MDI0002 – Matemática Discreta Videoaula 08 Propriedades de Endorrelações

Karina Girardi Roggia karina.roggia@udesc.br

Departamento de Ciência da Computação Centro de Ciências Tecnológicas Universidade do Estado de Santa Catarina

2020

Propriedades de Endorrelações

Somente fazem sentido devido ao fato da relação ter domínio e contradomínio no mesmo conjunto

- Reflexividade
- Irreflexividade
- Transitividade
- Simetria
- Antissimetria

Intuições

Reflexividade todos os elementos relacionam-se consigo próprios Irreflexividade não há elemento que se relacione consigo próprio Transitividade se há sequência de pares que ligam um elemento x a outro y, então há a relação de x para y

Simetria "tudo que vai, volta"

Antissimetria dois elementos relacionam-se no máximo de uma forma

Definição (Relação Reflexiva)

Uma endorrelação binária $R \subseteq A^2$ é dita **reflexiva** se, e somente se,

$$\forall a \in A (aRa)$$

Note bem!

Não basta olhar somente os pares da relação!

Deve-se saber o conjunto sobre o qual a relação está definida.

Definição (Relação Irreflexiva)

Uma endorrelação binária $R \subseteq A^2$ é dita **irreflexiva** se, e somente se,

$$\forall a \in A \neg (aRa)$$

Note bem!

Esta **não** é uma propriedade complementar à reflexividade!

Reflexividade × Irreflexividade

- não são noções complementares
- negação da reflexividade: $(\exists a \in A)(\neg(aRa))$
- é possível definir uma relação reflexiva e irreflexiva
- assim como uma n\u00e3o reflexiva nem irreflexiva

Exemplos

Seja
$$A = \{0, 1, 2\}$$

- Reflexivas, mas não irreflexivas
 - $\langle \mathbb{N}, \leq \rangle$
 - $\langle 2^A, \subseteq \rangle$
 - $A^2:A\to A$
 - ⟨*A*, =⟩
- Irreflexivas, mas não reflexivas
 - $\langle \mathbb{Z}, \neq \rangle$
 - $\langle 2^A, \subset \rangle$
 - $\varnothing: A \to A$
 - $\langle A, R \rangle$ onde $R = \{\langle 0, 1 \rangle, \langle 1, 2 \rangle, \langle 2, 1 \rangle\}$
- Nem reflexiva, nem irreflexiva
 - $\langle A, S \rangle$ onde $S = \{\langle 0, 2 \rangle, \langle 2, 0 \rangle, \langle 2, 2 \rangle\}$

Identificação da Propriedade

- Matriz
 Reflexividade diagonal principal somente com 1
 Irreflexividade diagonal principal somente com 0
- Grafo
 Reflexividade todo nodo possui aresta com origem e destino
 nele próprio
 - Irreflexividade nenhum nodo tem aresta com origem e destino nele próprio

Exemplos em Matriz

Seja
$$A = \{0, 1, 2\}$$

- Reflexivas, mas não irreflexivas: $A^2: A \to A$ e $\langle A, = \rangle$
- Irreflexivas, mas não reflexivas: $\emptyset : A \to A$ e $R = \{\langle 0, 1 \rangle, \langle 1, 2 \rangle, \langle 2, 1 \rangle\}$ sobre A.

A^2	0	1	2		=	0	1	2
0	1	1	1			1		
1	1	1	1		1	0	1	0
2	1	1	1		2	0	0	1
Ø	0	1	2		R	0	1	2
0				•		0		
1	0	0	0		1	0	0	1
_	_	_	_		_	_		_

Não reflexiva, nem irreflexiva: como seria a matriz?

Exemplos em Grafos

Definição (Relação Transitiva)

Uma endorrelação binária $R \subseteq A^2$ é dita **transitiva** se, e somente se,

$$\forall a, b, c \in A (aRb \land bRc \rightarrow aRc)$$

Exemplo: relação "é maior"

- João é maior do que José.
- José é maior do que Maria.
- João é maior do que Maria.

Contra-exemplo: "faz fronteira com" nos países na América do Sul

- Brasil faz fronteira com a Argentina.
- Argentina faz fronteira com o Chile.
- Brasil não faz fronteira com o Chile.

