Preconditioning of Iterative Methods for the Transport Equation

Jack Blake

28th October, 2011

Neutron Transport Equation in Nuclear Fission

Diffusion Synthetic Acceleration (DSA)

An Example

Neutron Transport Equation in Nuclear Fission

Diffusion Synthetic Acceleration (DSA)

An Example

The mono-energetic, steady-state, linear 3D Boltzmann transport equation:

$$\begin{split} \boldsymbol{\Omega} \cdot \nabla \Psi(\mathbf{r}, \boldsymbol{\Omega}) + \sigma(\mathbf{r}) \Psi(\mathbf{r}, \boldsymbol{\Omega}) &= \\ &\frac{1}{4\pi} \sigma_s(\mathbf{r}) \int_{\mathbb{S}^2} \Psi(\mathbf{r}, \boldsymbol{\Omega}') \; \mathrm{d}\boldsymbol{\Omega}' \\ &+ \frac{1}{4\pi} \nu(\mathbf{r}) \sigma_f(\mathbf{r}) \int_{\mathbb{S}^2} \Psi(\mathbf{r}, \boldsymbol{\Omega}') \; \mathrm{d}\boldsymbol{\Omega}' + \mathcal{Q}(\mathbf{r}, \boldsymbol{\Omega}). \end{split}$$

The mono-energetic, steady-state, linear 3D Boltzmann transport equation:

$$\begin{split} \boldsymbol{\Omega} \cdot \nabla \Psi(\mathbf{r}, \boldsymbol{\Omega}) + \sigma(\mathbf{r}) \Psi(\mathbf{r}, \boldsymbol{\Omega}) &= \\ &\frac{1}{4\pi} \sigma_s(\mathbf{r}) \int_{\mathbb{S}^2} \Psi(\mathbf{r}, \boldsymbol{\Omega}') \; \mathrm{d}\boldsymbol{\Omega}' \\ &+ \frac{1}{4\pi} \nu(\mathbf{r}) \sigma_f(\mathbf{r}) \int_{\mathbb{S}^2} \Psi(\mathbf{r}, \boldsymbol{\Omega}') \; \mathrm{d}\boldsymbol{\Omega}' + \mathcal{Q}(\mathbf{r}, \boldsymbol{\Omega}). \end{split}$$

In 1D:

$$\mu \frac{\partial \Psi}{\partial x} + \sigma \Psi = \frac{1}{2} \sigma_s \int_{-1}^1 \Psi \, \mathrm{d} \mu' + \frac{1}{2} \nu \sigma_f \int_{-1}^1 \Psi \, \mathrm{d} \mu' + \mathcal{Q}.$$

where σ , σ_s , σ_f and ν are functions of x, the spatial variable, and Ψ and Q are functions of both x and μ , the angular variable.

Define:

$$F(\cdot) \equiv \frac{1}{2}\nu(x)\sigma_f(x)\int_{-1}^1 (\cdot) d\mu'.$$

Define:

- $F(\cdot) \equiv \frac{1}{2}\nu(x)\sigma_f(x)\int_{-1}^1 (\cdot) d\mu'.$

In operator form:

$$\mathcal{T}\Psi = \mathcal{S}\Psi + \mathcal{F}\Psi,$$

where \mathcal{T} , \mathcal{S} and \mathcal{F} are known as the *transport*, *scatter* and *fission* operators respectively.

Define:

$$T(\cdot) \equiv \mu \frac{\partial(\cdot)}{\partial x} + \sigma(x)(\cdot),$$

$$F(\cdot) \equiv \frac{1}{2}\nu(x)\sigma_f(x)\int_{-1}^1 (\cdot) d\mu'.$$

In operator form:

$$\mathcal{T}\Psi = \mathcal{S}\Psi + \mathcal{F}\Psi,$$

where \mathcal{T} , \mathcal{S} and \mathcal{F} are known as the *transport*, *scatter* and *fission* operators respectively.

