

Report No.: SZAWW191106020-01 FCC ID: 2ACAL-ABCONN02 Page 1 of 41

FCC TEST REPORT

Client Name : Beijing April Brother Technology Co.Ltd.

Address B12S, Block B2, Cheng Ming Building, No.2 Xizhimen

South Road, Xicheng District, Beijing, China

Product Name : AprilBeacon N02

Date : Nov. 25, 2019

Shenzhen Anbotek Compliance Laboratory Limited

FCC ID: 2ACAL-ABCONN02

Page 2 of 41

Contents

1. General Information						A0-	5
1.1. Client Information	Marin Mark		otek	up.		y pobo	5
1.2. Description of Device (EUT) 1.3. Auxiliary Equipment Used During	Anbr		au otek	Aupore			, pos
1.3. Auxiliary Equipment Used During	Test		<u></u>		An		e
1.4. Description of Test Modes	Y	oo ^{ter}	Anv		itél ^k	vupo,	б
1.5. List of channels					Yay		6
1.6. Description Of Test Setup			2000	ye. P			7
1.7. Test Equipment List	aboter	Ans	V	Hootek	Anbo,		8
1.7. Test Equipment List	deotek	Anbo			pobołe	Von	9
1.9. Description of Test Facility		14	bore	bu.		otek Ar	, C
2. Summary of Test Results	P.O.		···/poter	Anbo		-6016k	10
3. Conducted Emission Test	Dilip		otok	pupo.			11
3.1. Test Standard and Limit	,tek	upo, ,		,,,	too _{fer.}	Anb	11
3.2. Test Setup		hooten	Anb		- Spotek	Vilpor	11
3.3. Test Procedure	Up.		e _k	(p.o.,		<u> </u>	11
4. Radiation Spurious Emission and Band I	Edge	P10	·····	- Thotek	Anbi		12
4.1. Test Standard and Limit		016/4	Aupo.		e/- h	,bole	12
4.2. Test Setup							12
4.3. Test Procedure				er 40	0~		13
4.4. Test Data	too _{ter}	Anb		orek	*upo,		14
5. Maximum Peak Output Power Test	- Sotek	*upo,			All Dies	Anb	22
5.1. Test Standard and Limit5.2. Test Setup			oler	Ans		rej _k huj	22
5.2. Test Setup	Anb	.ev	botek	Pupo,		VO/A	22
5.2. Test Setup	······bupo						22
6. 6DB Occupy Bandwidth Test		Motek	Anbo				25
6.1. Test Standard and Limit	00		Y	Ole	A		25
6.2. Test Setup	Hupo _{le}	An-		"Thotele	Anbo	W	25
6.3. Test Procedure	Antotek	4774	- OK	Mayoda	Kupo,	bil.	25
6.4 lest Data							7
7. Power Spectral Density Test	by.	V970~	Anboten	Ands	10X	- abotek	28
7.1. Test Standard and Limit	04	- + e /c		e pob	O. At	Pri.	28
7.2. Test Setup	016 K	40/00,	Po.	oleye	11001e	Anv	28
7.3. Test Procedure	Voyok	Althore,	VUD		- Anbotek	bupo.	28
7.4. Test Data	YUN TOK	200	ste ^k p	upo.	h.	2 <i>d</i> 174	28
8. 100kHz Bandwidth of Frequency Band E	Edge Req	uirement	Yerod.	Vipose.	An	ately a	31
8.1. Test Standard and Limit		P.		VUDate,	104	20 E	31
8.2. Test Setup	,	oter	Anbo		,,e/	Moro	31
Show Autotale Committee of the section of the	A a al				Cada	AD DE OF	_

Report No.: SZAWW191106020-01	FCC ID: 2ACAL-ABCONN02	Page 3 of 41
8.3. Test Procedure	7000	31
8.4. Test Data	Pur Pur	31
9. Antenna Requirement	hotek Anbor A	35
9.1. Test Standard and Requirement	Pr. Marek Subotes	35
9.2. Antenna Connected Construction	Yun. Yk	35
APPENDIX I TEST SETUP PHOTOGRAPH	lek Vupo, Indiana	36
APPENDIX II EXTERNAL PHOTOGRAPH		37
APPENDIX III INTERNAL PHOTOGRAPH		nek no

Report No.: SZAWW191106020-01 FCC ID: 2ACAL-ABCONN02 Page 4 of 41

TEST REPORT

Applicant : Beijing April Brother Technology Co.Ltd.

