

Europäisches Patentamt Eur pean Patent Office

Office européen des brevets

(11) EP 0 864 654 A1

(12)

EUROPEAN PATENT APPLICATION published in accordance with Art. 158(3) EPC

- (43) Date of publication: 16.09.1998 Bulletin 1998/38
- (21) Application number: 96901978.5
- (22) Date of filing: 09.02.1996

- (51) Int. Cl.6: C12P 13/14
- (86) International application number: PCT/JP96/00287
- (87) International publication number: WO 96/26289 (29.08.1996 Gazette 1996/39)

- (84) Designated Contracting States: CH DE ES FR GB IT LI NL
- (30) Priority: 20.02.1995 JP 30458/95 28.12.1995 JP 343376/95
- (71) Applicant: Alinomoto Co., Inc. Tokyo 104 (JP)
- (72) Inventors:
 - KIMURA, Elichiro Ajinomoto Co., Inc. Technology &
 - Kawasaki-ku, Kawasaki-shi Kanagawa 210 (JP)
 - KIKUCHI, Yoshimi
 Alinomoto Co., Inc.
 - Kawasaki-ku, Kawasaki-shi Kanagawa 210 (JP)
 KAWAHARA, Yoshio
 - Ajinomoto Co., Inc.
 - cho Kawasakiku,Kawasakishi Kanagawa 210 (JP)

- GOTO, Shinya
- Ajinomoto Co., Inc. cho Kawasakiku,Kawasakishi Kanagawa 210 (JP)
- KURAHASHI, Osamu
 Ajinomoto Co., inc.
 Kawasaki-ku. Kawasaki-shi Kanagawa 210 (JP)
- NAKAMATSU, Tsuyoshi
- Ajinomoto Co., inc.
- Technology cho Kawasakiku, Kawasakishi Kanagawa 210 (JP)
- (74) Representative: Kolb, Helga, Dr. Dipl.-Chem. et al Hoffmann Eitle, Patent- und Rechtsanwäite, Arabellastrasse 4 81925 München (DE)

(54) STRESS-TOLERANT MICROORGANISM AND METHOD OF THE PRODUCTION OF FERMENTATION PRODUCT

(57) A method of the fermentative production of useful substances such as amino acids with the use of a microorganism comprising culturing the microorganism in a medium and recovering the fermentation product thus accumulated in the medium, wherein the microorganism is the one to which a tolerance to the stress suppressing its growth and/or the production of the fermentation product has been imparted by introducing at least either a gene encoding a heat shock protein or a gene encoding the of factor acting specifically on the heat shock protein gene thereinto to thereby elevate the expression level of the heat shock protein in the cells.

Description

Technical Field

The present invention relates to a method of producing a fermentative product. In particular, the present invention relates to a method of fermentatively producing useful substances such as amino acids by utilizing microorganisms, and to microorganisms having added resistance to stress which would otherwise restrain growth of the microorganisms and/or production of the fermentative products.

Background Art

When cells are exposed to stress such as high temperature, high osmotic pressure, metabolic inhibition, presence of heavy metal, and viral infection, a family of proteins called "heat shock proteins" (hereinafter referred to as "HSP") are induced and synthesized in a short period of time to cause a defense reaction against the stress. HSP presents broad homology ranging from procaryotic cells to eucaryotic cells, and it is roughly divided into several groups (HSP 60 group, HSP 70 group, TRIC group, and miscellaneous group) (Hendrick, J. P. and Hartl, F. V., <u>Annu. Rev.</u> Biochem. 62, 349-384 (1993)).

The mechanism of stress resistance exhibited by HSP resides in the function of HSP to form higher-order structures of proteins (folding of proteins). Namely, when a protein is denatured due to stress, and becomes incapable of forming a correct higher-order structure, HSP binds to the protein, and the protein is subjected to refolding into the correct higher-order structure. Thus the protein can be returned to have its normal function.

HSP, which functions for the formation of higher-order structures of proteins as described above, has been revealed to serve as a molecular chaperon not only for denatured proteins but also for cells in a normal state through the process f protein folding, assembly, membrane transport and so on. Accordingly, its importance is recognized and widely so noticed (Eliis, R. J. et al., Science, 250, 954-959 (1990)). The term "chaperon" means a supporter. This designation results from the fact that HSP binds to various proteins and it exhibits its function.

Expression of HSP is induced when cells are exposed to stress as described above. The induction is usually temporary. It attenuates soon, and a new steady state is achieved. It has been revealed that the induction HSP is made at the transcription level (Cowing, D. C. et al., <u>Proc. Natl. Acad. Sci. USA, 80</u>, 2679-2683 (1985); Zhou, Y. N. et al., <u>J. Bacteriol.</u> 170, 3640-3649 (1985), it is known that each of the family of HSP genes has a promoter structure called Theat shock promoter*, and sigma-32 (of²⁵) is present which is a or (sigmay) factor to specifically function for the heat shock promoter. It is known that of²⁵ is a protein encoded by a <u>ppbH</u> gene, having an extremely short half-life of about 1 minute, and it closely relates to the temporary induction of HSP (Straus, D. B. et al., <u>Nature, 329</u>, 3455(1987)). It has been revealed that expression control for of²² itself is made at the transcription level and at the translation level, however, major control is made at the translation level.

The induction of HSP by heat shock is caused by two mechanisms of increase in synthetic amount of σ^{32} and stabilization thereof. Among them, as for the increase in synthetic amount of σ^{32} , it has been already revealed that the structure of σ^{32} changes due to heat, and thus translation is accelerated (fura, T. et al., <u>Annu. Rev. Microbiol.</u> 47, 321-350 (1993)). As for the stabilization of σ^{32} , it has been shown that HSP (DnaK or the like) participates in degradation of σ^{32} , assuming that feedback control by HSP functions (Tilly, K. et al., <u>Cell. 34.</u> 641-646 (1983); Liberek, K., <u>Proc. Natl.</u> Acad. Sci. LSA, 89, 3516-3520 (1994)).

