

VII. Országos Magyar Matematikaolimpia XXXIV. EMMV

országos szakasz, Csíkszereda, 2025. február 24-28.

VIII. osztály

1. feladat. a) Oldd meg a valós számok halmazán a

$${x+3} + 2[x+3] + \sqrt{x^2 + 3(2x+3)} = 4$$

egyenletet, ahol $\{a\}$ és [a] rendre az a valós szám tört-, illetve egészrészét jelöli!

b) Legyen a, b, c > 0 úgy, hogy abc = 2025. Igazold, hogy

$$\frac{a+b}{a^2+b^2} + \frac{b+c}{b^2+c^2} + \frac{c+a}{c^2+a^2} \le \frac{\sqrt{a}+\sqrt{b}+\sqrt{c}}{45}.$$

2. feladat. Adott egy 45×45 -ös négyzetrács, amelyben a természetes számok 1-től 2025-ig sorrendben követik egymást, a mellékelt ábra szerint.

1	2	3	 		43	44	45
46	47	48	 	• • •	88	89	90
:	•	•			•	•	•
:	÷	:			:	÷	÷
÷	÷	:			i	÷	÷
1981	1982	1983	 		2023	2024	2025

A négyzetrács 9 négyzetét lefedjük egy 3×3 -as négyzetlappal. Számítsd ki a valószínűségét, hogy a lefedett kilenc szám összege osztható legyen 81-gyel!

- **3. feladat.** A VABCD szabályos négyoldalú gúlában V a gúla csúcsa, E a VB, F pedig a VD él felezőpontja, és VA = AB = a.
- a) Határozd meg az AEF és VBD síkok által alkotott szög szinuszát!
- b) Számítsd ki az AE és CF egyenesek által alkotott szög szinuszát!
- **4. feladat.** Az ABCD négyzet AB, BC és CD oldalainak belsejében felvesszük az M, N, illetve P pontokat úgy, hogy AM = BN = CP. A Q, R, S és T pontokra igaz, hogy $MC \cap AN = \{Q\}$, $DM \cap AP = \{R\}$, $MN \cap AD = \{S\}$ és $NR \cap DQ = \{T\}$.
- a) Igazold, hogy R a DAN háromszög magasságpontja!
- b) Bizonyítsd be, hogy $ST \parallel AR!$