NLP Final Project

GPT-2 Fine-tuning – Sentimental Analysis / Paraphrase Detection / Sonnet Generation

Presented by: Jaewon Lee, Byeongmin Kang 2025.06.18

Contents

- Introduction
- Paraphrase Detection
- Sonnet Generation
- Conclusion

Introduction

GPT-2 Fine tuning

• Sentimental Analysis - SST, CFIMDB corpus dataset / Classify task

• Paraphrase Detection - QQP dataset / cloze-style task (yes/no generation)

• Sonnet Generation - Shakespeare Sonnet dataset / multi-token generation task

Machine Unlearning 3

Experiments Setting

• 동국대학교 서버 - GPU: A6000 48gb x 1

Train: quora_train.csv / Validation, Test: quora_dev.csv

• Model Size: GPT-2

• Batch Size: 96

Learning Rate: default 2e-5 / diff with experiments.

• Seed: 11711

• about 15-30 min. per epoch.

02. Paraphrase Detection

Baseline

- Full Finetuning.
- R-Drop (KL) / Ir scheduler

Method	Accuracy	F1 Score	others
Baseline(_250523_default_paraphrase)	0.9081	0.9019	epoch=10, lr=1e-5
Baseline(_250614_pooling, last)	0.8919	0.8849	epoch=20, lr=2e-5
Baseline(_250613_default_BackTranslation)	0.8854	0.8781	epoch=10, lr=2e-5

SimCSE

- SimCSE: Simple Contrastive Learning of Sentence Embeddings (Gao et al., 2021)
- two forward pass dropout mask x 2

InfoNCE loss

$$\ell_i = -\log \frac{e^{\sin(\mathbf{h}_i^{z_i}, \mathbf{h}_i^{z_i'})/\tau}}{\sum_{j=1}^N e^{\sin(\mathbf{h}_i^{z_i}, \mathbf{h}_j^{z_j'})/\tau}}$$

SimCSE(_250522_SimCSE)	0.8946	0.8879	epoch=3, Ir=2e-5
SimCSE(_250523_simcse_etc)	0.8682	0.8594	epoch=3, Ir=2e-5

Adversarial

• Improving Paraphrase Detection with the Adversarial Paraphrasing Task (Animesh Nighojkar, John Licato., 2021)

• APT dataset generation - low BLEURT score (like hard negative)

Adverserial(_250611_Adverserial_gem)	0.8909	0.8836	epoch=30, lr=2e-5	

Multitask

- End-to-End Multi-Task Learning with Attention (Liu et al., 2019)
- multi task end-to-end train -> task별 weighted sum loss.

• Just re-finetuning - ETPC dataset

|--|

02. Paraphrase Detection

PeFT

• LoRA (Hu et al., 2022), DoRA (Liu et al., 2024)

PeFT(_250614_PeFT, LoRA)	0.8707	0.8623	epoch=20, lr=5e-5 r=16, alpha=32, dropout=0.1
PeFT(_250614_PeFT, LoRA)	0.8599	0.8498	epoch=20, lr=5e-5 r=8, alpha=16, dropout=0.1
PeFT(_250614_PeFT, DoRA)	0.8702	0.8616	epoch=20, lr=5e-5 r=16, alpha=32, dropout=0.1
PeFT(_250614_PeFT, DoRA)	0.8601	0.8501	epoch=20, lr=5e-5 r=8, alpha=16, dropout=0.1

02. Paraphrase Detection

Pooling

last -> mean pooling

Pooling(_250614_pooling, mean)	
--------------------------------	--

BackTranslation

• BackTranslation (Corbeil and Ghadivel, 2020)

BET: A BACKTRANSLATION APPROACH FOR EASY DATA AUGMENTATION IN TRANSFORMER-BASED PARAPHRASE IDENTIFICATION CONTEXT

• ar, de, es, fr, ru, zh Backtranslate -> data augment

Back Translation(_250612_Back Translation) 0.8784 0.871 epoch=20, Tr=2e-5	BackTranslation(_250612_BackTranslation)	0.8784	0.871	epoch=20, lr=2e-5
---	--	--------	-------	-------------------

02. Paraphrase Detection

Results

Method	Accuracy	F1 Score	others
Baseline(_250523_default_paraphrase)	0.9081	0.9019	epoch=10, lr=1e-5
Baseline(_250614_pooling, last)	0.8919	0.8849	epoch=20, Ir=2e-5
Baseline(_250613_default_BackTranslation)	0.8854	0.8781	epoch=10, lr=2e-5
SimCSE(_250522_SimCSE)	0.8946	0.8879	epoch=3, lr=2e-5
SimCSE(_250523_simcse_etc)	0.8682	0.8594	epoch=3, lr=2e-5
Adverserial(_250611_Adverserial_gem)	0.8909	0.8836	epoch=30, lr=2e-5
Multitask(_250612_Multitask)	0.8891	0.8505	epoch=20, lr=2e-5
Multitask(_250615_multitask2)	0.7709	0.7484	epoch=10/20, Ir=2e-5
PeFT(_250614_PeFT, LoRA)	0.8707	0.8623	epoch=20, lr=5e-5
			r=16, alpha=32, dropout=0.1
PeFT(_250614_PeFT, LoRA)	0.8599	0.8498	epoch=20, lr=5e-5
			r=8, alpha=16, dropout=0.1
PeFT(_250614_PeFT, DoRA)	0.8702	0.8616	epoch=20, lr=5e-5
			r=16, alpha=32, dropout=0.1
PeFT(_250614_PeFT, DoRA)	0.8601	0.8501	epoch=20, lr=5e-5
			r=8, alpha=16, dropout=0.1
Pooling(_250614_pooling, mean)	0.8872	0.88	epoch=20, lr=2e-5
BackTranslation(_250612_BackTranslation)	0.8784	0.871	epoch=20, Ir=2e-5

Experiments Setting

동국대학교 서버 사용(cs.dongguk.edu 102번 포트 linuxserver2)

- GPU: NVIDIA A6000 48GB x 1 사용

flareon@gangbyeongmins-MacBook-Pro ~ % ssh -p 102 2020112534@cs.dongguk.edu Last login: Mon Jun 16 04:31:02 2025 from 203.251.170.194 Error changing group of pid 2083446: Cgroup does not exist 2020112534@linuxserver2:~\$ nvidia-smi

Tue Jun 17 14:31:46 2025

NVID	IA-SMI !	535.2	230.02	D	river	Version:	535.230.02	CUDA Versi	on: 12.2
	Name Temp	Peri	f	Pwr:Usage	/Cap	j 	Memory-Usag	.A Volatile ge GPU-Util 	Compute M. MIG M.
_	NVIDIA 36C	RTX P8		26W /	Off	0000000	0:01:00.0 01		Off
1 30%	NVIDIA 36C	RTX P8	A6000	23W /	Off 300W		0:25:00.0 Ot iB / 49140M		Off Default N/A
_	NVIDIA 35C	RTX P8		19W /			0:41:00.0 Ot iB / 49140M		Off Default N/A
	NVIDIA 39C	RTX P8	A6000	35W /	-		0:81:00.0 Ot iB / 49140M		Off Default N//
4 30%	NVIDIA 35C	RTX P8	A6000	23W /			0:A1:00.0 Ot iB / 49140Mi		Off Default N//
	NVIDIA 81C	RTX P2					0:C1:00.0 Ot iB / 49140M		Of Defaul N//
6 30%	NVIDIA 35C	RTX P8		25W /	-		0:E1:00.0 Oti iB / 49140Mi	· •	Of Defaul

GPU	GI ID	CI ID	PID	Туре	Process name	GPU Memory Usage
0	 N/A	 N/A	 4208	 G	/usr/lib/xorg/Xorg	4MiB
1	N/A	N/A	4208	G	/usr/lib/xorg/Xorg	4MiB
2	N/A	N/A	4208	G	/usr/lib/xorg/Xorg	4MiB
3	N/A	N/A	4208	G	/usr/lib/xorg/Xorg	4MiB
4	N/A	N/A	4208	G	/usr/lib/xorg/Xorg	4MiB
5	N/A	N/A	4208	G	/usr/lib/xorg/Xorg	4MiB
5	N/A	N/A	2037265	С	python	46726MiB
6	N/A	N/A	4208	G	/usr/lib/xorg/Xorg	4MiB

0000440504031.

Baseline

- sonnet_generation_base.py
- top-p sampling을 이용한 generate() 함수를 통해 기본적인 소네트 생성을 수행

Prefix-Tuning

sonnet_generation_Prefix.py

• 입력 앞에 짧은 힌트를 붙여서, 모델이 원하는 스타일이나 태스크에 맞게 반응하도록 유도하는 방법

- 기존 모델 전체를 학습시키는 대신 → 작은 prefix만 학습해서 학습 속도와 파라미터 수를 줄이기 위해
- 기존 모델은 그대로 두고 → prefix만 바꿔서 다양한 태스크에 쉽게 적응 가능

Contrastive Search

sonnet_generation_CS.py

- Li et al. (2022)의 Contrastive Decoding 방식을 기반으로 구현.
- top-k 후보군 중에서 hidden state 간 유사도(repulsion score)를 계산 → 이를 로짓 점수에서 감산하여 대표성이 높은 토큰 선택

