Introducción a la Lógica y la Computación

Mariana Badano Héctor Gramaglia
Pedro Sánchez Terraf Mauricio Tellechea
Guido Ivetta

FaMAF, 10 de septiembre de 2021

Ejes de Contenidos

Estructuras Ordenadas

2 Lógica Proposicional

$$\frac{[\varphi \wedge \psi]_1}{\psi} \wedge E \quad \frac{[\varphi \wedge \psi]_1}{\varphi} \wedge I$$

$$\frac{\psi \wedge \varphi}{\varphi \wedge \psi \rightarrow \psi \wedge \varphi} \rightarrow I_1$$

Lenguajes y Autómatas

Parte 2: Lógica Proposicional

Bibliografía

- Dirk van Dalen, Logic and Structure, 3ra edición (Springer).
- PST, Apunte de Lógica Proposicional.

Contenidos estimados para hoy

Componentes de la lógica proposicional

- 2 Sintaxis
 - El lenguaje de la lógica
 - Inducción y recursión
 - Recursión en *PROP*

En primer año de la carrera se hacía algo como esto:

En primer año de la carrera se hacía algo como esto:

En primer año de la carrera se hacía algo como esto:

```
 \begin{array}{l} \underline{p} \Rightarrow \underline{q} \vee \underline{p} \\ \text{Definición de} \Rightarrow \end{array} \} \\ \underline{p} \vee \underline{q} \vee \underline{p} \equiv \underline{q} \vee \underline{q} \vee \underline{p} \\ \equiv \left\{ \begin{array}{l} \underline{Conmutativa} \vee, \text{Idempotencia} \vee \end{array} \right\} \\ \underline{p} \vee \underline{q} \equiv \underline{q} \vee \underline{p} \\ \text{Conmutativa} \vee \end{array} \} \\ \underline{True}
```

Preguntas...

1 ¿Qué demuestra esto?

En primer año de la carrera se hacía algo como esto:

Preguntas...

1 ¿Qué demuestra esto? ¿Qué es demostrar?

En primer año de la carrera se hacía algo como esto:

```
 \begin{array}{l} \underline{p} \Rightarrow \underline{q} \vee \underline{p} \\ \text{Definición de} \Rightarrow \end{array} \} \\ \underline{p} \vee \underline{q} \vee \underline{p} \equiv \underline{q} \vee \underline{q} \vee \underline{p} \\ \equiv \left\{ \begin{array}{l} \underline{Conmutativa} \vee, \text{Idempotencia} \vee \end{array} \right\} \\ \underline{p} \vee \underline{q} \equiv \underline{q} \vee \underline{p} \\ \text{Conmutativa} \vee \end{array} \} \\ \underline{True}
```

Preguntas...

- 1 ¿Qué demuestra esto? ¿Qué es demostrar?
- 2 ¿Qué es True?

En primer año de la carrera se hacía algo como esto:

```
 \begin{array}{l} \underline{p} \Rightarrow \underline{q} \vee \underline{p} \\ \text{Definición de} \Rightarrow \end{array} \} \\ \underline{p} \vee \underline{q} \vee \underline{p} \equiv \underline{q} \vee \underline{q} \vee \underline{p} \\ \equiv \left\{ \begin{array}{l} \underline{Conmutativa} \vee, \text{Idempotencia} \vee \end{array} \right\} \\ \underline{p} \vee \underline{q} \equiv \underline{q} \vee \underline{p} \\ \text{Conmutativa} \vee \end{array} \} \\ \underline{True}
```

Preguntas...

- 1 ¿Qué demuestra esto? ¿Qué es demostrar?
- 2 ¿Qué es True?
- 3 ¿Qué son p y q?

Sintaxis

Qué objetos usamos: proposiciones, cómo se escriben.

Sintaxis

Qué objetos usamos: **proposiciones**, cómo se escriben.

Semántica

Cómo asignamos significado a las proposiciones: valor de verdad.

Sintaxis

Qué objetos usamos: **proposiciones**, cómo se escriben.

Semántica

Cómo asignamos significado a las proposiciones: valor de verdad.

Cálculo

Cómo se deducen proposiciones a partir de otras y se obtienen teoremas

Sintaxis

Qué objetos usamos: **proposiciones**, cómo se escriben.

Semántica

Cómo asignamos significado a las proposiciones: valor de verdad.

Cálculo

Cómo se deducen proposiciones a partir de otras y se obtienen teoremas

Estudiaremos especialmente la interrelación entre los dos últimos conceptos.

