Introduction to probability distribution

June 14, 2018

1 Starters

• When the random variable is discrete in nature, its probability distribution is characterized by **Probability Mass Function (PMF)**.

No. of fruits sold	no. of customers	PMF
3	30	30/60 20/60 10/60
5	20	20/60
7	10	10/60
	60	sum = 1

• A Cumulative Distribution Function (CDF) defines the less than, greater than or equal to argument of a function.

CDF is a monotonic increasing function.

For the above PMF, CDF of $P(X \leq x)$ could be calculated as -

No. of fruits sold	no. of customers	PMF	\mathbf{CDF}
3	30	30/60	30/60
5	20	20/60	(30/60) + (20/60)
7	10	10/60	(30/60) + (20/60) + (10/60)
	60	sum = 1	last value itself becomes 1

• When the random variable is continuous in nature, its probability distribution is characterized by **Probability Density Function (PDF)**.

2 Discrete PD

 $\textbf{Topics:} \ \operatorname{Uniform} - \operatorname{Binomial} - \operatorname{Negative} \ \operatorname{binomial} - \operatorname{Poisson}$

2.1 Uniform

• A random variable which assumes equal probability for its outcomes, is termed as discrete uniform PD.

e.g. getting 5 in a throw of a dice. Same goes with other number on dice.

2.2 Binomial

•