Linear Figs

A diff egg the form $\frac{dy}{dx} + f_0y = G_0$ (P+Qone for g x of)

is called a linear diffleg, because it is linear in y' and $\frac{dy}{dx}$.

To Solve Multiply both sides of egg by I.F. e then L.H.S go

To Solve multiply both sides of egg by y the file $\frac{d}{dy} = \frac{d}{dy} =$

2)
$$\frac{dy}{dn} + \frac{3}{x} y = 6x^{2}$$

IF = $2 = e^{2} = 2$

Solvaginen by $\int d(yx)F = \int 0xF dx + C$

$$= \int d(yx) = \int 6x \cdot x^{3} dx + C$$

$$= \int 4x^{2} = \int 6x \cdot x^{3} dx + C$$

$$= \int 4x^{2} = \int 6x \cdot x^{3} dx + C$$

$$= \int 4x^{2} = \int 6x \cdot x^{2} dx + C$$

$$= \int 4x^{2} = \int 6x \cdot x^{2} dx + C$$

$$= \int 4x^{2} = \int 6x \cdot x^{2} dx + C$$

$$= \int 4x^{2} = \int 6x \cdot x^{2} dx + C$$

$$= \int 4x^{2} = \int 6x \cdot x^{2} dx + C$$

$$= \int 4x^{2} = \int 6x \cdot x^{2} dx + C$$

$$= \int 4x^{2} = \int 6x \cdot x^{2} dx + C$$

$$= \int 4x^{2} = \int 6x \cdot x^{2} dx + C$$

$$= \int 4x^{2} = \int 6x \cdot x^{2} dx + C$$

$$= \int 4x^{2} = \int 6x \cdot x^{2} dx + C$$

$$= \int 4x^{2} = \int 6x \cdot x^{2} dx + C$$

$$= \int 4x^{2} = \int 6x \cdot x^{2} dx + C$$

$$= \int 4x^{2} = \int 6x \cdot x^{2} dx + C$$

$$= \int 4x^{2} = \int 6x \cdot x^{2} dx + C$$

$$= \int 4x^{2} = \int 6x \cdot x^{2} dx + C$$

$$= \int 4x^{2} = \int 6x \cdot x^{2} dx + C$$

$$= \int 4x^{2} = \int 6x \cdot x^{2} dx + C$$

$$= \int 4x^{2} = \int 6x \cdot x^{2} dx + C$$

$$= \int 4x^{2} = \int 6x \cdot x^{2} dx + C$$

$$= \int 4x^{2} = \int 6x \cdot x^{2} dx + C$$

$$= \int 4x^{2} = \int 6x \cdot x^{2} dx + C$$

$$= \int 4x^{2} = \int 6x \cdot x^{2} dx + C$$

$$= \int 4x^{2} = \int 6x \cdot x^{2} dx + C$$

$$= \int 4x^{2} = \int 6x \cdot x^{2} dx + C$$

$$= \int 4x^{2} = \int 6x \cdot x^{2} dx + C$$

$$= \int 4x^{2} = \int 6x \cdot x^{2} dx + C$$

$$= \int 4x^{2} = \int 6x \cdot x^{2} dx + C$$

$$= \int 4x^{2} = \int 6x \cdot x^{2} dx + C$$

$$= \int 4x^{2} = \int 6x \cdot x^{2} dx + C$$

