Exploiting Imprecise Information Sources in Sequential Decision Making Problems under Uncertainty.

Ph.D defense **N.Drougard**

doctoral school: EDSYS,

institution: ISAE-SUPAERO,

laboratory: ONERA-The French Aerospace Lab

retour sur innovation

Plan

- 1 Context
- 2 An hybrid POMDP
- 3 Benefiting from factorized structures
- 4 Conclusion/Perspectives

Plan

- 1 Context
- 2 An hybrid POMDP
- 3 Benefiting from factorized structures
- 4 Conclusion/Perspectives

Partially Observable Markov Decision Process (POMDP)

POMDP: model for sequential decision making under uncertainty

Partially Observable Markov Decision Process (POMDP)

POMDP: model for sequential decision making under uncertainty

 $s \in S$: system states;

Partially Observable Markov Decision Process (POMDP)

POMDP: model for sequential decision making under uncertainty $s \in S$: system states; $o \in O$: observations;

Partially Observable Markov Decision Process (POMDP)

Partially Observable Markov Decision Process (POMDP)

Partially Observable Markov Decision Process (POMDP)

Partially Observable Markov Decision Process (POMDP)

Partially Observable Markov Decision Process (POMDP)

belief state, strategy, criterion.

POMDP:
$$\langle S, A, O, T, O, r, \gamma \rangle$$
,

- **transition** function $T(s, a, s') = \mathbf{p}(s' \mid s, a)$;
- **observation** function $O(s', a, o') = \mathbf{p}(o' | s', a)$.

belief state, strategy, criterion.

POMDP:
$$\langle S, A, O, T, O, r, \gamma \rangle$$
,

- **transition** function $T(s, a, s') = \mathbf{p}(s' \mid s, a)$;
- **observation** function $O(s', a, o') = \mathbf{p}(o' \mid s', a)$.

belief state:
$$b_t(s) = \mathbb{P}(s_t = s | a_0, o_1, ..., a_{t-1}, o_t)$$

belief state, strategy, criterion.

POMDP:
$$\langle S, A, O, T, O, r, \gamma \rangle$$
,

- **transition** function $T(s, a, s') = \mathbf{p}(s' \mid s, a)$;
- **observation** function $O(s', a, o') = \mathbf{p}(o' \mid s', a)$.

belief state: $b_t(s) = \mathbb{P}(s_t = s | a_0, o_1, ..., a_{t-1}, o_t)$

probabilistic belief update

$$b_{t+1}(s') \propto \mathbf{p}(o' \mid s', a) \cdot \sum_{s \in \mathcal{S}} \mathbf{p}(s' \mid s, a) \cdot b_t(s)$$

belief state, strategy, criterion.

POMDP:
$$\langle S, A, O, T, O, r, \gamma \rangle$$
,

- **transition** function $T(s, a, s') = \mathbf{p}(s' | s, a)$;
- **observation** function $O(s', a, o') = \mathbf{p}(o' | s', a)$.

belief state: $b_t(s) = \mathbb{P}(s_t = s | a_0, o_1, ..., a_{t-1}, o_t)$

probabilistic belief update

$$b_{t+1}(s') \propto \mathbf{p}(o' \mid s', a) \cdot \sum_{s \in \mathcal{S}} \mathbf{p}(s' \mid s, a) \cdot b_t(s)$$

action choices: strategy $\delta(b_t) = a_t \in \mathcal{A}$

$$\text{maximizing } \mathbb{E}_{s_0 \sim b_0} \left[\sum_{t=0}^{+\infty} \gamma^t \cdot r \Big(s_t, \delta \big(b_t \big) \Big) \right] \text{, } 0 < \gamma < 1.$$

Flaws of the POMDP model POMDPs in practice

- optimal strategy computation ≥ PSPACE;
- probabilities are imprecisely known in practice;
- agent's ignorance not taken into account.

knowledge is not always encouraged with POMDPs

$$b_0(s_A)=1$$

knowledge is not always encouraged with POMDPs

$$\mathbb{E}_{s_0 \sim b_0} \left[\sum_{t=0}^{+\infty} \gamma^t \cdot r(s_t) \middle| a_0 = \tilde{\mathbf{a}} \text{ or } \mathbf{a'} \right] = r(s_0) + 5\gamma.$$
the safe action is not preferred.

Qualitative Possibility Theory

an hybrid model with possibilistic belief states

Qualitative Possibility Theory

- simplification/imprecision taken into account, BUT frequentist information lost;
- ignorance modeling;
- **p** possibilistic belief states already studied: π -POMDP (Sabbadin UAI98, Drougard UAI13, AAAI14).

Qualitative Possibility Theory

an hybrid model with possibilistic belief states

Qualitative Possibility Theory

- simplification/imprecision taken into account,
 BUT frequentist information lost;
- ignorance modeling;
- possibilistic belief states already studied: π -POMDP (Sabbadin UAI98, Drougard UAI13, AAAI14).
- POMDP with possibilistic belief states
 - → heuristic for solving POMDPs;
 - \rightarrow results in a standard MDP.

Qualitative Possibility Theory

an hybrid model with possibilistic belief states

Qualitative Possibility Theory

- simplification/imprecision taken into account,
 BUT frequentist information lost;
- ignorance modeling;
- **p** possibilistic belief states already studied: π -POMDP (Sabbadin UAI98, Drougard UAI13, AAAI14).
- POMDP with possibilistic belief states
 - → heuristic for solving POMDPs;
 - \rightarrow results in a standard MDP.
- defined distributions π :
 - $\mathbb{P} \to \pi$ transformations: pignistic, specific, ...

Qualitative Possibility Theory presentation

$$1 = l_1 > l_2 > \ldots > l_{\#\mathcal{L}} = 0$$
 form the **finite scale** \mathcal{L} .

events $e \subset \Omega$ (universe) sorted using possibility degrees $\pi(e) \in \mathcal{L}$, \neq quantified with frequencies $\mathbf{p}(e) \in [0,1]$ (probabilities).

