Analysis 3

Contents

I Sequence of Functions	1
1 Pointwise convergence	1
2 Uniform convergence	1
II Series of Functions	3
3 Convergence of a Numerical Series	3
4 Finite Expansion	4
III Power Series	5
5 Radius of Convergence	5
IV Integrals Depending on a Parameter	7
6 Improper Integral	7
V Fourier Series	8
7 Trigonometric Coefficients	8
7.1 Even Functions7.2 Odd Functions	8 8
VI Laplace Transforms	9
8 Transforms of some functions	9

8.1 Unit step function	9
8.2 Dirac Delta Function	9
8.3 Usual Elementary functions	9
9 Properties of the Transform	10
10 Translation	11
VII Definition of a system of DEs	12
VIII Homogeneous Systems of Linear DEs	13
11 Fundamental Solutions	13
11.1 Wronskian of vector functions	14
12 n-the order Homogeneous Linear DE	14
12.1 DE from a Set of Fundamental Solutions	15
IX Non-Homogeneous Systems of Linear DEs	17
13 General Solution Formula	17
14 Method of Variation of Constant	18
15	18
X Systems of Differential Equations	19
16 Solving The System of DEs	19
16.1 Change of Basis	20
16.2 Solving Matrix Formula	20
17 Fundamental Solutions	21
17.1 Wronskian of vector functions	21
18 Solving n -th order Homogeneous Linear DE	22
18.1 DE from a Set of Fundamental Solutions	23

I

Sequence of Functions

Section 1

Pointwise convergence

This is a very natural way of proving convergence since all you have to do is fix f_n to a point x then the sequence just becomes an ordinary sequence of numbers, and if they all converge to a number we can define a limit function f and say that they converge to f pointwisely.

Definition 1

We say that a sequence of functions f_n where $f_n: I \to \mathbb{R}, I \subset \mathbb{R}$, converges pointwise to function $f: I \to \mathbb{R}$ on the interval I if:

$$\forall x \in I \ \forall \epsilon > 0 \ \exists n \in \mathbb{N} \ \forall n \ge \mathbb{N} : |f_n(x) - f(x)| < \epsilon.$$

You either prove convergence using the definition or by doing:

- 1. Let x = 0 then find $\lim_{n \to \infty} f_n(0) = \text{some } f(x)$
- 2. Then let $x \neq 0$ and again find $\lim_{n \to \infty} f_n(x) = f(x)$
- 3. If neither of the results are unbounded $\pm \infty$ then we say $f_n(x)$ is convergent to some f(x)

Remark

if the result of step 1 is g(x) and step 2 results in h(x) where $g(x) \neq h(x)$ then we define the limit function:

$$f(x) = \begin{cases} g(x) & x = 0\\ h(x) & x \in]0, 1] \end{cases}.$$

Section 2

Uniform convergence

The idea of uniform convergence is that the sequence always approaches it's limit function as the value of n increases.

Definition 2

We say that a sequence of functions f_n where $f_n: I \to \mathbb{R}, I \subset \mathbb{R}$, converges uniformly to function $f: I \to \mathbb{R}$ on the interval I if:

$$\forall \epsilon > 0 \; \exists N \in \mathbb{N} \; \forall n \ge N \; \forall x \in I : \sup_{x \in I} |f_n(x) - f(x)| < \epsilon.$$

Remark We can also prove uniform convergence by proving

$$\lim_{n \to \infty} \sup_{x \in I} |f_n(x) - f(x)| = 0.$$

There is also an easy qay to prove uniform convergence of a function by

- 1. Prove that the sequence of functions $f_n(x)$ is pointwise convergent to a function $f(x)^{-1}$
- 2. Define a function $g(x) = |f_n(x) f(x)|$ and find the maxima of that function at a point x_0 (usually by doing dg/dx = 0)
- 3. If $\lim_{n\to\infty} g(x_0) = 0$ then the sequence converges uniformly to f(x)

¹ if the function f(x) is continuous at a point piecewise then the sequence doesn't uniformly converge

Deries of Partellorie

Let $f_n(x)$ be sequence of functions defined on $I \subset \mathbb{R}$, we define the series S(x) to be

$$S(x) = \sum_{n=0}^{\infty} f_n(x).$$

Section 3

Definition 3

Convergence of a Numerical Series

In order to prove a series of functions converge we have to prove that it converges for all fixed x.

Theorem 1 Suppose there exists a sequence a_n such that $\forall x, n \mid f_n \mid \leq a_n$. The Weierstrass test states that if $\sum a_n$ converges then $\sum f_n(x)$ converges uniformly and absolutely

Theorem 2 Let a_n be a sequence of numbers, if $\left|\frac{a_{n+1}}{a_n}\right| = l$ then the sequence is a geometric Series

$$\sum_{n=0}^{\infty} a_n \begin{cases} \text{converges} & \text{if } |l| < 1\\ \text{diverges} & \text{if } |l| \ge 1 \end{cases}.$$

Theorem 3 A harmonic series is defined to be $a_n = \frac{1}{n^p}$

$$\sum_{n=0}^{\infty} \frac{1}{n^p} \begin{cases} \text{converges} & \text{if } p > 1\\ \text{diverges} & \text{if } p \le 1 \end{cases}.$$

Theorem 4 Let a_n be a sequence of numbers. The 2 series $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} 2^n a_n$ are simultaneously convergent/divergent.

Theorem 5 The sequence $\sum_{n=0}^{\infty} (-1)^n a_n$ is convergent if a_n is decreasing and $\lim_{n\to\infty} a_n = 0$.

Theorem 6

Consider the series
$$S = \sum_{n=0}^{\infty} a_n$$

$$\lim_{n\to\infty} \sqrt[n]{|a_n|} = l \quad \text{such that} \quad \begin{cases} l<1 & \text{if S converges} \\ l>1 & \text{if S diverges} \\ l=1 & \text{this test cannot help us} \end{cases}.$$

Section 4

Finite Expansion

The general formula for the finite expansion (Taylor-young formula) is

$$f(x) = f(x-a) + \frac{x}{1!}f'(x-a) + \frac{x^2}{2!}f''(x-a) + \dots + \frac{x^n}{n!}f^{(n)}(x-a) + x^n o(1) \quad x \to a.$$

Some important expansions to keep in mind are

a)
$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

c)
$$\cos(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$$

e) $\sinh(x) = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}$

e)
$$\sinh(x) = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}$$

g)
$$\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}$$

i)
$$(1+x)^{\alpha} = \sum_{n=0}^{\infty} \frac{\prod_{k=0}^{n+1} (\alpha - k)}{n!} x^n$$

b)
$$\sin(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

d)
$$\frac{1}{1-x} = \sum_{n=0}^{n-0} x^n$$

f)
$$\cosh(x) = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}$$

h)
$$\ln(1-x) = \sum_{n=1}^{\infty} -\frac{x^n}{n}$$

Power Series

PART III

A power series is just a series in the following formula

$$f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$$
$$= \sum_{n=0}^{\infty} U_n.$$

Section 5

Radius of Convergence

For some values of x a power series can either diverge or converge, to determine the interval of convergence we employ the ratio test

Theorem 7 Let r be the radius of convergence and I be the domain of convergence. If we compute the limit

$$\Gamma = \lim_{n \to \infty} \left| \frac{U_{n+1}}{U_n} \right|.$$

The ratio test states that

$$\begin{cases} \text{if } \Gamma = 0 & \text{then } r = \infty \text{ and } I = \mathbb{R} \\ \text{if } \Gamma = \infty & \text{then } r = 0 \text{ and } I = \{0\} \end{cases}.$$

In the case that Γ isn't 0 or ∞ we set $\Gamma < 1$ and then we find |x| < R, finally we can say that r = R and I =]-R, R[. A special case need to be done for the points -R and R to determine if they belong in I.

Remark The power series f(x) is continous and will always uniformly converge in the interval of convergence I

Theorem 8 If $\sum a_n x^n$ and $\sum b_n x^n$ be 2 power series with radii R_1 and R_2 . For the power series $\sum (a_n + b_n)x^n$ the radius of convergence R

$$R = \min\{R_1, R_2\}.$$

Theorem 9 If $S(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$ is a power series with radius R then $S'(x) = \sum_{n=0}^{\infty} n a_n (x - x_0)^n$ as well as $\int_{x_0}^x S(t) \, dt$ both a radius of R

The general term a_k of a power series $S(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$ is equal to

$$a_k = \frac{S^{(k)}(x_0)}{k!}.$$

$$y = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

$$y' = a_1 + 2a_2 x + 3a_3 x^2 + \dots + na_n x^{n-1}$$

$$y'' = 2a_2 + 6a_3 x + \dots + n(n-1)a_n x^{n-2} + n(n+1)a_{n+1} x^{n-1}$$

Integrals Depending on a Parameter

PART

We define an integratable function

$$f: I \times U \longrightarrow \mathbb{R} \times \mathbb{R}$$

 $t, x \longmapsto f(t, x).$

where t is a parameter.

Let

$$F(x) = \int_a^b f(t, x) dt.$$

Theorem 10

If f is of class C^p then F is also of class C^n and

$$\frac{\partial^p F}{\partial x^p} = \int_a^b \frac{\partial^p f}{\partial x^p} \, \mathrm{d}t \,.$$

Remark F is differentiable if $\frac{\partial f}{\partial x}$ is convergent.

