TABLE OF CONTENTS

AASP-L1: DETECTION AND CLASSIFICATION OF ACOUSTIC SCENES AND EVENTS I
AASP-L1.1: SOUND EVENT DETECTION USING GRAPH LAPLACIAN
AASP-L1.2: HIERARCHY-AWARE LOSS FUNCTION ON A TREE STRUCTURED LABEL
AASP-L1.3: ENHANCED STREAMING BASED SUBSPACE CLUSTERING APPLIED TO
AASP-L1.4: TRAINING NEURAL AUDIO CLASSIFIERS WITH FEW DATA
AASP-L1.5: LEARNING SOUND EVENT CLASSIFIERS FROM WEB AUDIO WITH
AASP-L1.6: LEARNING TO MATCH TRANSIENT SOUND EVENTS USING
AASP-L2: DETECTION AND CLASSIFICATION OF ACOUSTIC SCENES AND EVENTS II
AASP-L2.1: A COMPARISON OF FIVE MULTIPLE INSTANCE LEARNING POOLING
AASP-L2.2: JOINT ACOUSTIC AND CLASS INFERENCE FOR WEAKLY SUPERVISED
AASP-L2.3: ACOUSTIC EVENT DETECTION FROM WEAKLY LABELED DATA USING
AASP-L2.4: SOUND EVENT DETECTION WITH SEQUENTIALLY LABELLED DATA

Shengchen Li, Beijing University of Posts and Telecommunications, China; Mark D. Plumbley, University of Surrey, United

Kingdom

AASP-L2.5: UNIFYING ISOLATED AND OVERLAPPING AUDIO EVENT DETECTION
AASP-L2.6: ATTENTION-BASED ATROUS CONVOLUTIONAL NEURAL NETWORKS:
AASP-L3: SOURCE SEPARATION AND SPEECH ENHANCEMENT I
AASP-L3.1: DEEP GRIFFIN-LIM ITERATION
AASP-L3.2: THE PHASEBOOK: BUILDING COMPLEX MASKS VIA DISCRETE
AASP-L3.3: DEEP LEARNING BASED PHASE RECONSTRUCTION FOR SPEAKER
AASP-L3.4: LOW-LATENCY DEEP CLUSTERING FOR SPEECH SEPARATION
AASP-L3.5: UNSUPERVISED DEEP CLUSTERING FOR SOURCE SEPARATION:
AASP-L3.6: SINGLE-CHANNEL SPEECH EXTRACTION USING SPEAKER INVENTORY
AASP-L4: SOURCE SEPARATION AND SPEECH ENHANCEMENT II
AASP-L4.1: ALL-NEURAL ONLINE SOURCE SEPARATION, COUNTING, AND
AASP-L4.2: JOINT SEPARATION AND DEREVERBERATION OF REVERBERANT
AASP-L4.3: SEMI-SUPERVISED MULTICHANNEL SPEECH ENHANCEMENT WITH

AASP-L4.4: SERGAN: SPEECH ENHANCEMENT USING RELATIVISTIC GENERATIVE	. 106
AASP-L4.5: BAYESIAN NON-PARAMETRIC MULTI-SOURCE MODELLING BASED DETERMINED BLIND SOURCE SEPARATION Chaitanya Prasad Narisetty, Tatsuya Komatsu, Reishi Kondo, NEC Corporation, Japan	111
AASP-L4.6: INFORMED EGO-NOISE SUPPRESSION USING MOTOR DATA-DRIVEN	116
AASP-L5: SPATIAL AUDIO RECORDING AND REPRODUCTION	
AASP-L5.1: IMPROVEMENTS TO THE MATCHING PROJECTION DECODING	. 121
AASP-L5.2: SMALL ARRAY REPRODUCTION METHOD FOR AMBISONIC ENCODINGS	. 126
AASP-L5.3: SPACE WARPING BASED DIMENSIONALITY REDUCTION OF HIGHER	. 131
AASP-L5.4: TOWARDS PERCEPTUALLY OPTIMIZED SOUND ZONES: A	. 136
AASP-L5.5: 2.5D MULTIZONE REPRODUCTION WITH ACTIVE CONTROL OF SCATTERED SOUND FIELDS Junqing Zhang, Wen Zhang, Northwestern Polytechnical University, China; Thushara Abhayapala, Australian National University, Australia; Jingli Xie, Lijun Zhang, Northwestern Polytechnical University, China	. 141
AASP-L5.6: AURALIZATION OF OMNIDIRECTIONAL ROOM IMPULSE RESPONSES	. 146
AASP-L6: MUSIC SIGNAL ANALYSIS, PROCESSING AND SYNTHESIS	
AASP-L6.1: ESTIMATION OF GUITAR STRING, FRET AND PLUCKING POSITION	. 151
AASP-L6.2: A STREAMLINED ENCODER/DECODER ARCHITECTURE FOR MELODY	. 156
AASP-L6.3: AUTOMATIC SINGING TRANSCRIPTION BASED ON ENCODER-DECODER	. 161
AASP-L6.4: POLYPHONIC MUSIC TRANSCRIPTION WITH SEMANTIC	. 166

AASP-L6.5: MODELING NONLINEAR AUDIO EFFECTS WITH END-TO-END DEEP
AASP-L6.6: NEURAL MUSIC SYNTHESIS FOR FLEXIBLE TIMBRE CONTROL
AASP-L7: MUSIC INFORMATION RETRIEVAL
AASP-L7.1: END-TO-END LYRICS ALIGNMENT FOR POLYPHONIC MUSIC USING
AASP-L7.2: IMPROVED METRICAL ALIGNMENT OF MIDI PERFORMANCE BASED ON
AASP-L7.3: MODELING MELODIC FEATURE DEPENDENCY WITH MODULARIZED
AASP-L7.4: UNSUPERVISED MELODY STYLE CONVERSION
AASP-L7.5: ENHANCED HIERARCHICAL MUSIC STRUCTURE ANNOTATIONS VIA
AASP-L7.6: MUSIC BOUNDARY DETECTION BASED ON A HYBRID DEEP MODEL
AASP-P1: ACOUSTIC ENVIRONMENTS AND MUSIC ANALYSIS
AASP-P1.1: A HYBRID METHOD FOR BLIND ESTIMATION OF FREQUENCY
AASP-P1.2: ACOUSTIC IMPULSE RESPONSES FOR WEARABLE AUDIO DEVICES216 Ryan Corey, Naoki Tsuda, Andrew Singer, University of Illinois at Urbana-Champaign, United States
AASP-P1.3: TRANSFERRING PIANO PERFORMANCE CONTROL ACROSS
AASP-P1.4: A SPARSITY MEASURE FOR ECHO DENSITY GROWTH IN GENERAL
AASP-P1.5: BLIND ROOM VOLUME ESTIMATION FROM SINGLE-CHANNEL NOISY231 SPEECH
Andrea Genovese, New York University, United States; Hannes Gamper, Microsoft Research, United States; Ville Pulkki, Aalto University, Finland; Nikunj Raghuvanshi, Ivan Tashev, Microsoft Research, United States

AASP-P1.6: JOINT TRANSCRIPTION OF LEAD, BASS, AND RHYTHM GUITARS BASED
Kentaro Shibata, Ryo Nishikimi, Graduate School of Informatics, Kyoto University, Japan; Satoru Fukayama, Masataka Goto, National Institute of Advanced Industrial Science and Technology (AIST), Japan; Eita Nakamura, Katsutoshi Itoyama, Kazuyoshi Yoshii, Graduate School of Informatics, Kyoto University, Japan
AASP-P1.7: PIANO SUSTAIN-PEDAL DETECTION USING CONVOLUTIONAL NEURAL
AASP-P1.8: DEEP POLYPHONIC ADSR PIANO NOTE TRANSCRIPTION
AASP-P1.9: ZERO-MEAN CONVOLUTIONAL NETWORK WITH DATA AUGMENTATION
AASP-P1.10: AUTOMATIC TRANSCRIPTION OF DIATONIC HARMONICA RECORDINGS
AASP-P2: MUSIC SOURCE SEPARATION AND SPATIAL AUDIO
AASP-P2.1: IMPROVING BINAURAL AMBISONICS DECODING BY SPHERICAL
AASP-P2.2: HEAD RELATED IMPULSE RESPONSE INTERPOLATION AND
AASP-P2.3: AUTOENCODING HRTFS FOR DNN BASED HRTF PERSONALIZATION
AASP-P2.4: DISTANCE-DEPENDENT MODELING OF HEAD-RELATED TRANSFER
AASP-P2.5: SOUNDFIELD RECONSTRUCTION IN REVERBERANT ENVIRONMENTS
AASP-P2.6: PROXIMAL DEEP RECURRENT NEURAL NETWORK FOR MONAURAL
AASP-P2.7: SEMI-SUPERVISED MONAURAL SINGING VOICE SEPARATION WITH A
AASP-P2.8: A PITCH-AWARE APPROACH TO SINGLE-CHANNEL SPEECH SEPARATION

AASP-P2.9: CLASS-CONDITIONAL EMBEDDINGS FOR MUSIC SOURCE SEPARATION
AASP-P2.10: END-TO-END SOUND SOURCE SEPARATION CONDITIONED ON
AASP-P3: AUDITORY MODELING, MUSIC INFORMATION RETRIEVAL AND BIOACOUSTICS
AASP-P3.1: A JOINT AUDITORY ATTENTION DECODING AND ADAPTIVE BINAURAL311 BEAMFORMING ALGORITHM FOR HEARING DEVICES Wenqiang Pu, Xidian University, China; Jinjun Xiao, Tao Zhang, Starkey Hearing Technologies, United States; Zhi-Quan Luo, The Chinese University of Hong Kong, Shenzhen, China
AASP-P3.2: EXACT DISCRETE-TIME REALIZATIONS OF THE GAMMATONE FILTER
AASP-P3.3: HEARING AID-CONTROLLED BEAMFORMER FOR BINAURAL SPEECH
AASP-P3.4: PREDICTING THE PRECISION OF ELEVATION LOCALIZATION BASED
AASP-P3.5: EVALUATING SALIENCE REPRESENTATIONS FOR CROSS-MODAL
AASP-P3.6: RANDOMLY WEIGHTED CNNS FOR (MUSIC) AUDIO CLASSIFICATION
AASP-P3.7: MID-LEVEL CHORD TRANSITION FEATURES FOR MUSICAL STYLE
AASP-P3.8: UNSUPERVISED LEARNING OF DEEP FEATURES FOR MUSIC
AASP-P3.9: CLASSIFICATION OF BIOACOUSTIC SIGNALS WITH TANGENT SINGULAR
AASP-P4: SOURCE SEPARATION AND MUSIC INFORMATION RETRIEVAL
AASP-P4.1: BOOTSTRAPPING SINGLE-CHANNEL SOURCE SEPARATION VIA

AASP-P4.2: ONLINE DEEP ATTRACTOR NETWORK FOR REAL-TIME
AASP-P4.3: MULTI-MODAL BLIND SOURCE SEPARATION WITH MICROPHONES
AASP-P4.4: FASTMNMF: JOINT DIAGONALIZATION BASED ACCELERATED
AASP-P4.5: INCREMENTAL BINARIZATION ON RECURRENT NEURAL NETWORKS
AASP-P4.6: MULTITASK LEARNING FOR FRAME-LEVEL INSTRUMENT
AASP-P4.7: ENHANCING MUSIC FEATURES BY KNOWLEDGE TRANSFER FROM
AASP-P4.8: TRANSDRUMS: A DRUM PATTERN TRANSFER SYSTEM PRESERVING
AASP-P4.9: AUTOMATIC LYRICS-TO-AUDIO ALIGNMENT ON POLYPHONIC MUSIC
AASP-P4.10: TUNING FREQUENCY DEPENDENCY IN MUSIC CLASSIFICATION
AASP-P5: SENSOR ARRAY PROCESSING AND AUDITORY MODELING
AASP-P5.1: COGNITIVE-DRIVEN BINAURAL LCMV BEAMFORMER USING
AASP-P5.2: DERIVING SPECTRO-TEMPORAL PROPERTIES OF HEARING FROM
AASP-P5.3: RTF-STEERED BINAURAL MVDR BEAMFORMING INCORPORATING AN
AASP-P5.4: ROBUST FULL-SPHERE BINAURAL SOUND SOURCE LOCALIZATION
AASP-P5.5: PROPERTIES AND LIMITS OF THE MINIMUM-NORM DIFFERENTIAL

AASP-P5.6: TRIGONOMETRIC INTERPOLATION BEAMFORMING FOR A CIRCULAR	431
AASP-P5.7: TIME DIFFERENCE OF ARRIVAL ESTIMATION OF SPEECH SIGNALS	436
AASP-P5.8: ON THE DESIGN OF FLEXIBLE KRONECKER PRODUCT	
AASP-P5.9: DIRECTION PRESERVING WIENER MATRIX FILTERING FOR	446
AASP-P5.10: END-TO-END BINAURAL SOUND LOCALISATION FROM THE RAW	451
AASP-P6: MUSIC SIGNAL ANALYSIS AND MULTIMEDIA	
AASP-P6.1: BAYESIAN DRUM TRANSCRIPTION BASED ON NONNEGATIVE MATRIX	456
AASP-P6.2: A UNIFIED NEURAL ARCHITECTURE FOR INSTRUMENTAL AUDIO TASKS	461
AASP-P6.3: AUTOMATIC SINGING EVALUATION WITHOUT REFERENCE MELODY	466
AASP-P6.4: DEEP LEARNING FOR TUBE AMPLIFIER EMULATION	471
AASP-P6.5: INTONATION: A DATASET OF QUALITY VOCAL PERFORMANCES REFINED	
AASP-P6.6: A MUSIC STRUCTURE INFORMED DOWNBEAT TRACKING SYSTEM	
AASP-P6.7: FUNDAMENTAL FREQUENCY CONTOUR CLASSIFICATION: A	486
AASP-P6.8: OVERLAP-ADD WINDOWS WITH MAXIMUM ENERGY CONCENTRATION	491

AASP-P6.9: TOWARDS AUDIO TO SCENE IMAGE SYNTHESIS USING GENERATIVE
AASP-P6.10: DISCRIMINATE NATURAL VERSUS LOUDSPEAKER EMITTED SPEECH
AASP-P6.11: SINGING VOICE SEPARATION: A STUDY ON TRAINING DATA
AASP-P7: ACTIVE NOISE CONTROL, SOURCE SEPARATION, AND SYSTEM IDENTIFICATION
AASP-P7.1: FEEDFORWARD SPATIAL ACTIVE NOISE CONTROL BASED ON KERNEL
AASP-P7.2: TIME DOMAIN SPHERICAL HARMONIC ANALYSIS FOR ADAPTIVE NOISE
AASP-P7.3: ROBUST SPARSE MULTICHANNEL ACTIVE NOISE CONTROL
AASP-P7.4: GLOBAL AND LOCAL MODE-DOMAIN ADAPTIVE ALGORITHMS FOR
AASP-P7.5: SPATIAL CONSTRAINT ON MULTI-CHANNEL DEEP CLUSTERING
AASP-P7.6: MULTI-CHANNEL ITAKURA SAITO DISTANCE MINIMIZATION WITH DEEP
AASP-P7.7: SPEECH ENHANCEMENT WITH VARIATIONAL AUTOENCODERS AND
AASP-P7.8: FAST MVAE: JOINT SEPARATION AND CLASSIFICATION OF MIXED
AASP-P7.9: IMPROVED MULTIPATH TIME DELAY ESTIMATION USING CEPSTRUM
AASP-P7.10: ADAPTIVE DEREVERBERATION USING MULTI-CHANNEL LINEAR

AASP-P8: SPATIAL AUDIO, AUDIO ENHANCEMENT AND BANDWIDTH EXTENSION
AASP-P8.1: MODELING CHARACTERISTICS OF REAL LOUDSPEAKERS USING
AASP-P8.2: LOW FREQUENCY CROSSTALK CANCELLATION AND ITS RELATIONSHIP
AASP-P8.3: COMBINING LINEAR SPATIAL FILTERING AND NON-LINEAR PARAMETRIC
AASP-P8.4: SHARPENING OF ANGULAR SPECTRA BASED ON A DIRECTIONAL
AASP-P8.5: ROBUST GRIDLESS SOUND FIELD DECOMPOSITION BASED ON
AASP-P8.6: A SUBBAND ENERGY MODIFICATION METHOD FOR ELEVATION
AASP-P8.7: A PROPER VERSION OF SYNTHESIS-BASED SPARSE AUDIO DECLIPPER
AASP-P8.8: DATA-DRIVEN DESIGN OF PERFECT RECONSTRUCTION FILTERBANK
AASP-P8.9: AN ANALYSIS OF NOISE-AWARE FEATURES IN COMBINATION WITH THE
AASP-P8.10: LEARNING BANDWIDTH EXPANSION USING
AASP-P8.11: DIRECT-TO-REVERBERANT ENERGY RATIO ESTIMATION BASED ON
AASP-P8.12: TRAINABLE ADAPTIVE WINDOW SWITCHING FOR SPEECH

Yuma Koizumi, Noboru Harada, NTT Corporation, Japan; Yoichi Haneda, The University of Electro-Communications, Japan

ENHANCEMENT

AASP-P9: QUALITY MEASURES AND SENSOR ARRAY PROCESSING

AASP-P9.1: OBJECTIVE ASSESSMENT OF SPATIAL AUDIO QUALITY USING	621
AASP-P9.2: SDR – HALF-BAKED OR WELL DONE?	626
AASP-P9.3: NON-INTRUSIVE SPEECH QUALITY ASSESSMENT USING NEURAL	
AASP-P9.4: IMPROVING DEEP MODELS OF SPEECH QUALITY PREDICTION	636
AASP-P9.5: A DOUBLE-CROSS-CORRELATION PROCESSOR FOR BLIND SAMPLING	641
AASP-P9.6: MULTI-CHANNEL WIND NOISE REDUCTION USING THE CORCOS	646
AASP-P9.7: SOUND SOURCE LOCALIZATION IN A REVERBERANT ROOM USING	651
AASP-P9.8: AN ONLINE MULTIPLE-SPEAKER DOA TRACKING USING THE	656
AASP-P9.9: DIRECTIONAL INTERFERENCE SUPPRESSION USING A SPATIAL	661
AASP-P9.10: PRACTICAL CONCENTRIC OPEN SPHERE CARDIOID MICROPHONE	666
AASP-P10: AUDIO SECURITY AND SOURCE SEPARATION	
AASP-P10.1: PRIVACY-AWARE FEATURE EXTRACTION FOR GENDER	671
AASP-P10.2: DECODING HOMOMORPHICALLY ENCRYPTED FLAC AUDIO WITHOUT	
AASP-P10.3: IMPERCEPTIBLE AUDIO COMMUNICATION	680

AASP-P10.4: MULTIPATH-ENABLED PRIVATE AUDIO WITH NOISE
AASP-P10.5: TEACHER-STUDENT DEEP CLUSTERING FOR LOW-DELAY SINGLE
AASP-P10.6: UNSUPERVISED TRAINING OF A DEEP CLUSTERING MODEL FOR
AASP-P10.7: A QUASI-NEWTON ALGORITHM ON THE ORTHOGONAL MANIFOLD FOR
AASP-P10.8: MULTI-BAND PIT AND MODEL INTEGRATION FOR IMPROVED
AASP-P10.9: AUGMENTED TIME-FREQUENCY MASK ESTIMATION IN
AASP-P10.10: TIME-FREQUENCY-MASKING-BASED DETERMINED BSS WITH
AASP-P11: AUDIO CODING AND ACOUSTIC EVENT DETECTION
AASP-P11.1: SPATIAL AUDIO CODING WITHOUT RECOURSE TO BACKGROUND
AASP-P11.2: AUDIO CODING BASED ON SPECTRAL RECOVERY BY
AASP-P11.3: IMMERSIVE AUDIO CODING FOR VIRTUAL REALITY USING A
AASP-P11.4: LOW BIT-RATE SPEECH CODING WITH VQ-VAE AND A WAVENET
AASP-P11.5: PERCEPTUAL AUDIO CODING WITH ADAPTIVE NON-UNIFORM
AASP-P11.6: CONNECTIONIST TEMPORAL LOCALIZATION FOR SOUND EVENT

AASP-P11.7: SEMI-SUPERVISED ACOUSTIC EVENT DETECTION BASED ON
AASP-P11.8: A REGION BASED ATTENTION METHOD FOR WEAKLY SUPERVISED
AASP-P11.9: SEMI-SUPERVISED TRIPLET LOSS BASED LEARNING OF AMBIENT
AASP-P11.10: RECURRENT NEURAL NETWORKS WITH STOCHASTIC LAYERS FOR
AASP-P12: SENSOR ARRAY PROCESSING AND MEDICAL ACOUSTICS
AASP-P12.1: ADAPTATION OF MULTIPLE SOUND SOURCE LOCALIZATION NEURAL
AASP-P12.2: MIRAGE: 2D SOURCE LOCALIZATION USING MICROPHONE PAIR
AASP-P12.3: FUNCTION DESIGNABLE BEAMFORMER BASED ON PROBABILISTIC
AASP-P12.4: ESTIMATION OF SAMPLING FREQUENCY MISMATCH BETWEEN
AASP-P12.5: MULTIPLE SOUND SOURCE LOCALIZATION WITH RIGID SPHERICAL
AASP-P12.6: JOINT ESTIMATION OF RETF VECTOR AND POWER SPECTRAL
AASP-P12.7: CO-PRIME CIRCULAR MICROPHONE ARRAYS AND THEIR APPLICATION
AASP-P12.10: QUALITY CONTROL OF VOICE RECORDINGS IN REMOTE

AASP-PIZ.II: DEEP LEARNING FEATURES FOR ROBUST DETECTION OF ACOUSTIC810 EVENTS IN SLEEP-DISORDERED BREATHING
Hector E. Romero, Ning Ma, Guy J. Brown, Amy V. Beeston, Madina Hasan, University of Sheffield, United Kingdom
AASP-P13: ACOUSTIC SCENE CLASSIFICATION AND MUSIC SIGNAL ANALYSIS
AASP-P13.1: ENHANCING SOUND TEXTURE IN CNN-BASED ACOUSTIC SCENE
Yuzhong Wu, Tan Lee, The Chinese University of Hong Kong, Hong Kong SAR of China
AASP-P13.2: DEEP HIDDEN ANALYSIS: A STATISTICAL FRAMEWORK TO PRUNE
Arshdeep Singh, Padmanabhan Rajan, Arnav Bhavsar, Indian Institute of Technology, Mandi (IIT MANDI)., India
AASP-P13.3: SUBSPECTRALNET - USING SUB-SPECTROGRAM BASED
AASP-P13.4: AUDIO CAPTION: LISTEN AND TELL
AASP-P13.5: AN AUDIO SCENE CLASSIFICATION FRAMEWORK WITH EMBEDDED
AASP-P13.6: KULLBACK-LEIBLER DIVERGENCE FREQUENCY WARPING SCALE
AASP-P13.7: DOMAIN MISMATCH ROBUST ACOUSTIC SCENE CLASSIFICATION
AASP-P13.8: HARMONIC-BAND COMPLEX WAVELET TRANSFORM AUDIO ANALYSIS
AASP-P13.9: LOW-RANKNESS OF COMPLEX-VALUED SPECTROGRAM AND ITS
AASP-P13.10: COMPARING CQT AND REASSIGNMENT BASED CHROMA FEATURES
AASP-P13.11: ANOMALY DETECTION BASED ON AN ENSEMBLE OF
AASP-P14: ACOUSTIC EVENT DETECTION AND SPEECH ENHANCEMENT
AASP-P14.1: SCENE-DEPENDENT ANOMALOUS ACOUSTIC-EVENT DETECTION

AASP-P14.2: TEACHER-STUDENT TRAINING FOR ACOUSTIC EVENT DETECTION
AASP-P14.3: ACTIVE LEARNING FOR EFFICIENT AUDIO ANNOTATION AND
AASP-P14.4: POLYPHONIC SOUND EVENT DETECTION USING CONVOLUTIONAL
AASP-P14.5: A MULTI-SPIKE APPROACH FOR ROBUST SOUND RECOGNITION
AASP-P14.6: CROSS EVALUATION OF SPEECH ENHANCEMENT METHODS UNDER
AASP-P14.7: DIFFERENTIABLE CONSISTENCY CONSTRAINTS FOR IMPROVED
AASP-P14.8: A DEEP GENERATIVE MODEL OF SPEECH COMPLEX SPECTROGRAMS
AASP-P14.9: DNN TRAINING BASED ON CLASSIC GAIN FUNCTION FOR
AASP-P14.10: SNIPER: FEW-SHOT LEARNING FOR ANOMALY DETECTION TO
AASP-P15: SPATIAL AUDIO RECORDING AND DETECTION AND CLASSIFICATION OF ACOUSTIC SCENES AND EVENTS
AASP-P15.1: HCU400: AN ANNOTATED DATASET FOR EXPLORING AURAL
AASP-P15.2: ACOUSTIC SCENE GENERATION WITH CONDITIONAL SAMPLERNN
AASP-P15.3: SOUND-BASED TRANSPORTATION MODE RECOGNITION WITH
AASP-P15.4: SOUND EVENT ENVELOPE ESTIMATION IN POLYPHONIC MIXTURES

AASP-P15.5: MULTI-VIEW NETWORKS FOR MULTI-CHANNEL AUDIO
Jonah Casebeer, Zhepei Wang, University of Illinois at Urbana-Champaign, United States; Paris Smaragdis, University of Illinois at Urbana-Champaign; Adobe Research, United States
AASP-P15.6: GUIDED-SPATIO-TEMPORAL FILTERING FOR EXTRACTING SOUND
AASP-P15.7: SPATIAL-FOURIER RETRIEVAL OF HEAD-RELATED IMPULSE
AASP-P15.8: MEASURING THE SPHERICAL-HARMONIC REPRESENTATION OF A
AASP-P15.10: HORIZONTAL 3D SOUND FIELD RECORDING AND 2.5D SYNTHESIS
AASP-P16: MUSIC SIGNAL ANALYSIS, FEEDBACK AND ECHO CANCELLATION AND EQUALIZATION
AASP-P16.1: IMPROVED MEASUREMENT NOISE COVARIANCE ESTIMATION FOR
AASP-P16.2: OBTAINING NARROW TRANSITION REGION IN STFT DOMAIN
AASP-P16.3: EFFICIENT NONLINEAR ACOUSTIC ECHO CANCELLATION BY
AASP-P16.4: ACOUSTIC EQUALIZATION FOR HEADPHONES USING A FIXED
AASP-P16.5: PHASE-AWARE HARMONIC/PERCUSSIVE SOURCE SEPARATION VIA
AASP-P16.6: A VOCODER BASED METHOD FOR SINGING VOICE EXTRACTION
AASP-P16.7: SPARSE GAUSSIAN PROCESS AUDIO SOURCE SEPARATION USING
AASP-P16.8: VOCAL MELODY EXTRACTION VIA DNN-BASED PITCH ESTIMATION

AASP-P16.9: CNN BASED TWO-STAGE MULTI-RESOLUTION END-TO-END MODEL
Ming-Tso Chen, Bo-Jun Li, Tai-Shih Chi, National Chiao Tung University, Taiwan
BISP-L1: BIOMEDICAL IMAGE ANALYSIS
BISP-L1.1: MULTIMODAL RETINAL IMAGE REGISTRATION AND FUSION BASED ON
BISP-L1.2: ATROUS CONVOLUTION FOR BINARY SEMANTIC SEGMENTATION OF
BISP-L1.3: AUTOMATIC SEGMENTATION OF NUCLEI IN HISTOPATHOLOGY
BISP-L1.4: DIVING DEEP ONTO DISCRIMINATIVE ENSEMBLE OF HISTOLOGICAL
BISP-L1.5: MULTI-CLASSIFICATION OF BREAST CANCER HISTOLOGY IMAGES BY
BISP-L1.6: BREAST CANCER DETECTION BASED ON MERGING FOUR MODES
BISP-L2: BIOMEDICAL IMAGING
BISP-L2.1: MAGNETIC RESONANCE FINGERPRINTING USING A RESIDUAL
BISP-L2.2: SAMIR: SPARSITY AMPLIFIED ITERATIVELY-REWEIGHTED
BISP-L2.3: EGO-MOTION ESTIMATION FOR LOW-COST FREEHAND ULTRASOUND
BISP-L2.4: DEEP LEARNING FOR SUPER-RESOLUTION VASCULAR ULTRASOUND105:
Ruud JG van Sloun, Eindhoven University of Technology, Netherlands; Oren Solomon, Technion - Israel Institute of Technology, Israel; Matthew Bruce, Zin Z Khaing, The University of Washington, United States; Yonina C Eldar, Technion - Israel Institute of

Technology, Israel; Massimo Mischi, Eindhoven University of Technology, Netherlands

BISP-L2.5: STRIP THE STRIPES: ARTIFACT DETECTION AND REMOVAL FOR	.060
BISP-L2.6: LEARNING SPATIALLY-CORRELATED TEMPORAL DICTIONARIES FOR	.065
BISP-L3: BIOMEDICAL SIGNAL PROCESSING	
BISP-L3.1: BEAMFORMER DESIGN UNDER TIME-CORRELATED INTERFERENCE	.070
BISP-L3.2: COMPUTATIONAL ANALYSIS OF GAZE BEHAVIOR IN AUTISM DURING	075
BISP-L3.3: WAVEFORM MODELING BY ADAPTIVE WEIGHTED HERMITE	
BISP-L3.4: A CLUSTERING APPROACH TO CONSTRUCT MULTI-SCALE	.085
BISP-L3.5: SPEECH RECOGNITION WITH NO SPEECH OR WITH NOISY SPEECH	
BISP-L3.6: A TIME-FREQUENCY BASED MULTIVARIATE PHASE-AMPLITUDE	.095
BISP-P1: NEURO IMAGE AND SIGNAL PROCESSING	
BISP-P1.1: DYNAMICAL COMPONENT ANALYSIS (DYCA) AND ITS APPLICATION ON	100
BISP-P1.2: ESTIMATING VIEWED IMAGE CATEGORIES FROM HUMAN BRAIN	105
BISP-P1.3: DETECTING ATTENTION SHIFT FROM NEURAL RESPONSE BASED ON	1110
BISP-P1.4: SPEECH ARTIFACT REMOVAL FROM EEG RECORDINGS OF SPOKEN	

