Notes for High-Dimensional Probability Second Edition by Roman Vershynin

Gallant Tsao

July 23, 2025

Contents

0		,	4
	0.1	Covering Geometric Sets	5
1	A (Quick Refresher on Analysis and Probability	7
	1.1	Convex Sets and Functions	7
	1.2	Norms and Inner Products	7
	1.3	Random Variables and Random Vectors	7
	1.4	Union Bound	8
	1.5	Conditioning	9
	1.6	Probabilistic Inequalities	9
	1.7	Limit Theorems	11
2	Cox	ncentration of Sums of Independent Random Variables	.3
4	2.1	*	13
	$\frac{2.1}{2.2}$		L 4
	$\frac{2.2}{2.3}$		16
	$\frac{2.5}{2.4}$	1 0	18
	2.5		20
	$\frac{2.6}{2.6}$		21
	2.0		23
	2.7		23
			24
			24
			25
			26
	2.8	9	26
		1	26
			28
	2.9	Bernstein Inequality	29
3	Dor	ndom Vectors in High Dimensions 3	32
3	3.1		32
	$3.1 \\ 3.2$		33
	3.2		33
		· ·	34
			35
	3.3		35
	0.0	-	35
			36
			37
		-	38
			38
	3.4		10
	0.1		10
			10
			11 11
	3.5	•	12
	0.0	- •	 14
	3.6		16
			16
			17
	3.7		18
	J.,	- ,	19
			51
			51

4	Ran	ndom Matrices 52
	4.1	A Quick Refresher on Linear Algebra
		4.1.1 Singular value Decomposition
		4.1.4 The Matrix Norms and the Spectrum
		4.1.5 Low-rank Approximation
		4.1.6 Perturbation Theory
		4.1.7 Isometries
	4.2	Nets, Covering, and Packing
		4.2.1 Covering Numbers and Volume
	4.3	Application: Error Correcting Codes
	4.4	Upper Bounds on Subgaussian Random Matrices
		4.4.1 Computing the Norm on an ε net 61
		4.4.2 The Norms of Subgaussian Random Matrices 61
		4.4.3 Symmetric Matrices
	4.5	Application: Community Detection in Networks
	4.6	Two-sided Bounds on Subgaussian Matrices
	4.7	Application: Covariance Estimation and Clustering
5	Con	ncentration Without Independence 66
	5.1	Cencentration of Lipschitz Functions on the Sphere
		5.1.1 Lipschitz Functions
		5.1.2 Concentration via Isoperimetric Inequalities
		5.1.3 Blow-up of Sets on the Sphere
		5.1.4 Proof of Theorem 5.1.3
	5.2	Concentration on Other Metric Measure Spaces
		5.2.1 Gaussian Concentration
		5.2.2 Hamming Cube
		5.2.3 Symmetric Group
		5.2.4 Riemannian Manifolds with Strictly Positive Curvature
		5.2.5 Special Orthogonal Group
		5.2.6 Grassmannian
		5.2.7 Continuous Cube and Euclidean Ball
		5.2.8 Densities of the Form $e^{-U(x)}$
		5.2.9 Random Vectors with Independent Bounded Coordinates
	5.3	Application: Johnson-Lindenstrauss Lemma
	5.4	Matrix Bernstein Inequality
		5.4.1 Matrix Calculus
		5.4.2 Trace Inequalities
		5.4.3 Proof of Matrix Bernstein Inequality
		5.4.4 Matrix Hoeffding and Khintchine Inequalities
	5.5	Application: Community Detection in Sparse Networks
	5.6	Application: Covariance Estimation for General Distributions
	5.7	Extra notes
6	0112	adratic Forms, Symmetrization, and Contraction 78
J	6.1	Decoupling
	6.2	Hanson-Wright Inequality
	6.2	Symmetrization
	6.4	Random Matrices with non-i.i.d. Entries
	6.5	Application: Matrix Completion
	6.6	Contraction Principle
	0.0	