Manufacturer : Beijing April Brother Technology Co.Ltd.

Product Name : AprilBeacon N02

Model No. : AprilBeacon N02-01

Trade Mark : N.A.

Rating(s) : Input: DC 3V, 800 mAh

Test Standard(s) : FCC Part15 Subpart C 2018, Section 15.247

Test Method(s) : ANSI C63.10: 2013, KDB558074 D01 DTS Meas Guidance v05

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with the FCC Part 15 Subpart C requirements.

This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Receipt
Date of Test

Nov. 06, 2019
Nov. 06~21, 2019

Prepared By

(Engineer / Dolly Mo)

Reviewer

(Supervisor / Bibo Zhang)

Approved & Authorized Signer

(Manager / Sally Zhang)

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: SZAWW191106020-01 FCC ID: 2ACAL-ABCONN02 Page 5 of 41

1. General Information

1.1. Client Information

Applicant	: Beijing April Brother Technology Co.Ltd.
Address	B12S, Block B2, Cheng Ming Building, No.2 Xizhimen South Road, Xicheng District, Beijing, China
Manufacturer	: Beijing April Brother Technology Co.Ltd.
Address	B12S, Block B2, Cheng Ming Building, No.2 Xizhimen South Road, Xicheng District, Beijing, China
Factory	: Beijing April Brother Technology Co.Ltd.
Address	B12S, Block B2, Cheng Ming Building, No.2 Xizhimen South Road, Xicheng District, Beijing, China

1.2. Description of Device (EUT)

Product Name	:	AprilBeacon N02	
Model No.	:	AprilBeacon N02-01	Anbotek Anbotek Anbotek Anbote
Trade Mark	:	N.A.	Anbotek Anbotek Anbotek Anb
Test Power Supply	:	DC 3V battery inside	ek Anbotek Anbotek Anbotek
Test Sample No.	:	1-2-1(Normal Sample), 1-2-2(Engineering Sample)
		Operation Frequency:	2402~2480MHz
		Transfer Rate:	1 Mbits/s
Product		Number of Channel:	40 Channels
Description	•	Modulation Type:	GFSK Annotes
		Antenna Type:	PCB Antenna
		Antenna Gain(Peak):	1.2 dBi

Remark: 1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

Report No.: SZAWW191106020-01 FCC ID: 2ACAL-ABCONN02 Page 6 of 41

1.3. Auxiliary Equipment Used During Test

N/A	Anbore	Ann	abotek	Anbo	hotek.	Anbore
	-otek					

1.4. Description of Test Modes

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description
Mode 1	CH00
Mode 2	CH19 TX+ Charging Mode/TX Only
Mode 3	CH39

Note:

- (1) The measurements are performed at the highest, middle, lowest available channels.
- (2) The data rate was set in 1Mbps for radiated emission due to the highest RF output power.

1.5. List of channels

	1.6			14	3,-	71,	*6*	- 170	
Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
00	2402	09	2420	18	2438	27	2456	36	2474
01	2404	10	2422	19	2440	28	2458	37	2476
02	2406	11	2424	20	2442	29	2460	38	2478
03	2408	12	2426	21,,,,,,	2444	30	2462	39	2480
04	2410	13	2428	xe ³ 22 ⋈	2446	31	2464		
05	2412	14	2430	23	2448	32	2466		100
06	2414	15 And	2432	24	2450	33	2468		
07	2416	16	2434	25	2452	34	2470		
08	2418	17	2436	26	2454	35	2472		

Note:

- 1. The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.
- 2. EUT built-in battery-powered, fully-charged battery use of the test battery.

