PHÂN TÍCH HỔI QUY

THỰC HÀNH PHƯƠNG PHÁP SỐ CHO KHOA HỌC DỮ LIỆU

Ngày 27 tháng 5 năm 2024

Liên hệ

GOOGLE CLASSROOM: saio6uy TRO GIẢNG:

- Nguyễn Thị Kiều Trang: ntktrang@hcmus.edu.vn
- Lý Như Bình: Inbinh@hcmus.edu.vn

LƯU Ý:

- Email đăng nhập google classroom thể hiện đầy đủ họ và tên, tránh sử dụng email có biệt danh.
- Tiêu đề mail (bắt buộc): [2024-HK2-THPPSKHDL] [Tiêu đề thư]
 VD: [2024-HK2-THPPSKHDL] HỔI BÀI
 Vui lòng giới thiệu họ tên, MSSV và tên ca học khi gửi email.

Một vài điều về lớp

Điểm thực hành: Chiếm 30% tổng điểm:

- ▶ Điểm danh: 0.5 điểm (Mỗi buổi)
- Bài tập: 2.5 điểm (Nộp bài tập thực hành mỗi tuần)

Cách thức nộp bài:

- Nôp trên google classroom
- Nôp file .txt
- ► Tên file: Y MSSV Hoten baix.txt,
 - Y = C204 nếu bạn học phòng C204.
 - Y = C203 nếu bạn học phòng C203.
 - $x \in \{1, 2, 3, 4, ...\}$

Phân tích hồi quy tuyến tính

Bài 1: Cho bảng số liệu sau:

STT	Diện tích (m²)	Số phòng ngủ	Khoảng cách tới TT	Giá (tỷ VND)
1	40	1	30	1.1
2	60	2	32	1.55
3	53	2	30.1	1.68
4	71	2	35.7	1.75
5	80	2	24.5	5.5
6	56	2	27.6	2.3
7	75	2	27.6	3
8	79	2	27.6	3.5
9	56	2	29.7	2.4

STT	Diện tích (m²)	Số phòng ngủ	Khoảng cách tới TT	Giá (tỷ VND)
10	60	2	29.7	2.9
11	72	2	29.7	3
12	95	3	29.7	4.2
13	47	1	19.3	1.5
14	91	2	18.1	2.2
15	68	1	21.4	1.5
16	69	2	17.5	3.15
17	82	2	25.1	3.4
18	60	2	26.5	2.245
19	68	2	26.5	2.4

Dựa vào bảng số liệu trên, hãy dự đoán giá của một căn nhà có diện tích là $79m^2$, 2 phòng ngủ, khoảng cách tới trung tâm là 26.5 km bằng cách:

- a) Giải phương trình đạo hàm mất mát
- b) Dùng các thuật toán Gradient descent, Accelerated gradient descent, Stochastic gradient descent.
- c) Dùng thư viện scikit-learn

Biết giá trị thực tế của căn nhà trên là 2.5 tỷ VND, hãy so sánh các kết quả trên với nhau.

Thuật toán:

- Đầu vào: Thông tin diện tích, số phòng ngủ và khoảng cách tới trung tâm của một căn nhà.
- Giá tiền dự đoán của căn nhà đó.

Các bước làm bài:

Bài toán tối ưu mà ta cần giải có dạng như sau:

$$\min_{\mathbf{x}} L(\mathbf{x}) = \min_{\mathbf{x}} \frac{1}{2} \sum_{i=1}^{N} (d_i - \overline{w}_i \mathbf{x})$$
 (1)

trong đó

- $\overline{w}_i = (a_i, b_i, c_i, 1)$ là vector hàng chứa dữ liệu đầu vào của căn nhà thứ i.
- $ightharpoonup d_i$ là giá trị của căn nhà thứ i.
- $\mathbf{x} = (x_1, x_2, x_3, x_4)^T$ là vector cần phải tối ưu. Nói cách khác, đây là nghiêm của bài toán tối ưu trên.

Câu a: Giải phương trình đạo hàm mất mát.

