浙江大学

本科实验报告

 姓名:

 学院:
 生物医学工程与仪器科学学院

 系:
 生物医学工程

 专业:
 生物医学工程

 学号:

 指导教师:
 陈凌翔

2025年4月3日

浙江大学实验报告

课程名称:_	生物医学传感与检	<u>测</u> 实验类型	型:	
实验项目名称	尔:压电与热电	传感器的特性	生及其应用	
同组学生姓名	Z:			
指导老师:_	陈凌翔	_		
实验地点:	教 7 西裙楼 - 301	实验日期:	2025 年 4	月 17 E

一、实验目的和要求

- 1、了解压电式传感器的结构、原理及应用。
- 2、了解热电偶的工作原理和工作特性。

二、实验内容和原理

1、压电传感器

压电加速度计是根据压电原理制成的测量振动的传感器,图 6.1 是一种压电加速度计的结构示意图。

图 6.1 压电加速度传感器的结构示意图

压电元件固定在外壳基座上,其上的质量块施加预压力,当有一个振动激励该系统时,传感器内部的敏感质量块感受到振动后对压电元件施加作用力,作用力 F 可用下式表示:

$$F = ma$$

式中 m ——敏感块的质量;

a——敏感质量块的加速度。

由于压电元件的压电效应,压电元件受力后产生的电荷量与所其受到的力成正比,即

$$q = d_{ii} F = d_{ii} ma$$

式中 d_{ij} ——压电材料的压电系数。

对于每只压电加速度计,其内装压电晶体的压电系数和敏感块质量均为常量, 所以压电元件受力后产生的电荷量 q 与加速度 a 成正比。因此,只要测量压电 加速度计输出的电荷量,即可确定振动所产生的加速度值,并可由此测量振动幅 度。(振幅大,瞬时加速度大)

为了改善压电传感器的低频特性,常采用电荷放大器。电荷放大器由一个反馈电容 Cf 和高增益运算放大器构成,电荷放大器等效电路如下图 6.2 所示。

图 6.2 电荷放大器等效电路

当运算放大器的开环增益足够大时,电缆电容 Cc 和传感器电容 Ca 可以忽略,输出电压仅为输入电荷及反馈电容的函数:

$$UO = -q/Cf$$

电荷放大器的输出电压与电缆电容无关,因此可以采用长电缆进行远距离测量,并且电缆电容变化也不影响灵敏度,这是电荷放大器的最大特点。

压电传感器不能用于静态测量,因为经过外力作用后产生的电荷,只有在测量电路具有无限大的输入阻抗时才能保存。而实际情况无法做到这样,这就决定了压电传感器只能测量动态的应力。在本实验中,当振动频率过低(<3Hz)时,电荷放大器将无输出。

2、热电传感器

热电偶的基本工作原理是热电效应。两种不同导体 A 和 B 组成闭合回路,如果两结点的温度不同,在回路中就会产生电动势,有电流流过,这种现象称为热电效应或**塞贝克效应**。

这两种导体的组合称为热电偶。如图 10.1 所示,热电偶的两端是将两种导体焊在一起,其中置于被测介质中的一端称为工作端;另一端称为参比端或冷端,处于恒温条件下。当工作端被测介质温度发生变化时,热电势随之发生变化,将热电势送入显示、记录装置或用微机处理,即可得到温度值。T 与 T0 的温差越大,热电偶的输出电动势就越大,因此,可用热电势衡量温度的大小。

图 10.1 热电偶热电效应原理

三、主要仪器设备

压电加速度计、电荷放大器、低通滤波器、示波器、低频振荡器、转速/频率表、电源。

热电偶、差动变换(放大)器 I、电压表(2V量程)、加热器、直流电源、数字温度计。

四、操作方法和实验步骤

1、压电传感器

(1) 观察压电加速度计结构,并将其安装在圆盘振动台上。

(2) 压电加速度计与电荷放大器的接线用屏蔽线或者短线连接,实验接线参考图 6.3。

图 6.3 接线参考图

(3) 将低频振荡器的输出端与频率表的输入端及振动源相连,图 6.4。

图 6.4 振动接线参考图

- (4)将低频振荡器的频率打到 7~20HZ 范围内,频率表监测,调节低频振荡器的幅度旋钮,使整个频率范围圆盘工作台振动不至于过大。
- (5) 用示波器的两个通道同时观察电荷放大器与低通滤波器的输出波形,说明观察到的现象并解释原因。
- (6) 用手轻击试验台,观察输出波形的变化。可见敲击时输出波形会产生"毛刺",试解释原因。
- (7) 保持低频振荡器的输出幅度不变,用频率表或示波器的一个通道读取低频振荡器的输出频率,改变输出频率 f,从 7Hz 到 20Hz,用示波器的另一通道读取不同振动频率下测量系统输出电压的峰—峰值 Vp-p,记录实验数据。

