

Art of Problem Solving 1998 Balkan MO

Balkan MO 1998

_	May 5th
1	Consider the finite sequence $\left\lfloor \frac{k^2}{1998} \right\rfloor$, for $k = 1, 2, \dots, 1997$. How many distinct terms are there in this sequence?
	Greece
2	Let $n \geq 2$ be an integer, and let $0 < a_1 < a_2 < \cdots < a_{2n+1}$ be real numbers. Prove the inequality
	$\sqrt[n]{a_1} - \sqrt[n]{a_2} + \sqrt[n]{a_3} - \dots + \sqrt[n]{a_{2n+1}} < \sqrt[n]{a_1 - a_2 + a_3 - \dots + a_{2n+1}}.$
	Bogdan Enescu, Romania
3	Let S denote the set of points inside or on the border of a triangle ABC , without a fixed point T inside the triangle. Show that S can be partitioned into disjoint closed segemnts.
	Yugoslavia
4	Prove that the following equation has no solution in integer numbers:
	$x^2 + 4 = y^5.$
	Bulgaria

Contributors: Valentin Vornicu