Teoria del Senyal. Pràctica 2 de laboratori

Eric Guisado, Raúl Alonso

Divendres 30 de setembre de 2016

Índex

1 Estudi previ 1

1 Estudi previ

Qüestió 1. Si el senyal d'entrada x[n] té longitud L_x , indicar quina seria la longitud L_y del senyal resultat del filtratge y[n] en funció de L i L_x . Indicar quantes multiplicacions s'han de fer per poder calcular les L_y mostres del senyal de sortida mitjançant l'aplicació directa de l'equació de convolució suposant que $L_x > L$. Expressar aquest número de multiplicacions en funció de L i L_x . Calcular també el número de multiplicacions per mostra d'entrada (és a dir, el quocient entre el número total de multiplicacions necessàries i el número de mostres d'entrada L_x).

El senyal de sortida y[n] es calcula com

$$y[n] = \{x * h\}[n] = \sum_{j=0}^{L-1} h[j]x[n-j]$$

Suposem que el senyal x[n] comença a n=k i acaba a $n=k+L_x-1$. Els termes de la sortida y[n] seran aquells per als quals hi ha algun $j\in\{0,1,...,L-1\}$ tal que $n-j\in\{k,k+1,...,k+L_x-1\}$, és a dir, $k\leqslant n-j\leqslant k+L_x-1\iff k+j\leqslant n\leqslant k+L_x-1+j$. Per tant, els termes de la sortida seran aquells amb $k\leqslant n\le k+L_x+L-2$. Així doncs, la sortida té longitud $L+L_x-1$.

Observem que podem escriure, per a $k \leq n \leq k + L_x + L - 2$:

$$y[n] = \{x * h\}[n] = \sum_{j=\max\{0, n-k-L_x+1\}}^{\min\{L-1, n-k\}} h[j]x[n-j] =$$

$$\begin{cases} \sum_{j=0}^{n-k} h[j]x[n-j] & \text{si } k \leq n \leq k+L-1 \\ \sum_{j=0}^{L-1} h[j]x[n-j] & \text{si } k+L-1 < n < k+L_x-1 \\ \sum_{j=0}^{L-1} h[j]x[n-j] & \text{si } k+L_x-1 \leq n \leq k+L+L_x-2 \end{cases}$$

Així, es dedueix que el nombre de multiplicacions que cal fer en aplicar directament l'equació de convolució és:

$$2\sum_{i=1}^{L} i + L(L_x - L - 1) = L(L+1) + L(L_x - L - 1) = LL_x$$

El nombre de multiplicacions per mostra d'entrada és $\frac{LL_x}{L_x} = L$.

Qüestió 2. Respon a les següents preguntes:

- a) Relacionar el número de blocs P (i = 0, ..., P 1) amb L_x i M.
- b) Quin és el valor màxim de M (donat el número de punts totals N de cada bloc $x_i[n]$) per tal que la convolució circular en (1) coincideixi amb la convolució lineal en (2)? Expressar aquest valor màxim de M en funció de N i L.

Cada trama ve donada per

$$x_i[n] = \begin{cases} x[n+iM] & i = 0, \dots, M-1 \\ 0 & i = M, \dots, N-1 \end{cases}$$

i cadascuna d'aquestes es correspon amb el segment de x que va des de x[iM] fins a x[i(M+1)-1], afegint-hi zeros al darrere fins que aquesta trama tingui mida N. Si volem que aquestes trames recorrin tot el senyal x, i que no n'hi hagi cap més que les necessàries, cal que el darrer i que agafem contingui el darrer element de x, és a dir, per a i=P-1 hi ha d'haver algun n, amb $0 \le n \le M-1$, tal que $L_x-1=(P-1)M+n$. Cal, doncs, $(P-1)M\leqslant L_x-1\leqslant PM-1$. Per tant, necessitem

$$\frac{L_x}{M} \leqslant P \leqslant \frac{L_x + M - 1}{M}.$$

Així doncs, P ha de ser $P = \left\lceil \frac{L_x}{M} \right\rceil$.

Per tal que la convolució circular coincideixi amb la convolució lineal s'ha de verificar, per a $n \in \{0, 1, \dots, N-1\}$:

$$\sum_{j=0}^{L-1} h[j]x_i[n-j] = \sum_{j=0}^{L-1} h[j] \sum_{r=-\infty}^{\infty} x_i[n-j-rN]$$

Per garantir-ho, imposem que, per a $r \neq 0$, $n \in \{0, 1, \dots, N-1\}$, $j \in \{0, 1, \dots, L-1\}$, $n-j-rN \notin \{0, 1, \dots, M-1\}$.

Per a r > 0, veiem que sempre es té n - j - rN < 0. En efecte, el màxim valor d'aquesta expressió es dóna amb r = 1, j = 0, n = N - 1, i és -1.

