NYU Computer Science Bridge to Tandon Course

Winter 2021

Homework 1

Name: Yiwen Cui

Question 1

A(1):

$$10011011_2 = 1 \times 2^7 + 0 \times 2^6 + 0 \times 2^5 + 1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0$$

= 128 + 0 + 0 + 16 + 18 + 0 + 2 + 1 = 155

A(2):
$$456_7 = 4 \times 7^2 + 5 \times 7^1 + 6 \times 7^0 = 4 \times 49 + 5 \times 7 + 6 \times 1 = 237$$

A(3):
$$38A_{16} = 3 \times 16^2 + 8 \times 16^1 + 10 \times 16^0 = 768 + 128 + 10 = 906$$

A(4):
$$2214_5 = 2 \times 5^3 + 2 \times 5^2 + 1 \times 5^1 + 4 \times 5^0 = 250 + 50 + 5 + 4 = 309$$

B(1):
$$69_{10} = 1 \times 2^6 + 0 \times 2^5 + 0 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 1000101$$

B(2): $485_{10} = 111100101$

 $485 \div 2 = 242/1$ $242 \div 2 = 121/0$ $121 \div 2 = 60/1$ $60 \div 2 = 30/0$ $30 \div 2 = 15/0$ $15 \div 2 = 7/1$ $7 \div 2 = 3/1$ $3 \div 2 = 1/1$ $1 \div 2 = 0/1$ From right to left fill in the remainder

B(3):
$$6D1A_{16} = 0110110100011010 = 110110100011010$$

 $6_{16} = 0110$ $D_{16} = 1101$ $1_{16} = 0001$ $A_{16} = 1010$

C(1):
$$1101011_2 = 01101011_2 = 6B_{16}$$

 $0110 = 6_{16}$ $1011 = B_{16}$

C(2): $895_{10} = 37F$

 $895 \div 16 = 55/15, 15_{10} = F_{16}$ $55 \div 16 = 3/7$ $3 \div 16 = 0/3$ From right to left fill in the remainder

1:
$$7566_8 + 4515_8 = 14303_8$$

2:
$$10110011_2 + 1101_2 = 11000000_2$$

3:
$$7A66_{16} + 45C5_{16} = C02B_{16}$$

4:
$$3022_5 - 2433_5 = 34_5$$

A1: $124_{10} = 011111100_{8-bit2'scomp}$

Positive integer's 2's complement representation is equal to itself. Therefore 124's 8-bit two's complement representation is 124 convert to binary representation. Adding one "0" at the very left to make it 8 bit

$$124_{10} = 1 \times 2^6 + 1 \times 2^5 + 1 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 0 \times 2^0 = 01111100_{8-bit} = 01111100_{8-bit2'scomp}$$

A2: $-124_{10} = 10000100_{8-bit2'scomp}$

A3: $109_{10} = 01101101_{8-bit2'scomp}$

Positive integer's 2's complement representation is equal to itself. Therefore 124's 8-bit two's complement representation is 109 convert to binary representation. Adding one "0" at the very left to make it 8 bit

$$124_{10} = 1 \times 2^6 + 1 \times 2^5 + 0 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 01101101_{8-bit2'scomp}$$

A4: $-79_{10} = 10110001_{8-bit2'scomp}$

$$79_{10} = 1 \times 2^6 + 0 \times 2^5 + 0 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 = 1001111 = 01001111_{8-bit}$$

B1: $000111110_{8-bit2'scomp} = 30$

Since the first digit is 0, then it's a positive integer. Positive integer's 2's complement representation is equal to itself.

$$00011110 = 1 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = 30$$

B2: $11100110_{8-bit2'scomp} = -26$

Since the first digit is 1, then it's a negative integer

$$00011010 = 1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = 26$$

Since it's a negative integer, then it's -26

B3: $00101101_{8-bit2'scomp} = 45$

Since the first digit is 0, then it's a positive integer. Positive integer's 2's complement representation is equal to itself.

$$00011110 = 1 \times 2^5 + 0 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 45$$

B4: $100111110_{8-bit2'scomp} = -98$ Since the first digit is 1, then it's a negative integer

		1	0	0	1	1	1	1	0
+		0	1	1	0	0	0	1	0
	1	0	0	0	0	0	0	0	0

 $01100010 = 1 \times 2^6 + 1 \times 2^5 + 0 \times 2^4 + 0 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = 98$

Since it's a negative integer, then it's -98

1: 1.2.4 b

p	q	$\neg (p \lor q)$
Т	Т	F
Т	F	F
F	Т	F
F	F	Т

1: 1.2.4 c

p	q	r	$r \lor (p \land \neg q)$
T	Т	Т	Т
T	Т	F	F
T	F	Т	Т
T	F	F	Т
F	Т	Т	Т
F	Т	F	F
F	F	Т	Т
F	F	F	F

2: 1.3.4 b

p	q	$(p \to q) \to (q \to p)$
\mathbf{T}	Т	T
Т	F	Т
F	Т	F
F	F	T

2: 1.3.4 d

p	q	$(\mathbf{p} \leftrightarrow q) \oplus (p \leftrightarrow \neg q)$
Τ	Т	T
Τ	F	T
F	Т	Τ
F	F	T

1: 1.2.7 b
$$(B \land D \land M) \lor (B \land D \land \neg M) \lor (B \land \neg D \land M) \lor (\neg B \land D \land M)$$

- **1: 1.2.7 c** B \vee ($D \wedge M$)
- **2: 1.3.7 b** $(s \lor y) \to p$
- **2: 1.3.7 c** $p \rightarrow y$
- **2:** 1.3.7 d $p \leftrightarrow (s \land y)$
- **2: 1.3.7** e $p \to (s \lor y)$
- **3: 1.3.9 c** $c \rightarrow p$
- **3: 1.3.9 d** $c \rightarrow p$

1: 1.3.6 b If Joe maintains a B average, then he is eligible for the honors program.

1: 1.3.6 c If Rajiv can go on the roller coaster, then he is at least four feet tall.

1: 1.3.6 d If he is at least for feet tall, then Rajiv can go on the roller.

2: 1.3.10 c $(p \lor r) \leftrightarrow (q \land r)$

False. $T \leftrightarrow F$ is False.

2: 1.3.10 d $(p \wedge r) \leftrightarrow (q \wedge r)$

Unknown. If r is True, then the expression is False. $(T \leftrightarrow F)$

If r is False, then the expression is True. $(F \leftrightarrow F)$

2: 1.3.10 e $p \to (r \lor q)$

Unknown. If r is True, then the expression is True. $(T \to T)$

If r is False, then the expression is False. $(T \to F)$

2: 1.3.10 f $(p \land q) \to r$

True. $p \wedge q$ is False. No matter r is True or False, the result is False. $(F \to F \text{ is True}, F \to T \text{ is True})$

1.4.5 b

Logically equivalent.

j	l	r	$\neg j \to (l \vee \neg r)$	$(r \land \neg l) \to j$
Τ	Τ	Т	${ m T}$	Т
Τ	Т	F	T	Т
Τ	F	Т	T	T
Τ	F	F	T	T
F	Т	Т	Т	Т
F	Т	F	T	Т
F	F	Т	F	F
F	F	F	T	T

1.4.5 c

$$j \to \neg l$$

$$\neg j \rightarrow l$$

Not logically equivalent.

j	l	$j \to \neg l$	$\neg j \rightarrow l$
Τ	Т	F	Т
Т	F	Τ	Т
F	Т	Т	Т
F	F	Т	F

1.4.5 d

$$(r \vee \neg l) \to j$$

$$j \to (r \land \neg l)$$

Not logically equivalent.

j	1	r	$(r \vee \neg l) \to j$	$j \to (r \land \neg l)$
T	Т	Т	T	F
T	Т	F	Т	F
T	F	Т	Т	Т
Т	F	F	Т	F
F	Т	Т	F	Т
F	Т	F	Т	Т
F	F	Т	Т	Т
F	F	F	Т	Т

1: 1.5.2 c

$(p \to q) \land (p \to r)$	
$(\neg p \lor q) \land (\neg p \lor r)$	conditional identities
$p \lor (q \land r)$	distributive laws
$p \to (q \land r)$	conditional identities

1: 1.5.2 f

$\neg(p \lor (\neg p \land q))$	
$\neg p \land \neg (\neg p \land q)$	de morgan's law
$\neg p \land (\neg \neg p \lor \neg q)$	de morgan's law
$\neg p \land (p \lor \neg q)$	double negation law
$(\neg p \land p) \lor (\neg p \land \neg q)$	distributive laws
$F \vee (\neg p \wedge \neg q)$	complement laws
$\neg p \land \neg q$	identity laws

1: 1.5.2 i

$(p \land q) \to r$	
$\neg(p \land q) \lor r$	conditional identities
$(\neg p \vee \neg q) \vee r$	de morgan's laws
$(\neg p \lor r) \lor \neg q$	associative laws
$\neg(\neg p \lor r) \to \neg q$	conditional identities
$\neg \neg p \land \neg r \to \neg q$	de morgan's laws
$p \land \neg r \to \neg q$	double negation law

2: 1.5.3 c

$\neg r \lor (\neg r \to p)$	
$\neg r \lor (\neg \neg r \lor p)$	conditional identities
$\neg r \lor (r \lor p)$	double negation law
$(\neg r \lor r) \lor p$	associative laws
$T \vee p$	conditional identities
T	domination laws

