Review: A Generic Graph Search Algorithm

```
input: G = (V, E), x_I, x_G

AddToQueue(x_I, Queue); // Add x_I to a queue of nodes to be expanded while(!IsEmpty(Queue))

x \leftarrow \text{Front}(Queue); // Retrieve the front of the queue if(x.expanded == true) continue; // Do not expand a node twice x.expanded = true; // Mark x as expanded if(x == x_G) return solution; // Return if goal is reached for each neighbor n_i of x // Add all neighbors of to the queue if(n_i.expanded == false) AddToQueue(n_i, Queue) return failure;
```

Different graph search algorithms (breadth first, depth-first, uniform-cost, ...) differ at the function AddToQueue

To retrieve the actual path, use back pointers

Review: Graph View of Search

Very Important: Manual Execution

Α

В

C

G

6

4

2

0

CS 460/560 Introduction to Computational Robotics Fall 2019, Rutgers University

Lecture 11 Combinatorial Planning: In the Plane

Instructor: Jingjin Yu

Outline

Holonomic robots

Convex shapes, revisited

Combinatorial planning

- ⇒Computing intersection and visibility
- ⇒ Vertical cell decomposition
- ⇒Shortest-path roadmaps
- ⇒ Maximum clearance roadmaps

Holonomic Robots

Formally, a robot is **holonomic** if its constraints are of the form

$$f(x_1, \dots, x_n, t) = 0$$

Important: constraints cannot contain $\dot{x_i}$, $\ddot{x_i}$, and so on

Essentially, a **holonomic robot** has its controllable DOFs (i.e., number of independent directions along which it can move) equal to its configuration space dimension

Examples

- ⇒ Holonomic robot: a vehicle with Mecanum wheels
 - \Rightarrow Configuration space: SE(2), 3 dimensions: x, y, θ
 - ⇒ Such robots can move and rotate at the same time
- ⇒Non-holonomic: a regular car
 - \Rightarrow Configuration space: SE(2), 3 dimensions: x, y, θ
 - ⇒ Can only move along its heading direction: two controllable degrees

For this week, we work with holonomic robots unless otherwise stated

Convex Shapes, Revisited

Recall: in a Euclidean space, a set X is **convex** if given any $x_1, x_2 \in X$, all points on the straight-line segment x_1x_2 belong to X.

For holonomic robots, planning inside a convex shape is easy

- ⇒Why?
- ⇒Simply connect the two points!
- ⇒Not true for general robots (e.g., cars)

It's not as easy in non-convex shapes

Remember: we do not have a "God's view" in computer!

Combinatorial Planning

Recall that the C-space abstraction "shrinks" the robot into a point

With C_{free} computed and the robot shrunk into a point, we can attempt path planning from x_I to x_G

- \Rightarrow Now we are looking for a **simple path** connecting x_I and x_G
- ⇒No need to consider the geometry of the robot anymore!

Challenge: the configuration space may be non-convex

 \Rightarrow So the path is not a straight line in C_{free}

Classical (2D) methods

- ⇒Cell decomposition
- ⇒Shortest-path roadmaps
- ⇒ Maximum clearance roadmaps

Finding Intersection and Checking Visibility

These methods need to **find intersections** and **check visibility**Finding intersection of two line segments

- \Rightarrow Equations: ℓ_1 : $a_1x + b_1y + c_1 = 0$, ℓ_1 : $a_2x + b_2y + c_2 = 0$
- \Rightarrow Two equations, two unknowns x, y, can solve for (x, y)
- \Rightarrow Check whether (x, y) belongs to both ℓ_1 and ℓ_2

Checking visibility is similar

Cell Decomposition Methods

Cell decomposition breaks down C_{free} into simpler pieces that allow graph search to be carried out

Example: vertical cell decomposition

- ⇒Break the free space into **convex** pieces (cells)
- ⇒Build a roadmap (graph) connecting the cells
- \Rightarrow Plug in x_I and x_G and connect to cell centers
- ⇒Search over the roadmap for a path

