Estatística Descritiva

Amostras univariadas

Estatísticas de localização

	Dados não agrupados	Dados discretos agrupados	Dados contínuos agrupados
Média amostral (\bar{x})	$\bar{x} = \frac{1}{N} \cdot \sum_{n=1}^{N} x_n$ N: número de dados da amostra; x_n : valor de cada um dos dados amostrais, $n = 1,, N$.	$\bar{x} = \sum_{k=1}^{K} f_k \cdot x_k$ K: número de células; f_k : frequência relativa (N_k/N) de cada valor observado.	$\bar{x} = \sum_{k=1}^{K} f_k \cdot M_k$ $M_k: \text{ ponto central da célula } k.$
Mediana amostral (Med) (ou percentil 50 ou segundo quartil)	 Considere-se que os dados da amostra são colocados por ordem crescente dos seus valores, formando um vector (x₁*, x₂*, x₃*,, x_N*). Se o número de dados que constituem a amostra (N) for ímpar, a mediana toma o valor do dado que naquele vector ocupa a posição central: (Med = x_{(N+1)/2}*). Se o número de dados for par, a mediana toma o valor médio dos dois termos cujas localizações no vector mais se aproximam da posição central: (Med = x_{N/2}*+x_{(N/2)+1}*/2). 		$Med \cong LI_{med} + \frac{0.5 - fa_{med}^{-}}{f_{med}} \cdot \Delta_{med}$ LI_{med} : limite inferior da célula mediana (i.e., da célula para a qual a frequência acumulada passam de um valor inferior a 0.5 para um valor superior a 0.5); fa_{med}^{-} : frequência relativa acumulada correspondente à célula que precede a célula mediana; f_{med} : freq. relativa (não acumulada) correspondente à célula mediana; Δ_{med} : amplitude da célula mediana
Moda (Mod)	A moda é o valor dos dados que ocorre com mais frequência (se existirem 2 ou mais valores adjacentes para os quais a frequência seja máxima, a moda será a média desses valores).		$Mod = Ll_{med} + \frac{d_1}{d_1 + d_2} \cdot \Delta$ Ll : limite inferior da célula modal (i.e., da célula com maior freq. relativa); d_1 : diferença entre a frequência relativa da célula modal e a frequência relativa da célula precedente; d_2 : diferença entre a frequência relativa da célula modal e a frequência relativa da célula seguinte; d_2 : amplitude da célula modal.

Estatísticas de dispersão

	Dados não agrupados	Dados discretos agrupados	Dados contínuos agrupados
Amplitude da amostra (A)	Diferença entre o valor máximo e o valor mínimo dos dados.		Diferença entre o ponto central da célula com o valor
			máximo e o ponto central da célula com o valor mínimo.
Intervalo Interquartis (IIQ)	Intervalo cujos extremos são o primeiro quartil (ou percentil 25) e o terceiro quartil (ou percentil 75).		Intervalo cujos extremos são o primeiro quartil (ou percentil 25) e o terceiro quartil (ou percentil 75). $Primeiro \ quartil \cong LI_{1^9Q} + \frac{0.25 - fa_{1^9Q}^-}{f_{1^9Q}^-} \cdot \Delta_{1^9Q}$ $Terceiro \ quartil \cong LI_{3^9Q} + \frac{0.75 - fa_{3^9Q}^-}{f_{3^9Q}^-} \cdot \Delta_{3^9Q}$ $LI_{1^9Q} \ (LI_{3^9Q}): \text{limite inferior da célula correspondente ao}$ $1^{\text{a}} \ \text{quartil} \ (3^{\text{o}} \ \text{quartil}), \text{i.e., da célula onde as freq.}$ acumuladas passam de um valor inferior a 0.25 (0.75) para um valor superior a 0.25 (0.75); $fa_{1^9Q}^- \ (fa_{3^9Q}^-): \text{frequência relativa acumulada}$ correspondente à célula que precede a célula correspondente ao 1° quartil (3° quartil); $f_{1^9Q} \ (f_{3^9Q}): \text{frequência relativa (não acumulada)}$ correspondente à célula do 1° quartil (3° quartil);
Desvio absoluto médio	. N	K	$\Delta_{1^{9}Q}$ ($\Delta_{3^{9}Q}$): amplitude da célula do 1° quartil (3° quartil).
amostral (DAM)	$DAM = \frac{1}{N} \cdot \sum_{n=1}^{N} x_n - \bar{x} $	$DAM = \sum_{k=1}^{\infty} f_k \cdot x_k - \bar{x} $	$DAM = \sum_{k=1}^{\infty} f_k \cdot M_k - \bar{x} $
Desvio quadrático médio amostral (<i>DQM</i>)	$DAM = \frac{1}{N} \cdot \sum_{n=1}^{N} x_n - \bar{x} $ $DQM = \frac{1}{N} \cdot \sum_{n=1}^{N} (x_n - \bar{x})^2$	$DAM = \sum_{k=1}^{N} f_k \cdot x_k - \bar{x} $ $DQM = \sum_{k=1}^{K} f_k \cdot (x_k - \bar{x})^2$	$DQM = \sum_{k=1}^{K} f_k \cdot (M_k - \bar{x})^2$
Variância amostral (s ²)	$s^{2} = \frac{1}{N-1} \cdot \sum_{n=1}^{N-1} (x_{n} - \bar{x})^{2}$	$s^{2} = \frac{N}{N-1} \sum_{k=1}^{K} f_{k} \cdot (x_{k} - \bar{x})^{2}$	$s^{2} = \frac{N}{N-1} \sum_{k=1}^{K} f_{k} \cdot (M_{k} - \bar{x})^{2}$
Desvio padrão amostral (s)	$s = \sqrt{\frac{1}{N-1} \cdot \sum_{n=1}^{N} (x_n - \bar{x})^2}$	$s = \sqrt{\frac{N}{N-1} \sum_{k=1}^{K} f_k \cdot (x_k - \bar{x})^2}$	$s = \sqrt{\frac{N}{N-1} \sum_{k=1}^{K} f_k \cdot (M_k - \bar{x})^2}$

