Отчёт о выполненой лабораторной работе Эффект Джоуля-Томсона (2.1.6)

Каплин Артём Б01-402 24 марта 2025

1 Введение

Цель работы: : 1) определить изменения температуры углекислого газа при протекании через малопроницаемую перегородку при разных начальных значениях температуры, вычислить коэффициент Джоуля-Томсона; 2) вычислить по результатам опытов коэффициенты a и b модели Вандер-Ваальса, а также температуру инверсии $T_{\text{инв}}$.

Оборудование: трубка с пористой перегородкой; труба Дьюара; термостат жидкостной; термопара; вольтметр универсальный цифрововй; баллон с углекислым газом; манометр.

2 Теоретические сведения

Эффектом Джоуля—Томсона называется изменение температуры газа при его адиабатическом дросселировании. Процесс дросселирования — это медленное протекание газа через дроссель под воздействием перепада давления. Дросселем можно назвать препятствие потоку газа в трубе в виде, например, пористой перегородки. Почти полностью закрытый и слегка пропускающий газ кран также можно считать дросселем. Пористой перегородкой может служить диск из керамики или пористого стекла. При дросселировании температура газа может как увеличиваться, так и уменьшаться. Очевидно, что такой процесс необратим. Рассмотрим его подробнее.

Получим теоретическое выражения для расчёта величины эффекта Джоуля-Томсона.

Рис. 1: Принципиальная схема эффекта Джоуля-Томсона

На рис. (1) изображена адиабатически изолированная труба с пористой перегородкой. Заметим, что разность давлений всегда $P_2-P_1=\Delta P<0$, что говорит о существенной необратимости этого процесса. В силу его адиабатичности можно записать очевидное равенство:

$$Q = 0 = U_2 - U_1 + P_2 V_2 - P_1 V_1 (1)$$

Здесь работа внешних сил равна $P_1V_1<0,$ а P_2V_2 — работа самого газа, она положительна. Отсюда следует, что:

$$U_1 + P_1 V_1 = U_2 + P_2 V_2$$
, r.e. $I_1 = I_2$. (2)

Значит, процесс дросселирования происходит при постоянстве энтальпии.

В качестве характеристики процесса дросселирования введем величину, называемую коэффициентом Джоуля–Томсона:

$$\mu = \frac{\Delta T}{\Delta P},\tag{3}$$

которая определяет эффект Джоуля–Томсона количественно. Поскольку для идеального газа энтальпия — однозначная функция температуры, то в связи с постоянством энтальпии для идеального газа $\Delta T=0$, т.е. и $\mu=0$. Конечно, для реального газа это уже далеко не так.

Рассмотрим так называемый дифференциальный эффект Джоуля–Томсона, т.е. эффект при малом перепаде давления на дросселе.

$$\mu = \left(\frac{\Delta T}{\Delta P}\right)_I \approx \left(\frac{\partial T}{\partial P}\right)_I. \tag{4}$$

Запишем дифференциал энтальпии как функцию T и P:

$$dI(T,P) = \left(\frac{\partial I}{\partial T}\right)_P dT + \left(\frac{\partial I}{\partial P}\right)_T dP = 0.$$
 (5)

Отсюда частная производная:

$$\left(\frac{\partial T}{\partial P}\right)_{I} = \mu = -\frac{\left(\frac{\partial I}{\partial P}\right)_{T}}{\left(\frac{\partial I}{\partial T}\right)_{P}} = -\frac{1}{C_{P}}\left(\frac{\partial I}{\partial P}\right)_{T}.$$
(6)

Известна каноническая зависимость энтальпии от температуры и энтропии:

$$dI = TdS + VdP, (7)$$

Откуда при постоянной температуре искомая частная производная $\left(\frac{\partial I}{\partial P}\right)_T$ равна:

$$\left(\frac{\partial I}{\partial P}\right)_T = T\left(\frac{\partial S}{\partial P}\right)_T + V = -T\left(\frac{\partial V}{\partial T}\right)_P + V. \tag{8}$$

Подставляя ее в (6), получим общее выражение для коэффициента Джоуля–Томсона при малом перепаде давления:

$$\mu \approx \left(\frac{\partial T}{\partial P}\right)_I = \frac{T\left(\frac{\partial V}{\partial T}\right)_P - V}{C_P}.\tag{9}$$

