

ENG1003 Freshman Seminar for Engineering AAE Design of Path Planning Algorithm for Aircraft Operation

Week 4: Additional Cost Area

Dr Li-Ta Hsu and Dr Weisong Wen
Assisted by

Man Hei CHENG (Melvin), Miss Hiu Yi HO (Queenie), Miss Yan Tung LEUNG (Nikki)

Flight planning considering trip cost

The fundamental rationale of the cost index concept is to achieve minimum trip cost by means of a trade-off between operating costs per hour and incremental fuel burn.

$$C = C_F \cdot \Delta F + C_T \cdot \Delta T + C_C$$

With

- C_F =cost of fuel per kg
- *C*_T=time related cost per minute of flight
- *C_c*=fixed cost independent of time
- C_T =time related cost per minute of flight
- ΔF =trip fuel (e.g. 3000kg/h)
- ΔT =trip Time (e.g. 8 hours from Hong Kong to Paris)

Can we consider this cost to our path planning to imitate the path planning for flights?

Flight planning considering trip cost

- Start node
- Goal node

Fuel-consuming area: the volume of fuel consumption is twice larger than other area duet to unstable airflow. (additional cost ΔF_a)

Time-consuming area: the flying speed is limited due to the air traffic control. (additional cost ΔT_a)

Cost can be calculated using the following formula:

$$f(x,y) = g(x,y) + h(x,y)$$

One white grid with cost as follows for g(x,y)&h(x,y):

$$C = C_F \cdot \Delta F + C_T \cdot \Delta T + C_C$$

One colored grid with cost as follows for g(x, y) & h(x, y):

$$C = C_F \cdot (\Delta F + \Delta F_a(x, y)) + C_T \cdot (\Delta T + \Delta T_a(x, y)) + C_C$$

How we choose the routes?

- Start node
- Goal node

It depends on the ΔF_a and ΔT_a

Fuel-consuming area: the volume of fuel consumption is twice larger than other area duet to unstable airflow. (additional $cost \Delta F_a$)

Time-consuming area: the flying speed is limited due to the air traffic control. (additional cost ΔT_a)

Cost can be calculated using the following formula:

$$f(x,y) = g(x,y) + h(x,y)$$

One white grid with cost as follows for g(x, y) & h(x, y):

$$C = C_F \cdot \Delta F + C_T \cdot \Delta T + C_C$$

One colored grid with cost as follows for g(x, y) & h(x, y):

$$C = C_F \cdot (\Delta F + \Delta F_a(x, y)) + C_T \cdot (\Delta T + \Delta T_a(x, y)) + C_c$$

Example route planning

Avoiding the Fuel-consuming and time-consuming area if their cost is too high?

Example route planning

Go through the fuel-consuming and time-consuming area if their additional cost is quite small?

Design your route

Aircraft Model	C_F	ΔF	C_T	ΔΤ	C_c	ΔF_a	ΔT_a
PolyU-A380	1	1	2	5	10	0.2	0.2
PolyU-A381	1	1.5	3	5	10	0.3	0.4
PolyU-A382	1	2.0	4	5	10	0.4	0.5
PolyU-A383	1	2.5	5	5	10	0.5	0.1

$$C = C_F \cdot \Delta F + C_T \cdot \Delta T + C_C$$

With

- C_F =cost of fuel per kg
- C_T =time related cost per minute of flight
- C_c =fixed cost independent of time
- C_T =time related cost per minute of flight
- ΔF =trip fuel (e.g. 3000kg/h)
- ΔT =trip Time (e.g. 8 hours from Hong Kong to Paris)