Section 6

Improper Integral

Theorem 11

If
$$\int_a^b |f(t)| dt$$
 is convergent then $\int_a^b f(t) dt$ is also convergent and $\left| \int_a^b f(t) dt \right| \leq \int_a^b |f(t)| dt$

Theorem 12

The Weierstrass test states that $\int_a^b f(t,x) dt$ is convergent if there exists a function g(t) such that $|f(t,x)| \leq g(t)$ and $\int_a^b g(t) dt$

Fourier Series

PART

 \mathbf{V}

Definition 4

A Fourier series is a series of functions of general term

$$u_n(x) = a_0 + a_n \cos(nx) + b_n \sin(nx).$$

Section 7

Trigonometric Coefficients

The Fourier coefficients of a function defined on an interval $F\subset\mathbb{R}$ of period $T=\frac{2\pi}{\omega}\implies \omega=\frac{2\pi}{T}$ are

$$a_0 = \frac{1}{T} \int_F f(x) \, dx$$

$$a_n = \frac{2}{T} \int_F f(x) \cos \omega nx \, dx$$

$$b_n = \frac{2}{T} \int_F f(x) \sin \omega nx \, dx$$

 $1. \sin n \, \pi = 0$

2. $\sin n \pi/2 = (-1)^n$

3. $\cos n \, \pi = (-1)^n$

 $4. \cos n \, \pi/2 = 0$

Subsection 7.1

Even Functions

If a function has a domain $F = [-\ell; \ell]$ and $f(x) = f(-x) \ \forall x \in \mathbb{R}$ the Fourier coefficients (T = |F|) become

$$a_0 = \frac{1}{\ell} \int_0^{\ell} f(x) dx$$

$$a_n = \frac{2}{\ell} \int_0^{\ell} f(x) \cos nx dx$$

$$b_n = 0$$

Subsection 7.2

Odd Functions

If a function has a domain $F = [-\ell; \ell]$ and $-f(x) = f(-x) \ \forall x \in \mathbb{R}$ the Fourier coefficients (T = |F|) become

$$a_0 = 0$$

$$a_n = 0$$

$$b_n = \frac{2}{\ell} \int_0^{\ell} f(x) \sin nx \, dx$$

Laplace Transforms

PART

The Laplace transform of a function is defined as

$$F(p) = \mathcal{L}\left\{f(t)\right\} = \int_0^\infty e^{-pt} f(t) \, \mathrm{d}t.$$

It only exists if the integral above converges.

SECTION 8

Transforms of some functions

Subsection 8.1

Unit step function

Also known as Heaviside's unit step function, it is defined as

$$u(t) = \begin{cases} 1 & \text{if } t \ge 0 \\ 0 & \text{if } t < 0 \end{cases}.$$

$$\mathcal{L}\left\{u(t)\right\} = \frac{1}{p} \quad \text{for} \quad \text{Re}(p) > 0.$$

Subsection 8.2

Dirac Delta Function

The Dirac Delta function

$$\delta(t) = \begin{cases} \infty & \text{if } t = 0 \\ 0 & \text{if } t \neq 0 \end{cases}.$$

$$\mathcal{L}\left\{\delta(t)\right\} = 1.$$

Subsection 8.3

Usual Elementary functions

$$a) \mathcal{L}\{1\} = \frac{1}{p}$$

b)
$$\mathcal{L}\left\{t\right\} = \frac{1}{p^2}$$

a)
$$\mathcal{L}\left\{1\right\} = \frac{1}{p}$$

c) $\mathcal{L}\left\{t^n\right\} = \frac{n!}{p^{n+1}}$

d)
$$\mathcal{L}\left\{\sin \omega t\right\} = \frac{\omega}{p^2 + \omega^2}$$

e)
$$\mathcal{L}\left\{\cos\omega t\right\} = \frac{p}{p^2 + \omega^2}$$

f)
$$\mathcal{L}\left\{\sinh \omega t\right\} = \frac{\omega}{p^2 - \omega^2}$$

g)
$$\mathcal{L}\left\{\cosh \omega t\right\} = \frac{p}{p^2 - \omega^2}$$

h)
$$\mathcal{L}\left\{e^{at}\right\} = \frac{1}{p-a}$$

Section 9

Properties of the Transform

1. Linearity:

$$\mathcal{L}\left\{\lambda f + \mu g\right\} = \lambda \mathcal{L}\left\{f\right\} + \mu \mathcal{L}\left\{g\right\}.$$

