SIMULATION, KRIGING, AND VISUALIZATION OF CIRCULAR-SPATIAL DATA

by

William J. Morphet

A dissertation submitted in partial fulfillment of the requirements for the degree

of

DOCTOR OF PHILOSOPHY

in

Mathematical Sciences

Approved:	
Jürgen Symanzik	Adele Cutler
Major Professor	Committee Member
Donald H. Cooley	John R. Stevens
Committee Member	Committee Member
Daniel C. Coster Committee Member	Byron Burnham Dean of Graduate Studies

UTAH STATE UNIVERSITY Logan, Utah

2009

Copyright © William Morphet 2009

All Rights Reserved

ABSTRACT

Visualization, Kriging, and Simulation of Circular-Spatial Data

by

William J. Morphet, Doctor of Philosophy

Utah State University, 2009

Major Professor: Dr. Jürgen Symanzik Department: Mathematics and Statistics

The circular dataimage is defined by displaying direction as the color at the same direction in a color wheel composed of a sequence of two-color gradients with color continuity between gradients. The resulting image of circular-spatial data is continuous with high resolution. Examples include ocean wind direction, Earth's main magnetic field, and rocket nozzle internal combustion flow. The cosineogram is defined as the mean cosine of the angle between random components of direction as a function of distance between observation locations. It expresses the spatial correlation of circular-spatial data. A circular kriging solution is developed based on a model fitted to the cosineogram. A method for simulating circular random fields is given based on a transformation of a Gaussian random field. It is adaptable to any continuous probability distribution. Circular random fields were implemented for selected circular probability distributions. An R software package was created with functions and documentation.

(391 pages)

ACKNOWLEDGMENTS

Study of the dataimage of Minotte and West (1998), for the imaging of ordered multiple linear variables and observational units, motivated the problem of how to display directional-spatial data as an image, and what this method should be called. I am thankful for the helpful discussions with Dr. Mike Minnotte regarding color wheels. I would also like to thank the JCGS associate editor and referee for their helpful suggestions regarding circular dataimages. I acknowledge and express thanks to ATK Launch Systems, Inc., and NASA for authorizations to display model flow in the Space Shuttle solid rocket motor nozzle in Figure 2-17 (b) and to display nozzle vectoring data in Figure 2-18, and to Technical Artist Alan Eaton for Figure 2-19 (Property number A045477a, ATK Launch Systems, Inc., copyright © 2005) showing the Space Shuttle roll maneuver with left/right solid rocket motor labels added.

Most of the figures were generated in R, versions 2.8.0 (R Development Core Team 2008). R was originally created by Ihaka and Gentleman (1996) and is now a collaborative worldwide effort. The binary distributions of R and R contributor packages are freely downloadable from http://www.r-project.org/, and are supported on Windows (NT, 95 and later) and in some versions for other operating systems. Figure 1-4 was produced using functions of R package Fields (Furrer, Nychka, and Sain 2009), software for simulation of random fields. Figure 1-5, Appendix Figure N-1 (b), and Figure N-2 (a) were produced using functions of R package CircStats (Lund and Agostinelli 2007), software for circular statistics, and manually enhanced. The functions of CircStats were used extensively in the codes written for this dissertation. Figures N-2 (b) and (c) were produced using a demo version of Oriana 2, software for the analysis and display of circular data (Kovach Computing 2004), and manually enhanced. Oriana is available at http://www.kovcomp.co.uk/oriana/oribroc.html. Oriana is supported on Microsoft

Windows 98/Windows NT 4 or later, including Windows ME/2000/XP/2003/Vista.

Figures 2-15, 2-16, and N-4 were constructed using functions of R package RGL (Adler 2009), software for 3-D real time visualization. Other R packages used extensively include geoR (Ribeiro and Diggle 2001), and RandomFields (Schlather 2001).

I would like to acknowledge and thank:

ATK Launch Systems, Inc.:

- Dr. Suresh Kulkarni Provided critical endorsement following rejection of application for the master's program of study.
- Management and supervision Approved adjusted working hours to accommodate class schedules.

