Semaine du 28/04/2024

Chapitre M7 - Mouvement d'un solide

Plan du cours

I Cinématique du solide

- I.1 Description d'un solide
 - \rightarrow Différencier un solide d'un système déformable.
- **I.2** Translation
 - \rightarrow Reconnaître et décrire une translation rectiligne ainsi qu'une translation circulaire.
- I.3 Rotation
 - → Décrire la trajectoire d'un point quelconque du solide et exprimer sa vitesse en fonction de sa distance à l'axe et de la vitesse angulaire.

II Moment cinétique

- II.1 Moment d'inertie
 - \rightarrow Exploiter, pour un solide, la relation entre le moment cinétique scalaire, la vitesse angulaire de rotation et le moment d'inertie fourni.
 - $\rightarrow~$ Relier qualitativement le moment d'inertie à la répartition des masses.

II.2 Couple

- \rightarrow Définir un couple.
- → Définir une liaison pivot et justifier le moment qu'elle peut produire.
- II.3 Théorème du moment cinétique
 - \rightarrow Exploiter le théorème scalaire du moment cinétique appliqué au solide en rotation autour d'un axe fixe dans un référentiel galiléen.

III Approche énergétique

- III.1 Énergie cinétique
 - $\rightarrow~$ Utiliser l'expression de l'énergie cinétique, l'expression du moment d'inertie étant fournie.
- III.2 Puissance d'une force
- III.3 Théorème de l'énergie cinétique
 - → Établir, dans le cas d'un solide en rotation dans autour d'un axe fixe, l'équivalence entre le théorème scalaire du moment cinétique et celui de l'énergie cinétique.

Questions de cours

- \rightarrow Énoncer le théorème du moment cinétique par rapport à un axe fixe pour un solide en rotation.
- → Énoncer le théorème de l'énergie cinétique pour un solide en rotation autour d'un axe fixe et montrer qu'il est équivalent à la loi du moment cinétique scalaire.
- → Établir l'équation du mouvement du pendule pesant par application du théorème du moment cinétique et/ou avec le théorème de l'énergie cinétique.

Chapitre T3 – Deuxième principe

Plan du cours

I Deuxième principe

- I.1 Réversibilité et irréversibilité
- I.2 Causes d'irréversibilité
 - → Relier la création d'entropie à une ou plusieurs causes physiques de l'irréversibilité.
- **I.3** Bilan d'entropie
 - ightarrow Définir un système fermé et établir pour ce système un bilan entropique.

II Fonction d'état entropie

- II.1 Entropie d'un gaz parfait
 - → Analyser le cas particulier d'un système en évolution adiabatique.
 - \rightarrow Citer et utiliser la loi de Laplace et ses conditions d'application.
- II.2 Entropie d'une phase condensée

III Exemples

- $\rightarrow~$ Utiliser l'expression fournie de la fonction d'état entropie.
- \rightarrow Exploiter l'extensivité de l'entropie.
- III.1 Détente de Joule Gay-Lussac
- III.2 Chauffage par effet Joule

Questions de cours

- → Énoncer complètement le second principe : propriétés de l'entropie, bilan d'entropie et expliciter les différents termes.
- $\rightarrow\,\,$ Citer la loi de Laplace pour un gaz parfait et ses conditions d'application. L'établir, l'expression de l'entyropie d'un GP étant donnée.
- → Application : mise en contact de deux systèmes à des température différentes (App. ??).
- \rightarrow Application : détente de Joule Gay-Lussac (App. ??).
- \rightarrow Application : effet Joule (App. ??).

Note aux colleurs : les expressions de l'entropie d'un GP ou d'une PCII ne sont pas exigibles et doivent être redonnées.

Chapitre T4 – Transition de phase

Plan du cours

I Corps pur diphasé

- I.1 Vocabulaire
- **I.2** Diagramme de phase (P, T)
 - \rightarrow Analyser un diagramme de phase expérimental (P, T).
 - \rightarrow Proposer un jeu de variables d'état suffisant pour caractériser l'état d'équilibre d'un corps pur diphasé soumis aux seules forces de pression.
 - \rightarrow Positionner les phases dans les diagrammes (P,T) et (P,v).
- I.3 Cas de l'eau dans une atmosphère inerte

II Équilibre liquide – vapeur

- II.1 Diagramme de Clapeyron
 - \rightarrow Positionner les phases dans les diagrammes (P,T) et (P,v).
- II.2 Titre en vapeur
 - \rightarrow Déterminer la composition d'un mélange diphasé en un point d'un diagramme (P, v).

III Bilans

III.1 Bilan d'énergie

 \rightarrow Exploiter l'extensivité de l'enthalpie et réaliser des bilans énergétiques en prenant en compte des transitions de phases.

III.2 Bilan d'entropie

 \rightarrow Exploiter la relation entre les variations d'entropie et d'enthalpie associées à une transition de phase.

Questions de cours

- \rightarrow Tracer l'allure générale d'un diagramme (P,T) et y placer les phases. Nommer les lignes et les points particuliers.
- \rightarrow Tracer l'allure générale d'un diagramme de Clapeyron (P,v) pour un équilibre liquide vapeur et y placer les phases. Nommer les lignes et le point particuliers. Tracer l'allure de quelques isothermes.
- → Énoncer le théorème des moments et expliquer son interprétation graphique dans le diagramme de Clapevron.
- $\rightarrow\,\,$ Conduire un bilan d'énergie et/ou d'entropie simple pour un système qui subit une transition de phase.