Robotics Files

La Intro Chapter
La Homogeneous transformation
La Robot motion analysis.

6 Problems

Grevious (midterm & Final) exams

Thanks to : Marwa Saeed

CHA

L1

Hano

1. Define a Robot

a robot is a mechanical device with links
and joints, guided by sensors, driven by actuators
and Controlled through a programmed Software,
to handle and manipulate parts, materials,
tools, and devices for performing various tasks
in variety of work environments.

(8) ch2) P(23)

Automation and Robotics

For the operation and Control of production exmanufacture the mechanical, electrical, electronics and computer based systems are integrated to form technology Called automation

(3 Compare between Hard automation and soft autom

=		
Features	Hard Automation	Soft Automation
1. cost effective	good at very high production voluence	production volume
2. flexibility	Limited	High
3. Life Cycle	To be for Longer period	For short and in medium period
4. Batch production	Not Suitable	High Suitable
5. Control through SW	Not. possible	Easily possible
6. Efficiency of the operation	comparably high	Equally High

- b) Dimulation multipli Coty, it can work with multiple Stimuli manipulators are capable of performing tasks of many Stimuli at agiven instance.
 - (6) Advanced technologies can be associated with Robot such as sensors & Camas (2) 2) is in Line in the color of the color

Disadvantages

آ کلف سراد الهربوب والندریب و کشفیل و صیانته تحلف انجاذ قرار شواد روبوق

(2) Decision intelligence ناء ناشا الانسان على ان يفكر بذكاد مثل الإنسان الا Robot ا ميلا منع به خاص ينفذ ما تم بر Situations i handle ي

- (3) Replacement of Labour in a populated place Jos who is robot in a populated place I with Just I will be assert of like of like of labour in a populated place I will like I will be assert of like of the sampleyment of the same is a like of the same in a populated place.
- 4) Real time Response

Toint Reference Frame

XIY, Z

and 2

ال Joints المنافقة معرفة عند الد Joints . والم Joint بسمتن أن بيترك حركة دولانية (Rotational) أو همكة خطية (Translatory) .

X14, Zare reference axes for Joints and Joint Cauld move Rotational movement

[3] Tool Reference frame or Translatory movement.

2 17 O

Own tip si ages axes si Robot hand si

arm Tip or Robot hand.

Robot joints

prismatiz joints _ (مرانية revolute joints _ 2) على مرانية على المكانية دورانية على الكرانية (كرونة) على الكرانية (كرونة) الكرانية (كرونة)

components of Robotics System.

1) Mechanical ARM.

2) Computer System (Controller).

Interface Desired Computer Supply

Interface Desired Computer System

A STATE OF THE STA

. Robot Components

For an industrial robot to carry out the assigned task of its capability, it has to have certain parts and accessories as listed and explained below.

1. Arms. The various links and joints make the anatomy of the robot which are also known as manipulators. Manipulators are the mechanical parts of a robot.

2. End-effectors. The part that is connected to the end of the arm constituting the robot hand is the end-effector which in itself is different for different applications, like spray

tool.

3. Actuators. The joints of the robots are powered by what are known as actuators, that produce, rotary or translatory movement in the links. The power delivering systems can be hydraulic or pneumative drives, and serve-motors or stepper motors which are direct drives.

hydraulic or pneumative drives, and servo-motors or stepper motors which are direct drive types.

4. Sensors. These are the parts that recognise the robots position while in movements or when static. The further movements or action depend on the feedback of the information collected by the sensors. Sensors also perform the function of gathering data about it surrounding (work cell) which aids in processing the task. The touch and tactile sensors, vision

5. Controllers. These are electronic devices which manipulate the signals from the sensors, to be provided to the drives in a understandable pattern to produce actions. The action produced may be matching or may not be tallying with the desired output. The deviation is fed back in the form of an error which adjusts the reference input to a actuating signal. The control elements and the feed back elements constitute the control system.

5. Software and Hardware. A computer software and hardware process through computation of the symbolic codes to derive the needed purpose of position, speed and accuracy of motion obtained by the kinematic equations. The monitors the peripherals and computer systems are the hardware parts. The programming languages can be a low level language like machine language or a high level language like the present day high-level languages.

The robots can be made out of the above mentioned components designed and selected to suit the derived specifications to fulfill the needs of a particular industrial tasks of material handling, welding painting, gluing and assembly tasks, in spite of that the present day robots copy the functions and actions performed by the human beings.

• Robot Specifications (22)

Any standard product has to be designed and marketed under certain requisite specifications or characteristics which aids in making decision to select and categorize it. Definite specifications that an industrial robot should bear are the maximum load carrying capacity, the repeatability or accuracy, the precision and the maximum and minimum reach defining the work space.

* Payload: The rated load carrying capacity of an industrial robot is defined by its weight of the object or the tool held by the gripper, without affecting other functional characteristics like allowed tip deflection, control of motion along defined path etc. The overload may lead to the malfunctioning of the robot systems.

+ Repeatability: The accuracy with which the particular defined position can be repeatedly achieved by a robot is the repeatability. To arrive at the repeatability of a robot the statistical procedure of distribution of the positions have to be recorded and analysed and the estimated error has to be adjusted through programming the repeatability is affected by the

INTRODUCTION TO ROBOTICS

A THE STATE OF THE PROPERTY OF

condition of the robot components also. The error in robot positions can give a random picture also, which has to be defined by the experimentations.

+ Precision: The reach of a position of a robot is defined by the resolution of the actuators and the control feed back systems. The robots precision is given in length units.

+ Reach: The lengths of the lengths of the links the configurations define the reach of an industrial robot. The maximum and the minimum extents of the robot positions give an idea about the reach of the robot, which is also useful in the specification of the work envelope of the robot.

Modes of Programming and Control

The instructions for path and position controls are provided through different programming languages for different robots manufactured by different companies. The instructions are the codes which vary from low level machine languages to high level languages understandable easily. The optimal paths to be followed to achieve the desired positions through the control system actions are coded and recorded in the form of software. In the process of development the following robot languages are generated for the purpose of programming.

