

# CLASSROOM STUDY PACKAGE

## MATHEMATICS

Polynomial

# JEE EXPERT

## POLYNOMIAL

### **CONTENTS**

**KEY CONCEPTS** - 2 - 6

SOLVED EXAMPLES - 7-16

EXERCISE - I - 17 - 18

EXERCISE - II - 19 - 21

**EXERCISE - II - 22 - 23** 

**EXERCISE - IV** - 24 - 25

ANSWER KEY - 25-25

### **KEY-CONCEPTS**

An algebraic expression of the form

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_1 x^1 + a_0 x^0$$
, where

- (i)  $a_n \neq 0$
- (ii)  $a_0$ ,  $a_1$ ,  $a_2$ , ......  $a_n$  are real numbers
- (iii) n is whole number, is called a polynomial.

 $a_n$ ,  $a_{n-1}$ ,  $a_{n-2}$ , are coefficients of  $x^n$ ,  $x^{n-1}$  ......  $x^0$  respectively and  $a_n x^n$ ,  $a_{n-1} x^{n-1}$ ,  $a_{n-2} x^{n-2}$ , ...... are terms of the polynomial. Here the term  $a_n x^n$  is called the **leading term** and its coefficient  $a_n$ , the **leading coefficient**.

### Example -

- (i)  $p(x) = \frac{1}{2}x^3 3x^2 + 2x 4$  is a polynomial in variable x.
- (ii)  $\frac{1}{2}x^3$ , -3x<sup>2</sup>, 2x, -4 are known as terms of polynomial and  $\frac{1}{2}$ , -3, 2, -4 are their coefficients.

**Types of Polynomials :** Generally we divide the polynomials in two categories.



- (A) BASED ON NUMBER OF TERMS: These are follows:
  - (a) Monomial: Polynomials having only one term are called monomials. ('Mono' means 'one')

Eg. 2, 
$$2x$$
,  $5x^2$ ,  $-5x^2$ , y,  $u^4$  etc.

(b) Binomial: A polynomial of two terms is called binomial.

Eg. 
$$p(x) = x + 1$$
,  $q(y) = 2y^7 + 5y^6$  etc.

(c) Trinomial: A polynomial of three terms is called a trinomial.

Eg. 
$$p(x) = 2x^2 + x + 6$$
  
 $q(y) = 9y^6 + 4y^2 + 1$  etc.

(B) BASED ON DEGREE :-

**Degree of Polynomials :** The highest power of variable in a polynomial is known as it degree. **For example :** 

- (a)  $p(y) = 2y^2 3y + 7$  is a polynomial in the variable y of degree 2.
- (b)  $q(x) = \sqrt{2}x + 13x^4 + 5x^6$  is a polynomial in variable x of degree 6.

Polynomials classified by their degree:-

- (i) Linear Polynomial : A polynomial of degree one is called a linear polynomial. Ex. p(x) = 4x + 5
- (ii) Quadratic Polynomial : A polynomial of degree two is called a quadratic polynomial. Ex.  $p(x) = 2x^2 + 5$
- (iii) Cubic Polynomial : A polynomial of degree three is called a cubic polynomial. Ex.  $4x^2 + 2x^3 + 1$ ,  $5x^3 + x^2$
- (vi) Biquadrate polynomial: A polynomial of fourth degree is called a biquadrate polynomial. Ex.  $4x^4 + 2x^3 + 5x^2 + x + 1$

#### **VALUE OF POLYNOMIALS:**

If p(x) is a polynomial in variable x and  $\alpha$  is any real number, then the value obtained by replacing x by  $\alpha$  in p(x) is called value of p(x) at =  $\alpha$  and is denoted by  $p(\alpha)$ .

For example: Find the value of  $p(x) = x^3 - 6x^2 + 11x - 6$  at x = -2

$$\Rightarrow$$
 p(-2) = (-2)<sup>3</sup> - 6 (-2)<sup>2</sup> + 11(-2) -6 = -8 -24 - 22 - 6

$$\Rightarrow$$
 p(-2) = -60

### Zeros/Roots of a polynomial/equation

Consider a polynomial  $f(x) = 3x^2 - 4x + 2$ . If we replace x by 3 everywhere in the above expression, we get

$$f(3) = 3 \times (3)^2 - 4 \times (3) + 2 = 27 - 12 + 2 = 17$$

We can say that the value of the polynomial f(x) at x = 3 is 17.

Similarly the value of polynomial  $f(x) = 3x^2 - 4x + 2$ 

at 
$$x = -2$$
 is  $f(-2) = 3(-2)^2 - 4 \times (-2) + 2 = 12 + 8 + 2 = 22$ 

at 
$$x = 0$$
 is  $f(0) = 3(0)^2 - 4(0) + 2 = 0 - 0 + 2 = 2$ 

at 
$$x = \frac{1}{2}$$
 is  $f\left(\frac{1}{2}\right) = 3 \times \left(\frac{1}{2}\right)^2 - 4 \times \left(\frac{1}{2}\right) + 2 = \frac{3}{4} - 2 + 2 = \frac{3}{4}$ 

In general, we can say  $f(\alpha)$  if the value of the polynomial f(x) at  $x = \alpha$ , where  $\alpha$  is a real number.

A real number  $\alpha$  is zero of a polynomial f(x) if the value of the polynomial f(x) is zero at  $x = \alpha$  i.e.  $f(\alpha) = 0$ .

#### OR

The value of the variable x, for which the polynomial f(x) becomes zero is called zero of the polynomial.

E.g.: consider, a polynomial  $p(x) = x^2 - 5x + 6$ ; replace x by 2 and 3.

$$p(2) = (2)^2 - 5 \times 2 + 6 = 4 - 10 + 6 = 0$$

$$p(3) = (3)^2 - 5 \times 3 + 6 = 9 - 15 + 6 = 0$$

 $\therefore$  2 and 3 are the zeros of the polynomial p(x).

### Roots of a polynomial equation

An expression f(x) = 0 is called a polynomial equation if f(x) is a polynomial of degree  $n \ge 1$ .

A real number  $\alpha$  is a root of a polynomial f(x) = 0 if  $f(\alpha) = 0$  i.e.  $\alpha$  is a zero of the polynomial f(x).

E.g. consider the polynomial f(x) = 3x-2, then 3x-2 = 0 is the corresponding polynomial equation.

Here, 
$$f\left(\frac{2}{3}\right) = 3\left(\frac{2}{3}\right) - 2 = 0$$

i.e. 
$$\frac{2}{3}$$
 is a zero of the polynomial  $f(x) = 3x - 2$ 

or 
$$\frac{2}{3}$$
 is a root of the polynomial equation  $3x - 2 = 0$ 

**Ex.** Find q(0), q(1) and q(2) for each of the following polynomials:

(i) 
$$q(x) = x^2 + 3x$$

(ii) 
$$q(y) = 2 + y + 2y^2 - 5y^3$$

**Sol.** (i) 
$$q(x) = x^2 + 3x$$

$$\therefore$$
 q(0) = (0)<sup>2</sup> + 3 × 0 = 0

$$q(1) = (1)^2 + 3 \times 1 = 4$$

$$q(2) = (2)^2 + 3 \times 2 = 4 + 6 = 10$$

(ii) 
$$q(y) = 2 + y + 2y^2 - 5y^3$$

$$\therefore$$
 q(0) = 2 + 0 + 2(0)<sup>2</sup> - 5(0)<sup>3</sup> = 2

$$q(1) = 2 + 1 + 2(1)^2 - 5(1)^3 = 2 + 1 + 2 - 5 = 0$$

and 
$$q(2) = 2 + 2 + 2(2)^2 - 5(2)^3 = 2 + 2 + 8 - 40 = -28$$

#### **REMAINDER THEOREM:**

**Statement**: Let p(x) be a polynomial of degree  $\geq 1$  and 'a' is any real number. If p(x) is dividided by (x - a), then the remainder is p(a).

### Dividend = Divisor × quotient + Remainder

**E.g.** Let p(x) be 
$$x^3 - 7x^2 + 6x + 4$$
.

Divide p(x) with (x - 6) and to find the remainder, put x = 6 in p(x) i.e. p(6) will be the remainder.

:. required remainder be

$$p(6) = (6)^3 - 7.6^2 + 6.6 + 4 = 216 - 252 + 36 + 4 = 256 - 252 = 4$$

$$\begin{array}{r}
x - 6 \overline{\smash)} x^3 - 7x^2 + 6x + 4 \overline{\smash)} x^2 - x \\
-x^3 - 6x^2 \\
 \overline{\phantom{-}} x^2 + 6x + 4 \\
 -x^2 + 6x \\
 + - \\
 \overline{\phantom{-}} Remainder = 4
\end{array}$$

Thus, p(a) is remainder on dividing p(x) by (x - a).

- **Ex.** Find remainder  $3x^4 4x^3 3x 1$ by (x-1)
- **Sol.** By long division

$$3x^{3} - x^{2} - x - 4$$

$$x - 1) 3x^{4} - 4x^{3} - 3x - 1$$

$$- +$$

$$-x^{3} - 3x - 1$$

$$-x^{3} + x^{2}$$

$$+ -$$

$$-x^{2} - 3x - 1$$

$$-x^{2} + x$$

$$+ -$$

$$-4x - 1$$

$$-4x + 4$$

$$-5$$

Here, the remainder is -5. Now, the zero of (x - 1) is 1. So, putting x = 1 is p(x), we see that  $p(1) = 3(1)^4 - 4(1)^3$ 

$$= 3 - 4 - 3 - 1$$

= -5, which is the remainder.

