ВСЕРОССИЙСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ ФИЗИКА. 2023–2024 уч. г. ШКОЛЬНЫЙ ЭТАП. 9 КЛАСС

Максимальный балл за работу – 50.

Тестовые задания

- **1.** Два легковых автомобиля находящиеся на прямой дороге на расстоянии 100 м друг от друга, одновременно начинают движение в одном направлении. Скорость первого автомобиля 10 м/с, скорость второго 20 м/с. Через какое время расстояние между автомобилями будет опять равно 100 м? Временем разгона автомобилей можно пренебречь. Ответ выразите в секундах, округлив до целого числа.
- 1) 5
- 2) 10
- 3) 20
- 4) 40
- 5) 35
- **2.** В пустой цилиндрический сосуд наливают одинаковые массы воды и масла (рис. 1). Жидкости не смешиваются. Тело объёмом V, подвешенное на тонкой нити, опускают в сосуд. Сначала его полностью погружают в масло (рис. 2), и в результате этого сила давления на дно сосуда изменяется на величину ΔF_1 . Затем тело помещают в воду (рис. 3), и в результате этого сила давления на дно сосуда изменяется на величину ΔF_2 по сравнению со случаем, когда тело находилось в воздухе. В обоих случаях тело покоится, не касаясь стенок и дна сосуда. Найдите отношение $\Delta F_1/\Delta F_2$. Плотности воды и масла равны 1 г/см³ и 0,8 г/см³ соответственно.

- 1) 0,6
- 2) 0,8
- 3) 1,0
- 4) 1,25
- 5) 4

3. К потолку подвешена пружина, к нижнему концу которой прикреплён шарик массой 50 г. К этому шарику прикреплена вторая пружина с таким же шариком, подвешенным к её нижнему концу. Длина каждой недеформированной пружины равна 10 см. Жёсткость верхней пружины $k_1 = 200\,$ H/м, нижней пружины — $k_2 = 100\,$ H/м. Чему равно расстояние от потолка до нижнего шарика? Размером шариков пренебречь, пружины невесомы, ускорение свободного падения равно $g = 10\,$ H/кг. Ответ выразите в сантиметрах и округлите до целого числа.

- 1) 21
- 2) 25
- 3) 30
- 4) 33
- 5) 50
- **4.** В электрической цепи, схема которой изображена на рисунке, идеальный вольтметр показывает напряжение 9 В, а идеальный амперметр A_1 силу тока 1,5 А. Найдите показания идеального амперметра A_2 , если сопротивление R_1 = 3 Ом. Ответ выразите в амперах, округлив до десятых долей.

- 1) 3,0
- 2) 4,5
- 3) 6
- 4) 6,5
- 5) 9,5

- **5.** Школьник Вася решил изучить процесс нагревания воды. Для этого он налил в кастрюлю воду при температуре $T_1 = 20~^{\circ}\mathrm{C}$, опустил в кастрюлю нагреватель постоянной мощности и начал записывать значения температуры воды в кастрюле в разные моменты времени. Через 9 минут после включения нагревателя Васю отвлёк звонок телефона. Он записал значение температуры $T_2 = 80~^{\circ}\mathrm{C}$ в этот момент времени и пошёл отвечать на звонок. Вернувшись спустя 14,5 минут, он обнаружил, что часть воды выкипела. Удельная теплоёмкость воды $c = 4200~\mathrm{Дж/(kr\cdot ^{\circ}C)}$, удельная теплота парообразования воды $L = 2,3\cdot 10^6~\mathrm{Дж/kr}$. Теплоёмкостью кастрюли, испарением воды до достижения температуры $100~^{\circ}\mathrm{C}$ и теплопотерями пренебречь. Определите, какая часть воды осталась в кастрюле к моменту возвращения Васи.
- 1) 0,14
- 2) 0,20
- 3) 0,25
- 4) 0,50
- 5) 0,86

Ответы:

№ задания	1	2	3	4	5
Ответ	3	2	1	2	5
Балл	2 балла				

Задания с кратким ответом

Задачи 6-7

Фермер продаёт на рынке огурцы по цене 50 рублей за килограмм. Для взвешивания он использует прямую доску длиной h=1 м и массой $M_{\pi}=3$ кг.

^{*}Из-за технической ошибки задание 5 зачтено всем участникам.

