

División de Ciencias de la Ingeniería Centro Universitario de Occidente Quetzaltenango

I. Identificación General del Curso

Nombre del curso	Analisis Mecanico
Sección	A
Prerequisito	Mecánica Analítica 1 (109) Y Análisis Estructural I (745)
Carrera	Ingeniería Civil
Responsable	Luis Fernando Velásquez Pérez
Código	906
Horas de Docencia Directa /Indirecta	40 horas presenciales y 80 horas de autoformación
Créditos	6 (40 horas de teoría, 80 horas de práctica e investigación)
Ciclo	Primer Semestre 2024
Horario	Aula virtual de 19:30 a 21:10, ma (Docencia presencial).

II. Descripción del Curso

Es un curso del área de ciencias básicas y complementarias, el cual trata del análisis de las condiciones de la estática de partículas y cuerpos rígidos, el análisis de su cinética de movimiento, y, finalmente, la introducción a la teoría de las vibraciones. A lo largo del desarrollo del mismo, se auxilia de otras ciencias y cursos preliminares, entre ellas destacan: matemáticas básicas y aplicadas, física, mecánica y análisis estructural.

El punto de partida del curso, es el estudio de la geometría del movimiento de partículas, relacionando el desplazamiento, velocidad, aceleración y tiempo (cinemática de partículas), se estudian los temas de las causas del movimiento (la cinética de partículas); el estudio del movimiento luego se traslada al análisis y formas del comportamiento de los cuerpos rígidos, tanto en su geometría como en sus causas (cinemática y cinética de cuerpos rígidos); finalmente se tratan temas introductorios de estudio de movimiento vibratorio y a la dinámica estructural.

Como parte de cursos de área de ciencias complementarias, el estudiante debe poseer conocimientos apropiados y competencias correspondientes al área. Al finalizar el curso, se espera que el estudiante adquiera las competencias para resolver problemas en el ámbito del movimiento de partículas y cuerpos rígidos, para garantizar soluciones adecuadas a la mecánica del movimiento, además de contemplar, en el desarrollo de las soluciones, alternativas que sean amigables con el medio ambiente y sean adaptativas con las necesidades naturales y sociales de la región.

La metodología aplicada durante el proceso de formación, incluirá clases descriptivas y formativas que explican en comportamiento en cada una de las formas de movimiento analizado, una etapa documental e investigativa de los temas por parte del estudiante, la práctica orientada de problemas y laboratorios, y, la fase aplicativa de problemas en la temática a manera de mostrar el alcance en su formación.

III.- Competencias

1.- Competencias Genéricas

CG1. Capacidad de abstracción, análisis y síntesis

CG2. Capacidad de investigación

CG3. Capacidad de trabajo en equipo

2.- Competencias Específicas

CE 1: Aplica conocimientos de las ciencias básicas

1/6

División de Ciencias de la Ingeniería Centro Universitario de Occidente Quetzaltenango

Descripción: Que el estudiante haga uso de las herramientas de cursos de ciencias básicas previas tal como métodos de integración, derivación, diagramas de cuerpo libre y procedimientos de resolución aritmética, analítica y gráfica para la resolución de los problemas propuestos.

CE 2: Identifica, plantea y resuelve problemas de cinemática y cinética

Descripción: Que el estudiante adquiera la capacidad de identificar las variables que tienen un efecto sobre el comportamiento dinámico de una estructura. Seguidamente, que pueda transformar en lenguaje analítico-matemático el fenómeno de estudio y, finalmente, que pueda comprender los efectos sobre el sistema como resultado de la solución del problema de ingeniería.

CE 3: Aplica los conocimientos de dinámica para comprender el comportamiento de sistemas mecánicos y sus efectos sobre el medio ambiente

Descripción: Que mediante el desarrollo de un proyecto de análisis el estudiante adquiera la capacidad de conjuntar los conocimientos adquiridos a lo largo de la carrera y, especialmente, de la asignatura para evaluar el comportamiento de un sistema mecánico real. La evaluación del sistema ha de incluir la optimización de su operación a fin de reducir sus efectos sobre el medio ambiente y la adaptación al cambio climático.

IV. Contenidos

- Cinemática de partículas
- 1.1. Ecuaciones de movimiento
- 1.2. Casos de movimiento
- 1.3. Movimiento curvilíneo de partículas
- 2. Cinética de partículas
- 2.1. Segunda ley de movimiento
- 2.2. Cantidad de movimiento lineal y angular
- 2.3. Trabajo y energía
- 3. Cinemática y cinética de cuerpos rígidos
- 3.1. Traslación y rotación alrededor de un eje fijo
- 3.2. Análisis del movimiento plano general: Velocidad y aceleración
- 3.3. Cinética del movimiento plano: fuerzas y aceleraciones
- 3.4. Cantidad de movimiento angular de un cuerpo rígido con movimiento plano
- 3.5. Ecuaciones de movimiento: Movimiento general en el plano
- 4. Vibraciones
- 4.1. Conceptos fundamentales
- 4.2. Vibraciones libres
- 4.3. Péndulo simple
- 4.4. Vibraciones forzadas
- 4.5. Vibraciones libres amortiguadas
- 4.6. Vibraciones forzadas amortiguadas
- 4.7. Vibraciones transitorias

V. Requisito de asistencia

80 % de Clases presenciales y/o virtuales, según corresponda

VI. Recursos para el Aprendizaje

Tecnológicos

División de Ciencias de la Ingeniería Centro Universitario de Occidente Quetzaltenango

