Dissertação apresentada à Pró-Reitoria de Pós-Graduação e Pesquisa do Instituto Tecnológico de Aeronáutica, como parte dos requisitos para obtenção do título de Mestre em Ciências no Curso de Engenharia Aeronáutica e Elétrica, Área de Sistemas Aeroespaciais e Mecatrônica.

#### João Paulo de Souza Oliveira

# MODELAGEM DE UM CONTROLADOR DE ELETRÔNICA DE POTÊNCIA PARA ESTIMAÇÃO DE DEMANDA DE POTÊNCIA ELÉTRICA, FATOR DE POTÊNCIA E TOTAL HARMONIC DISTORTION

Dissertação aprovada em sua versão final pelos abaixo assinados:

Prof. Dr. Cairo Nascimento Orientador

Eng. MSc. Andre Domingues
Coorientador

Prof. Dr. John von Neumann Pró-Reitor de Pós-Graduação e Pesquisa

Campo Montenegro São José dos Campos, SP - Brasil 2015

#### Dados Internacionais de Catalogação-na-Publicação (CIP) Divisão Biblioteca Central do ITA/CTA

de Souza Oliveira, João Paulo

Modelagem de Úm Controlador de Eletrônica de Potência para Estimação de Demanda de Potência Elétrica, Fator de Potência e *Total Harmonic Distortion* / João Paulo de Souza Oliveira. São José dos Campos, 2015.

Dissertação de Mestrado – Curso de Engenharia Aeronáutica e Elétrica. Área de Sistemas Aeroespaciais e Mecatrônica – Instituto Tecnológico de Aeronáutica, 2015. Orientador: Prof. Dr. Cairo Nascimento. Coorientador: Eng. MSc. Andre Domingues.

1. Cupim. 2. Dilema. 3. Construção. I. Centro Técnico Aeroespacial. Instituto Tecnológico de Aeronáutica. Divisão de Engenharia Mecânica. II. Título.

#### REFERÊNCIA BIBLIOGRÁFICA

DE SOUZA OLIVEIRA, João Paulo. Modelagem de Um Controlador de Eletrônica de Potência para Estimação de Demanda de Potência Elétrica, Fator de Potência e *Total Harmonic Distortion*. 2015. 29f. Dissertação de Mestrado – Instituto Tecnológico de Aeronáutica, São José dos Campos.

#### CESSÃO DE DIREITOS

NOME DO AUTOR: João Paulo de Souza Oliveira

TITULO DO TRABALHO: Modelagem de Um Controlador de Eletrônica de Potência para Estimação de Demanda de Potência Elétrica, Fator de Potência e *Total Harmonic Distortion*.

TIPO DO TRABALHO/ANO: Dissertação / 2015

É concedida ao Instituto Tecnológico de Aeronáutica permissão para reproduzir cópias desta Dissertação e para emprestar ou vender cópias somente para propósitos acadêmicos e científicos. O autor reserva outros direitos de publicação e nenhuma parte desta Dissertação pode ser reproduzida sem a autorização do autor.

João Paulo de Souza Oliveira Av. Cidade Jardim, 679 CEP 12.233-066 – São José dos Campos–SP

# MODELAGEM DE UM CONTROLADOR DE ELETRÔNICA DE POTÊNCIA PARA ESTIMAÇÃO DE DEMANDA DE POTÊNCIA ELÉTRICA, FATOR DE POTÊNCIA E TOTAL HARMONIC DISTORTION

#### João Paulo de Souza Oliveira

#### Composição da Banca Examinadora:

| Prof. Dr. | Alan Turing      | Presidente   | - | ITA     |
|-----------|------------------|--------------|---|---------|
| Prof. Dr. | Cairo Nascimento | Orientador   | - | ITA     |
| Eng. MSc. | Andre Domingues  | Coorientador | - | Embraer |
| Prof. Dr. | Linus Torwald    |              | - | UXXX    |
| Prof. Dr. | Richard Stallman |              | - | UYYY    |
| Prof. Dr. | Donald Duck      |              | - | DYSNEY  |
| Prof. Dr. | Mickey Mouse     |              | _ | DISNEY  |

Aos esforçados alunos de Pós-Graduação do ITA, por criarem este magnífico template LATEX, permitindo que eu ficasse ainda mais longe do Word:-) E a um cara do INPE, que apesar de já ser doutor, ainda se rebaixa a essas coisas de mexer com templates:O).....(Agradeça até ao seu animal de estimação, caso queira.)

