# Physique

#### ORAUX

#### Juillet 2021

## 1 Mines

## 1.1 Exercice 1: Analogie hydraulique - électrique

On considère un conducteur cylindrique en cuivre de conductivité  $\gamma$ , de rayon R, de longeur l et de section  $S=16~mm^2$ .

Redémontrer l'expression de la résistance électrique.

On considère maintenant N fils de cuivre de longeur l et de section  $s=1\ mm^2.$ 

Trouver N tel que pour une même tension U, le conducteur plein et les N fils donnent le même courant.

On étudie maintenant l'écoulement du sang dans les veines. Le sang, de viscosité dynamique  $\eta$ , s'écoule dans les veines de section  $S=16~mm^2$ .

Etablier une analogie entre hydraulique et électrique.

Par analyse dimensionnelle retrouver l'expression de la résitance hydraulique sachant que celle-ci est proportionnelle à la longueur du tuyau.

On considère maintenant N capillaires de section  $s = 1 mm^2$ .

Trouver N tel que pour une même différence de pression, la veine et les N capillaires donnent le même débit volumique.

#### Bonus:

- 1. Citer les hypotèses de la loi de Poiseuille.
- 2. Comment caractériser un écoulement laminaire.
- 3. Nombre de Reynolds: définition, ordre de grandeur et applications.

# 1.2 Exercice 2: Etude d'une turbine à gaz d'hélicoptère

On donne ci-dessous le schéma simplifié d'une turbine à gaz d'hélicoptère:



Les transferts thermiques de F à B et de C à D sont <u>adiabatiques</u>. Les transferts thermiques de B à C et de D à F sont isobares.

On néglige les variations d'énergie mécanique et on se place en régime stationnaire.

- 1. Déterminer le rendement de l'ensemble et application numérique.
- 2. Déterminer la puissance mécanique de l'ensemble.
- 3. Déterminer la consommation en  $L.h^{-1}$ .

Données:

Capacité thermique massique du kérosène:  $c_p = 100 \ J.K^{-1}.kg^{-1}$ .

Pouvoir calorifique du kérosène:  $PCL = 50 \ MJ.kg^{-1}$ .

Débit massique de l'air:  $D = \dots m^3 . s^{-1}$ .

|                  | F   | В   | С   | D   |
|------------------|-----|-----|-----|-----|
| Pression (bar)   | 1   | 10  | 10  | 1   |
| Température (°C) | 300 | 600 | 900 | 500 |