Utah State University professors:

- Dr. Donald Cooley Head of Computer Science and defense chairman -Suggested programming to have some fun when needing a break.
- Dr. Dan Coster Provided a listening ear and encouragement.
- Dr. Adele Cutler Provided a critical evaluation leading to a productive topic of research and a thorough critique of my dissertation.
- Dr. Richard Cutler Defended me and encouraged high GPA.
- Dr. Robert Heal Provided a listening ear and encouragement.
- Dr. John Stevens Suggested important improvements to the dissertation.
- Dr. Jürgen Symanzik, advisor Provided guidance, persuaded me to remain in the doctoral program of study following withdrawals, and provided critical review.
- Dr. Russell Thompson Was highly supportive as department head (without him, one withdrawal would have been terminal).

Others:

- Kenneth Johnson, NASA/ NESC Systems Engineering Office For review of Chapter 1 of the dissertation.
- Terry, wife and mother of 5 children Sacrificed many hours of companionship and performed many supportive efforts.

William J. Morphet

			Page
ABSTRA	CT		iii
ACKNOV	VLEDO	GEMENTS	iv
LIST OF	TABLI	ES	xii
LIST OF	FIGUE	RES	xiii
SYMBOL	.S, TE	RMINOLOGY, ACRONYMS	xxi
CHAPTE	RS		
1.	INTI	RODUCTION	
	1.1	Introduction to the Circular Random Field and	
	1.2	Circular Random Variables A Motivational Example	
	1.3	Problem Description	
	1.4	Literature Review	
	1.5	Dissertation Overview	15
2.		CULAR DATAIMAGE, A HIGH RESOLUTION CONTINUOUS GE OF CIRCULAR-SPATIAL DATA	
	2.1	Introduction	19
	2.2	Overview of Vectorial-Spatial Displays	20
	2.3	Cross Over	24
	2.4 2.5	The Circular Dataimage and Color Wheel Comparison of Methods	
	2.6	Calculation of a BGYR Color Wheel	
	2.7	Color Considerations and Variations	
	2.8	Other Examples	
	2.9	Chapter Summary and Future Work	50
3.	COS	SINEOGRAM, A MEASURE OF CIRCULAR-SPATIAL CORRELATION	NC
	3.1	Introduction	51
	3.2	The Cosineogram	52
	3.3	Derivation of the Sill	54
	3.4	Expectation of the Cosines	
	3.5	Verification of the Sill by Simulation	
	3.6 3.7	Cosine ModelsCosineogram of Ocean Wind in a South Polar Region	
		Chapter Summary and Future Work	

				Page
	4.	CIRC	ULAR KRIGING	
		4.2 3 4.3 4.4 6 4.5 1 4.6 6 4.7 1	Introduction	79 88 90 91 94 98
	5.		LATION OF CIRCULAR RANDOM FIELDS	
		5.2 5.3 5.4 5.5 5.6	Introduction	104 108 112 124 128
	6.	COMF	PREHENSIVE EXAMPLE	
		6.2 3 6.3 6.4 6.5 6.6 6.7 6.8 6.9	Outline of Circular-Spatial Processes Simulation of a CRF Estimation of the Spatial Trend Computation of the Residuals Plotting and Modeling the Cosineogram Kriging the Residuals Interpolation of the Trend Estimate Computing The Circular-Spatial Estimate Imaging the Circular-Spatial Estimate Computing the Circular Kriging Variance	131 133 134 135 136 137 138 139
	7.	SUMN	MARY	141
CIT	ATION	IS		147
ΑP	PENDI	CES		151
	Α	Notati	on	152

