CL=CSCI 160

CLASS 12

Boolean functions - Canonical form vs. standard forms

Independent Switches Problem

Note:

$$\begin{array}{c}
A = 1 \\
\underline{\text{and}} \\
B = 1
\end{array}$$

$$\iff AB = 1$$

$$\begin{array}{c}
A = 1 \\
\underline{\text{and}} \\
B = 1
\end{array}$$

$$A = 1 \\
\underline{\text{or}} \\
B = 1$$

$$A = 1 \\
\underline{\text{or}} \\
B = 1$$

•			
×	у	z	f
<u>x</u> 0	0	0	0
0	0	1	1 ←
0	1	0	1 ←
0	1	1	0
1	0	0	1 ←
1	0	1	0
1	1	0	0

Let's write the expression of function f, from its truth table.

Sum of minterms representation:

$$f = 1 \iff \begin{cases} x = 0 \text{ and } y = 0 \text{ and } z = 1 \\ \text{or} \\ x = 0 \text{ and } y = 1 \text{ and } z = 0 \\ \text{or} \\ x = 1 \text{ and } y = 1 \text{ and } z = 0 \\ \text{or} \\ x = 1 \text{ and } y = 0 \text{ and } z = 0 \end{cases} \implies \begin{cases} x' = 1 \text{ and } y' = 1 \text{ and } z' = 1 \\ \text{or} \\ x = 1 \text{ and } y' = 1 \text{ and } z' = 1 \\ \text{or} \\ x = 1 \text{ and } y = 1 \text{ and } z = 1 \end{cases} \implies \begin{cases} x' = 1 \text{ and } y' = 1 \text{ and } z' = 1 \\ \text{or} \\ \text{or} \\ x = 1 \text{ and } y = 1 \text{ and } z = 1 \end{cases}$$

This is called the <u>canonical sum of products</u> form.

The canonical form is <u>unique</u> for a given function, and it can be used to compare functions/expressions. Most times, the canonical form may be reduced, simplified.

Any sum of products, not necessarily containing only minterms, is called **standard**.

Similarly, we have a dual form, called the <u>canonical product of sums</u> form; however in this course we will only deal with the sum of minterms representations, as the other is handled similarly.

Example (Short Cut): Obtain the canonical form directly from the truth table of an arbitrary function

	×	У	Z	_ f _
0	0	0	0	1 🕶
1	0	0	1	1
2	0	1	0	0
	0	1	1	0
4	1	0	0	1_
5	1	0	1	1_
6	1	1	0	0
7_	1	1	1	1 -

Canonical sum of products form:

$$f = x'y'z' + x'y'z + xy'z' + xy'z + xyz$$
 also a standard form
$$f = x'y' + xy' + xyz$$

$$f = y' + xyz$$

$$[= (y' + y)(y' + xz) = y' + xz]$$
 other standard forms for f
$$f = y' + xz$$

Because the canonical sum of products form is unique we express this function above as:

$$f = \sum (0, 1, 4, 5, 7)$$

Minimization of functions

Time and space trade-offs

Variety of techniques to obtain gate simplification.

<u>However</u>: simplification depends on the <u>metric</u> we use:

- The <u>number of literals</u> it contains
 - = amount of wiring needed to implement the function: # inputs: 3-4 usual,
 - > 8,9 very rare.
- The <u>number of gates</u>
 - = strong correlation with # components needed for implementation; simplest design to manufacture is the one with fewest gates, not literals.
- Number of cascaded levels of gates
 - = reducing # logic levels would reduce the overall delay in the path input --> output;

however an implementation with minimum delay rarely yields an implementation with fewest # literals or gates.

Traditional minimization techniques: reduce delay at expense of adding more gates.

Other methods: Trade-off between increased circuit delay and reduced gate count.

Example

$$F = \underline{a'b'c} + \underline{a'bc} + \underline{ab'c} + \underline{abc'}$$

 $F_1 = abc' + a'c + b'c$ • 2-level implementation

7 literals (<12 as the original)

3-level implementation4 literals

 $F_2 = tc' + t'c$

set t = ab

longest path: 4 gates (> 3 in F₁)
 --> not as fast as F₁.

total # gates in $F_2 \le in F_1$.

$$F_3 = (ab) \oplus c$$

Logical Diagrams (all three functions in one diagram):

- XOR = complex gate: implement by combining NAND, NOR
- ' lowest gate count, but also worst signal delay, for XOR slow compared to simple AND, OR.

HW 12 - assigned

- 12-A Given the Boolean functions F_1 and F_2 ,
 - (a) Show that the Boolean function $E = F_1 + F_2$ contains the sum of the minterms of F_1 and F_2 .
 - (b) Show that the Boolean function $G = F_1 F_2$ contains only the minterms that are common to F_1 and F_2 .

12-B Give the truth table of the function:

$$F = xy + xy' + y'z$$