# Agradecimentos

Primeiramente, gostaria de agradecer ao Dr. Donald E. Knuth, por ter desenvolvido o T<sub>E</sub>X.

Ao Dr. Leslie Lamport,

por ter criado o L<sup>A</sup>T<sub>E</sub>X, facilitando muito a utilização do T<sub>E</sub>X, e assim, eu não ter que usar o Word.

Ao Prof. Dr. Meu Orientador,

pela orientação e confiança depositada na realização deste trabalho.

Ao Dr. Nelson D'Ávilla,

por emprestar seu nome a essa importante via de trânsito na cidade de São José dos Campos.

Ah, já estava esquecendo... agradeço também, mais uma vez ao  $T_EX$ , por ele não possuir vírus de macro :-)

### Resumo

Aqui começa o resumo do referido trabalho. Não tenho a menor idéia do que colocar aqui. Sendo assim, vou inventar. Lá vai: Este trabalho apresenta uma metodologia de controle de posição das juntas passivas de um manipulador subatuado de uma maneira subótima. O termo subatuado se refere ao fato de que nem todas as juntas ou graus de liberdade do sistema são equipados com atuadores, o que ocorre na prática devido a falhas ou como resultado de projeto. As juntas passivas de manipuladores desse tipo são indiretamente controladas pelo movimento das juntas ativas usando as características de acoplamento da dinâmica de manipuladores. A utilização de redundância de atuação das juntas ativas permite a minimização de alguns critérios, como consumo de energia, por exemplo. Apesar da estrutura cinemática de manipuladores subatuados ser idêntica a do totalmente atuado, em geral suas caraterísticas dinâmicas diferem devido a presença de juntas passivas. Assim, apresentamos a modelagem dinâmica de um manipulador subatuado e o conceito de índice de acoplamento. Este índice é utilizado na sequência de controle ótimo do manipulador. A hipótese de que o número de juntas ativas seja maior que o número de passivas  $(n_a > n_p)$  permite o controle ótimo das juntas passivas, uma vez que na etapa de controle destas há mais entradas (torques nos atuadores das juntas ativas), que elementos a controlar (posição das juntas passivas).

## Abstract

Well, the book is on the table. This work presents a control methodologie for the position of the passive joints of an underactuated manipulator in a suboptimal way. The term underactuated refers to the fact that not all the joints or degrees of freedom of the system are equipped with actuators, which occurs in practice due to failures or as design result. The passive joints of manipulators like this are indirectly controlled by the motion of the active joints using the dynamic coupling characteristics. The utilization of actuation redundancy of the active joints allows the minimization of some criteria, like energy consumption, for example. Although the kinematic structure of an underactuated manipulator is identical to that of a similar fully actuated one, in general their dynamic characteristics are different due to the presence of passive joints. Thus, we present the dynamic modelling of an underactuated manipulator and the concept of coulpling index. This index is used in the sequence of the optimal control of the manipulator.

