Applied Data dcience capstone

Ibrahim alatyan

Executive summary

- Capstone Project: Predicting Falcon 9 First Stage Landings
- In this project, we use machine learning to predict whether the SpaceX Falcon 9 first stage will land successfully.
- Main Steps:
- Collect, clean, and format data
- Analyze and visualize key patterns
- Explore interactive graphs
- Train and test machine learning models

Our analysis shows that certain launch features affect success rates. Based on our results, the **decision tree algorithm** appears to be the best for predicting successful landings.

introduction

- Capstone Project: Predicting Falcon 9 First Stage Landings
- SpaceX offers Falcon 9 launches for \$62 million, much cheaper than competitors (\$165M+) due to reusability. Predicting whether the first stage will land successfully helps estimate launch costs, which is useful for competitors bidding against SpaceX.
- Key Insights:
- Many unsuccessful landings are intentional (e.g., controlled ocean landings).
- We aim to predict successful landings based on features like payload mass, orbit type, and launch site.

Methodology Overview

1. Data Collection & Processing

- 1. Sources: SpaceX API, Web Scraping
- 2. Tools: Pandas, NumPy, SQL

Exploratory Data Analysis (EDA)

- 1. Identify patterns and trends in the data
- 3. Data Visualization
 - 1. Tools: Matplotlib, Seaborn, Folium, Dash

4. Machine Learning Prediction

- 1. Algorithms: Logistic Regression, SVM, Decision Tree, KNN
- This structured approach helps us analyze Falcon 9 launch data and predict successful landings effectively.

SpaceX API Data Collection

•API Used: SpaceX API

•Filtering: Only Falcon 9 launches are included.

•Handling Missing Data: Missing values are replaced with the column mean.

•Final Dataset:

•90 rows (instances)

•17 columns (features)

	##		B t tt t	B					0-1-151		•	l anding Bad	Disala		01-1		
	FlightNumber	Date	BoosterVersion	PayloadMass	Orbit	LaunchSite	Outcome	Flights	GridFins	Reused	Legs	LandingPad	Block	ReusedCount	Serial	Longitude	Latitude
4	1	2010- 06- 04	Falcon 9	NaN	LEO	CCSFS SLC 40	None None	1	False	False	False	None	1.0	0	В0003	-80.577366	28.561857
5	2	2012- 05-22	Falcon 9	525.0	LEO	CCSFS SLC 40	None None	1	False	False	False	None	1.0	0	B0005	-80.577366	28.561857
6	3	2013- 03-01	Falcon 9	677.0	ISS	CCSFS SLC 40	None None	1	False	False	False	None	1.0	0	B0007	-80.577366	28.561857
7	4	2013- 09-29	Falcon 9	500.0	РО	VAFB SLC 4E	False Ocean	1	False	False	False	None	1.0	0	B1003	-120.610829	34.632093
8	5	2013- 12-03	Falcon 9	3170.0	GTO	CCSFS SLC 40	None None	1	False	False	False	None	1.0	0	B1004	-80.577366	28.561857

Web Scraping

•Source: Wikipedia - Falcon 9 & Falcon Heavy Launches

Data Focus: Only Falcon 9 launches

•Final Dataset:

•121 rows (instances)

•11 columns (features)

	Flight No.	Launch site	Payload	Payload mass	Orbit	Customer	Launch outcome	Version Booster	Booster landing	Date	Time
o	1	CCAFS	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success\n	F9 v1.0B0003.1	Failure	4 June 2010	18:45
1	2	CCAFS	Dragon	0	LEO	NASA	Success	F9 v1.0B0004.1	Failure	8 December 2010	15:43
2	3	CCAFS	Dragon	525 kg	LEO	NASA	Success	F9 v1.0B0005.1	No attempt\n	22 May 2012	07:44
3	4	CCAFS	SpaceX CRS-1	4,700 kg	LEO	NASA	Success\n	F9 v1.0B0006.1	No attempt	8 October 2012	00:35
	_	00450	CV ODC 0	4.077 1	1.50	NACA	C	FO 4 ODOOO 7 4	No ottownsky	4 March 2042	45:40

Data collection and warpiling

- Missing Entries: All missing data is filled.
- Categorical Features: Categorical columns are encoded using one-hot encoding.
- Additional Column:
 - A new 'Class' column is added, where:
 - **0** = Failed Launch
 - 1 = Successful Launch
- Final Dataset:
- 90 rows (instances)
- 83 columns (features)

EDA

- 1. Pandas & NumPy:
 Using Pandas and NumPy functions, we explore basic data insights, such as:
- Launches by Site: The number of launches for each site
- Orbit Occurrences: Frequency of each orbit type
- Mission Outcomes: The number and occurrence of successful vs. failed missions
- 2. SQL: SQL queries help answer specific data questions, including:
- Unique Launch Sites: Names of all launch sites used
- Payload Mass (NASA CRS): Total payload mass carried by NASA boosters
- Average Payload Mass (F9 v1.1): Average payload mass for Falcon 9 v1.1 booster version

