Sets

December 24, 2023

This chapter (will eventually) contain material on axiomatic set theory, as well as a couple other things.

Contents

1 The Enrichment of Sets in Classical Truth Values

1.1 (-2)-Categories

Definition 1.1.1.1. A (-2)-category is the "necessarily true" truth value. 1,2,3

1.2 (-1)-Categories

Definition 1.2.1.1. A (-1)-category is a classical truth value.

Remark 1.2.1.2. $^4(-1)$ -categories should be thought of as being "categories enriched in (-2)-categories", having a collection of objects and, for each pair of objects, a Hom-object Hom(x,y) that is a (-2)-category (i.e. trivial). Therefore, a (-1)-category C is either ([lectures-on-n-categories-and-cohomology]):

- 1. *Empty*, having no objects;
- 2. Contractible, having a collection of objects $\{a, b, c, \ldots\}$, but with $\operatorname{Hom}_{\mathcal{C}}(a, b)$ being a (-2)-category (i.e. trivial) for all $a, b \in \operatorname{Obj}(\mathcal{C})$, forcing all objects of \mathcal{C} to be uniquely isomorphic to each other.

 $^{^{1}}$ Thus, there is only one (-2)-category.

²A (-n)-category for $n=3,4,\ldots$ is also the "necessarily true" truth value, coinciding with a (-2)-category.

³For motivation, see [lectures-on-n-categories-and-cohomology].

⁴For more motivation, see [lectures-on-n-categories-and-cohomology].

As such, there are only two (-1)-categories, up to equivalence:

- The (-1)-category false (the empty one);
- The (-1)-category true (the contractible one).

Definition 1.2.1.3. The **poset of truth values**⁵ is the poset ($\{\text{true}, \text{false}\}, \leq$)⁶ consisting of

- *The Underlying Set.* The set {true, false} whose elements are the truth values true and false;
- The Partial Order. The partial order

$$\leq$$
: {true, false} \times {true, false} \rightarrow {true, false}

on $\{true, false\}$ defined by⁷

false
$$\leq$$
 false $\stackrel{\text{def}}{=}$ true,

true
$$\leq$$
 false $\stackrel{\text{def}}{=}$ false,

$$\mathsf{false} \preceq \mathsf{true} \stackrel{\scriptscriptstyle \mathrm{def}}{=} \mathsf{true},$$

true
$$\preceq$$
 true $\stackrel{\text{def}}{=}$ true.

Proposition 1.2.1.4. The poset of truth values $\{t,f\}$ is Cartesian closed with product given by 8

$$t \times t = t$$

$$t \times f = f$$
,

$$f \times t = f$$

$$f \times f = f$$
,

and internal Hom $\mathbf{Hom}_{\{t,f\}}$ given by the partial order of $\{t,f\},$ i.e. by

$$\mathbf{Hom}_{\{t,f\}}(t,t) = t,$$

$$\mathbf{Hom}_{\{t,f\}}(t,f) = f,$$

$$\mathbf{Hom}_{\{t,f\}}(f,t)=t,$$

$$\mathbf{Hom}_{\{t,f\}}(f,f)=t.$$

⁵ Further Terminology: Also called the **poset of** (-1)-categories.

⁶ Further Notation: Also written {t, f}.

⁷This partial order coincides with logical implication.

⁸Note that \times coincides with the "and" operator, while $\mathbf{Hom}_{\{t,f\}}$ coincides with the

Proof. Existence of Products: We claim that the products $t \times t$, $t \times f$, $f \times t$, and $f \times f$ satisfy the universal property of the product in $\{t, f\}$. Indeed, consider the diagrams

Here:

- 1. If $P_1 = t$, then $p_1^1 = p_2^1 = id_t$, and there's indeed a unique morphism from P_1 to t making the diagram commute, namely id_t ;
- 2. If $P_1 = f$, then $p_1^1 = p_2^1$ are given by the unique morphism from f to t, and there's indeed a unique morphism from P_1 to t making the diagram commute, namely the unique morphism from f to t;
- 3. If $P_2 = t$, then there is no morphism p_2^2
- 4. If $P_2 = f$, then p_1^2 is the unique morphism from f to t while $p_2^2 = id_f$, and there's indeed a unique morphism from P_2 to f making the diagram commute, namely id_f ;
- 5. The proof for P_3 is similar to the one for P_2 ;
- 6. If $P_4 = t$, then there is no morphism p_1^4 or p_2^4 .
- 7. If $P_4 = f$, then $p_1^4 = p_2^4 = \mathrm{id}_f$, and there's indeed a unique morphism from P_4 to f making the diagram commute, namely id_f .

Cartesian Closedness: We claim there's a bijection

$$\operatorname{Hom}_{\{\mathsf{t},\mathsf{f}\}}(A \times B, C) \cong \operatorname{Hom}_{\{\mathsf{t},\mathsf{f}\}}(A, \operatorname{\mathbf{Hom}}_{\{\mathsf{t},\mathsf{f}\}}(B, C))$$

natural in $A, B, C \in \{t, f\}$. Indeed:

• For (A, B, C) = (t, t, t), we have

$$\begin{split} \operatorname{Hom}_{\{t,f\}}(t\times t,t) &\cong \operatorname{Hom}_{\{t,f\}}(t,t) \\ &= \{\operatorname{id}_{\mathsf{true}}\} \\ &\cong \operatorname{Hom}_{\{t,f\}}(t,t) \\ &\cong \operatorname{Hom}_{\{t,f\}}\big(t,\mathbf{Hom}_{\{t,f\}}(t,t)\big). \end{split}$$

• For (A, B, C) = (t, t, f), we have

$$\begin{split} \operatorname{Hom}_{\{t,f\}}(t\times t,f) &\cong \operatorname{Hom}_{\{t,f\}}(t,f) \\ &= \emptyset \\ &\cong \operatorname{Hom}_{\{t,f\}}(t,f) \\ &\cong \operatorname{Hom}_{\{t,f\}} \big(t, \operatorname{\textbf{Hom}}_{\{t,f\}}(t,f) \big). \end{split}$$

• For (A, B, C) = (t, f, t), we have

$$\begin{split} \operatorname{Hom}_{\{t,f\}}(t\times f,t) &\cong \operatorname{Hom}_{\{t,f\}}(f,t) \\ &\cong \operatorname{pt} \\ &\cong \operatorname{Hom}_{\{t,f\}}(f,t) \\ &\cong \operatorname{Hom}_{\{t,f\}} \big(f, \mathbf{Hom}_{\{t,f\}}(f,t) \big). \end{split}$$

• For (A, B, C) = (t, f, f), we have

$$\begin{split} \operatorname{Hom}_{\{t,f\}}(t\times f,f) &\cong \operatorname{Hom}_{\{t,f\}}(f,f) \\ &\cong \{\operatorname{id}_{\mathsf{false}}\} \\ &\cong \operatorname{Hom}_{\{t,f\}}(f,f) \\ &\cong \operatorname{Hom}_{\{t,f\}}\Big(t,\mathbf{Hom}_{\{t,f\}}(f,f)\Big). \end{split}$$

• For (A, B, C) = (f, t, t), we have

$$\begin{split} \operatorname{Hom}_{\{t,f\}}(f\times t,t) &\cong \operatorname{Hom}_{\{t,f\}}(f,t) \\ &\cong \operatorname{pt} \\ &\cong \operatorname{Hom}_{\{t,f\}}(f,t) \\ &\cong \operatorname{Hom}_{\{t,f\}} \Big(f, \operatorname{\textbf{Hom}}_{\{t,f\}}(t,t)\Big). \end{split}$$

