

Redes de Computadores Pilha Protocolar TCP/IP: O nível de rede

Universidade do Minho Grupo de Comunicações por Computador Departamento de Informática

Universidade do Minho Escola de Engenharia Departamento de Informática

Introdução

- As tecnologias existentes de rede local (LAN) não são adequadas para satisfazer todos os requisitos de comunicações das aplicações.
- Nenhuma dessas tecnologias é totalmente escalável:
 - Os endereços não têm estrutura, resultando em dificuldade de administração e encaminhamento
 - Não há mecanismos de encaminhamento nos protocolos
 - Os PDUs têm comprimentos limitados;
 - Os métodos de controlo de acesso não suportam grandes distâncias

Questões:

Será que para existir um serviço de rede único e global (universal) é necessário adoptar a mesma tecnologia de rede em todos os locais?

Ou será possível oferecer serviços de conectividade universal mesmo adoptando diferentes tecnologias locais?

--> É possível a conectividade global entre redes com diferentes tecnologias locais introduzindo uma camada protocolar superior independente das mesmas:

A camada protocolar de rede, também chamada de interligação de redes ou de internetworking

O *internetworking* baseia-se na utilização de funcionalidades específicas de rede (realizadas tanto em *hardware* como em *software*) que proporcionam um serviço global de interligação de redes locais (LAN) heterogéneas:

- Software: protocolos de rede -internetworking
- Hardware: encaminhadores routers

Funções principais de um router

- 1 Escolha do melhor caminho (*routing*)
 - Consiste na construção da sua própria tabela de encaminhamento (routing table) que traduz o próximo salto do melhor caminho de um PDU para o seu destino
 - A tabela pode ser construída estática ou dinamicamente através de protocolos de encaminhamento executados entre routers

2 Entrega (*forwarding*)

 Consiste na consulta da tabela de encaminhamento para decidir para onde enviar os PDU recebidos, i.e., o próximo salto: endereço de entrega/interface de saída

Características de um router

- Opera ao nível da camada protocolar de rede
- Dispõe de múltiplas interfaces de rede
 - interliga diferentes redes IP e assegura a sua interconectividade
 - cada interface tem uma identificação (endereço) de rede distinta

Introdução

Características:

- Protocolos/tecnologias suportadas
- Capacidade de processamento
- Memória, buffers internos
- Técnicas de gestão dos buffers
- etc ...

Introdução

• Exemplo simplificado (router) com múltiplas filas de espera por interface:

Router

- Decidir como os pacotes são tratados internamente no equipamento
- Garantir que se processa x pacotes/tempo numa dada fila de espera
- etc ...

Arquitectura TCP/IP

Características da pilha TCP/IP

- Aberta
 - especificações publicadas e bem conhecidas
 - abertura completa ao desenvolvimento de código
- Portável
 - independência do sistema operativo e plataforma
 - quaisquer sistemas podem comunicar
- Estável e Robusta
 - normas testadas ao longo de cinco décadas e ainda em desenvolvimento e aperfeiçoamento
- Suporte global
 - incluída na globalidade dos sistemas de computação

Internetworking O modelo TCP/IP: IP e outros protocolos

Applicação TELNET FTP **SMTP DNS SNMP DHCP** HTTP Apresentação Sessão **RIP OSPF BGP Transmission User Datagram Transporte RTP SCTP RTCP Control Protocol Protocol DCCP IGMP ICMP Internet Protocol** Rede **ARP** Ligação **Token Ring Ethernet** Wi-Fi **FDDI Físico** 10 Universidade do Minho MIEI-RC

Internet Protocol - IP Introdução

- O objectivo primário do Internet Protocol (IP) é assegurar funções de internetworking
- No IP, datagrama é o termo normalmente utilizado para designar a unidade de dados de rede:

Datagrama: unidade de dados (pacote) que é encaminhada pela rede independentemente de outras que a precedam ou sucedam, não havendo garantia da sua entrega.