- Aula virtual
- Documentos y formularios propios
- Libros digitales
- Equipo multimedia
- Computadora
- Software de simulación
- Software de análisis numérico

Bibliografía

- Mecánica Vectorial para Ingenieros DINÁMICA, Ferdinand P. Beer, E. Russell Johnston, Jr., Phillip j, Cornwell, Brian P. Self, Undecima Edición, McGrawHill 2017.
- Ingeniería Mecánica DINÁMICA, Russell C. Hibbeler, Decimosegunda edición, Prentice Hall 2010.
- Mecánica Vectorial para Ingenieros ESTÁTICA, Ferdinand P. Beer, E. Russell Johnston, Jr., David F. Mazurek, Undecima Edición, McGrawHill 2017.
- Manual de formulas de ingeniería, García Díaz, Rafael, Segunda edición, Limusa 2010.
- Dinámica de estructuras, Chopra, Anil K, Cuarta edición, Pearson 2014.

Espacios

Módulo G (Presenciales)

Online

Teams: Id. de reunión: 285 699 180 943

Codigo de acceso: hPSLTG

Contacto	Luis Fernando Velásquez Pérez
Versión	Abril 2024

3/6

División de Ciencias de la Ingeniería Centro Universitario de Occidente Quetzaltenango

VII. Cronograma de actividades docente

Fecha de realizacion de Actividad	Contenido	Estrategias de enseñanza (Actividades del docente)	Estrategias de aprendizaje (Actividades del estudiante)	Estrategias evaluativas y resultados de aprendizaje	Ponderación / acreditación
18 de enero al 3 de febrero	Cinemática de partículas 1.1. Ecuaciones de movimiento 1.2. Casos de movimiento 1.3. Movimiento curvilíneo de partículas	 Explicación de conceptos en clase. Lecturas, análisis y discusión de contenidos. Elaboración de formulario a utilizar para la cinemática de partículas. Elaboración de diapositivas con el contenido. Resolución de ejercicios prácticos en clase. 	temas asignados. • Realizar ejercicios prácticos	 Presentación de resultados a ejercicios y laboratorios. Evaluaciones mediante temario y formulario, con procedimiento adjunto. 	15%

Fecha de realizacion de Actividad	Contenido	Estrategias de enseñanza (Actividades del docente)	Estrategias de aprendizaje (Actividades del estudiante)	Estrategias evaluativas y resultados de aprendizaje	Ponderación / acreditación
	2. Cinética de partículas 2.1. Segunda ley de movimiento 2.2. Cantidad de movimiento lineal y angular 2.3. Trabajo y energía	 Explicación de conceptos en clase Elaboración de formulario a utilizar para cinética de partículas Elaboración de diapositivas del contenido Resolución de ejercicios prácticos en clase 	 Retroalimentación de temas trabajados Realizar ejercicios prácticos del tema trabajado 	 Presentación de resultados a ejercicios y laboratorios Evaluaciones mediante temario y formulario, con procedimiento adjunto 	15%

Fecha de realizacion de Actividad	Contenido	Estrategias de enseñanza (Actividades del docente)	Estrategias de aprendizaje (Actividades del estudiante)	Estrategias evaluativas y resultados de aprendizaje	Ponderación / acreditación
	3. Cinemática y cinética de cuerpos rígidos	Explicación de conceptos en clase	Retroalimentación de temas trabajados	Presentación de resultados a ejercicios y laboratorios	30%

4/6

División de Ciencias de la Ingeniería Centro Universitario de Occidente Quetzaltenango

alrededor de un eje fijo 3.2. Análisis del movimiento plano general: Velocidad y aceleración 3.3. Cinética del movimiento plano: fuerzas y aceleraciones	Simulación de movimiento de	Realizar ejercicios prácticos del tema trabajado Investigación	Evaluaciones mediante temario y formulario, con procedimiento adjunto	
--	-----------------------------	---	---	--

Fecha de realizacion de Actividad	Contenido	Estrategias de enseñanza (Actividades del docente)	Estrategias de aprendizaje (Actividades del estudiante)	Estrategias evaluativas y resultados de aprendizaje	Ponderación / acreditación
18 de marzo al 03 de mayo	4. Vibraciones 4.1. Conceptos fundamentales 4.2. Vibraciones libres 4.3. Péndulo simple 4.4. Vibraciones forzadas 4.5. Vibraciones libres amortiguadas 4.6. Vibraciones forzadas amortiguadas 4.7. Vibraciones transitorias	Explicación de conceptos en clase Lecturas, análisis y discusión de contenidos Elaboración de formulario a utilizar para vibraciones mecánicas Elaboración de diapositivas del contenido Resolución de ejercicios prácticos en clase Simulación de movimiento vibratorio Análisis numérico de vibraciones mecánicas	Retroalimentación de temas trabajados Realizar ejercicios prácticos del tema trabajado Investigación Realizar un modelo de movimiento vibratorio	 Presentación de resultados a ejercicios y laboratorios Revisión de investigación Evaluaciones mediante temario y formulario, con procedimiento adjunto 	40%

VIII. Cronograma de actividades de Investigación y Extensión

Fecha de realización	Tema	Eje a utilizar	Descripción de las actividades	Resultados Esperados

División de Ciencias de la Ingeniería Centro Universitario de Occidente Quetzaltenango

15 de abril al	Modelado de mecanismo físico	Investigación.	- Material audiovisual con la	- Informe técnico con la presentación
03 de mayo	demostrando movimiento plano		presentación del modelo realizado y sus	del modelo trabajado y los resultados
	general de un cuerpo rigido.		resultados.	obtenidos.