Applied Linear Algebra in Data Analysis

Tutorial

Sivakumar Balasubramanian

CONTENTS

Ĺ	Concepts in Vector Spaces	2
2	Matrices	4
3	Orthogonality	5
1	Matrix Inverses	6

- 1. Which of the following sets forms a vector space?
 - a) $\{\mathbf{x} \mid x_1, x_2 \in \mathbb{R} \text{ and } a_1x_1 + a_2x_2 = 0\}$, where $a_1, a_2 \in \mathbb{R}$ are fixed constants.
 - b) $\{x \mid x \in \mathbb{R}^n \text{ and } \mathbf{a}^\top x = b\}$, where $\mathbf{a} \in \mathbb{R}^n$ and $\mathbf{b} \in \mathbb{R}$ are fixed constants.
 - c) $\{x \mid x \in \mathbb{R}^n \text{ and } x^\top x = 1\}.$
 - d) $\{(x[0], x[1], x[2], \dots x[N-1]) \mid x[i] \in \mathbb{R}, 0 \le i < N\}.$

(The set of all real-valued time-domain signals of length N. x[i] is the value of the signal at time instant i.)

2. Consider the vector space of polynomials of order n or less.

$$\mathcal{P} = \left\{ \sum_{k=0}^{n} a_k x^k \, \middle| \, a_k \in \mathbb{R} \right\}, \text{ where, } x \in [0, 1]$$

Show that polynomails of order strictly lower than n form subspaces of \mathcal{P} .

3. Is the following function a valid norm of the vector space \mathcal{P} ?

$$\left\|\boldsymbol{p}\left(\boldsymbol{x}\right)\right\| = \sqrt{\sum_{k=0}^{n}\alpha_{k}^{2}},\ \boldsymbol{p} = \sum_{k=0}^{n}\alpha_{k}\boldsymbol{x}^{k} \in \boldsymbol{\mathfrak{P}}$$

4. Consider the following function, which is often called the *zero-norm* of a vector $\mathbf{x} \in \mathbb{R}^n$.

$$\|\mathbf{x}\|_{0} = \sum_{i=1}^{n} \mathbb{I}(x_{i} \neq 0)$$
, where, $\mathbb{I}(A) = \begin{cases} 1 & A \text{ is true.} \\ 0 & A \text{ is false.} \end{cases}$

Is the *zero-norm*, which is often used for quantifying the *sparsity* of a vector, a proper norm?

5. Is the following set of vectors linear independent?

$$\left\{ \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\2\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\-1\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\0\\-1 \end{bmatrix} \right\}$$

What is the span of this set? Does this set form the basis for its span? Does it form an orthonormal basis?

6. Consider the following function,

$$f(\mathbf{x}) = \sum_{i=1}^{n} w_i x_i^2, \ \mathbf{x} \in \mathbb{R}^n$$

Is f a norm? If not, what properties does it lack?

7. Find the norm of the following vectors using the the 1-norm, 2-norm and the ∞ -norm.

a)
$$\mathbf{x} = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}^{\top}$$

b)
$$\mathbf{x} = \begin{bmatrix} 1 & -1 & 0 \end{bmatrix}^{\top}$$

c)
$$e_i$$
, where $1 \leqslant i \leqslant n$

d)
$$\mathbf{o} \in \mathbb{R}^n$$

8. For any given $\mathbf{x} \in \mathbb{R}^n$, show that,

$$\|\mathbf{x}\|_{1} \geqslant \|\mathbf{x}\|_{2} \geqslant \|\mathbf{x}\|_{3} \cdots \geqslant \|\mathbf{x}\|_{\infty}$$

9. Consider the linear function $f : \mathbb{R}^3 \to \mathbb{R}$. We know the output of the function for the following inputs,

$$f\left(\begin{bmatrix}1&1&1\end{bmatrix}^{\top}\right)=-2$$
, $f\left(\begin{bmatrix}-1&2&-1\end{bmatrix}^{\top}\right)=1$, $f\left(\begin{bmatrix}-1&1&2\end{bmatrix}^{\top}\right)=0$

Find an input input $\mathbf{x} \in \mathbb{R}^3$ such that $f(\mathbf{x}) = 0$.