- **6.** Фермер положил доску на цилиндрический брусок. Оказалось, что она находится в равновесии, когда точка опоры расположена на расстоянии h/3 от левого конца доски (см. рис.). Фермер привязал к правому концу доски пакет с огурцами и снова уравновесил доску на круглой опоре. Оказалось, что в этом случае точка опоры находится посередине доски. Рассчитайте стоимость лежащих в пакете огурцов. Ответ дайте в рублях и округлите до целого числа. (4 балла)
- 7. На каком расстоянии от левого края доски необходимо разместить цилиндрический брусок для уравновешивания системы, если тот же пакет с огурцами привязать к её левому концу? Дайте ответ в см и округлите до целого числа. (4 балла)

Решение:

6. Сила тяжести доски приложена к центру тяжести доски, находящемуся в точке C на расстоянии h/3 от левого конца доски.

Запишем уравнение моментов относительно точки опоры O при взвешивании огурцов:

$$M_{\mathrm{A}}g \cdot \frac{1}{6}h = M_{\mathrm{o}}g \cdot \frac{1}{2}h,$$

откуда $M_{\rm o}=\frac{1}{3}M_{\rm d}=1$ кг. Значит, стоимость огурцов 50 рублей.

7. Запишем условие равновесия относительно новой точки опоры: $M_{\rm д}g\cdot (\frac{1}{3}h-x)=M_{\rm 0}g\cdot x$, где x – расстояние от левого края до точки опоры.

$$x = \frac{1}{4}h = 25$$
 cm.

Ответ:

6	7
50	25

Максимум за задачу 8 баллов.

Задачи 8-9

Рыбак пошёл на зимнюю рыбалку. Начав бурить лунку в толстом льду, он решил провести эксперимент. Для этого в очищенную от воды и крошек льда цилиндрическую лунку, объём которой был равен $V=180~{\rm cm}^3$, он из термоса залил горячую воду массой $m=70~{\rm r}$ при температуре $T_1=80~{\rm C}$. Удельная теплота плавления льда $\lambda=335~{\rm кДж/кг}$, удельная теплоёмкость воды $c=4,2~{\rm кДж/(kr\cdot {}^{\circ}{\rm C})}$. Плотность воды $1000~{\rm kr/m}^3$, плотность льда $900~{\rm kr/m}^3$. Температура льда и воздуха всюду одинакова и равна $T_2=0~{}^{\circ}{\rm C}$. Теплообменом с окружающим воздухом можно пренебречь.

- **8.** Определите массу льда, которая превратится в воду в результате этой операции. Ответ укажите в граммах и округлите до целого числа. (*4 балла*)
- **9.** Определите свободный от воды объём лунки после того как установится тепловое равновесие. Ответ укажите в см 3 и округлите до целого числа. (4 балла)

Решение:

- **8.** Запишем уравнение теплового баланса: $\lambda m_{\pi} = cm(T_1-T_0)$. Откуда масса льда $m_{\pi} = \frac{cm(T_1-T_0)}{\lambda} \approx 70$ г.
- 9. При плавлении объём льда уменьшается на величину

$$\Delta V = \frac{m_{\scriptscriptstyle \Pi}}{\rho_{\scriptscriptstyle \Pi}} - \frac{m_{\scriptscriptstyle \Pi}}{\rho_{\scriptscriptstyle B}} \approx 7,78~{\rm cm}^3.$$

Объём, занимаемый изначально горячей водой, в процессе теплообмена не меняется — он равен $V_{\rm B}=\frac{m}{\rho_{\rm B}}=70~{\rm cm}^3.$ Таким образом, свободный от воды объём лунки равен $V_1=V-V_{\rm B}+\Delta V\approx 118~{\rm cm}^3.$

Ответ:

8	9
70	118

Максимум за задачу 8 баллов.

Задачи 10-11*

Две лёгкие тонкие горизонтальные пластины плотно притёрты между собой. Площадь пластин составляет 700 см². Нижняя пластина закреплена на земле. К середине верхней пластины присоединён трос, к которому прикреплён метеорологический зонд — тонкая, практически невесомая оболочка, наполненная гелием. Плотность гелия внутри оболочки составляет 0,178 кг/м³, плотность окружающего воздуха 1,293 кг/м³. Атмосферное давление примите равным $p_{\text{атм}} = 10^5 \, \text{Па}$, ускорение свободного падения $g = 10 \, \text{м/c}^2$.

- **10.** Зонд с каким наибольшим объёмом оболочки может быть удержан на земле этими пластинами? Ответ дайте в м³ и округлите до целого числа. (*5 баллов*)
- **11.** Зонд с найденным ранее наибольшим объёмом оболочки отвязывают от пластины и прикрепляют к грузу, лежащему на земле. Определите наименьшую массу груза, при которой он не будет отрываться от поверхности земли. Ответ дайте в кг и округлите до целого числа. (3 балла)

Решение:

10. На зонд действуют сила Архимеда, сила тяжести и суммарная сила натяжения нитей. Так как он находится в равновесии, $F_{\rm Apx} = F_{\rm тяж} + T$.