Теперь из общего выражения (9) найдем коэффициент Джоуля–Томсона для газа Ван-дер-Ваальса. Для этого надо продифференцировать уравнение Ван-дер-Ваальса () по температуре, считая давление P постоянным:

$$-\frac{2a}{V^3} \left(\frac{\partial V}{\partial T}\right)_P (V - b) + \left(P + \frac{a}{V^2}\right) \left(\frac{\partial V}{\partial T}\right)_P = R. \tag{10}$$

Искомая частная производная равна:

$$\left(\frac{\partial V}{\partial T}\right)_{P} = \frac{R}{P + \frac{a}{V^{2}} - \frac{2a(V - b)}{V^{3}}} = \frac{R(V - b)}{RT - \frac{2a(V - b)^{2}}{V^{3}}}.$$
(11)

Для начала будем считать газ не очень плотным. Кроме того, пренебрежем величинами второго порядка относительно поправок b и a. Тогда:

$$T\left(\frac{\partial V}{\partial T}\right)_{P} \approx \frac{V-b}{1-\frac{2a}{PTV}} \approx (V-b)\left(1+\frac{2a}{RTV}\right) \approx V+\frac{2a}{RT}-b.$$
 (12)

Если подставить (9) в формулу для эффекта Джоуля–Томсона (12), получим окончательно:

$$\mu = \frac{\Delta T}{\Delta P} = \frac{\frac{2a}{RT} - b}{C_P}.\tag{13}$$

Из этого выражения для μ сразу видно, что изменение температуры газа Ван-дер-Ваальса при необратимом расширении определяется поправками a и b. При a=b=0 $\mu=0$. Кроме того, поправки a и b по-разному влияют на знак эффекта. Если силы взаимодействия между молекулами велики и преобладает поправка на давление, то можно считать b=0, и тогда $\mu>0$, т.е. $\Delta T<0$ (газ охлаждается). Если силы взаимодействий малы и $a\to 0$, то преобладает поправка на объем b. В этом случае $\mu<0$, и газ нагревается, т.е. $\Delta T>0$ ($\Delta P<0$).

3 Экспериментальная установка

Схема установки для исследования эффекта Джоуля—Томсона в углекислом газе представлена на рис. 2. Основным элементом установки является трубка 1 с пористой перегородкой 2, через которую пропускается двуокись углерода CO_2 . Углекислый газ под повышенным давлением поступает в трубку через змеевик 5 из балластного баллона 6. Медный змеевик омывается водой и нагревает медленно протекающий через него газ до температуры воды в термостате. Температура воды измеряется встроенным в термостат термометром. Давление газа в трубке измеряется манометром M и регулируется вентилем B. Манометр M измеряет разность между давлением внутри трубки и наружным (атмосферным) давлением. Разность температур газа до и после перегородки измеряется термопарой медь—константан.

Рис. 2: Рис. 2. Экспериментальная установка

4 Приборы и данные

• Цифровой мультиметр B7-78/1, погрешность измерения погрешность измерения постоянного напряжения 0.0035%+0.0005% диапазона.

- Манометр WIKA EN 837-1, класс точности 1,0.
- Термостат жидкостный ТЖ-ТС-01, погрешность установления заданной температуры не более $0.02^{\circ}C$, погрешность поддержания температуры не более $0.01^{\circ}C$.

5 Ход работы

- 1. Убедимся, что термостат залит водой, все электрические приборы заземлены.
- 2. Включим термостат.
- 3. Включим вольтметр . Начальные показания приборов $t_0=13,9^{\circ}C; \varepsilon_0=-0,002$ мВ, где t_0 начальная температура термостата с водой, ε_0 показания вольтметра
- 4. Проведем измерения при температурах $T_1=15$ °C, $T_2=33$ °C, $T_3=45$ °C, $T_4=57$ °C. Полученные данные представлены в приложении.
- 5. Построим график зависимости разности темперанур от перепада давления по МНК для четырёх температур.

Рис. 3: График №1 Зависимость разности температур от перепада давления $\Delta T(\Delta P)$

- 6. По наклону прямых получим значения коэффициентов Джоуля-Томсона для разных температур воды в термостате.
- 7. По полученным коэфициентам Джоуля-Томсона постром график зависимости.

