Práctica 4: Algoritmos de Programación Dinámica

Grupo 4 Integrantes: Raúl Rodríguez Pérez, Francisco Javier Gallardo Molina, Inés Nieto Sánchez, Antonio Lorenzo Gavilán Chacón

Pseudocódigo

```
function g(i,S)

if S = \emptyset then return L[i,1]

if gtab[i,S] \ge 0 then return gtab[i,S]

ans \leftarrow \infty

for each j \in S do

distviaj \leftarrow L[i,j] + g(j,S \setminus \{j\})

if distviaj < ans then ans \leftarrow distviaj

gtab[i,S] \leftarrow ans

return ans,
```

Ulysses16, recorridos Greedy y PD

Ulysses22, recorridos Greedy y PD

PD VS Greedy

PD	Greedy
Se progresa etapa por etapa con sub-problemas que se diferencian entre sí por sus tamaños	, , , , , , , , , , , , , , , , , , , ,
Se generan muchas subsucesiones de decisiones	Solo se genera una sucesión de decisiones
Hay un gran uso de recursos (memoria)	La complejidad en tiempo suele ser baja (algoritmo relativamente rápidos)
En cada etapa siempre se compara los resultados con los precedentes. Siempre se obtiene la solución óptima	Como en cada etapa no se tiene en cuenta las decisiones precedentes, no hay garantía de obtener el óptimo