DEFORMATION OF GALOIS REPRESENTATIONS

A notes for the number theory seminar at YMSC, 2022 Update on 2022-11-03 16:38

YIJUN YUAN®

We are given either a number field K and a finite set of primes S, or a local field F, and we are given a representation of either $G_{K,S}$ or G_F into $GL_n(k)$, where k is a finite field. We want to try to understand all possible lifts of this representation to $GL_n(A)$, where A is a complete noetherian local ring with residue field k.

—Fernando Q. Gouvêa (cf. [Gou01])

Main reference: [Böc13; Maz89]

Motivation and history of deformation theory: [Maz97; Gou01]

Basics of groupoids: Appendix of [Kis09]

1. Deformations of representations of profinite groups

Notations.

prime number

 \mathbb{F} finite field of char. p

 $W(\mathbb{F})$ ring of Witt vectors¹ over A

Gprofinite group

finite $\mathbb{F}[G]$ -module with continuous G-action $V_{\mathbb{F}}$

ddimension of $V_{\mathbb{F}}$ a \mathbb{F} -basis of $V_{\mathbb{F}}$ $\beta_{\mathbb{F}}$

1.1. Deformation functors.

Notations.

category of complete Noetherian local $W(\mathbb{F})$ -algebra with residue field \mathbb{F}

full sub-category of finite local Artinian $W(\mathbb{F})$ -algebras $\mathfrak{Ar}_{W(\mathbb{F})}$

maximal ideal of $A \in \widehat{\mathfrak{Ar}}_{W(\mathbb{F})}$

Remark 1.1 (???). Via the $W(\mathbb{F})$ -structure, the residue field of any $A \in \widehat{\mathfrak{Ar}}_{W(\mathbb{F})}$ is canonically isomorphic to \mathbb{F} .

Definition 1.2. Let $A \in \mathfrak{Ar}_{W(\mathbb{F})}$.

- (1) A **deformation** of $V_{\mathbb{F}}$ to A is a pair (V_A, ι_A) , such that
 - (a) V_A is A[G]-module, finite free over A, with continuous G-action;
- (b) $\iota_A: V_A \otimes_A \mathbb{F} \xrightarrow{\cong} V_{\mathbb{F}}$ is G-equivariant. (2) A **framed deformation** of $(V_{\mathbb{F}}, \beta_{\mathbb{F}})$ to A is a triple (V_A, ι_A, β_A) , where

We view F as an A-module via the canonical projection $A \to A/\mathfrak{m}_A =$

 $^{^{1}}W(\mathbb{F})$ is the unique (up to unique isomorphism) complete discrete valuation ring which is absolutely unramified (uniformizer= p) and has residue field \mathbb{F} .

- (a) (V_A, ι_A) is a deformation of $V_{\mathbb{F}}$ to A;
- (b) β_A is a A-basis of V_A which reduces to $\beta_{\mathbb{F}}$ under ι_A .

Set $D_{V_{\mathbb{F}}}, D_{V_{\mathbb{F}}}^{\square} : \mathfrak{Ar}_{W(\mathbb{F})} \to \operatorname{Set},$

$$D_{V_{\mathbb{F}}}(A) = \{ deformations \ of \ V_{\mathbb{F}} \ to \ A \} / \cong,$$

$$D_{V_{\mathbb{F}}}^{\square}(A) = \{ framed \ deformations \ of \ (V_{\mathbb{F}}, \beta_{\mathbb{F}}) \ to \ A \} / \cong .$$

Remark 1.3.

(1) The <u>FIXED</u> basis $\beta_{\mathbb{F}}$ gives the isomorphism $V_{\mathbb{F}} \cong \mathbb{F}^d$ as vector space. Thus we can view $V_{\mathbb{F}}$ as $\bar{\rho}: G \to \mathrm{GL}(V_{\mathbb{F}}) = \mathrm{GL}_d(\mathbb{F})$: a d-dimensional \mathbb{F} -representation of G. Then

$$D_{V_{\mathbb{F}}}^{\square}(A) = \{ \rho : G \to \operatorname{GL}_d(A) \text{ lifting } \bar{\rho} \},$$

$$\begin{array}{c} {\hbox{\it Does not guarantee}} \ \beta_A \leadsto \beta_{\mathbb{F}}! \\ \hline D_{V_{\mathbb{F}}}(A) = D_{V_{\mathbb{F}}}^{\square}(A)/action \ by \ conjugates \ of \ \ker(\mathrm{GL}_d(A) \to \mathrm{GL}_d(\mathbb{F})). \\ \hline \\ \hbox{\it Not always representable!} \end{array}$$

- (2) Mazur only consdier $D_{V_{\mathbb{F}}}$, which describes representations lifting $V_{\mathbb{F}}$ up to isomorphism. Add "base condition" $\leadsto D_{V_{\overline{\nu}}}^{\square}$.
- (3) Often consider deformation functors on $\mathfrak{Ar}_{\mathcal{O}} = \text{category of local artinian } \mathcal{O}\text{-algebra with}$ residue field \mathbb{F} , where \mathcal{O} is ring of integers of a finite totally ramified extension of $W(\mathbb{F}) \left| \frac{1}{n} \right|$ $(\mathcal{O}/\pi\mathcal{O}\cong\mathbb{F}).$

For example, let K be a p-adic field with residue field \mathbb{F}_q , ring of integers \mathcal{O}_K , then $K/W(\mathbb{F}_q)\left[\frac{1}{p}\right]$ is totally ramified and $W(\mathbb{F}_q)\left[\frac{1}{p}\right]/\mathbb{Q}_p$ is unramified.

