Homework 18

Mark Petersen

Sections 33,34

33. SEQUENCES

Exercise 33.1. Write the first six terms, and determine the nth term a_n , for each of the following sequences.

- a) An arithmetic sequence with first term 5 and common difference -3. 5, 2, -1, -4, -7, -10; $a_n = 5 3 (n 1)$
- b) A geometric sequence with first term 4 and common ration 2. $4,8,16,32,64,128;\ a_n=4\cdot 2^{n-1}$
- c) An arithmetic sequence with first term $\frac{1}{2}$ and common difference $\frac{3}{4}$, $\frac{5}{4}$, $\frac{8}{4}$, $\frac{11}{4}$, $\frac{14}{4}$, $\frac{17}{4}$; $a_n=\frac{1}{2}+\frac{3}{4}$ (n-1)
- $\frac{2}{4}, \frac{5}{4}, \frac{8}{4}, \frac{11}{4}, \frac{14}{4}, \frac{17}{4}; \ a_n = \frac{1}{2} + \frac{3}{4} \left(n 1 \right)$ d) A geometric sequence with first term $\frac{3}{5}$ and common ration $\frac{2}{3}$. $\frac{3}{5}, \frac{6}{15}, \frac{12}{45}, \frac{24}{135}, \frac{48}{405}, \frac{96}{1215}; \ a_n = \frac{3}{5} \cdot \left(\frac{2}{3} \right)^{n-1}$

Exercise 33.2. Translate the following phrases into symbolic logic.

- a) The sequence $(a_n)_{n\in\mathbb{N}}$ defined by $a_n=3-4/n$ converges to L=3. $\forall \epsilon\in\mathbb{R}>0, \exists N\in\mathbb{R}, \forall n\in\mathbb{N}, n>N \implies |3-4/n-3|<\epsilon.$
- b) The sequence $(a_n)_{n\in\mathbb{N}}$ defined by $a_n=6$ does not converge to L=3. $\exists \epsilon\in\mathbb{R}>0, \forall N\in\mathbb{R}, \exists n\in\mathbb{N}, (n>N)\land (|6-3|\geq\epsilon)$

Exercise 33.3. Let $a, b, x \in \mathbb{R}$. Prove the following.

a) $\max(a,b) \ge a$ and $\max(a,b) \ge b$. *Proof:* We suppose directly that the function $\max(a,b)$ is defined as

$$\max(a, b) = \begin{cases} a & \text{if } a \ge b \\ b & \text{if } b > a \end{cases},$$

then the image of max(a, b) is either a or b. This gives us two cases.

- Case 1. Let the output be a, then $a \ge b$, thus $\max{(a,b)} \ge a$ and $\max{(a,b)} \ge b$.
- Case 2. Let the output be b, then b>a, thus $\max{(a,b)}\geq a$ and $\max{(a,b)}\geq b$.

Since both cases hold, the statement is true.

b) $\min(a, b) \le a$ and $\min(a, b) \le b$.

Proof: We suppose directly that the function mix

Proof: We suppose directly that the function $\min(a, b)$ is defined as

$$\min(a, b) = \begin{cases} a & \text{if } a \le b \\ b & \text{if } b < a \end{cases},$$

then the image of $\min(a, b)$ is either a or b depending on which one is smaller. This gives us two cases.

- Case 1. Let $\min(a,b)=a$, then $a\leq b$, thus $\min(a,b)\leq a$ and $\min(a,b)\leq b$.
- Case 2. Let $\min(a, b) = b$, then b < a, thus $\min(a, b) < a$ and $\min(a, b) \le b$.

Since both cases hold, the statement is true.

c) If $x > \max(a, b)$, then x > a and x > b.

We suppose directly that the function $\max{(a,b)}$ is defined as in part a), and that $x>\max{(a,b)}$. Since $\max{(a,b)}\geq a$ and $\max{(a,b)}\geq b$, we then have that $x>\max{(a,b)}\geq a$ and $x>\max{(a,b)}\geq b$. In other words, x>a and x>b. Thus the statement is true.

Exercise 33.4. Prove that

$$\lim_{n \to \infty} \frac{2}{n^2} = 0.$$

a) Scratch work:

$$|a_n - L| < \epsilon$$

$$\left| \frac{2}{n^2} - 0 \right| < \epsilon$$

$$\frac{2}{n^2} < \epsilon$$

$$\frac{2}{\epsilon} < n^2$$

$$\sqrt{\frac{2}{\epsilon}} < n,$$

thus we want $N = \sqrt{\frac{2}{\epsilon}}$

Proof: Let $\epsilon \in \mathbb{R} > 0$, and we let $N \in \mathbb{R}$ to be $N = \sqrt{\frac{2}{\epsilon}}$. We suppose directly that $n \in \mathbb{N}$ is greater than N, then

$$|a_n - L| = \left| \frac{2}{n^2} - 0 \right|$$

$$= \frac{2}{n^2}$$

$$< \frac{2}{\sqrt{\frac{2}{\epsilon}}}$$

$$= \frac{2}{\frac{2}{\epsilon}}$$

$$= \epsilon,$$

thus $\forall \epsilon \in \mathbb{R} > 0, \exists N \in \mathbb{R}, \forall n \in \mathbb{N}, n > N \implies |a_n - L| < \epsilon$. Therefore, the limit is 0.

Exercise 33.5. Prove that

$$\lim_{n \to \infty} \frac{3n - 5}{2n + 4} = \frac{3}{2}.$$

a) Scratch work:=

$$\left| \frac{3n-5}{2n+4} - \frac{3}{2} \right| = \left| \frac{2(3n-5) - 3(2n+4)}{2(2n+4)} \right|$$

$$= \left| \frac{6n-10-6n-12}{2(2n+4)} \right|$$

$$= \left| \frac{-24}{4n+8} \right|$$

$$= \frac{24}{4n+8},$$

we want to solve for n such that $\frac{24}{4n+8} < \epsilon$ as follows:

$$\frac{24}{4n+8} < \epsilon$$

$$\frac{\frac{24}{\epsilon} - 8}{4} < n$$

$$\frac{6}{\epsilon} - 2 < n$$

Proof: Let $\epsilon \in \mathbb{R} > 0$, $N = \frac{6}{\epsilon} - 2$ and $n \in \mathbb{N}$. We suppose directly that n > N, then

$$|a_n - L| = \left| \frac{3n - 5}{2n + 4} - \frac{3}{2} \right|$$

$$= \left| \frac{24}{4n + 8} \right|$$

$$< \left| \frac{24}{4\left(\frac{6}{\epsilon} - 2\right) + 8} \right|$$

$$< \left| \frac{24}{\frac{24}{\epsilon}} \right|$$

$$< \epsilon,$$

thus $\forall \epsilon \in \mathbb{R} > 0, \exists N \in \mathbb{R}, \forall n \in \mathbb{N}, n > N \implies |a_n - L| < \epsilon$. Therefore, the limit is $\frac{3}{2}$.

Exercise 33.6. Prove or disprove: The sequence $(a_n)_{n\in\mathbb{N}}$ defined by $a_n=(n+1)/n$ converges.

a) Scratch Work: (We will prove that it converges to 1)

$$\left| \frac{n+1}{n} - 1 \right| = \left| \frac{n+1-n}{n} \right|$$
$$= \frac{1}{n},$$

we want to solve for n such that $\frac{1}{n} < \epsilon$. Thus $\frac{1}{\epsilon} < n$.

Proof: Let $\epsilon \in \mathbb{R} > 0$, $N = \frac{1}{\epsilon}$, and $n \in \mathbb{N}$. We suppose directly that n > N, then

$$\left| \frac{n+1}{n} - 1 \right| = \frac{1}{n}$$

$$< \frac{1}{\frac{1}{\epsilon}}$$

$$< \epsilon,$$

thus $\forall \epsilon \in \mathbb{R} > 0, \exists N \in \mathbb{R}, \forall n \in \mathbb{N}, n > N \implies |a_n - L| < \epsilon$. Therefore, the limit is 1.

Exercise 33.7. Let $(a_n)_{n\in\mathbb{N}}$ be an arithmetic sequence with first term c and common difference d. Prove that if d=0, the sequence $(a_n)_{n\in\mathbb{N}}$ converges to c.

Proof: Let $\epsilon \in \mathbb{R} > 0$, $N \in \mathbb{R}$, and $n \in \mathbb{N}$. We suppose directly that a_n is an arithmetic sequence with first term c and common difference d = 0, and that n > N, then

$$|a_n - c| = |c + d(n - 1) - c|$$

$$= |c - c|$$

$$= 0$$

$$< \epsilon,$$

thus $\forall \epsilon \in \mathbb{R} > 0, \exists N \in \mathbb{R}, \forall n \in \mathbb{N}, n > N \implies |a_n - L| < \epsilon$. Therefore, the limit is c. This is trivially true.

Exercise 33.8. Prove that the sequence $(a_n)_{n\in\mathbb{N}}$ defined by $a_n=n$ does not converge to L=3.

Proof: We want to show that $\exists \epsilon \in \mathbb{R} > 0, \forall N \in \mathbb{R}, \exists n \in \mathbb{N}, n > N \land |a_n - L| \geq \epsilon$. Let $\epsilon = 1$ and let $n = \max(N + 1, 10)$, then

$$|a_n - L| = |\max(N+1, 10) - 3|$$

$$\geq 7$$

$$> \epsilon,$$

thus the sequence doesn't converge to L=3.

Exercise 33.9. Prove that $\lim_{n\to\infty} (\sqrt{n^2+1}-n)=0$

a) Scratch Work, we want to solve for n in the equation $\left|\sqrt{n^2+1}-n-0\right|<\epsilon$ as follows:

$$\begin{split} \left|\sqrt{n^2+1}-n-0\right| < \epsilon \\ \sqrt{n^2+1}-n < \epsilon \\ \sqrt{n^2+1} < \epsilon + n \\ n^2+1 < 2\epsilon n + \epsilon^2 + n^2 \\ 1 - \epsilon^2 < 2\epsilon n \\ \frac{1-\epsilon^2}{2\epsilon} < n, \end{split}$$

Proof: Let $\epsilon \in \mathbb{R}>0,$ $N=\frac{1-\epsilon^2}{2\epsilon},$ $n\in \mathbb{N},$ and suppose directly that n>N, then

$$\begin{split} \left|\sqrt{n^2+1}-n-0\right| &= \sqrt{n^2+1}-n \\ &< \sqrt{\left(\frac{1-\epsilon^2}{2\epsilon}\right)^2+1} - \frac{1-\epsilon^2}{2\epsilon} \\ &= \sqrt{\frac{1-2\epsilon^2+\epsilon^4+4\epsilon^2}{4\epsilon^2}} - \frac{1-\epsilon^2}{2\epsilon} \\ &= \sqrt{\frac{\left(1+\epsilon^2\right)^2}{\left(2\epsilon\right)^2}} - \frac{1-\epsilon^2}{2\epsilon} \\ &= \frac{1+\epsilon^2}{2\epsilon} - \frac{1-\epsilon^2}{2\epsilon} \\ &= \frac{2\epsilon^2}{2\epsilon} \\ &= \epsilon, \end{split}$$

thus $\forall \epsilon \in \mathbb{R} > 0, \exists N \in \mathbb{R}, \forall n \in \mathbb{N}, n > N \implies |a_n - L| < \epsilon$. Therefore, the limit is 0.

Exercise 33.10. Let $(a_n)_{n\in\mathbb{N}}$ be a geometric sequence with first term c and common ration r. Prove the following statements.

a) If |r| < 1, then a_n converges to 0.

