Limites

Definição

Sejam $f:X\longrightarrow \mathbb{R}$ uma função, $c\in X'$ e $d\in \mathbb{R}$. Diz-se que o limite de f quando x tende para c é d se

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in X \qquad 0 < |x - c| < \delta \Longrightarrow |f(x) - d| < \varepsilon.$$

Escreve-se então $\lim_{x\to c} f(x) = d$.

Nota

- Note-se que a definição de limite permite calcular $\lim_{x\to c} f(x)$, sendo $c\in X'\setminus X$, isto é, c pode não pertencer ao domínio da função;
- Se $c \in X \cap X'$, o $\lim_{x \to c} f(x)$ não tem de ser f(c). Aliás, o valor que a função toma em c é irrelevante no cálculo do limite, visto que consideramos os pontos do domínio da função, próximos mas diferentes de c;

Proposição

Sejam $f,g:X\longrightarrow \mathbb{R}$ funções, $c\in X'$, e suponhamos que existem $\lim_{x\to c}f(x)$ e $\lim_{x\to c}g(x)$. Então:

- existe $\lim_{x\to c} (f+g)(x)$ e é igual a $\lim_{x\to c} f(x) + \lim_{x\to c} g(x)$;
- existe $\lim_{x \to c} (fg)(x)$ e é igual a $\lim_{x \to c} f(x) \lim_{x \to c} g(x)$;
- se $\lim_{x \to c} g(x) \neq 0$ então existe $\lim_{x \to c} \frac{f}{g}(x)$ e é igual a $\frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)}$.

O conceito de limite pode ser generalizado, permitindo-se que o $\lim_{x\to c} f(x)$ possa ser $+\infty$ ou $-\infty$.

Definição

Sejam $f: X \longrightarrow \mathbb{R}$ uma função e $c \in X'$. Diz-se que:

• o limite de f quando x tende para $c \not \in +\infty$ se

$$\forall M \in \mathbb{R} \ \exists \delta > 0 \ \forall x \in X \setminus \{c\} \qquad |x - c| < \delta \Longrightarrow f(x) > M$$

e escreve-se
$$\lim_{x\to c} f(x) = +\infty$$
;

• o limite de f quando x tende para $c \in -\infty$ se

$$\forall M \in \mathbb{R} \ \exists \delta > 0 \ \forall x \in X \setminus \{c\} \qquad |x - c| < \delta \Longrightarrow f(x) < M$$

e escreve-se
$$\lim_{x\to c} f(x) = -\infty$$
.

Podemos também pensar no que acontece se o domínio X de uma função f for ilimitado, à direita ou à esquerda, e fizermos $x \in X$ tender para $+\infty$ ou $-\infty$.

Seja $f:X\longrightarrow \mathbb{R}$ uma função.

Se X é um conjunto não majorado, diz-se que:

• o limite de f quando x tende para $+\infty$ é d e escreve-se $\lim_{x\to +\infty} f(x)=d$ se

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{R} \ \forall x \in X \qquad x > N \Longrightarrow |f(x) - d| < \varepsilon;$$

• o limite de f quando x tende para $+\infty$ é $+\infty$ e escreve-se $\lim_{x\to +\infty} f(x) = +\infty$ se

$$\forall M \in \mathbb{R} \ \exists N \in \mathbb{R} \ \forall x \in X \qquad x > N \Longrightarrow f(x) > M.$$

Definir **limite de f quando** x **tende para** $+\infty$ é $-\infty$, escrevendo-se $\lim_{x\to +\infty} f(x) = -\infty$.

Se X é um conjunto não minorado, diz-se que

• o limite de f quando x tende para $-\infty$ é d e escreve-se $\lim_{x\to -\infty} f(x)=d$ se

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{R} \ \forall x \in X \quad x < N \Longrightarrow |f(x) - d| < \varepsilon.$$

Definir **limite de f quando** x **tende para** $-\infty$ é $+\infty$ ou é $-\infty$, escrevendo-se, respetivamente,

$$\lim_{x \to -\infty} f(x) = +\infty \text{ ou } \lim_{x \to -\infty} f(x) = -\infty.$$

Definição

Seja $f: X \longrightarrow \mathbb{R}$ uma função.

Se $c \in X'_+$, diz-se que o limite de f quando x tende para c por valores superiores a $c \not \in d$ se

$$\forall \varepsilon > 0 \ \exists \delta > 0 \qquad x \in]c, c + \delta[\cap X \Longrightarrow |f(x) - d| < \varepsilon.$$

Escreve-se $\lim_{x\to c^+} f(x) = d$ e diz-se que o limite à direita, de f, em c, é d.

Definição

Seja $f:X\longrightarrow \mathbb{R}$ uma função. Se $c\in X'_-$, diz-se que o limite de f quando x tende para c por valores inferiores a c é d se

$$\forall \varepsilon > 0 \ \exists \delta > 0$$
 $x \in]c - \delta, c[\cap X \Longrightarrow |f(x) - d| < \varepsilon.$

Escreve-se $\lim_{x\to c^-} f(x) = d$ e diz-se que o limite à esquerda, de f, em c, é d.

