Diamonds Project

Yumna Al Shalak

THE DATASET : DIAMONDS

 This classic dataset contains the prices and other attributes of almost 54,000 diamonds. It's a great dataset for beginners learning to work with data analysis and visualization.

- price price in US dollars (\\$326--\\$18,823)
- carat weight of the diamond (0.2--5.01)
- cut quality of the cut (Fair, Good, Very Good, Premium, Ideal)
- color diamond colour, from J (worst) to D (best)
- clarity a measurement of how clear the diamond is (I1 (worst), SI2, SI1, VS2, VS1, VVS2, VVS1, IF (best))
- x length in mm (0--10.74)
- y width in mm (0--58.9)
- z depth in mm (0--31.8)
- depth total depth percentage = z / mean(x, y) = 2 * z / (x + y) (43--79)
- table width of top of diamond relative to widest point (43--95)

The problem is Regression Type of machine learning system: Supervised - Batch Learning - Model Based

GET THE DATA:

```
# imports the main libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
diamonds data = pd.read csv('diamonds.csv')
diamonds data.head()
   Unnamed: 0 carat
                          cut color clarity depth table price
                 0.23
                         Ideal
                                           SI2
                                                 61.5
                                                        55.0
                                                               326 3.95 3.98 2.43
0
                 0.21 Premium
                                           SI1
                                                 59.8
                                                        61.0
                                                               326 3.89 3.84 2.31
                                                        65.0
                 0.23
                                          VS1
                                                 56.9
                                                               327 4.05 4.07 2.31
2
                         Good
 3
                 0.29 Premium
                                          VS2
                                                 62.4
                                                        58.0
                                                               334 4.20 4.23 2.63
                 0.31
                         Good
                                           SI2
                                                 63.3
                                                        58.0
                                                               335 4.34 4.35 2.75
```

drop Unnamed: 0 columns
diamonds data.drop(['Unnamed: 0'],axis=1,inplace=True)

DISCOVER AND VISUALIZE THE DATA

Data discovery:

from data information we don't have any null value in our data

```
diamonds data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 17858 entries, 0 to 17857
Data columns (total 10 columns):
    Column Non-Null Count Dtype
             17858 non-null float64
    carat
             17858 non-null object
    cut
             17858 non-null object
    color
    clarity 17858 non-null object
    depth
             17858 non-null float64
    table
             17858 non-null float64
    price
             17858 non-null int64
             17858 non-null float64
             17858 non-null float64
             17857 non-null float64
dtypes: float64(6), int64(1), object(3)
memory usage: 1.4+ MB
```

DISCOVER AND VISUALIZE THE DATA

Data visualization:

Create a hist plot for diamonds dataframe as shown down

Discover and visualize the data

Data visualization:

DISCOVER AND VISUALIZE THE DATA

Data visualization:

- 1. Carat has a strong relationship to price
- 2.x, y and z have a very strong relationship with price but surprisingly depth (which comes from x, y \bigcirc and z) has little to do with price.

The minimum values for x,y and z here are 0 but it is not possible because according to the data description they are the length, width and depth

diamonds_data.describe()											
	carat	depth	table	price	х	у	z				
count	17858.000000	17858.000000	17858.000000	17858.000000	17858.000000	17858.000000	17857.000000				
mean	0.930882	61.833744	57.781504	4210.086628	6.171439	6.170635	3.813921				
std	0.278732	1.578816	2.244017	1675.393211	0.736743	0.724990	0.462995				
min	0.200000	43.000000	43.000000	326.000000	0.000000	0.000000	0.000000				
25%	0.800000	61.000000	56.000000	3297.000000	5.940000	5.950000	3.670000				
50%	1.000000	61.900000	58.000000	4318.000000	6.360000	6.360000	3.940000				
75%	1.070000	62.700000	59.000000	5367.750000	6.600000	6.590000	4.070000				
max	3.000000	71.800000	70.000000	7204.000000	9.230000	9.100000	5.770000				

