This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

JP8069131

ELECTROPHOTOGRAPHIC CARRIER, TWO-COMPONENT DEVELOPER AND IMAGE FORMING METHOD

Patent Number:

JP8069131

Publication date:

1996-03-12

Inventor(s):

OKADO KENJI; TAKIGUCHI TAKESHI; IDA TETSUYA

Applicant(s):

CANON INC

Requested Patent:

☐ JP8069131

Application Number: JP19950178009 19950622

Priority Number(s):

IPC Classification:

G03G9/107; G03G9/08; G03G9/087; G03G9/113; G03G15/09

EC Classification:

Equivalents:

Abstract

PURPOSE: To obtain an electrophotographic carrier for a two-component developer hardly lowering image density or causing fog even when a color original having a large image area is continuously copied, ensuring rapid kick-off of triboelectric charge of the toner and carrier and capable of maintaining a fog-free clear image even after copying repeated many times. CONSTITUTION: This electrophotographic carrier has particles of the core material of a magnetic carrier and resin coating layers coating the particles. The particles are made of magnetic ferrite represented by the formula (Fe2 O3)x (A)y (B)z [where A is MgO, Ag2 O or a mixture of them B is Li2 O MnO CaO, SrO, Al2 O3, SiO2 or a mixture of them, (x), (y) and (z) show weight ratio, $0.2 \le x \le 0.95$, $0.005 \le y \le 0.3$, $0 \le z \le 0.795$ and x + y + z = 1].

Data supplied from the esp@cenet database - 12

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-69131

(43) 公開日 平成8年(1996) 3月12日

(51) Int.Cl.⁶

識別記号 庁内整理番号

FΙ

技術表示箇所

G03G 9/107

9/08 9/087

> G03G 9/ 10

321

9/ 08

審査請求 未請求 請求項の数17 FD (全29頁) 最終頁に続く

(21)出願番号

特願平7-178009·

(22)出顧日

平成7年(1995)6月22日

(31) 優先権主張番号 特願平6-162898

(32)優先日

平6 (1994) 6 月22日

(33)優先権主張国

日本(JP)

(71)出願人 000001007

キヤノン株式会社

東京都大田区下丸子3丁目30番2号

(72)発明者 岡戸 謙次

東京都大田区下丸子3丁目30番2号 キヤ

ノン株式会社内

(72)発明者 ▲瀧▼口 剛

東京都大田区下丸子3丁目30番2号 キヤ

ノン株式会社内

(72)発明者 井田 哲也

東京都大田区下丸子3丁目30番2号 キヤ

ノン株式会社内

(74)代理人 弁理士 豊田 善雄 (外1名)

(54) 【発明の名称】 電子写真用キャリア、二成分系現像剤及び画像形成方法

(57)【要約】

【目的】 大画像面積のカラー原稿の連続複写を行って も画像濃度の低下及びカブリが生じ難く、トナーとキャ リアの摩擦帯電のすみやかな立上がりが得られ、かつカ ブリのない鮮明な画像を多数枚耐久後まで維持すること

 (Fe_2O_3) , (A), (B). [式中、Aは、MgO, Ag, O又はそれらの混合物を

示し、Bは、Li,O, MnO, CaO, SrO, Al, O₁, SiO₁又はそれらの混合物を示し、x, y及びz

は、重量比を示しかつ下記条件

が可能な二成分系現像剤の電子写真用キャリアを提供す ることにある。

【構成】 磁性キャリア芯材粒子及び該磁性キャリア芯 材粒子を被覆する樹脂被覆層を有する電子写真用キャリ アにおいて、該キャリア芯材粒子は、下記式 (1)

式(1)

0. $2 \le x \le 0$. 95, 0. $005 \le y \le 0$. 3, $0 < z \le 0$. 795, $x + y + z \le 1$

を満足する。〕で示される磁性フェライト成分で形成さ れることを特徴とする電子写真用キャリアである。

【特許請求の範囲】

【請求項1】 磁性キャリア芯材粒子及び該磁性キャリ ア芯材粒子を被覆する樹脂被覆層を有する電子写真用キ

$$(Fe_2O_3)_1(A)_2(B)_1$$

[式中、Aは、MgO, Ag,O又はそれらの混合物を 示し、Bは、Li2O, MnO, CaO, SrO, Al2 O₃, S_iO₂又はそれらの混合物を示し、x, v及びz は、重量比を示しかつ下記条件

0. $2 \le x \le 0$. 95, 0. $005 \le y \le 0$. 3, $0 < z \le 0$. 795, $x + y + z \le 1$ を満足する。〕で示される磁性フェライト成分で形成さ れることを特徴とする電子写真用キャリア。

【請求項2】 該式(I)におけるx, y, zは、下記 条件

ヤリアにおいて、

該キャリア芯材粒子は、下記式 (I)

0. $2 \le x \le 0$. 95, 0. $005 \le y \le 0$. 3, x + y < 1, z = 1 - x - y

を満足することを特徴とする請求項1に記載の電子写真 用キャリア。

【請求項3】 該キャリア芯材粒子は、MgOを酸化物 10 換算で 0. 5~30 重量%含有していることを特徴とす る請求項1又は2に記載の電子写真用キャリア。

【請求項4】 該樹脂被覆層は、下記式 (III) 【化1】

$$R_1 - S_i \leftarrow O - N = C < \frac{R_2}{R_3}$$

(式中、 R_1 は CH_4 , C_2H_4 , \bigcirc \bigcirc \bigcirc 及びそれらの誘導体からなるグループ

から選択される置換基を示し、R2及びR,はCH, C2H6及びそれらの誘

導体からなるグループから選択される置換基を示す。)

で示される硬化剤を含有する反応性シリコーン樹脂を含 むことを特徴とする請求項1乃至3のいずれかに記載の 電子写真用キャリア。

【請求項5】 該キャリアは、水存在下で、反応性シリ コーン樹脂を該キャリア芯材粒子に被覆することにより 得られたものであることを特徴とする請求項1乃至4の いずれかに記載の電子写真用キャリア。

【請求項6】 該キャリアは、50%粒径15~60µ m、22μmより小さいキャリア粒子を1~20重量%

$$(Fe_2O_3)$$
, (A) , (B) ,

[式中、Aは、MgO, Ag2O又はそれらの混合物を 示し、Bは、Li2O, MnO, CaO, SrO, Al2 O₃, SiO₂又はそれらの混合物を示し、x, y及びz は、重量比を示しかつ下記条件

 $0. 2 \le x \le 0. 95, 0. 005 \le y \le 0. 3,$ $0 < z \le 0$. 795, $x + y + z \le 1$

を満足する。〕で示される磁性フェライト成分で形成さ れていることを特徴とする二成分系現像剤。

【請求項8】 該式 (I) におけるx, y, zは、下記 条件

含有し、16μmより小さいキャリア粒子を2~20重 量%含有し、88μm以上のキャリア粒子を3重量%以 下含有する粒度分布を有することを特徴とする請求項1 乃至5のいずれかに記載の電子写真用キャリア。

【請求項7】 トナー粒子を含むトナー、及び磁性キャ リア芯材粒子及び該磁性キャリア芯材粒子を被覆する樹 脂被覆層を有するキャリアを有する二成分系現像剤にお いて、

該キャリア芯材粒子は、下記式 (I)

0. $2 \le x \le 0$. 95, 0. $005 \le y \le 0$. 3, x + y < 1, z = 1 - x - y

を満足することを特徴とする請求項7に記載の二成分系 現像剤。

【請求項9】 該キャリア芯材粒子は、MgOを酸化物 換算で0.5~30重量%含有していることを特徴とす る請求項7又は8に記載の二成分系現像剤。

【請求項10】 該樹脂被覆層は、下記式 (I I I) 【化2】

$$R_1 - S_1 \leftarrow O - N = C < \frac{R_2}{R_3}$$

(式中、R」はCHa, C2Ha, 〇) 及びそれらの誘導体からなるグループ

から選択される置換基を示し、R2及びR3はCH3、C2H5及びそれらの誘

導体からなるグループから選択される置換基を示す。)

で示される硬化剤を含有する反応性シリコーン樹脂を含 むことを特徴とする請求項7乃至9のいずれかに記載の 二成分系現像剤。

【請求項11】 該キャリアは、水存在下で、反応性シ 50 【請求項12】 該キャリアは、50%粒径15~60

リコーン樹脂を該キャリア芯材粒子に被覆することによ り得られたものであることを特徴とする請求項7乃至1 0のいずれかに記載の二成分系現像剤。

μm、22μmより小さいキャリア粒子を1~20重量 %含有し、16μmより小さいキャリア粒子を2~20 重量%含有し、88μm以上のキャリア粒子を3重量% 以下含有する粒度分布を有することを特徴とする請求項 7乃至11のいずれかに記載の二成分系現像剤。

【請求項13】 該トナーは、該トナー及び外添剤を有し、かつ重量平均粒径 $1\sim9$ μ mを有しており、該外添剤は、表面処理された重量平均粒径 $0.001\sim0.2$ μ mの無機微粒子を少なくとも含有することを特徴とする請求項7乃至12のいずれかに記載の二成分系 10 現像剤。

【請求項14】 該トナー粒子は、結着樹脂及び着色剤を含有しており、該結着樹脂は、ポリエステル樹脂を含むことを特徴とする請求項7乃至13のいずれかに記載

 (Fe_2O_3) , (A), (B).

[式中、Aは、MgO, Ag,O又はそれらの混合物を示し、Bは、Li,O, MnO, CaO, SrO, Al,O,, SiO,又はそれらの混合物を示し、x,y及びzは、重量比を示しかつ下記条件

0. $2 \le x \le 0$. 95, 0. 005 $\le y \le 0$. 3, $0 < z \le 0$. 795, $x + y + z \le 1$

を満足する。] で示される磁性フェライト成分で形成されることを特徴とする画像形成方法。

【請求項17】 該二成分系現像剤は、請求項8乃至15から選択されるいずれかの二成分系現像剤であることを特徴とする請求項16に記載の画像形成方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、電子写真法あるいは静電印刷法などにおいて電気的潜像または磁気的潜像を現 30像するのに用いられる二成分系現像剤を構成するキャリア、該キャリアを用いた二成分系現像剤に関し、とりわけ耐久性と画質及び環境特性を著しく改良した二成分系現像剤を構成するキャリア、該キャリアを用いた二成分系現像剤を構成するキャリア、該キャリアを用いた二成分系現像剤及びその二成分系現像剤を用いた画像形成方法に関する。

[0002]

【従来の技術】二成分系現像剤を構成するキャリアは、 導電性キャリアと絶縁性キャリアに大別され、導電性キャリアとしては通常酸化又は未酸化の鉄粉が用いられ 40 る。この鉄粉キャリアを成分とする二成分系現像剤においては、トナーに対する摩擦帯電性が不安定であり、よって形成される可視像にカブリが発生しやすいと言う問題点がある。即ち、二成分系現像剤の使用に伴ない、鉄粉キャリア粒子の表面にトナー粒子が付着, 蓄積 (スペント・トナー) する為、鉄粉キャリア粒子の電気抵抗が増大して、バイアス電流が低下し、しかも摩擦帯電性が不安定となり、この結果形成される可視像の画像濃度が低下しカブリが増大する。従って鉄粉キャリアを含有する二成分系現像剤を用いて電子複写装置により連続的に 50 の二成分系現像剤。

【請求項15】 該トナー粒子は、酸価1~20KOHmg/gを有することを特徴とする請求項14に記載の二成分系現像剤。

【請求項16】 トナー及びキャリアを有する二成分系現像剤を現像剤担持体で循環搬送し、現像領域で静電潜像担持体に保持されている静電潜像を該現像剤担持体に担持されている該二成分系現像剤のトナーで現像する画像形成方法において、

該トナーはトナー粒子を含んでおり、 該キャリアは、キャリア芯材粒子及び該キャリア芯材粒 子を被覆する樹脂被覆層を有しており、 該キャリア芯材粒子は、下記式(I)

式(1)

複写を行なうと、少数枚の複写で二成分系現像剤が劣化する為、二成分系現像剤を早期に交換することが必要となり、結局コストが高いものとなる。

【0003】絶縁性キャリアとしては一般に鉄、ニッケ 20 ル、フェライトの如き強磁性体より成るキャリア芯材の 表面を絶縁性樹脂により均一に被覆したキャリアが代表 的である。この絶縁性キャリアを用いた二成分系現像剤においてはキャリア表面にトナー粒子が融着することが 導電性キャリアの場合に比べて著しく少なく、同時にトナーとキャリアとの摩擦帯電性を制御することが容易で あり耐久性に優れ使用寿命が長い点で特に高速の電子写真複写機に好適であるという利点がある。

【0004】絶縁性キャリアに対して要求される特性は種々あるが、特に重要な特性として適度な帯電性、耐衝撃性、耐摩耗性、コアと被覆材料との良好な密着性、電荷分布の均一性等を挙げることができる。

【0005】上記諸要求特性を考慮すると、従来使用されてきた絶縁性キャリアは依然として改善すべき問題を残しており、完全なものは今のところ知られていない。例えば、アクリル系樹脂をキャリアの被覆材として用いるものとしては、例えば、特開昭47-13954号公報、特開昭60-208765号公報で開示されている。特に分子量について述べられているものとしては、例えば、特開昭60-208767号公報で開示されており、この公報では、分子量を一定管理することにより被覆されたキャリアの帯電性が安定化することが知られている。ところが、被覆樹脂をキャリア芯材に付着させるには、装置の条件や被覆を行う環境、特に湿度の影響を受けやすく、たとえそれらを厳しく管理しても樹脂を安定的に芯材に付着させ、十分な帯電性及び耐久性を持たせる為には、未だ満足がゆくものがないのが現状である。

【0006】一方、トナー融着などのキャリアのスペント化を防ぐために表面エネルギーの小さい樹脂を被覆層として用いることにより耐久性を向上させる提案がなさ

れており、例えば表面エネルギーの小さい樹脂としてシ リコーン樹脂が挙げられる。

【0007】シリコーン樹脂は、表面エネルギー及び表面張力が低いこと以外に撥水性が高いという利点を持つ。反面、シリコーン樹脂は接着性が低い為被覆層に使用した場合剥離し易いという問題点を持つ。

【0008】この問題点を改善する為に、例えば樹脂変成シリコーン樹脂を用いる方法(特開昭55-127569号公報)、ビニルシランを含有せしめ他の樹脂と反応させる方法(特開昭56-32149号公報)、トリ10アルコキシシランとエチルセルロースとの混合物を用いる方法(USP3,840,464)、オルガノシリコーンターポリマーとポリフェニレン樹脂との混合物を用いる方法(USP3,849,127)が提案されている。しかしながら、その被覆膜の形成の為300℃以上の高温が必要であったり、シリコーン樹脂と他の樹脂との相溶性が低く被覆膜が不均一になり期待される特性が得られないと言うような問題があった。

【0009】比較的低い硬化温度にて被覆膜を作る事も提案されている(特開昭55-127569号公報)が、接着性が不充分であり且つ被覆膜の強靭性が不充分である為摩耗し易く、例えば高速複写機のような現像部内での強い長時間の撹拌により、キャリア粒子が現像部内壁や感光体表面に衝突したり、又は粒子間同士が衝突すると、シリコーン樹脂被覆層が時間とともに摩耗や破損によって剥離して、摩擦帯電がトナーとシリコーン樹脂間の帯電から、トナーとキャリア芯材の帯電へと変化する為、トナーの帯電量が一定に保たれず、画像品質の劣化をきたすものであった。

【0010】さらに、近年、複写機の高精細、高画質化 30 の要求が市場では高まっており、当該技術分野では、トナーの粒径を細かくして高画質カラー化を達成しようという試みがなされているが、粒径が細かくなると単位重量当りの表面積が増え、トナーの帯電気量が大きくなることに加えて帯電速度が遅くなる傾向にあり、画像濃度薄や、カブリ、トナー飛散の如き耐久劣化が懸念されるところである。

