AD-A147 490

TECHNICAL REPORT BRL-TR-2597

A VIRIAL EQUATION OF STATE OPTION FOR THE TIGER COMPUTER PROGRAM

Aivars K.R. Celmins

October 1984

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

US ARMY BALLISTIC RESEARCH LABORATORY ABERDEEN PROVING GROUND, MARYLAND

84 11 09 011

Destroy this report when it is no longer needed. Do not return it to the originator.

Additional copies of this report may be obtained from the National Technical Information Service, U. S. Department of Commerce, Springfield, Virginia 22161.

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute indorsement of any commercial product.

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM			
	3 RECIPIENT'S CATALOG NUMBER			
TECHNICAL REPORT BRL-TR-2597 FD, -7493				
4 TITLE (and Substitle)	S TYPE OF REPORT & PERIOD COVERED			
A Virial Equation of State Option for the TIGER Computer Program				
	6 PERFORMING ORG REPORT NUMBER			
7 AUTHOR(*)	8 CONTRACT OR GRANT NUMBER(*)			
Alvars Celmiņš				
9 PERFORMING ORGANIZATION NAME AND ADDRESS	10 PROGRAM ELEMENT, PROJECT TASK AREA & WORK UNIT NUMBERS			
US Army Ballistic Research Laboratory	1			
ATTN: AMXBR-IBD	1L161102AH43			
Aberdeen Proving Ground, MD 21005-5066	12 REPORT DATE			
11 CONTROLLING OFFICE NAME AND ADDRESS				
US Army Ballistic Research Laboraroty ATTN: AMXBR-OD-ST	October 1984			
Aberdeen Proving Ground, MD 21005-5066	67			
14 MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	15 SECURITY CLASS (or this report)			
1	UNCLASS IFIED			
	15. DECLASSIFICATION/DOWNGRADING			
16 USTRIBUTION STATEMENT (of this Report)				
Approved for Public Release; Distribution Unlimited.				
17 DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different to	on Report)			
IN DISTRIBUTION STATEMENT (AS AN ASSESSMENT OF THE PROPERTY OF	_			
18 SUPPLEMENTARY NOTES				
]				
19 KEY WORDS (Con Inue on reverse side if necessary end identify by block number	n			
	id sphere approxiration			
Bennard Canter January	-ideal gas			
Series expansion of virial coefficient	·			
20. ARSTRACT (Continue on reverse side if necessary and identify by block number	yker			
This report describes a truncated virial equation of state option for the				
TIGER computer program which computes thermodynamic properties of systems of				
gases, liquids and solids. The second virial coefficients of the added				
equation is based on Lennard-Jones (6-12) intermolecular potential, whereas				
the third virial coefficient is derived from a simplified rigid sphere				
approximation. This report provides an outline of the derivation of the pertinent formulas and a listing of the added subroutines. The listing				
(Continued on reverse side)	antines. Int. 11251118			

DD FORM 1473 EDITION OF THOU 65 IS OSSOLETE

THE RESERVE

UNCLASSIFIED

UNCLASSIFIED

TABLE OF CONTENTS

	t e e e e e e e e e e e e e e e e e e e	age
ı.	INTRODUCTION	5
2.	PRINCIPAL RESULTS	5
3.	USER'S GUIDE FOR THE SUBROUTINE LJ612	8
4.	EXAMPLE OF A COMPUTATION	10
5.	DERIVATION OF PRINCIPAL FORMULAS	10
6.	COMPUTATION OF SECOND VIRIAL COEFFICIENTS	14
7.	COMPUTATION OF THIRD VIRIAL COEFFICIENTS	17
8.	SUMMARY AND CONCLUSION	18
	ACKNOWLE DGEMENT	19
	REFERENCES	20
	APPENDIX A. Listing of the Subroutine LJ612	21
	APPENDIX B. Listing of the Subroutine LJBS	.35
	APPENDIA C. Sample Output	41
	APPENDIX D. Interpolation Formulas	
	DICTOIDUTION LIST	

A1

INTRODUCTION

This report describes a supplement to the TIGER computer program. latter is a program for the calculation of thermodynamic properties of nonideal systems of specified atomic compositions containing gaseous, liquid and solid phases with known equations of state. The TIGER program version that is documented in Ref. 1 has options to use for the gaseous constituents either the ideal equation of state or one of three nonideal equations. latter three are called BKW (Becker, Kistiakowsky and Wilson), JCZl and JCZ2 (Jacobs, Cowperthwaite and Zwisler), respectively, and defined in Ref. 1. The present report describes a modification of the TIGER program which permits one to also use a fifth gaseous state equation, namely, a truncated virial equation in which the second virial coefficient is determined from Lennard-Jones (6-12) potential parameters. The added equation of state subroutine has been given the name LJ612 in order to indicate its relation to the Lennard-Jones potential. The principal features of the added equation of state are described in Section 2, and control cards that activate the routine LJ612 are discussed in Section 3. Section 4 gives a sample calculation. Details of the derivation of the pertinent equations and formulas are given in Sections 5, 6 and 7. These details should be of interest for users of the LJ612 option if the basic equations are modified, for instance, for numerical expediency. In order to facilitate such a modification the subroutines LJ612 and LJBS (an auxiliary routine) are listed in Appendices A and B, respectively, with numerous explanatory comments. These comments make the listing of LJ612 also useful as a guide for the preparation of other nonideal equations of state routines. Section 8 contains a summary and conclusion.

In order to use the subroutine LJ612 in the TIGER program, the subroutine STATEG must be changed as described in Ref. 1, p. III-C-348. That change merely increases by one the number of available gaseous equations of state and includes a call to the added subroutine LJ612 at the proper place. No other changes in the TIGER program are needed.

2. PRINCIPAL RESULTS

The modifications of the TIGER program permit one to use the following type of equation of state for gases:

$$p = \frac{RT}{V} \phi(V,T) \tag{2.1}$$

¹M. Cowpertwaite and W. M. Zwisler, "TIGER Corputer Program Documentation," Stanford Research Institute Publication 2106, January 1973.

with

$$\varphi(\widetilde{V},T) = 1 + \frac{B(T)}{\widetilde{V}} + \frac{C}{\widetilde{V}^2} . \qquad (2.2)$$

In these equations, p (Pa) is the pressure, R = 8.3143 J/(K·mol) is the universal gas constant, T (k) is temperature, \check{V} (m³/mol) is the molar volume, \updownarrow is the imperfection parameter, B (m³/mol) is the second virial coefficient, and C (m6/mol²) is the third virial coefficient. The formula (2.2) for \updownarrow is called a truncated virial form because it ran be considered as the first three terms of an infinite series expansion with terms of the type $A_{\check{V}}(T)/\check{V}^{\check{V}}$. The second virial coefficient B(T) in Eq. (2.2) is computed assuming that the intermolecular forces have the empirical potential function

$$\phi(r) = 4 \varepsilon [(\sigma/r)^{12} - (\sigma/r)^{6}]$$
 (2.3)

where r (m) is the distance between polecules, and ε (J) and σ (m) are parameters characteristic of each gas (Ref. 2, p. 32). The function defined by Eq. (2.3) is called the Lennard-Jones (6-12) potential. σ is that v^a us of r f.r which $\phi(r) = 0$, and ε is the maximum energy of attraction (or dention fix) potential well) which occurs at $r = 2^{1/6}\sigma = 1.12~\sigma$. Typical values of σ are around 3.5·10⁻¹⁰ m. The parameter ε enters the present calculations only in the ratio ε/k , where $k = 1.38054 \cdot 10^{-22}~J/K$ is the Boltzmann constant. Typical values of the ratio ε/k , are around 300 K.

For a single gas with giver σ and ε/k the second virial coefficient B(T) is calculated as follows. (Ref. 2, p. 162 ff.,. First, one defines a dimensionless reduced temperature \widetilde{T} γ

$$\overset{\star}{T} = T \ k/\varepsilon \tag{2.4}$$

and a reduced dimensionless coefficient B by

$$\overset{\star}{B} = B/b_{0}(\sigma) \tag{2.5}$$

where

²J.O. Hirschfelder, C.P. Curtiss and R.B. Bird, "Molecular Theory of Cases and Liquids," John Wiley and Sons, New York, 1954.

$$b_{o}(\sigma) = \frac{2}{3} \pi \tilde{N} \sigma^{3}$$
, (2.6)

and $\tilde{N}=6.02252\cdot 10^{23}$ mol⁻¹ is the Avogadro number. \tilde{B} is for a given intermolecular potential function of Lennard-Jones type a unique function of \tilde{T} . It can be calculated by a series expansion and it is tabulated for the Lennard-Jones (6-12) potential in Ref. 2, p. 1114 ff. The relation between \tilde{B} , \tilde{T} , σ and ε is in terms of the function \tilde{B} as follows

$$B(T) = b_0(\sigma) \cdot \dot{B}(T k/\varepsilon) \qquad . \tag{2.7}$$

For gas mixtures the computation of B(T) is modified such that in Eq. (2.7) one uses for σ and ε averages of the parameters of pairs of individual constituents, and computes the final B(T) by averaging over all pairs. Details of the calculation of B(T) are given in Sections 5 and 6.

A corresponding computation of the third virial coefficient C for gases with Lennard-Jones potential is described on Ref. 2, pp. 150 ff., 170 ff., 228 ff. and 1119. The algorithm is complicated and the resulting C is not accurate. Therefore, instead of using the Lennard-Jones potential, the third virial coefficient computation for a single gas is for the present task based on a rigid sphere approximation from Ref. 2, p. 157:

$$C(\sigma) = \frac{5}{8} b_0^2(\sigma) \cdot 0.81^6$$
, (2.8)

where $b_0(\sigma)$ is given by Eq. (2.6). To simplify further, the third virial coefficient for mixtures of gases is computed by a simple averaging of the individual values of C, described in Section 5. Hirschfelder et al. 2 p. 153, derive a more complicated formula but considering the large uncertainties of the result, the simpler averaging was deemed to be adequate. This computation of the third virial coefficient was suggested by E. Freedman and it is implemented in the BLAKE computer program. The factor 0.816 is empirical and suggested in Ref. 2, p. 157. It may be replaced by a different factor, as described in Section 3.

³E. Freedman "BLAKE - a Thermodynamice Code Based on TIGER: User's Guide and Manual," AR BRL-TR-02411, July 1982. AD# A121259.

In summary, the supplemented TIGER program can be used with the equation of state (2.1) and (2.2) for gases. The user should supply for each gaseous constituent of the system the proper values of σ and ε of the Lennard-Jones (6-12) potential parameters. If such are not supplied and also not already stored in the TIGER file of material constants, then the LJ612 routine uses the following default values:

$$\sigma = 3.5 \cdot 10^{-10} \text{ m}$$

(2.9)

 $\varepsilon/k = 300 \text{ K}$

3. USER'S GUIDE FOR THE SUBROUTINE LJ612

The virial equation of state supplement LJ612 of the TIGER program can be activated by the same type of control cards as the other four equations of state. Particulars of input data and order are provided in Ref. 1. This section supplements that reference, particularly its Volume IV, 'User's Guide of the TIGER Computer Program."

The instruction to use the LJ612 equation of state is given by a GEOS-card which has the format

GEOS, LJ612

michalicitation and the additional and a second and the second and

(see Ref. 1, IV-C-10-11). The card instructs the TIGER program to use the LJ612 equation of state for all computations until another GEOS card is encountered in the input. Therefore, it should be placed in the input deck before any of the instruction cards that initiate a computation, that is, before POINT, ISOLINE, GRID, EXPLOSION, C-J CONDITION or HUGONIOT cards.

The empirical factor 0.81 that enters Eq. (2.8) for the third virial coefficient can be changed by a SET-card. (See Ref. 1, IV-C-18). The card has the format

SET, LJ612, SFACT, a

where "a" is the number that replaces the value 0.81 in Eq. (2.8). For instance, if a = 0, then C = 0 and the virial Eq. (2.2) is truncated to two terms. The SET-card should of course precede all the calculation instruction cards listed above. Once the factor has been set then it remains in effect for the particular TIGER run until changed by another SET-

card.

The Lennard-Jones (6-12) potential parameters σ and ε/k are provided by a STG-card for each gaseous contituent. These cards are used in a TIGER run that updates (replaces) the TIGER file containing material constants. The input and instruction cards for such a run are described in Ref. !, IV-C-24 ff. For a gaseous constituent with the designation "name" the input consists of the following sequence (see Ref. !, IV-C-25):

CONSTITUENT, name, GAS
STR, name, GAS, 1, . . .
STR, name, GAS, 2, . . .
STR, name, GAS, 3, . . .
STG, LJ612, name, σ, ε/k

Other STG-cards specifying constants for the BKW, JC22 or JC23 equations of state may follow or precede the STG,LJ612-card. The next card after the STG-cards is another CONSTITUENT-card. The value of σ must be entered in $10^{-10}\,$ m (in ångströms) and the value of ϵ/k should be expressed in kelvins. An example of a STG-card is

STG, LJ612, H20, 2.79, 542.5

indicating that for the constituent called H2O the Lennard-Jones potential parameters are $\sigma=2.79\cdot 10^{-10}$ m and $\epsilon/k=542.5$ K. If either σ or ϵ/k is negative or zero in the STG-card, then the corresponding default value ($\sigma=3.5\cdot 10^{-10}$ m, $\epsilon/k=300$ K) is stored in the library file instead of the negative or zero value from the card. If the library file does not contain values of the Lennard-Jones potential parameters for a constituent, then default values are generated as needed by the subroutine LJ612 at run time. (That is, if the LJ612 is activated by a GEOS,LJ612-card and the constituent is part of the system that is evaluated.) The contents of the library file are not affected by such computations.

More details of the structure and operation of the subroutine LJ612 and the auxiliary routine LJBS are provided by comments in the listings of the routines in Appendices A and B, respectively.

4. EXAMPLE OF A COMPUTATION

We chose us an example for the operation of the LJ612 equation of state routine the same problem as in Ref. 1, p. IV-E-17 ff. The present input differs from that in Ref. 1 only by the GEOS-card. The output is given in Appendix C. Comparison of the output with that of Ref. 1 shows two types of differences. First, one observes the expected difference in values for temperature, pressure and other thermodynamic variables, because a different equation of state was used. However, in addition to these changes, and, possibly masking the effect of the equation of state, there is also a change of the composition of the gas. This change is not a consequence of the new equation of state but rather of the evolution of the TIGER library data between the publication of Ref. 1 and its present version.

