Use R!

Series Editors:

Robert Gentleman Kurt Hornik Giovanni Parmigiani

Use R!

Albert: Bayesian Computation with R

Bivand/Pebesma/Gómez-Rubio: Applied Spatial Data Analysis with R Cook/Swayne: Interactive and Dynamic Graphics for Data Analysis:

With R and GGobi

Hahne/Huber/Gentleman/Falcon: Bioconductor Case Studies *Paradis:* Analysis of Phylogenetics and Evolution with R

Pfaff: Analysis of Integrated and Cointegrated Time Series with R

Sarkar: Lattice: Multivariate Data Visualization with R

Spector: Data Manipulation with R

Roger S. Bivand • Edzer J. Pebesma Virgilio Gómez-Rubio

Applied Spatial Data Analysis with R

Roger S. Bivand Norwegian School of Economics and Business Administration Breiviksveien 40 5045 Bergen Norway

Edzer J. Pebesma University of Utrecht Department of Physical Geography 3508 TC Utrecht Netherlands Virgilio Gómez-Rubio Department of Epidemiology and Public Health Imperial College London St. Mary's Campus Norfolk Place London W2 1PG United Kingdom

Series Editors:
Robert Gentleman
Program in Computational Biology
Division of Public Health Sciences
Fred Hutchinson Cancer Research Center
1100 Fairview Ave. N, M2-B876
Seattle, Washington 98109-1024
USA

Kurt Hornik Department für Statistik und Mathematik Wirtschaftsuniversität Wien Augasse 2-6 A-1090 Wien Austria

Giovanni Parmigiani The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University 550 North Broadway Baltimore, MD 21205-2011 USA

ISBN 978-0-387-78170-9 e-ISBN 978-0-387-78171-6 DOI 10.1007/978-0-387-78171-6

Library of Congress Control Number: 2008931196

© 2008 Springer Science+Business Media, LLC

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Printed on acid-free paper

springer.com

Ewie Voor Ellen, Ulla en Mandus A mis padres, Victorina y Virgilio Benigno

Preface

We began writing this book in parallel with developing software for handling and analysing spatial data with R (R Development Core Team, 2008). Although the book is now complete, software development will continue, in the R community fashion, of rich and satisfying interaction with users around the world, of rapid releases to resolve problems, and of the usual joys and frustrations of getting things done. There is little doubt that without pressure from users, the development of R would not have reached its present scale, and the same applies to analysing spatial data analysis with R.

It would, however, not be sufficient to describe the development of the R project mainly in terms of narrowly defined utility. In addition to being a community project concerned with the development of world-class data analysis software implementations, it promotes specific choices with regard to how data analysis is carried out. R is open source not only because open source software development, including the dynamics of broad and inclusive user and developer communities, is arguably an attractive and successful development model.

R is also, or perhaps chiefly, open source because the analysis of empirical and simulated data in science should be reproducible. As working researchers, we are all too aware of the possibility of reaching inappropriate conclusions in good faith because of user error or misjudgement. When the results of research really matter, as in public health, in climate change, and in many other fields involving spatial data, good research practice dictates that someone else should be, at least in principle, able to check the results. Open source software means that the methods used can, if required, be audited, and journalling working sessions can ensure that we have a record of what we actually did, not what we thought we did. Further, using Sweave¹ – a tool that permits the embedding of R code for complete data analyses in documents – throughout this book has provided crucial support (Leisch, 2002; Leisch and Rossini, 2003).

¹ http://www.statistik.lmu.de/~leisch/Sweave/.

We acknowledge our debt to the members of R-core for their continuing commitment to the R project. In particular, the leadership and example of Professor Brian Ripley has been important to us, although our admitted 'muddling through' contrasts with his peerless attention to detail. His interested support at the Distributed Statistical Computing conference in Vienna in 2003 helped us to see that encouraging spatial data analysis in R was a project worth pursuing. Kurt Hornik's dedication to keep the Comprehensive R Archive Network running smoothly, providing package maintainers with superb, almost 24/7, service, and his dry humour when we blunder, have meant that the useR community is provided with contributed software in an unequalled fashion. We are also grateful to Martin Mächler for his help in setting up and hosting the R-Sig-Geo mailing list, without which we would have not had a channel for fostering the R spatial community.