10. Find the presentation of $\mathbf{x} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}^{\mathsf{T}}$ in the following bases.

a)
$$\left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix} \right\}$$

b)
$$\frac{1}{\sqrt{2}} \left\{ \begin{bmatrix} 1\\1 \end{bmatrix}, \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\-1 \end{bmatrix} \right\}$$

c)
$$\left\{ \begin{bmatrix} 2\\1 \end{bmatrix}, \begin{bmatrix} 1\\1 \end{bmatrix} \right\}$$

11. Consider the function $f_i: \mathbb{R}^n \mapsto \mathbb{R}$ that selects the i^{th} element of a given vector $x \in \mathbb{R}^n$.

$$f(\mathbf{x}) = x_i$$
, where $\mathbf{x} = \begin{bmatrix} x_1 & x_2 \cdots & x_n \end{bmatrix}^\top$

Is this function linear? If so, what is the vector \mathbf{w} associated with this function, such that $f(\mathbf{x}) = \mathbf{w}^{\top} \mathbf{x}$?

12. Given a set of real numbers $x_1, x_2, \dots x_n \in \mathbb{R}$ which are used to the n-vector \mathbf{x} . Can you express the mean $\overline{\mathbf{x}}$ and variance $\sigma_{\mathbf{x}}^2$ of this set of data using the the standard inner product in \mathbb{R}^n ? Note the following,

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 $\sigma_x^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2$

MATRICES 2

1. Conisder the following matrices:

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & -1 & 0 \\ 0 & 2 & -2 & 1 \\ -3 & 1 & 1 & 3 \end{bmatrix} \quad \text{and} \quad \mathbf{B} = \begin{bmatrix} 2 & 1 & 1 \\ 1 & -1 & 1 \\ 3 & 2 & 1 \\ 1 & 2 & 1 \end{bmatrix}$$

Find the product of the two matrices C = AB using the four views of matrix muliplication.

If we change $b_{23} = 0$. Can you compute the new matrix **C** without performing the matrix muliplication?

If we increase the value of the elements of the 3rd column of A by 1, how can we compute the new C without performing the matrix multiplication?

If we insert a new row $\mathbf{1}^{\top}$ in **A** after the $\mathbf{2}^{nd}$ row, how can we compute the new C without performing the matrix multiplication?

- 2. Show that the matrix product ABC can be written as a weighted sum of the outer products of the columns of A and rows of C, with the weights coming from the matrix **B**.
- 3. Prove the following for the matrices $A_1, A_2, A_3, \dots A_n$.

$$(\mathbf{A}_1, \mathbf{A}_2 \mathbf{A}_3 \dots \mathbf{A}_n)^\top = \mathbf{A}_n^\top \mathbf{A}_{n-1}^\top \dots \mathbf{A}_2^\top \mathbf{A}_1^\top$$

- 4. **Nilpotent matrices**. Show that a strictly triangular matrix $A \in \mathbb{R}^{n \times n}$, $A^n = 0$.
- 5. Matrix Inversion Lemma. Consider an invertible matrix A. The matrix A+ $\mathbf{u}\mathbf{v}^{\mathsf{T}}$ is invertible if and only if the two vectors $\mathbf{u}, \mathbf{v} \neq \mathbf{o}$, and $\mathbf{v}^{\mathsf{T}}\mathbf{A}^{-1}\mathbf{u} \neq -1$. Then, the inverse is given by,

$$\left(\mathbf{A} + \mathbf{u}\mathbf{v}^{\top}\right)^{-1} = \mathbf{A}^{-1} - \frac{\mathbf{A}^{-1}\mathbf{u}\mathbf{v}^{\top}\mathbf{A}^{-1}}{1 + \mathbf{v}^{\top}\mathbf{A}^{-1}\mathbf{u}}$$

- 6. Prove that $tr(\mathbf{AB}) = tr(\mathbf{BA})$, where $\mathbf{A} \in \mathbb{R}^{n \times d}$ and $\mathbf{B} \in \mathbb{R}^{d \times n}$.
- 7. Effect of matrix operation on matrix rank. Let $\mathbf{A} \in \mathbb{R}^{n \times d}$ and $\mathbf{B} \in \mathbb{R}^{d \times n}$, with ranks a and b respectively. What is the rank of the following matrices?
 - a) A + B
 - b) AB
- 8. Show that the rank $(AB) = \operatorname{rank}(A)$, when **B** is square and full rank.
- 9. Let $A, B \in \mathbb{R}^{n \times n}$, AB is non-singular if and only if both A and B are nonsingular.
- 10. Let **A** is a full rank matrix. Show that the *Gram matrix* of the column space, $\mathbf{A}^{\top}\mathbf{A}$ is invertible.

