الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

دورة: 2018

وزارة التربية الوطنية

امتحان بكالوريا التعليم الثانوي

الشعبة: آداب وفلسفة، لغات أجنبية

المدة: 02 سا و 30 د اختبار في مادة: الرياضيات

على المترشح أن يختار أحد الموضوعين الآتيين: الموضوع الأول

التمرين الأول: (06 نقاط)

- . 5 على على الدرس حسب قيم العدد الطبيعي n بواقى قسمة (1)
 - . 2018 = 4a + 2 عين العدد الطبيعي a بحيث يكون: (2
 - .5 بيّن أنّ العدد: $2^{2018} + 2017^8 5$ يقبل القسمة على 3.
- $(-3)^n \equiv 2^n [5]$ و $(5)^n \equiv 2^n [5]$ و $(5)^n \equiv 2^n [5]$ و $(5)^n \equiv 2^n [5]$ $-12^n + (-3)^n - 4 \equiv 0$ [5] بحيث: n بحيث العدد الطبيعي n بحيث (ب

التمرين الثاني: (06 نقاط)

عيّن الاقتراح الصحيح الوحيد من بين الاقتراحات الثلاثة في كل حالة من الحالات التالية، مع التبرير:

 $u_n = n^2 - 1$: ب الله عددية معرفة على يتالية عددية معرفة على الله (u_n

ج) ليست رتيبة

المتتالية (u_n) : أ) متزايدة تماما بالمتتالية المتالية المتالية

q=2 متتالية هندسية حدها الأول $v_1=3$ و أساسها (v_n)

عبارة الحد العام للمتتالية (ν_n) هي:

 $v_n = 2 \times 3^n$ (e $v_n = 3 \times 2^{n-1}$ ($v_n = 3 \times 2^n$ ()

: يساوي $S_n = v_1 + v_2 + \dots + v_n$ يساوي

 $(2^{n}-1)$ (-1) (-1) (-1) (-1) (-1) $2(3^n-1)$ (e

3) صندوق به 10 كربات لانفرق بينها عند اللمس مرقمة من 11 إلى 20، نسحب عشوائيا كربة واحدة. احتمال الحصول على كرية تحمل عددا مضاعفا لـ 3 هو:

$$\frac{7}{10}$$
 (ϵ $\frac{3}{10}$ (ϵ $\frac{1}{3}$ (

اختبار في مادة: الرياضيات / الشعبة: آداب وفلسفة، لغات أجنبية / بكالوريا 2018

احتمال الحصول على كريّة تحمل عددا فرديا ومضاعفا لـ 3 هو:

$$\frac{1}{10}$$
 (z

$$\frac{3}{10}$$
 (ب

$$\frac{9}{10}$$
 (1)

التمرين الثالث: (08 نقاط)

$$f\left(x\right)=x^3-3x^2$$
 بالدالة العددية المعرفة على $\mathbb R$ بالدالة العددية المعرفة على

$$\left(O\,; \overrightarrow{i}\,, \overrightarrow{j}\,
ight)$$
 و المتعامد المتعامد

- $-\infty$ و ∞ و کل من $+\infty$ احسب نهایة الداله $+\infty$ عند کل من
 - احسب f'(x) أحسب (أ (2
- ب) استنتج اتجاه تغیر الداله f ثم شکّل جدول تغیراتها.
- . يقبل المنحنى (C_f) يقبل نقطة انعطاف يطلب تعيين احداثييها (3
- .1 مماس المنحنى (C_f) عند النقطة ذات الفاصلة (4
- مع (C_f) مع نقطتي تقاطع (مبدأ المعلم) والنقطة A ذات الفاصلة 3 هما نقطتي تقاطع (O_f) مع حامل محور الفواصل.
 - $\cdot(C_f$) والمنحنى (T) ارسم المماس (ب
 - . f(x) > 0 حلّ في \mathbb{R} بيانيا المتراجحة: (6
- بيّن أنّه من أجل كل عدد حقيقي $x: (x-2)^2: x$ عدد حقيقي $f(x)+4=(x+1)(x-2)^2: x$ ثم حلّ المعادلة f(x)=-4

اختبار في مادة: الرياضيات / الشعبة: آداب وفلسفة، لغات أجنبية / بكالوريا 2018

الموضوع الثانى

التمرين الأول: (06 نقاط)

