Composition series and Maltsev algebras

JOHN W. SNOW AND J.L.M. WOOD

ABSTRACT. We extend the notion of composition series to general algebras in such a way that the Jordan-Hölder Theorem holds for any finite algebra with a Maltsev operation and a one element algebra. We then prove that for semigroups, satisfaction of this variant of the Jordan-Hölder theorem across a variety is equivalent to having a Maltsev term. We also establish a connection between this Jordan-Hölder variant and n-permutability for arbitrary idempotent varieties.

1. Preliminaries

For algebras **B** and **A**, we will use the notation $\mathbf{B} \leq \mathbf{A}$ to indicate that **B** is a subalgebra of **A**. If $\mathbf{B} \leq \mathbf{A}$ and if there is a congruence θ on **A** so that **B** is an equivalence class of θ then we will say that **B** is a **normal subalgebra** of **A**. We will denote this as $\mathbf{B} \subseteq \mathbf{A}$. If $\mathbf{B} \subseteq \mathbf{A}$, then \mathbf{A}/\mathbf{B} will denote the quotient algebra \mathbf{A}/θ where θ is the *greatest* congruence on **A** for which **B** is an equivalence class.

Suppose that **A** is an algebra with a one element subuniverse $\{a\}$. In this case, we will abuse notation and say that a is a subalgebra of **A** and write $a \leq \mathbf{A}$. If $\theta \in \operatorname{Con} \mathbf{A}$, then the equivalence class of a modulo θ is a subuniverse of **A** (because $a \leq \mathbf{A}$). As a subalgebra of **A**, we will denote this equivalence class as $\theta(a)$.

Suppose that **A** and **B** are similar algebras with one element subalgebras a and b respectively. Let η be the kernel of the projection homomorphism of $\mathbf{A} \times \mathbf{B}$ onto **B**. The map $x \mapsto \langle x, b \rangle$ is clearly an isomorphism of **A** and $\eta(\langle a, b \rangle)$. Thus we have:

Lemma 1.1. Suppose that **A** and **B** are similar algebras with one element subalgebras a and b respectively. Let η be the kernel of the projection homomorphism of $\mathbf{A} \times \mathbf{B}$ onto \mathbf{B} . Then $\mathbf{A} \cong \eta(\langle a, b \rangle)$.

If $\mathbf{B} \leq \mathbf{A}$ and $\theta \in \operatorname{Con}\mathbf{A}$, then $\theta \cap (\mathbf{B} \times \mathbf{B})$ is a congruence on \mathbf{B} . We will denote this congruence as $\theta|_{\mathbf{B}}$.

The following generalization of the Second Isomorphism Theorem from group theory will accomplish most of our work later.

Lemma 1.2. (Diamond Lemma) Suppose that α and β are permuting congruences on an algebra **A** with a one element subalgebra a. Let $\gamma = \alpha \vee \beta$ and $\delta = \alpha \cap \beta$. Then

$$\gamma(a)/\alpha|_{\gamma(a)} \cong \beta(a)/\delta|_{\beta(a)}$$
.

Date: January 31, 2007.

Proof. First, note that $\beta(a) = \beta|_{\gamma(a)}(a)$ and $\delta|_{\beta(a)} = (\delta|_{\gamma(a)})|_{\beta(a)}$. Also note that $\alpha|_{\gamma(a)}$ and $\beta|_{\gamma(a)}$ commute and join to $1_{\gamma(a)}$. Therefore, we can replace **A** by $\gamma(a)$, α by $\alpha|_{\gamma(a)}$, and β by $\beta|_{\gamma(a)}$.

We have an algebra **A** with a one element subalgebra a and permuting congruences α and β which join to 1_A . The congruence δ is still defined to be $\alpha \cap \beta$. To establish the Lemma, we need to show that $\mathbf{A}/\alpha \cong \beta(a)/\delta|_{\beta(a)}$.

Since $\alpha, \beta \supseteq \delta$, $\mathbf{A}/\alpha \cong (\mathbf{A}/\delta)/(\alpha/\delta)$ and $\beta(a)/\delta|_{\beta(a)} \cong (\beta/\delta)(a/\delta)$ (The element a/δ is a one element subuniverse of \mathbf{A}/δ). Also, α/δ and β/δ permute since α and β are above δ and permute. Therefore, we can replace \mathbf{A} by \mathbf{A}/δ and assume that $\delta = 0_A$.

We now have an algebra **A** with a one element subalgebra a and permuting congruences α and β which join to 1_A and meet to 0_A . We need to show that $\mathbf{A}/\alpha \cong \beta(a)$. With this arrangement, $\mathbf{A} \cong (\mathbf{A}/\alpha) \times (\mathbf{A}/\beta)$ and the elements a/α and a/β are one element subalgebras of \mathbf{A}/α and \mathbf{A}/β respectively. The isomorphism $\mathbf{A}/\alpha \cong \beta(a)$ follows from Lemma 1.1.

Notice that Lemma 1.2 does not in general hold for non-permuting congruences. For example, let \mathbf{A} be the three element chain considered as a lattice with least element 0. Then 0 is a one element subalgebra. Con \mathbf{A} contains four elements with two atoms. In one atom (call it α), 0 is related to the element directly above it. In the other (call it β), 0 forms a singleton equivalence class. The congruences α and β do not permute but do join to 1_A and meet to 0_A . With this arrangement, \mathbf{A}/α has two elements, but $\beta(0)$ is a singleton.

2. Composition Series

Suppose that **A** is an algebra with a one element subalgebra a. A **composition** series for **A** over a is a sequence of subalgebras of **A**

$$a = \mathbf{B}_0 \le \mathbf{B}_1 \le \dots \le \mathbf{B}_n = \mathbf{A}$$

so that $\mathbf{B}_i \unlhd \mathbf{B}_{i+1}$ and $\mathbf{B}_{i+1}/\mathbf{B}_i$ is simple for each i.

We establish the familiar Jordan-Hölder Theorem for composition series in this environment through the following two theorems. Their proofs mimic the traditional proofs for group theory.

Theorem 2.1. (Generalized Jordan-Hölder Part 1) If \mathbf{A} is a finite algebra with a one element subalgebra a, then \mathbf{A} has a composition series over a.

Proof. The proof is by induction on the size of **A**. If $|\mathbf{A}| = 2$, then **A** is simple and $a \leq \mathbf{A}$ is a composition series for **A** over a. Assume then that $|\mathbf{A}| > 2$ and that every finite algebra smaller than **A** which has a one element subalgebra has a composition series.

Let θ be a coatom in Con**A**. If a/θ is a singleton equivalence class, then $a \leq \mathbf{A}$ is a composition series for **A** over a. Assume then that a/θ contains more than one element. $\theta(a)$ is an algebra smaller than **A** and has a one element subalgebra a.

By induction, $\theta(a)$ has a composition series

$$a = \mathbf{B}_0 \le \mathbf{B}_1 \le \dots \le \mathbf{B}_n = \theta(a).$$

Since θ is maximal in ConA, θ must be the greatest congruence on A which has $\mathbf{B}_n = \theta(a)$ as an equivalence class. It follows then that \mathbf{A}/\mathbf{B}_n is simple, so

$$a = \mathbf{B}_0 \le \mathbf{B}_1 \le \dots \le \mathbf{B}_n = \theta(a) \le \mathbf{B}_{n+1} = \mathbf{A}$$

is a composition series for A.

Two composition series

$$a = \mathbf{B}_0 \le \mathbf{B}_1 \le \dots \le \mathbf{B}_n = \mathbf{A}$$

and

$$a = \mathbf{C}_0 < \mathbf{C}_1 < \dots < \mathbf{C}_m = \mathbf{A}$$

for an algebra **A** over a one element subalgebra a are **equivalent** if m=n and if the simple quotients $\mathbf{B}_{i+1}/\mathbf{B}_i$ $(i=1,2,\ldots,n)$ and $\mathbf{C}_{i+1}/\mathbf{C}_i$ $(i=1,2,\ldots,n)$ are the same up to a permutation.