			Page
В	Line	ar Algebra	
	B.1 B.2 B.3 B.4 B.5 B.6 B.7 B.8	Identities for Vectors Some Properties of the Positive Definite Matrix <i>K</i> Theorem: The P. D. Matrix Has an Inverse Theorem: The Inverse of P. D. Matrix Is Symmetric Theorem: The Inverse of P. D. Matrix Is P. D. Some Properties of the Negative Definite Matrix Derivatives Required for Kriging The Requirements for Maximization Expectation	. 153 . 154 . 155 . 155 . 156 . 158
С	Qua	litative Evaluations of Other CRFs with Standardization	. 160
D	Qua	litative Evaluations of CRFs Near Parameter Extremes	. 165
Е	Deri	vations of the CDF Formulae for Support $[0,2\pi)$	
	E.1 E.2 E.3 E.4 E.5	Cardioid Triangular Uniform Von Mises Wrapped Cauchy.	. 184 . 186 . 186
F	Veri	fication by Evaluation of the CDF Formulae with Support $[0,2\pi)$	
	F.1 F.2 F.3 F.4 F.5	Cardioid Triangular Uniform Von Mises Wrapped Cauchy	. 188 . 189 . 189
G	Mod	ification of the PDF and CDF Formulae for Rotated Support $[-\pi, +\pi]$)
	G.3 G.4	Cardioid Triangular Uniform Von Mises Wrapped Cauchy.	. 193 . 194 . 194
Н	Wra	pped Cauchy CDF	
	H.1 H.2	Additional Forms of the CDF	

			Page
	H.3 H.4	Evaluation of Alternate Forms	
I	Tria	ngular Inverse CDF	202
J	R Pa	ackage Documentation	
	J.1 J.2 J.3 J.4 J.5 J.6 J.7 J.8	Introduction and Installation SimulateCRF CircResidual CosinePlots KrigCRF InterpDirection TestPattern OceanWind WorldMask	206 211 214 222 228 233 234 234
		CircDataimagePlotVectors	
K	K.1 K.2 K.3 K.4 K.5 K.6 K.7 K.8 K.10 K.11 K.12 K.14 K.15 K.16	TestPattern CircDataimage SimulateSill CorrelationTransfer SimulateCRF AssessCRF PlotVectors CircResidual CosinePlots KrigCRF InterpDirection CircMedianPolish AssessStandardization MakeCosineData FitCosineData FitCoeanWind Japanese Standardization Japanese Standardizatio	249 271 273 274 278 282 284 285 291 296 305 306 307
L	R Co L.1 L.2 L.3	ommand Line Input Figures 3-5 to 3-9 Figure 3-13 Figure 5-1, Simulated CRF	312

			Page
	L.4	Figure 5-3, Image of GRF	314
	L.5	Figure 5-4, Variogram and Inverted Cosineogram Similar	314
	L.6	Figure 5-5, Standardization	
	L.7	Figure 5-6, Variability vs. ρ	315
	L.8	Figure 5-8 and the Figures in Appendices C and D	315
	L.9	Figures 6-2 to 6-11	
	L.10	Make Cosine Datasets	321
	L.11	Figure M-1, Fitted Covariogram an Unbiased Estimator	326
		Plot Figures M-2, M-3, and M-4, Families of Curves	
		Plot Figures M-6 to M-10	
	L.14	Plot Figures 4-3 and 4-4	336
М	Cosine Cur	rves of Simulated Circular Random Fields (CRF)	
	M.1	Review	338
	M.2	Generation of Cosine vs. Distance Curves	338
	M.3	Families of Cosine Curves	341
	M.4	Characterization of the Cosine Curves	345
	M.5	Expressions for the Cosine Models of Table M-2	348
	M.6	Generalization of the Generation and Characterization	
		of the Cosine Curves	353
N	Additional (Graphics for Circular Data	
	N.1	Summary Plots for Circular Data	354
	N.2	Histograms for Circular Data	355
	N.3	Nonparametric Density Plots for Circular Data	357
	N.4	New Cylindrical Plot of the Circular Probability Density	358
0	Permission	S	360
CLIE	RRICHILIM	VITAE	368

LIST OF TABLES

Table		Page
2-1	BGYR Color Wheel Formulae for RGB Space	32
3-1	Circular Probability Distributions, $\mu = 0$, $0 \le \theta < 2\pi$ Radians	56
3-2	The Sill of Selected Distributions	64
5-1	Circular Probability Distributions, $\mu = 0, -\pi \le \theta < \pi$ Radians	111
5-2	CDFs and Inverse CDFs for Circular Distributions, $\mu = 0, -\pi \le \theta < \pi \ \ \text{Radians} \$	112
D-1	Spatial Property Scores of Figures D-1 to D-16	182
J-1	Output of CosinePlots	220
J-2	Output of KrigCRF	224
J-3	Output of PlotVectors	245
M-1	Mean Resultant Vector Length ρ of Circular Distributions for Figures M-2, M-3, and M-4	339
M-2	Cosine Models Approximating CRF Cosine Curves	347

