Лабораторная работа №6. Исследование хаотических систем

Цель работы: ознакомиться с классом хаотических систем, освоить средства MATLAB для моделирования «странных аттракторов», изучить практические способы определения параметров хаотических систем.

Основные сведения

Рассмотрим динамическую систему в непрерывном времени

$$\dot{x} = F(x),\tag{1}$$

где $x = x(t) \in \mathbb{R}^n$ – вектор состояния системы, $0 \le t < \infty$.

Определение 1. Замкнутое множество $\Omega \supset R^n$ называется аттрактором системы (1), если: а) существует такое открытое множество $\Omega_0 \subset \Omega$, что все траектории x(t) системы (1), начинающиеся в Ω_0 , определены при всех $t \geq 0$ и стремятся к Ω при $t \to \infty$; б) никакое собственное подмножество Ω этим свойством не обладает.

Определение 2. Аттрактор называется странным, если он ограничен и любая траектория, начинающаяся на нем, неустойчива по Ляпунову.

Определение 3. Система называется хаотической, если у нее существует хотя бы один странный аттрактор.

В динамических системах непрерывного времени хаотическое поведение возможно при порядке систем не ниже третьего. Поскольку система является нелинейной, исследовать ее проще в фазовом пространстве (пространстве переменных состояния).

Фазовая траектория представляет собой решение уравнения (1) при заданном начальном условии $x(0) = x_0$. При моделировании хаотических систем интервал времени интегрирования следует выбирать достаточно большим, чтобы убедиться в хаотическом поведении системы. Следует отметить, что существуют такие системы, у которых хаотическое поведение через значительный промежуток времени сменяется регулярным колебательным движением.

Хаотические системы часто представляют собой жестко интегрируемые системы, поэтому при численном интегрировании предпочтительнее использовать методы с переменным шагом интегрирования.

Определение старшего показателя Ляпунова хаотической системы

Старший показатель Ляпунова (СПЛ) — основная количественная характеристика странного аттрактора. Он характеризует максимальную скорость разбегания двух соседних траекторий хаотической системы.

Первый способ определения СПЛ основан на анализе уравнений хаотической системы и выполняется следующим образом:

- 1. Выбирается начальная точка опорной траектории x_0 , принадлежащая странному аттрактору.
- 2. Определяется опорная траектория $\bar{x}(t, x_0)$, как решение системы (1) при выбранном начальном условии.
- 3. Аналитически находится матрица линеаризации $A(x(t)) = \frac{\partial F(x(t))}{\partial x}$.
- 4. Исследуются на интервале интегрирования собственные числа матрицы $A(\bar{x}(t,x_0))$.
- 5. СПЛ определяется как максимальное значение собственного числа Второй способ определения СПЛ основан на анализе решений системы уравнений (1). Предлагается выполнить следующую последовательность действий:
 - 1. Задать два начальных условия на поверхности странного аттрактора, различающиеся на малую величину ε.
 - 2. Найти решения для выбранных условий и определить процесс рассогласования траекторий $\delta x(t)$.
 - 3. Рассчитать сигнал вида:

$$z(t) = \ln \frac{\|\delta x(t)\|}{\|\varepsilon\|},$$

и построить его график.

4. Определить СПЛ как максимальный коэффициент наклона сигнала z(t).

Для повышения точности рекомендуется проделать действия 1-4 для трех разных начальных условий (с отклонением є по каждой из координат), и потом найти СПЛ как среднее значение по выборке.

Для определения коэффициента наклона кривой можно применить, например, метод наименьших квадратов.

Определение фрактальной размерности странного аттрактора

Фрактальная размерность характеризует густоту наполнения аттрактора фазовыми траекториями. Определение фрактальной размерности представляет собой достаточно сложную задачу, однако существуют косвенные методы, позволяющие получить размерность аттрактора, близкую к фрактальной. Подобным примером является метод корреляционной размерности. В этом случае необходимо определить корреляционный интеграл, как среднее количество точек аттрактора, не превышающих заданного расстояния

$$C(r, N) = \frac{1}{N(N-1)} \sum_{i=1}^{N} \sum_{i=1}^{N} \delta(r - |x_i - x_j|), \quad i \neq j,$$

где $\delta(x)$ — функция Хевисайда; x_i, x_j — координаты точек траектории — решения уравнения (1); N — общее число точек траектории.

