Лекции по введению в топологию

Лектор: Миллионщиков Д.В. Автор конспекта: Ваня Коренев*

2курс, 2 поток. Осенний семестр 2024 г. 2января 2025 г.

^{*}tg: @gallehus

Содержание

1	Лекция 1 1.1 Основные понятия топологии.	3 3
2	Лекция 2	4
3	Лекция 3 3.1 Связность и линейная связность.	7 7
4	Лекция 4 4.1 Компактность.	8 8
5	Лекция 5	10
6	Лекция 6 6.1 Функциональная отделимость	11 12 12
7	Лекция 7 7.1 Разбиение единицы	12 13
8	Лекция 8 8.1 Кривые Пеано	14 14
9	Лекция 9 9.1 Теорема Титца о продолжении непрерывной функции	15 15
10	Лекций 10	16
11	Лекция 11 11.1 Тихоновская топология и теорема Тихонова	16 16 17 17
12	2 Лекция 12	17
13	3 Лекция 13 13.1 Фундаментальная группа	1 7 17
14	1 Лекция 14 14.1 Накрытие	18 19
15	5 Лекция 15	19

1 Лекция 1

1.1 Основные понятия топологии.

Читателю рекомендуется повторить определения окрестности точки, открытого множества, замкнутого множества, непрерывной функции, компакта, связности.

Определение 1.1. Метрическое пространство — это пара (X, ρ) , где X — множество, а $\rho : X \times X \to \mathbb{R}$ — функция, удовлетворяющая следующим аксиомам:

- 1. $\forall x, y \in X : \rho(x, y) = 0 \Leftrightarrow x = y;$
- 2. $\forall x, y \in X : \rho(x, y) \ge 0$;
- 3. $\forall x, y \in X : \rho(x, y) = \rho(y, x);$
- 4. $\forall x, y, z \in X : \rho(x, z) \le \rho(x, y) + \rho(y, z)$.

 Φ ункция ρ называется метрикой (функцией расстояния). Часто метрическим пространством называют само множество X, если функция ρ очевидно подразумевается.

Утверждение 1.1. $(\mathbb{R}^1, \rho = |x - y|)$ является метрическим пространством.

Определение 1.2. Топологическое пространство — это пара (X, \mathcal{T}) , где X — множество, а $\mathcal{T} \subseteq 2^X$ — набор подмножеств X, удовлетворяющий следующим аксиомам:

- 1. $\varnothing, X \in \mathcal{T}$;
- 2. $\bigcap_{i=1}^{n} U_i \in \mathcal{T}$, $\varepsilon \partial e U_i \in \mathcal{T} \quad \forall i = 1, \ldots, n$;
- 3. $\bigcup_{\alpha \in A} U_{\alpha} \in \mathcal{T}$, где $U_{\alpha} \in \mathcal{T} \ \forall \alpha \in A \ (A произвольное индексирующее множество);$

Множество $\mathcal T$ называется топологией на X, а элементы $\mathcal T$ — открытыми подмножествами X.

Пример 1.1. 1. Антидискретная (тривиальная) топология на любом множестве $X: \mathcal{T} = \{\emptyset, X\}.$

- 2. Дискретная топология на любом множестве $X: \mathcal{T} = 2^X$.
- 3. На $X = \{1,2\}$, можно задать 4 топологии: антидискретную (в таком случае пространство X называется слипиимся двоеточием), дискретную (в таком случае пространство X называется простым или несвязным двоеточием) и две другие: $\mathcal{T}_1 = \{X, \varnothing, \{1\}\}$, $\mathcal{T}_2 = \{X, \varnothing, \{2\}\}$. Простраство X с топологиями \mathcal{T}_1 и \mathcal{T}_2 называется связным двоеточием.

Определение 1.3. Пусть (X, ρ) — метрическое пространство. Открытый шар в X с центром x_0 и радиусом r — это множество $O_r(x_0) = \{x \in X \mid \rho(x, x_0) < r\}$. Открытые шары также называют открытыми окрестностями точек, которые они содержат, в метрическом пространстве.

Определение 1.4. Пусть X — метрическое пространство. Подмножество $U \subset X$ называется открытым, если $\forall x \in U$ существует открытый шар (= открытая окрестность точки x), содержащий x и лежащий x U.

Замечание 1.1. Любое метрическое пространство является топологическим, если определить топологию на нём через открытые шары (т.е. считать открытые шары открытыми множествами). Доказательство этого факта см. в теореме (T. 2.1) на стр. (5).

Определение 1.5. Пусть X — топологическое пространство. Подмножество $U \subseteq X$ называется замкнутым, если $X \backslash U$ открыто.

Задача 1.1. Доказать, что топология может быть определена через понятие замкнутых множеств.

Пример 1.2. Топология Зарисского: Рассмотрим множество \mathbb{C}^1 и назовём в нём замкнутыми подмножествами любые конечные наборы точек: $\{z_1,\ldots,z_n\}$ (пустой набор точек также считается конечным). Топологию Зарисского можно обобщить на произвольное множество X: будем считать замкнутыми любые конечные подмножества $U\subseteq X$.

Задача 1.2. Доказать, что топология Зарисского действительно является топологией.

Определение 1.6. База $\mathfrak B$ топологии $\mathcal T$ на X — это подмножество $\mathfrak B\subseteq \mathcal T$ такое, что $\forall U\in \mathcal T$ можно выразить в виде объединения элементов базы $\mathfrak B$, т.е. $U=\bigcup_{\alpha\in A}B_{\alpha}$, где $B_{\alpha}\in \mathfrak B$.

База топологии позволяет уменьшить количество изначально задаваемых открытых множеств, определяющих топологию.

Лемма 1.2 (Достаточное условие на базу топологии). Пусть $\mathfrak{B} \subseteq 2^X$ - набор подмножеств X. Тогда если выполняются следующие условия:

1. $\forall x \in X \ \exists B_x \in \mathfrak{B}: \ x \in B_x$,

2.
$$\forall B_1, B_2 \in \mathfrak{B}$$
: $(x \in B_1 \cap B_2 \Rightarrow \exists B_3 \in \mathfrak{B} : x \in B_3 \subset B_1 \cap B_2)$,

то $\mathfrak B$ является базой некоторой топологии.

Доказательство. Рассмотрим всевозможные $U_{\alpha} = \bigcup_{\gamma} B_{\gamma}^{(\alpha)}$. Проверим все свойства из определения топологии.

Легко проверить, что выполняются первые 2-а свойства из определения топологии. В качество \varnothing можно взять объединение пустого числа множеств, а в качестве X - объединение всех элементов базы, оно будет равно X, т.к. для каждого $x \in X$ существует элемент базы, содержащий его.

Докажем выполнение 3-его свойства. Благодаря принципу математической индукции достаточно доказать, что k=2.

$$U_1 \cap U_2 = \bigcup_{\alpha \in A_1} B_{\alpha}^{(1)} \cap \bigcup_{\alpha \in A_2} B_{\alpha}^{(2)} = \bigcup_{\alpha_1 \in A_1, \alpha_2 \in A_2} B_{\alpha_1}^{(1)} \cap B_{\alpha_2}^{(2)} = \bigcup_{\alpha_1 \in A_1, \alpha_2 \in A_2} \bigcup_{x \in B_{\alpha_1}^{(1)} \cap B_{\alpha_2}^{(2)}} B_{3,x}^{(\alpha_1, \alpha_2)}$$

Тут $B_{3,x}^{(\alpha_1,\alpha_2)}$ существует из-за пункта 2. В итоге мы получили, что $U_1 \cap U_2$ можно выразить в виде объединения элементов базы.

Докажем выполнение 4-го свойства.

$$\bigcup_{\alpha \in A} U_{\alpha} = \bigcup_{\alpha \in A} \bigcap_{i \in I} B_i^{(\alpha)} = \bigcup_{(\alpha, i) \in A \times I} B_i^{\alpha}$$

Опять получили объединения элементов базы.

Итого всевозможные объединение элементов базы задают топологию на X.

Задача 1.3. Повторить доказательство для базы метрического пространства.

Определение 1.7. Предбаза Π топологии \mathcal{T} на X — это множество $\Pi \subset \mathfrak{B} \subset \mathcal{T}$, где \mathfrak{B} — база \mathcal{T} , такое, что: $\forall U \in \mathfrak{B}$: U есть конечное пересечение элементов предбазы, т.е. $\forall U \in \mathfrak{B}$: $U = \bigcap_{i=1}^k P_i$, где $P_i \in \Pi, k \in \mathbb{N}$. Иначе говоря: предбаза Π топологии \mathcal{T} на X — это множество $\Pi \subset \mathfrak{B} \subset \mathcal{T}$, где \mathfrak{B} — база \mathcal{T} , такое, что: $\forall U \in \mathcal{T}$: U есть объединение конечных пересечений элементов предбазы, т.е.

$$\forall U \in \mathcal{T}: \ U = \bigcup \bigcap_{i=1}^k P_i, \ \partial e \ P_i \in \Pi, k \in \mathbb{N}.$$

Предбаза топологии позволяет ещё уменьшить количество изначально задаваемых открытых множеств, определяющих топологию.

Замечание 1.2. Любое множество задает предбазу некоторой топологии.

Пример 1.3. Пусть $X = \{1, 2, 3, 4, 5\}$. Пусть $\Pi = \{\{1, 2, 3\}, \{2, 3, 4\}, \{3, 4, 5\}\}$ — предбаза. Тогда $\mathfrak{B} = \{\underbrace{\{1, 2, 3\}, \{2, 3, 4\}, \{3, 4, 5\},}_{\text{Элементы Π}}$ Все конечные пересечения элементов Π $\mathcal{T} = \{\underbrace{\{1, 2, 3\}, \{2, 3, 4\}, \{3, 4, 5\}, \{2, 3\}, \{3, 4\}, \{3\}, \varnothing, \{1, 2, 3, 4\}, \{2, 3, 4, 5\}, \{1, 2, 3, 4, 5\}\}}_{\text{Элементы \mathfrak{B}}}$ — топология на X. Все объединения элементов \mathfrak{B}

2 Лекция 2

Литература:

- 1. Федорчук В.В., Филиппов В.В. Общая топология. Основные конструкции.
- 2. Виро О.Я., Иванов О.А., Нецветаев Н.Ю., Харламов В.М. Элементарная топология.

Определение 2.1. Пусть (X, \mathcal{T}) — топологическое пространство. Если топология \mathcal{T} на X может быть порождена некоторой метрикой ρ на X, то пространство (X, \mathcal{T}) называется метризуемым.

Замечание 2.1. Существует ряд критериев метризуемости топологических пространств: см. Критерий метризуемости Нагаты — Ю.М.Смирнова, 1950-1951.

