AC32008 Theory of Computation Class Test 2 - Friday 2 April 2021 - 11.00-12.15 Answer ALL 5 Questions

Total marks: 30

- 1. Explain what does it mean for a language L to be decidable in polynomial time? [5 marks]
- 2. Suppose we are given a Turing Machine with

•
$$Q = \{q_0, q_1, q_2, q_3, q_4\},$$

•
$$\Sigma = \{0, 1\},$$

•
$$\Gamma = \{0, 1, X, Y, B\},\$$

•
$$F = \{q_4\}.$$

Simulate the computation of this Turing Machine on a string 1100 by writing a serious of instantaneous descriptions the machine goes through. Is the string accepted by the machine?

[6 marks]

3. Let M be a Turing Machine with states q_1, q_2 , where q_1 is the initial state, $F = \{q_2\}$, input alphabet $\{0, 1\}$ and tape alphabet $\{0, 1, B\}$. The transition function δ for M is as follows:

$$\begin{array}{c|cccc}
\delta & q_1 & q_2 \\
\hline
0 & (q_1, 0, R) & - \\
1 & - & - \\
B & (q_2, B, L) & - \\
\end{array}$$

Let w be the string 00000.

- (a) Determine a code for the machine M.
- (b) What is $\langle M, w \rangle$?
- (c) Is $\langle M, w \rangle \in L_{\text{halt}}$?

[Recall that $X_1 = 0$, $X_2 = 1$, $X_3 = B$, $D_1 = L$, $D_2 = R$.] [7 marks]

- 4. Suppose that M is a nondeterministic Turing machine (NDTM), and that, for some n, there are just two strings, x and y, of length n, that M accepts.
 - on input x, with guess g_1 , the computation accepts after 181 steps;
 - on input y, with guess g_2 , the computation accepts after 203 steps;
 - on input y, with guess g_3 , the computation accepts after 171 steps;
 - there are no other accepting computations on inputs of length n.

What are (i)
$$t_M(x)$$
, (ii) $t_M(y)$, (iii) $T_M(n)$? [6 marks]

- 5. a Let x be an input to a (standard) non-deterministic Turing Machine (NDTM) M. What does it mean to say that M accepts x?
 - b Say informally what it means for there to be a polynomial transformation (or reduction) from one problem to another.

[6 marks]