• For (A, B, C) = (f, t, f), we have

$$\begin{split} \operatorname{Hom}_{\{t,f\}}(f\times t,f) &\cong \operatorname{Hom}_{\{t,f\}}(f,f) \\ &\cong \{\operatorname{id}_{\mathsf{false}}\} \\ &\cong \operatorname{Hom}_{\{t,f\}}(f,f) \\ &\cong \operatorname{Hom}_{\{t,f\}} \Big(f, \mathbf{Hom}_{\{t,f\}}(t,f)\Big). \end{split}$$

• For (A, B, C) = (f, f, t), we have

$$\begin{split} \operatorname{Hom}_{\{t,f\}}(f\times f,t) &\cong \operatorname{Hom}_{\{t,f\}}(f,t) \\ &\cong \operatorname{pt} \\ &\cong \operatorname{Hom}_{\{t,f\}}(f,t) \\ &\cong \operatorname{Hom}_{\{t,f\}} \big(f, \operatorname{\textbf{Hom}}_{\{t,f\}}(f,t) \big). \end{split}$$

• For (A, B, C) = (f, f, f), we have

$$\begin{split} \operatorname{Hom}_{\{t,f\}}(f\times f,f) &\cong \operatorname{Hom}_{\{t,f\}}(f,f) \\ &= \{\operatorname{id}_{\mathsf{false}}\} \\ &\cong \operatorname{Hom}_{\{t,f\}}(f,f) \\ &\cong \operatorname{Hom}_{\{t,f\}} \big(f,\mathbf{Hom}_{\{t,f\}}(f,f)\big). \end{split}$$

The proof of naturality is omitted.

1.3 0-Categories

Definition 1.3.1.1. A 0-category is a poset.⁹

Definition 1.3.1.2. A 0-groupoid is a 0-category in which every morphism is invertible. ¹⁰

1.4 Tables of Analogies Between Set Theory and Category Theory

Here we record some analogies between notions in set theory and category theory. Note that the analogies relating to presheaves relate equally well to copresheaves, as the opposite X^{op} of a set X is just X again. Basics:

 $^{{\}it logical implication operator}.$

⁹ Motivation: A 0-category is precisely a category enriched in the poset of (-1)-categories. ¹⁰ That is, a set.

Set Theory	CATEGORY THEORY
Enrichment in {true, false}	Enrichment in Sets
Set X	Category C
Element $x \in X$	Object $X \in \text{Obj}(\mathcal{C})$
Function	Functor
Function $X \to \{true, false\}$	Functor $\mathcal{C} o Sets$
Function $X \to \{true, false\}$	Presheaf $\mathcal{C}^{op} o Sets$

Powersets and categories of presheaves:

SET THEORY	Category Theory
Powerset $\mathcal{P}(X)$	Presheaf category $PSh(\mathcal{C})$
Characteristic function $\chi_{\{x\}}$	Representable presheaf h_X
Characteristic embedding $\chi_{(-)} \colon X \hookrightarrow \mathcal{P}(X)$	Yoneda embedding $\mathcal{L}: C^{op} \hookrightarrow PSh(C)$
Characteristic relation $\chi_X(-1,-2)$	Hom profunctor $\operatorname{Hom}_{\mathcal{C}}(1,2)$
The Yoneda lemma for sets $\operatorname{Hom}_{\mathcal{P}(X)}(\chi_x, \chi_U) = \chi_U(x)$	The Yoneda lemma for categories $\operatorname{Nat}(h_X, \mathcal{F}) \cong \mathcal{F}(X)$
The characteristic embedding is fully faithful, $\operatorname{Hom}_{\mathcal{P}(X)}(\chi_x, \chi_y) = \chi_X(x, y)$	The Yoneda embedding is fully faithful, $\operatorname{Nat}(h_X, h_Y) \cong \operatorname{Hom}_{\mathcal{C}}(X, Y)$
Subsets are unions of their elements $U = \bigcup_{x \in U} \{x\}$ or $\chi_U = \operatorname*{colim}_{\chi_x \in Sets(U, \{t, f\})} (\chi_x)$	Presheaves are colimits of representables, $\mathcal{F} \cong \operatorname*{colim}_{h_X \in \int_{\mathcal{C}} \mathcal{F}} (h_X)$

