ULTIPLE CHOICE.		alternative	that best co	mpletes th	e statement	or answers	the questic	n.
·	oriate answer. f the bootstrap d nterval for the pa		are provided	d. Use the p	ercentiles to	o report a 95	%	1) _
1%	2.5%	5%	10%	90%	95%	97.5%	99%	
6.174	6.322	6.438	6.593	7.78	7.947	8.082	8.230	_
A) 6.438 to	B) 6.322 to 8	6.322 to 8.082		C) 6.593 to 7.78		D) 6.174 to 8.230		
	f the bootstrap d nterval for the pa		are provided	d. Use the p	ercentiles to	o report a 80	%	2) _
1%	2.5%	5%	10%	90%	95%	97.5%	99%	
6.174	6.322	6.438	6.593	7.78	7.947	8.082	8.230	_
6.174 A) 6.174 to		6.438 B) 6.438 to 7		7.78 C) 6.322			8.230 93 to 7.78	_
A) 6.174 to	8.230	 B) 6.438 to 7	.947	C) 6.322	to 8.082	D) 6.59	93 to 7.78	_ I the perc
A) 6.174 to uppose that a 95% con the slopes for 1,000 b	o 8.230 Infidence interval Infootstrap sample	B) 6.438 to 7 for the slop s goes from	.947 e of a regres 2.50 to 2.80	C) 6.322 ssion line ba For each c	to 8.082 ased on a sa hange descr	D) 6.59 mple of size	9 <mark>3 to 7.78</mark> n = 100 and	-
A) 6.174 to appose that a 95% con the slopes for 1,000 b dicate which of the th	o 8.230 Infidence interval Infootstrap sample	B) 6.438 to 7 for the slop s goes from ntervals wo	.947 e of a regres 2.50 to 2.80	C) 6.322 ssion line ba For each c	to 8.082 ased on a sa hange descr	D) 6.59 mple of size	9 <mark>3 to 7.78</mark> n = 100 and	-
A) 6.174 to uppose that a 95% con the slopes for 1,000 b dicate which of the th 3) Decrease the	o 8.230 nfidence interval nootstrap sample nree confidence i	B) 6.438 to 7 for the slop s goes from ntervals wo = 40	.947 e of a regres 2.50 to 2.80	C) 6.322 ssion line ba . For each c nost likely r	to 8.082 ased on a sa hange descr result	D) 6.59 mple of size	9 <mark>3 to 7.78</mark> n = 100 and II else stayii	ng the san
A) 6.174 to appose that a 95% con the slopes for 1,000 b dicate which of the th 3) Decrease the A) 2.46 to	o 8.230 offidence interval cootstrap sample aree confidence in sample size to not 2.84 (wider)	B) 6.438 to 7 for the slop s goes from ntervals wo = 40 B) 2	.947 e of a regre: 2.50 to 2.80 uld be the n	C) 6.322 ssion line ba . For each c nost likely r	to 8.082 ased on a sa hange descr result	D) 6.59 mple of size ribed (with a	9 <mark>3 to 7.78</mark> n = 100 and II else stayii	ng the sar
A) 6.174 to uppose that a 95% con the slopes for 1,000 b dicate which of the th 3) Decrease the A) 2.46 to	o 8.230 offidence interval ootstrap sample oree confidence in sample size to <i>n</i>	for the slops goes from hervals wo B) 2	.947 e of a regre: 2.50 to 2.80 uld be the n	C) 6.322 ssion line ba For each c nost likely r (the same)	to 8.082 ased on a sa hange descr result C)	D) 6.59 mple of size ribed (with a	93 to 7.78 n = 100 and II else stayir narrower)	ng the san
A) 6.174 to uppose that a 95% con the slopes for 1,000 b dicate which of the th 3) Decrease the A) 2.46 to 4) Increase the A) 2.53 to	o 8.230 Infidence interval and sootstrap sample size to manage in the sample size in	for the slop s goes from ntervals wo = 40 B) 2 to 99% B) 2	947 e of a regres 2.50 to 2.80 uld be the n	C) 6.322 ssion line ba For each c nost likely r (the same)	to 8.082 ased on a sa hange descr result C)	D) 6.50 mple of size ribed (with a 2.53 to 2.77 (93 to 7.78 n = 100 and II else stayir narrower)	3)
A) 6.174 to appose that a 95% continuous the slopes for 1,000 bidicate which of the thin 3) Decrease the A) 2.46 to A) 2.53 to 5) Decrease the	o 8.230 Infidence interval a sootstrap sample size to mail to be confidence in the confidence in the confidence level as a soon of the confidence level as a soon of the confidence level as a soon of the confidence level	for the slop s goes from ntervals wo = 40 B) 2 to 99% E) 2	947 e of a regres 2.50 to 2.80 uld be the n	C) 6.322 ssion line ba For each c nost likely r (the same)	to 8.082 ased on a sa hange descr result C)	D) 6.50 mple of size ribed (with a 2.53 to 2.77 (n = 100 and Il else stayii (narrower)	ng the sar
A) 6.174 to appose that a 95% confithe slopes for 1,000 b dicate which of the than 3) Decrease the A) 2.46 to A) 1.53 to 5) Decrease the A) 2.50 to 5	o 8.230 offidence interval a contstrap sample size to mage to	for the slop s goes from ntervals wo = 40 B) 2 to 99% B) 2	e of a regres 2.50 to 2.80 uld be the n 2.50 to 2.80 (2.50 to 2.80 (C) 6.322 ssion line ba For each c nost likely r (the same)	to 8.082 ased on a sa hange descr result C)	D) 6.50 mple of size ribed (with a 2.53 to 2.77 (n = 100 and Il else stayii (narrower)	3)

7) A bootstrap distribution for the correlation between body mass and length (based on 1,000 samples) is provided. Would it be appropriate to use this bootstrap distribution to estimate a 95% confidence interval for the correlation between body mass and length of porcupines?

