Sada: 1 Příklad: 2 IV003 Algoritmy a datové struktury II

Jméno: Karel Kubíček UČO: 408351

Jméno: Henrich Lauko UČO: 410438

```
Procedura findEso(A, fromX, toX, fromY, toY)
   vstup: čtvercová matice A vymezená v intervalu x \in \langle from X, to X \rangle, y \in \langle from Y, to Y \rangle
   výstup: souřadnice esa v matici, tedy prvek, který je větší, než jeho sousedé
 1 if toX = fromX then
       return from X, from Y // nalezeno eso, vracím souřadnice
 3 fi
 4 halfX \leftarrow (toX + fromX)/2
 5 halfY \leftarrow (toY + fromY)/2
   // maxX a maxY jsou souřadnice maxima z prvků kolem horizontálního a vertikálního
 \mathbf{6} \ maxX \leftarrow halfX \ // \ pro \ hledání \ maxima \ začnu \ nastavením \ souřadnic \ na \ 1. \ prvek
 7 maxY \leftarrow fromY
 8 for x \leftarrow from X to to X do
        if A[maxX][maxY] < A[x][halfY] then
            maxX \leftarrow x // zde \ procházím \ sloupec \ vlevo \ od \ středu
10
            maxY \leftarrow halfY
11
       fi
12
       if A[maxX][maxY] < A[x][halfY + 1] then
13
            maxX \leftarrow x // zde \ procházím \ sloupec \ vpravo \ od \ středu
14
            maxY \leftarrow halfY + 1
15
       fi
16
17 od
18 for y \leftarrow from Y to to Y do
       if A[maxX][maxY] < A[halfX][y] then
19
            maxX \leftarrow halfX // zde procházím řádek vlevo od středu
20
            maxY \leftarrow y
21
22
       fi
       if A[maxX][maxY] < A[halfX + 1][y] then
23
            maxX \leftarrow halfX + 1 // zde \ procházím \ \check{r}ádek \ vpravo \ od \ st\check{r}edu
\mathbf{24}
            maxY \leftarrow y
25
       fi
26
27 od
28 if \max X \le \text{half } X then
       if maxY \le halfY then
29
            return findEso (A, from X, half X, from Y, half Y)
30
       else
31
            return findEso (A, from X, half X, half Y + 1, to Y)
32
33 else
34
       if maxY \le halfY then
            return findEso (A, half X + 1, to X, from Y, half Y)
35
36
       else
            return findEso (A, half X + 1, to X, half Y + 1, to Y)
37
```

Sada: 1 Příklad: 2 IV003 Algoritmy a datové struktury II

Jméno: Karel Kubíček	UČO: 408351
Jméno: Henrich Lauko	UČO: 410438

Pojmy: abych příliš často nemusel formálně popisovat množinu prvků matice, která se skládá z prvků ve sloupcích odpovídajících halfX a halfX+1 v rozsahu $y \in fromY, toY >$ a řádkům odpovídajících halfY a halfY+1 v rozsahu $x \in fromX, toX >$, tak pro tuto množinu prvků zavádím pojem středový kříž.

Popis algoritmu: tento rekurzivní algoritmus je založen na tom, že se po každém průchodu změnší část matice, se kterou pracuje na čtvrtinu. Volbou maxima ze středového kříže se rozhoduje, kterou ze 4 možných čtvrtin má vybrat. Nalezení maxima zaručuje, že v dané čtvrtině maximum musí být (formálně rozebráno níže), rekurzivně se tedy algoritmus zanoří do dané čtvrtiny. Eso tedy nemusí být maximum z prvního výběru. Algoritmus by šel upravit, aby místo dělení na čtvrtiny dělil matici na poloviny, střídavě horizontálně a vertikálně, díky čemuž by měl trochu menší složitost (asymptotická složitost by však stále byla $\mathcal{O}(n)$), cenou by však byl mnohem složitější zápis. Při volání rekurze je nutno kontrolovat, aby se volala se čtvercovou maticí, což v pseudokódu není zapsáno (z důvodu složitého zápisu). Pokud by měla zvolená čtvrtina jinou šířku než délku, pak je nutno rekurzi předat větší matici (tak, aby jeden řádek navíc zaručil čtvercovost).

Korektnost: algoritmus je totálně korektní, pokud skončí a výstup splňuje výstupní podmínku, kterou je v našem případě, že nalezený prvek je eso. Konečnost je zřejmá, jelikož rozměry matice n po každém kroce klesnou minimálně na $\lceil \frac{n}{2} \rceil$, přičemž pro n=1 (k čemuž algoritmus konverguje) algoritmus skončí.

Abychom mohli dokázat, že je algoritmus parciálně korektní, je nutno dokázat invariant: v každém rekurzivním volání existuje v daném intervalu matice alespoň 1 eso.

Již ze zadání vyplívá, že při prvním volání s celou vstupní maticí musí invariant platit. To je zaručeno unikátností všech prvků.

Předpokládejme platnost invariantu pro m-té rekurzivní volání. V m+1-ním rekurzivním volání z předchozího tvrzení víme, že v aktuální submatici se nachází eso. Pak platí, že od maxima ze středového kříže vede rostoucí posloupnost k esu a jediným prvkem této posloupnosti, který se nachází na středovém kříži, je právě nalezené maximum. Pokud by toto tvrzení neplatilo a posloupnost by měla další prvky ležící na středovém kříži, pak by díky tranzitivitě relace větší než musel být daný jiný prvek posloupnosti ležící na kříži větší než nalezené maximum a tím pádem by měl být sám maximem.

Asymptotická časová složitost algoritmu je $\Theta(n)$. To lze odvodit z rekurentní rovnice, která popisuje složitost každého volání rekurze a vypadá takto:

$$T(n) = T(\lceil \frac{n}{2} \rceil) + \mathcal{O}(n)$$

 $T(1) = 1$

Tato rovnice říká, že při každém rekurzivním volání se šířka matice zmenšuje na polovinu (zaokrouhleno nahoru), a před tím se provede 4n porovnání při hledání maxima ve středovém kříži. Dalších operací je konstantní počet, takže platí, že $4n + k \in \mathcal{O}(n)$. Horní hranici získáme pomocí master theoremu, přičemž naše rekurentní rovnice nabývá hodnot

Sada: 1 Příklad: 2 IV003 Algoritmy a datové struktury II

Jméno: Karel Kubíček	UČO: 408351
Jméno: Henrich Lauko	UČO: 410438

 $a=1,\ b=2$ a d=1, tedy $a< b^d\Rightarrow T(n)\in \mathcal{O}(n).$ Složitost máme omezenou také zdola, hned v prvním volání provádíme 4n porovnání, tím pádem náš algoritmus patří do $\Theta(n)$.