Домашнее задание (листок) 1 Анализ, 2 курс, весенний семестр, 29.01.2021 ДЕДЛАЙН: 28.02.2021

Задача 1. Доказать полноту пространства $C^k[a,b], -\infty < a < b < \infty$, состоящего из k раз непрерывно дифференцируемых функций $f:[a,b]\mapsto \mathbb{R}$, снабженного нормой $\|f\|_k:=\sum_{i=0}^k\max_{x\in[a,b]}|f^{(i)}(x)|$, где $f^{(i)}$ обозначает i-ую производную функции f.

Задача 2. Доказать, что норма $\|\cdot\|$ нормированного пространства над полем *ком*плексных чисел порождена скалярным произведением тогда и только тогда, когда для любых двух векторов x и y выполнено равенство параллелограмма:

$$||x + y||^2 + ||x - y||^2 = 2||x||^2 + 2||y||^2.$$

Задача 3. Доказать, что следующие пространства не являются гильбертовыми: а) l_p при $p \in [1,2) \cup (2,\infty]$; б) C[0,1].

Напомним, что пространство l_p состоит из последовательностей $\{x_k\}_{k=1}^{\infty}, x_k \in \mathbb{R},$ с нормой $\|x\|_p = (\sum_{k=1}^{\infty} |x_k|^p)^{1/p}$ при $p < \infty$ и $\|x\|_{\infty} = \sup_k |x_k|$. Здесь и далее пространство непрерывных функций C[a,b] снабжено стандартной нор-

мой $||f|| = \max_{x \in [a,b]} |f(x)|$.

Задача 4. Доказать неравенство Коши-Буняковского в векторном пространстве Vнад полем *комплексных* чисел со скалярным произведением (\cdot,\cdot) : |(x,y)| < ||x|| ||y|| для любых $x, y \in V$, причем равенство достигается тогда и только тогда, когда векторы х и у коллинеарны.

Задача 5. В пространстве $L^2(-1,1)$ найти расстояние от функции $x(t)=t+\cos t$ до подпространства $M=\{x\in L^2(-1,1):\ \int_{-1}^0 x(t)dt=\int_0^1 x(t)dt\}.$

Задача 6. а) В пространстве l_2 найти расстояние от вектора $e_1=(1,0,0,...)$ до подпространства $H_n=\{x\in l_2: \sum_{k=1}^n x_k=0, x_{n+1}=x_{n+2}=...=0\}.$ б) Докажите, что пространство $H=\{x\in l_2: \sum_{k=1}^\infty x_k=0\}$ плотно в l_2 .

Задача 7. Пусть M — замкнутое выпуклое подмножество гильбертова пространства H. Рассмотрим произвольный вектор $v \in H \setminus M$ и вектор $v_M \in M$, такой что ||v - v|| $\|v_M\| = \operatorname{dist}(v, M)$. Докажите, что $(v - v_M, w - v_M) \leq 0$ для любого $w \in M$. Дайте геометрическую интерпретацию этому факту.

Задача 8. Примените процесс ортогонализации к последовательности одночленов $1,z,z^2,...$, где $z=x+iy\in\mathbb{C},$ относительно следующих скалярных произведений:

a)
$$(P,Q) = \iint_{|z| \le 1} P(z)\overline{Q}(z)dxdy, \qquad \text{f)} \qquad (P,Q) = \iint_{\mathbb{C}} P(z)\overline{Q}(z)e^{-|z|^2}dxdy$$

Задача 9. (*) Рассмотрим линейное пространство V, состоящее из конечных линейных комбинаций (над полем комплексных чисел) одночленов из предыдущей задачи (другими словами, их линейную оболочку). Докажите, что пополнения V относительно норм, порожденных скалярными произведениями из предыдущей задачи, состоит из аналитических функций f в круге или на комплексной плоскости, таких что $\iint_{|z|<1} |f(z)|^2 dx dy < \infty$ или $\iint_{z\in\mathbb{C}} |f(z)|^2 e^{-|z|^2} dx dy < \infty$ соответственно (полученные пространства называются пространствами Бергмана).

Задача 10. Докажите, что система Радемахера $r_n(t) = \mathrm{sign} \sin(2^n \pi t), \, n = 0, 1, 2, \ldots,$ ортонормированна, но не полна в $L^2(0,1)$.

Задача 11. Докажите, что система Уолша, состоящая из всевозможных конечных произведений функций из системы Радемахера, является ортонормированным базисом в $L^2(0,1)$.

Задача 12. Докажите, что в системе многочленов Чебышева І рода

$$T_n(t) = \cos(n \arccos t), \ n = 0, 1, \dots$$

- а) $T_n(t)$ является многочленом степени n;
- б) функция $T_n(t)$ удовлетворяет дифференциальному уравнению

$$(1 - t2)T''n(t) - tT'n(t) + n2Tn(t) = 0;$$

- в) все функции ортогональны в пространстве $L^2(-1,1)$ с весом $(1-t^2)^{-\frac{1}{2}}$;
- г) образуют в этом пространстве ортогональный базис.

Задача 13. (*) Докажите, что среди всех многочленов вида $t^n + a_{n-1}t^{n-1} + \ldots + a_0$ наименьшую норму в вещественном пространстве C[-1,1] имеет многочлен Чебышева I рода $T_n(t) = 2^{1-n}\cos(n\arccos t)$.