Модели обнаружения зависимостей во временных рядах (проекции в латентные пространства)

1 Цель

Работа посвящена обнаружению причинно-следственных связей между разнородными временным рядами. Примеры зависимых разнородных временных рядов:

- 1. Эконометрические временные ряды.
- 2. Связь показателей ЭКГ и пульса (http://smartlab.ws/component/content/article?id=60)

Для обнаружения зависимостей между рядами в работе применяется два подхода: тест Гренджера и метод снижения размерности PLS. В обоих случаях для установления зависимости ряда \mathbf{x} от ряда \mathbf{y} сравнивается качество прогноза ряда \mathbf{x} с и без использования ряда \mathbf{y} . В случае увеличения качества прогноза утверждается, что ряд \mathbf{x} зависит от ряда \mathbf{y} .

2 Постановка задачи прогнозирования

Поставим задачу прогноза многомерного временного ряда.

Обозначим $\mathbf{X} = (\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(s)})^\mathsf{T}$ – заданный *s*-мерный временной ряд. Построим матрицу плана из сегментов ряда:

$$\begin{pmatrix} x_0^{(1)} & \dots & x_{n-1}^{(1)} \\ \vdots & & & \\ x_0^{(s)} & \dots & x_{n-1}^{(s)} \end{pmatrix} = \mathbf{X}_{0 \div (n-1)}.$$
 (1)

Пусть $\mathbf{x}_n = \left(x_n^{(1)}, \dots x_n^{(s)}\right)^\mathsf{T}$ – значение ряда \mathbf{X} в момент времени n. Построим прогноз $\hat{\mathbf{x}}$ ряда \mathbf{X} в точке \mathbf{x}_n . Проделаем это k раз для различных обучающих выборок $\mathbf{X}_{\text{train}}^i = \mathbf{X}_{i \div (n+i-1)}, \ i = 0, \dots, (k-1)$. Получим k прогнозов $\hat{\mathbf{X}} = (\hat{\mathbf{x}}_n, \hat{\mathbf{x}}_{n+1}, \dots \hat{\mathbf{x}}_{n+k-1})$ ряда \mathbf{X} в точках $\mathbf{x}_n, \mathbf{x}_{n+1}, \dots \mathbf{x}_{n+k-1}$.

Прогностическая модель имеет вид

$$\hat{\mathbf{x}}_{t+1} = \mathbf{f}(\hat{\mathbf{w}}, \mathbf{x}_t, \mathbf{x}_{t-1}, \dots, \mathbf{x}_{t-L+2}),$$

$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w}} S(\mathbf{w}, \mathbf{X}, \hat{\mathbf{x}}_n, \hat{\mathbf{x}}_{n+1}, \dots \hat{\mathbf{x}}_{n+k-1}) = S(\mathbf{w}, \mathbf{X}, \hat{\mathbf{X}}),$$

где функция потерь

$$S(\mathbf{w}, \mathbf{X}, \hat{\mathbf{X}}) = \sum_{i=0}^{k-1} \mathcal{L}(\mathbf{x}_{n+i}^{(1)}, \hat{\mathbf{x}}_{n+i}^{(1)}).$$

В данной работе в качестве прогностической модели ${\bf f}$ используется алгоритм многомерной гусеницы (MSSA-L). Функция ${\bf f}$ имеет вид:

$$\mathbf{f}(\hat{\mathbf{w}}, \mathbf{x}_t, \mathbf{x}_{t-1}, \dots, \mathbf{x}_{t-L+2}) = \begin{pmatrix} x_{t-L+2}^{(1)} & \dots & x_t^{(1)} \\ x_{t-L+2}^{(2)} & \dots & x_t^{(2)} \\ & \vdots & & \\ x_{t-L+2}^{(s)} & \dots & x_t^{(s)} \end{pmatrix} \cdot \mathbf{p}.$$

вектор коэффициентов **p** определяется алгоритмом многомерной гусеницы MSSA-L. Алгоритм MSSA-L подробнее описан в следующем разделе.

