高中数学解析几何考点结论大全, 考试直接套用!

点击关注 高中数学学习站 2023-03-08 02:00 Posted on 北京

专业的高中数学学习平台,每天17:00与您相约!

高中数学学习站推荐搜索

高中数学 | 易错点 | 知识点 | 公式

找不到想要的资料,试试一键搜索 🖣

小数老师说

今天小数老师为同学们总结了【**高中数学解析几何考点结论大全!**】轻松拿高分!

如需本文电子版,点击名片\→进入公众号发消息【0308】即可。

高中数学学习站

"高中数学"公众号,每天推送高中数学干货好文,关注即可免费获取: ①高中数学知... 1篇原创内容

公众号

【三月资料合集】已为大家整理完毕,聊天框回复【三月资料】即可获取.

高中数学解析几何考点结论

单位向量:长度等于1个单位的向量

等轴双曲线:实轴和虚轴等长的双曲线称为等轴双曲线.

点与圆的位置关系: d 为圆心到点的距离, r 为半径

(1) d>r, 点在圆外 (2) d=r, 点在圆上(3) d < r, 点在圆内

点到直线的距离:直线外一点到直线的垂线段的长度,叫点到直线的距离.

点到直线的距离公式:一般地,求点 $P(x_0, y_0)$ 到直线 I: Ax + By + C = 0 的距离 d 的公式是

$$d = \frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}} \quad (\underline{\$ + : 用直线的 - 般式})$$

点斜式方程: $y - y_0 = k(x - x_0)$. 条件: (若直线 /经过点 $P_1(x_0, y_0)$, 且斜率为 k , 求直线方程 .)

对称: 点 A(x,y)关于原点对称点 B(-x,-y),全变。

点 A(x,y)关于 x 轴对称点 B(x,-y),变 y。

点 A(x,y)关于 y 轴对称点 B (-x,y),变 x。

J

截距: (1)若直线与 x 轴的交点为 (a,0),则 a 叫做在 x 轴上的截距。

(2) 若直线与 y 轴的交点为 (0, b),则 b 叫做在 y 轴上的截距。

L

两点的距离公式:设 $A(x_1, y_1)$, $B(x_2, y_2)$, $|AB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$.

两点的中点公式:在平面直角坐标系内,两点 $A(x_1, y_1)$, $B(x_2, y_2)$ 的中点 $M(x_1, y_2)$

y)的坐标满足
$$x = \frac{x_1 + x_2}{2}$$
 , $y = \frac{y_1 + y_2}{2}$.

零向量:长度为0的向量.

抛物线的定义:平面内与一个定点 F 和一条定直线 I 的距离相等的点的轨迹称为抛物线 I 定点 I 称为**抛物线的焦点** I 定直线 I 称为**抛物线的准线** I

抛物线的几何性质:

标准方程	$y^2 = 2 px$ $(p > 0)$	$y^2 = -2 px$ $(p > 0)$	$x^2 = 2 py$ $(p > 0)$	$x^2 = -2 py$ $(p > 0)$
图形	# # ·	** / **	**************************************	1 y x
顶点	(0,0)			
对称轴	x 轴		y 轴	
焦点	$F\left(\frac{p}{2},0\right)$	$F\left(-\frac{p}{2},0\right)$	$F\left(0,\frac{p}{2}\right)$	$F\left(0,-\frac{p}{2}\right)$
准线方程	$x = -\frac{p}{2}$	$x = \frac{p}{2}$	$y = -\frac{p}{2}$	$y = \frac{p}{2}$
离心率	e=1			
范围	$x \ge 0$	<i>x</i> ≤ 0	$y \ge 0$	<i>y</i> ≤ 0

平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行.

平行与 x 轴的直线方程: $x=x_0($ 取横坐标 $) \rightarrow k=0 \rightarrow$ 倾斜角为 0

平行与 y 轴的直线方程: $y=y_0($ 取纵坐标)→k 不存在→倾斜角为 90°

Q

倾斜角:一般地,平面直角坐标系内,直线向上的方向与x轴正方向所成的最小正角叫做这条直线的倾斜角。倾斜角的范围 $0^0 \le A < 180^0$.(1)当直线与y轴垂直

时,规定这条直线的倾斜角为 0° 。(2)当直线与 x 轴垂直时,规定这条直线的倾斜角为 90° .

S

数量: 只有大小, 没有方向的量.

