Rusydi H. Makarim, Marc Stevens

Introductio

M4GB Algorithm

Performance Comparison

Solving MG Challenges

M4GB: An Efficient Gröbner Basis Algorithm

Rusydi H. Makarim^{1,2} Marc Stevens²

¹Mathematics Institute, University Leiden

²Cryptology Group, Centrum Wiskunde en Informatica (CWI)

ALGANT-DOC Meeting, 15th May 2017

Rusydi H. Makarim, Marc Stevens

I manus altreation

IIILIOUUCLIO

Algorithm

Performance Comparison

Solving MC Challenges 1 Introduction

M4GB Algorithm

3 Performance Comparison

Solving MQ Challenges

Makarim.

Table of Contents

Marc Stevens
Introduction

M4GB Algorithm

Performance Comparison

Solving MC Challenges

- 1 Introduction
- 2 M4GB Algorithm
- 3 Performance Comparison
- Solving MQ Challenges

Rusydi H. Makarim, Marc Stevens

Introduction

M4GB Algorithm

Performance Comparison

Solving MQ Challenges

<u>Problem</u>

 $\mathbb{F}[x_1,\ldots,x_n]$ - a polynomial ring over a field \mathbb{F} together with an admissible monomial ordering <.

Rusydi H. Makarim, Marc Stevens

Introduction

M4GB Algorithm

Performance Comparison

Solving MC Challenges

Problem

 $\mathbb{F}[x_1,\ldots,x_n]$ - a polynomial ring over a field \mathbb{F} together with an admissible monomial ordering <.

Problem (MQ-problem)

Let $n, m \in \mathbb{Z}_{>0}$. Given $f_1, \ldots, f_m \in \mathbb{F}[x_1, \ldots, x_n]$ with f_i be quadratic polynomials, find a $(a_1, \ldots, a_n) \in \mathbb{F}^n$ such that $f_i(a_1, \ldots, a_n) = 0$ for all $i = 1, \ldots, m$.

Rusydi H. Makarim, Marc Stevens

Introduction

M4GB Algorithm

Performance Comparison

Solving MQ Challenges

Notations

$$f = -15x^2 + 8xy - 13z^2 - 4x + 11z \in \mathbb{F}_{31}[x, y, z]$$

Rusydi H. Makarim, Marc Stevens

Introduction

M4GB Algorithm

Comparison

Solving MQ Challenges

Notations

Example

$$f = -15x^2 + 8xy - 13z^2 - 4x + 11z \in \mathbb{F}_{31}[x, y, z]$$

• $LM(f) = x^2$ (the leading monomial of f)

Rusydi H. Makarim, Marc Stevens

Introduction

M4GB Algorithm

Performance Comparison

Solving MQ Challenges

Notations

$$f = -15x^{2} + 8xy - 13z^{2} - 4x + 11z \in \mathbb{F}_{31}[x, y, z]$$

- LM(f) = x^2 (the leading monomial of f)
- LC(f) = -15 (the leading coefficient of f)

Rusydi H. Makarim, Marc Stevens

Introduction

M4GB Algorithm

Performance Comparison

Solving MQ Challenges

Notations

$$f = -15x^2 + 8xy - 13z^2 - 4x + 11z \in \mathbb{F}_{31}[x, y, z]$$

- LM(f) = x^2 (the leading monomial of f)
- LC(f) = -15 (the leading coefficient of f)
- LT(f) = $-15x^2$ (the leading term of f)

Rusydi H. Makarim, Marc Stevens

Introduction

M4GB Algorithm

Performance Comparison

Solving MQ Challenges

Notations

$$f = -15x^2 + 8xy - 13z^2 - 4x + 11z \in \mathbb{F}_{31}[x, y, z]$$

- LM(f) = x^2 (the leading monomial of f)
- LC(f) = -15 (the leading coefficient of f)
- LT(f) = $-15x^2$ (the leading term of f)
- Tail $(f) = 8xy 13z^2 4x + 11z$ (the tail of f)

Rusydi H. Makarim, Marc Stevens

Introduction

M4GB Algorithm

Performance Comparison

Solving MQ Challenges

Notations

$$f = -15x^2 + 8xy - 13z^2 - 4x + 11z \in \mathbb{F}_{31}[x, y, z]$$

- $LM(f) = x^2$ (the leading monomial of f)
- LC(f) = -15 (the leading coefficient of f)
- LT(f) = $-15x^2$ (the leading term of f)
- Tail $(f) = 8xy 13z^2 4x + 11z$ (the tail of f)

