EE160P 2019 Update 2-DOF Robot Arm

EE160P TAs

December 11, 2019

1 Problem

We want to control the 2-DOF robot arm to some desired time-varying trajectory or fixed point, starting from some initial point near it (or even far from it) using state feedback with gain matrix K computed by LQR. The model is based on [1].

We use the following notations to denote physical quantities at 2 motors and 2 arms:

- State variables and their derivatives
 - i motor electrical current
 - $q\,$ angle of arm, and therefore \dot{q} the angular velocity and \ddot{q} the angular acceleration
- Intermediate states
 - τ motor output torque, $\tau = K_t i$, where K_t is called torque constant. In this project, $K_t = 1$.
- Control variable
 - u motor command voltage, the input of the system

You need to work out the general form $\dot{x} = f(x, u)$ based on these two sets of equations:

$$Ri + L\frac{\mathrm{d}i}{\mathrm{d}t} + K_b \frac{\mathrm{d}q}{\mathrm{d}t} = u \tag{1}$$

where K_b has the same value of K_t under SI unit (Système International d'Unités).

$$\begin{bmatrix} \tau_1 \\ \tau_2 \end{bmatrix} = \begin{bmatrix} K_t i_1 \\ K_t i_2 \end{bmatrix} = \begin{bmatrix} d_{11} & d_{12} s_{21} \\ d_{12} s_{21} & d_{22} \end{bmatrix} \begin{bmatrix} \ddot{q}_1 \\ \ddot{q}_2 \end{bmatrix} + \begin{bmatrix} b_1 \dot{q}_1 + d_{12} c_{21} \dot{q}_2^2 \\ b_2 \dot{q}_2 + d_{12} c_{21} \dot{q}_1^2 \end{bmatrix}$$
 (2)

where $s_{ij} = \sin(q_i - q_j)$ and $c_{ij} = \cos(q_i - q_j)$.

You can start by setting $x = \begin{bmatrix} i_1 & q_1 & \dot{q}_1 & i_2 & q_2 & \dot{q}_2 \end{bmatrix}^\mathsf{T} \in \mathbb{R}^6$. Use Symbolic Toolbox if the calculation gets too complicated.

2 Parameters

motor inductance	L	$0.0036\mathrm{H}$
motor resistance	R	0.5Ω
inertia para. 1	d_{11}	$1 \mathrm{kg} \mathrm{m}^2$
inertia para. 2	d_{12}	$-0.13 \mathrm{kg} \mathrm{m}^2$
inertia para. 3	d_{22}	$0.24\mathrm{kg}\mathrm{m}^2$
damping coeff. 1	b_1	$3.6 \mathrm{kg} \mathrm{m}^2 \mathrm{s}^{-1}$
damping coeff. 2	b_2	$0.7 \mathrm{kg} \mathrm{m}^2 \mathrm{s}^{-1}$

References

[1] G. J. Liu and A. A. Goldenberg. "Robust control of robot manipulators incorporating motor dynamics". In: *Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '93)*. Vol. 1. 1993, 68–75 vol.1. DOI: 10.1109/IROS.1993.583081.