Multi-Objective Least-Squares

Stephen Boyd

EE103 Stanford University

November 9, 2017

Outline

Multi-objective least-squares problem

Control

Estimation and inversion

Regularized data-fitting

Multi-objective least-squares

ightharpoonup goal: choose n-vector x so that k norm squared objectives

$$J_1 = ||A_1x - b_1||^2, \dots, J_k = ||A_kx - b_k||^2$$

are all small

- $ightharpoonup A_i$ is an $m_i \times n$ matrix, b_i is an m_i -vector, $i = 1, \ldots, k$
- ▶ J_i are the objectives in a multi-objective optimization problem (also called a multi-criterion problem)
- ightharpoonup could choose x to minimize any one J_i , but we want *one* x that makes them all small

Weighted sum objective

• choose positive weights $\lambda_1, \ldots, \lambda_k$ and form weighted sum objective

$$J = \lambda_1 J_1 + \dots + \lambda_k J_k = \lambda_1 ||A_1 x - b_1||^2 + \dots + \lambda_k ||A_k x - b_k||^2$$

- we'll choose x to minimize J
- we can take $\lambda_1 = 1$, and call J_1 the primary objective
- ▶ interpretation of λ_i : how much we care about J_i being small, relative to primary objective
- ▶ for a bi-criterion problem, we will minimize

$$J_1 + \lambda J_2 = ||A_1 x - b_1||^2 + \lambda ||A_2 x - b_2||^2$$

Weighted sum minimization via stacking

write weighted-sum objective as

$$J = \left\| \left[\begin{array}{c} \sqrt{\lambda_1} (A_1 x - b_1) \\ \vdots \\ \sqrt{\lambda_k} (A_k x - b_k) \end{array} \right] \right\|^2$$

ightharpoonup so we have $J=\|\tilde{A}x-\tilde{b}\|^2$, with

$$ilde{A} = \left[egin{array}{c} \sqrt{\lambda_1} A_1 \\ dots \\ \sqrt{\lambda_k} A_k \end{array}
ight], \qquad ilde{b} = \left[egin{array}{c} \sqrt{\lambda_1} b_1 \\ dots \\ \sqrt{\lambda_k} b_k \end{array}
ight]$$

ightharpoonup so we can minimize J using basic ('single-criterion') least-squares

Weighted sum solution

lacktriangle assuming columns of $ilde{A}$ are independent,

$$\hat{x} = (\tilde{A}^T \tilde{A})^{-1} \tilde{A}^T \tilde{b} = (\lambda_1 A_1^T A_1 + \dots + \lambda_k A_k^T A_k)^{-1} (\lambda_1 A_1^T b_1 + \dots + \lambda_k A_k^T b_k)$$

- \blacktriangleright can compute \hat{x} via QR factorization of \tilde{A}
- $ightharpoonup A_i$ can be wide, or have dependent columns

Optimal trade-off curve

- bi-criterion problem with objectives J_1 , J_2
- ▶ let $\hat{x}(\lambda)$ be minimizer of $J_1 + \lambda J_2$
- called Pareto optimal: there is no point z that satisfies

$$J_1(z) < J_1(\hat{x}(\lambda)), \quad J_2(z) < J_2(\hat{x}(\lambda))$$

i.e., no other point x beats \hat{x} on both objectives

▶ optimal trade-off curve: $(J_1(\hat{x}(\lambda)), J_2(\hat{x}(\lambda)))$ for $\lambda > 0$

Example

▶ A_1 and A_2 both 10×5

Objectives versus λ

 $ightharpoonup J_1$ (solid); J_2 (dashed)

Optimal trade-off curve

Using multi-objective least-squares

- ▶ identify the primary objective
 - the basic quantity we want to minimize
- choose one or more secondary objectives
 - quantities we'd also like to be small, if possible
 - e.g., size of x, roughness of x, distance from some given point
- tweak/tune the weights until we like (or can tolerate) $\hat{x}(\lambda)$
- for bi-criterion problem with $J = J_1 + \lambda J_2$:
 - if J_2 is too big, increase λ
 - if J_1 is too big, decrease λ

Outline

Multi-objective least-squares problem

Control

Estimation and inversion

Regularized data-fitting

Control

- ▶ *n*-vector *x* corresponds to *actions* or *inputs*
- m-vector y corresponds to results or outputs
- inputs and outputs are related by affine input-output model

$$y = Ax + b$$

- ightharpoonup A and b are known (from analytical models, data fitting ...)
- \blacktriangleright the goal is to choose x (which determines y), to optimize multiple objectives on x and y

Multi-objective control

- ▶ typical primary objective: $J_1 = ||y y^{\text{des}}||^2$, where y^{des} is a given desired or target output
- typical secondary objectives:
 - $x \text{ is small: } J_2 = ||x||^2$
 - x is not far from a nominal input: $J_2 = \|x x^{\text{nom}}\|^2$

