Lecture 5: Conditional Distributions

20 March, 2018

Sunil Kumar Gauttam

Department of Mathematics, LNMIIT

Conditional probability P(A|B), is probability of event A in the new universe (or sample space) B. Now we extend this idea to conditioning one random variable on another in order to give a quantification of dependence of one random variable over the other if the random variables are not independent. We first look at discrete random variables.

Conditional PMF

Definition 5.1 Let X and Y be two discrete random variable associated with the same random experiment. Then the conditional pmf $f_{X|Y}$ of X given Y = y, is defined as

$$f_{X|Y}(x|y) = \begin{cases} P\{X = x | Y = y\} & \text{if} \quad P\{Y = y\} > 0\\ 0 & \text{if} \quad P\{Y = y\} = 0 \end{cases}$$

In the original sample space Ω , random variable X has some probability distribution. Now we are told that event $\{Y=y\}$ has occurred. Since X depend on Y, this new information provides partial knowledge about value of X. Hence the probability distribution of X in the new universe determined by the event $\{Y=y\}$ should change. This change is captured by conditional pmf.

A conditional pmf can be thought of as an ordinary pmf over a new universe determined by the conditioning event. For this, note that for fixed y, $f_{X|Y}(x|y) \ge 0$ for all $x \in R_X$. Also if P(Y = y) > 0 then

$$\sum_{x \in R_X} f_{X|Y}(x|y) = \sum_{x \in R_X} P(X = x|Y = y) = P\left(\bigcup_{x \in R_X} \{X = x\} \middle| Y = y\right) = P(\Omega|Y = y) = 1$$

If X, Y have joint pmf f, then using the definition of conditional probability we obtain

$$f_{X|Y}(x|y) = \begin{cases} \frac{f(x,y)}{f_Y(y)} & \text{if } f_Y(y) > 0\\ 0 & \text{if } f_Y(y) = 0 \end{cases}$$

Conditional Distribution Function

Recall that the distribution function F_X of any random variable X (discrete, continuous or mixed) is defined as

$$F_X(x) = P\{X \le x\}, \ \forall x \in \mathbb{R}.$$

We define conditional distribution function of X given Y = y as

$$F_{X|Y}(x|y) := P(X \le x|Y = y).$$

So conditional distribution function is an ordinary (or unconditional) distribution function in new universe determined by the conditioning event.

Recall that if X is a discrete random variable with pmf f_X then

$$F_X(x) = \sum_{t \in R_X: t \le x} f_X(t).$$

Similarly, if X is a discrete random variable with conditional pmf $f_{X|Y}$ then

$$F_{X|Y}(x|y) = \sum_{t \in R_X: t \le x} f_{X|Y}(t|y).$$

Recall that if X is a discrete random variable with pmf f_X then and $A \subset \mathbb{R}$ then

$$P(X \in A) = \sum_{x \in A \cap R_X} f_X(x).$$

Similarly, if X is a discrete random variable with conditional pmf $f_{X|Y}$ and $A \subset \mathbb{R}$, then we have

$$P(X \in A|Y = y) = \sum_{x \in R_X \cap A} f_{X|Y}(x|y)$$

Example 5.2 Let the joint pmf of X and Y is given as follows:

X	-1	0	1
-1	0	$\frac{1}{4}$	0
0	$\frac{1}{4}$	0	$\frac{1}{4}$
1	0	$\frac{1}{4}$	0

Then compute the conditional pmf of X given Y = 0. Also compute the conditional distribution function of the same.

Solution: Note that $P(Y=0)=\frac{1}{2}$. Hence

$$f_{X|Y}(x|0) = \begin{cases} \frac{1}{2} & \text{if } x = -1, 1\\ 0 & \text{if } x = 0 \end{cases}$$

Now the conditional distribution function

$$F_{X|Y}(x|0) = \begin{cases} 0 & \text{if } x < -1\\ \frac{1}{2} & \text{if } -1 \le x < 1\\ 1 & \text{if } x \ge 1 \end{cases}$$

Remark 5.3 We have said that conditional pmf is a pmf in the new universe determined by the conditioning event. In Example 5.2, the probability distribution of X is

$$P(X = -1) = P(X = 1) = \frac{1}{4}, P(X = 0) = \frac{1}{2}.$$

Where as in new universe determined by the event $\{Y = 0\}$, the probability distribution of X is revised as

$$P(X = -1|Y = 0) = P(X = 1|Y = 0) = \frac{1}{2}, P(X = 0|Y = 0) = 0.$$

Similarly, the distribution function of X is

$$F_X(x) = \begin{cases} 0 & \text{if } x < -1\\ \frac{1}{4} & \text{if } -1 \le x < 0\\ \frac{3}{4} & \text{if } 0 \le x < 1\\ 1 & \text{if } x \ge 1 \end{cases}$$

