

KI-Projekt Filmvorschläge

Marcel Bulling, Johanna Deike, Aidan Zimmer, Lisa Reß-Park, Luca Chmielarski & Nora Klemp

Public

Agenda nach CRISP-DM

Public 2

Use Cases - Kunden

- Personalisierte Empfehlungen für bessere Auswahl
- Präferenz für das Kino, Zeitersparnis bei Buchung → Kundenbindung
- Wird auf Filme aufmerksam und entschließt sich dann diese zu schauen

Höhere Kundenzufriedenheit & Bindung an das Kino

Data

Evaluation

Use Cases - Kinobesitzer

- Verbesserter Kundenservice
- Genauere Planung von Personal, Sälen und Verpflegung
- Höheres Potential für Cross- und Upselling
- Effizienteres Marketing

Höherer Umsatz & Wettbewerbsvorteile

Überblick bereitgestellter Endpunkt

Business Understanding Data Understanding Data Preparation

Modelling

Evaluation

Deployment

Business Understanding

Data Understanding Data Preparation

Modelling

Evaluation

files for the usage licenses and other details.

Deployment

movies.csv

	Α	В	С
1	movield	title	genres
2	1	. Toy Story (1995)	Adventure Animation Children Comedy Fantasy
3	2	! Jumanji (1995)	Adventure Children Fantasy
4	3	Grumpier Old Men (1995)	Comedy Romance
5	4	Waiting to Exhale (1995)	Comedy Drama Romance
6	5	Father of the Bride Part II (1995)	Comedy
7	6	Heat (1995)	Action Crime Thriller
8	7	' Sabrina (1995)	Comedy Romance
9	8	Tom and Huck (1995)	Adventure Children
10	9	Sudden Death (1995)	Action
11	10	GoldenEye (1995)	Action Adventure Thriller
12	11	. American President, The (1995)	Comedy Drama Romance
13	12	Dracula: Dead and Loving It (1995)	Comedy Horror

ratings.csv

	Α	В		С	D
1	userId 🔽	movield	↓ Î	rating 🕝	timestamp 🔻
2	1		1	4,0	964982703
3	5		1	4,0	847434962
4	7		1	4,5	1106635946
5	15		1	2,5	1510577970
6	17		1	4,5	1305696483
7	18		1	3,5	1455209816
8	19		1	4,0	965705637
9	21		1	3,5	1407618878
10	27		1	3,0	962685262
11	31		1	5,0	850466616
12	32		1	3,0	856736119
13	33		1	3,0	939647444
14	40		1	5,0	832058959
15	43		1	5,0	848993983
16	44		1	3,0	869251860
17	45		1	4,0	951170182
18	46		1	5,0	834787906
19	50		1	3,0	1514238116
20	54		1	3,0	830247330

Data Preparation

movies.csv

Business Understanding Data Understanding Data Preparation

Modelling

Evaluation

Deployment

Modelling

Business Understanding Data Understanding

Data Preparation

Modelling

Evaluation

Deployment

Modelling

Business Understanding Data Understanding Data Preparation

Modelling

Evaluation

Deployment

Merkmalsextraktion bewerteter Filme

Feature-Vektorisierung Ähnlichkeitsberechnung

Sortierung und Ausgabe

Schritt 1: Merkmalsextraktion

Content-based Filtering

- Filme mit positiver Bewertung (>= 2.5 Sterne) auswählen
- Falls keine positiven Bewertungen Auswahl der Filme < 2.5 Sterne
- Genres der Filme aus movies.csv suchen

Schritt 2 + 3: Vektorisierung und Ähnlichkeit

Content-based Filtering

Vektorisierung mittels Mittelwerts der Merkmale aller bewerteten Filme = Nutzerprofil

Feature-Vektorisierung

Ähnlichkeitsberechnung zwischen Nutzerprofil Kinofilm-Merkmalen mithilfe Kosinus-Ähnlichkeit

Schritt 4: Ausgabe

Sortieren der Filme basierend auf Ähnlichkeitswerten + Rückgabe mit Scores

Kann auch mit unbekannten Filmen umgehen!