Exemplos

Seja X conjunto qualquer

- $X^2: X \to X$
- $\varnothing: X \to X$
- $\langle X, = \rangle$
- $\langle \mathbb{N}, \leq \rangle$
- $\langle 2^X, \subseteq \rangle$
- $\langle \mathbb{Z}, < \rangle$
- $\langle 2^X, \subset \rangle$

Contra-exemplos

Seja
$$A = \{0, 1, 2\}$$

- $\langle \mathbb{Z}, \neq \rangle$
- $\langle A, R \rangle$ onde $R = \{\langle 0, 1 \rangle, \langle 1, 2 \rangle, \langle 2, 1 \rangle\}$
- $\langle A, S \rangle$ onde $S = \{\langle 0, 2 \rangle, \langle 2, 0 \rangle, \langle 2, 2 \rangle\}$

Identificação da Propriedade

Representação como matriz:

• Não é especialmente vantajosa

Representação como grafo:

• o grafo explicita todos os caminhos possíveis entre dois nodos

Exemplos em Grafos

Definição (Relação Simétrica)

Uma endorrelação binária $R \subseteq A^2$ é dita **simétrica** se, e somente se,

$$\forall a, b \in A (aRb \rightarrow bRa)$$

Sempre que um elemento a estiver relacionado com outro b, o inverso também ocorre (b se relaciona com a).

Exemplo: parentesco

- se João é parente de José
- então José é parente de João

Definição (Relação Antissimétrica)

Uma endorrelação binária $R \subseteq A^2$ é dita **antissimétrica** se, e somente se,

$$\forall a, b \in A (aRb \land bRa \rightarrow a = b)$$

Note bem!

Esta **não** é uma propriedade complementar à simetria! Uma forma, talvez mais simples, de ver a definição é pela **contrapositiva**:

$$\forall a, b \in A (a \neq b \rightarrow \neg aRb \lor \neg bRa)$$

Entre dois elementos **distintos** de *A*, existe **no máximo** um relacionamento.

Simetria × Antissimetria

- não são noções complementares
- é possível definir relações simétricas e antissimétricas
- assim como relações não simétricas nem antissimétricas

Exemplos

Sejam $A = \{0, 1, 2\}$ e X conjunto qualquer

- Simétricas
 - $X^2: X \to X$, $\varnothing: X \to X$
 - $\langle X, = \rangle$, $\langle X, \neq \rangle$
 - $\langle 2^X, = \rangle$
- Antissimétricas
 - $\langle X, = \rangle$
 - $\langle 2^X, = \rangle$
 - $\varnothing:X\to X$
 - $\langle \mathbb{N}, R \rangle$, onde $R = \{ \langle x, y \rangle \in \mathbb{N}^2 \mid y = x^2 \}$
- Nem simétrica, nem antissimétrica
 - $\langle A, S \rangle$ onde $S = \{\langle 0, 1 \rangle, \langle 1, 0 \rangle, \langle 1, 2 \rangle\}$

Identificação da Propriedade

Matriz

```
Simetria Matriz simétrica! \setminus o/ (a matriz é igual à sua transposta)
Antissimetria Dados i \neq j, se a posição (i,j) possui valor 1, então a posição (j,i) tem valor 0
```

Grafo

Simetria entre dois nodos: ou não há seta, ou há duas – uma em cada sentido.

Antissimetria existe **no máximo** uma seta entre dois nodos quaisquer

Exemplos em Matriz

Seja $A = \{0, 1, 2\}$ usaremos (S) para Relação Simétrica e (AS) para Antissimétrica

- (S) A^2
- (S, AS) ⟨*A*, =⟩
- (AS) $R = \{\langle 0, 0 \rangle, \langle 1, 1 \rangle, \langle 1, 2 \rangle\}$
- () $S = \{\langle 0, 1 \rangle, \langle 1, 0 \rangle, \langle 1, 2 \rangle\}$

A^2	0	1	2	
0	1	1	1	
1	1	1	1	
2	1	1	1	

R	0	1	2	
0	1	0	0	
1	0	1	1	
2	0	0	0	

=	0	1	2
0	1	0	0
1	0	1	0
2	0	0	1

S	0	1	2
0	0	1	0
1	1	0	1
2	0	0	0

Exemplos em Grafos

Para fechar...

- Fechos de propriedades
- Tipos especiais de endorrelações: equivalência e ordem
- Propriedades gerais

