- ☐ Logic has formal well defined semantics
- ☐ Logic is expressive
 - incomplete knowledge
 - temporal logics
 - second order logic

Proposition Logic

Propositional logic is a mathematical system for reasoning about propositions and how they relate to one another.

- Every statement in propositional logic consists of propositional variables combined via propositional connectives.
- Each variable represents some proposition.

It is hot.

It is humid.

Connectives encode how propositions are related.

If it is humid, then it is hot

Proposition

<u>Definition</u>: A **proposition** is a statement that is, by itself, either true or false.

Sample Propositions

- All humans are mortal.
- Ram is married.
- I'll pay for the meal.

Things that aren't propositions

Come here!

Why are you crying?

Can be either true or false.

Cannot be true or false.

Command.

Question.

Propositional Variable

<u>**Definition**</u>: A **propositional variable** represents an arbitrary proposition. We represent propositional variables with uppercase letters.

P It is hot.

Q It is humid.

Definition: Each variable can take one of two values: true or false. If a proposition is true, then we say its **truth value** is true, and if a proposition is false, we say its truth value is false.

Propositional Connectives

Logical NOT: ¬P

- □ Read "not P"
- \square \neg P is true if and only if P is false.
- □ Also called **logical negation**.

Logical AND: P ∧ **Q**

- ☐ Read "P and Q."
- \square P \wedge Q is true if both P and Q are true.
- □ Also called **logical conjunction**.

Logical OR: $P \lor Q$

- Read "P or Q." The OR operator is an *inclusive* OR; It is true if at least one of the operands is true.
- luepsilon P \lor Q is true if at least one of P or Q are true.
- ☐ Also called **logical disjunction**.

Propositional Connectives

Implication: P → Q

- □ Read "If P then Q".
- ☐ False when P is true and Q is false; and is true otherwise.
- Also called material conditional operator.

Biconditional: P ↔ Q

- □ Read "P if and only if Q".
- □ True if P and Q have the same truth values; and false otherwise.
- □ Also called material biconditional operator

true and false:

- □ The symbol ¬ is a value that is always true.
- \square The symbol \bot is a value that is always false.

Well-formed Formula

<u>Definition</u>: A **sentence** also called a **well-formed formula** is defined as follows:

- A symbol S is a sentence
- \blacksquare If S is a sentence, then \neg S is a sentence
- If S is a sentence, then (S) is a sentence
- If S and T are sentences, then
 i. $(S \lor T)$ ii. $(S \land T)$ iii. $(S \to T)$ and iv. $(S \leftrightarrow T)$ are sentences
- A sentence results from a finite number of applications of the above rules.

Truth Table

A **truth table** is a table showing the truth value of a propositional logic formula as a function of its inputs.

Represent the relationship between the truth values of propositions and compound propositions formed from those propositions.

Р	Q	PVQ
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

Truth Table

A **truth table** is a table showing the truth value of a propositional logic formula as a function of its inputs.

- Represent the relationship between the truth values of propositions and compound propositions formed from those propositions.
- Formally defining what a connective `means'.
- Deciphering complex propositional formula.

Implication

For propositions P and Q, $P \rightarrow Q$, the implication or conditional statement is false when P is true and Q is false, and is true otherwise.

- P is called the premise or hypothesis.
- Q is called the conclusion.

Р	Q	$P \rightarrow Q$
F	F	Т
F	T	T
T	F	F
T	T	T

We want $P \rightarrow Q$ to mean "whenever P is true, Q is true as well."

Only way this doesn't happen is if P is true and Q is false.

Implication

In English, a sentence of the form `if A then B' can have different meanings.

- 1. Typically there is a causal relationship between A and B, which is not required in logic.
- 2. We are often implying more than simply that if A holds, then B holds as well.

Example

Q: I will buy a car.

P: I earn a bonus.

If I earn a bonus, then I will buy a car.

 $\mathsf{P} \to \mathsf{Q}$

The common-sense interpretation of this sentence is that the inverse statement is also true:

If I do not earn a bonus, then I will not buy a car. This is not implied by $P \rightarrow Q$.

Biconditional

The **biconditional** of statements P and Q, denoted $P \leftrightarrow Q$, is read "P if and only if Q", and is **true** if P and Q have the **same truth values**, and **false otherwise**.

P	Q	$P \leftrightarrow Q$
F	F	T
F	T	F
T	F	F
T	T	T

The biconditional operator is used to represent a two-directional implication.

Specifically, $p \leftrightarrow q$ means that p implies q and q implies p.

Conversely if both P implies Q and Q implies P are true, then P if and only if Q is true.

