Thorlabs Polarization Processor C API Reference

Rev. 2.0 2021-08-05 ITN004107-D01

Contents

0.1	Thorlabs Scientific Polarization Processor
	0.1.1 Introduction
0.2	File Index
	0.2.1 File List
0.3	File Documentation
	0.3.1 tl_polarization_processor.h File Reference
	0.3.1.1 Typedef Documentation
	0.3.2 tl_polarization_processor_enums.h File Reference
	0.3.2.1 Enumeration Type Documentation
	0.3.3 tl_polarization_processor_error.h File Reference
	0.3.3.1 Enumeration Type Documentation
Inde	x

0.1 Thorlabs Scientific Polarization Processor

0.1.1 Introduction

The target audience for this document is the experienced software engineer with a background in polarized image processing.

0.2 File Index

0.2.1 File List

Here is a list of all documented files with brief descriptions:

tl polarization processor.h

This file contains an enumeration that specifies all the possible error codes that the API functions in the polarization processor module could return

0.3 File Documentation

0.3.1 tl_polarization_processor.h File Reference

```
#include "tl_polarization_processor_enums.h"
```

Typedefs

- typedef int(* TL POLARIZATION PROCESSOR MODULE INITIALIZE) (void)
- typedef int(* TL_POLARIZATION_PROCESSOR_CREATE_POLARIZATION_PROCESSOR) (void **)
- typedef int(* TL POLARIZATION PROCESSOR SET CUSTOM CALIBRATION COEFFICIENTS) (void *, float *, float *, float *, float *, float *)
- typedef int(* TL POLARIZATION PROCESSOR GET CUSTOM CALIBRATION COEFFICIENTS) (void *, float *, float *, float *, float *)
- typedef int(* TL_POLARIZATION_PROCESSOR_TRANSFORM) (void *, enum TL_POLARIZATION_PROCESSOR_POLAR_PHASE, unsigned short *, int, int, int, int, int, unsigned short *, unsigned short *, unsigned short *, unsigned short *, unsigned short *)
- typedef int(* TL_POLARIZATION_PROCESSOR_DESTROY_POLARIZATION_PROCESSOR) (void *)
- typedef int(* TL_POLARIZATION_PROCESSOR_MODULE_TERMINATE) (void)

0.3.1.1 Typedef Documentation

0.3.1.1.1 TL_POLARIZATION_PROCESSOR_CREATE_POLARIZATION_PROCESSOR

```
typedef int(* TL_POLARIZATION_PROCESSOR_CREATE_POLARIZATION_PROCESSOR) (void **)
```

This function creates a polarization processing instance and returns a pointer to that instance.

The polarization processor instance is a handle to the internal polarization processing state which consists of:

· polarization calibration coefficients

Parameters

out	pp_handle	A pointer to pointer to a polarization processor handle. This argument captures the instance that is returned by the function.
-----	-----------	--

Returns

A TL_POLARIZATION_PROCESSOR_ERROR value to indicate success or failure (TL_POLARIZATION_PROCESSOR_ERROR_NONE indicates success).

0.3.1.1.2 TL_POLARIZATION_PROCESSOR_DESTROY_POLARIZATION_PROCESSOR

```
typedef int(* TL_POLARIZATION_PROCESSOR_DESTROY_POLARIZATION_PROCESSOR) (void *)
```

This function destroys the specified polarization processing instance. After this function has been called for the specified instance handle, it is an error to subsequently use that instance in any way. Any attempt to do so could result in undefined and unpredictable behavior.

Parameters

in pp_hand	A polarization processor handle.
-------------------	----------------------------------

Returns

A TL_POLARIZATION_PROCESSOR_ERROR value to indicate success or failure (TL_POLARIZATION_PROCESSOR_ERROR_NONE indicates success).

0.3.1.1.3 TL POLARIZATION PROCESSOR GET CUSTOM CALIBRATION COEFFICIENTS

```
typedef int(* TL_POLARIZATION_PROCESSOR_GET_CUSTOM_CALIBRATION_COEFFICIENTS) (void *, float *, float *, float *)
```

This function allows the caller to get the polarization processor calibration coefficients.

The coefficients are obtained for each pixel in the polarization processor quartet.

