Tarefa#2 - Aprendizado supervisionado - MO432

June 8, 2021

Universidade Estadual de Campinas (UNICAMP), Instituto de Computação (IC)

Prof. Jacques Wainer, 2021s1

```
[1]: # RA & Name

print('265673: ' + 'Gabriel Luciano Gomes')

print('264965: ' + 'Décio Luiz Gazzoni Filho')

print('192880: ' + 'Lucas Borges Rondon')
```

265673: Gabriel Luciano Gomes 264965: Décio Luiz Gazzoni Filho 192880: Lucas Borges Rondon

1 Leitura da base de dados

```
[2]:
        station
                       Date
                              Present_Tmax ...
                                                Solar radiation
                                                                 Next_Tmax
                                                                             Next_Tmin
                                      28.7 ...
     0
            1.0 2013-06-30
                                                    5992.895996
                                                                       29.1
                                                                                   21.2
     1
            2.0 2013-06-30
                                      31.9 ...
                                                                       30.5
                                                                                  22.5
                                                    5869.312500
            3.0 2013-06-30
                                      31.6 ...
                                                    5863.555664
                                                                       31.1
                                                                                  23.9
     3
            4.0 2013-06-30
                                      32.0 ...
                                                    5856.964844
                                                                       31.7
                                                                                  24.3
            5.0 2013-06-30
                                      31.4 ...
                                                    5859.552246
                                                                       31.2
                                                                                  22.5
```

[5 rows x 25 columns]

```
[3]: print(f'A base de dados possui {db.shape[0]} instâncias com {db.shape[1]}<sub>□</sub>

→atributos.')
```

A base de dados possui 7752 instâncias com 25 atributos.

2 Pré-processamento dos dados

2.1 Remoção das colunas "Next_Tmin" e "Date"

```
[4]: db = db.drop(columns=['Next_Tmin', 'Date'])
    db.head()
```

```
[4]:
        station Present_Tmax Present_Tmin ...
                                                   Slope
                                                          Solar radiation
                                                                            Next_Tmax
     0
            1.0
                          28.7
                                        21.4 ...
                                                  2.7850
                                                              5992.895996
                                                                                 29.1
     1
            2.0
                          31.9
                                        21.6 ...
                                                                                 30.5
                                                  0.5141
                                                              5869.312500
     2
                                        23.3 ... 0.2661
            3.0
                          31.6
                                                              5863.555664
                                                                                 31.1
     3
                                        23.4 ...
            4.0
                          32.0
                                                  2.5348
                                                              5856.964844
                                                                                 31.7
     4
            5.0
                                        21.9 ... 0.5055
                          31.4
                                                              5859.552246
                                                                                 31.2
```

[5 rows x 23 columns]

2.2 Identificação de valores nulos

[5]: db.isna().sum() # Verificar se existem valores desconhecidos na base de dados

```
[5]: station
                            2
     Present_Tmax
                           70
     Present_Tmin
                           70
     LDAPS_RHmin
                          75
     LDAPS_RHmax
                           75
                          75
     LDAPS_Tmax_lapse
     LDAPS_Tmin_lapse
                           75
     LDAPS_WS
                           75
     LDAPS_LH
                           75
     LDAPS_CC1
                           75
     LDAPS_CC2
                          75
     LDAPS_CC3
                           75
     LDAPS CC4
                          75
     LDAPS_PPT1
                           75
     LDAPS PPT2
                          75
     LDAPS_PPT3
                           75
     LDAPS_PPT4
                           75
     lat
                            0
                            0
     lon
                            0
     DEM
                            0
     Slope
     Solar radiation
                            0
                           27
     Next_{Tmax}
     dtype: int64
```

2.2.1 Remoção dos valores nulos

```
[6]: db = db.dropna() db.shape
```

[6]: (7588, 23)

2.2.2 Separação da base de dados (entrada e saída)

```
[7]: X = db.drop(columns=['Next_Tmax'])
y = db['Next_Tmax']
```

2.2.3 Centering e Scaling dos dados de entrada

```
[8]: from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()
X = scaler.fit_transform(X)
```

