L1: RL Basics

Course: Deep Reinforcement Learning

Info: 2025 Spring, Tsinghua University

Contents 🚺

- L1: RL Basics
 - o What & RL v.s. Supervised Learning
 - o MDP
 - Basic Concepts
 - Optimal Quantities & Bellman Equation
 - Value Iteration
 - Policy Iteration
 - Policy Evaluation
 - Policy Improvement
 - Policy Iteration
 - From MDP to RL

What & RL v.s. Supervised Learning

- 1. No supervision, only reward signals.
- 2. Rewards are delayed.
- 3. Not i.i.d data, but sequential.

MDP

Basic Concepts

Markov Dicision Process (MDP) problems are non-derterminisic problems.

The **definition** of MDP is as below:

- ullet A set of states $s \in S$
- A set of observations $o \in O$ (sometimes)
- $\bullet \ \ {\rm A \ set \ of \ actions} \ a \in A$
- A transition function T(s, a, s')
- A reward function $R(s,a,s^\prime)$

Markov Property:

$$P(S_{t+1=s'}|S_{t=s_t}, A_t = a_t, \dots, S_0 = s_0) = P(S_{t+1=s'}|S_{t=s_t}, A_t = a_t)$$
(1)

Fully v.s. Partially Observability: Whether state is the same as observation. If not, transformed into POMDP.

Policy: A policy gives an action for each state. an optimal policy ($\pi^*: S \to A$) is the one that maximizes expected utility (sum of rewards).

Discount Factor: Used in calculating the sum of rewards. Why we introduce Discount Factor:

• Avoid cyclic reward

- Infinite horizon convergence
- Worry about future uncertainties
- Time value & Human like

Utility: Sum of discounted rewards.

Optimal Quantities & Bellman Equation

The optimal policy: $\pi^*(s) = \text{optimal action from a state s.}$

The optimal value (utility) of a state: $V^*(s) =$ expected utility starting in s and act optimally.

The optimal Q value: $Q^*(s,a) =$ expected utility taking action a from state s and <u>acting</u> optimally. (the action of this timestep is not necessarily the optimal)

$$V^*(s) = \max_{a} Q^*(s, a) \tag{2}$$

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$

$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^{*}(s')]$$
(3)

$$V^*(s) = \max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$
 (4)

Value Iteration

Define $V_k(s)$ to be the $\operatorname{\underline{optimal}}$ value of s if the game ends in k more time steps, $V_0(s)=0$, then we can compute $V_{k+1}(s)$:

$$V_k(s) = \max_a \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^k(s')]$$
 (5)

Repeat this process until convergence.

Note

Some **problems** with value iteration:

- 1. Policy converges **earlier** than value.
- 2. The complexity of value iteration is $O(S^2A)$.

Value iteration max over over all actions to compute the optimal values. If we consider some fixed policy $\pi(s)$ (generally non-optimal), the tree would be much simpler.

Do the optimal action

s, a

Do what π says to do

Define the utility of a state s, under a fixed policy: $V_{\pi}(s) = \text{expected total discounted rewards}$ starting in s and following π . And the recursive relation (one-step look-ahead) is as below.

$$V_{\pi}(s) = \sum_{s'} T(s, \pi, s') [R(s, \pi, s') + \gamma V_{\pi}(s')]$$
 (6)

Policy Iteration

Policy Evaluation

Under a fixed policy, how to calculate the V function?

Idea 1: Turn recursive Bellman equations into updates (like value iteration). $O(S^2)$ complexity.

$$V_0^{\pi}(s) = 0 \tag{7}$$

$$V_0(s) = S$$

$$V_{k+1}^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$
(8)

Idea 2: Without the maxes, the Bellman equations are just a linear system. Solve it. The complexity of matrix inversion operation (Gauss–Jordan elimination) is $O(S^3)$.

$$V = P(r + \gamma V) \tag{9}$$

$$V = (I - \gamma P)^{-1}R \tag{10}$$

Policy Improvement

Imagine we have the values.

Withdraw policy from values through one-step look-up (e.g. optimal condition V*):

$$\pi^*(s) = \arg\max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$
 (11)

One-step policy extraction:

$$\pi_{k+1}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^{\pi_i}(s')]$$
 (12)

Policy Iteration

```
Require: Initialize \pi_0 arbitrarily

1: repeat

2: Policy evaluation: compute V^{\pi_k}(s) for all s \in \mathcal{S}

3: Policy improvement: \pi_{k+1}(s) = \arg \max_a Q^{\pi_k}(s, a) for all s \in \mathcal{S}

4: k \leftarrow -k+1

5: until \|\pi_k - \pi_{k-1}\|_1 = 0

6: return Optimal policy \pi^*
```

We have converged $V^{\pi_k}(s)$ through policy evaluation, then extract the next policy π_{k+1} through "argmax_a" operation traversing the entire action space. While repeating, this "a" is different from $\pi_k(s)$.

(i) Note

- Policy iteration is still optimal.
- It can converge much faster under some conditions.

From MDP to RL

Usually we do not know the transition, thus we introduced reinforcement learning method.

Basic ideas:

1. Receive feedback in the form of rewards.

- 2. Utility is defined by the **reward** function.
- 3. Must act to maximize **expected rewards**.
- 4. All learning is based on observed **samples of outcomes**.

A comprehensive comparison btw MDP and RL 💽

Aspect	MDP	RL
Definition	A mathematical model for sequential decision problems.	A learning method to solve sequential decision problems.
Scope	Theoretical foundation of RL; RL problems are typically modeled as MDPs.	Practical application of MDP; learns to solve MDP through interaction.
Known Information	Assumes transition probabilities and reward functions are known.	Typically assumes transition probabilities and reward functions are unknown.
Goal	Provides a framework to describe the problem.	Learns the optimal policy through interaction.
Methods	Based on dynamic programming (e.g., value iteration, policy iteration).	Based on trial and error (e.g., Q-learning, policy gradients).
Application	Used for theoretical analysis and problem modeling.	Used for practical learning and decision-making.