Transmissão em Banda Passante. Prof. Waldecir J. Perrella

Nesta seção será analisada a transmissão de dados digitais em canais banda passante. Da mesma forma que na comunicação analógica, a transmissão de dados utiliza uma portadora senoidal modulada pela seqüência de dados. Assim, serão analisados os seguintes tópicos:

Modulações:

ASK chaveamento da amplitude da portadora (*Amplitude Shift Keying*)

PSK chaveamento da fase da portadora (*Phase Shift Keying*")

FSK chaveamento de frequência da portadora (Frequency Shift Keying);

- Detecção coerente de sinais modulados em canais com ruído aditivo, branco e gaussiano (*AWGM*): o receptor sincronizado com a fase e freqüência da portadora, além da sincronização de relógio dos bits ("Clock");
- Detecção não coerente de sinais modulados em canais com ruído aditivo branco e gaussiano: o receptor sincronismo de relógio dos bits

Na transmissão de pulsos em banda base estudada anteriormente, a seqüência de dados, representada na forma de pulsos discretos modulando a amplitude PAM, é transmitida diretamente em canais com faixa de passagem concentrada nas freqüências baixas. Na transmissão em banda passante, por outro lado, a seqüência de dados modula a portadora senoidal com uma largura de faixa de freqüências.

Os canais de comunicação usados para a transmissão de dados em banda passante podem ser rádio enlace de microondas, canal de satélite.

Eficiência de largura de faixa.

Os dois recursos primários mais importantes nos sistemas de comunicações são largura de faixa e potência transmitida. Assim, tem-se procurado modulações com eficiência espectral que é definida como a razão entre a taxa de dados em bits por segundo e a largura de faixa do canal efetivamente utilizada. Outro objetivo é chegar a essa eficiência de largura de faixa com a mínima potência média, ou equivalentemente, num canal com ruído branco gaussiano aditivo, com a mínima relação sinal-ruído.

Com a taxa de dados, denotada por R_b , e a largura de faixa de canal utilizada, denotada por B, a eficiência de largura de faixa, ρ , pode ser expressa por:

$$\rho = \frac{R_b}{B} \text{ bits/s/Hz}$$

Observe que a eficiência da modulação em largura de faixa é resultante de dois fatores independentes: codificação com multi-níveis ou *M-ária* e formatação de pulso para eficiência espectral (Nyquist).

Descrição do sistema de comunicação binária banda passante.

Na Figura 1 tem-se o diagrama de blocos de um sistema de comunicação binária banda passante.

Figura 1 Comunicação binária banda passante.

A entrada do sistema é uma sequência binária $\{b_k\}$ com uma taxa de dados $R_b=1/T_b$, com T_b sendo o intervalo de sinalização. A seguir, os pulsos, formatados em banda base, geram uma sequência de pulsos, p(t), limitados no tempo (por exemplo retangular) ou limitados em frequência (por exemplo Nyquist) que podem ser representados por:

$$g(t) = \sum_{k = -\infty}^{\infty} b_k p(t - kT_b)$$

Nesta seção considera-se p(t) um pulso retangular com amplitude 1 e duração T_b . A seguir o sinal é modulado por uma portadora senoidal com freqüência f_o , gerando o sinal modulado s(t) no k-ésimo intervalo de sinalização:

$$s(t) = \begin{cases} s_1(t - kT_b) & \text{quando 1 for transmitido} \\ s_2(t - kT_b) & \text{quando 0 for transmitido} \end{cases}$$

onde as formas de ondas $s_1(t)$ e $s_2(t)$ têm duração de T_b e têm energia finita e são calculadas por:

$$E_1 = \int_0^{T_b} s_1^2(t) dt < \infty$$

$$E_2 = \int_0^{T_b} s_2^2(t) dt < \infty$$
4

Na Tabela 1 têm-se as formas de ondas para os três tipos básicos de modulação digital.

Tabela 1. Três tipos básicos de modulação digital.

