SCMA104 Systems of Ordinary Differential Equations and Applications in Medical Science

Pairote Satiracoo

2024-08-21

Contents

1	l หลักการและความสำคัญของแคลคูลัสและระบบสมการเชิงอนุพันธ์สามัญ					
2	ลิมิต (Limits) 2.1 ความต่อเนื่อง (Continuity)	17 42				
3	อนุพันธ์ (Derivatives) 3.1 อนุพันธ์ (Derivatives) 3.2 การคำนวณหาอนุพันธ์ 3.3 สูตรสำหรับหาอนุพันธ์ 3.4 อนุพันธ์อันดับสูง (High Order Derivatives)	55 55 64 69				

	3.5	การตีความอนุพันธ์ (Interpretation of Derivatives)	71	
	3.6	กฎลูกโซ่ (The Chain Rule)	81	
	3.7	อนุพันธ์ของฟังก์ชันอินเวอร์ส (Derivatives of Inverse Functions)	91	
	3.8	Differentials, Implicit Differentiation and Related Rates	97	
	3.9	อนุพันธ์ของฟังก์ชันตรีโกณมิติและอินเวอร์สของฟังก์ชันตรีโกณมิติ	126	
4	การปร	ระยุกต์ของอนุพันธ์ (Applications of Differentiation)	143	
4	การปร 4.1	ระยุกต์ของอนุพันธ์ (Applications of Differentiation) Applications of derivatives related to students discipline	143 144	
4		· ·		
4	4.1	Applications of derivatives related to students discipline	144	
4	4.1 4.2	Applications of derivatives related to students discipline	144 151	

\overline{x}	f(x)	g(x)	h(x)	f'(x)	g'(x)	h'(x)
-1	0	1	2	2	0	2
0	3	-1	?	1	1	?
1	?	0	0	?	?	3

จงหาค่าของ h(0), f(1), h'(0), f'(1) และ g'(1)

5. จาก chain rule

E: chain1

,
$$\frac{dy}{dx}=\frac{dy}{du}\cdot\frac{du}{dx}$$
, จงหาสูตร ของ $\frac{d^2y}{dx^2}$

3.7 อนุพันธ์ของฟังก์ชันอินเวอร์ส (Derivatives of Inverse Functions)

นิยาม 3.2. ถ้าฟังก์ชัน f และ g สอดคล้องสมบัติ

- 1. g(f(x)) = x สำหรับ x ที่เป็นสมาชิกของโดเมนของ f
- 2. f(g(y)) = y สำหรับ y ที่เป็นสมาชิกของโดเมนของ g

เรากล่าวว่า f และ g เป็นฟังก์ชันอินเวอร์ส โดยที่ f เป็น ฟังก์ชันอินเวอร์สของ g และ g เป็นฟังก์ชัน อินเวอร์ส ของ f

ถ้าเขียน f^{-1} แทน g และใช้สัญกรณ์ x แทนสมาชิกทั้งในโดเมนของ f และ f^{-1} สมมติว่าทั้งสอง ฟังก์ชันหา derivative ได้ ให้

$$y = f^{-1}(x)$$

เราสามารถเขียนใหม่ได้ว่า

$$x = f(y)$$

หา derivative เทียบกับ x

$$\frac{d}{dx}[x] = \frac{d}{dx}[f(y)]$$

$$= f'(y) \cdot \frac{dy}{dx}$$
(3.17)

บ้นคือ

$$1 = f'(y) \cdot \frac{dy}{dx}$$

หรือ

$$\frac{dy}{dx} = \frac{1}{f'(y)}$$

$$\frac{d}{dx}[f^{-1}(x)] = \frac{1}{f'(f^{-1}(x))}$$

ตัวอย่าง 3.16. กำหนดให้ $f(x)=x^3$ มี $f^{-1}(x)=x^{1/3}$ จงหา $\frac{d}{dx}[f^{-1}(x)]$ วิธีทำ คำนวณหา derivative ได้ว่า $f'(x)=3x^2$ และ

(3.18)

ในการหา derivative ของฟังก์ชันอินเวอร์ส เราอาจจะไม่ใช้สูตรโดยตรง แต่ จะคำนวณหา derivative ตามขั้นตอนที่ได้แสดงข้างต้น ดังตัวอย่าง

ตัวอย่าง 3.17. พิจารณาฟังก์ชัน $f(x)=x^3+x+2$ จงหา derivative ของ $f^{-1}(x)$ วิธีทำ เราเขียน $x=f(y)=y^3+y+2$ แล้วหา derivative เทียบกับ x

(3.19)

ดังนั้น
$$\frac{dy}{dx}=\frac{1}{3y^2+1}$$

ตัวอย่าง 3.18. กำหนดให้ f เป็นฟังก์ชันซึ่งมีอิสเวอร์ส ถ้า f(1)=2 และ f'(1)=3 แล้ว จงหาค่า ของ $(f^{-1})'(2)$

วิธีทำ เนื่องจาก f(1)=2 แล้ว $f^{-1}(2)=1$ และจากสูตร

(3.20)

นั่นคือ
$$(f^{-1})'(2)=1/3$$

3.7.1 แบบฝึกหัด

1. จงหา $(f^{-1})'(x)$ เมื่อกำหนด

1.
$$f(x) = 2x^3 - 1$$

2.
$$f(x) = \frac{x+1}{x-1}$$

3.
$$f(x) = \frac{x^3 + 1}{x^2 + 1}$$

4.
$$f(x) = \sqrt{x^3 + x^2 + x + 1}$$

3.8 Differentials, Implicit Differentiation and Related Rates

3.8.1 Differentials

ที่ผ่านมา เราให้ความหมายของ dy/dx ว่าเป็น derivative ของ y เทียบกับ x ในความหมายของตัว ดำเนินการ $\frac{d}{dx}$ ที่กระทำ กับฟังก์ชัน y หัวข้อนี้เราจะนิยาม dy และ dx แยกจากกัน และให้ความหมาย dy/dx ว่าเป็นเศษส่วน

