# LÝ THUYẾT ĐỒ THỊ Luồng cực đại trong mạng

Phạm Nguyên Hoàng BM. Khoa học máy tính, CNTT pnhoang@cit.ctu.edu.vn





Cần Thơ, 2017











### Mạng (các luồng)

- Network (of flows)/Flow network
  - Mạng là 1 bộ 5: N = <V, E, s, t, c> trong đó
    - <V, E> là đồ thị có hướng biểu diễn cho mạng
      - V: đỉnh/nút
      - E: cung
    - s: đỉnh phát (source)
    - t: đỉnh thu (sink)
    - c: (u,v) -> c(u,v) hàm mô tả khả năng thông qua của 1 cung
      - c(u,v): luồng lớn nhất có thể đi qua cung (u, v)
- Ví dụ: mạng các luồng giao thông: các luồng giao thông chạy trên mạng

- (Network) Flow: thứ lưu thông trên mạng
  - Một luồng đi từ đỉnh phát (s) đến đỉnh thu (t) là 1 hàm
     f: (u, v) -> f(u,v)
  - thoả mãn các điều kiện:
    - Với mỗi cung: 0 <= f(u,v) <= c(u,v)</li>
    - Với mỗi đỉnh khác s và t: tổng luồng vào = tổng luồng ra
    - Tổng luồng ra khỏi s = tổng luồng vào t
  - Giá trị luồng |f| = tổng luồng ra khỏi s
- Mẹo: luồng s-t là cách gán các giá trị luồng cho từng cung của mạng sao cho thoả mãn điều kiện luồng.





- Bài tập kiểm tra điều kiện luồng:
  - Tính tổng luồng vào và luồng ra của từng đỉnh
  - Đỉnh 2: Tổng luồng vào: ??? Tổng luồng ra: ???
  - Đỉnh 3: Tổng luồng vào: ??? Tổng luồng ra: ???
  - Đỉnh 4: Tổng luồng vào: ??? Tổng luồng ra: ???
  - Đỉnh 5: Tổng luồng vào: ??? Tổng luồng ra: ???
  - Đỉnh 6: Tổng luồng vào: ??? Tổng luồng ra: ???
  - Đỉnh 7: Tổng luồng vào: ??? Tổng luồng ra: ???
  - Đỉnh 1: Tổng luồng ra: ???
  - Đỉnh 8: Tổng luồng vào: ???
- Luồng hợp lệ hay không, tại sao ?
- Giá trị luồng: tổng luồng ra khỏi s = ???

- Kết quả kiểm tra điều kiện luồng:
  - Tính tổng luồng vào và luồng ra của từng đỉnh
  - Đỉnh 2: Tổng luồng vào: 8
  - Đỉnh 3: Tổng luồng vào: 9
  - Đỉnh 4: Tổng luồng vào: 5
  - Đỉnh 5: Tổng luồng vào: 5
  - Đỉnh 6: Tổng luồng vào: 10
  - Đỉnh 7: Tổng luồng vào: 12

- Tổng luồng ra: 8
  - Tổng luồng ra: 9
  - Tổng luồng ra: 5
  - Tổng luồng ra: 5
  - Tổng luồng ra: 10
  - Tổng luồng ra: 12

- Đỉnh s=1: Tổng luồng ra: 17
- Đỉnh t=8: Tổng luồng vào: 17
- Luồng hợp lệ
- Giá trị luồng: tổng luồng ra khỏi s = 8+5+4=17

# Luồng trong mạng (ứng dụng)

| Mạng         | Đỉnh/nút                                     | Cung                    | Luồng                       |
|--------------|----------------------------------------------|-------------------------|-----------------------------|
| Truyền thông | Tổng đài điện<br>thoại, máy tính,<br>vệ tinh | Cáp, cáp quang,<br>wifi | Âm thanh, video,<br>gói tin |
| Mạch điện    | Cổng, thanh ghi,<br>vi xử lý                 | Dây dẫn                 | Dòng điện                   |
| Thuỷ lực     | Trạm bơm, bể chứa, hồ                        | Õng dẫn                 | Dầu                         |
| Tài chính    | Chứng khoán,<br>tiền tệ                      | Giao dịch               | Tiền                        |
| Giao thông   | Sân bay, nhà ga,<br>giao lộ                  | Con đường               | Xe, hành khách              |
| Hoá học      | Nguyên tử                                    | Liên kết hoá học        | Năng lượng                  |

#### Mạng đường sắt vận chuyển hàng hoá từ Liên Xô sang Đông Âu



### Luông cực đại

 Cho mạng N = < V, E, s, t, c>, tìm luồng f (từ s đến t) có giá trị luồng | f | lớn nhất