5. DERIVATION OF PRINCIPAL FORMULAS

We consider an equation of state of the form

$$p = \frac{RT}{\widetilde{V}} \phi(\widetilde{V}, T)$$
 (5.1)

where

$$\phi(\widetilde{V},T) = 1 + \frac{B(T)}{\widetilde{V}} + \frac{C}{\widetilde{V}^2} . \qquad (5.2)$$

In the TIGER program, the molar volume \widetilde{V} is not directly used as a variable. Instead, it may be calculated from the following relations (Ref. l, p. I-B-16):

$$\widetilde{V} = \frac{1}{n} V = \frac{1}{n} \frac{M_g}{o} = \frac{1}{n} \frac{M_o}{o}$$
 (5.3)

where n is the number of moles, V is the gas volume, M_g is the mass of the gas, ρ is its density and M_o is the mass of the mixture. The density $\hat{\rho}$ is defined as the mass of the mixture divided by the volume of the gas. The quantities n, M_o and $\hat{\rho}$ are TIGER variables from which \tilde{V} may be computed. Let the system have s gaseous constituents with mole numbers n_1 , $i=1,\ldots,s$. Then

$$n = \sum_{i=1}^{S} n_i \qquad (5.4)$$

The n_i are also TIGER variables. The equation of state is in terms of these variables.

$$p = R T n \frac{\hat{\rho}}{M_o} \Phi$$
 (5.5)

with

$$\phi = \phi(\hat{\rho}, T, M_0, n_1, n_2, ..., n_s)$$

$$= 1 + \frac{\hat{\rho}}{M} n B(T, n_1, ..., n_s) + (\frac{\hat{\rho}}{M})^2 n^2 C(n_1, ..., n_s) .$$
(5.6)

The virial coefficients B and C depend on the mole numbers $\mathbf{n_i}$ of the individual constituents because they represent the non-ideal effect of all s constituents and the $\mathbf{n_i}$ specify the quality of the mixture. Both coefficients also depend on the individual Lennard-Jones potential parameters σ_i and ε_i , in a form that will be shown shortly.

The second virial coefficient B is calculated for a system of gases by the formula (Ref. 2, p. 153)

$$B = \frac{1}{n^2} \sum_{i=1}^{S} \sum_{j=1}^{S} n_i n_j B_{ij} . \qquad (5.7)$$

In this formula the $B_{i,j}$ are the second virial coefficients of a potential function which describes the interaction between molecules of constituent i and constituent j. They are functions of the form

$$B_{ij} = B_{ij}(T, \sigma_i, \sigma_j, \varepsilon_i/k, \varepsilon_j/k) , \qquad (5.8)$$

that is, they depend on the gas temperature T and on the Lennard-Jones potential parameters of both constituents. The calculation of the B_{ij} will be described in Section 6.

The third virial coefficient C in Eq. (5.6) is computed as the average

$$C = \frac{1}{n} \int_{1/2}^{S} n_{i} C_{i}$$
 (5.9)

of the third virial coefficits \mathcal{C}_1 of the individual constituents. The latter are assumed to be independent of temperature and ϵ_4 , that is,

$$C_{i} = C_{i}(\sigma_{i}) \qquad (5.10)$$

The calculation of the $\mathbf{c_i}$ is based on a rigid sphere approximation. (See Section 7).

In order to simplify the following formulas, we define

$$\sum_{B} = \sum_{i=1}^{S} \sum_{i=1}^{S} n_{i} n_{i} B_{i},$$
(5.11)

$$\sum_{B} = \sum_{i=1}^{S} \sum_{j=1}^{S} n_{i} n_{j} \frac{dB_{ij}}{dT} , \qquad (5.12)$$

$$\sum_{B} = \sum_{i=1}^{s} \sum_{j=1}^{s} n_{i} n_{j} \frac{d^{2} B_{ij}}{d \tau^{2}}$$
 (5.13)

and

id finance research and a second process and a second second for the second second second second second second

$$\sum_{\mathbf{C}} = \sum_{i=1}^{S} \mathbf{n_i} \mathbf{C_i} \qquad (5.14)$$

The imperfection parameter \$\phi\$ is given in terms of these quantities by

$$\phi = 1 + \frac{\hat{\rho}}{M_O} \frac{1}{n} \sum_B + \left(\frac{\hat{\rho}}{M_O}\right)^2 n \sum_C . \qquad (5.15)$$

The TIGER program carries out a number of different computations for which it needs in addition to the value of the imperfection parameter 'also the values of certain expressions involving '. These expressions are calculated in the equation of state subroutines. Vext, we shall derive formulas for these quantities. (See Ref. 1, p. II-C-11).

First, there are three derivatives of 4:

$$\frac{\partial}{\partial \ln \beta} = \frac{\partial}{\phi} \frac{\partial \phi}{\partial \beta} = \frac{1}{\phi} \left(\frac{\partial}{M_O} \frac{1}{n} \sum_B + 2 \left(\frac{\partial}{M_O} \right)^2 n \sum_C \right) , \qquad (5.16)$$

$$\frac{\partial \ln \phi}{\partial \ln T} = \frac{T}{\phi} \frac{\partial \phi}{\partial T} = \frac{1}{\phi} \frac{\partial \phi}{\partial I} = \frac{1}{\phi} \frac{\partial \phi}{\partial I} + \frac{1}{\phi} \frac{1}{B}$$
 (5.17)

and

$$\frac{\partial \ln \phi}{\partial n_{1}} = \frac{1}{\phi} \frac{\partial \phi}{\partial n_{1}} = \frac{1}{\phi} \left\{ \frac{1}{n} \left[-\frac{\hat{\rho}}{M_{0}} \frac{1}{n} \sum_{B} + \left(\frac{\hat{\rho}}{M_{0}} \right)^{2} n \sum_{C} \right] + \frac{\hat{\rho}}{M_{0}} \frac{2}{n} \sum_{i=1}^{S} n_{i} B_{ij} + \left(\frac{\hat{\rho}}{M_{0}} \right)^{2} n C_{i} \right\} . \tag{5.18}$$

Notice that the first two expressions, Eqs. (5.16) and (5.17), are dimensionless, whereas, the expression (5.18) has the dimension 1/mol. Another dimensionless quantity is

$$\Gamma_{1} = \int_{0}^{\hat{\rho}} \left[\frac{M_{0}}{R T \hat{\rho}} \frac{\partial p}{\partial n_{1}} - 1 \right] \frac{d\hat{\rho}}{\hat{\rho}} = \int_{0}^{\hat{\rho}} \left[\frac{\partial (n\phi)}{\partial n_{1}} - 1 \right] \frac{d\hat{\rho}}{\hat{\rho}} -$$

$$= \int_{0}^{\hat{\rho}} \left[\phi - 1 + n \frac{\partial \phi}{\partial n_{1}} \right] \frac{d\hat{\rho}}{\hat{\rho}} . \qquad (5.19)$$

An evaluation of the integral (5.19) yields for $\Gamma_{_{\!4}}$ the formula

$$\Gamma_{i} = 2 \frac{\hat{p}}{M_{o}} \sum_{j=1}^{S} n_{j} B_{ij} + \frac{1}{2} \left(\frac{\hat{p}}{M_{o}} \right)^{2} n^{2} C_{i} + \left(\frac{\hat{p}}{M_{o}} \right)^{2} n C_{C} . \qquad (5.20)$$

Other expressions needed by the TIGER program are the following two dimensionless derivatives of Γ_4 :

$$\frac{\partial \Gamma_{\underline{i}}}{\partial \overline{\ln \hat{\rho}}} = \hat{\rho} \frac{\partial \Gamma_{\underline{i}}}{\partial \hat{\rho}} = 2 \frac{\hat{\rho}}{M_0} \sum_{j=1}^{S} n_j B_{ij} + \left(\frac{\hat{\rho}}{M_0}\right)^2 n^2 C_i + 2 \left(\frac{\hat{\rho}}{M_0}\right)^2 n C_C$$
 (5.21)

and

$$\frac{\partial \Gamma_{\underline{i}}}{\partial \ln T} = T \frac{\partial \Gamma_{\underline{i}}}{\partial T} = 2 \frac{\widehat{\rho}}{M_{0}} \sum_{j=1}^{S} n_{j} T \frac{dB_{\underline{i}\underline{j}}}{dT} , \qquad (5.22)$$

and the following derivative with the dimension 1/mol

$$\frac{\partial \Gamma_{i}}{\partial n_{j}} - 2 \frac{\partial}{N_{o}} B_{ij} + \left(\frac{\partial}{N_{o}}\right)^{2} \left[\sum_{C} + n \left(C_{i} + C_{j}\right)\right] \qquad (5.23)$$

The next two quantities have the dimension of moles and are defined by

$$z = \int_{0}^{\widehat{p}} \frac{M_{o}}{R T \widehat{\rho}} \left(p - T \frac{\partial p}{\partial T} \right) \frac{d\widehat{\rho}}{\widehat{\rho}} = - \int_{0}^{\widehat{p}} T \frac{\partial (n\phi)}{\partial T} \frac{d\widehat{\rho}}{\widehat{\rho}}$$
 (5.24)

$$\varepsilon_{T}' = -\int_{0}^{\hat{\rho}} \frac{M_{0}T}{R \hat{\rho}} \frac{\partial^{2}p}{\partial T^{2}} \frac{\partial^{2}p}{\partial \hat{\rho}} = \frac{\partial (Te)}{\partial T} . \qquad (5.25)$$

An evaluation of these expressions yields

$$\varepsilon = \frac{\hat{\rho}}{M_{\odot}} T_{B}^{\dagger}$$
 (5.26)

and

$$\varepsilon_{T}' = -\frac{\delta}{M} \left(2 T \zeta_{B}' + T^{2} \zeta_{B}''\right) \qquad (5.27)$$

We notice that the quantity ε that is defined by Eq. (5.24) or (5.26) is an auxiliary variable for the TIGER program and not the Lennard-Jones potential parameter ε .

In order to evaluate the expressions (5.15) through (5.18), (5.20) through (5.23), (5.26) and (5.27), one needs values for the virial coefficients B_{1j} and its temperature derivatives which enter the formulas in the combinations $T \cdot dB_{1j}/dT$ and $T^2 \cdot d^2B_{1j}/dT^2$, and the virial coefficients C_1 . The computation of the former three is treated in the next section. The computation of the C_1 is described in Section 7.

COMPUTATION OF SECOND VIRIAL COEFFICIENTS

The second virial coefficient B_{ij} in Eq. (5.7) represents the interaction between molecules of constituent i and constituent j. It may be computed as the virial coefficient of a pure substance with an intermolecular potential that is an empirical combination of the potential functions of both constituents. In this report, we use the following empirical combining rules to specify the constants σ_{ij} and ε_{ij} of the mixture potential (Ref. 2, p. 168, Ref. 3, p. 11):

$$\sigma_{ij} = \frac{1}{2} (\sigma_i + \sigma_j) \tag{6.1}$$

$$\frac{\varepsilon_{ij}}{k} = \left(\frac{\sigma_i}{\sigma_{ij}} \cdot \frac{\sigma_j}{\sigma_{ij}}\right)^{3/2} \left(\frac{\varepsilon_i}{k} \cdot \frac{\varepsilon_j}{k}\right)^{1/2} \qquad (6.2)$$

We notice that for i=j these formulas produce $\sigma_i = \sigma_i$, $\varepsilon_i = \varepsilon_i$ and, consequently, $B_{ii} = B_i$. The σ_{ij} and ε_{ij} are treated as the Lennard-Jones (6-12) potential parameters of a pure substance and B_{ij} is computed as the second virial coefficient of that substance. This is done by defining a dimensionless reduced temperature $\sum_{i=1}^{n} T_i$ and computing a corresponding dimensionless virial coefficient $\sum_{i=1}^{n} T_i$ from which $\sum_{i=1}^{n} T_i$ then can be retrieved. The function $\sum_{i=1}^{n} T_i$ is uniquely determined by the constants of the Lennard-Jones potential. The following formulas are used to carry out this calculation:

$$\dot{T} = T k/\epsilon_{ij} \qquad , \qquad (6.3)$$

$$b_{oij} = \frac{2}{3}\pi \tilde{N} \sigma_{ij}^3 \tag{6.4}$$

$$B_{ij} = b_{0ij} \overset{\star}{B} \overset{\star}{(T)} , \qquad (6.5)$$

where $\tilde{N} = 6.02252 \cdot 10^{23} \text{ mol}^{-1}$ is the Avogadro constant.

The function $\overset{\star}{B}(\overset{\star}{T})$ is defined by the following infinite series (Ref. 2, p. 163):

$${}^{\star}_{B}({}^{\star}_{T}) = \int_{-\infty}^{\infty} b_{m} {}^{\star}_{T} (-1/4 - m/2)$$
(6.6)

with

$$b_{m} = -\frac{2^{m}\sqrt{2}}{4\pi m!}\Gamma(-\frac{1}{4} + \frac{1}{2}m) \qquad . \tag{6.7}$$

The first two coefficients in the serics (6.6) are4

 $[\]overline{^4}$ P. Johnke and F. Finde, "Tables of Higher Functions," B.G. Teubner, Leipzig 1949.

$$b_{C} = -\frac{\sqrt{2}}{4} \Gamma(-\frac{1}{4}) = \sqrt{2} \cdot 1.225 \ 416 \ 702 \ 7$$
 (6.8)

and descriptions of the second second

$$b_1 = -\frac{\sqrt{2}}{2} \Gamma(\frac{1}{4}) = -\frac{\sqrt{2}}{2} \cdot 3.625 609 908$$
 (6.9)

 ${\tt M1}$ other coefficients can be calculated from ${\tt b_0}$ and ${\tt b_1}$ by the recurrence formula

$$b_{m+2} = b_m \frac{2 m - 1}{(m+1) (m+2)}$$
, $m = 0, 1, 2, ...$ (6.10)

We rearrange the series (6.5) as follows for arithmetical expediency

$$\overset{\star}{B}(\overset{\star}{T}) = \sum_{m=0}^{\infty} \left[b_{2m} \overset{\star}{T}^{(-1/4 - m)} + b_{2m+1} \overset{\star}{T}^{(-3/4 - m)} \right]
= \sum_{m=0}^{\infty} \left(A_{C,m} + A_{1,m} \right) .$$
(6.11)

The $A_{0,m}$ and $A_{1,m}$ are defined by

$$a_{0,0} = b_0 \stackrel{*}{T} (-1/4)$$
 , (6.12)

$$A_{1,0} = b_1 \stackrel{\star}{T} (-3/4)$$
 (6.13)

and by the recurrence formulas for m = 0,1,2,...

$$A_{0,m+1} = A_{0,m} \frac{4m-1}{(2m+1)(2m+2)} \cdot \frac{1}{2m+2}$$
, (6.14)

$$A_{1,m+1} = A_{1,m} \frac{4m+1}{(2m+2)(2m+3)} \cdot \frac{1}{2m+2}$$
 (6.15)

The series for $\mathring{B}(\mathring{T})$ converges absolutely for all $|\mathring{T}| > 0$. Therefore, one can compute the derivatives of $\mathring{B}(\mathring{T})$ by termwise differentiation which pr duces the following formulas

$$\overset{*}{T} \frac{d\overset{*}{B}}{d\overset{*}{T}} = \sum_{m=0}^{\infty} \left(-\frac{4m+1}{4} A_{0,m} - \frac{4m+3}{4} A_{1,m} \right)$$
(6.16)

The evaluation of the series (6.11), (6.16) and (6.17) is done in the subroutine LJBS which computes for given T the corresponding values of B, TR' and TB''. The series converge very fast if T is large, but require the computation of a large number of terms if T is small. Typical TIGER computations are done with values of T between one and two, In that range some computation time can be saved by interpolating $\hat{B}(\hat{T})$ and its derivatives in tables instead of evaluating the series. Such tables are published in Ref. 2, p. 1144 ff., Tables I-B. The subroutine LJBS uses these tables for the computation of B and its derivatives by interpolation if \hat{T} is within the range (0.75, 5.0). If $\hat{T} = 5.0$, then only six to seven terms of the series have to be calculated, and the number of terms decreases as T increases. (The end criterion for the series calculation in LJBS is that the absolute value of the last term is less than 10-12,) On the other hand, if T < 0.75 then the table interpolation is not very accurate due to rapid changes of the functions. Therefore, within the range (0.01, 0.75) again the series formulas are used. The number of terms that have to be evaluated is 350 at \tilde{T} = 0.01. However, one would not expect typical TIGER calculations to be done for \tilde{T} < 0.75. For \tilde{T} < 0.01 an error stop with a corresponding printed message is programmed into LJ612.

