TD 5

Processus stochastiques en temps discret

TD 5 - Intégrabilité uniforme et convergences des martingales (\mathbb{L}^1 , \mathbb{L}^p et p.s.)

24 octobre 2013

Si vous repérez des erreurs dans les feuilles d'exercices ou si vous avez des questions, n'hésitez pas à m'envoyer un mail à l'adresse suivante : jhihhuang.li@gmail.com

Exercice 5.1 (une famille bornée dans \mathbb{L}^p est u.i.).

Soit p > 1. On considère $(X_i)_{i \in I}$ une famille de variables aléatoires bornée dans \mathbb{L}^p , *i.e.*

$$\sup_{i\in I} \mathbb{E}[|X_i|^p] < \infty.$$

Montrer que la famille $(X_i)_{i \in I}$ est uniformément intégrable.

Exercice 5.2 (un critère pour l'intégrabilité uniforme).

Soit $\phi: \mathbb{R}^+ \to \mathbb{R}^+$ une fonction telle que $\frac{\phi(x)}{x} \to \infty$ lorsque $x \to \infty$. Soit $(X_i)_{i \in I}$ une famille de variables aléatoires vérifiant

$$\sup_{i\in I} \mathbb{E}[|X_i|^p] < \infty.$$

Montrer que $(X_i)_{i\in I}$ est uniformément intégrable. Souvent, on prend $\phi(x) = x^p$ pour p > 1 ou $\phi(x) = x \log^+ x$.

Exercice 5.3 (loi du 0-1 de Lévy).

On considère $(\mathcal{F}_n)_{n\in\mathbb{N}}$ une filtration et on note $\mathcal{F}_{\infty} = \sigma(\cup \mathcal{F}_n)$. Soit $A \in \mathcal{F}_{\infty}$. Montrer que $\mathbb{E}[1_A \mid \mathcal{F}_n] \xrightarrow{\text{p.s.}} 1_A$. En déduire la loi du 0-1 de Kolmogorov.

Exercice 5.4 (concentration autour de 0 et de 1).

On considère sur un espace de probabilité $(\Omega, \mathcal{F}, \mathbb{P})$ une suite de variables aléatoires $(X_n)_{n\in\mathbb{N}}$ à valeurs dans [0,1]. On pose, pour tout $n\in\mathbb{N}$, $\mathcal{F}_n=\sigma(X_0,\ldots,X_n)$. On suppose que $X_0=a$ p.s. avec $a\in[0,1]$ et que

$$\mathbb{P}\left(X_{n+1} = \frac{X_n}{2} \mid \mathcal{F}_n\right) = 1 - X_n, \mathbb{P}\left(X_{n+1} = \frac{1 + X_n}{2} \mid \mathcal{F}_n\right) = X_n,$$

- 1. Montrer que pour tout n, $\mathbb{P}\left(X_{n+1} = \frac{X_n}{2} \text{ ou } X_{n+1} = \frac{1+X_n}{2}\right) = 1$.
- 2. Montrer que $(X_n)_{n\in\mathbb{N}}$ est une \mathcal{F}_n -martingale qui converge p.s. et dans \mathbb{L}^p pour tout $p\geq 1$ vers une variable aléatoire Z.
- 3. Montrer que $\mathbb{E}[(X_{n+1} X_n)^2] = \frac{1}{4}\mathbb{E}[X_n(1 X_n)].$
- 4. En déduire la valeur de $\mathbb{E}[Z(1-Z)]$ puis la loi de Z.

TD 5

Exercice 5.5 (L'urne de Pólya).

A l'instant 0, une urne contient a boules noires et $b=N_0-a$ boules blanches. On tire une boule et on la remplace par deux boules de la même couleur, ce qui donne la composition de l'urne à l'instant 1. On répète ce procédé.

Pour $n \geq 1$, on note Y_n le nombre de boules noires dans l'urne à l'instant n et $X_n = \frac{Y_n}{N_0 + n - 1}$ la proportion. Soit $\mathcal{F}_n = \sigma(Y_1, \dots, Y_n)$.

- 1. Montrer que $(X_n)_{n\in\mathbb{N}}$ est une martingale qui converge p.s., dont la limite est notée U. Montrer que pour tout $k \geq 1$, $\mathbb{E}(X_n^k) \to \mathbb{E}(U^k)$.
- 2. Cas a=b=1. Montrer que pour tout $n \ge 1$, Y_n suit une loi uniforme sur $\{1, \ldots, n+1\}$. En déduire la loi de U.
- 3. Cas général. On fixe $k \geq 1$. On pose pour tout $n \geq 1$,

$$Z_n = \frac{Y_n(Y_n+1)\dots(Y_n+k-1)}{(n+N_0-1)(n+N_0)\dots(n+N_0+k-2)}.$$

Montrer que $(Z_n)_{n\geq 1}$ est une martingale pour la filtration $(\mathcal{F}_n)_{n\geq 1}$. En déduire les valeurs de $\mathbb{E}(U^k)$.

4. Montrer que la fonction caractéristique d'une variable aléatoire réelle bornée se développe en série entière sur \mathbb{R} . En déduire qu'on a caractérisé la loi de U.

Exercice 5.6 (Lemme de Borel-Cantelli conditionnel).

Soit $(\mathcal{F}_n)_{n\in\mathbb{N}}$ une filtration avec $\mathcal{F}_0 = \{\emptyset, \Omega\}$. Soit $(A_n)_{n\in\mathbb{N}}$ une suite d'événements avec $A_n \in \mathcal{F}_n$. Le but de l'exercice est de montrer

$$\{A_n \text{ infiniment souvent}\} = \left\{ \sum_{n=1}^{\infty} \mathbb{P}(A_n \mid \mathcal{F}_{n-1}) = \infty \right\}$$

en plusieurs étapes:

1. Soit $(X_n)_{n\in\mathbb{N}}$ une martingale telle qu'il existe $M<\infty$ avec $|X_{n+1}-X_n|\leq M$. Posons

$$\begin{array}{rcl} C & = & \{\lim X_n \text{ existe et est finie}\} \\ D & = & \{\lim \sup X_n = +\infty \text{ et } \lim\inf X_n = -\infty\} \end{array}.$$

Montrer que $\mathbb{P}(C \cup D) = 1$.

2. Appliquer la question 1 à (X_n) définie par :

$$X_n = \sum_{m=1}^{n} [1_{A_m} - P(A_m \mid \mathcal{F}_{m-1})], n \ge 1$$

pour prouver l'énoncé.