CONVOLUTIONAL NEURAL NETWORK	1120
Mustafa Talha AVCU, Bilkent University, Ankara, Turkey, Turkey; Zhuo Zhang, Institute for Infocomm Research, A*STAR Singapore, Singapore; Wei Shih Derrick Chan, KK Women's and Children's Hospital, Singapore	
BISP-P1.6: STATISTICAL PERSISTENT HOMOLOGY OF BRAIN SIGNALS	
BISP-P1.7: SPIKE DETECTION IN AXONAL-SYNAPTIC CHANNELS WITH MULTIPLE	1130
BISP-P1.8: IDENTIFYING STRUCTURAL BRAIN NETWORKS FROM FUNCTIONAL	1135
BISP-P1.9: SPECTRAL GRAPH WAVELET TRANSFORM AS FEATURE EXTRACTOR	1140
BISP-P1.10: MOTION ARTEFACT REMOVAL IN FUNCTIONAL NEAR-INFRARED	1145
BISP-P2: BIO IMAGE AND SIGNAL PROCESSING	
BISP-P2.1: A NOVEL THREE DIMENSIONAL PROBABILITY-BASED CLASSIFIER FOR	1150
BISP-P2.2: ATTENTION-BASED TRANSFER LEARNING FOR BRAIN-COMPUTER	1154
BISP-P2.3: DETECTION OF NON RANDOM PHASE SIGNAL IN ADDITIVE NOISE	1159
BISP-P2.4: ADAPTIVE SUBSPACE DETECTOR IN HIGH DIMENSIONAL SPACE WITH	1164
BISP-P2.5: IMPROVED GESTURE RECOGNITION BASED ON SEMG SIGNALS AND	1169
BISP-P2.6: RECURRENT 3D CONVOLUTIONAL NETWORK FOR RODENT	1174
BISP-P2.7: TRANSFER AND COLLABORATIVE LEARNING METHOD FOR	1179
BISP-P2.8: AN ATTRIBUTE-INVARIANT VARIATIONAL LEARNING FOR EMOTION	1184

BISP-P2.9: RODENT SLEEP ASSESSMENT WITH A TRAINABLE VIDEO-BASED
Van Anh Le, Mitchell Kesler, Jong Rho, Ning Cheng, Kartikeya Murari, University of Calgary, Canada
BISP-P2.10: A NEW FUSION FRAMEWORK FOR MULTIMODAL MEDICAL IMAGE
BISP-P2.11: DETECTION OF SLEEP APNEA/HYPOPNEA EVENTS USING
BISP-P3: BIOIMAGING AND ANALYSIS
BISP-P3.1: AUTOMATIC SEGMENTATION OF OPTIC DISC USING AFFINE SNAKES
BISP-P3.2: LOCAL PHASE U-NET FOR FUNDUS IMAGE SEGMENTATION
BISP-P3.3: LUNG NODULE DETECTION WITH A 3D CONVNET VIA IOU
BISP-P3.4: BREAST CANCER IMAGE CLASSIFICATION ON WSI WITH SPATIAL
BISP-P3.5: A DEEP DUAL-PATH NETWORK FOR IMPROVED MAMMOGRAM IMAGE
BISP-P3.6: SKIN LESION CLASSIFICATION USING HYBRID DEEP NEURAL
BISP-P3.7: DENXFPN: PULMONARY PATHOLOGIES DETECTION BASED ON
BISP-P3.8: A CASCADE OF CNN AND LSTM NETWORK WITH 3D ANCHORS FOR

BISP-P4: BIOINFORMATICS

France, France

BISP-P4.1: TV-DCT: METHOD TO IMPUTE GENE EXPRESSION DATA USING DCT
BISP-P4.2: SALIENCY MAP ON CNNS FOR PROTEIN SECONDARY STRUCTURE
BISP-P4.3: DEEP LATENT FACTOR MODEL FOR PREDICTING DRUG TARGET
BISP-P4.4: DETECTION AND AMPLIFICATION OF MOLECULAR SIGNALS USING
BISP-P4.5: EFFECTIVE AND STABLE NEURON MODEL OPTIMIZATION BASED ON
BISP-P4.6: DETECTION OF STIMULI CHANGES IN NEURAL EVENTOGRAMS
BISP-P5: CARDIOLOGICAL SIGNAL PROCESSING
BISP-P5.1: BASELINE WANDER REMOVAL AND ISOELECTRIC CORRECTION IN
BISP-P5.2: NON-HARMONIC ANALYSIS BASED INSTANTANEOUS HEART RATE
BISP-P5.3: AN ENSEMBLE OF DEEP RECURRENT NEURAL NETWORKS FOR
BISP-P5.4: EFFICIENT LOSSLESS COMPRESSION SCHEME FOR MULTI-CHANNEL
BISP-P5.5: HEART RATE ESTIMATION FROM PHONOCARDIOGRAM SIGNALS USING

BISP-P5.6: LOW-POWER CONTINUOUS HEART AND RESPIRATION RATES	1298
Illya Degtyarenko, Kostyantyn Slyusarenko, Andrii Omelchenko, Volodymyr Riabov, Sviatoslav Chyzhyk, Samsung R&D Insti Ukraine, Ukraine	itute
BISP-P5.7: A LSTM AND CNN BASED ASSEMBLE NEURAL NETWORK FRAMEWORK	. 1303
BISP-P5.8: INTER- AND INTRA- PATIENT ECG HEARTBEAT CLASSIFICATION FOR	1308
BISP-P5.9: EMPIRICAL WAVELET TRANSFORM BASED LUNG SOUND REMOVAL	. 1313
BISP-P5.10: SHORT-SEGMENT HEART SOUND CLASSIFICATION USING AN	
BISP-P6: MEDICAL IMAGING AND ANALYSIS	
BISP-P6.1: SPARSITY-BASED BLIND DECONVOLUTION OF NEURAL ACTIVATION	
BISP-P6.2: SPEAKER-INDEPENDENT CLASSIFICATION OF PHONETIC SEGMENTS	1328
BISP-P6.3: DEEP LEARNING FOR FAST ADAPTIVE BEAMFORMING	
BISP-P6.4: SUPER-RESOLUTION USING FLOW ESTIMATION IN CONTRAST	
BISP-P6.5: LAYOUT-AWARE SUBFIGURE DECOMPOSITION FOR COMPLEX	. 1343
BISP-P6.6: A PIPELINE FOR LUNG TUMOR DETECTION AND SEGMENTATION	
BISP-P6.7: AUTOMATIC SEGMENTATION OF COMMON CAROTID ARTERY IN	

Seelamantula, Indian Institute of Science, India

BISP-P6.8: AN EVENT-CONTRASTIVE CONNECTOME NETWORK FOR AUTOMATIC	58
BISP-P6.9: ON EVALUATING CNN REPRESENTATIONS FOR LOW RESOURCE	63
BISP-P6.10: CAPSULE NETWORKS FOR BRAIN TUMOR CLASSIFICATION BASED ON	
BISP-P6.11: UNMIXING DYNAMIC PET IMAGES: COMBINING SPATIAL	73
BISP-P6.12: MULTI-ATTENTION NETWORK FOR THORACIC DISEASE	78
DISPS-L1: DESIGN AND IMPLEMENTATION OF EMERGING SIGNAL PROCESSING SYSTEMS: MACHINE LEARNING	
DISPS-L1.1: MEMORIZATION CAPACITY OF DEEP NEURAL NETWORKS UNDER	83
DISPS-L1.2: STOCHASTIC DATA-DRIVEN HARDWARE RESILIENCE TO	88
DISPS-L1.3: JOINT OPTIMIZATION OF QUANTIZATION AND STRUCTURED	93
DISPS-L1.4: REAL-TIME OBJECT DETECTION VIA PRUNING AND A	98
DISPS-L1.5: USING 3D RESIDUAL NETWORK FOR SPATIO-TEMPORAL ANALYSIS	03
DISPS-L1.6: ADAPTIVELY WEIGHTED MULTI-TASK LEARNING USING INVERSE	08

DISPS-L2: ALGORITHM AND ARCHITECTURE CO-OPTIMIZATION

DISPS-L2.1: LOW-COMPLEXITY RECURRENT NEURAL NETWORK-BASED POLAR	1413
DISPS-L2.2: HARDWARE-FRIENDLY LDPC DECODING SCHEDULING FOR 5G	
DISPS-L2.3: LOW-POWER PROGRAMMABLE PROCESSOR FOR FAST FOURIER	1423
DISPS-L2.4: SYSTEM AND VLSI IMPLEMENTATION OF PHASE-BASED VIEW	
DISPS-L2.5: AN ITERATIVE TIME DOMAIN DENOISING METHOD	. 1433
DISPS-L2.6: HARDWARE-ORIENTED MEMORY-LIMITED ONLINE FASTICA	1438
DISPS-P1: DESIGN AND IMPLEMENTATION OF EMERGING SIGNAL PROCESSING SYSTEMS: MACHINE LEARNING / NEUROMORPHIC COMPUTING / IOT	
DISPS-P1.1: COMPRESSING DEEP NEURAL NETWORKS USING TOEPLITZ	
DISPS-P1.2: A LOW-LATENCY SPARSE-WINOGRAD ACCELERATOR FOR	1448
DISPS-P1.3: WORKLOAD-AWARE AUTOMATIC PARALLELIZATION FOR MULTI-GPU	
DISPS-P1.4: OBJECT AND TEXT-GUIDED SEMANTICS FOR CNN-BASED ACTIVITY	
DISPS-P1.5: BLIND MOTION DEBLURRING VIA INCEPTIONRESDENSENET BY	1463
DISPS-P1.6: REDUCED-COMPLEXITY DEEP NEURAL NETWORK-AIDED CHANNEL	1468

DISPS-P1.7: ENHANCING BEAMFORMED FINGERPRINT OUTDOOR POSITIONING	
Joao Gante, INESC-ID, IST, Universidade de Lisboa, Portugal; Gabriel Falcao, Instituto de Telecomunicacoes (IT), Portugal Leonel Sousa, INESC-ID, IST, Universidade de Lisboa, Portugal	l;
DISPS-P1.8: ENHANCING ACOUSTIC SENSORY RESPONSIVENESS BY	1478
DISPS-P1.9: VARIANCE PRESERVING INITIALIZATION FOR TRAINING DEEP	
DISPS-P1.10: A SPIKING NEURAL NETWORK APPROACH TO AUDITORY SOURCE LATERALISATION Robert Luke, David McAlpine, Macquarie University, Australia	1488
DISPS-P1.11: EFFICIENT SIGNAL RECONSTRUCTION VIA DISTRIBUTED LEAST	
DISPS-P1.12: LORA DIGITAL RECEIVER ANALYSIS AND IMPLEMENTATION	1498
DISPS-P2: ALGORITHM AND ARCHITECTURE OPTIMIZATION	
DISPS-P2.1: EFFICIENT BELIEF PROPAGATION DETECTION BASED ON CHANNEL	1503
DISPS-P2.2: ACCURACY EVALUATION BASED ON SIMULATION FOR FINITE	
DISPS-P2.3: GPU-BASED IMPLEMENTATION OF BELIEF PROPAGATION DECODING	1513
DISPS-P2.4: SOLVING MEMORY ACCESS CONFLICTS IN LTE-4G STANDARD	
DISPS-P2.5: EMG WRIST-HAND MOTION RECOGNITION SYSTEM FOR	1523
DISPS-P2.6: ON MODIFIED SQUARED GIVENS ROTATIONS FOR SPHERE DECODER PREPROCESSING Yun Wu, John McAllister, Queen's University Belfast, United Kingdom	1528
DISPS-P2.7: IN SEARCH OF THE OPTIMAL WALSH-HADAMARD TRANSFORM FOR	1532

DISPS-P2.8: AN HETEROGENEOUS COMPILER OF DATAFLOW PROGRAMS FOR
DISPS-P2.9: THE DIRECTION COSINE MATRIX ALGORITHM IN FIXED-POINT:
DISPS-P2.10: A DOUBLE K-BEST VITERBI-SPHERE DECODER FOR
DISPS-P2.11: CONCRETE: A PER-LAYER CONFIGURABLE FRAMEWORK FOR
DISPS-P2.12: CONVEX ENERGY OPTIMIZATION OF STREAMING APPLICATIONS
DISPS-P3: SIGNAL PROCESSING FOR EMERGING APPLICATIONS: FINTECH/AR-VR/AUTONOMOUS VEHICLES
DISPS-P3.1: BEYOND WORD-LEVEL TO SENTENCE-LEVEL SENTIMENT
DISPS-P3.2: SVM-BASED SEAL IMPRINT VERIFICATION USING EDGE
DISPS-P3.3: ENHANCED RECURRENT NEURAL NETWORK FOR COMBINING
DISPS-P3.4: FUZZY PERSONALIZED SCORING MODEL FOR RECOMMENDATION
DISPS-P3.5: POINT CLOUD SEGMENTATION USING HIERARCHICAL TREE FOR
DISPS-P3.6: PARAMETRIC HEAR THROUGH EQUALIZATION FOR AUGMENTED
DISPS-P3.7: A NOVEL DETERMINISTIC SENSING MATRIX BASED ON KASAMI
DISPS-P3.8: PASSIVE DETECTION AND DISCRIMINATION OF BODY MOVEMENTS

IVMSP-L1: IMAGE/VIDEO CODING I

IVMSP-L1.1: NONLINEAR PREDICTION OF MULTIDIMENSIONAL SIGNALS VIA	1602
IVMSP-L1.2: CONVOLUTIONAL NEURAL NETWORKS FOR VIDEO INTRA	1607
IVMSP-L1.3: COMPRESSION IMPROVEMENT VIA REFERENCE ORGANIZATION	1612
IVMSP-L1.4: MID-DEPTH BASED BLOCK STRUCTURE DETERMINATION FOR AV1	1617
IVMSP-L1.5: PIXEL-LEVEL TEXTURE SEGMENTATION BASED AV1 VIDEO	1622
IVMSP-L1.6: FAST INTER-PREDICTION BASED ON DECISION TREES FOR AV1 ENCODING Jieon Kim, Queen Mary University of London, United Kingdom; Saverio Blasi, Andre Seixas Dias, Marta Mrak, BBC, United Kingdom; Ebroul Izquierdo, Queen Mary University of London, United Kingdom	
IVMSP-L2: VIDEO ANALYSIS	
IVMSP-L2.1: CAN AUTOMATIC FACIAL EXPRESSION ANALYSIS BE USED FOR	1632
IVMSP-L2.2: SIGN LANGUAGE DETECTION "IN THE WILD" WITH RECURRENT	1637
IVMSP-L2.3: BOUNDARY INFORMATION MATTERS MORE: ACCURATE TEMPORAL	1642
IVMSP-L2.4: BLP - BOUNDARY LIKELIHOOD PINPOINTING NETWORKS FOR	1647
IVMSP-L2.5: RADIAL LOSS FOR LEARNING FINE-GRAINED VIDEO SIMILARITY	1652
IVMSP-L2.6: LADDERNET: KNOWLEDGE TRANSFER BASED VIEWPOINT	

IVMSP-L3: IMAGE ANALYSIS

IVMSP-L3.1: TWO-B-REAL NET: TWO-BRANCH NETWORK FOR REAL-TIME
IVMSP-L3.2: LEARNING THE SPIRAL SHARING NETWORK WITH MINIMUM
IVMSP-L3.3: IMAGE RECONSTRUCTION BY ORTHOGONAL MOMENTS DERIVED
IVMSP-L3.4: USER CONSTRAINED THUMBNAIL GENERATION USING ADAPTIVE
IVMSP-L3.5: DECOUPLING CATEGORY-WISE INDEPENDENCE AND RELEVANCE
IVMSP-L3.6: HIGH ACCURACY IMAGE ROTATION AND SCALE ESTIMATION USING
IVMSP-L4: IMAGE RESTORATION
IVMSP-L4.1: LIGHT FIELD DENOISING USING 4D ANISOTROPIC DIFFUSION
IVMSP-L4.2: SPATIALLY ADAPTIVE LOSSES FOR VIDEO SUPER-RESOLUTION
IVMSP-L4.3: IMAGE DEMOSAICKING VIA CHROMINANCE IMAGES WITH PARALLEL
IVMSP-L4.4: MULTI-SPECTRAL IMAGE DENOISING WITH SHARED DICTIONARIES
IVMSP-L4.5: BAYESIAN IMAGE RESTORATION UNDER POISSON NOISE AND
IVMSP-L4.6: BLIND DENOISING OF MIXED GAUSSIAN-IMPULSE NOISE BY

IVMSP-L5: INTERPOLATION AND SUPER-RESOLUTION

IVMSP-L5.1: SINGLE IMAGE INTERPOLATION EXPLOITING SEMI-LOCAL	1722
IVMSP-L5.2: ACCURATE RECONSTRUCTION OF FINITE RATE OF INNOVATION	
IVMSP-L5.3: A NOVEL SUPER-RESOLUTION METHOD BASED ON PATCH	1732
IVMSP-L5.4: PERCEPTUAL QUALITY PRESERVING IMAGE SUPER-RESOLUTION	1737
IVMSP-L5.5: MULTI-SCALE DENSE NETWORK FOR SINGLE-IMAGE	1742
IVMSP-L5.6: IMAGE SUPER-RESOLUTION VIA DEEP AGGREGATION NETWORK	1747
IVMSP-L6: ENHANCEMENT AND RESTORATION I	
IVMSP-L6.1: A SIMPLE WAY OF MULTIMODAL AND ARBITRARY STYLE TRANSFER	1752
IVMSP-L6.2: ASYMMETRIC CYCLEGAN FOR UNPAIRED NIR-TO-RGB FACE IMAGE	of
IVMSP-L6.3: TWO-STREAM MULTI-FOCUS IMAGE FUSION BASED ON THELATENT DECISION MAP Weihong Zeng, Fei Li, Hongyu Huang, Yue Huang, Xinghao Ding, Xiamen University, China	1762
IVMSP-L6.4: RAIN STREAK REMOVAL VIA MULTI-SCALE MIXTURE EXPONENTIAL	1767
IVMSP-L6.5: PROPER GUIDANCE IMAGE GENERATION BASED ON SALIENCY	1772
IVMSP-L6.6: HUMAN PERCEPTION ORIENTED IMAGE ENHANCEMENT	1777
IVMSP-P1: IMAGE/VIDEO CODING II	
IVMSP-P1.1: CONTENT ADAPTIVE WAVELET LIFTING FOR SCALABLE LOSSLESS	1782
Daniela Lanz, Christian Herbert, André Kaup, Multimedia Communications and Signal Processing, Germany	

IVMSP-P1.2: MULTISOURCE SURVEILLANCE VIDEO CODING BY EXPLOITING
IVMSP-P1.3: TRANSFORM COEFFICIENT CODING FOR SCREEN CONTENT IN
IVMSP-P1.4: IMAGE COMPRESSION USING GMM MODEL OPTIMIZATION
IVMSP-P1.5: CODING TREE EARLY TERMINATION FOR FAST HEVC TRANSRATING
IVMSP-P1.6: AN IMAGE CODING APPROACH BASED ON MIXTURE-OF-EXPERTS
IVMSP-P1.7: A NOVEL FRAMEWORK FOR DESIGNING DIRECTIONAL LINEAR
IVMSP-P1.8: IMPROVING THE RATE-DISTORTION MODEL OF HEVC INTRA BY
IVMSP-P1.9: LONG TERM BACKGROUND REFERENCE BASED SATELLITE VIDEO
IVMSP-P1.10: GENERATIVE ADVERSARIAL NETWORKS BASED ERROR
IVMSP-P1.11: MULTIPLE LINEAR REGRESSION FOR HIGH EFFICIENCY VIDEO
IVMSP-P1.12: RANDOM FOREST ORIENTED FAST QTBT FRAME PARTITIONING
IVMSP-P2: ENHANCEMENT AND RESTORATION II
IVMSP-P2.1: OPTIMAL FEATURE SELECTION FOR BLIND SUPER-RESOLUTION
IVMSP-P2.2: ALTERNATELY GUIDED DEPTH SUPER-RESOLUTION USING

IVMSP-P2.3: A CONVEX LIFTING APPROACH TO IMAGE PHASE UNWRAPPING
IVMSP-P2.4: ROBUST SUPER-RESOLUTION USING MULTIPLE BASES AND 3D
Naushad Ansari, Weisi Lin, Nanyang Technological University, Singapore, Singapore
IVMSP-P2.5: COUPLED ISTA NETWORK FOR MULTI-MODAL IMAGE
IVMSP-P2.6: MULTISCALE STRUCTURE TENSOR TOTAL VARIATION FOR IMAGE
IVMSP-P2.7: CONVOLUTIONAL-SPARSE-CODED DYNAMIC MODE
IVMSP-P2.8: FAST EDGE PRESERVING 2D SMOOTHING FILTER USING
IVMSP-P2.9: DENOISING OF 3D POINT CLOUDS CONSTRUCTED FROM LIGHT
IVMSP-P2.10: INTERACTIVE DEEP COLORIZATION USING SIMULTANEOUS
IVMSP-P3: SEGMENTATION AND TRACKING
IVMSP-P3.1: CAN: CONTEXTUAL AGGREGATING NETWORK FOR SEMANTIC
IVMSP-P3.2: AN IMPROVED APPROACH TO WEAKLY SUPERVISED SEMANTIC
IVMSP-P3.3: PIXEL LEVEL DATA AUGMENTATION FOR SEMANTIC IMAGE
IVMSP-P3.4: SALIENCY AWARE: WEAKLY SUPERVISED OBJECT LOCALIZATION
IVMSP-P3.5: A DATA-CENTRIC APPROACH TO UNSUPERVISED TEXTURE

IVMSP-P3.6: WEAKLY SUPERVISED INSTANCE SEGMENTATION USING HYBRID	
IVMSP-P3.7: DISCRIMINATIVE FEATURES RECONSTRUCTION NETWORK FOR	1922
IVMSP-P3.8: ONLINE SINGLE PERSON TRACKING FOR UNMANNED AERIAL	
IVMSP-P3.9: REAL-TIME TRACKER WITH FAST RECOVERY FROM TARGET LOSS	1932
IVMSP-P3.10: SHOT TYPE FEASIBILITY IN AUTONOMOUS UAV CINEMATOGRAPHY	1937
IVMSP-P3.11: ADVERSARIAL LEARNING-BASED DATA AUGMENTATION FOR	1942
IVMSP-P4: IMAGE/VIDEO ANALYSIS I	
IVMSP-P4.1: ADAPTIVE GRAPH FORMULATION FOR 3D SHAPE REPRESENTATION	1947
IVMSP-P4.2: DOD-CNN: DOUBLY-INJECTING OBJECT INFORMATION FOR	
IVMSP-P4.3: SCORE-SPECIFIC NON-MAXIMUM SUPPRESSION AND	ijing
IVMSP-P4.4: ADVERSARIAL WATERMARKING TO ATTACK DEEP NEURAL	1962
IVMSP-P4.5: LEARNING SEARCH PATH FOR REGION-LEVEL IMAGE MATCHING	1967
IVMSP-P4.6: VEHICLE POSE ESTIMATION USING MASK MATCHING	1972
IVMSP-P4.7: NOSE, EYES AND EARS: HEAD POSE ESTIMATION BY LOCATING	1977

Aryaman Gupta, Kalpit Thakkar, Vineet Gandhi, PJ Narayanan, IIIT Hyderabad, India

IVMSP-P4.8: CASCADED POINT NETWORK FOR 3D HAND POSE ESTIMATION
Deng, Cuixia Ma, Institute of Software, Chinese Academy of Sciences, China; Liang Chang, College of Information Science and Technology, Beijing Normal University, China; Hongan Wang, Institute of Software, Chinese Academy of Sciences, China
IVMSP-P4.9: MULTI-MODAL IMAGE STITCHING WITH NONLINEAR
IVMSP-P4.11: SCANET: SPATIAL-CHANNEL ATTENTION NETWORK FOR 3D OBJECT
IVMSP-P5: IMAGE/VIDEO ANALYSIS II
IVMSP-P5.1: A NOVEL FRACTIONAL ORDER DERIVATE BASED LOG-DEMONS
IVMSP-P5,2: DUAL-MODALITY SEQ2SEQ NETWORK FOR AUDIO-VISUAL EVENT
IVMSP-P5.3: MULTIPLE AGENTS REPRESENTATION USING MOTION FIELDS
IVMSP-P5.4: TOWARDS GENERATING AMBISONICS USING AUDIO-VISUAL CUE
IVMSP-P5.5: TEMPORAL SALIENCE BASED HUMAN ACTION RECOGNITION
IVMSP-P5.6: FACIAL MICRO-EXPRESSION SPOTTING AND RECOGNITION USING
IVMSP-P5.7: PREDICTING VIDEO-FRAMES USING ENCODER-CONVLSTM
IVMSP-P5.8: DEEP COUNTING MODEL EXTENSIONS WITH SEGMENTATION FOR
IVMSP-P5.9: LEARNING CONVOLUTIONAL NEURAL NETWORKS WITH DEEP PART
IVMSP-P5.10: DSSLIC: DEEP SEMANTIC SEGMENTATION-BASED LAYERED IMAGE

IVMSP-P6: RETRIEVAL

IVMSP-P6.1: BILINEAR REPRESENTATION FOR LANGUAGE-BASED IMAGE EDITING
IVMSP-P6.2: MULTI-SCALE SPATIAL-TEMPORAL NETWORK FOR PERSON
IVMSP-P6.3: LANGUAGE PERSON SEARCH WITH MUTUALLY CONNECTED
IVMSP-P6.4: BURST-SURVIVE TEMPORAL MATCHING KERNEL WITH FIBONACCI
IVMSP-P6.5: A NOVEL DEEP HASHING METHOD WITH TOP SIMILARITY FOR
IVMSP-P6.6: MULTI-LEVEL SUPERVISED NETWORK FOR PERSON
IVMSP-P6.7: DEEP TEMPORAL PYRAMID DESIGN FOR ACTION RECOGNITION
IVMSP-P6.8: MULTI-STEP SELF-ATTENTION NETWORK FOR CROSS-MODAL
IVMSP-P6.9: SCORE-BASED LEARNING FOR RELEVANCE PREDICTION IN IMAGE
IVMSP-P7: IMAGE/VIDEO FEATURE EXTRACTION
IVMSP-P7.1: ROBUST UNSUPERVISED FLEXIBLE AUTO-WEIGHTED
IVMSP-P7.2: VISUAL RELATIONSHIP RECOGNITION VIA LANGUAGE AND POSITION
IVMSP-P7.3: DYNAMIC TEXTURE RECOGNITION USING 3D RANDOM FEATURES 2102

IVMSP-P7.4: UNSUPERVISED FEATURE SELECTION BASED ON
Sheng Yang, Rui Zhang, Feiping Nie, Xuelong Li, Northwestern Polytechnical University, China
IVMSP-P7.5: DISCRIMINATIVE VIDEO REPRESENTATION WITH TEMPORAL
IVMSP-P7.6: MULTI-SCALE VEHICLE RE-IDENTIFICATION USING SELF-ADAPTING2117 LABEL SMOOTHING REGULARIZATION Yue Xu, Na Jiang, Lei Zhang, Zhong Zhou, Wei Wu, Beihang University, China
IVMSP-P7.7: EXPRESSION-IDENTITY FUSION NETWORK FOR FACIAL
IVMSP-P7.8: RANDOMIZED TENSOR RING DECOMPOSITION AND ITS
IVMSP-P7.9: DISCRIMINATIVE SALIENCY-POSE-ATTENTION COVARIANCE FOR
IVMSP-P7.10: LEARNING DISCRIMINATIVE FINGER-KNUCKLE-PRINT
IVMSP-P7.11: SALIENCY PREDICTION FOR OMNIDIRECTIONAL IMAGES
IVMSP-P7.12: REFLECTION SYMMETRY DETECTION BY EMBEDDING
IVMSP-P8: IMAGE FORMATION
IVMSP-P8.1: HYPERSPECTRAL AND MULTISPECTRAL DATA FUSION BY A
IVMSP-P8.2: ALTERNATING DIRECTION METHOD OF MULTIPLIERS FOR

IVMSP-P8.3: ADAPTIVE BRIGHTNESS LEARNING FOR ACTIVE OBJECT
Nuo Xu, Chunlei Huo, Chunhong Pan, Chinese Academy of Sciences, University of Chinese Academy of Sciences, China
IVMSP-P8.4: AN EFFICIENT ALGORITHM FOR HYPERSPECTRAL IMAGE
IVMSP-P8.5: RADAR STATIONARY AND MOVING INDOOR TARGET LOCALIZATION
IVMSP-P8.6: IMPROVED HYPERSPECTRAL UNMIXING WITH ENDMEMBER
IVMSP-P8.7: SHIP WAKE DETECTION IN X-BAND SAR IMAGES USING SPARSE
IVMSP-P8.8: MULTISOURCE REMOTE SENSING DATA CLASSIFICATION USING
IVMSP-P8.10: SALIENT OBJECT DETECTION ON HYPERSPECTRAL IMAGES USING
IVMSP-P8.11: CLASSIFICATION OF HYPERSPECTRAL AND LIDAR WITH DEEP
IVMSP-P9: MOTION ESTIMATION AND TRACKING
IVMSP-P9.1: MULTI-TEACHER KNOWLEDGE DISTILLATION FOR COMPRESSED
IVMSP-P9.2: AD-NET: ATTENTION GUIDED NETWORK FOR OPTICAL FLOW
IVMSP-P9.3: FROM TV-L1 TO GATED RECURRENT NETS
IVMSP-P9.4: PROGRESSIVE FILTERING FOR FEATURE MATCHING
IVMSP-P9.5: A NOVEL FRAMEWORK OF HAND LOCALIZATION AND HAND POSE

IVMSP-P9.6: HOW VIDEO OBJECT TRACKING IS AFFECTED BY IN-CAPTURE
IVMSP-P9.7: E-CNN: ACCURATE SPHERICAL CAMERA ROTATION ESTIMATION VIA
IVMSP-P9.8: SENSOR-ASSISTED GLOBAL MOTION ESTIMATION FOR EFFICIENT
IVMSP-P9.9: ROBUST VISUAL TRACKING VIA ADAPTIVE OCCLUSION DETECTION
IVMSP-P9.10: COMPLEMENTARY SIAMESE NETWORKS FOR ROBUST VISUAL
IVMSP-P10: STEREOSCOPIC AND 3D PROCESSING
IVMSP-P10.1: LEARNING BY INERTIA: SELF-SUPERVISED MONOCULAR VISUAL
IVMSP-P10.2: A LEARNING BASED DEPTH ESTIMATION FRAMEWORK FOR 4D
IVMSP-P10.3: VIDEO-BASED, OCCLUSION-ROBUST MULTI-VIEW STEREO USING
IVMSP-P10.4: A DIFFERENTIAL-GEOMETRIC APPROACH FOR GLOBALLY SOLVING
IVMSP-P10.5: ON THE PERFORMANCE OF DIBR METHODS WHEN USING DEPTH
IVMSP-P10.6: JUST NOTICEABLE DIFFERENCE MODEL FOR ASYMMETRICALLY
IVMSP-P10.7: POST-STITCHING DEPTH ADJUSTMENT FOR STEREOSCOPIC
IVMSP-P10.8: DYNAMIC POINT CLOUD GEOMETRY COMPRESSION VIA

