Colle 25 - MPSI Applications linéaires - Hyperplans

Hyperplans

Exercice 1

Soit H un hyperplan d'un \mathbb{K} -espace vectoriel de E de dimension quelconque.

Soit a un vecteur de E qui n'appartient pas à H.

Montrer

$$H \oplus \operatorname{Vect}(a) = E$$
.

Exercice 2

Soit H un hyperplan d'un \mathbb{K} -espace vectoriel de E de dimension quelconque. On suppose que F est un sous-espace vectoriel de E contenant H. Montrer

$$F = H$$
 ou $F = E$.

Exercice 3

Soient $f, g \in E^*$ telles que $\ker f = \ker g$.

Montrer qu'il existe existe $\alpha \in \mathbb{K}$ tel que $f = \alpha g$.

Exercice 4

Soit $e = (e_1, ..., e_n)$ une famille de vecteurs d'un \mathbb{K} -espace vectoriel E de dimension $n \in \mathbb{N}^*$. On suppose que

$$\forall f \in E^*, \quad f(e_1) = \dots = f(e_n) = 0 \Rightarrow f = 0.$$

Montrer que e est une base de E.

Exercice 5

On considère deux hyperplans distincts de E: F et G.

Déterminer la dimension de $F \cap G$.

Applications linéaires

Exercice 6 (MINES MP)

Soient E et F des \mathbb{K} -espaces vectoriels. On se donne $f \in \mathcal{L}(E, F)$, une famille $(E_i)_{1 \leq i \leq n}$ de sous-espaces vectoriels de E et une famille $(F_j)_{1 \leq j \leq p}$ de sous-espaces vectoriels de F.

1. Montrer

$$f\left(\sum_{i=1}^{n} E_i\right) = \sum_{i=1}^{n} f(E_i)$$

- 2. Montrer que si f est injective et si la somme des E_i est directe alors la somme des $f(E_i)$ est directe.
- 3. Montrer

$$f^{-1}\left(\sum_{j=1}^{p} F_j\right) \supset \sum_{j=1}^{p} f^{-1}(F_j).$$

Montrer que cette inclusion peut être stricte.

Donner une condition suffisante pour qu'il y ait égalité.

Exercice 7 (CCP MP)

Soient f et g deux endomorphismes d'un espace vectoriel E sur \mathbb{R} ou \mathbb{C} vérifiant $f \circ g = Id$.

- 1. Montrer que $\ker(g \circ f) = \ker f$ et $\operatorname{Im} (g \circ f) = \operatorname{Im} g$.
- 2. Montrer

$$E = \ker f \oplus \operatorname{Im} g$$

- 3. Dans quel cas peut-on conclure $q = f^{-1}$?
- 4. Calculer $(g \circ f) \circ (g \circ f)$ et caractériser $g \circ f$.

Hyperplans

Correction de l'exercice 1

Puisque $a \notin H$, on vérifie aisément

$$Vect(a) \cap H = \{0_E\}$$

Soit φ une forme linéaire non nulle telle que $H=\ker \varphi$. Pour tout $x\in E$, on peut écrire

$$x = (x - \lambda a) + \lambda a$$

avec $\lambda = \varphi(x)/\varphi(a)$.

Puisque $\varphi(x - \lambda a) = 0$, on a $x - \lambda a \in H$ et puisque $\lambda a \in \text{Vect}(a)$, on obtient

$$E = H + Vect(a)$$
.

Correction de l'exercice 2

Si $F \neq H$ alors il existe $a \in F$ tel que $a \notin H$. On a alors

$$H \oplus \operatorname{Vect}(a) = E$$

et puisque $H \subset F$ et $Vect(a) \subset F$, on peut conclure E = F.

Correction de l'exercice 3

Si f = 0 ok. Sinon, on introduit $\vec{u} \notin \ker f$ de sorte que $\operatorname{Vect} \vec{u}$ et $\ker f$ soient supplémentaires puis on introduit α de sorte $f(\vec{u}) = \alpha g(\vec{u})$ avant de conclure via $h = f - \alpha g$ s'annule sur $\ker f$ et \vec{u} .

Correction de l'exercice 4

Par contraposée : si e n'est pas une base de E alors $Vect(e_1,...,e_n) \neq E$.

Soit H un hyperplan tel que $\text{Vect}(e_1,..,e_n) \subset H$ et f une forme linéaire non nulle de noyau H.

