4. Results

Contents

Results	1
Simulation Study	1
Tables	4
Citations Search	6
Word count: 589	

Results

Simulation Study

Data Simulation

Data were successfully simulated as intended. A selection of representative visualisations are presented in Figure 1. Full details of testing used to validate model outputs from parameter inputs are given in Appendix ??. The F-statistic calculated from simulated instruments was >10, indicating that they were sufficiently strongly associated with exposure to meet the relevance assumption of instrumental variable (IV) analysis (Tables 1 and 2).

Analysis of Simulated Data

No Causal Effect

Across all cases where no causal effect was present (Table 1), the mean rate of reporting a causal effect (i.e. false positive rate) for MR-Hevo was 0.45% versus 3.6% for weighted median estimator (WME). Of the 20 combinations of scenarios and parameters, MR-Hevo exhibited a favourable false positive rate versus WME in 20 (100%). For both MR-Hevo and WME methods, causal report rate generally increased with an increasing proportion of invalid instruments, and also as assumption violations progressively presented greater data variability and bias across scenarios 1 to 3.

The mean causal effect estimate (mean reported 95% confidence interval (CI)s) across all cases was 0.041 (-0.12 to 0.21) for MR-Hevo and 0.034 (-0.12 to 0.19) for WME. The mean (range) standard error (SE) of causal effect estimates across all cases was 0.0012 (0 to 0.002) for MR-Hevo and 0.078 (0.056 to 0.099). For both MR-Hevo and WME methods, causal effect estimates, width of CIs and SE all tended to increase slightly both with an increasing proportion of invalid instruments, and as assumption violations progressively presented greater data variability and bias across scenarios 1 to 3.

Positive Causal Effect

Across all cases where positive causal effect was present (Table 2), the mean rate of reporting a causal effect (i.e. sensitivity) for MR-Hevo was 31% versus 28% for WME. Of the 24 combinations of scenarios and parameters, MR-Hevo exhibited a favourable sensitivity versus WME in 10 (42%). For both MR-Hevo and WME methods, causal report rate generally increased with an increasing proportion of invalid instruments, and also as assumption violations progressively presented greater data variability and bias across scenarios 1 to 3.

The mean causal effect estimate (mean reported 95% CIs) across all cases was 0.13 (-0.025 to 0.3) for MR-Hevo and 0.11 (-0.039 to 0.26) for WME. The mean (range) SE of causal effect estimates across all cases was 0.0013 (0.001 to 0.002) for MR-Hevo and 0.077 (0.056 to 0.1). For both MR-Hevo and WME methods, causal effect estimates, width of CIs and SE all tended to increase slightly both with an increasing proportion of invalid instruments, and as assumption violations progressively presented greater data variability and bias across scenarios 1 to 3.

Figure 1: Plots of a representative group of simulated datasets; all simulate genetic instruments from the same index from the same random seed. Left and right columns demonstrate null and positive true causal effects, respectively. The scenario and the proportion of invalid (i.e. pleiotropic) genetic instruments changes with each row. a) 10% of instruments invalid, Scenario 1: balanced pleiotropy introduces noise around the causal effect. b) 20% of instruments invalid, Scenario 2: directional pleiotropy biases in the direction of the invalid instruments. c) 30% of instruments invalid, Scenario 3: directional pleiotropy and InSIDE assumption violation strongly biases towards a positive effect estimate.

Tables

Table 1: Summary of 1,000 simulated Mendelian randomisation studies per combination of scenario and parameters, all with null causal effect