Tipos de modulação	$s_1(t) \ 0 \le t \le T_b$	$s_2(t) \ 0 \le t \le T_b$
ASK	$A\cos(\omega_0 t)$	0
PSK	$A\cos(\omega_0 t)$	$A\cos(\omega_0 t + \pi) = -A\cos(\omega_0 t)$
FSK	$A \cos[(\omega_0 + \omega_d)t]$	$A \cos[(\omega_0 - \omega_d)t]$

onde $s_1(t)$ e $s_2(t)$ são sinais finitos no tempo, isto é, iguais a zero fora do intervalo $[0, T_b], f_0 = \omega_0/2\pi$ é a freqüência da portadora que é múltipla da taxa de bits R_b e $\pm \omega_d = 2\pi f_d$ é o deslocamento da freqüência da portadora na modulação FSK.

Figura 2 Três modulações binárias para a sequência de bits 01101001.

O sinal de saída do modulador o sinal é transmitido pelo canal que apresenta uma resposta em freqüência banda passante H(f), que neste capítulo é suposto ideal, isto é, apresenta uma largura de faixa adequada para não distorcer o sinal modulado e somente um atraso de propagação. O ruído do canal é aditivo gaussiano e branco com média zero e densidade espectral de potência $N_0/2$. O sinal recebido, x(t), com ruído aditivo é dado por:

$$x(t) = \begin{cases} s_1(t-k \ T_b - \tau) + w(t) & \text{quando 1 for transmitido} \\ s_2(t-k \ T_b - \tau) + w(t) & \text{quando 0 for transmitido} \end{cases}$$

onde τ é o atraso de propagação.

No caso de demodulação coerente deve existir um circuito, chamado de sincronizador de portadora, que estima essa defasagem usando o próprio sinal recebido e normalmente implementado por meio de um PLL(*Phase Lock Loop*). Sem perda de generalidade considera-se τ =0.

O demodulador tem o objetivo de determinar qual das duas formas de ondas conhecidas, $s_1(t)$ ou $s_2(t)$ está presente em cada intervalo de sinalização. O demodulador ótimo consiste de um filtro casado, resultando na sua saída o sinal y(t) e um amostrador nos instantes kT_b segundos, produzindo amostras $y(kT_b)$. A seguir os valores amostrados passam pelo dispositivo de decisão, onde são comparados com um limiar λ , para decidir qual dos sinais está presente de acordo com a seguinte regra:

decide por
$$\begin{cases} 1 & \text{quando } y(kT_b) > \lambda \\ 0 & \text{quando } y(kT_b) < \lambda \end{cases}$$

O filtro casado do demodulador pode ser implementado de duas formas em banda passante ou em banda base. Considerando o sinal recebido x(t) sem ruído, tem-se somente um dos dois sinais modulados agora representado por $s_i(t)$ e dado por:

$$s_i(t) = A\cos(\omega_0 t)$$
 para $0 \le t \le T_b$

A energia de $s_i(t)$ é dada por:

$$E_{i} = \int_{0}^{T_{b}} s_{i}^{2}(t) dt = \frac{A^{2}T_{b}}{2}$$

1. Filtro casado em banda passante

Como a resposta impulsiva do filtro casado a um sinal $s_i(t)$ é $s_i(T_b - t)$ e como ω_0 pode ser escolhido como múltiplo de R_b , tem-se neste caso a resposta impulsiva é o próprio sinal $s_i(t)$. A Figura 3a mostra o diagrama de blocos do filtro casado em banda passante, onde o sinal de saída y(t) é amostrado a cada kT_b resultando no sinal $y(kT_b)$ e como foi visto é igual a energia do sinal de entrada E_i dada pela equação (8). Na Figura 4 têm-se as formas de ondas no domínio do tempo. Assim na Figura 4a tem-se o sinal de entrada modulado, $s_i(t)$, com amplitude A e freqüência da portadora ω_i e duração T_b . Na Figura 4b tem-se a saída do filtro casado no tempo que é resultante da convolução do sinal de entrada $s_i(t)$ com a resposta impulsiva do filtro casado. Observa-se que no instante de amostragem $t = T_b$ saída $y(T_b) = E_i$. Para isto ocorrer assumiu-se que a resposta impulsiva do filtro casado esteja em sincronismo com a fase do sinal recebido e que a amostragem nos instantes $t = kT_b$ também esteja em sincronismo com os instantes de transição dos dados recebidos.

