Moses

Machine Translation with Open Source Software

Hieu Hoang and Matthias Huck October 2014

Outline

09:30-10:15 Introduction

10:15-11:00 Hands-on Session — you will need a laptop

11:00-11:30 Break

11:30-12:30 Advanced Topics

Slides downloadable from

http://www.statmt.org/moses/amta.2014.pdf

2 ON IVERS

Basic Idea

Statistical Machine Translation History

around 1990

Pioneering work at IBM, inspired by success in speech recognition

1990s

Dominance of IBM's word-based models, support technologies

early 2000s

Phrase-based models

late 2000s

Tree-based models

Moses History

- 2002 Pharaoh decoder, precursor to Moses (phrase-based models)
- 2005 Moses started by Hieu Hoang and Philipp Koehn (factored models)
- **2006** JHU workshop extends Moses significantly
- 2006-2012 Funding by EU projects EuroMatrix, EuroMatrixPlus
- **2009** Tree-based models implemented in Moses
- 2012-2015 MosesCore project. Full-time staff to maintain and enhance Moses

5 0

Moses in Academia

- Built by academics, for academics
- Reference implementation of state of the art
 - researchers develop new methods on top of Moses
 - developers re-implement published methods
 - used by other researchers as black box
- Baseline to beat
 - researchers compare their method against Moses

Developer Community

- Main development at University of Edinburgh, but also:
 - Fondazione Bruno Kessler (Italy)
 - Charles University (Czech Republic)
 - DFKI (Germany)
 - RWTH Aachen (Germany)
 - others . . .
- Code shared on github.com
- Main forum: Moses support mailing list
- Main event: Machine Translation Marathon
 - annual open source convention
 - presentation of new open source tools
 - hands-on work on new open source projects
 - summer school for statistical machine translation

7 0

Open Source Components

- Moses distribution uses external open source tools
 - word alignment: GIZA++, MGIZA, BERKELEYALIGNER, FASTALIGN
 - language model: SRILM, IRSTLM, RANDLM, KENLM
 - scoring: BLEU, TER, METEOR
- Other useful tools
 - sentence aligner
 - syntactic parsers
 - part-of-speech taggers
 - morphological analyzers

Other Open Source MT Systems

- Joshua Johns Hopkins University http://joshua.sourceforge.net/
- CDec University of Maryland http://cdec-decoder.org/
- Jane RWTH Aachen
 http://www.hltpr.rwth-aachen.de/jane/
- Phrasal Stanford University
 http://nlp.stanford.edu/phrasal/
- Very similar technology
 - Joshua and Phrasal implemented in Java, others in C++
 - Joshua supports only tree-based models
 - Phrasal supports only phrase-based models
- Open sourcing tools increasing trend in NLP research

Moses in Industry

- Distributed with LGPL free to use
- Competitive with commercial SMT solutions (Google, Microsoft, SDL Language Weaver, . . .)
- But:
 - not easy to use
 - requires significant expertise for optimal performance
 - integration into existing workflow not straight-forward

Case Studies

European Commission —

uses Moses in-house to aid human translators

Autodesk —

showed productivity increases in translating manuals when post-editing output from a custom-build Moses system

Systran —

developed statistical post-editing using Moses

Asia Online —

offers translation technology and services based on Moses

Many others . . .

World Trade Organisation, Adobe, Symantec, WIPO, Sybase, Safaba, Bloomberg, Pangeanic, KatanMT, Capita, . . .

11 OF THE STATE OF

Phrase-based Translation

- Foreign input is segmented in phrases
- Each phrase is translated into English
- Phrases are reordered

Phrase Translation Options

Many translation options to choose from

Phrase Translation Options

- The machine translation decoder does not know the right answer
 - picking the right translation options
 - arranging them in the right order
- → Search problem solved by beam search

consult phrase translation table for all input phrases

Decoding: Start with Initial Hypothesis 15

<u>er</u>	geht	ja 	nicht	nach	hause

initial hypothesis: no input words covered, no output produced

Decoding: Hypothesis Expansion

pick any translation option, create new hypothesis

Decoding: Hypothesis Expansion

create hypotheses for all other translation options

Decoding: Hypothesis Expansion

also create hypotheses from created partial hypothesis

Decoding: Find Best Path

backtrack from highest scoring complete hypothesis

Factored Translation

Factored represention of words

	Input	Output	•
word			word
lemma		\bigcirc	lemma
part-of-speech	\bigcirc		part-of-speech
morphology		\bigcirc	morphology
word class	\bigcirc	\bigcirc	word class

- Goals
 - generalization, e.g. by translating lemmas, not surface forms
 - richer model, e.g. using syntax for reordering, language modeling

Factored Model

Example:

Decomposing the translation step

Translating lemma and morphological information more robust

Syntax-based Translation

String-to-String

John misses Mary

⇒ Marie manque à Jean

Tree-to-String

String-to-Tree

John misses Mary

Tree-to-Tree

30

How do I get started?

- Collect your data
 - Parallel data
 - * Freely available data, e.g. Europarl, MultiUN, WIT3, OPUS, . . .
 - * TAUS, Linguistic Data Consortium (LDC), . . .
 - Monolingual data
 - * CommonCrawl, WMT News Crawl corpus, . . .
- Set up Moses
 - Download source code for Moses, GIZA++, MGIZA
 - Compile, install
 - Or use precompiled Moses packages (Windows, Linux, Mac OS X)
 - More info: http://www.statmt.org/moses/
- Train system

Data-driven MT

Moses Pipeline

Execute a lot of scripts

```
tokenize < corpus.en > corpus.en.tok
lowercase < corpus.en.tok > corpus.en.lc
...
mert.perl ....
moses ...
mteval-v13.pl ...
```

