Claims

 A method for estimating the occurrence of a specific tire pressure deviation between actual and nominal pressure values for one or a plurality of wheels (i), comprising the following steps:

10

15

20

25

- a) subsequently obtaining one or more wheel radius analysis measurement values (ΔR) from a wheel radius analysis component (104), wherein the wheel radius analysis measurement values (ΔR) are related to single wheel radius values (Δr_i) of which each is indicative of the wheel radius of a particular wheel (i);
- b) subsequently obtaining one or more wheel vibration data values (Δf_i) from a wheel vibration analysis component (102), wherein each of the wheel vibration data values (Δf_i) is indicative of a vibration phenomena in the time dependent behavior of the rotational velocity of a particular wheel (i); and
 - c) calculating one or more tire pressure output values $(\eta_i, \Delta p_i)$ on the basis of both the wheel radius analysis measurement values (ΔR) and the wheel vibration data values (Δf_i) wherein each tire pressure output value $(\eta_i, \Delta p_i)$ is indicative of the specific tire pressure deviation for a particular wheel (i)
- 2. The method of claim 1, wherein the calculation of the tire pressure output value (η_i) for each wheel (i) comprises the following:
 - calculating a first probability value (P_i^f) from the wheel vibration data value (Δf_i) which is indicative of the statistical significance of the deviation of the wheel vibration data value (Δf_i) from a nominal wheel vibration value;
 - calculating a second probability value (P_i^r) from the wheel radius analysis measurement values (ΔR) which

is indicative of the statistical significance of the deviation of the single wheel radius values (Δr_i) from a nominal wheel radius value; and

- calculating the tire pressure output value (η_i) from the first and second probability values (P_i^f, P_i^r) .
- 3. The method of claim 2, wherein the first and second probability values (P_i^f, P_i^r) are cumulative probability distribution function values; and the tire pressure output value (η_i) is based on the product of the first and second cumulative probability distribution function values (P_i^f, P_i^r) .

10

20

- 4. The method of claim 3, wherein the first and second cumulative probability distribution function values (P_i^f, P_i^r) are Gaussian cumulative probability distribution function values; and the calculation of the first and second probability values (P_i^f, P_i^r) is further based on a first and a second standard deviation parameter (σ_f, σ_r) , respectively.
 - 5. The method of claim 3 or 4, wherein the product of the first and second cumulative probability distribution function value (P_i^f, P_i^r) is further multiplied with a weight factor (W_i^f) , which is calculated on the basis of the wheel vibration data value (Δf_i) , the wheel radius analysis measurement values (ΔR) or the single wheel radius values (Δr_i) , and of standard deviation parameters (σ_f, σ_r) .
- 30 6. The method of claim 5, wherein the weight factor W_i^{fr} is calculated as follows:

$$W_i^{fr} = \exp\left(\sigma_1 \left| \frac{\Delta f_i}{\sigma_f} - \frac{\Delta r_i}{\sigma_r} \right| \right) \cdot \exp\left(\sigma_2 \left| \frac{\Delta f_i \Delta r_i}{\sigma_f \sigma_r} \right| \right),$$

wherein Δf_i is the wheel vibration data value, Δr_i is the single wheel radius value, σ_f and σ_r are standard deviation parameters, and σ_1 and σ_2 are tuning parameters.

5

7. The method of claim 5, wherein the weight factor W_i^f is calculated as follows:

$$W_i^{fr} = \exp\left(\sigma \left| \frac{\Delta f_i \Delta r_i}{\sigma_f \sigma_r} \right| \right) ,$$

10

25

30

wherein Δf_i is the wheel vibration data value, Δr_i is the single wheel radius value, σ_f and σ_r are standard deviation parameters, and σ is a tuning parameters.

- 15 8. The method of claim 1, wherein the calculation of the tire pressure output value (Δp_i) is based on a model assuming a linear relationship between on the one hand the wheel vibration data and the wheel radius analysis measurement values $(\Delta f_i, \Delta R)$ and on the other hand the tire pressure output value (Δp_i) .
 - 9. The method of claim 8, wherein the tire pressure output value (Δp_i) is calculated from the wheel vibration data and the wheel radius analysis measurement values $(\Delta f_i, \Delta R)$ by a Least Mean Square method (516).
 - 10. The method of claim 8, wherein the pressure deviation value (Δp_i) is calculated from the wheel vibration data and the wheel radius analysis measurement values $(\Delta f_i, \Delta R)$ by an adaptive filter (716).
 - 11. The method of claim 10, wherein the adaptive filter (716) is a Kalman filter.