- O processo de entrega dos datagramas IP é baseado no endereço destino do datagrama e nas tabelas de routing presentes nos diversos hosts (e.g. routers, end systems)
- Versões: IPv4 (uso generalizado), IPv6 (migração progressiva)

Universidade do Minho Escola de Engenharia Departamento de Informática

Paradigma de comunicação

Função	Rede de <u>Datagramas</u>	Rede de <u>Circuitos</u> <u>Virtuais</u> (VC)	
Estabelecimento prévio da conexão (ou circuito)	Não é necessário	É necessário	
Endereçamento	Endereço de origem e destino em cada PDU	PDUs contêm o identificador do circuito	
Routing / Forwarding	PDUs são encaminhados de forma independente entre si	A rota é estabelecida inicialmente e todos os PDUs utilizam essa rota	
Informação de estado	não é necessária	necessária por VC	
Falha de um elemento de rede	não é normalmente problemática	todos os VC são terminados	
Controlo de tráfego e Controlo de congestão	difícil	fácil, se os recursos atribuídos são suficientes	

Internet Protocol - IP Principais funções

- O IP um protocolo de interligação não orientado à conexão Paradigma protocolar: melhor esforço (best effort):
 - --> o protocolo esforça-se por entregar os datagramas ao destino **mas não o garante** (datagramas podem perder-se, e não são retransmitidos pelo nível de rede)
- Principais funções:
 - Define uma unidade elementar para transferência de dados:
 o PDU ao nível IP é um datagrama IP.
 - Endereçamento, encaminhamento e fragmentação:
 - incorpora um esquema de endereçamento universal
 - inclui mecanismos para o **encaminhamento** de datagramas
 - a fragmentação de datagramas permite trânsito em qualquer LAN

Internet Protocol - IP Formato de um datagrama IPv4

Ethernet Data Field

17

DA

Formato do datagrama IPv6

Alteração do formato e composição do pacote IPv4

Tópicos gerais sobre IPv6

IPv6 - define novo formato de pacotes com introdução de novas funcionalidades na camada IP

- novos formatos de endereços
- espaço de endereçamento alargado e hierárquico
- diminuição do overhead de processamento
- melhor desempenho dos elementos de rede
- introdução de novas *opções IP* (usando *next header*)
- introdução de mecanismos de segurança a nível da camada de rede
- mecanismos para auto-configuração das interfaces

Formato do datagrama IPv6

Uso do campo *next header* para implementar opções específicas:

Exemplo de pacote IPv6 incluíndo múltiplos headers

- Um datagrama cujo comprimento exceda o MTU definido para a LAN/MAN, é dividido em datagramas mais curtos, chamados fragmentos, que serão reagrupados no destino de modo a reconstituirem o datagrama original
 - Os fragmentos são datagramas IP e são encaminhados na rede tal como qualquer outro datagrama IP
- MTU (Maximum Transfer Unit): número máximo de bytes aceites no campo de dados da trama (payload)
- A fragmentação não depende dos routers, mas sim das características das LAN/MAN ligadas às suas interfaces
- O processo de fragmentação pode ser recorrente ao longo do caminho entre uma origem e um destino IP.

Campos manipulados na fragmentação IPv4:

Universidade do Minho 22

Campos manipulados na fragmentação IPv4:

- *identification* identifica fragmentos pertencentes ao mesmo datagrama original
- more fragments flag que determina se o fragmento é o ultimo
- may fragment identificação da possibilidade ou não do datagrama ser fragmentado pela rede
- fragment offset offset dos dados do fragmento relativamente ao datagrama original

Em IPv6, por defeito, não está prevista fragmentação!

