Planar Maximal Covering with Ellipses

Danilo F. Tedeschi Orientadora: Dra. Marina Andretta

Instituto de Ciências Matemáticas e Computação

May 2, 2019

Agradecimentos à CAPES.

Contents

- Introduction
- 2 Preliminaries
- Maximal Covering by Disks
 - Maximum Weight Clique Problem
- Maximal Covering by Ellipses
- 5 Future Work

Introduction

- Covering problems
 - Minimum Cover Problem
 - Maximal Covering Problem (Church and Velle 1974)
- Maximal Covering Location Problem (MCLP)
- Planar Maximal Covering Location Problem (PMCLP)
 - One disk: $\mathcal{O}(n^2)$ and $\mathcal{O}(n^2 \log n)$ algorithms
 - m disks: $\mathcal{O}(n^{2m-1} \log n)$ algorithm
- Goals
 - Develop a $\mathcal{O}(n^2 \log n)$ algorithm for the one disk case
 - Adapt it for the m ellipses case creating a $\mathcal{O}(n^{2m})$ algorithm

Figure: Maximal cover by two disks.

Figure: Minimum number of disks needed to cover the set of points.

Maximal Covering by Disks

One disk

 $MCD(\mathscr{P},1)$ is the problem of placing one disk on the plane to cover a subset of a demand set \mathscr{P} maximizing the weights of the covered points.

$$\max_{q} w(\mathscr{P} \cap D(q)),$$

- $\mathscr{P} = \{p_1, \dots, p_n\}$ is the demand set with weights $w(p_i) > 0$
- w(A), $A \subset \mathcal{P}$, is the sum of weights of the points in A
- D(q) is a unit disk with center at point q
- (M. Chazelle and Lee 1986) proposed a $\mathcal{O}(n^2)$ algorithm
- (Drezner 1981) proposed a $\mathcal{O}(n^2 \log n)$ which our work is based on
- We will introduce an equivalent problem...

Let $\mathcal{D} = \{D_1, \dots, D_n\}$ be a set of n unit disks with weights $w_i > 0$. The maximum weight clique is defined as

$$\max_{q} \sum_{D_k \cap q \neq \emptyset} w_k,$$

- The disks are fixed with centers at $\mathscr{P} = \{p_1, \dots, p_n\}$ with $w_k = w(p_k)$
- A clique is a non-empty intersection area of a subset of disks. We search for only a point in an optimal clique.
- An optimal solution for the maximum weight clique is an optimal solution for $MCD(\mathcal{P}, 1)$.

Equivalence

Figure: An instance of the Maximum Weight Clique Problem obtained from an instance of $MCD(\mathcal{P},1)$.

Equivalence

Figure: An instance of the Maximum Weight Clique Problem obtained from an instance of $MCD(\mathcal{P}, 1)$. In gray, the optimal solution.

Algorithm

Defining $\Gamma_+(i,j)$ and $\Gamma_-(i,j)$:

Let D_i and D_j be two unit disks that intersect at two points.

- Assume D_i is at the origin
- We can find the polar angle of the intersection points. Let's call them $\Gamma_+(i,j)$ and $\Gamma_-(i,j)$ with the following condition:
 - The arc defined by $\Gamma_+(i,j)$ and $\Gamma_-(i,j)$ bounds the region $D_i \cap D_j$
- Later it will be shown how to find which one is which algorithmically.

Algorithm

Figure: Three disks and their intersection points and angles.

Algorithm

For a disk D_i , a counter-clockwise traversal visits every $\Gamma_+(i,j)$ and $\Gamma_-(i,j)$ in counter-clockwise order.

- An intersection region of disks is bounded by arcs.
- The arc $\Gamma_+(i,j)$, $\Gamma_-(i,j)$ (counter-clockwise) determines a region where i and j intersect.
- In a counter-clockwise traversal, the arcs where $\Gamma_+(i,j) > \Gamma_-(i,j)$ can be a problem for the implementation. The traversal is on a circle, where to start?
- If the traversal reaches a opening angle, we mark the intersecting disk as active. If it reaches a closing angle we unmark it.
- We want to find a point in the traversal with the most active disks.

