Distribution of *Aedes aegypti* in Madagascar

Background

The factors explaining the distribution of *Aedes aegypti* in Madagascar remains unknown, several authors advanced different assumptions on this matter: distribution of *Aedes aegypti* in Madagascar would be affected by altitude (Fontenille et Rhodain et al. 1989), temperature (Reinhold et al. 2018), precipitation (Chen et al. 2009) and coverage forest (Raharimalala et al. 2011).

Statistical question

What are the factors wich influence the distribution of *Aedes aegypti* in Madagascar ?

Mechanic question

How does precipitation/temperature influence the growth of *Aedes aegypti* (Mosquito)

iStock iStock
Stock iStock

Aedes aegypti dengue, yellow fever in Eastern of Africa, zika in Malaisie Marchette et al. 1969

Current distribution of Aedes aegypti under the altitude

What are the factors wich influence the distribution of *Aedes* aegypti in Madagascar?

Predictor variable (X)

- Temperature
- Precipitation
- Altitude

Response variable (Y)

- Presence (1)
- Absence (0)

Distribution of the statistical model: Binomial

Family function link: logit

HYPOTHESIS:

We expect that the temperature altitude favorise the presence of this species, and is not affected by precipitation.

R function:

glm (Aeg~Altitude+Temperature (mean)+Precipitation (mean), family="binomial", data)

Table: Explanatory variable and response variable

Locality	Altitude	Temperature (mean)	Precipitation (mean)	Aeg
Antsiranana 2	105	23	800	0
Ambilobe	105	24	900	1
Ambanja	143	25	900	0

How does precipitation/temperature influence the density of *Aedes aegypti* (Mosquito)?

Populations

Ae. aegypti

States

Egg, larvae, nymph, adults

Process

μ_e: egg mortality rate

μ_a: adult mortality rate

μ_i: larvae mortality rate

 μ_n : pupal mortality rate

€ : Egg hatch rate

d: Larval development rate

λ: Nymphosis rate

β: Egg-laying rate

\Theta: Precipitation and temperature

f, h, j, g: Function

NEXT STEPS

Data collection and organization		Data (collection	and	organ	izatio
----------------------------------	--	--------	------------	-----	-------	--------

- ☐ Study experimental to test the correlation between density and temperature and humidity in laboratory for Ae. aegypti and another species *Aedes albopictus*
- ☐ Virus detection in the sample and prediction risk areas.

Acknowledgments:

Organisaters of E²M²

Estelle RAVELOARITIANA

and Fifi RAVELOMANANATSOA

for critics and reading this presentation