

UK Patent Application GB 2 208 778 A

(43) Date of A publication 12.04.1989

(21) Application No 8822635.2

(22) Date of filing 04.02.1985

Date lodged 27.09.1988

(62) Derived from Application No. 8502735.7 under Section 15(4)
of the Patents Act 1977
Date 04.02.1985

(71) Applicant
Mitel Telecom Limited

(Incorporated in the United Kingdom)

Severnbridge Estate, Port Skewett, Newport,
Gwent, Wales, NP6 4YR, United Kingdom

(72) Inventors
Michael John Carey
Adrian John Anderson

(74) Agent and/or Address for Service
Venner Shipley and Co
368 City Road, London, EC1V 2QA, United Kingdom

(51) INT CL'
H04K 1/00, H04B 7/26

(52) UK CL (Edition J)
H4L LBSF L1H2 L1H9

(56) Documents cited
EP 0097579 A1 EP 0095959 A1 US 4455651 A
US 4017798 A

(58) Field of search
UK CL (Edition J) H4L LBSF LBSX LDSF
INT CL' H04B, H04K

(54) Spread spectrum radio telephone

(57) A wireless telephone communication system for wireless, voice, data or voice and data terminals comprising a central switching station 5 for receiving signals for communication with selected ones of mobile telephone sets 8, apparatus 3 for converting the signals to PN spread spectrum radio frequency signals and for transmitting them, and at least one mobile telephone for receiving and decoding the spread spectrum signals, the spreading code used in each mobile for transmitting back to the station 5 being different from the others and each signal transmitted having a different spreading code from the others.

The transmitter 3 preferably comprises means for feeding the spread spectrum signals to a leaky transmission line 2 which enables communication to mobiles within well defined areas, such as within a building, so providing additional security to that provided by the spread spectrum transmission.

GB 2 208 778 A

1/3

2208770

Fig. 4

Fig. 3

Fig. 2

WIRELESS TELEPHONE SYSTEM

01
02 This invention relates to a telephone
03 communication system utilizing wireless voice, data,
04 or voice and data terminals.

05 It is often difficult to provide telephone
06 service to personnel who are continuously moving, yet
07 must be quickly available at a telephone or data
08 terminal, e.g. warehouse stock takers, personnel
09 responsible for building maintenance or security,
10 etc. Paging receivers have been used to summon such
11 personnel to call a number via the closest telephone
12 set. Sometimes such personnel are required to enter
13 data into a terminal for storage at a central
14 computer. Yet wired jacks for interfacing a telephone
15 with a PABX or terminal to a computer are often spaced
16 at substantial distances from each other in
17 warehouses, for example.

18 Voice communication of such personnel has
19 been partly solved by the use of cordless (wireless)
20 telephones each operating at a different frequency
21 from the other. However such telephones have
22 exhibited substantial problems. There are usually a
23 limited number of channels available, limiting the
24 number of telephone/wireless receiver sets which can
25 be used in a given area. Often interference from
26 adjacent channels or other services is encountered.
27 Transmission or reception nulls are often encountered
28 when a cordless telephone is oriented in a particular
29 direction relative to the main transmitting and
30 receiving station. Such nulls are also caused by
31 shielding by steel and concrete of which the building
32 housing the system is built. The system lacks
33 privacy; since the common radio bands are used, the
34 signals can be readily intercepted.

35 In addition, the use of wireless presents
36 a range problem. Particularly for large areas, such
37 as when an entire building, a large warehouse, or
38 aircraft hangar, etc., is to be covered by the system,

02 a high powered central transmitter could be used.
03 However the power of the transmitter cannot be greater
04 than a level prescribed by the regulatory agencies.
05 This places a limitation on the communication range.
06 In the event that many low power transmitters are used
07 scattered around the building, the cost increases
08 substantially.

09 In the system described in U.S. patent
10 4,462,113 issued July 24, 1984, domestic A.C. power
11 lines are used as an antenna for a low power
12 transmitter. However in this case the null problem
13 still exists, and in addition there is a severe
14 bandwidth limitation to below approximately 150 or
15 200kHz. Further, transmission of signals via the A.C.
16 power lines is notoriously insecure, since such
17 signals are often carried by the power lines to
18 neighbouring offices and buildings.

19 Due to the inherent lack of security,
20 nulls and power/distance limitations, the use of a
21 mobile telephone handset has been limited to the home
22 environment, or to very special applications. Until
23 the present invention was made it had not yet been
24 found suitable for commercial applications in which,
25 for example, an entire multi-story building housing
26 many different companies, some possibly being
27 competitors with each other, could be served mobile
28 telephone and data services reliably from the same
29 PABX. Such prior art systems could not ensure
30 complete security of communications, sufficiently low
31 power radiation outside the confines of the building,
32 and absences of nulls or fade areas within structures.

33 Clearly for the above reasons portable
34 terminals could also not be used for reliable
35 transmission and reception of data to a central
36 computer.

37 The present invention provides a
38 communication system which can be connected to a PABX

switching system, which solves the problems noted above. In addition to the provision of secure mobile (wireless) communications in a low power environment with the substantial elimination of the null or fade areas, it provides multi-channel wideband communications which can reliably carry voice, data and signalling (supervisory) signals.

According to the present invention leaky transmission cables are used to radiate and to receive communication signals within the communication region. While at single frequencies such cables exhibit nulls along the cables at regular intervals, the communication signals which are carried and which are received in the present invention are spread spectrum.

The use of spread spectrum signals carried by a leaky cable transmission system achieves several highly desirable results. Firstly, nulls are virtually undetectable or are eliminated due to the spreading of the signals over a wide bandwidth. Secondly, since pseudo-noise bandwidth spreading (correlation) code is used for each channel, privacy of communications is virtually assured as well as immunity from interference between channels.

Since a leaky cable is used to distribute the signal in the communication region, the transmitter power and resulting effective radiated power can be very low. Furthermore, the power which is used is spread amongst the frequencies of a wide bandwidth, further reducing the power used at any one frequency. Thus the interference that may be caused to other radio signals outside of the building is virtually nil. Also the radiated power within the building can be increased to a substantial degree in comparison with a non-spread spectrum, single or multi-point antenna transmitter to minimize the bit error rate, yet the effective interference with

01

- 4 -

02 external or other wireless services remains virtually
03 nil, while the reliability of communication within the
04 building is increased.

05 The spread spectrum-leaky cable system
06 according to this invention can operate side-by-side
07 with other similar systems or with conventional AM or
08 FM wireless systems with substantially no or minimal
09 interference. The maximum interference which might be
10 apparent in such other systems would merely be an
11 increase in the background noise level.

12 The various handsets or wireless remote
13 terminals to be used in the present system are
14 preferred to be accessed by address code on a
15 supervisory channel, and to be controlled to
16 internally select a pseudo-noise correlation code
17 which matches a predetermined channel transmit
18 pseudo-noise spreading code. This type of system
19 would benefit by the use of universal wireless
20 handsets or terminals. However in another type of
21 system each handset or terminal is channel fixed with
22 a predetermined pseudo-noise correlation code
23 circuit, and the head end terminal changes its
24 transmit pseudo-noise spreading code to suit that of
25 the selected handset.

26 In the reverse transmission direction
27 which uses a different RF centre frequency the mobile
28 handset is either fixed with a transmit pseudo-noise
29 spreading code for encoding the transmitted signal, or
30 it can be caused to transmit on a channel selected by
31 the head end under control of the head end via signals
32 on the supervisory channel.

33 Leaky cable transmission systems have long
34 been used to communicate in tunnels and mines. One
35 such system is described in U.S. Patent 4,476,574
36 issued October 9, 1984. A large number of
37 publications is listed in that patent which will
38 provide background information to the reader on the

use of leaky feeder communication systems both
subsurface and above the surface of the earth.
However those systems suffer from one or more of the
problems described above which restrict them from use
in a reliable commercial communication system. A text
which describes leaky feeder systems is LEAKY FEEDERS
AND SUBSURFACE RADIO COMMUNICATIONS by P. Delogne, IEE
Electromagnetic Waves Series 14, 1982 Peter Peregrinus
Ltd.

10 . Ltd.

11 Spread spectrum systems have been used in
12 wireless systems in the past, as well as in certain
13 specialized wired systems. A wireless spread spectrum
14 system is described in U.S. patent 4,455,651 issued
15 June 19, 1984 and in U.S. patent 4,086,504 issued
16 April 25, 1978. However in both those cases the power
17 limitation problem and the null problem described
18 above did not present problems, since in the first
19 case directional antennas were used, and in the second
20 case high power could be used and the system was not
21 used in a communication system of the present kind.
22 Furthermore, the locations of the various transmitting
23 stations used in the latter patent, which relates to a
24 seismic exploration system, can all be tested for
25 proper spectrum prior to use and the transmitters
26 moved in case a null is encountered. In addition, the
27 locations of the spread spectrum transceivers are all
28 fixed and preknown, since they are used for
29 triangulation purposes.

- 6 -

systems are not useful for wide band multi-channel voice and data communication systems.

A spread spectrum signal is applied to telephone lines in the invention described in U.S. patent 4,475,208 issued October 2, 1984. In this system data signals are converted to spread spectrum and are transmitted simultaneously with voice over already existing telephone lines which are not leaky feeder transmission cables . The bandwidth of such telephone lines is so low that the data signals are of very low bit rate. Clearly the system is not suitable for use in multi-channel wide bandwidth transmission. In addition, the system is unsuitable for use with wireless handsets or terminals since the telephone transmission lines cannot carry radio frequency signals for any significant distance.