3 Processamento do conjunto de dados

3.1 Imports necessários

```
from random import sample
from scipy.stats import loguniform, uniform
from sklearn.ensemble import GradientBoostingRegressor, RandomForestRegressor
from sklearn.exceptions import ConvergenceWarning
from sklearn.linear_model import Lasso, LinearRegression, Ridge
from sklearn.model_selection import cross_val_score, GridSearchCV,

RandomizedSearchCV
from sklearn.neighbors import KNeighborsRegressor
from sklearn.neural_network import MLPRegressor
from sklearn.svm import SVR
from sklearn.tree import DecisionTreeRegressor
from statistics import mean
```

```
n_iter = n_iter,
                          scoring = 'neg_root_mean_squared_error',
                          n_{jobs} = -1,
                          cv = 5,
                          random_state = 1)
 return search.fit(X,y)
def best_results(model, space, X, y, hparams_name, n_iter = 10):
 hparams = find_hyperparams(model, space, X, y, n_iter)
 best_hparams = hparams.best_params_
 best_rmse
            = -hparams.best_score_
 string_result = f'Melhor RMSE: {best_rmse:5f} para'
 for x in hparams_name:
   string_result += f' {x}: {best_hparams[x]:5f} \t'
 print(string_result)
 model_default = fit_values(model, X, y)
 print(f'RMSE para modelo default: {mean(-model default):5f}')
 return (best_hparams, best_rmse, model_default)
```

3.2 Modelo Linear

```
[11]: linear_ = fit_values(LinearRegression(), X, y)

print('*' *10 + ' Modelo Linear ' + '*' *10)
print(f'Melhor RMSE: {mean(-linear_)}')
```

****** Modelo Linear ******
Melhor RMSE: 1.5775462124225403

3.3 Modelo Linear com regularização L2

```
y,
['alpha'])
```

****** Modelo Ridge ******

Melhor RMSE: 1.576248 para alpha: 20.986836

RMSE para modelo default: 1.577477

3.4 Modelo Linear com regularização L1

****** Modelo Lasso ******

Melhor RMSE: 1.570089 para alpha: 0.013109

RMSE para modelo default: 2.024356

3.5 Modelo SVM Linear

****** Modelo SVM Linear ******

```
/usr/local/lib/python3.7/dist-packages/sklearn/svm/_base.py:231:
ConvergenceWarning: Solver terminated early (max_iter=3000). Consider pre-processing your data with StandardScaler or MinMaxScaler.
```

% self.max_iter, ConvergenceWarning)

/usr/local/lib/python3.7/dist-packages/sklearn/svm/_base.py:231: ConvergenceWarning: Solver terminated early (max_iter=3000). Consider pre-processing your data with StandardScaler or MinMaxScaler.

% self.max_iter, ConvergenceWarning)

```
/usr/local/lib/python3.7/dist-packages/sklearn/svm/_base.py:231:
ConvergenceWarning: Solver terminated early (max_iter=3000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  % self.max_iter, ConvergenceWarning)
/usr/local/lib/python3.7/dist-packages/sklearn/svm/ base.py:231:
ConvergenceWarning: Solver terminated early (max_iter=3000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  % self.max_iter, ConvergenceWarning)
/usr/local/lib/python3.7/dist-packages/sklearn/svm/_base.py:231:
ConvergenceWarning: Solver terminated early (max_iter=3000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
 % self.max_iter, ConvergenceWarning)
RMSE para modelo default: 1.843715
/usr/local/lib/python3.7/dist-packages/sklearn/svm/_base.py:231:
ConvergenceWarning: Solver terminated early (max_iter=3000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  % self.max_iter, ConvergenceWarning)
```

3.6 Modelo SVM kernel RBF

```
****** Modelo SVM Linear ******
/usr/local/lib/python3.7/dist-packages/sklearn/svm/_base.py:231:
ConvergenceWarning: Solver terminated early (max_iter=3000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  % self.max_iter, ConvergenceWarning)
Melhor RMSE: 1.566807 para epsilon: 0.100000
                                                C: 14.611758
                                                                gamma: 0.002453
/usr/local/lib/python3.7/dist-packages/sklearn/svm/_base.py:231:
ConvergenceWarning: Solver terminated early (max_iter=3000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
 % self.max_iter, ConvergenceWarning)
/usr/local/lib/python3.7/dist-packages/sklearn/svm/_base.py:231:
ConvergenceWarning: Solver terminated early (max_iter=3000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
 % self.max_iter, ConvergenceWarning)
```

```
/usr/local/lib/python3.7/dist-packages/sklearn/svm/_base.py:231:
ConvergenceWarning: Solver terminated early (max_iter=3000). Consider pre-processing your data with StandardScaler or MinMaxScaler.

% self.max_iter, ConvergenceWarning)
/usr/local/lib/python3.7/dist-packages/sklearn/svm/_base.py:231:
ConvergenceWarning: Solver terminated early (max_iter=3000). Consider pre-processing your data with StandardScaler or MinMaxScaler.

% self.max_iter, ConvergenceWarning)
/usr/local/lib/python3.7/dist-packages/sklearn/svm/_base.py:231:
ConvergenceWarning: Solver terminated early (max_iter=3000). Consider pre-processing your data with StandardScaler or MinMaxScaler.

% self.max_iter, ConvergenceWarning)
```