Algorithm

For every disk, traverse the sorted list of intersection angles twice, keeping a set of active disks, and the current best solution.

Doing the traversal twice solves the problem of deciding where to start.

Figure: The intersections list of a disk with three other disks.

Algorithm

Figure: A traversal for D_1 with green disks representing the active set and red signs representing the current angle being visited (some are omitted).

Algorithm

Figure: A traversal for D_1 with green disks representing the active set and red signs representing the current angle being visited (some are omitted).

Algorithm

Figure: A traversal for D_1 with green disks representing the active set and red signs representing the current angle being visited (some are omitted).

Algorithm

Figure: A traversal for D_1 with green disks representing the active set and red signs representing the current angle being visited (some are omitted).

Algorithm

Figure: A traversal for D_1 with green disks representing the active set and red signs representing the current angle being visited (some are omitted).

Algorithm

Figure: A traversal for D_1 with green disks representing the active set and red signs representing the current angle being visited (some are omitted).

Algorithm

Figure: A traversal for D_1 with green disks representing the active set and red signs representing the current angle being visited (some are omitted).

Algorithm

Figure: A traversal for D_1 with green disks representing the active set and red signs representing the current angle being visited (some are omitted).

Algorithm

The run-time complexity of the algorithm is $\mathcal{O}(n^2 \log n)$.

- There are $\mathcal{O}(n^2)$ intersections among n disks
- Sorting takes $\mathcal{O}(n^2 \log n)$
- The traversal takes $\mathcal{O}(n)$ for every disk.
- It can be implemented in K log n where K is the number of intersections.

Maximum Covering by Disks Multiple disks

Works found in the literature:

- In (Berg, Cabello, and Har-Peled 2006) a $\mathcal{O}(n^{2m-1})$ algorithm was proposed. Also a (1ϵ) -approximation that runs in $\mathcal{O}(n \log n)$ was introduced.
- In (HE et al. 2015) a heuristic method using an algorithm called mean-shift was developed. The mean-shift algorithm converges to a local density maxima of any probability distribution and it is used to find a smaller candidate list of centers for the disks.

Because of the similarities, we will discuss only the multiple ellipses algorithm later.

Ellipses

Ellipse

Given a center $c \in \mathbb{R}^2$ and $Q \in \mathbb{R}^{2 \times 2}$, an ellipse is the set of points that satisfy

$$||u-c||_Q^2 = (u-c)^T Q(u-c) = 1,$$

with \leq representing the set of covered points

Axis-parallel ellipse

Any 2 by 2 diagonal d.p. matrix determines an axis-parallel ellipse, which can also be described by

$$\frac{(x-c_x)^2}{a^2} + \frac{(y-c_y)^2}{b^2} = 1,$$

where (a, b) are the shape parameters and $c = (c_x, c_y)$ is the center.

Ellipses

Figure: The ellipse seen as just a linear transformation of a circle.

One ellipse

Let $MCE(\mathcal{P}, a, b)$ be an instance of the maximal covering by one ellipse, with E being an ellipse with shape parameters $(a, b) \in \mathbb{R}^2_{>0}$, an optimal solution of $MCE(\mathcal{P}, a, b)$ is given by

$$\max_{q} |\mathscr{P} \cap (q)|,$$

- \bullet E(q) is an axis-parallel ellipse with center point q
- Assuming unit weights for now
- Same algorithm for one disk

One ellipse

Figure: Intersection points of E_1 with E_2 and E_3 along with opening and closing angles indicators.

m ellipses

Let $MCE(\mathcal{P},\mathcal{E})$ be an instance of the maximal covering by ellipses, an optimal solution is given by

$$\max_{q_1,\ldots,q_m}\left|\bigcup_{i=1}^m\mathscr{P}\cap E_i(q_i)\right|,$$

- \mathscr{E} is a set of m ellipses
- (Canbolat and Massow 2009) is the very first study on the problem. Slow exact method, a heuristic one was proposed.
- (Andretta, Birgin, and Raydan 2013) proposed a method that breaks the problem into smaller optimization ones. Also, they developed a method for the non-axis-parallel case.

