

최적화

是型台 化十五点如 의动和 7至7分型叶

제 19장. 품질

May. 2018
Young-gon, Kim
ykkim@kpu.ac.kr
Department of Computer Engineering
Korea Polytechnic University

Topics covered

- ◆품질
- ◆ 소프트웨어 품질
- ◆ 소프트웨어 품질 딜레마
- ◆ 소프트웨어 품질 확립
- ◆양질의 소프트웨어
- ◆품질 속성 이해

1. 품질

- ◆ 관점별 품질
 - **초월적**(한계를 벗어남) 견해: 당신이 즉시 인식할 수 있는 것이지만, 명백하게 정의할 수 없는 것
 - 사용자 견해 : 최종사용자 구체적인 목표-> 목표 충족
 - 제조자 견해: 제품의 원래 사양 관점
 - 제품의 관점: 제품의 고유한 특성(기능과 특성)
 - 가치 기반의 관점 : 고객이 제품을 사기 위해 얼마나 지불할 의사가 있는지
- ◆ 품질=사용자 만족
 - 구현 설계에 따른 실행과 초래된 시스템이 그 요구사항 및 성능 목표를 충족 하는 정도
 - 사용자 만족 = 대응 상품 + 좋은 품질 + 예산 계획 내 납품.

- ◆ 소프트웨어 품질
 - 생산하는 사람 + 소프트웨어 프로세스
- ◆ 소프트웨어 품질의 중요한 포인트
 - 효과적인 소프트웨어 프로세스
 - ▶ 보호 활동도 품질에 중요 : 변경관리 및 기술 검토
 - 고품질의 소프트웨어
 - ▶ 유용한 제품 : 최종 사용자가 원하는 컨텐츠, 기능, 특징 제공
 - ▶ 일련의 암시적인 요구사항 만족 : 사용 용이성
 - 소프트웨어 제품의 제조사와 사용자 모두에 가치를 둠
 - > 적어진 유지보수 노력
 - ▶ 적은 버그 수정
 - > 감소된 고객 지원 필요.

품질 치수 : 소프트웨어 품질 고려시 적용

- 성능 품질
 - » 최종 사용자에게 가치를 제공하는 방법, 모든 콘텐츠/기능 제공하는가 ?
- 기능의 품질
 - ▶ 처음 최종사용자를 놀라게 하고 기쁘게 할 기능 제공하는가 ?
- 신뢰성
 - ▶ 실패없이 모든 기능/능력 제공? 필요시 이용가능? 오류 없는 기능 제공?
- 적합성
 - ▶ 로컬및 외부 소프트웨어 표준 준수 ? 설계와 코딩 규칙 준수 ?
- 내구성
 - ▶ 유지및 의도하지않은 부작용 발생시 부주의 없이 수정?
- 보수
 - ▶ 허용 가능한 단시간에 변경 / 수정 / 변화 / 수정시 지원부서 필요 정보획득 ?
- 미학
 - ▶ 명백한 특정 우아함 , 독특한 흐름 및 분명한 존재감 가지고 있는지 동의
- 지각
 - 과거의 인식으로 부정적 / 긍정적 인식.

- > 품질 계수 : 소프트웨어 품질 에 영향을 미치는 요인
 - 3 개의 중요한 소프트웨어 제품의 측면에 초점
 - > 동작 특성, 변화대처 능력, 새로운 환경

· 품질 계수 : 소프트웨어 품질 에 영향을 미치는 요인

제품 측면	품질계수	내용
Product	정확도	프로그램이 고객 요구사항 충족 하여 미션 목표 완수 정도
Operation	신뢰성	프로그램이 필요한 정밀도로 의도된 기능 수행을 기대 하는 범위
	효율성	프로그램에 필요한 컴퓨터 리소스및 코드의 양
	무결성	권한없는 사람에게 조절되는 소프트웨어나 데이터 액세스 정도
	사용용이성	배우고, 작동하고, 입력준비, 출력을 해석 하는데 필요한 노력
Product	유지보수성	오류를 찾아 수정 하는데 필요한 노력
Revision	유연성	동작 프로그램을 변경 하는데 필요한 노력
	테스트용이성	의도된 기능을 보장 하는 프로그램을 테스트하는데 필요한 작업
Product Transition	이식성	다른 하드웨어/소프트웨어시스템 환경 에서 프로그램 전송 필요 노력
Transition	재사용가능성	프로그램 수행 기능의 패키지 및 범위와 관련 다른 애플리케이션에 서 재사용 범위
	상호운용성	한 시스템에서 다른 시스템과 결합하는데 요구되는 노력

