MACS201a Contrôle du 10 novembre 2021

Documents autorisés : polycopié et notes de cours et TD.

Durée: 3 heures et quart.

Préambule.

Tout au long de ce sujet, on pourra utiliser les définitions et résultats suivants :

- (a) Pour $\theta > 0$, $\mathbf{Poi}(\theta)$ désigne la loi de Poisson qui, pour tout $k \in \mathbb{N}$, alloue au singleton $\{k\}$ la probabilité $\frac{\theta^k}{k!}$ $\mathrm{e}^{-\theta}$. On étend au cas $\theta = 0$ en allouant à $\{0\}$ la probabilité 1. On rappelle qu'une v.a. de loi $\mathbf{Poi}(\theta)$ a une espérance et une variance toutes deux égales à θ .
- (b) Dans tout le sujet on considère un espace mesurable (X, \mathcal{X}) et on note $Y = \mathbb{N}^{\mathcal{X}}$ l'espace des trajectoires des applications de \mathcal{X} dans \mathbb{N} , et on note $\mathcal{Y} = \mathbb{N}^{\otimes \mathcal{X}}$ la tribu associée.
- (c) Pour tout $n \in \mathbb{N}^*$ on note \mathcal{D}_n l'ensemble des n-uplets d'éléments de \mathcal{X} 2 à 2 disjoints,

$$\mathcal{D}_n = \{A_{1:n} \in \mathcal{X}^n : A_k \cap A_l = \emptyset \text{ pour tous } k \neq l\}$$
.

(d) Pour tout $n \in \mathbb{N}^*$ on note \mathcal{Q}_n l'ensemble des n-uplets d'éléments de \mathcal{X} qui forment une partition de X,

$$Q_n = \left\{ A_{1:n} \in \mathcal{D}_n : \bigcup_{1 \le k \le n} A_k = \mathsf{X} \right\} .$$

- (e) On note de plus Y_+ le sous-ensemble de Y des fonctionnels additives de Y, c'est-à-dire $a \in Y_+$ si $a = (a(A))_{A \in \mathcal{X}} \in Y$ vérifie $a(A \cup B) = a(A) + a(B)$ pour tout $(A, B) \in \mathcal{D}_2$. On note alors $\mathcal{Y}_+ = \{A \cap Y_+ : A \in \mathcal{Y}\}$ qui forme une tribu de Y_+ .
- (f) Soit ν une mesure finie sur l'espace mesurable (X,\mathcal{X}) et $(\Omega,\mathcal{F},\mathbb{P})$ un espace de probabilité. On dit qu'un processus $Z=(Z(A))_{A\in\mathcal{X}}$ est une mesure aléatoire de Poisson d'intensité ν définie sur $(\Omega,\mathcal{F},\mathbb{P})$ si chaque Z(A) est une variable aléatoire définie sur $(\Omega,\mathcal{F},\mathbb{P})$ à valeurs dans \mathbb{N} et que les deux propriétés suivantes sont vérifiées :
 - (i) Pour tout $(A, B) \in \mathcal{D}_2$, $Z(A \cup B) = Z(A) + Z(B)$.
 - (ii) Pour tout $n \in \mathbb{N}^*$, pour tout $A_{1:n} \in \mathcal{D}_n$, $Z(A_1), \ldots, Z(A_n)$ sont n variables aléatoires indépendantes et, pour tout $k = 1, \ldots, n$,

$$Z(A_k) \sim \mathbf{Poi}(\nu(A_k))$$
.

- (g) On rappelle que si U_1 et U_2 sont 2 v.a. indépendantes telles que $U_k \sim \mathbf{Poi}(\theta_k)$ pour k = 1, 2, alors $U_1 + U_2 \sim \mathbf{Poi}(\theta_1 + \theta_2)$. Cette propriété fait que les deux propriétés (i) et (ii) sont bien compatibles.
- (h) On peut voir la mesure aléatoire de Poisson ci-dessus comme une variable aléatoire $Z = (Z(A))_{A \in \mathcal{X}}$ à valeurs dans l'espace des trajectoires Y muni de la tribu \mathcal{Y} pour laquelle les propriétés (i) et (ii) sont vérifiées. Comme la propriété (i) équivaut à dire que Z est à valeurs dans Y_+ , on peut directement voir la mesure aléatoire de Poisson ci-dessus comme une variable aléatoire $Z = (Z(A))_{A \in \mathcal{X}}$ à valeurs dans (Y_+, \mathcal{Y}_+) pour laquelle la propriété (ii) est vérifiée.
- (i) Pour tout $x \in X$, on note δ_x la mesure de Dirac en x, qui vérifie $\delta_x(A) = \mathbb{1}_A(x)$ pour tout $A \in \mathcal{X}$. On peut donc voir δ_x comme un élément de Y_+ .

