

Blockchain Security | Smart Contract Audits | KYC

MADE IN GERMANY

Global Trading Protocol (GTP)

Audit

Security Assessment 18 Jul 2022

For

Disclaimer

<u>SolidProof.io</u> reports are not, nor should be considered, an "endorsement" or "disapproval" of any particular project or team. These reports are not, nor should be considered, an indication of the economics or value of any "product" or "asset" created by any team. SolidProof.io do not cover testing or auditing the integration with external contract or services (such as Unicrypt, Uniswap, PancakeSwap etc'...)

SolidProof.io Audits do not provide any warranty or guarantee regarding the absolute bugfree nature of the technology analyzed, nor do they provide any indication of the technology proprietors. SolidProof Audits should not be used in any way to make decisions around investment or involvement with any particular project. These reports in no way provide investment advice, nor should be leveraged as investment advice of any sort.

SolidProof.io Reports represent an extensive auditing process intending to help our customers increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and blockchain technology. Blockchain technology and cryptographic assets present a high level of ongoing risk. SolidProof's position is that each company and individual are responsible for their own due diligence and continuous security. SolidProof in no way claims any guarantee of security or functionality of the technology we agree to analyze.

Version	Date	Description
1.0	18 Jul 2022	Layout projectAutomated-/Manual-Security TestingSummary

Network BNB Smart Chain (BEP20)

Website

https://gt-protocol.io/

Telegram: https://t.me/Global Traders Protocol Chat

Twitter: https://twitter.com/ProgrammerSmart

Description

Global Trading Protocol (GTP) is a protocol designed to create Decentralized Finance (DeFi) Smart-Contract pools for launchpad/presale/private sale, etc. The protocol smart contract operates with full transparency that allows Pool owner to manage Investors' funds, and Investors can track their investment as the sales events goes on. It comes with other features never offered before by any similar services and we continue to add more as we go.

Project Engagement

During the 18th July 2022, the **Global Trading Protocol Team** engaged Solidproof.io to audit smart contracts that they created. The engagement was technical in nature and focused on identifying security flaws in the design and implementation of the contracts. They provided Solidproof.io with access to their code repository and whitepaper.

Contract Link v1.

https://bscscan.com/address/0x6760100ab8ea063f0af3d6499eacc3450e1b5224#code

Vulnerability & Risk Level

Risk represents the probability that a certain source-threat will exploit vulnerability, and the impact of that event on the organization or system. Risk Level is computed based on CVSS version 3.0.

Level	Value	Vulnerability	Risk (Required Action)
Critical	9 - 10	A vulnerability that can disrupt the contract functioning in a number of scenarios, or creates a risk that the contract may be broken.	Immediate action to reduce risk level.
High	7 – 8.9	A vulnerability that affects the desired outcome when using a contract, or provides the opportunity to use a contract in an unintended way.	Implementation of corrective actions as soon aspossible.
Medium	4 – 6.9	A vulnerability that could affect the desired outcome of executing the contract in a specific scenario.	Implementation of corrective actions in a certain period.
Low	2 – 3.9	A vulnerability that does not have a significant impact on possible scenarios for the use of the contract and is probably subjective.	Implementation of certain corrective actions or accepting the risk.
Informational	0 – 1.9	A vulnerability that have informational character but is not effecting any of the code.	An observation that does not determine a level of risk

Auditing Strategy and Techniques Applied

Throughout the review process, care was taken to evaluate the repository for security-related issues, code quality, and adherence to specification and best practices. To do so, reviewed line-by-line by our team of expert pentesters and smart contract developers, documenting any issues as there were discovered.

Methodology

The auditing process follows a routine series of steps:

- 1. Code review that includes the following:
 - i) Review of the specifications, sources, and instructions provided to SolidProof to make sure we understand the size, scope, and functionality of the smart contract. ii) Manual review of code, which is the process of reading source code line-byline in an attempt to identify potential vulnerabilities. iii) Comparison to specification, which is the process of checking whether the code does what the specifications, sources, and instructions provided to SolidProof describe.
- 2. Testing and automated analysis that includes the following:
 - i) Test coverage analysis, which is the process of determining whether the test cases are actually covering the code and how much code is exercised when we run those test cases. ii) Symbolic execution, which is analysing a program to determine what inputs causes each part of a program to execute.
- 3. Best practices review, which is a review of the smart contracts to improve efficiency, effectiveness, clarify, maintainability, security, and control based on the established industry and academic practices, recommendations, and research.
- 4. Specific, itemized, actionable recommendations to help you take steps to secure your smart contracts.