IVMSP-P10.9: CONSISTENCY CONSTRAINED RECONSTRUCTION OF DEPTH MAPSFROM EPIPOLAR PLANE IMAGES	. 2292
Ziling Huang, Chia-Wen Lin, National Tsing Hua University, Taiwan; Hao-Chiang Shao, Fu Jen Catholic University, Taiwan Xiangsheng Huang, Chinese Academy of Sciences, China	n;
IVMSP-P10.10: ROBUST VIEW SYNTHESIS IN WIDE-BASELINE COMPLEX	. 2297
IVMSP-P10.11: HOMOGRAPHY ESTIMATION BASED ON ERROR ELLIPTICAL	
IVMSP-P11: IMAGE/VIDEO PROCESSING I	
IVMSP-P11.1: CAPSULE-FORENSICS: USING CAPSULE NETWORKS TO DETECT	
IVMSP-P11.2: AUTONOMOUS DETECTION AND DISAMBIGUATION OF MARTIAN ION	. 2312
IVMSP-P11.3: A FUZZY-BASED TWO-STAGE BIOMETRIC SAMPLE QUALITY	. 2317
IVMSP-P11.4: EXPLOITING UNCERTAINTY OF DEEP NEURAL NETWORKS FOR	ty of
IVMSP-P11.5: MULTI-FRAME SUPER-RESOLUTION FOR TIME-OF-FLIGHT	. 2327
IVMSP-P11.6: GRADIENT IMAGE SUPER-RESOLUTION FOR LOW-RESOLUTION	ina,
IVMSP-P11.7: FINE-TUNING APPROACH TO NIR FACE RECOGNITION	. 2337
IVMSP-P11.8: MULTISCALE DIRECTIONAL FUSION FOR DEPTH MAP SUPER RESOLUTION WITH DENOISING Dan Xu, Xiaopeng Fan, Harbin Institute of Technology, China; Shibo Zhang, Northwestern University, United States; Yang V Debin Zhao, Harbin Institute of technology, United States; Wen Gao, Peking University, United States	
IVMSP-P11.9: CHANNEL IMPULSIVE NOISE MITIGATION FOR LINEAR VIDEO	. 2347

IVMSP-P11.10: END-TO-END AUDIO VISUAL SCENE-AWARE DIALOG USING
MULTIMODAL ATTENTION-BASED VIDEO FEATURES Chiori Hori, Mitsubishi Electric Research Laboratories (MERL), United States; Huda Alamri, Georgia Institute of Technology, United States; Jue Wang, Gordon Wichern, Takaaki HORI, Anoop Cherian, Tim Marks, Mitsubishi Electric Research Laboratorie (MERL), United States; Vincent Cartillier, Raphael Lopes, Abhishek Das, Irfan Essa, Dhruv Batra, Devi Parikh, Georgia Institute of Technology, United States
IVMSP-P11.11: SELF-SUPERVISED AUDIO-VISUAL CO-SEGMENTATION
IVMSP-P11.12: VIDEO QUALITY ASSESSMENT FOR ENCRYPTED HTTP ADAPTIVE
IVMSP-P12: IMAGE/VIDEO PROCESSING II
IVMSP-P12.1: 3D VISUAL SPEECH ANIMATION USING 2D VIDEOS
IVMSP-P12.2: COMPLETELY BLIND IMAGE QUALITY ASSESSMENT USING LATENT
IVMSP-P12.3: PGR-NET: A PARALLEL NETWORK BASED ON GROUP AND
IVMSP-P12.4: ADAPTIVE SCENARIO DISCOVERY FOR CROWD COUNTING
IVMSP-P12.5: TRANSFORM DOMAIN BASED MEDICAL IMAGE SUPER-RESOLUTION
IVMSP-P12.6: MOTION-ADAPTED THREE-DIMENSIONAL FREQUENCY SELECTIVE
IVMSP-P12.7: MATERIAL SEGMENTATION IN HYPERSPECTRAL IMAGES WITH A
IVMSP-P12.8: RELIABILITY OF THE MOST COMMON OBJECTIVE METRICS FOR
IVMSP-P12.9: EDGE DETECTION EVALUATION: A NEW NORMALIZED FIGURE OF

IVMSP-P12.10: A ROTATION INVARIANT HOG DESCRIPTOR FOR TIRE PATTERNIMAGE CLASSIFICATION Liu Ying, Ge Yuxiang, Wang Fuping, Liu Qiqi, Lei Yanbo, Xi'an University of Posts and Telecommunications, China; Zhang Dengsheng, Lu Guojun, Federation University, Australia, Australia	. 2412
IVMSP-P12.11: GRAPH-BASED RGB-D IMAGE SEGMENTATION USING	
IVMSP-P12.12: OBJECT COUNTING IN VIDEO SURVEILLANCE USING	
IFS-L1: INFORMATION FORENSICS AND SECURITY I	
IFS-L1.1: ON THE COMPUTABILITY OF THE SECRET KEY CAPACITY UNDER	. 2427
IFS-L1.2: QUICKEST DETECTION OF TIME-VARYING FALSE DATA INJECTION	. 2432
IFS-L1.3: SECURE MIMO INTERFERENCE CHANNEL WITH CONFIDENTIAL	. 2437
IFS-L1.4: ROBUST SECURE PRECODING AND ANTENNA SELECTION: A	. 2442
IFS-L1.5: COMBATING JAMMING IN WIRELESS NETWORKS: A BAYESIAN GAME	
IFS-L1.6: AUDIO WATERMARKING OVER THE AIR WITH MODULATED	. 2452
IFS-L2: INFORMATION FORENSICS AND SECURITY II	
IFS-L2.1: SIMILARITY LEARNING FOR AUTHORSHIP VERIFICATION IN SOCIAL	
IFS-L2.2: CROSS-VIEW IDENTICAL PART AREA ALIGNMENT FOR PERSON	

IFS-L2.3: PREWARPING SIAMESE NETWORK: LEARNING LOCAL
IFS-L2.4: ALL FOR ONE: FRAME-WISE RANK LOSS FOR IMPROVING
IFS-L2.5: ON THE ADVERSARIAL ROBUSTNESS OF SUBSPACE LEARNING
IFS-L2.6: CLONABILITY OF ANTI-COUNTERFEITING PRINTABLE GRAPHICAL
IFS-P1: FORENSICS, SECURITY AND PRIVACY II
IFS-P1.1: INPAINTING IN OMNIDIRECTIONAL IMAGES FOR PRIVACY PROTECTION
IFS-P1.2: GRAPH SPECTRAL DOMAIN BLIND WATERMARKING
IFS-P1.3: FACTORS AFFECTING ENF BASED TIME-OF-RECORDING ESTIMATION
IFS-P1.4: SCENE PRIVACY PROTECTION
IFS-P1.5: SENTIMENT AWARE FAKE NEWS DETECTION ON ONLINE SOCIAL
IFS-P1.6: FLEXIBLE DESIGN OF FINITE BLOCKLENGTH WIRETAP CODES BY
IFS-P2: ATTACKS AND DETECTION
IFS-P2.1: DATA POISONING ATTACKS AGAINST MRMR
IFS-P2.2: NEGATIVE CORRELATION, NON-LINEAR FILTERING, AND
IFS-P2.3: ANALYSIS OF INFORMATION DIFFUSION WITH IRRATIONAL USERS: A

IFS-P2.4: DETECTABILITY OF DENIAL-OF-SERVICE ATTACKS ON	
IFS-P2.5: IMPROVING OBJECT DETECTION WITH RELATION GRAPH INFERENCE	2537
IFS-P2.6: VIEW-INVARIANT ACTION RECOGNITION FROM RGB DATA VIA 3D POSE	
IFS-P2.7: PREDICTING THE SECRET PARAMETERS OF A CHAOTIC RANDOM	2547
IFS-P2.8: PHYLOGENETIC ANALYSIS OF SOFTWARE USING CACHE MISS	2552
IFS-P3: BIOMETRICS	
IFS-P3.1: TYPE AND LEAK YOUR ETHNICITY ON SMARTPHONES	2557
IFS-P3.2: IMPROVING EYE MOVEMENT BIOMETRICS USING REMOTE	
IFS-P3.3: AUDIO REPLAY SPOOF ATTACK DETECTION USING SEGMENT-BASED	2567
IFS-P3.4: PHONESPOOF: A NEW DATASET FOR SPOOFING ATTACK DETECTION IN	2572
IFS-P3.5: "HELLO? WHO AM I TALKING TO?" A SHALLOW CNN APPROACH FOR	2577
IFS-P3.6: TURNING A VULNERABILITY INTO AN ASSET: ACCELERATING FACIAL	
IFS-P3.7: DETECTION OF VOICE TRANSFORMATION SPOOFING BASED ON	2587
IFS-P3.8: AGGREGATION AND EMBEDDING FOR GROUP MEMBERSHIP	2592

IFS-P3.9: CLEANING ADVERSARIAL PERTURBATIONS VIA RESIDUAL GENERATIVE
IFS-P3.10: SELECTIVE JPEG2000 ENCRYPTION OF IRIS DATA: PROTECTING
IFS-P3.11: ANALYSIS OF REVERBERATION VIA TEAGER ENERGY FEATURES FOR
IFS-P3.12: SECURING SMARTPHONE HANDWRITTEN PIN CODES WITH
IFS-P4: STEGANOGRAPHY, WATERMARKING AND SECRET SHARING SYSTEMS
IFS-P4.1: A NEW SPATIAL STEGANOGRAPHIC SCHEME BY MODELING IMAGE
IFS-P4.2: ATTACKS ON DIGITAL WATERMARKS FOR DEEP NEURAL NETWORKS
IFS-P4.3: RHFCN: FULLY CNN-BASED STEGANALYSIS OF MP3 WITH RICH
IFS-P4.4: INAUDIBLE SPEECH WATERMARKING BASED ON SELF-COMPENSATED
IFS-P4.5: QUANTIZED GAUSSIAN EMBEDDING STEGANOGRAPHY
IFS-P4.6: DIGITALLY ANNEALED SOLUTION FOR THE VERTEX COVER PROBLEM
IFS-P4.7: MAXIMALLY SEPARATED AVERAGES PREDICTION FOR HIGH FIDELITY
IFS-P4.8: PREDICTION-ERROR-ORDERING FOR HIGH-FIDELITY REVERSIBLE
IFS-P4.9: A FORMAT-COMPLIANT SELECTIVE SECRET 3D OBJECT SHARING

IFS-P5: FORENSICS, SECURITY AND PRIVACY I

Japan

IFS-P5.1: DETECTION OF REAL-WORLD FIGHTS IN SURVEILLANCE VIDEOS	2662
Mauricio Perez, Alex C. Kot, Nanyang Technological University, Singapore; Anderson Rocha, University of Campinas, E	
IFS-P5.2: ENF SIGNAL EXTRACTION FOR ROLLING-SHUTTER VIDEOS USING PERIODIC ZERO-PADDING Jisoo Choi, Chau-Wai Wong, North Carolina State University, United States	2667
IFS-P5.3: DIFFERENTIALLY PRIVATE GREEDY DECISION FOREST	2672
Bangzhou Xin, Wei Yang, Shaowei Wang, Liusheng Huang, University of Science and Technology of China, China	
IFS-P5.4: SHADOW REMOVAL DETECTION AND LOCALIZATION FOR FORENSICSANALYSIS	
Sri Kalyan Yarlagadda, David Güera, Daniel Mas Montserrat, Fengqing Maggie Zhu, Purdue University, United States; Bestagini, Stefano Tubaro, Politecnico di Milano, Italy; Edward Delp, Purdue University, United States	Paolo
IFS-P5.5: REDUCED COMPLEXITY IMAGE CLUSTERING BASED ON CAMERAFINGERPRINTS	2682
Sahib Khan, Tiziano Bianchi, Politecnico di Torino, Italy, Italy	
IFS-P5.7: PRIVACY-COST TRADE-OFF IN A SMART METER SYSTEM WITH A	2687
RENEWABLE ENERGY SOURCE AND A RECHARGEABLE BATTERY Ecenaz Erdemir, Pier Luigi Dragotti, Deniz Gunduz, Imperial College London, United Kingdom	
IFS-P5.8: A NEEDLE IN A HAYSTACK? HARNESSING ONOMATOPOEIA AND	2692
USER-SPECIFIC STYLOMETRICS FOR AUTHORSHIP ATTRIBUTION OF MICRO-MESSAGES Antônio Theóphilo, Luís A. M. Pereira, Anderson Rocha, University of Campinas, Brazil	
IDSP-P1: SIGNAL PROCESSING FOR EMERGING AND PRACTICAL APPLICATIONS	
IDSP-P1.1: LOW POWER ULTRASONIC GESTURE RECOGNITION FOR MOBILE	2697
HANDSETS Costas Yiallourides, Pablo Peso Parada, Cirrus Logic Inc., United Kingdom	
IDSP-P1.2: SIMULTANEOUS OPTIMIZATION OF FORGETTING FACTOR AND	2702
IDSP-P1.3: RECONFIGURABLE MULTITASK AUDIO DYNAMICS PROCESSING	2707
SCHEME Jun Yang, Amit S. Chhetri, Carlo Murgia, Philip Hilmes, Amazon Lab126, United States	
IDSP-P1.4: WORD CHARACTERS AND PHONE PRONUNCIATION EMBEDDING FORASR CONFIDENCE CLASSIFIER	2712
Kshitiz Kumar, Tasos Anastasakos,, Yifan Gong, Microsoft, United States	
IDSP-P1.5: LEARNING EFFICIENT SPARSE STRUCTURES IN SPEECH	2717
Jingchi Zhang, Wei Wen, Duke University, United States; Michael Deisher, Intel Corporation, United States; Hsin-Pai C Li, Yiran Chen, Duke University, United States	heng, Hai
IDSP-P1.6: A NOISE ROBUST HEARABLE DEVICE WITH AN ADAPTIVE NOISE	2722
CANCELLER AND ITS DSP IMPLEMENTATION Akihiko Sugiyama, NEC Corporation, Japan; Ryoji Miyahara, NEC Platforms, Ltd., Japan; Kouji Oosugi, NEC Corpora	ıtion,

IDSP-P1.7: DEVELOPMENT AND EVALUATION OF JAPANESE TEXT-TO-SPEECH
IDSP-P1.8: COMPUTATIONAL COGNITIVE ASSESSMENT: INVESTIGATING THE
IDSP-P1.9: CANONICAL CORRELATION BASED FEATURE EXTRACTION WITH
IDSP-P1.10: PERFORMANCE OF JENSEN SHANNON DIVERGENCE IN INCIPIENT
IDSP-P1.11: BAYESIAN-OPTIMIZED BIDIRECTIONAL LSTM REGRESSION MODEL
IDSP-P1.12: DETECTING AND CLASSIFYING RAIL CORRUGATION BASED ON AXLE
MLSP-L1: DEEP LEARNING APPLICATIONS I
MLSP-L1.1: PEAK DETECTION AND BASELINE CORRECTION USING A
MLSP-L1.2: DEEP LEARNING THE EEG MANIFOLD FOR PHONOLOGICAL
MLSP-L1.3: IMPROVE DIVERSE TEXT GENERATION BY SELF LABELING
MLSP-L1.4: FULLY DATA-DRIVEN CONVOLUTIONAL FILTERS WITH DEEP
MLSP-L1.5: ADVERSARIALLY TRAINED AUTOENCODERS FOR PARALLEL-DATA-FREE
MLSP-L1.6: STATIC AND DYNAMIC STATE PREDICTIONS FOR ACOUSTIC MODEL

MLSP-L2: DEEP LEARNING I

MLSP-L2.1: A TRAINING METHOD USING DNN-GUIDED LAYERWISE
MLSP-L2.2: JOINTLY SPARSE CONVOLUTIONAL NEURAL NETWORKS IN DUAL
MLSP-L2.3: A PENALIZED AUTOENCODER APPROACH FOR NONLINEAR
MLSP-L2.4: PRUNE YOUR NEURONS BLINDLY: NEURAL NETWORK
MLSP-L2.5: DADA: DEEP ADVERSARIAL DATA AUGMENTATION FOR EXTREMELY
MLSP-L2.6: UNDERSTANDING DEEP NEURAL NETWORKS THROUGH INPUT
MLSP-L3: AUDIO, SPEECH, AND NATURAL LANGUAGE PROCESSING
The state of the s
MLSP-L3.1: HMM-BASED APPROACHES TO MODEL MULTICHANNEL
MLSP-L3.1: HMM-BASED APPROACHES TO MODEL MULTICHANNEL 2817 INFORMATION IN SIGN LANGUAGE INSPIRED FROM ARTICULATORY FEATURES-BASED SPEECH PROCESSING Sandrine Tornay, Idiap Research Institute, Switzerland; Marzieh Razavi, Telepathy Labs GmbH, Switzerland; Necati Cihan Camgoz, Richard Bowden, University of Surrey, United Kingdom; Mathew MagimaiDoss, Idiap Research Institute, Switzerland MLSP-L3.2: SPEECH EMOTION RECOGNITION USING MULTI-HOP ATTENTION 2822
MLSP-L3.1: HMM-BASED APPROACHES TO MODEL MULTICHANNEL

MLSP-L4: LEARNING THEORY AND METHODS I

MLSP-L4.1: BIAS MITIGATION POST-PROCESSING FOR INDIVIDUAL AND GROUP	847
MLSP-L4.2: INFERENCE ABOUT CAUSALITY FROM CARDIOTOCOGRAPHY SIGNALS	
MLSP-L4.3: CONVERGENCE BOUNDS FOR COMPRESSED GRADIENT METHODS	857
MLSP-L4.4: EFFICIENT STOCHASTIC SUBGRADIENT DESCENT ALGORITHMS FOR	862
MLSP-L4.5: ANOMALY DETECTION IN SINGLE SUBJECT VS GROUP USING	
MLSP-L4.6: DETECTING CYBER ATTACKS USING ANOMALY DETECTION WITH	:872
MLSP-L5: DEEP LEARNING APPLICATIONS II	
MLSP-L5.1: FORKED RECURRENT NEURAL NETWORK FOR HAND GESTURE	
MLSP-L5.2: MISSING DATA IN TRAFFIC ESTIMATION: A VARIATIONAL	882
MLSP-L5.3: SURGICAL ACTIVITIES RECOGNITION USING MULTI-SCALE	887
MLSP-L5.4: LOW-COST MEASUREMENT OF INDUSTRIAL SHOCK SIGNALS VIA	
MLSP-L5.5: EFFICIENT MULTI-AGENT COOPERATIVE NAVIGATION IN UNKNOWN	: 897
MLSP-L5.6: DEEP COMPLEX-VALUED NEURAL BEAMFORMERS	902

MLSP-L6: MATRIX AND TENSOR METHODS I

MLSP-L6.1: FAST AND GLOBAL OPTIMAL NONCONVEX MATRIX FACTORIZATION
Songtao Lu, Mingyi Hong, University of Minnesota Twin Cities, United States; Zhengdao Wang, Iowa State University, United States
MLSP-L6.2: STATISTICAL RANK SELECTION FOR INCOMPLETE LOW-RANK
MLSP-L6.3: ACCELERATING ITERATIVE HARD THRESHOLDING FOR LOW-RANK
MLSP-L6.4: LATENT SCHATTEN TT NORM FOR TENSOR COMPLETION
MLSP-L6.5: COMMON MODE PATTERNS FOR SUPERVISED TENSOR SUBSPACE
MLSP-L6.6: REGULAR SAMPLING OF TENSOR SIGNALS: THEORY AND
MLSP-L7: GRAPH SIGNAL PROCESSING
MLSP-L7.1: LEARNING LAPLACIAN MATRIX FROM BANDLIMITED GRAPH SIGNALS
MLSP-L7.2: COMMUNITY DETECTION IN SPARSE REALISTIC GRAPHS:
MLSP-L7.3: MULTIVIEW CANONICAL CORRELATION ANALYSIS OVER GRAPHS
MLSP-L7.4: GRAPHICAL LASSO FOR HIGH-DIMENSIONAL COMPLEX GAUSSIAN
MLSP-L7.5: DEEPWALK-ASSISTED GRAPH PCA (DGPCA) FOR LANGUAGE
MLSP-L7.6: SCALABLE MUTUAL INFORMATION ESTIMATION USING DEPENDENCE

MLSP-L8: COMPRESSIVE SENSING, DICTIONARY AND SUBSPACE LEARNING	
MLSP-L8.1: FAST COMPRESSIVE SENSING RECOVERY USING GENERATIVE	. 2967
MLSP-L8.2: ROBUST DICTIONARY LEARNING USING ALPHA-DIVERGENCE	. 2972
MLSP-L8.3: SIMULTANEOUS BLIND DECONVOLUTION AND PHASE RETRIEVAL	. 2977
MLSP-L8.4: FIRMNET: A SPARSITY AMPLIFIED DEEP NETWORK FOR SOLVINGLINEAR INVERSE PROBLEMS Praveen Kumar Pokala, Amol Ganesh Mahurkar, Chandra Sekhar Seelamantula, Indian Institute of Science, India	. 2982
MLSP-L8.5: DEEP SIGNAL RECOVERY WITH ONE-BIT QUANTIZATION	. 2987
MLSP-L8.6: BAYESIAN NEURAL NETWORKS FOR SPARSE CODING	. 2992
MLSP-P1: DEEP LEARNING II	
MLSP-P1.1: NEURAL CRF TRANSDUCERS FOR SEQUENCE LABELING	. 2997
MLSP-P1.2: NEURAL NETWORKS SEQUENTIAL TRAINING USING VARIATIONAL	. 3002
MLSP-P1.3: UNSUPERVISED PERSON RE-IDENTIFICATION USING RELIABLE AND	. 3007
MLSP-P1.4: HYPERSPECTRAL IMAGE SUPER-RESOLUTION USING GENERATIVE	
MLSP-P1.5: TOWARDS VISUALLY GROUNDED SUB-WORD SPEECH UNIT	. 3017
MLSP-P1.6: LOW-RANK EMBEDDING OF KERNELS IN CONVOLUTIONAL NEURAL	
MLSP-P1.7: END-TO-END CHANGE DETECTION USING A SYMMETRIC FULLY	. 3027

MLSP-P1.8: OPTIMIZING QOE OF MULTIPLE USERS OVER DASH: A
MLSP-P1.9: LARGE-POSE FACE ALIGNMENT VIA SHAPE-AWARE HEATMAP
MLSP-P1.10: NON-LOCAL SELF-ATTENTION STRUCTURE FOR FUNCTION
MLSP-P1.11: A TWO-CLASS HYPER-SPHERICAL AUTOENCODER FOR SUPERVISED
MLSP-P1.12: DIVERGENCE BASED WEIGHTING FOR INFORMATION CHANNELS IN
MLSP-P2: REINFORCEMENT AND TRANSFER LEARNING
MLSP-P2.1: REINFORCEMENT LEARNING WITH SAFE EXPLORATION FOR
MLSP-P2.2: TEAM POLICY LEARNING FOR MULTI-AGENT REINFORCEMENT
MLSP-P2.3: DEEP REINFORCEMENT LEARNING FOR FINANCIAL TRADING USING
MLSP-P2.4: JOINT ON-LINE LEARNING OF A ZERO-SHOT SPOKEN SEMANTIC
MLSP-P2.5: GRAPH SIGNAL SAMPLING VIA REINFORCEMENT LEARNING
MLSP-P2.6: BHATTACHARYYA DISTANCE-BASED TRANSFER LEARNING FOR A
MLSP-P2.7: A SUBJECT-TO-SUBJECT TRANSFER LEARNING FRAMEWORK BASED
MLSP-P2.8: CONTENT PLACEMENT LEARNING FOR SUCCESS PROBABILITY

MLSP-P2.9: ACTIVE LEARNING WITH LABEL PROPORTIONS	3097
MLSP-P2.10: COVER: A CLUSTER-BASED VARIANCE REDUCED METHOD FOR	3102
MLSP-P2.11: FLEXIBLE NON-NEGATIVE MATRIX FACTORIZATION WITH	3107
MLSP-P3: LEARNING THEORY AND METHODS II	
MLSP-P3.1: DISTRIBUTED DIFFERENTIALLY-PRIVATE CANONICAL CORRELATION	3112
MLSP-P3.2: A DEEP NEURAL NETWORK BASED MANEUVERING-TARGET TRACKING ALGORITHM Jingxian Liu, Zulin Wang, Mai Xu, Jie Ren, Beihang University, China	3117
MLSP-P3.3: LEARNING TO FUSE LATENT REPRESENTATIONS FOR MULTIMODAL DATA Oyebade Oyedotun, Djamila Aouada, Bjorn Ottersten, University of Luxembourg, Luxembourg	3122
MLSP-P3.4: FEATURE SELECTION FOR MUTLTI-LABELED VARIABLES VIA DEPENDENCY MAXIMIZATION Salimeh Yasaei Sekeh, Alfred O. Hero, University of Michigan, United States	3127
MLSP-P3.5: PRUNING SIFT & SURF FOR EFFICIENT CLUSTERING OF	3132
MLSP-P3.6: AUTOMATING THE CLASSIFICATION OF URBAN ISSUE REPORTS: AN	3137
MLSP-P3.7: TENSOR-RING NUCLEAR NORM MINIMIZATION AND APPLICATION FOR VISUAL DATA COMPLETION Jinshi Yu, School of Automation, Guangdong University of Technology, Guangzhou, 510006, China, China; Chao Li, Qibin RIKEN Center for Advanced Intelligence Project (AIP), Tokyo, 103-0027, Japan, China; Guoxu Zhou, School of Automatic Guangdong University of Technology, Guangzhou, 510006, China, China	n Zhao,
MLSP-P3.9: SUPERVISED KERNEL CHANGE POINT DETECTION WITH PARTIAL	
MLSP-P3.11: AUTOMATIC KERNEL WEIGHTING FOR MULTIKERNEL ADAPTIVE FILTERING: MULTISCALE ASPECTS Kwangjin Jeong, Masahiro Yukawa, Keio University, Japan	3152

MLSP-P4: DEEP LEARNING APPLICATIONS III

MLSP-P4.1: MULTIPLE-GRAPH RECURRENT GRAPH CONVOLUTIONAL NEURAL
MLSP-P4.2: JOINT STRUCTURED GRAPH LEARNING AND CLUSTERING BASED ON
MLSP-P4.3: GENERATIVE GRAPH CONVOLUTIONAL NETWORK FOR GROWING
MLSP-P4.4: UNSUPERVISED FEATURE RANKING AND SELECTION BASED ON
MLSP-P4.5: D2PGGAN: TWO DISCRIMINATORS USED IN PROGRESSIVE
MLSP-P4.6: NONLINEAR MULTI-SCALE SUPER-RESOLUTION USING DEEP
MLSP-P4.7: DUAL-STREAM CNN FOR STRUCTURED TIME SERIES
MLSP-P4.8: LEARNING LOW RANK AND SPARSE MODELS VIA ROBUST
MLSP-P4.9: BOOTSTRAPPING GRAPH CONVOLUTIONAL NEURAL NETWORKS FOR
MLSP-P5: DEEP LEARNING III
MLSP-P5.1: VARIATIONAL AND HIERARCHICAL RECURRENT AUTOENCODER
MLSP-P5.2: DEEP LEARNING FOR MINIMAL-CONTEXT BLOCK TRACKING
MLSP-P5.3: DEEP CONVOLUTIONAL ROBUST PCA WITH APPLICATION TO
MLSP-P5.4: PIGMENT UNMIXING OF HYPERSPECTRAL IMAGES OF PAINTINGS

MLSP-P5.5: ATTENTION IN RECURRENT NEURAL NETWORKS FOR RANSOMWARE
MLSP-P5.6: DRAWING ORDER RECOVERY FOR HANDWRITING CHINESE
MLSP-P5.7: DIRECT ESTIMATION OF WEIGHTS AND EFFICIENT TRAINING OF
MLSP-P5.8: DENOISING GRAVITATIONAL WAVES WITH ENHANCED DEEP
MLSP-P5.9: DEEP SPLINE NETWORKS WITH CONTROL OF LIPSCHITZ
MLSP-P5.10: DEEP NEURAL NETWORKS FOR LOW-RESOLUTION
MLSP-P5.11: ADVERSARIAL MULTI-LABEL PREDICTION FOR SPOKEN AND VISUAL
MLSP-P5.12: RECURRENT DEEP DIVERGENCE-BASED CLUSTERING FOR
MLSP-P6: ADVERSARIAL LEARNING
MLSP-P6.1: EMBEDDING PHYSICAL AUGMENTATION AND WAVELET SCATTERING
MLSP-P6.2: ADVERSARIAL INPAINTING OF MEDICAL IMAGE MODALITIES
MLSP-P6.3: TOWARDS UNSUPERVISED SINGLE-CHANNEL BLIND SOURCE

IN DEEP CONVOLUTIONAL NEURAL NETWORKS Fatemeh Sheikholeslami, University of Minnesota, United States; Swayambhoo Jain, Technicolor AI Lab, United States; Georgios B. Giannakis, University of Minnesota, United States
MLSP-P6.5: POSTFILTERING USING AN ADVERSARIAL DENOISING AUTOENCODER
MLSP-P7: MACHINE LEARNING APPLICATIONS I
MLSP-P7.1: ADAPTIVE ADJUSTMENT WITH SEMANTIC FEATURE SPACE FOR
MLSP-P7.2: SPARSE LEARNING OF PARSIMONIOUS REPRODUCING KERNEL
MLSP-P7.3: DEEP EMBEDDINGS FOR RARE AUDIO EVENT DETECTION WITH
MLSP-P7.4: TCN: TRANSFERABLE COUPLED NETWORK FOR
MLSP-P7.5: INDUCTIVE CONFORMAL PREDICTOR FOR SPARSE CODING
MLSP-P7.6: HIERARCHICAL RESIDUAL-PYRAMIDAL MODEL FOR LARGE CONTEXT
MLSP-P7.7: DSNET: ACCELERATE INDOOR SCENE SEMANTIC SEGMENTATION
MLSP-P7.8: ON ROLE AND LOCATION OF NORMALIZATION BEFORE
MLSP-P7.9: ADAPTIVE FILTERING FOR EVENT RECOGNITION FROM NOISY
MLSP-P7.10: UNSUPERVISED USER CLUSTERING IN NON-ORTHOGONAL
MLSP-P7.11: IMITATION REFINEMENT FOR X-RAY DIFFRACTION SIGNAL

MLSP-P7.12: PREDICTION OF MULTI-TARGET DYNAMICS USING DISCRETE334. DESCRIPTORS: AN INTERACTIVE APPROACH
Mohamad Baydoun, Damian Campo, Divya Kanapram, Lucio Marcenaro, Carlo Regazzoni, University of Genoa, Italy
MLSP-P8: PROBABILISTIC MODELS
MLSP-P8.1: HYPER-PARAMETER LEARNING FOR SPARSE STRUCTURED
MLSP-P8.2: UNIFYING PROBABILISTIC MODELS FOR TIME-FREQUENCY
MLSP-P8.3: A LARGE SCALE ANALYSIS OF LOGISTIC REGRESSION: ASYMPTOTIC
MLSP-P8.4: A HISTORY-BASED STOPPING CRITERION IN RECURSIVE BAYESIAN
MLSP-P8.5: LOW-PASS FILTERING AS BAYESIAN INFERENCE
MLSP-P8.6: MODELING AND ESTIMATION OF INTERACTIONS OF YULE-SIMON
MLSP-P8.7: ADVERSARIAL VARIATIONAL BAYES METHODS FOR TWEEDIE
MLSP-P8.8: TRAINING DYNAMIC EXPONENTIAL FAMILY MODELS WITH CAUSAL
MLSP-P8.9: ROBUST FREEWAY ACCIDENT DETECTION: A TWO-STAGE APPROACH
MLSP-P8.10: AN AUTOENCODER-BASED APPROACH FOR RECOGNIZING NULL
MLSP-P8.11: SEQUENTIAL STRUCTURED DICTIONARY LEARNING FOR BLOCK
MLSP-P9: MATRIX AND TENSOR METHODS II
MLSP-P9.1: MINIMUM-VOLUME RANK-DEFICIENT NONNEGATIVE MATRIX

