МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ РОССИЙСКАЯ АКАДЕМИЯ НАУК

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ ИНСТИТУТ ХИМИИ ВЫСОКОЧИСТЫХ ВЕЩЕСТВ им. Г.Г. ДЕВЯТЫХ РОССИЙСКОЙ АКАДЕМИИ НАУК

УДК [544.31.031+548.517]:54-161.6	
№ гос. регистрации	
AAAA-A19-119111890014-2	
	VTDEDWIAIO
	УТВЕРЖДАЮ
	Директор ИХВВ РАН
	д.х.н.
	А.Д. Буланов
	А.Д. Буланов «»2020 г.
ОТЧЕ	Т
О НАУЧНО-ИССЛЕДОВА	
по гранту № 19	9-33-90220
no rpunty v. 12	7 33 70220
«ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТ	ВА И УСЛОВИЯ ПОЛУЧЕНИЯ
ХАЛЬКОГЕНИДНЫХ И ТЕЛЛУРИТ	НЫХ ОПТИЧЕСКИХ СТЁКОЛ,
СОДЕРЖАЩИХ ВИСМУТ В РАЗЛИЧ	НЫХ СТЕПЕНЯХ ОКИСЛЕНИЯ»
(промежуто	чный)
Научный руководитель проекта	
д.х.н.	А.М. Кутьин
	дпись, дата)

Нижний Новгород, 2020 г.

(подпись, дата)

аспирант _____

____ К.В. Балуева

Исполнитель проекта

СПИСОК ИСПОЛНИТЕЛЕЙ

Научный руководитель проекта: в.н.с., д.х.н.	подпись, дата	А.М. Кутьин (введение, основная часть, заключение)
Исполнитель: аспирант	подпись, дата	К.В. Балуева (введение, основная часть, заключение)

РЕФЕРАТ

Отчёт 27 с., 10 рис., 5 табл., 6 источников

Ключевые слова: термодинамические свойства, теллуритное стекло, теплоемкость, плотность, КТР, халькогенидное стекло, расплав, энергия Гиббса, стандартная энтальпия образования.

теплофизические Исследованы И термодинамические свойства стеклообразующей системы (78-x)TeO₂-22WO₃-xBi₂O₃ (x=2,5,8 мольн.%). Теплоёмкость в стеклообразном, переохлажденном жидком и жидком состояниях, а также характеристики стеклования определены методом дифференциальной сканирующей калориметрии (ДСК). Обработка экспериментальных данных ДСК выполнена по статтермодинамической модели. Найдены модельные параметры, благодаря которым проведена экстраполяция теплоёмкости в низкотемпературную область и получен полный набор стандартных термодинамических функций (энтальпия, энтропия и энергия Гиббса). Показана возможность прогнозирования стандартных термодинамических функций для неисследованных промежуточных по составу стёкол той же серии на основе корреляционных зависимостей модельных параметров от содержания Bi_2O_3 в составе стекла. В рамках применяемого модельно-статистического подхода установлены температурные волюметрических (коэффициент зависимости термического расширения, плотность) свойств стёкол в широком диапазоне температур.

Представлена методика термодинамического исследования кристаллизационной устойчивости халькогенидных стёкол GeS_x :nBi (x = 1.25, 1.35, 1.4, 1.6; n = 1 ат. %). Расчёты выполнены по оригинальной компьютерной программе, реализующей метод минимизации энергии Гиббса. В результате проведённых расчётов, использующих ассоциативный подход для описания конденсированных фаз: 1) установлены температурные интервалы плавления стёкол; 2) определены стандартные энтальпии образования стёкол; 3) выявлен состав кристаллизующихся фаз при различных соотношениях Ge и Ge по их пересыщениям на кристаллизацию.

СОДЕРЖАНИЕ

ВВЕДЕНИЕ5
ОСНОВНАЯ ЧАСТЬ7
1. ТЕПЛОФИЗИЧЕСКИЕ СВОЙСТВА ВЫСОКОЧИСТЫХ СТЁКОЛ ТЕО2- WO3-BI2O3 ДЛЯ ОПТИЧЕСКИХ ПРИЛОЖЕНИЙ
1.1. Термический анализ7
1.2. Термодинамические свойства
1.3. Волюметрические свойства
1.4. Выводы
2. ТЕРМОДИНАМИЧЕСКИЙ АНАЛИЗ КРИСТАЛЛИЗАЦИОННОЙ УСТОЙЧИВОСТИ СТЁКОЛ СИСТЕМЫ GE-S-BI
ЗАКЛЮЧЕНИЕ25
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ27

ВВЕДЕНИЕ

В настоящем отчёте представлены результаты первого этапа научноисследовательской работы по гранту «Термодинамические свойства и условия получения халькогенидных и теллуритных оптических стёкол, содержащих висмут в различных степенях окисления».

