Introduction to Quantum Information Processing

CO481 CS467 PHYS467

Michele Mosca mmosca@iqc.uwaterloo.ca

Tuesdays and Thursdays 10am-11:15am

Overview

Lecture 9

Michele Mosca (borrowing some overheads from Richard Cleve)

- Introduction to quantum algorithms
- Parity problem and Deutsch's algorithm
- Constant vs. balanced problem
- Computing H⊗H⊗ ... ⊗H
- Simon's problem

- Introduction to quantum algorithms
- Parity problem and Deutsch's algorithm
- Constant vs. balanced problem
- Computing H⊗H⊗ ... ⊗H
- Simon's problem

A classical randomized algorithm

- Several computational paths leading to the same outcome.
- Add up the probabilities.

$$\Pr(00) = \sum_{j} p_{0,j} q_{j,0}$$

A quantum algorithm

$$\Pr(00) = \left| \sum_{j} a_{0,j} b_{j,0} \right|^{2}$$

What if we measure along the way?

If we look at the state of the system at each step, it behaves like a classical randomized algorithm.

$$\Pr(00) = \sum_{j} |a_{0,j}|^{2} |b_{j,0}|^{2}$$
$$= \sum_{j} |a_{0,j}b_{j,0}|^{2}$$

Decoherence

- A quantum system that is continually measured (or "leaks" information to an external system) will behave like a classical randomized system.
- Partial measurements will give a probability distribution somewhere in between the two extremes.
- Error-correcting codes will allow a quantum system interacting with the environment to maintain "coherence".

How do quantum algorithms work?

Given a polynomial-time classical algorithm for $f:\{0,1\}^n \to T$, it is straightforward to construct a quantum algorithm that creates the state

$$\frac{1}{\sqrt{2^n}} \sum_{x} |x\rangle |f(x)\rangle$$

at the cost of about **one** evaluation of f

Is this exponentially many computations at polynomial cost?

No! — the most straightforward way of extracting information from the state yields just (x, f(x)) for a random $x \in \{0,1\}^n$

But we can make some interesting *tradeoffs*:

instead of learning about any (x, f(x)) point, one can learn something about a **global property** of f

Quantum algorithms

- Quantum Algorithms should exploit quantum parallelism and quantum interference.
- This is necessary, but not sufficient, in order to outperform a classical probabilistic algorithm. E.g. at some point in the execution of the algorithm, the state of the system should have a substantial amount of entanglement (assuming we are in the usual model of unitary operations on pure states).

Query scenario

Input: a function *f*, given as a black box (a.k.a. oracle)

Goal: determine some information about f making as few queries to f as possible (of course, other operations are allowed – but we do not count them)

Example: polynomial interpolation

Let: $f(x) = c_0 + c_1 x + c_2 x^2 + ... + c_d x^d$

Goal: determine c_0 , c_1 , c_2 , ..., c_d

Question: How many classical *f*-queries does one require for this?

- Introduction to quantum algorithms
- Parity problem and Deutsch's algorithm
- Constant vs. balanced problem
- Computing H⊗H⊗ ... ⊗H
- Simon's problem

Deutsch's problem

Let $f: \{0,1\} \to \{0,1\}$

There are *four* possibilities:

$\boldsymbol{\mathcal{X}}$	$f_1(x)$	\mathcal{X}	$f_2(x)$	\mathcal{X}	$f_3(x)$	\mathcal{X}	$f_4(x)$
0	0	0	1		0	0	1
1	0	1	1	1	1	1	0

Goal: determine whether or not f(0) = f(1) (i.e. $f(0) \oplus f(1)$)

Any classical method requires *two* queries

What about a quantum method?

Unitary black box for f

A classical algorithm: (still requires 2 queries)

2 queries + 1 auxiliary operation

Quantum algorithm (1)

Is there some way to construct

$$\frac{(-1)^{f(0)}}{\sqrt{2}} |0\rangle + \frac{(-1)^{f(1)}}{\sqrt{2}} |1\rangle$$

?

$$= (-1)^{f(0)} \left(\frac{1}{\sqrt{2}} |0\rangle + \frac{(-1)^{f(0)} \oplus f(1)}{\sqrt{2}} |1\rangle \right)$$

Why would I want that?

Note how we can use U_f to induce a **phase shift** of $(-1)^{f(x)}$ to $|x\rangle$

$$|\mathcal{X}\rangle = U_f - (-1)^{f(\mathcal{X})} |\mathcal{X}\rangle$$
 $|0\rangle - |1\rangle = |0\rangle - |1\rangle$

Quantum algorithm for Deutsch

How does this algorithm work?

Each of the three *H* operations can be seen as playing a different role ...

