PATENT ABSTRACTS OF JAPAN

(11) Publication number: 10154033 A

(43) Date of publication of application: 09 . 06 . 98

(51) Int. CI

G06F 3/03 G06F 3/033 G06F 15/02

(21) Application number: 08314012

•

(22) Date of filing: 25 . 11 . 96

(71) Applicant:

SONY CORP

(72) Inventor:

MASUI TOSHIYUKI

(54) SENTENCE INPUT DEVICE AND METHOD THEREFOR

(57) Abstract:

PROBLEM TO BE SOLVED: To efficiently input a sentence at high speed by inputting the sentence by means of selecting a desired word with an input means among plural words displayed as menu items.

SOLUTION: A pressure sensitive tablet 9 arranged on the surface of a liquid crystal panel 8 generates a coordinate position signal showing the coordinate of 8 position by touching the surface with an input pen 25. The coordinate position signal is converted into digital data (coordinate position data) by an analog/digital converter 10 and it is sent to CPU 1. CPU 1 judges what kind of information is inputted from the input pen 25 based on the coordinate position of a display content which is actually displayed on the liquid crystal display panel 8 on the liquid crystal display panel 8 and coordinate position data inputted from the pressure sensitive tablet 9. Thus, the desired word is selected by the input means among the plural words displayed as the menu items and the sentence is inputted.

COPYRIGHT: (C)1998,JPO

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-154033

(43)公開日 平成10年(1998)6月9日

(51) Int.Cl. ⁸	•	識別記号	FΙ	•	
G06F	3/03	380	G06F	3/03	380G
	3/033	360		3/033	360C
	15/02	310		15/02	310E

審査請求 未請求 請求項の数28 OL (全 20 頁)

(21)出顧番号	特顯平8 -314012	(71) 出顧人 000002185	
(22)出願日	平成8年(1996)11月25日	東京都品川区北品川6丁目7番35号 (72)発明者 増井 俊之 東京都品川区北品川6丁目7番35号 ソン	=
		一株式会社内 (74)代理人 弁理士 小池 晃 (外2名)	

(54) 【発明の名称】 文章入力装置及び方法

(57)【要約】

【課題】 ペン入力コンピュータにおいて文章を効率良く且つ高速に入力することを可能にする。

【解決手段】 液晶表示パネル8と、複数の単語及び複数の文例を格納するROM2と、液晶表示パネル8上に表示されたソフトキーボードへの入力やプルダウンメニュー、ポップアップメニューとして表示された候補単語の選択を行うための感圧式タブレット9及び入力ペン25と、感圧式タブレット9及び入力ペン25と、感圧式タブレット9及び入力ペン25からの入力及び/又は既に確定した文字列に基づいて、液晶表示パネル8に表示する候補単語をROM2から検索するCPU1とを有してなり、液晶表示パネル8に表示された候補単語のなかから、感圧式タブレット9及び入力ペン25によって所望の単語を選択することで文章入力を行う。

【特許請求の範囲】

【請求項1】 少なくとも文字を表示可能な表示手段と、

複数の単語及び複数の文例を格納する辞書格納手段と、 少なくとも単位文字の入力及び上記表示手段に表示され たメニュー項目を選択入力するための入力手段と、

上記入力手段からの入力及び/又は既に確定した文字列 に基づいて、上記表示手段に上記メニュー項目として表 示する複数の単語を上記辞書格納手段から検索する検索 手段とを有してなり、

上記表示手段に上記メニュー項目として表示された複数 の単語のなかから、上記入力手段によって所望の単語を 選択することで文章入力を行うことを特徴とする文章入 力装置。

【請求項2】 上記入力手段は、上記表示手段上での表示座標位置を指示する座標位置指示手段を有してなり、上記表示手段上に表示された各単位文字それぞれの表示座標位置及び上記表示手段上に表示されたメニュー項目それぞれの表示座標位置を、上記座標位置指示手段によって指示することにより、上記単位文字の入力及びメニュー項目の選択入力を行うことを特徴とする請求項1記 裁の文章入力装置。

【請求項3】 上記座標位置指示手段は、上記表示手段上の物理的座標位置と当該表示手段上での表示座標位置とを対応付ける座標位置対応手段と、当該座標位置対応手段に物理的座標位置を入力するための座標位置入力手段とを有してなり、

当該座標位置入力手段にて上記物理的座標位置を入力することにより、上記表示手段上に表示された各単位文字 それぞれの表示座標位置及び上記表示手段上に表示され 30 たメニュー項目それぞれの表示座標位置を指示すること を特徴とする請求項2記載の文章入力装置。

【請求項4】 上記座標位置対応手段は上記物理的座標位置と上記表示座標位置とを対応付ける感圧式タブレットであり、上記座標位置入力手段は当該感圧式タブレットに座標位置を入力するための入力ペンであることを特徴とする請求項3記載の文章入力装置。

【請求項5】 上記座標位置指示手段は、上記表示手段上に表示される指示マークを生成する指示マーク生成手段と、当該指示マークを上記表示手段上で移動させる指示マーク移動手段と、上記表示手段上で指示マークが存在する表示座標位置の情報を取り込む座標位置取り込み手段とを有してなることを特徴とする請求項2記載の文章入力装置。

【請求項6】 上記検索手段は、上記入力手段から入力 された単位文字を先頭の文字として有する複数の単語 を、上記辞書格納手段から検索することを特徴とする請 求項1記載の文章入力装置。

【請求項7】 上記検索手段は、上記入力手段から入力 された単位文字を先頭の文字として有する複数の単語の 50

うち、出現頻度の高い単語から順に検索することを特徴 とする請求項6記載の文章入力装置。

【請求項8】 上記検索手段は、上記入力手段から入力 された単位文字を先頭の文字として有する複数の単語の うち、時間的に近い過去に選択された単語から順に検索 することを特徴とする請求項6記載の文章入力装置。

【請求項9】 上記検索手段は、上記入力手段から入力 された複数の単位文字をそれぞれ構成要素として含む複 数の単語を、上記辞書格納手段から検索することを特徴 とする請求項1記載の文章入力装置。

【請求項10】 上記検索手段は、上記入力手段から順番に入力された複数の単位文字を当該入力順でそれぞれ 構成要素として含む複数の単語を検索することを特徴と する請求項9記載の文章入力装置。

【請求項11】 上記検索手段は、上記入力手段から入力された複数の単位文字を構成要素として含む複数の単語のうち、出現頻度の高い単語から順に検索することを特徴とする請求項9記載の文章入力装置。

【請求項12】 上記検索手段は、上記入力手段から入力された複数の単位文字を構成要素として含む複数の単語のうち、時間的に近い過去に選択された単語から順に検索することを特徴とする請求項9記載の文章入力装置。

【請求項13】 上記検索手段は、上記既に確定した文字列に続いて出現する複数の単語を予測して検索することを特徴とする請求項1記載の文章入力装置。

【請求項14】 上記検索手段は、上記既に確定した文字列に続いて出現する頻度の高い単語から順に複数の単語を予測して検索することを特徴とする請求項13記載の文章入力装置。

【請求項15】 上記検索手段は、上記予測して検索される複数の単語のうち、時間的に近い過去に選択された単語から順に検索することを特徴とする請求項13記載の文章入力装置。

【請求項16】 少なくとも文字を表示画面に表示する 表示工程と、

少なくとも単位文字の入力及び上記表示画面に表示されたメニュー項目を選択入力するための入力工程と、

上記入力工程による入力及び/又は既に確定した文字列 に基づいて、複数の単語及び複数の文例を格納する辞書 から上記表示画面に上記メニュー項目として表示する複 数の単語を検索する検索工程とを有してなり、

上記表示画面上に上記メニュー項目として表示された複数の単語のなかから、上記入力工程によって所望の単語を選択することで文章入力を行うことを特徴とする文章入力方法。

【請求項17】 上記入力工程では、上記表示画面上に 表示された各単位文字それぞれの表示座標位置及び上記 表示画面上に表示されたメニュー項目それぞれの表示座 標位置を指示することにより、上記単位文字の入力及び

3

メニュー項目の選択入力を行うことを特徴とする請求項 16記載の文章入力方法。

【請求項18】 上記入力工程は、上記表示画面上に表示される指示マークを生成する指示マーク生成工程と、当該指示マークを上記表示画面上で移動させる指示マーク移動工程と、上記表示画面上で指示マークが存在する表示座標位置の情報を取り込む座標位置取り込み工程とを有してなることを特徴とする請求項17記載の文章入力方法。

【請求項19】 上記検索工程では、上記入力工程により入力された単位文字を先頭の文字として有する複数の単語を、上記辞書から検索することを特徴とする請求項16記載の文章入力方法。

【請求項20】 上記検索工程では、上記入力工程により入力された単位文字を先頭の文字として有する複数の単語のうち、出現頻度の高い単語から順に検索することを特徴とする請求項19記載の文章入力方法。

【請求項21】 上記検索工程では、上記入力工程により入力された単位文字を先頭の文字として有する複数の単語のうち、時間的に近い過去に選択された単語から順に検索することを特徴とする請求項19記載の文章入力方法。

【請求項22】 上記検索工程では、上記入力工程により入力された複数の単位文字をそれぞれ構成要素として含む複数の単語を、上記辞書から検索することを特徴とする請求項16記載の文章入力方法。

