Cours 4 – Méthodes à noyaux

1. Noyaux

1.1 Produit scalaire

$$-\langle \vec{x}, \vec{x}' \rangle = \sum_{j=1}^{p} x_j x'_j$$

$$- \langle \vec{x}, \vec{x}' \rangle = ||\vec{x}||_2 ||\vec{x}'||_2 \cos \theta \qquad ||\vec{x}||_2^2 = \langle \vec{x}, \vec{x} \rangle$$

- Interprétable comme mesure de similarité
- Forme définie positive bilinéaire :
 - $-\langle \vec{x}, \vec{x}' \rangle = \langle \vec{x}', \vec{x} \rangle$ pour tout $\vec{x}, \vec{x}' \in \mathcal{X}$
 - $-\langle \vec{x} + \vec{z}, \vec{x}' \rangle = \langle \vec{x}, \vec{x}' \rangle + \langle \vec{z}, \vec{x}' \rangle$ pour tout $\vec{x}, \vec{x}', \vec{z} \in \mathcal{X}$
 - $-\langle a\vec{x}, \vec{x}' \rangle = a\langle \vec{x}, \vec{x}' \rangle$ pour tout $a \in \mathbb{R}$
 - $-\langle \vec{x}, \vec{x} \rangle \geq 0$ et $\langle \vec{x}, \vec{x} \rangle = 0$ ssi $\vec{x} = 0$
- Apparaît dans de nombreux algorithmes d'apprentissage.

1.2 Noyau

- **Généralisation** du produit scalaire : $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$
 - sémantiquement une similarité
 - mathématiquement une forme définie positive
- Aronszajn: Si k est semi-définie positive¹, il existe un espace de Hilbert \mathcal{H} et une application $\varphi: \mathcal{X} \to \mathcal{H}$ telle que $k(\vec{x}, \vec{x}') = \langle \varphi(\vec{x}), \varphi(\vec{x}') \rangle_{\mathcal{H}}$ pour tout $\vec{x}, \vec{x}', \vec{z} \in \mathcal{X}$

¹Pour tout $m \in \mathbb{N}^*$, pour tout $\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_m\} \in \mathcal{X}$, la matrice $K \in \mathbb{R}^{m \times m}$ telle que $K_{il} = k(\vec{x}_i, \vec{x}_l)$ est semi-définie positive

1.3 Astuce du noyau

$$k(\vec{x}, \vec{x}') = \langle \varphi(\vec{x}), \varphi(\vec{x}') \rangle_{\mathcal{H}}$$

- Si un algorithme ne fait intervenir les éléments de $\mathcal X$ que dans des produits scalaires, **remplacer ces produits scalaires** par k est équivalent à appliquer l'algorithme dans $\mathcal H$ après avoir appliqué φ
- Utile si k est plus simple à calculer que φ

1.3 Astuce du noyau

$$k(\vec{x}, \vec{x}') = \langle \varphi(\vec{x}), \varphi(\vec{x}') \rangle_{\mathcal{H}}$$

- Si un algorithme ne fait intervenir les éléments de $\mathcal X$ que dans des produits scalaires, **remplacer ces produits scalaires** par k est équivalent à appliquer l'algorithme dans $\mathcal H$ après avoir appliqué φ
- Utile si k est plus simple à calculer que φ
- $\begin{array}{l} \ \ \text{Exemple}: \text{noyau quadratique} \ k: (\vec{x}, \vec{x}') \mapsto (1 + \langle \vec{x}, \vec{x}' \rangle)^2 \\ \\ \text{Équivaut à } \varphi: (x_1, x_2, \ldots, x_p) \mapsto \\ (1, x_1, \ldots, x_p, x_1^2, x_2^2, \ldots, x_p^2, \sqrt{2} x_1 x_2, \ldots, \sqrt{2} x_{p-1} x_p). \end{array}$