AUTO PASS	MCL -	AMIL	VAL -	AL _	APT -
An IRM Language.	Manufacturing Control Language.		Victor's Assembly Language	Assembly Language	Automatically Programmed Tooling.

1.11 THE CHARACTERISTICS AND APPLICATION OF THE PRESENT ROBOTS (INDUSTRIAL)

	B		COMME		
	innerses or warren		Cartestan,		
Point-to-point or	Powered lead	Electric	Jointed arm,	3.6	Assembly line
Continuous path playback	Manual lead through	Hydraulic	Jointed arm	6 or more	Spray Painting 6 or more
Continuo	Manual or Powered Continuous path lead through playback	Electric or Hydraulic	Polar, Cartesian, Jointed arm	Ţ	Are Welding
Point-to-point playback	Powered lead through	Hydraulic or Electric (light)	Polar, Jointed arm	5-6	Spot Welding
Limited sequence or point-to-point playback	Powered lead through	Electric or Hydraulic for (Heavy pay loads)	Polar, Oylindrical, Jointed arm	4-8	Machine Loading and Unloading
Limited sequence or point-to-point playback	Manual or Fowered lead through	Pneumatic or Hydraulic	Jointed arm	7.5	Material Handling
	Y Y			Preedom	Application
Control System	Program	Drive System	Structure	Degree of	Features

INDUSTRIAL ROBOTICS

1.12 ADVANCED TECHNOLOGICAL FEATURES OF A MODERN ROBOTS

- Multiple adaptable robotic arms with modular construction.
- Multiple nodes with one controller assisted by temperature gauge, pressure gauge and position sensors.
 - Motion Control: By mechanical couplings (coupled motion control) and co ordinated kinematics and dynamics.
 - Large work envelopes and higher payloads managed and controlled with serve tuning to avoid resonance and vibration.
- pact in size, changeable functions, less movable parts for longer life, chip forming the Usage of micro-controllers and embodded systems for loss power requirement, com-
- Controller Area Network (CAN) connections.
- -- controls efficiently the distributed intelligence.
- good price performance ratio
- give reliability through error detection and error bandling system.
- with immunity against Plectromagnetic interference.
- giving dynamic connection and disconnection of nodes for flexibility.
- providing real time capability for better repeatability, accuracy and precision.
- Communication: Radio frequency and infra red links for digital communica-
- Programmable Automation Control (PAC) for rapid advancement in capability for which re-engineering is needed, good portability of control engine
- Robot Vision: Machine vision replaces human vision through video cemeras, special computer hardware and software.

1.13 NEED FOR ROBOTS

They can operate under the environments hazardous to human being. · Environmental aspect Accuracy aspect

- Human aspect

Skill aspect

Pérformance aspect

Automation aspect

The robots can perform tasks with highest accuracy, repeatability and the finish is of high quality. The human error is eliminated by use of robot. Human beings cannot work round the clock without fatigue.

The robots controlled by computer program can execute the tasks with better skill than human being.

Productivity is enhanced by induction of robots. They can produce better performance and efficiency than human The highest technology component of automation in robots can give a competitive edge in the international level.

INTRODUCTION TO ROBOTICS

1.14 THE CHARACTERISTICS AND APPLICATIONS OF FUTURE INDUSTRIAL ROBOT

Control System	Motion controllers with sensor technology,	Micro controllers' and Mothon bentroffers	Micra controllers with changeable functions.	Continuous pati metion controllers with sensor technology.	Continuous path motion controllers.	Miero controllers, nodes with sensors and end effectors with vision.
Nature of Task	Sufe/bazurdous complicated	Complicated and safe environs.	Simple and safe.	Complicated and unsafe.	Simple and unsafe.	Complicated and Safe.
Program	Programmable sutumation control (PAC)	Programmable automation control (PAC)	Programm'able Logio controllers (1726)	Programmable automation control (P&C)	Programmable Lagic Controllers (PLC)	Programmable Automation Controlwith Controller Gentroller CANO (CAN)
Drive System	Servo	Electronic, Servo motors (For heavy payloads) -	Electronic stepper Motors,	Direct e drivet serve moures	Hydraulic actuators	Stropper motors and direct drives
Structure	Jointed adaptable robot arm	Polar, cylindrical, Jointed ann (Adaptable)	Felar, Jointed adaptable rebotic arm	Polar, moduler cartesian with adaptable jointed erm.	Jointed arm with adaptable gun	Jointed adaptable, cartesian modular robotic erm.
Degree of Freedom	70	4-5 Multiple	9-9	9-0	6 or more	Mydriple arms coupled motion.
Feetures	• Material handing	Pact loading and unifording	Spot (fack)	• Are Welding	Spray -Coating	Recording Assembly

pplication of Robots ;

technology would replace the point-to-point and sequence control action. They Material handling. The jointed arm robots with 3-5 degrees of freedom can The next generation robots are expected to use servo motors with Programmable Automation Control (PAC). In the luture robot motion controllers with sensor serve, the material handling application. Hydradicor pneunatic drive with manual erve motion in the present rebot designs. or powered lead through teaching would

. 2. Machine loading and unloading robots. Polar (P2R) relate, cylindrical (2PR) application. Electronic and servo drives are the future trends in the drives, as robots jointed arm (3P) robots with 4-5 degrees of freedom are used for such compared to present electrical and hydraulic drives. PAC can replace the powerer are expected to be used in both safe and hazardous environments. A. . . .

3) Define Robot Kinematics. Description of motion of the robot without Consideration of the force and Tourque Causing the motion. geometric Description. 14) Robot F.K (give Feed Back about E. E) Description of the cactual) position and orientation of the E-E, given the values for foint variables of the robot-Jan 1 - Solinting on Robot I.K (Determine Controls action) Determination of the values of the doint variable of the robot given the idesired) position and orientation of 6 E Purple = 3 = x = 3dornt Variable 15) Define the 2 DH assumptions for frame assignment in I.K.