18 A general description of the history and
19 structure of spread spectrum systems will be found in
20 the publication SPREAD-SPECTRUM COMMUNICATIONS, edited
21 by Charles E. Cook et al, published by the IEEE Press,
22 Institute of Electrical and Electronic Engineers, Inc.

01

- 7 -

02 Because of the broadband and multi-channel
03 capability of the present system, the various mobile
04 telephone sets can be provided with a full range of
05 features normally made available only to wired
06 telephone sets by the PABX, such as local alphanumeric
07 display, conferencing, abbreviated dialing, etc., as
08 well as computer access, remote control of various
09 apparatus such as automatic door locks, etc. Such
10 features are not now possible with the well known
11 cordless telephones. A 32 channel system of the type
12 described herein could give typically 200 users at a
13 site mobile telephone facility depending on traffic.
14 Further, the communication channel between the remote
15 mobile unit and a PABX which connects to a larger
16 computer can provide to the remote unit enormous
17 computational power which would otherwise not be
18 available in a hand held computer due to its size and
19 cost limitations, and since a large shared data base
20 can be stored at the central computer.

21 A preferred embodiment of the invention is
22 a wireless communication system comprising apparatus
23 at a central location for receiving one or a plurality
24 of signals for communication with selected ones of
25 wireless communication terminals, apparatus for
26 converting the signals to spread spectrum radio
27 frequency signals, a leaky transmission line located
28 in a communication region, apparatus for applying the
29 spread spectrum radio frequency signals to the
30 transmission line for electromagnetic radiation within
31 the region, at least one wireless communication
32 terminal adapted to receive a predetermined one of the
33 spread spectrum radio frequency signals and for
34 demodulating it into an intelligible signal.

35 The invention also facilitates any of the
36 wireless communication terminals to initiate a
37 communication with the central location, such a
38 communication being capable of having as its final

destination, any telephone connectable to the central location, including others of the wireless communication terminals.

05 A better understanding of the invention
06 will be obtained by reference to the detailed
07 description below of the preferred embodiment, with
08 reference to the following drawings:

09 Figure 1 is a general block diagram of a
10 system according to the present invention,

11 Figure 1A illustrates a code arrangement
12 used in multiplexing the channels of the spectrum,

13 Figure 2 is a block diagram illustrating
14 the mobile handset according to the preferred
15 embodiment of the invention,

16 Figure 3 is a block diagram of the central
17 equipment according to the preferred embodiment of the
18 invention, and

19 Figure 4 is a block diagram of a preferred
20 form of transmit channel used in the system.

21 To briefly review the spread spectrum
22 concept, this technique causes the spectrum of the
23 transmitted signal of each channel to be spread over a
24 greater amount of bandwidth than would be the case if
25 time or frequency division multiplexing techniques
26 were used. Indeed, the signals of all of the channels
27 used are spread over the same band. This is achieved
28 by multiplying a generated data stream to be
29 transmitted by a sequence with the correct
30 auto-correlation and cross-correlation properties
31 (pseudo-random/noise code sequence). The resulting
32 output signal is then a sequence having a higher data
33 rate than that of the input data stream, which when
34 used to modulate some form of amplitude, frequency or
35 phase shift keyed system, causes the spectrum to be
36 spread over a wide bandwidth.

37 At the receiver the incoming signal is
38 multiplied by the same pseudo-random/noise sequence

and the spectrum becomes despread to its original bandwidth. It is important to note that any interfering signal is spread at the receiver rather than despread. The signal is then filtered at the receiver to the original bandwidth, leaving the original signal intact but the interfering signal is attenuated and thus its effect is diminished. This occurs whether the interfering signal is a real signal or is a hole (i.e. null) in the spectrum generated by some propagation effect. Thus a spread spectrum system provides not only immunity against interfering signals but also protection against holes in the spectrum.

Because a large number of spread spectrum sequences are generally known, it is possible to choose a set for a system which would be very difficult to decode by an intruder or eavesdropper. The spread spectrum system therefore contains its own intrinsic security. The interference to which the system is immune may of course be other channels of the system using the same spectrum. Spread spectrum is therefore intrinsically a multiplexing system. Different channels using the same bandwidth can be immune to each other if they use different spreading sequences for modulation and demodulation.

For example, for a pseudo random code having length 255 bits, there are probably approximately 40000 codes which are strongly orthogonal, and thus are highly secure. It is preferred in the present system to use a centre frequency of between about 150 mHz to 1000 mHz, although the invention is not limited to this band, each channel being approximately 32k Hz wide, in which the voice signals are digitized in a well known manner. The spread channel is preferred to be 8 mHz wide.

Turning now to Figure 1, the basic system

01

- 10 -

02 according to the invention is illustrated. Within the
03 confines of a building periphery 1 a leaky cable 2 is
04 laid. The leaky cable can be coaxial cable with holes
05 in its shield, such as described in Canadian Patent
06 1,014,245 issued July 19, 1977, or other types of
07 leaky transmission cables as described in the
08 aforesaid text by P. Delogne. The cable can be
09 sinuously laid above the false ceiling over the entire
10 width and breadth of the building, can extend down the
11 centre of a narrow building, and can pass from storey
12 to storey in a multi-storey building as well as extend
13 over the ceiling area of a building. The leaky cable
14 can be located within movable walls or within an
15 electromagnetically transparent floor. Clearly the
16 location of the cable is dependent on the region to be
17 covered and many variations are possible. The
18 important aspect of the placement of the cable is that
19 for a given minimum electromagnetic field strength,
20 the entire working area of the building which defines
21 the communication region should be enveloped by the
22 field strength leaked from the cable which is above
23 the minimum level.

24 It will be seen that since the field
25 strength drops off by between the square and the cube
26 of the distance from the cable, the effective radiated
27 power outside the building periphery will be low or
28 virtually nil.

29 As central equipment, feeding the cable at
30 one end is a transmitter 3, and receiving signals from
31 the other end of the cable is a receiver 4. The input
32 to the transmitter 3 is connected to a PABX 5 and the
33 output of receiver 4 is connected to the PABX 5. Also
34 connected to the PABX are trunks 6 and local telephone
35 sets 7. Of course the PABX can be divided by number
36 code so that groups of local telephone sets 7 can be
37 associated with one business or division while other
38 groups can be associated with another business or

01

- 11 -

02 division, if desired.

03 One or a plurality of remote wireless
04 mobile telephone sets 8 are located within the
05 building. These telephone sets will be referred to
06 herein henceforth as mobile sets and can include data
07 originating and receiving terminals as well as, or in
08 place of voice handsets. Mobile sets 8 preferably are
09 battery operated, can be carried by a user, can be
10 located on a desk, hung on a wall, etc. They are not
11 connected by wire to the telephone system PABX.

12 Depending on the characteristics of the
13 leaky cable 2, its length, etc., repeaters 9 may be
14 required to be connected at regular intervals in
15 series with the leaky cable. These repeaters are
16 preferably wideband, such as CATV television
17 repeaters.

18 The PABX 5 is primarily a normal PABX
19 which operates to interconnect local telephone sets
20 with each other or with trunks 6. In order to
21 communicate with the mobile sets 8, one of the
22 telephone sets 7 dials an appropriate extension number
23 designating a mobile set. The PABX, instead of
24 connecting the telephone set to one of the other sets
25 7, simply chooses a line terminal 10 which corresponds
26 to the mobile sets 8, connected to a predetermined
27 junctor. The selected line terminal connects to the
28 input of transmitter 3. In one embodiment ringing
29 current is applied to the line terminal in the normal
30 manner. The transmitter 3 converts the ringing
31 current to a predetermined digital code, interleaves
32 it with other digital codes on a supervisory channel,
33 converts the resulting signal to a spread spectrum
34 supervisory channel signal and applies the resulting
35 signal to the leaky cable 2.

36 The line terminal however designates which
37 mobile set is to be selected, since it corresponds to
38 the dialed number. Once the line terminal has been

01
02 selected the transmitter prefixes the digital code
03 with an identifier code which is unique to the mobile
04 set. However it should be noted that rather than
05 using line terminals, junctors of the PABX can be
06 used. Also, instead of applying ringing current to
07 the terminal it can apply a ringing enable signal to a
08 ringing terminal associated with the line terminal.

09 The signal radiates from the leaky cable
10 into the communication region within the building
11 periphery 1, and is received by all of the sets 8.
12 All of the mobile sets continuously decode the
13 signalling signals, and as soon as the identifier
14 prefix which identifies the designated set has been
15 received, that the identified set converts the
16 remaining code which calls for it to ring. Ringing is
17 effected in the mobile set by keying an internal
18 "warble" or other signal to alert the user in a well
19 known manner.

20 The user upon hearing the ringing signal,
21 switches his mobile set on, the equivalent of going
22 off hook. That mobile set then generates an off-hook
23 supervisory code which is converted to a spread
24 spectrum R.F. signal in the signalling channel, and is
25 transmitted via its own small local antenna to the
26 leaky cable 2. Preferably the signal is sent within a
27 time slot designated by the synchronization and
28 control signals sent on the aforenoted supervisory
29 channel. Polling and response of the mobile sets in
30 sequence is preferred to be used in the supervisory
31 channel.

