

T.E. (Computer) (Semester – VI) (RC) (2007-08) Examination, May/June 2018 MODERN ALGORITHM DESIGN FOUNDATION

Duration: 3 Hours Total Marks: 100

Instruction: Attempt five questions, with one question from each Module.

MODULE - I

- 1. a) What do you understand by recursion? With the help of an algorithm explain any example which proves recursion as a powerful programming technique. 8
 - b) Define time complexity of an algorithm. Calculate time complexity of the following algorithm using table building method.

Algorithm sum (a [], n, m)

for i = 1 to n do;

for j = 1 to m do;

S = S + a[i][j];

return S;

c) Explain how Binary Search fits in Divide and Conquer Strategy. Calculate its time complexity for best, average and worst case scenario.

2. a) Define the following:

- a) O (Big Oh)
- b) Ω (Omega)
- c) θ (Theta).
- b) With the help of an algorithm explain how time complexity of QuickSort can be improved using a randomizer.
- c) Show Strassen's Matrix multiplication process on Matrix A and B given below.

$$A = \begin{bmatrix} 1 & 4 \\ 6 & 7 \end{bmatrix} \quad B = \begin{bmatrix} 0 & 2 \\ 4 & 1 \end{bmatrix}$$

d) Explain Randomized algorithm.

P.T.O.

7

8

5

8

6

MODULE - II

- 3. a) Write Kruskal's algorithm to find minimum cost spanning tree for a graph. 6
 - b) Construct optimal binary search tree for the set $(a_1, a_2, a_3, a_4) = (do, if, int, while) p(1, 2, 3, 4) = (3, 3, 1, 1) and q(0, 1, 2, 3, 4) = (2, 3, 1, 1, 1).$
 - c) Find the optimal solution for job sequencing with deadlines using the following data $(P_1, P_2, P_3, P_4) = (70, 12, 18, 35)$ and $(D_1, D_2, D_3, D_4) = (2,1, 2, 1)$.
- 4. a) Find minimum cost spanning tree for the following graph using Prims algorithm.

- b) Write an algorithm for forward approach of an multistage graph. 6
- c) Find an optimal solution for O/I knapsack problem for knapsack instance $n = 3(p_1, p_2, p_3) = (1, 2, 5) (w_1, w_2, w_3) = (2, 3, 4)$ and M = 6.

MODULE - III

- 5. a) Explain the concept of backtracking with the help of N Queens problem. 8
 - b) Write an algorithm for generating Hamiltonian cycle in a graph.
 - c) Explain FIFO branch and bound technique with the help of an example. 6
- 6. a) Draw the solution space tree for n = 4, w[1, 2, 3, 4] = [3, 4, 5, 6] and M = 6 using sum of subset algorithm.
 - b) Write and explain an algorithm to estimate the total number of nodes in a state space tree.
 - c) Write an algorithm for recursively backtracking in a tree in general.

MODULE - IV

1.	a)	Implement Brute Force algorithm to check whether the pattern $P = \text{engineer}$ lies in the text $T = \text{Computer Engineering}''$ or not.	6
	b)	Draw the suffix trie and the compact representation of the suffix trie for the string "minimize".	6
	c)	Draw the frequency table and Huffman tree for the following string X.	
		X= "a fast runner need never be afraid of the dark". Also obtain the code for each character in X .	8
8.	a)	Write an algorithm and explain synchronous leader election in a ring network of processors.	8
	b)	Explain the following with respect to Distributed Unicast Routing. i) Link State Algorithm.	
		ii) Distance Vector Algorithm.	10
	c)	What are tries? List the different types of tries with the help of an example.	2

