Spyros Orfanos October 18, 2020

Q1.

Table 1: Summary of Neural Network Architecture & Hyperparameters

Architecture/HP	Incremental	Batch	My
Neurons – L1	128	128	150
Neurons – L2	128	128	50
Activation	ReLU	ReLU	ReLu
Output Layer	LogSoftMax	LogSoftMax	LogSoftMax
Learning Rate	0.003	0.003	0.003
(Adam)			

Table 2: Batch Parameters

Parameter	Batch	My
T	1000	2000
С	1000	2000
E	10	10 or 20
N	5	5
M	5	5

For my algorithm, I do an immediate update of the current buffer once I have a prediction with confidence below p_t^* or when the buffer fills up. In the former case, I use twice the number of epochs. At beginning of training, this will act like incremental learning, but as the model improves there will be more full-batch updates. The idea is that it updates on low confidence predictions as soon as possible, and more often. This algorithm has the following pseudocode:

Initialize network with parameter θ and size TH Initialize Buffer b with Capacity C

For t from 1 to Z: # Of cycle time tau

Observe input

Predict based on the newest available θ

Incur error/reward

If prediction confidence < p_t*

If buffer.isBigEnough() = True

 $\theta \leftarrow \text{Learn2}(b, \theta, E, 2*N, M)$

Else

 $\theta \leftarrow \text{Learn2}(b, \theta, 1, 1, 1)$

Else if $t \mod T = 0$:

 $\theta \leftarrow \text{Learn2}(b, \theta, E, 2*N, M)$

Figures 1-4: Algorithm Performance on MNIST Dataset

In _my.py, I tested PPO without the special clipping objective.

Table 3: Neural Network Architecture & Hyperparameters

V1 1			
Architecture/HP	Actor (Reinforce, Batch	Critic (Batch AC)	Critic (PPO, My)
	AC, PPO, My)		
Neurons – L1	32	32	32
Neurons – L2	16	32	32
Activation	ReLU	ReLU	ReLu
Output Layer	SoftMax	Linear	Linear
Learning Rate (Adam)	0.001	0.001	0.005

Table 4: Batch Parameters

Hyper-parameter	Reinforce	Batch AC	PPO	My
K (episodes/batch)	20	30	20	200
Е	N/A	N/A	10	5
N	N/A	N/A	20	6
M	N/A	N/A	20	6

Table 5: Critic Parameters

Hyper-parameter	Batch AC	PPO	My
Gamma	1	1	1
Lambda	1	1	1
Epsilon	N/A	0.2	N/A

Figure 5-10: Algorithm Performance for CartPole-v1

CartPole-v1: Comparing Policy Gradient Methods (averaged over 5 runs)

