08 Relations.

08_01_Introduction to Relations

<u>Definition</u>. The Cartesian product of two sets A and B, denoted $A \times B$, is the set of $\{(a, b): a \in A \text{ and } b \in B\}$, where (a, b) with $a \in A$ and $b \in B$ is called an ordered pair based on A and B. Note that $(a, b) \neq (b, a)$, in general.

Example. Suppose
$$X = \{x, y\}$$
 and $Y = \{1, 2, 3\}$. Then $X \times Y = \{(x, 1), (x, 2), (x, 3), (y, 1), (y, 2), (y, 3)\}$. $Y \times X = \{(1, x), (1, y), (2, x), (2, y), (3, x), (3, y)\}$.

We also have

$$X \times X = \{(x, x), (x, y), (y, x), (y, y)\}.$$

 $Y \times Y = \{(1, 1), (1, 2), (1, 3),$
 $(2, 1), (2, 2), (2, 3),$
 $(3, 1), (3, 2), (3, 3)\}.$

Note that
$$X \times Y \neq Y \times X$$
, but $|X \times Y| = |Y \times X| = |X|^*|Y| = 6$.
Also $|X \times X| = |X|^*|X| = 4$ and $|Y \times Y| = |Y|^*|Y| = 9$.

Suppose A and B are finite sets. In general, $A \times B \neq B \times A$, but $|A \times B| = |A|^*|B| = |B|^*|A| = |B \times A|$.

<u>Definition.</u> A subset S of the Cartesian product $A \times B$ is called a <u>relation</u> from set A to set B. A subset T of the Cartesian product $A \times A$ is called a <u>relation</u> on set A.

Example. $\{\}$ and $\{(x, 1), (x, 3), (y, 2), (y, 3)\}$ are relations from X to Y in the above example. $\{\}$ and $\{(1, 1), (2, 3), (3, 1)\}$ are relations on Y in the above example.

Recall that the number of subsets of a finite set S is $2^{|S|}$. Suppose A and B are finite sets. Then the number of relations from A to B is $2^{|A||B|}$. The number of relations on A is $2^{|A||A|}$.

The Domain of a relation R from A to B is a set, denoted Domain(R), consisting of all the first components in the ordered pairs of R. Clearly, Domain(R) \subseteq A.

The Range of a relation R from A to B is a set, denoted Range(R), consisting of all the second components in the ordered pairs of R. Clearly, Range(R) \subseteq B.

Example. Suppose $A = \{1, 2, 3\}$ and $B = \{5, 6, 8, 9\}$. Find a relation R from A to B such that $R = \{(x, y): x \in A, y \in B, \text{ and } 3x + 1 < y\}$.

[Solution] First, we find $A \times B$ as follows.

$$A \times B = \{(1, 5), (1, 6), (1, 8), (1, 9),$$
$$(2, 5), (2, 6), (2, 8), (2, 9),$$
$$(3, 5), (3, 6), (3, 8), (3, 9)\}.$$

Check each ordered pair in $A \times B$. If the 3x + 1 < y is true, we will put that ordered pair in R. Otherwise we will not put that ordered pair in R. Therefore

$$R = \{(1, 5), (1, 6), (1, 8), (1, 9), (2, 8), (2, 9)\}.$$

The domain of R is $\{1, 2\}$. The range of R is $\{5, 6, 8, 9\}$.

Example. Suppose $A = \{1, 2, 3, 4, 5, 6\}$. Find a relation R on A such that $R = \{(x, y): x \in A, y \in B, x | y\}$.

[Solution] First, we find $A \times A$ as follows.

$$A \times A = \{(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)\}$$

Check each ordered pair in $A \times A$. If the x|y is true, we will put that ordered pair in R. Otherwise we will not put that ordered pair in R. Therefore

$$R = \{(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 2), (2, 4), (2, 6), (3, 3), (3, 6), (4, 4), (5, 5), (6, 6)\}$$

The domain of R is $\{1, 2, 3, 4, 5, 6\}$. The range of R is also $\{1, 2, 3, 4, 5, 6\}$.