Recurrence Relation

By: Ashok Basnet

Recurrence Relation

- A recurrence relation (R.R., or just recurrence) for a sequence $\{a_n\}$ is an equation that expresses a_n in terms of one or more previous elements a_0, \ldots, a_{n-1} of the sequence, for all $n \ge n_0$.
- A particular sequence (described non-recursively) is said to *solve* the given recurrence relation if it is consistent with the definition of the recurrence.
 - o A given recurrence relation may have many solutions.
- Consider the recurrence relation

$$\circ a_n = 2a_{n-1} - a_{n-2} \ (n \ge 2).$$

• Which of the following are solutions?

$$a_n = 3n$$

$$a_n = 2^n$$

$$a_{n} = 5$$

Recurrence Relation

- E.g.: $S = \{2, 2^2, 2^3, \dots, 2^n\}$ $S = \{S_n\} = \{2^n\}$
- Here Initial Condition is $S_1 = 2$. So Recurrence relation can be expressed as:

$$S_n = 2S_{n-1}, n \ge 2$$

- E.g.: $S = \{1, 1, 2, 3, 5, \dots \}$
 - \circ $S_n = S_{n-1} + S_{n-2}$, $n \ge 3$ with $S_1 = S_2 = 1$ (This is Fibonacci Sequence)

Linear Recurrence Relation with Constant Time Coefficient

- Equation: $[C_0a_n + C_1a_{n-1} + C_2a_{n-2} + \dots + C_ka_{n-k} = f(n)]$ where C_0C_1 , C_2 , C_k are constants.
- E.g.:

$$\circ$$
 2a_n + 3a_{n-1} = 3

$$\circ a_n - 7a_{n-1} + 12a_{n-2} = n.4^n$$

- Order: It is the difference between the highest and lowest subscript of a.
- Degree: It is defined as the highest power of a_n .

Linear Recurrence Relation with Constant Time Coefficient

- Iteration Method
- Method of characteristic roots
- Generating functions

Linear Recurrence Relation with Constant Time Coefficient

- The method of characteristic roots with constant coefficient can solve both
 - \circ Homogeneous Recurrence Relation [f(n) = 0]
 - \circ Non-homogeneous Recurrence Relation [f(n) != 0]

Homogeneous Recurrence Relation

- Equation: [$C_0a_n + C_1a_{n-1} + C_2a_{n-2} + \dots + C_ka_{n-k} = 0$] where C_0C_1 , C_2 , C_k are constants.
- Put $a_n = r_n$, $a_{n-1} = r_{n-1}$ and so on.
- Find an equation in terms of r. This is called as characteristic equation or auxiliary equation.
- Solve characteristic equation and find characteristic roots.
- If characteristic roots are:
 - \circ r = r₁, r₂, r₃ (distinct), then general solution is $a_n = b_1 r_1^n + b_2 r_2^n + b_3 r_3^n$ where b_1 , b_2 , b_3 are constants.
 - \circ r = r₁, r₁ then a_n = (b₁ + nb₂) r₁ⁿ
 - $\circ r = r_1, r_1, r_2, r_3 \text{ then } a_n = (b_1 + nb_2)r_1^n + b_3r_2^n + b_4r_3^n$
 - $\circ r = r_1, r_1, r_2, r_2 \text{ then } a_n = (b_1 + nb_2 + n^2b_3)r_1^n + b_4r_2^n$

Homogeneous Recurrence Relation

- Solve $a_n = a_{n-1} + 2a_{n-2}$, $n \ge 2$ with the initial conditions $a_0 = 0$, $a_1 = 1$.
- Solve $a_n = 4(a_{n-1} a_{n-2})$, $n \ge 2$ with the initial conditions $a_0 = a_1 = 1$.
- Solve $a_n = 8a_{n-1} 21a_{n-2} + 18a_{n-3}$
- Solve $a_n = -a_{n-1} + 4a_{n-2} + 4a_{n-3}$, with the initial conditions $a_0 = 8$, $a_1 = 6$, $a_2 = 26$.