В первом разделе приведены результаты исследования теплофизических и термодинамических свойств стеклообразующей системы (78-x)TeO₂-22WO₃-xBi₂O₃ (x = 2, 5, 8 мольн.%). Методом дифференциальной сканирующей калориметрии (ДСК) определены теплоемкость в стеклообразном, переохлажденном жидком и жидком состояниях и характеристики стеклования. Выполнена обработка экспериментальных данных ДСК по статтермодинамической модели и найдены её параметры. На основе параметров проведена экстраполяция теплоёмкости в область полный набор низкотемпературную получен стандартных термодинамических функций (энтальпия, виподтне И Гиббса). энергия Установлены корреляционные зависимости модельных параметров от содержания Bi_2O_3 составе стекла, позволяющие прогнозировать стандартные термодинамические функции для неисследованных промежуточных по составу стёкол той же серии. Определены волюметрические (коэффициент термического расширения, плотность) свойства стёкол и в рамках применяемого модельностатистического подхода установлены их температурные зависимости.

Во втором разделе представлена методика термодинамического исследования кристаллизационной устойчивости халькогенидных стёкол GeS_x : $nBi\ (x = 1.25, 1.35,$ 1.4, 1.6; n = 1 ат. %). Расчёты выполнены по оригинальной компьютерной Гиббса. программе, реализующей метод минимизации энергии Стекло представлено в виде ассоциированного раствора, компоненты которого состоят из возможных соединений между атомами Ge, S и Bi. С целью выяснения области формирования однородного расплава установлены температурные интервалы плавления стёкол. Стандартные энтальпии образования стёкол определены путём сопоставления области энергии Гиббса, В расплава полученной ИЗ калориметрических измерений и рассчитанной по модели ассоциированного раствора. Выполнен расчёт пересыщений на кристаллизацию компонентов стекла и выявлен состав возможных продуктов кристаллизации при различном соотношении Ge и S.

ОСНОВНАЯ ЧАСТЬ

1. ТЕПЛОФИЗИЧЕСКИЕ СВОЙСТВА ВЫСОКОЧИСТЫХ СТЁКОЛ ТЕО2-WO3-BI2O3 ДЛЯ ОПТИЧЕСКИХ ПРИЛОЖЕНИЙ

Сведения о теплофизических и термодинамических характеристиках стеклообразующей системы TeO_2 - WO_3 - Bi_2O_3 необходимы для прогнозирования термических свойств стёкол, а также на стадиях получения из них заготовок и последующей вытяжки волоконных световодов. Однако на практике наблюдается недостаток литературных данных по теплофизическим свойствам исследуемых стёкол и полное отсутствие информации по их стандартным термодинамическим функциям.

Поэтому целью работы является термическое И волюметрическое исследование системы $(TeO_2)_{(0.78-x)}(WO_3)_{0.22}(Bi_2O_3)_x$ (x = 0.02, 0.05 и 0.08), включая измерение теплоёмкости, характеристик переходов между состояниями, плотности, КТР определение термодинамических функций стеклообразном высокоэластичном состоянии c возможностью ИХ прогнозирования ДЛЯ неисследованных промежуточных по составу стёкол этой же серии.

1.1. Термический анализ

На первом этапе реализации проекта были изучены калорические и волюметрические свойства висмутсодержащих представителей теллуритных и халькогенидных стекол, необходимые для использования фундаментальных методов химической термодинамики в решении задач определения компонентного состава в состояниях расплава и его переохлажденной формы с целью термодинамической характеризации кристаллизационных проявлений висмутсодержащих стеклах, а также других, поставленных в проекте задач. Так, методом дифференциальной сканирующей калориметрии (ДСК) на приборе Netzsch DSC 404 F1 Pegasus впервые были изучены: теплоемкость стеклообразующей системы (78-x)TeO₂-22WO₃-xBi₂O₃ (x=2,5,8 мольн.%) в стеклообразном, переохлажденном жидком и жидком состояниях и характеристики стеклования. Было установлено, что температура стеклования $T_{\rm g}$ повышается с увеличением концентрации Ві₂О₃ в составе стекла в (см. Рис. 1), что может быть связано с более высокой температурой плавления оксида висмута ($T_{\rm m} = 1098 \; {\rm K} \; [1]$) по сравнению с основой TeO_2 ($T_m = 1006$ K [1]). Кроме того для образца с наименьшим содержанием оксида висмута при различных скоростях нагревания наблюдается переходящий в плавление пик кристаллизации. Таким образом, уменьшение концентрации Bi_2O_3 в стекле снижает кристаллизационную устойчивость в исследованной серии стекол.

Рис. 1. Термограммы теллуритных стёкол при скорости нагревания 5 К/мин и характеристики стеклования.

1.2. Термодинамические свойства

Обработка экспериментальных данных ДСК для стёкол и их расплавов с целью получения стандартных термодинамических функций выполнена по оригинальной методике. Математический аппарат используемой статтермодинамической модели основан на квазичастичном представлении, отражающем природу тепловых возбуждений в стекле и расплаве (уравнения 1-8). Результат обработки представлен на рис. 2.

Рис. 2. Измеренные значения теплоёмкости (значки) и результат их обработки (пунктирные линии) для серии стёкол (78-x)TeO₂-22WO₃-xBi₂O₃, где x = 2, 5 и 8 мольн.%.

