Group 5

Code for this assignment at https://github.com/TetroVolt/COSC3337Assign2

Who we are

Raymond Sutrisno

Niels Moeller

Gal Egozi

Colby Kuhnel

Data Set I (Molecular Biology Data Set)

Data Set Characteristics:	Sequential, Domain- Theory	Number of Instances:	3190	Area:	Life
Attribute Characteristics:	Categorical	Number of Attributes:	61	Date Donated	1992- 01-01
Associated Tasks:	Classification	Missing Values?	No	Number of Web Hits:	95406

- Introns do not code for proteins
- Exons code for proteins

Data Set II: Preliminary analysis

- 1. Each Sequence is 60 base pairs long
- 2. 8 possible base pairs: ('A', 'C', 'D', 'G', 'N', 'R', 'S', 'T')
- 3. Three Class Labels
 - a. Exon-Intron Boundaries (EI) (767 examples)
 - b. Intron-Exon Boundaries (IE) (768 examples)
 - c. Neither (N) (1655 examples)

Data Preprocessing I (RAW data)

	Α	В	C
1	Class	Source	Sequence
2	EI	ATRINS-DONOR-521	CCAGCTGCATCACAGGAGGCCAGCGAGCAGGTCTGTTCCAAGGGCCTTCGAGCCAGTCTG
3	EI	ATRINS-DONOR-905	AGACCCGCCGGGAGGCGGAGGACCTGCAGGGTGAGCCCCACCGCCCCTCCGTGCCCCCGC
4	EI	BABAPOE-DONOR-30	GAGGTGAAGGACGTCCTTCCCCAGGAGCCGGTGAGAAGCGCAGTCGGGGGCACGGGGATG
5	EI	BABAPOE-DONOR-867	GGGCTGCGTTGCTGGTCACATTCCTGGCAGGTATGGGGCGGGGCTTGCTCGGTTTTCCCC
6	EI	BABAPOE-DONOR-2817	GCTCAGCCCCAGGTCACCCAGGAACTGACGTGAGTGTCCCCATCCCGGCCCTTGACCCT
7	EI	CHPIGECA-DONOR-378	CAGACTGGGTGGACAACAAACCTTCAGCGGTAAGAGAGGGCCAAGCTCAGAGACCACAG
8	EI	CHPIGECA-DONOR-903	CCTTTGAGGACAGCACCAAGAAGTGTGCAGGTACGTTCCCACCTGCCCTGGTGGCCGCCA
9	EI	CHPIGECA-DONOR-1313	CCCTCGTGCGGTCCACGACCAAGACCAGCGGTGAGCCACGGGCAGGCCGGGGTCGTGGGG
10	EI	GCRHBBA1-DONOR-1260	TGGCGACTACGGCGCGGAGGCCCTGGAGAGGTGAGGACCCTCCTGTCCCTGCTCCAGTCC
11	EI	GCRHBBA1-DONOR-1590	AAGCTGACAGTGGACCCGGTCAACTTCAAGGTGAGCCAGGAGTCGGGTGGGAGGGTGAGA
12	EI	GCRHBBA6-DONOR-461	TGGCGACTACGGCGCGGAGGCCCTGGAGAGGTGAGGACCCTGGTATCCCTGCTGCCAGTC
13	EI	GCRHBBA6-DONOR-795	AAGCTGAGAGTGGACCCTGTCAACTTCAAGGTGAGCCACCAGTCGGGTGGGGAGGGTGAG
14	EI	GIBHBGGL-DONOR-2278	GGAAGATGCTGGAGGAGAAACCCTGGGAAGGTAGGCTCTGGTGACCAGGACAAGGGAGGG
15	EI	GIBHBGGL-DONOR-2624	AAGCTGCATGTGGATCCTGAGAACTTCAGGGTGAGTACAGGAGATGTTTCAGCCCTGTTG
6	EI	GIBHBGGL-DONOR-7198	GGAAGATGTTGGAGGAGAAACCCTGGGAAGGTAGGCTCTGGTGACCAGGACAAGGGAGGG
17	EI	GIBHBGGL-DONOR-7544	AAGCTGCATGTGGATCCTGAGAACTTCAGGGTGAGTACAGGAGATGTTTCAGCCCTGTTG
10	FI	ΗΙ ΙΜΔ1ΔΤΡ-ΠΟΝΟΡ-1072	$GGC\DeltaCC\DeltaCC\DeltaCCTG\DeltaCCTGGC\DeltaC\DeltaGTG\Delta\DeltaTCGT\Delta\DeltaGTTGCCTTTC\DeltaCTGCG\DeltaGGGGGTTCT$

Algorithms considered

Required:

- 1. Neural Networks (Gal Egozi)
- 2. Support Vector Machines (Colby Kuhnel)