- a=4b+6 و a=4b+6 و عددان طبیعیان غیر معدومین حیث
 - . 4 عين باقى القسمة الإقليدية للعدد a على (1
 - . 3 بيّن أنّ a و b متوافقان بترديد (2
 - . b = 489 نضع (3
 - . $a \equiv -1[13]$ أَن اللهِ المِلْمُلِيَّا اللهِ اللهِ اللهِ اللهِ المُلْمُ المِلْمُلِي المُلْمُلِي الْ
- $a^{2018} + 40^{2968}$ على 13 على استنتج باقي القسمة الإقليدية للعدد
- . 13 عين قيم العدد الطبيعي n حتى يكون العدد $a^{2n}+n+3$ عين قيم العدد الطبيعي

التمرين الثاني: (06 نقاط)

حيث: q متتالية هندسية حدودها موجبة تماما، حدها الأول u_0 و أساسها

$$u_0 + u_1 = 30$$
 $u_0 \times u_2 = 576$

- $.\,u_0$ بیّن أنّ $u_1=24$ ، ثم استنتج قیمة (1
- n بيّن أنّ q=4 ، ثم اكتب عبارة الحد العام q=4 بيّن أنّ
- - . حين رتبته (u_n) ثم تحقق أن العدد 1536 حد من حدود المتتالية (u_n) و عين رتبته (4
 - $S_n = u_1 + u_2 + \dots + u_n$: احسب بدلالة n المجموع (5

التمرين الثالث: (08 نقاط)

لتكن الدالة العددية f المعرفة على $f(x) = 3 - \frac{a}{x+1} : -1$ ب $= -\infty$; -1 المعرفة على $= -\infty$ عدد على عدد على عدد على الدالة العددية $= -\infty$ المعرفة على الدالة العددية $= -\infty$ العددية $= -\infty$ العددية $= -\infty$ الدالة العددية $= -\infty$ المعرفة على العددية العددية $= -\infty$ العددية $= -\infty$ العددية العددية $= -\infty$ العددية $= -\infty$ العددية $= -\infty$ العددية العددية

- . $(O\,; \vec{i}\,,\,\vec{j}\,)$ التمثيل البياني للدالة f في المستوي المنسوب إلى المعلم المتعامد المتجانس الدالة (C_f)
 - . مبدأ المعلم O النقطة O مبدأ المعلم. يشمل المنحنى العدد الحقيقي a بحيث يشمل المنحنى.

اختبار في مادة: الرياضيات / الشعبة: آداب وفلسفة، لغات أجنبية / بكالوريا 2018

. *a* = 3 نضع **.II**

$$f(x) = \frac{3x}{x+1}$$
:] $-\infty$; -1 [\cup] -1 ; $+\infty$ [من x من أجل كل عدد حقيقي x من أجل كل عدد الم

- . عند کل حد من حدود مجالي تعریفها (2 أ) احسب نهایة الدالة f عند کل حد من حدود مجالي f
 - . (C_f) استنتج معادلتي المستقيمين المقاربين للمنحنى (C_f
- . $f'(x) = \frac{3}{(x+1)^2}$: -1 نقس عن x يختلف عن عدد حقيقي عن عدد حقيقي أ أثبت أنّه من أجل كل عدد حقيقي
 - ب) استنتج اتجاه تغیر الدالهٔ f وشکّل جدول تغیراتها.
 - . y = 3x + b عدد حقیقی، (Δ) مستقیم معادلته b

 $x_0=-2$ عيّن العدد b حتى يكون المستقيم Δ) مماساً للمنحنى ورث العدد عين النقطة ذات الفاصلة