Стандартные калорические функции для m акустических мод на моль структурной (формульной) единицы вещества, отсчитываемые от 0 K, имеют следующий вид:

Энергия Гиббса:
$$G^{\circ}(T) - \left(H^{\circ}(0) - TS^{\circ}(0)\right) = -mRT \cdot \ln \frac{1+b}{1+b_p}$$
, (1)

Энтальпия:
$$H^{\circ}(T) - H^{\circ}(0) = -mRT \cdot g^{*'} \cdot \bar{n}$$
, (2)

Энтропия:
$$S^{\circ}(T) - S^{\circ}(0) = mR \cdot \left[\ln \frac{1+b}{1+b_p} - g^{*'} \cdot \overline{n} \right], \tag{3}$$

Теплоёмкость:
$$C_p^{\circ}(T) = m \cdot R \cdot [(g^*)^2 (b \cdot (1+b) - (p+1)^2 b_p \cdot (1+b_p)) - (g^* + g^*) \cdot n],$$
 (4)

$$b = 1/(\exp(g^*) - 1), \ b_p = 1/(\exp((p+1)g^*) - 1), \ \bar{n} = b - (p+1)b_p.$$
 (4')

Следующие параметры и характеристики содержатся в выражениях (1 - 4, 4'): \bar{n} - среднее число элементарных возбуждений, p - параметр парастатистики, g^{*} и g^{*} первая и вторая производные выражений (5) и (6) по отношению к относительному изменению температуры. Параметр внутренней размерности $d = d_0/(1 - (T/T_g)^t)$, $(T < T_g)$, изменяющийся от начального значения d_0 при 0 К до температуры стеклования T_g , преобразует энергию Гиббса активации g^{*} из вида (5), соответствующей стеклообразному состоянию

$$g^* = d \cdot \ln (1 + g_l^*/d),$$
 (5)
B форму (6)

$$g_l^* = h^*/T - s^*, (\text{при } T \ge T_g),$$
 (6)

которая соответствует как жидкому, так и переохлажденному жидкому состоянию. h^* и s^* - энтальпийный и энтропийный параметры элементарных возбуждений, t - «критический» параметр.

Вклад $m_{\rm e}$ оптических и локальных мод в термодинамические функции представлен известными формулами Эйнштейна, которые можно получить из формул (1 - 4, 4'), если положить $g^* = \theta_{\rm e} / T$ и выполнить математическое преобразование $p \to \infty$:

$$G_{\rm e}(T) = -m_{\rm e}R \,\theta_{\rm e} \ln(1+b_{\rm e}), \qquad H_{\rm e}(T) = m_{\rm e}R \cdot \theta_{\rm e} \,b_{\rm e}, \tag{7}$$

$$S_{\rm e}(T) = (H_{\rm e}(T) - G_{\rm e}(T))/T, \ C_{\rm Pe}(T) = m_{\rm e} R (\theta_{\rm e}/T)^2 b_{\rm e} (1+b_{\rm e}),$$
 (8)

где $b_{\rm e}=1/(\exp(\theta_{\rm e}(1/T-\alpha_{\rm e}))-1),\;\theta_{\rm e}$ - температура Эйнштейна. Колебательный ангармонизм учитывается параметром $\alpha_{\rm e}$. При необходимости несколько вкладов Эйнштейна с другими характеристическими параметрами $m_{\rm e}\theta_{\rm e}$ и $\alpha_{\rm e}$ добавляются к акустической части термодинамических функций.

В данной серии стекол теплоемкость незначительно возрастает по мере увеличения содержания $\mathrm{Bi}_2\mathrm{O}_3$ в составе стекла, что соответствует увеличению числа колебательных степеней свободы в формульной единице вещества. При этом, как видно из рисунка 2, экспериментально наблюдаемый скачок теплоемкости в процессе расстекловывания хорошо воспроизводится расчётом по модели (пунктирные линии).

Таблица 1. Модельные параметры для серии стекол $(TeO_2)_{(0.78-x)}(WO_3)_{0.22}(Bi_2O_3)_x$.

	x = 0.02	x = 0.05	x = 0.08
m^1	8.980	9.299	9.736
<i>h</i> *, K	462.01	462.31	462.49
<i>s</i> *	0.1732	0.1765	0.1633
p	9.063	9.546	10.696
d_0	1.54	1.58	1.86
t	2.361	2.475	2.482
m_{e}	0.800	0.661	0.404
θ _e , K	67.67	68.73	69.07
αe	0.0394	0.0425	0.0339

Примечания:

1. Общее число степеней свободы равно утроенному числу атомов в формульной единице вещества: $m_{\text{общ}} = m + m_{\text{e}} = 3 \cdot (3 \cdot (0.78 - x) + 4 \cdot 0.22 + 5 \cdot x)$.

Также на основе экспериментальных данных ДСК были найдены параметры модели (Табл. 1), которые позволили провести экстраполяцию теплоемкости в низкотемпературную область до 0 К и впервые для стекол изучаемых составов получить следующие стандартные термодинамические функции: энтальпию $H^{\circ}(T) - H_{l}^{\circ}(0)$, энергию Гиббса $G^{\circ}(T) - H_{l}^{\circ}(0)$ и энтропию $S^{\circ}(T) - S_{l}^{\circ}(0)$ (Табл. 2). При этом ненулевые значения полученных функций характеризуют избыточную энергию и энтропию стекла соответственно.

