Industry-Academia Tour

Joseph Chuang-Chieh Lin

Economics and Computation Lab,
Department of Computer Science & Engineering,
National Taiwan Ocean University

9 October 2025

Outline

- Self Introduction
- Teaching Courses
- Focus of The Junior Project

https://josephcclin.github.io

Joseph Chuang-Chieh Lin

Assistant Professor

Department of Computer Science and Engineering National Taiwan Ocean University

Keelung City 202301

Taiwan

Tel: +886-2-2462-2192#6684 Fax: +886-2-2462-3249

Email: josephcclin AT MAIL NTOU EDU TW

EC L/IB Welcome to our lab:

Economics and Computation Laboratory

Me @ University of Tokyo, January 2024.

Background	Research	Curriculum Vitae	Running
Mathematics Genealogy	Teaching	Publications	Interest

Education

- BS.: Mathematics, National Cheng Kung University
- MS.: CSIE, National Chi Nan University
 - Supervisor: R. C. T. Lee Algorithms
- Ph.D.: CSIE (2011), National Chung Cheng University
 - Supervisors: Maw-Shang Chang & Peter Rossmanith
 FPT + Randomized Algorithms

9 Oct 2025

Work Experience

- Postdoc in Academia Sinica (2011–2018).
- Quantitative Analyst (intern) @ Point72/Cubist Systematic Strategies (2018–2020).
- Quantitative Analyst @ Seth Technologies Inc. (2020–2021).
- Assistant Professor @ Dept. CSIE, Tamkang University (2021–2024).

Research Interests

Algorithmic Game Theory

 Equilibrium Computation, Computational Social Choice, Mechanism Design, etc.

Machine Learning Theory

Online Learning with No-Regret, Bandit Problems, etc.

Design of TCS Algorithms

 Randomized Algorithms, Fixed-Parameter Algorithms, Approximation Algorithms, Online Algorithms.

9 Oct 2025

Ongoing Projects

- Algorithmic Game Theory with Machine-Learned Predictions.
 - Taiwan (NSTC) ↔ Netherlands (NWO)
 - Period: July 2025–June 2025.
- Parameterized Online Learning for Min-Max Envy Resource Allocation and Team Formation.
 - Taiwan (NSTC) ↔ France (BFT)
 - Period: January 2024-December 2025.
- A Study on Group Competition Game of Real-Policy Making Based on Equilibria Existence and Gradient Algorithms.
 - Independent NSTC Project
 - Period: August 2023-July 2026.

Outline

- Self Introduction
- Teaching Courses
- 3 Focus of The Junior Project

Teaching Courses

- Undergraduates:
 - Introduction to Programming (II) [EMI]
 - Data Structures
- Graduates:
 - Economics and Computation [EMI]
 - Randomized Algorithms [EMI]
 - Mathematics for Machine Learning [EMI]

Outline

- Self Introduction
- 2 Teaching Courses
- Focus of The Junior Project

Some fairness concepts

Some fairness concepts

Some fairness concepts

Two-Partition Problem

Given a multiset S of positive integers, determine if it is possible to partition S into two disjoint subsets, say S_1 and S_2 , such that the sum of the integers in S_1 is equal to the sum of the integers in S_2 .

•
$$S = \{1, 5, 11, 5\}$$

9 Oct 2025

Two-Partition Problem

Given a multiset S of positive integers, determine if it is possible to partition S into two disjoint subsets, say S_1 and S_2 , such that the sum of the integers in S_1 is equal to the sum of the integers in S_2 .

- $S = \{1, 5, 11, 5\}$
- $S_1 = \{11\},$ $S_2 = \{1, 5, 5\}.$

Two-Partition Problem

Given a multiset S of positive integers, determine if it is possible to partition S into two disjoint subsets, say S_1 and S_2 , such that the sum of the integers in S_1 is equal to the sum of the integers in S_2 .

- $S = \{1, 5, 11, 5\}$
- $S_1 = \{11\},$ $S_2 = \{1, 5, 5\}.$

- $S = \{3, 5, 8, 10, 11, 14, 17, 19, 21, 22, 25, 33\}.$
- $S_1 = \{33, 25, 22, 14\},\$ $S_2 = \{3, 5, 8, 10, 11, 17, 19, 21\}.$

NP-complete

Two-Partition Problem

Given a multiset S of positive integers, determine if it is possible to partition S into two disjoint subsets, say S_1 and S_2 , such that the sum of the integers in S_1 is equal to the sum of the integers in S_2 .

- $S = \{1, 5, 11, 5\}$
- $S_1 = \{11\},$ $S_2 = \{1, 5, 5\}.$

- $S = \{3, 5, 8, 10, 11, 14, 17, 19, 21, 22, 25, 33\}.$
- $S_1 = \{33, 25, 22, 14\},\$ $S_2 = \{3, 5, 8, 10, 11, 17, 19, 21\}.$

Why NP-complete?

Subset Sum Problem (NP-complete)

- Given $X = \{x_1, x_2, \dots, x_n\}$, for $x_i \in \mathbb{N} \cup \{0\}$ for $i = 1, 2, \dots, n$ and an integer $K \geq 0$.
- **Output**: a subset $S \subseteq X$ such that $\sum_{x \in S} x = K$.

Why NP-complete?

Subset Sum Problem (NP-complete)

- Given $X = \{x_1, x_2, \dots, x_n\}$, for $x_i \in \mathbb{N} \cup \{0\}$ for $i = 1, 2, \dots, n$ and an integer $K \geq 0$.
- **Output**: a subset $S \subseteq X$ such that $\sum_{x \in S} x = K$.
- Try the reduction from the subset sum problem.

Envy-free up to any good (EFX)

EFX

 $\mathcal{A}=(A_1,\ldots,A_n)$ is an EFX allocation of a set M of indivisible goods to a set N of agents if for every pair of agents $i,j\in N$ it holds that

$$v_i(A_i) \ge v_i(A_j \setminus \{g\})$$
 for every good $g \in A_j$,

9 Oct 2025

Envy-free up to any good (EFX)

EFX

 $\mathcal{A}=(A_1,\ldots,A_n)$ is an EFX allocation of a set M of indivisible goods to a set N of agents if for every pair of agents $i,j\in N$ it holds that

$$v_i(A_i) \geq v_i(A_j \setminus \{g\})$$
 for every good $g \in A_j$,

Example

Agents $N=\{1,2,3\}$; goods $M=\{a,b,c,d,e\}$. All agents share the same additive valuation v with v(a)=v(b)=v(c)=v(d)=v(e)=1, Then $A_1=\{a,b\},\ A_2=\{c,d\},\ A_3=\{e\}$ is an EFX allocation.

Envy-free up to any good (EFX)

EFX

 $\mathcal{A}=(A_1,\ldots,A_n)$ is an EFX allocation of a set M of indivisible goods to a set N of agents if for every pair of agents $i,j\in N$ it holds that

$$v_i(A_i) \ge v_i(A_j \setminus \{g\})$$
 for every good $g \in A_j$,

Example

Agents $N=\{1,2,3\}$; goods $M=\{a,b,c,d,e\}$. All agents share the same additive valuation v with v(a)=v(b)=v(c)=v(d)=v(e)=1, Then $A_1=\{a,b\},\ A_2=\{c,d\},\ A_3=\{e\}$ is an EFX allocation.

 OPEN PROBLEM: Does there always exists an EFX allocation for m indivisible goods to n ≥ 4 agents?

A Take-Home Problem

Question

Given N agents and M indivisible goods, where $N \ge M$, does an EFX allocation always exist? Why?

Thank you!

Questions?

18 / 18