2. Filtro casado em banda base

Neste caso, o sinal recebido é inicialmente multiplicando (Mixer) pela portadora ω_i , gerada localmente e em sincronismo com a fase da portadora recebida gerando o sinal z(t), como mostra a Figura 3b. Essa operação tem o objetivo de transladar o espectro do sinal modulado para a banda base, e utilizando relações trigonométricas tem-se o sinal z(t) resulta em três componentes, duas referentes ao sinal transmitido e uma referente ao ruído. A equação (9) e referente às duas componentes do sinal:

$$z(t) = s_i(t) A\cos(\omega_i t) = A^2\cos^2(\omega t) = \frac{A^2}{2} + \frac{A^2}{2}\cos(2\omega_i t)$$

A primeira das duas componentes do sinal z(t) é um sinal em banda base e a segunda é uma componente em banda passante, centrada na frequência $2\omega_i$ que será eliminada pelo filtro passa baixas que será descrito a seguir.

A primeira componente é um sinal com valor constante, igual a $A^2/2$, durante o intervalo de sinalização $[0, T_b]$ e corresponde à translação da informação modulada em banda passante para banda base e a sua existência é devido ao aparecimento do sinal $s_i(t)$ na entrada do demodulador, pois se o mesmo não estivesse, a saída seria exatamente um valor constante e igual a zero durante o intervalo de

sinalização. Assim, como esta componente de z(t) corresponde a um pulso retangular com amplitude $A^2/2$ e duração T_b a sua detecção é otimizada usando-se um filtro casado também retangular em banda base. Na Fig. 3b tem-se o diagrama de blocos do filtro casado em banda base, onde o sinal de saída y(t) é também amostrado a cada kT_b resultando no sinal $y(kT_b)$ e como foi visto é também igual à energia do sinal de entrada E_i dada pela equação (8).

(b) Filtro casado banda base

Figura 3 Demodulador ótimo a).Filtro casado em banda passante b).Filtro casado em banda base

Na Figura 4c, tem-se a saída, no tempo, do filtro casado em banda base que é resultante da convolução do sinal z(t) com a resposta impulsiva do filtro casado pulso retangular. Observa-se que no instante de amostragem $t=T_b$ saída $y(T_b)=E_i$. Para isto ocorrer assumiu-se que a multiplicação pela cosenoide na frequência ω_i esteja em sincronismo com a fase da portadora do sinal recebido e que a amostragem nos instantes $t=kT_b$ também esteja em sincronismo com os instantes de transição dos dados recebidos.

Finalmente, pode-se observar na Figura 4c que a segunda componente é praticamente eliminada na saída do filtro casado que também é um filtro passa baixas.

Assim, desprezando o efeito do ruído, pode-se observar que na saída do demodulador, com filtro casado em banda base ou banda passante, nos instantes kT_b , tem-se $y(kT_b) = E_i$, quando o sinal $s_i(t)$ estiver presente e $y(kT_b) = 0$, quando o sinal $s_i(t)$ não estiver presente.

O efeito do ruído na comunicação em banda passante, utilizando as duas técnicas de filtro casado, tem as mesmas propriedades de um filtro casado visto anteriormente e assim, nos instantes de amostragem, kT_b , a componente de ruído é uma variável aleatória gaussiana com média zero e variância igual a $E_iN_o/2$

Figura 4 Resposta temporal do filtro casado

- a) Sinal de entrada $s_i(t)$
- b) Resposta do filtro casado em banda passante
- c) Resposta do filtro casado em banda base

Binário ASK coerente.

A esquema de sinalização binária ASK foi uma das primeiras formas de modulação digital usada em telegrafia sem fio no começo do século passado. Ela é a forma mais simples de modulação digital e serve como modelo para introduzir certos conceitos.