Categories of elements:

Set Theory	CATEGORY THEORY
Assignment $U \mapsto \chi_U$	Assignment $\mathcal{F} \mapsto \int_{\mathcal{C}} \mathcal{F}$ (the category of elements)
Assignment $U \mapsto \chi_U$ giving an isomorphism $\mathcal{P}(X) \cong Sets(X, \{t, f\})$	Assignment $\mathcal{F} \mapsto \int_{\mathcal{C}} \mathcal{F}$ giving an equivalence $PSh(\mathcal{C}) \stackrel{\text{eq.}}{\cong} DFib(\mathcal{C})$

Functions between powersets and functors between presheaf categories:

Set Theory	CATEGORY THEORY
Direct image function $f_* \colon \mathcal{P}(X) \to \mathcal{P}(Y)$	Inverse image functor $f^{-1} \colon PSh(\mathcal{C}) \to PSh(\mathcal{D})$
Inverse image function $f^{-1} \colon \mathcal{P}(Y) \to \mathcal{P}(X)$	Direct image functor $f_* \colon PSh(\mathcal{O}) \to PSh(\mathcal{C})$
Direct image with compact support function $f_! \colon \mathcal{P}(X) \to \mathcal{P}(Y)$	Direct image with compact support functor $f_! : PSh(\mathcal{C}) \to PSh(\mathcal{D})$

Relations and profunctors:

Set Theory	Category Theory
Relation $R: X \times Y \to \{t,f\}$	Profunctor $\mathfrak{p} \colon \mathcal{D}^{op} \times \mathcal{C} \to Sets$
Relation $R: X \to \mathcal{P}(Y)$	Profunctor $\mathfrak{p} \colon \mathcal{C} \to PSh(\mathcal{D})$
Relation as a cocontinuous morphism of posets $R\colon (\mathcal{P}(X),\subset)\to (\mathcal{P}(Y),\subset)$	Profunctor as a colimit-preserving functor $\mathfrak{p} \colon PSh(\mathcal{C}) \to PSh(\mathcal{D})$

Appendices

A Other Chapters

Sets

- 1. Sets
- 2. Constructions With Sets
- 3. Pointed Sets
- 4. Tensor Products of Pointed Sets
- 5. Relations
- 6. Spans
- 7. Posets

Indexed and Fibred Sets

- 7. Indexed Sets
- 8. Fibred Sets
- 9. Un/Straightening for Indexed and Fibred Sets

Category Theory

- 11. Categories
- 12. Types of Morphisms in Categories

- 13. Adjunctions and the Yoneda Lemma
- 14. Constructions With Categories
- 15. Kan Extensions

Bicategories

- 17. Bicategories
- 18. Internal Adjunctions

Internal Category Theory

19. Internal Categories

Cyclic Stuff

20. The Cycle Category

Cubical Stuff

21. The Cube Category

Globular Stuff

22. The Globe Category

Cellular Stuff

23. The Cell Category

Monoids

- 24. Monoids
- 25. Constructions With Monoids

Monoids With Zero

- 26. Monoids With Zero
- 27. Constructions With Monoids With Zero

Groups

- 28. Groups
- 29. Constructions With Groups

Hyper Algebra

- 30. Hypermonoids
- 31. Hypergroups
- 32. Hypersemirings and Hyperrings
- 33. Quantales

Near-Rings

- 34. Near-Semirings
- 35. Near-Rings

Real Analysis

- 36. Real Analysis in One Variable
- 37. Real Analysis in Several Variables

Measure Theory

- 38. Measurable Spaces
- 39. Measures and Integration

Probability Theory

39. Probability Theory

Stochastic Analysis

- 40. Stochastic Processes, Martingales, and Brownian Motion
- 41. Itô Calculus
- 42. Stochastic Differential Equations

Differential Geometry

43. Topological and Smooth Manifolds

Schemes

44. Schemes