# This Page Is Inserted by IFW Operations and is not a part of the Official Record

# **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

## IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

A201

'Swedish Patent No. 121,737

Translated from Swedish by the Ralph McElroy Co., Custom Division 2102 Rio Grande, Austin, Texas 78705 USA

Code: 268-5884-1

#### SWEDISH PATENT

DESCRIPTION PUBLISHED BY THE ROYAL PATENT AND REGISTRATION OFFICE PATENT NO.: 121,737

Class: 5 a:41

Application No.: 4195/1940

Application Date: October 28, 1940

Publication Date: May 25, 1948
Granting Date: April 1, 1948

A PROCESS FOR THE IN SITU EXTRACTION OF OIL FROM SHALE BEDS AND SIMILAR FORMATIONS

Applicant: F. Ljungström

Svenska Skifferolje Aktiebolaget, Örebro

The present invention refers to a way of extracting oil from shale rock and similar beds in situ by means of channels which cut through the shale strata, are supplied with heat for the heating of the shale bed, and which are separated from the outlet boreholes formed in the shale by means of shale rock sections in between. The object of the invention is to achieve an improvement of this established procedure, in particular with regard to the quality and composition of the extracted products, which is essentially obtained by embedding heating elements which are preferably heated electrically, in heating boreholes, and which have smaller cross sections than the cross sections of the boreholes and by introducing into the interspace between the channel wall and the heating element thus obtained a filling that transfers heat from the heating element and the shale and simultaneously counteracts or prevents, respectively, a flow of the oil products gasified from the shale in the direction towards and along the heating element.

The invention will be more thoroughly described below with reference to the modes of implementation as shown in examples illustrated in the enclosed figure, and other accompanying characteristics of the invention which will also be discussed.

Figure 1 illustrates a section through a part of shale bed, in which the arrangement of a heating element installed according to the invention for the accomplishment of the process is shown. A vertical section through a rock formation according to a modified design is shown in Figure 2, and a flat view of this latter design is in Figure 3.

In a shale bed, 2, vertical channels, 4 in Figure 1 and 9 in Figures 2 and 3, are drilled, in which heating elements are embedded. These can consist of coiled pipe 44 according to Figure 1, equipped with inlet 32 and outlet 36 for a hot medium, gas or steam, which then remains separated from the surroundings during its passage through the coiled pipe 44. The pipe 44 can in addition be designed as an electrical resistor and function both for the fluid conduction of the medium mentioned and for the development of heat accompanying an electric current. With the design according to Figure 2 an electric heating element 17 is used. After the heating element has been inserted the channels are filled with backing sand a maleable substance, respectively, such as cement, clay or other suitable filler. The channels can be closed at the upper ends by collars 21, 28 which must necessarily be cemented into the rock foundation. On top of the shale bed 2 there is often an overlying stratum of lime 47 (Figure 2) with a thickness of several meters. Then the electrical resistance is only active within that portion of hole 9, which is surrounded by the oil-bearing shale. In other words, the electric current at the level of the lime layer is conducted through low resistance wires and therefore thermoelectric heat is not developed here to an appreciable extent.

Besides the channels mentioned above, exhaust holes 8 according to Figures 2 and 3 are made in the shale bed, through which the

products formed during the dry distillation [carbonization] are evacuated, and which consequently do not contain any heating element. These exhaust holes 8, which are sealed from the limestone at the top by collar 27, are connected through ducts 52 to a condenser which is best cooled by either air or cooling water.

At the surface expanse of the shale bed, channels 9 and 8, respectively, are arranged in such a way, as exemplified in Figure 3, that a heat-supplying channel 9 is surrounded by a number of exhaust holes 8. It is particularly advantageous to carry out the heating of the shale bed so that a wave of heat is transmitted horizontally through the shale bed, for example in the direction from the line of holes 40 in Figure 3 towards the line of holes 41 through a successive connection of the heating elements. "When this heat wave in part of the shale bed reaches a temperature of about 300°C, or prior to this, the shale begins to release combustible gases which in part are condensable and in part not condensable and which are conveyed to a condenser, common to a plurality of channels 8 which separates the former from the latter." The incondensable gases can be used, for example, for the preheating and heating, respectively, of a new zone of the shale bed with an arrangement as depicted in Figure 1. The duration of the degasification periods may be adjusted to the desired degree, by such variables as the distance between the holes, which can be, for example, 1/2 to 2 meters. The maximum temperature of the mentioned heat wave can amount to approximately 500°.

