Modelowanie matematyczne

programowanie liniowe i całkowitoliczbowe

Wykład 1

Konstanty Junosza-Szaniawski Armin Fügenschuh Paweł Rzążewski Joanna Sokół Krzysztof Węsek

Informacje

Zaliczenie - ostatnie laboratorium punktowane (25 pkt) + dokumentacja powykonawcza (25pkt)

Oprogramowanie - ZIBopt Solver Suite: ZIMPL + SCIP http://scip.zib.de/

Literatura - H. Paul Williams, Model building in mathematical programming

• W wielu sytuacjach używamy modeli.

- W wielu sytuacjach używamy modeli.
- Jako model rozumiemy obiekt który ma imitować jakiś inny obiekt np.:

• Niektóre modele są fizyczne...

• Niektóre modele są fizyczne...

• A inne abstrakcyjne...

 Model abstrakcyjny nazywamy matematycznym, jeśli własności modelowanego obiektu są określone przez zależności algebraiczne, funkcje, relacje.

- Model abstrakcyjny nazywamy matematycznym, jeśli własności modelowanego obiektu są określone przez zależności algebraiczne, funkcje, relacje.
- Przykład: Gaz płynący rurociągiem.

- Istotą matematycznego modelu jest użycie:
 - równości
 - nierówności
 - logicznych zależności

- Istotą matematycznego modelu jest użycie:
 - równości
 - nierówności
 - logicznych zależności

- Matematyczne zależności odzwierciedlają zależności pochodzące z świata rzeczywistego.
 - prawa fizyki
 - wymagania techniczne
 - ograniczenia rynkowe

"I'm warning you, Perkins - your flagrant disregard for the laws of physics will not be tolerated!"

 Proces budowania modelu, tworzonego przez grupę ludzi, pozwala lepiej zrozumieć modelowane zjawisko.

- Proces budowania modelu, tworzonego przez grupę ludzi, pozwala lepiej zrozumieć modelowane zjawisko.
- Rozwiązanie modelu może przynieść zaskakujące, których nie otrzymalibyśmy w inny sposób.

- Proces budowania modelu, tworzonego przez grupę ludzi, pozwala lepiej zrozumieć modelowane zjawisko.
- Rozwiązanie modelu może przynieść zaskakujące, których nie otrzymalibyśmy w inny sposób.

 Model pozwala na przeprowadzenie eksperymentów, które w świecie rzeczywistym są bardziej kosztowne lub w ogóle niemożliwe.

• Model powinien w miarę możliwości być jak najbardziej niezależny od danych.

- Model powinien w miarę możliwości być jak najbardziej niezależny od danych.
- Dzięki temu może być wykorzystany dla różnych danych.
 - zmiana kosztów
 - zmiana współczynników technologicznych
 - zmiana ilości dostępnych surowców

- Model powinien w miarę możliwości być jak najbardziej niezależny od danych.
- Dzięki temu może być wykorzystany dla różnych danych.
 - zmiana kosztów
 - zmiana współczynników technologicznych
 - zmiana ilości dostępnych surowców

Przykład: Model najkrótszej ścieżki – Warszawa i Berlin

- Jest wiele standardowych modeli takich jak
 - przepływ w sieci
 - najkrótszej ścieżki
 - kolorowania grafu
 - drzewa rozpinającego

- Jest wiele standardowych modeli takich jak
 - przepływ w sieci
 - najkrótszej ścieżki
 - kolorowania grafu
 - drzewa rozpinającego
- Mogą one być używane w wielu rzeczywistych sytuacjach.

- Jest wiele standardowych modeli takich jak
 - przepływ w sieci
 - najkrótszej ścieżki
 - kolorowania grafu
 - drzewa rozpinającego
- Mogą one być używane w wielu rzeczywistych sytuacjach.
- Dla typowych modeli znanych jest wiele specjalistycznych algorytmów, które rozwiązują je w sposób efektywny.

- Jest wiele standardowych modeli takich jak
 - przepływ w sieci
 - najkrótszej ścieżki
 - kolorowania grafu
 - drzewa rozpinającego
- Mogą one być używane w wielu rzeczywistych sytuacjach.
- Dla typowych modeli znanych jest wiele specjalistycznych algorytmów, które rozwiązują je w sposób efektywny.
- Jednak ich zastosowanie jest ograniczone i wystarczy niewielka zmiana założeń, a przestają pasować do naszego modelu.

- Jest wiele standardowych modeli takich jak
 - przepływ w sieci
 - najkrótszej ścieżki
 - kolorowania grafu
 - drzewa rozpinającego
- Mogą one być używane w wielu rzeczywistych sytuacjach.
- Dla typowych modeli znanych jest wiele specjalistycznych algorytmów, które rozwiązują je w sposób efektywny.
- Jednak ich zastosowanie jest ograniczone i wystarczy niewielka zmiana założeń, a przestają pasować do naszego modelu.
- Wtedy należy używać ogólnych metod modelowania.

- Jest wiele standardowych modeli takich jak
 - przepływ w sieci
 - najkrótszej ścieżki
 - kolorowania grafu
 - drzewa rozpinającego
- Mogą one być używane w wielu rzeczywistych sytuacjach.
- Dla typowych modeli znanych jest wiele specjalistycznych algorytmów, które rozwiązują je w sposób efektywny.
- Jednak ich zastosowanie jest ograniczone i wystarczy niewielka zmiana założeń, a przestają pasować do naszego modelu.
- Wtedy należy używać ogólnych metod modelowania.
- Wiele sytuacji można zamodelować na więcej niż jeden sposób.

- Jest wiele standardowych modeli takich jak
 - przepływ w sieci
 - najkrótszej ścieżki
 - kolorowania grafu
 - drzewa rozpinającego
- Mogą one być używane w wielu rzeczywistych sytuacjach.
- Dla typowych modeli znanych jest wiele specjalistycznych algorytmów, które rozwiązują je w sposób efektywny.
- Jednak ich zastosowanie jest ograniczone i wystarczy niewielka zmiana założeń, a przestają pasować do naszego modelu.
- Wtedy należy używać ogólnych metod modelowania.
- Wiele sytuacji można zamodelować na więcej niż jeden sposób.
- Korzystanie z więcej niż jednego modelu może być cenne:
 - jeśli dają różne rozwiązania, różnice mogą wiele wnieść w zrozumienie problemu.
 - jeśli dają podobne rozwiązania, są bardziej wiarygodne, w kolejnych zastosowaniach można wykorzystywać już tylko jeden model – ten, którego rozwiązania znajduje się szybciej.

 Modelowanie często jest koniecznością, np. gdy rozmiar problemu nie pozwala na rozwiązanie go wprost.

- Modelowanie często jest koniecznością, np. gdy rozmiar problemu nie pozwala na rozwiązanie go wprost.
- Modelowanie często spotyka sie z krytyką.

- Modelowanie często jest koniecznością, np. gdy rozmiar problemu nie pozwala na rozwiązanie go wprost.
- Modelowanie często spotyka sie z krytyką.
 - Trudno jest dostarczyć wszystkich danych niezbędnych dla modelu.

- Modelowanie często jest koniecznością, np. gdy rozmiar problemu nie pozwala na rozwiązanie go wprost.
- Modelowanie często spotyka sie z krytyką.
 - Trudno jest dostarczyć wszystkich danych niezbędnych dla modelu.
 - Jeśli w modelu występuje 100 000 danych liczbowych, a niektóre z nich są niepewne, to czy rozwiązanie pochodzące z modelu jest wiarygodne?

- Modelowanie często jest koniecznością, np. gdy rozmiar problemu nie pozwala na rozwiązanie go wprost.
- Modelowanie często spotyka sie z krytyką.
 - Trudno jest dostarczyć wszystkich danych niezbędnych dla modelu.
 - Jeśli w modelu występuje 100 000 danych liczbowych, a niektóre z nich są niepewne, to czy rozwiązanie pochodzące z modelu jest wiarygodne?
 - Niektóre zjawiska trudno wyrazić przez liczby np. użyteczność lub wartość społeczna.

 Z drugiej strony, istnieje szereg argumentów wspierających modelowanie.

- Z drugiej strony, istnieje szereg argumentów wspierających modelowanie.
 - Nawet jeśli niektóre dane są błędne, rozwiązanie może być użyteczne.

- Z drugiej strony, istnieje szereg argumentów wspierających modelowanie.
 - Nawet jeśli niektóre dane są błędne, rozwiązanie może być użyteczne.
 - Oczywiście model i rozwiązanie muszą być starannie sprawdzone i ew. poprawione.

- Z drugiej strony, istnieje szereg argumentów wspierających modelowanie.
 - Nawet jeśli niektóre dane są błędne, rozwiązanie może być użyteczne.
 - Oczywiście model i rozwiązanie muszą być starannie sprawdzone i ew. poprawione.
 - W procesie decyzyjnym często dopuszczamy się wielu uproszczeń i uogólnień.