As an eigenvalue problem:

$$(\mathcal{T} - \mathcal{S})\Psi = \lambda \mathcal{F}\Psi.$$
 Criticality Problem

Let A, B be n-by-n matrices, \mathbf{x} an n-dimensional vector. Eigenvalue problem:

$$A\mathbf{x} = \lambda B\mathbf{x},$$

Let A, B be n-by-n matrices, \mathbf{x} an n-dimensional vector. Eigenvalue problem:

$$A\mathbf{x} = \lambda B\mathbf{x}, \iff (A - \gamma B)\mathbf{x} = (\lambda - \gamma)B\mathbf{x}.$$

Let A, B be n-by-n matrices, \mathbf{x} an n-dimensional vector. Eigenvalue problem:

$$A\mathbf{x} = \lambda B\mathbf{x}, \iff (A - \gamma B)\mathbf{x} = (\lambda - \gamma)B\mathbf{x}.$$

Thus

$$(A - \gamma B)^{-1} B \mathbf{x} = \frac{1}{\lambda - \gamma} \mathbf{x}.$$

Let A, B be n-by-n matrices, \mathbf{x} an n-dimensional vector. Eigenvalue problem:

$$A\mathbf{x} = \lambda B\mathbf{x}, \iff (A - \gamma B)\mathbf{x} = (\lambda - \gamma)B\mathbf{x}.$$

Thus

$$(A - \gamma B)^{-1} B \mathbf{x} = \frac{1}{\lambda - \gamma} \mathbf{x}.$$

Iteratively we solve a sequence of inverse systems of the form,

$$(A - \gamma B)\mathbf{x} = \text{RHS}.$$

Let A, B be n-by-n matrices, \mathbf{x} an n-dimensional vector. Eigenvalue problem:

$$A\mathbf{x} = \lambda B\mathbf{x}, \iff (A - \gamma B)\mathbf{x} = (\lambda - \gamma)B\mathbf{x}.$$

Thus

$$(A - \gamma B)^{-1} B \mathbf{x} = \frac{1}{\lambda - \gamma} \mathbf{x}.$$

Iteratively we solve a sequence of inverse systems of the form,

$$(A - \gamma B)\mathbf{x} = \text{RHS}.$$

In the previous operator form

$$(\mathcal{T} - \mathcal{S} - \gamma \mathcal{F})\Psi = \mathcal{Q}.$$
 Source Problem

The focus of this talk will be efficient iterative solves of

$$(\mathcal{T}-\mathcal{S}-\textcolor{red}{\gamma}\mathcal{F})\Psi \ = \ \mathcal{Q}.$$

The focus of this talk will be efficient iterative solves of

$$(\mathcal{T} - \mathcal{S} - \gamma \mathcal{F})\Psi = \mathcal{Q}.$$

 $(\mathcal{T} - \mathcal{S})\Psi = \mathcal{Q}.$ Source Problem

The focus of this talk will be efficient iterative solves of

$$(\mathcal{T} - \mathcal{S} - \gamma \mathcal{F})\Psi = \mathcal{Q}.$$

 $(\mathcal{T} - \mathcal{S})\Psi = \mathcal{Q}.$ Source Problem

▶ Splitting methods (→ Source Iteration)

The focus of this talk will be efficient iterative solves of

$$(\mathcal{T} - \mathcal{S} - \gamma \mathcal{F})\Psi = \mathcal{Q}.$$

 $(\mathcal{T} - \mathcal{S})\Psi = \mathcal{Q}.$ Source Problem

- Splitting methods (→ Source Iteration)
- Synthetic Acceleration methods (→ Diffusion Synthetic Acceleration (DSA))

Neutron Transport Equation in Nuclear Fission

Diffusion Synthetic Acceleration (DSA)

An Example

The Structure of a Diffusion Synthetic Acceleration Scheme

'Splitting' Applied to our problem of interest:

$$A\Psi = Q$$

'Splitting' Applied to our problem of interest:

$$A\Psi = \mathcal{Q}$$
$$(\mathcal{T} - \mathcal{S})\Psi = \mathcal{Q}$$

'Splitting' Applied to our problem of interest:

$$A\Psi = \mathcal{Q}$$
 $(\mathcal{T} - \mathcal{S})\Psi = \mathcal{Q}$ $\mathcal{T}\Psi^{(i+1/2)} = \mathcal{S}\Psi^{(i)} + \mathcal{Q}$. Source Iteration