# Sumário

| Lista de Figuras                            | xi  |
|---------------------------------------------|-----|
| Lista de Tabelas                            | xii |
| Lista de Abreviaturas e Siglas              | iii |
| Lista de Símbolos                           | iv  |
| 1 Introdução                                | 15  |
| 1.1 Objetivo                                | 15  |
| 1.2 Motivação                               | 15  |
| 1.3 Organização do trabalho                 | 18  |
| 1.3.1 Sub-organização                       | 18  |
| 2 Modelagem Dinâmica de Cupins Cibernéticos | 20  |
| 2.1 Modelagem no espaço das juntas          | 20  |
| 3 Controle Robusto de Concretos Caóticos    | 23  |
| 3.1 Controle combinado                      | 23  |
| 4 Conclusão                                 | 24  |
| Referências Bibliográficas                  | 26  |

|           | ( a    |    |
|-----------|--------|----|
| SUMÁ      | A D1() | 7. |
| 3 U IVI A | Anit   | X  |
| O         |        |    |

| Apêndice A – Tópicos de Dilema Linear  | 28 |
|----------------------------------------|----|
| A.1 Uma Primeira Seção para o Apêndice | 28 |
|                                        |    |
| Anexo A – Exemplo de um Primeiro Anexo | 29 |
| A.1 Uma Seção do Primeiro Anexo        | 29 |

# Lista de Figuras

| FIGURA 1.1 – Proibido estacionar cupins. Legenda grande, com o objetivo de de- |    |
|--------------------------------------------------------------------------------|----|
| monstrar a indentação na lista de figuras                                      | 16 |
| FIGURA 1.2 – Exemplo real de cupim frente ao seu dilema                        | 18 |
| FIGURA 2.1 – Cupim cibernético.                                                | 21 |
| FIGURA A.1 –Uma figura que está no apêndice                                    | 28 |

# Lista de Tabelas

| TABELA 2.1 – Exemplo de uma Tabela                                           | 20 |
|------------------------------------------------------------------------------|----|
| TABELA 2.2 – Mais um Exemplo de uma Tabela, desta vez com um caption grande, |    |
| para mostrar a indentação na lista de tabelas.                               | 21 |

# Lista de Abreviaturas e Siglas

CTq computed torque

DC direct current

EAR Equação Algébrica de Riccati

GDL graus de liberdade

ISR interrupção de serviço e rotina

LMI linear matrices inequalities

MIMO multiple input multiple output

PD proporcional derivativo

PID proporcional integrativo derivativo

PTP point to point

UARMII Underactuated Robot Manipulator II

VSC variable structure control

# Lista de Símbolos

| $\alpha$ | Esca | lar |
|----------|------|-----|
|          |      |     |

- a Vetor
- $a_1$  Primeiro componente de **a**
- $a_{1,k}$  Primeiro componente de  $\mathbf{a}_k$
- A Matriz
- $\mathbf{e}_j$  Vetor unitário de dimensão n e com o j-ésimo componente igual a 1
- $\delta_{k-k_f}$  Delta de Kronecker delta no instante  $k_f$

## 1 Introdução

#### 1.1 Objetivo

O objetivo deste projeto de mestrado é desenvolver técnicas de controle subótimo das juntas passivas (não atuadas) de um robô subatuado, incluindo o estudo teórico do tema, proposição de um método de controle e sua verificação experimental em um manipulador de três graus de liberdade (NASCIMENTO, 1971).

O teste (PATAGONIOS, 2001) e validação das técnicas de controle propostas foram realizados em um ambiente de simulação e no manipulador experimental, adquirido através do projeto FAPESP  $N^{\circ}$  98/00649-5, que se encontra em funcionamento no Laboratório de Sistemas Inteligentes (LASI) do Departamento de Engenharia Elétrica da USP em São Carlos. Pode-se citar (FURMENTO et al., 1995):

- Isso;
- Aquilo; e
- Aquele outro.

### 1.2 Motivação

Manipuladores mecânicos (SBORNIAN, 2002) vêm sendo utilizados há várias décadas para a automação de tarefas repetitivas em ambientes industriais, ambientes estes de fácil acesso tanto em termos físicos quanto em termos de baixo risco à saúde humana. Nos

últimos anos, verifica-se uma utilização cada vez maior de manipuladores em ambientes de difícil acesso ou inóspitos, como no interior de usinas nucleares, no fundo dos oceanos e no espaço. A localização dos manipuladores nesta nova gama de aplicações faz com que sua manutenção, Dpós uma falha mecânica ou elétrica, seja custosa e demorada, portanto estes mecanismos requerem sofisticadas metodologias de controle tolerante a falhas (ITALUS, 2004).