The hydrocarbons formed during the distillation process in the shale rock include condensable products from the lighest petroleum [gasoline] to the heaviest oil. Because the heating channels according to the invention are filled, the result is that the hydrocarbons are driven in the direction of the outlet channels 8, and thus away from the hot heating elements. Otherwise, of course, the hydrocarbons would find their way to these elements to a large extent, especially in the lower part of the shale layer because of the high rock pressure prevailing there. The extraordinary

advantage is thus gained that an unwanted cracking of the oil products is essentially avoided. The heating method according to the invention therefore allows recovery of a considerably greater percentage of high-grade gasoline products than with presently familiar methods.

While a shale bed section is being supplied with heat, an expansion of the shale sets in, at least in the beginning, in the longitudinal direction of the heat supply channels, and thus in such a direction as to cross the shale layers. If a number of such channels are simultaneously heated then these create within the shale mass static pillars of heat with a greater height than that of the colder shale mass located in between them. This shale mass therefore becomes affected by forces directed in a vertical direction, the effect of which is to separate the different strata of shale from one another, so that the combined vertical displacement of these plus the gaps formed between the strata of shale approach a configuration that corresponds to the shale layer at its highest temperature around the heated channels. In a cross section the shale layer assumes the appearance shown schematically in Figure 2. On the other hand the shale layer within zones 54 limited by the dotted lines 53 in Figure 3 of the shale mass shows a falling temperature from the holes  $\underline{9}$  to the holes  $\underline{8}$ , and within the resulting temperature differences the degasification can be considered to continue at different temperatures, for example from 300° to 500°. A certain molecule which is released from the shale mass at point 39 during the dry distillation process will on its way from this point to the outlet hole  $\underline{8}$  pass through temperature zones of lower temperatures than that existing at point 39.

4

大きなない マスをからい ものする

The pipe system shown in Figure 1 can be used for different heating purposes by allowing the existing channel in a previously degassed hot zone of the shale bed to conduct a fluid stream by means of pipes laid on the ground. Air, water, steam or other fluids which are heated in the process may then be led to a channel in a shale bed zone where the oil extraction is to be started or is already in progress.

After the rock mass has been degassed, it wholly or partially consists of what is called shale coke, which indicates that after the gases are driven off, combustible carbon remains in the shale. According to the invention the rock mass can be ignited before or after cooling and the residual shale coke can be oxidized to shale ashes by introducing combustion air to the existing channel system. A very slow combustion that persists for several years can in this manner remain in progress, and the heat thereby generated can be utilized for various purposes, such as the heating of shale rock and hot water for homes, steam production, cultivation of plants, etc. According to the invention the cultivation of plants can also be carried out directly on the shale rock and in this way utilize the heat stored in the rock for a great many years.

#### Patent claims:

÷

ţ

- 1. A process for in situ recovery of oil from shale beds and similar rock layers by means of channels that penetrate the shale strata, and are supplied with heat for the heating of the shale mass and which are separated from the exhaust holes formed in the shale by means of shale bed sections in between, characterized by heating elements being embedded in the heating channels, which are preferably heated electrically, and which have smaller cross sections than the cross sections of these channels, such that the interspace thus obtained between the channel wall and the heating element may be provided with backing sand that transfers heat from the heating element to the shale and simultaneously counteracts or prevents, respectively, the flow of oil products gasified from the shale in the direction towards and along the heating elements.
- 2. A process according to claim 1, characterized by the interspace being filled with a cast compound.
- 3. A process according to claims 1 or 2, characterized by the fact that a heating element in the form of a pipeline is brought

down into the heating channels, and the inner part of the pipeline, through which is led a hot medium, is entirely separated from the channel and that the heat supply to the pipeline is also produced electrically.