품질 **특성** : ISO 9126 품질 특성

- 기능성[Functionality]
 - ▶ 명시된 요구와 내재된 요구를 만족하는 기능을 제공하는 소프트웨어 제품 능력
- 신뢰성[Reliability]
 - ▶ 규정된 조건에 사용될 때 규정된 성능 수준을 유지할 수 있는 능력
 - ▶ 사용자가 오류를 방지할 수 있도록 하는 SW제품의 능력
- 사용성[Usability]
 - ▶ 능력사용자에 의해 쉽게 이해하고 학습되며 선호할 수 있게하는 SW제품의 능력
- 효율성[Efficiency]
 - 투입된 자원에 대하여 제공되는 성능의 정도
 - ▶ 요구되는 기능을 수행하기 위해 필요한 자원의 소요 정도
- 유지보수성[Maintainability]
 - › 운영환경과 요구사항 및 기능적 사양에 따른 SW의 수정, 개선 등 변경될 수 있는 능력
- 이식성[Portability]
 - ▶ SW가 다른 HW,SW 등의 환경으로 옮겨갈 수 있는 능력
 - ▶ 다른 환경으로 이전되는 SW능력의 정도

◆ 품질 특성 : ISO 9126 품질모델(Quality Model)

◆ 품질 **특성** : ISO 9126 품질특성 상호관계

- ◆품질 딜레마
 - 실패
 - ▶ 끔찍한 품질 소프트웨어 생산 -> 구입하는 사람이 없기 때문
 - 사업 기회 손실
 - ▶ 절대 완벽한 소프트웨어 생산 : 무한의 시간 , 매우 큰 노력 , 거액 지출
- ◆ "만족스러운" 소프트웨어
 - 최종 사용자 : 원하는 고품질의 기능과 특색 제공
 - 소프트웨어 공급업체 입장: 다른 애플리케이션 매우 만족하기 때문 최종 사용자가 버그 간과 기대
 - 회사에 영구적인 손상을 중 위험 -> 회사 폐쇄
 - ▶ 만족스러운 항공기 항공 소프트웨어 ?
 - "만족스러운"소프트웨어 품질 문제 해결할 수 있는 지름길 이라고 신뢰
 - ▶ 신중하게 진행 하라
 - ▶ 작동하지만 제한된 애플리케이션 도메인 중 일부 적용 가능.

- ◆ 품질/비용
 - 논쟁
 - ▶ 원하는 소프트웨어 품질 수준 을 얻기 위한 많은 시간과 비용
- ◆품질 비용
 - 품질을 추구하거나 품질 관련 활동
 - ▶ 품질의 부족으로 인한 후속 비용을 실행할 때 발생하는 모든 비용
 - 품질 비용 분리:예방.평가.실패 관련 비용
 - 1) <u>예방 비용</u>
 - (1) 모든 품질관리 및 품질 보증 활동 을 계획 하고 조정 하는데 필요한 관리 활동 비용
 - (2) 전체 요구사항과 설계 모델을 개발하기 위한 추가 기술 활동 의 비용
 - (3) 테스트 계획 비용
 - (4) 이러한 활동과 관련된 모든 교육 비용.

- 품질 비용 분리 : 예방 , 평가 , 실패 관련 비용
 - <u>2)</u> 평가 비용
 - (1) 소프트웨어 엔지니어링 작업 에 대한 기술 검토
 - (2) 데이터 수집 및 지표 평가 에 대한 비용
 - (3) 시험과 디버깅 에 대한 비용.

3) 실패 비용

- (1) 내부 실패 비용 : 출하전 오류 검출 비용
 - 오류를 정정하기 위해 재작업 (수리) 의 실행시 필요한 지용
 - 재작업 부주의로 인한 감소되어야 할 부작용을 생성할 때 발생 하는 비용
 - 실패 모드를 평가하기 위해 조직에 허용된 품질 측정 기준 수집 관련 비용
- (2) 외부 실패 비용 : 고객 배송후 발견된 결함
 - 불만 해결, 제품의 반품및 교환, 고객 도움 라인 지원, 보증 업무와 관련된 인건비.

