ANOVA Designs - Part II

Nested Designs (NEST)

Design Linear Model

Computation

Example NCSS

Factorial Designs (FACT)

Design Linear Model

Computation Example

NCSS

RCB Factorial (Combinatorial Designs)

Nested Designs

A nested design (sometimes referred to as a hierarchical design) is used for experiments in which there is an interest in a set of treatments and the experimental units are subsampled.

For example, consider a typical provenance study where a forest geneticist collects 5 seeds from 5 superior trees in each of 3 forests. The seeds are germinated in a greenhouse and the seedlings are measured for height growth. Graphically, the design would look like this...

Nested Designs

Forest Trees

Seedlings i ii iii iv v... etc.

Total of 75 seedlings.

Nested Designs

Note that in this sort of design, each parent tree and each seed is given a unique identity because it is not replicated across a treatment--it is unique to that particular treatment because of it's genotype.

This type of design is very common in genetics, systematics, and evolutionary studies where it is important to keep track of each plant obtained from specific populations, lines, or parentage.

Nested Design

The additive model for this design is:

 $y_{ijk} = \mu + \alpha_i + \beta_{(i)j} + \varepsilon_{ijk}$

where:

 μ : constant; overall mean

 $\alpha_{\!_{i}}$: constant for ith treatment group; deviation from mean of i

 $\beta_{\scriptscriptstyle ij}$: a random effect due to the ith group nested witin the jth experimental unit

 $\varepsilon_{\scriptscriptstyle{ijk}}$: random deviation associated with each observation

NB: same basic form as RCB, but j subscript has been added to β and ϵ .

Nested Design

-Computation-

Let's look at a similar but simpler example of a provenance study:

Tr	ee			Forest			
		A	В	C	D	E	
1		15.8	18.5	12.3	19.5	16.0	
		15.6	18.0	13.0	17.5	15.7	
		16.0	18.4	12.7	19.1	16.1	
	T _{i1.}	47.4	54.9	38.0	56.1	47.8	
2		13.9	17.9	14.0	18.7	15.8	
		14.2	18.1	13.1	19.0	15.6	
		13.5	17.4	13.5	18.8	16.3	
	T _{i2} .	41.6	53.4	40.6	56.5	47.7	
	T _i	89.0	108.3	78.6	112.6	95.5	484.0

Nested Design -Computation-

Sum of Squares	df	SS	MS	F
Among Forests	a-1	SS_a	MS_a	MS _a /MS _b
Btwn trees within forests	a(b-1)	SS_b	MS_b	$\mathrm{MS_{b}/MS_{e}}$
Amng seedlg within trees	ab(n-1)	SS_e	MS_e	
Total	abn-1			

Nested Design -Computation-

Source	df	SS	MS	F
Among Forests	4	129.28	32.32	22.6***
Trees (Forest)	5	7.14	1.43	7.15***
Among Seedlings	20	4.01	0.20	
Total	29			

	ach(se	edli	ng)	
	dling			
	orest T			
1	A	Tl	15.8	
2	A	Tl	15.6	Magtad Dagian
3	A	Tl	16.0	Nested Design
1	A	T2	13.9	•
5	A	T2	14.2	- Using @ -
7	A B	T2	13.5 18.5	•
3	B	T3	18.5	
9	B	T3	18.0	
10	B		17.9	Design: 5 forests, 2 trees per forest
11	B	T4	18.1	Design. 5 forests, 2 frees per forest
12	B	T4	17 4	(10 total), 3 seedlings grown from
13	c	T5	12.3	(10 total), 3 securings grown from
14	č	T5	13.0	each tree. Seedlings are nested
15	č	T5	12.7	<u> </u>
16	c	T6	14.0	within tree are nested within
17	C	T6	13.1	
18	C	T6	13.5	forest.
L9	D	T7	19.5	
20	D	T7	17.5	
21	D	T7	19.1	ND D100 1 11 0
22	D	T8	18.7	NB: Difference in coding for
23	D	T8	19.0	E
24	D	T8	18.8	nested design! Each tree <i>must</i> be
25	E	T9	16.0	1 1 1 00 41
26	E	T9	15.7	coded differently as one tree can
27	E	T9	16.1	1:00
28	E	T0	15.8	not occur in five different forests.
29	E	T0	15.6	

Nested Design

Note use of virgule to designate nested effect.

> anova(lm(Height~Forest/Tree))

Analysis of Variance Table

Response: Height

Df Sum Sq Mean Sq F value Pr(>F)
Forest 4 129.277 32.319 161.059 6.553e-15 ***
Forest:Tree 5 7.137 1.427 7.113 0.0005718 ***
Residuals 20 4.013 0.201
--Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.'
0.1 ` ' 1

Factorial Design

Often an investigator is interested in the *combined* (*interactive*) *effect* of two types of treatments. For example, in a greenhouse study you might be interested in the effects water, fertilizer, and the combined effect of water & fertilizer on seedling biomass.