DH convention—sused for selecting reference frame of robot f parameters -> reduced to #

Firs onler sloelyer K length

ai hink length DPHI-S Coordinate Frame assumptions to the aris Zil SDHI-s axis (x) is prependicular to the Eciti Lipitz - axis (x) is intersects to the Eciti 2 under the above assumption This is adhered by O ROT

Homogeneous Transformation

ال Rotation Matrix التى نم شوحها سابقاً لا تنفين حمكة من الحركة الحركة الحركة المركة المركة

Homogeneous Transformation = Rotation | Position | Position | Vector | Vector | Prespective | Transformation(1x3) | Scale Factor | Transformation(1x3) | Scale Factor | Cixi)

Pxyz = H Pabe

Mobile frame

trame	+	C -> Co S
		5-> S!M
Homogeneoust Rotation ation about 0x-axis	1 H(X, a)	0 CK -SK 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
about ox-axis.	H(Y,4)	-SΦ 0 CΦ 0 - O 0 0 1 J
Homogeneous Rotation about 07-axi3	H(Z,0)	SO CO O O O O O O O O O O O O O O O O O
Homogeneous translation by a vector Payz	H(trans)	0 0 0 Px 7 y

Robot Motion Analysis Link-doint - EE manipulator = ARM = Joints + Links Mechanical Manipulator مى دياسة الحركة السيسة (relative motion) والتربيقي العلاقة Manipulator elementis), objects in, س اد مین در معند ما Robot Arm Kinematics E-EPOSE = POSITION +Orientation Robot Arm Kinematics e ani vlubo thou bail musa llos duto بالنسبة لدظم الإحداثيات لا base Frame . V forward Kinematic Joint angles Direct Kinemalic (doint Variables) Problem position & orientation + of EE (gripper) Link parameters بنبرس الانجاد دور النظرال القوى 2) Beverse Kinematic motor resultant object lide allow motor resultant F de position problem formanipula formanipulator crientation of EE (object) (doint variables) Parameters of link Transformations · position vector بهتل نقطة بالسب للإحداثيات العلالة. عند عمل دورات الله عول أعد المحماور فإن الكان الحديد Rotation Matrix de sacros Dese frame Il Junillabill assume AA .

Rotation	R matrix	R"= RT
I(R(x, a)	O COSA -Sind O Sina Cosa	O COSON SINON
2. R(Y,B)	COS B O SINB O 1 O -SINB O COSB	COSR O -SMB
3. R(Z/B)	Cose -Sine o Sine Cose o O O O	Coso Sino O -Sino Coso O O O O O O O O O O O O O O O O O O O
Px,	yz = R Pape	
Pap	$c = R T R y Z$ $R = \begin{bmatrix} 0 & 0 & 0 & -\sin \\ 0 & -\sin \cos \end{bmatrix} R y $	100000005
ج الفرس = الدر	$Ry = \begin{cases} cos & 0 & sin \\ cos & 0 & sin \\ cos & cos \\ cos \\ cos & cos \\ cos \\ cos & cos \\ cos \\ cos & cos \\ cos & cos \\ cos \\ cos \\ cos \\ cos \\ cos \\ c$	RG181: 05:10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Account of the control of the contro		

.

Problems

12 B, 14, 15

12 P = R P 2 1

(4)

the co-ordinate of a point Pasc = (5,4,3) in
the body co-ordinate frame OABC is rotated

30° about 62 axis. Determine the coordinates
of the vector Pxxx with respect to base
reference Coordinate frame.

Solution

Payz = R(210) Pabe

$$= \begin{bmatrix} \cos(30) - \sin(30) & 0 \\ \sin(30) & \cos(30) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 5 \\ 4 \\ 3 \end{bmatrix}$$

$$\begin{bmatrix} 0.866 & -0.5 & 0 \\ 0.5 & 0.866 & 6 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 5 \\ 4 \\ 3 \end{bmatrix} = \begin{bmatrix} 2.33 \\ 5.964 \\ 3 \end{bmatrix}$$

= [2.33, 5.964,3]T

2) the coordinates of a point qube is given by

(7,5,3) which is rotated about the OX-axis

of the reference frame OXXZ by angle of

[60°. Determine the coordinates of the point

9xxz.

[Solution] $9 \times y = ?$ $9_{abc} = (7.5, 3)^T$, $\alpha = 60$ $9 \times y = R(x, 60) \cdot 9_{abc}$ $9 \times y = 80$

B=30° or (TT+30')=210 $\beta = \tan^{-1}(1/\sqrt{3})$ hervisted tan in views

a mobile body Referenced frame OABC 13 rotated 60° about 04-axis of the fixed base frame OXXZ. if Pxyz = (2,4,6) T and qxxz = (3,5,7) T are the Coordinates with respect of 0xx2 plane. q with respect to oake frame?

(Polution) individual de l'include

Pabe = R(y, 60) Pxyz = R(y, 60) Pxyz - porthognal Pabe = R(y,60)-19xyz= R(y,60)T9xyz

R(y,60) = Cos60 0 -Sin60 0

R(4,60)T = 0.5 0 0.866 0

Pabc = 0.5

9abc = 0.866 $\begin{bmatrix} -0.866 \\ 0 \\ 5 \\ 5 \\ 7 \end{bmatrix} = \begin{bmatrix} -4.562 \\ 5 \\ 6.098 \end{bmatrix}$ The coordinates of point Q with respect to base reference frame is given by [4,213,5]. Determine the Coordinates of Q with respect to a comobile rotated frame of the robot of the angle of rotation with OX is 60°.

Solution

Pabe = R-1(x,60). Pxy z

... the two coordinate frame are orthogonal

: the two coordinate frame are orthogonal $R^{-1}(x,60) = R^{T}(x,60)$ $R(x,60) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos 60 & \sin 60 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \sqrt{3}/2 & 0.5 \end{bmatrix}$

 $R^{T}(x,60) = \begin{bmatrix} 1 & 0 & 0 \\ 6 & 0.5 & \frac{\sqrt{3}}{2} \\ 6 & -\frac{\sqrt{3}}{2} & 0.5 \end{bmatrix}$

= [4,6.06,-0.5]

7) A Single axis robot with a fixed base and a mobile link is as shown in the figure. Suppose the mobile frame has a point Pm given by (2,2,8)! Find the Coordinates of the point (P) with respect to the base frame when $\theta_1 = 180^{\circ}$ and $\theta_2 = 0^{\circ}$

$$R = \begin{bmatrix} \cos \theta & -\sin \theta & 0 & -\sin \theta \\ \sin \theta & \cos \theta & 0 \end{bmatrix}$$

