8 Quasikompakte und noethersche topologische Räume

Definition 19. Ein topologischer Raum X heißt **quasikompakt**, wenn jede offene Überdeckung von X eine *endliche* Teilüberdeckung enthält. ("quasi" deutet an, dass X in der Regel nicht Hausdorff'sch ist!). Er heißt **noethersch**, wenn jede absteigende Kette

$$X \supseteq Z_1 \supseteq Z_2 \supseteq \cdots$$

abgeschlossener Teilmengen von X stationär wird (\Leftrightarrow jede aufsteigende Kette offener Teilmengen wird stationär).

Lemma 20. Sei X ein noetherscher topologischer Raum. Dann gilt:

- (i) Jede abgeschlossene Teilmenge Z von X ist noethersch.
- (ii) Jede offene Teilmenge U von X ist guasikompakt.
- (iii) Jeder abgeschlossene Teilraum Z von X besitzt nur endlich viele irreduzibele Komponenten.

 Beweis.
 - (i) Nach Definition, da abgeschlossene Mengen von Z auch solche von X sind.
- (ii) $U = \bigcup_{i \in I} U_i$ offen; \mathbb{A} nicht quasikompakt. Dann ist $I_1 \subset I_2 \subset \cdots \subset I$ endliche Teilmenge mit

$$V_1 \subsetneq V_2 \subsetneq \cdots \neq U$$
 für $V_j = \bigcup_{i \in I} U_i$.

Widerspruch zu noethersch.

(iii) Es reicht zu zeigen: Jeder noethersche Raum ist Vereinigung endlich vieler irreduzibeler Teilmengen. Da X noethersch ist, folgt mit dem $Lemma\ von\ Zorn$ dass jede nicht-leere Menge von algebraischen Teilmengein in X ein minimales Element besitzt.

$$A: \emptyset \neq \mathcal{M} := \{Z \subset X \text{ abg. } | Z \text{ ist } \mathbf{nicht} \text{ endl. Ver. irred. Mengen} \}$$

- $\Rightarrow \exists$ minimales Element, sagen wir Z, in \mathcal{M} .
- $\Rightarrow Z$ ist nicht irreduzibel.
- $\Rightarrow Z = Z_1 \cup Z_2$ mit $Z_1, Z_2 \subsetneq Z$ abgeschlossen.
- \Rightarrow (Z minimal) $Z_1, Z_2 \notin \mathcal{M}$
- $\Rightarrow Z \notin \mathcal{M}$. Widerspruch.

Satz 21. Jeder abgeschlossene Teilraum $X \subseteq \mathbb{A}^n(k)$ ist noethersch.

Beweis. Nach dem obigen Lemma ist nur zu zeigen, dass $\mathbb{A}^n(k)$ noethersch ist.

Absteigende Ketten abgeschlossener Teilmengen sind nach Korollar 11 in 1-1 Korrespondenz mit aufsteigenden Ketten von (Radikal-)Ideale in $k[\underline{T}]$. Da $k[\underline{T}]$ nach dem Hilbertschen Basissatz noethersch ist, werden letzere Ketten stationär.

Korollar 22 (Primärzerlegung). Sei $\mathfrak{A} = \operatorname{rad}(\mathfrak{A}) \subseteq k[\underline{T}]$ ein Radikalideal. Dann gilt: \mathfrak{A} ist Durchschnitt von endlich vielen Primidealen, die sich jeweils nicht enthalten; diese Darstellung ist eindeutig bis auf Reihenfolge.

Beweis. $V(\mathfrak{A}) = \bigcup_{i=1}^n V(\mathfrak{b}_i)$, \mathfrak{b}_i Primideal. Mit Satz 10 folgt:

$$\mathfrak{A} = \operatorname{rad}(\mathfrak{A}) = I(V(\mathfrak{A})) = \bigcap_{i=1}^{n} \underbrace{I(V(\mathfrak{b}_i))}_{\mathfrak{b}'_i \text{ max. Primideale (L. 17)}}$$