ผลต่างระหว่างค่าสองค่าของตัวแปร เราเรียกว่า increment เช่นในตัวแปร x ผลต่างระหว่างค่า $x=x_0$

และ $x=x_1$ เราเขียน increment ใน x นี้ ว่า $\Delta x=x_1-x_0$

ให้ y=f(x) และให้ x มีการเปลี่ยนค่าจาก $x=x_0$ ไปยัง $x=x_1$ ก็จะมี การเปลี่ยนค่าใน y จาก $y_0=f(x_0)$ ไปยัง $y_1=f(x_1)$ นั่นหมายความ ว่า increment Δx ทำให้เกิด increment $\Delta y=y_1-y_0$ โดยที่

$$\Delta y = y_1 - y_0 = f(x_1) - f(x_0)$$

หรือ

$$\Delta y = f(x_0 + \Delta x) - f(x_0)$$

ดังนั้น สำหรับค่า x ทั่วไปแล้ว เราอาจเขียน

$$\Delta y = f(x + \Delta x) - f(x)$$

และนิยามของ derivative ก็เขียนได้อีกรูปว่า

$$\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

เมื่อเราเห็นการเขียนสัญกรณ์ $\frac{dy}{dx}$ มีแนวโน้มที่จะ ทำให้เราคิดถึงผลหารของ dy ด้วย dx ซึ่งในขณะนี้

ทั้งสองปริมาณยังไม่มี ความหมายใด ๆ สังเกตว่าในสูตรของ chain rule ที่ว่า $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$ ก็ให้ ความรู้สึกแรกว่าน่าจะเป็นผลหารเช่นกัน ดังนั้นลำดับถัดไปเราจะให้ความหมายของ พจน์ dx, dy และ การตีความหมายในรูปเศษส่วน

เริ่มด้วยการตรึงค่า x และนิยาม dx ว่าเป็นตัวแปรต้น กำหนดให้ y=f(x) และ f เป็นฟังก์ชัน หา derivative ได้ เรานิยาม dy ว่าเป็นตัวแปรตามดังนี้

$$dy = f'(x) \, dx$$

ถ้า $dx \neq 0$ เราเขียนใหม่ได้ว่า

$$\frac{dy}{dx} = f'(x)$$

เราเรียก dy ว่า differential ของ y และ dx ว่า differential ของ x

มีความแตกต่างระหว่าง ความหมายของ differential dy และ increment $\Delta y=y_1-y_0$ ถ้าเรา กำหนดให้ differential dx และ increment Δx มีค่า เดียวกัน นั่นคือ $dx=\Delta x$ จะเห็นว่า Δy แทนถึง ค่าผลต่างใน y ของจุดเริ่มต้น x และจุดปลาย $x+\Delta x$ ตามเส้นโค้ง y=f(x) นั่นคือ

 $\Delta y=f(x+\Delta x)-f(x)$ ในขณะที่ dy แทนถึงค่าผลต่างใน y ของจุดเริ่มต้น x และจุดปลาย $x+\Delta x$ ตามเส้นสัมผัสของเส้นโค้ง y=f(x) ที่ผ่านจุด (x,f(x)) และ มีความชั้นเท่ากับ f'(x)

ตัวอย่าง 3.19. ถ้า $y=f(x)=x^2+1$ แล้ว f'(x)=2x กำหนดให้ x=3 จงหาค่าของ dy และ Δy เมื่อ $dx=\Delta x=0.1$

วิธีทำ ค่าของ dy คือ

กรณีตรึง x=3 ได้ว่า

ถ้าให้ dx=0.1 ค่าของ dy=0.6 ถ้าเราพิจารณาค่า $dx=\Delta x=0.1$ เราก็จะได้

$$\Delta y = f(3 + \Delta x) - f(3) = (3.1)^2 + 1 - 3^2 - 1 = 0.61$$

สังเกตว่า dy=0.6 ในขณะที่ $\Delta y=0.61$

มีข้อสังเกตว่า ถ้า f เป็นฟังก์ชันหา derivative ได้ที่ค่า x_0 แล้วเส้นสัมผัส กับเส้นโค้ง y=f(x) ที่จุด $(x_0,f(x_0))$ จะใกล้เคียงกับกราฟของ f สำหรับค่า x ใกล้ ๆ กับค่า x_0 สมการเส้นสัมผัสกับเส้นโค้งนี้ ที่ผ่านจุด $(x_0,f(x_0))$ มี ความชัน $f'(x_0)$ คือ

เมื่อเรากล่าวว่า เส้นโค้ง y=f(x) และเส้นสัมผัสกับเส้นใกล้เคียงกันหมายถึงถ้าเรา ให้ x เข้าใกล้ x_0 ค่าของ $f(x_0)+f'(x_0)(x-x_0)$ ก็จะใกล้เคียงค่า f(x)

เราเรียกสมการ

ว่า local linear approximation ของ f ที่ x_0 เรา อาจเขียนในอีกรูปว่า

$$f(x_0 + \Delta x) \approx$$

ตัวอย่าง 3.20. จงหา local linear approximation ของฟังก์ชัน $f(x)=x^{1/3}$ ที่ $x_0=1$ วิธีทำ เรามี $f(x)=x^{1/3}$ และคำนวณหา derivative

$$f'(x) = \frac{1}{3}x^{-2/3}$$

local linear approximation ของ f ที่ $x_0=1$ จึงเป็น

$$x^{1/3} \approx$$

ถ้าเราต้องการประมาณค่าของ $(1.1)^{1/3}$ เราใช้ local linear approximation ของ f ในการประมาณโดยได้ค่าประมาณคือ $1+\frac{1}{3}(1.1-1)=1.03$

