

Probability Methods in Engineering

Dr. Safdar Nawaz Khan Marwat DCSE, UET Peshawar

Lecture 1

Resource Material

- > Course Book
 - A. Leon-Garcia, "Probability and Random Processes for Electrical Engineering", 3rd Edition, Pearson Prentice Hall, 2008
- > Reference Books
 - □ D. Bertsekas and J. N. Tsitsiklis, "Introduction to Probability", 2nd Edition, Athena Scientific, 2008
 - □ Hossein Pishro-Nik, "Introduction to Probability, Statistics, and Random Processes", Kappa Research, 2014

Course Group

- > Joining the group is important
 - https://groups.google.com/forum/#!forum/2020_pme_spring
- > Online group benefits
 - □ Slides
 - ☐ Assignments
 - Announcements
 - ☐ Course outline
 - Discussions
 - □ CLOs and PLOs (OBE)
- Group email
 - □ 2020_PME_spring@googlegroups.com
- > Teaching method
 - Combination of slides and white board
 - □ Interaction about concepts encouraged
 - ☐ Interruption to ask questions during lectures allowed

Tentative Grading Criteria

- > Exams
 - ☐ Final exam: **50%**
 - ☐ Mid-term exam: 25%
- > Sessional
 - ☐ Attendance: 10%
 - ☐ Assignments: 7.5%
 - Quizzes: 7.5%
- All lectures interrelated
 - Each lecture provides base for next lecture
 - Missing any lecture would result in problems in understanding subsequent lectures

> No mobile phone usage during class

Course Outline

- > Introduction to Probability
 - ☐ Axioms
 - Probabilities using Counting methods
 - Conditional Probability
 - ☐ Law on total Probability
 - ☐ Bayes' Rule
 - **...**
- > Random Variables (RVs)
 - ☐ Cumulative Distribution Function (CDF)
 - □ Probability Density Function (PDF)
 - Mean and variance
 - **...**
- > Modern Tools
 - MATLAB
 - Python
 - **...**

Course Significance

- > Basis for numerous advanced technologies
 - Wave propagation
 - Wireless communication
 - Communication theory
 - ☐ Information theory
 - Pattern recognition
 - □ Radar and sonar signal processing
 - Network design and optimization

Course Significance (cont.)

- > Disadvantages of weak probability concepts
 - □ No scope in research fields
 - Poor analytical skills
 - ☐ Fear of interview questions
 - ☐ Inability to conceptualize techniques
 - □ No major role possible in engineering problem solving
 - Minimum contribution towards nation building
 - ☐ Incapability to carry out feasibility studies for mega projects

Assessment Test

- > A fair die is rolled thrice. What is the probability of getting
 - ☐ A six in the first attempt
 - ☐ Sixes in first two attempts
 - ☐ Sixes in all three attempts
 - ☐ All odd outcomes
 - ☐ All outcomes greater than 4
- > What is the number of all possible outcomes?

Randomness

- What is Randomness?
 - Chaos
 - Uncertainty
 - Doubt
- > Humans desire some level of 'certainty'
- Examples
 - Solar system
 - Weather forecast at Chitral Airport
 - ☐ Traffic situation on University road
- > Engineers quantify 'certainty'

Model of a Physical System

- > Model: Approximate representation of physical situation
 - □ Mathematical model: Set of assumptions about how system works
 - Deterministic model: Offers repeatability of results, (e.g. Ohm's Laws)
 - o Stochastic model: Characterizes randomness and uncertainty
 - □ Simulation model: Imitation of real system
 - Deterministic model: No random component involved, (e.g. chemical reaction)
 - o Stochastic model: Must have random input component

Random Experiment

- > Random Experiment: The result varies in random manner
- > Sample Space: Set of all possible experiment results
- > Outcome: A single element of sample space
- > Event: A subset of sample space
- > Example: An urn containing three balls, one is drawn
 - ☐ How probable it is that a ball withdrawn at random is labeled '1'?
 - □ Can you quantify this 'chance'?
 - □ Everyone of you should be able to write the sample space for this experiment!

}

- > Some more questions to answer
 - ☐ Is withdrawing all the three balls equi-probable (or is any ball more likely to be drawn)?
 - ☐ If '1' means 'sure occurrence' and '0' means 'no chance of occurrence', what number can be given to the chance of getting 'ball 1'?
 - What is the chance of withdrawing an odd-numbered (or even-numbered) ball?

Let the nature answer this

- Take a ball from the urn
- > Record the outcome
- Put it back in the urn
- > Do the experiment 'n' times

ightharpoonup Number of times k^{th} outcome occurred (or **frequency** of k) in a total of n trails

$$N_k(n)$$

 \triangleright The relative frequency of k^{th} outcome

$$f_k(n) = \frac{N_k(n)}{n}$$

- > Statistical Regularity
 - ☐ Averages obtained in long sequences yield same value

Probability defined by von Mises as 'limiting case of relative frequency'

$$\lim_{n\to\infty} f_k(n) = \lim_{n\to\infty} \frac{N_k(n)}{n} = p_k$$

Properties of Relative Frequency

- \triangleright Number of occurrences of an outcome in n trials
 - \square A number between zero and n

$$0 \le N_k(n) \le n$$

- > Relative frequencies are
 - ☐ A number between zero and one
 - \square Divide the above equation by n to get

$$0 \le f_k(n) \le 1$$

Properties of Relative Frequency (cont.)

- > Sum of number of occurrences of all possible outcomes
 - \square Must be n

$$\sum_{k=1}^{K} N_k(n) = n$$

- > Sum of all relative frequencies
 - ☐ Must be 1

$$\sum_{k=1}^{K} f_k(n) = 1$$