- ◆오류 및 결함 수정의 상대적인 비용
 - 예방에서 외부 고장 비용의 내부 결함 검출 로 갈 때
 오류나 결함을 복구 하는 상대적인 비용이 극적으로 증가

4.소프트웨어 품질 확립

- ◆ SW품질: 우수한 프로젝트 관리, 훌륭한 소프트웨어 엔지니어링 실행 결과
 - 1) 소프트웨어공학 방법
 - ▶ 고품질의 소프트웨어 구축 기대
 - 해결할 문제점 이해
 - 문제에 부합한 설계 작성 : 품질 치수와 설명 요인 적용
 - ▶ 문제와 포괄적 설계의 합리적이며 철저한 이해
 - 적절한 분석 및 설계 방법 채택.
 - 2) 프로젝트 관리 기술론
 - ▶ 프로젝트 계획에는 품질과 변경 관리를 위한 명백한 기술 포함
 - 매니저가 납기를 달성 여부를 검사하기 위해 추정 사용
 - 계획 종속성을 이해 하고 팀은 최소 노선 사용 유혹에 저항
 - 위기 기획이 실행 되어 문제가 혼란을 야기하지 않을 경우 긍정적 영향.

4.소프트웨어 품질 확립

- ◆ SW품질: 우수한 프로젝트 관리, 훌륭한 소프트웨어 엔지니어링 실행 결과
 - 3) 품질 관리 : 검증 활동
 - ▶ 품질목표를 충족하는지 확인 하기 위한 일련의 소프트웨어공학 조치포함
 - ▶ 모델들은 완전하고 일정한지를 확인 하기 위해 검토
 - ▶ 검사 시작 전에 오류를 발견하고 수정하기 위해 코드를 검사
 - 일련의 검사 단계: 처리 로직, 데이터 조작, 인터페이스 통신 오류
 - 품질 미충족: 측정과 피드백 -> 프로세스 조율.

• 4) 품질 보증 : 시스템적인 활동

- ▶ 훌륭한 소프트웨어공학 기술, 합리적인 프로젝트 관리, 품질관리 조치 를 지원하는 인프라 구축
- ▶ 구성: 품질관리 조치의 유효성을 평가하는 감사및 보고기능 세트
- ▶ 목적 : 관리와 기술직원에게 제품 품질에 관한 필요한 정보를 통지 하고 , 그것에 의해 획득된 통찰력과 제품 품질을 얻을 수 있는 자신감 작용.

5.양질의 소프트웨어

- ◆ 프로세스의 품질
 - 프로세스 개선을 위한 모델
 - ▶ 능력 성숙도 모델 (CMM : Capability Maturity Model)
 - 소프트웨어 개발 능력 측정 기준 과 소프트웨어 프로세스 평가 기준 을 제공함으로써 ,
 - 정보 및 전산 조직의 성숙수준을 평가 할 수 있는 모델
 - > ISO 9000
 - 제품 생산 , 유통과정 전반 에 걸쳐 국제 규격을 제정한 품질보증제도
 - SPICE (Software Process Improvement and Capability dEtermination)
 - 소프트웨어 프로세스의 평가 를 위한 프레임워크.

◆품질 속성의 도식화

	아키텍처를 구성	생아는 품질측성
시스템 품질속성	가용성 (Availability)	변경용이성 (Modifiability)
	성능 (Performance)	보안성 (Security)
	사용편의성 (Usability)	시험용이성 (Testability)
비즈니스 품질속성	시장적시성 (Time to market)	비용과 이익 (Cost and Benefit)
	시스템의 프로젝트 생명 주기 (Projected Lifetime of the System)	목표 시장 (Targeted Market)
	신규 발매 일정 (Rollout Schedule)	노후 시스템과의 통합 (Integration with Legacy Systems)
아키텍처 품질속성	개념적 무결성 (Conceptual Integrity)	
	정확성과 완전성 (Correctness and Completeness)	
	개발용이성 (buildability)	

◆시스템 품질 속성

1) 가용성 (Availability)

- 시스템의 실패 (system failure) 와 이로부터 영향을 받는 것들과 연관
- 시스템이 더 이상 명시된 서비스를 제공하지 않는 경우 시스템 실패 가 발생
- 이러한 실패는 시스템의 사용자 (사람 혹은 타 시스템) 로부터 관측이 가능
- 시스템의 가용성이란 시스템이 필요할 때 운용될 수 있을 확률 로써
 가용성이 99.9% 이면 시스템이 필요할 때 동작하지 않을 확률이 0.1%.