We also owe a great debt to users participating in discussions on the mailing list, sometimes for specific suggestions, often for fruitful questions, and occasionally for perceptive bug reports or contributions. Other users contact us directly, again with valuable input that leads both to a better understanding on our part of their research realities and to the improvement of the software involved. Finally, participants at R spatial courses, workshops, and tutorials have been patient and constructive.

We are also indebted to colleagues who have contributed to improving the final manuscript by commenting on earlier drafts and pointing out better procedures to follow in some examples. In particular, we would like to mention Juanjo Abellán, Nicky Best, Peter J. Diggle, Paul Hiemstra, Rebeca Ramis, Paulo J. Ribeiro Jr., Barry Rowlingson, and Jon O. Skøien. We are also grateful to colleagues for agreeing to our use of their data sets. Support from Luc Anselin has been important over a long period, including a very fruitful CSISS workshop in Santa Barbara in 2002. Work by colleagues, such as the first book known to us on using R for spatial data analysis (Kopczewska, 2006), provided further incentives both to simplify the software and complete its description. Without John Kimmel's patient encouragement, it is unlikely that we would have finished this book.

Even though we have benefitted from the help and advice of so many people, there are bound to be things we have not yet grasped – so remaining mistakes and omissions remain our sole responsibility. We would be grateful for messages pointing out errors in this book; errata will be posted on the book website (http://www.asdar-book.org).

Bergen Münster London April 2008 Roger S. Bivand Edzer J. Pebesma Virgilio Gómez-Rubio

Contents

\mathbf{Pr}	eface	I	/II
1	Hei	llo World: Introducing Spatial Data	1
	1.1	Applied Spatial Data Analysis	1
	1.2	Why Do We Use R	2
		1.2.1 In General?	2
		1.2.2 for Spatial Data Analysis?	3
	1.3	R and GIS	4
		1.3.1 What is GIS?	4
		1.3.2 Service-Oriented Architectures	6
		1.3.3 Further Reading on GIS	6
	1.4	Types of Spatial Data	7
	1.5	* - · · · · · · · · · · · · · · · · · ·	10
	1.6		11
	1.7	7 7 7	13
			14
		1.7.2 Layout of the Book	14
Pa	rt I	Handling Spatial Data in R	
2	Cla	sses for Spatial Data in R	21
	2.1	Introduction	21
	2.2	Classes and Methods in R	23
	2.3	Spatial Objects	28
	2.4	SpatialPoints	30
		2.4.1 Methods	31
		2.4.2 Data Frames for Spatial Point Data	33
	0.5	Quantical Linear	20

X	Contents

	2.6	Spatis 2.6.1	alPolygons	41 44
		2.6.2	Holes and Ring Direction	46
	2.7	_	alGrid and SpatialPixel Objects	47
	2.1	Браст	ardina and practati fact objects	11
3	Visi	ıalisin	g Spatial Data	57
	3.1		raditional Plot System	58
		3.1.1	Plotting Points, Lines, Polygons, and Grids	58
		3.1.2	Axes and Layout Elements	60
		3.1.3	Degrees in Axes Labels and Reference Grid	64
		3.1.4	Plot Size, Plotting Area, Map Scale,	
			and Multiple Plots	65
		3.1.5	Plotting Attributes and Map Legends	66
	3.2	Trellis	/Lattice Plots with spplot	68
		3.2.1	A Straight Trellis Example	68
		3.2.2	Plotting Points, Lines, Polygons, and Grids	70
		3.2.3	Adding Reference and Layout Elements to Plots	72
		3.2.4	Arranging Panel Layout	73
	3.3	Intera	cting with Plots	74
		3.3.1	Interacting with Base Graphics	74
		3.3.2	Interacting with spplot and Lattice Plots	76
	3.4	Colour	r Palettes and Class Intervals	76
		3.4.1	Colour Palettes	76
		3.4.2	Class Intervals	77
4	C	4:-1 D.	-4- I J. E 4	01
4	5pa 4.1		ata Import and Export inate Reference Systems	81 82
	4.1	4.1.1	Using the EPSG List	83
		4.1.1	PROJ.4 CRS Specification.	84
		4.1.2	Projection and Transformation	85
		4.1.4	Degrees, Minutes, and Seconds	87
	4.2		File Formats	88
	7.2	4.2.1	Using OGR Drivers in rgdal	89
		4.2.2	Other Import/Export Functions	93
	4.3		File Formats	93
	1.0	4.3.1	Using GDAL Drivers in rgdal	
		4.3.2	Writing a Google Earth™ Image Overlay	
		4.3.3	Other Import/Export Functions	
	4.4			
		4.4.1	Broad Street Cholera Data	
	4.5	Other	Import/Export Interfaces	106
		4.5.1	Analysis and Visualisation Applications	
		4.5.2	TerraLib and aRT	
		4.5.3	Other GIS and Web Mapping Systems	
	4.6	Install	ing rgdal	