2. Homothety:

$$\mathcal{L}\left\{f(kt)\right\} = \frac{1}{k}F(\frac{p}{k}).$$

3. Derivation:

$$\mathcal{L} \{f'(t)\} = p\mathcal{L} \{f(t)\} - f(0^{+})$$

$$\mathcal{L} \{f''(t)\} = p^{2}\mathcal{L} \{f(t)\} - pf(0^{+}) - f'(0^{+})$$

$$\mathcal{L} \{f^{(n)}(t)\} = p^{n}\mathcal{L} \{f(t)\} - \sum_{k=1}^{n} p^{n-k} f^{(k-1)}(0^{+})$$

4. Integration:

$$\mathcal{L}\left\{\int_0^t f(u) \, \mathrm{d}u\right\} = \frac{F(p)}{p}.$$

5. Initial value theorem:

$$f(0^{+}) = \lim_{p \to \infty} p\mathcal{L} \left\{ f(t) \right\}.$$

6. Final value theorem:

$$f(\infty) = \lim_{p \to 0} p\mathcal{L} \left\{ f(t) \right\}.$$

Remark

$$\mathcal{L}\left\{tf(t)\right\} = -\frac{\mathrm{d}}{\mathrm{d}p}F(p)$$

$$\mathcal{L}\left\{t^2f(t)\right\} = \frac{\mathrm{d}^2}{\mathrm{d}p^2}F(p)$$

$$\mathcal{L}\left\{t^nf(t)\right\} = (-1)^n \frac{\mathrm{d}^n}{\mathrm{d}p^n}F(p)$$

Remark Convolution over a domain $I \subset \mathbb{R}$ is defined as

$$f(t) * g(t) = \int_{I} f(\tau)g(t-\tau) d\tau = \int_{I} f(t-\tau)g(\tau) d\tau.$$

and it's trasform is

$$\mathcal{L}\left\{f(t) * g(t)\right\} = F(p) \cdot G(p).$$

Section 10

Translation

In the time domain:

$$\mathcal{L}\left\{f(t-a)\right\} = e^{-ap}F(p).$$

In the p-domain:

$$\mathcal{L}\left\{e^{at}f(t)\right\} = F(p+a).$$

Definition of a system of DEs

PART 7/TT

Suppose we have a vector of functions $\vec{\mathbf{x}} = \begin{pmatrix} x_1(t) \\ x_2(t) \\ \vdots \\ x_n(t) \end{pmatrix}$, a differential of $\vec{\mathbf{x}}$ is

$$\begin{cases} \frac{\mathrm{d}x_1}{\mathrm{d}t} = a_{11}(t)x_1 + a_{12}(t)x_2 + \dots + a_{1n}(t)x_n + b_1(t) \\ \frac{\mathrm{d}x_2}{\mathrm{d}t} = a_{21}(t)x_1 + a_{22}(t)x_2 + \dots + a_{2n}(t)x_n + b_2(t) \\ \vdots \\ \frac{\mathrm{d}x_n}{\mathrm{d}t} = a_{n1}(t)x_1 + a_{n2}(t)x_2 + \dots + a_{nn}(t)x_n + b_n(t) \end{cases}$$

Suppose that $\vec{\mathbf{x}}$ verifies the equation

$$\frac{\mathrm{d}^n x}{\mathrm{d}t^n} = f\left(x, \frac{\mathrm{d}x}{\mathrm{d}t}, \frac{\mathrm{d}^2 x}{\mathrm{d}t^2}, \cdots, \frac{\mathrm{d}^n x}{\mathrm{d}t^n}, t\right).$$

We can transform the above equation to a vector system by taking

$$x = x_1$$

$$\frac{dx}{dt} = x_2$$

$$\frac{d^2x}{dt^2} = x_3$$

$$\vdots$$

$$\frac{d^{n-1}x}{dt^{n-1}} = x_n$$

$Homogeneous\ Systems\ of\ Lin ear\ DEs$

A linear Differential equation is an equation of the form:

$$a_n(t)x^{(n)} + \dots + a_1(t)x' + a_0(t)x = f(t).$$

The equation becomes homogeneous when f(t) = 0.

A system of linear DEs would be in the form:²

$$\begin{cases} \frac{\mathrm{d}x_1}{\mathrm{d}t} = a_{11}(t)x_1 + a_{12}(t)x_2 + \dots + a_{1n}(t)x_n \\ \frac{\mathrm{d}x_2}{\mathrm{d}t} = a_{21}(t)x_1 + a_{22}(t)x_2 + \dots + a_{2n}(t)x_n \\ \vdots \\ \frac{\mathrm{d}x_n}{\mathrm{d}t} = a_{n1}(t)x_1 + a_{n2}(t)x_2 + \dots + a_{nn}(t)x_n \end{cases}$$

In vector form the system is expressed as

$$\frac{\mathrm{d}\vec{\mathbf{x}}}{\mathrm{d}t} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & & \ddots & \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \vec{\mathbf{x}} \quad \text{where} \quad \vec{\mathbf{x}} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \quad \text{given} \quad \vec{\mathbf{x}}_0(t_0) = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix}.$$

Remark

An interesting fact about homogeneous linear DEs is that if the initial condition is ever zero $(\vec{\mathbf{x}}(t_0) = \vec{\mathbf{0}})$ then $\vec{\mathbf{x}}(t) = \vec{\mathbf{0}}$ is a solution to that DE and in fact the only solution due to the uniqueness theorem.

