

编码器和译码器

编码器 (Encoder)

- 在数字系统中,常常需要将某一信息(输入)变换为 某一特定的代码(输出)
- 把二进制码按一定的规律编排,例如**8421**码、格雷码等,使每组代码具有一特定的含义(代表某个数或控制信号)称为编码
- 具有编码功能的逻辑电路称为编码器
- 它的逻辑功能是将输入的每一个高、低电平信号编成 一个对应的二进制代码。

目前经常使用的编码器有普通编码器和优先编码器两类。

优先编码器(74LS148)功能表

	7 C 7 C 7 C 7 C 7 C 7 C 7 C 7 C 7 C 7 C	. , , , , , ,
	输入	输出
$\overline{\mathbf{S}}$	$\bar{\mathbf{I}}_0 \; \bar{\mathbf{I}}_1 \; \bar{\mathbf{I}}_2 \; \bar{\mathbf{I}}_3 \; \bar{\mathbf{I}}_4 \; \bar{\mathbf{I}}_5 \; \bar{\mathbf{I}}_6 \; \bar{\mathbf{I}}_7$	$\left[\overline{\mathrm{Y}}_{2} \ \overline{\mathrm{Y}}_{1} \ \overline{\mathrm{Y}}_{0} \ \right] \overline{\mathrm{Y}}_{\mathrm{S}} \ \overline{\mathrm{Y}}_{\mathrm{EX}}$
1	$\times \times \times \times \times \times \times$	1 1 1 1 1
0	11111111	1 1 1 0 1
0	$\times \times \times \times \times \times \times 0$	0 0 0 1 0
0	$\times \times $	0 0 1 1 0
0	$\times \times $	0 1 0 1 0
0	$\times \times \times \times 0 1 1 1$	0 1 1 1 0
0	$\times \times \times 01111$	1 0 0 1 0
0	x x 0 1 1 1 1 1	1 0 1 1 0
0	× 0 1 1 1 1 1 1	1 1 0 1 0
0	01111111	1 1 1 1 0

译码器 (Decoder)

- 译码是编码的逆过程
- 译码器将每个二进制代码赋予的特定含义"翻译"过来,转换成相应的信息符号(输出信号)
- 具有译码功能的逻辑电路被称为译码器
- 它的逻辑功能是将每个输入的二进制代码译成对应的 输出高、低电平信号或另一个代码。

常用的译码器电路有二进制译码器、二-十进制译码器和显示译码器。

3线-8线译码器 (74LS138) 功能表

	输。				输	出				
S_1	$\overline{S}_2 + \overline{S}_3$	$\mathbf{A_2}\mathbf{A_1}\mathbf{A_0}$	$\overline{\mathbf{Y}}_{0}$	$\overline{\mathbf{Y}}_{1}$	$\overline{\mathbf{Y}}_{2}$	$\overline{\mathbf{Y}}_{3}$	$\overline{\overline{Y}}_4$	$\overline{\mathbf{Y}}_{5}$	\overline{Y}_6	$\overline{\overline{\mathbf{Y}}}_{7}$
0	х	x x x	1	1	1	1	1	1	1	1
×	1	x x x	1	1	1	1	1	1	1	1
1	0	0 0 0	0	1	1	1	1	1	1	1
1	0	0 0 1	1	0	1	1	1	1	1	1
1	0	0 1 0	1	1	0	1	1	1	1	1
1	0	0 1 1	1	1	1	0	1	1	1	1
1	0	1 0 0	1	1	1	1	0	1	1	1
1	0	1 0 1	1	1	1	1	1	0	1	1
1	0	1 1 0	1	1	1	1	1	1	0	1
1	0	1 1 1	1	1	1	1	1	1	1	0

■ 输出低电平有效

$$\overline{\mathbf{Y}}_0 = \overline{\overline{\mathbf{A}}_2 \ \overline{\mathbf{A}}_1 \ \overline{\mathbf{A}}_0} = \overline{\mathbf{m}}_0$$

 $En=S_1 \cdot \overline{S}_2 \cdot \overline{S}_3$

4511真值表

		输	j	λ.							输	出		
LE	ΒĪ	ΙΤ	D	С	В	Α	a	ь	С	đ	е	f	g	显示字形
×	×	0	×	×	×	×	1	1	1	1	1	1	1	8
×	0	1	×	×	×	×	0	0	0	0	0	0	0	消隐
0	1	1	0	0	0	0	1	1	1	1	1	1	0	0
0	1	1	0	0	0	1	0	1	1	0	0	0	0	
0	1	1	0	0	1	0	1	1	0	1	1	0	1	5
0	1	1	0	0	1	1	1	1	1	1	0	0	1	3
0	1	1	0	1	0	0	0	1	1	0	0	1	1	Ч
0	1	1	0	1	0	1	1	0	1	1	0	1	1	5
0	1	1	0	1	1	0	0	0	1	1	1	1	1	Ь
0	1	1	0	1	1	1	1	1	1	0	0	0	0	7
0	1	1	1	0	0	0	1	1	1	1	1	1	1	8
0	1	1	1	0	0	1	1	1	1	0	0	1	1	٩
0	1	1	1	0	1	0	0	0	0	0	0	0	0	消隐
0	1	1	1	0	1	1	0	0	0	0	0	0	0	消隐
0	1	1	1	1	0	0	0	0	0	0	0	0	0	消隐
0	1	1	1	1	0	1	0	0	0	0	0	0	0	消隐
0	1	1	1	1	1	0	0	0	0	0	0	0	0	消隐
0	1	1	1	1	1	1	0	0	0	0	0	0	0	消隐
1	1	1	×	×	×	×			f	锁 有	Ē			锁存

