My OLS regressions

In order to study the causal effect of education on wages and based on my I decided to set up a model first.

$$lnincome = a + b * hgc + \varepsilon$$
 (M-1)

Table 1

Variable	Variable Title
Inincome	=Log(income) Income: Total income from wages and salary in past calendar year
hgc	Highest grade completed
afqt	Profiles, armed forces qualification test (AFQT) percentile score
abi	ability

First of all, I want to run the regression of log income only on the highest grade completed of equation M-1. I modified my data set by deleting all invalid or valid skip data.

Then, I still have 4769 observations left, which is still a representative and large enough data set.

By running that regression, I got Table 2.i

Table 2

Source	ss	df		MS		Number of obs	=	4769
Model Residual Total	49.3286607 6805.18456 6854.51322	1 4767 4768	1.42	286607 756127 760764		F(1, 4767) Prob > F R-squared Adj R-squared Root MSE	=	34.55 0.0000 0.0072 0.0070 1.1948
lnincome	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
hgc _cons	.0610417 6.845127	.0103		5.88 55.35	0.000	.0406838 6.602661	_	0813996 .087592

From the table, we can observe that both *hgc* and *_cons* are statistically significant at 5% significance level. Which means, increasing the highest grade completed by one year could increase the wage around 6.1 log points.

Secondly, I want to know whether both ability and educational level will influence a person's wage level. I want to get the partial effect of the number of years of schooling on wages. We can get data on the years of education from the NLSY79 data set. But we cannot describe the individual's ability directly through a variable since ability is unobservable. However, we can find some kind of test score data to represent an individual's cognitive ability, then the test score can be treated as a potential proxy variable. There are two assumptions that the proxy variable must satisfy:

$$P(abi|1, hgc, afqt) = p(1, afqt)$$
 (M-2)
 $E(income|hgc, abi, afqt) = E(income|hgc, abi)$ (M-3)

The first hypothesis means that once you know the test scores, there is no correlation between a person's years of schooling and ability. The second hypothesis means that once we know the years of schooling and the data for ability, the individual's test scores have no explanatory power for the income.

The Armed Services Vocational Aptitude Battery (ASVAB) score is used as a proxy variable for at least cognitive ability. This test was initially a basic literacy test for enlisted personnel and was later incorporated into NLSY. Among the questionnaires, the test was generally completed by individuals aged 17-18 (What is the ASVAB). Theoretically, this is a competency test for individuals before entering the labor market.

Then I define the new regression M-4 by modify the equation M-3 as:

$$lnincome = a + b * hgc + c * afgt + u$$
 (M-4)

After running this regression, I got the Table 3 below.

Table 3

Source	SS	df		MS		Number of obs		4769
Model Residual	66.1321613 6788.38106	2 4766		660806 433509		F(2, 4766) Prob > F R-squared Adj R-squared	=	23.22 0.0000 0.0096 0.0092
Total	6854.51322	4768	1.43	760764		Root MSE	=	1.1935
lnincome	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
hgc afqt _cons	.038252 .0023767 7.000984	.0123 .000	692	3.11 3.43 53.20	0.002 0.001 0.000	.0141127 .0010201 6.742971		0623914 0037332 .258996

By interpreting the table, we can see *hgc* and *afqt* are both statistically significant at 5% significant level. In this case, the partial effect of education on log wages is around 3.8 log points. Besides, increasing the "Profiles, armed forces qualification test" score by one percent will also increase the log wage by 0.24 log points.

Since I am very interested in understanding the impact of gender on this causal effect, I ran the equation M-4 for the set of all 2384 male observations, and I got the Table 4:

Table 4

Source	SS	df		MS		Number of obs	=	2387
						F(2, 2384)	=	3.92
Model	10.3903992	2	5.1	951996		Prob > F	=	0.0200
Residual	3161.99307	2384	1.32	633937		R-squared	=	0.0033
						Adj R-squared	=	0.0024
Total	3172.38346	2386	1.32	958234		Root MSE	=	1.1517
·								
lnincome	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
afqt	.0007371	.0009	9251	0.80	0.426	0010769	٠.	0025511
hgc	.0292383	.0165	285	1.77	0.077	0031735		0616501
cons	7.407074	.1730	1873	42.79	0.000	7.067656	7	.746491

Similarly, the table I got for the 2387 female observations is in Table 5 below:

Table 5

Source	SS	df		MS		Number of obs	=	2382
						F(2, 2379)	=	35.71
Model	100.747761	2	50.3	738806		Prob > F	=	0.0000
Residual	3356.30017	2379	1.41	080293		R-squared	=	0.0291
						Adj R-squared	=	0.0283
Total	3457.04793	2381	1.45	193109		Root MSE	=	1.1878
	'							
lnincome	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
afqt	.0033171	.0009	989	3.32	0.001	.0013583	٠.	0052759
hgc	.0885609	.017	873	4.95	0.000	.0535125		1236092
_cons	6.13049	.1950	414	31.43	0.000	5.748022	6	.512959

However, from Table 4, we can see both *afqt* and *hgc* are not significant at 5% significance level. So, we cannot conclude that either education level or ability level play an important role for males to get a higher wage. Nevertheless, in Table 5, we can conclude that both education level and ability level have significant influence on female's income increase.