1

Discrete Assignment EE1205 Signals and Systems

Nimal Sreekumar EE23BTECH11044

Question 11.9.2.5: In an A.P., if the *p*-th term is $\frac{1}{q}$ and *q*-th term is $\frac{1}{p}$, prove that the sum of the first pq terms is $\frac{1}{2}(pq+1)$, where $p \neq q$. And also find Z-transform of x(n).

$$S(pq) = \frac{1}{2}(pq+1)$$
 (10)

Solution:

$$x(n) \stackrel{z}{\longleftrightarrow} X(z)$$
 (11)

$$\frac{1}{q} = x(0) + pd$$
 (1)
$$\frac{1}{p} = x(0) + qd$$
 (2)

$$X(z) = \sum_{n = -\infty}^{\infty} (x(0) + nd)z^{-n}$$
 (12)

Solving (1) and (2) gives

$$= x(0) \sum_{n=0}^{\infty} z^{-n} + d \sum_{n=0}^{\infty} n z^{-n}$$
 (13)

$$\frac{1}{pq} = d \tag{3}$$

$$= \frac{x(0)}{1 - z^{-1}} + \frac{dz^{-1}}{(1 - z^{-1})^2}$$
 (14)

 $x(0) = 0 \tag{4}$

Sum of A.P.,

Using (3) and (4),

$$S(n) = \sum_{r = -\infty}^{n} x(r)$$
 (5)
$$X(z) = \frac{z^{-1}}{pq(1 - z^{-1})^2}$$

$$S(pq) = \sum_{r=0}^{pq} x(r)$$
 (6)

$$S(pq) = \sum_{r=0}^{pq} (x(0) + rd)$$
 (7)

$$= (pq+1)x(0) + d\sum_{r=0}^{pq} r$$
 (8)

$$= (pq + 1)x(0) + d\left(\frac{pq(pq + 1)}{2}\right) (9)$$

Using (3) and (4),

Symbols	Values	Description
x(n)	x(0) + nd	general term of the series
S(n)	$d^{\frac{n(n+1)}{2}}$	sum of n terms
X(z)	$\frac{z^{-1}}{pq(1-z^{-1})^2}$	Z-transform of x(n)

(15)