

Delving into Northern White Rhino Stem Cells

Metabolic and Transcriptomic Analysis

Ginny Wu | University of California San Diego, 2020 | Biology: Bioinformatics, | Patricia Beckman Foundation Fellow | Conservation Genetics Department

Northern White Rhino (NWR) Project

In the 1970s, there were around 500 Northern White Rhinos (NWR). Since then, poaching has reduced them to only 2 individuals: mother and daughter Najin and Fatu, thereby rendering them functionally extinct.[1]

The NWR Project hopes to revive the species using stem cell and reproductive technologies.

Introduction

The NWR induced pluripotent stem cells (iPSCs) that we have generated will be utilized for gamete development and assisted reproduction with the aim of maintaining population viability and genetic diversity. To improve our understanding of NWR iPSCs and their differentiated derivatives, we studied their metabolic and transcriptomic features.

- **Metabolism**: uncover some of NWR iPSCs energy processes
- **Transcriptome**: uncover up and down-regulated genes using RNA transcripts

Experimental Design

Focus cell lines:

- Fibroblasts (a common connective tissue)
- NWR induced pluripotent stem cells (iPSCs)
- NWR embryoid bodies (EBs) induced from iPSCs

Transcriptome: Drylab

Analyze RNAseq data for enriched biological processes:

Used R to create an analysis pipeline that extracts upregulated and downregulated genes for gene ontology analysis

Compare cell type transcriptomes:

Used R to generate principal component analysis (PCA) graphs and conduct unsupervised hierarchical clustering

Metabolism: Wetlab

Identify active metabolic pathways

Used assay kits to quantify glycolysis activity and ATP content

Flow Cytometry (FACs)

large gene lists. Nucleic Acids Res. 2009;37(1):1-13.

Used fluorescent antibodies to detect functional mitochondria and essential pluripotent gene expression

RNAseq Analysis Pipeline^[2]

Cluster 5: Negative regulation of transcription, blood vessel development FOXO3, HMOX1, LIFSTAT2, PKIA, NFIB, BCL7A, WDTC1, ANKRD1

Pairwise Comparison of Gene Expression

Radial Plot of PCA

Cluster 1: Mitosis, nuclear division, RNA splicing DHCR24, CD2AP, DAXX, SKA2, KIF11, MDC1, TERF1, TP53,

Cluster 2: RNA Processing, chromatin and chromosome modification DNMT3B, CDH1, SOX2, NASP, NPM1,

Cluster 3: Cell migration, neuron differentiation, epidermi ectoderm, and epithelial cell differentiation WNT1, TGFB1, NOG, JAK2, POU3F2, BMP4, KLF4, TFAP2A, TGFB1I1, IRF6, BNC1

Cluster 4: Sensory organ development, embryonic organ development, ear development

SOX1, WNT1, WNT4, RAX, MITF, HAND1, HES3, BDNF Cluster 5: Ion transport, regulation of cell death, positive

regulation of immune system process MCF2, DGKK, ADORA2B, LCK, ACTN3

NWR iPSCs & EBs

Metabolism Analysis

Pluripotency Markers

Flow cytometry showed that the majority of iPSCs expressed the Yamanaka factors SOX2 and OCT4, essential regulators for pluripotency in humans and mice. CDH1 has been reported to have low expression in human iPSCs, which resembles our data for NWR iPSCs

[1] International Rhino Foundation. 2002. Rhino Information – Northern White Rhino. 19 September 2006 [2] Yamashiro, et al. Generation of human oogonia from induced pluripotent stem cells in vitro. Science. 19 October 2019: 356-360 Citations [3] Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID Bioinformatics Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of

Many thanks to: Iñigo Valiente-Alandi, Ph.D | Marisa Korody , Ph.D Acknowledgements | Oliver Ryder, Ph.D | Cythnia Steiner, Ph.D | Aryn Wilder, Ph.D | Sarah Ford, B.S. | Tom Nguyen | Claire Caputo

break down of glucose.

NWR 8173 SOX2 / P1 / R2