Hotline 400-003-0500

FCC ID: 2ACAL-ABCONN02

Page 7 of 41

1.6. Description Of Test Setup

RE

Shenzhen Anbotek Compliance Laboratory Limited

400-003-0500

Report No.: SZAWW191106020-01 FCC ID: 2ACAL-ABCONN02

1.7. Test Equipment List

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interva
1.	L.I.S.N. Artificial Mains Network	Rohde & Schwarz	ENV216	100055	Nov. 04, 2019	1 Year
2.	EMI Test Receiver	Rohde & Schwarz	ESPI3	101604	Nov. 04, 2019	1 Year
3.	RF Switching Unit	Compliance Direction	RSU-M2	38303	Nov. 04, 2019	1 Year
4.75	MAX Spectrum Analysis	Agilent	N9020A	MY51170037	Nov. 04, 2019	1 Year
5.	Preamplifier	SKET Electronic	BK1G18G30 D	KD17503	Nov. 04, 2019	1 Year
6.	Double Ridged Horn Antenna	Instruments corporation	GTH-0118	351600	Nov. 01, 2019	1 Year
7.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	VULB 9163-289	Nov. 01, 2019	1 Year
8.	Loop Antenna	Schwarzbeck	FMZB1519B	00053	Nov. 01, 2019	1 Year
9.	Horn Antenna	A-INFO	LB-180400-K F	J211060628	Nov. 01, 2019	1 Year
10.	Pre-amplifier	SONOMA	310N	186860	Nov. 04, 2019	1 Year
11.	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	N/A	N/A
12.	RF Test Control System	YIHENG	YH3000	2017430	Nov. 04, 2019	1 Year
13.	Power Sensor	DAER	RPR3006W	15I00041SN045	Nov. 04, 2019	1 Year
14.	Power Sensor	DAER	RPR3006W	15I00041SN046	Nov. 04, 2019	1 Year
15.	MXA Spectrum Analysis	Agilent	N9020A	MY51170037	Nov. 04, 2019	1 Year
16.	MXG RF Vector Signal Generator	Agilent	N5182A	MY48180656	Nov. 04, 2019	1 Year
17.	Signal Generator	Agilent	E4421B	MY41000743	Nov. 04, 2019	1 Year
18.	DC Power Supply	LW	TPR-6420D	374470	Nov. 04, 2019	1 Year
19.	Constant Temperature Humidity Chamber	ZHONGJIAN	ZJ-KHWS80 B	N/A	Nov. 04, 2019	1 Year

Report No.: SZAWW191106020-01 FCC ID: 2ACAL-ABCONN02 Page 9 of 41

1.8. Measurement Uncertainty

Radiation Uncertainty	:	Ur = 3.9 dB (Horizontal)	Anbore	Pur apolek	Aupoten
		Ur = 3.8 dB (Vertical)	Aupo.	k anbotek	Anbore.
		and thotak Autor	ek Anbo	otek nabotek	Anboro
Conduction Uncertainty	:	Uc = 3.4 dB	poten And	hotek Anbote	anbox

1.9. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 184111

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registed and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No. 184111, September 27, 2019.

ISED-Registration No.: 8058A

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (ISED) Innovation, Science and Economic Development Canada. The acceptance letter from the ISED is maintained in our files. Registration 8058A, March 07, 2019.

Test Location

Shenzhen Anbotek Compliance Laboratory Limited.

1/F, Building D, Sogood Science and Technology Park, Sanwei community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.518102

Code:AB-RF-05-a

Hotline 400-003-0500 www.anbotek.com

Report No.: SZAWW191106020-01 FCC ID: 2ACAL-ABCONN02 Page 10 of 41

2. Summary of Test Results

Standard Section Test Item	
Antenna Requirement	PASS
Conducted Emission	N/A
Spurious Emission	PASS
Conducted Peak Output Power	PASS
6dB Occupied Bandwidth	PASS
Power Spectral Density	PASS
Band Edge	PASS
	Antenna Requirement Conducted Emission Spurious Emission Conducted Peak Output Power 6dB Occupied Bandwidth Power Spectral Density

