ו האופה

h[P] = 01. לפסוק יסודי: ۸.

 $h[\sim(\alpha)] = h[\alpha] + 1$ pprox לכל פסוק. 2

 $h[(\alpha) \to (\beta)] = h[\alpha] + h[\beta]$ lpha,eta לכל שני פסוקים .3

f[P] = 01. לפסוק יסודי: ב.

pprox לכל פסוק. 2 $f[\sim (\alpha)] = f[\alpha]$

 $f[(\alpha) \to (\beta)] = f[\alpha] + f[\beta] + 1$: α, β בסוקים 3.3

s[P] = 01. לפסוק יסודי: ۲.

 $s[\sim (\alpha)] = s[\alpha] + 1$: lpha לכל פסוק.2

 $s[(\alpha) \rightarrow (\beta)] = s[\alpha] + s[\beta] + 2$: α, β נו מסוקים 3.3

ד. ההוכחה - באינדוקציה על בניית פסוק, ונעזרת בהגדרות הרקורסיביות א-ג.

.1 עבור פסוק יסודי P , השוויון מתקיים מיידית מתוך סעיף P של א,ב,ג.

 $s(\alpha)$ ונראה עבור , $s[\alpha] = h[\alpha] + 2f[\alpha]$ מתקיים α מתקיים .2

: 2ג

 $s[\sim (\alpha)] = s[\alpha] + 1$: lpha מההנחה עבור $= h[\alpha] + 2f[\alpha] + 1$

> ובהצבת האגפים הימניים של א2 ו-ב2 נקבל $= h[\sim(\alpha)] + 2f[\sim(\alpha)]$

> > $\sim (\alpha)$ משמע הנוסחה נכונה גם עבור

 $(\alpha) \rightarrow (\beta)$ נניח כי עבור α, β הנוסחה נכונה, ונחשב עבור 3.3 החישוב מקביל לגמרי צעד-צעד לנייל - השלימו בעצמכם.

۸.

$(\sim B)$	$A \downarrow ($	~ B	В	\boldsymbol{A}
F	F	F	T	T
F	F	T	F	T
T	T	F	T	F
F	F	T	F	F

ב. אילו הקבוצה α הכתוב בעזרת אז בהינתן פסוק β הכתוב בעזרת $\{K\}$ הקשרים הרגילים, היה אפשר למצוא פסוק β , הכתוב רק בעזרת β , השקול טאוטולוגית ל- β ו- β משמעה, שבכל אינטרפרטציה מלאה, לשני הפסוקים יש אותו ערך אמת.

יהי β מתאים אין אף פסוק יסודי. נראה אין אף $\alpha = {}^{\sim}A_{\scriptscriptstyle \parallel}$ יהי

.T מקבל ערך lpha ,F בהשמה בהשמה לכל הפסוקים לכל הפסוקים מחלאה, הנותנת לכל

 $J(eta)=\mathrm{F}$ לעומת זאת, יהי β פסוק שאינו מכיל קשרים פרט ל-K נוכיח כי עבור J הנייל, J הבניה היא טכניקה נוחה נוכיח זאת באינדוקציה על עץ הבניה (עמי 44) של β אינדוקציה על עץ הבניה היא טכניקה נוחה להוכחת טענות על פסוקים. באינדוקציה כזו יש שני שלבים: (1) בדיקה עבור הייעליםיי של העץ, כלומר עבור פסוקים יסודיים. (2) מעבַר מצומת או זוג צמתות לצומת שמתחתיהם, במקרה שלנו μ , לפסוקים μ , לפסוקים μ , לאו בכתיב אחר μ

הטענה אותה נוכיח באינדוקציה על העץ היא:

כל פסוק שאינו מכיל קשרים פרט ל- K, מקבל ערך F באינטרפרטציה שבה כל הפסוקים כל פסוק שאינו מכיל קשרים פרט ל-

: הוכחה

J(eta)=F , או מהגדרת eta יסודי, או מהגדרת eta בדיקה: שלב 1:

 $J(\mu K \nu) = F$ גם , K גם לפי הלוח של $J(\mu) = J(\nu) = F$ נניח כי : 2 מעבר נניח כי

בכך הוכחה הטענה, ומכאן מובן כי פסוק שאינו מכיל קשרים פרט ל- K אינו יכול להיות שקול טאוטולוגית ל- α הנייל.

שימו לב שבהוכחה עשינו מעט מאד שימוש בלוח האמת של K. תרגיל מומלץ: הוכיחו בדומה לגמרי להוכחה הנ"ל, כי אם קשר דו-מקומי כלשהו מהווה קבוצה שלמה של קשרים, אז בשורה הראשונה בלוח האמת שלו (השורה (T,T)) מופיע T, ובשורה האחרונה בלוח האמת שלו (השורה T) מופיע T!

3 nalen

א. נבחר פסוקים יסודיים:

הארי הוא הורקראקס :H

וולדמורט נפגע :W וולדמורט נפגע הורקראקס של עצמו אולדמורט נפגע :V

הקמיע הציל את הארי כשהיה תינוק S

: בעזרתם

$$S \wedge W$$
 .c $V \rightarrow W$.b $L \vee H$.a

$$L \to W$$
 .f $H \to V$.e $V \leftrightarrow (L \lor H)$.d

ב. (1) נכון. נניח בשלילה שלא מתקיימת הגרירה הטאוטולוגית בה מדובר.

