2 Calcolabilità

- Sia $B = \{\langle M \rangle : M$ è una TM e $L(M) = (01)^*\}$. Mostrare che $A_{TM} \leq_m B$. Cosa si può concludere sulla decidibilità di B?
- Dimostrare che esistono linguaggi che non sono Turing-riconoscibili. Fornire un esempio concreto di linguaggio che abbia questa proprietà.

	Ţ	A	7	DW.			ľ	21			}		L	ny	Ste	3 '			Λo	1		D,	ζ	ر	h ch			Q _L	(Σ α	γ.						
	(٠ _ا	, کر	9		2	J.	У'n	1			27	M.	2	٨	.Uh	-ഹ	L 1	c				9	Σ,	T	}	^	an		M	ИC	ρh	į				
9		رل (1		ϵ	ろく	۸ ر	1 1 01	ō						2			٤	Ý	<u> </u>	<u>-(</u>			Č	<u></u>			<u>-</u>	<u> </u>								
																												No			n	G					
()EC	$\left(\begin{array}{c} 1 \\ 1 \end{array} \right)$		
										+	+														_						_		_			-	