2. Основы теории вероятностей

Установление закономерностей в массовых однородных случайных явлениях основано на изучении методами теории вероятностей статистических данных - результатов наблюдений (измерений).

Знание этих закономерностей позволяет прогнозировать протекание случайных процессов.

Пример.

Время безотказной работы каждой электрической лампы – случайная величина (невозможно предсказать момент выхода лампы из строя).

При этом можно с достаточной для практических целей точностью прогнозировать среднюю потребность в замене ламп в университетском городке (в заданном интервале времени). Что, в свою очередь, дает возможность разработать стратегию пополнения запасов ламп, минимизирующую суммарные затраты на доставку заказа, хранение на складе и возможные потери, связанные с недостаточным количеством ламп.

Зарождение основных понятий теории вероятностей – в работах, посвященных созданию теории азартных игр (Кардано, Гюйгенс, Паскаль, Ферма и др.) – XVI–XVII вв.

Следующий этап – работы Я. Бернулли (1654–1705 гг.) «Закон больших чисел» – первое теоретическое обоснование накопленных фактов.

Дальнейшее развитие - работы Муавра, Лапласа, Гаусса, Пуассона и др.

2.1 Основные понятия

Наблюдаемые события (явления)

Достоверным называется событие, которое обязательно произойдет, если будет выполнена определенная совокупность условий S.

Невозможным называется событие, которое заведомо не произойдет, если будет выполнена определенная совокупность условий S.

Случайным называется событие, которое при выполнении совокупности условий S может либо произойти, либо не произойти.

Предмет теории вероятностей

Предмет теории вероятностей – изучение закономерностей в массовых однородных случайных явлениях.

Теория вероятностей является основанием математической и прикладной статистики.

Несовместные события

События называются *несовместными*, если появление одного из них исключает появление других событий в одном и том же испытании.

Примеры.

Несовместные события: выпадение герба и решки при одном подбрасывании монеты.

Совместные события: выпадение герба и решки при подбрасывании двух монет.

Полная группа событий

Несколько событий образуют *полную группу*, если в результате испытания обязательно должно появиться хотя бы одно из этих событий.

Другими словами: появление хотя бы одного из событий полной группы есть достоверное событие.

В частности, если события, образующие полную группу, попарно несовместны (в общем случае это необязательно), то в результате испытания появится одно и только одно из этих событий

Полная группа событий

Примеры.

Полная группа несовместных событий: выпадение «1», «2», «3», «4», «5» и «6» при одном подбрасывании игральной кости.

Полная группа совместных событий: выпадение нечетного числа и выпадение числа, большего 1, при одном подбрасывании игральной кости.

Равновозможные события

События называют *равновозможными*, если есть основания считать, что ни одно из них не является более возможным, чем другие.

Пример.

Если игральная кость изготовлена из однородного материала и имеет строго кубическую форму, то есть основания считать, что выпадение ни одной из граней не является более возможным, чем выпадение других.

2.2 Классическое определение вероятности

Элементарные исходы

Каждый из возможных результатов испытания называется *элементарным исходом*.

Говорят, что некоторый элементарный исход *благоприятствует событию А*, если появление этого исхода автоматически влечет наступление события *A*.

Классическое определение вероятности

Предположим:

некоторое испытание имеет n равновозможных несовместных элементарных исходов, образующих полную группу, и предположим, что событию A благоприятствуют m из этих исходов.

Тогда вероятность P(A) события A определяется как

$$P(A) = \frac{m}{n}. (2.1)$$

Свойства вероятности

Из классического определения вероятности следует:

 \blacksquare для невозможного события A m=0, следовательно,

$$P(A) = 0;$$

 \blacksquare для достоверного события $A \ m = n$, следовательно,

$$P(A) = 1$$
;

 ■ для случайного события A 0 < m < n, следовательно,

$$0 < P(A) < 1$$
.

Свойства вероятности

Итог:

для любого события А

$$0 \le P(A) \le 1.$$

Описание классической схемы на языке теории множеств

Пусть в результате испытания может наступить одно и только одно из событий ω_i , i=1,2,...,n.

События ω_i называются элементарными событиями (элементарными исходами). По предположению, эти события попарно несовместны.

Множество всех элементарных событий, которые могут появиться в результате испытания, называется *пространством элементарных событий* (элементарных исходов) Ω , а сами элементарные события – точками пространства Ω .

$$\Omega = \{\omega_1, \omega_2, \dots, \omega_n\}.$$

Описание классической схемы на языке теории множеств

Событием A называется подмножество пространства Ω , элементы которого есть элементарные исходы, благоприятствующие A.

$$A = \{\omega_{i_1}, \omega_{i_2}, \dots, \omega_{i_m}\}.$$

Множество всех событий, которые могут наступить в результате испытания, – это множество всех подмножеств Ω .

