

IIC1253 — Matemáticas Discretas — 1'2018

INTERROGACION 3

Preguntas en blanco: Preguntas entregadas en blanco se evaluarán con un 1.5.

Pregunta 1

Demuestre que el principio de inducción simple implica el principio de inducción fuerte.

Pregunta 2

1. Considere el siguiente algoritmo:

```
Function theavengersaredead (n) k:=1 for i=1 to n do k:=k*n i:=1 while i \leq k do i:=i*2 return i
```

Encuentre una función f y demuestre (usando la definición formal de la notación Θ) que el tiempo de theavengersaredead en términos de n es $\Theta(f(n))$.

2. Demuestre usando la definición de notación $\mathcal O$ que:

$$\log(a_k n^k + \ldots + a_1 n + a_0) \in \mathcal{O}(\log(n))$$

con $k \ge 0$ y $a_i \ge 0$ para todo $i \le k$.

Pregunta 3

- 1. Demuestre usando inducción que si a_1, a_2, \ldots, a_n es una secuencia de números distintos, entonces se necesitan exactamente (n-1) multiplicaciones de a pares para calcular $a_1 \times a_2 \times \ldots \times a_n$, sin importar el orden o la forma como se agrupan las multiplicaciones.
- 2. Decimos que $I \subseteq \mathbb{R}$ es un intervalo abierto en \mathbb{R} , si existe $a,b \in \mathbb{R}$ con a < b tal que $I = \{x \mid a < x < b\}$. Sean I_1, \ldots, I_n intervalos abiertos en \mathbb{R} tal que $I_i \cap I_j \neq \emptyset$ para todo $1 \le i \le n$ y $1 \le j \le n$. Demuestre usando inducción que $I_1 \cap I_2 \cap \ldots \cap I_n \neq \emptyset$.

Pregunta 4

- 1. Sea $\mathcal{F} = \{f : \mathbb{R} \to \mathbb{R}\}$ el conjunto de todas la funciones de \mathbb{R} en \mathbb{R} . Demuestre que la cardinalidad de \mathcal{F} es distinta a la cardinalidad de \mathbb{R} , esto es, $|\mathcal{F}| \neq |\mathbb{R}|$.
- 2. Para $k \geq 0$, sea $\mathcal{P}_k = \{p : \mathbb{R} \to \mathbb{R} \mid p(x) = a_0 + a_1x + \ldots + a_kx^k, a_0 \in \mathbb{R}, \ldots, a_k \in \mathbb{R}\}$ el conjunto de todas las funciones de \mathbb{R} en \mathbb{R} definidas por polinomios con coeficientes en \mathbb{R} y de grado menor o igual a k. Demuestre que, para todo k, \mathcal{P}_k tiene la misma cardinalidad que \mathbb{R} , esto es, $|\mathcal{P}_k| = |\mathbb{R}|$.