【0011】すなわち、静電潜像保持体に保持されている静電潜像の現像において、トナーは、比較的大粒子であるキャリアと混合され、電子写真用二成分系現像剤と 40して用いられる。トナーとキャリアの両者の組成は、相互の接触摩擦により、例えばトナーが光導電層上の電荷と反対の極性を帯びるように選ばれる。両者の接触摩擦の結果、キャリアはトナーを表面に静電的に付着させ、現像剤として現像装置内を搬送し、静電潜像保持体の光導電層上にトナーを供給する。

【0012】しかしながら、このような二成分現像剤を 用い電子複写装置で多数枚連続複写を行うと、初期には 鮮明で良好な画質を持った画像が得られるが、数万枚複 写後は、カブリが多く、エッジ効果が著しく生じた、階 50 調性及び鮮明性に乏しい画像となる。

【0013】有彩色トナーを用いるカラー複写においては、連続階調性は画質に影響を及ぼす重要な因子であり、多数枚複写後に画像の周辺部のみが強調されるエッジ効果が生じることは画像の階調性を大きく損なう。実際の輪郭の近傍にエッジ効果による擬似輪郭を形成するなど、カラー複写における色再現性を含めた、複写再現性を貶めるものとなる。

【0014】さらに、従来の白黒コピーで使用される画像面積は10%以下であり、画像としては、手紙、文献、報告書のように、ほとんどライン画像部分であるのに対して、カラー複写の場合、画像面積が最低でも20%以上であり、画像も写真、カタログ、地図、絵画のように階調性を有するベタ画像がかなりの頻度または領域を占めている。

【0015】このような、画像面積が大きい原稿を用いて連続複写を行うと、通常、初期は高画像濃度の複写物が得られるが、しだいに二成分現像剤へのトナー補給が間に合わなくなり、濃度低下が生じたり、帯電不十分の状態で、補給トナーとキャリアとの混合がなされ、カブリの原因となったり、現像スリーブ上で部分的なトナー濃度(トナーとキャリアの混合比を示す)の増減が生じ画像のカスレや画像濃度の一様性が得られなくなる傾向がある。この傾向は、トナーを小径化した場合一層顕著である。

【0016】これは、二成分系現像剤中のトナー内包量(すなわち、トナー濃度)が低すぎること、または補給トナーと二成分現像剤中のキャリア間のすみやかな摩擦帯電の立ち上りが悪く、非制御性な不十分な帯電量のトナーが現像に関与することなどにより、これらの現像不足やカブリが発生すると思われる。

【0017】カラー現像剤としては、大画像面積の原稿の連続的な複写で良画質の画像を常に出力できる能力は必須である。従来画像面積が大きくトナー消費量が非常に多い原稿に対処するため、現像剤自身の改良よりも現像装置の改良により多くは対応していた。すなわち、現像スリーブの静電潜像への接触機会を高めるために、現像スリーブの周速を早めたり、現像スリーブの大きさを大口径のものにすることなどが行われている。

【0018】これらの対策は現像能力はアップするものの、現像装置からのトナー飛散による機内への汚染や、現像装置駆動への過負荷により装置寿命が著しく制限を受けることなどが生ずる。さらには、現像剤の現像能力不足を補うために多量の現像剤を現像装置内に投入することで対応する場合もあるが、これらも、装置全体の重量の増加、装置の大型化によるコストアップ、上述と同様に現像装置駆動への過負荷などを招く結果となり、あまり好ましいものではない。

【0019】そこで長期にわたり、高画質を維持する目的でトナー、キャリア双方からの改良検討が報告されて

いる。

【0020】これまでに、画質をよくするという目的の ために、いくつかの現像剤が提案されている。例えば特 開昭51-3244号公報では、粒度分布を規制して、 画質の向上を意図した非磁性トナーが提案されている。 該トナーにおいて、8~12μmの粒径を有するトナー が主体であり、比較的粗く、この粒径では本発明者らの 検討によると、潜像への均密なる"のり"は困難であ り、かつ、5μm以下が30個数%以下であり、20μ m以上が5個数%以下であるという特性から、粒径分布 10 はブロードであるという点も均一性を低下させる傾向が ある。このような粗めのトナー粒子であり、且つブロー ドな粒度分布を有するトナーを用いて、鮮明なる画像を 形成するためには、トナー粒子を厚く重ねることでトナ 一粒子間の間隙を埋めて見かけの画像濃度を上げる必要 があり、所定の画像濃度を出すために必要なトナー消費 量が増加するという問題点も有している。

【0021】特開昭54-72054号公報では、前者 よりもシャープな分布を有する非磁性トナーが提案され ているが、中間の重さの粒子の寸法が8.5~11.0 20 μπと粗く、高解像性のトナーとしては、いまだ改良す べき余地を残している。

【0022】特開昭58-129437号公報では、平 均粒径が6~10μmであり、最多粒子が5~8μmで ある非磁性トナーが提案されているが、5μm以下の粒 子が15個数%以下と少なく、鮮鋭さの欠けた画像が形。 成される傾向がある。

【0023】本発明者らの検討によれば、5μm以下の トナー粒子が、潜像の輪郭を明確に再現し、且つ潜像全 体への緻密なトナーののりの主要なる機能をもつことが 30 知見された。特に、感光体上の静電荷潜像においては電 気力線の集中のため、輪郭たるエッジ部は内部より電界 強度が高く、この部分に集まるトナー粒子の質により、 画質の鮮鋭さが決まる。本発明者らの検討によれば5μ m以下の粒子の量が画質の鮮鋭さの問題点の解決に有効 であることが判明した。

【0024】そこで、本発明者らは、特開平2-222 966号公報で、5 µ m以下のトナー粒子を15~40 個数%含有するトナーを提案したが、これにより、かな りの画質向上は達成されたがさらに向上した画質も望ま 40 れている。

【0025】特開平2-877号公報で、5μm以下の トナー粒子が17~60個数%含有するトナーが提案さ れているが、これにより、確かに画質、画像濃度は安定 したが、写真原稿のように消費量の多いオリジナルを連 続でプリントした場合、トナーとしての対策だけではト ナーの粒度分布が変化してしまい、常に一定の画像を得 るのが難しいことも判明した。

【0026】一方、キャリアの平均粒径や粒度分布を示

昭58-144839号公報、特開昭61-20464 6号公報がある。特開昭51-3238号公報は大まか な粒度分布を言及している。しかしながら、現像剤の現 像性や現像装置内での搬送性に密接に関係している磁気 特性については具体的に開示していない。さらにキャリ アの粒径に関しては、実施例中のキャリアは全て250 メッシュ以上が約80重量%以上もあり、平均粒径も6 0 μ m以上である。

8

【0027】特開昭58-144839号公報は、単に キャリアの平均粒径のみを開示するものであって感光体 へのキャリア付着に影響を及ぼす微粉量や画像の鮮鋭性 に影響を与える粗粉量まで言及しカラー複写の特性を考 慮して詳細にその分布まで記載してはいない。

【0028】特開昭61-204646号公報は複写装 置と適当な現像剤の組合せを発明の骨子としており、キ ャリアの粒度分布や磁気特性については具体的に述べら れていない。さらには、該現像剤がなぜその複写装置に 有効なのかさえも開示されていない。

【0029】特開昭49-70630号公報は、キャリ アの磁気力に関して記載しているが、これはキャリア素 材として、フェライトよりも比重の大きい鉄粉について のものであり、飽和磁気も高いものである。鉄粉キャリ アは従来多く使用されてきたが、比重が大きいために複 写装置の重量化や駆動トルクの過負荷を生じやすく、さ らに環境依存性も大きい。

【0030】特開昭58-23032号公報に記載され ているフェライトキャリアは、多孔性の空孔の多い材料 についてのものであり、このようなキャリアはエッジ効 果が発生しやすく耐久性に乏しいものであり、カラー用 キャリアとしては不適当であることが判明している。

【0031】今まで、少量の現像剤で、画像面積の大き い画像を連続複写することが可能であり、耐久後もエッ ジ効果が生じないカラー複写特有の特性をも満足しうる 現像剤が待望されている。現像剤及びキャリアに関して 検討が行われているが、それらのほとんどは白黒複写を 考慮して提案されたものであり、フルカラー複写用にも 適用できるものとして提案されたものは極めてわずかで ある。さらに、ほとんどベタ画像に近い20%以上の画 像面積をもつ画像を複写しつづける能力やエッジ効果の 軽減、一枚の複写物中での画像濃度の一様性を保持しう る能力を有するキャリアが待望されている。

【0032】そこで、特開平2-281280号公報で は、微粉の存在量および粗粉の存在量をコントロールし た粒度分布の狭いキャリアを提案して、現像特性の向上 したキャリアが達成されている。

【0033】しかしながら、先に述べたように、複写機 の高精細、高画質化の要求が市場では高まっており、当 該技術分野では、トナーの粒径を細かくして高画質カラ 一化を達成しようという試みがなされているが、トナー 唆したものとして、特開昭51-3238号公報、特開 50 の粒径が細かくなると単位重量当りの表面積が増え、ト

ナーの帯電気量が大きくなる傾向にあり、画像濃度薄や、耐久劣化が懸念されるところである。

【0034】このように、トナー粒径を細かくしたことによる画像濃度薄や耐久劣化防止、あるいは、現像効率向上を目的としてキャリアの更なる小径化が試みられている。しかしながら、このようなキャリアにおいては、トナーの環境あるいは耐久による帯電量変化に対処できるだけの十分な品質が得られておらず、高画像濃度、高画質、良好なカブリ防止及びキャリア付着防止のすべてを達成することは難しいのが実情である。

[0035]

のである。

【発明が解決しようとする課題】本発明の目的は、上述の如き問題点を解決した二成分系現像剤を構成するキャリア、該キャリアを用いた二成分系現像剤及び該二成分系現像剤を用いた画像形成方法を提供することにある。【0036】すなわち本発明の目的は、大画像面積のカラー原稿の連続複写を行っても画像濃度の低下、およびカスレの生じない二成分系現像剤を構成するキャリア、

剤を用いた画像形成方法を提供することにある。 【0037】本発明のさらなる目的は、カブリのない鮮 明な画像特性を有し、かつ耐久安定性にすぐれた二成分

該キャリアを用いた二成分系現像剤及び該二成分系現像

$$(Fe_2O_3)$$
, (A) , (B) ,

[式中、Aは、MgO, Ag,O又はそれらの混合物を示し、Bは、Li,O, MnO, CaO, SrO, Al,O, SiO,又はそれらの混合物を示し、x, y及び z は、重量比を示しかつ下記条件 0. $2 \le x \le 0$. 95, 0. $0 \ 0 \ 5 \le y \le 0$. 3, $0 < z \le 0$. 795, $x + y + z \le 1$ を満足する。]で示される磁性フェライト成分で形成さ 30

[式中、Aは、MgO, Ag2 O又はそれらの混合物を示し、Bは、Li2O, MnO, CaO, SrO, Al2O3, SiO2又はそれらの混合物を示し、x, y及び zは、重量比を示しかつ下記条件 0. $2 \le x \le 0$. 95, 0. $005 \le y \le 0$. 3, $0 < z \le 0$. 795, $x + y + z \le 1$ を満足する。] で示される磁性フェライト成分で形成されていることを特徴とする二成分系現像剤を提供するも

 (Fe_2O_3) , (A), (B).

[式中、Aは、MgO, Ag,O又はそれらの混合物を示し、Bは、Li,O, MnO, CaO, SrO, Al,O, SiO,又はそれらの混合物を示し、x, y及び zは、重量比を示しかつ下記条件 $0.2 \le x \le 0.95$, $0.005 \le y \le 0.3$, $0 < z \le 0.795$, $x + y + z \le 1$ を満足する。]で示される磁性フェライト成分で形成されることを特徴とする画像形成方法を提供するものである。

系現像剤を構成するキャリア、該キャリアを用いた二成分系現像剤及び該二成分系現像剤を用いた画像形成方法を提供することにある。

【0038】本発明の別の目的は、トナーとキャリア間の摩擦帯電のすみやかな立上がりの得られる二成分系現像剤を構成するキャリア、該キャリアを用いた二成分系現像剤及び該二成分系現像剤を用いた画像形成方法を提供することにある。

【0039】本発明の別の目的は、摩擦帯電の環境依存 10 性の少ない二成分系現像剤を構成するキャリア、該キャ リアを用いた二成分系現像剤及び該二成分系現像剤を用 いた画像形成方法を提供することにある。

【0040】本発明の別の目的は、現像器内での搬送性の良好な二成分系現像剤を構成するキャリア、該キャリアを用いた二成分系現像剤及び該二成分系現像剤を用いた画像形成方法を提供することにある。

[0041]

【課題を解決するための手段及び作用】本発明は、磁性キャリア芯材粒子及び該磁性キャリア芯材粒子を被覆す 20 る樹脂被覆層を有する電子写真用キャリアにおいて、該キャリア芯材粒子は、下記式(I)

式(1)

れることを特徴とする電子写真用キャリアを提供するものである。

【0042】また、本発明は、トナー粒子を含むトナー、及び磁性キャリア芯材粒子及び該磁性キャリア芯材 粒子を被覆する樹脂被覆層を有するキャリアを有する二 成分系現像剤において、該キャリア芯材粒子は、下記式 (I)

式(I)

【0043】さらに、本発明は、トナー及びキャリアを有する二成分系現像剤を現像剤担持体で循環搬送し、現像領域で静電潜像担持体に保持されている静電潜像を該現像剤担持体に担持されている該二成分系現像剤のトナーで現像する画像形成方法において、該トナーはトナー粒子を含んでおり、該キャリアは、キャリア芯材粒子及び該キャリア芯材粒子を被覆する樹脂被覆層を有しており、該キャリア芯材粒子は、下記式(I)

式 (I)

【0044】上記式 (I) において、より好ましくは、x, y及びzが下記条件

0. $2 \le x \le 0$. 95, 0. 005 $\le y \le 0$. 3, x + y < 1, z = 1 - x - y

を満足することが、キャリア芯材粒子が適度な表面凹凸を有し、かつ適度な含有水分を有し、樹脂の密着性、強じん性の両立の点において好ましいが、本発明においては、上記のフェライト成分の有する効果を妨げない3重 50 量%以下の範囲でその他の金属元素を磁性キャリア芯材 粒子表面の結晶粒径の調整を目的として、焼成時の合一 防止を目的として、或いは粒度分布調整剤として、磁性 フェライト成分中に水酸化物、酸化物、硫化物又は脂肪 酸化合物等の形態で含有させても良い。

【0045】本発明において、前記式(I)におけるx

+y+z<1の場合とは、上記の任意のその他の成分を 好ましくは、3重量%までの範囲で含むことを意味する ものであり、そのような例は、後述の実施例4で示す。 【0046】上記式(I)において、xが0.2未満の 場合には、磁気特性が低くなり、キャリアの飛散や感光 10 体の表面の傷を生じさせやすく、xが0.95を超える 場合には、芯材の抵抗が低くなりやすい。 yが 0.00 5未満の場合には、適正な抵抗及び磁気特性が得られに くく、yが0.3を超える場合には、キャリア粒子表面 に均質化と球状化が達成できなくなることがある。 z が Oの場合、すなわち(B)が含まれない場合には、シャ - プな粒度分布のものが得にくく、キャリアの超微粉に よる感光体表面の傷あるいは焼成時の合一が激しくキャー リア製造が難しくなる。 zが 0. 795を超える場合に は、磁気特性が低くなり、キャリアの飛散が悪化する。 【0047】上記式(I)において、x, y及びzは下 記条件を満足することがより好ましい。

[0.048]

0. $4 \le x \le 0$. 9, 0. $0.1 \le y \le 0$. 25,

0. $0.1 \le z \le 0.2$, $x + y + z \le 1$

【0049】さらに、本発明に用いられる磁性フェライ ト成分の上記式 (I) におけるBは、Li₂O, Mn O, CaO, SrO, Al,O,, SiO,の中でも、高 電圧印加時にも抵抗低下が小さい点でMnO,CaO, SiO,及びAl,O,が好ましく、特に補給トナーとの なじみやすさの点でMnO及びCaOがより好ましい。 【0050】さらに、上記式(I)で示されるフェライ ト成分で形成されている磁性キャリア芯材粒子の表面を 被覆する樹脂被覆層に用いられる樹脂として、特定の硬 化剤を含有する反応性シリコーン樹脂を用いることが好。 ましい。