- 4. A process according to one of the previous claims, characterized by the fact that the channel system made in the shale bed is utilized for regenerative heating of the rock mass in which channels in a previously degassed hot zone of the shale bed are connected with pipelines over the ground and are allowed to conduct a medium which is heated in this zone, and also characterized by the fact that channels in an untreated zone of the shale rock are directly or indirectly supplied with energy utilized in this manner from the previously mentioned zone.
- 5. A process according to one of the previous claims, characterized by the shale coke remaining in the shale rock after the degasification is combusted to produce shale ashes by introducing air into the available system of channels.







# PATENT Nº 121737 SVERIGE

BESKRIVNING OFFENTLIGGIORD AV KUNGL PATENT- OCH REGISTRERINGSVERKET



### KLASS 5 a:41

BEVILIAL DEN 1 APRIL 1748 PATENTTID FRAN DEN 28 OKT 1940 PUBLICERAT DEN 25 MAJ 1948

Hartill en ritning.

Ans. den "/" 1930, nr 3195/1930.

# SVENSKA SKIFFEROLJE AKTIEBOLAGET, ÖREBRO. Sätt att utvinna olja ur skifferberg och dylikt in situ.

Uppfinnare: F. Ljungström

Föreliggande uppfinning hänför sig till ett sätt att utvinna olja ur skifferberg och dylikt in situ medelst skifterlagren skårande kanaler, vilka tillföras värme för uppvärmning av skiffermassan och vilka äro skilda från i skaffern utformade avloppskanaler medetst mellanliggande partier av Skifferberget Uppfinningen avser att åstadkomma en förhått- i ring av denna kånda metod speciellt i avseende på de utvunna produkternas beskaffenhet och sammansättning, vilket vasentligen ernås darigenom, alt i uppvårmningskanalerna nedforas varmeelement, vilka företrädesvis appvarmak på elektrisk väg, och vilka hava mindre tvärsektionsarea an dessa kanalers tvärsektionsarea och att i det så erhållna mel-Larrummet mellan kanalväggen och vårmeelementet anbringas en fyllmassa, som förmedlar varmeövergång mellan varmeelementet och skiffern och samtidigt motverkar resp. forhindrar en strömning av de ur skiffern forgasade ofjeprodukterna i riktning mot och långs utmed varmeelementet.

Uppfinningen skall nedan närmare beskrivas under hanvisning till å bifogade ritning som exempel visade utföringsformer av densamma, varvid även andra uppfinningen kännetecknande egenskaper skola angivas.

I fig. I visas en sektion genom ett parti av ett skifterberg, i vilket är anbragt ett för sättets genomförande enligt uppfinningen anordnat varmeelement, I fig. 2 visas en vertikalseklion genom ett bergparti enligt en modifferad utföringstorm och fig. 3 en plansy av denna senare uttöringsform,

I ett skifferberg 2 äro nedborrade vertikala kanaler, i fig. 1 betecknade med 4 och i fig. 2 och 3 med 9, i vilka värmeelement anbringas. Dessa kunna utgöras av en rörsfinga 41 enligt fig. 1, försødd med intag 32 och avlopp 36 för eff hett medium, gas eller anga, som darvid under sin passage genom rörslingan 44 ar skilt från omgivningen. Röret 44 kan dårjamte vara utformat som elektriskt molstånd och fungera såval för genomströmning av det namnda mediet som för överbringande av värme genom elektrisk ström. Vid utföringsformen enligt fig. 2 anvandes ett elektriskt

värmeelement 17. Sedan varmeelementet nedförts, utfyllas kanalerna med en massa resp gjulmassa, sasom cement, lera eller dytikt Kanalerna kunna uppfill vara tillslutna av lock 21, 28, som fampligen cementeras fast i berggrunden. Ovanpå skifferberget 2 m. ott. överlagraf ett kalklager 47 (11g 2) med on mäktighet av många meter, varvid det ele... triska motstandet endast ar verksamt monden del av halen 9, som ar onegiven av den oljeforande skiftern. Den cicktriska strommen fillfores alliså molstandet genom jedningar, som i niva med kalkdagret are god) fedure och darfor har icke avgiva varme i námuvárd afstrækning.

