

Complexidade de Complexidade de Tempo

Insertion-Sort
Análise da
ordenação por
inserção
Tempo do
Insertion-Sort
Complexidade de
melhor caso

Aula 2 Complexidade de Algoritmos

Estruturas de Dados Avançadas

Professor Eurinardo Rodrigues Costa Universidade Federal do Ceará Campus Russas

2021.1

Sumário

EDA - Aula 2 Prof. Eurinardo

Complexidad de Algoritmos Complexidade de Tempo Complexidade de Espaço

Insertion-Sort

Análise da ordenação por inserção

Tempo do Insertion-Sort

Complexidade de melhor caso

Complexidade de pior caso

- Complexidade de Algoritmos
 - Complexidade de Tempo
 - Complexidade de Espaço
- Insertion-Sort
 - Análise da ordenação por inserção
 - Tempo do Insertion-Sort
 - Complexidade de melhor caso
 - Complexidade de pior caso

EDA - Aula 2

Prof. Eurinardo

Complexidade de Algoritmos

Tempo

Complexidade de Espaço

Insertion-So

Análise da ordenação p

inserção

Insertion-So

Complexidade melhor caso

Complexidade de

Complexidade de Tempo

EDA - Aula 2

Prof. Eurinardo

Complexidade de Complexidade d

Complexidade de

Insertion-So

ordenação p

Inserçao Tempo do

Complavidada

melhor caso

Complexidade de Tempo

Sejam A um algoritmo

EDA - Aula 2 Prof.

Complexidade de Algoritmos

Complexidade de Espaço

Insertion-Sor

ordenação | inserção Tempo do

Tempo do Insertion-Sor

melhor caso

Complexidade d

Complexidade de Tempo

Sejam A um algoritmo, $E = \{E_1, E_2, \cdots, E_m\}$ entradas de A que possuem tamanho n

EDA - Aula 2

Prof. Eurinardo

de Algoritmos
Complexidade de
Tempo
Complexidade de

Espaço

Análise da ordenação por inserção Tempo do

Tempo do Insertion-Sort Complexidade o

Complexidade de melhor caso
Complexidade de pier agge

Complexidade de Tempo

Sejam A um algoritmo, $E = \{E_1, E_2, \cdots, E_m\}$ entradas de A que possuem tamanho n. Denote por t_i , o número de passos efetuados por A, quando a entrada é E_i , $i = 1, \cdots, m$.

EDA - Aula 2

Prof. Eurinardo

de Algoritmos Complexidade de Tempo

Complexidade de Espaço

INSERTION-SOF Análise da ordenação por

ordenação por inserção Tempo do Insertion-Sort

Complexidade de melhor caso
Complexidade de

Complexidade de Tempo

Sejam A um algoritmo, $E = \{E_1, E_2, \cdots, E_m\}$ entradas de A que possuem tamanho n. Denote por t_i , o número de passos efetuados por A, quando a entrada é E_i , $i = 1, \cdots, m$. Definem-se

Complexidade de

Complexidade de Tempo

Sejam A um algoritmo, $E = \{E_1, E_2, \dots, E_m\}$ entradas de A que possuem tamanho n. Denote por t_i , o número de passos efetuados por A, quando a entrada é E_i , $i=1,\cdots,m$. Definem-se

Complexidade de pior caso

EDA - Aula 2 Prof.

Complexidade
de Algoritmos
Complexidade de
Tempo
Complexidade de

Espaço Insertion-Sor

Análise da ordenação por inserção Tempo do Insertion-Sort Complexidade d

Complexidade de Tempo

Sejam A um algoritmo, $E = \{E_1, E_2, \dots, E_m\}$ entradas de A que possuem tamanho n. Denote por t_i , o número de passos efetuados por A, quando a entrada é E_i , $i = 1, \dots, m$. Definem-se

• Complexidade de pior caso= $\max\{t_1, t_2, \dots, t_m\}$

Complexidade de

Complexidade de Tempo

Sejam A um algoritmo, $E = \{E_1, E_2, \dots, E_m\}$ entradas de A que possuem tamanho n. Denote por t_i , o número de passos efetuados por A, quando a entrada é E_i , $i=1,\cdots,m$. Definem-se

- Complexidade de pior caso= $\max\{t_1, t_2, \dots, t_m\}$
- Complexidade de melhor caso

EDA - Aula 2 Prof.