【0051】これまでに磁性キャリア芯材粒子の接着性 を向上せしめるために、変性シリコーン樹脂を用いるこ とも提案されており、アルキッド変性、エポキシ変性、 アクリル変性、ポリエステル変性、フェノール変性、メ 40 ラミン変性, ウレタン変性の如き変性シリコーン樹脂を 使用する例があるが、表面エネルギーの上昇の為トナー の固着が生じ易く必ずしも現像剤の耐久性の点で満足の いくものではなかった。

【0052】低表面エネルギーを保ったまま接着性を高 めるために、種々の添加剤を併用する方法が提案されて いる(特開平2-33159号公報)。

【0053】これらの添加剤は、シリコーン樹脂あるい はそれ自身との反応により接着剤に加え強靭性も付与す るものである。しかしながら、特開平2-33159号 50

公報に示されているものは、確かに、被覆樹脂としての 耐性は向上したものの、キャリア芯材表面に薄層で被覆 層を形成させようとした場合必ずしもキャリア芯材と被 覆樹脂との接着性は満足のいくものではなく、更なる改 良が望まれている。

【0054】そこで、本発明者らが鋭意検討した結果、 磁性キャリア芯材粒子中に0.5~10mg/100m 1、好ましくは0. 5~2mg/100mlの25℃の 水に対する溶解度を有する金属酸化物を含有する磁性キ ャリア芯材粒子上に、反応性シリコーン樹脂、好ましく は後述する一般式(III)で示される硬化剤、さらに 好ましくは、アミノシランカップリング剤を含有する反 応性シリコーン樹脂を樹脂被覆層に用いたときに、磁性 キャリア芯材粒子中に含有する適度の水分とシリコーン 樹脂中の残存反応基とが適度に反応し、良好な接着性、 帯電性を達成し、非常に高性能な長寿命キャリアが得ら れることを見出したのである。

【0055】特開平2-33159号公報にも、後述す る一般式(III)を含有することは記載されている 20 が、本発明においては、特定の溶解度を有する金属酸化 物を磁性キャリア芯材粒子中に特定量含有させて、反応 性シリコーン樹脂と反応させることに特徴があり、その 結果、磁性キャリア芯材粒子と樹脂被覆層との、より強 度の向上したキャリアが得られるものであり、前記先行 技術とは異なるものである。

【0056】本発明に好適に用いられる磁性キャリア芯 材粒子としては、溶解度 0. 6 2 m g / 1 0 0 m l の M gO, 溶解度1. 74mg/100mlのAg,Oを含 · 有するフェライト粒子であり、より好ましくは、芯材の 30 抵抗安定性の点で少なくともMgOを酸化物換算でO. 5~30重量%含有するフェライトが、表面均質化、球 状化が容易で適度な水分を含有するために好ましい。 【0057】さらに、本発明の樹脂被覆層で被覆された キャリアは、特定の表面性および粒度分布を有すること

【0058】すなわち、本発明者らは二成分系現像剤の 画像濃度、ハイライト再現性、細線再現性について鋭意 検討した結果、特定の粒度分布及び表面性を有するキャ リアを使用したときに、高画像濃度, ハイライト再現, 細線再現により優れた高画質化が達成できることを見出

も一つの特徴である。

したのである。

【0059】本発明に好適に用いられるキャリアは、平. 均粒径は小さく、微粉および粗粉の存在量をコントロー ルした粒子のそろった均一な小粒径キャリアであり、か つその表面にある程度凹凸を持たせたキャリアである。 そのため、自由エネルギーの小さい樹脂を被覆してもト ナーの搬送性は良好でトナーとの摩擦帯電性の立上がり も好ましく改良されている。

【0060】キャリアとしては、キャリアの50%粒径 (メジアン径)が15~60μm、好ましくは20~4

5 μ mを有し、22 μ m より小さいキャリア粒子が1~ 20重量%、好ましくは2~15重量%、より好ましく は4~12重量%含有されており、16μmより小さい。 キャリア粒子が0.01~3重量%、好ましくは0.0 1~2重量%、より好ましくは0.01~1重量%含有 されていることが良い。本発明において、50%粒径と は、体積基準の中央累積値(50%)の粒径を言う。

【0061】微粉の含有量が上記範囲の上限を超える と、樹脂が安定に被覆できず、キャリア付着を生じた り、トナーとの円滑な帯電を妨げ、22μmより小さい 10 いては、空気透過法によって算出される比表面積 S₁と キャリア粒子が1重量%未満であると、磁気ブラシが疎 い状態となってしまい、トナーの帯電の立上がりも悪く なり、トナー飛散やカブリの原因となる。

$$\vec{x} (\vec{u}) \qquad S_2 = \frac{6}{\rho \cdot D_{50}} \times 10^4$$

から算出される比表面積 S, との比 (S, /S,) が、好 ましくは1.2~2.0、より好ましくは1.3~1. 8、さらに好ましくは1. $4\sim1$. 7であることも一つ 20 の特徴である。

【0065】S₁/S₂が1.2より小さいと、キャリア の表面が平滑になってしまうことでキャリア芯材への樹 脂の密着性が低下し、結果としてトナー飛散やカブリ、 画像ムラが発生してしまう。 S, / S2が2. Oより大き いと、キャリア表面の凹凸が大きくなり過ぎ、磁性キャ リア芯材粒子表面の樹脂被覆層が不均一になりやすく、 結果として、帯電の均一性が得られなくなり、カブリ、 トナー飛散が生じやすく、さらにキャリア付着も発生し やすくなる。

【0066】さらに、本発明の効果をより一層効果的に するためには、キャリアの見掛密度は好ましくは1.2 ~3. 2g/cm²、より好ましくは1. 5~2.8g /cm²とすることが良い。見掛密度が上記範囲の下限 値より小さいと、キャリア付着が発生しやすくなり、上 記範囲の上限値より大きいと二成分系現像剤の循環が悪 くなり、トナー飛散が発生しやすくなるだけでなく、画 質劣化も早まってしまう。

【0067】本発明をより効果的にするためにはキャリ アの電流値は20~300μA、より好ましくは30~ 40 $250\mu A$ 、更に好ましくは $40\sim200\mu A$ であるこ とが望ましい。

【0068】電流値が20μAより小さいと、キャリア 表面での電荷の移動が十分に行われず、トナーへの帯電 付与能が低下してしまい、カブリ、トナー飛散が発生し やすくなり、300μAより大きいと、感光体ドラムへ のキャリア付着、バイアスリークが発生しやすくなり、 画像欠陥が生じやすくなる。

【0069】キャリアの磁気特性は現像スリーブに内蔵

【0062】62μm以上のキャリア粒子は、画像の鮮 鋭性と密接に相関し、この粗粉の含有量は、2~20重 量%であることが良い。粗粉の含有量が20重量%を超 えると、キャリアのトナー搬送能力が低下し、トナーの 非画像部への飛散りが増加し、画像の解像力の低下やハ イライト再現性が低下し、2重量%未満であると、二成 分系現像剤の流動性が低下し、現像器内での現像剤の片 寄りなどが生じ、安定な画像が得られにくくなる。

【0063】さらに、本発明に用いられるキャリアにお 下記式(II)

[0064]

【数1】

p:キャリアの密度

Dso: 50%粒径

現像剤の現像特性及び搬送性に大きく影響を及ぼすもの である。

【0070】本発明においては、マグネットローラーを 内蔵した現像スリーブ上で、マグネットローラーを固定 して現像スリーブを単体で回転し、磁性粒子からなるキ ャリアと絶縁性カラートナーを有する二成分系現像剤を 現像担持体である現像スリーブ上で循環搬送し、該二成 分系現像剤にて静電潜像保持体表面に保持された静電潜 像を現像するに際して、①該マグネットローラーが反発 極を有する極構成とし、②現像領域における磁束密度を 500~1200ガウスとし、③キャリアの飽和磁化が 20~70Am²/kgのとき、カラー複写において画 像の均一性や階調再現性にすぐれ好適である。

【0071】キャリアの飽和磁化が、70A㎡/kg (3000エルステッドの印加磁場に対し)を超える場 合であると、現像時に感光体上の静電潜像に対向した現 像スリーブ上のキャリアとトナーにより構成されるブラ シ状の穂立ちが固く締まった状態となり、階調性や中間・ 調の再現が低下し、20Am²/kg未満であると、ト ナー及びキャリアを現像スリーブ上に良好に保持するこ とが困難になり、キャリア付着やトナー飛散が生じ易く なる。

【0072】Mg〇を含有するフェライトキャリアとし ては、例えば特開昭59-1159号公報,特開昭58 -123551号公報,特開昭55-65406号公報 に記載されているが、これらは粒度分布がコントロール・ されておらず、単に1~9μmのトナーど組み合せただ けでは、帯電の安定性、耐久性等満足のいくものではな く、本発明とは異なるものである。

【0073】さらに、特開平2-33159号公報に は、MgOを含有させても良い記載は有るが、積極的に MgOを採用し、その表面活性を活用し、粒度分布のコ されたマグネットローラーによって影響され、二成分系 50 ントロール及び樹脂被覆キャリアの耐久性向上の示唆は

なく、本発明とは異なるものである。

【0074】本発明に使用される硬化剤としては、下記

【0075】 【化3】

一般式 (ІІІ)

$$R_1 - S_1 - O_1 - N = C < \frac{R_2}{R_3}$$

(式中、 R_1 は CH_4 , C_2H_6 , \bigcirc 及びそれらの誘導体からなるグループ

から選択される置換基を示し、R2及びRsはCHs, C2Hs及びそれらの誘

導体からなるグループから選択される置換基を示す。)

で示されるオキシムタイプの硬化剤が好適である。すな 10 わち、シリコーン樹脂中の残存反応基の適度なコントロール、保存安定性、コストの面でオキシムタイプのシランカップリング剤は非常に優れている。

【0076】反応性の高いカップリング剤として酢酸タイプ(アセトキシシラン),アセトンタイプ(プロペノキシシラン)が知られているが、前述のキャリア芯材粒子とシリコーン樹脂との安定な反応を達成し、反応基を適度に残存させる条件設定が非常に難しいため、生産安定性に劣ることがわかっており、本発明には好ましくない。

【0077】本発明における硬化剤は、例えば、下記(1)~(4)で示すものが挙げられる。

[00,7,8].

【化4】

(1)
$$CH_s-Si \leftarrow O=N-C < \frac{CH_s}{C_2H_s}$$

(2)
$$CH_s-Si \leftarrow O=N-C < \frac{CH_s}{CH_s}$$

(3) HO
$$\longrightarrow$$
 Si \leftarrow O=N-C $<$ $\stackrel{CH_3}{\sim}$ $\stackrel{C}{\sim}$ $\stackrel{C_2H_5}{\sim}$

(4)
$$C_2H_5-S_1 \leftarrow O=N-C < \frac{CH_5}{C_2H_5}$$
)₃

【0079】上記硬化剤の添加量は、シロキサン固型分 100重量部に対して好ましくは0.1~10重量部、 より好ましくは0.5~5重量部が良い。0.1重量部 未満では、十分な架橋効果が得られず、10重量部を超 える場合には、残渣が十分に除去できなかったり反応不 十分の化合物が残存してしまい、帯電特性、強度が低下 してしまう。本発明において、シロキサン固型分は、1 20℃における不揮発成分を示す。

【0080】本発明において、樹脂被覆層に用いられる 反応性シリコーン樹脂に含有することができるアミノシ ランカップリング剤としては、例えば下記(5)~(1 3)に示すものが挙げられる。

【0081】 【化5】

(5)
$$N - C_3 H_6 - S_i + (OCH_3)_3$$

(6)
$$H_5C_2-N-C_3H_5-S_i-(OCH_3)_3$$

(7)
$$H_2N-C_3H_6-S_1+O_CH_3$$
)

(8)
$$H_2N-C_2H_4-N-C_3H_6-S_1+(OCH_3)_3$$

(9)
$$H_{5}C_{4}-N-C_{3}H_{6}-S_{i}-(OCH_{3})_{3}$$

(10)
$$H_2N-C_2H_4-NH-C_3H_6-S_1 \leftarrow OCH_3$$
) 3 CH_3

(11)
$$(C_2H_5)_2 - N - C_3H_6 - S_i + (OCH_3)_3$$

(12)
$$(C_4H_9)_2 - N - C_3H_6 - S_i + (OCH_3)_3$$

(13)
$$H_2N \longrightarrow Si \leftarrow OCH_3)_3$$

【0082】これらは、1種または2種以上使用することができる。この中で本発明に好適に使用されるのは、相溶性、反応性、安定性の点で、1個の水素原子を有する窒素原子を少なくとも一つ有する以下のカップリング

(5)

剤である。

【化6】

[0083]

(6)
$$H_5C_2-N-C_3H_5-S_i-(OCH_3)_3$$

(8)
$$H_2N - C_2H_4 - N - C_3H_6 - S_i + OCH_3)_3$$

(9)
$$H_9C_4 - N - C_3H_6 - S_i - (OCH_3)_3$$

(10)
$$H_2N - C_2H_4 - NH - C_3H_6 - S_i + OCH_3$$
) 3

【0084】上記カップリング剤の添加量は、シロキサン固型分100重量部に対して好ましくは0.1~8重量部、より好ましくは0.3~5重量部が良い。0.1 重量部未満では十分な添加効果が得られず、帯電性の劣化、被覆強度の低下が生じやすく、8重量部を超えると十分な反応が行われず、逆に被覆強度の低下が生じてしまう。

【0085】本発明においては、カップリング剤としては、さらに下記一般式 (IV)

R₁₋₁-Si-Xa 式(IV)

(式中、R...は、ビニル基,メタクリル基,エポキシ基,アミノ基,メルカプト基およびそれらの誘導体からなるグループから選択される置換基を示し、Xはハロゲンまたはアルコキシ基を示す。)で示されるカップリング剤を併用しても良い。

【0086】このようなカップリング剤としては、下記 $(14) \sim (16)$ で示すものが挙げられる。

 $0 (14) CH_3 = CH - Si - (OCH_3)^2$

- $(15) CH_3 Si (OCH_3)_3$
- $(16) CH_3 Si (OC_2H_5)_3$

【0087】磁性キャリア芯材粒子表面に樹脂被覆層を 形成する方法としては、樹脂組成物を適当な溶媒に溶解 し、得られる溶液中に磁性キャリア芯材粒子を浸漬し、 しかる後に、脱溶媒、乾燥、高温焼付けする方法、ある いは磁性キャリア芯材粒子を流動化系中で浮遊させ、前 記樹脂組成物の溶解した溶液を噴霧・塗付し、乾燥、高 温焼付けする方法、単に磁性キャリア芯材粒子と樹脂組 等がいずれも使用できる。

【0088】本発明において好ましく用いられる方法 は、ケトン類、アルコール類の如き極性溶媒を5重量% 以上、好ましくは20重量%以上含む溶媒100重量部 中に水を0.1~5重量部、好ましくは0.3~3重量 部含有させた混合溶媒を使用する方法が、反応性シリコ ーンレジンを磁性キャリア芯材粒子に強固に付着させる ために好ましい。水が0.1重量部未満では、反応性シ リコーンレジンの加水分解反応が十分に行われず、磁性 キャリア芯材粒子表面への薄層かつ均一な被覆が難しく 20 なり、5重量部を超えると、反応制御が難しくなり、逆 に被覆強度が低下してしまう。

【0089】本発明は、キャリアとトナーとを混合して 二成分系現像剤を調製するが、その混合比率は二成分系 現像剤中のトナー濃度として、1~12重量部、好まし くは2~9重量%にすると通常良好な結果が得られる。 トナー濃度が1重量%未満では画像濃度が低くなり、1 2重量%を超えるとカブリや機内飛散を増加せしめ、二 成分系現像剤の耐用寿命を短める。

【0090】本発明の二成分系現像剤は、上記のキャリ アとトナーによって構成されるものであり、上記キャリ アと組合わせて二成分系現像剤を構成するトナーの好ま しい構成について説明する。