(8) 根据实验结果,作出圆盘工作台的振幅——频率特性曲线,并指出圆盘工作台自振频率的大致数值。

2、热电传感器

(1) 观察热电偶在实验仪上的位置,它封装在双孔悬臂梁外侧。实验仪所配的热电偶是由铜——康铜组成的简易热电偶,分度号为 T,见表 10.1。

温度℃	0	1	2	3	4	5	6	7	8	9
热电纺 数mV										
-40	-1.475	-1.510	-1.544	-1.579	-1.614	-1.648	-1.682	-1.717	-1.751	-1.785
-30	-1.121	-1.157	-1.192	-1.228	-1.263	-1.299	-1.334	-1.370	-1.405	-1.440
-20	-0.757	-0.794	-0.830	-0.867	-0.903	-0.904	-0.976	-1.013	-1.049	-1.085
-10	-0.383	-0.421	-0.458	-0.495	-0.534	-0.571	-0.602	-0.646	-0.683	-0.720
0-	-0.000	-0.039	-0.077	-0.116	-0.154	-0.193	-0.231	-0.269	-0.307	-0.345
0+	0.000	0.039	0.078	0.117	0.156	0.195	0.234	0.273	0.312	0.351
10	0.391	0.430	0.470	0.510	0.549	0.589	0.629	0.669	0.709	0.749
20	0.789	0.830	0.870	0.911	0.951	0.992	1.032	1.073	1.114	1.155
30	1.196	1.237	1.279	1.320	1,361	1.403	1.444	1.486	1.528	1.569
40	1.611	1.653	1.695	1.738	1.780	1.822	1.865	1.907	1.950	1.992
50	2.035	2.078	2.121	2.164	2.207	2.250	2.294	2.337	2.380	2.424
60	2.467	2.511	2.555	2.599	2.643	2.687	2.731	2.775	2.819	2.864
70	2.908	2.953	2.997	3.042	3.087	3.131	3.176	3.221	3.266	3.312
80	3.357	3.402	3.447	3.493	3.538	3.584	3.630	3.676	3.721	3.767
90	3.813	3.859	3,906	3.952	3.998	4.044	4.091	4.137	4.184	4231
100	4.277	4.324	4.371	4.418	4.465	4.512	4.559	4.607	4.654	4.701
110	4.749	4.796	4.844	4.891	4.939	4.987	5.035	5.083	5.131	5.179
120	5.227	5.275	5.324	5.372	5.420	5.469	5.517	5.566	5.615	5.663
130	5.712	5.761	5.810	5.859	5.908	5.957	6.007	6.056	6.105	6.155
140	6.204	6.254	6.303	6.353	6.403	6.452	6.502	6.552	6.602	6.652
150	6.702	6.753	6.803	6.853	6.903	6.954	7.004	7.055	7.106	7.150
160	7.207	7.258	7.309	7.360	7.411	7.462	7.513	7.564	7.615	7.660
170	7.718	7.769	7.821	7.872	7.924	7.975	8.027	8.079	8.131	8.183
180	8.235	8.287	8.339	8.391	8.443	8.495	8.548	8.600	8.652	8.705
190	8.757	8.810	8.863	8.915	8.968	9.021	9.074	9.127	9.180	9.233
200	9.286	9.339	9.392	9.446	9.499	9.553	9.606	9.659	9.713	9.767
210	9.820	9.874	9.928	9.982	10.036	10.090	10.144	10.198	10.252	10.30
220	10.360	10.414	10.469	10.523	10.578	10.632	10.687	10.741	10.796	10.85
230	10.905	10.960	11.015	11.070	11.128	11.180	11.235	11.290	11.345	11.40
240	11.450	11.511	11.566	11.622	11.677	11.733	11.788	11.844	11.900	11.95

表 10.1 T 型热电偶分度表

(2)差动变换(放大)器 I 增益调到最大(右旋 10 圈到底,出厂设置约 92 倍),按图 10.2 接线,此时加热器先不要接入+5V 直流电源,开启电源,在未加热状态调节差动变换(放大)器 I 调零旋钮,使电压表显示为零。外置的数字温度表接直流电源和热电偶,记录下未加热的热电偶温度,即室温 t1。

图 10.2 热电偶实验接线参考图

- (3) 加热器一端接+5V 直流电源、另一端接地,观察电压表显示值的变化,待显示值稳定不变时(约十分钟)记录电压表显示的读数 E。
- (4) 根据热电势与温度之间的关系式 E(t,t0)=E(t,t1)+E(t1,t0), 查阅 T 型热电偶分度表求出热端温度 t。

