Statistics for Chemical Engineers: From Data to Models to Decisions

Victor M. Zavala

Department of Chemical and Biological Engineering University of Wisconsin-Madison

victor.zavala@wisc.edu

Chapter 4: Estimation for Random Variables

This material supports "Statistics for Chemical Engineers" by Victor M. Zavala, ©, 2025

Estimation Techniques

- We have now a basic idea of the types of RV models available to model phenomena.
- We proceed to develop procedures to determine if a RV model fits data at hand.
- We define an RV model $(f_X(x|\theta))$ or $F_X(x|\theta)$, where θ are the model parameters.
- By estimating RV model we mean that we seek to find θ that *best* fits data.

We explore a couple of estimation methods:

- Point Estimation (Method of Moments and Least-Squares Method)
- Maximum Likelihood Estimation (MLE)
- First step will be to explore our data and application and postulate an RV model (e.g., Gaussian or Exponential) based on any patterns exposed.
- Second step will be to find θ that *best* fits data. If best fit is not adequate, we we can conclude that we need to propose a different model.

Method of Moments

• Recall moments of X (with pdf $f_X(x|\theta)$ and parameters θ) are given by:

$$\mathbb{CMO}_k(\theta) := \mathbb{E}[(X - \mathbb{E}_X)^k], \qquad k = 1, 2, ..., N$$

- Here, we highlight dependence of moments on parameters θ .
- Method of moments uses data $x_{\omega}, \ \omega \in \mathcal{S}$ to obtain sample approx:

$$\mathbb{C}\hat{\mathbb{M}}\mathbb{O}_k = \frac{1}{S} \sum_{\omega \in \mathcal{S}} (x_\omega - \hat{\mathbb{E}}_X)^k, \ k = 1, 2, ..., N$$

where $\hat{\mathbb{E}}_X = \frac{1}{S} \sum_{\omega \in \mathcal{S}} x_{\omega}$ is sample mean.

 In this moment matching method we can use any type of moment that we find convenient (e.g., raw, central, standardized).

Method of Moments

ullet Our objective is to find heta that solves matching equations:

$$\mathbb{CMO}_k(\theta) = \mathbb{CMO}_k, \ k = 1, 2, ..., N$$

- In other words, we want to find θ that matches model to sample moments.
- For example, we can find the parameters by matching the model mean $\mathbb{E}[X]$ to the empirical $\hat{\mathbb{E}}[X]$ and the model variance $\mathbb{V}[X]$ to the empirical variance $\hat{\mathbb{V}}[X]$.
- We can leverage the properties of different models; for instance, for a Gaussian we know that $\mathbb{E}[X] = \mu$ and $\mathbb{V}[X] = \sigma^2$.

Example: Method of Moments for Gaussian ch4_gaussian_moments_example.m

- Want $\theta = (\mu, \sigma^2)$ for model $X \sim \mathcal{N}(\mu, \sigma)$ to see if this matches data $x_\omega, \ \omega \in \mathcal{S}$.
- Gaussian model has property that $\mu = \mathbb{E}_X$ and $\sigma^2 = \mathbb{V}_X$.
- Use data to obtain $\hat{\mathbb{E}}_X = \frac{1}{S} \sum_{\omega \in \mathcal{S}} x_\omega$ and $\hat{\mathbb{V}}_X = \frac{1}{S} \sum_{\omega \in \mathcal{S}} (x_\omega \hat{\mathbb{E}}_X)^2$.
- From definition of first raw moment we have:

$$\mathbb{CMO}_1(\theta) = \mathbb{E}[X] - \mu = 0$$

and this indicates that $\hat{\mu} = \hat{\mathbb{E}}_X$.

- From definition of second central moment we have $\mathbb{CMO}_2(\theta) = \mathbb{V}_X = \sigma^2$.
- Thus $\mathbb{CMO}_2(\theta) = \mathbb{C}\hat{\mathbb{M}}\mathbb{O}_2$ indicates that $\hat{\sigma}^2 = \hat{\mathbb{V}}_X$.

Example: Method Moments for Gaussian ch4_gaussian_moments_example.m

• We used moment matching with S=10 and S=100 data points to estimate parameters. If we use S=10, the estimates are $\hat{\mu}=0.45$ and $\hat{\sigma}=1.43$; if we use S=100, the estimates are $\hat{\mu}=0.9$ and $\hat{\sigma}=2$. The true parameters are $\mu=1$ and $\sigma=2$; we can thus see that we get closer as we increase S.

Figure: Empirical pdf/cdf for Gaussian RV obtained from data and model predictions obtained with estimated parameters. Results for S=10 (top row) and for S=100 (bottom row).

