MATH 4041 HW 6

David Chen, dc3451

October 18, 2020

Problem 1

$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 - 1 & 0 + 0 \\ 0 + 0 & -1 + 0 \end{bmatrix}$$
$$= \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$
$$= -I$$

Then, we have that $A^2 = -I \implies A^3 = -(IA) = -A \neq I$ and then $A^4 = A^2A^2 = (-I)(-I) = I$, so the order of A is 4.

$$\begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix} = \begin{bmatrix} 0 - 1 & 0 - 1 \\ 0 + 1 & -1 + 1 \end{bmatrix}$$
$$= \begin{bmatrix} -1 & -1 \\ 1 & 0 \end{bmatrix}$$
$$\begin{bmatrix} -1 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix} = \begin{bmatrix} 0 + 1 & -1 + 1 \\ 0 + 0 & 1 + 0 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$= I$$

so we have that $B^3 = I$.

$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix} = \begin{bmatrix} 0+1 & 0+1 \\ 0+0 & 1+0 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

as desired.

Then,

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1+0 & 1+1 \\ 0+0 & 0+1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$

We can show inductively that $(AB)^n = \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix}$. Clearly this holds for the n = 1 case, since we already showed that $(AB)^1 = AB = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$. Then, if $(AB)^n = \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix}$, then

$$\begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1+0 & 1+n \\ 0+0 & 0+1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & n+1 \\ 0 & 1 \end{bmatrix}$$

so this holds for n+1, and by induction for all $n \in \mathbb{N}$. Therefore, AB cannot be of finite order, as we have that if AB has order n, $(AB)^n = I \implies \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \implies n = 0$, and since order is defined to be a positive integer, n > 0. $\Rightarrow \Leftarrow$, so AB does not have finite order.

Problem 2

i

We can compute all of these directly:

$$([1],[1]) + ([1],[1]) = ([2],[2])$$

= $([0],[0])$

So ([1], [1]) has order 2 in $(\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/2\mathbb{Z})$.

$$([1], [1]) + ([1], [1]) = ([2], [2])$$

$$= ([0], [2])$$

$$([0], [2]) + ([1], [1]) = ([1], [3])$$

$$= ([1], [0])$$

$$([1], [0]) + ([1], [1]) = ([2], [1])$$

$$= ([0], [1])$$

$$([0], [1]) + ([1], [1]) = ([1], [2])$$

$$([1], [2]) + ([1], [1]) = ([2], [3])$$

$$= ([0], [0])$$

So ([1], [1]) has order 6 in $(\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/3\mathbb{Z})$.

$$\begin{split} ([1],[1]) + ([1],[1]) &= ([2],[2]) \\ ([2],[2]) + ([1],[1]) &= ([3],[3]) \\ ([3],[3]) + ([1],[1]) &= ([4],[4]) \\ &= ([0],[4]) \\ ([0],[4]) + ([1],[1]) &= ([1],[5]) \\ ([1],[5]) + ([1],[1]) &= ([2],[6]) \\ ([2],[6]) + ([1],[1]) &= ([3],[7]) \\ ([3],[7]) + ([1],[1]) &= ([4],[8]) \\ &= ([0],[0]) \end{split}$$

So ([1], [1]) has order 8 in $(\mathbb{Z}/4\mathbb{Z}) \times (\mathbb{Z}/8\mathbb{Z})$.

$$([2], [4]) + ([2], [4]) = ([4], [8])$$

= $([0], [0])$

So ([2], [4]) has order 2 in $(\mathbb{Z}/4\mathbb{Z}) \times (\mathbb{Z}/8\mathbb{Z})$.

ii

First, we show that in any group G, if g has order n, $g^k = 1 \iff n \mid k$. (\Longrightarrow) Suppose that $n \nmid k$, such that k = nq + r for some $0 \le r \le n - 1$. Then, $1 = g^k = g^{nq+r} = g^{nq}g^r = (g^n)^qg^r = g^r = 1$. Then, we have that $g^r = 1$ for r < n, and so g cannot be of order $n \implies$, so $n \mid k$. (\longleftarrow) We have that $n\mid k\implies k=nq$ for some $q\in\mathbb{Z}$. Then, $g^k=g^{nq}=(g^n)^q=1^q=1$.

The order of g, h will be lcm(n, m), or the least common multiple of n and m. To see this, note that if we have $(g, h)^k = (e_G, e_H)$ where e_G, e_H are the identities of G and H respectively, we have that

$$(g,h)^k = (g^k, h^k) = (e_G, e_H) \implies g^k = e_G, h^k = e_H$$

However, from above, we have that this holds if and only if $n \mid k$ and $m \mid k$. Since the lcm of n, m is exactly the least positive integer k which satisfies $n \mid k$ and $m \mid k$ and the order is the least positive integer which satisfies the above relation, the order must be the lcm of n, m.