Proposiciones

 $(p_1 \wedge p_2)$,

Proposiciones

$$(p_1 \wedge p_2), (p_2 \vee p_1),$$

Proposiciones

$$(p_1 \wedge p_2), (p_2 \vee p_1), (p_0 \to (p_5 \vee p_0)),$$

Proposiciones

$$(p_1 \wedge p_2), (p_2 \vee p_1), (p_0 \to (p_5 \vee p_0)), \ldots$$

Proposiciones

$$(p_1 \wedge p_2), (p_2 \vee p_1), (p_0 \rightarrow (p_5 \vee p_0)), \dots$$

Tomémoslas por lo que son: cadenas de símbolos

Proposiciones

$$(p_1 \wedge p_2), (p_2 \vee p_1), (p_0 \to (p_5 \vee p_0)), \ldots$$

Tomémoslas por lo que son: cadenas de símbolos

Proposiciones

$$(p_1 \wedge p_2), (p_2 \vee p_1), (p_0 \to (p_5 \vee p_0)), \ldots$$

Tomémoslas por lo que son: cadenas de símbolos Los símbolos que usaremos:

$$\Sigma := \{), (, \wedge, \vee, \rightarrow, \perp, \overbrace{p_0, p_1, \dots, p_n, p_{n+1}, \dots}\}.$$

Proposiciones

$$(p_1 \wedge p_2), (p_2 \vee p_1), (p_0 \to (p_5 \vee p_0)), \ldots$$

Tomémoslas por lo que son: cadenas de símbolos Los símbolos que usaremos:

$$\Sigma := \{ \}, (, \wedge, \vee, \rightarrow, \bot, p_0, p_1, \ldots, p_n, p_{n+1}, \ldots \}.$$

Proposiciones

$$(p_1 \wedge p_2), (p_2 \vee p_1), (p_0 \to (p_5 \vee p_0)), \ldots$$

Tomémoslas por lo que son: cadenas de símbolos

Los símbolos que usaremos:

$$\Sigma := \{), (, \wedge, \vee, \rightarrow, \bot, p_0, p_1, \ldots, p_n, p_{n+1}, \ldots)\}.$$

Llamaremos **átomos** al subconjunto $\{\bot, p_0, p_1, \ldots, p_n, p_{n+1}, \ldots\}$ de Σ .

variables } proposiconales

Proposiciones

$$(p_1 \wedge p_2), (p_2 \vee p_1), (p_0 \to (p_5 \vee p_0)), \ldots$$

Tomémoslas por lo que son: cadenas de símbolos

Los símbolos que usaremos:

$$\Sigma := \{ \}, (, \wedge, \vee, \rightarrow, \bot, p_0, p_1, \dots, p_n, p_{n+1}, \dots \}.$$

Llamaremos **átomos** al subconjunto $\{\bot, p_0, p_1, \dots, p_n, p_{n+1}, \dots\}$ de Σ .

Ejemplo

)
$$\wedge p_0 \longrightarrow (\in \mathbb{Z}^* p_0 p_0)$$

Proposiciones

$$(p_1 \wedge p_2), (p_2 \vee p_1), (p_0 \to (p_5 \vee p_0)), \ldots$$

Tomémoslas por lo que son: cadenas de símbolos

Los símbolos que usaremos:

$$\Sigma := \{ \}, (, \wedge, \vee, \rightarrow, \bot, p_0, p_1, \ldots, p_n, p_{n+1}, \ldots \}.$$

Llamaremos **átomos** al subconjunto $\{\bot, p_0, p_1, \ldots, p_n, p_{n+1}, \ldots\}$ de Σ .

Ejemplo

Definición

PROP es el menor subconjunto de Σ^* que cumple con:

Proposiciones

$$(p_1 \wedge p_2), (p_2 \vee p_1), (p_0 \to (p_5 \vee p_0)), \ldots$$

Tomémoslas por lo que son: cadenas de símbolos

Los símbolos que usaremos:

$$\Sigma := \{), (, \wedge, \vee, \rightarrow, \bot, p_0, p_1, \ldots, p_n, p_{n+1}, \ldots \}.$$

Llamaremos **átomos** al subconjunto $\{\bot, p_0, p_1, \ldots, p_n, p_{n+1}, \ldots\}$ de Σ .

Ejemplo

Definición

PROP es el menor subconjunto de Σ^* que cumple con:

$$\varphi \in At$$
 Para todo $\varphi \in At$, $\varphi \in PROP$.