Scratch Work: We want to solve for n in the expression $c \cdot r^{n-1} < \epsilon$. We do this as follows

$$\begin{aligned} c \cdot r^{n-1} &< \epsilon \\ \ln \left(c r^{n-1} \right) &< \ln \left(\epsilon \right) \\ \ln \left(c \right) + \ln \left(r^{n-1} \right) &< \ln \left(\epsilon \right) \\ \ln \left(c \right) - \ln \left(\epsilon \right) &< - \left(n - 1 \right) \ln \left(r \right) \\ \ln \left(c \right) - \ln \left(\epsilon \right) &< -n \ln \left(r \right) \\ - \ln \left(c \right) + \ln \left(\epsilon \right) + \ln \left(r \right) &< n \ln \left(r \right) \\ \ln \left(\frac{\epsilon}{c} r \right) &< n \ln \left(r \right) \\ \frac{\ln \left(\frac{\epsilon}{c} r \right)}{\ln \left(r \right)} &< n \\ a &< n, \end{aligned}$$

with $a = \frac{\ln(\frac{\epsilon}{c}r)}{\ln(r)}$.

Proof: Let $\epsilon \in \mathbb{R} > 0$, $N = \ln\left(\frac{c}{\epsilon}r\right) / \ln\left(r\right)$, $n \in \mathbb{N}$, $a = \frac{\ln\left(\frac{c}{\epsilon}r\right)}{\ln\left(r\right)}$, and \ln be \log_r . We suppose directly that |r| < 1 and n > N, then

$$|a_n - L| = |c \cdot r^{n-1} - 0|$$

$$= c \cdot r^{n-1}$$

$$< c \cdot r^{a-1}$$

$$< c \cdot r^{\frac{\ln(\frac{\epsilon}{c}r)}{\ln(r)} - 1}$$

$$< c \cdot \frac{\epsilon}{c}$$

$$< \epsilon,$$

thus $\forall \epsilon \in \mathbb{R} > 0, \exists N \in \mathbb{R}, \forall n \in \mathbb{N}, n > N \implies |a_n - L| < \epsilon$. Therefore, the limit is 0.

b) If $c \neq 0$ and a_n converges to 0, then |r| < 1.

Proof: We assume by contradiction that $c \neq 0$, a_n converges to 0 and that $|r| \geq 1$. There are two cases to consider, when |r| = 1 and |r| > 1. If the statement is false under any case, then the entire statement is false. So we only consider the first case.

Case 1. We suppose that |r| = 1, then $a_n = c \cdot (\pm 1)^{n-1}$. If r = 1, then a_n converges trivially to c as shown similarly in exercise 33.7. If r = -1, then $a_n = (-c)^{n-1}$ which does not converge as shown similarly in proposition 33.16.

Since a_n does not converge to 0 when |r|=1, this is a contradiction. Therefore, the original statement is true. Thus if $c\neq 0$ and a_n converges to 0, then |r|<1.

c) If c > 0 and r > 1, then a_n diverges.

Scratch Work: Let's solve for n in the equation $cr^{n-1} = L$ as follows

$$cr^{n-1} = L$$

$$\ln (r^{n-1}) = \ln \left(\frac{L}{c}\right)$$

$$(n-1)\ln (r) = \ln \left(\frac{L}{c}\right)$$

$$n\ln (r) - \ln (r) = \ln \left(\frac{L}{c}\right)$$

$$n = \frac{\ln \left(\frac{Lr}{c}\right)}{\ln (r)},$$

note that when $n>\frac{\ln\left(\frac{Lr}{c}\right)}{\ln(r)},$ then $cr^{n-1}>L$ since r>0.

