

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ <u>«Информатика и системы управления»</u>

КАФЕДРА <u>«Программное обеспечение ЭВМ и информационные технологии»</u>

Лабораторная работа № 1

Дисциплина: Моделирование

Тема: «Исследование псевдослучайных последовательностей»

Студент: Гасанзаде М.А.

Группа ИУ7-76Б

Оценка (баллы) _____

Преподаватель: Рудаков И.В.

СОДЕРЖАНИЕ

І. АНАЛИТИЧЕСКАЯ ЧАСТЬ				
Цель работы	2			
Линейный конгруэнтный метод				
Критерий сериальной корреляции				
ІІ. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ				
ЗАКЛЮЧЕНИЕ				
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ				

І. АНАЛИТИЧЕСКАЯ ЧАСТЬ.

Цель работы

Реализовать критерий оценки случайности последовательности. Сравнить результаты работы данного критерия на одноразрядных, двухразрядных и трехразрядных последовательностях псевдослучайных целых чисел. Последовательности получать алгоритмическим способом, табличным способом и путём ручного ввода.

Линейный конгруэнтный метод.

Суть метода заключается в вычислении последовательности случайных чисел X_n , полагая $X_{n+1} = (aX_n + c) mod m$, где m — модуль (натуральное число, относительно которого вычисляет остаток от деления; $m \ge 2$), a — множитель ($0 \le a < m$), — приращение ($0 \le c < m$), X_0 — начальное значение ($0 \le X_0 < m$).

Критерий сериальной корреляции.

Можно подсчитать следующую статистику:

$$C = \frac{n(U_0U_1 + U_1U_2 + \ldots + U_{n-2}U_{n-1} + U_{n-1}U_0) - (U_0 + U_1 + \ldots + U_{n-1})^2}{n(U_0^2 + U_1^2 + \ldots + U_{n-1}^2) - (U_0 + U_1 + \ldots + U_{n-1})^2}.$$

Это коэффициенты сериальной корреляции, мера зависимости U_{j+1} от U_j . Коэффициент корреляции всегда лежит между -1 и 1. Когда он равен 0 или очень мал, значит величины U_{j+1} и U_j независимы одна от другой (между ними нет линейной зависимости); если же значение коэффициента корреляции равно +1 или -1, это означает полную линейную зависимость.

ІІ. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В данном разделе будет рассмотрен вывод программы и представлены таблицы.

	09	1099	100999		09	1099	100999
1	7	43	183	1	3	70	767
2	1	75	587	2	7	13	843
3	3	81	777	3	4	96	620
4	6	101	782	4	9	61	787
5	7	64	1004	5	2	72	750
6	10	99	166	6	5	31	928
7	7	44	472	7	5	42	661
8	4	65	498	8	5	55	829
9	6	48	642	9	5	81	963
10	10	13	367	10	9	27	584
	9.9099%	1.1011%	0.7007%		13.5135%	1.9019%	1.3013%
ſeĵ	ра случайно		0.70078	J	15.3133%	1.9019%	1.3013%
Руч	ной ввод:						
1	2 3 4 5 6	7 8 9 10 11	12 13 14 15				

Рис1. Мера случайности 100% (последовательность)

Puc2. Мера случайности «любых чисел»

Ручной ввод:	
23 23542653246 11	
Мера случайности 0.0000%	

Рис3. Мера случайности равна 0

ЗАКЛЮЧЕНИЕ

В ходе реализации лабораторной работы, были получены навыки в написания генератора псевдослучайных чисел, а также в оценки критерий случайности последовательности алгоритмическим путём.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- Искусство программирования«<u>D_Knut_-</u>
 <u>Iskusstvo_Programmiroanaiv_tom_2.pdf</u>» (дата обращения 19.10.2020)
- 2. Pseudo Random Number Generator (PRNG) URL:
 https://www.geeksforgeeks.org/pseudo-random-number-generator-prng/ (дата обращения 19.10.2020)