

Crystallography - Structure of metals

Which orders are established?

41680 Introduction to advanced materials

κρυσταλλος

ice

κρυος

icy, frozen

CuSO₄

NaCl

DTU Construct

Department of Civil and Mechanical Engineering

Metal crystals

Nb

Bi

Pd

Crystal structure

- Periodic arrangement of many atoms in 3D
- Regular order on short **and** long ranges
- Crystalline lattice (many unit cells)

Building block: Unit cell

Lattice constant or lattice parameter: Edge length of unit cell

6 DTU Construct, Technical University of Denmark

41680 Intro to advanced materials

Edge length a

F24

Crystalline lattices

DTU Construct

Department of Civil and Mechanical Engineering

Crystal structures 7 crystal systems

Crystal System	Axial Relationships	Interaxial Angles	Unit Cell Geometry
Cubic	a = b = c	$\alpha = \beta = \gamma = 90^{\circ}$	aaa

Hexagonal	$a = b \neq c$	$\alpha = \beta = 90^{\circ}, \gamma = 120^{\circ}$	
Tetragonal	$a = b \neq c$	$\alpha = \beta = \gamma = 90^{\circ}$	c

Rhombohedral (Trigonal)	a = b = c	$\alpha = \beta = \gamma \neq 90^{\circ}$	a/a/
(Tilgettiii)			VaV

DTU Construct, Technical University of Denmark

Crystal structures Relevant Bravais lattices

Cubic lattices – primitive and non-primitive

simple cubic (sc)

face-centered cubic (fcc)

body-centered cubic (bcc)

.680 Intro to advanced materials

F24

Cubic lattices – primitive and non-primitive unit cells

simple cubic (sc)

face-centered cubic (fcc)

body-centered cubic (bcc)

.680 Intro to advanced materials

F24

6 DTU Construct, Technical University of Denmark

41680 Intro to advanced materials

F24

Simple cubic lattice (primitive cubic lattice)

$$APF = \frac{\text{Volume of atoms}}{\text{Volume unit cell}} =$$

- Hard sphere model
- Close-packed direction <100>
- Atomic packing factor

$$\frac{N_{at}\left[\frac{4\pi}{3}R_{at}^{3}\right]}{a^{3}} = \frac{8\frac{1}{8}\left[\frac{4\pi}{3}\left(\frac{a}{2}\right)^{3}\right]}{a^{3}} = \frac{\pi}{6} \approx 0.52$$

• Number of atoms in unit cell

$$N_{at} = 8\frac{1}{8} = 1$$

 Number of nearest neighbors (Coordination number)

6

Wanted Simple cubic lattice

- Atoms in unit cell
 - Coordination number (# nearest neighbors)
- III Ratio between edge length and atomic radius

$$a/R =$$

Atomic packing factor

Closest packed direction

Closest packed planes

{ }

- Close-packed
- DTU Construct, Techn O Not close-packed

Along edges

- o Atoms touch each other
- Atoms do not touch each other
- Distance between centers
- Distance between neighbors

Along face diagonals

- o Atoms touch each other
- Atoms do not touch each other
- Distance between centers
- Distance between neighbors

Along volume diagonals

- o Atoms touch each other
- o Atoms do not touch each other
- Distance between centers
- Distance between neighbors

41680 Intro to advanced materials

F24

Wanted Simple cubic lattice

1

 Coordination number (# nearest neighbors)

III • Ratio between edge length and atomic radius

$$a/R = 2$$

Atomic packing factor

$$APF = \frac{\pi}{6} \approx 0.52$$

- Closest packed direction <100>
- Closest packed planes

Close-packed

Not close-packed

- Along edges
 - X Atoms touch each other
 - Atoms do not touch each other.
 - Distance between centers

а

- Distance between neighbors

Π

Along face diagonals

- o Atoms touch each other
- X Atoms do not touch each other
- Distance between centers

√2*a*

– Distance between neighbors $\sqrt{2}a - 2R$

Along volume diagonals

- o Atoms touch each other
- X Atoms do not touch each other
- Distance between centers

