Méthodes algébriques pour le contrôle optimal en Imagerie à Résonance Magnétique

Bernard Bonnard^{1,2} Olivier Cots⁵ Jean-Charles Faugère³
Alain Jacquemard¹ Jérémy Rouot⁴ Mohab Safey El Din³
Thibaut Verron⁵

- 1. Université de Bourgogne-Franche Comté, Dijon
- 2. Inria Sophia Antipolis, Équipe McTAO
- 3. UPMC Paris Sorbonne Universités, Inria Paris, CNRS, LIP6, Équipe PolSys
- 4. LAAS, CNRS, Toulouse
- 5. Toulouse Universités, INP-ENSEEIHT-IRIT, CNRS, Équipe APO

Séminaire Pluridisciplinaire d'Optimisation de Toulouse 22 mai 2017

Contrast optimization for MRI

(N)MRI = (Nuclear) Magnetic Resonance Imagery

- 1. Apply a magnetic field to a body
- 2. Measure the radio waves emitted in reaction

Goal = optimize the contrast = distinguish two biological matters from this measure

Example: in vivo experiment on a mouse brain (brain vs parietal muscle)¹

Bad contrast (not enhanced)

Good contrast (enhanced)

¹Éric Van Reeth et al. (2016). 'Optimal Control Design of Preparation Pulses for Contrast Optimization in MRI'. . In: Submitted IEEE transactions on medical imaging.

Contrast optimization for MRI

(N)MRI = (Nuclear) Magnetic Resonance Imagery

- 1. Apply a magnetic field to a body
- 2. Measure the radio waves emitted in reaction

Goal = optimize the contrast = distinguish two biological matters from this measure

Example: in vivo experiment on a mouse brain (brain vs parietal muscle)¹

Bad contrast (not enhanced)

Good contrast (enhanced)

Known methods:

- ▶ inject contrast agents to the patient: potentially toxic...
- enhance the contrast dynamically soptimal control problem

¹Éric Van Reeth et al. (2016). 'Optimal Control Design of Preparation Pulses for Contrast Optimization in MRI'. . In: Submitted IEEE transactions on medical imaging.

Problem and results

Study of optimal control strategy for the MRI

- ▶ Optimal control theory: find settings for the MRI device ensuring e.g. good contrast
- Already proved to give better results than implemented heuristics²
- Powerful tools allow to understand the control policies

These questions reduce to algebraic problems

- Invariants of a group action on vector fields
- Algebraic: rank conditions, polynomial equations, eigenvalues...

Contribution: algebraic tools for this workflow

- Demonstrate use of existing tools
- Dedicated strategies for specific problems (real roots classification) adapted to the structure of the systems (determinantal systems)
- These structures extend beyond the MRI problem

²Marc Lapert, Yun Zhang, Martin A. Janich, Steffen J. Glaser and Dominique Sugny (2012). 'Exploring the Physical Limits of Saturation Contrast in Magnetic Resonance Imaging'. In: *Scientific Reports* 2.589.

Outline of the talk

1. Context and problem statement

- Magnetic Resonance Imagery
- Physical modelization of the problem

2. Optimal control theory

- ► Pontryagin's Maximum principle
- Study of singular extremals: algebraic questions

3. General algebraic techniques

- ▶ Tools for polynomial systems
- Examples of results

4. Real roots classification for the singularities of determinantal systems

- What is the goal?
- State of the art and main results
- General strategy: what do we need to compute?
- Dedicated strategy for determinantal systems
- Results for the contrast problem

5. Conclusion

The Bloch equations for a single spin

The Bloch equations

$$\begin{cases} \dot{y} = -\Gamma y - uz \\ \dot{z} = \gamma(1-z) + uy \end{cases} \rightsquigarrow \dot{q} = F(\gamma, \Gamma, q) + uG(q)$$

- ightharpoonup q = (y, z): state variables
- γ , Γ : relaxation parameters (constants depending on the biological matter)
- ▶ *u*: control function (the unknown of the problem)

Physical limitations

► State variables: the Bloch Ball

$$y^2 + z^2 \le 1$$

Parameters:

$$2\gamma \geq \Gamma > 0$$

Control:

$$-1 \le \underline{u} \le 1$$

Optimal control problems

Bloch equations for 2 spins:
$$\begin{cases} \dot{q}_1 = F_1(\gamma_1, \Gamma_1, q_1) + uG_1(q_1) \\ \dot{q}_2 = F_2(\gamma_2, \Gamma_2, q_2) + uG_2(q_2) \end{cases}$$

Contrast problem

- ► Two matters, 4 parameters $\gamma_1, \Gamma_1, \gamma_2, \Gamma_2$
- ▶ Both spins have the same dynamic: $F_1 = F_2 = F$, $G_1 = G_2 = G$
- Equations

$$\begin{cases} \dot{q}_1 = F(\gamma_1, \Gamma_1, q_1) + uG(q_1) \\ \dot{q}_2 = F(\gamma_2, \Gamma_2, q_2) + uG(q_2) \end{cases}$$

