Linguagens Formais Autómatos Resolução de Alguns Exercícios

Vasco Pedro Departamento de Informática Universidade de Évora

2012/2013

Aqui apresentam-se resoluções possíveis para alguns dos exercícios propostos em LFA.

Exercício B.1.

- (d) Definição recursiva de $C_4 = \{a^n b^n \mid n > 0\}$:
 - $ab \in C_4$;
 - se $w \in C_4$, então $awb \in C_4$;
 - $w \in C_4$ somente se pode ser gerada através de um número finito de aplicações do passo recursivo a partir do elemento da base.
- (f) Definição recursiva de $C_6 = \{w \mid w \in \{a, b\}^* \text{ e o número de } a\text{'s em } w \text{ \'e igual ao de } b\text{'s}\}$:
 - $\lambda \in C_6$;
 - se $v, w \in C_6$, então awb, bwa e $vw \in C_6$;
 - $w \in C_6$ somente se pode ser gerada através de um número finito de aplicações do passo recursivo a partir do elemento da base.

Exercício D.2.

- (a) $a^*b^*c^*$
- **(b)** $aa^*b^*c^* \cup a^*bb^*c^* \cup a^*b^*cc^*$
- (g) $(\lambda \cup a \cup aa)(\lambda \cup b(a \cup b)^*)$
- **(h)** $((\lambda \cup a \cup aa)b)^*(\lambda \cup a \cup aa)$

Exercício D.4.

(a) $\emptyset^* \cup a^* \cup b^*(a \cup b)^*$

$$\emptyset^* \cup a^* \cup b^*(a \cup b)^* = \lambda \cup a^* \cup b^*(a \cup b)^* \qquad (\emptyset^* = \lambda)$$

$$= a^* \cup b^*(a \cup b)^* \qquad (\lambda \in L(a^*))$$

$$= a^* \cup b^*(b \cup a)^* \qquad (u \cup v = v \cup u)$$

$$= a^* \cup (b \cup a)^* \qquad (u^*(u \cup v) = (u \cup v)^*)$$

$$= (b \cup a)^* \qquad (L(a^*) \subseteq L((b \cup a)^*))$$

(c) $b^*(a \cup (b^*a^*)^*)ab^*(ab^*)^*b$

Exercício E.2.

(b)
$$(y \cup x(x \cup yx)^*yy)^*$$
 ou $(y^*x(x^*(yx)^*)^*yy)^*y^*$

(c)
$$(y \cup x(x \cup yx)^*yy)^*(\lambda \cup x(x \cup yx)^*)$$

Exercício F.3.

λ -fecho	t	m	n		δ_D	$\mid m \mid$	n
$0 \{0,1\}$	0	{1}	1, 2, 3	λ -fecho(0) =	$\{0,1\}$	{1}	$\{1, 2, 3\}$
$1 \mid \{1\}$	1	Ø	$\{1, 3\}$		{1}	Ø	$\{1, 3\}$
$2 \mid \{2, 3\}$	2	$\{1, 3\}$	$\{2, 3\}$		$\{1, 2, 3\}$	$\{1,3\}$	$\{1, 2, 3\}$
$3 \mid \{3\}$	3	$\{1, 3\}$	$\{2, 3\}$		Ø	Ø	Ø
	,				$\{1, 3\}$	$\{1, 3\}$	$\{1, 2, 3\}$

O autómato finito determinista obtido é

$$N_D = (\{\{1\}, \{1, 2, 3\}, \emptyset, \{1, 3\}\}, \{m, n\}, \delta_D, \{0, 1\}, \{\{1\}, \{1, 2, 3\}, \{1, 3\}\}))$$

Uma expressão regular que representa L(N) é $(\lambda \cup m)(\lambda \cup n(m \cup n)^*)$.

Exercício F.4.

(a) Um autómato finito não determinista que reconhece $(a \cup b)^*b(a \cup b)(a \cup b)$ é $M = (\{A, B, C, D\}, \{a, b\}, \delta, A, \{D\})$ com a função de transição

(b)

Porque é que $t(q, a) = \delta(q, a)$, quaisquer que sejam o estado q e o símbolo a?

$$\lambda \text{-fecho}(A) = \begin{array}{|c|c|c|c|} \hline \delta_D & a & b \\ \hline \{A\} & \{A\} & \{A,B\} \\ \{A,B\} & \{A,C\} & \{A,B,C\} \\ \{A,C\} & \{A,D\} & \{A,B,D\} \\ \{A,B,C\} & \{A,C,D\} & \{A,B,C,D\} \\ \{A,D\} & \{A\} & \{A,B\} \\ \{A,B,D\} & \{A,C\} & \{A,B,C\} \\ \{A,C,D\} & \{A,D\} & \{A,B,C\} \\ \{A,B,C,D\} & \{A,C,D\} & \{A,B,C,D\} \\ \hline \end{array}$$

O autómato finito determinista obtido é

$$M_D = (\{\{A\}, \{A, B\}, \{A, C\}, \{A, B, C\}, \{A, D\}, \{A, B, D\}, \{A, C, D\}, \{A, B, C, D\}\}, \{a, b\}, \delta_D, \{A\}, \{\{A, D\}, \{A, B, D\}, \{A, C, D\}, \{A, B, C, D\}\})$$

Exercício G.1.