Proposiciones

$$(p_1 \wedge p_2), (p_2 \vee p_1), (p_0 \to (p_5 \vee p_0)), \ldots$$

Tomémoslas por lo que son: cadenas de símbolos

Los símbolos que usaremos:

$$\Sigma := \{), (, \wedge, \vee, \rightarrow, \bot, p_0, p_1, \dots, p_n, p_{n+1}, \dots)\}.$$

Llamaremos **átomos** al subconjunto $\{\bot, p_0, p_1, \dots, p_n, p_{n+1}, \dots\}$ de Σ .

Ejemplo

$$(p_1 \wedge p_2) = (\boxed{p_1} \land \boxed{p_2}).$$

Definición

PROP es el menor subconjunto de Σ^* que cumple con:

$$\varphi \in At$$
 Para todo $\varphi \in At$, $\varphi \in PROP$.

Para todas
$$\varphi, \psi$$
 en $PROP$, $(\varphi \to \psi)$ está en $PROP$.

Proposiciones

$$(p_1 \wedge p_2), (p_2 \vee p_1), (p_0 \to (p_5 \vee p_0)), \dots$$

Tomémoslas por lo que son: cadenas de símbolos

Los símbolos que usaremos:

$$\Sigma := \{), (, \wedge, \vee, \rightarrow, \bot, p_0, p_1, \ldots, p_n, p_{n+1}, \ldots \}.$$

Llamaremos **átomos** al subconjunto $\{\bot, p_0, p_1, \ldots, p_n, p_{n+1}, \ldots\}$ de Σ .

Ejemplo

Definición

PROP es el menor subconjunto de Σ^* que cumple con:

$$\varphi \in At$$
 Para todo $\varphi \in At$, $\varphi \in PROP$.

 $\overline{(\varphi \lor \psi)}$ Para todas φ, ψ en PROP, $(\varphi \lor \psi)$ está en PROP.

Proposiciones

$$(p_1 \wedge p_2), (p_2 \vee p_1), (p_0 \to (p_5 \vee p_0)), \dots$$

Tomémoslas por lo que son: cadenas de símbolos

Los símbolos que usaremos:

$$\Sigma := \{), (, \wedge, \vee, \rightarrow, \bot, p_0, p_1, \ldots, p_n, p_{n+1}, \ldots)\}.$$

Llamaremos **átomos** al subconjunto $\{\bot, p_0, p_1, \ldots, p_n, p_{n+1}, \ldots\}$ de Σ .

Ejemplo

Definición

PROP es el menor subconjunto de Σ^* que cumple con:

$$\varphi \in At$$
 Para todo $\varphi \in At$, $\varphi \in PROP$.

 $\overline{(\varphi \wedge \psi)}$ Para todas φ, ψ en PROP, $(\varphi \wedge \psi)$ está en PROP.

Proposiciones

$$(p_1 \wedge p_2), (p_2 \vee p_1), (p_0 \to (p_5 \vee p_0)), \dots$$

Tomémoslas por lo que son: cadenas de símbolos

Los símbolos que usaremos:

$$\Sigma := \{), (, \wedge, \vee, \rightarrow, \bot, p_0, p_1, \ldots, p_n, p_{n+1}, \ldots)\}.$$

Llamaremos **átomos** al subconjunto $\{\bot, p_0, p_1, \ldots, p_n, p_{n+1}, \ldots\}$ de Σ .

Ejemplo

Definición

PROP es el menor subconjunto de Σ^* que cumple con:

$$\varphi \in At$$
 Para todo $\varphi \in At$, $\varphi \in PROP$.

Inducción en PROP — "Prossiciones"

PROP es el menor subconjunto de Σ " que cumple con: Inducción en PROP/-

Para todo $\varphi \in At$, $\varphi \in PROP$.

Para todas φ, ψ en *PROP*, $(\varphi \odot \psi)$ está en *PROP*.

Inducción en PROP

PROP es el menor subconjunto de Σ^* que cumple con:

$$\boxed{\varphi \in At}$$
 Para todo $\varphi \in At$, $\varphi \in PROP$.

$$\overline{(\varphi\odot\psi)}$$
 Para todas φ,ψ en $PROP$, $(\varphi\odot\psi)$ está en $PROP$.

Teorema (inducción en subfórmulas)

Sea A un predicado sobre PROP. Luego $A(\varphi)$ es verdadero para toda $\varphi \in PROP$ si y sólo si:

Inducción en PROP

Lands donies

PROP es el menor subconjunto de Σ^* que cumple con:

$$\varphi \in At$$
 Para todo $\varphi \in At$, $\varphi \in PROP$.

$$\overline{(\varphi\odot\psi)}$$
 Para todas φ,ψ en *PROP*, $(\varphi\odot\psi)$ está en *PROP*.

