MECANISMOS

- 1. DEFINICIÓN DE MECANISMO
- 2. CLASIFICACIÓN DE LOS PRINCIPALES MECANISMOS
- 3. MECANISMOS DE TRANSMISIÓN DE MOVIMIENTOS.
 - A. PALANCAS
 - **B. POLEAS**
 - C. ENGRANAJES
- 4. MECANISMOS DE TRANSFORMACIÓN DE MOVIMIENTOS.
 - A. BIELA- MANIVELA Y BIELA- BALANCÍN
 - B. EXCÉNTRICA Y LEVA

MECANISMOS

1. DEFINICIÓN DE MECANISMO

Las máquinas están formadas por mecanismos y los mecanismos propiamente dichos están constituidos por un conjunto de órganos.

Los mecanismos se pueden clasificar en dos grandes grupos:

- * De transmisión de movimientos: se utilizan para ceder el movimiento de un órgano a otro del mecanismo.
- * De transformación de movimientos: se emplean para pasar de un tipo de movimiento a otro, por ejemplo de rotativo a lineal o viceversa.

La transformación de movimientos ha sido y es protagonista de la revolución tecnológica actual. siendo de vital importancia en áreas como el transporte, la industria, etc.

Mecanismo: dispositivo que transforma un movimiento y una fuerza de entrada en el movimiento y fuerza de salida deseados.

Movimiento y fuerza de entrada

MECANISMO

Movimiento y fuerza de salida

2. CLASIFICACIÓN DE LOS PRINCIPALES MECANISMOS.

3. MECANISMOS DE TRANSMISIÓN DE MOVIMIENTOS

A. PALANCAS

Una palanca es simplemente una barra que oscila sobre un punto de apoyo llamado **apoyo**. Si se aplica una fuerza en un extremo con la intención de levantar otra fuerza situada en el otro extremo, a la fuerza aplicada se le llama **potencia** y a la fuerza levantada **resistencia**.

Ley de la palanca: una palanca está en equilibrio cuando el momento de fuerza total hacia la izquierda es igual al momento de fuerza total hacia la derecha.

$R \times d1 = F \times d2$

F = Fuerza

d1 = Distancia entre la potencia y el punto de apoyo

R= Resistencia

d2= Distancia entre la resistencia y el punto de apoyo

■ ¿PUEDE UN NIÑO/A LEVANTAR UN ELEFANTE?

La carga es el elefante y el esfuerzo la niña. Para que la niña con su peso levante al elefante el producto de la carga por la distancia al apoyo debe ser igual al producto del esfuerzo por la distancia al apoyo.

 $R \times d1 = F \times d2$ $Kg \text{ elefante } (3.000 \text{ Kg}) \times 5 \text{ m} = Kg \text{ niña } (25 \text{ Kg}) \times d2$

d2 = 600 m.

Tipos de palancas:

- De primer género: en ellas el punto de apoyo está entre el peso y el lugar de aplicación de la fuerza. (FAR)
- **De segundo género:** en ellas el peso se encuentra entre el apoyo y el lugar en el que hacemos la fuerza. (**FRA**)
- De tercer género: en ellas la fuerza se aplica entre el punto de apoyo y el peso. (RFA)

EJEMPLOS DE PALANCAS

Dispositivo	1º	2º	3°	ا الما
Microrruptor		X		
Tenazas	X			A .
Pie de cabra		Χ		
Columpio	Χ			
Freno de coche		X		
Pala			Χ	
Pinzas			Χ	
Cascanueces		Χ		

Completa las celdas de la tabla adjunta sabiendo que deben de equilibrar una palanca de primer género.

Peso del bloque a elevar (Kg)	Distancia del peso al punto de apoyo (m)	Fuerza a aplicar para equilibrar la palanca (Kg)	Distancia de la fuerza al punto de apoyo (m)
120	20	5	
250	25		50
1300		40	390
	20	135	120

B. LAS POLEAS

- Una polea es simplemente una rueda con una hendidura en la llanta.
- Su funcionamiento es silencioso.
- No necesita lubricación.
- Su fabricación es relativamente barata.
- Transmite movimiento circular entre ejes separados.
- Pueden cambiar la dirección de una fuerza mediante cuerdas.

<u>Tipos de poleas:</u> polea simple;fija y móvil, poleas compuestas o polipastos y poleas con correas.

Polea simple fija

La fuerza que debe aplicarse es la misma que se habría requerido para levantar el objeto sin la polea. La polea, sin embargo, permite aplicar la fuerza en una dirección más conveniente.