1.2. Representability.

1.2.1. A finiteness condition.

Definition 1.4 (Mazur). A profinite group G has finiteness condition Φ_p , if \forall open subgroup $G' \subset G$, $\dim_{\mathbb{F}_p} \operatorname{Hom}_{\operatorname{cont}}(G', \mathbb{F}_p) < +\infty$.

Remark 1.5.

- (1) (Burnside basis theorem) $\dim_{\mathbb{F}_p} \operatorname{Hom}_{\operatorname{cont}}(G', \mathbb{F}_p) < +\infty \Leftrightarrow \text{maximal pro-p quotient of } G'$ is topologically finitely generated.
- (2) $\operatorname{Hom}_{\operatorname{cont}}(G', \mathbb{F}_p) \cong \operatorname{Hom}_{\operatorname{cont}}(G'^{\operatorname{ab}}, \mathbb{F}_p).$

Example 1.6 (by CFT). The following groups have Φ_p :

- (1) The Galois group $\mathcal{G}_K = \operatorname{Gal}(\bar{K}/K)$, with K a p-adic field.
- (2) The galois group $\mathcal{G}_{F,S} = \operatorname{Gal}(F_S/F)$, where F is a number field, S is a finite set of places of F and $F_S \subset \overline{F}$ is the maximal extension of F unramified outside S.
- 1.2.2. Main proposition.

Proposition 1.7 (Mazur). If G has Φ_p , then

(1) The functor $D_{V_{\mathbb{F}}}^{\square}$ is pro-representable by some $R_{V_{\mathbb{F}}}^{\square} \in \widehat{\mathfrak{Ar}}_{W(\mathbb{F})}$, i.e.

$$D_{V_{\mathbb{F}}}^{\square}(A)\cong \operatorname{Hom}_{W(\mathbb{F})}\Big(egin{array}{c} R_{V_{\mathbb{F}}}^{\square},A\Big), \\ A\in \mathfrak{At}_{W(\mathbb{F})}. \end{array}$$
 universal framed deformation ring

which is functorial in $A \in \mathfrak{Ar}_{W(\mathbb{F})}$.

(2) If $\operatorname{End}_{\mathbb{F}[G]}(V_{\mathbb{F}}) = \mathbb{F}$, then $D_{V_{\mathbb{F}}}$ is pro-representable by some $R_{V_{\mathbb{F}}} \in \widehat{\mathfrak{Ar}}_{W(\mathbb{F})}$. universal deformation ring

 $G \xrightarrow{\rho} \operatorname{GL}_d(A)$

Maybe it's better to write $D_{V_{\mathbb{T}}}^{\square}(A) \cong$ $\operatorname{Hom}_{\widehat{\mathfrak{Ar}}_{W(\mathbb{F})}}(R_{V_{\mathbb{F}}}^{\square},A)$?

(1) Literally, pro-representable functor = limit of representable functor. How Remark 1.8. can we realize that? [nLa22] defines pro-representable to be the filtered colimit of representables. There's a post on MSE (cf. [htt]) which discusses the difference between the two definitions. It might be ture that

$$\operatorname{Hom}_{W(\mathbb{F})}\Big(R_{V_{\mathbb{F}}}^{\square},A\Big) = \operatorname{Hom}_{\widehat{\mathfrak{Ar}}_{W(\mathbb{F})}}\left(\varprojlim_{k} R_{V_{\mathbb{F}}}^{\square}/\mathfrak{m}_{R_{V_{\mathbb{F}}}^{\square}}^{k},A\right) \cong \varinjlim_{k} \operatorname{Hom}_{\mathfrak{Ar}_{W(\mathbb{F})}}\left(R_{V_{\mathbb{F}}}^{\square}/\mathfrak{m}_{R_{V_{\mathbb{F}}}^{\square}}^{k},A\right),$$

for any $A \in \mathfrak{Ar}_{W(\mathbb{F})}$.

- (2) (???) $R_{V_{\mathbb{F}}}^{\square}$ is unique up to unique isomorphism; the identity map in $\operatorname{Hom}(R_{V_{\mathbb{F}}}^{\square}, R_{V_{\mathbb{F}}}^{\square})$ gives rise to a universal framed deformation over $R_{V_{\mathbb{F}}}^{\square}$.
- (3) $R_{V_{\pi}}^{\square}$ exists without Φ_p , but maybe no longer noetherian.
- $(4) \ (???)\mathbb{F} \hookrightarrow \operatorname{End}_{\mathbb{F}[G]}(V_{\mathbb{F}}) \rightsquigarrow write "=" in \operatorname{End}_{\mathbb{F}[G]}(V_{\mathbb{F}}) = \mathbb{F}.$

Proof of Proposition 1.7.