Goal: saturate #1, maximize #2:

$$\begin{cases} y_1 = z_1 = 0 \\ \text{Maximize } |(y_2, z_2) \end{cases}$$

Multi-saturation problem

► Two spins of the same matter:

- Small perturbation on the second spin: $F_1 = F_2 = F$, $G_2 = (1 \varepsilon)G_1$
- 2 parameters + ε
- Equations:

$$\begin{cases} \dot{q}_1 &= F(\gamma, \Gamma, q_1) + \mathbf{u}G(q_1) \\ \dot{q}_2 &= F(\gamma, \Gamma, q_2) + \mathbf{u}(1 - \varepsilon)G(q_2) \end{cases}$$

► Goal: both matters saturated:

$$\begin{cases} y_1 = z_1 = 0 \\ y_2 = z_2 = 0 \end{cases}$$

Optimal control problems

Bloch equations for 2 spins:
$$\begin{cases} \dot{q}_1 = & F_1(\gamma_1, \Gamma_1, q_1) + uG_1(q_1) \\ \dot{q}_2 = & F_2(\gamma_2, \Gamma_2, q_2) + uG_2(q_2) \end{cases}$$

Contrast problem

- ► Two matters, 4 parameters $\gamma_1, \Gamma_1, \gamma_2, \Gamma_2$
- ▶ Both spins have the same dynamic: $F_1 = F_2 = F$, $G_1 = G_2 = G$
- ► Equations

$$\begin{cases} \dot{q}_1 = F(\gamma_1, \Gamma_1, q_1) + uG(q_1) \\ \dot{q}_2 = F(\gamma_2, \Gamma_2, q_2) + uG(q_2) \end{cases}$$

Goal: saturate #1, maximize #2:

$$\begin{cases} y_1 = z_1 = 0 \\ \text{Maximize } |(y_2, z_2)| \end{cases}$$

Multi-saturation problem

- ► Two spins of the same matter:
- Small perturbation on the second spin: $F_1 = F_2 = F$, $G_2 = (1 \varepsilon)G_1$
- ▶ 2 parameters + ε
- Equations

$$\begin{cases} \dot{q}_1 = F(\gamma, \Gamma, q_1) + uG(q_1) \\ \dot{q}_2 = F(\gamma, \Gamma, q_2) + u(1 - \varepsilon)G(q_2) \end{cases}$$

► Goal: both matters saturated:

$$\begin{cases} y_1 = z_1 = 0 \\ y_2 = z_2 = 0 \end{cases}$$

Optimal control problems

Bloch equations for 2 spins:
$$\begin{cases} \dot{q}_1 = F_1(\gamma_1, \Gamma_1, q_1) + uG_1(q_1) \\ \dot{q}_2 = F_2(\gamma_2, \Gamma_2, q_2) + uG_2(q_2) \end{cases}$$

Contrast problem

- ► Two matters, 4 parameters $\gamma_1, \Gamma_1, \gamma_2, \Gamma_2$
- ▶ Both spins have the same dynamic: $F_1 = F_2 = F$, $G_1 = G_2 = G$
- ► Equations

$$\begin{cases} \dot{q}_1 = F(\gamma_1, \Gamma_1, q_1) + uG(q_1) \\ \dot{q}_2 = F(\gamma_2, \Gamma_2, q_2) + uG(q_2) \end{cases}$$

Goal: saturate #1, maximize #2:

$$\begin{cases} y_1 = z_1 = 0 \\ \text{Maximize } |(y_2, z_2)| \end{cases}$$

Multi-saturation problem

Two spins of the same matter:

$$\Gamma_1 = \Gamma_2 = \Gamma$$
, $\gamma_1 = \gamma_2 = \gamma$

- Small perturbation on the second spin: $F_1 = F_2 = F$, $G_2 = (1 \varepsilon)G_1$
- ▶ 2 parameters + ε
- Equations:

$$\begin{cases} \dot{q}_1 &= F(\gamma, \Gamma, q_1) + uG(q_1) \\ \dot{q}_2 &= F(\gamma, \Gamma, q_2) + u(1 - \varepsilon)G(q_2) \end{cases}$$

Goal: both matters saturated:

$$\begin{cases} y_1 = z_1 = 0 \\ y_2 = z_2 = 0 \end{cases}$$

Outline of the talk

1. Context and problem statement

- Magnetic Resonance Imagery
- Physical modelization of the problem

2. Optimal control theory

- ► Pontryagin's Maximum principle
- Study of singular extremals: algebraic questions

3. General algebraic techniques

- ▶ Tools for polynomial systems
- Examples of results

4. Real roots classification for the singularities of determinantal systems

- ▶ What is the goal?
- State of the art and main results
- General strategy: what do we need to compute?
- Dedicated strategy for determinantal systems
- Results for the contrast problem

Conclusion

Pontryagin's Maximum principle

Control problem: minimize $C(q(t_f))$ under the constraint $\dot{q} = F(q, \mathbf{u})$ $(q(t) \in \mathbb{R}^n)$

Definition: Hamiltonian

Introduce multipliers $p = (p_1, \dots, p_n) : \mathbb{R} \to \mathbb{R}^n$, the Hamiltonian associated with the control problem is defined as

$$H(q,p,\mathbf{u}) := \langle p,F(q,\mathbf{u})\rangle - C(q(t_f))$$

Pontryagin's Maximum principle

If u is an optimal control, then q, p and u are solutions of

$$\begin{cases} \dot{q} = \frac{\partial H}{\partial p} \\ \dot{p} = -\frac{\partial H}{\partial q} \end{cases}$$

and almost everywhere in t, u(t) maximizes the Hamiltonian

$$H(q(t), p(t), \mathbf{u}(t)) = \max_{v \in [-1, 1]} H(q(t), p(t), v)$$

Pontryagin's Maximum principle

Control problem: minimize $C(q(t_f))$ under the constraint $\dot{q} = F(q, \mathbf{u})$ $(q(t) \in \mathbb{R}^n)$

Definition: Hamiltonian

Introduce multipliers $p = (p_1, \dots, p_n) : \mathbb{R} \to \mathbb{R}^n$, the Hamiltonian associated with the control problem is defined as

$$H(q,p,\mathbf{u}) := \langle p,F(q,\mathbf{u})\rangle - C(q(t_f))$$

Pontryagin's Maximum principle

If u is an optimal control, then q, p and u are solutions of

$$\begin{cases} \dot{q} &= \frac{\partial H}{\partial p} \\ \dot{p} &= -\frac{\partial H}{\partial q} \end{cases}$$

and almost everywhere in t, u(t) maximizes the Hamiltonian:

$$H(q(t), p(t), \mathbf{u}(t)) = \max_{v \in [-1, 1]} H(q(t), p(t), v)$$

The affine case: bang and singular arcs

The Bloch equations form an affine control problem:

$$\dot{q} = F(q) + \mathbf{u}G(q)$$

Pontryagin's principle, the affine case

The control u maximizes over [-1, 1]

$$H(q, p, \mathbf{u}) = H_F(q, p) + \mathbf{u}H_G(q, p).$$

Two situations:

$$\vdash H_G \neq 0 \implies u = \text{sign}(H_G)$$
: "Bang" arc

$$n_G \neq 0 \implies u = \text{sign}(n_G)$$
. Bang are

Singular trajectories for the Bloch equations

They satisfy $\dot{q} = DF(q) - D'G(q)$ with optimal control $u = \frac{D}{D}$

D and D' are determinants of 4×4 matrices (Cramer's rule for a linear system in p)

The affine case: bang and singular arcs

The Bloch equations form an affine control problem:

$$\dot{q} = F(q) + uG(q)$$

Pontryagin's principle, the affine case

The control \underline{u} maximizes over [-1,1]:

$$H(q,p,\mathbf{u}) = H_F(q,p) + \mathbf{u}H_G(q,p).$$

Two situations:

- ► $H_G \neq 0 \implies u = \text{sign}(H_G)$: "Bang" arc
- $H_G = 0 \implies ???$

Singular trajectories for the Bloch equations

They satisfy
$$\dot{q} = DF(q) - D'G(q)$$
 with optimal control $u = \frac{D'}{D}$

D and D' are determinants of 4×4 matrices (Cramer's rule for a linear system in p)

The affine case: bang and singular arcs

The Bloch equations form an affine control problem:

$$\dot{q} = F(q) + uG(q)$$

Pontryagin's principle, the affine case

The control \underline{u} maximizes over [-1,1]:

$$H(q, p, \mathbf{u}) = H_F(q, p) + \mathbf{u}H_G(q, p).$$

Two situations:

►
$$H_G \neq 0 \implies u = \text{sign}(H_G)$$
: "Bang" arc

$$H_G = 0 \implies ???$$

In practice one chooses u such that H_G remains 0: Singular arc \implies need bifurcation strategies...

Singular trajectories for the Bloch equations

They satisfy $\dot{q} = DF(q) - D'G(q)$ with optimal control $u = \frac{D'}{D}$.

D and D' are determinants of 4×4 matrices (Cramer's rule for a linear system in p)

Study of invariants

Group action on vector fields (F, G)

Control system:
$$\dot{q} = F(q) + uG(q)$$

- ▶ Changes of coordinates: $q \leftarrow \varphi(q)$
- ► Feedback: $\mathbf{u} \leftarrow \alpha(q) + \beta(q)\mathbf{v}$

Long-term goal: classification of the parameters via invariants of this group action

Example: control of a single spin³

Figure : Time-minimal saturation for a single spin: left: $2\Gamma < 3\gamma$, right: $2\Gamma \geq 3\gamma$

³Marc Lapert (2011). 'Développement de nouvelles techniques de contrôle optimal en dynamique quantique : de la Résonance Magnétique Nucléaire à la physique moléculaire'. PhD thesis. Université de Bourgogne, Dijon, France.

Study of invariants

Group action on vector fields (F, G)

Control system:
$$\dot{q} = F(q) + uG(q)$$

- ▶ Changes of coordinates: $q \leftarrow \varphi(q)$
- ► Feedback: $\mathbf{u} \leftarrow \alpha(q) + \beta(q)\mathbf{v}$

Long-term goal: classification of the parameters via invariants of this group action

Examples of invariants (fixed values of the parameters)

- ▶ Hypersurface Σ : {D = 0}
- Singularities of Σ
- Set where F and G are colinear
- Set where G and [F, G] are colinear
- Equilibrium points: $\{D = D' = 0\}$
- ► Eigenvalues of the linearized system at equilibrium points (up to a constant)

> ...

Study of invariants

Group action on vector fields (F, G)

Control system:
$$\dot{q} = F(q) + uG(q)$$

- ▶ Changes of coordinates: $q \leftarrow \varphi(q)$
- ► Feedback: $\mathbf{u} \leftarrow \alpha(\mathbf{q}) + \beta(\mathbf{q})\mathbf{v}$

Long-term goal: classification of the parameters via invariants of this group action

Examples of invariants (fixed values of the parameters)

- ▶ Hypersurface Σ : {D = 0}
- Singularities of Σ
- Set where F and G are colinear
- ▶ Set where G and [F, G] are colinear
- ► Equilibrium points: $\{D = D' = 0\}$
- ► Eigenvalues of the linearized system at equilibrium points (up to a constant)
- **•** ...

Outline of the talk

1. Context and problem statement

- Magnetic Resonance Imagery
- Physical modelization of the problem

2. Optimal control theory

- ► Pontryagin's Maximum principle
- Study of singular extremals: algebraic questions

3. General algebraic techniques

- Tools for polynomial systems
- Examples of results

4. Real roots classification for the singularities of determinantal systems

- ▶ What is the goal?
- State of the art and main results
- General strategy: what do we need to compute?
- Dedicated strategy for determinantal systems
- Results for the contrast problem

5. Conclusion

Polynomial tools: factorization and elimination

Factorization

- ▶ Given $P \in \mathbb{Q}[X_1, ..., X_n]$, compute $F_i \in \mathbb{Q}[X_1, ..., X_n]$, $\alpha_i \in \mathbb{N}$ such that $P = F_1^{\alpha_1} \cdots F_r^{\alpha_r}$
- Very fast, efficiently implemented in most CAS
- **Ex.** square-free form: $\sqrt{P} := F_1 \cdots F_r$ has the same zeroes as P

Elimination

- ▶ Given an ideal $I \subset \mathbb{Q}[X_1,...,X_n]$ and $k \in \{1,...,n\}$, compute $I \cap \mathbb{Q}[X_{k+1},...,X_n]$
- Computationally expensive, many different tools: resultants, Gröbner bases...
- ► Ex. saturation: $\langle f_1, \dots, f_r : f^{\circ \circ} \rangle = \langle f_1, \dots, f_r, Uf 1 \rangle \cap \mathbb{Q}[X_1, \dots, X_n]$ The roots of this system "are" the roots of f_1, \dots, f_r , minus the zeroes of f_1, \dots, f_r

Typical example of simplification

If *I* contains P = fg, we can split the study into:

- 1. the roots of $I + \langle f \rangle$
- 2. the roots of $I + \langle g \rangle$ saturated by

Polynomial tools: factorization and elimination

Factorization

- ▶ Given $P \in \mathbb{Q}[X_1, ..., X_n]$, compute $F_i \in \mathbb{Q}[X_1, ..., X_n], \alpha_i \in \mathbb{N}$ such that $P = F_1^{\alpha_1} \cdots F_r^{\alpha_r}$
- Very fast, efficiently implemented in most CAS
- **Ex.** square-free form: $\sqrt{P} := F_1 \cdots F_r$ has the same zeroes as P

Elimination

- ▶ Given an ideal $I \subset \mathbb{Q}[X_1,...,X_n]$ and $k \in \{1,...,n\}$, compute $I \cap \mathbb{Q}[X_{k+1},...,X_n]$
- Computationally expensive, many different tools: resultants, Gröbner bases...
- Ex. saturation: $\langle f_1, \dots, f_r : f^{\infty} \rangle = \langle f_1, \dots, f_r, Uf 1 \rangle \cap \mathbb{Q}[X_1, \dots, X_n]$ The roots of this system "are" the roots of f_1, \dots, f_r , minus the zeroes of f

Typical example of simplification

If *I* contains P = fg, we can split the study into:

- 1. the roots of $I + \langle f \rangle$
- 2. the roots of $I + \langle g \rangle$ saturated by I

