2020年度 大阪大学基礎工学部編入学試験 [エレクトロニクスコース専門科目] 試 験 問 題

受	験	番	号	志望	学科	. =	ース
		66	k in			学	科
						_	ース

[エレ専門-1]

問題1

交流定常状態の電気回路に関して以下の問に答えよ.ただし,解答では虚数単位を $j=\sqrt{-1}$ として答えよ.

- (1) テブナンの定理を説明せよ.
- (2) 図 1 に示す独立電源 E (角周波数 ω), キャパシタ C_1 および C_2 からなる回路のテブナン等価回路を求 めよ.
- (3) 図 2 に示すように、図 1 の回路に、抵抗 R とインダクタ L を接続した回路において、E と R の素子電圧の位相が同じである場合の角周波数 ω_0 を求めよ、またそのときの R の素子電圧を求めよ。
- (4) (3) の条件において、図2のLの素子電圧は $\omega_0^3 \times A$ で表される. Aを求めよ.

2020年度 大阪大学基礎工学部編入学試験 [エレクトロニクスコース専門科目] 試験問 題

受 験 番 号	志望学科・:	コース
		学 科
		コース

[エレ専門-2]

問題2

半導体に関する以下の間に答えよ.

(1) 以下の文章において、空欄(ア)、(ウ)、(オ)は数式で、空欄(イ)は数字で、空欄(エ)は語句で、適切に埋めなさい、

素電荷 q, 有効質量 m_e である伝導電子が,絶対温度 T の熱平衡状態で,密度 n で一様に分布している半導体を考える.

1つの伝導電子が $3k_BT/2$ の熱エネルギーを持つと考えるとき、伝導電子の平均速度は、 (\mathcal{T}) と書ける. ただし、 k_B はボル ツマン定数である.このとき、この伝導電子の熱運動によって流れる電流の時間平均は、 (イ) [A]である.

この半導体に対して、入力電場 E を印加した. このとき、電子移動度を μ とすると、伝導電子の平均速度は (\dot{p}) とな った. この場合に流れる電流の密度の大きさは σE と書き表すことができる. ここで, σ は σ といい, σ と書き表 すことができる...

- (2) 下図は,半導体の伝導電子密度 n の温度依存性を示している.ただし T は絶対温度である.以下の間に答えよ.
 - (2-1) 以下の文章において、空欄(カ)、(ク)、(コ)を適切な語句で埋め、空欄(キ)、(ケ)に入りうる適切な語句を下の選択肢から選 びなさい.

n の温度依存性は、真性領域、(力) 領域、不純物領域に分けることができる。この図から、この半導体は(キ)! で あり、また、点線で示される n_1 は (ク) の温度依存性であると考えられる. (カ) 領域では、T が増加しても n はほ ぼ一定であるが,不純物領域では,T が増加するにつれて,n は $\overline{L}(F)$ している.これは,低温領域ではドーパントはイ オン化されにくくなっているが、温度が上がるにつれて伝導帯へと電子が (コ) されるからである.

- ①真性半導体 ②外因性半導体
- (ケ)の選択肢:
- ①增加 ②減少

(2-2) 真性領域では、T が大きくなると n が増加している. この理由を下の言葉をすべて使って説明せよ.

価電子帯 伝導帯 伝導電子 高温

- (2-3) この半導体はSi (シリコン) であり、P (リン) が理想的にSi中にドーピングされている. Pをドーピングした密度はどの 程度であるか、理由とともに数字で答えよ、
- (3) 半導体に光を照射したときに起こる光吸収過程に伴う電子・正孔の生成・消滅過程を下の言葉をすべて使って説明せよ.

光を吸収 バンドギャップ エネルギー 電子・正孔対 再結合 伝導帯 価電子帯