$N(2100) 1/2^{+}$

 $I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$ Status: *

OMITTED FROM SUMMARY TABLE

N(2100) POLE POSITION

REAL PART

<i>VALUE</i> (MeV)	DOCUMENT ID	DOCUMENT ID		COMMENT
2120 ± 25	SOKHOYAN	15A	DPWA	Multichannel
2052± 6±3	¹ SVARC	14	L+P	$\pi N \rightarrow \pi N$
2120 ± 40	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
ullet $ullet$ We do not use the followi	ng data for average	s, fits,	limits, e	tc. • • •
2120 ± 47	BATINIC	10	DPWA	$\pi N \rightarrow N \pi, N \eta$
1810	VRANA	00	DPWA	Multichannel
-2×IMAGINARY PART VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
	SOKHOYAN			<u>COMMENT</u> Multichannel
VALUE (MeV)		15A 14	DPWA	
<u>VALUE</u> (MeV) 290 ± 30	SOKHOYAN	14	DPWA L+P	Multichannel
<u>VALUE (MeV)</u> 290 ± 30 337 ± 10 ± 4	SOKHOYAN 1 SVARC CUTKOSKY	14 80	DPWA L+P IPWA	$\begin{array}{ll} Multichannel \\ \pi N \to \pi N \\ \pi N \to \pi N \end{array}$
VALUE (MeV) 290±30 337±10±4 240±80	SOKHOYAN 1 SVARC CUTKOSKY	14 80	DPWA L+P IPWA limits, e	$\begin{array}{ll} Multichannel \\ \pi N \to \pi N \\ \pi N \to \pi N \end{array}$

N(2100) ELASTIC POLE RESIDUE

MODULUS |r|

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
23±5	SOKHOYAN	15A	DPWA	Multichannel
$30 \pm 1 \pm 1$	¹ SVARC	14	L+P	$\pi N \rightarrow \pi N$
14 ± 7	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the following	data for averages	s, fits,	limits, e	etc. • • •
33	BATINIC	10	DPWA	$\pi N \rightarrow N\pi. Nn$

PHASE θ

VALUE (°)	DOCUMENT ID		TECN	COMMENT
-70 ± 25	SOKHOYAN	15A	DPWA	Multichannel
$-92\pm \ 3\pm 2$	¹ SVARC	14	L+P	$\pi N \rightarrow \pi N$
35 ± 25	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
ullet $ullet$ We do not use the following	data for averages	s, fits,	limits, e	etc. • • •
-59	BATINIC	10	DPWA	$\pi N \rightarrow N \pi, N \eta$

N(2100) INELASTIC POLE RESIDUE

Normalized residue in $N\pi \to N(2100) \to \Delta(1232)\pi$

MODULUS	PHASE (°)	DOCUMENT ID	TECN	COMMENT
0.11 ± 0.05	20 ± 60	SOKHOYAN 15/	DPWA	Multichannel

Normalized residue in $N\pi \rightarrow N(2100) \rightarrow N\sigma$

MODULUS	PHASE (°)	DOCUMENT ID	TECN	COMMENT
0.18 ± 0.06	125 ± 25	SOKHOYAN 15A	DPWA	Multichannel

Normalized residue in $N\pi \to N(2100) \to N(1535)\pi$

MODULUS	PHASE (°)	DOCUMENT ID	TECN	COMMENT
0.22 ± 0.06	-40 ± 25	SOKHOYAN	15A DPWA	Multichannel

N(2100) BREIT-WIGNER MASS

VALUE (MeV)	DOCUMENT ID	DOCUMENT ID		COMMENT
≈ 2100 OUR ESTIMATE				
2115 ± 20	SOKHOYAN	15A	DPWA	Multichannel
2125 ± 75	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
2050 ± 20	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the following	g data for average	s, fits,	limits, e	etc. • • •
2157 ± 42	BATINIC	10	DPWA	π N \rightarrow N π , N η
3^{+15}_{-40}	ABLIKIM	06K	BES2	$J/\psi ightarrow (p\pi^-)\overline{n}$
2084 ± 93	VRANA	00	DPWA	Multichannel

N(2100) BREIT-WIGNER WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
290± 20	SOKHOYAN	15A	DPWA	Multichannel
260 ± 100	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
200 ± 30	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the following of	data for averages	s, fits,	limits, e	etc. • • •
355± 88	BATINIC	10	DPWA	$\pi N \rightarrow N \pi, N \eta$
$165 \pm 14 \pm 40$	ABLIKIM	06K	BES2	$J/\psi \rightarrow (p\pi^-)\overline{n}$
1077 ± 643	VRANA	00	DPWA	Multichannel