Teorema (inducción en subfórmulas)

Sea A un predicado sobre PROP. Luego $A(\varphi)$ es verdadero para toda $\varphi \in PROP$ si y sólo si:

 $\boxed{arphi \in \mathit{At}}$ Si arphi es atómica, A(arphi) vale.

 $(\varphi\odot\psi)$ Si $A(\varphi)$ y $A(\psi)$ entonces $A((\varphi\odot\psi))$.

Inducción en PROP

PROP es el menor subconjunto de Σ^* que cumple con:

 $\boxed{\varphi \in At}$ Para todo $\varphi \in At$, $\varphi \in PROP$.

 $\overline{(\varphi\odot\psi)}$ Para todas φ,ψ en PROP, $(\varphi\odot\psi)$ está en PROP.

Teorema (inducción en subfórmulas)

Sea A un predicado sobre PROP. Luego $A(\varphi)$ es verdadero para toda $\varphi \in PROP$ si y sólo si:

 $\boxed{arphi \in At}$ Si arphi es atómica, $\cfrac{\mathbf{A}(arphi)}{\mathbf{A}(arphi)}$ vale.

 $\boxed{(arphi\odot\psi)} \; {\it Si}\, A(arphi) \; {\it y}\, A(\psi) \; {\it entonces} \, \dfrac{A((arphi\odot\psi)).}{}$

Demostración.

 $\operatorname{Sea} X = \{\varphi \in \mathit{PROP} : A(\varphi)\}.$

PROP es el menor subconjunto de Σ^* que cumple con:

 $\boxed{arphi \in At}$ Para todo $arphi \in At$, $arphi \in PROP$.

 $(\varphi\odot\psi)$ Para todas φ,ψ en PROP, $(\varphi\odot\psi)$ está en PROP.

Teorema (inducción en subfórmulas)

Sea A un predicado sobre PROP. Luego $A(\varphi)$ es verdadero para toda $\varphi \in PROP$ si y sólo si:

 $\boxed{arphi \in At}$ Si arphi es atómica, A(arphi) vale.

 $\boxed{ (\varphi \odot \psi) \quad \textit{Si} \, A(\varphi) \; \textit{y} \, A(\psi) \; \textit{entonces} \, A((\varphi \odot \psi)). }$

Demostración.

X = Z*

Sea $X = \{ \varphi \in PROP : A(\varphi) \}$. Luego $X \subseteq PROP \subseteq \Sigma^*$.

Inducción en PROP, Justan

PROP es el menor subconjunto de Σ^* que cumple con:

 $\varphi \in At$ Para todo $\varphi \in At$, $\varphi \in PROP$.

 $(\varphi\odot\psi)$ Para todas φ,ψ en *PROP*, $(\varphi\odot\psi)$ está en *PROP*.

Teorema (inducción en subfórmulas)

Sea A un predicado sobre PROP. Luego $A(\varphi)$ es verdadero para toda $\varphi \in PROP$ si y sólo si:

 $\boxed{\varphi \in At}$ Si φ es atómica, $A(\varphi)$ vale.

Demostración.

 $\mathsf{Sea}\,X = \{\varphi \in \mathit{PROP} : A(\varphi)\}.\,\,\mathsf{Luego}\,X \subseteq \mathit{PROP} \subseteq \Sigma^*.\,\,\,\mathsf{X} \subseteq \mathsf{PROP} \subseteq \mathsf{P$

9/12

Definición

Una sucesión de proposiciones $\varphi_1, \ldots, \varphi_n$ es una **serie de formación** (sdf) de $\varphi \in PROP$ si $\varphi_n = \varphi$ y para todo $i < n, \varphi_i$ es:

- atómica, o bien
- igual a $(\varphi_i \odot \varphi_k)$ con j, k < i.

$$P_1$$
 P_2 P_3 P_4 P_4 P_5 P_7 P_7 P_7 P_7 P_7 P_7 P_7

Pr , pr ,
$$\stackrel{\downarrow}{\downarrow}$$
 , $(p_1 \land p_2)$, $(p_1 \land p_2) \rightarrow p_1)$, $(\varphi_2 \land \varphi_1)_{\nu}$, $(\varphi_4 \rightarrow \varphi_1)_{\nu}$

$$((p_1 \wedge p_2) \to p_1)$$

$$(\varphi_4 \to \varphi_1)$$

Definición

Una sucesión de proposiciones $\varphi_1, \ldots, \varphi_n$ es una **serie de formación** (sdf) de $\varphi \in PROP$ si $\varphi_n = \varphi$ y para todo $i \leq n, \varphi_i$ es:

- atómica, o bien
- igual a $(\varphi_j \odot \varphi_k) \operatorname{con} j, k < i$.