#### **Ex.** Find the remainder when

(i) 
$$x^3 - ax^2 + 6x - a$$
 is divided by  $x - a$ 

(ii) 
$$2x^4 + x^3 - 2x^2 + x + 1$$
 by  $2x - 1$ 

### Solution

(i) Let 
$$p(x) = x^3 - ax^2 + 6x - a$$

zero of x – a is a

$$p(a) = a^3 - a(a)^2 + 6(a) - a$$
  
=  $a^3 - a^3 + 6a - a = 5a$ 

So, by the remainder theorem, remainder = 5a

(ii) Let 
$$p(x) = 2x^4 + x^3 - 2x^2 + x + 1$$
  
zero of  $2x - 1$  is  $1/2$ 

So, 
$$p\left(\frac{1}{2}\right) = 2\left(\frac{1}{2}\right)^4 + \left(\frac{1}{2}\right)^3 - 2\left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right) + 1$$

$$=\frac{1}{8}+\frac{1}{8}-\frac{1}{2}+\frac{1}{2}+1=\frac{1}{4}+1=\frac{5}{4}$$

So, by the remainder theorem remainder =  $\frac{5}{4}$ 

#### Factor Theorem:

**Statement:** Let f(x) be a polynomial of degree  $\geq 1$  and a be any real constant such that f(a) = 0, then (x-a) is a factor of f(x). conversely, if (x-a) is a factor of f(x), then f(a) = 0.

**Proof**: By remainder theorem, if f(x) is divided by (x-a), the remainder will be f(a). let q(x) be the quotient. Then, we can write,

$$f(x) = (x-a) \times q(x) + f(a)( :: Dividend = Divisor \times Quotient + Remainder)$$

If 
$$f(a) = 0$$
, then  $f(x) = (x - a) \times q(x)$ 

Thus, (x - a) is a factor of q(x).

Converse Let (x-a) is a factor of f(x).

Then we have a polynomial q(x) such that  $f(x) = (x - a) \times q(x)$ 

Replacing x by a, we get f(a) = 0.

Hence, proved.

- **Ex.** Determine the value of a for which the polynomial  $2x^4$   $ax^3$  +  $4x^2$  + 2x + 1 is divisible by 1 2x.
- **Sol.** Let  $p(x) = 2x^4 ax^3 + 4x^2 + 2x + 1$ . If the polynomial p(x) is divisible by (1 2x), then (1 2x) is a factor of p(x).

$$\therefore p\left(\frac{1}{2}\right) = 0$$

$$\Rightarrow \qquad 2\left(\frac{1}{2}\right)^4 - a \times \left(\frac{1}{2}\right)^3 + 4\left(\frac{1}{2}\right)^2 + 2 \times \frac{1}{2} + 1 = 0$$

$$\Rightarrow \qquad \frac{2}{16} - \frac{a}{8} + \frac{4}{4} + \frac{2}{2} + 1 = 0 \Rightarrow \frac{1}{8} - \frac{a}{8} + 1 + 1 + 1 = 0 \Rightarrow \qquad \frac{25}{8} = \frac{a}{8} \Rightarrow a = 25$$

Hence, the given polynomial will be divisible by 1-2x, if a = 25.

**Ex.** Use the factor theorem to determine whether (x - 1) is a factor of

$$f(x) = 2\sqrt{2}x^3 + 5\sqrt{2}x^2 - 7\sqrt{2}$$

**Sol.** By using factor theorem, (x-1) is a factor of f(x), only when f(1) = 0

$$f(1) = 2\sqrt{2}(1)^3 + 5\sqrt{2}(1)^2 - 7\sqrt{2} = 2\sqrt{2} + 5\sqrt{2} - 7\sqrt{2} = 0$$

Hence, (x-1) is a factor of f(x).

- **Ex.** For what value of k, (x-1) is a factor of  $p(x) = kx^2 3x + k$ ?
- **Sol.** Here  $p(x) = kx^2 3x + k$

$$\therefore$$
 x -1 is a factor of p(x)

$$\therefore$$
 x -1 = 0  $\therefore$  x = 1

$$p(1) = 0$$

or 
$$k(1)^2 - 3(1) + k = 0$$

$$\Rightarrow$$
 K-3 + K = 0

or 
$$2k - 3 = 0$$

$$\therefore k = \frac{3}{2}$$

#### **TYPE OF FACTORIZATION:-**

(i) Factorization by taking out the common factors

**Ex.** 
$$ab(a^2 + b^2 - c^2) + bc(a^2 + b^2 - c^2) - ca(a^2 + b^2 - c^2)$$

Sol. We have

$$ab(a^2 + b^2 - c^2) + bc (a^2 + b^2 - c^2) - ca(a^2 + b^2 - c^2)$$

$$= (a^2 + b^2 - c^2) (ab + bc - ca)$$

(ii) Factorization by grouping the terms

**Ex.** 
$$(x^2 + 3x)^2 - 5(x^2 + 3x) - y(x^2 + 3x) + 5y$$

Sol. We have

$$(x^2 + 3x)^2 - 5(x^2 + 3x) - y(x^2 + 3x) + 5y$$
  
 $(x^2 + 3x) \{(x^2 + 3x) - 5\} - y\{(x^2 + 3x) - 5\} = (x^2 + 3x - 5) (x^2 + 3x - y)$ 

### [POLYNOMIAL]

### (iii) Factorization by making a perfect square

**Ex.** 
$$a^2 + b^2 - 2(ab - ac + bc)$$

Sol. We have

$$a^{2} + b^{2} - 2(ab - ac + bc)$$

$$= a^{2} + b^{2} - 2ab + 2ac - 2bc$$

$$= (a - b)^{2} + 2c (a - b)$$

$$= (a - b) \{(a - b) + 2c\} = (a - b) (a - b + 2c)$$

### (iv) Factorization the difference of two squares

**Ex.** 
$$x^8 - y^8$$

Sol. We have

$$x^{8} - y^{8} = \{(x^{4})^{2} - (y^{4})^{2}\} = (x^{4} - y^{4}) (x^{4} + y^{4})$$

$$= \{(x^{2})^{2} - (y^{2})^{2} (x^{4} + y^{4}) = (x^{2} - y^{2}) (x^{2} + y^{2}) (x^{4} + y^{4})$$

$$= (x - y) (x + y) (x^{2} + y^{2}) (x^{4} + y^{4})$$

$$= (x - y) (x + y) (x^{2} + y^{2}) \{(x^{2})^{2} + (y^{2})^{2} + 2x^{2}y^{2} - 2x^{2}y^{2})$$

$$= (x - y) (x + y) (x^{2} + y^{2}) \{(x^{2} + y^{2})^{2} - (\sqrt{2} xy)^{2}\}$$

$$= (x - y) (x + y) (x^{2} + y^{2}) (x^{2} + y^{2} - \sqrt{2} xy) (x^{2} + y^{2} + \sqrt{2} xy)$$

### (v) Factorization of quadratic polynomials by splitting the middle term

**Ex.** 
$$x^2 + 3\sqrt{3} x - 30$$

**Sol.** In order to factorize  $x^2 + 3\sqrt{3} \times -30$ , we have to find two numbers p and q such that  $p + q = 3\sqrt{3}$  and pq = -30. Clearly,  $5\sqrt{3} + (-2\sqrt{3}) = 3\sqrt{3}$  and  $5\sqrt{3} \times -2\sqrt{3} = -30$ 

So. we write the middle term  $3\sqrt{3}$  as  $5\sqrt{3}$  -2 $\sqrt{3}$  x

$$x^{2} + 3\sqrt{3} x - 30$$

$$= x^{2} + 5\sqrt{3} x - 2\sqrt{3}x - 30$$

$$= (x^{2} + 5\sqrt{3} x) - (2\sqrt{3} x + 30)$$

$$= (x^{2} + 5\sqrt{3} x) (2\sqrt{3} x + 10\sqrt{3} \times \sqrt{3})$$

$$= x(x + 5\sqrt{3}) - 2\sqrt{3} (x + 5\sqrt{3}) = (x + 5\sqrt{3}) (x - 2\sqrt{3})$$

### Algebraic identities :

An algebraic identity is an algebraic equation that is true for all values of the variables present in the equation.

1. (i) 
$$(x + y)^2 = x^2 + 2xy + y^2$$
; (ii)  $(x-y)^2 = x^2 - 2xy + y^2$ 

II. 
$$x^2 - y^2 = (x + y)(x - y)$$

III. 
$$(x+a)(x+b) = x^2 + (a+b)x + ab$$

IV. 
$$(x+y+z)^2 = x^2 + y^2 + z^2 + 2xy + 2yz + 2zx$$

V. (i) 
$$(x + y)^3 = x^3 + y^3 + 3xy (x + y)$$

(ii) 
$$(x - y)^3 = x^3 - y^3 - 3xy(x - y)$$

VI. (i) 
$$x^3 + y^3 = (x + y)(x^2 - xy + y^2)$$

(ii) 
$$x^3 - y^3 = (x - y)(x^2 + xy + y^2)$$

VII. 
$$x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x^2 + y^2 + z^2 - xy - yz - zx)$$

VIII. If 
$$x + y + z = 0$$
, then  $x^3 + y^3 + z^3 = 3xyz$ 

### **SOLVED EXAMPLES**

**Ex.1** Factorise  $x^2 - 5x - 24$  by using the factor theorem.

**Sol.** 
$$p(x) = x^2 - 5x - 24$$
.

Here, coefficient of the leading term is 1 and the constant term is -24. A zero of the polynomial p(x) will be a factor of the number -24, by inspection, we find that the number 8 is a divisor of -24 and also we have,

$$p(8) = (8)^2 - 5(8) - 24$$

$$\Rightarrow$$
 64 - 40 - 24 = 0

i.e. 8 is a zero of the polynomial p(x).

Then (x-8) is a factor of the polynomial. We can express

$$x^2-5x-24 = (x^2-8x) + (3x-24)$$
  
=  $x(x-8) + 3 (x-8)$   
=  $(x-8) (x+3)$ 

We can also find the second factor of the polynomial by dividing  $x^2 - 5x - 24$  by (x-8).

**Ex.2** Factorise  $x^3 - 23x^2 + 142x - 120$ .

**Sol.** 
$$p(x) = x^3 - 23x^2 + 142x - 120$$
.

The coefficient of the leading term is 1 and the constant term is -120. Factors of -120 are many but we find a suitable factor of -120 which is a zero of the polynomial.

By inspection, we find that

$$p(1) = (1)^3 - 23(1)^2 + 142(1) - 120$$
  
= 1 - 23 + 142 - 120 = 0

 $\Rightarrow$  (x –1) is a factor of the polynomial.