3.8.2 Implicit Differentiation

บางครั้งเราต้องการหา derivative ของฟังก์ชัน ซึ่งไม่สามารถเขียนได้ ในรูปฟอร์ม y=f(x) เช่นใน ความสัมพันธ์

$$x^2 + y^3 - xy = 0$$
103

การหา derivative ของ y เทียบกับ x เราไม่จำเป็นต้องเขียนความสัมพันธ์ ให้อยู่ในรูป y=f(x) ก่อน หลักการสำคัญก็คือ เราคิดให้ y เป็น ฟังก์ชันของ x เช่นในตัวอย่างที่ยกมา ถ้าเราหา derivative ทั้งสอง ข้าง ของสมการเทียบกับ x

$$\frac{d}{dx}[x^2 + y^3 - xy] = \frac{d}{dx}[0]$$
(3.21)

เขียนใหม่ได้ว่า

ตัวอย่าง 3.21. กำหนดให้ $y^2=x^3(2-x)$ สังเกตว่า (x,y)=(1,1) อยู่บน กราฟของความสัมพันธ์ จงหาว่าความชั้นของกราฟนี้ที่จุด (1,1)

วิธีทำ หา derivative เทียบกับ x ทั้งสองข้าง ของสมการ

$$\frac{d}{dx}[y^2] = \frac{d}{dx}[x^3(2-x)]$$

(3.22)

ดังนั้นที่จุด (x,y)=(1,1) เราจะได้ derivative ของ y เทียบ กับ x เป็น $\dfrac{dy}{dx}=\dfrac{3}{2}$

ตัวอย่าง 3.22. จงหาสมการเส้นสัมผัสกับเส้นโค้งของสมการ

$$xy^2 = 1$$

ที่จุด (1,-1)

วิธีทำ เริ่มด้วยการหาความชั้นของเส้นสัมผัสที่จุด (1,-1) เราหา derivative ของสมการเทียบกับ x ได้ ว่า

$$\frac{d}{dx}[xy^2] = \frac{d}{dx}[1]$$

(3.23)

ดังนั้นความชั้นของเส้นสัมผัสที่จุด (1,-1) มีค่าเท่ากับ 1/2 สมการเส้น สัมผัสของเส้นโค้งที่จุด (1,-1) 106

จึงเป็น

$$\frac{y - (-1)}{x - 1} = \frac{1}{2}$$

$$y + 1 = \frac{1}{2}x - \frac{1}{2}$$
(3.24)

นั่นคือ
$$y = \frac{x-3}{2}$$

ตัวอย่าง 3.23. พิจารณาสมการ

$$\frac{1}{3}x^3 + y^3 - xy^2 = 5$$

จงหาว่าที่จุดใดบนเส้นโค้งที่เส้นสัมผัสขนานแกน $\,x\,$

วิธีทำ เราเริ่มด้วยการหา derivative ของสมการ

$$\frac{d}{dx}[\frac{1}{3}x^3 + y^3 - xy^2] = \frac{d}{dx}[5]$$

(3.25)

สังเกตว่าเส้นสัมผัสที่ขนานแกน x จะมีความชันเป็น 0 ดังนั้นที่จุดบน เส้นโค้งซึ่งมีเส้นสัมผัสขนานแกน x

สอดคล้องกับสมการ

$$y^2-x^2=0$$
 และ
$$\frac{1}{3}x^3+y^3-xy^2=5 \tag{3.26}$$

เนื่องจาก $y^2 - x^2 = (y - x)(y + x) = 0$

- 1. เมื่อ y=x เราได้ว่า $x^3=15$ หรือ $x=y=\sqrt[3]{15}$
- 2. เมื่อ y=-x เราได้ว่า $x^3=-3$ หรือ $x=-y=\sqrt[3]{-3}$

เพราะฉะนั้นที่จุด $(\sqrt[3]{15},\sqrt[3]{15})$ และ $(\sqrt[3]{-3},-\sqrt[3]{-3})$ บนเส้นโค้ง เส้นสัมผัสมีความชั้นเป็น 0

3.8.3 Related Rates

เราศึกษาปัญหา related rates เราต้องการหาอัตราการเปลี่ยนแปลงของ ปริมาณหนึ่งซึ่งมีความสัมพันธ์ กับอัตราการเปลี่ยนแปลงของปริมาณอื่น ซึ่งเราทราบค่าแล้ว วิธีการทำได้ดังนี้

- 1. กำหนดปริมาณต่าง ๆ ด้วยตัวแปร
- 2. ระบุอัตราการเปลี่ยนของปริมาณที่รู้ค่า และอัตราการเปลี่ยนแปลง ของปริมาณที่ต้องการหาค่า

- 3. หาสมการซึ่งแสดงความสัมพันธ์ของอัตราการเปลี่ยนแปลงของปริมาณในข้อสอง
- 4. หา derivative ทั้งสองข้างของสมการเทียบกับเวลา แก้สมการหาค่าของ อัตราการเปลี่ยนของปริมาณ ที่ไม่รู้ค่า
- 5. หาค่าอัตราการเปลี่ยนแปลงที่จุดกำหนด