Teorema

Toda $\varphi \in PROP$ tiene una serie de formación.

Definición

Una sucesión de proposiciones $\varphi_1, \ldots, \varphi_n$ es una **serie de formación** (sdf) de $\varphi \in PROP$ si $\varphi_n = \varphi$ y para todo $i \le n$, φ_i es:

- atómica, o bien
- igual a $(\varphi_j \odot \varphi_k) \operatorname{con} j, k < i$.

Teorema

Toda $\varphi \in PROP$ tiene una serie de formación.

Demostración.

 $\boxed{arphi\in At}$ "arphi" es una sdf de arphi (tenemos n=1, $arphi_1:=arphi$).

Definición

Una sucesión de proposiciones $\varphi_1, \ldots, \varphi_n$ es una **serie de formación** (sdf) de $\varphi \in PROP$ si $\varphi_n = \varphi$ y para todo $i \leq n, \varphi_i$ es:

- atómica, o bien
- igual a $(\varphi_j \odot \varphi_k) \operatorname{con} j, k < i$.

$A(\varphi) := ((\varphi \text{ [ione S.J.f.]}))$

Teorema

Toda $\varphi \in PROP$ tiene una serie de formación.

Demostración.

 $\boxed{arphi\in At}$ "arphi" es una sdf de arphi (tenemos n=1, $arphi_1:=arphi$).

 $(\varphi\odot\psi)$ Por HI, φ y ψ tienen sdf $\varphi_1,\ldots,\varphi_n(=\varphi)$ y $\psi_1,\ldots,\psi_m(=\psi)$.

Definición

Una sucesión de proposiciones $\varphi_1, \ldots, \varphi_n$ es una **serie de formación** (sdf) de $\varphi \in PROP$ si $\varphi_n = \varphi$ y para todo $i \leq n, \varphi_i$ es:

- atómica, o bien
- igual a $(\varphi_j \odot \varphi_k) \operatorname{con} j, k < i$.

Teorema

Toda $\varphi \in PROP$ tiene una serie de formación.

Demostración.

 $\boxed{arphi\in At}$ "arphi" es una sdf de arphi (tenemos n=1, $arphi_1:=arphi$).

 $\boxed{ (\varphi \odot \psi) } \text{ Por HI, } \varphi \text{ y } \psi \text{ tienen sdf } \varphi_1, \ldots, \varphi_n (= \varphi) \text{ y } \psi_1, \ldots, \psi_m (= \psi).$

Luego $\varphi_1, \ldots, \varphi_n, \psi_1, \ldots, \psi_m, (\varphi \odot \psi)$ es sdf de $(\varphi \odot \psi)$.

PROP es el menor subconjunto de Σ^* que cumple con:

 $\varphi \in At$

Para todo $\varphi \in At$, $\varphi \in PROP$.

 $(\varphi\odot\psi)$

Para todas φ, ψ en PROP, $(\varphi \odot \psi)$ está en PROP.

PROP es el menor subconjunto de Σ^* que cumple con:

 $\varphi \in At$ Para todo $\varphi \in At$, $\varphi \in PROP$.

 $(\varphi\odot\psi)$ Para todas φ,ψ en PROP, $(\varphi\odot\psi)$ está en PROP.

Teorema (definición por recursión en subfórmulas)

Sea A un conjunto y supongamos dadas funciones

 $H_{At}: At \rightarrow A \text{ y } H_{\odot}: A^2 \rightarrow A \text{ para cada } \odot.$