A zero value in these rows means that data is lost, so we can replace the zeros with nan after that we will drop nan values .

```
print(f"Number of rows with x == 0: {sum(diamonds_data.x==0)} ")
print(f"Number of rows with y == 0: {sum(diamonds_data.y==0)} ")
print(f"Number of rows with z == 0: {sum(diamonds_data.z==0)} ")
print(f"Number of rows with depth == 0: {sum(diamonds_data.depth==0)} ")

Number of rows with x == 0: 3
Number of rows with y == 0: 2
Number of rows with z == 0: 9
Number of rows with depth == 0: 0
```

```
\label{eq:diamonds_data['x','y','z']} = diamonds_data[['x','y','z']].replace(0,np.NaN)
# Treatment of data for missing values
diamonds_data.dropna(inplace=True)
diamonds data.isnull().sum()
carat
cut
color
clarity
depth
table
price
dtype: int64
Q1 = diamonds data.price.quantile(0.25) #detecting outliers
Q3 = diamonds_data.price.quantile(0.75)
print(Q1,Q3)
IQR = Q3 - Q1
IQR
3297.0 5367.25
2070.25
lower limit = Q1 - 1.5*IQR
upper limit = Q3 + 1.5*IQR
lower limit, upper limit
(191.625, 8472.625)
```

diamonds_data_no_outlier = diamonds_data[(diamonds_data.price>lower_limit)&(diamonds_data.price<upper_limit)] #removing outliers
diamonds_data_no_outlier.head()</pre>

	carat	cut	color	clarity	depth	table	price	X	У	Z
0	0.23	Ideal	Е	SI2	61.5	55.0	326	3.95	3.98	2.43
1	0.21	Premium	Е	SI1	59.8	61.0	326	3.89	3.84	2.31
2	0.23	Good	Е	VS1	56.9	65.0	327	4.05	4.07	2.31
3	0.29	Premium	- 1	VS2	62.4	58.0	334	4.20	4.23	2.63
4	0.31	Good	J	SI2	63.3	58.0	335	4.34	4.35	2.75

ONE HOT ENCODING

```
from sklearn.preprocessing import OneHotEncoder
ohe = OneHotEncoder()
new_diamonds = diamonds data no outlier.copy()
data_encoder = ohe.fit_transform(new_diamonds[['cut','color','clarity']])
data = pd.DataFrame(data_encoder.toarray())
new diamonds.drop(['cut','color','clarity'],axis=1,inplace=True)
#To use join method we have to have the same index in the both data frames.
print(new diamonds.shape)
new diamonds.index = np.arange(0,17848)
(17848, 7)
diamonds = new_diamonds.join(data)
diamonds.head()
   carat depth table price
    0.23
         61.5
              55.0
    0.21
         59.8
              61.0
         56.9
              65.0
    0.23
                                                 0.29
         62.4
              58.0
```

DATA SCALING

```
from sklearn.preprocessing import StandardScaler
scale = StandardScaler()
data scale = scale.fit_transform(diamonds[['carat','depth','table','x','y','z']])
scaling = pd.DataFrame(data_scale,columns=['carat','depth','table','x','y','z'],index=diamonds.index)
scaling.head()
                depth
                         table
      carat
  -2.514084
            -0.211919 -1.239890 -3.033936 -3.034227 -3.045101
   -2.585836 -1.289165 1.435287 -3.115851 -3.228099 -3.308775
2 -2.514084 -3.126820 3.218739 -2.897410 -2.909595 -3.308775
  -2.298828
             4 -2.227076
             0.928694 0.097699 -2.501486 -2.521851 -2.341968
scale diamond = diamonds.copy()
scale_diamond.drop(['carat','depth','table','x','y','z'],axis=1,inplace = True)
#To use join method we have to have the same index in the both data frames.
print(scale_diamond.shape)
scale_diamond.index = np.arange(0,17848)
(17848, 21)
```

DATA SCALING

diamonds = scaling.join(scale_diamond)
diamonds.head()

	carat	depth	table	x	У	z	price	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
0	-2.514084	-0.211919	-1.239890	-3.033936	-3.034227	-3.045101	326	0.0	0.0	1.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0
1	-2.585836	-1.289165	1.435287	-3.115851	-3.228099	-3.308775	326	0.0	0.0	0.0	1.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0
2	-2.514084	-3.126820	3.218739	-2.897410	-2.909595	-3.308775	327	0.0	1.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0
3	-2.298828	0.358387	0.097699	-2.692622	-2.688027	-2.605643	334	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0
4	-2.227076	0.928694	0.097699	-2.501486	-2.521851	-2.341968	335	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	1.0	0.0

4

Split diamond data into train and test set

```
from sklearn.model_selection import train_test_split

train_set ,test_set = train_test_split(diamonds,test_size = 0.2,random_state = 42 )
```