Exemplo de Fragmentação:

24

VERS	ERS HLEN Diff Serv Total Leng		otal Length		
	Identification			Fragment Offset	
Time to Live Protocol		Protocol	Header Checksum		
Source IP address					
Destination IP address					
IP Options (may be null)				Padding	
IP Datagram Data (up to 65,535 bytes)					

IPv4: 32-bit unsigned binary value

(em notação decimal - dot decimal notation)

• uma parte identifica a rede (ou subrede) e a outra identifica a interface da estação (host) nessa rede

<rede id><host id>

- na *Internet*, cada *endereço de rede* tem de ser único
- distribuídos originalmente por 5 classes (A a E)
- atribuídos pela IANA (Internet Assigned Number Authority)

Endereçamento por classes (ou Classful)

- esquema original, baseado na RFC 791
- usa os primeiros bits como identificadores de classe

Endereçamento sem classes (ou Classless)

- não considera os bits de classe; é utilizada uma máscara de 32 bits para determinar o endereço de rede
- permite routing mais eficiente por agregação de rotas, designado CIDR (Classless Internet Domain Routing)
- tabelas de encaminhamento mais pequenas: as rotas são agregadas por grupos de endereços adjacentes
- usado pelas tabelas de routing de ISPs

Endereçamento por classe

MIEI-RC

28

	entifica da clas		Parte o	do Endereço de Rede	Parte do Ende	ereço de Estação
asse	A					
0	7 bits	de en	d. de rede		24 bits de endereço	de estação
asse	В					
10	1-	4 bits	de endere	ço de rede	16 bits de endereço de estação	
asse	C					
110	0		21 bits de	endereço de rede		8 bits end. de estaçã
asse	D D					
11	1110 Endereços Multicast no intervalo 224.0.0.0 - 239.255.255.255					
asse	Ε					
11	11110 Classe E – Reservado para utilização futura					

Universidade do Minho

Universidade do Minho Escola de Engenharia Departamento de Informática

Endereçamento

Endereços IPv4 por classes

Classe	Α	В	С	D
(1° byte) redes	(1-126) * 126	(128-191) 16.382	(192-223) 2.097.150	
hosts/rede	(2 ²⁴ -2) 16.777.214	(2 ¹⁶ -2) 65.534	(2 ⁸ -2) 254	Grupo multicast (224.0.0.0- 239.255.255.255)
reservado	host a 0s ou 1s	host a 0s ou 1s	host a 0s ou 1s	

* 127. - loopback

Ex: Classe A - 120.10.10.1 (rede 120.0.0.0; host 10.10.1)

Classe B - 130.100.80.1 (rede 130.100.0.0; host 80.1)

Classe C - 192.136.9.1 (rede 192.136.9.0; host 1)

Classe D - endereço IP para difusão em grupo limitada a hosts IP a ele associados

29

Endereços reservados:

- os primeiros 4 bits não podem ser 1 (classe E)
- 127.x.x.x é o endereço reservado para *loopback*
- bits de host a 0s ou 1s (qualquer host, todos os hosts)
- bits de rede / subrede a 0s ou 1s (qualquer rede, todas as redes)

Endereços privados: atribuídos para internets privadas (sem conectividade IP global, não devem ser visíveis nem são encaminhados na Internet) (ver RFC1918):

- bloco 192.168.0.0 192.168.255.255
- bloco 172.16.0.0 172.31.255.255
- bloco 10.0.0.0 10.255.255.255

Host com várias interfaces é designado de *multihomed*

Endereçamento: restrições

Endereços para configuração dinâmica do Link-Local:

- Está reservado o bloco 169.254 /16 para comunicação entre estações ligadas ao mesmo meio físico nas seguintes condições:
- Quando um interface não foi configurado com um endereço IP, nem manualmente nem por uma fonte na rede (ex: DHCP) a estação pode configurar automaticamente o interface com um endereço IPv4 de prefixo 169.254.0.0/16 (RFC 3927)
- Algoritmo:
 - 1. Gera um endereço aleatório uniformemente distribuído no intervalo [169.254.1.0 , 169.254.254.255]
 - 2. Envia ARP-request com endereço de destino igual ao gerado (probe)
 - 3. Se houver ARP-reply então repete 1. porque há colisão de endereço
 - 4. Senão anuncia endereço gerado através de um ARP-announcement

Máscara de endereço

Padrão que conjugado com o endereço IP devolve a parte do endereço de rede (ou sub-rede)

No endereçamento por classes as máscaras são:

notação decimal: 255.0.0.0 notação CIDR: /8

• Classe B: 1111111111111111100000000.00000000

notação decimal: 255.255.0.0 notação CIDR: /16

notação decimal: 255.255.255.0 notação CIDR: /24

No endereçamento **sem classes** as máscaras têm qualquer outro valor permitindo a criação de *subnets* (subredes) da classe original ou *supernets*.

Endereçamento sem classes e subnetting

Considere-se o endereço IP 130.1.5.1

• é o endereço da estação **5.1** da rede **130.1.0.0** (classe B) considerando máscara por defeito (default mask): 255.255.0.0 ou /16

Considere-se o endereço IP 130.1.5.1/24

- é o endereço da estação 1 da sub-rede 130.1.5.0
- o subnetting é definido no espaço host ID inicial
- <rede id><subrede id><host id>

8 bits para subnetting:

N° subredes: 28-2, N° hosts: 28-2

 Rede
 Estação

 130.1
 5.1

<u>Máscara de subrede</u> 255.255.255.0 Rede Subrede Estação
130.1 5 1

interpretação original por classe

interpretação sem classe (CIDR)

Considere-se o endereço IP 130.1.9.1/21

• é o endereço da estação 257 da sub-rede 130.1.8.0

10 0 0 0 0 1 0	0000001	Subrede 0 0 0 0 1 0 0 1	Estação 0 0 0 0 0 0 1
130	1	9	1

(máscara com 21 bits)

O endereço Lógico é: 111111111111111111111111000.00000000

Rede: 130.1.0.0 Máscara de Subnet 255.255.248.0

Subnet: 8 5 bits para subnetting:

Host: 257 No subredes: 25-2, No hosts: 211-2

Endereço de subnet classe B - 150.5.129.1 / 23 ID de Rede: 150.5.0.0; subnet 128

Subnet:7 bits

	10100000	00000101	10000001	0000001		
	ID da Red	e 150.5	D da Subnet 128	ID da estação 257		
Endereg	0 10100000	00000101	10000001	0000001		
Máscara	9 11111111	11111111	11111110	0000000		
	10100000	00000101	10000000	0000000		
Máscara: 255.255.254.0 ——→						

35

Exemplo de máscaras de rede + subrede em endereços de Classe B

11111111 11111111

255 255

Sub-redes (Subnetting)

- permite melhor organização e gestão dos endereços
- permite introduzir mais níveis hierárquicos para routing
- contudo reduz espaço de endereçamento (vários endereços passam a não utilizáveis)

Internet Protocol - IP Exemplo

Exercício:

 Definir um esquema de subnetting a partir do endereço privado 192.168.1.0/24 para permitir a existência de 3 subredes IP (com número mínimo de bits para a subnet mask). Indicar endereços de rede, subrede, hosts, máscaras de rede, subrede

Internet Protocol - IP Endereçamento

Múltiplas (sub)redes no mesmo interface

- Tanto os routers como as estações, possuem uma tabela de encaminhamento
- As entradas na tabela incluem:
 - 1ª coluna: Endereço da Rede de destino (mais máscara)
 - 2ª coluna: Endereço IP da interface de entrega (next hop)
 - N coluna: Identificador da interface de saída da máquina local
 - colunas opcionais: flags, tráfego no interface, custo, etc.
- A entrega (forwarding), ou salto (hop) seguinte de um datagrama IP, é decidida em função do endereço IP de destino do datagrama

Exemplo: tabela de encaminhamento da estação 192.110.1.240

> netstat -nr destination default 192.110.1.0		netmask 0.0.0.0 255.255.255.0	flags UG UH	use 102410 234576	interface tu0 tu0
			UG		
192.168.1.0	192.110.1.253	255.255.255.0		124586	tu0

Leitura da última linha:

Um datagrama destinado à rede 192.168.1.0 será entregue na interface de endereço 192.110.1.253 saindo pela interface local tu0

Qual a topologia de rede que se pode inferir da tabela?

