Let M be an n by n matrix, in which M(i,j) is the entry in the i-th row and the j-th column. We say a path from M(1,1) to M(n,n) is monotonic if the path only goes downward (in the direction that the row-index increases) or rightward (in the direction that the column-index increases). Write a program to decide whether there exists a monotonic path P from M(1,1) to M(n,n) so that the entries $e_1, e_2, \ldots, e_{2n-1}$ on P, ordered by their visiting time, form an arithmetic progression. In other words, there exist a and d so that $e_k = a + (k-1)d$ for all $k \in [1, 2n-1]$.

Figure 1: An illustration of the monotonic path.

Hint. Observe that a must have value M(1,1). What are possible values for d? You may find the monotonic paths for each guess of d.

Input

The first line contains n. Each of the subsequent n lines contains the value of n entries on a row so that the second line represents the first row, the third line represents the second row, and so on. You may assume that n is an integer in [2,100] and M(i,j) is an integer in $[1,10^6]$ for every $i,j \in [1,n]$.

Output

Output "Yes" if such a monotonic path exists, or "No" otherwise.

Sample Input

Sample Output

Yes