Entonces hay exactamente una función $F: PROP \rightarrow A$ tal que

$$\begin{cases} F(\varphi) &= H_{At}(\varphi) \text{ para } \varphi \text{ en } At \\ F((\varphi \odot \psi)) &= H_{\odot}\big(F(\varphi), F(\psi)\big) \\ \text{Sun } \Gamma \to \emptyset & \text{Holimation} \to \Gamma \text{ and} & \text{A} \\ \text{Sun } \Gamma \to \emptyset & \text{Holimation} \to \Gamma \text{ and} & \text{A} \\ \text{Sun } \Gamma \to \emptyset & \text{Holimation} \to \Gamma \text{ and} & \text{A} \\ \text{Sun } \Gamma \to \emptyset & \text{Holimation} \to \Gamma \text{ and} & \text{A} \\ \text{Sun } \Gamma \to \emptyset & \text{Holimation} \to \Gamma \text{ and} & \text{A} \\ \text{Sun } \Gamma \to \emptyset & \text{Holimation} \to \Gamma \text{ and} & \text{A} \\ \text{Sun } \Gamma \to \emptyset & \text{Holimation} \to \Gamma \text{ and} & \text{A} \\ \text{Sun } \Gamma \to \emptyset & \text{Holimation} \to \Gamma \text{ and} & \text{A} \\ \text{Sun } \Gamma \to \emptyset & \text{Holimation} \to \Gamma \text{ and} & \text{A} \\ \text{Sun } \Gamma \to \emptyset & \text{Holimation} \to \Gamma \text{ and} & \text{A} \\ \text{Sun } \Gamma \to \emptyset & \text{Holimation} \to \Gamma \text{ and} & \text{A} \\ \text{Sun } \Gamma \to \emptyset & \text{Holimation} & \text{Holimati$$

$$H_{AI}(\varphi) = \begin{cases} -1 & \varphi = 1 \\ n & \varphi = p_n \end{cases}, \quad H_{G} = m \times \chi$$

$$\exists \mid F : Peop \rightarrow \mathcal{Z}$$

$$F(\varphi) = \begin{cases} -1 & \varphi = 1 \\ n & \varphi = p_n \end{cases}$$

$$F((\varphi \circ \varphi)) = m \times \{F(\varphi), F(\varphi)\}$$

Ejemmplo de definición por recursión:

Definición

$$\varphi \in At \quad gr(p_n) := n; gr(\bot) := -1.$$

$$(\varphi \odot \psi) \quad gr((\varphi \odot \psi)) := \max\{gr(\varphi), gr(\psi)\}.$$

$$H_{AL} : A \downarrow \longrightarrow \mathcal{H} \qquad H_{AL}(\varphi) := \begin{cases} -1 & \varphi = \bot \\ n & \varphi = p_n \end{cases}$$

$$H_{AL} : A \downarrow \longrightarrow \mathcal{H} \qquad H_{AL}(\varphi) := \begin{cases} -1 & \varphi = \bot \\ n & \varphi = p_n \end{cases}$$

$$H_{AL} : A \downarrow \longrightarrow \mathcal{H} \qquad H_{AL}(\varphi) := \begin{cases} -1 & \varphi = \bot \\ n & \varphi = p_n \end{cases}$$

$$H_{AL} : A \downarrow \longrightarrow \mathcal{H} \qquad H_{AL}(\varphi) := \begin{cases} -1 & \varphi = \bot \\ n & \varphi = p_n \end{cases}$$

$$H_{AL} : A \downarrow \longrightarrow \mathcal{H} \qquad H_{AL}(\varphi) := \begin{cases} -1 & \varphi = \bot \\ n & \varphi = p_n \end{cases}$$

$$H_{AL} : A \downarrow \longrightarrow \mathcal{H} \qquad H_{AL}(\varphi) := \begin{cases} -1 & \varphi = \bot \\ n & \varphi = p_n \end{cases}$$

$$H_{AL} : A \downarrow \longrightarrow \mathcal{H} \qquad H_{AL}(\varphi) := \begin{cases} -1 & \varphi = \bot \\ n & \varphi = p_n \end{cases}$$

$$H_{AL} : A \downarrow \longrightarrow \mathcal{H} \qquad H_{AL}(\varphi) := \begin{cases} -1 & \varphi = \bot \\ n & \varphi = p_n \end{cases}$$

$$H_{AL} : A \downarrow \longrightarrow \mathcal{H} \qquad H_{AL}(\varphi) := \begin{cases} -1 & \varphi = \bot \\ n & \varphi = p_n \end{cases}$$

$$H_{AL} : A \downarrow \longrightarrow \mathcal{H} \qquad H_{AL}(\varphi) := \begin{cases} -1 & \varphi = \bot \\ n & \varphi = p_n \end{cases}$$

$$H_{AL} : A \downarrow \longrightarrow \mathcal{H} \qquad H_{AL}(\varphi) := \begin{cases} -1 & \varphi = \bot \\ n & \varphi = p_n \end{cases}$$

$$H_{AL} : A \downarrow \longrightarrow \mathcal{H} \qquad H_{AL}(\varphi) := \begin{cases} -1 & \varphi = \bot \\ n & \varphi = p_n \end{cases}$$

$$H_{AL} : A \downarrow \longrightarrow \mathcal{H} \qquad H_{AL}(\varphi) := \begin{cases} -1 & \varphi = \bot \\ n & \varphi = p_n \end{cases}$$