As for <u>Escherichia coli</u> (<u>E. coli</u>), it is known that the growth of cells relates to HSP in the presence of stress as described above (Meury, J. et al., <u>FEMS Microbiol</u>, <u>Lett.</u>, 113, 93-100 (1993)), it is also known that production of human growth hormone is affected by <u>grab</u>(and by <u>grab</u>), and secretion of procollagenase is affected by <u>grab</u>(Hockney, <u>T. Irend. in Biotechnology</u>, <u>12</u>, 456 (1994)). However, no relationship is known between HSP and productivity of fermentative products such as amino acids and nucleic acids and the like. As for corynetom bacteria, no relationship is known between HSP and growth, and no relationship is also known between HSP and growth; and no relationship is also known between HSP and growth; and no relationship is also known between HSP and growth; and no relationship is also known between HSP and growth; and no relationship is also known between HSP and growth; and no relationship is also known between HSP and growth; and no relationship is also known between HSP and growth; and no relationship is also known between HSP and growth and no relationship is also known between HSP and growth and no relationship is also known between HSP and growth and no relationship is also known between HSP and growth and no relationship is also known between HSP and growth and no relationship is also known between HSP and growth and no relationship is also known between HSP and growth and no relationship is also known between HSP and growth and no relationship is also known between HSP and growth and not relationship is also known between HSP and growth and not relationship is also known between HSP and growth and not relationship is also known between HSP and growth and not relationship is also known between HSP and growth and not relationship is also known between HSP and growth and not relationship is also known between HSP and growth and not relationship is also known between HSP and growth and gro

Disclosure of the Invention

An object of the present invention is to clarify the relationships between HSP and growth of microorganisms and between HSP and productivity of fermentative products in order to decrease the influence of stress which restrains growth of microorganisms and/or production of fermentative products so that the productivity and the yield are improved instead of being lowered in production of useful substances such as amino acids by fermentation.

As a result of diligent investigations by the present inventors in order to achieve the object described above, it has been found out that the productivity and the growth can be improved by introducing, into a microorganism, a gene coding for HSP or a gene coding for HSP or a factor which specifically functions for the HSP gene, and enhancing expression of HSP. Thus the present invention has been completed.

Namely, the present invention lies in a method of producing a fermentative product by utilizing a microorganism, comprising the steps of cultivating the microorganism in a medium to allow the fermentative product to be produced and accumulated in the medium, and collecting the fermentative product, wherein the microorganism is modified by introduction of at least one of a gene coding for HSP and a gene coding for a σ factor which specifically functions for the HSP gene to enhance expression amount of HSP in cells, whereby the microorganism is allowed to have added resistance to stress which would otherwise restrain growth of the microorganism and/or production of the fermentative product.

In another aspect, the present invention lies in a microorganism for producing a fermentative product, wherein the microorganism is modified by introduction of at least one of a gene coding for HSP and a gene coding for a o factor which specifically functions for the HSP gene to enhance expression amount of HSP in cells, whereby the microorganism is allowed to have added resistance to stress which would otherwise restrain growth of the microorganism and/or production of the fermentative product.

In a preferred embodiment, the method and the microorganism according to the present invention deal with various fermentative products including, for example, amino acids such as L-threonine, L-lysine, L-glutamic acid, L-leucine, L-isoleucine, L-valine, and L-phenylalanine; nucleic acids or nucleosides such as guanylic acid, inosine, and inosinic acid; and other substances such as vitamins and ambibiotics.

In another preferred embodiment, the stress includes temperature, osmotic pressure of the medium, and high concentration of the fermentative product which are not preferable for the growth of the microorganism.

In still another preferred embodiment, the gene coding for the heat shock protein specifically includes $\underline{\text{groE}}$, and the gene coding for the σ factor specifically includes $\underline{\text{rpoH}}$.

In still another preferred embodiment, the microorganism to which the present invention is applied includes bacteria belonging to the genus Escherichia, and coryneform bacteria.

The present invention will be described in detail below.

The fermentative product to which the present invention is applied is not specifically limited provided that it is those 25 produced by fermentation by using any microorganism. The fermentative product includes those produced by microorganisms including, for example, various L-amino acids such as L-threonine, L-lysine, L-glutamic acid, L-leucine, L-isocileucine, L-valine, and L-phenylallanine; nucleic acids or nucleosides such as guarylic acid, inosine, and inosinic acid; and other substances such as vitamins and antibiotics. Even in the case of substances which are not produced at present by utilizing microorganisms, the present invention may be applied to those substances which will be capable of 30 being produced by microorganisms, for example, as a result of success in genetic recombination. Among the substances described above, the method of the present invention may be preferably applied to those which are secreted to the medium to increase the osmotic pressure of the medium, especially such as amino acids.

There is no special limitation to the microorganism which is modified by introduction of at least one of the gene coding for rHs or actor which specifically functions for the HSP gne to enhance expression amount of HSP in cells, thereby being allowed to have added resistance to stress that would otherwise restrain growth of the microorganism and/or production of the fermentative product, provided that the microorganism is those which produce any fermentative product by fermentative. The microorganism includes those which have been filter here to set for producing substances, including, for example, bacteria belonging to the genus <u>Escherichia</u>, corynetorm bacteria, beateria belonging to the genus <u>Serratia</u>. A preferable microorganism is such one in which a DNA fragment containing a replication origin of a plasmid is obtained, the HSP gene or the gene coding for the or factor specific for the HSP gene operates, and the number of copies of these genes can be increased in the microorganism. The corynetorm bacteria described above are a group of microorganisms as defined in <u>Berger's Manual of Determinative Bacteriology</u>, 8th ed., p. 599 (1974), which are aerobic and non-acid-fast Gram-positive root having no spore-forming ability, including bacteria belonging to the genus <u>Corynebacterium</u>, bacteria belonging to the genus <u>Erevibacterium</u>, bacteria belonging to the genus <u>Brevibacterium</u> bott united at present as bacteria belonging to the genus <u>Brevibacterium</u> dosely related to bacteria belonging to the genus <u>Brevibacterium</u> of the genus bacteria belonging to the genus <u>Corynebacterium</u> of the genus bacteria belonging to the genus bac