In the next theorem, the presence of a Maltsev term is assumed to force congruences on all subalgebras to permute. Since we actually only need certain congruences on certain subalgebras to permute, a more relaxed assumption might work.

Theorem 2.2. (Generalized Jordan-Hölder Part 2) Suppose that **A** is a finite algebra with a one element subalgebra a. If **A** has a Maltsev term, then any two composition series for **A** over a are equivalent.

Proof. Note that since \mathbf{A} has a Maltsev operation every subalgebra of \mathbf{A} has permuting congruences.

We prove this by induction on the size of **A**. If $|\mathbf{A}| = 2$, then **A** is simple and $a \leq \mathbf{A}$ is trivially the only composition series for **A** over a. Assume then that $|\mathbf{A}| > 2$ and that the theorem holds for algebras smaller than **A**.

Suppose that

$$a = \mathbf{B}_0 \le \mathbf{B}_1 \le \dots \le \mathbf{B}_{n+1} = \mathbf{A}$$

and

$$a = \mathbf{C}_0 \le \mathbf{C}_1 \le \dots \le \mathbf{C}_{m+1} = \mathbf{A}$$

are composition series for \mathbf{A} over a. Suppose first that n=0. Let α be the largest congruence on \mathbf{A} with $\mathbf{B}_0=\{a\}$ as an equivalence class. Since $\mathbf{A}/\alpha=\mathbf{B}_1/\mathbf{B}_0$ is simple, we know that α is a coatom in $\mathrm{Con}\mathbf{A}$. Let β be the largest congruence on \mathbf{A} with \mathbf{C}_m as an equivalence class. Note that β must also be a coatom. It must be the case that $\alpha=\beta$. If this were not the case then $\alpha\circ\beta=1_A$. This means that for all $y\in\mathbf{A}$ there is an $x\in\mathbf{A}$ with $a\alpha x\beta y$. Since a/α is a singleton, this means that $a\beta y$. Thus a/β is all of \mathbf{A} . This contradicts the fact that $\mathbf{A}/\beta=\mathbf{C}_{m+1}/\mathbf{C}_m$ is simple. It has to be that $\beta=\alpha$, so $\mathbf{C}_m=\mathbf{C}_0=\mathbf{B}_0=\{a\}$. Then m=0 and these two composition series are identical – and hence equivalent. A similar argument establishes equivalence if m=0, so we can assume that m and n are greater than 0

If $\mathbf{B}_n = \mathbf{C}_m$, then the induction hypothesis applied to \mathbf{B}_n establishes that

$$a = \mathbf{B}_0 \le \mathbf{B}_1 \le \dots \le \mathbf{B}_n$$

and

$$a = \mathbf{C}_0 \le \mathbf{C}_1 \le \dots \le \mathbf{C}_m$$

are equivalent composition series of \mathbf{B}_n over a. It follows that our two composition series are equivalent.

Suppose now that $\mathbf{B}_n \neq \mathbf{C}_m$ and let $\mathbf{D} = \mathbf{B}_n \cap \mathbf{C}_m$. It must be that $\mathbf{D} \neq \mathbf{B}_n$ and $\mathbf{D} \neq \mathbf{C}_m$. Otherwise, \mathbf{B}_n and \mathbf{C}_m would be comparable. This cannot be because \mathbf{A}/\mathbf{B}_n and \mathbf{A}/\mathbf{C}_m are simple. \mathbf{D} has a composition series over a:

$$a = \mathbf{D}_0 \le \mathbf{D}_1 \le \dots \le \mathbf{D}_k = \mathbf{D}_k$$

Let α and β be the largest congruences with \mathbf{B}_n and \mathbf{C}_m as equivalence classes respectively. Notice that since \mathbf{A}/\mathbf{B}_n and \mathbf{A}/\mathbf{C}_m are simple, it has to be that α and β are coatoms which join to 1_A . Let $\delta = \alpha \cap \beta$. Then \mathbf{D} is an equivalence class of δ , $\mathbf{D} \unlhd \mathbf{B}_n$ and $\mathbf{D} \unlhd \mathbf{C}_m$. By Lemma 1.2 we know that

