

ÉCOLE NATIONALE DE L'INFORMATIQUE ET DES MATHÉMATIQUES APPLIQUÉES DE GRENOBLE

Projet Génie Logiciel

Année universitaire 2020-2021 Manuel Utilisateur

Table des matières

1	Lin	nitations et points propres du compilateur	2		
	1.1	Points propres du compilateur	2		
		1.1.1 Méthode en assembleur	2		
		1.1.2 La sélection multiple (cas des objets)	2		
	1.2	Limites du compilateur	3		
		1.2.1 Ecriture d'une méthode dont le nom est reconnu par le lexer	3		
		1.2.2 Sous tableaux et déclaration partielle	3		
		1.2.3 Conversion de float vers int dans les littéraux de tableaux	3		
2	Me	ssages d'erreur	4		
	2.1	Messages d'erreur lexicographique	4		
	2.2	Messages d'erreur syntaxique	4		
	2.3	Messages d'erreur contextuelle	5		
	2.4	Messages d'erreur à l'exécution	8		
3	Mode opératoire des extensions				
	3.1	Tableaux	9		
		3.1.1 Déclaration	9		
		3.1.2 Allocation	9		
		3.1.3 Initialisation	11		
		3.1.4 Accès aux éléments	11		
	3.2	Bibliothèques	12		
		3.2.1 Tab.decah	12		
		3.2.2 Matrice.decah	13		
4	Lin	nitations des extensions	16		

1 Limitations et points propres du compilateur

1.1 Points propres du compilateur

1.1.1 Méthode en assembleur

Il est possible d'utiliser des méthodes directement écrites en assembleur à l'aide de la définition suivante :

```
type_retour nom_méthode(paramètres) asm(langage en assembleur);
```

Concernant, le langage en assembleur contenu entre les parenthèses il est nécessaire d'aller à la ligne à chaque fois que nécessaire, par exemple :

$$LOAD \#1, R2$$

STORE R2, 1(GB)

Toute autre écriture du corps de la méthode en assembleur sera mal ajoutée dans le code assembleur général de la compilation du programme et entraînera une erreur du compilateur. Toutes les erreurs concernant la compilation d'un programme restent disponibles lors de l'écriture d'un corps de méthode en assembleur (voir la liste d'erreurs de compilation disponible partie II-E). Par exemple, il est possible de faire appel à une erreur dans le corps de la méthode :

$$CMP \ \#null, \ R3$$
 $BEQ \ dereferencement_null$

1.1.2 La sélection multiple (cas des objets)

Dans le cas des objets, la sélection "à la chaîne" ne nécessite aucun parenthésage particulier. Exemple : dans le cadre d'une classe A dont une des méthodes est :

```
A getA() {
    return this;
}
A a = new A();
```

Les deux expressions suivantes sont alors équivalentes :

```
a.getA().getA().getA()\,;\\ (((a.getA()).getA()).getA())\,;
```

Ce critère de sélection est à mettre en relief avec la sélection concernant les tableaux et matrices développées par la suite.

1.2 Limites du compilateur

1.2.1 Ecriture d'une méthode dont le nom est reconnu par le lexer

Certains mots reconnus par le lexer ne peuvent pas être utilisés comme nom de méthode. En effet, en prenant l'exemple de print ou println, il est impossible d'implémenter une méthode dont le nom serait print ou println. Dans le cas d'une utilisation de tels mots comme nom de méthode une erreur de syntaxe sera transmise pour montrer l'erreur ("no viable alternative at input 'voidprint'" si on prend le cas où on implémente une méthode void print()).

1.2.2 Sous tableaux et déclaration partielle

Lors du développement de notre extension et du changement de la grammaire pour supporter les tableaux, la déclaration partielle de tableau ainsi que la possibilité de sélectionner un sous tableau était possible. Nous avons dû, finalement, opter pour interdire cela pour faciliter l'implémentation des tableaux pour notre langage. Ainsi ceci n'est plus possible :

```
int [][][] x = new int [4][3][];
    x[2][1] = new int [1];
}
```

Le nombre d'indice pour la sélection et la création doit donc correspondre exactement à la dimension du tableau déclaré.