Chosen freely:

- 1. Decision Tree (Niels Moeller)
- 2. Random Forest (Raymond Sutrisno)

Data Processing II (considerations)

- 1. NN and SVM are "One vs. All" algorithms
- 2. Features are categorical in nature
- 3. Need One Hot Encoding for both class labels and features

Data Processing III (procedure)

- 1. One hot encode features
 - a. Each Sequence is 60 base pairs long and categorical
 - b. 60 features
 - c. 8 base pair categories ('A', 'C', 'D', 'G', 'N', 'R', 'S', 'T')
 - d. 60 * 8 = 480 columns total after one hot encoding
- 2. One hot encode classes for algorithms that need it
 - a. Three classes: 'EI', 'IE', 'N'

Training Procedure

- Gridsearch model parameters to tune for the best model using stratified 10 fold cross validation
- 2. Report accuracies (CV mainly, training and test)
- 3. Optional metrics considered
 - a. Confusion Matrices
 - b. Learning Curves

Implementation Info

- 1. Language used: Python
- 2. Utility Libraries:
 - a. Pandas (data processing)
 - b. Numpy (data processing)
 - c. Scikit Learn (data processing)
- 3. Machine Learning Libraries
 - a. Scikit Learn (SVM, Random Forest, Decision Tree)
 - b. Keras (Neural networks)

Results

Random Forest (trees based on C4.5)

Random Forest I (model parameter space available)

- Criterion ['gini', 'entropy']
- Max_depth
- 3. Min sample splits
- 4. Min impurity decrease
- 5. . . .

Random Forest I (model parameter space used)

- 1. 'N_estimators':[25, 50, 100, 150]
- 2. 'max_depth': [2, 4, 8, 16, 32, 64]

Random Forest II (Raw Output) (20 % Test)

```
Dataset characteristics:
 Number of examples in the dataset = 3190
 Number of examples reserved for test set = 638
 Number of examples reserved for training via 10 fold CV = 2552
 Class Distribution Ratio (N : EI : IE) = 2 : 1 : 1
 N features: 60, all categorical (DNA base pairs in 60 base pair long sequence)
 Grid Search parameter space for Random Forest =
    {'n estimators': [25, 50, 100, 150], 'max depth': [2, 4, 8, 16, 32, 64]}
 best estimator parameters found = {'max depth': 32, 'n estimators': 150}
 best estimator mean training score = 0.9995646116203684
 best estimator mean validation score = 0.9114420062695925
 best estimator test score = 0.9247648902821317
```

Random Forest III (Raw Output) (50 % Test)

```
Dataset characteristics:
 Number of examples in the dataset = 3190
 Number of examples reserved for test set = 1595
 Number of examples reserved for training via 10 fold CV = 1595
 Class Distribution Ratio (N : EI : IE) = 2 : 1 : 1
 N features: 60, all categorical (DNA base pairs in 60 base pair long sequence)
 Grid Search parameter space for Random Forest =
    {'n estimators': [25, 50, 100, 150], 'max depth': [2, 4, 8, 16, 32, 64]}
 best estimator parameters found = {'max depth': 16, 'n estimators': 100}
 best estimator mean training score = 0.9992337891743421
 best estimator mean validation score = 0.8915360501567398
 best estimator test score = 0.8984326018808777
```

Random Forest IV (Raw Output) (70 % Test)

```
Dataset characteristics:
 Number of examples in the dataset = 3190
 Number of examples reserved for test set = 2233
 Number of examples reserved for training via 10 fold CV = 957
 Class Distribution Ratio (N : EI : IE) = 2 : 1 : 1
 N features: 60, all categorical (DNA base pairs in 60 base pair long sequence)
 Grid Search parameter space for Random Forest =
    {'n estimators': [25, 50, 100, 150], 'max depth': [2, 4, 8, 16, 32, 64]}
 best estimator parameters found = {'max depth': 16, 'n estimators': 100}
 best estimator mean training score = 1.0
 best estimator mean validation score = 0.8610240334378265
 best estimator test score = 0.8669950738916257
```

Random Forest Best Parameters

Train : Test Ratio	Max Depth	N Estimators
80:20	32	150 (MAX)
50:50	16	100
30:70	16	100

Random Forest Mean Scores

Train : Test Ratio	Mean Train	Mean CV	Test Score
80:20	0.9995	0.9114	0.9247
50:50	0.9992	0.8915	0.8984
30:70	1.0000	0.8610	0.8669

Random Forest Mean Scores

Train : Test Ratio	Mean Train	Mean CV	Test Score	Max Depth	N Estimators
80:20	0.9995	0.9114	0.9247	32	150
50:50	0.9992	0.8915	0.8984	16	100
30:70	1.0000	0.8610	0.8669	16	100