(1) G finite \rightsquigarrow profinite.

• (FORMAL) CONSTRUCTION:

Suppose G is finite. Set

$$G = \langle g_1, \cdots, g_s | r_1(g_1, \cdots, g_s), \cdots, r_t(g_1, \cdots, g_s) \rangle$$

a presentation. Define

$$\mathcal{R} = W(\mathbb{F})[X_{i,j}^k|i,j=1,\cdots,d;k=1,\cdots,s]/\mathcal{I},$$

where

$$\mathcal{I} = \langle r_l(X^1, \cdots, X^s) - \mathrm{id} \rangle_{1 \le l \le t}, X^k = (X_{i,j}^k)_{d \times d}.$$

To make \mathcal{R} complete, local, noetherian, take

$$\mathcal{J} = \ker(\mathcal{R} \to \mathbb{F}, X^k \mapsto \bar{\rho}(g_k), k = 1, \cdots, s),$$

and set $R_{V_{\mathbb{F}}}^{\square} = \varprojlim_{n} \mathcal{R}/\mathcal{J}^{n}$ to be the \mathcal{J} -adic completion of \mathcal{R} . Besides that, we set $\rho_{V_{\mathbb{F}}}^{\square} : G \to \mathrm{GL}_{d}(R_{V_{\mathbb{F}}}^{\square}), g_{k} \mapsto \mathrm{image} \text{ of } X^{k} \text{ in } \mathrm{GL}_{d}(R_{V_{\mathbb{F}}}^{\square}).$ **VERIFICATION:**The formula \mathbb{R}^{n} is \mathbb{R}^{n} .

Take $\rho \in D^{\square}_{V_{\sigma}}(A)$, where $\rho : G \to \mathrm{GL}_d(A)$. Define

$$\mathfrak{F}_{\rho} \in \mathrm{Hom}_{W(\mathbb{F})}\Big(R_{V_{\mathbb{F}}}^{\square},A\Big), \overline{\mathrm{entries \ of}\ X^{k}} \mapsto \mathrm{corresponding \ entries \ of}\ \rho(g_{k}), \forall k=1,\cdots,s.$$

Then \mathfrak{F}_{ρ} induces $\widehat{\mathfrak{F}_{\rho}}: \mathrm{GL}_d(R_{V_{\mathbb{F}}}^{\square}) \to \mathrm{GL}_d(A)$. It's immediate to check that $\rho = \widehat{\mathfrak{F}_{\rho}} \circ \rho_{V_{\mathbb{F}}}^{\square}$ and $\widehat{\mathfrak{F}}_{\rho}$ is unique choice to make the diagram commute. Thus, $\mathfrak{F}: \rho \mapsto \mathfrak{F}_{\rho}$ gives the pro-representability when G is finite.

• When G is profinite, we have $G = \lim_i G/H_i$, where $H_i \subset \ker(\bar{\rho})$ are open normal subgroups. For every i, one has a universal pair $(R_i^{\square}, \rho_i^{\square})$ by previous construction. Passing by limits, we define

$$\left(R_{V_{\mathbb{F}}}^{\square},\rho_{V_{\mathbb{F}}}^{\square}\right)=\varprojlim_{i}\left(R_{i}^{\square},\rho_{i}^{\square}\right),\text{with }R_{V_{\mathbb{F}}}^{\square}\in\widehat{\mathfrak{Ar}}_{W(\mathbb{F})}.$$

We will show in [Section 1.4, TBA] that $R_{V_{\mathbb{F}}}^{\square}$ is noetherian.

(2) By Schlessinger's representability criterion (cf. [Section 1.7, TBA]) or by Kisin's work (cf. [Section 2.1, TBA by Y. Chen]).

1.3. The tangent space.

首先定一个能达到的小目标, 比方说我先证
$$R_{V_{\mathbb{F}}}^{\square}$$
 是 $Noetherian$ 的.

-Wozki Shod

What is the tangent space of a (local) ring? For $A \in \widehat{\mathfrak{Ar}}_{W(\mathbb{F})}$, we consider the affine scheme Spec A, which consists of a single point $x = \mathfrak{m}_A$. Then the Zariski tangent space \mathfrak{t}_A of A is defined to be $\operatorname{Hom}(\mathfrak{m}_x/\mathfrak{m}_x^2, k(x)) = \operatorname{Hom}(\mathfrak{m}_A/\mathfrak{m}_A^2, \mathbb{F})$. By [Har77, Ex II.2.8],

$$\mathfrak{t}_A = \operatorname{Hom}(\mathfrak{m}_A/\mathfrak{m}_A^2, \mathbb{F}) = \operatorname{Hom}(\operatorname{Spec} \mathbb{F}[\varepsilon], \operatorname{Spec} A) = \operatorname{Hom}_{W(\mathbb{F})}(A, \mathbb{F}[\varepsilon]).$$

One should notice that $\mathfrak{t}_{R_{V_{-}}^{\square}} = D_{V_{\mathbb{F}}}^{\square}(\mathbb{F}[\varepsilon]).$

Proposition 1.9. If G satisfies Φ_p , then the universal deformation ring $R_{V_v}^{\square}$ is Noetherian.

