Logistic Regression Project

In this project we will be working with a fake advertising data set, indicating whether or not a particular internet user clicked on an Advertisement. We will try to create a model that will predict whether or not they will click on an ad based off the features of that user.

This data set contains the following features:

- 'Daily Time Spent on Site': consumer time on site in minutes
- 'Age': cutomer age in years
- · 'Area Income': Avg. Income of geographical area of consumer
- · 'Daily Internet Usage': Avg. minutes a day consumer is on the internet
- 'Ad Topic Line': Headline of the advertisement
- 'City': City of consumer
- 'Male': Whether or not consumer was male
- · 'Country': Country of consumer
- 'Timestamp': Time at which consumer clicked on Ad or closed window
- 'Clicked on Ad': 0 or 1 indicated clicking on Ad

```
In [19]: import pandas as pd
         import numpy as np
         import seaborn as sb
         import matplotlib.pyplot as plt
         %matplotlib inline
         from sklearn.model selection import train test split
         adv= pd.read csv('advertising.csv')
In [3]:
```

Check the head of ad data

adv.head() In [4]:

Out[4]:

		Daily Time Spent on Site	Age	Area Income	Daily Internet Usage	Ad Topic Line	City	Male	Country	Timestamp	Clicked on Ad
•	0	68.95	35	61833.90	256.09	Cloned 5thgeneration orchestration	Wrightburgh	0	Tunisia	2016-03-27 00:53:11	0
	1	80.23	31	68441.85	193.77	Monitored national standardization	West Jodi	1	Nauru	2016-04-04 01:39:02	0
	2	69.47	26	59785.94	236.50	Organic bottom-line service-desk	Davidton	0	San Marino	2016-03-13 20:35:42	0
	3	74.15	29	54806.18	245.89	Triple-buffered reciprocal time-frame	West Terrifurt	1	Italy	2016-01-10 02:31:19	0
	4	68.37	35	73889.99	225.58	Robust logistical utilization	South Manuel	0	Iceland	2016-06-03 03:36:18	0

^{**} Use info and describe() on ad_data**

In [5]: | adv.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 1000 entries, 0 to 999 Data columns (total 10 columns): Daily Time Spent on Site 1000 non-null float64 Age 1000 non-null int64 Area Income 1000 non-null float64 Daily Internet Usage 1000 non-null float64 1000 non-null object Ad Topic Line City 1000 non-null object Male 1000 non-null int64 1000 non-null object Country 1000 non-null object Timestamp Clicked on Ad 1000 non-null int64 dtypes: float64(3), int64(3), object(4) memory usage: 78.2+ KB

In [6]: adv.describe()

Out[6]:

	Daily Time Spent on Site	Age	Area Income	Daily Internet Usage	Male	Clicked on Ad
count	1000.000000	1000.000000	1000.000000	1000.000000	1000.000000	1000.00000
mean	65.000200	36.009000	55000.000080	180.000100	0.481000	0.50000
std	15.853615	8.785562	13414.634022	43.902339	0.499889	0.50025
min	32.600000	19.000000	13996.500000	104.780000	0.000000	0.00000
25%	51.360000	29.000000	47031.802500	138.830000	0.000000	0.00000
50%	68.215000	35.000000	57012.300000	183.130000	0.000000	0.50000
75%	78.547500	42.000000	65470.635000	218.792500	1.000000	1.00000
max	91.430000	61.000000	79484.800000	269.960000	1.000000	1.00000

Exploratory Data Analysis

Let's use seaborn to explore the data!

histogram of the Age

```
sb.set style('whitegrid')
In [12]:
         plt.hist(adv['Age'], bins=30)
Out[12]: (array([12., 6., 32., 21., 27., 70., 48., 87., 60., 38., 82., 39., 86.,
                 37., 30., 68., 26., 44., 30., 18., 29., 18., 32., 15., 10., 16.,
                  2., 10., 2.,
                                 5.]),
          array([19., 20.4, 21.8, 23.2, 24.6, 26., 27.4, 28.8, 30.2, 31.6, 33.,
                 34.4, 35.8, 37.2, 38.6, 40. , 41.4, 42.8, 44.2, 45.6, 47. , 48.4,
                 49.8, 51.2, 52.6, 54., 55.4, 56.8, 58.2, 59.6, 61. ]),
          <a list of 30 Patch objects>)
          80
```


