

1-4F, Huafeng Science Park, Xin'an Sixth Road, 82th District, Bao'an,

Shenzhen, China.

Telephone: +86-755-29451282,

Fax: +86-755-22639141

Report No.: EBO1410040-E255

Page 1 of 25

FCC REPORT

Applicant: Shenzhen Firstview Electronic Co. Ltd.

Address of Applicant: 3-4/F, Block B, Huafeng 1st Technology Zone Baoan Main

Road, Baoan District, Shenzhen, China

Equipment Under Test (EUT)

Product Name: Tablet PC

Model No.: VTA1005XB, VTA1005XBS, PAD 10W4, M1041-A

FCC ID: YW5VTA1005XB

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.249:2013

Date of sample receipt: October 24, 2014

Date of Test: October 24, 2014 To October 30, 2014

Date of report issued: October 30, 2014

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Kevin Yu Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the EBO product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of EBO International Electrical Approvals or testing done by EBO International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by EBO International Electrical Approvals in writing.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: EBO1410040-E255 Page 2 of 25

2 Version

Version No.	Date	Description
00	October 30, 2014	Original

Prepared By:	Jason	Date:	October 30, 2014
	Project Engineer		
Check By:	Country	Date:	October 30, 2014
	Reviewer		

Report No.: EBO1410040-E255 Page 3 of 25

3 Contents

		Page
1	COVER PAGE	1
2	VERSION	2
3	CONTENTS	3
4	TEST SUMMARY	4
5	GENERAL INFORMATION	5
	5.1 CLIENT INFORMATION	
	5.2 GENERAL DESCRIPTION OF EUT	
	5.3 TEST MODE	
	5.4 DESCRIPTION OF SUPPORT UNITS	
	5.5 TEST FACILITY	
	5.6 TEST LOCATION	
	5.7 OTHER INFORMATION REQUESTED BY THE CUSTOMER	
6	TEST INSTRUMENTS LIST	8
7	TEST RESULTS AND MEASUREMENT DATA	10
	7.1 ANTENNA REQUIREMENT:	
	7.2 CONDUCTED EMISSIONS	
	7.3 RADIATED EMISSION METHOD	
	7.3.1 Field Strength of The Fundamental Signal	
	7.3.3 Bandedge emissions	
	7.4 20DB Occupy Bandwidth	
8	TEST SETUP PHOTO	24
9	ELIT CONSTRUCTIONAL DETAILS	25

Report No.: EBO1410040-E255

Page 4 of 25

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203	Pass
AC Power Line Conducted Emission	15.207	Pass
Field strength of the fundamental signal	15.249 (a)	Pass
Spurious emissions	15.249 (a) (d)/15.209	Pass
Band edge	15.249 (d)/15.205	Pass
20dB Occupied Bandwidth	15.215 (c)	Pass

Pass: The EUT complies with the essential requirements in the standard.

N/A: not applicable.

Report No.: EBO1410040-E255 Page 5 of 25

5 General Information

5.1 Client Information

Applicant:	Shenzhen Firstview Electronic Co. Ltd.
Address of Applicant:	3-4/F, Block B, Huafeng 1st Technology Zone Baoan Main Road, Baoan
	District, Shenzhen, China
Manufacturer/Factory:	Shenzhen Firstview Electronic Co., Ltd.
Address of Manufacturer/	F3-6, Block B, Huafeng 1st Technology Zone, Baoan Main Road, Baoan
Factory:	District, Shenzhen, P.R.China

5.2 General Description of EUT

Product Name:	Tablet PC
Model No.:	VTA1005XB, VTA1005XBS, PAD 10W4, M1041-A
Test Model No.:	VTA1005XB
Operation Frequency:	2402MHz~2480MHz
Channel numbers:	40
Channel separation:	2MHz
Modulation type:	GFSK
Antenna Type:	Integral Antenna
Antenna gain:	3dBi (declare by Applicant)
	Adapter:
	Model:SJ-0920-E
Power supply:	Input:100-240V~,50/60Hz, 0.5A max
i ower suppry.	Output: 9V, 2000mA
	Or
	DC 3.7V Li-ion Battery

Report No.: EBO1410040-E255 Page 6 of 25

Channel lis	Channel list								
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency		
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz		
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz		
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz		
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2440MHz
The Highest channel	2480MHz

Report No.: EBO1410040-E255

Page 7 of 25

5.3 Test mode

Transmitting mode Keep the Bluetooth in continuously transmitting mode

Remark: 1.During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

Per-test mode.

