Calculate the output voltage of an op-amp summing amplifier for the following sets of voltages and resistors. Use $R_f = 1 \,\mathrm{M}\Omega$ in all cases.

a.
$$V_1 = +1 \text{ V}, V_2 = +2 \text{ V}, V_3 = +3 \text{ V}, R_1 = 500 \text{ k}\Omega, R_2 = 1 \text{ M}\Omega, R_3 = 1 \text{ M}\Omega.$$

b. $V_1 = -2 \text{ V}, V_2 = +3 \text{ V}, V_3 = +1 \text{ V}, R_1 = 200 \text{ k}\Omega, R_2 = 500 \text{ k}\Omega, R_3 = 1 \text{ M}\Omega.$
Determine v_0 in the op amp circuit shown in given Fig.

Calculate v_0 in the circuit of following Fig.

Calculate v_0 and i_0 in the op amp circuit in Fig.

- 5. Design an op amp circuit with inputs v_1 and v_2 such that $v_0 = -5v_1 + 3v_2$.
- Obtain *io* in the instrumentation amplifier circuit of Fig. 6.

If $v_1 = 7$ V and $v_2 = 3.1$ V, find v_0 in the op amp circuit of Fig.