Определение 2.2. Пусть (X, ρ) — метрическое пространство. Открытый шар радиуса $\varepsilon > 0$ с центром в точке x_0 — это множество $O_{\varepsilon}(x_0) = \{x \in X : \rho(x, x_0) < \varepsilon\}.$

Теорема 2.1. Пусть (X, ρ) — метрическое пространство. Тогда шары $O_{\varepsilon}(x)$ образуют базу топологии, порожедённой на X метрикой ρ .

Доказательство. Рассмотрим множество $\mathfrak B$ всех открытых шаров в пространстве X: $\mathfrak B = \{O_{\varepsilon}(x) \mid x \in X, \ \varepsilon > 0\}$. Проверим для $\mathfrak B$ оба пункта достаточного условия на базу:

- 1. Очевидно, $\forall x \in X \; \exists \, O_{\varepsilon}(x) : x \in O_{\varepsilon}(x)$
- 2. Обозначим: $B_1 = O_{\varepsilon_1}(x_1), \ B_2 = O_{\varepsilon_2}(x_2)$ и покажем, что $\forall x \in B_1 \cap B_2 \ \exists B_3 = O_{\varepsilon}(x) \in \mathfrak{B}: B_3 \subset B_1 \cap B_2$. По определению открытых шаров B_1 и B_2 : $\rho(x,x_1) < \varepsilon_1, \ \rho(x,x_2) < \varepsilon_2$. Положим $\varepsilon = \min\left\{\frac{\varepsilon_1}{2} \rho(x_1,x), \frac{\varepsilon_2}{2} \rho(x_2,x)\right\}$. Тогда: $\forall y \in O_{\varepsilon}(x)$:

$$\rho(y,x_1) \le \rho(y,x) + \rho(x,x_1) = \varepsilon + \rho(x,x_1) \le \frac{\varepsilon_1}{2} - \rho(x,x_1) + \rho(x,x_1) = \frac{\varepsilon_1}{2} < \varepsilon_1.$$

Значит, $y \in O_{\varepsilon_1}(x_1)$. Аналогично: $\rho(y,x_2) < \varepsilon_2 \Rightarrow y \in O_{\varepsilon_2}(x_2)$. Т.к. это верно $\forall y \in O_{\varepsilon}(x)$, то: $O_{\varepsilon}(x) \subset B_1 \cap B_2$, т.е. $B_3 \subset B_1 \cap B_2$. Т.о. по достаточному условию на базу топологии: открытые шары в метрическом пространстве образуют базу топологии, порождённой метрикой этого пространства.

Определение 2.3. Пусть на множестве X заданы две топологии \mathcal{T}_1 и \mathcal{T}_2 . Говорят, что \mathcal{T}_2 сильнее \mathcal{T}_1 (\mathcal{T}_1 слабее \mathcal{T}_2) и пишут $\mathcal{T}_1 \leq \mathcal{T}_2$, если $\mathcal{T}_1 \subseteq \mathcal{T}_2$, т.е. если любое открытое в \mathcal{T}_1 множество будет открытым в \mathcal{T}_2 .

Такой способ сравнения топологий на множестве X относительно прост. Введённое отношение сравнения является отношением частичного порядка и образует на множестве всех топологий на X структуру частично упорядоченного множества (ЧУМа).

Пример 2.1. Рассмотрим антидискретную и дискретную топологии на множестве Х:

$$\mathcal{T}_1 = \{\varnothing, X\} \subset \mathcal{T}_2 = 2^X.$$

В некотором смысле это два полюса сравнения: антидискретная топология на X является слабейшей, а дискретная — сильнейшей, т.е. для любой топологии \mathcal{T} на $X\colon \mathcal{T}_1\leq \mathcal{T}\leq \mathcal{T}_2$. Тем не менее введённый порядок на X является частичным, и нетривиальные топологии могут быть несравнимы.

Задача 2.1. Метризумы ли тривиальные топологии (= антидискретная и дискретная)? Ответ:

- 1. Рассмотрим дискретную метрику: $\rho_D(x,y) = \begin{cases} 1, & ecnu \ x \neq y, \\ 0, & ecnu \ x = y. \end{cases}$ Дискретная метрика порождает дискретную топологию.
- 2. Антидискретная топология неметризуема.

Определение 2.4 (Индуцированной топологии подространства). Пусть (X, \mathcal{T}) - топологическое пространство, $Y \subset X$. Тогда Y образует топологическое пространство c топологией, называемой индуцированной (c пространства X) топологией (c) (

Задача 2.2. Проверить, что индуцированная топология действительно является топологией на множестве Y, т.е. удовлетворяет аксиомам из определения топологии.

Пример 2.2. $X = \mathbb{R}^2$ - метрическое пространство с евклидовой метрикой, $Y \subset X$. Базой топологии, порождённой метрикой на пространстве X, являются открытые шары, а базой индуцированной топологии на Y являются всевозможные пересечения открытых шаров в X с Y.

Определение 2.5. Окрестность точки x в топологическом пространстве — это любое открытое множество этого пространства (т.е. элемент топологии), содержащее x.

Замечание 2.2. Из определений топологии и окрестности точки очевидно следует, что:

- 1. Пересечение конечного числа окрестностей точки является её окрестностью,
- 2. Объединение (произвольного числа) окрестностей точки является её окрестностью.

Утверждение 2.2. Пусть (X, \mathcal{T}) — топологическое пространство. Тогда $A \subseteq X$ - открыто \Leftrightarrow для каждой точки $x \in A$ существует её окрестность, лежащая в A.

Доказательство. (\Leftarrow): По условию: $\forall x \in A \ \exists \ O(x) \in \mathcal{T} : x \in O(x), \ O(x) \subseteq A$. Рассмотрим $C = \bigcup_{x \in A} O(x)$: $C \in \mathcal{T}$. Очевидно, что $A \subseteq C$, а т.к. для каждого $x \in A$ верно $O(x) \subseteq A$, то $C \subseteq A$. Получаем, что A = C, значит, $A \in \mathcal{T}$. (\Rightarrow): Раз A открыто, то A является окрестностью любой своей точки.

Определение 2.6. Пусть $x \in X$. Если $\{x\} \in \mathcal{T}$, то x называется изолированной точкой пространства X.

Замечание 2.3. В дискретной топологии на любом пространстве все точки являются изолированными.

Определение 2.7. Пусть $x \in X$, $A \subset X$. Тогда x называется точкой прикосновения множества A, если для любой её окрестности O(x) выполняется $O(x) \cap A \neq \varnothing$.

Определение 2.8. Пусть $x \in X$, $A \subset X$. Тогда x называется внутренней точкой множества A, если существует $e\ddot{e}$ окрестность O(x): $O(x) \subset A$.

Определение 2.9 (A1). Замыкание множества A — это множество всех точек прикосновения A. Обозначение: \overline{A} .

Определение 2.10 (B1). Внутренность множества A — это множество всех внутренних точек A. Обозначение: Int(A).

Задача 2.3. Показать, что: $\operatorname{Int}(A) \subset A \subset \overline{A}$.

Определение 2.11 (A2). Замыкание \overline{A} множества A — это пересечение всех замкнутых множеств, содержащих A. Иными словами, \overline{A} — это наименьшее по включению замкнутое множество, содержащее A.

Определение 2.12 (B2). Внутренность Int(A) множества A — это объединение всех открытых множеств, лежащих в A. Иными словами, Int(A) — это наибольшее по включению открытое множество, лежащее в A.

Теорема 2.3. Определение A1 эквивалентно определению A2; Определение B1 эквивалентно определению B2.

Доказательство. Доказательство эквивалентности определений A1 и A2 остаётся в качестве упражнения читателю. Докажем эквивалентность определений B1 и B2.

Пусть $Int_1(A)$ - множество внутренних точек A в смысле определения B1, а $Int_2(A)$ — в смысле определения B2. Покажем, что эти множества равны:

- (⊆): Если $x \in \text{Int}_1(A)$, то существует его окрестность $O(x) \subset A$. Но O(x) открыто, а значит, $O(x) \subset \text{Int}_2(A)$, и $x \in \text{Int}_2(A)$. Получаем, что $\text{Int}_1(A) \subseteq \text{Int}_2(A)$.
- (⊇): Если $x \in \text{Int}_2(A)$, то x принадлежит какому-то открытому $V \subset A$. Но тогда мы можем взять V в качестве окрестности точки x. Получаем, что $x \in \text{Int}_1(A)$, а значит, $\text{Int}_1(A) \supseteq \text{Int}_2(A)$. Итак, $\text{Int}_1(A) = \text{Int}_2(A)$, а значит, определения В1 и В2 эквивалентны.

Определение 2.13. Пусть $x \in X$, $A \subset X$. Тогда x называется граничной точкой множества A, если x является точкой прикосновения A, но не является внутренней точкой A, т.е. если $x \in \overline{A}$, $x \notin \operatorname{Int}(A)$.

Определение 2.14. Граница множества A — это множество всех граничных точек A. Обозначение: Bd(A) или ∂A . По определению: $Bd(A) = \overline{A} \setminus Int(A)$.

Определение 2.15 (Понятия непрерывного отображения). Пусть (X, \mathcal{T}_X) , (Y, \mathcal{T}_Y) — топологические пространства, $f: X \to Y$. Отображение f называется непрерывным в точке $x_0 \in X$, если для любой окрестности $O(f(x_0)) \in \mathcal{T}_Y$ существует такая окрестность $U(x_0) \in \mathcal{T}_X$, что $f(U(x_0)) \subset O(f(x_0))$.

Отображение f называется непрерывным (непрерывным отображением топологических пространств), если оно непрерывно во всех $x \in X$.

Утверждение 2.4. Следующие условия эквивалентны:

- 1. Отображение топологических пространств $f: X \to Y$ непрерывно.
- 2. Прообраз любого открытого множества под действием f является открытым, т.е. $U \in \mathcal{T}_Y \Rightarrow f^{-1}(U) \in \mathcal{T}_X$.
- 3. Прообраз любого замкнутого множества под действием f является замкнутым.
- 4. Для любого $A \subseteq X$: $f(\overline{A}) \subseteq \overline{f(A)}$ (На лекции утверждалось не включение, а равенство, но это неверно).

Доказательство. Доказательство эквивалентности условий 1, 3 и 4 остаётся в качестве упражнения читателю. Докажем $(1) \Leftrightarrow (2)$:

(⇒): Пусть $V \subset Y$ открыто. Рассмотрим $\forall x \in f^{-1}(V)$: Т.к. $V \in \mathcal{T}_Y$ и $f(x) \in V$, то $\exists O(f(x)) \subset V$ — окрестность f(x). Т.к. f непрерывно, то для найденной $O(f(x)) \exists U(x) \in \mathcal{T}_X$ — окрестность $x: f(U(x)) \subset O(f(x)) \subset V$. Значит, $U(x) \subset f^{-1}(V)$. Получаем, что любая точка из $f^{-1}(V)$ входит в это множество вместе с некоторой своей окрестностью, а значит, $f^{-1}(V)$ открыто. Итак, прообраз любого открытого множества под действием f открыт.

