1 Distribution Theory for Normal Samples

We have stated before the following proposition, which we prove again here to remind ourselves.

Definition 1. An orthonormal matrix O satisfies the identity $O^tO = I_n$, where I_n is the $n \times n$ identity matrix. [Here M^t denotes the *transpose* of the matrix M. The entry in the ith row and jth column of M^t is $M^t_{i,j} = M_{j,i}$.]

The rows of an orthnormal matrix form an orthnormal vector basis of \mathbb{R}^n . Also, an orthnormal matrix preserves length:

$$\sum_{i=1}^{n} (O\mathbf{y})_{i}^{2} = \|O\mathbf{y}\|^{2} = \|\mathbf{y}\|^{2} = \sum_{i=1}^{n} y_{i}^{2}.$$
 (1)

Proposition 1. Let $\mathbf{X} = (X_1, \dots, X_n)$ be a vector of i.i.d. standard normal random variables, and let O be an orthonormal transformation. The random vector $\mathbf{Y} = O\mathbf{X}$ is also a vector of independent standard normal random variables

Proof. First, if $T: \mathbb{R}^n \to \mathbb{R}^n$ is a linear transformation, represented by multiplication by the matrix M, then T is invertible if and only if $\det(M) \neq 0$, and then the T^{-1} is obtained by matrix multiplication by M^{-1} . Moreover, the Jacobian of T^{-1} is the determinant of M^{-1} .

By Definition 1,

$$1 = \det(I_n) = \det(O^t O) = \det(O)^2,$$

and det(O) = 1. We conclude that the Jacobian of O^{-1} is 1. Also, by the definition of orthonormality, we see that $O^{-1} = O^t$, which is also an orthonormal matrix.

We thus have by the transformation formula,

$$f_{\mathbf{Y}}(\mathbf{y}) = (2\pi)^{-n/2} \exp\left(-\frac{1}{2} \sum_{i=1}^{n} (O^{t} \mathbf{y})_{i}^{2}\right) = (2\pi)^{-n/2} \exp\left(-\frac{1}{2} \sum_{i=1}^{n} y_{i}^{2}\right).$$

The second inequality follows from (1). This proves that the density of Y is a product of standard normal densities, hence proving the Proposition.

Theorem 2. Let X_1, \ldots, X_n be a vector of i.i.d. standard normal random variables, and let

$$\bar{X} \stackrel{\text{def}}{=} \frac{1}{n} \sum_{i=1}^{n} X_i$$
, and $S^2 \stackrel{\text{def}}{=} \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$.

Then \bar{X} and S^2 are independent.

Proof. It is always possible, given a vector of unit length in \mathbb{R}^n , to find n-1 other vectors so that the collection of n vectors forms an orthonormal basis in \mathbb{R}^n . In particular, given that the first row of a matrix is equal to the vector $(n^{-1/2}, n^{-1/2}, \dots, n^{-1/2})$, we can complete this matrix so that it is an orthonormal matrix O. [A matrix is orthonormal if and only if its rows form an orthonormal basis in \mathbb{R}^n .]

Let Y = OX. By the rules for matrix multiplication, we have that $Y_1 = n^{1/2}\bar{X}$. Since an orthonormal transformation preserves the length of a vector, we have

$$\sum_{i=1}^{n} Y_i^2 = \sum_{i=1}^{n} X_i^2$$

$$Y_1^2 + \sum_{i=2}^{n} Y_i^2 = \sum_{i=1}^{n} X_i^2$$

$$\sum_{i=1}^{n} X_i^2 - n\bar{X}^2 = \sum_{i=2}^{n} Y_i^2$$

$$S^2 = \frac{1}{n-1} \sum_{i=2}^{n} Y_i^2.$$

To summarize, we have shown that

$$\bar{X} = n^{-1/2} Y_1,$$

$$S^2 = \frac{1}{n-1} \sum_{i=2}^n Y_i^2.$$

Thus, \bar{X} depends only on Y_1 , and S^2 depends only on (Y_2, \ldots, Y_n) . Since Y_1 and (Y_2, \ldots, Y_n) are independent, it follows that \bar{X} and S^2 are independent.

