What is "Design"?

- ➤ Act of formulating a **plan** for the satisfaction of a **specific need**
- > Results in the creation of a
 - o Product
 - o Process
 - o Strategy
 - A form (shape or geometry)
 - o A game

Product design

- ➤ If design leads to creation of a **product** then it should be
 - o Functional
 - o Safe
 - o Reliable
 - o Usable
 - o Competitive
 - o Manufacturable
 - o Marketable
 - o Ergonomical
- ➤ All these aspects should be therefore considered

Resources required

- ➤ Design is an **innovative** and **creative** process and involves considerable **decision making**
- **≻** Requires
 - o Creativity
 - o Communication skills
 - o Problem solving skills
 - o Analysis capabilities
 - o Knowledge of first principles
- ➤ Multi-stage process and considerable team work involving experts from different disciplines

Identification of need

- This step is highly related to the practical aspects and many times statements are vague
- **➤** Examples
 - Reduce vibration in an automobile
 - Reduce noise levels from the tire
 - A low cost car
 - Folding a letter for inserting in an envelope
 - Transfer a patient from operation table to stretcher with least discomfort
 - Place a satellite in an orbit

Definition of the problem

- ➤ More specific definition of the need is evolved through proper specifications
- ➤ Considerations
 - o Input and out parameters
 - Characteristics and limitation on space, weight and cost
 - o Feasibility of manufacturing
 - Available infrastructure
- Example: Weight of the satellite and orbit details

Synthesis

- > Bringing out a conceptual design
- ➤ Different possibilities (**solutions**) are identified and explored
- These are **analyzed** at a preliminary level
- > Examples:
 - o A three stage versus four stage launch vehicle
 - o Solid propellant or liquid propellant
 - o Three cylinder versus four cylinder engine
 - o Belt drive versus gear drive for speed reduction
 - o Configuration: Engine in the front versus in the rear

Analysis and optimization

- Design of parts and components
 - Sizing of the parts so that they will not fail

Evaluation

- Final proof of the successful design through
 - Testing of prototype
 - Checking the performance of the system

Presentation

Final step in which design is communicated to stake holders

Course contents

Topic

- Introduction to design of systems and machine elements, Modes of failure
- ❖ Yield criteria: Tresca, von-Mises, Mohr and modified Mohr, Stress concentration
- ❖ Failure by instability: Euler and Johnson Columns
- ❖ Fatigue failure: SN-diagram, Modification factors, Fluctuating loading, Modified Goodman, Combined loading
- Helical compression springs, Leaf springs
- Design of bolted joints and welded joints
- ❖ Spur and Helical gears
- Rolling contact bearings
- **❖** Shafts
- Probabilistic approach to design
- ❖ Introduction to use of techniques like FEM for design

Schedule

Date	Lab/class	Topic
4-Jan	Class	Introduction, Bending in two planes
8-Jan	Class	Euler buckling
9-Jan	Class	Johnson buckling
11-Jan	Class	Failure criteria (Tresca/von-Mises)
15-Jan	Class	Failure criteria (Columb-Mhor)
16-Jan	Class	Stress concentration
18-Jan	Lab-1	Buckling + Yield criteria
22-Jan	Class	Design for Fatigue
23-Jan	Class	Design for Fatigue
25-Jan	Class	Design for Fatigue
29-Jan	Class	Design for Fatigue
30-Jan	Class	Design of springs
1-Feb	Lab-2	Fatigue
5-Feb	Class	Design of springs
6-Feb	Class	Design of springs
8-Feb	Class	Design of bolted joints
12-Feb	Class	Design of bolted joints
13-Feb	Class	Design of bolted joints
15-Feb	Lab-3	Design of springs

Date	Lab/class	Topic
5-Mar	Class	Design of bolted joints (shear)
6-Mar	Class	Design of Welded joints
8-Mar	Lab-4	Bolted Joints
12-Mar	Class	Rolling contact bearing
13-Mar	Class	Rolling contact bearing
15-Mar	Class	Rolling contact bearing
19-Mar	Class	Design of gears
20-Mar	Class	Design of gears
22-Mar	Lab-5	Welded Joint/Bearing selection
26-Mar	Class	Design of gears
27-Mar	Class	Design of gears
29-Mar	Lab-6	Spur Gear Design
2-Apr	Class	Brakes and clutches
3-Apr	Class	Brakes and clutches
5-Apr	Lab-7	Helical Gear Design
9-Apr	Class	Brakes and clutches
10-Apr	Class	Shaft design
12-Apr	Lab-8	Brakes and clutches
16-Apr	Class	Shaft design
17-Apr	Class	Probabilistic design
19-Apr	Lab-9	Shaft Design

