EE230: Homework 1 Familiarization with NGSpice Circuit Simulator

Anubhav Bhatla, 200070008 January 9, 2022

1 Overview of the experiment

1.1 Aim of the experiment

Familiarization with the basic functions of NGSpice, by creating and simulating the following examples:

- RC Integrator
- RC Differentiator
- RC Lowpass Filter
- RC Highpass Filter
- RC Bandpass Filter
- RLC Bandpass Filter

1.2 Methods

The circuit diagrams for the above examples were provided in the lab handout, using which I created and simulated them in NGSpice

2 Design

1. RC Integrator

2. RC Differentiator

$3. \ RC \ Lowpass \ Filter$

4. RC Highpass Filter

5. RC Bandpass Filter

6. RLC Bandpass Filter

3 Simulation results

3.1 RC Integrator

3.1.1 Code snippet

```
RC Integrator 
*Connections as mentioned in the figure 
R 1 2 10k 
C 2 0 0.1u 
*Input Pulse 
Vin 1 0 pulse (0\ 5\ 0\ 0\ 0\ 10m\ 20m) 
*Transient Analysis 
.tran 0.02m\ 60m 
.control 
run 
*Plotting Vin and Vout 
plot v(1)\ v(2) 
print v(1)\ v(2) 
.endc
```

 $.\ \mathrm{end}$

3.1.2 Simulation results

Given below are the plots and reasoning for the 5 cases given for an RC Integrator.

Cases:

1. $T = 10\tau$

 $2. \ T = 5\tau$

3. $T = \tau$

4. $T = 0.1\tau$

5. $T = 0.05\tau$

As the Pulse Width to Time Constant ratio decreases, the Capacitor does not get enough time to charge fully and thus we get a lower V_{out} and a reasonably linear curve. Similarly, for the Discharge cycle, the Capacitor does not get enough time to discharge completely and V_{out} decreases almost linearly.

3.2 RC Differentiator

3.2.1 Code snippet

```
RC Differentiator

*Connections as mentioned in the figure
C 1 2 0.1u
R 2 0 10k

*Input Pulse
Vin 1 0 pulse(0 5 0 0 0 10m 20m)

*Transient analysis
.tran 0.02m 60m
.control
run
```

```
*Plotting Vin and Vout plot v(1) v(2) print v(1) v(2) . endc . end
```

3.2.2 Simulation results

Given below are the plots and reasoning for the 5 cases given for an RC Differentiator.

Cases:

1.
$$T = 10\tau$$

2.
$$T = 5\tau$$

3. $T = \tau$

4. $T = 0.1\tau$

5. $T = 0.05\tau$

As the Pulse Width to Time Constant ratio decreases, the Capacitor does not get enough time to charge fully and thus we get a large Voltage across the Resistor and a reasonably linear decrease in V_{out} . Similarly, for the Discharge cycle, the Capacitor does not get enough time to discharge fully and V_{out} increases almost linearly.

3.3 RC Lowpass Filter

3.3.1 Code snippet

```
RC Lowpass Filter

*Connections as mentioned in the figure
R 1 2 10k
C 2 0 0.1u

*AC Input
Vin 1 0 dc 0 ac 1

*AC analysis
.ac dec 10 1 1Meg
.control
```

run
*Amplitude Bode Plot
plot vdb(2)
print vdb(2)
.endc
.end

3.3.2 Simulation results

Given below is the plot and reasoning for an RC Lowpass Filter.

The filter given above has a 3dB frequency of 158.49 Hz.

3.4 RC Highpass Filter

3.4.1 Code snippet

RC Highpass Filter
*Connections as mentioned in the figure
C 1 2 0.1u
R 2 0 10k

```
*AC input
Vin 1 0 dc 0 ac 1
*AC analysis
.ac dec 10 1 1Meg
.control
run
*Amplitude Bode Plot
plot vdb(2)
print vdb(2)
.endc
.end
```

3.4.2 Simulation results

Given below is the plot and reasoning for an RC Highpass Filter.

The filter given above has a 3dB frequency of $158.49~\mathrm{Hz}.$

3.5 RC Bandpass Filter

3.5.1 Code snippet

```
RC Bandpass Filter
*Connections as mentioned in the figure
R1 1 2 10k
C1 2 3 0.1u
R2 3 0 10k
C2 3 0 0.1u
*AC input
Vin 1 0 dc 0 ac 1
*AC analysis
. ac dec 10 1 1 Meg
. control
run
*Amplitude Bode Plot
plot vdb(3)
print vdb(3)
. endc
. end
```

3.5.2 Simulation results

Given below is the plot and reasoning for an RC Bandpass Filter.

• Centre Frequency (f_0) Theoretical: $\frac{1}{2\pi RC} = 159.15 \text{ Hz}$ Simulation: 158.49 Hz

• Lower -3dB point (f_L)

Theoretical: 48.31 Hz Simulation: 48.306 Hz

• Higher -3dB point (f_H)

Theoretical: 524.7 Hz Simulation: 524.81 Hz

RLC Bandpass Filter 3.6

3.6.1 Code snippet

RLC Bandpass Filter

*Connections as mentioned in the figure L 1 2 10m

C 2 3 0.1u
R 3 0 1k
*AC input
Vin 1 0 dc 0 ac 1
*AC analysis
.ac dec 10 1 1Meg
.control
run
*Amplitude Bode Plot
plot vdb(3)
print vdb(3)
.endc
.end

3.6.2 Simulation results

Given below is the plot and reasoning for an RLC Bandpass Filter.

• Centre Frequency (f_0) Theoretical: $\frac{1}{2\pi\sqrt{LC}} = 5.033 \text{ kHz}$ Simulation: 5.012 kHz

• Lower -3dB point (f_L) Theoretical: $\sqrt{\frac{R}{2L}^2 + \frac{1}{LC}} - \frac{R}{2L} = 1.458 \text{ kHz}$ Simulation: 1.445 kHz

• Higher -3dB point (f_H) Theoretical: $\sqrt{\frac{R^2}{2L} + \frac{1}{LC}} + \frac{R}{2L} = 17.373 \text{ kHz}$ Simulation: 17.378 kHz

Experimental results 4

RC Integrator 4.1

Results of the 5 cases for an RC Integrator are as follows:

Cases:

1.
$$T = 10\tau$$

Sr. No.	Time	v(1)	v(2)
1	1.196400e-02	0.000000e+00	7.227096e-01
2	2.370065e-02	5.000000e+00	4.875239e+00
3	3.518400e-02	0.000000e+00	2.887281e-02
4	4.776065e-02	5.000000e+00	4.997848e+00
5	5.924400e-02	0.0000000e+00	4.979602e-04

2.
$$T = 5\tau$$

Sr. No.	Time	v(1)	v(2)
1	1.228400e-02	0.0000000e+00	3.512221e-03
2	2.369112e-02	5.000000e+00	4.874040e+00
3	3.632400e-02	0.000000e+00	6.179789e-05
4	4.760400e-02	0.000000e+00	3.785714e-01
5	5.920400e-02	0.000000e+00	3.468677e-06

3.
$$T = \tau$$

Sr. No.	Time	v(1)	v(2)
1	1.228400e-02	0.000000e+00	4.139834e-05
2	2.356400e-02	0.000000e+00	2.536046e-01
3	3.632400e-02	0.000000e+00	7.284082e-07
4	4.760400e-02	0.000000e+00	4.462199e-03
5	5.920400e-02	0.000000e+00	4.088510e-08

$4. \ T=0.1\tau$

Sr. No.	Time	v(1)	v(2)
1	1.228400e-02	0.000000e+00	2.974361e-06
2	2.356400e-02	0.000000e+00	1.822089e-02
3	3.516400e-02	0.000000e+00	1.669497e-07
4	4.760400e-02	0.000000e+00	3.205984e-04
5	5.920400e-02	0.000000e+00	2.937497e-09