【0091】本発明に用いられるトナーは、トナー粒子 及び0.001乃至0.2μmの重量平均粒径を有する 表面処理された無機微粒子を外添剤として有するもので あり、このトナー粒子及び外添剤を有するトナーは、1 乃至 9 μ mの重量平均粒径を有するものがトナーの好ま しい第1の形態である。

【0092】トナーの外添剤として用いる無機微粉体と しては、例えばアルミナ、酸化チタン及びシリカが挙げ られるが、この中でも特にアルミナ又は酸化チタン微粒 子がトナーの帯電をより安定化するため好ましい。

【0093】さらに、上記無機微粉体は疎水化処理され ていることが、トナーの帯電量の温度や湿度の如き環境 依存性を少なくするため及びトナー表面からの遊離を防 止するために良い。この疎水化処理剤としては、例えば シランカップリング剤、チタンカップリング剤、アルミ ニウムカップリング剤の如きカップリング剤,シリコー ンオイル,フッ素系オイル,各種変性オイルの如きオイ 50 【0104】このトナーの重量平均粒径が1μm未満の

ルが挙げられる。

【0094】上記の疎水化処理剤の中でも特にカップリ ング剤が、トナーの帯電の安定化、流動性付与の点で好 ましい。

【0095】よって、本発明に用いる外添剤としては、 特に好ましくは、カップリング剤を加水分解しながら表 面処理を行ったアルミナまたは酸化チタン微粒子が、帯 電の安定化,流動性の付与の点で極めて有効である。

【0096】上記の疎水化処理された無機微粉体は、好 成物の粉体あるいは水系エマルションとを混合する方法 10 ましくは20乃至80%、より好ましくは40乃至80 %の疎水化度を有することが良い。

> 【0097】無機微粉体の疎水化度が20%より小さい と、高湿下での長期放置による帯電量低下が大きく、ハ ード側での帯電促進の機構が必要となり、装置の複雑化 となり、疎水化度が80%を超えると無機微粉体自身の 帯電コントロールが難しくなり、結果として低湿下でト ナーがチャージアップしやすくなる。

【0098】上記の疎水化処理された無機微粉体は、 0. 001 μ m 乃至0. 2 μ m、好ましくは0. 005 μ m 乃至 0. 15 μ m の重量平均粒径を有することが、 トナーの流動性付与及び耐久時におけるトナー表面から の遊離防止の点で良い。

【0099】この重量平均粒径が0.001μm未満の 場合には、トナー粒子の表面に埋め込まれやすくなりト ナー劣化が生じて耐久性が逆に低下しやすい。

【0100】0.2 μ mを超える場合には、トナーの流 動性が充分に得られ難く、トナーの帯電が不均一になり やすく、結果としてトナー飛散やカブリが生じやすい。 【0101】上記の疎水化処理された無機微粉体は、4

00nmの光長における光透過率が40%以上であるこ とが好ましい。

【0102】すなわち、本発明に使用される無機微粉体 は、一次粒子径が小さいものであっても、実際トナー中 に含有させた場合、必ずしも一次粒子の状態で分散して いるわけでなく、二次粒子で存在している場合もありう る。したがって、いくら一次粒子径が小さくても、二次 粒子としての挙動する実効径が大きくては、本発明の効 果は低減してしまう。しかるに、可視領域の下限波長で ある400nmにおける光透過率が高いものほど、二次 粒子径が小さく、流動性付与能、カラートナーの場合に おけるOHPの投影像の鮮明さの点で良好な結果が期待 できる。400nmを選択した理由は紫外と可視の境界 領域であり、光波長の1/2以下の粒径のものは透過す るといわれていることからも、それ以上の波長の透過率 は当然大きくなり、あまり意味のないものである。

【0103】本発明において、トナー粒子及び外添剤を 有するトナーは、1乃至9μm、好ましくは2乃至8μ mの重量平均粒径を有することが、高画質化と高耐久性 の両立の点で良い。

場合には、キャリアとの混合性が低下し、トナー飛散,カブリ等の欠陥を生じ、 9μ mを超える場合には、微小ドット潜像の再現性の低下、あるいは転写時の飛び散り等が生じ高画質化の妨げとなる。

【0105】本発明に使用されるトナーに含有される着色剤としては、公知の染顔料、例えばフタロシアニンブルー、インダスレンブルー、ピーコックブルー、パーマネントレッド、レーキレッド、ローダミンレーキ、ハンザイエロー、パーマネントイエロー、ベンジジンイエローを使用することができる。その含有量としては、OH 10 P用フィルムの透過性に対し敏感に反映するよう、結着樹脂100重量部に対して好ましくは12重量部以下、より好ましくは0.5~9重量部が良い。

【0106】本発明に用いるトナーには必要に応じてトナーの特性を損ねない範囲で添加剤を混合しても良いが、そのような添加剤としては、例えばテフロン、ステアリン酸亜鉛、ポリフッ化ビニリデンの如き滑剤、あるいは定着助剤(例えば低分子量ポリエチレン、低分子量ポリプロピレンなど)、有機樹脂粒子等があげられる。【0107】本発明に用いるトナーの製造にあたっては、熱ロール、ニーダー、エクストルーダーの如き熱混練機によって構成材料を良く混練した後、機械的な粉砕、分級によって得る方法、結着樹脂溶液中に着色剤の如きトナー原料を分散した後、噴霧乾燥することにより

得る方法、又は、結着樹脂を構成し得る重合性単量体に

$$\not\equiv (V) \quad H (OR)_* - O \longrightarrow \begin{matrix} CH_* \\ C \\ CH_* \end{matrix} \longrightarrow O - (RO)_* H$$

(式中、Rはエチレンまたはプロピレン基を示し、x, yはそれぞれ1以上の整数であり、かつx+yの平均値は2~10である。)で示されるビスフェノール誘導体もしくは置換体、をジオール成分とし、2価以上のカルボン酸、その酸無水物またはその低級アルキルエステルをカルボン酸成分(例えばフマル酸、マレイン酸、無水マレイン酸、フタル酸、テレフタル酸、トリメリット酸、ピロメリット酸)とし、上記ジオール成分と上記カルボン酸成分とを共縮重合したボリエステル樹脂がシャープな溶融特性を有するのでより好ましい。

【0113】本発明に用いられるトナーは、重量平均粒 40 径1~9μmを有し、かつポリエステル樹脂を有するバインダー樹脂を含み酸価1~20KOHmg/gを有することが、トナーの好ましい第2の形態である。

【0114】すなわち、上記の1~20KOHmg/gの酸価を有するトナーを使用することで、特に上記の特定の磁性フェライト成分で形成された磁性キャリア芯材粒子を樹脂被覆層で被覆したキャリアとの帯電安定性が向上し、迅速帯電が可能となり、画像比率の高いオリジナルを使用した場合でも、長期にわたって、カブリ、トナー飛散のない二成分系現像剤が達成される。

所定材料を混合した後、この乳化懸濁液を重合させることによりトナーを得る重合トナー製造方法が応用できる。

【0108】本発明のトナーに使用する結着樹脂としては、各種の樹脂が用いられる。

【0109】例えば、ポリスチレン、スチレンーブタジエン共重合体、スチレンーアクリル共重合体の如きスチレン系共重合体、ポリエチレン、エチレン一酢酸ビニル共重合体、エチレンービニルアルコール共重合体のようなエチレン系共重合体、フェノール系樹脂、エポキシ系樹脂、アクリルフタレート樹脂、ポリアミド樹脂、ポリエステル樹脂、マレイン酸系樹脂があげられる。いずれの樹脂もその製造方法等は特に制約されるものではない。

【0110】これらの樹脂の中で、特に負帯電能の高いポリエステル系樹脂を用いた場合に本発明の効果は絶大である。すなわち、ポリエステル系樹脂は、定着性にすぐれ、カラートナーに適している反面、負帯電能が強く帯電が過大になりやすいが、本発明の前述のキャリアと20 組合わせるトナーの結着樹脂としてポリエステル樹脂を用いると弊害は改善され、優れたトナーが得られる。

【0111】特に、下記式(V)

[0112]

【化7】

【0115】ここで、酸価が1KOHmg/gより小さい場合は、帯電の立ち上がりが低下し、結果としてカブリが悪化しやすく、また、酸価が20KOHmg/gより大きいと、高湿下の帯電性が低下し結果としてカブリ、トナー飛散が生じてしまう。

【0116】本発明に用いるトナーにおいては、トナーの酸価を $1\sim20$ KOHmg/gにコントロールし、かつトナーの低温定着性及び耐久性を向上させるために、結着樹脂の酸成分として三価以上の多価カルボン酸を0.1 ~20 mol%、より好ましくは0.1 ~10 mol%含有することが良い。さらに、好ましくは、前記ポリエステル樹脂を有するバインダー樹脂を含むトナーのガラス転移温度(Tg)が45 ~70 \sim 0 \sim 0 \sim 10 \sim

【0117】特に好ましくは、前記のトナーの好ましい 第1の形態で説明した上記式(V)で示されるビスフェ ノール誘導体もしくは置換体をジオール成分とし、2価 以上のカルボン酸またはその酸無水物またはその低級ア ルキルエステルをカルボン酸成分(例えばフマル酸、マ レイン酸、無水マレイン酸、フタル酸、テレフタル酸、 トリメリット酸、ピロメリット酸)とし、上記ジオール 成分と上記カルボン酸成分とを共縮重合したポリエステ ル樹脂がシャープな溶融特性を有するのでより好まし い。

【0118】すなわち、ポリエステル系樹脂は、定着性に優れ、カラートナーに適している反面、負帯電能が強く、帯電が過大になりやすいが、前述の酸価1~20KOHmg/g、好ましくは2~18KOHmg/g、さらに好ましくは3~15KOHmg/gの酸価を有するトナーおよび上記の磁性フェライト成分で形成された磁 10性キャリア芯材粒子表面を樹脂被覆層で被覆したキャリアとを使用することによって、上記弊害は改善され、優れた二成分系現像剤が得られる。

【0119】本発明のトナーに使用する結着樹脂としては、さらに各種の材料樹脂を前述のポリエステル樹脂と組合せて使用しても良い。

【0120】例えば、ポリスチレン、スチレンーブタジエン共重合体、スチレンーアクリル共重合体等のスチレン系共重合体、ポリエチレン、エチレン一酢酸ビニル共重合体、エチレンービニルアルコール共重合体のような20エチレン系共重合体、フェノール系樹脂、エポキシ系樹脂、アクリルフタレート樹脂、ポリアミド樹脂、マレイン酸系樹脂があげられる。いずれの樹脂もその製造方法等は特に制約されるものではない。

【0121】さらに、このトナーは、トナー粒子に外添剤を添加して用いることが好ましく、この外添剤としては、トナーの好ましい第1の形態で記載したものを用いることが好ましい。

【0122】次に上記二成分系現像剤を用いた本発明の画像形成方法について説明する。

【0123】本発明の画像形成方法は、トナー及びキャリアを有する二成分系現像剤を現像剤担持体上で循環搬送し、潜像保持体とそれに対向する現像剤担持体の現像領域で潜像保持体に保持されている潜像を該現像剤担持体上の二成分系現像剤のトナーで現像するものである。

【0124】キャリアの磁気特性は現像スリーブに内蔵されたマグネットローラーによって影響され、現像剤の現像特性及び搬送性に大きく影響を及ぼすものである。

【0125】本発明の画像形成方法においては、現像スリーブ(現像剤担持体)とこれに内蔵されたマグネット 40ローラーのうち、例えばマグネットローラーを固定して現像スリーブを単体で回転し、磁性粒子からなるキャリアと絶縁性カラートナーからなる二成分系現像剤を現像スリーブ上で循環搬送し、該二成分系現像剤にて静電潜像保持体表面に保持された静電潜像を現像するものである。

【0126】本発明の画像形成方法においては、前述の通り①該マグネットローラーが反発極を有する5極構成とし、②現像領域における磁束密度が500~1200ガウスであり、③キャリアの飽和磁化が20~70Am 50

²/kgである場合には、カラー複写において画像の均一性や階調再現性にすぐれ好適である。

【0127】本発明の画像形成方法においては、現像領域で現像バイアスを印加して静電潜像を二成分系現像剤のトナーで現像することが好ましい。

【0128】特に好ましい現像バイアスについて以下に 詳述する。

【0129】本発明の画像形成方法においては、現像領域で潜像保持体から現像剤担持体にトナーを向かわせる第1電圧と、現像剤担持体から潜像保持体にトナーを向かわせる第2電圧と、該第1電圧と該第2電圧の間の第3電圧を現像剤担持体に印加し、潜像保持体と現像剤担持体との間に現像電界を形成することにより、潜像保持体に保持されている潜像を現像剤担持体上の二成分系現像剤のトナーで現像することが好ましい。

【0130】さらに、前述の潜像保持体から現像剤担持体にトナーを向かわせる第1電圧と現像剤担持体から潜像保持体にトナーを向かわせる第2電圧とを現像剤担持体に印加する合計時間(T₁)よりも、該第1電圧と該第2電圧との間の第3電圧を現像剤担持体に印加する時間(T₂)を長くすることが、潜像保持体上でトナーを再配列させ潜像に忠実に再現する目的で特に好ましい。

【0131】具体的には、現像領域で潜像保持体と現像 剤担持体との間に、潜像保持体から現像剤担持体にトナ 一が向かう電界と現像剤担持体から潜像保持体にトナー が向かう電界を少なくとも1回形成した後に、潜像保持 体の画像部ではトナーが現像剤担持体から潜像保持体に 向かい、潜像保持体の非画像部では、トナーが潜像保持 体から現像剤担持体に向かう電界を所定時間形成するこ とにより潜像保持体に保持されている潜像を現像剤担持 体に担持されている二成分系現像剤のトナーで現像する ものであり、この潜像保持体から現像剤担持体にトナー が向かう電界と現像剤担持体から潜像保持体にトナーが 向かう電界を形成する合計時間(T₁)より潜像保持体 の画像部ではトナーが現像剤担持体から潜像保持体に向 かい、潜像保持体の非画像部では、トナーが潜像保持体 から現像剤担持体に向かう電界を形成する時間 (T,) の方を長くすることが好ましい。

【0132】前述の特定の現像電界、すなわち交番電界を形成して現像する現像方法で、定期的に交番をオフする現像電界を用いて現像を行なった場合にキャリア付着がより発生しづらいものである。この理由は、いまだ明確ではないが以下のように考えられる。

【0133】すなわち、従来の連続的な正弦波あるいは 矩形波においては、高画質濃度を達成しようとして電界 強度を強くすると、トナーとキャリアは一体となって潜 像保持体と現像剤担持体の間を往復運動し、結果として 潜像保持体にキャリアが強く摺擦し、キャリア付着が発 生する。この傾向は微粉キャリアが多い程顕著である。

【0134】しかるに、本発明の如き特定の交流電界を

20

印加すると、1パルスではトナーあるいはキャリアが現像剤担持体と潜像保持体間を往復しきらない往復運動をするため、その後の潜像保持体の表面電位と現像バイアスの直流成分の電位差VeentがVeent < 0の場合には、Veentがキャリアを現像剤担持体から飛翔させるように働くが、キャリアの磁気特性とマグネットローラーの現像領域での磁束密度をコントロールすることによって、キャリア付着は防止でき、Veent > 0の場合には、磁界の力およびVeentがキャリアを現像剤担持体側に引きつけるように働き、キャリア付着は発生しない。

【0135】本発明の画像形成方法に用いることが可能な静電潜像担持体の好ましい形態について図6を用いて説明する。

【0136】静電潜像保持体1は導電性支持体41上に感光層43及び保護層44が設けられており、少なくとも該保護層44が静電潜像保持体1表面の摩擦抵抗を低下させる為に、フッ素原子含有樹脂粒子を含有しており、且つ該保護層44が機械研磨され、該保護層44の平均面粗さが、好ましくはJIS規格B061で定義される10点平均面粗さR.(以下、単に平均面粗さと略す)が0.01~1.5μmであることが良い。

【0137】この平均面粗さが上記範囲内であればクリーニングブレード50と静電潜像保持体1表面との摩擦も充分に小さく、また繰り返し使用によっても画像欠陥が表れてくる事はなく、さらに、ハイライト再現も非常に優れたものになる。

【0138】静電潜像保持体1表面の摩擦係数を有効に下げ得るフッ素原子含有樹脂微粒子の含有率は、保護層44中においては保護層44の全重量を基準として5~40重量%、好ましくは10~40重量%が良い。保護層44の膜厚は、好ましくは0.05μmから8.0μmの範囲であり、より好ましくは0.1μmから6.0μmの範囲であることが良い。

【0139】本発明において感光層43部分にもフッ素原子含有樹脂微粒子を含有する場合には、薄膜の保護層44に較べて感光層43は厚いため、該微粒子の含有量は制限される。具体的には、感光層43中の含有率は、感光層43の全重量を基準として好ましくは10重量%以下であり、より好ましくは7重量%以下である。

【0140】感光層43中のフッ素原子含有樹脂微粒子 40 量を制限しても、感光層43の総厚が厚い場合、特に、フォトキャリアーが主に感光層43の支持体側で発生する場合には、光散乱による感度劣化、画像均一性の低下が著しい。感光層43が薄すぎても、感光層43の電気容量の増加による感度低下や帯電能の低下を引き起こすことがある。さらに、感光層43中に該微粒子を含まない場合においても、感光層43を極端に厚くすることは好ましくない。その理由は、該微粒子を含む保護層44が感光層43の上に積層されるため、保護層44は光散乱層となり、特に、フォトキャリアーが主に感光層の支 50 持体側で発生する場合、フォトキャリアーの発生部が光散乱層から遠いほど、つまり、感光層43が厚いほど散乱後の光の光路長が長くなり、光散乱の影響が大きくなってしまうからである。

【0141】従って、感光層43の厚さは保護層44との合計で好ましくは $10\sim35\mu$ m、より好ましくは $15\sim30\mu$ mである。感光層43中に含有される該微粒子はできるだけ少量であることが好ましく、それで感光層43と保護層44との合計膜厚中の該微粒子の平均含有率は、感光層43と保護層44の全重量を基準として17.5重量%以下であることが良い。

【0142】本発明において、静電潜像保持体に用いられるフッ素原子含有樹脂微粒子はポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、ポリフッ化ビニリデン、ポリジクロロジフルオロエチレン、テトラフルオロエチレンーパーフルオロアルキルビニルエーテル共重合体、テトラフルオロエチレンーへキサフルオロプロピレン共重合体、テトラフルオロエチレンーへキサフルオロプロピレンーパーフルオロアルキルビニルエーテル共重合体から選ばれた1種または2種以上から構成されているものである。市販のフッ素原子含有樹脂微粒子をそのまま用いることが可能である。0.3万~500万の分子量のものが使用可能である。0.01~10 μ m、好ましくは0.05~2.0 μ mの粒径のものが使用可能である。

【0143】本発明において、静電潜像保持体の感光層 43は有機光導電性物質として、少なくとも電荷発生材 料及び電荷輸送材料を含有する。

【0144】電荷発生材料の例としては、フタロシアニン顔料、多環キノン顔料、トリスアン顔料、ジスアン顔料、アン顔料、ペリレン顔料、インジゴ顔料、キナクリドン顔料、アズレニウム塩染料、スクアリウム染料、シアニン染料、ピリリウム染料、チオピリリウム染料、キサンテン色素、キノンイミン色素、トリフェニルメタン色素、スチリル色素、セレン、セレンーテルル合金、アモルファスシリコン、硫化カドミウムが挙げられる。

【0145】電荷輸送材料の例としては、ピレン化合物、Nーアルキルカルバゾール化合物、ヒドラゾン化合物、N, Nージアルキルアニリン化合物、ジフェニルアミン化合物、トリフェニルアミン化合物、トリフェニルメタン化合物、ピラゾリン化合物、スチリル化合物、スチルベン化合物、ポリニトロ化合物、ポリシアノ化合物、さらに、これらの化合物をポリマー上に固定したペンダントポリマーが挙げられる。

【0146】前記のフッ素原子含有樹脂微粒子、電荷発生材料、電荷輸送材料を、それぞれ成膜性を有する結着樹脂中に分散、含有させて、各保護層、感光層を形成する場合が多い。その様な結着樹脂としては、ポリエステル、ポリウレタン、ポリアクリレート、ポリエチレン、

ポリスチレン、ポリカーボネート、ポリアミド、ポリプ ロピレン、ポリイミド、フェノール樹脂、アクリル樹 脂、シリコーン樹脂、エポキシ樹脂、ユリア樹脂、アリ ル樹脂、アルキッド樹脂、ポリアミドーイミド、ナイロ ン、ポリサルフォン、ポリアリルエーテル、ポリアセタ ール、ブチラール樹脂が挙げられる。

【0147】次に、静電潜像保持体の層構成を述べる。 導電性支持体41は、鉄、銅、金、銀、アルミニウム、 亜鉛、チタン、鉛、ニッケル、スズ、アンチモン、イン ジウムの如き金属や合金、或いは前記金属の酸化物、カ ーボン、導電性ポリマーが使用可能である。形状は円筒 形、円柱形の如きドラム形状と、ベルト形状、シート状 のものとがある。前記導電性材料は、そのまま成形加工 される場合、塗料として用いられる場合、蒸着される場 合や、エッチング、プラズマ処理により加工される場合 もある。塗料の場合には、支持体として前記の金属や合 金は勿論、紙、プラスチックも用いられる。

【0148】静電潜像保持体1における感光層43は、 単層構成であっても、積層構成であってもよい。積層構 成の場合には、少なくとも電荷発生層43aと電荷輸送 層43bにより構成されるが、導電性支持体41側に電 荷発生層43aが設けられる場合と、電荷輸送層43b が設けられる場合とでは帯電極性、使用するトナー極性 が異なる。電荷発生層43aの膜厚としては、好ましく は0. 001~6μmが良く、より好ましくは0. 01 ~2 µ mである。電荷発生層 4 3 a に含有される電荷発 生材料の含有率は、電荷発生層の全重量を基準として1 $0 \sim 1 \; 0 \; 0$ 重量%であることが好ましく、より好ましく は50~100重量%である。電荷輸送層の厚さは、前 記感光層 4 3 の膜厚から前記電荷発生層 4 3 a の膜厚を 30 差し引いたものである。電荷輸送層43b中に含まれる 電荷輸送材の含有量は、電荷発生層の全重量を基準とし て20~80重量%が好ましく、より好ましくは30~ 70重量%である。

【0149】導電性支持体41と感光層43との間に下 引き層42を設けても良い。下引き層42は、界面での 電荷注入制御や接着層として機能する。下引き層42 は、主に結着樹脂から成るが、前記金属や合金、または それらの酸化物、塩類、界面活性剤などを含んでいても よい。下引き層4.2を形成する結着樹脂としては、前記 40 感光層43の結着樹脂として挙げたものを使用でき、下 引き層の膜厚は、0.05~7μmが好ましく、より好 ましくは $0.1\sim2\mu m$ である。

【0150】保護層は、前述した様に感光層の上に設け られ、少なくとも高濃度のフッ素原子を含有する樹脂微 粒子と結着樹脂とから構成されることが好ましい。

【0151】静電潜像保持体の製造方法として蒸着又は 塗布の方法が用いられる。塗布による方法は、薄膜から 厚膜まで広い範囲で、しかもさまざまな組成の膜が形成 可能である。具体的には、バーコレーター、ナイフコー 50 スリーブ 1 1 上の現像剤 1 9 の層厚を規制する規制ブレ

ター、浸漬塗布、スプレー塗布、ビーム塗布、静電塗 布、ロールコーター、アトライター、粉体塗布の如き塗 布方法を用いて塗布される。

【0152】保護層を塗布する際に用いられる塗料は、 結着樹脂及び溶剤中に、前記フッ素原子含有樹脂微粒子 を分散させることにより得られる。分散の方法として は、ボールミル、超音波、ペイトンシェーカー、レッド デビル、サンドミルの如き方法が用いられる。導電性微 粉や顔料、電荷発生材料が顔料の場合も同様の分散方法 を用いることができる。

【0153】本発明の画像形成方法を実施し得る画像形 成装置を図1を用いて説明する。

【0154】図1において、画像形成装置は、静電潜像 保持体としての感光ドラム1を有し、現像装置4にて、 現像容器16の内部は、隔壁17によって現像室(第1 室) R, と撹拌室 (第2室) R, とに区画され、撹拌室R 2の上方には隔壁17を隔ててトナー貯蔵室R3が形成さ れている。現像室R,及び撹拌室R,内には現像剤19が 収容されており、トナー貯蔵室R,内には補給用トナー (非磁性トナー) 18が収容されている。なお、トナー 貯蔵室R₃には補給口20が設けられ、補給口20を経 て消費されたトナーに見合った量の補給用トナー18が 撹拌室R,内に落下補給される。

【0155】現像室R, 内には搬送スクリュー13が設 けられており、この搬送スクリュー13の回転駆動によ って現像室R、内の現像剤19は、現像スリーブ11の 長手方向に向けて搬送される。同様に、貯蔵室R.内に は搬送スクリュー14が設けられ、搬送スクリュー14 の回転によって、補給口20から撹拌室R₂内に落下し たトナーを現像スリーブ11の長手方向に沿って搬送す る。

【0156】現像剤19は、非磁性トナーと磁性キャリ アとを有した二成分系現像剤である。

【0157】現像容器16の感光ドラム1に近接する部 位には開口部が設けられ、該開口部から現像スリーブ1 1が外部に突出し、現像スリーブ11と感光ドラム1と の間には間隙が設けられている。非磁性材にて形成され る現像スリーブ11には、バイアスを印加するためのバ イアス印加手段30が配置されている。

【0158】現像スリーブ11内に固定された磁界発生 手段としてのマグネットローラ、即ち磁石12は、上述 したように、現像磁極S,とその下流に位置する磁極N, と、現像剤19を搬送するための磁極N₁、S₁、N₁と を有する。磁石12は、現像磁極 S. が感光ドラム1に 対向するように現像スリーブ11内に配置されている。 現像磁極S.は、現像スリーブ11と感光ドラム1との 間の現像部の近傍に磁界を形成し、該磁界によって磁気 ブラシが形成される。

【0159】現像スリーブ11の上方に配置され、現像

ード15は、アルミニウム、SUS316の如き非磁性 材料で作製される非磁性ブレード15の端部と現像スリ ーブ11面との距離は300~1000μm、好ましく は400~900μmである。この距離が300μmよ り小さいと、磁性キャリアがこの間に詰まり現像剤層に ムラを生じやすいと共に、良好な現像を行うのに必要な 現像剤を塗布することが出来ず、濃度の薄いムラの多い 現像画像しか得られないという問題点がある。現像剤中 に混在している不用粒子による不均一塗布(いわゆるブ レードづまり) を防止するためには400μm以上が好 10 ましい。1000μmより大きいと現像スリーブ11上 へ塗布される現像剤量が増加し所定の現像剤層厚の規制 が行えず、感光ドラム1への磁性キャリア粒子の付着が 多くなると共に現像剤の循環、非磁性ブレード15によ る現像規制が弱まりトナーのトリボが不足しカブリやす くなるという問題点がある。

【0160】角度 $\theta1$ は-5° ~ 35 °、好ましくは0° ~ 25 ° である。 $\theta1<-5$ ° の場合、現像剤に働く磁気力、鏡映力、凝集力等により形成される現像剤薄層がまばらでムラの多いものとなり、 $\theta>35$ ° の場合は 20 非磁性ブレードでは現像剤塗布量が増加し、所定の現像剤量を得ることが難しい。

【0161】この磁性キャリア粒子層は、スリーブ11が矢印方向に回転駆動されても磁気力,重力に基づく拘束力とスリーブ11の移動方向への搬送力との釣合によってスリーブ表面から離れるに従って動きが遅くなる。もちろん重力の影響により落下するものもある。

【0162】従って磁極N,とN,の配設位置と磁性キャリア粒子の流動性及び磁気特性を適宜選択する事により磁性キャリア粒子層はスリーブに近い程磁極N,方向に搬送し移動層を形成する。この磁性キャリア粒子の移動により現像スリーブ11の回転に伴なって現像領域へ現像剤は搬送され現像に供される。21は、上流側トナー飛散抑制部であり、22は下流側トナー飛散抑制部であり、この上流側トナー飛散抑制部21及び下流側トナー飛散抑制部22によってトナー飛散の発生を抑えている。

【0163】本発明の画像形成方法を実施し得る画像形成装置の他の例を図7を用いて説明する。

【0164】図7に示す現像装置は、現像容器102の40 現像室145内に、矢印a方向に回転される静電潜像保 持体101に対向して現像剤担持体としての非磁性現像 スリーブ(現像剤担持体)121を備え、この現像スリ ーブ121内に磁界発生手段としての磁性ローラー12 2が不動に放置されており、磁性(マグネット)ローラ ー122は略頂部の位置から矢印bの回転方向に順にS 、N₁、S₂、N₂、N₃に着磁されている。

【0165】現像室145内には、トナー140と磁性 キャリア143とを混合した二成分系現像剤141が収 容されている。 【0166】この現像剤141は、現像室145の一端で上端開口の隔壁148の図示しない一方の開口を通って現像容器102の撹拌室142内に送られると、トナー室147から撹拌室142内に供給されたトナー140が補給され、撹拌室142内の第1現像剤撹拌・搬送手段150によって混合しながら、撹拌室142の他端に搬送された現像剤141は、隔壁148の図示しない他方の開口を通って現像室145内に戻され、そこで現像室145内の第2現像剤撹拌・搬送手段151と、現像室145内上部で搬送手段151による搬送方向と逆方向に現像剤を搬送する第3現像剤撹拌・搬送手段により、撹拌・搬送されながら現像スリーブ121に供給される。

【0167】現像スリーブ121に供給された現像剤141は、上記の磁石ローラ122の磁力の作用により磁気的に拘束され、現像スリーブ121上に担持され、現像スリーブ121の略頂部上に設けた現像剤規制部材ブレード123での規制によって現像スリーブ121上で現像剤141の薄層に形成されながら、現像スリーブ121上で現像剤141の薄層に形成されながら、現像スリーブ121の矢印b方向への回転に伴い静電潜像保持体101と対向した現像部110へと搬送され、そこで静電潜像保持体101上の静電潜像の現像に供される。現像に消費されなかった残余の二成分系現像剤141は、現像スリーブ121の回転により現像容器102内に回収される。103は上流側トナー飛散抑制部であり、104は下流側トナー飛散抑制部であり、この上流側トナー飛散抑制部103及び下流側トナー飛散抑制部104によってトナー飛散の発生を抑えている。

【0168】現像容器102内では同極のN,、N,間での反発磁界により現像スリーブ121上に磁気的に拘束されている現像残りの残余の二成分系現像剤141を剥取るようになっている。上記の磁極N,により二成分系現像剤141が磁力線に沿って穂立ちしたときのトナー飛散を防止するために、現像容器102の下部には弾性シール部材131がその一端を現像剤141と接触するようにして、固定、設置されている。

【0169】さらに、本発明者らは、カラー画像形成方法の画像濃度、ハイライト再現性、細線再現性について 鋭意検討した結果、後述の特定の粒度分布を有したトナーを、前述の特定の現像電界を形成した現像方法を用い た画像形成方法に用いたときに、高画像濃度、ハイライト再現、細線再現に優れた高画質化が達成できることを 見い出したのである。

【0170】すなわち、本発明で用いられるトナーは、少なくともトナー粒子と外添剤を含有し、該トナーの重量平均粒径が3~7 μ mであり、該トナーは5.04 μ m以下の粒径を有するトナーを40個数%より多く含有し、4 μ m以下の粒径を有するトナーを10~70個数%含有し、8 μ m以上の粒径を有するトナーを2~20 60 体積%含有し、10.08 μ m以上の粒径を有するトナ ーを0~6体積%含有しているものが好ましい。

【0171】前述の粒度分布を有するトナーは、感光体上に形成された潜像に忠実に再現することが可能であり、網点及びデジタルのような微小なドット潜像の再現性にも優れ、特にハイライト部の階調性及び解像性に優れた画像を与える。更に、コピー又はプリントアウトを続けた場合でも高画質を保持し、且つ、高濃度の画像の場合でも、従来の非磁性トナーより少ないトナー消費量で良好な現像を行うことが可能であり、経済性及び、複写機又はプリンター本体の小型化にも利点を有するものである。

