Alzheimer's Classification with MRI Images

An Approach to Early Diagnosis

NON-TECHNICAL OVERVIEW

Introduction to
Alzheimer's Disease /
Problem Statement

Introduction to Alzheimer's Disease:

- Alzheimer's Disease is a progressive neurological disorder leading to memory loss, cognitive decline, and behavioural changes.
- Affects millions worldwide, with cases increasing
- due to aging populations.
 Significant emotional and financial burden on patients, families, and healthcare systems.

Problem Statement:

- Traditional diagnostic methods are time-consuming and often detect the disease at later stages.
- Late diagnosis leads to fewer treatment options and worse outcomes for patients.

A Growing Health Crisis

PROPOSED VISION

Data Science Approach/Model Development Strategy

Proposed Vision

Data Science Approach:

- Leverage CNNs: Use Convolutional Neural Networks (CNNs) to analyse MR images.
- Transfer Learning: Implement transfer learning with pre-trained models to improve accuracy and efficiency.
- Data Augmentation: Apply data augmentation techniques to increase the diversity and size of the training dataset.

Model Development Strategy:

- Data Pre-processing: Normalize and resize images for consistent input.
- Feature Extraction: Use CNN layers to extract relevant features from MRI images
 - Model Training: Fine-tune pre-trained models on the dataset to improve classification performance.

POTENTIAL IMPACT

Benefits of Early
Diagnosis/ Scalability

Anticipated Benefits

01.

Early Diagnosis

02.

Scalability

03.

Improved Patient

Potential Impact

Early Diagnosis:

- Timely Intervention: Enables earlier intervention, potentially slowing the progression of Alzheimer's disease.
- Improved Treatment Options:
 Provides patients with more
 treatment options and the
 opportunity to participate in clinical
 trials earlier.

Scalability:

- Automated Process: The use of machine learning models allows for widespread implementation across various healthcare settings.
- Cost Efficiency: Reduces the costs associated with manual diagnosis and allows for more efficient use of medical resources.

Improved Patient Outcomes:

- Quality of Life: Enhances the quality of life for patients by allowing for more effective disease management.
- Emotional Relief: Offers peace of mind to patients and their families by providing a clear diagnosis and a structured treatment plan.

DATASET INTRODUCTION

Overview of MRII mages

Graphs and Images

Mild Cognitive Impairment

Duration: 7 years

Disease begins in Medial Temporal Lobe

Symptom: Short-term memory loss

Mild Alzheimer's

Duration: 2 years

Disease spreads to Lateral Temporal and Parietal Lobes

Symptoms include: Reading problems Poor object recognition Poor direction sense

Moderate Alzheimer's

Duration: 2 years

Disease spreads to Frontal Lobe

Symptoms include: Poor judgment Impulsivity Short attention

Severe Alzheimer's

Duration: 3 years

Disease spreads to Occipital Lobe

Symptoms include: Visual problems

Graphs and Images

Mild Demented MRIs

Mild Demented MRI image in 3 different colour channels

Next Step

Pre-processing/ Feature Engineering/Baseline Modelling

Next Step

Data Processing:

Normalization: Standardize pixel values to a consistent range (e.g., 0 to I) to ensure uniformity across the dataset.

Resizing: Resize images to a fixed dimension (e.g., 224x224 pixels) to match the input requirements of the model.

Augmentation: Apply data augmentation techniques such as rotation, flipping, zooming, and shifting to increase the diversity of the training set and reduce overfitting.

Feature Engineering:

CNN Layers: Use Convolutional Neural Networks (CNNs) to automatically extract relevant features from MRI images.

Pre-trained Models: Utilize pre-trained models (e.g., VGGI6, ResNet50) and fine-tune them on the MRI dataset to leverage learned features.

Custom Layers: Add custom layers on top of the pre-trained models to adapt them to the specific task of Alzheimer's classification.

Baseline Modelling:

Simple CNN: Start with a simple CNN architecture as a baseline model to establish a performance benchmark.

Transfer Learning: Implement transfer learning using pre-trained models to improve accuracy and efficiency.

Evaluation: Assess model performance using metrics such as accuracy, precision, recall, and FI-score on a validation set.