We have verified the construction and function in typical operation, The EUT was placed on three different polar directions; i.e. X axis, Y axis, Z axis. which was shown in this test report and defined as follows:

Axis	Х	Y	Z
Field Strength(dBuV/m)	96.34	98.11	95.53

Final Test Mode:

According to ANSI C63.4 standards, the test result is "worst setup": Y axis (see the test setup photo)

5.4 Description of Support Units

None.

5.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS —Registration No.: CNAS L5775

CNAS has accredited Global United Technology Services Co., Ltd. To ISO/IEC 17025 General Requirements for the competence of testing and calibration laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

• FCC —Registration No.: 600491

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fuly described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 600491, June 28, 2013.

Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2. June 26. 2013.

5.6 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: 2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China

5.7 Other Information Requested by the Customer

None.

Report No.: EBO1410040-E255 Page 8 of 25

6 Test Instruments list

Rad	iated Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	Mar. 29 2013	Mar. 28 2015
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A
3	Spectrum Analyzer	Agilent	E4440A	GTS533	Dec. 5, 2013	Dec. 4 2014
4	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	Jul. 02 2014	Jul. 01 2015
5	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	Jul. 02 2014	Jul. 01 2015
6	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	9120D-829	GTS208	Jul. 02 2014	Jul. 01 2015
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	Mar. 28 2014	Mar. 27 2015
8	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
9	Coaxial Cable	GTS	N/A	GTS213	Mar. 28 2014	Mar. 27 2015
10	Coaxial Cable	GTS	N/A	GTS211	Mar. 28 2014	Mar. 27 2015
11	Coaxial cable	GTS	N/A	GTS210	Mar. 28 2014	Mar. 27 2015
12	Coaxial Cable	GTS	N/A	GTS212	Mar. 28 2014	Mar. 27 2015
13	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	Jul. 02 2014	Jul. 01 2015
14	Amplifier(2GHz-20GHz)	HP	8349B	GTS206	Jul. 02 2014	Jul. 01 2015
15	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	Jul. 02 2014	Jul. 01 2015
16	Band filter	Amindeon	82346	GTS219	Mar. 28 2014	Mar. 27 2015

Con	Conducted Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Shielding Room	ZhongYu Electron	7.0(L)x3.0(W)x3.0(H)	GTS264	Sep. 07 2013	Sep. 06 2015		
2	EMI Test Receiver	Rohde & Schwarz	ESCS30	GTS223	Jul. 02 2014	Jul. 01 2015		
3	10dB Pulse Limita	Rohde & Schwarz	N/A	GTS224	Jul. 02 2014	Jul. 01 2015		
4	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	Jul. 02 2014	Jul. 01 2015		
5	LISN	SCHWARZBECK MESS-ELEKTRONIK	NSLK 8127	GTS226	Jul. 02 2014	Jul. 01 2015		
6	Coaxial Cable	GTS	N/A	GTS227	Jul. 02 2014	Jul. 01 2015		
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		

General used equipment:

Report No.: EBO1410040-E255 Page 9 of 25

Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date
1	Barometer	ChangChun	DYM3	GTS257	Jul. 02 2014	Jul. 01 2015

Manufacturer	Description	Model	Serial Number	FCC Approval	
HP	Printer	CB495A	05257893	DoC	
Apple	PC	A1278	C1MN99ERDTY3	DoC	

Report No.: EBO1410040-E255

Page 10 of 25

7 Test results and Measurement Data

7.1 Antenna requirement:

Standard requirement: FCC Part15 C Section 15.203

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

E.U.T Antenna:

