LECTURE NOTES F-SINGULARITIES

JAVIER CARVAJAL-ROJAS

ABSTRACT. These are lectures notes for a course on F-singularities given at the CIMAT in the Spring Semester 2024.

1. Regularity

Before defining what a regular ring is, we need the notion of projective and global dimensions.

1.1. Projective resolutions and other homological algebra stuff. Let M be a module over a ring R.

Exercise 1.1. Prove that there is an exact sequence of R-modules

$$0 \to K_1 \to P_0 \to M \to 0$$

where P_0 is free and so projective. Iterate this to obtain an exact

$$0 \to K_i \to P_{i-1} \to \cdots \to P_0 \to M \to 0$$

where the P_i 's are free. The module K_i is referred to as a syzygy module.

Definition 1.1 (Resolutions). An exact sequence

$$\cdots \rightarrow P_{i+1} \rightarrow P_i \rightarrow \cdots \rightarrow P_1 \rightarrow P_0 \rightarrow M \rightarrow 0$$

is called a free (resp. projective) resolution of M if all the P_i 's are free (resp. projective). We may denote a projective resolution as $P_{\bullet} \to M \to 0$.

Exercise 1.2. Prove that free resolutions always exist and so that the category of R-modules has "enough projectives."

Definition 1.2 (Projective dimension). The module M is said to have *finite projective dimension* if there is a projective resolution $P_{\bullet} \to M \to 0$ such that $P_i = 0$ for all $i \gg 0$. In such case, the *projective dimension* of M is

$$\operatorname{pd} M = \operatorname{pd}_R M := \min\{n \in \mathbb{N} \mid \exists P_{\bullet} \to M \to 0 \text{ such that } P_i = 0 \forall i > n\}.$$

If M has not finite projective dimension we write $pd M = \infty$.

Exercise 1.3. Prove that M is projective iff pd M = 0.

Next lemma is key.

¹All rings are commutative with unity 1.

²Over local rings projective modules are free.

Lemma 1.3. Suppose that there are two exact sequences of R-modules

$$0 \longrightarrow K_n \longrightarrow P_{n-1} \longrightarrow \cdots \longrightarrow P_0 \longrightarrow M \longrightarrow$$

and

$$0 \longrightarrow K'_n \longrightarrow P'_{n-1} \longrightarrow \cdots \longrightarrow P'_0 \longrightarrow M \longrightarrow$$

where $1 \leq n \in \mathbb{N}$ and the P_i and P'_i are projective. Then

- (a) $K_n \oplus P'_{n-1} \oplus P_{n-2} \oplus \cdots \cong K'_n \oplus P_{n-1} \oplus P'_{n-2} \oplus \cdots$
- (b) K_n is projective iff so is K'_n .

Proof. Note that (b) follows from (a).³ The proof of (b) is lengthy and left as an exercise. Hint: Proceed by induction on n. Prove the case n = 1 first and then reduce the inductive case to this one.

It can be used to prove the following.

Exercise 1.4. Let

$$0 \to K_n \to P_{n-1} \to \cdots \to P_0 \to M \to$$

be an exact sequences where thee P_i 's are projective. Prove that

- (a) $\operatorname{pd} M \leq n$ iff K_n is projective.
- (b) If $\operatorname{pd} M \geq n$ then $\operatorname{pd} K_n = \operatorname{pd} M n$.

Exercise 1.5. Suppose that R is noetherian and that M is finitely generated. Prove that

$$\operatorname{pd}_R M = \sup \{ \operatorname{pd}_{R_n} M_p \mid \mathfrak{p} \in \operatorname{Spec} R \} = \sup \{ \operatorname{pd}_{R_m} M_{\mathfrak{m}} \mid \mathfrak{m} \text{ maximal} \}$$

Exercise 1.6. Prove that

$$pd(M \oplus N) = \max\{pd M, pd N\}.$$

The above exercise generalizes as follows.

Exercise* 1.7. Let

$$0 \to M' \to M \to M'' \to 0$$

be an exact sequence of R-modules. Show the following statements.