Product demand shaping

- we will change prices of n products by n-vector δ^{price}
- lacktriangle this induces change in demand $\delta^{
 m dem}=E^{
 m d}\delta^{
 m price}$
- $lackbox E^{
 m d}$ is the n imes n price elasticity of demand matrix
- we want $J_1 = \|\delta^{\mathrm{dem}} \delta^{\mathrm{tar}}\|^2$ small
- lacktriangle and also, we want $J_2 = \|\delta^{\mathrm{price}}\|^2$ small
- so we minimize $J_1 + \lambda J_2$, and adjust $\lambda > 0$
- trades off deviation from target demand and price change magnitude

Robust control

▶ we have K different input-output models (a.k.a. scenarios)

$$y^{(k)} = A^{(k)}x + b^{(k)}, \quad k = 1, \dots, K$$

- these represent uncertainty in the system
- $ightharpoonup y^{(k)}$ is the output with input x, if system model k is correct
- average cost across the models:

$$\frac{1}{K} \sum_{k=1}^{K} \|y^{(k)} - y^{\text{des}}\|^2$$

- ▶ can add terms for x as well, e.g., $\lambda ||x||^2$
- yields choice of x that does well under all scenarios

Outline

Multi-objective least-squares problem

Control

Estimation and inversion

Regularized data-fitting

Estimation

- measurement model: y = Ax + v
- lacktriangleright n-vector x contains parameters we want to estimate
- m-vector y contains the measurements
- ▶ m-vector v are (unknown) noises or measurement errors
- lacktriangledown m imes n matrix A connects parameters to measurements
- ▶ basic least-squares estimation: assuming v is small (and A has independent columns), we guess x by minimizing $J_1 = \|Ax y\|^2$

Regularized inversion

- can get far better results by incorporating prior information about x into estimation, e.g.,
 - -x should be not too large
 - x should be smooth
- express these as secondary objectives:
 - $-J_2 = ||x||^2$ ('Tikhonov regularization') $-J_2 = ||Dx||^2$
- we minimize $J_1 + \lambda J_2$
- adjust λ until you like the results
- curve of $\hat{x}(\lambda)$ versus λ is called *regularization path*
- ▶ with Tikhonov regularization, works even when A has dependent columns (e.g., when it is wide)

Image de-blurring

- ightharpoonup x is an image, A is a blurring operator, and y=Ax+v is a blurred, noisy image
- least-squares de-blurring: choose x to minimize

$$||Ax - y||^2 + \lambda(||D_{\mathbf{v}}x||^2 + ||D_{\mathbf{h}}x||^2)$$

 $D_{
m v}$, $D_{
m h}$ are vertical and horizontal differencing operations

 $ightharpoonup \lambda$ controls smoothing of de-blurred image

Example

▶ left: blurred, noisy image

 \blacktriangleright right: regularized inversion with $\lambda=0.007$

Regularization path

$$\lambda = 10^{-6}, \lambda = 10^{-4}$$

Regularization path

$$\lambda = 10^{-2}, \lambda = 10^{0}$$

Outline

Multi-objective least-squares problem

Contro

Estimation and inversion

Regularized data-fitting

Motivation for regularization

• consider data-fitting model (of relationship $y \approx f(x)$)

$$\hat{f}(x) = \theta_1 f_1(x) + \dots + \theta_p f_p(x)$$

with $f_1(x) = 1$

- lacktriangledown $heta_i$ is the sensitivity of $\hat{f}(x)$ to $f_i(x)$
- lacktriangledown so large $heta_i$ means the model is very sensitive to $f_i(x)$
- lackbox $heta_1$ is an exception, since $f_1(x)=1$ never varies
- lacksquare so, we don't want $heta_2,\dots, heta_p$ to be too large

Regularized data-fitting

- suppose we have data $(x_1, y_1), \ldots, (x_N, y_N)$
- ightharpoonup express fitting error as $A\theta-y$
- regularized data-fitting: choose θ to minimize

$$||A\theta - y||^2 + \lambda ||\theta_{2:p}||^2$$

- $ightharpoonup \lambda > 0$ is the regularization parameter
- for regression model $\hat{y} = X^T \beta + v \mathbf{1}$, we minimize

$$||X^T\beta + v\mathbf{1} - y||^2 + \lambda ||\beta||^2$$

• choose λ by validation on a test set

Regularized least squares classification

- MNIST digit data set, n=785, N=50000 (train), N=10000 (test)
- we minimize $||X^T\beta + v\mathbf{1} y||^2 + \lambda ||\beta||^2$
- classifier is $\hat{y} = \mathbf{sign}(x^T \beta + v)$
- **b** build one classifier for each digit, same λ
- vary \(\lambda \) and find train and test classification error
- for $\lambda \approx 10^3$, test error drops a bit to 13.5% (from 14%)

Regularized least squares classification

