Generalised method of moments estimation of mediation models and structural mean models

Tom Palmer

May 2013

Outline

- Introduction to GMM
- I. Mediation models
 - Joint estimation of mediator and outcome models delta method SE
 - Example
- ▶ II. Structural mean models
 - ► Multiplicative SMM
 - Logistic SMM
- Summary

Introduction to Generalised Method of Moments (GMM) I

- ▶ Jointly solve system of moment conditions (equations)
- ► System: exactly identified, # instruments = # parameters
- ▶ System: over-identified, # instruments > # parameters
- m vector of moment conditions
- Minimises quadratic form w.r.t parameters (ψ)

$$Q = m'W^{-1}m = \left(\frac{1}{n}\sum_{i=1}^{n}m_{i}(\psi)\right)'W^{-1}\left(\frac{1}{n}\sum_{i=1}^{n}m_{i}(\psi)\right)$$

Introduction to Generalised Method of Moments (GMM) II

Profiling over parameter of interest

- lacktriangle Over-identification test Hansen 1982: $nQ\sim\chi_q^2$
- ► In quadratic form: *W* affects efficiency (SEs) rather than consistency

I. Mediation models

Mediation models – common implementation

Baron and Kenny (1986) type models

- Implementations:
 - Stata medeff, medsens, paramed
 - ▶ R mediation
 - bootstrapping for SEs of mediation parameters
- Fit mediator model
- Fit outcome model
- ► Mediation parameters function of estimated parameters
- problem: fit models separately missing covariance between parameters from different models

Mediation model with a single confounder

$$M = \alpha_0 + \alpha_1 T + \alpha_2 x + \epsilon_1$$

$$Y = \beta_0 + \beta_1 T + \beta_2 M + \beta_3 x + \epsilon_2$$

$$\hat{\mathbf{V}} = \begin{bmatrix} \hat{\sigma}_{\alpha00}^2 & \hat{\sigma}_{\alpha01} & \hat{\sigma}_{\alpha02} & . & . & . & . \\ \hat{\sigma}_{\alpha10} & \hat{\sigma}_{\alpha11}^2 & \hat{\sigma}_{\alpha12} & . & . & . & . \\ \hat{\sigma}_{\alpha20} & \hat{\sigma}_{\alpha21} & \hat{\sigma}_{\alpha22}^2 & . & . & . & . \\ . & . & . & \hat{\sigma}_{\beta00}^2 & \hat{\sigma}_{\beta01} & \hat{\sigma}_{\beta02} & \hat{\sigma}_{\beta03} \\ . & . & . & \hat{\sigma}_{\beta10} & \hat{\sigma}_{\beta11}^2 & \hat{\sigma}_{\beta12} & \hat{\sigma}_{\beta13} \\ . & . & . & \hat{\sigma}_{\beta20} & \hat{\sigma}_{\beta21} & \hat{\sigma}_{\beta22}^2 & \hat{\sigma}_{\beta23} \\ . & . & . & \hat{\sigma}_{\beta30} & \hat{\sigma}_{\beta31} & \hat{\sigma}_{\beta32} & \hat{\sigma}_{\beta33}^2 \end{bmatrix}$$

Imai et al. (2010)

$$\begin{aligned} \text{Natural indirect effect} &= \beta_2 \alpha_1 \\ \text{V(NIE)} &= \alpha_1^2 \sigma_{\beta 2}^2 + \beta_2^2 \sigma_{\alpha 1}^2 + 2\beta_2 \alpha_1 \text{cov}(\beta_2, \alpha_1) \end{aligned}$$

- bootstrap to estimate SE of mediation parameter
- ▶ GMM joint estimation of mediation and outcome models
 - full var-covar matrix then delta-method SE

GMM estimation of GLMs

Estimating equation for GLMs - solve wrt β :

$$\sum_{i=1}^{n} x_i (y_i - g^{-1}(X\beta)) = 0$$

Model	Link fn $g(\mu)$	Inverse link $g^{-1}(X\beta)$
Linear	$I(\mu)$	$I(X\beta)$
Poisson	$\log(\mu)$	$\exp(Xeta)$
Logistic	$logit(\mu) = log\left(rac{\mu}{1-\mu} ight)$	$\operatorname{expit}(Xeta) = rac{\operatorname{exp}(Xeta)}{1 + \operatorname{exp}(Xeta)}$
Probit	$\Phi^{-1}(\mu)$	$\Phi(X\beta)$

