RELATÓRIO DO TRABALHO PRÁTICO 2 —CÁLCULO NUMÉRICO COMPUTACIONAL: ANÁLISE DE MÉTODOS NUMÉRICOS DIRETOS E ITERATIVOS PARA RESOLVER SISTEMAS EQUAÇÕES LINEARES E NÃO-LINEARES

Moniele Kunrath Santos¹.

¹Universidade Federal de Pelotas – mksantos@inf.ufpel.edu.br

1. Introdução

Segundo trabalho da disciplina do sexto semestre em Ciência da Computação desenvolvido na linguagem *python* que tem como objetivo implementar algoritmos aproximativos que buscam as soluções de um sistema de equações lineares e não lineares. Dentre os métodos diretos estão a eliminação de Gauss, decomposição de LU e a fatorização de Cholesky. E nos métodos iterativos, constam: Gauss-Jacobi, Gauss-Seidel e Newton(não linear).

2. Resultados da Lista 6

2.1 Eliminação de Gauss

$$X1 = 4.3495$$

 $X2 = -0.2233$
 $X3 = 4.3689$

b)
$$[1, -3, 5, 6, 17]$$
 $[x1]$ $[-9, 4, -1, 0, 29]$ $[x2]$ = $[29]$ $[3, 2, -2, 7, -11]$ $[x3]$ $[-11]$ $[1, 2, 5, -4, 7]$ $[x4]$ $[7]$

$$X1 = -3.6451$$

 $X2 = -0.2193$
 $X3 = 2.9290$
 $X4 = 0.8903$

c)
$$[-2, 3, 1, 5, 2]$$
 $[x1]$ $[2]$ $[5, 1, -1, 0, -1]$ $[x2]$ $[2]$ $[1, 6, 3, -1, 0]$ $[x3]$ = $[2]$ $[4, 5, 2, 8, 6]$ $[x4]$ $[6]$

$$X1 = 0.3142$$

 $X2 = -0.8179$
 $X3 = 1.7531$
 $X4 = 0.6658$

RuntimeWarning: divide by zero encountered in double_scalars.
RuntimeWarning: invalid value encountered in double scalars

2.2 LU

$$X1 = -2.4426$$

 $X2 = 3.3934$
 $X3 = 3.2459$
 $X4 = 5.8033$

$$X5 = 23.0287$$

 $X6 = 6.7081$

2.3 Cholesky

a)
$$[9, -6, 3, -3]$$
 $[x1]$ $[-3]$ $[-6, 29, -7, -8]$ $[x2]$ = $[-8]$ $[3, -7, 18, 33]$ $[x3]$

$$X1 = -2.2487$$

 $X2 = 7.9688$
 $X3 = -0.8588$
 $X4 = 3.815$
 $X5 = 0.245$

3. Gráficos da Lista 5 - Gauss-Jacobi

b)

4. Gráficos da Lista 5 - Gauss-Seidel

4. Discussão dos resultados obtidos

Pela análise dos dados é possível afirmar que os métodos diretos são processos finitos e fornecem solução para qualquer sistema linear, ou seja, cujo determinante não seja nulo.

Pode-se observar no exercício d) por eliminação de Gauss, onde a diagonal principal é nula, que não é possível achar a solução do sistema sem pivoteamento.

Também é preciso mencionar que os métodos diretos alteram a matriz A, podendo calcular elementos que eram para ser nulos. E por outro lado, métodos iterativos não precisam alterar a matriz.

É importante destacar que os métodos iterativos possuem uma melhor segurança do arredondamento, contudo isso acontece somente quando acontece a convergência, o que não acontecem em nenhum dos exercícios da lista 5, tanto o método gauss-jacobi como gauss-seidel, não conseguiram convergir dentro do número máximo de iterações que foi estipulado como 4.