 (\Leftarrow) : Пусть $x \in X$. Рассмотрим $\forall O(f(x)) \in \mathcal{T}_Y$ — окрестность f(x). Т.к. O(f(x)) открыто, то $f^{-1}(O(f(x)))$ открыто в X — выберем это множество в качестве окрестности x. Получаем, что $\forall x \in X \ \forall O(f(x)) \in \mathcal{T}_Y \ \exists U(x) \in \mathcal{T}_X : f(U(x)) \subset O(f(x))$, т.е. f непрерывно.

3 Лекция 3

Замечание 3.1. Проверять непрерывность отображения топологических пространств удобно на уровне базы или предбазы: Пусть $\mathfrak{B} \subset \mathcal{T}_Y$ — база топологии на Y. Тогда отображение $f: X \to Y$ непрерывно \Leftrightarrow прообраз базы (предбазы) открыт: $f^{-1}(\mathfrak{B}) \subset \mathcal{T}_X$

Пример 3.1. 1. $f: \mathbb{R} \to \mathbb{R}$ — непрерывные функции одной переменной ("функции из математического анализа").

- 2. $f(x) = e^{2\pi i x} = \cos(2\pi x) + i\sin(2\pi x)$ (Эта функция представляет собой пример накрытия $f: \mathbb{R}^1 \to S^1$. Определение накрытия смотри (возможно) дальше в курсе).
- 3. Тривиальный пример: постоянное отображение $f(x) \equiv y_0$, где $f: X \to Y$ и $y_0 \in Y$.
- 4. Композиция непрерывных отображений является непрерывным отображением: Пусть $X \xrightarrow{f} Y \xrightarrow{g} Z$; f, g непрерывные отображения. Тогда $g \circ f$ непрерывное отображение.
- 5. Пусть (X, \mathcal{T}) топологическое пространство, $Z \subset X$, на Z индуцирована топология $\mathcal{T}_Z = \mathcal{T}|_Z$. Рассмотрим отображение включения: $i: Z \to X$, i(x) = x. Тогда i непрерывно в индуцированной топологии \mathcal{T}_Z .
- 6. Пусть в дополнение к предыдущему пункту: существует $f: X \to Y$ непрерывное отображение. Рассмотрим отображение ограничения: $f|_Z: Z \to Y$. Оно непрерывно, т.к. является композицией непрерывных отображений: $f|_Z = f \circ i$.
- 7. Непрерывность в метрических пространствах:

Определение 3.1 (Непрерывности отображения метрических пространств по Коши). Пусть $(X, \rho_X), (Y, \rho_Y)$ — метрические пространства, $f: X \to Y$. Тогда отображение f называется непрерывным в точке $x_0 \in X$, если $\forall \varepsilon > 0 \; \exists \; \delta > 0 \; : f(O_\delta(x_0)) \subset O_\varepsilon(f(x_0)), \; \varepsilon$ еде O_δ и O_ε — открытые шары в пространствах X и Y соответственно.

Отображение f называется непрерывным (непрерывным отображением метрических пространств), если оно непрерывно во всех $x \in X$.

Определение 3.2 (Непрерывности отображения метрических пространств по Гейне). Пусть (X, ρ_X) , (Y, ρ_Y) — метрические пространства, $f: X \to Y$. Тогда отображение f называется непрерывным в точке $x_0 \in X$, если для любой последовательности $\{x_n\}_{n=1}^{\infty}$ элементов X, сходящейся κ x_0 , последовательность $\{f(x_n)\}_{n=1}^{\infty}$ сходится κ $f(x_0)$.

Отображение f называется непрерывным (непрерывным отображением метрических пространств), если оно непрерывно во всех $x \in X$.

Задача 3.1. Доказать эквивалентность определений непрерывности отображения метрических пространств по Коши и по Гейне.

Теорема 3.1 (Кривая Пеано). Существует непрерывное отображение $f:[0,1] \to [0,1] \times [0,1]$.

Доказательство этой теоремы смотри дальше в курсе.

Определение 3.3. Пусть X, Y- топологические пространства, $f: X \to Y$. Тогда отображение f называется гомеоморфизмом, если: 1) f- биекция, 2) f непрерывно, 3) f^{-1} непрерывно.

Eсли между пространствами X и Y существует гомеоморфизм, то эти пространства называются гомеоморф-ными.

Замечание 3.2. Свойство "быть гомеоморфными" очевидно является отношением эквивалентности на множестве топологических пространств, а значит, разбивает это множество на классы эквивалентности.

Чтобы доказать, что пространства не являются гомеоморфными, можно найти топологические свойства этих пространств, которые должны сохраняться при любом гомеоморфизме, но у этих пространств отличаются.

Пример 3.2. $f(x) = \operatorname{tg}(x) : \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \xrightarrow{f} (-\infty, +\infty) = \mathbb{R}$ — гомеоморфизм.

3.1 Связность и линейная связность.

Определение 3.4. Топологическое пространство X называется несвязным, если его можно представить в виде объединения двух непустых непересекающихся открытых подмножеств.

Eсли же пространство X так разбить нельзя, то оно называется связным.

Пример 3.3. 1. Любое пространство с дискретной топологией несвязно, если содержит более одного элемента.

2. Любое пространство с антидискретной топологией связно.

Теорема 3.2. Отрезок I = [0,1] с топологией, индуцированной естественной топологией вещественной прямой (т.е. топологией, порождённой на \mathbb{R} евклидовой метрикой), связен.

Доказательство. Заметим, что в условиях теоремы открытыми подмножествами отрезка I считаются интервалы вида (a,b), где 0 < a < b < 1; полуинтервалы вида [0,a), где $0 < a \leq 1$; полуинтервалы вида (b,1], где $0 \leq b < 1$; сам отрезок I и \varnothing ; а также их всевозможные объединения и конечные пересечения.

Докажем теперь теорему от противного: пусть отрезок I связен, т.е. $I=A\cup B$, где: 1) $A,B\neq\varnothing$; 2) $A\cap B=\varnothing$; 3) A,B — открыты. Без ограничения общности можем считать, что $0\in A$. Т.к. A открыто, то 0 лежит в A вместе с некоторой своей окрестностью. Тогда или эта окрестность нуля совпадает со всем отрезком: $I\subseteq A\Rightarrow I=A\Rightarrow B=\varnothing$ — получаем противоречие, или эта окрестность нуля представляет собой полуинтервал, т.е. $\exists\, \varepsilon,\, 0<\varepsilon\le 1:\, [0,\varepsilon)\subseteq A$. Множество таких ε ограниченно $(0<\varepsilon\le 1)$, следовательно, существует его супремум. Обозначим это множество Ω ($\Omega\subseteq A$), а его супремум — ε_0 :

$$\sup_{\varepsilon \in (0,1]} \Omega = \sup_{\varepsilon \in (0,1]} \big\{ \, \varepsilon \, \mid \, [0,\varepsilon) \, \subseteq A \, \big\} = \varepsilon_0.$$

Докажем теперь, что тогда $[0, \varepsilon_0] \subseteq A$. Т.к. ε_0 — супремум множества Ω , то по одному из свойств супремума: $\forall \delta > 0 \; \exists \; \varepsilon > 0 : \; \varepsilon_0 - \delta < \varepsilon < \varepsilon_0 \; \Rightarrow \; \varepsilon \in \Omega$, т.е. $[0, \varepsilon) \subset \Omega \subset A$. Значит, ε_0 является точкой прикосновения множества Ω , а значит, и точкой прикосновения множества A.

Т.к. A и B являются открытыми и дополняют друг друга до I, то в индуцированной топологии на I они являются одновременно открытыми и замкнутыми. Значит, $A=\overline{A}$, т.е. A содержит все свои точки прикосновения. Значит, $\varepsilon_0\in A$. Но т.к. A открыто, то $\exists\,U(\varepsilon_0)$ — окрестность $\varepsilon_0\colon\,U(\varepsilon_0)\subset A$. Но тогда или $\varepsilon_0=1$, а значит, $A=I\Rightarrow B=\varnothing$ — противоречие, или $\varepsilon_0\neq 1 \Rightarrow \exists\,\delta>0:\, [0,\varepsilon_0+\delta)=[0,\varepsilon_0]\cup[\varepsilon_0,\varepsilon_0+\delta)\subset A \Rightarrow \varepsilon_0+\delta\in\Omega$ — противоречие с тем, что $\varepsilon_0=\sup_{\varepsilon\in(0,1]}\Omega$.

Во всех случаях получаем противоречия, значит, исходное предположение неверно, а значит, отрезок I в индуцированной топологии связен.

Утверждение 3.3. Непрерывный образ связного пространства связен, т.е. если X связно, $f: X \to Y$ — непрерывное отображение, то f(X) связно.

Доказательство. От противного: пусть $f(X) = A \cup B$, где 1) $A, B \neq \emptyset$; 2) $A \cap B = \emptyset$; 3) A, B — открыты в индуцированной с Y на f(X) топологии. Но тогда $X = f^{-1}(A) \cup f^{-1}(B)$, причём 1) $f^{-1}(A), f^{-1}(B) \neq \emptyset$, т.к. $A, B \neq \emptyset$; 2) $f^{-1}(A) \cap f^{-1}(B) = \emptyset$, т.к. $A \cap B = \emptyset$; 3) $f^{-1}(A), f^{-1}(B)$ — открыты в X, т.к. A, B — открыты в индуцированной с Y на f(X) топологии, а f — непрерывное отображение. Значит, X несвязно — противоречие. \square

Определение 3.5. Путь γ в топологическом пространстве X, соединяющий точки $x_0, y_0 \in X$ — это непрерывное отображение $\gamma: [0,1] \to X$ такое, что $\gamma(0) = x_0$, $\gamma(1) = y_0$. Точка x_0 называется началом пути γ , а точка y_0 — концом пути γ .

Замечание 3.3. Из доказанных теоремы и утверждения следует, что $\gamma([0,1])$ — связно в топологии, индуцированной с области значений.

Определение 3.6. Пространство X называется линейно связным, если для любых двух точек $x, y \in X$ существует путь γ , соединяющий их и лежащий в пространстве X, т.е. $\gamma([0,1]) \subset X$.

Теорема 3.4. Пусть X линейно связно. Тогда X связно.