O autómato finito determinista mínimo equivalente a M é

$$M_M = (\{I, II, III\}, \{a, b\}, \delta_M, II, \{I\})$$

A expressão regular $a(ba)^*$ representa a linguagem reconhecida por M.

Exercício G.3.

(a) Um autómato finito não determinista que reconhece $(aa)^* \cup (aaa)^*$ é

$$M = (\{1, 2, 3, 4, 5, 6\}, \{a\}, \delta, 1, \{2, 4\})$$

com a função de transição

$$\begin{array}{c|cccc} \delta & a & \lambda \\ \hline 1 & & \{2,4\} \\ 2 & \{3\} \\ 3 & \{2\} \\ 4 & \{5\} \\ 5 & \{6\} \\ 6 & \{4\} \end{array}$$

(b)

	λ -fecho	t	a		δ_D	a
1	$\{1, 2, 4\}$	1	$\{3,5\}$	λ -fecho(1) =	$\{1, 2, 4\}$	$\{3, 5\}$
2	{2}	2	{3}		$\{3, 5\}$	$\{2,6\}$
3	{3}	3	{2}		$\{2, 6\}$	$\{3,4\}$
4	$\{4\}$	4	{5}		$\{3, 4\}$	$\{2,5\}$
5	$\{5\}$	5	{6}		$\{2, 5\}$	$\{3,6\}$
6	{6}	6	{4}		$\{3, 6\}$	$\{2,4\}$
'					$\{2, 4\}$	$\{3, 5\}$

Renomeando os estados de acordo com as equivalências seguintes

$$\begin{array}{ll} 124 \equiv \{1,2,4\} & 26 \equiv \{2,6\} & 25 \equiv \{2,5\} & 24 \equiv \{2,4\} \\ 35 \equiv \{3,5\} & 34 \equiv \{3,4\} & 36 \equiv \{3,6\} \end{array}$$

obtemos o autómato finito determinista

$$M_D = (\{124, 35, 26, 34, 25, 36, 24\}, \{a\}, \delta'_D, 124, \{124, 26, 34, 25, 24\})$$

com a função de transição

δ_D'	a
124	35
35	26
26	34
34	25
25	36
36	24
24	35

(c)

		a			a				a			$\mid a \mid$
Ι	124	II		124	III			124	IV	т	124	V
	26	Ι	I	25	III	I	25	V	1	24	V	
	34	Ι		24	III			24	IV	II	25	VI
	25	II	II	26	II]	Ι	26	III	III	26	IV
	24	II	11	34	I	I	II	34	I	IV	34	II
II	35	Ι	III	35	II	I	V	35	II	V	35	III
	36	I	111	36	I		V	36	I	VI	36	I

O autómato finito determinista mínimo equivalente a M é

$$M_M = (\{\mathrm{I},\mathrm{II},\mathrm{III},\mathrm{IV},\mathrm{V},\mathrm{VI}\},\{a\},\delta_M,\mathrm{I},\{\mathrm{I},\mathrm{II},\mathrm{III},\mathrm{IV}\})$$

com a função de transição δ_M abaixo

$$\begin{array}{c|c} \delta_M & a \\ \hline I & V \\ II & VI \\ III & IV \\ IV & II \\ V & III \\ VI & I \end{array}$$

Exercício I.4.

Uma gramática que gera a linguagem pretendida é $G=(\{S,A,B\},\{a,b\},P,S),$ com P o conjunto com as produções:

$$\begin{split} S &\to aSb \mid A \mid B \\ A &\to aA \mid a \\ B &\to bB \mid b \end{split}$$

Exercício I.8.

A gramática $G_{PL} = (\{T, A\}, \{v, f, (,), ,\}, P_{PL}, T),$ com P_{PL} o conjunto com as produções

$$T \rightarrow v \mid f \mid f(A)$$

 $A \rightarrow T, A \mid T$

gera a linguagem dos termos Prolog na forma pedida.

Exercício I.10.

(a) Consideremos a palavra $aaaaaa \in L(G)$.

Esta palavra tem as seguintes árvores de derivação:

Como existe uma palavra da linguagem gerada por G com duas árvores de derivação distintas, G é ambígua.

- (b) A gramática $G' = (\{S\}, \{a\}, \{S \to aa \mid aaS\}, S)$ é uma gramática independente do contexto não ambígua equivalente a G.
- (c) A gramática $G''=(\{S,X\},\{a\},\{S\to aX,X\to a\mid aS\},S)$ é uma gramática regular equivalente a G.
- (d) A expressão regular $aa(aa)^*$ representa L(G).