Конспект лекций по матанализу

Горбунов Леонид при участии и редакторстве @keba4ok на основе лекций Любарского Ю. И.

13 сентября 2021г.

Содержание

еория меры
Алгебраические структуры подмножеств
Вводим меру
Простые функции
Элементарный интеграл
Включаем бесконечность

Теория меры

Алгебраические структуры подмножеств

Пусть нам дано множество $\mathcal X$ произвольной природы и система его подмножеств $\mathfrak A$.

Определение 1. \mathfrak{A} - *полукольцо множеств*, если для любых $A, B \in \mathfrak{A}$ их пересечение $A \cap B$ тоже лежит в \mathfrak{A} , а их разность $A \setminus B$ представляется в виде конечного объединения попарно дизъюнктных множеств из \mathfrak{A} .

Примечание 1. Легко понять, что любое полукольцо содержит пустое множество.

Определение 2. $\mathfrak A$ - кольцо множеств, если для любых $A, B \in \mathfrak A$ их пересечение $A \cap B$, объединение $A \cup B$ и разность $A \setminus B$ лежат в $\mathfrak A$

Примечание 2. Легко понять, что тогда и $A\triangle B$ лежит в \mathfrak{A} . Тогда если на элементах кольца множеств определить операции сложения $+ := \triangle$ и умножения $\times := \cap$, то оно превратится в алгебраическое кольцо.

Определение 3. $\mathfrak A$ - *алгебра множеств*, если оно кольцо, и для любого $A \in \mathfrak A$ множество $X \backslash A$ тоже лежит в $\mathfrak A$

Утверждение 1. Пусть $\mathfrak{A} \subseteq \mathcal{P}(X)$ и $\mathfrak{B} \subseteq \mathcal{P}(Y)$ - полукольца. Тогда $\mathfrak{A} \times \mathfrak{B} \subseteq \mathcal{P}(X \times Y)$ - тоже полукольцо.

Утверждение 2. Пусть множества $A, B_1, ... B_n$ принадлежат какому-то полукольцу. Тогда $A \setminus (B_1 \cup ... \cup B_n)$ представляется в виде объединения конечного числа элементов этого полукольца.

Доказательство. $A \setminus (B_1 \cup ... \cup B_n) = (A \setminus B_1) \cap ... \cap (A \setminus B_n) = (\bigsqcup_{i=1}^{k_1} C_{1,i}) \cap ... \cap (\bigsqcup_{i=1}^{k_n} C_{n,i}) = \bigsqcup_{i_1,...i_n} (C_{1,i_1} \cap ... \cap C_{n,i_n})$. В последнем выражении все множества попарно дизъюнктны, так как если бы, например, $(C_{1,i_1} \cap ... \cap C_{n,i_n}) \cap C_{1,j_1} \cap ... \cap C_{n,j_n} \ni x$, то для каждого k от 1 до $n \ x \in C_{k,i_k} \cap C_{k,j_k}$, что возможно только при $i_k = j_k$, но для всех k это равенство быть верным не может.

Пример(ы) 1. $P(\mathbb{R}) = \{[a,b)|a,b,\in\mathbb{R}\cup\{\pm\infty\}\}$ - полукольцо ячеек $P(\mathbb{R}^n) = \{[a_1,b_1)\times...\times[a_n,b_n)|a_i,b_i,\in\mathbb{R}\cup\{\pm\infty\}\}$ - тоже полукольцо ячеек, только многомерных

Вводим меру

Пусть $\mathfrak X$ - множество произвольной природы, $\mathfrak A\subseteq \mathcal P(\mathfrak X)$.

Определение 4. Функция $\mu: \mathfrak{A} \to \mathbb{R}_{\geq 0} \cup \{+\infty\}$ называется *мерой*, если для любых попарно дизъюнктных множеств $A_1, \dots A_k \in \mathfrak{A}$ и таких, что $\bigsqcup_{i=1}^k A_i \in \mathfrak{A}$, верно равенство $\mu(\bigsqcup_{i=1}^k A_i) = \sum_{i=1}^k \mu(A_i)$

Примечание 3. Данное свойство называется аддитивностью

Пример(ы) 2.

- $\mathfrak X$ дискретное пространство, и для любого $x \in \mathfrak X$ $\mu(x)=1.$ Тогда $\mu(A)=\sum_{x\in A}1$
- \mathfrak{X} дискретное пространство, и для любого $x \in \mathfrak{X}$ $\mu(x) = p_x$, причём $\sum_{x \in \mathfrak{X}} p_x = 1$. Тогда мы получаем в точности вероятностное пространство.

