Linear Algebra Review BIOS 526

Definitions

- 1. Inner product: $\mathbf{a}'\mathbf{b} = \Sigma_i a_i b_i$.
- 2. Euclidean norm for vectors (length): $||\mathbf{a}||_2 = \sqrt{\mathbf{a}'\mathbf{a}}$.
- 3. Vectors **a** and **b** are orthogonal if $\mathbf{a}'\mathbf{b} = 0$.
- 4. Linear independence: vectors $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$ are linearly independent if $\sum_i c_i \mathbf{a}_i \neq 0$ unless $c_i = 0$ for all i.
- 5. Column space of matrix \mathbf{A} = the linear space spanned by the columns of \mathbf{A} .
- 6. Rank of matrix $\mathbf{A} = \text{minimum}(n,k)$ where n is the number of linearly independent columns of \mathbf{A} and k is the number of linearly independent rows of \mathbf{A} .
- 7. Trace: $tr(\mathbf{A}) = \sum_{i} \mathbf{A}_{ii}$
- 8. Eigenvalue: If $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$ where $\mathbf{x} \neq 0$, then λ is an eigenvalue of \mathbf{A} and \mathbf{x} is a corresponding eigenvector.
- 9. A matrix **P** is idempotent if $\mathbf{P}^2 = \mathbf{P}$. A symmetric idempotent matrix is called a projection matrix.

Properties of Matrix Operations

- 1. If **A** and **B** are invertible, then $(\mathbf{AB})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$.
- $2. \ (\mathbf{AB})' = \mathbf{B}'\mathbf{A}'$
- $3. (\mathbf{A} + \mathbf{B})' = \mathbf{A}' + \mathbf{B}'.$

Properties of Covariance Matrix

Let **X** be a random vector in \mathbb{R}^p .

1. Symmetric: $cov(\mathbf{X}) = [cov(\mathbf{X})]'$.

- 2. $cov(\mathbf{X})$ is positive semidefinite.
- 3. cov(X + a) = cov(X) if a is a constant vector.
- 4. $cov(\mathbf{AX}) = \mathbf{A}cov(\mathbf{X})\mathbf{A}'$ if \mathbf{A} is a constant matrix.
- 5. $\operatorname{cov}(\mathbf{X}) = E[\mathbf{X}\mathbf{X}'] E[\mathbf{X}](E[\mathbf{X}])'.$
- 6. $cov(\mathbf{AX}, \mathbf{BY}) = \mathbf{A}cov(\mathbf{X}, \mathbf{Y})\mathbf{B}'$ if \mathbf{A} and \mathbf{B} are constant matrices.

Properties of Multivariate Normal Distribution:

- 1. If $\mathbf{Y} \sim N_n(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ and $\mathbf{C}_{p \times n}$ is a constant matrix, then $\mathbf{CY} \sim N_p(\mathbf{C}\boldsymbol{\mu}, \mathbf{C}\boldsymbol{\Sigma}\mathbf{C}')$.
- 2. Partition $\mathbf{Y} = [\mathbf{Y}_1, \mathbf{Y}_2]$. The conditional distribution of \mathbf{Y}_1 given \mathbf{Y}_2 is

$$\mathbf{Y}_1|\mathbf{Y}_2 = \mathbf{y}_2 \sim N_n(\boldsymbol{\mu}_1 + \boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-1}(\mathbf{y}_2 - \boldsymbol{\mu}_2), \boldsymbol{\Sigma}_{11} - \boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-1}\boldsymbol{\Sigma}_{21}).$$

3. If
$$\mathbf{Y} \sim N_n(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$
, then $(\mathbf{Y} - \boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1} (\mathbf{Y} - \boldsymbol{\mu}) \sim \chi_n^2$.