Ordered Groups and Topology

Dale Rolfsen University of British Columbia Luminy, June 2001

Outline:

Lecture 1: Basics of ordered groups

Lecture 2: Topology and orderings

- π_1 , applications
- braid groups
- \bullet mapping class groups
- ullet hyperplane arrangements
- surface braid groups

Lecture 3: Ordering 3-manifold groups

- Seifert fibrations
- geometries
- knot groups
- ullet foliations and \mathbb{R} -actions

Ordered groups

Definitions: Let G be a group, and < a strict total ordering if its elements. Then (G,<) is a *left-ordered* group (LO) if

$$g < h \Rightarrow fg < fh$$
.

If the ordering is also right-invariant, we say that (G, <) is an *ordered* group (O), or for emphasis bi-ordered.

Prop: G is left-orderable if and only if there exists a subset $\mathcal{P} \subset G$ such that:

$$\mathcal{P} \cdot \mathcal{P} \subset \mathcal{P} \text{ (subsemigroup)}$$
$$G \setminus \{e\} = \mathcal{P} \coprod \mathcal{P}^{-1}$$

Given \mathcal{P} define < by: g < h iff $g^{-1}h \in \mathcal{P}$.

Given < take $\mathcal{P} = \{g \in G : 1 < g\}$.

The ordering is a bi-ordering iff also

$$g^{-1}\mathcal{P}g\subset\mathcal{P},\ \forall g\in G.$$

Note: a group is right-orderable iff it is left-orderable.

Examples:

- 1. \mathbb{R} , the additive reals with the usual ordering.
- 2. \mathbb{R}^2 with the lexicographical ordering.

- 3. \mathbb{Z}^2 has uncountably many different orderings, one for each line through (0,0) of irrational slope.
- 4. $\mathbb{R} \setminus \{0\}$ under multiplication is not orderable, or even left-orderable. It has an element (-1) of order two.

We will see that there are surprisingly many nonabelian LO and O groups.

Prop: If G is left-orderable, then G is torsion-free.

Prop: If G is bi-orderable, then

- \bullet G has no generalized torsion (product of conjugates of a nontrivial element being trivial).
- G has unique roots: $g^n = h^n \Rightarrow g = h$
- if $[g^n, h] = 1$ in G then [g, h] = 1

The class of LO groups is closed under: subgroups, direct products, free products, directed unions, extensions.

The class of O groups is closed under: subgroups, direct products, free products, directed unions, but not necessarily under extensions.

Both properties O and LO are local: a group has the property if and only if every finitely-generated subgroup has it.

Prop: (Extensions) Given an exact sequence

$$1 \longrightarrow F \stackrel{i}{\longrightarrow} G \stackrel{p}{\longrightarrow} H \longrightarrow 1$$

If F and H are left-orderable, then so is G, using the positive cone:

$$\mathcal{P}_G := i(\mathcal{P}_F) \cup p^{-1}(\mathcal{P}_H).$$

If F and H are bi-ordered, then this defines a bi-ordering of G if and only if

$$g^{-1}i(\mathcal{P}_F)g \subset i(\mathcal{P}_F), \ \forall g \in G$$

Example: The Klein Bottle group:

$$\langle x, y : x^{-1}yx = y^{-1} \rangle$$

is LO, being an extension of \mathbb{Z} by \mathbb{Z} .

However, it is not bi-orderable:

1 < y iff $y^{-1} < 1$ holds in any LO-group.

However, in an O-group 1 < y iff $1 < x^{-1}yx$. This would lead to a contradiction.

Warning:

Note that x < y and z < w imply xz < yw in an O-group, but not in an LO-group.

Example: in the Klein bottle group, y and x^2 commute. So, although $yx \neq x$ we have

$$(yx)^2 = yx^2x^{-1}yx = x^2yy^{-1} = x^2.$$

Exercise: A left-ordered group (G, <) is bi-ordered iff

$$x < y \Leftrightarrow y^{-1} < x^{-1} \quad \forall x, y \in G.$$

Thm: (Rhemtulla) Suppose G is left-orderable. Then G is abelian iff every left-ordering is a bi-ordering.