ตัวอย่าง 3.24. สมมติว่าเนื้องอกมีรูปร่างคล้ายทรงกลม ซึ่งสูตรการหาปริมาตรของทรงกลม คือ $V=rac{4}{3}\pi r^3$ เมื่อ r เป็นรัศมีของทรงกลม เนื่องจากเนื้องอกมีการขยายตัว ทำให้ r มีขนาดยาวขึ้นด้วยอัตรา คงที่ 1.25 มิลลิเมตรต่อเดือน อยากทราบว่าปริมาตรของเนื้องอกจะเพิ่มขึ้นมากน้อยเพียงใด เมื่อ r=10 mm

กำหนดให้ V เป็นปริมาตรของเนื้องอก (หน่วยคือ mm^3) r เป็นรัศมีของเนื้องอก (หน่วยคือ mm) จาก โจทย์ จะเห็นว่า เมื่อเวลาผ่านไป เนื้องอกมีการขยายตัวทำให้ r มีขนาดยาวขึ้น และ V เพิ่มขึ้นด้วย ดังนั้น V, r ล้วนเป็นตัวแปรตาม ในขณะที่ t เป็นตัวแปรต้น นอกจากนี้ โจทย์ยังบอกอีกด้วยว่า r มีขนาดยาวขึ้น ด้วยอัตรา 1.25 มิลลิเมตรต่อเดือน ดังนั้น $\frac{dr}{dt}=1.25$ สิ่งที่โจทย์ถามก็คือ อัตราการเปลี่ยนแปลงปริมาตร ของเนื้องอก นั่นคือ $\frac{dV}{dt}$ จากความสัมพันธ์ $V=\frac{4}{3}\pi r^3$ หาอนุพันธ์เทียบ t ทั้ง 2 ข้าง

เมื่อ $r=10~\mathrm{mm}$

$$\frac{dV}{dt} = 4\pi(10)^2(1.25) = 500\pi > 0$$

ดังนั้น ปริมาตรของเนื้องอกจะเพิ่มขึ้นด้วยอัตรา 500π ลูกบาศก์มิลลิเมตรต่อเดือน

ตัวอย่าง 3.25. วิธีการอย่างง่าย ในการกำจัดตะกอนที่แขวนลอยอยู่ในน้ำ เทน้ำลงในกรวยที่มี filter ไว้ สมมติว่ากรวยสูง 16 นิ้ว และมีรัศมีที่ฐานเท่ากับ 4 นิ้ว ถ้าน้ำไหลออกจากกรวยด้วยอัตราเร็ว 2 ลูกบาศก์ นิ้วต่อนาที เมื่อระดับน้ำสูง 8 นิ้ว ความลึกของน้ำจะลดลงมากน้อยเพียงไร

กำหนดให้ t เป็นเวลานับจากการเริ่มต้นการสังเกต (min) V เป็นปริมาตรของน้ำในกรวย ณ เวลา t (in t) t เป็นความลึกของน้ำในกรวย ณ เวลา t (in) t เป็นรัศมีของพื้นที่ผิวของน้ำ ณ เวลา t (in) อัตราการ เปลี่ยนแปลงปริมาตรของน้ำ คือ t0 โจทย์กล่าวว่า น้ำใหลออกจากกรวยด้วยอัตราเร็ว 2 in t2 min เมื่อระดับน้ำสูง 8 in แสดงว่า น้ำในกรวยมีปริมาตรลดลง

$$\left. \frac{dV}{dt} \right|_{y=8} =$$

การระบุอัตราการเปลี่ยนแปลงแบบนี้ แสดงให้เห็นว่า ณ ความลึกของน้ำต่างกัน อัตราการเปลี่ยนแปลง ปริมาตรของน้ำก็จะแตกต่างกันไป ไม่ได้เปลี่ยนแปลงด้วยอัตราที่คงที่เหมือนตัวอย่างก่อนหน้านี้ โจทย์ ต้องการทราบว่าอัตราการเปลี่ยนแปลงความลึกของน้ำ เมื่อระดับน้ำสูง 8 นิ้ว นั่นคือ $\frac{dy}{dt}\Big|_{u=8}$

Figure 3.2: การไหลเวียนของอากาศในหลอดลม

จากสูตรการหาปริมาตรของกรวย

$$V = \frac{1}{3}\pi x^2 y$$

และจากคุณสมบัติของสามเหลี่ยมคล้าย $\frac{x}{y}=\frac{4}{16}$ หรือ $x=\frac{y}{4}$ ทำให้ได้ $V=\frac{\pi}{48}y^3$ หาอนุพันธ์เทียบ t ทั้ง 2 ข้าง จะได้ $\frac{dV}{dt}=\frac{\pi}{48}(3y^2\frac{dy}{dt})$ หรือ $\frac{dy}{dt}=\frac{16}{\pi y^2}\frac{dV}{dt}$ ดังนั้น

$$\left. \frac{dy}{dt} \right|_{y=8} = \frac{1}{2}$$

สรุปว่า เมื่อระดับน้ำสูง 8 นิ้ว ความลึกของน้ำจะลดลงด้วยอัตรา $\frac{1}{2\pi}$ นิ้วต่อวินาที

ตัวอย่าง 3.26. เมื่อโยนก้อนหินลงในสระน้ำ จะเกิดคลื่นซึ่งรัศมีเพิ่มขึ้นด้วย อัตรา 0.9 เมตร/วินาที พื้นที่ ที่ล้อมรอบไปด้วยคลื่นหลังจาก ผ่านไป 10 วินาทีเพิ่มขึ้นด้วยอัตราเท่าใด?

