Fixed numbers
$$f'(x) = (6x^{2} - 6x - 36) = (6(x^{2} - x - 6)) = (6(x^{$$

$$0 = 6(x-3)(x+2)$$

$$x = 3$$
, $x = -2$

$$\times = \begin{pmatrix} -\omega, & -2 \\ -2 & 3 \end{pmatrix}$$

$$\chi = 3(3, \infty)$$

X = 4

$$f'(-3) = 36 > 0$$

 $f'(0) = -36 < 0$

$$X = -3$$
 $f'(-3) = 36 > 0$

Conclusions

At
$$x=-2$$
, relative maximum
At $x=3$, relative minimum

$$\begin{cases} f(x) = 2x - 3x^{\frac{1}{3}} \\ f'(x) = 2 - 3(\frac{2}{3})x \\ -\frac{7}{3} \end{cases}$$

$$= 2 - 3(\frac{2}{3}) \times$$

$$= 2 - 2 \times \frac{2}{3} \times \frac{2}{3} \times \frac{2}{3} = \frac{2(x''^3 - 1)}{x''^3} \times \frac{2}{3} \times \frac{2}{3}$$

$$f'(x)$$
 undefined at $x=0$
 $f'(x)=0$ at $x=1$ Critical numbers

$$f'(x)=0$$
 at $x=1$

$$(1,\infty)$$
 2 +

Polluted pand. Oxugen level may be madeled by $[0, \infty)$ $L = \frac{t^2 - t + 1}{t^2 + 1}, \quad t \ge 0$ When is the oxugen level lowest? $\frac{dL}{dt} = \frac{(t^2 + 1)(2t - 1) - (t^2 - t + 1)(2t)}{(t^2 + 1)^2}$ $= \frac{t^2 - 1}{(t^2 + 1)^2}$ = 0 When t = 1 Critical number $\frac{(0, 1)}{(1, 00)} = 1$ $\frac{(0$