# FILE SYSTEMS BLOCK MANAGEMENT

Module Number 4. Section 4
COP4600 – Operating Systems
Richard Newman

### FILE SYSTEMS TOPICS

- Introduction
- Directories
- File Allocation
- Block Management
- File System Reliability
- File System Optimization

### **BLOCKS**

- Effect of block size on performance
- Effect of block size on maximum file, partition size
- Keeping track of free blocks
  - Reliability/consistency
  - Allocation by zones
- Block cache
- Chunked reads

#### **BLOCK SIZE**



Figure 5-17. The solid curve (left-hand scale) gives the data rate of a disk. The dashed curve (right-hand scale) gives the disk space efficiency. All files are 2 KB.

# **BLOCK SIZE (2)**

| Length | VU 1984 | VU 2005 | Web   | Length | VU 1984 | VU 2005 | Web    |
|--------|---------|---------|-------|--------|---------|---------|--------|
| 1      | 1.79    | 1.38    | 6.67  | 16 KB  | 92.53   | 78.92   | 86.79  |
| 2      | 1.88    | 1.53    | 7.67  | 32 KB  | 97.21   | 85.87   | 91.65  |
| 4      | 2.01    | 1.65    | 8.33  | 64 KB  | 99.18   | 90.84   | 94.80  |
| 8      | 2.31    | 1.80    | 11.30 | 128 KB | 99.84   | 93.73   | 96.93  |
| 16     | 3.32    | 2.15    | 11.46 | 256 KB | 99.96   | 96.12   | 98.48  |
| 32     | 5.13    | 3.15    | 12.33 | 512 KB | 100.00  | 97.73   | 98.99  |
| 64     | 8.71    | 4.98    | 26.10 | 1 MB   | 100.00  | 98.87   | 99.62  |
| 128    | 14.73   | 8.03    | 28.49 | 2 MB   | 100.00  | 99.44   | 99.80  |
| 256    | 23.09   | 13.29   | 32.10 | 4 MB   | 100.00  | 99.71   | 99.87  |
| 512    | 34.44   | 20.62   | 39.94 | 8 MB   | 100.00  | 99.86   | 99.94  |
| 1 KB   | 48.05   | 30.91   | 47.82 | 16 MB  | 100.00  | 99.94   | 99.97  |
| 2 KB   | 60.87   | 46.09   | 59.44 | 32 MB  | 100.00  | 99.97   | 99.99  |
| 4 KB   | 75.31   | 59.13   | 70.64 | 64 MB  | 100.00  | 99.99   | 99.99  |
| 8 KB   | 84.97   | 69.96   | 79.69 | 128 MB | 100.00  | 99.99   | 100.00 |

Percentage of files smaller than a given size

### BLOCK SIZE (3)



Approximate disk space utilization (due to internal fragmentation) as function of block size for VU 2005 file size distribution

# **BLOCK SIZE (4)**



Data rate (MBps) as function of block size for Seagate 2TB HDD (7200 RPM rotation speed, 63 sectors/track, 8.5 ms mean seek)

# **BLOCK SIZE (4)**

#### 2013 study (Welch & Noer):

- •25-90% of files are < 65KB in size
- •But these only account for 3% on average (5-15% extreme) of total file space used....
- •Average lengths ran from 75KB to over 16 GB for the installations studied, typical was a few MB average.
- •Maximum file sizes ran 13 MB to 85 TB.
- •They suggest using Solid State Drive (SSD) for small files and HDD for large files....

#### THE MS-DOS FILE SYSTEM

| Block size | FAT-12 | FAT-16  | FAT-32 |
|------------|--------|---------|--------|
| 0.5 KB     | 2 MB   |         |        |
| 1 KB       | 4 MB   |         |        |
| 2 KB       | 8 MB   | 128 MB  |        |
| 4 KB       | 16 MB  | 256 MB  | 1 TB   |
| 8 KB       |        | 512 MB  | 2 TB   |
| 16 KB      |        | 1024 MB | 2 TB   |
| 32 KB      |        | 2048 MB | 2 TB   |

Figure 4-31. Maximum partition size for different block sizes. The empty boxes represent forbidden combinations.

#### **KEEPING TRACK OF FREE BLOCKS**



Figure 5-18. (a) Storing the free list on a linked list. (b) A bitmap.

# **KEEPING TRACK OF FREE BLOCKS (2)**



- (a) An almost-full block of pointers to free disk blocks in memory and three blocks of pointers on disk.
- (b) Result of freeing a three-block file. (c) An alternative strategy. Why (c)?

Hint: Think about allocating a three-block file, then freeing it, repeatedly.

#### FILE SYSTEM CONSISTENCY



Can also have block listed as in-use and free! (c)<->(d)

Figure 5-19. File system states. (a) Consistent. (b) Missing block.

(c) Duplicate block in free list. (d) Duplicate data block.

How to generate these lists?

How are (b) and (c) even possible? How to fix?

#### **BLOCK MANAGEMENT**

| Procedure    | Function                                           |  |  |
|--------------|----------------------------------------------------|--|--|
| get_block    | Fetch a block for reading or writing               |  |  |
| put_block    | Return a block previously requested with get_block |  |  |
| alloc_zone   | Allocate a new zone (to make a file longer)        |  |  |
| free_zone    | Release a zone (when a file is removed)            |  |  |
| rw_block     | Transfer a block between disk and cache            |  |  |
| invalidate   | Purge all the cache blocks for some device         |  |  |
| flushall     | Flush all dirty blocks for one device              |  |  |
| rw_scattered | Read or write scattered data from or to a device   |  |  |
| rm_lru       | Remove a block from its LRU chain                  |  |  |

Figure 5-40. Procedures used for block management.

Blocks are used for disk access, but zones are used for allocation.

#### WRITING A FILE



Figure 5-47. (a) - (f) The successive allocation of I-KB blocks with a 2-KB zone.

### THE BLOCK CACHE



Figure 5-37. The linked lists used by the block cache.

#### **BLOCK CACHE REPLACEMENT POLICY**

- Some blocks rarely referenced two times within a short interval.
- Leads to a modified LRU scheme, taking two factors into account:
  - 1. Is the block likely to be needed again soon?
  - 2. Is the block essential to the consistency of the file system?

#### THE BLOCK CACHE



Figure 5-37. The linked lists used by the block cache.

# INITIALIZATION OF THE FILE SYSTEM

(1)



Figure 5-44. Block cache initialization.

(a) Before any buffers have been used.

### INITIALIZATION OF THE FILE SYSTEM

**(2)** 



Figure 5-44. Block cache initialization.

(b) After one block (that hashes to k) has been requested.

### INITIALIZATION OF THE FILE SYSTEM

(3)



Figure 5-44. Block cache initialization.

(c) After the block has been released.

#### **CHUNKED ACCESSES**



Figure 5-45. Three toy examples of how the first chunk size is determined for a 10-byte file. The block size is 8 bytes, and the number of bytes requested is 6. The chunk is shown shaded. A chunk will never exceed the current request, straddle a block boundary or pass the end of the file. An operation on a chunk can be handled with one block access.

#### **SUMMARY**

- Tradeoffs of block size on performance
  - Bigger = faster transfer rate per byte transferred
  - -Smaller = more precise, less waste
- Effect of block size on maximum file, partition size
- Keeping track of free blocks
  - Reliability/consistency
  - Allocation: zones vs. blocks vs. sectors
- Block cache
  - Another place where block size matters!
- Chunked access
  - Block boundary effects