Report No.: SZAWW191106020-01 FCC ID: 2ACAL-ABCONN02 Page 11 of 41

3. Conducted Emission Test

3.1. Test Standard and Limit

Test Standard	FCC Part15 Section 15.2	07 _{rek} Anborek Anbo						
Test Limit	Fraguenay	Maximum RF Line Voltage (dBuV)						
	Frequency	Quasi-peak Level	Average Level					
	150kHz~500kHz	66 ~ 56 *	56 ~ 46 *					
	500kHz~5MHz	56	46 Amodek					
	5MHz~30MHz	60 sek	50 Anbotek					

Remark: (1) *Decreasing linearly with logarithm of the frequency.

(2) The lower limit shall apply at the transition frequency.

3.2. Test Setup

3.3. Test Procedure

The EUT system is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC line are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to FCC ANSI C63.10-2013 on Conducted Emission Measurement.

The bandwidth of test receiver (ESCI) set at 9kHz.

The frequency range from 150kHz to 30MHz is checked.

3.4. Test Data

The EUT is powered by DC 3V battery inside, so there is no need to conduct this test.

Hotline 400-003-0500 www.anbotek.com

Report No.: SZAWW191106020-01 FCC ID: 2ACAL-ABCONN02

4. Radiation Spurious Emission and Band Edge

4.1. Test Standard and Limit

Test Standard	FCC Part15 C Section 1	5.209 and 15.205			
	Frequency Field strength Limit (MHz) (microvolt/meter) (dBuV/m)		Remark	Measurement distance (m)	
	0.009MHz~0.490MHz	2400/F(kHz) -		Anbotek	300
	0.490MHz-1.705MHz 24000/F(kHz)		K Pun	Anhotek	30
	1.705MHz-30MHz	30	rek aboye	Anbotek	30
Test Limit	30MHz~88MHz	100	40.0	Quasi-peak	3
	88MHz~216MHz	150	43.5	Quasi-peak	3
	216MHz~960MHz	200	46.0	Quasi-peak	Anbor 3
	960MHz~1000MHz	500	54.0	Quasi-peak	Anbor 3
	A h 4000MI I-	500	54.0	Average	Arnba atek
	Above 1000MHz	Anbotek Anbo	74.0	Peak	3

Remark:

- (1) The lower limit shall apply at the transition frequency.
- (2) 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

4.2. Test Setup

Figure 1. Below 30MHz

Report No.: SZAWW191106020-01

FCC ID: 2ACAL-ABCONN02

Page 13 of 41

Ant. feed point

Metal Full Soldered Ground Plane

System Simulator

Spectrum Analyzer / Receiver

Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

4.3. Test Procedure

For below 1GHz: The EUT is placed on a turntable, which is 0.8m above the ground plane.

For above 1GHz: The EUT is placed on a turntable, which is 1.5m above the ground plane.

The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT is set 3 meters away from the receiving antenna which is mounted on a antenna tower. The antenna can be moved up and down from 1 to 4 meters to find out the maximum emission level. Rotated the EUT through three orthogonal axes to determine the maximum emissions, both horizontal and vertical polarization of the antenna are set on test. The EUT is tested in 9*6*6 Chamber. The device is evaluated in xyz orientation.

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: SZAWW191106020-01 FCC ID: 2ACAL-ABCONN02 Page 14 of 41

For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

For 9kHz to 150kHz, Set the spectrum analyzer as:

RBW = 200Hz, VBW =1kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For 150kHz to 30MHz, Set the spectrum analyzer as:

RBW = 9KHz, VBW =30kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For 30MHz to 1000MHz, Set the spectrum analyzer as:

RBW = 100kHz, VBW =300kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For above 1GHz, Set the spectrum analyzer as:

RBW =1MHz, VBW =1MHz, Detector= Peak, Trace mode= Max hold, Sweep- auto couple.

RBW =1MHz, VBW =10Hz, Detector= Average, Trace mode= Max hold, Sweep- auto couple.