The interpolation in the tables is done by Hermite interpolation formulas which make use of the availability of the derivatives of the interpolated functions. Particulars about the interpolation formulas are given in Appendix D.

In a limited number of test runs the computing time that was saved by interpolation was found to be of the order of two percent.

7. COMPUTATION OF THIRD VIRIAL COEFFICIENTS

The third virial coefficient C is computed by Eq. (5.9) as an average of the third virial coefficients $\mathbf{C_i}$ of the individual constituents. The latter coefficients we compute from a rigid sphere approximation. According to Ref. 2, p. 157, a reasonable value for $\mathbf{C_i}$ in case of high temperature powder gases is

$$C_{1} = \frac{5}{8} \left(\frac{2}{3} \pi \tilde{N} \right)^{2} \cdot (0.81 \cdot \sigma_{1})^{6}$$
 (7.1)

where $\widetilde{N}=6.02252\cdot 10^{23}$ mol⁻¹ is the Avogadro constant and σ is the Leinard-Jones (6-12) potential parameter. The factor 0.81 in Eq. (7.1) is an approximation to the theoretical value for the Lennard-Jones potential at $\widetilde{T}=60$. (See Eqs. (2.4) and (6.3) for the definition of the reduced temperature \widetilde{T} .) Theoretically the factor may be increased to about 0.99 for $\widetilde{T}=1.25$ (as can be seen from Ref. 2, pp. 171 and 1116 - 1117). However, experimental measurements deviate considerably from the theoretical value and, therefore, the constant 0.81 likely suffices to establish a correct order of magnitude effect of the third virial coefficients on TIGER calculations. If necessary, the factor can be changed for any particular calculations by using the SET-card. (See Section 3). Particularly, by setting the factor equal to zero and repeating the calculation one can obtain the total effect of the third virial coefficients on the calculated results.

8. SUMMARY AND CONCLUSION

This report describes two new subroutines that can be included in the TIGER computer program and enables the latter to do computations using a truncated virial equation of state for the gaseous constituents. The second virial coefficient in the equation is based on Lennard-Jones (6-12) intermolecular potential, and the third virial coefficient is based on a simplified rigid sphere assumption. The new equation of state subroutine is It uses an auxiliary subroutine LJBS which computes a called LJ612. function B and its derivatives for given T. The latter is a reduced dimensionless temperature and B is a dimensionless second virial coefficient for Lennard-Jones (5-12) potential and pure substances. subroutine has an option (SET-card) to multiply the third virial coefficient by an arbitrary constant. By setting the constant equal to zero one can obtain an estimate of the significance of the third virial coefficient for any particular computation.

The TIGER program was carefully studied during the programing of the additional routines. It was found that the description of the program in Ref. 1 is not up to date and, particularly, that the comments in the BKW equation of state routine are not complete and sufficient for an easy addition of new equations of state. Therefore, the new subroutine LJ612 was provided with numerous comments which may be helpful for adding another equation of state to the TIGER program. We also notice that although the TIGER program guide claims that input and output data can be easily changed to arbitrary units (Ref. 1, IV-C-4), instructions are not provided how to implement such changes, nor do such changes, if implemented, affect the input information for the equations of state. The internal calculations are

done in prescribed units which were also adopted for the LJ612 subroutine and documented in the comments to LJ612. The information about the units of all quantities is important because some of them $(\partial (\ln \varphi)/\partial n_1, \partial r_1/\partial n_1, \epsilon, \epsilon_T)$ are not dimensionless, contrary to statements in the TIGER documentation. Input units for the Lennard-Jones (6-12) potential parameters were chosen to be 10^{-10} m (angströms) for σ and kelvins for ϵ/k . A change of these units would require minor changes in the LJ612 subroutine and would not affect the rest of the TIGER program.

In conclusion, the addition of the two subroutines LJ612 and LJBS permits one to use a truncated virial equation of state and, because the routines are carefully commented, facilitates the addition of further gaseous state equations.

ACKNOWLEDGEMENT

The author wishes to thank Dr. Eli Freedman, BRL, for collaboration in the derivation of the equations and for helping to carry out test runs with the TIGER program.

REFERENCES

- M. Cowperthwaite and W. H. Zwisler, "TIGER Computer Program Documentation," Stanford Research Institute Publication Zi06, January 1973.
- J. O. Hirschfelder, C. F. Curtiss and R. B. Bird, "Molecular Theory of Gases and Liquids," John Wiley and Sons, New York, 1954.
- Eli Freedman, "BLAKE a Thermodynamics Code Based on TIGER: User's Guide and Manual", ARBRL-TR-02411, July 1982. AD# A121259.
- F. Jahnke and E. Emde, "Tables of Higher Functions," B. G. Teubner, Leipzig 1948.

APPENDIX A

LISTING OF THE SUBROUTINE LJ612

APPENDIX A

LISTING OF THE SUBROUTINE LJ612

	SUBROUTINE U	JA12 (LANE)	LJ612	2
c	300.0011		F7615	3
000000000000000000	PURPOSE		LJ612	4
ř			LJ612	5 6 7
ř	TO COMPIL	TE THE OUTPUT FOR STATEG USING A TRUNCATED	LJ612	6
č	UTDIAL F	QUATION OF STATE IN WHICH THE SECOND COEFFICIENT	LJ612	7
č	ATUTAC C	ON LENNARD-JONES 6-12 POTENTIAL AND	LJ612	8
ž	13 34360	COEFFICIENT IS COMPUTED USING A	LJ612	9
-	INE INTRI	ED RIGID SPHERE FORMULA	LJ612	10
Ċ	21Mhrit II	ED KIGID SPHEKE LOWINGER	LJ612	11
C		DOUTPUT DEPEND ON THE VALUE OF LANE	LJ612	12
Ç	INPUT AN	ONIANI DESEMB ON THE ANTOR OF THE	LJ612	13
С			LJ612	14
С	INPU	T VARIABLES	LJ612	is
C			LJ612	16
С	INPUT FOR	LANES 1 THROUGH 4		17
С			LJ612	16
č	LO	= NUMBER OF OUTPUT UNIT (PRINTER)	LJ612	
č	NSG	- NUMBER OF GASEOUS CONSTITUENTS	LJ612	19
č	RHO	- MACS OF MIXTURE FER VOLUME OF GAS IN G/CHOO3	LJ612	50
č		THIS IS CALLED RHG-HAT IN TEXT. SEE I-8-16.	LJ612	51
C C	SX	= SUM OF GASEOUS MULE NUMBERS X(1) . IN MOLES.	LJ612	22
č	ī	= GAS TEMPERATURE IN KELVINS	LJ612	23
č	, H	= REFERENCE MASS IN GRAMS (M-ZERO IN I-8-16)	LJ612	24
Ċ		= MOLE NUMBER OF THE I-TH GASEOUS CONSTITUENT	LJ612	25
C	X(1)	WITH I=1 ASG. IN MOLES	LJ612	26
Č C		#114 1=144494 4204 IN HOPES	LJ612	27
C	2. 2. 2 222		LJ612	28
c	INPUT FOR	LANES 5 AND 6	LJ612	29
Ċ			LJ612	30
Č	NONE		LJ612	31
С			LJ612	32
00000	INPUT FOR	LANE 7	LJ612	33
c			LJ612	34
С	IDEAL	= NUMBER OF THIS EQUATION OF STATE	LJ612	35
С	VAL(1)	# VALUE OF THE SECOND FIELD OF THE "GEOS"	LJ612	36
С		INPUT CARD		37
L			LJ612	38
С	INPUT FOR	LANE 6	LJ612	39
с с с			LJ612	40
č	VAL(I)	= VALUES OF THE FIELDS 2.3.4 (FOR I=1.2.3)	LJ612	
č		OF THE "SET" INPUT CARD	LJ612	41
č			LJ612	42
č	INPUT FOR	LANE 9	LJ612	43
č	• •		LJ612	44
ř	VAL(I)	= VALUES OF THE FIELDS 2 THROUGH 5 (I=1 THROUGH 4)	F7615	45
ř	*****	OF THE "STG" INPUT CARD	LJ612	46
ž		• • • • • • •	LJ612	47
ž			LJ612	48
č	INPUT FOR	LAME 10	LJ612	49
č	INPUT FUR	TAUC 14	LJ612	50
č		= NUMBER OF OUTPUT UNIT (PRINTER)	LJ612	51
Ç	LO	= PRINT IDICATOR	LJ612	52
č	PRNNTC	= SIGNA OF A CONSTITUENT. IN ANGSTROMS	LJ612	53
Ç	VAL(1)	= SIGNA OF A CONSTITUENT IN MELVINS	LJ612	54
0000000000000000	AVT (S)	= FLOTFONNY OL W COMPLETIONIA TH WESTING	LJ612	55
С			LJ612	56
С	INPUT FOR	LANE II	LJ612	57
Č			LJ612	56
С	NOALF	= INDEX OF A CONSTITUENT		٠.

t o transported and the properties with the course personal states of the course of the course of the course of

and the second of the second s

AND THE PROPERTY OF THE PARTY O

c

CCCCC

č

	A ANT 4	LJ612 LJ612	116 117
OUTPUT FOR	LANE D	LJ612	118
	= NUMBER OF PARAMETERS THAT DEFINE THE	LJ612	119
NOCTS	EQUATION OF STATE FOR EACH CONSTITUENT.	LJ612	120
	FOR THIS EQUATION NUCTS=2+ THE THO	LJ612	121
	PARAMETERS ARE LENNAND-JONES POTENTIAL	LJ612	122
	PARAMETERS SIGNA AND EPSILON/K. SEE LANE 11.	LJ612	123
	PANKICICAS STONE AND CONTROL OF COMME	LJ612	124
OUTPUT FOR	I ANE T	LJ612	125
OUTPUT TON	CARL F	LJ612	126
KGEOS	= NUMBER OF THIS EJUATION OF STATE	LJ612	127
110203		LJ612	128
OUTPUT FOR	LANE 9	LJ612	129
		LJ612	130
TYP(1)	# AN INDICATOR FOR SUBROUTINE LIBHARY # THE VALUE OF THE VAME OF A CONSTITUENT # CEFAIN T VALUE OF SIGNA	LJ612	131
ZNAME	= THE VALUE OF THE VAME OF A CONSTITUENT	LJ612	135
VAL (3)		F7975	133
VAL (4)	= DEFAULT VALUE OF EPSILONIK	LJ612	134
-		LJ612	135
OUTPUT FOR	LANES 10+12 AND 14	LJ612	136
		LJ612	137
PRINTED (OUTPUT ON UNIT LO.	LJ612	136 139
		L7615	140
OUTPU7 FOR	LANE 13	LJ612	141
		LJ612 LJ612	142
TYP(1°	= SIGHA(NOALF) IN ANGSTROMS	LJ612	143
TYP(2)	= EPSOK (NOALF) = EPSILON/K IN KELVINS	LJ612	144
	(K=GULTZMANN CONSTANT)	F7915	145
		LJ612	146
OUTPUT FOR	LANE GREATER THAN 14	LJ612	147
		LJ612	148
ERROR PR	INT ON UNIT LO AND STOP	LJ612	149
		LJ612	150
	AOL CC	LJ612	151
LOCAL VARI	ADLES	LJ612	152
		LJ612	153
ALJ61	= CODE VALUE OF THE ALPHANUMERIC NAME OF	LJ612	154
WF 701	THIS HOUTINE "LJ612". THE VALUE IS 2624060102.0	LJ612	155
92	# FACTUR B-ZERO OF THE SECOND VIRIAL COEFFICIENT	LJ612	156
26	IN (CM/ANGSTROM) **3/MOLE. SEE LANE 5.	LJ612	157
CKA	# THIRD VIRIAL COEFFICIENT OF CONSTITUENT NA	LJ612	158
cż	= FACTOR C-ZERO OF THE THIRD VIRIAL COEFFICIENT	LJ612	159
	IN (CH/ANGSTROM) **6/MOLE**2. SEE LANE S.	LJ612	160
EPSAB	= EPSILUN/K OF THE LENNARD-JONES POTENTIAL	LJ612	161
	AFTWEEN CONSTITUENTS KA AND KU. IN KELVINS.	LJ612	162
EPSOK (30	# ARRAY OF EPSILUNIA FOR UP TO 30 CONSTITUENTS	LJ512	163
MISTAK	= ERROR INDICATOR IN SUBROUTINE LJUS ARGUMENTS	LJ612	164
NN	= TEMPORARY STORAGE FOR ERROR PRINT	LJ612	165
RHOM	= RHO/#H IN 1./CH**J	F7615	166
SB	= WEIGHTED SUM OF D-STARS IN	LJ512	167 168
	MOLES**2*ANGSTROMS**3	LJ612	
SBKA (30)	= PARTIAL WEIGHTED SUMS OF B-STARS IN	LJ612	169 170
	MOLES*ANGSTROMS**3	LJ612	171
SEP	= WEIGHTED SUM OF T-STAR TIMES B-STAR DERIVATIVE	LJ612	172
	IN MULES**2*ANGSTPCM**3	LJ512	115

memperential example in Diving Carlor research and the propertion of properties of the carlor of the properties of

