

FIRST SEMESTER 2021-2022

Course Handout Part II

Date: 20/08/2021

In addition to Part-I (a general handout for all the courses appended in the time table) this portion gives further specific details regarding the course.

Course No. : ME G514

Course Title : TURBOMACHINERY

Instructor-in-Charge : JEEVAN JAIDI

Lab Instructors : Jeevan Jaidi, G Prashanth Kumar Reddy

1. Course Description:

Introduction, laws of thermodynamics, gas turbine plants, steam turbine plants, fluid dynamics, dimensional analysis and performance parameters, flow through cascades, axial turbine stages, high temperature turbine stages, axial compressor stages, centrifugal compressor stages, radial turbine stages, axial fans and propellers, and centrifugal fans and blowers and wind turbines.

2. Scope and Objective:

The broad objective of this course is to introduce and familiarize students with various elements of turbomachinery. The course mainly aims at giving analytical treatment to various turbomachines (pumps, compressors, fans, blowers and turbines), which will help to understand practical situations at the design stage as well as during their operations.

3. Text Book (TB):

(a) TB1: B. K. Venkanna, Fundamentals of Turbomachinery, PHI Learning Pvt Ltd. 2012.

4. Reference Book (RB):

- (a) RB1: S. L. Dixon, and C. A. Hall, *Fluid Mechanics and Thermodynamics of Turbomachinery*, Elsevier, 6 th edition, 2010.
- (b) RB2: Rama S.R. Gorla, Aijaz A. Khan, *Turbomachinery: Design and Theory*, CRC Press, 2003.
- (c) RB3: Budugur Lakshminarayana, *Fluid Dynamics and Heat Transfer of Turbomachinery*, John Wiley & Sons, 1995.

5. Course Plan:

Lectur	Learning	Topics	Chapter/
e No.	objectives	to be covered	Section
1-7	Introduction to principles of	Introduction, comparison between PDM	TB: Ch. 1
	thermodynamics and fluid	and TM, types of TM, basic laws and	
	mechanics, types of turbomachines,	equations, dimensional analysis, model	

	gas turbine plants and steam turbine plants	parameters and their significance, unit quantities	
8-12	Energy transfer in turbomachines	Euler equation, components of energy transfer, degree of reaction, utilization factor, velocity triangles, analysis of turbomachines	TB: Ch. 2
13-20	Operation principle and key parameters of centrifugal compressors and pumps	Working principle, main parts, work done and pressure rise, influence of key parameters and surging, work done analysis	TB: Ch. 4
21-25	Operation principle and key parameters of axial flow compressors	Principle of operation T-E diagram, influence of key parameters, combined velocity analysis, work done analysis	TB: Ch.5
26-32	Operation principle and key parameters of steam and gas turbines	Principle of operation, method of compounding velocity triangle analysis, multi-stage analysis	TB: Ch. 6
33-38	Operation principle and key parameters of hydraulic turbines	Classification, main components, unit quantities, velocity triangles, work done and efficiencies, draft tube, comparison of hydraulic turbines	TB: Ch. 7
39-40	Operation principle and key parameters of wind turbines	Principle of operation, classification blade design, siting constraints, maintenance issues	Class notes

6. Evaluation Scheme:

Component	Weightage (%)	Duration (min.)	Date & Time
Midsem	25	90	As announced in the timetable
Lab Experiments (#12) with Reports and Vivas (#2)	25 (= 20+5)	_	Evenly spaced throughout the semester
Project Seminars (Mid- and End-sem)	10	_	Evenly spaced throughout the semester
Comprehensive Examination	40	120	20/12 FN

7. List of Experiments:

Sr. No.	Name of Experiment	Laboratory	
1.	Performance Study of Centrifugal Pump in Series	Hydraulic Machines	
	and Parallel Arrangements		
2.	Performance Study of	Hydraulic Machines	
	Submersible Pump Test Rig		
3.	Centrifugal Blower with Constant and Variable	Hydraulic Machines	
	Speeds (Radial Curved Blades)		
4.	Centrifugal Blower with Variable Speed (Forward	Hydraulic Machines	
	and Backward Curved Blades)		
5.	Centrifugal Blower with Constant Speed (Forward	Hydraulic Machines	
	and Backward Curved Blades)		
6.	Performance Study of Axial Fan	Hydraulic Machines	
7.	Performance Study of Francis Turbine	IC Engines	
8.	Performance Study of Kaplan Turbine	IC Engines	
9.	Performance Study of Pelton Wheel	IC Engines	
10.	Steam Power Plant Test Rig; (a) Boiler Efficiency		
11.		IC Engines	
12.	(b) Plant Efficiency (c) Heat Balance Sheet		

8. Chamber Consultation Hour:

To be announced in the class.

9. Notices:

All notices concerning this course will be displayed in *CMS* (*institute's web-based Course Management System*). Students are advised to visit *CMS* regularly for all notices and updates.

10. Make-up Policy:

Make-up request for tests shall be granted only for the *genuine* case with sufficient evidence. Request letter duly signed by the student must reach the undersigned at least one day before the scheduled test.

11. **Academic Honesty and Integrity Policy:** Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

INSTRUCTOR-IN-CHARGE (ME G514)