√3a

Cubic lattices - comparison

*	Close- packed direction	Neighbor closest to origin	Atomic dia- meter 2R	Atomic packing factor	Coordination number	Examples
1	<100>	[100] <i>a</i>	а	0.52	6	only α -Po
*	Number of	atoms in un	it cell	Lattice pa	rameter a	
		packed direction 1 <100>	packed closest to origin 1 <100> [100]a	packed closest dia- direction to origin meter 2R	packed direction closest to origin meter 2R packing factor 1 <100> [100]a a 0.52	packed directionclosest to origindia- meter 2Rpacking factornation number1 <100>[100]aa0.526

20 DTU Construct, Technical University of Denmark

41680 Intro to advanced materials

F24

Body-centered cubic lattice

Wanted Body-centered cubic lattice

- Atoms in unit cell
 - Coordination number (# nearest neighbors)
- III Ratio between edge length and atomic radius

$$a/R =$$

Atomic packing factor

• Closest packed direction

Closest packed planes

{	}
---	---

- Close-packed
- 22 DTU Construct, Techn O Not close-packed
- Not close pa

Along edges

- o Atoms touch each other
- o Atoms do not touch each other
- Distance between centers
- Distance between neighbors
- Along face diagonals
 - o Atoms touch each other
 - Atoms do not touch each other
 - Distance between centers
 - Distance between neighbors
- Along volume diagonals
 - o Atoms touch each other
 - o Atoms do not touch each other
 - Distance between centers
 - Distance between neighbors

41680 Intro to advanced materials

F24

Wanted Body-centered cubic lattice

2

- Coordination number (# nearest neighbors)
- 8
- III Ratio between edge length and atomic radius

$$a/R = 4/\sqrt{3}$$

Atomic packing factor

$$APF = 2\frac{4\pi}{3} \left(\frac{\sqrt{3}}{4}\right) = \frac{\pi\sqrt{3}}{8} \approx 0.68$$

- Closest packed direction<111>
- Closest packed planes

Close-packed

DTU Construct, Techn X Not close-packed

- Atoms touch each other
- X Atoms do not touch each other
- Distance between centers

а

- Distance between neighbors

a – 2R

Π

- Along face diagonals
 - o Atoms touch each other
 - X Atoms do not touch each other
 - Distance between centers

√2*a*

- Distance between neighbors $\sqrt{2a-2R}$ Along volume diagonals
 - X Atoms touch each other
 - o Atoms do not touch each other
 - Distance between centers
 - Distance between neighbors

√3a/2 ∩

Face-centered cubic lattice

DTU Construct, Technical University of Denmark

41680 Intro to advanced materials

F24

Wanted Face-centered cubic lattice

III • Ratio between edge length and atomic radius

$$a/R =$$

• Atomic packing factor

• Closest packed direction

Closest packed planes

Close-packed

DTU Construct, Techn O Not close-packed

- Distance between centers
- Distance between neighbors

Along face diagonals

- o Atoms touch each other
- o Atoms do not touch each other
- Distance between centers
- Distance between neighbors

Along volume diagonals

- o Atoms touch each other
- o Atoms do not touch each other
- Distance between centers
- Distance between neighbors

Wanted **Face-centered cubic lattice**

- Atoms in unit cell
- 4

12

- Coordination number (# nearest neighbors)
- Along edges o Atoms touch each other

TT

- X Atoms do not touch each other

Distance between neighbors

- Distance between centers
- а a - 2R

III • Ratio between edge length and atomic radius

$$a/R = 4/\sqrt{2}$$

- Along face diagonals
 - X Atoms touch each other
 - Atoms do not touch each other
 - Distance between centers
- √2*a*/2

- - Distance between neighbors
- Along volume diagonals
 - o Atoms touch each other
 - X Atoms do not touch each other
 - Distance between centers
 - Distance between neighbors $\sqrt{3}a 2$
- Closest packed planes

Closest packed direction

Atomic packing factor

 $APF = 4\frac{4\pi}{3} \left(\frac{\sqrt{2}}{4} \right) = \frac{\pi\sqrt{2}}{6} \approx 0.74$

{111}

<110>

- ★ Close-packed
- DTU Construct, Techn O Not close-packed

41680 Intro to advanced materials

F24

Atomic packing and density

Can the mass density of a material be obtained by dividing the atomic mass be the atomic volume?

$$\rho_{theo} = \frac{m_{at}}{V_{at}}$$

Department of Civil and Mechanical Engineering

Masse density

1. Naïve idea

$$\rho_{theo} = \frac{m_{at}}{V_{at}} = \frac{m_{at}}{\frac{4\pi}{3}R_{at}^3}$$
???

2. Crystalline lattice

$$\rho = \frac{N_{at}m_{at}}{V_{unitcell}} = \frac{N_{at}m_{at}}{a^3}$$

3. Atomic packing factor

$$APF = \rho/\rho_{theo}$$

 $m_{\rm at}$ atomic mass $V_{\rm at}$ atomic volume R_{at} atomic radius N_{at} number of atoms in cell a edge length of unit cell $ho_{ ext{theo}}$ theoretical density ρ mass density in lattice

$$m_{at} = \mu/N_A$$

 μ molar mass N_A Avogadro constant

DTU Construct, Technical University of Denmark

41680 Intro to advanced materials

F24

$$\rho = \rho_{theo} = \frac{m_{at}}{V_{at}} = \frac{m_{at}}{\frac{4\pi}{3}R_{at}^3}$$
???

Mass density = atomic mass / at. volume ???

Crystallographic notation

DTU Construct

Department of Civil and Mechanical Engineering

Crystallographic points – notation n₁n₂n₃

• Point coordinates of atoms (or unit cells)

Atom at origo
$$\vec{r}_0 = 0\vec{a} + 0\vec{b} + 0\vec{c}$$

All other atoms in crystal lattice $\vec{r}_n = n_1 \vec{a} + n_2 \vec{b} + n_3 \vec{c}$

- Translation symmetry
- Unit cell
- n₁, n₂, n₃ integer numbers

Simple (primitive) unit cell: Only one atom in unit cell

$$\vec{r}_0 = 0\vec{a} + 0\vec{b} + 0\vec{c}$$

$$\vec{r}_2 = \frac{1}{2}\vec{a} + \frac{1}{2}\vec{b} + \frac{1}{2}\vec{c}$$

crystal:
$$\vec{r}_n = n_1 \vec{a} + n_2 \vec{b} + n_3 \vec{c}$$

- basis: $\vec{r}_j = x_j \vec{a} + y_j \vec{b} + z_j \vec{c}$
- Translation symmetry
- Unit cell
- n Integer

- basis of unit cells
- x,y,z ϵ [0,1] (fractions)

41680 Intro to advanced materials

F24

Crystallographic points - exercise

• Find coordinates of the colored points in a face-centered cubic lattice

• Find length of the vectors

$$\vec{r} = xa\vec{e}_1 + ya\vec{e}_2 + za\vec{e}_3$$
$$|\vec{r}| = \sqrt{x^2 + y^2 + z^2}a$$

Crystallographic directions - notation [uvw]

Recipe for crystallographic direction [uvw]

- 1. Choose origin, typically lower left corner in the back of unit cell. This becomes 000.
- 2. Draw vector from origin to lattice point as end point in the desired direction.
- 3. Find the three components of the vector along the three axes of the unit cell (length determined as multiples or fractions of the lattice constants).
- 4. Re-calculate the resulting components to obtain integers (by multiplication with appropriate numbers).
- 5. The three integers (indices uvw) are written without separation within square brackets [uvw].

37 DTU Construct, Technical University of Denmark

41680 Intro to advanced materials

F24

Recipe for crystallographic direction [uvw]

- 1. Choose origin, typically lower left corner in the back of unit cell. This becomes 000.
- 2. Draw vector from origin to lattice point as end point in the desired direction.
- 3. Find the three components of the vector along the three axes of the unit cell (length determined as multiples or fractions of the lattice constants).
- 4. Re-calculate the resulting components to obtain integers (by multiplication with appropriate numbers).
- 5. The three integers (indices uvw) are written without separation within square brackets [uvw].
- 6. If one of the indices becomes negative, it is indicated by a bar on top of it, e.g. $[u\overline{v}w]$.
- 7. If one of the indices is 10 or above, it is separated by a dot from the next [10.12].
- 8. If not the specific direction, but all crystallographic equivalents are meant, angle brackets are used (uvw).

