Arquitetura de Microsserviços: Um Estudo de Caso

Euller Henrique Bandeira Oliveira

Universidade Federal de Uberlândia Faculdade de Computação Graduação em Sistemas de Informação

1 de dezembro de 2023

Sumário

- Introdução
- 2 Fundamentação Teórica
- Oesenvolvimento
- 4 Resultados
- Conclusão
- 6 Referências

Motivação

- Monografia
 - Demonstrar
 - Aplicabilidade de meus conhecimentos adquiridos ao longo da graduação:
 - Lógica de Programação, Linguagens de Programação, Paradigmas de Programação, Estruturas De Dados, Banco de Dados, Sistemas Distribuídos, Engenharia de Software, etc.
 - Demonstrado
 - Estudo de caso de um ecossistema de microsserviços simplificado derivado de um ecossistema de microsserviço real desenvolvido no projeto e na empresa em que atuo atualmente.
- Arquitetura de Microsserviços
 - Sistema Interno da Empresa (Sistema Monolítico Legado)
 - Destinado ao controle de horas e pagamento
 - Funciona somente no Internet Explorer
 - Microsoft encerrou o seu suporte
 - Eventualmente o modo IE no Edge deixará de funcionar

Objetivo

- Identificar e Exemplificar:
 - Vantagens e Desvantagens da Arquitetura de Microsserviços após:
 - Implementar e Investigar um Ecossistema de Microsserviços

Justificativa

- Necessidade:
 - Criar uma referência que possa ser:
 - Consultada por qualquer desenvolvedor que queira entender ou obter razões para adotar a arquitetura de microsserviços.

Metodologia

- Metodologia Científica
 - Estudo de Caso
 - 1 Identificação de um problema de pesquisa
 - 2 Levantamento dos dados
 - Análise do contexto
 - Conclusões sobre o problema [Menezes, 2023]
 - Pesquisa Exploratória
 - Estudar profundamente tema antes de elaborar hipóteses
 - Objetivo: Atribuí-las embasamento teórico e científico [Significados, 2023]
 - Pesquisa Qualitativa
 - Universo de significados, motivos, aspirações, crenças, valores e atitudes [Coelho, 2017]

Metodologia

Metodologia de Desenvolvimento

Figura: Modelo Iterativo de Desenvolvimento [Larman and Basili, 2003]

Arquitetura Monolítica

Presente na aplicação na qual todas as suas funcionalidades estão presentes em um único sistema.

Tipos:

- Sistema monolítico de um só processo
 - Código é implantado em um único processo (Servidor)
 - Sistema distribuído simples (Sistema + Banco de Dados)
- Sistema monolítico modular de um só processo
 - Código é dividido em módulos na implementação
 - Código é unido na implantação

[Newman, 2020a]

Arquitetura de Microsserviços

Presente na aplicação na qual cada microsserviço possui um conjunto de funcionalidades.

Pilares:

- Implantações independentes
 - Ao alterar um microsserviço, é necessário implantar somente ele.
- Design orientado a domínios (DDD)
 - Os requisitos, modelagem e implementação de cada microsserviço devem se basear em um domínio de negócio geral ou específico.
- Responsáveis pelos seus próprios dados
 - Cada microsserviço deve ser capaz de acessar e manipular apenas um determinado conjunto de tabelas.

[Newman, 2020b] [Newman, 2022]

Arquitetura Cliente-Servidor

Cliente:

Solicitar uma ação

Servidor:

- Receber solitação
- Realizar ação
- Retornar Status ou Status e Dado

[Native, 2022]

Arquitetura Orientada a Eventos

- Programação Assíncrona
 - Sistema que solicia a ação não precisa esperar pela resposta do outro sistema
 - Fluxo do sistema não é interrompido

[Tibco, 2023]

- Componentes:
 - Produtor: Notar evento, Enviar mensagem
 - Canal: Transmitir a mensagem
 - Consumidor: Receber a mensagem, Realizar ação

[RedHat, 2019]

- Modelos:
 - Pub/Sub: Mensagem é excluída do canal após ser recebida
 - Streaming: Mensagem não é excluída do canal após ser recebida

[Microsoft, 2023b]

Tecnologias Utilizadas

- Banco de Dados
 - Sql
 - Microsoft Sql Server
- Ecossitema de Microsserviços
 - Java, Maven, Spring Framework, Spring Boot, JPA, Hibernate, Rest Template, Apache Kafka, Spring Email, Lombok, Sonar Lint, Jasper Reports, Jaspersoft Studio, Microsoft Azure Key Vault, IntelliJ IDEA Ultimate e Postman.
- Sistema Web:
 - Html, Css, Javascript e Visual Studio Code