Fórntom de ovannaminda lemalisma applagas kanaler 8 enligt fig. 2 och 3 i statterherget, genom vilka de vid torrdestillatu nen alstrade produkterna ayledas och yilko ollisa wke inrymma nagon uppyaranningsinoid ning. Dessa kamaler 8, som upptiblione (11). shiftin av fock 27, sta genom ledanogar 52 ; forbindelse med en kondensor, vilken brounligen kan yara hittisyld efter beksie kyld ov kylvatten.

I ytutstrackningen av det skillerberg, som skull avverkas, aubringas kaintei it resp. 8 t, ex. på sått, som framgår by tig. 3, dar en värmelillforselkanal 9 oingives av elt antal ayloppskanaler 8. Det ar sårskilt fordelaktigt att genomföra skifferbergets uppvarmning sg. all en vag av varme horisontellt fortplantas genom skifferberget, t. ex. i riktning fran halraden 40 i fig. 3 mot halraden 11 genom suc- 7 cessiv inkoppling av varmeelementen. Nar denna värmevåg i ett parti av skillerberget natt en temperatur av omkring 300° eller tidigare, börjar skillern avgiva braumbara gaser, som dels aro kondenserbara dels okondenserbara och som inledas i en för ett flectal kanafer 8 gemensam kondensor, som avskiljer de forra fran de senare De okondenserbata gaser na kunna t, ex auxandas for for- (esp. uppvarinning av en ny zon av skillerberget vid uttöringsformen enligt fig. 1. Avgasnings periodens tulstangit varieras i onskad grad, bl. a. sammanhangande med det mellan halen valda avstandet, som t. ev. kan vara - , a 2

meter. Den nämnda värmevågens maximi-, temperatur kan uppga till omkring 500

De vid destillationsprocessen i skilferberget hildade kolvatena omfatta kondenserbara produkter från den lättaste bensinen till den tyngsta oljan. Genom att uppvärmningskaualerna nu enligt uppfinningen äre igenfyllda ernas, att kolvätena föras i riktning mot avloppskanalerna 8, d. v. s. bort fran de hefa uppvärmningselementen. Eljest skulle nämligen kolvätena i stor utstrackning soka sin vag till dessa element, speciellt i den nedre delen av skifterlagret till töljd av det där rådande höga bergtryckel. Man vinner sålunda den utomordentliga fordelen, att en icke onskvard spaltning eller krackning av olje produkterna vasentligen undvikes. Uppvarmningsmetoden enligt upptinningen medgiver darför en utvinning av procentnelle väsentligt mera hogvardiga bensinprodukter in vid littills kånda metoder.

Under varmetittförseln till ett skifferbergparti intrader atminstone till att borga med en utvidgning av skiftern i varmetillförselkaundernus längdriktning, vilken korsar skitterlagren. Om 🐴 antal dylika kanaler samedigt bliva fóremál tor uppvarunning, bilda dessa inom skiffermassan staende varmepelare med större höjdmatt än den mellan desamma belagna kallare skitfermassan. Denna skiftermassa blir darfor påverkad av i vertikalriktningen gaende krafter, som stråva att skilja de olika skafferlagren från varandra, så att dessas sammanlagda vertikala mati pius mellan skifferlagren uppkomna spalterna natmar sig det, som molsvarar skifferlagret vid dess högsta temperatur kring de uppvarmda kanalerna. Skitferlagret for i sektion ett utseende, som schematiskt visas i fig. 2. A andra sidan uppyisar skifferlagret inom de med streckade binjerna 53 begransade zonerna 54 i fig. 3 av skilterniassan en fallande temperatur från halen 9 till hålen 8, och kan inom de darvid forekommande temperaturdiffegensernii av<sub>s</sub>asiangen tankas fortga vid olika temperaturer 1, ex. fran 300 - till 500 . En viss molekyl som vid punkten 39 under forr destillationsprocessen frigores ur skuffermassan, kommer på sin vag från denna punkt till axtoppshalet 8 att passera temperaturzoner. som alla uppvisa lägre lemperatur an den, som existerar vid punkten 39,

