

Supervised Learning I: Regression

Today

- Multivariate linear regression
- Solution for SSD cost
 - Indirect
 - Direct
- Maximum likelihood cost

Linear Regression

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

 $heta_i$'s: Parameters

Cost Function:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

Multidimensional inputs

Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178
•••	•••	•••		

Notation:

n = number of features

 $x^{(i)}$ = input (features) of i^{th} training example.

 $x_j^{(i)}$ = value of feature j in i^{th} training example.

Multivariate Linear Regression

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

For convenience of notation, define $x_0 = 1$.

 θ_i 's: Parameters

Cost Function:

$$J(\theta_0, \theta_1, \dots, \theta_n) = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Goal: minimize $J(\theta_0, \theta_1, \dots, \theta_n)$ How??

Two potential solutions

$$\min_{\theta} J(\theta; x^{(1)}, y^{(1)}, \dots, x^{(m)}, y^{(m)})$$

Gradient descent (or other iterative algorithm)

- Start with a guess for θ
- Change θ to decrease $J(\theta)$
- Until reach minimum

Direct minimization

- Take derivative, set to zero
- Sufficient condition for minima
- Not possible for most "interesting" cost functions

Solving Linear Regression

Gradient Descent

Gradient Descent Algorithm

Set
$$\theta = 0$$

Repeat {

$$\theta_j := \theta_j - lpha rac{\partial}{\partial \theta_j} J(\theta)$$
 simultaneously for all $j = 0, \dots, n$

} until convergence

 $j = 0, \ldots, n$

Gradient Descent: Intuition

 $h_{\theta}(x)$

(for fixed θ_1 , this is a function of x)

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

 $J(heta_1)$

(function of the parameter θ_1)

Gradient descent illustration (credit: https://towardsdatascience.com/

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$\frac{\partial}{\partial \theta_i} J(\theta) =$$

$$\frac{\partial}{\partial \theta_j} J(\theta) = \frac{\partial}{\partial \theta_j} \frac{1}{2} (h_{\theta}(x) - y)^2$$

$$\frac{\partial}{\partial \theta_{j}} J(\theta) = \frac{\partial}{\partial \theta_{j}} \frac{1}{2} (h_{\theta}(x) - y)^{2}$$

$$= 2 \cdot \frac{1}{2} (h_{\theta}(x) - y) \cdot \frac{\partial}{\partial \theta_{j}} (h_{\theta}(x) - y)$$

$$\frac{\partial}{\partial \theta_{j}} J(\theta) = \frac{\partial}{\partial \theta_{j}} \frac{1}{2} (h_{\theta}(x) - y)^{2}$$

$$= 2 \cdot \frac{1}{2} (h_{\theta}(x) - y) \cdot \frac{\partial}{\partial \theta_{j}} (h_{\theta}(x) - y)$$

$$= (h_{\theta}(x) - y) \cdot \frac{\partial}{\partial \theta_{j}} \left(\sum_{i=0}^{n} \theta_{i} x_{i} - y \right)$$

$$\frac{\partial}{\partial \theta_{j}} J(\theta) = \frac{\partial}{\partial \theta_{j}} \frac{1}{2} (h_{\theta}(x) - y)^{2}$$

$$= 2 \cdot \frac{1}{2} (h_{\theta}(x) - y) \cdot \frac{\partial}{\partial \theta_{j}} (h_{\theta}(x) - y)$$

$$= (h_{\theta}(x) - y) \cdot \frac{\partial}{\partial \theta_{j}} \left(\sum_{i=0}^{n} \theta_{i} x_{i} - y \right)$$

$$= (h_{\theta}(x) - y) x_{j} \quad \text{What is this?}$$

Gradient Descent Algorithm

} until convergence

in vector form?

PS 1: vectorize the update and implement in Python (use matrix operations, not loops!)