Now, we can express the given polynomial as below:

$$x^{3}-23x^{2}+142 x-120 = (x^{3}-x^{2})+(-22x^{2}+22x)+(120x-120)$$

$$= x^{2} (x-1)-22x (x-1)+120 (x-1)$$

$$= (x-1) (x^{2}-22x+120)$$

$$= (x-1) \{x^{2}+(-12-10) x+120\}$$

$$= (x-1) \{(x^{2}-12x)+(-10x+120)\}$$

$$= (x-1) \{x (x-12)-10 (x-12)\}$$

$$= (x-1) \{(x-12) (x-10)\}$$

$$= (x-1) (x-10) (x-12)$$

**Ex.3** Find the product using appropriate identities:

(i) 
$$(x + 8) (x + 8)$$
 (ii)  $(3x - 2y) (3x - 2y)$  (iii)  $(x + 0.1) (x - 0.1)$ 

**Sol.** (i) 
$$(x + 8) (x + 8) = (x + 8)^2 = x^2 + 2(x) (8) + (8)^2 = x^2 + 16x + 64$$
.

(ii) 
$$(3x - 2y) (3x - 2y) = (3x - 2y)^2$$
  
=  $(3x)^2 - 2(3x)(2y) + (2y)^2 = 9x^2 - 12xy + 4y^2$ 

(iii) 
$$(x + 0.1) (x-0.1) = (x)^2 - (0.1)^2$$
  
=  $x^2 - 0.01$ 

Sol.

Ex.4 Expand each of the following using suitable identities

(i) 
$$(3x-4y)^2$$
 (ii)  $(3x-y)^3$  (iii)  $(3x+4y+5z)^2$ 

(i) 
$$(3x-4y)^2$$
 =  $(3x)^2 - 2(3x)(4y) + (4y)^2$   
=  $9x^2 - 24xy + 16y^2$ 

(ii) 
$$(3x - y)^3$$
 =  $(3x)^3 - (y)^3 - 3(3x)(y) (3x - y)$   
=  $27x^3 - y^3 - 9xy (3x - y)$   
=  $27x^3 - y^3 - (9xy) (3x) + (9xy) (y)$   
=  $27x^3 - y^3 - 27x^2y + 9xy^2$   
(iii)  $(3x + 4y + 5z)^2$  =  $(3x)^2 + (4y)^2 + (5z)^2 + 2(3x) (4y) + 2(4y) (5z) + 2(5z) (3x)$ 

(iii) 
$$(3x + 4y + 5z)^2$$
 =  $(3x)^2 + (4y)^2 + (5z)^2 + 2(3x)(4y) + 2(4y)(5z) + 2(5z)(3x)$   
=  $9x^2 + 16y^2 + 25z^2 + 24xy + 40yz + 30zx$ 

[MATHEMATICS] [POLYNOMIAL]

**Ex.5** Factorize the following:

(i) 
$$4x^2 + 20xy + 25y^2$$
 (ii)  $25x^2y^2z^2 - 36u^2$  (iii)  $125x^3y^3 + 27z^3$  (iv)  $125x^3 + 225x^2y + 135xy^2 + 27y^3$  (v)  $8x^3 + y^3 + 27z^3 - 18xyz$  (vii)  $(a - b)^3 + (b - c)^3 + (c - a)^3$  Sol. (i)  $4x^2 + 20xy + 25y^2 = (2x)^2 + 2(2x)(5y) + (5y)^2$   $= (2x + 5y)^2$  (ii)  $25x^2y^2z^2 - 36u^2 = (5xyz)^2 - (6u)^2$   $= (5xyz + 6u)(5xyz - 6u)$ 

(iii) 
$$125x^3y^3 + 27z^3$$
 =  $(5xy)^3 + (3z)^3$   
=  $(5xy + 3z) \{(5xy)^2 + (5xy) (3z) + (3z)^2\}$   
=  $(5xy + 3z) (25x^2y^2 + 15xyz + 9z^2)$ 

(iv) 
$$125x^3 + 225x^2y + 135xy^2 + 27y^3$$
  
=  $(5x)^3 + 45xy (5x + 3y) + (3y)^3$   
=  $(5x)^3 + 3(5x) (3y) (5x + 3y) + (3y)^3$   
=  $(5x + 3y)^3$ 

(v) 
$$8x^3 + y^3 + 27z^3 - 18xyz$$
  

$$= (2x)^3 + (y)^3 + (3z)^3 - 3(2x) (y) (3z)$$

$$= (2x + y + 3z) \{(2x)^2 + (y)^2 + (3z)^2 - (2x) (y) - (y) (3z) - (3z) (2x)\}$$

$$= (2x + y + 3z) (4x^2 + y^2 + 9z^2 - 2xy - 3yz - 6zx)$$

(vii) 
$$(a - b)^3 + (b - c)^3 + (c - a)^3$$
  
Here,  $(a - b) + (b - c) + (c - a) = 0$   
So,  $(a - b)^3 + (b - c)^3 + (c - a)^3 = 3(a - b)(b - c)(c - a)$ 

- **Ex.6** If the polynomials  $ax^3 + 4x^2 + 3x 4$  and  $x^3 4x + a$  leave the same remainder when divided by (x-3), find the value of a.
- **Sol.** Let  $p(x) = ax^3 + 4x^2 + 3x 4$  and  $q(x) = x^3 4x + a$  be the given polynomials. The remainders when p(x) and q(x) are divided by (x-3) are p(3) and q(3) respectively.

By the given condition, we have p(3) = q(3)

⇒ 
$$a \times (3)^3 + 4 \times (3)^2 + 3 \times 3 - 4 = (3)^3 - 4 \times 3 + a$$
  
⇒  $27a + 36 + 9 - 4 = 27 - 12 + a$   
⇒  $26a + 26 = 0$   
⇒  $26a = -26$   
⇒  $a = -1$ 

- **Ex.7** Find q(a + 1) 2q(a) if  $q(x) = x^2 + 3x + 4$ .
- **Sol.** To evaluate q (a + 1), replace x in q(x) with a + 1.

$$q(x) = x^{2} + 3x + 4$$

$$q(a + 1) = (a + 1)^{2} + 3(a + 1) + 4$$

$$= a^{2} + 2a + 1 + 3a + 3 + 4 = a^{2} + 5a + 8$$

To evaluate 2q(a), replace x with a in q(x), then multiply the expression by 2.

$$q(x) = x^2 + 3x + 4$$
  
 $2q(a) = 2(a^2 + 3a + 4) = 2a^2 + 6a + 8$   
Now evaluate  $q(a + 1) - 2q(a)$   
 $q(a + 1) - 2q(a) = a^2 + 5a + 8 - (2a^2 + 6a + 8)$   
 $= a^2 + 5a + 8 - 2a^2 - 6a - 8 = -a^2 - a$ 

**Ex.8** Verify whether the indicated values of variables are zeros of the polynomials corresponding to them:

(i) 
$$p(y) = 4y - 4\pi$$
,  $y = 4$ ,  $\pi$ 

(ii) 
$$q(u) = (u + 1) (u + 2), u = -1, 2$$

**Sol.** (i) 
$$p(y) = 4y - 4\pi$$
  
  $p(4) = 4(4) - 4\pi = 16 - 4\pi \neq 0$ 

$$p(\pi) = 4\pi - 4\pi = 0$$

 $\Rightarrow$   $\pi$  is a zero and 4 is not a zero of the polynomial

(ii) 
$$q(u) = (u + 1) (u + 2)$$

$$q(-1) = (-1 + 1) (-1 + 2) = (0) (1) = 0$$

$$q(2) = (2 + 1) (2 + 2) = (3) (4) = 12 \neq 0$$

 $\Rightarrow$  -1 is a zero and 2 is not a zero of the polynomial.

**Ex.9** Which of the number 1, -1, and -3 are zeroes of the polynomial  $2x^4 + 9x^3 + 11x^2 + 4x - 6$ .

**Sol.** Let 
$$f(x) = 2x^4 + 9x^3 + 11x^2 + 4x - 6$$

$$f(1) = 2(1)^4 + 9(1)^3 + 11(1)^2 + 4(1) - 6$$
  
= 2 + 9 + 11 + 4 - 6 = 20 \neq 0

 $\therefore$  1 is not a zero of the polynomial f(x)

Again 
$$f(-1) = 2(-1)^4 + 9(-1)^3 + 11(-1)^2 + 4(-1) - 6$$

$$= 2 - 9 + 11 - 4 - 6 = -6 \neq 0$$

 $\therefore$  -1 is not a zero the polynomial f(x)

Also 
$$f(-3) = 2(-3)^4 + 9(-3)^3 + 11(-3)^2 + 4(-3) - 6$$

$$= 162 - 243 + 99 - 12 - 6 = 0$$

 $\therefore$  -3 is a zero of the polynomial f(x).

Thus 1 and -1 are not zeroes of f(x) whereas -3 is a zero of f(x).

**Ex.10** Let  $R_1$  and  $R_2$  are the remainder when the polynomials  $x^3 + 2x^2 - 5ax - 7$  and  $x^3 + ax^2 - 12x + 6$  are divided by x + 1 and x - 2 respectively. If  $2R_1 + R_2 = 6$ , find the value of a.

**Sol.** Let 
$$p(x) = x^3 + 2x^2 - 5ax - 7$$

and  $q(x) = x^3 + ax^2 - 12x + 6$  be the given polynomials,

Now,  $R_1$  = Remainder when p(x) is divided by x + 1.

$$\Rightarrow$$
 R<sub>1</sub> = p (-1)

$$\Rightarrow$$
 R<sub>1</sub> =  $(-1)^3 + 2(-1)^2 - 5a(-1) - 7$ 

$$[:: p(x) = x^3 + 2x^2 - 5ax - 7]$$

$$\Rightarrow$$
 R<sub>1</sub> = -1 + 2 + 5a - 7

$$\Rightarrow$$
 R<sub>1</sub> = 5a - 6

And,  $R_2$  = Remainder when q(x) is divided by x-2

$$\Rightarrow R_1 = q(2)$$

$$\Rightarrow$$
 R<sub>2</sub> = (2)<sup>3</sup> + a × 2<sup>2</sup> – 12 × 2 + 6

$$[:: q(x) = x^3 + ax^2 - 12x - 6]$$

$$\Rightarrow$$
 R<sub>2</sub> = 8 + 4a - 24 + 6

$$\Rightarrow$$
 R<sub>2</sub> = 4a - 10

Substitution the values of  $R_1$  and  $R_2$  in  $2R_1 + R_2 = 6$ , we get

$$\Rightarrow$$
 2(5a -6) + (4a -10) = 6

$$\Rightarrow$$
 10a - 12 + 4a - 10 = 6

$$\Rightarrow$$
 14a – 22 = 6

$$\Rightarrow$$
 14a = 28

**Ex.11** If  $f(x) = x^4 - 2x^3 + 3x^2 - ax + b$  is a polynomial such that when it is divided by x - 1 and x + 1, the remainder are respectively 5 and 19. Determine the remainder when f(x) is divided by (x-2).