Rusydi H. Makarim, Marc Stevens

Introduction

M4GB Algorithm

Performance Comparison

Solving MC Challenges

Polynomial Reduction

Theorem

Let $G = (g_1, \ldots, g_t)$ be a nonempty ordered finite subset of $\mathbb{F}[x_1, \ldots, x_n]$. Then every polynomial $f \in \mathbb{F}[x_1, \ldots, x_n]$ can be written as

$$f = q_1g_1 + \ldots + q_tg_t + r,$$

where $q_1, \ldots, q_t, r \in \mathbb{F}[x_1, \ldots, x_n]$ and either r = 0 or none of terms of r is divisible by any of $\mathsf{LT}(g_1), \ldots, \mathsf{LT}(g_t)$.

Rusydi H. Makarim, Marc Stevens

Introduction

M4GB Algorithm

Performance Comparison

Solving MC Challenges

Polynomial Reduction

Theorem

Let $G = (g_1, \ldots, g_t)$ be a nonempty ordered finite subset of $\mathbb{F}[x_1, \ldots, x_n]$. Then every polynomial $f \in \mathbb{F}[x_1, \ldots, x_n]$ can be written as

$$f = q_1g_1 + \ldots + q_tg_t + r,$$

where $q_1, \ldots, q_t, r \in \mathbb{F}[x_1, \ldots, x_n]$ and either r = 0 or none of terms of r is divisible by any of $\mathsf{LT}(g_1), \ldots, \mathsf{LT}(g_t)$.

$$r \leftarrow \text{FullReduce}(f, G)$$

Rusydi H. Makarim, Marc Stevens

Introduction

M4GB Algorithm

Performance Comparison

Solving MQ Challenges

Gröbner basis

Definition

Let $I \neq \{0\}$ be an ideal of $\mathbb{F}[x_1, \dots, x_n]$. A finite subset $G \subseteq I$ that generates I is a Gröbner basis of I if for all $f \in I$, there exists $g \in G$ such that $\mathsf{LT}(g) \mid \mathsf{LT}(f)$.

Rusydi H. Makarim, Marc Stevens

Introduction

M4GB Algorithm

Performance Comparison

Solving MG Challenges

S-polynomial

Definition

Let $f, g \in \mathbb{F}[x_1, \dots, x_n]$ be nonzero polynomials and let $x^{\gamma} = \mathsf{LCM}(\mathsf{LM}(f), \mathsf{LM}(g))$. The S-polynomial of f and g is defined as

$$\mathsf{Spoly}(f,g) = \frac{x^{\gamma}}{\mathsf{LT}(f)} \cdot f - \frac{x^{\gamma}}{\mathsf{LT}(g)} \cdot g.$$

Rusydi H. Makarim, Marc Stevens

Introduction

M4GB

Algorithm

Comparison

Solving MQ Challenges

Buchberger's Algorithm

Input: A finite ordered subset $F \subseteq \mathbb{F}[x_1, \dots, x_n]$ **Result:** A Gröbner basis G such that $\langle G \rangle = \langle F \rangle$

- 1 $P \leftarrow \{\{p,q\} : \forall p,q \in F \text{ and } p \neq q\}$
- 2 $G \leftarrow F$
- 3 while $P \neq \{\}$ do

4
$$\{p,q\} \leftarrow \text{SELECT}(P)$$

- $P \leftarrow P \setminus \{\{p,q\}\}$
- 6 $r \leftarrow \text{FullReduce}(\mathsf{Spoly}(p,q),G)$
 - if $r \neq 0$ then

10 return G

7

Rusydi H. Makarim, Marc Stevens

Introductio

M4GB Algorithm

Performance Comparison

Solving MC Challenges

Table of Contents

- 1 Introduction
- 2 M4GB Algorithm
- 3 Performance Comparison
- Solving MQ Challenges