The antenna is Integral antenna, the best case gain of the antenna is 3dBi

Report No.: EBO1410040-E255

Page 11 of 25

7.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207	•					
Test Method:	ANSI C63.4:2003						
Test Frequency Range:	150KHz to 30MHz						
Class / Severity:	Class B						
Receiver setup:	RBW=9KHz, VBW=30KHz, St	weep time=auto					
Limit:	[[] [] [] [] [] [] [] [] [] [Limit (c	dBuV)				
	Frequency range (MHz)	Quasi-peak	Average				
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
	* Decreases with the logarithn	n of the frequency.					
Test setup:	Reference Plane						
	AUX Equipment E.U.T Remark: EUT: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m						
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement. 						
Test Instruments:	Refer to section 6.0 for details	3					
Test mode:	Refer to section 5.3 for details	3					
Test results:	Pass						
	L						

Measurement data:

Report No.: EBO1410040-E255 Page 12 of 25

Test mode: Bluetooth mode		LINE
---------------------------	--	------

Condition : FCC PART15 CLASSB QP LISN-2013 LINE

Test Engineer: Mike

	Freq		LISN Factor				Over Limit	Remark
	MHz	dBu₹	dB	dB	dBuV	dBuV	dB	
1 2 3 4 5 6	0. 491 0. 567 1. 172 1. 577	40. 01 38. 92 39. 06	0. 12 0. 12 0. 13 0. 13 0. 12 0. 15	0.11 0.12 0.13 0.14	40. 26 39. 18 39. 32	56.14 56.00 56.00 56.00	-14.14 -15.74 -16.82 -16.68	QP QP QP QP

Report No.: EBO1410040-E255 Page 13 of 25

Test mode: Bluetooth mode		NEUTRAL
---------------------------	--	---------

Condition : FCC PART15 CLASSB QP LISN-2013 NEUTRAL

Test Engineer: Mike

	Freq		LISN Factor					Remark
	MHz	dBuV	dB	d₿	dBu₹	dBuV	dB	
1 2 3 4 5 6	0.564 0.880 1.160	41.12 36.94 36.40	0.07 0.07 0.08 0.09	0.13 0.13 0.14	34.77 41.32 37.15 36.63	56.00 56.00 56.00 56.00	-21. 23 -14. 68 -18. 85 -19. 37	QP QP QP QP