Specifically, exemplary microorganisms for each of fermentative products are as follows. Those suited for L-threonine include, for example, <u>Escherichia coli</u> VKPM B-3996 (RIA 1867) (see United States Patent No. 5,175,107), and <u>Corvnebactirum acetoacidophilum</u> AJ12318 (FERM BP-1172) (see United States Patent No. 5,188,949). Those suited for L-lysine include, for example, <u>Escherichia coli</u> AJ11442 (NRRL B-12185, FERM BP-1543) (see United States Patent No. 4,364,570). <u>Escherichia coli</u> W3110(tyrA)PH3rem (FERM BP-3653) by removing a plasmid pHATern, see WO 95/16042 International Publication Pamphtlet). <u>Bravibacterium</u> lactofermentum AJ12435 (FERM BP-2294) (see United States Patent No. 5,304,476), and <u>Bravibacterium lactofermentum</u> AJ12435 (FERM BP-2294) (see United States Patent No. 4,065,051). Those suited for L-quitared include, for example, <u>Escherichia coli</u> AJ12624 (FERM BP-3853) (see French Patent Publication No. 2,680,178), <u>Bravibacterium</u> <u>lactofermentum</u> AJ12827 (FERM BP-4172) (see Japanese Patent Laid-open No. 5-26811, and French Patent Publication No. 2,701,489), <u>Erevibacterium lactofermentum</u> AJ12475 (<u>FERM BP-2929</u>) (see United States Patent No.

5,272,067), and <u>Brevibacterium lacrotermentum</u> AJ13028 (FERM BP-5189) (see JP 95/01586 International Publication Pamphlet). Those suited for L-leucine include, for example, <u>Escherichia</u> coli AJ11476 (FERM P-5274) (see Japanese Patent Publication No. 62-34397), and <u>Brevibacterium lacrotermentum</u> AJ3718 (FERM P-2516) (see United States Patent No. 3,970,519). Those suited for L-isoleucine include, for example, <u>Escherichia</u> coli KX141 (VIKPM B4781) (see European Patent Publication No. 519,113), and <u>Brevibacterium lavor</u> AJ12149 (FERM BP-759) (see United States Patent No. 4,656,135). Those suited for L-valine include, for example, <u>Escherichia</u> coli VX1970 (VKPM B-4411) (see European Patent Publication No. 519,113), and <u>Brevibacterium lacrotermentum</u> AJ12341 (FERM BP-359) (see United States Patent No. 5,188,949). Those suited for L-phenylalarine include, for example, <u>Escherichia</u> coli AJ12604 (FERM BP-3579) (see Japanese Patent Laid-open No. 5285947 and European Patent Publication No. 488,424), and <u>Brevibacterium lacrotermentum</u> AJ126167 (FERM BP-3579) (see Japanese Patent Laid-open No. 5769,676 and European Patent Publication No. 488,424), and <u>Brevibacterium lacrotermentum</u> AJ26267 (FERM BP-4160) (see French Patent Publication No. 2,686,898).

The microorganism to be used for the method of the present invention includes the microorganisms as described above, falling under the definition that the microorganism is modified by introduction of at least one of the gene coding for HSP and the gene coding for the σ factor which specifically functions for the HSP gene to enhance expression amount of HSP in cells, whereby the microorganism is allowed to have added resistance to stress which would otherwise restrain growth of the microorganism and/or production of the fermentative product. The gene to be introduced into the microorganism may be any one of, or both of the gene coding for HSP and the gene coding for the σ factor which specifically functions for the HSP gene.

The phrase "to enhance expression amount of HSP" means the increase in amount of HSP production of a microorganism which originally produces HSP, and it additionally implies that a microorganism, which does not substantially express HSP in its original state, becomes to express HSP. Specifically, the enhancement of expression amount of HSP is realized, for example, by introducing a foreign or endogenous HSP gene into cells of a microorganism, and expressing it therein. In such a procedure, the number of copies of the HSP gene in a cell can be increased by using a vector autonomously replicable in the microbial cell, especially a plasmid of the multiple copy type as the vector. Alternatively, the expression of HSP can be also efficiently enhanced by using a promoter having good expression efficiency to increase the amount of expression per one unit of the HSP gene. Alternatively, HSP can be chanced by introducing, into microbial cells, a or factor gene which specifically functions for an inherent promoter for the HSP gene.

The gene coding for HSP includes, for example, groE (gene for GroELS), dnak (gene for Dnak), and dnak (gene for Dnak), and dnak (gene for Dnak), among them, groE is preferred. The of factor, which specifically functions for these genes, is exemplified by rooti which codes for o⁵². Microorganisms originating these genes are not specifically limited, provided that each of the genes is able to function in a cell of microorganism belonging to the genus Escherichia or conynetorm bacteria, and concretely exemplified by microorganisms belonging to the genus Escherichia and convention bacteria.

The <u>root</u> gene and the <u>groE</u> gene of <u>Escherichia coli</u> have been already reported for their nucleotide sequences (<u>root!</u>). <u>Bacteriol</u>, 170, 3479-3484 (1989); <u>groE</u>: <u>Nature</u>, 333, 330-334 (1989). Those genes can be obtained from <u>Escherichia goo</u> dichromosome by means of amplification in accordance with a PCR (polymerase chain reaction) method by using oligonucleotide primers synthesized on the basis of the sequences. Nucleotide sequences of primers for amplifying the <u>groH</u> gene are exemplified by sequences shown in SEQ ID NDS: 1 and 2. Nucleotide sequences of primers for amplifying the groE cene are exemplified by sequences shown in SEQ ID NDS: 3 and 4.

It has been reported that the <u>dnaK</u> gene and the <u>groß</u> gene of <u>Brevibacterium flavum</u> are isolated by a PCR method utilizing primers prepared on the basis of the amino acid sequence conserved among the dnaK genes or the <u>groß</u> genes derived from <u>Escherichia coli</u> and <u>Bacillus subtilis</u>, and these genes are highly homologous to the <u>dnaK</u> genes or <u>groß</u> genes derived from other microorganisms (Abstracts of Lectures in the 1994 Meeting of the Molecular Biology Society of Japan, p. 393). Judging from the fact, it is expected that genes coding for the other HSP <u>and gene</u>, <u>podl</u> gene and the like) also have high homology with each of the genes originating from <u>Escherichia coli</u>. Therefore, it is thought to be easy to isolate these genes from coryneform bacteria by means of hybridization method using the genes coding for HSP originating from <u>Escherichia coli</u>. PCR method utilizing a part of the sequence of theses genes.