$$= \int 4x^{2} = \int 6x \cdot x^{2} + C$$

$$= \int 4x^{2} = \int 6x \cdot x^{2} + C$$

$$= \int 4x^{2} = \int 6x \cdot x^{2} + C$$

$$= \int 4x^{2} = \int 6x \cdot x^{2} + C$$

$$= \int 4x^{2} = \int 6x \cdot x^{2} + C$$

$$= \int 4x^{2} = \int 6x \cdot x^{2} + C$$

$$= \int 4x^{2} = \int 6x \cdot x^{2} + C$$

$$= \int 4x^{2} = \int 6x \cdot x^{2} + C$$

$$= \int 4x^{2} = \int 6x \cdot x^{2} + C$$

$$= \int 4x^{2} + C$$

$$= \int 4x^{2}$$

3
$$\frac{dy}{dn} + \frac{y}{x \ln x} = \frac{3x^{2}}{\ln x} (LDE^{-1})$$
 $\frac{dy}{dn} + \frac{y}{x \ln x} = \frac{3x^{2}}{\ln x}$
 $\frac{dy}{dn} = \frac{dn}{x}$
 $\frac{dn}{dn} = \frac{dn}{x}$
 $\frac{dn}{dn} = \frac{dn}{dn}$
 \frac{dn}

(5) Coox dy + Y Coox = Sinx $\frac{dy}{dx} + \frac{y\cos x}{\cos x} = \frac{\sin x}{\cos x}$ dy + Seexy = Seextanx (LDE = y)

dy + Seexy = Seextanx

[Fdx | Seexdx | e |

I.F = e = e | sdisgiverby (d(YxIF) -) QxI.Fdn+c => Secretarix e dn +C => Ye = second = tenx = t

Second = dt - te- (1. edt +c = te-et +c Ye = e (t-1) + c Ye = e (tanx-1)+c -tonn

Ye = (tanx-1)+c e

X dy + (HxCotn) y = x $\frac{dy}{dn} + \left(\frac{1}{x} + \cot x\right) y = 1 \quad (LDEinY)$ $\frac{dy}{dn} + \left(\frac{1}{x} + \cot x\right) y = 1 \quad (LDEinY)$ $\frac{dy}{dn} + \left(\frac{1}{x} + \cot x\right) y = 1 \quad (LDEinY)$ $\frac{dy}{dn} + \left(\frac{1}{x} + \cot x\right) y = 1 \quad (LDEinY)$ $\frac{dy}{dn} + \left(\frac{1}{x} + \cot x\right) y = 1 \quad (LDEinY)$ $\frac{dy}{dn} + \left(\frac{1}{x} + \cot x\right) y = 1 \quad (LDEinY)$ $\frac{dy}{dn} + \left(\frac{1}{x} + \cot x\right) y = 1 \quad (LDEinY)$ $\frac{dy}{dn} + \left(\frac{1}{x} + \cot x\right) y = 1 \quad (LDEinY)$ $\frac{dy}{dn} + \left(\frac{1}{x} + \cot x\right) y = 1 \quad (LDEinY)$ $\frac{dy}{dn} + \left(\frac{1}{x} + \cot x\right) y = 1 \quad (LDEinY)$ I.f = e & Sinx solingumby (d(Yx I.F) =)QxIFdx+C => Jd(YxSinx) =] x Sinx du + C 4xSinx = x(-(0)x)- [1.(-(0)x)dn =x(-cosx)+Scosndn Yx Sinx = -x Cosx + Sinx + C Y = - Cot x + 1 + c Comex