Example: Method of Moments for Weibull

Now want to postulate Weibull(ξ, β) and see if this matches data.

- We are given observations $x_{\omega}, \ \omega \in \mathcal{S}$.
- Sample mean is $\hat{\mathbb{E}}_X = \frac{1}{S} \sum_{s \in \mathcal{S}} x_\omega$ and variance $\hat{\mathbb{V}}_X = \frac{1}{S} \sum_{s \in \mathcal{S}} (x_\omega \hat{\mathbb{E}}_X)^2$.
- We find β, ξ that matches moments $\mathbb{CMO}_1(\theta)$ and $\mathbb{CMO}_2(\theta)$ (expected value and variance) to empirical counterparts.
- This is done by solving the matching equations for β and ξ :

$$\hat{\mathbb{E}}_X = \beta \Gamma(1 + 1/\xi)$$

$$\hat{\mathbb{V}}_X = \beta^2 \left(\Gamma(1 + 2/\xi) + \Gamma(1 + 1/\xi)^2 \right)$$

• This is challenging due to complex nature of Γ function. Is there another way?

Least-Squares Method

- Moment functions $\mathbb{CMO}_k(\theta)$ might be too complex for some RVs (e.g., Weibull).
- ullet We can also use $F_X(t| heta)$ (or other summarizing statistics) to find parameters.
- ullet In LS, we find heta that best matches empirical estimates of cdf or statistics.
- Assume we use cdf and propose threshold values $t_k, k = 1, 2, ..., N$ to compute:

$$\hat{F}_k = \frac{1}{S} \sum_{\omega \in S} \mathbf{1}[x_{\omega} \le t_k], \ k = 1, 2, ..., N$$

ullet We find parameters for the model $F_X(t_k| heta)$ that solve LS problem:

$$\min_{\theta} \frac{1}{2} \sum_{k=1}^{N} (F_X(t_k|\theta) - \hat{F}_k)^2$$

This is an optimization problem that needs to be solved numerically.

- Want to estimate $\theta = (\xi, \beta)$ for model $X \sim \text{Weibull}(\xi, \beta)$.
- We are given data $x_{\omega}, \ \omega \in \mathcal{S}$ to obtain empirical cdf $\hat{F}(t_k)$ for $t_k, \ k=1,...,N$.
- Recall cdf of Weibull model is $F_X(t|\theta) = (1 e^{-(t/\beta)^{\xi}})$.
- We estimate parameters θ by solving LS problem:

$$\min_{\theta} \frac{1}{2} \sum_{k=1}^{N} \left((1 - e^{-(t_k/\beta)^{\xi}}) - \hat{F}_k \right)^2$$

• We solve this problem using a numerical software package.

• Weibull model using the estimated parameters fits data well.

Maximum Likelihood Estimation

- Maximum likelihood estimation (MLE) is a method that is conceptually similar LS in that tries to find the best possible set of parameters that match data.
- In MLE, by "best" we mean parameters that are most probable (likely) given data.
- In LS, by "best" we mean parameters that best fit data (minimize error).
- We thus note that MLE has a natural statistical interpretation (while LS does not).

Maximum Likelihood Estimation

- Assume observations $x_{\omega},\,\omega\in\mathcal{S}$ are collected at *random*.
- We thus have that observations are independent RVs.
- Postulate $f(x|\theta)$ and recall $f(x_{\omega}|\theta)$ is prob (likelihood) that X takes value x_{ω} .
- Find θ that maximizes *joint* probability that X takes observations x_{ω} , $\omega \in \mathcal{S}$.
- Joint probability is given by $\prod_{\omega \in \mathcal{S}} f(x_{\omega} | \theta)$.
- We thus find θ by solving maximization problem:

$$\max_{\theta} L(\theta) = \prod_{\omega \in \mathcal{S}} f(x_{\omega}|\theta).$$

Here, $L(\theta)$ is known as the likelihood function.

Maximum Likelihood Estimation

• It is often convenient to apply a log transformation to solve equivalent problem:

$$\max_{\theta} \log L(\theta) = \sum_{\omega \in \mathcal{S}} \log f(x_{\omega}|\theta).$$

- Function $\log L(\theta)$ is known as the log likelihood function.
- Logarithmic transformation is used to avoid scaling issues (as pdf values are small).
- Maximization problem is equivalent to minimization problem:

$$\min_{\theta} -\log L(\theta) = -\sum_{\omega \in \mathcal{S}} \log f(x_{\omega}|\theta).$$

 These problems can be solved by hand when pdf is simple but require numerical techniques when pdf is complex.

