Customer Segmentation using k-means clustering

June 1, 2025

```
[1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.cluster import KMeans
```

1 Data collection and analysis

```
[3]: df = pd.read_csv('Mall_Customers.csv')
[4]: df.head()
[4]:
                                                      Spending Score (1-100)
        CustomerID Gender Age
                                 Annual Income (k$)
                      Male
                             19
                 1
                                                  15
                 2
                      Male
                             21
                                                  15
                                                                          81
     1
     2
                 3 Female
                             20
                                                  16
                                                                           6
     3
                 4 Female
                             23
                                                  16
                                                                          77
                 5 Female
     4
                             31
                                                  17
                                                                          40
[5]: df.shape
[5]: (200, 5)
[6]: df.info()
```

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 200 entries, 0 to 199

Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	CustomerID	200 non-null	int64
1	Gender	200 non-null	object
2	Age	200 non-null	int64
3	Annual Income (k\$)	200 non-null	int64
4	Spending Score (1-100)	200 non-null	int64

dtypes: int64(4), object(1)

memory usage: 7.9+ KB

```
[7]: df.isnull().sum()
[7]: CustomerID
                                0
     Gender
                                0
     Age
                                0
     Annual Income (k$)
                                0
     Spending Score (1-100)
                                0
     dtype: int64
[8]: x = df.iloc[:,[3,4]].values
     print(x)
    [[ 15 39]
     [ 15
           81]
     [ 16
            6]
     [ 16
           77]
     [ 17
           40]
     [ 17
           76]
     [ 18
            6]
     [ 18
           94]
     [ 19
            3]
     Γ 19
           72]
     [ 19
           14]
     [ 19
           99]
     [ 20
           15]
     [ 20
           77]
     [ 20
           13]
     [ 20
           79]
     [ 21
           35]
     [ 21
           66]
     [ 23
           29]
     [ 23
           98]
     [ 24
           35]
     [ 24
           73]
     [ 25
            5]
     [ 25
           73]
     [ 28
           14]
     [ 28
           82]
     [ 28
           32]
     [ 28
           61]
     [ 29
           31]
     [ 29
           87]
     [ 30
            4]
     [ 30
           73]
     [ 33
            4]
     [ 33 92]
     [ 33
           14]
     [ 33 81]
```

- [34 17]
- [34 73]
- 26] [37
- 75] [37 [38 35]
- [38 92]
- [39 36]
- 61] [39
- [39 28]
- 65] [39
- [40 55]
- [40 47]
- [40 42]
- 42] [40
- 52] [42
- 60] [42
- [43 54]
- [43 60]
- [43 45]
- [43 41]
- [44 50]
- 46] [44
- 51] [46
- [46 46]
- [46 56]
- [46 55]
- 52] [47
- [47 59]
- [48 51]
- [48 59]
- [48 50]
- [48 48]
- 59] [48
- 47] [48
- 55] [49
- 42] [49
- [50 49]
- 56] [50
- [54 47]
- [54 54]
- [54 53]
- [54 48]
- 52] [54
- [54 42]
- [54 51]
- [54 55]
- [54 41]
- 44] [54

- [54 57]
- [54 46]
- [57 58]
- [57 55]
- 60] [58
- [58 46]
- 55] [59
- 41] [59
- [60 49]
- [60 40]
- [60 42]
- [60 52]
- [60 47]
- 50] [60
- [61 42]
- [61 49]
- [62 41]
- [62 48]
- [62 59]
- [62 55]
- 56] [62
- 42] [62
- [63 50] [63 46]
- [63 43] [63
- 48] 52] [63
- [63 54]
- [64 42]
- [64 46]
- [65 48]
- [65 50]
- [65 43]
- [65 59]
- [67 43]
- 57] [67
- [67 56]
- 40] [67
- [69 58]
- [69 91]
- [70 29]
- 77] [70
- [71 35]
- 95] [71
- [71 11]
- [71 75] [71 9]
- [71 75]

- [72 34]
- [72 71]
- [73 5]
- [73 88]
- [73 7]
- [73 73]
- [74 10]
- [74 72]
- [75 5]
- [75 93]
- [76 40]
- [76 87]
- [77 12]
- [77 97]
- [77 36]
- [77 74]
- [78 22]
- [78 90]
- [10 90]
- [78 17]
- [78 88]
- [78 20]
- [78 76]
- [78 16]
- [78 89]
- [78 1]
- [78 78]
- [78 1]
- [78 73]
- [79 35]
- [79 83]
- [81 5]
- [81 93]
- [85 26]
- [85 75]
- [86 20]
- [86 95]
- [87 27]
- [87 63]
- [87 13]
- [87 75]
- [87 10]
- [87 92]
- [88 13]
- [88 86]
- [88 15]
- [88 69]
- [93 14] [93 90]

```
[ 97 32]
[ 97 86]
[ 98 15]
[ 98 88]
[ 99 39]
[ 99 97]
[101 24]
[101 68]
[103 17]
[103 85]
[103 23]
[103 69]
[113
     8]
[113 91]
[120 16]
[120 79]
[126 28]
[126 74]
[137 18]
[137 83]]
```

2 Choosing the number of cluster

```
[10]: #finding wcss values for different number of clusters

wcss = []

for i in range(1,11):
    kmeans = KMeans(n_clusters=i, init= 'k-means++', random_state=42)
    kmeans.fit(x)
    wcss.append(kmeans.inertia_)

[12]: #plot a elbow graph

sns.set()
plt.plot(range(1,11),wcss)
plt.title(' The Elbow point Graph')
plt.xlabel('Number of cluster')
plt.ylabel('WCSS')
plt.show()
```


3 optimum Number of Clusters = 5

#Training the K-means Clustering model

4 Visualizing all the cluster

#ploting all the cluster all their centroids

```
plt.figure(figsize=(8,8))
  plt.scatter(x[Y==0,0],x[Y==0,1], s=50, c='green', label='Cluster 1')
  plt.scatter(x[Y==1,0],x[Y==1,1], s=50, c='red', label='Cluster 2')
  plt.scatter(x[Y==2,0],x[Y==2,1], s=50, c='yellow', label='Cluster 3')
  plt.scatter(x[Y==3,0],x[Y==3,1], s=50, c='blue', label='Cluster 4')
  plt.scatter(x[Y==4,0],x[Y==4,1], s=50, c='violet', label='Cluster 5')

plt.scatter(kmeans.cluster_centers_[:,0], kmeans.cluster_centers_[:,1], s=100, u=c='cyan', label='centroids')

plt.title('Customer Group')
  plt.xlabel('Annual Income')
  plt.ylabel('Spending Score')
  plt.show()
```


[]: