Robotic Inference: Classification Network

Hsin-Wen Chang

Abstract—In this project,NVIDIA DIGITS workflow are used for rapidly prototype ideas that can be deployed on the Jetson near real time. With DIGITS prototype classification networks and training a CNN on the supplied data and also train another CNN using Stanford Cars Dataset published by Jonathan Krause, Michael Stark, Jia Deng, Li Fei-Fei in 3D Object Representations for Fine-Grained Categorization 4th IEEE Workshop on 3D Representation and Recognition, at ICCV 2013 (3dRR-13). Sydney, Australia. Dec. 8, 2013.

Index Terms—Robotic inference, image classification, Udacity, NVIDIA DIGITS, deep learning.

1 Introduction

MACHINE learning methods base on Deep learning neural network achieved remarkable result in a wide variety domains. In this paper VGG16 and AlexNet will be trained with Stanford Cars Data set to classify which cars are manufactured by Tesla or BMW?

introduction should provide some material regarding the history of the problem, why it is important and what is intended to be achieved. If there exists any previous attempts to solve this problem, this is a great place to note these while conveying the differences in your approach (if any). The intent is to provide enough information for the reader to understand why this problem is interesting and setting up the conversation for the solution you have provided Use this space to introduce your robotic inference idea and how you wish to apply it. If you have any papers / sites you have referenced for your idea, please make sure to cite them.

1.1 Supplied Data set

Subsection text here.

1.1.1 Supplied Data set

Udacity supplied dataset contain candy boxes, bottles, and nothing (empty conveyor belt).

Class	Images	Image Shape
Candy Box	1871	256x256x3
Bottle	3426	256x256x3
Nothing	2273	256x256x3
Total	7570	
TABLE 1		

Count of supplied data images

2 BACKGROUND / FORMULATION

The Stanford Cars dataset contains 16,185 images of 196 classes of cars. The data is split into 8,144 training images and 8,041 testing images, where each class has been split roughly in a 50-50 split. Classes are typically at the level of Make, Model, Year, ex. 2012 Tesla Model S or 2012 BMW M3 coupe.

Fig. 1. Stanford Cars dataset.

The intuition is from:

- Can you form a model that can tell the difference between cars by type or colour?
- Which cars are manufactured by Tesla vs BMW?

At this stage, you should begin diving into the technical details of your approach by explaining to the reader how parameters were defined, what type of network was chosen, and the reasons these items were performed. This should be factual and authoritative, meaning you should not use language such as I think this will work or Maybe a network with this architecture is better... Instead, focus on items similar to, A 3-layer network architecture was chosen with X, Y, and Z parameters Explain why you chose the network you did for the supplied data set and then why you chose the network used for your robotic inference project. [1]

- example
- 1) example

3 DATA ACQUISITION

This section should discuss the data set. Items to include are the number of images, size of the images, the types of images (RGB, Grayscale, etc.), how these images were collected (including the method). Providing this information is critical

Fig. 2. Supplied Data set.

if anyone would like to replicate your results. After all, the intent of reports such as these are to convey information and build upon ideas so you want to ensure others can validate your process. Justifying why you gathered data in this way is a helpful point, but sometimes this may be omitted here if the problem has been stated clearly in the introduction. It is a great idea here to have at least one or two images showing what your data looks like for the reader to visualize.

4 RESULTS

This is typically the hardest part of the report for many. You want to convey your results in an unbiased fashion. If you results are good, you can objectively note this. Similarly, you may do this if they are bad as well. You do not want to justify your results here with discussion; this is a topic for the next session. Present the results of your robotics project model and the model you used for the supplied data with the appropriate accuracy and inference time For demonstrating your results, it is incredibly useful to have some charts, tables, and/or graphs for the reader to review. This makes ingesting the information quicker and easier.

Fig. 3. VGG16 pretrained model

Fig. 4. Evaluate training result in DIGITS Workspace

Fig. 5. Learning rate vs Epochs

5 Discussion

This is the only section of the report where you may include your opinion. However, make sure your opinion is based on facts. If your results are poor, make mention of what may be the underlying issues. If the results are good, why do you think this is the case? Again, avoid writing in the first person (i.e. Do not use words like I or me). If you really find yourself struggling to avoid the word I or me; sometimes, this can be avoid with the use of the word one. As an example: instead of: I think the accuracy on my dataset is low because the images are too small to show the necessary detail try: one may believe the accuracy on the dataset is low because the images are too small to show the necessary detail. They say the same thing, but the second avoids the first person. Reflect on which is more important, inference time or accuracy, in regards to your robotic inference project.

6 CONCLUSION / FUTURE WORK

This section is intended to summarize your report. Your summary should include a recap of the results, did this project achieve what you attempted, and is this a commercially viable product? For Future work,address areas of work that you may not have addressed in your report as possible next steps. For future work, this could be due to time constraints, lack of currently developed methods / technology, and areas of application outside of your current implementation. Again, avoid the use of the first-person.

REFERENCES

[1] L. Lamport, LATEX: a document preparation system: user's guide and reference manual. Addison-wesley, 1994.