MLSP-P9.2: MODEL SELECTION FOR NONNEGATIVE MATRIX FACTORIZATION
MLSP-P9.3: GENERALIZED INTERVAL VALUED NONNEGATIVE MATRIX
MLSP-P9.4: LOCAL CONVERGENCE OF THE HEAVY BALL METHOD IN ITERATIVE
MLSP-P9.5: TENSOR-TRAIN DISCRIMINANT ANALYSIS
MLSP-P9.6: GENERALIZED DANTZIG SELECTOR FOR LOW-TUBAL-RANK TENSOR
MLSP-P9.7: ROBUST LOW-TUBAL-RANK TENSOR COMPLETION
MLSP-P9.8: LINEARIZED KERNEL REPRESENTATION LEARNING FROM VIDEO
MLSP-P9.9: CO-CLUSTERING OF HIGH-ORDER DATA VIA REGULARIZED TUCKER
MLSP-P9.10: A NOVEL RESOURCE-AWARE TENSOR DECOMPOSITION DESIGN
MLSP-P9.11: TENSOR MATCHED KRONECKER-STRUCTURED SUBSPACE
MLSP-P9.12: HIGHER-ORDER NONNEGATIVE CANDECOMP/PARAFAC TENSOR
MLSP-P10: LEARNING THEORY AND METHODS III
MLSP-P10.1: A FAST METHOD OF COMPUTING PERSISTENT HOMOLOGY OF
MLSP-P10.2: ERROR BOUNDS FOR SPECTRAL CLUSTERING OVER SAMPLES
MLSP-P10.3: ASYMPTOTIC PERFORMANCE OF LINEAR DISCRIMINANT ANALYSIS

MLSP-P10.4: EXACT RECOVERY BY SEMIDEFINITE PROGRAMMING IN THE BINARY STOCHASTIC BLOCK MODEL WITH PARTIALLY REVEALED SIDE INFORMATION Mohammad Esmaeili, Hussein Saad, Aria Nosratinia, The University of Texas at Dallas, United States	3477
MLSP-P10.5: MODELLING SAMPLE INFORMATIVENESS FOR DEEP AFFECTIVE	3482
MLSP-P10.6: DISCRIMINATIVE FEATURE SELECTION GUIDED DEEP CANONICAL	3487
MLSP-P10.7: DISTRIBUTED GRADIENT DESCENT WITH CODED PARTIAL	3492
MLSP-P10.8: A PROJECTED NEWTON-TYPE ALGORITHM FOR NONNEGATIVE	3497
MLSP-P10.9: TRAINABLE TIME WARPING: ALIGNING TIME-SERIES IN THE	3502
MLSP-P10.10: INFORMATION-BOTTLENECK BASED ON THE JENSEN-SHANNON	3507
MLSP-P10.11: GENERALIZED DISTRIBUTED DUAL COORDINATE ASCENT IN A	3512
MLSP-P11: SEMI-SUPERVISED AND UNSUPERVISED LEARNING	
MLSP-P11.1: EE-AE: AN EXCLUSIVITY ENHANCED UNSUPERVISED FEATURE LEARNING APPROACH Jingcai Guo, Song Guo, The Hong Kong Polytechnic University, Hong Kong SAR of China	3517
MLSP-P11.2: GENERALIZED BOUNDARY DETECTION USING COMPRESSION-BASED ANALYTICS Christina Ting, Richard Field, Tu-Thach Quach, Travis Bauer, Sandia National Laboratories, United States	3522
MLSP-P11.3: BINARY CLASSIFICATION ONLY FROM UNLABELED DATA BY	3527
MLSP-P11.4: ENTROPY-REGULARIZED OPTIMAL TRANSPORT GENERATIVE	3532
MLSP-P11.5: DEEP GRAPH REGULARIZED LEARNING FOR BINARY CLASSIFICATION	
MLSP-P11.6: COMMON RANDOMIZED SHORTEST PATHS (C-RSP): A SIMPLE YET EFFECTIVE FRAMEWORK FOR MULTI-VIEW GRAPH EMBEDDING Anuththari Gamage, University of Illinois Urbana-Champaign, United States; Brian Rappaport, Cornell University, United	

States; Shuchin Aeron, Xiaozhe Hu, Tufts University, United States

MLSP-P11.7: REVISITING AND IMPROVING SEMI-SUPERVISED LEARNING: A	. 3547
MLSP-P11.8: MULTIPLE SUBSPACE ALIGNMENT IMPROVES DOMAIN ADAPTATION	. 3552
MLSP-P11.9: GRAPH FILTERING WITH MULTIPLE SHIFT MATRICES	. 3557
MLSP-P11.10: DISTRIBUTION PRESERVING NETWORK EMBEDDING	, 3562
MLSP-P11.11: STOCHASTIC GRADIENT DESCENT FOR SPECTRAL EMBEDDING	
MLSP-P11.12: JOINT STRUCTURED GRAPH LEARNING AND UNSUPERVISED	. 3572
MLSP-P12: DEEP LEARNING APPLICATIONS IV	
MLSP-P12.1: COMPOUND VARIATIONAL AUTO-ENCODER	. 3577
MLSP-P12.2: AN ATTENTION-AWARE BIDIRECTIONAL MULTI-RESIDUAL	. 3582
MLSP-P12.3: AUDIO TEXTURE SYNTHESIS WITH RANDOM NEURAL NETWORKS:	. 3587
MLSP-P12.4: TIME SIGNAL CLASSIFICATION USING RANDOM CONVOLUTIONAL	. 3592
MLSP-P12.5: ANOMALY DETECTION IN RAW AUDIO USING DEEP	. 3597
MLSP-P12.6: ISING-DROPOUT: A REGULARIZATION METHOD FOR TRAINING AND	3602
MLSP-P12.7: EXACTLY DECODING A VECTOR THROUGH RELU ACTIVATION	. 3607
MLSP-P12.8: AN INFORMATION-THEORETIC APPROACH FOR AUTOMATICALLY	. 3612

MLSP-P13: DEEP LEARNING IV

MLSP-P13.1: WAVEGLOW: A FLOW-BASED GENERATIVE NETWORK FOR SPEECH
Ryan Prenger, Rafael Valle, Bryan Catanzaro, NVIDIA, United States
MLSP-P13.2: RESIDUAL INTEGRATION NEURAL NETWORK
MLSP-P13.3: REDUCING THE SEARCH SPACE FOR HYPERPARAMETER
MLSP-P13.4: A LEARNING-BASED FRAMEWORK FOR LINE-SPECTRA
MLSP-P13.5: NETWORK ADAPTATION STRATEGIES FOR LEARNING NEW CLASSES
MLSP-P13.6: OBJECT DETECTION IN CURVED SPACE FOR 360-DEGREE CAMERA
MLSP-P13.7: ADAFLOW: DOMAIN-ADAPTIVE DENSITY ESTIMATOR WITH
MLSP-P13.8: CENTROID-BASED DEEP METRIC LEARNING FOR SPEAKER
MLSP-P13.9: JSR-NET: A DEEP NETWORK FOR JOINT SPATIAL-RADON DOMAIN CT
MLSP-P13.10: MATERIAL IDENTIFICATION USING RF SENSORS AND
MLSP-P13.11: IMAGE CORRECTION IN EMISSION TOMOGRAPHY USING DEEP
MLSP-P13.12: EXPLORING COMPLEX TIME-SERIES REPRESENTATIONS FOR
MLSP-P14: DICTIONARY, SUBSPACE AND MANIFOLD LEARNING
MLSP-P14.1: PAIRWISE APPROXIMATE K-SVD
MLSP-P14.2: ANALYSIS DICTIONARY LEARNING: AN EFFICIENT AND
DISCRIMINATIVE SOLUTION Wen Tang. Ashkan Panahi. Hamid Krim. North Carolina State University. United States: Livi Dai. Army Research. United States

MLSP-P14.3: POLYNOMIAL NETWORKS REPRESENTATION OF NONLINEAR
MLSP-P14.4: ROBUST SUBSPACE CLUSTERING BY LEARNING AN OPTIMAL
MLSP-P14.6: LEARNING SIMILARITY-SPECIFIC DICTIONARY FOR ZERO-SHOT
MLSP-P14.7: A DEEP DICTIONARY MODEL TO PRESERVE AND DISENTANGLE KEY
MLSP-P14.8: EVOLUTIONARY SUBSPACE CLUSTERING: DISCOVERING
MLSP-P14.9: PHAST: MODEL-FREE PHASELESS SUBSPACE TRACKING
MLSP-P15: AUDIO AND SPEECH APPLICATIONS
MLSP-P15.1: SPEECH SUPER RESOLUTION GENERATIVE ADVERSARIAL
MLSP-P15.2: NOVEL METRIC LEARNING FOR NON-PARALLEL VOICE
MLSP-P15.3: DEEP LEARNING FOR CLASSROOM ACTIVITY DETECTION FROM
MLSP-P15.4: TRANSFERABLE POSITIVE/NEGATIVE SPEECH EMOTION
MLSP-P15.5: ATTITUDE RECOGNITION USING MULTI-RESOLUTION
MLSP-P15.6: TO REVERSE THE GRADIENT OR NOT: AN EMPIRICAL COMPARISON
MLSP-P15.7: TOWARDS AUTOMATIC METHODS TO DETECT ERRORS IN
MLSP-P15.8: ONLINE SINGING VOICE SEPARATION USING A RECURRENT

MLSP-P16: IMAGE AND VIDEO APPLICATIONS

MLSP-P16.1: ITERATIVELY REWEIGHTED PENALTY ALTERNATING MINIMIZATION
MLSP-P16.2: LOW-RESOLUTION VISUAL RECOGNITION VIA DEEP FEATURE
MLSP-P16.3: ACCURATE VEHICLE DETECTION USING MULTI-CAMERA DATA
MLSP-P16.4: SEMANTIC SUPER-RESOLUTION FOR EXTREMELY
MLSP-P16.5: A WEIGHT-SHARED DUAL-BRANCH CONVOLUTIONAL NEURAL
MLSP-P16.6: LEARNING COMPACT PARTIAL DIFFERENTIAL EQUATIONS FOR
MLSP-P16.7: FROM LOCAL TO GLOBAL SUBSPACE CLUSTERING FOR IMAGE DATA
MLSP-P16.8: ESTIMATION OF GAZE REGION USING TWO DIMENSIONAL
MLSP-P16.9: SELECTING OPTIMAL PROPOSAL NUMBER FOR IMAGE-BASED
MLSP-P16.11: A SEQUENTIAL GUIDING NETWORK WITH ATTENTION FOR IMAGE
MLSP-P16.12: NEAR-INFRARED IMAGE GUIDED NEURAL NETWORKS FOR COLOR
MLSP-P17: DEEP LEARNING V
MLSP-P17.1: SEMI-SUPERVISED TRANSFER LEARNING FOR CONVOLUTIONAL

MLSP-P17.2: AN ENHANCED HIERARCHICAL EXTREME LEARNING MACHINE WITH
MLSP-P17.3: GROUP ACTION EQUIVARIANCE AND GENERALIZED CONVOLUTION
MLSP-P17.4: DYNAMIC WEIGHT ALIGNMENT FOR TEMPORAL CONVOLUTIONAL
MLSP-P17.5: SURE-TISTA: A SIGNAL RECOVERY NETWORK FOR COMPRESSED
MLSP-P17.6: CONTINUAL LEARNING FOR ANOMALY DETECTION WITH
MLSP-P17.7: APE-GAN: ADVERSARIAL PERTURBATION ELIMINATION WITH GAN
MLSP-P17.8: ADVERSARIAL LEARNING OF LABEL DEPENDENCY: A NOVEL
MLSP-P17.9: LOOK, LISTEN, AND LEARN MORE: DESIGN CHOICES FOR DEEP
MLSP-P17.10: LEARNING POSE-AWARE 3D RECONSTRUCTION VIA 2D-3D
MLSP-P17.11: ON THE USEFULNESS OF STATISTICAL NORMALISATION OF
MLSP-P17.12: LEARNING TEMPORAL INFORMATION FROM SPATIAL INFORMATION
MLSP-P18: MACHINE LEARNING APPLICATIONS II
MLSP-P18.1: HYBRID DEEP NEURAL NETWORK MODEL FOR REMAINING
MLSP-P18.2: LEARNING STOCHASTIC REPRESENTATIONS OF GEOPHYSICAL
Said Ouala, Ronan Fablet, IMT-Atlantique, France; Cédric Herzet, IMT Atlantique / INRIA Bretagne-Atlantique, France; Bertrand Chapron, IFREMER, France; Ananda Pascual, IMEDEA, Spain; Fabrice Collard, Lucile Gaultier, ODL, France

MLSP-P18.3: DEEP LEARNING FOR VERTEX RECONSTRUCTION OF
Linghao Song, Fan Chen, Duke University, United States; Steven Young, Catherine Schuman, Oak Ridge National Laboratory, United States; Gabriel Perdue, Fermi National Accelerator Laboratory, United States; Thomas Potok, Oak Ridge National Laboratory, United States
MLSP-P18.4: DEEP SYNTHESIZER PARAMETER ESTIMATION
MLSP-P18.5: TIME SERIES PREDICTION FOR KERNEL-BASED ADAPTIVE FILTERS
MLSP-P18.6: ROBUST COMMON SPATIAL PATTERNS ESTIMATION USING
MLSP-P18.7: NATIVE LANGUAGE AND STIMULI SIGNAL PREDICTION FROM EEG
MLSP-P18.8: PERFORMANCE ADVANTAGES OF DEEP NEURAL NETWORKS FOR
MLSP-P18.9: DEEP QUANTIZATION FOR MIMO CHANNEL ESTIMATION
MLSP-P18.10: EFFICIENT CONVOLUTIONAL NEURAL NETWORK WEIGHT
MLSP-P18.11: CRIME EVENT EMBEDDING WITH UNSUPERVISED FEATURE
MLSP-P18.12: EVALUATION OF SOURCE-WISE MISSING DATA TECHNIQUES FOR
MMSP-L1: MULTIMODAL SIGNAL PROCESSING I
MMSP-L1.1: ACCURATE TARGET ANNOTATION IN 3D FROM MULTIMODAL
MMSP-L1.2: MULTI-FEATURE FUSION BASED ON SUPERVISED MULTI-VIEW
MMSP-L1.3: DENSE MULTIMODAL FUSION FOR HIERARCHICALLY JOINT

China

MMSP-L1.4: CONTEXT-AWARE DEEP LEARNING FOR MULTI-MODAL DEPRESSION	. 3946
DETECTION Genevieve Wen Qi Lam, Nanyang Technological University, Singapore; Dong-Yan Huang, Institute for Infocomm Research, Singapore; Weisi Lin, Nanyang Technological University, Singapore	
MMSP-L1.5: LEARNING SHARED VECTOR REPRESENTATIONS OF LYRICS AND	3951
Timothy Greer, Karan Singla, Benjamin Ma, Shrikanth Narayanan, University of Southern California, United States	
MMSP-L1.6: AUDIO FEATURE GENERATION FOR MISSING MODALITY PROBLEM	3956
Hu-Cheng Lee, Chin-1u Lin, Fin-Chun Hsu, Winston H. Hsu, National Talwan University, Talwan	
MMSP-P1: MULTIMODAL SIGNAL PROCESSING II	
MMSP-P1.1: SEEING THROUGH SOUNDS: PREDICTING VISUAL SEMANTICSEGMENTATION RESULTS FROM MULTICHANNEL AUDIO SIGNALS	3961
Go Irie, NTT Corporation, Japan; Mirela Ostrek, The University of Zagreb, Croatia (Hrvatska); Haochen Wang, The University of British Columbia, Canada; Hirokazu Kameoka, Akisato Kimura, Takahito Kawanishi, Kunio Kashino, NTT Corporation, J	
MMSP-P1.2: PERFECT MATCH: IMPROVED CROSS-MODAL EMBEDDINGS FOR	3965
AUDIO-VISUAL SYNCHRONISATION Soo-Whan Chung, Yonsei University, Korea (South); Joon Son Chung, Naver Corp., Korea (South); Hong-Goo Kang, Yonsei University, Korea (South)	
MMSP-P1.3: A NEIGHBOR-AWARE APPROACH FOR IMAGE-TEXT MATCHING	
MMSP-P1.4: LEARNING AFFECTIVE CORRESPONDENCE BETWEEN MUSIC AND	3975
IMAGE Gaurav Verma, Adobe Research, India; Eeshan Gunesh Dhekane, Mila, University of Montreal, Canada; Tanaya Guha, University of Warwick, United Kingdom	
MMSP-P1.5: DYNAMIC TEMPORAL ALIGNMENT OF SPEECH TO LIPS	. 3980
Tavi Halperin, The Hebrew University of Jerusalem, Israel; Ariel Ephrat, Google, Israel; Shmuel Peleg, The Hebrew University of Jerusalem, Israel	sity
MMSP-P1.6: GRAYSCALE-THERMAL TRACKING VIA CANONICAL CORRELATIONANALYSIS BASED INVERSE SPARSE REPRESENTATION	. 3985
Wan Ding, College of Communication and Information Engineering, Nanjing University of Posts and Telecommunications, China; Bin Kang, College of Internet of Things, Nanjing University of Posts and Telecommunications, China; Quan Zhou, M. Lin, College of Communication and Information Engineering, Nanjing University of Posts and Telecommunications, China; Suofei Zhang, College of Interner of Things, Nanjing University of Posts and Telecommunications, China	!in
MMSP-P1.7: LEARNING SEMANTIC-PRESERVING SPACE USING USER PROFILE	3990
MMSP-P1.8: NOISE-TOLERANT AUDIO-VISUAL ONLINE PERSON VERIFICATION	. 3995
MMSP-P1.9: CROSS-CULTURE MULTIMODAL EMOTION RECOGNITION WITH	4000
ADVERSARIAL LEARNING Jingjun Liang, Shizhe Chen, Jinming Zhao, Qin Jin, Renmin University of China, China; Haibo Liu, Li Lu, Tencent Inc., Chin	na

MMSP-P1.10: A DEEP-NARMA FILTER FOR UNUSUAL BEHAVIOR DETECTION
MMSP-P1.11: LEARNING DISENTANGLED REPRESENTATION IN LATENT
MMSP-P2: VISUAL COMMUNICATIONS AND QUALITY ASSESSMENT
MMSP-P2.1: A GEOMETRY-AWARE FRAMEWORK FOR COMPRESSING 3D MESH
MMSP-P2.2: SPHERICAL CLUSTERING OF USERS NAVIGATING 360° CONTENT
MMSP-P2.3: PPSAN: PERCEPTUAL-AWARE 3D POINT CLOUD SEGMENTATION VIA
MMSP-P2.5: DEEP REINFORCEMENT LEARNING-BASED RATE ADAPTATION FOR
MMSP-P2.6: ENHANCING HEVC SPATIAL PREDICTION BY CONTEXT-BASED
MMSP-P2.7: BLIND QUALITY ASSESSMENT FOR 3D-SYNTHESIZED IMAGES BY
MMSP-P2.8: IMPROVING FACIAL ATTRACTIVENESS PREDICTION VIA
MMSP-P2.9: BLIND QUALITY EVALUATOR FOR SCREEN CONTENT IMAGES VIA
MMSP-P2.10: THE EFFECT OF SPATIO-TEMPORAL INCONSISTENCY ON THE
MMSP-P2.11: THE IMPACT OF STALLING ON THE PERCEPTUAL QUALITY OF

MMSP-P3: MULTIMEDIA ANALYSIS

MMSP-P3.1: REINFORCING SELF-EXPRESSIVE REPRESENTATION WITH
MMSP-P3.2: JOINTLY PREDICTING FUTURE SEQUENCE AND STEERING ANGLES
MMSP-P3.3: HAND GRAPH REPRESENTATIONS FOR UNSUPERVISED
MMSP-P3.4: INFORMATION CONSTRAINED CONTROL FOR VISUAL DETECTION
MMSP-P3.5: SPFEMD: SUPER-PIXEL BASED FINGER EARTH MOVER'S DISTANCE
MMSP-P3.6: AN EMPIRICAL STUDY OF SPEECH PROCESSING IN THE BRAIN BY
MMSP-P3.7: CROSS MODAL AUDIO SEARCH AND RETRIEVAL WITH JOINT
MMSP-P3.8: IMPROVING CONTENT-BASED AUDIO RETRIEVAL BY VOCAL
MMSP-P3.9: ROBUST SPEECH ACTIVITY DETECTION IN MOVIE AUDIO: DATA
MMSP-P3.10: IMAGE CAPTIONING WITH TWO CASCADED AGENTS
MMSP-P3.11: TOWARDS CROSS-MODALITY TOPIC MODELLING VIA DEEP
SAM-L1: DIRECTION OF ARRIVAL ESTIMATION
SAM-L1.1: COMPOSITE SINGER ARRAYS WITH HOLE-FREE COARRAYS AND

SAM-L1.2: COPRIME ARRAY DESIGN WITH MINIMUM LAG REDUNDANCY
Ammar Ahmed, Yimin D. Zhang, Temple University, United States; Jian-Kang Zhang, McMaster University, Canada
SAM-L1.3: ADMM FOR ND LINE SPECTRAL ESTIMATION USING GRID-FREE
Sebastian Semper, TU Ilmenau, Germany; Florian Römer, Fraunhofer IZFP, Germany
SAM-L1.4: HADAMARD PRODUCT PERSPECTIVE ON SOURCE RESOLVABILITY OF
SAM-L1.5: SVD-PHAT: A FAST SOUND SOURCE LOCALIZATION METHOD
SAM-L1.6: SUPER-RESOLUTION DOA ESTIMATION FOR ARBITRARY ARRAY
Anapama Govinaa Raj, James McCienan, Georgia Institute of Technology, Ontica states
SAM-L2: MIMO SYSTEMS AND MIMO RADAR
SAM-L2.1: UNIFIED FRAMEWORK FOR MINIMAX MIMO TRANSMIT BEAMPATTERN
SAM-L2.2: TENSOR-BASED ESTIMATION OF MMWAVE MIMO CHANNELS WITH
CARRIER FREQUENCY OFFSET Lucas Nogueira Ribeiro, André Lima Férrer de Almeida, UFC, Brazil; Nitin Myers, Robert Heath Jr., University of Texas at Austin, United States
SAM-L2.3: A GRIDLESS CS APPROACH FOR CHANNEL ESTIMATION IN HYBRID
SAM-L2.4: SCALING UP MIMO RADAR FOR TARGET DETECTION
SAM-L2.5: A RIEMANNIAN DISTANCE APPROACH TO MIMO RADAR SIGNAL DESIGN
SAM-L2.6: A MULTI-RADAR JOINT BEAMFORMING METHOD
SAM-L3: SPARSE ARRAYS AND SPARSE SENSING
SAM-L3.1: HYBRID SPARSE ARRAY DESIGN FOR UNDER-DETERMINED MODELS
SAM-L3.2: BLIND CALIBRATION OF SPARSE ARRAYS FOR DOA ESTIMATION WITH
SAM-L3.3: GROUP SPARSITY BASED TARGET LOCALIZATION FOR DISTRIBUTED4190
SENSOR ARRAY NETWORKS Qing Shen, Wei Liu, University of Sheffield, United Kingdom; Li Wang, Yin Liu, Southwest China Institute of Electronic Technology, China

SAM-L3.4: SPARSE FRACTAL ARRAY DESIGN WITH INCREASED DEGREES OF
SAM-L3.5: 3D COPRIME ARRAYS IN SPARSE SENSING
SAM-L3.6: ANALYSIS OF COPRIME ARRAYS ON MOVING PLATFORM
SAM-P1: SPARSITY, SUPER-RESOLUTION AND IMAGING
SAM-P1.1: GRIDLESS SUPER-RESOLUTION DOA ESTIMATION WITH UNKNOWN
SAM-P1.2: GRIDLESS DOA ESTIMATION VIA. ALTERNATING PROJECTIONS
SAM-P1.3: A NON-CONVEX APPROACH TO NON-NEGATIVE SUPER-RESOLUTION:
SAM-P1.4: ADAPTIVE BLIND SPARSE SOURCE SEPARATION BASED ON SHEAR AND
SAM-P1.5: ROBUST ROOM EQUALIZATION USING SPARSE SOUND-FIELD
SAM-P1.6: DISTRIBUTED JOINT TRANSMITTER DESIGN AND SELECTION USING
SAM-P1.7: SUPER-RESOLUTION RESULTS FOR A 1D INVERSE SCATTERING
SAM-P1.8: A NEW SEPARATION METHOD FOR GALAXY SPECTRA BASED ON DATA
SAM-P1.9: STEREO SOURCE SEPARATION IN THE FREQUENCY DOMAIN:
SAM-P1.10: ANOMALY IMAGING FOR STRUCTURAL HEALTH MONITORING

RADIO INTERFEROMETRIC IMAGES Matthieu Simeoni, IBM Research Zurich / Swiss Federal Institute of Technology (EPFL), Switzerland; Paul Hurley, IBM Research Zurich, Switzerland
SAM-P2: RADAR AND ACOUSTIC ARRAY PROCESSING
SAM-P2.1: DISTRIBUTED POWER ALLOCATION FOR SPECTRAL COEXISTING
SAM-P2.2: JOINT DESIGN FOR MIMO RADAR AND DOWNLINK COMMUNICATION
SAM-P2.3: TRANSMIT BEAMPATTERN DESIGN FOR MIMO RADAR WITH ONE-BIT
SAM-P2.4: ADAPTIVE WAVEFORM DESIGN FOR AUTOMOTIVE JOINT
SAM-P2.5: MIMO RADAR TRANSMIT BEAMPATTERN SYNTHESIS VIA WAVEFORM
SAM-P2.6: COMPUTING THE LARGEST EIGENVALUE DISTRIBUTION FOR
SAM-P2.7: DESIGNING (IN)FINITE-ALPHABET SEQUENCES VIA SHAPING THE
SAM-P2.8: AUTOMATIC RADAR-BASED GESTURE DETECTION AND CLASSIFICATION
SAM-P2.9: GRIDLESS ANGLE AND RANGE ESTIMATION FOR FDA-MIMO RADAR
SAM-P2.10: INFERRING PRIVATE INFORMATION IN WIRELESS SENSOR
SAM-P2.11: TARGET LOCALIZATION AND MUTUAL INFORMATION IMPROVEMENT

SAM-P2.12: COHERENT RADAR IMAGING USING UNSYNCHRONIZED
SAM-P3: BEAMFORMING AND SOURCE SEPARATION
SAM-P3.1: ROBUST BAYESIAN BEAMFORMING FOR SOURCES AT DIFFERENT
SAM-P3.2: MVDR ROBUST ADAPTIVE BEAMFORMING DESIGN WITH DIRECTION
SAM-P3.3: A NEW QUADRATIC MATRIX INEQUALITY APPROACH TO ROBUST
SAM-P3.4: PHASE-ONLY ROBUST MINIMUM DISPERSION BEAMFORMING
SAM-P3.5: ROBUST CAPON BEAMFORMING VIA ADMM
SAM-P3.6: ADAPTIVE REDUCED-DIMENSIONAL BEAMSPACE BEAMFORMER DESIGN
SAM-P3.7: 2D BEAMFORMING ON SPARSE ARRAYS WITH SPARSE BAYESIAN
SAM-P3.8: ROBUST BEAMSPACE DESIGN FOR DIRECT LOCALIZATION
SAM-P3.9: UPLINK MULTI-USER MIMO DETECTION VIA PARALLEL ACCESS
SAM-P3.10: A METHOD BASED ON L-BFGS TO SOLVE CONSTRAINED
SAM-P4: LOCALIZATION AND TRACKING
SAM-P4.1: AN LS LOCALISATION METHOD FOR MASSIVE MIMO TRANSMISSION
SAM-P4.2: ALGEBRAIC SOLUTION FOR TDOA LOCALIZATION IN MODIFIED POLAR
Yimao Sun, University of Electronic Science and Technology of China, China; K. C. Ho, University of Missouri, United States; Qun Wan, University of Electronic Science and Technology of China, China

SAM-P4.3: TOA SOURCE NODE SELF-POSITIONING WITH UNKNOWN CLOCK
SAM-P4.4: 3D AOA TARGET TRACKING WITH TWO-STEP INSTRUMENTAL-VARIABLE
SAM-P4.5: MULTIRESOLUTION TIME-OF-ARRIVAL ESTIMATION FROM
SAM-P4.6: A DATA-SELECTIVE LS SOLUTION TO TDOA-BASED SOURCE
SAM-P4.7: ISING MODEL FORMULATION OF OUTLIER REJECTION, WITH
SAM-P4.8: ROBUST SELF-CALIBRATION OF CONSTANT OFFSET
SAM-P4.9: NON-COHERENT SENSOR FUSION VIA ENTROPY REGULARIZED
SAM-P4.10: DISTRIBUTED TRACKING OF MANEUVERING TARGET: A FINITE-TIME
SAM-P4.11: AN EFFICIENCY-IMPROVED TDOA-BASED DIRECT POSITION
SAM-P5: DETECTION, ESTIMATION AND CLASSIFICATION
SAM-P5.1: MAKING DECISIONS WITH SHUFFLED BITS
SAM-P5.2: COOPERATIVE DETECTION VIA DIRECT LOCALIZATION IN MOBILE
SAM-P5.3: DISTRIBUTED BAYESIAN ESTIMATION WITH LOW-RANK DATA:
SAM-P5.4: ONLINE ESTIMATION AND SMOOTHING OF A TARGET TRAJECTORY IN

SAM-P5.5: FREQUENCY-DOMAIN BASED WAVEFORM DESIGN FOR BINARY
SAM-P5.6: DYNAMIC RESOURCE OPTIMIZATION FOR DECENTRALIZED SIGNAL
SAM-P5.7: MULTI-TARGET MOTION PARAMETER ESTIMATION EXPLOITING
SAM-P5.8: DOMAIN ADAPTATION USING RIEMANNIAN GEOMETRY OF SPD
SAM-P5.9: CRAMER-RAO BOUND FOR DOA ESTIMATORS UNDER THE PARTIAL
SAM-P5.10: TOEPLITZ MATRIX COMPLETION FOR DIRECTION FINDING USING A
SAM-P5.11: OCCUPANCY PATTERN RECOGNITION WITH INFRARED ARRAY
SPCOM-L1: MASSIVE MIMO
SPCOM-L1.1: MASSIVE MIMO CHANNEL ESTIMATION WITH 1-BIT SPATIAL
SPCOM-L1.2: TASK-BASED QUANTIZATION FOR MASSIVE MIMO CHANNEL
SPCOM-L1.3: MASSIVE MIMO MULTICAST BEAMFORMING VIA ACCELERATED
SPCOM-L1.4: A FAIR AND SCALABLE POWER CONTROL SCHEME IN MULTI-CELL
SPCOM-L1.5: ON ACHIEVABLE RATES FOR MASSIVE MIMO SYSTEM WITH

