Deep Reinforcement Learning at Scale

Timothy Lillicrap
Research Scientist, DeepMind & UCL

Deep Learning at Supercomputer Scale | NIPS Workshop

What is Reinforcement Learning?

Supervised Learning

Fixed dataset

Reinforcement Learning

Data depends on actions taken in environment

Formalizing the Agent-Environment Loop

Advantage Actor-Critic (A3C)

A Single Trial (with Advantage Actor-Critic)

$$R_t = \sum_{k=t}^T \gamma^{t-k} r_t \qquad V_t = V_\phi(s_t) \qquad A_t = R_t - V_\phi(s_t)$$

Combating Variance: Advantage Actor-Critic

$$V_{\phi}(s_t) \qquad \pi_{\theta}(a_t | s_t)$$

$$\nabla_{\phi} \mathcal{L} = \sum_{t=0}^{T} \nabla_{\phi} (\underline{R_t - V_{\phi}(s_t)})^2$$

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} \left[\sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) (\underline{R_t - V_{\phi}(s_t)}) \right]$$

Scaling Reinforcement Learning (A3C)

Scaling Reinforcement Learning

Off-policy Actor-Critic for Continuous Actions

Distributional Distributed DDPG (D4PG)

Hoffman, Barth-Maron et al., 2017

Hoffman, Barth-Maron et al., 2017

Hoffman, Barth-Maron et al., 2017

Distributional Distributed DDPG (D4PG)

Standard Networks

Parkour Networks

Playing Go with Deep Networks and Planning

$$\rho(s_{t+1}|s_t, a_t)$$

Use environment model in order to plan!

Silver, Huang et al., Nature, 2016

Training Policy and Value Networks

Planning with an Environment Model & MCTS

Planning with an Environment Model

$$(p, v) = f_{\theta}(s)$$
 and $l = (z - v)^2 - \pi^T \log p + c \|\theta\|^2$

Questions?