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

Report No.: EBO1410040-E255 Page 14 of 25

7.3 Radiated Emission Method

3 Radiated Emission Method									
FCC Part15 C Section 15.209									
ANSI C63.4:200	ANSI C63.4:2003								
30MHz to 25GH	30MHz to 25GHz								
Measurement Distance: 3m									
Frequency	Detector	RBW	VBW	Remark					
30MHz- 1GHz	Quasi-peal	k 120KHz	300KHz	Quasi-peak Value					
Above 4011	Peak	1MHz	3MHz	Peak Value					
Above IGHZ	Peak	1MHz	10Hz	Average Value					
Freque	ency	Limit (dBuV	/m @3m)	Remark					
0.4000.01	400 = 1411	94.0	0	Average Value					
2400MHz-24	183.5MHz	114.0	00	Peak Value					
		`		Remark					
				Quasi-peak Value					
				Quasi-peak Value Quasi-peak Value					
				Quasi-peak Value					
				Average Value					
Above	IGIIZ	74.0	0	Peak Value					
harmonics, sha fundamental or	II be attenuat to the genera	ed by at least al radiated emi	50 dB belov	w the level of the					
EUT	4m			na Tower					
	FCC Part15 C S ANSI C63.4:200 30MHz to 25GH Measurement D Frequency 30MHz- 1GHz Above 1GHz Prequency 2400MHz-24 During the test detector for pease detector for pease 88MHz-2: 216MHz-9 960MHz- Above 1 Emissions radia harmonics, sha fundamental or whichever is the Below 1GHz	FCC Part15 C Section 15.20 ANSI C63.4:2003 30MHz to 25GHz Measurement Distance: 3m Frequency Detector 30MHz- 1GHz Quasi-peal 1GHz Peak Frequency 2400MHz-2483.5MHz During the test, the RBW at detector for peak value, Ave Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz Above 1GHz Emissions radiated outside of harmonics, shall be attenuat fundamental or to the general whichever is the lesser attental manual fundamental or to the general whichever is the lesser attental manual fundamental or to the general whichever is the lesser attental manual fundamental or to the general whichever is the lesser attental fundamental or to the general fundamental fundament	FCC Part15 C Section 15.209 ANSI C63.4:2003 30MHz to 25GHz Measurement Distance: 3m Frequency Detector RBW 30MHz- Quasi-peak 120KHz 1GHz Peak 1MHz Peak 1MHz Peak 1MHz Frequency Limit (dBuV) 2400MHz-2483.5MHz 94.0 2400MHz-2483.5MHz 114.0 During the test, the RBW and VBW were detector for peak value, Average detector for peak value, Average detector some detector for peak value, Average detector some detector for peak value, Average detector for pe	FCC Part15 C Section 15.209 ANSI C63.4:2003 30MHz to 25GHz Measurement Distance: 3m Frequency Detector RBW VBW 30MHz- Quasi-peak 120KHz 300KHz 1GHz Above 1GHz Peak 1MHz 10Hz Frequency Limit (dBuV/m @3m) 2400MHz-2483.5MHz 114.00 During the test, the RBW and VBW were set to 3MI detector for peak value, Average detector for average Frequency Limit (dBuV/m @3m) 30MHz-88MHz 40.00 88MHz-216MHz 43.50 216MHz-960MHz 46.00 960MHz-1GHz 54.00 Above 1GHz 74.00 Emissions radiated outside of the specified frequency harmonics, shall be attenuated by at least 50 dB belof fundamental or to the general radiated emission limits whichever is the lesser attenuation. Below 1GHz Anten Areceiver					

Report No.: EBO1410040-E255 Page 15 of 25

	Antenna Tower Horn Antenna Spectrum Analyzer Turn Table Amplifier
Test Procedure:	The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
	The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	 The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
	The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.3 for details
Test results:	Pass

Measurement data:

Report No.: EBO1410040-E255

Page 16 of 25

7.3.1 Field Strength of The Fundamental Signal

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
2402.00	95.32	27.58	5.39	30.18	98.11	114.00	-15.89	Vertical
2402.00	92.02	27.58	5.39	30.18	94.81	114.00	-19.19	Horizontal
2440.00	94.00	27.55	5.43	30.06	96.92	114.00	-17.08	Vertical
2440.00	90.58	27.55	5.43	30.06	93.50	114.00	-20.50	Horizontal
2480.00	93.63	27.52	5.47	29.93	96.69	114.00	-17.31	Vertical
2480.00	90.58	27.52	5.47	29.93	93.64	114.00	-20.36	Horizontal

Average value:

Titorage ran								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
2402.00	84.15	27.58	5.39	30.18	86.94	94.00	-7.06	Vertical
2402.00	81.33	27.58	5.39	30.18	84.12	94.00	-9.88	Horizontal
2440.00	82.60	27.55	5.43	30.06	85.52	94.00	-8.48	Vertical
2440.00	79.65	27.55	5.43	30.06	82.57	94.00	-11.43	Horizontal
2480.00	81.32	27.52	5.47	29.93	84.38	94.00	-9.62	Vertical
2480.00	78.10	27.52	5.47	29.93	81.16	94.00	-12.84	Horizontal