Entrega (forwarding)

- É facilitada pelo endereçamento hierárquico
- O endereço IP é: a.b.c.d/m = X.Y (rede.estação)
 - 1) <u>usar</u> **máscara** para extrair o endereço de rede **X**
 - procurar entrada que melhor se ajuste a X
 <u>se</u> X é local, entregar no interface X.Y (entrega directa)
 <u>senão</u> usar X para determinar o próximo salto (next hop);
 - 3) A entrada por defeito (0.0.0.0/0) ajusta-se a todos os X

Internet Protocol - IP Supernetting

Tabela de encaminhamento de RTR1 - sem Supernetting

Destino	Próximo	Nó		Máscara	Interface
192.2.2.1		2.1		255.255.255.0	Eth1
192.1.1.0	192.1.1.1		255.255.255.0	Eth0	
192.200.4 (0000 0100).0	192.1.1	1.2		255.255.255.0	Eth0
192.200.5 (0000 0101).0	192.1.1	1.2		255.255.255.0	Eth0
192.200.6 (0000 0110).0	192.1.1	1.2		255.255.255.0	Eth0
192.200.7 (0000 0111).0	192.1.1	1.2		255.255.255.0	Eth0
Default	192.2.2	2.254		0.0.0.0	Eth1
192.200.4(0000 0100).	0	192.1.1.2	25	5.255.252 (1111110	0).0 E

Encaminhamento (routing):

- a) Estático baseado em rotas pré-definidas
 - as rotas permanecem fixas
 - reduz o tráfego na rede
 - esquema simples mas pouco flexível
- b) Dinâmico rotas actualizadas ao longo do tempo
 - os routers trocam informação de routing entre si
 - esta actualização dinâmica de rotas é obtida através de protocolos específicos de encaminhamento (routing):
 - RIP, OSPF, BGP, etc
 - grande flexibilidade e adaptação (automática) a falhas ou mudanças na configuração de rede
 - o tráfego de actualização pode causar sobrecarga na rede

- Caminho de defeito é a rota a seguir caso não exista uma entrada específica na tabela para a rede de destino
 - é um caso particular de encaminhamento estático
 - a rota por defeito tem prioridade inferior à das outras rotas
 - é identificado pelo termo default ou pela rede 0.0.0.0
 - permite reduzir a tabela de encaminhamento
- Os protocolos de encaminhamento modelam a rede como um gráfo e calculam o melhor caminho para um dado destino

- Computação dinâmica das rotas:
 - centralizada cada router, conhecendo a topologia da área, determina o melhor caminho para os possíveis destinos dessa área
 - distribuída cada router envia informação de encaminhamento que conhece aos routers seus vizinhos (redes a que dá acesso)
- Princípio utilizado
 - Vector Distância (Vector Distance)
 - e.g. Routing Information Protocol (RIP), IGRP
 - Estado das ligações (Link State)
 - e.g. Open Shortest Path First (OSPF)

Internet Protocol - IP

Universidade do Minho Escola de Engenharia Departamento de Informática

Exemplo: internet do laboratório

ROUTER-LAB> show ip route

Esquema ...

C 192.168.89.0/24 is directly connected, FastEthernet0/1 192.168.88.0/24 is subnetted, 3 subnets

C 192.168.88.64/26 is directly connected, FastEthernet0/0

C 192.168.88.128/26 is directly connected, Serial2/0

C 192.168.88.192/26 is directly connected, Serial2/1

C 192.168.91.0/24 is directly connected, FastEthernet2/0

C 192.168.90.0/24 is directly connected, FastEthernet2/1

B 193.136.20.0/24 via 192.168.88.65

S* 0.0.0.0/0 via 192.168.88.65

Codes: C - connected, S - static, B - BGP, * - candidate default

Internet Protocol - IP

Exemplo: internet do laboratório

ROUTER-EXT> show ip route

Esquema ...