7	Rar	ndom Processes	85
	7.1	Basic Concepts and Examples	85
		7.1.1 Covariance and Increments	86
		7.1.2 Gaussian Processes	86
	7.2	Slepian, Sudakov-Fernique, and Gordon Inequalities	87
		7.2.1 Gaussian Interpolation	88
		7.2.2 Proof of Slepian Inequality	90
		7.2.3 Sudakov-Fernique and Gordon Inequalities	91
	7.3	Application: Sharp Bounds for Gaussian Matrices	92
	7.4	Sudakov Inequality	92
		7.4.1 Application for covering numbers in \mathbb{R}^n	93
	7.5	Gaussian Width	94
		7.5.1 Geometric Meaning of Width	95
		7.5.2 Examples	96
		7.5.3 Gaussian Complexity and Effective Dimension	97
	7.6	Application: Random Projection of Sets	98
8	Cha	aining	99
	8.1	Dudley Inequality	99
		8.1.1 Variations and Examples	102
	8.2	Application: Empirical Processes	103
	8.3	VC Dimension	103
	8.4	Application: Statistical Learning Theory	104
	8.5	Generic Chaining	104
	8.6	Chevet Inequality	104
9	Dev	viations of Random Matrices on Sets	101
	9.1	Matrix Deviation Inequality	101
	9.2	Random Matrices, Covariance Estimation, and Johnson-Lindenstrauss	101
	9.3	Random Sections: The M^* Bound and Escape Theorem	101
	9.4	Application: High-dimensional Linear Models	101
	9.5	Application: Exact Sparse Recovery	
	9.6	Deviations of Random Matrices for General Norms	101
	9.7	Two-sided Chevet Inequality and Dvoretzky-Milman Theorem	101

8 Chaining

This chapter concerns some of the central methods for bounding random processes (X_t) . We'll go over concepts such as chaining, VC theory, generic chaining methods, and bounds such as Talagrand's inequality and Chevet's inequality. We'll apply these to concepts such as Monto Carlo integration, empirical processes, and statistical learning theory.

8.1 Dudley Inequality

For a general Gaussian process $(X_t)_{t\in T}$, Sudakove inequality (Theorem 7.4.1) gives a lower bound on

$$\mathbb{E}\left[\sup_{t\in T}X_t\right]$$

in terms of the metric entropy pf T. Now we'll go for an upper bound. Moreover, we generalize from Gaussian processes to subgaussian processes as well.

Definition 8.1.1. A random process $(X_t)_{t\in T}$ on a metric space (T,d) has <u>subgaussian increments</u> if there exists K>0 such that

$$||X_t - X_s||_{\psi_2} \le Kd(t, s)$$
 for all $t, s \in T$.

Example 8.1.2 (Gaussian processes). Let $(X_t)_{t\in T}$ be a Gaussian process on some set T. It naturally defines a *canonical metric* on T:

$$d(t,s) := ||X_t - X_s||_{L^2}, \ t, s \in T,$$

as we explained earlier. With respect to this metric, $(X_t)_{t\in T}$ clearly has subgaussian increments, with some absolute constant K.

Here is another (trivial) example: Any random process can be made to have subgaussian increments by defining the metric as $d(t,s) := \|X_t - X_s\|_{\psi_2}$.

Now we give a bound on a general subgaussian random process in terms of the metric entropy:

Theorem 8.1.3 (Dudley's integral inequality). Let $(X_t)t \in T$ be a mean-zero random process on a metric space (T, d) with subgaussian increments as in Definition 8.1.1. Then

$$\mathbb{E}\left[\sup_{t\in T} X_t\right] \le CK \int_0^\infty \sqrt{\log \mathcal{N}(T, d, \varepsilon)} \ d\varepsilon.$$

Before going to the proof's let's compare Dudley's inequality with Sudakov's inequality (Theorem 7.4.1), which for Gaussian processes, says:

$$\mathbb{E}\left[\sup_{t\in T} X_t\right] \ge c\sup_{\varepsilon>0} \varepsilon \sqrt{\log \mathcal{N}(T, d, \varepsilon)}.$$

Figure 8.1 below shows both bounds:

Figure 8.1 Dudley inequality bounds $\mathbb{E} \sup_{t \in T} X_t$ by the area under the curve. Sudakov inequality bounds it below by the largest area of a rectangle under the curve, up to constants.

