Examen du lundi 6 octobre 2003 12h30 – 15h25

Matériaux de l'ingénieur, section B GML-10463

Professeurs : Daniel Larouche et Diego Mantovani

	Nom:		Prénom :			
Matricule :		Progr		amme :		
		<u>1</u>]	NSTRUC'	<u>TIONS</u>		
 Auct Dépo Le p de la Ordi Lisez Maît Écriv notio Éval Seul 	un documenta osez sur la tab rofesseur se ro correction du nateurs, balado a attentivemen risez votre imp vez seulement on au verso ne uez le temps quement les calo	ation permise; ole d'examen v éserve le droit u français et ce eurs, systèmes at l'ensemble de pulsivité et réfle dans les espace e sera corrigée (que vous dédiie culateurs admi	votre carte d'é t d'enlever des e, jusqu'à conc complexes de e l'examen avan échissez plusie és prévus au re (sauf là où le co	notes en rega currence de 10 calcul et télép- nt de commen- curs fois avant ecto. Le verso contraire est ince estion en fonc é sont permis ce formulaire	D points sur 100 chones cellulaire ncer à répondre de répondre; est pour votre le diqué); etion de son points;	ntation générale et 0 ; es interdits ; ; brouillon. <u>Aucune</u>

EXERCISE I (15-5 points)

Vous avez réalisé un essai de traction sur des éprouvettes de section rectangulaire de $1,5 \times 10$ mm de matériaux inconnus. La longueur servant de base à la mesure de l'allongement est de 50 mm. Les résultats suivants ont été obtenus :

Force (kN)	1	1,5	2	2,5	3	3,4	3,8(rupture)
Allongement							
(10^{-1}mm)	1	2	3	2,8	4	7	18

a) Déterminez les propriétés suivantes (développement ci-dessous et au verso):

Propriété	Réponse
Limite élastique	
Résistance à la traction	
Indice de la ductilité	

b) Lequel des trois matériaux suivant est le plus susceptible d'être celui employé afin de fabriquer l'éprouvette ?

Matériau	Module Élastique (Young)
Aluminium	70 GPa
Verre	70 GPa
Polyester armé	7 GPa

Ré	Réponse et justification :					

EXERCISE II (8-8-4 points)

On veut fabriquer des plaquettes en forme a os de chien, d'une longueur utile de 160 mm et de section carré de 8 mm de côté. Ces plaquettes seront soumises à des efforts de traction. Pour le faire, on dispose de deux matériaux, une céramique (de l'alumine Al₂O₃), et un alliage d'aluminium. Les propriétés mécaniques de ces deux matériaux sont les suivantes :

	Al_2O_3	Aluminium
Limite élastique (MPa)	-	40
Résistance à la rupture (MPa)	250	110
Allongement à la rupture (%)	0	30

b)	Quelle sera, pour chaque matériau, la force (kN) qui engendrera la rupture de la pièce ?

c) Co	mmentez brièvement les affirmations suivantes : 1- Plus la taille des grains d'un polycristal est grande, plus sa limite d'élasticité est élevée.
	2- La ductilité d'un matériau permet d'atténuer fortement la concentration locale des contraintes à la racine de la fissure grâce à une plastification locale.
	CISE III (2-2-2-2 points) E1 elez la (ou les) bonnes réponses, et justifiez brièvement votre démarche.
,	Dans un solide polycristallin, la rigidité est fonction de la taille des grains ; Dans un matériau cristallin ductile, la limite d'élasticité est atteinte quand la densité de dislocations atteint une valeur maximale ; La cission critique de glissement correspond à la contrainte qui caractérise le passage entre les comportements élastique et plastique du matériau, et elle est directement liée au facteur de Schmidt ; La rupture des matériaux cristallins se produit de manière fragile lorsque les liaisons sont cristallines.

2.		
		Dans un solide polycristallin la rigidité est fonction de la structure cristalline; Dans un matériau cristallin ductile on observe une déformation permanente d'au moins 0,2 % après la mise en charge;
	c)	La cission critique de glissement correspond à la contrainte qui caractérise le passage entre les comportements élastique et plastique du matériau, et elle n'est pas liée au facteur de Schmidt;
	d)	La ténacité est une propriété des matériaux, et elle est moyenne pour le bois, importante pour l'acier et faible pour le verre.
3.	<u>L</u>	
		Dans un solide polycristallin la rigidité est fonction de l'intensité des liaisons atomiques ; Dans un matériau cristallin fragile les dislocations se mettent en mouvement dans certains grains lorsque la cission critique de glissement est atteinte ;
		La cission critique de glissement est proportionnelle à la force appliquée; La rupture des matériaux cristallins se produit de manière fragile lorsque les liaisons sont métalliques.