- Z drugiej strony, istnieje szereg argumentów wspierających modelowanie.
 - Nawet jeśli niektóre dane są błędne, rozwiązanie może być użyteczne.
 - Oczywiście model i rozwiązanie muszą być starannie sprawdzone i ew. poprawione.
 - W procesie decyzyjnym często dopuszczamy się wielu uproszczeń i uogólnień.
 - Być może próba opisania pewnych zjawisk przez liczby jest najlepszym rozwiązaniem.

- Z drugiej strony, istnieje szereg argumentów wspierających modelowanie.
 - Nawet jeśli niektóre dane są błędne, rozwiązanie może być użyteczne.
 - Oczywiście model i rozwiązanie muszą być starannie sprawdzone i ew. poprawione.
 - W procesie decyzyjnym często dopuszczamy się wielu uproszczeń i uogólnień.
 - Być może próba opisania pewnych zjawisk przez liczby jest najlepszym rozwiązaniem.
- Z drugiej strony nie można ślepo wierzyć rozwiązaniom pochodzącym z modelu.

- Z drugiej strony, istnieje szereg argumentów wspierających modelowanie.
 - Nawet jeśli niektóre dane są błędne, rozwiązanie może być użyteczne.
 - Oczywiście model i rozwiązanie muszą być starannie sprawdzone i ew. poprawione.
 - W procesie decyzyjnym często dopuszczamy się wielu uproszczeń i uogólnień.
 - Być może próba opisania pewnych zjawisk przez liczby jest najlepszym rozwiązaniem.
- Z drugiej strony nie można ślepo wierzyć rozwiązaniom pochodzącym z modelu.
- Trzeba pamiętać, że model tylko w przybliżeniu opisuje własności rzeczywistego obiektu.

- Z drugiej strony, istnieje szereg argumentów wspierających modelowanie.
 - Nawet jeśli niektóre dane są błędne, rozwiązanie może być użyteczne.
 - Oczywiście model i rozwiązanie muszą być starannie sprawdzone i ew. poprawione.
 - W procesie decyzyjnym często dopuszczamy się wielu uproszczeń i uogólnień.
 - Być może próba opisania pewnych zjawisk przez liczby jest najlepszym rozwiązaniem.
- Z drugiej strony nie można ślepo wierzyć rozwiązaniom pochodzącym z modelu.
- Trzeba pamiętać, że model tylko w przybliżeniu opisuje własności rzeczywistego obiektu.
- Może okazać się, że czynniki nieujęte w modelu są kluczowe.

 Olej kuchenny powstaje przez rafinację czystych olejów i mieszanie ich razem.

- Olej kuchenny powstaje przez rafinację czystych olejów i mieszanie ich razem.
- Czyste oleje dzielą się na dwie podstawowe grupy:

- Olej kuchenny powstaje przez rafinację czystych olejów i mieszanie ich razem.
- Czyste oleje dzielą się na dwie podstawowe grupy:
 - Oleje roślinne: VEG1, VEG2

- Olej kuchenny powstaje przez rafinację czystych olejów i mieszanie ich razem.
- Czyste oleje dzielą się na dwie podstawowe grupy:
 - Oleje roślinne: VEG1, VEG2
 - Pozostałe oleje: OIL1, OIL2, OIL3

- Olej kuchenny powstaje przez rafinację czystych olejów i mieszanie ich razem.
- Czyste oleje dzielą się na dwie podstawowe grupy:
 - Oleje roślinne: VEG1, VEG2
 - Pozostałe oleje: OIL1, OIL2, OIL3
 - Rafinacja olejów roślinnych i nieroślinnych jestm innym procesem technologicznym.

- Olej kuchenny powstaje przez rafinację czystych olejów i mieszanie ich razem.
- Czyste oleje dzielą się na dwie podstawowe grupy:
 - Oleje roślinne: VEG1, VEG2
 - Pozostałe oleje: OIL1, OIL2, OIL3
 - Rafinacja olejów roślinnych i nieroślinnych jestm innym procesem technologicznym.
 - Wytwórnia jest w stanie przetworzyć co najwyżej 200 ton olejów roślinnych i 250 ton nieroślinnych.

- Olej kuchenny powstaje przez rafinację czystych olejów i mieszanie ich razem.
- Czyste oleje dzielą się na dwie podstawowe grupy:
 - Oleje roślinne: VEG1, VEG2
 - Pozostałe oleje: OIL1, OIL2, OIL3
 - Rafinacja olejów roślinnych i nieroślinnych jestm innym procesem technologicznym.
 - Wytwórnia jest w stanie przetworzyć co najwyżej 200 ton olejów roślinnych i 250 ton nieroślinnych.
 - Zakładamy, że w procesie rafinacji nie ma strat masy, a jego koszt może być pominięty.

 Dodatkowo istnieje technologiczne ograniczenie na twardość oleju.

- Dodatkowo istnieje technologiczne ograniczenie na twardość oleju.
- Twardość gotowego produktu powinna być pomiędzy 3 a 6 jednostkami.

- Dodatkowo istnieje technologiczne ograniczenie na twardość oleju.
- Twardość gotowego produktu powinna być pomiędzy 3 a 6 jednostkami.
- Zakładamy, twardość składników liniowo wpływa na twardość mieszaniny.

- Dodatkowo istnieje technologiczne ograniczenie na twardość oleju.
- Twardość gotowego produktu powinna być pomiędzy 3 a 6 jednostkami.
- Zakładamy, twardość składników liniowo wpływa na twardość mieszaniny.
- Koszt jednej tony i twardość czystych olejów przedstawia tabela.

	VEG1	VEG2	OIL1	OIL2	OIL3
Koszt	110	120	130	110	115
Twardość	8.8	6.1	2.0	4.2	5.0

- Dodatkowo istnieje technologiczne ograniczenie na twardość oleju.
- Twardość gotowego produktu powinna być pomiędzy 3 a 6 jednostkami.
- Zakładamy, twardość składników liniowo wpływa na twardość mieszaniny.
- Koszt jednej tony i twardość czystych olejów przedstawia tabela.

	VEG1	VEG2	OIL1	OIL2	OIL3
Koszt	110	120	130	110	115
Twardość	8.8	6.1	2.0	4.2	5.0

Cena gotowego oleju to 150 zł za tonę.

- Dodatkowo istnieje technologiczne ograniczenie na twardość oleju.
- Twardość gotowego produktu powinna być pomiędzy 3 a 6 jednostkami.
- Zakładamy, twardość składników liniowo wpływa na twardość mieszaniny.
- Koszt jednej tony i twardość czystych olejów przedstawia tabela.

	VEG1	VEG2	OIL1	OIL2	OIL3
Koszt	110	120	130	110	115
Twardość	8.8	6.1	2.0	4.2	5.0

- Cena gotowego oleju to 150 zł za tonę.
- Jak wytwórca powinien zaplanować produkcję, by zmaksymalizować swój zysk?

- Dodatkowo istnieje technologiczne ograniczenie na twardość oleju.
- Twardość gotowego produktu powinna być pomiędzy 3 a 6 jednostkami.
- Zakładamy, twardość składników liniowo wpływa na twardość mieszaniny.
- Koszt jednej tony i twardość czystych olejów przedstawia tabela.

	VEG1	VEG2	OIL1	OIL2	OIL3	
Koszt	110	120	130	110	115	
Twardość	8.8	6.1	2.0	4.2	5.0	

- Cena gotowego oleju to 150 zł za tonę.
- Jak wytwórca powinien zaplanować produkcję, by zmaksymalizować swój zysk?
- Przykład ten jest typowym zastosowaniem modeli PL.

- Dodatkowo istnieje technologiczne ograniczenie na twardość oleju.
- Twardość gotowego produktu powinna być pomiędzy 3 a 6 jednostkami.
- Zakładamy, twardość składników liniowo wpływa na twardość mieszaniny.
- Koszt jednej tony i twardość czystych olejów przedstawia tabela.

	VEG1	VEG2	OIL1	OIL2	OIL3	
Koszt	110	120	130	110	115	
Twardość	8.8	6.1	2.0	4.2	5.0	

- Cena gotowego oleju to 150 zł za tonę.
- Jak wytwórca powinien zaplanować produkcję, by zmaksymalizować swój zysk?
- Przykład ten jest typowym zastosowaniem modeli PL.
- Problemy występujące w praktyce sa oczywiście znacznie większe.

• Zmienne x_1, x_2, \ldots, x_5 reprezentują ilości (w tonach) czystych olejów VEG1, VEG2, OIL1, OIL2, OIL3, które powinny być kupione i przetworzone w ciągu miesiąca.

- Zmienne x_1, x_2, \ldots, x_5 reprezentują ilości (w tonach) czystych olejów VEG1, VEG2, OIL1, OIL2, OIL3, które powinny być kupione i przetworzone w ciągu miesiąca.
- Zmienna y reprezentuje ilość gotowego oleju, który powinien zostać wyprodukowany.