There is a clear gap between the two bounds, and it turns out that metric entropy alone cannot close it - we will explore this later.

Dudley's inequality hints that $\mathbb{E}\left[\sup_{t\in T}X_t\right]$ is a *multiscale* quantity - to bound it, we need to look at T across all scales ε . That's exactly how the proof works! But let's prove a discrete version using syadic scaled $\varepsilon = 2^{-k}$ like a Riemann sum, then move to the continuous version later.

Theorem 8.1.4 (Discrete Dudley's inequality). Let $(X_t)_{t\in T}$ be a mean-zero random process on a metric space (T,d) with subgaussian increments as from earlier. Then

$$\mathbb{E}\left[\sup_{t\in T} X_t\right] \le CK \sum_{k\in\mathbb{Z}} 2^{-k} \sqrt{\log \mathcal{N}(T, d, \varepsilon)}.$$

The proof uses a technique called *chaining*. It is a multi-scaled version of the ε -net argument that we did in Theorem 4.4.3 and Theorem 7.6.1. In the ε -net argument, we approximate T by an ε -net \mathcal{N} so every point $t \in T$ is close to some $\pi(t) \in \mathcal{N}$, with $d(t, \pi(t)) \leq \varepsilon$. Then the increment condition gives

$$||X_t - X_{\pi(t)}||_{\psi_2} \le K\varepsilon.$$

This leads to

$$\mathbb{E}\left[\sup_{t\in T}X_t\right] \leq \mathbb{E}\left[\sup_{t\in T}X_{\pi(t)}\right] + \mathbb{E}\left[\sup_{t\in T}(X_t - X_{\pi(t)})\right].$$

We can handle the first term via union bound over $|\mathcal{N}| = \mathcal{N}(T, d, \varepsilon)$ points $\pi(t)$. However, the second term is unclear (if we were to use union bound) since there is both t and $\pi(t)$ in the supremum. To fix this, we don't stop at one net, but choose smaller and smaller ε to get better approximations $\pi_1(t), \pi_2(t), \ldots$ to t with finer nets. This is the idea behind *chaining*.

Proof of Theorem 8.1.4. Step 1: Chaining setup. Without loss of generality, we may assume that K = 1 (because of C) and T is finite (Remark 7.2.1). Define the dyadic scale

$$\varepsilon_k = 2^{-k}, \ k \in \mathbb{Z}$$

and choose ε_k -nets T_k of T so that

$$|T_k| = \mathcal{N}(T, d, \varepsilon_k).$$

Only a part of the dyadic scale will be needed. Since T is finite, there exists a small enough number $\kappa \in \mathbb{Z}$ (defining the coarsest net) and a large enough number $K \in \mathbb{Z}$ (defining the finest net), such that

$$T_{\kappa} = \{t_0\}$$
 for some $t_0 \in T$, $T_K = T$.

For a point $t \in T$, let $\pi_l(t)$ denote a closest point in T_k , so we have

$$d(t, \pi_k(t)) \le \varepsilon_k$$
.

