Calendar Lab

AP Computer Science A

Name: _____

Contents

1	Background1.1 Examples	2
2	Applications	3
3	Activity #1 3.1 Introduction 3.2 Exercises 3.3 Questions	4 4 4
4	Activity #2 4.1 Introduction 4.2 Exercise 4.3 Questions	5 5 5
5	Final Analysis	6
6	Template Class & Test Cases	7

Background

In this lab, you will be creating a method for finding the day of the week for any given date (day, month, year) and will use that method for generating a full calendar display for a given month.

There have been a number of different algorithms developed to calculate what day of the week a given past or future date falls on. Although many of these methods require fairly complex look-up tables, a formula has been developed that can be used to directly calculate the day of the week without having to store or process these tables. This formula is given below:

$$w = \left(d + \lfloor 2.6m - 0.2 \rfloor + y + \left\lfloor \frac{y}{4} \right\rfloor + \left\lfloor \frac{c}{4} \right\rfloor - 2c\right) \bmod 7$$

Note the following:

- $\lfloor x \rfloor$ is the floor operator, accessible via Math.floor(x)
- mod is the modulus operator (%)
- Y is the year minus 1 for January or February
- y is the last 2 digits of Y
- c is the first 2 digits of Y
- d is the day of the month (1 to 31)
- m is the shifted month (March=1,...,February=12)
- w is the day of the week (0=Sunday,...,6=Saturday)

Remarkably, this method will work regardless of whether or not a given year is a leap year. Consider the following examples.

Examples

July 9, 1983

$$w = \left(9 + \lfloor 2.6(5) - 0.2 \rfloor + 83 + \left\lfloor \frac{83}{4} \right\rfloor + \left\lfloor \frac{19}{4} \right\rfloor - 2(19)\right) \bmod 7 = 6$$

Result: Saturday

April 15, 2016

$$w = \left(15 + \lfloor 2.6(2) - 0.2 \rfloor + 16 + \left\lfloor \frac{16}{4} \right\rfloor + \left\lfloor \frac{20}{4} \right\rfloor - 2(20)\right) \bmod 7 = 5$$

Result: Friday

January 30, 2000

$$w = \left(30 + \lfloor 2.6(11) - 0.2 \rfloor + 99 + \left\lfloor \frac{99}{4} \right\rfloor + \left\lfloor \frac{11}{4} \right\rfloor - 2(19) \right) \mathbf{mod} \ 7 = 0$$

Result: Sunday

Applications

Activity #1

Introduction

In this activity, you will be creating two methods: one that will use the formula described in the background and return the numeric value of w and one that will return the day of the week as a string. These methods will be important for the second activity.

Exercises

- 1. Implement the calculateDayOfWeek() method. This method should take as parameters the day, month, and year for the desired date and return the day of the week for that date as a number between 0 and 6.
- 2. Implement the getDayOfWeek() method. This method should take as parameters the day, month, and year for the desired date and return the day of the week as a String ("Monday", "Tuesday", etc.).

Note: Your getDayOfWeek() method should use the calculateDayOfWeek() method previously implemented.

Questions

$\textbf{Question \#5:} \ \text{Briefly explain the method you used to calculate } y \ \text{and} \ c \ \text{from the year variable that was passed.}$
Question #6: Why do you think it is considered "better practice" to use the calculateDayOfWeek() method within the implementation of getDayOfWeek() rather than just repeating the use of the formula?

Activity #2

Introduction

In this activity, you will be creating a method to display a calendar for a given month and year. The output of your method should create a calendar similar to the one shown below.

March, 2018						
Мо	Tu	We	Th	Fr	Sa	Su
			01	02	03	04
05	06	07	80	09	10	11
12	13	14	15	16	17	18
19	20	21	22	23	24	25
26	27	28	29	30	31	

In particular, note the following:

- The month and year are displayed above the main calendar.
- There are blank spaces for days prior to the start of the month and after the end of the month.
- Single digit days are displayed with a leading "0".

