장리천리 생랑의 석절

1. 상태병정식

1. 상태방정식

· 계층 방정식이 ŋ차 미분방정식일 때 이겨울 게개의 그차 매분방정식으로 바꾸어서 행렬을 이용하여 표현한 것을

상대방정식이라 한다.

$$\frac{d \times (t)}{dt} = \dot{\chi}(t) = A \times (t) + B u(t)$$

A: 제 해결, 사례 해결 (nxn) 해결

B : মাগগৈৰ (mx1) গৰ

7(七) : 상래변수

W(t) : 입역 뿌터

(n xn) 행렬							(nx1) हमुखु		
A =	0 0 : 0 -0	1 0 : 0 -a1	0 1 : 0 -01		0 0 : 1 -an1		B =		
	0178								

여기서, ¼(t) : 상래벡터 , μ(t) : R력벡터 ,

α(t): β턱벡터 , Α: 시스템(μ) 행렬

B: 제미행렬

2. 특성방정식

2) 투성방정식의 근 : 고유값

$$\phi(t) = \int_{-1}^{1} [(sI - A)^{-1}] = e^{At}$$

学数(mxm)

,清明的。(A),自由15条。(AX),以为

4. 상태천이 행렬의 성질

1) Ø(t) = eAt

3)
$$\phi^{-1}(t) = \phi(-t) = e^{-At}$$

4)
$$\phi(t_2-t_1) \phi(t_1-t_0) = \phi(t_2-t_0)$$

$$-5) \left[\phi(t)\right]^{\kappa} = \phi(\kappa t)$$

morning glory

2. 로-변란

라플라는 변란은 연옥시스템을 해석하고 불연속 시스템을 나타내는 처분 방정식이나 이산 시스템인 경우에 고변한을 이용하여 해석한다.

♥ 이것으로 조병한 정의식 이제

$$F(z) = z[f(t)] = \sum_{t=0}^{\infty} f(t) Z^{-1} + t = 0, 1, 2...$$

2. f(t), F(s), F(z)의 H配

M		75年72	5	益 - S 品在 - S	To ak
4	八世哲宁 ftt	라를 산 변환 F(s)	로변환 F(Z)	(E) (E) (E) (E) (E)	8/29
	δ(t)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	新柏	मिं!
	u(t) = 1	- 1 5 12 812	z-1	न्युनीय (लेब्रा सिर्मात)	3400
	e-at	1 sta	z-e-a		
	t	150	Tz	4	上产兴
			$(z-1)^{\frac{1}{2}}$		CONTRACTOR SECTION

3 . 포 변환의 최 값 정리

$$\lim_{t=0}^{\infty} f(t) = \lim_{z=\infty}^{\infty} F(z)$$

4. 로변환의 최종값 정리

$$\lim_{t=0}^{\infty} f(t) = \lim_{z=1}^{\infty} (1-z^{-1}) F(z)$$

X 암비상터

morning glory 😽