Após a ocorrência de uma falha em um de seus atuadores, o manipulador tornase um sistema subatuado. Um sistema também pode se tornar subatuado quando é
projetado dessa maneira, ou quando o operador deliberadamente mantém um ou mais
atuadores disponíveis inoperantes durante uma tarefa. Reduzindo o número de atuadores
sem reduzir o número de graus de liberdade e ajustando-se o sistema de controle adequado,
pode-se obter um mecanismo cujo consumo de energia é menor, mas cujas propriedades
são mantidas (ARYSTIDES; MEDEIROS, 1995).



FIGURA 1.1 – Proibido estacionar cupins. Legenda grande, com o objetivo de demonstrar a indentação na lista de figuras.

Controle do manipulador após uma falha é fundamental do ponto de vista de operação, principalmente nos casos descritos acima, em que a localização do manipulador impede sua manutenção de forma fácil. Recentemente tem havido a combinação de algorítmos de detecção e isolação de falhas com os de controle pós-falha em um método unificado. Uma extensão desse trabalho, que vê o problema de controle tolerante a falhas através de uma

perspectiva integrada, foi proposta por marcel4. Os autores apresentam um ambiente híbrido consistindo de três unidades básicas que garantem a compleição de tarefas na presença de qualquer número de juntas falhas (Figura 1.1). A primeira unidade é um esquema de detecção e isolação de falhas que continuamente monitora o manipulador para detectar e identificar possíveis falhas nas juntas. A segunda unidade é responsável pela reconfiguração do controle. A terceira unidade é composta de algorítmos de controle apropriados para cada tipo de configuração do robô, baseado na informação da unidade de reconfiguração (CONFERENCE ON COFFEE IMPORTANCE, 2000).

No presente trabalho nos concentramos na unidade de algorítmo de controle, e mais especificamente no problema de controle da posição angular de uma junta falha para qualquer posição desejada de uma maneira subótima, quando dispomos de redundância de atuação para a realização dessa tarefa. O termo subótimo se deve ao fato de que não há garantias de otimalidade em vista das não-linearidades inerentes ao sistema e de outros fatores que serão abordados nos capítulos posteriores. Ao longo do texto, para simplificação, usaremos tanto o termo subótimo como ótimo para nos referirmos à metodologia utilizada.

Segundo, o critério de otimização utilizado será o acoplamento entre as juntas do manipulador e neste caso, temos um sistema redundante quando ocorre falha de uma das juntas do manipulador de três juntas, e seu posicionamento é controlado pelas duas restantes. Nossa solução para o problema é baseada na formulação de redundância local, extensivamente estudada no contexto de cinemática inversa (nakamura). A principal contribuição deste trabalho é a extensão deste método usando as equações dinâmicas de manipuladores subatuados e a utilização do índice de acoplamento como um critério para a minimização do torque e da energia gasta pelo sistema durante o controle das juntas falhas.



FIGURA 1.2 – Exemplo real de cupim frente ao seu dilema.

## 1.3 Organização do trabalho

#### 1.3.1 Sub-organização

O capítulo 1 contém a introdução do trabalho, onde são expostos o objetivo, a motivação do mesmo, a descrição do sistema e a formulação do problema com a nomenclatura utilizada; além de uma revisão bibliográfica da literatura relacionada ao tema do trabalho.

#### 1.3.1.1 SubSub-organização

No capítulo 2 apresentamos a modelagem dinâmica de um manipulador subatuado e o conceito de índice de acoplamento para medir o acoplamento dinâmico entre as juntas ativas e passivas. Este índice é utilizado para a análise e projeto de uma metodologia de controle subótimo do manipulador.

