Example

Data model

$$p(y|x) = \frac{1}{2}\mathcal{N}(y; x, 1) + \frac{1}{2}\mathcal{N}(y; 0, 10)$$

ADF posterior for three orderings of same data:

True x = 220 data points

ADF is sensitive to ordering

Can we make ADF independent of ordering?

Example continued

Data model

$$p(y|x) = \frac{1}{2}\mathcal{N}(y; x, 1) + \frac{1}{2}\mathcal{N}(y; 0, 10)$$

EP posterior at convergence

O 0.5 1 1.5 2 2.5 3 3.5

Other methods

All independent of data ordering

Performance

Data size n=20

n=200

ADF = first 'x' of EP

VB = variational bound

Deterministic methods improve with more data (posterior is more Gaussian)

Sampling methods do not care

Bayes point machine

Bayesian approach to linear classification

Use w to classify x:

$$\mathbf{w}^{\mathrm{T}}\mathbf{x}_{i} > 0$$
 (class 1)
 $\mathbf{w}^{\mathrm{T}}\mathbf{x}_{i} < 0$ (class 2)

$$p(\mathbf{w}, D) = p(\mathbf{w}) \prod_{i} p(y_i | \mathbf{x}_i, \mathbf{w})$$

p(w) is uniform

$$p(y|\mathbf{x}, \mathbf{w}) = \Theta(y\mathbf{w}^{\mathrm{T}}\mathbf{x})$$

$$= \begin{cases} 1 & \text{if } \mathbf{w} \text{ is a perfect separator} \\ 0 & \text{otherwise} \end{cases}$$

Classify a new data point by voting:

$$p(y|\mathbf{x}, D) = \int_{\mathbf{w}} p(y|\mathbf{x}, \mathbf{w}) p(\mathbf{w}|D) d\mathbf{w}$$
$$y = E[\operatorname{sign}(\mathbf{w}^{\mathrm{T}}\mathbf{x})|D]$$
$$\approx \operatorname{sign}(E[\mathbf{w}|D]^{\mathrm{T}}\mathbf{x})$$

E[w|D] is the Bayes Point

Bayes point machine example

SVM — Maximize margin

(distance to closest data point)

Bayes — Vote all perfect separators

Performance of EP

Billiard = Monte Carlo

Opper&Winther's algs:

MF = mean-field theory

TAP = cavity method (equiv to Gaussian EP)

Gaussian kernels

Map data into high dimensional space so that

$$\phi(\mathbf{x}_i)^{\mathrm{T}}\phi(\mathbf{x}_j) = \exp(-\frac{\|\mathbf{x}_i - \mathbf{x}_j\|^2}{2\sigma^2})$$

narrow width 0.2

wide width 0.5

SVM boundaries are more contrived, sensitive to kernel

Kernel selection

Gaussian kernel, width 0.08 (SVM choice)

Gaussian kernel, width 0.6 (Bayes choice among Gaussians)

Quadratic kernel (Bayes choice)

Kernel	R^2/ρ^2	$\log(p(D))$
$\sigma = 0.08$	18	-39
$\sigma = 0.6$	108	-19
quadratic	656	-16

SVM and EP have similar boundaries, but prefer different kernels