(1) when
$$G_{1}=180$$
 $R(Z_{1}G_{1}) = \begin{bmatrix} Cos 180^{\circ} & -Sin 180^{\circ} & 0 \\ Sin 180^{\circ} & Cos 180^{\circ} & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

$$(P_F)_{\theta=180} = R(2,180) P_m = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \\ 8 \end{bmatrix} = \begin{bmatrix} -2 \\ 8 \end{bmatrix}$$

(ii) when
$$\theta_2 = 0^{\circ}$$

$$R(z_1\theta_2) = \begin{bmatrix} \cos 0^{\circ} - \sin 0 & 0 \\ \sin 0 & \cos 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

$$(P) \qquad P(z_1\theta_2) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

at tool tip with regrespect to wrist coordinate

a e

and the second of the second o

, a -

and the second s

gamen and the second se

÷ 3

frame.
$$P_{w} = T. P_{t} = \begin{bmatrix} 0 & 0 & -1 & -1 & 0 \\ -1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & -1 & 0 \\ 0 & -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

in the second se

. V — man of the control of the state of the

e company of the comp

and the same of th

و ما معامل المعامل الم

o to some the same that the sa

. I is , 23 steer Hels 34 Blanch Market in the second seco

V solvense of the second second

g = 11 Special Control

The second of th

e government of the assessment of the assessment

problems

10) A point $P_{abc} = (2,3,4)^T$ has to be translated through distance of +4 units along 0x-axis and -2) units along 0Z-axis. Determine the Coordinates of the new point P_{xyz} by Homogeneous transformation.

Solution

Pabe =
$$(2,3,4,1)^T$$

Homogeneous = $(2,0,-2,1)^T$
Position vector = $(2,0,-2,1)^T$
Position vector = $(2,0,-2,1)^T$
Hams = $\begin{bmatrix} 1 & 0 & 0 & 4 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$

$$P_{X}yz = H_{trans} P_{abc}$$

$$= \begin{bmatrix} 1 & 0 & 0 & 4 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2}$$

$$= \begin{bmatrix} (1)(2) + 0 + 0 + (4)(1) \\ 0 + (1)(3) + 0 + 0 \\ 6 + 0 + (1)(4) + (2)(1) \\ 0 + 0 + 0 + 1 \end{bmatrix} = \begin{bmatrix} 6 \\ 3 \\ 2 \\ 1 \end{bmatrix}$$

Fixed fram . mobil fram

د الموال - عكس ترتب السؤال .

Backword Forword

(2) a traingular prism with Co-ordinates of its vertices indicated relative to the fixed reference frame OXXZ. is shown the prism is moved to the new position with a rotation of to about x-axis, a rotation of to about x-axis, a rotation of the direction.

Determine

(i) the homogeneous transformation describing the change in position of the prism.

(ii) the new coordinates of the vertices of the prism.

Solution

$$H = \begin{bmatrix} 1 & 0 & 0 & 6 \\ 6 & 1 & 0 & 6 \\ 0 & 0 & 6 \end{bmatrix} \begin{bmatrix} C(-99) & -S(-90) & 0 & 0 \\ S(-90) & C(-90) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & C(90) - S(90) & 0 \\ 0 & + S(90) & C(90) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

New coordinates of A
$$\begin{bmatrix}
Ax \\
Ay \\
Az \\
1
\end{bmatrix} = \begin{bmatrix}
0 & 0 & -1 & 0 \\
-1 & 0 & 0 & 5 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1 \\
3 \\
0 \\
1
\end{bmatrix} = \begin{bmatrix}
0 \\
4 \\
3 \\
1
\end{bmatrix}$$

A = (0,4,3)T

New Coordinates of
$$B \Rightarrow B = [H][b]$$

$$\begin{bmatrix}
B_{X} \\
B_{Y} \\
B_{Z}
\end{bmatrix} = \begin{bmatrix}
0 & 0 & -1 & 0 \\
-1 & 0 & 0 & 5
\end{bmatrix} \begin{bmatrix}
3 \\
0 \\
1
\end{bmatrix} = \begin{bmatrix}
6 \\
3 \\
1
\end{bmatrix}$$

(3) Determine the homogeneous transformation matrix to represent the following sequence of operations (i) Rotation of 60° OX-axis (x,60) (ii) Translation of 4 units along 0x-axis (X14) Ui) Translation of - 6 units along OC+axis. (-606) (N) Rotation of 30° about OB-axis. $H(x,60) = \begin{bmatrix} 0 & 0.5 & -\frac{13}{2} & 0 \\ 0 & \sqrt{3}/2 & 0.5 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} H(x,4) = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ $H(B,36) = \begin{bmatrix} \frac{\sqrt{3}}{2} & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -05 & 0 & \frac{\sqrt{3}}{2} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ diding in a I H= H(x,4) H(x,60°) H(C,-6) H(B,30) 0 13/2 0.5 0 0 0 1 -6 -05 0 1 0 0 0 1 = 0 لنرتب اولاً صع Cixed frame

(4) for the object shown in fig. find 4x4 homogeneous transformation matrices (Ai) for i=1,2 and thus find the A, i.e the transfermation of frame at point 2 with respect to the frame at point 1 3,0,0) R(X,+90) R(Z.,90) $= \begin{bmatrix} 1 & 0 & 0 & -3 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{bmatrix}$

Transformation Az requires following operational Sequence. Rotation by 180° about to Rotation by 45 about X. · Translation of (0,0,5) A2 = H(0,0,5) H(X;-45) H(Y0,180°)

$$A_{2} = \begin{bmatrix} A_{1} \end{bmatrix} \begin{bmatrix} A_{2} \end{bmatrix}$$

$$A_{2} = \begin{bmatrix} A_{1} \end{bmatrix} \begin{bmatrix} A_{2} \end{bmatrix}$$

$$A_{3} = \begin{bmatrix} A_{1} \end{bmatrix} \begin{bmatrix} A_{2} \end{bmatrix}$$

$$A_{4} = \begin{bmatrix} A_{1} \end{bmatrix} \begin{bmatrix} A_{2} \end{bmatrix}$$

$$A_{4} = \begin{bmatrix} A_{1} \end{bmatrix} \begin{bmatrix} A_{2} \end{bmatrix}$$

$$A_{5} = \begin{bmatrix} A_{1} \end{bmatrix} \begin{bmatrix} A_{2} \end{bmatrix}$$