In (exactly identified) GMM use covariates as *instruments* for themselves

Moment conditions

$$E[(M - \alpha_0 - \alpha_1 T - \alpha_2 x)1] = 0$$

$$E[(M - \alpha_0 - \alpha_1 T - \alpha_2 x)T] = 0$$

$$E[(M - \alpha_0 - \alpha_1 T - \alpha_2 x)x] = 0$$

$$E[(M - \beta_0 - \beta_1 T - \beta_2 M - \beta_3 x)1] = 0$$

$$E[(M - \beta_0 - \beta_1 T - \beta_2 M - \beta_3 x)T] = 0$$

$$E[(M - \beta_0 - \beta_1 T - \beta_2 M - \beta_3 x)M] = 0$$

$$E[(M - \beta_0 - \beta_1 T - \beta_2 M - \beta_3 x)x] = 0$$

Instruments

Implementation

- Stata: gmm then lincom/nlcom
- R: gmm package then deltamethod() from MSM package

Example from medsens helpfile I

$$M = \alpha_0 + \alpha_1 T + \alpha_2 x + \epsilon_1$$

$$Y = \beta_0 + \beta_1 T + \beta_2 M + \beta_3 x + \epsilon_2$$

Estimate (95% CI)			
α ₀ 0.28 (0.19, 0.36)		
α_1 0.17 (0.04, 0.29)		
α_2 0.27 (0.21, 0.33)		
β_0 0.32 (0.24, 0.41)		
β_1 -0.58 (-0.70, -0.4	6)		
β_2 0.71 (0.65, 0.77)		
β_3 0.27 (0.21, 0.34))		

Estimated variance-covariance matrix:

```
0.00178
-0.00178
            0.00398
-0.00001
            0.00008
                         0.0009
                                     0.00193
                                    -0.00181
                                                0.0037
                                     -0.0003
                                               -0.00007
                                                           0.0009
                                     0.0002
                                                          -0.0002
                                               -0.00009
                                                                    0.0010
```

Estimated variance-covariance matrix:

```
0.00178
-0.00178
            0.00398
-0.00001
            0.00008
                         0.0009
0.00009
           -0.00009
                        0.00005
                                    0.00193
-0.00007
           -0.00003
                       -0.000002
                                    -0.00181
                                                0.0037
-0.00005
            0.00007
                        -0.00002
                                    -0.0003
                                               -0.00007
                                                          0.0009
0.00006
           -0.00004
                        -0.00003
                                     0.0002
                                               -0.00009
                                                         -0.0002
                                                                   0.0010
```

Example from medsens helpfile II

Estimates of mediation parameters

	Estimate	95% CI	
		Bootstrap	DM (using GMM)
$NIE = \beta_2 \alpha_1$	0.12	(0.035, 0.211)	(0.031, 0.209)
$CDE = \beta_1$	-0.58	(-0.697, -0.451)	(-0.697, -0.457)
Total effect	-0.46	(-0.610, -0.304)	(-0.605, -0.309)
% TE mediated	-0.26	(-0.397, -0.198)	(-0.517, -0.008)

DM: delta-method

SEs from joint maximum likelihood estimation

$$\mathsf{logLike} = \mathsf{logLike}_{\mathsf{Mediator}} + \mathsf{logLike}_{\mathsf{Outcome}}$$

	Estimate		95% CI	
		Bootstrap	DM (GMM)	DM (ML)
$NIE = \beta_2 \alpha_1$	0.12	(0.035, 0.211)	(0.031, 0.209)	(0.031, 0.208)
$CDE = \beta_1$	-0.58	(-0.697, -0.451)	(-0.697, -0.457)	(-0.697, -0.457)
Total effect	-0.46	(-0.610, -0.304)	(-0.605, -0.309)	(-0.605, -0.308)
% TE mediated	-0.26	(-0.397, -0.198)	(-0.517, -0.008)	(-0.515, -0.009)

DM: delta-method

GMM SEs here are heteroskedasticity robust SEs

II. Structural mean models

Structural mean models

Multiplicative SMM

- X exposure/treatment
- Y outcome
- ▶ 7 instrument
- ightharpoonup Y(X=0) exposure/treatment free potential outcome

Hernan & Robins 2006

$$\frac{E[Y|X,Z]}{E[Y(0)|X,Z]} = \exp(\psi X)$$

 ψ : log causal risk ratio

Rearrange for
$$Y(0)$$
: $Y(0) = Y \exp(-\psi X)$

Under the instrumental variable assumptions Robins 1994:

$$Y(0) \perp \!\!\! \perp Z$$

 $Y \exp(-\psi X) \perp \!\!\! \perp Z$

Under the instrumental variable assumptions Robins 1994:

$$Y(0) \perp \!\!\! \perp Z$$

$$Y \exp(-\psi X) \perp \!\!\! \perp Z$$
 trick: $Y \exp(-\psi X) - Y(0) \perp \!\!\! \perp Z$

Under the instrumental variable assumptions Robins 1994:

$$Y(0) \perp \!\!\! \perp Z$$
 $Y \exp(-\psi X) \perp \!\!\! \perp Z$ trick: $Y \exp(-\psi X) - Y(0) \perp \!\!\! \perp Z$