- (a) If two of the modules in the exact sequence have finite projective dimension so does the third one.
- (b) In that case (i.e. the three modules have finite projective dimension) then

$$\operatorname{pd} M \le \max\{\operatorname{pd} M', \operatorname{pd} M''\},$$

(c) and if the inequality is strict then pd $M'' = \operatorname{pd} M' + 1$.

Definition 1.4 (Minimal free resolution). Let $(R, \mathfrak{m}, \mathbb{Z})$ be a noetherian local ring and M a finitely generated R-module. A free resolution $P_{\bullet} \to M \to 0$ is said to be *minimal* if

$$\phi_i(P_{i+1}) \subset \mathfrak{m}P_i \quad \forall i \in \mathbb{N}$$

where $\phi_i \colon P_{i+1} \to P_i$ is the homomorphism from the free resolution.

Exercise 1.8. In the setup of Definition 1.4, let $K_i := \ker \phi_{i-1}$ for all $i \geq 1$. Prove that $\mu(P_0) = \mu(M)$ and $\mu(P_i) = \mu(K_i)$ for all $i \geq 1$. Here, we let $\mu(-) = \dim_{\mathbb{A}} - \otimes_{\mathbb{R}} \mathbb{A}$ denote the minimal number of generators.

³Observe that for this is absolutely essential to use projectiveness instead of freeness.

Exercise 1.9. Show that minimal free resolutions exist.

Exercise 1.10. In the setup of Definition 1.4, let $P_{\bullet} \to M \to 0$ and $P'_{\bullet} \to M \to 0$ be two minimal free resolutions. Show that $\mu(P_i) = \mu(P'_i)$ for all $i \in \mathbb{N}$.

The above two exercises guarantee that the following definition makes sense.

Definition 1.5 (Betti numbers). In the setup of Definition 1.4, the *i-th Betti number* of M is defined as $\beta_i(M) := \mu(P_i)$ where $P_{\bullet} \to M \to 0$ is any minimal free resolution.

Remark 1.6. Sometimes people talk about the Betti numbers of $(R, \mathfrak{m}, \mathscr{k})$, in that case they refer to the Betti numbers of \mathscr{k} .

Exercise 1.11. Let $P_{\bullet} \to M \to 0$ be a minimal free resolution. Prove that $P_i = 0$ if (and only if) $i > \operatorname{pd} M$. That is,

$$\operatorname{pd} M = \sup\{i \in \mathbb{N} \mid \beta_i(M) \neq 0\}$$

Exercise 1.12. Prove that

$$\beta_i(M) = \dim_{\mathcal{E}} \operatorname{Tor}_i(\mathcal{E}, M), \quad \forall i \in \mathbb{N}.$$

and conclude that

$$\operatorname{pd} M = \sup\{i \in \mathbb{N} \mid \operatorname{Tor}_i(\mathcal{R}, M) \neq 0\} \leq \operatorname{pd} \mathcal{R}.$$

Definition 1.7 (Global dimension). The *global dimension* of a ring R is the supremum of the projective dimensions of finitely generated R-modules.

Corollary 1.8. The global dimension of a local ring is the projective dimension of its residue field.

Remark 1.9 (Regular sequences and depth). Recall that a regular element $r \in R$ on an R-module M is one for which $r: M \to M$ is injective but not surjective. A regular sequence $r_1, \ldots, r_d \in R$ on M is defined by the following two conditions:

- (a) r_1 is regular on M, and
- (b) r_i is regular on $M/(r_1, \ldots, r_{i-1})M$ for all $i = 2, \ldots d$.