Metrics

Capabilities

Components

Version	Contracts	Libraries	Interfaces	Abstract
1.0	1	1	4	2

Exposed Functions

This section lists functions that are explicitly declared public or payable. Please note that getter methods for public stateVars are not included.

Version	Public	Payable	
1.0	58	4	

Version	External	Internal	Private	Pure	View
1.0	43	71	1	17	21

State Variables

Version	Total	Public
1.0	18	2

Scope of Work/Verify Claims

The above token Team provided us with the files that needs to be tested (Github, Bscscan, Etherscan, files, etc.). The scope of the audit is the main contract (usual the same name as team appended with .sol).

We will verify the following claims:

- 1. Correct implementation of Token standard
- 2. Deployer cannot mint any new tokens
- 3. Deployer cannot burn or lock user funds
- 4. Deployer cannot pause the contract
- 5. Overall checkup (Smart Contract Security)

Correct implementation of Token standard

ERC20				
Function	Description	Exist	Tested	Verified
TotalSupply	Provides information about the total token supply	1	✓	1
BalanceOf	Provides account balance of the owner's account	✓	✓	✓
Transfer	Executes transfers of a specified number of tokens to a specified address	1	✓	✓
TransferFrom	Executes transfers of a specified number of tokens from a specified address	1	✓	1
Approve	Allow a spender to withdraw a set number of tokens from a specified account	1	✓	✓
Allowance	Returns a set number of tokens from a spender to the owner	1	1	1

Write functions of contract v1.0

Deployer cannot mint any new tokens

Name	Exist	Tested	Status
Deployer cannot mint	✓	✓	√
Max / Total Supply		100	00000000

Deployer cannot burn or lock user funds

Name	Exist	Tested	Status
Deployer cannot lock	✓	✓	✓
Deployer cannot burn	✓	✓	✓

Deployer cannot pause the contract

Name	Exist	Tested	Status
Deployer cannot pause	-	-	-

Overall checkup (Smart Contract Security)

Tested	Verified
✓	✓

Legend

Attribute	Description
Lines	total lines of the source unit
nLines	normalized lines of the source unit (e.g. normalizes functions spanning multiple lines)
nSLOC	normalized source lines of code (only source-code lines; no comments, no blank lines)
Comment Lines	lines containing single or block comments
Complexity Score	a custom complexity score derived from code statements that are known to introduce code complexity (branches, loops, calls, external interfaces,)

Attribute	Symbol	
Verfified / Checked	✓	
Partly Verified	-	
Unverified / Not checked	X	
Not available	-	

Audit Results

AUDIT PASSED

Critical issues

No critical issues

High issues

No high issues

Medium issues

No medium issues

Low issues

Issue	File	Type	Li	ine Description
#1	Main	Contract doesn't import npm packages from source (like OpenZeppelin etc.)		We recommend to import all packages from npm directly without flatten the contract. Functions could be modified or can be susceptible to vulnerabilities

SWC Attacks

ID	D Title Relationships		Status	
<u>SW</u> C-1 36	Unencrypted Private Data On-Chain	CWE-767: Access to Critical Private Variable via Public Method	PASSED	
SW C-1 35	Code With No Effects	CWE-1164: Irrelevant Code	PASSED	
SW C-1 34	Message call with hardcoded gas amount	CWE-655: Improper Initialization	PASSED	
SW C-1 33	Hash Collisions With Multiple Variable Length Arguments	CWE-294: Authentication Bypass by Capture-replay	PASSED	
SW C-1 32	Unexpected Ether balance	CWE-667: Improper Locking	PASSED	
SW C-1 31	Presence of unused variables	CWE-1164: Irrelevant Code	PASSED	
SW C-1 30	Right-To-Left- Override control character (U+202E)	CWE-451: User Interface (UI) Misrepresentation of Critical Information	PASSED	
<u>SW</u> <u>C-1</u> <u>29</u>	Typographical Error	CWE-480: Use of Incorrect Operator	PASSED	
SW C-1 28	DoS With Block Gas Limit	CWE-400: Uncontrolled Resource Consumption	PASSED	

SW C-1 27	Arbitrary Jump with Function Type Variable	CWE-695: Use of Low-Level Functionality	PASSED
SW C-1 25	Incorrect Inheritance Order	CWE-696: Incorrect Behavior Order	PASSED
<u>SW</u> <u>C-1</u> <u>24</u>	Write to Arbitrary Storage Location	CWE-123: Write-what-where Condition	PASSED
SW C-1 23	Requirement Violation	CWE-573: Improper Following of Specification by Caller	PASSED
<u>SW</u> <u>C-1</u> 22	Lack of Proper Signature Verification	CWE-345: Insufficient Verification of Data Authenticity	PASSED
<u>SW</u> <u>C-1</u> 21	Missing Protection against Signature Replay Attacks	CWE-347: Improper Verification of Cryptographic Signature	PASSED
<u>SW</u> C-1 20	Weak Sources of Randomness from Chain Attributes	CWE-330: Use of Insufficiently Random Values	PASSED
SW C-11 9	Shadowing State Variables	CWE-710: Improper Adherence to Coding Standards	PASSED
SW C-11 8	Incorrect Constructor Name	CWE-665: Improper Initialization	PASSED
SW C-11 Z	Signature Malleability	CWE-347: Improper Verification of Cryptographic Signature	PASSED

<u>SW</u> C-11 6	Timestamp Dependence	CWE-829: Inclusion of Functionality from Untrusted Control Sphere	PASSED
<u>SW</u> <u>C-11</u> <u>5</u>	Authorization through tx.origin	CWE-477: Use of Obsolete Function	PASSED
<u>SW</u> <u>C-11</u> <u>4</u>	Transaction Order Dependence	CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')	PASSED
<u>SW</u> <u>C-11</u> <u>3</u>	DoS with Failed Call	CWE-703: Improper Check or Handling of Exceptional Conditions	PASSED
<u>SW</u> <u>C-11</u> 2	Delegatecall to Untrusted Callee	CWE-829: Inclusion of Functionality from Untrusted Control Sphere	PASSED
<u>SW</u> C-11	Use of Deprecated Solidity Functions	CWE-477: Use of Obsolete Function	PASSED
SW C-11 0	Assert Violation	CWE-670: Always-Incorrect Control Flow Implementation	PASSED
SW C-1 09	Uninitialized Storage Pointer	CWE-824: Access of Uninitialized Pointer	PASSED
<u>SW</u> <u>C-1</u> <u>08</u>	State Variable Default Visibility	CWE-710: Improper Adherence to Coding Standards	PASSED
SW C-1 07	Reentrancy	CWE-841: Improper Enforcement of Behavioral Workflow	PASSED
SW C-1 06	Unprotected SELFDESTRUC T Instruction	CWE-284: Improper Access Control	PASSED

SW C-1 05	Unprotected Ether Withdrawal	CWE-284: Improper Access Control	PASSED
<u>SW</u> <u>C-1</u> <u>04</u>	Unchecked Call Return Value	CWE-252: Unchecked Return Value	PASSED
SW C-1 03	Floating Pragma	CWE-664: Improper Control of a Resource Through its Lifetime	NOT PASSED
SW C-1 02	Outdated Compiler Version	CWE-937: Using Components with Known Vulnerabilities	PASSED
<u>SW</u> <u>C-1</u> <u>01</u>	Integer Overflow and Underflow	CWE-682: Incorrect Calculation	PASSED
SW C-1 00	Function Default Visibility	CWE-710: Improper Adherence to Coding Standards	PASSED

Blockchain Security | Smart Contract Audits | KYC

MADE IN GERMANY