数轴上的距离公式:一般地,如果 $A(x_1)$, $B(x_2)$, 则这两点的距离公式为 $|AB| = |x_2 - x_1|$.

数轴的三要素:方向,原点,单位长度。

数轴上的中点公式:一般地,在数轴上, $A(x_1)$, $B(x_2)$ 的中点坐标x满足关系式

$$x=\ \frac{x_1+x_2}{2}\ .$$

双曲线的标准方程: $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)(c^2 = a^2 + b^2)$ (焦点在 x 轴), $e = \frac{|PF|}{|PK|} = \frac{c}{a}$, $e > 1 \Leftrightarrow$ 双曲线。

双曲线的定义: 平面内与两个定点 F_1 , F_2 的距离之差的绝对值等于常数 (小于 $|F_1F_2|$) 的点的轨迹称为双曲线 . 即: $||MF_1| - |MF_2|| = 2a,(2a < |F_1F_2|)$ 。

这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距.

双曲线的几何性质:

焦点的位置	焦点在 * 轴上	焦点在y轴上
图形	F ₂ X	M F ₂
标准方程	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$	$\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1(a > 0, b > 0)$
范围	$x \le -a \stackrel{\longrightarrow}{\coprod} x \ge a$, $y \in R$	$y \le -a \overrightarrow{\square} y \ge a$, $x \in R$

顶点	$A_1(-a,0)$, $A_2(a,0)$	$A_1(0,-a)$, $A_2(0,a)$	
轴长	虚轴的长=2b 实轴的长=2a		
焦点	$F_1(-c,0)$, $F_2(c,0)$	$F_1(0,-c)$, $F_2(0,c)$	
焦距	$ F_1F_2 = 2c(c^2 = a^2 + b^2)$		
对称性	关于 x 轴、 y 轴对称 , 关于原点中心对称		
离心率	$e = \frac{c}{a} = \sqrt{1 + \frac{b^2}{a^2}} (e > 1)$		
渐近线方程	$y = \pm \frac{b}{a}x$	$y = \pm \frac{a}{b}x$	

Т

椭圆的标准方程: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)(a^2 = b^2 + c^2)$,(焦点在 x 轴), $e = \frac{|PF|}{|PK|} = \frac{c}{a}$, $0 < e < 1 \Leftrightarrow$ 椭圆。

椭圆的定义: 平面内与两个定点 F_1 , F_2 的距离之和等于常数(大于 $|F_1F_2|$)的点的轨迹称为**椭圆**. 即: $|MF_1| + |MF_2| = 2a, (2a > |F_1F_2|)$ 。这两个定点称为**椭圆的焦点** ,两焦点的距离称为**椭圆的焦距** .

椭圆的几何性质:

焦点的位置	焦点在 x 轴上	焦点在y轴上
图形	F. 0 F. 3	M F_2 F_3 F_4
标准方程	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$	$\frac{y^2}{a^2} + \frac{x^2}{b^2} = 1(a > b > 0)$
范围	$-a \le x \le a \coprod -b \le y \le b$	$-b \le x \le b \square -a \le y \le a$
顶点	$A_1(-a,0)$, $A_2(a,0)$	$A_1(0,-a)$, $A_2(0,a)$

	$B_1(0,-b)$, $B_2(0,b)$	$B_1(-b,0)$, $B_2(b,0)$	
轴长	短轴的长=2b 长轴	由的长 =2a	
焦点	$F_1(-c,0)$, $F_2(c,0)$	$F_1(0,-c)$, $F_2(0,c)$	
焦距	$ F_1F_2 = 2c(c^2 = a^2 - b^2)$		
对称性	关于 x 轴、 y 轴、 原点对称		
离心率	$e = \frac{c}{a} = \sqrt{1 - \frac{b^2}{a^2}} (0 < e < 1)$		

X

相等向量:长度相等且方向相同的向量.

相反向量:长度相等且方向相反的向量.

向量:既有大小,又有方向的量.

向量垂直: $\vec{a} \perp \vec{b} \Leftrightarrow \vec{a} \cdot \vec{b} = 0$ (无坐标时用), $\vec{a} \perp \vec{b} \Leftrightarrow x_i x_j + y_i y_j = 0$ (有坐标时用)。

向量共线(平行)定理:向量 $\bar{a}(\bar{a} \neq \bar{0})$ 与 \bar{b} 共线,当且仅当有唯一一个实数 λ ,使 $\bar{b} = \lambda \bar{a}$.