Def: An ordering < of G is *Archimedian* if whenever 1 < x < y, there exists a positive integer n such that $y < x^n$.

Hölder's thm (1902): Suppose (G, <) is an O-group which is Archimedian. Then G is isomorphic with a subgroup of the additive real numbers (and < corresponds to the natural ordering of \mathbb{R}). In particular, G is abelian.

Thm (Conrad, 1959): If (G, <) is LO and Archimedian, then the ordering is actually a bi-ordering, so the conclusions of Hölder's theorem apply.

Why is orderability useful?

Group rings: For any group G, let $\mathbb{Z}G$ denote the group ring of formal linear combinations $n_1g_1 + \cdots + n_kg_k$.

Thm: If G is LO, then $\mathbb{Z}G$ has no zero divisors.

This is conjectured to be true for torsion-free groups. By Kaplansky 1940

Thm: (Malcev, Neumann) If G is an O-group, then $\mathbb{Z}G$ embeds in a division ring.

Thm:(LaGrange, Rhemtulla) If G is LO and H is any group, then $\mathbb{Z}G \cong \mathbb{Z}H$ implies $G \cong H$.

Group actions and orderability:

Say the group G acts on the set X via $x \mapsto gx$ if (gh)x = g(hx). G acts effectively if only $1 \in G$ acts trivially on X.

Thm: A group G is LO if and only if there exists a totally ordered set X upon which G acts effectively by order-preserving bijections.

Example: The group $Homeo_{+}(\mathbb{R})$ is LO.

Thm: A countable group G is LO if and only if it embeds in $Homeo_+(\mathbb{R})$. If G acts on R without fixed points, it is bi-orderable.

Another useful characterization:

Thm: (Burns-Hale) A group G is LO if and only if for every nontrivial finitely-generated subgroup $H \subset G$, there exists a left-ordered group L and a nontrivial homomorphism

$$H \to L$$
.

Def: A group G is *locally indicable* if for every f.g. subgroup $1 \neq H \subset G$, \exists nontrivial $H \to \mathbb{Z}$.

Cor: Locally indicable \Rightarrow left-orderable. **Prop:** Bi-orderable \Rightarrow locally indicable.

The Klein bottle group is LI but not O.

Bergman: $\langle x, y, z : x^2 = y^3 = z^7 = xyz \rangle$ is LO, but not LI. It's π_1 of a homology 3-sphere.

Similarly, $SL_2(\mathbb{R})$ is LO but not LI.

Thm: Free groups are bi-orderable.

Cor: Excepting \mathbb{P}^2 , surface groups are LO.

Proof: If M^2 is noncompact or ∂M is nonempty, $\pi_1(M)$ is free.

Proof that free groups are bi-orderable:

Let $F = \langle x_1, x_2 \rangle$ denote the free group of rank two. We wish to construct an explicit bi-ordering on F.

The Magnus expansion: Consider the ring

$$\Lambda = \mathbb{Z}[[X_1, X_2]]$$

of formal power series in the <u>non-commuting variables</u> X_1 and X_2 . The Magnus map is the (multiplicative) homomorphism

$$\mu: F \to \Lambda$$

defined by:

$$x_i \mapsto 1 + X_i$$

 $x_i^{-1} \mapsto 1 - X_i + X_i^2 - X_i^3 + \cdots$

invertible elements

 $\mu(w) = 1 \implies w = 1$ Lemma: μ is injective; its image lies in the group of units of Λ of the form 1 + O(1).

shortlex

Define an ordering < on Λ by the following recipe: Write the elements of Λ in a standard form, with lower degree terms preceding higher degree terms, and within a given degree list the terms in sequence according to (say) the lexicographic ordering of the variables' subscripts.

Compare two elements of Λ by writing them both in standard form and ordering them according to the <u>natural</u> ordering of the coefficients at the *first* term at which they differ.

