Ch-10 Circles

- 1. Tangent to a Circle A tangent to a circle is a line that touches the circle at only one point.
- 2. **Theorem 1** The tangent at any point of a circle is perpendicular to the radius, through the point of contact.

Proof – We have the centre O of the given circle and XY is the tangent to the circle at a point P.

Let us take a point Q on XY other than P. Join OQ.

Obviously, Q lies outside the circle.

i.e.,
$$OQ > OP$$

Since, all the points on XY, except P lies outside the circle.

i.e., OP is smaller than all the distance of the point O from XY.

i.e., OP is the smallest distance of O from XY.

i.e.,
$$OP \perp XY$$
.

Proof – We have the centre O of the given circle and PQ and PR are 2 tangents from the common point P.

Join OP, OQ, and OR.

According to Theorem 1, \angle OPQ and \angle ORP are both right angles

Now, in \triangle OPQ and \triangle OPR,

$$OQ = OR$$
 (radii)
 $OP = OP$ (common)
 $\Delta OPQ \cong \Delta OPR$ (RHS)

This gives, PQ = PR (CPCT)