วิธีทำ กำหนดให้

- 1. t แทนเวลา (วินาที)
- $2. \ r$ แทนรัศมีของคลื่น (เมตร)
- 3. A แทนพื้นที่ที่ล้อมรอบไปด้วยคลื่น (ตารางเมตร)

พื้นที่ที่ล้อมรอบไปด้วยคลื่นเป็นไปตามสูตร

$$A = \pi r^2$$

เราหา derivative เทียบกับเวลา ได้ว่า

$$\frac{dA}{dt} =$$

เรามีข้อมูลว่า $\frac{dr}{dt}=0.9$ เมตร ในขณะที่วินาที ที่ 10 รัศมีของคลื่นจึงมีค่าเท่ากับ $0.9\cdot 10=9$ เมตร และดังนั้นพื้นที่ที่ล้อมรอบไปด้วยคลื่นจึงเพิ่มขึ้นด้วยอัตรา

$$\frac{dA}{dt} = (2\pi)(9)(0.9) = 50.89$$

ตารางเมตรต่อวินาที

ตัวอย่าง 3.27. เครื่องเททราย เททรายเป็นรูปกรวย ซึ่งความสูงของกองทรายมีค่าเท่ากับ เส้นผ่านศูนย์กลาง ที่ฐานของกองทรายเสมอ ถ้าความสูงเพิ่มขึ้นด้วยอัตราคงที่ 1.5 เมตร ต่อนาที จงหาว่าเครื่องเททรายเท ทรายด้วยอัตราเท่าใดเมื่อกองทรายมีความ สูงเท่ากับ 3 เมตร

วิธีทำ กำหนดให้

- 1. t แทนเวลา (นาที)
- 2. V แทนปริมาตรของกองทราย ณ เวลา t (ลูกบาศก์เมตร)
- 3. h แทนความสูงของกองทราย ณ เวลา t (เมตร)
- 4. r แทนรัศมีของพื้นกองทราย ณ เวลา t (เมตร)

ในแต่ละเวลา t อัตราการเปลี่ยนแปลงของปริมาตรทรายคือ dV/dt และอัตราการเปลี่ยนแปลงของความ สูงของกองทรายคือ dh/dt จากข้อมูล ที่ให้มา เรารู้ว่า

$$\frac{dh}{dt} = 1.5$$

เนื่องจากกองทรายมีลักษณะเป็นรูปกรวย ซึ่งมีสูตรว่า

$$V = \frac{1}{3}\pi r^2 h$$

เรายังทราบอีกว่า ที่แต่ละเวลา t ความสูงของกองทราย มีค่าเท่ากับรัศมีของพื้นกองทราย r=h เพราะ ฉะนั้น

$$V = \frac{1}{3}\pi h^3$$

หา derivative เทียบกับ t ได้ว่า

$$\frac{dV}{dt} =$$

ดังนั้น

$$\frac{dV}{dt} =$$

เมื่อกองทรายสูง 3 เมตร อัตราการเปลี่ยนแปลงของปริมาตรกองทรายจึงเป็น

$$\frac{dV}{dt} = 13.5\pi = 42.41$$

ลูกบาศก์เมตรต่อนาที

ตัวอย่าง 3.28. จุด P เคลื่อนที่ไปตามเส้นโค้งตามสมการ

$$y = \sqrt{x^2 + 16}$$

เมื่อ P=(3,5) แล้ว y มีค่าเพิ่มขึ้นด้วยอัตรา 2 หน่วย/วินาที ค่า x มีการเปลี่ยนแปลงด้วยอัตราเท่าใด **วิธีทำ** กำหนดให้

1. t แทนเวลา (วินาที)

เราหา derivative ของสมการที่กำหนดเทียบกับเวลา t พบว่า

$$\frac{dy}{dt} = 1$$

เรารู้ว่าที่จุด P=(3,5)

$$\frac{dy}{dt} = 2$$

แทนค่าทั้งสองในสมการ

E: example

เราจะได้ว่า

$$2 = \frac{2}{\sqrt{9+16}} \frac{dx}{dt}$$

นั่นคือ

$$\frac{dx}{dt} = 5$$

นั่นคือ x มีการเปลี่ยนแปลงด้วยอัตรา 5 หน่วยต่อวินาที

ตัวอย่าง 3.29. ท่าเรือหนึ่ง มีแท่งแขวนลูกรอกผูกเรืออยู่เหนือท่า มีเชือกผูกไว้กับ หัวเรือซึ่งอยู่ต่ำกว่าตัวรอก ของแท่งแขวน 3 เมตร ถ้าเราดึงเชือกด้วยอัตราเร็ว 6 เมตร/นาที เรือถูกดึงเข้าหาท่าด้วยอัตราเร็วเท่าใด เมื่อเชือก จากหัวเรือถึงลูกรอกมีความยาว 40 เมตร

วิธีทำ กำหนดให้

- 1.t แทนเวลา (นาที)
- 2. x ระยะทางในแนวนอน (เมตร)
- 3. y ระยะทางในแนวดิ่ง (เมตร)

จากข้อมูลของปัญหา เราสรูปได้ว่า อัตราการดึงเชือกแทนด้วยพจน์

$$\frac{dy}{dt} = 6$$

คำถามให้ $\frac{dx}{dt}$ เมื่อเชือกยาว 40 เมตรนับจากหัวเรือถึงลูกรอก โดยการใช้พิทาโกรัส เราจึงได้ความสัมพันธ์

$$x^2 + y^2 = 40^2$$
121

เราหา derivative เทียบกับ t ทั้งสองข้างของสมการ

(3.27)

เนื่องจากลูกรอกอยู่สูงกว่าหัวเรือ 3 เมตร หรือ y=3 ในขณะที่ การดึงเชือกด้วยอัตราเร็ว 6 เมตร หรือ $\frac{dy}{dt}=6$ เพราะฉะนั้น เมื่อเชือกยาว 40 เมตร เรืออยู่ห่างออกไปเป็นระยะทาง

$$x^2 + 3^2 = 40^2$$

หรือ $x=\sqrt{1591}$ ดังนั้น

(3.28)