Proof. By Lemma 1.10 (1), one only needs to prove $\dim_{\mathbb{F}} D^{\square}_{V_{\mathbb{F}}}(\mathbb{F}[\varepsilon]) < \infty$, which, by Lemma 1.10 (4), reduced to prove $D_{V_{\mathbb{F}}}(\mathbb{F}[\varepsilon])$ is a finite dimensional \mathbb{F} -vector space. Then Lemma 1.10 (3) gives what we want.

Lemma 1.10.

- (1) If $\dim_{\mathbb{F}} D^{\square}_{V_{\mathbb{F}}}(\mathbb{F}[\varepsilon]) < \infty$, then $R^{\square}_{V_{\mathbb{F}}}$ is Noetherian. (2) $D_{V_{\mathbb{F}}}(\mathbb{F}[\varepsilon]) \cong \operatorname{Ext}^1_{\mathbb{F}[G]}(V_{\mathbb{F}}, V_{\mathbb{F}}) \cong \operatorname{H}^1(G, \operatorname{ad} V_{\mathbb{F}})$.
- (3) If G satisfies Φ_p , then $D_{V_{\mathbb{F}}}(\mathbb{F}[\varepsilon])$ is a finite-dimensional \mathbb{F} -vector space.

$$D_{V_{\mathbb{F}}}^{\square}(\mathbb{F}[\varepsilon]) = \dim_{\mathbb{F}} D_{V_{\mathbb{F}}}(\mathbb{F}[\varepsilon]) + d^2 - h^0(G, \operatorname{ad} V_{\mathbb{F}})$$

- (1) If $\dim_{\mathbb{F}} \mathfrak{t}_{R_{V_{\mathbb{F}}}^{\square}} < \infty$, we know that $\mathfrak{m}_{R_{V_{\mathbb{F}}}^{\square}}/\mathfrak{m}_{R_{V_{\mathbb{F}}}^{\square}}^2$ is of finite dimension. Consequently, Proof. by Nakayama's lemma, $\mathfrak{m}_{R_{V_{-}}^{\square}}$ is a finitely generated ideal. The result follows from [Mat87, Theorem 29.4(i)].
 - (2) Take $\rho \in D_{V_{\mathbb{F}}}(\mathbb{F}[\varepsilon])$. Set $M = \mathbb{F}[\varepsilon]^d$, with the action of G given by ρ . Then $\dim_{\mathbb{F}} M = 2d$ and the following sequence is exact:

$$0 \to \varepsilon M \to M \to M/\varepsilon M \to 0.$$

Notice that $\varepsilon M \cong V_{\mathbb{F}} \cong M/\varepsilon M$, one has $M \in \operatorname{Ext}^1_{\mathbb{F}[G]}(V_{\mathbb{F}}, V_{\mathbb{F}})$.

Conversely, if E is an 2d-dimensional \mathbb{F} -vector space which fits the exact sequence

$$0 \to V_{\mathbb{F}} \xrightarrow{\alpha} E \xrightarrow{\beta} V_{\mathbb{F}} \to 0,$$

we define the action of ε on E by $\alpha \circ \beta : E \xrightarrow{\beta} V_{\mathbb{F}} \xrightarrow{\alpha} E$. It's easy to check that $(\alpha \circ \beta)^2 = 0$. For α and β are homorphisms of G-modules, the $\mathbb{F}[G]$ -module structure on E commutes with the action of G. This makes E into a free $\mathbb{F}[\varepsilon]$ -module of rank d with action of G. It induces $\rho_E: G \to \mathrm{GL}_d(\mathbb{F}[\varepsilon])$, which is a deformation of $\bar{\rho}$. We conclude that $D_{V_{\mathbb{F}}}(\mathbb{F}[\varepsilon]) \cong \operatorname{Ext}^1_{\mathbb{F}[G]}(V_{\mathbb{F}}, V_{\mathbb{F}}).$

For the isomorphism $\operatorname{Ext}^1_{\mathbb{F}[G]}(V_{\mathbb{F}},V_{\mathbb{F}}) \cong \operatorname{H}^1(G,\operatorname{ad} V)$, we give the explicit formula and leave the verification work to the reader. Given the exact sequence

$$0 \to V_{\mathbb{F}} \to M \to V_{\mathbb{F}} \to 0$$

whiti $\dim_{\mathbb{F}} M = 2d$, it amount to say the map $\rho_M : G \to \mathrm{GL}_d(\mathbb{F})$ corresponding to M can be put into the block form $\begin{bmatrix} \bar{\rho}(g) & A_g \\ 0 & \bar{\rho}(g) \end{bmatrix}$, with $A_g \in \mathrm{M}_d(\mathbb{F})$. Then the map $g \mapsto A_g \bar{\rho}(g)^{-1}$ is a 1-cocycle and it induces the isomorphism we need.

