

1st Simulation Project

Control Engineering

Enrique Aguayo Lara

Perla Vanessa Jaime Gaytán

ITE

A00344428

Instituto Tecnológico de Estudios Superiores de Monterrey Campus Guadalajara.

Zapopan, Jalisco, México.

April 3rd, 2020.

General Parameters.

Date of Birth: May 10, 1999.

```
. .
       %General
1
2 -
       a=10;
3 -
      b=5;
 4 -
       c=17;
5 -
      ut=a/2;
 6 -
       rt=a;
7 -
       k=b;
8
9 -
      matricula=struct;
10 -
      matricula.general=struct;
11 -
      matricula.P01=struct;
12 -
      matricula.P02=struct;
13 -
      matricula.P03=struct;
14 -
      matricula.P04=struct;
15 -
      matricula.P05=struct;
16 -
       a00344428=matricula;
17
18 -
       a00344428.general.a=a;
19 -
      a00344428.general.b=b;
       a00344428.general.c=c;
20 -
21
```

System 1

Code.

```
22
23
       %Problema 1
24
25 -
       numl=[c];
26 -
       denl=[a b];
27 -
       Gl=tf(numl,denl);
28
29
       %Open Loop P01
30 -
       a00344428.P01.OL.tau=a/b;
31 -
       a00344428.P01.OL.tss=5*a/b;
       a00344428.P01.OL.yss=ut*c/b;
32 -
33
       %Close Loop P01
34
35
       a00344428.P01.CL.yss=rt*((k*c)/(b+k*c));
36 -
37 -
       a00344428.P01.CL.tau=a/b;
38 -
       a00344428.P01 CL.tss=5*a/b;
20
```

Simulink.

Transfer function.

Characterization of the system in Open Loop.

```
>> a00344428.P01.OL.tau

ans =

2

>> a00344428.P01.OL.tss

ans =

10

>> a00344428.P01.OL.yss

ans =

17
```

Characterization of the system in Close Loop

```
>> a00344428.P01.CL.yss

ans =
    9.4444

>> a00344428.P01.CL.tau

ans =
    2

>> a00344428.P01.CL.tss

ans =
    10
```

Gain range

System 2.

Code.

```
40
       %Problema 2
       % e^{(-0.004s)} = -0.004s/2 + 1
41
42
43 -
       num2 = [b*c*-0.004/2 b*c];
       den2 = [4 c*a/22 c^2];
44 -
45 -
       G2 = tf(num2, den2);
46
47
48
       %Open Loop P02
49 -
       a00344428.P02.OL.yss=ut*b*c/c^2;
50
51 -
       a00344428.P02.OL.wn=sqrt(c^2/4);
52 -
       a00344428.P02.OL.d=(c*a/22)/(2*4*a00344428.P02.OL.wn);
53 -
       a00344428.P02.OL.wd=a00344428.P02.OL.wn*sqrt(1-(a00344428.P02.OL.d)^2);
54 -
       a00344428.P02.OL.tss= 4/(a00344428.P02.OL.d*a00344428.P02.OL.wn);
55
56
       %Close Loop P02
57 -
       a00344428.P02.CL.yss = rt*((k*b*c)/(c^2+k*b*c));
58
59 -
       a00344428.P02.CL.wn = sqrt((c^2+b*c*k)/4);
60 -
       a00344428.P02.CL.d = ((c*a/22)+(-0.004*b*c/2)*k)/(2*4*a00344428.P02.CL.wn);
61 -
       a00344428.P02.CL.wd=a00344428.P02.CL.wn*sqrt(1-(a00344428.P02.CL.d)^2);
62 -
       a00344428.P02.CL.tss= 4/(a00344428.P02.CL.d*a00344428.P02.CL.wn);
```

Simulink.

Transfer Function.

Characterization of the system in Open Loop.

Characterization of the system in Open Loop.

```
>> a00344428.P02.CL.yss
  ans =
      5.9524
  >> a00344428.P02.CL.wn
  ans =
     13.3604
  >> a00344428.P02.CL.d
  ans =
      0.0643
                                >> a00344428.P02.CL.tss
  >> a00344428.P02.CL.wd
                                ans =
  ans =
     13.3327
                                    4.6530
fx
```

Gain range

System 3.

