Вычислительная геометрия

Гусев Илья

Московский физико-технический институт

Москва, 2017

Содержание

- 🚺 Минимальная выпуклая оболочка
 - Что это?
 - Скалярное и векторное произведение
 - Алгоритм Джарвиса
 - Алгоритм Грэхема
 - Алгоритм Эндрю-Грэхема
 - Задача про диаметр
- 2 Другое
 - Нахождение пары ближайших точек

Что это?

- Рассматриваем конечное множество точек на плоскости (2 координаты).
- Оболочка множества точек любая замкнутая кривая без самопересечений такая, что все точки из множества лежат внутри этой кривой.
- Минимальная оболочка оболочка минимальной длины (минимального периметра).

Скалярное и векторное произведение

• Скалярное произведение:

$$\vec{a} \cdot \vec{b} = a_0 b_0 + a_1 b_1$$

 $\vec{a} \cdot \vec{b} = |a||b|\cos(\theta)$

Векторное произведение:

$$|\vec{a} \times \vec{b}| = |a_0 b_1 - a_1 b_0$$

$$|\vec{a} \times \vec{b}|$$

Алгоритм Джарвиса

- 💿 Ищем выпуклую оболочку последовательно, против часовой стрелки, начиная с определенной точки.
- Определённая точка точно из оболочки, например самая нижняя.
- На і-ом шаге рассматриваем все оставшиеся точки, и ещё p_0 .
- Ищется косинус угла через скалярное произведение между векторами $p_{i-1}p_i$ и p_ip_{i+1} , где p_{i+1} - претендент на следующую точку оболочки.
- Выбираем точку с максимальным косинусом (между векторами!).
- **5** Завершаем, когда снова натыкаемся на p_0 . Сложность O(n * h).

Алгоритм Грэхема

- Берём самую нижнюю точку (например) и добавляем в ответ.
- **②** Сортируем все остальные точки по полярному углу относительно p_0 .
- **⑤** Добавляем в ответ p_1 самую первую из отсортированных точек.
- Берем следующую по счету точку t. Пока t и две последних точки в текущей оболочке p_i и p_{i-1} образуют неправый поворот (вектора $p_i t$ и $p_{i-1}p_i$), удаляем из оболочки p_i .
- **5** Добавляем в оболочку t. Сложность O(n * log(n)).

Алгоритм Эндрю-Грэхема

- **1** Находим самую левую и самую правую точки множества p_0 и p_1 .
- Делим множество на две части: точки над и под прямой.
- Для каждой половины ищем выпуклую оболочку Грехемом с условием, что сортируем не по полярному углу, а по координате.
- Сливаем получившиеся оболочки.
- **3** Сложность O(n * log(n)).

Задача про диаметр

Поиск диаметра множества на плоскости за O(n * log(n))

- **①** Строим выпуклую оболчку. (сложность O(n * log(n)))
- ② Берём сумму Минковского выпуклой оболчки и минуса выпуклой оболочки $(\vec{a} o \vec{a})$. (сложность O(n))
- **3** Выбираем максимум по модулю векторов всех вершин суммы Минковского. (сложность O(n))

Нахождение пары ближайших точек

"Разделяй-и-властвуй"

- Сортируем точки как пары чисел.
- ② Возьмём среднюю после сортировки точку $p_m(m=\lfloor n/2 \rfloor)$, и все точки до неё и саму p_m отнесём к первой половине, а все точки после неё ко второй половине.
- \bullet $h = \min(h_1, h_2)$, где h1 и h2 с предыдущего уровня рекурсии, теперь объединение.
- **5** $C(p_i) = \{p_j : p_j \in B, y_i h < y_j\}$
- Стадия объединения: построить B, отсортировать в нём точки по у-координате, затем для каждой точки $p_i \in B$ рассмотреть все точки $p_j \in C(p_i)$, и каждой пары (p_i, p_j) посчитать расстояние и сравнить с текущим наилучшим расстоянием.

4 D > 4 P > 4 B > 4 B > 5 B B 9 9 9

Полезные ссылки І

- https://neerc.ifmo.ru: выпуклые оболочки
 https://neerc.ifmo.ru/wiki/index.php?title=Статические
 _выпуклые_оболочки:_Джарвис,_Грэхем,_Эндрю,_Чен,_QuickHull
- Хабр: выпуклые оболчки https://habrahabr.ru/post/144921/
- E-maxx: ближайшие точки
 https://e-maxx.ru/algo/nearest_points