4.		
	a)	Dans un solide polycristallin la rigidité est fonction de la densité de dislocations ;
	b)	La cission critique de glissement correspond à la contrainte qui caractérise le passage entre
		les comportements élastique et plastique du matériau, et elle n'est pas liée au facteur de
		Schmidt;
		La rupture des matériaux cristallins se produit de manière fragile seulement si ses liaisons sont covalentes ;
	d)	La ténacité est une propriété des matériaux, elle est d'autant plus importante que les matériaux sont fragiles.
5.		
5.	a)	Dans les matériaux cristallins ductiles, la rupture critique de la pièce se produit lorsque la cission critique de glissement est atteinte ;
5.		cission critique de glissement est atteinte ; Dans un matériau cristallin ductile les dislocations ne peuvent plus se déplacer sur un plan de
5.	b)	cission critique de glissement est atteinte ; Dans un matériau cristallin ductile les dislocations ne peuvent plus se déplacer sur un plan de glissement lorsque la cission critique de glissement est atteinte ;
5.	b)	cission critique de glissement est atteinte ; Dans un matériau cristallin ductile les dislocations ne peuvent plus se déplacer sur un plan de
5.	b) c)	cission critique de glissement est atteinte; Dans un matériau cristallin ductile les dislocations ne peuvent plus se déplacer sur un plan de glissement lorsque la cission critique de glissement est atteinte; La ténacité est une propriété des matériaux, et l'essai Charpy donne un indice de sa valeur;
5.	b) c)	cission critique de glissement est atteinte; Dans un matériau cristallin ductile les dislocations ne peuvent plus se déplacer sur un plan de glissement lorsque la cission critique de glissement est atteinte; La ténacité est une propriété des matériaux, et l'essai Charpy donne un indice de sa valeur;
5.	b) c)	cission critique de glissement est atteinte; Dans un matériau cristallin ductile les dislocations ne peuvent plus se déplacer sur un plan de glissement lorsque la cission critique de glissement est atteinte; La ténacité est une propriété des matériaux, et l'essai Charpy donne un indice de sa valeur;
5.	b) c)	cission critique de glissement est atteinte; Dans un matériau cristallin ductile les dislocations ne peuvent plus se déplacer sur un plan de glissement lorsque la cission critique de glissement est atteinte; La ténacité est une propriété des matériaux, et l'essai Charpy donne un indice de sa valeur;
5.	b) c)	cission critique de glissement est atteinte; Dans un matériau cristallin ductile les dislocations ne peuvent plus se déplacer sur un plan de glissement lorsque la cission critique de glissement est atteinte; La ténacité est une propriété des matériaux, et l'essai Charpy donne un indice de sa valeur;
5.	b) c)	cission critique de glissement est atteinte; Dans un matériau cristallin ductile les dislocations ne peuvent plus se déplacer sur un plan de glissement lorsque la cission critique de glissement est atteinte; La ténacité est une propriété des matériaux, et l'essai Charpy donne un indice de sa valeur;

EXERCISE IV (12-8 points) **E**1

- a) Tracez, dans la maille élémentaire représentée ci-dessous :
 - 1- le plan $(1\overline{1}2)$;
 - 2- la direction $[1\overline{1}2]$;
- b) Quels sont les indices de Miller du plan ABCD dans cette maille, les coordonnées des points A, B, C, D étant respectivement (1, 0,0) (1, 1, 0) (1/2, 1, 1) (1/2, 0, 1)?

Réponse :

EXERCISE V (4-4-4-4 points)

Encerclez votre réponse, et justifiez brièvement :

1)	Au zéro absolu, la distance d'équilibre entre les atomes correspond :
	a. À une force d'attraction nulle entre les atomes ;
	b. À une force de répulsion maximale entre les atomes ;
	c. À une énergie potentielle minimale ;
	d. Au module d'Young minimal ;e. Aucune de ces réponses.
	e. Aucune de ces réponses.
2)	La propriété qui est directement reliée à l'énergie de cohésion des atomes est :
	a. Le coefficient de dilatation linéique ;
	b. L'énergie de sublimation ;
	c. La limite d'élasticité ;
	d. La structure cristalline ;
	e. Aucune de ces réponses.
2)	Dong un golido polygrigatellin, la rigiditá est fonction do :
3)	Dans un solide polycristallin, la rigidité est fonction de : a. L'intensité des liaisons atomiques ;
	b. La densité de dislocations ;
	c. La taille des grains ;
	d. La structure cristalline ;
	e. La dureté du matériau.

4)	Dans a. b. c. d.	une maille cubique, la direction $[1\overline{1}0]$ est contenu dans le plan: (112) ; $(\overline{1}12)$; (011) ; $(1\overline{1}0)$; Aucune de ces réponses.
5)	Laque	elle de ces affirmations est fausse ?
	a.	L'élasticité d'un matériau n'implique pas nécessairement une relation linéaire entre la contrainte et la déformation ;
	b.	Les métaux possèdent un grand nombre d'électrons de valence par atome ;
	c.	La résistance théorique à la traction est fonction de l'énergie de surface, du module d'Young et de la taille de la maille élémentaire ;
	d.	Le caractère ionique d'une liaison est d'autant plus fort que l'écart entre l'électronégativité des éléments est grand ;
	e.	Des liaisons faibles et fortes peuvent cohabiter dans une même structure cristalline.

EXERCISE VI (6-4 points)

a) Dans quels types de sites interstitiels se trouvent placés les ions illustrés en blanc dans les mailles élémentaires représentées en A, B et C?

b) Combien y a-t-il d'ions oxygène en propre dans la maille élémentaire du TiO2, représentée en D?

Réponse :

Justification:

A) CsCI; O:Cs

B) NaCI; O:Na⁺

D) TiO_2 ; $\bigcirc :0^{2}$

Feuille Brouillon 1

Feuille Brouillon 2

Feuille Brouillon 3