Given an ideal $\mathfrak{a} \subset R$, the depth of \mathfrak{a} on M, denoted by $\operatorname{depth}_R(\mathfrak{a}, M)$, is the maximal length of a regular sequence on M of elements in \mathfrak{a} . When $(R, \mathfrak{m}, \mathbb{Z})$ is local, we may write $\operatorname{depth}_R M = \operatorname{depth}_R(\mathfrak{m}, M)$. In that case, we also have:

$$\operatorname{depth} M = \min\{i \in \mathbb{N} \mid \operatorname{Ext}^{i}(\mathbb{R}, M) \neq 0\}.$$

This formula can be proved as follows (details are left to the reader). First, prove that if $r_1, \ldots, r_d \in R$ is a regular sequence on M then

$$\operatorname{Ext}_R^i(\mathcal{R}, M) = \begin{cases} 0 & \text{if } i < d, \\ \operatorname{Hom}_R(\mathcal{R}, M/(r_1, \dots, r_d)M) & \text{if } i = d. \end{cases}$$

This can be proved by induction on d. The base step d=0 is trivial. For the inductive step, consider the exact sequence

$$0 \to M \xrightarrow{r_1} M \to M/r_1M \to 0$$

Next, apply the functor $\operatorname{Hom}_R(\mathbb{A},-)$ to it. Since $r_1 \in \mathfrak{m}$, it acts like 0 on \mathbb{A} and so $\operatorname{Ext}_R^i(\mathbb{A},\cdot r_1)=0$. This means that the long exact sequence on Ext's breaks down into exact sequences

$$0 \to \operatorname{Ext}^i_R(\mathcal{E}, M) \to \operatorname{Ext}^i_R(\mathcal{E}, M/r_1M) \to \operatorname{Ext}^{i+1}_R(\mathcal{E}, M) \to 0$$

Since r_2, \ldots, r_d is a regular sequence on M/r_1M , we may apply the inductive hypothesis and conclude.

Theorem 1.10 (Auslander–Buchsbaum formula). In the setup of Definition 1.4, if pd $M < \infty$ then

$$\operatorname{pd} M + \operatorname{depth} M = \operatorname{depth} R.$$

In particular, if R has finite global dimension it is at most depth R.

Proof. We only sketch a proof and leave the details to the reader as an exercise. The proof is an induction on pd M. If pd M = 0 then M is free and so depth M =depth R. If pd M = 1 then there is an exact sequence

$$0 \to R^{\oplus m} \xrightarrow{\phi} R^{\oplus n} \to M \to 0$$

which we may assume to be minimal, *i.e.* we may assume that the entries of the $n \times m$ R-matrix $\phi \colon R^{\oplus m} \to R^{\oplus n}$ are in \mathfrak{m} . Consider next the long exact sequence on Ext obtained by applying the functor $\operatorname{Hom}_R(\mathscr{k},-)$ (write it down yourself). Observe that $\operatorname{Ext}_R^i(\mathscr{k},R^{\oplus k}) = \operatorname{Ext}_R^i(\mathscr{k},R)^{\oplus k}$ and that

$$\operatorname{Ext}_R^i(\mathbb{A},\phi): \operatorname{Ext}_R^i(\mathbb{A},R)^{\oplus m} \to \operatorname{Ext}_R^i(\mathbb{A},R)^{\oplus n}$$

is given by the \mathcal{R} -matrix obtained by reducing ϕ modulo \mathfrak{m} . In particular, $\operatorname{Ext}^i_R(\mathcal{R},\phi)=0$ and so there is an exact sequence

$$0 \to \operatorname{Ext}^i_R(\mathbb{A},R)^{\oplus n} \to \operatorname{Ext}^i_R(\mathbb{A},M) \to \operatorname{Ext}^{i+1}_R(\mathbb{A},R)^{\oplus m} \to 0$$

From this, we see that depth $M = \operatorname{depth} R - 1$. This shows the base step of the induction. For the inductive step, suppose $\operatorname{pd} M \geq 2$ and consider an exact sequence

$$0 \to N \to R^{\oplus m} \to M \to 0$$

where $\operatorname{pd} N = \operatorname{pd} M - 1$. Use the corresponding long exact sequence on Ext's obtained by applying $\operatorname{Hom}_R(\mathcal{R}, -)$ to find the relationship between the depths of M and N (which is depth $N = \operatorname{depth} M + 1$). Use the inductive hypothesis to conclude.