 ${}^{0}\text{A}_{2} = \text{H}_{\text{trans}}(0, 0, 5) \text{ R}(\text{Y}_{0}, 180^{\circ}) \text{ R}(\text{X}_{0}, 45^{\circ}).$

$$= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \end{bmatrix}$$

(ii) To determine ${}^{1}A_{2} = [{}^{0}A_{1}]^{-1} [{}^{0}A_{2}]$

$${}^{1}A_{2} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\ 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 5 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Ans. ${}^{1}A_{2} = \begin{bmatrix} 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 5 \\ -1 & 0 & 0 & 3 \\ 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

Example 3.15. Write down the homogeneous transformation matrices for the co-ordinate frames situated at the points A, B and C, with respect to base co-ordinate frame 0. What is the position and orientation of B with respect to frame 'C'? Refer Fig. 3.15 for the considered co-ordinate frames.

Fig. 3.15 Co-ordinate Frames.

Sol. (i) Homogeneous transformation matrices.

$${}^{0}H_{A} = H_{trans} (10, 4, 0) H(Z, 180^{\circ})I_{4}$$

$$= \begin{bmatrix} 1 & 0 & 0 & 10 \\ 0 & 1 & 0 & 4 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos 180 & -\sin 180 & 0 & 0 \\ \sin 180 & \cos 180 & 0 & 0 \\ & 0 & & 0 & 1 & 0 \\ & 0 & & & 0 & 1 \end{bmatrix}$$

$$=\begin{bmatrix} 1 & 0 & 0 & 10 \\ 0 & 1 & 0 & 4 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 & 10 \\ 0 & -1 & 0 & 4 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{0}\mathrm{H}_{\mathrm{B}} = \mathrm{H}_{\mathrm{trans}} (12, 12, 0) \; \mathrm{H}(\mathrm{Y}, -90^{\circ}) \; \mathrm{H}(\mathrm{Z}, -90) \; \mathrm{I}_{4}$$

$$\begin{bmatrix} 1 & 0 & 0 & 12 \\ 0 & 1 & 0 & 12 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ +1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & +1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 & 12 \\ 0 & 1 & 0 & 12 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 12 \\ 1 & 0 & 0 & 12 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$^{0}H_{C} = H_{trans} (2, 14, 5) H(x, 180^{\circ}) I_{4}$$

$$= \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 14 \\ 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & -0 & -0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & -1 & 0 & 14 \\ 0 & 0 & -1 & 5 \\ 0 & -0 & 0 & 1 \end{bmatrix}$$

(ii) To determine the position of B w.r.t. C

$${}^{C}H_{B} = [{}^{0}H_{C}]^{-1} [{}^{0}H_{B}]$$

$$[{}^{0}H_{C}]^{-1} = \begin{bmatrix} 1 & 0 & 0 & -2 \\ 0 & -1 & 0 & +14 \\ 0 & 0 & -1 & +5 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{\mathbf{C}}\mathbf{H}_{\mathbf{B}} = \begin{bmatrix} 1 & 0 & 0 & -2 \\ 0 & -1 & 0 & +14 \\ 0 & 0 & -1 & +5 \\ 0 & 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 & 12 \\ 1 & 0 & 0 & 12 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & c_1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 10 \\ -1 & 0 & 0 & 2 \\ 0 & -1 & 0 & 5 \\ 0 & 0 & 0 & c_1 \end{bmatrix}$$

The position vector = $[10, 2, 5]^T$

The orientation vectors =
$$\begin{bmatrix} 0 & 0 & 1 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix}$$

(6) write down the homogeneous transformation matrices for the Coordinate frames Situated at the points. A, B, and C with respect to 0x. Yo to frame. write down by inspection and matrix operation the position and crientation of frame B with respect to frame C.

a homogeneous transformation matrix for point 4. operation to be performed => T(10,10,0)

$$P^{29}H_{A} = H(lor10,0) = \begin{bmatrix} 0 & 0 & 10 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- Homogeneous transfermation for point B to operation to be performed
 - · Rotation about To by an angle +180 · Rotation about Zo by an angle 90° · Translation to position (5,20,5)

- 6 Homogeneous transformation matrix for C operations:
 Rotation of (-90°) about X.

 Rotation of (-90°) about Y.

 - Rotation of (-90°) about y.
 - · Translation to (0,6,8)

Hc= H(0,6,8)H(80,90)(X0,-90)

Position of B with Respect to C CHB = [CH] [HB]

$$\mathbf{H_1} = \begin{bmatrix} 0 & 1 & 0 & 2 \\ 1 & 0 & 0 & 8 \\ 0 & 0 & -1 & 7 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad and \quad \mathbf{H_2} = \begin{bmatrix} 1 & 0 & 0 & -8 \\ 0 & -1 & 0 & 15 \\ 0 & 0 & -1 & 6 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- (a) What is the position and orientation of the cube with respect to the base co-ordinate system?
- (b) After the system has been setup, some one rotates the camera 90° about the z-axis of the camera. What is the position and orientation of the camera with respect to robot's base co-ordinate system?
- (c) The same person rotated by 90° the object about the x-axis of the object and translated 5 units of distance along the rotated y-axis. What is the position and orientation of the object with respect to the robot's base co-ordinate system?

