Networked Life HW 6

Glen Choo 1000472

Loo Juin 1000546

Tan Hao Qin 1000521

Question 1

Node						
t = 0	0	∞	∞	∞	∞	∞
t = 1	0	4	1	5	∞	8
t = 1 $t = 2$	0	4	1	5	6	7

Question 2

Without statistical multiplexing, one assumes that all users are busy all the time. N_d is thus the maximum value of N that satisfies $N \le C$, i.e. $N_d = C$.

2

Since $N_d = C$,

$$P(X > C) < \gamma$$

Using

$$P(X > C) = 1 - P(X \le C)$$

$$= 1 - (\sum_{i=0}^{C} p^{i} (1 - p)^{N_{s} - i} \binom{N_{s}}{i})$$

We select the highest value of N_s that satisfies this relationship.

Given $p = 0.1, \gamma = 0.01$,

for $C=10,20,30,N_s=50,122,301$. Thus N_s grows more quickly than C and a link of 2C accommodates more than $2N_s$ users.

 $\sum_{i=N_d+1}^{N_s} P(X=i)$ is the probability that the link is congested.

3

For a link of capacity 2C, $N_{s2} > 2N_s$. This is greater than two links of capacity, C which can accommodate $N_s + N_s = 2N_s$.

Question 3

$$E[n,p] = \frac{\frac{p^n}{n!}}{}$$

Sub tp = p into Equation 1

$$e^{-t\rho} \sum_{k=0}^{n} (t\rho)^k / k! = \int_{tp}^{\infty} \frac{x^n e^{-x}}{n!} dx$$

Sub $t\rho = \rho$, tn = n into $1/E[n, \rho]$

$$\frac{1}{E[m,t\rho]} = \frac{\sum_{i=0}^{tn} \frac{t^{pi}}{i!}}{\frac{(t\rho)^n}{(m)!}}$$

$$= \frac{(tn)!}{(t\rho)^n} e^{t\rho} \int_{tp}^{\infty} \frac{x^{tn} e^{-x}}{(tn)!} dx$$

$$= \frac{(tn)!}{(t\rho)^n} \frac{1}{(tn)!} e^{t\rho} \int_{tp}^{\infty} x^{tn} e^{-x} dx$$

$$= \frac{e^{t\rho}}{(t\rho)^n} \int_{tp}^{\infty} x^{tn} e^{-x} dx$$

Reindex $t\rho$ to 0

$$\frac{1}{E[tn,t\rho]} = \frac{e^{t\rho}}{(t\rho)^n} \int_0^\infty x^{tn} e^{-x} dx$$

Integrating $x^{tn}e^{-x}$, we get

$$\frac{1}{E[tn,t\rho]} = \frac{e^{t\rho}}{(t\rho)^n} \Gamma(tn+1)$$

Since an exponential function increases at a far greater rate than a polynomial function, $\frac{e^{i\rho}}{(t\rho)^n}$ is an increasing function.

Since the gamma function is an increasing function as well, this implies that $\frac{1}{E[m,p]}$ is an increasing function as well.

As such, $E[tn,t\rho]$ is a strictly decreasing function in t, which implies that $E[2n,2\rho] < E[n,\rho]$.

Written with StackEdit.