Figure		Page
1-1	Circular PDF of the Triangular Circular Probability Distribution	. 2
1-2	The Arithmetic Mean of 180° Does Not Point in the Central Direction of 0°	. 6
1-3	The Effect of the Population Resultant Vector Mean Length ρ on the Sample Mean Resultant Vector (Black) of a Sample (Tan) from the von Mises Circular Distribution	. 6
1-4	Circular and Vector Spatial Data and Their Means for the Direction the Ocean Wind Blows Toward	. 8
1-5	Rose Plot of the Circular Data Derived from the Data of Figure 1-3	. 11
1-6	Kriging, Estimation of Spatial Data Based on Spatial Correlation	. 14
1-7	Flow Chart of Methods for Circular-Spatial Data	. 17
2-1	Circular Dataimage of the Direction Wind Is Blowing Toward, Coded with Yellow-Red-Green-Blue (YRGB) Color Wheel (Right)	. 19
2-2	Some Existing Methods for Display of Circular and Vectorial-Spatial Data Using the Smoothed Ocean Wind Data	. 23
2-3	Evolution of the YRGB Color Wheel	. 25
2-4-1	Plots of Average Ocean Wind Direction	. 28
2-4-2	Plots of Smoothed Ocean Wind Direction	. 29
2-5	Comparison of Arrow and Circular Dataimage Plots of Ocean Wind Average Direction	. 31
2-6	Normal and Simulated Deuteranopic Views of Images	. 35
2-7	Variety of Continuous and Discrete Color Wheels	. 36
2-8	Effects of GYRB Color Wheel and Smoothness of Data	. 38
2-9	Effects of Color Wheel Rotation, Color Wheel Labeled with Rotation	. 38
2-10	Focus Plots of Smoothed Average Direction with Focal Directions 0 ° (Top) and 180 ° (Bottom)	. 40

Figure		Page
2-11	Axial Focus Plots of Smoothed Average Direction with Axial Focal Directions 0 $^{\circ}$ (Top) and 90 $^{\circ}$ (Bottom)	. 41
2-12	Strength Binned by Quartiles and Coded as Value (V) in HSV Scheme	. 42
2-13	Circular Dataimage of Wind with Direction Coded Using HSV Color Wheel and Magnitude (m/s) Plotted as Contour Curves	. 43
2-14	Circular Dataimage of Earth Main Magnetic H Field Direction	. 44
2-15	3D Polar Plot of Earth Main Magnetic H Field Model with Direction as a Color and Magnitude as Radius for 1/1/1900, 1/1/1950, and 1/1/2000	. 45
2-16	Asymmetry of Earth Main Magnetic H Field Model 1/1/2000 Demonstrated by 45° Rotations about the Horizontal Axis Through 0°-180° Longitude at the Equator	. 45
2-17	Space Shuttle Booster, Nozzle, and Nozzle Internal Combustion Flow	. 46
2-18	Time Series of the Space Shuttle Booster Nozzle Direction Angle	. 48
2-19	Illustration of the Space Shuttle Roll Maneuver vs. Time from Ignition	. 49
3-1	Distance Between Locations vs. Angular Distance Between Observations	. 52
3-2	Features of the Cosine Model	. 53
3-3	Acute and Obtuse Cases of Random Directions	. 58
3-4	Mean Cosine of the Angle Between Independent Cardioid CRV, $\rho^2 = 0.062$, Is Consistent with the Theoretical Sill	. 65
3-5	Mean Cosine of the Angle Between Independent Triangular CRV, $\rho^2=0.041$, Is Consistent with the Theoretical Sill	. 65
3-6	Mean Cosine of the Angle Between Independent Uniform CRV, $\rho^2=0$, Is Consistent with the Theoretical Sill	. 66
3-7	Mean Cosine of the Angle Between Independent Von Mises CRV, $\rho^2 = 0.798$, Is Consistent with the Theoretical Sill	. 66

