HAX501X – Groupes et anneaux 1

CM15 24/11/2023

Clément Dupont

- 7. Rappels d'arithmétique des polynômes (à coefficients dans un corps)
- 7.1 Divisibilité et division euclidienne
- 7.2 Racines
- 7.3 Idéaux de K[X]
- 7.4 PGCD et PPCM
- 7.5 Gauss, Euclide, Bézout, et factorisation en polynômes irréductibles

- 8. Idéaux
- 8.1 Définition
- 8.2 Idéal engendré par des éléments
- 8.3 Idéaux et morphismes
- 8.4 Idéaux principaux, anneaux principaux
- 8.5 Anneaux euclidiens

7. Rappels d'arithmétique des polynômes (à coefficients dans un corps)

7.1 Divisibilité et division euclidienne

- 7.2 Racines
- 7.3 Idéaux de K[X]
- 7.4 PGCD et PPCM
- 7.5 Gauss, Euclide, Bézout, et factorisation en polynômes irréductibles

- 8. Idéaux
- 8.1 Définition
- 3.2 Idéal engendré par des éléments
- 8.3 Idéaux et morphismes
- 8.4 Idéaux principaux, anneaux principaux
- 8.5 Anneaux euclidiens

Divisibilité, polynômes irréductibles

On se place dans K[X], avec K un corps.

Définition

Soient $f,g \in K[X]$. On dit que f divise g et on note

s'il existe $h \in K[X]$ tel que g = fh.

Définition

Un polynôme $f \in K[X]$ est dit irréductible s'il n'est pas constant et que ses seuls diviseurs sont tous de la forme $a \in K^*$ ou af avec $a \in K^*$.

Division euclidienne

Théorème

Soit $f\in K[X]$ et $g\in K[X]\setminus\{0\}$. Alors il existe des polynômes $q,r\in K[X]$ avec $\deg(r)<\deg(g)$ tels que $f=gq+r\ .$ Le couple (q,r) est unique.

$$f = gq + r .$$

Exercice 73

Dans $\mathbb{R}[X]$, calculer la division euclidienne de $X^4 - X^2 + 7$ par $X^2 + X + 1$.

7. Rappels d'arithmétique des polynômes (à coefficients dans un corps)

7.1 Divisibilité et division euclidienne

7.2 Racines

- 7.3 Idéaux de K[X]
- 7.4 PGCD et PPCM
- 7.5 Gauss, Euclide, Bézout, et factorisation en polynômes irréductibles

- 8. Idéaux
- 8.1 Définition
- 3.2 Idéal engendré par des éléments
- 3.3 Idéaux et morphismes
- 8.4 Idéaux principaux, anneaux principaux
- 8.5 Anneaux euclidiens

Racines

Définition

Soit $f \in K[X]$. On dit que $a \in K$ est une racine de f si f(a) = 0.

Proposition

Soit $f \in K[X]$. On a l'équivalence : $f(a) = 0 \quad \Leftarrow$

$$f(a) = 0 \iff (X - a) \mid f.$$

Proposition

Soit $f \in K[X]$, et soient a_1, \ldots, a_n des éléments deux à deux distincts de K. On a l'équivalence : $f(a_1) = \cdots = f(a_n) = 0 \quad \Longleftrightarrow \quad (X - a_1) \cdots (X - a_n) \mid f.$

$$f(a_1) = \cdots = f(a_n) = 0 \iff (X - a_1) \cdots (X - a_n) \mid f.$$

Proposition

Un polynôme $f \in K[X]$ non nul de degré $\leqslant n$ a au plus n racines.