Rusydi H. Makarim, Marc Stevens

ntroduction

M4GB Algorithm

Performance Comparison

Solving MQ Challenges

Observations

Rusydi H. Makarim, Marc Stevens

ntroductio

M4GB Algorithm

Performance Comparison

Solving MQ Challenges

Example

Rusydi H. Makarim, Marc Stevens

M4GB

Algorithm

Performance Comparison

Solving MQ Challenges

Example

$$f = x_1^2 x_2^3 + x_1 x_2^3 x_4 + x_1 x_3^3 + x_1^3 x_4 + x_2 x_3^2 + x_4^2$$

Rusydi H. Makarim, Marc Stevens

M4GB Algorithm

Performance

Solving MO

Example

$$\begin{split} f &= x_1^2 x_2^3 + x_1 x_2^3 x_4 + x_1 x_3^3 + x_1^3 x_4 + x_2 x_3^2 + x_4^2 &\quad G &= \{g_1, g_2, g_3 \quad \} \\ &\quad g_1 &= x_1^2 x_2^3 + x_1 x_3^3 + x_4^2 \\ &\quad g_2 &= x_2^3 x_4 + x_2 x_3 + x_3 + 1 \\ &\quad g_3 &= x_1 x_2 x_3 + x_1 x_3 \end{split}$$

Rusydi H. Makarim, Marc Stevens

Industria

M4GB

Algorithm

Comparison

Solving MQ Challenges

Example

$$f = x_1^2 x_2^3 + x_1 x_2^3 x_4 + x_1 x_3^3 + x_1^3 x_4 + x_2 x_3^2 + x_4^2 \qquad G = \{g_1, g_2, g_3 \}$$

$$g_1 = x_1^2 x_2^3 + x_1 x_3^3 + x_4^2$$

$$g_2 = x_2^3 x_4 + x_2 x_3 + x_3 + 1$$

$$g_3 = x_1 x_2 x_3 + x_1 x_3$$

Rusydi H. Makarim, Marc Stevens

Introductio

M4GB Algorithm

Performance Comparison

Solving MQ Challenges

Example

$$f = x_1^2 x_2^3 + x_1 x_2^3 x_4 + x_1 x_3^3 + x_1^3 x_4 + x_2 x_3^2 + x_4^2 \qquad G = \{g_1, g_2, g_3 \}$$

$$f = f - g_1 = x_1 x_2^3 x_4 + x_1^3 x_4 + x_2 x_3^2 \qquad g_1 = x_1^2 x_2^3 + x_1 x_3^3 + x_4^2$$

$$g_2 = x_2^3 x_4 + x_2 x_3 + x_3 + 1$$

$$g_3 = x_1 x_2 x_3 + x_1 x_3$$

Rusydi H. Makarim, Marc Stevens

M4GB

Algorithm

Comparison

Solving MQ Challenges

Example

$$f = x_1^2 x_2^3 + x_1 x_2^3 x_4 + x_1 x_3^3 + x_1^3 x_4 + x_2 x_3^2 + x_4^2 \qquad G = \{g_1, g_2, g_3 \}$$

$$f = f - g_1 = x_1 x_2^3 x_4 + x_1^3 x_4 + x_2 x_3^2 \qquad g_1 = x_1^2 x_2^3 + x_1 x_3^3 + x_4^2$$

$$g_2 = x_2^3 x_4 + x_2 x_3 + x_3 + 1$$

$$g_3 = x_1 x_2 x_3 + x_1 x_3$$

Rusydi H. Makarim, Marc Stevens

M4GB

Algorithm

Performance Comparison

Solving MQ Challenges

Example

$$f = x_1^2 x_2^3 + x_1 x_2^3 x_4 + x_1 x_3^3 + x_1^3 x_4 + x_2 x_3^2 + x_4^2 \qquad G = \{g_1, g_2, g_3 \}$$

$$f = f - g_1 = x_1 x_2^3 x_4 + x_1^3 x_4 + x_2 x_3^2 \qquad g_1 = x_1^2 x_2^3 + x_1 x_3^3 + x_4^2$$