1.2.3 Conversion de float vers int dans les littéraux de tableaux

Lors d'une création d'un tableau sous forme de littéral :

$$int[] x = \{1, 2, 3\};$$

Il est impossible (par choix de conception) de mélanger *int* et *float* pour un tableau de flottant. Les éléments donnés dans un littéral doivent donc tous être du type de la déclaration.

2 Messages d'erreur

2.1 Messages d'erreur lexicographique

Message d'erreur	Explication
Erreur de compilation : flottant arrondi 0	Le flottant déclaré est trop petit et non nul.
	Il est donc arrondi vers 0 ce qui interdit. Il
	doit être déclaré plus grand que 0x1.0p-127
	en hexadécimal ou 1.4012985E-45 en décimal.
Erreur de compilation : flottant arrondi à l'in-	Le flottant déclaré est trop grand et est ar-
fini	rondi à l'infini il doit être plus petit que
	1.7FFFFFp127 en hexadécimal ou 3,402823
	$5 \times 10E38$ en décimal.
Erreur de compilation : Int arrondi à l'infini	Le int déclaré est trop grand, le int doit être
	inférieur ou égale à 2147483647
token recognition error at :	Le jeton suivant n'est pas reconnu par le com-
	pilateur.
include file not found	Le fichier à inclure n'a pas été trouvé

2.2 Messages d'erreur syntaxique

Message d'erreur	Explication
mismatched input 'x' expecting	Le token x n'est pas celui qui était attendu,
	les caractères proposés après le expecting sont
	ceux qui étaient attendus
Extraneous input 'x' expecting	Il manque un caractère avant le x pour que
	l'expression soit syntaxiquement correct. Le
	type de caractère attendu avant est présent
	après le expecting
no viable alternative at input 'x'	La syntaxe est invalide lorsqu'on met le ca-
	ractère x, il n'y a pas d'alternative pour que
	l'expression soit reconnu avec ce caractère
missing 'x' at 'y'	Le caractère x est manquant au niveau du
	caractère y

${\bf 2.3}\quad {\bf Messages}\ {\bf d'erreur}\ {\bf contextuelle}$

Message d'erreur	Explication
This identifier is not declared in this scope	L'identifiant auquel on tente d'accéder (field,
	param, var, method) n'est pas défini dans
	cette portée. Identifiant non déclaré ou encore
	n'étant pas dans cette environnement mais
	possiblement dans un autre.
This type is not defined.	Le type demandé n'a pas été déclaré comme
	un type (que ce soit prédéfini ou par une
	classe).
The definition of this identifier is not a type	Le type demandé n'est pas un type mais un
type	identifiant correspondant à toute autre possi-
	bilité.
The parent class of this class was not declared	La classe parente demandée n'existe pas (en-
before	core).
The definition of the parent class is not a class	La classe parente demandée n'est pas une
identifier	classe mais d'un autre type.
This class is already defined	Définition d'une classe dont le nom est déjà
	associé à une classe.
The class is not initialize in types	La classe demandée n'a pas été correctement
	déclarée précédemment.
The class is not of nature Class	La classe courante n'est pas considérée
	comme une classe.
The type of a field to be declared can not be	Le type d'un champ de classe ne peut pas être
void	void.
The field declared exists in parent class Envi-	Le champ déclaré pour cette classe a le même
ronnement but is not a field there	nom qu'un autre objet de la super classe
	qui n'est pas un champ (une méthode par
	exemple).
This field is already defined in this scope	Double définition d'un même champ dans une
	même classe
This method has the same identifier as a not	La méthode déclarée pour cette classe a le
method object in super class	même nom qu'un autre objet de la super
	classe qui n'est pas une méthode (un champ
	par exemple).
The redefinition of this method has not the	La méthode définie dans la courante classe
same signature as the method defined in the	a le même nom qu'une méthode de la super
super class	classe mais les deux méthodes n'ont pas une
	signature correspondante.
The type of return of this method is not the	Le type de retour n'est pas le même que celui
same as the one of the herited method	de la méthode identique dans la superclasse.

Message d'erreur	Explication
This method is already defined in this scope	La méthode est définie deux fois dans la même
	classe.
A parameter can not be void type	Un paramètre de méthode ne peut pas être
	un void.
This parameter is already defined for this me-	Le paramètre a le nom d'un paramètre dé-
thod	claré précédemment pour cette méthode.
The type of a variable to be declared can not	La variable déclarée ne peut pas être de type
be void	void.
The type of the variable and its assignation	La variable et son assignation n'ont pas des
are not compatible	types compatibles.
The type of expression to be printed is not	L'expression à afficher à l'écran grâce à un
int, float or string	print ne peut pas être d'un autre type que int
	float ou string.
At least one of the members of this operation	L'un des membres de l'opération n'est pas
is not compatible with this operator	compatible avec celle-ci.
The member of this unary operation is not	Le membre de cette opération unaire n'est pas
compatible with this operator	compatible avec celle-ci.
The nature of the left member is not of type	La nature du membre de gauche (dans le cas
field, parameters of variables	d'une initialisation ou d'une affectation) n'est
	pas un champ, un paramètre ou une variable.
The Definition of this Symbol is already in	Ce symbole (nom) de variable est déjà définie.
the environment	
The conversion to a float can only be from an	La conversion vers un float a été appelée pour
int	un objet qui n'est pas un integer.
This type is not compatible with the casted	Les types ne sont pas compatibles pour que
type	l'un soit cast en l'autre.
The type of the object to be instantiated is	L'objet à instancier n'est pas une classe (essai
not a class	de new avec un objet n'étant pas une classe).
The class pointed by this can not be Object	This ne peut pas référencer Object.
class	
The type of expression selected is not a class	L'objet sélectionné (lors d'un objet.qqch)
	n'est pas une classe.
The selected class is not a subclass of the class	La sélection d'un champ protégé n'est pas fait
where the selection was made	dans une sous classe de celle auquel le champ
	appartient.
The type of the object selected is not a sub-	Le type de l'objet sélectionné n'est pas un
type of the current class	sous type de la classe courante.
The returnType can not be of type void	Le type de retour ne peut pas être void.
The operation InstanceOf can not be applied	Instanceof a échoué sur ces membres.
to those operands	

Message d'erreur	Explication
This identifier does not correspond to a me-	Ce nom ne correspond pas à une méthode
thod in this scope	pour la visibilité dans la classe courante.
The signature of this method does not match	Le nombre de paramètres lors de l'appel de
the number of parameters given	cette méthode ne correspond pas à la signa-
	ture de celui-ci.
This array is of null dimension : can be a base	Le tableau créé est défini comme un tableau
type	de dimension 0 : Il peut être vu donc comme
	un objet non tableau.
The base Type of this array can not be void	Le type de base d'un tableau ne peut être
	void : une déclaration $void$ [][] x ; est donc im-
	possible.
Elements of array literal are not all of the	Un littéral de tableau ne peut pas contenir
same type	des éléments de type différent : $int[]$ $x = \{1, $
	2, "string"}
The selection in a index can not be in a not	Une sélection faite avec des crochets $(x[i])$ ne
Array object	peut pas être faite sur un objet n'était pas un
	tableau. Par exemple, $x[i]$ avec x un int .
The index of selection has to be an integer	L'indice donné dans une sélection de tableau
	doit être un entier. Une sélection comme ceci :
	x[true], x[1.0], x["blabla"] est donc impossible.
The dimension of the selection is different	Une sélection de tableau doit se faire avec le
than the dimension of the object	même nombre de dimension que celle de l'ob-
	jet. Voir 1.2.2
The dimension of an array has to be give with	La dimension d'un tableau lors d'un new ne
an integer	peut être faite qu'avec un entier à l'intérieur
	des [].