Qualitative Possibility Theory presentation

$$1 = l_1 > l_2 > \ldots > l_{\#\mathcal{L}} = 0$$
 form the **finite scale** \mathcal{L} .

events $e \subset \Omega$ (universe) sorted using possibility degrees $\pi(e) \in \mathcal{L}$, \neq quantified with frequencies $\mathbf{p}(e) \in [0,1]$ (probabilities).

$$e_1 \neq e_2$$
, 2 events $\subset \Omega$

$$\blacksquare$$
 $\pi(e_1) < \pi(e_2) \Leftrightarrow$ " e_1 is less plausible than e_2 ";

Qualitative Possibility Theory presentation

$$1=\mathit{l}_1>\mathit{l}_2>\ldots>\mathit{l}_{\#\mathcal{L}}=0$$
 form the **finite scale** $\mathcal{L}.$

events
$$e \subset \Omega$$
 (universe) sorted using possibility degrees $\pi(e) \in \mathcal{L}$, \neq

quantified with **frequencies**
$$p(e) \in [0,1]$$
 (probabilities).

$$e_1 \neq e_2$$
, 2 events $\subset \Omega$
 $\pi(e_1) < \pi(e_2) \Leftrightarrow \text{``}e_1 \text{ is less plausible than } e_2\text{''};$

Probability (\mathbb{P}) / Possibility (Π):		
e ₁ or e ₂	$\mathbf{p}(e_1) + \mathbf{p}(e_2 \cap \overline{e_1})$	$max\left\{\pi(e_1),\pi(e_2)\right\}$
e_1 and e_2	$\mathbf{p}(e_1).\mathbf{p}(e_2 \mid e_1)$	$\min \{ \pi(e_1), \pi(e_2 \mid e_1) \}$

Plan

- 1 Context
- 2 An hybrid POMDP
- 3 Benefiting from factorized structures
- 4 Conclusion/Perspectives

belief space discretization

$$\Pi_S = \left\{ \text{ possibility distributions } \right\}: \ \#\Pi_S < +\infty$$

 $\rightarrow \mbox{belief space discretization}.$

belief space discretization

$$\Pi_S = \left\{ \text{ possibility distributions } \right\}: \ \#\Pi_S < +\infty$$

 \rightarrow belief space discretization.

$$b_t^{\pi}(s) = \pi (s_t = s \mid a_0, o_1, \dots, a_{t-1}, o_t)$$

belief space discretization

$$\Pi_{S} = \left\{ \text{ possibility distributions } \right\}: \ \#\Pi_{S} < +\infty$$

 \rightarrow belief space discretization.

$$b_t^{\pi}(s) = \pi (s_t = s \mid a_0, o_1, \dots, a_{t-1}, o_t)$$

update - possibilistic belief state

$$b_{t+1}^{\pi}(s') = \left\{ \begin{array}{cc} 1 & \text{if } \pi\left(\left.o', s' \left|\right.\right. b_{t}^{\pi}, a\right.\right) = \pi\left(\left.o' \left|\right.\right. b_{t}^{\pi}, a\right.\right) \\ \pi\left(\left.o', s' \left|\right.\right. b_{t}^{\pi}, a\right.\right) & \text{otherwise.} \end{array} \right.$$

denoted by $b_{t+1}^{\pi}(s') \propto^{\pi} \pi(o', s' \mid b_t^{\pi}, a)$

belief space discretization

$$\Pi_S = \left\{ \text{ possibility distributions } \right\}: \ \#\Pi_S < +\infty$$

 \rightarrow belief space discretization.

$$b_t^{\pi}(s) = \pi (s_t = s \mid a_0, o_1, \dots, a_{t-1}, o_t)$$

update – **possibilistic** belief state

$$b_{t+1}^{\pi}(s') = \left\{ \begin{array}{cc} 1 & \text{if } \pi\left(\left.o', s' \left|\right.\right. b_{t}^{\pi}, a\right.\right) = \pi\left(\left.o' \left|\right.\right. b_{t}^{\pi}, a\right.\right) \\ \pi\left(\left.o', s' \left|\right.\right. b_{t}^{\pi}, a\right.\right) & \text{otherwise.} \end{array} \right.$$

denoted by $b^\pi_{t+1}(s') \propto^\pi \pi\left(\left.o', s' \left|\right.\right. b^\pi_t, a\right)$

- $\blacksquare \pi(o' \mid s', a) = \max_{s' \in \mathcal{S}} \pi(o', s' \mid b_t^{\pi}, a).$

belief space discretization

$$\Pi_{S} = \left\{ \text{ possibility distributions } \right\}: \ \#\Pi_{S} < +\infty$$

 \rightarrow belief space discretization.

$$b_t^{\pi}(s) = \pi (s_t = s \mid a_0, o_1, \dots, a_{t-1}, o_t)$$

update – **possibilistic** belief state

$$b_{t+1}^{\pi}(s') = \left\{ \begin{array}{cc} 1 & \text{if } \pi\left(\left.o', s' \left|\right.\right. b_{t}^{\pi}, a\right.\right) = \pi\left(\left.o' \left|\right.\right. b_{t}^{\pi}, a\right.\right) \\ \pi\left(\left.o', s' \left|\right.\right. b_{t}^{\pi}, a\right.\right) & \text{otherwise.} \end{array} \right.$$

denoted by
$$b_{t+1}^{\pi}(s') \propto^{\pi} \pi(o', s' \mid b_t^{\pi}, a)$$

■ the update only depends on o' and a.

Pignistic transformation and transitions Pignistic transformation

numbering of the n = #S system states: $1 = b^{\pi}(s_1) \geqslant \ldots \geqslant b^{\pi}(s_n) \geqslant b^{\pi}(s_{n+1}) = 0$.

pignistic transformation – $P:\Pi_S \to \mathbb{P}_S$

$$\overline{b^\pi}(s_i) = \sum_{j=i}^{\#\mathcal{S}} \frac{b^\pi(s_j) - b^\pi(s_{j+1})}{j}.$$

- probability distribution $\overline{b^{\pi}} = \mathbf{gravity}$ center of the represented probabilistic distributions;
- Laplace principle: ignorance → uniform probability.

