

"Solving endogeneity": Graphical representation

What have we so far?

- Endogeneity is a common problem
- Endogeneity causes OLS to be inconsistent
- Estimation requires another estimation technique

Ezafus,

Lecture 4.3, Slide 2 of 12, Erasmus School of Economics

Instrumental variable estimation

- Z variables are instruments if
 - Z and X are correlated
 - ightharpoonup Z does not correlate with arepsilon
- ullet Correlation between instruments and y is only due to X

$$Cov(Z, y) = Cov(Z, X\beta + \varepsilon) = Cov(Z, X\beta) + \underbrace{Cov(Z, \varepsilon)}_{=0}$$

= $Cov(Z, X)\beta$

• Use instruments to estimate β

Erafus,

"Solving endogeneity": Graphical representation

- \bullet Use Z to decompose X in explained and unexplained part
- ② Effect size of explained part on y equals β
- Unexplained part is added to error term

Endogeneity is solved as

- X unexplained not correlated with X explained
- X explained is exogenous

Lecture 4.3, Slide 5 of 12, Erasmus School of Economics

Properties 2SLS

- Variance of b_{2SLS} : Var $[b_{2SLS}] = \sigma^2(X'H_ZX)^{-1}$
- Estimating σ^2 :
 - $\hat{\sigma}^2 = \frac{1}{n-k} (y Xb_{2SLS})'(y Xb_{2SLS})$
 - ▶ Do **not** use residuals (or reported standard errors) of second stage regression!

Derivation of variance (use $Var[\varepsilon] = \sigma^2 I$):

$$b_{2SLS} = (X'H_{Z}X)^{-1}X'H_{Z}y = (X'H_{Z}X)^{-1}X'H_{Z}(X\beta + \varepsilon)$$

$$= \beta + (X'H_{Z}X)^{-1}X'H_{Z}\varepsilon$$

$$Var[b_{2SLS}] = Var[(X'H_{Z}X)^{-1}X'H_{Z}\varepsilon]$$

$$= (X'H_{Z}X)^{-1}X'H_{Z}Var[\varepsilon] ((X'H_{Z}X)^{-1}X'H_{Z})'$$

$$= (X'H_{Z}X)^{-1}X'H_{Z}(\sigma^{2}I)H'_{Z}X(X'H_{Z}X)^{-1}$$

$$= \sigma^{2}(X'H_{Z}X)^{-1}X'H_{Z}H'_{Z}X(X'H_{Z}X)^{-1} = \sigma^{2}(X'H_{Z}X)^{-1}$$

$$= \sigma^{2}(X'H_{Z}X)^{-1}X'H_{Z}H'_{Z}X(X'H_{Z}X)^{-1} = \sigma^{2}(X'H_{Z}X)^{-1}$$

Lecture 4.3, Slide 7 of 12, Erasmus School of Economics

2SLS in matrix notation

Given model

$$y = X\beta + \varepsilon$$
, $Var[\varepsilon] = \sigma^2 I$

and instruments Z

1 Regress X on Z to get explained part:

▶ Model: $X = Z\gamma + \eta$

▶ OLS estimate: $(Z'Z)^{-1}Z'X$

Fitted value: $\hat{X} = \underbrace{Z(Z'Z)^{-1}Z'}_{H_Z}X = H_ZX$

2 Regress y on \hat{X} :

$$b_{2SLS} = (\hat{X}'\hat{X})^{-1}\hat{X}'y$$

= $(X'H'_ZH_ZX)^{-1}X'H'_Zy$
= $(X'H_ZX)^{-1}X'H_Zy$

Use: $H_Z = H'_Z = H'_Z H_Z$

Lecture 4.3, Slide 6 of 12, Erasmus School of Economics

Properties of 2SLS

- 2SLS is consistent if (when $n \to \infty$)
 - ▶ Z and ε not correlated: $\frac{1}{n}Z'\varepsilon \to 0$
 - ▶ Z not multicollinear: $\frac{1}{n}Z'Z \rightarrow Q_{ZZ}$, and Q_{ZZ} invertible
 - ▶ X and Z sufficiently correlated: $\frac{1}{n}X'Z \rightarrow Q_{XZ}$, and Q_{ZZ} rank k

Sketch of proof:

$$b_{2SLS} = \beta + (X'H_{Z}X)^{-1}X'H_{Z}\varepsilon = \beta + (X'Z(Z'Z)^{-1}Z'X)^{-1}X'Z(Z'Z)^{-1}Z'\varepsilon$$

$$= \beta + \underbrace{(\frac{1}{n}X'Z(\frac{1}{n}Z'Z)^{-1}\frac{1}{n}Z'X)^{-1}}_{(Q_{XZ}Q_{ZZ}^{-1}Q'_{XZ})^{-1}}\underbrace{\frac{1}{n}X'Z(\frac{1}{n}Z'Z)^{-1}}_{Q_{XZ}Q_{ZZ}^{-1}}\underbrace{\frac{1}{n}Z'\varepsilon}_{0}$$

- Zafus

Finding instruments

What are good instruments?

- All exogenous variables in X (incl. constant)
- Other instruments are always needed:
 - ► At least one for every endogenous variable
 - ▶ Want: strong correlation between Z and X
 - ▶ Need: no correlation between Z and ε

Ezafu,

Lecture 4.3, Slide 9 of 12, Erasmus School of Economics

Summary

If X is in fact exogenous

- OLS and 2SLS both consistent
- Variance OLS smaller than variance 2SLS!
- $\to \mathsf{Use}\;\mathsf{OLS}$

If X is endogenous

- 2SLS is consistent
- OLS inconsistent
- \rightarrow Use 2SLS

Examples of instruments

Explain obtained grade using attendance:

Potential instruments:

- Travel time home to university
- Policy change to obligatory attendance

Test

What variable would be an instrument for price when modeling consumer sales of ice cream using sales = $\alpha + \beta$ price + ε ?

Potential instruments?

- Prices of raw materials (valid)
- **2** Competitor prices (direct influence on sales, so part of ε)
- **3** Outside temperature (direct influence on sales, so part of ε)

Lecture 4.3, Slide 10 of 12, Erasmus School of Economics

TRAINING EXERCISE 4.3

- Train yourself by making the training exercise (see the website).
- After making this exercise, check your answers by studying the webcast solution (also available on the website).

- Erafus

Ezafus