1- Sketch a composed TM **M** that performs the computation :

$$(s, \lozenge \# \omega) - |*_{M}(h, \lozenge \# \omega^{c})$$

where $\boldsymbol{\omega}^c$ is the compressed version of $\boldsymbol{\omega}$ where all the characters '\$' within $\boldsymbol{\omega}$ are removed.

2- Problems from the main text book:

An optional HW question

Question — A Turing machine M_n operates on an abstract n-dimensional quadrant given by $X = N \times ... \times N = N^n$ where $N = \{0,1,2,\ldots,\}$ denotes the set of natural numbers. The head can move in positive and negative directions along each of the dimensions; hence it has precisely 2n moves at each slot position. Each slot is an n-dimensional cube that carries data represented by a symbol in its alphabet set Σ . A standard TM M to simulate M_n must assign a unique slot on its tape corresponding to each n-dimensional cubic slot of M_n . This is accomplished by defining functions $f_k \colon N^k \to N$ defined inductively via functions f_1, f_2, \ldots, f_n , each with the domain N^k for $k = 1, \ldots, n$ as follows: $f_1(i_1) = i_1$ for all $i_1 \in N$

 $f_k(i_1,i_2,...,i_k) := (f_{k-1}(i_1,i_2,...,i_{k-1}) + i_k)(f_{k-1}(i_1,i_2,...,i_{k-1}) + i_k + 1)/2 + i_k, k = 2,3,...,n(1)$ Hence each $f_k(i_1,i_2,...,i_k)$ can be computed sequentially using the inductive recipe above. For example $f_2(i_1,i_2) = (i_1+i_2)(i_1+i_2+1)/2 + i_2$ etc.

Theorem

The function $f_n: \mathbb{N}^n \to \mathbb{N}$ described above by (1) is a **bijection**. i.e.:

(i) $f_n(i_1,i_2,...,i_n) = f_n(j_1,j_2,...,j_n) \Rightarrow i_p = j_p$ for p=1,...,n (hence it is an injection (1-to-1)) (ii) for every $u \in N$ there exist $(i_1,...,i_n) \in N^n$ such that $f_n(i_1,i_2,...,i_n) = u$ (hence it is a surjection (onto))

Using this theorem describe how M can simulate M_n . In particular describe how M moves its head when M_n oves its head from slot $(i_1, ..., i_p ..., i_n)$ to $(i_1, ..., i_p \pm 1, i_n)$.

(To get a feeling for the problem first solve it for n=2, namely simulating a 2D-TM!)

Meanwhile try also to prove the theorem above using induction on n