【0172】しかしながら、本来、潜像再現性に優れたトナーであっても従来の連続的な正弦波あるいは矩形波においては、ハイライト潜像のように現像コントラストの小さい潜像にあっては電界強度が十分でないため、連続パルスでは、トナーが潜像保持体に到達しない割合が大きくなる。すなわち、上記の条件下のバイアスにおいては、トナーは現像剤担持体から潜像保持体に到達しないような振動運動をする。

【0173】しかるに、本発明は現像領域で後述するよ 20 うな特定の現像電界を形成したことで、がさつきのな い、良好なハイライト画像を得ることができる。すなわ ち、1パルスではトナーが現像剤担持体と静電潜像保持 体間を往復しきらないよう振動運動するのは同じである が、その後静電潜像保持体の表面電位と現像バイアスの 直流成分の電位差V。。。、がV。。。、<0の場合には直流成 分が現像剤担持体側にトナーを引きつけるように働き、 トナーが現像剤担持体側に偏り、逆にV....>0の場合 においては直流成分が潜像電位に応じて、静電潜像保持 体側にトナーを引きつけるように働き、潜像電位にみあ 30 った量のトナーが静電潜像保持体側に偏る。また、この ような条件下で現像すると、潜像保持体上に到達したト ナーはそこで振動を繰り返し、潜像部へ集中してくる。 このためドット形状が均一化されてムラのない良好な画 像を得ることができる。

【0174】以上のことから、上記のような条件の現像バイアスで潜像を顕像化すると、ハイライト潜像の場合においても、ドットの欠落が発生しなくなる。さらに、潜像保持体上で振動を繰り返すことにより、潜像部にトナーが集中し、1つ1つのドットが忠実に再現され、二 40成分系現像剤においては磁気ブラシの接触状態によるムラのない均一なハーフトーン画像が出力できるようになる。

【0175】以下に、本発明における測定方法について述べる。

【0176】(1)キャリアの磁気特性の測定 装置は、BHU-60型磁化測定装置(理研測定製)を 用いる。測定試料は約1.0g秤量し内径7mmφ、高 さ10mmのセルにつめ、前記の装置にセットする。測 定は印加磁場を徐々に加え最大3,000エルステッド 50 まで変化させる。次いで印加磁場を減少せしめ、最終的 に記録紙上に試料のヒステリシスカーブを得る。これよ り、飽和磁化、残留磁化、保磁力を求める。

【0177】(2) キャリアの粒度分布の測定 装置は、マイクロトラック粒度分析計(日機装株式会 社)のSRAタイプを使用し0.7~125μmのレン ジ設定で行い、体積基準から50%粒径を算出した。

【0178】(3)キャリアの電流値の測定

- ① キャリア800gを秤量し、15分以上環境に暴露する。(室内温度22~25℃、湿度50~54%)
- ② マグネットローラーを内蔵し、穂立規制ブレードを 設けた導電性のスリーブと対向して 1 mmの距離に対向 電極を設けた装置を用意する。
- ③ スリーブと対向電極間にキャリアを磁気吸引させる。

④ スリーブ内のマグネットローラーを回転させて対向電極に穂立させたキャリアを接触させ、スリーブと対向電極の間に500 Vの直流電圧を負荷し、直列させた1 M Ω , 10 K Ω の抵抗の両端における電圧降下を測り、この値から電流値を計算で求める。

【0179】(4)トナー粒度(重量平均粒径)の測定 トナーの平均粒径及び粒度分布はコールターカウンター TA- І І型あるいはコールターマルチサイザー (コー ルター社製)を用いて測定可能であるが、本発明におい てはコールターマルチサイザー (コールター社製)を用 い、個数分布、体積分布を出力するインターフェイス (日科機製)及びPC9801パーソナルコンピュータ ー(NEC製)を接続し、電解液は1級塩化ナトリウム を用いて1%NaC1水溶液を調製する。たとえば、I SOTON R-II (コールターサイエンティフィッ クジャパン社製)が使用できる。測定法としては、前記 電解水溶液100~150ml中に分散剤として界面活 性剤、好ましくはアルキルベンゼンスルフォン酸塩を 0. 1~5ml加え、更に測定試料を2~20mg加え る。試料を懸濁した電解液は超音波分散器で約1~3分 間分散処理を行ない前記コールターマルチサイザーによ りアパーチャーとして100μmアパーチャーを用い て、2μm以上のトナーの体積, 個数を測定して体積分 布と個数分布とを算出した。それから、本発明に係わる 体積分布から求めた体積基準の体積平均粒径 (D.: 各 チャンネルの中央値をチャンネルの代表値とする)及び 重量平均粒径(D.)、個数分布から求めた個数基準の 長さ平均粒径(D₁)、及び体積分布から求めた体積基 準の粒子比率 (8.00μm以上及び3.17μm以 下))、個数分布から求めた個数基準の粒子比率 (5 μ m以下及び3.17μm以下)を求めた。

【0180】(5)外添剤(無機微粉体)の重量平均粒 径の測定

測定装置はマイクロトラック粒度分析計Model 9 230UPA(日機装(株)社製)を使用し、以下の如

1) 50 c c のガラスビーカーにエタノール20 m l を入れる。

33

- 2) Reflected Powerが200mVと なるように試料を添加する。
- 超音波発生機UD200(トミー精工(株)製) で3分間分散させる。
- 4) サンプル分散液を6m1採り、22℃の温度条件 で3回測定し、体積粒径分布より、重量平均粒径を算出 し平均値をとる。

【0181】(6)無機微粉体の疎水化度の測定 メタノール測定試験は、疎水化された表面を有する無機 微粉体の疎水化度を確認する実験的試験である。

【0182】処理された無機微粉体の疎水化度を評価す るために本明細書において規定される"メタノール滴定 試験"は次の如く行う。

【0183】供試無機微粉体0.2gを容量250ml の三角フラスコ中の水50m1に添加する。メタノール をビューレットから無機微粉体の全量が湿潤されるまで 滴定する。この際フラスコ内の溶液はマグネチックスタ 20 み、試料をその上から山盛りに入れる。 ーラーで常時撹拌する。その終点は無機微粉体の全量が 液体中に懸濁されることによって観察され、疎水化度は 終点に達した際のメタノールおよび水の液状混合物中の メタノールの百分率として表わされる。

【0184】(7)光透過率の測定

試料

0.10g

アルキッド樹脂

13.20g

(大日本インキ製ベッコゾール1323-60-EL)

メラミン樹脂 3.30g

(大日本インキ製スーパーベッカミンJ-820-6 0)

シンナー

3.50g

(関西ペイント製アラミックシンナー)

ガラスメディア 50.00g

【0185】上記配合を150ccガラス瓶に採取し、 レッドデビル社製ペイントコンディショナーにて1時間 分散を行う。

【0186】② 分散終了後、PETフィルムの表面と ドクターブレードとの間隔を2mmに設定し、PETフ ィルムに前記分散液を塗布する。

【0187】③ ②を120℃×10分間加熱し、焼き 付けを行う。

【0188】 **④ ③**のシートを日本分光製U-BEST

SW:粉体の比表面積

e : 試料充填層の空隙率

o:粉体の密度

η:流体の粘性係数

L: 試料層の厚さ

Q:試料層透過流体量

ΔP: 試料層両端の圧力差

50にて320~800nmの範囲で光透過率を測定

【0189】(8)比表面積の測定

島津粉比表面積測定装置(SS-100型)を用いて下 記の手順により行う。

- 1) 試料鉄粉充填のためパウダーテスターのオートス ライダックの電源を入れ100Vに調整する。
- 2) パスダーテスターの切替えスイッチをタップにし てタイマーを1分間に調整する(50回±1回/1分 間)。
- 3) プラスチック試料筒にフルイ板を入れその上にろ 紙を一枚敷き、その上に試料を試料筒の1/3まで入れ る。
- 試料筒をパウダーテスターのタップ架台にセット 4) し、スタートボタンを入れる(1分間タップ)。
- さらにタップした試料筒に試料を試料筒の2/3 まで入れる。
- 6) 上記4項と同一作業を行う。
- 試料筒の上に補足筒 (プラスチック) を差し込 7)
- 8) 上記4項、6項と同一作業を行う。
- 9) タップした試料筒をタップ架台から取り出し、補 足筒を抜き取り余分の試料をヘラでカットする。
- 比表面積の測定管のS目盛まで水を満たす。
- 11) 試料筒を測定管に接続する(試料充填後、すり 合わせ面にグリスを塗る)。
- 12) 下部流出口のコックを開き、測定管の水面が0 目盛りを通過する時に、ストップウォッチを始動させる (下部流出水はビーカーで受ける)。
- 20目盛(単位はcc)まで水面が低下する時 30 13) 間を計る。
 - 14) 試料筒を取り外し、試料の重量を測定する。
 - 15) 比表面積の計算

【0190】下記の計算式で比表面積を算出する。

[0191]

【数1】

40

$$SW = \frac{14}{\rho} \sqrt{\frac{\Delta PAT}{\eta LQ} \cdot \frac{\varepsilon^{5}}{(1-\varepsilon)^{2}}}$$

$$\varepsilon = 1 - \frac{W}{\rho AL}$$

[0192]

$$c m^2 / g$$

$$g/cm^2$$
 $g/cm \cdot sec$
 cm
 cc
 g/cm^2

A:試料層の断面積

 cm^2

t:Qccの流体(空気)が試料層を透過するのに要する時間 sec

W:試料の重量

【0193】(9)キャリアの密度の測定

島津製作所製のアキュピック1330を使用し、キャリ アを10 c m²の測定用セルにごく軽くタッピングしな がら容器の8分目程度まで充填し、40℃に設定した真 空乾燥機で24時間乾燥した後、重量を測定してから本 体に挿入し、ヘリウムガスの充填圧力を134.45K Paで10回パージした後、充填圧力134.45KP 10 LOAD a、平衡圧0.0345KPaで5回測定した平均値を キャリアの密度とした。

【0194】(10)酸価測定法

サンプル2~10gを200~300mlの三角フラス コに秤量し、メタノール:トルエン=30:70の混合 溶媒約50m1加えて樹脂を溶解する。溶解性が悪いよ うであれば少量のアセトンを加えてもよい。0.1%の ブロムチモールブルーとフェノールレッドの混合指示薬 を用い、あらかじめ標定されたN/10カ性カリ~アル コール溶液で滴定し、アルコールカリ液の消費量からつ 20 ぎの計算で酸価を求める。

[0195]

酸価=KOH(ml数)×N×56.1/試料重量 (ただしNはN/10KOHのファクター)

【0196】(11)ガラス転移温度Tgの測定 本発明においては、示差熱分析測定装置(DSC測定装 置)、DSC-7(パーキンエルマー社製)を用い測定 する。

【0197】測定試料は5~20mg、好ましくは10 mgを精密に秤量する。

【0198】これをアルミパン中に入れ、リファレンス として空のアルミパンを用い、測定温度範囲30℃~2 00℃の間で、昇温速度10℃/minで常温常湿下で 測定を行う。

【0199】この昇温過程で、温度40~100℃の節 囲におけるメインピークの吸熱ピークが得られる。

【0200】このときの吸熱ピークが出る前と出た後で のベースラインの中間点の線と示差熱曲線との交点を本 発明におけるガラス転移温度Tgとする。

【0201】 (12) 軟化点温度 (Tm)

フローテスターCFT-500型(島津製作所製)を用 いる。試料は60meshパス品を約1.0g秤量す る。これを成形器を使用し、100kg/cm2の加重 で1分間加圧する。

【0202】この加圧サンプルを下記の条件で、常温常 湿(温度約20~30℃、湿度30~70%RH)でフ ローテスター測定を行い、温度ー見掛け粘度曲線を得 る。得られたスムース曲線より、試料が50体積%流出 した時の温度 $(=T_{1/2})$ を求め、これを軟化点温度 (Tm) とする。

[0203]

RATE TEMP 6. 0 D/M (℃1分) SET TEMP 50. 0 DEG (℃) MAX TEMP 180. 0 DEG INTERVAL 3. 0 DEG PREHEAT 300.0 SEC(秒) 20.0 KGF (kg) DIE (DIA) 1. 0 MM (mm) DIE (LENG) 1. 0 MM (mm) PLUNGER 1. 0 CM^2 (cm²) [0204]

【実施例】以下に本発明の実施例を示すが、本発明はな んらこれに限定されるものではない。「部」は「重量 部」を意味する。

【0205】(磁性キャリア芯材粒子の製造例1~3) MgO(溶解度0.62mg/100ml)20部, M nO 20部, Fe₂O₃ 60部をそれぞれ微粒化した 後、水を添加混合し造粒した後、1100℃にて焼成し 表1に示すような粒度調整をした後、平均粒径35.7 μ m, 25. 6μ m及び61. 3μ mのフェライトキャ リア芯材粒子(飽和磁化58Am²/kg)A, B及び Cをそれぞれ得た。

【0206】(磁性キャリア芯材粒子の製造例4) Mg O 15部, NiO 10部, Al,O, 3部, Fe, O。 72部を使用する以外は製造例1と同様にして、 平均粒径36. 3μmのフェライトキャリア芯材粒子 (飽和磁化60Am²/kg) Dを得た。

【0207】 (磁性キャリア芯材粒子の製造例5) Ag 2O (溶解度1. 74mg/100ml) 3部, MnO 27部, Fe₂O₃ 70部を使用する以外は製造例1 と同様にして、平均粒径39.3μmのフェライトキャ リア芯材粒子(飽和磁化65Am²/kg)Eを得た。

【0208】 (磁性キャリア芯材粒子の製造例6) Ba O (溶解度1g以上/100ml) 20部, ZnO 2 〇部, Fe,O,60部を使用する以外は製造例1と同様 にして、平均粒径36.0μmのフェライトキャリア芯 材粒子(飽和磁化57Am²/kg) Fを得た。

【0209】(磁性キャリア芯材粒子の製造例7) K。 O (溶解度1g以上/100ml) 5部, NiO 20 部, Fe,O。 73部を使用する以外は製造例1と同様 にして、平均粒径36.8μmのフェライトキャリア芯 材粒子(飽和磁化55Am²/kg) Gを得た。

【0210】(磁性キャリア芯材粒子の製造例8)Mg O (溶解度 0. 6 2 mg/100 ml) 35部, MnO 5部, Fe,O,60部を使用する以外は製造例1と同 様にして、平均粒径37.5μmのフェライトキャリア 50 芯材粒子 (飽和磁化 4 7 A m² / k g) Hを得た。

【0211】(磁性キャリア芯材粒子の製造例9)MgO(溶解度0.62mg/100ml)0.002部,MnO25部, $Fe_2O_374.998$ 部を使用する以外は製造例1と同様にして、平均粒径 $35.5\mu m$ のフェライトキャリア芯材粒子(飽和磁化 $63Am^2/k$ g) 1 を得た。

【0212】(磁性キャリア芯材粒子の製造例10) MgO(溶解度0.62mg/100ml)10部, MnO80部, Fe₂O, 10部を使用する以外は製造例1と同様にして、平均粒径35.8μmのフェライトキ10ャリア芯材粒子(飽和磁化15Am²/kg)Jを得た。

【0213】(磁性キャリア芯材粒子の製造例11) M g O (溶解度0.62mg/100ml)25部, Mn O 0部, Fe₂O₃75部を使用する以外は製造例1と同様にしたが、粒子合一が激しく、キャリア粒子が得られなかった。

【0214】(磁性キャリア芯材粒子の製造例12) M g O (溶解度0.62mg/100ml)20部, Mn O 65部, Fe₂O₃ 15部を使用する以外は製造例201と同様にして、平均粒径36.3μmのフェライトキャリア芯材粒子(飽和磁化20Am²/kg)Kを得た。

【0215】(磁性キャリア芯材粒子の製造例13) M

gO(溶解度0.62mg/100ml)3部,MnO1部, Fe_2O_396 部を使用する以外は製造例1と同様にして、平均粒径 $38.5\mu m$ のフェライトキャリア芯材粒子(飽和磁化 $70Am^2/kg$)Lを得た。

