CSE 4125: Distributed Database Systems Chapter – 4 (Part – C)

Distributed Database Design

Topics to be discussed -

- Design of Derived Horizontal Fragmentation
- Design Vertical Fragmentation

The Design of Derived Horizontal Fragmentation

Derived Horizontal Fragmentation

□ The horizontal fragmentation of a relation cannot be based on a property of its own attributes, but is derived from the horizontal fragmentation of another relation.

□ Derived fragmentation is used to facilitate the join between fragments.

Distributed Join

A distributed join is a join between horizontally fragmented relations.

Join Graph

- ☐ A distributed join is represented efficiently using **join graphs**.
- The join graph G of the distributed join R JN S is a graph(N,E), where
 - \checkmark nodes *N*: fragments of R and S.
 - ✓ non directed edges E: Join between fragments which are not intrinsically empty.

Example:

- ✓ Divide *EMP* into *EMP1* and *EMP2* based on *TITLE*
- ✓ Divide *PAY* into *PAY1*, *PAY2*, *PAY3* based on *SAL*.

To join *EMP* and *PAY*, we have one possible following scenario.

Types of Join Graph

Types of Join Graph

Total Join Graph: when a join graph contains all possible edges between fragments of R and S.

Reduced Join Graph: when some of the edges between fragments of R and S are missing.

Types of Join Graph

Simple Join Graph: when a reduced graph is partitioned and each subgraph has just one edge.

Example:

EMP

ENO	ENAME	TITLE
1	Α	Dev
2	В	CAD
3	С	Main
4	D	Dev

PAY

TITLE	SAL
Dev	10 K
CAD	20 K
Main	30 K

After JOIN

ENO	ENAME	E.TITLE	P.TITLE	SAL
1	А	Dev	Dev	10 K
4	D	Dev	Dev	10 K
2	В	CAD	CAD	20 K
3	С	Main	Main	30 K

Divide *EMP* into *EMP1* and *EMP2* based on *TITLE*

EMP1

ENO	ENAME	TITLE
1	А	Dev
4	D	Dev

EMP2

ENO	ENAME	TITLE
2	В	CAD
3	С	Main

Divide PAY into PAY1, PAY2, PAY3 based on SAL.

PAY1

TITLE	SAL
Dev	10 K

PAY2

TITLE	SAL
CAD	20 K

PAY3

TITLE	SAL
Main	30 K

PAY1 TITLE SAL EMP1 10 K Dev **ENO ENAME** TITLE 1 Dev Α PAY2 4 D Dev **TITLE** SAL CAD 20 K EMP2

ENO	ENAME	TITLE
2	В	CAD
3	С	Main

TITLE	SAL
Main	30 K

PAY3

PAY1

EMP1

ENO	ENAME	TITLE
1	Α	Dev
4	D	Dev

TITLE	SAL
Dev	10 K

PAY2

TITLE	SAL
CAD	20 K

EMP2

ENO	ENAME	TITLE
2	В	CAD
3	С	Main

PAY3

TITLE	SAL
Main	30 K