- מהגדרת היים שבה b,d אמיתיים שקיימת אינטרפרטציה שבה b,d אמיתיים ואקרי. תהי J אינטרפרטציה כזו. f

 $J(b)=\mathbf{F}:$ ייחץ של ייחץ, לפי הלוח (נותן, לפי האמור האמור אבל , $J(W)=\mathbf{F}$ יחד עם האמור , $J(V)=\mathbf{T}$

זו סתירה להנחה ש- b אמיתי ב- J הגענו לסתירה, לכן ההנחה שגויה, משמע אין סתירה להנחה ש- $\{b,d\}$ |= f אינטרפרטציה כזו. במלים אחרות, אכן מתקיים

- $\sim f$ אמיתי, ולכן W, L אמיתי, ולכן W, אמיתי, ולכן פאינטרפרטציה למשל, באינטרפרטציה אינו שקרי אלא אמיתי (~ L) \to (~ W) אינו שקרי אלי לכן W, אינו שקול טאוטולוגית ל- W אינו שקול טאוטולוגית ל- W
 - , $J(V)={f T}$ ו- $J(H)=J(L)={f F}$ שבה J שבה לא נכון. למשל באינטרפרטציה ול $J(d)={f F}$, $J(e)={f T}$ מתקיים מתקיים

4 22167

: ראשית שתי הערות

- (1) פסוק יכול להיות בעת ובעונה אחת בשתי הצורות הנורמליות. למשל כל פסוק יסודי הוא בצורה דיסיונקטיבית נורמלית (צד"ג) ובצורה קוניונקטיבית נורמלית (צק"ג). דוגמא נוספת: הפסוק $(A_0) \lor (A_1)$ הוא בצד"ג וגם בצק"ג (מדועי)
 - (2) קיימים פסוקים שונים בעלי צד"נ השקולים זה לזה. ראשית מובן שניתן לסדר את הפסוקים המרכיבים את הדיסיונקציה בסדר כרצוננו, ובתוך כל פסוק כזה ניתן לסדר את

הפסוקים המקושרים עייי \land בסדר כרצוננו. ייתכנו גם שקילויות פחות טריביאליות. למשל הפסוקים המקושרים עייי \land בסדר כרצוננו. ייתכנו גם שקילויות פחות טריביאליות. למשל הפסוק $((A_0)\land(A_1))\lor((\sim A_0)\land(A_1))\lor((\sim A_0)\land(\sim A_1))$ הוא פסוק $(A_0)\lor(A_1)\lor(A_1)\lor(A_1)\lor(A_1)\lor(A_1)\lor(A_1)\lor(A_1)$ שקילויות דומות ייתכנו גם בין פסוקים בצקיינ.

כעת לפתרון השאלה.

2.33 , 2.31 את שתי הצורות הנורמליות נוכל לקבל בעזרת לוח האמת של הפסוק, ראה שאלות ב3.3 , 2.31 בעמי 62 בספר הלימוד ותשובותיהן. את לוח האמת של הפסוק הנתון בשאלה נקבל בזריזות באופן הבא: נמצא את כל המצבים בהם הפסוק מקבל ערך \mathbf{F} :

. לפי לוח האמת של $P_2 o (\sim P_0) o P_1$ אמיתי ו- $P_2 o P_2$ שקרי שקרי אמיתי ו- $P_2 o P_3$ שקרי, שקרי $\sim P_2 o P_3$ אמיתי ו- $\sim P_3 o P_4$ שקרי שקרי בדיוק כאשר $\sim P_2 o P_4$ אמיתי ושלוח האמת של אמיתיים שניהם. אמרנו גם כי $\sim P_3 o P_4$ אמיתי באינטרי שלנו. אנו רואים כי $\sim P_4 o P_4$ אמיתי באינטרי שלנו.

קיבלנו כי הפסוק שבשאלה שקרי בדיוק באותן אינטרפרטציות בהן P_0, P_1, P_2 אמיתיים שלושתם. לפיכך הוא אמיתי בכל האינטרי האחרות. מכאן הצורות הנורמליות, לפי השיטה שבשאלות 2.33 , 2.31 הנייל:

עובר על שבעת הפסוקים שצורתם $(\pm P_0) \wedge (\pm P_1) \wedge (\pm P_2)$, כשכל סימן α_i עובר על שבעת הפסוקים שצורתם α_i , כשכל סימן $\pm P_i$ מייצג אחד משני הפסוקים $\pm P_i$ או α_i או α_i והמגבלה היחידה היא שחייבת להיות לפחות $\pm P_i$ הופעה אחת של α_i בביטוי כולו.

צקיינ, אף סימן אף סימן , א כשם שפסוק : (P_0) א כשם פסוק : (P_0) א כשם פסוק : (P_0) א כשם פסוק : נשים לב כי פסוק זה הוא גם בצדיינ, ולפיכך הוא תשובה אפשרית לשתי הצורות המבוקשות!

איתי הראבן