【0216】 (キャリアの製造例1~7) トルエン20 部, ブタノール20部, 水20部, 氷40部を四つロフラスコにとり、撹拌しながらCH, SiCl, 15モルと(CH,), SiCl, 10モルとの混合物40部を加え、更に30分間撹拌した後、60 $\mathbb C$ で1時間縮合反応を行った。その後シロキサンを水で十分に洗浄し、トルエンーメチルエチルケトンーブタノール混合溶媒に溶解して固型分10%のシリコーンワニスを調製した。

【 0 2 1 7 】このシリコーンワニスにシロキサン固型分 1 0 0 部に対して 2. 0 部のイオン交換水および 2. 0 部の下記硬化剤

[0218]

【化8】

$$CH_{3}-Si \leftarrow O-N=C < CH_{3} C_{2}H_{5}$$

と、3.0部の下記アミノシランカップリング剤 【0219】 【化9】

$$H_2N - C_2H_4 - N - C_3H_6 - S_1 + OCH_3$$

を同時添加し、キャリア被覆溶液Iを作製した。

【0220】この被覆溶液 I を塗布機 (岡田精工社製: スピラコータ) により、前述の磁性キャリア芯材粒子 1 00部A~Gに樹脂コート量が 1. 0部となるように塗 30 布し、それぞれコーティングキャリア 1~7を得た。

【0221】(キャリア製造例8)キャリアの製造例1 において用いたアミノシランカップリング剤を下記アミ ノシランカップリング剤

[0222]

【化10】

に変えた樹脂溶液 (II) を使用することを除いては、 キャリアの製造例1と同様にしてコーティングキャリア 8を得た。

【0223】(キャリア製造例9)キャリア製造例1において用いたシロキサン及び硬化剤を使用しないコーテ

ィング溶液 (III) を使用することを除いては、キャリア製造例1と同様にしてコーティングキャリア9を得た。

) 【0224】(キャリア製造例10)キャリア製造例1 において用いたアノミシランカップリング剤を使用しな い樹脂溶液(IV)をを使用することを除いては、キャ リア製造例1と同様にしてコーティングキャリア10を 得た。

【0225】(キャリア製造例11~15)キャリア製造例1~7で用いた磁性キャリア芯材粒子A~Gに代えて磁性キャリア芯材粒子H~Lを用いることを除いては、キャリア製造例1~7と同様にして、コーティングキャリア11~15をそれぞれ得た。

【0226】表1に上記で得たキャリア1~15のそれぞれの物性を示す。

[0227]

【表1】

			39									.40			
キャリフ No.	1	2	3	4	5	6	7	8	9	- 10	11	12	13	14	15
コア材料	A	В	С	D	E	F	G	Α	A	A	Н	I	J	K	L
組成	Mg-Mn-Fe	Mg-Mo-Fe	Mg-Mn-Fe	Mg-Ni-Al-Fe	Ag-Kn-Fe	Ba-Zn-Fe	K-Ni-Fe	Ng-Nn-Fe	Mg-Mn-Fe	Mg-Mo-Fe	Mg-Mn-Fe	Mg-Kn-Fe	Mg-Mn-Fe	Ng-No-Fe	Ng-Nn-Fe
コート材	· I	1	I	I	I	I	I	п	ш	IV	I	I	1	. I	I
50 %粒钼 [μm]	35.8	26.0	61.3	36.5	39.5	36.2	37.0	35.9	35.6	36.1	37.5	35.5	35.8	36.3	38.5
+ 88 µπ [%]		. 0	7.6	0.8	1.2	0.8	0.9	0.8	0.7	0.9	1.0	0.8	0.8	0.9	1.3
+ 62 µm [%]		1.0	30.3	8.4	8.8	8.2	10.2	8.0	8.0	8.1	8.5	7.9	8.2	8.5	9.2
– 22 μm [%]		14.2	1.6	7.5	5.4	8.0	7.5	7.4	7.5	7.3	7.0	7.3	7.1	6.8	6.5
- 16 μm [%]	0	0	0	0	0	0.3	0.1	0	- 0	0	0.3	0	0.3	0.5	0
S, [cm²/g]	540	780	270	590	455	510	495	545	540	53 5	490	545	543	515	495
S₂ [cm³/g]	364	502	213	355	330	360	353	364	364	363	345	364	364	354	339
S1/S2	1.48	1.55	1.27	1.66	1.38	1.42	1.40	1.50	1.48	1.47	1.42	1.50	1.49	1.45	1.46
見掛密度 [g/cm']	2.2	2.0	2.5	2.3	2.4	2.4	2.3	2.2	2.2	2.2	2.2	2.3	2.4	2.3	2.2
電流値	120 μ A	140 μ λ	90 μ A	110 μ λ	100 µ A	120 µ A	150 µ Å	70 µ A	80 µ A	100 µ A	110 µ A	130 μ Δ	150 μ Α	150 μ Α	220 µ A

[0228]

(トナーの製造例1)

プロポキシ化ビスフェノールとフマル酸を 縮合して得られたポリエステル樹脂

100部

4部 4部

フタロシアニン顔料

ジーtertーブチルサリチル酸のクロム錯体

【0229】上記原料をヘンシェルミキサーにより十分 予備混合を行い、二軸押出式混練機により溶融混練し、 冷却後ハンマーミルを用いて約 $1\sim2$ mm程度に粗粉砕 し、次いでエアージェット方式による微粉砕機で微粉砕 した。 さらに得られた微粉砕物を分級して、重量平均粒 径が5. 8μ mの黒色の粉体(トナー粒子)を得た。

【0230】上記黒色粉体100部と、水媒体中でn-C,H,-Si-(OCH,),を親水性アナターゼ型酸化チタン微粉末100部に対して20部で処理した重量平均粒径0.05μm,疎水化度55%及び光透過率70%を有するアナターゼ型酸化チタン微粉末1.5部とをヘンシェルミキサーで混合しシアントナーaを得た。

【0231】(トナーの製造例2)トナーの製造例1で用いたアナターゼ型酸化チタン微粉末を焼結せずに水和物のまま処理して、重量平均粒径0.0008μm,疎水化度50%及び光透過率70%を有するチタン化合物に代えたことを除いては、トナーの製造例1と同様にしてシアントナーbを得た。

【0232】(トナーの製造例3)トナーの製造例1で 用いたアナターゼ型酸化チタン微粉末を重量平均粒径 0.4μm,疎水化度70%及び光透過率20%を有す る顔料用ルチル型酸化チタン20%に代えたことを除い50

では、トナーの製造例 1 と同様にしてシアントナー c を 30 得た。

【0233】(トナーの製造例4)トナーの製造例1で用いたアナターゼ型酸化チタン微粉末をさらに100cpのジメチルシリコーンオイルで処理して、重量平均粒径0.05μm,疎水化度65%及び光透過率65%を有する酸化チタン微粒子に代えたことを除いては、トナーの製造例1と同様にしてシアントナーdを得た。

【0234】(トナーの製造例5)トナーの製造例1で用いたアナターゼ型酸化チタン微粉末を、気相中で100cpのジメチルシリコーンオイルで処理して重量平均粒径0.02μm,疎水化度90%及び光透過率35%を有するシリカ微粒子に代えたことを除いては、トナーの製造例1と同様にしてシアントナーeを得た。

【0235】<u>実施例1</u>

前述のシアントナーaとキャリア1とをトナー濃度7%で混合して二成分系現像剤を作製し、図2に示した交番電界を使用したカラー複写機CLC700(キャノン製)を用い、現像コントラスト300Vで、画像面積比率25%のオリジナル原稿を用いて、温度/湿度が23℃/65%RH下、30℃/80%RH下、20℃/10%RH下でそれぞれ1万枚の画出しをした結果を表2

に示した。表2より、上述の二成分系現像剤は耐刷試験における変動も小さく、1万枚後の飛散も問題なく、非常に良好であることがわかる。

【0236】実施例2

実施例1で用いたキャリア1に代えて、表1に示すキャリア2を用い、さらにトナー濃度を9%にすることを除いては実施例1と同様にして二成分系現像剤を調製し、同様に評価を行った。結果を表2に示す。

【0237】実施例3

実施例1で用いたキャリア1に代えて、表1に示すキャ 10 リア3を用い、さらにトナー濃度を5%にすることを除 いては実施例1と同様にして二成分系現像剤を調製し、 同様に評価を行った。結果を表2に示す。

【0238】実施例4~7

実施例1で用いたキャリア1に代えて、表1に示すキャ

リア4, 5,8及び10を表2に示す通りそれぞれ使用することを除いては実施例1と同様にして二成分系現像剤を調製し、同様に評価を行った結果を表2に示す。

【0239】比較例1~3

実施例1で用いたキャリア1に代えて、表1に示すキャリア6,7及び9を表2に示す通りそれぞれ使用することを除いては実施例1と同様にして二成分系現像剤を調製し、同様に評価を行った結果を表2に示す。

【0240】比較例4~9

実施例1で用いたキャリア1に代えて、表1に示すキャリア11~15を表2に示す通りそれぞれ使用することを除いては、実施例1と同様にして二成分系現像剤を調製し、同様に評価を行った結果を表2に示す。

[0241]

【表 2】

٠.	キャリア No	トナー No	トナー 濃度 (%)	画像濃度	カプリ (%)	耐 久 性 (トナースペント)	30℃/80% トナー飛散	20℃/10% ベタ均一性
実施例1	1	а	. 7	1.6~1.7	~1.2	•	©	©
実施例2	2	a	9	1.7~1.8	~1.3	0	0	0
実施例3	3	а	5	1.5~1.6	~1.5	. 0	Δ	0
実施例4	4	а	7	1.6~1.7	~1.3	0	0	0
実施例5	5	à	7	1.6~1.7	~1.3	0	0	0
比較例1	6	а	7	1.7~1.8	~2.0	Δ	Δ	0
比較例2	7	a	7	1.7~1.9	~2.0	. Δ	Δ	- <u>Д</u>
実施例 6	8	a	7	1.6~1.7	~1.3	0	0	0
比較例3	9	а	7	1.6~1.9	~2.0	Δ	Δ	0
実施例7	10	а	7	1.7~1.8	~1.3	0	0	0
比較例4	11	а	7	1.8~2.0	~2.0	Δ	×	0
比較例5	12	а	7	1.5~1.7	~2.0	Δ	Δ	×
比較例6	13	а	7	1.5~1.8	~2.3	×	Δ	×
比較例7	14	а	7	1.5~1.7	~2.5	×	×	×
比較例8	15	а	7	1.2~1.4	~2.0	Δ	Δ	. ×

【0242】(キャリア製造例16及び17)キャリアの製造例1において、イオン交換水の添加量を0部および7部に変えることを除いてはキャリアの製造例1と同様にして、コーティングキャリア16及び17をそれぞ40れ得た。

【0243】実施例8

キャリア16を使用する以外は、実施例1同様に評価を行ったところ、実用上問題ないレベルではあるが、20 ℃/10%RH下で1.5%と若干カブリが悪化し、耐久性が低下した。これは、水を使用しなかったために樹脂被覆が十分に行われなかったためと推測される。

【0244】実施例9

キャリア17を使用する以外は、実施例1同様に評価を行ったところ、実用上問題ないレベルではあるが、トナ 50

ー濃度が制御範囲の上限にあるとき、30℃/80%R H下で若干トナー飛散が発生した。これは、水使用量が 多かったために、樹脂の自己架橋が進み過ぎ、キャリア 芯材表面との密着性が若干低下したためと推測される。

【0245】実施例10

実施例1で用いたトナーaに代えてトナーbを用いることを除いては、実施例1と同様にして二成分系現像剤を調製し、同様にして評価したところ、初期の画質は良好だったものの20 $\mathbb{C}/10$ \mathbb{W} \mathbb{W}

【0246】実施例11

実施例1で用いたトナーaに代えてトナーcを用いることを除いては、実施例1と同様にして二成分系現像剤を調製し、同様にして評価したところ、30℃/80%R

H下でトナー飛散がわずかに発生した。またカブリも

【0247】実施例12

1. 7%と低下した。

実施例1で用いたトナーaに代えてトナーdを用いることを除いては、実施例1と同様にして二成分系現像剤を調製し、同様にして評価したところ、カブリは0.9%と良好になったものの、20%/10%RH下でのベタの均一性が若干低下したものの良好な結果が得られた。

【0248】 実施例13

実施例1で用いたトナーaに代えてトナーeを用いるこ 10 とを除いては、実施例1と同様にして二成分系現像剤を 調製し、同様に評価したところ、20 C/10%RHF でベタの均一性が若干低下し、30 C/80%RHFで カブリが1. 5%と若干悪化したものの良好な結果が得られた。

【0249】実施例14

実施例1で用いたトナーaとコーティングキャリア1とを組合わせた二成分系現像剤を用い、図1に示す画像形成装置を用いて、現像スリーブが現像主極960ガウスを持つ5極構成のマグネットローラーを内蔵し、図4の 20 交番電界を重畳して、現像条件をV....=230V, V...=-130Vに設定して、温度/湿度が23℃/60%RH下で画出し試験を行った。

【0250】その結果1万枚耐久後でも1.0%のカブリで20℃/10%RH下でのベタ均一性ともに問題なく非常に良好な結果が得られた。

【0251】実施例15

実施例14で用いた交番電界に代えて図3に示す交番電界を用いることを除いては、実施例14と同様にして画出し試験を行った。

【0252】その結果、20℃/10%RH下でのベタの均一性が若干低下し、カブリが1.4%と若干低下したものの良好な結果が得られた。

【0253】実施例16

実施例14で用いた交番電界に代えて図5に示す交番電界を用いることを除いては、実施例14と同様にして画出し試験を行った。

【0254】その結果、20℃/10%RH下のベタ均一性が若干低下したものの良好な結果が得られた。

【0255】(磁性キャリア芯材粒子の製造例14) M 40

g O (溶解度 0.62 m g / 100 m 1) 20部, M n O 20部, F e 2O, 60 部をそれぞれ微粒化した後、水を添加混合し造粒した後、1100 $^{\circ}$ にて焼成し表3に示すような粒度調整をした後、平均粒径35.7 μ mのフェライトキャリア芯材粒子(飽和磁化58 A m 2 / k g)Mを得た。

【0256】(磁性キャリア芯材粒子の製造例15) M g O 15部,MnO 15部,SiO₂ 3部,Fe₂O₃ 67部を使用し、1300で で焼成する以外は製造例16と同様にして、平均粒径 38.3μ mのフェライトキャリア芯材粒子(飽和磁化60Am²/kg)Nを得た。

【0257】(磁性キャリア芯材粒子の製造例16) M g O 3部、 $L_{1,O}$ 5部、 $F_{e,O}$ 92部を使用する以外は製造例15と同様にして、平均粒径40.5 μ mのフェライトキャリア芯材粒子(飽和磁化57Am 2 /kg)Oを得た。

【0258】(磁性キャリア芯材粒子の製造例17) M g O 20部, A l 203 5部, F e 203 75部を使用する以外は製造例16と同様にして、平均粒径43.2μmのフェライトキャリア芯材粒子(飽和磁化57A m²/kg) Pを得た。

【0259】(キャリアの製造例18~21)キャリアの製造例1~7で用いた磁性キャリア芯材粒子A~Gに代えて磁性キャリア芯材粒子M~Pを用い、さらに被覆溶液Iの樹脂コート量を0.5重量%に変更することを除いては、キャリアの製造例1~7と同様にしてコーティングキャリア18~21をそれぞれ得た。

【0260】(キャリアの製造例22)スチレン-2エチルへキシルアクリレートーメチルメタクリレート(50:20:30)共重合体50部およびフッ化ビニリデン-4フッ化エチレン(50:50)共重合体50部を混合して、トルエンーメチルエチルケトン混合溶媒に溶解して、調製した被覆溶液Vを塗布する以外は、キャリアの製造例16~19と同様にしてコーティングキャリア22を得た。

【0261】表3に上記で得たキャリア18~22のそれぞれの物性を示す。

[0262]

