Grafos

Universidade Federal de Mato Grosso do Sul Câmpus de Ponta Porã - CPPP Desafios de Programação

1 / 33

Grafos

Definição

Um grafo não direcionado (ou simplesmente grafo) é dado por:

- um conjunto V de vértices
- um conjunto E de arestas, onde cada aresta $e \in E$ relaciona (liga) dois vértices $u \in V$ e $v \in V$.

Figura 1 : Um grafo com 6 vértices e 7 arestas.

Representação de Grafos

Lista de Adjacência:

- Dado um grafo G=(V,E), esta representação é tipicamente preferida pois é uma maneira compacta de representar grafos esparsos aqueles onde $|E|<<|V|^2$
- A representação por listas de adjacência consiste em um vetor Adj com |V| listas de adjacência, uma para cada vértice $v \in V$.
- Para cada u ∈ V, Adj[u] contém ponteiros para todos os vértices v tal que (u, v) ∈ E. Ou seja, Adj[u] consiste de todos os vértices que são adjacentes a u

(CPPP) Grafos 3 / 33

Lista de Adjacência

(CPPP) Grafos 4 /

Matriz de Adjacência

Matriz de Adjacência:

- A representação por matriz de adjacência é preferida, entretanto, quando o grafo é denso, ou seja, quando $|E| \approx |V|^2$
- Para um grafo G = (V, E), assumimos que os vértices são rotulados com números $1, 2, \dots, |V|$.
- A representação consiste de uma matriz $A=(a_{ij})$ de dimensões $|V| \times |V|$, onde

$$a_{ij} = 1$$
, se $(i, j) \in E$
 $a_{ij} = 0$, c.c

(CPPP) Grafos 5 / 33

Matriz de Adjacência

	1	2	3	4	5	6
1	0	1	0	1	0	0
2	0	0	0	0	1	0
3	0	0	0	0	1	1
4	0	1	0	0	0	0
5	0	0	0	1	0	0
6	0	0	0	0	0	1

Algoritmos de Busca em Grafos

Busca em Largura:

- A busca em largura é um dos algoritmos mais simples para exploração de um grafo.
- Dados um grafo G = (V, E) e um vértice s, chamado de fonte, a busca em largura sistematicamente explora as arestas de G de maneira a visitar todos os vértices alcançáveis a partir de s.
- Esta busca é dita em largura porque ela expande a fronteira entre vértices conhecidos e desconhecidos de uma forma uniforme ao longo da fronteira.
- Ou seja, o algoritmo descobre todos os vértices com distância k de s antes de descobrir qualquer vértice de distância k+1.

(CPPP) Grafos 7 / 33

Busca em Largura

(CPPP)

Algoritmo Busca em Largura

Para controlar a busca, o algoritmo pinta cada vértice na cor branca, cinza ou preta.

 Todos os vértices iniciam com a cor branca e podem, mais tarde, se tornar cinza e depois preta.

Branca: não visitado

Cinza: visitado

Preta: visitado e seus nós adjacentes visitados

(CPPP) Grafos 9 / 33

Algoritmo Busca em Largura

```
BFS(G,s)
1 para cada vértice u \leftarrow V[G] - \{s\}
                                            10 \ enquanto \ !vazia(Q)
  cor[u] \leftarrow BRANCO
                                                    u \leftarrow DESENFILEIRA(Q)
3 \quad d[u] \leftarrow \infty
                                             12
                                                 para cada v \leftarrow Adj[u]
   \pi[u] \leftarrow NULL
                                             13
                                                       se\ cor[v] = BRANCO
5 cor[s] \leftarrow CINZA
                                             14
                                                           cor[v] \leftarrow CINZA
6 d[s] \leftarrow 0
                                             15
                                                        d[v] = d[u] + 1
                                             16
                                                      \pi[v] \leftarrow u
7 \pi[s] \leftarrow NULL
                                                    ENFILEIRA(Q, v)
8 Q \leftarrow nova Fila()
9 ENFILEIRA(Q,s)
                                                   cor[u] \leftarrow PRETO
```

(CPPP) Grafos 10 / 33

	1	2	3	4	5	6
d	0	∞	∞	∞	∞	∞
π	\	\	\	\	\	\
с	g	w	w	w	w	w

	1	2	3	4	5	6
d	0	1	∞	1	∞	∞
π	\	1	\	1	\	\
с	Ь	g	w	g	w	w
Q	2	4				

(CPPP) Grafos

	1	2	3	4	5	6
d	0	1	2	1	∞	∞
π	0	1	2	1	\	\
с	b	Ь	g	g	w	w
Q	4	3				

	1	2	3	4	5	6
d	0	1	2	1	2	2
π	0	1	2	1	4	4
с	b	ь	g	Ь	g	g
Q	3	5	6			

(CPPP)