It defines an ordering < on Λ which is invariant under addition. Moreover, restricted to the group of units $\{1 + O(1)\}$, it is invariant under multiplication on both sides.

Since F is embedded in $\{1 + O(1)\}$, this defines a bi-invariant ordering for the free group.

Example:

$$\mu(x_1^{-1}x_2x_1) =$$
= $(1 - X_1 + X_1^2 - \cdots)(1 + X_2)(1 + X_1)$
= $1 + X_2 - X_1X_2 + X_2X_1 + O(3)$
 $\mu(x_2) = 1 + X_2 + 0X_1X_2 + \cdots$

Therefore $1 < x_1^{-1} x_2 x_1 < x_2$.

Lecture 2: Topology and orderable groups

Thm: (Farrell) Suppose X is a paracompact Hausdorff space. Then $\pi_1(X)$ is LO if and only if there is an embedding of the universal covering $h: \tilde{X} \to X \times \mathbb{R}$ such that the following diagram commutes:

$$\begin{array}{ccc} \tilde{X} & \stackrel{h}{\longrightarrow} & X \times \mathbb{R} \\ \downarrow & & \downarrow \\ X & = & X \end{array}$$

Thm: (Smythe) Consider a knot

$$K \subset M^2 \times \mathbb{R}$$
,

and a regular projection p(K) in M. Suppose K is homotopically trivial. Then there is a choice of over-under at the crossings of p(K) which creates a knot K' in $M^2 \times \mathbb{R}$ with p(K') = p(K), but K' is unknotted in $M^2 \times \mathbb{R}$ (it bounds a disk).

Ordering braid groups

 B_n has generators $\sigma_1, \ldots, \sigma_{n-1}$ and relations

$$\begin{array}{rcl} \sigma_i \sigma_j & = & \sigma_j \sigma_i \, , \, \, |i-j| > 1 \\ \\ \sigma_i \sigma_{i+1} \sigma_i & = & \sigma_{i+1} \sigma_i \sigma_{i+1} \end{array}$$

Thm: (Dehornoy) B_n is left-orderable. We will outline three different proofs. **Note:** for n > 2, B_n cannot be bi-ordered. Take $x = \sigma_1 \sigma_2 \sigma_1$ and $y = \sigma_1 \sigma_2^{-1}$, and observe

$$x^{-1}yx = y^{-1}$$
.

Proof 1 (Dehornoy): Define the positive cone $\mathcal{P} \subset B_n$ by $\beta \in \mathcal{P}$ iff there exists an expression

$$\beta = w_1 \sigma_i \, w_2 \sigma_i \cdots \sigma_i \, w_k$$

where each $w_j \in \langle \sigma_{i+1} \cdots \sigma_{n-1} \rangle$.

In other words the generator with the lowest subscript has only positive exponents.

It is easy to verify that $\mathcal{P} \cdot \mathcal{P} \subset \mathcal{P}$;

To show that $B_n \setminus \{1\} = \mathcal{P} \coprod \mathcal{P}^{-1}$, it is not too hard to show that \mathcal{P} and \mathcal{P}^{-1} are disjoint.

The difficult part is to show that every nontrivial braid, or its inverse, can be expressed in the above form: $B_n \setminus \{1\} = \mathcal{P} \cup \mathcal{P}^{-1}$

Proof 2 (Fenn, Green, Rolfsen, Rourke, Wiest): This uses the alternative view of B_n as the mapping class group of the disk with n punctures:

$$B_n \cong \mathcal{M}(D^2, n)$$

 D^2 is pictured as a round disk in the complex plane enclosing the integers $1, \ldots, n$. Given a mapping of the disk to itself, consider the image of the real line \mathbb{R} .

After an isotopy of the mapping f, one may assume that this image is "taut" in that the number of components of $f(\mathbb{R}) \cap \mathbb{R}$ is minimized.

