Stats 330 Homework 1

Adam Hammes

September 2, 2014

Problem 1

- (a) Let hth denote the results of flipping a coin three times and getting a heads, then a tails, then a heads in that order. Ω then consists of the following:
 - hhh
 - hht
 - hth
 - htt
 - *thh*
 - *tht*
 - *tth*
 - \bullet ttt
- (b) i. $A = \{hhh, hht, hth, thh\}$
 - ii. $B = \{hhh, hht\}$
 - iii. $C = \{hht, htt, tht, ttt\}$
- (c) i. $\overline{A} = \{htt, tht, tth, ttt\}$
 - ii. $A \cap C = \{hht\}$
 - iii. $A \cup C = \{hhh, hht, hth, thh, htt, tht, ttt\}$

Problem 2

- (a) *ccc*
 - *ccs*

- *csc*
- css
- scc
- scs
- \bullet ssc
- sss
- (b) Since all outcomes are equally likely, and only one of the eight possible outcomes results in the commuter not stopping, the probability is $\frac{1}{8} = 0.125$.
- (c) i. $A = \{scc, scs, ssc, sss\}$
 - ii. $B = \{csc, css, ssc, sss\}$
 - iii. $\overline{B} = \{ccc, ccs, scc, scs\}$
 - iv. $A \cup B = \{scc, scs, ssc, ssc, csc, css\}$
 - v. $A \cap B = \{ssc, sss\}$
 - vi. $A \cap \overline{B} = \{scc, scs\}$

Problem 3

- (a) $\Omega = \{(1,1), (1,2), (1,3), (1,4), (1,5), (1,6)$
 - (2,1), (2,2), (2,3), (2,4), (2,5), (2,6),
 - (3,1), (3,2), (3,3), (3,4), (3,5), (3,6),
 - (4,1), (4,2), (4,3), (4,4), (4,5), (4,6),
 - (5,1), (5,2), (5,3), (5,4), (5,5), (5,6),
 - (6,1), (6,2), (6,3), (6,4), (6,5), (6,6)
- (b) 0
- (c) $\frac{5}{36}$
- (d) $\frac{7}{36}$

Problem 4

Let the good computer chips be numbered 1, 2, 3, 4, and the bad ones a, b. Then $\Omega = \{$

Since there is only one way of drawing two bad chips out of the bag, the probability of such an event is $\frac{1}{|\Omega|} = \frac{1}{15}$.

Problem 5

From the book we have P(MB) = .4, P(HD) = .3, and $P(MB \cap HD) = .15$. Add the probabilities P(MB) and P(HD), then subtract $P(MB) \cap P(HD)$ to avoid double-counting. This will give us the probability that there is a failure. To find the probability that there isn't a failure, we subtract the previous probability from 1.

$$1 - (.4 + .3 - .15) = .45$$

Problem 6

(a)
$$P(\xi) = 1 - P(F) = 1 - .6 = .4$$

(b)

$$P(\overline{F} \cap \overline{C}) = 1 - (P(F) + P(C) - P(F \cap C))$$
$$= 1 - (.7 + .6 - .5)$$
$$= .2$$

(c)

$$P(C - F) = P(C) - P(C \cup F)$$
$$= .7 - .5$$
$$= .2$$

$$P(F - C) = P(F) - P(C \cup F)$$
$$= .6 - .5$$
$$= .1$$