Requisitos - Requisitos Funcionais

- Tela Dia Não Útil
 - Buscar usuários ativos
 - Buscar dias não úteis
 - Salvar dia não útil
 - Excluir dia n\u00e3o \u00fatil
- Tela Hora Extra
 - Buscar tarefas ativas
 - Buscar usuários de uma tarefa
 - Buscar horas extras
 - Salvar hora extra
 - Excluir hora extra

Requisitos - Requisitos Funcionais

- Tela Dia Timesheet
 - Buscar tarefas ativas de um usuário
 - Buscar horas trabalhadas
 - Buscar primeiro dia aberto
 - Buscar dia anterior/posterior
 - Copiar dia anterior
 - Fechar dia
 - Salvar timesheet
 - Excluir timesheet
- Tela Faturamento do Consultor
 - Buscar usuários ativos
 - Buscar faturamento(s)
 - Enviar email(s) do(s) faturamento(s)
 - Gerar relatório do(s) faturamento(s)

Requisitos - Requisitos Não Funcionais

- Arquitetura: BE-BE ou BE-FE Arquitetura Cliente-Servidor
- Arquitetura: Back-End Arquitetura de microsserviços
- Arquitetura: Mensageria Arquitetura orientada eventos
- Data-Base Bando de dados relacional

Requisitos - Casos de Uso

- Copiar dia anterior
 - Fluxo normal/feliz:
 - 1. Usuário (Consultor): Acessa a url .../timesheet
 - 2. Front-End: Exibe o botão 'Copiar Dia Anterior'
 - 3. Usuário (Consultor): Clica no botão 'Copiar Dia Anterior'
 - 4. Front-End: Solicita ao ms-timesheet que o dia anterior ao escolhido seja copiado
 - **.**..
 - Fluxo alternativo/triste:
 - 7.1 Back-End (ms-faturamento): Se o faturamento do usuário logago no mês do dia em questão for encontrado, o status 406 (Não aceito) é retornado
 - 14.1.1 Back-End (ms-tarefa): Se o usuário associado ao dia escolhido não estiver associado a tarefa presente no timesheet em questão, o status 406 (Não aceito) é retornado
 - ...

Modelagem - Diagramas de Caso de Uso

Figura: Tela: Faturamento do Consultor - Enviar faturamento(s)

Modelagem - Diagramas de Atividade

Modelagem

Figura: Salvar Timesheet

Modelagem - Diagramas de Arquitetura

Figura: Arquitetura em Camadas

Modelagem - Diagramas de Arquitetura

Figura: Arquitetura Cliente-Servidor

Modelagem - Diagramas de Arquitetura

Figura: Arquitetura de Microsserviços

Modelagem - Diagramas de Arquitetura

Figura: Arquitetura de Dados

Modelagem

Modelagem

Figura: Diagrama Entidade Relacionamento

Implementação - Back-End

- Padrão Arquitetural
 - MVC (Model View Controller)
 - Model Service, Repository
 - View DTO (Data Transfer Object)
 - Controller
- Padrões de Projeto
 - Service
 - Repository
 - Entity
 - Próprios (Ex: DtoService, ModelService e UtilService)

Implementação – Front-End

Relatório: Faturamento Consultor

Mês/Ano: 09/2023 Remuneração Mês Total: R\$ 105.809,64 Página: 1 de 1 Data: 25/09/2023 Hora: 08:18:45

Matrícula	Nome	Horas Trabalhadas	Remuneração Hora	Remuneração Mês	Email Enviado
00001	Euller Henrique Bandeira Oliveira	157:35	R\$ 200,00	R\$ 31.516,66	Sim
00002	João da Silva Pereira	85:46	R\$ 180,00	R\$ 15.438,00	Sim
00003	Pedro de Souza Lima	114:12	R\$ 160,00	R\$ 18.272,00	Sim
00004	José dos Santos Machado	84:55	R\$ 120,00	R\$ 10.190,00	Sim
00005	Maria da Almeida Lopes	110:58	R\$ 100,00	R\$ 11.096,66	Não
00006	Ana das Lopes Martins	100:05	R\$ 80,00	R\$ 8.006,66	Não
00007	Joana dos Martins Pereira	89:45	R\$ 60,00	R\$ 5.385,00	Não
80000	Beatriz da Pereira Costa	147:37	R\$ 40,00	R\$ 5.904,66	Não

Figura: Tela Faturamento Consultor - Relatório

Implementação – Front-End

Caro Consultor, Euller Henrique Bandeira Oliveira

A data do seu crédito será dia 05/10/23

Valor: R\$ 31.516,66

Atenciosamente, Equipe do Financeiro

Figura: Tela Faturamento Consultor - Email

Implantação

- Servidor
 - Prazo curto
 - Custo alto
 - Conhecimento insuficiente
- Local
 - Docker
 - Java
 - Apache Kafka
 - Kafka Drop
 - PostgreSQL
 - MailHog

Vantagens

- Atribuição mais fácil da implementação
 - Motivos:
 - Design Orientado a Domínios (DDD)
 - Responsável por seus próprios dados [Newman, 2020b] [Newman, 2020c] [Newman, 2022]
- Implantação mais fácil
 - Motivos:
 - Configuração própria de implantação e servidor próprio [Newman, 2020b] [Newman, 2022]
 - Conexão individual a uma pipeline (Oferece suporte a integração, entrega e implantação contínua (CI/CD))
 [JetBrains, 2023][Microsoft, 2023c]

Vantagens

- Manutenção mais fácil
 - Motivos:
 - Padrão arquitetural e padrões de projeto iguais
 - Design Orientado a Domínios (DDD)[Newman, 2020b][Newman, 2022]
- Escabilidade mais fácil
- Motivos:
 - Escabilidade Vertical Individual (Scale-Up):
 - Redução/Aumento da quantidade de recursos (Processamento, armazenamento, memória RAM) (Por meio do Azure, Aws, ...)
 - Escabilidade Horizontal Individual (Scale-Out):
 - Redução/Aumento da quantidade de servidores do cluster de acordo com a demanda (Por meio do Kubernetes)

[Microsoft, 2023a] [Bouguezzi, 2023]

Desvantagens

- Utilização limitada do hibernate
 - Motivos:
 - Responsável por seus próprios dados [Newman, 2020b] [Newman, 2022]
 - Realizar relacionamentos por meio do hibernate se torna um recurso limitado
- Inadequado para geração de relatórios extensos
 - Motivo:
 - Responsável por seus próprios dados [Newman, 2020b] [Newman, 2022]
 - Extrair muitos dados por meio da arquitetura cliente-servidor se torna inviável

Desvantagens

- Implementação mais complexa
 - Motivo:
 - Decomposição de um microsserviço não é uma atividade simples e trivial
 - Necessidade de ter que criar vários metódos, classes e pastas para que um microsserviço possa se conectar totalmente a outro
 - Possibilidade de ter que desenvolver cada parte de uma funcionalidade em microsserviços diferenes
 - Necessidade de ter que obter determinados dados de outros microsserviços
- Utilização limitada de Transactions
 - Motivo:
 - Responsável por seus próprios dados [Newman, 2020b] [Newman, 2022]
 - Utilização limitada da lógica das transações

Conclusão

Consideração Final

- Cumpriu:
 - Objetivo
 - Justificativa
- Proporcionou:
 - Conhecimento Teórico
 - Conhecimento Prático
- Inspirou
 - Adquirir mais conhecimentos da Arquitetura de Microsserviços
 - Adquirir mais conhecimentos do Desenvolvimento Dev Ops

Referências I

Bouguezzi, S. (2023).

Differences between scaling horizontally and vertically.

Coelho, B. (2017).

Pesquisa qualitativa: entenda como utilizar essa abordagem de pesquisa.

JetBrains (2023).
Integração contínua vs. entrega vs. implantação.

Larman, C. and Basili, V. R. (2003). Iterative and incrementaldevelopment: A brief history.

Menezes, P. (2023). Estudo de caso.

Microsoft (2023a).

Criar aplicativos para dime

Criar aplicativos para dimensionamento.

Referências II

Microsoft (2023b).

Estilo de arquitetura controlada por evento.

Microsoft (2023c).

O que é o azure pipelines?

Native, C. (2022).

Arquitetura cliente servidor.

🖥 Newman, S. (2020a).

Migrando sistemas monolíticos para microsserviços.

Novatec Editora.

🖥 Newman, S. (2020b).

Migrando sistemas monolíticos para microsserviços.

Novatec Editora.

Referências III

Newman, S. (2020c).

Migrando sistemas monolíticos para microsserviços.

Novatec Editora.

Newman, S. (2022).

Criando Microsserviços.

Novatec Editora.

RedHat (2019).

O que é arquitetura orientada a eventos?

Significados (2023).

Pesquisa exploratória (estudo o

Pesquisa exploratória (estudo exploratório).

Tibco (2023).

O que é arquitetura orientada a eventos?