Measurement of the branching fraction of $\eta_c \to 2(\pi^+\pi^-\pi^0)$

Ma Xuning ¹ Wang Zhiyong² Yu Chunxu ¹

¹Nankai Univ.

²IHEP

September 8, 2015

Overview

- $lue{1}$ Measurement of multiplicity of the inclusive decays of η_c
 - Fitting
 - ullet Multiplicity of N_{good} @ different energy points
- $oldsymbol{2}$ Measurement of the Branching Fraction of $\eta_c o \pi^+\pi^-\pi^0$
 - Motivation
 - Data Set
 - Event Selections
 - Optimized Selection

Fit data @ 4260 MeV simultaneously

Fit MC @ 4260 MeV simultaneously

Multiplicity @ 4.23, 4.26, 4.36, 4.42 GeV

Motivation

- The systematic uncertainty of the efficiency of the inclusive decays is essential to measure the branching fraction of $\eta_c \to K_s^0 K^{\pm} \pi^{\mp}$;
- From the above results of multiplicity of N_{good} , we can see that there exists difference between Monto Carlo sample and data;
- The difference between data and Monto Carlo sample leads systematic uncertainty to the efficiency;
- To determine the uncertainty of the efficiency, we measured another decay mode of η_c , which is $\eta_c \to \pi^+\pi^-\pi^0$ which has the largest branching fraction.

Methods

Methods to measure the branching fraction

- We measure the branching fraction of $\eta_c \to 2(\pi^+\pi^-\pi^0)$ via the decays
 - $e^+e^- \to \pi^+\pi^-h_c, h_c \to \gamma\eta_c, \eta_c \to 2(\pi^+\pi^-\pi^0)$ (exclusive mode)
 - $e^+e^- o \pi^+\pi^-h_c, h_c o \gamma\eta_c, \eta_c o X$ (inclusive mode)
- The Branching fraction is

$$Br(\eta_c \to 2(\pi^+\pi^-\pi^0)) = \frac{N_{\text{signal}}^{\text{exclusive}}}{N_{\text{signal}}^{\text{inclusive}}} \bullet \frac{\epsilon^{\text{inclusive}}}{\epsilon^{\text{exclusive}}} \bullet \frac{1}{Br(\pi^0 \to \gamma\gamma) * Br(\pi^0 \to \gamma\gamma)}.$$

- And via this method we can also cancel parts of the system errors.
- However it is a little bit hard to determine the efficiency of inclusive process. So far we have not known all η_c decays well.

Data Sets and Monto Carlo Samples

BOSS version

6.6.4.p01

Data Sets

We currently used the XYZ data at the energy points of

4.23 GeV, 4.26 GeV, 4.36 GeV, 4.42 GeV

Monto Carlo Samples

200K Monto Carlo Samples are generated at each of the four energy points of 4.23 GeV, 4.26 GeV, 4.36 GeV and 4.42 GeV.

Event Selections

Good Charged tracks selections

- $\bullet~V_{xy} < 1 \text{cm},~|V_z| < 10 \text{cm}$ (except for the two tracks from K_S^0)
- $|\cos \theta < 0.93|$
- N_{good} ≥ 6

Good photon selections ($1 \le N_{\gamma} \le 20$)

- $E_{\gamma} > 25 MeV$ for $|\cos \theta| < 0.8$
- $E_{\gamma} > 50 MeV$ for $0.86 < |\cos \theta| < 0.92$
- $0 \le TDC \le 14$ (in unit of 50ns)

Event Selections

π^0 Reconstruction($N_{\pi^0} \geq 2$)

- $0.12 GeV < M_{\gamma\gamma} < 0.15 GeV$;
- 1-C Kinematic Fit

preliminary $\gamma \pi^+ \pi^-$ list

- ullet 3.46 $< m_{\pi^+\pi^-}^{recoil} <$ 3.59 GeV (h_c mass region)
- 2.5 $< m_{\pi^+\pi^-\gamma}^{recoil} <$ 3.4GeV (η_c mass region)

 $3\pi^+$, $3\pi^-$, at least $1\gamma\pi^+\pi^-$ list and at least $2\pi^0$ are required. Combination with the minimum $\chi^2=\chi^2_{4C}+\sum_{i=1}^N\chi^2_{PID}(i)+\sum_{i=1}^2\chi^2_{\pi^0}(i)$ is kept

Optimized Selections

• $3.515 < M_{\pi^+\pi^-}^{recoil} < 3.535 \ (M_{h_c} \pm 3\sigma)$

• The χ^2_{4C} cut is optimized with the figure of merit(FOM) $\frac{S}{\sqrt{S+B}}$

Results after optimized selections