3 Алгоритм многомерной гусеницы (MSSA-L)

Алгоритм MMSA-L является обобщением на многомерный случай алгоритма гусеницы (SSA). Задача алгоритма MSSA-L состоит в представлении временного ряда в виде суммы интерпретируемых компонент. Это осуществляется в четыре шага: запись ряда в виде траекторной матрицы, сингулярное разложение этой матрицы, группировка компонент, полученных при сингулярном разложении, в интерпретируемые компоненты и восстановление временного ряда по каждой из интерпретируемых компонент.

По ряду (1) построим матрицу Ганкеля $\mathbf{H} \in \mathbb{R}^{L \times sK}$, K = N - L + 1:

$$\mathbf{H} = [\mathbf{H}_1, \mathbf{H}_2, \dots, \mathbf{H}_s],$$

где L – ширина окна, $\mathbf{H}_i \in \mathbb{R}^{L \times K}$ – матрица Ганкеля для ряда $\mathbf{x}^{(i)}$,

$$\mathbf{H}^{(i)} = \begin{pmatrix} x_0^{(i)} & x_1^{(i)} & \dots & x_{N-L}^{(i)} \\ x_1^{(i)} & x_2^{(i)} & \dots & x_{N-L+1}^{(i)} \\ & & \vdots & \\ x_{L-1}^{(i)} & x_L^{(i)} & \dots & x_{N-1}^{(i)} \end{pmatrix}.$$

По матрице Ганкеля \mathbf{H} восстановим временной ряд \mathbf{X} . Метод многомерной гусеницы строит приближение $\hat{\mathbf{H}}$ матрицы \mathbf{H} меньшего ранга с помощью сингулярного разложения этой матрицы и восстанавливает ряд по матрице $\hat{\mathbf{H}}$. Сингулярное разложение матрицы \mathbf{H} имеет вид

$$\mathbf{H} = \mathbf{U} \mathbf{\Lambda} \mathbf{V} = \sum_{i=1}^d \lambda_i \mathbf{u}_i \mathbf{v}_i^\mathsf{T}$$

где $\lambda_1, \ldots, \lambda_d > 0$ — сингулярные числа матрицы \mathbf{H}, \mathbf{u}_i и \mathbf{v}_i — столбцы матриц \mathbf{U} и \mathbf{V} . Тогда наилучшее приближение матрицы \mathbf{H} матрицей ранга r < d имеет вид :

$$\hat{\mathbf{H}} = \sum_{i=1}^{r} \lambda_i \mathbf{u}_i \mathbf{v}_i^\mathsf{T}$$

По матрице $\hat{\mathbf{H}}$ восстанавливается временной ряд \mathbf{X} путем усреднения элементов, стоящих на антидиагонал Алгоритм многомерной гусеницы также позволяет построить прогноз временного ряда в момент N по (L-1) предыдущим значениям ряда. Алгоритм находит такой вектор коэффициентов $\mathbf{p} \in \mathbb{R}^{(L-1)}$, что значения ряда \mathbf{X} в момент N:

$$\mathbf{x}_{N} = \begin{pmatrix} x_{N-L+1}^{(1)} & \dots & x_{N-1}^{(1)} \\ x_{N-L+1}^{(2)} & \dots & x_{N-1}^{(2)} \\ & \vdots & & \\ x_{N-L+1}^{(s)} & \dots & x_{N-1}^{(s)} \end{pmatrix} \cdot \mathbf{p} = \mathbf{Y} \cdot \mathbf{p}$$
(2)

Заметим, что коэффициенты ${\bf p}$ оказываются общими для всех компонент ряда ${\bf X}.$

Для каждого $i \in [1, r]$ обозначим $\tilde{\mathbf{u}}_i$ первые (L-1) компонент столбца \mathbf{u}_i , π_i – последнюю компоненту столбца \mathbf{u}_i и $\nu = \sum_{i=1}^r \pi_i^2$. Тогда вектор коэффициентов \mathbf{p} вычисляется по формуле:

$$\mathbf{p} = \frac{1}{1 - \nu^2} \sum_{i=1}^{r} \pi_i \tilde{\mathbf{u}}_i \tag{3}$$

Заметим, что для одномерного временного ряда справедливы все приведенные соотношения при s=1.

4 Тест Гренджера

В работе для установления причинно-следственных связей предлагается использовать статистический тест Гренджера. Ниже приведен алгоритм теста Гренджера для проверки наличия зависимости одного временного ряда от другого. Пусть требуется проверить, зависит ли ряд \mathbf{x} от ряда \mathbf{y} . Выдвинем гипотезу о независимости ряда \mathbf{x} от ряда \mathbf{y} и проверим ее. Делаем это следующим образом.

1. Строим прогноз ряда х без использования ряда у и находим значение функции потерь

$$S_{\mathbf{x}} = \sum_{i=1}^{n} \mathcal{L}(\mathbf{x}_{i}, \hat{\mathbf{x}}_{i}),$$

где n – длина тестовой выборки.

Функцию $\mathcal{L}(\mathbf{x}, \hat{\mathbf{x}})$ выбираем в зависимости от распределения ошибок прогноза на тестовой выборке (??).

2. Строим прогноз ряда х с использованием ряда у. Вычисляем для него значение функции потерь

$$S_{\mathbf{x}\mathbf{y}} = \sum_{i=1}^{n} \mathcal{L}(\mathbf{x}_i, \hat{\mathbf{x}}_i).$$

3. Рассмотрим статистику

$$T(\mathbf{x}, \mathbf{y}) = \frac{N - 2k}{k} \cdot \frac{S_{\mathbf{x}} - S_{\mathbf{x}\mathbf{y}}}{S_{\mathbf{x}\mathbf{y}}},$$

где N — длина обучающей выборки, k — размерность регрессионной модели. Статистика T имеет распределение F(k, N-2k) (распределение Фишера с параметрами (k, N-2k)).

4. Если ряд \mathbf{x} не зависит от ряда \mathbf{y} , то значения $S_{\mathbf{x}}$ и $S_{\mathbf{x}\mathbf{y}}$ будут близки, а статистика $T(\mathbf{x},\mathbf{y})$ – незначима. Поэтому в случае больших значений статистики $T(\mathbf{x},\mathbf{y})$ отвергаем гипотезу о независимости ряда \mathbf{x} от \mathbf{y} . Выберем некоторое критические значение t статистики $T(\mathbf{x},\mathbf{y})$. Тогда критерий зависимости ряда \mathbf{x} от ряда \mathbf{y} выглядит следующим образом:

Из
$$T(\mathbf{x}, \mathbf{y}) > t$$
 следует, что ряд \mathbf{x} зависит от ряда \mathbf{y}

5. Аналогично проверим зависимость ряда \mathbf{x} от восстановленного (с помощью алгоритма MSSA-L) ряда $\hat{\mathbf{y}}$. Для этого используем статистику

$$T(\mathbf{x}, \hat{\mathbf{y}}) = \frac{N - 2k}{k} \cdot \frac{S_{\mathbf{x}} - S_{\mathbf{x}\hat{\mathbf{y}}}}{S_{\mathbf{x}\hat{\mathbf{y}}}}.$$

Для более подробного изучения связи между временными рядами ${\bf x}$ и ${\bf y}$ вычисляем кросс–корреляционную функцию $\gamma_{{\bf x}{\bf y}}(h)$

$$\gamma_{\mathbf{x}\mathbf{y}}(h) = \frac{\mathsf{E}\left[\left(\mathbf{x}_{t} - \mu_{\mathbf{x}}\right)\left(\mathbf{y}_{t+h} - \mu_{\mathbf{y}}\right)\right]}{\sigma_{\mathbf{x}}\sigma_{\mathbf{y}}},$$

где E – математическое ожидание, μ – выборочное среднее, σ – выборочная дисперсия.

Если h^* соответствует максимальному значению кросс-корреляции, то говорят, что ряд \mathbf{y} сдвинут на h^* относительно \mathbf{x} . Заметим, что если ряд \mathbf{x} сдвинут на h_1 относительно ряда \mathbf{y} , а ряд \mathbf{y} сдвинут на h_2 относительно ряда \mathbf{z} . То ряд \mathbf{x} сдвинут на $h_3 = h_1 + h_2$ относительно ряда \mathbf{z} .

Пусть прогноз ряда \mathbf{x} строится с использованием истории ряда \mathbf{y} и пусть с помощью вычисления кросс-корреляции рядов \mathbf{x} и \mathbf{y} получено, что ряд \mathbf{x} отстает от ряда \mathbf{y} на h отсчетов времени. Тогда использование при прогнозе ряда \mathbf{y} , сдвинутого на h отсчетов назад, может повысить качество прогноза.