'Splitting' Applied to our problem of interest:

$$A\Psi = \mathcal{Q}$$

$$(\mathcal{T} - \mathcal{S})\Psi = \mathcal{Q}$$

$$\mathcal{T}\Psi^{(i+1/2)} = \mathcal{S}\Psi^{(i)} + \mathcal{Q}.$$
 Source Iteration

Recall:

The Structure of a Diffusion Synthetic Acceleration Scheme

From the Source Iteration we have:

From the Source Iteration we have:

and
$$\mathcal{T}\Psi^{(i+1/2)} = \mathcal{S}\Psi^{(i)} + \mathcal{Q}$$
.
 $\mathcal{T}\Psi = \mathcal{S}\Psi + \mathcal{Q}$.

Subtracting we obtain an expression for a linear correction term

$$\begin{split} \mathcal{T}\left(\Psi - \Psi^{(i+1/2)}\right) &= \; \mathcal{S}\left(\Psi - \Psi^{(i)}\right), \\ &= \; \mathcal{S}\left(\; \Psi - \Psi^{(i+1/2)} \;\right) + \mathcal{S}\left(\; \Psi^{(i+1/2)} - \Psi^{(i)}\right), \end{split}$$

From the Source Iteration we have:

$$\mathcal{T}\Psi^{(i+1/2)} = \mathcal{S}\Psi^{(i)} + \mathcal{Q}.$$

and $\mathcal{T}\Psi = \mathcal{S}\Psi + \mathcal{Q}.$

Subtracting we obtain an expression for a linear correction term

$$\begin{split} \mathcal{T}\left(\Psi - \Psi^{(i+1/2)}\right) &= \mathcal{S}\left(\Psi - \Psi^{(i)}\right), \\ &= \mathcal{S}\left(\Psi - \Psi^{(i+1/2)}\right) + \mathcal{S}\left(\Psi^{(i+1/2)} - \Psi^{(i)}\right), \end{split}$$

Thus

$$\begin{split} (\mathcal{T} - \mathcal{S})(\Psi - \Psi^{(i+1/2)}) &= \ \mathcal{S}(\Psi^{(i+1/2)} - \Psi^{(i)}), \\ \Rightarrow & \Psi = \ \Psi^{(i+1/2)} + (\mathcal{T} - \mathcal{S})^{-1} \mathcal{S}(\Psi^{(i+1/2)} - \Psi^{(i)}). \end{split}$$

From the Source Iteration we have:

$$\mathcal{T}\Psi^{(i+1/2)} = \mathcal{S}\Psi^{(i)} + \mathcal{Q}.$$

and $\mathcal{T}\Psi = \mathcal{S}\Psi + \mathcal{Q}.$

Subtracting we obtain an expression for a linear correction term

$$\begin{split} \mathcal{T}\left(\Psi - \Psi^{(i+1/2)}\right) &= \mathcal{S}\left(\Psi - \Psi^{(i)}\right), \\ &= \mathcal{S}\left(\Psi - \Psi^{(i+1/2)}\right) + \mathcal{S}\left(\Psi^{(i+1/2)} - \Psi^{(i)}\right), \end{split}$$

Thus

$$(\mathcal{T} - \mathcal{S})(\Psi - \Psi^{(i+1/2)}) = \mathcal{S}(\Psi^{(i+1/2)} - \Psi^{(i)}),$$

$$\Rightarrow \qquad \Psi = \Psi^{(i+1/2)} + \underbrace{(\mathcal{T} - \mathcal{S})^{-1}}_{\mathcal{S}} \mathcal{S}(\Psi^{(i+1/2)} - \Psi^{(i)}).$$

Diffusion Synthetic Acceleration

Synthetic Acceleration:

$$\Psi = \Psi^{(i+1/2)} + MS(\Psi^{(i+1/2)} - \Psi^{(i)}).$$

Diffusion Synthetic Acceleration

Synthetic Acceleration:

$$\Psi = \Psi^{(i+1/2)} + MS(\Psi^{(i+1/2)} - \Psi^{(i)}).$$

Synthetic Acceleration is equivalent to preconditioning...