Quantum algorithm (1)

1. Creates the state $|0\rangle - |1\rangle$, which is an eigenvector of

$$\begin{cases} \textbf{NOT} \text{ with eigenvalue } -1 \\ \textbf{\textit{I}} \quad \text{with eigenvalue } +1 \end{cases}$$

This causes f to induce a **phase shift** of $(-1)^{f(x)}$ to $|x\rangle$

$$|\mathcal{X}\rangle = U_f - (-1)^{f(\mathcal{X})} |\mathcal{X}\rangle$$
 $|0\rangle - |1\rangle = |0\rangle - |1\rangle$

Quantum algorithm (2)

2. Causes f to be queried **in superposition** (at $|0\rangle + |1\rangle$)

Quantum algorithm (3)

3. Distinguishes between $\pm (|0\rangle + |1\rangle)$ and $\pm (|0\rangle - |1\rangle)$

$$\pm (|0\rangle + |1\rangle) \qquad \longleftrightarrow \qquad \pm |0\rangle$$

$$\pm (|0\rangle - |1\rangle) \qquad \longleftrightarrow \qquad \pm |1\rangle$$

Summary of Deutsch's algorithm

Makes only one query, whereas two are needed classically

constructs eigenvector so *f*-queries induce phases: $|x\rangle \rightarrow (-1)^{f(x)}|x\rangle$

- Introduction to quantum algorithms
- Parity problem and Deutsch's algorithm
- Constant vs. balanced problem
- Computing H⊗H⊗ ... ⊗H
- Simon's problem

Constant vs. balanced

Let $f: \{0,1\}^n \rightarrow \{0,1\}$ be either constant or balanced, where

- **constant** means f(x) = 0 for all x, or f(x) = 1 for all x
- **balanced** means $\Sigma_x f(x) = 2^{n-1}$

Goal: determine whether f is constant or balanced

How many queries are there needed classically?

$$2^{n-1}+1$$

Example: if f(0000) = f(0001) = f(0010) = ... = f(0111) = 0 then it still could be either

Quantumly?

just 1 query suffices!

[Deutsch & Jozsa, 1992]

Quantum algorithm

Constant case: $|\psi\rangle = \pm \sum_{x} |x\rangle$ Why?

Balanced case: $|\psi\rangle$ is *orthogonal* to $\pm \sum_{\chi} |\chi\rangle$ *Why?*

How to distinguish between the cases? What is $H^{\otimes n}|\psi
angle$?

Constant case: $H^{\otimes n}|\psi\rangle = \pm |00...0\rangle$

Balanced case: $H^{\otimes n}\ket{\psi}$ is orthogonal to $\ket{0...00}$

Last step of the algorithm: if the measured result is 000 then output "constant", otherwise output "balanced"

Probabilistic *classical* algorithm solving constant vs. balanced

But here's a classical procedure that makes only **2** queries and performs fairly well probabilistically:

- 1. pick $x_1, x_2 \in \{0,1\}^n$ randomly
- 2. **if** $f(x_1) \neq f(x_2)$ **then** output balanced **else** output constant

What happens if f is constant? The algorithm always succeeds

What happens if f is balanced? Succeeds with probability $\frac{1}{2}$

Sampling k times gives one-sided error probability that decays exponentially in k.

Therefore, for large n, $<< 2^n$ queries are likely sufficient.

One class of "balanced" or constant functions: $f(x) = a \cdot x$ for $a \in \{0,1\}^n$; Bernstein-Vazirani algorithm finds a.

- Introduction to quantum algorithms
- Parity problem and Deutsch's algorithm
- Constant vs. balanced problem
- Computing H⊗H⊗ ... ⊗H
- Simon's problem

About $H \otimes H \otimes ... \otimes H = H^{\otimes n}$

Theorem: for
$$x \in \{0,1\}^n$$
, $H^{\otimes n}|x\rangle = \frac{1}{2^{n/2}} \sum_{y \in \{0,1\}^n} (-1)^{x \cdot y} |y\rangle$

where $x \cdot y = x_1 y_1 \oplus ... \oplus x_n y_n$

Example:
$$H \otimes H = \frac{1}{2} \begin{bmatrix} +1 & +1 & +1 & +1 \\ +1 & -1 & +1 & -1 \\ +1 & +1 & -1 & -1 \\ +1 & -1 & -1 & +1 \end{bmatrix}$$

Proof: For all $x \in \{0,1\}$, $H|x\rangle = |0\rangle + (-1)^x |1\rangle = \Sigma_y (-1)^{xy} |y\rangle$

Thus,
$$H^{\otimes n}|x_1...x_n\rangle = (\Sigma_{y_1}(-1)^{x_1y_1}|y_1\rangle)...(\Sigma_{y_n}(-1)^{x_ny_n}|y_n\rangle)$$

$$= \Sigma_{y} (-1)^{x_1y_1 \oplus \dots \oplus x_ny_n} | y_1 \dots y_n \rangle$$

