Variable Selection and Regularized Methods ¹

Shaobo Li

University of Kansas

Introduction

- Variable selection excluding unnecessary variables
 - Interpretation and simplicity
 - Prediction stability and accuracy
 - Bias-variance tradeoff
- Common approaches
 - Stepwise selection (for parametric models)
 - Shrinkage method (also called regularization)
 - Dimension reduction (project p predictors to an m-dimensional subspace)
- It can be subjective that some times domain knowledge may force certain variables to be included in the model.

Best Subset Selection

Search through all subset predictors

- Computationally expensive even infeasible (not commonly used)
 - How many models do we need to evaluate for 10 candidate X's?

Selection Criteria – AIC, BIC

Akaike information criterion (AIC), the smaller the better

$$AIC = -2\log(\hat{L}) + 2p$$

Bayesian information criteria (BIC), the smaller the better

$$BIC = -2\log(\hat{L}) + \log(n)p$$

where \hat{L} is estimated likelihood function

- For linear regression, $-2\log(\hat{L})$ is equivalent to RSS
- \blacksquare BIC weighs more on p comparing to AIC. What does this mean?

Forward, Backward, and Stepwise Selection

- Computationally less expensive than best subset
 practically useful when the number of X is not too large
- Iteratively adding or dropping one variable at a time
- Forward/backward is greedy procedure. That is, they won't adjust any added/dropped variables in previous step
- Stepwise: start with forward, and then iteratively add and drop variables
- Commonly used selection criteria: AIC, BIC
- R function: "step()"
- An illustration: click here

High-Dimensional Regression

- Number of predictor is very large (even larger than sample size)
- Ultra-high dimension $p \gg n$
- It is very common for gene expression and image data
- Sparsity assumption: only a few predictors are relevant
- OLS fails when n < p. Why?
- LASSO or similar methods provide sparse solution

Shrinkage Methods

- Also called penalized or regularized method.
- Shrink the regression coefficients toward 0 by constraints (regularization)
- Computationally efficient (especially for high dimensional data)
- Estimates are usually biased
- A game of bias-variance tradeoff
- Popular shrinkage methods:
 - L₁ penalty: LASSO, adaptive Lasso, SCAD, MCP
 - L_2 -norm penalty: Group Lasso (when X has group structure)
 - L_2 penalty: Ridge regression (not for variable selection)
 - $L_1 + L_2$ penalty: Elastic Net

LASSO

- Least absolute shrinkage and selection operator (LASSO)
- Introduced by Tibshirani (1996)
- One of the most popular variable selection methods
- It estimates the coefficients and selects variables simultaneously.
- lacksquare A tuning parameter λ controls the "power" of selection.
- Need to standardize all predictors in shrinkage estimation. Why?

LASSO

■ LASSO solves the (L_1) penalized least square

$$\hat{\beta}_{LASSO} = \arg\min_{\beta} \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$

- It is a convex optimization problem
- It is equivalent to solve a constrained optimization problem

$$\min \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2$$

s.t.
$$\sum_{i=1}^{p} |\beta_j| = a$$

An Illustration

LASSO Regression Solution Path - Boston Housing Data

Tuning Parameter λ Selection

- lacktriangleright λ controls the shrinkage level (different lambda associates with different estimated model)
- Cross-validation
 - In R, use the function cv.glm() in package glmnet

Ridge Regression

Recall least square. We solve the optimization

$$\hat{\boldsymbol{\beta}}_{LS} = \arg\min_{\boldsymbol{\beta}} \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2$$

Ridge regression solves a (L_2) penalized least square

$$\hat{\beta}_{Ridge} = \arg\min_{\beta} \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

- lacksquare λ is a tuning parameter, called shrinkage parameter
- Writing in matrix form, we can get the analytical solution

$$\hat{\boldsymbol{\beta}}_{Ridge} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{y}$$
 (Exercise: Show it!)

Ridge Regression

It is equivalent to solve a constrained optimization problem

$$\min \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2$$
s.t.
$$\sum_{i=1}^{p} \beta_j^2 = a$$

lacksquare a corresponds to the tuning parameter λ

An Illustration

Ridge Regression Solution Path – Boston Housing Data

Elastic Net Regression

- Introduced by Zou and Hastie (2005)
- Combination of Ridge and LASSO

$$\hat{\boldsymbol{\beta}}_{EN} = \arg\min_{\boldsymbol{\beta}} \sum_{i=1}^{n} \left(y_i - \mathbf{x}_i^T \boldsymbol{\beta} \right)^2 + \lambda_1 \sum_{j=1}^{p} |\beta_j| + \lambda_2 \sum_{j=1}^{p} \beta_j^2$$

- Convex optimization
- Ridge and LASSO are special cases of Elastic Net
- It incorporates the advantages of both Ridge and LASSO
 - Ridge regression: lower variance; multicollinearity
 - LASSO: variable selection (selects at most n variables if p > n)

Some Variants of LASSO

- L₁ penalty:
 - LASSO (Tibshirani, 1996)
 - Adaptive-LASSO (Zou, 2006)
 - SCAD (Fan and Li, 2001)
 - MCP (Zhang, 2010)
- L_2 -norm penalty (when X has group structure): Group Lasso (Yuan and Lin, 2006)
- $L_1 + L_2$ penalty:
 - Elastic Net (Zou and Hastie, 2005)

Bias-Variance Tradeoff

Simulated data with n=50 observations, p=45 predictors, all having nonzero coeficients. Squared bias (black), variance (green), and test mean squared error (purple) for the ridge regression predictions on a simulated data set.