- Zmienne x_1, x_2, \ldots, x_5 reprezentują ilości (w tonach) czystych olejów VEG1, VEG2, OIL1, OIL2, OIL3, które powinny być kupione i przetworzone w ciągu miesiąca.
- Zmienna y reprezentuje ilość gotowego oleju, który powinien zostać wyprodukowany.
- Naszym celem jest maksymalizacja zysku (z uwzględnieniem kosztów zakupu składników):

$$-100x_1 - 120x_2 - 130x_3 - 110x_4 - 115x_5 + 150y$$

- Zmienne x_1, x_2, \ldots, x_5 reprezentują ilości (w tonach) czystych olejów VEG1, VEG2, OIL1, OIL2, OIL3, które powinny być kupione i przetworzone w ciągu miesiąca.
- Zmienna y reprezentuje ilość gotowego oleju, który powinien zostać wyprodukowany.
- Naszym celem jest maksymalizacja zysku (z uwzględnieniem kosztów zakupu składników):

$$-100x_1 - 120x_2 - 130x_3 - 110x_4 - 115x_5 + 150y$$

- Limity ilości przetworzonych olejów roślinnych i nieroślinnych nakładają ograniczenia na zmienne.
 - $x_1 + x_2 \le 200$
 - $x_3 + x_4 + x_5 \le 250$

- Zmienne x_1, x_2, \ldots, x_5 reprezentują ilości (w tonach) czystych olejów VEG1, VEG2, OIL1, OIL2, OIL3, które powinny być kupione i przetworzone w ciągu miesiąca.
- Zmienna y reprezentuje ilość gotowego oleju, który powinien zostać wyprodukowany.
- Naszym celem jest maksymalizacja zysku (z uwzględnieniem kosztów zakupu składników):

$$-100x_1 - 120x_2 - 130x_3 - 110x_4 - 115x_5 + 150y$$

- Limity ilości przetworzonych olejów roślinnych i nieroślinnych nakładają ograniczenia na zmienne.
 - $x_1 + x_2 \le 200$
 - $x_3 + x_4 + x_5 \le 250$
- Ograniczenia na twardość finalnego produktu dają dwa dodatkowe ograniczenia.
 - $8.8x_1 + 6.1x_2 + 2x_3 + 4.2x_4 + 5x_5 6y \le 0$
 - $8.8x_1 + 6.1x_2 + 2x_3 + 4.2x_4 + 5x_5 3y \ge 0$

- Zmienne x_1, x_2, \ldots, x_5 reprezentują ilości (w tonach) czystych olejów VEG1, VEG2, OIL1, OIL2, OIL3, które powinny być kupione i przetworzone w ciągu miesiąca.
- Zmienna y reprezentuje ilość gotowego oleju, który powinien zostać wyprodukowany.
- Naszym celem jest maksymalizacja zysku (z uwzględnieniem kosztów zakupu składników):

$$-100x_1 - 120x_2 - 130x_3 - 110x_4 - 115x_5 + 150y$$

- Limity ilości przetworzonych olejów roślinnych i nieroślinnych nakładają ograniczenia na zmienne.
 - $x_1 + x_2 \le 200$
 - $x_3 + x_4 + x_5 \le 250$
- Ograniczenia na twardość finalnego produktu dają dwa dodatkowe ograniczenia.
 - $8.8x_1 + 6.1x_2 + 2x_3 + 4.2x_4 + 5x_5 6y \le 0$
 - $8.8x_1 + 6.1x_2 + 2x_3 + 4.2x_4 + 5x_5 3y \ge 0$
- Suma wag produktów jest równa wadze gotowego oleju.

Formułowanie zagadnień programowania matematycznego

Formułowanie zagadnień programowania matematycznego

 Formułowanie dużych zagadnień programowania liniowego (lub całkowitoliczbowego) za pomocą arkuszy kalkulacyjnych (takich jak Excel) może być niewygodne i pracochłonne.

Formułowanie zagadnień programowania matematycznego

- Formułowanie dużych zagadnień programowania liniowego (lub całkowitoliczbowego) za pomocą arkuszy kalkulacyjnych (takich jak Excel) może być niewygodne i pracochłonne.
- Dużo wygodniejszym sposobem jest użycia oprogramowania zwanego generatorami macierzy (matrix generators – MG).

- Formułowanie dużych zagadnień programowania liniowego (lub całkowitoliczbowego) za pomocą arkuszy kalkulacyjnych (takich jak Excel) może być niewygodne i pracochłonne.
- Dużo wygodniejszym sposobem jest użycia oprogramowania zwanego generatorami macierzy (matrix generators – MG).
- MG umożliwiają formułowanie ograniczeń i celów za pomocą wysokopoziomowej składni - my będziemy używać Zimpl.

- Formułowanie dużych zagadnień programowania liniowego (lub całkowitoliczbowego) za pomocą arkuszy kalkulacyjnych (takich jak Excel) może być niewygodne i pracochłonne.
- Dużo wygodniejszym sposobem jest użycia oprogramowania zwanego generatorami macierzy (matrix generators – MG).
- MG umożliwiają formułowanie ograniczeń i celów za pomocą wysokopoziomowej składni - my będziemy używać Zimpl.
- Zimpl. został stworzony przez Thorstena Kocha (Zuse Institut Berlin) jako część jego rozprawy doktorskiej (2004).

- Formułowanie dużych zagadnień programowania liniowego (lub całkowitoliczbowego) za pomocą arkuszy kalkulacyjnych (takich jak Excel) może być niewygodne i pracochłonne.
- Dużo wygodniejszym sposobem jest użycia oprogramowania zwanego generatorami macierzy (matrix generators – MG).
- MG umożliwiają formułowanie ograniczeń i celów za pomocą wysokopoziomowej składni - my będziemy używać Zimpl.
- Zimpl. został stworzony przez Thorstena Kocha (Zuse Institut Berlin) jako część jego rozprawy doktorskiej (2004).
- Jest częścią pakietu ZIBopt Solver Suite:

- Formułowanie dużych zagadnień programowania liniowego (lub całkowitoliczbowego) za pomocą arkuszy kalkulacyjnych (takich jak Excel) może być niewygodne i pracochłonne.
- Dużo wygodniejszym sposobem jest użycia oprogramowania zwanego generatorami macierzy (matrix generators – MG).
- MG umożliwiają formułowanie ograniczeń i celów za pomocą wysokopoziomowej składni - my będziemy używać Zimpl.
- Zimpl. został stworzony przez Thorstena Kocha (Zuse Institut Berlin) jako część jego rozprawy doktorskiej (2004).
- Jest częścią pakietu ZIBopt Solver Suite:
 - Zimpl wysokopoziomowy język do modelowania.

- Formułowanie dużych zagadnień programowania liniowego (lub całkowitoliczbowego) za pomocą arkuszy kalkulacyjnych (takich jak Excel) może być niewygodne i pracochłonne.
- Dużo wygodniejszym sposobem jest użycia oprogramowania zwanego generatorami macierzy (matrix generators – MG).
- MG umożliwiają formułowanie ograniczeń i celów za pomocą wysokopoziomowej składni - my będziemy używać Zimpl.
- Zimpl. został stworzony przez Thorstena Kocha (Zuse Institut Berlin) jako część jego rozprawy doktorskiej (2004).
- Jest częścią pakietu ZIBopt Solver Suite:
 - Zimpl wysokopoziomowy język do modelowania.
 - SoPlex solver liniowy (dualna metoda sympleks).

- Formułowanie dużych zagadnień programowania liniowego (lub całkowitoliczbowego) za pomocą arkuszy kalkulacyjnych (takich jak Excel) może być niewygodne i pracochłonne.
- Dużo wygodniejszym sposobem jest użycia oprogramowania zwanego generatorami macierzy (matrix generators – MG).
- MG umożliwiają formułowanie ograniczeń i celów za pomocą wysokopoziomowej składni - my będziemy używać Zimpl.
- Zimpl. został stworzony przez Thorstena Kocha (Zuse Institut Berlin) jako część jego rozprawy doktorskiej (2004).
- Jest częścią pakietu **ZIBopt Solver Suite**:
 - Zimpl wysokopoziomowy język do modelowania.
 - SoPlex solver liniowy (dualna metoda sympleks).
 - SCIP ogólny solver dla problemów programowania całkowitoliczbowego i mieszanego.

- Formułowanie dużych zagadnień programowania liniowego (lub całkowitoliczbowego) za pomocą arkuszy kalkulacyjnych (takich jak Excel) może być niewygodne i pracochłonne.
- Dużo wygodniejszym sposobem jest użycia oprogramowania zwanego generatorami macierzy (matrix generators – MG).
- MG umożliwiają formułowanie ograniczeń i celów za pomocą wysokopoziomowej składni - my będziemy używać Zimpl.
- Zimpl. został stworzony przez Thorstena Kocha (Zuse Institut Berlin) jako część jego rozprawy doktorskiej (2004).
- Jest częścią pakietu ZIBopt Solver Suite:
 - Zimpl wysokopoziomowy język do modelowania.
 - SoPlex solver liniowy (dualna metoda sympleks).
 - SCIP ogólny solver dla problemów programowania całkowitoliczbowego i mieszanego.
- Pakiet ZlBopt jest bezpłatny dla celów niekomercyjnych (i stosunkowo tani do celów komercyjnych).