This design differs from a blocking design because neither nutrients nor water are considered extraneous sources of variability--they are both central to the hypothesis. This is an economical design because it accomplishes several things at once.

Factorial Design

A typical design such as we have just discussed might look like this graphically:

Nutrients

Water

	Low	Med	High
Low			
Med			
High			

Factorial Design

The sets of treatments are called factors or main effects. The different treatment within sets are called levels. Levels can, and usually are, categorical in nature.

In our example, nutrients would be Factor-A and contain 3 levels and water would be Factor-B and contain 3 levels. Thus, There would be a total of axb treatment combinations (i.e., $3 \times 3 = 9$). If there were n = 5 seedlings per treatment, there would be N = 45 seedlings in the study.

This particular design permits the analysis of interactions (i.e., evaluates whether B responds the same way across all levels

Factorial Design

The additive model for this design is:

 $y_{ijk} = \mu + \alpha_i + \beta_j + \alpha \beta_{ij} + \varepsilon_{ijk}$

 μ : constant; overall mean

 $\alpha_{\!_{i}}$: constant for ith treatment group; deviation from mean of i

 $\beta_{\rm j}$: constant for the jth source of variation; deviation from the mean of j

 $\alpha \beta_{ij}$: the interaction effect bewteen i & j for A & B

(NB: this is single term & not a product.)

 \mathcal{E}_{ijk} : random deviation associated with each observation

Factorial Design -Computations-

Source	df	SS	MS
Factor A	a-1	SS _a =A-CF	$MS_a = SS_a/(a-1)$
Factor B	b-1	SS _b =B-CF	$MS_b = SS_b/(b-1)$
A×B Interaction	(a-1)(b-1)	SS _{ab} =S-A-B+CF	$MS_{ab} = SS_{ab}/(a-1)(b-1)$
Error	ab(n-1)	SS _e =T-S	$MS_e = SS_e/ab(n-1)$
Total	abn-1	SS _t =T-CF	

_		

Factorial Design

-Computations-

$$T = \sum_{i} \sum_{j} \sum_{k} y_{ijk}^{2}$$

$$A = \sum T_{i..}^2 / bn$$

$$B = \sum_{i} T_{.j.}^{2} / an$$

$$S = \sum_{i} \sum_{j} T_{ij.}^{2} / n$$

$$CF = T_{...}^2 / abn$$

Computations are performed in virtually the same way as we have done for previous designs, only now we add S to account for the interaction term.

Factorial Design

-Computations-

FEM, REM, Mixed	MS	F-test
A fixed, B fixed	A	MS_a / MS_e
	В	MS_b / MS_e
	$A \times B$	MS_{ab}/MS_{e}
A rand, B rand	A	MS_a/MS_{ab}
	В	MS_b / MS_{ab}
	$A \times B$	$\mathrm{MS_{ab}}/\mathrm{MS_{e}}$
A fixed, B rand	A	MS_a/MS_{ab}
	В	MS_b / MS_e
	$A \times B$	$\mathrm{MS_{ab}}/\mathrm{MS_{e}}$
A rand, B fixed	A	MS_a / MS_e
	В	$\mathrm{MS_b}/\mathrm{MS_{ab}}$
	$A \times B$	MS_{ab}/MS_{e}

The appropriate F-test is determined by the *type of factor* (fixed vs. random).

At this point, the specification of the type of factor you have determines the outcomes of the analysis!

Factorial Design

Example

Suppose we wished to look at seedling vigor of Ohio buckeyes and assess the variation attributable to tree (1,2,3,4) and fertilizer type (A,B,C). Two nuts are sampled at random and seedlings are grown from the nuts. Vigor is scored as 1-10.

In this type of design, fertilizer type is a fixed effect and tree is random effect (we could use any 4 buckeye trees), so the MS has to be adjusted accordingly.

The data are as follows...