Доказательство. От противного: Пусть $X = A \cup B$, где 1) $A, B \neq \varnothing$; 2) $A \cap B = \varnothing$; 3) A, B — открыты в топологии на X. Т.к. X линейно связно, то $\forall x_0 \in A$ и $\forall y_0 \in B$ можно соединить путём: существует непрерывное отображением $\gamma: [0,1] = I \to X$ такое, что $\gamma(0) = x_0, \gamma(1) = y_0, \gamma(I) \subset X$. Тогда получаем, что $\gamma(I) = (\gamma(I) \cap A) \cup (\gamma(I) \cap B)$, причём $(\gamma(I) \cap A)$ и $(\gamma(I) \cap B)$ непусты, не пересекаются и открыты в топологии, индуцированной с X на $\gamma(I)$. Значит, $\gamma(I)$ несвязно — противоречие.

Замечание 3.4. Обратное неверно. Пример: объединение графика функции $f(x) = \sin \frac{1}{x}, \ x > 0 \ c$ отрезком $\{ (0,y) \mid -1 \leq y \leq 1 \}$. Это подмножество плоскости \mathbb{R}^2 связно, но не является линейно связным. Доказательство этого факта остаётся читателю в качестве упраженения.

4 Лекция 4

4.1 Компактность.

Определение 4.1. Пусть (X, \mathcal{T}) — топологическое пространство. Система $\{U_{\alpha}\}_{\alpha \in A} \subseteq \mathcal{T}$ открытых подмножеств в X называется (открытым) покрытием множества $Y \subseteq X$, если $Y \subseteq \bigcup_{\alpha \in A} U_{\alpha}$.

Определение 4.2. Топологическое пространство X называется компактным (иначе, компактом), если из любого его открытого покрытия можно выделить конечное подпокрытие.

Замечание 4.1. В устаревшей терминологии описанное выше свойство называлось бикомпактностью, а в определении компактности (иначе, счётно-компактности) требовалась счётность исходного покрытия.

Теорема 4.1. Отрезок [a,b] компактен.

Доказательство. Пусть $\{U_{\alpha}\}_{\alpha\in A}$ — открытое покрытие отрезка [a,b]. Рассмотрим множество

 $\Pi = \{x \in [a,b] \mid [a,x] \text{ покрывается конечным числом элементов покрытия } \{U_{\alpha}\}\}.$

Т.о. $\Pi \subseteq [a,b]$, причём $\Pi \neq \emptyset$, т.к. $\exists U_{\alpha_0} \in \{U_{\alpha}\}_{\alpha \in A} : a \in U_{\alpha_0}$. Значит, $\Pi -$ непустое ограниченное подмножество в \mathbb{R} , а значит, существует $\sup \Pi$. Обозначим $\varepsilon_0 = \sup \Pi$. Т.к. $\Pi \subseteq [a,b]$, то $\varepsilon_0 \in [a,b]$, значит, $\exists U_{\widetilde{\alpha}_0} \in \{U_{\alpha}\}_{\alpha \in A} : \varepsilon_0 \in U_{\widetilde{\alpha}_0}$. Но $U_{\widetilde{\alpha}_0}$ открыто, значит, $\exists \delta > 0 : (\varepsilon_0 - \delta, \varepsilon_0 + \delta) \subset U_{\widetilde{\alpha}_0}$. Т.к. $\varepsilon_0 -$ супремум множества Π , то по свойству супремума: $\exists x_\delta \in \Pi : x_\delta \in (\varepsilon_0 - \delta, \varepsilon_0]$. Но тогда по определению ε_0 : $[a, x_\delta]$ покрывается конечным набором элементов из $\{U_{\alpha}\}_{\alpha \in A}$. Этот набор с добавленным элементом $U_{\widetilde{\alpha}_0}$ является конечным покрытием отрезка $[a, \varepsilon_0]$, значит, $\varepsilon_0 \in \Pi$.

Этот набор с добавленным элементом $U_{\widetilde{\alpha}_0}$ является конечным покрытием отрезка $[a,\varepsilon_0]$, значит, $\varepsilon_0\in\Pi$. Предположим теперь, что $\varepsilon_0< b$. Тогда ε_0 является внутренней точкой отрезка [a,b], а значит, $\exists\,\varepsilon'>0: (\varepsilon_0-\varepsilon',\varepsilon_0+\varepsilon')\subset [a,b]$. Тогда $[\varepsilon_0-\frac{\varepsilon'}{2},\varepsilon_0+\frac{\varepsilon'}{2}]\subset [a,b]$. По определению $\varepsilon_0: [a,\varepsilon_0-\frac{\varepsilon'}{2}]$ покрывается конечным набором элементов из $\{U_\alpha\}$. Но тогда этот набор с добавленным элементом $(\varepsilon_0-\varepsilon',\varepsilon_0+\varepsilon')$ является конечным покрытием отрезка $[a,\varepsilon_0+\frac{\varepsilon'}{2}]$, а значит, $\varepsilon_0\neq\sup\Pi$ — противоречие. Получаем, что $\varepsilon_0=b$, а значит, весь отрезок [a,b] покрывается конечным числом элементов из $\{U_\alpha\}_{\alpha\in A}$, т.е. является компактом.

Лемма 4.2 (о вложенных отрезках). Пусть дана система вложенных отрезков: $[a_1,b_1]\supset [a_2,b_2]\supset\ldots\supset [a_n,b_n]\supset\ldots$ Тогда их пересечение $\bigcap_{i=1}^{\infty}[a_i,b_i]\neq\varnothing$. При этом, если $(b_n-a_n)\to 0$ при $n\to\infty$, то их пересечние состоит из одной точки.

Доказательство. Данная лемма доказывается в курсе математического анализа, так что здесь её доказательство мы приводить не будем. Однако мы докажем обобщение этой леммы на случай топологических пространств. □

Определение 4.3. Система $\{X_{\alpha}\}_{{\alpha}\in A}$ подмножеств множества X называется центрированной, если пересечение любого конечного числа её элементов не пусто.

Лемма 4.3 (Обобщение леммы о вложенных отрезках для топологических пространств). Пусть X — топологическое пространство, $\{F_i\}_{i=1}^{\infty}$ — последовательность замкнутых непустых подмножеств X такая, что $X \supset F_1 \supset F_2 \supset \ldots \supset F_n \supset \ldots$ Тогда если X — компакт, то $\bigcap_{i=1}^{\infty} F_i \neq \varnothing$.

Доказательство. Данная лемма немедленно следует из следующей теоремы с тем лишь замечанием, что множество замкнуто тогда и только тогда, когда его дополнение открыто. □

Теорема 4.4. Топологическое пространство X компактно \Leftrightarrow любая центрированная система замкнутых подмножеств в X имеет непустое пересечение.

Доказательство. (\Rightarrow) : Пусть $\{F_i\}_{i=1}^{\infty}$ — центрированная система замкнутых подмножеств в X и $\bigcap_{i=1}^{\infty} F_i = \varnothing$. Тогда множества $U_i = X \setminus F_i$ открыты в X. Рассмотрим $\bigcup_{i=1}^{\infty} U_i$:

$$\bigcup_{i=1}^{\infty} U_i = \bigcup_{i=1}^{\infty} (X \setminus F_i) = X \setminus \bigcap_{i=1}^{\infty} F_i = X.$$

Значит, система $\{U_i\}_{i=1}^{\infty}$ образует покрытие X. Т.к. X компактно, то из этого покрытия можно выбрать конечное подпокрытие $\{U_{i_j}\}_{j=1}^{n}$:

$$\bigcup_{i=1}^{n} U_{i_j} = X.$$

Но тогда $\bigcap_{j=1}^n F_{i_j} = \emptyset$, а значит, система $\{F_i\}_{i=1}^\infty$ не является центрированной — противоречие. Значит, $\bigcap_{i=1}^\infty F_i \neq \emptyset$. (\Rightarrow) : Доказательство этого утверждения остаётся читателю в качестве упражнения.

Определение 4.4. Топологическое пространство X называется локально компактным, если $\forall x \in X$ и для любой окрестности O(x) точки x существует окрестность V(x) такая, что замыкание $\overline{V(x)} \subset O(x)$ и $\overline{V(x)}$ — компакт.

Определение 4.5. Семейство $\{X_{\alpha}\}_{{\alpha}\in A}$ подмножеств в X называется локально конечным, если $\forall x\in X$ существует окрестность O(x) точки x, которая пересекается лишь c конечным числом множеств из семейства $\{X_{\alpha}\}_{{\alpha}\in A}$.

Определение 4.6. Говорят, что семейство V подмножеств множества X вписано в семейство U, если всякий элемент семейства V содержится в некотором элементе семейства U.

Определение 4.7. Топологичесоке пространство X называется паракомпактным, если в любое его открытое покрытие можно вписать локально конечное подпокрытие.

Пример 4.1. Пространства $\mathbb{R}^n, n \geq 1$ являются паракомпактными.

Лемма 4.5 (о наследовании компактностей). Пусть X — топологическое пространство, $X \supset A$ и A — замкнуто. Тогда:

- 1. X компактно $\Rightarrow A$ компактно;
- 2. X локально компактно $\Rightarrow A$ локально компактно;

3. X паракомпактно \Rightarrow A паракомпактно.

Задача 4.1. Доказать лемму выше.

Утверждение 4.6. Пусть $f: X \to Y$ — непрерывное отображение топологических пространств. Тогда если X компактно, то $f(X) \subset Y$ тоже компактно.

Доказательство. Пусть $\{V_{\alpha}\}_{\alpha\in A}$ — открытое покрытие f(X). Рассмотрим семейство $\{f^{-1}(V_{\alpha})\}_{\alpha\in A}$: в силу непрерывности f оно состоит из открытых множеств и является покрытием X, а значит, в силу компактности X из него можно выбрать конечное подпокрытие $\{f^{-1}(V_{\alpha_i})\}_{i=1}^n$. Но тогда семейство $\{V_{\alpha_i}\}_{i=1}^n$ будет конечным покрытием f(X), а значит, f(X) — компакт.

Задача 4.2. Рассмотреть аналогичные утверждения о локальной компактности и паракомпактности.

Определение 4.8 (Аксиомы отделимости). Пусть X — топологическое пространство. Тогда говорят, что X удовлетворяет аксиоме отделимости T_i тогда и только тогда, когда:

- 1. T_0 (аксиома Колмогорова): $\forall x, y \in X, x \neq y$: существует окрестность O(x) точки x такая, что $y \notin O(x)$ или существует окрестность O(y) точки y такая, что $x \notin O(y)$.
- 2. $T_1: \forall x,y \in X, x \neq y:$ найдутся окрестности O(x) точки x и O(y) точки y такие, что $y \notin O(x)$ и $x \notin O(y)$.
- 3. T_2 (аксиома Хаусдорфа): $\forall x,y \in X, x \neq y$: найдутся окрестности O(x) точки x и O(y) точки y такие, что $O(x) \cap O(y) = \varnothing$.
- 4. T_3 : для любой точки x из X и для любого замкнутого подмножества $F \subset X$, не содержащего x, существуют непересекающиеся окрестности O(x) и O(F) (где окрестность O(F) это любое такое подмножество $A \subset X$, что $A \supset F$ и $A \in \mathcal{T}$).
- 5. T_4 : для любых F_1, F_2 замкнутых подмножеств в X таких, что $F_1 \cap F_2 = \emptyset$, существуют непересекающиеся окрестности $O(F_1)$ и $O(F_2)$.

