Customer Segmentation Using K-Means Clustering

1. UNDERSTANDING THE DATA:

- · Importing required libraries.
- · Getting the data and understanding it
- · Checking for null values.
- · Preparng data for clustering.

```
In [2]: import pandas as pd
          import numpy as np
          import seaborn as sns
          import matplotlib.pyplot as plt
 In [3]: df= pd.read csv("Mall Customers.csv")
In [11]: df.head(10)
Out[11]:
             CustomerID Gender Age Annual Income (k$) Spending Score (1-100)
          0
                       1
                            Male
                                   19
                                                                            39
          1
                      2
                            Male
                                   21
                                                      15
                                                                            81
          2
                                                                             6
                      3 Female
                                   20
                                                      16
          3
                         Female
                                   23
                                                      16
                                                                            77
          4
                                                      17
                          Female
                                                                            40
          5
                          Female
                                   22
                                                      17
                                                                            76
          6
                                   35
                                                      18
                                                                             6
                      7
                         Female
                          Female
                                   23
                                                      18
                                                                            94
          8
                      9
                            Male
                                   64
                                                      19
                                                                             3
                      10 Female
                                   30
                                                      19
                                                                            72
In [12]: df.shape
Out[12]: (200, 5)
```

=> We have 200 rows and 5 columns

```
In [13]: df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199

Data columns (total 5 columns):
Column Non-Null Count Dtype

0 CustomerID 200 non-null int64 1 Gender 200 non-null obiect Age 200 non-null int64 3 Annual Income (k\$) 200 non-null int64 Spending Score (1-100) 200 non-null int64

dtypes: int64(4), object(1)
memory usage: 7.9+ KB

=> The "df.info()" function is typically used in pandas.it provides a summary of the DataFrame, including the following information: 1. The number of rows and columns in the DataFrame. 2. The column names and their corresponding data types. 3. The number of non-null values in each column. 4. The memory usage of the DataFrame.

=> The "df.iloc" attribute is used in pandas, to access and retrieve specific rows and columns from a DataFrame using integer-based indexing. The iloc attribute stands for "integer location" and allows you to access DataFrame elements using their integer positions, similar to indexing in Python lists.

2.FINDING THE OPTIMAL NUMBER OF CLUSTERS: ELBOW METHOD

- Using K-means to iterate cluters and ploting the elbow plot.
- · Deciding the optimal number of clusters

```
In [8]: from sklearn.cluster import KMeans
```

=> WCSS stands for "Within-Cluster Sum of Squares".In k-means clustering, the goal is to minimize the WCSS value. It represents the sum of the squared Euclidean distances between each data point in a cluster and its centroid

```
In []: wcss = []
         for i in range(1, 11):
             kmeans = KMeans(n_clusters = i, max_iter = 50, n_init = 10, random_state = 0)
             kmeans.fit(X)
             wcss.append(kmeans.inertia_)
In [10]: wcss
Out[10]: [269981.28,
          181363.59595959593,
          106348.37306211122,
          73679.78903948836.
          44448.4554479337,
          37265.86520484346,
          30259.65720728547,
          25050.832307547527,
          21862.092672182895,
          19657.78360870395]
In [14]: plt.plot(range(1, 11), wcss)
         plt.title('The elbow method')
         plt.xlabel('Number of clusters')
         plt.ylabel('WCSS')
         plt.show()
```


=> The optimal number of clusters is equal to 5

3.TRAINING THE MODEL (USING UN SUPERVISED LEARNING ALGORITHM K-MEANS):

```
In [17]: kmeansmodel= KMeans(n_clusters=5, max_iter = 50, n_init = 10, random_state = 0)
p=kmeansmodel.fit_predict(x)
```

C:\Users\Client\anaconda3\lib\site-packages\sklearn\cluster_kmeans.py:1436: UserWarning: KMeans is known to hav
e a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by sett
ing the environment variable OMP_NUM_THREADS=1.
 warnings.warn(

4. PLOTTING THE CLUSTERS:

```
In [21]: plt.scatter(x[p==0,0], x[p==0,1], s=80, c="red", label="customer 1")
  plt.scatter(x[p==1,0], x[p==1,1], s=80, c="blue", label="customer 2")
  plt.scatter(x[p==2,0], x[p==2,1], s=80, c="yellow", label="customer 3")
  plt.scatter(x[p==3,0], x[p==3,1], s=80, c="pink", label="customer 4")
  plt.scatter(x[p==4,0], x[p==4,1], s=80, c="green", label="customer 5")
  plt.scatter(kmeans.cluster_centers_[:,0], kmeans.cluster_centers_[:,1], s=100, c='purple', label='centroids')
  plt.title("Clusters of customers")
  plt.xlabel("Annual income")
  plt.ylabel("Spending score")
  plt.legend()
  plt.show()
```


- The green cluster on the top left side represents customers with low annual income and high spending score. - The pink cluster on the bottom left side represents customers with low annual income and spending score. - The yellow cluster on the bottom right side represents customers with high annual income and spending score. - The blue cluster on the bottom left side represents customers with high annual income and spending score. - The red cluster in the center represents customers with an average annual income and spending score. Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js