Redes de Computadores

OBJETIVO

Proporcionar uma visão abrangente dos fundamentos das redes de computadores, permitindo o entendimento dos principais conceitos teóricos e práticos relacionadas a este campo de conhecimento, que proporcionará base para aprofundamento nesta área em aplicações futuras.

METODOLOGIA

- Exposição participada com o uso de suportes em sala de aula.
 - Computador;
 - Projetor;
 - Quadro Branco;
 - Indicação de leitura;
 - Atividade de pesquisa de campo; e
 - Exercícios sobre temática abordada.

CONTEÚDOS

- 1. Introdução a redes de computadores;
- 2. Classificação das redes de computadores;
 - Área Geográfica;
 - Topologia;
- 3. Meios de transmissão;
 - 1. Com fio
 - 2. Sem fio
- 4. Equipamentos de comunicação;
- 5. Gestão de redes de computadores.

REDES DE COMPUTADORES

Uma Rede de computadores ou Network é a maneira de conectar dois ou mais computadores e outros dispositivos de modo que possam compartilhar recursos físicos ou lógicos e trocar informações.

CLASSIFICAÇÃO DAS REDES

A classificação de redes em categorias pode ser realizada segundo diversos critérios, alguns dos mais comuns são:

- Dimensão ou Área Geográfica Ocupada
- Topologia de Rede
- Tecnologia de transmissão
 Redes "ethernet" / Redes "token-ring" / Redes FDDI / Redes ATM
- Método de transferência dos dados
 Redes de "broadcast" / Redes de comutação de pacotes / Redes de comutação de circuitos / Redes ponto-a-ponto

CLASSIFICAÇÃO POR ÁREA GEOGRÁFICA

- PANs (Personal Area Network);
- LANs (Local Area Network);
- WLAN (Wireless Local Area Network);
- MANs (Metropolitan Área Network);
- WANs (Wide Area Network).

PANS - "REDES PESSOAIS"

- Atualmente este conceito está não só relacionado com a sua reduzida dimensão, mas com também com o fato de utilizar comunicação sem fios (Padrão Bluetooth).
- O alcance limita-se a **áreas pequenas**, algumas dezenas de metros.
- Velocidade são relativamente baixos, na casa de 1 a 3 Mbps, dependendo do padrão do Bluetooth.

LANS - "REDES LOCAIS"

- Caracteriza-se por ocupar uma área limitada, no máximo um edifício, ou alguns edifícios próximos, muitas vezes limitam-se a apenas um andar ou uma sala.
- Garante acesso através de taxas de velocidade de transmissão média e alta (váriando de 10 Mbs a 1Gbps, com 100Mbps em maior uso atualmente).
- Compartilhamento grupos de recursos comuns.
 (EX: impressoras, CD-ROOM, Fax).

WLANS – "REDES LOCAIS SEM FIO"

- É uma rede local que usa ondas de rádio para fazer uma conexão.
- São adequadas a situações em que é necessário mobilidade, são flexíveis e da fácil instalação.
- Conceito de Access Point;
- Geralmente utiliza tecnologia Wi-Fi para

MANS - "REDE METROPOLITANA"

- É uma rede formada pela união de algumas LANs próximas geograficamente.
- Atualmente as MANs estão utilizando a fibra óptica ou tecnologia sem fio por rádio microondas ou FDDI.
- Desvantagem: auto custo de instalação.
- Vantagem: Não existe custo mensal das linhas.

WANS - "REDE DE LONGA

- CONSTÂNCIA" rede remota, consiste normalmente na conexão de duas ou mais LANs, geralmente em uma área geográfica ampla (pais ou continente).
- Oferece velocidades altas e alto custo de implementação.
- As WANS são providas por operadoras.
- Utilizam as Fibras Ópticas e transmissão por satélites.
- Novos padrões surgem para as WANs como o ATM.