32 The spread spectrum off-hook code is
33 received by the leaky cable, and is carried to the
34 input of receiver 4. Receiver 4 demodulates,
35 despreads and decodes this signal and applies the
36 off-hook supervisory signal to the line input port 11
37 of PABX 5 associated with terminal 11 (or to the
38 associated junctor).

02 It should be noted that while two
03 unidirectional ports 10 and 11 have been indicated,
04 the transmitter and receiver can equally be connected
05 to separate inputs of a hybrid which is connected to a
06 bidirectional line or junctor.

07 The PABX 5, receiving the off hook
08 supervisory signal as if it were from a telephone set,
09 completes the connection between the calling party and
10 mobile set via the transmitter 3 and receiver 4 as if
11 it were to be connected to another telephone 7. The
12 transmitter 3 and receiver 4 are associated with fixed
13 voice channel transmit and receive pseudo-random
14 spreading codes. When this occurs control apparatus
15 associated with transmitter 3 and receiver 4 transmits
16 on the supervisory channel a data signal addressed to
17 the now off-hook mobile set 8 which designates the
18 transmit and receive pseudo-random codes for the
19 two-way voice channel to be used for voice
20 communication to match those of the transmitter and
21 receiver. The mobile set adopts the codes and thus
22 can transmit and receive on the designated channel.
23 Voice communication between the telephone set 7 and
24 mobile set 8 now proceeds on the specified channel,
25 while using the dedicated supervisory channel for
26 supervisory signals.

27 When either of the sets goes on hook at
28 the conclusion of the communication, the supervisory
29 signal associated with that function is carried by the
30 supervisory channel as described earlier during the
31 set up of a call. The voice connection is then taken
32 down in a manner analogous to setting up all
33 supervisory and voice or data communication thus can
34 proceed in this manner.

35 Figure 1A illustrates the preferred form
36 of channel assignments. Dedicated pseudo-random codes
37 designate the supervisory channel in each direction,
38 while a plurality of pseudo-random codes (e.g. up to

01

- 14 -

02 approximately 40,000) can be used to designate the
03 transmit and receive channels. All channels use
04 essentially the same frequency band, though different
05 bands are used in the centre to mobile and mobile to
06 centre directions. None will be found to interfere
07 with each other or with other wireless services using
08 the same frequencies, except for random bit errors
09 which will increase with traffic. In a typical system
10 only about 32 two-way channels will be required
11 although there is clearly capacity for many more,
12 given the number of codes available.

13 In a similar manner calls can be made from
14 any mobile set 8. All mobile sets 8 continuously
15 receive and transmit information on the supervisory
16 channel. Thus if a mobile set 8 goes off-hook this
17 information is transmitted by the supervisory channel
18 to receiver 4 where it is demodulated, despread and
19 decoded before passing to PABX 5. On receiving the
20 off-hook signal PABX 5 allocates a voice channel as
21 described above, transmits dial tone to the mobile set
22 8, receives signalling information from mobile set 8
23 and sets up the call in the usual manner. The mobile
24 sets 8 are clearly not limited to voice
25 communications; they can be combination voice and data
26 sets, or restricted to being data terminals. In this
27 respect one of the trunks 6 of PABX 5 can be connected
28 to a computer for receiving data from and transmitting
29 data to a mobile data set 8. Alternatively a computer
30 can be connected directly to the main bus of PABX 5
31 for communication with the mobile sets. In this
32 manner the mobile set 8 can be used as a remote
33 terminal to a central computer. Low speed data
34 communication can be effected with the mobile set 8
35 via the supervisory channel, or high speed via a
36 dedicated data channel, or via a voice channel shared
37 with and carrying data.

38 Block diagrams of the mobile set and

- 15 -

02 central equipment constituting the transmitter and
03 receiver are shown in Figures 2 and 3. The mobile set
04 will be described first, with reference to Figure 2.

05 An analog telephone set 15 to which a
06 handset or handset with display 16 is connected and,
07 if desired, a keypad 17 has an internal hybrid with an
08 output line connected to an analog-to-digital PCM
09 encoder 18. Preferably the encoder is an adaptive
10 differential encoder of toll quality, e.g. it will
11 encode a signal which is output at 32 kb/sec.

12 The output of encoder 18 is connected to
13 the input of modulator 19, which both spread spectrum
14 and RF modules the incoming signal. The output of
15 modulator 19 is connected to the input of a combiner
16 21 which is connected through a transmit filter 22 and
17 directional coupler 22A to an antenna 23.

18 The filter preferably is 8 megahertz wide,
19 having a Q between 20 and 100. It can for example be
20 a printed strip line controlled by varacter diodes
21 such as is often found in the tuner of a TV set.

22 The antenna 23 is similarly connected
23 through a directional coupler 23A to the input of the
24 receive filter 24 (which is similar to filter 22)
25 which is connected to the input of a splitter 25. One
26 output of splitter 25 is connected to demodulator 27
27 which both spread spectrum and RF demodules the
28 signal. The output of demodulator 27 is connected to
29 the input of digital-to-analog PCM decoder 28, the
30 output of which is connected to the input line to
31 telephone 15.

32 A data interface circuit 29 is also
33 connected to telephone set 15, which contains data
34 encoding and signalling circuitry as well as
35 associated buffers. Considering only the signalling
36 aspect for the moment, off-hook, on-hook, etc. and
37 other signalling signals as are normally generated in
38 a telephone set are applied via interface circuit 29

02 to a synchronization and control circuit 30. The
03 synchronization and control circuit contains a master
04 clock for the mobile set, and controls the filters 22
05 and 24. The clock signal used in the synchronization
06 and control circuit is obtained from the incoming
07 signal received via antenna 23.

08 A spread spectrum and RF modulator 31 has
09 its input connected to synchronization and control
10 circuit 30, and its output connected to another input
11 of combiner 21. The output of RF modulator 32 is
12 connected to another input of multiplexer 21.

13 A second output of splitter 25 is
14 connected to an input of demodulator 34, which has its
15 output connected to synchronization and control
16 circuit 30.

17 A voltage controlled oscillator circuit 35
18 is connected to the synchronization and control
19 circuit 30, and has outputs connected to modulators
20 19, 31 and 38 and demodulators 27, 34 and 41.

21 Synchronization and control circuit 30
22 also has outputs connected to modulators 19, 31 and 38
23 and demodulators 27, 34 and 41.

24 In operation, according to the preferred
25 embodiment of the invention the pseudo-random codes
26 designating the transmit and receive supervisory
27 channels are fixed by means of code plugs or other
28 similar code designating means, fixed in modulator 31
29 and demodulator 34. A supervisory signal having a
30 spreading code correlatable by the correlation code in
31 demodulator 34 is received from the leaky cable
32 transmission line 2 (Figure 1) by antenna 23. The
33 signal passes through directional coupler 22A, is
34 filtered in filter 24, passes through splitter 25 and
35 into demodulators 27 and 34. However since
36 demodulator 27 will not recognize the encoded signal,
37 it outputs only a low level random noise signal.
38 However since spread spectrum modulator 34 does

01 recognize the supervisory channel code, it decodes the
02 signal and applies it to synchronization and control
03 circuit 30. Synchronization and control circuit 30
04 recognizes a data header designating the local mobile
05 set and further recognizes the demodulated code as
06 meaning that ringing should start. It applies a
07 signal to telephone controller 15, which begins
08 ringing. If the local mobile set data header was not
09 recognized, the ringing function would not be enabled.

10
11 It should be noted that on the supervisory
12 channel the code which is received can designate any
13 supervisory function or indeed can carry low speed
14 data communication signals. In this respect it is
15 preferred that the signal carried on this channel
16 should contain four 8 bit words in sequence: the
17 first 8 bits designating the station number of the
18 mobile set, and second 8 bits designating what
19 function should be performed, the third 8 bits should
20 contain bits to enable error detection and correction,
21 and the fourth group of 8 bits should contain a
22 synchronization pattern.

23 With the local telephone set going
24 off-hook, telephone controller 15 applies an off-hook
25 signal to synchronization and control circuit 30.
26 Synchronization and control circuit 30 in turn
27 generates a code sequence containing the local station
28 address identifier, a supervisory code designating
29 "off hook", error correction bits and a
30 synchronization pattern and applies it to modulator
31. Modulator 31 modulates the signal using the fixed
32 supervisory channel code and also RF modulates the
33 signal applied to it before applying it to an input of
34 combiner 21. The output signal of combiner 21 is
35 applied through filter 22 and directional coupler 22A
36 to antenna 23 from which it is transmitted to leaky
37 cable transmission line 2.

38 A supervisory signal is also received from

the central equipment in the same manner as noted above which designates which channel or channels the incoming and outgoing analog and/or data signals from and to the mobile set are to be transmitted. This channel designating signal is received by the synchronization and control circuit 30 over the supervisory channel. The synchronization and control circuit 30 upon receiving the channel designating signals applies signals to modulator 19 and demodulator 27 which control the pseudo-random spreading and correlating codes respectively. Once these codes have been established in the modulator and demodulator, subsequent signals will be transmitted on a spread spectrum channel designated by the modulation pseudo-random spreading code and received by the mobile set on a spread spectrum channel designated by the designated correlation.