Так как нить невесома, на верхнюю пластину действует такая же сила натяжения T. Она уравновешивается силой атмосферного давления на пластину: $F_{\rm д} = T$. Учитывая, что $F_{\rm д} = p_{\rm атм} S$, запишем: $(\rho_{\rm возд} - \rho_{\rm He}) g V = p_{\rm атм} S$. Откуда $V = \frac{p_{\rm atm} S}{(\rho_{\rm возд} - \rho_{\rm He}) g} \approx 628 \, {\rm M}^3$.

11. Во втором случае силы, действующие на зонд, не изменяются. При этом для груза T=mg.

Отсюда
$$m=\left(
ho_{ ext{возд}}-
ho_{ ext{He}}
ight)\!V=rac{p_{ ext{atm}}s}{g}=700$$
 кг.

Ответ:

10	11
628	700

Максимум за задачу 8 баллов.

Задачи 12-14

В электрической цепи, схема которой изображена на рисунке, максимальное сопротивление реостата равно $R_0 = 2$ кОм, а сопротивление подсоединённого к нему резистора равно $R_1 = 1$ кОм.

- **12.** Определите максимально возможное сопротивление этой цепи. Ответ выразите в килоомах, округлите до десятых долей. *(3 балла)*
- **13.** При каком положении ползунка реостата мощность, выделяющаяся в резисторе R_1 , будет максимальной? В качестве ответа запишите величину отношения x/l, где x расстояние от левого конца реостата до ползунка, а l полная длина реостата. Ответ округлите до сотых долей. (3 балла)
- **14.** Чему равна эта мощность, если цепь подключили к идеальной батарейке с напряжением E = 9 B? Ответ выразите в милливаттах, округлите до целого числа. (2 балла)

^{*}Из-за технической ошибки задачи 10-11 зачтены всем участникам.

Решение:

12. Заметим, что, если к одному резистору подключить параллельно какойлибо другой резистор, то их общее сопротивление будет меньше сопротивления каждого из них. Значит максимальное сопротивление цепи равно $R_0 = 2$ кОм, такое сопротивление будет при крайнем левом положении ползунка реостата.

13. Мощность, выделяющаяся на резисторе, равна $P = \frac{U^2}{R_1}$, где U – напряжение на резисторе R_1 . Мощность будет максимальна, когда максимально значение U. Это будет наблюдаться при крайнем правом положении ползунка реостата. Таким образом, $\frac{x}{l} = 1$.

14. При крайнем правом положении ползунка $P = \frac{E^2}{R_1} = 81$ мВт.

Ответ:

12	13	14
2	1	81

Максимум за задачу 8 баллов.

Задачи 15-16

Картонная коробка представляет собой куб с длиной ребра a=1 м и отсутствующей верхней гранью. Эту коробку поставили на горизонтальный пол и поместили на высоте H=2 м от пола точечный источник света S, расположив его точно над центром дна коробки.

15. Под источником света на расстоянии h = 0.5 м от него расположили горизонтально квадратный лист картона так, что его центр оказался точно под источником, а стороны параллельны вертикальным граням куба. При этом площадь тени в коробке была равна $S_1 = 1600$ см². Найдите площадь листа картона. Ответ приведите в см², округлив до целого числа. (З балла)

16. На каком расстоянии от источника света нужно расположить этот квадратный лист картона, соблюдая прежнюю центровку и ориентацию в пространстве, чтобы площадь тени на внутренней поверхности коробки была равна $S_2 = 3 \text{ m}^2$? Ответ приведите в см, округлив до целого числа. (5 баллов)

Решение:

15. В первом случае площадь тени меньше площади основания, значит, тень образуется только на основании коробки и не заходит на её стенки. Рассмотрим вид сбоку:

Из подобных треугольников видим, что $\frac{h}{H} = \frac{d}{x}$, значит, $\frac{S_{\text{K}}}{S_1} = \left(\frac{d}{x}\right)^2 = \left(\frac{h}{H}\right)^2$. Откуда $S_{\text{K}} = 100 \text{ см}^2$.

16. Теперь площадь тени больше площади основания коробки, а значит, тень попадает не только на дно коробки, но и на её стенки.

Новая площадь тени состоит из площади квадрата (тени на дне коробки) и площади четырёх прямоугольников (тени на стенках коробки):

$$S_2 = a^2 + 4ab$$
. Значит, $b = 50$ см.

Далее, аналогично предыдущей задаче, $\frac{y}{H-b} = \frac{d}{a}$.

Поскольку d = 10 см, то y = 15 см.

Ответ:

15	16
100	15

Максимум за задачу 8 баллов.

Максимальный балл за работу – 50.