Since $\mathbb{E}[X_{t_0}] = 0$ by assumption,

$$\mathbb{E}\left[\sup_{x\in T} X_t\right] = \mathbb{E}\left[\sup_{x\in T} (X_t - X_{t_0})\right].$$

Let's write $X_t - X_{t_0}$ as a telescoping sum, walking from t_0 to t along a chain (aha!) of points $\pi_k(t)$ that mark progressively finer approximations of t:

$$X_t - X_{t_0} = (X_{\pi_{\kappa}(t)} - X_{t_0}) + (X_{\pi_{\kappa+1}(t)} - X_{\pi_{\kappa}(t)}) + \dots + (X_t - X_{\pi_{K}(t)}),$$

see Figure 8.2 below for an illustration.

Figure 8.2 Chaining: a walk from a fixed point t_0 to an arbitrary point t in T along elements $\pi_k(T)$ of progressively finer nets of T

The first and last terms of this sum are zero by our definition earlier, so we have

$$X_t - X_{t_0} = \sum_{k=\kappa+1}^{K} (X_{\pi_k(t)} - X_{\pi_{k-1}(t)}).$$

Since the supremum of the sum is bounded by the sum of the suprema, we get

$$\mathbb{E}\left[\sup_{t\in T}(X_t - X_{t_0})\right] \leq \sum_{k=r+1}^K \mathbb{E}\left[\sup_{t\in T}(X_{\pi_k(t)} - X_{\pi_{k-1}(t)})\right].$$

Step 2: Controlling the increments. In the equation above, it looks like we are taking the supremum over all of T in each summand, but really it is over the smaller set of pairs $(\pi_k(t), \pi_{k-1}(t))$. The number of such pairs is

$$|T_k| \cdot |T_{k-1}| = |T_k|^2,$$

A number that we can control via covering numbers from above. Moreover, for a fixed t, we can bound the increments in step 1 like this:

$$\begin{split} \|X_{\pi_k(t)} - X_{\pi_{k-1}(t)}\|_{\psi_2} &\leq d(\pi_k(t), \pi_{k-1}(t)) \quad \text{(By Definition 8.1.1)} \\ &\leq d(\pi_k(t), t) + d(t, \pi_{k-1}(t)) \quad \text{(By triangle inequality)} \\ &\leq \varepsilon_k + \varepsilon_{k-1} \quad \text{(By definition of }) \pi_k(t) \\ &\leq 2\varepsilon_{k-1}. \end{split}$$

Recall from Proposition 2.7.6 that the expected maximum of N subgaussian random variables is at most $CL\sqrt{\log N}$, where L is the largest ψ_2 norm. We can use this to bound each term:

$$\mathbb{E}\left[\sup_{t\in T} (X_{\pi_k(t)} - X_{\pi_{k-1}(t)})\right] \le C\varepsilon_{k-1}\sqrt{\log|T_k|}.$$

Step 3: Summing up the increments. We have shown that

$$\mathbb{E}\left[\sup_{t\in T}(X_t-X_{t_0})\right] \leq C\sum_{k=\kappa+1}^K \varepsilon_{k-1}\sqrt{\log|T_k|}.$$

Now plug in the values $\varepsilon_k = 2^{-k}$ and the bounds on $|T_k|$, we get

$$\mathbb{E}\left[\sup_{t\in T}(X_t - X_{t_0})\right] \le C_1 \sum_{k=\kappa+1}^K 2^{-k} \sqrt{\log \mathcal{N}(T, d, 2^{-k})}.$$

Hence the theorem is proved.

Let's now go for the proof for the integral form of Dudley's inequality.

Proof of Dudley's integral inequality (Theorem 8.1.3). To convert the sum from the discrete form into an integral, we express 2^{-k} as $2\int_{2^{-k-1}}^{2^{-k}} d\varepsilon$. Then

$$\sum_{k \in \mathbb{Z}} 2^{-k} \sqrt{\log \mathcal{N}(T, d, 2^{-k})} = 2 \sum_{k \in \mathbb{Z}} \int_{2^{-k-1}}^{2^{-k}} \sqrt{\log \mathcal{N}(T, d, 2^{-k})} \ d\varepsilon.$$

Within the limits of the integral, $2^{-k} \ge \varepsilon$, hence $\log \mathcal{N}(T, d, 2^{-k}) < \log \mathcal{N}(T, d, 2^{-k})$ and the sum is bounded by

$$2\sum_{k\in\mathbb{Z}}\int_{2^{-k-1}}^{2^{-k}}\sqrt{\log\mathcal{N}(T,d,\varepsilon)}\ d\varepsilon = 2\int_{0}^{\infty}\sqrt{\log\mathcal{N}(T,d,\varepsilon)}\ d\varepsilon,$$

and the proof is complete.

