0.1 Vekstfart og fart

Definisjon 0.1 Gjennomsnittlig og momentan vekstfart

Gitt en funksjon f(x). Da har vi at

- stigningstallet til linja som går gjennom punktene (a, f(a)) og (b, f(b)) kalles den gjennomsnittlige vekstfarten til f på intervallet [a, b].
- f'(a) kalles den momentane vekstfarten til f i a

En praktisk tolkning av begrepene

I MB har vi sett at stigningstallet til linja som går gjennom punktene (a, f(a)) og (b, f(b)) er gitt ved uttrykket

$$\frac{f(b) - f(a)}{b - a}$$

Hvis vi antar at dette forholdet er konstant for $x \in [a, b]$, antar vi at f og x representerer proporsjonale størrelser¹ på intervallet.

Hvis vi ser tilbake til (den alternative) definisjonen av den deriverte i TM1, innser vi at f'(a) er den gjennomsnittlige vekstfaktoren til f på intervallet [a,b] når $b \to a$. Da går [a,b] mot å innheholde bare ett element, som er a.

¹Se AM.

Eksempel

Se for deg at vi slipper en ball fra 60 meter over bakken, og lar den falle fritt nedover. Når vi slipper ballen, starter vi også en stoppeklokke. Antall meter h ballen er over bakken etter t sekunder kan da tilnærmes ved funksjonen

$$h(t) = 5(10 - t^2)$$
 , $x \in [0, \sqrt{10}]$

- a) Finn den gjennomsnittlige vekstfarten til h på intervallet $t \in [1,3]$. Gi en praktisk tolkning av denne verdien.
- b) Finn den momentane vekstfarten til h i 3. Gi en praktisk tolkning av denne verdien.

Svar

a) h(1) = 5(10 - 1) = 45 og $h(3) = 5(10 - 3^2) = 5$. Det betyr at stigningstallet til linja mellom (1, f(1)) og (3, f(3)) er

$$\frac{5-45}{3-1} = -20$$

Altså er vekstfarten til h på intervallet [1,3] lik -20. Siden h representerer antall meter, og t representerer antall sekunder, representerer vekstfarten en størrelse med enheten 'm/s'. Dette er en enhet for fart. Hvis ballen skulle falt 40 meter nedover i løpet av 2 sekunder med konstant fart, måtte denne farten vært $20\,\mathrm{m/s}$.

b) Siden h'(t) = -10t, er h'(3) = -30. Dette betyr at etter å ha falt i 3 sekunder, har ballen oppnådd farten $30 \,\text{m/s}$, i retning nedover.

Regel 0.2 Farts- og akselerasjonsvektor

Gitt en vektorfunksjon $\vec{r}(t)$, hvor \vec{r} representerer en posisjon og t representerer tid. Da har vi at

- $\vec{r}'(t)$ kalles fartsvektoren og $|\vec{r}'(t)|$ kalles banefarten.
- $\vec{r}''(t)$ kalles akselerasjonsvektoren og $|\vec{r}''(t)|$ kalles akselerasjonsvektoren.

0.2 Farts- og akselerasjonsvektor (forklaring)

Hvis $\vec{r}(t)$ representerer en posisjon (altså en relativ lengde fra et referansepunkt), og t en tid, vil $\vec{r}'(t)$ innebære en lengde delt på en tid. Da vil $\vec{r}'(t)$ representere en størrelse med en enhet for fart. $\vec{r}''(t)$ vil innebære en fart delt på en tid, som da vil representere en akselerasjon.