Nonparametric Bayes

Caden Hewlett

2024-03-15

Dirichlet Process Mixtures of Generalized Linear Models: Summary

Into: What is a Dirichlet Process

. . .

Model Examples

Gaussian

This model has been proposed by West et al. (1994), Escobar and West (1995) and Muller et al. (1996.) As a more introductory input, we explain each component in detail.

We have continuous covariates and responses in \mathbb{R} . It is modeled locally with a Normal distribution for the explanatory variables and a linear regression model for the response.

The explanatory variables have mean $\mu_{i,j}$ for the j-th dimension of the i-th observation (e.g. the 3rd term of the 2nd observation.) Similarly, we have $\sigma_{i,j}^2$ for this same logic. There are d total dimensions and n total observations.

We have the GLM parameters as linear predictors $\{\beta_{i,j}\}_{j=0}^d$ with response variance $\sigma_{i,y}^2$.

We define $\vec{\theta}_{y,i}$ for the regression parameters as follows:

$$\vec{\theta}_{y,i} = \left\{ (\vec{\beta}_{i,j}, \sigma_{i,y}) \text{ where } \vec{\beta}_{i,j} = \left\{ \beta_{i,0}, \beta_{i,1} \dots \beta_{i,d} \right\} \right\} \equiv \left(\left\{ \beta_{i,j} \right\}_{j=0}^d, \sigma_{i,y} \right) \equiv \left(\beta_{i,0:d}, \sigma_{i,y} \right)$$

Then, for the covariates, we have $\vec{\theta}_{x,i}$, where k is used over j to indicate indexing beginning at 1.

$$\vec{\theta}_{x,i} = \left\{ (\vec{\mu}_{i,k}, \vec{\sigma}_{i,k}) \text{ where } \vec{\mu}_{i,k} = \{\mu_{i,1}, \mu_{i,2}, \dots \mu_{i,d}\} \text{ and } \vec{\sigma}_{i,k} = \{\sigma_{i,1}, \sigma_{i,2}, \dots \sigma_{i,d}\} \right\} \equiv \left[(\mu_{i,j}, \sigma_{i,j}) \right]_{j=1}^{d} \equiv \left(\mu_{i,1:d}, \sigma_{i,1:d} \right)$$