Idranced Galistics - Intarial 12/08/2021

Statistics on variances of named distributions

Section 1: One set of i.i.d. variables

Let $n \in \mathbb{N}$ and let $X_1, ..., X_n$ be independent, $\mathcal{N}(\mu, \sigma^2)$ - distributed under P_{μ, σ^2} , where $\mu \in \mathbb{R}$, $\sigma^2 > 0$.

Soch: Find Asts nicht ingnigeance level & / confidence level 1 - & for the following hypotheses:

Idea: lampare empirical variance 40 of

lase 1: Thorn mean p, i.e. p=po -> rake Keartical case

- · Empirical variance is $V = \frac{1}{4} \sum_{i=1}^{\infty} (X_i \mu_0)^2$
- · Jest statistic is $\frac{V}{62}$
- · Gr V has $\chi^2(n)$ distribution under P_{r_0, σ^2} degrees of freedom

· Regions of rejection for hypothesis Acts:

lase 2: Unknown mean p, i.e. p & R > Agrical case in opplications

- · Empirical mean is $M = \frac{1}{N} \cdot \sum_{i=1}^{N} X_i$
- · Empirical variance in $Y^* = \frac{1}{n-1} \sum_{i=1}^{n} (X_i M_i)^2$
- · Int Antistic is V*

- · $\frac{N-1}{G^2}$ V* has $\chi^2(n-1)$ distribution under P_{M,G2}
- · Degices of rejection for hypothesis Acts:

Section 2: Two sets of i.i. d. variables

det m, n & N, let X1,1, ..., X2, m; X2, ..., X2, be independent, and let

under Prisi, prisi, where prime & P. 52, 62 > 0.

boal: Timos a text for the following hypothesis:

Idea: lampare empirical variances of both samples

Assume means proper to be unknown.

- · Let V1, V2 empirical variances of X1, 1, ..., X1, m and X21, ..., X2,
- · Just statistic is $\frac{V_1^4}{V_2^*}$
- · $\frac{G_{1}^{2}}{G_{1}^{2}} \cdot \frac{V_{1}^{2}}{V_{1}^{2}}$ has F(m-1, n-1) distribution under $P_{\mu_{1},G_{1}^{2},\mu_{2},G_{2}^{2}}$

Region of rejection for hypothesis AcA: