

李青源 金山云

- 1 【开篇】KSC265发展历程
- 2 【演进】产品演进及全链路方案
- 3 【探索】KSC265遇见AI
- 4 【展望】未来展望

开篇

KSC265发展历程

视频编码标准的发展

十年磨一剑,压缩效率每10年增长约一倍

视频编解码器使用情况

2018年开发者对H.265/HEVC的使用显著增加

H.265视频应用数据情况

金山云视频CDN分发流量,H.265占比超过30%

TOP 10头部客户

金山云-KSC265的发展里程碑

2018-MSU世界编码器大赛成绩

PSNR排名第一, VMAF排名第二

KSC265的编码性能优势

与X264、X265的编码性能对比,快速档优势格外突出

	vs. X2	65	vs. X264		
速度档次	带宽节省	加速	带宽节省	加速	
Ultrafast (超实时或低配直播)	28.7%	185.6%	47.16%	-10.65%	
Veryfast (移动直播)	14.6%	135.3%	45.0%	0.7%	
Slow (转码)	11.5%	56.5%	37.7%	-5.1%	
Veryslow (极致压缩)	16.4%	49.8%	35.6%	84.7%	

KSC265的视频合作客户

演进

产品演进及全链路方案

Codec,需要产品化吗?

如何更好的为客户提供价值?

演进1: 首要解决移动端解码问题

"价值:移动端解码效率和兼容性直接关乎用户体验和规模化应用"

解决之道:深耕解码器优化到极致

更快、鲁棒性更好、耗电量更少

对比OpenHEVC平均提速2.5倍,相同画质与H.264软解复杂度相当

KSC265 in FFmpeg解码 OpenHEVC In FFmpeg解码	iOS (iPad mini2)	Android (VIVO xplay5a)	Intel E5-2690 v3
单线程	2.90倍	2.85倍	2.11倍
满线程	2.69倍	2.99倍	3.89倍

Android播放耗电量	vs. OpenHEVC	vs. H.264软解		
1080p@30fps	节省26%(相同码率)	节省12.5%(相同画质)		
720p@30fps	节省13.3%(相同码率)	增加8.3% (相同画质)		

iOS播放耗电量	vs. OpenHEVC	vs. H.264软解
1080p@30fps	节省26.3%(相同码率)	节省15.2%(相同画质)
720p@30fps	节省37.8%(相同码率)	节省14.8%(相同画质)

解决之道:移动端软硬解自动决策

适配业务场景的解码兼容策略

最准确的移动端机型支持H.265解码能力数据库

人工实测

900款+主流机型

TOP 20主流芯片

30+系统版本

演进2:H.264->H.265智能云转码

"价值:降低客户使用门槛,达到最优的H.265转码效果"

传统云转码使用方式

转码模板

- H.265 or H.264
- 分辨率
- 码率
- 帧率
- 扩展参数...

解决之道:同画质转码

自动备份跟H.264画质相当的H.265视频

原片->H.264->H.265(同画质)

解决之道:智能云转码

自动决策最合适的H.265转码参数

原片->H.265(自动决策)

基于mos/vmaf的码率&分辨率关系模型

演进3:攻克Web解码难题

"价值:Web端流量依旧坚挺,大型游戏直播场景尤为明显"

解决之道:基于WASM的Web解码方案

解决之道:基于WASM的Web解码方案

可支持720P解码,目标:1080P 30fps流畅解码

分辨率	CPU (%)	内存 (MB)	FPS	首屏时间 (ms)
720P*2M*30FPS	41.145.8	287555	30	1279
720P*4M*30FPS	42.744.4	275311	30	1778
720P*2M*60FPS	42.545.8	315.2365.5	42.252.7	1289

1080P极限尝试,存在卡顿和播放慢的现象

极限测试	是否可以播放		
1080P *4M *60fps	卡顿		
1080P *6M *30fps	不卡但是慢		
1080P *2M *60fps	不卡但是慢		
1080P*2M*30fps	是,偶现慢		

(window10 i5 chrome)

Wasm、webGL浏览器支持情况

IE	Edge *	Firefox	Chrome	Safari	iOS Safari *	Opera Mini *	Chrome for Android	UC Browser for Android	Samsung Internet
			49						
			63						
			67		10.3				
		61	68		11.2				4
11	17	62	69	11.1	11.4	all	67	11.8	7.2
	18	63	70	12	12				
		64	71	TP	webGL 91.94%				0.4%
			72				VVE	EDGL 31	.34/0

演进4:进攻OTT,占领电视盒子

"价值:长视频、综艺晚会、体育赛事在OTT端占主导地位"

OTT应用H.265遇到的难题

问题:

- 终端类型繁杂,测试难度大
- 硬解支持率仅不足40%
- 一大波老终端 , 不支持升级
- 软解支持不好,内存小、CPU消耗大

特性:

电视盒子的体验敏感度,用户感知较低

解决之道:动态探测及解码方案

探测服务端H.265测试码流,准确的适配解码策略

演进5:探索VR,极致播放体验

"价值:H.265+FOV,80%的传输码率节省"

全视角与FOV

FOV 为 90 度,则单眼可视信息约为球面信息的 1/8 (90/180*90/360); FOV 为 120度,单眼可视信息约为球面信息的 2/9。

为什么模糊

举例:4K片源

4K指的是全视角分辨率!

单眼90度视场角下分辨率仅为960*960!

PPD,每个角度可见像素数量只有10!(正常视力的用户可分辨的PPD是60)

解决之道:H.265编码,FOV传输

低质量的全视角+高质量的核心视觉区域结合

H.265 高清 码流切片

非视野区域

非视野区域

低质量 全视角

全链路&全终端KSC265解决方案

像拼积木一样灵活搭建适合自己的H.265链路

探索

KSC265遇见AI

KSC265+集智高清

画质更好,码率节省超过50%

图像评价

场景分类

边缘模糊

压缩效应

采集噪声

运动模糊

AI前处理

ROI

去除噪声

图像增强

插帧减帧

视频编码

码率控制

码率分配

自适应量化

展望

未来展望

更极致的体验

- 压缩率再提升10%
- 各终端产品化打磨
- 高分辨率、高码率

更广阔的场景

Thank you

