SUMMING ARITHMETIC SERIES

STUDENT RESOURCE

- Consider 1 + 2 + 3 + ... + 98 + 99 + 100
 What is the sum of all the integers from 1 to 100?
 Try to find a quick way to do this.
- Now find the sum of all the integers from 1 to 1000, which can be written as $\sum_{i=1}^{1000} r$
- Explain why $\sum_{1}^{1000} r$ is **NOT** equal to $10\sum_{1}^{100} r$
- Find a formula for $\sum_{1}^{n} r$ and show that it works for $\sum_{1}^{100} r$ and $\sum_{1}^{1000} r$
- Adapt the method and formula you have developed so far to calculate

- Consider a general arithmetic series, whose first term is \boldsymbol{a} and which increases in steps of \boldsymbol{d} .

 Write down the first three terms of the series and also the $\boldsymbol{n}^{\text{th}}$ term.
- Find a formula for the sum of this general arithmetic series and check that it works for the examples above.