SPCOM-L1.6: COORDINATED PILOT DESIGN FOR MASSIVE MIMO
of Toronto, Canada
SPCOM-L2: LEARNING IN COMMUNICATION SYSTEMS
SPCOM-L2.1: ADVERSARIAL MULTI-USER BANDITS FOR UNCOORDINATED
SPCOM-L2.2: DEEP LEARNING PROPAGATION MODELS OVER IRREGULAR
United States; Robert W. Heath Jr., Haris Vikalo, University of Texas at Austin, United States
SPCOM-L2.3: ONLINE LEARNING FOR COMPUTATION PEER OFFLOADING WITH
SPCOM-L2.4: DEEP CNN FOR WIDEBAND MMWAVE MASSIVE MIMO CHANNEL
SPCOM-L2.5: A LEARNING APPROACH TO WIRELESS INFORMATION AND POWER
SPCOM-L2.6: LEVERAGING MMWAVE IMAGING AND COMMUNICATIONS FOR
SPCOM-L3: PERFORMANCE ANALYSIS OF COMMUNICATION SYSTEMS
SPCOM-L3.1: A SIMPLE BOUND ON THE BER OF THE MAP DECODER FOR
SPCOM-L3.2: ON THE EQUIVALENCE OF SEMIDIFINITE RELAXATIONS FOR
SPCOM-L3.3: PERFORMANCE ANALYSIS OF CONVEX DATA DETECTION IN MIMO
SPCOM-L3.4: NOVEL LOWER BOUND ON THE PERFORMANCE OF A PARTIAL
SPCOM-L3.5: WHEN CAN A SYSTEM OF SUBNETWORKS BE REGISTERED

COMPRESSIVE SENSING
Vamsi Amalladinne, Krishna Narayanan, Jean-Francois Chamberland, Texas A&M University, United States; Dongning Guo, Northwestern University, United States
SPCOM-P1: NETWORKS AND DISTRIBUTED OPTIMIZATION
SPCOM-P1.1: DISTRIBUTED NETWORK CACHING VIA DYNAMIC PROGRAMMING
SPCOM-P1.2: COLLABORATIVE SENSOR CACHING VIA SEQUENTIAL COMPRESSED
SPCOM-P1.3: CONTROL AWARE COMMUNICATION DESIGN FOR TIME SENSITIVE
SPCOM-P1.4: ENERGY MINIMIZATION OF MULTI-USER LATENCY-CONSTRAINED
SPCOM-P1.5: LATENCY DRIVEN FRONTHAUL BANDWIDTH ALLOCATION AND
SPCOM-P1.6: DISTRIBUTED NONCOHERENT TRANSMIT BEAMFORMING FOR
SPCOM-P1.7: DISTRIBUTED CONVEX OPTIMIZATION WITH LIMITED
SPCOM-P1.8: FAST EDGE-CONSENSUS COMPUTING BASED ON BREGMAN
SPCOM-P1.9: QUANTIZED EVENT-TRIGGERED SAMPLED-DATA AVERAGE
SPCOM-P1.10: DISTRIBUTED UAV PLACEMENT OPTIMIZATION FOR
SPCOM-P1.11: ONLINE RADIO MAP UPDATE BASED ON A MARGINALIZED PARTICLE

SPCOM-P1.12: OPTIMUM SAMPLING FOR PACKET ASSISTED ROUND TRIP TIME4629 MEASUREMENT
Hans-Peter Bernhard, Silicon Austria Labs, Austria; Bernhard Etzlinger, Andreas Springer, Johannes Kepler Universität, Austria
SPCOM-P2: ANTENNAS DESIGN AND CHANNEL ESTIMATION
SPCOM-P2.1: DYNAMIC METASURFACES FOR MASSIVE MIMO NETWORKS
SPCOM-P2.2: SAMPLING SCHEMES FOR ACCURATE RECONSTRUCTION AND
SPCOM-P2.3: LOCALIZED RANDOM SAMPLING FOR ROBUST COMPRESSIVE
SPCOM-P2.4: POWER-EFFICIENT BEAM PATTERN SYNTHESIS VIA SEQUENTIAL
SPCOM-P2.5: SCATTERING MULTI-CONNECTIVITY ESTIMATION FOR INDOOR
SPCOM-P2.6: CHANNEL ESTIMATION AND LOW-COMPLEXITY BEAMFORMING
SPCOM-P2.7: DECISION FEEDBACK SEMI-BLIND ESTIMATION ALGORITHM FOR
SPCOM-P2.8: CHANNEL ESTIMATION USING 1-BIT QUANTIZATION AND
SPCOM-P2.9: FEEDBACK-CONTROLLED CHANNEL ESTIMATION WITH
SPCOM-P3: PRECODING AND TRANSCEIVER DESIGN
SPCOM-P3.1: INTERFERENCE EXPLOITATION PRECODING FOR MULTI-LEVEL
SPCOM-P3.2: DISCRETE CONSTANT ENVELOPE TRANSCEIVER DESIGN FOR

SPCOM-P3.3: MSE BASED PRECODING SCHEMES FOR PARTIALLY CORRELATED
SPCOM-P3.4: PRECODING DESIGN FOR THE MIMO-ROC DOWNLINK
SPCOM-P3.5: POWER MINIMIZATION IN MULTI-TIER NETWORKS WITH
SPCOM-P3.6: NOVEL DETECTION METHODS FOR ZERO-PADDED SINGLE
SPCOM-P3.7: ON OPTIMAL BEAM STEERING DIRECTIONS IN MILLIMETER WAVE
SPCOM-P3.8: A SPARSE ENCODING AND PHASELESS DECODING APPROACH FOR
SPCOM-P3.9: HYBRID BEAMFORMING: WHERE SHOULD THE ANALOG POWER
SPCOM-P3.10: CHANNEL PROTECTION USING RANDOM MODULATION
SPCOM-P4: OPTIMIZATION AND RESOURCE ALLOCATION FOR COMMUNICATION SYSTEMS
SPCOM-P4.1: DUAL DOMAIN LEARNING OF OPTIMAL RESOURCE ALLOCATIONS IN
SPCOM-P4.2: ADMM-BASED BEAMFORMING OPTIMIZATION FOR PHYSICAL LAYER
SPCOM-P4.3: AN ADMM ALGORITHM FOR PEAK TRANSMISSION ENERGY
SPCOM-P4.4: FAST FIRST-ORDER METHODS FOR THE MASSIVE ROBUST
SPCOM-P4.5: MULTICAST BEAMFORMING USING SEMIDEFINITE RELAXATION

PROBLEMS: ALGORITHMS AND APPLICATIONS IN SIGNAL PROCESSING AND COMMUNICATIONS Songtao Lu, Ioannis Tsaknakis, Mingyi Hong, University of Minnesota, United States
SPCOM-P4.7: DYNAMIC JOINT RESOURCE ALLOCATION AND USER ASSIGNMENT
SPCOM-P4.8: SPARSE BLIND DEMIXING FOR LOW-LATENCY SIGNAL RECOVERY
SPCOM-P4.9: ENERGY-EFFICIENT DESIGN FOR UNDERLAY COGNITIVE RADIO
SPCOM-P4.10: DEEP JOINT SOURCE-CHANNEL CODING FOR WIRELESS IMAGE
SPCOM-P4.11: SPECTRAL EFFICIENCY OF NONCOOPERATIVE UPLINK MASSIVE
SPCOM-P4.12: LEARNING-BASED PRICING FOR PRIVACY-PRESERVING JOB
SPCOM-P5: MULTICARRIER AND INTERFERENCE NETWORKS
SPCOM-P5.1: FLEXIBLE SPECTRAL PRECODING FOR SIDELOBE SUPPRESSION
SPCOM-P5.2: FREQUENCY-SELECTIVE HYBRID PRECODING AND COMBINING
SPCOM-P5.3: FREQUENCY-DOMAIN DECOUPLING FOR MIMO-GFDM SPATIAL
SPCOM-P5.4: COMPLEMENTARY SEQUENCE ENCODING FOR 1D AND 2D
SPCOM-P5.5: EXCESS CYCLIC PREFIX WINDOW OPTIMIZATION FOR HIGH
SPCOM-P5.6: JOINT CODEBOOK DESIGN FOR MULTI-CELL NOMA

SPCOM-P5.7: LOW-COMPLEXITY DETECTION AND PERFORMANCE ANALYSIS
SPCOM-P5.8: WEAKLY STANDARD INTERFERENCE MAPPINGS: EXISTENCE OF
SPCOM-P5.9: IMPROPER GAUSSIAN SIGNALING FOR THE TWO-USER BROADCAST
SPCOM-P5.10: GLOBAL ENERGY EFFICIENCY MAXIMIZATION IN
SPCOM-P5.11: MULTI-USER COMMUNICATION IN DIFFICULT INTERFERENCE
SPTM-L1: ADAPTIVE SIGNAL PROCESSING
SPTM-L1.1: A RECURSIVE LEAST-SQUARES ALGORITHM BASED ON THE NEAREST
SPTM-L1.2: DATA-SELECTIVE LMS-NEWTON AND LMS-QUASI-NEWTON
SPTM-L1.3: TRACKING DYNAMIC SYSTEMS IN A-STABLE ENVIROMENTS
SPTM-L1.4: CONVEX COMBINATION OF CONSTRAINT VECTORS FOR
SPTM-L1.5: ONLINE LEARNING WITH SELF-TUNED GAUSSIAN KERNELS: GOOD
SPTM-L1.6: QUATERNION-VALUED ADAPTIVE FILTERING VIA NESTEROV'S
SPTM-L2: SPARSITY-AWARE SIGNAL PROCESSING I
SPTM-L2.1: NOISY 1-BIT COMPRESSED SENSING WITH HETEROGENEOUS

Syracuse University, United States

SPTM-L2.2: SPARSE RECOVERY OVER NONLINEAR DICTIONARIES
SPTM-L2.3: SPARSE BAYESIAN LEARNING FOR ROBUST PCA
SPTM-L2.4: DISJUNCT MATRICES FOR COMPRESSED SENSING
SPTM-L2.5: ON THE MOVE: LOCALIZATION WITH KINETIC EUCLIDEAN
SPTM-L2.6: ROBUST APPROXIMATE MESSAGE PASSING FOR NONZERO-MEAN
SPTM-L3: CONVEX OPTIMIZATION
SPTM-L3.1: NONLINEAR ACCELERATION OF CONSTRAINED OPTIMIZATION
SPTM-L3.2: SHARPENING SPARSE REGULARIZERS
SPTM-L3.3: PERFORMANCE ANALYSIS OF DISCRETE-VALUED VECTOR
SPTM-L3.4: CONVEXITY-EDGE-PRESERVING SIGNAL RECOVERY WITH
SPTM-L3.5: ANALYSIS OF SPARSE-INTEGER MEASUREMENT MATRICES IN
SPTM-L3.6: CONVEX RELAXATIONS OF CONVOLUTIONAL NEURAL NETS
SPTM-L4: SIGNAL PROCESSING OVER GRAPHS I
SPTM-L4.1: SPECTRUM-ADAPTED POLYNOMIAL APPROXIMATION FOR MATRIX
SPTM-L4.2: SPECTRAL PARTITIONING OF TIME-VARYING NETWORKS WITH
SPTM-L4.3: AGGREGATION GRAPH NEURAL NETWORKS

SPTM-L4.4: COMMUNITY INFERENCE FROM GRAPH SIGNALS WITH HIDDEN4948 NODES
Hoi-To Wai, The Chinese University of Hong Kong, Hong Kong SAR of China; Yonina Eldar, Technion, Israel; Asuman Ozdaglar, Massachusetts Institute of Technology, United States; Anna Scaglione, Arizona State University, United States
SPTM-L4.5: SEMI-SUPERVISED MULTICLASS CLUSTERING BASED ON SIGNED
SPTM-L4.6: SMOOTH SIGNAL RECOVERY ON PRODUCT GRAPHS
SPTM-L5: SOURCE SEPARATION AND ESTIMATION
SPTM-L5.1: SPECTRAL METHOD FOR MULTIPLEXED PHASE RETRIEVAL AND
SPTM-L5.2: FUSING EIGENVALUES
SPTM-L5.3: AN ALTERNATING PROJECTION ALGORITHM FOR APPROXIMATE
SPTM-L5.4: OPTIMAL SENSOR PLACEMENT FOR SIGNAL EXTRACTION
SPTM-L5.5: EFFICIENT THOMSON SPECTRAL ESTIMATOR WITH TIME-SHIFTED
SPTM-L5.6: BOOTSTRAP-BASED BIAS REDUCTION FOR THE ESTIMATION OF THE
SPTM-P1: SAMPLING, RECONSTRUCTION AND TIME-FREQUENCY ANALYSIS
SPTM-P1.1: EFFICIENT CONSTRAINED SIGNAL RECONSTRUCTION BY
SPTM-P1.2: MULTI-TASK ADAPTIVE MATCHING PURSUIT FOR SPARSE SIGNAL
SPTM-P1.3: EXACT SPARSE SIGNAL RECOVERY VIA ORTHOGONAL MATCHING
SPTM-P1.6: ANALYTIC PROPERTIES OF DOWNSAMPLING FOR BANDLIMITED

SPTM-P1.7: ON THE FOURIER REPRESENTATION OF COMPUTABLE	5013
Holger Boche, Ullrich Mönich, Technical University of Munich, Germany	
SPTM-P1.9: A LEARNING APPROACH FOR WAVELET DESIGN Dhruv Jawali, Abhishek Kumar, Chandra Sekhar Seelamantula, Indian Institute of Science, India	5018
SPTM-P1.11: THE DISCRETE COSINE TRANSFORM ON TRIANGLES	5023
SPTM-P1.12: GEOMETRIC INVARIANTS FOR SPARSE UNKNOWN VIEW	5027
SPTM-P2: BAYESIAN SIGNAL PROCESSING I	
SPTM-P2.1: UPDATES IN BAYESIAN FILTERING BY CONTINUOUS PROJECTIONS	5032
SPTM-P2.2: EFFICIENT SAMPLING THROUGH VARIABLE SPLITTING-INSPIRED	5037
SPTM-P2.3: NONLINEAR STATE ESTIMATION USING PARTICLE FILTERS ON THE	5042
SPTM-P2.4: SPARSE SIGNAL RECOVERY USING MPDR ESTIMATION	5047
SPTM-P2.5: A VARIATIONAL ADAPTIVE POPULATION IMPORTANCE SAMPLER	5052
SPTM-P2.6: ONLINE VARIATIONAL BAYESIAN SUBSPACE FILTERING	5057
SPTM-P2.7: A RECURSIVE BAYESIAN MODEL FOR EXTREME VALUES	5062
SPTM-P2.8: EXPECTATION-PROPAGATION ALGORITHMS FOR LINEAR	
SPTM-P2.9: ON SELF-ASSESSMENT OF PROFICIENCY OF AUTONOMOUS	. 5072
SYSTEMS Petar Djuric, Stony Brook University, United States; Pau Closas, Northeastern University, United States	
SPTM-P2.10: LANGEVIN-BASED STRATEGY FOR EFFICIENT PROPOSAL ADAPTATION	5077
SPTM-P3: SAMPLING AND RECONSTRUCTION II	
SPTM-P3.1: ENERGY BLOWUP OF SAMPLING-BASED APPROXIMATION METHODS	. 5082

PROBLEM Dmitry Batenkov, Massachusetts Institute of Technology, United States; Ayush Bhandari, Imperial College London, United
Kingdom; Thierry Blu, The Chinese University of Hong Kong, Hong Kong SAR of China
SPTM-P3.3: FRI MODELLING OF FOURIER DESCRIPTORS
SPTM-P3.4: AN ANTIPODALLY SYMMETRIC OPTIMAL DIMENSIONALITY SAMPLING
SPTM-P3.5: ONE-BIT UNLIMITED SAMPLING
SPTM-P3.6: A NOVEL APPROXIMATE LLOYD-MAX QUANTIZER AND ITS ANALYSIS
SPTM-P3.7: COMBINING MATRIX DESIGN FOR 2D DOA ESTIMATION WITH
SPTM-P3.8: A FAST AND ROBUST PARADIGM FOR FOURIER COMPRESSED
SPTM-P3.9: SOLVING CONTINUOUS-DOMAIN PROBLEMS EXACTLY WITH
SPTM-P3.10: A MAP FRAMEWORK FOR SUPPORT RECOVERY OF SPARSE SIGNALS
SPTM-P3.11: FRI SENSING: SAMPLING IMAGES ALONG UNKNOWN CURVES
SPTM-P3.12: CONSTRUCTION OF OVERCOMPLETE MULTISCALE DICTIONARY
SPTM-P4: ESTIMATION THEORY AND METHODS I
SPTM-P4.1: SQUARED-LOSS MUTUAL INFORMATION VIA HIGH-DIMENSION
SPTM-P4.2: ASYMPTOTIC KULLBACK-LEIBLER INCREMENT TO CHARACTERIZE
SPTM-P4.3: ESTIMATING THE NUMBER OF CORRELATED COMPONENTS BASED

SPTM-P4.4: THE UNIVERSAL MANIFOLD EMBEDDING FOR ESTIMATING RIGID
SPTM-P4.5: LOW POWER PILOT AIDED SUB-SAMPLE BASED CHANNEL
SPTM-P4.6: A CHARACTERIZATION OF STOCHASTIC MIRROR DESCENT
SPTM-P4.7: ON THE SENSITIVITY OF SPECTRAL INITIALIZATION FOR NOISY
SPTM-P4.8: COMBINING LINEAR ESTIMATION WITH SCALAR WIDELY LINEAR
SPTM-P4.9: ALGEBRAICALLY-INITIALIZED EXPECTATION MAXIMIZATION FOR
SPTM-P4.11: PERFORMANCE ENHANCEMENT OF THE MEASURE-TRANSFORMED
SPTM-P4.12: FREQUENCY SEPARATION METHOD BASED ON SPARSE CODING
SPTM-P5: BAYESIAN SIGNAL PROCESSING II
SPTM-P5.1: LABELLED NON-ZERO PARTICLE FLOW FOR SMC-PHD FILTERING
SPTM-P5.2: A NOVEL PROGRESSIVE GAUSSIAN APPROXIMATE FILTER WITH
SPTM-P5.3: STRUCTURAL RECURRENT NEURAL NETWORK FOR TRAFFIC SPEED
SPTM-P5.4: BAYESIAN FUSION OF ASYNCHRONOUS INERTIAL, SPEED AND
SPTM-P5.5: RANDOM INFINITE TREE AND DEPENDENT POISSON DIFFUSION
SPTM-P5.7: ENLLVM: ENSEMBLE BASED NONLINEAR BAYESIAN FILTERING

SPTM-P6: SIGNAL PROCESSING ON NETWORKS

SPTM-P6.1: CONSENSUS-BASED DISTRIBUTED TOTAL LEAST-SQUARES
SPTM-P6.2: DISTRIBUTED INFERENCE OVER NETWORKS UNDER SUBSPACE
SPTM-P6.3: COLA: COMMUNICATION-CENSORED LINEARIZED ADMM FOR
SPTM-P6.4: DISTRIBUTED SIGNAL RECOVERY BASED ON IN-NETWORK
SPTM-P6.5: POTENTIAL GAMES FOR DISTRIBUTED PARAMETER ESTIMATION IN
SPTM-P6.6: A CASE OF DISTRIBUTED OPTIMIZATION IN ADVERSARIAL
SPTM-P6.7: ECO-PANDA: A COMPUTATIONALLY ECONOMIC, GEOMETRICALLY
SPTM-P6.8: DIFFUSION LEARNING IN NON-CONVEX ENVIRONMENTS
SPTM-P6.9: EXPONENTIAL COLLAPSE OF SOCIAL BELIEFS OVER
SPTM-P7: PERFORMANCE ANALYSIS AND BOUNDS
SPTM-P7.1: PERFORMANCE ANALYSIS OF ONE-BIT GROUP-SPARSE SIGNAL
SPTM-P7.2: A TIGHTER BAYESIAN CRAMER-RAO BOUND
SPTM-P7.3: ON THE ACCURACY LIMIT OF TIME-DELAY ESTIMATION WITH A

SPTM-P7.4: PERFORMANCE BOUND FOR BLIND EXTRACTION OF NON-GAUSSIAN	5287
Václav Kautský, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Czech Republic Zbyněk Koldovský, Faculty of Mechatronic and Interdisciplinary Studies, Technical University of Liberec, Czech Republic; Pet Tichavský, The Czech Academy of Sciences, Institute of Information Theory and Automation, Czech Republic	
SPTM-P7.5: SAMPLE COMPLEXITY OF JOINT STRUCTURE LEARNING	5292
SPTM-P7.6: INFORMATION THEORETIC LOWER BOUND OF RESTRICTED	5297
SPTM-P7.8: MISSPECIFIED CRB ON PARAMETER ESTIMATION FOR A COUPLED	ites;
SPTM-P7.9: ASYMPTOTICALLY OPTIMAL QUICKEST CHANGE DETECTION UNDER	5307
SPTM-P7.10: DESIGNING SAR IMAGES CHANGE-POINT ESTIMATION STRATEGIES	Ş
SPTM-P7.11: ROBUST LINEAR DISCRIMINANT ANALYSIS USING TYLER'S	n's
SPTM-P8: DETECTION THEORY AND METHODS	
SPTM-P8.1: DETECTION AND ESTIMATION OF DELAYS IN BIVARIATE	5322
SPTM-P8.2: OPTIMAL ROC CURVES FROM SCORE VARIABLE THRESHOLD TESTS	5327
SPTM-P8.3: ROBUST DETECTION FOR CLUSTER ANALYSIS	
SPTM-P8.4: AN IMPROVED LOW RANK DETECTOR IN THE HIGH DIMENSIONAL	533(
SPTM-P8.5: MODEL CHANGE DETECTION WITH APPLICATION TO MACHINE	5341
Veeravalli, University of Illinois at Urbana Champaign, United States	

SPTM-P8.6: ACTIVE ANOMALY DETECTION WITH SWITCHING COST
Da Chen, Qiwei Huang, Hui Feng, Research Center of Smart Networks and Systems, School of Information Science and Engineering, Fudan University, China; Qing Zhao, School of Electrical and Computer Engineering, Cornell University, United States; Bo Hu, Research Center of Smart Networks and Systems, School of Information Science and Engineering, Fudan University, United States
SPTM-P8.7: QUICKEST DETECTION OF DEVIATIONS FROM PERIODIC
SPTM-P8.8: PERTURBED PROJECTED GRADIENT DESCENT CONVERGES TO
United States
SPTM-P8.11: DYNAMIC SELECTION OF CLASSIFIERS FOR FUSING IMBALANCED
Sergey Sukhanov, Christian Debes, AGT International, Germany; Abdelhak M. Zoubir, Signal Processing Group, TU Darmstadt, Germany, Germany
SPTM-P8.12: THE GOOD, THE BAD, ALGORITHMIC NOISE TOLERANCE (ANT),
Noyan Sevuktekin, Andrew Singer, University of Illinois at Urbana-Champaign, United States
SPTM-P9: SIGNAL PROCESSING OVER GRAPHS II
SPTM-P9.1: A DISCRETE SIGNAL PROCESSING FRAMEWORK FOR MEET/JOIN
SPTM-P9.2: OPTIMIZED QUANTIZATION IN DISTRIBUTED GRAPH SIGNAL
SPTM-P9.3: LOW-RANK ESTIMATION BASED EVOLUTIONARY CLUSTERING FOR
States; Selin Aviyente, Michigan State University, United States
SPTM-P9.4: GRAPH SIGNAL REPRESENTATION WITH WASSERSTEIN
Effrosyni Simou, Pascal Frossard, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE, Switzerland
SPTM-P9.5: IMPROVING GRAPH TREND FILTERING WITH NON-CONVEX
States
SPTM-P9.6: RECONSTRUCTION-COGNIZANT GRAPH SAMPLING USING
Liu, Harbin Institute of Technology, China; Wen Gao, Peking University, China
SPTM-P9.7: LAPPED TRANSFORMS: A GRAPH-BASED EXTENSION

SPTM-P9.8: TENSOR ROBUST PCA ON GRAPHS	
SPTM-P9.9: TIME-VARYING GRAPH LEARNING BASED ON SPARSENESS OF	
SPTM-P9.10: ROBUST LEAST MEAN SQUARES ESTIMATION OF GRAPH SIGNALS	5416
SPTM-P9.11: ADMM-BASED BIPARTITE GRAPH APPROXIMATION	5421
SPTM-P9.12: TROPICAL MODELING OF WEIGHTED TRANSDUCER ALGORITHMSON GRAPHS Emmanouil Theodosis, Petros Maragos, National Technical University of Athens, Greece	•••••
SPTM-P10: SIGNAL PROCESSING OVER GRAPHS III	
SPTM-P10.1: KERNEL REGRESSION FOR GRAPH SIGNAL PREDICTION IN	5426
SPTM-P10.2: INTERPOLATION AND DENOISING OF GRAPH SIGNALS USING	
SPTM-P10.4: UNSUPERVISED DIMENSION SELECTION USING A BLUE NOISE	
SPTM-P10.6: ACTIVE SAMPLING FOR APPROXIMATELY BANDLIMITED GRAPH	5441
SPTM-P10.7: LEARNING SHEAF LAPLACIANS FROM SMOOTH SIGNALS	5446
SPTM-P10.8: ESTIMATION OF NETWORK PROCESSES VIA BLIND GRAPH	5451
SPTM-P10.9: FAST SAMPLING OF GRAPH SIGNALS WITH NOISE VIA NEUMANN	5456
SPTM-P10.10: SCALABLE MCMC IN DEGREE CORRECTED STOCHASTIC BLOCK	5461

SPTM-P11: ESTIMATION THEORY AND METHODS II

SPTM-P11.1: ASYMPTOTICALLY OPTIMAL RECOVERY OF GAUSSIAN SOURCES
Amii Welss, Arte Teredor, Ter-Aviv Oniversity, Israel
SPTM-P11.2: HETEROGENEOUS INFORMATION FUSION FOR MULTITARGET
CDTM D44 4 DODY/CTM FCTWA 4 TYON D 4 CDD M 4 TDW COMPLETION
SPTM-P11.4: ROBUST M-ESTIMATION BASED MATRIX COMPLETION
SPTM-P11.6: TRACKING A CLUSTER OF SPACE DEBRIS IN LOW ORBIT BY
FILTERING ON LIE GROUPS Samy LABSIR, Audrey Giremus, Guillaume Bourmaud, University of Bordeaux, IMS Laboratory, France; Brice Yver, Thomas BenoudibaCampanini, CEA CESTA, France
SPTM-P11.7: INTRODUCING THE ORTHOGONAL PERIODIC SEQUENCES FOR5486
THE IDENTIFICATION OF FUNCTIONAL LINK POLYNOMIAL FILTERS
Alberto Carini, University of Urbino, Italy; Simone Orcioni, Stefania Cecchi, Università Politecnica delle Marche, Italy
SPTM-P11.8: MINIMAX MAGNITUDE RESPONSE APPROXIMATION OF POLE-RADIUS
Autoping Eut, Stawen Cuo, Hungzhoù Dianzi Oniversity, China, Entping Ein, Ivanyang Technologicai Oniversity, Singapore
SPTM-P11.9: MAXIMUM-ENTROPY SCATTERING MODELS FOR FINANCIAL TIME
SPTM-P11.10: ON NONPARAMETRIC IDENTIFICATION OF WIENER SYSTEMS WITH
DETERMINISTIC INPUTS Simone Urbano, Airbus / TeSA lab, France; Eric Chaumette, ISAE Supaero, France; Philippe Goupil, Airbus, France; Jean-Yves Tourneret, INP-ENSEEIHT/IRIT, France
SPTM-P11.11: RECEIVER DESIGN FOR DOPPLER POSITIONING WITH LEO5506
SATELLITES
Joe Khalife, University of California, Riverside, United States; Zaher (Zak) Kassas, University of California, Irvine, United States
SPTM-P11.12: BLIND SUPER-RESOLUTION IN TWO-DIMENSIONAL PARAMETER5511 SPACE
Mohamed A. Suliman, Wei Dai, Imperial College London, United Kingdom
SPTM-P12: SPARSITY-AWARE SIGNAL PROCESSING II
SPTM-P12.1: ATOM SELECTION IN CONTINUOUS DICTIONARIES: RECONCILING5516 POLAR AND SVD APPROXIMATIONS
Frederic CHAMPAGNAT, ONERA The French Aerospace Lab, France; Cedric Herzet, INRIA Rennes-Bretagne Atlantique, France
SPTM-P12.2: SEPARABLE SIMPLEX-STRUCTURED MATRIX FACTORIZATION:
ROBUSTNESS OF COMBINATORIAL APPROACHES Nicolas Gillis, University of Mons, Belgium

SPTM-P12.3: SOLVING QUADRATIC EQUATIONS VIA AMPLITUDE-BASEDNONCONVEX OPTIMIZATION	5526
Vincent Monardo, Yuanxin Li, Yuejie Chi, Carnegie Mellon University, United States	
SPTM-P12.4: NON-NEGATIVE MATRIX FACTORIZATION USING BREGMAN	5531
SPTM-P12.5: COUPLED TENSOR LOW-RANK MULTILINEAR APPROXIMATION FOR HYPERSPECTRAL SUPER-RESOLUTION Clémence Prévost, Université de Lorraine and CNRS, France; Konstantin Usevich, CNRS and Univer Pierre Comon, CNRS and Univ. Grenoble Alpes, France; David Brie, Université de Lorraine and CNRS	rsité de Lorraine, France;
SPTM-P12.6: ITERATIVE MIRROR DECOMPOSITION FOR SIGNAL	5541
SPTM-P12.7: OMP AND CONTINUOUS DICTIONARIES: IS K-STEP RECOVERY	e; Charles Soussen, L2S,
SPTM-P12.8: AN IMPROVED METHOD FOR PARAMETRIC SPECTRAL ESTIMATION Jacob Klintberg, Tomas McKelvey, Chalmers University of Technology, Sweden	5551
SPTM-P12.9: SPACE ALTERNATING VARIATIONAL ESTIMATION AND KRONECKER STRUCTURED DICTIONARY LEARNING Christo Kurisummoottil Thomas, Dirk Slock, Eurecom, France	5556
SPTM-P12.10: STOCHASTIC ML SIMPLEX-STRUCTURED MATRIX FACTORIZATION UNDER THE DIRICHLET MIXTURE MODEL Ruiyuan Wu, The Chineses University of Hong Kong, Hong Kong SAR of China; Qiang Li, University Technology of China, China; Wing-Kin Ma, The Chinese University of Hong Kong, Hong Kong SAR of	of Electronic Science and
SPTM-P12.11: SPARSE RECOVERY AND NON-STATIONARY BLIND DEMODULATION Youye Xie, Michael Wakin, Gongguo Tang, Colorado School of Mines, United States	5566
SPTM-P12.12: ADAPTIVE SENSING MATRIX DESIGN FOR GREEDY ALGORITHMS IN . MMV COMPRESSIVE SENSING Liang Zhang, Lei Huang, Bo Zhao, Shenzhen University, China; Bo Li, Nuance Communication Inc.,	
SPTM-P13: OPTIMIZATION TOOLS	
SPTM-P13.1: CLUSTERING BY ORTHOGONAL NON-NEGATIVE MATRIX	
SPTM-P13.2: PREDICTION-CORRECTION FOR NONSMOOTH TIME-VARYING	
SPTM-P13.3: OPTIMAL TRILATERATION IS AN EIGENVALUE PROBLEM	
Martin Larsson, Lund University, Sweden; Viktor Larsson, ETH Zurich, Switzerland; Kalle Åström, M. University, Sweden	1agnus Oskarsson, Lund