- Formułowanie dużych zagadnień programowania liniowego (lub całkowitoliczbowego) za pomocą arkuszy kalkulacyjnych (takich jak Excel) może być niewygodne i pracochłonne.
- Dużo wygodniejszym sposobem jest użycia oprogramowania zwanego generatorami macierzy (matrix generators – MG).
- MG umożliwiają formułowanie ograniczeń i celów za pomocą wysokopoziomowej składni - my będziemy używać Zimpl.
- Zimpl. został stworzony przez Thorstena Kocha (Zuse Institut Berlin) jako część jego rozprawy doktorskiej (2004).
- Jest częścią pakietu ZIBopt Solver Suite:
 - Zimpl wysokopoziomowy język do modelowania.
 - SoPlex solver liniowy (dualna metoda sympleks).
 - SCIP ogólny solver dla problemów programowania całkowitoliczbowego i mieszanego.
- Pakiet ZlBopt jest bezpłatny dla celów niekomercyjnych (i stosunkowo tani do celów komercyjnych).
- brak ograniczeń na rozmiar problemu wejściowego (jak to ma miejsce w wielu innych solverach)

- Formułowanie dużych zagadnień programowania liniowego (lub całkowitoliczbowego) za pomocą arkuszy kalkulacyjnych (takich jak Excel) może być niewygodne i pracochłonne.
- Dużo wygodniejszym sposobem jest użycia oprogramowania zwanego generatorami macierzy (matrix generators – MG).
- MG umożliwiają formułowanie ograniczeń i celów za pomocą wysokopoziomowej składni - my będziemy używać Zimpl.
- Zimpl. został stworzony przez Thorstena Kocha (Zuse Institut Berlin) jako część jego rozprawy doktorskiej (2004).
- Jest częścią pakietu ZIBopt Solver Suite:
 - Zimpl wysokopoziomowy język do modelowania.
 - SoPlex solver liniowy (dualna metoda sympleks).
 - SCIP ogólny solver dla problemów programowania całkowitoliczbowego i mieszanego.
- Pakiet ZlBopt jest bezpłatny dla celów niekomercyjnych (i stosunkowo tani do celów komercyjnych).
- brak ograniczeń na rozmiar problemu wejściowego (jak to ma miejsce w wielu innych solverach)
- Jako oprogramowanie na licencji open source może być łatwo modyfikowany.

Jak zdobyć ZIBopt Solver Suite?

```
http://scip.zib.de/ - > Download -> Binaries:
```

Windows/PC, 64bit, vc10: linked to SoPlex 1.7.0, Zimpl 3.3.0 Zaznaczyć I certify that I will use the software only as a member of a noncommercial and academic institute and that I have read and accepted the ZIB ACADEMIC LICENSE. -> start download Rozpokować -> scip-3.0.0.win.x86_64.vc10.opt.spx.mt

Następnie -> ZIMPL (http://zimpl.zib.de/) Precompiled binaries are also available. zimpl-3.3.0.win.x86_64.vc10.normal.opt.exe

Istnieje też wiele innych (najczęściej płatnych) generatorów macierzy

- Istnieje też wiele innych (najczęściej płatnych) generatorów macierzy
 - GAMS, http://www.gams.com

- Istnieje też wiele innych (najczęściej płatnych) generatorów macierzy
 - GAMS, http://www.gams.com
 - AMPL, http://www.ampl.com

- Istnieje też wiele innych (najczęściej płatnych) generatorów macierzy
 - GAMS, http://www.gams.com
 - AMPL, http://www.ampl.com
 - AIMMS, http://www.aimms.com

- Istnieje też wiele innych (najczęściej płatnych) generatorów macierzy
 - GAMS, http://www.gams.com
 - AMPL, http://www.ampl.com
 - AIMMS, http://www.aimms.com
- Istnieją także inne solvery

- Istnieje też wiele innych (najczęściej płatnych) generatorów macierzy
 - GAMS, http://www.gams.com
 - AMPL, http://www.ampl.com
 - AIMMS, http://www.aimms.com
- Istnieją także inne solvery
 - Gurobi (płatny), http://www.gurobi.com

- Istnieje też wiele innych (najczęściej płatnych) generatorów macierzy
 - GAMS, http://www.gams.com
 - AMPL, http://www.ampl.com
 - AIMMS, http://www.aimms.com
- Istnieją także inne solvery
 - Gurobi (płatny), http://www.gurobi.com
 - IBM ILOG CPlex (płatny), http://www.ilog.com/products/cplex

- Istnieje też wiele innych (najczęściej płatnych) generatorów macierzy
 - GAMS, http://www.gams.com
 - AMPL, http://www.ampl.com
 - AIMMS, http://www.aimms.com
- Istnieją także inne solvery
 - Gurobi (płatny), http://www.gurobi.com
 - IBM ILOG CPlex (płatny), http://www.ilog.com/products/cplex
 - XPress (płatny), http://www.dashoptimization.com

- Istnieje też wiele innych (najczęściej płatnych) generatorów macierzy
 - GAMS, http://www.gams.com
 - AMPL, http://www.ampl.com
 - AIMMS, http://www.aimms.com
- Istnieją także inne solvery
 - Gurobi (płatny), http://www.gurobi.com
 - IBM ILOG CPlex (płatny), http://www.ilog.com/products/cplex
 - XPress (płatny), http://www.dashoptimization.com
 - Lindo What's Best (płatny), http://www.lindo.com

- Istnieje też wiele innych (najczęściej płatnych) generatorów macierzy
 - GAMS, http://www.gams.com
 - AMPL, http://www.ampl.com
 - AIMMS, http://www.aimms.com
- Istnieją także inne solvery
 - Gurobi (płatny), http://www.gurobi.com
 - IBM ILOG CPlex (płatny), http://www.ilog.com/products/cplex
 - XPress (płatny), http://www.dashoptimization.com
 - Lindo What's Best (platny), http://www.lindo.com
 - COIN-OR Cbc (bezpłatny), http://projects.coin-or.org/Cbc

Rozwiązywanie zagadnienia programowania matematycznego w ZIBOpt

Rozwiązywanie zagadnienia programowania matematycznego w ZIBOpt

Zobaczmy przykład wyk1p1.zpl

- Wywołanie zimpl plik.zpl utworzy dwa pliki:
 - Problem zapisany w pliku plik.lp.
 - Plik pomocniczy z kodowaniem długich nazw zmiennych i ograniczeń plik.tbl.

- Wywołanie zimpl plik.zpl utworzy dwa pliki:
 - Problem zapisany w pliku plik.lp.
 - Plik pomocniczy z kodowaniem długich nazw zmiennych i ograniczeń plik.tbl.
- Drugi plik w większości przypadków może zostać zignorowany (o ile nie używamy długich nazw).

- Wywołanie zimpl plik.zpl utworzy dwa pliki:
 - Problem zapisany w pliku plik.lp.
 - Plik pomocniczy z kodowaniem długich nazw zmiennych i ograniczeń plik.tbl.
- Drugi plik w większości przypadków może zostać zignorowany (o ile nie używamy długich nazw).
- Format .1p jest rozpoznawany przez wiele solverów.

- Wywołanie zimpl plik.zpl utworzy dwa pliki:
 - Problem zapisany w pliku plik.lp.
 - Plik pomocniczy z kodowaniem długich nazw zmiennych i ograniczeń plik.tbl.
- Drugi plik w większości przypadków może zostać zignorowany (o ile nie używamy długich nazw).
- Format .1p jest rozpoznawany przez wiele solverów.
- Niektóre solvery wymagają formatu .mps.

- Wywołanie zimpl plik.zpl utworzy dwa pliki:
 - Problem zapisany w pliku plik.lp.
 - Plik pomocniczy z kodowaniem długich nazw zmiennych i ograniczeń plik.tbl.
- Drugi plik w większości przypadków może zostać zignorowany (o ile nie używamy długich nazw).
- Format .1p jest rozpoznawany przez wiele solverów.
- Niektóre solvery wymagają formatu .mps.
- .mps był kiedyś podstawowym formatem używanym do zapisu problemów programowania matematycznego. Jest on mało czytelny dla człowieka, za to łatwy to zapisu na kartach dziurkowanych.

- Wywołanie zimpl plik.zpl utworzy dwa pliki:
 - Problem zapisany w pliku plik.lp.
 - Plik pomocniczy z kodowaniem długich nazw zmiennych i ograniczeń plik.tbl.
- Drugi plik w większości przypadków może zostać zignorowany (o ile nie używamy długich nazw).
- Format .1p jest rozpoznawany przez wiele solverów.
- Niektóre solvery wymagają formatu .mps.
- .mps był kiedyś podstawowym formatem używanym do zapisu problemów programowania matematycznego. Jest on mało czytelny dla człowieka, za to łatwy to zapisu na kartach dziurkowanych.
- Jeśli potrzebujemy pliku w formacie .mps, należy wywołać zimpl -t mps plik.zpl

- Wywołanie zimpl plik.zpl utworzy dwa pliki:
 - Problem zapisany w pliku plik.lp.
 - Plik pomocniczy z kodowaniem długich nazw zmiennych i ograniczeń plik.tbl.
- Drugi plik w większości przypadków może zostać zignorowany (o ile nie używamy długich nazw).
- Format .1p jest rozpoznawany przez wiele solverów.
- Niektóre solvery wymagają formatu .mps.
- .mps był kiedyś podstawowym formatem używanym do zapisu problemów programowania matematycznego. Jest on mało czytelny dla człowieka, za to łatwy to zapisu na kartach dziurkowanych.
- Jeśli potrzebujemy pliku w formacie .mps, należy wywołać zimpl -t mps plik.zpl
- Na szczęście SCIP obsługuje format .1p.

■ Tak przygotowany plik należy uruchomić za pomocą Zimpla. zimpl-3.3.0.win.x86_64.vc10.normal.opt [nazwa pliku].zpl

- Tak przygotowany plik należy uruchomić za pomocą Zimpla. zimpl-3.3.0.win.x86_64.vc10.normal.opt [nazwa pliku].zpl
- ② Użyteczne będzie stworzenie pliku .bat i uruchamianie Zimpla za jego pomocą zimpl-3.3.0.win.x86_64.vc10.normal.opt wyk1p1.zpl pause

- Tak przygotowany plik należy uruchomić za pomocą Zimpla. zimpl-3.3.0.win.x86_64.vc10.normal.opt [nazwa pliku].zpl
- ② Użyteczne będzie stworzenie pliku .bat i uruchamianie Zimpla za jego pomocą zimpl-3.3.0.win.x86_64.vc10.normal.opt wyk1p1.zpl pause
- Tak czy inaczej, Zimpl stworzy nam plik .1p, który tylko czeka na rozwiązanie.

- Tak przygotowany plik należy uruchomić za pomocą Zimpla. zimpl-3.3.0.win.x86_64.vc10.normal.opt [nazwa pliku].zpl
- ② Użyteczne będzie stworzenie pliku .bat i uruchamianie Zimpla za jego pomocą zimpl-3.3.0.win.x86_64.vc10.normal.opt wyk1p1.zpl pause
- Tak czy inaczej, Zimpl stworzy nam plik .1p, który tylko czeka na rozwiązanie.
- Uruchamiamy SCIP i w konsolce wpisujemy r wyk1p1.lp (read).

Jak rozwiązać zagadnienie ?

- Tak przygotowany plik należy uruchomić za pomocą Zimpla. zimpl-3.3.0.win.x86_64.vc10.normal.opt [nazwa pliku].zpl
- Użyteczne będzie stworzenie pliku .bat i uruchamianie Zimpla za jego pomocą zimpl-3.3.0.win.x86_64.vc10.normal.opt wyk1p1.zpl pause
- Tak czy inaczej, Zimpl stworzy nam plik .1p, który tylko czeka na rozwiązanie.
- Uruchamiamy SCIP i w konsolce wpisujemy r wyk1p1.lp (read).
- Następnie wpisujemy op (optimize).

Jak rozwiązać zagadnienie ?

- Tak przygotowany plik należy uruchomić za pomocą Zimpla. zimpl-3.3.0.win.x86_64.vc10.normal.opt [nazwa pliku].zpl
- Użyteczne będzie stworzenie pliku .bat i uruchamianie Zimpla za jego pomocą zimpl-3.3.0.win.x86_64.vc10.normal.opt wyk1p1.zpl pause
- Tak czy inaczej, Zimpl stworzy nam plik .1p, który tylko czeka na rozwiązanie.
- Uruchamiamy SCIP i w konsolce wpisujemy r wyk1p1.lp (read).
- Następnie wpisujemy op (optimize).
- Aby wyświetlić rozwiązanie wpisujemy dis sol (display solution).

Format .zpl

```
set X :=1,2,3,4;
param c[<x> in X] := if x < 3 then 10 else 20 end;
var v[X] real >= 2 <= 15;
minimize cost: sum<x> in X do x*v[x];
subto c1: forall <x> in X do v[x] <= c[x];</pre>
```

Format .1p

```
Minimize
cost: + v#1 +2 v#2 +3 v#3 +4 v#4
Subject to
c1 1:
+ v#1 <= 10
c1 2:
+ v#2 <= 10
c1 3:
+ v#3 <= 20
c1 4:
+ v#4 <= 20
Bounds
2 <= v#1 <= 15
2 \le v#2 \le 15
2 <= v#3 <= 15
2 <= v#4 <= 15
End
```

Format .mps

```
NAME problem.
                             v#4 c1 4 1
ROWS
                             RHS
N OBJECTIV
                             RHS c1 1 10
L c1 1
                             RHS c1 2 10
L c1 2
                             RHS c1 3 20
L c1 3
                             RHS c1 4 20
                             BOUNDS
L c1 4
COLUMNS MARKOOOO 'MARKER'
                             I.O BOUND v#1 2
'TNTORG'
                             UP BOUND v#1 15
MARKOOO1 'MARKER' 'INTEND'
                             I.O BOUND v#2.2
v#1 OBJECTIV 1
                             UP BOUND v#2 15
                             LO BOUND v#3 2
v#1 c1 1 1
v#2 OBJECTIV 2
                             UP BOUND v#3 15
v#2 c1 2 1
                             LO BOUND v#4 2
v#3 OBJECTIV 3
                             UP BOUND v#4 15
v#3 c1 3 1
                             ENDATA
THA ORIGOTIV A
```

 Fabryka produkuje 5 typów produktów PROD1, PROD2, PROD3, PROD4, PROD5.

- Fabryka produkuje 5 typów produktów PROD1, PROD2, PROD3, PROD4, PROD5.
- W fabryce przeprowadza się dwa rodzaje procesów technologicznych – szlifowanie i wiercenie.

Każda jednostka każdego produktu przynosi pewien zysk
 PROD1 PROD2 PROD3 PROD4 PROD5
 550 600 350 400 200

- Każda jednostka każdego produktu przynosi pewien zysk
 PROD1 PROD2 PROD3 PROD4 PROD5
 550 600 350 400 200
- Każdy produkt wymaga pewnego czasu przygotowania (– oznacza że dany proces nie jest potrzebny)

	PROD1	PROD2	PROD3	PROD4	PROD5
Szlifowanie	12	20	-	25	15
Wiercenie	10	8	16	_	_

- Każda jednostka każdego produktu przynosi pewien zysk
 PROD1 PROD2 PROD3 PROD4 PROD5
 550 600 350 400 200
- Każdy produkt wymaga pewnego czasu przygotowania (– oznacza że dany proces nie jest potrzebny)

	PROD1	PROD2	PROD3	PROD4	PROD5
Szlifowanie	12	20	_	25	15
Wiercenie	10	8	16	_	_

 Ponadto każda jednostka każdego produktu wymaga 20 godzin pracy technika.

• Fabryka posiada cztery urządzenia szlifujące i dwa wiercące.

• Fabryka posiada cztery urządzenia szlifujące i dwa wiercące.

 Tydzień pracy trwa sześć dni, z 8 godzinami roboczymi każdego dnia.

• Fabryka posiada cztery urządzenia szlifujące i dwa wiercące.

- Tydzień pracy trwa sześć dni, z 8 godzinami roboczymi każdego dnia.
- Fabryka zatrudnia 8 techników.

Fabryka posiada cztery urządzenia szlifujące i dwa wiercące.

- Tydzień pracy trwa sześć dni, z 8 godzinami roboczymi każdego dnia.
- Fabryka zatrudnia 8 techników.
- Jak powinna być zaplanowana produkcja, by zmaksymalizować zysk fabryki?

Fabryka posiada cztery urządzenia szlifujące i dwa wiercące.

- Tydzień pracy trwa sześć dni, z 8 godzinami roboczymi każdego dnia.
- Fabryka zatrudnia 8 techników.
- Jak powinna być zaplanowana produkcja, by zmaksymalizować zysk fabryki?
- To pierwszy przykład zastosowania programowania liniowego do problemu optymalizacji produkcji.

• Wprowadzamy zmienne x_1, \ldots, x_5 , które opisują liczbę jednostek każdego z produktów PROD1, ..., PROD5, produkowanych w ciągu tygodnia.

- Wprowadzamy zmienne x_1, \ldots, x_5 , które opisują liczbę jednostek każdego z produktów PROD1, ..., PROD5, produkowanych w ciągu tygodnia.
- Każda jednostka PROD1 przynosi 550 zysku, każda jednostka PROD2 przynosi 600 zł zysku itd.

- Wprowadzamy zmienne x_1, \ldots, x_5 , które opisują liczbę jednostek każdego z produktów PROD1, ..., PROD5, produkowanych w ciągu tygodnia.
- Każda jednostka PROD1 przynosi 550 zysku, każda jednostka PROD2 przynosi 600 zł zysku itd.
- Zatem całkowity zysk możemy opisać wyrażeniem

$$550x_1 + 600x_2 + 350x_3 + 400x_4 + 200x_5$$

- Wprowadzamy zmienne x_1, \ldots, x_5 , które opisują liczbę jednostek każdego z produktów PROD1, ..., PROD5, produkowanych w ciągu tygodnia.
- Każda jednostka PROD1 przynosi 550 zysku, każda jednostka PROD2 przynosi 600 zł zysku itd.
- Zatem całkowity zysk możemy opisać wyrażeniem

$$550x_1 + 600x_2 + 350x_3 + 400x_4 + 200x_5$$

• Celem jest wybranie wartości $x_1, ..., x_5$ w taki sposób, by całkowity zysk był największy.

- Wprowadzamy zmienne x_1, \ldots, x_5 , które opisują liczbę jednostek każdego z produktów PROD1, ..., PROD5, produkowanych w ciągu tygodnia.
- Każda jednostka PROD1 przynosi 550 zysku, każda jednostka PROD2 przynosi 600 zł zysku itd.
- Zatem całkowity zysk możemy opisać wyrażeniem

$$550x_1 + 600x_2 + 350x_3 + 400x_4 + 200x_5$$

- Celem jest wybranie wartości x_1, \ldots, x_5 w taki sposób, by całkowity zysk był największy.
- Zatem zysk jest funkcją celu, którą należy zmaksymalizować.

- Wprowadzamy zmienne x_1, \ldots, x_5 , które opisują liczbę jednostek każdego z produktów PROD1, ..., PROD5, produkowanych w ciągu tygodnia.
- Każda jednostka PROD1 przynosi 550 zysku, każda jednostka PROD2 przynosi 600 zł zysku itd.
- Zatem całkowity zysk możemy opisać wyrażeniem

$$550x_1 + 600x_2 + 350x_3 + 400x_4 + 200x_5$$

- Celem jest wybranie wartości x_1, \ldots, x_5 w taki sposób, by całkowity zysk był największy.
- Zatem zysk jest funkcją celu, którą należy zmaksymalizować.
- Ograniczenia czasu pracy maszyn i ludzi ograniczają wartości, jakie mogą przyjąć zmienne x₁,...,x₅.

- Szlifowanie:
 - Mamy 3 maszyny szlifujące.

- Szlifowanie:
 - Mamy 3 maszyny szlifujące.
 - Każda maszyna pracuje przez 48 godzin w tygodniu.

- Szlifowanie:
 - Mamy 3 maszyny szlifujące.
 - Każda maszyna pracuje przez 48 godzin w tygodniu.
 - Zatem łączny czas szlifowania nie może przekroczyć 144 h.

- Mamy 3 maszyny szlifujące.
- Każda maszyna pracuje przez 48 godzin w tygodniu.
- Zatem łączny czas szlifowania nie może przekroczyć 144 h.
- Każda jednostka PROD1 wymaga 12 godzin szlifowania.

- Mamy 3 maszyny szlifujące.
- Każda maszyna pracuje przez 48 godzin w tygodniu.
- Zatem łączny czas szlifowania nie może przekroczyć 144 h.
- Każda jednostka PROD1 wymaga 12 godzin szlifowania.
- Zatem x_1 jednostek wymaga $12x_1$ godzin szlifowania.

- Mamy 3 maszyny szlifujące.
- Każda maszyna pracuje przez 48 godzin w tygodniu.
- Zatem łączny czas szlifowania nie może przekroczyć 144 h.
- Każda jednostka PROD1 wymaga 12 godzin szlifowania.
- Zatem x_1 jednostek wymaga $12x_1$ godzin szlifowania.
- Analogicznie x₂ jednostek PROD2 wymaga 20x₂ godzin szlifowania.

- Mamy 3 maszyny szlifujące.
- Każda maszyna pracuje przez 48 godzin w tygodniu.
- Zatem łączny czas szlifowania nie może przekroczyć 144 h.
- Każda jednostka PROD1 wymaga 12 godzin szlifowania.
- Zatem x_1 jednostek wymaga $12x_1$ godzin szlifowania.
- Analogicznie x₂ jednostek PROD2 wymaga 20x₂ godzin szlifowania.
- Całkowity czas szlifowania jest zatem ograniczony przez maksymalny czas pracy maszyn.

$$12x_1 + 20x_2 + 25x_4 + 15x_5 \le 144$$

Szlifowanie:

- Mamy 3 maszyny szlifujące.
- Każda maszyna pracuje przez 48 godzin w tygodniu.
- Zatem łączny czas szlifowania nie może przekroczyć 144 h.
- Każda jednostka PROD1 wymaga 12 godzin szlifowania.
- Zatem x_1 jednostek wymaga $12x_1$ godzin szlifowania.
- Analogicznie x₂ jednostek PROD2 wymaga 20x₂ godzin szlifowania.
- Całkowity czas szlifowania jest zatem ograniczony przez maksymalny czas pracy maszyn.

$$12x_1 + 20x_2 + 25x_4 + 15x_5 \le 144$$

 Takie nierówności w modelu matematycznym nazywamy ograniczeniami.

- Mamy 3 maszyny szlifujące.
- Każda maszyna pracuje przez 48 godzin w tygodniu.
- Zatem łączny czas szlifowania nie może przekroczyć 144 h.
- Każda jednostka PROD1 wymaga 12 godzin szlifowania.
- Zatem x_1 jednostek wymaga $12x_1$ godzin szlifowania.
- Analogicznie x₂ jednostek PROD2 wymaga 20x₂ godzin szlifowania.
- Całkowity czas szlifowania jest zatem ograniczony przez maksymalny czas pracy maszyn.

$$12x_1 + 20x_2 + 25x_4 + 15x_5 \le 144$$

- Takie nierówności w modelu matematycznym nazywamy ograniczeniami.
- Ograniczają one wartości, jakie mogą przyjąć zmienne x₁,...,x₅.

Wiercenie:

- Wiercenie:
 - Mamy 2 maszyny wiercące.

- Wiercenie:
 - Mamy 2 maszyny wiercące.
 - Zatem łączny czas wiercenia nie może przekroczyć 96 h.

- Wiercenie:
 - Mamy 2 maszyny wiercące.
 - Zatem łączny czas wiercenia nie może przekroczyć 96 h.
 - Stąd następujące ograniczenie:

$$10x_1 + 8x_2 + 16x_3 \le 96$$

- Wiercenie:
 - Mamy 2 maszyny wiercące.
 - Zatem łączny czas wiercenia nie może przekroczyć 96 h.
 - Stąd następujące ograniczenie:

$$10x_1 + 8x_2 + 16x_3 \le 96$$

Praca techników:

- Wiercenie:
 - Mamy 2 maszyny wiercące.
 - Zatem łączny czas wiercenia nie może przekroczyć 96 h.
 - Stąd następujące ograniczenie:

$$10x_1 + 8x_2 + 16x_3 \le 96$$

- Praca techników:
 - Mamy 8 techników, pracujących po 48 godzin w tygodniu.

- Wiercenie:
 - Mamy 2 maszyny wiercące.
 - Zatem łączny czas wiercenia nie może przekroczyć 96 h.
 - Stąd następujące ograniczenie:

$$10x_1 + 8x_2 + 16x_3 \le 96$$

- Praca techników:
 - Mamy 8 techników, pracujących po 48 godzin w tygodniu.
 - Zatem łączny czas pracy nie może przekroczyć 384 h.

- Wiercenie:
 - Mamy 2 maszyny wiercące.
 - Zatem łączny czas wiercenia nie może przekroczyć 96 h.
 - Stąd następujące ograniczenie:

$$10x_1 + 8x_2 + 16x_3 \le 96$$

- Praca techników:
 - Mamy 8 techników, pracujących po 48 godzin w tygodniu.
 - Zatem łączny czas pracy nie może przekroczyć 384 h.
 - Ponieważ każda jednostka każdego produktu wymaga 20 h pracy technika, otrzymujemy następujące ograniczenie:

$$20x_1 + 20x_2 + 20x_3 + 20x_4 + 20x_5 \le 384$$

- Wiercenie:
 - Mamy 2 maszyny wiercące.
 - Zatem łączny czas wiercenia nie może przekroczyć 96 h.
 - Stąd następujące ograniczenie:

$$10x_1 + 8x_2 + 16x_3 \le 96$$

- Praca techników:
 - Mamy 8 techników, pracujących po 48 godzin w tygodniu.
 - Zatem łączny czas pracy nie może przekroczyć 384 h.
 - Ponieważ każda jednostka każdego produktu wymaga 20 h pracy technika, otrzymujemy następujące ograniczenie:

$$20x_1 + 20x_2 + 20x_3 + 20x_4 + 20x_5 \le 384$$

 Tym sposobem przekształciliśmy wyjściowy problem praktyczny do modelu matematycznego:

max
$$550x_1 + 600x_2 + 350x_3 + 400x_4 + 200x_5$$

przy ogr. $12x_1 + 20x_2 + 25x_4 + 15x_5$
 $10x_1 + 8x_2 + 10x_3$
 $22x_1 + 20x_2 + 20x_3 + 20x_4 + 20x_5$

• Chcemy dobrać dla zmiennych x_1, \ldots, x_5 wartości, które zmaksymalizują funkcję celu przy zachowaniu ograniczeń.