Report No.: EBO1410040-E255

Page 17 of 25

7.3.2 Spurious emissions

■ Below 1GHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
34.16	50.26	14.31	0.60	32.06	33.11	40.00	-6.89	Vertical
98.14	44.30	15.03	1.18	31.75	28.76	43.50	-14.74	Vertical
147.92	45.28	10.24	1.56	31.97	25.11	43.50	-18.39	Vertical
253.84	40.75	14.06	2.14	32.16	24.79	46.00	-21.21	Vertical
423.54	38.26	17.49	2.96	31.81	26.90	46.00	-19.10	Vertical
793.40	36.86	21.96	4.43	31.31	31.94	46.00	-14.06	Vertical
40.56	39.96	15.58	0.67	32.05	24.16	40.00	-15.84	Horizontal
81.21	53.52	10.98	1.04	31.76	33.78	40.00	-6.22	Horizontal
159.78	44.39	10.64	1.63	32.02	24.64	43.50	-18.86	Horizontal
251.18	48.68	14.07	2.13	32.16	32.72	46.00	-13.28	Horizontal
432.55	39.39	17.53	3.01	31.78	28.15	46.00	-17.85	Horizontal
731.92	37.92	21.19	4.20	31.24	32.07	46.00	-13.93	Horizontal

Report No.: EBO1410040-E255 Page 18 of 25

■ Above 1GHz

Test channel: Lowest channel

Peak value:

i cak value.								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	47.97	31.78	8.60	32.09	56.26	74.00	-17.74	Vertical
7206.00	32.27	36.15	11.65	32.00	48.07	74.00	-25.93	Vertical
9608.00	31.86	37.95	14.14	31.62	52.33	74.00	-21.67	Vertical
12010.00	*					74.00		Vertical
14412.00	*					74.00		Vertical
4804.00	51.39	31.78	8.60	32.09	59.68	74.00	-14.32	Horizontal
7206.00	34.09	36.15	11.65	32.00	49.89	74.00	-24.11	Horizontal
9608.00	31.35	37.95	14.14	31.62	51.82	74.00	-22.18	Horizontal
12010.00	*					74.00		Horizontal
14412.00	*					74.00		Horizontal

Average value:

Average van								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	36.66	31.78	8.60	32.09	44.95	54.00	-9.05	Vertical
7206.00	20.88	36.15	11.65	32.00	36.68	54.00	-17.32	Vertical
9608.00	19.92	37.95	14.14	31.62	40.39	54.00	-13.61	Vertical
12010.00	*					54.00		Vertical
14412.00	*					54.00		Vertical
4804.00	40.96	31.78	8.60	32.09	49.25	54.00	-4.75	Horizontal
7206.00	23.10	36.15	11.65	32.00	38.90	54.00	-15.10	Horizontal
9608.00	19.70	37.95	14.14	31.62	40.17	54.00	-13.83	Horizontal
12010.00	*					54.00		Horizontal
14412.00	*					54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. "*", means this data is the too weak instrument of signal is unable to test.

Report No.: EBO1410040-E255

Page 19 of 25

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4882.00	47.01	31.85	8.67	32.12	55.41	74.00	-18.59	Vertical
7323.00	31.63	36.37	11.72	31.89	47.83	74.00	-26.17	Vertical
9764.00	31.29	38.35	14.25	31.62	52.27	74.00	-21.73	Vertical
12205.00	*					74.00		Vertical
14646.00	*					74.00		Vertical
4882.00	50.23	31.85	8.67	32.12	58.63	74.00	-15.37	Horizontal
7323.00	33.36	36.37	11.72	31.89	49.56	74.00	-24.44	Horizontal
9764.00	30.69	38.35	14.25	31.62	51.67	74.00	-22.33	Horizontal
12205.00	*					74.00		Horizontal
14646.00	*					74.00		Horizontal

Average value:

7tvorago van								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4882.00	35.89	31.85	8.67	32.12	44.29	54.00	-9.71	Vertical
7323.00	20.36	36.37	11.72	31.89	36.56	54.00	-17.44	Vertical
9764.00	19.45	38.35	14.25	31.62	40.43	54.00	-13.57	Vertical
12205.00	*					54.00		Vertical
14646.00	*					54.00		Vertical
4882.00	40.08	31.85	8.67	32.12	48.48	54.00	-5.52	Horizontal
7323.00	22.51	36.37	11.72	31.89	38.71	54.00	-15.29	Horizontal
9764.00	19.16	38.35	14.25	31.62	40.14	54.00	-13.86	Horizontal
12205.00	*					54.00		Horizontal
14646.00	*					54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. "*", means this data is the too weak instrument of signal is unable to test.

Report No.: EBO1410040-E255 Page 20 of 25

Test channel: Highest channel

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	45.63	31.93	8.73	32.16	54.13	74.00	-19.87	Vertical
7440.00	30.72	36.59	11.79	31.78	47.32	74.00	-26.68	Vertical
9920.00	30.48	38.81	14.38	31.88	51.79	74.00	-22.21	Vertical
12400.00	*					74.00		Vertical
14880.00	*					74.00		Vertical
4960.00	48.58	31.93	8.73	32.16	57.08	74.00	-16.92	Horizontal
7440.00	32.33	36.59	11.79	31.78	48.93	74.00	-25.07	Horizontal
9920.00	29.74	38.81	14.38	31.88	51.05	74.00	-22.95	Horizontal
12400.00	*					74.00		Horizontal
14880.00	*					74.00		Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	34.80	31.93	8.73	32.16	43.30	54.00	-10.70	Vertical
7440.00	19.62	36.59	11.79	31.78	36.22	54.00	-17.78	Vertical
9920.00	18.80	38.81	14.38	31.88	40.11	54.00	-13.89	Vertical
12400.00	*					54.00		Vertical
14880.00	*					54.00		Vertical
4960.00	38.84	31.93	8.73	32.16	47.34	54.00	-6.66	Horizontal
7440.00	21.69	36.59	11.79	31.78	38.29	54.00	-15.71	Horizontal
9920.00	18.39	38.81	14.38	31.88	39.70	54.00	-14.30	Horizontal
12400.00	*					54.00		Horizontal
14880.00	*					54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. "*", means this data is the too weak instrument of signal is unable to test.

Report No.: EBO1410040-E255

Page 21 of 25

7.3.3 Bandedge emissions

All of the restriction bands were tested, and only the data of worst case was exhibited.

Test channe	nnel: Lowest channel							
Peak value:	Peak value:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	47.77	27.59	5.38	30.18	50.56	74.00	-23.44	Horizontal
2400.00	60.26	27.58	5.39	30.18	63.05	74.00	-10.95	Horizontal
2390.00	48.79	27.59	5.38	30.18	51.58	74.00	-22.42	Vertical
2400.00	62.82	27.58	5.39	30.18	65.61	74.00	-8.39	Vertical
Average val	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	37.21	27.59	5.38	30.18	40.00	54.00	-14.00	Horizontal
2400.00	43.74	27.58	5.39	30.18	46.53	54.00	-7.47	Horizontal
2390.00	37.51	27.59	5.38	30.18	40.30	54.00	-13.70	Vertical
2400.00	45.86	27.58	5.39	30.18	48.65	54.00	-5.35	Vertical
Test channe	Test channel: Highest channel							
Peak value:								

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	50.46	27.53	5.47	29.93	53.53	74.00	-20.47	Horizontal
2500.00	48.70	27.55	5.49	29.93	51.81	74.00	-22.19	Horizontal
2483.50	52.11	27.53	5.47	29.93	55.18	74.00	-18.82	Vertical
2500.00	50.16	27.55	5.49	29.93	53.27	74.00	-20.73	Vertical

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	40.10	27.53	5.47	29.93	43.17	54.00	-10.83	Horizontal
2500.00	37.40	27.55	5.49	29.93	40.51	54.00	-13.49	Horizontal
2483.50	41.72	27.53	5.47	29.93	44.79	54.00	-9.21	Vertical
2500.00	37.73	27.55	5.49	29.93	40.84	54.00	-13.16	Vertical

Remark:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

Report No.: EBO1410040-E255

Page 22 of 25

7.4 20dB Occupy Bandwidth

Measurement Data

Worst case GFSK modulation

Test channel	20dB bandwidth(MHz)	Result
Lowest	1.122	Pass
Middle	1.125	Pass
Highest	1.115	Pass

Test plot as follows:

Report No.: EBO1410040-E255 Page 23 of 25

Lowest channel

Middle channel

Highest channel