Пример 4.2. 1. Любое пространство с антидискретной топологией не удовлетворяет аксиоме отделимости T_0 .

- 2. Связное двоеточие удовлетворяет аксиоме отделимости T_0 .
- 3. Любое пространство с дискретной топологией удовлетворяет аксиоме отделимости T_1 .
- 4. Любое пространство с антидискретной топологией удовлетворяет аксиоме отделимости T_3 .
- $5. \ \, \mathit{Любое} \ \, npocmpaнcmbo \, \, c \, \, ahmuдискретной топологией удовлетворяет аксиоме отделимости <math>T_4$
- 6. Рассмотрим пространство $(\mathbb{R}, \mathcal{T})$, где $\mathcal{T} = \{[a, +\infty)_{a \in \mathbb{R}}, \mathbb{R}, \varnothing\}$. Оно не удовлетворяет аксиоме отделимости T_3 , но удовлетворяет аксиоме отделимости T_4 , т.к. все замкнутые множества в нём имеют вид $\mathbb{R}, \varnothing, F_a = (-\infty, a)$, $a \in \mathbb{R}$, и для любого замкнутого множества F_a существует единственная окрестность $O(F_a) = \mathbb{R}$, а значит, $\forall b > a$: отделить b и F_a нельзя. При этом не существует таких замкнутых множеств F_a и F_b , что $F_a \cap F_b = \varnothing$.

5 Лекция 5

Рассмотрим полезную характеристику T_1 -пространства:

Утверждение 5.1. X является T_1 -пространством тогда и только тогда, когда для любых x множество $\{x\}$ замкнуто.

Доказательство. (\Rightarrow): Пусть T_1 . Если возьмем $y \neq x$, тогда существует O(x) и O(y), т.ч. $y \notin O(x)$ и $x \notin O(y) \Longrightarrow y$ не является точкой прикосновения множества X. Значит $X \setminus \{x\}$ множество не содержащее предельную точку. Таким образом x единственная предельная (прикосновенная) точка множества X.

 (\Leftarrow) : Пусть различные точки $\{x\}$ и $\{y\}$ замкнуты, тогда $X\backslash\{x\}$ и $Y\backslash\{y\}$ открыты. Данные множества открыты, возьмем их в качестве окрестностей: $y\in X\backslash\{x\},\,x\backslash\{y\}$

Утверждение 5.2. Вообще говоря из T_3 не следует T_0 .

Доказательство. Приведем контрпример: пусть $X = \{x,y\}$ и $\tau = \{\varnothing,X\}$. Возмем точку x, тогда замкнутое подмножечство $F \subset X$, не содержащее x, только пустое; $x \in X$, $\varnothing \in \varnothing$

Определение 5.1. Пространство X регулярно, если оно T_3 и T_1

Утверждение 5.3. $T_3 \ u \ T_1 \Rightarrow T_2$

Пример 5.1. Если X метрическое пространство, то X хаусдорфово.

Рассмотрим полезную характеристику пространства T_2 .

Утверждение 5.4. X пространство $T_2 \Leftrightarrow \forall x \in X \cap \overline{O}(x) = \{x\}$, где пересечение по всем окрестностям, содержащим x.

 \mathcal{A} оказательство. $\Rightarrow x \in \bigcap \overline{O}(x)$, пересечение по всем окрестностям точки x. Докажем методом от противного: пусть существует $y \in \bigcap \overline{O}(x)$, где пересечение по всем окрестностям точки x. Тогда $\forall \overline{O}(x)$ $y \in \overline{O}(x) \Leftrightarrow \forall V(y)$ $V(y) \cap O(x) \neq \varnothing$. Так как X пространство T_2 , то существует U(x) и U(y): $U(x) \cap U(y) = \varnothing$. Противоречие с тем, что y принадлежит хотя бы одному $\overline{O}(x)$. \Leftarrow упражнение.

Утверждение 5.5. *Из* T_4 *следует* T_0 .

Доказательство. Рассмотрим связное двоеточие: $X = \{x, y\}$ и $\tau = \{\varnothing, X\}$. Замкнутых множеств всего два $\{\varnothing, X\}$. Можем взять $F_1 = \varnothing$, $F_2 = X$. Или можем взять $F_1 = \varnothing$, $F_2 = \varnothing$.

Утверждение 5.6. Из T_4 не следует T_3 .

Доказательство. Приведем контрпример: пусть $X = \mathbb{R}$, $\tau = \{\{(a, +\infty), a \in \mathbb{R}\}, \varnothing, \mathbb{R}\}$. Замкнутые множества имеют вид $F = (-\infty, a]$. Так как нет двух пересекающихся множеств, то пространство является T_4 . Возьмем закнутое множество $(-\infty, a] =: F$ и точку b, причем $b \notin F$. Единственной окрестностью F является вся \mathbb{R} , так как это единственное открытое множество удовлетворяющее топологии и содержащее F. Тогда любая окрестность точки b будет нетривиально пересекаться с \mathbb{R} . Значит X не является T_3 .

Утверждение 5.7. $T_4 + T_1 \Rightarrow T_3$.

Доказательство. Из утверждения 5.1 следует, что $\{x\}$ замкнуто. Пусть $F_1=\{x\},\,F=F_2$, применяем аксиому T_4 . \square

Определение 5.2. X – нормально, если оно $T_4 + T_1$.

Пемма 5.8. Пусть в метрическом пространстве (X, ρ) F_1, F_2 - замкнуты. Тогда $\forall x \in F_1, \exists \varepsilon > 0: O_{\varepsilon}(x) \cap F_2 = \varnothing$.

 \mathcal{A} оказательство. Предположим противное: пусть нельзя найти такую $O_{\varepsilon}(x)$, то есть $\forall \varepsilon > 0$ $O_{\varepsilon}(x) \cap F_2 \neq \emptyset$. Тогда $x \in \overline{F_2}$, но $\overline{F_2} = F_2 \Longrightarrow x \in F_1 \cap F_2 \neq \emptyset$.

Теорема 5.9. Метрическое пространство нормально.

Доказательство. Метрическое пространство хаусдорфово, то есть выполняется аксиома T_2 , из которой следует аксиома T_1 . Докажем T_4 . Пусть F_1, F_2 — замкнутые непересекающиеся множества. Возьмем точку $x_1 \in F_1$ и рассмотрим $O_{\varepsilon_1}(x_1)$. Можно построить окрестность $V(F_1) = \bigcup_{x_1 \in F_1} O_{\frac{\varepsilon}{2}}(x_1)$ и $W(F_2) = \bigcup_{x_2 \in F_2} O_{\frac{\varepsilon}{2}}(x_2)$.

Докажем, что $V(F_1) \cap W(F_2) = \emptyset$. Предположим противное: $\exists w \in V(F_1) \cap W(F_2)$. Тогда $\exists x_1 \in F_1 : w \in O_{\frac{\varepsilon}{2}}(x_1)$ и $\exists x_2 \in F_2 : w \in O_{\frac{\varepsilon}{2}}(x_2)$. Заметим, что $\rho(x_1,w) < \frac{\varepsilon}{2}$ и $\rho(x_2,w) < \frac{\varepsilon}{2}$, тогда по неравенству треугольника $\rho(x_1,x_2) < \varepsilon \Rightarrow x_1 \in O_{\varepsilon}(x_2)$, также $x_1 \in F_1$, но $O_{\varepsilon}(x_2)$ построена так, что она не пересекается с F_1 .

6 Лекция 6

На прошлой лекции была доказано теорема

Теорема 6.1. Метрическое пространство является нормальным, то есть удовлетворяет аксиомам T4 + T1.

Вопрос: что нужно добавить для нормального пространства, чтобы оно стало метризуемым?

6.1 Функциональная отделимость

Определение 6.1. $A \subset X$ - всюду плотно в X, если $\overline{A} = X$.

Теорема 6.2 (Лемма Урысона). Пусть X - нормальное пространство. A, B - два замкнутых непересекающихся nodмножества X. Тогда существуеют непрерывная функция $F:X \to [0,1] \subset \mathbb{R}$, такая, что $F(A) = \{0\}$ и $F(B) = \{1\}$

Доказательство. Для доказательства этой леммы будет использовать двоично-рациональные числа, это

$$S = \left\{q = \frac{m}{2^n}, m \in \mathbb{Z}, n \in \mathbb{N}\right\}$$

Стандартное доказательство:

Будем строить по индукции семейство открытых множеств U, которые мы заиндексируем двоично-рациональными числа из [0, 1].

- 1. $U_1 = X \subset B$
- 2. U_0 должно быть следующим $A\subset U_0\subset \overline{U}_0$ (используем нормальность) $\subset U_1$ 3. $U_{\frac{1}{2}}$ должно выполняться $\overline{U}_0\subset U_{\frac{1}{2}}\subset \overline{U}_{\frac{1}{2}}\subset U_1$, существование такого множества следует из нормальности, примененной к дополнениям U_0 и U_1 .
 - $4.\ U_{\frac{1}{4}}:\overline{U}_{0}\subset U_{\frac{1}{4}}\subset \overline{U}_{\frac{1}{4}}\subset U_{\frac{1}{2}}\ \text{и}\ U_{\frac{3}{4}}:\overline{U}_{\frac{1}{2}}\subset U_{\frac{3}{4}}\subset \overline{U}_{\frac{3}{4}}\subset U_{1}$
 - 5. индуктивный переход. Берем $q=\frac{2k+1}{2^n}$. Рассмотрим соседние с q столбики они будут иметь вид $\frac{k}{2^{n-1}}$ и $\frac{k+1}{2^{n-1}}$.

$$\overline{U}_{\frac{k}{2^{n-1}}} \subset U_q \subset \overline{U}_q \subset U_{\frac{k+1}{2^{n-1}}}$$

Пострили системс открытых множеств. Это система множеств $\{U_q\}$ обладает свойством упорядоченности, т.е. если $q < r \in S$, то $\overline{U}_q \subset U_r$. Теперь определим функцию F.

$$F(x) = \begin{cases} \inf \left\{ q : x \in U_q \right\}, & x \notin B \\ 1, & x \in B \end{cases}$$

Очевидно выполнение требований для множеств A и B. Проверим непрерывность. Достаточно проверить, что $F^{-1}(O_{lpha})$ - открыт, где O_{lpha} - элемент базы топологии отрезка. Можно это доказать только для [0,a),(b,0], т.к. остальные элементы топологии можно получить из этих двух.

Рассмотрим $x \in F^{-1}([0,a)) \Leftrightarrow F(x) < a \Leftrightarrow \inf \{q : x \in U_q\} < a \Leftrightarrow \exists \widetilde{q} < a, \text{ тогда } F^{-1}([0,a)) = \bigcup_{\widetilde{q} < a} U_{\widetilde{q}} \text{ - открыто.}$ Рассмотрим F, заданную другим образом

$$F(x) = \begin{cases} \sup \left\{ r : x \notin U_r \right\}, & x \notin B \\ 1, & x \in B \end{cases}$$

 $\sup\{r:x\notin U_r\}=\sup\{r:x\notin\overline{U}_r\}=\sup\{r:x\in X\setminus\overline{U}_r$ это множество открыто $\}$ Далее аналогично первому случаю.

Иллюстрация:

Пример 6.1 (Нормального, но не метризуемого пространства).

Взаимоотношение компактности и нормальности

Замечание 6.1 (характеризация хаусдорфово пространства). Пусть X - хаусдорфово \Leftrightarrow для каждых $x \neq y$ сущеcmeyem $O(x): y \notin \overline{O}(x)$

Доказательство. (\Leftarrow) : $y \notin \overline{O}(x) \Leftrightarrow y \in X \setminus \overline{O}(x)$ - открыто, тогда существует окрестность O(y): $O(y) \cap \overline{O}(x) = \emptyset$, тогда $O(y) \cap \overline{O}(x) = \emptyset.$

(⇒): от противного

Утверждение 6.3. Замкнутое подмножество компакта - компактно

Доказательство. Очевидно.

Лемма 6.4. В хаусдорфовом топологическом пространстве X компактное подмножество F является замкнутым.

Доказательство. Очевидно. Задача 6.1. $\overline{A \cup B} = \overline{A} \cup \overline{B}$

7 Лекция 7

Повторение из прошлой лекции.

Лемма 7.1 (Лемма Урысона). X - нормальное пространство, A, B - замкнутные непересекающиеся подмножества X. Тогда существует непрерывная функция $f: X \to [0,1]$: $f(A) = \{0\}$, $f(B) = \{1\}$.

7.1 Разбиение единицы

Лемма 7.2 (об ужатии). X - нормальное пространство c конечным покрытием, то есть $X \subset \bigcup_{i=1}^N U_i$, где U_i - открытое множество. Тогда существует набор открытых $V_i, i=1,\ldots,N$, таких что $\overline{V}_i \subset U_i, i=1,\ldots,N$ и $X \subset \bigcup V_i$.

Доказательство (последовательное). Основание k=1, имеем U_1 . Рассмотрим

$$X \setminus (U_2 \cup \dots U_N) = A$$

Видно, что B - замкнуто. Очевидно, что $A \subset U_1$.

Аналогично доказательству лемме Урысона, будет существовать O(A) причем $\overline{O}(A) \subset U_1$, обозначим $V_1 = O(A)$. Докажем, что $V_1 \cup U_2 \cup \ldots U_N$ - покрытие X. Если x лежит в объед U_i , $i \geq 2$, то он лежит в $V_1 \cup U_2 \cup \ldots U_N$. Если x лежит в $X \setminus (U_2 \cup \ldots U_N) = A \subset V_1$, тогда выполеняется тоже самое.

Рассмотрим $1 \ge k < N$. Пусть построены $V_1, \dots, V_k, U_{k+1}, \dots U_N$

$$A' = X \setminus V_1 \cup \dots V_k \cup U_{k+1} \cup \dots U_N$$

Слоедовательно мы можем продолжить k до N.

Задача 7.1. Подробно расписать доказательство выше.

Определение 7.1. Пусть $f: X \to \mathbb{R}$. Носитель функции f (обозн supp f) = $\{x \in X: f(x) \neq 0\}$.

Определение 7.2. Пусть X - топологическое пространство, U_1, \ldots, U_N - конечное покрытие, тогда набор непрерывных функций $f_i: X \to \mathbb{R}, \ i=1,\ldots,N$ называется разбиением единицы подчиненное покрытию U_1,\ldots,U_N , если выполненые два условия:

- 1. $supp f_i = \overline{V}_i \subset U_i$
- 2. $\sum_{i=1}^{N} f_i = 1$ на X

Теорема 7.3 (о разбиении единицы). Пусть X - нормальное пространство, U_1, \ldots, U_N - конечное покрытие, тогда сущесьтует разбиение единицы, подчиненное покрытию U_1, \ldots, U_N .

Доказательство. По лемме об ужатии, в U_i можно вписать V_i такое, что $\overline{V}_i \subset U_i$. По лемме Урысона для $A = \overline{V}_i, B = X \setminus U_i$, будет существовать непрерывная функция $\varphi_i : [0,1] \to \mathbb{R}$ такая, что $\varphi_i(A) = \{1\}$ и $\varphi_i(B) = \{0\}$, то есть $\varphi_i = 1$ на A и $\varphi_i = 0$ вне A. Рассмотрим функцию f_i определенную следующим образом

$$f_i = \frac{\varphi_i}{\sum_{i=1}^N \varphi_i}$$

Причем $supp f_i$ зависит от φ_i , то есть $supp f_i = supp \varphi_i = \overline{V}_i$

Задача 7.2. Если f - непрерывное отображение, то suppf - замкнутое.

Определение 7.3. А назвается всюду плотным в топологическом пространстве X, если $\overline{A} = X$.

Определение 7.4. А называется нигде не плотным, если ($int\overline{A} = \emptyset$ - другое определение) для каждого непустого открытого U существует открытое $V \subset U$ такое, что $V \cap U = \emptyset$.

Определение 7.5. X - сепарабельно, если в нем существует счетное всюду плотное множество в нем.

Пример 7.1 (Канторово множество). Если $x = \sum_{i=1}^{\infty} \frac{a_i}{3^i}$, где $a_i = 0, 2$, то это элемент Канторово множества. Можно рассмотреть $f(\sum_{i=1}^{\infty} \frac{a_i}{3^i}) = \sum_{i=1}^{\infty} \frac{\widetilde{a}_i}{3^i}$, $\widetilde{a}_i = 1$, если $a_i = 2$, u $\widetilde{a}_i = 0$, если $a_i = 0$.

Задача 7.3. Доказать, что Канторово множество совершенно и доказать непрерывность функции выше.

Определение 7.6. Х - совершенное, если не содержить изолированных точек.

Теорема 7.4 (Кривая Пеано). Существует непрерывная кривая из отрезка в произведение двух отрезков, т.е. функция $f: I \to I \times I$, где I = [0,1]

8 Лекция 8

8.1 Кривые Пеано

Определение 8.1. Кривая $\gamma:[0,1] \to X$ - кривая, если γ - непрерывное отображение. Кривая Пеано - непрерывное отображение отрезка [0,1] на $[0,1]^2$.

Замечание 8.1. Гильберт разделил квадрат на 4 части, потом каждую часть также делил на 4. Пеано на 9.

На картинке можно посмотреть в Федорчуке.

Доказательство. Докажем простроив заполнение кривой равнобедренного треугольника.

Пусть Δ - прямоугольний равнобедренный треугольник и I = [0,1]. На каждом шаге будем разбивать треугольник и отрезок. На n-ом шаге будет будем иметь 2^n треугольников и отрезок, разбитый на столько же частей. Будем занумеровывать треугольники и части отрезка двоичным кодом.

Будем иметь следующую нумерацию: $\Delta_{i_1...i_n}$ и $I_{i_1...i_n}$. Определим соседние элементы как элементы, у которых есть общая сторона(для разбиения треугольников), общая точка(для разбиения отрезка). Так же мы имеем цепочку вложенных отрезков(треугльников).

$$I_{i_1} \supset I_{i_1 i_2} \supset I_{i_1 i_2 i_3} \supset \dots$$

 $\Delta_{i_1} \supset \Delta_{i_1 i_2} \supset \Delta_{i_1 i_2 i_3} \supset \dots$

Эти цепочки имеют строго убывающий размер.

Из элементарных геометрических соображений можно получить значение диаметров этих множеств.

$$diam(I_{i_1 i_2 \dots i_n}) = \left(\frac{1}{2}\right)^n$$

$$diam(\Delta_{i_1...i_n}) = \frac{1}{(\sqrt{2})^{n-1}}$$

Очевидно, что все эти подмножества компакты(т.к. замкнутые и ограниченные подмножества полного метрического пространства).

Замечание 8.2. Рассказ про игру.

Определим отображение $f: I \to I \times I$.

1) Рассмотрим $t \in I = [0,1]$. Для t будет существовать последовательность убывающий отрезков

$$t \in I_{i_1} \supset I_{i_1 i_2} \supset I_{i_1 i_2 i_3} \supset \dots$$

T.к. t может лежать на границе отрезков, то последовательность определенна неоднозначно. Возьмем последовательность треугольников с теми же индексами. Это будет последовательность вложенные компактов, причем дивметр этого множества стремится к 0. T.о. пересечение этих треугольников будет состоять из одной точки, эту единственную точку обозначим за f(t).

У этого рассуждения есть недостаток, t может принадлежать двум множествам $I_{i_1...i_n}$ и $I_{j_1...j_n}$. но в этом случае может объядинить эти два множества и получить $J_{i_1...i_n}$, также определим множество $P_n(t) = \{\}$. (если t - хорошее, то $P_n(t) = \Delta_{i_1...i_n}$, если t - плохое, то $P_n(t) =$ объединению двух соседних треугольников).

Получим еще одну последовательность компактов:

$$P_1(t) \supset P_2(t) \supset \dots$$

Утверждение 8.1.

$$diam P_n \le \frac{1}{(\sqrt{2}^{n-2})}$$

Опять получили последовательность вложенных компактов..

Докажем, что f - сюръективно. Рассмотрим точку x_0 из треугольника. Точка будет лежать в определнном последовательность "разрезанных" треугольников. Рассмотрим последовательность подотрезков с теми же индексами, у этой последовательности будет одной общая точка. Остается доказать, что это точка - прообраз точки x_0 . Это верно, т.к. иначе бы образы этих точек лежали бы в разных треугольниках.

Докажем, что f - непрерывно. - Очевидно.

Определение 8.2. $f_n: X \to \mathbb{R}$ - последовательность функций.

 $f_n \rightrightarrows 1$, если для каждого $\varepsilon > 0$ сущесьтует $N \in \mathbb{N}$ такое что для каждого $m \geq N$ для каждого $x \in X$ выполняется $|f_n(x) - f(x)| < \varepsilon$

Теорема 8.2. Предел равномерно сходящийся функций непрерывен.

