Given is the ODE $\frac{dy}{dt} = y^2(3 - y)$.

Fill in the information about the ODE:

(a) Order: _____

(d) Time-dependence (circle one):dependent — independent

(b) Independent variable: _____(c) Dependent variable: _____

Question 2

The following Initial Value Problem involves a **linear** ODE:

(i)

$$t\frac{dx}{dt} + x(t) = e^t, \quad x(2) = 0.$$

(ii)

$$\frac{1}{t^2}\frac{dx}{dt} + x(t) = \exp\left(t^3\right), \quad x(1) = 0.$$

For one of the above IVPs, do the following:

- (a) Convert the equation into the **standard form** and **label** all its components.
- (b) Use variation of parameters to calculate the general solution.
- (c) Compute the particular solution that satisfies the initial condition.

You will be graded both on **clarity of the process** to solution, and on **technical execution**. Therefore, tell us what you are calculating, label your (sub)solutions and any partial results, and **if you cannot complete the problem because of a calculation error**, explain in words what you would do to complete it.

Question 3

Solve the following separable ODE:

(i)

$$\frac{dy}{dx} = \frac{x^2}{y+1}$$

(ii)

$$\frac{dy}{dx} = \frac{\ln(x)}{x^2}$$

(iii)

$$\frac{dy}{dx} = xe^{x^2}$$

Question 4

Solve the following linear ODE:

(i)
$$y' + \frac{2}{x}y = \frac{\cos(x)}{x^2}$$

(ii)
$$y' + y \tan(x) = \sin(2x)$$

(iii)
$$y' + y \csc(x) = \cos(x)$$

The following ODE is exact. Calculate the **implicit** formula of its solution curves.

(i)

$$(x^2 + y^2)y'(x) + 2xy + 1 = 0.$$

(ii)

$$\left(\frac{1}{2}x^2 + xy\right)y'(x) + 2x^3 + xy + \frac{1}{2}y^2 = 0.$$

Show all steps in your calculation.

Ouestion 6

The following ODE is linear, homogeneous 2nd order ODE. Using the characteristic equation, calculate the formula for its general solution

(i)

$$y''(x) - 2y'(x) - 3y(x) = 0.$$

(ii)

$$\frac{d^2y}{dx^2} - 3\frac{dy}{dx} = 0.$$

(iii)

$$y''(x) + 3y'(x) + 2y(x) = 0.$$

(iv)

$$y''(x) - 4y'(x) + 4y(x) = 0.$$

Show all steps in your calculation.

Question 7

Given a differential equation with a damping coefficient c in it

$$\frac{dy^2}{dt^2} + c\frac{dy}{dt} + 25y(t) = 0$$

perform both tasks below. Justify your work and explain your answers.

- (a) For damping c = 0 calculate the solution that satisfies y(0) = 1, y'(0) = 10.
- (b) Calculate the general solution for damping c = 6. **Explain:** do solutions here in general oscillate or not? Do they grow/decay/stay the same?

In all cases, use the real-valued form of solution functions (sines/cosines instead of complex exponentials).

Solutions to
$$a\lambda^2+b\lambda+c=0$$
 are
$$\lambda_{1,2}=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$$

Ouestion 8

Given is the differential equation:

$$y''(x) + 16y(x) = 2x - 5e^{-2x}.$$

- (a) Calculate its **general** solution.
- (b) Calculate the particular solution that satisfies y(0) = 0, y'(0) = 0.

In all cases, use **real basis** (sines, cosines, etc.) where appropriate.

Question 9
For the ODE with the same left-hand side as in Question 1,
y''(x) + 16y(x) = f(x)
suggest an example of the input function $f(x)$ that would result in resonant behavior . (You do not need to solve for
y(x).)
Resonating input $f(x) =$
Explain your answer by describing, in short, what resonance is.

Solve the following ODE using Laplace transform: $y' + 2y = \frac{1}{3}e^{-t}$, y(0) = -2

Laplace integral: $\mathscr{L}\{f(t)\} = \int_0^\infty e^{-st} f(t) dt$ Properties, given that $\mathscr{L}\{f(t)\} = F(s), \mathscr{L}\{g(t)\} = G(s):$

- Linearity: $\mathcal{L}\{c_1f(t) + c_2g(t)\}$ $= c_1F(s) + c_2G(s)$
- Convolution: $\mathscr{L}\{f*g\} = F(s)G(s)$, where

$$(f * g)(t) = \int_0^t f(\tau)g(t - \tau)d\tau$$

- s-shift: $\mathcal{L}\left\{e^{at}f(t)\right\} = F(s-a)$
- t-shift: $\mathcal{L}\{\mathcal{U}(t-a)f(t-a)\} = e^{-sa}F(s)$
- Derivative in t: If $\mathscr{L}\{y(t)\}=Y(s)$, then $\mathscr{L}\{y'(t)\}=sY(s)-y(0),$ $\mathscr{L}\{y''(t)\}=s^2Y(s)-sy(0)-y'(0)$