Operator Precedence

Operator precedence for propositional logic:

 \longleftrightarrow

NOT binds to whatever immediately follows it.

 \wedge and \vee bind more tightly than \rightarrow

- ☐ All operators are right-associative.
- ☐ Parentheses can be used to disambiguate.

$$\neg x \rightarrow x \lor z \land y$$
$$(\neg x) \rightarrow (x \lor (z \land y))$$

Translating English Into Logic

User defines a **set of propositional symbols**, like P and Q.

User defines the **semantics** of each **propositional symbol**:

- P It is hot.
- Q It is humid.
- R It is raining.
- 1. If it is humid, then it is hot $Q \rightarrow P$
- 2. If it is hot and humid, then it is raining. $(P \land Q) \rightarrow R$

Translating English Into Logic

W I will work hard.

V There are vacancies.

J I will get the job.

If I don't work hard, then I won't get the job.

3. I won't get the job, if I don't work hard.

$$\neg W \rightarrow \neg J$$

P if Q

translates to

$$Q \rightarrow P$$

Translating English Into Logic

W I will work hard.

V There are vacancies.

J I will get the job.

4. If I work hard but there are no vacancies, I won't get the job.

Because the second part of the sentence is a surprise, "but" is used

instead of "and".

$$(W \land \neg V) \rightarrow \neg J$$

P, but Q

translates to

 $P \wedge Q$

Logical Equivalence

 $\neg(P \land Q)$ and $(\neg P \lor \neg Q)$ have the same truth tables, we say that they're **equivalent** to one another.

$$\neg(P \land Q) \equiv (\neg P \lor \neg Q)$$

- The \equiv symbol is not a connective. It's related to \leftrightarrow , but it's not the same:
- The statement $\neg(P \land Q) \equiv (\neg P \lor \neg Q)$ means `the two formulas are equivalent.'

 The formula evaluates to true every time.
- The statement $\neg(P \land Q) \leftrightarrow (\neg P \lor \neg Q)$ is a propositional formula. If you plug in different values of P and Q, it will evaluate to a truth value.

De Morgan's Laws

Using truth table, we conclude

$$\neg(P \land Q) \equiv (\neg P \lor \neg Q)$$

Р	Q	$\neg(P \land Q)$	$\neg P \lor \neg Q$
Т	T	F	F
Т	F	Т	Т
F	Т	Т	Т
F	F	Т	Т

De Morgan's Laws

Using truth table, we conclude

$$\neg(P \lor Q) \equiv (\neg P \land \neg Q)$$

Р	Q	$\neg(P \lor Q)$	$\neg P \land \neg Q$
Т	Т	F	F
T	F	F	F
F	Т	F	F
F	F	Т	Т

Logical Equivalence

Here's a useful equivalence.

$$P \rightarrow Q \equiv (\neg P \lor Q)$$

Start with $P \rightarrow Q \equiv \neg (P \land \neg Q)$ By De Morgan's laws:

$$\blacksquare P \rightarrow Q \equiv \neg P \lor \neg \neg Q$$

$$\blacksquare P \rightarrow Q \equiv \neg P \lor Q$$

Thus
$$P \rightarrow Q \equiv \neg P \lor Q$$

Р	Q	$P \rightarrow Q$	$\neg(P \land \neg Q)$
Т	Т	Т	Т
Т	F	F	F
F	Т	Т	Т
F	F	Т	Т

Rules of Inference

A **rule of inference** is sound if its conclusion is true whenever the premise is true.

- ☐ Here are some examples of sound rules of inference.
- ☐ Each can be shown to be sound using a truth table.

RULE	PREMISE	CONCLUSION
Modus Ponens	$A, A \rightarrow B$	В
And Introduction	A, B	$A \wedge B$
And Elimination	$A \wedge B$	Α
Double Negation	$\neg \neg A$	Α
Unit Resolution	$A \vee B$, $\neg B$	A
Resolution	$A \vee B$, $\neg B \vee C$	$A \lor C$

Proving Theorems

A proof is a sequence of sentences, where each sentence is either a premise or a sentence derived from earlier sentences in the proof by one of the rules of inference.

■ The last sentence is the **theorem** (also called goal or query) that we want to prove.

Example

1. Q	Premise	It is humid
2. Q→P	Premise	If it is humid, it is hot
3. P	Modus Ponens(1,2)	It is hot
4. (P∧Q)→R	Premise	If it's hot and humid, it's raining
5. P ∧ Q	And Introduction(1,3)	It is hot and humid
6. R	Modus Ponens(4,5)	It is raining