Polynomial tools: factorization and elimination

Factorization

- ▶ Given $P \in \mathbb{Q}[X_1, ..., X_n]$, compute $F_i \in \mathbb{Q}[X_1, ..., X_n], \alpha_i \in \mathbb{N}$ such that $P = F_1^{\alpha_1} \cdots F_r^{\alpha_r}$
- Very fast, efficiently implemented in most CAS
- **Ex.** square-free form: $\sqrt{P} := F_1 \cdots F_r$ has the same zeroes as P

Elimination

- ▶ Given an ideal $I \subset \mathbb{Q}[X_1,...,X_n]$ and $k \in \{1,...,n\}$, compute $I \cap \mathbb{Q}[X_{k+1},...,X_n]$
- Computationally expensive, many different tools: resultants, Gröbner bases...
- ► Ex. saturation: $\langle f_1, \dots, f_r : f^{\infty} \rangle = \langle f_1, \dots, f_r, Uf 1 \rangle \cap \mathbb{Q}[X_1, \dots, X_n]$ The roots of this system "are" the roots of f_1, \dots, f_r , minus the zeroes of f

Typical example of simplification

If *I* contains P = fg, we can split the study into:

- 1. the roots of $I + \langle f \rangle$
- 2. the roots of $I + \langle g \rangle$ saturated by f

Examples for multi-saturation

$$\begin{cases} \dot{q}_1 &= DF(\gamma, \Gamma, q_1) - D'G(q_1) \\ \dot{q}_2 &= DF(\gamma, \Gamma, q_2) - D'(1 - \varepsilon)G(q_2) \end{cases}$$

Singularities of $\{D=0\}$

- North pole
- ► Line defined by $\begin{cases} y_1 = (1 \varepsilon)y_2 \\ z_1 = z_2 = z_S := \frac{\gamma}{2(\Gamma \gamma)} \end{cases}$ (cf. the horizontal line for a single spin)

Equilibrium points D = D' = 0

- ▶ Horizontal plane $z_1 = z_2 = z_S = \frac{\gamma}{2(\Gamma \gamma)}$
- ► Vertical line $y_1 = y_2 = 0$, $z_1 = z_2$
- 3 more complicated surfaces (related to the colinearity loci)

We can fully describe all invariants!

Previous results for the contrast problem⁴

Study of 4 experimental cases:

Matter #1 / # 2	γ ₁	Γ ₁	γ ₂	Γ ₂
Water / cerebrospinal fluid	0.01	0.01	0.02	0.10
Water / fat	0.01	0.01	0.15	0.31
Deoxygenated / oxygenated blood	0.02	0.62	0.02	0.15
Gray / white brain matter	0.03	0.31	0.04	0.34

Separated by means of several invariants:

- Number of singularities of {D = 0}
- ▶ Structure of $\{D = D' = 0\}$
- Eigenvalues of the linearizations at equilibrium points
- ▶ Study of the quadratic approximations at points where the linearization is 0

⁴Bernard Bonnard, Monique Chyba, Alain Jacquemard and John Marriott (2013). 'Algebraic geometric classification of the singular flow in the contrast imaging problem in nuclear magnetic resonance'. In: *Mathematical Control and Related Fields* 3.4, pp. 397–432. ISSN: 2156-8472. DOI: 10.3934/mcrf.2013.3.397.

Classification for the contrast problem

$$\begin{cases} \dot{q}_1 &= DF(\gamma_1, \Gamma_1, q_1) - D' G(q_1) \\ \dot{q}_2 &= DF(\gamma_2, \Gamma_2, q_2) - D' G(q_2) \end{cases}$$

More complicated

- ▶ 4 variables, 4 parameters (~ 3 by homogeneity)
 - Polynomials of high degree

Singularities of $\{D=0\}$ using Gröbner bases and factorisations/saturations

(After appropriate saturations) the ideal contains

$$\begin{cases} 0 &= P_{y_2}(y_2^2, \bullet) \text{ with degree 4 in } y_2^2 \text{ (8 roots)} \\ \bullet y_1 &= P_{y_1}(y_2, \bullet) \\ \bullet z_1 &= P_{z_1}(y_2, \bullet) \\ \bullet z_2 &= P_{z_2}(y_2, \bullet) \\ &\vdots \end{cases}$$

 \implies study of the number of roots of P_{y_2} (depending on its leading coefficient and discriminant)

Properties:

- Finite number of singularities for each value of the parameters
- Singularities come in pairs: invariant under (y_i → -y_i)

Classification in terms of Γ_i , γ_i :

- ► Generically: 4 pairs of singularities
- 3 pairs on a surface with several components:
 - one hyperplane
 - one quadric
 - one degree 24 surface
- 2 pairs on a curve with man components
- 1 pair on a set of points

Properties:

- Finite number of singularities for each value of the parameters
- Singularities come in pairs: invariant under $(y_i \mapsto -y_i)$

Classification in terms of Γ_i , γ_i :

- ► Generically: 4 pairs of singularities
- 3 pairs on a surface with several components:
 - one hyperplane
 - one quadric
 - one degree 24 surface
 - **.**..
- 2 pairs on a curve with many components
- ▶ 1 pair on a set of points

