Tabela Denavit-Hartenberg

Tabela Denavit-Hartenberg

Tabela Denavit-Hartenberg

i	θ	d	а	α
1	θ1*	D ₁	0	-90°
2	Θ2*	0	D ₂	-90°
3	0	D ₃ *	0	0

Matriz Homogênea

 ${}^{1}\mathbf{A}_{0} = \text{Rot}(z,\theta_{1})\text{Trans}(z,D_{1})\text{Trans}(x,0)\text{Rot}(x,-90^{\circ})$

$${}^{\mathbf{1}}\mathbf{A}_{0} = \begin{pmatrix} C\theta_{1} & 0 & -S\theta_{1} & 0 \\ S\theta_{1} & 0 & C\theta_{1} & 0 \\ 0 & 1 & 0 & D_{1} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Matriz Homogênea

²A₁ = Rot(z, θ_2)Trans(z,0)Trans(x, D₂)Rot(x, -90°)

$${}^{2}\mathbf{A}_{1} = \begin{pmatrix} C\theta_{2} & 0 & -S\theta_{1} & D_{2}C\theta_{2} \\ S\theta_{2} & 0 & C\theta_{1} & D_{2}S\theta_{2} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Matriz Homogênea

 ${}^{3}\mathbf{A}_{2} = \text{Rot}(z,0)\text{Trans}(z, D_{3})\text{Trans}(x, 0)\text{Rot}(x, 0)$

$${}^{3}\mathbf{A}_{2} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & D_{3} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$