Model Documentation of the 'Moored Floating Platform'

1 Nomenclature

1.1 Nomenclature for Model Equations

- x state vector
- u control input vector
- w noise vector
- z regulated output vector
- y measurement vector

2 Model Equations

State Vector and Input Vector:

$$x \in \mathbb{R}^4 u$$
 $\in \mathbb{R}^3 w \in \mathbb{R}^4 z$ $\in \mathbb{R}^4 y \in \mathbb{R}^2$

System Equations:

$$\dot{x}(t) = Ax(t) + B_1 w(t) + Bu(t) \tag{1a}$$

$$z(t) = C_1 x(t) + D_{11} w(t) + D_{12} u(t)$$
(1b)

$$y(t) = Cx(t) + D21w(t)$$
(1c)

Outputs: z

2.1 Exemplary parameter values

Symbol	Value			
A	T 0	0	1.0	0 7
	0	0	0	1.0
	-0.101	-0.1681	-0.04564	-0.01075
	0.06082	-2.1407	-0.05578	-0.1273
В	0	0	0]	_
	0	0	0	
	0.1179 0.1441 0.1476			
	$\begin{bmatrix} 0.1441 & 1.7057 & -0.7557 \end{bmatrix}$			
B_1	0	0	0	
	0	0	0	
	0.1179		0.1476	
	0.1441		[0.7557]	
C_1	$\begin{bmatrix} 1.0 & 0 \\ 0 & 1.0 \end{bmatrix}$	0 0		
	0 1.0			
	$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$	1.0 0		
C	$\begin{bmatrix} 0 & 0 & 0 & 1.0 \end{bmatrix}$			
	$\begin{bmatrix} 1.0 & 0 \\ 0 & 1.0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$		
D_{11}	$\begin{bmatrix} 0 & 1.0 \\ 0 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}$		
	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$			
	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	1		
	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	0		
D_{12}		0 7		
	1.0 0	0		
	0 1.0	I .		
	0 0	1.0		
D	0 0 0	[0		
D_{21}	$\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$	0		

3 Derivation and Explanation

This model is part of the "'COMPleib"' - library and was automatically imported into ACKREP.

The original description was:

MFP Moored Floating Platform C. Scherer, P. Gahinet and M. Chilali, "Multiobjective Output- Feedback Control via LMI Optimization", TOAC, Vol. 42, Nr. 7, pp. 896-911, 1997

4 Simulation

Figure 1: Simulation of the Moored Floating Platform.

References

[1] . Scherer, P. Gahinet and M. Chilali, "Multiobjective Output- Feedback Control via LMI Optimization", TOAC, Vol. 42, Nr. 7, pp. 896-911, 1997