NOTICE D'UTILISATION – REGENPILE BASIC & PREMIUM

Conditions de recharge

Pour qu'une pile non rechargeable soit efficacement régénérée :

- Sa tension minimale doit être de 1,3V.
 - → Vérifiez avec un **voltmètre** ou utilisez la **version premium** qui en intègre un.
- X En dessous de **1V**, **inutile d'essayer** : la pile doit être jetée.
- A Entre **1V et 1,3V**, vous pouvez tenter, mais la durée d'utilisation n'est pas garantie

VERSION BASIC

Étapes de recharge

- 1. **Branchez l'USB** à un chargeur secteur 5V ou une powerbank (attention, certaines s'éteignent rapidement si la charge est trop faible).
 - **LED rouge allumée** = montage sous tension.
- 2. Placez un aimant de chaque côté de la pile (AA, AAA, bouton ou autre format 1,5V).
- 3. Connectez les fils :
 - Fil rouge sur la borne +
 - Fil blanc ou noir sur la borne -
 - \checkmark La charge se fait à 1,7V et \sim 10 mA
 - La LED peut être faible ou éteinte : **chute de tension normale.**
- 4. Laissez charger plusieurs heures ou toute la nuit.
 - Quand la LED rouge est **de nouveau pleinement allumée**, la pile est chargée.
 - Déconnectez la pile puis débranchez l'USB.

Sécurité

- Aucun risque identifié (au pire la pile coulera, mais cela ne m'est jamais arrivé)
- Par précaution, placez le montage sur **papier, bois ou carton** (pas sur métal).

VERSION PREMIUM

Étapes de recharge

- 1. Branchez l'USB à :
 - Un chargeur secteur 5V (ou powerbank avec remarque plus haut)
 - OU un adaptateur secteur jusqu'à **15V** max (obligatoire pour piles 9V, 12V, etc.)
- 2. **Réglez la tension** via le **potentiomètre bleu**.
 - Consultez le **voltmètre** intégré.
 - Tensions recommandées selon les piles :

Pile Tension nominale Tension de charge conseillée Tension mini

1,5V	1,5V	1,7V	1,3V
3V	3V	3,2V	2,9V
9V	9V	10,2V	8V
12V	12V	13,6V (alim 15V requise)	10,4V

Nersion 2.3 limitée à 11,4V à cause de la diode M7.

- Pour batterie lithium-ion 18650 :
 - **Tension max : 4,2V**, idéalement 4,1V.
 - Déconseillé pour recharge complète à cause de la lenteur, mais utile pour **réactiver une cellule passée sous 2,5V**.
- 3. Placez les aimants de chaque côté de la pile
- 4. **Aimantez les fils** (rouge sur + / blanc ou noir sur -).
 - La tension affichée doit **chuter** au début, c'est normal. Si la tension affichée n'a pas changé, alors la pile a déjà la tension demandée ou il y a un mauvais contact entre les fils et la pile. Veuillez vérifier.
 - 5. Surveillez la montée de tension sur le voltmètre.
 - Quand elle atteint la valeur réglée :
 - V Déconnectez la pile
 - Nuis débranchez l'alimentation

Ye **bouton** coupe uniquement l'**affichage** du voltmètre qui consomme 20 mA, pas la charge.

Note : Avec 1,2 milliard de piles jetées chaque année en France, ce système est une solution écologique simple, efficace, et durable.

X NOTICE DE MONTAGE – KIT BASIC

Ontenu du kit

- 1 PCB
- 2 régulateurs AMS1117
- 3 résistances : 220Ω , 75Ω , 100Ω
- 1 LED rouge
- 1 prise USB-C ou Micro USB
- 2 fils avec aimants

Soudure

Composant Emplacement

LED rouge D1 (le – côté bord du PCB)

Résistances R1 : 75Ω / R2 : 220Ω / R3 : 100Ω

Régulateurs U1 et U2 (AMS1117)

Alimentation La prise USB et la Jack en J3

Fils aimantés J1 : blanc ou noir (-, carré), rouge (+, rond)

Note : Avec 1,2 milliard de piles jetées chaque année en France, ce système est une solution écologique simple, efficace, et durable.

X NOTICE DE MONTAGE – KIT PREMIUM

a Contenu du kit

- 1 PCB
- 2 régulateurs AMS1117
- 2 résistances : 220Ω , 75Ω
- 1 potentiomètre
- 1 voltmètre
- 1 diode M7
- 1 prise USB-C ou Micro USB
- 2 fils aimantés

Soudure

Composant Emplacement

Résistances R1 : 75Ω / R2 : 220Ω / R4 : option résistances interchangeables

via support femelle à 2 pins.

Potentiomètre R5 (tension réglable)

Régulateurs U1 et U2

Fils aimantés J1 (rouge +, noir/blanc -)

Voltmètre J2/J5 *

Jack J3 (jusqu'à 15V)

Alimentation de l'autre côté, la prise USB C

Switch voltmètre SW1

Diode anti-retour D3 (version 2.3 et +)

^{*} souder le voltmètre sur l'emplacement J2 (uniquement quelques points, c'est mécanique). La difficulté sera de souder les 3 fils (préalablement coupés/dénudés) pour les passer et souder en J5.

NOTICE TECHNIQUE

Fonctionnement des composants

• **U1**: régulation du **courant** \rightarrow R1: 75 Ω = 10-15 mA

• U2 : régulation de la tension

 \rightarrow R3 : 100 Ω = 1,75V ou R5 potentiomètre pour ajuster la tension

 \rightarrow R2 : 220 Ω fonctionne avec R3 ou R5 pour l'ajustement

Alternatives

• R4 : option pour remplacer R1 par un connecteur (choix libre de résistance)

Composants optionnels

• **C1**: $22\mu F /$ **C2**: $10\mu F \rightarrow stabilit\acute{e}$

• **D2** : diode en entrée de U2

• **D3**: diode anti-retour (à partir de la v2.3)

PCB version Full

PCB version Full V2.3

Schéma

Schéma V2.3

Routage PCB

Routage PCB V2.3