设 $\vec{a} = (x_1, y_1)$, $\vec{b} = (x_2, y_2)$, 其中 $\vec{b} \neq \vec{0}$, 则当且仅当 $x_1 y_2 - x_2 y_1 = 0$ 时, 向量 \vec{a} 、 $\vec{b}(\vec{b} \neq \vec{0})$ 共线.

向量加法:条件(首尾相连)。坐标运算:设 $\vec{a}=(x_1,y_1)$, $\vec{b}=(x_2,y_2)$,则 $\vec{a}+\vec{b}=(x_1+x_2,y_1+y_2)$.

向量减法:条件(起点相同),运算法则(减数向量的终点作差向量的起点,被

减数向量的终点作差向量的终点)。坐标运算:设 $\bar{a}=(x_1,y_1)$, $\bar{b}=(x_2,y_2)$,则

 $\vec{a} - \vec{b} = (x_1 - x_2, y_1 - y_2)$.

设A、B两点的坐标分别为 (x_1,y_1) , (x_2,y_2) ,则 $\overline{AB}=(x_1-x_2,y_1-y_2)$.

结论:任意一个向量等于终点坐标减去起点坐标。

向量数乘:实数 λ 与向量 \bar{a} 的积是一个向量的运算叫做向量的数乘,记作 $\lambda\bar{a}$.

(1) 当 λ > 0 时 , λ ā 的方向与 ā 的方向相同; 当 λ < 0 时 , λ ā 的方向与 ā 的方向

相反; 当 $\lambda = 0$ 时, $\lambda \vec{a} = \vec{0}$.

(2) 坐标运算:设 $\vec{a} = (x,y)$,则 $\lambda \vec{a} = \lambda(x,y) = (\lambda x, \lambda y)$.

向量的数量积: $\vec{a} \cdot \vec{b} = |\vec{a}||\vec{b}|\cos\theta (\vec{a} \neq \vec{0}, \vec{b} \neq \vec{0}, 0^{\circ} \leq \theta \leq 180^{\circ})$ (<u>无坐标时用</u>) . 零向量与任一向量的数量积为 . 坐标运算:设两个非零向量 $\vec{a} = (x_1, y_1)$, $\vec{b} = (x_2, y_2)$, 则 $\vec{a} \cdot \vec{b} = x_1 x_2 + y_1 y_2$ (<u>有</u>坐标时用) .

- (1) $\vec{a} \cdot \vec{a} = \vec{a}^2 = |\vec{a}|^2$ 或 $|\vec{a}| = \sqrt{\vec{a} \cdot \vec{a}}$ (<u>无坐标时用</u>). 若 $\vec{a} = (x,y)$,则 $|\vec{a}|^2 = x^2 + y^2$,或 $|\vec{a}| = \sqrt{x^2 + y^2}$ 有坐标时用).
- (2) $\vec{a} \perp \vec{b} \Leftrightarrow \vec{a} \cdot \vec{b} = 0$ (无坐标时用), $\vec{a} \perp \vec{b} \Leftrightarrow x_i x_j + y_i y_j = 0$ (有坐标时用)。

斜率:倾斜角不是 90° 的直线,它的倾斜角的正切值叫做这条直线的斜率,通常用 k 表示,即 k= $\tan A$ (倾斜角) = $\frac{y_2 - y_1}{x_2 - x_1}$ (两个点) = -A/B (**直线方程一般式**).

斜率的坐标公式:一般地,若 $x_1 \neq x_2$,过点 $P(x_1, y_1)$ 和 $P_2(x_2, y_2)$ 的直线斜率为 $k = \frac{y_2 - y_1}{x_2 - x_1}$

斜截式方程: y = kx + b (直线与 y 轴交点为 (0, b), b 叫做直线在 y 轴上的截距).

Υ

一般式方程: 关于 x , y 的二元一次方程 Ax + By + C = 0 (A , B 不同时为零) 叫 做直线的一般式方程 .

有向线段的三要素:起点、方向、长度.

圆的标准方程: $(x-a)^2 + (y-b)^2 = r^2$. 以 C(a,b)为圆心,以 r为半径。

圆的定义:平面内到一定点的距离等于定长的点的轨迹.定点是圆心,定长为半径.

