Box #___ (Name on Back)
Math 65 Section ___
Homework 1
10/30/18

A1: (Poole, p. 441) §6.1 #4. Determine whether the given set, together with the specified operations of addition and scalar multiplication is a vector space. If it is not, list all the axioms that fail to hold:

$$V = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \text{ in } \mathbb{R}^2 \text{ with } x \ge y \right\}$$

with the usual vector addition and scalar multiplication.

A2: (Poole, p. 441) §6.1 #10. Determine whether the given set, together with the specified operations of addition and scalar multiplication is a vector space. If it is not, list all the axioms that fail to hold:

$$V = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \text{ in } M_{22} \text{ with } ad = 0 \right\}$$

with the usual matrix addition and scalar multiplication.

A3: (Poole, p. 441) $\S 6.1$ #26. Use Theorem 6.2 to determine whether *W* is a subspace of *V*.

$$V = \mathbb{R}^3$$
, $W = \left\{ \begin{bmatrix} a \\ b \\ a+b+1 \end{bmatrix} \right\}$ where a, b are in \mathbb{R}

A4: (Poole, p. 441) $\S 6.1$ #34. Use Theorem 6.2 to determine whether W is a subspace of V:

$$V = \mathcal{P}_2$$
, $W = \{bx + cx^2\}$ where b, c are in \mathbb{R}

A5: (Poole, p. 441) $\S 6.1$ #38. Use Theorem 6.2 to determine whether W is a subspace of V:

$$V = \mathcal{F}$$
, $W = \{f \text{ in } \mathcal{F} : f(-x) = f(x)\}$

A6: (Poole, p. 441) §6.1 #46. Let V be a vector space with subspaces U and W. Prove that $U \cap W$ is a subspace of V.

A7: Test the set of matrices for linear independence in M_{22} . For those that are linearly dependent, express one matrix as a linear combination of the others:

$$\left\{\begin{bmatrix}1 & -1\\1 & 1\end{bmatrix},\begin{bmatrix}1 & 1\\1 & -1\end{bmatrix},\begin{bmatrix}1 & 1\\-1 & 1\end{bmatrix},\begin{bmatrix}-1 & 1\\1 & 1\end{bmatrix}\right\}$$

A8: (Poole, p. 456) $\S6.2$ #12. Test the set of functions for linear independence in \mathcal{F} . For those that are linearly dependent, express one of the functions as a linear combination of the others.

$$\left\{e^x,e^{-x}\right\}$$

A9: (Poole, p. 456) $\S6.2$ #13. Test the set of functions for linear independence in \mathcal{F} . For those that are linearly dependent, express one of the functions as a linear combination of the others.

$$\left\{1,\ln(2x),\ln x^2\right\}$$

You should assume that x > 0.

A10: (Poole, p. 456) §6.2 #15. If f(x) and g(x) are in $C^{(1)}$, the vector space of all functions with continuous derivatives, then the determinant

$$W(x) = \begin{vmatrix} f(x) & g(x) \\ f'(x) & g'(x) \end{vmatrix}$$

is called the *Wronskian* of f and g. Show that f and g are linearly independent if their Wronskian is not identically zero (that is, there is some x such that $W(x) \neq 0$).

A11: (Poole, p. 456) §6.2 #27. Find the coordinate vector of

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

with respect to the basis

$$\mathcal{B} = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \right\}$$

of M_{22} .

A12: Find the coordinate vector of $p(x) = 2 - x + 3x^2$ with respect to the basis $\mathcal{B} = \{1 + x, 1 - x, x^2\}$ of \mathcal{P}_2 .

A13: (Poole, p. 456) $\S 6.2 \, \# 34$. Find the dimension of the vector space V and give a basis for V:

$$V = \{p(x) \text{ in } \mathcal{P}_2 : p(0) = 0\}$$

A14: (Poole, p. 456) $\S 6.2 \, \# 36$. Find the dimension of the vector space V and give a basis for V:

$$V = \{p(x) \text{ in } \mathcal{P}_2 : xp'(x) = p(x)\}$$