

"IN MATHEMATICS THE ART OF PROPOSING A QUESTION MUST BE HELD OF HIGHER VALUE THAN SOLVING IT."

– Georg Cantor

FUNCTION

Classification of function

01. Constant function

f(x) = k, k is a constant.

02. Identity function

The function y = f(x) = x, $\forall x \in R$ Here domain & Range both R

03. Polynomial function

 $y = f(x) = a_0 x^n + a_1 x^{n-1} + ... + a_n n$ is non negative integer, a_i are real constants. Given $a_0 \ne 0$, n is the degree of polynomial function

There are two polynomial functions, $f(x) = 1 + x^n & f(x) = 1 - x^n$ satisfying the relation: $f(x) \cdot f\left(\frac{1}{x}\right) = f(x) + f\left(\frac{1}{x}\right)$ where 'n' is a positive integer.

4. Rational functions

It is defined as the ratio of two polynomials.

$$f(x) = \frac{P(x)}{Q(x)}$$
 provided $Q(x) \neq 0$

Dom $\{f(x)\}$ is all real numbers except when denominator is zero $[i,e,Q(x)\neq 0]$

2 Exponential function

 $f(x) = a^x$, a > 0, $a \neq 1$.

Domain =R, Range = (0, ∞)

3 Logarithmic function

 $f(x) = \log_a x [a > 0, a \neq 1]$

Domain =(0, ∞), Range =R

Proprieties of Log. Functions

- 1. $\log_a(xy) = \log_a |x| + \log_a |y|$, where $a > 0, a \ne 1$ and xy > 0
- 3. $\log_a \left(\frac{x}{y}\right) = \log_a |x| \log_a |y|$, where $a > 0, a \ne 1$ and $\frac{x}{y} > 0$
- 5. $\log_{a^n} x^m = \frac{m}{n} \log_{|a|} |x|, \text{ where } a > 0, a \neq 1 \text{ and } x > 0$

If a>1, then the values of $f(x) = \log_a x$ increase with the increase in x. i.e. $x < y \Leftrightarrow \log_a x < \log_a y$

Also,
$$\log_a x \begin{cases} < 0 & \text{for } 0 < x < 1 \\ = 0 & \text{for } x = 1 \\ > 0 & \text{for } x > 1. \end{cases}$$

- 2. $\log_a x = \frac{1}{\log_x a}$ for $a > 0, a \ne 1$ and $x > 0, x \ne 1$
- 4. $\log_a (x^n) = n \log_a |x|$, where $a > 0, a \ne 1$ and $x^n > 0$
- 6. $x^{\log_a y} = y^{\log_a x}$ where $x > 0, y > 0, a > 0, a \neq 1$

If , 0<a<1, then the values of f (x) = $\log_a x$ decrease with the increase in x . i.e. $x < y \Leftrightarrow \log_a x > \log_a y$ > 0 for 0 < x < 1

Also,
$$\log_a x$$

$$\begin{cases} > 0 & \text{for } 0 < x < 1 \\ = 0 & \text{for } x = 1 \\ < 0 & \text{for } x > 1 \end{cases}$$

4 Trigonometric Functions

Sine function $(\pi/2, -1)$ $(-\pi, 0)$ $(-\pi/2, -1)$ $f(x) = \sin x.$ Dom (f) = R

Ran (f) = [-1, 1]

7.

Cosine function $\begin{array}{c|c} \hline & (Gs) \\ \hline & \pi/2 \\ \hline & \pi/2 \end{array}$ $f(x) = \cos x$ Dom (f) = R

Ran (f) = [-1, 1].

Secant Function $f(x) = \sec x$

 $f(x)=\sec x$ Dom (s) = R - {(2n+1) $\frac{\pi}{2}$ |n \in Z} Ran (f) = R - (-1, 1).

Absolute Value Function

$$y = f(x) = |x| = \begin{cases} x, & x > 0 \\ -x, & x < 0 \end{cases}$$

1.
$$|x|^2 = x^2$$

$$2. \qquad \sqrt{x^2} = |x|$$

3.
$$|x| = \max\{-x, x\}$$

4.
$$-|x| = \min\{-x, x\}$$

5.
$$\max(a,b) = \frac{a+b}{2} + \left| \frac{a-b}{2} \right|$$

$$6. \quad \min(a,b) = \frac{a+b}{2} - \left| \frac{a-b}{2} \right|$$

7.
$$|x+y| \le |x| + |y|$$

8.
$$|x+y| = |x| + |y| \text{ if } xy > 0$$

9.
$$|x-y| = |x| + |y| \text{ if } xy \le 0$$

10.
$$|x| \ge a$$
 (is – ve) $x \in R$

 $a \le |x| \le b \Rightarrow -b \le x \le -a \text{ or } a \le x \le b. \ x \in [-b, -a] \cup [a, b].$

Signum Function
$$y = \operatorname{sgn}(x) = \begin{cases} \frac{|x|}{x} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$$

Greatest Integer Function

f(x) = [x] the integral part of x, which is nearest & smaller integer

$$[x] \leqslant x < [x] + 1$$

$$x - 1 < [x] < x$$

$$I \le x < I + 1 \Rightarrow [x] = I$$

$$[x]-[-x] = \begin{cases} 2x & , x \in I \\ 2x+1 & , 2 \notin I. \end{cases}$$

$$[x] + [-x] = \begin{cases} 0, & x \in I & 2x, & x \in I \\ -1, & x \in I, & 2x+1, & x \notin I \end{cases}$$

$$[x] \le n \iff x < n+1, n \in I$$

$$[x] \le n \Leftrightarrow x < n+1, n \in I$$

$$[x] < n \Leftrightarrow x < n$$

$$\left[\frac{n+1}{2}\right] + \left[\frac{n+2}{4}\right] + \left[\frac{n+4}{8}\right] + \dots = n$$

$$[x]+[y] \le [x+y] \le [x]+[y]+1$$

$$[x] + \left[x + \frac{1}{n}\right] + \left[x + \frac{2}{n}\right] + \dots + \left[x + \frac{n-1}{n}\right] = [nx]$$

Fractional Part Function

: $y=\{x\}$ fractional past of x. $y = \{x\} = x - [x]$

1.
$$\{x\} = x$$
, $0 \le x < 1$.