- 12. The method of any of the preceding claims, wherein the wheel radius analysis measurement values (ΔR) are transformed to modified wheel radius values $(\Delta \widetilde{R})$ which are less sensitive to load changes on the plurality of wheels (i).
- 13. The method of any of the preceding claims, which comprises the following steps:

5

10

15

- calculating a load balance value (I) on the basis of the wheel vibration data and the wheel radius analysis measurement values (Δf_i , ΔR) which is indicative of a load balance on the plurality of wheels (i);
 - calculating load balance corrected wheel radius analysis measurement values $(\Delta \widetilde{R})$ on the basis of the wheel radius analysis measurement values (ΔR) and the estimated load balance value (I).
- 14. The method of claim 13, wherein the calculation of the load balance value (l) is based on a model assuming a linear relationship between on the one hand the wheel vibration data and the wheel radius analysis measurement values $(\Delta f_i, \Delta R)$ and on the other hand the tire pressure output values (Δp_i) and the load balance value (l).
- The method of claim 14, wherein the load balance value (l) is calculated from the wheel vibration data and the wheel radius analysis measurement values (Δf_i , ΔR) by a Least Mean Square method (1014).
- 30 16. The method of claim 14, wherein the load balance value (l) is calculated from the wheel vibration data and the wheel radius analysis measurement values (Δf_i , ΔR) by an adaptive filter (1014).
- 35 17. The method of claim 16, wherein the adaptive filter (1014) is a Kalman filter.

18. The method of claim 1, which comprises the following steps:

5

10

- collecting data value pairs consisting of a single wheel radius data value (Δr_i) and a wheel vibration data value (Δf_i) during test drives,
- defining an area which comprises the collected data value pairs, and
- calculating the tire pressure output value by testing whether an actual data value pair obtained during normal drives lies within the defined area or not.
- 19. The method of claim 1, wherein the tire pressure output value is calculated on the basis of a χ^2 -test from the single wheel radius data values (Δr_i) and the wheel vibration data values (Δf_i) .
- 20. The method of claim 1, wherein the calculation of the tire pressure output value (Δp_i) is based on a model assuming a linear relationship between on the one hand the wheel vibration data and the wheel radius analysis measurement values $(\Delta f_i, \Delta R)$ and on the other hand the tire pressure output value (Δp_i) and a load balance value (I), wherein the load balance value (I) is treated as a random variable and the tire pressure output value (Δp_i) is calculated by a Least Square method from the model.
- 21. The method of claim 1, wherein the calculation of the tire pressure output value (Δp_i) is based on a specific function relating the tire pressure output value (Δp_i) with the wheel vibration data values (Δf_i) , the wheel radius analysis measurement values (ΔR) and further parameters, wherein the further parameters are determined during test drives by a Least Square method on the basis of the specific function, obtained tire pressure output values (Δp_i) , obtained wheel vibration data values (Δf_i) and corresponding tire pressure values.

22. The method of claim 21, wherein the specific function is a series expansion in the wheel vibration data values (Δf_i) and the wheel radius analysis measurement values (ΔR) .

5

- 23. The method of claim 21, wherein the series expansion is established by a neural network or a radial basis function network.
- The method of any of the preceding claims, wherein each of the wheel radius analysis measurement values either corresponds to a single wheel radius value or to a linear combination of single wheel radius values.
- 15 25. The method of any of the preceding claims, wherein the vibration phenomena comprises spectral properties in the time dependent behavior of the rotational velocity of a particular wheel (i).
- 20 26. A system for estimating the occurrence of a specific tire pressure deviation between actual and nominal pressure values for one or a plurality of wheels (i), comprising:
 - a) a first component for subsequently obtaining one or more wheel radius analysis measurement values (ΔR) from a wheel radius analysis component (104), wherein the wheel radius analysis measurement values (ΔR) are related to single wheel radius values (Δr_i) of which each is indicative of the wheel radius of a particular wheel (i);
- 30 b) a second component for subsequently obtaining one or more wheel vibration data values (Δf_i) from a wheel vibration analysis component (102), wherein each of the wheel vibration data values (Δf_i) is indicative of a vibration phenomena in the time dependent behavior of the rotational velocity of a particular wheel (i); and
 - c) a third component for calculating one or more tire pressure output values $(\eta_i\,,\,\Delta\!p_i)$ on the basis of both

the wheel radius analysis measurement values (ΔR) and the wheel vibration data values (Δf_i) wherein each tire pressure output value $(\eta_i, \Delta p_i)$ is indicative of the specific tire pressure deviation for a particular wheel (i)

27. A computer program product including program code for carrying out a digital signal processing method, when executed on a computer system, for estimating the occurrence of a specific tire pressure deviation between actual and nominal pressure values for one or a plurality of wheels (i), comprising the following steps:

5

10

15

20

25

- a) subsequently obtaining one or more wheel radius analysis measurement values (ΔR) from a wheel radius analysis component (104), wherein the wheel radius analysis measurement values (ΔR) are related to single wheel radius values (Δr_i) of which each is indicative of the wheel radius of a particular wheel (i);
- b) subsequently obtaining one or more wheel vibration data values (Δf_i) from a wheel vibration analysis component (102), wherein each of the wheel vibration data values (Δf_i) is indicative of a vibration phenomena in the time dependent behavior of the rotational velocity of a particular wheel (i); and
 - c) calculating one or more tire pressure output values $(\eta_i, \Delta p_i)$ on the basis of both the wheel radius analysis measurement values (ΔR) and the wheel vibration data values (Δf_i) wherein each tire pressure output value $(\eta_i, \Delta p_i)$ is indicative of the specific tire pressure deviation for a particular wheel (i)