Collaborative Manipulation Pipeline

Outline

- Overview
- Implementation details
- Current demonstrations
- Pros and Cons
- Next steps

SBPL Demo Framework Motivation and Design Goals

Current State:

- Demos are time consuming and have to be made from scratch
- Past demos largely cannot be recreated or reused

Design Goals:

- 1. To enable multi-robot manipulation tasks (quadcopter projects out of scope)
- 2. Allow researchers to quickly script demos that feature their area of interest
- 3. Maintain demonstration code that can be reused
- 4. Allow independent development on robots on differing platforms

ROS Architecture

Tatooine Indigo

Alan1 Groovy

PR2 Local Master

Groovy ⇔ Indigo Moveit Interface

Actions:

- Move_base
- Move arm
- Torso_controller
- Point_head
- TF_lookup
- Gripper Cmds

Topics:

Raw sensor data

roslaunch sbpl_multimaster sbpl_hub.launch Rocon Hub (Redis Server) @Dagobah:6830 **SBPL** LAN Rocon Rocon Gateway Gateway roslaunch sbpl_multimaster alan1_gateway.launch roslaunch sbpl multimaster dagobah gateway.launch

Roman

Dagobah Indigo

Commander Local Master

- Action clients
- Service calls
- Read topics
- Runs State Machine
- TF bookkeeping between robots

Implementation details

SBPL_DEMOS

ROS package to contain pythonbased scripting utilities

- Robot-specific action clients and services
- State machine (python based)
- AR Tag functions

Status:

Functional, continued development https://github.com/sbpl/sbpl_demos SBPL MULTIMASTER

ROS package to manage the Rocon setup within lab

- Rocon configuration generator
- Gateway launch files
- Rocon hub launch

Status:

Completedhttps://github.com/sbpl/sbpl multimaster

GROOVY_INDIGO_MOVEIT_ WRAPPER

ROS package to manage PR2 from Indigo Moveit

- Custom message packages that match Groovy MD5sums
- I2g_follow_joint_trajectory action server

Status:

Completed

https://github.com/abrinkmacmu/groovy_indigo _moveit_wrapper

Sbpl_demos

Screen Configurations

One Screen config per machine

Aids startup time and guides users to correct launches and scripts

Contained in spbl_demos/screen_configs

Tatooine Indigo

0\$ bash 1\$ teleop 2\$ moveit 3-\$ AR 4\$* PR_demo

O\$* bash 1-\$ dash 2\$ kinect 3\$ 2dnav 4\$ 2dmap

Roman Indigo

[tll-1-am1][0 bash 1- Limb 1 (Right) **(2*Limb 2 (Left))** 3 Torso 4 Hand Right 5 Hand Left 6 Client 7 RCRU 8 dynmx mngr 9 dynmx meta][2017-02-24 10:03 [Batt Voltage: -/bin/bash] [Load Avg(1m,5m,15m):2.09 1.56 0.7

Sbpl_multimaster

The user should only have to modify one file

- Modify config/gateway_topics.yaml to suit your needs
- Launch the generate_multimaster_configs.yaml to create <machine>_gateway.launch files for all machines in the network
- Push the changes to the other machines
- Rerun the <machine>_gateway.launch files

Does require manual configuration of each machine after change

could be addressed by installing workspaces

Config/gateway_topics.yaml

```
generator commander action clients:
  pr2:

    torso_controller/position_joint_action

    - tf2 buffer server
    - r_gripper_controller/gripper_action
    - 1 gripper controller/gripper action
    - head traj controller/point head action

    move_base

    pr2 move base

    - pr2 move base local
    - move base local
#list out the servers the commander needs
# This will add the server to both the robot and commander configs
generator_commander_servers:
  pr2:

    pr2/tf lookup server

  roman:
    - roman/tf lookup server
```

Single Robot: Roman Demo

sbpl_demos/scripts/single_robot_demos

Use AR pose detection to command a simple sequence of Arm motions Required:

- Roman and Commander (Dagobah)
- AR Tagged item

Instructions:

- Place AR tag in view of the Asus, confirm AR pose estimation in Rviz
- The pre-grasp and post grasp are computed on the right side of the tag, so ensure the Roman can reasonably reach the tag
- Once supporting servers are running, execute roman_grasp_test.py

Improvement Ideas:

- Instead of just one grasp approach to the AR item, consider many (top down, 90 deg intervals, or RPY randomization
- Include collision object for picking surface and attached collision object

Multi Robot: Hardcoded handoff

sbpl_demos/scripts/multi_robot_demos

Use AR pose detection to command a simple sequence of coordinated arm motions across 2 robots

Required:

- Roman and Commander (Dagobah)
- PR2 and Commander (Tatooine)
- AR Tagged item

Instructions:

- Place AR tag in view of the Asus, confirm AR pose estimation in Rviz
- The pre-grasp and post grasp are computed on the right side of the tag, so ensure the Roman can reasonably reach the tag
- Once supporting servers are running, execute roman_pr2_hardcoded_handoff.py

Improvement Ideas:

Coordinate collision objects between robots

Pain Points

- Roman elmo/ethercat driver initialization (ongoing)
 - Unhelpful error message:
 - *** ERROR (12) : Erroroneous response when reading SO
 - System restarts have been the only way I know to clear this issue, sometimes many times
- Rocon networking (intermittent)
 - Most of the time it functions properly but occasionally subscribed topics do not appear
 - Number of subscribers do not increase over the network, so beware of code that requires >= 1 subscriber to begin
- System Complexity (solved)
 - Shear number of computers and electronics to manage adds significant non-value overhead
 - Computers total: 9 (5 roman, 4 PR2), LAN configuration, Roman electronics

Strengths

- Rocon Solves Groovy/Indigo problem
 - Barrier to entry should be low for PR2 development
- Pr2 Navigation, actions, and Arm Planning
- Roman Arm Planning
- Lab network is robust across Pr2 and Roman
- AR tag pose estimation is robust

Next Steps

- Demos
 - Exploit more of the PR2's features in multi-robot demo (Alex)
 - Pass objects back and forth between robots indefinitely (Alex)
- Features
 - Explore moveit sensor manager for real-time collision obstacle generation (Tae-hyung)
 - Improve arbitrarily located AR tag grasping (Alex)
 - Collision object sharing between robots (Alex)
 - Other-robot collision modelling (Alex)
 - Get SBPL arm planner packages in sbpl_demos setup configurations (Sung)
- MRSD Handoff Development
 - An MRSD team of 5 people will be taking this system to create a more robust handoff system