Problem Set #3 (Algorithms)

Department: _	
Student ID:	
Student Name:	

Consider the 0-1 knapsack problem where a thief robbing a store finds n items for some integer n. The ith item is worth v_i dollars and weighs w_i pounds, where v_i and w_i are integers. The thief wants to take as valuable a load as possible, but he can carry at most W pounds in his knapsack, for some integer W. Consider $0 \le n \le 5$, $1 \le v_i \le 50$, $1 \le w_i \le 5$, and $0 \le W \le 5$.

- 1. For a bottom-up dynamic-programming algorithm to compute the value (in dollars) of an optimal solution to the 0-1 knapsack problem for n items in O(nW) time,
- (a) Write your program that includes your comments.
- (b) When W = 5, $v_1 = 12$, $v_2 = 20$, $v_3 = 24$, $v_4 = 30$, and $w_i = i$ for i = 1, 2, 3, 4, show the value (in dollars) of an optimal solution to the 0-1 knapsack problem for 4 items by executing your program.
- (c) Explain your program and your execution.