Computer Vision

Exercise 2: Filtering Techniques

01/11/2014

Notations

 $D \in \mathbb{Z}^2$ – the domain (grid), $(i,j) \in D$ is a Pixel Image is a mapping (function) $f: D \to C$ (color space) f(i,j) is the color of the pixel (at the position) (i,j)

h(k, l) is the convolution mask (kernel, filter ...).

Note: it is also an "image" ©

Linear Filtering or **convolution** is an operator $f \mapsto g$:

$$g(i,j) = \sum_{k,l} f(i+k,j+l) \cdot h(k,l)$$

Filtering

- Replace each pixel by a linear combination of its neighbours and itself.
- 2D convolution (discrete) g = f * h

45	60	98	127	132	133	137	133
46	65	98	123	126	128	131	133
47	65	96	115	119	123	135	137
47	63	91	107	113	122	138	134
50	59	80	97	110	123	133	134
49	53	68	83	97	113	128	133
50	50	58	70	84	102	116	126

smaller output?

image

f(i,j)

filter (kernel)

h(k, l)

filtered image

g(i,j)

Example – mean filter (1D)

Linear filtering (1D) – a naïve algorithm

One-dimensional signal for simplicity, i.e. the mean filter reads

$$g_i = 1/(2w+1) \cdot \sum_{i'=i-w}^{\infty} f_{i'}$$

A naïve algorithm (according to the formula):

for
$$i = 0$$
 to n

$$sum = 0$$

$$for i' = i - w \text{ to } i + w$$

$$sum = sum + f_{i'}$$

$$g_i = sum/(2w + 1)$$

Time complexity: O(nw)

Linear filtering (1D) – a better algorithm

A better algorithm – the idea:

If the "auxiliary" sums \hat{f}_i are pre-computed, only one summation per value are needed for output !!!

$$\sum_{i'=i-w}^{i+w} f_{i'} = \sum_{i'=0}^{i+w} f_{i'} - \sum_{i'=0}^{i-w-1} f_{i'} = \tilde{f}_{i+w} - \tilde{f}_{i-w-1}$$

Linear filtering (1D) – a better algorithm

It is indeed very simple to pre-compute $ilde{f_i}$ quickly $ilde{\odot}$

A better algorithm:

1. Compute \tilde{f}_i for all i:

for
$$i=0$$
 to n
$$\tilde{f_i}=\tilde{f_{i-1}}+f_i$$

2. Compute output g_i :

for
$$i=0$$
 to n
$$g_i = (\tilde{f}_{i+w} - \tilde{f}_{i-w-1}) \, / \, (2w+1)$$

Time complexity: O(n)

- does not depend on the window size at all !!!

Linear filtering (2D) – "Integral Image"

Generalization to the 2D-case:

1. Compute \tilde{f}_i for all (i,j):
for (i,j) = (0,0) to (m,n) (row-vise)

$$\tilde{f}_{(i,j)} = \tilde{f}_{(i-1,j)} + \tilde{f}_{(i,j-1)} - \tilde{f}_{(i-1,j-1)} + f_i$$

2. Compute output g_i :

$$\begin{split} &\text{for } (i,j) = (0,0) \text{ to } (m,n) \\ &g_{(i,j)} \propto \tilde{f}_{(i+w,j+w)} - \tilde{f}_{(i+w,j-w-1)} - \\ &- \tilde{f}_{(i-w-1,j+w)} + \tilde{f}_{(i-w-1,j-w-1)} \end{split}$$

Time complexity: O(n)

– does not depend on the window size at all !!!

Convolutions

$$g = f * h \qquad g_i = \sum_{i'=-\infty}^{\infty} f_{i-i'} \cdot h_{i'}$$

Properties:

- Commutative: f * h = h * f
- Assotiative: $(f * h^1) * h^2 = f * (h^1 * h^2)$
- **Distributive** with "+" $f * (h^1 + h^2) = f * h^1 + f * h^2$
- Identical convolution h^I has the property $f \ast h^I = f$. It is the Delta-signal, it does not change the input
- Inverse convolutions fulfill: $h * h^{-1} = h^I$

Convolutions

Example for inverse convolutions (i' = 0 is marked bold):

$$h^{diff} = [..., 0,0,0,0, \mathbf{1}, -1,0,...] - differential operator$$
 $h^{int} = [..., 0,0,0,0, \mathbf{1}, 1,1,...] - integral operator$

Easy to see that $h^{diff} * h^{int} = h^I$ holds

The trick with the integral image is in fact

$$f * h = f * h^{I} * h = f * h^{int} * h^{diff} * h = (f * h^{int}) * (h^{diff} * h)$$

Consequences:

- $f * h^{int}$ is easy to compute (**linear** time complexity)
- $h * h^{diff}$ is **sparse** (a constant number of non-zero elements)

Convolve efficiently with the mask (1D)

$$g_i = \sum_{i'=i-w+1}^{l} (w - i + i') \cdot f_{i'}$$

Consider, how g_{i+1} can be computed efficiently using g_i .

$$g_{i+1} = \sum_{i'=i-w+2}^{i+1} (w - i + i' - 1) \cdot f_{i'} =$$

$$= \sum_{i'=i-w+1}^{i} (w - i + i' - 1) \cdot f_{i'} + w \cdot f_{i+1} =$$

$$= g_i - \sum_{i'=i-w+1}^{i} f_{i'} + w \cdot f_{i+1} =$$

$$= g_i - \hat{f}_i + w \cdot f_{i+1}$$

If \hat{f}_i is known, the next value could be computed in a constant time.