 F_X got revised as $F_{X|Y}(x|0)$ in the new universe determined by the event $\{Y=0\}$. Also note that $F_{X|Y}(x|0)$ satisfies all the properties of a distribution function:

- 1. $\lim_{x \to -\infty} F_{X|Y}(x|0) = 0$, $\lim_{x \to +\infty} F_{X|Y}(x|0) = 1$.
- 2. $F_{X|Y}(\cdot|0)$ is non-decreasing on \mathbb{R} .
- 3. $F_{X|Y}(\cdot|0)$ is right-continuous on \mathbb{R} .

The conditional PMF can also be used to calculate the marginal PMFs. In particular, we have by using the definitions,

$$f_X(x) = \sum_{y} f(x, y) = \sum_{y} f_{X|Y}(x|y) f_Y(y)$$

Example 5.4 Suppose

$$f_Y(y) = \begin{cases} \frac{5}{6} & \text{if } y = 10^2 \\ \frac{1}{6} & \text{if } y = 10^4 \end{cases}, f_{X|Y}(x|10^2) = \begin{cases} \frac{1}{2} & \text{if } x = 10^{-2} \\ \frac{1}{3} & \text{if } x = 10^{-1} \\ \frac{1}{6} & \text{if } x = 1 \end{cases}, f_{X|Y}(x|10^4) = \begin{cases} \frac{1}{2} & \text{if } x = 1 \\ \frac{1}{3} & \text{if } x = 10 \\ \frac{1}{6} & \text{if } x = 100 \end{cases},$$

Then find the pmf of X.

Solution: First of all by looking at conditional pmf $f_{X|Y}$ we see that X takes 5 values $10^{-2}, 10^{-1}, 1, 10, 100$. Now

$$f_X(10^{-2}) = \frac{1}{2} \times \frac{5}{6} = \frac{5}{12}$$

$$f_X(10^{-1}) = \frac{1}{3} \times \frac{5}{6} = \frac{5}{18}$$

$$f_X(1) = \frac{1}{6} \times \frac{5}{6} + \frac{1}{2} \times \frac{1}{6} = \frac{8}{36}$$

$$f_X(10) = \frac{1}{3} \times \frac{1}{6} = \frac{1}{18}$$

$$f_X(100) = \frac{1}{6} \times \frac{1}{6} = \frac{1}{36}$$

Definition 5.5 (Conditional Densities) Let X and Y be two random variables with joint $pdf\ f$. The conditional density of X given Y = y is defined as

$$f_{X|Y}(x|y) = \begin{cases} \frac{f(x,y)}{f_Y(y)} & \text{if } f_Y(y) > 0\\ 0 & \text{if } f_Y(y) = 0 \end{cases}$$

As the case of conditional pmf, conditional pdf can be thought of as an ordinary pdf over a new universe determined by the conditioning event. For this, note that for fixed y, $f_{X|Y}(x|y) \ge 0$ for all $x \in \mathbb{R}$. Also if $f_Y(y) > 0$ then

$$\int_{-\infty}^{\infty} f_{X|Y}(x|y) dx = \frac{1}{f_Y(y)} \int_{-\infty}^{\infty} f(x,y) dx = \frac{f_Y(y)}{f_Y(y)} = 1$$

Recall that if X is a continuous random variable with pdf f_X and B is any Borel subset of \mathbb{R} , then

$$P(X \in B) = \int_{B} f_X(x) dx.$$

The above motivated the following definition.

Definition 5.6 Let X, Y be jointly continuous random variables and $f_{X|Y}(\cdot)$ denotes the conditional density of X given Y. Then for any Borel subset B of \mathbb{R} , we have

$$P(X \in B|Y = y) = \int_{B} f_{X|Y}(x|y)dx$$

Remark 5.7 Conditional probability $P(X \in B|Y = y)$ were left undefined if the $P\{Y = y\} = 0$. But the above formula provides a natural way of defining such conditional probabilities in the present context. In addition, it allows us to view the conditional PDF $f_{X|Y}$ (as a function of x) as a description of the probability law of X, given that the event $\{Y = y\}$ has occurred.