# Semi-supervised classification with graph convolutional networks(GCN)

By Clement NSHIMIYIMANA

#### Overview

- Introduction
- Spectral Graph convolutions
- GCN
- Implementation
- Conclusion

## Introduction

## Idea



- Introducing CNN on graph structured data.
- Encode local graph structure and features of the nodes.
- Use scalable approach on semi supervised classification of nodes.
- Adopt first order approximation of spectral convolutions.

## Graph

- G: (V, E) with N nodes  $v_i \in V$ and  $(v_i, v_i) \in E$ .
- Adjacency matrix is matrix A ∈ R<sup>NxN</sup> representing the graph G.
- Degree matrix D is a diagonal matrix containing the information about degree of each node.



### Convolutions on Graph

- Consider neural network function f(X, A)
- The layer wise propagation rule is

$$H^{(l+1)} = \sigma (D^{-1/2} A^{D^{-1/2}} H^{(l)}W^{(l)})$$

- $A^{\sim} = A + I_N$ ,  $D_{ii}^{\sim} = \sum_i A_{ij}^{\sim}$
- W: Weight matrix and σ: activation function like ReLu.



## Spectral convolutions

• Spectral convolution on graph is the product of signal  $x \in R^N$  and filter  $g_{\Theta}$ :

$$g_{\Theta}^* x = Ug_{\Theta}^T U^T x \qquad (1)$$

- U: matrix of eigenvectors of of the normalized graph Laplacian L.
- $L = I_N D^{-1/2} A D^{-\frac{1}{2}}$
- U<sup>T</sup> x: graph fourier transform of x
- $g_{\Theta}$ : diagonal matrix parametrized by  $\Theta \in \mathbb{R}^{N}$

 As computing eq(1) is expensive, then we can approximate it by a truncated expansion

$$g_{\theta}(\Lambda) \approx \sum_{k=0}^{K} \theta_{k} T_{k}(\Lambda^{\sim})$$
 (2)

•  $\Lambda^{\sim} = (2/L_{max})\Lambda - I_{N}$ , with  $L_{max}$  denotes the largest eigenvalue of L.

• 
$$T_k(\Lambda^{\sim}) = 2\Lambda^{\sim}T_{k-1}(\Lambda^{\sim}) - T_{k-2}(\Lambda^{\sim})$$
 with  $T_0(\Lambda^{\sim}) = 1$  and  $T_1(\Lambda^{\sim}) = \Lambda^{\sim}$ : Chebyshev polynomials.

- The equation (1) becomes  $g_{\theta}^* x = \sum_{k=0}^{K} \theta_k T_k(L^*) x$ • It is denoted  $K^{th}$ -order polynomial in the Laplacian, with  $L^{\sim} = (2/L_{max})L - I_{N}$ .

## GCN

- GCN is linear scale of equation (3)
- k=1,  $\bigwedge_{\text{max}}$ =2,  $g_{\theta} * x \approx \theta_0 x + \theta_1 (L I_N) x$

$$= \theta_0 x - \theta_1 D^{-1/2} A D^{-1/2} x$$

- In practice,  $g_{\theta} * x \approx \theta (I_N + D^{-1/2} AD^{-1/2}) x$ ,  $\theta = \theta_0 = \theta_1$
- In NN to avoid exploding/vanishing gradient we consider A~=A+ I<sub>N</sub>

$$Z=g_{\theta} * x = (D^{-1/2} A^{-1/2})x\theta$$

 $\theta \in R^{C \times F}$ : matrix of filter parameters

 $Z \in \mathbb{R}^{N \times F}$ : convolved signal

C : input channels, F: filters.

# Implementation

| • | We consider a two-layer GCN for semi-supervised node classification on a graph. |
|---|---------------------------------------------------------------------------------|
|   |                                                                                 |

• Semi-supervised document classification in citation networks.

• Datasets: Citeseer, Cora, Pubmed.

#### Results

|            | Citeseer | Cora | Pubmed |
|------------|----------|------|--------|
| GCN(paper) | 67.9     | 80.1 | 78.9   |
| GCN(me)    | 68.1     | 80.8 | 78.7   |

#### Conclusion

 GCN model uses an efficient layer-wise propagation rule that is based on a first-order approximation of spectral convolutions on graphs.

 GCN model is capable of encoding both graph structure and node features in a way useful for semi-supervised classification.

GCN outperform other method like MLP.