Change a part of the process, execute everything again

```
tokenize < corpus.en > corpus.en.tok
lowercase < corpus.en.tok > corpus.en.lc
...
mert.perl ....
moses ...
mteval-v13.pl ...
```

Phrase-based Model Training with Moses³³

Command line

Example phrase from model

```
Bndnisse ||| alliances ||| 1 1 1 1 2.718 ||| ||| 1 1 General Musharraf appeared on ||| 1 1 1 1 2.718 ||| ||| 1 1
```

Phrase-based Decoding with Moses

Command line

moses -f moses.ini -i in.txt > out.txt

- Advantages
 - fast under half a second per sentence for fast configuration
 - low memory requirements \sim 200MB RAM for lowest configuration
 - state-of-the-art translation quality on most tasks, especially for related language pairs
 - robust does not rely on any syntactic annotation
- Disadvantages
 - poor modeling of linguistic knowledge and of long-distance dependencies

Hierarchical Model Training with Moses 35

- Hierarchical model: formally syntax-based, without linguistic annotation (string-to-string)
- Command line

Example rule from model

Bündnisse [X][X] Kräften [X] ||| alliances [X][X] forces [X] ||| 1 1 1 1 2.718 ||| 1-1 ||| 0.0526316 0.0526316

Visualization of rule

es

36 ON BULL

Hierarchical Decoding with Moses

Command line

moses_chart -f moses.ini -i in.txt > out.txt

- Advantages
 - able to model non-contiguities like $ne \dots pas \to not$
 - better at medium-range reordering
 - outperforms phrase-based systems when translating between widely different languages, e.g. Chinese-English
- Disadvantages
 - more disk usage translation model imes 10 larger than phrase-based
 - slower 0.5 2 sec/sent. for fastest configuration
 - higher memory requirements more than 1GB RAM

Syntax-based Model Training with Moses³⁷

Command line

• Example rule from model

Syntax-based Decoding with Moses

Command line

```
moses_chart -f moses.ini -i in.txt > out.txt
```

(like hierarchical)

- Advantage
 - can use outside linguistic information
 - promises to solve important problems in SMT, e.g. long-range reordering
- Disadvantages
 - training slow and difficult to get right
 - requires syntactic parse annotation
 - * syntactic parsers available only for some languages
 - * not designed for machine translation
 - * unreliable

Experiment Management System

- EMS automates the entire pipeline
- One configuration file for all settings: record of all experimental details
- Scheduler of individual steps in pipeline
 - automatically keeps track of dependencies
 - parallel execution
 - crash detection
 - automatic re-use of prior results
- Fast to use
 - set up a new experiment in minutes
 - set up a variation of an experiment in seconds
- Disadvantage: not all Moses features are integrated

How does it work?

- Write a configuration file (typically by adapting an existing file)
- Test:

experiment.perl -config config

• Execute:

experiment.perl -config config -exec

Workflow automatically generated by experiment.perl

42 ON BUILDING

Web Interface

All Experimental Setups

ID	User	Task	Directory
<u>97</u>	pkoehn	Acquis Truecased	/group/project/statmt2/pkoehn/acquis-truecase
<u>96</u>	pkoehn	Chinese-English AGILE 2008	/group/project/statmt2/pkoehn/agile08-chinese
<u>95</u>	miles	Randlm testing	/group/project/statmt7/miles/experiments /ep-enfr/work
<u>94</u>	joseph	Proj2008 Impl.Adapted experiment(fr- en)for News Comm.	/group/project/statmt2/joseph/experimentJo/task6
<u>93</u>	joseph	Proj2008 Impl.Baseline experiment(fr- en)for News Comm.	/group/project/statmt2/joseph/experimentJo/task5
<u>92</u>	jschroe1	IER-EIN System I Omningtion I Omnonents	/group/project/statmt9/josh/experiments /fr-syscomb/work

List of experiments

List of Runs

Task: WMT10 German-English (pkoehn)

Wiki Notes | Overview of experiments | /fs/bragi2/pkoehn-experiment/wmt10-de-en

compare	ID	start	end	avg	newstest20	09	newstest2010	
⊟ cfglparlimg	[1042-16] 11+analysis	16 May	16 May	BLEU-c: 21.74 BLEU: 22.91	21.03 (1.002) 22.30 (1.002)	<u>(A)</u>	22.45 (1.041) 23.51 (1.041)	<u>A</u>
□ cfglparlimg	[1042-15] 11+Internal emplus test set	21 Apr	crashed	-	-		-	
cfglparlimg	[1042-14] 9+interpolated-tm.lm- weighted	21 Feb	21 Feb 9: 0.239258 -> 0.239296	-	20.81 (1.003) 22.06 (1.003)	<u>A</u>	-	
⊟ cfglparlimg	[1042-13] 9+only-ep	21 Feb	21 Feb 13: 0.235046 -> 0.235053	-	20.42 (1.002) 21.69 (1.002)	<u>A</u>	-	
efalparlima	[1042-12] 9+only-nc	21 Feb	21 Feb 7: 0.222237 ->	-	18.96 (1.002) 20.16	<u>A</u>	-	

Analysis: Basic Statistics

Coverage	Phrase Segmentation					
model corpus	1 2 3 4+					
0 2047 (3.1%) 1708 (2.6%)	1 to 26897 (40.7%) 2145 (3.2%) 278 (0.4%) 90 (0.1%)					
1 738 (1.1%) 518 (0.8%)	2 to 4144 (6.3%) 14414 (21.8%) 2518 (3.8%) 432 (0.7%)					
2-5 1483 (2.2%) 818 (1.2%)	3 to 639 (1.0%) 3522 (5.3%) 4821 (7.3%) 1272 (1.9%)					
6+ 61745 (93.5%) 62969 (95.4%)	4+ to 158 (0.2%) 855 (1.3%) 1693 (2.6%) 2135 (3.2%)					
by token / by type /	by word / by phrase					
<u>details</u>						