Figure		Page
3-8	Mean Cosine of the Angle Between Independent Wrapped Cauchy CRV, $\rho^2=0.135$, Is Consistent with the Theoretical Sill	67
3-9	The Exponential Cosine Model	69
3-10	The Gaussian Cosine Model	70
3-11	The Spherical Cosine Model	70
3-12	Circular Dataimage of Model of Ocean Wind Direction for South Polar Region	74
3-13	Cosineocloud, Cosineogram, and Exponential Model of South Polar Ocean Wind	75
4-1	Circular Kriging, the Interpolation of Circular-Spatial Data Based on Spatial Correlation	78
4-2	Directions Represented by the Unobserved \mathbf{u}_0 , Estimate $\hat{\mathbf{u}}_0$, and Error $\mathbf{e}_0 = \hat{\mathbf{u}}_0 - \mathbf{u}_0$ Vectors	81
4-3	Effect of Cosine Model on the Kriging Estimate Around the Measurement Location	92
4-4	Effect of Range, Mean Resultant Length ρ , and nugget n_g on the Circular Kriging Variance $\hat{\sigma}^2_{CK}$	100
5-1	Simulated Sample of a von Mises CRF, $\rho = 0.8$, Range $r = 10$	108
5-2	Mapping a GRV to a CRV via the CDFs F_Z and G_Θ	109
5-3	Simulated GRF with Spherical Covariance Model and Range <i>r</i> = 10 Corresponding to Figure 5-1	109
5-4	Similar Shapes of Variograms and Inverted Cosineogram Reflect Transformations of the Spatial Correlation of the GRF	116
5-5	Standardization of the GRV Increases Fit of the GRV and the CRV	121
5-6	Variability of Fit of the Simulated Triangular CRV Increases as ρ Decreases	123

Figure		Page
5-7	Standardization of the GRV Biases GRF the Covariance	124
5-8	Evaluation of a von Mises CRF, $\rho = 0.8$, Overfit, Range $r = 10$	126
6-1	Comprehensive Example - The Trend Model, or the Underlying First Order Component of Variation	132
6-2	Comprehensive Example - Simulated Sample of a von Mises CRF, μ = 0, ρ = $\sqrt{0.5}$ with Underlying Trend	132
6-3	Comprehensive Example - Comparison of the Trend Estimate (Tan) with the True Trend (Blue)	133
6-4	Comprehensive Example - Enlarged View of the Data (Black), Trend Estimate (Tan), and Residual Rotation (Dashed Red) Corresponding to the Green Highlighted Area in Figures 5-9 to 5-11	134
6-5	Comprehensive Example - Points of the Cosineogram, and the Exponential, Gaussian, and Spherical Cosine Models of Circular-Spatial Correlation.	135
6-6	Comprehensive Example - Enlarged View of the Kriging (Light Grey) and the Residual Rotations (Red) Corresponding to the Green Highlighted Area in Figures 5-9 to 5-11	136
6-7	Comprehensive Example - Enlarged View of the Interpolation (Purple) of the Trend Estimate (Tan) Corresponding to the Green Highlighted Area in Figures 5-9 to 5-11	137
6-8	Comprehensive Example - Enlarged View of the Circular Spatial Data Estimate (Gold) and the Sample (Black) Corresponding to the Green Highlighted Area in Figures 5-9 to 5-11.	138
6-9	Comprehensive Example – Circular Dataimage (Left) of the Circular Spatial Data Estimate with HSV Color Wheel (Right) of Direction	139
6-10	Comprehensive Example - Circular Kriging Variance with Measurements on a Regular Grid	140
C-1	Evaluation of a Cardioid CRF, $\rho = 0.25$, Overfit, Range $r = 10$	161

