Math 118C HW3

Zih-Yu Hsieh

May 4, 2025

1

Question 1 Rudin Pg. 241 Problem 19:

Show that the system of equations

$$3x + y - z + u^2 = 0$$

$$x - y + 2z + u = 0$$

$$2x + 2y - 3z + 2u = 0$$

can be solved for x, y, u in terms of z; for x, z, u in terms of y; for y, z, u in terms of x; but not for x, y, z in terms of u.

Pf:

 $\mathbf{2}$

Question 2 Rudin Pg. 242 Problem 23:

Define f in \mathbb{R}^3 by

$$f(x, y_1, y_2) = x^2 y_1 + e^x + y_2$$

Show that f(0,1,-1) = 0, $(D_1f)(0,1,-1) \neq 0$, and that there exists therefore a differentiable function g in some neighborhood of (1,-1) in \mathbb{R}^2 , such that g(1,-1) = 0 and

$$f(g(y_1, y_2), y_1, y_2) = 0$$

Find $(D_1g)(1,-1)$ and $(D_2g)(1,-1)$.

Pf:

3

Question 3 Rudin Pg. 242 Problem 24: For $(x, y) \neq (0, 0)$, define $f = (f_1, f_2)$ by

$$f_1(x,y) = \frac{x^2 - y^2}{x^2 + y^2}, \quad f_2(x,y) = \frac{xy}{x^2 + y^2}$$

Compute the rank of f'(x, y), and find the range of f.

Pf:

Question 4 Rudin Pg. 242 Problem 25:

Suppose $A \in \mathcal{L}(\mathbb{R}^n, \mathcal{R}^m)$, let r be the rank of A.

- (a) Define S as in the proof of Theorem 9.32. Show that SA is a projection in \mathbb{R}^n whose null space is null(A) and whose range is range(S).
- (b) Use (a) to show that

$$\dim(null(A)) + \dim(range(A)) = n$$

Pf:

(a) Given that A has rank r, then its range range(A) $\subseteq \mathbb{R}^m$ is an r-dimensional linear subspace, hence there exists $y_1, ..., y_r \in \text{range}(A)$ that forms a basis of it.

Then, by the text in Rudin, choose $z_1, ..., z_r \in \mathbb{R}^n$, so for each index $i \in \{1, ..., r\}$, $Az_i = y_i$. Which, the collection $z_1, ..., z_r \in \mathbb{R}^n$ is linearly independent, since if $a_1, ..., a_r \in \mathbb{R}$ satisfies $\sum_{i=1}^r a_i z_i = \bar{0}$, then the following is true:

$$A\left(\sum_{i=1}^{r} a_{i} z_{i}\right) = \sum_{i=1}^{r} a_{i} (A z_{i}) = \sum_{i=1}^{r} a_{i} y_{i}$$

By the linear independence of $y_1, ..., y_r \in \text{range}(A)$, each $a_i = 0$, which proves the linear independence of $z_1, ..., z_r \in \mathbb{R}^n$.

Now, define $S \in \mathcal{L}(\text{range}(A), \mathbb{R}^n)$ the same as in the text, which has the following formula:

$$\forall c_1, ..., c_r \in \mathbb{R}, \quad S\left(\sum_{i=1}^r c_i y_i\right) = \sum_{i=1}^r c_i z_i$$

Then, for all $x \in \mathbb{R}^n$, since $Ax \in \text{range}(A)$, it is spanned by $y_1, ..., y_r$, hence there exists unique $a_1, ..., a_r \in \mathbb{R}$, such that the following is true:

$$Ax = \sum_{i=1}^{r} a_i y_i$$

Hence, we get the following:

$$SAx = S\left(\sum_{i=1}^{r} a_i y_i\right) = \sum_{i=1}^{r} a_i z_i$$

Hence, applying SA twice, we get:

$$SA(SAx) = SA\left(\sum_{i=1}^{r} a_i z_i\right) = S\left(\sum_{i=1}^{r} a_i y_i\right) = \sum_{i=1}^{r} a_i z_i$$

This shows that SA(SAx) = SAx for all $x \in \mathbb{R}^n$, hence SA is a projection on \mathbb{R}^n .

Now, to find the null space and range, consider the following:

- For all $x \in \text{null}(A)$, since Ax = 0, then SAx = S(0) = 0, so $x \in \text{null}(SA)$, or $\text{null}(A) \subseteq \text{null}(SA)$.

On the other hand, for all \in null(SA), since S(Ax) = 0, $Ax \in$ null(S). But, since $Ax \in$ range(A), there exists unique $a_1, ..., a_r \in \mathbb{R}$, with $Ax = \sum_{i=1}^r a_i y_i$. Hence, we have the following:

$$0 = S(Ax) = S\left(\sum_{i=1}^{r} a_i y_i\right) = \sum_{i=1}^{r} a_i z_i$$

Hence, by linear independence of $z_1, ..., z_r \in \mathbb{R}^n$, we must have $a_i = 0$ for all index $i \in \{1, ..., r\}$. This proves that $Ax = \sum_{i=1}^r a_i y_i = 0$, so $x \in \text{null}(A)$. Hence, $\text{null}(SA) \subseteq \text{null}(A)$, showing that null(SA) = null(A).

- For all $z \in \text{range}(SA)$, there exists $x \in \mathbb{R}^n$ with SAx = z. Since $z = S(Ax) \in \text{range}(S)$, then $\text{range}(SA) \subseteq \text{range}(S)$.

Similarly, for all $z \in \text{range}(S)$, there exists $y \in \text{range}(A)$ (the domain of S), with Sy = z; then because there exists $x \in \mathbb{R}^n$, with Ax = y by the definition of range, we have SAx = S(Ax) = Sy = z, hence $z \in \text{range}(SA)$, proving that $\text{range}(S) \subseteq \text{range}(SA)$, or range(S) = range(SA).

Hence, the above to cases proves that null(SA) = null(A), while range(S) = range(SA). So, SA is a projection in \mathbb{R}^n with null space being null(A), and range being range(S).

(b)

Question 5 Rudin Pg. 242 Problem 26:

Show that the existence (and even the continuity) of $D_{12}f$ does not imly the existence of D_1f . For example, let f(x,y) = g(x), where g is nowhere differentiable.

Pf:

Consider the Weierstrass Functon $g: \mathbb{R} \to \mathbb{R}$, which is uniformly continuous, while being differentiable nowhere.

Then, given the function $f: \mathbb{R}^2 \to \mathbb{R}$ by f(x,y) = g(x), since g is not differentiable with respect to its variable x, then $D_1 f$ does not exist; yet, since $D_2 f \equiv 0$ (due to the fact that g is a constant when x is fixed), then $D_{12} f = D_1(D_2 f) = 0$.

Hence, even though $D_{12}f$ is continuous, D_1f doesn't exist in this case.