Deep Learning Tips and Tricks (based on the book *Deep Learning* with Python by Francois Chollet)

Created by Aldo Zaimi May 10, 2019

• SECTION 1: MACHINE LEARNING AND NEURAL NETWORKS

- The universal workflow of machine learning:

- * Define the problem and assemble a dataset.
- * Choose a measure of success (performance metric).
- * Decide on an evaluation protocol (validation set).
- * Prepare the data (preprocessing).
- * Develop a model that does better than a baseline.
- * Experiment with more complex models (add layers, bigger layers, more epochs).
- * Regularize the model and tune the hyperparameters.

- The train/validation/test split:

- * Training set: used to train your model.
- * Validation set: used to evaluate your model during development and to select the best hyperparameters.
- * Test set: used to evaluate the performance of your final model (train on both the training and validation sets).
- * Another alternative to the standard hold-out validation is the K-fold validation or the iterated K-fold validation with shuffling.

- How to do K-fold cross-validation:

- * Split the training data into K partitions (typically 4 or 5).
- * Train the network K times on (K-1) partitions and evaluate performance on the remaining partition.
- * Compute the average of the K validation scores obtained.
- * Another alternative: iterated K-fold validation with shuffling (the K-fold validation is performed multiple times and the data is randomly shuffled between each iteration).

- When working with small training datasets:

- * Use K-fold cross-validation instead of the standard train/validation split.
- * Avoid using large neural networks (i.e. more layers and/or units) to prevent over-fitting.

- Gradient descent algorithm:

- * Stochastic gradient descent (SGD): error calculation and model update for each example in the training dataset.
- * Batch gradient descent: error calculation for each example, but model updated after all training examples have been evaluated (i.e. after every epoch).
- * Mini-batch gradient descent: error calculation and model update after each small batch (i.e. batch size) in order to find a balance between the robustness of SGD and the efficiency of batch GD.

- Mini-batch training:

- * A small set of samples that are processed simultaneously by the network (i.e. a single gradient-descent update is computed after each mini-batch).
- * Batch size: the number of training samples to work through before the model updates its internal parameters.
- * Number of epochs: the number of complete passes through the training dataset.
- * Use a batch size that is a power of 2 (usually between 8 and 128).

- How to configure mini-batch size:

- * Start with a default batch size of 32 (based on literature).
- * Compare validation error learning curves with different batch sizes.
- * Batch size and learning rate should be tuned after tuning all the other hyperparameters.

- When working with multiple numerical input features:

- * Use feature-wise normalization (substract the mean and divide by the standard deviation).
- * Use the training set mean and standard deviation to normalize the test dataset.

- To prevent overfitting:

- * Get more training data.
- * Reduce the capacity of the network.
- * Add weight regularization.
- * Add dropout.
- * Use data augmentation.

- When doing regression:

- * Do feature-wise normalization if you have multiple input features.
- * The last layer should have one unit with no activation function.
- * The loss function should be the mean squared error.
- * A common evaluation metric used is the mean absolute error.

- When doing binary classification:

- * The last layer should be a Dense layer of one unit and using a sigmoid activation (probability between 0 and 1).
- \ast The loss function should be the binary cross entropy.

- When doing single-label multiclass classification:

* Use one-hot categorical encoding to vectorize the label data.

- * The last layer should be a Dense layer with N units, where N is the number of output classes (categories).
- * The last layer should use a softmax activation.
- * The loss function should be the categorical cross entropy.
- * Another alternative is to encode the labels as integers and use the sparse categorical cross entropy as loss function.

- Adding weight regularization:

- * The objective is to force the network to use small values for its weights by adding to the loss function a cost associated with having large weights.
- * L1 regularization: cost using the absolute value of the weight coefficients.
- * L2 regularization: cost using the square of the value of the weight coefficients.

– Adding dropout:

- * Dropout rate: the fraction of the features that are dropped (usually between 0.2 and 0.5).
- * At test time: the layers output values should be scaled down by a factor equal to the dropout rate.

• SECTION 2: CONVOLUTIONAL NEURAL NETWORKS

- To determine if a CNN architecture is the right choice:

- * Make sure that your problem can benefit from learning translation invariant patterns.
- * Make sure that your problem can benefit from learning spatial hierarchies of patterns.
- * All input samples need to be resized to the same format.

- When designing convolutional layers:

- * Choose the size of the patches extracted from the inputs (typically 3×3 or 5×5).
- * Choose the depth of the output feature map (i.e. the number of filters computed by the convolution).
- * Determine if padding will be used.
- * Determine if a stride different than 1 will be used.

- When designing pooling layers:

- * Determine what type of pooling to use (typically max pooling).
- * Determine the window size of the pooling operation (typically 2×2).

- How to determine the number of trainable parameters in a CNN:

- * Input layer: no trainable parameters.
- * Convolutional layers: $(n \times m \times l + 1) \times k$, where $(n \times m)$ is the filter size, l is the number of input feature maps and k is the number of output feature maps. The +1 term in the equation takes into account the bias terms.
- * Pooling layers: no trainable parameters.
- * Dropout layers: no trainable parameters.
- * Fully connected layers: $(n+1) \times m$, where n is the number of input units and m is the number of output units. The +1 term in the equation takes into account the bias terms.

- When using data augmentation:

- * Make sure all data augmentation transformations yield believable-looking images (based on your application).
- * Example of generic transformations: rotation, shifting (in both directions), shearing, zooming, horizontal and/or vertical flip.

- When using dropout in CNNs:

- * Only use dropout on the fully-connected layers of the network (not in the convolutions).
- * Dropout could also be applied between a flattening and a fully-connected layer.

- Using pretrained CNNs:

- * Use an original dataset that is large enough and general enough.
- * Two methods: feature extraction and fine-tuning.
- * Feature extraction: use the same trained convolutional base, but train a new densely connected classifier on top of it (randomly initialized).
- * Fine-tuning: unfreeze some of the top layers and jointly train the new added parts of the network and the unfreezed top layers.
- * Fine-tuning steps: (i) add custom network on top of the already-trained base network; (ii) freeze the base network; (iii) train the added part of the network; (iv) unfreeze some layers in the base network; (v) jointly train the unfreezes layers and the newly added parts.
- * The layers chosen for fine-tuning should be the more specific ones because they usually have more specialized features.

- Visualizing intermediate CNN outputs (intermediate activations):

- * Useful for understanding how CNN layers transform their inputs.
- * Method: use a sample image and output all the activations of all convolution and pooling layers of the model (scroll through the activations by changing the layer n and the channel m: [n, :, :, m]).
- * When plotting all activations together in a grid, make sure you preprocess them in terms of intensity to help visualize them.
- * The first activations should represent more generic features such as edge detectors, while the last activations should be more abstract, higher-level and sparse (empty activations meaning a specific patten is not found in the input image).

- Visualizing CNN filters:

- * Useful for understanding what visual pattern or feature each filter is receptive to.
- * Method: start from a black input image and apply gradient descent to the value of the input image of the CNN so as to maximize the response of a specific filter.

- Visualizing heat maps of class activation in an image:

- * Useful for understanding which parts of an image were identified as belonging to a given class (indicates how important each location is with respect to a given class).
- * Method: take the output feature map of a given convolution layer for a given input sample, and weight every channel in that feature map by the gradient of the class with respect to the channel.

work though located in the	the heat map on that this image was a the picture.	a given class, a	and where are	the elements o	f that cla