Turno:	Grupo:	Data:
Número:	Nome: _	
Número:	Nome: _	
Número:	Nome:	
 Des Des aplied 	senhe um diagrama do cadas nas diferentes ctrica. colha os 5 pares de coo	ivos do trabalho que irá realizar na sessão de laboratório. es campos eléctricos, magnéticos, da velocidade dos electrões e forças zonas do TRC, para a deflexão magnética e def
de	deflexão magnetica, d meiras colunas da Secç	le modo a obter os maiores valores de R possíveis. Preencha as 3 ção 2.1.2.
de prii	_	ção 2.1.2.
de prii	meiras colunas da Secç	ção 2.1.2.

1.1.1 Equações

Escreva no seguinte quadro todas as equações necessárias para calcular as grandezas, bem como as suas incertezas e a legenda de símbolos. Numere as equações para futura referência e indique nas tabelas qual a que utiliza para os cálculos.

2 Relatório		

2

Relationo

DETERMINAÇÃO DE q/m POR DEFLEXÃO MAGNÉTICA

Montagem Experimental 2.1.1

Laboratório de Introdução à Física Experimental 2017/18

Desenhe um diagrama da experiência. Inclua uma lista e legenda dos instrumentos e repectiva gama de valores (Range) e resolução.

boratório de Introdução à Física Experimental 2017/18	3
2 Medidas Experimentais e Cálculos Intermédios	

Preencha as seguintes tabelas indicando apenas os algarismos significativos. Terá que verificar as contas com auxílio da calculadora, para um dos ensaios e na presença do docente. Indique as unidades de cada coluna, utilizando (sub)múltiplos mais adequados para o máximo de clareza nas tabelas.

$U_a = _$	[],	δU_a =	=[], δ_y	=	[mm],	$\delta_z =$	= [mm]	
y [cm]	z_{+}/z_{-} [cm]	R[]	δR []	$I_+[]$	<i>I</i> _ []	$\overline{I} = \frac{ I_+ + I }{2}$	<u>-1</u> []	$\delta I = \frac{ I_+ - I }{2} \left[\right]$	

**		
// —	+	1/
U_a —		v

y [cm]	z_{+}/z_{-} [cm]	R[]	δR []	I ₊ []	<i>I</i> _ []	$\overline{\overline{I}} = \frac{ I_+ + I }{2}$	$\delta I = \frac{ I_+ - I }{2} \left[\right]$			
			.							

$U_a = \underline{\hspace{1cm}} \pm \underline{\hspace{1cm}} V$

y [cm]	z_{+}/z_{-} [cm]	R[]	δR []	$I_+[]$	$I_{-}[]$	$\overline{I} = \frac{ I_+ + I }{2}$ []	$\delta \overline{I} = \frac{ I_{+} - I_{-} }{2} []$	

2.1.3 Cálculos de q/m

			R =	± [1	
U_a []	\overline{I} []	B []	δB []	$q/m [10^{11} \text{C/kg}]$	$\frac{\delta q/m \ [10^{11}\text{C/kg}]}{\delta q/m \ [10^{11}\text{C/kg}]}$	$\overline{q/m}$ [10 ¹¹ C/kg]
±	±					
± [±					±
± [±					
				± [
U_a []	\overline{I} []	B []	δB []	$q/m \ [10^{11} { m C/kg}]$	$\delta q/m~[10^{11}{ m C/kg}]$	$\overline{q/m}$ [10 ¹¹ C/kg]
土	±					
± [±					±
± [±					
			$R = _$	±[]	
U_a []	\overline{I} []	B []	δB []	$q/m \ [10^{11} { m C/kg}]$	$\delta q/m \ [10^{11} \text{C/kg}]$	q/m [10 ¹¹ C/kg]
土	土					
土 [土					
土	±					
			$R = _$	±[]	
U_a []	\overline{I} []	B []	δB []	$q/m \ [10^{11} { m C/kg}]$	$\delta q/m~[10^{11}{ m C/kg}]$	$\overline{q/m}$ [10 ¹¹ C/kg]
土	±					
± [±					±
土	土					
			R =	±[]	
U_a []	\overline{I} []	B []	$\delta \overline{B}$ []	q/m [10 ¹¹ C/kg]	$\frac{1}{\delta q/m} [10^{11} \text{C/kg}]$	q/m [10 ¹¹ C/kg]
± [±					
± [±					±
土	±					

Incertezas relativas parciais

$\delta_{(U_a)}q/m$ []	$\delta_{(U_a)}q/m$ [%]	$\delta_{(R)}q/m$ []	$\delta_{(R)}q/m$ [%]	$\delta_{(\overline{I})}q/m$ []	$\delta_{(\overline{I})}q/m$ [%]	$\delta q/m \ [10^{11} \mathrm{C/kg}]$

2.1.4 Resultados Finais. Explique os critérios que utilizou para obter as incertezas.

$q/m_{(B)} = (\underline{} \pm \underline{}$	_)×10 ¹¹ C/kg	
Desvio à Exactidão =	_%, Incerteza relativa =	

2.2 DETERMINAÇÃO DE q/m POR DEFLEXÃO MAGNÉTICA E ELÉTRICA QUASE COMPENSADAS

2.2.1 Dados Experimentais e Cálculos

Distância entre placas d =___[]

				$U_a =$	=	±	V	
ſ	$I_{max} []$	I_{min} []	\overline{I} []	δI []	B []	δB []	$q/m \ [10^{11} {\rm C/kg}]$	$\delta q/m~[10^{11}{ m C/kg}]$

			$U_a =$	=	±	V	
I_{max} []	I_{min} []	\overline{I} []	δI []	B []	δB []	$q/m \ [10^{11} {\rm C/kg}]$	$\delta q/m \ [10^{11} \text{C/kg}]$

			$U_a =$	=	±	V	
$I_{max} []$	I_{min} []	\bar{I} []	$\delta \overline{I}$ []	B []	δB []	$q/m \ [10^{11} {\rm C/kg}]$	$\delta q/m \ [10^{11} \text{C/kg}]$

2.2.2 Resultados

$$q/m_{(B,E)} = (_____\pm__) \times 10^{11} \text{ C/kg}$$

Desvio à Exatidão = _____%, Incerteza relativa = _____%

2.3 Trajetória não compensada

Aumente agora o campo B (sempre com $I \leq 3$ A) de forma a visualizar uma trajetória claramente não compensada. Faça um esboço da curva observada, indicando os vetores das forças em jogo (com uma estimativa do seu valor em [N]), bem como as condições experimentais. Comente a figura obtida.

2.4	Análise e comparação dos dois métodos. rios Finais	Conclusões e Comentá-