Task 1 Predicting HDB Resale Prices

Table of Contents

- 1 Aim & Data of Analysis
- 2 Methodology
- 3 Exploratory Data Analysis
- 4 Model Development Summary
- 5 Future Work

Aim & Data

<u>Aim:</u> This deck outlines the findings from the analysis of building a predictive algorithm to determine the factors affecting prices of residential properties in Singapore.

Data:

117,527 transactions of HDB resale flat prices from Jan 2015 to Dec 2020

To extract the list of the Public Health Institutions (i.e., Hospitals & Polyclinics)

To extract the list of Shopping Malls in Singapore

Methodology

Step 1: Data Preprocessing

Transforming columns in the HDB Resale Dataset to provide more meaningful insights to the model.

(a) Handling remaining lease

Remaining lease was in years and months which is hard for the prediction model to interpret. We will convert to years.

remaining_lease	remaining_lease_temp
61 years 04 months	61
60 years 07 months	60
62 years 05 months	62
62 years 01 month	62
62 years 05 months	62

(b) Removing transaction with remaining lease above 95 years

In Singapore's context, there is a minimum occupancy period (MOP) of 5 years before one can sell their HDB unless there are exceptional circumstances.

month	town	flat_type	block	street_name	remaining_lease
2015- 01	JURONG WEST	3 ROOM	339A	KANG CHING RD	96
2015- 01	KALLANG/WHAMPOA	4 ROOM	38D	BENDEMEER RD	96
2015- 01	KALLANG/WHAMPOA	4 ROOM	5A	UPP BOON KENG RD	96

(c) Extracting median storey

Storey range in the dataset was a range which we extracted the median storey from.

storey_range	storey_median
10 TO 12	11.0
01 TO 03	2.0

Step 2: Feature Extraction

Latitudes & Longitudes of the HDB blocks, and distances to CBD, nearest healthcare facilities. and shopping malls were obtained OneMap API.

(a) Geolocation of HDB blocks

In the dataset, only the block number and street name were provided. In order to calculate the distance to the nearest expressway, latitudes & longitudes have to be obtained via OneMap API.

block	street_name
	ANG MO KIO
	AVE 10
	ANG MO KIO AVE 4

(b) Geolocation of CBD, healthcare instituitions, shopping malls

They were obtained via WIkiPedia and Kaggle.

(c) Proximity of HDB block to facilities

For each of the HDB block, the haversine distance was calculated against the distance to CBD, nearest shopping mall, and healthcare facilities based on their geolocation coordinates.

$$d = 2r \arcsin\left(\sqrt{\sin^2\left(\frac{\varphi_2 - \varphi_1}{2}\right) + \cos(\varphi_1)\cos(\varphi_2)\sin^2\left(\frac{\lambda_2 - \lambda_1}{2}\right)}\right)$$
 Where: $r = \text{radius of the earth}\ (\approx 6366 \text{ km})$
$$\varphi_1, \ \varphi_2 = \text{latitude of points 1 and 2, in radians}$$

$$\lambda_1, \ \lambda_2 = \text{longitude of points 1 and 2, in radians}$$
 Note that φ and λ can be converted from degrees to radians by multiplying by $\pi/180$

Step 3: Model Training

A total of 3 models were built with the aim to predict the resale price and identify the variables that are of high importance.

(a) Data Preparation

Categorical variables have to be one-encoded as regression models cannot handle categorical representation. Numerical variables have to be normalize so that their scales don't disproportionately influence the model.

117527 80%		town_BEDOK				
(Training)	2.0	0.0	0.0			
20%						
(Testing)	2.0	0.0	0.0			
(Testing)	One-hot encoding					

(b) Model Training

3 models were built with resale price as the target variable:

- 1. Multiple Linear Regression
 - 2. Random Forest
 - 3. LightGBM

Step 4: Model Evaluation & Recommendations

Models were evaluated based on RMSE and R², and important variables were identified.

(a) Model Evaluation

The 3 models were evaluated based on RMSE and R², with the lowest RMSE and highest R² as the best performing model.

Model	RMSE	R ²
Model 1 - Multiple Linear Regression	52445.64	0.8736
Model 2 - Random Forest	25648.67	0.9698
Model 3 - LightGBM	31334.87	0.9549

(b) Features Importance

For model 1, the coefficients of the features were analysed. For model 2 and 3, the feature importance was analysed to identify top few data variables important in predicting resale price.

	coef	std err	t	P> t	
const	-1.282e+05	3.74e+04	-3.426	0.001	
flat type	1.522e+04	852.769	17.842	0.000	
town BEDOK	563.2175	1109.710	0.508	0.612	
town BISHAN	8.425e+04	1620.406	51.991	0.000	
town_BUKIT BATOK	-3.469e+04	1478.148	-23.471	0.000	
Output of Regression Model					

	Feature	Importance
0	town	655
5	dist_to_cbd	500
4	remaining_lease	393
2	floor area sqm	382
	Feature Importance Rankir	ng

Exploratory Data Analysis

Figure 1 – Box Plot of Resale Price Against Transaction Year

Figure 2 – Scatter Plot of Resale Price Against Floor Area & Flat Type

- Figure 1 suggests the resale prices seem to be generally consistent throughout the years, with more resale flats reaching
 above \$1million dollars in the later years.
- Figure 2 indicates that other factors such as floor area and flat type also influence resale prices, with larger flats generally commanding higher prices.