TOPOLOGIA DE REDE

- A topologia de rede descreve como é o layout de uma rede de computadores através da qual há o tráfego de informações, e também como os dispositivos estão conectados a ela.
- A Topologia de rede influenciará em diversos pontos considerados críticos, como: flexibilidade, velocidade e

seguranca

TIPOS DE TOPOLOGIAS DE REDE

- Topologia Linear/barramento.
- Topologia em Anel.
- Topologia em Estrela.
- Topologia em Árvore.
- Topologia Híbrida.

TOPOLOGIA LINEAR

- Todos os computadores são ligados em um mesmo barramento físico de dados
- Topologia utiliza cabos coaxiais.
- Como todas as estações compartilham um mesmo cabo, somente uma transação pode ser efetuada por vez (colisão de dados).

TOPOLOGIA LINEAR

Caso o cabo se desconecte em algum ponto a rede "sai do ar", pois o cabo perderá a sua correta impedância

TOPOLOGIA LINEAR -

Na transmissão de um pacote de dados do servidor de arquivos para uma determinada estação de trabalho, todas as estações recebem esse pacote e apenas a estação de destino captura o pacote de dados do cabo, pois está a ela endereçada (broadcast).

TOPOLOGIA EM ANEL

- Uma rede em anel consiste de estações conectadas através de um caminho fechado.
- As estações de trabalho formam um laço fechado. O padrão mais conhecido de topologia em anel é o Token Ring (IEEE 802.5) da IBM.

TOPOLOGIA EM ANEL

Somente um dado pode ser transmitido por vez neste pacote.

TOPOLOGIA EM ANEL

- Redes em anel são capazes de transmitir e receber dados em qualquer direção (bidirecionais), mas as configurações mais usuais são unidirecionais.
- Um pacote (token) fica circulando no anel., pegando dados das máquinas e distribuindo para o destino, ou então até voltar ao nó fonte.
- Uma Estação Monitora evita que um erro de transmissão e processamento possa fazer com que uma mensagem continue eternamente a circular no anel.

TOPOLOGIA EM ESTRELA

- Nela, todas as estações são conectadas a um periférico concentrador (Hub ou Switch).
- Na quebra de algum cabo apenas a estação conectada pelo cabo para.
- Aumentar o tamanho da rede sem a necessidade de pará-la.

TOPOLOGIA EM ESTRELA

CONCENTRADORES DA REDE ESTRELA

O funcionamento da topologia em estrela depende do periférico concentrador utilizado:

- Hub: a topologia fisicamente será em estrela porém logicamente ela continua sendo uma rede de topologia linear.
- Switch: a rede será tanto fisicamente quanto logicamente em estrela.

Topologia em Árvore

- A topologia em árvore é essencialmente uma série de barras interconectadas.
- Geralmente existe uma barra central onde outros ramos menores se conectam.
- Baseada numa estrutura hierárquica de várias redes e sub-redes.

TOPOLOGIA EM ÁRVORE

Cada ramificação significa que o sinal deverá se propagar por dois caminhos diferentes. A menos que estes caminhos estejam perfeitamente casados, os sinais terão velocidades de propagação diferentes e refletirão os sinais de diferentes

maneiras

TOPOLOGIA MISTA OU HÍBRIDA

- É o conjunto de todas as anteriores, interligadas em uma mesma rede lógica.
- É a topologia mais utilizada em grandes redes, sua implementação se deve á complexidade da rede, ou seja, ao aumento de dispositivos.
- Possuem custo mais elevado, devido a sua manutenção e administração.

MEIOS DE TRANSMISSÃO

O meio de transmissão de dados serve para oferecer suporte ao fluxo de dados entre dois pontos.

Computadores em rede podem serem interligados pelos seguintes meios:

- Mídias Magnéticas
- Cabos de pares entrelaçados (Par Trançado);
- Cabo Coaxial;
- Fibra Óptica;
- Micro-ondas;
- Micro-ondas de satélites;
- Emissões rádio;
- Infravermelhos.