- Introduction to quantum algorithms
- Parity problem and Deutsch's algorithm
- Constant vs. balanced problem
- Computing H⊗H⊗ ... ⊗H
- Simon's problem

Quantum vs. classical separations

Black-box problem	Quantum	Classical
Deutsch's problem	1 (query)	2 (queries)
constant vs. balanced	1	$\frac{1}{2}2^{n}+1$
Bernstein-Vazirani problem	1	n
Simon's problem	O(n)	$\theta(2^{n/2})$

(only for exact)

(probabilistic)

Simon's problem

Let $f: \{0,1\}^n \to \{0,1\}^n$ have the property that there exists an $s \in \{0,1\}^n$ such that f(x) = f(y) iff $x \oplus y = s$ or x = y

Example:

\mathcal{X}	f(x)
000	011
001	101
010	000
011	010
100	101
101	011
110	010
111	000

What is s is this case? s = 101

A classical algorithm for Simon

Search for a *collision*, an $x \neq y$ such that f(x) = f(y)

- 1. Choose $x_1, x_2, ..., x_k \in \{0,1\}^n$ uniformly randomly (independently)
- 2. For all $i \neq j$, if $f(x_i) = f(x_j)$ then output $x_i \oplus x_j$ and halt

A hard case is where s is chosen randomly from $\{0,1\}^n - \{0^n\}$ and then the "table" for f is filled out randomly subject to the structure implied by s

Question: How big does k have to be for the probability of a collision to be a constant, such as $\frac{3}{4}$?

Answer: order $2^{n/2}$

Classical lower bound

Theorem: *any* classical algorithm solving Simon's problem must make $\Omega(2^{n/2})$ queries

Proof is omitted here

Note: the performance analysis of the previous algorithm does *not* imply the theorem

... how can we know that there isn't a *different* algorithm that performs better?

A quantum algorithm for Simon (1)

Queries:

Proposed start of quantum algorithm: query all values of f in superposition

What is the output state of this circuit?

A quantum algorithm for Simon (2)

Answer: the output state is
$$\sum_{x \in \{0,1\}^n} |x\rangle |f(x)\rangle$$

Let $T \subseteq \{0,1\}^n$ be such that **one** element from each matched pair is in T (assume $s \neq 00...0$)

Example: could take $T = \{000, 001, 011, 111\}$

Then the output state can be written as:

$$\sum_{x \in T} |x\rangle |f(x)\rangle + |x \oplus s\rangle |f(x \oplus s)\rangle$$

$$= \sum_{x \in T} (|x\rangle + |x \oplus s\rangle) |f(x)\rangle$$

$\boldsymbol{\mathcal{X}}$	f(x)
000	011
001	101
010	000
011	010
100	101
101	011
110	010
111	000

A quantum algorithm for Simon (3)

Measuring the second register yields $|x\rangle + |x \oplus s\rangle$ in the first register, for a random $x \in T$

How can we use this to obtain **some** information about s?

Try applying $H^{\otimes n}$ to the state, yielding:

$$\sum_{y \in \{0,1\}^n} (-1)^{x \bullet y} |y\rangle + \sum_{y \in \{0,1\}^n} (-1)^{(x \oplus s) \bullet y} |y\rangle$$

$$= \sum_{\mathbf{y} \in \{0,1\}^n} (-1)^{x \bullet y} \left(1 + (-1)^{s \bullet y} \right) | \mathbf{y} \rangle$$

Measuring this state yields y with prob. $\begin{cases} (1/2)^{n-1} & \text{if } s \cdot y = 0 \\ 0 & \text{if } s \cdot y \neq 0 \end{cases}$

A quantum algorithm for Simon (4)

Executing this algorithm k = O(n) times yields random $y_1, y_2, ..., y_k \in \{0,1\}^n$ such that $s \cdot y_1 = s \cdot y_2 = ... = s \cdot y_n = 0$

How does this help?

This is a system of k linear equations:

$$\begin{bmatrix} y_{11} & y_{12} & \dots & y_{1n} \\ y_{21} & y_{22} & \dots & y_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ y_{k1} & y_{k2} & \dots & y_{kn} \end{bmatrix} \begin{bmatrix} s_1 \\ s_2 \\ \vdots \\ s_n \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

With high probability, there is a unique non-zero solution that is s (which can be efficiently found by linear algebra)

Conclusion of Simon's algorithm

- Any classical algorithm has to query the black box $\Omega(2^{n/2})$ times, even to succeed with probability $\frac{3}{4}$.
- There is a quantum algorithm that queries the black box only O(n) times, performs only $O(n^3)$ auxiliary operations (for the Hadamards, measurements, and linear algebra), and succeeds with probability $\frac{3}{4}$.