Домашнее задание 13. Проблемы разрешимости. R-Вычислимость.

$$(30$$
 ноября $ightarrow$ 7 декабря)

Говорят, что $A\subseteq \mathbb{N}$ *т*-сводится к $B\subseteq \mathbb{N}$ (символически, $A\leq_m B$), если $A=f^{-1}(B)$ для некоторой рекурсивной функции f.

Язык программирования <math>R: программа представляет из себя список команд, пронумерованных от 0 до N. Также есть счётный набор переменных r_0, r_1, r_2, \ldots

Команды выполняются последовательно. Каждая команда — оператор присвоения или условный оператор.

(*) Оператор присвоения имеет один из трёх видов:

$$r_n \coloneqq 0, \quad r_n \coloneqq r_n + 1, \quad r_n \coloneqq r_m.$$

(*) Условный оператор имеет вид $r_n = r_m \implies k$, где k — номер команды, к которому переходит программа, если условие выполнилось.

Программа останавливается, если была выполнена последняя команда или условный оператор отправил нас в команду, номер которой больше N. Программа вычисляет функцию $\varphi(x_0, \ldots, x_n)$ от n+1 переменной, если перед началом её работы

$$r_i = x_i; \quad r_{n+1}, r_{n+2}, \dots = 0,$$

а после окончания r_0 (или, если вам угодно, r_{n+1}) равно $\varphi(x_0,\ldots,x_n)$.

- 1 а) Докажите, что отношение m-сводимости рефлексивно и транзитивно, а фактормножество по индуцированному им отношению эквивалентности \equiv_m континуально.
 - (б) Докажите, что если $A \leq_m B$ и B рекурсивно, то A также рекурсивно.
 - (в) Докажите, что множество всех натуральных чисел не определимо в поле вещественных чисел, а также в поле комплексных чисел.
- 2) Выясните, какие соотношения по m-сводимости существуют между следующими множествами предложений (точнее, между соответствующими множествами кодов): $Th(\mathbb{N})$, $Th(\mathbb{Z})$, $Th(\mathbb{Q})$, $Th(\mathbb{R})$, $Th(\mathbb{C})$, арифметика Пеано. Все указанные теории рассматриваются в сигнатуре $\sigma = \{=, +, \cdot, 0, 1\}$.
- 3) Докажите, что существуют программы на R, вычисляющие следующие функции: постоянные функции, I_k^n , +, χ_{\leq} , $max\{x,y\}$, ·, x^y , x!.
- 4) Докажите, что минимизация; суперпозиция функций, для которых есть программы на R, имеют программы на R.
- 5) Докажите, что любая программа на R может быть представлена λ -термом.