Moment conditions

$$Z = 0,1$$

$$E[(Y \exp(-\psi X) - Y(0))1] = 0$$

$$E[(Y \exp(-\psi X) - Y(0))Z_1] = 0$$

Under the instrumental variable assumptions Robins 1994:

$$Y(0) \perp \!\!\! \perp Z$$
 $Y \exp(-\psi X) \perp \!\!\! \perp Z$ trick: $Y \exp(-\psi X) - Y(0) \perp \!\!\! \perp Z$

Moment conditions

$$Z=0,1,2,3$$

Over-identified

$$E[(Y \exp(-\psi X) - Y(0))1] = 0$$

$$E[(Y \exp(-\psi X) - Y(0))Z_1] = 0$$

$$E[(Y \exp(-\psi X) - Y(0))Z_2] = 0$$

$$E[(Y \exp(-\psi X) - Y(0))Z_3] = 0$$

	No Hypertension	Hypertension	Total
Not	10,066	13,909	23,975
Overweight	42%	58%	
Overweight	6,906 22%	24,642 78%	31,548
Total	16,972	38,551	55,523
	31%	69%	χ² P<0.001

Risk ratio for hypertension 1.35 (1.32, 1.37)

Distribution of instrument (Z)

FTO	MC4R	Ζ	Freq
0	0	0	0.20
0	1	1	0.15
1	0	1	0.27
1	1	2	0.21
2	0	2	0.09
2	1	3	0.07

Exposure (over-weight) & outcome (hypertension) by instrument

Copenhagen example Multiplicative SMM estimates

MSMM: Hansen over-identification test P = 0.31 E[Y(0)] = 0.58 (0.50, 0.65)

How does GMM deal with multiple instruments?

GMM estimator solution to:

$$\frac{\partial m'(\psi)}{\partial \psi} W^{-1} m(\psi) = 0$$

▶ MSMM: instruments combined into linear projection of $YX \exp(-X\psi)$ on $Z=(1,Z_1,Z_2)'$ Bowden & Vansteelandt 2010

(double) Logistic SMM

$$logit(p) = log(p/(1-p)), expit(x) = e^x/(1+e^x)$$

Goetghebeur, 2010

$$\begin{split} \log & \mathsf{it}(E[Y|X,Z]) - \mathsf{logit}(E[Y(0)|X,Z]) = \psi X \\ & \psi : \mathsf{log} \ \mathsf{causal} \ \mathsf{odds} \ \mathsf{ratio} \\ & \mathsf{Rearrange} \ \mathsf{for} \ Y(0) : \quad Y(0) = \mathsf{expit}(\mathsf{logit}(Y) - \psi X) \end{split}$$

(double) Logistic SMM

$$logit(p) = log(p/(1-p)), expit(x) = e^x/(1+e^x)$$

Goetghebeur, 2010

$$\begin{split} \mathsf{logit}(E[Y|X,Z]) - \mathsf{logit}(E[Y(0)|X,Z]) &= \psi X \\ \psi : \mathsf{log} \ \mathsf{causal} \ \mathsf{odds} \ \mathsf{ratio} \\ \mathsf{Rearrange} \ \mathsf{for} \ Y(0) : \quad Y(0) &= \mathsf{expit}(\mathsf{logit}(Y) - \psi X) \end{split}$$

- ► Can't be estimated in a single step Robins (1999)
- ► First stage association model Vansteelandt (2003):
 - (i) logistic regression of Y on X & Z & interactions
 - (ii) predict Y, estimate LSMM using predicted Y

(double) Logistic SMM moment conditions

Association model moment conditions Logistic regression using GMM

$$E[(Y - \expit(\beta_0 + \beta_1 X + \beta_2 Z + \beta_3 XZ))1] = 0$$

$$E[(Y - \expit(\beta_0 + \beta_1 X + \beta_2 Z + \beta_3 XZ))X] = 0$$

$$E[(Y - \expit(\beta_0 + \beta_1 X + \beta_2 Z + \beta_3 XZ))Z] = 0$$

$$E[(Y - \expit(\beta_0 + \beta_1 X + \beta_2 Z + \beta_3 XZ))XZ] = 0$$

(double) Logistic SMM moment conditions

Association model moment conditions Logistic regression using GMM

$$\begin{split} &E[(Y - \text{expit}(\beta_0 + \beta_1 X + \beta_2 Z + \beta_3 X Z))1] = 0 \\ &E[(Y - \text{expit}(\beta_0 + \beta_1 X + \beta_2 Z + \beta_3 X Z))X] = 0 \\ &E[(Y - \text{expit}(\beta_0 + \beta_1 X + \beta_2 Z + \beta_3 X Z))Z] = 0 \\ &E[(Y - \text{expit}(\beta_0 + \beta_1 X + \beta_2 Z + \beta_3 X Z))XZ] = 0 \end{split}$$