Supondo coerência da fase da portadora recebida, isto é, a fase da portadora local está síncrona com a portadora recebida e como o sinal modulado ASK é especificado pela Tabela 1 e o sinal na saída do filtro casado y(t), na ausência de ruído e nos instantes kT_b , resulta em:

$$y(kT_b) = \begin{cases} E_1 & \text{quando } s_1(t) \text{ foi transmitido} \\ 0 & \text{quando } 0 \text{ foi transmitido} \end{cases}$$

Comparando este resultado com o obtido quando se usa comunicação banda base e pulso NRZ unipolar observa-se que eles são idênticos e então tem-se a mesma BER, equação (55), que é reproduzida novamente:

$$P_e = Q\left(\sqrt{\frac{E_b}{N_o}}\right) = \frac{1}{2}\operatorname{erfc}\left(\sqrt{\frac{E_b}{2N_o}}\right)$$

onde E_b é a energia média do ASK e assim usando a equação (54) da apostila anterior e a equação da energia de $s_1(t)$, equação (4), tem-se:

$$E_b = \frac{1}{2}(0) + \frac{1}{2}(E_1) = \frac{E_1}{2}$$

Na Figura 5a e 5b ilustram-se as densidades espectrais de potência das sequências binárias NRZ unipolar (banda base) e ASK (banda passante), respectivamente. Observa-se que usando a definição de largura de faixa, B_{L_1} correspondendo ao 1° nulo tem-se:

$$B_{L} = \begin{cases} R_{b} = \frac{1}{T_{b}} & \text{Hz para NRZ} \\ 2R_{b} = \frac{2}{T_{b}} & \text{Hz para ASK} \end{cases}$$

A eficiência de largura de faixa da modulação ASK, usando a equação (1) e a equação (13) resulta:

$$\rho_{ASK} = \frac{R_b}{B_L} = \frac{R_b}{2R_b} = \frac{1}{2} \text{ bits/s/Hz}$$

Figura 5 Densidade espectral de potência (a).PSD NRZ, (b).PSD ASK,(c).PSD PSK, (d).PSD FSK

Binário PSK coerente.

Semelhantemente, supondo coerência da fase da portadora recebida, isto é, a fase da portadora local está síncrona com a portadora recebida e como o sinal modulado PSK é especificado pela Tabela 1 e o sinal na saída do filtro casado y(t), na ausência de ruído e nos instantes kT_b , resulta em:

$$y(kT_b) = \begin{cases} E_1 & \text{quando } s_1(t) \text{ foi transmitido} \\ -E_1 & \text{quando } s_2(t) \text{ foi transmitido} \end{cases}$$

onde $E_2 = E_1$.

Comparando este resultado com o obtido quando se usa comunicação banda base e pulso NRZ polar observa-se que eles são idênticos e então tem- se a mesma BER, equação (47), que é reproduzida novamente:

$$P_e = Q\left(\sqrt{\frac{2E_b}{N_o}}\right) = \frac{1}{2}\operatorname{erfc}\left(\sqrt{\frac{E_b}{N_o}}\right)$$

onde E_b é a energia média do PSK e assim usando a equação (46) da apostila anterior e a como a energia de $s_1(t)$ e $s_2(t)$ são iguais, tem-se:

$$E_b = \frac{1}{2}(E_1) + \frac{1}{2}(E_2) = E_1$$
 17

Na Figura 5c ilustra-se a densidade espectral de potência da binária PSK (banda passante). Observa-se que a largura de faixa, B_L , é a mesma que a do ASK e que não existe nenhuma componente impulsiva na freqüência da portadora f_1 .

A eficiência de largura de faixa da modulação PSK é a mesma da modulação ASK , equação (14).

Binário FSK coerente.

