Activation of metrologically useful genuine multipartite entanglement, arXiv:2203.05538

Róbert Trényi^{1,2,3,4}, Árpád Lukács^{5,1}, Paweł Horodecki^{6,7}, Ryszard Horodecki⁶, Tamás Vértesi⁸, Géza Tóth^{1,2,3,4,9},

¹Theoretical Physics and ²EHU Quantum Center,
 University of the Basque Country (UPV/EHU), Bilbao, Spain
 ³Donostia International Physics Center (DIPC), San Sebastián, Spain
 ⁴Wigner Research Centre for Physics, Budapest, Hungary
 ⁵Department of Mathematical Sciences, Durham University
 ⁶International Centre for Theory of Quantum Technologies, University of Gdansk, Poland
 ⁷Faculty of Applied Physics and Mathematics, National Quantum Information Centre,
 Gdansk University of Technology, Gdansk, Poland
 ⁸Institute for Nuclear Research, Hungarian Academy of Sciences, Debrecen, Hungary

14th Symposium KCIK-ICTQT on Quantum Information, Gdansk, 19 May 2023

⁹IKERBASQUE, Basque Foundation for Science, Bilbao, Spain

Simple example

• Let us consider M = 2 copies of the 3-qubit state

$$\varrho_{p}=p|\text{GHZ}\rangle\langle\text{GHZ}|+(1-p)\frac{1}{2}(|000\rangle\langle000|+|111\rangle\langle111|),$$
 with $p=0.8$.

Then, we have

$$\mathcal{F}_{Q}[\varrho, H_{2}] = 28.0976,$$
 (2 copies)

while for M = 1 we have

$$\mathcal{F}_{Q}[\varrho, H_{1}] = 23.0400.$$
 (1 copy)

In both cases,

$$\mathcal{F}_{O}^{(\text{sep})}(H_k) = 12,$$

hence for the metrological gain

$$g_1 = 1.92 < g_2 = 2.34.$$

Simple example II

Considering the state

$$\varrho_{p} = p|GHZ\rangle\langle GHZ| + (1-p)\frac{1}{2}(|000\rangle\langle 000| + |111\rangle\langle 111|),$$

we took care of phase flip errors.

• We can also correct bitflip errors in the usual way, if the state is outside of the $\{|000\rangle, |111\rangle\}$ subspace.

Simple example III

- Directly relevant to experiments with GHZ states!
- One can obtain maximal visibility.

N = 2 and N = 4 particles, Sackett *et al.*, Experimental entanglement of four particles, Nature (2000).

Comparison to error correction

- 3 logical qubits,
- 1 logical qubit=3 physical qubits

W. Dür, M. Skotiniotis, F. Fröwis, B. Kraus, Phys. Rev. Lett. (2014).

Comparison to error correction II

- How do we store a three-qubit GHZ state?
- Multicopy metrology:

$$\begin{split} |\text{GHZ}\rangle &= \tfrac{1}{\sqrt{2}} \big(|000\rangle + |111\rangle \big) \otimes \tfrac{1}{\sqrt{2}} \big(|000\rangle + |111\rangle \big) \otimes \tfrac{1}{\sqrt{2}} \big(|000\rangle + |111\rangle \big), \\ \mathcal{H} &= \sigma_z^{(1)} \sigma_z^{(4)} \sigma_z^{(7)} + \sigma_z^{(2)} \sigma_z^{(5)} \sigma_z^{(8)} + \sigma_z^{(3)} \sigma_z^{(6)} \sigma_z^{(9)}. \end{split}$$

Improves performance without syndrome measurements.

Error correction for bit-flip code (phase-flip code is similar):

$$|GHZ\rangle = \frac{1}{\sqrt{2}}(|000\ 000\ 000\rangle + |111\ 111\ 111\rangle),$$

$$H = \sigma_z^{(1)}\sigma_z^{(2)}\sigma_z^{(3)} + \sigma_z^{(4)}\sigma_z^{(5)}\sigma_z^{(6)} + \sigma_z^{(7)}\sigma_z^{(8)}\sigma_z^{(9)},$$

+ error syndrome measurements + error correction.

Comparison to error correction III

- Let us see our scheme for M = 3, N = 3.
- Let be ϱ some mixture of the states with at most 1 copy with a phase error

$$\begin{split} |\Psi_{+++}\rangle &= |GHZ+\rangle \otimes |GHZ+\rangle \otimes |GHZ+\rangle, \\ |\Psi_{-++}\rangle &= |GHZ-\rangle \otimes |GHZ+\rangle \otimes |GHZ+\rangle, \\ |\Psi_{+-+}\rangle &= |GHZ+\rangle \otimes |GHZ-\rangle \otimes |GHZ+\rangle, \\ |\Psi_{++-}\rangle &= |GHZ+\rangle \otimes |GHZ+\rangle \otimes |GHZ-\rangle, \end{split}$$

where

$$|\mathrm{GHZ}\pm\rangle = \frac{1}{\sqrt{2}}(|000\rangle \pm |111\rangle).$$

We still obtain

$$\mathcal{F}_{\mathcal{O}}[\varrho, H] = \max.$$