Cálculo Infinitesimal 3 – Lista 3 - 2020

Prof. Flavio Dickstein.

Questão 1. Seja B a circunferência de raio 1 em \mathbb{R}^2 e seja $f: \mathbb{R}^2 \to \mathbb{R}$ tal que f(x) = 1, se $x \in B$, e f(x) = 0 se $x \notin B$. (f é a função característica de B.) Mostre que f é integrável, e que $\int_B f = \pi$.

Questão 2. Seja $R = \{(x,y), 0 \le y \le x+1, 0 \le x \le 1\}$. Calcule $\int_R e^{x+y} dx dy$.

Questão 3. A área A de uma região planar R pode ser calculada como $A=\int_R 1\,dxdy$. Use isto para calcular

- (i) a área da região limitada superiormente pela curva y=f(x) e inferiormente pela curva $y=g(x), x\in [a,b].$
- (ii) a área da elipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

Calcule a área da elipse fazendo uma mudança de variáveis que leve a elipse em um círculo.

Questão 4. Use o exercício anterior e o Princípio de Cavalieri para calcular o volume do elipsóide $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$. Alternativamente, calcule esse volume usando uma mudança de variáveis que leve o elipsóide em uma esfera.

Questão 5. Seja $f: \mathbb{R}^2 \setminus \{0\} \to \mathbb{R}$ dada por $f(x,y) = \frac{1}{4x^2 - 2xy + y^2}$. Seja B o círculo de raio 1. Discuta a existência das integrais $\int_B f$ e $\int_{\mathbb{R}^2 \setminus B} f$. (Sugestão: Use o Teorema Espectral para escrever a forma quadrática de modo mais conveniente.)

Questão 6. Seja $f: \mathbb{R}^n \setminus \{0\} \to \mathbb{R}$ a função radial dada por $f(r) = r^{-p} \cos r$, onde p > 0. Sejam $\Omega_1 = \{x \in \mathbb{R}^n, |x| < 1\}$ e $\Omega_2 = \{x \in \mathbb{R}^n, |x| > 1\}$. Discuta para que valores de p as integrais $\int_{\Omega_1} f \, \mathrm{e} \int_{\Omega_2} f$ são finitas.