#### 1.3.1.2 Outra subsub-organizacao

O capítulo 3 apresenta o controle subótimo de manipuladores através de redundância de atuação. Descreve-se a técnica de controle ponto a ponto de manipuladores subatuados. A seguir mostramos a linearização destes por realimentação, cujo efeito é linearizar e desacoplar o sistema não linear. Finalmente é proposta uma sequência de controle subótimo local das juntas passivas visando a minimização de certos critérios como torque, velocidade e em particular a energia consumida pelo sistema. Este é de fato o tema principal deste mestrado.

É também apresentado no capítulo 4 um resumo do projeto de controladores  $H_2$  e  $H_{\infty}$ , cuja principal vantagem é a robustez na presença de incertezas paramétricas e distúrbios externos.

O capítulo 5 mostra as características e a operação do robô e do ambiente de simulação utilizados nos testes e experimentação da metodologia apresentada.

Os procedimentos da metodologia e os resultados obtidos para algumas configurações e diferentes controladores encontram-se no capítulo 6.

No capítulo 7 são apresentadas as conclusões do trabalho.

Quatro apêndices fazem parte do trabalho. O apêndice A apresenta alguns tópicos de álgebra linear que são a base do método proposto. No apêndice B são mostradas as equações da matriz de inércia e do vetor de torques não-inerciais utilizados na modelagem dinâmica do manipulador. No apêndice C temos as expressões literais dessas equações feitas no software MAPLE e no apêndice D alguns programas feitos no software MATLAB utilizados no projeto (FURMENTO et al., 1995)(MORGADO, 2003).

# 2 Modelagem Dinâmica de Cupins Cibernéticos

#### 2.1 Modelagem no espaço das juntas

Manipuladores subatuados diferem dos totalmente atuados pois são equipados com um número de atuadores que é sempre menor que o número de graus de liberdade (GDL). Portanto, nem todos os GDL podem ser controlados ativamente ao mesmo tempo (SBORNIAN, 2004). Por exemplo, com um manipulador planar de 3 juntas equipado com dois atuadores, ou seja, duas juntas ativas e uma passiva, pode-se controlar ao mesmo tempo duas das juntas a qualquer instante, mas não todas. Para controlar todas as juntas de um manipulador subatuado, deve-se usar um controle sequencial. Este princípio foi provado pela primeira vez por arai usando argumentos dinâmicos linearizados (JOEA; JOHN, 2003), e é a base para a modelagem no espaço das juntas e no espaço Cartesiano. A Tabela 2.1 apresenta os resultados (ASSENMACHER et al., 1993; SILBERSCHATZ et al., 1991; CAROMEL et al., 1998).

Devido ao fato de que no máximo  $n_a$  coordenadas generalizadas (ângulos das juntas

TABELA 2.1 – Exemplo de uma Tabela

| Parâmetro             | Unidade | Valor da simulação | Valor experimental |
|-----------------------|---------|--------------------|--------------------|
| Comprimento, $\alpha$ | m       | 8, 23              | 8, 54              |
| Altura, $\beta$       | m       | 29, 1              | 28, 3              |
| Velocidade, $v$       | m/s     | 60, 2              | 67, 3              |

TABELA 2.2 – Mais um Exemplo de uma Tabela, desta vez com um caption grande, para mostrar a indentação na lista de tabelas.

| qq | pp |
|----|----|
| rr | nn |

ou variáveis cartesianas) podem ser controladas num dado instante, o vetor de coordenadas generalizadas é dividido em duas partes, representando as coordenadas generalizadas ativas e as coordenadas generalizadas passivas (CALLAGHAN et al., 1995).



FIGURA 2.1 – Cupim cibernético.

