Relations and Functions

Functions

Definition:

- A relation *F* from *A* to *B* is a **function** from *A* to *B* IFF:
 - 1) dom F = A, and
 - 2) For each $x \in A$ there is at most **one** $y \in B$ such that $(x, y) \in F$.
 - a. Then B is the **codomain** of F.
- A function from *A* to *B* is denoted by $f: A \rightarrow B$.
- The equation y = f(x) means $(x, y) \in f$.
- In that case, y is the **image** of x under f.
- Relations on \mathbb{R} can be plotted by drawing all the points.
- Such relations are functions if they satisfy the vertical line test
 - Every vertical line cuts the graph at most once.

Exercise:

Sketch the relations and determine which are functions.

a) On
$$\mathbb{R}$$
, $R = \{(x, y): y = x^2\}$

b) On
$$R$$
, $R = \{(x, y): x = y^2\}$

c) On
$$\mathbb{R}_+ = \{x \in \mathbb{R} : x \ge 0\}, R = (x, y) : x = y^2\}$$

d) On
$$\mathbb{R}$$
, $R = \{(x, y): y = \sqrt{x}\}$

a)

Yes Function

Not a function.
Fails vertical line test.
X, has two values y, yz.

yes function.

Yes function.

Exercise:

Which are functions?

a) The identity relation on $A = \{1,5,10\}$.

b) $A = \{2, 4, 6\}, B = \{1, 3, 5\}, R \text{ on } A \times B, R = \{(x, y): x + 1 = y\} \rightarrow \mathcal{N}_{6}$

c) On \mathbb{Z} , $F = \{(x, y): x + 1 = y\}$ -> $Y_{e,s}$

Let x=6=7y=7 7 & codomain B d) On \mathbb{R} , $R = \{(x, y) : y = 1\}$

Definition (Injective):

- Let $f: A \to B$ be a function.
- We say that f is **one-to-one (injective)** IFF for all $x_1, x_2 \in A$.

$$f(x_1) = f(x_2) = x_1 = x_2$$

That is, each element of the range is the image of only **one** element of the domain.

Exercise:

Let $A = \{0, 1, 2, 3\}, f: f(A) \to \mathbb{N}, f(A_i)$ is the number of elements in A_i . Prove or disprove that f is one-toone.

Let
$$A_1 = 1$$
, $A_2 = 2$, $A_1 \neq A_2$

$$f(\xi_1, \xi_2, \xi_3) = 1$$

$$f(A_1) = f(A_2)$$

$$\therefore This function is not one-to-one.$$

Exercise:

Which are one-to-one?

a) On $A = \{1, 2, 3\}, F = \{(1, 2), (2, 3), (3, 1)\}$

b) On $A = \{1, 2, 3\}, F = \{(1, 2), (2, 1), (3, 1)\} \longrightarrow N_0 \rightarrow f(z) = f(3) = 1$

c) On \mathbb{Z} , $F = \{(x, y): y = 2x\}$ \longrightarrow Yes

d) On $\mathbb{Z}\setminus\{0\} \to \mathbb{R}$, $F = \{(x,y): y = \sqrt{x^2 - 1}\}$ \longrightarrow No \longrightarrow for $x_1 = 3$, $x_2 = -3$ y = 2.8

Definition (Surjective):

- A function $f: A \to B$ is **onto (surjective)** IFF ran f = B.
- That is, for all $y \in B$, there exists $x \in A$ such that f(x) = y.

Exercise:

Let $A = \{1, 2, 3, 4, 5\}, B = \{a, b, c, d\}$. Which are onto?

a) $f: A \to B, f = \{(1, a), (2, c), (3, c), (4, d), (5, d)\} \longrightarrow \mathcal{N}_0$, no believe

b) $f: A \to B, f = \{(1, a), (2, b), (3, c), (4, d), (5, a)\}$

c) $f: \mathbb{R} \to \mathbb{R}, f(x) = 4x - 1$

d) $f: \mathbb{Z} \to \mathbb{Z}, f(x) = 4x - 1$

Theorem (Inverse):

• The **inverse** of a function f, written f^{-1} , is also a function IFF f is one-to-one and onto **(bijective)**.

Exercise:

Sketch $f: \mathbb{R}_+ \to \mathbb{R}$, $f = \{(x, y): y = x^2\}$. Find and sketch f^{-1} . Is f^{-1} a function?

f:

f -1:

f-1: y = Jx

f' is also a Dunction