19 For transmission of analog or analog and
20 data signals from the local handset, such signals pass
21 from handset 16 (and/or keypad 17) into telephone 15
22 in the usual manner, are split into unidirectional
23 signals, e.g. in a hybrid, and the outgoing signals
24 are applied to PCM encoder 18. The resulting digital
25 output signals are applied to spread spectrum
26 modulator 19, are modulated using the channel
27 spreading code established therein as described above,
28 and are applied to RF modulator 20. Under control of
29 the synchronization and control circuit 30 modulator
30 modulates the signal, and the resulting RF
31 modulated spread spectrum signal is applied via
32 multiplexer 21 through filter 22 to antenna 23 for
33 transmission to the leaky cable transmission line.

34 A signal received from leaky cable
35 transmission line 2 by antenna 23 is applied through
36 directional coupler 22A, filter 24, and splitter 25 to
37 demodulators 27 and 34 which are controlled by
38 synchronization and control circuit 30. The resulting

01

- 19 -

02 demodulated and despread signal from demodulator 27 is
03 applied to PCM decoder 28. The resulting analog
04 output signal is applied to the incoming signal line
05 of telephone 15 from where it is applied to handset
06 16. However since demodulator 34 will not recognize
07 the pseudo random code used it will not apply any
08 input to synchronization and control circuit 30.

09 In the above manner all of the supervisory
10 functions of the mobile set can be received and
11 transmitted, the analog signal receive and transmit
12 channels established and the analog and low speed data
13 transmitted and received.

14 It is preferred that when no radio
15 frequency signals are being received, decoder 28
16 should be switched into a silence mode. A silence
17 code generator 36 is connected to the output of
18 demodulator 27. When the silence code generator 36
19 detects silence code at the output of demodulator 27,
20 it applies a signal to decoder 28 which causes it to
21 remain stable in a known state, whereby no analog
22 output signal is generated.

23 Similarly, a silence detector 37 is
24 connected to the outgoing signal line of telephone set
25 15 for detecting silence. The output of silence
26 detector 37 is applied to synchronization and control
27 circuit 30, which reduces or shuts off modulator 19 for
28 that interval. This results in a reduced error rate of
29 signals received by the central system and reproduced
30 in the mobile set. The silence code detector 28 and
31 silence detector 37 should be very fast acting so as
32 to prevent the clipping of the start of words.

33 Silence detectors have been used in TASI (time
34 assignment speech interpolation) transmission systems.

35 In order to transmit and receive high
36 speed data, data interface circuit 29 interfaces via
37 telephone 15 to the display in the display and handset
38 16 and to the keypad 17, or to an external port (not

01 shown) which may receive data from a local data
02 collection machine or the like. The high speed data
03 is applied through data interface 29 to modulator 38
04 of construction similar to that of modulator 19. The
05 output of modulator 38 is connected to an input of
06 combiner 21.

07 An output of splitter 25 is connected to
08 an input of demodulator 41, which has its output
09 connected to the incoming data port of data interface
10 29.

11 For reception and transmission of data,
12 modulator 38 and demodulator 41 operate similarly to
13 modulator 19 and demodulator 27 respectively. The
14 modulator 38 and demodulator 41 are controlled upon
15 receipt of a signal in the synchronization and control
16 channel designating that data is to be received or
17 transmitted, in a manner similar to that described
18 earlier. Channels are designated by the allocation of
19 pseudo-random codes as described earlier. The data
20 can be transmitted using simple packets at 90.2
21 Kilobits per second, for example, the packets
22 containing data signals and error correction codes.
23

24 Turning now to Figure 3, the transmitter
25 and receiver and PABX interface at the central
26 equipment are illustrated. The elements in the
27 transmitter and receiver referred to with respect to
28 Figure 1 will become evident by the description below
29 and have not been segregated, for the purpose of
30 clarity of explanation.

31 A PABX 5 includes a plurality of interface
32 circuits 42, one of which is shown. Each interface
33 circuit can be similar to a well known PABX line
34 circuit except that it has an additional communication
35 link with the main bus of the PABX for receiving
36 synchronization pulses for transmission to the mobile
37 set.

38 When a telephone set 7 wishes to

01 communicate with a mobile set, for example, a
02 subscriber will dial digits designative of the
03 particular mobile set to be contacted. The PABX, in
04 the normal manner, can select a line terminal or port
05 which is unique to that mobile set. However use of
06 the system in this manner would require as many line
07 circuits or terminations as there are mobile sets. It
08 is preferred, instead, to have the PABX select a
09 particular junctor with a PABX interface connected
10 thereto, with the mobile set to be selected designated
11 by address or ground point. Use of the system in this
12 preferred manner will require only as many interface
13 circuits as the traffic requires, clearly a
14 considerably fewer number of interfaces, circuits and
15 channels than the number of mobile sets.

16 With the interface selected and either a
17 line termination enabled or a data code received from
18 the PABX which designates the mobile set to be rung, a
19 sync and control circuit 43 receives both the
20 supervisory signal and designation of the mobile set
21 to be contacted from the PABX via the PABX interface.
22 The sync and control circuit 43 formulates a data
23 packet comprised of the station number, supervisory
24 signal, error correction and synchronization pattern
25 bits and transmits it to a modulator 44. Modulator 44
26 has a dedicated pseudo-random spreading code fixed to
27 the supervisory channel. The modulator 44 spread
28 spectrum and RF modulates the supervisory signal
29 (which in this case contains a supervisory sequence
30 which indicates that a particular mobile set should be
31 rung). The modulated output signal therefrom is
32 applied to multiplexer 46 from which it is passed to 8
33 megahertz filter 47, which is similar to filter 22.
34 The output signal of filter 47 is applied to one end
35 of leaky transmission cable 2. The signal passes
36 along transmission cable 2, radiating as described
37 earlier. The radiated signal is received by mobile

01 set 8 in the manner described above.

02 A signal received from the mobile set 8
03 passes through 8 megahertz filter 48 (which is similar
04 to filter 47) and splitter 49 and demodulator 51.
05 Since the supervisory signal is on a fixed channel,
06 the pseudo-random correlation code for demodulator 51
07 is fixed, and the received signal is demodulated
08 resulting in a data signal applied to sync and control
09 circuit 43 which constitutes the return supervisory
10 signal (e.g. an off hook indication) from mobile set
11 8. Sync and control circuit 43 applies this signal to
12 PABX interface 42 which applies it in recognizable
13 form to PABX 5.

14 Sync and control circuit 43 also has
15 outputs connected to modulators 44, 53 and 59 and
16 demodulators 51, 56 and 62 for applying a
17 synchronization and control signals thereto.

18 Since a particular junctor, and thus PABX
19 interface 42 was selected by the PABX for the
20 forthcoming communication, the particular outgoing and
21 incoming channels are thereby designated, and a mark
22 signal related to the particular channels is applied
23 to sync and control circuit 43. Sync and control
24 circuit 43 contains a table of psuedo-random codes
25 corresponding to the selected spread spectrum
26 modulator and demodulator, and another table of mobile
27 set station numbers corresponding to the mark signal
28 (which identifies the called mobile station uniquely).
29 A supervisory signal is formulated in sync and control
30 circuit 43, which is sent to the selected mobile set 8
31 identified by station number, advising it what spread
32 spectrum channel to tune itself to.

33 The supervisory signal can send to the
34 mobile set one of two kinds of signals: a signal
35 advising the mobile set to establish its receive and
36 transmit spread spectrum modulator and demodulator
37 pseudo-random codes to codes stored in a table in each
38 mobile set, i.e. identifying the codes by number.

01

- 23 -

02 Alternatively the sync and control circuit can
03 transmit the actual pseudo-random codes to the
04 selected mobile set 8 to enable it to set its
05 modulator and demodulator to the designated spread
06 spectrum channels. In this manner, in a 200 mobile
07 set system, typically 32 junctors and thus 32 PABX
08 interfaces can be used, rather than 200 interfaces
09 would be required if each line circuit were separately
10 interfaced. However the present invention
11 contemplates the use of individual line circuits for
12 each two-way channel if economics dictate.

13 Since a particular junctor, and thus a
14 particular PABX interface circuit 42 has been selected
15 by the PABX in the normal manner to carry the
16 communication, the outgoing and incoming channels are
17 also fixed as noted above. The output signal from the
18 PABX interface circuit is applied to analog digital
19 PCM encoder 52. The resulting encoded output signal
20 is applied to the input of modulator 53 which has a
21 dedicated pseudo-random code related to that
22 particular channel. The RF modulated output signal is
23 applied to an input of combiner 46, from which it
24 passes through filter 47 and is applied to the leaky
25 cable 2. Since the spread spectrum modulation codes
26 in modulator 53 and modulator 44 are different, there
27 will be no interference between the two signals. The
28 signal applied to leaky cable 2 is radiated for
29 reception by mobile sets 8 as described earlier.

30 A received signal from the leaky cable 2
31 transmitted by mobile set 8 passes through filter 48
32 and combiner 49, is demodulated and despread in
33 demodulator 56, and the resulting signal is passed to
34 analog PCM decoder 57. The resulting output signal is
35 applied to PABX interface 42 for application to the
36 junctor of PABX 5. Since the spread spectrum
37 pseudo-random spreading code at the mobile set for
38 signals transmitted thereat under control of sync and

01

- 24 -

02 control circuit 43, were designated by the selection
03 of a particular junctor and PABX interface circuit 42
04 by normal operation of the PABX, which is identical to
05 that pseudo-random code in spread spectrum demodulator
06 56, the signal received from mobile set 8 is properly
07 decoded in demodulator 56, but is rejected by
08 demodulator 51.