1.4 Régression ridge à noyau

- **Régression ridge**: $\arg\min_{\vec{\beta} \in \mathbb{R}^{p+1}} \frac{1}{n} \left(\vec{y} X \vec{\beta} \right)^{\top} \left(\vec{y} X \vec{\beta} \right) + \lambda \left| \left| \vec{\beta} \right| \right|_2$
 - Solution: $\vec{\beta}^* = (X^\top X + \lambda I_p)^{-1} X^\top \vec{y}$
 - Modèle : $f: \vec{x} \mapsto \langle \vec{\beta}^*, \vec{x} \rangle$
- Reformulation : $f: \vec{x} \mapsto \vec{x} X^{\top} \left(\lambda I_n + X X^{\top} \right)^{-1} \vec{y}$

1.4 Régression ridge à noyau

- **Régression ridge**: $\arg\min_{\vec{\beta} \in \mathbb{R}^{p+1}} \frac{1}{n} \left(\vec{y} X \vec{\beta} \right)^{\top} \left(\vec{y} X \vec{\beta} \right) + \lambda \left| \left| \vec{\beta} \right| \right|_{2}$
 - Solution: $\vec{\beta}^* = (X^\top X + \lambda I_p)^{-1} X^\top \vec{y}$
 - Modèle : $f: \vec{x} \mapsto \langle \vec{\beta}^*, \vec{x} \rangle$
- Reformulation : $f: \vec{x} \mapsto \vec{x} X^{\top} \left(\lambda I_n + X X^{\top} \right)^{-1} \vec{y}$
 - $-\vec{x}X^{\top} \in \mathbb{R}^n$ a pour i-ème entrée : $\langle \vec{x}, \vec{x}_i \rangle$
 - $-~XX^{ op} \in \mathbb{R}^{n imes n}$ a pour entrée (i,l) : $\langle ec{x}_i, ec{x}_l
 angle$

1.4 Régression ridge à noyau

- **Régression ridge**: $\arg\min_{\vec{\beta} \in \mathbb{R}^{p+1}} \frac{1}{n} \left(\vec{y} X \vec{\beta} \right)^{\top} \left(\vec{y} X \vec{\beta} \right) + \lambda \left| \left| \vec{\beta} \right| \right|_{2}$
 - Solution: $\vec{\beta}^* = (X^\top X + \lambda I_p)^{-1} X^\top \vec{y}$
 - Modèle : $f: \vec{x} \mapsto \langle \vec{\beta}^*, \vec{x} \rangle$
- Reformulation : $f: \vec{x} \mapsto \vec{x} X^{\top} \left(\lambda I_n + X X^{\top}\right)^{-1} \vec{y}$
 - $-\vec{x}X^{\top} \in \mathbb{R}^n$ a pour *i*-ème entrée : $\langle \vec{x}, \vec{x}_i \rangle$
 - $-XX^{\top} \in \mathbb{R}^{n \times n}$ a pour entrée (i, l) : $\langle \vec{x_i}, \vec{x_l} \rangle$
- Kernelization : remplacer $\vec{x}X^{\top}$ par $\kappa \in \mathbb{R}^n$ tel que $\kappa_i = k(\vec{x}, \vec{x}_i)$ et XX^{\top} par $K \in \mathbb{R}^{n \times n}$ telle que $K_{il} = k(\vec{x}_i, \vec{x}_l)$

équivaut à transformer les données par φ puis apprendre une régression ridge, pour environ le même coût algorithmique

- Noyau quadratique $k:(\vec{x},\vec{x}')\mapsto (1+\langle\vec{x},\vec{x}'\rangle)^2$ φ calcule tous les monômes de degré au plus 2 de x_1,x_2,\ldots,x_p

- Noyau quadratique $k:(\vec{x},\vec{x}')\mapsto (1+\langle\vec{x},\vec{x}'\rangle)^2$ φ calcule tous les monômes de degré au plus 2 de x_1,x_2,\ldots,x_p
- Noyau polynomial $k:(\vec{x},\vec{x}')\mapsto (1+\langle\vec{x},\vec{x}'\rangle)^d$ φ calcule tous les monômes de degré au plus d de x_1,x_2,\ldots,x_p

