CAAM 336 · DIFFERENTIAL EQUATIONS

Homework 14

Posted Friday 7 February 2014. Due 1pm Friday 14 February 2014.

14. [25 points]

Determine whether or not each of the following mappings is an inner product on the real vector space \mathcal{V} . If not, show all the **properties** of the inner product that are violated.

(a)
$$(\cdot,\cdot): \mathcal{V} \times \mathcal{V} \to \mathbb{R}$$
 defined by $(u,v) = \int_0^1 u(x)v'(x) dx$ where $\mathcal{V} = C^1[0,1]$.

(b)
$$(\cdot,\cdot): \mathcal{V} \times \mathcal{V} \to \mathbb{R}$$
 defined by $(u,v) = \int_0^1 |u(x)| |v(x)| \, dx$ where $\mathcal{V} = C[0,1]$.

(c)
$$(\cdot,\cdot): \mathcal{V} \times \mathcal{V} \to \mathbb{R}$$
 defined by $(u,v) = \int_0^1 u(x)v(x)e^{-x} dx$ where $\mathcal{V} = C[0,1]$.

(d)
$$(\cdot,\cdot): \mathcal{V} \times \mathcal{V} \to \mathbb{R}$$
 defined by $(u,v) = \int_0^1 (u(x) + v(x)) dx$ where $\mathcal{V} = C[0,1]$.

(e)
$$(\cdot,\cdot): \mathcal{V} \times \mathcal{V} \to \mathbb{R}$$
 defined by $(u,v) = \int_{-1}^{1} xu(x)v(x) dx$ where $\mathcal{V} = C[-1,1]$.