# ARC DESIGN CONTEST

指導老師:張錫嘉 教授

參賽隊員:劉力瑋.宋季轅.郭緯謙

## Outline

- Background and Motivation
- Thermal Sensor Overview
- Environment Setting
- Feature Selection
- Data Analysis Method and Result
- Conclusion

# Background & Motivation

# Background

#### Accuracy

- An indicator of thermal sensor
- How close you are to the actual value

#### Calibration methods

Dual sensing variation cancelling

## Background

#### Thermal sensor output

- Worse linearity (Overly ideal simulation process)
- Accuracy Issue (Time consuming simulation)

## Motivation

#### Our goal

- Propose an accurate calibration method based on thermal sensor
- Build a machine learning model to achieve the goal on EMSK

- DIP 32 Package
- Technology Node: 0.18um
- IO Pad Voltage: 1.8V
- Thermal Sensor
  - Temperature range: 0~100°C
- Calibration Features
  - Dual sensing variation cancelling
  - Pulse Proportion Generator (PPG) for reducing PVT variations

#### **Dual Sensing Variation cancelling**



- Pulse Proportion Generator
  - Generate a ruler time-pulse as reference
  - Taking proportion between V<sub>ruler</sub> and V<sub>sen</sub>
  - To compensate the P-V-T variations





PVT variations will be eliminated

Vsen



 $T_{sensing} = 3 \times T_{ruler}$ 

 $Out_{sensing} = 15$ 

 $Out_{ruler} = 5$ 

#### Thermal Sensor Output

- ①Sense\_in ②Sense\_ex ③Ruler
- 4PPG\_in=Sense\_in/Ruler 5PPG\_ex=Sense\_ex/Ruler



#### • System Architecture

- Embedded ARC Starter Kit
- Thermal Sensor Circuit
- UART/GPIO
- Temperature chamber



Thermal Sensor Circuit



**ARC EMSK Platform** 



#### PMOD

Set PMOD as GPIO to control our signal

```
port_output = gpio_get_dev(DW_GPIO_PORT_C);
port_output -> gpio_open(0x00ffff00);
port_output ->gpio_control(GPIO_CMD_SET_BIT_DIR_OUTPUT, (void *)0x00ffff00);
port_output ->gpio_control(GPIO_CMD_DIS_BIT_INT, (void *)0x00ffff00);

port_output-> gpio_write(PATTERN_EXCEL[count]<<PMOD_OFFSET0, MASK_GPIO0);</pre>
```

#### Timer interrupt

- At specific frequency range, we output signal to IC from our specific pattern

```
int_disable(INTNO_TIMER0);
timer_stop(INTNO_TIMER0);// stop timer for setting handler
int_handler_install(INTNO_TIMER0, timer0_isr);
int_enable(INTNO_TIMER0);
timer_start(TIMER_0, TIMER_CTRL_IE, BOARD_CPU_CLOCK/1000);
```

Put the Circuit In Chamber



**Start Data Collection** 





## Feature Selection

#### Five Output

- ①Sense\_in ②Sense\_ex ③Ruler
- 4)PPG\_in=Sense\_in/Ruler 5)PPG\_ex=Sense\_ex/Ruler

#### Feature Selection

- Linearity
- Function



# Feature Selection - Linearity

Ruler breaks the linearity of sensing output



## Feature Selection – PPG Function

The difference between SENSE\_in and Ruler is not proportional,

same as SENSE\_ex and Ruler

$$\mathsf{P}_{ideal} = \frac{k \times Sense}{k \times Ruler}$$

$$\mathsf{P}_{measurement} = \frac{k \times Sense + n}{k \times Ruler + n'}$$



## Feature Selection

- We only chose Sense\_in and Sense\_ex as training input
  - Ruler does not have great linearity in small range
  - The variation between ruler and sensing is not constant in 15°C to 40°C



# Data Analysis & Machine Learning Based Method

## **Data Analysis**

- Sense\_out is the linear data
- Sense\_in can be the auxiliary data



# **Data Analysis**

- Data is not Gaussian distribution
  - Use moving average to smooth raw data



(thermal\_out\_sensing)

(thermal\_in\_sensing)

# K-mean Clustering

- X means clustering center
  - Centers are very close to each other
- Result
  - Only 87% accuracy falls on ±0.5°C





## Multiple Linear Regression

#### • Equation:

$$\beta_0 out^3 + \beta_1 out^2 + \beta_2 out^1 + \beta_3 in^2 + \beta_4 in^1 + \beta_5 = \text{Estimated Temperature}$$

Using minimum mean square error to train weights

$$L = \sum_{i=1}^{n} \varepsilon_{i}^{2} = \varepsilon' \varepsilon = (y - X\beta)' (y - X\beta)$$
$$\frac{\partial L}{\partial \beta} = 0 \Rightarrow X' X \hat{\beta} = X' y$$

L: square error

y: true temperature

β: weight

X:input data matrix

# Multiple Linear Regression

#### Result

- 97.48% accuracy falls on ±0.5°C





# Demo Video(open the link at picture)





## Conclusion

- An accurate calibration method is proposed
  - multiple linear regression
- Improve the accuracy from 1°C to 0.5°C