In order to introduce the gene obtained as described above into a bacterium belonging to the genus <u>Eacherichia</u>, for example, a DNA fragment containing the gene may be ligated with vector DNA autonomously reblace in cells of bacteria belonging to the genus <u>Escherichia</u>, and an obtained recombinant vector may be used to transform the bacterium belonging to the genus <u>Escherichia</u>. In order to introduce the gene described above into a microorganism other than bacteria belonging to the genus <u>Escherichia</u>, a DNA fragment containing the gene may be ligated with vector DNA aut nomously replicable in cells of the microorganism, and an obtained recombinant vector may be used to transform the microorganism.

Plasmid vector DNA is preferred as the vector DNA which can be used in the present invention. Those suited for bacteria belonging to the genus <u>Escherichia</u> as the microorganism into which the genus is introduced include, for example, pUC18, pBR322, pHSC299, pHSC399, and RSF1010. Alternatively, vectors of phage DNA can be also utilized. In order to efficiently achieve expression of HSP, it is available to use promoters which operate in microorganisms, such as lac, trp, and PL instead of the inherent promoter for the HSP gene. In order to introduce, into the microorganism, the HSP gene or the a factor which specifically functions for the HSP gene. DNA containing such a gene may be

incorporated into chromosome of the microorganism in accordance with a method by using transposon (Berg, D. E. and Berg, C. M., <u>Bio/Technol.</u>, 1, 417 (1983)), Mu phage (Japanese Patent Laid-open No. 2-109985), or homologous recombination (<u>Experiments in Molecular Genetics</u>, Cold Spring Harbor Lab. (1972))

The vector DNA which can be used in the present invention includes plasmid vectors autonomously replicable in coryneform bacteria, including, for example, pAM 330 (see Japanese Patent Publication No. 1-11280), and pHM1519 (see Japanese Patent Laid-open No. 58-77895) when the microorganism into which the gene is introduced is a coryne-form bacterium.

The method for transformation is not especially different from ordinary ones for preparing transformants of microorganisms. For example, in the case of bacteria belonging to the genus <u>Escherichia</u>, transformation can be performed
in accordance with a method of D. M. Morrison (Methods in Enzymology, 68, 326 (1979)), a method for treating recipient
cells with calcium chloride to increase permeability for DNA (Mandel, M. and Higa, A. J. Mol. Bibl. 53, 159 (1970)) or
he like. Corpretorm bacteria can be transformed in accordance with the method of Mandel et al. describe dals only on
a method for introduction during a proliferating phase (to provide so-called competent cells) so that less can incorporate DNA as reported for Bacillus subtilis (Duncan, C. K., Wilson, G. A. and Young, F. E., Gene, 1, 153 (1977)). Alternatively, recombinant DNA can be also introduced after converting DNA recipient cells into protoplasts
which easily incorporate recombinant DNA as known for Bacillus subtilis. Actinomycetes, and yeast (Chang, S. and
(1976); Hinnen, A., Hicks, J. B. and Fink, G. R., Pros. Natl. Acad. Sci. USA, 75, 1929 (1998)). Alternative, recombinant
DNA can be also introduced into bacteria belonging to the genus <u>Brevibacterium</u> or <u>Corynebacterium</u> in accordance
with an electric pulse method (Sugimoto et al., Japanese Patent Laid-Open No. 2-207791)

Ordinary microorganisms undergo restraint of growth and decrease in productivity and yield of fermentative products when they suffer stress due to increase in cultivation temperature, high osmotic pressure caused by fermentative products or high concentration medium components, or metabolic abnormality associated with production of aimed fermentative products. On the contrary, it is possible to add resistance to such stress by enhancing expression of HSP. As a result, it is possible to increase the productivity of fermentative products in environments in which microorganisms suffer stress as described above. The resistance to stress does not mean complete resistance, and hence it also includes properties to decrease influences caused by the stress. Both of the restraint of growth and the decrease in productivity and yield of fermentative products are not necessarily desensitized depending on the type of genes to be introduced and the type of host microorganisms. There is sometimes a case in which the yield of a fermentative product is improved although the growth is restrained. The stress, against which the resistance can be added in accordance with the method of the present invention, includes, for example, temperature, osmotic pressure of a medium, and high concentration amino acid in a medium which are not preferable for the growth of the microorganism.

The medium for production by fermentation to be used for the method of the present invention may be well-known media having been hitherto used depending on microorganisms to be utilized. Namely, it is an ordinary medium containing a carbon source, a nitrogen source, inorganic ions, and optionally other organic components. No special medium is required to carry out the present invention.

Those which are usable as the carbon source include, for example, sugars such as glucose, lactose, galactose, fructose, and starch hydrolysate; alcohols such as glycerol and sorbitol; and organic acids such as furnaric acid, citric acid, and succinic acid. Those which are usable as the nitrogen source include, for example, inorganic ammonium salts such as ammonium sultare, ammonium chloride, and ammonium phosphate; organic nitrogen such as soybean hydrolysate; ammonia gas; and aqueous ammonia.

It is desirable to contain, as organic trace nutrient sources, required substances such as vitamin B₁, L-homoserine, and L-tyrosine; yeast extract or the like in appropriate amounts. Besides them, potassium phosphate, magnesium sultate, iron ion, manganese ion and so on are added in small amounts, if necessary.

Cultivation may be performed under well-known conditions having been hitherto used depending on microorganisms to be utilized. Cultivation is preferably performed, for example, under an aerobic condition for 16 to 120 hours. The cultivation temperature is controlled at 25°C to 45°C, and pH is controlled at 5 to 8 during the cultivation. For pH adjustment, it is possible to use inorganic or organic, acidic or alkaline substances, ammonia gas and so on.

In the present invention, the metabolic product is collected from a medium liquid after completion of the cultivation with no necessity for any special method. Namely, the present invention can be carried out by combining methods of ion exchange resin, precipitation and others having been thitherto well-known.

Best Mode for Carrying Out the Invention

The present invention will be described in more detail below with reference to Examples.