• Basic statistics

- n-gram precision
- evaluation metrics
- coverage of the input in corpus and translation model
- phrase segmentations used

Analysis: Unknown Words

grouped by count in test set

unknown words

18 Eatonville	4:	-	2: Abfertigungen,	1: -Ach, -Minister, -Pakets, -weiss, .docx, .pptx, .xlsx, 1,45,
16 Hurston	Eatonvilles,		Albums, Alondra,	1.106,55, 1.983,73, 10.365,45, 10.579, 10.809,25, 106,85,
12 Barrick	Együtt,	BSA, Bayón,		11,9, 11.743,61, 12.595.75, 14,2, 14,7, 145.29, 16,8, 17.9,
	Garver,	Biztos, Bt.,		18,6, 18.286,90, 1802, 1834, 1880ern, 1920ern, 1925,
12 Hema	Harmadik,	Butch, Casado,	Bani, Baugesellschaften,	19252008, 199,61, 2,178, 2,37, 2.400, 26,3, 270.000, 29,2,
12 Stewards	Hurstons,	Dal, Embraer,	Bedienkomfort, Bento,	3,30, 3,632, 3,827, 3.0.0, 4,161, 4,357, 42,2, 43,4, 499,
11 Gebrselassie	Jobb, Jol,	FT, Faymann,	Bentos, Bingleys, Bojen,	49sten, 5.839, 506,43, 6,98, 684,81, 729,700, 75,5, 777,68,
	Jos, Jövőért,	Fiatal, Gregg,	Bowens, Bowery, Boyd,	8,25, 8,81, 9,14, 99.80, AAC, ADQ, ART, Aareal,
10 Flamenco	Kovalev,	Gélineau, HSV,	Bringley, Browser,	Abbremsens, Abhöraktion, Absenzen, Abwesenheiten,
10 Mango	Krever,	Hanzelka,	Bělohlávek, CBGB,	Abwiegen, Abwärtssog, Achronot, Actor, AdSense,
9 Glitter	Lados,	Illhäusern, Iván,	Carci, Cera, Charts,	AdWords, Aday, Adobe, Adressverzeichnisses, Adwards,
9 ÚOHS	Mercandelli,	Jansen, Jančura,	Chemical, Chigi,	Adélard, Agazio, Akku, Akron, Aktuálně.cz, Alameda,
9 ČTÚ	Stehplätze,	Joanne,	Cineast, Comics,	Alatriste, Alcolock, Aleš, Alhambra, Alleinregierer,
,	Tauro,	Kemrová, Kid,	Commerzbank, Coppola,	Amazonengebiet, Amil, Aminei, Amministrazione, Amway,
8 Coles	Tórtola,	Llamazares,	Corker, Cowon, DF,	Andalusierin, Andik, Android, Anděl, Angeklagtem, Ansa,
8 Deka	Zenobia,		Dinkins, Download,	Anthologie, Antiasthmatika, Apnoe, Aquel, Arabija,
8 Garci	fon,		Drehbewegung,	Arbeiternehmers, Arcandor, Arriaga, Asiana, Askale,
8 ITV	Évezredért,	Mobil.cz,	Drzewiecki, Drápal,	Astronomen, Aufeislegen, Augäpfel, Ausdrückstärke,
0 770	Ozd	Mutual,	Düsseldorfer, Ella,	Ausführungs-, Ausgeruhter, Ausscheidungsspiele,

Analysis: Output Annotation

[0.2152] This time was the reason for the collapse on Wall Street .

[ref] This time the fall in stocks on Wall Street is responsible for the drop .

Color highlighting to indicate n-gram overlap with reference translation darker bleu = word is part of larger n-gram match

Analysis: Input Annotation

100 occurrences in corpus, 52 distinct translations, translation entropy: 3.08447

- For each word and phrase, color coding and stats on
 - number of occurrences in training corpus
 - number of distinct translations in translation model
 - entropy of conditional translation probability distribution $\phi(e|f)$ (normalized)

entre autres(560/1554)

```
...d and made recommendations , " inter alia " , with respect to the follow...
...on (EC) No 1995 / 2000 imposing , inter alia , a definitive anti @-@ dumping dut...
...ervices . this increase , arising , inter alia , as a result of economic growth , ...
...of paragraph 1 the Commission may , inter alia , bring forward :
... of stocks of obsolete pesticides , inter alia , by supporting projects aimed at s...
...wn rules of procedure which shall , inter alia , contain provisions for convening ...
...uch specific agreements may cover , inter alia , financing provisions , assignment...
...he internal market and concerning , inter alia , health and environmental protecti...
...e product concerned ) originating , inter alia , in Belarus and Russia ( the count...
...e product concerned ) originating , inter alia , in India .
```

```
...• des recommandations concernant , entre autres , les questions spécifiques suiva...
...995 / 2000 du Conseil instituant , entre autres , un droit antidumping définitif ...
....nsports . cette augmentation , due entre autres facteurs à la croissance économi...
...aragraphe 1 , la Commission peut , entre autres , présenter :
...r les stocks de vieux pesticides , entre autres en soutenant des projets à cet ef...
...lement intérieur , qui contient , entre autres dispositions , les modalités de c...
...ords spécifiques peuvent porter , entre autres , sur les mécanismes financiers s...
...hé intérieur et qui concernent , entre autres , la santé et la protection de l&...
...it concerné " ) originaire , entre autres , du Belarus et de Russie ( ci @-@...
...t concerné " ) originaires , entre autres , de l ' Inde .
```

notamment(447/1554)

```
... the EU budget by addressing " inter alia " the problems of accountabili...

...ates , the Commission has adopted , inter alia , Decision 2003 / 526 / EC ( 3 ) wh...

...d equitable development involving , inter alia , access to productive resources , ...

...ertain products which could be used inter alia , as equipment on board ships but w...

...nexes , taking into consideration , inter alia , available scientific , technical ...

...w that it is absolutely necessary , inter alia , because of enlargement , to find ...

...paragraphs 1 and 2 as appropriate , inter alia , by conducting studies and compili...

...liability and efficiency , caused , inter alia , by insufficient technical and adm...

...in the Programme shall be pursued , inter alia , by the following means:
```

...get de l' Union , ce qui passe **notamment** par la résolution du problème de r...