Diffusion Synthetic Acceleration

Synthetic Acceleration:

$$\Psi = \Psi^{(i+1/2)} + MS(\Psi^{(i+1/2)} - \Psi^{(i)}).$$

Synthetic Acceleration is equivalent to preconditioning...

DSA is a Synthetic Acceleration method that uses the P_1 diffusion approximation as the choice for M:

$$-\frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{1}{3\sigma}\frac{\mathrm{d}\phi_0}{\mathrm{d}x}\right) \;+\; \sigma_c\phi_0 \;=\; q_0 \;-\; \frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{q_1}{\sigma}\right).$$

The P_1 Diffusion Approximation

Legendre polynomials:

$$P_0(\mu) = 1$$

 $P_n(\mu) = \frac{1}{2^n n!} \frac{d^n}{d\mu^n} (\mu^2 - 1)^n, \quad n = 1, 2, \dots$

Legendre polynomials:

$$P_0(\mu) = 1$$

 $P_n(\mu) = \frac{1}{2^n n!} \frac{d^n}{d\mu^n} (\mu^2 - 1)^n, \quad n = 1, 2, \dots$

Orthogonality:

$$\int_{-1}^{1} P_n(\mu) P_{\hat{n}}(\mu) d\mu = \frac{2\delta_{n,\hat{n}}}{2n+1}.$$

Legendre polynomials:

$$P_0(\mu) = 1$$

 $P_n(\mu) = \frac{1}{2^n n!} \frac{d^n}{d\mu^n} (\mu^2 - 1)^n, \quad n = 1, 2, \dots$

Orthogonality:

$$\int_{-1}^{1} P_n(\mu) P_{\hat{n}}(\mu) d\mu = \frac{2\delta_{n,\hat{n}}}{2n+1}.$$

Once nomalised they from a complete orthonormal sequence, so we can write the neutron flux as an expansion:

$$\Psi(x,\mu) = \sum_{n=0}^{\infty} (2n+1) \phi_n(x) P_n(\mu),$$

$$\phi_n(x) \equiv \frac{1}{2} \int_{-1}^1 \Psi(x, \mu') P_n(\mu') d\mu'.$$

The P_N approximation in slab geometry for the Transport equation, consisting of N+1 coupled differential equations is given by

$$\frac{n}{2n+1}\frac{\mathrm{d}\phi_{n-1}}{\mathrm{d}x}\left(x\right) + \frac{n+1}{2n+1}\frac{\mathrm{d}\phi_{n+1}}{\mathrm{d}x}\left(x\right) + \left(\sigma\left(x\right) - \sigma_{s,n}\left(x\right)\right)\phi_{n}\left(x\right) = q_{n}$$
 for $n = 0, \dots, N-1$,

and

$$\frac{N}{2N+1}\frac{\mathrm{d}\phi_{N-1}}{\mathrm{d}x}(x)+\left(\sigma-\sigma_{s,N}\right)\phi_{N} = q_{N}.$$

where
$$q_n \equiv \frac{1}{2} \int_{-1}^1 P_n(\mu) q(x, \mu) d\mu$$

and $\sigma_{s,n} \equiv 2\pi \int_{-1}^1 \sigma_s(x, \hat{\mu}) P_n(\hat{\mu}) d\hat{\mu}$

To move from P_N to P_1 set N=1, to obtain:

$$\frac{\mathrm{d}\phi_1}{\mathrm{d}x} + (\sigma - \sigma_{s,0})\phi_0 = q_0,$$

$$\frac{1}{3}\frac{\mathrm{d}\phi_0}{\mathrm{d}x} + (\sigma - \sigma_{s,1})\phi_1 = q_1.$$

To move from P_N to P_1 set N=1, to obtain:

$$\frac{\mathrm{d}\phi_1}{\mathrm{d}x} + (\sigma - \sigma_{s,0})\phi_0 = q_0,$$

$$\frac{1}{3}\frac{\mathrm{d}\phi_0}{\mathrm{d}x} + (\sigma - \sigma_{s,1})\phi_1 = q_1.$$