2) 변경용이성 (Modifiability)

- 변경에 대한 비용과 연관
- 특정 변경요구사항이 시스템에 반영 될 수 있도록 하는 소프트웨어의 능력
- 변경사항이 식별되면 새로운 구현이 설계, 구현, 테스트, 배포 되어야 하므로 많은 시간과 비용이 소모.

3) 성능 (Performance)

- 성능은 주로 응답 시간 과 관련되며, 컴포넌트 간에 얼마나 많은 상호작용 이 필요
- 컴포넌트마다 어떤 기능이 할당되는지, 공유 자원이 어떻게 사용
- <u>- 어떤 알고리즘이 구현</u>

- ◆시스템 품질 속성
 - 4) 보안성 (Security)
 - 보안성은 올바른 사용자에게 서비스가 제공되는 동안 승인되지 않은 사용에 대응 하는 시스템 능력의 정도
 - -보안을 파괴하려고 시도 하는 것을 공격 (Attack)
 - 5) 시험용이성 (Testability)
 - 소프트웨어가 용이하게 시험 될 수 있는 소프트웨어의 능력을 의미
 - 결함을 찾아내기 위하여 시험이 얼마나 효과적 으로 수행
 - 기대수준만큼의 범위를 시험하기 위해 소요되는 시간 이 얼마큼인지에 대한 것
 - 6) 사용편의성 (Usability)
 - 사용자가 원하는 작업을 수행하기 위해 시스템을 얼마나 쉽게 사용 할 수 있는
 가에 관한 것.

- ◆ 아키텍처 품질 속성
 - 1) 개념적 무결성 (Conceptual integrity)
 - 개념적 무결성은 흔히 일관성 이라고도 함
 - 모든 레벨의 시스템 설계를 통합하는데 근간이 되는 개념
 - 아키텍처는 유사한 방법으로 유사한 일들을 수행 해야 하고,일괄된 방식으로 적용 될 수 있어야 함.
 - 2) 정확성과 완전성 (Correctness and Completeness)
 - 두가지 품질속성은 아키텍처가 시스템의 요구사항과 런타임 자원에 대한 제약사항 모두를 만족 해야 한다는 가장 중요한 품질속성.
 - 3) 개발용이성 (Buildability)
 - 구축 가능성은 개발용이성 을 말하는 것으로 개발할 능력이 있는 팀이 적절한 시기에 시스템을 완성
 - 개발이 진행되면서는 특정 변경이 가능 하도록 하는 특성.

정리 및 Homework

- 1) 품질 계수
- 2) 품질 치수
- 3) 품질 특성
- 4) 품질 비용
- 5) 품질 관리와 보증

Project

- 1장. 프로젝트 개요
 - 1.1 프로젝트 제목
 - 1.2 선정 이유
 - 1.3 팀 운영 방법
- 2장 시스템 정의
 - 2.1 시스템 간략한 설명
 - 2.2 유사 사례 간략한 설명
- 3장 프로세스 모델
 - 3.1 규범적인 프로세스 모델 선정 및 이유
 - 3.2 특수한 프로세스 모델 선정 및 이유
- 4장. 실무 가이드 원칙
 - 4.1 각 프레임워크 원칙에서 중요한 3 개 정의
 - 4.2 프로젝트 계획 보고서
- 5장. 요구사항 획득
 - 5.1 기능 요구사항과 비기능 요구사항 정의
 - 5.2 표준 양식을 사용한 시스템 요구사항 명세 3개 작성
 - 5.3 정형적인 형식에 따른 유스케이스 작성
- 6장. 시스템 설계
 - 6.1 설계 개념의 중요한 개념을 적용
 - 6.2 설계 모델에 따른 요소별 설계
- 7장. 아키텍처 개념
 - 7.1 아키텍처 스타일 선정및 이유
 - 7.2 아키텍처 설계 프로세스 정의 및 설계

8장. 품질

- 8.1 시스템 품질 속성 정의
 - (개인당 2개씩정의하여 팀당 3개씩결정)
- 8.2 비즈니스 품질 속성 정의
 - (개인당 2개씩정의하여 팀당 3개씩결정)
- 8.3 아키텍처 품질 속성 정의
 - (개인당 2개씩정의하여 팀당 2개씩결정)