Then a braid $\beta = [f]$ is considered positive iff the first departure of $f(\mathbb{R})$ from \mathbb{R} goes into the upper half-plane.

Remarkably, this ordering is precisely the same as Dehornoy's.

Proof 3 (Thurston, a la Short and Wiest): Again we consider $B_n \cong \mathcal{M}(D^2, n)$. The punctured disk D_n^2 has universal covering $\widetilde{D_n}$ embeddable in the hyperbolic plane \mathbb{H} . Choose a fixed basepoint * in one of the lifts of the boundary of D^2 . Given $\beta = [f]$, with $f: D_n^2 \to D_n^2$ let $\widetilde{f}: \widetilde{D_n} \to \widetilde{D_n}$ be the unique lifting of f which fixes *.

Note that $\partial \widetilde{D_n} \cong S^1$. Every such lift fixes an interval of S^1 containing *, so we may consider \widetilde{f} as an orientation-preserving mapping $\mathbb{R} \to \mathbb{R}$.

This action of B_n on \mathbb{R} shows B_n is LO.

Advantages of proof 3:

This approach defines infinitely many left-orderings of B_n , including Dehornoy's. Some are order-dense, others (like D's) are discrete.

Also it easily generalizes to other mapping class groups.

Thm: If M^2 is a compact surface with nonempty boundary (with or without punctures), then $\mathcal{M}(M^2)$ is LO.

The *pure* braid groups P_n :

Thm:(Kim-R.-Zhu)) P_n is bi-orderable.

Proof: According to Artin's combing technique, P_n is a semidirect product of free groups, which are bi-orderable. However, since bi-orderability is not necessarily preserved under semidirect products we need to exercise some care. We will proceed by induction: clearly $P_1 = \{1\}$ and $P_2 \cong \mathbb{Z}$ are biorderable. Suppose P_n is biordered. There is a standard inclusion

$$P_n \stackrel{i}{\hookrightarrow} P_{n+1}$$

and also a homomorphism

$$P_{n+1} \xrightarrow{r} P_n$$

which "forgets the last string" is a retraction of groups: $r \circ i = id$.

The kernel $K = \ker(r)$ can be regarded as all (n+1)-string braids in which the first n strings are straight; so K can be also be regarded as the fundamental group of an n-punctured disk, a free group.

$$1 \to K \hookrightarrow P_{n+1} \xrightarrow{r} P_n \to 1$$

is exact.

Lemma: There is a bi-ordering on the free group K so that conjugation by any element of P_{n+1} is order-preserving.

Key fact: each such automorphism $K \to K$ becomes the identity upon abelianization. The Magnus ordering is invariant under all such automorphisms. This completes the proof that P_{n+1} is bi-orderable.

Properties: With appropriate choice of generators of K we have:

- This ordering of P_n is order-dense (n > 2).
- It is compatible with the inclusions:

$$P_n \hookrightarrow P_{n+1}$$
,

and so bi-orders P_{∞} .

• The semigroup $P_n^+ = B_n^+ \cap P_n$ of Garside positive pure braids are all positive in the bi-ordering:

$$\beta \in P_n^+ \setminus \{1\} \Rightarrow 1 < \beta.$$

• P_n^+ is well-ordered by this bi-ordering.

Note: B_n^+ is also well-ordered by the Dehornoy left-ordering of B_n . However, our ordering of P_n is very different from the restriction of any known left-ordering of B_n .

Question: Does there exist a bi-ordering < of P_n , which extends to a left-invariant ordering of B_n ?

Answer: NO!! Because of the following.

Prop: (Rhemtulla - R.) Suppose (G, <) is a left-ordered group. Suppose $H \subset G$ is a finite-index subgroup such that (H, <) is a bi-ordered group. Then G is locally indicable.

Prop: (Gorin - Lin) For n > 4, B_n is not locally-indicable. In fact $[B_n, B_n]$ is finitely-generated and perfect.

Hyperplane arrangements:

Let $\{H_{\alpha}\}$ be a finite family of complex hyperplanes in \mathbb{C}^n .