09 The PABX interface can also interface to
10 high speed data junctors, or to a data bus in the PABX
11 which designates by code which mobile set is to be
12 communicated with. Either by junctor selection
13 as described above or by decoded selection from the
14 PABX data bus, the high speed data signal is applied
15 to outgoing data interface circuit 58. The output
16 signal is applied to modulator 59, in a manner
17 analogous to that described earlier. The RF modulated
18 signal is applied to an input of combiner 46, passes
19 through filter 47 and is applied to the leaky cable 2.

20 Received high speed data signals from
21 mobile set 8 are received by leaky cable 2 and pass
22 through filter 48, splitter 49 and are applied to
23 demodulator 62. The resulting data output signal
24 after spread spectrum and RF demodulation is applied
25 to data interface circuit 63, from which the data
26 signal is applied to the junctor or data bus of the
27 PABX through PABX interface circuit 42. The data
28 channel selection at the mobile set 8 is established
29 as the incoming and outgoing data channels in a manner
30 analogous to that described above for the outgoing and
31 incoming analog channel.

32 It is preferred that a silence detector
33 and a silence code detector should be used in each of
34 the incoming and outgoing analog channels of the
35 central equipment (not shown) which are similar to
36 those described with reference to Figure 2 and are
37 similarly connected. The silence and silence code
38 detectors should be very fast acting. Since the error

01

- 25 -

02 rates of the signals which are received are dependent
03 on the total number of channels sharing the same
04 bandwidth, it is highly desirable to switch the RF or
05 IF signals off or to extremely low level during silent
06 periods. For a given error rate, the use of silence
07 detectors will increase the number of channels which
08 can share the same bandwidth at the same time.
09 Synchronization will not be lost since the supervisory
10 channel will always be operating and carries
11 synchronization signals. Thus the receivers at the
12 mobile sets and at the central equipment can always
13 regain synchronization if it is lost.

14 When communication has been set up the
15 mobile sets thus each will have two receive addresses,
16 one which is a polling address which is used on the
17 synchronization channel and the other which is the
18 pseudo-random code, i.e. the correlation code that it
19 is instructed to use via the supervisory channel. It
20 will use two transmit addresses, one which designates
21 it and allows it to be recognized in the supervisory
22 receive channel at the central equipment and one a
23 pseudo-random code which matches the analog or digital
24 receive channel code at the central equipment. Thus
25 the instruction to use a particular correlation code
26 is similar to the designation to the mobile set to use
27 a particular junctor, and is directly analogous to the
28 junctor selected at the PABX. It can additionally
29 have separate high speed data channel receive and
30 transmit spreading and correlation code addresses.

31 The pulse code modulation scheme which is
32 used is preferred to be adaptive differential PCM, a
33 full description of which can be obtained in the draft
34 recommendation G721 of CCITT. According to this
35 specification PCM is transcoded from 64 Kilobits per
36 second to 32 Kilobits per second. It is also
37 preferred that the pseudo noise code sequence used in
38 the spread spectrum modulator should be 255 bits,

01

- 26 -

02 although it is expected that other sequence lengths
03 could be used. It is also preferred that the RF
04 modulation should be phase shift keyed, and can be
05 minimum shift keyed, bandwidth phase shift keyed, QPSK
06 or staggered phase shift keyed. It is also preferred
07 that the data channels should transmit at 90.2
08 kilobits per second.

09 It should be noted that only one sync and
10 supervisory channel modulator and demodulator 44 and
11 51 need be used for the entire system while the PABX
12 interface and decoders, modulators and demodulators
13 are duplicated for each channel. Of course apparatus
14 used for the data, or for the analog channels need not
15 be used if one or the other kind of communication is
16 not to be provided for a particular junctor or for
17 communication to the mobile sets in general.

18 Referring now to Figure 4, the modulation
19 portion of the transmitter is shown. An incoming PCM
20 or data signal from encoder 52, for example, is
21 carried on line 64 to a data circuit 65, in which the
22 incoming signal is synchronized and speed adjusted.
23 The outgoing signal from data circuit 65 is applied to
24 an exclusive OR gate 66. A sequence generator 67
25 generates a pseudo-random code which is specific to
26 the channel to be transmitted and applies its output
27 to another input of exclusive OR gate 66. One
28 complete pseudo-random code, of preferred length 255
29 bits, is Exclusively ORed with each data bit. The
30 resulting PN sequence of exclusive OR gate 66 is
31 applied to an input of data modulator 68. The data
32 circuit 65, sequence generator 67 and exclusive OR
33 gate 66 provides the spread spectrum modulation.

34 An intermediate frequency (IF) oscillator
35 69 generates a signal which is applied to data
36 modulator 68, where it modulates the signal, resulting
37 in a IF signal on line 70. The IF signal is applied
38 to a summer 71, along with the IF signals of other

01 data modulators, illustrated by line 71A. The output
02 signal of summer 71 is applied to a mixer 72, to which
03 is applied an RF carrier signal generated in a carrier
04 generator 73. The carrier signal is mixed with the
05 sum IF signal and the resulting RF modulated output
06 signal of mixer 72 is applied to an 8 megahertz filter
07 74. The output filter of signal 74 is applied to
08 leaky transmission line 2.

10 It is preferred that the data modulator
11 should modulate the IF signal with the output of
12 Exclusive OR gate 66 using phase shift modulation.

13 It will be noted that in the circuit of
14 Figure 4 the modulated signals have been summed prior
15 to RF modulation in mixer 72. The summer 71 is of
16 course equivalent to combiner 46. The IF signals can
17 be summed prior to RF modulation as shown in Figure 4,
18 or the RF signals can be summed following RF
19 modulation as shown in Figure 3.

20 The receive channel is similar to Figure 4
21 in that the mixer outputs to a splitter the IF signal
22 in a well known manner and the resulting signal is
23 applied to a data demodulator. The demodulator
24 multiplies the incoming signal by an IF signal
25 modulated by the same pseudo-random code used in the
26 transmitter. The output of the demodulator is then
27 low-pass filtered to recover the data.

28 While the circuit of Figure 4 can be used
29 in the transmit and receive channels of the central
30 equipment shown in Figure 3, the major difference
31 between that circuit and the circuit used in mobile
32 set 8 is that the sequence generator can generate a
33 selected code sequence in the latter. As noted
34 earlier the sequence is established either by a look
35 up table in the mobile set which is designated by the
36 supervisory signal received from the central equipment
37 or by reception of the actual sequence to be used. Of
38 course the receive channel is directly analogous to

01

- 28 -

02 the transmit channel.

03 Returning to the supervisory channel,
04 during idle intervals it is preferred that the central
05 equipment should transmit a 32 bit supervisory polling
06 message to each mobile set in sequence and to wait for
07 a response in the following 32 bit message. In case
08 erroneous messages are received, it is preferred that
09 a request for a repetition should be transmitted in
10 the next supervisory sequence designated for the
11 particular mobile set or the particular junctor
12 channel time period. In the analog and data channels
13 either repetition or error correction, or ignoring
14 packets which have been designated as erroneous can be
15 implemented. Since the supervisory channel operates
16 by polling, transmission collisions are avoided.

17 Each of the elements described above can
18 be implemented in dedicated logic to provide the
19 functions described, or can be grouped and implemented
20 in microprocessor-memory combinations operated using
21 firmware written using the algorithms described
22 herein.

23 Since radiation from a leaky transmission
24 cable is used, extremely low powers can be used, e.g.
25 ten milliwatts per channel. Clearly the power used in
26 the mobile sets, typically operated by battery, is
27 greatly economized.

28 Since spread spectrum is used in
29 combination with the leaky cables, nulls which are
30 usually encountered using leaky feeder systems, and
31 signal dropout regions often encountered using fixed
32 antenna radiators are substantially avoided. Since
33 there is a fast drop off of signal level with distance
34 from the leaky cable radiator, the judicious placement
35 of leaky cable in the ceiling or other peripheral
36 region of the building will establish detectable power
37 levels throughout the building, but virtually
38 undetectable RF signals outside of the environs of the

02 building. Thus the system is highly localized,
03 minimizing any interference with any other kinds of
04 systems.

05 Further, because the system is spread
06 spectrum, it is inherently private, which is highly
07 unusual in a wireless telephone system. It is
08 economical of spectrum space, since substantially the
09 same bandwidth is used for all channels. With the
10 very low level of power which is used, and each
11 channel being spread over a wide bandwidth, the actual
12 transmitted signal appears to be little more than very
13 low level noise to conventional wireless systems. Yet
14 because there are such a great number of pseudo random
15 codes which can be used, the possibility of
16 interference between channels, or of interception
17 outside of the present system is rendered almost nil.

18 The system can be used for conventional
19 analog voice communication, as noted earlier, or in
20 addition or in alternative the mobile set can be a
21 hand held computer terminal. However since each
22 mobile set can transmit on either a designated or
23 centrally controlled secure channel, the mobile set
24 can also be used for remote control of apparatus such
25 as automatic doors, various building services, etc.
26 with high security. For example it can control
27 robots, domestic appliances, etc. The mobile set is
28 thus a highly versatile unit used in conjunction with
29 the system described above.

