TOPOLOGÍA I

19 de septiembre de 2014

1. En $X = [0, 2] \subset \mathbb{R}$ se define la siguiente familia de subconjuntos:

 $\mathcal{B} = \{ [a, b[/ 0 < a < b < 2 \} \cup \{]0, c[\cup]d, 2] / 0 < c < d < 2 \}.$

- (a) Estudiar si \mathcal{B} es base de una topología sobre X.
- (b) Calcular interior, adherencia y frontera de]0,1[en X con la topología T que tiene a $\mathcal B$ como subbase.
- (c) Encontrar, si es posible, un homeomorfismo entre (X, T) y $(\mathbb{S}^1, \mathcal{T}_{u\mathbb{S}^1})$.
- 2. Sea $(\mathbb{R}, \mathcal{T}_S)$ la recta de Sorgenfrey, con base $\{[a, b] / a < b\}$.
 - (a) Describir la topología inducida del espacio topológico producto (\mathbb{R}^2, T) de (\mathbb{R}, T_S) y (\mathbb{R}, T_S) sobre cada recta del plano. ¿Son todas esas rectas homeomorfas entre si?
 - (b) Estudiar si la aplicación $f:(\mathbb{R}^2,T)\longrightarrow (\mathbb{R}^2,T)$, dada por f(x,y)=(x,-y), es continua, abierta o cerrada.
- 3. Se considera el conjunto $X = \{a, b, c, d, e\}$ con la topología:

$$T = \{X, \emptyset, \{a\}, \{c, d\}, \{a, c, d\}, \{b, c, d, e\}\}.$$

- (a) Hallar las componentes conexas de (X, T).
- (b) Probar que toda biyección abierta $f:(X,T)\longrightarrow (X,T)$ es un homeomorfismo.
- 4. En $X = \mathbb{R} \times \{1,9\}$ se considera la relación de equivalencia:

$$(x,y)R(x',y') \Leftrightarrow (x,y) = (x',y') \ o \ x,x' < 1 \ o \ x,x' > 4$$

- (a) Estudiar si la proyección $p:(X,T_{uX}) \longrightarrow (X_{/R},T_{uX/R})$ es abierta o cerrada.
- (b) Probar que $(X_{/R}, T_{uX/R})$ no es homeomorfo a (S^1, T_{uS^1}) .

Puntuación: todos igual.

Tiempo: 3 horas.