CS446 Introduction to Machine Learning (Fall 2013) University of Illinois at Urbana-Champaign http://courses.engr.illinois.edu/cs446

LECTURE 12: MULTICLASS CLASSIFICATION

Prof. Julia Hockenmaier juliahmr@illinois.edu

Last lecture's key concepts

Review of SVMs

Dealing with outliers: Soft margins

Soft margin SVMs and Regularization

SGD for soft margin SVMs

Hinge loss and SVMs

$$L_{\text{hinge}}(y^{(n)}, f(\mathbf{x}^{(n)})) = \max(0, 1 - y^{(n)}f(\mathbf{x}^{(n)}))$$

Case 0: f(x) = 1
x is a support vector
Hinge loss = 0
Case 1: f(x) > 1
x outside of margin
Hinge loss = 0
Case 2: 0 < yf(x) < 1:
x inside of margin
Hinge loss = 1-yf(x)
Case 3: yf(x) < 0:
x misclassified
Hinge loss = 1-yf(x)

(Hard) SVMs

If the training data is linearly separable, there will be a decision boundary $\mathbf{w}\mathbf{x} + b = 0$ that perfectly separates it, and where all the items have a functional distance of at least 1: $\mathbf{y}^{(i)}(\mathbf{w}\mathbf{x}^{(i)} + b) \ge 1$

We can find \mathbf{w} and \mathbf{b} with a quadratic program:

$$\underset{\mathbf{w},b}{\operatorname{argmin}} \frac{1}{2} \mathbf{w} \cdot \mathbf{w}$$

$$\underset{\mathbf{w},b}{\mathbf{w},b} \quad 2$$

$$subject \ to$$

$$y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1 \ \forall i$$

Soft margin SVMs

$$\underset{\mathbf{w},b,\xi_{i}}{\operatorname{argmin}} \frac{1}{2} \mathbf{w} \cdot \mathbf{w} + C \sum_{i=1}^{n} \xi_{i}$$

$$subject \ to$$

$$\xi_{i} \ge 0 \ \forall i$$

$$y_{i}(\mathbf{w} \cdot \mathbf{x}_{i} + b) \ge (1 - \xi_{i}) \forall i$$

 ξ_i (slack): hinge loss of \mathbf{x}_i

C (cost): how much do we have to pay for misclassifying \mathbf{x}_i We want to minimize $C\sum_i \xi_i$ and maximize the margin C controls the tradeoff between margin and training error

Soft SVMs = Regularized Hinge Loss:

$$\underset{\mathbf{w},b}{\operatorname{argmin}} \frac{1}{2} \mathbf{w} \cdot \mathbf{w} + C \sum_{i=1}^{n} L_{hinge}(y^{(n)}, \mathbf{x}^{(n)})$$

We minimize both the l2-norm of the weight vector $||\mathbf{w}|| = \sqrt{\mathbf{w}}\mathbf{w}$ and the hinge loss.

Minimizing the norm of w is called regularization.

Multiclass Classification

Multiclass classification

Assign one of *k* labels to the input {Spam, Conferences, Vacations,...}

Decision trees

Decision tree

Decision trees can be easily applied to multiclass problems

Linear classifiers for multi-class classification

Using binary classifiers:

- One vs. all: one binary classifier for each class Pick the one with the highest score f(x)
- All vs. all: one binary classifier for each pair of classes; pick the majority vote

One-vs.-all

Train K (or K-1) classifiers $f_k(x)$

- One binary classifier $f_k(\mathbf{x})$ for each class k
- Negative examples: drawn from all other K-1 classes

Testing:

- Pick class $k^* = \operatorname{argmax}_k f_k(\mathbf{x})$ Which classifier is most confident about \mathbf{x} ?

It's also possible to train K-1 classifiers for classes 1..K-1, and assign class K if $f_k(\mathbf{x}) < 0$ for all $k \in \{1...K-1\}$

One-vs.-all: what can go wrong?

Green region is in both C₁ and C₂

All-vs.-all

Train $K\times(K-1)$ classifiers $f_{kl}(x)$:

- One binary classifier $f_{kl}(\mathbf{x})$ for each pair of classes k, l (trained on the examples from classes k, l)
- Problem: sparsity
 (few training examples for each classifier)

Testing:

- Pick class k^* by majority vote: $k^* = \operatorname{argmax}_k \mid k : f_{k'l'}(\mathbf{x}) = k \mid$ $\mid k : f_{k'l'}(\mathbf{x}) = k \mid$ = #classifiers that prefer k over some other class l

All-vs.-all: what can go wrong?

Green region is not in any class.

A *single* K-class discriminant function, consisting of K linear functions of the form $f_k(\mathbf{x}) = \mathbf{w}_k \mathbf{x} + \mathbf{w}_{ko}$

Assign
$$k$$
 if $f_k(\mathbf{x}) > f_j(\mathbf{x})$ for all $j \neq k$

Decision boundary between C_k and C_j :

$$f_k(\mathbf{x}) = f_j(\mathbf{x})$$

$$\mathbf{w}_k \mathbf{x} + \mathbf{w}_{ko} = \mathbf{w}_j \mathbf{x} + \mathbf{w}_{jo}$$

$$(\mathbf{w}_k - \mathbf{w}_j) \mathbf{x} + (\mathbf{w}_{ko} - \mathbf{w}_{jo}) = \mathbf{0}$$

Each class is associated with a convex region in the example space:

Task: Learn K linear functions of the form

$$f_k(\mathbf{x}) = \mathbf{w}_k \mathbf{x} + \mathbf{w}_{ko}$$

such that for each training example (\mathbf{x}, k) ,

$$f_k(\mathbf{x}) > f_j(\mathbf{x}) \text{ for all } j \neq k$$

How do we train the \mathbf{w}_k s?