4.4. Test Data

PASS

During the test, pre-scan all the modes, and found the Middle channel(TX Only) which is the worst case, only the worst case is recorded in the report.

The test results of 9kHz-30MHz was attenuated more than 20dB below the permissible limits, so the results don't record in the report.

Report No.: SZAWW191106020-01 FCC ID: 2ACAL-ABCONN02 Page 15 of 41

Test Results (30~1000MHz)

Test Mode: Mode 2

Power Source: DC 3V battery inside

Polarization: Horizontal

Temp.(°C)/Hum.(%RH): 22.2°C/51%RH

Report No.: SZAWW191106020-01 FCC ID: 2ACAL-ABCONN02 Page 16 of 41

Test Results (30~1000MHz)

Test Mode: Mode 2

Power Source: DC 3V battery inside

Polarization: Vertical

Temp.(℃)/Hum.(%RH): 22.2℃/51%RH

Report No.: SZAWW191106020-01 FCC ID: 2ACAL-ABCONN02 Page 17 of 41

Test Results (1GHz-25GHz)

Test Mode:	CH00			Test	channel: Low	vest		
			F	Peak Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol
4804.00	38.48	34.04	6.58	34.09	45.01	74.00	-28.99	V
7206.00	32.61	37.11	7.73	34.50	42.95	74.00	-31.05	V
9608.00	32.16	39.31	9.23	34.79	45.91	74.00	-28.09	V
12010.00	Anb*tek	Vupo.	k apoli	J. Aup.	No. Vun	74.00	potek p	V
14412.00	Ahborer.	Anbo	otek nat	otek b	Upo, b	74.00	Anbotek	Vupo
4804.00	43.00	34.04	6.58	34.09	49.53	74.00	-24.47	A
7206.00	34.47	37.11	7.73	34.50	44.81	74.00	-29.19	Н
9608.00	31.70	39.31	9.23	34.79	45.45	74.00	-28.55	H
12010.00	Anbo*ek	Aupore	k abote	k Pupo	ler Pubo	74.00	OASK DI	H
14412.00	Augotek Augotek	Aupo.	tek vap	otek bi	Potes VI	74.00	unpotek	Aupo.
	'		Av	verage Valu	е			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol
4804.00	27.07	34.04	6.58	34.09	33.60	54.00	-20.40	ootek
7206.00	21.16	37.11	7.73	34.50	31.50	54.00	-22.50	AnbVie
9608.00	20.17	39.31	9.23	34.79	33.92	54.00	-20.08	V
12010.00	tek *	stek p	Opolon b	hotek	Anbotek	54.00	anbotek.	V
14412.00	nek *	hotek	Aupote	Arm -botek	Anbotek	54.00	, popor	V
4804.00	31.43	34.04	6.58	34.09	37.96	54.00	-16.04	otek H
7206.00	23.41	37.11	7.73	34.50	33.75	54.00	-20.25	Anbotte
9608.00	19.99	39.31	9.23	34.79	33.74	54.00	-20.26	A/H
12010.00	ek *	iek Ar	poter N	Po.	Anbotek	54.00	Andabotek	Н
14412.00	*	botek	Anboten	And	Anbotek	54.00	Pr.	Н

Report No.: SZAWW191106020-01 FCC ID: 2ACAL-ABCONN02 Page 18 of 41

Test Results (1GHz-25GHz)