- Noyau quadratique $k:(\vec{x},\vec{x}')\mapsto (1+\langle\vec{x},\vec{x}'\rangle)^2$ φ calcule tous les monômes de degré au plus 2 de x_1,x_2,\ldots,x_p
- Noyau polynomial $k:(\vec{x},\vec{x}')\mapsto (1+\langle\vec{x},\vec{x}'\rangle)^d$ φ calcule tous les monômes de degré au plus d de x_1,x_2,\ldots,x_p
- Noyau RBF gaussien $k: (\vec{x}, \vec{x}') \mapsto \exp\left(-\frac{||\vec{x}-\vec{x}'||_2^2}{\sigma^2}\right)$ φ calcule tous les monômes de x_1, x_2, \ldots, x_p et $\mathcal H$ est de dimension infinie.

- Noyau pour chaîne de caractères $k:(\vec{x},\vec{x}')\mapsto \sum_{u\in\mathcal{A}^m}\psi_u(\vec{x})\psi_u(\vec{x}')$
 - $-\mathcal{A}^m$ = l'ensemble des chaînes de m caractères sur l'alphabet \mathcal{A}
 - $-\psi_u(\vec{x})=1$ si u est une sous-chaîne de \vec{x} et 0 sinon.

- Noyau pour chaîne de caractères $k:(\vec{x},\vec{x}')\mapsto \sum_{u\in\mathcal{A}^m}\psi_u(\vec{x})\psi_u(\vec{x}')$
 - $-\mathcal{A}^m$ = l'ensemble des chaînes de m caractères sur l'alphabet \mathcal{A}
 - $\psi_u(\vec{x}) = 1$ si u est une sous-chaîne de \vec{x} et 0 sinon.
- $-k(\vec{x}, \vec{x}')$ est le nombre de chaînes de m caractères communes à \vec{x} et \vec{x}' et peut être calculé en $\mathcal{O}(|\vec{x}|)$ au lieu de $\mathcal{O}(|\mathcal{A}|^m)$.

- Noyau pour chaîne de caractères $k:(\vec{x},\vec{x}')\mapsto \sum_{u\in\mathcal{A}^m}\psi_u(\vec{x})\psi_u(\vec{x}')$
 - $-\mathcal{A}^m$ = l'ensemble des chaînes de m caractères sur l'alphabet \mathcal{A}
 - $-\psi_u(\vec{x})=1$ si u est une sous-chaîne de \vec{x} et 0 sinon.
- $-k(\vec{x}, \vec{x}')$ est le nombre de chaînes de m caractères communes à \vec{x} et \vec{x}' et peut être calculé en $\mathcal{O}(|\vec{x}|)$ au lieu de $\mathcal{O}(|\mathcal{A}|^m)$.
- Si m=8, $|\mathcal{A}|=20$ et en moyenne $|\vec{x}|=485$, on compare 25,6 milliards d'opérations à moins de 500.

2. Machines à vecteurs de support

2.1 Formulation primale

Classification binaire, $\mathcal{Y} = \{-1, 1\}$

$$\underset{\vec{\beta} \in \mathbb{R}^p, b \in \mathbb{R}}{\operatorname{arg min}} \frac{1}{2} \left| \left| \vec{\beta} \right| \right|_2^* + C \sum_{i=1}^n \max \left(0, 1 - y_i \left(\langle \vec{\beta}, \vec{x}_i \rangle + b \right) \right)$$

2.2 Formulation duale

$$\underset{\vec{\alpha} \in \mathbb{R}^n}{\operatorname{arg max}} \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{l=1}^n \alpha_i \alpha_l y_i y_l \langle \vec{x}_i, \vec{x}_l \rangle$$

sous les contraintes $\sum_{i=1}^{n} \alpha_i y_i = 0$ et $0 \le \alpha_i \le C$

- Modèle : $f: \vec{x} \mapsto \sum_{i=1}^n \alpha_i y_i \langle \vec{x}_i, \vec{x} \rangle$

2.3 SVR

– Perte ε -insensible :

$$L(y, f(\vec{x}) = \max(0, |f(\vec{x}) - y| - \varepsilon)$$