(j) Pour tout $A \in \mathcal{X}$, on note $\xi(A;\cdot)$ l'application de Y_+ dans \mathbb{N} qui à a associe $\xi(A;a) := a(A)$, i.e. $(\xi(A;\cdot))_{A\in\mathcal{X}}$ est le processus canonique des trajectoires de Y_+ . On note

$$C = \left\{ \bigcap_{1 \le k \le n} [\xi(A_k; \cdot)]^{-1}(\{j_k\}) : n \in \mathbb{N}^*, \ j_{1:n} \in \mathbb{N}^n, \ A_{1:n} \in \mathcal{Q}_n \right\} ,$$

qui est donc une classe d'éléments de \mathcal{Y}_+ . On peut montrer que $\sigma(\mathcal{C}) = \mathcal{Y}_+$ et qu'une probabilité sur (Y_+, \mathcal{Y}_+) est entièrement caractérisée par sa valeur prise sur les éléments de \mathcal{C} .

- (k) On peut montrer que $(a,b) \mapsto a+b$ est mesurable de $(\mathsf{Y}_+^2,\mathcal{Y}_+^{\otimes 2})$ dans $(\mathsf{Y}_+,\mathcal{Y}_+)$, où la somme a+b est définie par (a+b)(A)=a(A)+b(A) pour tout $A\in\mathcal{X}$.
- (l) Soit μ une probabilité sur (Y_+, \mathcal{Y}_+) . Pour tous $n \in \mathbb{N}^*$, pour toute partition $A_{1:n} \in \mathcal{Q}_n$ et tout $z_{1:n} \in \mathbb{C}^n$, on note

$$\mathcal{L}^{\mu}(A_{1:n}, z_{1:n}) = \int \left(\prod_{k=1}^{n} z_k^{a(A_k)} \right) \, \mu(\mathrm{d}a) \; .$$

En particulier pour une v.a. $Y = (Y(A))_{A \in \mathcal{X}}$ à valeurs dans (Y_+, \mathcal{Y}_+) définie sur $(\Omega, \mathcal{F}, \mathbb{P})$, on note

$$\mathcal{L}^{Y}(A_{1:n}, z_{1:n}) = \mathcal{L}^{\mathbb{P}^{Y}}(A_{1:n}, z_{1:n}) = \mathbb{E}\left[\prod_{k=1}^{n} z_{k}^{Y(A_{k})}\right].$$

On note

$$\mathbb{D} = \{ z \in \mathbb{C} : |z| \le 1 \} .$$

On remarque que la connaissance de $\mathcal{L}^{\mu}(A_{1:n}, z_{1:n})$ pour tous $n \in \mathbb{N}^*$, $A_{1:n} \in \mathcal{Q}_n$ et $z_{1:n} \in \mathbb{D}^n$ permet de caractériser la probabilité μ sur \mathcal{C} et donc d'après le point (j) sur toute la tribu \mathcal{Y}_+ .

(m) De même pour toute sous-tribu \mathcal{G} de \mathcal{F} , on note

$$\mathcal{L}^{Y}(A_{1:n}, z_{1:n} | \mathcal{G}) = \mathbb{E}\left[\left.\prod_{k=1}^{n} z_{k}^{Y(A_{k})}\right| \mathcal{G}\right],$$

et l'on peut montrer que la connaissance de $\mathcal{L}^{Y}(A_{1:n}, z_{1:n} | \mathcal{G})$ pour tous $n \in \mathbb{N}^{*}$, $A_{1:n} \in \mathcal{Q}_{n}$ et $z_{1:n} \in \mathbb{D}^{n}$ permet de caractériser la loi conditionnelle $B \mapsto \mathbb{P}[Y \in B | \mathcal{G}]$ sur tout $B \in \mathcal{Y}_{+}$.

(n) D'après les points (h) et (l), on obtient que $Z = (Z(A))_{A \in \mathcal{X}}$ est une mesure aléatoire de Poisson de mesure d'intensité ν si et seulement si c'est une variable aléatoire à valeurs dans (Y_+, \mathcal{Y}_+) telle que, pour tous $n \in \mathbb{N}^*$, $A_{1:n} \in \mathcal{Q}_n$ et $z_{1:n} \in \mathbb{D}^n$,

$$\mathcal{L}^{Z}(A_{1:n}, z_{1:n}) = \exp\left(-\nu(X) + \sum_{k=1}^{n} z_{k} \nu(A_{k})\right).$$

Préparation.

Réfléchir à la mesurabilité de l'application $\Delta: x \mapsto \delta_x$ de (X, \mathcal{X}) dans (Y_+, \mathcal{Y}_+) . On pourra introduire $\mathcal{A} = \{A \in \mathcal{Y}_+ : \Delta^{-1}(A) \in \mathcal{X}\}$ et montrer que $\mathcal{C} \subset \mathcal{A}$.