Considerando um robô manipulador rígido, malha aberta, e de n-juntas em série. Seja q a representação de seu vetor de posição angular das juntas e  $\tau$  a representação de seu vetor de torque. A equação dinâmica pelo método de Lagrange é dada por:

$$\frac{d}{dt}(\frac{\partial L}{\partial \dot{q}}) - \frac{\partial L}{\partial q} = \tau^{T}.$$
(2.1)

O Lagrangiano L é definido como a diferença entre as energias cinética e potencial do sistema:

$$L = T - P \tag{2.2}$$

A energia cinética total dos ligamentos é representada:

$$T = \frac{1}{2}\dot{q}^T M(q)\dot{q} \tag{2.3}$$

# 3 Controle Robusto de Concretos Caóticos

#### 3.1 Controle combinado

Conforme vimos na seção 3.1 podemos controlar um sistema nao linear como através da técnica do torque computado, usando um controlador PD dado por:

$$\tau' = \ddot{q}_d + K_v(\dot{q}_d - \dot{q}) + K_v(q_d - q) , \qquad (3.1)$$

sendo  $q_d$ ,  $\dot{q}_d$  e  $\ddot{q}_d$  a posição desejada, a velocidade desejada e a aceleração desejada;  $K_p$  e  $K_v$  são matrizes diagonais  $n \times n$ , sendo que cada elemento da diagonal é um ganho positivo e escalar.

Aqui  $M_{est}$  e  $b_{est}$  são modelos estimados da matriz de inércia, M, e do vetor de torques não inerciais, b, do robô real, respectivamente. A equação de malha fechada do sistema é:

$$\ddot{e} + K_v \dot{e} + K_p e = M_{est}^{-1} [(M - M_{est}) \ddot{q} + (b - b_{est})]. \tag{3.2}$$

Em um manipulador real, podem existir distúrbios externos tais como atrito, variação de torque dos atuadores, e perturbações em virtude das cargas no robô. Se a soma destes distúrbios for definida como  $d_{ext}$  e adicionada à (3.2), teremos

$$\ddot{e} + K_v \dot{e} + K_p e = M_{est}^{-1} [(M - M_{est}) \ddot{q} + (b - b_{est}) + d_{ext}]. \tag{3.3}$$

## 4 Conclusão

Neste trabalho realizou-se o projeto de uma metodologia de controle subótimo redundante da junta passiva de um manipulador com três graus de liberdade instantaneamente. Para este propósito usou-se nas formulações o vetor gradiente de uma função escalar que estima o acoplamento entre a junta passiva e as ativas desse manipulador. Aqui a redundância foi usada da melhor maneira possível sem focalizar o efeito global. Portanto, este método deve ser denominado de controle ótimo local por redundância. A principal vantagem dessa formulação é a computação em tempo real, que é necessária para o controle do manipulador experimental. Além disso esse método pode ser usado com diferentes tipos de controladores, uma vez que as alterações são feitas nas equações dinâmicas do manipulador.

A consequência direta observada nessa formulação é a redução dos torques na fase de controle da junta passiva, e consequente redução da energia elétrica gasta. Isso ocorre devido ao fato de que ao longo da trajetória do manipulador o índice de acoplamento de torque tende a ser maximizado, e portanto, menor é o torque necessário nos atuadores para se conseguir o posicionamento da junta passiva do manipulador.

Outros resultados indiretos obtidos são: um movimento mais uniforme e suave do manipulador e um tempo de acomodação menor tanto no posicionamento da junta passiva quanto das ativas, conforme podemos obervar nos gráficos de desempenho dos resultados apresentados. Isso ocorre porque a maximização do acoplamento entre as juntas facilita o controle. Assim ocorrem menos picos de torque, e como as juntas ativas tem "menos trabalho" para posicionar a passiva estas se movem menos na direção contrária ao movimento

daquelas, diminuindo assim as velocidades alcançadas e os tempos de posicionamento.

Uma extensão deste trabalho pode ser a implementação de um controle ótimo global por redundância da junta passiva do manipulador. Para isto pode-se fazer o planejamento off-line da trajetória das juntas de modo a minimizar a energia consumida. Alguns estudos foram feitos nesse sentido, usando o Princípio Mínimo de Pontryagin, mas sem resultados satisfatórios até o momento.