【請求項23】 上記検索工程では、上記入力工程により順番に入力された複数の単位文字を当該入力順でそれぞれ構成要素として含む複数の単語を検索することを特徴とする請求項22記載の文章入力方法。

【請求項24】 上記検索工程では、上記入力工程により入力された複数の単位文字を構成要素として含む複数の単語のうち、出現頻度の高い単語から順に検索することを特徴とする請求項22記載の文章入力方法。

【請求項25】 上記検索工程では、上記入力工程により入力された複数の単位文字を構成要素として含む複数の単語のうち、時間的に近い過去に選択された単語から順に検索することを特徴とする請求項22記載の文章入力方法。

【請求項26】 上記検索工程では、上記既に確定した 40 文字列に続いて出現する複数の単語を予測して検索する ことを特徴とする請求項16記載の文章入力方法。

【請求項27】 上記検索工程では、上記既に確定した 文字列に続いて出現する頻度の高い単語から順に複数の 単語を予測して検索することを特徴とする請求項26記 哉の文章入力方法。

【請求項28】 上記検索工程では、上記予測して検索される複数の単語のうち、時間的に近い過去に選択された単語から順に検索することを特徴とする請求項26記 哉の文章入力方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、少なくとも文章を 入力可能なコンピュータすなわち文章入力装置と、コン ピュータにおいて文章を効率良く入力するのに適した文 章入力方法に関する。

[0002]

【従来の技術】近年は、コンピュータ性能の向上と小型 化技術により各種の携帯型コンピュータが広く使われる ようになってきている。特にハードウェアとしてのキー ボードを持たない、いわゆるペン入力コンピュータは携 帯に便利であり、汎用コンピュータとして活用される機 会も多くなっている。

[00.03]

【発明が解決しようとする課題】現在市販されているペン入力コンピュータの多くは、例えば文章入力を行うための方式として、手書き文字認識方式または画面上のいわゆるソフトキーボードを使った文字入力方式が採用されている。なお、ソフトキーボードとは、画面上に例えば平仮名(或いは片仮名)文字や英文字に対応するキー画像を所定の順字で配列(平仮名の場合は例えば五十音順に配列、英文字の場合は例えばアルファベット順に配列)したキーボード画像を表示し、当該表示されたキーボード画像上のキーを例えばポインティングデバイスにて指示することで、ハードウェアキーボードと略々同じ機能を実現するものである。

【0004】ところが、上記手書き文字認識の場合は、手書きによる文字入力速度の限界や、手書き文字をコンピュータが誤認識したときの認識誤りの訂正の手間等があるため、本質的に入力速度を大きく向上させることが難しい。現在の手書き文字認識を行うペン入力コンピュータによる文字入力速度は、30文字/分程度が上限であると言われている。さらに、当該手書きによる文字入力の場合、大量の文章を入力すると手が疲れるという問題もある。

【0005】また、上配ソフトキーボードを使った文字 入力方式では、ソフトキーボードにより入力された文字 に対して仮名漢字変換を行うことになるが、当該方式の 場合、画面上に表示された小さなキーボード(ソフトキ ーボード)上の文字を連続して正確に拾う必要があるた め、目や神経が疲れるという問題があると同時に、入力 と変換に時間もかかる。

【0006】そこで、本発明はこのような状況に鑑みてなされたものであり、文章を効率良く且つ高速に入力することを可能にする文章入力装置及び方法を提供することを目的とする。

[0007]

【課題を解決するための手段】本発明の文章入力装置 は、少なくとも文字を表示可能な表示手段と、複数の単 語及び複数の文例を格納する辞書格納手段と、少なくと も単位文字の入力及び表示されたメニュー項目を選択入力するための入力手段と、入力手段からの入力及び/又は既に確定した文字列に基づいて、メニュー項目として表示する複数の単語を検索する検索手段とを有してなり、メニュー項目として表示された複数の単語のなかから、入力手段によって所望の単語を選択することで文章入力を行うことにより、上述した課題を解決する。

【0008】また、本発明の文章入力方法は、少なくとも文字を表示画面に表示する表示工程と、少なくとも単位文字の入力及び表示されたメニュー項目を選択入力す 10 るための入力工程と、複数の単語を及び複数の文例を格納する辞書から入力工程による入力及び/又は既に確定した文字列に基づいてメニュー項目として表示する複数の単語を検索する検索工程とを有してなり、メニュー項目として表示された複数の単語のなかから、入力工程によって所望の単語を選択することで文章入力を行うことにより、上述した課題を解決する。

【0009】すなわち本発明は、例えば文字や単語、文節等の検索と予測とに基づいたペン入力コンピュータに好適な文章入力装置及び方法であり、読みの部分指定及 20 び入力位置直前の文字列からの予測により絞り込んだ候補単語の集合の中から単語を選択するという操作を繰り返すことにより、文章を効率良く且つ高速に入力することを可能にするしたものである。

[0010]

【発明の実施の形態】以下、本発明の好ましい実施の形態について、図面を参照しながら説明する。

【0011】本発明の文章入力装置及び方法の一実施例 としてペン入力コンピュータの構成を図1に示す。

【0012】図1に示す本発明実施例のペン入力コンピュータ30は、携帯用の小型の筐体内に比較的大型の液晶表示パネルを設けてなり、入力されたデータに基づく文字や図形などを上記液晶表示パネルに表示可能な携帯用のペン入力コンピュータである。

【0013】この図1に示すペン入力コンピュータ30 は、内部の各構成要素全体の制御を行うCPU(中央制 御装置) 1を有している。このCPU1には、いわゆる OS (Operating System) と称される基本プログラムや 後述する本発明にかかるペン入力を実現するための文章 入力用プログラムや単語辞書、文例辞書等が記憶される ROM (読み出し専用メモリ) 2と、入力されたデータ などを一時的に記憶すると共に後述する各種バッファメ モリとして設けられたRAM3と、外部記憶手段として のメモリカード5を接続できるカードスロット4等が接 続されており、当該CPU1では、上記ROM2に記憶 された基本プログラムに従って、RAM3に記憶された データの処理を行う。また、CPU1は、上記基本プロ グラムに従って、上記カードスロット4に接続されたメ モリカード5からデータを読み出してRAM3に転送し たり、当該RAM3に記憶されたデータをメモリカード 50

5に転送することをも行う。このように、RAM3の記憶エリアは、基本プログラムに従って処理されるデータ用のワークエリアとしても使用される。なお、当該ペン入力コンピュータ30においてバージョンアップを可能にするため、上記ROM2は、好ましくは記憶保持動作

が不要で書換可能なメモリとすることが望ましい。

【0014】また、上記CPU1には、インターフェイスとしていわゆるASIC (Application Specific Integrated Circuit) 6を介して液晶ドライブ用回路7が接続され、当該CPU1は、この液晶ドライブ用回路7に接続された液晶表示パネル8に対する表示制御を行

【0015】そして、この液晶表示パネル8の表面には、感圧式タブレット9が配置されている。この感圧式タブレット9は、その表面を入力ペン25などで触れることで、当該入力ペン25が触れた位置の座標を示す座標位置信号を発生するものである。この感圧式タブレット9から発生された座標位置信号は、アナログ/ディジタル変換器10にてディジタルデータ(座標位置データ)に変換され、上記ASIC6を介してCPU1に送られる。CPU1では、上記液晶表示パネル8に実際に表示されている表示内容の当該液晶表示パネル8上での座標位置と、上記感圧式タブレット9から入力された座標位置データとに基づいて、入力ペン25からどのような情報が入力されているのかを判断することになる。

【0016】また、このペン入力コンピュータ30は、オーディオ再生回路13と、このオーディオ再生回路13の出力が供給されるスピーカ14とをも備え、上記CPU1の制御に基づいて、上記ROM2またはRAM3に記憶された音声データをオーディオ再生回路13に供給することで、当該音声データが上記スピーカ14から音声として放音される。

【0017】さらに、当該ペン入力コンピュータ30は、電源のON/OFFを指示する電源ボタン11を備え、当該電源ボタン11にて電源ONの操作がなされると、メイン電池21またはACアダプタ22から得られる電源が、電源回路である電源ブロック20を介して、各構成要素に供給される。また、当該ペン入力コンピュータ30は、RAM3のバックアップ用電池23をも備え、メイン電池21またはACアダプタ22から電源を得ることができないときに、このバックアップ用電池23によりRAM3のバックアップが行われ、RAM3の記憶データが消去してしまわないようにしてある。

【0018】図2には、本実施例のペン入力コンピュータ30の概略的な外観を示す。

【0019】この図2において、本実施例のペン入力コンピュータ30は、筐体31内に前配図1に示した回路部が配置されてなり、当該筐体31の上面には、前記スピーカ14と、表面に感圧式タブレット9が設けられた液晶表示パネル8とが配置されている。なお、液晶表示

パネル8は、当該筐体31の上面の略々中央に配されている。この液晶表示パネル8上に設けられた感圧式タブレット9上を例えば入力ペン25等にて触れることで、当該ペンによる入力が可能となる。また、筐体31の例えば右側面には、前記電源ボタン11とカードスロット4とが配置されている。

【0020】ここで、上述したような構成からなる本発 明実施例のペン入力コンピュータにおいて、本発明にか かる文章入力手法を適用する場合の基本的な考え方につ いて以下に説明する。