Implementação em C++

```
Busca em Largura
int n: //número de vértices
vector<int> distancia(n, INF); //INF representa infinito.
void dfs(vector< list<int> >& grafo, int u)
{
    distancia[u] = 0;
    queue<int> q;
    q.push(u);
    while(!q.empty())
        int u = q.front();
        cout<<"vértice "<<u<<" foi visitado"<<endl;</pre>
        q.pop();
        for(list<int>::iterator it=grafo[u].begin();it!=grafo[u].end();it++)
            if(distancia[*it]==INF)
                distancia[*it] = distancia[u] + 1;
                q.push(*it);
```

15 / 33

Busca em Profundidade

- A estratégia aqui é explorar o grafo em profundidade.
- Na busca em profundidade, as arestas são exploradas a partir do vértice mais recentemente visitado.
- Da mesma forma que a busca em largura, sempre que um vértice v é descoberto durante a busca na lista de adjacência de um outro vértice já visitado u, a DFS memoriza este evento ao definir o predecessor de v, $\pi[v]$ como u.

(CPPP) Grafos 16 / 33

Busca em Profundidade

Os vértices do grafo são coloridos durante a busca.

- Branco: antes da busca.
- Cinza: quando o vértice for visitado.
- Preto: quando os vértices adjacentes foram visitados.

DFS marca cada vértice com um timestamp. Cada vértice tem dois timestamps.

- d_v indica o instante em que v foi visitado (pintado com cinza).
- f_v indica o instante em que a busca pelos vértices na lista de adjacência de v foi completada (pintado de preto).

(CPPP) Grafos 17 / 33

Algoritmo Busca em Profundidade

```
DFS(G)
for \forall u \in V[G] do
cor[u] \leftarrow BRANCO
\pi[u] \leftarrow NIL
tempo \leftarrow 0
for \forall u \in V[G] do
if cor[u] = BRANCO then
VisitaDFS(u)
```

```
VisitaDFS(u)

cor[u] ← CINZA

d[u] ← tempo ← tempo + 1

for ∀v ∈ Adj[u] do

if cor[v] = BRANCO then

π[v] ← u

VisitaDFS(v)

cor[u] ← PRETO

F[u] ← tempo ← tempo + 1
```


(CPPP) Grafos 19 / 33

(CPPP) Grafos 20 / 33

(CPPP) Grafos 21 / 33

(CPPP) Grafos 22 / 33

(CPPP) Grafos 23 / 33

(CPPP) Grafos 24 / 33

(CPPP) Grafos 25 / 33

(CPPP) Grafos 26 / 33

(CPPP) Grafos 27 / 33

(CPPP) Grafos 28 / 33

Implementação em C++

```
Busca em Profundidade -
int n; //número de vértices
vector<bool> visitados(n, false);
void bfs(vector< list<int> >& grafo, int u) //u representa o vértice inicial
{
    cout<<"vértice "<<u<<" foi visitado"<<endl:
   visitados[u] = true;
    for(list<int>::iterator it=grafo[u].begin(); it!=grafo[u].end(); it++)
        if(!visitados[*it])
            bfs(grafo, *it);
```

Ordenação Topológica

Mostraremos como busca em profundidade pode ser empregada para encontrar uma ordenação topológica de um grafo direcionado acíclico G = (V, E).

- Uma ordenação topológica (u_1, \ldots, u_n) dos vértices de G é uma ordenação linear tal que se $(u_i, u_j) \in E$, então u_i precede u_j na ordenação, ou seja, i < j.
- Ordenação topológica pode ser vista como um arranjo dos vértices na horizontal, tal que as arestas vão da esquerda para a direita.

(CPPP) Grafos 30 / 33

(CPPP) Grafos 32 / 33

Algoritmo

Algoritmo **Topological-Sort(G)**:

Chame DFS(G) para computar f[v] para cada vértice v. Conforme cada vértice terminar, insira ele na frente de uma lista encadeada.

Retorne a lista encadeada com os vértices.

Fazer:

Uva - 124 - Following Orders

(CPPP) Grafos 33 / 33