	Weighted Median							MR						
				N		Hevo								
Ν	Invalid IVs	F	R^2	R ² Mean Estimate Mean Causal Mean Estimate		stimate	Mean	Causal						
			(Mean	95% CI	Report	`	(Mean		Report					
				SE)		Rate	SE	()	95% CI	Rate				
			S	cenario 1: Balanced	pleiotropy, InSID	E assump	tion satisfied							
10,000	0%	11.7	2.8%	0.001 (0.078)	-0.15 to 0.15	0.2%	0.000	(0.001)	-0.12 to 0.12	0%				
10,000	10%	11.7	2.8%	0.026 (0.086)	-0.14 to 0.19	1.5%	0.032	(0.001)	-0.13 to 0.2	0%				
10,000	20%	11.7	2.8%	0.022 (0.092)	-0.16 to 0.2	2%	0.037	(0.002)	-0.17 to 0.25	0%				
10,000	30%	11.7	2.8%	0.014 (0.093)	-0.17 to 0.2	1.6%	0.022	(0.002)	-0.2 to 0.25	0%				
20,000	0%	26.2	3.2%	0.003 (0.056)	-0.11 to 0.11	0.3%	0.001	(0)	-0.09 to 0.09	0%				
20,000	10%	24.5	3%	0.022 (0.062)	-0.1 to 0.14	0.5%	0.019	(0.001)	-0.1 to 0.14	0.1%				
20,000	20%	24.5	3%	0.020 (0.067)	-0.11 to 0.15	1.3%	0.022	(0.001)	-0.13 to 0.18	0%				
20,000	30%	24.5	3%	0.012 (0.067)	-0.12 to 0.14	0.8%	0.014	(0.001)	-0.15 to 0.18	0%				
	Scenario 2: Directional pleiotropy, InSIDE assumption satisfied													
10,000	0%	11.7	2.8%	0.001 (0.078)	-0.15 to 0.15	0.3%	0.000	(0.001)	-0.12 to 0.12	0%				
10,000	10%	11.7	2.8%	0.020 (0.087)	-0.15 to 0.19	0.8%	0.039	(0.001)	-0.13 to 0.22	0%				
10,000	20%	11.7	2.8%	0.050 (0.093)	-0.13 to 0.23	4.1%	0.098	(0.002)	-0.11 to 0.33	1.5%				
10,000	30%	11.7	2.8%	0.066 (0.094)	-0.12 to 0.25	5.8%	0.126	(0.002)	-0.09 to 0.38	3.6%				
20,000	0%	24.5	3%	0.004 (0.056)	-0.11 to 0.11	0.2%	0.001	(0)	-0.08 to 0.09	0%				
20,000	10%	24.5	3%	0.016 (0.062)	-0.11 to 0.14	0.7%	0.021	(0.001)	-0.1 to 0.15	0.1%				
20,000	20%	24.5	3%	0.038 (0.067)	-0.09 to 0.17	2.2%	0.054	(0.001)	-0.1 to 0.22	0.5%				
20,000	30%	24.5	3%	0.050 (0.068)	-0.08 to 0.18	4.9%	0.076	(0.002)	-0.08 to 0.25	1.2%				
			Scei	nario 3: Directional p	leiotropy, InSIDI	E assumpti	on not satisfied							
10,000	0%	11.7	2.8%	0.001 (0.078)	-0.15 to 0.15	0.2%	0.000	(0.001)	-0.12 to 0.12	0%				
10,000	10%	13.7	3.3%	0.077 (0.087)	-0.09 to 0.25	8%	0.044	(0.001)	-0.12 to 0.21	0.1%				
10,000	20%	14.9	3.6%	0.144 (0.099)	-0.05 to 0.34	24.7%	0.107	(0.002)	-0.1 to 0.35	1.3%				
10,000	30%	12.8	3.1%	0.103 (0.097)	-0.09 to 0.29	11.9%	0.102	(0.002)	-0.11 to 0.36	0.6%				

CI: Confidence Interval, IV: Instumental Variable, SE: Standard Error. Null Causal Effect (β = 0)

Table 2: Summary of 1,000 simulated Mendelian randomisation studies per combination of scenario and parameters, all with positive causal effect