Pre-processing that finds every possible coverage for ellipse E_i

```
1: A \leftarrow \bigcup_{i \in I_i} \{ \Gamma_+(i,j) \cup \Gamma_-(i,j) \}
 2: Z \leftarrow \{\}
 3: for cnt = 1..2 do
       for a \in A do
 4:
           Let p_a be the point that intersects E_i at angle a.
 5:
           if a is a starting angle then
 6:
               Cov \leftarrow Cov \cup \{p_a\}
 7:
          else
 8.
               Cov \leftarrow Cov \setminus \{p_a\}
 9:
           end if
10:
11:
           Z \leftarrow Z \cup \{Cov\}
        end for
12:
13: end for
```

Figure: Optimal solution with two ellipses for a random instance.

- The algorithm for m ellipses tries every possible assignment of coverage for every one of the ellipses
- Run-time complexity of $\mathcal{O}(n^2)^m = \mathcal{O}(n^{2m})$
- Simpler than the m disks algorithm proposed by (Berg, Cabello, and Har-Peled 2006). Achieves a similar complexity ($\mathcal{O}(n^{2m-1})$).
- Small improvements can be made in the pre-processing exhibited earlier in oder to reduce the size of the search space:
 - Non-maximal coverage sets.
 - Ellipses that are too distant do not need to be checked.
- The unit-weight assumption can be easily dropped

Future Work

Primary goals:

- Study the (1ϵ) -approximation method for the planar covering with disks in (Berg, Cabello, and Har-Peled 2006) and develop an adapted version of the algorithm for ellipses with the same time complexity of $\mathcal{O}(n \log n)$.
- Develop an exact method for the version of the problem introduced in (Andretta, Birgin, and Raydan 2013) where the ellipses can be freely rotated.

Future Work

Secondary goals:

- Develop a probabilistic approximation algorithm based on (Aronov and Har-Peled 2008) which proposed a Monte Carlo approximation for the problem of finding the deepest point in a arrangement of regions. The method runs in $\mathcal{O}(n\epsilon^2 \log n)$ and can be applied to solve the case with one ellipse. The case with more than one ellipse is left as a challenge for us for the next steps of our research.
- In (HE et al. 2015), the task of finding every center candidate, after eliminating all the non-essential ones, is done in $\mathcal{O}(n^5)$ run-time complexity. We want to generalize this for the elliptical distance function and achieve a better run-time complexity. We also intend to use the mean-shift algorithm to try to develop a greedy version for the ellipses version.

- Andretta, M., E. G. Birgin, and M. Raydan (2013). "Deterministic and stochastic global optimization techniques for planar covering with elipses problems". In: *European Journal of Operational Research* 22, pp. 23–40.
- Aronov, Boris and Sariel Har-Peled (2008). "On Approximating the Depth and Related Problems". In: SIAM J. Comput. 38.3, pp. 899–921. DOI: 10.1137/060669474. URL: https://doi.org/10.1137/060669474.
- Berg, Mark de, Sergio Cabello, and Sariel Har-Peled (2006). "Covering Many or Few Points with Unit Disks". In: vol. 45, pp. 55–68. DOI: 10.1007/11970125_5.
- Canbolat, M. S. and M. von Massow (2009). "Planar maximal covering with ellipses". In: *Computers and Industrial Engineering* 57, pp. 201–208.

- Church, Richard and Charles R. Velle (1974). "THE MAXIMAL COVERING LOCATION PROBLEM". In: Papers in Regional Science 32.1, pp. 101–118. DOI: 10.1111/j.1435-5597.1974.tb00902.x. eprint:
 - https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1435-5597.1974.tb00902.x.URL:
 - https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1435-5597.1974.tb00902.x.
- Drezner, Zvi (1981). "Note—On a Modified One-Center Model". In: Management Science 27, pp. 848–851. DOI: 10.1287/mnsc.27.7.848.
- HE, Zhou et al. (2015). "A Mean-Shift Algorithm for Large-Scale Planar Maximal Covering Location Problems". In: European Journal of Operational Research 250. DOI: 10.1016/j.ejor.2015.09.006.
- M. Chazelle, B and D Lee (1986). "On a circle placement problem". In: Computing 36, pp. 1–16. DOI: 10.1007/BF02238188.