ANÁLISIS FUNCIONAL, GRADO EN MATEMÁTICAS CURSO 2016/17

- 1. (a) Sea V un espacio vectorial real de dimensión $n ext{ y } L : V \to V$ lineal. Pruébese que son equivalentes las tres afirmaciones siguientes: a) L es inyectiva, b) L es sobreyectiva, c)L es biyectiva.
 - (b) Si W es el espacio vectorial real $C([0,1],\mathbf{R})$ con las operaciones habituales y $L:W\to W$ se define como $L(f)(t)=\int_0^t f(s)\ ds,\ \forall\ t\in[0,1],\ \forall\ f\in W$, pruébese que L es lineal, inyectiva y no sobreyectiva.
 - (c) ¿Qué conclusión obtienes de los dos apartados anteriores?
- 2. Sea X un espacio vectorial real. Demuéstrese que se puede definir una norma, al menos, en X.
- 3. Sea X un espacio normado. Para $x \in X$ y r > 0, pruébese
 - (a) $\overline{B}(x;r) = \overline{B(x;r)}$
 - (b) $B(x;r) = int(\overline{B}(x;r))$
- 4. Demuéstrese que el conjunto de los polinomios reales, con las operaciones habituales, es un espacio vectorial real de dimensión infinita. Escríbase alguna base.
- 5. Demuéstrese que l_1 es un espacio vectorial real, con las operaciones habituales. Si H es el subconjunto de l_1 formado por los elementos canónicos, pruébese que H es linealmente independiente, pero no base de l_1 . ¿Tiene l_1 dimensión infinita?
- 6. Para $1 \leq p, q \leq \infty, \ p \neq q$, encuéntrese la relación entre l_p y l_q .
- 7. Probar que el conjunto $\{\{x_n\} \in l_2 : |x_n| < 1, \ \forall \ n \in \mathbb{N}\}$ es un conjunto abierto en l_2 .
- 8. Considérese el espacio X=C[-1,1], con la norma uniforme. ¿Es el subconjunto formado por los polinomios abierto en X?

- 9. Sea $X=L^1[0,1]$ con la norma usual. ¿Es el conjunto $\{f\in X:\int_0^1 f(t)\ dt=0\}$ cerrado en X?
- 10. Sea X un espacio normado.
 - (a) Encontrar todos los subespacios vectoriales de X que estén contenidos en una bola.
 - (b) Encontrar todos los subespacios vectoriales que contengan una bola de X.
- 11. Encuéntrese la clausura de l_p y c_0 en l_∞ , donde $1 \le p < \infty$.
- 12. Sea X = C[0,1] y $f: X \to \mathbf{R}$, $f(x) = x(1), \forall x \in X$.
 - (a) Probar que f es continua si en X consideramos la norma uniforme.
 - (b) Probar que f no es continua si en X se considera la norma usual de $L^p(0,1), 1 \le p < \infty$.
- 13. Sea X = C[0,1] y $M: X \to X$, definido como $M(f) = f^2$, $\forall f \in X$. Demuéstrese que M es continua pero no uniformemente continua si en X se considera la norma uniforme.
- 14. Sea X = C[0,1] con la norma usual y $L: X \to X$ definido como $L(f)(x) = \int_0^x e^t f(t) \ dt$. Si, para cada $n \in \mathbb{N}$ definimos $L_n: X \to X$ como $L_n(f)(x) = \int_0^x \left(\sum_{k=0}^n \frac{t^k}{k!}\right) f(t) \ dt$, pruébese que $||L L_n|| \to 0$ cuando $n \to \infty$.
- 15. Considérense, para cada $n \in \mathbf{N}$, los operadores $A_n, B_n: l_2 \to l_2$ definidos como

$$A_n(x) = (x(1)/n, x(2)/(2n), x(3)/(3n), \ldots),$$

 $B_n(x) = (0, \ldots, 0, x_{n+1}, x_{n+2}, \ldots)$

para cada $x=(x(1),x(2),x(3),\ldots)\in X$. Pruébese que $\|A_n\|\to 0$, $B_n(x)\to 0, \forall x\in l_2$, pero que $\|B_n\|$ no converge a cero.