The coefficients are specified for the 4 different polar phases of the origin pixel in the quartet:

- · 0 (zero) degrees polar phase
- · 45 degrees polar phase
- 90 degress polar phase
- 135 degrees polar phase

Parameters

in	pp_handle	A polarization processor handle.
in	calibration_4_x_4_matrix_0_degrees_phase	A 16 element float array specifying the calibration coefficients for the 0 (zero) degrees phase pixel in the quartet.
in	calibration_4_x_4_matrix_45_degrees_phase	A 16 element float array specifying the calibration coefficients for the 45 degrees phase pixel in the quartet.
in	calibration_4_x_4_matrix_90_degrees_phase	A 16 element float array specifying the calibration coefficients for the 90 degrees phase pixel in the quartet.
in	calibration_4_x_4_matrix_135_degrees_phase	A 16 element float array specifying the calibration coefficients for the 135 degrees phase pixel in the quartet.

Returns

A TL_POLARIZATION_PROCESSOR_ERROR value to indicate success or failure (TL_POLARIZATION_PROCESSOR_ERROR_NONE indicates success).

0.3.1.1.4 TL_POLARIZATION_PROCESSOR_MODULE_INITIALIZE

typedef int(* TL_POLARIZATION_PROCESSOR_MODULE_INITIALIZE) (void)

This function initializes the polarization processing module. It must be called prior to calling any other polarization processing module API function.

Returns

A TL_POLARIZATION_PROCESSOR_ERROR value to indicate success or failure (TL_POLARIZATION_PROCESSOR_ERROR_NONE indicates success).

0.3.1.1.5 TL_POLARIZATION_PROCESSOR_MODULE_TERMINATE

typedef int(* TL_POLARIZATION_PROCESSOR_MODULE_TERMINATE) (void)

This function gracefully terminates the polarization processing module. It must be called prior to unloading the polarization processor component to ensure proper cleanup of platform resources.

Returns

A TL_POLARIZATION_PROCESSOR_ERROR value to indicate success or failure (TL_POLARIZATION_PROCESSOR_ERROR_NONE indicates success).

0.3.1.1.6 TL_POLARIZATION_PROCESSOR_SET_CUSTOM_CALIBRATION_COEFFICIENTS

```
typedef int(* TL_POLARIZATION_PROCESSOR_SET_CUSTOM_CALIBRATION_COEFFICIENTS) (void *, float *, float *, float *)
```

This function allows the caller to set the polarization processor calibration coefficients.

The coefficients are set for each pixel in the polarization processor quartet.

The coefficients are specified for the 4 different polar phases of the origin pixel in the quartet:

- 0 (zero) degrees polar phase
- 45 degrees polar phase
- 90 degress polar phase
- 135 degrees polar phase

Parameters

in	pp_handle	A pointer to a polarization processor handle (pointer to pointer).
out	calibration_4_x_4_matrix_0_degrees_phase	A 16 element float array specifying the calibration coefficients for the 0 (zero) degrees phase pixel in the quartet.
out	calibration_4_x_4_matrix_45_degrees_phase	A 16 element float array specifying the calibration coefficients for the 45 degrees phase pixel in the quartet.
out	calibration_4_x_4_matrix_90_degrees_phase	A 16 element float array specifying the calibration coefficients for the 90 degrees phase pixel in the quartet.
out	calibration_4_x_4_matrix_135_degrees_phase	A 16 element float array specifying the calibration coefficients for the 135 degrees phase pixel in the quartet.

Returns

A TL_POLARIZATION_PROCESSOR_ERROR value to indicate success or failure (TL_POLARIZATION_PROCESSOR_ERROR_NONE indicates success).

0.3.1.1.7 TL_POLARIZATION_PROCESSOR_TRANSFORM

This function implements the actual polarization processing computation.

It takes an input array consisting of pixel values from a 2-dimensional image and transforms that data into 1 of several output arrays depending on the desired computation. The following computations are supported:

- · Normalized stokes vector coefficients
- · Total power
- · Horizontal/Vertical linear polarization
- Diagonal linear polarization
- Azimuth
- DOLP (degree of linear polarization)

The caller indicates the desired output computation by specifying a non-zero buffer pointer for the corresponding function argument.

A zero output buffer argument indicates that the corresponding output computation is not wanted and in that case, the computation is skipped.