Polea simple fija

Polea simple móvil

La fuerza necesaria para levantar la carga es justamente la mitad de la fuerza que habría sido requerida para levantar la carga sin la polea.

La longitud de la cuerda que debe utilizarse es la doble de la distancia que se desea hacer subir la carga.

Polipasto

En el polipasto (polea compuesta) las poleas se distribuyen en dos grupos, uno fijo y uno móvil. En cada grupo se instala un número arbitrario de poleas. La carga se une al grupo móvil.

Reducen la fuerza a emplear según la siguiente fórmula:

$$F = R / 2n$$

F= Fuerza

R = Resistencia o peso

n= Número de poleas móviles

Ejemplo: ¿Qué fuerza se habrá de ejercer para levantar el saco si éste pesa 40 N (Newton) utilizando el polipasto del dibujo?

F = R / 2 n

F = 40 N / 2 x 1 (una polea móvil)

F = 40 N / 2 = 20 N

Poleas con correas

El uso de correas con las poleas disminuye las pérdidas de potencia por deslizamiento. Con las poleas podemos reducir o multiplicar el movimiento.

Relación de transmisión

es el cociente de las velocidades de los dos elementos que se mueven

$$RT = D1/D2 = rpm2/rpm1$$

D1= Diámetro polea motriz

D2= Diámetro polea conducida

rpm1= revoluciones (vueltas) por minuto dela polea motriz

rpm2= revoluciones (vueltas) por minuto de la polea conducida

Si la polea 1 es la conductora dando 2 vueltas por minuto (rpm) y tiene de diámetro 10 cm y la polea 2 es la conducida presentando un diámetro de 5 cm ¿Cuántas vueltas dará por minuto la polea 2? ¿Cuál será la relación de transmisión?

 $D1 \times rpm1 = D2 \times rpm2$

10 cm x 2 rpm = 5 cm x rmp2

rpm2 = (10 cm x 2 rpm)/ 5 cm = 4 rmp

rpm2 = 4 rpm (revoluciones o vueltas por minuto)

RT = rmp2 / rpm1 = 4/2 = 2

C. ENGRANAJES.

Los engranajes son ruedas dentadas engranando entre sí, estos presentan como ventaja el mantener la relación de transmisión constante.

Existen dos grandes tipos de engranajes: los engranajes rectos y los helicoidales.

Engranaje recto

Engranaje helicoidal

Relación de transmisión

R.T. = Z1/Z2 = rpm2/rpm1

$Z1 \times rpm1 = Z2 \times rpm2$

 $Z1 = n^{o}$ dientes del engranaje motor

 $Z2 = n^{\circ}$ dientes del engranaje salida

rpm1 = velocidad engranaje motor

rpm2 = velocidad engranaje salida

Ejemplo: ¿Qué velocidad presenta el engranaje 2 si tiene 8 dientes y el engranaje 1 gira a 20 rpm (vueltas por minuto) y consta de 16 dientes?

Z1 x rpm1 = Z2 x rpm2 16 dientes x 20 rpm = 8 dientes x rpm2 rpm2 = (16 dientes x 20 rpm) / 8 dientes rpm2 = **40 rpm**

RT = rpm2 / rpm1 = 40 rpm / 20 rpm = 2

4. MECANISMOS DE TRANSFORMACIÓN DE MOVIMIENTOS.

A. BIELA- MANIVELA Y BIELA- BALANCÍN.

Estos mecanismos tienen por objetivo transformar un movimiento rectilíneo en otro circular o viceversa.

Un ejemplo del mecanismo de biela- manivela lo tenemos en los coches, en ellos el movimiento rectilíneo de un pistón dentro de un cilindro se transforma en circular gracias a un juego biela- manivela.

Un ejemplo claro del método de transformación biela- balancín lo tenemos en las máquinas de coser clásicas.

Esquema biela manivela motocicleta

Ejemplo de mecanismo de biela balancín en una máquina de coser clásica

B. EXCÉNTRICA Y LEVA.

La finalidad de las excéntricas y las levas es transformar el movimiento circular uniforme en rectilíneo alternativo. Mientras la excéntrica sigue un movimiento de vaivén, la leva sigue una ley establecida que no tiene porque ser vaivén.

Excéntrica Leva

Elementos de transmisión

Los **elementos de transmisión** son componentes mecánicos que transfieren movimiento y energía entre diferentes partes de un sistema. Se utilizan en máquinas, motores y mecanismos para modificar la velocidad, el par o la dirección del movimiento.