Many different types of cell decomposition methods

Vertical Cell Decomposition in More Detail

Vertical cell decomposition uses a "vertical sweep-line" for doing the decomposition

- ⇒ Move the sweep-line from left to right
- ⇒For each vertex it touches, extend from the vertex along the line
- ⇒Stop when the line hits other features of the environment
- ⇒Compute the centers and boundary centers and connect them

Vertical Cell Decomposition in More Detail

There are four types of vertices

Vertical Cell Decomposition in More Detail

Algorithm details

- ⇒A simple algorithm
 - \Rightarrow Sort the x coordinates of input points $O(n \log n)$
 - ⇒ Order the points from left to right
 - \Rightarrow For each point, check whether the vertical scan line intersects each line segment of the environment, pick the closest intersection point(s) O(n)
 - \Rightarrow Overall computation time is $O(n^2)$
- ⇒Smarter algorithm
 - \Rightarrow If we take more care to track the line segments in the environment we can cut down the computation time to $O(n \log n)$

The algorithm comes from **plane-sweep** or **line-sweep** algorithms from computational geometry

⇒Can be found in many computational geometry textbooks

Shortest-Path Roadmaps

Vertical cell decomposition is simple but is suboptimal – it does not provide shortest paths connecting x_I and x_G

Shortest-path roadmaps solve the problem (also known as the

reduced visibility graph)

The black structure (including the isolated vertex) is the shortest-path roadmap

Building Shortest-Path Roadmap

Reflex vertices

 \Rightarrow A **reflex vertex** is one where the angle through the vertex in the environment is greater than π \longrightarrow A reflex vertex

Part of the obstacles in the environment

Building the roadmap

- ⇒Add all reflex vertices to the roadmap
- ⇒For two reflex vertices that are visible to each other, add an edge if
 - ⇒ Consecutive reflex vertices on the same obstacle
 - ⇒ The two vertices yield a **bi-tangent**
 - ⇒ But not this types of setup

Search on the Shortest-Path Roadmaps

To search for a path from x_I and x_G on the roadmap

- \Rightarrow Add x_I and x_G to the roadmap
- \Rightarrow Connect x_I to visible roadmap vertices; same for x_G
- \Rightarrow Searching for a shortest path through the connected roadmap containing x_I and x_G

Running Time for Roadmap Building

Naïve algorithm

- \Rightarrow There are O(n) reflex vertices so n^2 pairs to check for bi-tangents
- \Rightarrow For each pair, check whether the pair is visible O(n)
- \Rightarrow This yields an $O(n^3)$ algorithm

Radial sweep algorithm

- \Rightarrow For a reflex vertex, compute all bi-tangents by sweeping from 0 to 2π radially
- \Rightarrow This allows the computation of all bi-tangents from the vertex in $O(n \log n)$ time
- \Rightarrow Total complexity is $O(n^2 \log n)$

Even faster algorithms

 \Rightarrow Output sensitive algorithm $O(n \log n + m)$ where m is the number of edges in the output roadmap

Maximum Clearance Roadmap

The shortest-path roadmap requires robots to go along obstacle boundaries, which can be unsafe

Maximum clearance roadmap does the opposite

⇒Based on the idea of Voronoi diagrams

⇒In a Voronoi diagram, the lines are as far away from all points as possible

Computing the Voronoi Diagram

Voronoi diagram can be computed in the plane in $O(n \log n)$ time using Fortune's algorithm

- ⇒Also a sweep-line algorithm!
- ⇒Maintains a "beach front"

For higher dimensions, Bowyer-Watson computes a Delaunay triangulation which can be turned into a Voronoi diagram

Building Maximum Clearance Roadmap

Instead of vertex-vertex interactions, now with edge interactions

- ⇒Edge-edge
- ⇒Vertex-vertex
- ⇒Vertex-edge

Example

Running Time for Roadmap Building

Naïve algorithm

- \Rightarrow For each pair of features, compute the line as shown above n^2 of these
- \Rightarrow For each pair of these lines, compute their intersections $O(n^4)$

Using a better algorithm, can get the running time to $O(n \log n)$

⇒This can be done by modifying the sweep line algorithm