- **Sol.** When f(x) is divided by x-1 and x+1 the remainder are 5 and 19 respectively.
  - f(1) = 5 and f(-1) = 19

$$\Rightarrow$$
  $(1)^4 - 2 \times (1)^3 + 3 \times (1)^2 - a \times 1 + b = 5$ 

and 
$$(-1)^4 - 2 \times (-1)^3 + 3 \times (-1)^2 - a \times (-1) + b = 19$$

$$\Rightarrow$$
 1 – 2 + 3 – a + b = 5

and 
$$1 + 2 + 3 + a + b = 19$$

$$\Rightarrow$$
 2 - a + b = 5 and 6 + a + b = 19

$$\Rightarrow$$
 -a + b = 3 and a + b = 13

Adding these two equations, we get

$$(-a + b) + (a + b) = 3 + 13$$

$$\Rightarrow$$
 2b = 16  $\Rightarrow$  b = 8

Putting b = 8 in -a + b = 3, we get

$$-a + 8 = 3 \Rightarrow a = -5 \Rightarrow a = 5$$

Putting the values of a and b in

$$f(x) = x^4 - 2x^3 + 3x^2 - 5x + 8$$

The remainder when f(x) is divided by (x-2) is equal to f(2).

So, Remainder = 
$$f(2) = (2)^4 - 2 \times (2)^3 + 3 \times (2)^2 - 5 \times 2 + 8 = 16 - 16 + 12 - 10 + 8 = 10$$

- **Ex.12** Without actual division, prove that the polynomial  $2x^3 + 13x^2 + x 70$  is exactly divisible by x 2.
- **Sol.** The polynomial  $p(x) = 2x^3 + 13x^2 + x 70$  is exactly divisible by x 2 means that x 2 is a factor of  $p(x) = 2x^3 + 13x^2 + x 70$ .

Now 
$$p(2) = 2(2)^3 + 13(2)^2 + 2 - 70 = 16 + 52 + 2 - 70 = 0$$

- .. By factor theorem, x 2 is a factor of p(x) i.e.  $p(x) = 2x^3 + 13x^2 + x 70$  is exactly divisible by x 2.
- **Ex.13** Show that (x + 1) and 2x 3 are factors of  $2x^3 9x^2 + x + 12$
- **Sol.** Let  $p(x) = 2x^3 9x^2 + x + 12$  be the given polynomial. In order to prove that x + 1 and 2x 3 are factors of p(x), it is sufficient to show that p(-1) and p(3/2) both are equal to zero.

Now, 
$$p(x) = 2x^3 - 9x^2 + x + 12$$

$$\Rightarrow$$
 p(-1) = 2 × (-1)<sup>3</sup> - 9 × (-1)<sup>2</sup> + (-1) + 12

and 
$$p\left(\frac{3}{2}\right) = 2 \times \left(\frac{3}{2}\right)^3 - 9 \times \left(\frac{3}{2}\right)^2 + \frac{3}{2} + 12$$

$$\Rightarrow$$
 p(-1) = -12 + 12

and 
$$p\left(\frac{3}{2}\right) = \frac{54 - 162 + 12 + 96}{8} = 0$$

$$\Rightarrow$$
 p(-1) = 0 and p $\left(\frac{3}{2}\right)$  = 0

Hence, (x+1) and (2x-3) are factors of the given polynomial.

- **Ex.14** The polynomial  $ax^3 + bx^2 + x 6$  has (x + 2) as a factor and leaves a remainder 4 when divided by (x-2). Find a and b.
- **Sol.** Let  $p(x) = ax^3 + bx^2 + x 6$

By using factor theorem, (x + 2) is a factor of p(x),

only when 
$$p(-2) = 0$$

$$p(-2) = a(-2)^3 + b(-2)^2 + (-2) - 6 = 0$$

$$\Rightarrow$$
 -8a + 4b - 8 = 0

∴ 
$$-2a + b = 2$$
 .....(i)

Also when p(x) is divided by (x-2) the remainder is 4.

$$p(2) = 4$$

$$\Rightarrow$$
 a(2)<sup>3</sup> + b(2)<sup>2</sup> + 2 - 6 = 4

$$\Rightarrow$$
 8a + 4b + 2 - 6 = 4

$$\Rightarrow$$
 8a + 4b = 8

$$\Rightarrow$$
 2a + b = 2 .....(ii)

Adding equation (i) and (ii) we get (-2a + b) + (2a + b) = 2 + 2

$$\Rightarrow$$
 2b = 4  $\Rightarrow$  b = 2

Putting b = 2 in (i) we get

$$-2a + 2 = 2$$

$$-2a = 0$$

$$a = 0$$

Hence, a = 0 and b = 2

**Ex.15** Factorise the polynomial  $x^2 + 3\sqrt{3}x + 6$  by spliting the middle term.

**Sol.** 
$$p(x) = x^2 + 3\sqrt{3}x + 6$$
.

the coefficient of the middle term is  $3\sqrt{3}x$ . Now, we find two numbers l and m such that

$$l + m = 3\sqrt{3}x$$
 and  $l \times m = 1 \times 6 = 6$ 

By inspection, we find  $l = \sqrt{3}$  and  $m = 2\sqrt{3}$ .

Then we have

$$x^2 + 3\sqrt{3}x + 6 = x^2 + (\sqrt{3} + 2\sqrt{3})x + 6$$

[By splitting the middle term]

$$= x^2 + \sqrt{3} x + 2\sqrt{3} x + (\sqrt{3}) (2\sqrt{3})$$

$$= \{x^2 + \sqrt{3} x\} + \{2\sqrt{3} x + (\sqrt{3})(2\sqrt{3})\}$$

$$= x \{x + \sqrt{3}\} + 2\sqrt{3} \{x + \sqrt{3}\}$$

$$= \{x + \sqrt{3}\} \{x + 2\sqrt{3}\}$$

$$\therefore$$
  $x^2 + 3\sqrt{3} x + 6 = (x + \sqrt{3}) (x + 2\sqrt{3})$ 

**Ex.16** Factorise  $15x^2 - 8x + 1$  by using the factor theorem.

**Sol.** 
$$p(x) = 15x^2 - 8x + 1 = 15 \times \left\{ x^2 - \frac{8}{15}x + \frac{1}{15} \right\} = 15 \times q(x)$$

where 
$$q(x) = x^2 - \frac{8}{15}x + \frac{1}{15}$$

we have made the coefficient of the leading term of the polynomial g(x) equal to 1. The constant term of the

quadratic polynomial q(x) is  $\frac{1}{15}$ . Some of the factors of the number  $\frac{1}{15}$  are  $\pm$  1.  $\pm$   $\frac{1}{3}$ ,  $\pm$ ,  $\frac{1}{5}$ ,  $\pm$   $\frac{1}{15}$ . we find

that

$$q\left(\frac{1}{3}\right) = \left(\frac{1}{3}\right)^2 - \frac{8}{15}\left(\frac{1}{3}\right) + \frac{1}{15} = \frac{1}{9} - \frac{8}{45} + \frac{1}{15} = \frac{5 - 8 + 3}{45} = 0 \text{ and } q\left(\frac{1}{5}\right) = \left(\frac{1}{5}\right)^2 - \frac{8}{15}\left(\frac{1}{5}\right) + \frac{1}{15} = \frac{1}{15}\left(\frac{1}{5}\right) + \frac{1}{15}\left(\frac{1}{5}$$

$$=\frac{1}{25}-\frac{8}{75}+\frac{1}{15}=\frac{3-8+5}{75}=0$$

Thus,  $\frac{1}{3}$  and  $\frac{1}{5}$  are zeros of q(x). It implies that  $\left(x-\frac{1}{3}\right)$  and  $\left(x-\frac{1}{5}\right)$  are two factors of the polynomial

$$q(x) = x^2 - \frac{8}{15}x + \frac{1}{15}$$
. {By factor theorem}.

i.e., 
$$x^2 - \frac{8}{15}x + \frac{1}{15} = \left(x - \frac{1}{3}\right)\left(x - \frac{1}{5}\right)$$

$$\Rightarrow 15x^2 - 8x + 1 = 15 \times \left\{ \left( x - \frac{1}{3} \right) \left( x - \frac{1}{5} \right) \right\} = 15 \times \left\{ \frac{(3x - 1)}{3} \times \frac{(5x - 1)}{5} \right\} = (3x - 1)(5x - 1)$$

Therefore, the polynomial  $15x^2 - 8x + 1$  is factorised into two linear factors as (3x - 1)(5x - 1)

**Ex.17** Factorise the polynomial  $2x^3 + x^2 - 2x - 1$ .

**Sol.** 
$$p(x) = 2x^3 + x^2 - 2x - 1$$
  
 $p(1) = 2(1)^3 + (1)^2 - 2(1) - 1 = 2 + 1 - 2 - 1 = 0$   
 $\Rightarrow (x-1)$  is a factor of the polynomial  $p(x)$ .  
Now,  $2x^3 + x^2 - 2x - 1$ 

$$= (2x^3 - 2x^2) + (3x^2 - 3x) + (x - 1)$$
$$= 2x^2(x-1) + 3x(x-1) + 1(x-1)$$

$$= 2x^{2}(x-1) + 3x(x-1) + 1(x-1)$$

$$= (x-1) \{2x^2 + 3x + 1\}$$

$$= (x-1) \{2x^2 + (2+1) x + 1\}$$

{By splitting the middle term}

$$= (x-1) (2x^2 + 2x + x + 1)$$

$$= (x-1) (2x (x+1) + 1(x+1))$$

$$= (x-1) \{(x+1) (2x+1)\}$$

$$= (x-1)(x+1)(2x+1)$$

Ex.18 Expand each of the following:

(i) 
$$(4x - 5y)^2$$
 (ii)  $(x-3)(x-5)$  (iii)  $(-2x + 5y - 3z)^2$  (iv)  $(2a - 3b)^3$ 

**Sol.** (i) 
$$(4x - 5y)^2 = (4x)^2 + 2.4x$$
.  $5y + (5y)^2 = 16x^2 - 40xy + 25y^2$ 

(ii) 
$$(x-3)(x-5) = \{x + (-3)\} \{x + (-5)\} = x^2 + \{(-3) + (-5)\}x + (-3). (-5)$$
  
=  $x^2 + (-3 - 5)x + 15 = x^2 - 8x + 15$ 

(iii) 
$$(-2x + 5y - 3z)^2 = (-2x)^2 + (5y)^2 + (-3z)^2 + 2$$
.  $(-2x)$ . 5y + 2.5y.  $(-3z)$  + 2.  $(-3z)$ .  $(-2x)$  =  $4x^2 + 25y^2 + 9z^2 - 20xy - 30yz + 12zx$ 

(iv) 
$$(2a-3b)^3 = (2a)^3 - (3b)^3 - 3 \times 2a \times 3b (2a-3b)$$
  
=  $8a^3 - 27b^3 - 18ab (2a-3b)$ 

$$= 8a^3 - 27b^3 - 18ab \times 2a + 18ab \times 3b$$
  
=  $8a^3 - 27b^3 - 36a^2b + 54ab^2$ 

$$= 8a^3 - 27b^3 - 36a^2b + 54ab^2$$

**Ex.19** Find the product :

$$(x + 2y + 3z) (x^2 + 4y^2 + 9z^2 - 2xy - 6yz - 3zx)$$

**Sol.** 
$$(x + 2y + 3z) (x^2 + 4y^2 + 9z^2 - 2xy - 6yz - 3zx)$$
  
=  $(x + 2y + 3z) (x^2 + (2y)^2 + (3z)^2 - x \times 2y - 2y \times 3z \times x)$   
 $x^3 + (2y)^3 + (3z)^3 - 3 \times x + 2y \times 3z$   
=  $x^3 + 8y^3 + 27z^3 - 18xyz$ 

**Ex.20** If 
$$a^2 + b^2 + c^2 = 20$$
 and  $a + b + c = 0$ , find  $ab + bc + ca$ .

**Sol.** 
$$(a+b+c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca$$
  
 $\Rightarrow (a+b+c)^2 = a^2 + b^2 + c^2 + 2(ab+bc+ca)$ 

$$\Rightarrow$$
 (0)<sup>2</sup> = 20 + 2 (ab + bc+ ca)

$$\Rightarrow$$
 -20 = 2 (ab + bc + ca)

$$\Rightarrow$$
 ab + bc + ca =  $-10$ 

**Ex.21** If 
$$a + b + c = 8$$
 and  $ab + bc + ca = 20$ , find the value of  $a^3 + b^3 + c^3 - 3abc$ .

**Sol.** Since 
$$(a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca$$

$$(a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ca)$$

$$a + b + c = 8$$
 and  $ab + bc + ca = 20$ ,

$$(8)^2 = a^2 + b^2 + c^2 + 2 \times (20)$$

$$\Rightarrow$$
 64 =  $a^2 + b^2 + c^2 + 40$ 

$$\therefore$$
 a<sup>2</sup> + b<sup>2</sup> + c<sup>2</sup> = 64 - 40 = 24

We know that

$$a^3 + b^3 + c^3 - 3abc$$

= 
$$(a + b + c) \{a^2 + b^2 + c^2 - (ab + bc + ca)\}$$

:. 
$$a^3 + b^3 + c^3 - 3abc$$

$$= 8 \times (24 - 20) = 4 \times 8 = 32$$

[: 
$$a + b + c = 8$$
,  $ab + bc + ca = 20$  and  $a^2 + b^2 + c^2 = 24$ ]

Thus, 
$$a^3 + b^3 + c^3 - 3abc = 32$$

**Ex.22** If 
$$x^2 + \frac{1}{x^2} = 27$$
, find the value of  $x - \frac{1}{x}$ 

**Sol.** 
$$\left(x - \frac{1}{x}\right)^2 = x^2 - 2 \times x + \frac{1}{x} + \frac{1}{x^2}$$

$$\Rightarrow \left(x - \frac{1}{x}\right)^2 = x^2 - 2 + \frac{1}{x^2}$$

$$\Rightarrow \left(x - \frac{1}{x}\right)^2 = x^2 + \frac{1}{x^2} - 2$$

$$\Rightarrow \left(x - \frac{1}{x}\right)^2 = 27 - 2\left[\because x^2 + \frac{1}{x^2} = 27(given)\right]$$

$$\Rightarrow \left(x - \frac{1}{x}\right)^2 = 25$$

$$\Rightarrow \left(x - \frac{1}{x}\right)^2 = (\pm 5)^2 \Rightarrow x - \frac{1}{x} = \pm 5$$

**Ex.23** If  $x + \frac{1}{x} = 3$ , find the value of

(i) 
$$x^2 + \frac{1}{x^2}$$
 (ii)  $x^3 + \frac{1}{x^3}$  (iii)  $x^4 + \frac{1}{x^4}$ 

**Sol.** (i) 
$$\left(X + \frac{1}{X}\right) = 3 \Rightarrow \left(X + \frac{1}{X}\right)^2 = (3)^2$$
 [On squaring both side]

$$\Rightarrow x^2 + 2(x) \left(\frac{1}{x}\right) + \frac{1}{x^2} = 9$$

$$\Rightarrow x^2 + 2 + \frac{1}{x^2} = 9$$

$$\Rightarrow x^2 + \frac{1}{x^2} = 9 - 2 = 7$$

Thus, 
$$x^2 + \frac{1}{x^2} = 7$$
 .....(1)

(ii) 
$$x + \frac{1}{x} = 3 \Rightarrow \left(x + \frac{1}{x}\right)^3 = (3)^3$$
 [On cubing both sides]

$$x^3 + \left(\frac{1}{x}\right)^3 + 3.x. \frac{1}{x} \left(x + \frac{1}{x}\right) = 27$$

$$\Rightarrow x^3 + \frac{1}{x^3} + 3.3 = 27 \qquad \left[ \therefore x + \frac{1}{x} = 3 \right]$$

$$\Rightarrow x^3 + \frac{1}{x^3} = 27 - 9 = 18$$

Thus, 
$$x^3 + \frac{1}{x^3} = 18$$

(iii) From (1), we have 
$$x^2 + \frac{1}{x^2} = 7$$

$$\Rightarrow \left(x^2 + \frac{1}{x^2}\right)^2 = (7)^2$$
 [On squaring both side]

$$\Rightarrow x^4 + \frac{1}{x^4} + 2. x^2. \frac{1}{x^2} = 49$$

$$\Rightarrow x^4 + \frac{1}{x^4} + 2 = 49$$

$$\Rightarrow x^4 + \frac{1}{x^4} = 49 - 2 = 47$$

Thux, 
$$x^4 + \frac{1}{x^4} = 47$$

**Ex.24** If x + y = 12 and xy = 32, find the value of  $x^2 + y^2$ .

**Sol.** 
$$(x + y)^2 = x^2 + y^2 + 2xy$$

$$\Rightarrow$$
 144 =  $x^2 + y^2 + 2 \times 32$ 

[Putting 
$$x + y = 12$$
 and  $xy = 32$ ]

$$\Rightarrow 144 - 64 = x^2 + y^2$$

$$\Rightarrow$$
  $x^2 + y^2 = 80$ 

**Ex.25** Prove that : 
$$2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca = [(a - b)^2 + (b - c)^2 + (c - a)^2]$$

**Sol.** L.H.S. = 
$$2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca = (a^2 - 2ab + b^2) + (b^2 - 2bc + c^2) + (c^2 - 2ca + a^2)$$

[Re-arranging the terms]

$$= (a - b)^2 + (b - c)^2 + (c - a)^2 = R.H.S.$$

Hence, 
$$2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca = [(a-b)^2 + (b-c)^2 + (c-a)^2]$$

**Ex.26** If 
$$a^2 + b^2 + c^2 - ab - bc - ca = 0$$
, prove that  $a = b = c$ .

**Sol.** 
$$a^2 + b^2 + c^2 - ab - bc - ca = 0$$

$$\Rightarrow$$
 2a<sup>2</sup> + 2b<sup>2</sup> + 2c<sup>2</sup> – 2ab – 2bc – 2ca = 2 × 0 [Multiplying both sides by 2]

$$\Rightarrow$$
  $(a^2 - 2ab + b^2) + (b^2 - 2ab + c^2) + (c^2 - 2ac + a^2) = 0$ 

$$\Rightarrow$$
  $(a-b)^2 + (b-c)^2 + (c-a)^2 = 0$ 

$$\Rightarrow$$
 a - b = 0, b - c = 0, c - a = 0

[: Sum of positive quantities is zero if and only if each quantity is zero]

$$\Rightarrow$$
 a = b, b = c and c = a

$$\Rightarrow$$
 a = b = c

**ILLUSTRATION:** If x + y = 10 and  $x^2 + y^2 = 58$ , find the value of  $x^3 + y^3$ .

**SOLUTION:** We know that  $(x + y)^2 = x^2 + y^2 + 2xy$ 

Putting 
$$x + y = 10$$
 and  $x^2 + y^2 = 58$ , we get  $(10)^2 = 58 + 2xy$ 

$$\Rightarrow$$
 100 = 58 + 2xy  $\Rightarrow$  100 - 58 = 2xy

$$\Rightarrow$$
 2xy = 42  $\Rightarrow$  xy = 42/2 = 21  $\therefore$  xy = 21

Now, 
$$(x + y)^3 = x^3 + y^3 + 3xy(x + y)$$

$$\Rightarrow$$
 (10)<sup>3</sup> = x<sup>3</sup> + y<sup>3</sup> + 3 × 21 × 10

$$\Rightarrow$$
 1000 =  $x^3 + y^3 + 630$ 

$$\Rightarrow$$
 1000 - 630 =  $x^3 + y^3$ 

Thus 
$$x^3 + y^3 = 370$$
.