Pignistic transformation

Examples of pignistic transformations (red) of possibility distributions (blue)

Pignistic transformation and transitions

Transition function of epistemic states

Approximation of the probabilities over the observations:

$$\mathbf{p}(o' \mid s, a) = \sum_{s' \in \mathcal{S}} O(s', a, o') \cdot T(s, a, s');$$

$$\mathbf{p}\left(\left.o'\left|\right.\right.b^{\pi},a\right):=\sum_{s\in\mathcal{S}}\mathbf{p}\left(\left.o'\left|\right.\right.s,a\right)\cdot\overline{b^{\pi}}(s).$$

$$\Rightarrow \mathbf{p}\Big((b^{\pi})'\Big|b^{\pi},a\Big) = \sum_{\substack{o' \text{ t.q.} \\ u(b^{\pi},a,o') = (b^{\pi})'}} \mathbf{p}\left(o' \mid b^{\pi},a\right).$$

notation: if $a \in \mathcal{A}$ selected, $o' \in \mathcal{O}$ received,

$$b_{t+1}^{\pi} = u(o', a, b_t^{\pi}) = \text{ update of } b_t^{\pi}.$$

pessimistic evaluation of the rewards – necessity measure

imprecision of $b^{\pi} = \text{agent ignorance} + \text{discretization}$: **pessimistic reward** about these imprecisions.

pessimistic evaluation of the rewards - necessity measure

imprecision of $b^{\pi}=$ agent ignorance + discretization: **pessimistic reward** about these imprecisions.

Dual measure of $\Pi: 2^{\mathcal{S}} \to \mathcal{L}$

necessity \mathcal{N} such that $\forall A \subseteq \mathcal{S}$, $\mathcal{N}(A) = 1 - \Pi(\overline{A})$.

pessimistic evaluation of the rewards - necessity measure

imprecision of $b^{\pi}=$ agent ignorance + discretization: **pessimistic reward** about these imprecisions.

Dual measure of $\Pi: 2^{\mathcal{S}} \to \mathcal{L}$

necessity $\mathcal N$ such that $\forall A\subseteq \mathcal S$, $\mathcal N(A)=1-\Pi(\overline A)$.

 $r_1 > r_2 > \ldots > r_{k+1} = 0$ represents elements of $\{r(s, a) | s \in \mathcal{S}\}$.

Choquet integral of r with respect to $\mathcal N$

$$Ch(r,\mathcal{N}) = \sum_{i=1}^{\kappa} (r_i - r_{i+1}) \cdot \mathcal{N}(\lbrace r(s) \geqslant r_i \rbrace)$$
 (1)

(2)

pessimistic evaluation of the rewards – necessity measure

imprecision of $b^{\pi}=$ agent ignorance + discretization: **pessimistic reward** about these imprecisions.

Dual measure of $\Pi: 2^{\mathcal{S}} \to \mathcal{L}$

necessity $\mathcal N$ such that $\forall A\subseteq \mathcal S$, $\mathcal N(A)=1-\Pi(\overline A)$.

 $r_1 > r_2 > \ldots > r_{k+1} = 0$ represents elements of $\{r(s, a) | s \in \mathcal{S}\}$.

Choquet integral of r with respect to $\mathcal N$

$$Ch(r,\mathcal{N}) = \sum_{i=1}^{k} (r_i - r_{i+1}) \cdot \mathcal{N}(\lbrace r(s) \geqslant r_i \rbrace)$$
 (1)

$$= \sum_{i=1}^{\#\mathcal{L}-1} (l_i - l_{i+1}) \cdot \min_{\substack{s \in \mathcal{S} \text{ s.t.} \\ b^{\pi}(s) \geqslant l_i}} r(s).$$
 (2)

notation $\mathcal{L} = \{ l_1 = 1, l_2, l_3, \dots, 0 \}.$

back to the example about ignorance

back to the example about ignorance

$$b_{1}^{\pi}(s_{B}) = 1$$
 $r(s_{B}) = 10$
 $c_{1}^{\pi}(s_{C}) = 1$ $r(s_{C}) = 0$
 $c_{2}^{\pi}(s_{C}) = 1$ $r(s_{C}) = 0$
 $c_{3}^{\pi}(s_{C}) = 1$ $r(s_{C}) = 0$
 $c_{4}^{\pi}(s_{C}) = 1$ $r(s_{C}) = 0$
 $c_{5}^{\pi}(s_{C}) = 1$ $r(s_{C}) = 0$
 $c_{5}^{\pi}(s_{C}) = 1$ $r(s_{C}) = 0$
 $c_{5}^{\pi}(s_{C}) = 0$
 $c_{5}^{\pi}(s_{C}) = 0$

•
$$Ch(r, N_{b_1^{\pi}} | a_0 = \tilde{a}) = r(s_D, \tilde{a}) = 5,$$

•
$$Ch(r, N_{b_1^{\pi}} | a_0 = a') = \min_{s \in \mathcal{S}} r(s, a') = 0.$$

the safe action is prefered! dispersion reduced

back to the example about ignorance

$$b_1^{\pi}(s_B) = 1$$
 $r(s_B) = 10$
 $c_1^{\pi}(s_B) = 1$ $r(s_B) = 10$
 $c_2^{\pi}(s_C) = 1$ $r(s_C) = 0$
 $c_3^{\pi}(s_D) = 0$
 $c_4^{\pi}(s_D) = 0$
 $c_5^{\pi}(s_A) = 1$ $c_5^{\pi}(s_D) = 1$

- $Ch(r, N_{b_1^{\pi}} | a_0 = \tilde{a}) = r(s_D, \tilde{a}) = 5,$
- $Ch(r, N_{b_1^{\pi}} | a_0 = a') = \min_{s \in \mathcal{S}} r(s, a') = 0.$

the safe action is prefered! dispersion reduced

if $\mathcal{N}_{b_1^{\pi}}$ replaced by $b_1 \Rightarrow \mathit{Ch}(r,b_1) = \mathbb{E}_{s \sim b_1} \left[r(s,a) \right]$.

translation summary

```
input: a POMDP \langle \mathcal{S}, \mathcal{A}, \mathcal{O}, T, O, r, \gamma \rangle; output: the MDP \langle \tilde{\mathcal{S}}, \mathcal{A}, \tilde{T}, \tilde{r}, \gamma \rangle:
```

translation summary

```
input: a POMDP \langle \mathcal{S}, \mathcal{A}, \mathcal{O}, T, O, r, \gamma \rangle; output: the MDP \langle \tilde{\mathcal{S}}, \mathcal{A}, \tilde{T}, \tilde{r}, \gamma \rangle:
```

