		Memo No.
Mo Tu We Th Fr Sa Su	软이 赵晨阳	Date / /
1. [2) 2+22++n2=	= fn(n+1)(2n+1)	
证明当月>1时,介	段沒第n项成立.即了	2+22+···+n2= = = = n(n+1)(2n+1)成立
下证第nx 项成立		
12 + 22 + ··· + M2 + (M+	り)?= 古n(n+1)(2n+1)+(n+1	$n^2 = \frac{1}{3} n^3 + \frac{1}{2} n^2 + \frac{1}{6} n + n^2 + 2n + 1$
$=\frac{1}{3}N^3+\frac{3}{2}N^2+\frac{13}{6}r$	$1+1=\frac{1}{b}(n+1)(n+2)(2n+3)$	
即n项成立,则	第MI顶也成立	
而对于第一项 ni	二时,原式显然成立,故	由数学归纳法可知,原式,但成立
	•	
2.(3) {X X \ R, X	$^{2}-2x-340$ } = A	
x2-2x-320	·. (x-3)(x+1)<0	X∈ (-1, 3)
Sup X= 3	Inf- X=-1	
•	InfA=-1	
3. A= {X XER, X2	~2} 可知 X < 厄且 X >	12. 下证 Sup A=12.即 取实数m
可知反为A的上界。	√m>0,安m 2 (m 15目	寸, 反-m<0,则反-m定不是A上界,赋
0€A) 取 Xn= (反	$(-\frac{m}{2}) \cancel{N}) \cancel{N}_{0}^{2} = (\sqrt{2} - \frac{m}{2})^{2} \angle 2$	2 Xn EA. 而 Xn > /2-m
·./2-m-定不为人	A上界,即VKL/IZ,K均不	为A上界,反为A上界,故反为A上确界
6. 1° a>b = t, max	{a,b}= a. 1 = 1 = 1	$\frac{a \cdot min \{ab\} = b, \frac{a+b-1a-b}{2} = \frac{2b}{2}}{a = b} = \frac{a+b-1a-b}{2} = a = b$
2°a=b目1, max{a,b	o}=a=b.min{a,b}=a=b 前	$\frac{a+b+1a-b}{2} = a=b \qquad \frac{a+b-1a-b}{2} = a=b$
3°Q~b时, max{a,t	$b = b + \frac{a+b+1a+b}{2} = \frac{2b}{2} = b m$	$\sin \{a,b\} = a$, $\frac{a+b-1a-b}{2} = \frac{7a}{2} = a$
即自为或自由或	acb时,原式均成立	
· may la bl = a+b+	1a-bl min fable a+b-1a-bl	_

8.(1)记 infA=m infB=n 不均多m≤n. 对于 ∀xE[AUB)都有: XEA,则 X>m或 XEB;则x≥n 而 m≤n. to m为(AUB)的下界 另一方面; ∀R>o. 由 infA=a 可知 ∃ X, EA, 使 X, ∠ Q+R . X, 处 EAUB 別 Q+R不为 AUB的下界. 終上: Q为 AUB下界 即 inf(AUB) = min (infA, infB)

-	Мо	Tu	We	Th	Fr	Sa	Su

Memo No. Date

8.(3) 不好液 infA=a infB=b.且Q≤b.故 max[infA, infB]=b 对于Y X,E ANB. 必有 X,EA且 X,EB. 必有 Xo > b 即b为ANB的下界,下确界心大于等于下界

 \therefore inf $(A \cap B) \geqslant \max(\inf A, \inf B)$

补充题: $|Qn-A| < min\left\{\frac{\varepsilon}{2|B|+1}, 1\right\} |bn-B| < \frac{\varepsilon}{2(|A|+1)} \Rightarrow |Qnbn-A|B| < \varepsilon$ 1anbn-AB1 < 1anbn-anB1 + 1anB-AB1 = |an1.1bn-B1+1B11an-A1 ∠ | Qn | · E | + |B| · E | 2 | B| + |

又:1 Qn-A1 ~1 : 1Qn1-1A1 ~1 Qn ~1A1+1 代回原式: (1A1+1)· 2(1A1+1) + 1B1· 21B1+1 ~ ~ E . 证字

Мо	Tu	We	Th	Fr	Sa	Su	

Memo	No		_
		1.	

Memo No.			
Date	/	/	

Mo Tu We Th Fr Sa Su	软川	2020012363	赵晨阳	Date	/	/
.(3) 鲜作. 取 KE[1,+	∞), 已多	OYEE(0.1),	*N3NE	,使 n>/k时	, 10n-A12	18-19成立
:10n-A1262	K 3	RTT YKE[1,+∞) ,亦	∃NeN*.	n > N2日打	,则有
10n-A1 ∠ K. 5	P对 Ya	LE(0,+00)	3 N3 EN	*·使 n>A	/3日十,1Qn	-AILÆ6
数:与lim an	A等价					
		1	1	- 1	1	
(7) 等价. 处于所有				·N时, 九七色		
而 10n-A1 < i	146.故	5 lim On=A	衸	1. 1.		
	•	<i>N</i>				
2. 2			-			
(与)不等价,若 Qn	收敛于	小则也可且6。	>0.使 an	中有无数项	·满足lan	-A1>E.
(4) 筝价		4				
改正:			JA'			
∃Ço>0, ∀N者	で有某个	n>N使19n	-A1> €。成	立	· 1	
(3) 描述的为-	个不收多	久于A的数分	.群价但	.还有的数	列不收益	支女子A
但不符合 [3). 女口一	リハイ牧会久ナ	0	<u> </u>		
(4)与 an不收念	文于A記	生等价				
			1	e.	1	
3.(3) 对 ∀ € > 0. 耳	3 N=[=	7+1.则有· n	> //时,			
$\frac{1}{n} < \frac{\cos n}{n}$	o1 2/n2	= E B	$\frac{\cos n}{n}$	∠ E在n>	[=]+10=	护厄成立
			2		4	
				· 	- 4	
31					* 14 .	

补充题: 可知 Qn有界. 今为M. 可知 以 VE>O均3NEN*,使 N>N时, 1Qn-A12 & 1bn-B12 を 別 N>N时, 1Qn-A12 (1+1B1) 1bn-B12 が 別 N>N时, 1Qnbn-AB1 = 1Qnbn-AB1 = 1Qnbn-AB1 = 1Qnbn-AB1 = 1Qnbn-AB1 = 2(1+1B1) = E

FP lim anbn = AB