the state of the second second

 a_0

```
¢
          SSPKA(30) = PARTIAL WEIGHTED SUMS IN SEP
                                                                                      LJ612
                                                                                                  173
                         HOLES*ANGSTROMS**3
                                                                                      LJ612
                                                                                                  174
20000
                      = MEIGHTED SUM OF (T-STAR) **2*(8-STAR-2-PRIME)
                                                                                                  175
          SB2P
                                                                                      LJ612
                         IN MULES -- 2- ANGSTHOM -- 3
                                                                                      LJ612
                                                                                                  176
                      = WEIGHTED SUM OS C-STARS. HOLES-ANGSTRONS-6
                                                                                      LJ612
                                                                                                  177
          SIGAB
                      = SIGHA OF THE LENNARD-JONES 6-12 POTENTIAL
                                                                                      LJ612
                         BETWEEN CONSTITUENTS KA AND KM. ANGSTROMS
                                                                                      LJ612
                                                                                                  179
                      = SIGAB**3. ANGSTRUMS**3
          SIGAB3
                                                                                      LJ612
                                                                                                  180
č
          SIGFCT
                      = REDUCTION FACTOR OF SIGNA FOR THE RIGID SPHERE
                                                                                      LJ612
                                                                                                  181
                         APPROXIMATION IN THE THIRD VIRIAL COEFFICIENT.
                                                                                      LJ612
                                                                                                  182
č
          DEFAULT IS 0.81
SIGMA(30) = WELL LOCATION OF LENNARD-JONES 6-12 POTENTIAL
                                                                                      LJ612
                                                                                                  183
                                                                                      LJ612
                                                                                                  184
                      (IN ANGSTROMS) FOR UP TO 30 CONSTITUENTS = T-STAR, ARGUMENT IN 8-STAR TABLES
                                                                                                  185
c
                                                                                      LJ612
          TS
                                                                                      LJ612
                                                                                                  186
c
          XAB
                      = X(KA)+X(K9) IN HOLES++2
                                                                                      LJ612
                                                                                                  187
Ċ
                                                                                      LJ512
                                                                                                  188
Ċ
                                                                                      LJ612
                                                                                                  199
č
                                                                                      LJ612
                                                                                                  190
c
        INPUT NEEDED TO ACTIVATE THIS EQUATION OF STATE
                                                                                      1.1612
                                                                                                  191
                                                                                                  192
                                                                                      LJ612
C
                                                                                      LJ612
                                                                                                  193
    1 GEOS-INSTRUCTION SPECIFYING GASEOUS EQUATION OF STATE CONSISTS OF THE FOLLOWING INPUT
                                                                                      LJ612
                                                                                                  194
                                                                                                  195
                                                                                      LJ612
Č
                                                                                      LJ612
                                                                                                  196
c
        GEOS+LJ612
                                                                                      LJ612
                                                                                                  197
                                                                                                  198
                                                                                      LJ612
č
    2 SET-INSTRUCTION IF THE FACTOR 0.81 FOR REDUCTION OF
                                                                                      LJ612
                                                                                                  199
          SIGMA IN THE RIGID SPHERE APPROXIMATION OF THE THIRD VIRIAL COEFFICIENT SHOULD BE CHANGED. SEE LANES 5 AND 8.
Ċ
                                                                                      LJ612
                                                                                                  200
č
                                                                                      LJ612
                                                                                                  201
c
          THE INPUT IS AS FOLLOWS
                                                                                      LJ612
                                                                                                  202
Č
                                                                                      LJ612
                                                                                                  203
Ċ
        SET+LJ612+SFACT+R
                                                                                      LJ612
                                                                                                  204
c
                                                                                                  205
                                                                                      LJ612
č
          WHERE R IS THE REPLACEMENT VALUE FOR 0.81
                                                                                      LJ612
                                                                                                  206
                                                                                      LJ612
                                                                                                  207
    3 STG-INSTRUCTIONS TO SPECIFY THE TWO PARAMETERS OF THE LENNARD-JONES 6-12 POTENTIAL FOR EACH
Č
                                                                                      LJ612
                                                                                                  20 B
č
                                                                                      LJ612
                                                                                                  209
          CONSTITUENT. THE INPUTS ARE AS FOLLOWS
                                                                                      LJ612
                                                                                                  210
c
                                                                                      LJ612
                                                                                                  211
C
        STG.LJ612.NAME.SIGMA.EOK
                                                                                      LJ612
                                                                                                  212
Ċ
                                                                                      LJ612
                                                                                                  213
                                                                                      LJ612
¢
          WHERE "NAME" IS THE ALPHANUMERIC NAME OF THE CONSTITUENT.
                                                                                                  214
č
          "SIGHA" IS THE SIGMA VALUE IN ANGSTROMS (1.0E-10 METRES) AND "EOK" IS THE VALUE OF EPSILON/K IN KELVINS.
                                                                                                  215
                                                                                      LJ612
Č
                                                                                      LJ612
                                                                                                  216
č
          K SEING THE BOLTZMANN CONSTANT 1.380662E-23 J/K
                                                                                      LJ612
                                                                                                  217
C
                                                                                      LJ612
                                                                                                  218
                                                                                      LJ612
                                                                                                  219
   AIVARS CELMINS FECIT 29 APRIL 1983.
                                                                                      LJ612
                                                                                                  22Q
                                                                                      LJ612
                                                                                                  221
                                                                                      LJ612
                                                                                                  222
                                                                                                  223
       COMMON / TIGER /
                                                                                      LJ612
           A(41.10) . ADEXP.
                                   AJS(10) · AJSJ·
                                                           AL(40.10).
                                                                                      LJ612
                                                                                                  224
           ALPHA.
                       AS(1++10)+8(40+12)+ 9ETA+
                                                                                                  225
      x
                                                          KG (301 •
                                                                                      LJ612
                                               CC(30+12)+CG(30+9)+
            øIG∙
                       SJS(lv), BJSJ,
                                                                                      LJ612
                                                                                                 226
      λ
            CHII(30) + CHIJS(10) + CHIJSJ+
                                              CHO(25) + CL(10+9) +
CPI(30) + CPJS(10) +
                                                                                      LJ612
                                                                                                  227
            CN(10)+
                       CHETA(10+12)+CPHI+
                                                                                      LJ612
                                                                                                  228
            CPJSJ.
                       CS(10+9) . Cv.
                                               D(30+30)+ E+ED+
                                                                                      LJ612
                                                                                                 229
```

The second second second second second

```
ELM(10).
                       EOF.
                                  EPETAL.
                                              EPETA2.
                                                          EPETA3.
                                                                                    LJ612
                                                                                                230
      x
           EPETA4.
                       €PS•
                                   EPSPSI .
                                              EPSPT.
                                                          ETA(12) .
                                                                                    LJ612
                                                                                                231
      x
                                   F (30) •
                                                                                                232
           eTETA1 (12) .EO.
                                              FL.
                                                          FLTA (50)
                                                                                    LJ612
       COMMON / TIGRE /
                                                                                    LJ612
                                                                                                233
           FORM(50.20) . FREZ(40) . G.
                                              GAHMA (30) +GAMRHO(30) +
                                                                                    LJ612
                                                                                                234
           GAHT (30) . GETA(12) . H.
                                                                                                235
                                              HCON+HD+
                                                         HETA (12) .
                                                                                    LJ612
                       HETATZ.
                                  HOF . HO.
                                                          10(82).
                                                                                                23€
           HETATI.
                                              THUG.
                                                                                    LJ612
                                                                                                237
           IDEAL.
                       IERROR.
                                  IHIST.
                                              INOPT.
                                                          INSTYP.
                                                                                    LJ612
                       ITC2L.
                                              I TOP.
                                                          IXCC(10) .
                                                                                                238
            TCH.
                                  ITC4L.
                                                                                    LJ512
                                  Jump.
                                                          «ILL»
                                                                                                539
           IXMC(13) - IXCT(10) -
                                              KGE05.
                                                                                    LJ612
           KIND(10) . KPRINT.
                                  KX(30) .
                                              LI.
                                                         LIB.
                                                                                    LJ612
                                                                                                240
                                                          MAXORD.
                                                                                                241
      x
           LINCT.
                       LO.LUPT,
                                  MAXCHO:
                                                                                    LJ612
      x
           HAXPT.
                       MAXRF.J.
                                  MIXED.
                                              NCC.
                                                          NCCP
                                                                                    LJ512
                                                                                                242
       COMMON / TYGER /
                                                                                    LJ612
                                                                                                243
           NCC1 .
                       NCG.
                                              NCT1 .
                                                          NCT2.
                                                                                     LJ612
                                                                                                244
      x
           NNIS.
                       NOALF .
                                  NOCASE .
                                              NOCHO.
                                                          NOCTS.
                                                                                    LJ612
                                                                                                245
                       NOFORM.
                                  NOGC (101.
                                              NOGEOS.
                                                          NGORD.
                                                                                    LJ612
           NOFLT.
                                              NPTSV.
           NOREJ.
                       NOTOT.
                                  NPAGE.
                                                          NSC.
                                                                                    LJ612
                                                                                                247
                                              NTOC+
                                                          ORU (25) .
                                                                                    LJ612
           NSG+
                       NSM.
                                  NST.
                       PCON.
                                  PETA(12) .
                                              PETAT1.
                                                          PETATZ.
                                                                                    LJ612
                                                                                                249
                                                          PHIT.
                                                                                                250
           PHIJS(10) PHIJSJ
                                  PHIN(30) . PHIRHO.
                                                                                    LJ612
                       PSIZ.
                                                                                                251
252
      x
           PST (30) •
                                  PSIZZ.
                                              PO.
                                                          0(10).
                                                                                    LJ612
                       ٥.
                                  REJ (50) .
     ¥
           QA(10).
                                              RHO.
                                                          RHOD
                                                                                    LJ612
      COMMON / TYGRE /
                                                                                     LJ612
                                                                                                253
254
255
           RX+5+50+
                       SENT + DENTE + SG (30) +
                                              SQQ.
                                                          STOCH(10+11)+
                                                                                    LJ612
           STOFL '11) .STOGN (30-11) .STUMA (11) .STONA (30) .STOPC (10-11) .
                                                                                     LJ612
                                                                                                256
257
     x
           SVOL+SVOLE+SVP (200+2)+SX+S0+
                                                          TACON. TEMA (9.20) .
                                                                                     LJ612
           TINITL.
                       TMCUN+
                                  TSAVE.
                                              TYP (92) +
                                                          TQ.
                                                                                     LJ61Ż
                       UMJS (10) . UMJSJ.
                                                                                                258
           UHI (30) +
                                                          VAL (82) .
                                                                                    LJ612
           VCON.
                       VETA(12) . VETATI.
                                              VETATE.
                                                                                    LJ612
                                                                                                259
                                                          vo.
           w(101.
                       wCHI.
                                  VCP.
                                              MM.
                                                          WHII.
                                                                                    LJ612
                                                                                                250
                                  X (30) .
                                              XETAT1 (30) . XETAT2 (30) . XN.
                                                                                    LJ612
                                                                                                261
                       WT (40) .
           XNAME (40) . XLM1 . AUM2 . Y (30) . ZC (82) . ZCC (80) . ZCX (80) . ZNAME
                                                                                    LJ612
                                                                                                262
C
                                                                                    LJ612
                                                                                                263
      COMMON / PRINTC / NGPRCN+PRNNTC
                                                                                    LJ612
                                                                                                264
      LOGICAL PRINTC
                                                                                    LJ612
                                                                                                265
С
                                                                                    LJ612
                                                                                                266
      DIMENSION EPSOK (30) +SIGMA (30) +SHNA (30) +SBPKA (30)
                                                                                    LJ612
                                                                                                267
C
                                                                                                268
                                                                                    LJ612
       0.5010904595/519FTM ATAG
                                                                                    LJ612
                                                                                                269
   ALJOIZ IS THE REPRESENTATION OF THE ALPHANUMERIC
                                                                                    LJ612
                                                                                                270
   "LJ612" IN THIS CODE. (SEE SUBROUTINE CARDED.)
                                                                                    LJ612
                                                                                                271
                                                                                    LJ612
                                                                                                272
       IF (LANE - GT - 14) GOTO 1500
                                                                                    1.3512
                                                                                                273
      GOTO(100+100+300+400+500+600+700+800+900+1000+1100+1200+
                                                                                                274
                                                                                    LJ612
                                                                                                275
     - 1300+1400) +LANE
                                                                                    LJ612
С
                                                                                    LJ612
                                                                                                276
   LANES 1 AND 2
                                                                                     LJ612
                                                                                                277
                                                                                    LJ612
                                                                                                278
  100 DO 104 KA=1+NEG
                                                                                    LJ612
                                                                                                279
       IF(SIGMA(KA).GT.O..AND.EPSOK(KA).GT.O.) GOTO 104
                                                                                    LJ612
                                                                                                280
c
                                                                                                281
                                                                                    LJ612
  101 NN=101
                                                                                    LJ612
                                                                                                282
      WRITE (LO. 102) WANA SIGNA (KA) . KA . EPSOK (KA) . LANE
                                                                                    LJ612
                                                                                                283
  102 FORMAT(1MO.10x.3)4E440R STOP IN EQUATION OF STATE.
A 254 GOUTINE 1.612 AT STATEMENT . 14.9H BECAUSE./.
                                                                                    LJ612
                                                                                                244
                                                                                    LJ612
                                                                                                285
     3 14 .10x.6xSIGMA(.IZ.3H) =. 1PE12.5.54.10HAND EPSOK(.IZ.
                                                                                    LJ612
                                                                                                296
```

N CONTRACTOR

See Markey Com

A AMERICAN CONTRACTOR OF THE PROPERTY OF THE P

THE PROPERTY OF THE PARTY OF TH

The second second

the state of the s

TATE OF THE PROPERTY OF THE PARTY OF THE PAR

```
401
  STOP IF TS IS OUTSIDE THE RANGE OF THE BSTAR TABLES
                                                                                LJ612
                                                                                LJ612
                                                                                           402
                                                                                LJ612
                                                                                           403
  325 SBKA (KA)=SBKA (KA)+SIGA83+BS+X (Kd)
                                                                                           404
                                                                                LJ612
c
                                                                                           405
                                                                                LJ612
  335 CONTINUE
                                                                                           406
                                                                                LJ612
c
                                                                                           407
                                                                                LJ612
  345 CONTINUE
                                                                                           408
                                                                                LJ612
c
                                                                                           409
                                                                                LJ612
      2H0H=HH0/44
                                                                                LJ612
                                                                                           410
      00 355 KA=1.NSG
                                                                                LJ612
                                                                                            -11
C
                                                                                            412
                                                                                LJ612
      GAMMA (KA) = ( (GAMMA (KA) +0.5+SX+SC) +SX+RHOM+CZ+
                                                                                1.1612
                                                                                            413
     + 2. +SBKA (KA1 +BZ) +RHOM
                                                                                            414
                                                                                LJ612
   GAMMA (KA) ALREADY CONTAINS C(KA)
c
                                                                                LJ612
                                                                                            415
                                                                                            416
                                                                                 LJ612
  355 CONTINUE
                                                                                            417
                                                                                 LJ612
                                                                                            418
c
                                                                                 LJ612
      GOTO 1900
                                                                                            419
                                                                                 LJ612
Ç
                                                                                 LJ612
                                                                                            420
c
   LANE +
                                                                                 LJ612
                                                                                            421
C
                                                                                            422
                                                                                 LJ612
  400 SC=0
                                                                                            423
                                                                                 LJ612
      00 415 KA=1+NSG
                                                                                            424
                                                                                 1.J612
c
                                                                                            425
                                                                                 LJ612
       IF (SIGMA(KA).GT.O..ANO.EPSOK(KA).GT.O.) GOTO 410
                                                                                            426
                                                                                 LJ612
                                                                                            427
                                                                                 LJ612
  409 NN=409
                                                                                            428
       #RITE (LO-102) NH-KA-SIGMA (KA) +KA-EPSOK (KA) +LANÉ
                                                                                 LJ612
                                                                                 LJ612
                                                                                            429
                                                                                 LJ612
                                                                                            430
                                                                                 LJ612
                                                                                            431
  410 SC=SC+X (KA) *SIGMA (KA) **6
                                                                                 LJ612
                                                                                            432
c
                                                                                            433
                                                                                 LJ612
  415 CONTINUE
                                                                                 LJ612
                                                                                            434
                                                                                 LJ612
                                                                                            435
       RHOM=RHO/WM
                                                                                            436
                                                                                 LJ612
¢
                                                                                            437
                                                                                 LJ612
       00 445 KA=1-NSG
                                                                                            438
                                                                                 LJ612
c
                                                                                 LJ612
                                                                                             439
       58KA (KA) =0
                                                                                 LJ612
                                                                                             440
       CKA=SIGMA (KA) **6
                                                                                             441
                                                                                 LJ612
       GAMMA (KA) = CKA
                                                                                 LJ612
C
                                                                                 LJ612
       00 435 KB=1+NSG
                                                                                 LJ612
 c
                                                                                 LJ612
       SIGAB=(SIGHA(KA)+SIGHA(KB))/2.
                                                                                 LJ612
                                                                                             446
        SIGAB3=SIGAB**3
       EPSAB=SORT(((SIGMA(KA)/SIGAB)+(SIGMA(KA)/SIGAB))+43
                                                                                 LJ612
                                                                                  LJ612
                                                                                             448
       . *EPSOK (KA) *EPSOK (KB) )
                                                                                             449
                                                                                  LJ612
       TS=T/EPSAR
                                                                                  LJ612
                                                                                             450
 c
                                                                                             451
                                                                                  LJ612
        CALL LJBS (LANE+TS+dS+TBSP+TTBSP++MTSTAK)
                                                                                             ÷52
                                                                                  LJ612
    INTERPOLATE IN THE STAR TABLES
 c
                                                                                  LJ612
                                                                                             ∗53
        IF (MISTAK.E2.0190TO -25
                                                                                             454
                                                                                  LJ612
                                                                                             455
                                                                                  LJ612
   421 4N=421
                                                                                             456
                                                                                  £1613
        ARITE (LO. 115) NN. HISTAK. LANE. TS
                                                                                  LJ612
        *RITE(LO+116)KA+KH+T
```

A SECTION OF THE PROPERTY OF T

c

Č

Ċ

THE PROPERTY OF THE PROPERTY OF THE PARTY OF

```
DEFAULT FACTOR 0.81 ** 6=0.2824 IN THE CONSTANT CZ.
                                                                                    LJ612
   THE CODE OF VAL(2) IS "SFACT" WHICH MUST BE ON THE INPUT CARD AFTER "SET-LJ612-". NOTICE THAT THE
                                                                                    LJ612
                                                                                                516
                                                                                    LJ612
                                                                                                517
   INPUT IS THE REDUCTION FACTOR OF SIGNA AND IS RAISED TO 6-TH POWER
                                                                                    LJ612
                                                                                                518
                                                                                    LJ612
                                                                                                519
                                                                                    LJ612
                                                                                                520
                                                                                                521
                                                                                    LJ612
  900 IF(VAL(1).NE.ALJ612)GOTO 1900
                                                                                    LJ612
                                                                                                522
                                                                                                523
                                                                                    LJ612
      T(P(1)=2.0
                                                                                    LJ612
                                                                                                524
      ZNAME=VAL (2)
                                                                                                525
      IF(VAL(3).LE.O.) VAL(3) = 3.5
                                                                                    LJ612
      IF(VAL(4).LE.O.) VAL(4) = 300.
                                                                                                526
                                                                                    LJ612
      GOTO 1900
                                                                                    LJ612
                                                                                                527
   THIS IS A CALL FROM SUBROUTINE LIBRARY-400 (111-C-245)
                                                                                    LJ612
                                                                                                528
   PROCESSING A STG-CARD. AT THIS TIME VAL(2) CONTAINS THE NAME OF THE COMPONENTS VAL(3)=SIGMA, VAL(4)=EPSOK. SIGMA AND EPSOK ARE REPLACED BY DEFAULT VALUES IF THEY
                                                                                    LJ612
                                                                                                529
                                                                                                530
                                                                                    LJ612
                                                                                    LJ612
                                                                                                531
   ARE NOT POSITIVE.
                                                                                    LJ612
                                                                                                532
533
                                                                                    LJ612
                                                                                                534
   LANE 10
                                                                                    LJ612
                                                                                    LJ612
                                                                                                535
 1000 IF(PRNNTC) WRITE(LO-1015) VAL(1)+VAL(2)
                                                                                    LJ612
                                                                                                536
 1015 FORMAT (1H .7X.5HLJ612.3X.6HSIGMA=.1PE12.5.10H ANGSTROMS.
                                                                                    LJ612
                                                                                                537
                EPSILON/K=+1PE12.5.8M NELVINS)
     • 15H.
                                                                                    LJ612
                                                                                                538
      GOTO 1900
                                                                                    LJ612
                                                                                                539
   THIS LANE IS CALLED FRUM LIBRARY-940 (SEE III-C-250)
                                                                                                540
                                                                                    LJ612
   WHICH HAS JUST STORED SIGHA AND EPSILON/K IN VAL(1) AND
                                                                                                541
                                                                                    LJ612
                                                                                                542
   VAL(2) FOR PRINTING
                                                                                    LJ612
                                                                                    LJ612
                                                                                                543
                                                                                                544
   LANE 11
                                                                                    LJ612
                                                                                    LJ612
 1100 SIGHA(NOALF)=TYP(1)
                                                                                    LJ612
                                                                                                546
      IF(SIGHA(NOALF).LE.O.) SIGMA(NOALF)=3.5
                                                                                    LJ612
                                                                                                547
                                                                                                548
                                                                                    LJ612
      EPSOK (NOALF) = TYP(2)
      IF (EPSOK (NOALF) .LE.O.) EPSOK (NCALF) =300.
                                                                                                549
                                                                                    LJ612
      GOTO 1900
                                                                                    LJ612
                                                                                                550
   LANE 11 IS CALLED FROM SUBROUTINE COMPOS-530 (III-C-77)
                                                                                    LJ612
                                                                                                551
   AND SUBROUTINE RORDER-90 (III-C-312) . WHICH HAVE STORED THE PROPER VALUES IN MOALF AND TYP. BY THIS
                                                                                    LJ612
                                                                                                552
                                                                                    LJ612
                                                                                                553
   CALL THE ARRAYS SIGMA AND EPSOK ARE FILLED UP AND
                                                                                                554
                                                                                    LJ612
   REORDERED. RESPECTIVELY.
                                                                                    LJ612
                                                                                                555
   SIGHA AND EPSOK ARE REPLACED BY THEIR DEFAULT VALUES IF
                                                                                    LJ612
                                                                                                556
   THE VALUES IN TYP ARE NOT POSITIVE.
                                                                                    1.1612
                                                                                                557
                                                                                                558
                                                                                    LJ612
   LANE 12
                                                                                    LJ612
                                                                                                559
                                                                                    LJ612
                                                                                                560
 1200 IF (PRNNTC) WRITE (LO+1215) SIGMA (NOALF) . EPSOK (NOALF)
                                                                                    LJ612
                                                                                                561
 1215 FORMAT (1H +13x+5HLJ612+3x+6HSIGHA=+1PE12-5+10H ANGSTROMS+
                                                                                    LJ612
                                                                                                562
                EPSILON/K=+1PE12.5.8H KELVINS)
                                                                                                563
     • 15H.
                                                                                    LJ612
      IF (PRINTC.AND.SIGMA (NOALF) .EQ.3.5.AND.EPSOK (NOALF) .EQ.300.)
                                                                                                564
                                                                                    LJ612
      A WRITE (LO.1216)
                                                                                    LJ612
                                                                                                565
 1216 FORMAT(1H++90X+16H(DEFAULT VALUES))
                                                                                                566
                                                                                    LJ612
      GOTO 1900
                                                                                    LJ612
                                                                                                567
    ANE 12 IS CALLED FROM COMPOS-460 (III-C-80) WHICH
                                                                                    LJ612
                                                                                                568
   PRINTS A LIST OF GASEOUS CONSTITUENTS
                                                                                    LJ612
                                                                                                569
c
                                                                                    LJ612
                                                                                                570
   LANE 13
                                                                                    LJ612
```

The second secon

And the second

С		LJ612	572
1	300 TYP(1)=SIGM4(NOALF)	LJ612	573
•	TYP(2)=EPSOK(NOALF)	LJ612	574
	GOTO 1900	LJ612	575
•	THIS LANE IS CALLED FROM RORDER-40 (III-C-311) WHICH	LJ612	576
č	REORDERS THE LIST OF CONSTITUENTS. LANE 13 IS	LJ612	577
č	THE INVERSE OF LANE 11.	LJ612	578
	THE THACKSE OF PWE TI.		579
C		LJ612	
С	LANE 14	LJ612	580
С		LJ612	581
	400 mRITE(LO+1415)SIGFCT	LJ612	582
1	415 FORMAT(1H0+30X+35HTRUNCATED VIRIAL EQUATION OF STATE .	LJ612	583
	• 18H(SUBROUTINE LJ612)•/•1H •10X•	LJ612	584
	. S3HSECOND VIRIAL COEFFICIENT COMPUTED FROM LENNARD-JONES.	LJ612	585
	. 15H 6-12 POTENTIAL / . 1H 10X.	LJ612	586
	. SZHTHIRD VIRIAL COEFFICIENT COMPUTED USING A SIMPLIFIED.	LJ612	587
	+ 37H RIGID SPHERE FORMULA WITH R = SIGMA++1PE12.5)	LJ612	588
	60TO 1900	LJ612	589
С	LANE 14 IS CALLED FROM PRINNT-50 (III-C-297) REQUIRING	LJ612	590
č	TO PRINT GENERAL INFORMATION ABOUT THE EQUATION	LJ612	591
č	OF STATE	LJ612	592
č	or state	LJ612	593
č	AND COCKED THAN 14	LJ612	594
	LANE GREATER THAN 14		595
C		LJ612	
1	500 WRITE(LO+1515)LANE	LJ612	596
	STOP	LJ612	597
1	515 FORMAT(1H0+10X+32HSTOP BY SUBROUTINE LJ612 BECAUSE+	LJ612	598
	+ 25H IT WAS CALLED WITH LANE=+15+/+1H +10X+	LJ612	59 9
	- 28HLANE SHOULD BE LESS THAN 15.)	LJ612	600
С	ERROR STOP WITH INVALID VALUE OF LAME	LJ612	601
С	•	LJ612	602
1	900 RETURN	LJ612	603
-	END	LJ612	604
	-		

