Hengfeng Wei

Institute of Computer Software Nanjing University

December 8, 2016

- The MST Problem
- 2 The Generic MST Algorithm
- The Algorithms of Kruskal and Prim

- The MST Problem
- 2 The Generic MST Algorithm
- The Algorithms of Kruskal and Prim

Definition (MST)

Given:

- lacktriangle connected, undirected, weighted graph G=(V,E)
- ightharpoonup edge weight w(e)

Definition (MST)

Given:

- ightharpoonup connected, undirected, weighted graph G=(V,E)
- ightharpoonup edge weight w(e)

Spanning tree $T = (V, E_T \subseteq E)$:

connected, acyclic

Definition (MST)

Given:

- ightharpoonup connected, undirected, weighted graph G=(V,E)
- edge weight w(e)

Spanning tree $T = (V, E_T \subseteq E)$:

ightharpoonup connected, acyclic (n-1 edges)

Definition (MST)

Given:

- lacktriangle connected, undirected, weighted graph G=(V,E)
- edge weight w(e)

Spanning tree $T = (V, E_T \subseteq E)$:

- ightharpoonup connected, acyclic (n-1 edges)
- $\mathbf{v}(T) = \sum_{e \in T} w(e)$

Definition (MST)

Given:

- ightharpoonup connected, undirected, weighted graph G=(V,E)
- edge weight w(e)

Spanning tree $T = (V, E_T \subseteq E)$:

- ightharpoonup connected, acyclic (n-1 edges)
- $\mathbf{v}(T) = \sum_{e \in T} w(e)$

MST: Mimimize w(T) over all possible STs

MST Example

Wrong divide-and-conquer algorithm for MST

Input: G = (V, E, w)

Divide: $V = (S, V \setminus S)$; $||S| - |V \setminus S|| \le 1$

Wrong divide-and-conquer algorithm for MST

Input: G = (V, E, w)

Divide: $V = (S, V \setminus S)$; $||S| - |V \setminus S|| \le 1$ (Cut)

Wrong divide-and-conquer algorithm for MST

Input: G = (V, E, w)

Divide: $V = (S, V \setminus S)$; $||S| - |V \setminus S|| \le 1$ (Cut)

Conquer: T_1 : an MST of S; T_2 : an MST of $V \setminus S$

Wrong divide-and-conquer algorithm for MST

Input: G = (V, E, w)

Divide: $V = (S, V \setminus S)$; $||S| - |V \setminus S|| \le 1$ (Cut)

Conquer: T_1 : an MST of S; T_2 : an MST of $V \setminus S$

Combine: $T_1 + T_2 + \{e\}$: e is a *lightest* edge across $(S, V \setminus S)$

What is wrong?

The edges bc and ad do not belong to any MST.

What is wrong?

The edges bc and ad do **not** belong to any MST.

What if:

Invariant: Manages a set of edges A which is a subset of *some* MST.

- 1 The MST Problem
- 2 The Generic MST Algorithm
- 3 The Algorithms of Kruskal and Prim

- 1 The MST Problem
- 2 The Generic MST Algorithm
- 3 The Algorithms of Kruskal and Prim