Neighborhood Verfahren - Idee

Neighborhood Verfahren – Hyperparameter Tuning

Neighborhood Verfahren – Ähnlichen Nutzer finden

Erstellung einer Ähnlichkeitsmatrix

 Pivot-Tabelle erstellen mit userld als index, movield in der Spalte und ratings in den Zellen

Hinzufügen der neuen Ratings

Der Neue Nutzer wird zu Pivot-Tabelle hinzugefügt

Berechnung der Ähnlichkeit zu anderen Nutzern:

 Bestimmung der Ähnlichkeit des Nutzers zu allen anderen Nutzern mithilfe der Cosinus Ähnlichkeit

Rückgabe des ähnlichen Nutzers:

 Rückgabe der IDs der ähnlichsten Nutzer für potenzielle Empfehlungen basierend auf deren Vorlieben.

Matrix-Faktorisierung - Einführung

Matrix-Faktorisierung - Methoden

Matrix-Faktorisierung – Bewertungsmetriken

MAE (Mean Absolute Error)

$$\bullet MAE = \frac{1}{n} \sum_{i=1}^{n} |\hat{y}_i - y_i|$$

RMSE (Root Mean Square Error)

•
$$RMSE = \sqrt{\frac{1}{n}\sum_{i=1}^{n}(\hat{y}_i - y_i)^2}$$

Matrix-Faktorisierung - Auswahl

Matrix-Faktorisierung – Hyperparameter Tuning

Matrix-Faktorisierung – Ähnlichen Nutzer finden

Extraktion der latenten Faktoren:

· Gewinnung der latenten Faktoren der bewerteten Filme aus dem trainierten Modell.

Berechnung der Nutzerfaktoren:

• Ableitung der Nutzerfaktoren basierend auf den extrahierten latenten Faktoren und den Nutzerbewertungen.

Berechnung der Ähnlichkeit zu anderen Nutzern:

 Bestimmung der Ähnlichkeit des Nutzers zu allen anderen Nutzern durch das Skalarprodukt der Nutzerfaktoren.

Sortierung der Ähnlichkeiten:

· Sortierung der berechneten Ähnlichkeiten in absteigender Reihenfolge.

Rückgabe des ähnlichen Nutzers:

 Rückgabe der IDs der ähnlichsten Nutzer für potenzielle Empfehlungen basierend auf deren Vorlieben.

Kombination: Hybrides Modell

Business Understanding Data Understanding Data Preparation

Modelling

Evaluation

Deployment

Kombination: Hybrides Modell - Gewichtung

$$Score\ Hybrid\ nach\ Durchschnitt\ =\ \frac{(Score\ Content\ Based\ +\ Score\ Neighborhood\ +\ Score\ SVD)}{3}$$

$$Score\ Hybrid\ mit\ Gewichtung = \frac{(Score\ Content\ Based\ *w1\ +\ Score\ Neighborhood\ *w2\ +\ Score\ SVD\ *w3)}{(w1+w2+w3)}$$

Kombination: Hybrides Modell – Bewertung Vorgehensweise

Kombination: Hybrides Modell – Optimierung der Gewichtung

Business Understanding

Data Understanding Data Preparation

Modelling

Evaluation

Deployment

Evaluation – Bewertung des hybriden Modells

- Mittelwert statisch optimal
- Mittelwert in Realität unaussagekräftig

Bewertung im Kontext der Business Kriterien

Geschäftsziele

- Nutzerbindung vertiefen
- Bereitstellung personalisierter Inhalte
- Kompetitive Differentiation

35

Deployment & Demo

Kritische Würdigung

Nutzerintegration

- · Ähnliche Nutzer als Annäherung
- Genauigkeitsverluste (RMSE, MAE)

Eingeschränkte Vorhersagen

- · Nur im Modell enthaltene Filme
- Keine neuen Filme (KNN, SVD)
- Content-based Potential (Genres, etc.)

Cold-Start Problem

• SVD und KNN Einschränkungen

Bias in den Daten

· Nette und kritische Nutzende

Skalierbarkeit

- Problem bei großen Datenmengen
- Kino idR max. 20 Filme -> kein Problem

Ausblick

Deep Learning Potential

Public 37

Eme End

URLS:

Api Doku:

https://moviemate.mabu2807.de/

Kino Webseite:

https://cinetastisch.mabu2807.de/

Public