Neste caso o sinal modulado FSK, dado pela Tabela 1 é reproduzido abaixo:

$$s(t) = \begin{cases} A\cos\left[2\pi (f_0 - f_d)t\right] = A\cos\left[2\pi f_1 t\right] & \text{quando} \quad s_1(t) & \text{\'e transmitido.} \\ A\cos\left[2\pi (f_0 + f_d)t\right] = A\cos\left[2\pi f_2 t\right] & \text{quando} \quad s_1(t) & \text{\'e transmitido.} \end{cases}$$
18

onde f_1 e f_2 são as portadoras chaveadas, f_0 é o valor médio entre elas e $2f_d$ é o espaçamento entre elas. É necessário que o espaçamento entre elas seja escolhido para que elas sejam ortogonais no seguinte sentido:

$$\int_{0}^{T_{b}} \cos(2\pi f_{1} t) \cos(2\pi f_{2} t) dt = 0$$
19

Observa-se que o espaçamento entre as frequência, $\Delta f = f_2 - f_1$, para se ter a ortogonalidade é $\Delta f = m/T_b$, onde m é um número inteiro e o espaçamento mínimo é $\Delta f = 1/T_b = R_b$

Isto é feito pois a demodulação do FSK necessita de dois filtros casados, um para cada freqüência, assim, quando um dos sinais estiver presente, a saída de um filtro não sofre interferência do outro sinal.

Semelhantemente, supondo coerência da fase das duas portadoras recebidas, e como o sinal modulado PSK é especificado pela Tabela 1 e o sinal na saída de cada um dos filtros casados y(t), na ausência de ruído e nos instantes kT_b , resulta em:

$$y_i(kT_b) = \begin{cases} E_i & \text{quando } s_i(t) \text{ foi transmitido} \\ 0 & \text{quando } s_i(t) \text{ não foi transmitido} \end{cases}$$

onde i = 1 ou 2 correspondendo às energias dos dois sinais, tal que $E_1 = E_2$ e neste caso a energia média $E_b = E_1$.

Como os dois sinais são ortogonais, os sinais de cada um dos filtros podem ser visto como recebidos em dois eixos ortogonais, como mostra a Fig. 6.

Figura 6 Limiar FSK

Para se decidir qual símbolo foi transmitido, o plano mostrado na Figura 6 foi dividido em duas regiões 1 e 2, separado pela reta tracejada. As saídas dos dois filtros casados, $y_1(kT)$ e $y_2(kT)$, corresponde a um ponto nesse plano, assim se o ponto estiver na região 1, o símbolo "0" foi transmitido e no caso contrário o símbolo "1" foi transmitido. Esta maneira de decisão pode ser simplificada, transformando-se o problema para uma dimensão, definindo-se a diferença entre as duas saídas, como mostra a equação:

$$y(kT_b) = y_1(kT_b) - y_2(kT_b)$$
 21

A equação (20) corresponde a variável aleatória gaussiana y(kT) é resultante da diferença das duas variáveis aleatórias $y_1(kT)$ e $y_2(kT)$, também gaussianas. Estas variáveis serão denotadas por y, y_1 e y_2 , respectivamente.

A média de *y* depende de qual símbolo foi transmitido. Assim, têm-se as médias condicionais para cada símbolo transmitido:

$$E[y|1] = E[y_1|1] - E[y_2|1] = E - 0 = E \quad \text{quando 1 foi transmitido}$$

$$E[y|0] = E[y_1|0] - E[y_2|0] = 0 - E = -E \quad \text{quando 1 foi transmitido}$$
22

onde $E_b = E_1 = E_2$.

O limiar de decisão que minimiza a probabilidade de erro é zero e a decisão passa a ter a seguinte regra:

Decide 1 se
$$y > 0$$

Decide 0 se $y < 0$ 23

A variância da variável aleatória y é independente do símbolo transmitido e como as variáveis aleatórias y_1 e y_2 são estatisticamente independentes suas variância se somam:

$$\operatorname{var}[y] = \operatorname{var}[y_1] + \operatorname{var}[y_2] = \frac{N_0}{2} E_1 + \frac{N_0}{2} E_2 = N_0 E_b$$
 24

