Theoretische Informatik 1 Übung Blatt 6

Aufgabe 6.1

a)

i)

-)	
enthalten	nicht enthalten
acab	bbb
cabb	abc
aacabbb	cba
aca	bacac
ca	cabc

ii)

enthalten	nicht entahlten
ba	abc
bc	cba
a	aabbcc
baab	abcabc
bab	abbac

b)

i)

$$G = (\{A,B,C,S\},\{0,1,2\},P,S) \colon$$

$$P:\ S\to ABC, A\to \epsilon, A\to 2A, B\to \epsilon, B\to 0B, B\to 10B, C\to 1C, C\to 1$$
ii)

Der Ausgangs RA konnte aufgrund der gegebenen Regeln auf RA'=(0+12*)*110(0+2)* gekürzt werden.

$$S \to ABC, A \to \epsilon, A \to 0A, A \to 1DA, D \to \epsilon, D \to 2D, B \to 110, \\ C \to \epsilon, C \to 0C, c \to 2C$$

c)

i) RA: $A = (b + c)^*$

$$Ac^Ac^AaA + Ac^AaAc^A + AaAc^Ac^A$$

ii) RA: $r^*sr^*s(r^*sr^*sr^*sr^*s)^*$

Aufgabe 6.2

a)
i)
$$((R+S)(S+R)^*)^* \cong ((R+S)(R+S)^*)^*$$

$$\cong ((R+S))^+)^*$$

$$\cong ((S+R)^+)^+ + \epsilon$$

$$\cong (S+R)^+ + \epsilon$$
ii)

 $S^*(R+S)^* \cong (S+RS)^*$ ist nicht Wahr, denn $R \subseteq S^*(R+S)^*$, $aber \ R \nsubseteq (S+RS)^*$ iii)

Die Aussage: $(RTS+RT)^*RT\cong RT(SRT+RT)^*$ beschreibt eine alternierende Reihe bestehend aus RT's, wobei nach einem T und vor einem R ein S vorkommen kann aber nicht muss. Es ist dabei irrelevant ob das Teilwort vielleicht mit RTS beginnt und auf RT endet, oder ob es mit RT beginnt und auf SRT endet. Das resultierende Wort ist identisch. Die Möglichkeit RT's ein zu schieben verändert diesen Fakt nicht. Somit gilt diese Aussage für alle RA's R,S,T.

Aufgabe 6.3

TO DO