Assignment 8

$$\underline{Q}$$
 - Let $p, q \in [0, 1]$

To prove: Pinsker's Inequality

$$d(p,q) \ge 2(p-q)^2$$

Proof:

Let
$$g(x) = d(p, p+x) - 2x^2$$

$$= p \log(\frac{b}{p+x}) + (1-p) \log(\frac{1-p}{1-p-x}) - 2x^2$$

Differentiating w.r.t. x

$$g'(x) = \frac{d}{dx} \left[p \log \left(\frac{p}{p+x} \right) \right] + \frac{d}{dx} \left[(1-p) \log \left(\frac{1-p}{1-p-x} \right) \right]$$

$$+\frac{d}{dx}\left(-2x^2\right)$$

$$= \left[log(\frac{b}{b+x}) \frac{d(b)}{dx} + (b) \frac{d}{dx} \left[log(\frac{b}{b+x}) \right] \right]$$

$$+ \left[\log\left(\frac{1-p}{1-p-x}\right)\frac{d(1-p)}{dx} + (1-p)\frac{d}{dx}\log\left(\frac{1-p}{1-p-x}\right)\right] - 4x$$

$$= \left[p\frac{d}{dx}\left(\log\frac{p}{p+x}\right)\right] + \left[(1-p)\frac{d}{dx}\log\left(\frac{1-p}{1-p-x}\right)\right] - 4x$$

then
$$\frac{d}{dx} \log \left(\frac{p}{p+x} \right) = \frac{d}{dy} \log \left(\frac{p}{p+x} \right)$$

$$= \left(\frac{p+x}{p} \right) \left(\frac{(p+x)}{p+x} \right)^2 - p \left(\frac{d}{dx} \left(\frac{p+x}{p+x} \right) \right)$$

$$= \left(\frac{p+x}{p} \right) \left(\frac{-p}{(p+x)^2} \right)$$

$$= -\frac{1}{p+x}$$

Similarly: Let $y = \left(\frac{1-p}{1-p-x}\right)$ $\frac{d}{dy} \log(y) \frac{d}{dx} \left(\frac{1-p}{1-p-x}\right)$

$$= \left(\frac{1-\beta-\alpha}{1-\beta}\right) \left[\frac{(1-\beta-\alpha)(0) - (-1)(1-\beta)}{(1-\beta-\alpha)^{2}}\right]$$

$$= \left(\frac{1-\beta-\alpha}{1-\beta}\right) \left[\frac{1-\beta}{(1-\beta-\alpha)^{2}}\right]$$

$$= \frac{1}{(1-\beta-\alpha)}$$

Thus,
$$g'(x) = \frac{-p}{p+x} + \frac{(1-p)}{(1-p-x)} - 4x$$

$$= \frac{-p(1-p-x) + (1-p)(p+x)}{(p+x)(1-p-x)}$$

$$= \frac{-p+p^2+px+p+x-p^2-px}{(p+x)(1-p-x)}$$

$$= \frac{x}{(p+x)(1-(p+x))}$$

$$g'(x) = \chi \left[\frac{1}{(p+x)(1-(p+x))} - 4 \right]$$

$$g'(x) = x \left[\frac{1}{q(1-q)} - 4 \right]$$

We can see that: g'(0) = 0.

Also since $q \in [0,1]$ the maximum value q(1-q) can take is $\frac{1}{4}$, $\frac{1}{4}$, $\frac{1}{4}$.

Thus the minimum value of $\frac{1}{9,(1-9)}$ is 4: the

value $d\left[\frac{1}{q(1-q)}-4\right] \geq 0$

Thus $g'(x) \ge 0$ for x > 0 and $g'(x) \le 0$ for x < 0.

Hence, g is increasing for positive x and decreasing for negative x.

Thus, x = 0 is a minimiser of g.

Here, g(0) = 0, and so $g(x) \ge 0$ over [-p, 1-p].

Hence Proved.