Causal model moment conditions

$$E[(\operatorname{expit}(\operatorname{logit}(\widehat{\rho}) - \psi X) - Y(0))1] = 0$$

$$E[(\operatorname{expit}(\operatorname{logit}(\widehat{\rho}) - \psi X) - Y(0))Z] = 0$$

Problem: SEs incorrect - need association model uncertainty

LSMM joint estimation

Joint estimation = correct SEs Gourieroux (1996) Vansteelandt & Goetghebeur (2003)

$$\begin{split} E[(Y - \exp \mathrm{i} t(\beta_0 + \beta_1 X + \beta_2 Z + \beta_3 X Z))1] &= 0 \\ E[(Y - \exp \mathrm{i} t(\beta_0 + \beta_1 X + \beta_2 Z + \beta_3 X Z))X] &= 0 \\ E[(Y - \exp \mathrm{i} t(\beta_0 + \beta_1 X + \beta_2 Z + \beta_3 X Z))Z] &= 0 \\ E[(Y - \exp \mathrm{i} t(\beta_0 + \beta_1 X + \beta_2 Z + \beta_3 X Z))XZ] &= 0 \\ E[(\exp \mathrm{i} t(\beta_0 + \beta_1 X + \beta_2 Z + \beta_3 X Z - \psi X) - Y(0))1] &= 0 \\ E[(\exp \mathrm{i} t(\beta_0 + \beta_1 X + \beta_2 Z + \beta_3 X Z - \psi X) - Y(0))Z] &= 0 \end{split}$$

In example causal model SEs increase $\times 10$ from non-joint estimation

Copenhagen example LSMM estimates

LSMM: Hansen over-identification test P = 0.29 E[Y(0)] = 0.57 (0.45, 0.68)

Issues estimating SMMs

- Weak identification
 - many values of causal parameter give independence condition close to zero
- GMM convergence at local/global minima
- ▶ Hence check estimated E[Y(0)] approx baseline risk
- Sensitive to initial values: in another dataset
 - initial CRR = 1 gave CRR > 1
 - initial CRR < 1 gave CRR < 1
- ▶ Fit with centred Z (with/without constant E[Y(0)])
- Estimation MSMM/LSMM models with continuous X more problematic than binary X – centring X important for sensible estimates of E[Y(0)]

Summary

- Mediation models
 - GMM exact identification
 - Delta-method SEs alternative to bootstrapping
- Structural mean models
 - fit over-identified models with multiple instruments
 - check if estimated E[Y(0)] is sensible approx baseline risk
- Straightforward to implement in Stata & R

References

- Baron RM, Kenny DA (1986). The Moderator-Mediator Variable Distinction in Social Psychological Research: Conceptual, Strategic, and Statistical Considerations. Journal of Personality and Social Psychology, 51(6), 1173–1182.
- ► Hansen. Large sample properties of generalized method of moments estimators Econometrica, 1982, 50, 1029-1054.
- Imai, Keele, Yamamoto (2010) Identification, Inference, and Sensitivity Analysis for Causal Mediation Effects, Statistical Sciences, 25(1) pp. 51-71.
- Hicks, Raymond and Dustin Tingley (2011) mediation: Stata package for causal mediation analysis. (The Stata Journal, 11(4) 2011)
- Robins JM (1994) Correcting for non-compliance in randomized trials using structural nested mean models. CSTM. 23(8) 2379–2412

Local risk ratios for Multiplicative SMM

- ▶ Identification: NEM by Z ... what if it doesn't hold?
- ▶ Alternative assumption of monotonicity: $X(Z_k) \ge X(Z_{k-1})$
- ▶ Local Average Treatment Effect (LATE) Imbens 1994
 - effect among those whose exposures are changed (upwardly) by changing (counterfactually) the IV from Z_{k-1} to Z_k

Local risk ratios for Multiplicative SMM

- ▶ Identification: NEM by Z ... what if it doesn't hold?
- ▶ Alternative assumption of monotonicity: $X(Z_k) \ge X(Z_{k-1})$
- ► Local Average Treatment Effect (LATE) Imbens 1994
 - effect among those whose exposures are changed (upwardly) by changing (counterfactually) the IV from Z_{k-1} to Z_k

Similar result holds for MSMM:
$$e_{\mathsf{AII}}^{\psi} = \sum_{k=1}^{K} \tau_k e_{k,k-1}^{\psi}$$

Copenhagen example local risk ratios

Check: $(0.10 \times 2.21) + (0.81 \times 1.11) + (0.09 \times 2.69) = 1.36$