				W		MR Hevo					
Ν	Invalid IVs	F	R^2	Mean Estimate	Mean	Causal	Mean Es	Mean Estimate		Causal	
				(Mean SE)	95% CI	Report (I		an)	95% CI	Report Rate	
			S	cenario 1: Balanced	pleiotropy, InSI	E assum	otion satisfied				
10,000	0%	11.7	2.8%	0.070 (0.079)	-0.08 to 0.22	4.9%	0.085	(0.001)	-0.04 to 0.21	6.2%	
10,000	10%	11.7	2.8%	0.094 (0.087)	-0.08 to 0.26	11%	0.118	(0.001)	-0.05 to 0.29	12.6%	
10,000	20%	11.7	2.8%	0.089 (0.093)	-0.09 to 0.27	10.3%	0.124	(0.002)	-0.08 to 0.34	5.6%	
10,000	30%	11.7	2.8%	0.081 (0.094)	-0.1 to 0.27	8.7%	0.108	(0.002)	-0.12 to 0.34	1.6%	
20,000	0%	24.5	3%	0.080 (0.056)	-0.03 to 0.19	21.3%	0.089	(0.001)	0 to 0.18	62.2%	
20,000	10%	24.5	3%	0.098 (0.063)	-0.03 to 0.22	27.8%	0.108	(0.001)	-0.01 to 0.23	29.9%	
20,000	20%	24.5	3%	0.095 (0.067)	-0.04 to 0.23	22.6%	0.113	(0.001)	-0.04 to 0.27	15%	
20,000	30%	24.5	3%	0.088 (0.068)	-0.05 to 0.22	17.7%	0.104	(0.001)	-0.06 to 0.27	5.4%	
Scenario 2: Directional pleiotropy, InSIDE assumption satisfied											
10,000	0%	11.7	2.8%	0.070 (0.079)	-0.08 to 0.22	5.3%	0.085	(0.001)	-0.04 to 0.21	5.9%	
10,000	10%	11.7	2.8%	0.089 (0.088)	-0.08 to 0.26	9%	0.124	(0.001)	-0.05 to 0.31	11.9%	
10,000	20%	11.7	2.8%	0.119 (0.094)	-0.07 to 0.3	17.7%	0.187	(0.002)	-0.02 to 0.43	32.3%	
10,000	30%	11.7	2.8%	0.133 (0.095)	-0.05 to 0.32	23.3%	0.216	(0.002)	0 to 0.47	46.1%	
20,000	0%	24.5	3%	0.080 (0.057)	-0.03 to 0.19	21.1%	0.089	(0.001)	0 to 0.18	62.7%	
20,000	10%	24.5	3%	0.093 (0.063)	-0.03 to 0.22	24%	0.109	(0.001)	-0.01 to 0.24	29.1%	
20,000	20%	24.5	3%	0.116 (0.068)	-0.02 to 0.25	35.3%	0.146	(0.001)	-0.01 to 0.31	41.2%	
20,000	30%	24.5	3%	0.127 (0.069)	-0.01 to 0.26	40.7%	0.168	(0.002)	0.01 to 0.35	56.2%	
			Sce	nario 3: Directional p	leiotropy, InSIDI	E assumpt	tion not satisfied				
10,000	0%	11.7	2.8%	0.070 (0.079)	-0.08 to 0.22	5.2%	0.085	(0.001)	-0.04 to 0.21	5.7%	
10,000	10%	13.7	3.3%	0.150 (0.089)	-0.02 to 0.32	35%	0.137	(0.001)	-0.03 to 0.31	25.1%	
10,000	20%	14.9	3.6%	0.213 (0.1)	0.02 to 0.41	55.8%	0.202	(0.002)	-0.01 to 0.46	45.2%	
10,000	30%	12.8	3.1%	0.169 (0.099)	-0.03 to 0.36	37.1%	0.191	(0.002)	-0.03 to 0.46	29.1%	
20,000	0%	24.5	3%	0.080 (0.057)	-0.03 to 0.19	21.5%	0.089	(0.001)	0 to 0.18	62.8%	
20,000	10%	30.4	3.7%	0.144 (0.064)	0.02 to 0.27	66%	0.125	(0.001)	0.01 to 0.25	63%	
20,000	20%	32.4	3.9%	0.189 (0.073)	0.05 to 0.33	81.5%	0.154	(0.001)	0.01 to 0.32	58.6%	
20,000	30%	31.1	3.8%	0.153 (0.071)	0.01 to 0.29	60.3%	0.146	(0.001)	-0.01 to 0.32	41%	

CI: Confidence Interval, IV: Instumental Variable, SE: Standard Error. Null Causal Effect (β = 0)

Citations Search

A total of 110 abstracts and 54 full texts were screened to identify the 10 studies $^{1-10}$ listed in Table 3; the screening flow diagram is presented in Figure 2.

Figure 2: Flow diagram of selection for sample of ten highly-cited two-sample Mendelian randomisation articles reporting a weighted median estimate of casual effect

Table 3: Summary of ten highly-cited two-sample Mendelian randomisation articles reporting a weighted median estimate of casual effect $\,$