(a)
$$camera H_{cube} = H_1 = \begin{bmatrix} 0 & 1 & 0 & 2 \\ 1 & 0 & 0 & 8 \\ 0 & 0 & -1 & 7 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 and
$$camera H_{base} = H_2 = \begin{bmatrix} 1 & 0 & 0 & -8 \\ 0 & -1 & 0 & 15 \\ 0 & 0 & -1 & 6 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

It is required to find baseH_{cube}. By 'chain product' rule

$$\begin{array}{c} {\rm base} {\bf H}_{\rm cube} = {}^{\rm base} {\bf H}_{\rm camers}, {}^{\rm camers} {\bf H}_{\rm cubs} = ({\bf H}_2)^{-1}, {\bf H}_1 \\ = \begin{bmatrix} 1 & 0 & 0 & 8 \\ 0 & -1 & 0 & -15 \\ 0 & 0 & -1 & -6 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 2 \\ 1 & 0 & 0 & 8 \\ 0 & 0 & -1 & 7 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 10 \\ -1 & 0 & 0 & -23 \\ 0 & 0 & 1 & -13 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Ans. Position of cube is given by [10, -23, -13]

The orientation
$$[n, s, a]$$
 = $\begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

(b) Camera is rotated by 90° about the z-axis of the camera base $H_{camera} = (H_2)^{-1} H(z, 90^\circ)_{camera}$

Ans. Position of the camera after the change is given by $[8, -15, -6]^T$. The orientation of camera with respect to base

$$[n, s, a] = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

(c) Now the object is rotated by 90° about x-axis of the object and translated by 5 unit distances along the rotated y-axis of the object.

$${}^{b}H_{c} = {}^{base}H_{cube} \cdot H(x, 90^{\circ}) \cdot H(y, 5)$$

$${}^{b}H_{c} = \begin{bmatrix} 0 & 1 & 0 & 10 \\ -1 & 0 & 0 & 7 \\ 0 & 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 5 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & -1 & 10 \\ 0 & 1 & 0 & 5 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & -1 & 10 \\ -1 & 0 & 0 & 7 \\ 0 & 1 & 0 & 4 \end{bmatrix}$$

Ans. The position of the object with respect to the base = [10, 7, 4]

The orientation,
$$[n, s, a] = \begin{bmatrix} 0 & 0 & -1 \\ -1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

Example 3.18. Write down the homogeneous transformation matrices for the co-ordinate frames attached to the corners A, B, C and D with respect to the base co-ordinate frame 'O'. Also write down the transformation matrix for A with respect to 'C' frame and verify the same by finding the inverse.

The object frame is as shown in Fig. 3.17.

(VTU-Jan.Feb. 2004)

Sol. (i) Homogeneous transformation matrix for A

The transformation involves following sequence of operation

- Rotation by-90° about X₀
- Rotation by 180° about Y₀
- Translation by (0, 45, 20) from origin

(ii) Homogeneous transformation matrix of B. The transformation consists following set

of operations :

· Rotation by 90° about Zo

• Translation by (45, -40, 0)

$${}^{0}H_{B} = H_{trans} (45, -40, 0) R(Z_{0}, 90^{\circ})$$

$$= \begin{bmatrix} 1 & 0 & 0 & 45 \\ 0 & 1 & 0 & -40 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & +1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & +1 & 0 & 45 \\ -1 & 0 & 0 & -40 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

INDUSTRIAL ROBOTICS

(iii) Homogeneous transformation of matrix C transformation consists of following sequence of operations:

- · Rotation of 90° about Zo
- Rotation of (+90°) about

• Translation by (-40, 20, 50)

(iv) Homogeneous transformation matrix for D Transformation involves following sequence of operations:

- Rotation by (4 90°) about Z₀
- · Rotation by \$0° about X
- Translation of (0, 0, 50)

AZ. (90,2)

$${}^{0}H_{D} = H_{trans}(0, 0, 50) R = 90^{\circ} R = 0^{\circ} R = 0^{\circ}$$

Homogeneous fransiermation A from w.r.t. C frame

$$\begin{array}{c} c_{H_{A}} = [^{\circ}H_{A}]^{\frac{1}{2}} + H_{A}^{\frac{1}{2}} = [^{\circ}H_{A}]^{-\frac{1}{2}} [^{\circ}H_{A}] \\ = \begin{bmatrix} 0 & 1 & 0 & -20 \\ 0 & 0 & -1 & 50 \\ -1 & 0 & 0 & -40 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 45 \\ 0 & -1 & 0 & 20 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & -1 & +25 \\ 0 & 1 & 0 & 30 \\ 1 & 0 & 0 & -40 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Example 3.19. A six joint robotic manipulator equipped with a digital TV camera is capable of continuously monitoring the position and orientation of an object. The position and orientation of the object with respect to the camera is expressed by a matrix [T], the origin of the robot's base co-ordinate with respect to the camera is given by $[T_2]$, and the position and orientation of the gripper with respect to the base co-ordinate frame is given by [C3].

$$\mathbf{C} = \begin{bmatrix} 0 & 1 & 0 & 5 \\ 1 & 0 & 0 & 6 \\ 0 & 0 & -1 & 10 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \ \mathbf{C}_{T_2/2} = \begin{bmatrix} 1 & 0 & 0 & -20 \\ 0 & -1 & 0 & 10 \\ 0 & 0 & -1 & 12 \\ 0 & 0 & 0 & 1 \end{bmatrix} \text{ and } \begin{bmatrix} 1 & 0 & 0 & 8 \\ 0 & 1 & 0 & 6 \\ 0 & 0 & 1 & 6 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Determine

- (i) the position and orientation of the object with respect to the base co-ordinate.
- (ii) the position and orientation of the object with respect to gripper.

(VTU Jan.Feb. 2004; VTU May.June 2004)

Sol. Given:

0

[T2] [T.]

wing

(i) The position and orientation of object with respect to base co-ordinates, $[^{\text{base}}T_{\text{object}}]$ By chain product rule,

$$\begin{split} \text{base} \mathbf{T}_{\text{object}} &= \text{base} \ \mathbf{T}_{\text{camera}} \cdot \text{camera} \ \mathbf{T}_{\text{object}} = [\mathbf{T}_2]^{-1} \cdot [\mathbf{T}_1] \\ &= \begin{bmatrix} 1 & 0 & 0 & 20 \\ 0 & -1 & 0 & 10 \\ 0 & 0 & -1 & 12 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 5 \\ 1 & 0 & 0 & 6 \\ 0 & 0 & -1 & 10 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 25 \\ -1 & 0 & 0 & 4 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix}. \end{split}$$

Ans. The position vector = [25, 4, 2]T

The orientation matrix = [n, s, a] = $\begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

