Pontificia Universidad Católica de Chile Facultad de Matemáticas 1° Semestre 2019

Ayudantía 14

30 de Abril

MAT1106 - Introducción al Cálculo

1) Sea $\{x_n\}$ una sucesión que converge. Pruebe que existe una subsucesión $\{x_{n_k}\}$ tal que para todo $k \in \mathbb{N}$, se cumple

$$|x_{n_k} - x_{n_{k+1}}| < \frac{1}{2}$$

2) Sea $\{x_n\}$ una sucesión. Se define $\{c_n\}$ como

$$c_n = \frac{x_1 + \dots + x_n}{n}$$

Pruebe que si x_n converge a un real L, entonces c_n también. ¿Es cierto el recíproco?

- 3) Sea $\{x_n\}$ una sucesión que converge a $L \neq 0$. Pruebe que eventualmente x_n tiene el mismo signo.
- 4) Sea $\{x_n\}$ una sucesión, y sean $\{x_{n_a}\}, \{x_{n_b}\}, \dots, \{x_{n_k}\}$ una cantidad finita de subsucesiones tales que todos los elementos de $\{x_n\}$ pertenecen a al menos una subsucesión, y todas convergen a L. Pruebe que x_n converge también a L. ¿Es necesario que sean finitas?
- 5) Sean $p(x) = a_k x^k + \cdots + a_0$ y $q(x) = b_j x^j + \cdots + b_0$, con a_k y b_j distintos de cero.
 - a) Pruebe que si k > j, entonces

$$\lim_{n \to \infty} \frac{p(n)}{q(n)} = \pm \infty$$

b) Pruebe que si k = j, entonces

$$\lim_{n \to \infty} \frac{p(n)}{q(n)} = \frac{a_k}{b_i}$$

c) Pruebe que si k < j, entonces

$$\lim_{n \to \infty} \frac{p(n)}{q(n)} = 0$$