...es États membres , la Commission a **notamment** arrêté la décision 2003 / 526 / C...

... durable et équitable , impliquant **notamment** l' accès aux ressources produc...

....usceptibles d' être utilisés **notamment** comme équipements mis à bord , mai...

....ion et à ses annexes , compte tenu **notamment** des informations scientifiques , tec...

....os; il est absolument nécessaire , **notamment** en raison de l' élargissement ...

....ragraphes 1 et 2 le cas échéant , **notamment** en menant des études et en compilan...

... et d' efficacité en raison , **notamment** , d' une interopérabilité tec...

....nis dans le programme , il convient **notamment** de mettre en oeuvre les moyens ci @-...

translation of input phrase in training data context

Analysis: Alignment

Phrase alignment of the decoding process (red border, interactive)

Analysis: Tree Alignment

Uses nested boxes to indicate tree structure (red border, yellow shaded spans in focus, interactive) for syntax model, non-terminals are also shown

Analysis: Comparison of 2 Runs

annotated sentences

sorted by order order worse display fullscreen showing 5 more all

identical same better worse

2348 51 57 69

93% 2% 2% 3%

[2143:0.2974] In Austria, Haider and Co. are ready to govern to prevent a red and black coalition.
[2143:0.1754] In Austria, Haider and Co. are prepared to rule to prevent a red and black coalition.

[ref] Haider and his party are ready to govern Austria in order to avoid red @-@ black coalition .

[2165:0.3174] The SPÖ wants to show that the cooperation of both parties is possible - in some countries and in the social partnership that is already the case.

[2165:0.2061] The SPÖ wants to show that a cooperation of both parties is possible - in some countries and in the social partnership that is already the case.

[ref] SPÖ would like to show that the cooperation of the two parties is possible - it does exist in some of the provinces as well as in social partnership.

Different words are highlighted sortable by most improvement, deterioration

Hands-On Session

- Faster Training
- Faster Decoding
- Moses Server
- Data and domain adaptation
- Instructions to decoder
- Input formats
- Output formats
- Incremental Training

Faster Training

- Tokenization
- Tuning
- Alignment
- Phrase-Table Extraction
- Train language model

. . .

- Run steps in parallel (that do not depend on each other)
- Multicore Parallelization

```
.../train-model.perl -parallel
```

• EMS:

```
[TRAINING]
parallel = yes
```


- Faster Training
 - Tokenization
 - Tuning
 - Alignment
 - Phrase-Table Extraction
 - Train language model

. . .

- Multi-threaded tokenization
- Specify number of threads

```
.../tokenizer.perl -threads NUM
```

• EMS:

- Faster Training
 - Tokenization
 - Tuning
 - Alignment
 - Phrase-Table Extraction
 - Train language model

. . .

- Multi-threaded tokenization
- Specify number of threads

```
.../mert -threads NUM
```

• EMS:

tuning-settings = "-threads NUM"

- Faster Training
 - Tokenization
 - Tuning
 - Alignment
 - Phrase-Table Extraction
 - Train language model

. . .

- Word Alignment
- Multi-threaded
- On: memory-limited machines
 - snt2cooc program requires 6GB+ memory
 - Reimplementation uses 10MB, but take longer to run

```
.../train-model.perl -snt2cooc snt2cooc.pl
```

EMS:

training-options = "-snt2cooc snt2cooc.pl"

- Faster Training
 - Tokenization
 - Tuning
 - Alignment
 - Phrase-Table Extraction
 - Train language model

. . .

- Phrase-Table Extraction
 - Split training data into NUM equal parts
 - Extract concurrently

.../train-model.perl -cores NUM

Sorting

- Rely heavily on Unix 'sort' command
- may take 50%+ of translation model build time
- Need to optimize for
 - * speed
 - * disk usage
- Dependent on
 - * sort version
 - * Unix version
 - * available memory

Plain sorted

```
sort < extract.txt > extract.sorted.txt
```

Optimized for large server

```
sort --buffer-size 10G --parallel 5
   --batch-size 253 --compress-program [gzip/pigz] ...
```

- Use 10GB of RAM the more the better
- 5 CPUs the more the better
- mergesort at most 253 files
- compress intermediate files less disk i/o
- In Moses:

```
.../train-model.perl -sort-buffer-size 10G -sort-parallel 5 -sort-batch-size 253 -sort-compress pigz
```

67 ON BUILDING

Advanced Features

- Faster Training
 - Tokenization
 - Tuning
 - Alignment
 - Phrase-Table Extraction
 - Train language model

. . .

IRSTLM: Training

- Developed by FBK-irst, Trento, Italy
- Specialized training for large corpora
 - parallelization
 - reduce memory usage
- Quantization of probabilities
 - reduces memory but lose accuracy
 - probability stored in 1 byte instead of 4 bytes

IRSTLM: Training

• Training:

```
build-lm.sh -i "gunzip -c corpus.gz" -n 3
     -o train.irstlm.gz -k 10
```

- − n 3 = n-gram order
- -k 10 = split training procedure into 10 steps

• EMS:

New: KENLM Training

 Can train very large language models with limited RAM (on disk streaming)

- o order = n-gram order
- -S memory = How much memory to use.
 - NUM% = percentage of physical memory
 - NUM[b/K/M/G/T] = specified amount in bytes, kilo bytes, etc.

- Faster Training
- Faster Decoding
- Moses Server
- Data and domain adaptation
- Instructions to decoder
- Input formats
- Output formats
- Incremental Training

- Faster Training
- Faster Decoding
 - Multi-threading
 - Speed vs. Memory
 - Speed vs. Quality

. . .

- Faster Training
- Faster Decoding
 - Multi-threading
 - Speed vs. Memory
 - Speed vs. Quality

. . .

Faster Decoding

• Multi-threaded decoding

.../moses --threads NUM

• Easy speed-up

- Faster Training
- Faster Decoding
 - Multi-threading
 - Speed vs. Memory
 - Speed vs. Quality

. . .

Speed vs. Memory Use

Process size

Typical Europarl file sizes:

- Language model
 - 170 MB (trigram)
 - 412 MB (5-gram)
- Phrase table
 - 11GB
- Lexicalized reordering
 - 9.4GB
- \rightarrow total = 20.8 GB

Speed vs. Memory Use

- Load into memory
 - long load time
 - large memory usage
 - fast decoding
- Load-on-demand
 - store indexed model on disk
 - binary format
 - minimal start-up time, memory usage
 - slower decoding

Create Binary Tables

Phrase Table:

Phrase-based

```
export LC_ALL=C
cat pt.txt | sort | ./processPhraseTable -ttable 0 0 - \
    -nscores 4 -out out.file
```

```
export LC_ALL=C ./CreateOnDiskPt 1 1 4 100 2 pt.txt out.folder
```

Hierarchical / Syntax

```
export LC_ALL=C ./CreateOnDiskPt 1 1 4 100 2 pt.txt out.folder
```

Lexical Reordering Table:

```
export LC_ALL=C
processLexicalTable -in r-t.txt -out out.file
```

Language Models (later)

Change ini file

Phrase Table

[feature]

PhraseDictionaryBinary name=TranslationModel0 table-limit=20 \ num-features=4 path=/.../phrase-table

Hierarchical / Syntax

[feature]

PhraseDictionaryOnDisk name=TranslationModel0 table-limit=20 \ num-features=4 path=/.../phrase-table

Lexical Reordering Table automatically detected

Compact Phrase Table

- Memory-efficient data structure
 - phrase table 6-7 times smaller than on-disk binary table
 - lexical reordering table 12-15 times smaller than on-disk binary table
- Stored in RAM
- May be memory mapped
- Train with processPhraseTableMin
- Specify with PhraseDictionaryCompact

IRSTLM

- Developed by FBK-irst, Trento, Italy
- Create a binary format which can be read from disk as needed
 - reduces memory but slower decoding
- Quantization of probabilities
 - reduces memory but lose accuracy
 - probability stored in 1 byte instead of 4 bytes
- Not multithreaded

IRSTLM in Moses

- Compile the decoder with IRSTLM library
 ./configure --with-irstlm=[root dir of the IRSTLM toolkit]
- Create binary format:

```
compile-lm language-model.srilm language-model.blm
```

• Load-on-demand:

rename file .mm

• Change ini file to use IRSTLM implementation

[feature]

IRSTLM name=LMO factor=0 path=/.../lm order=5

KENLM

- Developed by Kenneth Heafield (CMU / Edinburgh / Stanford)
- Fastest and smallest language model implementation
- Compile from LM trained with SRILM

build_binary model.lm model.binlm

• Specify in decoder

[feature]

KENLM name=LMO factor=0 path=/.../model.binlm order=5

New: OSM (Operations Sequence Model)⁴

- A model that
 - considers source and target contextual information across phrases
 - integrates translation and reordering into a single model
- Convert a bilingual sentence to a sequence of operations
 - Translate (Generate a minimal translation unit)
 - Reordering (Insert a gap or Jump)
- \bullet P(e,f,a) = N-gram model over resulting operation sequences
- Overcomes phrasal independence assumption
 - Considers source and target contextual information across phrases
- Better reordering model
 - Translation and reordering decisions influence each
 - Handles local and long distance reorderings in a unified manner
- No spurious phrasal segmentation problem
- Average gain of +0.40 on news-test2013 across 10 pairs

New: OSM (Operations Sequence Model)⁵

Operations

- o₁ Generate (Sie, They)
- o₂ Generate (würden, would)
- o₃ Insert Gap
- o₄ Generate (stimmen, vote)
- o₅ Jump Back (1)
- o₆ Generate (gegen, against)
- o₇ Generate (Sie, you)

Context Window

Model:

$$p_{osm}(F,E,A) = p(o_1,...,o_N) = \Pi_i p(o_i|o_{i-n+1}...o_{i-1})$$

- Faster Training
- Faster Decoding
 - Multi-threading
 - Speed vs. Memory
 - Speed vs. Quality

. . .

Speed vs. Quality

Speed vs. Quality

- Decoder search creates very large number of partial translations ("hypotheses")
- ullet Decoding time \sim number of hypotheses created
- ullet Translation quality \sim number of hypothesis created

Hypothesis Stacks

- Phrase-based: One stack per number of input words covered
- ullet Number of hypothesis created = sentence length imes stack size imes applicable translation options

Pruning Parameters

- Regular beam search
 - --stack NUM max. number of hypotheses contained in each stack
 - --ttable-limit NUM max. num. of translation options per input phrase
 - search time roughly linear with respect to each number
- Cube pruning (fixed number of hypotheses are added to each stack)
 - --search-algorithm 1 turns on cube pruning
 - --cube-pruning-pop-limit NUM number of hypotheses added to each stack
 - search time roughly linear with respect to pop limit
 - note: stack size and translation table limit have little impact in speed

Syntax Hypothesis Stacks

- One stack per input word span
- Number of hypothesis created = sentence length² × number of hypotheses added to each stack

--cube-pruning-pop-limit NUM number of hypotheses added to each stack

- Faster Training
- Faster Decoding
- Moses Server
- Data and domain adaptation
- Instructions to decoder
- Input formats
- Output formats
- Incremental Training