Nota

De forma inteiramente análoga se definem $\lim_{x\to c^+} f(x) = +\infty$, $\lim_{x\to c^+} f(x) = -\infty$, $\lim_{x\to c^-} f(x) = +\infty$ e $\lim_{x\to c^-} f(x) = -\infty$.

Proposição

Sejam
$$f:X \to \mathbb{R}$$
 uma função e $c \in X'_+ \cap X'_-$. Então

$$\lim_{x \to c} f(x) = d \Longleftrightarrow \lim_{x \to c^{-}} f(x) = \lim_{x \to c^{+}} f(x) = d.$$

Proposição

Sejam $f,g,h:X\longrightarrow \mathbb{R}$, $c\in X'$ e suponhamos que

- $\forall x \in X$ $f(x) \leq g(x) \leq h(x)$;
- $\lim_{\substack{x \to c \\ a = -\infty}} f(x)$ e $\lim_{\substack{x \to c \\ a = -\infty}} h(x)$ existem e são iguais a $a \in \mathbb{R}$, $a = +\infty$ ou

Então existe $\lim_{x\to c} g(x) = a$.

Continuidade

Definição

Uma função $f:X\longrightarrow \mathbb{R}$ diz-se contínua em $x_0\in X$ se

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in X \qquad |x - x_0| < \delta \Longrightarrow |f(x) - f(x_0)| < \varepsilon.$$

A função f diz-se **contínua** se for contínua em todos os pontos do domínio.

Proposição

Sejam $f: X \longrightarrow \mathbb{R}$ uma função e $x_0 \in X$. A função f é contínua em x_0 se e só se ocorre uma das situações seguintes:

- x_0 é ponto isolado de X
- x_0 é ponto de acumulação de X e $\lim_{x \to x_0} f(x) = f(x_0)$.

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \longmapsto \begin{cases} 1 + (x-1)^3 & \text{se } x \in \mathbb{Q}^+ \\ 1 - (x+1)^3 & \text{se } x \in \mathbb{Q}^- \\ 1 & \text{se } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

$$\begin{array}{cccc} f: & \mathbb{R} & \longrightarrow & \mathbb{R} \\ & x & \longmapsto & \left\{ \begin{array}{ll} \cos(2\pi x) & \text{se } x \in \mathbb{Q} \\ 1 & \text{se } x \in \mathbb{R} \setminus \mathbb{Q} \end{array} \right. \end{array}$$

$$\begin{array}{ccc} [\,\cdot\,] : & \mathbb{R} & \longrightarrow & \mathbb{R} \\ & x & \longmapsto & [x] \end{array}$$

Proposição

Dadas $f, g: X \longrightarrow \mathbb{R}$ funções contínuas em $x_0 \in X$,

- f + g e fg são funções contínuas em x_0 ;
- se $g(x_0) \neq 0$ então $\frac{f}{g}$ é contínua em x_0 .

Proposição

Sejam $f: X \longrightarrow Y$ uma função contínua em $x_0 \in X$, $g: Y \longrightarrow \mathbb{R}$ uma função contínua em $f(x_0)$. Então $g \circ f$ é contínua em x_0 .

Corolário

Sejam $f: X \longrightarrow Y$ e $g: Y \longrightarrow \mathbb{R}$ funções contínuas. Então $g \circ f$ é contínua.

Teoremas sobre continuidade

Apresentamos alguns teoremas que realçam propriedades importantes das funções contínuas, com especial relevo para as que estão definidas em intervalos.

Teorema (de Weierstrass)

Seja $f:[a,b]\longrightarrow \mathbb{R}$ uma função contínua. Então

$$\exists c, d \in [a, b] \ \forall x \in [a, b] \qquad f(c) \le f(x) \le f(d).$$

Teorema (de Bolzano-Cauchy)

Seja $f:[a,b] \longrightarrow \mathbb{R}$ uma função contínua. Então f([a,b]) contém o intervalo fechado de extremos f(a) e f(b).

Corolário

Sejam I um intervalo de \mathbb{R} e $f:I\longrightarrow \mathbb{R}$ uma função contínua. Então f(I) é um intervalo.

Corolário

Seja $f:[a,b]\longrightarrow \mathbb{R}$ uma função contínua e suponhamos que f(a)f(b)<0. Então existe $c\in]a,b[$ tal que f(c)=0.

Teorema

Sejam I um intervalo de \mathbb{R} e $f:I\longrightarrow \mathbb{R}$ uma função contínua e injetiva. Então f é estritamente monótona.

Teorema

Sejam I e J intervalos de $\mathbb R$ e $f:I\longrightarrow J$ uma função bijetiva e contínua. Então f^{-1} é contínua.