5 PLS

В этом подходе предлагается строить прогноз по некоторой истории ряда сразу в несколько последующих моментов времени.

Пусть $\mathbf{X} \in \mathbb{R}^{\mathbf{m} \times \mathbf{n}}$ – история временного ряда, $\mathbf{Y} \in \mathbb{R}^{\mathbf{m} \times \mathbf{r}}$ – значения ряда в последующие моменты времени. Предполагается, что между строками матриц \mathbf{X} и \mathbf{Y} существует линейная зависимость:

$$\mathbf{y} = \mathbf{x} \cdot \mathbf{\Theta} + \boldsymbol{\varepsilon}, \quad \mathbf{x} \in \mathbb{R}^{\mathbf{n}}, \ \mathbf{y} \in \mathbb{R}^{\mathbf{r}},$$

где Θ – матрица параметров модели, ε – вектор ошибок прогноза.

Ошибка прогноза вычисляется следующим образом:

$$S(\Theta, \mathbf{X}, \mathbf{Y}) = ||\mathbf{Y} - \mathbf{X} \cdot \Theta||_2^2 = \sum_{i=1}^n ||\mathbf{y}_i - \mathbf{x}_i \cdot \Theta||_2^2$$

Для нахождения параметров модели Θ предлагается использовать метод частных наименьших квадратов PLS. Алгоритм PLS находит в латентном пространстве матрицу $\mathbf{T} \in \mathbb{R}^{m \times l}$, наилучшим образом описывающую матрицы \mathbf{X} и \mathbf{Y} . Матрицы \mathbf{X} и \mathbf{Y} проецируются в латентное пространство следующим образом:

$$\mathbf{X} = \mathbf{T} \cdot \mathbf{P}^T + \mathbf{F} = \sum_{k=1}^l \mathbf{t}_k \cdot \mathbf{p}_k^T + \mathbf{F}$$

$$\mathbf{Y} = \mathbf{T} \cdot \mathbf{Q}^T + \mathbf{E} = \sum_{k=1}^l \mathbf{t}_k \cdot \mathbf{q}_k^T + \mathbf{E}$$

где ${\bf T}$ — матрица совместного описания объектов и ответов в латентном пространстве, причём столбцы матрицы ${\bf T}$ ортогональны; ${\bf P},~{\bf Q}$ — матрицы перехода из латентного пространства в исходные пространства; ${\bf E},~{\bf F}$ — матрицы невязок.

Алгоритм PLS находит матрицы $\mathbf{T}, \mathbf{P}, \mathbf{Q}$, а также такую матрицу \mathbf{W} , что параметры модели можно вычислить по формуле

$$\Theta = \mathbf{W}(\mathbf{P}^T \mathbf{W})^{-1} \mathbf{Q}^T$$

A Bidirectional Causality (generic case), $X \Leftrightarrow Y$

Пусть \mathbf{X} и $\mathbf{Y}-s$ -мерные временные ряды длины N.

Прогноз ряда ${\bf Y}$ с помощью ряда ${\bf X}$ строится следующим образом. Строим матрицу Ганкеля

$$\mathbf{H} = egin{pmatrix} \mathbf{X}_1 & \mathbf{X}_2 & \dots & \mathbf{X}_{L-1} & \mathbf{X}_L \ \mathbf{X}_2 & \mathbf{X}_3 & \dots & \mathbf{X}_L & \mathbf{X}_{L+1} \ dots & dots & dots & dots \ \mathbf{X}_{N-L+1} & \mathbf{X}_{N-L+2} & \dots & \mathbf{X}_{N-1} & \mathbf{X}_N \end{pmatrix},$$

где L – ширина окна, длина истории ряда, используемая при нахождении главных компонент.