Properties:

- Finite number of singularities for each value of the parameters
- Singularities come in pairs: invariant under $(y_i \mapsto -y_i)$

Classification in terms of Γ_i , γ_i :

- ► Generically: 4 pairs of singularities
- 3 pairs on a surface with several components:
 - one hyperplane
 - one quadric
 - one degree 24 surface
- 2 pairs on a curve with many components
- ▶ 1 pair on a set of points

Properties:

- Finite number of singularities for each value of the parameters
- Singularities come in pairs: invariant under (y_i → -y_i)

Classification in terms of Γ_i , γ_i :

- Generically: 4 pairs of singularities
- 3 pairs on a surface with several components:
 - one hyperplane
 - one quadric
 - one degree 24 surface
 - ▶ ...
- 2 pairs on a curve with many components
- ▶ 1 pair on a set of points

Properties:

- Finite number of singularities for each value of the parameters
- Singularities come in pairs: invariant under $(y_i \mapsto -y_i)$

Classification in terms of Γ_i , γ_i :

- Generically: 4 pairs of singularities
- 3 pairs on a surface with several components:
 - one hyperplane
 - one quadric
 - one degree 24 surface
- 2 pairs on a curve with many components
- ▶ 1 pair on a set of points

Properties:

- Finite number of singularities for each value of the parameters
- Singularities come in pairs: invariant under (y_i → -y_i)

Classification in terms of Γ_i , γ_i :

- Generically: 4 pairs of singularities
- 3 pairs on a surface with several components:
 - one hyperplane
 - one quadric
 - one degree 24 surface
- 2 pairs on a curve with many components
- 1 pair on a set of points

Can we get more information? For example, information about real points?

Outline of the talk

- 1. Context and problem statement
 - Magnetic Resonance Imagery
 - Physical modelization of the problem
- 2. Optimal control theory
 - ► Pontryagin's Maximum principle
 - Study of singular extremals: algebraic questions
- 3. General algebraic techniques
 - ► Tools for polynomial systems
 - Examples of results
- 4. Real roots classification for the singularities of determinantal systems
 - What is the goal?
 - State of the art and main results
 - General strategy: what do we need to compute?
 - Dedicated strategy for determinantal systems
 - Results for the contrast problem
- 5. Conclusion

The goal: real roots classification

- ▶ Algebraic variety \mathcal{V} : singularities of Σ : $D = \frac{\partial D}{\partial y_1} = \frac{\partial D}{\partial y_2} = \frac{\partial D}{\partial z_1} = \frac{\partial D}{\partial z_2} = 0$
- ► Semi-algebraic constraints \mathcal{B} : Bloch Ball $y_i^2 + z_i^2 1 \le 0$

The goal: real roots classification

- ▶ Algebraic variety \mathcal{V} : singularities of Σ : $D = \frac{\partial D}{\partial y_1} = \frac{\partial D}{\partial y_2} = \frac{\partial D}{\partial z_1} = \frac{\partial D}{\partial z_2} = 0$
- ► Semi-algebraic constraints \mathcal{B} : Bloch Ball $y_i^2 + z_i^2 1 \le 0$

Goal

Partition of the parameter space depending on the number of points of $\mathcal{V} \cap \mathcal{B}$ above

The goal: real roots classification

- ▶ Algebraic variety \mathcal{V} : singularities of Σ : $D = \frac{\partial D}{\partial y_1} = \frac{\partial D}{\partial y_2} = \frac{\partial D}{\partial z_1} = \frac{\partial D}{\partial z_2} = 0$
- ► Semi-algebraic constraints \mathcal{B} : Bloch Ball $y_i^2 + z_i^2 1 \le 0$

Goal

Partition of the parameter space depending on the number of points of $\mathcal{V} \cap \mathcal{B}$ above

The goal: real roots classification

- ► Algebraic variety \mathcal{V} : singularities of Σ : $D = \frac{\partial D}{\partial y_1} = \frac{\partial D}{\partial y_2} = \frac{\partial D}{\partial z_1} = \frac{\partial D}{\partial z_2} = 0$
- ► Semi-algebraic constraints \mathcal{B} : Bloch Ball $y_i^2 + z_i^2 1 \le 0$

Goal

Partition of the parameter space depending on the number of points of $\mathcal{V} \cap \mathcal{B}$ above

The goal: real roots classification

- ▶ Algebraic variety \mathcal{V} : singularities of Σ : $D = \frac{\partial D}{\partial y_1} = \frac{\partial D}{\partial y_2} = \frac{\partial D}{\partial z_1} = \frac{\partial D}{\partial z_2} = 0$
- ► Semi-algebraic constraints \mathcal{B} : Bloch Ball $y_i^2 + z_i^2 1 \le 0$

Goal

Partition of the parameter space depending on the number of points of $\mathcal{V} \cap \mathcal{B}$ above

State of the art and main results

State of the art:

- General tool: Cylindrical Algebraic Decomposition Collins, 1975
- Specific tools for roots classification Yang, Hou, Xia, 2001 Lazard, Rouillier, 2007

Problem

- None of these algorithms can solve the problem efficiently:
 - ▶ 1050 s in the case of water $(\gamma_1 = \Gamma_1 = 1 \rightarrow 2 \text{ parameters})$
 - > 24 h in the general case (3 parameters)
- Can we exploit the determinantal structure to go further?

