Introduction to Computer Graphics *Triangle Meshes*

Prof. Dr. Mario Botsch
Computer Graphics & Geometry Processing

Polygon Meshes

- "I hate meshes. I cannot believe how hard this is. Geometry is hard."
- David Baraff, Senior Research Scientist, Pixar Animation Studios

Graph {*V*, *E* }

Graph $\{V, E\}$ Vertices $V = \{A, B, C, ..., K\}$


```
Graph \{V, E\}
Vertices V = \{A, B, C, ..., K\}
Edges E = \{(AB), (AE), (CD), ...\}
```



```
Graph \{V, E\}

Vertices V = \{A, B, C, ..., K\}

Edges E = \{(AB), (AE), (CD), ...\}

Faces F = \{(ABE), (EBF), (EFIH), ...\}
```

Graph Embedding

Embedding: Graph is embedded in \mathbb{R}^d , if each vertex is assigned a position in \mathbb{R}^d .

Triangulation

Triangulation: Graph where every face is a triangle.

Why...?

- → simplifies data structures
- simplifies rendering
- → simplifies algorithms
- → by definition, triangle is planar
- any polygon can be triangulated

Connectivity: vertices/nodes and triangles

$$\mathcal{V} = \{v_1, \dots, v_n\}$$

$$\mathcal{F} = \{f_1, \dots, f_m\} , \quad f_i \in \mathcal{V} \times \mathcal{V} \times \mathcal{V}$$

Geometry: vertex positions

$$\mathcal{P} = \{\mathbf{p}_1, \dots, \mathbf{p}_n\} , \quad \mathbf{p}_i \in \mathbb{R}^3$$

- Advantages of triangle meshes
 - Piecewise linear approximation → error is $O(h^2)$

- Advantages of triangle meshes
 - Piecewise linear approximation → error is $O(h^2)$
 - Error inversely proportional to #faces

- Advantages of triangle meshes
 - Piecewise linear approximation → error is $O(h^2)$
 - Error inversely proportional to #faces
 - Arbitrary topology surfaces

- Advantages of triangle meshes
 - Piecewise linear approximation \rightarrow error is $O(h^2)$
 - Error inversely proportional to #faces
 - Arbitrary topology surfaces
 - Piecewise smooth surfaces

- Advantages of triangle meshes
 - Piecewise linear approximation → error is $O(h^2)$
 - Error inversely proportional to #faces
 - Arbitrary topology surfaces
 - Piecewise smooth surfaces
 - Curvature adaptive sampling

- Advantages of triangle meshes
 - Piecewise linear approximation \rightarrow error is $O(h^2)$
 - Error inversely proportional to #faces
 - Arbitrary topology surfaces
 - Piecewise smooth surfaces
 - Curvature adaptive sampling
 - Efficient GPU-based rendering

- Data structures
- Ray Intersection
- Lighting

Euler Formula

 For a closed polygonal mesh of genus g, the relation of the number V of vertices, E of edges, and F of faces is given by Euler's formula

$$V - E + F = 2(1-g)$$

- The term 2(1-g) is called Euler characteristic χ
- χ only depends on the geometric shape, not on its triangulation (cool!)

Euler Formula

• The Euler formula is important / cool, because it is related to beer mugs, soccer, and tattoos. (and because it helps us design good data structures)

Topology: Genus

Genus: Maximal number of closed simple cutting curves that do not disconnect the graph into multiple components.

(Informally, the number of holes or handles.)

Euler Formula

Euler formula

$$V - E + F = 2(1 - g) \approx 0$$

Split edges into halfedges

$$H = 2E$$

Focus on triangle meshes

$$H = 3F$$

Euler Formula

Express E in terms of F

$$V - \frac{3}{2}F + F \approx 0 \quad \Leftrightarrow \quad V \approx \frac{1}{2}F$$

Express F in terms of E

$$V - E + \frac{2}{3}E \approx 0 \Leftrightarrow V \approx \frac{1}{3}E$$

Valence: How many halfedges per vertex?

$$V \approx \frac{1}{3}E = \frac{1}{6}H$$

Mesh Statistics

Triangle meshes

- F ≈ 2V
- E ≈ 3V
- Average valence = 6

Quad meshes

- F ≈ V
- E ≈ 2V
- Average valence = 4

Soccer Ball

 How many pentagon/hexagons do we need to make a soccer ball?

Face Set Data Structure

- Store for each face:
 - 3 positions
- Used in STL file format
 - not efficient!