. (C_f) ارسم المنحنى (5

العلامة		
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)
01	4×0.25	التمرين الأول: (04 نقاط) 1. بواقى قسمة "2 على 5
0.5	0.5	a = 504 العدد الطبيعي 2
01.50	3×0.5	5 ومنه $2^{2018} + 2017^8 - 5$ يقبل القسمة على $2^{2018} + 2017^8 - 5$ يقبل القسمة على $2^{2018} + 2017^8 - 5$
01	2×0.25	$(-3)^n \equiv 2^n [5]$ و $[5]^n \equiv 2^n [5]$.4
	0.5	$n=4k+1$ هي $k\in\mathbb{N}$ هي $12^n+(-3)^n-4\equiv 0$. $n=4k+1$
		التمرين الثاني: (07 نقاط):
		الاقتراح الصحيح الوحيد, مع التبرير:
01.5	0.75x2	, $u_n=n^2-1$: با $\mathbb N$ متتالية عددية معرفة على $\left(u_n ight)$
		المتتالية (u_n) المتتالية (أ*
		$q=2$ متتالية هندسية حدها الأول $v_{_1}=3$ و أساسها $\left(v_{_n} ight)$
02.5	0.75x2	$3 imes 2^{n-1}$ بارة الحد العام للمتتالية $\left(v_{_{n}} ight)$ هي:
02.5	2x0.5	
		3 صندوق به 10 كرات لانفرق بينها عند اللمس مرقمة من 11 إلى 20 , نسحب عشوائيا كرة واحدة
03	2x0.75	$\frac{3}{10}$ -ب $\frac{3}{10}$ الحصول على كرة تحمل عددا مضاعف لا $\frac{1}{2}$ هو:
	2x0.75	احتمال الحصول على كرة تحمل عددا فرديا ومضاعف لا 3 هو: $\frac{1}{10}$
	0.5x2	التمرين الثالث: (09 نقاط).
01		$\lim_{x \to +\infty} f(x) = +\infty \; ; \lim_{x \to -\infty} f(x) = -\infty \qquad -1$
	0.75	$f'(x) = 3x^2 - 6x $
2.25	01	2 دراسة الإشارة
3.25	0.75	ب. اتجاه تغير الدالة
	0.75	جدول تغيراتها
0.5	0.5	w(1;-2) نقطة الانعطاف -3

الإجابة النموذجية لموضوع اختبار مادة: الرياضيات/ الشعبة: آداب وفلسفة + لغات أجنبية/ بكالوريا: 2018

0.75	0.75	y = -3x + 1معادلة المماس -4
02	0.5x2	f(3) = 0, $f(0) = 0$ (1 - 5
02	1	ب. الإنشاء
0.5	0.5	6− حلول المتراجحة :]3;+∞
01	0.5	$f(x)+4=(x+1)(x-2)^2-7$
	0.5	حلول المعادلة هي 1- و 2

العلامة		عناصر الإجابة (الموضوع الثاني)
مجموع	مجزأة	ر البياد (الموسوع السياد)
		التمرين الأول: (06 نقاط)
1	1	a=4q+2 حيث $a=b+1$ ومنه باقي قسمة $a=4q+2$ (1
0.5	0.5	. 3 مضاعف للعدد $a-b$ ومنه $a-b$ ومنه $a-b=3k$ (2
4.5	0.5×3	. $a \equiv -1[13]$ ومنه $a = 1962$ (أ (3
	1	$a^{2018} \equiv 1[13]$ (ب
	1	$a = 1[13] \ (4)$ $40^{2968} = 1[13]$
	0.5	
		$a^{2018} + 40^{2968} \equiv 2[13]$ ومنه
	0.5	ج) $n \equiv 9[13]$ ومنه $a^{2n} \equiv 1[13]$ وعليه $a^{2n} + n + 3 \equiv 0[13]$ و عليه
		حيث k' عدد طبيعي. $n=13k'+9$
1.5	01	التمرين الثاني: (06 نقاط)
		. $u_1 = 24$ ومنه $u_1^2 = u_0 \times u_2 = 576$ (1
	0.50	$u_0 = 6$ ومنه $u_0 + u_1 = 30$
	0.5	$u_1 = u_0 \times q \ (2$
2	1	$q\!=\!4$ و منه
	0.5	. $u_n = 6 \times 4^n$ ، n و من أجل كل عدد طبيعي
0.5	0.5	، نستنتج أن (u_n) متزايدة تماما $u_{n+1}-u_n=18 imes 4^n$
1.5	0.5×3	. 5 منه $u_n = 1536$ حد من حدود $u_n = 1536$ رتبته $u_n = 1536$ رتبته $u_n = 1536$ (4
0.5	0.5	$S_n = 8\left(4^n - 1\right) \tag{5}$
01	01	التمرين الثالث: (08 نقاط)
		a=3 .
		II.
01	01	$f(x) = \frac{3x}{x+1} $ (1

ملاحظة : تقبل كل الإجابات الصحيحة الأخرى