(3) Let $G' = \ker(\bar{\rho})$, which is an open subgroup of G. The inflation-restriction exact sequence (cf. [Ste13, Proposition 28]) gives

$$0 \to \mathrm{H}^1(G/G', \mathrm{ad}V_{\mathbb{F}}) \to \mathrm{H}^1(G, \mathrm{ad}V_{\mathbb{F}}) \to \boxed{ \mathrm{H}^1(G', \mathrm{ad}V_{\mathbb{F}})^{G/G'}}.$$

$$\uparrow \cong (\mathrm{Hom}(G', \mathbb{F}_p) \otimes_{\mathbb{F}_p} \mathrm{ad}V_{\mathbb{F}})^{G/G'}???$$

The term on the left is finite because G/G' and $V_{\mathbb{F}}$ are finite. The term on the right is finite because of Condition Φ_p for G. The result follows.

(4) Fix a deformation $V_{\mathbb{F}[\varepsilon]}$ of $V_{\mathbb{F}}$ to $\mathbb{F}[\varepsilon]$. The set of $\mathbb{F}[\varepsilon]$ -basis of $V_{\mathbb{F}[\varepsilon]}$ lifting the fixed basis $\beta_{\mathbb{F}}$ of $V_{\mathbb{F}}$ is an \mathbb{F} -vector space of dimension d^2 . Let β' and β'' be two such lifted bases. Then there is an isomorphism of framed deformations

$$(V_{\mathbb{F}[\varepsilon]}, \beta') \cong (V_{\mathbb{F}[\varepsilon]}, \beta'')$$

if and only if there exists an automorphism $1 + \varepsilon \alpha$ of $V_{\mathbb{F}[\varepsilon]}$, where $\alpha \in \mathrm{ad}V$, which takes β' to β'' , so that $\alpha \in \mathrm{ad}V_{\mathbb{F}}^G$. Thus the fibers of

$$D_{V_{\mathbb{F}}}^{\square}(V_{\mathbb{F}[\varepsilon]}) \to D_{V_{\mathbb{F}}}(V_{\mathbb{F}[\varepsilon]})$$

are a principal homogeneous space under $\operatorname{ad}V_{\mathbb{F}}/(\operatorname{ad}V_{\mathbb{F}})^G$. The dimension of this space is $d^2 - h^0(G, \operatorname{ad}V_{\mathbb{F}})$.

Definition 1.11. Let $\varphi: D' \to D$ be a natural transformation of functors from $\mathfrak{Ar}_{W(\mathbb{F})}$ to **Sets**. The map φ will be called **formally smooth** if, for any surjection $A \to A' \in \mathfrak{Ar}_{W(\mathbb{F})}$, the map

$$D'(A) \to D'(A') \times_{D(A')} D(A)$$

is surjective.

Similarly to the proof of Lemma 1.10 (4), one has

Corollary 1.12. The natural transformation $D_{V_{\mathbb{F}}}^{\square} \to D_{V_{\mathbb{F}}}, (V_A, \beta_A) \mapsto (V_A)$ is formally smooth. Thus, if $R_{V_{\mathbb{F}}}$ is representable, then $R_{V_{\mathbb{F}}}^{\square}$ is a power series ring over $R_{V_{\mathbb{F}}}$ of relative dimension $d^2 - h^0(G, \operatorname{ad}V_{\mathbb{F}})$.

1.3.1. **Presentations of the universal ring** $R_{V_{\mathbb{F}}}$. By Lemma 1.10 we have shown the first part of the following result:

Proposition 1.13. Suppose that G satisfies Condition Φ_p and $R_{V_{\mathbb{F}}}$ is representable. Then:

(1) dim $\mathfrak{t}_{R_{V_{\mathbb{F}}}} = h^1(G, \operatorname{ad}V_{\mathbb{F}}) -: h \text{ and so there is a surjection}$

$$\pi: W(\mathbb{F})[\![X_1,\cdots,X_h]\!] \to R_{V_{\mathbb{F}}}.$$

(2) For any π as in (1), the minimal number of generators of the ideal ker π is bounded above by $h^2(G, \operatorname{ad}V_{\mathbb{F}})$. More precisely, given π , one has a canonical monomorphism

$$(\ker \pi/(p, X_1, \cdots, X_h) \ker \pi)^* \to \mathrm{H}^2(G, \mathrm{ad}V_{\mathbb{F}}),$$

where, for a vector space V, we denote its dual by V^* .

The proof of the second assersion can be found in [Böc13, Lemma 5.2.2].