On a
$$f(e_1) = ... = f(e_n) = 0$$
 mais $f \neq 0$.

Correction de l'exercice 5

Montrer qu'il existe deux valeurs a et b de E tels que :

$$a \in F, a \notin G, b \in G$$
 et $b \notin F$

Montrer que le sous-espace vectoriel de E engendré par a et b est un supplémentaire de $F \cap G$.

Applications linéaires

Correction de l'exercice 6

1. Si $y \in f(\sum_{i=1}^n E_i)$ alors on peut écrire $y = f(x_1 + ... + x_n)$ avec $x_i \in E_i$. On a alors $y = f(x_1) + ... + f(x_n)$ avec $f(x_i) \in f(E_i)$ et ainsi

$$f\left(\sum_{i=1}^{n} E_i\right) \subset \sum_{i=1}^{n} f(E_i).$$

Si $y = f(x_1) + ... + f(x_n)$ avec $x_i \in E_i$. On a alors y = f(x) avec $x = x_1 + ... + x_n \in \sum_{i=1}^n E_i$ donc

$$f\left(\sum_{i=1}^{n} E_i\right) \supset \sum_{i=1}^{n} f(E_i).$$

- 2. Si $f(x_1) + ... + f(x_n) = 0$ avec $x_i \in E_i$ alors $f(x_1 + ... + x_n) = 0$ donc $x_1 + ... + x_n = 0$ car f injective puis $x_1 = ... = x_n = 0$ car les E_i sont en somme directe et enfin $f(x_1) = ... = f(x_n) = 0$. Ainsi les $f(E_i)$ sont en somme directe.
- 3. Soit $x \in \sum_{j=1}^p f^{-1}(F_j)$. On peut écrire $x = x_1 + ... + x_p$ avec $f(x_j) \in F_j$ donc

$$f(x) = f(x_1) + \dots + f(x_p) \in \sum_{j=1}^{p} F_j.$$

Ainsi

$$\sum_{j=1}^{p} f^{-1}(F_j) \subset f^{-1} \left(\sum_{j=1}^{p} F_j \right).$$

On obtient une inclusion stricte en prenant par exemple pour f une projection sur une droite D et en prenant F_1, F_2 deux droites distinctes de D et vérifiant $D \subset F_1 + F_2$.

f=0 ou f=Id sont des conditions suffisantes faciles... Plus finement, supposons chaque F_j inclus dans Im f (et $p\geq 1$). Pour $x\inf -1\left(\sum_{j=1}^p F_j\right)$, on peut écrire $f(x)=y_1+\ldots+y_p$ avec $y_j\in F_j$. Or $F_j\subset \operatorname{Im} f$ donc il existe $x_j\in E$ vérifiant $f(x_j)=y_j$. Évidemment $x_j\inf^{-1}(F_j)$. Considérons alors $x_1'=x-(x_2+\ldots+x_p)$, on a $f(x_1')=y_1$ donc $x_1'\in f^{-1}(F_j)$. Ainsi $f^{-1}(\sum_{j=1}^p F_j)\subset \sum_{j=1}^p f^{-1}(F_j)$ puis l'égalité.

Correction de l'exercice 7

- 1. Évidemment $\ker f \subset \ker(g \circ f)$ et $\operatorname{Im}(g \circ f) \subset \operatorname{Im} g$. Pour $x \in \ker(g \circ f)$, on a f(x) = f(g(f(x))) = f(0) = 0, donc $x \in \ker f$. Pour $y \in \operatorname{Im} g$, il existe $x \in E$ tel que y = g(x) et alors $y = g(f(g(x))) = g(f(y)) \in \operatorname{Im}(g \circ f)$.
- 2. Si $x \in \ker f \cap \operatorname{Im} g$ alors on peut écrire x = g(a) et puisque f(x) = 0, a = f(g(a)) = 0 donc x = 0. Pour $x \in E$, on peut écrire x = (x g(f(x))) + g(f(x)) avec $x g(f(x)) \in \ker f$ et $g(f(x)) \in \operatorname{Im} g$.
- 3. Si f est inversible alors $f \circ g = Id$ entraı̂ne $g = f^{-1}$. Cette condition suffisante est aussi évidemment nécessaire.
- 4. $(g \circ f) \circ (g \circ f) = g \circ (f \circ g) \circ f = g \circ f$ et donc $g \circ f$ est un projecteur.