3 ORTHOGONALITY

- 1. If **A** is an orthogonal matrix, show that $\mathbf{A}^{-1} = \mathbf{A}^{\top}$.
- 2. If P_S is the orthogonal projection matrix onto the subspace S, then what is the corresponding orthogonal projection matrix onto S^{\perp} – the orthogonal comple-
- 3. Let $x,y\in\mathbb{R}^n$. Let $\{u_1,u_2,\dots u_n\}$ be an orthonormal basis for \mathbb{R}^n . Show that the following holds,

$$\mathbf{x}^{\top}\mathbf{y} = \sum_{i=1}^{n} \left(\mathbf{x}^{\top}\mathbf{u_i}\right) \cdot \left(\mathbf{u_i}^{\top}\mathbf{y}\right)$$

- 4. Consider the following set of vectors, $S = \{a_1, a_2, a_3, \dots a_n\}$, where $a_i \in \mathbb{R}^n$. The set S is linearly independent. Find the orthogonal components of a vector $\mathbf{b} \in \mathbb{R}^n$ in the subspace spanned by the sets of vectors $\mathcal{S}_1 = \{\mathbf{a}_i\}_{i=1}^m$ and \mathcal{S}_1^{\perp} .
- 5. Consider the set of $n \times n$ orthogonal matrices,

$$\mathbf{Q} = \left\{ \mathbf{Q} \, \big| \, \mathbf{Q} \in \mathbb{R}^{n \times n} \text{, } \mathbf{Q}^{\top} \mathbf{Q} = \mathbf{Q} \mathbf{Q}^{\top} = \mathbf{I}_n \right\}$$

Is this set a subspace of $\mathbb{R}^{n \times n}$? Show that the set is closed under matrx multiplication.

- 6. Consider the linear map, y = Ax, such that $x, y \in \mathbb{R}^n$ and $A \in \mathbb{R}^{n \times n}$. Let us assume that A is full rank. What conditions must A satisfy for the following statements to be true,
 - a) $\|y\|_2 = \|x\|_2$, for all **x**, **y** such that **y** = **Ax**.
 - b) $y_1^T y_2 = x_1^T x_2$, for all x_1, x_2, y_1, y_2 such that $y_1 = Ax_1$ and $y_2 = Ax_2$.

Note: A linear map A with the aforementioned properties preserves lengths and angle between vectors. Such maps are encountered in rigid body mechanics.

4 MATRIX INVERSES

- 1. Find a left inverse for the matrix $\mathbf{A} = \begin{bmatrix} 1 & 1 \\ -1 & 1 \\ 0 & 1 \end{bmatrix}$. Find the set of all possible left inverses.
- 2. Show that if the product of two square $d \times d$ matrices A and B is the identity matrix I, then BA = I.
- 3. Consider an upper triangular matrix $\mathbf{R} \in \mathbb{R}^{n \times n}$. We are interested in solving the following set of n linear equations,

$$\mathbf{R}\mathbf{x} = \mathbf{e}_{i}$$

 $\mathbf{x} = \begin{bmatrix} x_1 & x_2 & x_3 & \dots & x_n \end{bmatrix}^{\top}$ is the solution to the above equation. Show that $x_{i+1} = x_{i+2} = \dots = x_n = 0$.

Show that the solution to this equation is equal to the \mathfrak{i}^{th} column of the inverse of R.

4. Find the pseudo-inverse of the matrix $\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 1 & 1 \end{bmatrix}$. Show that the matrix

 $\mathbf{A}\mathbf{A}^{\dagger}$ is the orthogonal projection matrix onto the column space of \mathbf{A} .