Test Mode:	CH19			Test	channel: Mid	dle		
			F	Peak Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol
4880.00	37.23	34.38	6.69	34.09	44.21	74.00	-29.79	V
7320.00	31.78	37.22	7.78	34.53	42.25	74.00	-31.75	V
9760.00	31.42	39.46	9.35	34.80	45.43	74.00	-28.57	V
12200.00	Anb*tek	Vupo.	k apoli	anb's	No. Vun	74.00	potek p	V
14640.00	Ahboren	Anbo	otek nat	otek b	Upo, b	74.00	Anbotek	V
4880.00	41.50	34.38	6.69	34.09	48.48	74.00	-25.52	H
7320.00	33.53	37.22	7.78	34.53	44.00	74.00	-30.00	Н
9760.00	30.84	39.46	9.35	34.80	44.85	74.00	-29.15	H
12200.00	Anbo*ek	Aupore	k abote	k Pupo	ler Pubo	74.00	OASK DI	H
14640.00	Andotek	Aupo.	tek vap	otek by	Potes VI	74.00	unpotek	Aupor
			Av	verage Valu	е			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol
4880.00	26.07	34.38	6.69	34.09	33.05	54.00	-20.95	ootek
7320.00	20.48	37.22	7.78	34.53	30.95	54.00	-23.05	AnbV
9760.00	19.56	39.46	9.35	34.80	33.57	54.00	-20.43	V
12200.00	rek *	stek b	Opolon b	hotek	Anbotek	54.00	anbotek.	V
14640.00	nek *	horek	Aupote	Am -botek	Anbotek	54.00	, popor	V
4880.00	30.29	34.38	6.69	34.09	37.27	54.00	-16.73	otek
7320.00	22.65	37.22	7.78	34.53	33.12	54.00	-20.88	Anbotte
9760.00	19.29	39.46	9.35	34.80	33.30	54.00	-20.70	_{AI} H ^c
12200.00	ek too	lek W	poter N	Potek	Anbotek	54.00	Andabotek	Н
14640.00	*	botek	Anbotes	Andrek	Anbotek	54.00	Project Project	Н

Report No.: SZAWW191106020-01 FCC ID: 2ACAL-ABCONN02 Page 19 of 41

Test Results (1GHz-25GHz)

Test Mode:	CH39			Test	channel: Hig	hest		
			F	Peak Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol
4960.00	36.59	34.72	6.79	34.09	44.01	74.00	-29.99	V
7440.00	31.36	37.34	7.82	34.57	41.95	74.00	-32.05	V
9920.00	31.05	39.62	9.46	34.81	45.32	74.00	-28.68	V
12400.00	Anb*tek	Aupor	K upop	ik Aup.	No. Vun	74.00	potek P	V
14880.00	Ahborek	Anbo	otek nat	otek p	Upopo A	74.00	Anborek	V
4960.00	40.73	34.72	6.79	34.09	48.15	74.00	-25.85	H
7440.00	33.05	37.34	7.82	34.57	43.64	74.00	-30.36	Н
9920.00	30.40	39.62	9.46	34.81	44.67	74.00	-29.33	Н
12400.00	anbotek	Anbore	r Per	K Anbo	ler Vupo	74.00	otek A	H
14880.00	Augotek	Aupor	*6/r *0/p	otek Ar	Poter V	74.00	Anbotek	Aupon
200			Av	erage Valu	е	^0	V	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol
4960.00	25.61	34.72	6.79	34.09	33.03	54.00	-20.97	potek
7440.00	20.17	37.34	7.82	34.57	30.76	54.00	-23.24	AnbV
9920.00	19.28	39.62	9.46	34.81	33.55	54.00	-20.45	V
12400.00	* * *	stek A	Upoles A	hotek	Anbotek	54.00	abotek.	V
14880.00	otek *	hbotek	Aupoter	Ann	Anborek	54.00	s anbos	V
4960.00	29.76	34.72	6.79	34.09	37.18	54.00	-16.82	o ^{tek} H
7440.00	22.30	37.34	7.82	34.57	32.89	54.00	-21.11	Hodna
9920.00	18.96	39.62	9.46	34.81	33.23	54.00	-20.77	PANA.
12400.00	* *	lek bi	Poter N	po,	Anbotek	54.00	Andotek	Н
14880.00	*	hotek	Anbotek	Anbo	Anbotek	54.00	Mode	Н

Remark:

- 1. Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*" means the test results were attenuated more than 20dB below the permissible limits, so the results don't record in the report.