2.
$$\{x\} = 0, x \in I$$

3.
$$\{-x\} = 1 - \{x\}, x \notin I$$

4.
$$\{x \pm integer\} = \{x\}$$

Odd and Even Function

1. if $f(-x) = -f(x) \forall x \in \mathbb{R}$ then f is an odd function, odd functions are symmetrical in opposite quadrants or about origin.

2. If f(-x) = f(x), then even. It is symmetric about y axis.

Properties

- 1. Product of two odd or two even function is an even function.
- 3. Every function can be expressed as the sum of an even and odd function, i.e,

$$f(x) = \frac{f(x) + f(-x)}{2} + \frac{f(x) - f(-x)}{2}$$

- 2. Product of odd & even function is an odd function.
- 4. Derivative of an odd function is an even function and of an even is odd.

Periodic function 10

f(x) is periodic if $f(x + T) = f(x) \forall x \in R, T = period$

Functions	Period
$\sin^n x, \cos^n x, \sec^n x, \csc^n x$	π (n is even), 2π (n odd/ fraction)
$\tan^n x, \cot^n x$	π
trig function	π
x-[x]	1
f(x) = constant	Periodic with no fundamental period.

Properties of Periodic functions

If f(x) is periodic with period T, then

- 1. c. f(x) is periodic with period T
- 2. f(x + c) is periodic with period T.
- 3. $f(x) \pm c$ is periodic with period T.
- 4.kf(cx+d) has period $\frac{T}{|c|}$ period is only affected by coefficient of x.

Composition of Function

- h(x) = g f(x) = (gof)(x).
- gof ≠ fog.
- Composition of two bijection is a bijection.

Properties of Composite Function

f	g	fog
even	even	even
odd	odd	odd
even	odd	ever
odd	even	even

Kinds of Mapping

- One-one/Injective/Homomorphic: $f(x) = f(y) \Rightarrow x=y$, then one-one. Graphically, if no line parallel to x-axis meets the graph of function at more than one point.
- Onto/Surjective: If range = co-domain. Method to show subjectivity: Finding the range of y = f(x) & Showing range of $f = c \sigma$ -domain of f
- Many-one mapping: If two or more element in domain have same image in co-domain.
- Into Function: There's an element in B not having a pre image. in A under f. [f: A \rightarrow B].

Number of functions

Total no of functions = m^n

Number of One to one functions:

No. of constant function = m

No. of onto function =

No. of one-to-one onto functions = n!, if m = n

Inverse of a function

 $g:B\rightarrow A$, $f(x) = y \Leftrightarrow g(y) = x \forall x \in A \text{ and } y \in B$. Then g is inverse of f

1. Inverse of a bijection is unique.

2. If $f: A \rightarrow B$ is a bijection $g: B \rightarrow A$ is the inverse of f, then fog = I_{R} gof = I_A , where $I_A & I_B$ are identity function

3. The inverse of a bijection is also a bijection $(gof)^{-1} = f^{-1} o g^{-1}$.

Hyperbolic functions

$$\sinh x = \frac{e^x - e^{-x}}{2}$$

$$\sinh x = \frac{e^{x} - e^{-x}}{2} \qquad \cosh x = \frac{e^{x} + e^{-x}}{2} \qquad \tanh x = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}} \qquad \coth x = \frac{e^{x} + e^{-x}}{e^{x} - e^{-x}}$$

$$\tanh x = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

$$\coth x = \frac{e^x + e^{-x}}{e^x - e^{-x}}$$

Elementary transformation of graphs

01

Drawing the graph of y = |f(x)| from the

$$|f(x)| = \begin{cases} f(x) & \text{if } f(x) \ge 0 \\ -f(x) & \text{if } f(x) < 0. \end{cases}$$

02

Drawing graph of y=f(|x|) from the known graph of y=f(x).

Neglect the curve for x<0 & take the images of curve for $x \ge 0$ about y axis.

03

Drawing graph of |y|=f(x) from the know m graph of y=f(x).

Remove portion that lies below x axis. Plot the remaining portion of the graph & also its mirror image in x-axis.

Things to remember

Range of $a\cos x + b\sin x$ is $\left[-\sqrt{a^2 + b^2}, \sqrt{a^2 + b^2}\right]$

Range of
$$f(x) = \sqrt{a-x} + \sqrt{x-b}$$
 if $a > b > 0$ is $\sqrt{a-b} + \sqrt{2(a-b)}$

Range of $\left(x + \frac{1}{x}\right) + \frac{1}{\left(x + \frac{1}{x}\right)}$ is $\left(-\infty, -2.5\right] \cup \left[2.5, \infty\right)$

 $-\sin 1 < \sin(\cos x) < \sin 1 \qquad \qquad \cos 1 < \cos(\sin x) < 1$

Functional Equation

1)
$$f(x+y) = f(x)f(y)$$
, then $f(x) = a^x$

2)
$$f(xy) = f(x) + f(y)$$
, then $f(x) = \log_a x$

3)
$$f\left(\frac{x+y}{2}\right) = \frac{f(x)+f(y)}{2}$$
, then $f(x) = mx + c$

4)
$$f(x) f(\frac{1}{x}) = 1$$
, then $f(x) = \pm x^n$