SPTM-P13.4: FAST OPTIMIZATION OF BOOLEAN QUADRATIC FUNCTIONS VIA
SPTM-P13.5: SOLVING COMPLEX QUADRATIC EQUATIONS WITH FULL-RANK
SPTM-P13.7: HOW TO GLOBALLY SOLVE NON-CONVEX OPTIMIZATION
SPTM-P13.8: LAYER-WISE DEEP NEURAL NETWORK PRUNING VIA ITERATIVELY
SPTM-P13.9: ONE-DIMENSIONAL EDGE-PRESERVING SPLINE SMOOTHING FOR
SPTM-P13.10: LEARNING SHALLOW NEURAL NETWORKS VIA PROVABLE
SLP-L1: END-TO-END SPEECH RECOGNITION I: GENERAL TOPICS
SLP-L1.1: BYTES ARE ALL YOU NEED: END-TO-END MULTILINGUAL SPEECH
SLP-L1.2: JOINT ENDPOINTING AND DECODING WITH END-TO-END MODELS
SLP-L1.3: COMPONENT FUSION: LEARNING REPLACEABLE LANGUAGE MODEL
SLP-L1.4: PARAMETER UNCERTAINTY FOR END-TO-END SPEECH RECOGNITION
SLP-L1.5: ACOUSTICALLY GROUNDED WORD EMBEDDINGS FOR IMPROVED
SLP-L1.6: PROMISING ACCURATE PREFIX BOOSTING FOR

SLP-L2: END-TO-END SPEECH RECOGNITION II: NEW MODELS
SLP-L2.1: A SPELLING CORRECTION MODEL FOR END-TO-END SPEECH
SLP-L2.2: SELF-ATTENTION ALIGNER: A LATENCY-CONTROL END-TO-END
SLP-L2.3: LARGE CONTEXT END-TO-END AUTOMATIC SPEECH RECOGNITION
SLP-L2.4: TRIGGERED ATTENTION FOR END-TO-END SPEECH RECOGNITION
SLP-L2.5: ON USING 2D SEQUENCE-TO-SEQUENCE MODELS FOR SPEECH
SLP-L2.6: CRF-BASED SINGLE-STAGE ACOUSTIC MODELING WITH CTC
SLP-L3: NOVEL ARCHITECTURES AND TRAINING STRATEGIES FOR ASR
SLP-L3.1: UNIVERSAL ACOUSTIC MODELING USING NEURAL MIXTURE MODELS
SLP-L3.2: TIMESCALENET : A MULTIRESOLUTION APPROACH FOR RAW AUDIO
SLP-L3.3: ENCRYPTED SPEECH RECOGNITION USING DEEP POLYNOMIAL
SLP-L3.4: LEARNING DISCRIMINATIVE FEATURES IN SEQUENCE TRAINING
SLP-L3.5: IMPROVING CTC USING STIMULATED LEARNING FOR SEQUENCE
SLP-L3.6: DISTRIBUTED DEEP LEARNING STRATEGIES FOR AUTOMATIC SPEECH
SLP-L4: FEATURE LEARNING AND ADAPATION FOR ASR
SLP-L4.1: BLHUC: BAYESIAN LEARNING OF HIDDEN UNIT CONTRIBUTIONS FOR

SLP-L4.2: A HIGHLY ADAPTIVE ACOUSTIC MODEL FOR ACCURATE
SLP-L4.3: ADVERSARIAL SPEAKER ADAPTATION
SLP-L4.4: IMPROVING ASR ROBUSTNESS TO PERTURBED SPEECH USING
SLP-L4.5: DEEP VARIATIONAL FILTER LEARNING MODELS FOR SPEECH
SLP-L4.6: IMPROVING CHILDREN SPEECH RECOGNITION THROUGH FEATURE
SLP-L5: SPEECH ENHANCEMENT I
SLP-L5.1: DESIGN OF OPTIMAL LINEAR DIFFERENTIAL MICROPHONE ARRAYS
SLP-L5.2: SUPERVISED SPEECH ENHANCEMENT WITH REAL SPECTRUM
SLP-L5.3: REAL-TIME SPEECH ENHANCEMENT USING AN EFFICIENT
SLP-L5.4: A FULLY CONVOLUTIONAL NEURAL NETWORK FOR COMPLEX
SLP-L5.5: AN UNSUPERVISED LEARNING APPROACH TO
SLP-L5.6: A DEEP LEARNING BASED BINAURAL SPEECH ENHANCEMENT APPROACH

SLP-L6: SYSTEMS FOR SPEAKER RECOGNITION AND IDENTIFICATION

SLP-L6.1: THE LEAP SPEAKER RECOGNITION SYSTEM FOR NIST SRE 2018	. 5771
CHALLENGE Shreyas Ramoji, Anand Mohan, Indian Institute of Science, India; Bhargavram Mysore, North Carolina State University, United States; Anmol Bhatia, Birla Institute of Technology and Sciences Pilani, India; Prachi Singh, Harsha Vardhan, Srirat Ganapathy, Indian Institute of Science, India	m
SLP-L6.2: UTD-CRSS SYSTEMS FOR 2018 NIST SPEAKER RECOGNITION	. 5776
EVALUATION Chunlei Zhang, Fahimeh Bahmaninezhad, Shivesh Ranjan, Harishchandra Dubey, Wei Xia, John H.L. Hansen, The Universit Texas at Dallas, United States	ity of
SLP-L6.3: WHO DO I SOUND LIKE? SHOWCASING SPEAKER RECOGNITION	. 5781
SLP-L6.4: A BAYESIAN APPROACH TO INTER-TASK FUSION FOR SPEAKER	. 5786
Srikanth Madikeri, Petr Motlicek, Subhadeep Dey, Idiap Research Institute, Switzerland	
SLP-L6.5: UTTERANCE-LEVEL AGGREGATION FOR SPEAKER RECOGNITION IN	. 5791
SLP-L6.6: SPEAKER RECOGNITION FOR MULTI-SPEAKER CONVERSATIONS	
SLP-L7: DIARIZATION AND SPEAKER CHARACTERIZATION	
SLP-L7.1: SPEAKER DIARISATION USING 2D SELF-ATTENTIVE COMBINATION OF EMBEDDINGS Guangzhi Sun, Chao Zhang, Philip Woodland, University of Cambridge, United Kingdom	. 5801
SLP-L7.2: DESIGNING AN EFFECTIVE METRIC LEARNING PIPELINE FOR	. 5806
SPEAKER DIARIZATION Vivek Sivaraman Narayanaswamy, Arizona State University, United States; Jayaraman J. Thiagarajan, Lawrence Livermore National Labs, United States; Huan Song, Bosch Research North America, United States; Andreas Spanias, Arizona State University, United States	?
SLP-L7.3: INVESTIGATING DOMAIN SENSITIVITY OF DNN EMBEDDINGS FOR	5811
SLP-L7.4: CROSS-LINGUAL TEXT-INDEPENDENT SPEAKER VERIFICATION USING	
SLP-L7.5: THE CORAL+ ALGORITHM FOR UNSUPERVISED DOMAIN ADAPTATION	. 5821
SLP-L7.6: SPEAKER CHANGE DETECTION USING FUNDAMENTAL FREQUENCY	. 5826

SLP-L8: ANALYSIS OF VOICE, SPEECH AND LANGUAGE DISORDERS I

SLP-L8.1: LEARNING TO DETECT DYSARTHRIA FROM RAW SPEECH
SLP-L8.2: PHONETIC ANALYSIS OF DYSARTHRIC SPEECH TEMPO AND
SLP-L8.3: AUTOMATIC DIAGNOSIS OF ALZHEIMER'S DISEASE USING NEURAL
SLP-L8.4: TOWARDS DISEASE-SPECIFIC SPEECH MARKERS FOR DIFFERENTIAL
SLP-L8.5: SPEECH AS A BIOMARKER FOR OBSTRUCTIVE SLEEP APNEA
SLP-L8.6: SPEECH LANDMARK BIGRAMS FOR DEPRESSION DETECTION FROM
SLP-L9: USING MULTIPLE PERSPECTIVES IN EMOTION AND SENTIMENT ANALYSIS
SLP-L9.1: IMPLICIT FUSION BY JOINT AUDIOVISUAL TRAINING FOR EMOTION
SLP-L9.2: SPEECH EMOTION RECOGNITION USING DEEP NEURAL NETWORK
SLP-L9.3: EXPLOITING ACOUSTIC AND LEXICAL PROPERTIES OF PHONEMES TO
SLP-L9.4: ACOUSTIC AND LEXICAL SENTIMENT ANALYSIS FOR CUSTOMER
SLP-L9.5: THE GENERALIZATION EFFECT FOR MULTILINGUAL SPEECH
SLP-L9.6: EVERY RATING MATTERS: JOINT LEARNING OF SUBJECTIVE LABELS

SLP-L10: SPEECH SYNTHESIS I

SLP-L10.1: LPCNET: IMPROVING NEURAL SPEECH SYNTHESIS THROUGH	5891
SLP-L10.2: PHONEMIC-LEVEL DURATION CONTROL USING ATTENTION	ea Lee,
SLP-L10.3: DISENTANGLING CORRELATED SPEAKER AND NOISE FOR SPEECH	
SLP-L10.4: REPRESENTATION MIXING FOR TTS SYNTHESIS	5906
SLP-L10.5: ROBUST AND FINE-GRAINED PROSODY CONTROL OF END-TO-END	5911
SLP-L10.6: NEURAL SOURCE-FILTER-BASED WAVEFORM MODEL FOR STATISTICAL PARAMETRIC SPEECH SYNTHESIS Xin Wang, Shinji Takaki, Junichi Yamagishi, National Institute of Informatics, Japan	5916
SLP-L11: MODELS OF SPEECH PRODUCTION	
SLP-L11.1: AN IMPROVED AIR TISSUE BOUNDARY SEGMENTATION TECHNIQUE FOR REAL TIME MAGNETIC RESONANCE IMAGING VIDEO USING SEGNET Valliappan CA, Indian Institute of Science, India; Avinash Kumar, National Institute of Technology, India; Renuka Mannem, Karthik Girija Ramesan, Prasanta Kumar Ghosh, Indian Institute of Science, India	5921
SLP-L11.2: PREDICTING TONGUE MOTION IN UNLABELED ULTRASOUND	
SLP-L11.3: REPRESENTATION LEARNING USING CONVOLUTION NEURAL	5931
SLP-L11.4: A STUDY ON ROBUSTNESS OF ARTICULATORY FEATURES FOR	
SLP-L11.5: AIR-TISSUE BOUNDARY SEGMENTATION IN REAL TIME MAGNETIC	5941
SLP-L11.6: GLOTTAL INSTANTS EXTRACTION FROM SPEECH SIGNAL USING	5946

SLP-P1: MULTI-LINGUAL IDENTIFICATION AND PROCESSING

SLP-P1.1: DOMAIN ATTENTIVE FUSION FOR END-TO-END DIALECT	5951
SLP-P1.2: CROSS-LINGUAL TRANSFER LEARNING FOR SPOKEN LANGUAGE	5956
SLP-P1.3: ADVERSARIAL MULTI-TASK DEEP FEATURES AND UNSUPERVISED	5961
SLP-P1.4: END-TO-END LANGUAGE RECOGNITION USING ATTENTION BASED	5966
SLP-P1.5: CMU WILDERNESS MULTILINGUAL SPEECH DATASET	5971
SLP-P1.6: TUPLEMAX LOSS FOR LANGUAGE IDENTIFICATION	5976
SLP-P1.7: INTERACTIVE LEARNING OF TEACHER-STUDENT MODEL FOR SHORT	5981
SLP-P1.8: SEMI-SUPERVISED LEARNING WITH GENERATIVE ADVERSARIAL	5986
SLP-P1.9: UTTERANCE-LEVEL END-TO-END LANGUAGE IDENTIFICATION USING	5991
SLP-P1.10: WHEN CTC TRAINING MEETS ACOUSTIC LANDMARKS	
SLP-P2: SPEAKER VERIFICATION AND IDENTIFICATION I	
SLP-P2.1: ANALYSIS AND MITIGATION OF VOCAL EFFORT VARIATIONS IN SPEAKER	6001
SLP-P2.2: SPEAKER VERIFICATION USING END-TO-END ADVERSARIAL LANGUAGE	
SLP-P2.3: AUDITORY INSPIRED SPATIAL DIFFERENTIATION FOR REPLAY	

SLP-P2.4: A DENOISING AUTOENCODER FOR SPEAKER RECOGNITION. RESULTS
SLP-P2.5: KNOWLEDGE DISTILLATION FOR SMALL FOOT-PRINT DEEP SPEAKER
SLP-P2.6: MULTI-OBJECTIVE OPTIMIZATION TRAINING OF PLDA FOR SPEAKER
SLP-P2.7: DISCRIMINATIVELY RE-TRAINED I-VECTOR EXTRACTOR FOR SPEAKER
SLP-P2.8: GAUSSIAN-CONSTRAINED TRAINING FOR SPEAKER VERIFICATION
SLP-P2.9: ADAPTING END-TO-END NEURAL SPEAKER VERIFICATION TO NEW
SLP-P2.10: ENSEMBLE ADDITIVE MARGIN SOFTMAX FOR SPEAKER VERIFICATION
SLP-P3: MULTI-LINGUAL SPEECH RECOGNITION
SLP-P3.1: LEARNING FROM THE BEST: A TEACHER-STUDENT MULTILINGUAL
SLP-P3.2: INVESTIGATING END-TO-END SPEECH RECOGNITION FOR
SLP-P3.3: AN INVESTIGATION OF MULTILINGUAL ASR USING END-TO-END
SLP-P3.4: EXPLORING RETRAINING-FREE SPEECH RECOGNITION FOR
SLP-P3.5: LANGUAGE-INVARIANT BOTTLENECK FEATURES FROM ADVERSARIAL
SLP-P3.6: TOWARDS CODE-SWITCHING ASR FOR END-TO-END CTC MODELS
SLP-P3.7: COMPARISON OF DATA AUGMENTATION AND ADAPTATION STRATEGIES

SLP-P3.8: WORD AND CLASS COMMON SPACE EMBEDDING FOR CODE-SWITCHLANGUAGE MODELLING Grandee Lee, Haizhou Li, National University of Singapore, Singapore	6086
SLP-P3.9: PHONEME LEVEL LANGUAGE MODELS FOR SEQUENCE BASED LOW	6091
SLP-P3.10: TRANSFER LEARNING OF LANGUAGE-INDEPENDENT END-TO-END ASR	ፈ በዐፈ
WITH LANGUAGE MODEL FUSION Hirofumi Inaguma, Kyoto University, Japan; Jaejin Cho, Johns Hopkins University, United States; Murali Karthick Baskar, In University of Technology, Czech Republic; Tatsuya Kawahara, Kyoto University, Japan, Japan; Shinji Watanabe, Johns Hopk University, United States	Brno
SLP-P4: SPEAKER VERIFICATION AND IDENTIFICATION II	
SLP-P4.1: A ROBUST TEXT-INDEPENDENT SPEAKER VERIFICATION METHOD	6101
SLP-P4.2: PHONEME SPECIFIC MODELLING AND SCORING TECHNIQUES FOR	
SLP-P4.3: INVESTIGATION ON NEURAL BANDWIDTH EXTENSION OF TELEPHONE SPEECH FOR IMPROVED SPEAKER RECOGNITION Phani Sankar Nidadavolu, Vicente Iglesias, Jesús Villalba, Najim Dehak, Johns Hopkins University, United States	.6111
SLP-P4.4: DEEP SPEAKER EMBEDDING LEARNING WITH MULTI-LEVEL	.6116
SLP-P4.5: TIED NORMAL VARIANCE-MEAN MIXTURES FOR LINEAR SCORE	6121
SLP-P4.6: DEEP SPEAKER REPRESENTATION USING ORTHOGONAL DECOMPOSITION AND RECOMBINATION FOR SPEAKER VERIFICATION Insoo Kim, Kyuhong Kim, Jiwhan Kim, Changkyu Choi, Samsung Electronics, Korea (South)	6126
SLP-P4.7: SEQ2SEQ ATTENTIONAL SIAMESE NEURAL NETWORKS FOR	6131
SLP-P4.8: TRANSMISSION LINE COCHLEAR MODEL BASED AM-FM FEATURES FOR	6136
SLP-P4.9: HOW TO IMPROVE YOUR SPEAKER EMBEDDINGS EXTRACTOR IN	
SLP-P4.10: CAN WE USE SPEAKER RECOGNITION TECHNOLOGY TO ATTACK	6146
Tomi Kinnunen, Rosa Gonzalez Hautamäki, Ville Vestman, University of Eastern Finland, Finland; Md Sahidullah, INRIA,	

cxxx

France

SLP-P5: END-TO-END SPEECH RECOGNITION III: SOURCE INTEGRATION AND KNOWLEDGE TRANSFER

SLP-P5.1: SEQUENCE-LEVEL KNOWLEDGE DISTILLATION FOR MODEL
SLP-P5.2: INVESTIGATION OF SEQUENCE-LEVEL KNOWLEDGE DISTILLATION
SLP-P5.3: MULTI-SPEAKER SEQUENCE-TO-SEQUENCE SPEECH SYNTHESIS FOR
SLP-P5.4: SEMI-SUPERVISED END-TO-END SPEECH RECOGNITION USING
SLP-P5.5: PHOEBE: PRONUNCIATION-AWARE CONTEXTUALIZATION FOR
SLP-P5.6: ADVERSARIAL TRAINING OF END-TO-END SPEECH RECOGNITION
SLP-P5.7: KNOWLEDGE DISTILLATION USING OUTPUT ERRORS FOR
SLP-P5.8: END-TO-END CONTEXTUAL SPEECH RECOGNITION USING CLASS
SLP-P5.9: LANGUAGE MODEL INTEGRATION BASED ON MEMORY CONTROL FOR
SLP-P6: FEATURES AND ROBUSTNESS FOR SPEAKER IDENTIFICATION
SLP-P6.1: TRAINING MULTI-TASK ADVERSARIAL NETWORK FOR EXTRACTING
SLP-P6.2: REPLAY ATTACK DETECTION USING MAGNITUDE AND PHASE
SLP-P6.3: CYCLE-GANS FOR DOMAIN ADAPTATION OF ACOUSTIC FEATURES FOR

SLP-P6.4: SPEAKER CHARACTERIZATION USING TDNN-LSTM BASED SPEAKER
National Central University, Taiwan; Chien-Lin Huang, National Sun Yat-sen University, Taiwan SLP-P6.5: ADVERSARIAL SPEAKER VERIFICATION
Zhong Meng, Yong Zhao, Jinyu Li, Yifan Gong, Microsoft Corporation, United States
SLP-P6.6: CHANNEL ADVERSARIAL TRAINING FOR CROSS-CHANNEL
SLP-P6.7: GENERATIVE ADVERSARIAL SPEAKER EMBEDDING NETWORKS FOR
SLP-P6.8: FORMANT-GAPS FEATURES FOR SPEAKER VERIFICATION USING
SLP-P6.9: SEMI-SUPERVISED NUISANCE-ATTRIBUTE NETWORKS FOR DOMAIN
ADAPTATION Weiwei Lin, Man wai Mak, Youzhi Tu, The Hong Kong Polytechnic University, Hong Kong SAR of China; Jen Tzung Chien, National Chiao Tung University, Taiwan
SLP-P6.10: A BAYESIAN ATTENTION NEURAL NETWORK LAYER FOR SPEAKER
SLP-P7: END-TO-END SPEECH RECOGNITION IV: TRAINING STRATEGIES
SLP-P7.1: END-TO-END SPEECH RECOGNITION WITH ADAPTIVE COMPUTATION
Mohan Li, Min Liu, Masanori Hattori, Toshiba (China) R&D Center, China
SLP-P7.2: SUBBAND TEMPORAL ENVELOPE FEATURES AND DATA AUGMENTATION
SLP-P7.3: END-TO-END MONAURAL MULTI-SPEAKER ASR SYSTEM WITHOUT
PRETRAINING Xuankai Chang, Yanmin Qian, Kai Yu, Shanghai Jiao Tong University, China; Shinji Watanabe, Johns Hopkins University, United States
SLP-P7.4: SEQUENCE NOISE INJECTED TRAINING FOR END-TO-END SPEECH
SLP-P7.5: SUBWORD REGULARIZATION AND BEAM SEARCH DECODING FOR
SLP-P7.6: CYCLE-CONSISTENCY TRAINING FOR END-TO-END SPEECH
RECOGNITION Takaaki Hori, Mitsubishi Electric Research Laboratories, United States; Ramon Astudillo, INESC-ID, Portugal; Tomoki Hayashi, Nagoya University, Japan; Yu Zhang, Google, United States; Shinji Watanabe, Johns Hopkins University, United States; Jonathan

Le Roux, Mitsubishi Electric Research Laboratories, United States

SLP-P7.7: TOKEN-WISE TRAINING FOR ATTENTION BASED END-TO-END SPEECH
Peidong Wang, The Ohio State University, United States; Jia Cui, Chao Weng, Dong Yu, Tencent AI Lab, United States
SLP-P7.8: END-TO-END FEEDBACK LOSS IN SPEECH CHAIN FRAMEWORK VIA
Andros Tjandra, Sakriani Sakti, Satoshi Nakamura, Nara Institute of Science and Technology, Japan
SLP-P8: FEATURES AND LEARNING FOR SPEAKER IDENTIFICATION AND DIARIZATION
SLP-P8.1: PRE-TRAINING OF SPEAKER EMBEDDINGS FOR LOW-LATENCY
Leda Sari, University of Illinois at Urbana-Champaign, United States; Samuel Thomas, IBM Research, United States; Mark Hasegawa-Johnson, University of Illinois at Urbana-Champaign, United States; Michael Picheny, IBM Research, United States
SLP-P8.2: INCREMENTAL TRANSFER LEARNING IN TWO-PASS INFORMATION
Nauman Dawalatabad, Indian Institute of Technology Madras, India; Srikanth Madikeri, Idiap Research Institute, Switzerland; Chandra Sekhar, Hema Murthy, Indian Institute of Technology Madras, India
SLP-P8.3: TRANSFER LEARNING USING RAW WAVEFORM SINCNET FOR ROBUST
Harishchandra Dubey, Abhijeet Sangwan, John H. L. Hansen, University of Texas at Dallas, USA, United States
SLP-P8.4: FULLY SUPERVISED SPEAKER DIARIZATION
SLP-P8.5: IMPORTANCE OF ANALYTIC PHASE OF THE SPEECH SIGNAL FOR
SLP-P8.6: MULTIPLE TEMPORAL SCALES BASED SPEAKER EMBEDDINGS
SLP-P8.7: ATTENTIVE FILTERING NETWORKS FOR AUDIO REPLAY ATTACK
Cheng-I Lai, Johns Hopkins University, United States; Alberto Abad, University of Lisbon, Portugal; Korin Richmond, University of Edinburgh, United Kingdom; Junichi Yamagishi, National Institute of Informatics, Japan; Najim Dehak, Johns Hopkins University, United States; Simon King, University of Edinburgh, United Kingdom
SLP-P8.8: BOUNDARY DISCRIMINATIVE LARGE MARGIN COSINE LOSS FOR
SLP-P8.9: TARGET AND NON-TARGET SPEAKER DISCRIMINATION BY HUMANS AND
MACHINES Soo Jin Park, Amber Afshan, Jody Kreiman, Gary Yeung, Abeer Alwan, University of California, Los Angeles, United States
SLP-P8.10: AN IMPROVED UNCERTAINTY PROPAGATION METHOD FOR ROBUST
Dayana Ribas, ViVoLab, Zaragoza University, Spain; Emmanuel Vincent, Université de Lorraine, CNRS, Inria, LORIA, France
SLP-P9: KEYWORD SPOTTING AND EMBEDDED ASR SYSTEMS
SLP-P9.1: END-TO-END STREAMING KEYWORD SPOTTING

SLP-P9.2: FEDERATED LEARNING FOR KEYWORD SPOTTING
SLP-P9.3: HOTWORD CLEANER: DUAL-MICROPHONE ADAPTIVE NOISE
Yiteng (Arden) Huang, Turaj Shabestary, Alexander Gruenstein, Google Inc., United States
SLP-P9.4: EFFICIENT KEYWORD SPOTTING USING DILATED CONVOLUTIONS
AND GATING Alice Coucke, Mohammed Chlieh, Thibault Gisselbrecht, David Leroy, Mathieu Poumeyrol, Thibaut Lavril, Snips, France
SLP-P9.5: VOICE TRIGGER DETECTION FROM LVCSR HYPOTHESIS LATTICES
SLP-P9.6: FOCAL LOSS AND DOUBLE-EDGE-TRIGGERED DETECTOR FOR
ROBUST SMALL-FOOTPRINT KEYWORD SPOTTING Bin Liu, Shuai Nie, Yaping Zhang, Shan Liang, Zhanlei Yang, Wenju Liu, National Laboratory of Patten Recognition, Institute of Automation, Chinese Academy of Sciences, Colombia
SLP-P9.7: ADVERSARIAL EXAMPLES FOR IMPROVING END-TO-END
ATTENTION-BASED SMALL-FOOTPRINT KEYWORD SPOTTING Xiong Wang, Sining Sun, Changhao Shan, Jingyong Hou, Lei Xie, Northwestern Polytechnical University, China; Shen Li, Xin Lei, Mobvoi AI Lab, China
SLP-P9.8: SEMI-SUPERVISED AND POPULATION BASED TRAINING FOR VOICE
SLP-P9.9: AUTOMATIC GRAMMAR AUGMENTATION FOR ROBUST VOICE
SLP-P9.10: STREAMING END-TO-END SPEECH RECOGNITION FOR MOBILE
DEVICES Yanzhang He, Tara N. Sainath, Rohit Prabhavalkar, Ian McGraw, Raziel Alvarez, Ding Zhao, David Rybach, Anjuli Kannan, Yonghui Wu, Ruoming Pang, Qiao Liang, Deepti Bhatia, Yuan Shangguan, Bo Li, Golan Pundak, Khe Chai Sim, Tom Bagby, Shuo-yiin Chang, Kanishka Rao, Alexander Gruenstein, Google, Inc., United States
SLP-P10: ANALYSIS OF VOICE, SPEECH AND LANGUAGE DISORDERS II
SLP-P10.1: OBJECTIVE ASSESSMENT OF VOCAL TREMOR
SLP-P10.2: SPEECH MARKERS FOR CLINICAL ASSESSMENT OF COCAINE USERS
SLP-P10.3: END-TO-END DYSARTHRIC SPEECH RECOGNITION USING MULTIPLE

Yuki Takashima, Tetsuya Takiguchi, Yasuo Ariki, Kobe University, Japan

SLP-P10.4: SUPER-GAUSSIANITY OF SPEECH SPECTRAL COEFFICIENTS AS A
SLP-P10.5: PATHOLOGICAL SPEECH INTELLIGIBILITY ASSESSMENT BASED ON
SLP-P10.6: PERCEPTUALLY ENHANCED SINGLE FREQUENCY FILTERING FOR
SLP-P10.7: AUGMENTING DYSPHONIA VOICE USING FOURIER-BASED
SLP-P10.8: COMBINING PHONE POSTERIORGRAMS FROM STRONG AND WEAK
SLP-P11: ASR TRAINING STRATEGIES AND TOOLKITS
SLP-P11.1: TEACH AN ALL-ROUNDER WITH EXPERTS IN DIFFERENT DOMAINS
SLP-P11.2: A COMPARISON OF LATTICE-FREE DISCRIMINATIVE TRAINING
SLP-P11.3: SEGMENT-LEVEL TRAINING OF ANNS BASED ON ACOUSTIC
SLP-P11.4: CONTEXTUAL SPEECH RECOGNITION WITH DIFFICULT NEGATIVE
SLP-P11.5: CONDITIONAL TEACHER-STUDENT LEARNING
SLP-P11.6: A NEURAL NETWORK BASED RANKING FRAMEWORK TO IMPROVE ASR
SLP-P11.7: ENGLISH BROADCAST NEWS SPEECH RECOGNITION BY HUMANS AND
SLP-P11.8: WAV2LETTER++: A FAST OPEN-SOURCE SPEECH RECOGNITION
SLP-P11.9: THE PYTORCH-KALDI SPEECH RECOGNITION TOOLKIT

SLP-P11.10: PYHTK: PYTHON LIBRARY AND ASR PIPELINES FOR HTK
SLP-P11.11: IMPROVING NOISE ROBUSTNESS OF AUTOMATIC SPEECH
SLP-P12: SPEECH ANALYSIS
SLP-P12.1: GLOTTOGRAPHIC AND AERODYNAMIC ANALYSIS ON CONSONANT
SLP-P12.2: DATA AUGMENTATION STRATEGIES FOR NEURAL NETWORK F0
SLP-P12.3: F0 CONTOUR ESTIMATION USING PHONETIC FEATURE IN
SLP-P12.4: A STUDY ON HOW PRE-WHITENING INFLUENCES FUNDAMENTAL
SLP-P12.5: A QUANTITATIVE COMPARISON OF EPOCH EXTRACTION ALGORITHMS
SLP-P12.6: EPOCH EXTRACTION FROM SPEECH SIGNALS USING TEMPORAL AND
SLP-P12.7: A SPECTRO-TEMPORAL TECHNIQUE FOR ESTIMATING APERIODICITY
SLP-P12.8: USING EXTREME GRADIENT BOOSTING TO DETECT GLOTTAL
SLP-P12.9: OBJECTIVE MEASURES OF PLOSIVE NASALIZATION IN HYPERNASAL
SLP-P12.10: LEARNING VOICE SOURCE RELATED INFORMATION FOR
SLP-P13: NEW FEATURES, MODELS AND REPRESENTATIONS / AUDIO VISUAL ASR
SLP-P13.1: LEARNED IN SPEECH RECOGNITION: CONTEXTUAL ACOUSTIC WORD

SLP-P13.2: TRULY UNSUPERVISED ACOUSTIC WORD EMBEDDINGS USING	6535
SLP-P13.3: A FACTORIAL DEEP MARKOV MODEL FOR UNSUPERVISED DISENTANGLED REPRESENTATION LEARNING FROM SPEECH Sameer Khurana, Massachusetts Institute of Technology, United States; Shafiq Rayhan Joty, NTU, Singapore; Ahmed Ali, QC Qatar; James Glass, Massachusetts Institute of Technology, United States	
SLP-P13.4: M-VECTORS: SUB-BAND BASED ENERGY MODULATION FEATURES	6545
SLP-P13.5: IMPROVING LAYER TRAJECTORY LSTM WITH FUTURE CONTEXT FRAMES Jinyu Li, Liang Lu, Changliang Liu, Yifan Gong, Microsoft, United States	6550
SLP-P13.6: BAYESIAN AND GAUSSIAN PROCESS NEURAL NETWORKS FOR LARGE	6555
SLP-P13.7: IMPROVING AUDIO-VISUAL SPEECH RECOGNITION PERFORMANCE	6560
SLP-P13.8: MODALITY ATTENTION FOR END-TO-END AUDIO-VISUAL SPEECH	
SLP-P13.9: ROBUST AUDIO-VISUAL SPEECH RECOGNITION USING BIMODAL	6570
SLP-P14: SPEECH ANALYSIS OF EXTRALINGUISTIC FACTORS	
SLP-P14.1: PRIVACY-PRESERVING PARALINGUISTIC TASKS	6575
SLP-P14.2: A DEEP NEURAL NETWORK BASED END TO END MODEL FOR JOINT	
SLP-P14.3: SIMILARITY METRIC BASED ON SIAMESE NEURAL NETWORKS FOR	6585
SLP-P14.4: ZERO RESOURCE SPEAKING RATE ESTIMATION FROM CHANGE POINT	6590
SLP-P14.5: REFERENTIAL VOWEL DURATION RATIO AS A FEATURE FOR	6595

