Background

Social interaction over long distances is primarily dictated using visual and audio devices. However, the most powerful non-verbal communication is through human social touch. We want to replicate common human touch sensations using haptic technology to induce feelings and reconnect separated individuals

Materials

- Dragon Skin 10, Smooth On
- EcoFlex, Smooth On

Fabrication

- 1. Mold the bottom layer
- 2. Place stencil on top of first layer
- 3. Spray a layer of mold release spray
 - 4. Fill top layer

Actuation

- 1. Fluid control board
- 2. Four control valves
- 3. Air pump (max 30 psi)

Soft Social Haptics: Recreating Human Touch using Soft Materials and Pneumatics

Alston Kau¹ and Jui-Te Lin¹

¹Department of Mechanical and Aerospace Engineering, University of California San Diego

User Study

Parameters

Pulse width: duration of inflation of silicone actuator

Delay: percentage of delay between adjacent silicone actuators

Methods

- A total of five number of individuals participated in our study
- Three different pulse widths and three different delays produces nine unique combinations
- Participants were asked to rate pleasantness and continuity from 1 to 7 (4 represents neutral response)

Results

Average Continuity Rating

	Pulse Width		
Delay	<u>50 ms</u>	<u>175 ms</u>	<u>300 ms</u>
<u>25%</u>	3.22	4.33	4.56
<u>50%</u>	4.22	4.22	4.89
<u>75%</u>	4.33	4.56	4.56

Average Pleasantness Value

	Pulse Width		
Delay	<u>50 ms</u>	<u>175 ms</u>	<u>300 ms</u>
<u>25%</u>	3.33	4.11	4.78
<u>50%</u>	3.89	3.78	4.44
<u>75%</u>	3.78	4.44	4.22

Conclusions

- Our device consisted of one single actuator with four independent air chambers capable if inflating and deflating for different durations and at different timestamps
- We concluded that 300 ms pulse width and 25% delay yielded the best response
- Our work can be used in the future to induce stroking sensation using normal indentation

Future Work

- Improve fabrication process
- Vary design of actuators (size, shape)
- Increase robustness and consistency of the haptic device
- Increase user study population size

References

[1] H. Culbertson, C. M. Nunez, A. Israr, F. Lau, F. Abnousi and A. M. Okamura, "A social haptic device to create continuous lateral motion using sequential normal indentation," 2018 IEEE Haptics Symposium (HAPTICS), San Francisco, CA, 2018, pp. 32-39.

We would like to thank Professor Tania Morimoto and Saurabh Jadhav for providing guidance and assistance throughout our project.