Remark 1.11. It is not difficult to see (using Krull's height theorem) that every regular sequence can be extended to a system of parameters. In particular, depth $R \leq \dim R$. When this equality happens to be an equality one says that $(R, \mathfrak{m}, \mathcal{R})$ is Cohen–Macaulay. That is, every system of parameters is a regular sequence.

1.2. **Regular local rings.** Let $(R, \mathfrak{m}, \mathbb{Z})$ be a noetherian local ring. Then, by Nakayama's lemma its so-called *embedded dimension*

$$\operatorname{edim} R := \mu(\mathfrak{m}) = \dim_{\mathscr{R}} \mathfrak{m} \otimes \mathscr{R} = \dim_{\mathscr{R}} \mathfrak{m}/\mathfrak{m}^{2}$$

is finite.

Exercise 1.13. Use Krull's Hauptidealsatz to conclude that the embedded dimension is at least the Krull's dimension of the local ring.

Definition 1.12 (Regular local ring). A noetherian local ring $(R, \mathfrak{m}, \mathbb{R})$ is said to be *regular* if the inequality

$$\operatorname{edim} R \geq \dim R$$

is an equality.

 $[\]overline{^{4}}$ More generally, depth(\mathfrak{a}, R) \leq ht \mathfrak{a} .

Exercise 1.14. Prove that if $(R, \mathfrak{m}, \mathbb{Z})$ is a noetherian local ring such that \mathfrak{m} is generated by a regular sequence then it is regular.

The converse of this exercise is also true but a bit harder to prove.

Theorem 1.13. Let $(R, \mathfrak{m}, \mathbb{Z})$ be a regular (noetherian) local ring. Then every set of minimal generators of \mathfrak{m} (aka regular system of parameters) is a regular sequence. In particular, $\operatorname{pd}_R \mathbb{Z} = \dim R$.

This result can be seen as a consequence of the following.

Theorem 1.14. A regular local ring is an integral domain.⁶

Proof. TO BE ADDED.

Corollary 1.15. Let $(R, \mathfrak{m}, \mathcal{R})$ be a regular local ring and $r \in \mathfrak{m} \setminus \mathfrak{m}^2$. Then R/rR is regular and the converse holds if r is not in any minimal prime.

Summing up, regular local rings have finite global dimension equal to its dimension. It turns out that the converse is also true and it's a deep result due to Auslander–Buchsbaum and Serre. To prove this, we need the following observation.

Exercise 1.15. Let $(R, \mathfrak{m}, \mathbb{Z})$ be a local ring and M be a finitely generated R-module. Let $r \in R$ be a regular element on M. Prove that

$$\operatorname{pd}_{R/xR} M/xM = \operatorname{pd}_R M$$

Theorem 1.16 (Auslander–Buchsbaum–Serre). Let $(R, \mathfrak{m}, \mathbb{R})$ be a local noetherian ring. Then the following statements are equivalent.

- (a) R is regular (i.e. \mathfrak{m} is generated by a regular sequence)
- (b) The global dimension of R is dim R
- (c) $\operatorname{pd}_R \mathscr{R}$ is finite.

Definition 1.17 (Regular rings). We say that a noetherian ring of finite Krull dimension $\dim R$ is regular if any of the following equivalente conditions hold:

- (a) The local ring $R_{\mathfrak{p}}$ is regular for all $\mathfrak{p} \in \operatorname{Spec} R$.
- (b) The global dimension of R is at most dim R.
- (c) R has finite global dimension.

References

CENTRO DE INVESTIGACIÓN EN MATEMÁTICAS, A.C., CALLEJÓN JALISCO S/N, 36024 COL. VALENCIANA, GUANAJUATO, GTO, MÉXICO

Email address: javier.carvajal@cimat.mx

⁵In particular, regular local rings are Cohen–Macaulay, *i.e.* depth $R = \dim R$.

⁶In fact normal.