ซึ่งหมายถึงเรือถูกดึงเข้าหาท่าด้วยอัตราเร็ว 0.6 เมตรต่อนาที

1. วาดภาพและกำหนดตัวแปรต่างๆ เช่น x, y เป็นต้น

- 2. ระบุอัตราการเปลี่ยนแปลงของตัวแปรทุกตัวที่โจทย์กำหนดให้ และที่โจทย์ต้องการให้หา เช่น $\frac{dx}{dt}$, $\frac{dy}{dt}$ เป็นต้น
- 3. หาสมการสมการหนึ่งที่แสดงให้เห็นถึงความสัมพันธ์ระหว่างตัวแปรที่กำหนดขึ้นในขั้นตอนที่ 1 และเมื่อ หาอนุพันธ์ของสมการนี้ จะมีเทอมที่เกี่ยวข้องกับอนุพันธ์ในขั้นตอนที่ 2
- 4. หาอนุพันธ์ทั้ง 2 ข้างของสมการในขั้นตอนที่ 3 เทียบกับเวลาและนำค่าของอนุพันธ์ที่ทราบลงไปใน สมการ
- 5. หาค่าของอนุพันธ์ที่โจทย์ต้องการด้วยวิธีทางพีชคณิต

3.8.4 แบบฝึกหัด

- 1. กำหนดให้ $y=\ln x$ จงหา dy และ Δy ที่ x=1 โดย ที่ $dx=\Delta x=0.5$
- 2. พิจารณาฟังก์ชันต่อไปนี้ แล้วหาสูตร dy และ Δy

$$1. y = x\sqrt{x-1}$$

$$2. y = xe^x$$

$$3. y = x \sin x$$

4.
$$y = \tan(x^2)$$

- 3. จงหา local linear approximation ของเส้นโค้งจากสมการ $xe^y=y$ ที่จุด (0,0) และใช้สมการ ที่ได้ประมาณค่าของ y เมื่อ x=0.1
- 4. จงหา $\frac{dy}{dx}$ สำหรับความสัมพันธ์ต่อไปนี้

1.
$$x^2 + y^2 = 25$$

$$2. \, \frac{1}{x} + \frac{1}{y} = 1$$

$$3. x \sin y + y \sin x = 1$$

$$4. e^{xy} + xy = 1$$

- 5. หญิงคนหนึ่งสูง 1.55 เมตร เดินเข้าเสาไฟด้วยอัตราเร็ว 0.75 เมตร/วินาที เสาไฟติดดวงไฟสูง 5 เมตร
 - 1. เงาของหญิงคนนี้เปลี่ยนแปลงด้วยอัตราเท่าใด
 - 2. ปลายเงาของด้านศรีษะหญิงคนนี้เคลื่อนที่ด้วยอัตราเร็วเท่าใด

6. อนุภาคหนึ่งเคลื่อนที่ไปตามเส้นโค้งอธิบายตามสมการ

$$\frac{x^2y}{1+y^2} = \frac{2}{5}$$

กำหนดให้พิกัดแกน x ของอนุภาคเพิ่มขึ้นด้วยอัตรา 4 หน่วย/วินาที เมื่ออนุภาคอยู่ที่ตำแหน่ง (1,2)

- 1. พิกัดแกน y ของอนุภาคเปลี่ยนแปลงด้วยอัตราเท่าใด เมื่ออนุภาคอยู่ที่ตำแหน่ง (1,2)
- 2. ณ ตำแหน่ง (1,2) อนุภาคกำลังเคลื่อนสูงขึ้นหรือลดลงในพิกัด xy
- 7. ความเข้มของแสงที่ผ่านเข้าตาขึ้นอยู่กับรัศมีของ pupil ถ้า pupil มีขนาดมากขึ้น ปริมาณของแสงก็จะ เข้าตามากขึ้น ดังสมการ $I=kr^2$ เมื่อ I เป็นความเข้มของแสง r เป็นรัศมีของ pupil และ k เป็น ค่าคงตัว ในช่วงเวลา 6 โมงเช้าถึงเที่ยง รัศมีของ pupil จะขยายตัวด้วยอัตราเร็วคงที่ 0.1 mm/min จงหาว่าในช่วงเวลาดังกล่าว ความเข้มของแสงที่ผ่านเข้าตา จะมีการเปลี่ยนแปลงอย่างไร เมื่อ r=0.5 cm
- 8. การแพร่ระบาดของแมลงวันทอง เริ่มที่ใจกลางของหมู่บ้านเล็กๆ แห่งหนึ่งนอกเมือง พื้นที่การแพร่ ระบาดมีลักษณะคล้ายวงกลมดังแสดงในรูป 1.5 รัศมีของพื้นที่การแพร่ระบาดขยายเพิ่มขึ้นด้วยอัตรา 1.5 ไมล์ต่อปี จงหาอัตราการเปลี่ยนแปลงของพื้นที่การแพร่ระบาด เมื่อรัศมีของพื้นที่การแพร่บาดมีค่า เท่ากับ 4 ไมล์

