Assignment 9

Given:

$$B(R) = 1000$$
 $B(S) = 750$ $B(W) = 500$ $B(U) = 250$

Formula for cost = Cost (R \bowtie S) = 5*(T(R) + T(S))

Therefore, no of blocks in R is T(R) = 4000/4 = 1000.

Using this formula, we will be calculating the costs of each of these queries:

- 1. Cost of R S = 5B(R) + 5B(S) = 5(1000) + 5(750) = 8750
- 2. Cost of R W = 5B(R) + 5B(W) = 5(1000) + 5(500) = 7500
- 3. Cost of R U = 5B(R) + 5B(U) = 5(1000) + 5(250) = 6250
- 4. Cost of S W = 5B(S) + 5B(W) = 5(750) + 5(500) = 6250
- 5. Cost of S U = Cartesian Product
- 6. Cost of U W = 5B(U) + 5B(W) = 5(250) + 5(500) = 3750

The size of a join $R \bowtie S$ is given by:

$\underline{\mathsf{T}(\mathsf{R}\bowtie\mathsf{AS})=\mathsf{T}(\mathsf{R})\ast\mathsf{T}(\mathsf{S})\,/\,\mathsf{max}\{\mathsf{V}(\mathsf{R},\mathsf{A}),\,\mathsf{V}(\mathsf{S},\mathsf{A})\}}$

And

$\underline{\mathsf{T}(\mathsf{R}\bowtie_{\mathsf{A},\mathsf{B}}\mathsf{S})}=\underline{\mathsf{T}(\mathsf{R})\ast_{\mathsf{T}}(\mathsf{S})\ /\ \mathsf{max}(\mathsf{V}(\mathsf{R},\mathsf{A}),\,\mathsf{V}(\mathsf{S},\mathsf{A}))\mathsf{max}(\mathsf{V}(\mathsf{R},\mathsf{B}),\mathsf{V}(\mathsf{S},\mathsf{B}))$

where T(R) is the number of tuples in relation R, T(S) is the number of tuples in relation S, V(R,A) is the number of distinct values of attribute A in relation R, and V(S,A) is the number of distinct values of attribute A in relation S.

Let's create the Table:

Query	Size (Block)	<u>Cost</u>	<u>Plan</u>
RS	50	8750	S ⋈ R
RW	10000	7500	W⋈R
RU	10000	6250	U⋈R
SW	15000	6250	W⋈S
SU	750000	Cartesian Product	U⋈S
WU	5000	3750	U⋈W

3 Table Combinations are as below:

Plan type	Query	Size (Block)	<u>Cost</u>	<u>Plan</u>
	RS	50	8750	S⋈R
	RW	10000	7500	W⋈R
	RU	10000	6250	U⋈R
	SW	15000	6250	W⋈S
	SU	750000	Cartesian Product	U⋈S
2-way plan	WU	5000	3750	U⋈W
	RSW			(RS)W
	RSU			(RS)U
	RWU			(RW)U
3-way plan	SWU			(SW)U

Cost Calculation:

1. Combination RSW

Join (RS)W – Since R, S, and W share a common B column, we consider the join of R and S over B:

(RS)W = Expense of (R S) + Expense of (R S) W)

= 8750+ (5 (Total(R S)/4) + 5 B(W))

= 8750 + 3500 = **11350**

2. Combination RSU

Join (RS)U = Expense of (R S) + Expense of ((R S) U)

$$= 8750 + (5 (Total(R S)/4) + 5 B(U))$$

$$= 8750 + (5(200/4) + 5(250))$$

3. Combination RWU

Join (UW)R = Expense of (UW) + Expense of((UW) R)

$$= 3750 + (5(20000/4) + 5(1000)) = 33750$$

4. Combination SWU

Join (SU)W = Expense of (SU) + Expense of (SU) W)

Determining the results of each query:

1. For RWS:

(RS)W: This can be computed as [T(R S) * T(W)] / max(V(R, B), V(S, B), V(W, B)), which results in (200 * 2000) / 200, leading to **4000**.

2. For RSU:

(RS)U: The output is computed as [T(R S) * T(U)] / max(V(R, A), V(U, A)), which equals (200 * 1000) / 100, yielding **2000**.

3. For RWU:

(RW)U: This is computed as [(T(R W) * T(U)) / max(V(R, A), V(U, A))] * max(V(W, D), V(U, D)). Substituting values, which equals **8000**.

4. For SWU:

(SW)U: The output is computed as [T(S W) * T(U)] / max(V(W, D), V(U, D)), which equals (60000 * 1000) / 100, yielding **600000**.

Filling the information in the table

Plan type	Query	Output Size	Cost	<u>Plan</u>
	RS	50	8750	S⋈R
	RW	10000	7500	W⋈R
	RU	10000	6250	U⋈R
	SW	15000	6250	W⋈S
	SU	750000	Cartesian product	UMS
2-way plans	WU	5000	3750	U⋈W
	RSW	4000	11350	$W\bowtie (S\bowtie R)$
	RSU	2000	10250	$U\bowtie (S\bowtie R)$
	RWU	8000	33750	$R\bowtie (U\bowtie W)$
3-way plans	SWU	600000	32500	S⋈(U⋈W)

For a 4-way plan, we consider each of the 3-table query and consider the plan which has the lowest cost and join it with the 4^{th} remaining table

Consider RSW, (RS)W plan as it has the lowest cost. Now we join this with the leftover table U So the join will be R,S,U,W

Cost of (((RS)W)U)= <u>15250</u>

Plan type	Query	<u>Output Size</u>	Cost	<u>Plan</u>
	RS	50	8750	S⋈R
	RW	10000	7500	W⋈R
	RU	10000	6250	U⋈R
	SW	15000	6250	W⋈S
	SU	750000	Cartesian product	U⋈S
2-way plans	WU	5000	3750	U⋈W
	RSW	4000	11350	$W \bowtie (S \bowtie R)$
	RSU	2000	10250	$U\bowtie (S\bowtie R)$
	RWU	8000	33750	$R \bowtie (U \bowtie W)$
3-way plans	SWU	600000	32500	S⋈(U⋈W)
4-way plans	RSWU	40000	15250	$W \bowtie (U \bowtie (S \bowtie R))$

Therefore, the final and the fastest join would be:

 $W \times (U \times (S \times R))$