Example: Estimation for Exponential using MLE

- Use MLE to estimate β for model $\text{Exp}(\beta)$ from data $x_{\omega}, \ \omega \in \mathcal{S}$.
- Pdf of exponential RV is $f(x|\beta) = \frac{1}{\beta}e^{-x/\beta}$ and thus likelihood function is:

$$L(\beta) = \left(\frac{1}{\beta}e^{-x_1/\beta}\right) \left(\frac{1}{\beta}e^{-x_2/\beta}\right) \cdots \left(\frac{1}{\beta}e^{-x_S/\beta}\right)$$
$$= \frac{1}{\beta^S} \exp\left(-\frac{1}{\beta}\sum_{\omega=1}^S x_\omega\right).$$

• We find β that maximizes log likelihood $\log L(\beta)$:

$$\max_{\beta} \log L(\beta) = -S \log \beta - \frac{1}{\beta} \sum_{\omega=1}^{S} x_{\omega}$$

- Value of β that maximizes log likelihood satisfies $\frac{\partial \log L(\beta)}{\partial \beta} = 0$.
- Best estimate is $\hat{\beta} = \frac{1}{S} \sum_{\omega=1}^{S} x_{\omega}$; best estimate $\hat{\beta}$ is empirical mean $\hat{\mathbb{E}}_{X}$.

Example: Estimation for Exponential using MLE ch4_example_mle_exp.m

- From data provided we find that $\hat{\beta} = \hat{\mathbb{E}}_X = 2$.
- Note that this is precisely location where $\log L(\beta)$ is maximized.
- Note that values of likelihood function $L(\theta)$ are extremely small.
- This is why using a log transformation of likelihood function is necessary.

Data Collection and Asymptotic Properties

- So far, we have assumed that we have data $x_{\omega}, \ \omega \in \mathcal{S}$.
- However, we have not discussed how this data is being collected.
- ullet We also want to know how sample approximations and estimates $\hat{ heta}$ behave as we accumulate data.

We make following observations:

- Data x_ω ∈ S is a set of observations of X collected from a population Ω by a defined procedure; i.e., sampling is a data collection procedure.
- A data sample sequence $x_{\omega} \in \mathcal{S}$ is called *random* if each sample x_{ω} is drawn from same underlying pdf $f_X(x)$ and if it is drawn *independently* from others; i.e., samples are independent and identically distributed (i.i.d).
- If sample x_{ω} is selected at random, the sample itself is an RV. Consequently, sometimes we denote a data sample sequence as a sequence of RVs $X_{\omega} \in \mathcal{S}$.

Data Collection and Asymptotic Properties

- Random sample X_{ω} has same probability 1/S of being selected and is *unbiased*.
- Lack of bias indicates that $\mathbb{E}[X_{\omega}] = \mathbb{E}[X]$ (drawing sample many times and averaging results gives expected value of underlying RV X).
- Random samples can be used to construct approximation techniques with powerful asymptotic properties.
- Collecting data at random is not as easy as it sounds, one must ensure that there is no bias in selecting a sample (i.e., there is no hidden mechanism).
- As humans, it is difficult to select something randomly (due to inherent biases).

Example: Random and Non-Random Samples ch4_random_sample.m

- Random sequence $X_{\omega}, \, \omega \in \mathcal{S}$ generated by drawing random samples from $X \sim \mathcal{N}(0,1)$. Samples distribute evenly around mean $\mathbb{E}[X] = 0$ and there is no bias.
- Nonrandom sequence $X_{\omega}, \, \omega \in \mathcal{S}$ is generated by drawing a random sample from $\mathcal{N}(0,1)$ and discarding it if it is above a value of one.
- ullet This introduces a discrimination mechanism that biases sample. Note samples do not distribute evenly around $\mathbb{E}[X]=0$ and there is a bias.

Monte Carlo Approximations

- Monte Carlo (MC) is a computational technique that uses random samples to estimate properties of an RV and of its derived quantities (e.g., statistics).
- Consider a random sample $x_{\omega} \in \mathcal{S}$ of the multivariate X. MC uses the samples to compute a sample (empirical) approximation of an *expectation*:

$$\hat{\mathbb{E}}_{\phi(X)}^{S} = \frac{1}{S} \sum_{\omega \in \mathcal{S}} \phi(x_{\omega}) \approx \mathbb{E}[\phi(X)]$$

where $\phi(X)$ is vector-valued function of X.