Moses Server

Moses command line:

```
.../moses -f [ini] < [input file] > [output file]
```

- Not practical for commercial use
- Moses Server:

```
.../mosesserver -f [ini] --server-port [PORT] --server-log [LOG]
```

- Accept HTTP input. XML SOAP format
- Client:
 - Communicate via http
 - Example clients in Java and Perl
 - Write your own client
 - Integrate into your own application

- Faster Training
- Faster Decoding
- Moses Server
- Data and domain adaptation
 - Train everything together
 - Secondary phrase table
 - Domain indicator features
 - Interpolated language models

Data

- ullet Parallel corpora o translation model
 - sentence-aligned translated texts
 - translation memories are parallel corpora
 - dictionaries are parallel corpora
- ullet Monolingual corpora o language model
 - text in the target language
 - billions of words easy to handle

96 ON BURNERS

Domain Adaptation

- The more data, the better
- The more in-domain data, the better (even in-domain monolingual data very valuable)
- Always tune towards target domain

- Faster Training
- Faster Decoding
- Moses Server
- Data and domain adaptation
 - Train everything together
 - Secondary phrase table
 - Domain indicator features
 - Interpolated language models

98 ON BUILDING

Default: Train Everything Together

- Easy to implement
 - Concatenate new data with existing data
 - Retrain
- Disadvantages:
 - Slower training for large amount of data
 - Cannot weight old and new data separately

Default: Train Everything Together

Specification in EMS:

• Phrase-table

```
[CORPUS]
[CORPUS:in-domain]
raw-stem = ....
[CORPUS:background]
raw-stem = ....
```

LM

```
[LM]
[LM:in-domain]
raw-corpus = ....
[LM:background]
raw-corpus = ....
```


- Faster Training
- Faster Decoding
- Moses Server
- Data and domain adaptation
 - Train everything together
 - Secondary phrase table
 - Domain indicator features
 - Interpolated language models

Secondary Phrase Table

- Train initial phrase table and LM on baseline data
- Train secondary phrase table and LM new/in-domain data
- Use both in Moses

```
[feature]
PhraseDictionaryMemory path=.../path.1
PhraseDictionaryMemory path=.../path.2

[mapping]
0 T 0
1 T 1
```

Secondary phrase table

Secondary Phrase Table

Secondary LM

```
[feature]
KENLM path=.../path.1
KENLM path=.../path.2
```

- Can give different weights for primary and secondary tables
- Not integrated into the EMS

Secondary Phrase Table

- Terminology/Glossary database
 - fixed translation
 - per client, project, etc
- Primary phrase table
 - backoff to 'normal' phrase-table if no glossary term

```
[feature]
PhraseDictionaryMemory path=.../glossary
PhraseDictionaryMemory path=.../normal.phrase.table

[mapping]
0 T 0
1 T 1

[decoding-graph-backoff]
0
1
```


- Faster Training
- Faster Decoding
- Moses Server
- Data and domain adaptation
 - Train everything together
 - Secondary phrase table
 - Domain indicator features
 - Interpolated language models

Domain Indicator Features

- One translation model
- Flag each phrase pair's origin
 - indicator: binary flag if it occurs in specific domain
 - ratio: how often it occurs in specific domain relative to all
 - subset: similar to indicator, but if in multiple domains, marked with multipledomain feature
- In EMS:

```
[TRAINING]
domain-features = "indicator"
```


- Faster Training
- Faster Decoding
- Moses Server
- Data and domain adaptation
 - Train everything together
 - Secondary phrase table
 - Domain indicator features
 - Interpolated language models

107 ON BURE

Interpolated Language Models

- Train one language model per corpus
- Combine them by weighting each according to its importance
 - weights obtained by optimizing perplexity
 of resulting language model on tuning set
 (not the same as machine translation quality)
 - models are linearly combined
- EMS provides a section [INTERPOLATED-LM] that needs to be commented out
- Alternative: use multiple language models (disadvantage: larger process, slower)

Advanced Features

- Faster Training
- Faster Decoding
- Moses Server
- Data and domain adaptation
- Instructions to decoder
- Input formats
- Output formats
- Incremental Training

Specifying Translations with XML

• Translation tables for numbers?

f	e	p(f e)
2003	2003	0.7432
2003	2000	0.0421
2003	year	0.0212
2003	the	0.0175
2003	•••	•••

• Instruct the decoder with XML instruction

```
the revenue for <num translation="2003"> 2003 </num> is higher than ...
```

Deal with different number formats

```
er erzielte <num translation="17.55"> 17.55 </num> Punkte .
```


Specifying Translations with XML

```
./moses -xml-input [exclusive | inclusive | constraint ]
the revenue for <num translation="2003"> 2003 </num> is higher than ...
```

Three types of XML input:

- Exclusive
 Only possible translation is given in XML
- Inclusive
 Translation is given in XML is in addition to phrase-table
- Constraint
 Only use translations from phrase-table if it match XML specification

Constraint XML

- Specifically for translating terminology
 - consistently translate particular phrase in a document
 - may have learned larger phrase pairs that contain terminology term
- Example:

• Allows use of phrase pair only if maps Windows to Windows

Placeholders

• Translate:

- You owe me 100 dollars!
- You owe me 200 dollars!
- You owe me 9.56 dollars!
- Problem: need translations for
 - **-** 100
 - **-** 200
 - -9.56
- Some things are better off being handled by simple rules:
 - Numbers
 - Dates
 - Currency
 - Named entities

Placeholders

• Input
You owe me 100 dollars!

• Replace numbers with @num@

You owe me @num@ dollars!

• Specification

You owe me <ne translation="@num@" entity="100">@num@</ne> dollars!