Таблица 2. Значения стандартных термодинамических функций стеклообразующей системы $(TeO_2)_{0.73}(WO_3)_{0.22}(Bi_2O_3)_{0.05}$.

	$C_{\rm p}$	$S^{\circ}(T) = S^{\circ}(T) - S_{I}^{\circ}(0) = H^{\circ}(T) - H_{I}^{\circ}(0)$		$G^{\circ}(T) - H_i^{\circ}(0)$			
<i>T</i> , K	эксп.	расчёт	5(1) 5(0)	$II(I) II_{I}(0)$	$U(I)$ $II_{I}(0)$		
		Дж/(мо	ль·К)	кДж	моль		
			M = 190.81 r/s	моль			
			Стеклообразное (эинкотоо			
0		0.00	28.18	18.77	18.74		
50		14.47	38.52	19.08	17.15		
100		30.05	53.48	20.20	14.85		
200		51.98	81.71	24.40	8.06		
300	64.0	64.91	105.5	30.30	-1.34		
400	72.6	72.88	125.3	37.22	-12.90		
500	78.3	78.11	142.2	44.79	-26.30		
600	81.5	82.23	156.8	52.80	-41.26		
635	-	83.72	161.5	55.71	-46.83		
	«Переохлаждённое жидкое» состояние						
635	-	132.4	116.5	55.71	-46.83		
700	135.2	135.2	174.5	64.42	-57.75		
800	135.7	136.7	192.7	78.04	-76.13		
900	136.6	137.1	208.8	91.72	-96.23		
950	139.3	138.1	216.3	98.60	-106.9		

Установленные зависимости параметров модели от содержания оксида висмута в стекле (рис. 3) позволяют рассчитать такой же набор стандартных термодинамических функций от 0 К для неисследованных промежуточных по составу стекол серии $(TeO_2)_{(0.78-x)}(WO_3)_{0.22}(Bi_2O_3)_x$.

Рис. 3. Корреляционные зависимости модельных параметров стеклообразующей системы (78-x)TeO₂-22WO₃-xBi₂O₃ от содержания оксида висмута в интервале x=2 8 мольн.%.

1.3. Волюметрические свойства

Кроме того, для данных стекол были проведены волюметрические измерения, а именно плотности и коэффициента термического расширения (КТР).

Плотность стёкол, измеренная при комнатной температуре и при 75 °C пикнометрическим методом, повышается с 5.94 до 6.32 ± 0.02 г/см³ и с 5.92 до 6.30 ± 0.05 г/см³ соответственно по мере увеличения содержания оксида висмута в них. Также на горизонтальном кварцевом дилатометре был определен КТР стекол, его значение составило (36.3 \pm 0.6)·10⁶ K⁻¹.

В рамках используемого модельно-статистического подхода молярный объем

$$V = V_0 + \Delta V_{l/g} \tag{9}$$

и плотность $\rho = M/V$ (M — молярная масса) включают объем плотной упаковки (V_0) и изменения температуры, связанные с коллективными степенями свободы для жидкости, в том числе переохлажденной (ΔV_l), или для стекла (ΔV_g). Указанные изменения в молярном объеме $\Delta V = (\partial G/\partial P)_T$ являются производными от соответствующих энергий Гиббса:

$$\Delta V_l = m\bar{n}\Delta V^*, \qquad \Delta V_g = m\bar{n}\Delta V^* / \left(1 + \frac{g_l^*}{d}\right)$$
 (10)

при этом соответствующие вклады в $\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_P$ (КТР) после дифференцирования принимают вид:

$$\alpha_{l} = \frac{\Delta V_{l}}{V} \left(\frac{B}{\overline{n}} \frac{h^{*}}{T^{2}} + \frac{W^{*}}{\Delta V^{*}} \right) + \alpha_{e}$$

$$\alpha_{g} = \frac{\Delta V_{g}}{V} \left[\left(\frac{B}{\overline{n}} + \frac{1}{d} \right) \left(\frac{h^{*}}{T} + \frac{g_{l}^{*} d'}{d} \right) \frac{1}{TY} - \frac{Bg^{*} d'}{\overline{n} T d} + \frac{W^{*}}{\Delta V^{*}} \right] + \alpha_{e}$$

$$(12)$$

Таблица 3. Объёмные параметры элементарных возбуждений исследуемых стёкол.

Состав стекла	V ₀ , см ³ /моль	$\Delta V_0^* \cdot 10^2$, см ³ /моль
76TeO ₂ -22WO ₃ -2Bi ₂ O ₃	30.40	4.0
73TeO ₂ -22WO ₃ -5Bi ₂ O ₃	31.05	5.0
70TeO ₂ -22WO ₃ -8Bi ₂ O ₃	31.48	5.0

Примечания.

- 1) В формулах (11), (12) параметр $W^* = 0$, определяющий возможные изменения параметра $\Delta {V_0}^*$ полагается равным 0.
- 2) Объёмные характеристики отнесены к акустическим модам, поэтому $\alpha_{e}=0$.

Полученные **KTP** значения плотности И при использовании волюметрических уравнений модели (9)-(12) позволили в рамках решения так объемные параметры называемой обратной задачи найти элементарных возбуждений (Табл. 3), которые дополнили модельные параметры Таблицы 1, и таким образом определить температурные зависимости плотности (р) и КТР (Рис. 4).