Split diamond data into data & labels

```
train_diamonds = train_set.drop(['price'],axis=1)
train_labels = train_set['price']
test_diamonds = test_set.drop(['price'],axis=1)
test_labels = test_set['price']
```

```
from sklearn.metrics import mean_squared_error
from sklearn.metrics import mean_absolute_error

def MAE_MSE_RMSE(model,diam_data,labels):
    y_pred = model.predict(diam_data)

MAE = mean_absolute_error(labels, y_pred)
    print(f'Mean Absolute Error MAE = {MAE}')

MSE = mean_squared_error(labels, y_pred)
    print(f'Mean Squared Error MSE = {MSE}')

RMSE = np.sqrt(MSE)
    print(f'Root Mean Squared Error RMSE = {RMSE}')
```

Regression model

```
from sklearn.linear_model import LinearRegression

lin_reg_model = LinearRegression()
lin_reg_model.fit(train_diamonds,train_labels)

LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)
```

Evaluate model: MAE & MSE & RMSE:

```
MAE_MSE_RMSE(lin_reg_model,test_diamonds,test_labels)
```

Mean Absolute Error MAE = 431.5976857965423 Mean Squared Error MSE = 310780.5499288162 Root Mean Squared Error RMSE = 557.4769501323048

Random forest model:

Evaluate model: MAE & MSE & RMSE:

MAE_MSE_RMSE(rand_reg_model,test_diamonds,test_labels)

Mean Absolute Error MAE = 271.35722178538083 Mean Squared Error MSE = 151037.7730677531 Root Mean Squared Error RMSE = 388.63578459497666

DecisionTree Regressor model:

Evaluate model MAE & MSE & RMSE

MAE_MSE_RMSE(dec_reg_model,test_diamonds,test_labels)

Mean Absolute Error MAE = 366.30322128851543 Mean Squared Error MSE = 280292.79586834734 Root Mean Squared Error RMSE = 529.4268560135076

Fine Tuning The model

```
    Fine Tuning The model

  will fine tune for Random forest model beacuse there have best RMSE
 [47] from sklearn.model_selection import GridSearchCV
 [48] param_grid ={'n_estimators':[600,750, 1000], 'max_features':[10,15,20]}
 [49] gridsearch_rand_reg_model = RandomForestRegressor()
        grid_search = GridSearchCV(gridsearch_rand_reg_model,param_grid,cv=5,scoring='neg_mean_squared_error',return_train_score=True)
       grid_search.fit(train_diamonds,train_labels)
       GridSearchCV(cv=5, error_score=nan,
                    estimator=RandomForestRegressor(bootstrap=True, ccp_alpha=0.0,
                                                   criterion='mse', max_depth=None,
                                                   max_features='auto',
                                                   max_leaf_nodes=None,
                                                   max samples=None,
                                                   min_impurity_decrease=0.0,
                                                   min_impurity_split=None,
                                                   min_samples_leaf=1,
                                                   min_samples_split=2,
```

Fine Tuning The model

```
[51] grid_search.best_params_
    {'max_features': 15, 'n_estimators': 750}
[52] grid_search.best_estimator_
     RandomForestRegressor(bootstrap=True, ccp_alpha=0.0, criterion='mse',
                           max depth=None, max features=15, max leaf nodes=None,
                           max samples=None, min impurity decrease=0.0,
                           min_impurity_split=None, min_samples_leaf=1,
                           min_samples_split=2, min_weight_fraction_leaf=0.0,
                           n_estimators=750, n_jobs=None, oob_score=False,
                           random_state=None, verbose=0, warm_start=False)
[54] grid_search_random_forest_model = RandomForestRegressor(n_estimators=750,max_features=15)
     grid search random forest model.fit(train_diamonds,train_labels)
     RandomForestRegressor(bootstrap=True, ccp_alpha=0.0, criterion='mse',
                           max depth=None, max features=15, max leaf nodes=None,
                           max_samples=None, min_impurity_decrease=0.0,
                           min_impurity_split=None, min_samples_leaf=1,
                           min_samples_split=2, min_weight_fraction_leaf=0.0,
                           n_estimators=750, n_jobs=None, oob_score=False,
                           random state=None, verbose=0, warm start=False)
```

Evaluate model MAE & MSE & RMSE

▼ Evaluate model

MAE & MSE & RMSE

```
[56] MAE_MSE_RMSE(grid_search_random_forest_model,test_diamonds,test_labels)
```

Mean Absolute Error MAE = 204.5345131194146 Mean Squared Error MSE = 138078.0322142499 Root Mean Squared Error RMSE = 371.58852540713616