Example: For each i, j with 1 < i < j < n, let H_{ij} be the hyperplane in \mathbb{C}^n defined by $z_i = z_j$. Then $X = \mathbb{C}^n \setminus \bigcup H_{ij}$ is the set of distinct ordered n-tuples of complex numbers, and $\pi_1(X) \cong P_n$.

A class of hyperplane arrangements, generalizing this example, are those of "fibre type." As noted by L. Paris, we have:

Thm: If $\{H_{\alpha}\}$ is a hyperplane arrangement of fibre type, then $\pi_1(\mathbb{C}^n \setminus \cup H_{\alpha})$ is bi-orderable.

Proof: The group is a semidirect product of free groups, in which the actions on the free groups become the identity upon abelianization. The proof proceeds as in the pure braid groups.

Bi-ordering surface groups.

Let M^2 be a connected surface.

If $M = \mathbb{P}^2$, then $\pi_1(M) \cong \mathbb{Z}_2$ is not LO.

If $M = \mathbb{P}^2 \# \mathbb{P}^2$, the Klein bottle, then $\pi_1(M)$ is LO, but not bi-orderable.

Thm: Except for the two examples above, every surface group $\pi_1(M)$ is bi-orderable.

Surface braid groups $B_n(M^2)$ and $PB_n(M^2)$

Thm: (Gonzalez-Meneses) For M^2 orientable, $PB_n(M^2)$ is bi-orderable.

Thm: For M^2 non-orientable, $M \neq \mathbb{P}^2$, $PB_n(M^2)$ is left-orderable, but not biorderable.

Lecture 3: Three-manifold groups

Joint work with Steve Boyer and Bert Wiest, with help from Bouleau, Perron, Short, Sjerve.

We consider $\pi_1(M^3)$, where M^3 is a compact 3-dimensional manifold.

 M^3 may be nonorientable.

 ∂M^3 may be empty or nonempty.

Everything is assumed PL (or C^{∞}).

Prop: Suppose $G = G_1 * \cdots * G_k$. Then G is LO if and only if every factor G_i is LO. Similarly for "O, virtually LO, or virtually O" replacing LO.

Therefore, we may assume w.l.o.g., that M^3 is prime.

Def: M^3 is irreducible if every $S^2 \subset M^3$ bounds a 3-ball in M.

The only prime manifolds which are not irreducible are $S^1 \times S^2$ and $S^1 \tilde{\times} S^2$; both have fundamental group \mathbb{Z} , which is bi-orderable.

Def: M^2 is \mathbb{P}^2 -irreducible if irreducible and M contains no 2-sided projective plane. (relevant only for nonorientable M)

Thm: (Boileau, Howie, Short) Suppose M^3 is compact, connected and \mathbb{P}^2 -irreducible. Then $\pi_1(M)$ is LO if and only if there exists a LO group L and a nontrivial homomorphism

$$\pi_1(M) \to L$$
.

Cor: If M^3 is compact, connected and \mathbb{P}^2 -irreducible, and $H_1(M)$ is infinite, then $\pi_1(M)$ is LO.

In fact, $b_1(M) > 0$ implies $\pi_1(M)$ is locally indicable.

Prop: If M^3 is an irreducible homology sphere and there is a nontrivial homomorphism

$$\pi_1(M) \to PLS_2(\mathbb{R}),$$

then $\pi_1(M)$ is LO.

Cor: If M^3 is a Seifert-fibred homology sphere, and not the Poincaré dodecahedral space, then $\pi_1(M)$ is LO.

Recall that M^3 is a Seifert-fibred space (SFS) if it is foliated by circles.

Thm: If M^3 is a compact, connected SFS, then $\pi_1(M)$ is LO iff

- (1) $M \cong S^3$, or
- (2) $b_1(M) > 0$ and $M \not\cong \mathbb{P}^2 \times S^1$, or
- (3) M is orientable, $\pi_1(M)$ is infinite, the base orbifold is $S^2(\alpha_1, \ldots, \alpha_k)$ and M admits a horizontal codimension 1 foliation.