What are the negative examples?

Binary classification again...

```
With Y = \{+1, -1\}: f(x) = sign(wx)
Since Y = \{+1, -1\}, this can be rewritten as
                    f(\mathbf{x}) = \operatorname{argmax}_{\mathbf{v} \in \mathbf{Y}}(\mathbf{w} \cdot \mathbf{y} \mathbf{x})
Note that \mathbf{w} \cdot \mathbf{y} \mathbf{x} contains the class label y.
Think of yx as a class-sensitive feature mapping.
We can generalize this to any class-sensitive
feature mapping F(y,x): Y \times X \rightarrow R^d
  This means that features can now depend on the class label y
```

Class-sensitive features

Idea: Let the value of feature x_j depend on y.

Task: Document Classification

X = Documents (sets of words)

Y = Ktopics

Class-dependent TF-IDF scores:

- Term frequency $tf(j, \mathbf{x})$: frequency of word j in \mathbf{x}
- Class-dependent document frequency *df*(j, k) #training documents that are *not* of topic k in which word j occurs
- m = total number of training documents

TF-IDF(j,x,y)=
$$tf(j,x) \times \log(m/df(j,y))$$

Multi-vector representation

(aka Kesler construction) Idea: Map n-dimensional feature vectors to (sparse) $K \times n$ -dimensional vector $F(y, \mathbf{x})$ in which each class corresponds to n dimensions:

$$Y = \{1...K\}, X = R^n F: X \times Y \rightarrow R^{Kn}$$

$$F(1,\mathbf{x}) = [x_1,...,x_n, 0, ...,0]$$

$$F(i,\mathbf{x}) = [0, ...,0, x_1,...,x_n, 0, ...,0]$$

$$F(K,\mathbf{x}) = [0, ...,0, x_1,...,x_n]$$

Now
$$\mathbf{w} = [\mathbf{w}_1; ...; \mathbf{w}_K]$$
, and $\mathbf{w}F(y, \mathbf{x}) = \mathbf{w}_y \mathbf{x}$

Multiclass classification

Learning a multiclass classifier: Find \mathbf{w} such that for all training items $(\mathbf{x}, \mathbf{y}_i)$

$$y_i = \operatorname{argmax}_y \mathbf{w} F(y, \mathbf{x})$$

Equivalently, for all (\mathbf{x}, y_i) and all $k \neq i$:

$$\mathbf{w}F(y_i,\mathbf{x}) > \mathbf{w}F(y_k,\mathbf{x})$$

So what are the negative examples?

We don't have negative examples anymore. Instead, we want the score of the correct class, $\mathbf{w}F(y_i,\mathbf{x})$, to be higher than the scores of all other classes for that item:

$$\begin{aligned} \mathbf{w}F(y_i, \mathbf{x}) &> \mathbf{w}F(y_k, \mathbf{x}) \\ \text{Or: } \mathbf{w}F(y_i, \mathbf{x}) &- \mathbf{w}F(y_k, \mathbf{x}) > o \\ \mathbf{w}[F(y_i, \mathbf{x}) - F(y_k, \mathbf{x})] &> o \end{aligned}$$

In the multi-vector representation:

$$F(y_i,x) - F(y_k,x) = [o;...o; +x; o;...o; -x; o;...o;]$$

Loss functions for multiclass classification

o-1 loss:

$$l(y,f(x)) = 1 \text{ if } y \neq f(x)$$

In general, we can use a cost-sensitive loss function (which we can define ourselves, depending on domain knowledge):

$$l(y,y') > o \text{ if } y \neq y'$$

Generalized hinge loss

We return $h(\mathbf{x}) = \operatorname{argmax}_{\mathbf{y}} \mathbf{w} F(\mathbf{y}, \mathbf{x})$ For any class y (including the correct one): $\mathbf{w} F(\mathbf{y}, \mathbf{x}) \leq \mathbf{w} F(h(\mathbf{x}), \mathbf{x})$

This gives the generalized hinge loss for multiclass classification. For (x,y) and weight vector w:

loss(w, (x,y)) =
$$\max_{y'} (l(y,y') + w(F(y',x) - F(y,x))$$

Interpretation: The score of the correct label y has to be greater than the score of any other label y' by at least l(y,y')

Multiclass SVM

Training data: $(\mathbf{x}^{(1)}, \mathbf{y}^{(1)})...(\mathbf{x}^{(m)}, \mathbf{y}^{(m)})$

Parameters:

Regularization parameter $\lambda > 0$

Loss function l: $Y \times Y \rightarrow R_+$

Class-sensitive feature mapping F

Objective function: find w*

$$\mathbf{w}^* = \min_{\mathbf{w}} (\lambda ||\mathbf{w}||^2 + \frac{1}{m} \sum_{i=1}^{n} \max_{y'} (l(y', y) + \mathbf{w}(F(y', \mathbf{x}^{(i)}) - F(y^{(i)}, \mathbf{x}^{(i)}))$$

Today's key concepts

Multiclass classification
Relationship to linear classifiers
Class-sensitive features
Generalized hinge loss
Multiclass SVMs