■ state space $\tilde{S} = \Pi_{S}$, the set of the possibility distributions over S;

translation summary

```
input: a POMDP \langle S, A, \mathcal{O}, T, O, r, \gamma \rangle; output: the MDP \langle \tilde{S}, A, \tilde{T}, \tilde{r}, \gamma \rangle:
```

- state space $\tilde{S} = \Pi_{S}$, the set of the possibility distributions over S;
- $\forall b^{\pi}, (b^{\pi})'$ possibilistic belief states $\in \Pi_{\mathcal{S}}, \forall a \in \mathcal{A},$ transitions $\tilde{T}(b^{\pi}, a, (b^{\pi})') = \mathbf{p}((b^{\pi})'|b^{\pi}, a);$

translation summary

```
input: a POMDP \langle S, A, \mathcal{O}, T, O, r, \gamma \rangle; output: the MDP \langle \tilde{S}, A, \tilde{T}, \tilde{r}, \gamma \rangle:
```

- state space $\tilde{S} = \Pi_{S}$, the set of the possibility distributions over S;
- $\forall b^{\pi}, (b^{\pi})'$ possibilistic belief states $\in \Pi_{\mathcal{S}}, \forall a \in \mathcal{A},$ transitions $\tilde{T}(b^{\pi}, a, (b^{\pi})') = \mathbf{p}((b^{\pi})'|b^{\pi}, a);$
- reward $\tilde{r}(a, b^{\pi}) = Ch(r(a, .), \mathcal{N}_{b^{\pi}}),$ $\mathcal{N}_{b^{\pi}}$ necessity measure computed from b^{π} .

resulting MDP translation summary

input: a POMDP $\langle S, A, \mathcal{O}, T, O, r, \gamma \rangle$; output: the MDP $\langle \tilde{S}, A, \tilde{T}, \tilde{r}, \gamma \rangle$:

- state space $\tilde{S} = \Pi_{S}$, the set of the possibility distributions over S;
- $\forall b^{\pi}, (b^{\pi})'$ possibilistic belief states $\in \Pi_{\mathcal{S}}, \forall a \in \mathcal{A},$ transitions $\tilde{T}(b^{\pi}, a, (b^{\pi})') = \mathbf{p}((b^{\pi})'|b^{\pi}, a);$
- reward $\tilde{r}(a, b^{\pi}) = Ch(r(a, .), \mathcal{N}_{b^{\pi}}),$ $\mathcal{N}_{b^{\pi}}$ necessity measure computed from b^{π} .

criterion:
$$\mathbb{E}_{(b_t^{\pi}) \sim \tilde{T}} \left[\sum_{t=0}^{+\infty} \gamma^t \cdot \tilde{r} \left(b_t^{\pi}, d_t \right) \right]$$
.

hybrid POMDP and π -POMDP

differences with possibilistic models

	hybrid POMDP	$\pi ext{-POMDP}$
transitions	probabilities	qualitative possibility
rewards	quantitative $\in \mathbb{R}$	qualitative $\in \mathcal{L}$
situation	-some imprecisions -large POMDP	few quantitative
issues	π definition	commensurability
in practice	MDP	$\pi ext{-MDP}$

hybrid POMDP and π -POMDP

differences with possibilistic models

	hybrid POMDP	$\pi ext{-POMDP}$
transitions	probabilities	qualitative possibility
rewards	quantitative $\in \mathbb{R}$	qualitative $\in \mathcal{L}$
situation	-some imprecisions -large POMDP	few quantitative
issues	π definition	commensurability
in practice	MDP	$\pi ext{-MDP}$

hybrid model:

- only belief states are possibilistic:
- \rightarrow agent knowledge = **possibility** distribution;
 - probabilistic dynamics:
- → approximated (prob.) transition between epistemic states.

Plan

- 1 Context
- 2 An hybrid POMDP
- 3 Benefiting from factorized structures
- 4 Conclusion/Perspectives

factorized POMDP definition

■ S described by $S = \{s_1, \ldots, s_m\}$: $S = s_1 \times \ldots \times s_m$. Notation: $S' = \{s'_1, \ldots, s'_m\}$;

definition

- S described by $S = \{s_1, \ldots, s_m\}$: $S = s_1 \times \ldots \times s_m$. Notation: $S' = \{s'_1, \ldots, s'_m\}$;
- transition function of s'_j , $T^a_j(\mathbb{S}, s'_j) = \mathbf{p}\left(s'_j \mid \mathbb{S}, a\right), \ \forall j \in \{1, \dots, m\} \text{ et } \forall a \in \mathcal{A};$

definition

- S described by $S = \{s_1, \ldots, s_m\}$: $S = s_1 \times \ldots \times s_m$. Notation: $S' = \{s'_1, \ldots, s'_m\}$;
- transition function of s'_j , $T^a_j(\mathbb{S}, s'_j) = \mathbf{p}\left(s'_j \mid \mathbb{S}, a\right)$, $\forall j \in \{1, \dots, m\}$ et $\forall a \in \mathcal{A}$;
- \mathbb{O} described by $\mathbb{O} = \{o_1, \ldots, o_n\}: \mathcal{O} = o_1 \times \ldots \times o_n;$

definition

- S described by $S = \{s_1, ..., s_m\}$: $S = s_1 \times ... \times s_m$. Notation: $S' = \{s'_1, ..., s'_m\}$;
- transition function of s'_j , $T^a_j(\mathbb{S}, s'_j) = \mathbf{p}\left(s'_j \mid \mathbb{S}, a\right)$, $\forall j \in \{1, \dots, m\}$ et $\forall a \in \mathcal{A}$;
- lacksquare \mathcal{O} described by $\mathbb{O} = \{o_1, \ldots, o_n\}$: $\mathcal{O} = o_1 \times \ldots \times o_n$;
- **observation** function of o'_i , $O^a_i(\mathbb{S}', o'_i) = \mathbf{p}(o'_i | \mathbb{S}', a), \forall i \in \{1, \dots, n\} \text{ et } \forall a \in \mathcal{A}.$

