Unit IV

Introduction to Sequential Logic Circuits

by

Dr. Krishan Arora
Associate Professor and Head
Lovely Professional University

Sequential Circuits

Combinational

- The outputs depend only on the current input values
- It uses only logic gates

Sequential

- The outputs depend on the current and past input values
- It uses logic gates and storage elements
- > Example
 - Vending machine
- They are referred as finite state machines since they have a finite number of states

Block Diagram

- Memory elements can store binary information
 - This information at any given time determines the state of the circuit at that time

Sequential Circuit Types

Synchronous

- The circuit behavior is determined by the signals at discrete instants of time
- The memory elements are affected only at discrete instants of time
- A clock is used for synchronization
 - Memory elements are affected only with the arrival of a clock pulse
 - If memory elements use clock pulses in their inputs, the circuit is called
 - Clocked sequential circuit

Sequential Circuit Types

ASynchronous

- The circuit behavior is determined by the signals at any instant of time
- It is also affected by the order the inputs change

Clock

- It emits a series of pulses with a precise pulse width and precise interval between consecutive pulses
- Timing interval between the corresponding edges of two consecutive pulses is known as the clock cycle time, or period

Flip-Flops

- They are memory elements
- They can store binary information

Flip-Flops

- Can keep a binary state until an input signal to switch the state is received
- There are different types of flip-flops depending on the number of inputs and how the inputs affect the binary state

Latches

- The most basic flip-flops
 - > They operate with signal levels
- The flip-flops are constructed from latches
- They are not useful for synchronous sequential circuits
- They are useful for asynchronous sequential circuits

The difference between a latch and a flip-flop is that a latch is level-triggered (outputs can change as soon as the inputs changes) and Flip-Flop is edgetriggered (only changes state when a control signal goes from high to low or low to high).

SR Latch with NOR

Inpi	ut	Output
Α	В	A+B
0	0	1
0	1	0
1	0	0
1	1	0

S	R	Q	State
0	0	Previous State	No change
0	1	0	Reset
1	0	0 1	Set
1	1	?	Forbidden

SR Latch with NAND

Inp	Inputs	
A	В	Y
0	0	1
0	1	1
1	0	1
1	1	0

Ī	R	Q	State
1	1	Previous State	No change
1	0	0	Reset
0	1	1	Set
0	0	?	Forbidden

Link

https://www.youtube.com/watch?v=kt8 d3CYWGH4

SR Latch with Control Input

D Latch

Symbols for Latches

Quick Quiz (Poll 1)

- Why latches are called memory devices?
 - a) It has capability to store 8 bits of data
 - b) It has internal memory of 4 bit
 - c) It can store one bit of data
 - d) It can store infinite amount of data

Quick Quiz (Poll 2)

- The full form of SR is
 - a) System rated
 - b) Set reset
 - c) Set ready
 - d) Set Rated