015917551	K Mean Cluster	Vishnu Voudray
Shoppen	Spending Index	Income Indo
- 4	2	/ - 6
- 2	3	4
. 3	3	. 5
. 5	4	5
. 3	5	
. 9	5	6
→ 7	6	e
• 8	· · · · · · · · · · · · · · · · · · ·	3.
. (0	;, , G	7
. 11	7	<u>.</u> . , ,
• 17	8	2_
× 12	8	3
. 13	-8	5
- 18	9	1

P₂ (3,4), P₁₆ (9,1)

Choster 1(C₁)

Choster 2(C₂)

controld

(3,4)

(4,1)

P₄ (2,6). P₃(4)

D₁:
$$\sqrt{(9-2)^2 + (4-6)^2} = \sqrt{1+4} = \sqrt{5}$$

D₂: $\sqrt{(9-2)^2 + (4-6)^2} = \sqrt{4+25} = \sqrt{74}$

Controld: $\sqrt{(9+2)^2 + (4-6)^2} = \sqrt{4+25} = \sqrt{74}$

Controld: $\sqrt{(9+2)^2 + (4-6)^2} = \sqrt{(9+2)^2 + (4-6)^2} = \sqrt{(9+2)^2 + (4-6)^2} = \sqrt{(9+2)^2 + (4-5)^2} = \sqrt{(9+2)^2 + ($

(2) (2.75,5) (9,1)

$$P_{3}(4,5)$$
 $P_{1}=V(2.7544)^{2}+V=9^{2}=V=1.25$
 $P_{2}=\sqrt{(9-4)^{2}+(1-5)^{2}}=\sqrt{5+16}=\sqrt{41}$
 $Centroid=(3.378,5)$
 $P_{3}(5,6)$
 $P_{3}(5,6)$
 $P_{3}(5,6)$
 $P_{4}(5,6)$
 $P_{5}(5,6)$
 $P_{5}(5,6)$

Control (4.2)5.5) (509,1)

Pa (5.6)

$$P_{12} = \sqrt{(4.2-5)^{2} + (5.5-6)^{2}} = \sqrt{5.64+025}$$
 $P_{12} = \sqrt{(16) + (25)} = \sqrt{41}$

Controld (4.6,5.7)

(2

(4.6,5.7)

(2

(9,1)

Pa (6,2)

 $P_{12} = \sqrt{(4.6-6)^{2} + (5.72)^{2}} = 4000\sqrt{15.65}$
 $P_{22} = \sqrt{9+1} = \sqrt{10} = 3.16$.

Controld = (20,7.5,1.5)

Control (4.6,5.7) $P_{8}(6,3)$ $D_{1} = \sqrt{(4.6-6)^{2} + (5.73^{2})^{2}} = 100 \times 3.04$ $D_{2} = \sqrt{(7.5-6)^{2} + (1.5-3)^{2}} = 0.38$

Controld 2 0(6.75), 2.25)

Centroid (4.6,5.7) (6.76,2.28) $P_{10}(6,7)$ $D_{1} \approx \sqrt{8.6-6}^{2} + (5.75)^{2} = 8144 \sqrt{3.4} = 1.41$ $D^{2} \approx \sqrt{6.7-6}^{2} + (2.25-7)^{2} = 4.89$

(Octroid = (5.3, 6.38)

$$P_{1} = \sqrt{(5.3-6)^{2}+(6.3-8)^{2}} = 3.88$$
 $D_{2} = \sqrt{(6.7-6)^{2}+(8.2-8)^{2}} = 5.8$

(extraid
$$(5.68, 7.1)$$
 $(6.7, 2.2)$

$$P_{61}(1,2)$$

$$P_{61}(1,2)$$

$$P_{61}(1,2)$$

$$P_{61}(1,2)$$

$$P_{61}(1,2)$$

$$D2 = (6.7 - 1)^{2} + (2.2 - 8)^{2} = 1.18$$
Centroid = (6.85, 2.2)

Certaroid
$$(5.6, 7.1)$$
 $(6.8, 2.2)$

$$D_1 = \sqrt{(5.6-8)^2 + (7.1-2)^2} = 5.63$$

Centroid
$$(5.6,7-1)$$
 $(7.4,2.1)$

$$912\sqrt{(7.6-8)^2+(7.1-3)^2}=4.75$$

$$92=\sqrt{(7.4-8)^2+(2.1-3)^2}=1.08$$

$$P_{12} (8,5)$$

$$P_{12} (8,5)$$

$$D_{1} = \sqrt{(5.6-8)^{2} + (7.1-5)^{2}} = 3.18$$

$$D_{2} = \sqrt{(7.7-8)^{2} + (2.5-5)^{2}} = 1.07$$

$$Controid = (7.8, 3.7)$$

entroid
$$(5.6,7.1)$$
 $(7.8,3.7)$

$$P_{13}(9,1)$$

$$D_{1}=\sqrt{(5.6-9)+(7.1-1)^{2}} \cdot 6.98$$

$$P_{2}=\sqrt{(7.8-9)^{2}+(3.7)^{2}} \cdot 2.08$$

Catroid = (8:4, 2:39)

cont-x0id (5.6,7.1) (8.4,23) P. (9,6) D1 = (5.6-9)2+(7.1-6)2 = 3.5 D2 2 (8.4-9) + (2.3-6)2=0.9e P15 is in 6 Cluster 1 Cluster 2 Pe, Py, P1, P5, P3, shoppen P16, P8, P11) P14, points P10, P6 ... P17, P12, P13, P15, cluston 1 cluston2 7,8,11,12,13,14) 1,2,3,4,5,6,10 15, 16, 17