$_{\text{CS 577 (Epic)}}$ Assignment 12 – More Intractability

Spring 2021

Answer the questions in the boxes provided on the question sheets. If you run out of room for an answer, add a page to the end of the document. Wisc id: ____ Reductions 1. Kleinberg, Jon. Algorithm Design (p. 527, q. 39) The Directed Disjoint Paths Problem is defined as follows: We are given a directed graph G and k pairs of nodes $(s_1, t_1), \ldots, (s_k, t_k)$. The problem is to decide whether there exist node-disjoint paths P_1, \ldots, P_k so that P_i goes from s_i to t_i . Show that Directed Disjoint Paths is NP-Complete.

2. Kleinberg, Jon. Algorithm Design (p. 508, q. 9) The Path Selection Problem may look initially similar to the problem from the previous question. Pay attention to the differences between them!

Consider the following situation: You are managing a communications network, modeled by a directed graph G. There are c users who are interested in making use of this network. User i issues a "request" to reserve a specific path P_i in G on which to transmit data.

You are interested in accepting as many path requests as possible, but if you accept both P_i and P_j , the two paths cannot share any nodes.

Thus, the Path Selection Problem asks, given a graph G and a set of requested paths P_1, \ldots, P_c (each of which must be a path in G), and given a number k, is it possible to select at least k of the paths such that no two paths selected share any nodes?

Show that Path Selection is also NP-Complete.

3. Kleinberg, Jon. Algorithm Design (p. 512, q. 14) We've seen the Interval Scheduling Problem several times now, in different variations. Here we'll consider a computationally much harder version we'll call Multiple Interval Scheduling. As before, you have a processor that is available to run jobs over some period of time.

People submit jobs to run on the processor. The processor can only work on one job at any single point in time. Jobs in this model, however, are more complicated than we've seen before. Each job requires a *set* of intervals of time during which it needs to use the processor. For example, a single job could require the processor from 10am to 11am and again from 2pm to 3pm. If you accept the job, it ties up your processor during those two hours, but you could still accept jobs that need time between 11am and 2pm.

You are given a set of n jobs, each specified by a set of time intervals. For a given number k, is it possible to accept at least k of the jobs so that no two accepted jobs overlap in time?

Show that Multiple Interval Scheduling is NP-Complete.

e Strongly Inde			