Principal Component Analysis

Allan Aasbjerg Nielsen

Technical University of Denmark
DTU Compute – Department of Applied Mathematics
and Computer Science
alan@dtu.dk

Multivariate Data

- More correlated attributes per observation, i.e., redundancy
- Describe in new feature space where variables are uncorrelated
- E.g., height and weight of persons
- Theory (in old pdf-file)

Hyperspectral Data

- AVIRIS, Airborne Visible/Infra-Red Imaging Spectrometer from NASA/JPL:
 - 224 spectral channels, 4 detectors, 370 nm to 2500 nm, channels approx. 10 nm wide,
 - flown on a NASA ER-2 airplane (a modified U2) at approx. 20 km above sea level at about 730 km/h resulting in 20 m pixels
 - (from 1998 also) low altitude data flown at 12,500 ft. on a NOAA Twin Otter aircraft resulting in 3.5 m resolution available.
- A full spectrum for each pixel and an image for all spectra

Hyperspectral Data

- AVIRIS, Airborne Visible/Infra-Red Imaging Spectrometer from NASA/JPL:

 - 224 spectral channels, 4 detectors, 370 nm to 2500 nm, channels approx. 10 nm wide,
 flown on a NASA ER-2 airplane (a modified U2) at approx. 20 km above sea level at about 730 km/h resulting in 20 m pixels
 - (from 1998 also) low altitude data flown at 12,500 ft. on a NOAA Twin Otter aircraft resulting in 3.5 m resolution
- A full spectrum for each pixel and an image for all spectra

- · Principal component analysis, PCA
 - Scale dependence, Cov

- Scale dependence, Cov
 Corr (zscore)
 R-mode, Q-mode
 Empirical orthogonal functions, EOF
 Singular value decomposition, SVD
 MAF/MNF EPP ICA (M)CCA CIA
 Preservation of Euclidean distance (isometry)
- Scree plot
- Variance explained Score and loadings plots Social science example
- Present lab/assignment and data