- Bài tập:
  - Hãy tìm 1 luồng khác có giá trị lớn hơn luồng vừa rồi (17)

- Một lát cắt cát tách s và t, (gọi là: s-t cut)
  - Là một cách chia (phân hoạch) tập đỉnh V thành hai phần rời nhau (S, T) sao cho s nằm trong S và t năm trong T
- Các cung của một lát cắt (tách s và t)
  - Tập các cung xuất phát từ S đi đến T  $\{(u, v) \mid u \in S \text{ và } v \in T\}$
- Khả năng thông qua của 1 lát cắt (tách s và t)

$$c(S,T) = \sum_{u \in S, v \in T} c(u,v)$$

Tổng khả năng thông qua của các cung của lát cắt



Khả năng thông qua của lát cắt = 10+5+15 = 30



Khả năng thông qua của lát cắt = 9+15+8+30 = 62



Khả năng thông qua của lát cắt = 10+8+10 = 28

- Bổ đề 1
- Nếu gọi:
  - f là luồng đi qua mạng N
  - (S, T) là 1 lát cắt tách s và t
- thì
  - Luồng đi qua lát cắt = luồng ra khỏi s
  - = luồng đi vào t

$$\sum_{e \text{ out of } S} f(e) - \sum_{e \text{ in to } S} f(e) = \sum_{e \text{ out of } s} f(e) = |f|$$



20 - 3 = 17



- Bổ đề 2
- Nếu gọi:
  - f là luồng đi qua mạng N
  - (S, T) là 1 lát cắt tách s và t
- thì
  - Giá trị luồng không vượt quá khả năng thông qua của lát cắt

$$|f| \le c(S, T)$$

- Hệ quả
- Goi:
  - f là luồng đi qua mạng N
  - (S, T) là 1 lát cắt tách s và t
- Nếu |f| = c(S, T) thì f là luồng lớn nhất (luồng cực đại) và (S, T) là lát cắt hẹp nhất.



- Định lý luồng cực đại lát cắt hẹp nhất (Ford-Fulkerson, 1956)
  - Giá trị luồng cực đại = khả năng thông qua của lát cắt hẹp nhất.

- Ý tưởng:
  - Tìm lát cắt hẹp nhất bằng cách tăng luồng đi qua mạng.
  - Tăng luồng đi qua mạng cho đến khi bị ngẽn => lát cắt hẹp nhất => giá trị luồng cực đại.
- Tìm đường tăng luồng (augmenting path):
  - Tìm đường đi từ s đến t sao cho có thể tăng thêm luồng trên đường đi đó.

- Tìm đường tăng luồng:
  - Tìm đường đi từ s đến t sao cho có thể tăng thêm luồng trên đường đi đó.
    - QS1: Tìm đường đi từ s đến t sao cho c(e) > f(e) với tất cả các cung trên đường đi



- Tìm đường tăng luồng:
  - Tìm đường đi từ s đến t sao cho có thể tăng thêm luồng trên đường đi đó.
    - QS1: Tìm đường đi từ s đến t sao cho c(e) > f(e) với tất cả các cung trên đường đi



- Tìm đường tăng luồng:
  - Tìm đường đi từ s đến t sao cho có thể tăng thêm luồng trên đường đi đó.
    - QS1: Tìm đường đi từ s đến t sao cho c(e) > f(e) với tất cả các cung trên đường đi



- Tìm đường tăng luồng:
  - Tìm đường đi từ s đến t sao cho có thể tăng thêm luồng trên đường đi đó.
    - QS1: Tìm đường đi từ s đến t sao cho c(e) > f(e) với tất cả các cung trên đường đi



Không tìm được đường đi từ s đến t để tăng luồng !!!

- Tìm đường tăng luồng:
  - Tìm đường đi từ s đến t sao cho có thể tăng thêm luồng trên đường đi đó.
    - QS1: Tìm đường đi từ s đến t sao cho c(e) > f(e) với tất cả các cung trên đường đi



QS1: thất bại !!!

- Tìm đường tăng luồng:
  - Tìm đường đi từ s đến t sao cho có thể tăng thêm luồng trên đường đi đó.
    - QS1: Tìm đường đi từ s đến t sao cho c(e) > f(e) với tất cả các cung trên đường đi



Cân tìm cách khác để tăng luồng

Tìm đường tăng luồng:



- Tìm đường tăng luồng:
  - Xây dựng đô thị tăng luông/thặng dư (residual graph)



- Bài tập
- Cho mạng và luồng như hình vẽ, hãy tìm đô thị tăng luồng
  - Số đứng trước là khả năng thông qua)
  - Số đứng sau là luồng



#### Đường tăng luồng

 Đường tăng luồng = đường đi từ s đến t trên đô thị tăng luồng



#### Đường tăng luồng

- Đường tăng luồng = đường đi từ s đến t trên đô thị tăng luồng
- Luồng cực đại ⇔ không còn đường tăng luồng



- Đánh dấu các đỉnh để tìm đường tăng luồng trên đồ thị tăng luồng
  - Không cần xây dựng tường minh đồ thị tăng luồng
  - Sử dụng duyệt theo chiều sâu để tìm đường đi từ s đến t.
- Mỗi đỉnh u được dánh dấu/gán nhãn với các thông tin sau:
  - d[u]: hướng của cung (+: cung thuận, -: cung nghịch "undo" luồng)
  - p[u]: đỉnh trước đỉnh u
  - σ[u]: lượng tăng luồng lớn nhất có thể tăng

- Khởi tạo f(u, v) = 0 với mọi cung (u, v)
- while (1) {
  - Tìm đường tăng luồng
  - Nếu không tìm thấy => thoát vòng lặp
  - Tăng luông theo đường tăng luông
- Lát cắt hẹp nhất = (S, T)
  - S: các đỉnh đã có nhãn
  - T là các đỉnh chưa có nhãn

- Tìm đường tăng luồng từ s đến t
  - Đánh dấu s: (+, s, oo)
  - Đánh dấu các đỉnh kề của s
  - Đánh dấu các đỉnh kề của đỉnh kề của s
  - ...
  - Cho đến khi t được đánh dấu => tìm được đường đi từ s đến t.
- Có thể cài đặt bằng đệ quy hoặc vòng lặp sử dụng stack

Tìm đường tăng luồng từ s đến t dùng Stack

```
1. Đánh dấu s: (+, s, ∞)
2. Push s vào Stack
3. while (stack không rỗng) {
    a. u = top(Stack); pop(Stack);
    b. for (các đỉnh kề v của u và có f(u, v) < c(u, v))
        Đánh dấu v: (+, u, min\{\sigma[u], c(u, v) - f(u, v)\})
        Push v vào Stack
   c. for (các đỉnh x có cung đi đến u có f(x, u) > 0)
       Đánh dấu x: (-, u, min\{\sigma[u], f(x, u)\})
       push x vào Stack
   d. Nếu t được đánh dấu => thoát vòng lặp while
```

Tăng luông theo đường tăng luông

```
x = t;
sigma = \sigma[t]
while (x != s)  {
    if (d[x] == '+') //Cung thuận
       f(p[x], x) += sigma; //TĂNG LUÔNG
                  //Cung nghịch
    else
       f(x, p[x]) = sigma; //GIÅM LUÔNG
    x = p[x];
```

#### Ví dụ

• Tìm luồng cực đại và lát cắt hẹp nhất



# Lăp 1



















#### Meo

 Tất cả các cung trên đường tăng luồng sẽ được tăng/giảm 1 lượng giống nhau = σ[t]

- Trình bày:
  - Lặp 1:
    - Đánh dấu trên đồ thị gốc
    - Vẽ đồ thị mới và ghi kết quả tăng luồng trên đồ thị mới
  - Lăp 2:
    - Tiếp tục đánh dấu trên đồ thị mới
    - Vẽ đồ thị mới nữa và ghi kết quả tăng luồng
  - •





















• ...



















#### Kết quả

- Lát cắt hẹp nhất (S, T)
  - $S = \{1, 2, 3, 4, 5\}$
  - $T = \{6, 7\}$
- Giá trị luồng cực đại:
  - $|f|_{max} = c(S, T) = 3 + 7 + 2 = 12$

#### Cải tiến/biến thể của giai thuật Ford-Fulkerson

- Giải thuật Ford-Fulkerson thường được gọi là phương pháp (method) Ford-Fulkerson thay vì giải thuật (algorithm)
  - Không mô tả rõ ràng cách tìm đường tăng luồng trên đồ thị tăng luồng
- Biến thể:
  - Giải thuật Edmonds-Karp
    - Tìm kiếm theo chiều rộng, sử dụng Queue thay vì Stack
  - Tìm đường tăng luồng có lượng tăng luồng nhiều nhất (cải biên Dijkstra)

#### Bài tập

 Cho đồ thị G như hình. Hãy vận dụng giải thuật Ford-Fulkerson để tìm luồng cực đại và lát cắt

hẹp nhất