Data visualization

- Data Visualization
- 1. Matplotlib & Seaborn: Using these libraries, we visualize relationships between different features with:
- Scatterplots: Show correlations between variables like flight number vs. launch site.
- Bar Charts: Used for visualizing features like launch site vs. payload mass.
- Line Charts: To analyze trends like success rate vs. orbit type.
- Key Visualizations:
- Flight number vs. Launch site
- Payload mass vs. Launch site
- Success rate vs. Orbit type
- 2. Folium:

Folium is used for creating interactive maps to visualize geographic relationships:

- Launch Sites: Mark all Falcon 9 launch sites on a map.
- Success/Failure by Site: Display succeeded and failed launches for each site.
- **Distances:** Show distances from launch sites to nearby cities, railways, and highways.

Interactive Visualization with Dash

- Dash Functions are used to create an interactive web interface with:
- Dropdown Menu & Range Slider: Allow users to select and adjust input parameters.
- Visualizations in the Interactive Site:
- Pie Chart: Displays the total successful launches from each launch site.
- Scatterplot: Shows the correlation between payload mass and mission outcome (success or failure) for each launch site.

Machine Learning Prediction

- 1. Data Preparation:
- **Standardization:** The data is standardized to ensure all features are on the same scale.
- Data Split: The data is divided into training and test sets.
- 2. Model Creation: We use models from Scikit-learn:
- Logistic Regression
- Support Vector Machine (SVM)
- Decision Tree
- K-Nearest Neighbors (KNN)
- 3. Model Training & Hyperparameter Tuning:
- Fit the Models: We train each model using the training set.
- **Hyperparameter Optimization:** Find the best hyperparameters for each model to improve performance.
- 4. Model Evaluation:
- Accuracy Scores: Assess the overall performance of each model.
- Confusion Matrix: Evaluate the models in terms of true positives, false positives, true negatives, and false negatives.

I. SQL (EDA with SQL):

1. Queries and insights derived from SQL, such as unique launch sites and payload masses.

2. Matplotlib & Seaborn (EDA with Visualization):

- 1. Graphs to visualize relationships between various features (e.g., flight number vs. launch site, success rate vs. orbit type).
- 2. Class 0 represents failed launches, and class 1 represents successful launches.

3. Folium:

1. Interactive maps displaying launch sites, and the success/failure of launches with distances to nearby points of interest.

4. Dash:

1. An interactive dashboard with pie charts and scatterplots to explore launch success rates and payload mass correlations.

Predictive Analysis:

- 1. Machine learning models (Logistic Regression, SVM, Decision Tree, KNN) trained to predict the success of rocket landings, evaluated with accuracy scores and confusion matrices.
- In all graphs, class 0 indicates a failed launch and class 1 indicates a successful launch.

• The names of the unique launch sites in the space mission

Launch_Sites
CCAFS LC-40
CCAFS SLC-40
KSC LC-39A
VAFB SLC-4E

• 5 records where launch sites begin with 'CCA'

DATE	timeutc_	booster_version	launch_site	payload	payload_masskg_	orbit	customer	mission_outcome	landing_outcome
2010-06- 04	18:45:00	F9 v1.0 B0003	CCAFS LC-40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
2010-12-08	15:43:00	F9 v1.0 B0004	CCAFS LC-40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
2012-05-22	07:44:00	F9 v1.0 B0005	CCAFS LC-40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attempt
2012-10-08	00:35:00	F9 v1.0 B0006	CCAFS LC-40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt
2013-03-01	15:10:00	F9 v1.0 B0007	CCAFS LC-40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt

Model Comparison and Ranking

- When comparing the results of all four models, we see that they have the same accuracy score and confusion matrix on the test set. As a result, we use their GridSearchCV best scores to rank them.
- Ranking of Models (based on GridSearchCV best scores):
- 1. Decision Tree

1. **Best Score:** 0.8893

K-Nearest Neighbors (KNN)

1. **Best Score**: 0.8482

3. Support Vector Machine (SVM)

1. **Best Score**: 0.8482

4. Logistic Regression

1. Best Score: 0.8464

The Decision Tree model performs the best, followed by KNN and SVM with nearly identical scores, while Logistic Regression ranks last.

Feature Correlations & Impact on Mission Outcome

- Data visualizations show some correlations:
- Heavy payloads lead to higher success rates for Polar, LEO, and ISS orbits.
- GTO orbit shows both successful and unsuccessful missions, making predictions harder.
- Using Machine Learning for Prediction
- Features like orbit type and payload mass affect mission outcomes.
- Machine learning can help identify patterns in past data to predict future mission success based on these features.

Conclusion

- In this project, we predict if the Falcon 9 first stage will land to estimate launch costs.
- Features like payload mass and orbit type may influence the mission outcome.
- Several machine learning algorithms were used to identify patterns in past launch data and create predictive models.
- The Decision Tree model performed the best among the four algorithms tested.