Example 1: Preparation of Plasmids for Introducing rooH Gene and groE Gene

(1) Cloning of rooH gene and groE gene

A <u>moH</u> gene and a <u>groE</u> gene of <u>Escherichia coli</u> were cloned in accordance with the PCR (polymerase chain reaction) method. Primers used in the PCR method were synthesized on the basis of sequences of the <u>moH</u> gene (<u>L. Bacteriol.</u> 170, 3479-3484 (1988)) of the <u>groE</u> gene (<u>Nature, 333</u>, 330-334 (1988)) of <u>Escherichia goli</u> gill already reported. Oligonucleotides having nucleotide sequences shown in SEQ ID NO: 1 (5' side) and SEQ ID NO: 2 (3' side) were synthesized as primers for amplifying the <u>moH</u> gene. Oligonucleotides having nucleotide sequences shown in SEQ ID NO: 3 (5' side) and SEQ ID NO: 4 (3' side) were synthesized as primers for amplifying the <u>moH</u> gene.

(Primers for amplifying rooH gene)

```
5' side: 5'-CGGAACGAAGTTTGATATCA-3' (SEQ ID NO: 1)
3' side: 5'-ATCCAGGGTTCTCTGCTTAA-3' (SEQ ID NO: 2)
```

(Primers for amplifying groE gene)

15

25

```
5' side: 5'-GACGTCGATAGCAGGCCAAT-3' (SEQ ID NO: 3)
3' side: 5'-GACGCACTCGCGTCGGTCCGT-3' (SEQ ID NO: 4)
```

Chromosomal DNA was extracted from <u>E. coli</u> K-12 strain in accordance with a method of Saito et al. (Saito, H. and Miura, K. <u>Biochem. Biophys. Acta.</u>, 72, 619 (1963)), and it was used as a template to perform PCR by using the oligonucleotides described above as the primers.

The reaction was repeated over 25 cycles in PCR, each cycle comprising heat denaturation (94°C, 1 minute), annealing (37°C, 2 minutes), and polymerase reaction (72°C, 3 minutes).

Both ends of obtained amplified products were blunt-ended by using a commercially available DNA blunt and formotion int (produced by Talkara Shuzo, Blunting III). After that, the products were respectively cloned into a Hincell site of a vector plasmid pSTV28 (produced by Talkara Shuzo) to obtain plasmids pSTV28-poH and pSTV28-groE.

(2) Introduction of replication origin from corynetorm bacterium into plasmid containing groE gene and plasmid containing groE gene

In order to make pSTV28-rpoH to be autonomously replicable in cells of coryneform bacteria, a replication origin (Japanese Patent Laid-open No. 5-00749) originating from an already obtained plasmid pHM1519 action compounds are pelicable in coryneform bacteria (Miwa, K. et al., Agric, Biol, Chem., 48 (1984) 2901-2903) was introduced into pSTV28-rpoH. Specifically, pHM1519 was dispested with restriction enzymes BamH and KgnI to obtain a DNA fragment containing the replication origin. The obtained fragment was blunt-ended by using a DNA blunt end formation kit (produced by Takara Shuzo) was ligated with its ends. The fragment was inserted into a KgnI site of pSTV28-rpoH to obtain pRPH. On the other hand, a plasmid pH50399 having no popul gene was used as a control. The replication origin originating from pHM1519 was also inserted into a Sall site of the control plasmid by using a Sall linker (croduced by Takara Shuzo) botain pSAC4.

Example 2: Production of L-Glutamic Acid by L-Glutamic Acid-producing Bacterium with Introduced rooH Gene

pRPH and pSAC4 prepared as described above were introduced into <u>Brevibacterium [actofermentum AJ12821</u> (FERM BP-4172) having L-glutamic acid-producing ability. L-Glutamic acid productivity of transformants containing each of the introduced plasmids was evaluated. The plasmids were introduced into cells of <u>Brevibacterium lactofermentum</u> by using an electric pulse method (Japanese Patent Laid-open No. 2-207791).

The transformants containing the introduced plasmids were selected on a CM2G plate medium (containing 10 g of poperpetone, 10 g of yeast extract, 5 g of glucose, 5 g of NaCl, and 15 g of agar in 1 L of pure water, pH 7.2) containing 4 uo/ml of chloramohenicol.

The L-glutamic acid productivity of the obtained transformants was evaluated as follows. Each of the transformants was cultivated on the CM2G plate medium to refresh cells. Each of the refreshed transformants was cultivated at 35°C for 20 hours in a medium containing 80 g of glucose, 1 g of KH₂PO₃, 0.4 g of MgSO₄ ·7H₂O, 30 g of (NH₂)₂SO₄, 0.01 g of FeSO₄ ·7H₂O, 0.01 g of MnSO₄ ·7H₂O. 15 mt of soybean hydrolysate solution, 200 µg of thiamine hydrochloride, 300 µg of biotin, 4 mg of chloramphenicol, and 50 g of CaCO₃ in 1 L of pure water (at pH adjusted to 8.0 with KOH). Usually, <u>Brevibacterium lactofermentum</u> is preferably cuttivated at a cuttivation temperature of 31 to 32°C.

The bacterial cell concentration, and the amount of L-glutamic acid accumulated in the medium were measured after the cultivation. L-Glutamic acid was quantitatively determined by using Biotec Analyser A5-210 produced by Asahi Chemical Industry. The bacterial cell concentration was determined by measuring the absorbance at 660 nm (OD₆₆₀) of the culture liquid diluted 51 times with 0.2 N hydrochloric acid. Results are shown in Table 1.

Table 1

Bacterial strain	L-Glutamic acid (g/dl)	OD ₆₆₀
AJ12821/pSAC4	3.3	0.98
AJ12821/pRPH	4.3	0.68

As clarified from the results, although the growth was restrained, the L-glutamic acid productivity was improved in the L-glutamic acid-producing bacterium of <u>Brevibacterium lactofermentum</u> containing the introduced <u>rpoH</u> gene.

Example 3: Production of L-Lysine by L-Lysine-producing Bacterium with Introduced rooH Gene

pRPH and pSAC4 prepared as described above were introduced into <u>Brevibacterium lactofermentum</u> AJ12435 20 (FERM BP-2234) exhibiting resistance to S-(2-aminoethyl)-L-cysteine and having L-lysine-producing ability derived by mutation from <u>Brevibacterium lactofermentum</u> ATCC 13869. L-Lysine productivity of transformants harboring each of the introduced plasmids was evaluated.

