情報科学(講義資料) 第1回

今回の講義で使用するファイル

- 第1回(講義資料).pptx
- 第1回(演習・課題).xlsx

宇都宮大学 坂巻英一

講義内容

1. はじめに:統計とは

統計 = 統べる&計る

①たくさんのものを一つにまとめる

②ある基準をもとに度合いを調べる

たくさんの個別データ

回答者ID	性別	出身県	生まれ月	身長(cm)	体重(kg)	
1	男	栃木	4	173	60	
回答者ID	性別	出身県	生まれ月	身長(cm)	体重(kg)	
2	女	東京	12	165	53	
回答者ID	性別	出身県	生まれ月	身長(cm)	体重(kg)	
3	男	茨城	9	182	73	

一つにまとめられたデータ

回答者ID	性別	出身県	生まれ月	身長(cm)	体重(kg)
1	男	栃木	4	173	60
2	女	東京	12	165	53
3	男	茨城	9	182	73
4	男	大阪	1	169	59
5	女	北海道	6	153	48
:	:	:	:	:	:

度合い

:

統計分析でやること:

たくさんの情報をデータとして一つにまとめ、そこからデータ全体 の傾向や特徴を示す量(=度合い)を調べ、それを可視化する。

今回の講義の概要

例	1 質的	ナータ 個	人データの例	_例2	量的データ	
回答者ID	性別	出身県	生まれ月	身長(cm)	体重(kg)	
1	男	栃木	4	173	60	(データの可視化:
2	女	東京	12	165	53	│ 各変数の値を、カテゴ
3	男	茨城	9	182	73	リーや階級(数値の範 囲)に分けて、そこに
4	男	大阪	1	169	59	四/にがりて、でこに いくつデータが含まれ
5	女	北海道	6	153	48	るか(= 度数)を集計
		÷	:)	<u> </u>		グラフ化する。

今回の講義では、質的データ・量的データの度数分布表の作成方法と、それらをグラフ化したものから、データの全体像を把握する方法について学ぶ。

2. 質的データの度数分布

達成目標:1変数の場合と2変数の場合の度数分布表とそのグラフを作成できるようになる。

1変数の度数分布

- 分析の手順:
 - 1. データから1つの変数の度数をカウントし、度数分布表を作成する。
 - 2. 度数分布表を棒グラフにし、データ全体の様子を可視化する。

棒グラフ

元の数値データからは分からない成績データの全体像が一目で把握できるようになった。

■ Excel関数:=COUNTIF関数(データ範囲,条件) (詳細はAppendix参照)

2変数の度数分布

■ 分析の手順:

- 1. 2変数のすべての組み合わせに対する度数をカウントし、クロス集計表にまとめる。
- 2. クロス集計表を棒グラフにし、2変数間の関係を可視化する。

成績データの例

クロス集計表

7-70119		J					111	
学籍番号	学部	成績	ここにカウント		A学部	B学部	C学部	合計
190281	C学部	良	 	優	1	5	2	8
190509	B学部	可	ここにカウント	良	4	1 2	→ 8	24
190832	A学部	優	ここにカウント	可	13	→ 5	10	28
191214	B学部	良	ここにカウント	不可	2	0	0	2
•	•	•		合計	20	22	20	62
		SEA		25				

「学部」と「成績」の2変数の関係として、 「学部ごとの成績の傾向に違いがあること」が わかった。(B学部は他の学部と比べて優と良 の受講者の割合が大きい。)

演習1 質的データの度数分布表と棒グラフ

- 度数分布(演習・課題).xlsxの「質的データ」シートのデータの度数分布表とその 棒グラフを作成する。
 - 1. 「学部」の度数分布表と棒グラフを作成する。
 - 各学部の度数を出すため、F2のセルに「=COUNTIF(\$B\$2:\$B\$63,E2)」と入力し(\times)、オートフィル(書式なしコピー)によりF4のセルまでコピーする。
 - E2:F4を選択状態にし、「挿入」タブの「縦棒/横棒のグラフの挿入」の中の「2-D 縦棒」の「集合縦棒」を選ぶ。縦軸を左クリックした後、右クリックし、「軸の書式設定(F)」を左クリックで開く。「軸のオプション」内の「境界値」の「最小値」を「0」にする。
 - 2. 「成績」の度数分布表と棒グラフについても同様に作成する。
 - 3. クロス集計表とその積み上げ縦棒グラフを作成する。
 - まず、L2のセルに「=COUNTIFS(\$C\$2:\$C\$63,\$K2,\$B\$2:\$B\$63,L\$1)」と入力し、オートフィル(書式なしコピー)により、L5のセルまでコピーする(COUNTIFS関数についてはAppendixを参照すること)。さらにL2:L5を選択状態にし、オートフィル(書式なしコピー)により、N2:N5までコピーする。
 - K1:N5を選択状態にし、「挿入」タブの「縦棒/横棒のグラフの挿入」の中の「2-D 縦棒」の「積み上げ縦棒」を選ぶ。横軸が「成績」になっている場合は、グラフをクリックし、「デザイン」タブの中の「行/列の切り替え」をクリックすると、横軸が「学部」となる。
 - (※\$マークは絶対参照(絶対番地)を意味し、F4キーで付けたり外したりできます。詳細を 知りたい方は、教科書を参照してください。)

