CS 188: Artificial Intelligence Fall 2011

Lecture 5: CSPs II 9/8/2011

Dan Klein – UC Berkeley

Multiple slides over the course adapted from either Stuart Russell or Andrew Moore

Today

- Efficient Solution of CSPs
- Local Search

2 l

Reminder: CSPs

- CSPs:
 - Variables
 - Domains
 - Constraints
 - Implicit (provide code to compute)
 - Explicit (provide a subset of the possible tuples)
 - Unary / Binary / N-ary

- Usually: find any solution
- Find all, find best, etc

2

Backtracking Search

```
function Backtracking-Search(csp) returns solution/failure return Recursive-Backtracking(\{\ \}, csp)

function Recursive-Backtracking(assignment, csp) returns soln/failure if assignment is complete then return assignment var \leftarrow \text{Select-Unassigned-Variable}(\text{Variables}[csp], assignment, csp) for each value in Order-Domain-Values(var, assignment, csp) do if value is consistent with assignment given Constraints[csp] then add \{var = value\} to assignment result \leftarrow \text{Recursive-Backtracking}(assignment, csp) if result \neq failure then return result remove \{var = value\} from assignment return failure
```

Improving Backtracking

- General-purpose ideas give huge gains in speed
 - ... but it's all still NP-hard
- Ordering (last class):
 - Which variable should be assigned next?
 - In what order should its values be tried?
- Filtering: Can we detect inevitable failure early?
- Structure: Can we exploit the problem structure?

5

Filtering: Forward Checking

- Idea: Keep track of remaining legal values for unassigned variables (using immediate constraints)
- Idea: Terminate when any variable has no legal values

[demo: forward checking animation] 6

Filtering: Constraint Propagation

 Forward checking propagates information from assigned to unassigned variables, but doesn't provide early detection for all failures:

- NT and SA cannot both be blue!
- Why didn't we detect this yet?
- Constraint propagation propagates from constraint to constraint

7

Consistency of An Arc

An arc X → Y is consistent iff for every x in the tail there is some y in the head which could be assigned without violating a constraint

- What happens?
- Forward checking = Enforcing consistency of each arc pointing to the new assignment

Arc Consistency of a CSP

A simple form of propagation makes sure all arcs are consistent:

- If X loses a value, (incoming) neighbors of X need to be rechecked!
- Arc consistency detects failure earlier than forward checking
- What's the downside of enforcing arc consistency?
- Can be run as a preprocessor or after each assignment

ç

Establishing Arc Consistency

```
function AC-3( csp) returns the CSP, possibly with reduced domains inputs: csp, a binary CSP with variables \{X_1, X_2, \ldots, X_n\} local variables: queue, a queue of arcs, initially all the arcs in csp while queue is not empty do (X_i, X_j) \leftarrow \text{REMOVE-FIRST}(queue) if \text{REMOVE-INCONSISTENT-VALUES}(X_i, X_j) then for each X_k in \text{NEIGHBORS}[X_i] do add (X_k, X_i) to queue function \text{REMOVE-INCONSISTENT-VALUES}(X_i, X_j) returns true iff succeeds removed \leftarrow false for each x in \text{DOMAIN}[X_i] do if no value y in \text{DOMAIN}[X_i] allows (x, y) to satisfy the constraint X_i \leftrightarrow X_j then delete x from \text{DOMAIN}[X_i]; removed \leftarrow true return removed
```

- Runtime: O(n²d³), can be reduced to O(n²d²)
- ... but detecting all possible future problems is NP-hard why?

[DEMO]

Limitations of Arc Consistency

- After running arc consistency:
 - Can have one solution left
 - Can have multiple solutions left
 - Can have no solutions left (and not know it)

K-Consistency

- Increasing degrees of consistency
 - 1-Consistency (Node Consistency): Each single node's domain has a value which meets that node's unary constraints
 - 2-Consistency (Arc Consistency): For each pair of nodes, any consistent assignment to one can be extended to the other
 - K-Consistency: For each k nodes, any consistent assignment to k-1 can be extended to the kth node.
- Higher k more expensive to compute
- (You need to know the k=2 algorithm)

Strong K-Consistency

- Strong k-consistency: also k-1, k-2, ... 1 consistent
- Claim: strong n-consistency means we can solve without backtracking!
- Why?
 - Choose any assignment to any variable
 - Choose a new variable
 - By 2-consistency, there is a choice consistent with the first
 - Choose a new variable
 - By 3-consistency, there is a choice consistent with the first 2
 - ..
- Lots of middle ground between arc consistency and nconsistency! (e.g. path consistency)

12

Problem Structure

- Tasmania and mainland are independent subproblems
- Identifiable as connected components of constraint graph
- Suppose each subproblem has c variables out of n total
 - Worst-case solution cost is O((n/c)(d^c)), linear in n
 - E.g., n = 80, d = 2, c = 20
 - 2⁸⁰ = 4 billion years at 10 million nodes/sec
 - (4)(2²⁰) = 0.4 seconds at 10 million nodes/sec

 $\left(\mathsf{T}\right)$

Tree-Structured CSPs

- Theorem: if the constraint graph has no loops, the CSP can be solved in O(n d²) time
 - Compare to general CSPs, where worst-case time is O(dn)
- This property also applies to probabilistic reasoning (later): an important example of the relation between syntactic restrictions and the complexity of reasoning.

15

Tree-Structured CSPs

 Choose a variable as root, order variables from root to leaves such that every node's parent precedes it in the ordering

- For i = n : 2, apply RemoveInconsistent(Parent(X_i),X_i)
- For i = 1 : n, assign X_i consistently with Parent(X_i)
- Runtime: O(n d²) (why?)

Tree-Structured CSPs

- Why does this work?
- Claim: After processing the right k nodes, given any satisfying assignment to the rest, the right k can be assigned (left to right) without backtracking
- Proof: Induction on position

- Why doesn't this algorithm work with loops?
- Note: we'll see this basic idea again with Bayes' nets

17

Nearly Tree-Structured CSPs

- Conditioning: instantiate a variable, prune its neighbors' domains
- Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree
- Cutset size c gives runtime O((dc) (n-c) d2), very fast for small c

Iterative Algorithms for CSPs

- Local search methods typically work with "complete" states, i.e., all variables assigned
- To apply to CSPs:
 - Start with some assignment with unsatisfied constraints
 - Operators reassign variable values
 - No fringe! Live on the edge.
- Variable selection: randomly select any conflicted variable
- Value selection by min-conflicts heuristic:
 - Choose a value that violates the fewest constraints
 - I.e., hill climb with h(n) = total number of violated constraints

Example: 4-Queens

- States: 4 queens in 4 columns (4⁴ = 256 states)
- Operators: move queen in column
- Goal test: no attacks
- Evaluation: c(n) = number of attacks

[DEMO]

~4

Performance of Min-Conflicts

- Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., n = 10,000,000)
- The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio

$$R = \frac{\text{number of constraints}}{\text{number of variables}}$$

Summary

- CSPs are a special kind of search problem:
 - States defined by values of a fixed set of variables
 - Goal test defined by constraints on variable values
- Backtracking = depth-first search with one legal variable assigned per node
- Variable ordering and value selection heuristics help significantly
- Forward checking prevents assignments that guarantee later failure
- Constraint propagation (e.g., enforcing arc consistency) does additional work to constrain values and detect inconsistencies
- Constraint graphs allow for analysis of problem structure
- Tree-structured CSPs can be solved in linear time
- Iterative min-conflicts is usually effective in practice