APPENDIX B

and the second of the best of the second

LISTING OF THE SUBROUTINE LJBS

APPENDIX B

personally a real territory of a se

LISTING OF THE SUBROUTINE LJBS

```
LJBS
                 SUMMOUTTINE LURS (LANE . TS.RS. TRSP. TTRSPP. MTSTAK)
c
                                                                                                                                                                                                                          LJBS
         THIS ROUTINE PROVIDES INTERPOLATED FALUES OF BSTAR AND ITS DERIVATIVES. IT IS CALLED BY THE
                                                                                                                                                                                                                          LJBS
                                                                                                                                                                                                                          LJBS
         TRUNCATED VIRIAL SUBROUTINE LJ612. BASED ON
                                                                                                                                                                                                                          LJBS
C
                                                                                                                                                                                                                          LJ8S
C
        LENNARD-JOILES (6-12) POTENTIAL.
                                                                                                                                                                                                                          LJAS
                                                                                                                                                                                                                                                              8
       LANE INDICATES WHAT SHOULD BE INTE-POLATED

= 1 COMPUTE 3STAR AND FIRST DERIVATIVE

= 2 COMPUTE 3STAR AND FIRST TWO DERIVATIVES
                                                                                                                                                                                                                          LJas
C
¢
                                                                                                                                                                                                                          LJas
                                                                                                                                                                                                                                                           10
                                                                                                                                                                                                                                                           ŭ
                                                                                                                                                                                                                          LJRS
C
                                   = 3 COMPUTE BSTAR
                                                                                                                                                                                                                          LJ8S
č
                                                                                                                                                                                                                          LJAS
                                                                                                                                                                                                                                                            13
                                   = 4 COMPUTE BSTAR
                                                                                                                                                                                                                          LINS
C
        TS
                                   = ARGUMENT TSTAR
                                                                                                                                                                                                                                                           14
                                                                                                                                                                                                                          LJBS
         THE FOLLOWING WILL BE COMPUTED BY THIS ROUTINE
                                                                                                                                                                                                                          LJBS
                                                                                                                                                                                                                                                           16
17
                                                                                                                                                                                                                          LJBS
                                                                                                                                                                                                                          LJRS
                                                                                                                                                                                                                                                           18
                                   = BSTAR
         TESP
                                   = TSTAR*(FIRST DERIVATIVE OF BSTAR)
                                                                                                                                                                                                                          LJRS
                                                                                                                                                                                                                                                           19
         TTBSPP
                                   = TSTAR -- 2- (SECOND DERIVATIVE OF BSTAR)
                                                                                                                                                                                                                                                           ŠÓ
                                                                                                                                                                                                                          LJRS
        MISTAK
                                   = ERROR INDICATOR.
                                                                                                                                                                                                                          LJAS
                                                                                                                                                                                                                                                           22
                                   = 0 IF NO ERROR
                                                                                                                                                                                                                          LJRS
                                                 IF TSTAR IS LESS THAN 0.01
                                                                                                                                                                                                                          LJAS
                                   = -1
                                                                                                                                                                                                                                                           24
                                   = 2 IF LAME IS OUTSIDE INTERVAL (1.4)
                                                                                                                                                                                                                          LJRS
                                                                                                                                                                                                                                                           25
                                                                                                                                                                                                                          LJAS
                                                                                                                                                                                                                          LJBS
        THE INTERPOLATION IS DONE IN HIRSCHFELDER-CURTIS-BIND
                                                                                                                                                                                                                                                           26
         TABLES I-B USING TWO-POINT HERMITE FORMULAS IF 0.75.LE.TS.LE.S.O
                                                                                                                                                                                                                          LJBS
                                                                                                                                                                                                                                                           27
                                                                                                                                                                                                                                                            28
         OUTSIDE THIS RANGE SERIES EXPANSIONS ARE USED.
                                                                                                                                                                                                                          LJBS
                                                                                                                                                                                                                          LJ85
                                                                                                                                                                                                                                                           29
                                                                                                                                                                                                                          LJBS
                                                                                                                                                                                                                                                           30
        AIVARS CELMINS FECIT 13 APRIL 1983.
                                                                                                                                                                                                                          LJ8S
                                                                                                                                                                                                                                                           31
                 DIMENSION TRLJT8(82)+85TLJ(82)+85TLJ1(82)+85TLJ2(82)
                                                                                                                                                                                                                          LJ8S
                                                                                                                                                                                                                                                           32
                                                                                                                                                                                                                          LJBS
                                                                                                                                                                                                                                                           33
        THE FOLLOWING ARE HIRSCHFELDER-CURTIS-BIRD TABLES I-8
                                                                                                                                                                                                                          LJBS
                                                                                                                                                                                                                          LJ8S
                                                                                                                                                                                                                                                           35
              DATA (TRLJTB(1):1=1:82) /.30, .35, .40, .45, .50, .55, .60, .65, . LUBS
170, .75, .80, .85, .90, .95, laud, l.05, lal0, lal5, la20, la25, la26, 
                                                                                                                                                                                                                                                           37
                                                                                                                                                                                                                                                            39
              4, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4.0, 4.1, LJBS 5 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 5.0, 6.0, 7.0, 8.0, 9.0, LJBS
              010.0. 20.0, 30.0. 40.0. 50.0. 60.0. 70.0. 80.0. 90.0. 100.0. 200.0 LJBS
                                                                                                                                                                                                                          LJBS
                                                                                                                                                                                                                                                            43
               7. 300.0. 400.0/
                 DATA (BSTLJ(I) . I=1.82) /-27.8805-10 -18.7548950 -13.7988350 -10 LJBS
               1.7549750. -8.7202050. -7.274085d. -6.1979708. -5.3661918. -4.71003 LJ85
                                                                                                                                                                                                                                                            45
               270, -4.1759283, -3.7342254, -3.3631193, -3.0471143, -2.7749102, -2 LJBS
               3.5380914, -2.3302208, -2.1403742, -1.9825492, -1.8359492, -1.70377 LUBS
                                                                                                                                                                                                                                                            48
               5.1235183. -1.0519115. -.9854534. -.9236164. -.8659428. -.8120333. LJBS
                                                                                                                                                                                                                                                            49
               6-.7615373, -.7141473. -.6695903, -.6276254. -.5506331. -.4817100.
                                                                                                                                                                                                                                                           50
                                                                                                                                                                                                                         LJas
               7-.4196776, -3655757 -3126134, -2601334, -2235633, -1845073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645073, -3645
                                                                                                                                                                                                                                                          51
52
                                                                                                                                                                                                                         LudS
                                                                                                                                                                                                                         LJBS
              9.0189568. .0907201. .0611388. .0603279. .0933901. .1154169. .13149 LUBS
A02. .1406837. .1610038. .1746904. .1876177. .1998951. .2115073. .2 LUBS
                                                                                                                                                                                                                                                            53
                                                                                                                                                                                                                                                           55
               926751, .232558, .2433435, .322044, .3760885, .4134340, .4409978 LJAS
               C. .4608753. .5253742. .5269255. .5185750. .5083614. .4982126. .488 LJ95
                                                                                                                                                                                                                                                           55
              0507, .4797901, .4710150, .4640695, .4114317, .3801279, .3583512/ LJRS
                                                                                                                                                                                                                                                           57
                 DATA (857LJ1(1)-1=1-02) /76-6072560- 45-2477130- 30-2670800- 21-98 L-05
```

A CONTRACTOR OF THE PROPERTY O

all to the second property and the second property and

	•		
С		LJBS	116
•	KYIT=1	LJBS	117
c	STOP SERIES COMPUTATION WHEN KVIT-NE-0	LJBS	118
-	A1=A1+((A-0+AK-1-0)/(2-0+AK+1-0))/((2-0+AK+2-0)+TS)	LJ8S	119
	47=49+14.0+441.0)/(2.0+4K+2+0))/((2.0+4K+3+0)+T5)	LJBS	120
	OB=A1 •A2	LJBS	121
	85*85*08	LJ8S	122
	IF(ABS(OB).GT.].OE-12) KVIT=0	LJBS	123
	IF(LANE.GT.2) GOTO 39	LJBS	124
C	COMPUTE ONLY BSTAR IF LANE = 3 OR 4	LJ8S	125
č	CONFORM ONE! BOTHER T. CONFORM OF THE PROPERTY	LJBS	126
•	DBP=~(AK+1,25)+A1~(AK+1,75)+A2	LJBS	127
	TBSP=TBSP-0BP	LJBS	128
	IF(ABS(DBP).GT.1.0E-12) KVIT=0	LJBS	129
	1F (AD3(10DF) +01-11-01-12) (V411-V	LJBS	130
_	IF (LANE.EQ.1) GOTO 39	LJBS	131
Č	COMPUTE ALSO SECOND DERIVATIVE IF LANE = 2	LJBS	132
С	OBPP=(AK+1,25)+(AK+2,25)+A1+(AK+1,75)+(AK+2,75)+A2	LJBS	133
		LJBS	134
	TTBSPP=TTBSPP+0BPP IF(ABS(DBPP).GT.1.0E-12) KVIT=0	LJBS	135
		LJBS	136
_	39 IF (KVIT-NE_0) GOTO 40	LJ85	137
С		LJBS	138
	IF (AK.LE.305.) GOTO 37	LJBS	139
С	COMPUTE AT MOST 305 TERMS OF SERIES (NEEDED FOR TS=0.01)	LJBS	140
	40 RETURN	LJBS	141
Ç	THE REPORT OF THE PROPERTY.	LJBS	142
С	ENTER 45 FROM 35 AND INTERPOLATE	LJRS	143
	45 T1=TRLJTB(KA-1)	LJBS	144
	T2=TRLJTB (KA)	LJBS	145
	DELTST=T2-T1	LJBS	146
	X1=(TS-T1)/DELTST	LJBS	147
	x2=(15-12)/0ELTST	LJBS	148
	F1=(1.+2.+x1)+x2++2	LJOS	149
	F2=x1++2+(12.+X2)	LJBS	150
	D1=x1+x2++2	LJBS	isi
	02=x1 2=x2	LJ8S	152
	F1.F2.D1.D2 ARE HERMITE INTERPOLATION FACTORS	LJBS	153
C		LJBS	154
	BS=F1+BSTLJ(KA-1)+F2+BSTLJ(KA)+	LJBS	155
	. (D1+85TLJ1(KA-1)/T1+D2+B5TLJ1(KA)/TZ)+DELTST	LJBS	156
	IF (LANE.GT.2) RETURN	LJ8S	157
С	RETURN IF LANE=3 OR LANE=4		158
Ċ		LJBS	159
Ċ	ELSE COMPUTE FIRST DERIVATIVE	LJBS	
_	TBSP=F1+BSTLJ1(KA-11+F2+BSTLJ1(KA) + DELTST+	LVAS	160
	A (D1+(BSTLJ1(KA-1)+BSTLJ2(KA-1))/T1+D2+(BSTLJ1(KA)+BSTLJ2(KA))/T2)	F182	161
	IF (LANE.EQ.1) RETURN	たりのう	162
C	• • •	LJ85	163
č	IF LANEZZ, ALSO COMPUTE SECOND DERIVATIVE	LJ8S	164
•	**************************************	LJBS	165
	4 / COCT 11 / CA - 11 - GCT1 12 (KA - 11 1 / T1) 0 TS 0 I Z 0 (3 - 0 X 1 - 1 a) 0	LJBS	166
	B ((BSTLJ1(KA)+BSTLJ2(KA))/T2)+T5+X1+(3.+X2+1.) + TBSP	LJBS	167
	RETURN	LJas	168
	ENO	LJBS	169
	*···		

ب مريات رقيد ما

APPENDIX C

SAMPLE OUTPUT

Himmund by a section of the section

TO SELECTION OF THE SELECTION OF THE SELECTION OF SELECTI

PAGE

INPUT **TITLE.MUX SAMPLE HAY 1983 WITH LJG12 EQUATION OF STATE

INPUT **f(n+hULA**bX*14710+125*71+73.5*C+3+H+6+U+6+N+6

INPUT **CO-11-ADX.100

PDX SAMPLE MAY 1983 WITH LUGIZ EUUATION OF STATE

THE COMPOSITION 15

	z z
	,
	ı e
F DAMULA	J J
MOLECULAP WEIGHT	222.13
STANDARD ENTROPY (CAL/K/MULE)	73.500
STANDARD VOLUME (CC/MOLE)	125.710
HEAT OF FURHATION (CAL/MOLE)	14710.00
FERCENT RY MOLE	100.00
PEHCENT NY NE 30HT	100.00
NAME	AOX X

FOR THE COMPUSITION

DHA AND
S CAL/GH G CC/GM 3 CAL/K/GH / 9 CAL/GM・
66.22.1678 .565940 .338893 66.204969
FORMATION 15 VOLUME 15 ENTHUPY 15 ENERGY 15
HEAT OF STANDAKE STANDAKE STANDAKE
물물물물

THE ELCHENTS AND PERCENT BY MOLE 14.29

		_
	CONSTANTS	00000.0
	IHERE AME / L GASEOUS CONSTITUENTS SELECTED WITH THEIR CONSTANTS	STATER 2.49976 0.05700 0.00000 0.00000
	SELECTEU	00.00.0
28.57 28.57 28.57	INSTITUENTS	STATER 2.49976
355	GASEOUS CO	STATEO
I 9 7	1/ 3Hr	PIANE.
	HERE	<u>:</u>
		49

3	A.	STATEO	STATER	00.30.0	00000*0	0.0000.0	00000.0	0.0000.0	00000*0	50614.0	33.4030	
	3	HYW CUVOLUME 40.0 JICZP 6.000 EPSILON/K 0.000 JICZD 8.000 EPSILON/K 0.000 LUDIZ SIGHAM 1.50000FOFFO AHOSTOWAS, EPSILON/K 3.0000GE.0Z KELVINS (DEFAULT VALUES)	40.0 EPS] 30 EPS] 34.500005	1LON/K 1LON/K F+00 AHGS	0.000 0.000 51KOHS.	EPSILON/K.	3.U0UGGE+0 65409	2 KELVINS .39615	(DEF)	AULT VALUE	37.8110	
f•2	Ĕ	HAW COVOLUME, JC22 H 0.00 JC23 H 3.34	80.0 00 F.P.S.	TLON/K TLON/K T-00 ANG	0.000 37.000 STROMS.	EPSILON/K*	5.97000E-0	1 KELVINS	.03514	111247.0	43.1340	
3	•	2.50159 .19299 .07440 .0000 .1231 # 0.000 EPSILUN/K 0.000 .1231 # 0.000	2.50159 148.0 00 EPS 00 EPS	. 19299 11.0N/K	00000			2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	COEF	AULT VALUE	s	
;	ž	BK# COVOLUME	A# 3.50000 5.43979 380.0	E+00 ANG		EFSECONON- 1.69542651270/540 .4302.0 51.4860	1,89542	.65127	07540	-4302.0	51.4860	
		JC22 x 0.000 EPSILON/K 0.000 JC23 x 4.050 (PSILON/K 120.000 1.512 x 10MA= 3.00000E+00 ANUSTHOMS+	00 EPS 50 FPS A= 3.00000	ILON/K	20.000 20.000 STHOMS.	EPSILON/K# 7.98000E.02 KELVINS	7.98000£.	JE KELVINS				

The transfer of the content of the c

A CONTROLL OF THE STATE OF THE

organisation of the property o

AMERICAN STRUCK STRUCK STRUCKS STRUCKS STRUCKS

	CUNSTANTS
•	THETR
	Ī
	FLECTEU
•	THERE AME 21 GASEOUS CONSTITUENTS SELECTED WITH THEIR CONSTANTS
	GASEOUS
	₹.
	AME
	THERE

-18764.0 48.3899	5H3Z3.0 45.0630	(DEFAULT VALUES) 34 -2045.5 59.2300	.05551 170650.0 44.65H7	(DEFAULT VALUES) 11904 138395.0 48.9350	(DEFAULT VALUES) 20495 #5688.0 46.9250	(DEFAULT VALUES) -,25665 19889.0 48,4680	(DEFAULT VALUES) 28 -36617.0 41.5850	
-,17063	.04276	. 243		119			-,394	
1.47414	2 KELVINS *.14315	1.20737	02 KELVINS 39914	2 KELVINS .90814	2 KELVINS 1.61523	2.31079	2 KELVINS 3.54332	
4.15634	5.58300£+0	3.00000E+C	1.06700E.0	# 3.U0000E+0	3.00000E+0	3.00000E+0	3.00000E.0	
4.15634	EPSILON/K® 5.58300E+02 KFLVINS 00080 .3359914315	EPSILON/K= 3.00000E.02 KELVINS .01276 2.02364 -1.20737	EPSILON/Km 1.06780E+02 KELVINS .00140 .9736039914	EPSILON/N# 3.U0000E.02 KELVINS u00b1 -2.2H410 .90614	EPSILON/K# 3.00000E+02 KELVINS .00015 -4.65189 1.61523	EPSILON/K# 3.00000E+02 KELVINS 00312 -7.46014 2.31074	EPSILONZK# 3.U0000E+02 KELVINS U0372 -11.42966 3.54332	
44956	0.000 138.000 6514045,	0.000 0.000 651x0MS,	0.000 132.000 05 THOMS.	0.000 0.000 05THOMS.	0.000 0.000 USTWOMS.	0.000 0.000 05TROMS.	0.000 u.000 0.100 0.09643	0.000
1.82197	LOW: 470-0 0.000	1000 EPSILON/K 0.000 0.000 0.000 EPSILON/K 0.000 0.000 EPSILON/K 0.000 0.000 0.000 ANGSIMOMS, 2.70306 1.1204c184	NLUME 0.0 0.000 EPSILON/K 0.000 3.30 EPSILON/K 132.000 SIGHA= 3.00700E.00 ANGS!KOMS, 1.53761 .36750039	LUME 180.0 0.000 EPSILON/K 0.000 0.000 EPSILON/K 0.000 SIGMA# 3.50000E.00 ANGSTROMS.	LUME 420 FPSILON/K 0.000 0.000 EPSILON/K 0.000 SIUMA 3.50000E.00 ANUSTHOMS. B.9740619961 .008	Could	LOTE 552.5 0.00 EPSILUN/K 0.000 0.00 EPSILUN/K 0.000 SIUMA# 3.50000E.00 ANGSIMOMS; 1118 528.0	FPSILON/K 0.000
STATER H-46376	3.350 E	0.000 EI 0.000 EI 1644# 3.500	UME 0.00U 3.730 IGHA 3.467 1.53761	0.000 ER 0.000 ER 0.000 ER 0.000 ER 0.000 ER	0.000 F1 0.000 F1 0.000 F5 11 GMA = 3.500	0.000 E1 0.000 E1 0.000 E1 13.41149	0.000 EI 0.000 EI 10MA# 3.500 17.83671	99
STATEG	10.23 k 0.000 E10.000	JC22 R 0. JC23 R 0. JC23 R 0.	HNW COVOLUME JC22 x 0.0 JC23 x 3.7 LJ612 S16H	1022 K 0.00 1023 K 0.00 1023 K 0.00 10512 SIGHA	JC22 H 0.00 JC23 H 0.00 JC23 H 0.00 LL512 SIGHA	10.2 K 00.00 F P 0.00	1042 H 0.00 1042 H 0.00 10412 SIGHA	JC22 H 0
A 4 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	: : רנני	ָּ ניריז	י ברר±	2 2007)	ې خ	? • רנני	ָ בּ רבני	רנד:
	••	.:		:	10.)	:	14.)	