16. Sea $X=(C[0,1],\mathbf{R})$. Demuéstrese que la norma uniforme $\|\cdot\|_0$ y la norma definida como $\|u\|_{L^1(0,1)}=\int_0^1|u(t)|\ dt,\ \forall\ u\in X,$ no son equivalentes. ¿Qué conclusión se obtiene sobre la dimensión de X?

- 17. Sea $X = l_2$ con la norma usual y $\{e^n\}$ la sucesión de elementos canónicos. Sea E el subespacio vectorial de X generado por la sucesión $\{e^n\}$. Demuéstrese que E no es cerrado.
- 18. (a) Poner un ejemplo de una sucesión que converja a cero en l_{∞} pero no en l_1 ni en l_2 .
 - (b) Poner un ejemplo de una sucesión que converja a cero en l_2 pero no en l_1 .
 - (c) Poner un ejemplo de una sucesión que converja a cero en c_0 pero no en l_2
- 19. Sea $X=\{u:[0,1]\to \mathbf{R}:u\text{ es continua},u(0)=0\}$ con la norma uniforme $\|\cdot\|_0$ y el funcional $L:X\to \mathbf{R}$ definido como $L(u)=\int_0^1 u(t)\ dt,\ \forall\ u\in X.$ Demuéstrese que L es lineal y continuo. Calcúlese la norma de L en X^* ¿Se alcanza dicha norma?
- 20. Considérese el espacio normado l_2 con la norma usual y sea $\{\lambda_n\}$ una sucesión dada de números reales.
 - (a) Encuéntrese una condición necesaria y suficiente sobre la sucesión $\{\lambda_n\}$ para que el operador (lineal) $A(\{x_n\}) = \{\lambda_n x_n\}$ esté bien definido de l_2 en l_2 .
 - (b) Encuéntrese una condición necesaria y suficiente sobre la sucesión $\{\lambda_n\}$ para que el operador (lineal) $A(\{x_n\}) = \{\lambda_n x_n\}$ esté bien definido de l_2 en l_2 y sea continuo. En este caso, ¿se alcanza siempre la norma de dicho operador?
- 21. Sea X un espacio normado, X^{\sharp} el dual algebraico y $L \in X^{\sharp}$. Demuéstrese que $L \in X^{*}$ (dual topológico) si y solamente si el núcleo de L es cerrado.
- 22. Si X es un espacio normado, $L \in X^{\sharp}$ (L no idénticamente cero) y $\alpha \in \mathbf{R}$ se define el hiperplano $H(L, \alpha)$ como

$$H(L,\alpha) = \{x \in X : L(x) = \alpha\}$$

Demuéstrese que cualquier hiperplano en X es o cerrado o denso. ¿Qué particularidades tiene este resultado si la dimensión de X es finita?

- 23. Considérense los espacios l_1 y l_∞ con las normas usuales. Demostrar que la aplicación $l_\infty \to l_1^*$, $y = \{y_k\} \to y^*$, definida como $y^*(x) = \sum_{k=1}^\infty y_k x_k$, $\forall x = \{x_k\} \in l_1$ define una isometría lineal de l_∞ sobre l_1^* .
- 24. Sea X=C[0,1] con la norma uniforme. Pruébese que los operadores lineales siguientes $T:X\to X$ son continuos y calcúlese su norma:
 - (a) $T(f)(x) = 3x^2 f(0)$.
 - (b) $T(f)(x) = f(x^m)$, donde $m \in \mathbb{N}$ es dado.
- 25. Estudiar la convergencia de la sucesión

$$f_n(t) = \frac{t^{n+1}}{n+1} - \frac{t^{n+2}}{n+2}, \ t \in [0,1]$$

en cada uno de los espacios siguientes:

- (a) X = C[0, 1] con la norma uniforme.
- (b) $X=C^1[0,1]$ con la norma definida por la suma de la norma uniforme de la función y la norma uniforme de la derivada.
- (c) X = C[0, 1] con la norma de $L^1(0, 1)$.