Yamamoto, Doshisha University, Japan

SLP-P14.6: DIMENSIONAL ANALYSIS OF LAUGHTER IN FEMALE CONVERSATIONAL
Mary Pietrowicz, Carla Agurto, IBM, United States; Jonah Casebeer, Mark Hasegawa-Johnson, Karrie Karahalios, University of Illinois at Urbana-Champaign, United States; Guillermo Cecchi, IBM, United States
SLP-P14.7: IMPROVING THE PREDICTION OF THERAPIST BEHAVIORS IN
ADDICTION COUNSELING BY EXPLOITING CLASS CONFUSIONS Zhuohao Chen, Karan Singla, James Gibson, Dogan Can, Signal Analysis and Interpretation Lab, University of Southern California, Los Angeles, CA, USA, United States; Zac Imel, Department Educational Psychology, University of Utah, Salt Lake City, UT, USA, United States; David Atkins, Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA, United States; Panayiotis Georgiou, Shrikanth Narayanan, Signal Analysis and Interpretation Lab, University of Southern California, Los Angeles, CA, USA, United States
SLP-P14.8: EVALUATION MEASURES FOR DEPRESSION PREDICTION AND
SLP-P14.9: EFFECTS OF LOMBARD REFLEX ON THE PERFORMANCE OF
DEEP-LEARNING-BASED AUDIO-VISUAL SPEECH ENHANCEMENT SYSTEMS
Daniel Michelsanti, Zheng-Hua Tan, Aalborg University, Denmark; Sigurdur Sigurdsson, Oticon A/S, Denmark; Jesper Jensen, Aalborg University, Denmark
SLP-P14.10: CROSS-LINGUAL SPEECH-BASED TOBI LABEL GENERATION USING
BIDIRECTIONAL LSTM Marco Vetter, Sakriani Sakti, Satoshi Nakamura, Nara Institute of Science and Technology, Japan, Japan
SLP-P15: DISTANT SPEECH RECOGNITION
SLP-P15.1: SPATIAL AND CHANNEL ATTENTION BASED CONVOLUTIONAL NEURAL
SLP-P15.2: ACOUSTIC MODELING FOR DISTANT MULTI-TALKER SPEECH
SLP-P15.3: MULTI-GEOMETRY SPATIAL ACOUSTIC MODELING FOR DISTANT
Kenichi Kumatani, Wu Minhua, Shiva Sundaram, Nikko Ström, Björn Hoffmeister, Amazon, United States
SLP-P15.4: FREQUENCY DOMAIN MULTI-CHANNEL ACOUSTIC MODELING FOR
SLP-P15.5: ON REDUCING THE EFFECT OF SPEAKER OVERLAP FOR CHIME-5
SLP-P15.6: A TWO-STAGE SINGLE-CHANNEL SPEAKER-DEPENDENT SPEECH
SLP-P15.7: JOINT OPTIMIZATION OF NEURAL NETWORK-BASED WPE

SPEECH ENHANCEMENT AND ACOUSTIC MODELING FOR ROBUST ASR Tobias Menne, Ralf Schlüter, Hermann Ney, RWTH Aachen University, Germany
SLP-P15.9: ACOUSTIC MODELING FOR OVERLAPPING SPEECH RECOGNITION:
SLP-P15.10: LESSONS FROM BUILDING ACOUSTIC MODELS WITH A MILLION
SLP-P16: ARCHITECTURES FOR EMOTION AND SENTIMENT ANALYSIS
SLP-P16.1: DILATED RESIDUAL NETWORK WITH MULTI-HEAD SELF-ATTENTION
SLP-P16.2: CONTEXT MODELLING USING HIERARCHICAL ATTENTION
SLP-P16.3: AN INTERACTION-AWARE ATTENTION NETWORK FOR SPEECH
SLP-P16.4: COMPACT CONVOLUTIONAL RECURRENT NEURAL NETWORKS VIA
SLP-P16.5: SPEECH EMOTION RECOGNITION USING CAPSULE NETWORKS
SLP-P16.6: HIERARCHICAL TWO-LEVEL MODELLING OF EMOTIONAL STATES IN
SLP-P16.7: ATTENTION-AUGMENTED END-TO-END MULTI-TASK LEARNING FOR
SLP-P16.8: EFFICIENT ARABIC EMOTION RECOGNITION USING DEEP NEURAL
SLP-P16.9: REVISITING HIDDEN MARKOV MODELS FOR SPEECH EMOTION

SLP-P16.10: DNN-BASED EMOTION RECOGNITION BASED ON BOTTLENECK
SLP-P16.11: CO-ATTENTION NETWORK AND LOW-RANK BILINEAR POOLING FOR
ASPECT BASED SENTIMENT ANALYSIS peiran zhang, hongbo zhu, tao xiong, yihui yang, Alibaba Group, China
SLP-P17: ROBUST SPEECH RECOGNITION
SLP-P17.1: ANALYZING UNCERTAINTIES IN SPEECH RECOGNITION USING
Apoorv Vyas, Pranay Dighe, Sibo Tong, Hervé Bourlard, Idiap Research Institute & École Polytechnique Fédérale de Lausanne, Switzerland
SLP-P17.2: PARAMETRIC CEPSTRAL MEAN NORMALIZATION FOR ROBUST SPEECH
Ozlem Kalinli, Apple Inc., United States; Gautam Bhattacharya, McGill University, Canada; Chao Weng, Tencent AI Lab, United States
SLP-P17.3: ATTENTIVE ADVERSARIAL LEARNING FOR DOMAIN-INVARIANT
Zhong Meng, Jinyu Li, Yifan Gong, Microsoft Corporation, United States
SLP-P17.4: JOINT TRAINING OF COMPLEX RATIO MASK BASED BEAMFORMER AND
SLP-P17.5: REINFORCEMENT LEARNING BASED SPEECH ENHANCEMENT FOR
ROBUST SPEECH RECOGNITION Yih-Liang Shen, Chao-Yuan Huang, National Chiao Tung University, Taiwan; Syu-Siang Wang, Ministry of Science and Technology, Taiwan; Yu Tsao, Hsin-Min Wang, Academia Sinica, Taiwan; Tai-Shih Chi, National Chiao Tung University, Taiwan
SLP-P17.6: BI-DIRECTIONAL LATTICE RECURRENT NEURAL NETWORKS FOR
Qiujia Li, Preben Ness, Anton Ragni, Mark Gales, University of Cambridge, United Kingdom
SLP-P17.7: AUC OPTIMIZATION FOR DEEP LEARNING BASED VOICE ACTIVITY
Zi-Chen Fan, Zhongxin Bai, Northwestern Polytechnical University, China; Xiao-Lei Zhang, Susanto Rahardja, Jingdong Chen, Northwestern Polytechnic University, China
SLP-P17.8: SPEAKER AGNOSTIC FOREGROUND SPEECH DETECTION FROM
SLP-P17.9: SPEECH AUGMENTATION USING WAVENET IN SPEECH RECOGNITION
SLP-P17.10: ROBUST RECOGNITION OF REVERBERANT AND NOISY SPEECH
SLP-P17.11: CYCLEGAN BANDWIDTH EXTENSION ACOUSTIC MODELING FOR

SLP-P18: VOICE CONVERSION

SLP-P18.1: IMPROVING SEQUENCE-TO-SEQUENCE VOICE CONVERSION BY	
Co., Ltd., China; Chen Liang, Anhui Science and Technology Institute, China; Li-Rong Dai, University of Science and Techno of China, China	
SLP-P18.2: CROSS-LINGUAL VOICE CONVERSION WITH BILINGUAL PHONETIC	
Yi Zhou, Xiaohai Tian, National University of Singapore, Singapore; Haihua Xu, Nanyang Technological University, Singapore Rohan Kumar Das, Haizhou Li, National University of Singapore, Singapore	re;
SLP-P18.3: AUDIOVISUAL SPEAKER CONVERSION: JOINTLY AND	6795
Fuming Fang, Xin Wang, Junichi Yamagishi, Isao Echizen, National Institute of Informatics, Japan	
SLP-P18.4: ATTENTION-BASED WAVENET AUTOENCODER FOR UNIVERSAL VOICE	6800
Adam Polyak, Facebook, Israel; Lior Wolf, Facebook, Tel-Aviv University, Israel	
SLP-P18.5: ATTS2S-VC: SEQUENCE-TO-SEQUENCE VOICE CONVERSION WITH	6805
SLP-P18.6: A COMPACT FRAMEWORK FOR VOICE CONVERSION USING WAVENET	6810
Hui Lu, Zhiyong Wu, Runnan Li, Tsinghua University, China; Shiyin Kang, Tencent, China; Jia Jia, Tsinghua University, China Helen Meng, The Chinese University of Hong Kong, China	ıa;
SLP-P18.7: VOICE CONVERSION WITH CYCLIC RECURRENT NEURAL NETWORK	6815
Patrick Lumban Tobing, Yi-Chiao Wu, Tomoki Hayashi, Kazuhiro Kobayashi, Tomoki Toda, Nagoya University, Japan	
SLP-P18.8: CYCLEGAN-VC2: IMPROVED CYCLEGAN-BASED NON-PARALLEL VOICE	6820
Takuhiro Kaneko, Hirokazu Kameoka, Kou Tanaka, Nobukatsu Hojo, NTT Corporation, Japan	
SLP-P18.9: CROSS-GENDER VOICE CONVERSION WITH CONSTANT F0-RATIO AND	6825
Zbigniew Łatka, Techmo, Poland; Jakub Gałka, AGH University of Science and Technology, Poland; Bartosz Ziółko, Techmo, Poland	,
SLP-P18.10: SEQUENCE-TO-SEQUENCE MODELLING OF F0 FOR SPEECH	6830
SLP-P18.11: CYCLE-CONSISTENT ADVERSARIAL NETWORKS FOR NON-PARALLEL	6835
VOCAL EFFORT BASED SPEAKING STYLE CONVERSION Shreyas Seshadri, Lauri Juvela, Aalto University, Finland; Junichi Yamagishi, National Institute of Informatics, Japan; Okko Räsänen, Tampere University of Technology, Finland; Paavo Alku, Aalto University, Finland	
SLP-P18.12: DATA EFFICIENT VOICE CLONING FOR NEURAL SINGING SYNTHESIS	6840

SLP-P19: SPEECH ENHANCEMENT II

SLP-P19.1: OBJECTIVE COMPARISON OF SPEECH ENHANCEMENT ALGORITHMS
SLP-P19.2: BINAURAL BEAMFORMING BASED ON AUTOMATIC INTERFERER
SLP-P19.3: MASK-BASED MVDR BEAMFORMER FOR NOISY MULTISOURCE
SLP-P19.4: DENSELY CONNECTED NETWORK WITH TIME-FREQUENCY
SLP-P19.5: COMPLEX SPECTRAL MAPPING WITH A CONVOLUTIONAL
SLP-P19.6: A SPECTRAL-CHANGE-AWARE LOSS FUNCTION FOR DNN-BASED
SLP-P19.7: TCNN: TEMPORAL CONVOLUTIONAL NEURAL NETWORK FOR
SLP-P19.8: LINEAR PREDICTION-BASED PART-DEFINED AUTO-ENCODER USED
SLP-P19.9: EXPLORING DEEP COMPLEX NETWORKS FOR COMPLEX
SLP-P19.10: INCREASE APPARENT PUBLIC SPEAKING FLUENCY BY SPEECH
SLP-P19.11: AN ATTENTION-BASED NEURAL NETWORK APPROACH FOR SINGLE
SLP-P19.12: FACE LANDMARK-BASED SPEAKER-INDEPENDENT AUDIO-VISUAL
SLP-P20: SPEECH SYNTHESIS II
SLP-P20.1: INVESTIGATION OF ENHANCED TACOTRON TEXT-TO-SPEECH

SLP-P20.2: ENHANCING HYBRID SELF-ATTENTION STRUCTURE WITH
SLP-P20.3: WAVEFORM GENERATION FOR TEXT-TO-SPEECH SYNTHESIS USING
SLP-P20.4: INVESTIGATING CONTEXT FEATURES HIDDEN IN END-TO-END TTS
SLP-P20.5: CASTING TO CORPUS: SEGMENTING AND SELECTING SPONTANEOUS
SLP-P20.6: PHONEME DEPENDENT SPEAKER EMBEDDING AND MODEL
SLP-P20.7: END-TO-END CODE-SWITCHED TTS WITH MIX OF MONOLINGUAL
SLP-P20.8: SEMI-SUPERVISED TRAINING FOR IMPROVING DATA EFFICIENCY IN
SLP-P20.9: LEARNING LATENT REPRESENTATIONS FOR STYLE CONTROL AND
SLP-P20.10: MULTI-SPEAKER EMOTIONAL ACOUSTIC MODELING FOR CNN-BASED
SLP-P20.11: SINGING VOICE SYNTHESIS BASED ON GENERATIVE ADVERSARIAL
SLP-P20.12: ENHANCED VIRTUAL SINGERS GENERATION BY INCORPORATING
SLP-P21: SPEECH SEPARATION, ENHANCEMENT AND DENOISING
SLP-P21.1: COMPACT NETWORK FOR SPEAKERBEAM TARGET SPEAKER
SLP-P21.2: USING RECURRENCES IN TIME AND FREQUENCY WITHIN U-NET

SLP-P21.3: A UNIFIED FRAMEWORK FOR NEURAL SPEECH SEPARATION AND
Tsubasa Ochiai, Marc Delcroix, Keisuke Kinoshita, Atsunori Ogawa, Tomohiro Nakatani, NTT Communication Science Laboratories, Japan
SLP-P21.4: LOW-LATENCY SPEAKER-INDEPENDENT CONTINUOUS SPEECH
SLP-P21.5: FURCAX: END-TO-END MONAURAL SPEECH SEPARATION BASED ON
DEEP GATED (DE)CONVOLUTIONAL NEURAL NETWORKS WITH ADVERSARIAL EXAMPLE TRAINING Ziqiang Shi, Huibin Lin, Liu Liu, Rujie Liu, Fujitsu Research and Development Center, China; Shoji Hayakawa, Fujitsu Laboratories Ltd, Japan; Jiqing Han, Harbin Institute of Technology, China
SLP-P21.6: OPTIMIZATION OF SPEAKER EXTRACTION NEURAL NETWORK WITH
SLP-P21.7: SPEECH DENOISING BY PARAMETRIC RESYNTHESIS
SLP-P21.8: LEARNING TO DEQUANTIZE SPEECH SIGNALS BY PRIMAL-DUAL7000
NETWORKS: AN APPROACH FOR ACOUSTIC SENSOR NETWORKS Christoph Brauer, Ziyue Zhao, Dirk Lorenz, Tim Fingscheidt, Technische Universität Braunschweig, Germany
SLP-P21.9: ARTIFICIAL BANDWIDTH EXTENSION USING A CONDITIONAL
Jonas Sautter, Friedrich Faubel, Markus Buck, Nuance Communications, Germany; Gerhard Schmidt, Kiel University, Germany
SLP-P21.10: LATENT REPRESENTATION LEARNING FOR ARTIFICIAL BANDWIDTH
SLP-P21.11: PERCEPTUALLY-MOTIVATED ENVIRONMENT-SPECIFIC SPEECH
SLP-P22: SPEECH SYNTHESIS III
SLP-P22.1: INVESTIGATIONS OF REAL-TIME GAUSSIAN FFTNET AND PARALLEL7020
WAVENET NEURAL VOCODERS WITH SIMPLE ACOUSTIC FEATURES Takuma Okamoto, National Institute of Information and Communications Technology, Japan; Tomoki Toda, Nagoya University, Japan; Yoshinori Shiga, Hisashi Kawai, National Institute of Information and Communications Technology, Japan
SLP-P22.2: DNN-BASED SPECTRAL ENHANCEMENT FOR NEURAL WAVEFORM
SLP-P22.3: DNN-BASED SPEAKER-ADAPTIVE POSTFILTERING WITH LIMITED
SLP-P22.4: SELF-ATTENTION BASED PROSODIC BOUNDARY PREDICTION FOR
Chunhui Lu. Pengyuan Zhang. Yonghong Yan. Institute of Acoustics. Chinese Academy of Sciences. China

SLP-P22.5: AN END-TO-END NETWORK TO SYNTHESIZE INTONATION USING A	40
SLP-P22.6: SPEECH WAVEFORM RECONSTRUCTION USING CONVOLUTIONAL	45
SLP-P22.7: IMPLEMENTING PROSODIC PHRASING IN CHINESE END-TO-END	50
SLP-P22.8: UNSUPERVISED POLYGLOT TEXT-TO-SPEECH	55
SLP-P22.9: QUASI-FULLY CONVOLUTIONAL NEURAL NETWORK WITH	
SLP-P22.10: STFT SPECTRAL LOSS FOR TRAINING A NEURAL SPEECH WAVEFORM	65
Shinji Takaki, National Institute of Informatics, Japan; Toru Nakashika, The University of Electro-Communications, Japan; Xin Wang, Junichi Yamagishi, National Institute of Informatics, Japan	
SLP-P22.11: GENERATIVE MOMENT MATCHING NETWORK-BASED RANDOM	70
SLP-P22.12: EFFECT OF DATA REDUCTION ON SEQUENCE-TO-SEQUENCE	75
SLP-P23: END-TO-END SPEECH RECOGNITION V: MODELING METHODS	
SLP-P23.1: END-TO-END SPEECH RECOGNITION USING A HIGH RANK LSTM-CTC	80
SLP-P23.2: INVESTIGATION OF MODELING UNITS FOR MANDARIN SPEECH	85
SLP-P23.3: END-TO-END ANCHORED SPEECH RECOGNITION	
SLP-P23.4: THE SPEECHTRANSFORMER FOR LARGE-SCALE MANDARIN CHINESE	95
SLP-P23.5: WINDOWED ATTENTION MECHANISMS FOR SPEECH RECOGNITION	00

SLP-P23.6: STREAM ATTENTION-BASED MULTI-ARRAY END-TO-END SPEECH
Xiaofei Wang, Ruizhi Li, Johns Hopkins University, United States; Sri Harish Mallidi, Amazon, United States; Takaaki Hori, Mitsubishi Electric Research Laboratories, United States; Shinji Watanabe, Hynek Hermansky, Johns Hopkins University, United States
SLP-P23.7: IMPROVING END-TO-END SPEECH RECOGNITION WITH
SLP-P23.8: SELF-ATTENTION NETWORKS FOR CONNECTIONIST TEMPORAL
SLP-P23.9: SEMANTIC QUERY-BY-EXAMPLE SPEECH SEARCH USING VISUAL
SLP-P24: SPEECH CODING AND PERCEPTION
SLP-P24.1: NON-INTRUSIVE SPEECH QUALITY ASSESSMENT FOR
SLP-P24.2: DENOISING CONVOLUTIONAL AUTOENCODER BASED B-MODE
SLP-P24.3: ANALYZING HUMAN REACTION TIME FOR TALKER CHANGE
SLP-P24.4: CROSS-LANGUAGE SPEECH DEPENDENT LIP-SYNCHRONIZATION
SLP-P24.5: SPEAKER-DEPENDENT WAVENET-BASED DELAY-FREE ADPCM SPEECH
SLP-P24.6: A DETERMINISTIC ANNEALING APPROACH TO SWITCHED PREDICTOR
SLP-P24.7: HIGH-QUALITY SPEECH CODING WITH SAMPLE RNN
SLP-P24.8: A SPECTRAL GLOTTAL FLOW MODEL FOR SOURCE-FILTER
SLP-P24.9: INTEGRATING SPECTROTEMPORAL CONTEXT INTO FEATURES BASED

HLT-L1: APPLICATIONS: TRANSLATION, SUMMARIZATION, QA
HLT-L1.1: TOWARDS UNSUPERVISED SPEECH-TO-TEXT TRANSLATION
HLT-L1.2: TOWARDS END-TO-END SPEECH-TO-TEXT TRANSLATION WITH
HLT-L1.3: LEVERAGING WEAKLY SUPERVISED DATA TO IMPROVE END-TO-END
HLT-L1.4: A HIERARCHICAL NEURAL SUMMARIZATION FRAMEWORK FOR SPOKEN
HLT-L1.5: ILP-BASED COMPRESSIVE SPEECH SUMMARIZATION WITH CONTENT
HLT-L1.6: SLIQA-I: TOWARDS COLD-START DEVELOPMENT OF END-TO-END
HLT-L2: DIALOGUE
HLT-L2.1: DYNAMICALLY CONTEXT-SENSITIVE TIME-DECAY ATTENTION FOR
HLT-L2.2: CONTEXTUAL OUT-OF-DOMAIN UTTERANCE HANDLING WITH
HLT-L2.3: CURIOSITY-DRIVEN REINFORCEMENT LEARNING FOR DIALOGUE
HLT-L2.4: CONDITION-TRANSFORMING VARIATIONAL AUTOENCODER FOR
HLT-L2.5: DIALOGUE STATE TRACKING WITH CONVOLUTIONAL SEMANTIC
HLT-L2.6: LEARNING COMMENT GENERATION BY LEVERAGING

Zhaojiang Lin, Genta Indra Winata, Pascale Fung, Hong Kong University of Science and Technology, Hong Kong SAR of China

HLT-P1: LANGUAGE MODELING, ASR AND PUNCTUATION PREDICTION

HLT-P1.1: KNOWLEDGE DISTILLATION FOR RECURRENT NEURAL NETWORK	7230
HLT-P1.2: GAUSSIAN PROCESS LSTM RECURRENT NEURAL NETWORK	
HLT-P1.3: INVESTIGATION OF SAMPLING TECHNIQUES FOR MAXIMUM	7240
HLT-P1.4: IMPROVEMENTS TO N-GRAM LANGUAGE MODEL USING TEXT	7245
HLT-P1.5: A UNIFIED FRAMEWORK FOR FEATURE-BASED DOMAIN ADAPTATION OF	7250
HLT-P1.6: IMPROVING SPEECH RECOGNITION ERROR PREDICTION FOR	. 7255
HLT-P1.7: RECURRENT NEURAL NETWORK LANGUAGE MODEL TRAINING USING	
HLT-P1.8: CONTEXT-AWARE NEURAL-BASED DIALOG ACT CLASSIFICATION ON	7265
HLT-P1.9: SELF-ATTENTION BASED MODEL FOR PUNCTUATION PREDICTION	. 7270
HLT-P1.10: EMPIRICAL EVALUATION AND COMBINATION OF PUNCTUATION	7275
HLT-P1.11: DEEP RECURRENT NEURAL NETWORKS WITH LAYER-WISE	. 7280
HLT-P2: TOPIC MODELING AND DIALOG	
HLT-P2.1: TOPIC DETECTION IN CONVERSATIONAL TELEPHONE SPEECH USING	7285

HLT-P2.2: WHY DO NEURAL DIALOG SYSTEMS GENERATE SHORT AND	290
HLT-P2.3: DEEP HYBRID NETWORKS BASED RESPONSE SELECTION FOR	295
HLT-P2.4: MITIGATING THE IMPACT OF SPEECH RECOGNITION ERRORS ON	300
HLT-P2.5: A HIERARCHICAL DECODING MODEL FOR SPOKEN LANGUAGE	305
HLT-P2.6: EXPLORING ATTENTION MECHANISM FOR ACOUSTIC-BASED	310
HLT-P2.7: INVESTIGATING THE EFFECTS OF WORD SUBSTITUTION ERRORS	315
HLT-P2.8: IMPROVING HUMAN-COMPUTER INTERACTION IN LOW-RESOURCE	320
HLT-P2.9: A NOVEL REPETITION NORMALIZED ADVERSARIAL REWARD FOR	325
HLT-P2.10: ROLE SPECIFIC LATTICE RESCORING FOR SPEAKER ROLE	330
HLT-P3: MACHINE LEARNING FOR UNDERSTANDING	
HLT-P3.1: TOWARDS BETTER CONFIDENCE ESTIMATION FOR NEURAL MODELS	
HLT-P3.2: WEST: WORD ENCODED SEQUENCE TRANSDUCERS	340
HLT-P3.3: UNIVERSAL ADVERSARIAL ATTACKS ON TEXT CLASSIFIERS	345
HLT-P3.4: SEQUENTIAL MATCHING MODEL FOR END-TO-END MULTI-TURN	350
HLT-P3.5: AUDIO-LINGUISTIC EMBEDDINGS FOR SPOKEN SENTENCES	355

HLT-P3.6: LEARNING MOTION DISFLUENCIES FOR AUTOMATIC SIGN LANGUAGE	7360
HLT-P3.7: QUESTION ANSWERING FOR SPOKEN LECTURE PROCESSING	7365
HLT-P3.8: GENERATING PSEUDO-RELEVANT REPRESENTATIONS FOR SPOKEN	7370
HLT-P3.9: USING DEEP-Q NETWORK TO SELECT CANDIDATES FROM N-BEST	
HLT-P4: TRAINING REGIMES FOR EMOTION AND SENTIMENT ANALYSIS	
HLT-P4.1: DATA AUGMENTATION FOR LOW RESOURCE SENTIMENT ANALYSIS	7380
HLT-P4.2: CAN WE PREDICT SELF-REPORTED CUSTOMER SATISFACTION FROM	7385
HLT-P4.3: IMPROVING SPEECH EMOTION RECOGNITION WITH	7390
HLT-P4.4: ADVERSARIALLY-ENRICHED ACOUSTIC CODE VECTOR LEARNED	7395
HLT-P4.5: RETRIEVING SPEECH SAMPLES WITH SIMILAR EMOTIONAL CONTENT	7400
HLT-P4.6: LEARNING DISCRIMINATIVE FEATURES FROM SPECTROGRAMS USING	
HLT-P4.7: IMPROVING EMOTION CLASSIFICATION THROUGH VARIATIONAL	
HLT-P4.8: MUSE-ING ON THE IMPACT OF UTTERANCE ORDERING ON	
HLT-P4.9: NN-BASED ORDINAL REGRESSION FOR ASSESSING FLUENCY OF ESL	7420

HLT-P4.10: SELL-CORPUS: AN OPEN SOURCE MULTIPLE ACCENTED
HLT-P4.11: L2 LEARNERS' EMOTION PRODUCTION IN VIDEO DUBBING
HLT-P4.12: AUTOMATIC ASSESSMENT OF SPOKEN LANGUAGE PROFICIENCY OF
BD-L1: BD LECTURE SESSION 1
BD-L1.1: MEDIAN ACTIVATION FUNCTIONS FOR GRAPH NEURAL NETWORKS
BD-L1.2: IMPROVED ESTIMATION OF THE DISTANCE BETWEEN COVARIANCE
BD-L1.3: FAST AND COMMUNICATION-EFFICIENT DISTRIBUTED PCA
BD-L1.4: SPARSE SUBSPACE CLUSTERING FOR EVOLVING DATA STREAMS
BD-L1.5: PLIABLE DATA SHUFFLING FOR ON-DEVICE DISTRIBUTED LEARNING
BD-L1.6: FROM GENE EXPRESSION TO DRUG RESPONSE: A COLLABORATIVE
BD-P1: BD POSTER SESSION 1
BD-P1.1: ITERATIVE HESSIAN SKETCH WITH MOMENTUM
BD-P1.2: LOW-RANK MATRIX APPROXIMATION BASED ON INTERMINGLED
BD-P1.3: KERNEL RANDOM MATRICES OF LARGE CONCENTRATED DATA: THE

BD-P1.4: BLOCK-RANDOMIZED STOCHASTIC PROXIMAL GRADIENT FOR
CONSTRAINED LOW-RANK TENSOR FACTORIZATION Xiao Fu, Cheng Gao, Oregon State University, United States; Hoi-To Wai, The Chinese University of Hong Kong, Hong Kong SAR of China; Kejun Huang, University of Florida, United States
BD-P1.5: CANONICAL POLYADIC DECOMPOSITION OF A TENSOR THAT HAS
BD-P1.6: SCALABLE GAUSSIAN PROCESS USING INEXACT ADMM FOR BIG DATA
BD-P1.7: CONSTRUCTING AND COMPRESSING FRAMES IN BLOCKCHAIN-BASED
BD-P1.8: PROVABLY ACCELERATED RANDOMIZED GOSSIP ALGORITHMS
BD-P1.9: COMPRESSED RANDOMIZED UTV DECOMPOSITIONS FOR LOW-RANK
BD-P1.10: DETECTION OF ROW-SPARSE MATRICES WITH ROW-STRUCTURE
BD-P2.1: ROBUST GRAPH SIGNAL SAMPLING
Basak Guler, Ajinkya Jayawant, Salman Avestimehr, Antonio Ortega, University of Southern California, United States
BD-P2.2: A WINDOWED DIGRAPH FOURIER TRANSFORM
BD-P2.3: NODE-ASYNCHRONOUS IMPLEMENTATION OF RATIONAL FILTERS ON
BD-P2.4: MATRIX COMPLETION WITH VARIATIONAL GRAPH AUTOENCODERS:
BD-P2.5: INCORPORATE USER REPRESENTATION FOR PERSONAL QUESTION
BD-P2.6: DEEP TEMPORAL LOGISTIC BAG-OF-FEATURES FOR FORECASTING

BD-P2.7: LONG TEXT ANALYSIS USING SLICED RECURRENT NEURAL
BD-P2.8: CROWNN: HUMAN-IN-THE-LOOP NETWORK WITH
BD-P2.9: ATTENTION-BASED GRAPH CONVOLUTIONAL NETWORK FOR
IoT-P1: SP FOR IOT POSTER SESSION 1
IoT-P1.1: FUSELOC: A CCA BASED INFORMATION FUSION FOR INDOOR
IoT-P1.2: BLUETOOTH BASED INDOOR LOCALIZATION USING TRIPLET
IoT-P1.3: LOW-COMPLEXITY COMPRESSIVE ANALYSIS IN SUB-EIGENSPACE FOR
IoT-P1.4: CHAINED COMPRESSED SENSING FOR IOT NODE SECURITY
IoT-P1.5: SUM THROUGHPUT MAXIMIZATION FOR MULTI-TAG MISO
IoT-P1.6: TS-MC: TWO STAGE MATRIX COMPLETION ALGORITHM FOR WIRELESS
IoT-P1.7: IN-CAR DRIVER AUTHENTICATION USING WIRELESS SENSING
IoT-P1.8: A PRIVACY-PRESERVING DIFFUSION STRATEGY OVER MULTITASK
IoT-P2: SP FOR IOT POSTER SESSION 2
IoT-P2.1: RECOGNITION OF ONLINE HANDWRITING WITH VARIABILITY ON
IoT-P2.2: CONVOLUTIONAL NEURAL NETWORK ON EMBEDDED PLATFORM FOR