Exercise

- 1. Implement the isLeapYear() method which will take a year as input and return true if the given year is a leap year and false otherwise.
- 2. Implement the printCalendar() method which will take a month and year as input and produce the output described in the introduction to this activity.

Note: Unlike the formula you used for calculateDayOfWeek(), your implementation of printCalendar() will have to use isLeapYear() in order to handle February's calendar output.

Questions

Question #7: Briefly explain what considerations you needed to make to take leap-years into account.	
Question #8: Briefly explain how you handled the variable number of days in each month.	

Final Analysis

Question #9: Which part of the implementation of either calculateDayOfWeek() or getDayOfWeek() did you find most challenging? How did you overcome this challenge?
Question #10: Which part of the implementation of printCalendar() did you find most challenging? How did you overcome this challenge?
Question #11: Given the knowledge and opportunity, what features would you add to your implemented methods to make them more useful and/or more versatile?
Question #12: What new programming techniques or knowledge did you learn as a result of this lab?

Template Class & Test Cases

```
/**
 * Calendar Lab (Template Class and Test Cases)
 * This is the template class and test cases for the Calendar Lab.
 * Written for the Woodstock School in Mussoorie, Uttarakhand, India.
 * @author Jeffrey Santos
 * @version 1.0
public class Calendar {
  public static void main(String[] args) {
    // Tests for calculateDayOfWeek:
    System.out.println(calculateDayOfWeek(9, 7, 1983)); // Output: 6
    System.out.println(calculateDayOfWeek(15, 4, 2016)); // Output: 5
    System.out.println(calculateDayOfWeek(30, 1, 2000)); // Output: 0
    // Tests for getDayOfWeek:
   System.out.println(getDayOfWeek(9, 7, 1983));
                                                          // Output: "Saturday"
    System.out.println(getDayOfWeek(15, 4, 2016));
                                                          // Output: "Friday"
                                                          // Output: "Sunday"
    System.out.println(getDayOfWeek(30, 1, 2000));
      Tests for printCalendar:
        Use the calendar feature of your computer to verify correct output.
    printCalendar(7, 1983);
    printCalendar(4, 2016);
   printCalendar(1, 2000);
  \ast Calculates the day of the week as a number between 0 and 6.
   * (0=Sunday, 6=Saturday)
   * Oparam day
   * Precondition: day is a valid day of the given month.
   * Precondition: month is a valid month of the year.
   * Precondition: year is a valid year after the adoption of the Gregorian Calendar.
   * Greturn A number corresponding to the day of the week for the given date.
             (0=Sunday, 6=Saturday)
  public \ static \ int \ calculateDayOfWeek(int \ day, \ int \ month, \ int \ year) \ \{
   // To be implemented in Activity #1, Exercise 1
  * Returns the day of the week as a string.
  * @param day
  * Precondition: day is a valid day of the given month.
   * Oparam month
   * Precondition: month is a valid month of the year.
   * @param year
   * Precondition: year is a valid year after the adoption of the Gregorian Calendar.
   * Oreturn A string corresponding to the day of the week for the given date.
  public static String getDayOfWeek(int day, int month, int year) {
   // To be implemented in Activity #1, Exercise 2
  \ast Determines whether or not a given year is a leap year.
```

```
* @param year
* Precondition: year is a valid year after the adoption of the Gregorian Calendar.
* @return true if the given year is a leap year, false otherwise.
*/
public static boolean isLeapYear(int year) {
    // To be implemented in Activity #2, Exercise 1
}

/**

* Prints a visual calendar for the given month and year.

*

* @param month

* Precondition: month is a valid month is the year.

* @param year

* Precondition: year is a valid year after the adoption of the Gregorian calendar.

*/
public static void printCalendar(int month, int year) {
    // To be implemented in Activity #2, Exercise 2
}
```