Serie 3

"Besprechung": Donnerstag, 26.3

- 3.1. Sei $G \subset \mathbb{R}^{d+1}$ ein Gebiet, $f \in C(G; \mathbb{R}^d)$ lokal lipschitzstetig im 2. Argument. Sei $y \in C^1((a,b); \mathbb{R}^d)$ eine Lösung von y' = f(t,y). Zeigen Sie: Falls es eine Folge $(t_n)_{n=0}^{\infty}$ mit $\lim_{n\to\infty}(t_n,y(t_n))=(b,y_b)\in G$ gibt, so kann y über b hinaus fortgesetzt werden, d.h. es gibt ein b'>b und ein $\widetilde{y}\in C^1((a,b'),\mathbb{R}^d)$ mit $\widetilde{y}'=f(t,\widetilde{y})$ auf (a,b') und $y=\widetilde{y}$ auf (a,b). Hinweis: Zeigen Sie $\lim_{t\to b-}y(t)=y_b$ mittels Widerspruch. Betrachten Sie hierzu Folgen $(\tau_n)_n$ mit $t_n\leq \tau_n$ und $\|y(\tau_n)-y_b\|_{\mathbb{R}^d}=\varepsilon>0$ sowie $\|y(t)-y_b\|_{\mathbb{R}^d}\leq \varepsilon$ für $t\in [t_n,\tau_n]$. Verwenden Sie, daß f in einer Umgebung von (b,y_b) beschränkt ist.
- **3.2.** Sei $J \subset \mathbb{R}$ ein Intervall und $f \in C(J \times \mathbb{R}^d; \mathbb{R}^d)$ lokal lipschitzstetig im 2. Argument. Es gelte zusätzlich für ein $\omega \geq 0$

$$(f(t,x),x)_2 \le \omega ||x||_2^2 \qquad \forall (t,x) \in J \times \mathbb{R}^d,$$

wobei $(\cdot,\cdot)_2$ das euklidische Skalarprodukt auf \mathbb{R}^d bezeichnet und $\|\cdot\|_2$ entsprechend die euklidische Norm. Zeigen Sie: Jede Lösung y von y'=f(t,y) existiert bis an den rechten Rand von J. Hinweis: Betrachten Sie die Funktion $t\mapsto v(t):=\|y(t)\|_2^2$ und zeigen Sie $v'(t)\leq 2\omega v(t)$.

3.3. Sei $G \subset \mathbb{R}^2$ ein Gebiet und $J = (a, b) \subset \mathbb{R}$ ein Intervall. Sei $t_0 \in J$. Eine Funktion $y_+ \in C^1(J; \mathbb{R})$ heißt Oberlösung, falls

$$y'_+(t) > f(t, y_+(t)) \qquad \forall t > t_0$$

(entsprechend wird eine *Unterlösung* definiert). Zeigen Sie: Falls $y_+ \in C^1(J; \mathbb{R})$ eine Oberlösung ist und $y \in C^1(J; \mathbb{R})$ eine Lösung der ODE y' = f(t, y) ist, dann gilt: Falls $y(t_0) < y_+(t_0)$, dann gilt $y(t) < y_+(t)$ für alle $t \in (t_0, b)$.

3.4. In der Vorlesung wurde behauptet, daß die Lösung des AWP

$$y' = -2 + \sin \frac{1}{y}$$
 $y(0) = 1$, $G = \mathbb{R} \times \mathbb{R}^+$,

bei $t\approx 0.7$ kollabiert. Zeigen Sie, daß tatsächlich ein Kollaps bei $t^*\leq 1$ eintreten muß. Hinweis: Verwenden Sie $y_+(t)=1-(1-\varepsilon)t$ (für $\varepsilon>0$ beliebig klein) als Oberlösung und überlegen Sie sich damit, daß die anderen Fälle nicht eintreten können.

3.5. Eine skalare ODE ist separabel, falls sie von der Form

$$y' = f(y)g(t)$$

ist. Betrachten Sie das AWP y' = f(y)g(t) mit $y(t_0) = y_0$. Definieren Sie die Stammfunktionen F und G durch die Bedingungen

$$F'(y) = \frac{1}{f(y)}, \qquad G'(t) = g(t).$$

a) Zeigen Sie: Falls f und g stetig (bei y_0 und t_0) sind und $f(y_0) \neq 0$, dann ist das AWP (eindeutig) lösbar. Die Lösung ist charakterisiert durch

$$F(y(t)) - G(t) + c = 0,$$

wobei $c \in \mathbb{R}$ geeignet gewählt ist. Was ist c? Was passiert im Fall $f(y_0) = 0$?

b) Lösen Sie das AWP

$$y' = y^2, \qquad y(0) = y_0$$

c) Lösen Sie das AWP ("logistische ODE")

$$y' = y(1 - y), y(0) = y_0$$

d)
$$y' = (\cos t) \cos^2 y, \quad y(0) = 0$$

Bemerkung: auf der Vorlesungshomepage gibt es ein Extrablatt zum Üben (freiwillig!) mit einer Liste von separablen ODEs (samt Lösungen).