## IT BIZTONSÁG (VIHIAC01) HÁZI FELADAT

# Kriptográfia

Szerző: Buttyán Levente



2022. február 22.

## Tartalomjegyzék

| 1. | Általános információk                 |   |  |  |  |  |  |  |  |  |  |  |  |  |  |
|----|---------------------------------------|---|--|--|--|--|--|--|--|--|--|--|--|--|--|
| 2. | Feladatok                             | 3 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|    | 2.1. A 2-négyzet rejtjelező feltörése | 3 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|    | 2.2. Egy, megérett a meggy, kettő     | 6 |  |  |  |  |  |  |  |  |  |  |  |  |  |

## 1. Általános információk

Ebben a házi feladat kiírásban két feladat található, melyek a kriptográfia témakörhöz kapcsolódnak. A feladatok megoldásához szükséges háttér információk a feladatok leírásában találhatók.

A feladatok megoldásának beadása a Moodle rendszeren keresztül, egy kvíz kitöltésével történik majd. A kvízben olyan kérdéseket teszünk fel, melyeket a feladatok megoldása ismeretében könnyen meg lehet válaszolni. A kvízt fogjuk pontozni, az lesz az ezen házi feladatra kapott pont. Maximum 10 pont szerezhető így. A megszerzett pontszámot azonban 20%-kal csökkentjük, ha a kvíz kitöltése (azaz a házi feladat megoldásának beadása) a határidő után történik.

A feladatokhoz megoldási ötleteket, tanácsokat is adunk. Ezek segítségével a feladatok bárki számára könnyen megoldhatók. Ezzel a célunk annak elérése, hogy foglalkozz a feladatokkal, és ne valakitől készen megkapott megoldásokat adj be. Ezzel ugyanis semmit nem lehet tanulni és nem is fair azokkal szemben, akik becsületesen dolgoznak.

## 2. Feladatok

### 2.1. A 2-négyzet rejtjelező feltörése

Ebben a feladatban a 2-négyzet rejtjelezőt kell feltörni. A 2-négyzet rejtjelező működésének leírása megtalálható például a következő Wikipédia oldalon:

https://en.wikipedia.org/wiki/Two-square\_cipher

#### A feladat

Adott a következő rejtett szöveget, amit a (vertikális) 2-négyzet rejtjelezővel állítottak elő:

KTOUOFKERKVZFARSWFYUCEABLUBEPCNA RSEPNRTANCBUWHDOWFDUZMSAXPYUOJLC DIGRPUFCABVMWFBUIOBEMNWLLHMTADVR ICROUVNTTBABMTVMWFBUIOYUMYKKIGMT AXONTAOPZMSURUCJMTADVRICROUVNTTB ABPULAVMZAXTDIGRPUJSFCZAOCSURVVS GCOTHCFCPBDPYUOJOSKCLESBEKSPOLJG ADOUKCLESBDIGRPUJHOSKCDFIFYUZAXT VMYPCRZKGRPUJXWFISISABKARRDEZKIU VUPBNSPAABNCDW

A nyílt szövegről tudjuk, hogy angol nyelvű, és néhány szót ismerünk is belőle:

|    | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | C |
|----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| ΙR | C | U | M | S | Τ | Α | N | С | E | S |   |   | • |   | • |   |   | • |   |   |   |   | • |   |   |   |   | • |   |   |
|    |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|    |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|    | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • |
|    |   | • |   |   | • |   |   |   |   | • |   |   | • |   | • |   |   |   |   |   |   |   | • |   |   | • |   | • | • |   |
|    |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|    |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | C | Ι | Ρ | Η | E | R | T | E | X | T |
| ΙN | C | R | Y | P | T | 0 | G | R | Α | Ρ | Η | Y | • |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|    |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |

Azt is tudjuk, hogy a rejtjelező alsó négyzete (mátrixa) egyáltalán nincs megkeverve. Továbbá, szokás szerint, a Q betűt törölték az (angol) ABC-ből (hogy annak méretét 25-re redukálják), ezért az alsó négyzet így néz ki:

A B C D E F G H I J K L M N O P R S T U V W X Y Z

A feladat a felső négyzet megfejtése, melyről tudjuk, hogy egy kulcsszóval kezdődik, amit az ABC maradék (a kulcsszóban nem szereplő) betűi követnek sorrendben. Például, ha a kulcsszó KEYWORD lenne, akkor a felső négyzet így nézne ki:

K E Y W O R D A B C F G H I J L M N P S T U V X Z

Fejtsd meg a felső négyzetet, majd a négyzetek segítségével dekódold az adott rejtett szöveget! A feladat megoldásának beadásához szükséged lesz a felső négyzetben található kulcsszóra, a visszaállított nyílt szövegre, és a nyílt szöveg eredetileg ismert szavainak betűpárjaihoz tartozó kódolt betűpárokra (a megoldás során ezeket úgyis fel kell írnod).

#### Figyelmeztetés!

Ha önállóan szeretnél próbálkozni, akkor ne olvass tovább! Ha elakadsz megnézheted az alább javasolt lépéseket. Jó szórakozást!

#### Tanácsok:

1. Írd le a megadott CIPHERTEXT, IN, CRYPTOGRAPHY, és (C)IRCUMSTANCES nyílt szavak segítségével kideríthető betűpár leképezéseket! Például a CIPHERTEXT szóból a következő leképezések adódnak:

CI --> DF PH --> IF ER --> YU TE --> ZA XT --> XT

- 2. Az azonosított betűpár leképezések segítségével állítsd vissza és írd le a felső négyzet potenciálisan hiányos sorait! A sorok sorrendje itt még nem számít.
- 3. Vond össze az összevonható sorokat, és írd le az így visszaállított hiányos felső négyzetet!
- 4. Egészítsd ki a hiányos felső négyzetet, rendezd a sorait, és írd le a teljes visszaállított mátrixot!
- 5. Fejtsd vissza a nyílt szöveget a rejtett szövegből a megfejtett rejtjelező segítségével!

### 2.2. Egy, megérett a meggy, kettő...

Ebben a feladatban egy olyan rejtett szöveget kell feltörni, amit az AES rejtjelezővel állítottak elő, mégpedig CTR (számláló) módban. A megoldáshoz nem lesz szükség az AES rejtjelezőre magára. Viszont hasznos lehet egy ún. hex editor program, mint pl. a HxD (Windows), az iHex (MacOS), az Xxd vagy a Bless (Linux), amivel bináris fájlok tartalmát (pl. a feladatban adott rejtett szövegeket) is meg lehet nézni. Szükség lesz továbbá bináris stringek XOR-olására, amihez egy desktop számológépet, egy on-line XOR tool-t¹, vagy bármilyen programozási környezetet (pl. egy Python interpretert) használhatsz. Végül, ha rájössz a megoldási módszerre, akkor érdemes lesz azt egy script-ben vagy programban megvalósítani, és nem kézzel végezni majd el a rejtett szöveg dekódolását; ehhez bármilyen script- vagy programnyelvet használhatsz, amit jól ismersz.

#### A feladat

Hozzájutottunk egy versenytárs laboratóriumból származó érzékeny dokumentum két verziójához:

```
LabProfile-v1.crypt
LabProfile-v1.1.crypt
```

Sajnos a fájlok<sup>2</sup> rejtjelezve vannak, de egy régi ismerős, aki pont a versenytársnál dolgozik, megszerezte a programot, amivel rejtjelezték őket:

Belenézve a programba szomorúan tapasztaljuk, hogy a rejtjelező kulcs nincs belekódolva. De mégis szerencsénk van, mert észrevesszük, hogy a programozó nem volt elég körültekintő (vagy nem értett a kriptográfiához) és rosszul használta a CTR blokkrejtjelezési módot!

Ki tudod használni a hibát és vissza tudod fejteni a nyílt szöveget? Ha sikerül, megszerezheted a szövegben elrejtett FLAG-et (azaz a szöveg FLAG-gel jelölt sorát).

A feladat megoldásának beadásához szükséged lesz a visszaállított nyílt szövegre (benne a FLAG-gel jelölt sorral), és annak bináris változatára, amit pl úgy láthatsz, ha a visszafejtett fájlt egy hex editorban nyitod meg.

<sup>&</sup>lt;sup>1</sup>Pl: http://xor.pw/

<sup>&</sup>lt;sup>2</sup>A feladatban szereplő minden fájl egy csatolt mappában található.

## Figyelmeztetés!

Ez egy nehéz feladat, ezért alább sok segítséget adunk a megoldáshoz. Ha önállóan szeretnél próbálkozni, akkor ne olvass tovább! Természetesen, ha elakadsz megnézheted az alább javasolt lépéseket. A megoldást pontokba szedtük, így nem szükséges végig olvasnod az egészet: ha valamelyik pont után úgy érzed, hogy onnan már be tudod fejezni a feladat megoldását, akkor fejezd be önállóan! Jó szórakozást!

#### Tanácsok:

1. Nézz bele a rejtjelezett fájlokba és nézd meg az adott rejtjelező programot!

Nyissuk meg a rejtjelező programot egy editorban! Láthatjuk benne, hogy az AES rejtjelezőt használja CTR módban. Nyissuk meg a két rejtjelezett fájlt is egy hex editor programmal és vizsgáljuk meg a tartalmukat. Észrevehetjük, hogy a két fájl eleje (az első 128 bájt) azonos. Ebből arra a következtetésre juthatunk, hogy a CTR módot nem inicializálták megfelelően, és a két fájl rejtjelezésekor ugyanazt kulcsot és ugyanazt a számláló sorozatot használták. Ellenőrizd az utóbbi hipotézist a rejtjelező program vizsgálatával!

#### 2. Nézd meg a rejtjelezett fájlok méretét!

A fájlok méretéből az látszik, hogy a dokumentum 1-es verziója 16 bájttal hosszabb, mint az 1.1-es verzió. Ebből az az ötletünk támadhat, hogy a két rejtjelezett fájlhoz tartozó nyílt szövegek lényegében azonosak, és az 1.1-es verzió csak annyiban különbözik, az 1-es verziótól, hogy abból 16 bájtot töröltek az első 128 bájt után.

