Aufgabe 1

Sei $\sigma = (E)$, also die Signatur der (gerichteten) Graphen.

Sei $k \geq 2$. Als k-Clique eines ungerichteten Graphen $\mathfrak{G} = (V, E^{\mathfrak{G}})$ bezeichnet man k Knoten $\{v_1, \ldots, v_k\} \subseteq V$, zwischen denen sämtliche Kanten vorhanden sind, d.h. $\{(v_i, v_j) \mid 1 \leq i, j \leq k \text{ und } i \neq j\} \subseteq E^{\mathfrak{G}}$.

 $x \neq y \equiv \tau(x = y)$

a) Geben Sie eine σ -Formel $\psi(v_1,v_2,v_3)$ an, die ausdrückt: Es gibt genau eine Kante von dem Teilgraphen, der aus den Knoten v_1, v_2 und v_3 besteht, zum Rest des Graphen. Genauer: Es gibt genau einen Knoten w, der verschieden von v_1, v_2 und v_3 ist, sodass es eine Kante von mindestens einem der drei Knoten zu w und keine Kante von den anderen beiden Knoten zu w gibt.

6

b) Geben Sie einen σ -Satz φ an, der ausdrückt, dass der Graph ungerichtet und schleifenfrei ist und jeder Knoten im Graphen Teil einer 3-Clique ist, von der aus es genau eine Kante zum Rest des Graphen gibt (im Sinne von Aufgabenteil a). Sie können in dieser Formel $\psi(v_1, v_2, v_3)$ verwenden.

Sei dazu $\sigma_{\mathrm{Grd}} := (\mathsf{Life}^3, \leq^2; +^2, -^2; 0, 1)$ gegeben.

drückt, dass die Belation Life genau den Regeln des Spiels des Lebens entspricht. Dabei beschrünker wir uns auf Strukturen mit dem Universum Z, in denen die nicht-logischen Symbole wie für Z "üblich" interpretiert werden. Weiterhin bedeutet $(x, y, t) \in \text{Life}^A$ für $x, y, t \in \mathbb{Z}$, dass die Zelle an

- für alle $z, v, t \in \mathbb{Z}$ mit t < 0 ist $(x, v, t) \notin \text{Life}^A$
- für alle $x,y,t\in\mathbb{Z}$ mit t>0 ist $(x,y,t)\in\mathsf{Life}^A,$ falls die Zelle an Position (x,y) zum Zeitpunkt

Letzteres bedeutet genauer, dass die Zelle an Position (x,y) entweder auch zum Zeitpunkt $\ell-1$ belie und außerdem 2 oder 3 ihrer 8 Nachbarn lebendig waren, oder diese Zelle zum Zeitpunkt i-1nicht lebendig war und genan 3 ihrer 8 Nachbarn lebendig waren. Nachbarn einer Zelle an Position (x, y) sind alle Zellen an Positionen (x', y') mit $|x - x'| \le 1$, $|y - y'| \le 1$ und $(x, y) \ne (x', y')$.

som statt Life $(x, y+1, t) \wedge \text{Life}(x+1, y+1, t) \wedge \text{Life}(x+2, y+1, t) \wedge \text{Life}(x+3, y+1, t)$

$$\bigwedge_{(i,j) \in I} Life(x + i, y + j, t)$$

$$(i,j) \in I(a,b) \cup Sex(3)$$

$$N(x,y, x',y') := (x \neq x' \lor y = y') \land A \times -x' \leq A \land A \times -x \leq A \wedge A \wedge -x \leq A \wedge A \wedge -x \leq A \wedge -x$$

N(x,y):= {(x',y') = 22 | |x'-x|=11

(Life(
$$x'_{1},y'_{1},+$$
) \wedge Life($x'_{2},y'_{2},+$) \wedge ($x'_{1} \neq x'_{2} \vee y'_{1} \neq y'_{2}$) \wedge \forall (z_{1},z_{2}) \in $\mathbb{N}(x_{1},y)$ (($z_{1}=x'_{1},z_{2}=y'_{1}$) \vee ($z_{1}=x'_{2},z_{2}=y'_{2}$) \vee 7 Life(z_{1},z_{2},t)

92(x,y,t):= = (x1,1x) = (x1,1x) = (x1,1x) = (N(x,1,1x)) (N(x,1,1x)) = (x1,1x) Life (x', 1/1, t) 1 hife (x', 1/2, t) 1 hife (x', 1/3, t) 1 (x1 + x2 v y1 + y2) 1 (x1 + x3 v y1 + y3) 1 (x2 + x3 v y2 + y3) 1 V(2, 2) (7 N(x,y,z,z) v(2,=x,1,z=y,1) v(2,ex,1,z=y,1) v(2,ex,1,z=y,1)) (2,ex,1,z=y,1) V7 Life(2,2,+)))

b) Geben Sie einen prädikatenlogischen Satz $\varphi_{t\geq 0}$ an, der für σ_{GoL} -Strukturen \mathcal{A} wie oben beschrieben angibt, dass $(x, y, t) \notin \mathsf{Life}^{\mathcal{A}}$ für alle $x, y, t \in \mathbb{Z}$ mit t < 0.

c) Benutzen Sie die beiden Formeln aus den Aufgabenteilen a) und b) um nun den gewünschten Satz φ_{GoL} zu konstruieren.

• für alle $x, y, t \in \mathbb{Z}$ mit t < 0 ist $(x, y, t) \in \mathrm{Dist}^A$.

x-x < 1

$$\begin{array}{ll}
t = \int_{620} \Lambda \\
\forall x, y, t \\
\text{life}(x, y, t-1) \rightarrow \left(\underbrace{\text{Life}(x, y, t-1)} \land \left(\underbrace{q_2(x, y, t-1)} \lor \underbrace{q_3(x, y, t-1)} \right) \lor \\
\left(\underbrace{\text{Life}(x, y, t-1)} \land \underbrace{q_3(x, y, t-1)} \right) \\
\left(\underbrace{\text{Life}(x, y, t-1)} \land \underbrace{q_3(x, y, t-1)} \right)
\end{array}$$

miro