Simple Linear Regression - Summary

PURPOSE

Simple linear regression is used to predict the value of a dependent variable (outcome) based on the value of an independent variable (predictor).

MODEL EQUATION

$$Y = b_0 + b_1 X + \epsilon$$

- Y = dependent variable (the outcome you are trying to predict; continuous random variable)
- X = independent variable (the predictor variable; continuous or random variable)
- b_0 = intercept (value of Y when X is 0)
- b_1 = slope (change in Y for a one-unit change in X)
- $\epsilon = \text{error term}$ (the difference between observed and predicted values)

ASSUMPTIONS

Linearity: The relationship between the independent and dependent variables is linear.
Independence: Observations are independent of each other.
Homoscedasticity: Constant variance of errors across all levels of X.
Normality: The residuals (errors) of the model should be approximately normally distributed.

MODEL FIT AND EVALUATION

- R-squared (R^2) : Represents the proportion of variance in the dependent variable that can be explained by the independent variable. Ranges from 0 to 1; higher values indicate a better fit.
- **Adjusted R-squared**: Adjusted for the number of predictors in the model; useful when comparing models with different numbers of predictors.

p-value: Tests the hypothesis that the slope (b_1) is significantly different from zero. A low p-value (< 0.05) indicates a significant relationship.

INTERPRETATION OF RESULTS

- Slope (b_1) : Indicates how much the dependent variable is expected to increase (or decrease) when the independent variable increases by one unit.
- Intercept (b₀): The predicted value of Y when X is zero. Interpret with caution, especially if X cannot be zero in practical scenarios.

LIMITATIONS

- Causation vs. Correlation: Simple linear regression shows relationships but does not imply causation.
- Outliers: Influential outliers can skew results and lead to misleading conclusions.
- Model Complexity: Only suitable for simple relationships; more complex relationships may require multiple regression or other techniques.