For the pulse shown in Figure 1, graphically determine the following: 1.

(a) rise time

- **(b)** fall time
- (c) pulse width (d) amplitude

Figure 1

- A pulse waveform with a frequency of 20 kHz is applied to the input of a counter. During 40 ms, how many pulses are counted?
- Consider a register that can store eight bits. Assume that it has been reset so that it contains zeros in all positions. If you transfer four alternating bits (0101) serially into the register, beginning with a 1 and shifting to the right, what will the total content of the register be as soon as the fourth bit is stored?

Label the pin numbers on the packages in Figure 2. Top views are shown. 4.

Figure 2

Binary Numbers

Convert the following binary numbers to decimal:

- **(a)** 001
- **(b)** 010
- **(c)** 101
- **(d)** 110

- **(e)** 1010
- **(f)** 1011
- **(g)** 1110
- **(h)** 1111

6. Convert the following binary numbers into decimal:

- **(a)** 100001
- **(b)** 100111
- **(c)** 101010
- **(d)** 111001

- **(e)** 1100000
- **(f)** 11111101
- (g) 11110010
- (h)

11111111

7. Convert each binary number to decimal:

- (a) 110011.11
- **(b)** 101010.01 **(c)** 1000001.111
- **(d)** 1111000.101
- (e) 1011100.10101
- **(f)** 1110001.0001

- **(g)** 1011010.1010
- **(h)** 11111111.11111

8. What is the highest decimal number that can be represented by each of the following numbers of binary digits (bits)?

- (a)
- (b) three
- (c) four
- (d) five
- (e) six (f) seven
- (g) eight

(h) nine

two

- (i) ten (j) eleven
- 9. How many bits are required to represent the following decimal numbers?

(a)	5	(b) 10	(c) 15	(d) 20	(e) 100)	(f) 120	(g) 140	0 (h) 16	50
10.	Generate th	ne binary	sequenc	e for eac	h decimal	l sequence	e:			
	(a) 0 throu	gh 7	(b)	8 through	h 15	(c) 16 th	rough			
	(d) 32 thro	ugh 63	(a) <i>i</i>	64 throug	sh 75	31				
		C	` ′	04 սուծաչ	311 73					
	cimal-to-Bi									
	Convert ea				•	•	•			
(a)			(c) 25		(e) 65			127 (h) 19	8	
12.	Convert ea					the sum-o	of-weights	s method:		
	(a) 0.26	(b) 0.7		(c) 0.09						
13.	Convert ea					-		-		
(a)	13	(b) 17	(c) 23	(d) 30	(e) 35 ((f) 40 (g	(h) 49 (h)	60		
14.	Convert ea	ch decim	al fracti	on to bin	ary using	repeated 1	multiplica	tion by 2:		
	(a) 0.76	(b) 0.4	56		(c) 0.873	2				
Biı	nary Arithm	etic								
	Add the bin		bers:							
	(a) 10 + 10	(b) 10	+ 11	(c) 100	+ 11 ((d) 111 +	101 (e)	1111 + 111	(f) 11	11 + 1111
16.	Use direct			e followi						
	(a) 10 - 1			100 - 11	•	(c) 110 –				
	(d) 1111 - 1	11	(e) 1	101 - 10	1	(f) 110	000 -			
17	. Perform th	ne follow	ing bina	ry multij	plications:	1111				
	(a) 11 * 10		(b)	101 * 11		(c) 111 *	110			
	(d) 1100 *	101	(e) 1	110 * 11	10	(f) 1111 ³	* 1100			
18	3. Divide the	binary ı	numbers	as indica	ated:					
	(a) 110 / 12	1 (b)	1010 / 1	10 (c	2) 1111 / 1	01				
C -	1	- C D :	M1.							
	mplements What are ty	•			ero in 1's	complem	ant form?)		
		•	-	_		•	.ent 101111 <i>1</i>			
	How is zero Determine	-		_						
			•		•) 1001010) (f) 101	101010	
(a)	100 Determine	` '	l (c) 110 omplem		(d) 1011	`) 100101(sing eithe	` /	101010	
22. (a)	11		ompiem) (c) 101		(d) 1001) 101010	(f) 110)()1	(g) 11001100
(a)		000111	<i>,</i> (c) 101	·	(u) 1001	(6	, 101010	(1) 11(<i>N</i> 1	(g) 11001100
	()									
a:	on a d. Moonala a									

