LASERHARPISTS: HARPA ELETRÔNICA COM SONS REPRODUZIDOS POR DISPOSITIVO MÓVEL

DIOGO GUILHERME GARCIA DE FREITAS

JOSÉ GUILHERME AUGUSTINHO

RINALDI SEGECIN

SUMÁRIO

- Introdução
- Sistema embarcado
 - Visão geral
 - Microcontrolador
 - Módulo sensorial
 - Placa principal
- Firmware
 - Visão geral
 - Responsabilidades

- A aplicação Android
 - Modo Free Style
 - Modo Learn to Play
- Resultados
- Conclusão

INTRODUÇÃO

- Surgimento e popularização da música eletrônica
- Idealização da primeira harpa laser
 - Licenciado em 1975
 - Popularizado por Jean Michel Jarre
- Objetivos do projeto
- Diferenciais

VISÃO GERAL

SISTEMA EMBARCADO

Placa principal

Módulo sensorial

Microcontrolador

(Con)

MICROCONTROLADOR

- Microcontrolador Tiva C
 Launchpad Texas
 Instruments
 - Microprocessador ARM Cortex– M4F, 32 bits
 - Disponibiliza 35 pinos para uso

MÓDULO SENSORIAL

- Comparador de tensão LM393
- Sensores de distância HC-SR04
- Fotoresistor (LDR)
- Fita de LED's RGB

SENSOR DE DISTÂNCIA

CIRCUITO DETECTOR DE INTERCEPTAÇÃO

MÓDULO SENSORIAL

PLACA PRINCIPAL

- Comunicador Bluetooth JY-MCU
- 3 Cl's registradores de deslocamento (74594)
- 4 Cl's atuando como drivers de corrente (ULN2003)
- 1 CI atuando como "level shifter" (CD4050)

PLACA PRINCIPAL – ESQUEMÁTICO

FIRMWARE

- Desenvolvido através da IDE Energia
 - Projeto open-source, baseada na plataforma eletrônica Arduino e no framework Wiring
- Objetivo -> habilitar o microcontrolador para comunicar-se com o dispositivo móvel utilizado pelo usuário
- Principal habilidade -> gerar e tratar interrupções

FIRMWARE - RESPONSABILIDADES

- A detecção de interceptação nos feixes de lasers
- Determinação da altura de interceptação
- Feedback visual com as fitas LED's
- Envio e recebimento de informações ao comunicador Bluetooth

A APLICAÇÃO ANDROID

- Construída com auxílio do banco de dados SQLite
- Possui serviço Bluetooth sendo executado no background
- Reproduz arquivos de áudio .MIDI e .mp3

A APLICAÇÃO ANDROID

- Configura a harpa para dois modos de operação distintos:
 - Free Style
 - Learn To Play

MODO FREE STYLE

- Permite ao usuário tocar a harpa de maneira livre
- Capaz de gravar as canções produzidas e reproduzí-las posteriormente

MODO FREE STYLE

- Possibilita ao usuário alternar entre 6 módulos distintos:
 - Violão
 - Piano elétrico
 - Synth Pluck
 - Trombone
 - Violino
 - Percussão

MODO FREE STYLE

- Todos os módulos, com exceção do Percussão, possuem 2 oitavas musicais.
- Exemplo para o módulo Violino:

	Laser 1	Laser 2	Laser 3	Laser 4	Laser 5	Laser 6	Laser 7	Laser 8
Altura 3	C 5	C#5	D5	D#5	E5	F5	F#5	G5
Altura 2	G#5	A 5	A#5	B5	C6	C#6	D6	D#6
Altura 1	E6	F6	F#6	G6	G#6	A6	A#6	В6

MODO LEARN TO PLAY

- Ensina o usuário a tocar músicas previamente salvas na harpa
- Sistema de pontuação

PROTOCOLO DE COMUNICAÇÃO

- Cordas mapeadas de A a H
- Caractere indicando início ou fim da interceptação ("i" e "o")
- Distância da interceptação (0-67 cm)
- Exemplo
 - Ai10
 - Gi54
 - Bo0

RESULTADOS

VISTA FRONTAL

MÓDULOS SENSORIAIS

DIFICULDADES ENCONTRADAS

- Visualização dos feixes de lasers
- Aprender músicas no modo Learn to Play
- Construção de um circuito detector de interceptações adequado
- Garantia de integridade de todas as conexões (> 100)
- Construção das placas de circuito impresso

DIFICULDADES ENCONTRADAS

- Construir um aplicativo com performance aceitável
- Condições de realização de testes
- Interfaceamento com 16 sensores
 - Imprecisão das medidas (superfícies não planas e luz ambiente)
 - Performance e escalabilidade do firmware

CUSTOS

Descrição	Valor		
Microcontrolador Tiva C Launchpad	R\$ 33,00		
Sensores e componentes	R\$ 357,00		
Cabos, conectores, sockets e placas de circuito impresso	R\$ 87,50		
Estrutura em madeira MDF	R\$ 35,00		
Total:	R\$ 512,50		

CONCLUSÃO

- Construção de um instrumento eletrônico ainda não muito difundido
- Resultados satisfatórios
- Trabalhos futuros
 - Aparência e usabilidade da aplicação e da harpa
 - Construção de uma placa de circuito impresso "Plug-and-Play"
 - Maior variedade de módulos para o modo Free Style
 - Maior quantidade de músicas disponíveis no modo Learn to Play