# Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ) Институт прикладной математики и компьютерных наук

# ЛАБОРАТОРНЫЙ ПРАКТИКУМ

Экономико-математическое моделирование – II

# ОГЛАВЛЕНИЕ

| Дополнительная информация                                         | 3  |
|-------------------------------------------------------------------|----|
| 1 Лабораторная работа: AR(p)                                      | 3  |
| 2 Лабораторная работа: GARCH(p, q)                                | 6  |
| 3 Лабораторная работа: AR(p)ARCH(q) и реальные данные             | 8  |
| 4 Лабораторная работа: call-опцион                                | 10 |
| 5 Лабораторная работа: броуновское движение                       | 12 |
| 6 Лабораторная работа: оценивание параметров геометрического бро- |    |
| уновского движения                                                | 14 |
| 7 Лабораторная работа: модель разорения страховой компании        | 15 |
| Список литературы                                                 | 19 |

#### Дополнительная информация

В работе [1] Вы найдете необходимую информацию, связанную с параметрической статистикой. Данная книга не является сложной монографией. Это учебник для студентов, который позволяет разобраться в матстате.

Лабораторные выполняются на языках R или Python.

**Примечание 1.** Для удобства использования языка R скачайте оболочку Rstudio на сайте

Также можно воспользоваться ресурсом

Для выполнения работ на языке Python скачайте дистрибутив Anaconda на сайте

https://www.anaconda.com/products/individual

# 1 Лабораторная работа: AR(p)

Рассмотрим процесс AR(p) вида

$$x_k = \theta' X_{k-1} + \varepsilon_k, \quad k = 1, 2, \dots, \tag{1}$$

где  $\theta = (\theta_1, \dots, \theta_p)'$ ,  $X_{k-1} = (x_{k-1}, \dots, x_{k-p})'$ ,  $\varepsilon_k \sim \mathcal{N}(0, 1)$ , значение  $X_0 = (x_0, \dots, x_{1-p})$  является случайным и не зависит от последовательности  $\{\varepsilon_k\}$ . Штрих ' означает операцию транспонирования.

# Задание:

1. Построить график процесса AR(1), из n наблюдений, для различных значений параметра  $\theta$ : а)  $|\theta|<1$ , b)  $|\theta|=1$ , c)  $|\theta|>1$ .

**Примечание 2.** Желательно, чтобы Вы использовали функции. Т.е. напишите функцию, которая зависит от параметров  $n, \theta$  вида

$${\rm ar=function}({\rm n},\theta)\#{\rm n}$$
 - объем выборки,  $\theta$  - параметр процесса  $AR(1)$  {  $\dots$  }

которая будет возвращать последовательность значений AR(1). Затем, меняя входные параметры, постройте графики.

2. Оценить параметр  $|\theta| \le 1$  по методу наименьших квадратов (МНК). Для этого минимизируйте по  $\theta$  сумму квадратов ошибок, т.е.

$$\sum_{i=1}^{n} \varepsilon_i^2 = \sum_{i=1}^{n} (x_i - \theta x_{i-1})^2 \to \min_{\theta}.$$
 (2)

**Примечание 3.** Необходимо взять производную выражения (2) по  $\theta$  и приравнять  $\kappa$  0.

3. Найти оценку максимального правдоподобия (МП) параметра  $\theta$  процесса AR(1). Сделайте вывод о взаимосвязи оценок МНК и МП для параметра  $\theta$  в случае гауссовского шума.

**Примечание 4.** Поскольку процесс авторегрессии полностью описывается последовательностью  $\{\varepsilon_k\}_{k\geq 1}$ , то совместное распределение процесса (1) может быть описано через совместное распределение последовательности  $\{\varepsilon_k\}_{k\geq 1}$ . Так как  $\{\varepsilon_k\}_{k\geq 1}$  – последовательность независимых гауссовских случайных величин, которая не зависит от начального значения  $X_0$ , то ее совместное распределение представляет из себя произведение одномерных распределений каждой из случайных величин  $\varepsilon_k$ ,  $k=1,2,\ldots,n$ , т.е.

$$\mathcal{L}_{\theta}(\varepsilon_{1}, \dots, \varepsilon_{n}) = \mathcal{L}_{\theta}(x_{1}, \dots, x_{n}) = \prod_{k=1}^{n} \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x_{k} - \theta x_{k-1})^{2}}{2\sigma^{2}}\right) =$$

$$= \left(\frac{1}{\sqrt{2\pi}\sigma}\right)^{n} \exp\left(-\sum_{k=1}^{n} \frac{(x_{k} - \theta x_{k-1})^{2}}{2\sigma^{2}}\right), \quad (3)$$

 $r\partial e \ \sigma^2 = 1.$ 

Оценка максимального правдоподобия находится путем максимизации функции правдоподобия по неизвестному параметру

$$\hat{\theta}_n = \arg\max_{\theta} \mathcal{L}_{\theta}(x_1, \dots, x_n).$$

Следовательно, для того, чтобы максимизировать (3), необходимо минимизировать величину

$$\sum_{k=1}^{n} \frac{(x_k - \theta x_{k-1})^2}{2\sigma^2}.$$

**Примечание 5.** B R ecmb функции интегрирования и дифференцирования. Необходимую информацию вы можете найти в книге [2]. B работе [3] представлена информация, посвященная статистической составляющей пакета R.

