INTRIDUCTION TO ALGORITHM DESIGN AND ANALYSIS

HOMEWORK 5 REPORT

PART 1

An optimal algorithm to schedule the jobs in decreasing order of w_i/t_i . So, jobs are sorted by decreasing order w_i/t_i . In this algorithm selection sort is used. Suppose that n is number of jobs, time complexity is $O(n^2)$.

PART 2

- **a**) Suppose that M = 20, $\{N1,N2,N3\} = \{2, 5, 3\}$ and $\{S1,S2,S3\} = \{30,4,50\}$. Then the optimal plan would be [NY,NY,NY] and cost of this plan is 2 + 5 + 3 = 10, while this greedy algorithm would return [NY, SF, NY] and cost of this plan is 2 + 20 + 4 + 20 + 3 = 49. So, given algorith is not optimal.
- **b)** The optimal plan either ends in NY, or in SF. If it ends in NY, it will pay N_n plus one of the following two equaitons.
- The cost of the optimal plan on n-1 months, ending in NY, or
- The cost of the optimal on n 1 months, ending in SF.

Thus, if $OPT_N(j)$ denotes the minimum cost of a plan on months 1,...,j ending in NY, and

 $\mathit{OPT}_{\mathsf{S}}(j)$ denotes the minimum cost of a plan on months 1,...,j ending in SF, then

$$OPT_{\scriptscriptstyle n}(n) = N_{\scriptscriptstyle n} + \min \left(OPT_{\scriptscriptstyle N}(n-1), M + OPT_{\scriptscriptstyle S}(n-1) \right)$$

$$OPT_s(n) = S_n + min(OPT_s(n-1), M + OPT_N(n-1))$$

This algorithm is implemented in python. The algorithm has n iterations, and each takes constant time. Thus the running time is O(n).