10. Marsruutimine

Side IRT3930

Ivo Müürsepp

4. praktikum

WiFi

Sagedused ja võimsused

• 2400 - 2483,5 MHz: $EIRP \le 100 \text{ mW}$

• 5150 - 5350 MHz: $EIRP \le 200 \text{ mW} - \text{ainult siseruumides}$

• 5470 - 5725 MHz: $EIRP \le 1 \text{ W}$

• EIRP – Ekvivalentne isotroopne kiirgusvõimsus (Effective Isotropic Radiated Power)

$$EIRP = P_S \cdot G_S [W]$$

$$EIRP = P_S + G_S [dBm]$$

WiFi

2,4 GHz kanalijaotus

WiFi

Sumbumus

• Vaba ruumi kadu

$$FSL = \left(\frac{4\pi d}{\lambda}\right)^2$$

Logaritmilistes ühikutes

$$FSL = 20\log(d) + 20\log(f) - 147,55[dB]$$

Sagedusala 2,4 GHz			
kaugus Sumbuvus (dB)			
100 m	80,2		
200 m	86,2		
500 m	94,2		
1 km	100,2		
2 km 106,2			
5 km 114,2			
10 km 120,2			

Today 7:37 PM

What's your address

127.0.0.1

Read 7:38 PM

No shit dork, your physical address

00:25:B5:AA:01:1F

Delivered

iMessage

Marsruutimisalgoritm

- Korrektsus
- Lihtsus
- Robustsus
- Stabiilsus
- Aus ja õiglane
- Optimaalne
- Efektiivne

Pythagoras vs taksojuht

Marsruutimine

- Soorituskriteeriumid
 - Minimaalne hüpete arv (hop)
 - Hind
 - Viide [s]
 - Läbilaskevõime [bit/s]
- Otsustusaeg
 - Pakettedastus (datagramm)
 - Sessioon (virtuaalne ahel)
- Otsustuskoht
 - Igas sõlmes
 - Keskses sõlmes
 - Allikas

- Informatsiooni allikad
 - Puuduvad
 - Lokaalne
 - Naabersõlmed
 - Sõlmed marsruudi ulatuses
 - Kõik sõlmed
- Otsustusaeg
 - Pidev
 - Perioodiline
 - Olulise koormuse muutuse korral
 - Topoloogia muutumisel

Königsbergi sildade probleem

Graaf

• Graaf G = (N,E)

- Graafi sõlmede (marsruuterid) hulk
 N = {A,B,C,D,E,F}
- Graafi harude (ühendused, lingid) hulkE = {(A,B),(A,D),(A,C),(B,C),...,(E,F)}
- Ühenduse kulu (hind)
 c(x,x')

Staatiline marsruutimine

Marsruutimistabel

Allikas

S i h t k o h t

ı	1	2	3	4	5	6
1	ı	1	5	2	4	5
2	2	ı	5	2	4	5
က	4	3	-	5	3	5
4	4	4	5	-	4	5
5	4	4	5	5	-	5
6	4	4	5	5	6	-

	sihtkoht	järgmine sõlm
	2	2
	3	4
	4	4
	5	4
ı	6	4

sõlm 1

sihtkoht	järgmine sõlm	
1	1	
3	3	
4	4	
5	4	
6	4	

sõlm 2

sihtkoht	järgmine sõlm
1	5
2	5
4	5
5	5
6	5

sõlm 3

sihtkoht	järgmine sõlm
1	2
2	2
3	5
5	5
6	5

sõlm 4

sihtkoht	järgmine sõlm	
1	4	
2	4	
3	3	
4	4	
6	6	

sõlm 5

sihtkoht	järgmine sõlm
1	5
2	5
3	5
4	5
5	5

sõlm 6

Üleujutus

ARPANET'i marsruutimisalgoritm

- $\mathbf{D}_i i$ -nda sõlme viitevektor
- d_{ij} viite hinnang sõlmest i sõlme j (d_{ij} = 0)
- N sõlmede hulk võrgus
- $\mathbf{S}_i i$ -nda sõlme edastusvektor (*successor*)
- s_{ij} järgmine sõlm "lühimal" teel sõlmest i sõlme j
- *A k*-nda sõlme naabrite hulk
- I_{ki} viite praegune hinnang sõlmest k sõlme j

