[PRINT]

EE2T21 Telecommunicatie B (2015-2016 Q4):

Question 1: Score 4/4

Your response

Een digitaal transmissiesysteem maakt gebruik van een speciale vorm van Amplitude Shift Keying (ASK). De transmissiesnelheid bedraagt $R_s = 770$ kbit/sec. Het uitgezonden signaal wordt gegeven door:

$$x_c(t) = A_c \left[\alpha + \beta d(t) \right] \cos \omega_c t$$

met $\alpha = 3.8$, $\beta = 2$ en d(t) is een binair datasignaal, $d(t) \varepsilon \{-1,1\}$. De enkelzijdige spectrale ruisvermogensdichtheid is $N_0 = -91$ dBm/Hz, en de equivalente ruisbandbreedte van de coherente matched-filter detector is $R_s/2$. De signaal-ruisverhouding aan de ingang van de ontvanger op basis van de 0-0 transmissiebandbreedte bedraagt $SNR_{in} = 10.5$ dB.

- a. Bepaal het signaalvermogen aan de ingang van de ontvanger. $S_{in} = -18.6248 (33\%)$ dBm.
- b. Bepaal de bitfoutenkans P_e .

 $P_e = 0.000904 (33\%)$

c. Bepaal de bitfoutenkans P_e indien in plaats van het matched filter, een filter met equivalente ruisbandbreedte $1.1*R_s$ gebruikt wordt. P_e

 $P_{e} = 0.0177 (33\%)$

Kleine getallen, zoals 0.000357 vul je in als 3.57E-4 of 3.57e-4. De foutmarge in de bitfoutenkansen is op +/- 30% gezet. Dit vereist nog steeds nauwkeurig berekenen/aflezen van de Q-functie. Gebruik zonodig Matlab.

Comment:

Question 2: Score 1.5/3

Your response

Een digitaal banddoorlaatsysteem is geschikt voor zowel BPSK als FSK modulatie. De coherente ontvanger is voorzien van een filter met variabele bandbreedte; de datasnelheid bedraagt $R_b = 350$ kbit/sec. De witte ruis op de ontvangeringang heeft een Gaussische amplitudeverdeling met ruisvermogensdichtheid $N_\theta = 20$ pW/Hz.

a. Bereken het ontvangen vermogen dat nodig is voor een bitfoutenkans P_e = 9*10⁻⁴ als BPSK modulatie wordt toegepast en de equivalente ruisbandbreedte van de ontvanger 1*R_b bedraagt. $P_{ontv} = -11.6621 (50\%) \text{ dBm}$

Correct response

Een digitaal banddoorlaatsysteem is geschikt voor zowel BPSK als FSK modulatie. De coherente ontvange een filter met variabele bandbreedte; de datasnelheid bedraagt $R_b = 350$ kbit/sec. De witte ruis op de ontvan een Gaussische amplitudeverdeling met ruisvermogensdichtheid $N_0 = 20$ pW/Hz.

a. Bereken het ontvangen vermogen dat nodig is voor een bitfoutenkans $P_e = 9*10^{-4}$ als BPSK modulatie wordt toegepast en de equivalente ruisbandbreedte van de ontvanger $1*R_b$ bedraagt.

 $P_{ontv} = -11.6621 \text{ dBm}$

b. Bereken het ontvangen vermogen dat nodig is voor een bitfoutenkans
$$P_e = 8*10^{-4}$$
 als FSK modulatie wordt toegepast en de equivalente ruisbandbreedte van de ontvanger $2.5*R_b$ bedraagt

b. Bereken het ontvangen vermogen dat nodig is voor een bitfoutenkans $P_e = 8*10^{-4}$ als FSK modulatie wordt toegepast en de equivalente ruisbandbreedte van de ontvanger $2.5*R_b$ bedraagt

$$P_{ontv} = -4.58 \pm 0.2 \text{ dBm}$$

Total grade: $1.0 \times 1/2 + 0.0 \times 1/2 = 50\% + 0\%$

Comment:

Question 3: Score 3/3

Your response

Een digitaal transmissiesysteem maakt gebruik van een ongebalanceerde vorm van QPSK-modulatie. De transmissiesnelheid bedraagt $R_b = 190$ kbit/sec verzonden. Het uitgezonden signaal wordt gegeven door:

$$s(t) \ = \ A_c \, \left[lpha \, d_I(t) \cos \omega_c t \, + \, eta \, d_Q(t) \sin \omega_c t \,
ight]$$

 a. Bepaal de signaal-ruisverhouding SNR_I van het in-fase signaal na het matched-filter, indien op de ingang van de ontvanger geldt dat:

$$\frac{A_c^2}{2}$$
 = -29 dBm bedraagt.

 $SNR_I = 14.2640 (50\%) dB.$

b. Bepaal de gemiddelde bitfoutenkans P_e van het ongebalanceerde QPSK signaal indien de SNR na het in-fase matched-filter

$$SNR_I = 9.5 dB$$

 $P_e = 0.002511 (50\%)$

Comment:

