Summer

Summe notasjon:

Vi vil skrive dette på en mer kompakt måte:

Formel Son ledd ur k

Start når k=6 Øk k med en hvergang Slutt når k=100

Sonat: K=0: 3.0+2 = 2

R=1: 3.1+2 = 5

k= 2: 3-2 + 2 = 8

k= 3: 3.3 + 2 = M

h=4: 3.4+2=14

Gresk signer, stor signer \ Defyr n summer disse tallene"

Finnes også TT(3k+2) = 2.5.8.11.14.....302

Riemann sum: $\sum f(x)(1)c$ betyr: Son alle K slik at Shal summere S(a+k-Ax)-Dc a Ea. k. DX Eb. Dx - steglengle: a: start-sted v: slutt sted Eles Soa i stad, a=2, b=302, 1x=3. (Ville Satt $S(x) = \frac{x}{3}$, Son à Sa samme sum som i stad): $\sum_{3}^{3} \Delta x = 2 + 5 + 8 + ... + 302$ $\int_{\alpha}^{\beta} \int_{\alpha}^{\beta} S(x) \Delta x$

Idé! To mindre Ax blir, jo men yogahtig blir Riemann-summen til avealet. Sco)dx = lim \(\sum_{\text{Sco}} \sum_{\text{Sco}} \dx\)

a

Andre eksempler på ng	Hige Riemann-summer/integrale:
Arbeid ut Si	FAs \Rightarrow $\int_{a}^{b} F(s) ds$
	S=V.E V(t) dt
Dette hinter on 5 SSOOdx =	F(b)-F(a) won F(x) = S(x)
Smakebit på nomerisk	integrasion!
	Metode 1: Venstre summer
	Metode 2: Høyne summer
	Metode 3: Ta gjennomsnittet av de to Savige metodane.

Trapesmetoden: Metode 4: Type Sirkant, to av sidene e parallelle: Trapes: J L(x-Ax) Augl: a+b.h Simpsons metade: Finner andregrads Sunksion som går gjennog venstresida, høgre sida, og et punkt i midten, vegner integralet av denne andre grads Somksjonen.

> Mest nøyaktis, ver bruke da lenge tid.

Elsompel på integral-utregning: Vil Sinne volamet av en pyramide: Grunn flate: Firkant, Del den opp i mindre blokker: kvadrat, 2x2. Hoyle: 5. volumet skal bli: Hoe stil bit han volum lik grunnstate ganget høyde. 4.5 = 20 = 6.567. laven uslice av pyramiden, legger sidelængs. $S(x) = \frac{x}{5}$ $A(x) = \left(\frac{2 \cdot x}{5}\right)^{2} = \frac{4}{25}x^{2}$ Holan av syramidm \(\sum_{0} \lambda \text{A(h). Ah} = \sum_{0} \frac{5}{25} \text{be}^2. Ah

 $-) \int \frac{4}{25} h^2 dh = \left[\frac{4}{25} \cdot \frac{1}{3} h^3 \right]^5 = \frac{4}{25} \cdot \frac{1}{3} \cdot 5^3 - 0$

 $= \frac{4.5}{3} = \frac{20}{3}$

Els: En linse Ser slik ut Volumet av hele: $\sum_{x} \frac{1}{2} \left(-xc^{2} + 10x\right)^{2} \Delta x$ Nogartig: (T(-x2+10x) dx * $= \pi \left((-x^2)^2 + \lambda \cdot (-x^2) \cdot 10x + (10x)^2 dx \right)$ $= \pi \int_{0}^{40} x^{4} - 20x^{3} + 100x^{2} dsc$ $= \pi \left[\frac{1}{5}x^5 - 5x^4 + \frac{100}{3}x^3 \right]^{\frac{1}{3}}$ $= 11. \left(\frac{10^5}{5} - 5.10^4 + \frac{100}{3}.10^3 \right) =$ =TT. (20000 -50000 + 33 333) = 3337.-TT. Hosk: Norvivegue aveal med integral a det alltid aveal mellom grafen og x-aksen i omrædet, med fortegn. Mass Vi vil ofte Sinne integalot eller avealet mellon to Sunksjone. Vi kan da vegue ut Senathver whoode" en gitt ved gox) - S6x) Integralet Wir der Sa Sgox)-Soc) doc Må Sinne a og v ved å løse S(x)=g(x), Sinn når gvasene møtes. Kan Så situasjone som: On vi vilvite avealet 9(x)-S(x) 9(x)-S(x) ma vi da gjøre hven hit Son sag selv, Sjenne eventvelle minustegn, 9ã plosse samuer.

 $\int g(x) - f(x) dx = \int g(x) dx - \int f(x) dx$ Må no egentlis se om vi også Sår viktig sva i spesialtil Selle: S6x) 9(x)