Can a Random Forest Model predict the presence of Heart Disease?

By Jan Möhle

Outline

- 1. Data set description
- 2. Variables
- 3. Methodology
- 4. Results
- 5. Comparison with two other classification models
- 6. Conclusion

Data set description

- Data set from Cleveland Clinic in Cleveland, Ohio from 1989
 - Contains clinical data about patients with and without heart disease (coronary artery disease)
 - Often used by ML researchers
- First used in: "International application of a new probability algorithm for the diagnosis of coronary artery disease" by Robert Detrano et al. in 1989
 - Goal: testing probability algorithms to predict heart disease
 - Findings: prediction works in general good, but several algorithms overpredicted the probability of heart disease

Outcome variable

Variable Name	Description	Variable Type	Values
hd	diagnosis of heart disease	binary	0: no 1: yes

- 297 observations
- 13 features (explanatory variables)
- Balanced sample:
 - Healthy: 160 (54%)
 - Unhealthy: 137 (46 %)

Explanatory variables

Variable Name	Description	Variable Type	Values
age	age in years	continues values	[29, 77]
sex	gender	binary	0: female 1: male
ср	chest pain type	ordered factor	 typical angina atypical angina non-anginal pain asymptomatic
trestbps	resting blood pressure (in mm Hg on admission to the hospital)	continues values	[94, 200]
chol	serum cholestoral in mg/dl	continues values	[126, 564]
fbs	fasting blood sugar > 120 mg/dl	binary	0: no 1: yes
thalach	maximum heart rate achieved	continues values	[71, 202]
exang	exercise induced angina	binary	0: no 1: yes

Explanatory variables

Variable Name	Description	Variable Type	Values
restecg	resting electrocardiographic results	ordered factor	1: normal 2: having ST-T wave abnormality (T wave inversions and/or ST elevation or depression of > 0.05 mV) 3: showing probable or definite left ventricular hypertrophy by Estes' criteria
oldpeak	ST depression induced by exercise relative to rest	continues values	[0.0, 6.2]
slope	the slope of the peak exercise ST segment	ordered factor	1: upsloping 2: flat 3: downsloping
са	number of major vessels colored by flourosopy	ordered factor	{0, 1, 2, 3}
thal	thalium heart scan	ordered factor	1: normal 2: reversable 3: fixed defect

Methodology

- Using Random Forest as classifier
- Set seed for every process that includes randomness
 - ➤ Reproducibility
- Cross-Validation for comparison with other methods
 - ➤ Train dataset: 80% of observations (237)
 - ➤ Test dataset: 20% of observations (60)
- Choice of number of trees based on error plot
- Choice of number of features to consider in each tree based on optimal OOB error

Choice of number of trees

Error rates with increasing forest size

- All error rates seem to stabilize with around 400 trees
- Default setting in R: 500
- → 480 trees seems to be a good choice (smallest error)

Choice of number of features

- Trying 1 to 13 with for loop
- choosing option with lowest OOB error
- Choosing 3 values for model
 - Minimal OOB error
 - Close to rule of thumb: $\sqrt{features} = 3.6$

Final forest and results

Confusion matrix:

healthy unhealthy class.error
healthy 113 13 0.1031746
unhealthy 24 87 0.2162162

In train data:

- $RP \approx 85\%$
- $TNR \approx 90\%$
- $TPR \approx 78\%$

Most importent variables

Predictions with test data

Test data	Predicted		
Observed	Healthy	Unhealthy	
Healthy	31	3	
Unhealthy	6	20	

In test data:

- $RPR \approx 85\%$
- $TNR \approx 91\%$
- $TPR \approx 77\%$

Comparing results with two other classification models

Logistic Regression prediction results

Test data	Predicted		
Observed	Healthy	Unhealthy	
Healthy	31	3	
Unhealthy	5	21	

In test data:

• $RPR \approx 87\%$ slightly better

• $TNR \approx 91\%$

• $TPR \approx 81\%$ slightly better

Decision Tree prediction results

Test data	Predicted		
Observed	Healthy	Unhealthy	
Healthy	31	3	
Unhealthy	9	17	

In test data:

• $RPR \approx 80\%$ worse

• $TNR \approx 91\%$

• $TPR \approx 65\%$ worse

Conclusion

- Prediction of heart disease based on medical measurement with random forest possible
- Logistic Regression slightly better in that case (higher TPR)
 - Question: Logistic Regression in general better for that problem?Only slight difference, so probably not
- Decision tree worse in that case (lower TPR)
- Restrictions of analysis:
- Small data set
 - Random Forest tends to work better with more observations

Sources

- Detrano R, Janosi A, Steinbrunn W, Pfisterer M, Schmid JJ, Sandhu S, Guppy KH, Lee S, Froelicher V. International application of a new probability algorithm for the diagnosis of coronary artery disease. Am J Cardiol. 1989 Aug 1;64(5):304-10. doi: 10.1016/0002-9149(89)90524-9. PMID: 2756873.
- Janosi, Andras, Steinbrunn, William, Pfisterer, Matthias, and Detrano, Robert. (1988). Heart Disease. UCI Machine Learning Repository. https://doi.org/10.24432/C52P4X.
- Direct link to data set: http://archive.ics.uci.edu/ml/machine-learning-databases/heart-disease/processed.cleveland.data

Appendix

Comparing variable importance: Tree and Forest