- Equation: $[C_0a_n + C_1a_{n-1} + C_2a_{n-2} + \dots + C_ka_{n-k} = f(n)]$ where f(n) != 0.
- General solution: $a_n = a_n^h + a_n^p$ where h is for homogeneous solution and p is for particular solution.
- Case 1: Equate equation to zero and find homogeneous solution
- Case 2:
 - \circ Let $a_n = A$
 - \circ Put $a_n = a_{n-1} = \dots = A$ in the given recurrence relation
 - o Find A
 - $\circ a_n^{(p)} = A$

- Solve $a_{n+2} = 5a_{n+1} 6a_n + 2$, with the initial conditions $a_0 = 1$, $a_1 = -1$.
- Solve $a_n = 6a_{n-1} 8a_{n-2} + 3$.
- Solve $a_n = 5a_{n-1} 6a_{n-2} + 1$

- Equation: [$C_0a_n + C_1a_{n-1} + C_2a_{n-2} + \dots + C_ka_{n-k} = f(n)$] where f(n) != 0 and f(n) is a polynomial of degree s.
- General solution: $a_n = a_n^h + a_n^p$ where h is for homogeneous solution and p is for particular solution.
- Case 1: Equate equation to zero and find homogeneous solution
- Case 2:
 - \circ Let $a_n = A_0 + A_1 n + A_2 n^2 + \dots + A_s n^s$
 - \circ Put a_n , a_{n-1} and so on in the given recurrence relation
 - Compare the coefficients of like power on n.
 - \circ Find $A_0, A_1, A_2, \dots, A_s$
 - $\circ A_n^{(p)} = A_0 + A_1 n + A_2 n^2 + \dots + A_s n^s$

- Solve $y_{n+2} y_{n+1} 2y_n = n^2$
- For $y_n^{(h)}: y_{n+2} y_{n+1} 2y_n = 0$
- Put $y_n = r_n$. Then characteristics equation can be written as:

$$\circ r^2 - r - 2 = 0$$

- \circ Solving we get r = -1, 2
- $y_n^{(h)} = b_1 (-1)^n + b_2 (2)^n$

To find $y_n^{(p)}$:

put
$$y_n = A_0 + A_1 n + A_2 n^2$$

 $\{A_0 + A_1 (n+2) + A_2 (n+2)^2 \} - \{A_0 + A_1 (n+1) + A_2 (n+1)^2 \} - 2\{A_0 + A_1 n + A_2 n^2 \} = n^2$

• To find $y_n^{(p)}$:

put
$$y_n = A_0 + A_1 n + A_2 n^2$$

 $\{A_0 + A_1 (n+2) + A_2 (n+2)^2 \} - \{A_0 + A_1 (n+1) + A_2 (n+1)^2 \} - 2\{A_0 + A_1 n + A_2 n^2 \} = n^2$
 $\{A_1 - 2A_0 + 3A_2\} + \{2A_2 - 2A_1\}n + \{-2A_2\}n^2 = n^2$

Comparing coefficients,

$$A_1 - 2A_0 + 3A_2 = 0$$

 $2A_2 - 2A_1 = 0$
 $-2A_2 = 1$

Solving $A_0 = -1$, $A_1 = -\frac{1}{2}$ and $A_2 = -\frac{1}{2}$

- Solve $a_{n+2} + 2a_{n+1} 15a_n = 6n + 10$, with the initial conditions $a_0 = 1$, $a_1 = -1/2$.
- Solve a_{n+2} $5a_{n+1}$ + $6a_n = n^2$
- Solve $a_n 2a_{n-1} = 6n$, with $a_1 = 2$

- Equation: [$C_0a_n + C_1a_{n-1} + C_2a_{n-2} + \dots + C_ka_{n-k} = f(n)$] where f(n) != 0 and $f(n) = \beta^n P(n)$ where β is not a characteristics root and P(n) is a polynomial.
- General solution: $a_n = a_n^h + a_n^p$ where h is for homogeneous solution and p is for particular solution.
- Case 1: Equate equation to zero and find homogeneous solution
- Case 2:
 - \circ Let $a_n = \beta^n (A_0 + A_1 n + A_2 n^2 + \dots + A_s n^s)$
 - \circ Put a_n , a_{n-1} and so on in the given recurrence relation
 - Compare the coefficients of like power on n.
 - \circ Find $A_0, A_1, A_2, \dots, A_s$
 - $a_n^{(p)} = \beta^n (A_0 + A_1 n + A_2 n^2 + \dots + A_s n^s)$