de Algoritmos
Complexidade de
Tempo
Complexidade de

Espaço

ordenação por inserção Tempo do Insertion-Sort Complexidade melhor caso

Complexidade de Tempo

Sejam A um algoritmo, $E = \{E_1, E_2, \dots, E_m\}$ entradas de A que possuem tamanho n. Denote por t_i , o número de passos efetuados por A, quando a entrada é E_i , $i = 1, \dots, m$. Definem-se

- Complexidade de pior caso= $\max\{t_1, t_2, \dots, t_m\}$
- Complexidade de melhor caso= $min\{t_1, t_2, \dots, t_m\}$

Complexidade de

Complexidade de Tempo

Sejam A um algoritmo, $E = \{E_1, E_2, \dots, E_m\}$ entradas de A que possuem tamanho n. Denote por t_i , o número de passos efetuados por A, quando a entrada é E_i , $i = 1, \dots, m$. Definem-se

$$=1,\cdots,m$$
. Definem-se

- Complexidade de pior caso= $\max\{t_1, t_2, \dots, t_m\}$
- Complexidade de melhor caso= $\min\{t_1, t_2, \dots, t_m\}$
- Complexidade de caso médio

Complexidade de

Complexidade de Tempo

Sejam A um algoritmo, $E = \{E_1, E_2, \dots, E_m\}$ entradas de A que possuem tamanho n. Denote por t_i , o número de passos efetuados por A, quando a entrada é E_i ,

$$i = 1, \dots, m$$
. Definem-se

- Complexidade de pior caso= $\max\{t_1, t_2, \dots, t_m\}$
- Complexidade de melhor caso= $\min\{t_1, t_2, \dots, t_m\}$
- Complexidade de caso médio $= p_1 \times t_1 + p_2 \times t_2 + \cdots + p_m \times t_m$

Complexidade de

Complexidade de Tempo

Sejam A um algoritmo, $E = \{E_1, E_2, \dots, E_m\}$ entradas de A que possuem tamanho n. Denote por t_i , o número de passos efetuados por A, quando a entrada é E_i ,

$$i = 1, \dots, m$$
. Definem-se

- Complexidade de pior caso= $\max\{t_1, t_2, \dots, t_m\}$
- Complexidade de melhor caso= $\min\{t_1, t_2, \dots, t_m\}$
- Complexidade de caso médio $= p_1 \times t_1 + p_2 \times t_2 + \cdots + p_m \times t_m,$ onde p_i é a probabilidade de ocorrência da entrada E_i .

Complexidade de

Complexidade de Tempo

Sejam A um algoritmo, $E = \{E_1, E_2, \dots, E_m\}$ entradas de A que possuem tamanho n. Denote por t_i , o número de passos efetuados por A, quando a entrada é E_i ,

$$i = 1, \dots, m$$
. Definem-se

- Complexidade de pior caso= $\max\{t_1, t_2, \dots, t_m\}$
- Complexidade de melhor caso= $\min\{t_1, t_2, \dots, t_m\}$
- Complexidade de caso médio $= p_1 \times t_1 + p_2 \times t_2 + \cdots + p_m \times t_m,$ onde p_i é a probabilidade de ocorrência da entrada E_i .

Complexidade de Espaço

Prof.
Eurinardo

Complexidade de Algoritmos Complexidade de Tempo

Complexidade de Espaço

Análise da ordenação por inserção Tempo do Insertion-Sort Complexidade de melhor caso Complexidade de

Complexidade de Tempo

Sejam A um algoritmo, $E = \{E_1, E_2, \cdots, E_m\}$ entradas de A que possuem tamanho n. Denote por t_i , o número de passos efetuados por A, quando a entrada é E_i ,

 $i = 1, \dots, m$. Definem-se

- Complexidade de pior caso= $\max\{t_1, t_2, \dots, t_m\}$
- Complexidade de melhor caso= $min\{t_1, t_2, \dots, t_m\}$
- Complexidade de caso médio $= p_1 \times t_1 + p_2 \times t_2 + \cdots + p_m \times t_m$, onde p_i é a probabilidade de ocorrência da entrada E_i .

Complexidade de Espaço

Análogo a Complexidade de Tempo para células de memória (em vez de passos de execução).

Insertion-Sort

Prof. Eurinardo

Insertion-Sort

EDA - Aula:

Prof. Eurinardo

Complexidade de Algoritmos

Complexidade de

Tempo

. .

Insertion-Son

ordenação p

Tompo do

Compleyidade

melhor caso

Complexidade de pior caso

Obrigado!