 $V_{\mathbb{F}}$ is called **unobstructed**

Corollary 1.14. Assume that the hypotheses of Proposition 1.13 hold. Then, if $h^2(G, \operatorname{ad}V_{\mathbb{F}}) = 0$, the ring $R_{V_{\mathbb{F}}}$ is smooth over $W(\mathbb{F})$ of relative dimension $h^1(G, \operatorname{ad}V_{\mathbb{F}})$.

1.4. Schlessinger's axioms.

Theorem 1.15 (Schlessinger). Let $D: \mathfrak{Ar}_{W(\mathbb{F})} \to \mathbf{Sets}$ be a functor such that $D(\mathbb{F})$ is a point. For any $A, A', A'' \in \mathfrak{Ar}_{W(\mathbb{F})}$ with morphisms $A' \to A$ and $A'' \to A$, we have a map

$$(1.2) D(A' \times_A A'') \to D(A') \times_{D(A)} D(A'').$$

If D satisfies the following conditions:

(H1) If $A'' \to A$ is small surjective, then (1.2) is surjective.

 \uparrow kernel is principal and annihilated by $\mathfrak{m}_{A^{\prime\prime}}$

- (H2) If $A'' \to A$ is $\mathbb{F}[\varepsilon] \to \mathbb{F}$, then (1.2) is bijective;
- (H3) $\dim_{\mathbb{F}}(\mathbb{F}[\varepsilon])$ is finite;
- (H4) If $A'' \to A$ is small surjective and A' = A'', then (1.2) is bijective,

then D is pro-representable.

These conditions are called Schlessinger axioms.

1.7. Groupid over categories (abstract stuff...)

Definition 1.16.

- (1) A groupoid category is a category in which all morphisms are isomorphisms.
- (2) Call the isomorphism classes the **connected components** of the groupoid.

Remark 1.17.

- (1) Not necessarily all objects in a groupoid are isomorphic.
- (2) $\operatorname{Hom}_{\mathfrak{C}}(A,A)$ forms a group for $\forall A \in \operatorname{ob} \mathfrak{C}$, where \mathfrak{C} is a groupoid category, and the identity in $\operatorname{Hom}_{\mathfrak{C}}(A,A)$ is the identity morphism.
- (3) $A \cong B \Rightarrow \operatorname{Hom}_{\mathfrak{C}}(A, A) \cong \operatorname{Hom}_{\mathfrak{C}}(B, B)$ (non-canonically)

Definition 1.18. Let \mathfrak{C} be a category. Let \mathfrak{F} be another category, $\Theta: \mathfrak{F} \to \mathfrak{C}$ be a functor.

- (1) We say $\eta \in ob(\mathfrak{F})$ lies above $T \in ob(\mathfrak{C})$, if $\Theta(\eta) = T$.
- (2) We say $(\eta \xrightarrow{\alpha} \xi) \in \operatorname{Mor}_{\mathfrak{F}}$ lies above $(T \xrightarrow{f} S) \in \operatorname{Mor}_{\mathfrak{C}}$, if $\Theta(\alpha) = f$.
- (3) $(T \in ob(\mathfrak{C}), id_T)$ is a subcategory of \mathfrak{C} . Write $\mathfrak{F}(T)$ the subcategory of \mathfrak{F} over (T, id_T) .

Definition 1.19 (groupoid over $\mathfrak{C}/\text{category}$ cofibered in groupoids over \mathfrak{C}). The triple $(\mathfrak{F}, \mathfrak{C}, \Theta)$ is a groupoid over \mathfrak{C} if

- (1) for any morphisms $(\eta \xrightarrow{\alpha} \xi)$ and $(\eta \xrightarrow{\alpha'} \xi')$ in \mathfrak{F} over the same morphism $T \to S$ in \mathfrak{C} , there exists unique $\xi \xrightarrow{u} \xi'$ in \mathfrak{F} over id_S such that $u \circ \alpha = \alpha'$.
- (2) For any $\eta \in ob(\mathfrak{C})$ and any $T \xrightarrow{f} S$ in $Mor_{\mathfrak{C}}$ with η over T, there exists morphism $\eta \xrightarrow{\alpha} \xi$ in $Mor_{\mathfrak{F}}$ over f.

Remark 1.20.

- (1) For every $T \in ob(\mathfrak{C})$, the category $\mathfrak{F}(T)$ is a groupoid. It's natural to specify a groupoid by specifying objects in $\mathfrak{F}(T)$ for any $T \in ob(\mathfrak{C})$, and specifying isomorphism class of morphisms above any $T \xrightarrow{f} S$ in \mathfrak{C} .
- (2) Scheme and stack stuff.....

If for each $T \in ob(\mathfrak{C})$, the isomorphism classes of $\mathfrak{F}(T)$ forms a set, we associate to the category \mathfrak{F} over \mathfrak{C} a functor $|\mathfrak{F}|:\mathfrak{C} \to \operatorname{Set}$ by sending T to the set of isomorphism classes of $\mathfrak{F}(T)$.

Example 1.21.