Signed Numbers

23. Express each decimal number in binary as an 8-bit sign-magnitude number:

(d) 2123

(a) +29 (b) 285 (c) +100

		s an 8-bit number in the 1's complement form:	
(a) 234	(b) +57 (c)) 299 (d) +115	
25. Express each	h decimal number a	s an 8-bit number in the 2's complement form:	
(a) +12	(b) 268 (c) +101	(d) 2125	
26. Determine to	he decimal value of	each signed binary number in the sign-magnitude form:	
(a) 1001100	(b) 011101	100 (c) 10111111	
27. Determine t	he decimal value of	each signed binary number in the 1's complement form	
(a) 1001100	(b) 011101	100 (c) 10111111	
28. Determine t	he decimal value of	each signed binary number in the 2's complement form	
(a) 1001100	(b) 011101	100 (c) 10111111	
29. Express each format:	h of the following s	ign-magnitude binary numbers in single-precision floating	ng point
(a) 0111110	0000101011 (b)) 100110000011000	
30. Determine t	he values of the foll	lowing single-precision floating-point numbers:	
	0001 010010011100		
(b) 0 1100	1100 100001111101	10010000000	
Arithmetic Ope	rations with Signed	Numbers	
31. Convert eac	h pair of decimal nu	umbers to binary and add using the 2's complement form	1:
	(1) = (1	227 (a) 246 and 25 (d) 2110 and 224	
(a) 33 and 15	(b) 56 and	(c) 246 and 25 (d) 2110 and 284	
	. ,	s complement form:	
	ch addition in the 2'		
32. Perform eac (a) 10001100 +	ch addition in the 2' 00111001 (b	s complement form:	
32. Perform eac (a) 10001100 + 33. Perform eac (a) 00110011 -	ch addition in the 2' 00111001 (b) ch subtraction in the 00010000 (b)	s complement form: 1) 11011001 + 1100111 2 2's complement form: 1) 01100101 - 1101000	
32. Perform eac (a) 10001100 + 33. Perform eac (a) 00110011 - 34. Multiply 01	ch addition in the 2' 00111001 (b) ch subtraction in the 00010000 (b)	s complement form: 1) 11011001 + 1100111 2 2's complement form:	
32. Perform eac (a) 10001100 + 33. Perform eac (a) 00110011 - 34. Multiply 01 form.	ch addition in the 2' 00111001 (b) ch subtraction in the 00010000 (b) 101010 by 1111000	s complement form: 1) 11011001 + 1100111 2 2's complement form: 1) 01100101 - 1101000 101 in the 2's complement	
32. Perform eac (a) 10001100 + 33. Perform eac (a) 00110011 - 34. Multiply 01 form.	ch addition in the 2' 00111001 (b) ch subtraction in the 00010000 (b) 101010 by 1111000	s complement form: 1) 11011001 + 1100111 2 2's complement form: 1) 01100101 - 1101000	
32. Perform eac (a) 10001100 + 33. Perform eac (a) 00110011 - 34. Multiply 01 form.	ch addition in the 2' 00111001 (b) ch subtraction in the 00010000 (b) 101010 by 1111000	s complement form: 1) 11011001 + 1100111 2 2's complement form: 1) 01100101 - 1101000 101 in the 2's complement	
32. Perform eac (a) 10001100 + 33. Perform eac (a) 00110011 - 34. Multiply 01 form. 35. Divide 1000 Hexadecimal N	ch addition in the 2' 00111001 (b) ch subtraction in the 00010000 (b) 101010 by 1111000	s complement form: 1) 11011001 + 1100111 2 2's complement form: 1) 01100101 - 1101000 101 in the 2's complement 2 in the 2's complement form.	
32. Perform eac (a) 10001100 + 33. Perform eac (a) 00110011 - 34. Multiply 01 form. 35. Divide 1000 Hexadecimal N 36. Convert eac (a) 46 ₁₆	ch addition in the 2' 00111001 (b) ch subtraction in the 00010000 (b) 101010 by 1111000 01000 by 00100010 numbers ch hexadecimal num (b) 54 ₁₆ (c)	s complement form: 1) 11011001 + 1100111 2 2's complement form: 1) 01100101 - 1101000 101 in the 2's complement 2 in the 2's complement form.	
32. Perform eac (a) 10001100 + 33. Perform eac (a) 00110011 - 34. Multiply 01 form. 35. Divide 1000 Hexadecimal N 36. Convert eac (a) 46 ₁₆ (f) ABO	ch addition in the 2' 00111001 (b) ch subtraction in the 00010000 (b) 101010 by 1111000 01000 by 00100010 numbers ch hexadecimal num (b) 54 ₁₆ (c)	s complement form: 1) 11011001 + 1100111 2 2's complement form: 1) 01100101 - 1101000 101 in the 2's complement 2 in the 2's complement form. 1) in the 2's complement form.	
32. Perform eac (a) 10001100 + 33. Perform eac (a) 00110011 - 34. Multiply 01 form. 35. Divide 1000 Hexadecimal N 36. Convert eac (a) 46 ₁₆ (f) ABC 37. Convert eac	ch addition in the 2' 00111001 (b) ch subtraction in the 00010000 (b) 101010 by 1111000 01000 by 00100010 01000 by 54 ₁₆ (c) C16 ch binary number to	s complement form: 1) 11011001 + 1100111 2 2's complement form: 1) 01100101 - 1101000 101 in the 2's complement 2 in the 2's complement form. 1) aber to binary: 1) B4 ₁₆ (e) FA ₁₆ (d) 1A3 ₁₆ hexadecimal:	
32. Perform eac (a) 10001100 + 33. Perform eac (a) 00110011 - 34. Multiply 01 form. 35. Divide 1000 Hexadecimal N 36. Convert eac (a) 46 ₁₆ (f) ABC 37. Convert eac (a) 1111	ch addition in the 2' 00111001 (b) ch subtraction in the 00010000 (b) 101010 by 1111000 01000 by 00100010 (umbers ch hexadecimal num (b) 54 ₁₆ (c) C16 ch binary number to (b) 1011	s complement form: 1) 11011001 + 1100111 2 2's complement form: 1) 01100101 - 1101000 101 in the 2's complement 2 in the 2's complement form. 1) 10100101 - 1101000 1) 10100101 - 1101000 1) 10100101 - 1101000 1) 10100101 - 1101000 1) 10100101 - 1101000 1) 101100101 - 11010000 1) 101100101 - 11010000 1) 101100101 - 11010000 1) 10110010101 - 11010000 1) 101100101 - 11010000 1) 101100101 - 11010000 1) 101100101 - 11010000 1) 101100101 - 11010000 1) 101100101 - 11010000 1) 101100101 - 11010000 1) 101100101 - 11010000 1) 101100101 - 11010000 1) 101100101 - 11010000 1) 101100101 - 11010000 1) 101100101 - 11010000 1) 101100101 - 11010000 1) 101100101 - 11010000 1) 101100101 - 11010000 1) 101100101 - 1100000 1) 101100100000000000000000000	
32. Perform eac (a) 10001100 + 33. Perform eac (a) 00110011 - 34. Multiply 01 form. 35. Divide 1000 Hexadecimal N 36. Convert eac (a) 46 ₁₆ (f) ABC 37. Convert eac (a) 1111 (d) 10101010	ch addition in the 2' - 00111001	s complement form: 1) 11011001 + 1100111 2 2's complement form: 1) 01100101 - 1101000 101 in the 2's complement 1 in the 2's complement form.	
32. Perform eac (a) 10001100 + 33. Perform eac (a) 00110011 - 34. Multiply 01 form. 35. Divide 1000 Hexadecimal N 36. Convert eac (a) 46 ₁₆ (f) ABC 37. Convert eac (a) 1111 (d) 10101010	ch addition in the 2' 00111001 (b) ch subtraction in the 00010000 (b) 101010 by 1111000 01000 by 00100010 (umbers ch hexadecimal num (b) 54 ₁₆ (c) C16 ch binary number to (b) 1011	s complement form: 1) 11011001 + 1100111 2 2's complement form: 1) 01100101 - 1101000 101 in the 2's complement 1 in the 2's complement form.	