## Referências Bibliográficas

ARYSTIDES, B.; MEDEIROS, C. S. de. Incorporação de tempo em SGBD orientado a objeto. In: SIMPÓSIO BRASILEIRO DE BANCO DE DADOS, 13., 1996, Petrolina. **Anais...** Petrolina: EMBRAPA, 1995. p. 90–98.

ASSENMACHER, H.; BREITBACH, T.; BUHLER, P.; HÜBSCH, V.; SCHWARZ, R. Panda: supporting distributed programming in L++. In: EUROPEAN CONFERENCE ON OBJECT-ORIENTED PROGRAMMING, 7., 1993, Kaiserslautern. **Proceedings...** Berlin: Springer, 1993. p. 361–383. (Lecture Notes in Computer Science, v. 707).

CALLAGHAN, B.; PAWLOWSKI, B.; STAUBACH, P. **NFS** version **3** protocol specification: RFC 1831. London, 1995. 68 p.

CAROMEL, D.; KLAUSER, W.; VAYSSIERE, J. Towards seamless computing and metacomputing in Java. Concurrency in Practice and Experience, v. 10, n. 11–13, p. 1043–1061, set./nov. 1998. Disponível em: <a href="http://www-sop.inria.fr/\~sloop/javall-/index.ht">http://www-sop.inria.fr/\~sloop/javall-/index.ht</a>. Acesso em: 20 fev. 2000.

CONFERENCE ON COFFEE IMPORTANCE, 1., 2000, Java Island. **Proceedings...** Java Island: Java Island Press, 2000.

FURMENTO, N.; ROUDIER, Y.; SIEGEL, G. Parallélisme et distribution en C++: une revue des langages existants. Valbonne, 1995. (RR 95-02). Disponível em: <a href="http://www-sop.inria.br/science/skd.gz">http://www-sop.inria.br/science/skd.gz</a>. Acesso em: 29 fev. 2003.

ITALUS: grupo de usuários LATEX do ITA. 2004. Disponível em: <a href="http://www.comp.ita-br/italus/">http://www.comp.ita-br/italus/</a>. Acesso em: 22 jul. 2004.

JOEA, J. G.; JOHN, J. G. Importance of coffee in computer sciences. In: CONFERENCE ON COFFEE IMPORTANCE, 1., 2000, Java Island. **Proceedings...** Java Island: Java Island Press, 2003. p. 99–100.

MORGADO, M. L. C. **Reimplante dentário**. Trabalho de Conclusão de Curso (Especialização do curso) — Faculdade de Odontologia, Universidade Federal do Nananana, São Paulo, 2003.

NASCIMENTO, E. A. do. **Análise de curvas curvilíneas da trajetória da bola**. 1970. 36 f. Dissertação (Mestrado em Ciência do Futebol) — Cosmos University, Cidade do Cabo, 1971.

PATAGONIOS, J. **Um exemplo de TG**. 98 p. Trabalho de Conclusão de Curso (Graduação em Engenharia de Computação) — Instituto Teórico Aeroglifo, Santa Pindamonhangaba, 2001.

SBORNIAN, W. Um exemplo de dissertação de mestrado. 2002. 98 f. Dissertação (Mestrado em Ciência da Computação) — Instituto de Alguma Coisa, Universidade Sei Lá de Onde, Santa Pindamonhangaba, 2002. Disponível em: <a href="http://www.santapinda.edu/~sbor/dissert.p">http://www.santapinda.edu/~sbor/dissert.p</a>. Acesso em: 25 fev. 2002.

SBORNIAN, W. **Um exemplo de tese de doutorado**. 2004. 169 f. Tese (Doutorado em Aeronáutica) — Instituto de Alguma Coisa, Universidade Sei Lá de Onde, Santo Antônio da Patrulha, 2004. 1 CD–ROM.

SILBERSCHATZ, A.; PETERSON, J. L.; GALVIN, P. B. Operating system concepts. 3rd. ed. New York: Springer, 1991.