$$\mathbf{C}_{m+1}/\mathbf{C}_m = \mathbf{A}/\beta \cong \alpha(a)/\delta|_{\alpha(a)} = \mathbf{B}_n/\delta|_{\mathbf{B}_n}.$$

in particular, $\mathbf{B}_n/\delta|_{\mathbf{B}_n}$ is simple. This means that $\delta|_{\mathbf{B}_n}$ must be the largest congruence on \mathbf{B}_n with \mathbf{D} as an equivalence class. Thus, $\mathbf{B}_n/\mathbf{D} = \mathbf{B}_n/\delta|_{\mathbf{B}_n}$ is simple. We now have that

$$a = \mathbf{B}_0 \le \mathbf{B}_1 \le \dots \le \mathbf{B}_n$$

and

$$a = \mathbf{D}_0 \le \mathbf{D}_1 \le \dots \le \mathbf{D}_k = \mathbf{D} \le \mathbf{D}_{k+1} = \mathbf{B}_n$$

are composition series for \mathbf{B}_n over a. By induction, these series are equivalent. That is, n=k+1 and - up to a rearrangement - the simple quotients $\mathbf{B}_{i+1}/\mathbf{B}_i$ and $\mathbf{D}_{i+1}/\mathbf{D}_i$ are the same for $i=0,1,\ldots,n-1$. A similar argument shows the same is true for the series of \mathbf{C}_i 's. We have then that n=m and that for $i=0,1,\ldots,n-1$ all but one of the factors $\mathbf{B}_{i+1}/\mathbf{B}_i$ can be matched injectively with the factors $\mathbf{C}_{i+1}/\mathbf{C}_i$ and vice-versa. The ones which are omitted correspond to those factors isomorphic to \mathbf{B}_n/\mathbf{D} and \mathbf{C}_n/\mathbf{D} . However, these missing factors can be matched with $\mathbf{C}_{n+1}/\mathbf{C}_n \cong \mathbf{B}_n/\mathbf{D}$ and $\mathbf{B}_{n+1}/\mathbf{B}_n \cong \mathbf{C}_n/\mathbf{D}$ by Lemma 1.2 so that these two composition series are equivalent.

Example 2.3. We give here an example of an algebra (actually, six) without a Maltsev operation in which this variant of the Jorday-Hölder Theorem fails. Let $\mathbf{L}, \mathbf{R}, \mathbf{C}, \mathbf{S}, \mathbf{D}$, and \mathbf{T} be two element algebras on the set $\{0, 1\}$ so that

- L is a left zero semigroup;
- **R** is a right zero semigroup;
- C is a semigroup in which xy = 0 for all x and y;
- **S** is a meet semilattice with least element 0;
- **D** is a lattice; and
- **T** is a set (with no operations).

Let A be the four element subset of $\{0,1\}^4$ containing these elements:

$$a = \langle 0, 0, 0, 0 \rangle$$

$$b = \langle 0, 0, 0, 1 \rangle$$

$$c = \langle 0, 0, 1, 1 \rangle$$

$$d = \langle 0, 1, 1, 1 \rangle.$$

Then A is a subuniverse of the algebras induced on $\{0,1\}^4$ induced by each of \mathbf{L} , \mathbf{R} , \mathbf{C} , \mathbf{S} , \mathbf{D} , and \mathbf{T} . Let \mathbf{A} be the algebra on A induced by one of these algebras. Define these subalgebras of \mathbf{A} : $\mathbf{A}_0 = \{a\} = \mathbf{B}_0$, $\mathbf{A}_1 = \{a,b\} = \mathbf{B}_1$, $\mathbf{A}_2 = \{a,b,c\}$, and $\mathbf{A}_3 = \{a,b,c,d\} = \mathbf{B}_2$. Then $\mathbf{A}_0 \unlhd \mathbf{A}_1 \unlhd \mathbf{A}_2 \unlhd \mathbf{A}_3$ and $\mathbf{B}_0 \unlhd \mathbf{B}_1 \unlhd \mathbf{B}_n$. Since each successive \mathbf{A}_i is only one element larger than the previous, the $\mathbf{A}_{i+1}/\mathbf{A}_i$ has exactly two elements for each i and, so, is simple. Thus the \mathbf{A}_i 's form a composition series for \mathbf{A} over a. $\mathbf{B}_1/\mathbf{B}_0$ is obviously simple. The largest congruence on $\mathbf{A} = \mathbf{B}_2$ for which $\mathbf{B}_1 = \{a,b\}$ is an equivalence class is the congruence α so that $a/\alpha = \{a,b\} = \mathbf{B}_1$ and $c/\alpha = \{c,d\}$. Therefore, $\mathbf{B}_2/\mathbf{B}_1$ has two elements and is simple. Thus, the \mathbf{B}_i 's also give a composition series for \mathbf{A} over a. Since these composition series are different lengths, they cannot be equivalent.

3. Semigroup Varieties

Definition 3.1. If \mathcal{V} is any variety, then we will say that \mathcal{V} satisfies \mathcal{JH} if for any finite algebra \mathbf{A} in \mathcal{V} and for any one element subalgebra a of \mathbf{A} , all composition series for \mathbf{A} over a are equivalent.

We will need the following result of T. Evans:

Lemma 3.2. (T. Evans [1]) If a nontrivial variety of semigroups does not contain **L**, **R**, **C**, or **S**, then the variety is a subvariety of a Burside variety of groups.

Theorem 3.3. The following are equivalent for any variety V of semigroups:

- (1) Every semigroup in V is a group.
- (2) V has a Maltsev term.
- (3) V satisfies \mathcal{JH} .

Proof. Suppose (1) holds. Since **L**, **R**, **C**, and **S** are not groups, then by the Lemma of Evans, \mathcal{V} must be a subvariety of a variety of Burnside groups. In this variety, the group inverse is a semigroup term, so the term $xy^{-1}z$ is a Maltsev term of \mathcal{V} . Thus $(1)\rightarrow(2)$. That $(2)\rightarrow(3)$ follows from 2.2. For $(3)\rightarrow(1)$, suppose that (1) does not hold. By 3.2, \mathcal{V} must contain **L**, **R**, **C**, or **S**. In any case, that (3) does not hold follows from 2.3. Thus we have that $(3)\rightarrow(1)$.

4. Special Varieties

Theorem 4.1. Suppose that V is an idempotent variety satisfying \mathcal{JH} . Then for every locally finite variety W which interprets V, there is a natural number n so that W is n-permutable.

Proof. Suppose that \mathcal{W} is locally finite, that that \mathcal{V} is an idempotent variety satisfying $\mathcal{V} \leq \mathcal{W}$, and that \mathcal{W} is not n-permutable for any n. By Theorem 9.14 of [2] $\operatorname{typ}\{\mathcal{V}\}$ contains $\mathbf{1}$, $\mathbf{4}$, or $\mathbf{5}$, and by arguments in Theorems 9.6, 9.8, and 9.14 of [2] \mathcal{V} must be interpretable in one of the varieties of sets, semilattices, or distributive lattices. This means that one of the algebra \mathbf{T} , \mathbf{S} , or \mathbf{D} from Example 2.3 has terms which model the equations of \mathcal{V} . This implies that for one of these cases the algebra \mathbf{A} of Example 2.3 has terms modelling the equations of \mathcal{V} , so this algebra \mathbf{A} has a reduct \mathbf{A}' in \mathcal{V} . The two non-equivalent composition series from the example are non-equivalent composition series for \mathbf{A}' . Thus, \mathcal{V} cannot satisfy \mathcal{JH} .

References

- [1] T. Evans. The lattice of semigroup varieties. Semigroup Forum, 2:1–43, 1971.
- [2] D. Hobby and R. McKenzie. The Structure of Finite Algebras (tame congruence theory). Contemporary Mathematics. American Mathematical Society, Providence, RI, 1988.