

## PDEEC MACHINE LEARNING | 2017/2018 - 1<sup>st</sup> SEMESTER 15-782 CMU | Portugal Programme

|       | Duration: 2h45min |
|-------|-------------------|
| Name: |                   |

Exam: 23 January 2018

- 1. Indicate whether each of the following assertions is true or false. Give a **very short explanation**.
- a) The optimal value of the objective function for the estimation of a probability density through the EM algorithm, using a mixture of p+1 Gaussians, cannot be higher than the objective function for the same estimation, using a mixture of p Gaussians.
- b) The naive Bayes classifier is a special case of the Bayes classifier.
- 2. Consider the dataset D described in the Table. The set D is to be used as training data for a binary classifier to identify whether a point  $(x_1; x_2)$  falls inside some given target shape or not. Positive class labels (+) correspond to data-points falling inside the target shape, while negative class labels (-) correspond to data-points not falling inside the target shape.

Table: Training dataset containing 20 data-points pertaining to two different classes.

| $X_1$ | -2.4 | -2.1 | -1.7 | -1.6 | -1.5 | -1.2 | -1.1 | -0.5 | 0.0  | 0.0 |
|-------|------|------|------|------|------|------|------|------|------|-----|
| $X_2$ | 0.4  | -0.3 | -1.6 | -1.3 | 1.5  | 1.9  | -2.0 | 0.1  | 0.4  | 2.0 |
| Class | _    | _    | _    | _    | _    | _    | _    | +    | +    | _   |
| $X_1$ | 0.1  | 0.1  | 0.1  | 0.2  | 0.3  | 0.4  | 0.8  | 1.0  | 1.7  | 2.0 |
| $X_2$ | -0.7 | -0.6 | 0.0  | -0.5 | -0.5 | 0.9  | 0.2  | 0.1  | -1.0 | 0.4 |
| Class | +    | +    | +    | +    | +    | +    | +    | +    | _    | _   |

- (A) Given a data-point  $p = (x_1; x_2)$ , consider the two binary attributes,  $A_1$  and  $A_2$ , where attribute  $A_i(p)$  is 1 if  $|x_i| > 1$  and 0 otherwise, i = 1; 2. Using these attributes to represent each of the data-points in D, compute the parameters of a Naïve Bayes classifier for the dataset D. Using this classifier, compute the class label for the point (0.9; 0.9).
- (B) Suppose that you want to use a perceptron to classify the points in D. Indicate any pre-processing steps necessary for the perceptron to perfectly classify all points in the data-set D. Note: You don't actually need to perform these steps, just explain what they would consist of.

JSC PAGE 1/3

3. Consider the following dataset.

| X <sub>1</sub> | <b>X</b> 2 | <b>y</b> 1 | <b>y</b> 2 |
|----------------|------------|------------|------------|
| -1.5           | -2         | -5.1       | 2.7        |
| -1             | -0.5       | -2.5       | -1.05      |
| 0              | 0          | 0.05       | 0.01       |
| +1             | +1         | 3.2        | 3.9        |
| +1.5           | +2         | 4.9        | 8.7        |

- a) Consider that  $y_1 = w_{11}x_1 + w_{21}x_2$ . Estimate  $w_{11}$  and  $w_{21}$  by linear regression.
- b) assume now that  $y_2 = w_{12}x_1x_2 + w_{22}x_2$ . Estimate  $w_{11}$  and  $w_{21}$  by linear regression.
- c) Field knowledge tells us that  $w_{11} = w_{12}$ . Simultaneously estimate the four parameters imposing this constraint.
- 4. Consider an ensemble learning algorithm that uses simple majority voting among K learned hypotheses. Suppose that each hypothesis has an error  $\epsilon$  and that the errors made by each hypothesis are independent of the others'. Calculate a formula for the error of the ensemble algorithm in terms of K and  $\epsilon$ , and evaluate it for the cases where K=5 and 20, and  $\epsilon$ = 0.1 and 0.4. If the independence assumption is removed, is it possible for the ensemble error to be worse than  $\epsilon$ ?
- 5. Consider a classification support vector machine (SVM) that uses a second-degree polynomial kernel, i.e., a kernel of the form  $K(\bar{x},\bar{y})=(\bar{x}\cdot\bar{y}+a)^2$ , where a is a scalar. Show that the classification boundary of the SVM in the input space is described by an equation of the form  $\bar{x}^TA\bar{x}+\bar{v}^T\bar{x}+c=0$ , in which A is a matrix,  $\bar{v}$  is a vector, and c is a scalar.
- 6. Consider the 6-point data-set D =  $\{x_1,..., x_6\}$ , depicted in Figure, where the data-points are marked with an "x".



Suppose now that we wish to partition the dataset D into three clusters. Manually run K-means on this data-set, indicating the cluster associations and prototype vectors after each iteration.

Initialize your vector prototypes to  $\mu_1 = [-2.5, 0]^T$ ,  $\mu_2 = [0, 0]^T$  and  $\mu_3 = [2.5, 0]^T$ .

JSC PAGE 2/3

7. Use the HMM depicted in the Figure to work out the following questions (A and B).



- (A) In the given HMM, what is the probability that an observation sequence {AAB} was generated?
- (B) Given the observed sequence  $\{AAB\}$ , what's the most likely (to be observed) value for t=5?

Solve one of the following:

- (C) In the HMM described in the classes, observations are generated for all time steps. If we only observe the outputs  $x_{t1}$ , ...,  $x_{tk}$  at the time steps  $t_1$ , ...,  $t_k$ , how could you modify the forward algorithm to calculate P(x)?
- (C) Show that a stochastic matrix P always has the value  $\lambda = 1$  as its eigenvalue.

JSC PAGE 3/3