Model Development Summary

Model	RMSE	R ²	Impt Variable 1	Impt Variable 2	Impt Variable 3
Model 1 - Multiple Linear Regression	52445.64	0.8736	flat model	town	nearest_shopping_distance
Model 2 - Random Forest	25648.67	0.9699	floor_area_sqm	dist_to_cbd	remaining_lease
Model 3 - LightGBM	31334.87	0.9549	town	dist_to_cbd	remaining_lease

Figure 1 – Model Summary of the 3 models

- A total of 3 models were developed with the aim of predicting Resale Price:
 - 1. Multiple Linear Regression Linear Model
 - 2. Random Forest Non-Linear Model
 - 3. LightGBM Gradient Boosting Model
- Model 2 Random Forest achieved the best performance with the highest *R² (0.9699) and the lowest ^RMSE.

Feature	Coefficient				
flat_model_Terrace	330213.484473				
town_BUKIT TIMAH	240720.136312	Feature floor area sqm	Importance 0.457480		Importance 655
flat_model_Type S2	198134.167596		0.302031	dist_to_cbd	500
flat_model_Improved-Maisonette flat_model_DBSS	174203.444412 136447.402058	remaining_lease flat_type	0.081119 0.029473	remaining_lease floor_area_sqm nearest healthcare dist	393 382 350
flat_model_Type S1	132854.392173	nearest_snopping_dist storey_median	0.024693 0.024474	nearest_shopping_dist	304 195
flat_model_Premium Apartment Loft town MARINE PARADE	122834.320721 118063.671511	nearest_healthcare_dist flat_model_DBSS	0.022896 0.015270	storey_median	16 5
flat_model_Model A-Maisonette	116480.652882	flat_model_Model A town_BISHAN	0.005514 0.002818		
flat_model_Multi Generation	111556.104004				
Figure 2 – Top 10 Fea Importance of Mod		Figure 3 – Top 10 F Importance of Mo		Figure 4 –Feature Importa Model 3	ance of

 Across the 3 models, floor_area_sqm, dist_to_cbd, remaining_lease, and town have been identified as top important variables for determining resale price.

- Larger floor areas generally correlate with higher property values.
- Distance to the Central Business District (CBD) is often a key factor in housing pricing, as **properties closer to the city center** tend to be more expensive.
- Remaining lease is crucial for leasehold properties, as shorter leases can significantly impact valuation.
- Location plays a major role in determining the resale price. Different towns may have distinct pricing trends, amenities, and
 desirability especially the Central (i.e., Bukit Timah, Marine Parade) which are a shorter distance away from CBD.

^{*} R² represents the proportion of the variance in the target variable that is explained by the features in the model, with a value closer to 1 indicating a better fit.

^{6/9}

Future Work

Adding on more data variables as HDB resale prices are influenced by multiple factors. The following elements can also play a significant role:

- > Proximity to Public Transport: Being near MRT stations or bus stops significantly increases convenience and can positively affect resale prices. [Data can be obtained from Land Transport Authority (LTA)'s website]
- > Access to Schools: Living near schools is an important factor for parents to consider, as being within a certain proximity increases the chances of their children securing enrollment. [Data might be obtainable from OneMap]
- ➤ Maturity of the Town: Older, well-established towns like Ang Mo Kio and Toa Payoh tend to have higher resale values due to their infrastructure, history, and established communities. [Data can be obtained from Singapore Department of Statistics (SingStat)]
- ➤ **Demographic Composition**: The makeup of an estate, including the percentage of working adults, elderly residents, and families with children, can influence housing demand. Different demographics may prioritize certain features like proximity to schools or eldercare facilities, which could affect the value of properties in the area. [Data can be obtained from Singapore Department of Statistics (SingStat)]

Task 2 Factors and considerations in building an in-house predictive model for users

Factors & Considerations

- Knowing your stakeholders
 - Different stakeholders have distinct use cases for predictive models.
 - Using HDB resale prices as an example, potential new buyers can benefit from such a tool to determine whether they are paying a fair market rate or being overcharged.
 - On the other hand, HDB planners can leverage the model to analyse key factors influencing resale prices and identify adjustments that could help regulate rising costs more effectively.
- Interpretability of model
 - Not all machine learning models are easily interpretable.
 - While a Neural Network may produce highly accurate predictions, its complexity can make it difficult for non-technical stakeholders to understand or even take actions on the results.
 - This lack of understanding can lead to confusion or even misinterpretation of results, potentially affecting decision-making.
 - Therefore, efforts must be made in striking a balance between accuracy and interpretability, to ensure the model is both effective and usable.
- Model Deployment & Maintenance
 - To ensure the model remains relevant and continues to generate accurate results, it must be regularly retrained and fine-tuned as new data becomes available.
 - Additionally, some of the data used for training may be confidential and should be restricted from unauthorized access to protect privacy and security.
- External Factors
 - Machine Learning Model is not everything as there can be sudden regulations or unforeseen events that can affect the predictions
 - For example, HDB resale prices were heavily influenced by the COVID-19 pandemic as well as Government Cooling Measures