CSCI 338: Assignment 5 (7 points)

This assignment is due on **Tuesday, April 13, 8:00pm**. It is strongly encouraged that you use Latex to generate a single pdf file and upload it under *Assignment 5* on D2L. But there will NOT be a penalty for not using Latex (to finish the assignment). This is **not** a group-assignment, so you must finish the assignment by yourself.

Problem 1

We are given 5 matrices $M_1, ..., M_5$, their dimensions (i.e., rows by columns) are as follows: M_1 is 15×20 , M_2 is 20×30 , M_3 is 30×10 , M_4 is 10×50 , and M_5 is 50×8 .

- (1.1) Run the dynamic programming algorithm for matrix chain multiplication that we covered in class to produce the table m[-,-].
- (1.2) What is the optimal solution value? Where do you find it?

Problem 2

We are given a context-free grammar G as follows:

$$\begin{aligned} G &: S \to AS|SB \\ A &\to AD|DA|a \\ B &\to BB|BD|b \\ D &\to DD|d. \end{aligned}$$

We are also given a string w = bdbdd.

- (2.1) Run the dynamic programming algorithm for A_{CFG} that we covered in class to produce the table table[-,-].
- (2.2) How do we know whether G generates w from the table?

Problem 3

Show that $ALL_{DFA} \in P$.

Problem 4

Show that Independent Set \in NP.