中国科学技术大学

University of Science and Technology of Chin

一、验证编码器74LS148和译码器74LS138的逻辑功能:

16 1							
Vcc	$\overline{Y}_{\!S}$	$\overline{Y}_{\!EX}$	$\overline{\mathrm{I}}_{3}$	$\overline{\mathrm{I}}_{2}$	$\overline{\mathrm{I}}_{1}$	$\overline{\mathrm{I}}_{0}$	\overline{Y}_{0}
Þ				148			
$\overline{\mathrm{I}}_{4}$	\overline{I}_{5}	$\overline{\rm I}_{\bf 6}$	$\overline{\mathrm{I}}_{7}$	\overline{S}	$\overline{Y}_{\!2}$	\overline{Y}_{1}	GND 8
1	2	3	4	5	6	7	8
16 1	5 1	14 1	3	12	11 1	10	9
Vcc	\overline{Y}_{0}	\overline{Y}_1	\overline{Y}_2	\overline{Y}_3	\overline{Y}_{4}	\overline{Y}_{5}	\overline{Y}_6
			_	-0		-0	-0
Þ		74	4LS	138			
Þ		74	4LS	138			GND 8

按上图连接电路,根据74LS148和74LS138的输出状态,填写下表,并分析结果。

74LS148(编和	马)	74LS138(译码)				
$\overline{I}_0 \overline{I}_1 \overline{I}_2 \overline{I}_3 \overline{I}_4 \overline{I}_5 \overline{I}_6 \overline{I}_7$	$\overline{Y}_2 \overline{Y}_1 \overline{Y}_0$	$\mathbf{A_2}\mathbf{A_1}\mathbf{A_0}$	$\overline{\overline{Y}}_{0}\overline{\overline{Y}}_{1}\overline{\overline{Y}}_{2}\overline{\overline{Y}}_{3}\overline{\overline{Y}}_{4}\overline{\overline{Y}}_{5}\overline{\overline{Y}}_{6}\overline{\overline{Y}}_{7}$			
1 1 1 1 1 1 1 1						
0 1 1 1 1 1 1 1						
\times 0 1 1 1 1 1 1	V.					
$\times \times 0 \ 1 \ 1 \ 1 \ 1 \ 1$						
$\times \times \times 0 \ 1 \ 1 \ 1 \ 1 \ \times \times \times \times 0 \ 1 \ 1 \ 1 \ 1$						
$\begin{array}{c} \mathbf{x} \ \mathbf{x} \ \mathbf{x} \ \mathbf{x} \ \mathbf{x} \ 0 \ 1 \ 1 \ 1 \\ \mathbf{x} \ \mathbf{x} \ \mathbf{x} \ \mathbf{x} \ \mathbf{x} \ 0 \ 1 \ 1 \end{array}$						
$\times \times $						
$\times \times \times \times \times \times \times 0$						

二、用两片74LS138扩展为一个4线-16线译码器:

按上图连接电路,根据实验结果,填写下表,并分析电路的工作原理。

	_			
\mathbf{D}_3	\mathbf{D}_2	$\mathbf{D_1}$	$\mathbf{D_0}$	$\overline{Y_0} \overline{Y_1} \overline{Y_2} \overline{Y_3} \overline{Y_4} \overline{Y_5} \overline{Y_6} \overline{Y_7} \overline{Y_8} \overline{Y_9} \overline{Y_{10}} \overline{Y_{11}} \overline{Y_{12}} \overline{Y_{13}} \overline{Y_{14}} \overline{Y_{15}}$
0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	

University of Science and Technology of China

● 三、用74LS138和74LS20双与非门设计下面的多输出函数,画出逻辑电路图。

$$\begin{cases} Y_1 = \overline{A}B\overline{C}\overline{D} + \overline{A}\overline{B}\overline{C}D + A\overline{B}\overline{C}\overline{D} + ABC\overline{D} \\ Y_2 = BC \end{cases}$$

四、一把密码锁有三个按键,分别为A、B、C。

当三个键都不按下时,锁打不开,也不报警:

当只有一个键按下时,锁打不开,但发出报警信号;

当有两个键同时按下时,锁打开,也不报警:

当三个键同时按下时,锁被打开,但要报警。

试使用74LS138和74LS20双与非门实现此逻辑电路。

五、思考题:

设计一个5-32的二进制译码器

提示: 用四片74LS138及一片74LS139(2-4译码器)组成一个树状结构的级联 译码器。用74LS139的输入端做5-32译码器高二位输入端,74LS138的译码输入 端做5-32译码器的低三位输入端。(注: 74LS139是低电平输出)

