	Savember/December 2022		
	Final Assessment Test (LAL) Suremoster		Fall Semester 2022-23
control late	R Irch COMPLEX VARIABLES AND LINEAR ALGEBRA	Course Code	BMAT2011.
			Chitchitect
			CH2022231001814
marilla Sarria	Prof. Mini Chosh	C Just . A.	
		Max Marks	
	3 Hours	vo v 10 Marks)	

Part-A (10 X 10 Marks)

[10]

[10]

[10]

110

11

Answer and $\frac{2\sin 2z}{z^2+1\cos 2z}$ and f(z)=u+iv is an analytic function of z. Find the function

(a) Show that the transformation $w = \frac{1}{z}$ transforms, in general, circles and straight lines into

(b) For the transformation $w=z^2$, which lies in the area of the first quadrant of the z-plane bounded by the axes and circles |z|=a and |z|=b, where (a>b>0), discuss the

transformation in the w-plane and check whether it is a conformal mapping. Find the bilinear transformation which maps z = 1, i, -1 onto w = i, 0 - i. Also determine [10]

4 Classify the singularity of the function $f(z) = \frac{\cos z}{z(z-\pi)^4} - \frac{\pi \cos z}{z^2(z-\pi)^4}$ and find the residue if it [10]

Using the Cauchy's integral formula, evaluate the integral $\oint_C \frac{e^z}{z^2+4} dz$, where C is the circle [10]

(b) Evaluate $\oint_C \frac{\sin z}{(z^2-25)(z^2+9)} dz$, where C is the unit circle.

6. Show that $W = \{A \in M_{3\times3}(\mathbf{R}) : tr(A) = 0\}$, where tr(A) denotes trace of A i.e. the sum of the diagonal entries of A, is a subspace of $M_{3\times3}(R)$, the set of all 3×3 matrices with real entries. Also find the basis and the dimension of W.

Express the vector u in each of the following cases as the linear combination of the given set of vectors: $\mathbf{u} = \left(-\frac{1}{4}, \frac{9}{4}, \frac{31}{4}, \frac{13}{8}\right), S = \left\{(1, 2, -1, 1), \left(0, \frac{1}{2}, 3, \frac{1}{4}\right), \left(1, 1, 2, 0\right)\right\}.$ (ii) $u = 3t^2 + 6t - 2$, $S = \{t - 1, -t^2 + t + 1, t^2\}$.

8. Let A be the matrix of linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^4$ defines by

T(x, y, z) = (x, y + z, x - z, 0) with respect to domain basis $\{(1, 1, 1), (1, 1, 0), (1, 0, 0)\}$ and codomain basis $\left\{\left(\frac{1}{2},\ 0,\ 0,\ 0\right),\ \left(0,\ \frac{1}{2},\ 0,\ 0\right),\ \left(0,\ 0,\ \frac{1}{2},\ 0\right),\ \left(0,\ 0,\ 0,\frac{1}{2}\right)\right\}$. What is $Ax \text{ for } x = (1, 0, 1)^T \in \mathbf{R}^3$.

9. Let $(\alpha_1, \alpha_2, \alpha_3)$, (β_1, β_2) be ordered basis of the real vector space V and W respectively. A linear mapping T:V o W maps the basis vectors as

 $T\left(lpha_1
ight)=eta_1+eta_2,\ T\left(lpha_2
ight)=3eta_1-eta_2,\ T\left(lpha_3
ight)=eta_1+3eta_2$. Find the matrix T relative to the ordered basis

(i) $(\alpha_1, \alpha_2, \alpha_3)$ of V and (β_2, β_1) of W.

(ii) $(\alpha_1 + \alpha_2, \alpha_2, \alpha_3)$ of V and $(\beta_1, \beta_1 + \beta_2)$ of W.

M. Apply the Gram Schmidt process to orthonormalize the basis vectors u_1 , u_2 and u_3 of the v_2 1201 where Euclidean space R3 with to respect $y_1 = (1, 1, 1), u_2 = (1, 1, 0), u_3 = (1, 0, 0).$ [10]

$$u_1 = (1, 1, 1), u_2 = (1, 1, 0), u_3 = (1, 0, 0)$$

Solve the following system by Gaussian Elimina

No Solve the following system by Gaussian Elimination method
$$x + y + z - w = -2$$
,

$$2x - y + z + w = 0,$$

$$3x + 2y - z - w = 1,$$

$$3x + 2y - z - w = 1,$$

$$x+y+3z-3w=-8.$$

Find all the eigenvalues and eigenvectors of the matrix
$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$
.

[10]