Surrogates

Rscript: mtcars CART.R

CART

Based on Chew C. H. (2020) textbook: AI, Analytics and Data Science. Vol 1., Chap 8.

Base R dataset: mtcars 32 cases, 11 columns.

Continuous Outcome variable Y: mpg

^	mpg ‡	cyl [‡]	disp 🕏	hp 🗦	drat 🗦	wt 🗘	qsec 🕏	vs 🗦	am 🗦	gear 🕏	carb
Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0	1	4	4
Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1	4	4
Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1	4	1
Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0	3	1
Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	0	3	2
Valiant	18 1	6	2250	105	2 76	3 460	20.22	1	0	3	1

CART requires the splitting variable value to be available

Optimal Tree in mtcars

Displays surrogates at each internal node via summary(). Example: At node 1 i.e. root node

```
70 # # Surrogates shown in summary()
71 summary(cart2)
```

Min CP required to prune at Node 1

```
Node number 1: 32 observations,
                                  complexity param=0.6526612
  mean=20.09062, MSE=35.18897
  left son=2 (26 obs) right son=3 (6 obs)
  Primary splits:
     wt
          < 2.26
                   to the right, improve=0.6526612, (0 missing)
                   to the right, improve=0.6431252, (0 missing)
     cy1 < 5
     disp < 163.8
                   to the right, improve=0.6130502, (0 missing)
                   to the right, improve=0.6010712, (0 missing)
          < 118
     hp
                   to the left, improve=0.4409477, (0 missing)
          < 0.5
  Surrogate splits:
     disp < 101.55 to the right, agree=0.969, adj=0.833, (0 split)
                   to the right, agree=0.938, adj=0.667, (0 split)
     hp
          < 92
     drat < 4
                   to the left, agree=0.906, adj=0.500, (0 split)
                   to the right, agree=0.844, adj=0.167, (0 split)
     cy1 < 5
```

This surrogate split is 96.9% similar to the best Primary split.

This surrogate split is 83.3% better than using majority rule to send NAs to left or right child.

Surrogates are only activated when there are missing values

- The dataset mtcars has no missing values.
- 1. Copy the data to be mtcars2.
- 2. Delete the wt value in first row of mtcars 2.
- 3. Delete wt and disp values in second row of mtcars2.
- 4. Repeat the CART model on mtcars2.
- 5. View surrogates activated in node 1.

```
# Surrogates shown in summary() ------
summary(cart2)

# Create missing values in first two rows
mtcars2 <- mtcars
mtcars2[1,6] <- NA  # first row, 6th col. wt is the 6th col.
mtcars2[2,6] <- NA
mtcars2[2,3] <- NA  # 3rd column is disp.</pre>
```

Check the NAs in rows 1 and 2

•	mpg ‡	cyl [‡]	disp ‡	hp ‡	drat [‡]	wt [‡]	qsec ‡	vs [‡]	am 💠	gear ‡	carb ‡
Mazda RX4	21.0	6	160.0	110	3.90	NA	16.46	0	1	4	4
Mazda RX4 Wag	21.0	6	NA	110	3.90	NA	17.02	0	1	4	4
Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1	4	1
Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0	3	1

- Case 1 has one missing value in wt.
- Case 2 has two missing values:
 - wt
 - disp

```
79 cart3 <- rpart(mpg ~ ., data = mtcars2 method = 'anova', control = rpart.control(minsplit = 2, cp = 0))
80 81 summary(cart3)
```

```
Node number 1: 32 observations, complexity param=0.6526612
  mean=20.09062, MSE=35.18897
  left son=2 (26 obs) right son=3 (6 obs)
  Primary splits:
     wt < 2.26 to the right, improve=0.6709400, (2 missing)
     cyl < 5 to the right, improve=0.6431252, (0 missing)
     disp < 153.35 to the right, improve=0.6305513, (1 missing)
         < 118 to the right, improve=0.6010712, (0 missing)
     hp
                   to the left, improve=0.4409477, (0 missing)
     vs < 0.5
  Surrogate splits:
     disp < 101.55 to the right, agree=0.967, adj=0.833, (1 split)
                  to the right, agree=0.933, adj=0.667, (1 split)
     hp < 92
     drat < 4 to the left, agree=0.900, adj=0.500, (0 split)
     cyl < 5 to the right, agree=0.833, adj=0.167, (0 split)
                  to the left, agree=0.833, adj=0.167, (0 split)
     am < 0.5
```

- Case 1 used disp as surrogate.
- Case 2 used hp as surrogate.

Chew C. H.

Enhanced version of CART: Random Forest

- Ensemble of 500 CARTs.
- More stable than 1 CART model.
- More accurate than 1 CART model.
- Will not overfit.
- Taught in BC2407 Analytics II.

Summary: Categorical Y vs Continuous Y

	Categorical Y	Continuous Y
rpart() parameter	method = 'class'	method = 'anova'
Model Prediction	Majority Category	Mean value of Y
Metric to determine Best Split	Gini index	SSE
Metric to evaluate model performance	Misclassification Error	MSE

Summary of CART

- Phrase 1: Grow Tree to max.
- Phrase 2: Prune Tree to min.
- Optimal Tree selection via 10 fold CV with 1 SE rule.
- Extract Decision Rules (i.e. Predictions) at terminal nodes.
- Variable Importance.
- CART handles missing values automatically via Surrogates.

Chew C. H.