As densidades de probabilidades condicionadas aos símbolos transmitidos resultam:

$$f_Y(y|0) = \frac{1}{\sqrt{2\pi N_0 E_b}} e^{-\frac{\left(\frac{(y+E_b)^2}{2N_0 E_b}\right)}{2N_0 E_b}}$$
 quando 0 foi transmitido

$$f_Y(y|1) = \frac{1}{\sqrt{2\pi N_0 E}} e^{-\frac{\left(\frac{(y-E_b)^2}{2N_0 E_b}\right)}{2N_0 E_b}} \text{ quando 1 foi transmitido}$$

A probabilidade de erro média é obtida pelo mesmo procedimento visto anteriormente, isto é, BER = $P_e = P_{10} = P_{01}$, e escolhendo P_{10} tem-se:

$$P_{e} = \int_{0}^{\infty} \frac{1}{\sqrt{2\pi N_{0} E_{b}}} e^{-\frac{\left(\frac{(y+E_{b})^{2}}{2 N_{0} E_{b}}\right)^{2}}{2 N_{0} E_{b}}} dy = \frac{1}{\sqrt{2\pi}} \int_{E_{b}/\sqrt{N_{0} E_{b}}}^{\infty} e^{-\frac{u^{2}}{2}} du = Q\left(\frac{E_{b}}{\sqrt{N_{0} E_{b}}}\right) = Q\left(\sqrt{\frac{E_{b}}{N_{0}}}\right)$$
 27

Expressando a probabilidade em termos da função erfc tem-se:

$$P_e = Q\left(\sqrt{\frac{E_b}{N_o}}\right) = \frac{1}{2}\operatorname{erfc}\left(\sqrt{\frac{E_b}{2N_o}}\right)$$
 28

Verifica-se que a BER da modulação FSK é igual a do ASK equação (16).

Na Fig.5d ilustra-se a densidade espectral de potência da binária FSK (banda passante). Observa-se que a largura de faixa, B_L , é dada por:

$$B_L = (f_2 - f_1) + 2R_b 29$$

A eficiência de largura de faixa da modulação FSK, usando a equação (1) e supondo o espaçamento mínimo entre as frequências, que é dado por $\Delta f = 1/T_b = R_b$, resulta:

$$\rho_{ASK} = \frac{R_b}{B} = \frac{R_b}{(f_2 - f_1) + 2R_b} = \frac{1}{3} \text{ bits/s/Hz}$$

Observando a equação (14), verifica-se que a eficiência de largura de faixa da modulação FSK é menor que a das modulações anteriores.

Binário FSK não coerente.

Neste caso o sinal modulado FSK, dado pela Tabela 1 é reproduzido abaixo:

$$s(t) = \begin{cases} A\cos\left[2\pi (f_0 - f_d)t\right] = A\cos\left[2\pi f_1 t\right] & \text{quando} \quad s_1(t) \text{ \'e transmitido.} \\ A\cos\left[2\pi (f_0 + f_d)t\right] = A\cos\left[2\pi f_2 t\right] & \text{quando} \quad s_1(t) \text{ \'e transmitido.} \end{cases}$$
31

onde o espaçamento entre elas é tal que elas são ortogonais de acordo com a equação (19). Supondo que o sinal recebido tenha um atraso τ resultando:

$$r(t) = s(t - \tau) = \begin{cases} A\cos[2\pi f_1(t - \tau)] = A\cos[2\pi f_1 t - 2\pi f_1 \tau] = A\cos[2\pi f_1 t + \theta_1] \\ A\cos[2\pi f_2(t - \tau)] = A\cos[2\pi f_2 t - 2\pi f_2 \tau] = A\cos[2\pi f_1 t + \theta_2] \end{cases}$$
32

A demodulação não coerente do FSK necessita de dois filtros casados para cada freqüência, como mostrado na Figura 7.

Pode-se mostrar (Haykin) que a BER resultante do receptor não coerente, é dada por:

$$P_e = \frac{1}{2} \exp\left(-\frac{E_b}{2N_o}\right)$$
 33

Figura 7 Demodulador FSK não coerente

- (a) Receptor em quadratura usando filtro casado
- (b) Receptor em quadratura usando correlator
- (c) Receptor em quadratura usando filtro casado e detector de envoltória