§ 2.2. Практическая работа (решение задач)

Найти интегралы, используя подходящую подстановку:

8.2.2.
$$\int \sqrt{4x-5}dx.$$

8.2.3.
$$\int \frac{dx}{(3x+2)^4}.$$

8.2.4.
$$\int \sin^3 x \cdot \cos x \, dx.$$

8.2.5.
$$\int e^{x^3} \cdot x^2 dx.$$

8.2.6.
$$\int \frac{\ln^5 x \, dx}{x}.$$

$$8.2.7. \qquad \int \frac{\sin x \, dx}{\cos x + 1}.$$

8.2.8.
$$\int \frac{x^2 dx}{x^3 + 1}.$$

8.2.9.
$$\int \frac{\arctan x \, dx}{x^2 + 1}.$$

Найти интегралы с помощью подстановок, предварительно преобразовав подынтегральные выражения:

8.2.11.
$$\int \frac{4x+3}{\sqrt{x^2-5}} dx.$$

8.2.12.
$$\int e^{\sin^2 x} \cdot \sin 2x \, dx.$$

8.2.13.
$$\int \frac{1 - 2\sin x}{\cos^2 x} dx.$$

8.2.14.
$$\int \frac{3x-4}{x^2-4} dx.$$

Найти интегралы, используя подходящую подстановку $x=\psi(t)$:

8.2.16.
$$\int \sqrt{9-x^2} dx.$$

8.2.17.
$$\int \frac{dx}{x\sqrt{x+1}}.$$

$$8.2.18. \qquad \int x\sqrt{2-x}\,dx.$$

$$8.2.19. \qquad \int \frac{\sqrt{x} \, dx}{x+16}.$$

Найти интегралы, используя интегрирование по частям:

8.2.21.
$$\int x \sin x \, dx.$$

8.2.22.
$$\int (2x-1) \cdot e^{3x} dx$$
.

8.2.23.
$$\int \frac{\ln x \, dx}{x^2}.$$

$$8.2.24. \qquad \int x \cdot 2^x \, dx.$$

8.2.25.
$$\int \ln^2 x \, dx.$$

8.2.26.
$$\int x \arctan x \, dx.$$

Найти интегралы:

$$8.2.28. \qquad \int e^x \cdot \sin x \, dx.$$

8.2.29.
$$\int \sin \ln x \, dx.$$

Найти интегралы:

8.2.31.
$$\int \arcsin x \, dx.$$

8.2.32.
$$\int \frac{\ln \ln x}{x} dx.$$

Ответы

8.2.2.
$$\frac{1}{6}\sqrt{(4x-5)^3}+C.8.2.3. -\frac{1}{9(3x+2)^3}+C.$$

8.2.4.
$$\frac{1}{4}\sin^4 x + C$$
. **8.2.5.** $\frac{1}{3}e^{x^3} + C$. **8.2.6.** $\frac{1}{6}\ln^6 x + C$.

8.2.7.
$$-\ln|\cos x + 1| + C$$
. 8.2.8. $\frac{1}{3}\ln|x^3 + 1| + C$. 8.2.9. $\frac{1}{2}\arctan^2 x + C$.

8.2.11.
$$4\sqrt{x^2-5}+3\ln|x+\sqrt{x^2-5}|+C$$
. 8.2.12. $e^{\sin^2 x}+C$. 8.2.13. $\frac{\sin x-2}{\cos x}+C$.

8.2.14.
$$\frac{\ln|x-2|+5\ln|x+2|}{2}+C$$
. 8.2.16. $\frac{x}{2}\sqrt{9-x^2}+\frac{9}{2}\arcsin\frac{x}{3}+C$.

Указание. Сделать замену $x=3\sin t$. Преобразовывая ответ, учесть,

что
$$\sin 2t = \sin\left(2\arcsin\frac{x}{3}\right) = 2\sin\left(\arcsin\frac{x}{3}\right) \cdot \cos\left(\arcsin\frac{x}{3}\right) = 2 \cdot \frac{x}{3}\sqrt{1-\left(\frac{x}{3}\right)^2}$$
.

В последнем равенстве использовано тождество $\cos(\arcsin x) = \sqrt{1-x^2}$.

8.2.17.
$$\left| \frac{\sqrt{x+1}-1}{\sqrt{x+1}+1} \right| + C$$
. **8.2.18.** $\frac{2}{5}\sqrt{(2-x)^5} - \frac{4}{3}\sqrt{(2-x)^3} + C$.

8.2.19.
$$2\sqrt{x} - 8 \arctan \frac{\sqrt{x}}{4} + C$$
. 8.2.21. $\sin x - x \cdot \cos x + C$. 8.2.22. $\frac{6x - 5}{9} \cdot e^{3x} + C$.

8.2.23.
$$C - \frac{1 + \ln x}{x}$$
. 8.2.24. $\frac{2^x (x \ln 2 - 1)}{\ln^2 2} + C$. 8.2.25. $x(\ln^2 x - 2 \ln x + 2) + C$.

8.2.26.
$$\frac{(x^2+1) \arctan x - x}{2} + C$$
. 8.2.28. $\frac{e^x(\sin x - \cos x)}{2} + C$.

8.2.29.
$$\frac{x}{2}(\sin \ln x - \cos \ln x) + C$$
. 8.2.31. $x \arcsin x + \sqrt{1-x^2} + C$.

8.2.32.
$$\ln x(\ln \ln x - 1) + C$$
.