Assignment 7 Advanced Algorithms & Data Structures PS

Christian Müller 1123410 Daniel Kocher, 0926293

May 18, 2016

Aufgabe 14

Sei $U = \{0, \dots, 30\}$ und $S = \{2, 4, 7, 11, 12, 18, 19, 22, 26, 29\}$. Benutzen Sie das zweistufige Schema aus der Vorlesung um eine perfekte Hash-Funktion mit $k=3,\ N=31$ und n=10 zu finden. Berechnen Sie für $i=0,\ldots,n-1$ die Werte $W_i,\,b_i,\,m_i,\,k_i$ und die Funktion h_{k_i} . Geben Sie anschließend für jedes Element aus S die Position dieses Elementes in der Hash-Tafel an.

Die Hash-Funktion für die erste Stufe wird allgemein wie folgt berechnet:

$$h_k(x) = ((k \cdot x) \mod N) \mod m \tag{1}$$

wobei m = n = |S| = 10 ist.

Setzt man nun die Werte aus der Angabe ein - k=3, N=31 und n=10 - bekommt man die folgende konkrete Hash-Funktion für die erste Stufe:

$$h_3(x) = ((3 \cdot x) \mod 31) \mod 10 \tag{2}$$

Nun wird für $i = 0, \ldots, n - 1 = 9$

- 1. $W_i = \{x \in S : h_k(x) = i\} \text{ mit } h_k = h_3$
- 2. $b_i = |W_i|$
- 3. $m_i = 2 \cdot b_i \cdot (b_i 1) + 1$

berechnet, siehe Table 1.

i	W_i	b_i	m_i
0		0	1
1	7	1	1
2	4, 11	2	5
3	18	1	1
4	22	1	1
5	12, 29	2	5
6	2, 19, 26	3	13
7		0	1
8		0	1
9		0	1

i	s_i
0	0
1	1
2	2
3	7
4	8
5	9
6	14
7	27
8	28
9	29

aus der Vorlesung.

Table 1: Werte für Schritt 2 des zweistufigen Schemas Table 2: Werte für Schritt 3 des zweistufigen Schemas aus der Vorlesung.

Nun müssen k_i so gewählt werden, dass

$$h_{k_i}: x \longrightarrow ((k_i \cdot x) \mod N) \mod m_i$$
 (3)

eingeschränkt auf W_i injektiv ist. Durch diese zweite Stufe werden jene Einträge W_i mit $b_i = |W_i| > 1$ auf mehrere "Unterbuckets" abgebildet.

 $b_i > 1$ ist für $i = \{2, 5, 6\}$ der Fall. Für $i = \{1, 3, 4\}$ benötigen wir keine zusätzliche Hash-Funktion h_{k_i} , da nur ein einziger Wert im Bucket vorhanden ist - eine weitere Aufteilung auf "Unterbuckets" macht also keinen Sinn

Wir berechnen nun k_i nach Gleichung 3 für $(i, W_i, m_i) \in \{(2, \{4, 11\}, 5), (5, \{12, 29\}, 5), (6, \{2, 19, 26\}, 13)\}$ und N = 31:

- $i=2, W_2=\{4,11\}$ und $m_2=5$: Wähle $k_2=1$: Ist h_{k_2} eingeschränkt auf W_2 injektiv? $h_{k_2}(4)=4$ und $h_{k_2}(11)=1 \Rightarrow h_{k_2}$ ist eingeschränkt auf W_2 injektiv.
- i = 5, $W_5 = \{12, 29\}$ und $m_5 = 5$: Wähle $k_5 = 1$: Ist h_{k_5} eingeschränkt auf W_5 injektiv? $h_{k_5}(12) = 2$ und $h_{k_5}(29) = 4 \Rightarrow h_{k_5}$ ist eingeschränkt auf W_5 injektiv.
- i = 6, $W_6 = \{2, 19, 26\}$ und $m_6 = 13$: Wähle $k_6 = 1$: Ist h_{k_6} eingeschränkt auf W_6 injektiv? $h_{k_6}(2) = 2$, $h_{k_6}(19) = 6$ und $h_{k_6}(26) = 0 \Rightarrow h_{k_6}$ ist eingeschränkt auf W_6 injektiv.

Daraus ergeben sich für die zweite Stufe folgende Hash-Funktionen für $i \in \{2, 5, 6\}$

$$h_{k_2}(x) = h_{k_5}(x) = (x \mod 31) \mod 5$$
 (4)

$$h_{k_6}(x) = (x \mod 31) \mod 13$$
 (5)

und für $i \in \{0, 1, 3, 4, 7, 8, 9\}$

$$h_{k_0}(x) = h_{k_1}(x) = h_{k_3}(x) = h_{k_4}(x) = h_{k_7}(x) = h_{k_8}(x) = h_{k_9}(x) = (x \mod 31) \mod 1$$
 (6)

Basierend auf diesen Hash-Funktionen h_{k_0} bis h_{k_9} wird nun der finale Schritt vorgenommen. Zuerst werden $s_i = \sum_{j < i} m_j$ berechnet und dann wird $x \in S$ in Tafelposition $T[s_i + j]$ gespeichert, wobei $i = h_k(x)$ (erste Hash-Funktion, siehe Gleichung 2) und $j = h_{k_i}(x)$ (zweite Hash-Funktion, siehe Gleichungen 4 - 6). Für die Berechnung von s_i für $i = \{0, \dots, 9\}$ siehe Table 2. Die resultierenden Positionen in der Hash-Tafel sind in Table 3 aufgelistet.

\underline{x}	$s_i + j$ (Position von x)
2	14 + 2 = 16
4	2 + 4 = 6
7	1+0= 1
11	2+1=3
12	9+2=11
18	7 + 0 = 7
19	14 + 6 = 20
22	8 + 0 = 8
26	14 + 0 = 14
29	9 + 4 = 13

Table 3: Finale Positionen von $x \in S$ in der Hash-Tafel.

Aufgabe 15

Wir nehmen an, dass in einer Datenstruktur die *i*-te Operation Kosten c_i verursacht, wobei $c_i = i$ für alle i der Form $2^k + 1$ (k ist eine natürliche Zahl) und $c_i = 2$ sonst. Zeigen Sie, dass die amortisierten Kosten einer Operation immer konstant sind.

$$c_i = \begin{cases} i, \text{ falls } i = 2^k + 1 \text{ mit } k \in \mathbb{N} \\ 2, \text{ sonst.} \end{cases}$$

	ı
Op_i	c_i
1	2
2	2
3	3
4	2
5	5
6	2
7	2
8	
9	9
10	2

Table 4: Beispiel für n = 10 Operationen

Aggregat-Methode mit n Operationen

O. B. d. A. betrachten wir den Fall $n=2^k$ mit $k\in\mathbb{N}$

1. Gesamtkosten C_1 der Menge (A_1) der Operationen (a_i) für die $i=2^j+1$ mit $j\in\mathbb{N}$ und $i\leq n$ gilt: Für alle a_i aus A_1 gilt $0\leq j\leq k-1$:

$$C_1 = (2^0 + 1) + (2^1 + 1) + (2^2 + 1) + \dots + (2^{k-1} + 1)$$
(7)

wegen $n = 2^k \implies k = \operatorname{ld}(n)$ gilt:

$$C_1 = (2^0 + 1) + (2^1 + 1) + (2^2 + 1) + \dots + (2^{\operatorname{ld}(n) - 1} + 1)$$
 (8)

$$C_1 = \mathrm{ld}(n) + \sum_{i=0}^{\mathrm{ld}(n)-1} 2^i \tag{9}$$

Es gilt: (siehe 18)

$$\sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1 \tag{10}$$

Also:

$$C_1 = \mathrm{ld}(n) + 2^{\mathrm{ld}(n)} - 1$$
 (11)

2. Gesamtkosten C_2 der Menge (A_2) der Operationen (a_i) für die $i \neq 2^j + 1$ mit $j \in \mathbb{N}$ gilt: $|A1| = \mathrm{ld}(n)$ und $|A_1| + |A_2| = n \implies |A_2| = n - \mathrm{ld}(n)$

$$C_2 = 2 \cdot (n - \mathrm{ld}(n)) \tag{12}$$

Seien ${\cal C}$ die Gesamtkosten der n Operationen dann:

$$C = C_1 + C_2 = \mathrm{ld}(n) + 2^{\mathrm{ld}(n)} - 1 + 2 \cdot (n - \mathrm{ld}(n))$$
(13)

$$C = \mathrm{ld}(n) + n - 1 + 2n - 2\mathrm{ld}(n) \tag{14}$$

$$C = 3n - \mathrm{ld}(n) - 1 \tag{15}$$

$$3n - \mathrm{ld}(n) - 1 \tag{16}$$

$$a_i = \frac{3n - \text{ld}(n) - 1}{n} < 3 \tag{17}$$

Die amortisierten Kosten einer Operation sind höchstens 3 und somit in O(1).

Proof.

$$\sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1 \tag{18}$$

IB: n = 0

$$\sum_{i=0}^{0} 2^{i} = 2^{0} = 1 = 2^{1} - 1 = 2^{0+1} - 1 \tag{19}$$

IH: Für ein beliebes aber festes $k \in \mathbb{N}$ gilt:

$$\sum_{i=0}^{k} 2^{i} = 2^{k+1} - 1 \tag{20}$$

IS: $k \to k+1$ Zu zeigen:

$$\sum_{i=0}^{k+1} 2^i = 2^{k+2} - 1 \tag{21}$$

$$\sum_{i=0}^{k+1} 2^i = \sum_{i=0}^k 2^i + 2^{k+1}$$
$$= 2^{k+1} - 1 + 2^{k+1}$$
$$= 2 \cdot 2^{k+1} - 1$$
$$= 2^{k+2} - 1$$