VGG Net

Cho Sung Man

Index

- Introduction
- Architecture
 - 1. Kernel Magic
 - A. 3x3 Kernel
 - B. 1x1 Kernel
- Results

Introduction

Introduction

(Deep)

(Deep)

Just Deep

(Deep)

VGG16

VGG19

(Deep)

ConvNet Configuration A A-LRN B C D E 11 weight 11 weight 13 weight 16 weight 16 weight 19 weight
11 weight 11 weight 13 weight 16 weight 16 weight 19 weight
layers layers layers layers layers
input (224 × 224 RGB image)
conv3-64 conv3-64 conv3-64 conv3-64 conv3-64
LRN conv3-64 conv3-64 conv3-64 conv3-64
maxpool
conv3-128 conv3-128 conv3-128 conv3-128 conv3-128 conv3-128
conv3-128 conv3-128 conv3-128 conv3-128
maxpool
conv3-256 conv3-256 conv3-256 conv3-256 conv3-256 conv3-256
conv3-256 conv3-256 conv3-256 conv3-256 conv3-256 conv3-256
conv1-256 conv3-256 conv3-256
conv3-256
maxpool
conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512
conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512
conv1-512 conv3-512 conv3-512
conv3-512
maxpool
conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512
conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512
conv1-512 conv3-512 conv3-512
conv3-512
maxpool
FC-4096 Table 2: Number of par
FC-4096 Network A,A-Li Number of parameters 133
FC-1000
soft-max

(Kernel Magic)

(Kernel Magic)

Receptive Fields

Observe that cascading 2 3x3 convolutions, your receptive field on the input has size 5x5

5x5 Kernel = 3x3 Kernel (x2)

7x7 Kernel = 3x3 Kernel (x3)

(Kernel Magic)

ConvNet Configuration					production of the contract of	
A	A-LRN	В	С	D	Е	
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight	
layers	layers	layers	layers	layers	layers	
	input (224 × 224 RGB image)					
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	
	LRN	conv3-64	conv3-64	conv3-64	conv3-64	
			pool			
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	
		conv3-128	conv3-128	conv3-128	conv3-128	
			pool			
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	
			conv1-256	conv3-256	conv3-256	
					conv3-256	
			pool			
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
			conv1-512	conv3-512	conv3-512	
			pool			
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
			conv1-512	conv3-512		
					conv3-512	
	maxpool					
	FC-4096					
	FC-4096					
	FC-1000					
	soft-max					

3x3x3x64

3x3x3x64

= 3456

3x3x3x64

3x3x3x64

3x3x3x64

= 5184

ZFNet Kernel Size

5x5x3x64

= 4800

7x7x3x64

= 9408

81% MORE!!!

SAME RECEPTIVE FIELDS

Kernel Params = N x N x C x C

(Kernel Magic)

ConvNet Configuration							
A	A-LRN	В	С	D	Е		
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight		
layers	layers	layers	layers	layers	layers		
	input (224 \times 224 RGB image)						
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64		
	LRN	conv3-64	conv3-64	conv3-64	conv3-64		
			pool				
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128		
		conv3-128	conv3-128	conv3-128	conv3-128		
		max	pool				
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256		
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256		
			conv1-256	conv3-256	conv3-256		
					conv3-256		
			oool				
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
			conv1-512	conv3-512	conv3-512		
					conv3-512		
		max	ool				
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
			conv1-512	conv3-512	conv3-512		
					conv3-512		
	maxpool						
FC-4096							
	FC-4096						
	FC-1000						
soft-max							

1x1 Conv. Layer

Increase Non-Linearity

Do not affect Receptive Fields

(Deep / Kernel Magic)

```
(not counting biases)
                     memory: 224*224*3=150K params: 0
INPUT: [224x224x3]
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864
POOL2: [112x112x64] memory: 112*112*64=800K params: 0
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456
POOL2: [56x56x128] memory: 56*56*128=400K params: 0
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
POOL2: [28x28x256] memory: 28*28*256=200K params: 0
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
POOL2: [14x14x512] memory: 14*14*512=100K params: 0
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
POOL2: [7x7x512] memory: 7*7*512=25K params: 0
FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216
FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000
```

Table 3: ConvNet performance at a single test scale.

ConvNet config. (Table 1)	smallest image side		top-1 val. error (%)	top-5 val. error (%)
convited coming. (Table 1)			top-1 van. en or (70)	top-5 van. en or (70)
	train(S)	test(Q)		
A	256	256	29.6	10.4
A-LRN	256	256	29.7	10.5
В	256	256	28.7	9.9
	256	256	28.1	9.4
C	384	384	28.1	9.3
	[256;512]	384	27.3	8.8
	256	256	27.0	8.8
D	384	384	26.8	8.7
	[256;512]	384	25.6	8.1
	256	256	27.3	9.0
E	384	384	26.9	8.7
	[256;512]	384	25.5	8.0

Table 4: ConvNet performance at multiple test scales.

ConvNet config. (Table 1)	smallest image side		top-1 val. error (%)	top-5 val. error (%)
	train(S)	test(Q)		
В	256	224,256,288	28.2	9.6
	256	224,256,288	27.7	9.2
C	384	352,384,416	27.8	9.2
	[256; 512]	256,384,512	26.3	8.2
	256	224,256,288	26.6	8.6
D	384	352,384,416	26.5	8.6
	[256; 512]	256,384,512	24.8	7.5
	256	224,256,288	26.9	8.7
E	384	352,384,416	26.7	8.6
	[256; 512]	256,384,512	24.8	7.5

Table 5: ConvNet evaluation techniques comparison. In all experiments the training scale S was sampled from [256; 512], and three test scales Q were considered: $\{256, 384, 512\}$.

ConvNet config. (Table 1)	Evaluation method	top-1 val. error (%)	top-5 val. error (%)
	dense	24.8	7.5
D	multi-crop	24.6	7.5
	multi-crop & dense	24.4	7.2
	dense	24.8	7.5
E	multi-crop	24.6	7.4
	multi-crop & dense	24.4	7.1

Table 6: Multiple ConvNet fusion results.

Combined ConvNet models		Error		
		top-5 val	top-5 test	
ILSVRC submission				
(D/256/224,256,288), (D/384/352,384,416), (D/[256;512]/256,384,512)				
(C/256/224,256,288), (C/384/352,384,416)	24.7	7.5	7.3	
(E/256/224,256,288), (E/384/352,384,416)				
post-submission				
(D/[256;512]/256,384,512), (E/[256;512]/256,384,512), dense eval.	24.0	7.1	7.0	
(D/[256;512]/256,384,512), (E/[256;512]/256,384,512), multi-crop	23.9	7.2	-	
(D/[256;512]/256,384,512), (E/[256;512]/256,384,512), multi-crop & dense eval.	23.7	6.8	6.8	

Table 7: Comparison with the state of the art in ILSVRC classification. Our method is denoted as "VGG". Only the results obtained without outside training data are reported.

Method	top-1 val. error (%)	top-5 val. error (%)	top-5 test error (%)	
VGG (2 nets, multi-crop & dense eval.)	23.7	6.8	6.8	
VGG (1 net, multi-crop & dense eval.)	24.4	7.1	7.0	
VGG (ILSVRC submission, 7 nets, dense eval.)	24.7	7.5	7.3	
GoogLeNet (Szegedy et al., 2014) (1 net)	-	7.	.9	
GoogLeNet (Szegedy et al., 2014) (7 nets)	-	6.7		
MSRA (He et al., 2014) (11 nets)	-	-	8.1	
MSRA (He et al., 2014) (1 net)	27.9	9.1	9.1	
Clarifai (Russakovsky et al., 2014) (multiple nets)	-	-	11.7	
Clarifai (Russakovsky et al., 2014) (1 net)	-	-	12.5	
Zeiler & Fergus (Zeiler & Fergus, 2013) (6 nets)	36.0	14.7	14.8	
Zeiler & Fergus (Zeiler & Fergus, 2013) (1 net)	37.5	16.0	16.1	
OverFeat (Sermanet et al., 2014) (7 nets)	34.0	13.2	13.6	
OverFeat (Sermanet et al., 2014) (1 net)	35.7	14.2	-	
Krizhevsky et al. (Krizhevsky et al., 2012) (5 nets)	38.1	16.4	16.4	
Krizhevsky et al. (Krizhevsky et al., 2012) (1 net)	40.7	18.2	-	