

Departamento de Matemática, Universidade de Aveiro

Cálculo II-Agrupamento 3 — 1º Teste (VERSÃO 1)

13 de maio de 2022 Duração: **2h00**

	N.º Mec.: _			Nome	:							
	(Declaro qu	e desisto	o:						_)	N. fo	lhas supl	lementares:
	Questão [Cotação]	1 [60pts]	2 [15pts]	3 [25pts]	4a [10pts]	4b [15pts]	4c [20pts]	5 [25pts]	6a [05pts]	6b [15pts]	6c [10pts]	Classificação (valores)
	– Nas	s quest	ões 2 a	ı 6 just	ifique 1	todas a	ıs resp	ostas e	indiqı	ue os c	alculos	efetuados –
[60pts]	segui: (i) res (ii) re (iii) a	nte: sposta co sposta e usência	orreta: 1 rrada: -3 de respo	0 pontos 3 pontos osta ou r	s; ; esposta	nula: 0	pontos.					a cada resposta é a
	(a)	Qual é c	raio de	converg	gência d 1	a série o	de potên	cias $\sum_{n=0}^{\infty}$	$\left(\frac{(-1)^{n-1}}{n!}\right)$	$\frac{1}{2}(x+1)$	$\pi)^n$?	
		concluir a sé		erge abs	solutam	ente em			n raio d	e conve	rgência i	gual a 2, podemos
			rie conv				-					
		Com base $\ln(1+x) = \cos(x) = \cos(x)$	$x(x) = \sum_{n=0}^{+\infty} (-1)^n $ $= \sum_{n=0}^{+\infty} (-1)^n $ $= \sum_{n=0}^{+\infty} (-1)^n $	$\sum_{0}^{\infty} (-1)^{n} \frac{x}{(2n)^{n}}$ $(-1)^{n} \frac{x}{(2n)^{n}}$ $(-1)^{n} \frac{x^{2}}{(2n)^{n}}$	$\frac{x^{n+1}}{n+1},$ $\frac{2n+1}{n+1}!,$ $\frac{2n+1}{n+1}!,$ $\frac{n}{n}$ par	para x x x $x \in \mathbb{R}$	$[\in]-1,1$	ι[
		podemo		ir que a	série no		_			_	a — ln($(\frac{9}{4})$

	(d) O polinómio de Taylor de grau 4 para uma função f em torno do ponto $a=3$ é dado por: $2+\sqrt{3}(x-3)+10(x-3)^2+\pi(x-3)^3+3(x-3)^4.$							do por:			
						3(x-3) +	10(x-3)	$^{2}+\pi(x-$	$(3)^3 + 3(x)$	$(-3)^4$.	
			O valor d	e f"(3) é	igual a: 6π		20		$ 2\sqrt{3} $	3	
		(e)	Seja f un todo o n igual a:	na função ≥ 3. Sab	que satis pendo que	faz as con a série de	dições: $f(3)$ Taylor de	f(s) = 1, f'(s) f converge	(3) = 4, f''(6) para f , po	(3) = 6, e odemos cor	$f^{(n)}(3) = 0$ para acluir que $f(5)$ é
			5		21		17		33		
		(f)	Seja f un ciente a_0	na função da série o	2π -perional	6dica tal quadrate f ?	f(x) =	$\frac{(\pi-x)^2}{4}$ par	$\mathbf{a} \ x \in [-\pi$	$\pi,\pi[$. Qual	o valor do coefi-
						-					
15pts]	2.	Pro	ve que a	série de	funções	$\sum_{n=1}^{+\infty} \frac{1}{x^2 + \cdots}$	$\overline{4n^2}$ conve	rge unifor	memente	em $\mathbb{R}.$	

N°	M	Aec: Nome:	
[25 pts] 3	3.	Determine o domínio de convergência da série de potências $\sum_{n=1}^{\infty} \frac{(2x-4)^n}{n 6^{n+1}}$, indicando os po	on-
		tos onde a convergência é simples ou absoluta. $\frac{1}{n-1} = n \cdot 0^{n+1}$	

4. Seja $f(x) = \ln(1 + x^2), x \in \mathbb{R}$.

[10pts]

(a) Sabendo que $\frac{1}{1-x}=\sum_{n=0}^{+\infty}x^n,$ para |x|<1, mostre que:

$$\frac{x}{1+x^2} = \sum_{n=0}^{+\infty} (-1)^n x^{2n+1}, \ |x| < 1.$$

Continua na folha suplementar Nol

[15pts]

(b) Usando a alínea anterior, determine a série de Taylor da função f, indicando o maior intervalo de $\mathbb R$ onde a mesma é válida.

aproximação	e é inferior a $2 \times (0.1)^4$	•	mostre que o erro	

Continua na folha suplementar N°

[25pts]	

5. Seja f a função 2π -periódica, definida em $[-\pi,\pi[$ por

$$f(x) = \begin{cases} 2\pi, & -\pi \le x < 0 \\ 0, & 0 \le x < \pi \end{cases}.$$

Determine a série de Fourier de f e esboce o gráfico da sua soma no intervalo $[-3\pi, 3\pi]$.

	6. Considere a função $f:D_f\subseteq\mathbb{R}^2 o\mathbb{R}$ definida por $f(x,y)=rac{x^2-y^2}{x^2+y^2}$.								
[05pts]			Determine o domínio de $f,D_f.$						
			Continua na folha suplementar Nº						
[15pts]	(1	b)	Averigúe se existe $\lim_{(x,y) o (0,0)} f(x,y)$.						

[10pts] (c) Determine a curva de nível -1, \mathcal{C}_{-1} , e represente-a geometricamente.

Continua na folha suplementar No

Formulário de Primitivas

Função	Primitiva	Função	Primitiva	Função	Primitiva	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\frac{u^{r+1}}{r+1}$	$\frac{u'}{u}$	$\ln u $	$u'e^u$	e^u	
$u'a^u$	$\frac{a^u}{\ln a}$	$u'\cos u \qquad \sin u$		$u'\sin u$	$-\cos u$	
$u'\sec^2 u$	$\tan u$	$u'\csc^2 u$	$-\cot u$	$u' \sec u$	$\ln \sec u + \tan u $	
$u'\csc u$	$-\ln \csc u + \cot u $	$\frac{u'}{\sqrt{1-u^2}}$	$-\arccos u$ ou $\arcsin u$	$\frac{u'}{1+u^2}$	rctg u ou $-rccotg u$	

Algumas fórmulas trigonométricas

$$sec x = \frac{1}{\cos x}$$

$$cos(x \pm y) = sen x cos y \pm cos x sen y$$

$$cos^{2} x = \frac{1 + cos(2x)}{2}$$

$$sec x = \frac{1}{\cos x}$$

$$cos(x \pm y) = cos x cos y \mp sen x sen y$$

$$sin^{2} x = \frac{1 - cos(2x)}{2}$$

$$sin(2x) = 2 sin x cos x$$

$$cos(2x) = cos^{2} x - sin^{2} x$$

$$1 + tan^{2} x = sec^{2} x$$

$$1 + cot^{2} x = csc^{2} x$$