Introduction to common marketing metrics

ANALYZING MARKETING CAMPAIGNS WITH PANDAS

Jill RosokData Scientist

Was the campaign successful?

Common metrics:

- Conversion rate
- Retention rate

Conversion rate

$$Conversion \ rate = \frac{Number \ of \ people \ who \ convert}{Total \ number \ of \ people \ we \ marketed \ to}$$

Calculating conversion rate using pandas

13.89 %

Retention rate

$$Retention \ rate = \frac{Number \ of \ people \ who \ remain \ subscribed}{Total \ number \ of \ people \ who \ converted}$$

Calculating retention rate

84%

Let's practice!

ANALYZING MARKETING CAMPAIGNS WITH PANDAS

Customer segmentation

ANALYZING MARKETING CAMPAIGNS WITH PANDAS

Jill Rosok
Data Scientist

Common ways to segment audiences

- Age
- Gender
- Location
- Past interaction(s) with the business
- Marketing channels users interacted with

Segmenting using pandas

```
# Subset to include only House Ads
house_ads = marketing\
         [marketing['subscribing_channel'] == 'House Ads']
retained = house_ads[house_ads['is_retained'] == True]\
                    ['user_id'].nunique()
subscribers = house_ads[house_ads['converted'] == True]\
                     ['user_id'].nunique()
retention_rate = retained/subscribers
print(round(retention_rate*100,2), '%')
```

58.05 %

There must be an easier way to segment!

Segmenting using pandas - groupby()

```
subscribing_channel
Email 109
Facebook 152
House Ads 173
Instagram 158
Push 54
Name: user_id, dtype: int64
```


Segmenting using pandas - groupby()

```
subscribing_channel
Email 125
Facebook 221
House Ads 298
Instagram 232
Push 77
Name: user_id, dtype: int64
```


Segmenting results

```
# Calculate the retention rate across the DataFrame
channel_retention_rate = (retained/subscribers)*100
print(channel_retention_rate)
```

```
subscribing_channel
Email 87.200000
Facebook 68.778281
House Ads 58.053691
Instagram 68.103448
Push 70.129870
Name: user_id, dtype: float64
```


Let's practice!

ANALYZING MARKETING CAMPAIGNS WITH PANDAS

Plotting campaign results (I)

ANALYZING MARKETING CAMPAIGNS WITH PANDAS

Jill Rosok
Data Scientist

Comparing language conversion rates

```
import matplotlib.pyplot as plt
# Create a bar chart using channel retention DataFrame
language_conversion_rate.plot(kind = 'bar')
# Add a title and x and y-axis labels
plt.title('Conversion rate by language\n', size = 16)
plt.xlabel('Language', size = 14)
plt.ylabel('Conversion rate (%)', size = 14)
# Display the plot
plt.show()
```

Conversion by language

Calculating subscriber quality

```
# Group by language_displayed and count unique users
total = marketing.groupby(['date_subscribed'])['user_id']\
                     .nunique()
# Group by language_displayed and sum conversions
retained = marketing[marketing['is_retained'] == True]\
                         .groupby(['date_subscribed'])\
                         ['user_id'].nunique()
# Calculate subscriber quality across dates
daily_retention_rate = retained/total
```


Preparing data to be plotted over time

Visualizing data trended over time

```
# Create a line chart using the daily_retention DataFrame
daily_retention_rate.plot('date_subscribed',
                          'retention_rate')
# Add a title and x and y-axis labels
plt.title('Daily subscriber quality\n', size = 16)
plt.ylabel('1-month retention rate (%)', size = 14)
plt.xlabel('Date', size = 14)
# Set the y-axis to begin at 0
plt.ylim(0)
# Display the plot
plt.show()
```


Daily subscriber quality

Let's practice!

ANALYZING MARKETING CAMPAIGNS WITH PANDAS

Plotting campaign results (II)

ANALYZING MARKETING CAMPAIGNS WITH PANDAS

Jill Rosok
Data Scientist

Grouping by multiple columns

```
date_served preferred_language
2018-01-01 Arabic 3
English 351
German 5
Spanish 11
2018-01-02 Arabic 4
Name: user_id, dtype: int64
```


Unstacking after groupby

```
language = pd.DataFrame(language.unstack(level=1))
print(language.head())
```

preferred_language	Arabic	English	German	Spanish
date_served				
2018-01-01	3.0	351.0	5.0	11.0
2018-01-02	4.0	369.0	6.0	10.0
2018-01-03	3.0	349.0	3.0	8.0
2018-01-04	2.0	313.0	2.0	14.0
2018-01-05	NaN	310.0	1.0	14.0

Plotting preferred language over time

Creating grouped bar charts

preferred_language	Arabic	English	German	Spanish	
age_group					
0-18 years	17	1409	20	66	
19-24 years	25	1539	20	66	
24-30 years	18	1424	18	71	
30-36 years	19	1238	14	69	
36-45 years	18	1251	17	55	

Plotting language preferences by age group

Let's practice!

ANALYZING MARKETING CAMPAIGNS WITH PANDAS