【0021】既存のペン入力コンピュータにおける文章 入力手法では、入力文字列に関してかなり多くの情報を ユーザが与えるのが普通である。すなわち、前述したよ うに、手書き文字認識方式を採用するペン入力コンピュ ータでは、ユーザが文字を正しく書いたとき始めてその 文字の入力がなされたことになり、また、前記ソフトキ ーボード及び仮名漢字変換方式を採用するペン入力コン ピュータでは、一般に文字列の完全な読みがソフトキー ボードから入力された場合に限り仮名漢字変換を行うよ うになされている。

【0022】これに対し、例えば入力したい文字列等に関する部分的な情報、例えば入力したい文字列内の先頭の文字や当該文字列内に含まれるいくつかの文字等を、検索条件として文字や単語、文節(以下、これらをまとめて単語と呼ぶことにする。)の複数の候補を挙げ、これら候補の中から必要な単語を選択してゆき、得られた単語をつなげるようにすれば、上記入力したい文字列に関する完全な情報を与えなくても文章の入力が可能となる。

【0023】すなわち、特にペン入力コンピュータでは、ハードウェアキーボードを備えるコンピュータほど高速に文字入力操作を行うことはできないが、選択操作については高速に行うことができる。このため、当該ペン入力コンピュータにおいて、ハードウェアキーボードを備えるコンピュータと異なる、以下のような少なくとも4つの方針を採用することにより、高速に文字入力を行うことができるようになると考えられる。

【0024】第1の方針として、単純な操作で検索条件を与えるようにする。

【0025】第2の方針として、検索条件の変化に伴って、候補として挙げられる単語の集合を動的に変化させて検索及び表示し、それらを選択の対象とする。

【0026】第3の方針として、検索結果として表示された複数の候補の中から、目的の単語を選択する。

【0027】第4の方針として、単語等の入力個所直前の既に確定した文字列や、単語の一般的出現頻度、分脈(コンテクスト)等から、単語の出現しやすさを計算し、その順に候補を表示する。

【0028】このような4つの方針を実現するためには、具体的には以下のような手法を採用する。

【0029】上記検索条件の指定では、例えば画面上に表示されたソフトキーボードを使用して、入力文字列の読みの一部を検索条件として指定する。すなわち、ソフトキーボード上の各キーのうち、入力したい単語の読み全てではなく、例えば先頭の1文字のみ、或いは先頭から順番に幾つかの各文字のみ、若しくは先頭から飛び飛びに幾つかの各文字のみに対応するキーを入力ペンにて選択することで、入力したい単語を検索するための検索条件を指定する。また、検索条件指定の手法としては、入力ペンを表示画面上に置いた状態で離さずにキーボード上を移動させる操作により、読みを示す複数の文字を1484年を持つまる。

1操作で指定することも可能である。 【0030】上記候補単語の検索及び表示とそれらの選 択では、上記入力文字列の読みの一部が指定された瞬間 に、当該読みで始まる候補単語の集合を提示し、選択の 対象とする。すなわち、上記入力したい単語を検索する ための検索条件(上記読み)が指定されると、当該検索 条件(読み)に応じた複数の単語を候補として表示す る。ただし、上記検索条件の指定が変更された場合は、 即座に候補単語の表示も変更する。また、候補単語の検 20 索の際には、予め用意した文例を用いることにより、単 語入力個所の直前の既に確定した文字列から入力単語を 予測して優先的に提示する。例えば直前の既に確定した 文字列が「よろしく」で終わっているときに、入力ペン で「お」という読みを指定した場合は、「お願い」とい う単語を優先的に候補とする。この候補単語の検索時 に、上記検索条件(読み)とマッチする文例が存在しな いときは、使用頻度の高い単語や最近選択した単語の中 で読みにマッチするものを候補単語として優先的に提示 する。また、検索条件にマッチする単語が存在しないと きは後述する曖昧検索を行って検索条件に近い単語を候 補として提示する。このようにして得られた複数の候補 単語が、上記入力したい単語を選ぶ際の選択対象とな る。なお、このときの候補単語の集合はメニューとして ソフトキーの近傍位置或いは所定の位置に表示する。 【0031】上述したような4つの方針及びその具体的 手法に基づいて、図1のペン入力コンピュータ30にて 文章を入力する場合の具体的な様子を、以下の図3~図 14に示す。

【0032】ここでは、例えば「以下に本手法を用いた・・・」という日本語の文章を入力する場合の具体例を図3~図10に挙げている。なお、図3~図14において、入力ペンの位置は図中の矢印Aで表している。

【0033】図3には、前記図1及び図2の液晶表示パネル8の画面DPY上に表示された例えば五十音順のソフトキーボードSKBJの初期画面を示す。このソフトキーボードSKBJには、「あ」~「ん」等の単位文字からなる五十音順の平仮名ソフトキー(他

に「。」「、」も含む)と、「後退」「改行」「取消」 50 等の一般的な編集コマンド用ソフトキーSKCが設けら れている。上記平仮名ソフトキーは略々五十音順に配列 されている。

【0034】この初期画面の状態において、図4に示す ように、例えば「い」のソフトキーskI上で入力ペン (矢印A)を押すと、当該「い」が検索条件(読み)と して指定される。このように例えば「い」が検索条件と して指定されると、画面DPY上には、図4に示すよう に「い」で始まる複数の候補単語の集合がプルダウンメ ニューPDM」として表示される。なお、プルダウンメ ニューとは、一般に、コンピュータに作業を指示する際 10 に画面上に選択できる作業項目の一概を表示し、その中 からユーザが目的の作業を選択するためのメニュー表示 方式の一つで、作業項目のメニューが画面上に巻物を引 き出すように現れる方式である。本実施例の場合のプル ダウンメニューには作業項目の代わりに上記候補単語が 表示される。

【0035】図4のプルダウンメニューPDM」として は、「い」で始まる単語のうち、出現頻度が高いものか ら順に10個程度の候補単語(例えば「い」「イ」「イ ンターフェイス」「いる」「以下」「いた」「良い」 「いう」「いい」「移動」「いない」「います」等)が メニュー項目として表示された例を表している。以下の 説明では、上記各候補単語が表示されている各メニュー 項目をメニューキーと呼ぶことにする。 もちろん、プル ダウンメニューPDM」として表示される候補単語の数 は、上記10個程度に限らず、より少ない数或いはより 多い数にすることも可能である。当該表示する候補単語 の数は、画面DPYの大きさや他の表示内容との兼ね合 い等を考慮して決定する。なお、上記プルダウンメニュ ーPDM_Iの表示がなされると、上記ソフトキーボード SKB」の表示が遮られることになるため、当該ソフト キーボードSKBJの表示領域以外の場所(更に望まし くは他の表示内容の妨げにならない場所)に、上記プル ダウンメニューPDM」と同内容のメニュー表示を行う ようにすることも可能である。

【0036】この図4の表示がなされている状態で、例 えば入力ペンを離すと、図4のプルダウンメニューPD M」に表示されていた候補単語が、図5のように画面D PYの下部にポップアップメニューPUM」として表示 されるようになり、図4のプルダウンメニューPDMJ の表示は消滅する。なお、ポップアップメニューとは、 上記プルダウンメニューと同種のメニュー表示方式の一 つであり、画面上の任意の場所にメニューを表示する方 式である。本実施例の場合は図5のように画面DPYの 例えば下部に表示しているが、他の場所であってもかま わない。ただし、他の表示内容の妨げにならない場所で あることが望ましい。

【0037】この図5のポップアップメニューPUMJ も出現頻度が高いものから順に候補単語が並べられる。 なお、このときのポップアップメニューPUMJは、ソ 50 ューキーを選択すれば、当該選択された候補単語の入力

フトキーボードSKB」の外に表示されるため、表示さ れる候補単語の数は上記図2のプルダウンメニューPD M.jより多くすることができ、この図5の例では「い」 「イ」「インターフェイス」「いる」「以下」「いた」 「良い」「いう」「いい」「います」「移動」「いな い」「遺伝的」「位置」「行」「いく」「以前」「意

味」等が表示される。

10

【0038】この図5の表示がなされた状態で、上記ポ ップアップメニューPUM』上の所望の候補単語に対応 するメニューキー上をペンにて触れると、当該メニュー キーに対応する候補単語が選択される。これにより、当 該選択された候補単語を入力することができる。当該候 補単語の選択が行われた後は、上記ポップアップメニュ - PUM」の表示が消滅する。

【0039】また、図4の表示がなされている状態でペ ンを離した場合、図5のようなポップアップメニューP UMJを表示するのではなく、図4のプルダウンメニュ -PDM:の表示を行ったままにしておき、このプルダ ウンメニューPDM」の中から所望の候補単語を選択す 20 ることも可能である。

【0040】一方、上記図4のように検索条件として先 ず「い」を指定すると共に入力ペンを画面DPYに触れ たまま移動させて、図6に示すように例えば「か」のソ フトキーs kg上に入力ペン(矢印A)を持ってくる と、検索条件として「いか」が指定される。このよう に、入力ペンを画面DPY上に触れたままで移動させて 複数の文字を指定することを、ドラッグ処理と呼ぶ。こ のように、ドラッグ処理にて例えば「いか」の読みが検 索条件として指定されると、画面DPY上には、図6に 示すように、「いか」で始まる候補単語の集合がプルダ ウンメニューPDM」として表示される。