Triangles					
$x_{11} y_{11} z_{11}$	x_{12} y_{12} z_{12}	x_{13} y_{13} z_{13}			
$x_{21} y_{21} z_{21}$	$x_{22} y_{22} z_{22}$	x_{23} y_{23} z_{23}			
• • •	• • •	• • •			
x_{F1} y_{F1} z_{F1}	x_{F2} y_{F2} z_{F2}	\mathbf{x}_{F3} \mathbf{y}_{F3} \mathbf{z}_{F3}			

36 B/f = 72 B/v

Indexed Face Set Data Structure

- Store for each vertex
 - its position
- Store for each face
 - indices corresponding to its thee vertices
- Used in many file formats
 - OFF, OBJ, VRML

Vertices				
	\mathbf{x}_1	y 1	z_1	
• • •				
	ΧV	Уv	Zv	

Triangles				
\mathtt{i}_{11}	\mathtt{i}_{12}	i_{13}		
	• • •			
	• • •			
	• • •			
	• • •			
$\mathtt{i}_{\mathrm{F}1}$	i_{F2}	i _{F3}		

$$12 B/v + 12 B/f = 36 B/v$$

Face-Based Connectivity

- Vertex:
 - position
 - 1 face
- Face:
 - 3 vertices
 - 3 face neighbors

64 B/v no edges!

Edge-Based Connectivity

- Vertex
 - position
 - 1 edge
- Edge
 - 2 vertices
 - 2 faces
 - 4 edges
- Face
 - 1 edge

120 B/v edge orientation?

Halfedge-Based Connectivity

Vertex

- position
- 1 halfedge
- Halfedge
 - 1 vertex
 - 1 face
 - 1, 2, or 3 halfedges
- Face
 - 1 halfedge

96 to 144 B/v no case distinctions during traversal

1. Start at vertex

- 1. Start at vertex
- 2. Outgoing halfedge

- 1. Start at vertex
- 2. Outgoing halfedge
- 3. Opposite halfedge

- 1. Start at vertex
- 2. Outgoing halfedge
- 3. Opposite halfedge
- 4. Next halfedge

- 1. Start at vertex
- 2. Outgoing halfedge
- 3. Opposite halfedge
- 4. Next halfedge
- 5. Opposite

- 1. Start at vertex
- 2. Outgoing halfedge
- 3. Opposite halfedge
- 4. Next halfedge
- 5. Opposite
- 6. Next
- 7. ...

Halfedge-Based Libraries

- CGAL
 - www.cgal.org
 - Computational geometry
- OpenMesh
 - www.openmesh.org
 - Mesh processing
- Surface mesh of our exercises
 - Like OpenMesh, but easier to use
 - Cool C++11 features ;-)

Euler Formula

• The Euler formula is important / cool, because it is related to beer mugs, soccer, and tattoos. (and because it helps us design good data structures)

Euler Formula

 The Euler formula gives a cool tattoo;-)

Triangle Meshes

Data structures

Ray Intersection

Lighting

Meaningful linear combinations of points

- Affine combination
$$\sum_i \alpha_i \mathbf{x}_i$$
 with $\sum_i \alpha_i = 1$

- Convex combination
$$\sum_i \alpha_i \mathbf{x}_i$$
 with $\sum_i \alpha_i = 1 \land \alpha_i \geq 0$

- Meaningful linear combinations of points

- Affine combination
$$\sum_i \alpha_i \mathbf{x}_i$$
 with $\sum_i \alpha_i = 1$

- Convex combination
$$\sum_i \alpha_i \mathbf{x}_i$$
 with $\sum_i \alpha_i = 1 \land \alpha_i \geq 0$

Represent point as affine combination of A,B,C

$$- \mathbf{P} = \alpha \mathbf{A} + \beta \mathbf{B} + \gamma \mathbf{C} \quad \text{with} \quad \alpha + \beta + \gamma = 1$$

Represent point as affine combination of A,B,C

$$- \mathbf{P} = \alpha \mathbf{A} + \beta \mathbf{B} + \gamma \mathbf{C} \quad \text{with} \quad \alpha + \beta + \gamma = 1$$

Unique for non-colinear A,B,C

$$\begin{bmatrix} \mathbf{A}_x & \mathbf{B}_x & \mathbf{C}_x \\ \mathbf{A}_y & \mathbf{B}_y & \mathbf{C}_y \\ 1 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix} = \begin{bmatrix} \mathbf{P}_x \\ \mathbf{P}_y \\ 1 \end{bmatrix}$$