30 It should also be noted that while the
31 modulators and demodulators at the central equipment
32 have fixed pseudo random codes and those at the mobile
33 sets have codes which are variable, in an alternative
34 system the codes at the mobile sets can be fixed, and
35 the codes at the central equipment can be varied to
36 select a channel corresponding to the designated
37 mobile set. However in this case the number of
38 variable pseudo-random codes which are used will

01

- 30 -

02 correspond to twice the number of mobile sets (two
03 one-way channels to each mobile set), plus two for
04 supervisory while in the case in which the mobile sets
05 change their correlation codes, the number of
06 correlation codes used will correspond to twice the
07 number of junctors or total channels expected to be
08 used for communication (plus two for supervisory), a
09 far fewer number.

10 Further, the central apparatus described
11 herein could usefully be employed to operate with one
12 or a group of distributed antennae, rather than, or in
13 addition to, the leaky cable. Such a structure would
14 find great utility in buildings or outdoor areas in
15 which it is not feasible to wire telephone system
16 connected by wires, or to deploy a leaky cable.

17 A person understanding this invention may
18 now conceive of various alternative structures using
19 the principles described herein. All are considered
20 to be within the scope of the invention as defined in
21 the claims appended hereto.

CLAIMS

1. A telephone system comprising:

- (a) a central switching system having a plurality of line circuits,
- (b) means for converting signals carried by at least certain ones of said line circuits to spread spectrum RF signals, each signal carried by said certain line circuits having a different spreading code,
- (c) first means for wireless transmitting said spread spectrum RF signals,
- (d) one or a plurality of mobile telephone sets, for receiving, decoding and reproducing said signals carried by the line circuits and for wireless transmitting to said central switching system spread spectrum RF signals originating at said mobile sets, each said latter signal being transmitted using a spreading code different in each mobile set from other mobile sets.

2. A telephone system as defined in claim 1 in which the spread spectrum RF signals transmitted by said first means are in a first frequency band having one centre frequency, and in which the spread

spectrum RF signals transmitted by the mobile sets are in a second frequency band having a different centre frequency.

3. A telephone system as defined in claim 1 or 2 further including a supervisory channel associated with the central switching system for providing spread spectrum RF signals carrying digital control data receivable by the mobile sets for controlling the transmit and receive spreading and despreading codes of the mobile sets which correspond to the receive and transmit despreading and spreading codes associated with respective ones of said line circuit.

4. A telephone system as defined in claim 1, 2 or 3 in which the means for wireless transmitting and receiving are comprised of antennae.

5. A telephone system as defined in any preceding claim in which the means for transmitting and receiving associated with the mobile sets are comprised of antennae, and the means for transmitting and receiving associated with the central switching system is comprised of one or more leaky cables transmission line.

6. A wireless communication system comprising:

- (a) means at a central location for receiving one or a plurality of signals for communication with selected ones of wireless communication terminals,
- (b) means for converting said signals to spread spectrum radio frequency signals,
- (c) a leaky transmission line located in a communication region,
- (d) means for applying said spread spectrum radio frequency signals to said transmission line for electromagnetic radiation within said region,
- (e) at least one wireless communication terminal adapted to receive a predetermined one of the spread spectrum radio frequency signals and for demodulating it into an intelligible signal.

7. A system as defined in claim 6 including means for transmitting a supervisory signal on a fixed spread spectrum supervisory channel to said wireless communication terminal, means at said terminal for receiving a predetermined form of said supervisory signal designative of a particular correlation code related to a receive channel, and means for correlating the predetermined one of the spread spectrum signals using the correlation code to effect said demodulation into said intelligible signal.

8. A system as defined in claim 6 including means at the central location for receiving a signal at a particular port designative of a particular junctor or channel of an incoming signal,

and means for transmitting said spread spectrum supervisory signal to said wireless terminal containing said predetermined form of said supervisory signal designative of said particular correlation code corresponding to said particular junctor or channel.

9. A system as defined in claim 6 including means at the central location for transmitting said spread spectrum communication signals to the wireless communication terminals using pseudo-random spreading codes which correspond to predetermined fixed correlation codes associated with individual ones of the wireless communication terminals.

10. A system as defined in claim 6, in which each wireless communication terminals is comprised of:

- (i) a telephone set,
- (ii) means for PCM encoding signals received from the telephone set,
- (iii) means for spread spectrum and RF modulating the PCM encoded signals using a first pseudo-random correlation code,
- (iv) means for applying the RF modulated signals to an antenna through a first filter for wireless transmission to the leaky transmission line,
- (v) means for receiving RF and spread spectrum modulated signals from the antenna via a second filter,
- (vi) means for RF and spread spectrum demodulating the received signals using a second pseudo-random correlation code different from the first correlation code,
- (vii) means for PCM decoding the spread spectrum demodulated signals,
- (viii) means for applying the PCM decoded signals to the telephone,

whereby wireless two-way communication via said leaky transmission line on channels designated by the correlation codes is provided.

11. A system as defined in claim 10 in which the first and second correlation codes are variable, and means for causing variation thereof whereby particular designated send and receive spread spectrum channels are established.

12. A system as defined in claim 11 including a synchronization and control circuit, a second demodulator having its input connected to the output of said second filter for receiving a supervisory signal including synchronization signals, and providing demodulated digital supervisory signals therefrom to the synchronization and control circuit, the second demodulator using a fixed predetermined correlation code for demodulation of the supervisory signals, a second modulator having its input connected to the synchronization and control circuit for receiving supervisory signals and spread spectrum modulating said latter signals using a fixed predetermined pseudo-random code different from that of the correlation code used in the first modulator, RF modulating these signals and applying the signals via the second filter to the antenna, and means in the synchronization and control circuit for receiving supervisory signals from the telephone, generating supervisory data signals of predefined format and applying them to the second modulator, and for receiving supervisory data signals of predefined format from the second demodulator, for translating said latter supervisory signals therefrom and applying said translated signals to the telephone.

13. A system as defined in claim 12 including means at the synchronization and control

circuit for deriving designated correlation codes from the received supervisory signals of predefined format and for enabling the first modulator and demodulator to use said latter correlation codes in modulation and demodulation respectively to establish the receive and transmit channels for said signals.

14. A system as defined in claim 13 including means for generating and displaying data at said wireless communication terminal, a data interface circuit connected to said data generating and displaying means, third means for spread spectrum and RF modulating data signals received via said interface circuit and applying the RF modulated signals to the first filter for transmission via the antenna to the leaky transmission line, third demodulation means having its input connected to the antenna via the second filter, and its output connected to the data interface circuit for applying demodulated data signals thereto, and means connecting the third modulator and demodulator to the synchronization and control circuit for carrying signals therefrom designative of the pseudo-random correlation codes to be used by the third modulator and demodulator.

15. A system as defined in claim 6, 10 or 14 comprising a plurality of similar circuits each comprising an interface means at the central location for connection to an individual junctor of a PABX, for receiving and transmitting communication signals from said junctor and for receiving and transmitting supervisory signals from the PABX relating to a telephone call, a central PCM encoder connected to the interface means for receiving signals to be transmitted to a wireless communication terminal, a modulator using a fixed pseudo-random correlation code associated with the junctor for spread spectrum modulating the encoded signal and generating an RF

modulated signal, means for applying the latter RF modulated signal through a transmit band limiting filter to the leaky transmission line, means for receiving an RF modulated signal from the leaky transmission line through a receive band limiting filter, a central demodulator for demodulating and despreading a received RF modulated signal using a fixed pseudo-random correlation code associated with said junctor for demodulating the latter signal, a PCM decoder for receiving a spread spectrum demodulated signal and applying it to the interface means for application to said junctor.

16. A system as defined in claim 6, 10 or 14 comprising a plurality of similar circuits each comprising an interface means at the central location for connection to an individual junctor of a PABX, for receiving and transmitting communication signals from said junctor and for receiving and transmitting supervisory signals from the PABX relating to a telephone call, a central PCM encoder connected to the interface means for receiving signals to be transmitted to a wireless communication terminal, a modulator using a fixed pseudo-random correlation code associated with the junctor for spread spectrum modulating the encoded signal and generating an RF modulated signal, means for applying the latter RF modulated signal through a transmit band limiting filter to the leaky transmission line, means for receiving an RF modulated signal from the leaky transmission line through a receive band limiting filter, a central RF demodulator for demodulating and despreading a received RF modulated signal using a fixed pseudo-random correlation code associated with said junctor for demodulating the latter signal, a PCM decoder for receiving a spread spectrum demodulated signal and applying it to the interface means for

application to said junctor, a central synchronization and control circuit connected to all said interface means for receiving supervisory signals from the junctors and/or a bus of the PABX and for formulating polling and supervisory signals of predefined format corresponding thereto and for translating poll messages and supervisory signals of predefined format to supervisory signals and for applying the latter signals to the junctors and/or bus of the PABX, a supervisory channel spread spectrum modulator using a predetermined supervisory channel correlation code for receiving and spread spectrum modulating said formulated polling and supervisory signals, RF modulating the latter signal and applying the RF modulated via the transmit band limiting filter to the leaky transmission line, a supervisory channel demodulator connected to the output of the receive band limiting filter for RF demodulating and despreading a received signal and applying received poll and supervisory signals to the synchronization and control circuit.