(ii) To determine the position and orientation of the object with respect to gripper by chain product rule,

$$\begin{aligned} & \text{gripper } \mathbf{T}_{\text{object}} = \text{gripper } \mathbf{T}_{\text{base}}, & \text{base } \mathbf{T}_{\text{object}} = [\mathbf{T}_3]^{-1}([\mathbf{T}_2]^{-1}[\mathbf{T}_1]) \\ & = \begin{bmatrix} 1 & 0 & 0 & -8 \\ 0 & 1 & 0 & -6 \\ 0 & 0 & 1 & -6 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 2\mathbf{f} \\ -1 & 0 & 0 & 4 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix} \end{aligned}$$

gripper
$$T_{object} = \begin{bmatrix} 0 & 1 & 0 & (-8+25) \\ -1 & 0 & 0 & (4-6) \\ 0 & 0 & 1 & (-6+2) \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Ans. The position vector = $[17, -2, -4]^T$

The orientation vectors, $[n, s, a] = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

3.13 MANIPULATOR PARAMETERS

A robot manipulator is a chain of rigid bodies, called links, connected in sequence by joints, known as lower pair joints. The links remain in contact at the joints with two surfaces sliding over one another relatively. There are totally six possible lower pair joints: prismatic (sliding) joint, revolute (rotary) joint, cylindrical, screw, spherical and planar joints. The robot manipulators are generally, designed with prismatic or/and revolute joints. In a serial open loop formation each link forms connection, at the most, with two other links. Each pair of a link and a joint contributes single degree of freedom. 'N' numbers of pairs provide 'N' degrees of freedom for a manipulator. Link 1 forms a joint '0' with the base which establishes an innertial co-ordinate frame for a dynamic system anylysis of a industrial robot. The last link at its free end accomodates a topl or a gripper. Both the base and the gripper are not considered as the part of a robotic manipulator.

In general the link k' gets connected at the two ends with link (k-1) and link (k+1), forming two joints at the ends of connections. The link is characterised by the (i) distance (d_i) and (ii) the angle (θ_i) , between the adjacent links. The joint is featured by (a) length (q_k) and (b) the twist angle (α_k) of the link k. The manipulator parameters determine structure and relative position of links in the arm.

1

004)

ra is

in of

EXams

4th year Computers Midterm Apr.2012 Time: land half hr.

Answer all the following questions;

Question No. 1

Define a Robot.

Discuss the advantages and disadvantages of using robots in industry.

Compare hard automation with soft automation.

Discuss the impact of robotic induction on direct labour.

What are various types of reference frames attached to a robotic? Explain with example.

Briefly discuss the various robot components.

Question No.

1. The co-ordinates of a point P_{abc} in the mobile frame OABC is given by $[4,3,2]^T$. If the frame OABC is rotated 45° with respect to OY of the OXYZ frame , find the co-ordinates of P_{xyz} with respect to the base frame.

2. A mobile body reference frame OABC is rotated 30° about OY-axis of the fixed base reference frame OXYZ. If $P_{xyz} = [-2,4,6]^T$, $Q_{xyz} = [-1,3,5]^T$ are the co-ordinates with respect to OXYZ plane, what are the corresponding co-ordinates of P and Q with respect to OABC frame?

3. The co-ordinates of point Q with respect to base reference frame is given by [4,2,5]^T. Determine the co-ordinates of Q with respect to mobile rotated frame of the robot if the angle of rotation with the OX is 60°.

4. Determine the homogeneous transformation matrix to represent a rotation of 60° about OX-axis and a translation of 10 units along the OA-axis of the mobile frame.

5. Determine the homogeneous transformation matrix to represent the following sequence of operations:

i. Rotation of 30° OX-axis.

ii. Translation of 5 units along OX-axis.

Translation of -8 units along OB-axis Rotation of 60° about OA-axis iii.

6. Write down the homogeneous transformation matrices for the co-ordinate frames situated at the points A,B and C with respect to OX_oY_oZ_o frame in the figure shown. Write down by inspection and matrix operation the position and orientation of frame B with respect to frame C.

problem 6. of queston No.2

Robotics, 4th year Computers

(Page 1 of 1, April 2012)

Department: Computers and Caurol Engineering Total Marks, 20 Marks

Course Title:Elective4(Robotic)
Date: 10.4.2013 (Mid-Term)

اختياري 4 روبوتيك رابعة حاسبات

Course Code: CCE4242

4th year

Allowed time: 1 hour

Answer all the following questions;

Question No. 1

1. Define a Robot.

2. Discuss the advantages and disadvantages of using robots in industry.

3. Discuss the impact of robotic induction on direct labour.

What are various types of reference frames attached to a robotic? Explain with example.

5. Write the homogeneous transformation matrix of Euler I representation.

Question No. 2

1. The co-ordinates of a point P_{abc} in the mobile frame OABC is given by [1,2,3]^T. If the frame OABC is rotated 45° with respect to OY of the OXYZ frame, find the co-ordinates of P_{xyz} with respect to the base frame.

2. A mobile body reference frame OABC is rotated 30° about OX-axis of the fixed base reference frame OXYZ. If P_{xyz} =[-1, 2, 3]^T, Q_{xyz} =[3, 2, 1]^T are the co-ordinates with respect to OXYZ plane, what are the corresponding co-ordinates of P and Q with respect to OABC frame?

The co-ordinates of point Q with respect to base reference frame is given by $[4,2,-1]^T$.

Determine the co-ordinates of Q with respect to mobile rotated frame of the robot if the angle of rotation with the OX is 60° .

Determine the homogeneous transformation matrix to represent a rotation of 60° about OX-axis and a translation of 10 units along the OA-axis of the mobile frame.