【0041】この図6のプルダウンメニューPDMIと しては、「いか」で始まる単語のうち、出現頻度が高い ものから順に複数の候補単語(例えば「いか」「イカ」 「以下」「以外」「以下に」「いが」「いかに」「行 か」「意外」「井上」「生か」「以下本文」等)が表示 された例を表している。このように、本発明実施例で は、入力ペンを画面PDYに接触させた状態のまま別の 文字上 (別のソフトキー上) に移動させると、それに伴 40 って検索条件と候補単語が動的に変化するようになって

【0042】なお、この図6の表示例の場合も、前述同 様に当該プルダウンメニューPDMJをソフトキーボー ドSKB」の表示領域以外の場所(更に望ましくは他の 表示内容の妨げにならない場所)に表示することも可能 である。

【0043】この図6の表示がなされている状態で、例 えばペンを離し、例えば図7に示すようなプルダウンメ ニューPDM」の中から所望の候補単語に対応するメニ

が行われることになる。図7の例では、プルダウンメニ ューPDMiの中から例えば「以下に」と表示されたメ ニューキーmkェを入力ペン(矢印A)で選択した状態 を表している。

【0044】なお、上記図6の表示がなされている状態 でペンを離した場合、図6のプルダウンメニューPDM 」に表示されていた候補単語を、例えば前記図5のよう な画面DPYの下部にポップアップメニューPUM」と して表示することも可能である。

【0045】上述同様の手順により、「ほ」のソフトキ 10 ーをペンで押した後、上記ドラッグ処理として入力ペン を画面DPYから離さずに「ん」のソフトキーskNを 当該入力ペンで指定すると、「ほん」が検索条件として 設定される。このように「ほん」の読みが検索条件とし て指定されると、画面DPY上には、図8に示すよう に、「ほん」で始まる候補単語の集合がプルダウンメニ ューPDM」として表示される。

【0046】この図8のプルダウンメニューPDMJと しては、「ほん」で始まる単語のうち、出現頻度が高い ものから順に候補単語(例えば「ほん」「ホン」「本」 「本論文」「本体」「本当」「本質的」「本年」「本 稿」「本章」「本発明」「本手法」「本方式」「本節」 等) が表示された例を表している。 本実施例では、この プルダウンメニューPDMJの中から例えば「本手法」 と表示されたメニューキーをペンで選択することにな る。

【0047】 ここまでの手順により、この時点で確定し た文字列は「以下に本手法」となる。このように確定し た文字列は、上記ソフトキーボードや編集用コマンドソ フトキー, プルダウンメニュー, ポップアップメニュー 30 等が表示されていない画面上の位置に表示されることに なる。

【0048】次に、画面DPY上には、例えば図9に示 すように、上記「以下に本手法」と確定した文字列の直 後に出現する頻度が高い順に候補単語の集合がポップア ップメニューPUMJとして表示される。上記「以下に 本手法」と確定した文字列の直後に出現する頻度が高い 候補単語の集合としては、例えば「は」「を」「を文書 **編集」「は単純」「の」「が」「を用いて」「と」「を** 適用」「に」「の切り替え」「により」「を提案」「を 40 要となる。なお、従来のソフトキーボード及び仮名漢字 使う」「について」「の融合」「で」等があり、これら が上記図9のポップアップメニューPUM」に表示され る。本実施例では、この図9の表示がなされている状態 で、上記ポップアップメニューPUMJの中から例えば 「を」と表示されたメニューキーmkoをペン(矢印 A) で選択すると、確定した文字列は「以下に本手法 を」になる。

【0049】この図9のように、上記ポップアップメニ ューPUM』上の「を」や「は」等は、既に確定してい る「以下に本手法」という文字列の直後に出現する頻度 50

が高い候補単語であり、このとき表示される各候補単語 はソフトキーボードSKB」から読みとして検索条件を 指定しなくても、ポップアップメニューPUM」として 表示され、このポップアップメニューPUM」上に表示 されている候補単語の中から入力ペン25で直接選択す ることが可能である。

12

【0050】次に、画面DPY上には、例えば図10に 示すように、上記「以下に本手法を」と確定した文字列 の直後に出現する頻度が高い順に候補単語の集合がポッ プアップメニューPUM」として表示される。このとき の候補単語の集合としては、例えば「文書編集」「用い て」「適用」「提案」「使う」「併用」「選択」「選択 し」「用い」「使用し」「使わ」「用いた」「行な」 「入力」「予測」「作成」「行なう」「実行」等があ り、これらが上記図10のポップアップメニューPUM[~] 」に表示される。本実施例では、この図10の表示がな されている状態で、上記ポップアップメニューPUMJ の中から例えば「用いた」と表示されたメニューキーm kmをペン(矢印A)で選択すると、確定した文字列は 「以下に本手法を用いた」になる。

【0051】この図10の例でも、ソフトキーボードS KB」から読みとして検索条件を指定しなくても、上記 ポップアップメニューPUMJとして、既に確定してい る「以下に本手法を」という文字列の直後に出現する頻 度が高い候補単語が表示され、 したがってポップアップ メニューPUM」上に表示されている候補単語の中から ペンで直接選択することが可能である。

【0052】上述した手順により、「以下に本手法を用 いた」という文字列を確定することができる。

【0053】ここまでの本発明にかかる文章入力手順に おいて、画面DPY上をペンで触れてから離すまでの操 作を1操作と数えると、上述した「以下に本手法を用い た」という文字列は6操作で入力できたことがわかる。 【0054】これに対して、前述した既存の手書き文字 認識方式を使用するペン入力コンピュータによって上記 「以下に本手法を用いた」という文字列を入力しようと した場合は合計で約40操作が必要となり、また、既存 のソフトキーボード及び仮名漢字変換方式を使用するペ ン入力コンピュータの場合は最低でも20操作程度が必 変換方式を使用するペン入力コンピュータにおいて上記 「以下に本手法を用いた」という文字列を入力する場合 には、先ず「い」と「か」のソフトキーを指定した後に 仮名漢字変換用の「変換」ソフトコマンドキーを指定し て「以下」の文字列を確定し(これで3操作になる)、 次に「に」のソフトキーを指定した後に「確定」ソフト コマンドキーを指定して「に」の文字を確定し(これで 2操作になる)、次に「ほ」と「ん」のソフトキーを指 定した後に「変換」ソフトコマンドキーを指定して

「本」の文字を確定し(これで3操作になる)、次に

「し」と「ゆ」のソフトキーを指定すると共に「ゆ」の 文字を小文字に変換するための「文字変換」ソフトコマ ンドキーを指定し(これで3操作になる)、次に「ほ」 と「う」のソフトキーを指定した後に「変換」ソフトコ マンドキーを指定して「手法」の文字列を確定し(これ で3操作になる)、次に「を」のソフトキーを指定した 後に「確定」ソフトコマンドキーを指定して「を」の文 字を確定し(これで2操作になる)、その後は「も」と 「ち」と「い」と「た」の各ソフトキーを順に指定した 後に「変換」ソフトコマンドキーを指定((これで5操 10 作になる) することで、「以下に本手法を用いた」の文 字列の入力が確定することになる。このように、従来の ソフトキーボード及び仮名漢字変換方式を使用したペン 入力コンピュータの場合には、上記「以下に本手法を用 いた」という文字列を入力するために、3+2+3+3 +3+2+5の合計21操作が必要となる。

【0055】上述した図3~図10の例は、日本語入力 を行う場合の操作及び表示例を示しているが、例えば英 語入力を行う場合には図11~図14に示すような操作 及び表示が行われることになる。なお、これら図11~ 20 図14の指示符号等は前記図3~図10に準じている。

[0056] 図11には、前記液晶表示パネル8の画面 DPY上に表示された例えばアルファベット及び数字等 の単位文字からなるソフトキーボードSKBEの初期画 面を示す。このソフトキーボードSKBEには、「A」 ~「Z」等のアルファベットソフトキー(他 に「(」「)」「#」等も含む)と、前記図3~図10 と同様な「後退」「改行」「取消」等の一般的な編集コ マンド用ソフトキーSKCが設けられている。なお、編 集コマンド用ソフトキーSKCは、英語表記にすること 30 も可能である。

【0057】この初期画面の状態において、図12に示 すように、例えば「F」のソフトキーskF上で入力ペ ン(矢印A)を押すと、当該「F」が検索条件(読み) として指定される。このように例えば「F」が検索条件 として指定されると、画面DPY上には、図12に示す ように「F」で始まる複数の候補単語の集合がプルダウ ンメニューPDMFとして表示される。

【0058】図12のプルダウンメニューPDMEとし ては、「F」で始まる単語のうち、出現頻度が高いもの 40 から順に10個程度の候補単語(例えば「F」「for」 ffrom [figure] [first] [found] [form] [focu s」「feedback」「features」等)がメニュー項目(メ ニューキー) として表示された例を表している。この図 12の表示がなされている状態で、上記プルダウンメニ ューPDMEに表示されている候補単語の中から所望の 候補単語を選択することになる。 例えば図13に示すよ うに、「first」のメニューキーmkfを選択すれば、当 該「first」の文字が確定することになる。

態で、例えば入力ペンを離すことにより、前述したよう に図12のプルダウンメニューPDMEに表示されてい た候補単語を、図14のように画面DPYの下部にポッ プアップメニューPUMFとして表示することも可能で ある。この図14のポップアップメニューPUMEも出 現頻度が高いものから順に候補単語が並べられる。な お、図14の例のポップアップメニューPUMEには、 例えば「F」「for」「from」「figure」「first」「fo und form focus feedback features fu rther」「following」「four」等が表示される。この図 14の表示がなされている状態で、上記ポップアップメ ニューPUMFに表示されている候補単語の中から所望 の候補単語を選択することになる。図14の例では、 「first」のメニューキーmkfを選択している様子を示

【0060】上述した英語入力の場合も前記日本語入力 の場合と同様に、簡単な選択操作のみで英語の文章入力 が可能となる。

【0061】このように、本発明にかかる文章入力手法 は、例えば日本語のように変換操作(平仮名-漢字変換 や、アルファベット文字ー平仮名及び漢字変換等の変換 操作)を伴う入力に対して特に有効であるのみならず、 英語やフランス語、ドイツ語等のように変換操作が必要 無い言語の文章入力においても適用できる。特に本発明 の文章入力手法では、英単語等を前述したような複数の 候補単語の中からの選択によって入力するため、通常の 英語等の文章入力には必ず必要になっているスペルチェ ックが、殆ど不要になると予想される。

【0062】なお、確定した文章を例えば訂正したり削 除したりする場合には、前配編集コマンド用ソフトキー SKCを用いて行うことになる。

【0063】ところで、上述したような本発明実施例に かかる文章入力手法を効果的に実現するためには、質の 良い単語辞書と文例辞書とが必要となる。

[0064] 例えば上述した日本語入力の本実施例で使 用した単語辞書としては、例えば図15に示すような型 式のものが考えられる。この図15に示す型式の単語辞 善は、図中左側に第1要素としての読み(候補単語の読 み) と、図中右側に第2の要素としての候補単語とから なるリスト構造になっている。

【0065】また、本実施例で使用した日本語入力用の 文例辞書としては、例えば図16に示すような型式のも のが考えられる。この図16に示す型式の文例辞書は、 図中左側に検索条件として確定した文字列を示す第1要 素と、図中中央に第2要素としての候補単語の読みと、 図中右側に第3要素としての候補単語と、からなるリス ト構造になっている。 すなわち、図16に示す文例辞書 では、第2要素の文字列が入力個所直前の文字列にマッ チする場合において、図中左側に示す第1要素の検索条 【0059】また、上記図12の表示がなされている状 50 件 (読み) が指定されたときに図中右側に示す第3要素 の文字列を候補単語として確定することを意味している。

【0066】本実施例においては、検索条件に応じて候補単語の検索を行う場合、これら図15や図16に示したような辞書の先頭から順番にマッチング操作を行うだけで、前述した検索方針を実現することが可能になる。

【0067】また、これら図15及び図16に示す辞書は、以前に作成したことのある文章を検索し易い構造になっている。すなわち、文書作成時に選択した単語や文例は、これら辞書の先頭に追加されるようになされてい 10るため、次回の検索の際には当該先頭に追加された単語や文例が優先的に候補単語として表示されるようになり、例えば直前に入力した文章に似た文章をもう一度入力するようなことが容易になっている。

【0068】なお、例えば22000語の単語辞書を使用した場合、「最初の1文字の読みの選択+メニューキーの選択」によって例えば471個の候補単語を選択でき、「最初の2文字の読みの選択+メニューキーの選択」では例えば8611個の候補単語を選択できる。ここで、前述したプルダウンメニューやポップアップメニューに例えば10個の候補単語を表示させるようにした場合において、上記合計471個の候補単語のうち、前記例文にて選択したい候補単語が、上記「最初の1文字の読みの選択+メニューキーの選択」を行うことで上記プルダウンメニューやポップアップメニュー上に出現する確率は44%であり、また、上記合計8611個の候補単語のうち、前記例文にて選択したい候補単語が上記

「最初の2文字の読みの選択+メニューキーの選択」を行うことで上記プルダウンメニューやポップアップメニュー上に出現する確率は85%であった。さらに、「最 30 初の3文字の読みの選択+メニューキーの選択」を行うようにすると、前記例文にて選択したい候補単語が上記メニュー上に出現する確率は97%以上になる。このように、本実施例の文章入力手法における候補単語の検索処理によれば、読みを1~2文字指定するだけで、文章入力時に必要とする殆どの候補単語が選択できることになる。

【0069】ただし、これら出現頻度の確率は、前配図 9 や図10で述べたような既に確定した文字列から最も出現頻度の高い候補単語を予測する予測候補検索を使用しない場合の計算である。実際には、当該予測候補検索が機能することにより上記必要とする候補単語の出現頻度は更に高くなり、このため前記図9 や図10の例のように検索条件としての読みを全く指定しなくても、単語を入力できることが多くなる。

【0070】また、本実施例においては、作成する文書の種類や分脈(コンテクスト)に応じて異なる辞書を使用することもでき、これにより更に効果的な文章入力を行うことも可能である。例えば地名を候補単語とした地名リストを辞書に用いれば名符データベースを作成する 50

16

際の住所入力が非常に容易になり、また、例えば文例集 を候補単語とした文例辞書を用いれば手紙等を作成する 際の文例を容易に検索することが可能となる。なお、地 名リストの辞書の場合は、例えば県、群、市、町、村、 番地の順で階層構造を形成しておけば、候補単語として の地名を容易に検索及び指定できるようになる。

【0071】上述の説明では、日本語入力用の辞書について説明しているが、前記英語入力の場合も同様の効果を得ることができる。もちろん、前述した日本語の平仮名文字表示のソフトキーを用いた日本語入力の場合のみならず、このアルファベット表示のソフトキーボードを用いたいわゆるローマ字入力による日本語入力であっても同様である。

【0072】なお、上述した日本語入力や英語入力の説明では、前記曖昧検索は行っていないが、上記検索条件として指定した読みで始まる候補単語が少ない或いは無い場合、本実施例のペン入力コンピュータは曖昧検索を行うようにする。すなわち例えば日本語入力を行う場合において、検索条件として例えば「てけ」という読みを指定した場合、当該「てけ」で始まる単語は殆どないので、「て」と「け」を検索条件として用いた曖昧検索を行うようにする。この曖昧検索により、候補単語として例えば「電総研」などの単語を表示することが可能となる。また、英語入力の場合には、例えば、「p」と「t」と「p」と「s」とを指定するだけで「Pithecanthropus」のような単語を入力できるようになる。

【0073】ここで、上記英語入力の場合を例に挙げて、上記曖昧検索による正しい候補単語の検索の様子を 説明する。

【0074】本実施例の文章入力手法では、曖昧検索を 高速に行うため、単語辞書では2種類の正規表現認識ア ルゴリズムを併用している。例えば「ab ca」の文 字列を検索する場合、この「ab ca」の文字列パタ ーンを認識するための状態遷移機械は図17のように表 現できる。なお、「*」はどのような入力文字であって も良いことを表している。この図17の状態遷移機械で は、初期状態S0は入力文字「a」により次の状態S1 に遷移し、状態S1は入力文字「b」により状態S2に 遷移し、状態S2は入力文字*により遷移せずに入力文 字「c」により状態S3に遷移し、状態S3は入力文字 「a」により状態Aに遷移する。この状態Aは最終状態 或いは受理状態と呼び、入力文字列「ab ca」を受 理したか否かを示す。入力文字「a」や「b」や「*」 や「c」や「a」が与えられないとき各状態SО, S 1, S2, S3, Aは消滅する。

【0075】この図17のように表現される状態遷移機械は、図18のように状態数を増やすことにより、ミスマッチ(誤字/脱字/誤挿入)を許す機械に拡張することができる。すなわち図18中の状態A0はミスマッチ

を許さない受理状態で、状態A1は1文字誤りを、状態 A2は文字誤りを許す受理状態である。

17

【0076】なお、上記曖昧検索の手法として、例えば シフト演算を用いてパターンマッチングを行う手法は文 献 (Ricardo A. Baeza-Yates and Gaston H. Gonnet. A newapproach to text searching. Communications of the ACM, Vol. 35, No. 10,pp. 74-82, October 1992. や、Sun Wu and Udi Manber. Agrep - a fast approxim ate pattern - matching tool. In Proceedings of USE NIX Technical Conference, pp. 153-162, San Francis 10 ∞, CA, January 1992.等) において記載されており、 またハードウェアによる実現も文献(山田八郎、髙橋恒 介, 平田雅規, 永井登, あいまい検索が可能な文字列検 索LSI. 日経エレクトロニクス, No.422, pp. 165-18 1, 1987.6.1.) に記載されており、さらに本件の発明者 においても既に論文(情報処理学会、January 1996 .pp 13~23) 等にて開示しているので、ここでは詳細な説明 を省略する。また、上記曖昧検索においては、文字列の 先頭文字を入力するのではなく、当該文字列内の任意の 幾つかの文字を、この文字列内で登場する順番にて入力 20 することによって候補単語の検索を行うことも可能であ る。