7. Rappels d'arithmétique des polynômes (à coefficients dans un corps)

- 7.1 Divisibilité et division euclidienne
- 7.2 Racines
- 7.3 Idéaux de K[X]
- 7.4 PGCD et PPCM
- 7.5 Gauss, Euclide, Bézout, et factorisation en polynômes irréductibles

- 8. Idéaux
- 8.1 Définition
- 8.2 Idéal engendré par des éléments
- 8.3 Idéaux et morphismes
- 8.4 Idéaux principaux, anneaux principaux
- 8.5 Anneaux euclidiens

Idéal de K[X]

Définition

Un idéal de K[X] est un sous-ensemble $I \subset K[X]$ qui vérifie

- 1) I est un sous-groupe de (K[X], +).
- 2) I est stable par multiplication par tout élément de K[X] : pour tout $f \in K[X]$, pour tout $g \in I$, $fg \in I$.

Proposition

Soit $f \in K[X]$. Alors l'ensemble des multiples de f , noté

$$(f) = \{ fg, g \in K[X] \},$$

est un idéal de K[X].

Définition

On appelle (f) l'idéal de K[X] engendré par f.

Idéaux et divisibilité

Proposition

Soient $f_1, f_2 \in K[X]$.

1) On a

$$(f_1) \subset (f_2) \iff f_2|f_1.$$

2) On a

$$(f_1) = (f_2) \iff \exists a \in K^*, f_2 = af_1.$$

Démonstration.

- 1) Supposons que $(f_1) \subset (f_2)$. Comme $f_1 = f_1 \times 1$, on a $f_1 \in (f_1)$ et donc $f_1 \in (f_2)$, d'où par définition $f_2|f_1$. Réciproquement, supposons que $f_2|f_1$, on peut donc écrire $f_1 = f_2h$ avec $h \in K[X]$. Alors $(f_1) \subset (f_2)$ car pour tout $g \in K[X]$ on a $f_1g = f_2(hg) \in (f_2)$.
- 2) Par 1), $(f_1)=(f_2)$ équivaut à : $f_1|f_2$ et $f_2|f_1$. C'est équivalent à : $\exists \, a\in K^*, \, f_2=af_1$.

Classification des idéaux de K[X]

Théorème

Soit I un idéal de K[X]. Alors il existe un polynôme $f \in K[X]$ tel que I = (f).

- ▶ Par la proposition précédente, f n'est unique qu'à multiplication par un élément de K^* près.
- ▶ Si l'on demande que f soit unitaire, alors f devient unique.

Définition

Soit I un idéal de K[X]. L'unique polynôme f unitaire tel que I = (f) est appelé le générateur unitaire de I.

7. Rappels d'arithmétique des polynômes (à coefficients dans un corps)

- 7.1 Divisibilité et division euclidienne
- 7.2 Racines
- 7.3 Idéaux de K[X]

7.4 PGCD et PPCM

7.5 Gauss, Euclide, Bézout, et factorisation en polynômes irréductibles

- 8. Idéaux
- 8.1 Définition
- 3.2 Idéal engendré par des éléments
- 8.3 Idéaux et morphismes
- 8.4 Idéaux principaux, anneaux principaux
- 8.5 Anneaux euclidiens

Définition du PGCD

Proposition

Soient $f,g \in K[X]$. Alors l'ensemble

$$(f,g)=\{fu+gv,\,u,v\in K[X]\}$$

est un idéal de K[X].

ightharpoonup On l'appelle l' idéal de K[X] engendré par f et g.

Définition

Le générateur unitaire de (f,g) est appelé le plus grand commun diviseur (PGCD) de f et g. On le note $\mathrm{PGCD}(f,g)$ ou $f \wedge g$.

On a donc:

$$(f,g) = (f \wedge g).$$

Propriétés du PGCD

▶ On a la propriété importante, pour $f, g, h \in K[X]$:

$$(f+gh) \wedge g = f \wedge g.$$

- Cette propriété explique qu'on peut calculer le PGCD des polynômes par l'algorithme d'Euclide.
- On a aussi la proposition suivante qui explique la dénomination "plus grand commun diviseur".

Proposition

Soient $f,g \in K[X]$. Alors $f \wedge g$ est l'unique $h \in K[X]$ unitaire qui vérifie les deux conditions suivantes.

- 1) h|f et h|g;
- 2) pour tout $k \in K[X]$, $(k|f \text{ et } k|g) \Longrightarrow k|h$.

Polynômes premiers entre eux

Définition

On dit que deux polynômes $f,g\in K[X]$ sont premiers entre eux si $f\wedge g=1.$

 \triangleright Cela revient à dire que les seuls diviseurs communs à f et g sont constants.

Exercice 74

Dans $\mathbb{R}[X]$, calculer le PGCD des polynômes $X^5+2X^4-X^2+1$ et X^4-1 .

Définition du PPCM

Proposition

Soient $f,g \in K[X]$. L'ensemble $(f) \cap (g)$ est un idéal de K[X].

▶ On note que $(f) \cap (g)$ est l'ensemble des polynômes qui sont à la fois des multiples de f et de g.

Définition

Le générateur unitaire de $(f)\cap (g)$ est appelé le plus petit commun multiple (PPCM) de f et g. On le note $\operatorname{PPCM}(f,g)$ ou $f\vee g$.

► On a donc :

$$(f)\cap (g)=(f\vee g).$$

Le PPCM comme plus petit multiple commun

Proposition

Soient $f,g\in K[X]$. Alors $f\vee g$ est l'unique $h\in K[X]$ unitaire qui vérifie les deux conditions suivantes.

- 1) f|h et g|h;
- 2) pour tout $k \in K[X]$, $(f|k \text{ et } g|k) \Longrightarrow h|k$.

7. Rappels d'arithmétique des polynômes (à coefficients dans un corps)

- 7.1 Divisibilité et division euclidienne
- 7.2 Racines
- 7.3 Idéaux de K[X]
- 7.4 PGCD et PPCM
- 7.5 Gauss, Euclide, Bézout, et factorisation en polynômes irréductibles

- 8. Idéaux
- 8.1 Définition
- 3.2 Idéal engendré par des éléments
- 8.3 Idéaux et morphismes
- 8.4 Idéaux principaux, anneaux principaux
- 8.5 Anneaux euclidiens

Gauss etc.

On laisse au lecteur le soin d'énoncer et démontrer les analogues pour les polynômes des théorèmes classiques de l'arithmétique des entiers :

- ▶ le lemme de Gauss (et sa variante) ;
- ▶ le lemme d'Euclide ;
- ▶ le théorème de Bézout :
- le théorème de factorisation en produit de polynômes irréductibles.

Exercice 75

Le faire en copiant les preuves du chapitre 1.

Exercice 76

Dans $\mathbb{R}[X]$, déterminer une relation de Bézout pour $X^5+2X^4-X^2+1$ et X^4-1 .

- 7. Rappels d'arithmétique des polynômes (à coefficients dans un corps)
- 7.1 Divisibilité et division euclidienne
- 7.2 Racines
- 7.3 Idéaux de K[X]
- 7.4 PGCD et PPCM
- 7.5 Gauss, Euclide, Bézout, et factorisation en polynômes irréductibles

- 8. Idéaux
- 8.1 Définition
- 8.2 Idéal engendré par des éléments
- 8.3 Idéaux et morphismes
- 8.4 Idéaux principaux, anneaux principaux
- 8.5 Anneaux euclidiens

7. Rappels d'arithmétique des polynômes (à coefficients dans un corps

- 7.1 Divisibilité et division euclidienne
- 7.2 Racines
- 7.3 Idéaux de K[X]
- 7.4 PGCD et PPCM
- 7.5 Gauss, Euclide, Bézout, et factorisation en polynômes irréductibles

8. Idéaux

8.1 Définition

- 8.2 Idéal engendré par des éléments
- 8.3 Idéaux et morphismes
- 8.4 Idéaux principaux, anneaux principaux
- 8.5 Anneaux euclidiens

Définition d'un idéal

Dans toute cette section A est un anneau **commutatif**.

Définition

Un idéal de A est un sous-ensemble $I \subset A$ qui vérifie :

- 1) I est un sous-groupe de (A, +).
- 2) I est stable par multiplication par tout élément de A : pour tout $x \in I$, pour tout $a \in A$, $ax \in I$.

On a déjà rencontré cette notion dans deux cas :

- ▶ Pour $A=\mathbb{Z}$, tout sous-groupe I de \mathbb{Z} est automatiquement un idéal de \mathbb{Z} . En effet, pour tout $x\in I$ et pour tout $k\in \mathbb{Z}$, $kx\in I$. La notion d'idéal se confond donc (dans ce cas particulier) avec la notion de sous-groupe.
- ightharpoonup Pour A=K[X] avec K un corps, on a vu la notion d'idéal dans la section précédente.

Exemple

Exemples triviaux : $\{0\}$ et A sont des idéaux de A.

Warning

Remarque

Ne surtout pas confondre la notion d'idéal et la notion de sous-anneau, qui sont différentes et qui jouent des rôles très différents dans la théorie des anneaux. En général, un idéal I ne contient pas 1_A .

Exercice 77

Soit I un idéal de A. Montrer que $1_A \in I$ si et seulement si I = A.

- 7. Rappels d'arithmétique des polynômes (à coefficients dans un corps)
- 7.1 Divisibilité et division euclidienne
- 7.2 Racines
- 7.3 Idéaux de K[X]
- 7.4 PGCD et PPCM
- 7.5 Gauss, Euclide, Bézout, et factorisation en polynômes irréductibles

- 8. Idéaux
- 8.1 Définition
- 8.2 Idéal engendré par des éléments
- 8.3 Idéaux et morphismes
- 8.4 Idéaux principaux, anneaux principaux
- 8.5 Anneaux euclidiens

Idéal engendré par des éléments

Proposition

Soient $x_1, \ldots, x_r \in A$. Alors l'ensemble

$$(x_1, \ldots, x_r) = \{a_1x_1 + \cdots + a_rx_r, a_1, \ldots, a_r \in A\}$$

est un idéal de A. Pour tout idéal I de A on a

$$x_1, \ldots, x_r \in I \iff (x_1, \ldots, x_r) \subset I.$$

Définition

On appelle (x_1,\ldots,x_r) l'idéal de A engendré par $x_1,\ldots,x_r.$

7. Rappels d'arithmétique des polynômes (à coefficients dans un corps

- 7.1 Divisibilité et division euclidienne
- 7.2 Racines
- 7.3 Idéaux de K[X]
- 7.4 PGCD et PPCM
- 7.5 Gauss, Euclide, Bézout, et factorisation en polynômes irréductibles

8. Idéaux

- 8.1 Définition
- 3.2 Idéal engendré par des éléments

8.3 Idéaux et morphismes

- 8.4 Idéaux principaux, anneaux principaux
- 8.5 Anneaux euclidiens

Idéaux et morphismes

Proposition

Soient A et B deux anneaux commutatifs et $f:A\to B$ un morphisme d'anneaux. Alors $\ker(f)$ est un idéal de A.

Proposition

Soient A et B deux anneaux commutatifs et $f:A\to B$ un morphisme d'anneaux. Soit J un idéal de B. Alors $f^{-1}(J)$ est un idéal de A.

▶ Pour $J = \{0\}$ on retrouve le fait que $f^{-1}(\{0\}) = \ker(f)$ est un idéal de A.

Exercice 78

Montrer qu'en général l'image **directe** d'un idéal par un morphisme d'anneaux n'est pas un idéal.

- 7. Rappels d'arithmétique des polynômes (à coefficients dans un corps)
- 7.1 Divisibilité et division euclidienne
- 7.2 Racines
- 7.3 Idéaux de K[X]
- 7.4 PGCD et PPCM
- 7.5 Gauss, Euclide, Bézout, et factorisation en polynômes irréductibles

- 8. Idéaux
- 8.1 Définition
- 3.2 Idéal engendré par des éléments
- 8.3 Idéaux et morphismes
- 8.4 Idéaux principaux, anneaux principaux
- 8.5 Anneaux euclidiens

Idéaux principaux

Le cas particulier des idéaux engendrés par un seul élément $x\in A$ est important :

$$(x) = \{ax, a \in A\}.$$

Définition

Un idéal (x) engendré par un seul élément est dit principal.

On a rencontré les idéaux principaux dans deux cas :

- ▶ Pour $A = \mathbb{Z}$ et $n \in \mathbb{Z}$ on a $(n) = n\mathbb{Z}$.
- ▶ Pour A = K[X] avec K un corps, on a rencontré les idéaux principaux (f) dans la section précédente.

Dans les deux cas les idéaux principaux nous ont aidé à développer les notions de PGCD et de PPCM, et donc toute l'arithmétique.

Anneaux principaux

Définition

Soit A un anneau. On dit que A est principal si A est intègre et que tout idéal de A est principal.

- ▶ Les anneaux \mathbb{Z} et K[X], pour K un corps, sont principaux.
- ▶ On verra en TD que les anneaux $\mathbb{Z}[X]$ et K[X,Y], pour K un corps, ne sont pas principaux.

- 7. Rappels d'arithmétique des polynômes (à coefficients dans un corps)
- 7.1 Divisibilité et division euclidienne
- 7.2 Racines
- 7.3 Idéaux de K[X]
- 7.4 PGCD et PPCM
- 7.5 Gauss, Euclide, Bézout, et factorisation en polynômes irréductibles

8. Idéaux

- 8.1 Définition
- 3.2 Idéal engendré par des éléments
- 8.3 Idéaux et morphismes
- 8.4 Idéaux principaux, anneaux principaux
- 8.5 Anneaux euclidiens

Anneaux euclidiens

Définition

Soit A un anneau intègre. Une jauge euclidienne est une application $\nu:A\setminus\{0\}\to\mathbb{N}$ qui vérifie : pour tous $a,b\in A$ avec $b\neq 0$, il existe $q,r\in A$ avec

$$a=bq+r$$
 et $(r=0$ ou $\nu(r)<\nu(b))$.

On appelle une telle identité une division euclidienne de a par b pour la jauge euclidienne ν . On dit que A est un anneau euclidien s'il possède une jauge euclidienne.

Notons qu'on ne demande pas d'avoir unicité de la division euclidienne.

Exemple

- L'anneau $\mathbb Z$ est euclidien, une jauge euclidienne est donnée par la valeur absolue : $\nu(m)=|m|$. (On pourra remarquer que pour cette jauge euclidienne, il n'y a pas unicité de la division euclidienne.)
- L'anneau K[X] est euclidien si K est un corps, une jauge euclidienne est donnée par le degré : $\nu(f) = \deg(f)$.

Euclidien implique principal

La proposition suivante est la version "abstraite" de deux énoncés importants qu'on a vus dans ce cours :

- $ightharpoonup \mathbb{Z}$ est un anneau principal : tous les idéaux de \mathbb{Z} sont de la forme (n). (C'est-à-dire : tous les sous-groupes de \mathbb{Z} sont de la forme $n\mathbb{Z}$.)
- ▶ Pour K un corps, K[X] est principal : tous les idéaux de K[X] sont de la forme (f).

C'est l'outil numéro un pour montrer qu'un anneau est principal.

Théorème

Tout anneau euclidien est principal.

▶ En TD on se servira de ce théorème pour montrer que l'anneau $\mathbb{Z}[i]$ des entiers de Gauss est un anneau principal.

Remarques

Remarque

Il existe des anneaux principaux qui ne sont pas euclidiens, mais ce n'est pas si facile à prouver en pratique. On n'en verra pas en exercice. Pour votre culture, un exemple d'un tel anneau est le sous-anneau de $\mathbb C$ donné par

$$A = \left\{ a + b \frac{1 + i\sqrt{19}}{2} \mid a, b \in \mathbb{Z} \right\} .$$

(Vérifiez que c'est bien un sous-anneau de \mathbb{C} : il y a un petit calcul à faire.)

Remarque

Les anneaux $\mathbb{Z}[X]$ et K[X,Y], pour K un corps, ne sont pas principaux (voir TD). Ils ne sont donc pas euclidiens.