/lidterm	exam
	/lidterm

Notes:

- $\bullet\,$ You may not use a calculator for this exam.
- Please be neat and write legibly. Use the back of the pages if necessary.
- Good luck!

printed name

- 1. Let $Y=X_1\beta_1+X_2\beta_2+\epsilon$ for X_1 an $n\times p_1$ matrix and X_2 an $n\times p_2$ so that $X_1'X_2=0$ where σ^2 is known.
 - A. Argue that the least squares estimate of β_1 doesn't depend on whether X_2 is included in the model or omitted.
 - B. Derive a Chi-squared test of $H_0: K'\beta_1=m$ verus $H_a: K'\beta_1\neq m$ and show the Chi-squared statistics does not depend on whether X_2 is included in the model or omitted.
 - C. Suppose σ^2 was unknown and an F test was performed. Does the denominator depend on whether X_2 was included in the model or omitted? (Just give an argument, no formal proof needed.)

2. Consider the true model $Y=X_1\beta_1+X_2\beta_2+\epsilon$, where, unlike the previous problem, we are no longer assuming X_1 and X_2 are orthogonal. Consider thethat we fit an incorrect model $Y=X_1\beta_1+\epsilon$ (i.e. omitted X_2 errantly).

For an estimator $\hat{\beta}$ of β , define the mean squared error to be $MSE(\hat{\beta}) = E[(\hat{\beta} - \beta)'(\hat{\beta} - \beta)]$ and the bias to be $B(\hat{\beta}) = E[\hat{\beta}] - \beta$.

- A. Show that $MSE(\hat{\beta}) = tr\{Var(\hat{\beta})\} + B(\hat{\beta})'B(\hat{\beta}).$
- B. Let $\hat{\beta}_1$ be the estimate of β_1 using the model that excludes X_2 . Derive the bias, variance and mean squared error of this estimate.

- 3. Let $Y_{ij}=\beta_i+\epsilon_{ij}$ for i=1,2 and and $j=1,\ldots J$ and $\epsilon_{ij}\sim N(0,\sigma^2)$.
 - A. Derive the F test for $\beta_1=\beta_2$ and demonstrate how it is related to the variation between groups to the variation within groups.
 - B. Argue that the estimate of σ^2 is the average of the within group variances.
 - C. Derive a 95% lower confidence bound for $\beta_1-\beta_2.$

- 4. Let $Y=X\beta+\epsilon$ where $\epsilon\sim N(0,\sigma^2I)$ and X contains an intercept column. Let 1 be a vector of ones. Show the following
 - A. $1 = X(X'X)^{-1}X'1$
 - B. (Assume the previous problem.) Show that $X(X^\prime X)^{-1}X^\prime 1(1^\prime 1)^{-1}1^\prime$ is idempotent.
 - C. Let $\hat{Y} = X(X'X)^{-1}X'Y$ and $\bar{Y} = 1(1'1)^{-1}1'Y$. Show that

$$||Y - \bar{Y}||^2 = ||Y - \hat{Y}||^2 + ||\bar{Y} - \hat{Y}||^2$$

(i.e. that the variation in Y decomposes into error variation and regression variation.)