전자 회로 분석 참고 자료

6. 전원회로의 이해 및 설계

316 / 360

■ Compare Table of Power Management ICs

Туре	LDO	DC-DC	Charge Pump
Architecture	GND UT		
Operation	Linear	Switching	Switching
Main Component	IC only	Inductor & Diode	Cap. & Diode
Function	Step down only	Step up, Step down Inverter	Step up, Inverter
Power Capacity	Normal	High	Low(<10mA)
Efficiency	Fixed	Good	Good
Thermal Design		Advantage	Advantage
Design Complexity	Simple	Complex	Simple
Cost	Advantage		Advantage
Ripple/Noise	Good	Bad	Bad
External Components	Advantage		

• Switching 방식의 전원 System(DC-DC, Charge-Pump)은 Noise가 강하며 반면에 효율은 좋은 편이다. Charge Pump는 IC의 내부 전원 Block으로 주로 적용되며 LDO의 경우 입력 전압의 설정이 중요.

LDO(1/7)

LDO(2/7)

반도체 설계 LDO → Low Drop Out Voltage Regulator

LDO(3/7)

LDO 종류

General Types

LDO (4/7) LDO Protection Functions

LDO 주요 파라미터

LDO(5/7)

출력 전압

Drop Out Voltage 는 0.5V정도

Line Regulation

Load Regulation

Maximum Output Current

Iquiescent전류는 장상 작동 상태의 무부하 최소 전류 수십 uA미만

Istandby전류는 무작동 상태의

Ripple Rejection

Input Voltage Range1.4V to 5.25V

• Thermal Shutdown Temperature......165°C

LDO(6/7)

LDO 주요 파라미터

FEATURES

Output Voltage Range	
Dropout Voltage Output Voltage Accuracy	
Line Regulation Load Regulation	
Maximum Output Current Supply Current Standby Current	Typ. 80μA
Ripple Rejection	Typ. 75dB (f=1kHz), 70dB (f=10kHz)

• Output NoiseTyp. 66 μVrms (10Hz~100kHz)

• Temperature CoefficientTyp. ±30ppm/°C (VOUT ≥1.8V)

• Foldback ProtectionTyp. 50mA (Current at short mode)

반도체 설계_Buck Booster LDO page100,page323

https://m.blog.naver.com/techref/222013447041

BUCK

ON 상태 전류

$$\Delta I_{L_{
m on}} = \int_0^{t_{
m on}} rac{V_{
m L}}{L} \, \mathrm{d}t = rac{V_{
m i} - V_{
m o}}{L} t_{
m on}, \qquad t_{
m on} = DT \qquad \qquad \Delta I_{L_{
m off}} = \int_{t_{
m on}}^{T=t_{
m on}+t_{
m off}} rac{V_{
m L}}{L} \, \mathrm{d}t = -rac{V_{
m o}}{L} t_{
m off}, \qquad t_{
m off} = (1-D)T$$

OFF 상태 전류

$$\Delta I_{L_{
m off}} = \int_{t_{
m on}}^{T=t_{
m on}+t_{
m off}} rac{V_{
m L}}{L} \, {
m d}t = -rac{V_{
m o}}{L} t_{
m off}, \qquad t_{
m off} = (1-D)T$$

T주기 동안 전류 변화량은 ZERO

$$\Delta I_{L_{
m on}} + \Delta I_{L_{
m off}} = 0 \qquad rac{V_{
m i} - V_{
m o}}{L} t_{
m on} - rac{V_{
m o}}{L} t_{
m off} = 0 \qquad (V_{
m i} - V_{
m o}) \, DT - V_{
m o} (1-D)T = 0 \ DV_{
m i} - V_{
m o} = 0$$

$$\Rightarrow D = rac{V_{
m o}}{V_{
m i}}$$

Buck

 $\Rightarrow D = \frac{V_{\text{o}}}{V}$

https://m.blog.naver.com/techref/222013447041

Booster

$$\Delta I_{L_{\mathrm{On}}} = rac{1}{L} \int_{0}^{DT} V_{i} dt = rac{DT}{L} V_{i}$$

$$egin{align} V_i - V_o &= L rac{dI_L}{dt} \ \Delta I_{L_{
m Off}} &= \int_{DT}^T rac{(V_i - V_o)\,dt}{L} = rac{(V_i - V_o)\,(1-D)\,T}{L} \ \Delta I_{L_{
m On}} + \Delta I_{L_{
m Off}} = rac{V_iDT}{L} + rac{(V_i - V_o)\,(1-D)\,T}{L} = 0 \ rac{V_o}{V_i} &= rac{1}{1-D} \ \end{pmatrix}$$

Booster

- 인덕터 전압과 전류 관계식에 의해 SW의 On(D구간)과 $:V_{out} = \frac{V_{in}}{1-D}$ Off(1-D구간) 영역에서의 인덕터 전압과 전류 값이 결정되며 Converter의 전 압과 전류 특성을 파악할 수 있다.
- 인덕터 전압(V_L)은 Steady State 영역에서 한 주기 단위에서 평균이 0V이므로 전압 변환 비율 M(D)=1/(1-D)로 선형적으로 1 이상의 범위에서 지수함수적 증가

Buck-Booster

$$\Delta I_{
m L_{
m On}} = \int_0^{D\,T} {
m d}\, I_{
m L} = \int_0^{D\,T} rac{V_i}{L} \, {
m d}\, t = rac{V_i\,D\,T}{L}$$

$$\Delta I_{ ext{Loff}} = \int_0^{(1-D)T} \mathrm{d}\,I_{ ext{L}} = \int_0^{(1-D)T} rac{V_o \; \mathrm{d}\,t}{L} = rac{V_o \left(1-D
ight)T}{L}$$

$$\Delta I_{
m L_{
m On}} + \Delta I_{
m L_{
m Off}} = rac{V_i\,D\,T}{L} + rac{V_o\,(1-D)\,T}{L} = 0$$
 $rac{V_o}{V_i} = -rac{D}{1-D}$

반도체 설계_Buck Booster LDO page327_328_329

23

반도체 설계_Buck Booster LDO page336