					Participants			Causal		
Author	Citations	Association	N		N			Effect	Causality Reported	p-value
	Citations	Association	Instruments	Exposure	Outcome	Estimated Overlap	Measure	Estimate	Caasany Reported	p value
Budu-Aggrey et al, 2019	182	BMI vs Psoriasis	97	339,224	12,559	0%	OR	1.06 (1 to 1.12)	No	-
Carreras-Torres et al, 2017	200	Height vs Pancreatic Cancer	558	253,288	15,002	19%	OR	1.14 (1 to 1.29)	No	0.05
Carter et al, 2019	199	Education vs Coronary Disease	1,267	766,345	184,305	0%	OR	0.62 (0.57 to 0.67)	Yes	<0.001
Choi et al, 2019	492	Activity vs Depression	24	377,234	143,265	0%	OR	1.49 (0.94 to 2.36)	No	0.08
Clift et al, 2022	129	Smoking Initiation vs COVID-19 Infection	378	1,232,091	281,105	36%	OR	1.53 (1.02 to 2.28)	Yes	0.04
Ligthart et al, 2018	298	CRP vs Schizophrenia	52	204,402	82,315	0%	OR	0.89 (0.81 to 0.96)	Yes	0.004
Mokry et al, 2016	199	BMI vs Multiple Sclerosis	70	322,105	38,589	2.5%	OR	1.26 (0.98 to 1.62)	No	0.08
Pasman et al, 2018	328	Schizophrenia vs Cannabis Use	102	150,064	184,765	0%	Beta	0.163 (0.067 to 0.259)	Yes	0.001
Xie et al, 2023	138	T2DM vs NAFLD	449	441,016	218,792	0%	OR	1.61 (1.09 to 2.38)	Yes	<0.001
Xu et al, 2022	183	Coeliac vs Gut Bifidobacterium	105	15,283	24,269	63%	OR	0.998 (0.99 to 1.005)	No	0.56

A summary of the re-analysis results is presented in Table 4; estimates are presented both as β regression coefficients and CR to aid comparison across studies.

A number of WME estimates generated through re-analysis matched the originally reported estimates poorly: Carrera-Torres et al [carreras-torres_role_2017], Ligthart et al 3 , Mokry et al 5 and Xie et al 9 . Details of instruments used

Table 4: Re-analysis of ten highly-cited two-sample Mendelian randomisation articles reporting a weighted median estimate of casual effect, comparing results of both WME and MR-Hevo causal effect estimation methods

					ghted		MR					
Author					Ме	dian		Hevo				
	Exposure	Outcome	SNPs	β	SE	OR	Causality Reported	β	SE	OR	Causality Reported	
Budu-Aggrey et al	ВМІ	Psoriasis	97	0 (0-0)	0.137	1 (1-1)	No	0.08 (-0.16-0.34)	0.002	1.09 (0.86-1.4)	No	
Carreras- Torres et al	Height	Pancreatic Cancer	558	0 (-1.78-1.78)	0.065	1 (0.17-5.93)	No	-0.5 (-1.48-1.69)	0.908	0.61 (0.23-5.41)	No	
Carter et al	Years of Education	Coronary Artery Disease	1,266	-0.46 (-0.46–0.46)	0.042	0.63 (0.63-0.63)	Yes	-0.48 (-0.54–0.42)	0.000	0.62 (0.58-0.66)	Yes	
Choi et al	Self-Reported Physical Activity	Major Depressive Disorder	24	0.4 (0.4-0.41)	0.240	1.5 (1.49-1.51)	Yes	0.28 (-0.11-0.67)	0.003	1.32 (0.89-1.96)	No	
Clift et al	Genetically Determined Smoking Initiation	COVID-19 Infection	378	0.43 (0.42-0.43)	0.204	1.53 (1.53-1.54)	Yes	0.37 (0.1-0.64)	0.001	1.45 (1.1-1.91)	Yes	
Ligthart et al	Genetically Determined CRP	Schizophrenia	52	-0.49 (-1.26-0.28)	0.257	0.62 (0.28-1.33)	No	0.8 (0.21-1.63)	0.393	2.22 (1.23-5.12)	Yes	
Mokry et al	ВМІ	Multiple Sclerosis	70	0.32 (0.32-0.32)	0.132	1.38 (1.37-1.38)	Yes	0.31 (0.14-0.48)	0.001	1.37 (1.16-1.61)	Yes	
Pasman et al	Liability to Schizophrenia	Cannabis Use	109	0.16 (0.16-0.16)	0.048	1.18 (1.17-1.18)	Yes	0.16 (0.07-0.26)	0.001	1.18 (1.08-1.29)	Yes	
Xie et al	T2DM	NAFLD	449	0.2 (0.2-0.2)	0.216	1.22 (1.22-1.23)	Yes	0.18 (-0.08-0.44)	0.002	1.2 (0.92-1.56)	No	
Xu et al	Coeliac Disease	Gut Bifidobacterium	105	0 (0-0)	0.003	1 (1-1)	Yes	0 (0-0.01)	0.000	1 (1-1.01)	No	

 β and OR presented as: estimate (95% CI).

 $[\]beta$: causal effect estimate, CI: Confidence Interval, OR: Odds Ratio, SE: Standard Error.