Parameters

in	pp_handle	A polarization processor handle.
in	polar_phase	The polar phase (in degrees) of the origin pixel in the input buffer.
in	input_image_buffer	A pointer to the input image buffer.
in	input_image_buffer_x_origin	The input buffer origin x coordinate relative to the full frame (necessary to support arbitrary ROIs)
in	input_image_buffer_y_origin	The input buffer origin y coordinate relative to the full frame (necessary to support arbitrary ROIs)
in	input_image_buffer_width	Input image buffer width.
in	input_image_buffer_height	Input image buffer height.
in	input_image_buffer_data_bit_depth	Input image buffer bit depth.

Parameters

in	output_buffer_max_scaling_value	The maximum pixel intensity value that should be used for the output buffers. This value must be between 1 and 65535.
out	normalized_stokes_vector_coefficients_x2_output_buffer	Output buffer which captures the normalized stokes vector coefficients s0, s1, s2, and s3. s0 is always 1.0 since s1 and s2 are normalized to it and s3 is always 0.0 since it is not possible for us to determine its value. Therefore, this buffer only contains values for s1 and s2. The order of data in the output buffer is s1_0, s2_0, s1_1, s2_1, In other words, it is interleaved. The user should specify a 0 pointer if this output is not needed.
out	total_optical_power_output_buffer	Output buffer of the total power (intensity). This is value of the s0 stokes vector coefficient for each pixel. The user should specify a 0 pointer if this output is not needed.
out	horizontal_vertical_linear_polarization_output_buffer	Output buffer of the horizontal/vertical linear polarization. This is the value of the s1 stokes vector coefficient for each pixel. The user should specify a 0 pointer if this output is not needed.
out	diagonal_linear_polarization_output_buffer	Output buffer of the diagonal linear polarization. This is the value of the s2 stokes vector coefficient for each pixel. The user should specify a 0 pointer if this output is not needed.
out	azimuth_output_buffer	Output buffer of the azimuth (polar angle) of each pixel. The user should specify a 0 pointer if this output is not needed.
out	DOLP_output_buffer	Output buffer of the DOLP (degree of linear polarization) for each pixel. The user should specify a 0 pointer if this output is not needed.

Returns

A TL_POLARIZATION_PROCESSOR_ERROR value to indicate success or failure (TL_POLARIZATION_PROCESSOR_ERROR_NONE indicates success).

0.3.2 tl_polarization_processor_enums.h File Reference

Enumerations

• enum TL_POLARIZATION_PROCESSOR_POLAR_PHASE { TL_POLARIZATION_PROCESSOR_POLAR_PHASE_0_DEGREES, TL_POLARIZATION_PROCESSOR_POLAR_PHASE_4
TL_POLARIZATION_PROCESSOR_POLAR_PHASE_90_DEGREES, TL_POLARIZATION_PROCESSOR_POLAR_PHASE_135_DEGREES, TL_POLAR_PHASE_135_DEGREES, TL_PO

0.3.2.1 Enumeration Type Documentation

0.3.2.1.1 TL_POLARIZATION_PROCESSOR_POLAR_PHASE

enum TL_POLARIZATION_PROCESSOR_POLAR_PHASE

The TL_POLARIZATION_PROCESSOR_POLAR_PHASE enumeration lists all the possible values (in degrees) that a pixel in a polarization sensor could assume.

The polarization phase pattern is

The primitive pattern shown above represents the fundamental polarization phase arrangement in a polarization sensor. The basic pattern would extend in the X and Y directions in a real polarization sensor containing millions of pixels.

Notice that the phase of the origin (0, 0) pixel logically determines the phase of every other pixel.

It is for this reason that the phase of this origin pixel is termed the polarization "phase" because it represents the reference point for the phase determination of all other pixels.

Every TSI polarization camera provides the sensor specific polarization phase of the full frame origin pixel as a discoverable parameter.

Enumerator

TL_POLARIZATION_PROCESSOR_POLAR_PHASE_0_DEGREES	0 degrees polarization phase
TL_POLARIZATION_PROCESSOR_POLAR_PHASE_45_DEGREES	45 degrees polarization phase
TL_POLARIZATION_PROCESSOR_POLAR_PHASE_90_DEGREES	90 degrees polarization phase
TL_POLARIZATION_PROCESSOR_POLAR_PHASE_135_DEGREES	135 (-45) degrees polarization phase
TL_POLARIZATION_PROCESSOR_POLAR_PHASE_MAX	A sentinel value (DO NOT USE).

