Universidad de Guadalajara

Departamento de electrónica

Reporte

Plantilla

Automatizacion de actividades rutinarias

Eduardo Vazquez Diaz lalohao@gmail.com

25 de octubre de 2015

Contenido

1.	Obje	etivo
2.	Intro	oducción
3. Desarrollo		
	3.1.	Ecuaciones
	3.2.	Tablas
		3.2.1. Hojas de calculo
	3.3.	Ejecución de código fuente
	3.4.	Inclusión de imágenes
	3.5.	Enlaces
4.	Apéi	ndice

Resumen

Se simplificó la creacion de documentos L^AT_EX.

1. Objetivo

Demostrar las capacidades de org-mode de una manera que la utilización de código LATEX sea mínima.

2. Introducción

Siempre es difícil aprender una nueva tecnología por lo que me dispuse a realizar este pequeño documento que ayudará (a mi y espero que a ustedes también) a crear artículos.

3. Desarrollo

3.1. Ecuaciones

Se pueden escribir símbolos in-line como Σ o s= $\alpha+j\beta$, o utilizar el formato original de IATEX $\pm\sqrt{3}$ aunque para insertar algo mas complejo siempre se puede recurrir a un ambiente especifico como en la necesidad de escribir ecuaciones numeradas:

$$G(s) = \frac{1}{(s+1)^2} \tag{1}$$

Es aquí donde los templates de org nos ayudan a llegar al meollo directamente.

3.2. Tablas

Las tablas se pueden crear fácilmente escribiendo |columna1|columna2| Al presionar C-c Enter al final de la ultima barra |. Se convierte en esto:

Agregando nuevos elementos a la tabla se puede notar que al brincar a la siguiente columna con TAB se modifica automáticamente el tamaño de la tabla.

Cuadro 2: La misma tabla básica con elementos extra

Estudiante	Matemáticas	Física
Johnson	13	9
Felipe	15	14
Huehuehuehueeee	17	13

3.2.1. Hojas de calculo

Las funciones de hoja de calculo permiten realizar cálculos desde emacs sin recurrir a software externo, haciendo mas fluido la creación del documento.

Cuadro 3: Promedio

Estudiante	Matemáticas	Física	Promedio
Johnson	13	9	11
Felipe	15	14	14.5
Huehuehuehue	17	13	15

Cuadro 4: Dos promedios

Estudiante	Matemáticas	Física	Promedio
Johnson	13	9	11
Felipe	15	14	14.5
Huehuehue	17	13	15
Promedio	15	12	

X	y1	y2
0.1	0.425	0.375
0.2	0.3125	0.3375
0.3	0.24999993	0.28333338
0.4	0.275	0.28125
0.5	0.26	0.27
0.6	0.25833338	0.24999993
0.7	0.24642845	0.23928553
0.8	0.23125	0.2375
0.9	0.23333323	0.2333332
1	0.2225	0.22

Cuadro 5: Función con una variable independiente

\mathbf{x}	$f(x)=x^2+1$
1	2
2	5
3	10
4	17
5	26
6	37
7	50

Cuadro 6: Función con dos variables independientes

X	\mathbf{y}	$z=f(x,y)=x^2+y^2$
1	2	5
2	4	20
3	6	45
4	8	80
5	10	125
6	12	180
7	14	245

3.3. Ejecución de código fuente

Emacs puede ejecutar directamente código fuente de distintos lenguajes de programación, los resultados se insertan al documento automáticamente:

El siguiente codigo en ANSI-C se evalua

```
printf("Hola mundo!");
```

y da como resultado Hola mundo!

Lo mismo podemos hacer con emacs-lisp, un lenguaje inspirado en Lisp:

El resultado es:

También se pueden generar imágenes e insertarlas:

Código 1: Código de GNUPlot para generar la figura 2

3.4. Inclusión de imágenes

Figura 1: Gráfica de una función con una variable independiente.

Figura 2: Gráfica de una función con dos variables independientes.

3.5. Enlaces

Una referencia a un datasheet aquí [1].

4. Apéndice

Referencias

[1] Microchip. PIC16F88 Datasheet.