**ILLUSTRATION:** If a + b + c = 0 and  $a^2 + b^2 + c^2 = 16$ , find the value of ab + bc + ca

**SOLUTION:** We have (a + b + c) = 0 :  $(a + b + c)^2 = (0)^2$ 

$$\Rightarrow$$
 (a + b + c)<sup>2</sup> = 0  $\Rightarrow$  a<sup>2</sup> + b<sup>2</sup> + c<sup>2</sup> + 2ab + 2bc + 2ca = 0

$$\Rightarrow$$
 16 + 2(ab + bc + ca) = 0  $\Rightarrow$  2(ab + bc + ca) = -16

$$\Rightarrow$$
 ab + bc + ca = -16/2 Thus, ab + bc + ca = -8

**ILLUSTRATION**: If  $a^2 + b^2 + c^2 = 20$  and a + b + c = 0, find ab + bc + ca.

**SOLUTION:** We have  $(a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca$ 

$$\Rightarrow$$
 (a + b + c)<sup>2</sup> = a<sup>2</sup> + b<sup>2</sup> + c<sup>2</sup> + 2(ab + bc + ca)

$$\Rightarrow$$
 0<sup>2</sup> = 20 + 2(ab + bc + ca)  $\Rightarrow$  -20 = 2 (ab + bc + ca)

$$\Rightarrow$$
 -20/2 = (ab + bc + ca)  $\Rightarrow$  -10 = ab + bc + ca

$$\Rightarrow$$
 ab + bc + ca = -10.

**ILLUSTRATION:** If  $4x^2 + y^2 = 40$  and xy = 6, find the value of 2x + y.

**SOLUTION:** We have ,  $(2x + y)^2 = (2x)^2 + y^2 + 2 \times 2x \times y$ 

$$\Rightarrow$$
  $(2x + y)^2 = (4x^2 + y^2) + 4xy$ 

$$\Rightarrow$$
 (2x + y)<sup>2</sup> = 40 + 4 × 6

$$\Rightarrow$$
 (2x + y)<sup>2</sup> = 64

$$\Rightarrow$$
 (2x + y) =  $\pm \sqrt{64}$ 

$$\Rightarrow$$
 (2x + y) =  $\pm$  8.

ILLUSTRATION:

If 
$$\left(x - \frac{1}{x}\right) = 3$$
, find the value of  $\left(x^3 - \frac{1}{x^3}\right)$ .

SOLUTION:

We have, 
$$\left[ x - \frac{1}{x} \right]^3 = x^3 - \frac{1}{x^3} - 3x \times \frac{1}{x} \left[ x - \frac{1}{x} \right]$$

$$\Rightarrow \left[ x - \frac{1}{x} \right]^3 = x^3 - \frac{1}{x^3} - 3 \left[ x - \frac{1}{x} \right]$$

$$\Rightarrow$$
 Putting  $x - \frac{1}{x} = 3$ , We get

$$\Rightarrow 3^{3} = \left[ x^{3} - \frac{1}{x^{3}} \right] - 3 \times 3 \Rightarrow 27 = \left( x^{3} - \frac{1}{x^{3}} \right) - 9$$

$$\Rightarrow \left(x^3 - \frac{1}{x^3}\right) = 27 + 9 \qquad \Rightarrow \left(x^3 - \frac{1}{x^3}\right) = 36$$

ILLUSTRATION:

If 
$$\left(x^2 + \frac{1}{x^2}\right) = 83$$
, find the value of  $\left(x^3 - \frac{1}{x^3}\right)$ 

**SOLUTION:** 

We know that

$$\Rightarrow \left[ x - \frac{1}{x} \right]^2 = \left[ x^2 + \frac{1}{x^2} \right] - 2 \quad \Rightarrow \left[ x - \frac{1}{x} \right]^2 = 83 - 2 \quad \Rightarrow \left[ x - \frac{1}{x} \right]^2 = 81$$

$$\Rightarrow \left[ x - \frac{1}{x} \right]^2 = 9^2 \qquad \Rightarrow \left[ x - \frac{1}{x} \right] = 9 \Rightarrow \qquad \left[ x - \frac{1}{x} \right]^3 = 9^3$$

$$\Rightarrow \left[x^3 - \frac{1}{x^3}\right] - 3\left[x - \frac{1}{x}\right] = 729 \qquad \Rightarrow \qquad \left[x^3 - \frac{1}{x^3}\right] - 3 \times 9 = 729$$

$$\Rightarrow \left[ x^3 - \frac{1}{x^3} \right] = 729 + 27 \qquad \Rightarrow \qquad \left[ x^3 - \frac{1}{x^3} \right] = 756$$

### EXERCISE - I

### **Objective Type**

- 1. A linear polynomial
  - (A) may have no zero

- (B) may have one zero
- (C) has one and only one zero always
- (D) may have more than one zero
- The coefficient of  $x^3$  in the polynomial  $5 + 2x + 3x^2 7x^3$  is 2.
  - (A)5
- (B) 2
- (C) 7
- (D) 7

- The value of  $P(x) = x^2 7x + 12$  at x = 3 is 3.
  - (A) 42
- (B)0
- (C)8
- (D) 6

- 4. A polynomial of degree 5 in x has at most
  - (A) 5 terms
- (B) 4 terms
- (C) 6 terms
- (D) 10 terms

- 5. Degree of the polynomial  $4x^4 + 0x^3 + 0x^5 + 5x + 7$  is
  - (A)4

- (B) 5
- (C)3
- (D) 7

- 6. Degree of the zero polynomial is
  - (A)0
- (B)1
- (C) any natural number (D) Not defined

- 7. Zero of the zero polynomial is
  - (A)0
- (B)1

- (C) Any real number
- (D) Not defined

- One of the zeroes of the polynomial  $2x^2 + 7x 4$  is 8.
  - (A)2

- $(C) \frac{1}{2}$
- (D) 2

- The zeroes of the polynomial p(x) = x(x-1)(x-2) are 9.
  - (A)0
- (B) 0, -1, -2
- (C) 0, 1, -2
- (D) 0, 1, 2

- If  $p(x) = x^2 2\sqrt{2} x + 1$ , then  $p(2\sqrt{2})$  is equal to 10.
  - (A)0
- (B) 1
- (C)  $4\sqrt{2}$
- (D)  $8\sqrt{2} + 1$

- If p(x) = x + 3, then p(x) + p(-x) is equal to 11.
  - (A)3
- (B) 2x
- (C)0
- (D)6
- When the polynomial  $x^3 + 3x^2 + 3x + 1$  is divided by x + 1, the remainder is 12.
  - (A) 1
- (B)8
- (C)0
- (D) 6

- 13. If  $x^{51} + 51$  is divided by x + 1, the remainder is
  - (A)0
- (B) 1

- (C)49
- (D) 50
- 14. The value of k for which x - 1 is a factor of the polynomial  $4x^3 + 3x^2 - 4x + k$  is
  - (A)3
- (B)0
- (C)1

(D) - 3

- 15. The factors of  $2x^2 - 3x^2 - 3x - 2$  are
  - (A) (2x-1)(x+2) (B) (2x+1)(x-2) (C) (x+1)(x-2) (D) (x-1)(x+2)

16. The factors of  $x^3 - 2x^2 - 13x - 10$  are

$$(A) \ (x-1) \ (x+2) \ (x+5) \ (B) \ (x-1) \ (x-2) \ (x+5) \ (C) \ (x+1) \ (x-2) \ (x+5) \ (D) \ (x+1) \ (x+2) \ (x-5)$$

- 17.  $(a - b)^3 + (b - c)^3 + (c - a)^3$  is equal to
  - (A) 3abc

(B)  $3a^3b^3c^3$ 

(C) 3(a - b) (b - c) (c - a)

- (D)  $[a (b + c)]^3$
- $\frac{0.83\times0.83\times0.83+0.17\times0.17\times0.17}{0.83\times0.83-0.83\times0.17+0.17\times0.17} \ \text{is equal to}$ 18.
  - (A) 1
- (B)  $(0.83)^3 + (0.17)^3$
- (C) 0
- (D) None of these

- One of the factors of  $(25x^2 1) + (1 + 5x)^2$  is 19.
  - (A) 5 + x
- (B) 5 x
- (C) 5x -1
- (D) 10x
- Which of the following is a factor of  $(x + y)^3 (x^3 + y^3)$ ? 20.
  - (A)  $x^2 + y^2 + 2xy$
- (B)  $x^2 + y^2 xy$
- (D) 3xy

- If  $\frac{x}{v} + \frac{y}{x} = -1$  (x, y \neq 0), the value of  $x^3 y^3$  is 21.
  - (A) 1
- (B) -1
- (C) 0
- (D) 1/2

- If  $49x^2 b = \left(7x + \frac{1}{2}\right)\left(7x \frac{1}{2}\right)$ , then the value of b is 22.
  - (A) 0
- (B)  $\frac{1}{\sqrt{2}}$
- (D)  $\frac{1}{2}$
- If  $x^2 + kx + 6 = (x + 2)(x + 3)$  for all x, then the value of k is 23.
  - (A) 1
- (B) -1
- (C) 5
- (D) 3

(A) - 7

1.