Proof: Let $\epsilon=cr$ and $n\in\mathbb{N}$ be chosen such that $n>\max\Big(N,\frac{\ln\left(\frac{Lr}{c}\right)}{\ln(r)}+1\Big)$, then

$$\begin{split} \left| cr^{n-1} - L \right| &\geq cr^{\frac{\ln\left(\frac{Lr}{c}\right)}{\ln(r)} + 1} - L \\ &= cr^{\frac{\ln\left(\frac{Lr}{c}\right)}{\ln(r)}} + cr - L \\ &= L - L + cr \\ &= cr, \end{split}$$

thus, $\forall L \in \mathbb{R}, \exists \epsilon \in \mathbb{R} > 0, \forall N \in \mathbb{N}, \exists n \in \mathbb{N}, n > N \land \left| cr^{n-1} - L \right| \geq \epsilon$ when r > 0 and c > 0. Therefore, the statement is true.

34. SERIES

Exercise 34.1. Consider the sequence $(a_n)_{n\in\mathbb{N}}$ given by the rule $a_n=n$. Find the first 6 terms of the sequence of partial sums s_n . Conjecture a simple formula for s_n and prove it.

a_n	1	2	3	4	5	6
s_n	1	3	6	10	15	21

a)

Conjecture: Let the sequence $(a_n)_{n\in\mathbb{N}}$ be given by the rule $a_n=n$, then the

partial sum $s_n = \frac{n(n+1)}{2}$.

Proof: Let the sequence $(a_n)_{n \in \mathbb{N}}$ be given by the rule $a_n = n$, we want to show that the open sentence

$$P(n)$$
: the partial sum $s_n = \frac{n(n+1)}{2}$

is true. We work this by induction.

Base Case: We verify P(1) which is

$$s_1 = a_1 = 1 = \frac{1(1+1)}{2},$$

thus it is true.

Induction: Let $k \in \mathbb{N}$. We assume by induction that P(k) is true, which is the statement $s_k = \frac{k(k+1)}{2}$, and we want to show that P(k+1) is true. Well,

$$\begin{split} s_{k+1} &= s_k + a_{k+1} \\ &= \frac{k\left(k+1\right)}{2} + k + 1 \\ &= \frac{k\left(k+1\right) + 2\left(k+1\right)}{2} \\ &= \frac{\left(k+1\right)\left(k+2\right)}{2}, \end{split}$$

thus P(k+1) is true. Therefore $s_n = \frac{n(n+1)}{2}$

Exercise 34.2. Let $c, d \in \mathbb{R}$ and let $(a_n)_{n \in \mathbb{N}}$ be the arithmetic sequence defined by $a_n = c + (n-1)d$. Find a formula for the nth partial sum $s_n = \sum_{k=1}^n a_k$ and prove it.

Conjecture: Let $c, d \in \mathbb{R}$ and let the sequence $(a_n)_{n \in \mathbb{N}}$ be defined by $a_n =$ c + (n-1) d, then the partial sum $s_n = cn + d\left(\frac{n(n-1)}{2}\right)$

Proof: We wish to show that $s_n = cn + d$ for all $n \in \mathbb{N}$. We work this by induction.

Base Case: We verify s_1 as follows:

$$s_1 = a_1$$
= $c + (1 - 1) d$
= $c \cdot 1 + d \left(\frac{1(1 - 1)}{2} \right)$,

thus s_1 is true.

Induction Step: Let $k \in \mathbb{N}$, we suppose that $s_k = ck + d\left(\frac{k(k-1)}{2}\right)$, and we want to show that $s_{k+1} = c\left(k+1\right) + d\left(\frac{(k+1)(k)}{2}\right)$. We do this by looking at s_{k+1} .