definition

- S described by $S = \{s_1, \ldots, s_m\}$: $S = s_1 \times \ldots \times s_m$. Notation: $S' = \{s'_1, \ldots, s'_m\}$;
- **transition** function of s'_j , $T^a_j(\mathbb{S}, s'_j) = \mathbf{p}\left(s'_j \mid \mathbb{S}, a\right), \forall j \in \{1, \dots, m\} \text{ et } \forall a \in \mathcal{A};$
- lacksquare \mathcal{O} described by $\mathbb{O} = \{o_1, \ldots, o_n\}$: $\mathcal{O} = o_1 \times \ldots \times o_n$;
- **observation** function of o'_i , $O^a_i(\mathbb{S}', o'_i) = \mathbf{p}(o'_i | \mathbb{S}', a), \forall i \in \{1, \dots, n\} \text{ et } \forall a \in \mathcal{A}.$

independences:

$$o orall s_i', s_j' \in \mathbb{S}', \qquad s_i' \perp\!\!\!\perp s_j' \mid \{\mathbb{S}, a \in \mathcal{A}\},$$

$$\rightarrow \forall o_i', o_i' \in \mathbb{O}', \quad o_i' \perp\!\!\!\perp o_i' \mid \{\mathbb{S}', a \in \mathcal{A}\}.$$

some variables does not interact with each other

variables about the current system state,

variable s'_j about the **next** state.

some variables does not interact with each other

variables about the current system state,

$$s_k o s_j'$$

 $\exists a \in \mathcal{A}$, such that

 $T_j^a(\mathbb{S}, s_j')$ depends on s_k .

some variables does not interact with each other

variables about the current system state,

concerning observation variables

next state

concerning observation variables

$$s_j' o o_i'$$
 \Leftrightarrow $\exists a \in \mathcal{A}, ext{ such that } O_i^a(\mathbb{S}', o_i')$ depends on s_i' .

concerning observation variables

$$s_j' o o_i'$$
 \Leftrightarrow $\exists a \in \mathcal{A}, ext{ such that}$ $O_i^a(\mathbb{S}', o_i')$ depends on $s_j'.$

concerning observation variables

next state

concerning observation variables

 $\exists a \in \mathcal{A}, \text{ such that}$ $O_i^a(\mathbb{S}', o_i')$ depends on s_i' .

concerning observation variables

 $s_j o o_i$ \Leftrightarrow $\exists a \in \mathcal{A}, \text{ such that}$ $O_i^a(\mathbb{S}', o_i')$ depends on s_i' .

concerning observation variables

Rewritings of parameters **PROBABILISTIC** parameters

$$T_j^a(\mathbb{S}, s_j') = T_j^a(\mathcal{P}(s_j'), s_j');$$

$$O_j^a(\mathbb{S}', o_i') = O_j^a(\mathcal{P}(o_i'), o_i').$$

$$O_i^a(\mathbb{S}',o_i') = O_i^a(\mathcal{P}(o_i'),o_i')$$

Rewritings of parameters **PROBABILISTIC** parameters

$$T_j^a\left(\mathbb{S},s_j'\right)=T_j^a\left(\mathcal{P}(s_j'),s_j'\right);$$

$$O_i^a(\mathbb{S}',o_i') = O_i^a(\mathcal{P}(o_i'),o_i').$$

consequences on the joint distribution

$$\mathbf{p}\left(o_{i}^{\prime}, \mathcal{P}(o_{i}^{\prime}) \mid \mathbb{S}, a\right) = O_{i}^{a}\left(\mathcal{P}(o_{i}^{\prime}), o_{i}^{\prime}\right) \cdot \prod_{s_{j}^{\prime} \in \mathcal{P}(o_{i}^{\prime})} T_{i}^{a}\left(\mathcal{P}(s_{j}^{\prime}), s_{j}^{\prime}\right)$$
$$= \mathbf{p}\left(o_{i}^{\prime}, \mathcal{P}(o_{i}^{\prime}) \mid \mathcal{Q}(o_{i}^{\prime}), a\right).$$

Rewritings of parameters PROBABILISTIC parameters

- $T_j^a\left(\mathbb{S},s_j'\right)=T_j^a\left(\mathcal{P}(s_j'),s_j'\right);$
- $O_i^a(\mathbb{S}',o_i') = O_i^a(\mathcal{P}(o_i'),o_i').$

consequences on the joint distribution

$$\begin{aligned} \mathbf{p}\left(o_{i}^{\prime}, \mathcal{P}(o_{i}^{\prime}) \mid \mathbb{S}, a\right) &= O_{i}^{a}\left(\mathcal{P}(o_{i}^{\prime}), o_{i}^{\prime}\right) \cdot \prod_{s_{j}^{\prime} \in \mathcal{P}(o_{i}^{\prime})} T_{i}^{a}\left(\mathcal{P}(s_{j}^{\prime}), s_{j}^{\prime}\right) \\ &= \mathbf{p}\left(o_{i}^{\prime}, \mathcal{P}(o_{i}^{\prime}) \mid \mathcal{Q}(o_{i}^{\prime}), a\right). \end{aligned}$$

observation probabilities

epistemic state

$$b^\pi(\mathbb{S}) \xrightarrow{\mathsf{marginalization}} b^\pi(\mathcal{Q}(o_i')) \xrightarrow{\mathsf{pignistic}} \overline{b^\pi}(\mathcal{Q}(o_i'))$$

$$\mathbf{p}\left(\left.o_{i}'\right|\ b^{\pi},a\right) = \sum_{2^{\mathcal{P}\left(o_{i}'\right)}\ 2^{\mathcal{Q}\left(o_{i}'\right)}}\mathbf{p}\left(\left.o_{i}',\mathcal{P}(o_{i}')\right|\ \mathcal{Q}(o_{i}'),a\right)\cdot\overline{b^{\pi}}\big(\mathcal{Q}(o_{i}')\big)$$