Table 4 $\operatorname{reference}^{2,11}$

CI confidence interval
CLT central limit theorem
IV instrumental variable
InSIDE Instrument Strength Independent of Direct Effect
MR Mendelian randomisation
RCT randomised-controlled trial
SD standard deviation
SE standard error
SNP single nucleotide polymorphism
UMREG Usher Masters Research Ethics Group
WME weighted median estimator

- 1. Choi KW, Chen CY, Stein MB, Klimentidis YC, Wang MJ, Koenen KC, et al. Assessment of Bidirectional Relationships Between Physical Activity and Depression Among Adults: A 2-Sample Mendelian Randomization Study. JAMA Psychiatry [Internet]. 2019 Apr [cited 2025 Apr 27];76(4):399–408. Available from: https://doi.org/10.1001/jamapsychiatry.2018.4175
- 2. Pasman JA, Verweij KJH, Gerring Z, Stringer S, Sanchez-Roige S, Treur JL, et al. GWAS of lifetime cannabis use reveals new risk loci, genetic overlap with psychiatric traits, and a causal effect of schizophrenia liability. Nature Neuroscience [Internet]. 2018 Sep [cited 2025 May 11];21(9):1161–70. Available from: https://www.nature.com/articles/s41593-018-0206-1
- 3. Lightart S, Vaez A, Võsa U, Stathopoulou MG, Vries PS de, Prins BP, et al. Genome Analyses of >200,000 Individuals Identify 58 Loci for Chronic Inflammation and Highlight Pathways that Link Inflammation and Complex Disorders. The American Journal of Human Genetics [Internet]. 2018 Nov [cited 2025 May 27];103(5):691–706. Available from: https://www.cell.com/ajhg/abstract/S0002-9297(18)30320-3
- 4. Carter AR, Gill D, Davies NM, Taylor AE, Tillmann T, Vaucher J, et al. Understanding the consequences of education inequality on cardiovascular disease: Mendelian randomisation study. BMJ [Internet]. 2019 May [cited 2025 May 27];365:11855. Available from: https://www.bmj.com/content/365/bmj.11855
- 5. Mokry LE, Ross S, Timpson NJ, Sawcer S, Davey Smith G, Richards JB. Obesity and Multiple Sclerosis: A Mendelian Randomization Study. Muraro PA, editor. PLOS Medicine [Internet]. 2016 Jun [cited 2025 May 27];13(6):e1002053. Available from: https://dx.plos.org/10.1371/journal.pmed. 1002053
- 6. Carreras-Torres R, Johansson M, Gaborieau V, Haycock PC, Wade KH, Relton CL, et al. The Role of Obesity, Type 2 Diabetes, and Metabolic Factors in Pancreatic Cancer: A Mendelian Randomization Study. JNCI: Journal of the National Cancer Institute [Internet]. 2017 Sep [cited 2025 May 27];109(9):djx012. Available from: https://doi.org/10.1093/jnci/djx012
- 7. Xu Q, Ni JJ, Han BX, Yan SS, Wei XT, Feng GJ, et al. Causal Relationship Between Gut Microbiota and Autoimmune Diseases: A Two-Sample Mendelian Randomization Study. Frontiers in Immunology [Internet]. 2022 Jan [cited 2025 May 28];12. Available from: https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2021.746998/full

- 8. Budu-Aggrey A, Brumpton B, Tyrrell J, Watkins S, Modalsli EH, Celis-Morales C, et al. Evidence of a causal relationship between body mass index and psoriasis: A mendelian randomization study. PLOS Medicine [Internet]. 2019 Jan [cited 2025 Jun 2];16(1):e1002739. Available from: https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1002739
- 9. Xie J, Huang H, Liu Z, Li Y, Yu C, Xu L, et al. The associations between modifiable risk factors and nonalcoholic fatty liver disease: A comprehensive Mendelian randomization study. Hepatology [Internet]. 2023 Mar [cited 2025 Jun 3];77(3):949. Available from: https://journals.lww.com/hep/pages/articleviewer.aspx?year=2023&issue=03000&article=00022&type=Fulltext#T1
- 10. Clift AK, Ende A von, Tan PS, Sallis HM, Lindson N, Coupland CAC, et al. Smoking and COVID-19 outcomes: An observational and Mendelian randomisation study using the UK Biobank cohort. Thorax [Internet]. 2022 Jan [cited 2025 Jun 3];77(1):65–73. Available from: https://thorax.bmj.com/content/77/1/65
- 11. Bowden J, Smith GD, Haycock PC, Burgess S. Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator. Genetic Epidemiology [Internet]. 2016 Apr [cited 2024 Oct 22];40(4):304. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC4849733/