SUP MPSI3 Corrigé DS03 25 novembre 2022

EXERCICE 1 : Étude de la combustion de l'essence dans un moteur de Clio IV :

(D'après Centrale Supélec MP 2014)

1 -
$$1 C_8 H_{18 (l)} + \frac{25}{2} O_{2 (g)} = 8 CO_{2 (g)} + 9 H_2 O_{(g)}$$
;

Pour
$$O_2$$
 gazeux : Loi de Dalton : $P_i = X_i P_{tot} = \frac{n_i}{n_{tot}} P_1 = 0.2 P_1$

2 - Pour un tour de cycle, on admet
$$V_1 = 10^{-3} \text{ m}^3 \text{ d'air}$$
; $P_1 = 10^5 \text{ Pa}$; $T_1 = 300 \text{ K}$.
Pour O_2 gazeux: Loi de Dalton: $P_i = X_i P_{tot} = \frac{n_i}{n_{tot}} P_1 = 0.2 P_1$; D'autre part: $P_i V = n_i RT$; Soit: $n_i = \frac{P_i V_1}{RT_1}$; Soit: $n_{02} = \frac{0.2 P_1 V_1}{RT_1}$;

Attention aux unités !! P_1 en P_3 ; V_1 en m^3 .

$$\underline{\text{AN}}: n_{O_2} = \frac{0.2 \times 10^5 \times 1.10^{-3}}{8.32 \times 300}$$
; On trouve: $\underline{n_{O_2} = 8.10^{-3} \text{ mol}}$.

Pour l'octane liquide :
$$n_{oct} = \frac{m_{oct}}{M_{oct}} = \frac{\rho_{oct} V_{oct}}{M_{oct}}$$
;
AN : $n_{oct} = \frac{700 \times 9,2.10^{-5}}{114}$; On trouve : $n_{oct} = 5,6.10^{-4}$ mol.

$$\underline{\text{AN}}: n_{oct} = \frac{700 \times 9,2.10^{-5}}{114}$$
; On trouve: $\underline{n_{oct}} = 5,6.10^{-4} \text{ mol.}$

Pour identifier le réactif limitant, on fait un tableau d'avancement :

	$C_8H_{18\ (l)}$	$25/2 O_{2(g)} =$	8 <i>CO</i> _{2 (g)}	$9 H_2 O_{(g)}$	
A l'EI:	n_{oct}	n_{O_2}			
At:	$n_{oct} - x$	$n_{O_2} - 12,5 x$	8 x	9 x	

- \blacksquare Si l'octane est limitant : $x = n_{oct} = 5,6.10^{-4} \text{ mol.}$
- **♣** Si O₂ est limitant : Alors $n_{O_2} 12.5 \ x' = 0 \$; D'où: $x' = \frac{2}{25} \ n_{O_2} = 6.4.10^{-4} \$ mol.

Conclusion: x < x': donc <u>l'octane est le réactif limitant</u>, ce qui parait logique.

3-

- Consommation moyenne annoncée : 4,3 L d'octane pour 100 km ;
- Donc consommation movenne d'octane par km : 0,043 L.

Soit:
$$n_{oct\ conso} = \frac{m_{oct}}{M_{oct}} = \frac{\rho_{oct}V_{oct}}{M_{oct}}$$

Soit:
$$n_{oct\ conso} = \frac{m_{oct}}{M_{oct}} = \frac{\rho_{oct} V_{oct}}{M_{oct}}$$
;
 $\underline{AN} : n_{oct\ conso} = \frac{700 \times 0.043}{114}$; Soit: $\underline{n_{oct\ conso}} = 0.26 \text{ mol cons / km.}$

- $+ \underline{AN} : m_1 = 8 \times \frac{700 \times 0,043}{114} \times 44$; Soit : $\underline{m_1 = 92,9 \text{ g / km parcouru}}$
- Valeur assez proche de celle annoncée dans le tableau de la voiture : 99 g / km.

PROBLEME 1 : Étude de la réponse percussionnelle d'un diapason :

 $(\approx 42 pts)$

 $\ell(t)$

- Q1. \vec{f} est appelée force de frottement fluide. C'est la force exercée par le fluide au contact des branches du diapason. Elle s'oppose au déplacement, donc à la vitesse. Ainsi $\lambda > 0$.
- **Q2**. <u>Référentiel d'étude</u>: Référentiel terrestre $\Re(O, x, z)$ supposé galiléen.

<u>Base de projection</u>: Base cartésienne (O, x, z) de vecteurs unitaires $\overrightarrow{u_x}$ et $\overrightarrow{u_z}$. (L'origine est prise à la longueur à vide comme précisé dans l'énoncé).