N(2100) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
$\overline{\Gamma_1}$	$N\pi$	8–18 %
Γ_2	$N\eta$	seen
Γ_3	N ω	
Γ_4	ΛK	seen
Γ_5	$N\pi\pi$	20–40 %
Γ_6	$\Delta(1232)\pi$	
Γ_7	$arDelta(1232)\pi$, $ extit{\it P} ext{-}$ wave	6–14 %
Γ ₈	N ho	
Γ_9	$N\rho$, $S=1/2$, P -wave	seen
Γ_{10}	$N\sigma$	14–26 %
Γ_{11}	$N(1535)\pi$	26–34 %
Γ ₁₂	$N\gamma$, helicity=1/2	0.001-0.012 %

N(2100) BRANCHING RATIOS

$\Gamma(N\pi)/\Gamma_{ m total}$					Γ_1/Γ
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
16±5	SOKHOYAN	15A	DPWA	Multichannel	
12±3	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$	
10±4	HOEHLER	79		$\pi N \rightarrow \pi N$	
• • • We do not use the following of	lata for averages	s, fits,	limits, e	etc. • • •	
16 ± 5	BATINIC	10		$\pi N \rightarrow N\pi, N\eta$	
2 ± 5	VRANA	00	DPWA	Multichannel	
$\Gamma(N\eta)/\Gamma_{total}$					Γ_2/Γ
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
• • • We do not use the following of	lata for averages	, fits,	limits, e	etc. • • •	
83± 5	BATINIC	10	DPWA	$\pi N \rightarrow N\pi, N\eta$	
$61\!\pm\!61$	VRANA	00		Multichannel	
=(a,) /=					- /-
$\Gamma(N\omega)/\Gamma_{total}$					Γ_3/Γ
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
15 ± 10	DENISENKO	16	DPWA	Multichannel	
$\Gamma(\Lambda K)/\Gamma_{\text{total}}$					Γ4/Γ
VALUE (%)	DOCUMENT ID		TECN	COMMENT	14/1
	•	f:+c			
• • We do not use the following of	_				
21 ± 20	VRANA	00	DPWA	Multichannel	
$\Gamma(\Delta(1232)\pi$, <i>P</i> -wave $)/\Gamma_{ ext{total}}$					Γ_7/Γ
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
10±4	SOKHOYAN			Multichannel	
• • • We do not use the following of	lata for averages	s, fits,	limits, e	etc. • • •	
2 ± 1	VRANA	00	DPWA	Multichannel	
$\Gamma(N\rho, S=1/2, P-wave)/\Gamma_{total}$					Г9/Г
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
• • • We do not use the following of	lata for averages	, fits,	limits, e	etc. • • •	
4 ± 1	VRANA	00	DPWA	Multichannel	
$\Gamma(N\sigma)/\Gamma_{ m total}$					Γ ₁₀ /Γ
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
20 ± 6	SOKHOYAN	15A	DPWA	Multichannel	
• • • We do not use the following of	lata for averages	s, fits,	limits, e	etc. • • •	
10 ± 1	VRANA	00	DPWA	Multichannel	
$\Gamma(N(1535)\pi)/\Gamma_{\text{total}}$					Г ₁₁ /Г
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
30±4	SOKHOYAN	15 A	DPWA	Multichannel	

N(2100) PHOTON DECAY AMPLITUDES AT THE POLE

$N(2100) \rightarrow p\gamma$, helicity-1/2 amplitude A_{1/2}

$MODULUS (GeV^{-1/2})$	PHASE (°)	DOCUMENT ID		TECN	COMMENT
$0.011\!\pm\!0.004$	65 ± 30	SOKHOYAN	15A	DPWA	Multichannel

N(2100) BREIT-WIGNER PHOTON DECAY AMPLITUDES

$N(2100) ightarrow p \gamma$, helicity-1/2 amplitude $A_{1/2}$

$VALUE (GeV^{-1/2})$	DOCUMENT ID		TECN	COMMENT
0.010 ± 0.004	SOKHOYAN	15A	DPWA	Multichannel

N(2100) FOOTNOTES

N(2100) REFERENCES

DENISENKO SOKHOYAN	16 15A	PL B755 97 EPJ A51 95		CBELSA/TAPS Collab.)
SVARC	14	PR C89 045205	A. Svarc <i>et al.</i>	
BATINIC	10	PR C82 038203	M. Batinic <i>et al.</i>	(ZAGR)
ABLIKIM	06K	PRL 97 062001	M. Ablikim <i>et al.</i>	(BES II Collab.)
VRANA	00	PRPL 328 181	T.P. Vrana, S.A. Dytman, TS.H.	Lee (PITT, ANL)
CUTKOSKY	80	Toronto Conf. 19	R.E. Cutkosky <i>et al.</i>	(CMU, LBL) IJP
Also		PR D20 2839	R.E. Cutkosky et al.	(CMU, LBL)
HOEHLER	79	PDAT 12-1	G. Hohler <i>et al.</i>	` (KARLT) IJP
Also		Toronto Conf. 3	R. Koch	(KARLT) IJP

 $^{^{1}\,\}mathrm{Fit}$ to the amplitudes of HOEHLER 79.