Engranajes

- **Definición:** Elementos mecánicos con dientes que engranan entre sí para transmitir movimiento rotatorio.
- Tipos principales:
 - **Rectos:** Transmiten movimiento entre ejes paralelos.
 - **Helicoidales:** Operan con menor ruido y vibración; también trabajan en ejes paralelos.
 - **Cónicos:** Permiten la transmisión entre ejes que se cruzan.
 - **Sin fin y corona:** Para grandes reducciones de velocidad con ejes perpendiculares.
- Aplicaciones: Relojes, automóviles, maquinaria industrial.

Poleas y correas

- **Definición:** Sistema compuesto por una rueda (polea) y una banda flexible (correa) que transmite movimiento rotatorio entre ejes.
- Tipos de correas:
 - Planas: Usadas para largas distancias.
 - Trapezoidales: Mejoran el agarre y evitan el deslizamiento.
 - Dentadas: Proporcionan mayor precisión, utilizadas en motores y maquinaria.
- Ventajas:
 - · Funcionamiento silencioso.
 - Absorben vibraciones.
 - Simplicidad en el mantenimiento.
- Aplicaciones: Sistemas de transporte, motores de automóviles.

Para cuerdas	Para correas			
0				
Semicircular	Trapezoidal	Plana	Estriada	

Cadenas de rodillos

- Definición: Elementos compuestos por eslabones conectados, diseñados para transmitir movimiento mediante ruedas dentadas.
- Características:
 - Mayor capacidad de carga que correas.
 - Resistente a condiciones difíciles.
- **Aplicaciones:** Bicicletas, motocicletas, maquinaria agrícola.

Cigüeñal

- **Definición:** Componente que transforma el movimiento lineal alternativo (como el de un pistón) en movimiento rotativo continuo.
- Funcionamiento:
 - Conecta bielas y pistones en motores de combustión interna.
 - Actúa como el corazón de los motores.
- **Aplicaciones:** Motores de automóviles, compresores, bombas de pistón.

Caja de cambios

• **Definición:** Mecanismo que permite variar la relación de transmisión entre el motor y las ruedas de un vehículo.

• Tipos:

- Manual: Requiere intervención del conductor.
- Automática: Cambia marchas automáticamente.
- CVT: Variador continuo sin escalonamientos.
- Aplicaciones: Automóviles, maquinaria industrial.

Soportes y unión de elementos mecánicos

1. Soportes:

- **Definición:** Dispositivos que sostienen ejes y permiten su rotación o movimiento.
- Tipos:
 - Cojinetes (de fricción o antifricción).
 - Chumaceras (soportes con rodamientos).

2. Unión de elementos mecánicos:

- Atornillados: Usan tornillos y tuercas.
- Remachados: Permanentes, usados en estructuras.
- **Soldadura:** Une piezas metálicas mediante fusión.

Acoplamientos rígidos y flexibles

1. Acoplamientos rígidos:

- **Definición:** Conectan ejes alineados sin permitir movimiento relativo.
- **Ejemplo:** Manguitos, bridas.
- Aplicaciones: Máquinas donde la alineación de ejes es precisa.

2. Acoplamientos flexibles:

- Definición: Permiten pequeñas desalineaciones o absorben vibraciones.
- **Ejemplo:** Acoplamientos elásticos, de muelles.
- Aplicaciones: Motores eléctricos, bombas.

Junta Cardán

- Definición: Mecanismo que conecta dos ejes no colineales, permitiendo transmitir movimiento rotatorio a través de ángulos variables.
- Ventajas:
 - Compensa desalineaciones.
 - Soporta cambios de ángulo durante el funcionamiento.

- Árbol de transmisión en automóviles.
- Maquinaria agrícola y sistemas de propulsión naval.

He encontrado algunos videos que explican los elementos de transmisión mecánica que mencionas:

- **TRANSMISIONES MECÁNICAS**: Este video ofrece una introducción a las transmisiones mecánicas, incluyendo engranajes, poleas, correas y cadenas. YouTube
- **Elementos de una transmisión rígida y flexible**: Este video explica los conceptos de las transmisiones rígidas y flexibles, así como los principales componentes como acoplamientos y juntas.

YouTube

 TRANSMISIONES - POLEAS Y CORREA: Este video se centra en las transmisiones por poleas con correas, detallando su funcionamiento y aplicaciones.
 YouTube