Det i fig. t visade ledningssystemet kan användas för olika uppvärmningsändamal, genom att en i en redan avgasad het zon av skifferherget befintlig kanal bringas genom över jord lagda ledningar att genomströmmas av ett fluidum, t. ex. luft, vatten eller anga, som harunder uppvärmes och sedan t. ex. ledes till en kanal i en skifferbergzon, där oljeutvinning skall inledas resp. pågår.

Sedan hergmassin avgasats, består den helt eller delvis av s. k. skifferkoks, d. v. s. gaserna åre avdrivna, men brannbart kol finnes annn kvar i skittern. Enligt uppfinningen kan bergmassan tore eller eller avsvalning anländas och skitterkoksen i densamma förbrännas till skitterisska, genom intorande av förbränningsluft i det förefintliga kanafsystemet. En mycket langsam, under många ar pågaende förbränning kan på detta sått förtgå och det darvid bildade varmet utnytljas för olika andamal, sasom uppvarmning av skitterherg, varmvalten till bostader,, angalstring, vastodling e. d. Växtodling kan även enligt uppfinningen med fördet anbringas direkt på skifterberget, som på så sått under en lång följd av år kan tillgodogora sig det i berget magasmerade varmet.

SALES PROPERTY AND A

#### Palentanspråk:

1. Satt att atvinna olja ni skifterberg och dylikt in situ medelst skilferlagien skorande kanaler, vilka tillföras varme for uppvarmning av skitterneissan och vilka ava skilda Iran Camazin o make as a s delst meltantiggande partier av skitterbergel. kannetecknat daray, alt i uppyarminingskanaterna neitteras varmeelement, vilka forctradesvis appyormas på elektrisk vag, och vilka hava samdre tvårsektionsarea an dessa kunalers tvarsektionsarea och att i del så erhailma medancumuel medan karabaggeri och varmeeiementet anbringas en (vilmassasom formedlar variousoversang mellan vicines elementet och skattern och suchlängt motverkar resp. forfundrar en stranning av de ur skittern torgasade oljeprodukterna i riktionmot och langs utared varmvelemente!

2. Saft enligt patentiuspraket is kannabeel, nat darax, all i melliareminiet itydes en gjut har tyllmissa.

3. Saft entige patentanspraket Letter 2. kannetecknat daray, att man i uppyarmnings kanalerna metrocyarmeelement i form ay en rorledning. Kars mie ar helt ayskilt (can bemalen och genom vilken ledes ett fielt mediam, varjande varmetillforset till (calledmingen ayen sker på elektrisk vag.)

d. Satt enligt magot av de foregaende matentanspraken, kannetecknat danav, att der i skutterberget upptagna kanalsystemet utsnyttjas for regenerativ uppvårmning av berg massan genom att kanaler i en redan avgasad het zon av skutterberget förbindas med tedningar över jord och bringas att genomstrommas av ett medium, som uppvårmes av denna zon, och att kanaler i en obehandtad zon av skutterberget direkt eller indrekt tillföras ur den förstnamnda zonen på detta satt tillvåratagen energi.

5. Satt enligt nagot av de foregæende patentanspraken, kanneleeknat darav, att i skifterberget etter avgasningen kvarvarande skifterkoks forbrannes till skifteraska genom införande av litt i det förhandenvarande kanalsystemet



Swedish specification 121 737

Translation; page 1, second column, 3rd paragraph,
lines 10-17.

"When this heat wave in part of the shale rock reaches a temperature of about 300°C, or prior to this, the shale begins to live off combustible gases which in part are condensable and in part not condensable and which are conveyed to a conjensor common to a plurality of channels which condenser separates the former from the latter."