Code.

```
64
       %Problema 3
65
       e^{(-0.006s)} = -0.006s/2 + 1
66
67 -
       num3 = [4*a*(-.006/2) 4*a];
68 -
       den3 = [1 (b+c) b*c];
69 -
       G3 = tf(num3, den3);
70
71 -
       a00344428.P03.num=num3;
72 -
       a00344428.P03.den=den3;
73
74
       %Open Loop P03
75 -
       a00344428.P03.OL.yss=ut*4*a/(b*c);
76
77 -
       a00344428.P03.OL.wn=sqrt(b*c);
78 -
       a00344428.P03.OL.d=(b+c)/(2*a00344428.P03.OL.wn);
79 -
       a00344428.P03.OL.wd=a00344428.P03.OL.wn*sqrt(1-(a00344428.P03.OL.d)^2);
80 -
       a00344428.P03.OL.tss=4/(a00344428.P03.OL.d*a00344428.P03.OL.wn);
81
82
       %Close Loop P03
83 -
       a00344428.P03.CL.yss=rt*4*a*k/(b*c+4*a*k);
84
85 -
       a00344428.P03.CL.wn=sqrt(b*c + 4*a*k);
86 -
       a00344428.P03.CL.d=(b+c+(-0.006*4*a*k/2))/(2*a00344428.P03.CL.wn);
87 -
       a00344428.P03.CL.wd=a00344428.P03.CL.wn*sqrt(1-(a00344428.P03.CL.d)^2);
88 -
       a00344428.P03.CL.tss=4/(a00344428.P03.CL.d*a00344428.P03.CL.wn);
```

Simulink.

Transfer Function:

```
G3 =

-0.12 s + 40

-----
s^2 + 22 s + 85
```

Characterization of the system in Open Loop.

```
>> a00344428.P03.OL.yss
ans =
    2.3529
>> a00344428.P03.OL.wn
ans =
    9.2195
>> a00344428.P03.OL.d
ans =
   1.1931
                            >> a00344428.P03.OL.tss
>> a00344428.P03.OL.wd
                            ans =
ans =
                                 0.3636
  0.0000 + 6.0000i
                           fx
```

Characterization of the system in Close Loop

```
>> a00344428.P03.CL.yss

ans =
7.0175
>> a00344428.P03.CL.wn

ans =
16.8819
>> a00344428.P03.CL.d

ans =
0.6338
>> a00344428.P03.CL.wd

ans =
13.0579

>> a00344428.P03.CL.tss

ans =
0.3738
```

Gain range.

System 4

Code for identification Second Order.

```
1
       %Using the array from DataID (given for the project)
2 -
3 -
4 -
       MV = DataID{2};
       t = MV(:,1);
       y = MV(:,2);
 5
       %k = last value in array from y axis
 7 -
       k = y(end,:);
 8
 9
       Output of system when -> t = 5T
10 -
       T = (k*0.9933);
11
12 -
13 -
       my = max(y);
       mp = (my-k)/k;
14
15 -
       w = -\log(mp)/pi;
16 -
       delta = sqrt((w*w)/(1+(w*w)));
17
18 -
19 -
       Fnd = find(y == my);
       tp = t(Fnd);
20
21
       %Finding the damped natural frequency
22 -
       wd = pi/tp;
23
24
       %Finding the damping factor
25 -
       wn = wd/sqrt(1-(delta*delta));
26
```

Graph from the result of the identification.

Transfer function and values.