State of the art and main results

State of the art:

- General tool: Cylindrical Algebraic Decomposition Collins, 1975
- Specific tools for roots classification Yang, Hou, Xia, 2001 Lazard, Rouillier, 2007

Problem

- None of these algorithms can solve the problem efficiently:
 - ▶ 1050 s in the case of water $(\gamma_1 = \Gamma_1 = 1 \rightarrow 2 \text{ parameters})$
 - > 24 h in the general case (3 parameters)
- Can we exploit the determinantal structure to go further?

Main results

- Dedicated strategy for real roots classification for determinantal systems
- ► Can use existing tools for elimination
- Main refinements:
 - Rank stratification
 - Incidence varieties
- Faster than general algorithms:
 - 10 s in the case of water
 - 4 h in the general case
- Results for the application
 - ► Full classification
 - ► In the case of water: 1, 2 or 3 singularities
 - ► In the general case: 1, 2, 3, 4 or 5 singularities

In our case, the only points where the number of roots may change are projections of:

In our case, the only points where the number of roots may change are projections of:

ightharpoonup points where ${\cal V}$ meets the border of the semi-algebraic domain

In our case, the only points where the number of roots may change are projections of:

- lacktriangleright points where ${\cal V}$ meets the border of the semi-algebraic domain
- lacktriangle critical points of π restricted to ${\mathcal V}$

In our case, the only points where the number of roots may change are projections of:

- lacktriangleright points where ${\cal V}$ meets the border of the semi-algebraic domain
- critical points of π restricted to $\mathcal V$
- ightharpoonup singular points of ${\mathcal V}$

In our case, the only points where the number of roots may change are projections of:

- lacktriangleright points where ${\cal V}$ meets the border of the semi-algebraic domain
- lacktriangle critical points of π restricted to ${\mathcal V}$
- ► singular points of \mathcal{V}

We want to compute $P \in \mathbb{Q}[G]$ with $P \neq 0$ and P vanishing at all these points

Intersection with the border

For each inequality f > 0 defining \mathcal{B}

- 1. Add f = 0 to the equations of V
- 2. Compute the image of the variety through π (eliminate \mathbf{X})

Critical and singular points

$$(\mathbf{X}, \mathbf{G}) \in \mathcal{K}(\pi, \mathcal{V})$$
 $\iff \mathsf{Jac}(F, \mathbf{X}) \text{ has rank } < d$

Requirements

- ightharpoonup F generates the ideal of $\mathcal{V} \Longrightarrow \mathsf{radical}$
- $ightharpoonup \mathcal{V}$ is equidimensional with codimension d

Properties of determinantal systems

Determinantal systems

- ▶ $A = k \times k$ -matrix filled with polynomials in n variables X and t parameters G
- ▶ $1 \le r < k$ target rank
- ▶ Determinantal variety: $V_{\leq r}(A) = \{(\mathbf{x}, \mathbf{g}) : rank(A(\mathbf{x}, \mathbf{g})) \leq r\}$

Our system:
$$V = \{D = \frac{\partial D}{\partial y_1} = \frac{\partial D}{\partial y_2} = \frac{\partial D}{\partial z_1} = \frac{\partial D}{\partial z_2} = 0\}$$

 \implies In terms of determinantal systems: n = 4, k = 4, r = 3, $\mathcal{V} = \mathcal{K}(\pi, V_{\leq r}(M))$

Properties of determinantal systems

Determinantal systems

- $ightharpoonup A = k \times k$ -matrix filled with polynomials in n variables X and t parameters G
- ▶ $1 \le r < k$ target rank
- ▶ Determinantal variety: $V_{\leq r}(A) = \{(\mathbf{x}, \mathbf{g}) : rank(A(\mathbf{x}, \mathbf{g})) \leq r\}$

Our system:
$$V = \{D = \frac{\partial D}{\partial y_1} = \frac{\partial D}{\partial y_2} = \frac{\partial D}{\partial z_1} = \frac{\partial D}{\partial z_2} = 0\}$$

 \implies In terms of determinantal systems: n = 4, k = 4, r = 3, $\mathcal{V} = \mathcal{K}(\pi, V_{\leq r}(M))$

For a generic matrix A with the same parameters

- ▶ $V_{< r}(A)$ equidimensional with codimension $(k-r)^2$
- ▶ Sing($V_{\leq r}(A)$) = $V_{\leq r-1}(A)$, t-equidimensional
- Crit(π , $V_{< r}(A)$) has dimension < t
- ▶ Natural stratification : $K(\pi, V_{\leq r}(A)) = \text{Sing}(V_{\leq r}(A)) \cup \text{Crit}(\pi, V_{\leq r}(A))$