Figure		Page
C-2	Evaluation of a Triangular CRF, $\rho = 0.203$, Overfit, Range $r = 10$	162
C-3	Evaluation of a Uniform CRF, Overfit, Range $r = 10$	163
C-4	Evaluation of a Wrapped Cauchy CRF, $\rho = 0.5$, Overfit, Range $r = 10$	164
D-1	Evaluation of a Cardioid CRF, $\rho = 0.05$, Overfit, Range $r = 10$	166
D-2	Evaluation of a Cardioid CRF, $\rho = 0.05$, Range $r = 10$	167
D-3	Evaluation of a Cardioid CRF, $\rho = 0.475$, Overfit, Range $r = 10$	168
D-4	Evaluation of a Cardioid CRF, $\rho = 0.475$, Range $r = 10$	169
D-5	Evaluation of a Triangular CRF, $\rho = 0.05$, Overfit, Range $r = 10$	170
D-6	Evaluation of a Triangular CRF, $\rho = 0.05$, Range $r = 10$	171
D-7	Evaluation of a Triangular CRF, $\rho = 0.385$, Overfit, Range $r = 10$	172
D-8	Evaluation of a Triangular CRF, $\rho = 0.385$, Range $r = 10$	173
D-9	Evaluation of a von Mises CRF, $\rho = 0.05$, Overfit, Range $r = 10$	174
D-10	Evaluation of a von Mises CRF, $\rho = 0.05$, Range $r = 10$	175
D-11	Evaluation of a von Mises CRF, $\rho = 0.95$, Overfit, Range $r = 10$	176
D-12	Evaluation of a von Mises CRF, $\rho = 0.95$, Range $r = 10$	177
D-13	Evaluation of a Wrapped Cauchy CRF, $\rho = 0.05$, Overfit, Range $r = 10$	178
D-14	Evaluation of a Wrapped Cauchy CRF, $\rho = 0.05$, Range $r = 10$	179
D-15	Evaluation of a Wrapped Cauchy CRF, ρ = 0.95, Overfit, Range r = 10	180
D-16	Evaluation of a Wrapped Cauchy CRF, $\rho = 0.95$, Range $r = 10$	181

Figure		Page
G-1	Visual Verification of Cardioid CDF, $ \rho = 0.30 , $ Support $[-\pi, +\pi)$ Radians	. 192
G-2	Visual Verification of Triangular CDF, $ \rho = 0.30 ,$ Support $[-\pi, +\pi)$ Radians	. 193
G-3	Visual Verification of von Mises CDF, $ \rho = 0.30 ,$ Support $[-\pi, +\pi)$ Radians	. 195
H-1	Incorrect Wrapped Cauchy CDF, $\rho = 0.75$, Support $\left[0,2\pi\right)$ Radians	. 196
H-2	Dataplot WCACDF of Wrapped Cauchy CDF, ρ = 0.75, Support $\left[0,2\pi\right)$ Radians	. 197
H-3	Three Forms of the Wrapped Cauchy CDF, ρ = 0.75, Support $[-\pi, +\pi)$ Radians	. 199
H-4	Iterated Wrapped Cauchy CDF, ρ = 0.95 , Support $\left[-\pi,\pi\right)$ Radians, 15 Iterations	. 200
H-5	Visual Verification of Wrapped Cauchy CDF, ρ = 0.75 , Support $\left[-\pi,\pi\right)$ Radians	. 201
l-1	Visual Verification of Triangular Inverse CDF, ρ = 0.95 * 4/ π ² , Support $[-\pi, +\pi)$ Radians	. 203
J-1	Mapping a GRF to a CRF via CDFs	. 207
J-2	Shapes of Variograms and Inverted Cosineogram Show Spatial Correlation Transformed from the GRF with Spherical Covariance and Range $r = 10$. 208
J-3	Plots of True Model, Simulated CRF, Data, Fitted Model, and Residuals	. 213
J-4	Distance Between Locations (Red) vs. Angular Distance (Grey) Between Observations	. 214
J-5	Features of the Cosineogram Model	. 215
.I-6	Cosineocloud	215