▶ Đặt

$$d = \begin{bmatrix} 1.1 \\ 1.55 \\ \vdots \\ 2.4 \end{bmatrix}$$
 là vector cột chứa giá trị các căn nhà. (2)

$$\overline{W} = \begin{bmatrix} 40 & 1 & 30 & 1 \\ 60 & 2 & 32 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 68 & 2 & 26.5 & 1 \end{bmatrix}$$
 (3)

Lúc này, bài toán tối ưu sẽ được viết lại dưới dạng ma trận như sau:

$$L(x) = \frac{1}{2} \|d - \overline{W}x\|_2^2 \tag{4}$$

Đạo hàm hàm mất mát ta được:

$$\overline{W}^T \overline{W} x = \overline{W}^T d \tag{5}$$

- ightharpoonup Kiểm tra tính khả nghịch của ma trận $\overline{W}^T W$
 - $\overline{W}^T W$ khả nghịch: $x = (\overline{W}^T W)^{-1} \overline{W}^T d$
 - ▶ $\overline{W}^T W$ khả nghịch: Áp dụng thuật toán SVD để tìm ma trận giả nghịch đảo của $\overline{W}^T W$. Sau đó tính $x = (\overline{W}^T W)^+ \overline{W}^T d$

Câu b: Dùng GD, AGD, SGD

Lần lượt giải bài toán (1) bằng các thuật toán GD, AGD và SGD. Gradien Descent:

- ▶ Tính vector gradient $\nabla L(x)$.
- ightharpoonup Dăt i=0.
- ightharpoonup while i < N:

 - Nếu $\|\nabla L(x_{t+1})\|_2 < \epsilon$ thì Xuất ra màn hình giá trị x_{t+1} Dừng lai
 - $x_t = x_{t+1}, i = i + 1$
- Xuất ra màn hình thông báo: thuật toán không thành công sau N bước lặp.

Accelerated gradient descent:

- ▶ Tính vector gradient $\nabla L(x)$.
- ightharpoonup Đặt i=0 và $x_{i-1}=x_i$
- ightharpoonup while $i \leq N-1$:
 - ► Tính

$$y_i = x_i + \frac{i-1}{i+2}(x_i - x_{i-1})$$
 (6)

$$x_{i+1} = y_i - \eta \nabla L(y_i) \tag{7}$$

- Nếu $\|\nabla L(x_{t+1})\|_2 < \epsilon$ thì Xuất ra màn hình giá trị x_{t+1} Dừng lai
- ightharpoonup Cập nhật giá trị $x_{i-1} = x_i, x_i = x_{i+1}$ và i = i+1.
- Xuất ra màn hình thông báo: thuật toán không thành công sau N bước lăp.

Stochastic gradient descent:

- ▶ Tính vector gradient $\nabla L_{i_t}(x)$
- ightharpoonup Đặt i=0, m=len(a)
- ightharpoonup while i < N:
 - ightharpoonup Chọn ngẫu nhiên $i_t \in 1, 2, ..., m$

 - Nếu $\|\nabla L(x_{t+1})\|_2 < \epsilon$ thì Xuất ra màn hình giá trị x_{t+1} Dừng lai
 - $x_t = x_{t+1}, i = i+1$
- Xuất ra màn hình thông báo: thuật toán không thành công sau N bước lặp.

Câu c: Dùng scikitlearn Sinh viên đọc về scikit-learn tại đây để làm bài.

àm bài.

Bài 2: Cho bảng số liệu sau:

STT	Chiều cao (cm)	Cân nặng (kg)
1	147	49
2	150	50
3	153	51
4	155	52
5	158	54
6	160	56
7	163	58
8	168	60
9	170	72
10	173	63
11	175	64
12	178	66
13	180	67
14	183	468≻ 4 5 > 4 3

Bài toán đặt ra là từ bảng số liệu trên, hãy dự đoán cân nặng của một người có chiều cao là 165 *cm* bằng cách:

- a) Giải phương trình đạo hàm mất mát.
- b) Dùng các thuật toán Gradient descent, Accelerated gradient descent, Stochastic gradient descent.
- c) Sử dụng thư viện scikit-learn.

