Домашнее задание №1 по дисциплине «Электродинамика и распространение радиоволн»

Вариант задания определяется следующими параметрами: M – номер группы (1 для PЛ1-41, 2 для PЛ1-42, 3 для PЛ1-43, 4 для PЛ1-49, 5 для PЛ6-41, 6 для PЛ6-49), N – порядковый номер студента в списке группы.

Задача №1.

Изучить ГОСТ 18238-72 «Линии передачи сверхвысоких частот» и ГОСТ 24375-80 «Радиосвязь. Термины и определения». Привести в домашнем задании по 5 определений из каждого ГОСТ.

Задача №2.

Положительный заряд q равномерно распределен по объему шара радиуса a. Определить напряженность электрического поля, электрическую индукцию и скалярный потенциал внутри и вне шара. Диэлектрическая проницаемость материала ε_{al} , окружающей среды ε_{a2} . Построить зависимости E(r), D(r), $\varphi(r)$, указать характерные особенности графиков и причину их появления. Провести проверку граничных условий на границе раздела сред. Исходные данные: a[мм] = M+2N; $q[\text{K}\pi] = 0.05 \cdot \text{N}$; $\varepsilon_a = \varepsilon_0 \cdot \varepsilon_r$; $\varepsilon_{rl} = 2+\text{N}/10$; $\varepsilon_{r2} = 1$.

Задача №3.

По бесконечно длинному цилиндрическому проводнику радиуса a протекает постоянный ток I, равномерно распределенный по площади поперечного сечения. Построить зависимости напряженности и индукции магнитного поля H(r) и B(r), создаваемого этим током в однородной среде с $\mu_r = 1$. Исходные данные: $I[A] = 0,1 \cdot N+M$, $a[MM] = 2+0,1 \cdot N$.

Задача №4.

Плоская монохроматическая линейно поляризованная электромагнитная волна распространяется в неограниченном пространстве без потерь. Диэлектрическая проницаемость среды — ε_a , магнитная проницаемость среды — μ_a , амплитуда напряженности электрического поля — E_m , частота — f. Записать выражения для мгновенных значений напряженностей электрического и магнитного полей плоской электромагнитной волны. Определить основные параметры волны. Исходные данные: $\varepsilon_a = \varepsilon_0 \cdot \varepsilon_r$; $\varepsilon_r = 2 + N/10$; $\mu_a = \mu_0 \cdot \mu_r$; $\mu_r = 1 + N/10$; $E_m[\text{мB/м}] = 50 + N$; $f[\Gamma_{\text{II}}] = (\text{M} + N/20) \cdot 10^9$.

Задача №5.

В диэлектрике с параметрами ε_a , μ_a , σ вдоль оси z распространяется электромагнитная волна, имеющая линейную поляризацию по x и частоту f. Напряженность электрического поля в точке z=0 в момент времени t=0 равна E_m . Записать выражения для мгновенных значений напряженностей электрического и магнитного полей и определить расстояние, на котором амплитуда напряженности электрического поля уменьшится в S раз относительно начального значения. Исходные данные: $\varepsilon_a = \varepsilon_0 \cdot \varepsilon_r$; $\varepsilon_r = (3+N)/2$; $\mu_a = \mu_0 \cdot \mu_r$; $\mu_r = M + N/2$; $E_m[B/M] = M + 0.05 \cdot N$; $f[M\Gamma_{\Pi}] = N/10$; $S = M \cdot 10^2$, $\sigma[C_{M}/M] = N \cdot 10^{-3}$.