Nom:		Note: / 10
Prénom :		

□ Exercice 1 : Caractérisation des ordres bien fondés

1. Rappeler la définition d'un ordre bien bien fondé.

On dit que relation d'ordre \preccurlyeq sur un ensemble E est bien fondé lorsqu'il n'existe pas de suite strictement décroissante d'elements de E.

2. Soit (E, \preceq) un ensemble ordonné, prouver qu'un \preceq est bien fondé si et seulement si toute partie non vide de (E, \preceq) admet un élément minimal

Sens direct:

Si (E, \preccurlyeq) un ensemble ordonné où \preccurlyeq est bien fondée et A une partie non vide de E. On suppose que A n'admet pas d'élément minimal, et on considère l'application $f: A \mapsto A$ qui a tout élément de $a \in A$ associe f(a) tel que $f(a) \preccurlyeq a$, cela est possible puisque A n'a pas d'élément minimal. On considère alors la suite $(x_n)_{n\in N}$ définie par : $x_0 = a$ et $x_n = f^n(a)$. Par construction cette suite est strictement décroissante ce qui est impossible puisque (E, \preccurlyeq) est bien fondé.

Sens réciproque :

On suppose que toute partie non vide de E admet un élément minimal, montrons par l'absurde qu'il ne peut pas exister de suite strictement décroissante d'elements de E, soit $(x_n)_{n\in\mathbb{N}}$ une suite d'éléments de E strictement décroissante, l'ensemble des valeurs prises par cette suite $A = \{x_i, i \in \mathbb{N}\}$ admet un élément minimal donc il existe un indice $m \in \mathbb{N}$ tel que x_m soit un élément minimal de A, or comme (x_n) est strictement décroissante x_{m+1} est un élément de A strictement inférieur à x_m , on aboutit à une contradiction.

□ Exercice 2 : Terminaison d'une fonction

1. Ecrire en OCaml la fonction fusion int list -> int list -> int list qui prend en argument deux listes d'entiers triées et renvoie leur fusion triée. Par exemple fusion [1; 4; 7; 9; 10] [2; 3; 8; 15] renvoie [1; 2; 3; 4; 7; 8; 9; 10; 15]

```
let rec fusion l1 l2 =
match l1,l2 with
| [], l2 -> l2
| l1, [] -> l1
| h1::t1, h2::t2 -> if h1<h2 then h1::fusion t1 l2 else h2::fusion l1 t2;;</pre>
```

2. En utilisant un variant sur (\mathbb{N}^2, \leq_p) où \leq_P désigne l'ordre produit sur \mathbb{N}^2 , prouver la terminaison de cette fonction

On note n_1 (resp. n_2) la longueur de 11 (resp. 12), et n_1' , n_2' ces mêmes longueurs après un appel récursif. Alors :

```
— Soit n'_1 = n1 - 1 et n'_2 = n_2
```

— Soit $n'_1 = n1$ et $n'_2 = n_2 - 1$

Dans les deux cas $(n'_1, n'_2) \preceq_P (n_1, n_2)$, l'ordre produit sur \mathbb{N}^2 étant bien fondé, la fonction termine car il n'existe pas de suite strictement décroissante d'éléments de (N^2, \preceq) .