Available on MathCitv.org

 $dY = \frac{1}{3}$ @ (x+1) dy +2xy = 4xt dx= e'-x $\frac{dy}{dn} + \left(\frac{2x}{x^{\frac{1}{4}}}\right)^{\frac{1}{4}} = \frac{4x^{\frac{1}{4}}}{x^{\frac{1}{4}}} \quad \text{(LDE--1)}$ dx + x = e (LDEinx) I.F = e = e = [x+1]Sul is given by (d(x.IF) = (Q.IFdy+C solingimmby Id(YIF) = Q.I.F dx+c => (d(xe)= feedy +C =) \[\(\(\lambda (\frac{1}{2} + 1) \) = \[\left(\frac{4\frac{1}{2}}{(\frac{1}{2} + 1)} \) \dn + C = xe = ledy +c $Y(x^{+1}) = 4x^{3} + c$ $\chi = \pm \left(\frac{e^{2\gamma}}{2} + c\right)$ 34(x+1) = 4x3+c $\chi = \frac{1}{2} + ce^{-\frac{1}{2}}$ (1) x dy +24 = Sinx 1 (7+243) dy = 7 HY+2Y= Sinx (LDEMY) IF=e=e=e=e=x (x+24) dx = -7 Salis gimen by (L(Y, IF) = (QxIF dn + C $\frac{dy}{dx} = \frac{x + 2y^3}{y}$ => Jd(Yx)= Sinx x dn + C $\frac{dy}{dy} = \frac{x}{y} + \frac{2y}{y}$ $\frac{dx}{dy} - (\frac{1}{y})x = 2y^2 \quad (DEix)$ Yz = Jx Sinx dn + C yx = x(-(00x)- (1.(-(00x))dm+C IF=e = e = e = y = fy $y = \frac{1}{x^2} \left(-x \cos x + \sin x + c \right)$ Solingmenty (d(x.I.F) = (QxI.Fdy+C (1) (1+x2) dy +4xy = /1+x2) $\Rightarrow \int d(x; \frac{1}{y}) = \int 2y^{2} \cdot \frac{1}{y} dy + C$ dy + (4x) y = (1+x), (DEiny) = 127 dy +C $\int_{1+x^2}^{4x} du = 2\ln(1+x^2) = \ln(1+x^2) = \ln(1+x^2)$ $\int_{1+x^2}^{4x} du = 2\ln(1+x^2) = \ln(1+x^2)$ $\Rightarrow \chi = \chi(\chi \chi + c)$ → x = Y3+CY Sodiogimen by Sd (Y.IF) = SQxIF dx + C = / (1+x)) = / (1+x) dx + C $\gamma(1+x^{2}) = \int \frac{dx}{1+x^{2}} + C \implies \gamma = \frac{1}{(1+x^{2})} \left(\frac{1}{1+x^{2}} + C \right) A_{max}$ Exercise 9.6. Available on MathCity.org

Bernoulli Eq is the diff eq of the form
$$\frac{JY}{dx} + P_{(x)}Y = Q_{(x)}Y$$

To Salm O Divide the eq O by Y'' $\Rightarrow Y'' \frac{dy}{dx} + P_{(x)}Y'' = O(x)$

O Moltiply both sides by $(1-n)$ $\Rightarrow (1-n)Y'' \frac{dy}{dx} + P_{(x)}Y'' (1-n) = (1-n)Q(x)$

O Port $Y' = V$
 $\Rightarrow \frac{dV}{dx} + P_{(x)}Y' (1-n) = (1-n)Q(x)$

Now so so in tracially as begins.

Now so so in tracially as begins.

Now $\Rightarrow \frac{dx}{dx} + \frac{1}{1+x}Y = \frac{1}{1+x}Y$
 $\Rightarrow \frac{dy}{dx} + \frac{1}{1+x}Y = \frac{1}{1+x}Y$

Remoutli $\Rightarrow \frac{dy}{dx} + \frac{1}{1+x}Y = -\frac{1}{1+x}X$
 $\Rightarrow \frac{dy}{dx} + \frac{1}{1+x}Y = -\frac{1}{1+x}X$

Ret $y' = V$
 $\Rightarrow \frac{dy}{dx} + \frac{1}{1+x}Y = -\frac{1}{1+x}X$
 $\Rightarrow \frac{1}$

Exercise 9.6: Page 5 of 8 : Available on MathCity.org

$$\frac{dy}{dx} + y = xy^{3} \quad \text{Burmoulli is }$$

$$\frac{dy}{dx} + y^{2} = x$$

$$\frac{dy}{dx} + \frac{dy}{dx} = -2x$$

$$\frac{dy}{dx} + \frac{dy}{dx} + \frac{dy}{dx} + \frac{dy}{dx} = -2x$$

$$\frac{dy}{dx} + \frac{dy}{dx} + \frac{dy}{dx} + \frac{dy}{dx} + \frac{dy}{dx} = -2x$$

$$\frac{dy}{dx} + \frac{dy}{dx} + \frac{dy}{dx} + \frac{dy}{dx} + \frac{dy}{dx} = -2x$$

$$\frac{dy}{dx} + \frac{dy}{dx} + \frac{$$

$$\frac{\partial f}{\partial x} \times \frac{\partial f}{\partial x} = \frac{2}{2} \times \frac{1}{2} - \frac{1}{2} = \frac{1}{2} \times \frac{1}{2$$

