Spis treści

1	Uporządkowana para liczb	1
	Grupa 2.1 Grupa abelowa	
3	Pierścień3.1Pierścień z jedynką	1 1 2
4	Ciało	2
5	Homomorfizmy 5.1	2

1 Uporządkowana para liczb

$$(a,b) = \{\{a\}, \{a,b\}\}\$$

2 Grupa

Grupa to uporządkowana para $G(A, \circ)$, gdzie A to zbiór, a \circ to działanie spełniające następujące warunki:

- Zachodzi łączność działania $\forall a, b, c \in A : a \circ (b \circ c) = (a \circ b) \circ c$
- Istnieje element neutralny $e \in A : \forall a \in A : a \circ e = e \circ a = a$
- Dla każdego elementu istnieje element odwrotny $\forall a \in A: \exists a^{-1} \in A: a \circ a^{-1} = a^{-1} \circ a = e$

2.1 Grupa abelowa

Grupa abelowa, to specjalny rodzaj grupy w którym spełniony jest dodatkowy warunek:

• Grupa jest przemienna $\forall a, b \in A : a \circ b = b \circ a$

2.2 Przykłady grup

$$G(\mathbb{Z},+), G(\mathbb{Q},+), G(\mathbb{R},+), G(\mathbb{C},+)$$

3 Pierścień

Pierścień to uporządkowana trójka $R(A, +, \cdot)$, gdzie A to zbiór, a + i \cdot to działania spełniające następujące warunki:

- \bullet (A, +) jest grupą abelową
- $\bullet\,\,+\,\mathrm{i}\,\cdot$ są są wewnętrzne dla A
- Dla każdego $a,b,c\in A$ zachodzi rozdzielność mnożenia względem dodawania: $a\cdot (b+c)=a\cdot b+a\cdot c$ oraz $(a+b)\cdot c=a\cdot c+b\cdot c$
- Istnieje element neutralny mnożenia $1 \in A : \forall a \in A : a \cdot 1 = 1 \cdot a = a$

3.1 Pierścień z jedynką

Pierścień z jedynką to pierścień, w którym istnieje element neutralny mnożenia oraz $A \neq \emptyset$

3.2 Pierścień przemienny

Pierścień przemienny to pierścień, w którym mnożenie jest przemienna

4 Ciało

Ciało $C(K,+,\cdot)$ to pierścień przemienny z jedynką, oraz $(K\setminus\{0\},\cdot)$ jest grupą

5 Homomorfizmy

5.1