IoT-P2.3: DISCOVERING OPTIMAL VARIABLE-LENGTH TIME SERIES MOTIFS INLARGE-SCALE WEARABLE RECORDINGS OF HUMAN BIO-BEHAVIORAL SIGNALS	
Tiantian Feng, Shrikanth Narayanan, Signal Analysis and Interpretation Lab, University of Southern California, United State	es
IoT-P2.4: REAL-TIME PREDICTION FOR FINE-GRAINED AIR QUALITY	, 7620
IoT-P2.5: HUMAN BEHAVIOUR RECOGNITION USING WIFI CHANNEL STATE	, 7625
IoT-P2.6: TOWARD ROBUST INTERPRETABLE HUMAN MOVEMENT PATTERN	. 7630
SPED-L1: SIGNAL PROCESSING FOR EDUCATION	
SPED-L1.1: INTRODUCING UNDERGRADUATES TO PATTERN RECOGNITION AND	. 7635
SPED-L1.2: SLEEP GESTURE DETECTION IN CLASSROOM MONITOR SYSTEM	7640
SPED-L1.3: COLLABORATION BETWEEN BORDEAUX-INP AND UTP, FROM	. 7645
SPED-L1.4: AN EDUCATIONAL TOOL FOR HEARING AID COMPRESSION FITTING	, 7650
SPED-L1.5: INTRODUCING MACHINE LEARNING IN UNDERGRADUATE DSP	. 7655
SPED-L1.6: TEACHING PRACTICAL DSP WITH OFF-THE-SHELF HARDWARE AND	. 7660
CI-L1: CIM LECTURE SESSION 1	
CI-L1.1: REGULARIZED FOURIER PTYCHOGRAPHY USING AN ONLINE	rendt
CI-L1.2: PARALLEL COORDINATE DESCENT ALGORITHMS FOR SPARSE PHASE	
CI-L1.3: AN ALGORITHM UNROLLING APPROACH TO DEEP IMAGE DEBLURRING	. 7675

CI-L1.4: THE LIMITATION AND PRACTICAL ACCELERATION OF STOCHASTIC	580
CI-L1.5: OPTIMIZATION OF A MOVING COLORED CODED APERTURE IN	685
CI-L1.6: NEAR-OPTIMAL CODED APERTURES FOR IMAGING VIA NAZAROV'S	i90
CI-P1: CIM POSTER SESSION 1	
CI-P1.1: IMAGE REFLECTION REMOVAL USING THE WASSERSTEIN GENERATIVE	i95
CI-P1.2: WAVELENGTH-RESOLVED NEUTRON TOMOGRAPHY FOR CRYSTALLINE	⁷ 00
CI-P1.3: ALTERNATING PHASE PROJECTED GRADIENT DESCENT WITH	⁷ 05
CI-P1.4: SPATIO-SPECTRAL MODULATION USING A BINARY PHOTOMASK FOR	'1 0
CI-P1.5: IMAGE RESTORATION USING TOTAL VARIATION REGULARIZED DEEP	115
CI-P1.6: DEEP PTYCH: SUBSAMPLED FOURIER PTYCHOGRAPHY USING	720
CI-P1.7: UNROLLED PROJECTED GRADIENT DESCENT FOR MULTI-SPECTRAL	125
CI-P1.8: K-EDGE CODED APERTURES FOR COMPRESSIVE SPECTRAL X-RAY	⁷ 30
CI-P1.11: REFLECTION TOMOGRAPHIC IMAGING OF HIGHLY SCATTERING	

Laboratories, United States

SS-L1: HALF A CENTURY OF ADAPTIVE AND STATISTICAL SIGNAL PROCESSING EDUCATION

SS-L1.1: LMS: PAST, PRESENT AND FUTURE Victor Solo, University of New South Wales, Australia	7740
SS-L1.2: FREQUENCY-DOMAIN ADAPTIVE FILTERING: FROM REAL TO	7745
SS-L1.3: SIMULTANEOUS DFT AND IDFT THROUGH WIDELY LINEAR CLMS	
SS-L1.4: RELATIONSHIPS BETWEEN DEEP LEARNING AND LINEAR ADAPTIVE	7755
SS-L1.5: PARTICLE FILTERING: THE FIRST 25 YEARS AND BEYOND Simon Godsill, university of Cambridge, United Kingdom	7760
SS-L1.6: LMS TO DEEP LEARNING: HOW DSP ANALYSIS ADDS DEPTH TO	7765
SS-L2: COMMUNICATIONS AND RADAR TRANSMISSION: COEXISTENCE AND BEYONI	D
SS-L2.1: HYBRID BEAMFORMING WITH SUB-ARRAYED MIMO RADAR: ENABLING	7770
SS-L2.2: BEAMFORMING DESIGN FOR COEXISTENCE OF FULL-DUPLEX	
SS-L2.3: MULTICARRIER RADAR-COMMUNICATIONS WAVEFORM DESIGN FOR RF	7780
SS-L2.4: COMMUNICATIONS UNDER THE CONSTRAINT OF DE-CHIRP CHANNEL	7785
SS-L2.5: ON RADAR PRIVACY IN SHARED SPECTRUM SCENARIOS	
SS-L2.6: ON MASSIVE MIMO CELLULAR SYSTEMS RESILIENCE TO RADAR	7795

SS-L3: RECENT ADVANCES IN SIGNAL PROCESSING FOR LARGE-SCALE COMPUTATIONAL IMAGING

SS-L3.1: SIGNPROX: ONE-BIT PROXIMAL ALGORITHM FOR NONCONVEX
SS-L3.2: DEAD TIME COMPENSATION FOR HIGH-FLUX DEPTH IMAGING
SS-L3.3: COMPRESSIVE SINGLE-PIXEL FOURIER TRANSFORM IMAGING USING
SS-L3.4: 3D RECONSTRUCTION USING SINGLE-PHOTON LIDAR DATA
SS-L3.5: CONVOLUTIONAL DICTIONARY REGULARIZERS FOR TOMOGRAPHIC
SS-L3.6: GEOMETRY OF DEEP LEARNING FOR MAGNETIC RESONANCE
SS-L4: SIGNAL PROCESSING FOR EMERGING WIRELESS HARDWARE ARCHITECTURES
SS-L4: SIGNAL PROCESSING FOR EMERGING WIRELESS HARDWARE ARCHITECTURES SS-L4.1: BEAMFORMING OPTIMIZATION FOR INTELLIGENT REFLECTING
SS-L4.1: BEAMFORMING OPTIMIZATION FOR INTELLIGENT REFLECTING
SS-L4.1: BEAMFORMING OPTIMIZATION FOR INTELLIGENT REFLECTING
SS-L4.1: BEAMFORMING OPTIMIZATION FOR INTELLIGENT REFLECTING

SS-L4.6: SIMPLE COOPERATIVE TRANSMISSION SCHEMES FOR UNDERLAY	7854
Konstantinos Ntougias, Dimitrios Ntaikos, Constantinos Papadias, Athens Information Technology, Greece; George Papageorgiou, Heriot-Watt University, United Kingdom	
SS-L5: TRADITIONAL AND EMERGING SIGNAL PROCESSING TEACHING PRACTICES	
SS-L5.1: SIGNALS AND SYSTEMS: CASTING IT AS AN ACTION-ADVENTURE RATHER THAN A HORROR GENRE Roberto Togneri, Sally Male, The University of Western Australia, Australia	7859
SS-L5.2: TEACHING SIGNAL PROCESSING CONCEPTS TO DIGITAL NATIVES	7864
SS-L5.3: SIMULATION OR REAL-TIME? Cameron Wright, University of Wyoming, United States; Thad Welch, Boise State University, United States; Michael Morrow, University of Wisconsin, United States	
SS-L5.4: USING RFID TECHNOLOGY TO INTRODUCE PROPERTIES OF LMS	7873
SS-L5.5: RETHINKING TEACHING PRACTICES FOR SIGNAL PROCESSING	7878
SS-L5.6: SMART DSP FOR A SMARTER POWER GRID: TEACHING POWER SYSTEM	7883
SS-L6: ACOUSTIC SCENE ANALYSIS AND TRACKING FOR TIME-VARYING REVERBERA ENVIRONMENTS	NT
SS-L6.1: SIMILARITY SEARCH-BASED BLIND SOURCE SEPARATION Hiroshi Sawada, Kazuo Aoyama, NTT Corporation, Japan	7888
SS-L6.2: LEARNING DYNAMIC STREAM WEIGHTS FOR LINEAR DYNAMICAL	7893
SS-L6.3: LOCALIZATION OF AN UNKNOWN NUMBER OF SPEAKERS IN ADVERSE	ot,
SS-L6.4: EXTRACTION OF INDEPENDENT VECTOR COMPONENT FROM	7903
SS-L6.5: TIME-FREQUENCY-BIN-WISE SWITCHING OF MINIMUM VARIANCE	

SS-L6.6: BLIND SIGNAL PROCESSING FOR TIME-VARYING CONVOLUTIVE	. 7913
MIXING SYSTEMS BASED ON SEQUENCE ESTIMATION ON PARTLY SMOOTH MANIFOLDS Herbert Buchner, University of Cambridge, United Kingdom; Karim Helwani, Amazon Inc., United States; Simon Godsill, University of Cambridge, United Kingdom	
SS-L7: NONLINEAR INVERSE PROBLEMS AND MATRIX FACTORIZATION	
SS-L7.1: PROVABLE MEMORY-EFFICIENT ONLINE ROBUST MATRIX	. 7918
SS-L7.2: BILINEAR DICTIONARY UPDATE VIA LINEAR LEAST SQUARES	
SS-L7.3: THE GEOMETRY OF EQUALITY-CONSTRAINED GLOBAL CONSENSUS	. 7928
SS-L7.4: DIFFERENTIALLY PRIVATE COMPRESSIVE K-MEANS Vincent Schellekens, ICTEAM/ELEN, UCLouvain, Belgium; Antoine Chatalic, Univ. Rennes, Inria, CNRS, IRISA, France; Florimond Houssiau, Yves-Alexandre de Montjoye, Imperial College London, United Kingdom; Laurent Jacques, ICTEAM/EUCLouvain, Belgium; Rémi Gribonval, Univ. Rennes, Inria, CNRS, IRISA, France	
SS-L7.5: A MODIFIED FRANK-WOLFE ALGORITHM FOR TENSOR FACTORIZATION	. 7938
SS-L7.6: MULTICHANNEL SPARSE BLIND DECONVOLUTION ON THE SPHERE	. 7943
SS-L8: CHALLENGES AND PERSPECTIVES IN SPIKE-BASED SENSING AND PROCESSIN	\mathbf{G}
SS-L8.1: TIME-BASED SAMPLING AND RECONSTRUCTION OF NON-BANDLIMITED	. 7948
SS-L8.2: EVENT-DRIVEN PIPELINE FOR LOW-LATENCY LOW-COMPUTE	. 7953
SS-L8.3: A SPIKING NEURAL NETWORK WITH LOCAL LEARNING RULES DERIVED FROM NONNEGATIVE SIMILARITY MATCHING Cengiz Pehlevan, Harvard University, United States	. 7958
SS-L8.4: MULTI-CHANNEL TIME ENCODING FOR IMPROVED	. 7963
SS-L8.5: NEUROMORPHIC VISION SENSING FOR CNN-BASED ACTION	. 7968

SS-L9: EMERGING QUANTUM SIGNAL PROCESSING PARADIGMS
SS-L9.1: A TRAINING PROCEDURE FOR QUANTUM RANDOM VECTOR
SS-L9.2: TOWARD THE QUANTUM INTERNET: A DIRECTIONAL-DEPENDENT
SS-L9.3: REMOTE STATE PREPARATION FOR MULTIPLE PARTIES
SS-L9.4: RESOURCE OPTIMIZATION IN QUANTUM ACCESS NETWORKS
SS-L9.5: INTRASYSTEM ENTANGLEMENT GENERATOR AND UNAMBIGUOS BELL
SS-L9.6: GENERALIZED AND DIFFERENTIAL LIKELIHOOD RATIO TESTS WITH
SS-L10: PERCEPTUALLY MOTIVATED SIGNAL PROCESSING: DATA, ALGORITHMS AND EVALUATION
SS-L10.1: THE DESIGN OF PERSONAL AUDIO SYSTEMS FOR SPEECH
SS-L10.2: BACKGROUND ADAPTATION FOR IMPROVED LISTENING EXPERIENCE
SS-L10.3: A NOVEL BINAURAL BEAMFORMING SCHEME WITH LOW COMPLEXITY
SS-L10.4: GRAPHIC DELAY EQUALIZER
SS-L10.5: PERCEPTUAL SOUNDFIELD RECONSTRUCTION IN THREE
SS-L11: PARAHERMITIAN MATRIX FACTORISATIONS AND THEIR APPLICATIONS
SS-L11.1: ANALYSIS OF BROADBAND GEVD-BASED BLIND SOURCE SEPARATION
SS-L11.2: SAMPLE SPACE-TIME COVARIANCE MATRIX ESTIMATION 8033 Connor Delaosa, Jennfier Pestana, University of Strathchyde, United Kingdom; Nicholas Goddard, Dstl, United Kingdom; Samuel Somasyndaram, Thalas Undarwater Systems, United Kingdom; Stephan Weiss, University of Strathchyde, United Kingdom

SS-L11.3: ITERATIVE APPROXIMATION OF ANALYTIC EIGENVALUES OF A	. 8038
SS-L11.4: SECOND ORDER SEQUENTIAL BEST ROTATION ALGORITHM WITH	. 8043
SS-L11.5: DETECTION OF GRID VOLTAGE ANOMALIES VIA BROADBAND SUBSPACE DECOMPOSITON Samet Biricik, Soydan Redif, European University of Lefke, Turkey	. 8048
SS-L11.6: MAXIMALLY SMOOTH DIRICHLET INTERPOLATION FROM COMPLETE AND INCOMPLETE SAMPLE POINTS ON THE UNIT CIRCLE Stephan Weiss, Malcolm Macleod, University of Strathclyde, United Kingdom	. 8053
SS-L12: AI FOR SOUND: A SESSION HONORING JAN LARSEN	
SS-L12.1: METHODICAL DESIGN AND TRIMMING OF DEEP LEARNING	. 8058
SS-L12.2: WHEN NOT TO CLASSIFY: DETECTION OF REVERSE ENGINEERING	. 8063
SS-L12.3: MACHINE LEARNING FOR CONDITION MONITORING AND INNOVATION	
SS-L12.4: STOCHASTIC MARKOV RECURRENT NEURAL NETWORK FOR SOURCE	. 8072
SS-L12.5: ON TRAINING TARGETS AND OBJECTIVE FUNCTIONS FOR	. 8077
DEEP-LEARNING-BASED AUDIO-VISUAL SPEECH ENHANCEMENT Daniel Michelsanti, Zheng-Hua Tan, Aalborg University, Denmark; Sigurdur Sigurdsson, Oticon A/S, Denmark; Jesper Jense Aalborg University, Denmark	en,
SS-L12.6: GENERALISATION IN ENVIRONMENTAL SOUND CLASSIFICATION: THE	of
SS-L13: STATISTICAL SIGNAL PROCESSING FOR SMART GRID APPLICATIONS	
SS-L13.1: PRICE-AWARE RENEWABLE ENERGY MANAGEMENT WITH	. 8087
SS-L13.2: POWER SYSTEM STATE FORECASTING VIA DEEP RECURRENT NEURAL	. 8092
Liung Liung, Jung mang, Jeorgios D. Jiannakis, Oniversity of Minnesola, Onlieu states	

SS-L13.3: ITERATIVELY REWEIGHTED LINEAR LEAST SQUARES FOR FREQUENCY
Yuan Chen, University of Science & Technology Beijing, China; Weize Sun, Shenzhen University, China; Long-Ting Huang, Wuhan University of Technology, China; Hing Cheung So, City University of Hong Kong, Hong Kong SAR of China
SS-L13.4: LEARNING REQUIREMENTS FOR STEALTH ATTACKS
SS-L13.5: POWER NETWORK PARAMETER CORRECTION VIA SPARSE
SS-L14: ARTIFICIAL INTELLIGENCE BASED HUMAN-MACHINE CONVERSATION TECHNOLOGY FOR INTERACTIVE EDUCATION
SS-L14.1: NEURAL APPROACHES TO AUTOMATED SPEECH SCORING OF
Yao Qian, Patrick lange, Keelan Evanini, Robert Pugh, Rutuja Ubale, Matthew Mulholland, Xinhao Wang, Educational Testing Service, United States
SS-L14.2: CLASSIFICATION OF CHINESE DIALECT REGIONS FROM L2 ENGLISH
SS-L14.3: DOMAIN ADVERSARIAL TRAINING FOR IMPROVING KEYWORD
SS-L14.4: AUTOMATIC GRAMMATICAL ERROR DETECTION OF NON-NATIVE
SS-L14.5: CNN-RNN-CTC BASED END-TO-END MISPRONUNCIATION DETECTION
SS-L14.6: EDUQA: EDUCATIONAL DOMAIN QUESTION ANSWERING SYSTEM
SS-L15: SIGNAL PROCESSING FOR BIG DATA
SS-L15.1: LATENT HETEROGENEOUS MULTILAYER COMMUNITY DETECTION
SS-L15.2: GLOBALLY CONVERGENT ACCELERATED PROXIMAL ALTERNATING
SS-L15.3: SUPPORT TENSOR MACHINE FOR FINANCIAL FORECASTING

SS-L15.4: A RECURRENT GRAPH NEURAL NETWORK FOR MULTI-RELATIONAL	157
DATA Vassilis N. Ioannidis, University of Minnesota, United States; Antonio G. Marques, King Juan Carlos University, Spain; Georg B. Giannakis, University of Minnesota, United States	ζios
SS-L15.5: SAFETY IN THE FACE OF UNKNOWN UNKNOWNS: ALGORITHM	162
SS-L15.6: BYZANTINE-RESILIENT DISTRIBUTED LARGE-SCALE MATRIX	167
SS-L16: ROBUST DISTRIBUTED COMPUTING	
SS-L16.1: IMPROVED LATENCY-COMMUNICATION TRADE-OFF FOR	172
SS-L16.2: COMPUTATION SCHEDULING FOR DISTRIBUTED MACHINE LEARNING	177
SS-L16.3: A TOPOLOGY-AWARE CODING FRAMEWORK FOR DISTRIBUTED GRAPH	182
SS-L16.4: RANDOM SAMPLING FOR DISTRIBUTED CODED MATRIX	187
SS-L16.5: FAST AND EFFICIENT DISTRIBUTED MATRIX-VECTOR MULTIPLICATION	
SS-L16.6: ROBUST MOLECULAR DYNAMICS SIMULATIONS USING CODED FFT	3197
SS-L17: ADVANCES IN STRUCTURED AND CONSTRAINED LOW-RANK APPROXIMATION	IS
SS-L17.1: MAJORIZATION-MINIMIZATION ALGORITHMS FOR CONVOLUTIVE NMF	
SS-L17.2: DATA-DRIVEN SIMULATION USING THE NUCLEAR NORM HEURISTIC	3207
SS-L17.3: BOOLEAN CP DECOMPOSITION OF BINARY TENSORS: UNIQUENESS	
Mamadou Diop, Université de Lorraine, CEA Tech Grand-Est, France; Sebastian Miron, Université de Lorraine, France; Anto Souloumiac, CEA Saclay, France; David Brie, Université de Lorraine, France	oine

SS-L17.4: QUADRATIC ENVELOPE REGULARIZATION FOR STRUCTURED LOW	8217
SS-L17.5: SHIFT-INVARIANT SUBSPACE TRACKING WITH MISSING DATA. Myung Cho, Yuejie Chi, Carnegie Mellon University, United States	8222
SS-L17.6: NONNEGATIVE LOW-RANK SPARSE COMPONENT ANALYSIS	8226
SS-L18: WILDLIFE BIOACOUSTICS AND ADAPTIVE SIGNAL PROCESSING	
SS-L18.1: SEGMENTATION, CLASSIFICATION, AND VISUALIZATION OF ORCA CALLS	eng,
SS-L18.2: THE MATCHED REASSIGNMENT APPLIED TO ECHOLOCATION DATA	8236
SS-L18.3: CONV-CODES: AUDIO HASHING FOR BIRD SPECIES CLASSIFICATION	
SS-L18.4: AN INTEGRATED FRAMEWORK FOR FIELD RECORDING, LOCALIZATION,	ra
SS-L18.5: REAL-TIME PASSIVE ACOUSTIC 3D TRACKING OF DEEP CETACEAN BY	
SS-L18.6: AUDIO-BASED IDENTIFICATION OF BEEHIVE STATES	8256
SS-L19: DEEP LEARNING FOR MULTIMEDIA FORENSICS	
SS-L19.1: EXPOSING DEEP FAKES USING INCONSISTENT HEAD POSES	8261
SS-L19.2: TRACKING MULTIPLE IMAGE SHARING ON SOCIAL NETWORKS	8266
SS-L19.3: VIDEO CAMERA MODEL IDENTIFICATION SYSTEM USING DEEP	8271

University, United States

SS-L19.4: TOWARD SUBJECTIVE VIOLENCE DETECTION IN VIDEOS	
SS-L19.5: TOWARDS LEARNED COLOR REPRESENTATIONS FOR IMAGE SPLICING	
SS-L19.6: ON THE TRANSFERABILITY OF ADVERSARIAL EXAMPLES AGAINST	na,
SS-L20: SIGNAL AND IMAGE PROCESSING FOR ENVIRONMENTAL MONITORING ANI PROTECTION	D
SS-L20.1: MONITORING OF TREES' HEALTH CONDITION USING A UAV EQUIPPED	
SS-L20.2: DETECTING GAS VAPOR LEAKS THROUGH UNCALIBRATED SENSOR BASED CPS Diaa Badawi, University of Illinois at Chicago, United States; Sule Ozev, Jennifer Blain Christen, Arizona State University United States; Chengmo Yang, University of Delaware, United States; Alex Orailoglu, University of California, San Diego, United States; A. Enis Çetin, University of Illinois at Chicago, United States	<i>)</i> ,
SS-L20.3: FIRE DETECTION FROM IMAGES USING FASTER R-CNN AND	
SS-L20.4: ANARCHIC URBAN EXPANSION DETECTION AND MONITORING WITH	
SS-L20.5: FIRE DETECTION IN H.264 COMPRESSED VIDEO	8310
SS-L20.6: EARLY WILDFIRE SMOKE DETECTION BASED ON MOTION-BASED GEOMETRIC IMAGE TRANSFORMATION AND DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS Suleyman Aslan, Ugur Gudukbay, Bilkent University, Turkey; Behcet Ugur Toreyin, Istanbul Technical University, Turkey; Cetin, University of Illinois at Chicago, United States	
SS-L21: ADVANCED SIGNAL PROCESSING FOR NON-INTRUSIVE LOAD MONITORING	l T
SS-L21.1: DEEP NEURAL NETWORKS FOR APPLIANCE TRANSIENT CLASSIFICATION	
SS-L21.2: EVALUATION OF NON-INTRUSIVE LOAD MONITORING ALGORITHMS	

Singh, IIIT Delhi, India

SS-L21.3: TRANSFERABILITY OF NEURAL NETWORK APPROACHES FOR LOW-RATE
SS-L21.4: WAVENILM: A CAUSAL NEURAL NETWORK FOR POWER
SS-L21.5: NEURAL VARIATIONAL IDENTIFICATION AND FILTERING FOR
SS-L21.6: MULTI LABEL RESTRICTED BOLTZMANN MACHINE FOR
SS-L22: NEURAL NETWORKS FOR SIGNAL PROCESSING APPLICATIONS
SS-L22.1: EFFICIENT INDOOR LOCALIZATION VIA REINFORCEMENT LEARNING
SS-L22.2: LEARNING TO RANK: A PROGRESSIVE NEURAL NETWORK LEARNING
SS-L22.3: 1-D CONVOLUTIONAL NEURAL NETWORKS FOR SIGNAL PROCESSING
SS-L22.4: QUASI BLACK HOLE EFFECT OF GRADIENT DESCENT IN LARGE
SS-L22.5: LEVERAGING IMAGE-TO-IMAGE TRANSLATION GENERATIVE
SS-L22.6: DEEP CONVOLUTIONAL FEATURE HISTOGRAMS FOR VISUAL OBJECT
SS-L23: SIGNAL PROCESSING FOR SMART CITY APPLICATIONS AND THE INTERNET OF THINGS
SS-L23.1: DETECTION OF PILOT-HOPPING SEQUENCES FOR GRANT-FREE
SS-L23.2: BELIEF CONDENSATION FILTERING FOR RSSI-BASED STATE

Arash Mohammadi, Concordia University, Canada

SS-L23.3: COMMUNICATION STANDARDS FOR DISTRIBUTED RENEWABLE	
SS-L23.4: SECURE ANALYTICS AND RESILIENT INFERENCE FOR THE INTERNETOF THINGS Yuan Chen, Soummya Kar, Jose' Moura, Carnegie Mellon University, United States	8394
SS-L23.5: DYNAMIC JOINT PHY-MAC WAVEFORM DESIGN FOR IOT	8399
SS-L23.6: RF-BASED ANALYTICS GENERATED BY TAG-TO-TAG NETWORKS	
SS-L24: MACHINE LEARNING FOR COMMUNICATIONS	
SS-L24.1: JOINT TRANSACTION TRANSMISSION AND CHANNEL SELECTION IN	versity of
SS-L24.2: DEEP LEARNING BASED ON ORTHOGONAL APPROXIMATE MESSAGE	Chao- Mobile
SS-L24.3: A CALIBRATED LEARNING APPROACH TO DISTRIBUTED POWER	ingdom;
SS-L24.4: COOPERATIVE DEEP REINFORCEMENT LEARNING FOR	
SS-L24.5: DEEP LEARNING BASED ONLINE POWER CONTROL FOR LARGE	leSupelec,
SS-L24.6: A VARIATIONAL BAYES APPROACH TO ADAPTIVE CHANNEL-GAIN	8434
SS-L25: ANOMALY DETECTION AND INTENT INFERENCE IN OBJECT TRACKING	
SS-L25.1: A BAYESIAN FRAMEWORK FOR INTENT PREDICTION IN OBJECT TRACKING	8439
Bashar I. Ahmad. Patrick M. Langdon, Simon J. Godsill, University of Cambridge, United Kingdom	

SS-L25.2: PRIVACY-PRESERVING ONLINE HUMAN BEHAVIOUR ANOMALY
SS-L25.3: ANOMALY DETECTION AND TRACKING BASED ON MEAN-REVERTING
SS-L25.4: DISTRIBUTED QUICKEST DETECTION OF SIGNIFICANT EVENTS IN
SS-L25.5: DATA DRIVEN VESSEL TRAJECTORY FORECASTING USING STOCHASTIC
SS-L25.6: SPOOFING ATTACK DETECTION BY ANOMALY DETECTION
SS-P1: RECENT ADVANCES IN THE ACTIVE CONTROL OF SOUND
SS-P1.1: A NOVEL APPROACH FOR FEEDFORWARD CONTROL OF NOISE IN
SS-P1.2: EQUATION-ERROR MODEL BASED ACTIVE NOISE CANCELLATION
SS-P1.3: ACTIVE NOISE CONTROL USING FINITE ELEMENT-BASED VIRTUAL
SS-P1.4: CAUSALITY AND ROBUSTNESS IN THE REMOTE SENSING OF ACOUSTIC
SS-P1.5: SELECTIVE VIRTUAL SENSING TECHNIQUE FOR MULTI-CHANNEL
SS-P1.6: SUBBAND OPTIMIZATION AND FILTERING TECHNIQUE FOR PRACTICAL
SS-P1.7: ANALYSIS OF MULTICHANNEL VIRTUAL SENSING ACTIVE NOISE

SS-P2: LEARNING METHODS IN COMPLEX AND HYPERCOMPLEX DOMAINS

SS-P2.1: ESTIMATION OF WIDELY FACTORIZABLE HYPERCOMPLEX SIGNALS	
SS-P2.2: EXACT DISTRIBUTION AND HIGH-DIMENSIONAL ASYMPTOTICS FOR	8509
SS-P2.3: QUATERNION CONVOLUTIONAL NEURAL NETWORKS FOR	
SS-P2.4: BIDIRECTIONAL QUATERNION LONG SHORT-TERM MEMORY	
SS-P2.5: MULTICHANNEL QUATERNION LEAST MEAN SQUARE ALGORITHM	8524
	0.50
SS-P2.6: WIDELY LINEAR KERNELS FOR COMPLEX-VALUED KERNEL ACTIVATION FUNCTIONS Simone Scardapane, Sapienza University of Rome, Italy; Steven Van Vaerenbergh, University of Cantabria, Spain; Danilo Comminiello, Aurelio Uncini, Sapienza University of Rome, Italy	8528
SS-P2.7: QUATERNION CONVOLUTIONAL NEURAL NETWORKS FOR DETECTION	8533
SS-P2.8: HYPERCOMPLEX LOW RANK MATRIX COMPLETION WITH	8538
SS-P3: 3D VISION AND ITS APPLICATIONS	
SS-P3.1: FAST CODING UNIT DECISION FOR INTRA SCREEN CONTENT CODING	qing
Pan, Nanjing University of Information Science and Technology, China; Sam Kwong, City University of Hong Kong, Hong K SAR of China	ong
SS-P3.2: INTERACTIVE SUBJECTIVE STUDY ON PICTURE-LEVEL JUST	inese
SS-P3.3: 3D POINT CLOUD DENOISING VIA DEEP NEURAL NETWORK BASED	8553
SS-P3.4: A MARKERLESS BODY MOTION CAPTURE SYSTEM FOR CHARACTER	8558

SS-P3.5: LIGHT FIELD IMAGE COMPRESSION USING DEPTH-BASED CNN IN
SS-P3.6: OPTIMIZED COLOR-GUIDED FILTER FOR DEPTH IMAGE DENOISING
SS-P3.7: SEMI-SUPERVISED DEPTH ESTIMATION FROM A SINGLE IMAGE BASED
SS-P4: TENSOR-BASED MACHINE LEARNING FOR MULTI-DIMENSIONAL SIGNAL PROCESSING
SS-P4.1: BRAIN CORRELATES OF TASK-LOAD AND DEMENTIA ELUCIDATION WITH
SS-P4.2: CUTENSOR-TUBAL: OPTIMIZED GPU LIBRARY FOR LOW-TUBAL-RANK
SS-P4.3: FAST IMPLEMENTATION OF DOUBLE-COUPLED NONNEGATIVE
SS-P4.4: MEASURING THE TASK INDUCED OSCILLATORY BRAIN ACTIVITY USING
SS-P4.5: TENSOR SUPER-RESOLUTION FOR SEISMIC DATA
SS-P4.6: TOTAL-VARIATION-REGULARIZED TENSOR RING COMPLETION FOR
SS-P4.7: LEARNING EFFICIENT TENSOR REPRESENTATIONS WITH
SS-P4.8: GRAPH REGULARIZED NONNEGATIVE TUCKER DECOMPOSITION FOR
SS-P5: MULTIMODAL REPRESENTATION LEARNING FOR LANGUAGE GENERATION AND UNDERSTANDING
SS-P5.1: MODELS OF VISUALLY GROUNDED SPEECH SIGNAL PAY ATTENTION

SS-P5.2: MULTIMODAL ONE-SHOT LEARNING OF SPEECH AND IMAGES	3
SS-P5.3: LEARNING FROM MULTIVIEW CORRELATIONS IN OPEN-DOMAIN	
SS-P5.4: WAV2PIX: SPEECH-CONDITIONED FACE GENERATION USING	3
SS-P5.5: NEURAL CODES TO FACTOR LANGUAGE IN MULTILINGUAL SPEECH	8
SS-P5.6: MULTIMODAL SPEAKER ADAPTATION OF ACOUSTIC MODEL AND	3
SS-P5.7: MULTIMODAL GROUNDING FOR SEQUENCE-TO-SEQUENCE SPEECH	