Dynamic connexity & parameterised complexity

Kernelization algorithms: from static to dynamic graphs

Pierre Meyer

Department of Computer Science Ecole Normale Superieure de Lyon

Soutenance de stage de fin de licence, 2017

Outline

- Generalising our results
 - Analysis: Interesting link-stream properties
 - Synthesis: Similar problems

Outline

- Generalising our results
 - Analysis: Interesting link-stream properties
 - Synthesis: Similar problems

Graph-Likeness - Time intervals

Neighbourhood Reconstructibility

definition

A graph-like class Π of link streams is said to be **neighbourhood reconstructible** if there are two constants c, d and an algorithm A such that:

- A takes as input a link stream L, an integer k, and a subset of V_I, V', of size not greater than d;
- A runs in polynomial time in size(L);
- A decides whether or not L can be transformed, using a total of at most k edition operations and less than c edition operations in the vicinity of any vertex in V', into a link stream $L' \in \Pi$ such that all links of L' have exactly one end in V'.

Heredity

Definition

A class of link streams is said to be *hereditary* if it is closed under vertex deletion.

Outline

- Generalising our results
 - Analysis: Interesting link-stream properties
 - Synthesis: Similar problems

Problem Denomination: First prefix

First prefix: Describes the maximum number of cliques of size > 2 allowed.

- d-
- *- (any)

Problem Denomination: Second prefix

Second prefix: Describes the maximum number of time intervals.

• If there is no second prefix: A single time interval, ie:

$$\exists b_c, e_c, \ \forall I \in E_L, \ I = (b_c, e_c, _)$$

• -BI- Two neighbouring intervals, ie:

$$\exists (t_{c,i})_{i \in [0,2]}, \ \forall I \in E_L, \ \exists i < j, \ I = (t_{c,i}, t_{c,j}, _)$$

-MULTI- Any number of neighbouring intervals

$$\exists k, \ \exists (t_{c,i})_{i \in [0,k]}, \ \forall I \in E_L, \ \exists i < j, \ I = (t_{c,i}, t_{c,j}, _)$$

9/12

Problem Denomination: Stem

Stem: Describes whether or not we count isolated vertices when counting cliques.

- -Sparse-Split On each interval, the link stream is a certain number of cliques plus isolated vertices
- -Cluster On each interval, the link stream is a set of disjoint cliques

Problem Classification

Category	Link Stream Class	Graph- -Like	Neighbourhood Reconstructible	Hereditary	Known Algorithm for the Editing Decision Problem
1	Sparse-Split	YES	YES	YES	QUADRATIC KERNEL (1)
	d-Sparse-Split d -Cluster	YES YES	YES YES	YES YES	QUADRATIC KERNEL (1) QUADRATIC KERNEL (1)
2	*-Sparse-Split *-Cluster	YES YES	UNLIKELY UNLIKELY	YES YES	? POSSIBLE FPT ⁽²⁾
3	d-BI-Sparse-Split d-BI-Cluster	NO NO	NA NA	YES YES	ONGOING RESEARCH (3) ?
	$\begin{array}{c} d\text{-MULTI-Sparse-Split} \\ d\text{-MULTI-Cluster} \end{array}$	NO NO	NA NA	YES YES	?
	*-BI-Sparse-Split *-BI-Cluster	NO NO	NA NA	YES YES	? ?
	*-MULTI-Sparse-Split *-MULTI-Cluster	NO NO	NA NA	YES YES	?

Summary

- The Sparse-Split Link Stream Editing problem is FPT
- Many variations thereupon are also FPT

