RÉPUBLIQUE ALGÉRIENNE DÉMOCRATIQUE ET POPULAIRE Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

École nationale Supérieure d'Informatique (ESI ex. INI)

2ème année cycle supérieur SIT(2CS-SIT1)

TP BDM

SVM non linéaire

Réalisé par :

- ♣ ADLA Ilyes chiheb eddine
- **♣** IASSAMEN Bilal

Table des matières

•	SVM non linéaire	3
•	Fonction cout dans ce cas	3
•	Algorithme de la descente du gradient	4
	Prédire la sortie de la donnée	5

SVM non linéaire

SVM : est une techniques d'apprentissage supervisé destinées à résoudre des problèmes de discrimination et de régression.

SVM non lineaire est utilisé lors de l'inexistence d'un hyperplan capable de séparer correctement les données , donc on peut dire que ces données sont non linéairement séparables.

il faut transposer les données dans un espace de plus grande dimension pour pouvoir trouver un hyperplan séparateur

4Fonction cout dans ce cas

Voici la formule de la fonction cout

$$h(x) = \omega^* \varphi(x) + b = \sum_{i=1}^n \lambda_i y_i < \varphi(x_i), \varphi(x) > +b = \sum_{i=1}^n \lambda_i y_i k(x_i, x) + b$$

Résoudre:

$$\begin{cases} \max_{\lambda} \sum_{i=1}^{n} \lambda_{i} - \frac{1}{2} \sum_{i=1}^{n} \lambda_{i} \lambda_{j} y_{i} y_{j} k(x_{i}, x_{j}) \\ \sum_{i=1}^{n} \lambda_{i} y_{i} = 0 \\ \lambda_{i} > 0 \end{cases}$$

Algorithme de la descente du gradient

nth += 1

return weights

Dans ce TP nous examinons les machines à vecteurs de support dans leur version non linéaire, dans notre cas on a pris le dataset iris.

```
def calculer cost(W, X, Y):
   N = X.shape[0]
   distances = 1 - Y * (np.dot(X, W))
    distances[distances < 0] = 0
    hinge_loss = reg_strength * (np.sum(distances) / N)
    cost = 1 / 2 * np.dot(W, W) + hinge_loss
    return cost
def calculer_loss_gradient(W, X_batch, Y_batch):
    if type(Y_batch) == np.float64:
        Y_batch = np.array([Y_batch])
        X_batch = np.array([X_batch])
    distance = 1 - (Y_batch * np.dot(X_batch, W))
    dw = np.zeros(len(W))
    for ind, d in enumerate(distance):
        if max(0, d) == 0:
            di = W
        else:
            di = W - (reg_strength * Y_batch[ind] * X_batch[ind])
        dw += di
    dw = dw/len(Y_batch)
    return dw
def sgd(features, outputs):
    max epochs = 5000
    weights = np.zeros(features.shape[1])
    nth = 0
    prev_cost = float("inf")
    cost_threshold = 0.01
    for epoch in range(1, max_epochs):
        X, Y = shuffle(features, outputs)
        for ind, x in enumerate(X):
            ascent = calculer_loss_gradient(weights, x, Y[ind])
            weights = weights - (learning_rate * ascent)
        if epoch == 2 ** nth or epoch == max_epochs - 1:
            cost = calculer_cost(weights, features, outputs)
            if abs(prev_cost - cost) < cost_threshold * prev_cost:</pre>
                return weights
            prev cost = cost
```

♣Prédire la sortie de la donnée

> Importer les modules

```
from sklearn import datasets

from sklearn.svm import SVC
```

> Charger le dataset iris

```
iris=datasets.load_iris()
```

> Effectuer l'apprentissage

```
X = iris.data
y = iris.target

clf3 = SVC(gamma=.1, kernel='rbf', probability=True)

clf3.fit(X,y)
```

Prédire la sortie de la donnée [5.4,2.3,2.2,7.3]

```
clf3.predict([[5.4,2.3,2.2,7.3]])
array([2])
```

> La sortie de la donnée est la catégorie 2 : virginica