The SFS with horizontal codimension 1 foliations are characterized by Eisenbud-Hirsch-Neumann, Jankins-Neumann, Naimi.

Thm: If M^3 is a compact, connected SFS, then $\pi_1(M)$ is bi-orderable iff

- (1) $M \cong S^3$, $S^1 \times S^2$, $S^1 \times S^2$ or a solid Klein bottle, or
- (2) M is an honest circle bundle over a surface other than S^2 , \mathbb{P}^2 or $2\mathbb{P}^2$.

Cor: If M is any compact SFS, $\pi_1(M)$ is virtually bi-orderable.

Question: If M is an arbitrary 3-manifold, is $\pi_1(M)$ virtually bi-orderable? If so, this would answer affirmatively a conjecture of Waldhausen that M is virtually Haken.

Question: If M is an arbitrary 3-manifold, is $\pi_1(M)$ virtually LO?

Geometries: recall the eight 3-dimensional geometries of Thurston.

Six are SFS geometries, also there's Sol and \mathbb{H}^3 .

Thm: Let M be a closed, connected Sol manifold. Then

- (1) $\pi_1(M)$ is left-orderable if and only if M is either non-orientable, or orientable and a torus bundle over the circle.
- (2) $\pi_1(M)$ is bi-orderable if and only if M is a torus bundle over the circle whose monodromy in $GL_2(\mathbb{Z})$ has at least one positive eigenvalue.
- (3) $\pi_1(M)$ is virtually bi-orderable.

Hyperbolic 3-manifolds: many have π_1 LO.

Example: (R. Roberts, J. Shareshian, M. Stein) There exist compact hyper-

bolic 3-manifolds $M_{p,q,m}^3$ with $\pi_1(M)$ not LO. Here m<0, p>q>1 are relatively prime and $M_{p,q,m}^3$ is a certain (p,q) Dehn filling of a fibre bundle over S^1 with fibre a punctured torus and pseudo-Anosov monodromy represented by the matrix $\begin{pmatrix} m & 1 \\ -1 & 0 \end{pmatrix}$.

 $\pi(M_{p,q,m}^3)$ has generators t,a,b and relations:

$$t^{-1}at = aba^{m-1}$$

$$t^{-1}bt = a^{-1}$$

$$t^{-p} = (aba^{-1}b^{-1})^q$$

Orderability and geometry seem to be independent:

Thm: Each of the eight geometries models a 3-manifold with a LO π_1 and also one whose π_1 is not LO.

Question: If M is a hyperbolic 3-manifold, is $\pi_1(M)$ virtually LO?

Knot groups. If $K \subset S^3$ is a knot, $\pi_1(S^3 \setminus K)$ is the group of K.

Thm: (Howie-Short) Every (classical) knot group is LO, in fact locally indicable. The same holds for any link group.

Prop: The group of a nontrivial torus knot is not bi-orderable.

Cor: Cabled knots and satellites of torus knots have non-biorderable groups. This includes the knots arising from singularities of complex curves in \mathbb{C}^2 .

Fibred knots: $S^3 \setminus K$ fibres over S^1 with fibre a punctured surface F. Torus knots are all fibred.

Thm: (Perron-R.) Suppose K is a fibred knot whose Alexander polynomial $\Delta_K(t)$ has all roots real and positive. Then its group is bi-orderable.

Examples: The figure-eight knot 4_1 has

$$\Delta_K(t) = t^2 - 3t + 1.$$

Roots are $(3 \pm \sqrt{5})/2$.

Of 121 prime fibred prime knots of 10 or fewer crossings, only two others fulfill the condition: 8_{12} and 10_{137} .

Question: What are the orderability properties of higher-dimensional knot groups?

These can have torsion. In some cases one can use the following:

Thm: (Howie) If G is a one-relator torsion-free group, then G is locally-indicable (thus LO).