17. A system as defined in claim 6, 10 or 14 comprising a plurality of similar circuits each comprising an interface means at the central location for connection to an individual junctor of a PABX, for receiving and transmitting communication signals from said junctor and for receiving and transmitting supervisory signals from the PABX relating to a telephone call, a central analog to PCM encoder connected to the interface means for receiving signals to be transmitted to a wireless communication terminal, a modulator using a fixed pseudo-random correlation code associated with the junctor for spread spectrum modulating the encoded signal and generating an RF modulated signal, means for applying the latter RF modulated signal through a transmit band limiting filter to the leaky transmission line, means

for receiving an RF modulated signal from the leaky transmission line through a receive band limiting filter, a central demodulator for demodulating and despreading a received RF modulated signal using a fixed pseudo-random correlation code associated with said junctor for demodulating the latter signal, a PCM decoder for receiving a spread spectrum demodulated signal and applying it to the interface means for application to said junctor, a data interface circuit connected to the former interface circuit for receiving and transmitting data signals from and to the associated junctor and/or data bus of the PABX, a data channel modulator having a fixed correlation code corresponding to the junctor connected to the data interface circuit for spread spectrum and RF modulating a data signal received therefrom and applying the RF modulated signal via the transmit filter to the leaky transmission line, a data channel demodulator having its input connected via the receive filter to the leaky transmission line, and for applying a data signal to the data interface circuit for transmission to the junctor or PABX data bus, a central synchronization and control circuit connected to all said interface means for receiving supervisory signals from the junctors and/or a bus of the PABX and for formulating polling and supervisory signals of predefined format corresponding thereto and for translating poll messages and supervisory signals of predefined format to supervisory signals and for applying the latter signals to the junctors and/or bus of the PABX, a supervisory channel modulator using a predetermined supervisory channel correlation code for receiving and spread spectrum modulating said formulated polling and supervisory signals, RF modulating the latter signal and applying the RF modulated signal via the transmit band limiting filter to the leaky transmission line, a supervisory channel demodulator connected to the output of the receive

band limiting filter for RF demodulating and despreading a received signal and applying received poll and supervisory signals to the synchronization and control circuit.

18. A system as defined in claim 6,10 or 14 comprising a plurality of similar circuits each comprising an interface means at the central location for connection to an individual junctor of a PABX, for receiving and transmitting communication signals from said junctor and for receiving and transmitting supervisory signals from the PABX relating to a telephone call, a central PCM encoder connected to the interface means for receiving signals to be transmitted to a wireless communication terminal, a modulator using a fixed pseudo-random correlation code associated with the junctor for spread spectrum modulating the encoded signal and generating an RF modulated signal, means for applying the latter RF modulated signal through a transmit band-limiting filter to the leaky transmission line, means for receiving an RF modulated signal from the leaky transmission line through a receive band-limiting filter, a central demodulator for demodulating and despreading a received RF modulated signal using a fixed pseudo-random correlation code associated with said junctor for demodulating the latter signal, a PCM decoder for receiving a spread spectrum demodulated signal and applying it to the interface means for application to said junctor, a plurality of unidirectional repeaters connected serially at spaced locations in the leaky transmission line whereby an input and an output to the line are defined, the

output of the transmit filter being connected to the input of the transmission line and the input to the receive filter being connected to the output of the transmission line.

19. A system as defined in claim 6, 10 or 14 comprising a plurality of similar circuits each comprising an interface means at the central location for connection to an individual junctor of a PABX, for receiving and transmitting communication signals from said junctor and for receiving and transmitting supervisory signals from the PABX relating to a telephone call, a central PCM encoder connected to the interface means for receiving signals to be transmitted to a wireless communication terminal, a modulator using a fixed pseudo-random correlation code associated with the junctor for spread spectrum modulating the encoded signal and generating an RF modulated signal, means for applying the latter RF modulated signal through a transmit band limiting filter to the leaky transmission line, means for receiving an RF modulated signal from the leaky transmission line through a receive band limiting filter, a central demodulator for demodulating and despreading a received RF modulated signal using a fixed pseudo-random correlation code associated with said junctor for demodulating the latter signal, a PCM analog decoder for receiving a spread spectrum demodulated signal and applying it to the interface means for application to said junctor, a plurality of unidirectional repeaters connected serially at spaced locations in the leaky transmission line whereby an input and an output to the line are defined, the transmit filter being connected to the input of the transmission line and the receive filter being connected to the output of the transmission line, the frequency of the R.F. modulated signals being between approximately 150 MHz and 1000 MHz.

20. A system as defined in claim 6, 10 or 14 comprising a plurality of similar circuits each comprising an interface means at the central location for connection to an individual junctor of a PABX, for receiving and transmitting communication signals from said junctor and for receiving and transmitting supervisory signals from the PABX relating to a telephone call, a central PCM encoder connected to the interface means for receiving signals to be transmitted to a wireless communication terminal, a modulator using a fixed pseudo-random correlation code associated with the junctor for spread spectrum modulating the encoded signal and generating an RF modulated signal, means for applying the latter RF modulated signal through a transmit band limiting filter to the leaky transmission line, means for receiving an RF modulated signal from the leaky transmission line through a receive band limiting filter, a central demodulator for demodulating and despreading a received RF modulated signal using a fixed pseudo-random correlation code associated with said junctor for demodulating the latter signal, a PCM decoder for receiving a spread spectrum demodulated signal and applying it to the interface means for application to said junctor, the transmission line being coaxial cable having a shield containing gaps sufficient to allow RF energy to radiate therefrom, a plurality of unidirectional repeaters connected serially at spaced locations in the leaky transmission line whereby an input and an output to the line are defined, the output of the transmit filter being connected to the input of the transmission line and the input of the receive filter being connected to the output of the transmission line, the frequency of the R.F. modulated signals being between approximately 150 MHz and 1000 MHz.

21. A system as defined in claim 6, 10 or 14 comprising a plurality of similar circuits each comprising an interface means at the central location for connection to an individual junctor of a PABX, for receiving and transmitting communication signals from said junctor and for receiving and transmitting supervisory signals from the PABX relating to a telephone call, a central PCM encoder connected to the interface means for receiving signals to be transmitted to a wireless communication terminal, a modulator using a fixed pseudo-random correlation code associated with the junctor for spread spectrum modulating the encoded signal and generating an RF modulated signal, means for applying the latter RF modulated signal through a transmit band limiting filter to the leaky transmission line, means for receiving an RF modulated signal from the leaky transmission line through a receive band limiting filter, a central demodulator for demodulating and despread ing a received RF modulated signal using a fixed pseudo-random correlation code associated with said junctor for demodulating the latter signal, a PCM decoder for receiving a spread spectrum demodulated signal and applying it to the interface means for application to said junctor, a central synchronization and control circuit connected to all said interface means for receiving supervisory signals from the junctors and/or a bus of the PABX and for formulating polling and supervisory signals of predefined format corresponding thereto and for translating poll messages and supervisory signals of predefined format to supervisory signals and for applying the latter signals to the junctors and/or bus of the PABX, a supervisory channel modulator using a predetermined supervisory channel correlation code for receiving and spread spectrum modulating said formulated polling and supervisory signals, RF modulating the latter signal and applying the RF modulated signal via the transmit

band limiting filter to the leaky transmission line, a supervisory channel demodulator connected to the output of the receive band limiting filter for RF demodulating and despreading a received signal and applying received poll and supervisory signals to the synchronization and control circuit, a plurality of unidirectional repeaters connected serially at spaced locations in the leaky transmission line whereby an input and an output to the line are defined, the transmit filter being connected to the input of the transmission line and the receive filter being connected to the output of the transmission line.

22. A system as defined in claim 6, 10 or 14 comprising a plurality of similar circuits each comprising an interface means at the central location for connection to an individual junctor of a PABX, for receiving and transmitting communication signals from said junctor and for receiving and transmitting supervisory signals from the PABX relating to a telephone call, a central PCM encoder connected to the interface means for receiving signals to be transmitted to a wireless communication terminal, a modulator using a fixed pseudo-random correlation code associated with the junctor for spread spectrum modulating the encoded signal and generating an RF modulated signal, means for applying the latter RF modulated signal through a transmit band-limiting filter to the leaky transmission line, means for receiving an RF modulated signal from the leaky transmission line through a receive band-limiting filter, a central demodulator for demodulating and despreading a received RF modulated signal using a fixed pseudo-random correlation code associated with said junctor for demodulating the latter signal, a PCM decoder for receiving a spread spectrum demodulated signal and applying it to the interface means for application to said junctor, a central synchronization

and control circuit connected to all said interface means for receiving supervisory signals from the junctors and/or a bus of the PABX and for formulating polling and supervisory signals of predefined format corresponding thereto and for translating poll messages and supervisory signals of predefined format to supervisory signals and for applying the latter signals to the junctors and/or bus of the PABX, a supervisory channel modulator using a predetermined supervisory channel correlation code for receiving and spread spectrum modulating said formulated polling and supervisory signals, RF modulating the latter signal and applying the RF modulated signal via the transmit band limiting filter to the leaky transmission line, a supervisory channel RF demodulator connected to the output of the receive band limiting filter for RF demodulating and despreading a received signal and applying received poll and supervisory signals to the synchronization and control circuit, a plurality of unidirectional repeaters connected serially at spaced locations in the leaky transmission line whereby an input and an output to the line are defined, the transmit filter being connected to the input of the transmission line and the receive filter being connected to the output of the transmission line, the frequency of the R.F. modulated signals being between approximately 150 MHz and 1000 MHZ.