Находим (L+1) ближайших соседей вектора \mathbf{x}_t . Обозначим их индексы через t_1, \ldots, t_{L+1} . Тогда ближайшие соседи \mathbf{x}_t это строки матрицы \mathbf{H} с номерами t_1, \ldots, t_{L+1} .

$$\mathbf{x}_{t_i} = (\mathbf{x}_{t_i}, \mathbf{x}_{t_i-1}, \dots, \mathbf{x}_{t_i-(L-1)}), \quad i = 1, \dots, (L+1)$$

Прогноз $\hat{\mathbf{Y}}_t$ строится следующим образом

$$\hat{\mathbf{Y}}_t = \sum_{i=1}^{L+1} \mathbf{w}_i Y_{t_i},$$
 где t_i – индексы ближайших соседей \mathbf{x}_t

$$w_i = \frac{u_i}{\sum_i u_i}, \quad u_i = \exp -\left(\frac{||\mathbf{x}_t - \mathbf{x}_{t_i}||_2}{||\mathbf{x}_t - \mathbf{x}_{t_{L+1}}||_2}\right)$$

Аналогично строится прогноз ряда ${\bf X}$ с использованием ряда ${\bf Y}$.

Эксперимент проводился на временных рядах ${\bf X}$ и ${\bf Y}$ длины L, следующего вида

$$\mathbf{X}_{t+1} = \mathbf{X}_t \cdot [r_x(1 - \mathbf{X}_t) - \beta_{x,y} \mathbf{Y}_t]$$

$$\mathbf{Y}_{t+1} = \mathbf{Y}_t \left[r_y (1 - \mathbf{Y}_t) - \beta_{y,x} \mathbf{X}_t \right]$$

При каждом построении прогноза коэффициенты $r_x, r_y, \beta_{x,y}, \beta_{y,x}$ выбирались случайно. Коэффициенты $\beta_{x,y}, \beta_{y,x}$ – из равномерного распределения на отрезке [3.6, 4.0], коэффициенты r_x, r_y – из равномерного распределения на отрезке [0, 0.5]. При каждой длине рядов L ошибка прогноза усреднялась по всем наборам значений коэффициентов $r_x, r_y, \beta_{x,y}, \beta_{y,x}$.

На рисунке показана зависимость средней абсолютной ошибки прогноза в зависимости от длины рядов L. Видно, что ряд \mathbf{X} лучше восстанавливается по ряду \mathbf{Y} , чем ряд \mathbf{Y} по ряду \mathbf{X} .

7 Фазовые траектории

7.1 Сгенерированные данные

Эксперимент проводился на сгенерированном ряде Х

$$\mathbf{X}_t = \sin t + \sigma^2 \boldsymbol{\varepsilon}_i, \quad \boldsymbol{\varepsilon}_i \in \mathcal{N}(0, 1)$$

Figure 1: Ряд X. Красным отмечены точки, расположенные на расстоянии в пол периода

Figure 2: Проекция фазовых траекторий на пространство, натянутое на первые две главные компоненты ряда ${\bf X}$

7.2 Реальные данные

Эксперимент проводился на ряде объемов потребления электроэнергии \mathbf{X} и ряде значений температуры \mathbf{Y} . Для $t^* = 1000$ найдем k ближайших соседей вектора \mathbf{X}_{t^*} . Обозначим, соответствующие им индексы t_1, \ldots, t_k . На рисунке изображен ряд потребления электроэнергии \mathbf{X} , точки $\mathbf{X}_{t_1}, \ldots, \mathbf{X}_{t_k}$ отмеченными красным, точка \mathbf{X}_{t^*} – черным.

Figure 3: Ближайшие соседи точки \mathbf{X}_{t^*}

Изобразим ближайших соседей $\mathbf{X}_{t_1},\dots,\mathbf{X}_{t_k}$ на фазовых траекториях ряда \mathbf{X} и соответствующие им точки $\mathbf{Y}_{t_1},\dots,\mathbf{Y}_{t_k}$ на фазовых траекториях ряда \mathbf{Y} .

Figure 4: Точки на фазовых траекториях рядов \mathbf{X} и \mathbf{Y} , соответствующие ближайшим соседям \mathbf{X}_{t^*}

Figure 5: Ближайшие соседи точки \mathbf{Y}_{t^*}

Изобразим ближайших соседей $\mathbf{Y}_{t_1},\dots,\mathbf{Y}_{t_k}$ на фазовых траекториях ряда \mathbf{Y} и соответствующие им точки $\mathbf{X}_{t_1},\dots,\mathbf{X}_{t_k}$ на фазовых траекториях ряда \mathbf{X} .

Figure 6: Точки на фазовых траекториях рядов \mathbf{X} и \mathbf{Y} , соответствующие ближайшим соседям \mathbf{Y}_{t^*}