$$\begin{split} s_{k+1} &= s_k + a_{k+1} \\ &= ck + d\left(\frac{k\left(k-1\right)}{2}\right) + c + \left(k+1-1\right)d \\ &= c\left(k+1\right) + d\left(\frac{k\left(k-1\right)}{2}\right) + kd \\ &= c\left(k+1\right) + d\left(\frac{k\left(k-1\right)}{2} + \frac{2k}{2}\right) \\ &= c\left(k+1\right) + d\left(\frac{k\left(k-1\right) + 2k}{2}\right) \\ &= c\left(k+1\right) + d\left(\frac{k^2 - k + 2k}{2}\right) \\ &= c\left(k+1\right) + d\left(\frac{k^2 - k + 2k}{2}\right) \\ &= c\left(k+1\right) + d\left(\frac{k^2 - k + 2k}{2}\right) \end{split}$$

thus $s_{k+1}=c\left(k+1\right)+d\left(\frac{(k+1)(k)}{2}\right)$. Therefore, $s_n=cn+d\left(\frac{n(n-1)}{2}\right)$.

Exercise 34.3. Give a complete proof that $\sum_{n=1}^{\infty} \frac{1}{2^n} = 1$, by filling in the missing details from Example 34.5.

a) Prove by induction that $s_n = 1 - 1/2^n$.

Proof: We wish to show that $s_n = 1 - 1/2^n$ for all $n \in \mathbb{N}$. We work this by induction.

Base Case: We verify that $s_1 = 1 - 1/2^1$. We start with s_1

$$s_1 = a_1$$

= $\frac{1}{2^1}$
= $1 - 1/2$,

thus $s_1 = 1 - 1/2^1$.

Induction Step: Let $k \in \mathbb{N}$, we suppose directly that $s_k = 1 - \frac{1}{2^k}$ and we wish to show that $s_{k+1} = 1 - \frac{1}{2^{k+1}}$. We do this by looking at s_{k+1} .

$$\begin{split} s_{k+1} &= s_k + a_{k+1} \\ &= 1 - \frac{1}{2^k} + \frac{1}{2^{k+1}} \\ &= 1 + \frac{1-2}{2^{k+1}} \\ &= 1 - \frac{1}{2^{k+1}}, \end{split}$$

thus $s_{k+1} = 1 - \frac{1}{2^{k+1}}$. Therefore, $s_n = 1 - \frac{1}{2^n}$.

b) Prove that $\lim_{n\to\infty} s_n = 1$.

Scratch Work: We want to find an n such that $|s_n - 1| = \epsilon$. We do this

as follows.

$$|s_n - 1| = \epsilon$$

$$\left|1 - \frac{1}{2^n} - 1\right| = \epsilon$$

$$\left|-\frac{1}{2^n}\right| = \epsilon$$

$$\frac{1}{2^n} = \epsilon$$

$$\frac{1}{\epsilon} = 2^n$$

$$\ln\left(\frac{1}{\epsilon}\right) = n\ln(2)$$

$$\frac{\ln\left(\frac{1}{\epsilon}\right)}{\ln(2)} = n.$$

Proof: Let $\epsilon \in \mathbb{R} > 0$, $N = \frac{\ln(\frac{1}{\epsilon})}{\ln(2)}$, and $n \in \mathbb{N}$. We suppose directly that n > N. Then

$$|s_n - 1| = \left| 1 - \frac{1}{2^n} - 1 \right|$$

$$= \left| -\frac{1}{2^n} \right|$$

$$= \frac{1}{2^n}$$

$$< \frac{1}{2^{\frac{\ln(\frac{1}{\epsilon})}{2^{\frac{\ln(2)}{\epsilon}}}}}$$

$$< \frac{1}{\frac{1}{\epsilon}}$$

$$< \epsilon.$$

thus $\forall \epsilon \in \mathbb{R} > 0, \exists N \in \mathbb{R}, \forall n \in \mathbb{N}, n > N \implies |a_n - L| < \epsilon$, therefore, the limit is 1.

Exercise 34.4. Prove or disprove: The series $\sum_{n=1}^{\infty} \frac{1}{3^n}$ converges.

a) The first step is to find a partial sum $s_n = \sum_{k=1}^n \frac{1}{3^n}$.