Figure		Page
J-7	Empirical Cosineogram	216
J-8	Cosine Models for Circular-Spatial Data, Range <i>r</i> = 8	218
J-9	Fitted Cosine Models	222
J-10	Residual Rotations (Black) Overplotted on the Circular Kriging (Tan)	224
J-11	Smoothing via the Nugget Not Effective at Data Locations	225
J-12	Smoothing the Kriging Components Is Effective at All Locations	226
J-13	Variability of the Circular Kriging Estimate with Locations on a Regular Grid	227
J-14	Variability of the Circular Kriging Estimate with Random Locations	228
J-15	Six Cases of Interpolation Location Indicated by Labeled Red Dots	229
J-16	Effect of Interpolation on Smoothed Average Wind Direction with BGYR Color Wheel	229
J-17	Fitted Model (Black) Overplotted on the Fitted Model Interpolation (Tan)	231
J-18	Original Data (Black) Overplotted on the Estimates (Tan)	232
J-19	Enlargement of Figure J-16	233
J-20	Image Plot of WorldMask	235
J-21	Comparison of Arrow and Circular Dataimage Plots of Ocean Wind Average Direction	236
J-22	Evolution of the YRGB Color Wheel	238
J-23	Initial Display of the GUI, the Circular Dataimage Window (R Graphics Device 2), and the Color Wheel Window	239
J-24	Display with Circular Dataimage of Average Direction after Inputs Entered	240
J-25	GYRB Color Wheel Rotated 90°, Data Smoothed with Bandwidth 2.5, and Display Coordinates Changed (Zoomed)	242
J-26	HSV Color Wheel Rotated 90°, Data Smoothed with Bandwidth 2.5, Color Scale Gap 0.20, and Arrows on	243

Figure		Page
J-27	Mask Restores Land Mass Shapes in Smoothed Data	244
J-28	Unit Vector Plot of Ocean Wind Data	246
J-29	Vector Plot of Ocean Wind Data	247
J-30	Triangle Icon Plot of Ocean Wind Data	247
M-1	Fitted Covariogram an Unbiased Estimator of Spherical Covariance	340
M-2	Family of Cosine vs. Distance Curves from the GRF with Exponential Covariance	342
M-3	Family of Cosine vs. Distance Curves from the GRF with Gaussian Covariance	343
M-4	Family of Cosine vs. Distance Curves from the GRF with Spherical Covariance	344
M-5	Whittlematern Cosine Model (a=.493) Approximates the Cosine Curve of the von Mises CRF, ρ = 0.95 , Transformed from an Exponential GRF, Range=5	346
M-6	Whittlematern Cosine Models for $ ho=0$	348
M-7	Cauchytbm Cosine Models for $ ho=0$	349
M-8	Generalized Cauchy Cosine Models for $ ho=0$	350
M-9	Hyperbolic Cosine Models for $ ho=0$	351
M-10	Stable Cosine Models for $\rho = 0$	352
N-1	Summary Plots of the Ocean Wind Data	354
N-2	Circular Histograms of the Ocean Wind Data	356
N-3	Kernel Density Plots of the Ocean Wind Data	358
N-4	New Cylindrical Plot of PDFs of von Mises Probability Densities	359

LIST OF SYMBOLS, TERMINOLOGY, ACRONYMS

Symbols

 $\sigma_{\it CK}^2$: Circular kriging variance

Θ : Circular random variable (CRV)

heta : Observation (realization) or simulation of a CRV

C: Matrix of cosines of angles between observations of direction

c : Vector of cosines of angles between observations and unobserved direction

to be estimated

 $\varsigma(d)$: Model of the mean cosine of the angle between random components of

direction as a function of distance between observation locations

 $\hat{\varsigma}(d)$: Cosineogram estimate of $\varsigma(d)$

 κ : Concentration parameter of the von Mises distribution

 n_g : Nugget

 κ : Population concentration about the mean direction for von Mises CRV

 μ : Population mean resultant vector direction

 ρ : Population resultant vector mean length and concentration about the mean

direction

 \overline{R}_n : Sample resultant mean vector length

x : Vector of spatial coordinates

New Terminology

Circular Dataimage

Cosineocloud

Cosineogram

Cosine Model

Circular Random Field

Terminology from Linear Kriging

Covariogram

Covariance Model

Nugget

Range

Sill

Variogram

LIST OF SYMBOLS, TERMINOLOGY, ACRONYMS

Acronyms

CDF: Cumulative Distribution Function

CRF: Circular Random Field CRV: Circular Random Variable

CCW: Counterclockwise

GRV: Gaussian Random Variable
GRF: Gaussian Random Field
GUI: Graphical User Interface
GYRB: Green Yellow Red Blue
HSV: Hue Saturation Value
KBWR: Black Blue White Red
MAD: Mean Absolute difference
PDF: Probability Density Function

RF: Random Field RGB: Red Green Blue RV: Random Variable

YRGB: Yellow Red Green Blue