Combining these and rearranging yields:

$$-\frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{1}{3\sigma}\frac{\mathrm{d}\phi_0}{\mathrm{d}x}\right) \;+\; \sigma_c\phi_0 \;=\; q_0 \;-\; \frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{q_1}{\sigma}\right).$$

To move from P_N to P_1 set N=1, to obtain:

$$\frac{\mathrm{d}\phi_1}{\mathrm{d}x} + (\sigma - \sigma_{s,0})\phi_0 = q_0,$$

$$\frac{1}{3}\frac{\mathrm{d}\phi_0}{\mathrm{d}x} + (\sigma - \sigma_{s,1})\phi_1 = q_1.$$

Combining these and rearranging yields:

$$-\frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{1}{3\sigma}\frac{\mathrm{d}\phi_0}{\mathrm{d}x}\right) \;+\; \sigma_c\phi_0 \;=\; q_0 \;-\; \frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{q_1}{\sigma}\right).$$

Note: ϕ_0 depends only upon x, the spatial variable.

Diffusion Synthetic Acceleration

Linear correction:

$$\mathbf{e}^{(i+1)}(x) = \Psi(x,\mu) - \Psi^{(i+1/2)}(x,\mu),$$

Diffusion Synthetic Acceleration

Linear correction:

$$\mathbf{e}^{(i+1)}(x) = \Psi(x,\mu) - \Psi^{(i+1/2)}(x,\mu),$$

DSA finds an approximation for the integral of this error:

$$F^{(i+1)}(x) \approx \int_{-1}^{1} \Psi(x, \mu') - \Psi^{(i+1/2)}(x, \mu') d\mu',$$

= $2\phi_0(x) - 2\phi_0^{(i+1/2)}(x),$

Diffusion Synthetic Acceleration

Linear correction:

$$\mathbf{e}^{(i+1)}(x) = \Psi(x,\mu) - \Psi^{(i+1/2)}(x,\mu),$$

DSA finds an approximation for the integral of this error:

$$F^{(i+1)}(x) \approx \int_{-1}^{1} \Psi(x, \mu') - \Psi^{(i+1/2)}(x, \mu') d\mu',$$

= $2\phi_0(x) - 2\phi_0^{(i+1/2)}(x),$

hence

$$\phi_0^{(i+1)}(x) = \frac{1}{2}F^{(i+1)}(x) - \phi_0^{(i+1/2)}(x).$$

Neutron Transport Equation in Nuclear Fission

Diffusion Synthetic Acceleration (DSA)

An Example

Example Problem

[A. Greenbaum Iterative methods for solving linear systems]

water	water	iron	water
$0 \le x \le 12$	$12 \le x \le 15$	$15 \le x \le 21$	$21 \le x \le 30$
$\sigma_t = 3.3333$	$\sigma_t = 3.3333$	$\sigma_t = 1.3333$	$\sigma_t = 3.3333$
$\sigma_s = 3.3136$	$\sigma_s = 3.3136$	$\sigma_s = 1.1077$	$\sigma_s = 3.3136$
f = 1	f = 0	f = 0	f = 0

Example Problem

[A. Greenbaum Iterative methods for solving linear systems]

water	water	iron	water
$0 \le x \le 12$	$12 \le x \le 15$	$15 \le x \le 21$	$21 \le x \le 30$
$\sigma_t = 3.3333$	$\sigma_t = 3.3333$	$\sigma_t = 1.3333$	$\sigma_t = 3.3333$
$\sigma_s = 3.3136$	$\sigma_s = 3.3136$	$\sigma_s = 1.1077$	$\sigma_s = 3.3136$
f = 1	f = 0	f = 0	f = 0

Example Problem

[A. Greenbaum Iterative methods for solving linear systems]

water	water	iron	water
$0 \le x \le 12$	$12 \le x \le 15$	$15 \le x \le 21$	$21 \le x \le 30$
$\sigma_t = 3.3333$	$\sigma_t = 3.3333$	$\sigma_t = 1.3333$	$\sigma_t = 3.3333$
$\sigma_s = 3.3136$	$\sigma_s = 3.3136$	$\sigma_s = 1.1077$	$\sigma_s = 3.3136$
f = 1	f = 0	f = 0	f = 0

 \mathcal{T} hank You!