RMSE para modelo default: 1.685369

3.7 KNN

****** Modelo KNN ******

Melhor RMSE: 1.845414 para n_neighbors: 38.000000

RMSE para modelo default: 1.927051

3.8 MLP

****** Modelo MLP ******

/usr/local/lib/python3.7/distpackages/sklearn/neural_network/_multilayer_perceptron.py:571: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and

```
% self.max_iter, ConvergenceWarning)
     Melhor RMSE: 2.383525 para hidden_layer_sizes: 11.000000
     /usr/local/lib/python3.7/dist-
     packages/sklearn/neural_network/_multilayer_perceptron.py:571:
     ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and
     the optimization hasn't converged yet.
       % self.max_iter, ConvergenceWarning)
     /usr/local/lib/python3.7/dist-
     packages/sklearn/neural_network/_multilayer_perceptron.py:571:
     ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and
     the optimization hasn't converged yet.
       % self.max_iter, ConvergenceWarning)
     /usr/local/lib/python3.7/dist-
     packages/sklearn/neural_network/_multilayer_perceptron.py:571:
     ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and
     the optimization hasn't converged yet.
       % self.max_iter, ConvergenceWarning)
     /usr/local/lib/python3.7/dist-
     packages/sklearn/neural_network/_multilayer_perceptron.py:571:
     ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and
     the optimization hasn't converged yet.
       % self.max_iter, ConvergenceWarning)
     RMSE para modelo default: 1.931995
     /usr/local/lib/python3.7/dist-
     packages/sklearn/neural_network/_multilayer_perceptron.py:571:
     ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and
     the optimization hasn't converged yet.
       % self.max_iter, ConvergenceWarning)
[18]: mlp_
[18]: ({'hidden layer sizes': 11},
       2.3835245841742254,
       array([-2.00656122, -1.79094716, -2.02333629, -1.97491476, -1.8642152]))
     3.9 Árvore de Decisão
[19]: space = dict()
      space['ccp_alpha'] = uniform(0.0, 0.04)
      print('*' *10 + ' Modelo de Árvore de Decisão ' + '*' *10)
      model = DecisionTreeRegressor()
      model.cost_complexity_pruning_path(X, y)
```

the optimization hasn't converged yet.

****** Modelo de Árvore de Decisão ********
Melhor RMSE: 1.861153 para ccp_alpha: 0.021553
RMSE para modelo default: 2.208033

3.10 Random Forest

****** Modelo Random Forest ******

/usr/local/lib/python3.7/dist-

packages/joblib/externals/loky/process_executor.py:691: UserWarning: A worker stopped while some jobs were given to the executor. This can be caused by a too short worker timeout or by a memory leak.

"timeout or by a memory leak.", UserWarning

Melhor RMSE: 1.627018 para n_estimators: 1000.000000 max_features: 10.000000 RMSE para modelo default: 1.658443

3.11 GBM

```
['n_estimators', 'learning_rate', 'max_depth'])
```

****** Modelo GBM *****

Melhor RMSE: 1.585280 para n_estimators: 77.000000 learning_rate: 0.135107

max_depth: 2.000000

RMSE para modelo default: 1.596553

3.12 Tabela Comparativa

Modelo RMSE	Default	Melhores Hyperparâmetros
Linear	1.577546	-
Linear com L1	2.024356	1.570089
Linear com L2	1.577477	1.576248
SVM Linear	1.843715	1.788912
SVM com brf	1.685369	1.566807
KNN	1.927051	1.845414
MLP	1.931995	2.383525
Árvore de Decisão	2.208033	1.861153
Random Forest	1.658443	1.627018
GBM	1.596553	1.585280