Conjecture: Let $a_n = \frac{1}{3^n}$ for $n \in \mathbb{N}$, then $s_n = \sum_{k=1}^n a_n = b \frac{(1-b^n)}{(1-b)}$, with $b = \frac{1}{3}$.

Proof: Let $b = \frac{1}{3}$. We wish to show that $s_n = b \frac{(1-b^n)}{(1-b)}$ for all $n \in \mathbb{N}$. We work this by induction.

Base Case: We verify that $s_1 = b \frac{(1-b^1)}{(1-b)}$ as follows:

$$\begin{split} s_1 &= a_1 \\ &= \frac{1}{3} \\ &= \frac{1}{3} \left(\frac{1 - \left(\frac{1}{3}\right)^1}{1 - \frac{1}{3}} \right), \end{split}$$

thus $s_1 = b \frac{(1-b^1)}{(1-b)}$.

Induction Step: Let $k \in \mathbb{N}$. We suppose directly that $s_k = b \frac{\left(1 - b^k\right)}{\left(1 - b\right)}$, and we want to show that $s_{k+1} = b \frac{\left(1 - b^{k+1}\right)}{\left(1 - b\right)}$. We begin with the definition of

$$\begin{split} s_{k+1} &= s_k + a_{k+1} \\ &= b \frac{\left(1 - b^k\right)}{\left(1 - b\right)} + b^{k+1} \\ &= b \frac{\left(1 - b^k\right)}{\left(1 - b\right)} + b^{k+1} \left(\frac{1 - b}{1 - b}\right) \\ &= \frac{b \left(1 - b^k\right) + b^{k+1} \left(1 - b\right)}{1 - b} \\ &= \frac{b - b \cdot b^k + b^{k+1} - b^{k+1} \cdot b}{1 - b} \\ &= \frac{b - b \cdot b^{k+1}}{1 - b} \\ &= b \left(\frac{1 - b^{k+1}}{1 - b}\right), \end{split}$$

thus $s_{k+1}=b\frac{\left(1-b^{k+1}\right)}{\left(1-b\right)}$. Therefore, $s_n=b\frac{\left(1-b^n\right)}{\left(1-b\right)}$.

b) Let $b=\frac{1}{3},\ s_n=b\frac{\left(1-b^n\right)}{\left(1-b\right)}$ and $n\in\mathbb{N}$. We want to show that $\lim_{n\to\infty}s_n=\frac{1}{2}$.

Scratch Work: We want to solve for n in the equation $\left|s_n-\frac{1}{2}\right|=\epsilon$ with $\epsilon \in \mathbb{R} > 0$. We do this as follows:

$$\begin{vmatrix} s_n - \frac{1}{2} | = \epsilon \\ \left| b \frac{(1 - b^n)}{(1 - b)} - \frac{1}{2} \right| = \epsilon \\ \frac{1}{2} - b \frac{(1 - b^n)}{(1 - b)} = \epsilon \\ \frac{1}{2} - \epsilon = b \frac{(1 - b^n)}{(1 - b)} \\ \frac{(1 - b)}{b} \left(\frac{1}{2} - \epsilon \right) = 1 - b^n \\ 1 - \frac{(1 - b)}{b} \left(\frac{1}{2} - \epsilon \right) = b^n \\ \ln \left(1 - \frac{(1 - b)}{b} \left(\frac{1}{2} - \epsilon \right) \right) / \ln (b) = n.$$

Proof: Let $\epsilon \in \mathbb{R} > 0$, $n \in \mathbb{N}$, $N = \ln\left(1 - \frac{(1-b)}{b}\left(\frac{1}{2} - \epsilon\right)\right) / \ln\left(b\right)$, and $t = \ln \left(1 - \frac{(1-b)}{b} \left(\frac{1}{2} - \epsilon\right)\right) / \ln (b)$. We quickly note that $b^t = 1$ $\frac{(1-b)}{b}\left(\frac{1}{2}-\epsilon\right)$. We assume directly that n>N, then