【0077】次に、前記図1の構成において、上述した ような具体的な文章入力を実現するための当該図1の構 成における処理の流れを、以下の図19~図23のフロ ーチャートを用いて説明する。これらフローチャートの 処理は、前記ROM2に格納された前記文章入力用プロ グラムに基づいて、前記CPU1が各部を制御すると共 にデータ処理を行うことにより実現されるものである。 すなわち、前記ROM2に記憶されている文章入力用プ 30 ログラムは、当該フローチャートの処理を前配CPU1 が実行するためのプログラムである。なお、図19及び 図20には、図1の構成を有するペン入力コンピュータ 30における文字入力処理の全体の流れを示している。 なお、図19と図20は本来1つの図面に表すべきもの であるが、紙面の都合で分割して表している。また、図 21及び図22には上記文字入力処理において連続して 複数の文字を検索条件として入力する場合(前記ドラッ グ処理)のフローチャートを示している。なお、この図 21及び図22も本来1つの図面に表すべきものである が、紙面の都合で分割して表している。図23は、上記 文字入力処理のフローチャート内の予測候補検索処理の 具体的な流れを示している。

【0078】先ず、図19において、ステップST1では、前配検索条件として入力したい文字列の先頭文字の 読みの入力が行われる。すなわち、前述したようにソフトキーボード上の各文字のソフトキーの中から、前配入 力ペン25による検索条件の指定のための先頭の文字の 読みの入力が行われる。

【0079】当該先頭文字の読みの入力が行われると、

18

前配CPU1は、ステップST2として、この入力文字のデータを前記図1のRAM3内に設けられている未確定文字列バッファへ格納すると共に、ステップST3として、前配RAM3内に設けられている候補単語の集合を格納するためのバッファ(以下、候補集合バッファと呼ぶ)をクリアする。なお、上記未確定文字列バッファは、検索条件として指定される文字列が格納されるバッファである。当該検索条件は、1文字のみならず2以上の文字列から構成されるものであり、候補単語の選択が行われるまでは確定しないものであるため、本実施例では当該検索条件として指定される文字列を格納するバッファを上記未確定文字列バッファと呼ぶことにしている。

【0080】次に、CPU1は、ステップST4として、前記単語辞書の中から上記未確定文字列バッファに格納された文字(或いは文字列)を、先頭の文字(或いは文字列)として有する候補単語の検索を行う。なお、このように、先頭の文字(或いは文字列)をキーワードにして行う検索を前方一致検索と呼ぶ。CPU1は、ステップST5として、上記ステップST4での単語辞書の前方一致検索により得られた候補単語を、上記候補集合バッファへ格納する。

【0081】このとき、CPU1は、ステップST6にて、上記検索された候補単語の数が所定のN個より少ないか否かの判断を行う。このN個は、前述したように画面DPY上に表示可能な数、例えば前記プルダウンメニューPDMやポップアップメニューPUMとして表示される候補単語の個数に対応している。当該ステップST6の判断において、候補単語の数が上記N個以上であると判定したとき(ノーと判定したとき)は後述するステップST9の処理に進み、候補単語の数が上記N個より少ないと判定したとき(イエスと判定しとき)はステップST7の処理に進む。

【0082】ステップST7では、上配検索された候補単語の数が上記画面DPY上に表示可能な数Nよりも未だに少ないため、さらに単語辞書の中から候補単語の検索を行う。このときの検索は、前記曖昧検索を行う。なお、この曖昧検索により検索される候補単語の個数は、先に検索されている候補単語と合わせて上記画面DPYに表示可能な個数になる数とすることができる。当該ステップST7の曖昧検索の後、CPU1は、ステップST8として、これら得られた検索結果(候補単語の集合)を前記候補集合バッファに追加し、さらにステップST9として、上配候補集合バッファに格納した候補単語の集合を読み出して前記液晶表示パネル8上にメニュー表示(前記プルダウンメニューやポップアップメニュー表示)する。

【0083】また、このときのCPU1は、ステップS T10として追加文字の入力が有るか否か、すなわち新 50 たに入力ペン25から検索条件として追加される1つの 文字(読み)の入力がなされたり、前記ドラッグ処理に よる文字列の入力がなされたりしたか否かの判定を行 う。このステップST10にて追加文字の入力があった とき(イエスと判定されたとき)には、ステップST2 の処理に戻り、先に未確定文字列バッファに格納されて いる文字(或いは文字列)に上記追加された文字を追加 し、未確定文字列バッファに格納する。その後は、当該 未確定文字列バッファに格納された文字列を検索条件と して、前記同様にステップST3からステップST10 までの処理を行う。当該ステップST10にて更に追加 10 文字の入力がある時にも同様である。

19

【0084】上記ステップST10にて追加文字の入力 がないと判定したとき、CPU1は、ステップST11 にて候補単語の確定が終了したか否か、すなわち前記画 面DPY上に表示されたプルダウンメニューPDMやポ ップアップメニューPUMの中から正しい候補単語の選 択がなされたか否かの判定を行う。このステップST1 1にて候補単語が確定していないとき(ノーと判定した とき)はステップST10の処理に戻り、候補単語が確 定したとき (イエスと判定したとき) はステップST1 2の処理に進む。

【0085】 CPU1は、上記候補単語が確定したの で、次の文字入力のための処理に移行するために、ステ ップST12として前記未確定文字列バッファをクリア し、次に図20のステップST21以降の処理を行う。 このとき、前述した図19のフローチャート処理によっ て既に少なくとも1つの単語の入力が確定しているの で、この図20のステップST21の処理では、既に確 定した単語 (文字列) に基づいて、当該確定した単語の 次に来るべき候補単語(例えば前記最も出現頻度の高い 30 候補単語)を予測する予測候補検索を行う。上記予測候 補検索によって候補単語の集合が得られると、CPU1 は、次のステップST22として、これら候補単語の集 合を前配液晶表示パネル8に表示する。

【0086】このときのCPU1は、ステップST23 として追加文字の入力が有るか否か、すなわち新たに入 カペン25から検索条件として追加される1つの文字の 入力がなされたり、前記ドラッグ処理による文字列の入 力がなされたりしたか否かの判定を行う。

【0087】このステップST23にて追加文字の入力 40 があったとき(イエスと判定されたとき)には、ステッ プST27にて当該新たに追加された文字を前記未確定 文字列バッファに格納されている文字(或いは文字列) に追加し、未確定文字列バッファに格納する。その後 は、当該未確定文字列バッファに格納された文字列を検 索条件として、前記同様にステップST21からステッ プST23までの処理を行う。当該ステップST23に て更に追加文字の入力がある時にも同様である。

【0088】上記ステップST23にて追加文字の入力 がないと判定したとき、CPU1は、ステップST24 50 カペン25が同一の文字ソフトキーsk上に置かれてか

にて候補単語の確定が終了したか否か、すなわち前記画 面DPY上に表示されたプルダウンメニューPDMやポ ップアップメニューPUMの中から正しい候補単語のが 選択がなされたか否かの判定を行う。このステップST 24にて候補単語が確定していないとき(ノーと判定し たとき)はステップST23の処理に戻り、候補単語が 確定したとき(イエスと判定したとき)はステップST 25の処理に進む。

20

【0089】CPU1は、このステップST25にて前 記未確定文字列バッファをクリアすると、次にステップ ST26に進む。このステップST26に進むと、CP U1は、一つの文章の入力が終了したか否かの判断を行 う。ステップST26にて入力が終了していないと判断 したとき(ノーと判断したとき)はステップST21以 降の処理に戻り、ステップST26にて入力が終了した と判断するまで、ステップST21からステップST2 6までの処理を繰り返す。ステップST26にて入力が 終了したと判断したとき(イエスと判断したとき)は、 文字入力処理を終了する。

【0090】次に、図21及び図22を用いて前記ドラ 20 ッグ処理の流れを説明する。

【0091】 先ず図21において、CPU1は、ステッ プST31として入力ペン25が前記液晶表示パネル8 の前記画面DPY上、すなわち前記ソフトキーボードS KBJ上に置かれているか否か(厳密には前記ソフトキ ーボードSKB」上の文字ソフトキー s kに対応する前 記感圧式タブレット9上に触れているか否か)を判断す る。このステップST31にて、文字ソフトキーsk上 に入力ペン25が置かれていると判断したとき(イエス と判断したとき)にはステップST32の処理に進み、 入力ペン25が置かれていないと判断したとき (ノーと 判断したとき)にはステップST39の処理に進む。

【0092】上記ステップST31にて入力ペン25が 文字ソフトキー s k上に置かれていると判断したときの CPU1は、ステップST32として入力ペン25が画 面DPYから離れたか否か(厳密には感圧式タブレット 9から離れたか否か)の判断を行い、離れていないと判 断したときにはステップST33の処理に進み、離れた と判断しときには図22のステップST51の処理に進 也。

【0093】上記ステップST32にて入力ペン25が 画面DPYから離れていないと判断したとき、CPU1 は、ステップST33において上記入力ペン25が同一 の文字ソフトキーsk上に置かれてから所定時間経過し たか否かを判定する。ステップST33にて所定時間経 過していないと判断したときにはステップST31以降 の処理に戻り、所定時間経過したと判断したときにはス テップST35の処理に進む。

【0094】CPU1は、上記ステップST33にて入

【0101】その後、CPU1の処理はステップST53の処理に進む。なお、このステップST53の処理は、図21のステップST42にてイエスと判断されたときにも進む。

