Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

1 Input Parameters

Modu	ıle			Fin Plate
MainMo	odule		Shear Connection	
Connectivity			Column web-Beam web	
Shear(k	(N)*			50.0
Su			ipporting Sec	etion
	Supportin	ng Section		UC $305 \times 305 \times 198$
	Mate	rial *		E 250 (Fe 410 W)A
т Ү	Ultimate stren	igth, fu (MPa)		410
	Yield Strength , fy (MPa)		250	
$(B-t)$ α	Mass	198.1	Iz(cm4)	509040000.0
ZZ D	Area(cm2) - A	25240.0	Iy(cm4)	162980000.0
	D(mm)	339.9	rz(cm)	142.0
R ₁	B(mm)	314.5	ry(cm)	80.399999999999
-r ₂	t(mm)	19.1	Zz(cm3)	2995000.0
В	T(mm)	31.4	Zy(cm3)	1036000.0
•	FlangeSlope	90	Zpz(cm3)	3440000.0
	R1(mm)	15.2	Zpy(cm3)	1036000.0
	R2(mm)	0.0		

Supported Section

	S	upported Sec	ction
Supporte	d Section		MB 300
Mate	rial *		E 250 (Fe 410 W)A
Ultimate stren	ngth, fu (MPa)		410
Yield Strengt	th , fy (MPa)		250
Mass	46.0	Iz(cm4)	89700000.0
Area(cm2) -	5860.0	Iy(cm4)	4660000.0
A			
D(mm)	300.0	rz(cm)	124.0
B(mm)	140.0	ry(cm)	28.2
t(mm)	7.7	Zz(cm3)	598000.0
T(mm)	13.1	Zy(cm3)	67000.0
FlangeSlope	98	Zpz(cm3)	679600.0
R1(mm)	14.0	Zpy(cm3)	67000.0
R2(mm)	7.0		

Bolt Details

Diameter (mm)*	[12.0, 16.0, 20.0, 24.0, 30.0, 36.0]
Grade *	[3.6,4.6,4.8,5.6,5.8,6.8,8.8,9.8,10.9,1
Type *	Bearing Bolt
Bolt hole type	Standard
Slip factor (μ_f)	0.3
Type of edges	a - Sheared or hand flame cut

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

Gap between beam and support (mm)	10.0
Are the members exposed to corrosive influences	False
	Plate Details
Thickness(mm)*	[3.0, 4.0, 5.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0, 18.0, 20.0, 22.0, 24.0]
Material *	E 165 (Fe 290)
Ultimate strength, fu (MPa)	290
Yield Strength , fy (MPa)	165
	Weld Details
Weld Type	Fillet
Type of weld fabrication	Shop Weld
Material grade overwrite (MPa) Fu	410.0

	Company Name	LoremIpsum	Project Title	Fossee
	Group/Team Name	LoremIpsum	Subtitle	
	Designer	LoremIpsum	Job Number	123
ĺ	Date	18 /05 /2020	Client	LoremIpsum

2 Design Checks

2.1 Bolt Design Checks

Check	Required	Provided	Remarks
Diameter (mm)*		20.0	
Grade *		3.6	
Shear Capacity (kN)		$V_{dsb} = \frac{f_u b \ n_n \ A_{nb}}{\sqrt{3} \ \gamma_{mb}}$ $= \frac{300.0 * 1 * 245}{\sqrt{3} * 1.25}$ $= 33.95$	
Bearing Capacity (kN)		$V_{dpb} = \frac{2.5 \ k_b \ d \ t \ f_u}{\gamma_{mb}}$ $= \frac{2.5 \ * 0.51 * 20.0 * 8.0 * 290}{1.25}$ $= 47.33$	
Capacity (kN)		$V_{db} = min (V_{dsb}, V_{dpb})$ = $min (33.95, 47.33)$ = 33.95	
No of Bolts	$R_{u} = \sqrt{V_{u}^{2} + A_{u}^{2}}$ $n_{trial} = R_{u}/V_{bolt}$ $R_{u} = \frac{\sqrt{50.0^{2} + 50.0^{2}}}{33.95}$ $= 3$	3	
No of Columns		1	
No of Rows		3	
Min. Pitch (mm)	$p/g_{min} = 2.5 d$ $= 2.5 * 20.0 = 50.0$	0.0	N/A
Max. Pitch (mm)	$p/g_{max} = \min(32 \ t, \ 300 \ mm)$ $= \min(32 * 7.7, \ 300 \ mm)$ $= 300$	0.0	N/A
Min. Gauge (mm)	$p/g_{min} = 2.5 d$ $= 2.5 * 20.0 = 50.0$	50	Pass
Max. Gauge (mm)	$p/g_{max} = \min(32 \ t, \ 300 \ mm)$ $= \min(32 * 7.7, \ 300 \ mm)$ $= 300$	50	Pass
Min. End Distance (mm)	$e/e'_{min} = [1.5 \text{ or } 1.7] * d_0$ = 1.7 * 22.0 = 37.4	40	Pass
Max. End Distance (mm)	$e/e'_{max} = 12 \ t \ \varepsilon$ $\varepsilon = \sqrt{\frac{250}{f_y}}$ $e/e'_{max} = 12 \ *8.0 * \sqrt{\frac{250}{165}}$ $= 118.08$	40	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

