Variable binding and substitution for (nameless) dummies

Ambroise LAFONT

Joint work with André & Tom Hirschowitz, Marco Maggesi

FoSSaCS 2022

A simple theory for De Bruijn encoded syntax with substitution

	No quotient	No indesting	Built-in
	$(\alpha$ -equivalence)	No indexing	substitution
Substitution monoids	/	×	/
[Fiore-Plotkin-Turi '99]	√	(indexed by fv)	V
Nominal sets	~	/	~
[Gabbay-Pitts '99]	*	V	^
De Bruijn monads	/	/	/
(our work)	V	V	V

Plan

(1) Bound variables and binding conditions

2 Initial Algebra Semantics

3 Equivalence with substitution monoids [Fiore-Plotkin-Turi '99]

Goal of this section

Answering the question

What is a bound variable?

... in a (De Bruijn) syntax specified by a **binding signature**.

Binding signatures [Plotkin '90]

$$\underbrace{\mathsf{app}:(0,0),\qquad \mathsf{abs}:(1)}_{ \mathbf{Binding\ signature\ for\ } \lambda\text{-calculus}}$$

Binding arity
op:
$$(k_1, \ldots, k_n) \Leftrightarrow \operatorname{op}(t_1, \ldots, t_n)$$
 binds k_i variables in t_i ,

Syntax for a binding signature S

$$T_S \ni t_i ::= n$$
 $(n \in \mathbb{N})$
$$\mid \operatorname{op}(t_1, \dots, t_n) \qquad \text{for each op } : (k_1, \dots, k_n) \in S$$

Remarks

- No quotient by α -equivalence.
- Binding is not explicit:

$$op: (k_1, \ldots, k_n) \Leftrightarrow op(t_1, \ldots, t_n) \text{ binds } k_i \text{ variables in } t_i,$$

but the syntax does not depend on the k_i

Where is binding involved?

Variables in $\lambda.t$

De Bruijn encoding

• Crossing $\lambda \Rightarrow$ free variable shifting

$$\underbrace{n \in \mathbb{N}_o}_{\text{outside}} \quad \longleftrightarrow \quad \underbrace{n+1 \in \mathbb{N}_i}_{\text{inside}}$$

• $0 \in \mathbb{N}_{i} = \text{bound variable}$

How does it impact substitution of free variables?

Substitution crossing a binder

$$\forall \sigma_o : \mathbb{N}_o \to \Lambda_o,$$

$$(\lambda.t)[\sigma_o] = \lambda.(t[\sigma_i])$$

$$\sigma_i : \mathbb{N}_i \to \Lambda_i$$

$$0 \mapsto 0$$

$$\underbrace{n+1}_{\mathbb{N}_i} \mapsto \underbrace{n}_{\mathbb{N}_o} \mapsto \underbrace{\sigma(n)}_{\Lambda_o} \mapsto \underbrace{\sigma(n)[k \mapsto k+1]}_{\Lambda_i}$$

Notation

$$\sigma_i := \bigcap \sigma_o$$

Binding condition for abs : (1)

$$\forall \sigma: \mathbb{N} \to \Lambda,$$

$$(\lambda.t)[\sigma] = \lambda.(t[\uparrow \sigma])$$

$$\uparrow \sigma: \mathbb{N} \to \Lambda$$

$$0 \mapsto 0$$

$$n+1 \mapsto \sigma(n)[k \mapsto k+1]$$

Binding condition for op : (k_1, \ldots, k_n)

$$op(t_1,\ldots,t_n)[\sigma] = op(t_1[\uparrow^{k_1}\sigma],\ldots,t_n[\uparrow^{k_n}\sigma])$$

 $0, \ldots, k_i - 1$ are bound in t_i :

- $\uparrow^{k_i} \sigma$ preserves them;
- $\uparrow^{k_i} \sigma(p+k_i) = \sigma(p)[q \mapsto q+k_i].$

Plan

1 Bound variables and binding conditions

2 Initial Algebra Semantics

3 Equivalence with substitution monoids [Fiore-Plotkin-Turi '99]

Initial Algebra Semantics

A general methodology for specification

$$X$$
 is **specified** by a **signature** $S \Leftrightarrow \begin{cases} \bullet \ X \text{ has a } S\text{-model} \text{ structure.} \\ \bullet \text{ This } S\text{-model} \text{ is initial.} \end{cases}$

 \Rightarrow Needs an adequate notion of S-model.

Features of initiality

- Initial object: unique (up to unique iso).
- Initiality ~ recursion principle.

Initial Algebra Semantics for a binding signature S

Models = **De Bruijn monads** with **compatible** S**-operations**. Term model T_S = initial model.

De Bruijn monads: synthetic definitions

- DB monad = monad relative¹ to the functor $1 \to \mathsf{Set}$ picking \mathbb{N} .
- DB monad = monoid for a skew monoidal¹ structure on sets:

$$X \otimes Y = X \times Y^{\mathbb{N}}$$

 $^{^1}$ Altenkirch-Chapman-Uustalu ['15] introduce relative monads and relates them to skew monoids

De Bruijn monads: analytic definition

Components of a DB monad (X, -[-], var)

Set	X
Substitution map	$-[-]: X \times X^{\mathbb{N}} \to X$
Variables map	$var: \mathbb{N} \to X$

Equations satisfied by a DB monad

Left unitality	$var(n)[\sigma] = \sigma(n)$
Right unitality	$t[n \mapsto var(n)] = t$
Associativity	$t[\sigma][\delta] = t[n \mapsto \sigma(n)[\delta]]$

Examples of DB monads

- λ -calculus (De Bruijn encoding).
- T_S for any binding signature S.
- Any monad on sets induces a DB monad (Cf next section)

Initial Algebra Semantics for a binding signature S

Models = De Bruijn monads with **compatible** S-**operations**. Term model T_S = initial model.

DB monad (X, -[-], var) with compatible *S*-operations Definition

For each op : $(k_1, \ldots, k_n) \in S$, an operation

$$op: X^n \to X$$

satisfying the binding condition:

$$op(t_1,\ldots,t_n)[\sigma] = op(t_1[\uparrow^{k_1}\sigma],\ldots,t_n[\uparrow^{k_n}\sigma]).$$

Initial Algebra Semantics for a binding signature S

```
Models = De Bruijn monads with compatible S-operations. Term model T_S = initial model.
```

Initiality of the term model T_S

Proof steps

1. Define

$$-[-]:T_S\times T_S^{\mathbb{N}}\to T_S$$

so that $(T_S, var, -[-])$ is a DB monad;

- 2. Show that T_S has compatible S-operations;
- 3. Show that the induced S-model is initial.

Next slides: describe the induced term model.

The term model for λ -calculus

Recursive definition of substitution

$$\exists ! - [-] : \Lambda \times \Lambda^{\mathbb{N}} \to \Lambda$$
 satisfying

Left unitality

$$n[\sigma] = \sigma(n);$$

• Binding conditions for app / abs

$$(t \ u)[\sigma] = t[\sigma] \ u[\sigma] \qquad (\lambda . t)[\sigma] = \lambda . (t[\uparrow \sigma]).$$

Proving that $(\Lambda, var, -[-])$ is a DB monad

Right unitality and associativity hold (by induction).

 \Rightarrow Induces a S_{Λ} -model.

The term model T_S for a binding signature S

Recursive definition of substitution

$$\exists ! - [-] : T_S \times (T_S)^{\mathbb{N}} \to T_S$$
 satisfying

Left unitality

$$n[\sigma] = \sigma(n);$$

• The binding condition for every op : $(k_1, \ldots k_n)$ in S

$$\operatorname{op}(\ldots,t_i,\ldots)[\sigma] = \operatorname{op}(\ldots,t_i[\uparrow^{k_i}\sigma],\ldots).$$

Proving that $(T_S, var, -[-])$ is a DB monad

Right unitality and associativity hold (by induction).

 \Rightarrow Induces a S-model.

Plan

1 Bound variables and binding conditions

2 Initial Algebra Semantics

3 Equivalence with substitution monoids [Fiore-Plotkin-Turi '99]

 \simeq

Equivalence with monads

Well-behaved monads T on sets

T is finitary and preserves binary intersections

For every $x \in X$, $\exists n$ s.t. x has support n.

Finite support

$$x$$
 has support $n \Leftrightarrow "fv(x) \subset \{0, \dots, n-1\}"$

More formally,

if
$$\sigma : \mathbb{N} \to X$$
 fixes the first n variables,
then σ fixes x , i.e, $x[\sigma] = x$

DB monads from monads

Restricting a monad *T* on sets:

Set	$T(\mathbb{N})$
Substitution	bind: $T(\mathbb{N}) \times T(\mathbb{N})^{\mathbb{N}} \to T(\mathbb{N})$
Variables	$ret: \mathbb{N} \to T(\mathbb{N})$

Monads from DB monads

 $\mathsf{DB} \,\,\mathsf{monad}\,\,X \xrightarrow{\mathsf{standard}\,\,\mathsf{categorical}\,\,\mathsf{construction}\,\,(\mathsf{Lan})} \quad \mathsf{monad}\,\,\overline{X} : \mathsf{Set} \to \mathsf{Set}$

$$\overline{X}(\mathbb{N}) = X$$

$$\overline{X}(\{0,\dots,n-1\}) = \{x \in X \mid x \text{ has support } n\}$$

A link with substitution monoids [Fiore-Plotkin-Turi '99]

The previous equivalence

Well-behaved monads

□ DB monads with finite support

lifts to

Well-behaved S-monoids

≃ S-models with finite support

Well-behaved monads T with compatible S-operations

Conclusion

A simple theory of syntax

- For De Bruijn representation.
- Simple enough to be mechanised without dependent types.
- ≃ Substitution monoids [FPT '99].
- Extensions:
 - Simply-typed syntax;
 - Signatures with equations (e.g., λ -calculus modulo β and η).