Module: Programmation Fonctionnelle

Enseignants de module

Série TD n°3

Exercice 1

1/ Concevoir une machine de Turing " MT_S " qui permet de calculer la fonction "S" Successeur $S = \lambda x. x + 1$

2/ Concevoir une machine de Turing " MT_S2 " qui permet de calculer la fonction "S2" $S2 = \lambda x. x + 2$

Exercice 2

Concevoir une machine de Turing " MT_Z " qui permet de calculer la fonction nulle " Z_1 " définie par : $Z_1 = \lambda x$. 0

Exercice 3

Soit la machine de Turing MT=<S, E, Inst> définie par :

$$S = \{0, 1\}$$

 $E=\{q_0, q_1, q_2, q_3, q_4, q_5, q_f\}$

Inst={ $\mathbf{1}/q_0 \ 1 \ D \ q_1$, $\mathbf{2}/q_1 \ 0 \ G \ q_f$, $\mathbf{3}/q_1 \ 1 \ G \ q_2$, $\mathbf{4}/q_2 \ 1 \ 0 \ q_3$, $\mathbf{5}/q_3 \ 0 \ D \ q_2$, $\mathbf{6}/q_2 \ 0 \ 1 \ q_4$, $\mathbf{7}/\ q_4 \ | \ G \ q_5$, $\mathbf{8}/q_5 \ 0 \ 1 \ q_f$ }

1/ Dérouler pour : $\mathbf{a}/\mathbf{x}=0$, $\mathbf{b}/\mathbf{x}=1$

2/ Quelle est la fonction f calculée par cette machine ?

Exercice 4

Concevoir une machine de Turing MT permettant le calcul de la fonction \overline{Sg} définie par :

$$\overline{Sg} = \lambda x. \begin{cases} 1 \text{ si } x = 0 \\ 0 \text{ sinon} \end{cases}$$

Exercice 5

Concevoir une machine de Turing "MT_pred" qui permet de calculer la fonction "pred" prédécesseur $pred = \lambda x$. $\begin{cases} x-1 & si \ x > 0 \\ si \ x = 0 \end{cases}$

Exercice 6

Concevoir une machine de Turing " MT_plus " qui permet de calculer la fonction plus (addition de deux nombres). $plus = \lambda xy. x + y$