6

Factorial Design _{-Example-}

Fertilizer	Tree-1	Tree-2	Tree-3	Tree-4
A	2	4	3	1
	1	2	1	1
В	4	3	6	6
	5	3	7	5
C	6	8	7	5
	4	8	8	6

Factorial Design _{-Example-}

The resulting ANOVA table for these data would be:

Source	df	SS	MS F _{calc}	F_{table}
Fertilizer	2	88.08	44.04 7 12.62	5.143
Tree	3	9.83	3.28 4.37	3.490
$Fert \times Tree$	6	20.92	3.49 4.65	2.996
Error	12	9.00	0.75	

> V1 > Vi		-read.o	csv("C:/TE	MPR/Vig.csv")		
		ree V				
1	A A	T1	2			
2	A	T1	1			
3	A	T2	4	T		
4	A	T2	2	1	racto	orial Design
5	A	T3	3			•
6	A	T3	1		-Ex	ample Using@-
7	A	Т4	1			
8	A	Т4	1			
9	B	T1	4			
10	В	T1	5			
11	В	T2	3			
12	В	T2	3			
13	В	T3	6			
14	В	T3	7	> summ	ary(vi	gor)
15	В	T4	6	Fert.	Tree	Vigor
16	В	T4	5			
17	C	T1	6	A:8	T1:6	Min. :1.000
18	C	T1	4	B:8	T2:6	1st Qu.:2.750
19	C	T2	8	C:8	T3:6	Median :4.500
20	C	T2	8	0.0	T4:6	Mean :4.417
21	C	T3	7		14:0	
22	C	T3	8			3rd Qu.:6.000
23	C	T4	5			Max. :8.000

-	_	

Factorial Design -Example Using > interaction.plot(Fert, Tree, Vigor) > interaction.plot(Tree, Fert, Vigor) A B C Tree The Design Fort The Design The Desi

Factorial Design -Example Using Note symbol for interaction design. > anova(lm(Vigor-Fert*Tree)) Analysis of Variance Table Response: Vigor Df Sum Sq Mean Sq F value Pr(>F) Fert 2 88.083 44.042 58.7222 6.347e-07 *** Tree 3 9.833 3.278 4.3704 0.02680 * Fert:Tree 6 20.917 3.486 4.6481 0.01146 * Residuals 12 9.000 0.750 --Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' 1

FEM, REM, Mixed	MS	F-test	-Computations-
A fixed, B fixed	A	MS _a / MS _e	
	В	MS_b / MS_e	
	$A \times B$	MS_{ab}/MS_{e}	The appropriate F- test is determined by the type of factor (fixed vs. random). At this point, the specification of the type of factor you have determines the outcomes of the analysis!
A rand, B rand	A	MS_a / MS_{ab}	
	В	MS_b / MS_{ab}	
	$A \times B$	$\mathrm{MS_{ab}}/\mathrm{MS_{e}}$	
A fixed, B rand	A	MS_a/MS_{ab}	
	В	MS_b / MS_e	
	A×B	MS_{ab}/MS_{e}	
A rand, B fixed	A	$\mathrm{MS_a}/\mathrm{MS_e}$	
	В	$\mathrm{MS_b}/\mathrm{MS_{ab}}$	
	$A \times B$	MS_{ab}/MS_{c}	

Factorial Design -Example Using @-> summary(aov(Vigor~Fert*Tree+Error(Fert*Tree)))) Error: Fert Df Sum Sq Mean Sq MS_b / MS Fert 2 88.083 44.042 Error: Tree Df Sum Sq Mean Sq Tree 3 9.8333 3.2778 One approach is to call for Error: Fert:Tree Df Sum Sq Mean Sq & Fert:Tree 6 20.9167 3.4861 the basics of the AOV table and then do the F-tests manually to construct the Error: Within Df Sum Sq Mean Sq Residuals 12 9.00 0.75 appropriate table.

RCB Factorial Experiments

It should now be clear that by simple extension, one can make more complex experimental designs by simply combining terms in the linear model.

For example, in a typical drug interaction experiment, a study would be designed with a control (no drugs), Drug A (0/1), Drug B (0/1), and a Drug A×B interaction. These drugs are given to various subjects, one per day over 4 days. Subject is used as a block to remove this as a source of variability.

RCB Factorial Experiments

The data for this experiment response times (in msec) and are as follows (Rao 1998, Ex. 15.5, p. 715):

	Subjects		
Therapy	1	2	 8
No drugs	18.8	18.5	 26.5
Drug A alone	13.5	9.8	 15.5
Drug B alone	13.6	13.4	 15.4
Drugs A & B combo.	10.6	12.6	 12.6

RCB Factorial Experiments

Thus, the linear model for this design would be:

 $y_{ijk} = \mu + \mathbf{R}_{\mathrm{i}} + \alpha_{j} + \beta_{k} + \alpha\beta_{jk} + \varepsilon_{ijk}$

where:

 μ : constant; overall mean

R; : constant for the ith block

 $\alpha_{_{\rm j}}$: constant for ith treatment group; deviation from mean of i

 $\beta_{\mathbf{k}}$: constant for the jth source of variation; deviation from the mean of j

 $\alpha\beta_{jk}: \text{ the interaction effect bewteen j \& k for A \& B} \\ \epsilon_{ijk}: \text{ random deviation associated with each observation}$