Simulation and High-Performance Computing Part 5: Finite Difference Methods for Partial Differential Equations

Steffen Börm

Christian-Albrechts-Universität zu Kiel

September 30th, 2020

Poisson's equation

Model problem: Poisson's equation on the unit square

$$-\Delta u(x) = f(x)$$
 for all $x \in \Omega := (0,1) \times (0,1)$,

Laplace operator: Partial differential operator of second order,

$$\Delta u(x) = \frac{\partial^2 u}{\partial x_1^2}(x) + \frac{\partial^2 u}{\partial x_2^2}(x).$$

Poisson's equation

Model problem: Poisson's equation on the unit square

$$\begin{split} -\Delta u(x) &= f(x) \qquad \text{for all } x \in \Omega := (0,1) \times (0,1), \\ u(x) &= 0 \qquad \qquad \text{for all } x \in \partial \Omega = \{0,1\} \times [0,1] \cup [0,1] \times \{0,1\}, \end{split}$$

with Dirichlet boundary conditions.

Laplace operator: Partial differential operator of second order,

$$\Delta u(x) = \frac{\partial^2 u}{\partial x_1^2}(x) + \frac{\partial^2 u}{\partial x_2^2}(x).$$

Applications: Electrostatic fields, heat dissipation, wave propagation, fluid dynamics, ...

Problem: The domain Ω contains infinitely many points, but a computer can only store finitely many values.

Grid: Replace the domain by a finite number of points.

Choose $N \in \mathbb{N}$, let $h := \frac{1}{N+1}$ and

$$\Omega_h := \{ (ih, jh) : i, j \in [1 : N] \}, \qquad \bar{\Omega}_h := \Omega_h \cup \partial \Omega_h, \\
\partial \Omega_h := \{ (ih, jh) : i, j \in [0 : N+1], i \in \{0, N+1\} \lor j \in \{0, N+1\} \}.$$

Problem: The domain Ω contains infinitely many points, but a computer can only store finitely many values.

Grid: Replace the domain by a finite number of points.

Choose $N \in \mathbb{N}$, let $h := \frac{1}{N+1}$ and

$$\Omega_h := \{ (ih, jh) : i, j \in [1 : N] \}, \qquad \bar{\Omega}_h := \Omega_h \cup \partial \Omega_h,
\partial \Omega_h := \{ (ih, jh) : i, j \in [0 : N+1], i \in \{0, N+1\} \lor j \in \{0, N+1\} \}.$$

Problem: The domain Ω contains infinitely many points, but a computer can only store finitely many values.

Grid: Replace the domain by a finite number of points.

Choose $N \in \mathbb{N}$, let $h := \frac{1}{N+1}$ and

$$\Omega_h := \{ (ih, jh) : i, j \in [1 : N] \}, \qquad \bar{\Omega}_h := \Omega_h \cup \partial \Omega_h, \\
\partial \Omega_h := \{ (ih, jh) : i, j \in [0 : N+1], i \in \{0, N+1\} \lor j \in \{0, N+1\} \}.$$

Problem: The domain Ω contains infinitely many points, but a computer can only store finitely many values.

Grid: Replace the domain by a finite number of points.

Choose $N \in \mathbb{N}$, let $h := \frac{1}{N+1}$ and

$$\Omega_h := \{ (ih, jh) : i, j \in [1 : N] \}, \qquad \bar{\Omega}_h := \Omega_h \cup \partial \Omega_h, \\
\partial \Omega_h := \{ (ih, jh) : i, j \in [0 : N+1], i \in \{0, N+1\} \lor j \in \{0, N+1\} \}.$$

Grid function: Replace a function $u \colon \bar{\Omega} \to \mathbb{R}$ by a mapping $u_h \colon \bar{\Omega}_h \to \mathbb{R}$.

Problem: We cannot evaluate derivatives of a grid function, since it is only defined in discrete points.

$$g''(t) \approx \frac{g(t+h)-2g(t)+g(t-h)}{h^2},$$

Problem: We cannot evaluate derivatives of a grid function, since it is only defined in discrete points.

$$\begin{split} g''(t) &\approx \frac{g(t+h) - 2g(t) + g(t-h)}{h^2}, \\ \Delta u(x) &= \frac{\partial^2 u}{\partial x_1^2}(x) + \frac{\partial^2 u}{\partial x_2^2}(x) \\ &\approx \frac{u(x_1 + h, x_2) - 2u(x) + u(x_1 - h, x_2)}{h^2} \\ &\quad + \frac{u(x_1, x_2 + h) - 2u(x) + u(x_1, x_2 - h)}{h^2} =: \Delta_h u(x). \end{split}$$

Problem: We cannot evaluate derivatives of a grid function, since it is only defined in discrete points.

$$\begin{split} g''(t) &\approx \frac{g(t+h) - 2g(t) + g(t-h)}{h^2}, \\ \Delta u(x) &= \frac{\partial^2 u}{\partial x_1^2}(x) + \frac{\partial^2 u}{\partial x_2^2}(x) \\ &\approx \frac{u(x_1 + h, x_2) - 2u(x) + u(x_1 - h, x_2)}{h^2} \\ &\quad + \frac{u(x_1, x_2 + h) - 2u(x) + u(x_1, x_2 - h)}{h^2} =: \Delta_h u(x). \end{split}$$

Problem: We cannot evaluate derivatives of a grid function, since it is only defined in discrete points.

$$\begin{split} g''(t) &\approx \frac{g(t+h) - 2g(t) + g(t-h)}{h^2}, \\ \Delta u(x) &= \frac{\partial^2 u}{\partial x_1^2}(x) + \frac{\partial^2 u}{\partial x_2^2}(x) \\ &\approx \frac{u(x_1 + h, x_2) - 2u(x) + u(x_1 - h, x_2)}{h^2} \\ &\quad + \frac{u(x_1, x_2 + h) - 2u(x) + u(x_1, x_2 - h)}{h^2} =: \Delta_h u(x). \end{split}$$

Problem: We cannot evaluate derivatives of a grid function, since it is only defined in discrete points.

Approach: Replace differential operators by difference quotients.

$$g''(t) \approx \frac{g(t+h) - 2g(t) + g(t-h)}{h^2},$$

$$\Delta u(x) = \frac{\partial^2 u}{\partial x_1^2}(x) + \frac{\partial^2 u}{\partial x_2^2}(x)$$

$$\approx \frac{u(x_1 + h, x_2) - 2u(x) + u(x_1 - h, x_2)}{h^2}$$

$$+ \frac{u(x_1, x_2 + h) - 2u(x) + u(x_1, x_2 - h)}{h^2} =: \Delta_h u(x).$$

Important: If $x \in \Omega_h$, the approximation $\Delta_h u_h(x)$ is well-defined.

Five-point stencil: The Laplace operator is approximated by

$$\Delta_h u_h(x) = \frac{u(x_1+h,x_2) + u(x_1-h,x_2) + u(x_1,x_2+h) + u(x_1,x_2-h) - 4u(x)}{h^2}$$

Five-point stencil: The Laplace operator is approximated by

$$\Delta_h u_h(x) = \frac{u(x_1+h,x_2) + u(x_1-h,x_2) + u(x_1,x_2+h) + u(x_1,x_2-h) - 4u(x)}{h^2}$$

Five-point stencil: The Laplace operator is approximated by

$$\Delta_h u_h(x) = \frac{u(x_1 + h, x_2) + u(x_1 - h, x_2) + u(x_1, x_2 + h) + u(x_1, x_2 - h) - 4u(x)}{h^2}$$

Boundary points are a special case, since they are not degrees of freedom.

5 / 21

Five-point stencil: The Laplace operator is approximated by

$$\Delta_h u_h(x) = \frac{u(x_1+h,x_2) + u(x_1-h,x_2) + u(x_1,x_2+h) + u(x_1,x_2-h) - 4u(x)}{h^2}$$

Boundary points are a special case, since they are not degrees of freedom.

5 / 21

Five-point stencil: The Laplace operator is approximated by

$$\Delta_h u_h(x) = \frac{u(x_1+h,x_2) + u(x_1-h,x_2) + u(x_1,x_2+h) + u(x_1,x_2-h) - 4u(x)}{h^2}$$

Boundary points are a special case, since they are not degrees of freedom.

5 / 21

Linear system

Boundary value problem: Find $u \in C(\bar{\Omega})$ with $u|_{\Omega} \in C^2(\Omega)$ such that

$$-\Delta u(x) = f(x) \qquad \text{for all } x \in \Omega,$$

$$u(x) = 0 \qquad \text{for all } x \in \partial \Omega.$$

Finite difference approximation: Find $u_h \colon \bar{\Omega}_h \to \mathbb{R}$ such that

$$-\Delta_h u_h(x) = f(x)$$
 for all $x \in \Omega_h$, $u_h(x) = 0$ for all $x \in \partial \Omega_h$.

Linear system

Boundary value problem: Find $u \in C(\bar{\Omega})$ with $u|_{\Omega} \in C^2(\Omega)$ such that

$$-\Delta u(x) = f(x)$$
 for all $x \in \Omega$,
 $u(x) = 0$ for all $x \in \partial \Omega$.

Finite difference approximation: Find $u_h \colon \bar{\Omega}_h \to \mathbb{R}$ such that

$$-\Delta_h u_h(x) = f(x)$$
 for all $x \in \Omega_h$, $u_h(x) = 0$ for all $x \in \partial \Omega_h$.

Result: We approximate the partial differential equation by a linear system of dimension $n := N^2$.

Lexicographic enumeration

Problem: The index set $\bar{\Omega}_h$ is two-dimensional, but standard programming languages prefer one-dimensional structures.

Approach: Enumerate row by row.

$$x = (ih, jh) \mapsto i + (N+2)j \quad i, j \in [0:N+1].$$

Implementation: Grid functions represented by arrays with $(N+2)^2$ elements, $u_h(ih, jh) = u[i+j*yinc]$ with yinc = N+2.

Lexicographic enumeration

Problem: The index set $\bar{\Omega}_h$ is two-dimensional, but standard programming languages prefer one-dimensional structures.

Approach: Enumerate row by row.

$$x = (ih, jh) \mapsto i + (N+2)j \quad i, j \in [0:N+1].$$

Implementation: Grid functions represented by arrays with $(N+2)^2$ elements, $u_h(ih, jh) = u[i+j*yinc]$ with yinc = N+2.

Boundary points can be eliminated, since they are not degrees of freedom.

$$x = (ih, jh) \mapsto (i-1) + N(j-1) \qquad i, j \in [1:N],$$

this leads to arrays with $n := N^2$ elements containing only unknown grid values $u_h(ih, jh) = u[(i-1)+(j-1)*yinc]$ with yinc = N.

Matrix structure

Approach: Degrees of freedom in the *j*-th row of a grid function u_h are collected in a vector $u^{(j)} \in \mathbb{R}^N$ with $u_i^{(j)} := u_h(ih, jh), i, j \in [1 : N]$.

Linear system is now *n*-dimensional with $n = N^2$, given by

$$\frac{1}{h^2} \begin{pmatrix} T & -I & & \\ -I & \ddots & \ddots & \\ & \ddots & \ddots & -I \\ & & -I & T \end{pmatrix} \begin{pmatrix} u^{(1)} \\ u^{(2)} \\ \vdots \\ u^{(N)} \end{pmatrix} = \begin{pmatrix} f^{(1)} \\ f^{(2)} \\ \vdots \\ f^{(N)} \end{pmatrix}$$

with the tridiagonal matrix

$$\mathcal{T}:=egin{pmatrix} 4 & -1 & & & & \ -1 & \ddots & \ddots & & & \ & \ddots & \ddots & -1 \ & & -1 & 4 \end{pmatrix} \in \mathbb{R}^{ extit{N} imes extit{N}}.$$

Direct solvers

Problem: We have to solve the linear system Au = f with the matrix

First approach: If n is not too large, we can use a direct solver, e.g., Gaussian elimination.

Direct solvers

Problem: We have to solve the linear system Au = f with the matrix

$$A:=\frac{1}{h^2}\begin{pmatrix} T & -I & & \\ -I & \ddots & \ddots & \\ & \ddots & \ddots & -I \\ & & -I & T \end{pmatrix}, \qquad T:=\begin{pmatrix} 4 & -1 & & \\ -1 & \ddots & \ddots & \\ & \ddots & \ddots & -1 \\ & & -1 & 4 \end{pmatrix}.$$

First approach: If n is not too large, we can use a direct solver, e.g., Gaussian elimination.

Refined approach: Use Krylov methods or multigrid iteration, these are topics in parts 8 and 9 of this course.

Example: LU factorization

Triangular matrices:

- $L \in \mathbb{R}^{n \times n}$ is lower triangular if $\ell_{ij} = 0$ for all i < j.
- $U \in \mathbb{R}^{n \times n}$ is upper triangular if $u_{ij} = 0$ for all i > j.

Triangular systems Lx = b and Ux = b can be solved by forward and backward substitution.

LU factorization: A matrix $A \in \mathbb{R}^{n \times n}$ is split into A = LU.

$$Ax = b \iff Ly = b \text{ and } Ux = y.$$

Forward substitution

Goal: Solve Lx = b with a lower triangular matrix L.

Approach: Split into submatrices and -vectors.

$$L = \begin{pmatrix} \ell_{11} & \\ L_{*1} & L_{**} \end{pmatrix}, \qquad \quad x = \begin{pmatrix} x_1 \\ x_* \end{pmatrix}, \qquad \quad b = \begin{pmatrix} b_1 \\ b_* \end{pmatrix}.$$

We obtain

$$\begin{pmatrix} \ell_{11}x_1 \\ L_{*1}x_1 + L_{**}x_* \end{pmatrix} = \begin{pmatrix} \ell_{11} \\ L_{*1} \\ L_{*1} \end{pmatrix} \begin{pmatrix} x_1 \\ x_* \end{pmatrix} = Lx = b = \begin{pmatrix} b_1 \\ b_* \end{pmatrix}$$

and can solve $\ell_{11}x_1=b_1$ directly and

$$L_{**}x_* = b_* - L_{*1}x_1$$

by recursion, since L_{**} is again lower triangular.

Backward substitution

Goal: Solve Ux = b with an upper triangular matrix U.

Approach: Split into submatrices and -vectors.

$$U = \begin{pmatrix} U_{**} & U_{*n} \\ & u_{nn} \end{pmatrix}, \qquad x = \begin{pmatrix} x_* \\ x_n \end{pmatrix}, \qquad b = \begin{pmatrix} b_* \\ b_n \end{pmatrix}.$$

We obtain

$$\begin{pmatrix} U_{**}x_* + U_{*n}x_n \\ u_{nn}x_n \end{pmatrix} = \begin{pmatrix} U_{**} & U_{*n} \\ u_{nn} \end{pmatrix} \begin{pmatrix} x_* \\ x_n \end{pmatrix} = Ux = b = \begin{pmatrix} b_* \\ b_n \end{pmatrix}$$

and can solve $u_{nn}x_n = b_n$ directly and

$$U_{**}x_* = b_* - U_{*n}x_n$$

by recursion, since U_{**} is again upper triangular.

LU factorization

Goal: Given A, find L lower and U upper triangular with A = LU.

Approach: Split into submatrices.

$$A = \begin{pmatrix} a_{11} & A_{1*} \\ A_{*1} & A_{**} \end{pmatrix}, \qquad L = \begin{pmatrix} \ell_{11} \\ L_{*1} & L_{**} \end{pmatrix}, \qquad U = \begin{pmatrix} u_{11} & U_{1*} \\ & U_{**} \end{pmatrix}.$$

We obtain

$$\begin{pmatrix} \ell_{11}u_{11} & \ell_{11}U_{1*} \\ L_{*1}u_{11} & L_{**}U_{**} + L_{*1}U_{1*} \end{pmatrix} = \begin{pmatrix} \ell_{11} & \\ L_{*1} & L_{**} \end{pmatrix} \begin{pmatrix} u_{11} & U_{1*} \\ & U_{**} \end{pmatrix} = \begin{pmatrix} a_{11} & A_{1*} \\ A_{*1} & A_{**} \end{pmatrix}$$

and can solve $\ell_{11}u_{11} = a_{11}$ directly (usually $\ell_{11} = 1$, $u_{11} = a_{11}$), $L_{*1}u_{11} = A_{*1}$ and $\ell_{11}U_{1*} = A_{1*}$ by scaling, and use recursion for

$$L_{**}U_{**}=A_{**}-L_{*1}U_{1*}.$$

Arrays and pointers in C

Arrays and pointers: In C, arrays and pointers are almost synonymous. If A is a pointer, A[k] means accessing the element that can be found k steps behind the one A points to.

Pointer arithmetic: We can move pointers by adding integers.

```
real A[] = { 1.0, 2.0, 3.0, 4.0, 5.0 };
real *B, *C;

B = A + 2;
printf("%f\n", B[1]);  /* Yields B[1] = A[2+1] = 4.0 */

C = B - 1;
printf("%f\n", C[3]);  /* Yields C[3] = B[2] = A[4] = 5.0 */
```

Array representation of matrices and vectors

Vectors $x \in \mathbb{R}^n$ are represented by

- a pointer x to the first coefficient,
- an increment incx that takes us to the next coefficient, and
- the dimension n.

We can find x_i in x[(i-1)*incx], $i \in [1:n]$.

Array representation of matrices and vectors

Vectors $x \in \mathbb{R}^n$ are represented by

- a pointer x to the first coefficient,
- an increment incx that takes us to the next coefficient, and
- the dimension n.

We can find x_i in x[(i-1)*incx], $i \in [1:n]$.

Matrices $A \in \mathbb{R}^{m \times n}$ are represented by

- a pointer A to the first coefficient a₁₁,
- a leading dimension 1dA that takes us to the next column, and
- the dimensions rowsA and colsA.

We can find a_{ij} in A[(i-1)+(j-1)*ldA], $i \in [1:m]$, $j \in [1:n]$.

Array representation of matrices and vectors

Vectors $x \in \mathbb{R}^n$ are represented by

- a pointer x to the first coefficient,
- an increment incx that takes us to the next coefficient, and
- the dimension n.

We can find x_i in x[(i-1)*incx], $i \in [1:n]$.

Matrices $A \in \mathbb{R}^{m \times n}$ are represented by

- a pointer A to the first coefficient a₁₁,
- a leading dimension ldA that takes us to the next column, and
- the dimensions rowsA and colsA.

We can find a_{ij} in A[(i-1)+(j-1)*ldA], $i \in [1:m]$, $j \in [1:n]$.

Standard practice: Better to use indices [0:n-1] instead of [1:n].

Submatrices and -vectors

Submatrix: If $A \in \mathbb{R}^{n \times m}$ is given,

```
B = A + 2 + 3 * 1dA;
1dB = 1dA;
rowsB = rowsA - 2;
colsB = colsA - 3;
```

defines the submatrix starting in the third row and the fourth column.

Submatrices and -vectors

Submatrix: If $A \in \mathbb{R}^{n \times m}$ is given,

```
B = A + 2 + 3 * 1dA;
1dB = 1dA;
rowsB = rowsA - 2;
colsB = colsA - 3;
```

defines the submatrix starting in the third row and the fourth column.

Subvectors: The second row and the third column are represented by

$$x = A + 1;$$
 incx = ldA; $n = colsA;$
 $y = A + 2 * ldA;$ incy = 1; $m = rowsA;$

Basic Linear Algebra Subprograms can be used to take advantage of highly optimized implementations of basic operations on matrices and vectors.

BLAS Level 1 contains vector operations, for example

• scaling a vector, $x \leftarrow \alpha x$:

• adding two vectors, $y \leftarrow y + \alpha x$:

• computing the Euclidean norm $||x||_2 = (x_1^2 + ... + x_n^2)^{1/2}$: real nrm2(int n, const real *x, int incx);

Goal: Solve Lx = b. Using the block notation

$$\begin{pmatrix} \ell_{11} & \\ L_{*1} & L_{**} \end{pmatrix} \begin{pmatrix} x_1 \\ x_* \end{pmatrix} = \begin{pmatrix} b_1 \\ b_* \end{pmatrix},$$

equivalent with $x_1=b_1/\ell_{11}$ and $L_{**}x_*=b_*-L_{*1}x_1$.

Goal: Solve Lx = b. Using the block notation

$$\begin{pmatrix} \ell_{11} & \\ L_{*1} & L_{**} \end{pmatrix} \begin{pmatrix} x_1 \\ x_* \end{pmatrix} = \begin{pmatrix} b_1 \\ b_* \end{pmatrix},$$

equivalent with $x_1=b_1/\ell_{11}$ and $L_{**}x_*=b_*-L_{*1}x_1.$

Goal: Solve Lx = b. Using the block notation

$$\begin{pmatrix} \ell_{11} & \\ L_{*1} & L_{**} \end{pmatrix} \begin{pmatrix} x_1 \\ x_* \end{pmatrix} = \begin{pmatrix} b_1 \\ b_* \end{pmatrix},$$

equivalent with $x_1=b_1/\ell_{11}$ and $L_{**}x_*=b_*-L_{*1}x_1.$

Goal: Solve Lx = b. Using the block notation

$$\begin{pmatrix} \ell_{11} & \\ L_{*1} & L_{**} \end{pmatrix} \begin{pmatrix} x_1 \\ x_* \end{pmatrix} = \begin{pmatrix} b_1 \\ b_* \end{pmatrix},$$

equivalent with $x_1=b_1/\ell_{11}$ and $L_{**}x_*=b_*-L_{*1}x_1.$

Goal: In order to compute an LU factorization, we have to work with matrices, not vectors.

BLAS Level 2 contains matrix-vector operations, for example

```
• computing a matrix-vector product, y \leftarrow y + \alpha Ax or y \leftarrow y + \alpha A^T x:

void gemv(bool trans, int rows, int cols, real alpha,

const real *A, int ldA,

const real *x, int incx,

real *y, int incy);
```

adding a rank-one product to a matrix, A ← A + αxy^T:
 void ger(int rows, int cols, real alpha,
 const real *x, int incx,
 const real *y, int incy,
 real *A, int ldA);

Goal: Find LU decomposition. Block notation

$$\begin{pmatrix} a_{11} & A_{1*} \\ A_{*1} & A_{**} \end{pmatrix} = \begin{pmatrix} \ell_{11} \\ L_{*1} & L_{**} \end{pmatrix} \begin{pmatrix} u_{11} & U_{1*} \\ & U_{**} \end{pmatrix}$$

leads to $\ell_{11} = 1$, $u_{11} = a_{11}$, $U_{1*} = A_{1*}$, $L_{*1}u_{11} = A_{*1}$, $L_{**}U_{**} = A_{**} - L_{*1}U_{1*}$


```
for(k=0; k<n; k++) {
  scal(n-k-1, 1.0/A[k+k*ldA], A+(k+1)+k*ldA, 1);
  ger(n-k-1, n-k-1, -1.0,
          A+(k+1)+ k *ldA, 1,
          A+ k +(k+1)*ldA, ldA,
          A+(k+1)+(k+1)*ldA, ldA);
}</pre>
```

Goal: Find LU decomposition. Block notation

$$\begin{pmatrix} a_{11} & A_{1*} \\ A_{*1} & A_{**} \end{pmatrix} = \begin{pmatrix} \ell_{11} \\ L_{*1} & L_{**} \end{pmatrix} \begin{pmatrix} u_{11} & U_{1*} \\ & U_{**} \end{pmatrix}$$

leads to
$$\ell_{11} = 1$$
, $u_{11} = a_{11}$, $U_{1*} = A_{1*}$, $L_{*1}u_{11} = A_{*1}$, $L_{**}U_{**} = A_{**} - L_{*1}U_{1*}$

```
for(k=0; k<n; k++) {
  scal(n-k-1, 1.0/A[k+k*ldA], A+(k+1)+k*ldA, 1);
  ger(n-k-1, n-k-1, -1.0,
          A+(k+1)+ k *ldA, 1,
          A+ k +(k+1)*ldA, ldA,
          A+(k+1)+(k+1)*ldA, ldA);
}</pre>
```


Goal: Find LU decomposition. Block notation

$$\begin{pmatrix} a_{11} & A_{1*} \\ A_{*1} & A_{**} \end{pmatrix} = \begin{pmatrix} \ell_{11} \\ L_{*1} & L_{**} \end{pmatrix} \begin{pmatrix} u_{11} & U_{1*} \\ & U_{**} \end{pmatrix}$$

leads to
$$\ell_{11} = 1$$
, $u_{11} = a_{11}$, $U_{1*} = A_{1*}$, $L_{*1}u_{11} = A_{*1}$, $L_{**}U_{**} = A_{**} - L_{*1}U_{1*}$

Goal: Find LU decomposition. Block notation

$$\begin{pmatrix} a_{11} & A_{1*} \\ A_{*1} & A_{**} \end{pmatrix} = \begin{pmatrix} \ell_{11} \\ \ell_{*1} & \ell_{**} \end{pmatrix} \begin{pmatrix} u_{11} & U_{1*} \\ & U_{**} \end{pmatrix}$$

leads to
$$\ell_{11}=1$$
, $u_{11}=a_{11}$, $U_{1*}=A_{1*}$, $L_{*1}u_{11}=A_{*1}$, $L_{**}U_{**}=A_{**}-L_{*1}U_{1*}$

Summary

Finite differences:

- Replace the domain Ω by a grid Ω_h ,
- replace functions by grid functions, and
- replace differential operators by finite difference operators.

Potential equation approximated by linear system

$$-\Delta_h u_h(x) = f(x)$$
 for all $x \in \Omega_h$,
 $u_h(x) = 0$ for all $x \in \partial \Omega_h$.

Direct solvers like the LU factorization can be used to solve this system.

BLAS offers highly optimized routines that can speed up the implementation significantly.