waxwing 0.0198';	= '	266.8	0.609	0.3488	0.3831
partridge 0.0217';	= 1	266.8	0.642	0.3452	0.3792
ostrich 0.0229';	= '	300.0	0.680	0.3070	0.3372
merlin 0.0222';	= '	336.4	0.684	0.2767	0.3037
1innet 0.0243';	= '	336.4	0.721	0.2737	0.3006
oriole 0.0255';	= '	336.4	0.741	0.2719	0.2987
chickadee 0.0241';	= '	397.5	0.743	0.2342	0.2572
ibis 0.0264';	= '	397.5	0.783	0.2323	0.2551
pelican 0.0264';	= '	477.0	0.814	0.1957	0.2148
flicker 0.0284';	= '	477.0	0.846	0.1943	0.2134
hawk 0.0289';	= '	477.0	0.858	0.1931	0.2120
hen 0.0304';	= '	477.0	0.883	0.1919	0.2107
osprey 0.0284';	= '	556.5	0.879	0.1679	0.1843
parakeet 0.0306';	= '	556.5	0.914	0.1669	0.1832
dove 0.0314';	= '	556.5	0.927	0.1663	0.1826
rook 0.0327';	= '	636.0	0.977	0.1461	0.1603
grosbeak 0.0335';	= '	636.0	0.990	0.1454	0.1596
drake 0.0373';	= '	795.0	1.108	0.1172	0.1284
tern 0.0352';	= '	795.0	1.063	0.1188	0.1302
rail 0.0386';	= '	954.0	1.165	0.0997	0.1092
cardinal 0.0402';	= '	954.0	1.196	0.0988	0.1082
ortolan 0.0402';	= '	1033.5	1.213	0.0924	0.1011
<pre>bluejay 0.0415';</pre>	= '	1113.0	1.259	0.0861	0.0941
finch 0.0436';	= '	1113.0	1.293	0.0856	0.0937
<pre>bittern 0.0444';</pre>	= '	1272.0	1.345	0.0762	0.0832
pheasant 0.0466';	= '	1272.0	1.382	0.0751	0.0821
bobolink 0.0470';	= '	1431.0	1.427	0.0684	0.0746
plover 0.0494';	= '	1431.0	1.465	0.0673	0.0735
lapwing 0.0498';	= '	1590.0	1.502	0.0623	0.0678
falcon	= '	1590.0	1.545	0.0612	0.0667

```
0.0523';
         = ' 2156.0
                               1.762
bluebird
                                               0.0476 0.0515
0.0586';
acsr = input('Type the conductor code name in lower case letters: ','s');
if exist (acsr, 'var');
    fprintf('\nElectrical Characteristics of %s ACSR',acsr);
    fprintf('\n\tAl Area\t Outside Diameter\t\t AC Resistance, 60 Hz\t\t Ds,ft');
    fprintf('\n\tkcmil\t\t inch\t\t\t 20C, ohm/mi\t 50C, ohm/mi');
    fprintf('\n');
    disp(eval(acsr));
else
    fprintf('\nACSR code name cannot be found!');
    TA = input('\nTry again (Y/N)? ','s');
    fprintf('\n');
    switch TA
       case 'Y'
           acsr = input('Type the conductor code name in lower case letters:
','s');
if exist (acsr, 'var');
    fprintf('\nElectrical Characteristics of %s ACSR',acsr);
    fprintf('\n\tAl Area\t Outside Diameter\t\t AC Resistance, 60 Hz\t\t Ds,ft');
    fprintf('\n\tkcmil\t\t inch\t\t\t 20C, ohm/mi\t 50C, ohm/mi');
    fprintf('\n');
    disp(eval(acsr));
else
    fprintf('\nACSR code name not found!');
    fprintf('\nPlease verify code name.');
    fprintf('\nRun the program again');
end
       otherwise
           clc;
    end
end
```