• We recall that the true (theoretical) expectation for a continuous RV is given by:

$$\mathbb{E}[\phi(X)] = \int_{x \in \mathcal{D}_X} \phi(x) f_X(x) dx,$$

where $f_X(x)$ is the joint pdf of X.

- Computing expectation thus involves computing a multi-dimensional integral (operation cannot be carried out analytically).
- MC provides a numerical technique to approximate such an integral.

Monte Carlo Approximations

- Many quantities of interest can be expressed as expectation operations and thus can be computed via MC.
- Some examples include:
 - $\bullet \ \ \text{Expectation of} \ X \colon \hat{\mathbb{E}}_X^S := \frac{1}{S} \sum_{\omega \in \mathcal{S}} x_\omega \approx \mathbb{E}[X]$
 - $\bullet \ \ \text{Variance of} \ X \colon \hat{\mathbb{V}}_X^S := \frac{1}{S} \sum_{\omega \in \mathcal{S}} (x_\omega \hat{\mathbb{E}}_X^S)^2 \approx \mathbb{V}[X]$
 - $\bullet \ \ \mathsf{CDF} \ \ \mathsf{of} \ X \colon \ \hat{F}_X^S(x) := \frac{1}{S} \sum_{\omega \in \mathcal{S}} \mathbf{1}[x_\omega \le x] \approx F_X(x)$
 - Expectation of function $\hat{\mathbb{E}}_{\varphi}^S := \frac{1}{S} \sum_{v \in S} \varphi(x_{\omega}, u) \approx \mathbb{E}[\varphi(X, u)].$
 - Probability of event: $\hat{\mathbb{P}}(X \in \mathcal{A}) := \frac{1}{S} \sum_{\omega \in \mathcal{S}} \mathbf{1}[x_{\omega} \in \mathcal{A}] \approx \mathbb{P}(X \in \mathcal{A}).$
- ullet Note dependence of empirical approxs on number of samples S.
- When empirical approx use data, these are called data-driven approxs.
- Empirical approximations are also often called sample average approxs.

Monte Carlo Approximations

- Important questions related to MC approximations are:
 - Do the approximations become exact as we accumulate data?
 - How accurate are these approximations when we have a limited amount of data?
 - How much data do we need to obtain a desired accuracy?
 - How to approximation errors behave as we change our sample data?
- We will now explore tools to answer these questions; the use of these tools is enabled by the fact that samples are collected at random.
- As part of our discussion we will also see that RVs exhibit "universal" behavior as we accumulate data (i.e., as $S \to \infty$).

Law of Large Numbers

- Lets assess quality of empirical approximations as $S \to \infty$.
- Consider an i.i.d. random sequence $X_1, X_2, ..., X_S$ for univariate RV X. Since the samples are i.i.d, they have same underlying pdf with $\mathbb{E}[X]$.
- Since samples are random, they are unbiased $\mathbb{E}[X_1] = \mathbb{E}[X_2] = \cdots = \mathbb{E}[X_S] = \mathbb{E}[X]$.
- Consider now the MC approximation of $\mathbb{E}[X]$:

$$\hat{\mathbb{E}}_X^S = \frac{1}{S} \sum_{\omega \in \mathcal{S}} X_\omega$$

Because the samples X_{ω} , $\omega \in \mathcal{S}$ are random, approx $\hat{\mathbb{E}}_X^S$ is also random (i.e., different samples give different approxs).

- ullet There is thus inherent variability in approx $\hat{\mathbb{E}}_X^S$ (variability is a approx accuracy).
- Law of large numbers (LLN) indicates that:

$$\lim_{S \to \infty} \hat{\mathbb{E}}_X^S = \mathbb{E}[X]$$

LLN guarantees stable long-run behavior of sample averages.

Example: Monte Carlo Approximations ch4_montecarlo_approx.m

- We generate random samples $X_{\omega}, \ \omega \in \mathcal{S} \text{ from } X \sim \text{Weibull}(2,1).$
- Compute MC approxs for $\mathbb{E}[X], \mathbb{E}[\log(X)]$ and $\mathbb{V}[\exp(X) + X^2]$, and $\mathbb{P}(X > \geq 1)$ for different S.

Central Limit Theorem

- Now turn our attention to assessing accuracy of sample approx $\hat{\mathbb{E}}_X^S$.
- Because MC approx is an RV, accuracy is measured in terms of its uncertainty.
- If we want uncertainty of an RV, we need to know its underlying pdf.
- Obtaining pdf of $\hat{\mathbb{E}}_X^S$ can achieved by using a powerful result in statistics known as the central limit theorem (CLT).
- Consider a sample sequence $X_1, X_2, ..., X_S$ that is i.i.d and that has *known* expected value $e = \mathbb{E}[X]$ and variance $v^2 = \mathbb{V}[X]$.
- CLT states that:

$$\lim_{S \to \infty} \hat{\mathbb{E}}_X^S \sim \mathcal{N}(e, v^2/S)$$

• CLT states that, regardless of the nature of X (e.g., Weibull, Poisson), sample approximation $\hat{\mathbb{E}}_X^S$ will always behave as a Gaussian RV as S increases.