- Chcemy dobrać dla zmiennych x_1, \ldots, x_5 wartości, które zmaksymalizują funkcję celu przy zachowaniu ograniczeń.
- Ten model modelem programowania liniowego (PL).

- Chcemy dobrać dla zmiennych x_1, \ldots, x_5 wartości, które zmaksymalizują funkcję celu przy zachowaniu ograniczeń.
- Ten model modelem programowania liniowego (PL).
 - W funkcji celu i wszystkich ograniczeniach zmienne pojawiają się tylko w sumach we stałymi współczynnikami.

- Chcemy dobrać dla zmiennych $x_1, ..., x_5$ wartości, które zmaksymalizują funkcję celu przy zachowaniu ograniczeń.
- Ten model modelem programowania liniowego (PL).
 - W funkcji celu i wszystkich ograniczeniach zmienne pojawiają się tylko w sumach we stałymi współczynnikami.
 - Nie ma zatem wyrażeń takich jak:

$$x_1^2, x_1 x_2, \frac{x_1}{x_2}, \log(x), \sin(x)$$

- Chcemy dobrać dla zmiennych x_1, \ldots, x_5 wartości, które zmaksymalizują funkcję celu przy zachowaniu ograniczeń.
- Ten model modelem programowania liniowego (PL).
 - W funkcji celu i wszystkich ograniczeniach zmienne pojawiają się tylko w sumach we stałymi współczynnikami.
 - Nie ma zatem wyrażeń takich jak:

$$x_1^2, x_1x_2, \frac{x_1}{x_2}, \log(x), \sin(x)$$

W modelu poczyniliśmy pewne niejawne założenia.

- Chcemy dobrać dla zmiennych x_1, \ldots, x_5 wartości, które zmaksymalizują funkcję celu przy zachowaniu ograniczeń.
- Ten model modelem programowania liniowego (PL).
 - W funkcji celu i wszystkich ograniczeniach zmienne pojawiają się tylko w sumach we stałymi współczynnikami.
 - Nie ma zatem wyrażeń takich jak:

$$x_1^2, x_1x_2, \frac{x_1}{x_2}, \log(x), \sin(x)$$

- W modelu poczyniliśmy pewne niejawne założenia.
 - Musimy założyć, że zmienne nie mogą mieć wartości ujemnych.

- Chcemy dobrać dla zmiennych x_1, \ldots, x_5 wartości, które zmaksymalizują funkcję celu przy zachowaniu ograniczeń.
- Ten model modelem programowania liniowego (PL).
 - W funkcji celu i wszystkich ograniczeniach zmienne pojawiają się tylko w sumach we stałymi współczynnikami.
 - Nie ma zatem wyrażeń takich jak:

$$x_1^2, x_1 x_2, \frac{x_1}{x_2}, \log(x), \sin(x)$$

- W modelu poczyniliśmy pewne niejawne założenia.
 - Musimy założyć, że zmienne nie mogą mieć wartości ujemnych.
 - Można to jawnie wyrazić za pomocą dodatkowych ograniczeń

$$x_1, x_2, x_3, x_4, x_5, \ge 0$$

 $x_1^2, x_1 x_2, \frac{x_1}{x_2}, \log(x), \sin(x)$

- Chcemy dobrać dla zmiennych x_1, \ldots, x_5 wartości, które zmaksymalizują funkcję celu przy zachowaniu ograniczeń.
- Ten model modelem programowania liniowego (PL).
 - W funkcji celu i wszystkich ograniczeniach zmienne pojawiają się tylko w sumach we stałymi współczynnikami.
 - Nie ma zatem wyrażeń takich jak:

$$x_1^2, x_1 x_2, \frac{x_1}{x_2}, \log(x), \sin(x)$$

- W modelu poczyniliśmy pewne niejawne założenia.
 - Musimy założyć, że zmienne nie mogą mieć wartości ujemnych.
 - Można to jawnie wyrazić za pomocą dodatkowych ograniczeń

$$x_1, x_2, x_3, x_4, x_5, \ge 0$$

 $x_1^2, x_1 x_2, \frac{x_1}{x_2}, \log(x), \sin(x)$

 Ponadto założyliśmy, że zmienne mogą mieć wartości niecałkowite.

- Chcemy dobrać dla zmiennych x_1, \ldots, x_5 wartości, które zmaksymalizują funkcję celu przy zachowaniu ograniczeń.
- Ten model modelem programowania liniowego (PL).
 - W funkcji celu i wszystkich ograniczeniach zmienne pojawiają się tylko w sumach we stałymi współczynnikami.
 - Nie ma zatem wyrażeń takich jak:

$$x_1^2, x_1 x_2, \frac{x_1}{x_2}, \log(x), \sin(x)$$

- W modelu poczyniliśmy pewne niejawne założenia.
 - Musimy założyć, że zmienne nie mogą mieć wartości ujemnych.
 - Można to jawnie wyrazić za pomocą dodatkowych ograniczeń

$$x_1, x_2, x_3, x_4, x_5, \ge 0$$

 $x_1^2, x_1 x_2, \frac{x_1}{x_2}, \log(x), \sin(x)$

- Ponadto założyliśmy, że zmienne mogą mieć wartości niecałkowite.
- Ale co to znaczy, że mamy wyprodukować 4.68 jednostek PROD1?

- Chcemy dobrać dla zmiennych x_1, \ldots, x_5 wartości, które zmaksymalizują funkcję celu przy zachowaniu ograniczeń.
- Ten model modelem programowania liniowego (PL).
 - W funkcji celu i wszystkich ograniczeniach zmienne pojawiają się tylko w sumach we stałymi współczynnikami.
 - Nie ma zatem wyrażeń takich jak:

$$x_1^2, x_1x_2, \frac{x_1}{x_2}, \log(x), \sin(x)$$

- W modelu poczyniliśmy pewne niejawne założenia.
 - Musimy założyć, że zmienne nie mogą mieć wartości ujemnych.
 - Można to jawnie wyrazić za pomocą dodatkowych ograniczeń

$$x_1, x_2, x_3, x_4, x_5, \ge 0$$

 $x_1^2, x_1 x_2, \frac{x_1}{x_2}, \log(x), \sin(x)$

- Ponadto założyliśmy, że zmienne mogą mieć wartości niecałkowite.
- Ale co to znaczy, że mamy wyprodukować 4.68 jednostek PROD1?
- Jeśli PROD1 jest produktem ciągłym (mleko, piwo, olej, zboże) ułamki mogą być dopuszczalne.

- Chcemy dobrać dla zmiennych x_1, \ldots, x_5 wartości, które zmaksymalizują funkcję celu przy zachowaniu ograniczeń.
- Ten model modelem programowania liniowego (PL).
 - W funkcji celu i wszystkich ograniczeniach zmienne pojawiają się tylko w sumach we stałymi współczynnikami.
 - Nie ma zatem wyrażeń takich jak:

$$x_1^2, x_1 x_2, \frac{x_1}{x_2}, \log(x), \sin(x)$$

- W modelu poczyniliśmy pewne niejawne założenia.
 - Musimy założyć, że zmienne nie mogą mieć wartości ujemnych.
 - Można to jawnie wyrazić za pomocą dodatkowych ograniczeń

$$x_1, x_2, x_3, x_4, x_5, \ge 0$$

 $x_1^2, x_1 x_2, \frac{x_1}{x_2}, \log(x), \sin(x)$

- Ponadto założyliśmy, że zmienne mogą mieć wartości niecałkowite.
- Ale co to znaczy, że mamy wyprodukować 4.68 jednostek PROD1?
- Jeśli PROD1 jest produktem ciągłym (mleko, piwo, olej, zboże) ułamki mogą być dopuszczalne.

- Chcemy dobrać dla zmiennych x_1, \ldots, x_5 wartości, które zmaksymalizują funkcję celu przy zachowaniu ograniczeń.
- Ten model modelem programowania liniowego (PL).
 - W funkcji celu i wszystkich ograniczeniach zmienne pojawiają się tylko w sumach we stałymi współczynnikami.
 - Nie ma zatem wyrażeń takich jak:

$$x_1^2, x_1 x_2, \frac{x_1}{x_2}, \log(x), \sin(x)$$

- W modelu poczyniliśmy pewne niejawne założenia.
 - Musimy założyć, że zmienne nie mogą mieć wartości ujemnych.
 - Można to jawnie wyrazić za pomocą dodatkowych ograniczeń

$$x_1, x_2, x_3, x_4, x_5, \ge 0$$

 $x_1^2, x_1 x_2, \frac{x_1}{x_2}, \log(x), \sin(x)$

- Ponadto założyliśmy, że zmienne mogą mieć wartości niecałkowite.
- Ale co to znaczy, że mamy wyprodukować 4.68 jednostek PROD1?
- Jeśli PROD1 jest produktem ciągłym (mleko, piwo, olej, zboże) ułamki mogą być dopuszczalne.