Per a r>0, veiem que sempre es té $n-j-rN\geqslant M$. En aquest cas, el mínim valor d'aquesta expressió es dóna amb $r=-1,\ j=L-1$ i n=0. S'ha de satisfer, doncs, $N-L+1\geqslant M$. Per tant, el valor màxim de M és N-L+1.

(Altrament, la convolució circular és la suma dels senyals que s'obtenen aplicant un retard de rN, amb $r \in \mathbb{Z}$. Per evitar encavallaments, la longitud de la convolució lineal ha de ser menor que N. Per tant, $L + M - 1 \leq N$.)

Qüestió 3. Calcular el número de multiplicacions reals associat a aquest mètode per mostra d'entrada. Per això, considerar que es fa ús de l'algorisme FFT suposant que el número de punts de la DFT és una potència de 2, és a dir, $N=2^{\nu}$ (en aquest cas, el número de multiplicacions complexes tant de la DFT com de la IDFT és de $N\log_2 N$ multiplicacions complexes). Considerar també que el valor de M és el valor màxim calculat a la qüestió 2.2. Per a calcular el número de multiplicacions per mostra d'entrada s'ha de calcular quantes multiplicacions són necessàries per a processar cada bloc i dividir aquest número per M, és a dir, pel número de mostres d'entrada que es processen a cada bloc. Expressar el resultat en funció de L i N.

Per trobar la DFT d'un bloc i, després d'obtenir el producte $X_i[k]H[k]$, trobar-ne la transformada inversa calen $2N\log_2 N$ multiplicacions complexes. El producte $X_i[k]H[k]$ requereix N multiplicacions complexes. El nombre d'operacions per mostra d'entrada és, doncs:

$$\frac{2N\log_2 N + N}{M} = \frac{2N\log_2 N + N}{N - L + 1} = \frac{2\log_2 N + 1}{1 - \frac{L - 1}{N}}$$

Qüestió 4. Quina és l'expressió matemàtica corresponent a la DFT de N punts d'un senyal sinusoïdal de pulsació discreta $\Omega_0 = 2\pi \frac{k_0}{N}$ (essent k_0 un número enter)?

En primer lloc, observem que podem suposar $k_0 \in \{0, 1, \dots, N-1\}$, ja que, si $k_0 = qN + r$, amb $q \in \mathbb{Z}$ i $r \in \{0, 1, \dots, N-1\}$, llavors:

$$\sin(2\pi \frac{k_0}{N}n) = \sin(2\pi q n + 2\pi \frac{r}{N}n) = \sin(2\pi \frac{r}{N}n) \quad \forall n \in \mathbb{Z}.$$

La DFT de N punts del senyal $x[n] = \sin(2\pi \frac{k_0}{N}n), n = 0, 1, \dots, N-1$ ve donada per:

$$X[k] = \sum_{n=0}^{N-1} \sin(2\pi \frac{k_0}{N}n) e^{-j2\pi \frac{k}{N}n} = \sum_{n=0}^{N-1} \left(\frac{e^{j2\pi \frac{k_0}{N}n} - e^{-j2\pi \frac{k_0}{N}n}}{2j}\right) e^{-j2\pi \frac{k}{N}n} =$$

$$= \frac{1}{2j} \left(\sum_{n=0}^{N-1} e^{-j2\pi \frac{(k-k_0)}{N}n} + \sum_{n=0}^{N-1} e^{-j2\pi \frac{(k+k_0)}{N}n}\right) =$$

$$\begin{cases} -jN & \text{si } k = k_0 = N - k_0 \text{ (només pot passar si } k_0 = N/2) \\ -j\frac{N}{2} & \text{si } k = k_0 \neq N - k_0 \\ -j\frac{N}{2} & \text{si } k = N - k_0 \neq k_0 \\ 0 & \text{altrament} \end{cases}$$

En efecte, per a $k \in \{0, 1, \dots, N-1\}, k \neq k_0, e^{-j2\pi \frac{(k-k_0)}{N}} \neq 1$, i per tant,

$$\sum_{n=0}^{N-1} e^{-j2\pi \frac{(k-k_0)}{N}n} = \frac{1 - e^{-j2\pi \frac{(k-k_0)}{N}N}}{1 - e^{-j2\pi \frac{(k-k_0)}{N}}} = 0,$$

i, anàlogament, si $k \in \{0, 1, \dots, N-1\}, k \neq N-k_0$,

$$\sum_{n=0}^{N-1} e^{-j2\pi \frac{(k+k_0)}{N}n} = \frac{1 - e^{-j2\pi \frac{(k+k_0)}{N}N}}{1 - e^{-j2\pi \frac{(k+k_0)}{N}}} = 0$$

Qüestió 5.

Qüestió 6. El resultat d'aplicar zero-padding és que, com que el nombre de mostres de la DFT és més gran, tenim més informació sobre la