5. Determine the homogeneous transformation matrix to represent the following sequence of operations:

- i. Rotation of 30° OX-axis.
- ii. Translation of 10 units along OZ-axis.
- iii. Translation of -5 units along OA-axis
- iv. Rotation of 60° about OB-axis

Best wishes

Dr. Eng. Elasyed Sallam

Department: Computers and Control Engineering

Total Marks: 20 Marks

Course Title: Elective 4 (Robotics)
Date: 10.4.2016 (Mid-Term)

اختياري ٤ روبوتيك رابعة حاسبات

Course Code: CCE4242 4th year Allowed time: 1 hour and half

Answer all the following questions;

Question No. 1

(5 Degrees)

1. Define a Robot.

2. Compare hard automation with soft automation.

3. Discuss the impact of robotic induction on direct labour.

4. What are various types of reference frames attached to a robotic? Explain with example.

5. What are performance parameters? Define repeatability, resolution and accuracy.

Question No. 2

(15 Degrees)

1. A mobile body reference frame OABC is rotated 60° about OX-axis of the fixed base reference frame OXYZ. If $P_{xyz} = [2,4,6]^{T}$, $Q_{xyz} = [1,-3,5]^{T}$ are the co-ordinates with respect to OXYZ plane, what are the corresponding co-ordinates of P and Q with respect to OABC frame?

The co-ordinates of point E with respect to base reference frame is given by [3,-2,5]^T. Determine the co-ordinates of E with respect to mobile rotated frame of the robot if the angle of rotation with the OA is 30%.

Determine the homogeneous transformation matrix to represent a rotation of 30° about OY-axis and a translation of 10 units along the OB-axis of the mobile frame.

A. Determine the homogeneous transformation matrix to represent the following sequence of operations:

i. Rotation of 30° OY-axis.

ii. Translation of 10 units along OX-axis.

iii. Translation of -8 units along OB-axis

iv. Rotation of 60° about OB-axis

5. Write down the homogeneous transformation matrices for the co-ordinate frames attached to the corners A,B,C and D with respect to the base co-ordinate frame "0". Also write down the the transformation matrix for A with respect "C" frame and verify the same by finding the inverse.

Problem 5. of Question No.2

Department: Computers and Control Engineering

Total Marks: 85 Marks

Course Title: Robotic Systems
Date: 4.6.2016 (Second term)

Course Code: CCE4242 تخصصي ٤ روبوت رابعة حاسبات

Allowed time: 3 hrs

No. of Pages: (2)

Answer all the following questions:

Question No. 1

(20 marks)

Discuss the advantages and disadvantages of using robots in industry.

- 2. What is workspace? Give the functional diagram with the workspace for the following robots i-3R-robot. ii-2RP robot.
- 3. Draw any two Euler angle systems and show rotations and angles.
- A. What are performance parameters? Define repeatability, resolution and accuracy.
- 5. Compare hard automation with soft automation.
- 6. Define the term: Robot kinematics.
- 7. Differentiate between robot forward kinematics and robot inverse kinematics.
 - 8. Mention the two DH assumptions for frame assignment in forward kinematics. Explain how they reduce the parameters required to relate frame i to frame i-1.
 - 9. In your own words, explain briefly how machine learning can be used to estimate robot inverse kinematics. (Explain the steps of applying machine learning).

Question No. 2

(20 marks)

- 1. The co-ordinates of a point P_{abc} in the mobile frame OABC is given by $[2,4,5]^T$. If the frame OABC is rotated 45° with respect to OY of the OXYZ frame, find the co-ordinates of P_{xyz} with respect to the base frame.
- 2. A mobile body reference frame OABC is rotated 30° about OZ-axis of the fixed base reference frame OXYZ. If $P_{xyz} = [-1,2,3]^T$, $Q_{xyz} = [2,-3,1]^T$ are the co-ordinates with respect to OXYZ plane, what are the corresponding co-ordinates of P and Q with respect to OABC frame?
- 3. For the the object shown in figure 1, find the 4x4 homogeneous transformation matrices ${}^{0}A_{i}$ for i=1,2 and thus find the transformation of frame at point 1 with respect to the frame at point 2 (i.e. ${}^{2}A_{1}$).

Figure 1 problem 3. of Question No.2

Question No. 3

(22 marks)

- 1. Determine the homogeneous transformation matrix to represent a rotation of 30° about OZ-axis and a translation of 20 units along the OB-axis of the mobile frame.
- Determine the homogeneous transformation matrix to represent the following sequence of operations:

- Rotation of 45° OZ-axis.
- b. Translation of 4 units along OX-axis.
- c. Translation of -4 units along OB-axis
- d. Rotation of 90° about OA-axis
- 3. A robotic work cell has a camera with in the setup. The origin of the six joint robot fixed to a base can be seen by the camera. The homogeneous transformation matrix H₁ maps the camera with the cube centre. The origin of the base co-ordinate system as seen from the camera is represented by the homogeneous transformation matrix H₂.

- a) What is the position and orientation of the cube with respect to the base coordinate system?
- b) After the system has been setup, someone rotates the camera 90 about the x-axis of the camera. What is the position and orientation of the camera with respect to robot's base co-ordinate system?
- c) The same person rotated by 90 the object about the z-axis of the object and translated 5 units of distance along the rotated y-axis. What is the position and orientation of the object with respect to the robot's base co-ordinate system?

Question No. 4

(23 marks)

1. A six joint robotic manipulator equipped with a digital TV camera is capable of continuously monitoring the position and orientation of an object. The position and orientation of the object with respect to the camera is expressed by a matrix [T1], the origin of the robot's base co-ordinate with respect to the camera is given by [T₂], and the position and orientation of the gripper with respect to the base coordinate frame is given by [T3]. Where

$$T_{1} = \begin{bmatrix} 0 & 1 & 0 & 3 \\ 1 & 0 & 0 & 2 \\ 0 & 0 & -1 & -1 \\ 0 & 0 & 0 & 1 \end{bmatrix}, T_{2} = \begin{bmatrix} 1 & 0 & 0 & -2 \\ 0 & -1 & 0 & 2 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \text{ and } T_{3} = \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 4 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Determine: i-the position and orientation of the object with respect to the base co-ordinate. ii- the position and orientation of the object with respect to gripper.

2. For the Cylindrical manipulator shown in figure 2, Find the homogeneous transformation matrix describing the forward kinematics of the whole manipulator, i.e. the position and orientation of the end effector with respect to the base. (Hint: Apply DH-convention)

Figure 2 Problem 2. of Question No.4

Best wishes

Dr. Eng. Elasyed Sallam