Corollary 3. Let X_1, \ldots, X_n be a random sample from a $N(\mu, \sigma^2)$ distribution. Then \bar{X} and S^2 are independent.

Proof. Let $Z_i = (X_i - \mu)/\sigma$, for i = 1, ..., n. Then $(Z_1, ..., Z_n)$ is a vector of independent and identically distributed standard normal random variables. We can write

$$\bar{Z} = \frac{\bar{X} - \mu}{\sigma}$$

$$\bar{X} = \sigma \bar{Z} + \mu \,,$$

and

$$\frac{1}{n-1} \left(\sum_{i=1}^{n} (Z_i - \bar{Z})^2 \right) = \frac{1}{\sigma^2} \frac{1}{n-1} \left(\sum_{i=1}^{n} (X_i - \bar{X})^2 \right)$$
$$S^2 = \frac{\sigma^2}{n-1} \left(\sum_{i=1}^{n} (Z_i - \bar{Z})^2 \right).$$

Since \bar{Z} and $\frac{1}{n-1}\sum_{i=1}^n(Z_i-\bar{Z})^2$ are independent by Theorem 2, it follows that \bar{X} and S^2 are independent.

We know determine the distribution of S^2 :

Proposition 4. If X_1, \ldots, X_n is a random sample from a $N(\mu, \sigma^2)$ distribution, then the distribution of $((n-1)/\sigma^2)S^2$ is chi-squared with n-1 degrees of freedom.

Proof. We have

$$\sum_{i=1}^{n} (X_i - \mu)^2 = \sum_{i=1}^{n} (X_i - \bar{X} + \bar{X} - \mu)^2$$

$$= \sum_{i=1}^{n} (X_i - \bar{X})^2 + 2(X_i - \bar{X})(\bar{X} - \mu) + (\bar{X} - \mu)^2$$

$$= \sum_{i=1}^{n} (X_i - \bar{X})^2 + 2(\bar{X} - \mu) \sum_{i=1}^{n} (X_i - \bar{X}) + n(\bar{X} - \mu)^2$$

$$= \sum_{i=1}^{n} (X_i - \bar{X})^2 + n(\bar{X} - \mu)^2.$$

Now V_3/σ^2 has a chi-squared distribution with n degrees of freedom, as it is the sum of n independent standard normals. V_2/σ^2 has a chi-squared distribution with 1 degree of freedom, as it is the square of a standard normal. Furthermore, V_1 and V_2 are independent by Corollary 3. If M_i denotes the moment generating function for V_i/σ^2 , then we have that

$$M_3(t) = M_1(t)M_2(t),$$

and so

$$M_1(t) = M_3(t)/M_2(t)$$
.

The moment generating function for a chi-squared with ν degrees of freedom is $(1-2t)^{-\nu/2}$. Thus

$$M_1(t) = \frac{(1-2t)^{-n/2}}{(1-2t)^{-1/2}} = (1-2t)^{-(n+1)/2}.$$

It follows that V_2/σ^2 has a chi-squared distribution with n-1 degrees of freedom.

We have seen, by moment generating functions, that the sum of independent normal random variables is again normal. Hence it follows that \bar{X} is normal with mean μ and variance σ^2/n , when X_1, \ldots, X_n is a sample from a $N(\mu, \sigma^2)$ distribution. We now have enough information to determine the joint distribution of \bar{X} and S^2 .

Corollary 5. Let X_1, \ldots, X_n be a random sample from a $N(\mu, \sigma^2)$ distribution. Then \bar{X} and S^2 are independent, \bar{X} is $N(\mu, \sigma^2/n)$, and $\frac{n-1}{\sigma^2}S^2$ is chi-squared with n-1 degrees of freedom.