$$g_2 = x_2^3 x_4 + x_2 x_3 + x_3 + 1$$

$$g_3 = x_1 x_2 x_3 + x_1 x_3$$

$$x_1g_2 = x_1x_2^3x_4 + x_1x_2x_3 + x_1x_3 + x_1$$

Rusydi H. Makarim, Marc Stevens

Lanca de la contra

M4GB

Algorithm

Performance Comparison

Solving MQ Challenges

Example

 $\mathbb{F}_2[x_1, x_2, x_3, x_4]$ with degrevlex monomial ordering

$$f = x_1^2 x_2^3 + x_1 x_2^3 x_4 + x_1 x_3^3 + x_1^3 x_4 + x_2 x_3^2 + x_4^2 \qquad G = \{g_1, g_2, g_3 \}$$

$$f = f - g_1 = x_1 x_2^3 x_4 + x_1^3 x_4 + x_2 x_3^2 \qquad g_1 = x_1^2 x_2^3 + x_1 x_3^3 + x_4^2$$

$$g_2 = x_2^3 x_4 + x_2 x_3 + x_3 + 1$$

$$g_3 = x_1 x_2 x_3 + x_1 x_3$$

 $x_1g_2 = x_1x_2^3x_4 + x_1x_2x_3 + x_1x_3 + x_1$

Rusydi H. Makarim, Marc Stevens

Introductio

M4GB Algorithm

Performance Comparison

Solving MQ Challenges

Example

 $\mathbb{F}_2[x_1, x_2, x_3, x_4]$ with degrevlex monomial ordering

$$f = x_1^2 x_2^3 + x_1 x_2^3 x_4 + x_1 x_3^3 + x_1^3 x_4 + x_2 x_3^2 + x_4^2 \qquad G = \{g_1, g_2, g_3 \}$$

$$f = f - g_1 = x_1 x_2^3 x_4 + x_1^3 x_4 + x_2 x_3^2 \qquad g_1 = x_1^2 x_2^3 + x_1 x_3^3 + x_4^2$$

$$g_2 = x_2^3 x_4 + x_2 x_3 + x_3 + 1$$

$$g_3 = x_1 x_2 x_3 + x_1 x_3$$

 $x_1g_2 = x_1x_2^3x_4 + \underbrace{x_1x_2x_3}_{} + x_1x_3 + x_1$

Rusydi H. Makarim, Marc Stevens

Introductio

M4GB Algorithm

Performance Comparison

Solving MQ Challenges

Example

$$f = x_1^2 x_2^3 + x_1 x_2^3 x_4 + x_1 x_3^3 + x_1^3 x_4 + x_2 x_3^2 + x_4^2 \qquad G = \{g_1, g_2, g_3, g_4\}$$

$$f = f - g_1 = x_1 x_2^3 x_4 + x_1^3 x_4 + x_2 x_3^2 \qquad g_1 = x_1^2 x_2^3 + x_1 x_3^3 + x_4^2$$

$$g_2 = x_2^3 x_4 + x_2 x_3 + x_3 + 1$$

$$g_3 = x_1 x_2 x_3 + x_1 x_3$$

$$g_4 = x_1 g_2 - g_3 = x_1 x_2^3 x_4 + 1$$

$$x_1 g_2 = x_1 x_3^3 x_4 + x_1 x_2 x_3 + x_1 x_3 + x_1$$

Rusydi H. Makarim, Marc Stevens

Introductio

M4GB Algorithm

Performance Comparison

Solving MQ Challenges

Example

$$f = x_1^2 x_2^3 + x_1 x_2^3 x_4 + x_1 x_3^3 + x_1^3 x_4 + x_2 x_3^2 + x_4^2 \qquad G = \{g_1, g_2, g_3, g_4\}$$

$$f = f - g_1 = x_1 x_2^3 x_4 + x_1^3 x_4 + x_2 x_3^2 \qquad g_1 = x_1^2 x_2^3 + x_1 x_3^3 + x_4^2$$

$$g_2 = x_2^3 x_4 + x_2 x_3 + x_3 + 1$$

$$g_3 = x_1 x_2 x_3 + x_1 x_3$$

$$g_4 = x_1 g_2 - g_3 = x_1 x_2^3 x_4 + x_1 x_2 x_3 + x_1 x_3 + x_1$$

$$x_1 g_2 = x_1 x_3^3 x_4 + x_1 x_2 x_3 + x_1 x_3 + x_1$$

Rusydi H. Makarim, Marc Stevens

Introductio

M4GB Algorithm

Performance Comparison

Solving MQ Challenges

Example

$$f = x_1^2 x_2^3 + x_1 x_2^3 x_4 + x_1 x_3^3 + x_1^3 x_4 + x_2 x_3^2 + x_4^2 \qquad G = \{g_1, g_2, g_3, g_4\}$$

$$f = f - g_1 = x_1 x_2^3 x_4 + x_1^3 x_4 + x_2 x_3^2 \qquad g_1 = x_1^2 x_2^3 + x_1 x_3^3 + x_4^2$$

$$f = f - g_4 = x_1^3 x_4 + x_2 x_3^2 + 1 \qquad g_2 = x_2^3 x_4 + x_2 x_3 + x_3 + 1$$

$$g_3 = x_1 x_2 x_3 + x_1 x_3$$

$$g_4 = x_1 g_2 - g_3 = x_1 x_2^3 x_4 + 1$$

$$x_1 g_2 = x_1 x_2^3 x_4 + x_1 x_2 x_3 + x_1 x_3 + x_1 x_2 x_3 + x_1 x_3 + x_1 x_3$$

Rusydi H. Makarim, Marc Stevens

Laboration of the

M4GB

Algorithm

Comparison

Solving MQ

Example

$$f = x_1^2 x_2^3 + x_1 x_2^3 x_4 + x_1 x_3^3 + x_1^3 x_4 + x_2 x_3^2 + x_4^2 \qquad G = \{g_1, g_2, g_3, g_4\}$$

$$f = f - g_1 = x_1 x_2^3 x_4 + x_1^3 x_4 + x_2 x_3^2 \qquad g_1 = x_1^2 x_2^3 + x_1 x_3^3 + x_4^2$$

$$f = f - g_4 = x_1^3 x_4 + x_2 x_3^2 + 1 \qquad g_2 = x_2^3 x_4 + x_2 x_3 + x_3 + 1$$

$$g_3 = x_1 x_2 x_3 + x_1 x_3$$

$$g_4 = x_1 g_2 - g_3 = x_1 x_2^3 x_4 + 1$$

$$x_1 g_2 = x_1 x_2^3 x_4 + x_1 x_2 x_3 + x_1 x_3 + x_1 x_3 + x_1 x_4 + x_1 x_2 x_3 + x_1 x_3 + x_1 x_4 + x_1 x_2 x_3 + x_1 x_3 + x_1 x_4 + x_1 x_2 x_3 + x_1 x_3 + x_1 x_4 + x_1 x_2 x_3 + x_1 x_3 + x_1 x_4 + x_1 x_2 x_3 + x_1 x_3 + x_1 x_4 + x_1 x_2 x_3 + x_1 x_3 + x_1 x_4 + x_1 x_2 x_3 + x_1 x_3 + x_1 x_4 + x_1 x_2 x_3 + x_1 x_3 + x_1 x_4 + x_1 x_2 x_3 + x_1 x_3 + x_1 x_4 + x_1 x_2 x_3 + x_1 x_3 + x_1 x_4 + x_1 x_2 x_3 + x_1 x_3 + x_1 x_4 + x_1 x_2 x_3 + x_1 x_3 + x_1 x_4 + x_1 x_2 x_3 + x_1 x_3 + x_1 x_4 + x_1 x_2 x_3 + x_1 x_3 + x_1 x_4 + x_1 x_2 x_3 + x_1 x_3 + x_1 x_4 + x_1 x_2 x_3 + x_1 x_3 + x_1 x_4 + x_1 x_2 x_3 + x_1 x_3 + x_1 x_3 + x_1 x_4 + x_1 x_2 x_3 + x_1 x_3 + x_1 x_2 x_3 + x_1 x_3 + x_1 x_3 + x_1 x_3 + x_1 x_1 x_2 + x_1 x_2 x_3 + x_1 x_3 + x_1 x_2 x_3 + x_1 x_3 + x_1 x_2 x_3 + x_1 x_3 + x_1 x_3 + x_1 x_2 x_3 + x_1 x_3 + x_1 x_3 + x_1 x_3 + x_1 x_2 x_3 + x_1 x_2 x_3 + x_1 x_3 +$$

$$r = x_1^3 x_4 + x_2 x_3^2 + 1$$

Makarim, Marc Stevens

M4GB

Algorithm

M4GB Reduction

MulFullReduce(G, u, f)

```
1 r \leftarrow 0

2 forall t \in \operatorname{Term}(f) do

3 t' \leftarrow u \cdot t

4 if \exists g \in G : \operatorname{LT}(g) \mid t' then

5 (G,g) \leftarrow

GETREDUCTOR(G,t')

7 else

8 r \leftarrow r - (t'/\operatorname{LT}(g)) \cdot \operatorname{Tail}(g)

9 return (G,r)
```

Makarim. Marc Stevens

M4GB

Algorithm

M4GB Reduction

MULFULLREDUCE(G, u, f)

```
1 r \leftarrow 0
   forall t \in Term(f) do
          t' \leftarrow u \cdot t
          if \exists g \in G : \mathsf{LT}(g) \mid t' then
                 (G,g) \leftarrow
                   GETREDUCTOR(G, t')
                 r \leftarrow r - (t'/\mathsf{LT}(g)) \cdot \mathsf{Tail}(g)
           else
7
8
9 return (G, r)
```

GETREDUCTOR(G, t)

```
1 if \exists g \in G : LM(g) = LM(t) then
return (G,g)
3 h \leftarrow \text{SELECTREDUCTOR}(G, t)
4 (G,h) \leftarrow
    MulFullReduce(G, t/LT(h), Tail(h))
5 g \leftarrow t + h
6 return (G \cup \{g\}, g)
```

Rusydi H. Makarim, Marc Stevens

ntroduction

M4GB Algorithm

Performance Comparison

Solving MC Challenges

M4GB (Simplified)

Rusydi H. Makarim, Marc Stevens

ntroductio

M4GB Algorithn

Performance Comparison

Solving MC Challenges

Table of Contents

- 1 Introduction
- 2 M4GB Algorithm
- Performance Comparison
- Solving MQ Challenges

Rusydi H. Makarim, Marc Steven

ntroduction

M4GB Algorithm

Performance Comparison

Solving MQ Challenges • Implemented using C++11

Rusydi H. Makarim, Marc Stevens

Industrial

M4GB Algorithm

Performance Comparison

Solving MQ

- Implemented using C++11
- Comparison with existing implementations
 - 1 FGb C Interface Implementation by Jean Charles Faugere¹
 - 2 Magma v2.20-6
 - 3 OpenF4 v1.0.1 Open source implementation by Coladon, Vitse and Joux².

¹Available at http://www-polsys.lip6.fr/~jcf/FGb/C/index.html

²Available at https://github.com/nauotit/openf4

Rusydi H. Makarim, Marc Stevens

Introduction

M4GB Algorithm

Performance Comparison

Solving MQ Challenges • Implemented using C++11

- Comparison with existing implementations
 - 1 FGb C Interface Implementation by Jean Charles Faugere¹
 - 2 Magma v2.20-6
 - 3 OpenF4 v1.0.1 Open source implementation by Coladon, Vitse and Joux².
- Test cases
 - 1 Dense polynomials with coefficients in \mathbb{F}_{31}
 - **2** m = 2n and m = n + 1.

¹Available at http://www-polsys.lip6.fr/~jcf/FGb/C/index.html

²Available at https://github.com/nauotit/openf4

Rusydi H. Makarim, Marc Stevens

Introductio

M4GB Algorithn

Performance Comparison

Solving MQ Challenges

Benchmark for m = 2n

Total CPU time (sec)					
n	m	OpenF4 FGb Magma (projected)			M4GB
20	40	206	470	232.17	57
21	42	472	1002	500.26	170
22	44	1145	3118	1616.73	424
23	46	2274	6849	3184.82	1060
24	48	10293	64700	31167.61	2556
25	50		151653	77678.58	5575
26	52		360055	183628.74	15517
27	54		767543	409451.87	46548

		Memory (MB)				
20	40	4240	112	361.84	73	
21	42	6640	165	577.34	121	
22	44	14368	525	853.84	226	
23	46	26135	918	1324.16	395	
24	48	161945	1561	8872.94	663	
25	50	-	2765	19718.78	1471	
26	52	-	4607	25197	3328	
27	54	-	8180	39844.84	6799	

Rusydi H. Makarim, Marc Stevens

Introduction

M4GB Algorithr

Performance Comparison

Solving MC

Graph for m = 2n

Rusydi H. Makarim, Marc Stevens

Introductio

M4GB Algorithm

Performance Comparison

Solving MC Challenges

Benchmark for m = n + 1

		Total CPU time (sec)				
n	m	OpenF4	FGb	FGb Magma (projected) N		
10	11	2.99	5	3.29	0.98	
11	12	8.73	21	11.172	2.6	
12	13	36.76	134	59.08	13.92	
13	14	172.49	642	286.4	58.18	
14	15	1258	5850	2810.75	393.19	
15	16	7225	36361	17265.5	2424	
	Memory (MB)					
10	11	101	33	32.09	17	
11	12	341	50	64.12	16	
12	13	1463	112	113.59	31	
13	14	7622	323	281.53	74	
14	15	33460	1098	1104	250	
15	16	117396	4118	3320	837	

Rusydi H. Makarim, Marc Stevens

Introduction

M4GB Algorithn

Performance Comparison

Solving MC Challenges

Graph for m = n + 1

Rusydi H. Makarim, Marc Stevens

Introductio

Algorithm

Performance Comparison

Solving MQ Challenges

Table of Contents

- 1 Introduction
- 2 M4GB Algorithm
- Serformance Comparison
- 4 Solving MQ Challenges

Makarim, Marc Stevens

Introductio

Algorithr

Performance Comparison

Solving MQ Challenges

- MQ-based public key and digital signature are candidates of post-quantum cryptography.
- Their security relies on the difficulty of finding a solution of an MQ problem.
- Need to understand its difficulty in practice

Rusydi H. Makarim, Marc Stevens

Introductio

M4GB Algorithn

Performance Comparison

Solving MQ Challenges

- Started on 1st April 2015
- Six different type of challenges

Rusydi H. Makarim, Marc Stevens

Introductio

M4GB Algorithn

Performance Comparison

Solving MQ Challenges

- Started on 1st April 2015
- Six different type of challenges
- Type I, II, and III are encryption-type parameter (m = 2n) and coefficients in F₂, F₂₈, F₃₁ respectively.

Rusydi H. Makarim, Marc Stevens

Introductio

M4GB Algorithn

Comparison

Solving MQ Challenges

- Started on 1st April 2015
- Six different type of challenges
- Type I, II, and III are encryption-type parameter (m = 2n) and coefficients in F₂, F₂₈, F₃₁ respectively.
- Type IV, V, and VI are signature-type parameter $(n \approx 1.5m)$ and coefficients in $\mathbb{F}_2, \mathbb{F}_{2^8}, \mathbb{F}_{31}$ respectively.

Rusydi H. Makarim, Marc Stevens

Introductio

M4GB Algorithm

Comparison

Solving MQ Challenges

- Started on 1st April 2015
- Six different type of challenges
- Type I, II, and III are encryption-type parameter (m = 2n) and coefficients in F₂, F₂₈, F₃₁ respectively.
- Type IV, V, and VI are signature-type parameter $(n \approx 1.5m)$ and coefficients in $\mathbb{F}_2, \mathbb{F}_{2^8}, \mathbb{F}_{31}$ respectively.
- Parameter Choice: Require at least one month for Magma 2.19-9 to solve using Four 6-cores Intel(R) Xeon(R) CPU E5-4617 @ 2.9GHz and 1TB of RAM.

Rusydi H. Makarim, Marc Stevens

Introductio

M4GB Algorithn

Performance Comparison

Solving MQ Challenges

Fukuoka MQ Challenge

- Started on 1st April 2015
- Six different type of challenges
- Type I, II, and III are encryption-type parameter (m = 2n) and coefficients in F₂, F₂₈, F₃₁ respectively.
- Type IV, V, and VI are signature-type parameter $(n \approx 1.5m)$ and coefficients in $\mathbb{F}_2, \mathbb{F}_{2^8}, \mathbb{F}_{31}$ respectively.
- Parameter Choice: Require at least one month for Magma 2.19-9 to solve using Four 6-cores Intel(R) Xeon(R) CPU E5-4617 @ 2.9GHz and 1TB of RAM.

