Zadanie 1. (6p) Określ liczbę rozwiązań układu w zależności od parametru k. Jeżeli układ ma nieskończenie wiele rozwiązań to określ od ilu parametrów zależą te rozwiązania i znajdź je.

$$\begin{cases} 2x + y + z - t = 4 \\ 5kz + k^2t = 0 \\ 3x - 2y + z - t = 5 \\ -x + z + t = -3 \end{cases}$$

Zadanie 2. (4p) Znajdź macierz X spełniającą równanie $\left(A + \frac{1}{4}X\right)^{-1} = 2B$, gdzie $A = \begin{bmatrix} 0 & 3 \\ 5 & -2 \end{bmatrix}$, $B = \begin{bmatrix} 4 & 3 \\ -2 & -1 \end{bmatrix}$

ZADANIE 3. (5p) Sprawdź, czy zbór $\mathbb{Z} \times \mathbb{Z}$ z działaniem \oplus , zefiniowanym poniżej, jest grupą abelową.

$$(a,b) \oplus (c,d) = (a+c+1,b+d-1)$$

ZADANIE 4. (5p) Znajdź \sqrt{z} wiedząc, że

$$z = \frac{(3 + i\sqrt{3})^{20}}{(-1 - i\sqrt{3})^8}$$

- ZADANIE 5. (5p) Znajdź równanie prostej l_1 leżącej na przecięciu płaszczyzn $\pi_1: x+y+z=3$ i $\pi_2: 4x-y+z+12=0$, a następnie zbadaj wzajemnie położenie prostych l_1 i $l_2: \frac{x}{2} = \frac{y+1}{3} = \frac{2-z}{5}$
- ZADANIE 6. (5p) Dane są trzy kolejne wierzchołki trapezu równoramiennego ABCD, gdzie \overline{BC} jest jego dłuższą podstawą, A(0,1,2), B(-1,-2,0), C(4,0,-1). Znajdź współrzędne wierzchołka D