Decision Tree (SKLearn based on C4.5)

Decision Trees 80/20

Dataset characteristics:

Number of examples in the dataset = 3190

```
Number of examples reserved for test set = 638
Number of examples reserved for training via 10 fold CV = 2552
Class Distribution Ratio (N : EI : IE) = 2:1:1
N features : 60, all categorical (DNA base pairs in 60 base pair long sequence)
```

```
Grid Search parameter space for Random Forest = {'max_depth': range(3, 20)} best estimator parameters found = {'max_depth': 6} best estimator mean training score = 0.9573321284086651 best estimator mean validation score = 0.9455329153605015 best estimator test score = 0.9404388714733543
```

Decision Tree Scores

Train : Test Ratio	Mean Train	Mean CV	Test Score
80:20	0.9570	0.9447	0.9341
50:50	0.9484	0.9347	0.9373
30:70	0.9564	0.9362	0.9305

Decision Tree Best Parameters

Train: Test Ratio	Max Depth (3-20)	Min samples split [3,5,25]
80:20	5	25
50:50	5	3
30:70	6	3

Resulting Decision Tree

SVM

Support Vector Machines (20% Test)

```
Grid Search parameter space for SVM = [{'C': [100, 1000, 10000], 'gamma': [0.01, 0.001], 'kernel': ['poly', 'rbf'], 'degree': [2, 3, 4]}]

best estimator parameters found = {'C': 100, 'degree': 3, 'gamma': 0.01, 'kernel': 'poly'}

best estimator mean training score = 0.9996081466330754

best estimator mean validation score = 0.9678683385579937

best estimator test score = 0.9702194357366771

Process Time = 8.436292 Minutes
```

Support Vector Machines (50% Test)

```
Grid Search parameter space for SVM = [{'C': [100, 1000, 10000], 'gamma': [0.01, 0.001], 'kernel': ['poly', 'rbf'], 'degree': [2, 3, 4]}]

best estimator parameters found = {'C': 100, 'degree': 3, 'gamma': 0.01, 'kernel': 'poly'}

best estimator mean training score = 0.9994427513515088

best estimator mean validation score = 0.9605015673981191

best estimator test score = 0.9661442006269593

Process Time = 3.845329 Minutes
```

Support Vector Machines (70% Test)

```
Grid Search parameter space for SVM = [{'C': [100, 1000, 10000], 'gamma': [0.01, 0.001], 'kernel': ['poly', 'rbf'], 'degree': [2, 3, 4]}]

best estimator parameters found = {'C': 100, 'degree': 3, 'gamma': 0.01, 'kernel': 'poly'}

best estimator mean training score = 1.0

best estimator mean validation score = 0.9540229885057471

best estimator test score = 0.961486789072996

Process Time = 1.603256 Minutes
```

Support Vector Machines Mean Scores

Train : Test Ratio	Mean Train	Mean CV	Test Score
80:20	0.9996	0.9679	0.9702
50:50	0.9994	0.9605	0.9661
30:70	1.0	0.9540	0.9615

Neural Network

Neural Network

- One layer, 50 nodes
- Scores 95.52±0.74% on stratified cross validation
- 20% test
 - 99.61% Train
 - 94.36% Test
- 50% test
 - 99.44% Train
 - o 93.67 Test
- 70% test
 - 100% train
 - o 91.49% test

Performance Comparison

Top Dog for 20% Test

Algorithm	Best Test Score	Accompanying CV Score	Accompanying Train Score
Random Forest	0.9247	0.9114	0.9995
Decision Tree	0.9373	0.9347	0.9484
SVM & 1990	0.9702	0.9679	0.9996
Neural Network	0.9436	0.9552	0.9961

Top Dog for 50% Test

Algorithm	Best Test Score	Accompanying CV Score	Accompanying Train Score
Random Forest	0.8984	0.8915	0.9992
Decision Tree	0.9373	0.9347	0.9484
SVM & 1990	0.9661	0.9605	0.9994
Neural Network	0.9436	0.9552	0.9961

Top Dog for 70% Test

Algorithm	Best Test Score	Accompanying CV Score	Accompanying Train Score
Random Forest	0.8669	0.8610	1.0000
Decision Tree	0.9373	0.9347	0.9484
SVM & 1990	0.9615	0.9540	1.0000
Neural Network	0.9436	0.9552	0.9961

What could have been done differently?

- Investigated Gini importances of features
- Investigated other pattern recognition neural network architectures
- Investigated learning curves of models to better understand generalization behaviors
- Investigated Confusion matrices to see if class distribution was an issue that skewed different types of errors
- Used stratified K fold rather than random sample K fold
- Played more with parameters in general

Thank you!

End of presentation