(e) FF₁₆

(f) BC_{16}

(g) 6F1₁₆

(h) ABC₁₆

39. Convert each decimal number to hexadecimal:

(a) 10

(b) 15

(c) 32

(d) 54

(e) 365

(f) 3652

(g) 7825

(h) 8925

40. Perform the following additions:

(a) $25_{16} + 33_{16}$

(b) $43_{16} + 62_{16}$

(c) $A4_{16} + F5_{16}$

(d) $FC_{16} + AE_{16}$

41. Perform the following subtractions:

(a) $60_{16} - 39_{16}$ (b) $A5_{16} - 98_{16}$ (c) $F1_{16} - A6_{16}$

(d) $AC_{16} - 10_{16}$

Octal Numbers

42. Convert each octal number to decimal:

(a) 14_8 (b) 53_8 (c) 67_8 (d) 174_8

43. Convert each decimal number to octal by repeated division by 8:

(e) 124

(f) 156

(g) 654

44. Convert each binary number to octal:

(a) 100

(b) 110

(d) 1111

(e) 11001

(g) 110011

(h) 101010

Binary Coded Decimal (BCD)

45. Convert each of the following decimal numbers to 8421 BCD:

(a)

48.

(b) 13 **(c)** 18 **(d)** 21 **(e)** 25 **(f)** 36

46.Convert the following decimal numbers to BCD:

(b) 104 **(b)** 128 **(c)** 132 **(d)** 150 **(e)** 186

47.

Convert each of the BCD numbers to decimal:

(b) 00011000 **(c)** 100001110000

Convert each of the BCD numbers to decimal:

(a) 10000000 **(b)** 001000110111 **(c)** 001101000110

(d) 010000100001

51. Add the following BCD numbers:

0010 + 0001

(b) 0101 + 0011

52. Add the following BCD numbers:

a. 1000 + 0110

(b) 0111 + 0101 **(c)** 01010001 + 01011000

Gates

53. The input waveforms applied to a 4-input AND gate are as indicated in Figure 3. The output of the AND gate is fed to an inverter. Draw the net output waveform of this system.

54. For the set of input waveforms in Figure 4, determine the output for the gate shown and draw the timing diagram.

Figure 4

- 55. Repeat Problem 54 for a OR gates.
- 56. Determine *t_{PLH}* and *t_{PHL}* from the oscilloscope display in Figure 5. The readings indicate volts/div and sec/div for each channel.

Figure 5

57. Examine the conditions indicated in Figure 6, and identify the faulty gates.

58. Determine the faulty gates in Figure 7 by analyzing the timing diagrams.

Figure 7

59. Using an oscilloscope, you make the observations indicated in Figure 8. For each observation determine the most likely gate failure.

Figure 8