2: 1.5.3 d

$\neg (p \to q) \to \neg q$	
$(p \to q) \lor \neg q$	conditional identities
$(\neg p \lor q) \lor \neg q$	conditional identities
$(\neg q \lor q) \lor \neg p$	associative laws
$T \vee \neg p$	conditional identities
T	domination laws

1: 1.6.3 c
$$\exists x(x=x^2)$$

1: 1.6.3 d
$$\forall x (x \le x^2)$$

2: 1.7.4 b
$$\forall x (\neg S(x) \land W(x))$$

2: 1.7.4 c
$$\forall x(S(x) \rightarrow \neg W(x))$$

2: 1.7.4 d
$$\exists x (S(x) \land W(x))$$

```
1: 1.7.9 c
                True
1: 1.7.9 d
                True
                True
1: 1.7.9 e
1: 1.7.9 f
                True
1: 1.7.9 g
                False. counter-example is c
1: 1.7.9 h
                True
1: 1.7.9 i
                True
2: 1.9.2 b
                True. When x = 2, Q(2,1), Q(2,2), Q(2,3) are all true
2: 1.9.2 c
                True. when x=1 that makes P(x,y) all true
2: 1.9.2 d
                 False. There is no x and y make S(x,y) true
2: 1.9.2 e
                 False. Not all x has a y that makes Q(x,y) true. when x=1, P(1,1) P(1,2), P(1,3)
are all false.
2: 1.9.2 f
                True. For every x, there is a y makes P(x,y) true.
2: 1.9.2 g
                False. P(1,2) is false
                True. Q(2,1) is true
2: 1.9.2 h
2: 1.9.2 i
                True. All \neg S(x,y) are true
```

```
1: 1.10.4 c
                          \exists x \exists y (x + y = xy)
1: 1.10.4 d
                          \forall x \forall y (x/y > 0)
                         \forall x ((0 < x < 1) \to (1/x > 1))
1: 1.10.4 e
1: 1.10.4 f
                          \neg \exists x \forall y (y \ge x)
                         \forall x ((x \neq 0) \to \exists y (xy = 1))
1: 1.10.4 g
2: 1.10.7 c
                          \exists x (N(x) \land D(x))
2: 1.10.7 d
                          \exists x \forall y (x = Sam \to (P(x, y) \land D(y)))
2: 1.10.7 e
                          \exists x \forall y (N(x) \land P(x,y))
2: 1.10.7 f
                         \exists x ((N(x) \land D(x)) \land \forall y (N(y) \land D(y)) \rightarrow x = y)
3: 1.10.10 c
                         \forall x \exists y (y \neq Math101 \rightarrow T(x, y))
3: 1.10.10 d
                          \exists x \forall y (y \neq Math101 \rightarrow T(x, y))
                         \forall x \exists y \exists z (x \neq Sam \rightarrow (y \neq z \land T(x, y) \land T(x, z)))
3: 1.10.10 e
3: 1.10.10 f
                         \exists y \exists z (y \neq z \land T(Sam, y) \land T(Sam, z)) \land \forall w (T(Sam, w) \rightarrow (w = y \lor w = z))
```

1: 1.8.2 b

- $\forall x (D(x) \lor P(x) \lor (D(x) \land P(x))$
- Negation: $\neg \forall x (D(x) \lor P(x) \lor (D(x) \land P(x))$
- Applying De Morgan's law: $\exists x (\neg(D(x) \land \neg P(x) \land \neg(D(x) \land P(x)))$
- English: There is a patient who was not given placebo, and was not given medication and was not given both. (There is a patient who was not given anything)

1: 1.8.2 c

- $\exists x (D(x) \land M(x))$
- Negation: $\neg \exists x (D(x) \land M(x))$
- Applying De Morgan's law: $\forall x (\neg (D(x) \vee \neg M(x)))$
- English: Every patient either did not take medication or did not have migraines.

1: 1.8.2 d

- $\forall x (P(x) \to M(x))$
- Negation: $\neg \forall x (P(x) \to M(x))$
- Applying De Morgan's law: $\exists x (P(x) \land \neg M(x))$
- English: There is a patient took the placebo and did not have migraines.

1: 1.8.2 e

- $\exists x (M(x) \land P(x))$
- Negation: $\neg \exists x (M(x) \land P(x))$
- Applying De Morgan's law: $\forall x (\neg P(x) \lor \neg M(x))$
- English: Every patient either did not have migraines or was not given the placebo.

2: 1.9.4 c

$$\forall x \exists y (P(x,y) \land \neg Q(x,y))$$

2: 1.9.4 d

$$\forall x \exists y (P(x,y) \land P(y,x))$$

2: 1.9.4 e

$$\forall x \forall y \neg P(x,y) \lor \exists x \exists y \neg Q(x,y)$$