- Chcemy dobrać dla zmiennych x_1, \ldots, x_5 wartości, które zmaksymalizują funkcję celu przy zachowaniu ograniczeń.
- Ten model modelem programowania liniowego (PL).
 - W funkcji celu i wszystkich ograniczeniach zmienne pojawiają się tylko w sumach we stałymi współczynnikami.
 - Nie ma zatem wyrażeń takich jak:

$$x_1^2, x_1 x_2, \frac{x_1}{x_2}, \log(x), \sin(x)$$

- W modelu poczyniliśmy pewne niejawne założenia.
 - Musimy założyć, że zmienne nie mogą mieć wartości ujemnych.
 - Można to jawnie wyrazić za pomocą dodatkowych ograniczeń

$$x_1, x_2, x_3, x_4, x_5, \ge 0$$

 $x_1^2, x_1 x_2, \frac{x_1}{x_2}, \log(x), \sin(x)$

- Ponadto założyliśmy, że zmienne mogą mieć wartości niecałkowite.
- Ale co to znaczy, że mamy wyprodukować 4.68 jednostek PROD1?
- Jeśli PROD1 jest produktem ciągłym (mleko, piwo, olej, zboże) ułamki mogą być dopuszczalne.

- Chcemy dobrać dla zmiennych x_1, \ldots, x_5 wartości, które zmaksymalizują funkcję celu przy zachowaniu ograniczeń.
- Ten model modelem programowania liniowego (PL).
 - W funkcji celu i wszystkich ograniczeniach zmienne pojawiają się tylko w sumach we stałymi współczynnikami.
 - Nie ma zatem wyrażeń takich jak:

$$x_1^2, x_1 x_2, \frac{x_1}{x_2}, \log(x), \sin(x)$$

- W modelu poczyniliśmy pewne niejawne założenia.
 - Musimy założyć, że zmienne nie mogą mieć wartości ujemnych.
 - Można to jawnie wyrazić za pomocą dodatkowych ograniczeń

$$x_1, x_2, x_3, x_4, x_5, \ge 0$$

 $x_1^2, x_1 x_2, \frac{x_1}{x_2}, \log(x), \sin(x)$

- Ponadto założyliśmy, że zmienne mogą mieć wartości niecałkowite.
- Ale co to znaczy, że mamy wyprodukować 4.68 jednostek PROD1?
- Jeśli PROD1 jest produktem ciągłym (mleko, piwo, olej, zboże) ułamki mogą być dopuszczalne.

• W modelu poczyniliśmy pewne niejawne założenia.

- W modelu poczyniliśmy pewne niejawne założenia.
 - Ponadto założyliśmy, że zmienne mogą mieć wartości niecałkowite.

- W modelu poczyniliśmy pewne niejawne założenia.
 - Ponadto założyliśmy, że zmienne mogą mieć wartości niecałkowite.
 - Ale co to znaczy, że mamy wyprodukować 4.68 jednostek PROD1?

- W modelu poczyniliśmy pewne niejawne założenia.
 - Ponadto założyliśmy, że zmienne mogą mieć wartości niecałkowite.
 - Ale co to znaczy, że mamy wyprodukować 4.68 jednostek PROD1?
 - Jeśli PROD1 jest produktem ciągłym (mleko, piwo, olej, zboże) ułamki mogą być dopuszczalne.

- W modelu poczyniliśmy pewne niejawne założenia.
 - Ponadto założyliśmy, że zmienne mogą mieć wartości niecałkowite.
 - Ale co to znaczy, że mamy wyprodukować 4.68 jednostek PROD1?
 - Jeśli PROD1 jest produktem ciągłym (mleko, piwo, olej, zboże) ułamki mogą być dopuszczalne.
 - Jeśli zmienna opisuje dyskretne jednostki produktu (np. liczba wyprodukowanych silników), ułamkowe wartości nie mają sensu.

- W modelu poczyniliśmy pewne niejawne założenia.
 - Ponadto założyliśmy, że zmienne mogą mieć wartości niecałkowite.
 - Ale co to znaczy, że mamy wyprodukować 4.68 jednostek PROD1?
 - Jeśli PROD1 jest produktem ciągłym (mleko, piwo, olej, zboże) ułamki mogą być dopuszczalne.
 - Jeśli zmienna opisuje dyskretne jednostki produktu (np. liczba wyprodukowanych silników), ułamkowe wartości nie mają sensu.
 - Jeśli liczby są duże, możemy je zaokrąglić do najbliższej liczby całkowitej.

- W modelu poczyniliśmy pewne niejawne założenia.
 - Ponadto założyliśmy, że zmienne mogą mieć wartości niecałkowite.
 - Ale co to znaczy, że mamy wyprodukować 4.68 jednostek PROD1?
 - Jeśli PROD1 jest produktem ciągłym (mleko, piwo, olej, zboże) ułamki mogą być dopuszczalne.
 - Jeśli zmienna opisuje dyskretne jednostki produktu (np. liczba wyprodukowanych silników), ułamkowe wartości nie mają sensu.
 - Jeśli liczby są duże, możemy je zaokrąglić do najbliższej liczby całkowitej.
 - Np. jeśli zmienna wskazuje, że optymalnie jest wyprodukować 298 278,374 silniki, możemy po prostu zaokrąglić tę liczbę w dół do 298 278.

- W modelu poczyniliśmy pewne niejawne założenia.
 - Ponadto założyliśmy, że zmienne mogą mieć wartości niecałkowite.
 - Ale co to znaczy, że mamy wyprodukować 4.68 jednostek PROD1?
 - Jeśli PROD1 jest produktem ciągłym (mleko, piwo, olej, zboże) ułamki mogą być dopuszczalne.
 - Jeśli zmienna opisuje dyskretne jednostki produktu (np. liczba wyprodukowanych silników), ułamkowe wartości nie mają sensu.
 - Jeśli liczby są duże, możemy je zaokrąglić do najbliższej liczby całkowitej.
 - Np. jeśli zmienna wskazuje, że optymalnie jest wyprodukować 298 278,374 silniki, możemy po prostu zaokrąglić tę liczbę w dół do 298 278.
 - Jeśli takie zaokrąglanie nie jest możliwe, należy zastosować metody programowania całkowitoliczbowego.

 Nasz pierwszy model obrazuje kilka kluczowych cech modeli programowania liniowego.

- Nasz pierwszy model obrazuje kilka kluczowych cech modeli programowania liniowego.
 - Istnieje jedno liniowe wyrażenie (funkcja celu), które chcemy zminimalizować lub zmaksymalizować.

- Nasz pierwszy model obrazuje kilka kluczowych cech modeli programowania liniowego.
 - Istnieje jedno liniowe wyrażenie (funkcja celu), które chcemy zminimalizować lub zmaksymalizować.
 - Ponadto dany jest szereg ograniczeń w postaci wyrażeń liniowych, które nie mogą przekraczać (≤) pewnej zadanej wartości.

- Nasz pierwszy model obrazuje kilka kluczowych cech modeli programowania liniowego.
 - Istnieje jedno liniowe wyrażenie (funkcja celu), które chcemy zminimalizować lub zmaksymalizować.
 - Ponadto dany jest szereg ograniczeń w postaci wyrażeń liniowych, które nie mogą przekraczać (≤) pewnej zadanej wartości.
 - Ograniczenia liniowe mogą być też typu ≥ lub =. Pokazują one, że wartość wyrażenia nie może być niższa niż pewna zadana wartość lub musi być jej równa.

- Nasz pierwszy model obrazuje kilka kluczowych cech modeli programowania liniowego.
 - Istnieje jedno liniowe wyrażenie (**funkcja celu**), które chcemy zminimalizować lub zmaksymalizować.
 - Ponadto dany jest szereg ograniczeń w postaci wyrażeń liniowych, które nie mogą przekraczać (≤) pewnej zadanej wartości.
 - Ograniczenia liniowe mogą być też typu ≥ lub =. Pokazują one, że wartość wyrażenia nie może być niższa niż pewna zadana wartość lub musi być jej równa.
 - Współczynniki 144, 96, 384 są zazwyczaj nazywane prawą stroną zagadnienia PL.

- Nasz pierwszy model obrazuje kilka kluczowych cech modeli programowania liniowego.
 - Istnieje jedno liniowe wyrażenie (**funkcja celu**), które chcemy zminimalizować lub zmaksymalizować.
 - Ponadto dany jest szereg ograniczeń w postaci wyrażeń liniowych, które nie mogą przekraczać (≤) pewnej zadanej wartości.
 - Ograniczenia liniowe mogą być też typu ≥ lub =. Pokazują one, że wartość wyrażenia nie może być niższa niż pewna zadana wartość lub musi być jej równa.
 - Współczynniki 144, 96, 384 są zazwyczaj nazywane prawą stroną zagadnienia PL.
- Rzeczywiste modele są zazwyczaj znacznie większe (mają więcej zmiennych i ograniczeń), ale zawsze mają te podstawowe cechy.