2.4 Messages d'erreur à l'exécution

Message d'erreur	Explication
Erreur : debordement sur les float (*)	Survient lorsque les opérations $(+, -, *, /)$ du
	programme deca provoquent un débordement
	arithmétique sur les flottants (inclut la divi-
	sion par 0.0).
Erreur: division par zero impossible (*)	Survient lorsqu'une division par zéro (entre
	des entiers) est mise en place dans le pro-
	gramme.
Erreur: reste entier par zero impossible (*)	Survient lorsqu'un modulo zéro est mis en
	place dans le programme.
Erreur : un entier est attendu	Survient lorsqu'un autre type que int est
	donné lors de la lecture ReadInt (il est at-
	tendu de donner un entier seulement).
Erreur : un float est attendu	Survient lorsqu'un autre type que float est
	donné lors de la lecture ReadFloat (il est at-
	tendu de donner un float seulement).
Erreur : V[dval] non codable sur un flottant	Survient lors d'une tentative de conversion en
(*)	flottant avec un type non valable.
Erreur : V[dval] non codable sur un entier (*)	Survient lors d'une tentative de conversion en
	entier avec un type non valable.
Erreur : debordement de pile (*)	Survient lorsque la pile est trop petite pour
	accueillir l'entièreté du programme.
Erreur: tas plein (*)	Survient lorsque le tas est trop petit pour ac-
	cueillir l'entièreté du programme.
Erreur : dereferencement de null (*)	Survient lorsqu'on tente d'utiliser un objet
	dont la valeur est null.
Erreur : cast impossible (*)	Survient lorsqu'un cast non autorisé est mis
	en place.
Erreur : index out of range	Survient lorsque l'on veut accéder à un élé-
	ment d'un tableau avec un indice trop grand
	(≥ taille) ou négatif.

 $(\mbox{\bf *})$: Ces erreurs sont supprimées avec l'option no Check du compilateur $(\mbox{\bf -n})$

3 Mode opératoire des extensions

Nous avons choisi d'implémenter l'extension TAB pour notre compilateur. Nous avons donc ajouté au langage deca de base les outils pour déclarer des tableaux, les initialiser et accéder à leurs éléments. Nous avons aussi construit une bibliothèque de calcul matriciel, dont nous décrirons les outils.

3.1 Tableaux

3.1.1 Déclaration

Pour la déclaration de tableau, nous avons imité celle du langage Java à savoir :

```
Type_des_elements[] nom_du_tableau;
```

Dès lors plusieurs choses sont notables. Les éléments d'un tableau sont de même type. La taille n'est pas spécifiée à la déclaration et le tableau peut être de n'importe quelle dimension. Par exemple une matrice peut être déclarée comme suit :

```
int[][] matrice;
```

ou encore des tableaux de matrices :

```
int[][][] tab_matrice;
```

et ainsi de suite. Notons enfin qu'il est tout à fait possible que le type des éléments soit une classe :

```
A[] tab_classe;
```

3.1.2 Allocation

La déclaration d'un tableau ne réserve qu'une place sur la pile dédiée à l'adresse du tableau sur le tas, mais celui-ci n'a pas encore de place allouée sur le tas (même processus que la déclaration d'un objet). Pour cela il faut utiliser le mot-clé new:

```
int[] tab = new int[expr];
```

Il est à ce moment important de comprendre que expr désigne la taille du tableau, mais que expr peut être remplacé par toute expression de type int:

```
{
    // Les lignes suivantes produisent un tableau de meme taille (6)
    float[] tab;
    int expr = 3;
    tab = new float[expr+expr];
    tab = new float[6];
    tab = new float[2*expr];
    // ... etc
}
```

Néanmoins, comme évoqué en première partie, il est impossible de déclarer partiellement les tailles de chaque dimension. La première ligne du code suivant produit une erreur :

```
float [][] tab = new float [5][]; // incorrect
float [][] tab = new float [5][7]; // correct
}
```

L'instruction new est donc commune aux tableaux et aux objets, on pourra constater qu'ils sont gérés de manière similaire en mémoire. En effet, cette instruction alloue sur le tas la taille nécessaire pour les éléments du tableau (d'où l'impossibilité de déclarer partiellement les tailles). Il est primordial de noter qu'à ce stade les éléments ne sont pas initialisés (cf section suivante). De même que pour les variables de bases, une tentative d'accès à ces éléments provoque une erreur non répertoriée dans le tableau des erreurs d'exécution :

```
float z;
float [] tab = new float [3];
z = tab[2]; // produira une erreur IMA
}
```

La deuxième façon d'allouer un tableau est de lui donner directement une valeur avec les conventions d'écritures décrites dans l'exemple ci dessous.

```
{
    int[] tab;
    int[][] mat;
    tab = {1, 2, 3, 4, 5};
    mat = {{1, 2}, {3, 4}};
}
```

Dans ce cas là, la mémoire sur le tas est allouée ET les valeurs sont initialisées. On peut donc y accéder avec la méthode décrite dans la section 3.1.4 Accès aux éléments d'un tableau.

3.1.3 Initialisation

Comme décrit dans la partie précédente, l'instruction new alloue en mémoire la place pour un tableau mais ne l'initialise pas. La méthode usuelle pour procéder est donc :

```
int i, length;
int i, length;
float[] tab;
length = 5;
tab = new float[length];
i = 0;
while (i < length) {
    tab[i] = i*2+1; // Exemple, on peut aussi initialiser a 0 ou autre
    i = i + 1;
}
</pre>
```

A noter aussi que les effets de bords sont possibles, il faut donc bien y faire attention. Considérons par exemple le cas suivant :

```
int [] tab1;
int [] tab2;
tab1 = {1, 2, 3, 4, 5};
tab2 = tab1;
tab1[1] = 10;
println(tab2[1]);
}
```

En fait, la ligne 5 ne fait pas une copie, les deux variables tab1 et tab2 pointent alors sur la même zone tas. Un changement sur tab1 affecte donc aussi tab2. Le programme affichera donc 10. // Pour finir, il faut noter un choix important de notre extension. Là ou la conversion des entiers en flottants étaient très permissive dans le langage sans objet, elle ne l'est plus concernant les tableaux. Voyons plutôt l'exemple :

```
{ float z = 2; // correct, conversion automatique float [] tab1 = {1, 2, 3, 4}; // incorrect, produira une erreur float [] tab2 = {1.0, 2.0, 3.0, 4.0}; // facon correcte de coder }
```

3.1.4 Accès aux éléments

L'accès aux éléments d'un tableau est très naturel. Les indices commencent à 0. Comme expliqué en première partie, il est impossible d'accéder partiellement à un tableau. Il est par exemple impossible de sélectionner une ligne entière d'une matrice. Il faut donc qu'une sélection

renseigne autant d'indices que la dimension du tableau. Voici un résumé dans l'exemple cidessous :

```
float x;
      int n = 3;
      float [] tab = \{1, 2, 3\};
      float [][] mat = \{\{1, 2, 3\}, \{4, 5, 6\}, \{7, 8, 9\}\};
      // instructions correctes
      x = tab[0];
      tab[n-2] = x;
      x = mat[0][n-2];
      mat[1][1] = x;
      // instructions incorrectes produisant une erreur /!\
11
      x = tab[n] // index out of range
      tab = mat[0] // selection partielle impossible
13
      mat[n-1] = tab // idem
14
15 }
```

3.2 Bibliothèques

Nous avons développé une bibliothèque de calcul contenant des classes pour les tableaux et les matrices. Pour appeler les classes et méthodes pour les tableaux, ajouter en début de fichier include "Tab.decah" pour les matrices, ajouter include "Matrice.decah".