46

PAGE 3

47

CARLES CAN CONTRACTOR CONTRACTOR

44.5120

6531.0

(DEFAULT VALUES)

THERE MKE AL GASEOUS CONSTITUENTS SELECTED WITH THEIR CONSTANTS

21.3

-.11668 EPSILON/K# 3.00000E.02 KELVINS .81051 .00079 -1.72199 -,02096 SIAIEG STAIEH 15825 --0209
BK* COVOLUME 413.0
162 M 0.000 EFSILGN/K 0.000
LJG13 M 0.000 EFSILGN/K 0.000
LJG12 SIGMA* 3.50000F*00 ANUSIKOMS.

THERE ARE I CONDENSED CONSTITUENTS SELECTED WITH THEIR CONSTANTS

.4|87E*01 -.4501E*0U .8518E=01 -.4699E-U2 -.1312E*01 .7536E-U1 .1378E-01 -.4941E*04 .4129E*01 .4953E*01 .3955E-U4 .1191E-U8 -.6378E-U5 .1192E-U9 -.3756E-14 .3955E-U4 .1010E-15 0. 0. 50L10 518 51C 0LD 3

INPUT **UFUSALJOIL

INPUT **EXP*KHU*1.767
** ECOPY **ROS ** STUCK IN LOCAL MINIMUM
** ECOPYO FFROM ** STUCK IN LOCAL MINIMUM
** ECOPYO FFROM ** STUCK IN LOCAL MINIMUM
** ECOPYO FFROM ** ETAS EXCESSIVE ITERATIONS

RDX SAMPLE MAY 1983 WITH LJ612 EQUATION OF STATE

ns sance chestante establità di de la compania de l

PAGE 6

HDX SAMPLE MAY 1983 #ITH LJ612 EQUATION OF STATE

	WITH K # SIGMA* A.10000E-01	\$(0) = S = (0°000)
THE CONSTANT VOLUME EXPLUSION STATE	TRUNCATED VIMIAL EQUATION OF STATE (SUBHOUTINE LJ612) 2.CONU. VIMIAL COFFICIENT COMPUTED FROM LUMMAN-JONES DE-12 POTENTED RAMMU- PRESTOCET OF SIGNA* R.10000E-01 2.CONU. VIMIAL COFFICIENT COMPUTED USING A SIMPLETED RIGID SPHARE FORMULA WITH M = SIGNA* R.10000E-01	(0.000)

	UNCOUNT		(O) H	·		;			:		456 45
	1	> 3	٠ş	H(0)	E (0)	T H(U) E(O) S(O) VUS CV ALPHA HEIA COLATION (CAL/ACH) (CAL/ACH) (CAL/ACH) (CAL/ACH)	V65 (CC/0H)	CAL/K/6H)	ALPHA	1 1 1	
			:	•		1	197	1.59	2,383	1.234	2.741
-	4,1400	.5659	4365.	1430.50	66.21	1 • 94° 5	1000				
:				100	NOTT AUTHOR	S - MOLES PE	R KGM OF	EXPLOSIVE			

_
EXPLOS
ò
Z K
PER
MOLES
٠
CONCENTRATIONS
CONSTITUENT

:	N	::	-985	4	-	S	•	•		3,1	Ų.	₽.	•	ā.	Ξ:	Ξ.	=	≍	≍	×	5	ā	38.5570
NA-1.	•	-3	5	<	Ş¥:.		540							SAO		Sis	SHO	SVI	.yAS	C+AS	SVI	SUL 10	Svi
Z	ž	DAM	ن	5	I	•	ŧ	ī	£	I	5	Ξ		I	3	į	ָ כ	2	z	3	ر	3	TOTAL

RDX SAMPLE MAY 1983 WITH LJ512 EUUATION OF STATE

INPUT **C-J.P.1.RHU:1.767

PAGE 7

PAGE 7

nappolitical describes and postate properties of the political of the political of the political political

PACE

men のこれ、ウェリー ことのいうから たいかんかくから ものから こうだいかかっしいからからないからのできないとうのかなからからないできないでき

.6926651E+04 M/5 THE SHUCK VELUCITY 15

.1766154E .04 H/S THE PARTICLE VELOCITY IS

.5160498E .04 M/S THE SOUND SPEED IS

66.21 CAL/UM £0 = **** CC/GM . 9 PO # 1.00 ATM TRUNCATED VIHIAL COEFFICIENT COMPUTED FOR A SIMPLE (SUBMOUTINE LJGL?)
**CONU VIHIAL COEFFICIENT COMPUTED FRUM TEMARD-JONES SOLZ PORMIAL
**INU, VHIAL COEFFICIENT COMPUTED USING A SIMPLETED MIGID SPHENE FORMULA WITH H = SIGHA* 8.10000E-01

00000) = S = (0)S BETA 0.000 E(0) = £ - (H(0) # H = (0)H . . UKGINAL

HIO) EIO) SIO) VUS CV ALPHA (CAL/GM) (CAL/GM) (CAL/K/GM) ۰ŝ (cc/6H)

438.49 2617.43 .4216 5331. £13340,7

::3

3

4516 1.916

2.922

1.046

6.05

.485

CONSTITUENT CUNCENTRATIONS - MOLES PLR KGM OF EXPLOSIVE

NA-t

Š

도울감감 geggg,

37.5

36.1924

5//

TOTAL

RDX SAMPLE MAY 1983 WITH LUSIZ EQUATION OF STATE

PACE

0.964KLNS.

INPUT **STILL 09.39.41.UCLP. FATH1602C.

APPENDIX D

INTERPOLATION FORMULAS

したとうない はいいい

APPENDIX D

INTERPOLATION FORMULAS

In Section 6 we defined a function $\tilde{B}(\tilde{T})$ by the infinite series (6.6). In order to save computing time, that function and its derivatives may be calculated by interpolation in tables instead of evaluating the series. The interpolation formulas are provided by this appendix.

The function tables in reference 2, p. 1144 ff. contain the functions $\frac{x}{B}$, $\frac{x}{B}$, = $\frac{x}{T}$ ($\frac{d^2y}{dT}$) and $\frac{x}{B}$ = $\frac{x}{T}$ ($\frac{d^2y}{dT}$). Hence in addition to function values at the nodes one also has available derivatives of the functions. This permits one to use higher order two-point Hermite formulas with corresponding higher accuracy. The basic Hermite formulas are as follows. Let the function y(x) and its first derivatives be given at x=0 and x=1, and let them be denoted by y_0 , y_1 , y_0 , and y_1 , respectively. Then an approximation to y(x) is

$$h(x) = y_0 F_0(x) + y_1 F_1(x) + y_0' D_0(x) + y_1' D_1(x)$$
 (D.1)

The error of the approximation is of fourth order in x. The derivative of (D.1) is an approximation of y'(x) with a third order error:

$$h'(x) = y_0 F_0'(x) + y_1 F_1'(x) + y_0'D_0'(x) + y_1' D_1'(x)$$
 (D.2)

The Hermite factors in Eqs. (D.1) and (D.2) are

$$F_{0}(x) = (x - 1)^{2} (1 + 2x)$$

$$F_{1}(x) = x^{2} (1 - 2 (x - 1))$$

$$D_{0}(x) = (x - 1)^{2} x$$

$$D_{1}(x) = x^{2} (x - 1)$$

$$F_{0}'(x) = 6 x (x - 1)$$

$$F_{1}''(x) = -6 x (x - 1)$$

$$D_{0}''(x) = (x - 1) (3x - 1)$$

$$D_{1}''(x) = x (3 (x - 1) + 1)$$

For an interpolation in the \ddot{T} -table between \ddot{T}_a and \ddot{T}_b one has the definition

$$x = (T - T_a)/(T_b - T_a)$$
, (D.4)

and derivatives are transformed by using the chain rule

$$\frac{d}{dx} = (\hat{T}_b - \hat{T}_a) \frac{d}{d\hat{T}} . {(D.5)}$$

Hence B may be interpolated by the formula

$$\overset{*}{B} = \overset{*}{B}_{a} F_{0} + \overset{*}{B}_{b} F_{1} + (\overset{*}{T}_{b} - \overset{*}{T}_{a}) \left(\frac{B_{1a}}{T_{a}} D_{0} + \frac{B_{1b}}{T_{b}} D_{1} \right) . \tag{D.6}$$

In order to compute $\overset{\star}{B}_1 = \overset{\star}{T} \overset{\star}{B}_1$ one can either interpolate $\overset{\star}{B}_1$ making use of the relation $\overset{\star}{B}_1' = \overset{\star}{B}_2/\overset{\star}{T}^2$ or interpolate the function $\overset{\star}{B}_1$ itself, or compute the derivative of Eq. (D.6), thereby disregarding the $\overset{\star}{B}_2$ tables. It was found from numerical experiments (by comparing interpolated values with exact values) that the first approach is not very accurate. The third approach cannot be recommended in general and, therefore, it was not tried. The final algorithm was based on the second approach and implemented as follows. The derivative of the function $\overset{\star}{B}_1$ is given the terms of $\overset{\star}{B}_1$ and $\overset{\star}{B}_2$ by the formula

$$\frac{d}{dT} \stackrel{*}{B}_{1} = \frac{d}{dT} (\stackrel{*}{B} \stackrel{*}{B}) = \frac{1}{2} (\stackrel{*}{B} \stackrel{*}{B}) + \stackrel{*}{T} \stackrel{*}{B}) = \frac{1}{2} (\stackrel{*}{B}_{1} + \stackrel{*}{B}_{2}) . \tag{D.7}$$

Using this value in the interpolation formula (D.1) one obtains

$$\ddot{\bar{B}}_{1} = \ddot{\bar{B}}_{1a} P_{0} + \ddot{\bar{B}}_{1b} P_{1} + (\ddot{\bar{T}}_{b} - \ddot{\bar{T}}_{a}) \left[\frac{\ddot{\bar{B}}_{1a} + \ddot{\bar{B}}_{2a}}{\ddot{\bar{T}}_{a}} p_{0} + \frac{\ddot{\bar{B}}_{1b} + \ddot{\bar{B}}_{2b}}{\ddot{\bar{T}}_{b}} p_{1} \right]. \quad (D.8)$$

The function B_0 was interpolated by using the inversion of Eq. (D.7):

$$\hat{B}_{2} = \hat{T} \hat{B}_{1}^{\dagger} - \hat{B}_{1} = \frac{\hat{T}}{\hat{T}_{b} - \hat{T}_{a}} \frac{d\hat{B}_{1}}{dx} - \hat{B}_{1} . \tag{D.9}$$

In this formula the x-derivative was computed by differentiation of Eq. (D.8), that is, by Eq. (D.2). After substitution and simple manipulation one obtains

$$\overset{*}{\mathbb{B}}_{2} = \overset{*}{\mathbb{T}} \left[\frac{\overset{*}{\mathbb{B}}_{1b} - \overset{*}{\mathbb{B}}_{1a}}{\overset{*}{\mathbb{T}}_{b} - \overset{*}{\mathbb{T}}_{a}} \, F_{1}^{i} + \frac{\overset{*}{\mathbb{B}}_{1a} + \overset{*}{\mathbb{B}}_{2a}}{\overset{*}{\mathbb{T}}_{a}} \, D_{0}^{i} + \frac{\overset{*}{\mathbb{B}}_{2b} + \overset{*}{\mathbb{B}}_{2b}}{\overset{*}{\mathbb{T}}_{b}} \, D_{1}^{i} \right] - \overset{*}{\mathbb{B}}_{1} \quad , \quad (D.10)$$

where the relation $F_0^* = -F_1^*$ has been used.

Here the second control of the second se

Limited comparison of the interpolation results with exact values showed reasonable agreement (eight digits for B, four digits for B_2). The routine LJBS can easily be changed to produce exact function values for all T by series evaluation instead of interpolation. The corresponding increase of computing time was found to be less than two percent.