Actually, the discrete and integral Dudley inequalities are equivalent (Exercise 8.3).

8.1.1 Variations and Examples

Remark 8.1.5 (Dudley's inequality: supremum of increments). A quick look at the proof shows that chaining actually gives

$$\mathbb{E}\left[\sup_{t\in T} |X_t - X_{t_0}|\right] \le CK \int_0^\infty \sqrt{\log \mathcal{N}(T, d, \varepsilon)} \ d\varepsilon$$

for any fixed $t \in T$. We can combine with the same bound for $X_s - X_{t_0}$, then use the triangle inequality to get

$$\mathbb{E}\left[\sup_{t,s\in T}|X_t - X_s|\right] \le CK \int_0^\infty \sqrt{\log \mathcal{N}(T,d,\varepsilon)} \ d\varepsilon.$$

Remark 8.1.6 (Dudley's inequality: a high-probability bound). Dudley's inequality gives only an expectation bound, but chaining actually gives a high-probability bouind. Assuming T is finite (avoid measurability issues), for every $u \ge 0$, the bound

$$\sup_{t,s \in T} |X_t - X_s| \le CK \left[\int_0^\infty \sqrt{\log \mathcal{N}(T,d,\varepsilon)} \ d\varepsilon + u \cdot \operatorname{diam}(T) \right]$$

holds with probability at least $1 - 2\exp(-u^2)$ (Exercise 8.1). For Gaussian processes, this also follows directly from Gaussian concentration (Exercise 8.2).

Remark 8.1.7 (Limits of Dudley integral). Even though the Dudley integral goes over $[0, \infty]$, we can cap it at the diameter of T, since for $\varepsilon > \text{diam}(T)$, a single ε -ball covers T and so

$$\mathcal{N}(T, d, \varepsilon) = 1 \implies \log \mathcal{N}(T, d, \varepsilon) = 0.$$

Thus

$$\mathbb{E}\left[\sup_{t\in T} X_t\right] \le CK \int_0^{\operatorname{diam}(T)} \sqrt{\log \mathcal{N}(T, d, \varepsilon)} \ d\varepsilon.$$

If we apply Dudley's inequality for the canonical Gaussian process $\langle g, t \rangle$, just like we did with Sudakov's inequality in Corollary 7.4.2, we get the following:

Theorem 8.1.8 (Dudley's inequality in \mathbb{R}^n). The Gaussian width of any bounded set $Y \subset \mathbb{R}^n$ satisfies

$$w(T) \leq C \int_0^\infty \sqrt{\log \mathcal{N}(T, \varepsilon)} \ d\varepsilon,$$

where $\mathcal{N}(T,\varepsilon)$ is the smallest number of Euclidean balls with radius ε and centers in T that cover T.

Example 8.1.9 (Dudley's inequality is sharp for the Euclidean ball). Let's test Dudley's inequality for the unit Euclidean ball $T = B_2^n$. From Corollary 4.2.11,

$$\mathcal{N}(B_2^n,\varepsilon) \begin{cases} \leq (3/\varepsilon)^n & \text{for } \varepsilon \in (0,1], \\ = 1 & \text{for } \varepsilon > 1 \end{cases}.$$

Then

$$w(B_2^n) \lesssim \int_0^1 \sqrt{n \log (3/\varepsilon)} \ d\varepsilon \lesssim \sqrt{n}.$$

This is in fact optimal: as we know from Example 7.5.6, $w(B_2^n) \approx \sqrt{n}$.