The plasmids were introduced into cells of <u>Brevibacterium lactofermentum</u> by using an electric pulse method (Japanese Patent Laid-open No. 2-207791).

The transformants harboring the plasmids were selected on a CM2G plate medium (containing 10 g of polypeptone, 10 g of yeast extract, 5 g of glucose, 5 g of NaCl, and 15 g of agar in 1 L of pure water, pH 7.2) containing 4 µg/ml of holrormobericol.

The L-lysine productivity of the obtained transformants was evaluated as follows. Each of the transformants was cultivated on the CM2G plate medium to refresh cells. Each of the refreshed transformants was cultivated on the CM2G plate medium to refresh cells. Each of the refreshed transformants was cultivated at 31.5°C for 60 hours in a medium containing 100 g of glucose, 1 g of KH₂PO₄, 0.4 g of MgSO₄ - 7H₂O, 30 g of (MH₂SO₄, 0.01 g of FeSO₄ - 7H₂O, 101 g of MnSO₄ - 7H₂O, 15 m lof soybean hydrolysate solution, 200 gg of thiamine hydrochloride, 300 gg of biotin, 4 mg of chloramphenicol, and 50 g of CaCO₃ in 1 L of pure water (at pH adjusted to 8.0 with KOH). The bacterial cell concentration, and the amount of L-lysine accumulated in the medium were measured after the cultivation. L-Lysine was quantitatively determined as L-lysine hydrochloride by using Biotec Analyzer AS-210 produced by Asahi Chemical Industry. The bacterial cell concentration was determined by measuring the absorbance at 660 nm (OD₅₆₀) of the culture liquid diluted 51 times with 0.2 N hydrochloric acid. Results are shown in Table 2.

Table 2

Bacterial strain	L-Lysine hydrochloride (g/L)	OD ₆₆₀
AJ11446/pSAC4	22	0.78
AJ11446/pRPH	27	1.15

"As shown in Table 2, the growth was good, and the L-lysine productivity was also improved in the L-lysine-producing bacterium of <u>Previbacterium lactofermentum</u> containing the introduced <u>rooH</u> gene. It is supposed that this result arose from mitigation of the influence of increased osmotic pressure due to accumulation of L-lysine.

Example 4: Production of L-Phenylalanine by L-Phenylalanine-producing Escherichia coli with Introduced groE Gene

pSTV28-groE or pSTV28 prepared as described above was introduced into a phenylalanine-producing bacterium,
AJ12604 strain (FERM BP-3579) bred from <u>Escherichia gollik</u> fi-12 strain. L-Phenylalanine productivity of transformants
harboring each of the introduced plasmids was evaluated.

The plasmids were introduced by using an electric pulse method (Japanese Patent Laid-open No. 2-207791). The transformants harboring the plasmids were selected on an Liplate medium (containing 10 g of polypeptone, 5 g of yeast extract, 5 g of NaCI, and 15 g of sax in 1 L of pure water, bd 7 2) containing 40 undim 16 ritohramphenical.

45

50

The L-phenylalanine productivity of the obtained transformants was evaluated as follows. The transformants were cultivated on the L plate medium containing 40 mg/L of bindramphenicol to refresh cells. Each of the refreshed transformants was cultivated at 45°C for 40 hours in a medium containing 20 g of gluoose, 29.4 g of Nag-NPO₄, 6 g of KH₂PO₄, 1 g of NaCl, 2 g of NH₄Cl, 10 g of sodium citrate, 0.4 g of sodium glutamate, 3 g of MgSO₄ * 7H₂O, 0.23 g of KOl, 2 mg of thismine hydrochloride, 75 mg of L-typosine, and 40 mg of foliumphenicol in 1 L of pure wat 1 (aplused to 7.0 with KOH). The bacterial cell concentration, and the amount of L-phenylalanine accumulated in the medium were measured after the cultivation. L-Phenylalanine was quantitatively determined by using Biotec Analyzer AS-210 produced by Asahi Chemical Industry. The bacterial cell concentration was determined by measuring the absorbance at 660 nm (OD₅₆₀) of the culture liquid cliuted 51 times with pure water. Results are shown in Table 3.

Table 3

Bacterial strain	L-Phenylalanine (g/L)	OD ₆₆₀
AJ12604/pSTV28	1.5	0.143
AJ12604/pSTV28-groE	2.0	0.146

According to the results, it is clear that the productivity of L-phenylalanine was improved in <u>E. coli</u> with the intro-20 duced groE gene.

Example 5: Production of L-Lysine by L-Lysine-producing Escherichia coli with Introduced rpoH Gene

Escherichia coli W3110 (tyrA) strain was used as a host for L-lysine production. W3110 (tyrA) strain is described in 5 detail in European Patent Publication No. 488424 (1992). However, its preparation method will be briefly described as follows.

E., coli W3110 strain was obtained from National Institute of Genetics (Mishima-shi, Shizuoka-ken, Japan). This strain was spread over an LB plate containing streptomycin, and strains which formed colonies were selected to obtain a streptomycin-resistant strain. The selected streptomycin-resistant strain was mixed with 15, coli K-12 ME9424 strain to induce conjugation by stationarily cultivating them for 15 minutes under conditions at 37°C in a complete medium (L-Broth: 1% Bacto trypton, 0.5%, Yeast extract, 0.5% NaCI). E., coli K-12 ME9424 strain has inherited characters of (HFP045, Ihr, [eAl], YIM-X:Tin10, ying-1, nadB), and it is obtainable from National Institute of Genetics. After the conjugation, the culture was spread over a complete medium (L-Broth: 1% Bacto trypton, 0.5% Yeast extract, 0.5% NaCI, 1.5% agan) containing streptomycin, tetracycline, and L-tyrosine to select a strain which formed colonies. This strain was designated as E., coli W3110 (YrA).

Many strains, which were formed by introducing plasmids into this strain, are described in European Patent Publication No. 488424 (1992). For example, a strain, which was obtained by introducing a plasmid pHATerm, was designated as <u>Escherichia coli</u> W3110 (tyrA)pHATerm, was deposited in National Institute of Bioscience and Human Technology of Agency of Industrial Science and Technology (1-3, Kigashi 1-chome, tsukuba-shi, baraki-then, 305 Japan) based on Budapest Treaty on November 16, 1991, as accession number of FERM BP-3653. <u>Escherichia coli</u> W3110 (tyrA) strain can be obtained by removing the plasmid pHATerm from this bacterial strain by using an ordinary method.