CABOS DE PARES ENTRANÇADOS

- Os pares condutores de cobre, com isolamento individual, são enrolados em torno de si próprios, formando uma trança. Um cabo possui vários pares.
- Essa espiral minimiza a interferência electromagnética entre pares adjacentes.

TIPOS DE PARES ENTRANÇADOS

Existem basicamente dois tipos de cabo par trançado:

Par Trançado sem Blindagem (UTP - unshielded twisted

Par Trançado com Blindagem (STP - shielded

pair). twisted pair)

CABOS DE PARES ENTRANÇADOS

- O par trançado só permite a conexão de 2 pontos da rede.
- É obrigatório a utilização de um dispositivo concentrador (hub ou switch), o que dá uma maior flexibilidade e segurança à rede.
- O par trançado é também chamado
 10BaseT ou 100BaseT, dependendo da taxa
 de transferência da rede, se é de 10 Mbps

VANTAGENS E DESVANTAGENS

Vantagens	Desvantagens
Tecnologia bem assimilada.	Suscetível a ruídos, Interferência
Fácil instalação	eletromagnética.
Facilidade em inserir novos dispositivos.	Limitação na largura da banda.
Baixo custo e flexível.	Limitações de distância - Cabo curto.

CABO COAXIAL

- Condutor metálico instalado de forma concêntrica relativamente a uma blindagem exterior envolvente
- Utilizado em LAN's, TV cabo, redes telefónicas.

CAMADAS NUM CABO COAXIAL

CONECTORES DA PLACA DE REDE

BNC Terminador

VANTAGENS E DESVANTAGENS

Vantagens	Desvantagens
Baixo custo de manutenção	Limitado em distância e tecnologia
Fácil de instalar e conectar	Pouca segurança. Facilmente danificável.
Maior resistência ao ruído e a indução de outros sinais.	Difícil manipulação Maior dificuldade em efetuar mudanças no cabeamento.
Largura de Banda	Lento para integrar muitos equipamentos

FIBRA ÓPTICA

- Meio relativamente novo de transmissão.
- Requer uma fonte de luz (diodo injector de luz ou um laser). A recuperação é feita por um foto-diodo.
- É constituído por um núcleo central em "vidro" envolvido por uma baínha. Tudo revestido por um material protector.

CAMADAS NA FIBRA ÓPTICA

Três camadas concêntricas:

TIPOS DE FIBRA ÓPTICA

 Fibra multimodo step-index: transição brusca entre os índices de refração do núcleo e da baínha

 Fibra multimodo graded-index: o índice de refração variável e gradual da baínha refracta a luz na direção do núcleo da fibra.

 Fibra monomodo: luz é injectada no centro de um condutor com um diâmetro muito pequeno.

Sinais em Fibra Óptica

VANTAGENS E DESVANTAGENS DO CABO FIBRA ÓTICA

Vantagens	Desvantagens	
Altas velocidades e grande capacidade.	Custo alto para pequenas redes	
Não é suscetível a ruídos.		
Isolamento elétrico.	Difícil de instalar.	
É utilizada como backbone de redes de área local - O cabo pode ser longo.	Difícil de ser remendado.	
pode ser forigo.	Limitado (praticamente) a altas velocidades, ponto a ponto.	
Suporta dados, vídeos, imagens e voz - Alta taxa de	Requer pessoal capacitado para sua instalação e manutenção.	
transferência.		

MEIOS SEM FIOS

41

A transmissão e a recepção são feitas através de antenas:

- Directional
 - feixe dirigido
 - o transmissor e o receptor têm que estar alinhados
- Omnidirecional
 - o sinal é enviado em todas as direcções
 - pode ser recebido por muitas antenas

MEIOS SEM FIOS

- Micro-ondas
- Satélites
- Emissões rádio
- Infravermelhos

MICRO-ONDAS

- Utilizam frequências muito altas, comportando-se como ondas de luz, o que faz com que sejam transmitidas em linha reta.
- As microondas foram utilizadas bem antes das fibras óticas para transmissões de longa distância.
- Usado em serviços telefónicos a longa distância.
- Parabólica transmissora, instalada em sítios altos e possue poder de penetração em objetos e obstáculos grande.