圆的一般方程: 当 $D^2 + E^2 - 4F > 0$ 时,方程 $x^2 + y^2 + Dx + Ey + F = 0$,叫做圆的一般方程.

当 $D^2 + E^2 - 4F > 0$ 时 ,方程表示以($-\frac{D}{2}$, $-\frac{E}{2}$)为圆心 ,且半径为 $\frac{1}{2}\sqrt{D^2 + E^2 - 4F}$ 的

员

圆与圆的位置关系:圆心距为1,

- (1) 当 $l>r_1+r_2$ 时,圆 c_1 与圆 c_2 相离; (2) 当 $l=r_1+r_2$ 时,圆 c_1 与圆 c_2 外切;
- (3) 当 $|r_1-r_2| < l < r_1+r_2$ 时,圆 c_1 与圆 c_2 相交;
- (4) 当 $t=|r_1-r_2|$ 时,圆 c_1 与圆 c_2 内切;(5)当 $t<|r_1-r_2|$ 时,圆 c_1 与圆 c_2 内含;

圆锥曲线的定义:

第二定义: $e = \frac{|PF|}{|PK|} = \frac{c}{a}$

0<e<1⇔椭圆;e>1⇔双曲线;e=1⇔抛物线

7

ZC 直线重合: \rightarrow 无数个交点 \rightarrow 相应的直线方程所组成的二元一次方程组无数个解 \rightarrow $k_1 = k_2$ 且 $b_1 = b_2$ 。

直线垂直: $\rightarrow k_1 \ k_2 = -1$ (已知直线斜截式) $\rightarrow A_1 A_2 + B_1 B_2 = 0$ 。 (已知直线一般式)

ZD 直线点斜式方程: $y - y_0 = k(x - x_0)$. 条件: (若直线 /经过点 $P_1(x_0, y_0)$, 且斜率为 k, 求 /方程.)

ZF 直线的法向量:如果非零向量 n 所在的直线与直线 /垂直,则称 n 为直线 /的一个法向量 . 如果知道直线的一般式方程 Ax + By + C = 0,则(A , B)是它的一个法向量。

直线方程:一般地,在平面直角坐标系中,给定一条直线,如果直线上点的坐标 都满足某个方程,而且满足这个方程的坐标所表示的点都在直线上,那么这个方 程叫做直线的方程.

最常用有三种(1)**点斜式方程**: $y-y_0=k(x-x_0)$. 条件: (若直线 /经过点 $P_1(x_0,y_0)$, 且斜率为 k , 求直线方程 .) (2) **斜截式方程**: y=kx+b (直线 与 y 轴交点为(0,b) , b 叫做直线在 y 轴上的截距).(3) **一般式方程**: 关于 x , y 的二元一次方程 Ax+By+C=0 (A , B 不同时为零) 叫做直线的一般式方程 . 点 斜式方程和一般式方程联系:k=-A/B, b=-C/B

点斜式方程用来求直线方程,斜截式方程用来求直线位置关系,一般式方程用来求点到直线的距离.

直线的方向向量:如果非零向量 a 所在的直线与直线 / 平行,则称 a 为直线 / 的一个方向向量;如果知道直线的斜截式方程 y=kx+b,则(1,k)是它的一个方向向量。

ZP 直线平行: →0 个交点→相应的直线方程所组成的二元一次方程组 0 个解→ k_1 = k_2 且 $b_1 \neq b_2$

ZX 直线相交: →1 个交点→相应的直线方程所组成的二元一次方程组 1 个解→ k_1 $\neq k_2$ 。

直线斜截式方程:y=kx+b (直线与y轴交点为(0,b), b叫做直线在y轴上的截距)

ZY 直线一般式方程:关于 x, y的二元一次方程 Ax + By + C = 0 (A, B 不同时为零) 叫做直线的一般式方程.

直线与圆的位置关系:如果圆的半径为r,圆心到直线的距离为d,

- (1) 当 d>r→直线与圆有 0 个交点→直线与圆相离。
- (2) 当 d=r→直线与圆有1个交点→直线与圆相切。
- (3) 当 d<r→直线与圆有2个交点→直线与圆相交。

电子版获取方式:

欢迎大家"留言&每日打卡",我们一起坚持!

【三月资料合集】领取方式

长按扫描下方二维码,关注高中数学学习站

发送消息【三月资料】即可获得

【版权说明】本文由高中数学学习站编辑整理,转载请标注来源。

你要努力逆袭