5. $T = 0.05\tau$

Sr. No.	Time	v(1)	v(2)
1	1.227400e-02	0.000000e+00	1.707494e-06
2	2.351400e-02	0.000000e+00	1.088698e-02
3	3.627400e-02	0.000000e+00	3.126979e-08
4	4.751400e-02	0.000000e+00	1.993754e-04
5	5.911400e-02	0.000000e+00	1.826786e-09

4.2 RC Differentiator

Results of the 5 cases for an RC Differentiator are as follows: Cases:

1. $T = 10\tau$

Sr. No.	Time	v(1)	v(2)
1	1.228400e-02	0.000000e+00	-5.24789e-01
2	2.370065e-02	5.000000e+00	1.247605e-01
3	3.402400e-02	0.000000e+00	-9.21059e-02
4	4.776065e-02	5.000000e+00	2.151705e-03
5	5.924400e-02	0.000000e+00	-4.97960e-04

2. $T = 5\tau$

Sr. No.	Time	v(1)	v(2)
1	1.228400e-02	0.000000e+00	-3.51222e-03
2	2.369112e-02	5.000000e+00	1.259603e-01
3	3.632400e-02	0.000000e+00	-6.17979e-05
4	4.760400e-02	0.000000e+00	-3.78571e-01
5	5.920400e-02	0.000000e+00	-3.46868e-06

3. $T = \tau$

Sr. No.	Time	v(1)	v(2)
1	1.228400e-02	0.000000e+00	-4.13983e-05
2	2.356400e-02	0.000000e+00	-2.536046e-01
3	3.632400e-02	0.000000e+00	-7.284082e-07
4	4.760400e-02	0.000000e+00	-4.462199e-03
5	5.920400e-02	0.000000e+00	-4.088510e-08

4. $T = 0.1\tau$

Sr. No.	Time	v(1)	v(2)
DI. 110.	rine	V(1)	V(2)
1	1.228400e-02	0.000000e+00	-2.974361e-06
2	2.356400e-02	0.000000e+00	-1.822089e-02
3	3.516400e-02	0.000000e+00	-1.669497e-07
4	4.760400e-02	0.000000e+00	-3.205984e-04
5	5.920400e-02	0.0000000e+00	2.937497e-09

5. $T = 0.05\tau$

Sr. No.	Time	v(1)	v(2)
1	1.227400e-02	0.000000e+00	-1.70749e-06
2	2.351400e-02	0.000000e+00	-1.08870e-02
3	3.627400e-02	0.000000e+00	-9.97524e-08
4	4.751400e-02	0.000000e+00	-1.99375e-04
5	5.911400e-02	0.000000e+00	-1.82679e-09

4.3 RC Lowpass Filter

Results of the given RC Lowpass Filter are as follows:

Sr. No.	Frequency	vdb(2)
1	1.584893e+00	-4.30648e-04
2	1.584893e + 02	-2.99214e+00
3	1.995262e+03	-2.19911e+01
4	2.511886e+04	-4.39638e+01
5	3.162278e + 05	-6.59636e+01

4.4 RC Highpass Filter

Results of the given RC Highpass Filter are as follows:

Sr. No.	Frequency	vdb(2)
1	1.258925e+01	-2.20635e+01
2	1.584893e + 02	-3.02854e+00
3	1.995262e+03	-2.75452e-02
4	2.511886e+04	-1.74348e-04
5	3.162278e + 05	-1.10008e-06

4.5 RC Bandpass Filter

Results of the given RC Bandpass Filter are as follows:

Sr. No.	Frequency	vdb(2)
1	1.258925e+01	-2.22227e+01
2	1.584893e + 02	-9.54246e+00
3	1.995262e+03	-2.21530e+01
4	2.511886e+04	-4.39648e+01
5	3.162278e + 05	-6.59636e+01

4.6 RLC Bandpass Filter

Results of the given RLC Bandpass Filter are as follows:

Sr. No.	Frequency	vdb(3)
1	1.258925e+01	-4.20366e+01
2	1.584893e + 02	-2.00707e+01
3	1.995262e+03	-1.61962e+00
4	2.511886e+04	-5.17847e+00
5	3.162278e + 05	-2.59724e+01