Use of STIR for the COMPET project

K. E. Hines, M. Rissi, E. Bolle, D. Volgyes

University of Oslo

COMPET design

Small animal PET scanner:

- high resolution ($\approx 1 \text{mm}$)
- high sensitivity (up to 16%)
- MRI compatible
- no inter-module or inter-crystal gaps
- novel, scalable readout
- user-friendly (easy service, etc.)

COMPET design

COMPET design, axial plane

COMPET design: layer

COMPET design: full layer

Design consequences

- DOI information
 (3D event coordinates)
 - → almost no parallax error
- bore opening is adjustable for the phantom
 → sensitivity(radius), angular resolution(radius)
- discrete axial coordinates
- continuous tangential coordinates
- not easy to write a good 3D reconstruction
 - → STIR is a good solution now

STIR

- listmode reader (3D coordinates)
- input
 - now: GATE simulations
 - soon: measured listmode data
- sinogram based reconstructions
 - SSRB/FBP, 3DRP → NEMA tests
 - iterative methods for 'good pictures'

Results

- GATE simulated *realistic* derenzo (1.0-1.5mm)
 - 13% en. res., pos. range, WLS blur, etc.

Future plans

- parameter optimalization (sinogram bins, iterations/subsets, etc.)
- full NEMA NU-4 2008 evaluation (probably with a web interface)
- STIR as reference reconstrucion, comparable
 - → other devices with STIR reconstruction
 - → other reconstructions for COMPET hardware
- fast prototypeing
 (STIR is flexible, easy to modify)
 - total variation (TV) regularization
 - •
- codes and macros will be published (GPL license)

Thank you for your attention!

Contact

- Erlend Bolle, erlend.bolle@fys.uio.no
- David Volgyes, david.volgyes@ieee.org
- posters: MIC18.M-32 and NP2.S-173
- http://tinyurl.com/compet-project

COMPET readout

COMPET readout II.

Misc