$$d_{kj} = \min_{i \in A} [d_{ij} + l_{ki}]$$

$$\mathbf{D}_{i} = egin{bmatrix} d_{i1} \ dots \ d_{iN} \end{bmatrix}$$

$$\mathbf{S}_i = egin{bmatrix} s_{i1} \ dots \ s_{iN} \end{bmatrix}$$

ARPANET'i marsruutimisalgoritm

Desti- nation	Delay	Next Node
1	0	_
2	2	2
3	5	3
4	1	4
5	6	3
6	8	3
	D_1	S_1

5	
2	
2	
0	
1	
3	
D_4	

Desti- nation	Delay	Next Node
1	0	
2	2	2
3	3	4
4	1	4
5	2	4
6	4	4

$$I_{1, 2} = 2$$

 $I_{1, 3} = 5$
 $I_{1, 4} = 1$

(a) Node 1's routing table before update

(b) Delay vectors sent to node 1 from neighbor nodes

(c) Node 1's routing table after update and link costs used in update

Looduslikud marsruutimisalgoritmid

Hallitus

Vähima Kulu Algoritmid (Least Cost Algorithm)

Dijkstra algoritm - muutujad

- c(x,y) naabersõlmede x ja y vahelise ühenduse hind. Juhul kui x ja y ei ole vahetud naabrid, siis $c(x,y) = \infty$
- D(v) hetkel teadaolev koguhind allikast sihtkohani v
- P(v) viimane sõlm, teel allikast, enne sihtkohta v
- N' sõlmede hulk, milleni on teada vähima kuluga tee.

Dijkstra algoritm - algväärtustamine

 $N' = \{u\}$ /* Alustame teede leidmist sõlmest u */

Kõigi sõlmede *v* jaoks

Kui v on u kõrval

$$D(v) = c(u,v)$$

muidu

$$D(v) = \infty$$

Dijkstra algoritm – marsruutimistabeli koostamine

Korda

Leia N' mittekuuluv w selliselt, et D(w) oleks minimaalne

Lisa w hulka N'

Uuenda D(v) kõigi hulka N' mittekuuluvate w naabrite v jaoks:

 $D(v)=\min[D(v), D(w)+c(v,w)]$

Kuni kõik sõlmed kuuluvad N'

Dijkstra algoritm – näide

Samm	N'	D(B), p(B)	D(C), p(C)	D(D), p(D)	D(E), p(E)	D(F), p(F)
0	А	2,A	5,A	1,A	∞	∞
1	AD	2,A	4,D		2,D	∞
2	ADE	2,A	3 , E			4,E
3	ABDE		3 , E			4,E
4	ABCDE					4,E
5	ABCDEF					

Harjutusülesanded

- Kui palju on 2,4 GHz sagedusega WiFi signaal sumbunud tugijaamast 300 m kaugusel? Kui palju sumbub samal kaugusel 5,2 GHz sagedusega signaal?
- Leia Djikstra algoritmi kasutades vähima kuluga teed 12. slaidil kujutatud võrgutopoloogia korral sõlme F jaoks.
- Ülesande aluseks on 12. slaidil kujutatud võrgutopoloogia. Eeldame, et ainsa infomatsioonina teab võrgusõlm C kõikide endast väljuvate teede hindu (cost). Millist marsruutimisreeglit oleks siinkohal mõistlik kasutada? Kuidas jagada väljaminev liiklus väljuvate teede vahel?
- Ülesande aluseks on sama võrgutopoloogia, mis kahel eelmisel juhul. Koosta marsruutimismaatriks juhul, kui marsruutimise aluseks on minimaalne hüpete (hops) arv.

Materjalid - WiFi

- Riigi Teataja. Eesti Raadiosagedusplaan, Lisa 1 II ja III osa. https://www.riigiteataja.ee/akt/106072011012,06.11.2017
- Euroopa Liidu teataja. KOMISJONI OTSUS, 13. mai 2009,millega muudetakse otsust 2006/771/EÜ lähitoimeseadmete raadiospektri ühtlustamise kohta. http://eur-lex.europa.eu/legal-content/ET/TXT/HTML/?uri=CELEX:32009D0381&from=EN, 06.11.2017
- ECC Decision of 09 July 2004 on the harmonised use of the 5 GHz frequency bands for the implementation of Wireless Access Systems including Radio Local Area Networks (WAS/RLANs). http://www.erodocdb.dk/docs/doc98/official/Pdf/ECCDec0408.pdf, 06.11.2017

Materjalid - marsruutimine

- William Stallings. Data and Computer Communications. Kaheksas trükk.
 Peatükk 12 Routing in Switched Networks.
- Erkki Laaneoks. Sissejuhatus võrgutehnoloogiasse. Lk 53-55.
 Marsruuterid ja marsruutimine. Peatükk 12 Marsruutimisprotokollid.
- RFC1058 Routing Information Protocoll.
 http://www.ietf.org/rfc/rfc1058.txt, 3.11.2017
- Dijkstra's Shortest Path Algorithm. https://brilliant.org/wiki/dijkstras-short-path-finder/, 3.11.2017