23. A system as defined in claim 6, 10 or 14 comprising a plurality of similar circuits each comprising an interface means at the central location for connection to an individual junctor of a PABX, for receiving and transmitting communication signals from said junctor and for receiving and transmitting supervisory signals from the PABX relating to a telephone call, a central PCM encoder connected to the interface means for receiving signals to be transmitted to a wireless communication terminal, a

modulator using a fixed pseudo-random correlation code associated with the junctor for spread spectrum modulating the encoded signal and generating an RF modulated signal, means for applying the latter RF modulated signal through a transmit band limiting filter to the leaky transmission line, means for receiving an RF modulated signal from the leaky transmission line through a receive band limiting filter, a central demodulator for demodulating and despread ing a received RF modulated signal using a fixed pseudo-random correlation code associated with said junctor for demodulating the latter signal, a PCM decoder for receiving a spread spectrum demodulated signal and applying it to the interface means for application to said junctor, a central synchronization and control circuit connected to all said interface means for receiving supervisory signals from the junctors and/or a bus of the PABX and for formulating polling and supervisory signals of predefined format corresponding thereto and for translating poll messages and supervisory signals of predefined format to supervisory signals and for applying the latter signals to the junctors and/or bus of the PABX, a supervisory channel modulator using a predetermined supervisory channel correlation code for receiving and spread spectrum modulating said formulated polling and supervisory signals, RF modulating the latter signal and applying the RF modulated signal via the transmit band limiting filter to the leaky transmission line, a supervisory channel demodulator connected to the output of the receive band limiting filter for RF demodulating and despread ing a received signal and applying received poll and supervisory signals to the synchronization and control circuit, a plurality of unidirectional repeaters connected serially at spaced locations in the leaky transmission line whereby an input and an output to the line are defined, the transmit filter being connected to the

input of the transmission line and the receive filter being connected to the output of the transmission line, the frequency of the RF modulated signals being between approximately 150 MHZ and 1000 MHZ, the transmission line being coaxial cable having a shield containing gaps sufficient to allow RF energy radiation therefrom.

24. A system as defined in claim 6, 10 or 14 comprising a plurality of similar circuits each comprising an interface means at the central location for connection to an individual junctor of a PABX, for receiving and transmitting communication signals from said junctor and for receiving and transmitting supervisory signals from the PABX relating to a telephone call, a central PCM encoder connected to the interface means for receiving signals to be transmitted to a wireless communication terminal, a modulator using a fixed pseudo-random correlation code associated with the junctor for spread spectrum modulating the encoded signal and generating an RF modulated signal, means for applying the latter RF modulated signal through a transmit band limiting filter to the leaky transmission line, means for receiving an RF modulated signal from the leaky transmission line through a receive band limiting filter, a central emodulator for demodulating and despreading a received RF modulated signal using a fixed pseudo-random correlation code associated with said junctor for demodulating the latter signal, a PCM decoder for receiving a spread spectrum demodulated signal and applying it to the interface means for application to said junctor, a data interface circuit connected to the former interface circuit for receiving and transmitting data signals from and to the associated junctor and/or data bus of the PABX, a data channel spectrum modulator having a fixed correlation code corresponding to the junctor

connected to the data interface circuit for spread spectrum and RF modulating a data signal received therefrom and applying the RF modulated signal via the transmit filter to the leaky transmission line, a data channel demodulator having its input connected via the and for applying a data signal to the data interface circuit for transmission to the junctor or PABX data bus, a central synchronization and control circuit connected to all said interface means for receiving supervisory signals from the junctors and/or a bus of the PABX and for formulating polling and supervisory signals of predefined format corresponding thereto and for translating poll messages and supervisory signals of predefined format to supervisory signals and for applying the latter signals to the junctors and/or bus of the PABX, a supervisory channel modulator using a predetermined supervisory channel correlation code for receiving and spread spectrum modulating said formulated polling and supervisory signals, RF modulating the latter signal and applying the RF modulated signal via the transmit band limiting filter to the leaky transmission line, a supervisory channel demodulator connected to the output of the receive band limiting filter for RF demodulating and despreading a received signal, and applying received poll and supervisory signals to the synchronization and control circuit, a plurality of unidirectional repeaters connected serially at spaced locations in the leaky transmission line whereby an input and an output to the line are defined, the output of the transmit filter being connected to the input of the transmission line and the input to the receive filter being connected to the output of the transmission line.

25. A system as defined in claim 6, 10 or 14 comprising a plurality of similar circuits each comprising an interface means at the central location

for connection to an individual junctor of a PABX, for receiving and transmitting communication signals from said junctor and for receiving and transmitting supervisory signals from the PABX relating to a telephone call, a central PCM encoder connected to the interface means for receiving signals to be transmitted to a wireless communication terminal, a modulator using a fixed pseudo-random correlation code associated with the junctor for spread spectrum modulating the analog signal and generating an RF modulated signal, means for applying the latter RF modulated signal through a transmit band limiting filter to the leaky transmission line, means for receiving an RF modulated signal from the leaky transmission line through a receive band limiting filter, a central demodulator for demodulating and despreading a received RF modulated signal using a fixed pseudo-random correlation code associated with said junctor for demodulating the latter signal, a PCM decoder for receiving a spread spectrum demodulated signal and applying it to the interface means for application to said junctor, a data interface circuit connected to the former interface circuit for receiving and transmitting data signals from and to the associated junctor and/or data bus of the PABX, a data channel modulator having a fixed correlation code corresponding to the junctor connected to the data interface circuit for spread spectrum and RF modulating a data signal received therefrom and applying the RF modulated signal via the transmit filter to the leaky transmission line, a data channel demodulator having its input connected via the receive filter to the leaky transmission line and for applying a data signal to the data interface circuit for transmission to the junctor or PABX data bus, a central synchronization and control circuit connected to all said interface means for receiving supervisory signals from the junctors and/or a bus of the PABX and

for formulating polling and supervisory signals of predefined format corresponding thereto and for translating poll messages and supervisory signals of predefined format to supervisory signals and for applying the latter signals to the junctors and/or bus of the PABX, a supervisory channel modulator using a predetermined supervisory channel correlation code for receiving and spread spectrum modulating said formulated polling and supervisory signals, RF modulating the latter signal and applying the RF modulated signal via the transmit band limiting filter to the leaky transmission line, a supervisory channel demodulator connected to the output of the receive band limiting filter for RF demodulating and despread ing a received signal, and applying received poll and supervisory signals to the synchronization and control circuit, a plurality of unidirectional repeaters connected serially at spaced locations in the leaky transmission line whereby an input and an output to the line are defined, the output of the transmit filter being connected to the input of the transmission line and the input to the receive filter being connected to the output of the transmission line, the frequency of the R.F. modulated signals being between approximately 150 MHz and 1000 MHz.

26. A system as defined in claim 6, 10 or 14 comprising a plurality of similar circuits each comprising an interface means at the central location for connection to an individual junctor of a PABX, for receiving and transmitting communication signals from said junctor and for receiving and transmitting supervisory signals from the PABX relating to a telephone call, a central PCM encoder connected to the interface means for receiving signals to be transmitted to a wireless communication terminal, a modulator using a fixed pseudo-random correlation code associated with the junctor for spread spectrum

modulating the encoded signal and generating an RF modulated signal, means for applying the latter RF modulated signal through a transmit band limiting filter to the leaky transmission line, means for receiving an RF modulated signal from the leaky transmission line through a receive band limiting filter, a central demodulator for demodulating and despreading a received RF modulated signal using a fixed pseudo-random correlation code associated with said junctor for demodulating the latter signal, a PCM decoder for receiving a spread spectrum demodulated signal and applying it to the interface means for application to said junctor, a data interface circuit connected to the former interface circuit for receiving and transmitting data signals from and to the associated junctor and/or data bus of the PABX, a data channel modulator having a fixed correlation code corresponding to the junctor connected to the data interface circuit for spread spectrum and RF modulating a data signal received therefrom and applying the RF modulated signal via the transmit filter to the leaky transmission line, a data channel demodulator having its input connected via the receive filter to the leaky transmission line and for applying a data signal to the data interface circuit for transmission to the junctor or PABX data bus, a central synchronization and control circuit connected to all said interface means for receiving supervisory signals from the junctors and/or a bus of the PABX and for formulating polling and supervisory signals of predefined format corresponding thereto and for translating poll messages and supervisory signals of predefined format to supervisory signals and for applying the latter signals to the junctors and/or bus of the PABX, a supervisory channel modulator using a predetermined supervisory channel correlation code for receiving and spread spectrum modulating said formulated polling and supervisory signals, RF

modulating the latter signal and applying the RF modulated signal via the transmit band limiting filter to the leaky transmission line, a supervisory channel demodulator connected to the output of the receive band limiting filter for RF demodulating and despreading a received signal, and applying received poll and supervisory signals to the synchronization and control circuit, a plurality of unidirectional repeaters connected serially at spaced locations in the leaky transmission line whereby an input and an output to the line are defined, the output of the transmit filter being connected to the input of the transmission line and the input of the receive filter being connected to the output of the transmission line, the transmission line being coaxial cable having a shield containing gaps sufficient to allow RF energy to radiate therefrom.

27. A system as defined in claim 6 or 10 including a plurality of unidirectional repeaters connected serially at spaced locations in the leaky transmission line.

28. A system as defined in claim 6 or 10 in which the transmission line is comprised of coaxial cable having a shield containing gaps sufficient to allow RF energy to radiate therefrom, and in which a plurality of unidirectional repeaters are connected serially at spaced locations in the leaky transmission line.