(D) 6

### **EXERCISE - II**

The remainder when  $P(x) = 4x^4 - 3x^3 - 2x^2 + x - 7$  is divided by x-1 is :

(B) - 6

| 2.  | then the value of a is :                                                                                                                                                            |                                                                                                        | -4x + a leave the same remainder when divided by $x-2$                                     |                          |           |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------|-----------|--|
|     | (A) 3/13                                                                                                                                                                            | (B) 3/14                                                                                               | (C) –13                                                                                    | 3/3                      | (D) -3/13 |  |
| 3.  | a + b is a factor of :<br>(A) $a^4(b^2 - c^2) + b^4(c^2 + c^2)$<br>(C) $(a+b+c)^3 - (b+c+a)^3$                                                                                      | , , ,                                                                                                  | (B) $a(b-c)^3 + b(c-a)^3 + c(a-b)^3$<br>(D) $a(b^4 - c^4) + b (c^4 - a^4 + c (a^4 + b^4))$ |                          |           |  |
| 4.  | If $x + 2$ is factor of $\{(x+1)(A) \mid A = 1\}$                                                                                                                                   | $(x + 2)$ is factor of $\{(x+1)^5 + 2x + k\}^3$ , then the value of 'k' is:<br>(b) 1 (B) 3 (C) 4 (D) 5 |                                                                                            |                          |           |  |
| 5.  |                                                                                                                                                                                     | on the value of $8x^3 + y^3$ is<br>(B) 9                                                               | , ,                                                                                        | (D) 1                    |           |  |
| 6.  | The factors of $(2x^2 - 3x - 2)(2x^2 - 3x) - 63$ are :<br>(A) $(x-3)(2x+3)(x-1)(x-7)$ (B) $(x+3)(2x-3)(x-1)(x-7)$ (C) $(x+3)(2x+3)(2x^2 - 3x + 7)$ (D) $(x-3)(2x+3)(2x^2 - 3x + 7)$ |                                                                                                        |                                                                                            |                          |           |  |
| 7.  | The value of k for which $(A) -4/3$                                                                                                                                                 | x + k is a factor of x <sup>3</sup> + l<br>(B) –5                                                      | $4x^2 - 2x + k + 4$ is: (C) 2                                                              | (D) 6/7                  |           |  |
| 8.  | The remainder when $x^6$ (A) 24                                                                                                                                                     | $-3x^5 + 2x^2 + 8$ is divided<br>(B) 14                                                                | d by x + 1 is :<br>(C) 8                                                                   | (D) 18                   |           |  |
| 9.  | The value of m, in order (A) -1                                                                                                                                                     | that x <sup>2</sup> – mx – 2 is the q<br>(B) 1                                                         | uotient when $x^3 + 3x^2 - 4$ (C) 0                                                        | is divided by x + (D) -2 | 2, is :   |  |
| 10. | If $x - \frac{1}{x} = 5$ then $x^3 - \frac{1}{x}$                                                                                                                                   | 1 equals :                                                                                             |                                                                                            |                          |           |  |
|     | (A) 125                                                                                                                                                                             | (B) 130                                                                                                | (C) 135                                                                                    | (D) 140                  |           |  |
| 11. | $(x+y)^3 - (x-y)^3$ can be f<br>(A) $2y(3y^2 + x^2)$                                                                                                                                | actorized as :<br>(B) 2y(3x² + y²)                                                                     | (C) $2x(3x^2 + y^2)$                                                                       | (D) $2x(x^2+3y)^2$       |           |  |
| 12. | If $x^2 - 1$ is a factor of ax <sup>4</sup><br>(A) a+c+e = b+d                                                                                                                      | $a^4 + bx^3 + cx^2 + dx + e$ the (B) a-c-e = b-d                                                       |                                                                                            | o–d (D) a+d              | c+e = d–b |  |
| 13. | When $x^{2010} + 1$ is divide (A) 0                                                                                                                                                 | ed by x+1 then remainder<br>(B) 2                                                                      | r is :<br>(C) 1                                                                            | (D) -1                   |           |  |
| 14. | $f(x) = ax^7 + bx^3 + cx - 5$<br>(A) -17                                                                                                                                            | where a, b, c are consta<br>(B) –7                                                                     | ants. If $f(-7) = 7$ then $f(7)$                                                           | equals to :<br>(D) 21    |           |  |
| 15. | If $11^7 + 4^7$ is divided by (A) 0                                                                                                                                                 | 15 then the remainder is (B) 1                                                                         | (C) 2                                                                                      | (D) -2                   |           |  |
| 16. | Which one of the following algebraic expression is a polynomial in variable x?                                                                                                      |                                                                                                        |                                                                                            |                          |           |  |
|     | (A) $x^2 + \frac{2}{x^2}$                                                                                                                                                           | (B) $\frac{\sqrt{x}+1}{\sqrt{x}}$                                                                      | (C) $x^2 + \frac{3x^{3/2}}{\sqrt{x}}$                                                      | (D) None of the          | se        |  |

- $p(x) = \sqrt{3}$  is a polynomial of degree 17.
  - (A) 3
- (B) 0
- (C) 1
- (D) None of these

- Degree of the polynomial  $(x+2)(x^2-2x+4)$ 18.

- (C)4
- (D) None of these
- If  $p(x) = x^3 + 2x + 1$  is divided by x 2 then the remainder is 19.
  - (A) 13
- (B) 10
- (C) 12
- (D) None of these
- 20. If  $8 x^4 - 8x^2 + 7$  is is divided by 2x + 1, the remainder is
  - (A) 11/2
- (B) 13/2

(C) 15/2

- (D) 17/2
- If  $x^3 + y^3 + z^3 3xyz = K(x+y+z)\{(x-y)^2 + (y-z)^2 + (z-x)^2\}$  then K 21.
- (B) 1/2
- (D) None of these
- The remainder obtained when t<sup>6</sup> + 3t<sup>2</sup> 10 is divided by t<sup>3</sup> + 1 is 22.
  - (A)  $t^2 11$
- (B)  $t^3 1$
- (C)  $3t^2 + 11$
- (D) None of these
- The difference of the degrees of the polynomials is  $3x^2y^3 + 5xy^2 x^3$  and  $3x^6 4x^3 + 2$  is 23.
  - (A) 2
- (B) 3
- (C) 1
- (D) None of these

- If  $\left(a + \frac{1}{a}\right)^2 = b$  then  $a^3 + 1/a^3$  is equal to 24.
  - (A) b<sup>3</sup>
- (B)  $b^{3/2}$
- (C)  $b^{3/2} 3b^{1/2}$
- (D)  $b^{3/2} + 3b^{1/2}$

- If  $x^{1/3} + y^{1/3} + z^{1/3} = 0$  then 25.
  - (A)  $x^3 + y^3 + z^3 = 0$
- (B) x+y+z = 27xyz
- (C)  $(x+y+z)^3 = 27xyz$  (D)  $x^3+y^3+z^3 = 27xyz$

### True of false

- 1. A binomial can have atmost two terms.
- 2. Every polynomial is a binomial.
- 3. A binomial may have degree 5.
- 4. Zero of a polynomial is always 0.
- 5. A polynomial can not have more than one zero.
- The degree of the sum of two polynomials each of degree 5 in always 5. 6.
- 7.  $x^2 - 5x + 6$  can not be written as a product of two linear factors.
- $(2a + b)^2 (2b + a)^2 = 3(a^2 b)^2$  is an identity. 8.

### Match the column

3.

1.

### Column-l

- 1. If (x-1) are factors of  $f(x) = px^3 + x^2 2x + q$ , then  $p + q = x^3 + x^2 2x + q$
- 2. If (x + 2) is a factor of  $p(x) = ax^3 + bx^2 + x 6$  and p(x) when
  - divided by x 2 leaves remainder 4, then a + b =If  $a^3 + b^3 + c^3 = 3$ abc and a + b + c = 0, then

$$\frac{(b+c)^2}{bc} + \frac{(c+a)^2}{ca} + \frac{(a+b)^2}{ab} =$$

**4.** If x - 1 is a factor of  $4x^3 + 3x^2 - 4x + k$ , then k = 1

### Column-II

- (a) 3
- (b) -3
- (c) 2

### 2. Column-l

- 1. If  $p(x) = x^3 + x^2 + x + 1$  is divided by x + 1, then remainder =
- 2. If  $x^3 x^2 + x 1$  is divided by x + 1, then remainder =
- 3. If x –1 is a factor of  $2x^2 + kx + \sqrt{2}$ , then k =
- 4. If x 1 is a factor of  $x^2 + x + k$ , then k =

#### Column-II

- (a)  $-2 \sqrt{2}$
- (b) -2
- (c) 0
- (d) -4

#### 3. Column-l

- 1. Degree of  $x^5 x^4 + 3$
- **2.** Degree of  $2 y^2 y^3 + 2y^8$
- 3. Degree of 2
- 4. Degree of x + 2

### Column-II

- (a) 0
- (b) 1
- (c) 8
- (d) 5

#### 4. Column-l

- 1. If x 2 is a factor of  $x^3 2kx^2 + kx 1$ , then k = 1
- 2. If x 2 is a factor of  $x^5 3x^4 kx^3 + 3kx^2 + 2kx 4$ , then k = 2
- 3. If x + 2 is a factor  $x^3 kx^2 + 6x k$ , then k =
- 4. if 2x 1 is a factor of  $2x^3 + kx^2 + 11x + k + 3$ , then k = 1

#### Column-II

- (a) 4
- (b) -7
- (c) 5/2
- (d) 7/6

### <u> EXERCISE - III</u>

### **Subjective Type**

- Which of the following expressions are polynomial?
  - (i) 11x + 1
- (ii)  $7x^2 5x + \sqrt{5}$  (iii)  $t^3 2t + 1$  (iv)  $x^2 \frac{1}{x^2}$

- (v)  $\sqrt{y} + 5y 1$
- (vi)  $z^{11} 5z^7 + \frac{1}{4}$
- 2. Classify the following as linear, quadratic and cubic polynomials:
  - (i)  $x^3 4$
- (ii)  $x^2 + 1$
- (iii)  $5x^2 3x + \sqrt{7}$
- (iv) 1 + 5x