Recipe for crystallographic plane (hkl)

- 1. Origo must not be on plane may require to move origo.
- 2. Find intersections of plane with axis of unit cell.
- 3. If plane does not intersect an axis (because both are parallel), this is accounted as infinity (∞) .
- 4. Determine intersection as fractions or multiples of the lattice constants taking into account the sign (+ or -)

	h	k	I
Intersection	x-axis 1/2	y-axis -1	z-axis infinity

5. Use the reciprocal value (1/x)

	` '	,	
Reciprocal	2	-1	0

- 6. Re-calculate the resulting components to obtain integers (by multiplication with appropriate numbers).
- 7. Denote indices hkl with round brackets (hkl), e.g. $(2\overline{10})$
- 8. If necessary, move origo to avoid too many minuses.
- 9. If all crystallographic equivalent planes are meant, curly brackets are used {hkl}.

Exercise

Help: http://www.doitpoms.ac.uk/tlplib/miller_indices/index.php

Exercise

A	Х	У	Z
Intersection	1/2	-1/2	∞
Reciprocal value	2	-2	0
Reduction	1	-1	0
	\rightarrow	$(1\overline{1}0)$	

В	Х	У	Z
Intersection	1	1/2	1/2
Reciprocal value	1	2	2
Reduction	not re	equired	
	\rightarrow	(122)	

44 DTU Construct, Technical University of Denmark

41680 Intro to advanced materials

DTU

Crystallographic directions [uvw] og planes (hkl) in a crystal

[xyz] \perp (xyz) only for cubic lattices

Crystallographically equivalent directions and crystallographically equivalent planes

• Simple cubic lattice

- A specific direction [uvw] [square brackets]
- All crystallographically equivalent directions (uvw) (angle brackets)
- A specific plane (hkl) (round brackets)
- All crystallographically equivalent planes {hkl} {curly brackets}

47 DTU Construct, Technical University of Denmark

41680 Intro to advanced materials

F24

Simple cubic lattice

• Hard sphere model

• Crystallographic planes

DTU Construct, Technical University of Denmark

(100)

(110)

Closest packed planes vs. close-packed planes

(100)

(110)

(111)

- (100) is the closest packed plane, in other planes the atoms do not touch each other
- But {100} are not close-packed planes, where atoms touch along three directions

ng
41680 Intro to adv. F24

DTU Construct, Technical University of Denmark

Group exercises

Non-primitive cubic lattices

• Body-centered cubic • Face-centered cubic

41680 Intro to advanced materials

F24

Planes in cubic lattice

• Face centered fcc

• Body centered bcc

(110)

(111)

Cubic lattices - comparison

	*	Close- packed direction	Neighbor closest to origin	Atomic dia- meter 2R	Atomic packing factor	Coordi- nation number	Examples
SC	1	<100>	[100] <i>a</i>	а	0.52	6	only α -Po
bcc	2	<111>	[111] <i>a</i> /2	$\sqrt{3}a/2$	0.68	8	Cr, W, V, Ta, α -Fe
fcc	4	<110>	[110] <i>a</i> /2	$\sqrt{2}a/2$	0.74	12	Al, Cu, Ag, Au, Ni, γ- Fe

* Number of atoms in unit cell

Lattice parameter a

Random close-packed spheres	0.64
Ordered close-nacked spheres	0.74

Only fcc is close-packed!

DTU Construct, Technical University of Denmark

41680 Intro to advanced materials

F24

$$\rho \neq \rho_{theo} = \frac{m_{at}}{V_{at}} = \frac{m_{at}}{\frac{4\pi}{3}R_{at}^3} !!!$$
 Mass density \neq atomic mass / at. volume !!!

Elements – crystal structures

Н																	He
Li hcp	Ве												C cub	N	0	F	Ne
Na hcp	Mg												Si	Р	S	Cl	Ar
K	Ca bcc	Sc fcc	Ti bcc	V	Cr	Mn	Fe fcc	Co fcc	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr bcc	Y bcc	Zr bcc	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn ttg	Sb	Те	I	Xe
Cs	Ва	L	Hf bcc	Та	W	Re	Os	Ir	Pt	Au	Hg	TI bcc	Pb	Bi	Ро	At	Rn
Fr	Ra	Α	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Мс	Lv	Ts	Og
		L	La fcc	Ce fcc	Pr bcc	Nd bcc	Pm bcc	Sm hcp	Eu	Gd bcc	Tb bcc	Dy bcc	Но	Er	Tm	Yb bcc	Lu
		Α	Ac	Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	Cubic primitive						Face-centered cubic						Diamond (cubic)				
	Bod	y-ce	ntere	ed cu	bic		Hexagonal						Nonmetals				