Parameters rewritings POSSIBILISTIC parameters

$$\blacksquare \pi (s_i' \mid \mathbb{S}, a) = \pi (s_i' \mid \mathcal{P}(s_i'), a);$$

$$\blacksquare \pi(o'_i | S', a) = \pi(o'_i | \mathcal{P}(o'_i), a).$$

Parameters rewritings POSSIBILISTIC parameters

$$\blacksquare \pi(s_i' \mid \mathbb{S}, a) = \pi(s_i' \mid \mathcal{P}(s_i'), a);$$

$$\blacksquare \pi(o'_i \mid \mathbb{S}', a) = \pi(o'_i \mid \mathcal{P}(o'_i), a).$$

marginal possibilistic belief states

$$\forall o_i' \in \mathbb{O}$$
,

$$b_{t+1}^{\pi}\Big(\mathcal{P}(o_i')\Big) \propto^{\pi} \pi\Big(o_i', \mathcal{P}(o_i')\Big|a_0, o_1, \ldots, a_{t-1}, o_t\Big)$$

Parameters rewritings POSSIBILISTIC parameters

$$\blacksquare \pi(s_i' \mid \mathbb{S}, a) = \pi(s_i' \mid \mathcal{P}(s_i'), a);$$

$$\pi (o'_i | \mathbb{S}', a) = \pi (o'_i | \mathcal{P}(o'_i), a).$$

marginal possibilistic belief states

$$\begin{aligned} \forall o_i' \in \mathbb{O}, \\ b_{t+1}^{\pi} \Big(\mathcal{P}(o_i') \Big) & \propto^{\pi} \pi \Big(o_i', \mathcal{P}(o_i') \Big| a_0, o_1, \dots, a_{t-1}, o_t \Big) \\ &= \max_{2^{\mathcal{Q}(o_i')}} \min \left\{ \pi \Big(o_i', \mathcal{P}(o_i') \Big| \mathcal{Q}(o_i'), a \Big), b_t^{\pi} \Big(\mathcal{Q}(o_i') \Big) \right\} \end{aligned}$$

Parameters rewritings POSSIBILISTIC parameters

$$\blacksquare \pi(s_i' \mid \mathbb{S}, a) = \pi(s_i' \mid \mathcal{P}(s_i'), a);$$

$$\pi (o'_i | \mathbb{S}', a) = \pi (o'_i | \mathcal{P}(o'_i), a).$$

marginal possibilistic belief states

$$\begin{split} \forall o_i' \in \mathbb{O}, \\ b_{t+1}^{\pi} \Big(\mathcal{P}(o_i') \Big) & \propto^{\pi} \pi \Big(o_i', \mathcal{P}(o_i') \Big| a_0, o_1, \dots, a_{t-1}, o_t \Big) \\ &= \max_{2^{\mathcal{Q}(o_i')}} \min \left\{ \pi \Big(o_i', \mathcal{P}(o_i') \Big| \mathcal{Q}(o_i'), a \Big), b_t^{\pi} \Big(\mathcal{Q}(o_i') \Big) \right\} \\ & \text{denoted by } \pi \Big(o_i', \mathcal{P}(o_i') \Big| b_t^{\pi}, a \Big). \end{split}$$

3 classes of state variables

variable: visible $s_v \in \mathbb{S}_v$

inferred hidden $s_h \in \mathbb{S}_h$

3 classes of state variables

variable: visible $s_v \in \mathbb{S}_v$

$$S_{v}' \stackrel{S_{v}' = O_{v}'}{\longrightarrow} O_{v}'$$

inferred hidden $s_h \in \mathbb{S}_h$

3 classes of state variables

variable: visible $s_v \in \mathbb{S}_v$

$$S'_{v} \xrightarrow{S'_{v} = O'_{v}} O'_{v}$$

$$\mathbf{p}\left(s_{v}'\mid b_{t}^{\pi},a\right)=\sum_{2^{\mathcal{P}\left(s_{v}'\right)}}\mathcal{T}^{a}\left(\mathcal{P}\left(s_{v}'\right),s_{v}'\right)\cdot\overline{b_{t}^{\pi}}\left(\mathcal{P}\left(s_{v}'\right)\right).$$

inferred hidden $s_h \in \mathbb{S}_h$

s'_h

3 classes of state variables

 $\underline{\text{variable:}} \ \text{visible} \ s_v \in \mathbb{S}_v$

 $=o'_{v}$ o'_{v}

 \Leftrightarrow deterministic belief variable.

$$\mathbf{p}\left(s'_{v} \mid b^{\pi}_{t}, a\right) = \sum_{2^{\mathcal{P}(s'_{v})}} T^{a}(\mathcal{P}(s'_{v}), s'_{v}) \cdot \overline{b^{\pi}_{t}} \Big(\mathcal{P}(s'_{v})\Big).$$

inferred hidden $s_h \in \mathbb{S}_h$

 s'_h

3 classes of state variables

<u>variable</u>: visible $s_v \in \mathbb{S}_v$

⇔ deterministic belief variable.

$$\mathbf{p}\left(s'_{v} \mid b^{\pi}_{t}, a\right) = \sum_{2^{\mathcal{P}(s'_{v})}} T^{a}\left(\mathcal{P}(s'_{v}), s'_{v}\right) \cdot \overline{b^{\pi}_{t}}\left(\mathcal{P}(s'_{v})\right).$$

inferred hidden $s_h \in \mathbb{S}_h$

3 classes of state variables

 $\underline{\text{variable:}}$ visible $s_v \in \mathbb{S}_v$

 \Leftrightarrow deterministic belief variable.

$$\mathbf{p}\left(s'_{v} \mid b^{\pi}_{t}, a\right) = \sum_{2^{\mathcal{P}(s'_{v})}} T^{a}\left(\mathcal{P}(s'_{v}), s'_{v}\right) \cdot \overline{b^{\pi}_{t}}\left(\mathcal{P}(s'_{v})\right).$$

inferred hidden $s_h \in \mathbb{S}_h$

$$b_{t+1}^{\pi}(\mathcal{P}(o_i')) = b_{t+1}^{\pi}(s_h, s_h^a, s_h^b, s_h^c)$$

3 classes of state variables

 $\underline{\text{variable:}}$ visible $s_v \in \mathbb{S}_v$

⇔ deterministic belief variable.