However, $\hat{f_i}$ is nothing but a mean filter, i.e. it can be pre-computed in linear time as well!

The algorithm:

- 1. Compute the integral signal \tilde{f} ;
- 2. Compute the mean filter \hat{f} ;
- 3. Compute the output g from \hat{f} and f.

All steps have the linear complexity

→ the overall time complexity is linear as well.

Explain it by convolutions:

$$g = f * h$$

$$g * d = f * (h * d) = f * h' =$$

$$= f * (h'_1 + h'_2) = f * h'_1 + f * h'_2 =$$

$$= f * i * (d * h'_1) + f * h'_2 =$$

$$= f * i * h'' + f * h'_2$$

$$g = (f * i * h'' + f \cdot w) * i$$

d – differential operator i – integral operator

Some interesting tasks ©

Implement convolution with (vertical) Sobel-kernel

$$\begin{array}{cccc}
 -1 & 0 & 1 \\
 -2 & 0 & 2 \\
 -1 & 0 & 1
 \end{array}$$

with only 3 additions per Pixel and no multiplication.

Implement convolution with the exponential mask (for 1D)

$$g_i = \tau \cdot \sum_{i'=-\infty}^{\tau} \exp(-\tau \cdot (i-i')) \cdot f_{i'}$$

with two multiplications and one addition per pixel.

Hint: Simply consider, how g_{i+1} can be obtained from g_i .

Some interesting tasks (possible assignments)

Let a convolution kernel be given.

- 1. Try to (automatically) find its representation using differentiation and integration in order to reduce the time complexity.
- 2. Try to approximate the mask by "the best possible" separable one (using SVD-decomposition of the kernel-matrix).
- 3. Decompose the kernel into a sum of separable filters. Study approximations.
- 4. Try to represent the kernel as a convolution of sparse ones.
- 5. Consider combinations of 1. 4.

Morphilogical Filters, Fast minimum in 1D

$$g_i = \min_{i'=i-w}^{i+w} f_{i'}$$

A naïve algorithm (according to the formula):

for each output value enumerate all inputs and take the minimal one. Time complexity: O(nw)

The idea:

- 1. Keep the **ordered** set of all values
- For each output one elements should be inserted and one should me removed
- 3. Use a data structure that allows to do it fast, i.e. in $O(\log w)$
- \rightarrow The overall time complexity is $O(n \log w)$

Fast minimum in 1D, 2D

Data structire for 8 elements in the set (example):

The number of operation for both insertion and removal is proportional to the tree depth, i.e. $O(\log w)$.

Min-Filter in 2D is separable \rightarrow the time complexity in 2D is $O(n \log w)$ as well!

Fast Median

Let the set of values be ordered (as before) – so we can update it in $O(\log w)$ again. But how to pick the median (the middle element)? It requires $O(w) \otimes$.

Idea – keep **two** ordered sets: one for all elements that are smaller or equal to the actual median, the other for all elements that are grater or equal to the actual median. Keep the **maximum** value for the first set and the **minimum** value for the second one.

If the sets are of the same size, the actual maximum of the first set is the desired median.

Hint: a suitable container in C++ is "multiset"

Fast Median

Consider e.g. Insertion of a new element:

- 1. Look, in which set the new element is to be inserted (compare it to the "max"), insert it it takes $O(\log w)$
- 2. If the sets have different sizes, **balance** them transfer one element from the larger set to the other one. For example, remove the largest value from the first set and insert it into the second one (of course, update max and min). All operations take $O(\log w)$.
- \rightarrow in 1D the overall time-komplexity is $O(n \log w)$. In 2D the overall time-komplexity is $O(nw \log w)$, where w is the filter size (compare with $O(nw^2)$ for the naive algorithm).

Assignments

- 1. Linear Filters:
 - 1. Fast Guided filter (2-3P) see the lecture
 - 2. Harris Detector (up to 4P) see the next lecture
 - Approximations (see slide 16) (up to 4P)
 - 4. Something you like (?P)
- 2. Morphologic filters min, max, for colors (channelwise) (1-2P)
- 3. Fast Median (with $O(n \cdot w \cdot \log w)$) (up to 3P)
- 4. Evaluations are appreciated (+1P)

Deadline: 2.12 (please, do not wait until it).

Delivery: per E-Mail an Dmytro.Shlezinger@tu-..., Sources (*.cpp, *.h, sufficiently commented !!!), input/output images; if applicable – *.pro, Makefile (compilation advises ...), comments, remarks, description, evaluation results (tables, diagrams etc.)

Additional remarks

- Implement it by yourself, use e.g. OpenCV only to read/write (visualize) images
- Avoid platform-specific code !!!
- Avoid GUI-s
- Avoid complex classes (data structures, templates etc.)
- Test your implementations carefully on many images

Game rules:

There are three exercises.

You can get 1P for the first one (past) and up to 4P for each of 2-4.

Exercises are passed if:

- 1. There are 8P in total at the end of the semester and
- 2. There is at least 1P for each 2-4 exercises.