- $(v) 4r^3$
- Find the value of the following polynomial at the indicate value of variables: 3.
  - $p(x) = 5x^2 3x + 7$ (i)
- at x = 1
- $q(y) = 3y^2 4y + \sqrt{11}$  at y = 2(ii)
- $p(t) = 4t^4 + 5t^3 t^2 + 6$ (iii)
- at t = a
- 4. Find the zeroes of each of the following polynomials:
  - p(x) = x 4(i)
- (ii) g(x) = 2x + 1
- (iii)
- p(x) = (x + 1) (x + 2) (iv) p(x) = (x 1) (x 2) (x 3)
- (v)  $p(x) = 7x^2$
- Verify whether the following are zeroes of the polynomial indicated against them: 5.
  - (i) p(x) = 5x 1,  $x = \frac{1}{5}$
- - (ii) p(x) = (x-2)(x-5), x = 2, 5
  - (iii)  $s(x) = x^2$ ,

- (iv)  $p(x) = 3x^2 1$ ,  $x = -\frac{1}{\sqrt{3}}, \frac{2}{\sqrt{3}}$
- (v)  $g(x) = 5x^2 + 7x$   $x = 0, -\frac{7}{5}$
- Show that -1 is a zero of the polynomial  $2x^3 x^2 + x + 4$ 6.
- Show that 1 is not a zero of the polynomial  $4x^4 3x^3 + 2x^2 5x + 1$ 7.
- 8. Use remainder theorem to find remainder when p(x) is divided by q(x) in the following questions:
  - (i)  $p(x) = 2x^2 5x + 7$ , q(x) = x 1
  - (ii)  $p(x) = x^9 5x^4 + 1$ , q(x) = x + 1
  - (iii)  $p(x) = 4x^3 12x^2 + 11x 5$ ,  $q(x) = x \frac{1}{2}$
- 9. Find the value of k if (x - 2) is a factor of  $2x^3 - 6x^2 + 5x + k$
- For what value of m is  $2x^3 + mx^2 + 11x + m + 3$  exactly divisible by (2x 1)? 10.

- 11. Using factor theorem, show that (a b) is a factor of  $a(b^2 c^2) + b(c^2 a^2) + c(a^2 b^2)$
- **12.** Factorize each of the following expressions :

(i) 
$$p^4 - 81q^4$$

(ii) 
$$7\sqrt{2}x^2 - 10x - 4\sqrt{2}$$

(iii) 
$$24\sqrt{3}x^3 - 125y^3$$

(iv) 
$$125(x - y)^3 + (5y 3z)^3 + (3z - 5x)^3$$

(v) 
$$(x - y)^3 + (y - z)^3 + (z - x)^3$$

- 13. If one of the factors of  $x^2 + x 20$  is (x + 5), find other factor
- **14.** Simplify:

(i) 
$$\sqrt{2a^2 + 2\sqrt{6}ab + 3b^2}$$

(iii) 
$$\sqrt{36x^2 + 60x + 25}$$

**15.** Write the expansion of the following

(i) 
$$(9x + 2y + z)^2$$

(ii) 
$$(3x - 2y - z)^2$$

**16.** Find the product of following :

$$(5a - 3b) (25a^2 + 15ab + 9b^2)$$

- 17. Let A and B are the remainders when the polynomial  $x^3 + 2x^2 5ax 7$  and  $x^3 + ax^2 12x + 6$  are divided by x + 1 and x 2 respectively. If 2A + B = 6, find the value of a
- 18. With out actual division, prove that  $a^4 + 2a^3 2a^2 + 2a 3$  is exactly divisible  $(a^2 + 2a 3)$
- 19. If (x + 1) and (x 1) are the factors of  $mx^3 + x^2 2x + n$ , find the value of m and n
- **20.** If  $x^2 1$  is a factor of  $ax^4 + bx^3 + cx^2 + dx + e$ , show that a + c + e = b + d = 0.
- **21.** Find the value of  $a^3 27b^3$  if a 3b = -6 and ab = -10
- **22.** If x + y + z = 8 and xy + yz + zx = 20, find the value of  $x^3 + y^3 + z^3 3xyz$
- **23.** Find the value of :

(i) 
$$x^3 + y^3 - 12xy + 64$$
 when  $x + y = -4$ 

(ii) 
$$(x-a)^3 + (x-b)^3 + (x-c)^3 - 3(x-a)$$

$$(x - b) (x - c)$$
 when  $a + b + c = 3x$ 

(iii) 
$$(25)^3 - (29)^3 + (4)^3$$

### **EXERCISE - IV**

### Factorize the following

1. 
$$ap^2 + bp^2 + aq^2 + bq^2$$

2. 
$$1 + a + b + c + ab + bc + ca + abc$$

3. 
$$ab(x^2 + y^2) - xy(a^2 + b^2)$$

4. 
$$16(x + y)^2 - 40(x + y)(x - y) + 25(x - y)^2$$

7. 
$$a^3x^3 - 3a^2bx^2 + 3ab^2x - b^3$$

11. 
$$2\sqrt{2} a^3 + 16\sqrt{2} b^3 + c^3 - 12abc$$

**12.** 
$$3xy(1 + a^2 - b^2) + 6yz(-1 - a^2 + b^2) - 9zx(1 + a^2 - b^2)$$

**14.** 
$$a^2x^2 - b^2z^2 - b^2y^2 + c^2z^2 - a^2z^2 + c^2y^2 - a^2y^2 + b^2x^2 - c^2x^2$$

18. 
$$x^4 + x^2y^2 + y^4$$

**22.** 
$$(x^2 - ax - 5)(x^2 - ax - 11) - 16$$

23. 
$$x^2 - (a+1/a)x + 1$$

24. Prove that : 
$$(y + z - x)^3 + (z + x - y)^3 + (x + y - z)^3$$
  
=  $3(y + z - x)(z + x - y)(x + y - z) = -24xyz$ , if  $x + y + z = 0$ 

25. Simplify: 
$$\frac{\{(a^2-b^2)^3+(b^2-c^2)+(c^2-a^2)^3\}}{\{(a-b)^3+(b-c)^3+(c-a)^3\}}$$

**26.** If 
$$x + y + z = 0$$
, prove that :  $\frac{x^2}{yz} + \frac{y^2}{zx} + \frac{z^2}{xy} = 3$ 

**28.** Prove that : 
$$a^3 + b^3 + c^3 - 3abc = \frac{1}{2} (a+b+c)[(a-b)^2 + (b-c)^2 + (c-a)^2]$$

- **35.** Use the factor theorem to prove that : x + a is a factor of  $x^{2n} a^{2n}$  and  $x^{2n+1} + a^{2n+1}$ , where n is any integer.
- **36.** Factorise  $y^3 2y^2 29y 42$  by using factor theorem.
- 37. What must be added to  $(x^4 + 2x^3 2x^2 2x 1)$  to obtain a polynomial which is exactly divisible be  $(x^2 + 2x 3)$ ?
- 38. If  $2x^3 + ax^2 + bx 6$  has (x-1) as a factor and leaves a remainder 2 when divided by (x-2), find the values of 'a' & 'b'.
- 39. A quadratic polynomial when divided by x-1 leaves a remainder of 1 & when divided by x+1, leaves a remainder of -3. Find the remainder that it will leave when divided by  $x^2-1$ .
- **40.** A polynomial of degree greater than 2, when divided by x-1 leaves a remainder of 2 & when divided by x-2, leaves a remainder of 1. Find the remainder that it will leave when divided by (x-1)(x-2).

### **Answer key**

### **EXERCISE-I**

### **Objective Type**

- 1. С 2. D 3. 4. С Α 6. D 7. С В 5. 8. В 9. D 10. В 11. D 12. С 13. D 14. D
- 15. B 16. D 17. C 18. A 19. D 20. D 21. C
- **22.** C **23.** C

### **EXERCISE-II**

- 1. A 2. C 3. A 4. D 5. B
- 6. D 7. Α 8. В 9. Α 10. D 11. В 12. Α С В Α 13. В 14. Α 15. Α 16. 17. В 18. 19.
- 20. A 21. B 22. C 23. C 24. C 25. C
- True of False
- 1. False 2. False 3. True 4. False 5. False 6. True 7. False 8. True

### Match the column

- **1.**  $(1 \rightarrow d), (2 \rightarrow c), (3 \rightarrow a), (4 \rightarrow b)$  **2.**  $(1 \rightarrow c), (2 \rightarrow d), (3 \rightarrow a), (4 \rightarrow b)$
- **3.**  $(1 \rightarrow d), (2 \rightarrow c), (3 \rightarrow a), (4 \rightarrow b)$  **4.**  $(1 \rightarrow d), (2 \rightarrow c), (3 \rightarrow a), (4 \rightarrow b)$

### **EXERCISE-III**

- 1. (i, (ii), (iii), (vi) 2. (i) Cubic, (ii) Quadratic, (iii) Quadratic, (iv) Linear, (v) Cubic
- **3.** (i) 9, (ii)  $4 + \sqrt{11}$ , (iii)  $4a^4 + 5a^3 a^2 + 6$  **4.** (i) 4, (ii) -1/2, (iii) -1, -2, (iv) 1, 2, 3, (v) 0
- 5. (i) yes, (ii) Yes, both (iii) x = 0, x = 1 is not zero, (iv)  $x = -\frac{1}{\sqrt{3}}$ ,  $x = \frac{2}{\sqrt{3}}$  is not zero, (v) Yes, both
- 8. (i) 4, (ii) -5, (iii) -2 9. -2 10. -7
- 12. (i)  $(p + 3q) (p 3q) (p^2 + 9q^2)$  (ii)  $(x \sqrt{2})(7\sqrt{2}x + 4)$  (iii)  $(2\sqrt{3}x 5y)(12x^2 + 10\sqrt{3}xy + 25y^2)$  (iv) 15(x y) (5y 3z) (3z 5x) (v) 3(x y) (y z) (z x)
- **13.** (x-4) **14.** (i)  $\sqrt{2}a + \sqrt{3}b$  (iii) (6x + 5)
- **15.** (i)  $81x^2 + 4y^2 + z^2 + 36xy + 4yz + 18zx$  (ii)  $9x^2 + 4y^2 + z^2 12xy + 4yz 6xz$
- **16.**  $125a^3 27b^3$  **19.** m = 2, n = -1 **21.** 324 **22.** 32 **23.** (i) 0 (iii) 0 (iv) -8700
- **21.** 324 **22.** 32 **23.** (i) 0 (ii) 0 (iii) 8700