$$\mathbf{p}\left(s_{v}'\mid b_{t}^{\pi},a\right)=\sum_{2^{\mathcal{P}\left(s_{v}'\right)}}T^{a}(\mathcal{P}\left(s_{v}'\right),s_{v}')\cdot\overline{b_{t}^{\pi}}\Big(\mathcal{P}\left(s_{v}'\right)\Big).$$

inferred hidden $s_h \in \mathbb{S}_h$

$$egin{aligned} b^\pi_{t+1}(\mathcal{P}(o_i')) &= b^\pi_{t+1}(s_h, s_h^a, s_h^b, s_h^c) \ &\propto^\pi \pi\Big(o_i', \mathcal{P}(o_i') \Big| b_t^\pi, a\Big). \end{aligned}$$

3 classes of state variables

<u>variable</u>: visible $s_v \in \mathbb{S}_v$

⇔ deterministic belief variable.

$$\mathbf{p}\left(s_{v}'\mid\ b_{t}^{\pi},a
ight)=\sum_{2^{\mathcal{P}\left(s_{v}'
ight)}}\mathcal{T}^{a}\left(\mathcal{P}\left(s_{v}'
ight),s_{v}'
ight)\cdot\overline{b_{t}^{\pi}}\Big(\mathcal{P}\left(s_{v}'
ight)\Big).$$

inferred hidden $s_h \in \mathbb{S}_h$

$$b_{t+1}^{\pi}(\mathcal{P}(o_i')) = b_{t+1}^{\pi}(s_h, s_h^a, s_h^b, s_h^c)$$

$$\propto^{\pi} \pi \Big(o_i', \mathcal{P}(o_i') \Big| b_t^{\pi}, a \Big).$$

3 classes of state variables

variable: visible $s_v \in \mathbb{S}_v$

⇔ deterministic belief variable.

$$\Leftrightarrow$$
 deterministic belief variable.

$$\mathbf{p}\left(s'_{v} \mid b^{\pi}_{t}, a\right) = \sum_{2^{\mathcal{P}(s'_{v})}} T^{a}(\mathcal{P}(s'_{v}), s'_{v}) \cdot \overline{b^{\pi}_{t}}(\mathcal{P}(s'_{v})).$$

inferred hidden $s_h \in \mathbb{S}_h$

$$egin{aligned} b^\pi_{t+1}(\mathcal{P}(o_i')) &= b^\pi_{t+1}(s_h, s_h^a, s_h^b, s_h^c) \ &\propto^\pi \pi\Big(o_i', \mathcal{P}(o_i') \Big| b_t^\pi, a\Big). \end{aligned}$$

 $\wedge \mathcal{P}(o'_i)$ may contain visible variables.

3 classes of state variables

variable: visible $s_v \in \mathbb{S}_v$

 $s'_{v} \xrightarrow{s'_{v} = o'_{v}} o'_{v}$

$$\Leftrightarrow$$
 deterministic belief variable.

$$\mathbf{p}\left(s_{v}'\mid b_{t}^{\pi},a
ight)=\sum_{2^{\mathcal{P}\left(s_{v}'
ight)}}\mathcal{T}^{a}(\mathcal{P}(s_{v}'),s_{v}')\cdot\overline{b_{t}^{\pi}}\Big(\mathcal{P}(s_{v}')\Big).$$

inferred hidden $s_h \in \mathbb{S}_h$

$$egin{aligned} b^\pi_{t+1}(\mathcal{P}(o'_i)) &= b^\pi_{t+1}(s_h, s^a_h, s^b_h, s^c_h) \ &\propto^\pi \pi\Big(o'_i, \mathcal{P}(o'_i) \Big| b^\pi_t, a\Big). \end{aligned}$$

 $\wedge \mathcal{P}(o'_i)$ may contain visible variables.

$$b_{t+1}^{\pi}(s_f') = \max_{2^{\mathcal{P}(s_f')}} \min \left\{ \pi \left(s_f' \middle| \mathcal{P}(s_f'), a \right), b_t^{\pi} \left(\mathcal{P}(s_f') \right) \right\}.$$

3 classes of state variables

variable: visible $s_v \in \mathbb{S}_v$

⇔ deterministic belief variable.

$$\begin{array}{c}
(s'_{\nu}) \xrightarrow{\bullet} (o) \\
\cdot \overline{h^{\pi}} (\mathcal{P}(s'))
\end{array}$$

$$\mathbf{p}\left(s_{v}'\mid b_{t}^{\pi},a\right)=\sum_{2^{\mathcal{P}(s_{v}')}}T^{a}\left(\mathcal{P}(s_{v}'),s_{v}'\right)\cdot\overline{b_{t}^{\pi}}\left(\mathcal{P}(s_{v}')\right).$$

inferred hidden $s_h \in \mathbb{S}_h$

$$egin{aligned} b^\pi_{t+1}(\mathcal{P}(o_i')) &= b^\pi_{t+1}(s_h, s_h^a, s_h^b, s_h^c) \ &\propto^\pi \pi\Big(o_i', \mathcal{P}(o_i') \Big| b_t^\pi, a\Big). \end{aligned}$$

 $\wedge \mathcal{P}(o'_i)$ may contain visible variables.

fully hidden $s_f \in \mathbb{S}_f$

 \rightarrow observations don't inform belief state on s'_f .

$$b_{t+1}^{\pi}(s_f') = \max_{2^{\mathcal{P}(s_f')}} \min \left\{ \pi \left(s_f' \middle| \mathcal{P}(s_f'), a \right), b_t^{\pi} \left(\mathcal{P}(s_f') \right) \right\}.$$

Possibilistic belief variables

global belief state

$$\mathbb{O}_h = \mathbb{O} \setminus \mathbb{S}_v$$
.

bound over the global belief state

$$b_{t+1}^{\pi}(\mathbb{S}') = \pi(\mathbb{S}' \mid a_0, o_1, \dots, a_t, o_{t+1})$$

$$\leq \beta_{t+1}(\mathbb{S}')$$

$$= \min \left\{ \min_{s'_j \in \mathbb{S}_v} \left[\mathbb{1}_{\left\{ s'_j = o'_j \right\}} \right], \min_{s'_j \in \mathbb{S}_f} \left[b^{\pi}_{t+1}(s'_j) \right], \min_{o'_i \in \mathbb{O}_h} \left[b^{\pi}_{t+1} \left(\mathcal{P}(o'_i) \right) \right] \right\}$$

Possibilistic belief variables

global belief state

$$\mathbb{O}_h = \mathbb{O} \setminus \mathbb{S}_v$$
.