4. Рассчитать МНК-оценки для объема выборки  $k = 10, 11, \ldots, n$ . Посмотреть на динамику оценки, в зависимости от объема выборки, и сделать выводы.

#### АЛГОРИТМ

- (a) Замоделировать процесс AR(1) объема выборки n=1000;
- (b) Расчитать МНК-оценку по 10 наблюдениям реализованного процесса;
- (c) Расчитать МНК-оценку по 11 наблюдениям и т.д. для всех  $k=10,11,\ldots,n;$
- (d) Построить последовательность полученных оценок на графике.
- 5. Построить график устойчивого процесса AR(2), из n наблюдений. Для того, чтобы процесс AR(2) был стационарным необходимо, чтобы корни уравнения

$$\lambda^2 - \theta_1 \lambda - \theta_2 = 0$$

удовлетворяли условию  $|\lambda_i| < 1, i = 1, 2$ . Корни могут быть комплексными.

6. Вычислить значение параметра AR(2), используя функцию arima пакета stats.

Примечание 6. Для установки пакета используйте команду

Для подключения пакета введите команду

**Примечание 7.** Одним из аргументов функциии arima выступает вектор c(p,d,q), где p – порядок авторегрессионной части модели arima, d – порядок интегрирующей части, q – порядок скользящего среднего. В данном случае необходимо использовать order = c(2,0,0).

**Примечание 8.** Для исключения свободного члена из результатов оценивания добавить в качестве аргумента функции arima() запись

$$include.mean = FALSE.$$

7. Загрузить лабораторную на свой GitHub.

# 2 Лабораторная работа: GARCH(p, q)

Рассмотрим GARCH(p,q) процесс вида

$$h_n = \sigma_n \varepsilon_n, \quad \sigma_n^2 = a_0 + \sum_{i=1}^p a_i h_{n-i}^2 + \sum_{j=1}^q b_j \sigma_{n-j}^2, \quad n > 0,$$

где коэффициенты при наблюдениях процесса удовлетворяют свойствам  $a_0 > 0, a_i \ge 0, \ i = \overline{1,p}, \$ а коэффициенты при условных волатильностях  $b_j \ge 0, \ j = \overline{1,q}; \ H_0 = (h_0,h_{-1},\ldots,h_{1-p})'$  – вектор начальных значений процесса,  $\Sigma_0 = (\sigma_0,\sigma_{-1},\ldots,\sigma_{1-q})' \ge 0$  – вектор начальных значений волатильности, элементами которого выступают положительно определенные случайные величины. Векторы  $H_0$  и  $\Sigma_0$  не зависят от последовательности  $\{\varepsilon_n\}, \ \varepsilon_n$  – случайные величины с нулевым математическим ожиданием  $\mathbf{E}\varepsilon_n = 0$ , единичной дисперсией  $\mathbf{E}\varepsilon_n^2 = 1$  и  $\mathbf{E}\varepsilon_n^4 < \infty$ .

#### Задание:

1. Построить график стационарного процесса  $\{h_n\}$  и график волатильности  $\{\sigma_n\}$  процесса GARCH(1,0), из n=1000 наблюдений.

**Примечание 9.** Стационарность достигается при  $0 < a_1 < 1$ .

2. Оценить параметры  $a_0$  и  $a_1$  с помощью метода наименьших квадратов (МНК), путем преобразования процесса  $ARCH(1) \equiv GARCH(1,0)$  к процессу авторегрессии первого порядка.

