

The National Institute of Engineering Department of CS&E / IS&E/ AI&ML

Course: Database Management Systems		Course Code: BCS403
Max Marks: 25	TEST - 1	Time:1hr (3:45-4:45pm)
Date: 27-03-2025		Semester: 4

Scheme and Solution

Q.No.	Questions	Marks
1	Define the following: i. Data model A data model is a collection of concepts that can be used to describe the structure of a database. By structure of a database - the data types, relationships and constraints that apply to the data. Most data models also include a set of basic operations for specifying retrievals and updates on the database.	
	ii. Conceptual schema conceptual schema, which describes the structure of the whole database for a community of users. The conceptual schema hides the details of physical storage structures and concentrates on describing entities, data types, relationships, user operations, and constraints.	2m X 3 = 06
	iii. Logical data independence Logical data independence is the capacity to change the conceptual schema without having to change external schemas or application programs	
2	Design an ER diagram for an Online food delivery system where customers, restaurants, and delivery personnel are involved. Each customer can place multiple orders, each order is prepared by a restaurant, and a delivery person is assigned to fulfill the order. Mention the entities (Assume minimum 4 entities), relationships, attributes, and key attributes and cardinality ratios in the ER diagram.	07
	Any valid Entities considered [2M] Related attributes, Key attribute[1M] Relationship[2M] Cardinality[1M] Representation used in the sample as follows (can be mentioned as 1(one) M(many) One Many	

Apply your understanding of database constraints to identify and explain which types of constraints might be violated by an Insert operation. Provide a suitable example to illustrate your explanation

INSERT may violate mainly 4 constraints:

- Domain constraint: [1M]
 - o if one of the attribute values provided for the new tuple is not of the specified attribute domain
- Key constraint: [1M]
 - o if the value of a key attribute in the new tuple already exists in another tuple in the relation
- Referential integrity: [1M]
 - o if a foreign key value in the new tuple references a primary key value that does not exist in the referenced relation
- Entity integrity: [1M]
 - o if the primary key value is null in the new tuple

Examples [2M]

3

06

4 Consider the following relational schema: Faculty (FacID, Name, Dept Name, Salary, Experience) Section (Course code, Section No, Sem, Year, Room No, FacID) Answer the following queries using relational algebra: * The answers to the queries may be split into multiple relations for better clarity and logical representation i) List the details of faculty who works in Information Science Department. [1M]σ Dept Name='InformationScience' (Faculty) ii) Find the names of the faculty who earn more than 30,000 salary in Computer Science department. $\pi_{\text{Name}}(\sigma_{\text{Dept Name}='\text{ComputerScience'}} \land \text{Salary} > 30000 \text{ (Faculty))}$ [1M] iii)Retrieve the list of all courses taught in the Even 2020 and Odd 2021 semesters. $\pi_{\text{Course code}} \left(\sigma_{((\text{Sem \% 2 = 0}) \land \text{Year = 2020})} \lor ((\text{Sem \% 2 = 1}) \land \text{Year = 2021}) \left(\text{Section} \right) \right)$ 06 *if semester is assumed as odd/even $\pi_{\text{Course code}}$ ($\sigma_{\text{((Sem = 'even')} \land \text{Year = 2020)}} \lor ((Sem = 'odd') \land \text{Year = 2021})$ (Section)) iv)List the Courses offered in even semester 2020 but not in odd semester 2022. $\pi_{\text{Course code}}(\sigma_{\text{Sem }\% \ 2=0 \ \land \ \text{Year} = 2020}(\text{Section})) - \pi_{\text{Course code}}(\sigma_{\text{Sem }\% \ 2=1 \ \land \ \text{Year} = 2022}(\text{Section}))$ [1M] *semester may be considered as odd/even v) Find the faculty who is having more than 15 years of teaching experience in Mechanical Department. σ Dept_Name = 'Mechanical' \wedge Experience >15 (Faculty) [1M] vi)Retrieve the department names of faculty members who have more than 10 years of experience and are teaching a course in semester 6. $\pi_{\text{Dept Name}}$ ($\sigma_{\text{Experience} > 10 \text{ A Sem} = 6}$ (Faculty \bowtie Section)) [1**M**] above is used the natural join Even theta join or equi join can be considered