# Apêndice A - Tópicos de Dilema Linear

#### A.1 Uma Primeira Seção para o Apêndice

A matriz de Dilema Linear M e o vetor de torques inerciais b, utilizados na simulação são calculados segundo a formulação abaixo:

$$M = \begin{bmatrix} M_{11} & M_{12} & M_{13} \\ M_{21} & M_{22} & M_{23} \\ M_{31} & M_{32} & M_{33} \end{bmatrix}$$
 (A.1)



FIGURA A.1 – Uma figura que está no apêndice

# Anexo A - Exemplo de um Primeiro Anexo

## A.1 Uma Seção do Primeiro Anexo

Algum texto na primeira seção do primeiro anexo.

#### FOLHA DE REGISTRO DO DOCUMENTO

| <ol> <li>CLASSIFICAÇÃO/TIPO</li> </ol> | <sup>2.</sup> DATA  | 3. DOCUMENTO Nº      | <sup>4.</sup> N° DE PÁGINAS |
|----------------------------------------|---------------------|----------------------|-----------------------------|
| $\mathrm{TM}$                          | 25 de março de 2015 | DCTA/ITA/TD-018/2015 | 29                          |

<sup>5.</sup> TÍTULO E SUBTÍTULO:

Modelagem de Um Controlador de Eletrônica de Potência para Estimação de Demanda de Potência Elétrica, Fator de Potência e *Total Harmonic Distortion* 

6. AUTOR(ES):

#### João Paulo de Souza Oliveira

 $^{7.}$ INSTITUIÇÃO(ÕES)/ÓRGÃO(S) INTERNO(S)/DIVISÃO(ÕES):

Instituto Tecnológico de Aeronáutica – ITA

8. PALAVRAS-CHAVE SUGERIDAS PELO AUTOR:

Cupim; Cimento; Estruturas

9. PALAVRAS-CHAVE RESULTANTES DE INDEXAÇÃO:

Cupim; Dilema; Construção

10. APRESENTAÇÃO:

(X) Nacional () Internacional

ITA, São José dos Campos. Curso de Doutorado. Programa de Pós-Graduação em Engenharia Aeronáutica e Mecânica. Área de Sistemas Aeroespaciais e Mecatrônica. Orientador: Prof. Dr. Adalberto Santos Dupont. Defesa em 05/03/2015. Publicada em 25/03/2015.

<sup>11.</sup> RESUMO:

Aqui começa o resumo do referido trabalho. Não tenho a menor idéia do que colocar aqui. Sendo assim, vou inventar. Lá vai: Este trabalho apresenta uma metodologia de controle de posição das juntas passivas de um manipulador subatuado de uma maneira subótima. O termo subatuado se refere ao fato de que nem todas as juntas ou graus de liberdade do sistema são equipados com atuadores, o que ocorre na prática devido a falhas ou como resultado de projeto. As juntas passivas de manipuladores desse tipo são indiretamente controladas pelo movimento das juntas ativas usando as características de acoplamento da dinâmica de manipuladores. A utilização de redundância de atuação das juntas ativas permite a minimização de alguns critérios, como consumo de energia, por exemplo. Apesar da estrutura cinemática de manipuladores subatuados ser idêntica a do totalmente atuado, em geral suas caraterísticas dinâmicas diferem devido a presença de juntas passivas. Assim, apresentamos a modelagem dinâmica de um manipulador subatuado e o conceito de índice de acoplamento. Este índice é utilizado na sequência de controle ótimo do manipulador. A hipótese de que o número de juntas ativas seja maior que o número de passivas ( $n_a > n_p$ ) permite o controle ótimo das juntas passivas, uma vez que na etapa de controle destas há mais entradas (torques nos atuadores das juntas ativas), que elementos a controlar (posição das juntas passivas).

| 12. | GRAU | DE | SIGILO: |
|-----|------|----|---------|
|-----|------|----|---------|