Biết cân nặng thực tế của người đó trên là $59\ kg$, hãy so sánh các kết quả trên với nhau.

Phân tích hồi quy logistic

Bài 3:Cho bảng số liệu sau:

	Lương	Thời gian làm việc	Cho vay
			Cito vay
0	10	1.0	1
1	5	2.0	1
2	6	1.8	1
3	7	1.0	1
4	8	2.0	1
5	9	0.5	1
6	4	3.0	1
7	5	2.5	1
8	8	1.0	1
9	4	2.50	1

	Lương	Thời gian làm việc	Cho vay
10	8	0.10	0
11	7	0.15	0
12	4	1.00	0
13	5	0.80	0
14	7	0.30	0
15	4	1.00	0
16	5	0.50	0
17	6	0.30	0
18	7	0.20	0
19	8	0.15	0

- a) Từ bảng số liệu trên, áp dụng thuật toán Gradient Descent để viết hàm tính xác suất cho vay của một hồ sơ bất kỳ.
- b) Giả sử ngân hàng yêu cầu hồ sơ đạt 80% mới cho vay, hãy vẽ đường phân cách giữa hồ sơ cho vay và không cho vay. Từ đó xác định xem một người có mức lương là 9 triệu và kinh nghiệm làm việc là 0.5 năm thì có được vay hay không?

Thuật toán:

- Dầu vào: Lương và kinh nghiệm làm việc của một bộ hồ sơ.
- Đầu ra: Xác xuất cho vay của hồ sơ đó và quyết định được cho vay hay không.

Các bước làm bài:

Với hồ sơ thứ i mà ta đang xét, ta gọi:

- $x_1^{(i)}$ là lương và $x_2^{(i)}$ là thời gian làm việc của người nộp hồ sơ vay.
- $p(y_i = 1) = \hat{y}_i$ là xác suất mà chúng ta dự đoán hồ sơ được cho vay.
- $p(y_i = 0) = 1 \hat{y}_i$ là xác suất mà chúng ta dự đoán hồ sơ không được cho vay.

Bài toán tối ưu cần giải quyết có dạng như sau:

$$\min_{w} L(w) = \min_{w} - \sum_{i=1}^{N} (y_i \ln(\hat{y}_i) + (1 - y_i) \ln(1 - \hat{y}_i))$$
 (8)

trong đó:

$$\hat{y}_i = \frac{1}{1 + e^{-\left(\omega_0 + \omega_1 x_1^{(i)} + \omega_2 x_2^{(i)}\right)}} \tag{9}$$

Bước 1: Tìm vector gradient $\nabla L(w)$

Bước 2: Khởi tạo giá trị ban đầu w_0 , dùng Gradient Descent để tìm $w_{t+1} = w_t - \eta \nabla L(w_t)$

Bước 3: Tính phần trăm cho vay \hat{y}_i bằng công thức (9)

Bước 4: Với yêu cầu hồ sơ đạt 80% mới cho vay, hãy khai triển công thức đường phân cách và vẽ nó trên đồ thi.

$$\hat{y}_i > s \Leftrightarrow w_0 + w_1 x_1^{(i)} + w_2 x_2^{(i)} > -\ln\left(\frac{1}{s} - 1\right)$$

Bài 4: Với thông số của bài 3, hãy

- a) Từ bảng số liệu trên, áp dụng thuật toán Accelerate Gradient Descent để viết hàm tính xác suất cho vay của một hồ sơ bất kỳ.
- b) Giả sử ngân hàng yêu cầu hồ sơ đạt 80% mới cho vay, hãy vẽ đường phân cách giữa hồ sơ cho vay và không cho vay. Từ đó xác định xem một người có mức lương là 9 triệu và kinh nghiệm làm việc là 0.5 năm thì có được vay hay không?

Thuật toán: Tương tự bài trên nhưng thay bằng Gradient Descent bằng Accelerate Gradient Descent.