\$の付け方に注意

3. 量的データの度数分布

達成目標:量的データの度数分布表とヒストグラムを作成できるようになる。

度数分布表とヒストグラム

■ 分析の手順:

- 1. データのある1つの変数 (例えば身長) に対し、それを階級 (クラス分けした値の範囲) ごとに度数を数えて度数分布表を作る。
- 2. 度数分布表をヒストグラムにし、データ全体の様子を可視化する。

身長	・体重ラ	データ		度数分表	布表	
個人	身長	体重		身長の階級(cm)	度数(人)	
ID	(cm)	(kg)		130-135	0	
			ここにカウント	135-140	2	
1	182.1	104.4		140-145	1	
			\	145-150	→ 4	1
2	162.6	67.3	ここにガウント	1 50- 155	8	
۷	102.0	01.		155-160	6	५/
	4 4 6 -			160-165	→ 15	<i> </i>
3	146.5	49.2	ここにカウント	165-170	20	
				170-175	13	
•	•	•		175-180	11	
•	•	•		180-185	10	
100	1000	CC 1		185-190	5	
100	160.8	66.1		190-195	2	
				195-200	2	
	6	6.6		200-205	1	
				205-210	0	
		(0)	(各階	級は、下限値は含ま	きず上限値は	含む。)

ヒストグラム

身長の分布の様子が一目で分かるようになった。($165cm\sim170cm$ の階級の度数が一番大きく、 $160cm\sim185cm$ の間の身長の人が約7割を占める。)

■ Excel関数:=FREQUENCY(データ範囲,階級の配列) (入力後Ctrl+Shift+Enter)

演習2量的データの度数分布表とヒストグラム

- 「量的データ」シートのデータの度数分布表とヒストグラムを作成する。
 - 1. B列(身長)の度数分布表とヒストグラムの作成
 - まず、階級を決めるために、身長の最小値と最大値を、Excelの関数のMIN(データ範囲) とMAX (データ範囲) を用いてF2とF3セルに入力する。
 - 階級幅を5 cmとし、階級を(130,135], (135,140], · · · ,(205,210]とする。(それぞれの階級で下限値は含まず、上限値は含む。)
 - 階級の上限値135, 140, ・・・,210をI2~I17のセルにオートフィルを使って入力する。
 - J列にはグラフに表示させる階級を入力する。まずJ2には「130-135」と入力する。J3には「=I2&"-"&I3」と入力すると「135-140」と表示されるので、それをJ3をJ17までオートフィルを使ってコピーする。
 - 度数を計算する。まず、K2:K17のセルを選択状態にし、数式バーに 「=FREQUENCY(B2:B101,I2:I17)」と入力し、Ctrl+Shift+Enterを同時に押すと、度 数が全て自動で計算されて入力される。(K2:K17の各セルには、配列数式として 「{=FREQUENCY(B2:B101,I2:I17)}」と入力されている状態になっている。)
 - J1:K17を選択し、「挿入」タブから、棒グラフのマークをクリックし、「2-D縦棒」の中の「集合縦棒」を選ぶ。グラフ内の棒をクリックし、棒の角に〇が付いた状態になったら、右クリックして現れたボックスから「データ系列の書式設定(\underline{F})」を選ぶ。表示された「系列オプション」の中の「要素の間隔(\underline{W})」を「0%」にすると、棒同士の隙間がなくなる。さらに、グラフの横軸の数値を左クリックで選択した状態で右クリックし、「軸の書式設定(\underline{F})」を選択する。現れたボックスの「サイズとプロパティ(\underline{F})」の中の「文字列の方向(\underline{F})」で「右へ90度回転」を選択する。
 - 2. C列(体重)の度数分布表とヒストグラムも同様に作成する。ただし、階級は $(20,30],(30,40], \cdot \cdot \cdot ,(120,130]$ とすること。

4.ヒストグラムから分かること

達成目標:ヒストグラムで表現された分布(=データのばらつきの様子)の見方と、分布の形状として代表的な「単峰性・多峰性」、「左右対称・左右非対称」のそれぞれについて、形状の特徴から読み取れるデータの性質について理解する。

分布の見方

- ヒストグラムから読み取る情報:
 - ① 階級の範囲は?
 - ② どの階級の度数が一番大きい?
 - ③ データはどこに集中している?
 - ④ 最小値はどのくらい?
 - ⑤ 最大値はどのくらい?
 - ⑥ データに異常値や外れ値はないか?

