CHEN 320

Individual Homework

- 1. You need to copy-paste your MATLAB codes and results to the Word processing software, export it as PDF, and then upload the PDF file.
- 2. You also need to upload the MATLAB file (.m file)

Homework Problems

Question 1

Consider the liquid/liquid stage extraction process with an immiscible solvent shown in figure P4.9.4. Note that stream W enters the first stage containing X_{in} weight fraction of material A and solvent S enters the last stage (N) containing Y_{in} weight fraction of material A. As the solvent flows through the process, it retains more A, thus extracting A from W.

Figure P4.9.4 Countercurrent extraction process.

From each stage (i), we assume equilibrium between the weight fraction of A in S (Y_i) and the weight fraction of A in W (X_i), Assuming that each stage is operated at the same temperature, the relationship between X_i and Y_i can be given as

$$Y_i = KX_i$$

Now performing a mass balance on A for the *i*th stage, assuming that X_i and Y_i are small so that S and W remain constant through the process:

$$X_{i-1}W + Y_{i+1}S = X_iW + Y_iS$$

Using the equilibrium relationship, assuming *K* remains constant and rearranging results in

$$X_{i-1} - (1 + KS/W)X_i + (KS/W)X_{i+1} = 0$$

Applying this equation to the first stage results in

$$-(1 + KS/W)X_1 + (KS/W)X_2 = -X_{in}$$

And for the last stage

$$X_{N-1} - (1 + KS/W)X_N = -(S/W)Y_{in}$$

Note that this system of linear equations has a tridiagonal coefficient matrix. Determine the recovery efficiency (percent A entering in *W* that is recovered in *S*) for the following conditions:

$$S = 1000 \ kg/hr$$
 $W = 2000 \ kg/hr$ $X_{in} = 0.05$ $Y_{in} = 0.0$ $K = 10$ $N = 10$

Question 2

Consider the following reaction network:

Figure P4.9.6 Reaction network.

where the double headed arrows indicate reversible reactions and each reaction is first order. (i.e., the reaction rate is equal to the product of a rate constant times the concentration of the reactant). Assume that the reaction is carried out in a batch reactor at constant temperature and pressure and the reactor initially contains only component A at a concentration of 1.0 gmole/liter. Then the steady-state macroscopic material balances for each component can be written as:

Component	Generation	-Consumption	=0
Α	$k_{BA}C_B + k_{DA}C_D$	$-k_{AB}C_A - k_{AD}C_A$	=0
В	$k_{AB}C_A + k_{CB}C_C + k_{DB}C_D$	$-k_{BA}C_B - k_{BC}C_B - k_{BD}C_B$	=0
С	$k_{BC}C_B + k_{DC}C_D$	$-k_{CB}\mathcal{C}_C - k_{CD}\mathcal{C}_C$	=0
D	$k_{AD}C_A + k_{CD}C_C + k_{BD}C_B$	$-k_{DA}C_D-k_{DC}C_D-k_{DR}C_D$	=0

Where k_{AB} =0.1, k_{BA} =0.02, k_{BC} =0.5, k_{CB} =0.1, k_{CD} =0.01, k_{DC} =0.1, k_{DA} =0.05, k_{AD} =0.2, k_{BD} =0.3, and k_{DB} =0.1, and where all rate constants have units of reciprocal seconds.

When the condition number is determined for this set of equations, it indicates that there are only three independent equations; therefore, because there are four unknowns, an additional equation is required. The fact that the reactor initially contains only A at a concentration of 1.0 gmole/liter has not been used. After consideration of the reaction scheme and the fact that the stoichiometric coefficient of each reaction is unity:

$$C_A + C_B + C_C + C_D = 1.0$$

Solve for the steady-state concentration of each component in this batch reactor.