0.3.3 tl polarization processor error.h File Reference

Enumerations

- enum TL POLARIZATION PROCESSOR ERROR {
- TL_POLARIZATION_PROCESSOR_ERROR_NONE, TL_POLARIZATION_PROCESSOR_ERROR_UNKNOWN, TL_POLARIZATION_PROCESSOR_ERROR_MODULE_NOT_INITIALIZATION_PROCESSOR_INITIALIZATION_PROCESSOR_ERROR_MODULE_NOT_INITIALIZATION_PROCESSOR_INITIALIZATION_PROCESSOR_INITIALIZATION_PROCESSOR_INITIALIZATION_PROCESSOR_INITIALIZATION_PROCESSOR_INITIALIZATION_PROCESSOR_INITIALIZATION_PROCESSOR_INITIALIZATION_PROCESSOR_INITIALIZATION_PROCESSOR_INITIALIZATION_PROCESSOR_INITIALIZATION_PROCESSOR_INITIALIZATION_PROCESSOR_INI
- TL POLARIZATION PROCESSOR ERROR MEMORY ALLOCATION FAILURE, TL POLARIZATION PROCESSOR ERROR NULL INSTANCE HANDLE,
- TL_POLARIZATION_PROCESSOR_ERROR_NULL_INPUT_BUFFER_POINTER, TL_POLARIZATION_PROCESSOR_ERROR_ALL_OUTPUT_BUFFER_POINTERS_ARE_NULL, TL POLARIZATION PROCESSOR ERROR IDENTICAL INPUT AND OUTPUT BUFFERS, TL POLARIZATION PROCESSOR ERROR DUPLICATE OUTPUT BUFFERS,
- TL POLARIZATION PROCESSOR ERROR INVALID POLAR PHASE,
- TL POLARIZATION PROCESSOR ERROR INVALID MAX SCALING VALUE, TL POLARIZATION PROCESSOR ERROR INVALID IMAGE WIDTH, TL POLARIZATION PROCES
- TL POLARIZATION PROCESSOR ERROR INVALID IMAGE DATA BIT DEPTH, TL POLARIZATION PROCESSOR ERROR INITIALIZATION ERROR,
- TL POLARIZATION PROCESSOR ERROR TERMINATION ERROR, TL POLARIZATION PROCESSOR ERROR MAX }

0.3.3.1 Enumeration Type Documentation

0.3.3.1.1 TL POLARIZATION PROCESSOR ERROR

enum TL_POLARIZATION_PROCESSOR_ERROR

The TL POLARIZATION PROCESSOR ERROR enumeration lists all the possible error codes that any polarization processor API function could return.

Enumerator

TL_POLARIZATION_PROCESSOR_ERROR_NONE	This error code indicates SUCCESS.
TL_POLARIZATION_PROCESSOR_ERROR_UNKNOWN	This error code indicates an unknown error.
TL_POLARIZATION_PROCESSOR_ERROR_MODULE_NOT_INITIALIZED	The module has not been initialized therefore it is in an undefined state.
TL_POLARIZATION_PROCESSOR_ERROR_MEMORY_ALLOCATION_FAILURE	The module has not been initialized therefore it is in an undefined state.
TL_POLARIZATION_PROCESSOR_ERROR_NULL_INSTANCE_HANDLE	The specified module instance handle is NULL.
TL_POLARIZATION_PROCESSOR_ERROR_NULL_INPUT_BUFFER_POINTER	The specified input buffer pointer is NULL.
TL_POLARIZATION_PROCESSOR_ERROR_ALL_OUTPUT_BUFFER_POINTE↔	All specified output buffers are NULL.
RS_ARE_NULL	