A curvatura da Terra obriga à instalação de

MICRO-ONDAS POR SATÉLITE

- Sendo a sua utilização em sistemas de radiodifusão de televisão a aplicação mais comum.
- O seu uso em comunicação de dados também não é uma aplicação muito recente, já que desde o início da Internet as primeiras conexões intercontinentais usavam enlaces de satélites.
- Serviços telefónicos a longa distância.
- Redes privadas.

RÁDIO

- O rádio é omnidirecional
- Transmissões de rádio frequências são aquelas cujo canal de transmissão é o ar.
- O sinal pode ser refletido em paredes, enviando múltiplos e algumas vezes versões distorcidas do mesmo sinal para o usuário, causando interferência ou outras formas de recepções pobres ou

INFRAVERMELHOS

- Funciona basicamente como o sistema de comunicação utilizando fibra ótica, porém o sinal é convertido em formato digital e transmitido pelo espaço livre.
- Utiliza transmissores/receptores (transceivers) que fazem a modulação da luz
- Os transceivers têm que estar em linha de vista (directamente ou por reflexão)
- Ao contrário das micro-ondas os infravermelhos
 não penetram em pare

EQUIPAMENTOS DE COMUNICAÇÃO

- Repetidores;
- Ponte (Bridge);
- Hub (Concentrador);
- Switch (Chaveador);
- Roteador (Router).

REPETIDORES

• Usado princialmente em redes de topologia linear, o repetidor permite que a extensão do cabo ou rede seja aumentada, criando um novo segmento de rede.

REPETIDORES

- O repetidor é apenas uma extensão (um amplificador de sinais) e não desempenha qualquer função no controle do fluxo de dados.
- Todos os pacotes presentes no primeiro segmento serão compulsoriamente replicados para os demais segmentos.

PONTE (BRIDGE)

- A ponte é um repetidor inteligente, pois faz controle de fluxo de dados.
- A ponte analisa os pacotes recebidos e verifica qual o destino.
- Se o destino for o trecho atual da rede, ela n\u00e3o replica o pacote nos demais trechos, diminuindo a colis\u00e3o e aumentando a segurança.
- Por analisar o pacote de dados, a ponte não consegue interligar segmentos de redes que estejam utilizando protocolos diferentes.

TIPOS DE PONTES (BRIDGE)

- Há duas configurações que podem ser utilizadas com a ponte:
- · A configuração em cascata.
- A configuração central.

A CONFIGURAÇÃO EM CASCATA

Neste caso as pontes são ligadas como se fossem meros repetidores

 A desvantagem dessa configuração é que, se uma estação do primeiro segmento quiser enviar um dado para uma estação do último segmento, esse dado obrigatoriamente terá de passar pelos segmentos intermediários, ocupando o cabo, aumentando a

colisão e diminuindo o desempenho da rede.

A CONFIGURAÇÃO CENTRAL

- Na central, as pontes são ligadas entre si.
- Com isso, os dados são enviados diretamente para o trecho de destino.
- Usando o mesmo exemplo, o dado partiria da estação do primeiro segmento e iria diretamente para a estação do último segmento, sem ter de passar pelos segmentos intermediários.

HUB (CONCENTRADOR)

 Apesar da rede estar fisicamente conectada como estrela, caso o hub seja utilizado ela é considerada logicamente uma rede de topologia linear. Trabalha na camada l do modelo OSI.

Hub (Concentrador)

- Todos os dados são enviados para todas as portas do hub simultaneamente, fazendo com que ocorra colisões.
- Somente uma transmissão pode ser efetuada por vez.
- Quando um hub era adquirido, se optava (como o switch) pelo seu número de portas, como: 8, 16, 24 ou 32 portas.

Hub (Concentrador)

- Permite a remoção e inserção de novas estações com a rede ligada.
- Quando há problemas com algum cabo, somente a estação correspondente deixa de funcionar.
- A maioria dos hubs vendidos no mercado é do tipo "stackable", que permite a conexão de novos hubs diretamente.