Рис. 4. Температурные зависимости плотности и коэффициента объёмного термического расширения стёкол с различным содержанием Bi_2O_3 (экспериментальные значения: \circ - плотности, \square - КТР).

1.4. Выводы

По результатам исследований методом ДСК найдены температурные зависимости теплоемкости и характеристики фазовых и физических превращений. $T_{\rm g}$ изменяется от 631 до 641 К с увеличением содержания ${\rm Bi}_2{\rm O}_3$ в стекле. Изменение теплоемкости при стекловании $\Delta C_{\rm p}(T_{\rm g})$ варьируется от 43 до 49 Дж/(моль·К) и имеет максимальное значение для стекла с 5%-ым содержанием оксида висмута. Стандартные термодинамические функции $C_{\rm p}^{\,\circ}(T)$, $H^{\,\circ}(T) - H_{l}^{\,\circ}(0)$, $S^{\,\circ}(T) - S_{l}^{\,\circ}(0)$, $G^{\,\circ}(T) - H_{l}^{\,\circ}(0)$ стекол рассчитаны в диапазоне $T \to 0$ до 950 К по модельно-статистической методике. Установлены зависимости параметров модели от состава стекла, позволяющие определить стандартные термодинамические функции неисследованных промежуточных по составу стекол этой же серии.

Применение единой модели к измеренным плотности и КТР стёкол позволило установить их температурные зависимости в диапазоне 0 - 650 К. Обнаружено, что с ростом температуры КТР увеличивается, в том время как плотность плавно уменьшается.

Полученные результаты исследования термодинамических свойств теллуритных стекол могут служить данными для справочников и информационных банков, а также будут использоваться нами для прогнозирования оптимальных условий синтеза стёкол TeO_2 - WO_3 - Bi_2O_3 методом минимизации энергии Γ иббса, в том числе с оптически активными добавками других элементов (главным образом, редкоземельных).

Кроме того, для данной стеклообразующей системы ведётся подготовка к проведению препаративного синтеза в ячейке ДСК, который был запланирован на текущий отчетный период, но в связи с пандемией COVID-19 был отложен. Поэтому результаты эксперимента будут представлены в следующем отчетном периоде.

2. ТЕРМОДИНАМИЧЕСКИЙ АНАЛИЗ КРИСТАЛЛИЗАЦИОННОЙ УСТОЙЧИВОСТИ СТЁКОЛ СИСТЕМЫ GE-S-BI

Исследование кристаллизационной устойчивости высокочистых халькогенидных стекол GeS_x :nBi ($x=1.25,\ 1.35,\ 1.4,\ 1.6;\ n=1$ ат. %) было проведено по оригинальной компьютерной программе, реализующей метод минимизации энергии Гиббса. Для этого из различных справочников [1-3] была собрана информация об энтальпиях образования и температурных зависимостях приведённой энергии Гиббса (уравнения (13)-(14)) всех возможных соединений между атомами Ge, S и Bi (Taбл. 4).

Набор аппроксимационных коэффициентов (см. Табл. 4) соответствует наиболее распространенной и принятой аппроксимации функции Планка $\Phi^{\circ}(T)$:

$$\frac{\Phi^{\circ}(T)}{R} = \varphi^{\circ}(x) = \varphi_1 + \varphi_2 \ln x + \varphi_3 x^{-2} + \varphi_4 x^{-1} + \varphi_5 x + \varphi_6 x^2 + \varphi_7 x^3. \tag{13}$$

Необходимая для расчётов — приведённая энергия Гиббса для каждого вещества в соответствующем агрегатном состоянии

$$\frac{G^{\circ}(T)}{RT} = g^{\circ}(T) = \frac{\Delta h_{298}^{\circ}}{x} - \phi^{\circ}(x)$$
 (14)

кроме безразмерной формы функции Планка включает в себя и безразмерную стандартную энтальпию образования $\Delta h_{298}^{\circ} = \Delta_f H^{\circ}(298.15)/(RT_x)$.

Здесь: $x = T/T_x$, $T_x = 10000 \text{ K}$,

R - универсальная газовая постоянная.

Таблица 4. Исходная информация по стеклообразующей системе Ge-S-Bi для термодинамических расчётов (см. приложенный файл).