- $\mathfrak{X}=\mathbb{R},\,\mathfrak{A}$ полукольцо конечных ячеек. Тогда $\mu([a,b))=b-a$ мера.
- То же, что и в предыдущем примере, только теперь $\mu([a,b)) = f(b) f(a)$, где f монотонно возрастающая функция.

Утверждение 3. Мера, определённая на полукольце, монотонна: если $A, B \in \mathfrak{A}$, и $B \subseteq A$, то $\mu(B) \leq \mu(A)$.

Доказательство.
$$\mu(A) = \mu(B) + \mu(A \backslash B) = \mu(B) + \mu(\bigsqcup_{i=1}^n C_i) = \mu(B) + \sum_{i=1}^n \mu(C_i) \ge \mu(B)$$

Простые функции

Определение 5. Пусть \mathfrak{A} - полукольцо, и $A \in \mathfrak{A}$. Определим функцию-индикатор (или характеристическую функцию):

$$\chi_A(x) = \begin{cases} 1, & \text{если } x \in A, \\ 0, & \text{если } x \notin A \end{cases}$$

Определение 6. Простая функция - это функция вида $f(x) = \sum_{i=1}^n a_i \chi_{A_i}(x)$, где $A_i \in \mathfrak{A}$ и $a_i \in \mathbb{R}$

Примечание 4. Сумма и произведение простых функций - простые функции.

Элементарный интеграл

Пусть мы имеем $\mathfrak A$ - полукольцо, μ - меру и f - простую функцию (всё пока что конечно). Можем тогда ввести следующее понятие:

Определение 7. Элементарным интегралом называется

$$\int f(x)dx = \sum a_i \mu(A_i)$$

Утверждение 4. Определение корректно.

Примечание 5. Я не понял, что тут рассказывает Юрий Ильич, поэтому доказательство найдено в других источниках. Суть просто в попарном подразбиении и перегуппировке.

Доказательство. Пусть $f = \sum \alpha_i \cdot \chi(a_i) = \sum \beta_j \cdot \chi(b_j)$, рассмотрим тогда $c_{ij} = a_i \cap b_j$.

$$\sum \mu(a_j) \cdot \alpha_j = \sum \mu(c_{ij}) \cdot \alpha_i = \sum \mu(c_{ij}) \cdot \beta_j = \sum \mu(b_j)\beta_j$$

Утверждение 5 (Техническое замечение).

$$\int \chi_A = \mu(A).$$

Утверждение 6. Рассмотрим свойства интеграла:

• Линейность. Если у нас есть две простые функции: f и g, а также два числа: $\alpha, \beta \in \mathbb{R}$, тогда

$$\int \alpha f + \beta g = \alpha \int f + \beta \int g.$$

• Монотонность. Пусть f и g - простые функции, а также $f \leq g$. Тогда

$$\int f \le \int g.$$

Примечание 6. Для доказательства практически всего нужно просто рассмотреть дизъюнктное подразбиение данных функций.

Включаем бесконечность

Пусть у нас, по прежнему, имеется кольцо, и простая функция f. Выделим тогда у неё положительную и отрицательную часть (f^+ и f^-). Такие, что положительная часть во всех положительных значениях остаётся таковой, а при отрицательных - обнуляется. Почти аналогично с отрицательной, только мы рассмотриваем модуль того, что останется. Таким образом,

$$f = f^+ - f^-.$$

Определим тогда $I_+(f) = \int f_+$, и аналогично I_- . Мы хотим определить интеграл от функции, как $I_+(f) - I_-(f)$. Но нам мешает то, что обе эти функции могут быть бесконечными. Так что в случае, когда оба интеграла равны бесконечности, у нас ничего не получится, и этот случай мы попросу запрещаем. И рассмотриваем мы теперь только функции, который могут быть бесконечны максимум в одну сторону.

Примечание 7. Монотонность и линейность останутся при данном определении (последнее, конечно, опять таки при конечности хотя бы одного из интегралов).

Предметный указатель

```
Алгебра множеств, 3
Интеграл
элементарный, 4
Кольцо множеств, 3
Мера, 3
Полукольцо множеств, 3
Полукольцо ячеек, 3
Простая функция, 4
Функция-индикатор, 4
Характеристическая функция, 4
```