bound over the global belief state

$$b_{t+1}^{\pi}(\mathbb{S}') = \pi(\mathbb{S}' \mid a_0, o_1, \dots, a_t, o_{t+1})$$

$$\leqslant \beta_{t+1}(\mathbb{S}')$$

$$= \min \left\{ \min_{s'_j \in \mathbb{S}_v} \left[\mathbb{1}_{\left\{ s'_j = o'_j \right\}} \right], \min_{s'_j \in \mathbb{S}_f} \left[b^{\pi}_{t+1}(s'_j) \right], \min_{o'_i \in \mathbb{O}_h} \left[b^{\pi}_{t+1} \left(\mathcal{P}(o'_i) \right) \right] \right\}$$

- $\beta_t =$ less informative version of the belief state: $b_t^{\pi} \leq \beta_t$;
- computed using marginal belief states ↔ factorization.

different according to the class of the variable

$$\lambda = \#\mathcal{L}$$

different according to the class of the variable

$$\lambda = \#\mathcal{L}$$

 $\forall s'_v \in \mathbb{S}_v$, 1 variable β'_v is enough.

different according to the class of the variable

$$\lambda = \#\mathcal{L}$$

- $\forall s'_v \in \mathbb{S}_v$, 1 variable β'_v is enough.
- $p_i = \# \mathcal{P}(o_i').$

$$\forall o_i \in \mathbb{O} \setminus \mathbb{S}_v$$
, $\lambda^{2^{p_i}} - (\lambda - 1)^{2^{p_i}}$ belief states,
 $\Rightarrow \lceil \log_2(\lambda^{2^{p_i}} - (\lambda - 1)^{2^{p_i}}) \rceil$ boolean variables β_h' .

different according to the class of the variable

$$\lambda = \#\mathcal{L}$$

- $\forall s'_v \in \mathbb{S}_v$, 1 variable β'_v is enough.
- $p_i = \# \mathcal{P}(o_i').$

$$\forall o_i \in \mathbb{O} \setminus \mathbb{S}_v$$
, $\lambda^{2^{p_i}} - (\lambda - 1)^{2^{p_i}}$ belief states,
 $\Rightarrow \lceil \log_2(\lambda^{2^{p_i}} - (\lambda - 1)^{2^{p_i}}) \rceil$ boolean variables β'_h .

■ $\forall s'_f \in \mathbb{S}_f$, $\lambda^2 - (\lambda - 1)^2 = 2\lambda - 1$ belief states, ⇒ $\lceil \log_2(2\lambda - 1) \rceil$ boolean variables β'_f .

resulting MDP in practice

trick: "flipflop" variable

boolean variable "flipflop" f changes state at each time step \rightarrow defines 2 phases:

- 1 observation generation,
- 2 belief update (deterministic knowing the observation).

MDP variables:

$$\begin{split} \tilde{\mathbb{S}} &= \\ \mathbf{beliefs} \colon \beta = \beta_v^1 \times \ldots \times \beta_v^{m_v} \times \beta_h^1 \times \ldots \times \beta_h^{m_h} \times \beta_f^1 \times \ldots \times \beta_f^{m_f} \\ &\times \\ \mathbf{visible} \\ \mathbf{variables} \colon v = f \times s_v^1 \times \ldots \times s_v^{m_v} \times o_1 \times \ldots \times o_k. \end{split}$$

resulting MDP in practice final structured MDP

$$\tilde{\mathbb{S}} =$$

beliefs:
$$\beta = \beta_v^1 \times \ldots \times \beta_v^{m_v} \times \beta_h^1 \times \ldots \times \beta_h^{m_h} \times \beta_f^1 \times \ldots \times \beta_f^{m_f}$$

visible variables :
$$v = f \times s_v^1 \times \ldots \times s_v^{m_v} \times o_1 \times \ldots \times o_k$$
.

resulting MDP in practice final structured MDP

factorized model's variables:
$$\#\mathbb{O} + \#\mathbb{S}_v +$$

$$+\sum_{i=1}^{\#\mathbb{O}_h} \left\lceil \log_2 \left(\lambda^{2^{p_i}} - (\lambda - 1)^{2^{p_i}} \right) \right\rceil + \#\mathbb{S}_f \cdot \left\lceil \log_2 \left(2\lambda - 1 \right) \right\rceil$$

initial hybrid model's variables:

$$\left\lceil \log_2\left(\lambda^{2^{\#\mathbb{S}}}-(\lambda-1)^{2^{\#\mathbb{S}}}
ight)
ight
ceil$$

resulting MDP in practice final structured MDP

factorized model's variables:

$$\leqslant \#\mathbb{O} + \#\mathbb{S}_{v} + \sum_{i=1}^{n-1} \log_{2}(\lambda) \cdot 2^{p_{i}} + \#\mathbb{S}_{f} \cdot (1 + \log_{2}(\lambda))$$

 \ll # initial hybrid model's variables: $\geq \log_2(\lambda) \cdot (2^{\#\mathbb{S}} - 1).$

Plan

- 1 Context
- 2 An hybrid POMDP
- 3 Benefiting from factorized structures
- 4 Conclusion/Perspectives

$POMDP \xrightarrow{\textbf{translation}} MDP \text{ with finite state space}$

transition probabilities on the possibilistic belief states;

POMDP $\xrightarrow{\text{translation}}$ MDP with finite state space

- transition probabilities on the possibilistic belief states;
- pessimistic evaluation of the rewards (Choquet integral);

POMDP $\xrightarrow{\text{translation}}$ MDP with finite state space

- transition probabilities on the possibilistic belief states;
- pessimistic evaluation of the rewards (Choquet integral);

POMDP translation MDP with finite state space

- transition probabilities on the possibilistic belief states;
- pessimistic evaluation of the rewards (Choquet integral);

perspectives:

■ IPPC problems (factorized POMDPs);

POMDP translation MDP with finite state space

- transition probabilities on the possibilistic belief states;
- pessimistic evaluation of the rewards (Choquet integral);

perspectives:

- IPPC problems (factorized POMDPs);
- tests of this approach:
 - **1 simplification:** π distributions definition $(\pi$ -normalization, pignistic transformation, most specific, ...);
 - **2** imprecision: robust in practice?

Thank you!