Соединение	T F	Δh°298	Аппроксимационные коэффициенты						
Соединение	Температурный интервал, К	ΔH 298	φ1	Φ2	φ3	Φ4	φ5	φ6	φ7
*Ge	298-1211	-0.05576069	10.80862	2.898209	-9.435777·10 ⁻⁵	0.03857579	1.796346	0	0
*Ge [liq]	1211-4900	-0.05576069	15.39506	3.319661	0	-0.3836764	0	0	0
Ge [gas]	298-1500	4.382939	34.86228	5.530119	-0.0003378784	0.08166353	-21.13078	36.52984	-31.42159
Ge ₂ [gas]	298-1500	5.674709	49.52494	7.051328	-1.341195·10 ⁻⁵	0.52458	-24.5801	62.09978	-81.04611
*S	298-368	0	5.529698	1.323838	0	0.009825726	31.90706	-93.26324	0
"5	368-388	0	8.481597	2.082877	0	0.0155049	12.17337	0	0
	388-428	-0.05308	7645.92	2376.978	-0.318343	63.51602	-39442.33	122940.6	0
	428-432	-0.05308	25338.72	6928.863	0	98.27401	-162740.8	637439.6	0
*S [liq]	432-453	-0.05308	586.5208	165.0036	0	2.585907	-3421.937	12193.78	0
"	453-716	-0.05308	-64.09753	-24.41033	0.009864998	-1.166148	304.5326	-624.0422	0
	716-1300	-0.05308	14.24035	3.848883	0	0.029697	0	0	0
S [gas]	298-1500	3.253436	28.66529	3.240208	-2.432485·10 ⁻⁵	0.01273065	-7.044242	16.75761	-20.75852
S ₂ [gas]	298-1500	1.436331	37.08965	4.004491	-0.0001413939	0.02257056	4.437228	-8.887662	14.01601
S3 [gas]	298-1500	1.584814	47.25397	6.087031	-0.0003366372	0.07154001	9.622588	-24.75049	32.9221
S4 [gas]	298-1500	1.459592	55.01363	8.449113	-0.0005721264	0.1309846	16.29951	-41.84432	55.58441
S ₅ [gas]	298-1500	1.340374	70.79433	11.98833	-0.0006603852	0.1751714	10.787	-27.95824	37.38784
S ₆ [gas]	298-1500	1.21854	79.26437	15.00319	-0.0008279998	0.2363175	9.808663	-24.549	46.14201
S7 [gas]	298-1500	1.345728	91.39077	17.73579	-0.001009	0.2907694	13.51487	-34.75288	45.65059
S ₈ [gas]	298-1500	1.218083	98.83526	19.40632	-0.0007720001	0.2670264	16.22382	44.3962	-161.8486
*Bi	298-545	0	9.589684	1.425111	0.0002468281	0.04221957	18.32214	0	0
*D: 0: 1	545-1200	0	15.45025	2.287122	0.001247224	-0.1216613	6.237378	-7.975993	0
*Bi [liq]	1200-1837	0	17.61995	3.270912	0	-0.04528955	0	0	0
Bi [gas]	298-6000	2.510349	29.2638	2.6924	-5.660998·10 ⁻⁵	0.008411	0	-1.595766	-0.92706
Bi ₂ [gas]	298-2200	2.643105	46.4232	5.26746	-0.000145	0.03504	-11.09243	35.22639	-36.7442
Bi3 [gas]	298-6000	3.470347	62.11871	7.032955	-3.365001·10 ⁻⁵	0.020252	-0.232365	0.24042	0
Bi4 [gas]	298-1800	2.853	73.56847	10.325	-0.000127	0.059822	-4.524986	13.812	-20.0373
*GeS	298-931	-0.9989896	19.86735	5.015575	0	0.04429305	12.26832	0	0
*GeS [liq]	931-1700	-0.9989896	29.08485	8.058599	0	-0.03492967	0	0	0
GeS [gas]	298-1500	1.04935	38.43409	4.160974	-0.0001266332	0.02548395	3.73965	-9.205097	12.32092
*GeS2	298-1113	-1.957518	30.50375	7.89021	-0.0001683886	0.09901534	6.555129	0	0
*GeS ₂ [liq]	1113-2200	-1.957518	38.68454	12.02776	0	0.2792434	0	0	0
GeS ₂ [gas]	298-1500	0.9291323	48.86156	6.928845	-0.0002793702	0.07277051	6.051789	-15.61908	20.82524
*Bi ₂ S ₃	298-1050	-1.87197	55.82574	13.20945	0	0.4157589	24.65764	0	0
*Bi ₂ S ₃ [liq]	1050-1100	-1.87197	81.79599	22.64478	0	0.1935877	0	0	0
BiS [gas]	298-1500	2.123385	42.59438	4.63209	-0.000133821	0.03154977	-2.059132	7.59871	-10.89364

Ранее для данных стёкол методом ДСК нами уже были получены термодинамические функции [4] и исследована их кристаллизационная устойчивость [5]. Поэтому на дальнейшем этапе решение вопроса о кристаллизации стекол Ge-S-Bi из переохлажденного расплава потребовало выполнения следующих задач:

- 1) установления температурного интервала плавления стеклообразующей системы с целью определения области формирования однородного расплава;
- 2) определения стандартной энтальпии образования стёкол путём сопоставления в области расплава энергии Гиббса, полученной ранее из

калориметрических измерений и рассчитанной по модели ассоциированного раствора;

3) расчёта пересыщения на кристаллизацию компонентов стекла и выяснения состава возможных продуктов кристаллизации при различном соотношении Ge и S.

Определение температурного интервала плавления стеклообразующей системы было выполнено в результате термодинамического расчёта, в котором стекло было представлено в виде двух растворов, один из которых состоит из кристаллических компонентов, а второй – из жидких (рис. 5, на примере стекла GeS_{1.25}:0.01Bi). Верхний график на рис. 5 – газовая фаза. Из данного расчёта графически было установлено, что плавление начинается около условной температуры в 1000 К. Выше данной температуры находится однородный расплав, из которого в результате охлаждения формируется стекло.

