Topology and Groupoids, Chapter 3

Brendan Murphy — 2019

Lemma 1. Suppose X can be written as the disjoint union of two connected nonempty subsets C_1, C_2 , the only possible disconnection of X is (C_1, C_2) .

Proof. Let (A, B) be a disconnection of X. Let $x \in C_1$; then either $x \in A$ or $x \in B$. W.l.o.g. suppose $x \in A$. We show $C_1 \subseteq A$ by contradiction. Suppose that for some $y \in C_1$, we had $y \in B$. Let $A' = A \cap C_1$ and $B' = B \cap C_1$. Then by assumption $x \in A'$ and $y \in B'$. But also $\overline{A'} \cap B' = \overline{(A \cap C_1)} \cap (B \cap C_1) \subseteq \overline{(A \cap C_1)} \cap (B \cap C_1) = \overline{(A \cap B)} \cap \overline{C_1} = \emptyset$ since (A, B) is a disconnection and thus $\overline{A} \cap B = \emptyset$. But also

$$A' \cup B' = (A \cap C_1) \cup (B \cap C_1) = (A \cup B) \cap C_1 = X \cap C_1 = C_1$$

So since $x \in A'$ and $y \in B'$ we have that (A', B') disconnects C_1 , a contradiction. Thus $C_1 \subseteq A$. A similar argument shows $C_2 \subseteq B$. But then

$$A = X \setminus B = (C_1 \cup C_2) \setminus B \subseteq (C_1 \cup C_2) \setminus C_2 = C_1 \setminus C_2 = C_1 \setminus (X \setminus C_1) = C_1$$

And since $A \subseteq C_1$ and $C_1 \subseteq A$, this implies $A = C_1$. Then $B = X \setminus A = X \setminus C_1 = C_2$, so (C_1, C_2) is a disconnection of X.

Exercise 3.5.13

Let $X_n = \{n^{-1}\} \times [-n, n]$ and let $Y = \mathbb{R}^2 \setminus \bigcup_{n \geq 1} X_n$. Prove that Y is connected but not path connected.

We rewrite $Y = Y_1 \cup Y_2$ where $Y_1 =]\leftarrow, 0] \times \mathbb{R}$ and $Y_2 = Y \setminus Y_1$. More explicitly, since $\bigcup_{n\geq 1} X_n$ doesn't intersect Y_1 , we have

$$Y_2 = (]0, \to [\times \mathbb{R}) \setminus \bigcup_{n \ge 1} X_n$$

Clearly Y_1 is connected, since it's homeomorphic to $]\leftarrow,0]$. We show that also Y_2 is path connected, and thus connected. Let (a,b) be an element on Y_2 ; we give a path from (a,b) to (2,0). Since $(a,b) \notin Y_1$, we have a > 0, so for some N we have $a > \frac{1}{N}$. Let p be defined by

$$p(t) = \begin{cases} (a, b + 3t(N - b)) & \text{if } t \in [0, \frac{1}{3}] \\ (a + (3t - 1)(2 - a), N) & \text{if } t \in [\frac{1}{3}, \frac{2}{3}] \\ (2, (3 - 3t)N) & \text{if } t \in [\frac{2}{3}, 1] \end{cases}$$

So that p is a path which goes upwards or downards to a height of N (and since $a > \frac{1}{N}$, any spike X_n at or beyond a has a height lower than N), then goes horizontally from a to 2 (if $a \ge 2$ then none of X_n are in this part of the path; if a < 2 then we only go further right and the height of N is higher than any X_n), then goes downwards to from N to 0 (which is safe since all spikes in X_n are to the left of 2). Thus Y_2 is path connected, and so connected.

Now suppose Y were disconnected. Then by Lemma 1 it would be disconnected by (Y_1, Y_2) . We show that (0,0) is in the closure of Y_2 , and thus $Y_1 \cap \overline{Y_2}$ would be nonempty, so Y would not be disconnected. Let N be a neighborhood of (0,0). Then for some $\varepsilon > 0$ we have $B((0,0),\varepsilon) \subseteq N$. But then for some natural number K we have $\frac{1}{K} < \varepsilon$, so $\frac{1/K+1/(K+1)}{2} < \frac{1}{K} < \varepsilon$ and thus $\left| (0,0) - \left(\frac{1/K+1/(K+1)}{2}, 0 \right) \right| = \frac{1/K+1/(K+1)}{2} < \varepsilon$ which means $\left(\frac{1/K+1/(K+1)}{2}, 0 \right) \in B((0,0),\varepsilon)$. But we have $0 < \frac{1}{K+1} < \frac{1/K+1/(K+1)}{2} < \frac{1}{K}$, and thus there is no n such that $\left(\frac{1/K+1/(K+1)}{2}, 0 \right) \in X_n$, which means $\left(\frac{1/K+1/(K+1)}{2}, 0 \right) \in Y_2$. Thus N meets Y_2 for any neighborhood N of (0,0), and thus $(0,0) \in \overline{Y_2}$. Thus Y is connected.

We now show Y is not path connected. If it were, there would be some path $p:[0,1] \to Y$ such that p(0)=(0,0) and p(1)=(2,0). Let $p(t)=(p_1(t),p_2(t))$. Then by the intermediate value theorem, for any $n \in \mathbb{N}$ there is some t_n such that $p_1(t_n)=\frac{1}{n}$. By the extreme value theorem, since [0,1] is compact there is some M such that $|p_2(t)| < M$ for all $t \in [0,1]$. But there must be a natural number K such that M < K, and since $p_1(t_K) = \frac{1}{K}$ and $p(t_K) \notin X_K$ we must have $p_2(t) \notin [-K, K]$. But this means $|p_2(t)| \geq K > M$, a contradiction.