A plasmid RSFD80 having a gene for fysine biosynthesis was introduced into the <u>Escherichia coli</u> W3110 (tyr.A) strain in accordance with the method described in Example 4. RSFD80 is described in WO 95/16042 International Publication Pamphlet, and it contains DNA coding for disprictoring production of the seen sitized feedback inhibition by L-fysine, and DNA coding for aspartokinase with desensitized feedback inhibition by L-fysine. <u>E. coli</u> JM109 strain harboring the RSFD80 plasmid was designated as A1/2396, and was deposited in National Institute of Bioscience and Human Technology of Agency of Industrial Science and Technology (1-3, Higash 1-4-borne, tsukuba-shi, ibaraki-ken, 305 Japan) on October 28, 1993, as accession number of FERM P-13936, and transferred from the original deposition to international deposition based on Budapest Treaty on November 1, 1994, and has been deposited as accession number of FERM PP-4859

A transformant of the W3110 (tyrA) strain, in which RSFD80 was introduced, was selected on a plate medium containing 50 µg/ml of streptomycin.

On the other hand, a plasmid for introducing the <u>molf</u> gene was constructed as follows. The <u>molf</u> gene was amplified by the PCR method in accordance with the method described in the item (1) in Example 1. An obtained amplified product was blunt-ended at its both ends by using a commercially available DNA blunt end formation it (produced by Takara Shuzo, Bluntling kit), and then it was cloned into a <u>Hir</u>cll site of a vector plasmid pMW119 (produced by Wako Pure Chemical Industries) to obtain a obsamid DMWnobl. This plasmid was introduced into Eschlata coll W3110

10

(tyrA)/RSFD80 strain in accordance with the method described above. A transformant containing the introduced plasmid was selected on an L plate medium containing 50 µg/ml of streptomycin and 50 µg/ml of ampicillin.

The L-lysine productivity was evaluated for <u>Escherichia coli</u> W3110 (tyrA)/RSFD80 strain, and <u>Escherichia coli</u> W3110 (tyrA)/RSFD80+pMWrpoH strain obtained as described above.

The L-tysine productivity of the obtained transformants was evaluated as follows. The transformants were cultivated on the L plate medium to refresh cells. Each of the refreshed transformants was cultivated at 37° to 30 hours in a medium containing 40 g of glucose, 1 g of KH₂PO₄, 0.01 g of MnSO₄ - 7H₂O, 0.01 g of FeSO₄ · 7H₂O, 2 g of yeast extract, 0.1 g of L-tyrosine, 1 g of MgSO₄ · 7H₂O, and 25 g of CaCO₂ in 1 L of pure water (at pH adjusted to 7.0 with KOH). In this experiment, the transformants were also cultivated in the same medium except that 40 rt of L-tysine to tydrochloride was initially added L-L-tysine was quantitatively determined by using Blotec Analyzer AS-210 produced by Asshi Chemical Industry. Table 4 shows amounts of increase in L-tysine (obtained by subtractive amount of initially added L-tysine from the amount of initial amount of initial and the first and the f

Table 4

Bacterial strain	Production amount of L- lysine hydrochloride (g/L) Initially added L-lysine hydrochloride (g/L)	
	0	40
W3110(tyrA)/RSFD80	9.17	6.43
W3110(tyrA)/RSFD80 +pMWrpoH	9.22	7.64

According to the results, it is clear that the L-lysine productivity was improved in <u>Escherichia coli</u> containing the introduced <u>roch</u> gene even in the presence of the high concentration of L-lysine as compared with the strain containing no introduced <u>roch</u> gene.

Industrial Applicability

15

The relationships between HSP and growth of microorganisms and between HSP and productivity of fermentative or products have been clarified by the present invention. Thus, it is possible to decrease the influence of stress and improve deterioration of productivity and vield in fermentative production of useful substances such as amino acids.

SEQUENCE LISTING

	(1) GENE	RAL INFORMATION:	
5	(i)	APPLICANT: AJINOMOTO CO., INC.	
	(ii)	TITLE OF INVENTION: STRESS-RESISTANT MICROORGA	
		METHOD OF PRODUCING FERMEN	TATIVE
		PRODUCT	
10		NUMBER OF SEQUENCES: 4	
	(iv)	CORRESPONDENCE ADDRESS:	
		(A) ADDRESSEE: Ajinomoto Co., Inc.	
		(B) STREET: Kyobashi 1-chome, 15-1	
15		(C) CITY: Chuo-ku	
15		(D) STATE: Tokyo-to	
		(E) COUNTRY: Japan	
		(F) ZIP: 104	
	(V)	COMPUTER READABLE FORM:	
20		(A) MEDIUM TYPE:	
		(B) COMPUTER:	
		(C) OPERATING SYSTEM:	
	(4)	(D) SOFTWARE: CURRENT APPLICATION DATA:	
0.5	(V1)	(A) APPLICATION NUMBER:	
25		(B) FILING DATE:	
		(C) CLASSIFICATION:	
	(37i i \	PRIOR APPLICATION DATA:	
	(111)	(A) APPLICATION NUMBER:	
30		(B) FILING DATE:	
	(viii)	ATTORNEY/AGENT INFORMATION:	
	,	(A) NAME:	
		(B) REGISTRATION NUMBER:	
35		(C) REFERENCE/DOCKET NUMBER:	
	(ix)	TELECOMMUNICATION INFORMATION:	
		(A) TELEPHONE:	
		(B) TELEFAX:	
40		RMATION FOR SEQ ID NO:1:	
	(i)	SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 20	
		(B) TYPE: nucleic acid	
45		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
	(ii)	MOLECULAR TYPE: other nucleic acid	
		(A) DESCRIPTION: synthetic oligonucleotide	
		SEQUENCE DESCRIPTION: SEQ ID NO:1:	
50	CGGAACGA	AG TTTGATATCA	20
	(2) TYPO	DWARTON FOR CEO ID NO. 2.	
	(Z) INFO	RMATION FOR SEQ ID NO:2:	