Рис. 5. Определение температурного интервала плавления стекла.

Далее был выполнен расчёт, в котором раствор формируется только из жидких, экстраполированных до $T_{\rm g}$ компонентов (рис. 6).

Рис. 6. Термодинамический расчёт для стекла $GeS_{1.25}$:0.01Bi, представленного в виде раствора жидких компонентов.

Сопоставление (рис. 7) В области переохлажденного расплава калориметрических данных о стекле, в частности по энергии Гиббса, с результатами расчёта, представляющего жидкий раствор ПО модели ассоциированного раствора, позволило определить стандартную энтальпию образования для каждого состава стекла.

Рис. 7. Определение стандартной энтальпии образования стекла $GeS_{1.25}$:0.01Bi.

Соответствующие значения представлены в таблице 5. Полученные таким образом значения стандартных энтальпий образования позволят в дальнейшем уточнить степень окисления висмута в стёклах в зависимости от содержания серы.

Таблица 5. Стандартные энтальпии образования стёкол, полученные в результате сопоставления энергии Гиббса.

Состав стекла	$\Delta_f H^{\circ}(298.15)$, кДж/моль
GeS _{1.25} :0.01Bi	-90.6
GeS _{1.35} :0.01Bi	-112.2
GeS _{1.4} :0.01Bi	-114.5
GeS _{1.6} :0.01Bi	-147.5

Также был проведен расчёт, в котором стекло представлено кристаллическими компонентами в виде отдельных конденсированных фаз (фактически несмешивающимися) и жидким раствором (рис. 8). В результате двух последних проведённых расчётов были найдены химические потенциалы компонентов стекла, разница между которыми определяет количественную характеристику пересыщения на кристаллизацию сравниваемых компонентов.

Рис. 8. Термодинамический расчёт для стекла $GeS_{1.25}$:0.01Bi, компоненты которого представлены в виде отдельных конденсированных фаз.

Так, на рис. 9 и 10 сплошными линиями указаны химические потенциалы конденсированных компонентов, прерывистыми — химические потенциалы жидких компонентов. Сравнение химических потенциалов в области переохлажденного расплава осуществлялось от $T_{\rm g}$ до 700 К. Левая температурная граница ($T_{\rm g}$) — начало области переохлажденного расплава, а правая (до 700 К) — граница существования кристаллических фаз компонентов.

Рис. 9. Расчёт пересыщений на кристаллизацию для стекла $GeS_{1.25}$:0.01Ві (соотношение Ge: S=1:1.25).

На рис. 9 приведено сравнение химических потенциалов компонентов Ge, Bi, GeS и GeS₂, в составе переохлаждённого расплава и в виде отдельных кристаллизующихся фаз. Отсюда видно, что поскольку в области температур от $T_{\rm g}$ до 700 К химический потенциал кристаллического сульфида германия (II) ниже (GeS более выгоден), чем его химический потенциал в переохлажденном расплаве, то при минимальном соотношении германия и серы (1 к 1.25) наиболее выгодна кристаллизация GeS по сравнению с GeS₂. Сближение химических потенциалов кристаллического висмута и его состояния в расплаве является отражением тенденции к кластеризации с ростом температуры.

Рис. 10. Расчёт пересыщений на кристаллизацию для стекла $GeS_{1.25}$:0.01Ві с учётом закристаллизовавшегося ранее GeS (соотношение Ge: S = 1: 1.83).

На рис. 10 приведены химические потенциалы тех же компонентов, но с учётом закристаллизовавшегося ранее сульфида германия (II), т.е. при соотношении германия и серы 1 к 1.83. Тогда в этом случае наблюдается тенденция к кристаллизации лишь сульфида германия (IV), связанная с увеличенным относительным содержанием серы, достаточным для образования термодинамически выгодного сульфида.

Здесь стоит отметить, что полученная нами из термодинамических расчетов информация о составе кристаллизующихся фаз подтверждает ранние исследования. Так в [5] методом дифференциальной сканирующей калориметрии была изучена кинетика кристаллизации данной стеклообразующей системы. При этом было установлено, что с повышением температуры при содержании серы x<1.5 поочередно выделяются кристаллы GeS и GeS₂, причём по мере увеличения содержания серы происходит одновременное смещение и сближение двух пиков, что можно наблюдать на представленной термограмме. При содержании серы равном 1.5

кристаллизационные пики сульфидов германия совмещаются в один, а при дальнейшем увеличении серы >1.5 кристаллизуется лишь GeS_2 .

Кроме того в источнике [6] методом высокотемпературной рентгеновской дифракции было установлено, что при расстекловывании первым кристаллизуется GeS, а затем GeS₂. В то же время данные рентгеноструктурного анализа показали, что кристаллизация происходит не полностью - в образце сохраняются довольно значительные количества аморфной фазы (примерно 10% по массе).

Развитие данной методологии в применении к другим стеклообразующим системам позволит прогнозировать возможные продукты кристаллизации и определять температурный интервал их образования, а в ряде случаев выявлять тенденцию на возможную кластеризацию.