9 Лекция 9

Задача 9.1. Непрерывное отображение (гомеоморфизм) треугольника на квадрат. $f: \Delta \to I \times I$

$$f(x,y) = \begin{cases} (x+y, x+y), & x > y \\ (2x, 2x), & x = y = (x + \min(x, y), x + \min(x, y)) \\ (x+y, x+y), & x < y \end{cases}$$

9.1 Теорема Титца о продолжении непрерывной функции

Теорема 9.1 (Титца о продолжении непрерывной функции). Пусть X - нормальное топологическое пространство. $F \subset X$ - замкнутое подмножество. $\varphi : F \to \mathbb{R}$ - непрерывная ограниченная (т.е. $\|\varphi\| = \sup_{x \in F} |\varphi(x)| < \infty$) функция. Тогда существует $\Phi : X \to \mathbb{R}$ - непрерывное продолжение функции φ , которое сохраняет норму $\|\Phi\| = \sup_{y \in X} |\Phi(y)| = \|\varphi\|$

Доказательство. Будем строить две последовательности функций.

- 1. $\Phi_n: X \to \mathbb{R}$
- 2. $\varphi_n: F \to \mathbb{R}$

Замечание 9.1. Пусть $f_n(x): Y \to \mathbb{R}$ - фундаментальная последовательность, тогда существует $f(y) = \lim_{n \to \infty} f_n(y)$ **Задача 9.2.** Доказать, что фундаментальная последовательность равномерно сходится.

Алгоритм построения последовательностей.

1. $\varphi_0 = \varphi$, так как φ - ограниченная функция, то выполняется $\|\varphi\| = \|\varphi_0\| = M_0 < +\infty$ Определим два замкнутых множества в X

$$A_0 = \left\{ x \in F : \varphi(x) = \varphi_0(x) \le -\frac{M_0}{3} \right\}$$

$$B_0 = \left\{ x \in F : \varphi(x) = \varphi_0(x) \ge \frac{M_0}{3} \right\}$$

Очевидно, что эти множества являются замкнутыми и непересек.

Применим лемму Урысона к отрезку $\left[-\frac{M_0}{3}, \frac{M_0}{3}\right]$, получим функцию $\Phi_0(x)$, которая на A_0 тождественна $-\frac{M_0}{3}$, на B_0 тождественна $\frac{M_0}{3}$.

Рассмотрим "номру" функции Φ_0 : $\|\Phi_0\| \leq \frac{M_0}{3}$.

2. определим функции $\varphi_1 = \varphi_0 - \Phi_0$ на множестве F. Эта функция непрерывна. Рассмотрим норму введеной функции на 3-ех участках.

(a)
$$\varphi_0 \geq \frac{M_0}{3}$$
; $\Phi_0 = \frac{M_0}{3}$

(b)
$$-\frac{M_0}{3} \le \varphi_0 \le \frac{M_0}{3}; -\frac{M_0}{3} \le \Phi_0 \le \frac{M_0}{3}$$

(c)
$$\varphi_0 \le -\frac{M_0}{3}$$
; $\Phi_0 = -\frac{M_0}{3}$

Из этих неравенств видно, что

$$\|\varphi_1\| \le \frac{2M_0}{3}$$

3. Примени тоже построение, что и в предыдущем пункте, счетное число раз и получим две последовательности функций.

 $\varphi_{n+1} = \varphi_n - \Phi_n$ на множестве F

И

$$\|\Phi_{n+1}\| \le \frac{M_0}{3} \qquad \|\varphi_{n+1}\| \le \frac{2M_0}{3} \tag{1}$$

Следовательно

$$\|\Phi_{n+1}\| \le \frac{1}{3} \left(\frac{2}{3}\right)^{n-1} M_0 \qquad \|\varphi_{n+1}\| \le \left(\frac{2}{3}\right)^n M_0 \tag{2}$$

Рассмотрим ряд $\sum_{i=0}^{\infty} \Phi_i$. Докажем, что последовательность частичных сумм $S_n = \sum_{i=0}^n \Phi_i$ будет фундаментольной.

$$||S_n - S_m|| = ||S_{m+1} + \ldots + S_n|| \le \sum_{i=0}^{\infty} |\Phi_i| \le \frac{M_0}{3} \left(\frac{2}{3}\right)^{n+1} \sum_{l=0}^{\infty} \left(\frac{2}{3}\right)^l = M_0 \left(\frac{2}{3}\right)^{n+1} < \varepsilon$$

Таким образом она сходится и $S_n \rightrightarrows \Phi$

Докажем, что Φ совпадает с φ на F.

$$\left\| \varphi - \sum_{i=0}^{n} \Phi_i \right\| = \left\| \varphi_{n+1} \right\| \le \left(\frac{2}{3} \right)^n M_0$$

Припредельном переходе получим $\varphi = \Phi$ на множестве F.

10 Лекций 10

11 Лекция 11

11.1 Тихоновская топология и теорема Тихонова

Определение 11.1. Тихоновская топология - топология на произведение топологических пространств таким образом, что координатные функции непрерывны.

Замечание 11.1. В конечномерной ситуации Тихоновоская топология совпадает с топологией произведения. В бесконечномерном случае это не так.

Теорема 11.1 (Тихонов). $\Pi_{\alpha}X_{\alpha}$, где X_{α} - компактное пространство. $\Pi_{\alpha}X_{\alpha}$ - компактно в Тихоновской топологии.

Доказательство. Возможно будет потом.

Пример 11.1. Пусть $\{0,1\}$ - несвязное двоеточие. Рассмотрим $\{0,1\}^{\mathbb{N}} = \{0,1\} \times \{0,1\} \times \{0,1\} \times \dots$ В топологии Тихонова это гомеоморфно Канторову множеству. Можно задать следующим образом

$$f(x_1, x_2, \ldots) = \sum_{k=1}^{+\infty} \frac{2x_k}{3^k}$$

Задача 11.1. Доказать, что это гомеоморфзим в Тихоновской топологии.

B топологии произвеедения получится $\tau = 2^{\{0,1\}^{\mathbb{N}}}$.

Пример 11.2. Гильбертов куб(кирпич) = пространство $[0,1]^{\mathbb{N}}$ с тихоновской топологией. Он компактен по теореме Тихонова.

Гильбертов куб гомеоморфен следующему прострнаству

$$[0,1] \times \left[0,\frac{1}{2}\right] \times \left[0,\frac{1}{3}\right] \times \dots$$

A это ряды, причем $x_n \leq \frac{1}{n}$. Причем $\sum_{n=1}^{\infty} (x_n)^2 < \infty$.

11.2 Фактор-топология

Пусть (X, τ) - топологическое пространство. Пусть на X определено отношение эквивалентности . И тогда X/ - классы эквивалентности. Если x лежит в X, то [x] - его класс эквивалентности в X/ . Определим топологию τ на X/ по следующему правилу:

$$U \in \tau \Leftrightarrow \pi^{-1}(U) \in \tau_X$$

Пример 11.3. Пусть $X = \mathbb{R}^1$, $x \ y = x - y \in 2\pi Z$.

Тогда $R^1/ \to S^1$

Aналогично $T^2 = \mathbb{R}^2/$

Пример 11.4. $X = [0,1] \subset \mathbb{R}$, если $x \ y = y - x \in \mathbb{Q}$

Задача 11.2. Доказать, что пространство X/ не хаусдорфовою.

Как понять, что $f: X/ \to Y$ непрерывно?

$$\widetilde{f}(x) = f(\pi(x))$$

Теорема 11.2. f непрерывно тогда и только тогда, когда \widetilde{f} - непрерывна

Доказательство. (\Leftarrow): Пусть \widetilde{f} - непрерывна, тогда $\widetilde{f}^{-1}(U)$ - открыто в X. Из коммутативности диаграммы(формулы выше), следует, что $\pi^{-1}(f^{-1}(U))$ открыто в X. Необходимо доказать, что $V=f^{-1}(U)$ открыто в Y, оно открыто в силу определения фактор топологии.

 (\Rightarrow) : композиция непрерывных.

11.3 Склейка пространств

Рассматриваем $X \mid Y \mid X_0 \in X, y_0 \in Y$.

Определение 11.2. Букет: $X | |Y/x_0| y_0$

Циллиндр: $X \times I$, где I - отрезок.

Kohyc: Cone(X) - стягиваем основание конуса.

Надстройкка: ???

11.4 Одноточечная компактификация

Определение 11.3. Компактификация пространства X = вложение $i \ X$ в CX, где CX - компакт, u топология X индуцирована вложением i.

Определение 11.4 (отдноточечтная компактификация Александрова, введена в 1924 году). *Пусть* $CX = X \bigsqcup N$, где N - точка, со следующей топологией.

$$\tau_{CX} = \begin{cases} U \subset X - \textit{открыто} \\ W = V \bigsqcup N, V \subset X, V = X \setminus K, K - \textit{замкнуто компактно} \end{cases}$$

Следующее утверждение не дописано.

Теорема 11.3. *CX с определенной топологией явялется компактным пространством.*

Доказательство. Рассмотрим K - компакт. Пусть $\widetilde{U}_{\alpha} = \left\{ U_{\tilde{\alpha}}, W_{\tilde{\beta}} \right\}$ - покрытие CX, в это покрытие точно входит одно $W_{\beta_0} = V_{\beta_0} \bigsqcup N$. $V_{\beta_0} = X \setminus K_{\beta_0}$ - дополнение к компакту.

12 Лекция 12

13 Лекция 13

13.1 Фундаментальная группа

Пусть X - топологическое пространство, выберем в нем две точки x_0, x_1 . Рассмотрим множество путей из x_0 в x_1 .

Определение 13.1. Пусть - непрерывное отображение $\gamma : [0,1] \to X$.

Определение 13.2 (гомотопия путей - связная гомотопия). Гомотопия, сохраняющее точки на граница отрезка, для отображений - $\gamma_0, \gamma_1 : [0,1] \to X, \gamma_i(0) = x_0, \gamma_i(1) = x_1$.

Определение 13.3. Пространство путей из x_0 в $x_1 = \{\gamma: [0,1] \to X: \ \gamma(0) = x_0, \gamma(1) = x_1\}$. Обозначается $\Omega(x_0,x_1)$.

Замечание 13.1. Отношение гомотопности - отношение эквивалентности.