Enumerator

TL_POLARIZATION_PROCESSOR_ERROR_IDENTICAL_INPUT_AND_OUTPU	An output buffer has been specified that is identical to the input buffer.
T_BUFFERS	
TL_POLARIZATION_PROCESSOR_ERROR_DUPLICATE_OUTPUT_BUFFER	Two or more output buffers are identical.
TL_POLARIZATION_PROCESSOR_ERROR_INVALID_POLAR_PHASE	An invalid (unknown) polar phase was specified.
TL_POLARIZATION_PROCESSOR_ERROR_INVALID_MAX_SCALING_VALUE	An invalid maximum scaling value was specified.
TL_POLARIZATION_PROCESSOR_ERROR_INVALID_IMAGE_WIDTH	An invalid image width was specified.
TL_POLARIZATION_PROCESSOR_ERROR_INVALID_IMAGE_HEIGHT	An invalid image height was specified.
TL_POLARIZATION_PROCESSOR_ERROR_INVALID_IMAGE_DATA_BIT_DEP	An invalid image bit depth was specified.
TH	
TL_POLARIZATION_PROCESSOR_ERROR_INITIALIZATION_ERROR	This indicates an error during initialization, usually attributed to missing or
	incompatible dynamic libraries.
TL_POLARIZATION_PROCESSOR_ERROR_TERMINATION_ERROR	This indicates an error during cleanup.
TL_POLARIZATION_PROCESSOR_ERROR_MAX	A sentinel value (DO NOT USE).

Index

il_polarization_processor.n, i	10
TL_POLARIZATION_PROCESSOR_CREATE_POLARIZATION_PROCESSOR, 2	TL_POLARIZATION_PROCESSOR_ERROR_IDENTICAL_INPUT_AND_OUTPUT_BUFFERS,
TL_POLARIZATION_PROCESSOR_DESTROY_POLARIZATION_PROCESSOR,	10
3	TL_POLARIZATION_PROCESSOR_ERROR_INITIALIZATION_ERROR, 10
TL_POLARIZATION_PROCESSOR_GET_CUSTOM_CALIBRATION_COEFFICIENTS	, TL_POLARIZATION_PROCESSOR_ERROR_INVALID_IMAGE_DATA_BIT_DEPTH,
3	10
TL_POLARIZATION_PROCESSOR_MODULE_INITIALIZE, 4	TL_POLARIZATION_PROCESSOR_ERROR_INVALID_IMAGE_HEIGHT, 10
TL_POLARIZATION_PROCESSOR_MODULE_TERMINATE, 4	TL_POLARIZATION_PROCESSOR_ERROR_INVALID_IMAGE_WIDTH, 10
TL_POLARIZATION_PROCESSOR_SET_CUSTOM_CALIBRATION_COEFFICIENTS,	TL_POLARIZATION_PROCESSOR_ERROR_INVALID_MAX_SCALING_VALUE,
4	10
TL_POLARIZATION_PROCESSOR_TRANSFORM, 5	TL_POLARIZATION_PROCESSOR_ERROR_INVALID_POLAR_PHASE, 10
TL_POLARIZATION_PROCESSOR_CREATE_POLARIZATION_PROCESSOR	TL_POLARIZATION_PROCESSOR_ERROR_MAX, 10
tl_polarization_processor.h, 2	TL_POLARIZATION_PROCESSOR_ERROR_MEMORY_ALLOCATION_FAILURE,
TL_POLARIZATION_PROCESSOR_DESTROY_POLARIZATION_PROCESSOR	9
tl_polarization_processor.h, 3	TL_POLARIZATION_PROCESSOR_ERROR_MODULE_NOT_INITIALIZED, 9
tl_polarization_processor_enums.h, 7	TL_POLARIZATION_PROCESSOR_ERROR_NONE, 9
TL_POLARIZATION_PROCESSOR_POLAR_PHASE, 8	TL_POLARIZATION_PROCESSOR_ERROR_NULL_INPUT_BUFFER_POINTER,
TL_POLARIZATION_PROCESSOR_POLAR_PHASE_0_DEGREES, 8	9
TL_POLARIZATION_PROCESSOR_POLAR_PHASE_135_DEGREES, 8	TL_POLARIZATION_PROCESSOR_ERROR_NULL_INSTANCE_HANDLE, 9
TL_POLARIZATION_PROCESSOR_POLAR_PHASE_45_DEGREES, 8	TL_POLARIZATION_PROCESSOR_ERROR_TERMINATION_ERROR, 10
TL_POLARIZATION_PROCESSOR_POLAR_PHASE_90_DEGREES, 8	TL_POLARIZATION_PROCESSOR_ERROR_UNKNOWN, 9
	_POLARIZATION_PROCESSOR_ERROR_ALL_OUTPUT_BUFFER_POINTERS_ARE_NULL
TL_POLARIZATION_PROCESSOR_ERROR	tl_polarization_processor_error.h, 9
	_POLARIZATION_PROCESSOR_ERROR_DUPLICATE_OUTPUT_BUFFER
tl_polarization_processor_error.h, 9	tl_polarization_processor_error.h, 10
-	_POLARIZATION_PROCESSOR_ERROR_IDENTICAL_INPUT_AND_OUTPUT_BUFFERS
TL_POLARIZATION_PROCESSOR_ERROR_ALL_OUTPUT_BUFFER_POINTERS_A	
	_POLARIZATION_PROCESSOR_ERROR_INITIALIZATION_ERROR
TL POLARIZATION PROCESSOR ERROR DUPLICATE OUTPUT BUFFER.	tl polarization processor error.h. 10