其中:

- t —— 热电偶的热端 (工作端或称测温端) 温度;
- t1 —— 热电偶的冷端(自由端即热电势输出端)温度也就是室温;
- t0 —— 热电偶分度表参考端温度 0℃;
- E(t,t0)——热端 t、参考端 0℃时的热电势, 查表求出 t;
- E(t,t1)——热端 t、冷端室温时的热电势,
- E(t,tI)= 测量所得电压表读数 E/92 (92 为差动放大倍数);
- E(t1.t0)——室温、参考端 0℃时的热电势,即温度修正电动势,查表得。
- (5) 用外接的温度表读取热电偶热端温度 t, 与以上实验计算查表所得结果相比较。

五、实验数据记录和处理

1、压电传感器

f(Hz)	7	8	9	10	11	12	13
$V_{p-p}(V)$	0.18	0.46	1.44	5. 44	1.44	1.12	0.96
f (Hz)	14	15	16	17	18	19	20
Vp-p (V)	0.96	0.96	0.96	0.96	0.96	0.96	0.96

当 f<10Hz 时,输出电压随频率升高而增大,反映系统处于共振前的受迫振动阶段;当 f>10Hz 后,电压迅速下降并在 14Hz 后稳定在 0.96V,说明系统已远离共振区域,进入惯性控制区。结合实验现象,圆盘工作台的自振频率大致在10Hz 左右。

CH1 为低通滤波器前, CH2 为去除高频噪声的最终输出波形。

2、热电传感器

t1 = 25℃

E = 0.098V

t = 51℃

六、实验结果与分析

1、压电传感器

在频率 f=10Hz 时, Vp-p 达到峰值 5.44V,显著高于其他频率下的输出。 这是由于此时振动频率接近圆盘工作台的固有频率,引发系统共振,导致振幅急 剧增大。根据压电传感器原理,加速度与电荷量成正比,而振幅越大(对应瞬时 加速度越大),电荷放大器输出电压越高,符合 "振幅大则瞬时加速度大" 的理 论预期。

轻击试验台时输出波形出现 "毛刺", 是由于瞬时冲击产生的高频振动信号

被压电传感器捕捉。压电传感器对动态应力敏感,而静态或低频(<3Hz)信号会因电荷泄漏无法测量,与理论分析一致。

2、热电传感器

由公式可得 10.1, 98 mV / 92 + 0.992 = 2.057 mV

查表可知, 2.057mV 介于 50 $^{\circ}$ $^{\circ}$

七、讨论、心得

1、为什么电荷放大器与压电加速度计的接线必须用屏蔽线或者短线,否则会产生什么问题?

电荷放大器与压电加速度计的接线必须采用屏蔽线或短线,核心原因在于压电传感器输出的是**微弱电荷信号**(量级通常为 pC 级),极易受外界电磁干扰(如工频噪声、设备漏电流)影响。

屏蔽线的金属网层可形成电磁屏蔽层,有效阻隔空间电磁场对信号的耦合干扰;而短线连接则是因为尽管电荷放大器理论上可忽略电缆电容(Cc)的影响(输出电压 U0 = -q/Cf 与 Cc 无关),但过长电缆会引入较大分布电容和电阻,导致信号衰减及噪声信噪比下降。若未采用屏蔽线或使用长线,可能出现输出波形叠加高频杂波、基线漂移等问题,严重时会淹没有效信号,影响振动加速度测量精度。

2、测温度的传感器除了热电偶还有什么类型,列举一两种类型说明其工作原理、适用范围。

(1) 热电阻

热电阻基于金属电阻随温度变化的特性。当温度升高时,金属的电阻值会增加,通过测量电阻值的变化可以确定温度。

(2) 热敏电阻

热敏电阻是一种基于半导体材料的传感器,其电阻值随温度变化而显著改变。 根据材料特性,热敏电阻可分为正温度系数(PTC)和负温度系数(NTC)两种类 型。

(3) 红外测温传感器

红外测温传感器通过测量物体表面辐射的红外线能量来确定温度。根据斯特藩-玻尔兹曼定律,温度较高的物体会辐射出更多的红外线能量。

(4) 光纤温度传感器

光纤温度传感器基于光纤中光的传播特性与温度之间的关系,通过测量光的传播时间或相位差来确定温度。

本次实验以"压电与热电传感器的特性及其应用"为主题,通过对压电加速度计和热电偶的原理探究、电路搭建及数据实测,我系统掌握了两类传感器的核心工作机制与工程应用要点。