3.2.1 Tab.decah

Cette bibliothèque (src/main/ressources/include) regroupe TabFloat.decah, TabInt.decah, Racine.decah. Elle facilite la manipulation des tableaux, nous allons lister ici les fonctionnalités proposées.

La première étape est l'initialisation. Pour cela il faut créer un tableau et l'initialiser puis le lier à l'objet. Il y a deux façons de le lier : avec ou sans copie. La première empêche les effets de bords, l'autre les permet.

```
#include "Tab.decah"
{
    float [] tab = {1.1, 2.2, 3.3};
    TabFloat t1 = new TabFloat();
    TabFloat t2 = new TabFloat();
    t1.setInitCopy(tab, 3);
    t2.setInit(tab, 3);
    tab[1] = 4.4;
    println(t1.getCase(1));
    println(t2.getCase(1));
}
```

Le premier *println* affichera 2.2 tandis que le second affichera 4.4. Ce programme est aussi l'occasion de présenter l'accès à un élément par la méthode getCase(int index).

Cette bibliothèque propose ensuite les fonctionnalités suivantes sur les objets de type TabFloat, avec les méthodes suivantes :

- boolean add(float element, int indice), cette méthode ajoute l'élément element à l'indice indice du tableau. Si cet ajout n'est pas possible (index out of range) la méthode ne fait rien et renvoie false. Elle renvoie true si l'ajout se fait avec succès.
- void addFirst(float valeur), ajoute l'élément element au début du tableau.
- boolean setCase(int indice, float element), modifie un élément element du tableau indice. Renvoi false si echoue, true sinon
- void addLast(float valeur), ajoute l'élément element en fin du tableau.
- boolean delete(int indice), supprime l'élément element à l'indice indice du tableau. Renvoie false si elle échoue (mauvais indice), true sinon.
- void deleteFirst(), supprime le premier élément.
- void deleteLast(), supprime le dernier élément.
- $boolean\ sumTab(TabFloat\ tab)$, ajoute le tableau tab terme à l'objet. Renvoie false si les tableaux ne sont pas de même tailles, true sinon.
- boolean multTab(TabFloat tab), ajoute le tableau tab terme à l'objet. Renvoie false si les tableaux ne sont pas de même tailles, true sinon.
- void affichage(), affiche le tableau.
- $void\ mergeSortAscending()$, trie le tableau par élément croissant (algorithme de tri fusion, complexité en O(nlog(n)), n la taille du tableau)

Tout ce qui précède est aussi utilisable pour les tableaux d'entier, avec la bibliothèque Tablnt.decah. Enfin, cette liste n'est pas tout a fait exhaustive, puisque les bibliothèques contiennent d'autres méthodes, mais moins utiles (utilisées en tant que méthodes auxiliaires par les méthodes ci-dessus).

3.2.2 Matrice.decah

Cette bibliothèque (src/main/ressources/include) regroupe les fichiers Matrice.decah, AbstractMatrice.decah et MatriceFloat.decah . Le fichier Matrice.decah inclus les fichiers Abstract-Matrice.decah et MatriceFloat.decah. Il existe plusieurs manières de déclarer une matrice. On passe en paramètre le tableau à deux dimensions, son nombre de lignes et son nombre de colonnes.

```
#include "Matrice.decah"
      float [][] m1 = \{\{1.0, 2.0\}, \{2.0, 3.0\}\};
      int[][] m2 = \{\{1,2\}, \{2,4\}\};
      MatriceFloat mat1 = new MatriceFloat();
      MatriceFloat mat2 = new MatriceFloat();
      MatriceFloat mat3 = new MatriceFloat();
      MatriceFloat mat4 = new MatriceFloat();
      MatriceFloat mat5 = new MatriceFloat();
      // initialisation par reference
11
      mat1.setInit(m1, 2, 2);
      // initialisation par copie du tableau de flottant
      mat2.setInitFloat(m1, 2, 2);
13
      // initialisation par copie du tableau de int
14
      mat3.setInitInt(m2, 2, 2);
15
16
      // initialisation de la matrice identite de taille 4
      mat4.setIdentite(4);
17
      // initialisation d'un vecteur de dimension (n,1) dont les cases sont
18
      initialisees a 1
      mat5.setOneVector(4);
19
20
21
```