ЗАКЛЮЧЕНИЕ

по разделу 1

В результате термического анализа стеклообразующей системы (78-x)TeO₂-22WO₃-xBi₂O₃ (x=2,5,8 мольн.%):

- 1) измерена теплоёмкость в стеклообразном, переохлаждённом жидком и жидком состояниях, при этом наблюдается её незначительный рост с увеличением оксида висмута в составе стекла;
- 2) получена экспериментальная информация о температуре стеклования $(T_{\rm g})$, значение которой повышается по мере увеличения содержания ${\rm Bi}_2{\rm O}_3$, и величине скачка теплоёмкости при стекловании $(\Delta C_p(T_{\rm g}))$;
- 3) выполнена обработка калориметрических данных по статтермодинамической модели и методом нелинейной регрессии найдены её параметры;
- 4) на основе параметров проведена экстраполяция теплоёмкости в низкотемпературную область и рассчитан полный набор стандартных термодинамических функций: теплоёмкость $C_p^{\circ}(T)$, энтальпия $H^{\circ}(T) H_l^{\circ}(0)$, энтропия $S^{\circ}(T) S_l^{\circ}(0)$ и энергия Гиббса $G^{\circ}(T) H_l^{\circ}(0)$ в диапазоне $T \to 0$ до 950 K;
- 5) установлены корреляционные зависимости модельных параметров от содержания Bi_2O_3 в составе стекла, позволяющие прогнозировать стандартные термодинамические функции для неисследованных промежуточных по составу стёкол той же серии;
- 6) определены волюметрические (коэффициент термического расширения, плотность) свойства стёкол и в рамках применяемого модельностатистического подхода установлены их температурные зависимости в диапазоне 0 - 650 К.

Полученная информация о теплофизических свойствах теллуритных стёкол TeO_2 - WO_3 - Bi_2O_3 не только пополняет базу данных справочников и информационных банков с возможностью прогнозирования термических свойств новых многокомпонентных стеклообразующих систем, но также полезна при подборе оптимальных условий их синтеза, производстве заготовок и вытяжки из них волоконных световодов.

по разделу 2

В ходе термодинамического исследования кристаллизационной устойчивости халькогенидных стёкол GeS_x :nBi (x=1.25, 1.35, 1.4, 1.6; <math>n=1 ат. %) методом минимизации энергии Гиббса:

- 1) с позиции ассоциированных растворов проведено моделирование расплава и раствора твёрдых компонентов, что позволило найти температурный интервал плавления стеклообразующей системы Ge-S-Bi;
- 2) путём сопоставления химических потенциалов кристаллических компонентов и экстраполированных в область переохлаждённого расплава определён термодинамический фактор (степень пересыщения на кристаллизацию) и предсказана кристаллизация в зависимости от состава стёкол;
- 3) определены стандартные энтальпии образования стёкол посредством сопоставления ранее полученной информации о стандартных термодинамических функциях стеклообразующей системы с результатами расчёта по ассоциативной модели;
- 4) установлено соответствие между результатами проведённых термодинамических расчётов и ранними исследованиями состава кристаллических фаз в стёклах Ge-S-Bi, следовательно, методика может быть использована и для других стеклообразующих систем.

Развитие данной методологии в применении к другим стеклообразующим системам позволит прогнозировать возможные продукты кристаллизации и определять температурный интервал их образования, а в ряде случаев выявлять тенденцию на возможную кластеризацию.

Выполненное исследование термодинамических и кинетических характеристик стеклообразующих систем на основе TeO_2 - WO_3 - Bi_2O_3 и Ge-S-Bi призвано ускорить разработку перспективных стекол оптического качества.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. M. Binnewies, E. Milke, Thermochemical Data of Elements and Compounds, Wiley-VCH Verlag GmbH, Weinheim, 2002.
- 2. Термические константы веществ: Вып. 1-10 / Отв. ред. В.П. Глушко. М.: ВИНИТИ, 1965-1982.
- 3. R.A. Robie, B.S. Hemmingway, J.R. Fisher, Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 bar (10⁵ Pascals) Pressure and at Higher Temperatures, US Geol. Surv. Bull. 1452, 1979.
- 4. A.M. Kut'in, A.D. Plekhovich, K.V. Balueva, M.V. Sukhanov, I.V. Skripachev, Standard thermodynamic functions of GeSx:Bi (1 < x < 2) glasses // J. Non-Cryst. Solids 509 (2019) 74-79. https://doi.org/10.1016/j.jnoncrysol.2018.12.030
- 5. A.M. Kut'in, A.D. Plekhovich, M.V. Sukhanov, K.V. Balueva, Crystallization Resistance of Optically Active GeSx(Bi) Glasses // Inorg. Mater. 55 (2019) 1039-1045. https://doi.org/10.1134/S0020168519080053
- 6. L.D. Iskhakova, R.P. Ermakov, M.V. Sukhanov, V.V. Voronov, A.P. Velmuzhov, D.V. Philippovskiy, V.G. Plotnichenko, M.F. Churbanov, The study of phase formation processes in GeSx:Bi (1 < x < 2) chalcogenide glasses // J. Non-Cryst. Solids. 428 (2015) 132–137. https://doi.org/10.1016/j.jnoncrysol.2015.08.021