https://www.mqchallenge.org

Rusydi H. Makarim, Marc Stevens

Introduction

M4GB Algorithm

Performance Comparison

Comparison

Solving MQ Challenges

Solving Signature-type MQ Challenge

- Hybrid approach : trade-off between exhaustive search and computing Gröbner bases
- Idea :
 - 1 Select a random vector $(a_1, \ldots, a_{n-m}) \in \mathbb{F}_q^{n-m}$
 - 2 Construct a new system with n = m

$$\tilde{F} = \{f(x_1,\ldots,x_m,a_1,\ldots,a_{n-m}): \forall f \in F\}$$

- 3 Select $k \in \{1, ..., m\}$ and construct q^k subsystems from \tilde{F} by substituting k variables with all elements of \mathbb{F}_a^k .
- 4 Each subsystem generated can be solved in parallel.

Rusydi H. Makarim, Marc Stevens

ntroductio

M4GB Algorithn

Performance Comparison

Solving MQ Challenges

Computational Resources

A) Desktop machine with Intel(R) Core(TM) i7-2600K CPU @ $3.40 \, \text{GHz}$ and $16 \, \text{GB}$ RAM

Rusydi H. Makarim, Marc Stevens

Introductio

M4GB Algorithn

Performance Comparison

Solving MQ Challenges

Computational Resources

- A) Desktop machine with Intel(R) Core(TM) i7-2600K CPU @ 3.40GHz and 16GB RAM
- B) NUMA machine with two nodes of Intel(R) Xeon(R) CPU E5-2650 v3 @ 2.30GHz and 128GB RAM each.

Rusydi H. Makarim, Marc Steve

ntroduction

M4GB Algorithn

Performance Comparison

Solving MQ Challenges

Туре	n/m	Machine Used	# Node	Duration

Rusydi H. Makarim, Marc Steve

Introduction

M4GB Algorithr

Performance Comparison

Solving MQ Challenges

Туре	n/m	Machine Used	# Node	Duration
V	24/16			
V	25/17			
V	27/18			

Rusydi H. Makarim, Marc Steve

Introduction

M4GB Algorithn

Performance Comparison

Solving MQ Challenges

Туре	n/m	Machine Used	# Node	Duration
V	24/16	А	1	pprox 9.3 hours
V	25/17			
V	27/18			

Rusydi H. Makarim, Marc Stevens

Introduction

M4GB Algorithn

Performance Comparison

Solving MQ Challenges

Туре	n/m	Machine Used	# Node	Duration
V	24/16	А	1	pprox 9.3 hours
V	25/17	В	1	pprox 46.33 hours
V	27/18	В	2	pprox 10.9 days

Rusydi H. Makarim, Marc Steve

Introduction

M4GB Algorithn

Comparison

Solving MQ Challenges

Туре	n/m	Machine Used	# Node	Duration
V	24/16	А	1	pprox 9.3 hours
V	25/17	В	1	pprox 46.33 hours
V	27/18	В	2	pprox 10.9 days
VI	24/16			
VI	25/17			
VI	27/18			
VI	28/19			

Rusydi H. Makarim, Marc Steve

Introduction

M4GB Algorithn

Comparison

Solving MQ Challenges

Туре	n/m	Machine Used	# Node	Duration
V	24/16	А	1	pprox 9.3 hours
V	25/17	В	1	pprox 46.33 hours
V	27/18	В	2	pprox 10.9 days
VI	24/16	А	1	pprox 1.2 hours
VI	25/17			
VI	27/18			
VI	28/19			

Rusydi H. Makarim, Marc Steve

Introduction

M4GB Algorithn

Performance Comparison

Solving MQ Challenges

Туре	n/m	Machine Used	# Node	Duration
V	24/16	А	1	pprox 9.3 hours
V	25/17	В	1	pprox 46.33 hours
V	27/18	В	2	pprox 10.9 days
VI	24/16	А	1	pprox 1.2 hours
VI	25/17	В	1	pprox 9.87 hours
VI	27/18	В	1	pprox 31.48 hours
VI	28/19	В	2	pprox 7.61 days

Rusydi H. Makarim, Marc Stevens

ntraduction

M4GB

Algorithm

Performance Comparison

Solving MQ Challenges https://github.com/cr-marcstevens/m4gb

Rusydi H. Makarim, Marc Steven:

ntroduction

M4GB Algorithm

Performance Comparison

Solving MQ Challenges Question ?