【表3】

	40			40	
キャリアNo	. 18	19	20	21	22
コア材Na	М	N	0	Р	М
組成	Mg - Mn - Fe	Mg - Mn - Si - Fe	Mg - Li - Fe	Mg - Al - Fe	Mg - Mn - Fe
コート材	I	I	I	1	V
50%粒径 [μm]	35.8	38.3	40.5	43.2	36.0
+ 88 µ m [%]	0.8	1.0	1.3	1.4	0.9
+ 62 μ m [%]	8.0	8.3	9.0	10.0	8.0
- 22 μ m [%]	7.4	6.5	5.8	4.2	7.0
-16 µ m [%]	0	0	0	0	0
S ₁ [cm ² /g]	540	510	480	450	530
S ₂ [cm ² /g]	364	340	322	302	362
S1/S2	1.48	1.50	1.49	1.49	1.46
見掛密度[g/cm³]	2.2	2.3	2.3	2.2	2.2
電流値	120 μ A	60 μ A	42 μ Α	70 μ A	110 μ Α

[0263]

(ポリエステル樹脂合成例1)

ポリオキシプロピレン (2. 2) - 2, 2 ビス

45mol%

(4-ヒドロキシフェニル) プロパン

ポリオキシエチレン(2)-2, 2-ビス

6 m o 1 %

(4-ヒドロキシフェニル) プロパン

フマール酸

47mo1%

2 m o 1 %

無水トリメリット酸 【0264】上記原料にジブチル錫オキサイドを触媒と して加え、窒素気流下にて200℃にて縮重合反応を行

い、ASTM E28-51Tに準ずる軟化点92℃に

達したときに反応を終了させ、ポリエステル樹脂 (I)

を得た。

【0265】該樹脂の酸価は9.5KOHmg/g, ガラス転移温度は57.2℃であった。

[0266]

(ポリエステル樹脂合成例2)

ポリオキシプロピレン (2.2) -2, 2ビス

45mol%

(4-ヒドロキシフェニル) プロパン

ポリオキシエチレン (2) -2, 2-ビス

4 m o 1 %

(4-ヒドロキシフェニル) プロパン

フマール酸

40mol%

テレフタル酸

10mol%

無水トリメリット酸

1mol%

【0267】上記原料にジブチル錫オキサイドを触媒と

して加え、窒素気流下にて200℃にて縮重合反応を行い、ASTM E28-51Tに準ずる軟化点91℃に

達したときに反応を終了させ、ポリエステル樹脂(I

I)を得た。

【0268】該樹脂の酸価は22.0KOHmg/g, ガラス転移温度は55.3℃であった。

[0269]

(ポリエステル樹脂合成例3)

ポリオキシプロピレン (2.2) -2, 2ビス

45mol%

(4-ヒドロキシフェニル) プロパン

ポリオキシエチレン(2)-2, 2-ビス

10mol%

(4-ヒドロキシフェニル) プロパン

フマール酸

1, 2, 5-ヘキサントリカルボン酸

43mo1%

2mo1%

【0270】上記原料にジブチル錫オキサイドを触媒と して加え、窒素気流下にて200℃にて縮重合反応を行 い、ASTM E28-51Tに準ずる軟化点95℃に 達したときに反応を終了させ、ポリエステル樹脂(II

I)を得た。

【0271】該樹脂の酸価は0.8KOHmg/g,ガ ラス転移温度は58.1℃であった。

48

[0272]

(ポリエステル樹脂合成例4)

ポリオキシプロピレン(2.2)-2,2ビス

49mol%

(4-ヒドロキシフェニル) プロパン

テレフタル酸

49mol%

2, 5, 7ーナフタレントリカルボン酸

2 m o 1 %

【0273】上記原料にジブチル錫オキサイドを触媒と して加え、窒素気流下にて200℃にて縮重合反応を行 い、ASTM E28-51Tに準ずる軟化点92℃に 達したときに反応を終了させ、ポリエステル樹脂(I

V)を得た。

【0274】該樹脂の酸価は17.1KOHmg/g, ガラス転移温度は57℃であった。

[0275]

(ポリエステル樹脂合成例5)

ポリオキシプロピレン(2.2)-2,2ビス

(4-ヒドロキシフェニル) プロパン

フマール酸

45mol%

1, 2, 7, 8-オクタンテトラカルボン酸

2 m o 1 %

【0276】上記原料にジブチル錫オキサイドを触媒と して加え、窒素気流下にて200℃にて縮重合反応を行 い、ASTM E28-51Tに準ずる軟化点95℃に 達したときに反応を終了させ、ポリエステル樹脂(V)

を得た。

【0277】該樹脂の酸価は2.2KOHmg/g, ガ ラス転移温度は59℃であった。

[0278]

(ポリエステル樹脂合成例6)

ポリオキシプロピレン (2. 2) - 2, 2ビス 50 mo 1%

(4-ヒドロキシフェニル) プロパン

テレフタル酸

49. 5mol%

0. 5mol%

無水トリメリット酸

【0279】上記原料にジブチル錫オキサイドを触媒と して加え、窒素気流下にて200℃にて縮重合反応を行ん い、ASTM E28-51Tに準ずる軟化点103℃ に達したときに反応を終了させ、ポリエステル樹脂 (V 【0281】

を得た。

【0280】該樹脂の酸価は8.7KOHmg/g, ガ ラス転移温度は61℃であった。

(トナーの製造例7)

プロポキシ化ビスフェノールとフマル酸およびトリメリット酸 トリメリット酸を縮合して得られたポリエステル樹脂 (I)

フタロシアニン顔料

4部

4部

ジーtertープチルサリチル酸の金属錯体

【0282】上記をヘンシェルミキサーにより十分予備 40 【0284】このトナーの酸価は、9.5KOHmg/ 混合を行い、二軸押出式混練機により溶融混練し、冷却 後ハンマーミルを用いて約1~2mm程度に粗粉砕し、 次いでエアージェット方式による微粉砕機で微粉砕し た。さらに得られた微粉砕物を分級して、重量平均粒径 が 5. 8 μ m である青色の粉体を得た。

【0283】上記着色粉体100部と水/ブタノール混 合媒体中でiso-C.H.-Si-(OCH.)。を20 部で処理したアルミナ微粉末平均粒径 O. O 2 μm, 疎 水化度65%1.5部とをヘンシェルミキサーで混合し シアントナー f を得た。

g、Tmは90℃及びTgは55℃であった。

【0285】(トナーの製造例8)トナーの製造例7に おいて、アルミナのかわりに、水媒体中で、n-C,H。 -Si-(OCH₃),を25部で処理した酸化チタン微 粉末(平均粒径0.03μm,疎水化度60%)を使用 する以外はトナーの製造例7と同様にしてシアントナー gを得た。

【0286】このトナーの酸価、Tm及びTgはトナー f と同じであった。

50 【0287】(トナーの製造例9~13)トナーの製造

例7において用いたポリエステル樹脂 (I) に代えて、 ポリエステル樹脂(II)~(VI)を使用する以外は 同様にして表4に示すトナーh~lを得た。

性を表4に示す。 [0289] 【表4】

【0288】上記で得られたトナー f~1の構成及び物

	ポリエステル 樹脂	外添剂	重量平均粒径 (μm)	酸価 (KOHmg/g)	Tm (°C)	Tg (℃)
トナーf	(1)	Al _z O _a	5.8	9.5	90	55
トナーg	(1)	TiO₂	5.8	9.5	90	55
トナーh	(п)	Al _z O _z	6.1	22.0	88	54
トナーi	(III)	Al₂O₃	5.6	8.0	93	56
トナーj	(IV)	Al _z O ₃	6.0	17.1	91	56
トナーk	(v)	Al ₂ O ₂	5.8	2.2	93	57
トナー1	(VI)	Al ₂ O ₅	5.9	8.7	100	60

【0290】実施例17及び18

前述のシアントナーf及びgとキャリア18とをトナー 濃度7%で混合して二成分系現像剤を作製し、カラー複 写機CLC700(キヤノン製)を用い、静電潜像保持 体の保護層中のフッ素原子含有樹脂粒子30重量%を含 20 有する静電潜像保持体(I)、および交番電界として図 4に示す非連続の電界を印加し、現像コントラスト30 O V で、画像面積比率 2 5 %のオリジナル原稿を用い て、23℃/65%RH下,30℃/80%RH下,2 0℃/10%RH下で1万枚の画出しをした結果を表5 に示した。

【0291】実施例19~22

実施例17及び18で用いたシアントナーf及びgに代 えて、シアントナーh~kを使用する以外は、実施例1 7及び18と同様にして画出しを行った結果を表5に示 30 性が若干悪化するが、実用上まったく問題はなかった。 した。酸価が高いトナーh及び酸価が低いトナーjを用 いた実施例19及び20は、実施例17及び18に比べ てトナー飛散が若干悪化したが、実用上問題のないレベ ルであった。

【0292】実施例23

実施例17及び18で用いたトナーf及びgに代えてト ナー1を使用する以外は実施例17及び18と同様に行 ったところ、画像光沢が低下し、画像濃度が若干低くな ったものの表5に示す通り良好な結果が得られた。

【0293】実施例24~26

実施例17及び18で用いたキャリア18に代えてキャ リア19~21を使用する以外は、実施例17及び18 と同様に画出しを行ったところ、表5に示す通り良好な

結果が得られた。

【0294】実施例27

実施例17及び18で用いたキャリア18に代えて、キ ャリア22を使用する以外は、実施例17及び18と同 様に画出しを行ったところ、コート材がシリコーン系レ ジンでないため、若干耐久性が低下したが、表5に示す 通り良好な結果が得られた。

【0295】実施例28~30

実施例17及び18で用いた静電潜像保持体(I)に代 えて静電潜像保持体の保護層中のフッ素原子含有樹脂粒 子の含有量をそれぞれ20%、6%及び0%に変更した 静電潜像保持体(II)~(IV)を使用する以外は実 施例17及び18と同様に行った結果を表5に示す。フ ッ素原子含有樹脂粒子含有量が減るに従って、ベタ均一

【0296】実施例31及び32

実施例17及び18で用いた交番電界に代えて、図5及 び図2に示す交番電界をそれぞれ使用する以外は実施例 17及び18と同様に行ったところ、表5に示す通り良 好な結果が得られた。

【0297】実施例33

実施例17及び18で用いた交番電界に代えて、交番電 界として、図3に示す連続電界を使用する以外は、実施 例17及び18と同様に行ったところ、画像濃度が若干 40 低下し、ベタ均一性も若干悪化したが、表5に示す通り、 実用上問題ないレベルであった。

[0298]

【表5】

	キャリア No	トナー No	トナー濃度 (%)	潜像保持体	交番電界	画像濃度	カブリ ・%	耐久性(トナースヘント)	30℃/80% トナー飛散	20℃/10% ベタ均一性			
実施例17	18	f	7	1	図4	1.6~1.7	1.2	0	0	0			
実施例18	18	g	7	Ι.	図4	1.7~1.8	1.2	0	0	0			
実施例19	18	h	7	I	⊠4	1.6~1.8	1.5	0	Δ	0			
実施例 20	18	i	7	1	図4	1.6~1.7	1.5	0	Δ	Δ			
実施例 21	18	j	7	I	図4	1.6~1.7	1.3	0	0	0			
実施例 22	18	k	7	1	図4	1.5~1.7	1.3	0	0	0			
実施例23	18	1	7	I	図4	1.5~1.6	1.2	0	©	0			
実施例24	19	f	7	I	፟ 4	1.6~1.7	1.3	0	© .	0			
実施例 25	20	f	7	I	図4.	1.6~1.7	1.2	0	0	. 0			
突施例 26	21	f	7	1	図4	1.6~1.7	1.3	0	0	0			
実施例 27	22	f	7	I	図4	1.6~1.8	1.3	0	0	0			
実施例 28	18	f	7	П	⊠4	1.6~1.7	1.2	. ©	0	©			
実施例 29	18	f	7	п	図4	1.5~1.6	1.1	0	0	0			
実施例30	18	f	7	IV	図4	1.5~1.6	1.1	0	0	Δ			
実施例31	18	f	7	I	図5	1.6~1.7	1.2	· ©	. O	0			
実施例32	18	f	7	I	図2	1.6~1.7	1.3	O .	0	0			
実施例33	18	f	7	I	⊠3	1.4~1.5	1.5	©	0	. Δ			

【0299】上記実施例において、画像濃度、カブリ、 は、以下の評価方法に基づいて評価した。

【0300】 [画像濃度] 濃度は反射濃度計RD918 (マクベス社製) で測定した。

【0301】◎:優 1.6~1.7

1. 7超~1. 8、1. 45~1. 6未満

△:可 1. 8超~1. 9、1. 3~1. 45未満

×:不可 1.9超、1.3未満

【0302】 [カブリ] カブリの評価は、東京電色社製 OREFLECTOMETER MODELTC-6D Sを使用して測定し、シアントナー画像ではamber フィルターを使用し、下記式より算出した。数値が小さ い程、カブリが少ない。

【0303】カブリ(反射率)(%)=標準紙の反射率 (%) ーサンプルの非画像部の反射率(%)

[0304] @:0~1.2%

〇:1.2%超~1.6%

△:1.6%超~1.9%

×:1.9%超

【0305】 [トナースペント] 走査型電子顕微鏡で、 2,000倍で観察する。

[0306] © トナースペントが認められず、帯電 量も下がっていない。

〇 ややトナースペントが認められるが、帯電量は下 がっていない。

Λ 凹部にトナースペントが多く認められるが、帯電 量変化は小さい。

· × 全体にトナースペントが認められ、帯電量変化が 大きい。

【0307】[トナー飛散]トナー飛散は、現像容器の 上流側トナー飛散抑制部及び下流側トナー飛散抑制部の 50

外表面のトナーによる汚れ、及び現像容器以外のトナ 耐久性(トナースペント), トナー飛散及びベタ均一性 20 による汚れを観察し下記評価基準に基づいて評価した。 【0308】◎ 全く認められない。

> ○ 現像容器の上流側トナー飛散抑制部外表面に汚れが 若干認められるが、下流側トナー飛散抑制部外表面には 汚れが認められない。

> △ 現像容器の上流側トナー飛散抑制部の外表面及び下 流側トナー飛散防止部の外表面には汚れが認められる が、現像容器以外には汚れが認められない。

× 現像容器以外まで汚れが認められる。

【0309】 [ベタ均一性]

◎ CLC-SK紙で、1週間放置紙でまったく問題な い。

○ CLC-SK紙で、3日間放置紙で問題ない。

△ CLC-SK紙で、1晩放置紙で問題ない。

× CLC-SK紙で、1晩放置紙でムラが有る。

[0310]

【発明の効果】本発明のキャリア及び該キャリアを用い た二成分系現像剤においては、キャリアは特定のフェラ イト成分で形成された磁性キャリア芯材粒子表面を樹脂 被覆層被覆したことにより、大画像面積のカラー原稿の 連続複写を行っても画像濃度の低下及びカブリが生じ難 く、トナーとキャリアの摩擦帯電のすみやかな立上がり が得られ、かつカブリのない鮮明な画像を多数枚耐久後 まで維持することが可能であり、摩擦帯電特性の環境依 存性が少なく、さらに現像器内での搬送性が良好である という効果を有している。

【図面の簡単な説明】

【図1】本発明の画像形成方法に用いられる画像形成装 置の概略図を示す。

【図2】実施例1で用いる交番電界を示す図である。

【図3】実施例13で用いる交番電界を示す図である。

- 【図4】実施例12で用いる交番電界を示す図である。
- 【図5】実施例14で用いる交番電界を示す図である。
- 【図6】本発明の画像形成方法に用いることが可能な静

電潜像保持体の好ましい形態を示す図である。

【図7】本発明の画像形成方法に用いられる画像形成装置の他の例を示す図である。

【図1】

【図2】

【図3】

【図6】

-8/3KH₂->

【図4】

【図7】

フロントページの続き

(51) Int. Cl. 6 G 0 3 G		識別記号 庁内整理番号		FΙ		技術表示箇	
	9/113 15/09		Z	· · · · · · · · · · · · · · · · · · ·	· ,		
		•		G 0 3 G	9/08	3 3 1	
				•	•	371	
			•			374	
	•		_	•	9/10	3 5 2	
						362	