Central Limit Theorem

- CLT states that expected value of $\hat{\mathbb{E}}_X^S$ is true value e. In other words, $\hat{\mathbb{E}}_X^S$ is an unbiased estimate of e.
- CLT states that variance of $\mathbb{V}[\hat{\mathbb{E}}_X^S]$ is given by v^2/S (std dev is v/\sqrt{S}) and that this shrinks with S. In other words, $\hat{\mathbb{E}}_X^S$ becomes more accurate as S increases.
- Since we know that $\hat{\mathbb{E}}_X^S \sim \mathcal{N}(e,v/\sqrt{S})$ then we have pdf for $\hat{\mathbb{E}}_X^S$ and thus we can compute quantities of interest for it.
- \bullet For example, we can compute $1-\alpha$ confidence intervals:

$$\mathbb{E}_X \in \left[\hat{\mathbb{E}}_X^S \pm z_{\alpha/2} v / \sqrt{S} \right].$$

- Note that this interval shrinks as S increases.
- CLT assumes that we know variance of X; as a result, we need to know these
 quantities to compute confidence interval.
- In practice, one often replaces this quantity with its MC approx (sample variance):

$$\hat{v}^2 = \frac{1}{S-1} \sum_{\omega \in \mathcal{S}} (x_\omega - \hat{\mathbb{E}}_X^S)^2.$$

Example: Verifying the Central Limit Theorem ch4_clt_example.m

- We i.i.d. samples $X_1,...,X_S$ from $X \sim \text{Weibull}(2,1)$ and compute $\hat{\mathbb{E}}_X^S = \frac{1}{S} \sum_{\omega = 1} X_{\omega}$.
- ullet We repeat procedure for different sets of samples and visualize pdf of $ar{X}=\hat{\mathbb{E}}_X^S.$

Figure: Pdf for $X\sim {
m Weibull}(2,1)$ (top-left) and sample average \bar{X} with S=10 (top-right), S=100 (bottom-left) and S=1000 (bottom-right).

Extreme Value Theorem

- In CLT we study limiting behavior of sample average $\hat{\mathbb{E}}_X^S = \frac{1}{S} \sum_{\omega \in \mathcal{S}} X_\omega$.
- What if we are interested in a different statistic? For instance, the sample max:

$$X_{max}^S = \max\{X_1, X_2, \cdots, X_S\}$$

- Extreme value theorem (EVT) characterizes pdf of X_{max}^S as $S \to \infty$.
- ullet Consider, as before, an i.i.d. sequence $X_1, X_2, ..., X_S$ for RV X. The EVT states:

$$\lim_{S \to \infty} X_{max}^S \sim \mathrm{GEV}(a,b,c)$$

where $\operatorname{GEV}(a,b,c)$ is generalized extreme value (GEV) RV with params a,b,c.

Extreme Value Theorem

• GEV has cdf:

$$F_{X_{max}}(x) = \begin{cases} \exp(-(1+cs)^{-1/c}) & c \neq 0\\ \exp(-\exp(-s)) & c = 0 \end{cases}$$

where s = (x - a)/b is a standarized variable.

- GEV is reverse Weibull (for c < 0), Frechet (for c > 0), and Gumbel (for c = 0).
- Reverse Weibull is a variant of the two-parameter Weibull (explored before).
- GEV RV is used in failure analysis because sample max characterizes extreme events.
- This is relevant because such events often have small probabilities (are *rare* events).
- GEV thus gives a mechanism to estimate probabilities for rare events.

Example: Verifying Extreme Value Theorem ch4_evt_example.m

- Collect i.i.d. samples X_1, \ldots, X_S form $X \sim \mathcal{N}(2,1)$ and compute $X_{max}^S = \max\{X_1, \cdots, X_S\}.$
- ullet Repeat procedure for different sets of samples and visualize pdf of $X_{max}^S.$
- ullet We do this for different S to verify that pdf follows that of a GEV as we increase S.

Figure: Pdf for $X\sim\mathcal{N}(2,1)$ (top-left) and sample max X_{max}^S with S=10 (top-right), S=100 (bottom-left) and S=1000 (bottom-right).