Shenzhen Anbotek Compliance Laboratory Limited

Code: AB-RF-05-a

Hotline 400-003-0500 www.anbotek.com

FCC ID: 2ACAL-ABCONN02

Page 20 of 41

Radiated Band Edge:

Report No.: SZAWW191106020-01 FCC ID: 2ACAL-ABCONN02 Page 21 of 41

Remark:

1. Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

400-003-0500 www.anbotek.com

Report No.: SZAWW191106020-01 FCC ID: 2ACAL-ABCONN02

5. Maximum Peak Output Power Test

5.1. Test Standard and Limit

Test Standard	FCC Part15 C Section 15.247 (b)(3)	Anboro	Ame	Anborek
Test Limit	30dBm	Aupor	Air	Anbot

5.2. Test Setup

5.3. Test Procedure

This procedure shall be used when the measurement instrument has available a resolution bandwidth that is greater than the DTS bandwidth.

- 1. Set the RBW ≥DTS bandwidth.
- 2. Set the VBW≥3*RBW.
- 3. Set the span≥ 3*RBW.
- 4. Detector = peak.
- 5. Sweep time = auto couple.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.
- 8. Use peak marker function to determine the peak amplitude level.

5.4. Test Data

Test Item Max. peak output power **Test Mode** CH Low ~ CH High Test Voltage DC 3V battery inside Temperature **24**℃ **PASS** Test Result Humidity 55%RH

Channel Frequency (MHz)	Peak Power output (dBm)	Limit (dBm)	Results
2402	-0.610	30	PASS
2440	-0.356	30	PASS
2480	-0.396	30	PASS

Shenzhen Anbotek Compliance Laboratory Limited

FCC ID: 2ACAL-ABCONN02

Page 23 of 41

CH: Low

CH: Middle

FCC ID: 2ACAL-ABCONN02

Page 24 of 41

CH: High

www.anbotek.com

Address: 1/F., Building D, Sogood Science and Technology Park, Sanwei Community,

Report No.: SZAWW191106020-01 FCC ID: 2ACAL-ABCONN02 Page 25 of 41

6. 6DB Occupy Bandwidth Test

6.1. Test Standard and Limit

Test Standard	FCC Part15 C Section 15.247 (a)(2)	Anbore	Arrabotek	Anbotek
Test Limit	>500kHz	Anbore	Anabotek	Anbore

6.2. Test Setup

6.3. Test Procedure

- 1. Place the EUT on the table and set it in the transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as:

RBW = 100kHz, VBW≥3*RBW =300kHz,

Detector= Peak

Trace mode= Max hold.

Sweep- auto couple.

- 4. Mark the peak frequency and -6dB (upper and lower) frequency.
- 5. Repeat until all the rest channels are investigated.

6.4. Test Data

Test Item : 6dB Bandwidth Test Mode : CH Low \sim CH High Test Voltage : DC 3V battery inside Temperature : 24° C

Test Result : PASS Humidity : 55%RH

Channel	Frequency(MHz)	Bandwidth (kHz)	Limit (kHz)	Results
Low	2402	696.5	Anbotek Anbo	PASS
Middle	2440	689.3	>500	PASS
High	2480	697.4		PASS

Shenzhen Anbotek Compliance Laboratory Limited

Hotline 400-003-0500 www.anbotek.com

FCC ID: 2ACAL-ABCONN02

Page 26 of 41

CH: Low

CH: Middle

FCC ID: 2ACAL-ABCONN02

Page 27 of 41

CH: High

Report No.: SZAWW191106020-01 FCC ID: 2ACAL-ABCONN02 Page 28 of 41

7. Power Spectral Density Test

7.1. Test Standard and Limit

Test Standard	FCC Part15 C Section 15.247 (e)	Anbore	Am	Aupolek
Test Limit	8dBm Mark Mark	Anboro	k spotek	Anbote

7.2. Test Setup

7.3. Test Procedure

- 1. Place the EUT on the table and set it in transmitting mode. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 2. Set the spectrum analyzer as RBW = 3kHz, VBW = 10kHz, Span = 1.5xDTS BW
- 3. Record the max. reading.
- 4. Repeat the above procedure until the measurements for all frequencies are completed.