Cette bibliothèque propose ensuite les fonctionnalités suivantes sur les objets de type MatriceFloat, avec les méthodes suivantes :

- $float \ getCase(int \ i, \ int \ j)$, renvoie l'élément à la ligne i et à la colonne j de la matrice. Produit une erreur "index out of range" si les indices ne sont pas valides.
- boolean setCase(float f), modifie une case de la matrice par la valeur f, et renvoi false si échoue.
- void affichage(), affiche la matrice.
- MatriceFloat sumMat(MatriceFloat m), renvoie la somme des deux matrices.
- MatriceFloat prodMat(MatriceFloat m), renvoie le produit matriciel des deux matrices.
- MatriceFloat multScalaire(float scalaire), renvoie le produit d'un scalaire et de la matrice.
- MatriceFloat transpose(MatriceFloat m), renvoie la transposée de la matrice.
- MatriceFloat inverse(), renvoie l'inverse de la matrice et null si la matrice n'est pas inversible.
- float determinant(), renvoie le déterminant de la matrice.
- float normeVect(), renvoie la norme euclidienne d'un vecteur colonne. Renvoie 0 si ce n'est pas un vecteur colonne ou si c'est le vecteur colonne nul.
- float Puissancevpvectp(), renvoie le rayon spectral de la matrice par la méthodes des puissances si celui ci contient des valeurs propres réelles. la fonction affiche aussi le vecteur propre associé.

La précision est par défaut de 1.0E-5.

- float PuissancevpvectpWithAcc(float seuil), identique à Puissancevpvectp() en valeur de retour avec une précision de seuil.
- float PuissanceInverse(float nu), affiche le vecteur propre associé et renvoi la valeur propre la plus proche de nu. La précision est par défaut de 1.0E-5.
- float PuissanceInverseWithAcc(float nu, float seuil), identique à PuissanceInverse() en valeur de retour avec une précision de seuil.
- $MatriceFloat\ algorithmeQR(int\ itération)$, renvoie une matrice triangulaire dont les valeurs propres sont situés sur la diagonale. Le nombre d'itération est limité et peut poser des débordements de tas si sa valeur est trop élevée

4 Limitations des extensions

Les extensions ayant été faites en fin de projet il a fallu faire des choix de conception, et procéder à certaines concessions. Nous allons donc décrire ici les limitations de notre conception.

Tout d'abord, au niveau mémoire, les tableaux sont très gourmands. En effet, nous allouons sur le tas une place égale au nombre d'élément plus un. Ces adresses mémoire doivent de plus être consécutives. Ainsi une matrice 10x10 nécessite un bloc de 101 adresses sur le tas. De plus ces tableaux ne peuvent jamais être désalloués au cours d'un programme.

Notre bibliothèque de calcul matriciel propose des outils très utiles, mais eux aussi limités, notamment en terme de précision et de mémoire. Bien que nous ayons laissé parfois la possibilité à l'utilisateur de régler lui même son seuil d'erreur, nous avons un seuil par défaut de 10^{-5} . De plus les méthodes algorithmeQR, PuissanceInverse et Puissancevectvp peuvent provoquer des débordements de tas car l'allocation de tableau n'est jamais faite. Les méthodes de PuissanceInverse et Puissancevectvp peuvent aussi ne pas fonctionner si les valeurs propres sont complexes. Il faut donc avoir un regard critique sur les résultats de ces méthodes.