		Conte	ents X	
5	Fur	ther Methods for Handling Spatial Data	113	3
	5.1	Support		
	5.2	Overlay	116	;
	5.3	Spatial Sampling	118	3
	5.4	Checking Topologies		
		5.4.1 Dissolving Polygons	121	
		5.4.2 Checking Hole Status		
	5.5	Combining Spatial Data	123	3
		5.5.1 Combining Positional Data	123	3
		5.5.2 Combining Attribute Data	124	Ŀ
	5.6	Auxiliary Functions		
6	Cus	stomising Spatial Data Classes and Methods	127	7
	6.1	Programming with Classes and Methods		
		6.1.1 S3-Style Classes and Methods		
		6.1.2 S4-Style Classes and Methods		
	6.2	Animal Track Data in Package Trip		
		6.2.1 Generic and Constructor Functions		
		6.2.2 Methods for Trip Objects	133	3
	6.3	Multi-Point Data: SpatialMultiPoints		
	6.4	Hexagonal Grids	137	7
	6.5	Spatio-Temporal Grids		
	6.6	Analysing Spatial Monte Carlo Simulations		
	6.7	Processing Massive Grids		
Pa	rt II	Analysing Spatial Data		-
7	Spa	tial Point Pattern Analysis	155	í
	7.1	Introduction		
	7.2	Packages for the Analysis of Spatial Point Patterns		
	7.3	Preliminary Analysis of a Point Pattern		
		7.3.1 Complete Spatial Randomness		
		7.3.2 G Function: Distance to the Nearest Event		
		7.3.3 F Function: Distance from a Point		
		to the Nearest Event	162	,
	7.4	Statistical Analysis of Spatial Point Processes		
		7.4.1 Homogeneous Poisson Processes		
		7.4.2 Inhomogeneous Poisson Processes		
		7.4.3 Estimation of the Intensity		
		7.4.4 Likelihood of an Inhomogeneous Poisson Process		
		7.4.5 Second-Order Properties		
	7.5	Some Applications in Spatial Epidemiology		
		7.5.1 Case–Control Studies		