Feature normalization

- If features have very different scale, GD can get "stuck" since x_j affects size of gradient in the direction of j^{th} dimension
- Normalizing features to be zero-mean (μ) and same-variance (σ) helps gradient descent converge faster

Solving Linear Regression

Direct Solution

Direct solution

Want to minimize SSD:

$$J(\theta_0, \theta_1, \dots, \theta_m) = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Find minima of function:

$$\theta \in \mathbb{R}^{n+1}$$

$$\frac{\partial}{\partial \theta_j} J(\theta) = \cdots = 0$$
 (for every j)

Solve for $\theta_0, \theta_1, \dots, \theta_n$

Direct solution

Re-write SSD using vector-matrix notation:

$$J(\theta) = \frac{1}{2m} (X\theta - y)^T (X\theta - y)$$

Where:

$$X = \begin{bmatrix} - (x^{(1)})^T - \\ - (x^{(2)})^T - \\ \vdots \\ - (x^{(m)})^T - \end{bmatrix} \quad \vec{y} = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(m)} \end{bmatrix}$$

Solution: Normal Equation

$$\theta = (X^T X)^{-1} X^T y$$

Derivation of Normal Equations

SSE in matrix form:

$$J(\theta) = \frac{1}{2m} (X\theta - y)^T (X\theta - y) =$$

$$= \frac{1}{2m} \{ \theta^T \{ X^T X \} \theta - 2 \{ X^T y \}^T \theta + const \}$$

• Take derivative with respect to θ (vector), set to 0

$$\frac{\partial J}{\partial \theta} \propto X^T X \, \theta - X^T y = 0 \quad \text{ignore constant multiplier}$$

$$\theta = (X^T X)^{-1} \, X^T y$$

Also known as the least mean squares, or least squares solution

Example: m = 4.

		Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
_	x_0	x_1	x_2	x_3	x_4	y
	1	2104	5	1	45	460
	1	1416	3	2	40	232
	1	1534	3	2	30	315
	1	852	2	1	36	178

Design Matrix

$$X = \begin{bmatrix} 1 & 2104 & 5 & 1 & 45 \\ 1 & 1416 & 3 & 2 & 40 \\ 1 & 1534 & 3 & 2 & 30 \\ 1 & 852 & 2 & 1 & 36 \end{bmatrix}$$

$$y = \begin{bmatrix} 460 \\ 232 \\ 315 \\ 178 \end{bmatrix}$$

Normal **Equation**

$$\theta = (X^T X)^{-1} X^T y$$

Trade-offs

m training examples, *n* features.

Gradient Descent

- Need to choose α .
- Needs many iterations.
- Works well even when n is large.

Normal Equations

- No need to choose α .
- Don't need to iterate.
- Need to compute $(X^TX)^{-1}$
- Slow if *n* is very large.

Maximum Likelihood for Linear Regression

So far, we have treated outputs as noiseless

- Defined cost function as "distance to true output"
- An alternate view:
 - data (x,y) are generated by unknown process
 - however, we only observe a noisy version
 - how can we model this uncertainty?

Alternative cost function?

How to model uncertainty in data?

Hypothesis:

$$h_{\theta}(x) = \theta^T x$$

 θ : parameters

$$D = (x^{(i)}, y^{(i)})$$
: data

New cost function:

maximize probability of data given model:

$$p((\mathbf{x}^{(i)}, \mathbf{y}^{(i)})|\theta)$$

Recall: Cost Function

Alternative View:

"Maximum Likelihood"

Maximum Likelihood: Example

Intuitive example: Estimate a coin toss

I have seen 3 flips of heads, 2 flips of tails, what is the chance of head (or tail) of my next flip?

Model:

Each flip is a Bernoulli random variable X

X can take only two values: 1 (head), 0 (tail)

$$p(X = 1) = \theta, \quad p(X = 0) = 1 - \theta$$

• θ is a parameter to be identified from data

Maximum Likelihood: Example

• 5 (independent) trials

Likelihood of all 5 observations:

$$p(X_1,...,X_5|\theta) = \theta^3(1-\theta)^2$$

Intuition

ML chooses θ such that likelihood is maximized

Maximum Likelihood: Example

• 5 (independent) trials

Likelihood of all 5 observations:

$$p(X_1,...,X_5|\theta) = \theta^3(1-\theta)^2$$

Solution (left as exercise)

$$\theta_{ML} = \frac{3}{(3+2)}$$

i.e. fraction of heads in total number of trials