**Примечание 10.** Если преобразовать процесс ARCH(p) к виду

$$h_n^2 = \sigma_n^2 \varepsilon_n^2 = \sigma_n^2 + \sigma_n^2 \xi_n, \qquad \xi_n = \varepsilon_n^2 - 1,$$

то в результате имеем процесс авторегрессии, p-го порядка относительно квадратов наблюдений процесса  $\{h_n\}$ , описываемого уравнением

$$h_n^2 = a_0 + \sum_{i=1}^p a_i h_{n-i}^2 + \left(a_0 + \sum_{i=1}^p a_i h_{n-i}^2\right) \xi_n.$$

Далее, минимизируя сумму квадратов ошибок по неизвестным параметрам

$$\sum_{k=1}^{n} \left( a_0 + \sum_{i=1}^{p} a_i h_{k-i}^2 \right)^2 \xi_k^2 = \sum_{k=1}^{n} \left( h_k^2 - a_0 - \sum_{i=1}^{p} a_i h_{k-i}^2 \right)^2 \to \min_{a_i : i = \overline{0, p}},$$

$$a_0 > 0, \quad a_i \ge 0, \quad i = \overline{1, p},$$

получаем МНК-оценки  $\hat{a}_i, i = \overline{0, p}$ .

3. Оценить параметры  $a_0, a_1$  при помощи функции garch() пакета tseries по выборке  $\{h_n\}$ .

**Примечание 11.** Для подключения и установки пакета используйте команды install.packages("tseries") и library("tseries").

**Примечание 12.** Функция garch() определяется как

$$garch(x, order = c(q, p), start = c(a'_0, a'_1, \dots, a'_p, b'_1, \dots, b'_q), \dots),$$

где

- x выборка;
- order порядок процесса garch();
- ullet start начальные (предполагаемые) значения параметров процесса garch().
- 4. Построить график стационарного процесса GARCH(3,0), из n=1100 наблюдений. Разделить процесс на обучающую и тестовую выборки в отношении 10:1. Оценить вектор параметров  $(a_0, a_1, a_2, a_3)'$  на обучающей выборке, используя функцию garch(). Затем вычислить последовательность прогнозов на 1 шаг  $\{h_{n+1|n}\}$  на тестовой выборке и наложить прогнозы на график процесса.

**Примечание 13.** Стационарность достигается при  $0 < \sum_{i=1}^{3} a_i < 1$ .

**Примечание 14.** Прогноз процесса ARCH(p) вычисляется по формуле

$$h_{n+1|n}^2 = \hat{a}_0 + \sum_{i=1}^p \hat{a}_i h_{n-i+1}^2,$$

где  $(\hat{a}_0,\hat{a}_1,\hat{a}_2,\hat{a}_3)'$  – вектор оценок параметров  $(a_0,a_1,a_2,a_3)'$ .

5. Построить стационарный процесс GARCH(1,1), из n = 1000 наблюдений и оценить его параметры  $(a_0, a_1, b_1)'$  по выборке  $\{h_n\}$ , используя функцию qarch().

**Примечание 15.** Стационарность достигается при  $0 < a_1 + b_1 < 1$ .

6. Загрузить лабораторную на свой GitHub..

# 3 Лабораторная работа: AR(p)ARCH(q) и реальные данные

#### Задание:

1. Реализовать AR(2)ARCH(3) процесс из n=2100 наблюдений с значениями параметров  $\theta=(-0.3,0.4)',\ A=(1,0.2,0.1,0.2)'$  и построить его график.

**Примечание 16.** Процесс AR(p)ARCH(q) представляет из себя модель авторегрессии со случайной дисперсией шума и описывается уравнением вида

$$x_n = \theta' X_{n-1} + \sigma_n \varepsilon_n, \qquad \sigma_n^2 = a_0 + \sum_{i=1}^q a_i x_{n-i}^2,$$

где  $\theta = (\theta_1, \dots, \theta_p)'$ ,  $X_{n-1} = (x_{n-1}, \dots, x_{n-p})'$ ,  $\{\varepsilon_n\}$  – последовательность независимых одинаково распределенных случайных величин (н.о.р.с.в.) с нулевыми средними  $\mathbf{E}\varepsilon_n = 0$  и единичными дисперсиями  $\mathbf{E}\varepsilon_n^2 = 1$ .

- 2. Разделить, полученную на первом шаге последовательность  $\{x_n\}$ , в отношении 20:1 на обучающую и тестовую выборки соответственно.
- 3. На основе обучающей выборки получить оценки параметров  $\theta = (\theta_1, \theta_2)'$  и  $A = (a_0, a_1, a_2, a_3)'$ .

Примечание 17. Оценивание параметров проходит в два этапа:

(а) Из условия минимизации по  $\theta$  суммы квадратов невязок

$$\sum_{k=1}^{n_l} (x_k - \theta' X_{k-1})^2 \to \min_{\theta}$$

получаем МНК-оценку  $\hat{\theta}$ , г $de\ n_l$  – объем обучающей выборки.

(b) Используя полученную оценку  $\hat{\theta}$ , находим оценку  $\hat{A} = (\hat{a}_0, \dots, \hat{a}_3)'$ , которая минимизирует сумму квадратов ошибок

$$\sum_{k=1}^{n_l} \left( \hat{h}_k^2 - \sigma_k^2 \right)^2 \to \min_A,$$

$$e \partial e \ \hat{h}_k = x_k - \hat{\theta}' X_{k-1}.$$

**Примечание 18.** Для оценивания  $\theta$  можно использовать функцию arima() по наблюдениям процесса  $\{x_n\}$ , а для оценивания вектора A – функцию garch() по невязкам  $\{\hat{h}_n\}$ .

4. Построить последовательность прогнозов на один шаг на тестовой выборке. Наложить последовательность прогнозов на последовательность наблюдений процесса. Примерный результат вы можете видеть на рис. 1.



Рисунок 1 — Сплошная бирюзовая линия — последовательность  $\{x_n\}$ , черные окружности — последовательность прогнозов на 1 шаг  $\{x_{n+1|n}\}$ , красные штрих-пунктирные линии — верхняя и нижняя границы прогноза волатильности процесса (последовательность интервалов (4))

**Примечание 19.** На каждом шаге вычисляется прогноз среднего значения процесса по формуле

$$x_{n+1|n} = \mathbf{E}\left(\hat{\theta}'X_n + \hat{\sigma}_{n+1}\varepsilon_{n+1}|\mathcal{F}_n\right) = \hat{\theta}'X_n, \qquad n \ge n_l,$$

 $e\partial e \mathcal{F}_n = \sigma\{X_0, \varepsilon_1, \dots, \varepsilon_n\} u$ 

$$\hat{\sigma}_n^2 = \hat{a}_0 + \sum_{i=1}^q \hat{a}_i x_{n-i}^2.$$

Затем для каждого прогноза  $x_{n+1|n}$  строится промежуток вида

$$[x_{n+1|n} - \hat{\sigma}_{n+1}, x_{n+1|n} + \hat{\sigma}_{n+1}], \tag{4}$$

который показывает насколько в среднем может отклониться процесс от прогноза  $x_{n+1|n}$ .

- 5. Скачать с сайта https://www.finam.ru/ любые дневные котировки финансовых активов или значения индексов (минимум за 3 года). Например, динамику цен акций корпораций (Microsoft, Lukoil, Норникель, Apple ...), динамику индексов (S&P500, NASDAQ, MICEX ...), курс валют и т.д.;
- 6. Импортировать скачанные данные в R, используя функцию read.table();
- 7. Построить график динамики актива;
- 8. Привести данные к стационарному виду, используя одно из преобразований

 $z_k = rac{P_k - P_{k-1}}{P_{k-1}},$  или  $z_k = \ln rac{P_k}{P_{k-1}}, ~~k \geq 1,$ 

где  $P_k$  – значение финансового актива в момент времени  $k, z_k$  – доходность финансового актива в момент времени k;

- 9. Построить график доходностей  $\{z_k\}$  финансового актива;
- 10. Повторить шаги 2-4 для последовательности  $\{z_n\}$  при предположении, что процесс  $\{z_n\}$  описывается моделью AR(2)ARCH(3).
- 11. Загрузить лабораторную на свой GitHub.

# 4 Лабораторная работа: call-опцион

Рассмотрим (B,S)-рынок, описываемый CRR-моделью (модель Кокса-Росса-Рубинштейна), которая включает два актива:  $B=\{B_n\}$  – банковский счет (Bounds),  $S=\{S_n\}$  – акция (Stocks). Предполагается, что

$$B_n = (1+r)B_{n-1}, S_n = (1+\rho_n)S_{n-1},$$
  $n > 1,$  (5)

где r — процентная ставка по депозиту,  $\{\rho_n\}$  — последовательность независимых случайных величин (доходности — returns), принимающих два возможных значения a и b, притом -1 < a < r < b. Элементы последовательности  $\{\rho_n\}$  описываются распределением

$$P(\rho_n = b) = p$$
,  $P(\rho_n = a) = q$ ,  $p + q = 1$ .

Рассмотрим опцион европейского типа с моментом исполнения N.

 $Onuuon\ esponeйского\ muna$  — это договор, по которому покупатель опциона, получает право, но не обязанность, купить/продать какой-либо актив по

заранее оговоренной цене (цена исполнения) в фиксированный момент времени N (момент исполнения).

Необходимо рассчитать *справедливую цену* опционного контракта, которая устраивает и продавца и покупателя опциона. Формально эту величину можно записать в виде

$$C(f_N; \mathsf{P}) = \inf\{x \ge 0 : \exists \pi \ \mathrm{c} \ X_0^{\pi} = x \ \mathrm{и} \ X_N^{\pi} = f_N \ (\mathsf{P}$$
-п.н.)}

где  $f_N$  — функция выплат опционного контракта,  $\pi = (\beta, \gamma)$  — портфель ценных бумаг, представляющий из себя предсказуемую последовательность с  $\beta = \{\beta_n\}$  (величина банковского счета) и  $\gamma = \{\gamma_n\}$  (количество акций),  $X_n^{\pi} = \beta_n B_n + \gamma_n S_n$  — капитал портфеля ценных бумаг в момент времени n. Отметим, что величины  $\beta_n$  и  $\gamma_n$  могут принимать отрицательные значения, что означает взятие в долг с банковского счета и возможность продажи акций.

Рассмотрим европейский call-опцион, который дает право приобрести актив по оговоренной цене в момент времени N. Функция выплат в этом случае будет иметь вид

$$f_N = (S_N - K)^+, (6)$$

где N – момент исполнения ( $maturity\ time$ ),  $S_N$  – цена актива (акции) в момент  $N,\ K$  – цена исполнения, т.е. оговоренная цена актива в опционном контракте ( $strike\ price$ ),  $(a)^+ = \max(a,0)$ .

Формулы рассчета справедливой цены call-опциона для рынка вида (5) представлены в следующей теореме.

**Теорема 1.** Для стандартного опциона Европейского типа с функцией выплат (6) справедливая (рациональная) стоимость рассчитывается

$$C_N = \begin{cases} S_0 \mathcal{B}(K_0, N; p^*) - K(1+r)^{-N} \mathcal{B}(K_0, N; \tilde{p}), & ecnu \ K_0 \le N \\ 0, & uhave. \end{cases} , \qquad (7)$$

где

$$\mathcal{B}(j,N;p) = \sum_{k=j}^{N} C_N^k p^k (1-p)^{N-k}, \qquad K_0 = 1 + \left[ \ln \frac{K}{S_0(1+a)^N} \left( \ln \frac{1+b}{1+a} \right)^{-1} \right],$$

$$C_n^k = \frac{n!}{k!(n-k)!}$$
  $p^* = \frac{1+b}{1+r}\tilde{p},$   $\tilde{p} = \frac{r-a}{b-a}$ 

 $r\partial e [x]$  – целая часть числа x.

#### Задание:

- 1. Реализовать последовательность  $\{B_n\}$  для заданного значения ставки r=0.01, используя формулу (5), за период N=200 при  $B_0=1$ . Построить график;
- 2. Реализовать случайный процесс  $\{S_n\}$ , используя формулу (5), при следующих значениях параметров:  $S_0 = 1$ , N = 200, a = -0.3, b = 0.8, p = 0.4. Построить график.

**Примечание 20.** Для построения последовательности  $\{\rho_n\}$  необходимо реализовать бернуллиевскую случайную величину при помощи команды rbinom(1,1,p). Далее, если реализация бернуллиевской случайной величины приняла значение 1, то присвоить ей значение b=0.8, если же приняла значение 0, то присвоить ей значение a=-0.3;

- 3. Рассчитать справедливую цену call-опциона по формуле (7) при следующих значениях параметров:  $S_0 = 100$ , N = 10, a = -0.3, b = 0.8, r = 0.2, K = 100.
- 4. Загрузить лабораторную на свой GitHub.

# 5 Лабораторная работа: броуновское движение

Рассмотрим процесс  $(B_t)_{t\geq 0}$ , который является непрерывным гауссовским процессом с однородными независимыми приращениями. Характеристики процесса имеют следующий вид  $B_0=0$ ,  $\mathbf{E}B_t=0$ ,  $\mathbf{E}B_t^2=t$ , а также ковариационную функцию  $\mathbf{E}B_tB_s=\min(t,s)$ . Данный процесс носит название броуновского движения или винеровского процесса.

**Примечание 21.** Броуновское движение моделируется как случайное блуждание с малым шагом дискретизации  $\Delta$ . Шум представляет из себя гауссовскую случайную величину с нулевым математическим ожиданием и дисперсией равной  $\Delta$ . Т.е. дискретный аналог броуновского движения имеет вид

$$B_{(k+1)\Delta} = B_{k\Delta} + \varepsilon_{(k+1)\Delta}, \qquad k = 0, 1, \dots,$$
(8)

где  $\varepsilon_{k\Delta} \sim \mathcal{N}(0,\Delta)$ , а  $(k+1)\Delta$  – последовательность моментов наблюдений процесса  $\{B_t\}$ ,  $t\geq 0$ .

Рассмотрим диффузионный процесс, называемый геометрическим броуновским движением или экономическим броуновским движением [4]. Данный процесс определяется через стохастическое дифференциальное уравнение

$$dS_t = S_t(adt + \sigma dB_t), \quad a \in \mathcal{R}^1, \sigma \in \mathcal{R}^1, \sigma > 0,$$

что интерпретируется, как то, что для любого t>0 выполняется интегральное уравнение

$$S_t = S_0 + \int_0^t aS_u \ du + \int_0^t \sigma S_u \ dB_u.$$

Данное уравнение с начальным условием  $S_0$ , не зависящим от броуновского движения  $B=(B_t)_{t\geq 0}$ , имеет решение

$$S_t = S_0 e^{\left(a - \frac{\sigma^2}{2}\right)t + \sigma B_t}, \qquad t > 0, \tag{9}$$

где величина  $(a-\sigma^2/2)$  называется локальным сносом, а  $\sigma^2$  диффузией, дифференциальной дисперсией или волатильностью.

#### Задание:

1. Провести выкладки и обосновать, что для процесса (8) выполняются условия, накладываемые на броуновское движение. В частности, доказать, что  $\mathbf{E}B_{k\Delta} = 0$ ,  $\mathbf{E}B_{k\Delta}^2 = k\Delta$ ,  $\mathbf{E}B_{k\Delta}B_{l\Delta} = \Delta \min(l,k)$ , при  $B_0 = 0$ .

**Примечание 22.** Представьте процесс  $(B_{k\Delta})_{k\geq 0}$  через сумму случайных величин  $\varepsilon_{k\Delta}$ ,  $k=0,1,\ldots$  Обратите внимание, что процесс является мартингалом относительно потока  $\sigma$ -алгебр  $\{\mathcal{F}_{k\Delta}\}_{k\geq 0}$ , задаваемых как  $\mathcal{F}_{k\Delta} = \sigma\{\varepsilon_{\Delta}, \varepsilon_{2\Delta}, \ldots, \varepsilon_{k\Delta}\}$ . Следовательно, для обоснования его свойств можно пользоваться свойствами условных математических ожиданий.

- 2. Замоделировать процесс (8) для  $\Delta = 0.0001$  ( т.е. средне-квадратическое отклонение с.в.  $\varepsilon_{k\Delta}$  равно  $\sqrt{\Delta} = 0.01$ ) и  $k = 0, 1, \dots, 10^3$ .
- 3. Построить ансамбль реализаций процесса, замоделированного на предыдущем шаге, и вывести все реализации процесса на один график. Т.е. построить 200 реализаций процесса (8) на одном графике.
- 4. Ограничить ансамбль реализаций, построенный на предыдущем шаге по правилу трех сигм.

**Примечание 23.** Поскольку выполняется условие  $\mathbf{E}B_{k\Delta}^2=k\Delta$ , то по правилу трех сигм можем получить доверительный интервал вида

$$P\left(-3\sqrt{k\Delta} \le B_{k\Delta} \le 3\sqrt{k\Delta}\right) = 0.997, \quad k \ge 0.$$

5. Реализовать процесс (9) при следующих входных значениях параметров:  $S_0=1,~a=0.5,~\sigma=0.9,~\sqrt{\Delta}=0.01,~k=0,1,\ldots,10^3.$ 

**Примечание 24.** После подстановки дискретного аналога броуновского движения в выражение (9), имеем

$$S_{(k+1)\Delta} = S_0 e^{\left(a - \frac{\sigma^2}{2}\right)(k+1)\Delta + \sigma B_{(k+1)\Delta}}$$
(10)

- 6. Построить 200 реализаций процесса (10) на одном графике.
- 7. Загрузить лабораторную на свой GitHub.

# 6 Лабораторная работа: оценивание параметров геометрического броуновского движения

Рассмотрим задачу оценивания параметров диффузионного процесса (9) по дискретным наблюдениям процесса (10). Для этой цели [6] преобразуем (9) к виду

$$\log \frac{S_t}{S_0} = \left(a - \frac{\sigma^2}{2}\right)t + \sigma B_t, \qquad t > 0.$$

Для двух различных моментов времени t и u найдем приращение процесса  $(\log(S_t/S_0))_{t\geq 0}$ . Имеем

$$\log \frac{S_t}{S_u} = \left(a - \frac{\sigma^2}{2}\right)(t - u) + \sigma(B_t - B_u) \sim \mathcal{N}\left(\left(a - \frac{\sigma^2}{2}\right)(t - u), \sigma^2(t - u)\right).$$

Возьмем наблюдения процесса  $(S_t)_{t\geq 0}$  в равноудаленные дискретные моменты времени  $\Delta$ ,  $2\Delta$ , ...  $n\Delta$ . Обозначим через  $X_k = \log(S_{k\Delta}) - \log(S_{(k-1)\Delta})$ . Следовательно,

$$X_k = \left(a - \frac{\sigma^2}{2}\right)\Delta + \sigma(B_{k\Delta} - B_{(k-1)\Delta}), \quad k = 1, \dots, n.$$

Учитывая тот факт, что  $\mathbf{E}B_{k\Delta} = 0$  и  $\mathbf{E}\left[B_{k\Delta} - B_{(k-1)\Delta}\right]^2 = \Delta$ , то из этого следует, что  $\{X_k\}$  – последовательность независимых гауссовских случайных величин с математическими ожиданиями  $\mu$  и дисперсиями  $\Sigma^2$ , равными соответственно

$$\mu = \left(a - \frac{\sigma^2}{2}\right)\Delta, \qquad \Sigma^2 = \sigma^2\Delta.$$
 (11)

Далее, используя метод максимального правдоподобия, получаем ММП-оценки по формулам

$$\hat{\mu} = \frac{1}{n} \sum_{k=1}^{n} X_k, \qquad \hat{\Sigma}^2 = \frac{1}{n} \sum_{k=1}^{n} (X_k - \hat{\mu})^2.$$

Следовательно, оценки параметров броуновского движения  $(a, \sigma^2)$  легко выводятся из уравнений (11), путем подстановки в них оценок  $\hat{\mu}$  и  $\hat{\Sigma}^2$ . Т.е. оценки волатильности и сноса рассчитываются по формулам

$$\hat{\sigma}^2 = \frac{\hat{\Sigma}^2}{\Delta}, \qquad \hat{a} = \frac{\hat{\mu}}{\Delta} + \frac{\hat{\sigma}^2}{2},$$

соответственно.

#### Задание:

- 1. Замоделировать процесс (10) для  $S_0=100,\,a=0.5,\,\sigma=0.8,\,\sqrt{\Delta}=0.01,\,k=0,1,\ldots,10^3;$
- 2. Рассчитать оценки параметров броуновского движения  $(\hat{a}, \hat{\sigma}^2)$  по наблюдениям процесса  $\{S_{k\Delta}\}_{k\geq 1}$ ;
- 3. Загрузить лабораторную на свой GitHub.

# 7 Лабораторная работа: модель разорения страховой компании

Рассмотрим модель Крамера—Лундберга [7], описывающую деятельность страховой компании. Введем априорные предположения:

- 1. В компанию поступают средства клиентов в размере c в единицу времени (премии);
- 2. В моменты  $T_1, T_2, \ldots$  происходят страховые случаи. Промежутки времени между страховыми случаями  $\tau_i = T_i T_{i-1}, i \geq 1$  имеют экспоненциальное распределение с параметром  $\lambda$  и являются независимыми;
- 3. Размеры страховых выплат  $X_i \ge 0$ ,  $i \ge 1$  независимые одинаково распределенные случайные величины с математическим ожиданием  $\mathbf{E} X_i = \mu < \infty$ ;
- 4. Последовательность  $\{X_i\}_{i\geq 1}$  не зависит от  $\{T_i\}_{i\geq 1}$ .

В результате имеем, что капитал страховой компании описывается выражением

$$U_t = U_0 + ct - \sum_{i=1}^{N_t} X_i, \tag{12}$$

где  $N_t$  – количество страховых случаев, реализованных на промежутке времени [0,t]. Отметим, что случайная величина  $N_t$  имеет пуассоновское распределение вида

$$P(N_t = k) = \frac{(\lambda t)^k}{k!} e^{-\lambda t}.$$
 (13)

Определим событие A, связанное с разорением страховой компании,

$$A = \{U_t < 0 \text{ для некоторого конечного } t > 0\}.$$
 (14)

Величина

$$T = \inf\{t > 0 : A\}$$

называется моментом разорения.

Определим вероятность разорения

$$\psi(u) = \mathsf{P}(T < \infty).$$

В соответствии с [7] можем утверждать, что  $\psi(u) < 1$  на бесконечном промежутке времени, если

 $\rho = \frac{c}{\lambda \mu} - 1 > 0. \tag{15}$ 

По неравенству Лундберга имеем, что если выполнено условие (15) и страховые выплаты  $X_i$  экспоненциально распределены с параметром  $1/\mu$ , то вероятность разорения страховой компании ограничена величеной

$$\psi(u) \le \exp\left(-\frac{1}{\mu}\frac{\rho}{1+\rho}u\right),$$
 для любого  $u > 0,$  (16)

где u – значение начального капитала  $U_0$ .

# Задание:

1. Реализовать 1000 случайных величин  $N_t$  при фиксированном значении  $t=50, \lambda=2;$ 

**Примечание 25.** Моделирование производится через подсчет моментов  $\{T_n\}$  в промежутке [0,t]. При моделировании используйте цикл

while 
$$\left(\sum \tau_i < t\right) \{\dots\}.$$

2. Построить гистограмму реализованной последовательности и наложить на гистограмму график (13);

**Примечание 26.** Для изображения функции вероятности пуассоновского распределения (13) можете использовать команду

$$curve(f(x), add = TRUE)$$

 $ede\ f(x)$  – функция euda

$$f(x) = \frac{(\lambda t)^x}{\Gamma(x+1)} e^{-\lambda t},$$

 $rde\ \Gamma(x)$  – гамма-функция, которая является расширением понятия факториала на множестве вещественных и комплексных чисел. Для реализации гамма-функции в R используйте команду factorial(x).

- 3. Реализовать процесс (12) до фиксированного момента времени  $t_{max}$  и построить его график. Предполагаем, что страховые выплаты  $X_i$  распределены по экспоненциальному закону с параметром равным  $1/\mu$  т.е.  $X_i \sim \exp(1/\mu)$  (следовательно,  $\mathbf{E}X_i = \mu$ ). Рассмотрим 2 случая:
  - (a)  $U_0 = 50$ , условие (15) выполнено;
  - (b)  $U_0 = 50$ , условие (15) не выполнено.

#### АЛГОРИТМ:

- (a) Реализуйте с.в.  $\tau_1$ , которой соответствует величина  $T_1 = \tau_1$ ;
- (b) В момент  $T_1$  реализуйте с.в.  $X_1$  и рассчитайте величину  $U_{T_1}$ ;
- (c) Реализуйте с.в.  $\tau_2$ , которой соответствует величина  $T_2 = \tau_1 + \tau_2$ ;
- (d) В момент  $T_2$  реализуйте с.в.  $X_2$  и рассчитайте величину  $U_{T_2}$  при уже известном значении  $U_{T_1}$ ;
- (е) и т.д.

Примечание 27. Формулу (12) можно свести к рекуррентному виду

$$U_{T_i} = U_{T_{i-1}} + c\tau_i - X_i;$$

- (f) В момент  $T_n$ , когда  $\sum_{i=1}^n \tau_i \ge t_{max}$  останавливаем процедуру.
- (g) Выводим на график случайный процесс, где по оси абсцисс идут значения  $T_i$ , а по оси оринат Y значения  $U_{T_i}$ .
- 4. Рассчитать выборочную вероятность разорения фирмы при следующих значениях параметров:  $t_{max}=1000,\,c=1,\,\lambda=0.3,\,\mu=3,\,U_0=100,\,$  по формуле

$$\hat{\psi} = \frac{1}{N} \sum_{i=1}^{N} \chi_{(A_i)}$$

где N=1000 – количество реализаций процесса (12),  $\chi_{(A_i)}$  – индикатор события (14) (индикатор разорения) для i-ой реализации. Проверить выполнимость условия (16) с заменой величины  $\psi(u)$  на  $\hat{\psi}$ .

**Примечание 28.** При каждой реализации процесса  $\{U_t\}$  производится паралельная проверка условия  $U_{T_i} < 0$  для всех  $i = 1, 2, \ldots, N_{t_{max}}$ . Если условие выполнилось до момента  $t_{max}$ , т.е. если момент разорения  $T \leq t_{max}$ , то считаем, что компания разорилась.

5. Загрузить лабораторную на свой GitHub.

#### ЛИТЕРАТУРА

- 1. Шуленин В. П. Математическая статистика. Ч.1. Параметрическая статистика: учебник. / В. П. Шуленин –Томск: Изд-во НТЛ, 2012. 540 с.
- 2. Зарядов И. С. Введение в статистический пакет R: типы переменных, структуры данных, чтение и запись информации, графика. / И. С. Зарядов Москва: Изд-во Российского университета дружбы народов, 2010. 207 с.
- 3. Зарядов И. С. Статистический пакет R: теория вероятностей и математическая статистика. / И. С. Зарядов Москва: Изд-во Российского университета дружбы народов, 2010. 141 с.
- 4. Ширяев А. Н. Основы стохастической финансовой математики: в 2 т./ А. Н. Ширяев М: МЦНМО, 2016. Т. 1-2.
- 5. Ширяев А. Н. Вероятность. В 2-х кн. 3-е изд., перераб. и доп. / А. Н. Ширяев М: МЦНМО, 2004. Кн. 1-2.
- 6. Brigo D. A Stochastic Processes Toolkit for Risk Management / D. Brigo, A. Dalessandro, M. Neugebauer, F. Triki.
- 7. Воробейчиков С.Э. Математическое моделирование экстремальных событий в актуарной и финансовой математике : учебное пособие / С.Э. Воробейчиков Томск : Издательский Дом ТГУ, 2014. 76 с.