- (1) To the representation $V_{\mathbb{F}}$ of G, we define a groupoid $\mathcal{D}_{V_{\mathbb{F}}}$ over $\mathfrak{C} = \mathfrak{Ar}_{W(\mathbb{F})}$:
 - (a) Objects of $\mathcal{D}_{V_{\mathbb{F}}}$ over $A \in \mathfrak{Ar}_{W(\mathbb{F})}$: pairs $(V_A, \iota_A) \in D_{V_{\mathbb{F}}}(A)$.

(b) Morphism $(V_A, \iota_A) \to (V_{A'}, \iota_{A'})$ over $A \to A'$ in $\mathfrak{Ar}_{W(\mathbb{F})}$: isomorphism class $\left\{\alpha : V_A \otimes_A A' \xrightarrow{\cong} V_{A'} \text{ is an isomorphism } \middle| \iota_{A'} \circ \alpha = \iota_A\right\} / (A')^*$

- (2) We define the groupoid $\mathcal{D}_{V_{\mathbb{F}}}^{\square}$ on $\mathfrak{C} = \mathfrak{Ar}_{W(\mathbb{F})}$ as follows:
 - (a) Objects over $A \in \mathfrak{Ar}_{W(\mathbb{F})}$: triples (V_A, ι_A, β_A) , where $(V_A, \iota_A) \in \mathcal{D}_{V_{\mathbb{F}}}(A)$ and β_A is an A-basis of V_A mapping under ι_A to the basis $\beta_{\mathbb{F}}$ of $V_{\mathbb{F}}$.
 - (b) Morphism $(V_A, \iota_A, \beta_A) \to (V_{A'}, \iota_{A'}, \beta_{A'})$ over $A \to A'$: isomorphism $\alpha : V_A \otimes_A A' \xrightarrow{\cong} V_{A'}$ taking β_A to $\beta_{A'}$.

There is an obvious morphism of groupoids $\mathcal{D}_{V_{\mathbb{F}}}^{\square} \to \mathcal{D}_{V_{\mathbb{F}}}$.

Remark 1.22.

- (1) The deformation functor $D_{V_{\mathbb{F}}}$ defined before is exactly $|\mathcal{D}_{V_{\mathbb{F}}}|$ above.
- (2) When $V_{\mathbb{F}}$ has non-trivial automorphisms, then so do the object in $D_{V_{\mathbb{F}}}(A)$. (???) In this situation, the groipoid $\mathcal{D}_{V_{\mathbb{F}}}$ captures the geometry of the deformation theory of $V_{\mathbb{F}}$ more accurately than its functor if isomorphism classes.

Representability of a groupoid $\Theta: \mathfrak{F} \to \mathfrak{C}$.

Definition 1.23.

- (1) $\forall \eta \in \text{ob}(\mathfrak{F})$, define the category $\widetilde{\eta}$ (the category under η) as the category with objects are morphisms with source η and whose morphisms from $\eta \xrightarrow{\alpha} \xi$ to $\eta \xrightarrow{\alpha'} \xi'$ are morphisms $\xi \xrightarrow{u} \xi'$ in \mathfrak{F} such that $u \circ \alpha = \alpha'$.
- (2) Groupoid \mathfrak{F} over \mathfrak{C} is **representable** if there exists $\eta \in \mathfrak{F}$ such that the canonical functor $\widetilde{\eta} \to \mathfrak{F}$ is an equivalence of categories.
- (3) Similarly, we define the category \widetilde{T} for every $T \in \mathfrak{C}$.

One has a commutative diagram of categories:

Lemma 1.24. The left vertical homorphism above is an equivalence of categories.

Proof. Abstract nonsense.....

Remark 1.25. If \mathfrak{F} is representable by η , then the equivalence $\widetilde{\eta} \to \Theta(\widetilde{\eta})$ imples that η , as well as $\Theta(\eta)$, are well-defined up to canonical isomorphism. One says that $\Theta(\eta)$ represents \mathfrak{F} over \mathfrak{C} .

Lemma 1.26 (Relation with "classical" representable functor).

(1) If \mathfrak{F} is representable by η , any two objects of $\mathfrak{F}(\Theta(\eta))$ are canonically isomorphic and there is an isomorphism of functors

$$\operatorname{Hom}_{\mathfrak{C}}(\Theta(\eta), -) \xrightarrow{\cong} |\mathfrak{F}|,$$

so that $\Theta(\eta)$ represents $|\mathfrak{F}|$ in the usual set theoretic sense.

(2) If $|\mathfrak{F}|$ is representable and for any $T \in ob(\mathfrak{C})$ any two objects of $\mathfrak{F}(T)$ are related by a unique isomorphism, then \mathfrak{F} is representable.

Remark 1.27. The groupoid $\mathcal{D}_{V_{\mathbb{F}}}$ in Example 1.21 is usually not representable. Extending to $\widehat{\mathfrak{Ar}}_{W(\mathbb{F})}$ is needed.