Walls and Zones

- Specification of reordering constraints
- Zone
 sequence to be translated without reordering with outside material
- Wall hard reordering constraint, no words may be reordered across
- Local wall wall within a zone, not valid outside zone

115 ON BUYERS

Walls and Zones: Examples

• Requiring the translation of quoted material as a block

```
He said <zone> " yes " </zone> .
```

Hard reordering constraint

```
Number 1 : <wall/> the beginning .
```

Local hard reordering constraint within zone

```
A new plan <zone> ( <wall/> maybe not new <wall/> ) </zone> emerged .
```

Nesting

```
The \langle zone \rangle " new \langle zone \rangle ( old ) \langle zone \rangle " \langle zone \rangle proposal .
```


Preserving Markup

How do you translate this:

```
<h1>My Home Page</h1>
I really like to <b>eat</b> chicken!
```

• Solution 1: XML translations, walls and zones

```
<x translation="<h1>"/> <wall/> My Home Page <wall/>
<x translation="</h1>"/>

I really like to <zone><x translation="<b>"/> <wall/> eat <wall/>
<x translation="</b>"/> </zone> chicken!
```

(note: special XML characters like < and > need to be escaped)

Preserving Markup

- Solution 2: Handle markup externally
 - track word positions and their markup

Ι	really	like	to	<b $>eat$	$\operatorname{chicken}$!
1	2	3	4	5	6	7
_	_	_	_		_	_

translate without markup

I really like to eat chicken!

- keep word alignment to source

re-insert markup

Ich esse wirklich gerne Hühnchen!

Transliteration

- Languages are written in different scripts
 - Russian, Bulgarian and Serbian written in Cyrillic script
 - Urdu, Farsi and Pashto written in Arabic script
 - Hindi, Marathi and Nepalese written in Devanagri
- Transliteration can be used to translate OOVs and Named Entities
- Problem: Transliteration corpus is not always available
- Naive Solution:
 - Crawl training data from Wikipedia titles
 - Build character-based transliteration model
 - Replace OOV words with 1-best transliteration

Transliteration

- 2 methods to integrate into MT
- Post-decoding method
 - Use language model to pick best transliteration
 - Transliteration features
- In-decoding method
 - Integrate transliteration inside decoder
 - Words can be translated OR transliterated

Transliteration

• EMS:

```
[TRAINING]
transliteration-module = "yes"
```

Post-processing method

```
post-decoding-transliteration = "yes"
```

In-decoding method

```
in-decoding-transliteration = "yes"
transliteration-file = /list of words to be transliterated/
```

Advanced Features

- Faster Training
- Faster Decoding
- Moses Server
- Data and domain adaptation
- Instructions to decoder
- Input formats
- Output formats
- Incremental Training

Example: Misspelt Words

• Misspelt sentence:

The room was *exellent but the hallway was *filty.

- Strategies for dealing with spelling errors:
 - Create correct sentence with correction
 - × problem: if not corrected properly, adds more errors
 - Create many sentences with different corrections
 - × problem: have to decode each sentence, slow

Confusion Network

The room was *exellent but the hallway was *filty .

Input to decoder:

Let the decoder decide

• Correct sentence

Trung Quốc cảnh báo Mỹ về luật tiền tệ

Something a non-native person might type

Trung Quoc canh bao My ve luat tien te

Confusion network

Confusion Network Specification

Argument on command line

```
./moses -inputtype 1
```

Input to moses

```
the 1.0
room 1.0
was 1.0
excel 0.33 excellent 0.33 excellence 0.33
but 1.0
the 1.0
hallway 1.0
was 1.0
guilty 0.5 filthy 0.5
```

126 OF N B IN S

Lattice

Example: Chinese Word Segmentation

Unsegmented sentence

硬质合金号称"工业牙齿"

Incorrect segmention

硬质 合 金 号称 "工 业牙 齿 "

• Correct segmention

硬质合金号称"工业牙齿"

Lattice

Input to decoder:

Let the decoder decide

Example: Compound Splitting

• Input sentence

einen wettbewerbsbedingten preissturz

Different compound splits

• Let the decoder decide

Lattice Specification

Command line argument

./moses -inputtype 1

Input to Moses (PLF format - Python Lattice Format)

```
(
 ('einen', 1.0, 1),
  ('wettbewerbsbedingten', 0.5, 2),
 ('wettbewerbs', 0.25, 1),
  ('wettbewerb', 0.25, 1),
),
 ('bedingten', 1.0, 1),
),
 ('preissturz', 0.5, 2),
 ('preis', 0.5, 1),
 ('sturz', 1.0, 1),
),
```

Advanced Features

- Faster Training
- Faster Decoding
- Moses Server
- Data and domain adaptation
- Instructions to decoder
- Input formats
- Output formats
- Incremental Training

N-Best List

Input

es gibt verschiedene andere meinungen.

Best Translation

there are various different opinions.

Next nine best translations

```
there are various other opinions.

there are different different opinions.

there are other different opinions.

we are various different opinions.

there are various other opinions of.

it is various different opinions.

there are different other opinions.

it is various other opinions.

it is a different opinions.
```

132 ON NEW YORK

Uses of N-Best Lists

- Let the translator choose from possible translations
- Reranker
 - add more knowledge sources
 - can take global view
 - coherency of whole sentence
 - coherency of document
- Used to tune component weights