Represent point as affine combination of A,B,C

$$- \mathbf{P} = \alpha \mathbf{A} + \beta \mathbf{B} + \gamma \mathbf{C} \quad \text{with} \quad \alpha + \beta + \gamma = 1$$

- Unique for non-colinear A,B,C
- Ratio of <u>signed</u> triangle areas

$$\alpha(\mathbf{P}) = \frac{\operatorname{area}(\mathbf{P}, \mathbf{B}, \mathbf{C})}{\operatorname{area}(\mathbf{A}, \mathbf{B}, \mathbf{C})}$$

$$\beta(\mathbf{P}) = \frac{\operatorname{area}(\mathbf{P}, \mathbf{C}, \mathbf{A})}{\operatorname{area}(\mathbf{A}, \mathbf{B}, \mathbf{C})}$$

$$\gamma(\mathbf{P}) = \frac{\operatorname{area}(\mathbf{P}, \mathbf{A}, \mathbf{B})}{\operatorname{area}(\mathbf{A}, \mathbf{B}, \mathbf{C})}$$

- Represent point as affine combination of A,B,C
 - $-\mathbf{P} = \alpha \mathbf{A} + \beta \mathbf{B} + \gamma \mathbf{C}$ with $\alpha + \beta + \gamma = 1$
 - Unique for non-colinear A,B,C
 - Ratio of <u>signed</u> triangle areas
 - $-\alpha(\mathbf{P}), \beta(\mathbf{P}), \gamma(\mathbf{P})$ are linear functions

Represent point as affine combination of A,B,C

$$- \mathbf{P} = \alpha \mathbf{A} + \beta \mathbf{B} + \gamma \mathbf{C} \quad \text{with} \quad \alpha + \beta + \gamma = 1$$

- Unique for non-colinear A,B,C
- Ratio of <u>signed</u> triangle areas
- $-\alpha(\mathbf{P}), \beta(\mathbf{P}), \gamma(\mathbf{P})$ are linear functions

Gives inside/outside information

Ray-Triangle Intersection

Point on plane by barycentric coordinates

$$\mathbf{x} = \alpha \mathbf{A} + \beta \mathbf{B} + \underbrace{(1 - \alpha - \beta)}_{=\gamma} \mathbf{C}$$

Solve 3×3 linear system for t, α, β

$$\mathbf{o} + t\mathbf{d} = \alpha \mathbf{A} + \beta \mathbf{B} + (1 - \alpha - \beta)\mathbf{C}$$

Check inside condition

$$0 \le \alpha, \beta, \gamma \le 1$$

See Pharr 3.6.2 for details

Triangle Meshes

- Data structures
- Ray Intersection
- Lighting

Ray Tracing of Tri-Meshes

Flat Shading

- Use constant face normal for lighting
 - Facetted appearence
 - Mach band effect

Phong Shading

- Use smooth normal field for lighting
 - Compute normal vectors per vertex
 - Barycentric interpolation of normal vectors
 - Use interpolated normals for lighting

Per-Vertex Normals

Per-triangle normal vector

$$\mathbf{n}_T = rac{(\mathbf{b} - \mathbf{a}) imes (\mathbf{c} - \mathbf{a})}{\|(\mathbf{b} - \mathbf{a}) imes (\mathbf{c} - \mathbf{a})\|}$$

- Per-vertex normal vector
 - Average of incident triangles' normals
 - Weighted by area or opening angle

$$\mathbf{n}_{V} = \frac{\sum_{T_{i} \ni V} w_{T_{i}} \cdot \mathbf{n}_{T_{i}}}{\left\| \sum_{T_{i} \ni V} w_{T_{i}} \cdot \mathbf{n}_{T_{i}} \right\|}$$

Per-Vertex Normals

Interpolate Vertex Normals

Intersection point with barycentric coordinates

$$\mathbf{x} = \alpha \mathbf{A} + \beta \mathbf{B} + \gamma \mathbf{C}$$

Linearly interpolate vertex normals

$$\mathbf{n}(\mathbf{x}) = \alpha \, \mathbf{n_A} + \beta \, \mathbf{n_B} + \gamma \, \mathbf{n_C}$$

Use n(x) for lighting point x

Shading

Flat Shading

Phong Shading

Literature

- Botsch, Kobbelt, Pauly, Alliez, Levy: *Polygon Mesh Processing*, AK Peters, 2010
 - Chapters 1.3 & 2

- Pharr, Humphreys: Physically Based Rendering, Morgan Kaufmann, 2004.
 - Chapter 3

