1181 - Odd Looking Average

We are all quite familiar with finding 'average'. Let us define new kind of average of a function.

Given a function f(x) and two values a and b ($a \le b$) if we take all the numbers (not necessarily integers) from a to b then

$$y = \frac{Summation \ of \ f(x)(a \le x \le b)}{Total \ numbers \ in \ [a,b]}$$

Now for $f(x) = x^k$ you are given k, a and b, you have to find the average according to the description.

Input

Input starts with an integer $T \leq 400$, denoting the number of test cases.

Each case contains an integer k ($1 \le k \le 4$) and two real numbers a and b ($0 < a \le b \le 10$).

Output

For each case, print the case number and the average. Error less than 10⁻⁶ will be ignored.

Sample Input	Output for Sample Input
4	Case 1: 2
1 2 2	Case 2: 4
2 2 2.0	Case 3: 3
1 2.0 4	Case 4: 9.333333333
2 2 4.0	