Само Ω – достоверное событие (наступает при любом исходе);

∅ – невозможное событие (не наступает ни при каком исходе).

Элементарные события выделяются из числа всех событий тем, что каждое из их содержит только один элемент пространства Ω

Описание классической схемы на языке теории множеств

<u>Пример 1</u>.

Подбрасывается игральная кость. Найти вероятность выпадения числа очков не менее пяти.

Испытание состоит в случайном выпадении целого числа от 1 до 6.

$$\Omega = \{\omega_1, \omega_2, \omega_3, \omega_4, \omega_5, \omega_6\},\$$

где ω_i , i = 1, 2, ..., 6 – выпадение числа очков, равного i, n = 6.

Описание классической схемы на языке теории множеств

Пример 1 (продолжение).

Пусть событие A состоит в выпадении числа очков не менее пяти.

$$A = \{\omega_5, \omega_6\}, m = 2.$$

Все исходы равновозможны, поэтому из (2.1)

$$P(A) = \frac{m}{n} = \frac{2}{6} = \frac{1}{3}.$$

Описание классической схемы на языке теории множеств

Пример 2.

В урне 2 белых и 3 черных шара. Наудачу вынимается один шар. Найти вероятность того, что вынутый шар – белый.

Испытание состоит в случайном выборе одного из пяти шаров.

$$\Omega = \{\omega_1, \omega_2, \omega_3, \omega_4, \omega_5\},\$$

где ω_i , i = 1, 2, ..., 5 – выбор i – го шара, n = 5.

Описание классической схемы на языке теории множеств

Пример 3.

Набирая номер телефона, абонент забыл последние 2 цифры и помнит лишь, что эти цифры различны. Какова вероятность с первого раза набрать правильный номер?

Испытание состоит в случайном выборе 2 цифр без повторений из имеющихся 10 цифр <u>с учетом порядка</u>. Элементы пространства Ω – это размещения без повторений из 10 по 2,

$$n = A_{10}^2 = \frac{10!}{8!} = 9 \cdot 10 = 90.$$

Описание классической схемы на языке теории множеств

Пример 3 (продолжение).

Пусть событие *A* состоит в том, что в первой попытке набран «правильный» номер.

Этому номеру соответствует только одна комбинация, поэтому m=1.

Тогда из (2.1)

$$P(A) = \frac{1}{90}.$$

2.3 Статистическая и геометрическая вероятность

Недостатки классического определения вероятности

- 1) Предположение о конечности числа элементарных исходов;
- 2) предположение о равновозможности исходов (само понятие равновозможности не имеет четкого определения).

Наряду с классическим определением используются и другие определения вероятности.

Относительная частота события

Относительной частотой события называется отношение числа испытаний, в которых событие наступило, к общему числу произведенных испытаний.

Сопоставление с классическим определением вероятности:

- определение вероятности не требует, чтобы испытания производились в действительности; вероятность вычисляется до опыта;
- относительная частота события вычисляется по результатам произведенных испытаний.

Относительная частота события

Результаты длительных наблюдений:

если в одинаковых условиях производятся серии испытаний, в каждой из которых число испытаний достаточно велико, то относительная частота наступления события обнаруживает <u>свойство</u> устойчивости – в различных сериях она изменяется тем меньше, чем больше произведено испытаний в серии.

Статистическая вероятность

При неограниченном увеличении числа однородных независимых испытаний можно утверждать (обосновывается предельными теоремами): относительная частота события будет сколь угодно мало отличаться от его вероятности в отдельном испытании.

Поэтому на практике при достаточно большом числе испытаний относительную частоту события принимают за приближенное значение вероятности этого события.

В этом случае относительную частоту называют статистической вероятностью.

Геометрическая вероятность

Схема с непрерывным пространством элементарных событий (с бесконечным числом исходов).

Пусть пространством элементарных событий является множество точек некоторой области G (одномерной, двумерной, трехмерной и т. д.).

Мерой области G будем называть

- длину отрезка в случае одномерной области;
- площадь в случае двумерной области;
- объем в случае трехмерной области и т. д.

Обозначение: mes(G).

Геометрическая вероятность

В качестве событий будем рассматривать подмножества области G, имеющие меру.

Тогда вероятность любого события A (подмножества, имеющего меру $mes\left(A\right)$) можно определить как

$$P(A) = \frac{mes(A)}{mes(G)}.$$
 (2.2)

Геометрическое определение вероятности

Геометрическая вероятность

Пример (задача о встрече).

Двое условились встретиться в определенном месте между 12 и 13 часами. Пришедший первым ждет второго в течение 15 минут, после чего уходит. Найти вероятность того, что встреча состоится, если время прихода каждого из двоих случайно (в промежутке от 12 до 13 часов).