N-Best Lists in Moses

Argument to command line

./moses -n-bestlist n-best.file.txt [distinct] 100

Output

```
0 ||| there are various different opinions . ||| d: 0 lm: -21.6664 w: -6 ... ||| -113.734  
0 ||| there are various other opinions . ||| d: 0 lm: -25.3276 w: -6 ... ||| -114.004  
0 ||| there are different different opinions . ||| d: 0 lm: -27.8429 w: -6 ... ||| -117.738  
0 ||| there are other different opinions . ||| d: -4 lm: -25.1666 w: -6 ... ||| -118.007  
0 ||| we are various different opinions . ||| d: 0 lm: -28.1533 w: -6 ... ||| -118.142  
0 ||| there are various other opinions of . ||| d: 0 lm: -33.7616 w: -7 ... ||| -118.153  
0 ||| it is various different opinions . ||| d: 0 lm: -29.8191 w: -6 ... ||| -118.222  
0 ||| there are different other opinions . ||| d: 0 lm: -30.426 w: -6 ... ||| -118.236  
0 ||| it is various other opinions . ||| d: 0 lm: -32.6824 w: -6 ... ||| -118.395  
0 ||| it is a different opinions . ||| d: 0 lm: -20.1611 w: -6 ... ||| -118.434
```

Search Graph

Input

er geht ja nicht nach hause

• Return internal structure from the decoder

• Encode millions of other possible translations (every path through the graph = 1 translation)

- Let the translator choose
 - Individual words or phrases
 - 'Suggest' next phrase
- Reranker
- Used to tune component weights
 - More difficult than with
 n-best list

[1] New probe into US attorney affair >>
Neuer Vorstoß in den USA Anwalt neue Affäre sonde (9 edits)

neue sonde								
ent	er in	×						
new	probe	into	US	attorney	affair			
neue	Sonde		in	Anwalt	die			
die	testet	in	dle	Staatsanwalt	Affäre			
		in	in	Anwälte	dle			
		in	dle	Testamentsvollstreckers	sle			
		in	dle	Vollmachten	Angelegenheit			
		auch	In	Anwalt	um			
		in	der		Sache			
		ZU	amerikanische		haben			
		in	der		Geschichte			
		nach	die		das			

Search Graphs in Moses

Argument to command line

./moses -output-search-graph search-graph.file.txt

Argument to command line

```
0 hyp=0 stack=0 forward=36 fscore=-113.734
0 hyp=75 stack=1 back=0 score=-104.943 ... covered=5-5 out=.
0 hyp=72 stack=1 back=0 score=-8.846 ... covered=4-4 out=opinions
0 hyp=73 stack=1 back=0 score=-10.661 ... covered=4-4 out=opinions of
```

- hyp hypothesis id
- stack how many words have been translated
- score total weighted score
- covered which words were translated by this hypothesis
- out target phrase

Advanced Features

- Faster Training
- Faster Decoding
- Moses Server
- Data and domain adaptation
- Instructions to decoder
- Input formats
- Output formats
- Incremental Training

Advanced Features

- Faster Training
- Faster Decoding
- Moses Server
- Data and domain adaptation
- Instructions to decoder
- Input formats
- Output formats
- Incremental Training

Incremental Training

Incremental Training

- Incremental word alignment
 - requires modified version of GIZA++(available at http://code.google.com/p/inc-giza-pp/)
 - only works for HMM alignment (not the common IBM Model 4)
- Translation model is defined by parallel corpus

```
PhraseDictionaryBitextSampling \
   path=/path/to/corpus \
   L1=source language extension \
   L2=target language extension
```


Update Word Alignment

- Uses original word alignment models (with additional model files stored after training)
- Incremental GIZA++ loads model
- New sentence pairs is aligned on the fly
- Typically, GIZA++ processes are run in both directions, symmetrized

Update Translation Model

- Translation table is stored as word-aligned parallel corpus
- Update = add word aligned sentence pair
- Updating a running Moses instance via XML RPC

Beyond Moses: CASMACAT Workbench⁴³

Acknowledgements

145 ON BURE

FOR ICON 2014

What is a Translation Rule?

Phrase-table file:

```
j'ai ||| I have ||| 0.1 0.2 0.3 0.4 ||| .....
un ||| a ||| 0.1 0.2 0.3 0.4 ||| .....
chat noir ||| black cat ||| 0.1 0.2 0.3 0.4 ||| .....
```

- Use to translate:
 - j' ai un chat noir .
 - I have a black cat .
- TODO draw hypotheses boxes here

Feature Functions

- What is a feature function?
- Gives a score to a translation.
 - partial translation
 - completed
- Example feature functions
 - Language model
 - Phrase penalty
 - Word penalty
 - Reordering model
 - Phrase-table (special feature function)
 - MANY MORE...

Implementing a Feature Function

```
class MyFeatureFunction : public Stateless/Statefull...
{
   MyFeatureFunction(string ini-line)

  void Load();
  ....
}
```


Rule: je suis || I am

Access to: Source phrase: je suis

Target phrase: I am

void EvaluateInIsolation(

source, target, scores,

estimated future scores)

Feature functions that use this:

Word Penalty Phrase penalty Language model (partial)

Input sentence: je suis etudiant.

Access to: Input sentence: je suis etudiant

Input Range: [0-1]

void EvaluateWithSourceContext(

input,
input path,
scores)

Translation Option

Feature functions that uses this:

Input feature Bag-of-word features....

Hypothesis

Rule: etudiant ||| a student

Input sentence: je suis etudiant.

Access to: Current hypothesis

Previous hypothesis Segmentation

state EvaluateWhenApplied(

hypo,

previous state,

scores)

155 ON BUYER

Example Feature Functions

- Templates
 - SkeletonStatelessFF
 - SkeletonStatefulFF
 - SkeletonLM
 - SkeletonPT
- Video Demos
 - Adding a Feature Function to Moses
 - Compiling the Moses SMT toolkit with Eclipse

Properties

- Feature Function
 - Score a translation
- Property
 - Store arbitrary information in each translation rule
 - Extra information
 - * Not just source, target, scores
 - * syntax/semantic information
 - * domain information
 - can be used by any feature function

Properties

• Standard translation rule

j' ai ||| I have ||| 0.1 0.2 0.3 0.4

• With properties information

j' ai ||| I have ||| 0.1 0.2 0.3 0.4 ||| ||| ||| {{key value}}