Études et améliorations de métamodèles PINN pour la simulation de champ magnétique

Marie Sengler

Université de Strasbourg Stage de fin d'études

30 juillet 2025

Université de Strasbourg

- Contexte et objectifs du stage
- Problèmes physiques
- Fonctionnement des PINN
- 4 Optimisation des réseaux dans le cas bimatériaux et trimatériaux
- Paramétrisation
- Conclusions et perspectives

- Contexte et objectifs du stage
- Problèmes physiques
- Fonctionnement des PINN
- 4 Optimisation des réseaux dans le cas bimatériaux et trimatériaux
- Paramétrisation
- Conclusions et perspectives

Contexte : tubes hyperfréquences

FIGURE - Schéma d'un tube hyperfréquence

Contexte : simulations et études numériques

- Optimisation et prise en compte des défauts et des tolérances de fabrication dans les simulations : plans d'expérience à plusieurs centaines de calcul
- Limitation: Nécessité de réaliser un grand nombre de simulations éléments finis, plusieurs heures pour les simulations magnétiques 3D
- Intérêts des PINN (Physics Informed Neural Network)^a
 - sans maillage
 - accélération GPU
 - différentiation automatique
 - traitement des problèmes en grandes dimensions (EDP paramétrique)
 - évaluation du modèle rapide
- Cas tests simples de magnétostatique implémentés

a. [2]M. Raissi, P. Perdikaris, and G.E. Karniadakis. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics, 378:686–707, 2019.

Objectifs

- Rédaction d'une note de synthèse bibliographique
- Études d'optimisation et d'amélioration de différents PINN paramétriques 2D
- Implémentation de PINN prenant en compte une géométrie variable en 2D
- Analyse et comparaison des résultats obtenus

- Contexte et objectifs du stage
- Problèmes physiques
- Fonctionnement des PINN
- Optimisation des réseaux dans le cas bimatériaux et trimatériaux
- Paramétrisation
- Conclusions et perspectives

Cas bimatériaux

FIGURE - Solution éléments finis du cas bimatériaux

Problème physique

- Aimant plongé dans le vide
- Domaine : $\Omega = [0; 1] \times [0; 1]$; $\Omega_m = [0.3; 0.5] \times [0.3; 0.6]$; $\Omega_v = \Omega \setminus \Omega_v$
- Champ d'induction magnétique : $B_x = \frac{\partial A}{\partial y}$ et $B_y = -\frac{\partial A}{\partial x}$

Équations : cas bimatériaux

Système d'équations

$$\begin{cases} & \Delta A_m = \frac{\partial^2 A_m}{\partial x^2} + \frac{\partial^2 A_m}{\partial y^2} = 0 & \text{dans } \Omega_m, \\ & \Delta A_v = \frac{\partial^2 A_v}{\partial x^2} + \frac{\partial^2 A_v}{\partial y^2} = 0 & \text{dans } \Omega_v. \end{cases}$$
 (1)

Conditions sur l'interface $\Gamma_{m,v}$

$$\begin{cases}
A_{V} = A_{m} \\
\frac{\partial A_{V}}{\partial y} n_{X} - \frac{\partial A_{Y}}{\partial x} n_{y} = \frac{\partial A_{m}}{\partial y} n_{X} - \frac{\partial A_{m}}{\partial x} n_{y} \\
\frac{\partial A_{V}}{\partial y} n_{y} + \frac{\partial A_{Y}}{\partial x} n_{X} = \frac{1}{\mu_{r,m}} (\frac{\partial A_{m}}{\partial y} - B_{c}) n_{y} + \frac{1}{\mu_{r,m}} \frac{\partial A_{m}}{\partial x} n_{X}
\end{cases} (2)$$

avec B_c le champ d'induction rémanente et $\mu_{r,m}$ la perméabilité relative

Conditions aux bords

$$A_{\nu} = 0 \quad \text{sur } \partial\Omega$$
 (3)

Marie Sengler Projet de fin d'études 30 juillet 2025

Cas trimatériaux

FIGURE - Solution éléments finis du cas trimatériaux non linéaire

Problème physique

- Ajout d'une pièce polaire sur $\Omega_p = [0.5; 0.6] \times [0.2; 0.7]$
- Loi de comportement non-linéaire : $\mu_{r,p}$ n'est pas constant

Marie Sengler Projet de fin d'études 30 juillet 2025 10/28

Cas trimatériaux : ajouts des équations pour la pièce polaire

Équations pour la pièce polaire

$$\frac{\partial}{\partial \mathbf{x}}(\nu_{r,p}(\mathbf{X}; \|\nabla A_p\|)A_p) + \frac{\partial}{\partial \mathbf{y}}(\nu_{r,p}(\mathbf{X}; \|\nabla A_p\|)A_p) = 0 \quad \text{dans } \Omega_p$$
 (4)

Conditions aux interfaces supplémentaires

$$\begin{cases}
A_{\nu} = A_{\rho} & \text{sur } \Gamma_{\nu,\rho} \\
A_{\rho} = A_{m} & \text{sur } \Gamma_{m,\rho}
\end{cases} (5)$$

$$\begin{cases}
\frac{\partial A_{y}}{\partial y} n_{x} - \frac{\partial A_{y}}{\partial x} n_{y} = \frac{\partial A_{p}}{\partial y} n_{x} - \frac{\partial A_{p}}{\partial x} n_{y} & \text{sur } \Gamma_{v,p} \\
\frac{\partial A_{p}}{\partial y} n_{x} - \frac{\partial A_{p}}{\partial x} n_{y} = \frac{\partial A_{m}}{\partial y} n_{x} - \frac{\partial A_{m}}{\partial x} n_{y} & \text{sur } \Gamma_{m,p}
\end{cases} (6)$$

$$\begin{cases}
\frac{\partial A_{v}}{\partial y} n_{y} + \frac{\partial A_{v}}{\partial x} n_{x} = \nu_{r,p} \frac{\partial A_{p}}{\partial y} n_{y} + \nu_{r,p} \frac{\partial A_{p}}{\partial x} n_{x} & \text{sur } \Gamma_{v,p} \\
\nu_{r,p} \frac{\partial A_{p}}{\partial y} n_{y} + \nu_{r,p} \frac{\partial A_{p}}{\partial x} n_{x} = \frac{1}{\mu_{r,m}} (\frac{\partial A_{m}}{\partial y} - B_{c}) n_{y} + \frac{1}{\mu_{r,m}} \frac{\partial A_{m}}{\partial x} n_{x} & \text{sur } \Gamma_{m,p}
\end{cases} (7)$$

avec $\nu_{r,p}(\boldsymbol{X}; \|\boldsymbol{B}\|) = \frac{1}{\mu_{r,p}(\boldsymbol{X}; \|\boldsymbol{B}\|)}$ la réluctance relative.

- Contexte et objectifs du stage
- Problèmes physiques
- Fonctionnement des PINN
- 4 Optimisation des réseaux dans le cas bimatériaux et trimatériaux
- Paramétrisation
- Conclusions et perspectives

Fonctionnement des PINN

FIGURE - Schéma illustrant le fonctionnement général des PINN

30 juillet 2025

Fonctionnement des PINN pour les cas multi-matériaux

Difficultés d'apprentissage des PINN 1

- Biais spectral : difficulté à capturer les hautes fréquences
- Minima locaux : plateau de la fonction de perte
- Points singuliers, discontinuités, forts gradients
- Balance des termes de la fonction de perte
- Sensibilité aux hyper-paramètres

^{1. [3]} Sifan Wang, Yujun Teng, and Paris Perdikaris. Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing, 43(5):A3055–A3081, 2021.

- Contexte et objectifs du stage
- Problèmes physiques
- Fonctionnement des PINN
- 4 Optimisation des réseaux dans le cas bimatériaux et trimatériaux
- Paramétrisation
- Conclusions et perspectives

Liste des hyper-paramètres étudiés

Structure du réseau

- Type du réseaux : Fully-connected, Fourier, modified-Fourier...
- Nombre de couches
- Nombre de neurones par couche
- Fonction d'activation : Tanh, SiLU, GELU, Sinus...

Optimiseur

- Type de l'optimiseur (Adam, L-BFGS, RMSprop,...)
- Taux d'apprentissage et scheduler

Échantillonnage des points de collocation

- Type d'échantillonnage (aléatoire, quasi-aléatoire, basé sur le résidu)
- Taille de batch

Fonction de perte

Poids de chaque terme de la fonction de perte (à la main, algorithme)

Implémentation

Code préexistant

- Implémentation du problème bimatériaux et trimatériaux avec et sans les caractéristiques de l'aimant paramétré
- Utilisation de PyTorch et NVIDIA PhysicsNeMo

Contributions

- Amélioration des post-traitements
- Scripts automatisant les différents apprentissages
- Présentation des résultats avec Jupyter Notebook et Pandas
- Adaptation des méthodes de NVIDIA à notre problème
- Optimisation de l'interpolation des valeurs de $\nu_{r,p}$ dans le cas non-linéaire
- Développement de nouvelles architectures de réseau

Résultats bimatériaux

	Initial	Final	
Architecture	5-40	6-50	
Activation	SiLU	GELU	
Poids	identique	*	
Optimiseur	Adam	RMSprop	
Sampling	Quasi-Random	Importance Sampling	
Réseau	fully-connected	modified-Fourier	
Relative L2 A	9.62%	0.193%	
Relative L2 B_x	10.5%	1.71%	
Relative L2 B _y	15.5%	2.68%	
Maximum A	0.00798	0.000365	
Maximum B_x	0.353	0.1154	
Maximum B _y	0.385	0.09868	
Temps	0h45	1h00	

TABLE – Choix des différents hyper-paramètres et récapitulatif des erreurs obtenues

^{*} Les poids choisis sont plus importants pour les termes de la fonction de perte liés aux interfaces.

