Algoritmos e Estrutura de Dados

Aula 8 – Estrutura de Dados: Filas e Pilhas

Prof. Tiago A. E. Ferreira

Fila

Definição

- Estrutura de dados comumente chamada de FIFO = First In-First Out.
- O primeiro elemento a entrar na fila será o primeiro elemento a sair da fila

Filas - Aplicações

- Fila de processos do sistema operacional
- Fila de um banco
- Fila para o *check-in* de um vôo
- Tratamento de teclas acionadas no teclado do computador

Filas - Implementação

- Uma fila pode ser implementada usando uma lista dinâmica com as seguintes características:
 - O novo elemento sempre é inserido no final (ordem de chegada)
 - O elemento removido é sempre o que chegou há mais tempo na fila
 - A consulta retorna o primeiro elemento da fila

Filas – Representação Gráfica

Filas – Operações Básicas

- Criar a Fila
- Inserir Elemento
- Remover Elemento
- Consultar Primeiro Elemento
- Listar Todos Elementos

Criando uma Fila

- Inicialmente, declara-se dois ponteiros: um para o início e outro para o fim da fila.
 - O ponteiro para o fim da fila permite realizar inserções sem que seja necessário percorrer toda a fila.
 - No início, como a fila está vazia, ambos apontam para NULL ou None.

Inserindo Elemento no Lista

Inserindo Elementos

- Caso 1: Fila vazia
 - Cria-se o novo elemento que aponta para NULL ou None;
 - Ponteiros de início e fim apontam para o novo elemento

Inserindo Elemento no Lista

Inserindo Elementos

- Caso 2: Fila com pelo menos 1 elemento
 - Cria-se o novo elemento que aponta para NULL ou None;
 - O último elemento da fila aponta para o novo nó;
 - O ponteiro de fim aponta para o novo elemento.

Removendo Primeiro Elemento da Fila

□ Removendo o Primeiro Elemento

- O elemento a ser removido é marcado.
- O ponteiro do início aponta para o próximo elemento.
- A memória é liberada.

Lista Dinâmica - Inserção

Inserindo Elementos

- Caso 1: Lista Vazia
 - Cria-se o novo nó e os dois ponteiros apontam para o novo nó inserido na lista, que por sua vez aponta para NULL.
- Caso 2: Lista Não Vazia Inserção no final da lista
 - Cria-se o novo nó que aponta para NULL; o último nó da lista aponta para o novo nó; e, ponteiro de fim aponta para o novo nó

Lista Dinâmica - Inserção

- Inserindo Elementos
 - Caso 1: Lista Vazia:

Lista Dinâmica - Inserção

Inserindo Elementos

Caso 2: Lista Não Vazia – Inserção no final da Lista

- Resultado Final:

Lista Encadeada - Remoção

Removendo Elementos

- Caso 1: Remover primeiro elemento da lista
 - O elemento a ser removido é marcado.
 - O ponteiro do início aponta para o próximo elemento.
 - A memória é liberada

Lista Encadeada - Remoção

Removendo Elementos

- Caso 2: Remover elemento do meio da lista
 - O elemento a ser removido é marcado.
 - O elemento anterior ao removido aponta para onde o removido apontava.
 - A memória é liberada.

Lista Encadeada - Remoção

□ Removendo Elementos

- Caso 3: Remover elemento do final da lista
 - O elemento a ser removido é marcado.
 - O elemento anterior ao removido aponta para NULL.
 - O ponteiro para fim aponta para o anterior.

Pilha – Definição

- Uma pilha pode ser implementada usando uma lista ligada com as seguintes características:
 - O novo elemento sempre é inserido no topo da pilha (ordem de chegada)
 - O elemento removido é sempre o que chegou a menos tempo na pilha (o último inserido)
 - A consulta retorna o elemento no topo da pilha

Pilha - Definição

- Estrutura de dados comumente chamada de LIFO = Last In. First Out.
- O último elemento a entrar na pilha será o primeiro elemento a sair da pilha

Pilhas - Aplicações

- Verificar se um código fonte está bem estruturado
- Parser de expressões aritméticas
- O controle da seqüência de chamadas de funções
- Recursividade
- Processamento de quaisquer estruturas aninhadas de profundidade imprevisível

Pilhas – Representação Gráfica

Pilhas – Operações Básicas

- Criar a Pilha
- Empilhar elemento (Push)
- Desempilhar elemento (Pop)
- Consultar elemento no topo da pilha (Peek)
- Listar os elementos

Criando uma Pilha

- Inicialmente, declara-se um ponteiro para o início da pilha.
- Só é preciso de um ponteiro, pois tem-se um ponto único de inserção e remoção de elementos da pilha
- Como a pilha está vazia inicialmente, o ponteiro inicio aponta para NULL ou None.

Empilhando um Elemento - PUSH

Com a pilha vazia: Cria-se o novo elemento e o ponteiro de início aponta para o novo elemento inserido na pilha, que por sua vez aponta para NULL ou None.

Empilhando um Elemento - PUSH

Com elementos na pilha: Cria-se o novo elemento que aponta para o elemento do topo da pilha; o ponteiro de início da pilha aponta para o novo elemento.

Desempilhando um Elemento - POP

- O elemento a ser removido é marcado.
- O ponteiro do início aponta para o próximo elemento.
- A memória é liberada.

Exercícios Práticos

Exercício 1: Implementar o exemplo da pilha de números.

Exercício 2: Implemente um programa que utiliza a estrutura de dados pilha para ler uma string do teclado e imprimir a string reversa. OBS: Utilize as funções push e pop