Available at www.mathcity.org

+C

(a)
$$(x^{2}+1) \frac{dy}{dx} + 4xxy = x$$
, $Y(2)=1$

(b) $(x^{2}+1) \frac{dy}{dx} + 4xxy = x$, $Y(2)=1$

(c) $\frac{dy}{dx} + \frac{(4x)}{(x^{2}+1)} = \frac{x}{(x^{2}+1)}$

(d) $\frac{dy}{dx} + \frac{(4x)}{(x^{2}+1)} = \frac{x}{(x^{2}+1)} = \frac$

(17)
$$e^{x}(y-3(e^{x}+1)^{2})dx + (e^{x}+1)dy = 0$$
, $y(0) \neq 1$, $e^{x}+1)dy = -e^{x}(y-3(e^{x}+1)^{2})dx$

$$e^{x}+1)dy = -e^{x}(y-3(e^{x}+1)^{2})dx$$

$$e^{x}+1 = -e^{x}(y-3(e^{x}+1)^{2})dx$$

$$e^{x}+1 = -e^{x}(e^{x}+1) = 3e^{x}(e^{x}+1)(e^{x}+1)$$

$$e^{x}+1 = e^{x}+1 = e^{x}+1$$

$$f^{2}+1 = e^{x}+1 = e^{x}+1$$

$$f$$

(B)
$$\frac{dy}{dx} + \frac{y}{2x} = \frac{x}{y^3}$$
, $y(1) = 2$

(B) $\frac{dy}{dx} + \frac{y}{2x} = \frac{x}{y^3}$, $y(1) = 2$

(b) $\frac{dy}{dx} + \frac{1}{2x} = x$

(c) $\frac{dy}{dx} + \frac{1}{2x} = x$

(d) $\frac{dy}{dx} + \frac{1}{2x} = x$

(e) $\frac{dy}{dx} + \frac{1}{2x} = x$

(f) $\frac{dy}{dx} + \frac{1}{2x} = x$

(g) $\frac{dy}{dx} + \frac{1}{2x} = x$

(h) $\frac{dy}{dx} + \frac{1}$

442 = x4 + 15

As
$$\frac{\partial y}{\partial x} + \frac{\partial y}{\partial x} = x^2y^2$$
, $y(1) = 2$

$$\frac{\partial y}{\partial x} + \frac{\partial y}{\partial x} = x^2y^2$$

$$\frac{\partial y}{\partial x} + \frac{\partial y}{\partial x} = x^2$$

$$\frac{\partial y}{\partial x} = \frac{\partial y}{\partial x} = x^2$$

$$\frac{\partial y}{\partial x} = \frac{\partial y}{\partial x} = x^2$$

$$\frac{\partial y}{\partial x} = \frac{\partial y}{\partial x} = x^2$$

$$\frac{\partial y}{\partial x} = \frac{\partial y}{\partial x} = x^2$$

$$\frac{\partial y}{\partial x} = \frac{\partial y}{\partial x} = x^2$$

$$\frac{\partial y}{\partial x} = \frac{\partial y}{\partial x} = x^2$$

$$\frac{\partial y}{\partial x} = \frac{\partial y}{\partial x} = x^2$$

$$\frac{\partial y}{\partial x} = -\frac{\partial y}{\partial x} + C$$

$$\Rightarrow \sqrt{x^3} = -\frac{\partial y}{\partial x} + C$$