Résultats bimatériaux

FIGURE – Potentiel A et champs B_x et B_y dans le cas bimatériaux

Résultats trimatériaux

	Initial	Final	
Architecture	5-60	6/5/6-50/50/65	
Activation	SiLU	GELU	
Poids	identique	*	
Optimiseur	Adam	RMSprop	
Sampling	Quasi-Random	Importance Sampling	
Réseau	fully-connected	modified-Fourier	
Relative L2 A	12.0%	2.47%	
Relative L2 B_x	15.7%	3.88%	
Relative L2 B _y	22.7%	5.59%	
Maximum A	0.0176	0.00323	
Maximum B _x	0.639	0.380	
Maximum B _y	0.884	0.288	
Temps	1h10	1h40	

TABLE – Choix des différents hyper-paramètres et récapitulatif des erreurs obtenues

^{*} Les poids choisis sont plus importants pour les termes de la fonction de perte liés aux interfaces.

Résultats trimatériaux

FIGURE – Potentiel A et champs B_X et B_Y dans le cas trimatériaux non linéaire

- Contexte et objectifs du stage
- Problèmes physiques
- Fonctionnement des PINN
- Optimisation des réseaux dans le cas bimatériaux et trimatériaux
- Paramétrisation
- Conclusions et perspectives

Paramétrisation

- B_c, le champ d'induction rémanente du matériau dans l'intervalle [0.4; 1.04]
- $\mu_{r,m}$, la perméabilité relative de l'aimant dans l'intervalle [1.005; 1.05]
- la géométrie : la longueur et la largeur de l'aimant, ainsi que celles de la pièce polaire varient de ±0.02 par rapport à la configuration de base.

FIGURE – Schéma montrant la variation de la géométrie dans le cas trimatériaux

Premiers résultats et difficultés

- Un paramètre équivaut à une entrée supplémentaire pour le réseau, ce qui augmente la complexité et rend l'entraînement plus instable.
- Figure : Exemple de paramétrisation de la géométrie

	Non paramétré	$B_c/\mu_{r,m}$	Geom	$B_c/\mu_{r,m}$ /Geom
Relative L2 A	2.85%	3.34%	6.82%	6.28%
Relative L2 B _x	4.43%	5.42%	9.89%	8.27%
Relative L2 B _y	6.35%	7.86%	14.2%	12.7%

TABLE - Récapitulatif des meilleurs résultats par paramétrisation pour le cas trimatériaux

• Avec la géométrie variable, les résultats restent insatisfaisants!

Ajout de solutions éléments finis à l'entraînement

- Ajout de termes à la fonction de perte de la différence entre une solution EF et la prédiction PINN pour un jeu de paramètres
- Ajustement de ses hyper-paramètres : le poids, la taille de batch et le nombre de solutions

	$B_c/\mu_{r,m}$	$B_c/\mu_{r,m}$ (EF)	$B_c/\mu_{r,m}/{\rm Geom}$	$B_c/\mu_{r,m}/\text{Geom (EF)}$
Nb de solutions	0	3	0	6
Relative L2 A	3.34%	1.01%	6.28%	3.70%
Relative L2 B_x	5.42%	2.79%	8.27%	5.32%
Relative L2 B _y	7.86%	3.36%	12.7%	8.15%
Temps	≈ 1h55	≈ 2h15	\approx 2h05	≈ 7h

TABLE – Récapitulatif des meilleurs résultats pour les cas paramétriques pour les erreurs relatives moyennes avec et sans ajout de solutions éléments finis

- Contexte et objectifs du stage
- Problèmes physiques
- Fonctionnement des PINN
- Optimisation des réseaux dans le cas bimatériaux et trimatériaux
- Paramétrisation
- Conclusions et perspectives

Conclusions et perspectives

Conclusions

- Réduction significative de l'erreur sur les cas tests. Les gains sont donnés par :
 - Cas bimatériaux base/final : 98%
 - Cas trimatériaux base/final: 79%
 - Cas trimatériaux (B_c/mu_{r,m}) sans/avec EF : 70 %
 - Cas trimatériaux (B_c/mu_{r,m}/Geom) sans/avec EF: 41 %

Perspectives

- Nouveaux cas tests plus complexes, se rapprochant de l'application industrielle (ajouts d'aimants, passage en coordonnées 3D,...)
- Implémentation de méthodes plus complexes, permettant de mieux capturer les discontinuités aux interfaces et limiter le nombre de fonctions de perte
- Implémentation d'optimiseurs plus performants

Physics-informed neural network for simulating magnetic field of coaxial magnetic gear.

Engineering Applications of Artificial Intelligence, 133:108302, 2024.

M. Raissi, P. Perdikaris, and G.E. Karniadakis.

Physics-informed neural networks : A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations.

Journal of Computational Physics, 378:686–707, 2019.

Sifan Wang, Yujun Teng, and Paris Perdikaris.

Understanding and mitigating gradient flow pathologies in physics-informed neural networks.

SIAM Journal on Scientific Computing, 43(5):A3055-A3081, 2021.