SECTION 11

Fundamental Solutions

For any given system of homogeneous linear DEs there exists a set of n functions such they for a linearly independent basis for a general solution of said DEs, in other words for a given DE there exists a set of vector functions $(\vec{\zeta}_1, \vec{\zeta}_2, \dots, \vec{\zeta}_n)$ such that

$$\vec{\mathbf{x}}(t) = c_1 \vec{\boldsymbol{\zeta}}_1(t) + c_2 \vec{\boldsymbol{\zeta}}_2(t) + \dots + c_n \vec{\boldsymbol{\zeta}}_n(t) \quad \text{where} \quad c_{1,2,\dots,n} \in \mathbb{R}.$$

² We assume that all a_{ij} are continuous on the interval of study

We define the fundamental matrix of the system

$$X = (\vec{\zeta}_1 \ \vec{\zeta}_2 \dots \vec{\zeta}_n) = \begin{pmatrix} \zeta_{11} \ \zeta_{12} \dots \zeta_{1n} \\ \zeta_{21} \ \zeta_{22} \dots \zeta_{2n} \\ \vdots \\ \zeta_{n1} \ \zeta_{n2} \dots \zeta_{nn} \end{pmatrix}.$$

The system can be written in terms of X as

$$\frac{\mathrm{d}X}{\mathrm{d}t} = AX.$$

Remark The fundamental solutions are linearly independent $\implies \det(X) \neq 0$

Subsection 11.1

Wronskian of vector functions

Consider the vector functions:

$$\vec{\phi}_1(t) = \begin{pmatrix} \phi_{11}(t) \\ \phi_{21}(t) \\ \vdots \\ \phi_{n1}(t) \end{pmatrix} \quad \cdots \quad \vec{\phi}_n(t) = \begin{pmatrix} \phi_{1n}(t) \\ \phi_{2n}(t) \\ \vdots \\ \phi_{nn}(t) \end{pmatrix}.$$

The Wronskian is defined to the determinant:

$$W(\vec{\phi}_{1}, \vec{\phi}_{2}, \cdots, \vec{\phi}_{n}) = \begin{vmatrix} \phi_{11} & \phi_{12} & \cdots & \phi_{1n} \\ \phi_{21} & \phi_{22} & \cdots & \phi_{2n} \\ \vdots & & \ddots & \\ \phi_{n1} & \phi_{n2} & \cdots & \phi_{nn} \end{vmatrix}.$$

If the Wronskian = 0 then the functions $(\vec{\phi}_1, \vec{\phi}_2, \dots, \vec{\phi}_n)$ are said to be linearly independent.

When dealing with DEs the concept of a Wronskian can be applied to non-vector functions as follows

$$W(\phi_1, \phi_2, \cdots, \phi_n) = \begin{vmatrix} \phi_1 & \phi_2 & \cdots & \phi_n \\ \phi'_1 & \phi'_2 & \cdots & \phi'_n \\ \vdots & & \ddots & \\ \phi_1^{(n-1)} & \phi_2^{(n-1)} & \cdots & \phi_n^{(n-1)} \end{vmatrix}.$$

Section 12

n-the order Homogeneous Linear DE

We define the notation
$$D^n x = \frac{d^n x}{dt^n}$$
.

An n-the order linear DE is any equation of the form:

$$D^{n} x + a_{1}(t)D^{n-1} x + \dots + a_{n-1}(t)D x + a_{n}(t)x = 0.$$

We can then write the equation in vector form

$$x = x_1$$

$$D x = x_2$$

$$D^2 x = x_3$$

$$\vdots$$

$$D^{n-1} x = x_n$$

$$D^n x = -a_n x_1 - a_{n-1} x_2 - \dots - a_1 x_n$$

and we take

$$\vec{\mathbf{x}} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} x \\ D x \\ \vdots \\ D^{n-1} x \end{pmatrix}.$$

then we can write the system as

$$\frac{d\vec{\mathbf{x}}}{dt} = A\vec{\mathbf{x}} \quad \text{where} \quad A = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & & & \ddots & \\ 0 & 0 & 0 & \cdots & 1 \\ -a_n & -a_{n-1} & \cdots & \cdots & -a_1 \end{pmatrix}.$$

