Transport Layer

Introduction

- •Transport layer is the layer 4 of the OSI reference model.
- •The transport layer uses the services provided by the network layer, such as best path selection and logical addressing, to provide end-to-end communication between source and destination.
- •Its primary duties are to transport and regulate the flow of information from source to destination reliably and accurately.
- •End-to-end control, provided by sliding windows and reliability in sequencing numbers and acknowledgments, is also.

Transport layer duties

Segmenting upper layer

- •Transport layer functionality is accomplished segment by segment.
 - •This means that different applications can send data segments on a first-come, first-served basis.
 - •Such segments can be intended for the same destination or for many different destinations.

Establishing a connection

- •Figure 1 below, show a typical connection between a client and server:-
 - •Client connection request
 - •Acknowledgement and server request.
 - •Acknowledgment inform the server that both sides have agreed, and a connection has been established.
 - •After the connection has been established, data transfer begins.

Figure 1:Establishing a connection between a client and server

Windowing

- •Windowing is a method to control the amount of information transferred end-to-end.
 - •For example, In the most basic form of reliable connection-oriented data transfer.
 - •Data packets must be delivered to the recipient in the same order in which they were transmitted.
 - •The protocol fails if any data packets are lost, damaged, duplicated or received in a different order.
 - •The basic solution is to have a recipient acknowledge the receipt of each and every segment or data packets.
 - •But if the sender waits for an acknowledge after sending each segment, throughput is low.

Windowing.....

- •Window size (see Figure 2) determines the amount of data that can be transmitted...
 - •before stopping transmission and waiting for an acknowledgment from the destination.
 - •The larger the window size number (in bytes, for TCP)
 - •The greater the amount of data that the host can transmit before stopping.

Figure 2: Window size

Acknowledgment

- •Positive acknowledgment with retransmission is one technique that guarantees reliable delivery of data streams.
- •Positive acknowledgment requires a recipient to communicate with the source and..
 - •sending back an acknowledgment message when it receives data.
 - •For example in Figure 3, the sender keeps a record of each data packet it sends and waits for an acknowledgment before sending the next data packet.
 - •The sender also starts a timer when it sends a segment, and...
 - •Retransmits a segment if the timer expires before an acknowledgment arrives (see Figure 4).

Figure 3, Sender keeps a record of each data packet it sends and waits for an acknowledgment before sending the next data packet

Figure 4: Sender starts a timer when it sends a segment, and retransmits a segment if the timer expires before an acknowledgment arrives

Flow control

- •Ensure that segments delivered will be acknowledge.
- •Provide retransmission of any segments that are not acknowledged and,
 - •Put segments back into their correct sequence at the destination
 - •Also provide congestion avoidance and control.

Transport protocols

- •The following are transport protocols (see Figure 5):
 - •Transmission control protocol(TCP) and
 - User datagram protocol(UDP)
- •TCP provides reliable data transmission between hosts.
- •UDP Transports data unreliably between hosts.
- •Both TCP and UDP use port numbers to pass information to the upper layers (see Figure 6).
 - •Port numbers are used to keep track of different conversations that cross the network at the same time.

Figure 5:Transport layer protocols

Figure 6: TCP and UDP ports

Transmission Control Protocol

- •TCP sets up a connection sometimes called a virtual circuit between end-user applications.
- •The following are TCP characteristics:
 - •Is connection-oriented
 - •Is reliable
 - Divides outgoing messages into segments
 - •Reassembles message at the destination station from incoming segments
 - •Resends anything not received

TCP specification

- •TCP is made reliable with the following:
- •Sequence numbers- Each TCP packet is sent with a sequence number.
- •Acknowledgment- Packets contain acknowledgment number.
 - •This is the sequence number of the next expected transmitted data byte in the reverse direction.
 - •On sending, a host stores the transmitted data in a storage buffer, and starts a timer.
 - •If the packet is acknowledged then this data is deleted
 - •Else, if no acknowledgment is received before the timer runs out, the packet is retransmitted.
- •Window- With a host sends a window value which specifies the number of bytes.

TCP Three-Way Handshake

- •TCP hosts establish a connection-oriented session with one another using a three-way handshake (see Figure 7).
 - •First, one host initiates a connection by sending a packet indicating its initial sequence number of x with a certain bit in the header to indicate a connection request.
 - •Second, the other host receives the packet, records the sequence number of x, replies with an acknowledgment of x+1, and includes its own initial sequence number of y.
 - •The acknowledgment number of x+1 means that the host has received all octets up to and including x and is expecting x+1 next.

Figure 7: TCP three-way handshake

TCP segment format

- The following are the definitions of the fields in the TCP segment (see Figure 8).
- •Source port- Number of the calling port. This identifies the upper-layer process at the source end of the segment.
- •**Destination port** Number of the called port. This is the port assigned at the destination end of the segment.
- •Sequence number- This is the sequence number for the first octet in the user data field.
- •Acknowledgment number- The next expected TCP octet.
- •HLEN- Represent bit number in the header.
- •Reserved- set to zero.

TCP segment format.....

- •Control bits- Control functions (such as setup and termination of a session).
- •Window- Number of octets that the device is willing to accept.
- •Checksum- Calculated checksum of the header and data fields.
- •Urgent pointer- Indicator for the end of the urgent data.
- •Options- Maximum TCP segment size.
- •Data- Upper-layer protocol data.

Figure 8:TCP Segment

User datagram protocol

- •UDP is a simple protocol that exchanges datagrams, without acknowledgments or guaranteed delivery.
 - •Error processing and retransmission must be handled by other protocols.
 - •UDP uses no windowing or acknowledgments;
 - •Application layer protocols provide the reliability.
 - •UDP is designed for application that do not need to put sequences of segments together.

UDP.....

- •Protocols that use UDP include the following:
 - Trivial File Transfer Protocol (TFTP)
 - Simple Network Management Protocol (SNMP)
 - Dynamic Host Control Protocol (DHCP)
 - Domain Name System (DNS)
 - BOOTP

UDP header format

- •The following are the definitions of the fields in the UDP header format (see Figure 9).
- •Source port-: This identifies the local port number which should be used when the destination host requires to contact originator.
- •Destination port-: This connects to the destination
- •Length-: This is a bytes number, including the UDP header and the data.
- •Checksum-: The 16-bit 1's complement of the 1's complement sum of the UDP header and the data.

Figure 9: User datagram