SWITCH (CHAVEADOR)

- Os pacotes de dados são enviados diretamente para o destino, sem serem replicados para todas as máquinas.
- Além de aumentar o desempenho da rede, isso gera uma segurança maior.
- Várias transmissões podem ser efetuadas por vez, desde que tenham origem e destino diferentes.

SWITCH (CHAVEADOR)

- Podemos considerar o switch um "hub inteligente".
- Fisicamente ele é bem parecido com o hub, porém logicamente ele realmente opera a rede em forma de estrela.

SWITCH (CHAVEADOR)

- Trabalha na camada 2 do modelo OSI.
- Os switch entendem frames e endereços MAC e por isso são capazes de "fechar circuitos", transmitindo os frames apenas para o micro ligado na placa correta.

ROTEADOR (ROUTER)

- O roteador é um periférico utilizado em redes maiores. Ele decide qual rota um pacote de dados deve tomar para chegar a seu destino.
- Trabalha na camada 3 do modelo OSI.
- Os router entendem o TCP/IP e com isso tomam suas decisões baseadas nos endereços IP dos emissores e destinatários dos pacotes.

Roteador (Router)

 Em uma rede grande existem diversos trechos um pacote de dados não pode simplesmente ser replicado em todos os trechos até achar o seu destino, como na topologia linear, senão a rede simplesmente não funcionará por excesso de colisões, além de tornar a rede insegura.

TIPOS DE ROTEADORES

Existem basicamente dois tipos de roteadores:

- Os estáticos: não levam em consideração o congestionamento da rede.
- Os dinâmicos: escolhem o melhor caminho para os dados, já que levam em conta o congestionamento da

rede

GESTÃO DE REDES DE

O nercambal partissionais que realizem a gestão das redes de computadores, buscando alcançar o melhor desempenho com a habilidade do desenvolvimento de novas soluções.

- Uma das abordagens da gestão de redes de computadores é o conhecimento das Cinco áreas da gerência (em ordem de importância)
- Gerência de configuração:
- 2. Gerência de faltas:
- 3. Gerência de desempenho
- 4. Gerência de segurança

GESTÃO DE REDES DE COMPUTADORES

- COMPUTADORES responsável pela descoberta, manutenção e monitoração de mudanças à estrutura física e lógica da rede.
- Gerência de faltas: responsável pela detecção, isolamento e conserto de falhas na rede.
- Gerência de desempenho: responsável pela monitoração de desempenho, a análise desse desempenho e planejamento de capacidade.
- Gerência de segurança: responsável pela proteção dos elementos da rede, monitorando e detectando violações da política de segurança estabelecida.

Gerência de contabilidade: responsável pela contabilização e

EXEMPLOS DE APLICAÇÕES DE GERÊNCIA

FUNCIONALIDADE	APLICAÇÃO	FABRICANTE
GERÊNCIA DE DESEMPENHO	NETCLARITY	LANQUEST
GERÊNCIA DE FALTAS	SPECTRUM'S ALARM MANAGERS	CABLETRON
GERÊNCIA DE SEGURANÇA	BOKS	SECURIX
CONFIGURAÇÃO	NETBUILDER	зсом
CONFIGURAÇÃO	CISCO WORKS	CISCO

GESTÃO DE REDES DE COMPUTADORES

Outra abordagem na área de gerência de redes de computadores é a obtenção de certificação e conhecimentos nas seguintes áreas:

- Projeto de Redes.
- Infra-Estrutura em Rede de Computadores.
- Auditoria de Redes de Computadores
- Protocolos de Redes

Sugestões de leitura:

- TANENBAUM, A. S. e WETHERALL, D. Redes de Computadores, 5^a edição. Pearson.
 CAPITULO 01, 02, 03 e 07.
- KUROSE, J. F. e ROSS, K. Redes de

Computadores e a Internet, 5° edição, Pearson. CAPITULO 01, 02 e 06