Properties of determinantal systems

Determinantal systems

- $ightharpoonup A = k \times k$ -matrix filled with polynomials in n variables X and t parameters G
- ▶ $1 \le r < k$ target rank
- ▶ Determinantal variety: $V_{\leq r}(A) = \{(\mathbf{x}, \mathbf{g}) : rank(A(\mathbf{x}, \mathbf{g})) \leq r\}$

Our system:
$$V = \{D = \frac{\partial D}{\partial y_1} = \frac{\partial D}{\partial y_2} = \frac{\partial D}{\partial z_1} = \frac{\partial D}{\partial z_2} = 0\}$$

 \implies In terms of determinantal systems: n = 4, k = 4, r = 3, $\mathcal{V} = \mathcal{K}(\pi, V_{\leq r}(M))$

For our specific matrix M

- ▶ $V_{\leq r-1}(M) \subset \mathcal{V}$ (always true)
- $V_{<_{r-1}}(M)$ is equidimensional with dimension t
- ▶ $V \setminus V_{\leq r-1}(M)$ has dimension $\leq t$
- ► Rank stratification : $V = (V \cap V_{\leq r-1}(M)) \cup (V \setminus V_{\leq r-1}(M))$

Modelization using incidence varieties

Reminder: k = size of the matrix; r = target rank

Possible modelizations for determinantal varieties

- ▶ Minors: rank(A) $\leq r \iff$ all r+1-minors of A are 0
- ▶ Incidence system: rank(A) $\leq r \iff \exists L, A \cdot L = 0$ and rank(L) = k r

Minors:

- $\binom{k}{r+1}^2$ equations
- ▶ Codimension $(k-r)^2$

Incidence system:

- \blacktriangleright k(k-r) new variables (entries of the matrix L)
- $(k-r)^2 + k(k-r)$ equations
- ► Codimension: $(k-r)^2 + k(k-r)$

Modelization using incidence varieties

Reminder: k = size of the matrix; r = target rank

Possible modelizations for determinantal varieties

- ▶ Minors: rank(A) $\leq r \iff$ all r+1-minors of A are 0
- ▶ Incidence system: rank(A) $\leq r \iff \exists L, A \cdot L = 0$ and rank(L) = k r

Minors:

- $\binom{k}{r+1}^2$ equations
- ▶ Codimension (k r)²

Incidence system:

- \blacktriangleright k(k-r) new variables (entries of the matrix L)
- $(k-r)^2 + k(k-r)$ equations
- ► Codimension: $(k-r)^2 + k(k-r)$

Properties of the incidence system (generically and in our situation)

- ► It forms a regular sequence (codimension = length) ⇒ equidimensional
- It defines a radical ideal

Consequence for the strategy

 $K(\pi,V_{\leq r-1}(M))$ can be computed with the incidence system, using maximal minors of the Jacobian matrix

Application to the contrast problem (benchmarks)

- Computations run on the matrix of the contrast optimization problem
 - Water: $\Gamma_1 = \gamma_1 = 1 \implies 2$ parameters
 - General: $\gamma_1 = 1 \implies 3$ parameters
- Results obtained with Maple
- ► Source code and full results available at mercurey.gforge.inria.fr

Elimination tool	Water (direct)	Water (det. strat.)	General (direct)	General (det. strat.)
Gröbner bases (FGb)	100s	10 s	>24 h	46 × 200 s
Gröbner bases (F5)	-	1 s	-	110 s
Regular chains (RegularChains)	1050s	-	>24 h	90 × 200 s

Results for the contrast problem in the case of water

Finishing the computations:

- 1. Classification algorithm → limits of the cells
- 2. Cylindrical algebraic decomposition \rightarrow points in each cell
- 3. Gröbner basis computations for each point \rightarrow count of singularities

Results for the contrast problem in the case of water (zoom in)

Finishing the computations:

- 1. Classification algorithm → limits of the cells
- 2. Cylindrical algebraic decomposition \rightarrow points in each cell
- 3. Gröbner basis computations for each point \rightarrow count of singularities

Results for the contrast problem in the case of water (zoom out)

Finishing the computations:

- 1. Classification algorithm → limits of the cells
- 2. Cylindrical algebraic decomposition \rightarrow points in each cell
- 3. Gröbner basis computations for each point \rightarrow count of singularities

Conclusion and perspectives

This work

- Applications of algebraic methods to an optimal control problem
- Dedicated strategy for a classification problem related to one of the invariants

Perspectives

Algorithmically:

Extension of the algorithms to structures of other invariants

And for the MRI problem:

- Direct relation between the invariants and properties of the trajectories?
- Is it possible to lift some approximations?
- ► Further studies, e.g. classification according to optimal contrast

Thank you for your attention!