数字人姿态协调性研究

胡志明

北京大学

jimmyhu@pku.edu.cn

https://zhiminghu.net/

个人情况

学历:北京大学计算机学院2022届博士

工作: 德国斯图加特大学博士后

荣誉奖励:

- ▶ 2022年6月,北京大学优秀毕业生
- ▶ 2021年12月,国家奖学金
- ▶ 2021年12月,北京大学三好学生
- ▶ 2021年3月, TVCG最佳期刊论文提名奖(国内首次)
- ▶ 2020年12月,北京大学二等奖学金
- ▶ 2020年12月,北京大学三好学生
- ▶ 2020年8月,国家留学基金委奖学金
- ▶ 2020年5月,北京大学校长奖学金
- ▶ 2019年12月,廖凯原奖学金
- > 2019年12月,北京大学三好学生

报告大纲

- > 数字人概念
- > 基于眼动头动协调性的注视预测模型
- > 动态虚拟现实环境中的注视预测模型
- >任务驱动虚拟现实环境中的注视预测模型
- ▶虚拟现实环境中的用户任务识别模型

- 0 Root
- 1 Chest
- 2 Chest2
- 3 Chest3
- 4 Chest4
- 5 Neck
- 6 Head
- 7 R. Collar
- 8 R. Shoulder
- 9 R. Elbow
- 10 R. Wrist

- 11 L. Collar
- 12 L. Shoulder
- 13 L. Elbow
- 14 L. Wrist
- 15 R. Hip
- 16 R. Knee
- 17 R. Ankle
- 18 R. Toe
- 19 L. Hip
- 20 L. Knee
- 21 L. Ankle
- 22 L. Toe

[Bhattacharya et al. 2021]

[Randhavane et al. 2019]

[https://www.vive.com/us/product/vive-pro-eye/features/]

[McDonnell et al. 2015]

数字人相关研究问题

- >数字人形象生成(图片、交互输入)
- >数字人驱动(文本、语音、交互输入)
- >数字人真实感绘制 (光照、纹理、阴影)

数字人姿态协调性

- Root
- 1 Chest
- 2 Chest2
- 3 Chest3
- 4 Chest4
- 5 Neck
- 6 Head
- 7 R. Collar
- 8 R. Shoulder
- 9 R. Elbow
- 10 R. Wrist

- 11 L. Collar
- 12 L. Shoulder
- 13 L. Elbow
- 14 L. Wrist
- 15 R. Hip
- 16 R. Knee
- 17 R. Ankle
- 18 R. Toe
- 19 L. Hip
- 20 L. Knee
- 21 L. Ankle
- 22 L. Toe

[Bhattacharya et al. 2021]

数字人姿态协调性

- ▶眼动-头动协调性
- >眼动-身体运动协调性
- >头动-手动协调性
- ▶身体-步态协调性

静态虚拟场景注视预测

11

[Hu et al. TVCG 2019]

研究背景

注视预测应用

注视点渲染 [Patney et al. 2016]

重定向行走 [Sun et al. 2018]

场景布局优化 [Alghofaili et al. 2019]

12

研究背景

注视预测应用

VR内容设计 [Sitzmann et al. 2018]

注视引导 [Grogorick et al. 2017]

细节层次管理 [Lee et al. 2009]

数据收集

>参与者: 60名用户(35男, 25女, 年龄18-36)

>实验场景:七个静态虚拟场景

>实验设备: HTC Vive头盔、眼动仪

>实验过程: 自由观察

>数据:场景内容、注视位置、头部运动

实验场景

SGaze模型

$$x_{g}(t) = \alpha_{x} \cdot v_{hx}(t + \Delta t_{x1}) + \beta_{x} \cdot a_{hx}(t) + F_{x}(t + \Delta t_{x2}) + G_{x}(t) + H_{x}(t)$$

$$y_{g}(t) = \alpha_{y} \cdot v_{hy}(t + \Delta t_{y1}) + F_{y}(t + \Delta t_{y2}) + G_{y}(t) + H_{y}(t)$$

 x_g, y_g : 注视位置

 v_{hx}, v_{hy}, a_{hx} : 头动速度及加速度

 F_x , F_v : 内容

 G_{χ} , G_{γ} : 任务

 H_x , H_y : 其他因素

 α_x , α_y , β_x : 头动速度及加速度的线性影响系数

 Δt_{x1} , Δt_{y1} : 眼动头动延迟

眼动头动延迟

眼动头动线性相关性

模型评估

其他方法: Center, Mean, Saliency

评价指标:视角误差

	SGaze	Mean	Center	Saliency
Mean Error	8.52°	10.93°	11.16°	21.23°

SGaze模型与其他方法的预测误差均值

SGaze模型的预测效果具有显著的提升

动态虚拟场景注视预测

[Hu et al. TVCG 2020]

数据收集

▶ 参与者: 43名用户 (25男, 18女, 年龄18-32)

>实验场景: 五个动态虚拟场景

>实验设备: HTC Vive头盔、眼动仪

>实验过程: 自由观察

>数据:场景内容、动态物体位置、注视位置、头部运动

实验场景

DGaze模型

DGaze模型框架

模型评估

		DGaze	SGaze	Mean	Center	Object
Dynamic	Mean Error	7.11 °	9.11°	10.04°	12.46°	13.25°
Static	Mean Error	7.71°	8.52°	10.93°	11.16°	

DGaze 模型与其他方法在动态和静态数据集上的预测效果

DGaze模型在动态和静态数据集上均有显著的提升

21

预测效果

Realtime gaze prediction results

任务驱动虚拟场景注视预测

[Hu et al. TVCG 2021 (Best Journal Nominees)]

数据收集

▶ 参与者: 27名用户 (15男, 12女, 年龄17-32)

>实验场景:四个任务驱动虚拟场景

>实验设备: HTC Vive头盔、眼动仪

>实验过程:视觉搜索任务

>数据:场景内容、任务相关物体信息、注视位置、头部运动

实验场景

FixationNet模型

FixationNet模型框架

注视预测网络

$$\widehat{f} = \mathbf{g_0} + \sum_{i=1}^C p_i c_i$$

 \hat{f} : 预测的未来时刻注视位置

go: 用户在当前时刻的注视位置

 c_i : 聚类中心的位置

pi: 聚类中心的权重

模型评估

任务驱动场景中, 不同时间间隔下模型的预测表现

FixationNet在不同预测时间下均具有最好的表现

360度VR视频用户任务识别

28

数据收集

> 参与者: 30名用户(18男, 12女, 年龄 $\mu = 24.5, \sigma = 5.0)$

>实验场景: 15个360度VR视频 (时长150s)

>实验设备: HTC Vive头盔、眼动仪

>实验过程:自由观察、视觉搜索、显著性判断、物体追踪

>数据:任务类别、注视位置、头部运动

实验场景

EHTask模型

EHTask模型框架

模型评估

		Ours	LDA	SVM	ВС	RFo	RFe
Cross- User	Window	84.4%	54.0%	54.3%	49.3%	62.8%	48.7%
	MV	97.8%	76.1%	75.3%	65.3%	83.1%	68.3%
Cross- Scene	Window	82.1%	53.8%	54.1%	49.0%	62.6%	48.3%
	MV	96.4%	74.2%	75.3%	64.4%	83.6%	72.2%

EHTask模型与其他方法在用户交叉和场景交叉下的预测表现

EHTask模型在用户交叉和场景交叉下的预测表现均有显著提升

提问环节

公众号: 小侦探的书桌

- > 北大硕士的德国读博之路
- ▶北大女孩的外企生活
- > 互联网工作两年后的思考

谢谢