3.9 อนุพันธ์ของฟังก์ชันตรีโกณมิติและอินเวอร์สของฟังก์ชันตรีโกณมิติ

3.9.1 อนุพันธ์ของฟังก์ชันตรีโกณมิติ

เราจะใช้ความรู้เกี่ยวกับเอกลักษณ์ตรีโกณมิติและลิมิตของฟังก์ชันตรีโกณ ช่วยในการหาอนุพันธ์ของฟังก์ชัน ตรีโกณมิติโดยนิยามดังนี้

$$\lim_{x\to 0}\frac{\sin x}{x}=1 \qquad \text{เมื่อ x มีหน่วยเป็นเรเดียน}$$

$$\lim_{x\to 0}\frac{\cos x-1}{x}=1 \qquad \qquad (3.29)$$

$$\sin A-\sin B=2\cos\frac{A+B}{2}\sin\frac{A-B}{2}$$

ทฤษฎี 3.4. ถ้า
$$f(x)=\sin x$$
 แล้ว $\frac{d}{dx}\sin x=\cos x$

Figure 3.3: การแพร่ระบาดของแมลงวันทอง โดยที่วงรีสีเทาแทนแมลงวัน

$$\frac{d}{dx}\sin x = \lim_{h \to 0} \left(\frac{\sin(x+h) - \sin x}{h}\right)$$

$$= \lim_{h \to 0} \frac{2\cos(x+\frac{h}{2})\sin\frac{h}{2}}{h}$$

$$= 2\lim_{h \to 0} \cos(x+\frac{h}{2}).\lim_{h \to 0} \frac{\sin\frac{h}{2}}{h}$$

$$= 2\cos x \lim_{\frac{h}{2} \to 0} \frac{\frac{1}{2}\sin\frac{h}{2}}{\frac{h}{2}}$$

$$= 2(\cos x)\frac{1}{2}$$

$$= \cos x$$
(3.30)

เนื่องจาก

$$\sin(x+h) - \sin x = 2\cos\frac{x+h+x}{2}\sin\frac{h}{2}$$

$$= 2\cos(x+\frac{h}{2})\sin\frac{h}{2}$$
(3.31)

สำหรับการหาอนุพันธ์ของ cosine ก็ทำได้ในทำนองเดียวกันกับ sine ส่วนฟังก์ชันตรีโกณมิติอื่นๆ หาได้ โดยแปลงในรูป cosine หรือ sine เช่น

$$\tan x = \frac{\sin x}{\cos x}, \quad \cot x = \frac{\cos x}{\sin x}, \quad \sec x = \frac{1}{\cos x}$$
 และ $\csc x = \frac{1}{\sin x}$

ทฤษฎี 3.5.

$$1. \frac{d}{dx}\cos x = -\sin x$$

$$2. \frac{d}{dx} \tan x = \sec^2 x$$

3.
$$\frac{d}{dx}\cot x = -\csc^2 x$$

$$4. \frac{d}{dx} \sec x = \sec x \tan x$$

5.
$$\frac{d}{dx}\csc x = -\csc x \cot x$$

$$\frac{d}{dx}\sec x = \frac{d}{dx} \cdot \frac{1}{\cos x}$$

$$= \frac{d}{dx}(\cos x)^{-1}$$

$$= (-1)(\cos x)^{-2} \frac{d}{dx}\cos x$$

$$= \frac{-1}{\cos^2 x}(-\sin x)$$

$$= \frac{1}{\cos x} \cdot \frac{\sin x}{\cos x}$$

$$= \sec x \tan x$$
(3.32)

ตัวอย่าง 3.30. กำหนดให้ $y=x^2 an 3x$ จงหา $\frac{dy}{dx}$

$$\frac{dy}{dx} = \frac{d}{dx}(x^3 \tan 3x)$$

$$= x^2 \frac{d}{dx} \tan 3x + \tan 3x \frac{d}{dx}x^2$$

$$= x^2 (\sec^2 3x)(3) + (\tan 3x)(2x)$$

$$= 3x^2 \sec^2 3x + 2x \tan 3x$$
(3.33)

ตัวอย่าง 3.31. กำหนดให้
$$y=\frac{\sin x}{1+\cos x}$$
 จงหา $\frac{dy}{dx}$

$$\frac{dy}{dx} = \frac{d}{dx} \left(\frac{\sin x}{1 + \cos x} \right) \\
= \frac{(1 + \cos x) \frac{d}{dx} \sin x - \sin x \frac{d}{dx} (1 + \cos x)}{(1 + \cos x)^2} \\
= \frac{(1 + \cos x) \cos x - (\sin x) (-\sin x)}{(1 + \cos x)^2} \\
= \frac{\cos x + \cos^2 x + \sin^2 x}{(1 + \cos x)^2} \\
= \frac{\cos x + 1}{(1 + \cos x)^2} \\
= \frac{1}{1 + \cos x}$$
(3.34)

ตัวอย่าง 3.32. กำหนดให้ $y=\sec^2(3x-1)$ จงหา $\dfrac{dy}{dx}$

$$\begin{aligned} \frac{dy}{dx} &= \frac{d}{dx} \sec^2(3x - 1) \\ &= 2 \sec(3x - 1) \frac{d}{dx} \sec(3x - 1) \\ &= 2 \sec(3x - 1) \sec(3x - 1) \tan(3x - 1) \frac{d}{dx} (3x - 1) \\ &= 3.2 \sec^2(3x - 1) \tan(3x - 1) \\ &= 6 \sec^2(3x - 1) \tan(3x - 1) \end{aligned}$$
(3.35)