8.
$$k = (963 \pm 157) \frac{K^2}{\text{fap}} \quad \varepsilon_k = 16,3\% \qquad b = \mu_0 = (-2.180 \pm 0.508) \frac{K}{\text{fap}} \quad \varepsilon_{\mu_0} = 23\%$$

$N_{\overline{0}}$	$\mu, \frac{K}{6ap}$	$\sigma_{\mu}, \frac{\mathrm{K}}{\mathrm{fap}}$	$\varepsilon, \%$
1	1.201	0.046	3.87
2	0.901	0.035	3.88
3	0.810	0.030	3.75
4	0.792	0.018	2.24

Таблица 1: Таблица 5. Коэффициенты Джоуля-Томсона

Зависимость коэффициента µ от обратной температуры

Рис. 4: График 2. Зависимости коэффициента Джоуля-Томсона от обратной температуры

9. Найдем коэффициенты a и b для соответствующих температур попарно по формулам:

$$a = \frac{kRC_p}{2} \qquad b = \mu_0 C_p,$$

где $C_p = 37,1\frac{Дж}{моль~K}$ табличное значение, взятое с книги Лабораторный практикум.

$$a = (1,484 \pm 0,242) \frac{H \cdot \text{M}^4}{\text{MOJIb}^2}$$
 $\varepsilon_a = 16,3\%$ $b = (8,09 \pm 1,86) \cdot 10^{-4} \frac{\text{M}^3}{\text{MOJIb}}$ $\varepsilon_b = 23\%$

10. По полученным коэффициентам определим температуру инверсии $T_{\text{инв}}$

$$T_{\text{инв}} = \frac{2a}{Rb} = (441.3 \pm 124.3) \ K \quad (\varepsilon = 16.89\%)$$

6 Выводы

В ходе лабораторной работы мы получили экспериментальные значений коэфициентов Джоуля-Томсана для разных температур, построили соответствующие графики. По найденым значени-

ям построили график зависимости $\mu(\frac{1}{T})$ нашли соответсвующие коэфициенты прямой данного графика и по ним нашли коэфициенты a и b для модели реального газа Ван-Дер-Вальса. Приведём сравнительную таблицу результатов экспериментов, табличные значения взяты при критических параметрах.

	Экспер.	Табл.	σ	ε %
$a, \frac{H \cdot M^4}{MOJIb^2}$	1.484	0.365	0.242	16.3
$b, \frac{M^3}{MOJIB}$	8.09×10^{-4}	42.79×10^{-4}	1.86×10^{-4}	23
$T_{\text{инв}}, K$	441.3	2073	124.3	16.89

7 Приложение

Р, бар	ε , mB	ΔT ,° C	$\varepsilon_{\Delta T}, \%$	$\sigma_{\Delta T}$,° C
4.10 ± 0.06	0.140 ± 0.001	3.518	0.71	0.025
3.50 ± 0.06	0.111 ± 0.001	2.789	0.90	0.025
3.00 ± 0.06	0.083 ± 0.001	2.085	1.20	0.025
2.50 ± 0.06	0.065 ± 0.001	1.633	1.54	0.025

Таблица 2: При температуре 15,35°C

Р, бар	ε , mB	$\Delta T, ^{\circ}C$	$\varepsilon_{\Delta T}, \%$	$\sigma_{\Delta T}$,° C
4.05 ± 0.06	0.116 ± 0.001	2.795	0.86	0.024
3.50 ± 0.06	0.091 ± 0.001	2.193	1.10	0.024
3.00 ± 0.06	0.070 ± 0.001	1.687	1.43	0.024
2.40 ± 0.06	0.051 ± 0.001	1.229	1.96	0.024
1.90 ± 0.06	0.035 ± 0.001	0.843	2.86	0.024

Таблица 3: При температуре $33\,^{\circ}C$

Р, бар	ε , mB	ΔT ,° C	$arepsilon_{\Delta T},\%$	$\sigma_{\Delta T}$,° C
4.10 ± 0.06	0.107 ± 0.001	2.524	0.93	0.023
3.50 ± 0.06	0.082 ± 0.001	1.934	1.22	0.024
3.00 ± 0.06	0.066 ± 0.001	1.557	1.52	0.024
2.60 ± 0.06	0.050 ± 0.001	1.179	2.00	0.024
1.80 ± 0.06	0.028 ± 0.001	0.660	3.57	0.024

Таблица 4: При температуре $45\,^{\circ}C$

Р, бар	ε , mB	$\Delta T, ^{\circ}C$	$\varepsilon_{\Delta T},\%$	$\sigma_{\Delta T}$,° C
4.10 ± 0.06	0.102 ± 0.001	2.361	0.98	0.023
3.40 ± 0.06	0.076 ± 0.001	1.759	1.32	0.023
3.00 ± 0.06	0.061 ± 0.001	1.412	1.64	0.023
2.50 ± 0.06	0.046 ± 0.001	1.065	2.17	0.023
2.00 ± 0.06	0.030 ± 0.001	0.694	3.33	0.023

Таблица 5: При температуре 57°C