Subsection 12.1

DE from a Set of Fundamental Solutions

Given a set of fundamental solutions $(\zeta_1, \zeta_2, \dots, \zeta_n)$, due to the uniqueness theorem those solutions only satisfy one DE. To find that DE we simply compute

$$W(x,\zeta_1,\zeta_2,\ldots,\zeta_n) = \begin{vmatrix} x & \zeta_1 & \cdots & \zeta_n \\ D & x & D & \zeta_1 & \cdots & D & \zeta_n \\ \vdots & & \ddots & & \\ D^n & x & D^n & \zeta_1 & \cdots & D^n & \zeta_n \end{vmatrix} = 0.$$

Example | Given the fundamental set of solutions $(e^{\omega t}, e^{-\omega t})$, find the second order

| homogeneous equation for that set of solutions:

$$W(x, e^{\omega t}, e^{-\omega t}) = 0$$

$$\implies \begin{vmatrix} x & e^{\omega t} & e^{-\omega t} \\ x' & \omega e^{\omega t} & -\omega e^{-\omega t} \\ x'' & \omega^2 e^{\omega t} & \omega^2 e^{-\omega t} \end{vmatrix} = 0$$

$$\implies x'' - \omega^2 x = 0.$$

$egin{aligned} Non-Homogeneous \ Systems \ of \ Linear \ DEs \end{aligned}$

PART

IX

A system of Non-homogeneous DE is a system of the form

$$\begin{cases} \frac{\mathrm{d}x_1}{\mathrm{d}t} = a_{11}(t)x_1 + a_{12}(t)x_2 + \dots + a_{1n}(t)x_n + b_1(t) \\ \frac{\mathrm{d}x_2}{\mathrm{d}t} = a_{21}(t)x_1 + a_{22}(t)x_2 + \dots + a_{2n}(t)x_n + b_2(t) \\ \vdots \\ \frac{\mathrm{d}x_n}{\mathrm{d}t} = a_{n1}(t)x_1 + a_{n2}(t)x_2 + \dots + a_{nn}(t)x_n + b_n(t) \end{cases}$$

or in matrix form

$$\frac{\mathrm{d}\vec{\mathbf{x}}}{\mathrm{d}t} = A\vec{\mathbf{x}} + \vec{\mathbf{b}}.$$

Section 13

General Solution Formula

The general formula for a non-homogeneous DE is given by the general solution and the particular solution

$$\vec{\mathbf{x}} = \vec{\mathbf{x}}_g(t) + \vec{\mathbf{x}}_p(t).$$

Where

$$\vec{\mathbf{x}}_g(t) = X(t)\vec{\mathbf{k}}$$

$$\vec{\mathbf{x}}_p(t) = X(t) \int_{t_0}^t X^{-1}(u)\vec{\mathbf{b}}(u) du$$

 $\vec{\mathbf{x}}_g(t)$ is the solution to the DE if $\vec{\mathbf{b}}(t) = 0$

Where X is the solution to

$$\frac{\mathrm{d}\vec{\mathbf{x}}}{\mathrm{d}t} = A\vec{\mathbf{x}}.$$

Let us denote

$$X(t)X^{-1}(t_0) = V(t, t_0).$$

We can prove that

$$X(t) = V(t, t_0).$$

Remark

1.
$$V(t_1, t_2)V(t_2, t_3) = V(t_1, t_3)$$

2.
$$V(t_1, t_1) = I$$

Thus we can write the solution to be

$$\vec{\mathbf{x}}(t) = V(t, t_0)\vec{\mathbf{x}}(t_0) + \int_{t_0}^t V(t, u)\vec{\mathbf{b}}(u) du.$$

The solution of the equation of the form

$$\sum_{k=0}^{n} a_k(t) \mathcal{D}^{n-k} x = b(t).$$

along with its homogeneous form (b(t) = 0) with initial conditions $x(t_0) = c_1, D x = c_2, \dots, D^{n-1} x (t_0) = c_n$ have a solution given by the formula

$$x(t) = u_1(t, t_0)x(t_0) + u_2(t, t_0)D x(t_0) + \dots + u_nD^{n-1}x(t_0)$$
.

Where $(u_1, u_2, ..., u_n)$ are the fundamental solutions to the homogeneous equation verifying $D^{j-1}u_i(t_0, t_0) = \delta_{ij}$.

$$\delta_{ij} = \begin{cases} 0 & \text{if } i \neq j \\ 1 & \text{if } i = j \end{cases}$$

Section 14

Method of Variation of Constant

In this method we look for solutions of the equation of the form

$$x = z_1 x_1 + z_2 x_2 + \dots + z_n x_n$$
.

Where z_i are a function of t. We are looking for a solution verifying $\sum_{i=1}^{n} D z_i D^j x_i = 0$ for j = 0, 1, ..., n-2

At this point the course become extremely useless and redundant so I'll just cut to the chase here.

Section 15

Systems of Differential Equations

PART

X

Consider a system of first order differential equations (S)

$$\begin{cases} \frac{\mathrm{d}x_1}{\mathrm{d}t} = a_{11}(t)x_1 + a_{12}(t)x_2 + \dots + a_{1n}(t)x_n + b_1(t) \\ \frac{\mathrm{d}x_2}{\mathrm{d}t} = a_{21}(t)x_1 + a_{22}(t)x_2 + \dots + a_{2n}(t)x_n + b_2(t) \\ \vdots \\ \frac{\mathrm{d}x_n}{\mathrm{d}t} = a_{n1}(t)x_1 + a_{n2}(t)x_2 + \dots + a_{nn}(t)x_n + b_n(t) \end{cases}$$

in matrix form the equation can be written as

$$\frac{\mathrm{d}\vec{\mathbf{x}}}{\mathrm{d}t} = A\vec{\mathbf{x}} + \vec{\mathbf{b}}.$$

and the initial condition can be written as

$$\vec{\mathbf{x}}_0(t_0) = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix}.$$

Section 16

Solving The System of DEs

There 3 main ways of solving systems of DEs:

- 1. Laplace Transform
- 2. Change of Basis
- 3. Solving Matrix Formula

Remark Let A be a diagonalizable matrix

$$A = PDP^{-1}$$
.

so we define that

$$e^{At} = Pe^{Dt}P^{-1}.$$

or in other words

$$e^{At} = P \begin{pmatrix} e^{\lambda_1 t} & 0 & 0 & 0 \\ 0 & e^{\lambda_2 t} & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & e^{\lambda_n t} \end{pmatrix} P^{-1}.$$

Subsection 16.1

Change of Basis

We consider a new system of DEs to be

$$\frac{\mathrm{d}\vec{\mathbf{y}}}{\mathrm{d}t} = P^{-1}AP\vec{\mathbf{y}} + P^{-1}\vec{\mathbf{b}}.$$

which simplifies to

$$\frac{\mathrm{d}\vec{\mathbf{y}}}{\mathrm{d}t} = D\vec{\mathbf{y}} + \vec{\mathbf{B}}.$$

in this new system we can solve for \vec{y}

$$\begin{cases} \frac{\mathrm{d}y_1}{\mathrm{d}t} = \lambda_1 y_1 + B_1 \\ \frac{\mathrm{d}y_2}{\mathrm{d}t} = \lambda_2 y_2 + B_2 \\ \vdots \\ \frac{\mathrm{d}y_n}{\mathrm{d}t} = \lambda_n y_n + B_n \end{cases}$$

Remark The solution to a differential equation of the form

$$\frac{\mathrm{d}y}{\mathrm{d}t} = \alpha y + \beta.$$

is

$$y = c_1 e^{\alpha t} - \frac{\beta}{\alpha}.$$

after we find the solution to the new system, we can simply obtain the solution to the original system by

$$\vec{\mathbf{x}} = P\vec{\mathbf{y}}$$
.

and by substituting t_0 in $\vec{\mathbf{x}}$ we can solve for the constant terms (c_1, c_2, \dots, c_n) using $\vec{\mathbf{x}}_0$.

Subsection 16.2

Solving Matrix Formula

The formula for a system of first order equations is

$$\vec{\mathbf{x}} = \vec{\mathbf{x}}_h + \vec{\mathbf{x}}_p.$$

$$-20 -$$

Where

$$\vec{\mathbf{x}}_h = V(t, t_0) \vec{\mathbf{x}}_0$$
$$\vec{\mathbf{x}}_p = \int_{t_0}^t V(t, u) \vec{\mathbf{b}}(u) \, \mathrm{d}u$$

where

$$V(t, t_0) = X(t)X^{-1}(t_0).$$

if t = 0 then the formula becomes

$$\vec{\mathbf{x}} = e^{At}\vec{\mathbf{x}}_0 + \int_0^t e^{A(t-u)}\vec{\mathbf{b}}(u) \,\mathrm{d}u.$$

Section 17

Fundamental Solutions

For any given system of homogeneous linear DEs there exists a set of n functions such they for a linearly independent basis for a general solution of said DEs, in other words for a given DE there exists a set of vector functions $(\vec{\zeta}_1, \vec{\zeta}_2, \dots, \vec{\zeta}_n)$ such that

$$\vec{\mathbf{x}}(t) = c_1 \vec{\boldsymbol{\zeta}}_1(t) + c_2 \vec{\boldsymbol{\zeta}}_2(t) + \dots + c_n \vec{\boldsymbol{\zeta}}_n(t)$$
 where $c_{1,2,\dots,n} \in \mathbb{R}$.