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULAR TYPE: other nucleic acid	
(A) DESCRIPTION: synthetic oligonucleotide	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:	
ATCCAGGGTT CTCTGCTTAA	20
(2) INFORMATION FOR SEQ ID NO:3:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 20	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULAR TYPE: other nucleic acid	
(A) DESCRIPTION: synthetic oligonucleotide	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:	
GACGTCGATA GCAGGCCAAT	20
(2) INFORMATION FOR SEQ ID NO:4:	
(i) SEQUENCE CHARACTERISTICS:	
- (A) LENGTH: 20	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULAR TYPE: other nucleic acid	
(A) DESCRIPTION: synthetic oligonucleotide	1 2 1
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:	
GACGCACTCG CGTCGTCCGT	20

Claims

15

25

- 45 1. A method of producing a fermentative product by utilizing a microorganism, comprising the steps of cultivating the microorganism in a medium to allow the fermentative product to be produced and accumulated in the medium, and collecting the fermentative product, wherein:
 - said microorganism is modified by introduction of at least one of a gene coding for a heat shock protein and a gene coding for a factor which specifically functions for the heat shock protein gene to enhance expression amount of the heat shock protein in cells, whereby said microorganism is allowed to have added resistance to stress which would otherwise restrain growth of the microorganism and/or production of the fermentative product.
- 55 2. The method according to claim 1, wherein said fermentative product is an amino acid.
 - The method according to claim 1, wherein said stress is temperature, osmotic pressure of the medium, or the objective fermentative product which is not preferable for the growth of the microorganism.

- 4. The method according to claim 1, wherein said gene coding for the heat shock protein is groE.
- 5. The method according to claim 1, wherein said gene coding for the σ factor is rooH.
- The method according to claim 1, wherein said microorganism is a bacterium belonging to the genus <u>Escherichia</u>, or a coryneform bacterium.
 - 7. A microorganism for producing a fermentative product, wherein said microorganism is modified by introduction of at least one of a gene coding for a heat shock protein and a gene coding for a σ factor which specifically functions for the heat shock protein gene to enhance expression amount of the heat shock protein in cells, whereby said microorganism is allowed to have added resistance to stress which would otherwise restrain growth of the microorganism and/or production of the fermentative product.

10

25

30

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP96/00287

CLASSIFICATION OF SUBJECT MATTER Int. C16 C12P13/14, C12P13/08, C12P13/04, C12N1/21 // (C12P13/14, C12R1:13), (C12P13/08, C12R1:13), (C12P13/04, C12R1:19), (C12N1/21, C12R1:13), (C12N1/21, C12R1:19) ording to international Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) Int. Cl⁶ Cl2P1/00-Cl2P41/00, Cl2N1/00-3/00, Cl2N15/00-15/90 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) BIOSIS PREVIEWS, WPI, WPI/L, CAS ONLINE C. DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. Protein Nucleic acid Enzyme, Vol. 37, No. 15, (1992) Yura, Mori and others "Recent Development 1, 3-7 in Thermal Shock Response of Eschericia coli" p. 2925-2934 v Genes & Development, Vol. 2, (1988), Kusukawa 1, 3-7 and Yura, "Heat Shock Protein GroE of Eschericia coli: Key Protective Roles against Thermal Stress", p. 874-882 Y х JP, 6-292582, A (Daicel Chemical Industries. 1, 3, 5-7 Ltd.) October 21, 1994 (21, 10, 94) (Family: none) Y 2.4 Molecular Microbiology, Vol. 5, No. 3, (1991), R. A. Larossa and T. K. Van Dyk "Physiological 1 - 7 Roles of the Dnak and GroE stress Proteins: Catalysts of Protein Folding or Macromolucular Sponges?" p. 529-534 X Further documents are listed in the continuation of Box C. See patent family annex. document defining the general state of the art which is not on to be of particular relevance "E" earlier document but published on or after the laternational filling date ent of particular relevance; the claimed in-cred novel or cannot be considered to invi hen the document is taken alone retreat which may throw doubts on priority claim(s) or which is nd to establish the publication date of another citation or other cial meson (as specified) est of particular relevance; the claimed favoration red to involve an inventive step when the do ed with one or more other such documents, such co bvious to a person skilled in the art ~ nt referring to an orel di ing obvious to a p "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report May 7, 1996 (07. 05. 96) May 28, 1996 (28. 05. 96) Name and mailing address of the ISA/ Authorized officer

13

Telephone No.

Facsimile No.

Japanese Patent Office

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP96/00287

<u> </u>	ation). DOCUMENTS CONSIDERED TO BE RELEVANT	
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
	Line 42, right column, page 531 to line 9, left column, page 532	
P,X	JF, 8-70803, A (Mitsubishi Chemical Corp.), March 19, 1996 (19. 03. 96) (Family: none) Lines 18 to 30, left column, page 2, lines 15 to 18, left column, lines 1 to 3, right column, page 7	1, 3, 4, 7
P,Y	page /	2, 5, 6
P,X	JP, 8-56668, A (Mitsubishi Chemical Corp.), March 5, 1996 (05. 03. 96) (Family: none) Lines 20 to 33, left column, page 2, lines 1 to 6, right column, page 7	1, 3, 7
P,Y	Fight Column, page /	2, 4-6
A	Annu. Rev. Microbiol., Vol. 45, (1991), Jill Zeilstra-Ryalls et al., "The Universally Conserved GroE(Hsp60) Chaperonins", p. 301-325	1 - 7
A	Cell, Vol. 61, (1990), George A. Gaitanaris et al. "Renaturation of Denatured λ Repressor Requires Heat Shock Proteins", p. 1013-1020	1 - 7
A	Cell, Vol. 62, (1990), Dorota Skowyra et al. "The E. coli dnaK Gene Product, the hsp70 Homolog, Can Reactivate Heat-Inactivated RNA Polymerase in an ATP Hydrolysis-Dependenet Manner", p. 339-944	1 - 7
A	Nature, Vol. 342, (1989), Pierre Goloubinoff et al. "Reconstitution of Active Dimeric Ribulose Bisphosphate Carboxylase from an Unfolded Statt Depends on Two Chaperonin Proteins and Mg-ATP", p. 884-889	
	,	
	. *	

Form PCT/ISA/210 (continuation of second sheet) (July 1992)