

CONCOURS D'ENTREE EN 1ère ANNEE – SESSION AVRIL 2023

EPREUVE DE MATHEMATIQUES

Duration 3h00 - Coefficient 4

EXERCICE 1: 3 Points

In an assembly of 250 persons, there are 120 men with black trousers, 85 men with tie of which 50 are in black troussers. A person is chosen at random from the assembly for an interview.

1) What is the probability that he is in a black trouser? 0.5pt

2) What is the probability that he is in a black trouser and has a tie? 0.5pt

3) What is the probability that he is in black trousers or has a tie? 1pt

4) What is the probability that he wears neither a black trouser nor a tie? 1pt

EXERCICE 2: 5 Points

The municipal authority of a town in Cameroon envisage to construct low cost houses for municipal councilors. In order to fix the lodging price, the council accountant reveals the salaries X_i and rent proposition Y_i of a sample of eight agents. The results expressed in thousands of francs CFA are shown on the table below.

X_i	50	100	60	120	120	100	150	160
Y_i	15	20	15	30	25	25	40	35

The table above defines a statistical series with double character (X, Y)

Where X is the salary and Y the rent proposition.

- 1) a) Plot a scatter diagram representing the clouds of the series. 1pt
 - b) Determine the coordinate of the mean of the series. 1pt
- 2) a) Calculate the coefficient of linear correlation of the series. 1pt
 - b) Can the salaries permit to explain the rent proposition? **0.5pt**
- **3)** Use the least square method to determine the linear regression line of Y on X

1.5pt

EXERCICE 3: 4 Points

1) Write in a simpler form
$$c = \ln \frac{4}{9} + \frac{1}{2} \ln 36 + \frac{2}{3} \ln \frac{27}{8}$$
. **0.5pt**

2) Express in the form X+Yi, the complex numbers: 1.5pt

$$Z_1 = 4(-2+3i) + 3(-5-8i)$$
 and $Z_2 = \left(\frac{1+i}{2-i}\right)^2 + \frac{3+6i}{3-4i}$

- **3)** Solve the equation: $z^3 + (1+i)z^2 + (i-1)z i = 0$.
- a) Given that one of the roots is purely imaginary. **0.5pt**
- b) Determine real numbers a and b such that :

$$z^3 + (1+i)z^2 + (i-1)z - i = (z-ai)(z^2 + bz + c).$$
 0.5pt

c) Deduce all the roots of the equation. 1pt

2

EXERCICE 4: 8 Points

Consider the function of real values f defined on IR by: f(x) =

$$\begin{cases} 2 - e^x & \text{if } x < 0 \\ 1 + \ln(1 + x) & \text{if } x \ge 0 \end{cases}$$

And (C_f) is the curve representing f in an orthonormal reference frame

1) Determine the domain of definition of f **0.5pt**

2) Study the continuity and the differentiability f at 0 1pt

3) Write the equation of the tangent to (C_f) at the point x=0 **0.5pt**

4) Calculate the limits of f at $x=-\infty$ and at $x=+\infty$

5) Study the infinite branches of the curve (C_f) .

6) Study the variations and draw a table of variation of f **1pt**

7) Sketch (C_f) after sketching the tangent to (C_f) at the point x=0 **1.5pt**

8) Using integration by parts, evaluate $\int_0^1 \ln(1+x) dx$ **0.5pt**

9) Given that K is the area of the domain limited by (C_f) , the x-axis and the lines with equations x=-ln2 and x=1

Write K in an integreable form and calculate K.

1pt

10) Show that the restriction of g of f in the interval $[0; +\infty[$ is a bijection of $[0; +\infty[$ in an interval J and determine J.

0.5pt

11) Show that the equation g(x) = x has a unique solution

 α in the interval $1 \le \alpha \le 3$

0.5pt