 ξ and ξ' are not necessarily lying on the same object of $\mathfrak C$

REFERENCES 8

A crucial question: why do we need to use the language of groupoids?

Let's see Kisin's motivation (just a screenshot from Bockle's notes, which is nothing but a rewrite of [Kis09, Appendix (A.6)]):

The main reason why, in some circumstances, one needs to introduce the language of groupoids, is that formation of fiber products is not compatible with the passage from a groupoid \mathfrak{F} over \mathfrak{C} to its associated functor $|\mathfrak{F}|$. This is a serious technical issue, since Definition 2.4.4 of relative representability depends on the formation of fiber products. We illustrate this with a simple example taken from [34, A.6].

Consider now the situation when the group G is trivial and fix $\eta = (V_A, \iota_A) \in \mathcal{D}_{V_{\mathbb{F}}}(A)$ for some $A \in \mathfrak{At}_{W(\mathbb{F})}$. Then $\widetilde{\eta} \times_{\mathcal{D}_{V_{\mathbb{F}}}} \mathcal{D}_{V_{\mathbb{F}}}^{\square}$ can be identified with quadruples $(V'_{A'}\psi'_{A'}, \varphi \colon V_A \otimes_A A' \xrightarrow{\cong} V'_{A'}, \beta_{A'})$, where $(V'_{A'}\psi'_{A'}, \beta_{A'}) \in \mathcal{D}_{V_{\mathbb{F}}}^{\square}(A')$ and morphisms over $\mathrm{id}_{A'}$ are isomorphisms of $V'_{A'}$ reducing to the identity of $V_{\mathbb{F}}$. It follows that this category is a principal homogeneous space for the formal group obtained by completing $\mathrm{PGL}_d/W(\mathbb{F})$ along its identity section. Hence $|\widetilde{\eta} \times_{\mathcal{D}_{V_{\mathbb{F}}}} \mathcal{D}_{V_{\mathbb{F}}}^{\square}|(A')$ is isomorphic to the kernel $\mathrm{Ker}(\mathrm{PGL}_d(A') \to \mathrm{PGL}_d(\mathbb{F}))$. On the other hand, $|\mathcal{D}_{V_{\mathbb{F}}}^{\square}(A')|$ is a singleton and hence the same holds for $|\widetilde{\eta}| \times_{|\mathcal{D}_{V_{\mathbb{F}}}} |\mathcal{D}_{V_{\mathbb{F}}}^{\square}|(A')$.

References

- [Böc13] G. Böckle. "Deformations of Galois Representations". In: L. Berger et al. *Elliptic Curves, Hilbert Modular Forms and Galois Deformations*. Springer Basel, 2013, pp. 21–115. DOI: 10.1007/978-3-0348-0618-3_2.
- [Gou01] F. Q. Gouvêa. "Deformations of Galois representations". In: Arithmetic Algebraic Geometry. Ed. by B. Conrad and K. Rubin. American Mathematical Society, 2001, pp. 235–406. URL: http://www.ams.org/books/pcms/009/05.
- [Har77] R. Hartshorne. Algebraic Geometry. Springer New York, 1977. DOI: 10.1007/978-1-4757-3849-0. URL: https://doi.org/10.1007/978-1-4757-3849-0.
- [htt] S. M. (https://math.stackexchange.com/users/572592/sebastian-monnet). Relationship between two definitions of pro-representable functors. Mathematics Stack Exchange. URL: https://math.stackexchange.com/q/4013849.
- [Kis09] M. Kisin. "Moduli of finite flat group schemes, and modularity". In: Annals of Mathematics 170.3 (Nov. 2009), pp. 1085–1180. DOI: 10.4007/annals.2009.170.1085.
- [Mat87] H. Matsumura. Commutative Ring Theory. Trans. by M. Reid. 1st ed. Cambridge University Press, Jan. 8, 1987. ISBN: 978-0-521-25916-3 978-0-521-36764-6 978-1-139-17176-2. DOI: 10.1017/CB09781139171762. URL: https://www.cambridge.org/ core/product/identifier/9781139171762/type/book.
- [Maz89] B. Mazur. "Deforming Galois Representations". In: Galois Groups over Q. Ed. by Y. Ihara, K. Ribet, and J.-P. Serre. Vol. 16. Springer US, 1989, pp. 385–437. DOI: 10.1007/978-1-4613-9649-9_7.
- [Maz97] B. Mazur. "An Introduction to the Deformation Theory of Galois Representations". In: Modular Forms and Fermat's Last Theorem. Ed. by G. Cornell, J. H. Silverman, and G. Stevens. Springer New York, 1997, pp. 243–311. DOI: 10.1007/978-1-4612-1974-3 8.

REFERENCES 9

- [nLa22] nLab authors. prorepresentable functor. Oct. 2022. URL: https://ncatlab.org/nlab/revision/prorepresentable%20functor/7.
- [Ste13] W. Stein. A Short Course on Galois Cohomology. 2013. URL: https://wstein.org/edu/2010/582e/lectures/all/galois_cohomology.pdf.