Check	Required	Provided	Remarks
Min. Edge Distance (mm)	$e/e^{\circ}_{min} = [1.5 \text{ or } 1.7] * d_0$	40	Pass
IIIII Zage Zistemee (IIIII)	= 1.7 * 22.0 = 37.4		1 6655
Max. Edge Distance (mm)	$e/e'_{max} = 12 t \varepsilon$ $\varepsilon = \sqrt{\frac{250}{f_y}}$ $e/e'_{max} = 12 * 8.0 * \sqrt{\frac{250}{165}}$ $= 118.08$	40	Pass
Capacity (kN)	44.88	47.33	Pass

	Company Name	LoremIpsum	Project Title	Fossee
	Group/Team Name	LoremIpsum	Subtitle	
	Designer	LoremIpsum	Job Number	123
ĺ	Date	18 /05 /2020	Client	LoremIpsum

2.2 Plate Design Checks

Check	Required	Provided	Remarks
Min. Plate Height (mm)	$0.6 * d_b = 0.6 * 300.0 = 180.0$	180	Pass
	$d_b - 2(t_{bf} + r_{b1} + gap)$		
Max. Plate Height (mm)	= 300.0 - 2 * (13.1 + 14.0 + 10)	180	Pass
	= 245.8		
	$2*e_{min} + (n \ c - 1)*p_{min}$	00.0	D
Min. Plate Length (mm)	= 2 * 37.4 + (1 - 1) * 50.0	90.0	Pass
Min.Plate Thickness	= 84.8	8.0	Pass
(mm)	$t_w = 7.7$	8.0	rass
()		$V_{\cdot \cdot} = A_v * f_y$	
		$V_{dg} = \frac{A_v * f_y}{\sqrt{3} * \gamma_{mo}}$	
Shear yielding Capacity		$= \frac{180 * 8.0 * 165}{\sqrt{3} * 1.1}$	
$(V_dy) (kN)$			
		= 124.71 $0.75 * A * f.$	
		$V_{dn} = \frac{0.75 * A_{vn} * f_u}{\sqrt{3} * \gamma_{mo}}$	
Shear Rupture Capacity		= 1 * (180 - (3 * 22.0)) * 8.0 * 290)
(V_dn) (kN)		= 198.36	
Block Shear Capacity in		129.97	
Shear (V_db) (kN)			
		$V_d = Min(V_{dy}, V_{dn}, V_{db})$	_
Shear Capacity (V_d)	50.0	= Min(124.71, 198.36, 129.97)	Pass
(kN)		= 124.71 $1 * t * f$	
		$T_{dg} = \frac{l * t_p * f_y}{\gamma_{mo}}$	
Tension Yielding Capacity		$= \frac{180 * 8.0 * 165}{1.1}$	
(kN)			
		=216.0	
		$T_{dn} = \frac{0.9 * A_n * f_u}{\gamma_{m1}}$	
Tension Rupture Capacity		$= \frac{0.9 * (180 - 3 * 22.0) * 8.0 * 290}{1.05}$)
(kN)		$= \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	_
		= 263.92	
Block Shear Capacity in		166.17	
Tension (T_db) (kN)		T = Min(T, T, T)	
Tension Capacity (kN)	50.0	$T_d = Min(T_{dg}, T_{dn}, T_{db})$ $= Min(216.0, 263.92, 166.17)$	Pass
rension Capacity (KN)	50.0	= Min(216.0, 263.92, 100.17) $= 166.17$	rass
Moment Capacity (kN-m)	2.5	9.72	Pass
Interaction Ratio			Pass
interaction ratio	≤1	$\frac{2.5}{9.72} + \frac{50.0}{166.17} = 0.56$	rass

	Company Name	LoremIpsum	Project Title	Fossee
	Group/Team Name	LoremIpsum	Subtitle	
	Designer	LoremIpsum	Job Number	123
ĺ	Date	18 /05 /2020	Client	LoremIpsum

2.3 Weld Checks

Check	Required	Provided	Remarks
Min Weld Size (mm)		6	Pass
Max Weld Size (mm)	Thickness of Thinner part $= Min(31.4, 8.0) = 8.0$ $t_{w_{max}} = 8.0$	6	Pass
Weld Strength (kN/mm)	$R_{w} = \sqrt{(T_{wh} + A_{wh})^{2} + (T_{wv} + V_{wv})^{2}}$ $T_{wh} = \frac{M * y_{max}}{Ipw} = \frac{2500000.0 * 84.0}{790272.0}$ $T_{wv} = \frac{M * x_{max}}{Ipw} = \frac{2500000.0 * 0.0}{790272.0}$ $V_{wv} = \frac{V}{l_{w}} = \frac{50000.0}{336}$ $A_{wh} = \frac{A}{l_{w}} = \frac{50000.0}{336}$ $R_{w} = \sqrt{(265.73 + 148.81)^{2} + (0.0 + 148.81)^{2}}$ $= 440.44$	$f_w = \frac{t_t * f_u}{\sqrt{3} * \gamma_{mw}}$ $= \frac{4.2 * 290}{\sqrt{3} * 1.25}$ $= 795.36$	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

3 3D View

Figure 1: 3D View