

Semester Thesis

Design and Control of a Bicopter UAV

Spring Term 2018

Supervised by: Karen Bodie

Dr. Zachary Taylor Pr. Roland Siegwart **Author:** Jonathan Burkhard

Declaration of Originality

I hereby declare that the written wo	ork I have submitted entitled
Your Project Title	
is original work which I alone have a	uthored and which is written in my own words. ¹
Author	
Jonathan	Burkhard
Student supervisors	
Karen Zachary	Bodie Taylor
Supervising lecturer	
Roland	Siegwart
citation rules and that I have read at quette' (https://www.ethz.ch/com	have been informed regarding normal academic nd understood the information on 'Citation eti- tent/dam/ethz/main/education/rechtliches-abschluesse/ a-citationetiquette.pdf). The citation con- uestion here have been respected.
The above written work may be tes	ted electronically for plagiarism.
Place and date	Signature

 $[\]overline{^{1}\text{Co-authored work: The signatures}}$ of all authors are required. Each signature attests to the originality of the entire piece of written work in its final form.

Contents

Pr	reface	iii
Al	bstract	\mathbf{v}
$\mathbf{S}\mathbf{y}$	rmbols	ix
1	Introduction 1.1 Description of the project by ASL 1.2 Goals	1 2 3 3 3
2	Design2.1 Related works2.2 Specifications2.3 Ideas and First Drawings2.4 Needs for the Bicopter2.5 The Choice of Components2.6 Final Design Prototyped	5 5 5 5 5 7
3	Prototype Building 3.1 Ordered componants	9 9 9 9
4	System Modelling and Control 4.1 Allocation matrix	11 11
5	Simulation 5.1 Introduction to ROS 5.2 Model Description 5.3 Nodes 5.4 Control 5.5 Results	13 13 13 13 13 13
6	Real flight	15
Bi	bliography	17
\mathbf{A}	Irgendwas	17
В	Datasheets	19

Preface

This semester project was proposed by Autonomous System Lab.

Thank you to Karen and Zachary to help me along the semester to succeed this project.

Abstract

Hier kommt der Abstact hin ...

List of Figures

1.1	Expected plan for the semester project	3
1.2	Real plan for the semester project	4

Symbols

Symbols

 ϕ, θ, ψ roll, pitch and yaw angle

b gyroscope bias

 Ω_m 3-axis gyroscope measurement

Indices

x x axis y y axis

Acronyms and Abbreviations

ETH Eidgenössische Technische Hochschule

EKF Extended Kalman Filter
IMU Inertial Measurement Unit
UAV Unmanned Aerial Vehicle
UKF Unscented Kalman Filter

Introduction

1.1 Description of the project by ASL

Design and Control of a Bicopter MAV

Design and control of a UAV using only two rotors, and additional actuation to allow for full position and orientation controllability.

Keywords: MAV Control Design Omnidirectional

Description

Omnidirectional UAVs present numerous advantages over traditional UAVs for aerial interaction and unobstructed observation.

This project aims to develop a UAV using only two rotors, and additional actuation to allow for full position and orientation controllability.

As a semeter thesis, this project would target demonstration of the system in simulation. As a masters thesis, the project would include integration of a real platform and evaluation of real flight performance.

Work Packages

- Investigate morphology and actuation
- Evaluate controllability
- Design a controller for omnidirectional flight
- Test in simulation and evaluate performance

If masters thesis:

- Build system
- Flight testing and performance evaluation

Requirements

- c++ coding experience
- Knowledge of ROS recommended

If masters thesis:

• System integration experience

3 1.2. Goals

1.2 Goals

???

1.3 Workflow

Worked every weeks on it. Present my progress and advancement each week to my supervisors

1.4 Timeline

At the start of the project, the expected plan showed in the figure 1.1 was ambitious. Therefore it was difficult to respect it along the semester because it also was some courses to attend and we added to build a prototype during the first part of the semester.

Figure 1.1: Expected plan for the semester project

So, the real planning would become ...

Figure 1.2: Real plan for the semester project

Design

2.1 Related works

Every helicopter has 2 propellers that one is used to flight it and the other one against the torque created by the first one. The americans invented the Chinook which it also uses two propellers to lift it.

Most of drone has four propellers or more but for a moment, we can see some tricopter. The new generation of multicopter used some tilting motors for adding some degrees of liberty. That increase the changement of orientation in space.

2.2 Specifications

Metric No.	Metric	Importance	Units	Marginal	Ideal
	Weight	8	Kg	Value	Value
	Length	5	m	1	0,6
	Large	5	m	0,5	0,5
	High	5	\mathbf{m}	0,3	0,3
	Tilting motor speed	8	RPM	0,3	0,3
	Measure of position of	10	Yes/No	60	120
	tilting motor				
	Time of flight	7	min	Yes	Yes

Table 2.1: Specification table

2.3 Ideas and First Drawings

2.4 Needs for the Bicopter

2.5 The Choice of Components

	Tyme	N	NimbBrand	Model	Description	Name of CAD	Dimension
nr	Type	TIM ATT	Den alla	Model		alle of CAL	DIFFERSION
		oi pieces	Sc			oter :	
Electronic						2. I	
1 2	Flight controller		px4 autopilot FrSkv	Pixracer Autopilot XM EILLET 16CH		PixRacer Bisso	36x36mm v 15*10*3 5m
1		1	A	Micro Receiver with SBUS		n	
3	ESC	2	T-Motor	FPV 30A Blheli- 32bit 2-4S		Esc_t_motor	26x14mm
4	Motor	2	T-Motor	MN1806 KV1400		MN1806	
100% =>445 gr"	:	(
ల ల	Propeller Tilting motor	21 6	T-Motor DYN A MIX EL	6*2 CF XL430-W250-T		X1.430	
) <u></u>	Power Distribution	ı —	Matek	Mini Quad PDB	Regulated 5V & 12V BEC outputs	Power_distribution	36x36mm
				with $5V \& 12V$ BEC Outputs			
∞	Battery	П	TURNIGY Graphene	1300mAh 4S 65C Lipo		Battery	78x35x33
Structure							
6	Bearing	4		61803-2RS1			
12	Bearing-holder	4	machining	30x30x6-26mm			
13	Lending gear	\vdash	HOBBYKING			Lending-gear	
14	Slip ring-holder	2				Slip_ring_holder	
15	Slip ring	2		SNF-0310 high cur-	10 Amp	Slip_ring	
16	Shaft	2		rent slip ring Carbon fiber di-		shaft_CFRP	
17	Motor-montering	2	3D Printing			Motor_montering	
18	Intermediate Schaft/Tilt	2	3D Printing	12mm diam, inner		Intermediate_schaft	
10	5	-		diam. 10mm 4—90		Coming aming	
6T 00	Gearing Georing	- -		d=20		Gearing-Sillali Gearing big	
21	Structure battery	٠.		0 1 -0		Cca.1118_018	
22	Structure level 1	. —				Structure_level_1_v1	
23	Structure level 2	\vdash				Structure_level_2_v1	
24	Structure level 3	\vdash				$Structure_level_3_v1$	

Final Design Prototyped 2.6

Prototype Building

- 3.1 Ordered componants
- 3.2 Mechanical Construction
- 3.3 3D printing
- 3.4 Assembly

System Modelling and Control

4.1 Allocation matrix

Simulation

- 5.1 Introduction to ROS
- 5.2 Model Description
- 5.3 Nodes
- 5.4 Control
- 5.5 Results

Real flight

?????? NOTHING

Appendix A

Irgendwas

Bla bla ...

Appendix B

Datasheets