12 INDEX

IL_POLARIZATION_PROCESSOR_ERROR_INVALID_IMAGE_DATA_BIT_DEPTH
tl_polarization_processor_error.h, 10
TL_POLARIZATION_PROCESSOR_ERROR_INVALID_IMAGE_HEIGHT
tl_polarization_processor_error.h, 10
TL_POLARIZATION_PROCESSOR_ERROR_INVALID_IMAGE_WIDTH
tl_polarization_processor_error.h, 10
TL_POLARIZATION_PROCESSOR_ERROR_INVALID_MAX_SCALING_VALUE
tl_polarization_processor_error.h, 10
TL_POLARIZATION_PROCESSOR_ERROR_INVALID_POLAR_PHASE
tl_polarization_processor_error.h, 10
TL_POLARIZATION_PROCESSOR_ERROR_MAX
tl_polarization_processor_error.h, 10
TL_POLARIZATION_PROCESSOR_ERROR_MEMORY_ALLOCATION_FAILURE
tl_polarization_processor_error.h, 9
TL_POLARIZATION_PROCESSOR_ERROR_MODULE_NOT_INITIALIZED
tl_polarization_processor_error.h, 9
TL_POLARIZATION_PROCESSOR_ERROR_NONE
tl_polarization_processor_error.h, 9
TL_POLARIZATION_PROCESSOR_ERROR_NULL_INPUT_BUFFER_POINTER
tl_polarization_processor_error.h, 9
TL_POLARIZATION_PROCESSOR_ERROR_NULL_INSTANCE_HANDLE
tl_polarization_processor_error.h, 9
TL_POLARIZATION_PROCESSOR_ERROR_TERMINATION_ERROR
tl_polarization_processor_error.h, 10
TL_POLARIZATION_PROCESSOR_ERROR_UNKNOWN
tl_polarization_processor_error.h, 9
${\tt TL_POLARIZATION_PROCESSOR_GET_CUSTOM_CALIBRATION_COEFFICIENTS}$
tl_polarization_processor.h, 3
TL_POLARIZATION_PROCESSOR_MODULE_INITIALIZE
tl_polarization_processor.h, 4
TL_POLARIZATION_PROCESSOR_MODULE_TERMINATE
tl_polarization_processor.h, 4
TL_POLARIZATION_PROCESSOR_POLAR_PHASE
tl_polarization_processor_enums.h, 8
TL_POLARIZATION_PROCESSOR_POLAR_PHASE_0_DEGREES
tl_polarization_processor_enums.h, 8
TL_POLARIZATION_PROCESSOR_POLAR_PHASE_135_DEGREES
tl polarization processor enums.h. 8

TL_POLARIZATION_PROCESSOR_POLAR_PHASE_45_DEGREES
tl_polarization_processor_enums.h, 8

TL_POLARIZATION_PROCESSOR_POLAR_PHASE_90_DEGREES
tl_polarization_processor_enums.h, 8

TL_POLARIZATION_PROCESSOR_POLAR_PHASE_MAX
tl_polarization_processor_enums.h, 8

TL_POLARIZATION_PROCESSOR_SET_CUSTOM_CALIBRATION_COEFFICIENTS
tl_polarization_processor.h, 4

TL_POLARIZATION_PROCESSOR_TRANSFORM
tl_polarization_processor.h, 5