We define the fundamental matrix of the system

$$X = (\vec{\zeta}_1 \ \vec{\zeta}_2 \dots \vec{\zeta}_n) = \begin{pmatrix} \zeta_{11} \ \zeta_{12} \dots \zeta_{1n} \\ \zeta_{21} \ \zeta_{22} \dots \zeta_{2n} \\ \vdots & \ddots \\ \zeta_{n1} \ \zeta_{n2} \dots \zeta_{nn} \end{pmatrix}.$$

The system can be written in terms of X as

$$\frac{\mathrm{d}X}{\mathrm{d}t} = AX.$$

Remark The fundamental solutions are linearly independent $\implies \det(X) \neq 0$

Subsection 17.1

Wronskian of vector functions

Consider the vector functions:

$$\vec{\phi}_1(t) = \begin{pmatrix} \phi_{11}(t) \\ \phi_{21}(t) \\ \vdots \\ \phi_{n1}(t) \end{pmatrix} \qquad \cdots \qquad \vec{\phi}_n(t) = \begin{pmatrix} \phi_{1n}(t) \\ \phi_{2n}(t) \\ \vdots \\ \phi_{nn}(t) \end{pmatrix}.$$

The Wronskian is defined to the determinant:

$$W(\vec{\phi}_{1}, \vec{\phi}_{2}, \cdots, \vec{\phi}_{n}) = \begin{vmatrix} \phi_{11} & \phi_{12} & \cdots & \phi_{1n} \\ \phi_{21} & \phi_{22} & \cdots & \phi_{2n} \\ \vdots & & \ddots & \\ \phi_{n1} & \phi_{n2} & \cdots & \phi_{nn} \end{vmatrix}.$$

If the Wronskian = 0 then the functions $(\vec{\phi}_1, \vec{\phi}_2, \dots, \vec{\phi}_n)$ are said to be linearly independent.

When dealing with DEs the concept of a Wronskian can be applied to non-vector functions as follows

$$W(\phi_1, \phi_2, \cdots, \phi_n) = \begin{vmatrix} \phi_1 & \phi_2 & \cdots & \phi_n \\ \phi'_1 & \phi'_2 & \cdots & \phi'_n \\ \vdots & & \ddots & \\ \phi_1^{(n-1)} & \phi_2^{(n-1)} & \cdots & \phi_n^{(n-1)} \end{vmatrix}.$$

Section 18

Solving *n*-th order Homogeneous Linear DE

We define the notation $D^n x = \frac{d^n x}{dt^n}$.

An *n*-the order linear DE is any equation of the form:

$$D^{n} x + a_{1}(t)D^{n-1} x + \dots + a_{n-1}(t)D x + a_{n}(t)x = 0.$$

We can then write the equation in vector form

$$x = x_1$$

$$D x = x_2$$

$$D^2 x = x_3$$

$$\vdots$$

$$D^{n-1} x = x_n$$

$$D^n x = -a_n x_1 - a_{n-1} x_2 - \dots - a_1 x_n$$

and we take

$$\vec{\mathbf{x}} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} x \\ D x \\ \vdots \\ D^{n-1} x \end{pmatrix}.$$

then we can write the system as

$$\frac{d\vec{\mathbf{x}}}{dt} = A\vec{\mathbf{x}} \quad \text{where} \quad A = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & & & \ddots & \\ 0 & 0 & 0 & \cdots & 1 \\ -a_n & -a_{n-1} & \cdots & \cdots & -a_1 \end{pmatrix}.$$

Subsection 18.1

DE from a Set of Fundamental Solutions

Given a set of fundamental solutions $(\zeta_1, \zeta_2, \dots, \zeta_n)$, due to the uniqueness theorem those solutions only satisfy one DE. To find that DE we simply compute

$$W(x,\zeta_1,\zeta_2,\ldots,\zeta_n) = \begin{vmatrix} x & \zeta_1 & \cdots & \zeta_n \\ D & x & D & \zeta_1 & \cdots & D & \zeta_n \\ \vdots & & \ddots & \\ D^n & x & D^n & \zeta_1 & \cdots & D^n & \zeta_n \end{vmatrix} = 0.$$

Example | Given the fundamental set of solutions $(e^{\omega t}, e^{-\omega t})$, find the second order homogeneous equation for that set of solutions:

$$W(x, e^{\omega t}, e^{-\omega t}) = 0$$

$$\implies \begin{vmatrix} x & e^{\omega t} & e^{-\omega t} \\ x' & \omega e^{\omega t} & -\omega e^{-\omega t} \\ x'' & \omega^2 e^{\omega t} & \omega^2 e^{-\omega t} \end{vmatrix} = 0$$

$$\implies x'' - \omega^2 x = 0.$$

Subsection 18.2

Method of Variation of constants