ตัวอย่าง 3.33. ถ้า $x\cos y + y\cos x = 1$ จงหา $\frac{dy}{dx}$

วิธีทำ ใช้ implicit differentiation

$$\frac{d}{dx}(x\cos y + y\cos x) = \frac{d}{dx}1$$

$$\frac{d}{dx}(x\cos y) + \frac{d}{dx}(y\cos x) = 0$$

$$x\frac{d}{dx}\cos y + \cos y\frac{dx}{dy} + y\frac{d}{dx}\cos x + \cos x\frac{dy}{dx} = 0$$

$$x(-\sin y)\frac{dy}{dx} + \cos y + y(-\sin x) + \cos x\frac{dy}{dx} = 0$$

$$(-x\sin y + \cos x)\frac{dy}{dx} = y\sin x - \cos y$$

$$\frac{dy}{dx} = \frac{y\sin x - \cos y}{\cos x - x\sin y}$$

$$(3.36)$$

ตัวอย่าง 3.34. จงหา $\dfrac{d^2y}{dx^2}$ ของฟังก์ชัน $y=x\cos x$

วิธีทำ

$$y = x \cos x$$

$$y' = \frac{d}{dx}(x \cos x)$$

$$= \frac{d}{dx} \cos x + \cos x \frac{dx}{dx}$$

$$= -x \sin x + \cos x$$

$$y'' = -(x\frac{d}{dx} \sin x + \sin x \frac{dx}{dx}) + \frac{d}{dx} \cos x$$

$$= -(x \cos x + \sin x) - \sin x$$

$$= -x \cos x - 2 \sin x$$
(3.37)

3.9.2 อนุพันธ์ของฟังก์ชันอินเวอร์สของฟังก์ชันตรีโกณมิติ

จะเห็นว่าฟังก์ชันตรีโกณมิติทั้งหมดคือ sine, cosine, tangent, cotangent, secant และ cosecant เป็นฟังก์ชันคาบซึ่งสมาชิกในโดเมน จะให้ค่าซ้ำกัน ดังนั้น ฟังก์ชันตรีโกณมิติจึงไม่เป็น 1-1 ฟังก์ชัน แต่เรา

สามารถจำกัดโดเมนของฟังก์ชันตรีโกณมิติเพื่อทำให้ฟังก์ชันเหล่านี้ เป็น 1-1 ฟังก์ชัน ก็จะทำให้อินเวอร์ส ของฟังก์ชันเหล่านั้นเป้นฟังก์ชันด้วย เช่น

$$F=\{(x,y)|y=\sin x\}$$
 มีโดเมน $=\Re$ และเรนจ์ $=[-1,1]$

ไม่เป็น1-1ฟังก์ชัน แต่

$$F = \{(x,y)|y = \sin x, x \in [-\frac{\pi}{2}, \frac{\pi}{2}]\}$$

เป็น 1-1 ฟังก์ชัน ดังนั้น

$$F^{-1}=\{(x,y)|x=\sin y,y\in [-\frac{\pi}{2},\frac{\pi}{2}],x\in [-1,1]\}$$

เป็น อินเวอร์สฟังก์ชันของFเรียกว่า inverse sine function ใช้สัญลักษณ์ $\sin^{-1}x$ หรือ $\arcsin x$

ทฤษฎี 3.6.

1.
$$\frac{d}{dx}\arcsin x = \frac{1}{\sqrt{1-x^2}}., |x| < 1$$

2.
$$\frac{d}{dx}\arccos x = \frac{-1}{\sqrt{1-x^2}}., |x| < 1$$

3.
$$\frac{d}{dx}arccotx = \frac{-1}{1+x^2}.$$

4.
$$\frac{d}{dx}arcsecx = \frac{1}{|x|\sqrt{x^2 - 1}}, |x| > 1$$

5.
$$\frac{d}{dx}arccosecx = \frac{-1}{|x|\sqrt{x^2 - 1}}, |x| > 1$$

6.
$$\frac{d}{dx} \arctan x = \frac{1}{1+x^2}$$

ให้
$$y = \arcsin x, |x| < 1$$

$$x = \sin y, \frac{-\pi}{2} \le y \le \frac{\pi}{2}$$

$$\frac{dx}{dx} = \frac{d}{dx} \sin y$$

$$1 = \cos y \frac{dy}{dx}$$

$$\frac{dy}{dx} = \frac{1}{\cos y}, |x| < 1$$

$$= \frac{1}{\sqrt{1 - \sin^2 y}}$$

$$= \frac{1}{\sqrt{1 - x^2}}$$
(3.38)

ตัวอย่าง 3.35. จงหา
$$\dfrac{dy}{dx}$$
 เมื่อ $y=\sin^{-1}(2x)$

$$\frac{dy}{dx} = \frac{1}{\sqrt{1 - (2x)^2}} \cdot \frac{d}{dx} (2x)$$

$$= \frac{2}{\sqrt{1 - 4x^2}}$$
(3.39)

ตัวอย่าง 3.36. จงหา y' เมื่อ $y=arcsecx^2$ วิธีทำ

$$y' = \frac{d}{dx} arcsecx^{2}$$

$$= \frac{1}{|x|^{2} \sqrt{x^{4} - 1}} \cdot \frac{d}{dx}(x)^{2}$$

$$= \frac{2x}{x^{2} \sqrt{x^{4} - 1}}$$

$$= \frac{2}{x\sqrt{x^{4} - 1}}$$
(3.40)

ตัวอย่าง 3.37. จงหา y' เมื่อ $y=cot^{-1}(rac{1}{x})- an^{-1}x$

$$y = \cot^{-1}(\frac{1}{x}) - \tan^{-1}$$

$$y' = \frac{d}{dx}(\cot^{-1}(\frac{1}{x}) - \tan^{-1})$$

$$= \frac{d}{dx}\cot^{-1}(\frac{1}{x}) - \frac{d}{dx}\tan^{-1}x$$

$$= \frac{-1}{1 - \frac{1}{x^2}}(-\frac{1}{x^2}) - \frac{1}{1 + x^2}$$

$$= \frac{1}{x^2 - 1} - \frac{1}{1 + x^2}$$

$$= \frac{2}{x^4 - 1}$$
(3.41)