Adiabatic Sweep + Global Quench

Local Quenching

- Atoms initially set in \mathbb{Z}_2 state
- Quench atom 1 at $t = 0.05 \,\mu s$
- Rabi frequency is constant:

$$\Omega(t)/2\pi = 4.00 \, ({\rm MHz})$$

• Nearest Neighbor interaction:

$$V_{i,i+1}\,/\,2\pi=31.8\, ext{(MHz)}$$

Local Quenching: Entanglement entropy

• Reduced density matrix $\rho_i = Tr_B(\rho)$

• VNE = $S_{EE}(\rho_i) = -Tr[\rho_i ln(\rho_i)]$

 Bipartite entanglement between each qubit and rest of the system

• $t_{quench} = 0.05 \,\mu s$

Local Quench Atom 1No Quench

Local Quenching: Entanglement entropy

Local Quench Atom 1No Quench

Local Quenching: Concurrence

Entanglement monotone for quantifying entanglement for both pure and mixed state of two qubits

$$C(\rho) = \max(0, \lambda_1 - \lambda_2 - \lambda_3 - \lambda_4)$$
 $\rho = \rho_{i,j}$ 4x4 reduced density matrix of pairs of qubits

With λ_i eigenvalues of matrix: R = $\sqrt{\sqrt{\rho} \ \rho^* \sqrt{\rho}}$

$$C(\rho)$$
 = 1 Maximumly entangled Bell state $C(\rho)$ = 0 Separable state

$$C(\rho) = 0$$
 Separable state

Key Idea: Pairwise entanglement between two qubits

Local Quenching: Concurrence

Entanglement monotone for quantifying entanglement for a mixed state of two qubits

Acknowledgements

• Supervisor: Prof Stuart Adams

• PHD Student: Toonyawat Angkhanawin

Other Local Quenches

Eigenenergy spectrum