• Solve
$$a_n - 7a_{n-1} + 12a_{n-2} = 2^n$$
,

• Solve
$$a_n - 7a_{n-1} + 12a_{n-2} = n \cdot 2^n$$
,

- Equation: $[C_0a_n + C_1a_{n-1} + C_2a_{n-2} + \dots + C_ka_{n-k} = f(n)]$ where f(n) != 0 and $f(n) = \beta^n P(n)$ where β is characteristics root of multiplicity t and P(n) is a polynomial.
- General solution: $a_n = a_n^h + a_n^p$ where h is for homogeneous solution and p is for particular solution.
- Case 1: Equate equation to zero and find homogeneous solution
- Case 2:
 - \circ Let $a_n = n^t \beta^n (A_0 + A_1 n + A_2 n^2 + \dots + A_s n^s)$
 - \circ Put a_n , a_{n-1} and so on in the given recurrence relation
 - Compare the coefficients of like power on n.
 - \circ Find $A_0, A_1, A_2, \dots, A_s$
 - $a_n^{(p)} = n^t \beta^n (A_0 + A_1 n + A_2 n^2 + \dots + A_s n^s)$

• Solve
$$a_n - 7a_{n-1} + 12a_{n-2} = 4^n$$
,

• Solve
$$a_n - 7a_{n-1} + 12a_{n-2} = n.4^n$$
,

Solving Recurrences

- Establishing a recurrence relation from a program involves identifying the relationship between different instances of the problem size and how the solution to one instance relates to the solution of a smaller instance.
- Let's go through an example to illustrate this process: Consider a simple recursive function for calculating the *n-th* Fibonacci number.

```
def fibonacci(n):
  if n <= 1:
    return n
  else:
    return fibonacci(n-1) + fibonacci(n-2)</pre>
```

Steps to Establish the Recurrence Relation

• **Identify the base cases:** Determine the simplest cases where the function does not call itself.

- This means F(0) = 0 and F(1) = 1
- Identify the recursive case(s): Look at the part of the function where it calls itself with smaller inputs.

else:

return fibonacci (n-1) + fibonacci (n-2)

- This translates to the recurrence relation: F(n) = F(n-1) + F(n-2) for n > 1
- Combine the base case and the recursive case to form the complete recurrence relation.

Complete Recurrence Relation for Fibonacci

• Combining the above steps, the recurrence relation for the Fibonacci sequence is:

$$F(n) = \begin{cases} 0 & \text{if } n = 0 \\ 1 & \text{if } n = 1 \\ F(n-1) + F(n-2) & \text{if } n > 1 \end{cases}$$

Another Example: Factorial

Consider a recursive function to calculate the factorial of n:

```
def factorial(n):
    if n == 0:
        return 1
    else:
        return n * factorial(n-1)
```

- Steps to Establish the recurrence relation for factorial
 - o Base Case

if
$$n == 0$$
:

return 1

This means F(0) = 1

Another Example: Factorial

• Recursive case:

```
else:
```

return n * factorial(n-1)

This translates to $F(n) = n \cdot F(n-1)$ for n > 0

- Steps to Establish the recurrence relation for factorial
 - o Base Case:

if
$$n == 0$$
:

return 1

This means F(0) = 1

Complete Recurrence Relation for Factorial

Combining the above steps, the recurrence relation for the Factorial is:

$$F(n) = \begin{cases} 1 & \text{if } n = 0 \\ n \cdot F(n-1) & \text{if } n > 0 \end{cases}$$

Example: Binary Search

Consider a recursive function to calculate the factorial of n:

```
def binary_search(arr, target, low, high):
    if low > high:
        return -1
    mid = (low + high) // 2
   if arr[mid] == target:
        return mid
   elif arr[mid] > target:
        return binary_search(arr, target, low, mid - 1)
   else:
       return binary_search(arr, target, mid + 1, high)
```

Example: Binary Search

- Steps to Establish the recurrence relation for factorial
- Define the problem size: The size of the problem is the range [low, high]
 - Base Case:

This means T(0) = constant time = O(1)

- **Recursive case:** elif and else in above program. Since Each recursive call reduces the problem size by half and there are other constant time factor involved, we have
 - T(n) = T(n/2) + O(1)
- Complete Recurrence Relation:

$$F(n) = \begin{cases} O(1) & \text{if } n = 0 \\ T(n/2) + O(1) & \text{if } n > 0 \end{cases}$$

Solution Recurrence Relation for:

- Merge Sort
- Tower of Hanoi
- Quick Sort

Find Recurrence Relation for:

Merge Sort

$$F(n) = \begin{cases} O(1) & \text{if } n \le 1 \\ 2T(n/2) + O(1) & \text{if } n > 1 \end{cases}$$

• Tower of Hanoi

$$F(n) = \begin{cases} O(1) & \text{if } n = 1 \\ 2T(n-1) + O(1) & \text{if } n > 1 \end{cases}$$

Quick Sort

$$F(n) = \begin{cases} O(1) & \text{if } n \le 1 \\ 2T(n/2) + O(n) & \text{if } n > 1 \end{cases}$$

General Steps to Derive Recurrence Relations

- 1. Define the problem size: Determine what n represents (e.g., the size of the input).
- 2. Identify base case(s): Find the simplest cases where the function terminates without recursion.
- 3. Identify recursive case(s): Determine how the function reduces the problem size and combines the results of smaller subproblems.
- **4. Formulate the recurrence:** Write the mathematical expression that represents the function's behavior in terms of smaller problem sizes.

Methods to Solve Recurrence Relations

- 1. Substitution Method or Backward Substitution Method
- 2. Recursion Tree Method
- 3. Master Method

Substitution Method

$$F(n) = \begin{cases} 1 & \text{otherwise} \\ 3T(n-1) & \text{if } n > 0 \end{cases}$$

Solution

Substitution Method

Substitution Method

$$F(n) = \begin{cases} 1 & \text{if } n = 1 \\ T(n-1) + n & \text{if } n > 1 \end{cases}$$
Complexity, $T(n) = O(n^2)$

Tree Method

$$F(n) = \begin{cases} 1 & \text{if } n = 1 \\ 2T(n/2) + n & \text{if } n > 1 \end{cases}$$

Complexity, $T(n) = O(n^2)$

Master Method

```
T(n) = aT(n/b) + f(n),
where,
n = size of input
a = number of subproblems in the recursion
n/b = size of each subproblem. All subproblems are assumed to have the same size.
```

f(n) = cost of the work done outside the recursive call, which includes the cost of dividing the problem and cost of merging the solutions

Here, $a \ge 1$ and b > 1 are constants, and f(n) is an asymptotically positive function.

Master Theorem Method

Theorem 4.1 (Master theorem)

Let $a \ge 1$ and b > 1 be constants, let f(n) be a function, and let T(n) be defined on the nonnegative integers by the recurrence

$$T(n) = aT(n/b) + f(n),$$

where we interpret n/b to mean either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. Then T(n) has the following asymptotic bounds:

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

Master Method

- If the cost of solving the sub-problems at each level increases by a certain factor, the value of f(n) will become polynomially smaller than $\mathbf{n^{log}_b}^a$. Thus, the time complexity is oppressed by the cost of the last level ie. $\mathbf{n^{log}_b}^a$
- If the cost of solving the sub-problem at each level is nearly equal, then the value of f(n) will be n^{log}_b a. Thus, the time complexity will be f(n) times the total number of levels ie. n^{log}_b a * log n
- If the cost of solving the subproblems at each level decreases by a certain factor, the value of f(n) will become polynomially larger than $n^{\log_b a}$. Thus, the time complexity is oppressed by the cost of f(n).

Master Theorem Method

Example 1: T(n) = 9T(n/3) + n. Here a = 9, b = 3, f(n) = n, and $n^{\log_b a} = n^{\log_3 9} = \Theta(n^2)$. Since $f(n) = O(n^{\log_3 9 - \epsilon})$ for $\epsilon = 1$, case 1 of the master theorem applies, and the solution is $T(n) = \Theta(n^2)$.

Example 2: T(n) = T(2n/3) + 1. Here a = 1, b = 3/2, f(n) = 1, and $n^{\log_b a} = n^0 = 1$. Since $f(n) = \Theta(n^{\log_b a})$, case 2 of the master theorem applies, so the solution is $T(n) = \Theta(\log n)$.

Master Theorem Method

```
T(n) = 3T(n/2) + n^2
    Here,
       a = 3
       n/b = n/2
       f(n) = n^2
    log_b a = log_2 3 \approx 1.58 < 2
    ie. f(n) < n\log_h a + \epsilon, where, \epsilon is a constant.
    Case 3 implies here if a f(n/b) \le cf(n) and c \le 1.
   3(n^2/4) \le c n^2
    Hence, 3/4 \le 1. Case 3 applies.
Thus, T(n) = f(n) = \Theta(n^2)
```

Thank you