22

ら所定時間経過したと判断したとき、ステップST35として、当該文字ソフトキーskの文字を入力文字として選択し、次のステップST36で当該文字を前記未確定文字列バッファへ格納(すでに文字が格納されているときにはその文字に追加)する。

【0102】CPU1は、当該ステップST53の処理として、未確定文字列バッファ内に検索条件としての文字列が格納されているか否かの判断を行い、格納されていないと判断したときには当該ドラッグ処理を終了し、格納されていると判断したときにはステップST54の処理に進む。

【0095】次に、CPU1は、ステップST37として、上記未確定文字列バッファに格納された文字列を用いて候補単語の検索処理を行い、さらにステップST38として、当該検索により得られた候補単語の集合を前記画面DPY上に表示する。このときの候補単語の集合の表示位置は、前述したプルダウンメニューPDMのように、上記入力ペン25が置かれている文字ソフトキーの近傍とする。このステップST38の処理が終了した後は、前記ステップST31の処理に戻る。

【0103】CPU1は、ステップST54の処理に進むと、上記未確定文字列バッファに格納されている文字列を用いて候補単語の検索処理を行い、次に、ステップST55として上記検索により得られた候補単語の集合を、前述のようにメニュー表示し、その後は当該ドラッグ処理を終了する。

【0096】一方、前記ステップST31にて文字ソフトキーsk上に入力ペン25が置かれていないと判断したとき、CPU1は、ステップST39として候補単語の集合が表示されている前記プルダウンメニューPDMやポップアップメニューPUM上に入力ペン25が置かれているか否か(厳密には前記メニュー上の候補単語を表示する前記メニューキーmkに対応する前記感圧式タブレット9上に触れているか否か)の判断を行う。このステップST39にて、メニューキーmk上に入力ペン25が置かれていると判断したときにはステップST40の処理に進み、入力ペン25が置かれていないと判断したときにはステップST42の処理に進む。

【0104】次に、前記図20のフローチャートのステップST21における予測候補検索処理の流れを図23のフローチャートを用いて説明する。

【0097】上記ステップST39にて入力ペン25が メニューキーmk上に置かれていると判断したときのC PU1は、ステップST40として入力ペン25が画面 DPYから離れたか否かの判断を行い、離れたときには 30 ステップST41の処理に進み、離れていないと判断し ときには前記ステップST31の処理に戻る。 【0105】この図23において、CPU1は、先ずステップST61として前記候補集合バッファをクリアし、次にステップST62として前記例文辞書の検索を行う。上記例文辞書の検索を行った後のCPU1は、当該検索により得られた候補単語を前記候補集合バッファに格納(既に候補単語が格納されているときには追加)する。

【0098】上記ステップST40にて入力ペン25が 画面DPYから離れたと判定したときのCPU1は、ス テップST41にて候補単語の選択がなされたとして、 当該ドラッグ処理を終了する。 【0106】このとき、CPU1は、ステップST64 にて、上記検索された候補単語の数が前記所定のN個より少ないか否かの判断を行う。当該ステップST64の 判断において、候補単語の数が上記N個以上であると判 定したときは、当該予測候補検索処理を終了し、候補単 語の数が上記N個より少ないと判定したときはステップ ST65の処理に進む。

【0099】また、上記ステップST39にて入力ペン25がメニューキーmk上に置かれていないと判断したときのCPU1は、ステップST42として入力ペン25が画面DPYから離れたか否かの判断を行い、離れた40ときには図22のステップST53以降の処理に進み、離れていないと判断しときには前記ステップST31の処理に戻る。

【0107】CPU1は、上記ステップST65の処理 に進むと、前記単語辞書の前方一致検索を行い、次にス テップST66として当該検索により得られた候補単語 を前記候補集合バッファへ格納する。

【0100】さらに、前記ステップST32にて入力ペン25が画面DPYから離れたと判断したときのCPU1は、図22のステップST51の処理として、前記文字ソフトキーskの文字を入力文字として選択し、次のステップST52で当該文字を前記未確定文字列バッファへ格納(すでに文字が格納されているときにはその文字に追加)する。

【0108】その後、CPU1は、ステップST67にて上記検索された候補単語の数が前記所定のN個より少ないか否かの判断を再度行う。当該ステップST67の判断において、候補単語の数が上記N個以上であると判定したときは、当該予測候補検索処理を終了し、候補単語の数が上記N個より少ないと判定したときはステップST68の処理に進む。

【0109】CPU1は、上記ステップST68の処理に進むと、前記単語辞書の曖昧検索を行い、次にステップST69として当該検索により得られた候補単語を前記候補集合バッファへ格納し、これにより当該予測候補検索処理を終了する。

) 【0110】次に、上述した本発明実施例の文章入力手

4文字/分程度までしか改善することができないと予想され、、本発明の手法による64文字/分には及ばない。

24

法を実現するペン入力コンピュータを使用し、文章入力 時間の測定及び携帯時の操作性についてテストを行った。 結果について、従来の既存のペン入力コンピュータによ る文章入力と比較しながら説明する。

【0116】このように、本発明実施例のペン入力コンピュータにおいては、候補単語の動的検索と例文からの予測を利用したペンによる高速文章入力手法が実現されている。

【0111】文章入力速度の比較として、本発明実施例のペン入力コンピュータと既存のペン入力コンピュータとを用いて、例えば128文字からなる例文の入力にかかる時間を計測した結果を図24に示す。なお、この実験結果は、被検者を同一の1人とした場合のものである。

【0117】次に、図25~図31を用いて、本発明実施例のペン入力コンピュータにおける候補検索時の単語 発見率と発見速度について簡単に説明する。

【0112】この図24から、本発明の文章入力手法が適用される実施例のペン入力コンピュータでは、上記128文字からなる例文の入力を120秒(64文字/分)にて行えたことがわかる。これに対して、図24に示す既存のペン入力コンピュータでは、上記128文字の例文を入力するのに要する時間が、最短でも260秒(30文字/分)かかり、最長では320秒(24文字/分)かかっている。このことから、本実施例のペン入力コンピュータによれば、既存のペン入力コンピュータでの文章入力速度を大幅に上回っていることがわかる。【0113】また、既存の例えば手書き入力のペン入力コンピュータでは、例えば走行している電車のように揺れる環境での入力が非常に困難であるのに対し、本発明実施例のペン入力コンピュータの場合は上記走行している電車のように揺れる環境であっても、さらに電車内に

【0118】図25~図29には、文章入力を行う場合のペン操作回数(i:i=0,1,2,3,4,5)と画面上にメニュー表示される候補数と当該メニュー表示されている候補単語の内に所望の単語が存在する確率との関係を示している。図25は英語入力を行う場合を示し、図26は日本語入力を行う場合を示し、図27は英語入力を行い且つ予測候補検索を行わない場合を示し、図28は英語入力を行い且つ予測候補検索を行う場合を示し、図29は英語入力を行い且つ予測候補検索及び前記辞書を用いた適応的な検索を行う場合を示している。これら図25~図29から、少ないペン操作回数で所望の候補単語を見つけることが可能であると共に、予測候補検索等により更に候補単語を見つけることが容易になることがわかる。

【0114】なお、以前の操作から次の操作を予測する手法はPBE(Programing by Example)のインターフェイスへの応用として広く研究が行われており、キーボードによるテキスト入力の予測への適用例もある。また、最近使用したコマンドを次回選択しやすいように提示する研究も行われている。これに対して、本発明の手法では、ペンによる選択操作を予測インターフェイスと結合させることにより、文章の入力を高速化した点が特徴となっている。

て立ったままでも文章を入力したり編集することが容易

である。

【0119】また、図30及び図31には、文章入力を行う場合のペン操作回数(i:i=0,1,2,3,4,5)と画面上にメニュー表示される候補数と当該メニュー表示されている候補単語の内から所望の単語を選択して候補単語の確定がなされるまでの時間との関係を示している。図30は予測候補検索を行わない場合を示し、図31は予測候補検索を行う場合を示している。これら図30及び図31から、少ないペン操作回数で所望の候補単語を選択けることが可能であると共に、予測候補検索等により更に候補単語を選択することが容易であることがわかる。

【0115】また、本発明の手法に類似した予測手法を 手書き文字認識と組み合わせることにより手書き入力の 効率を上げる手法も提案されている。この手法は、文字 の入力と候補の選択を一つの手書き操作で行うことがで きるため、予測システムとの相性が良いのが特徴である が、手書き文字認識を使用するため、前述した手書き文 字認識システムの問題点をそのまま保持しており、本発 明にかかるソフトキーによる検索条件指定に比べるとペン操作が多く必要であり、入力に時間がかかると考えられる。なお、上記予測手法と手書き文字認識とを組み合わせた手法の場合、予測手法を用いない手書き文字認識 手法のみよりも、必要な入力文字を10~40%減らすことが可能であるとされているが、しかしこの場合、最 も効果的であった場合でも30/(1-0.44)=5 【0120】最後に、図32には本発明の他の実施例として、いわゆるマウス或いはハードウェアキーボードを使用して本発明にかかる文章入力手法を実現するためのコンピュータ100の概略構成を示す。なお、この図32において前記図1と同様の構成要素には同一の指示符号を付してそれらの説明は省略する。

【0121】この図32の構成では、前記検索条件の指定と候補単語の選択を行うための手段として、前記図1の感圧式タブレット9とアナログ/ディジタル変換器10の代わりに、マウスまたはキーボード109及びコンピュータ本体とのインターフェイス回路110を設け、前記図1の液晶ドライブ用回路7及び液晶パネル8の代わりに表示ドライブ回路107及び表示デバイス108を用いてる。なお、上記表示デバイス108は、通常の据置型コンピュータに使用されることが多いブラウン管

る。

や、携帯型コンピュータに使用される液晶ディスプレイ 等である。したがって、図24の構成のドライブ回路1 07及び表示デバイス108は、必ずしも図1の液晶ド ライブ用回路7及び液晶パネル8と代える必要はなく、 図1と同じものであっても良い。

【0122】この図32の構成において、上記マウスを 用いた場合は、表示デバイス108上には前記同様のソ フトキーボードや編集コマンド用ソフトキー等が表示さ れると共に上記マウスによって操作される指示マークで あるマウスカーソルが表示され、上記ソフトキーボード 10 の所望のソフトキー等の上にマウスカーソルを移動させ てクリックすることで当該ソフトキーの指定、すなわち 前記検索条件の指定等が行われることになる。候補単語 の選択の場合も同様に、所望の前記メニューキーの上に マウスカーソルを移動させてクリックすることで、所望 の候補単語の選択が実現される。

【0123】また、図32の構成において、ハードウェアキーボードを用いた場合は、当該ハードウェアキーボードが前記ソフトキーボードとして動作することなり、当該ハードウェアキーボード上のキーを操作することで20前記検索条件の指定等が行われることになる。この検索条件の指定がなされると、例えば画面上に前記候補単語の表示用のメニューが表示されることになる。このメニュー内から所望の候補単語を選択する場合には、前記マウスカーソルやハードウェアキーボード上に設けられたカーソル移動用キーを操作して所望の候補単語上にカーソルを移動させ、例えば確定キー(リターンキー)等により候補単語の選択を実行する。なお、ハードウェアキーボード上に前記編集コマンド用ソフトキーと同じハードウェア構成のキーが設けられている場合には、当該キ30ーを用いて編集等を行うことになる。

【0124】この図32の構成においても、前述した図 1の実施例同様の効果を得ることが可能である。

【0125】その他、本発明はいわゆる手書き入力を行うペン入力型コンピュータにも適用できることは言うまでもない。手書き入力を行う場合、当該ペン入力コンピュータには、前配画面上に手書き入力用の領域が設けられることになり、当該領域内に描かれたジェスチャが何れの文字等を示しているかを認識し、この認識結果に応じて前述同様の検索条件の指定や候補単語の選択等を行40うことになる。

[0126]

【発明の効果】以上の説明で明らかなように、本発明においては、例えば文字や単語、文節等の検索と予測とに基づいたペン入力コンピュータに好適な文章入力装置及び方法であり、読みの部分指定及び入力位置直前の文字列からの予測により絞り込んだ候補単語の集合の中から単語を選択するという操作を繰り返すことにより、手書き文字の認識や仮名漢字変換に基づく従来の文字入力手法に比べて倍以上高速に文章を入力することが可能であ50

【図面の簡単な説明】

【図1】本発明実施例のペン入力コンピュータの概略回 路構成を示すブロック回路図である。

26

【図2】本発明実施例のペン入力コンピュータを斜め上方から見た外観斜視図である。

【図3】 本発明実施例において日本語入力時の液晶表示 パネル初期表示画面の一例を示す図である。

【図4】検索条件(読み)として「い」を指定したとき の表示画面の一例(プルダウンメニュー表示例)を示す 図である。

【図5】検索条件(読み)として「い」を指定したとき の表示画面の一例(ポップアップメニュー表示例)を示 す図である。

【図6】検索条件(読み)として「いか」を指定したと きの表示画面の一例(プルダウンメニュー表示例)を示 す図である。

【図7】検索条件(読み)として「いか」を指定したと きのプルダウンメニューの候補単語の内から「以下に」 の候補単語を選択する様子を示す図である。

【図8】検索条件(読み)として「ほん」を指定したときの表示画面の一例(プルダウンメニュー表示例)を示す図である。

【図9】「以下に本手法」の文字列が確定したときに表示されるポップアップメニューの候補単語の内から

「を」の候補単語を選択する様子を示す図である。

【図10】「以下に本手法を」の文字列が確定したとき に表示されるポップアップメニューの候補単語の内から 「用いた」の候補単語を選択する様子を示す図である。

【図11】本発明実施例において英語入力時の液晶表示 パネル初期表示画面の一例を示す図である。

【図12】検索条件(読み)として「F」を指定したときの表示画面の一例(プルダウンメニュー表示例)を示す図である。

【図13】検索条件(読み)として「F」を指定したときのプルダウンメニューの候補単語の内から「first」の候補単語を選択する様子を示す図である。

【図14】検索条件(読み)として「F」を指定したときのポップアップメニューの候補単語の内から「firs t」の候補単語を選択する様子を示す図である。

【図15】本発明実施例のペン入力コンピュータにて用いる単語辞書の形式説明に用いる図である。

【図16】本発明実施例のペン入力コンピュータにて用いる文例辞書の形式説明に用いる図である。

【図17】曖昧検索の説明に用いる状態遷移機械の基本 構成を示す図である。

【図18】曖昧検索の説明に用いる状態遷移機械を拡張 した構成を示す図である。

【図19】本発明実施例のペン入力コンピュータにおける文字入力処理の前半部を示すフローチャートである。

【図20】本発明実施例のペン入力コンピュータにおける文字入力処理の後半部を示すフローチャートである。

【図21】ドラッグ処理の前半部を示すフローチャート である。

【図22】ドラッグ処理の後半部を示すフローチャートである。

【図23】 予測候補検索処理のフローチャートである。

【図24】本発明実施例のペン入力コンピュータと既存のペン入力コンピュータとを用いて128文字の例文を入力したときの入力時間の計測結果の説明に用いる図である。

【図25】英語入力を行う場合のペン操作回数とメニュー表示される候補数とメニュー内に所望の単語が存在する確率との関係を示す図である。

【図26】日本入力を行う場合のペン操作回数とメニュー表示される候補数とメニュー内に所望の単語が存在する確率との関係を示す図である。

【図27】英語入力を行い且つ予測候補検索を行わない 場合のペン操作回数とメニュー表示される候補数とメニュー内に所望の単語が存在する確率との関係を示す図で ある。

【図28】英語入力を行い且つ予測候補検索を行う場合のペン操作回数とメニュー表示される候補数とメニュー内に所望の単語が存在する確率との関係を示す図である。

【図29】英語入力を行い且つ予測候補検索及び辞書を

用いた適応検索を行う場合のペン操作回数とメニュー表示される候補数とメニュー内に所望の単語が存在する確

率との関係を示す図である。 【図30】予測候補検索を行わずに文章入力を行う場合 のペン操作回数とメニュー表示される候補数とメニュー 表示内から所望の候補単語を選択して確定するでの時間 との関係を示す図である。

28

【図31】予測候補検索を行って文章入力を行う場合のペン操作回数とメニュー表示される候補数とメニュー表示内から所望の候補単語を選択して確定するでの時間との関係を示す図である。

【図32】本発明の他の実施例の概略回路構成を示すブロック回路図である。

【符号の説明】

2 ROM 3 RAM, 1 CPU, 5 メモリカード、 6 ASIC. ドスロット、 8 液晶表示パネル、 7 液晶ドライブ用回路、 10 アナログ/ディジタル変 感圧式タブレット、 11電源ボタン、 20 電源ブロック、 換器、 22 ACアダプタ、 23 Ny 1 メイン電池、 30 ペン入力コンピュータ、 クアップ用電池、 110 インターフェ 09マウスまたはキーボード、 イス回路、 DPY 画面、SKBJ, SKBE ソフト PDM プルダウンメニュー、 キーボード、 PUM ポップアップメニュー、 ソフトキー、 メニューキー

【図2】

【図17】

ab ca全交通する状態記事機械

【図3】

【図5】

【図7】

【図9】

【図4】

【図6】

【図8】

[図10]

「用いた」を翻択

【図11】

【図13】

プルダウンメニューの後袖から「fIrst」を選択

【図14】

【図15】

サモノサモ しすてむノシステム

そうちノ操作

ますい/樹井

やーさノユーザ

【図16】

いるノヤってノいる いないノやってノいない ますノ書けノます かり/サノをけ カノ文本ノザ

単語辞書の母式

文例時音の型式

【図24】

入力手法	入力時間
本勢明手法	120巻(64文字/分)
A社携帯PDA ソフトキー+変換	290秒(27文字/分)
日社携帯PDA 手書き文字影響	300秒(26文字/分)
C 社携符P C ソフトキー+ 交換	260岁(30文字/分)
D 社務符P C 手書き文字認識	320秒(24文字/分)

【図18】

以字/別字を許古する状態送存機械

【図30】

【図19】

【図20】

文字入力処理のフロー(後半)

【図25】

【図26】

【図22】

【図31】

ドラッグ処理のフロー(後半)

予測候補後末処理のフロー

【図27】

【図28】

[図29]

【図32】

