What Are "Open LLMs"?

What Are "Open LLMs"?

Open vs Proprietary LLMs

Open LLM

Free to use (must respect license, though)

Can be run locally or on your servers

100% privacy

No vendor lock-in, full control

Offline-first, low / no latency

Great for many (local) use-cases like (internal) tools, text summarization, or few-shot prompting

Proprietary LLM

Paid (Usage-based or Subscription)

Hosted by provider

Privacy depends on provider

Possible vendor lock-in, only little control

Internet connection required

Necessary for use-cases where you need best-in-class performance

Examples for Open LLMs

Meta's Llama Models

Google's Gemma Models

DeepSeek Models

Some Mistral Models

Where Do You Find Open Models?

Open vs Proprietary LLMs

Options For Running Open LLMs Locally

Uses llama.cpp under the hood

Llama.cpp

Very low-level solution

Aimed at (experienced) developers, requires technical knowledge

Offers CLI and server mode

Plenty of configuration options, allows for building your own "customized version"

LM Studio

User-friendly graphical UI

Aimed at "normal users", no technical expertise required

Offers UI and server mode

Works out of the box but does offer advanced configuration options

Ollama

User-friendly CLI

Aimed at "advanced users", only limited technical expertise required

Offers CLI and server mode

Works out of the box but does offer advanced configuration options

Also: On-demand usage via services like Groq

Important: Licenses!

MIT / Apache 2.0

Very permissive licenses

Allow private & commercial use without limitations

No or only little attribution required

Llama

Somewhat permissive licenses

Allows private & commercial use **with** limitations

Attribution required

Prohibits usage for certain use-cases

Gemma

Somewhat permissive licenses

Allows private & commercial use with special requirements

Attribution required

Prohibits usage for certain use-cases

In general: Check the license & terms of the model you plan to use!

Beyond LLMs & Text Generation

We'll Run Models Locally

Not remotely

Hardware Requirements & Quantization

Running Large Models On "Small" Machines

Understanding Model Parameters & Sizes

Hardware Requirements

Exploring Quantization

Running LLMs For Inference

Inference is the process of using a (open or proprietary) LLM to generate output

Understanding Model Parameters & Sizes

Input Prompt

Trained Model

Output Response

Prompt is deconstructed into tokens (token IDs)

Every connection has a weight (parameter) associated to it

Every parameter is a **float32 or float16 value** (e.g., 0.512913)

Every value takes up 4 or 2 bytes in memory

A 2bn model takes up ~4-8 GB of memory

Output tokens (token IDs) are translated to human-readable text

Does It Run On My Machine?

Understanding Quantization

In order to make LLMs **consume less (V)RAM** (and potentially also increase inference speed), the original models are **typically quantized (= compressed)**

Original Trained Model

Not quantized, would take up lots of memory

Quantized Model

Parameter values have been **transformed** from float16/32 to Int4/8

They therefore only take up **0.5-1 byte per parameter**

You don't need to perform this quantization yourself!

Models shared on Huggingface, especially when usable via LM Studio or Ollama, are available as quantized versions

LM Studio

A Convenient Chat Interface For Running Open Models Locally

Installing & Using LM Studio

Advanced Configuration Options

Example Usage & Use-cases

Programmatic Usage

Tweaking "temperature", "top_k", "top_p" and "min_p"

LLMs generate token candidates

You can configure, which tokens are considered for sampling

Tweaking "temperature", "top_k", "top_p" and "min_p"

Temperature

Modifies probabilities

Low temperature:

Exaggerates differences

High temperature:

Flattens differences

top_p

Limits candidates based on combined probabilities

p = 0.5:

All candidates that combined have > 50%

p = 0.9:

All candidates that combined have > 90%

top_k

Limits number of candidates

k = 5:

Choose from 5 most likely

k = 1:

Always choose the most likely

min_p

Discard candidates that don't meet min-probability threshold

p = 0.05:

Remove candidates with probability < 5%

p = 0.5:

Remove candidates with probability < 50%

Ollama

A Minimal Solution For Advanced Users

Installing & Using Ollama

Advanced Configuration Options

Example Usage & Use-cases

Programmatic Usage

Llama.cpp

No Convenience, Full Control

Understanding llama.cpp

Installing & Using llama.cpp

Example Usage & Use-cases

Programmatic Usage