Problem 3

We can see that the torsion subgroup of $\mathbb{Z}/n\mathbb{Z}$ is exactly $\mathbb{Z}/n\mathbb{Z}$ itself: note that $[m] \in \mathbb{Z}/\mathbb{Z}$ satisfies that

$$n[m] = [nm] = [0]$$

so each element has order at most n, and thus has finite order.

The torsion subgroup of \mathbb{Z} is exactly $\{0\}$. No other element has finite order (but 0 as the identity has order 1). To see this, $n \in \mathbb{Z}$, $n \neq 0$ alongside some $m \in \mathbb{Z}$, m > 0 satisfies that $n < 0 \implies nm < 0$ and $n > 0 \implies nm > 0$, so $nm \neq 0$ and n does not have finite order in \mathbb{Z} .

The torsion subgroup of $\mathbb{Z} \times (\mathbb{Z}/n\mathbb{Z})$ is exactly all elements of the form (0, [m]) for $[m] \in \mathbb{Z}/n\mathbb{Z}$. To see this, we have that this has order at most n by the observation that 0 has order 1 and from above that [m] has order at most n, so we have from problem 1 that (0, m) has order at most lcm(1, n) = n. Further, we can see that for $a \neq 0$, $(a, [m])^k = (ka, k[m]) = (0, [0])$ yields that a has order k, which is impossible, so we have that (a, [m]) cannot have finite order for $a \neq 0$.

Problem 4

 μ_{∞} cannot be cyclic. Suppose that μ_{∞} was in fact generated by some element μ' . In particular, since $\mu' \in \mu_{\infty}$, μ' must have finite order, say n. Then, we have that for any k, $(\mu'^k)^n = (\mu'^n)^k = 1^k = 1$, so every element in $\langle \mu' \rangle$ must have order at most n. However, we can very easily see that μ_{∞} contains an element of order 2n, say $e^{\pi i/n} \in \mu_{2n}$. Thus, μ' cannot generate the entirety of μ_{∞} .

Problem 5

i

Since we have for any $g \in G$ that $f(g) = f(g \cdot 1) = f(g) \cdot f(1)$ and $f(g) = f(1 \cdot g) = f(1) \cdot f(g)$, we have that $f(1) \cdot f(g) = f(g) = f(g) \cdot f(1)$, so f(1) is an identity in G_2 , as any element in G_2 can be represented as f(g) for $g \in G_1$ since f is surjective. Then, since identities are unique in groups, we have that f(1) = 1 as the identity.

ii

 $f(1) = 1 \implies 1 = f(g^{-1}g) = f(g^{-1})f(g), 1 = f(gg^{-1}) = f(g)f(g^{-1}) \implies f(g^{-1}) = (f(g))^{-1}$ by definition and uniqueness of inverses.

iii

 \implies That f(H) is a subgroup of G_2 was also the last problem on the last problem set.

We need to show that f(H) contains the identity, inverses, and is closed. Since H is a subgroup, it satisfies all three of those things. Then, $1 \in H \implies f(1) = 1 \in f(H)$, $g \in H \implies g^{-1} \in H$, so $f(g) \in f(H) \implies f(g^{-1}) = (f(g))^{-1} \in H$, and lastly, $g, h \in H \implies gh \in H \implies f(gh) = f(g)f(h) \in H$. Thus, f(H) is a subgroup.

 \iff Applying the first part with $f^{-1}: G_2 \to G_1$, we have that $f^{-1}(f(H))$ is a subgroup of G_1 ; all we need to show is that $f^{-1}(f(H)) = H$ as sets to show that they are the same subgroup. To see this, note that $h \in H \implies f(h) \in f(H) \implies f^{-1}(f(h)) = h \in f^{-1}(f(H))$, and $h \in f^{-1}(f(H)) \implies \exists h = f^{-1}(h')$ for some $h' \in f(H)$, and $h' \in f(H) \implies h' = f(h'')$ for some $h'' \in H$. Then, $h = f^{-1}(f(h'')) = h'' \in H$, so we have that $H \subseteq f^{-1}(f(H))$ and $f^{-1}(f(H)) \subseteq H$, so the two sets are equal and we are done.

6

Note that a permutation of a set X is defined exactly to be a bijection from X to X.

We need to show that H_{n+1} contains the identity, inverses, and is closed. In particular, we have that $id \in H_{n+1}$, as we have that id(n+1) = n+1 as desired (in particular, $id : S_{n+1} \to S_{n+1}$ takes $x \mapsto x$ for any x so it is clearly a bijection, and f(id(x)) = f(x) = id(f(x))). Further, we have that for $f, g \in S_{n+1}$, $(f \circ g)(n+1) = f(g(n+1)) = f(n+1) = n+1$, so we have that $f \circ g \in H_{n+1}$ as well (we know that $f \circ g$ as the composition of two bijections is itself a bijection).

