MATH 538 - Lie Algebra

ARessegetes Stery

August 30, 2024

Contents

1	Lie Algebra	2

2 An Algebraic Perspective on Lie Algebra

2

1 Lie Algebra

Definition 1.1 (Lie Algebra). Let \mathbb{F} be a field. A **Lie Algebra** is a vector space L over \mathbb{F} equipped with a bilinear map $[\cdot,\cdot]:L\times L\to L$ (the **Lie Bracket**) satisfying the following properties:

- Alternating Property: [x, x] = 0 for all $x \in L$. (For char $\mathbb{F} \neq 2$, this is equivalent to <u>antisymmetry</u>: [x, y] = -[y, x] for all $x, y \in L$.)
- *Jacobi Identity*: [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 for all $x, y, z \in L$.

Example 1.2. Consider $V = \mathbb{F}^n$. Notice that $\dim(\operatorname{End}(V)) = \dim(\operatorname{Mat}_n(\mathbb{F})) = n^2$ as vector spaces over \mathbb{F} ; and they are further isomorphic. We can further show that they are isomorphic as Lie algebras.

Proposition 1.3. Define the Lie bracket on End(V) by [f,g]=fg-gf (with the product the composition of functions). Then End(V) is a Lie Algebra.

Proof. It suffices to verify that Lie bracket satisfies the alternating property and the Jacobi identity.

- Alternating Property: [f, f] = ff ff = 0.
- Jacobi Identity:

$$\begin{split} [f,[g,h]] + [g,[h,f]] + [h,[f,g]] &= [f,gh-hg] + [g,hf-fh] + [h,fg-gf] \\ &= f(gh-hg) - (gh-hg)f + g(hf-fh) - (hf-fh)g + h(fg-gf) - (fg-gf)h \\ &= fgh-fgh-ghf+hgf+ghf-hfg-hfg+fhg+fhg-fgh-gfh+gfh \\ &= 0. \end{split}$$

Bi-linearity results directly from the linearity of functions.

Notation. The Lie algebra $(\text{End}(V), [\cdot, \cdot])$ is denoted by $\mathfrak{gl}(V)$.

Example 1.4. Let $V = \mathbb{R}^n$. Then as vector spaces $\operatorname{End}(V) \simeq \operatorname{Mat}_n(\mathbb{R}) \simeq \mathfrak{gl}(V)$ where [A, B] = AB - BA for $A, B \in \operatorname{Mat}_n(\mathbb{R})$.

Definition 1.5 (Lie Subalgebra). A **Lie Subalgebra** $K \subseteq L$ is a subspace of s.t. for all $x, y \in K$, $[x, y] \in K$.

Definition 1.6 (Linear Algebra). Any subalgebra of $\mathfrak{gl}(V)$ is called a **linear algebra**.

2 An Algebraic Perspective on Lie Algebra