B 192.168.89.0/24 via 192.168.88.66

192.168.88.0/24 is subnetted, 3 subnets

C 192.168.88.64/26 is directly connected, FastEthernet0/0

C 192.168.88.128/26 is directly connected, Serial0/0

C 192.168.88.192/26 is directly connected, Serial0/1

B 192.168.91.0/24 via 192.168.88.66

B 192.168.90.0/24 via 192.168.88.66

C 193.136.20.0/24 is directly connected, FastEthernet0/1

S* 0.0.0.0/0 193.136.20.254

Codes: C - connected, S - static, B - BGP, * - candidate default

Internet Protocol - IP

Internet Control Message Protocol

Funções do Internet Control Message Protocol

- reporta situações anómalas ocorridas no tratamento de datagramas IP
- usa encapsulamento IP
- em datagramas fragmentados, reage apenas ao primeiro fragmento
- não torna o IP fiável, apenas assinala erros
- o IP usa obrigatoriamente o ICMP

Internet Control Message Protocol

Mensagens ICMP

- echo request, echo reply
- destination unreachable (estação, rede, porta,...)
- redirect (redireccionamento por um melhor caminho)
- TTL exceeded of datagram lifetime (TTL atingiu 0)
- timestamp and reply (responde c/ estampilha temporal)
- parameter unintelligible
- address mask request and reply
- router advertisement and solicitation
- information request and reply

•

Internet Control Message Protocol

PDU

Tipo (8) Código (8)

Verificação de paridade (16)

Enventuais dados ICMP

Universidade do Minho Escola de Engenharia Departamento de Informática

Internet Control Message Protocol

ARP

Protocolo de Resolução de Endereços (IP)

- ARP (Address Resolution Protocol) mapeia um endereço de rede no endereço MAC (48 bytes) que lhe corresponde.
- RFC 826: An Ethernet Address Resolution Protocol
- Operação:
 - local à LAN
 - não usa encapsulamento IP
 - o EtherType ARP é: 0x0806
 - ARP-PDUs: ARP Request e ARP Reply

ARP PDU

SA

TF

DA

Tipo de hardware 2 bytes Tipo de protocolo 2 Comp do endereço hardware Comp do endereço protocolar 1 + 1bytes Operação Endereço de Hardware da estação de origem (sender) 6 28 Endereço Protocolar da estação de origem (sender) 6 Endereço de Hardware da estação de destino (target) Endereço Protocolar da estação de destino (target)

> **DA - Destination Address** SA - Source Address TF - Type Field

Data

57 Universidade do Minho MIEI-RC

CRC

ARP Operação

1.Quem tem o endereço MAC da estação 129.1.1.4?

3. Aqui está o meu **Endereço MAC**

4.ARP Reply Aceite

Ignorado

2.ARP Request 2.ARP Request Ignorado

2.Sou eu

[Naugle98]

- ARP Request é enviado em broadcast
- ARP Reply é enviado em unicast à estação requerente, que mantém temporariamente a resolução na cache de ARP

Universidade do Minho

ARP Operação

Exemplo de cache ARP

ROUTER > show ip arp

Protocol Address Age (minutes) Hardware Addr Type Interface

Internet 193.136.20.67 27 00a0.c98d.6ffc ARPA FastEthernet0/1

Internet 193.136.20.105 236 00a0.c98d.78a0 ARPA FastEthernet0/1

Internet 193.136.20.7 10 00a0.c98f.4229 ARPA FastEthernet0/1

Internet 193.136.20.3 6 004f.4907.285a ARPA FastEthernet0/1

Internet 192.168.88.65 - 0005.9bf0.74e0 ARPA FastEthernet0/0

Internet 192.168.88.66 107 0005.3246.8dc1 ARPA FastEthernet0/0

Internet 193.136.20.254 0 000a.8a97.7480 ARPA FastEthernet0/1

TCP/IP

Universidade do Minho Escola de Engenharia Departamento de Informática

Protocolos de Transporte: UDP e TCP

