

KENYATTA UNIVERSITY

UNIVERSITY EXAMINATIONS 2011/2012

SECOND SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE AND BACHELOR OF EDCATION (SCIENCE)

SPH 401: ELECTRODYNAMICS

TUESDAY, 3RD APRIL 2012 DATE:

TIME: 4.30 P.M - 6.30 P.M

INSTRUCTIONS: Answer Question ONE and any other TWO Questions

Question 1

a. Define electric flux. Show that the flux of a vector field is zero if there is no net charge enclosed (5mks)

b. Derive Gauss's law in differential form from the definition of divergence.

(5mks)

c. What is a dielectric? Explain how a dielectric differs from a conductor.

(2mks)

d. Differentiate between a polar and a non-polar molecule. Hence prove that polarization ${\bf P}$ is numerically equal to the surface charge density. (6mks)

e. Describe at least three differences between electrostatics and magnetic fields.

(3mks)

f. write down Maxwell's equations

i. in vacuum (4mks)

- ii. in material medium
- g. Ampere's law $\nabla imes B = \mu_0 J$ does not hold good for time varying fields. How did Maxwell remove this difficulty? Derive the modified equation of Ampere's law. (5mks)

Question 2

- a. The electric field at any point is the negative of the gradient of the potential at any point. Prove. Hence show that $\nabla^2 V = -\frac{\rho}{\varepsilon_0}$ where the symbols have their usual meaning. Under what condition dove the equation reduce to zero?
- (15mks) b. A test charge q_0 moves through a uniform electric field from \boldsymbol{a} to \boldsymbol{b} along the path \boldsymbol{acb} as shown in figure 1. Find the potential difference between a and b. (5mks)

Figure 1

Question 3

a. Derive Gauss's law in dielectrics.

10mks)

- b. Prove that the normal component of displacement vector **D** is continuous across a charge free
- c. The surface separating two dielectrics of dielectric constants K_1 and K_2 has a surface charge density σ . The electric fields on the two sides of the boundary are E_1 and E_2 making an angle of

$$\theta_1$$
 and θ_2 with the common normal. Prove that $K_2 \cot \theta_2 = K_1 \cot \theta_1 \left[1 - \frac{\sigma}{\varepsilon_0 K_1 E_1 \cos \theta_1} \right]$
(5mks)

Question 4

- a. Define magnetic vector potential. Derive an expression for the magnetic vector potential of a current loop. Hence find the electric field vector in terms of scalar and vector potential. (15mks)
- d. Find the magnetic induction B at the center of a long straight solenoid having n turns per unit (5mks)

Question 5

Derive Maxwell's equations in vacuum

(20mks)