ヒストグラムの例

分布の形状

■ 単峰性:山になった部分(ピーク、峰)が1箇所の形

(割合=度数÷全データ数×100)

特徴

- ピークのある階級付近にデータが集中しており、その付近の値をとるデータが多いことを示している。
- データのもとになっている集団が同じ性質を持っていれば(同質であれば)、単峰性でピークを中心とした左右対称の形になることが多い。(上記の例では「17歳男性」という性質が同じ集団になっており、ヒストグラムはピークを中心にほぼ左右対称である。)

■ 多峰性:ピークが複数箇所ある形

多峰性(二峰性)のヒストグラムの例

「男性」と「女性」という、身長のデータとしては異質な2集団をまとめて集計した結果、 二峰性のヒストグラムとなった。

ヒストグラムが多峰性となった場合、異質な集団のデータが混在している可能性がある。もし混在していれば、データを同質な集団ごとに分析する等の処理が必要となる。

■ 左右対称のヒストグラムの例

左右対称(単峰性)

実データの例:年齢別・男性(女性)の身長や体重

左右対称 (二峰性)

実データの例:年齢別・男女混合の身長や体重

■ 左右非対称のヒストグラムの例 右に裾の長い分布

が か か か が が 8 6 4 2

実データの例:市区町村の人口、個人所得

135 140 145 150 155 160 165 170 175 180 185 190 195 200 205

左に裾の長い分布

実データの例:赤ちゃんの出生時の身長

5. 課題

「課題」シート内の日本の市区町村の平均所得のデータ(2021年)を用いてヒストグラムを作成する。

- 市区町村の平均所得のヒストグラムを作成する。
 - E2とE3のセルに2021年の平均所得の最小値と最大値をExcelの関数を用いて入力する。
 - G列に階級の上限値が既に入力されているので、H列にオートフィル機能を 使って階級を入力する(例:150-200)。
 - I列にその度数をExcelの関数を用いて入力する。
 - H列とI列を用いてヒストグラムを作成する。(ヒストグラムの作成方法は、 演習2を参照すること。)
 - 作成したヒストグラムの形状を、E6のプルダウンから選択する。

提出方法は、「データサイエンス入門」の担当の先生の指示に従って下さい。

6. まとめ

- 質的データ(1変数、2変数)の度数分布表とその棒グラフの作成 方法について学んだ。
- 量的データの度数分布表とヒストグラムの作成方法について学んだ。
- ヒストグラムで表現された分布の見方と、分布の形状として代表的な「単峰性・多峰性」、「左右対称・左右非対称」のそれぞれについて、形状の特徴から読み取れるデータの性質について学んだ。

Appendix

- 比較演算子
- 記号入力方法
- COUNTIF関数
- COUNTIFS関数

比較演算子

```
■"= 10" : 「10に等しい」
```

記号の入力方法

半角英数で以下を入力する。

"
$$\Rightarrow$$
 Shift \Rightarrow Shift \Rightarrow

COUNTIF関数

- 意味:指定した範囲で「条件」に合うセルの個数を求める。
- 使い方: = COUNTIF(範囲, 条件)
- 例1: = COUNTIF(A2:A101, "=1")

「A2:A101の範囲のセルの中で、数値が1に等しいセルの個数」

• 例2: =COUNTIF(E2:E145,"宇都宮市")

「E2:E145の範囲のセルの中で、宇都宮市と入力されているセルの個数 |

COUNTIFS関数

- 意味:COUNTIF関数の範囲と条件を複数にしたもの。
- 使い方: = COUNTIFS(範囲1, 条件1, 範囲2, 条件2, ・・・)
- 例1: = COUNTIFS(A2:A101, "=1", B2:B101, "=99")

「A2:A101の範囲のセルの中で、数値が1に等しいセル**かつ、**

B2:B101の範囲のセルの中で、数値が99に等しいセルの個数」

• 例2: = COUNTIFS(A2:A101, ">=20", A2:A101, "<=29")

「A2:A101の範囲のセルの中で、数値が20以上のセル**かつ**、

B2:B101の範囲のセルの中で、数値が29以下のセルの個数」