model:

$$Y_{ijl} = \mu + \alpha_i + \varepsilon_{ij} + \delta_{ijl}$$

where

 $i=1,\ldots,k$ indexes treatment levels $j=1,\ldots,n$ indexes experimental units (plots) for each treatment $l=1,\ldots,s$ indexes subsamples (within each plot) corresponds to plot error, e.g. variation from plot to plot $\delta_{ijl} \sim \mathcal{N}(0,\sigma_{\delta}^2)$ corresponds to subsample error, e.g. variation between subsamples

ANOVA table

Source	$\mathrm{d}\mathrm{f}$	SS	MS	$\mathbb{E}(MS)$
Treatment	k-1	SSTrt	MSTrt	$\sigma_{\delta}^2 + s\sigma_{\varepsilon}^2 + ns\sum_{i=1}^k \alpha_i^2/(k-1)$
Plot Error	k(n-1)	SSPE	MSPE	$\sigma_{\delta}^2 + s\sigma_{\varepsilon}^2$
Subsampling Error	kn(s-1)	SSSSE	MSSSE	σ_δ^2
Total	kns-1	SSTot		

where

SSTrt =
$$sn \sum_{i=1}^{k} (\bar{y}_{i..} - \bar{y}_{...})^{2}$$

SSPE = $s \sum_{i=1}^{k} \sum_{j=1}^{n} (\bar{y}_{ij.} - \bar{y}_{i..})^{2}$
SSSSE = $\sum_{i=1}^{k} \sum_{j=1}^{n} \sum_{l=1}^{s} (y_{ijl} - \bar{y}_{ij.})^{2}$
SSTot = $\sum_{i=1}^{k} \sum_{j=1}^{n} \sum_{l=1}^{s} (y_{ijl} - \bar{y}_{...})^{2}$

Note:

• The LSD for comparing two treatment means is given by:

LSD =
$$T_{k(n-1),\alpha/2} \sqrt{\text{MSPE}} \sqrt{\frac{2}{ns}}$$

• We test $H_0: \alpha_i = 0$ for all i using

$$F = \frac{\text{MSTrt}}{\text{MSPE}}$$

and compare with $F_{k-1,k(n-1)}$.