THE REAL PROPERTY OF THE PERSON OF THE PERSO

No. of Copies	Organization	No. of Copies	<u>rganization</u>
12	Administrator Defense Technical Info Center ATTN: DTIC-DDA Cameron Station Alexandria, VA 22314	9	Commander US Army Armament R&D Command ATTN: SMCAR-TSS SMCAR-LCA K. Russell W. Benson
1	Office of the Under Secretary of Defense Research & Engineering ATIN: R. Thorkildsen Washington, DC 20301		L. Schlosberg S. Westley S. Bernstein P. Kemmey C. Heyman Dover, NJ 07801
1	HQDA/SAUS-OR, D. Hardison Washington, DC 20310	11	Commander US Army Armament R&D Command
1	HQDA/DAMA-ZA Washington, DC 20310		ATIN: SMCAR-SCA, L. Stiefel B. Brodman R. Morera
2	HQDA, DAMA-CSM, LTC A. German E. Lippi Washington, DC 20310		SMCAR-LCB-I, D. Spring SMCAR-LCE, R. Walker N. Slagg
1	HQDA/SARDA Washington, DC 20310		SMCAR-LCU-CT, E. Barrieres R. Davitt
1	Commandant US Army War College ATTN: Library-FF222 Carlisle Barracks, PA 17013		SMCAR-LCU-CV E. Moore C. Mandala SMCAR-LCM-E, S. Kaplowitz
1	Director US Army Ballistic Missile Defens Advanced Technology Center P.O. Box 1500	e 6	Dover, NJ 07801 Commander US Army Armament R&D Command
1	Huntsville, AL 25807 Chairman DOD Explosives Safety Board Room 856-C Hoffman Bldg. I 2461 Eisenhower Avenue Alexandria, VA 22331		ATTN: SMCAR-QAR-Q J. Ruthowski G. Allen J. Donner P. Serao D. Adams D. Hershkowitz Dover, NJ 07801
1	Commander US Army Materiel Command ATTN: AMCDRA-ST 5001 Eisenhower Avenue Alexandria, VA 22333	3	Commander US Army Armament Research and Development Command ATTN: SMCAR-CAWS F. Menke H. Noble SMCAR -TDC
1	HQDA DAMA-ART-M Washington, DC 20310 59		Dover, NJ 07801

No. of Copies	Organization	No. of Copies	Organization
1	Project Manager Munitions Production Base Modernization and Expansion ATTN: AMCPM-PMB Dover, NJ 07801	1	Commander US Army Electronics R&D Cmd Technical Support Activity ATTN: AMDSD-L Fort Monmouth, NJ 07703
4	Commander US Army Armament R&D Command ATTN: SMCAR-LCW-A M. Salsbury SMCAR-LCS J. W. Gregorits	1	Commander USA Radford Army Ammo Plant ATTN: SARRA-EN (Mr. J. Horvath) Radford, VA 24141
	SMCAR-LCU, A. Moss SMCAR-LC, J. Frasier Dover, NJ 07801	1	Commander US Army Mobility Equipment Command 4300 Goodfellow Blvd.
1	Project Manager Cannon Artillery Weapons		St. Louis, MO 63120
	Systems AMCPM-CAWS-AM Dover, NJ 07801	1	Director US Army Air Mobility Research and Development Laboratory Ames Research Center
3	Commander US Army Armament Materiel Readiness Command	1	Moffett Field, CA 94035
	ATTN: AMSMC-LEP-L, Tech Lib AMSMC-LEM, W. Fortune R. Zastrow		US Army Harry Diamond Lab. ATTN: DRXDO-TI 2800 Powder Mill Road
	Rock Island, IL 61299		Adelphi, MD 20783
1	Commander US Army Watervliet Arsenal ATTN: SARWV-RD, R. Thierry Walervliet, NY 12139	2	Commander US Army Missile Command ATTN: AMSMI-R Redstone Arsenal, AL 35898
1	Director US Army AMCCOM Benet Weapons Laboratory ATTN: SMCAR-LCB-TL Watervliet, NY 12189	1	Commander US Army Natick Research and Development Laboratory ATTN: D. Sieling Natick, MA 01760
1	Commander US Army Aviation Research and Development Command ATTN: AMSAY-E 4300 Goodfellow Blvd. St. Louis, MO 63120	1	Commander US Army Missile Command ATTN: AMSHI-7DJ. Redstone Arsenal, AL 35898

No. of Copies	Organization	No. of Copies	Organization
1	Commander US Army Tank Automotive Research and Development ATTN: AMSTA-TSL Warren, MI 48090	1	Commandent US Army Command & General Staff College Fort Leaverworth, KS 66027
1	Director US Army TRADOC Systems Analysis Activity ATTN: ATAA-SL	1	Commandant US Army Engineer School ATTN: STSE-CD Fort Belvoir, VA 22060
	White Sands Missile Range, NM 88002	1	Commander US Army Communciations Rsch and Development Command ATTN: DRDCO-PAA-Sa
1	Commander US Army Tank Automotive Command ATTN: DRCPM-M60TD		Fort Monmouth, NJ 07703
	Warren, MI 48090	1	Commander US Army Foreign Science and
1	Commander US Army Training & Doctrine Command ATTN: ATCD-MA/MAJ Williams Fort Monroe, VA 23651		Technology Center ATTN: DRXST-MC-3 H. Sheinfeld 220 Seventh Street, NE Charlottesville, VA 22901
2	Commander US Army Materials and Mechanics Research Center	1	President US Army Artillery Board Ft. Sill, OK 73503
	ATTN: DRXMR-ATL, Tech Library Watertown, MA 02172	2	Commandant US Army Field Artillery School
1	Commander US Army Research Office ATIN: Tech Library		ATTN: ATSF-CO-MW, B. Willis Ft. Sill, OK 73503
	P. O. Box 12211 Research Triangle Park, NC 27709	2	Commandant US Army Armor School ATTN: ATZK-CD-MS/M. Falkovitch Armor Agency
1	President US Army Armor & Engineer Board		Fort Knox, KY 40121
	ATTN: STEBB-AD-S Fort Knox, KY 40121	1	Chief of Naval Materiel Department of the Navy ATTN: J. Amlie
1	Commandant US Army Aviation School ATTN: Aviation Agency Fort Rucker, AL 36360		Washington, DC 20360

No. of		No. of Cories	Organization
Copies	Organization	W, Tes	Ol Bantzuczon
2	Commander Naval Sea Systems Command ATTN: SEA-62R2, J. W. Murrin R. Beauregard National Center, Bldg 2 Room 6E08 Washington, DC 20360 Commander Naval Air Systems Command ATTN: NAIR-954-Tech Lib	6	Commander Naval Surface Weapons Center ATTN: S. Jacobs/Code 240 Code 730 K. Kim/Code R-13 R. Bernecker Code Ril/M.J. Kamlet Code R04/D.J. Pastine Silver Spring, MD 20910 Commander
	Washington, DC 20360	-	Naval Underwater Systems Center
1	Strategic Systems Project Office Department of the Navy Room 901 ATTN: J. F. Kincaid		Energy Conversion Department ATTN: CODE 5B331, R. S. Lazar, Tech Lib Newport, RI 02840
•	Washington, DC 20376 Assistant Secretary of the	5	Commander Naval Weapons Center ATTN: Code 388, R. L. Derr
1	Navy (R, E, and S) ATTN: R. Reichenbach Room 5E787 Pentagon Bldg. Washington, DC 20350		C. F. Price T. Boggs Code 385/A.Amster Info. Science Div. China Lake, CA 93555
1	Commander Naval Research Lab Tech Library Washington, DC 20375	2	Commander Naval Weapons Support Center Code 5042 ATTN: B. Douda William Spadie
5	Commander Naval Surface Weapons Center		Crane, Indiana 47522
	ATTN: Code G33, J. L. East D. McClure W. Burrell J. Johndrow Code DX-21 Tech Lib Dahlgren, VA 22448	2	Superintendent Naval Postgraduate School Dept. of Mechanical Engineering ATTN: A. E. Fuhs Code 1424 Library Monterey, CA 93940
4	Commander Naval Surface Weapons Center ATTN: J. P. Consaga C. Gotzmer G. Powell G. Wilmont Indian Head, MD 20640	1	Commander US Army Communications Rsch and Development Command ATTN: AMSEL-ATDD Fort Monmouth, NJ 07703

and the same of th

No. o		No. of	Ē
Copie	6 Organization	Copies	Organization
6	Commander Naval Ordnance Station ATTN: P. L. Stang C. Smith S. Mitchell C. Christensen D. Brooks Tech Library Indian Head, MD 20640	1	ADTC ATTN: DLODL Tech: Lib Eglin AFB, FL 32542 AFFDL ATTN: TST-Lib Wright-Patterson AFB, OH 45433
1	ATSC/SDOA Andrews AFB, MD 20334	1	AFWL/SUL Kirtland AFB, NM 87117
1	Program Manager AFOSR Directorate of Aerospace Sciences ATTN: L. H. Caveny Bolling AFB, DC 20332	1	Commander US Army Development & Employment Agency ATTN: MODE-TED-SAB Fort Lewis, WA 98433
1	Commandant US Army Infantry School ATTN: ATSH-CD-CSO-OR Fort Benning, GS 31905	2	Director National Aeronautics & Space Administration Lewis Research Center ATTN: R. Svehla
5	AFRPL (DYSC) ATTN: D. George J. N. Levine D. Thrasher		F. Zelezník 2100 Brookpark Road Cleveland, OH 44135
	N. Vander Hyde Tech Library Edwards AFB, CA 93523	2	National Bureau of Standards U.S. Dept of Commerce ATTN: D. Garrin E. S. Domalski Washington, DC 2023
1	AFFTC AFRPL-LKCG ATTN: SSD-Tech Lib Edwards AFB, CA 93523	1	Aerodyne Research, Inc. Bedford Research Park ATTN: V. Yousefian
1	ADTC/AFATL ATTN: DLYV Eglin AFB, FL 32542	1	Bedford, MA 01730 Aerojet Solid Propulsion Co.
1	AFATL/DLDL ATTN: O. K. Heiney Eglin AFB, FL 32542		ATTN: P. Micheli Sacramento, CA 95813 Atlantic Research Corporation ATTN: M. K. King 5390 Cheorokee Avenue Alexandria, VA 22314

No. of Copies	Organization	No. of Copies	Organization
1	AVCO Everett Rsch Lab ATTN: D. Stickler 2385 Revere Beach Parkway	1	Hercules, Inc. Eglin Operations AFATL DLDL ATTN: R. L. Simmons
2	Everett, MA 02149 Calspan Corporation		Eglin AFB, FL 32542
	ATTN: E. B. Fisher Tech Library P. O. Box 400	2	IITRI ATTN: M. J. Klein A. Snelson
	Buffalo, NY 14225 Foster Miller Associates		10 W. 35th Street Chicago, IL 60616
1	ATTN: A. Erickson 135 Second Avenue Waltham, MD 02154	4	Director Lawrence Livermore Laboratory ATTN: M. S. L-355, A. Buckingham M. Finger J. W. Kury P. O. Box 808 Livermore, CA 94550
1	General Applied Sciences Lab ATTN: J. Erdos Merrick & Stewart Avenues Westbury, NY 11590	1	Olin Corporation Badger Army Ammunition Plant ATTN: R. J. Thiede Baraboo, WI 53913
	Grand Plantyle Company	2	Olin Corporation Smokeless Powder Operations ATTN: R. L. Cook
1	General Electric Company Armament Systems Dept. ATIN: M. J. Bulman, Room 1311 Lakeside Avenue Burlington, VT 05401	1	P. Poe P. O. Box 222 St. Marks, FL 32355 Olin Corporation 275 Winchester Ave.
2	Hercules, Inc. Allegany Ballistics Laboratory ATIN: R. B. Miller	1	New Haven, CT 06504 Paul Gough Associates, Inc. ATTN: P. S. Gough
	R. Musso P. O. Box 210 Cumberland, MD 21501	1	P. 0. Box 1614 Portsmouth, NH 03801 Physis International Company
2	Hercules, Inc. Bacchus Works ATTN: K. P. McCarty	-	2700 Herced Street San Leandro, CA 94577
	K. B. Isom Magna, UT 84044	1	Princeton Combustion Research Lab., Inc. ATTN: M. Summerfield 1041 US Highway One North Princeton, NJ 08540

and the state of t

No. of		No. of	
Copies	Organization	Copies	Organization
2	Teledyne McCormick Selph ATTN: T. P. Goddard Mr. C. Leveritt P. O. Box 6 Hollister, CA 95023	2	Thiokol Corporation Elkton Divison ATTN: R. Biddle Tech Lib. P. O. Box 241 Elkton, MD 21921
1	Aerospace Corporation ATTN: D. J. Edwards Suite 4000 955 L'Enfant Plaza SW Washington, DC 20024 Rockwell International	2	United Technologies Chemical Systems Divison ATTN: R. Brown Tech Library P. 0. Box 358 Sunnyvale, CA 94086
	Rocketdyne Division ATTN: BA08 J. E. Flanagan J. Grey 6633 Canoga Avenue Canoga Park, CA 91304	1	Universal Propulsion Company ATTN: H. J. McSpadden Black Canyon Stage 1 Box 1140 Phoenix, AZ 85029
1	Science Applications, Inc. ATTN: R. B. Edelman 23146 Cumorah Crest Canoga Park, CA 91304 Scientific Research Assoc.	1	Tennessee Eastman Co. ATTN: W. H. Seaton Design Data Laboratory/B150A Kingsport, TN 37662
	Inc. ATTN: H. McDonald P. O. Box 498 Glastonbury, CT 06033	1	Standard Oil of Ohio ATTN: T. B. Selover, Jr. Midlant Bldg Cleveland, ON 44115
		1	The Dow Chemical Co. ATTN: Malcolm W. Chase 1707 Bldg Midland, MI 48640
3	Thiokol Corporation Huntsville Division ATIN: D. Flanigan R. Glick		American Cyanamid Co. ATIN: E. C. Vieira Bound Brook, NJ 08805
	Tech Library Huntsville, AL 35807	2	Eastman Kodak Co. ATTN: John Wheeler
2	Thiokol Corporation Wasatch Division ATTN: J. Peterson Tech Library P. O. box 524 Brigham City, UT 84302		W. J. Fenlon Bldg 35 Kodak Park Rochester, NY 14608

THE CONTROLLESS OF THE CONTROLLE

A CONTRACTOR OF THE PROPERTY O

No. of Copies	Organization	No. of Copies	
1	Lockheed Missiles and Space Co., Inc. ATTN: Jack Linsk Org. 83-10 Bldg 154 P. O. Box 504 Sunnyvale, CA 94086	1	University of Illinois Dept. of Mech Eng ATTN: H. Krier 144 MEB, 1206 W. Green St. Urbana, IL 61801
1	Lockheed Missile & Space Co. 3251 Hanover Street ATTN: H. P. Marshall Department 52-53 Palo Alto, CA 94304	1	University of Massachusetts Dept. of Mechanical Engineering ATTN: K. Jakus Amherst, MA 01002
1	Monsanto Co. ATTN: Tony Phillips F4EE 800 N. Lindbergh Ave. St. Louis, MO 63166	1	University of Minnesota Dept. of Mechanical Engineering ATTN: E. Fletcher Minneapolis, MN 55455
1	Southwest Research Institute ATIN: W. H. McLain 8500 Culebra Road San Antonio, TX 78228	1 -	Case Western Reserve University Division of Aerospace Sciences ATTN: J. Tien
2	Battelle Memorial Institute ATTN: Tech Library J. E. Backofen 505 King Avenue Columbus, OH 43201	3	Cleveland, OH 44135 Georgia Institute of Tech School of Aerospace Eng. ATTN: B. T. Zinn E. Price
1	Brigham Young University Dept. of Chemical Engineering ATTN: M. Beckofen 505 King Avenue Columbus, OH 43201	1	W. C. Strahle Altanta, GA 30332 Institute of Gas Technology ATTN: M. Klein 3424 S. State Street
1	Califorina Institute of Tech 204 Karman Lab Main Stop 301-46 ATIN: F. E. C. Culick 1201 E. California Blvd Pasadena, CA 91109	1	Chicago, IL 60616 Johns Hopkins University Applied Physics Laboratory Chemical Propulsion Information Agency ATTN: T. Christian
1	California Institute of Tech Jet Propulsion Laboratory ATTN: L. D. Strand 4800 Oak Grove Drive Pasadena, CA 91103		Johns Hopkins Road Laurel, MD 20707

and an and an and an anticopy of the anticopy