The last thing to handle is inverses. Since $f \in H_{n+1}$ is a bijection, there is clearly some inverse $f^{-1} \in S_{n+1}$ that is bijective as well; further, since f(n+1) = n+1, we get that

 $f^{-1}(f(n+1)) = f^{-1}(n+1) \implies n+1 = f^{-1}(n+1)$, so $f^{-1} \in H_{n+1}$ as well. Then, an isomorphism ϕ from S_n to H_{n+1} can be given as

$$\phi(f) = g$$
, where $g(m) = \begin{cases} f(m) & 1 \le m \le n \\ n+1 & m=n+1 \end{cases}$

We need to first show that g is in fact a bijection: we have that the unique preimage of n+1 is n+1, as $1 \le f(m) \le n$. Then, each k where $1 \le k \le n$ also has a unique preimage, given by $f^{-1}(k)$, which we know exists since $f \in S_n \implies f$ is a bijection. Then, g has an inverse given by

$$g^{-1}(m) = \begin{cases} f^{-1}(m) & 1 \le m \le n \\ n+1 & m=n+1 \end{cases}$$

and is then a bijection, so ϕ is well-defined.

Now, we need to show that ϕ is a bijection. For $f, f' \in S_n$, $\phi(f) = \phi(f')$ implies that for every m, where $1 \leq m \leq n$, $(\phi(f))(m) = (\phi(f'))(m) \implies f(m) = f'(m)$, and since f, f' have domain $\{1, 2, \ldots, n\}$, f = f' and ϕ is injective.

Similarly, every $f \in H_{n+1}$ must have a preimage: since f is a bijection with f(n+1) = n+1, for any $m, 1 \le m \le n \iff 1 \le f(m) \le n$ (to see \implies , supposing otherwise gives f(m) = n+1, contradicting that f is injective, and to see \iff , supposing otherwise gives $m = n+1 \implies f(m) = n+1$, contradicting that $1 \le f(m) \le n$). Then, any $m', 1 \le m' \le n$ must have a preimage $f^{-1}(m)$ (since f is surjective) which must satisfy $1 \le f^{-1}(m) \le n$ as before, and must be unique since f is surjective. Then, the restriction $f|_{\{1,2,\ldots,n\}}$ is a bijection from $\{1,2,\ldots,n\}$ to itself, and $\phi(f|_{\{1,2,\ldots,n\}}) = f$, so ϕ is surjective.

Finally, given $f, f' \in S_n$, we have that

$$(\phi(f \circ f'))(m) = \begin{cases} f(f'(m)) & 1 \le m \le n \\ n+1 & m=n+1 \end{cases}$$

and

$$(\phi(f) \circ \phi(f'))(m) = \begin{cases} f((\phi(f'))(m)) & 1 \le (\phi(f'))(m) \le n \\ n+1 & (\phi(f'))(m) = n+1 \end{cases}$$

however, as shown above, $1 \le (\phi(f'))(m) \le n \iff 1 \le m \le n$, and $(\phi(f'))(m) = n+1 \iff m = n+1$ as $\phi(f') \in H_{n+1}$, so the conditions simplify to

$$(\phi(f) \circ \phi(f'))(m) = \begin{cases} f((\phi(f'))(m)) & 1 \le m \le n \\ n+1 & m=n+1 \end{cases} = \begin{cases} f(f'(m))) & 1 \le m \le n \\ n+1 & m=n+1 \end{cases} = (\phi(f \circ f'))(m)$$

Since $\phi(f \circ f') = \phi(f) \circ \phi(f')$, ϕ is an isomorphism and we are done.

7

Note that we have from class that there are integer solutions x, y to ax + by = d if and only if $gcd(a,b) \mid d$. Then, $n \in \langle a,b \rangle \implies n = ax + by$ for integers $x,y \implies gcd(a,b) \mid n$, so every $n \in \langle a,b \rangle$ can be written as $k \gcd(a,b)$ for some integer k. Further, since we have that $ax + by = k \gcd(a,b)$ has solutions for every integer k, we know that $\langle a,b \rangle = \{k \gcd(a,b) \mid k \in \mathbb{Z}\}$.

Then, this is exactly $\langle \gcd(a,b) \rangle$ for positive (a,b). Then, $\langle 2,3 \rangle = \langle 1 \rangle = \mathbb{Z}$, $\langle 3,5 \rangle = \langle 1 \rangle = \mathbb{Z}$, and $\langle 4,6 \rangle = \langle 2 \rangle$, or the even integers.

8

Notice that $9 \cdot 9 = 81$ and $16 \cdot 5 = 80 = 81 - 1$, so we have that n = 9, m = -5 satisfies 9n + 16m = 1.

9

No: we saw in class that there are integer solutions x,y to ax + by = d if and only if $\gcd(a,b) \mid d$. and since we have that $3 \nmid 2$, there are no solutions to 57x + 93y = 2 (also note that 57x + 93y = 3(19x + 21y), so any solution would give that $19x + 21y = \frac{2}{3}$, where the LHS is an integer). However, since $3 \mid -6$, there are solutions to 57x + 93y = -6. In particular, if x', y' satisfy 57x' + 93y' = 3, then x = -2x', y = -2y' satisfy 57x + 93y = -6.