Tiny trainable instruments

by

Aarón Montoya-Moraga

B.S., Pontificia Universidad Católica de Chile (2014) M.P.S, New York University (2017)

Submitted to the Program of Media Arts and Sciences in partial fulfillment of the requirements for the degree of

Master of Science in Media Arts and Sciences

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

July 2021

(c) Massachusetts Institute of Technology 2021. All rights reserved.

_			

> Muriel R. Cooper Professor of Music and Media Thesis Supervisor

Tod Machover

Academic Head, Program in Media Arts and Sciences

Tiny trainable instruments

by

Aarón Montoya-Moraga

Submitted to the Program of Media Arts and Sciences on July 2021, in partial fulfillment of the requirements for the degree of Master of Science in Media Arts and Sciences

Abstract

Tiny trainable instruments is a collection of instruments for media arts, using machine learning techniques and deployed in microcontrollers.

Thesis Supervisor: Tod Machover

Title: Muriel R. Cooper Professor of Music and Media

Acknowledgments

UROPs Peter Tone, Maxwell Wang

Opera of the Future

Future Sketches

Family and friends

Contents

1	Intr	roduction	13
	1.1	Section sample	13
		1.1.1 Subsection sample	13
		1.1.2 Another subsection sample	13
2	Bac	kground	15
	2.1	Instruments	15
		2.1.1 BASTL	15
		2.1.2 Critter & Guitari	15
		2.1.3 monome	15
	2.2	Education	15
	2.3	Machine learning	15
	2.4	Digital rights	15
3	Ear	ly experiments	17
	3.1	Microcontrollers	17
	3.2	Machine learning	17
4	Tin	y trainable instruments	19
	4.1	Design principles	19
	4.2	Technology	19
	4.3	Inputs	19
	4.4	Outputs	19

5	Pro	ject ev	valuation	21
	5.1	Digita	al release	 21
	5.2	Audie	ence engagement	 21
	5.3	Works	shop	 21
	5.4	Multin	imedia show	 21
6	Con	clusio	on	23
	6.1	Future	re work	 23
		6.1.1	Education	 23
		6.1.2	Artist workflow	 23
		6.1.3	Packaging	 23
		_		
Α	Tab	les		25
В	Figu	ures		27

List of Figures

B-1	Armadillo slaying lawyer	27
B-2	Armadillo eradicating national debt	28

List of Tables

A.1	Armadillos																	2	25

Introduction

Cras nec mauris feugiat, aliquam elit ac, blandit ex [1].

1.1 Section sample

Nulla sed sem finibus, vehicula quam at, vulputate tellus¹

1.1.1 Subsection sample

Donec blandit dolor a ipsum sodales, eget aliquet nisl fermentum.

1. Item 1.

1.1.2 Another subsection sample

This is done by using some combination of

$$a_i = a_j + a_k$$

$$a_i = 4a_j + a_k$$

$$a_i = a_j \ll m \text{shift}$$

¹Here is a sample footnote referencing figures B-1 and B-2.

Background

- 2.1 Instruments
- 2.1.1 BASTL
- 2.1.2 Critter & Guitari
- 2.1.3 monome
- 2.2 Education

Mitch Resnick's book Lifelong Kindergrarten

2.3 Machine learning

2.4 Digital rights

Electronic Frontier Foundation Edward Snowden

Early experiments

3.1 Microcontrollers

Arduino

Teensy

3.2 Machine learning

Class at School of Machines by Gene Kogan and Andreas Refsgaard

Tiny trainable instruments

4.1 Design principles

- 1. Cheap
- 2. Privacy

4.2 Technology

Arduino microcontoller

Arduino library KNN

TensorFlow Lite Micro

4.3 Inputs

Enumerate sensors from the Arduino Nano 33 BLE Sense

4.4 Outputs

Buzzer

Servo

Project evaluation

5.1 Digital release

GitHub repository

Arduino library

- 5.2 Audience engagement
- 5.3 Workshop
- 5.4 Multimedia show

Conclusion

This thesis project is a

6.1 Future work

6.1.1 Education

New workshops, using multimedia outputs.

6.1.2 Artist workflow

Training instead of programming.

6.1.3 Packaging

PCBs and enclosures

Appendix A

Tables

Table A.1: Armadillos

Armadillos	are
our	friends

Appendix B

Figures

Figure B-1: Armadillo slaying lawyer.

Figure B-2: Armadillo eradicating national debt.

Bibliography

[1] L[eslie] A. Aamport. The gnats and gnus document preparation system. G-Animal's Journal, 41(7):73+, July 1986. This is a full ARTICLE entry.