ı	1
f(t)	$F(s) = \mathcal{L}\{f(t)\}$
1	$\frac{1}{s}$
t^n	$\frac{n!}{s^{n+1}}$
e^{at}	$\frac{1}{s-a}$
$\sin(\omega t)$	$\frac{\omega}{s^2+\omega^2}$
$\cos(\omega t)$	$\frac{s}{s^2+\omega^2}$
$e^{at}\sin(\omega t)$	$\frac{\omega}{(s-a)^2+\omega^2}$
$e^{at}\cos(\omega t)$	$\frac{s-a}{(s-a)^2+\omega^2}$
cosh(at)	$\frac{s}{s^2-a^2}$
sinh(at)	$\frac{a}{s^2-a^2}$

Question 11

Compute the inverse Laplace transform: $\mathcal{L}^{-1}\left\{\frac{6s}{s^2 + 2s + 10}\right\}$

Sketch as accurately as possible the impulse $\delta(t-5)$ and give its Laplace transform.

Question 13

Compute and sketch the function g(t) defined as: $g(t) = \mathcal{L}^{-1}\left\{\frac{2}{s-1}e^{-2s}\right\}$

Question 14

Compute the Laplace transform of the function given by the graph.

Question 15

Given the following system of ODEs:

$$\dot{x} = -5x + 6y$$

$$\dot{y} = -3x + 4y$$

(a) Determine the matrix M in the matrix ODE $\underline{v}(t) = M\underline{v}(t)$ that corresponds to the system above if $\underline{v}(t) = \begin{bmatrix} x(t) \\ y(t) \end{bmatrix}$.

Laplace integral:
$$\mathscr{L}\{f(t)\} = \int_0^\infty e^{-st} f(t) dt$$
 Properties, given that
$$\mathscr{L}\{f(t)\} = F(s), \mathscr{L}\{g(t)\} = G(s):$$

- Linearity: $\mathscr{L}\{c_1f(t) + c_2g(t)\}\$ $= c_1F(s) + c_2G(s)$
- Convolution: $\mathscr{L}\{f*g\} = F(s)G(s)$, where

$$(f * g)(t) = \int_0^t f(\tau)g(t - \tau)d\tau$$

- s-shift: $\mathcal{L}\left\{e^{at}f(t)\right\} = F(s-a)$
- t-shift: $\mathcal{L}\{\mathcal{U}(t-a)f(t-a)\} = e^{-sa}F(s)$
- Derivative in t: If $\mathcal{L}\{y(t)\} = Y(s)$, then $\mathcal{L}\{y'(t)\} = sY(s) y(0),$ $\mathcal{L}\{y''(t)\} = s^2Y(s) sy(0) y'(0)$

	1
f(t)	$F(s) = \mathcal{L}\{f(t)\}$
1	$\frac{1}{s}$
t^n	$\frac{n!}{s^{n+1}}$
e^{at}	$\frac{1}{s-a}$
$\sin(\omega t)$	$\frac{\omega}{s^2+\omega^2}$
$\cos(\omega t)$	$\frac{s}{s^2+\omega^2}$
$e^{at}\sin(\omega t)$	$\frac{\omega}{(s-a)^2+\omega^2}$
$e^{at}\cos(\omega t)$	$\frac{s-a}{(s-a)^2+\omega^2}$
$\cosh(at)$	$\frac{s}{s^2-a^2}$
sinh(at)	$\frac{a}{s^2-a^2}$

(b) Is the following candidate a solution of the matrix ODE from (a)? Show your work.

$$\underline{v}(t) = \begin{bmatrix} -2\\-1 \end{bmatrix} e^{-2t} + \begin{bmatrix} 2\\2 \end{bmatrix} e^t$$

Use row reduction (Gauss elimination) to solve the following system of linear equations. If needed, use C_1, C_2, \ldots as free parameters in the solution. Label row operations in your solution.

$$-y + z - 1 = 0$$
$$-x + 2y - 2z + 1 = 0$$
$$2x - 3y + 2z - 1 = 0$$

Question 17

Matrix ODE

$$\dot{x} = Mx$$

is given by the matrix M, whose **eigenvalues and eigenvectors are already known**.

- (a) Sketch the phase portrait in the empty grid. Make sure to draw main directions of the flow and sketch in several solution curves.
- (b) Is the fixed point stable or not? Explain why.
- (c) Write out the **general solution** of the matrix ODE.

Given $\underline{\dot{x}} = A\underline{x}$ with

$$A = \begin{bmatrix} -7 & -13 \\ 2 & 3 \end{bmatrix}$$

(a) Compute eigenvalues and eigenvectors of A.

- (b) Based on your calculations, would the solutions of $\dot{\underline{x}} = A\underline{x}$
 - Oscillate Not Oscillate? (circle correct) **Explain**:
 - Grow Decay Neither (circle correct) **Explain**: