# МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

> Мегафакультет трансляционных информационных технологий Факультет информационных технологий и программирования

> > Лабораторная работа № 2
> > По дисциплине «Прикладная математика»
> > Градиентный спуск.

Выполнил студент группы №М32091 Зернова Полина Алексеевна

Проверила Гомозова Валерия Эдуардовна

#### 1. Реализация методов

https://github.com/a1irise/app\_math/tree/master/lab2

# 2. Тестирование методов градиентного спуска

**2.1.** 
$$f(x) = x^2 + y^2$$
,  $x0 = [10, 10]$ , epsilon = 1e-3

# Краткое сравнение

| Способ выбора величины шага    | Количество итераций | Результат                        |
|--------------------------------|---------------------|----------------------------------|
| Постоянная величина шага (0.1) | 47                  | [3.48449144e-04, 3.48449144e-04] |
| Постоянная величина шага (0.9) | 47                  | [3.48449144e-04, 3.48449144e-04] |
| Дробление шага (0.9)           | 47                  | [3.48449144e-04, 3.48449144e-04] |
| Золотое сечение                | 3                   | [8.68655007e-07, 8.68655007e-07] |
| Фибоначчи                      | 3                   | [2.81214395e-05, 2.81214395e-05] |

# Визуализация

#### - Постоянная величина шага (0.1)





# - Постоянная величина шага (0.9)





# - Дробление шага (0.9)





#### - Золотое сечение





# - Фибоначчи





# **2.2.** $f(x) = x^2 + y^2$ , x0 = [0.5, 0.5], epsilon = 1e-3

# Краткое сравнение

| Способ выбора величины шага    | Количество итераций | Результат                          |
|--------------------------------|---------------------|------------------------------------|
| Постоянная величина шага (0.1) | 34                  | [3.16912650e-04, 3.16912650e-04]   |
| Постоянная величина шага (0.9) | 34                  | [-3.16912650e-04, -3.16912650e-04] |
| Дробление шага (0.9)           | 34                  | [-3.16912650e-04, -3.16912650e-04] |
| Золотое сечение                | 2                   | [-1.47364769e-04, -1.47364769e-04] |
| Фибоначчи                      | 3                   | [1.40607198e-06, 1.40607198e-06]   |

#### Визуализация

#### - Постоянная величина шага (0.1)





#### - Постоянная величина шага (0.9)





# - Дробление шага (0.9)





#### - Золотое сечение





# - Фибоначчи





**2.3.**  $f(x) = x^2 + y^2 + xy - 4x - 5y$ , x0 = [10, 10], epsilon = 1e-3

# Краткое сравнение

| Способ выбора величины шага    | Количество итераций | Результат                        |
|--------------------------------|---------------------|----------------------------------|
| Постоянная величина шага (0.1) | 31                  | [1.33352867, 1.66685449]         |
| Постоянная величина шага (0.9) | 100                 | [9.61046123e+23, 9.24082811e+23] |
| Дробление шага (0.9)           | 100 (55)            | [1.33152111, 1.66492414]         |
| Золотое сечение                | 100                 | [1.3313123, 1.66472337]          |
| Фибоначчи                      | 100                 | [1.33182302, 1.66521444]         |

# Визуализация

- Постоянная величина шага (0.1)





#### - Постоянная величина шага (0.9)





# - Дробление шага (0.9)





# - Золотое сечение





#### - Фибоначчи



**2.4.**  $f(x) = x^2 + y^2 + xy - 4x - 5y$ , x0 = [0.5, 0.5], epsilon = 1e-3

# Краткое сравнение

| Способ выбора величины шага    | Количество итераций | Результат                          |
|--------------------------------|---------------------|------------------------------------|
| Постоянная величина шага (0.1) | 25                  | [1.33317368, 1.66644316]           |
| Постоянная величина шага (0.9) | 100                 | [-9.24082811e+22, -1.29371593e+23] |
| Дробление шага (0.9)           | 100 (52)            | [1.34494531, 1.68292344]           |
| Золотое сечение                | 100                 | [1.34725793, 1.6861611]            |
| Фибоначчи                      | 100                 | [1.3436653, 1.68113142]            |

# Визуализация

# - Постоянная величина шага (0.1)



# - Постоянная величина шага (0.9)



- Дробление шага (0.9)





#### - Золотое сечение





# - Фибоначчи





# 3. Тестирование метода Флетчера-Ривса

# Краткое сравнение

| Функция                    | Начальное   | Epsilon | Количество | Результат                          |
|----------------------------|-------------|---------|------------|------------------------------------|
|                            | приближение |         | итераций   |                                    |
| $x^2 + y^2$                | [10, 10]    | 1e-3    | 3          | [-2.56018289e-10, -2.56018289e-10] |
| $x^2 + y^2$                | [0.5, 0.5]  | 1e-3    | 2          | [-1.47364769e-04, -1.47364769e-04] |
| $x^2 + y^2 + xy - 4x - 5y$ | [10, 10]    | 1e-3    | 96         | [ 1.33309994, 1.66644225]          |
| $x^2 + y^2 + xy - 4x - 5y$ | [0.5, 0.5]  | 1e-3    | 163        | [1.33352638, 1.66693693]           |

# Визуализация

3.1. 
$$f(x) = x^2 + y^2$$
,  $x0 = [10, 10]$ , epsilon = 1e-3





3.2.  $f(x) = x^2 + y^2$ , x0 = [0.5, 0.5], epsilon = 1e-3





3.3.  $f(x) = x^2 + y^2 + xy - 4x - 5y$ , x0 = [10, 10], epsilon = 1e-3





3.4.  $f(x) = x^2 + y^2 + xy - 4x - 5y$ , x0 = [0.5, 0.5], epsilon = 1e-3