$$\begin{vmatrix} s_n - \frac{1}{2} \end{vmatrix} = \left| b \frac{(1 - b^n)}{(1 - b)} - \frac{1}{2} \right|$$

$$= \frac{1}{2} - b \frac{(1 - b^n)}{(1 - b)}$$

$$< \frac{1}{2} - b \frac{(1 - b^t)}{(1 - b)}$$

$$= \frac{1}{2} - b \frac{\left(1 - 1 - \frac{(1 - b)}{b} \left(\frac{1}{2} - \epsilon\right)\right)}{(1 - b)}$$

$$= \frac{1}{2} - \frac{1}{2} + \epsilon$$

$$= \epsilon,$$

thus $|s_n - \frac{1}{2}| < \epsilon$. Therefore, $\lim_{n \to \infty} s_n = \frac{1}{2}$.

Exercise 34.5. In the exercise we will show that the harmonic series $\sum_{k=1}^{\infty} \frac{1}{k}$ does not converge. Throughout the exercise, let $s_n = \sum_{k=1}^n \frac{1}{k}$ be the nth partial sum, for each integer $n \ge 1$.

a) For each $n \ge 1$, define

$$t_n = \sum_{k=2^{n-1}+1}^{2^n} \frac{1}{k}.$$

Prove that $t_n \ge \frac{1}{2}$, for each $n \ge 1$.

Proof: We suppose directly that $n \ge 1$ and that $t_n = \sum_{k=2^{n-1}+1}^{2^n} \frac{1}{k}$. Then for each n, we sum over $(2^n - 2^{n-1} - 1 + 1)$ terms. Which is simply $(2^{n}-2^{n-1})$ terms. In each summation, the smallest term is always the last term to be added. Thus

$$t_n = \sum_{k=2^{n-1}+1}^{2^n} \frac{1}{k}$$

$$\geq (2^n - 2^{n-1}) \frac{1}{2^n}$$

$$= 1 - \frac{1}{2}$$

$$= \frac{1}{2}.$$

Therefore $t_n \ge \frac{1}{2}$ for all $n \ge 1$.

b) Show that $s_{2^n} \ge n/2$, for each $n \ge 0$, by induction. *Proof*: Let $n \ge 1$ and $t_n = \sum_{k=2^{n-1}+1}^{2^n} \frac{1}{k}$. We note that

$$s_{2^{n+1}} = \sum_{k=1}^{2^n} \frac{1}{k} + \sum_{k=2^n+1}^{2^{n+1}} \frac{1}{k}$$
$$= s_{2^n} + t_{n+1}.$$

and we want to show that $s_{2^n} \geq n/2$ for all $n \geq 0$. We work this by induction.

Base Case: We verify that $s_{2^0} \ge 0/2$.

$$s_{2^0} = s_1$$

$$= \frac{1}{1}$$

$$\geq 0.$$

Induction Step: Let $k \ge 0$. We suppose by induction that $s_{2^k} \ge k/2$, and we want to show that $s_{2^{k+1}} \ge (k+1)/2$. We do this as follows:

$$s_{2^{k+1}} = s_{2^k} + t_{n+1}$$

$$\geq k/2 + t_{n+1}$$

$$\geq k/2 + 1/2$$

$$= (k+1)/2.$$

Thus $s_{2^{k+1}} \ge (k+1)/2$. Therefore, $s_{2^n} \ge n/2$.

c) Now show that the harmonic series does not converge. Proof: We suppose directly that $s_n = \sum_{k=1}^n \frac{1}{k}$. We can write this sum as $s_{2^k} = \sum_{k=0}^{2^k} t_k$ where t_k was defined in part 1. By definition $t_m \geq \frac{1}{2}$ for all $m \in \mathbb{Z} > 0$, we know that

$$\lim_{n\to\infty} t_n \neq 0.$$

Thus, using corollary 34.7, $\sum_{k=0}^{2^k} t_k$ does not converge. Therefore the series s_n does not converge.