Remark 8.1.10 (Dudley's inequality can be loose - but not too loose). In general, Dudley integral can overestimate the Gaussian width. Here is a bad example:

$$T = \left\{ \frac{e_k}{\sqrt{1 + \log k}}, \ k = 1, \dots, n \right\}$$

with e_k being the standard basis in \mathbb{R}^n . From exercise 8.4, we can see that

$$w(T) = O(1)$$
 while $\int_0^\infty \sqrt{\log \mathcal{N}(T, d, \varepsilon)} \ d\varepsilon \to \infty$

as $n \to \infty$. However, the good news:

- (a) Dudley equality is tight up to a logarithmic factor (Exercise 8.5);
- (b) We will use chaining to remove that logarithmic factor in Section 8.5.

8.2 Application: Empirical Processes

8.3 VC Dimension

VC dimensions measures how complex a class of Boolean functions is, where a Boolean function is a map $f: \omega \to \{0,1\}$ on some set ω , and we are looking at some collection \mathcal{F} of these.

Definition 8.3.1. A subset $\Lambda \subseteq \Omega$ is <u>shattered</u> by a class of boolean functions \mathcal{F} if, for any possible binary labeling $g: \Lambda \to \{0,1\}$, there is some function $f \in \mathcal{F}$ that matches it on Λ . Formally, this means the restriction of f onto Λ is g, i.e. f(x) = g(x) for all $x \in \Lambda$.

The Vapnik-Chervonenkis dimension (VC dimension) of \mathcal{F} , denoted $vc(\mathcal{F})$, is the largest cardinality of a subset $\Lambda \subseteq \Omega$ that is shattered. If there is no largest one, then $vc(\mathcal{F}) = \infty$.

Let's go through a few examples to make the definition clearer:

Example 8.3.2 (Intervals). Let \mathcal{F} consist of the indicators of all closed intervals in \mathbb{R} :

$$\mathcal{F} = \left\{ \mathbf{1}_{[a,b]} : \ a, b \in \mathbb{R}, \ a \le b \right\}.$$

We claim that

$$vc(F) = 2.$$

We first show that $\operatorname{vc}(\mathcal{F}) \geq 2$ by finding a two-point set $\Lambda \subset \mathbb{R}$ that is shattered by \mathcal{F} . Take, for example, $\Lambda = 3, 5$. There are four possible binary labelings $g : \Lambda \to \{0,1\}$ on this set, and each one can be obtained by restricting some interval indicator $f = \mathbf{1}_{[a,b]}$ ontp Λ . For example, g(3) = 1, g(5) = 0 comes from $f = \mathbf{1}_{[2,4]}$. The other three cases are shown in Figure 8.5, so Λ is indeed shattered by \mathcal{F} .

Figure 8.5 The binary function g(3) = g(5) = 0 is the restriction of $\mathbf{1}_{[6,7]}$ onto $\Lambda = \{3,5\}$ (left). The function g(3) = 0, g(5) = 1 is the restriction of $\mathbf{1}_{[4,6]}$ onto Λ (middle left). The function g(3) = 1, g(5) = 0 is the restriction of $\mathbf{1}_{[2,4]}$ onto Λ (middle right). The function g(3) = g(5) = 1 is the restriction of $\mathbf{1}_{[2,6]}$ onto Λ (right).

To prove $vc(\mathcal{F}) < 3$, we need to show that no three-point set $\Lambda = \{p, q, r\}$ can be shattered by \mathcal{F} . To see this, assume p < q < r and consider the labeling g(p) = 1, g(q) = 0, g(r) = 1. Then g cannot be a restriction of any indicator interval onto Λ (it is not linearly separable).

- 8.4 Application: Statistical Learning Theory
- 8.5 Generic Chaining
- 8.6 Chevet Inequality