PP Gruppe 8

January 28, 2014

- Frequenzfilter
- 2 Michelson-Interferometer
- Pitot
- 4 Doppelpendel
 - Theorie
 - Versuchsdurchführung

Frequenzfilter
•
oo Durchlassfilter

Sperrfilter

Frequenzfilter

Frequenzfilter

Versuchsaufbau

Versuchsaufbau

Abkühlen des Stabs

Temperaturmessung

Strahlführung

Befestigung der Messrohre auf dem Dach

Pitot 000

Aufbau von Manometer, Computer und Kamera im Fahrzeuginneren

Pitot

Bestimmung der Bewegungsgleichungen mit Hilfe des Lagrangeformalismus

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{q}_i} - \frac{\partial L}{q_i} = 0 \tag{1}$$

$$L = \sum_{i=1}^{2} E_{kin,i} - V_i = \sum_{i=1}^{2} \frac{m_i}{2} \cdot \vec{x}_i^2 - m_i \cdot g \cdot z_i$$
 (2)

$$\vec{x_1} = I_1 \cdot \begin{pmatrix} \sin \varphi_1 \\ -\cos \varphi_1 \end{pmatrix} \tag{3}$$

$$\vec{x_2} = \vec{x_1} + l_2 \cdot \begin{pmatrix} \sin \varphi_2 \\ -\cos \varphi_2 \end{pmatrix}$$
(4)
$$= \begin{pmatrix} l_1 \cdot \sin \varphi_1 + l_2 \cdot \sin \varphi_2 \\ -l_1 \cdot \cos \varphi_1 - l_2 \cdot \cos \varphi_2 \end{pmatrix}$$

Anwenden des Lagrange-Formalismus ergibt:

$$(m_1 + m_2)l_1\ddot{\varphi}_1 + m_2l_2\ddot{\varphi}_2\cos(\varphi_1 - \varphi_2) + m_2l_2\dot{\varphi}_2^2\sin(\varphi_1 - \varphi_2) + + (m_1 + m_2)g\sin(\varphi_1 - \varphi_2)$$
(5)

$$m_2 l_2 \ddot{\varphi}_2 + m_2 l_1 (\ddot{\varphi}_1 \cos(\varphi_1 - \varphi_2) - \dot{\varphi}_1^2 \sin(\varphi_1 - \varphi_2)) + m_2 g \sin \varphi_2 = 0$$
 (6)