$$H_{AL} : A \downarrow \longrightarrow \mathcal{H} \qquad H_{AL}(\varphi) := \begin{cases} -1 & \varphi = \bot \\ n & \varphi = p_n \end{cases}$$

$$H_{AL} : A \downarrow \longrightarrow \mathcal{H} \qquad H_{AL}(\varphi) := \begin{cases} -1 & \varphi = \bot \\ n & \varphi = p_n \end{cases}$$

$$H_{AL} : A \downarrow \longrightarrow \mathcal{H} \qquad H_{AL}(\varphi) := \begin{cases} -1 & \varphi = \bot \\ n & \varphi = p_n \end{cases}$$

$$H_{AL} : A \downarrow \longrightarrow \mathcal{H} \qquad H_{AL}(\varphi) := \begin{cases} -1 & \varphi = \bot \\ n & \varphi = p_n \end{cases}$$

$$H_{AL} : A \downarrow \longrightarrow \mathcal{H} \qquad H_{AL}(\varphi) := \begin{cases} -1 & \varphi = \bot \\ n & \varphi = p_n \end{cases}$$

$$H_{AL} : A \downarrow \longrightarrow \mathcal{H} \qquad H_{AL}(\varphi) := \begin{cases} -1 & \varphi = \bot \\ n & \varphi = p_n \end{cases}$$

$$H_{AL} : A \downarrow \longrightarrow \mathcal{H} \qquad H_{AL}(\varphi) := \begin{cases} -1 & \varphi = \bot \\ n & \varphi = p_n \end{cases}$$

$$H_{AL} : A \downarrow \longrightarrow \mathcal{H} \qquad H_{AL}(\varphi) := \begin{cases} -1 & \varphi = \bot \\ n & \varphi = \varphi \end{cases}$$

$$H_{AL} : A \downarrow \longrightarrow \mathcal{H} \qquad H_{AL}(\varphi) := \begin{cases} -1 & \varphi = \bot \\ n & \varphi = \varphi \end{cases}$$

$$H_{AL} : A \downarrow \longrightarrow \mathcal{H} \qquad H_{AL}(\varphi) := \begin{cases} -1 & \varphi = \bot \\ n & \varphi = \varphi \end{cases}$$

$$H_{AL} : A \downarrow \longrightarrow \mathcal{H} \qquad H_{AL}(\varphi) := \begin{cases} -1 & \varphi = \bot \\ n & \varphi = \varphi \end{cases}$$

$$H_{AL} : A \downarrow \longrightarrow \mathcal{H} \qquad H_{AL}(\varphi) := \begin{cases} -1 & \varphi = \bot \\ n & \varphi = \varphi \end{cases}$$

$$H_{AL} : A \downarrow \longrightarrow \mathcal{H} \qquad H_{AL}(\varphi) := \begin{cases} -1 & \varphi = \bot \\ n & \varphi = \varphi \end{cases}$$

$$H_{AL} : A \downarrow \longrightarrow \mathcal{H} \qquad H_{AL}(\varphi) := \begin{cases} -1 & \varphi = \bot \\ n & \varphi = \varphi \end{cases}$$

$$H_{AL} : A \downarrow \longrightarrow \mathcal{H} \qquad H_{AL}(\varphi) := \begin{cases} -1 & \varphi = \bot \\ n & \varphi = \varphi \end{cases}$$

$$H_{AL} : A \downarrow \longrightarrow \mathcal{H} \qquad H_{AL}(\varphi) := \begin{cases} -1 & \varphi = \bot \\ n & \varphi = \varphi \end{cases}$$

$$H_{AL} : A \downarrow \longrightarrow \mathcal{H} \qquad H_{AL}(\varphi) := \begin{cases} -1 & \varphi = \bot \\ n & \varphi = \varphi \end{cases}$$

$$H_$$

Ejemmplo de definición por recursión:

Definición

$$\varphi \in At$$
 $gr(p_n) := n; gr(\bot) := -1.$

$$\boxed{(\varphi\odot\psi)} \ \operatorname{\textit{gr}}((\varphi\odot\psi)) := \operatorname{máx}\{\operatorname{\textit{gr}}(\varphi),\operatorname{\textit{gr}}(\psi)\}.$$

$$grig(((p_0 \wedge p_3) o p_2)ig) = \maxig\{grig((p_0 \wedge p_3)ig), gr(p_2)ig\}$$
 caso " \odot "

Ejemmplo de definición por recursión:

Definición

$$grig(((p_0 \wedge p_3) \to p_2)ig) = \max ig\{grig((p_0 \wedge p_3)ig), \underline{gr(p_2)}ig\}$$
 caso " \odot "
 $= \max ig\{grig((p_0 \wedge p_3)ig), 2ig\}$ caso " At "

Ejemmplo de definición por recursión:

Definición

$$\begin{array}{|c|} \hline \varphi \in At & gr(p_n) := n; gr(\bot) := -1. \\ \hline \hline (\varphi \odot \psi) & gr((\varphi \odot \psi)) := \max\{gr(\varphi), gr(\psi)\}.
\end{array}$$

$$\begin{split} gr\big(((p_0 \wedge p_3) \to p_2)\big) &= \max \big\{gr\big((p_0 \wedge p_3)\big), gr(p_2)\big\} & \text{caso "}\odot\text{"} \\ &= \max \big\{\underline{gr\big((p_0 \wedge p_3)\big)}, 2\big\} & \text{caso "}\Delta t\text{"} \\ &= \max \big\{\max \big\{gr(p_0), gr(p_3)\big\}, 2\big\} & \text{caso "}\odot\text{"} \end{split}$$

Ejemmplo de definición por recursión:

Definición

$$\begin{array}{|c|} \hline \varphi \in At & gr(p_n) := n; gr(\bot) := -1. \\ \hline \hline (\varphi \odot \psi) & gr((\varphi \odot \psi)) := \max\{gr(\varphi), gr(\psi)\}.
\end{array}$$

$$\begin{split} gr\big(((p_0 \wedge p_3) \to p_2)\big) &= \max \big\{gr\big((p_0 \wedge p_3)\big), gr(p_2)\big\} & \text{caso "}\odot\text{"} \\ &= \max \big\{gr\big((p_0 \wedge p_3)\big), 2\big\} & \text{caso "}\Delta t\text{"} \\ &= \max \big\{\max \big\{gr(p_0), gr(p_3)\big\}, 2\big\} & \text{caso "}\odot\text{"} \\ &= \max \big\{\max \big\{0, 3\big\}, 2\big\} & \text{caso "}\Delta t\text{"} \end{split}$$

Ejemmplo de definición por recursión:

Definición

$$\begin{array}{c|c} \varphi \in At & gr(p_n) := n; gr(\bot) := -1. \\ \hline (\varphi \odot \psi) & gr((\varphi \odot \psi)) := \max\{gr(\varphi), gr(\psi)\}.
\end{array}$$

$$\begin{split} gr\big(((p_0 \wedge p_3) \to p_2)\big) &= \max \big\{gr\big((p_0 \wedge p_3)\big), gr(p_2)\big\} & \text{caso "}\odot\text{"} \\ &= \max \big\{gr\big((p_0 \wedge p_3)\big), 2\big\} & \text{caso "}At" \\ &= \max \big\{\max \big\{gr(p_0), gr(p_3)\big\}, 2\big\} & \text{caso "}\odot\text{"} \\ &= \max \big\{\max \big\{0, 3\big\}, 2\big\} & \text{caso "}At" \\ &= \max \big\{3, 2\big\} & \text{def de m\'ax} \end{split}$$

Ejemmplo de definición por recursión:

Definición

$$\begin{array}{|c|} \hline \varphi \in At & gr(p_n) := n; gr(\bot) := -1. \\ \hline \hline (\varphi \odot \psi) & gr((\varphi \odot \psi)) := \max\{gr(\varphi), gr(\psi)\}.
\end{array}$$

$$grig(((p_0 \wedge p_3) o p_2)ig) = \max ig\{grig((p_0 \wedge p_3)ig), gr(p_2)ig\}$$
 caso " \odot " $= \max ig\{grig((p_0 \wedge p_3)ig), 2ig\}$ caso " \odot " $= \max ig\{\max ig\{gr(p_0), gr(p_3)ig\}, 2ig\}$ caso " \odot " $= \max ig\{\max ig\{0, 3ig\}, 2ig\}$ caso " At " $= \max ig\{3, 2ig\}$ def de máx $= 3$

Puels unicided del Teoremo de Reasson en PROP.: Syp. Fy Fz comple con su conclisión Probonos pe indución a q E PROP, $F_1(\rho) = F_2(\rho)$ $F_1(\varphi) = H_{A\bar{\iota}}(\varphi) = F_2(\varphi) \vee$ $F_1((\varphi \circ \psi)) = H_0(f_1(p), F_1(\psi))$ fredishu | HI $H_0(\xi(\varphi), \xi(\psi))$ Fr salitare d | 1 Tooker F2 ((404)). is son i pudes F1, F2