#### 3. Gyárts hipotézist a megfigyeléseidből!

Foglaljuk össze, hogy mit tudunk: (1) a két fájlt valószínűleg ugyanazzal a kulcsfolyammal (ugyanabból a számláló sorozatból származó AES kimenettel) rejtjelezték és (2) a két nyílt szöveg valószínűleg majdnem azonos, csak az 1.1-es verzióból hiányzik egy blokk (16 bájt) a 8. blokk (128. bájt) után. Mikor tudjuk, hogy két rejtett szöveget ugyanazzal a számláló sorozattal állítottak elő CTR módban, akkor az első ötletünk mindig az, hogy XOR-oljuk össze a két rejtett szöveget, mert ha így teszünk, akkor a kulcsfolyam kiesik és a két nyílt szöveg XOR összegét kapjuk (azaz  $(X \oplus K) \oplus (X' \oplus K) = X \oplus X'$ ). Ez felfedhet valamit a nyílt szövegekről. Próbáld ki!

#### 4. Ellenőrizd a hipotézisedet!

Az első 128 bájtot hiába XOR-oljuk össze, csak 0-kat kapunk. Viszont amikor a fájlok 9. blokkjait XOR-oljuk össze, akkor valami érdekeset láthatunk:

Ez a következő szöveg ASCII reprezentációja:

#### c R Y s Y s ? 1 A B ? ? b U D A

Ez úgy néz ki, mintha a "CrySyS Lab..." szöveget szóközökkel (hex 0x20 bájtokkal) XOR-olták volna össze, hiszen tudjuk, hogy a kis és nagy betűk ASCII kódjai között pont 0x20 a különbség!

Próbáljuk meg tehát végig XOR-olni a kapott szöveget a 0x20 0x20 0x20 ...sorozattal:

Az eredmény a következő szöveg ASCII reprezentációja:

Nagyszerű! Ebből megtudtuk, hogy a 9. blokk az 1.1-es verzióban "CrySyS Lab, Buda", míg az 1-es verzióban a 9. blokk a csupa szóköz. Nem csoda, hogy ezt kitörölték belőle.

#### 5. Általánosítsd az észrevételeidet!

Kicsit formalizáljuk az eddigieket! Jelöljük a dokumentum 1-es verziójának blokkjait a következőképpen:  $m[1..8], m[9], m[10], m[11], \ldots$  Azt sejtjük, hogy akkor az 1.1-es verzió blokkjai a következők:  $m[1..8], m[10], m[11], \ldots$ , mivel azt feltételeztük, hogy az 1.1-es verzió úgy keletkezett az 1-es verzióból, hogy abból a 8. blokk után egy blokkot töröltek. Amikor kiszámoltuk a 9. blokkok XOR összegét, akkor valójában az 1-es verzióból származó m[9]-et XOR-oltuk össze az 1.1-es

verzióból származó m[10]-zel, ebből kaptuk az  $m[9] \oplus m[10]$ -et. Ennek megfigyelése révén kitaláltuk, hogy m[9] egy csupa szöközökből (0x20 bájtokból) álló blokk, és ebből aztán kijött, hogy m[10] a "CrySyS Lab, Buda" szöveg. Ha most a 10. blokkokat XOR-oljuk össze, akkor az 1-es verzióból származó m[10] és az 1.1-es verzióból származó m[11] XOR összegét kapjuk, azaz  $m[10] \oplus m[11]$ -et. Mivel már ismerjük m[10]-et, ezért ebből ki tudjuk számolni m[11]-et a következő módon:

```
10th blk of v1: 57 D3 82 E3 B3 16 43 E4 26 84 54 F3 FE C3 49 2B

XOR 10th blk of v1.1: 64 C4 88 C4 C0 4F 37 C0 22 C6 14 B2 DE D9 5F 2B

m[10]+m[11]: 33 17 OA 27 73 59 74 24 O4 42 40 41 20 1A 16 00

XOR m[10]: 43 72 79 53 79 53 20 4C 61 62 2C 20 42 75 64 61

m[11]: 70 65 73 74 OA OA 54 68 65 20 6C 61 62 6F 72 61
```

Az eredmény a következő szöveg ASCII reprezentációja:

#### pest The labora

Tehát jó úton járunk! Most XOR-oljuk össze a 11. blokkokat, ebből megkapjuk  $m[11] \oplus m[12]$ -t, és mivel ismerjük m[11]-et, ezért ki tudjuk számolni m[12]-t. Innen már egyszerű látni a sémát, és befejezni a feladat megoldását...

#### 6. Teljes megoldás

Legegyszerűbb, ha script-et vagy programot írsz a fenti módszer automatizált végrehajtására, ami dekódolja a rejtjelezett dokumentumot<sup>3</sup>.

 $<sup>^3{\</sup>rm A}$ nyílt szöveg első 8 blokkja, azaz 128 bájtja nem fejthető vissza, de ezzel nem kell foglalkozni.