Определение 13.4. $\pi^x(x_0,x_1) = \Omega(x_0,x_1) /_{\sim}$ - множество гомотопических классов путей

Умножение путей. Можем умножать пути, у которых начало первого и нонец второго совпадают, т.е $\gamma_1(1) = \gamma_2(0)$, где γ_1 - путь от x_0 до x_1 , γ_2 - путь от x_1 до x_2 .

$$\gamma_1 \gamma_2 = \begin{cases} \gamma_1(2t), & 0 \le t \le \frac{1}{2} \\ \gamma_2(2t-1), & \frac{1}{2} < t \le 1 \end{cases}$$
 (3)

Видно, что операция не ассоциативна, но $\gamma_1(\gamma_2\gamma_3) \sim (\gamma_1\gamma_2)\gamma_3$. Докажем это.

Доказательство. Построим гомотопию.

$$H(t,s) = \begin{cases} \gamma_1(\frac{4}{s+1}t) & 0 \le t < t_1 = \frac{s+1}{4} \\ \gamma_2(4t - 4t_1) & t_1 \le t < t_2 = \frac{s+2}{4} \\ \gamma_3(???) & t_2 \le t \le 1 \end{cases}$$
(4)

Таким образом умножение путей ассоциативно с точностью до гомотопии.

Определение 13.5. Петля с фиксированный началом = замкнутый путь, т.е. $\gamma(0) = \gamma(1) = x_0 \in X$.

Определение 13.6. Рассмотрим $\Omega(x_0,x_0)/_{\sim}$ с операцией умножения путей. Это фундаментальная группа, обозначается $\pi_1(X,x_0)$

Замечание 13.2. Умножение классов эквивалентности $[\gamma_1][\gamma_2] = [\gamma_1 \gamma_2].$

Теорема 13.1. Это действительно группа.

Доказательство. Проверим корректность. Пусть $\gamma_i, \gamma_i' \in [\gamma_i]$, необходимо доказать, что $[\gamma_1][\gamma_2] = [\gamma_1'][\gamma_2']$ - очевидно. Ассоциативность уже доказана.

Существование нейтрального элемента $e = [\gamma : [0, 1] \to x_0]$

Обратный элемент $[\gamma]^{-1} = [\gamma(1-t)]$

Зависимость π_1 от начальной точки. Выберем две различные точки в пространстве X - x_0 и x_1 . И между этими точками существует путь $\tilde{\gamma}$.

Петле(классу гомотопической эквивалентности) из $[\gamma] \in \Omega(x_0) / \sim$ сопоставляем путь $[\tilde{\gamma}\gamma\tilde{\gamma}^{-1}]$, т.е. мы задали отображнение из $\pi_1(X,x_1)$ в $\pi_1(X,x_2)$, обозначим его $[\gamma]^*$.

Утверждение 13.2. $[\gamma]^*$ изоморфизм групп

Доказательство. Очевидно.

Tаким образом, если X - линейно связно, то фундаментальная группа не зависит от выбора точки.

Определение 13.7. Если фундаментальная группа тривиально, то пространство называется односвязным.

14 Лекция 14

Замечание 14.1. Даты досрочного экзамена: 16, 17. email: dmitry.millionschikov@math.msu.ru

Определение 14.1. Пространство X называется односвязным, если любые два пути c общими началамии концом гомотопны (гомотопия связанная).

Теорема 14.1. Если X линейное свзяное, то X односвязно тогда и только тогда, когда $\pi_1(x) = \{0\}$

Доказательство. (\Rightarrow :) Пусть $gamma_1$ - петля с началом в точек x_0 . $\gamma_0 = \{\gamma_1(t) = x_0 \forall t\}$. В силу односвязности $\gamma_1 \sim \gamma_0 = const$, следовательно тривиальная $\pi_1(X, x_0) \simeq \pi_1(X)$;

 $(\Leftarrow:)$ Петля $\gamma_0 \gamma_1^{-1}$ с началом в точке x_0 и $\pi_1(X, x_0) = \{0\}$, следовательно $\gamma_0 \gamma^P - 1_1 \sim const(x_0) = \{0\}$

$$\gamma_1 \sim (\gamma_0 \gamma_1^{-1}) \gamma_1 \sim \gamma_0 (\gamma_1^{-1} \gamma_1) \sim \gamma_0$$

18

14.1 Накрытие

Пусть $p: \tilde{X} \to X$ - непрерывное отображение между двумя линейно связными пространствами.

Определение 14.2. p - накрытие, если для $x \in X$ существует окрестность U = U(x) и $p^{-1}(U) = \bigsqcup_{i \in D \subset \mathbb{N}} V_i$, где $p : V_i \to U$ - сужжение p на V_i - гомеоморфизм.

Пример 14.1. $\tilde{X} = X \times \mathbb{N} \to X$ - тривиальный пример.

Пример 14.2. $\tilde{X} = \mathbb{R} \to X = S^q \subset \mathbb{R}^2$, $z \partial e \ p(t) = (\cos t, \sin t)$, m.e. $t \mapsto e^{2\pi i t}$

Пример 14.3. Пусть \tilde{X}, X - две окружености. $p(z) = z^n$

Пример 14.4. $\mathbb{R} \times \mathbb{R} \to S^1 \times S^1$, $p = (p_{onp}, p_{onp})$

Пример 14.5. $\tilde{X} = S^2 \to \mathbb{R}P^2$ - отождествялем противоположные относительно центра точки.

Лемма 14.2 (Лебега). Пусть X - компактное метрическое пространство c метрикой ρ , $\{U_{\alpha}\}$ - покрытие, тогда существует r > 0 (число Лебега покрытия) такое, что любой шар $O_r(x) \subset U_{\tilde{\alpha}}$ для некоторого $\tilde{\alpha}$

Доказательство. Т.к. есть покрытие у пространства X, то у каждой точки $x \in X$ существует r_x такой, что $O_{r_x} \subset U_i$ для некоторого i.

Утверждение 14.3. $\{O_{\frac{1}{2}r_x}(x)\}$ - покрытие X.

Т.к. $\{O_{\frac{1}{2}r_x}(x)\}$ - компакт, то будет существовать конечное подпокрытие.

Определим Лебегово число $\tilde{r} = \min_i \frac{1}{2} r_{x_i}$

Сдвинем шар так, чтобы выполнялось $y \in O_{\frac{1}{2}r_{x_i}}(x_i) \Leftrightarrow x_i \in O_{\frac{1}{2}r_{x_i}}(y)$

$$O_r(y)\subset O_{\frac{1}{2}r_{x_i}}(y)\subset O_{\frac{1}{2}r_{x_i}}(x_i)\subset U_{\tilde{\alpha}}$$

Теорема 14.4 (Следствие). $f: X \to Y, X$ - компакт в метрическом пространстве, Y. Если $\{U_{\alpha}\}$ - покрытие Y существует r > 0 такое, что любой шар $O_r(x) \subset U_{\alpha}$.

Теорема 14.5 (о накрывающем пути). $p: \tilde{X} \to X$ - накрытие. $\gamma: I \to X$ - непрерывный путь, $\gamma(0) = x_0 \in X$, $\tilde{x}_0 \in p^{-1}(x_0)$. Тогда существует единственное $\tilde{\gamma}$ такое, что $p\tilde{\gamma} = \gamma$

Доказательство. Будет потом. Докажем единственность.

Утверждение 14.6. Накрывающий путь единств.

Утверждение 14.7. $f_0, f_1: Y \to \tilde{X}, Y$ - связное, $p: \tilde{X} \to X$ - накрытие, $pf_0 = pf_1$. Тогда $Y' = \{y \in Y: f_0(y) = f_1(y)\}$. Тогда из связности Y следует, что Y' = Y или $Y' = \emptyset$.

Задача 14.1. Доказать утверждения выше.

Теорема 14.8 (о накрывающей гомотопии).

15 Лекция 15

Все пространства хаусдорфовы.

Определение 15.1. Функция $k(x) = 0 \cup \mathbb{N} \cup \{+\infty\}$ - число $p^{-1}(x)$, число прообразов. - число листов накрытия.

Задача 15.1. Из определения k следует, что это локально постоянная функция.

Задача 15.2. X - связно, $k(x), X \to D$ - локально постоянно, тогда k(x) = const.

Определение 15.2 (топологическое действие). Дополнительное требуем, что бы при фиксированном элементы группы отображения было гомеоморфизмом.

Определение 15.3. Вполне разрываное действие - дейстиве такое, что для каждой точки $x \in X$ существует окрестность U(x), такая что, при действиее $gU \cup g'U = \emptyset$ при $g \neq g'$.

Теорема 15.1. Пусть \tilde{X} - связное, локальное линейное свзяное(из этого следуте, что оно линейное связное), \tilde{X} - односвязное. На \tilde{X} действует свободное и вполне разрывано действует дискретное не более, чем счетная группа Γ .

Тогда
$$p: \tilde{X} \to \tilde{X}_{\Gamma}$$
 - накрытие и $\Gamma \cong \pi_1(\tilde{X}_{\Gamma})$

Доказательство. $p: \tilde{X} \to \tilde{X}_{\Gamma}$ - факторпространство или пространство орбит. Пусть $U \subset \tilde{U}$. Рассмотрим p(U) - почему открыто?

$$p^{-1}(p(U)) = \bigcup_{g \in \Gamma} gU$$

- оно открыто, т.о. отображение p - открытое.

Надо доказать, что ограничение p на произвольный лист gU - это $gU \to p(U)$ - биекция. Нужно вязть u такоим образом, что $gU \cap g'U = \emptyset$. Пусть $y_1, y_2 \in gU$ и $p(gy_1) = p(gy_2)$. Второе $\Leftrightarrow gy_1 \sim gy_2 \Leftrightarrow$ существует $g' \in \Gamma gy_1 = g'(gy_2) = (g'g)y_2$, тогда $gU = g'gU \neq \emptyset$ - противоречие, следовательно $g' = e \in \Gamma$.

Остается доказать, что обратное тоже непрерывно. - самостоятельно.

Докажем изоморфизм групп. Построи отображение $\psi:\Gamma \to \pi_1(\tilde{X}_{\Gamma})$

$$g \in \Gamma \longmapsto [\gamma_q????????]$$

Остается проверить, что это гомоморфизм.

Определение 15.4. Накрытие называется называется универсальным, если \tilde{X} - односвязно.

Действие непрерывных отображений на π_1 . f - непрерывное отображение - индуцирует $f_*: \pi(X, x_0) \to \pi_1(y, f(x_0))$, $g_*: \pi(Y, f(x_0)) \to \pi_1(Z, z_0)$, тогда $(gf)_* = g_*f_*$

Задача 15.3. $z:X \to A$ - ретракция, i - вложение A в X, тогда $ri=\mathrm{id}_A,\ r^*i^*=\mathrm{id}_{*A}$

Задача 15.4. $\pi_1(X) \cong \pi_1(Y)$, тогда они гомотопически эквивалентны.

Теорема 15.2 (Брауэр). $f: D^2 \to D^2$ - непрерывное отображение, то существует неподвижная точка.