Размерность аттрактора определяется по формуле:

$$D_r = \lim_{r \to 0} \lim_{N \to \infty} \frac{\log(C(r, N))}{\log(r)}.$$

Следует отметить, что вычисление корреляционного интеграла представляет достаточно затратную задачу, может работать медленно при большом объеме точек траектории. При необходимости следует проводить «разрежение» точек траектории, определенной численно.

Исходные данные

$$\dot{x}_1 = (x_3 - b)x_1 - dx_2;
\dot{x}_2 = dx_1 + (x_3 - b)x_2;
\dot{x}_3 = c + ax_3 - x_3^3/3 - (x_1^2 + x_2^2)(1 + ex_3) + fx_3x_1^3.$$

$$a = 0.95$$
; $b = 0.7$; $c = 0.6$; $d = 3.5$; $e = 0.25$; $f = 0.1$

Вариант 2. Аттрактор Арнеодо

$$\dot{x}_1 = x_2;$$

$$\dot{x}_2 = x_3;$$

$$\dot{x}_3 = -ax_1 - bx_2 - x_3 + cx_1^3$$

$$a = -5.5$$
; $b = 3.5$; $c = -1$

Вариант 3. Аттрактор Лотки-Вольтерра

$$\dot{x}_1 = x_1 - x_1 x_2 + c x_1^2 - a x_1^2 x_3;$$

$$\dot{x}_2 = -x_2 + x_1 x_2;$$

$$\dot{x}_3 = -bx_3 + ax_1^2 x_3$$

$$a = 2.9851$$
; $b = 3$; $c = 2$

Вариант 4. Аттрактор Чена

$$\dot{x}_1 = a(x_2 - x_1);$$

$$\dot{x}_2 = (c-a)x_1 - x_1x_3 + cx_2;$$

$$\dot{x}_3 = x_1 x_2 - b x_3$$
.

$$a = 35$$
; $b = 3$; $c = 28$

Вариант 5. Аттрактор Томаса (циклически симметричный)

$$\dot{x}_1 = -bx_1 + \sin x_2;$$

$$\dot{x}_2 = -bx_2 + \sin x_3;$$

$$\dot{x}_3 = -bx_3 + \sin x_1;$$

$$b = 0.19$$

Вариант 6. Аттрактор Халворсена

$$\dot{x}_1 = -bx_1 - 4x_2 - 4x_3 - x_2^2;$$

$$\dot{x}_2 = -bx_2 - 4x_3 - 4x_1 - x_3^2$$
;

$$\dot{x}_3 = -bx_3 - 4x_1 - 4x_2 - x_1^2$$

$$b = 1.4$$

$$\dot{x}_1 = x_2;$$
 $\dot{x}_2 = -x_1 + x_2 x_3;$
 $\dot{x}_3 = b - x_2^2$

$$b = 1.5$$

Вариант 8. Аттрактор Сакарья

$$\begin{split} \dot{x}_1 &= -x_1 + x_2 + x_2 x_3; \\ \dot{x}_2 &= -x_1 - x_2 + a x_1 x_3; \\ \dot{x}_3 &= x_3 - b x_1 x_2 \end{split}$$

$$a=0.4$$
; $b=0.3$

Задание

- 1. Написать программу решения системы уравнений в соответствии с вариантом.
- 2. Построить график фазовой траектории странного аттрактора
- 3. Определить характеристики хаотической системы в соответствии с указанием преподавателя.

Рекомендации по программированию

Для решения поставленных задач рекомендуется использовать следующие функции MATLAB:

- **ode45** функция решения системы дифференциальных уравнений с автоматическим выбором шага интегрирования.
- **interp1** функция интерполяции, приводящая произвольный диапазон значений функции к заданному (можно применить для преобразования диапазона к равномерной сетке).
 - **plot3** построение графика пространственной функции.