#### GENERATIVE MODELS

MICHELLE KUCHERA
DAVIDSON COLLEGE

ECT\* TALENT SUMMER SCHOOL 02 JULY 2020



| Input    | Output   |
|----------|----------|
| 1000000  | 1000000  |
| 0100000  | 0100000  |
| 0010000  | 0010000  |
| 0001000  | 0001000  |
| 00001000 | 00001000 |
| 0000100  | 0000100  |



| Input    | Output   |
|----------|----------|
| 1000000  | 1000000  |
| 0100000  | 0100000  |
| 0010000  | 0010000  |
| 0001000  | 0001000  |
| 00001000 | 00001000 |
| 0000100  | 0000100  |

| Input    | A1     | A2     | A3     | Output   |
|----------|--------|--------|--------|----------|
| 1000000  | 0.9911 | 0.9869 | 0.0093 | 1000000  |
| 0100000  | 0.9892 | 0.0095 | 0.0124 | 0100000  |
| 0010000  | 0.0094 | 0.0283 | 0.0122 | 0010000  |
| 00010000 | 0.9840 | 0.9836 | 0.9900 | 0001000  |
| 00001000 | 0.0139 | 0.9904 | 0.0186 | 00001000 |
| 0000100  | 0.0128 | 0.9805 | 0.9868 | 0000100  |





#### CLUSTERING — KMEANS

Goal: minimize pairwise distances between points in same cluster

$$\min \sum_{i=1}^{k} \frac{1}{2N} \sum_{x,y,x\neq y}^{N} (\overrightarrow{x} - \overrightarrow{y})^2$$



Goal: maximize pairwise distances between points in different clusters

### CLUSTERING — KMEANS



### DECODER



#### DECODER

How do we know that we are providing a latent vector that represents those seen in training?



Variational Autoencoder

Encode to two outputs for each latent dimension: mean and stdev



Sample similar points in latent space, decode, and compare with regularization





https://blog.keras.io/building-autoencoders-in-keras.html

# GENERATIVE ADVERSARIAL NETWORKS (GANS)



| Input    | A1     | A2     | A3     | Output   |
|----------|--------|--------|--------|----------|
| 1000000  | 0.9911 | 0.9869 | 0.0093 | 1000000  |
| 0100000  | 0.9892 | 0.0095 | 0.0124 | 0100000  |
| 0010000  | 0.0094 | 0.0283 | 0.0122 | 0010000  |
| 00010000 | 0.9840 | 0.9836 | 0.9900 | 0001000  |
| 00001000 | 0.0139 | 0.9904 | 0.0186 | 00001000 |
| 0000100  | 0.0128 | 0.9805 | 0.9868 | 0000100  |



## VARIATIONAL AUTOENCODERS (VAES)







https://blog.keras.io/building-autoencoders-in-keras.html

# GENERATIVE ADVERSARIAL NETWORKS (GANS)



### minimax / binary cross entropy





### MAXIMUM MEAN DISCREPANCY (MMD) GAN

FAT-GAN

MMD: Critic loss: batch distribution matching