		7.5.3 Binary Regression Using Generalised	100
		Additive Models	
		7.5.4 Point Source Pollution	
	76	7.5.5 Accounting for Confounding and Covaria	
	7.6	Further Methods for the Analysis of Point Patte	rns 190
8	Inte	rpolation and Geostatistics	
	8.1	Introduction	
	8.2	Exploratory Data Analysis	
	8.3	Non-Geostatistical Interpolation Methods	
		8.3.1 Inverse Distance Weighted Interpolation	
		8.3.2 Linear Regression	
	8.4	Estimating Spatial Correlation: The Variogram	
		8.4.1 Exploratory Variogram Analysis	
		8.4.2 Cutoff, Lag Width, Direction Dependenc	
		8.4.3 Variogram Modelling	
		8.4.4 Anisotropy	
		8.4.5 Multivariable Variogram Modelling	
	o =	8.4.6 Residual Variogram Modelling	
	8.5	Spatial Prediction	
		8.5.1 Universal, Ordinary, and Simple Kriging	
		8.5.2 Multivariable Prediction: Cokriging	
		8.5.3 Collocated Cokriging	
		8.5.4 Cokriging Contrasts	
		8.5.5 Kriging in a Local Neighbourhood 8.5.6 Change of Support: Block Kriging	
		8.5.6 Change of Support: Block Kriging 8.5.7 Stratifying the Domain	
		8.5.8 Trend Functions and their Coefficients	
		8.5.9 Non-Linear Transforms of the Response	
		8.5.10 Singular Matrix Errors	
	8.6	Model Diagnostics	
	0.0	8.6.1 Cross Validation Residuals	
		8.6.2 Cross Validation z-Scores	
		8.6.3 Multivariable Cross Validation	
		8.6.4 Limitations to Cross Validation	
	8.7	Geostatistical Simulation	
	0.1	8.7.1 Sequential Simulation	
		8.7.2 Non-Linear Spatial Aggregation and Bloo	
		8.7.3 Multivariable and Indicator Simulation.	
	8.8	Model-Based Geostatistics and Bayesian Approx	
	8.9	Monitoring Network Optimization	
		Other R Packages for Interpolation and Geostat	
		8.10.1 Non-Geostatistical Interpolation	
		8.10.2 spatial	
		8.10.3 RandomFields	
		8.10.4 geoR and geoRglm	
		8.10.5 fields	

9	\mathbf{Are}	eal Data and Spatial Autocorrelation	237
	9.1	Introduction	
	9.2	Spatial Neighbours	239
		9.2.1 Neighbour Objects	240
		9.2.2 Creating Contiguity Neighbours	242
		9.2.3 Creating Graph-Based Neighbours	244
		9.2.4 Distance-Based Neighbours	246
		9.2.5 Higher-Order Neighbours	249
		9.2.6 Grid Neighbours	250
	9.3	Spatial Weights	251
		9.3.1 Spatial Weights Styles	251
		9.3.2 General Spatial Weights	253
		9.3.3 Importing, Converting, and Exporting Spatial	
		Neighbours and Weights	255
		9.3.4 Using Weights to Simulate Spatial Autocorrelation	257
		9.3.5 Manipulating Spatial Weights	258
	9.4	Spatial Autocorrelation: Tests	258
		9.4.1 Global Tests	261
		9.4.2 Local Tests	268
10		delling Areal Data	
		Introduction	
	10.2	2 Spatial Statistics Approaches	
		10.2.1 Simultaneous Autoregressive Models	
		10.2.2 Conditional Autoregressive Models	
		10.2.3 Fitting Spatial Regression Models	
		3 Mixed-Effects Models	
		Spatial Econometrics Approaches	
	10.5	6 Other Methods	
		10.5.1 GAM, GEE, GLMM	
		10.5.2 Moran Eigenvectors	
		10.5.3 Geographically Weighted Regression	305
	ъ.	ease Mapping	011
11		Introduction	
	11.2	2 Statistical Models	
		11.2.2 Log-Normal Model	
	11 9	11.2.3 Marshall's Global EB Estimator	
		3 Spatially Structured Statistical Models	
	11.4	Bayesian Hierarchical Models	
		11.4.1 The Poisson-Gamma Model Revisited	
	11 5	11.4.2 Spatial Models	
	11.5		
		11.5.1 Testing the Homogeneity of the Relative Risks	
		11.0.2 MODIAN S I TEST OF SPAULAL AUTOCOLLEGICATION	ააა

XIV Contents

11.5.3 Tai	ngo's Test of General Clustering	 335
11.5.4 Det	tection of the Location of a Cluster	 337
11.5.5 Ge	ographical Analysis Machine	 337
11.5.7 Sto	one's Test for Localised Clusters	 340
11.6 Other Top	pics in Disease Mapping	 341
Afterword		 343
R and Package	Versions Used	 344
References	11.5.3 Tango's Test of General Clustering 335 11.5.4 Detection of the Location of a Cluster 337 11.5.5 Geographical Analysis Machine 337 11.5.6 Kulldorff's Statistic 338 11.5.7 Stone's Test for Localised Clusters 340 Other Topics in Disease Mapping 341 d 343 Package Versions Used 344 Sets Used 347 Index 361 Index 371	
Subject Index		 361
Functions Index		 371