HCME CREDIT Default Risk

STEVEN L TRUONG

Friday, 05/14/2021

Motivation

Motivation

The Bank

Determine if potential clients are capable of repayment to prevent losing money on bad credit clients.

Motivation

The Bank

Determine if potential clients are capable of repayment to prevent losing money on bad credit clients.

Clients

Ensure that people who are capable of repayment are not rejected and help people to achieve their dreams.

Data and tools

Data

Provided by Home Credit through Kaggle.

Language

Python

Modeling

Scikit-learn, xgboost, lightGBM, pandas, numpy.

DataViz

Matplotlib, seaborn

Exploratory data analysis (EDA)

NON-defaulted

Accounts that essentially have good credit.

Defaulted

People that have poor credit or non-existent credit histories.

This is an **imbalance class** problem. The ratio is roughly 11:1

The younger the client, the more likely to get defaulted.

External source of income displays the **difference** between the values of the target. Hence there is some **relationship to the likelihood** of an applicant to repay a loan.

Let's build some models

Use the power of data science and machine learning.

Models comparison (ROC AUC)

Models comparison (ROC AUC)

Models comparison (ROC AUC)

XGBoost wins. (GBT on steroid)

Models comparison (F2 Score)

Models comparison (F2 Score)

Algorithms

Models comparison (F2 Score)

- Metrics chosen: F_betawith beta = 2
- Again, our good buddy
 XGBoost wins.

Optimized XGBoost Model

Optimized XGBoost Model

Train Set

F2 Score

0.463

ROC AUC

0.804

Optimized XGBoost Model

Results

Results

We lean a little bit towards recall (not too strict on precision either)

Results

We lean a little bit towards recall (not too strict on precision either)

Features importance

Mainly external **income sources**, **education**, and **type of loans** determine the decision.

Future Work

Data

Incorporate multiple datasets

Algorithm

Do better on XGBoost and LightGBM

Deployment

Build interactive app and deploy to streamlit/AWS

Thank you

Questions?

Please reach out to me at https://www.linkedin.com/in/luongtruong77/

Steven L Truong

Appendix

- 0.4

- 0.2

- 0.0

- -0.2

- -0.4

Appendix