Outras estatísticas

	Dados não agrupados	Dados discretos agrupados	Dados contínuos agrupados
Momento ordinário de	1 N	K	K
ordem $i(m'_i)$	$m_i' = \frac{1}{N} \cdot \sum_{i} (x_n)^i$	$m_i' = \sum_{k=1}^K f_k \cdot (x_k)^i$	$m_i' = \sum_{k=1}^{n} f_k \cdot (M_k)^i$
	$(i = 1, 2, \dots)$	$ \overline{k=1} \\ (i = 1, 2,) $	$ \overline{k=1} $ $ (i = 1,2,) $
Momento centrado de		ν	V
ordem $i(m_i)$	$m_i = \frac{1}{N} \cdot \sum_{n=1}^{N} (x_n - \bar{x})^i$	$m_i = \sum_{k=1}^{n} f_k \cdot (x_k - \bar{x})^i$	$m_i = \sum_{k=1}^{n} f_k \cdot (M_k - \bar{x})^i$
	(i = 1, 2,)	$ \overline{k=1} \\ (i = 1, 2,) $	$k=1 \ (i = 1, 2,)$
Medida da assimetria (k_3)	N^2		
(grande população;	$k_3 = \frac{1}{(N-1)\cdot(N-2)}\cdot m_3$		
amostra limitada)	(11 1) (11 2)		
Coeficiente de assimetria	$g_1 = \frac{k_3}{s^3}$		
amostral (g_1)	$g_1 = \frac{1}{S^3}$		
Medida de kurtose (k ₄)	N^2		
(grande população;	$k_4 = \frac{N^2}{(N-1)\cdot(N-2)\cdot(N-3)}\cdot[(N+1)\cdot m_4 - 3\cdot(N-1)\cdot m_2^2]$		
amostra limitada)	2. 2, (1. 2)		
Coeficiente de kurtose	k_4	·	
amostral (g_2)	$g_2 = \frac{4}{S^4}$		

Fórmulas de cálculo alternativas:

$$\sum_{n=1}^{N} (x_n - \bar{x})^2 = \left(\sum_{n=1}^{N} x_n^2\right) - N\bar{x}^2$$

Adição de uma constante c a todos os valores da amostra ($y_n = x_n + c$):

$$\bar{y}=\bar{x}+c$$

$$y_n - \bar{y} = x_n + c - (\bar{x} + c) = x_n - \bar{x}$$

Amostras bivariadas

Ajuste de uma relação linear ($y = a' + b \cdot x$)		onde:
(Método dos mínimos quadrados)	$a' = \bar{y} - b \cdot \bar{x}$ $b = \frac{s_{XY}}{s_{XX}}$	$s_{XY} = \sum_{n=1}^{N} (x_n - \bar{x}) \cdot (y_n - \bar{y})$ $s_{XX} = \sum_{n=1}^{N} (x_n - \bar{x})^2$
Covariância amostral (c _{XY})	$c_{xy} = \frac{1}{N-1} \sum_{n=1}^{N} (x_n - \bar{x}) \cdot (y_n - \bar{y})$	(- <u>1</u>
Coeficiente de correlação amostral (r _{XY})	$r_{XY} = \frac{c_{XY}}{s_X \cdot s_Y}$ fórmula de cálculo alternativa: $r_{xy} = \frac{s_{xy}}{\sqrt{s_{xX} \cdot s_{YY}}}$	onde: $s_X \notin \text{o desvio padrão amostral da variável } X$ $s_Y \notin \text{o desvio padrão amostral da variável } Y$ $s_{YY} = \sum_{n=1}^{N} (y_n - \bar{y})^2$
Coeficiente de determinação amostral (r _{XY} ²)	$r_{XY}^2 = \frac{b^2 \cdot s_{XX}}{s_{YY}}$	
Coeficiente de determinação amostral corrigido $(r_{XY}^2 \text{ (corrigido)})$	$r_{XY}^{2}(\text{corrigido}) = 1 - \frac{\sum_{n=1}^{N} e_{n}^{2} / (N-2)}{s_{YY}/(N-1)}$	onde: $\sum_{n=1}^{N} (y_n - \hat{y}_n)^2 = \sum_{n=1}^{N} (y_n - a' - b \cdot x_n)^2 = \sum_{n=1}^{N} e_n^2$

Fórmulas de cálculo alternativas:

$$s_{XX} = \sum_{n=1}^{N} (x_n - \bar{x})^2 = \left(\sum_{n=1}^{N} x_n^2\right) - N\bar{x}^2$$

$$s_{XY} = \sum_{n=1}^{N} (x_n - \bar{x})(y_n - \bar{y}) = \left(\sum_{n=1}^{N} x_n y_n\right) - N\bar{x}\bar{y}$$

Formulário adaptado de:

Rui Campos Guimarães, José A. Sarsfield Cabral Verlag Dashöfer