7.4. Test Data

Test Item : Power Spectral Density : CH Low ~ CH High

Test Voltage : DC 3V battery inside Temperature : 24°C

Test Result : PASS Humidity : 55%RH

	Channel	Frequency	PSD	Limit	Results
Channel		(MHz)	(dBm/3KHz)	(dBm/3KHz)	Results
	Low	2402	-15.502	8.00	PASS
/¢	Middle	2440	-15.300	8.00	PASS
o ^k	High	2480	-15.895	8.00	PASS

Shenzhen Anbotek Compliance Laboratory Limited

Hotline 400-003-0500 www.anbotek.com

FCC ID: 2ACAL-ABCONN02

Page 29 of 41

CH: Low

CH: Middle

FCC ID: 2ACAL-ABCONN02

Page 30 of 41

CH: High

Page 31 of 41 Report No.: SZAWW191106020-01 FCC ID: 2ACAL-ABCONN02

8. 100kHz Bandwidth of Frequency Band Edge Requirement

8.1. Test Standard and Limit

Test Standard	FCC Part15 C Section 15.247 (d)
Test Limit	in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the
	desired power, In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in15.209(a).

8.2. Test Setup

8.3. Test Procedure

Using the following spectrum analyzer setting:

- 1. Set the RBW = 100KHz.
- 2. Set the VBW = 300KHz.
- 3. Sweep time = auto couple.
- 4. Detector function = peak.
- 5. Trace mode = max hold.
- 6. Allow trace to fully stabilize.

8.4. Test Data

Test Item Band edge Test Mode CH Low ~ CH High

24℃ Test Voltage DC 3V battery inside Temperature

Test Result **PASS** Humidity 55%RH

Frequency Band (MHz)	Delta Peak to Band Emission (dBc)	Limit (dBc)	Results	
2400	55.751	>20		
2483.5	57.887	>20	PASS	

Shenzhen Anbotek Compliance Laboratory Limited

Code: AB-RF-05-a

400-003-0500 www.anbotek.com

FCC ID: 2ACAL-ABCONN02

Page 32 of 41

CH: Low

CH: High

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: SZAWW191106020-01 Conducted Emission Method FCC ID: 2ACAL-ABCONN02

Page 33 of 41

CH: Low

CH: Middle

Shenzhen Anbotek Compliance Laboratory Limited

FCC ID: 2ACAL-ABCONN02

Page 34 of 41

CH: High

9. Antenna Requirement

9.1. Test Standard and Requirement

Test Standard	FCC Part15 Section 15.203 /247(c)
Requirement	1) 15.203 requirement: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. 2) 15.247(c) (1)(i) requirement: Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

9.2. Antenna Connected Construction

The antenna is a PCB Antenna which permanently attached, and the best case gain of the antenna is 1.2 dBi. It complies with the standard requirement.

Shenzhen Anbotek Compliance Laboratory Limited

400-003-0500

Report No.: SZAWW191106020-01 FCC ID: 2ACAL-ABCONN02 Page 36 of 41

APPENDIX I -- TEST SETUP PHOTOGRAPH

Photo of Radiation Emission Test

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: SZAWW191106020-01 FCC ID: 2ACAL-ABCONN02 Page 37 of 41

APPENDIX II -- EXTERNAL PHOTOGRAPH

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: SZAWW191106020-01 FCC ID: 2ACAL-ABCONN02 Page 38 of 41

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: SZAWW191106020-01 FCC ID: 2ACAL-ABCONN02 Page 39 of 41

Shenzhen Anbotek Compliance Laboratory Limited

www.anbotek.com

Report No.: SZAWW191106020-01 FCC ID: 2ACAL-ABCONN02 Page 40 of 41

APPENDIX III -- INTERNAL PHOTOGRAPH

Shenzhen Anbotek Compliance Laboratory Limited

FCC ID: 2ACAL-ABCONN02

Page 41 of 41

- End of Report -----

Shenzhen Anbotek Compliance Laboratory Limited