Create a jointplot showing Area Income versus Age.

```
sb.jointplot('Age','Area Income',data=adv)
```

Out[13]: <seaborn.axisgrid.JointGrid at 0x12db06c88>

Create a jointplot showing the kde distributions of Daily Time spent on site vs. Age.

sb.jointplot('Age', 'Daily Time Spent on Site', data=adv, kind='kde', color='re

Out[15]: <seaborn.axisgrid.JointGrid at 0x130058898>

** Create a jointplot of 'Daily Time Spent on Site' vs. 'Daily Internet Usage'**

sb.jointplot('Daily Time Spent on Site', 'Daily Internet Usage', data=adv, col

Out[16]: <seaborn.axisgrid.JointGrid at 0x1300e8f60>

^{**} Finally, create a pairplot with the hue defined by the 'Clicked on Ad' column feature.**

sb.pairplot(adv,hue='Clicked on Ad',palette='bwr')

/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-pack ages/statsmodels/nonparametric/kde.py:488: RuntimeWarning: invalid value encountered in true_divide

binned = fast_linbin(X, a, b, gridsize) / (delta * nobs) /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-pack ages/statsmodels/nonparametric/kdetools.py:34: RuntimeWarning: invalid va lue encountered in double_scalars

FAC1 = 2*(np.pi*bw/RANGE)**2

/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-pack ages/numpy/core/fromnumeric.py:83: RuntimeWarning: invalid value encounte red in reduce

return ufunc.reduce(obj, axis, dtype, out, **passkwargs)

Out[18]: <seaborn.axisgrid.PairGrid at 0x131b11550>

Logistic Regression

Now it's time to do a train test split, and train our model!

You'll have the freedom here to choose columns that you want to train on!

```
In [21]: X = adv[['Daily Time Spent on Site', 'Age', 'Area Income', 'Daily Internet U
          y = adv['Clicked on Ad']
In [23]: X train, X test, y train, y test = train_test_split(X, y, test_size=0.33, r
In [24]:
         from sklearn.linear model import LogisticRegression
          ** Train and fit a logistic regression model on the training set.**
In [25]:
         logm= LogisticRegression()
In [26]: logm.fit(X_train,y_train)
          /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-pack
         ages/sklearn/linear model/logistic.py:433: FutureWarning: Default solver
         will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warn
         ing.
            FutureWarning)
Out[26]: LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=Tr
         ue,
                    intercept_scaling=1, max_iter=100, multi_class='warn',
                    n jobs=None, penalty='12', random state=None, solver='warn',
                    tol=0.0001, verbose=0, warm start=False)
          Predictions and Evaluations
         ** Now predict values for the testing data.**
In [27]:
         predict=logm.predict(X test)
          ** Create a classification report for the model.**
In [28]:
         from sklearn.metrics import confusion matrix
          from sklearn.metrics import classification report
In [30]: print(classification report(y test, predict))
```

		precision	recall	f1-score	support
	0	0.87	0.96	0.91	162
	1	0.96	0.86	0.91	168
micro	avg	0.91	0.91	0.91	330
macro	avg	0.91	0.91	0.91	330
weighted	avg	0.91	0.91	0.91	330

```
tn, fp, fn, tp=confusion_matrix(y_test,predict).ravel()
In [33]:
          cm=pd.DataFrame(np.asarray((tp,fp,tn,fn)).reshape(2,2),index=['True','False
In [43]:
In [44]:
Out[44]:
                Positive
                       Negative
           True
                   144
                             6
```

In [47]: sb.heatmap(cm,cmap='viridis',annot=True)

Out[47]: <matplotlib.axes._subplots.AxesSubplot at 0x136926cf8>

24

156

False