옵션명	역할	기대 효과
dynamic_alpha	생성 step이 늘어날수록 α값(유사도 감점 강도)을 선형 증가	초반에는 유연하게, 후반에는 더 확 실하게 억제 → 문장 후반부 안정화
use_mean_sim	후보 토큰과 과거 히든 상태 전체 평균 유사도 사용	전체 맥락에서 다양성 확보 (vs max 는 가장 비슷한 하나만 반영)
use_repetition_penalty	이미 등장한 토큰의 로짓 점수를 나 눠서 반복 억제	동일 단어나 문장 반복을 방지 → 표현 다양성 증가

Beam Search

sonnet_generation_BS.py

- 전통적인 Beam Search 알고리즘을 기반으로 구현
- top-k 토큰 후보를 탐색하여 시퀀스를 확장
- 길이 정규화(length_penalty)와 n-gram 반복 차단 기능을 포함

MBR

sonnet_generation_MBR.py

- Minimum Bayes Risk (MBR) reranking 기법을 적용
- Beam Search를 통해 생성된 상위 n-best 후보들 간 pairwise CHRF 유사도
- -> 평균 유사도가 가장 높은 후보를 최종 출력으로 선택

Candidate Ensemble + MBR

sonnet_generation_CE.py

- Top-p Sampling, Contrastive Search, Beam Search를 통해 생성된 다양한 후보군을 모두 통합
- 이들 간의 pairwise CHRF 유사도를 기반으로 MBR reranking을 수행

Results

Method	Accuracy	others
Baseline (Top-p Sampling)	39.7379	기본 generate 함수, top-p=0.9, temp=1.2
Prefix-Tuning	35.0762	연속 prefix embedding
Contrastive Search (all False)	35.6912	기본 contrastive 설정 (3옵션 모두 꺼짐)
Contrastive Search (only dynamic_alpha)	36.3526	dynamic_alpha=True
Contrastive Search (only use_mean_sim)	35.6912	use_mean_sim=True
Contrastive Search (only repetition_penalty)	24.8650	use_repetition_penalty=True
Contrastive Search (dynamic+mean_sim)	37.7542	best setting (두 옵션만 True)
Beam Search	33.4421	beam_size=5, length_penalty=0.6
MBR	37.7483	Beam 후보 기반 reranking
Candidate Ensemble + MBR	37.6524	Top-p, Contrastive, Beam 통합후 rerank

Fine-Tuning

- 가장 안정적이고 높은 성능을 보였던 baseline (Top-p Sampling) 방식을 기반으로 전체 GPT-2 모델 파라미터를 fine-tuning하였다.
- 학습 시 forward()는 hidden state 전체를 활용해 logit을 생성하였으며, Top-p 샘플링을 통한 generation 방식은 그대로 유지하였다.

학습 구조는 기존 train() 함수를 개선하여 다음과 같은 기법을 새롭게 추가하였다.

- get_linear_schedule_with_warmup()을 통한 학습률 스케줄링 적용
- clip_grad_norm_()을 통한 그래디언트 클리핑 도입 (max norm=1.0)
- 매 epoch마다 Dev 세트 CHRF 평가 및 최고 성능 상위 3개 모델만 저장
- 불필요한 체크포인트 파일은 자동 삭제하여 저장 공간 최적화

Fine-Tuning

Batch Size	Learning Rate	Epochs	CHRF Score	Notes
32	1e-6	1000	41.8519	Saved at epoch 594
32	5e-5	1000	42.6414	Saved at epoch 469
32	1e-4	1000	42.4880	Saved at epoch 188
8	1e-5	200	43.2194	Saved at epoch 74 (SOTA)

Paraphrase Detection

- Baseline이 기본적으로 가장 괜찮은 성능
- 그러나 여러 Method에서 hyperparameter 최적화 시 Baseline보다 더 성능이 개선될 수 있음을 확인.

- hyperparameter searching을 통한 최적화를 이후 과제로 남겨둠.
- Ensemble 기법을 활용하면 더 좋은 성능을 확인할 수 있음으로 사료되나, 확인이 필요함.

- Adversarial / Multi-task 등의 방식에서 논문의 Method를 그대로 사용하지 x.
- 이에 대한 추가 실험이 필요.

- Baseline (generate) 구조가 기본적으로 가장 안정적인 성능
 - fine-tuning을 통해 CHRF 기준 가장 높은 점수를 달성

- Prefix-Tuning, Contrastive Search, Beam Search, MBR 등 다양한 방법론 적용.
 - 일부 전략은 비슷한 수준의 성능을 보였으나 완전한 fine-tuning에는 미치지 못함.

• 추후 다양한 decoding 기법에 대한 조합 탐색(Ensemble 등) 및 prefix 기반 세분화 학습 전략에 대한 추가 실험 필요.

Thank You