Code:

```
90
        %Problema 4
 91
        %Identificacion DataID{2}
 92
        %6869/(s^2 + 11.9642s + 490.6415)
        %a/(bs^2 +cs + d)
 93
 94 -
        a4=6869;
 95 -
        b4=1;
 96 -
        c4=11.9642;
        d4=490.6415;
 97 -
 98
 99 -
        num4 = [a4];
100 -
        den4 = [b4 c4 d4];
101 -
        G4 = tf(num4, den4);
102
103 -
        a00344428.P04.num=num4;
104 -
        a00344428.P04.den=den4;
105
106
       %Open Loop
107 -
       a00344428.P04.OL.yss=ut*a4/(d4);
108
109 -
        a00344428.P04.OL.wn=sqrt(d4);
110 -
        a00344428.P04.OL.d=c4/(2*a00344428.P04.OL.wn);
111 -
        a00344428.P04.OL.wd = a00344428.P04.OL.wn*sqrt(1-(a00344428.P04.OL.d)^2);
112 -
        a00344428.P04.OL.tss=4/(a00344428.P10L.d*a00344428.P04.OL.wn);
113
```

Simulink.

Transfer function.

Characterization of the system in Open Loop.

```
>> a00344428.P04.OL.yss

ans =

70.0002

>> a00344428.P04.OL.wn

ans =

22.1504

>> a00344428.P04.OL.d

ans =

0.2701

>> a00344428.P04.OL.wd

ans =

0.2701

>> a00344428.P04.OL.tss

ans =

21.3274

0.6687
```

Characterization of the system in Close Loop.

Gain range.

System 5

General:

```
%Problema 5
Q1 = Qin_1(2);
H1Max = H1max(2);
A01 = A1(2);
R01 = R1(2);

Q2 = Qin_2(2);
H2Max = H2max(2);
A02 = A2(2);
R02 = R2(2);
```

```
%1.
%    H1(s)/Qin(s) = ?
%    From the book we know that: (R1Cs + 1)H(s)=R1Qin(s) where C = A1
%    Therefore: H1(s)/Qin(s) = R1/(R1A1s + 1)
num1 = [R01];
den1 = [(R01*A01) 1];

%    H2(s)/Qin(s) = ?
%    From the equation above, we obtain H2(s) = R2, however, since now the
%    Qin is the multiplication of the 1st tank and the 2nd tank
%    Qin(s) = (R1A1s + 1)(R2A2s + 1) = (R1A1R2A2)s^2 + (R1A1+R2A2)s + 1
%    Therefore: H2(s)/Qin(s) = R2/(R1A1R2A2)s^2 + (R1A1+R2A2)s + 1
num2 = [R02];
den2 = [(R01*A01*R02*A02) (R01*A01 + R02*A02) 1]
```

2.

```
%2
% H1(s)/Qin(s)= ?
G1 = tf(numl, den1);
% H2(s)/ Qin(s) = ?
G2 = tf(num2, den2);
```

```
G1 =

1.7
-----
66.3 s + 1

Continuous-time transfer function.

>> G2

G2 =

4
-------
1.724e04 s^2 + 326.3 s + 1

Continuous-time transfer function.
```

```
%3
a00344428.P05.H1.yss= Qin1*R01;
a00344428.P05.H1.tss= 5*R01*A01;
```

```
>> G1
G1 =

1.7
------
66.3 s + 1

Continuous-time transfer function.

>> a00344428.P05.H1.yss
ans =

9.6900

>> a00344428.P05.H1.tss
ans =

331.5000
```



```
%4
a00344428.P05.H2.yss= Qin2*R02;
a00344428.P05.H2.wn=sqrt(1/(R01*A01*R02*A02));
a00344428.P05.H2.d=(R01*A01 + R02*A02)/(2*R01*A01*R02*A02*a00344428.P05.H2.wn);
a00344428.P05.H2.wd=a00344428.P05.H2.wn*sqrt(1-(a00344428.P05.H2.d)^2);
a00344428.P05.H2.tss=4/(a00344428.P05.H2.d*a00344428.P05.H2.wn);
```

```
G2 =
 1.724e04 s^2 + 326.3 s + 1
Continuous-time transfer function.
>> a00344428.P05.H2.yss
ans =
                                     >> a00344428.P05.H2.wd
  12.4000
                                      ans =
>> a00344428.P05.H2.d
ans =
                                        0.0000 + 0.0056i
   1.2426
                                      >> a00344428.P05.H2.tss
>> a00344428.P05.H2.wn
                                      ans =
ans =
                                        422.6295
 0.0076
```