<u>Système</u>: le point matériel M de masse m.

Bilan des forces:

- Poids : $\vec{P} = m\vec{g} = -mg \overrightarrow{u_x}$.
- Réaction du support : $\vec{R} = R \overrightarrow{u_x}$; \vec{R} est orthogonale au déplacement car mvt sans frottements sur le support.
- Force de rappel du ressort ou force de Hooke :

$$\vec{T} = -k(l - l_0) \overrightarrow{u_z} = -k z \overrightarrow{u_z}$$
, car $z(t) = l(t) - l_0$

• Force de frottement fluide : $\vec{f} = -\lambda \vec{v} = -\lambda \dot{z} \vec{u}_z$, car myt selon l'axe horizontal Oz.

2ème loi de Newton (principe fondamental de la dynamique):

- $\sum \vec{F} = m\vec{a} = m\frac{d\vec{v}}{dt}$, d'où $\vec{P} + \vec{R} + \vec{T} + \vec{f} = m\vec{a}$ avec $\vec{a} = \ddot{z} \, \overrightarrow{u_z}$ car le mvt se fait sur Oz.
- Projetons sur les 2 axes :

Sur
$$\overrightarrow{u_x}: R - mg = 0$$
. (2) (pas de mvt sur Ox)
Sur $\overrightarrow{u_z}: m\ddot{z} = -kz - \lambda \dot{z}$ (1)
D'où l'équation différentielle en $z(t)$: $\ddot{z} + \frac{\lambda}{m}\dot{z} + \frac{k}{m}z = 0$;

$$\operatorname{Sur} \overrightarrow{u_z} : m\ddot{z} = -kz - \lambda \dot{z} \qquad (1)$$

$$\ddot{z} + \frac{\lambda}{m} \dot{z} + \frac{k}{m} z = 0$$

Q3. En identifiant l'équation précédente à celle sous forme canonique : $\ddot{z} + \frac{\omega_0}{Q}\dot{z} + \omega_0^2 z(t) = 0$, il vient :

$$\omega_0 = \sqrt{\frac{k}{m}}$$
: pulsation propre de l'oscillateur : pulsation des oscillations sans frottement.
Ainsi, la fréquence propre sera : $f_0 = \frac{\omega_0}{2\pi} = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$.

Ainsi, la fréquence propre sera :
$$f_0 = \frac{\omega_0}{2\pi} = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$$

- ho Q le <u>facteur de qualité</u> est tel que : $\frac{\omega_0}{Q} = \frac{\lambda}{m}$, ; D'où $Q = \frac{m\omega_0}{\lambda} = \frac{m}{\lambda} \sqrt{\frac{k}{m}}$; Soit : $Q = \frac{\sqrt{km}}{\lambda}$.
- Q4. Il faut résoudre l'équation précédente dans le cas d'oscillations pseudopériodiques.

Equation caractéristique associée : $r^2 + \frac{\omega_0}{\rho}r + \omega_0^2 = 0$.

Discriminant :
$$\Delta = \frac{\omega_0^2}{o^2} - 4\omega_0^2 = \omega_0^2(\frac{1}{o^2} - 4)$$
.

Cas d'un <u>régime pseudopério</u>dique ; Alors $\Delta < 0$:

Les solutions de l'équation caractéristique sont alors : $r_{1,2} = -\frac{\frac{\omega_0}{Q} \mp i\sqrt{-\Delta}}{2} = -\frac{\omega_0}{2} \left(\frac{1}{Q} \mp i\sqrt{4 - \frac{1}{Q^2}}\right)$

On pose
$$\alpha = \frac{-b}{2a} = -\frac{\omega_0}{2Q} = -\frac{\lambda}{2m}$$

On pose
$$\alpha = \frac{-b}{2a} = -\frac{\omega_0}{2Q} = -\frac{\lambda}{2m}$$
 et $\Omega = \frac{\sqrt{-\Delta}}{2a} = \omega_0 \sqrt{1 - \frac{1}{4Q^2}} = \sqrt{\frac{k}{m}} \sqrt{1 - \frac{\lambda^2}{4km}}$: appelée pseudo –pulsation. Alors $z(t) = [Acos(\Omega t) + Bsin(\Omega t)]exp(\alpha t)$

$$= \exp\left(-\frac{\lambda}{2 m} t\right) \left[A\cos\left(\left(\sqrt{\frac{k}{m}} \sqrt{1 - \frac{\lambda^2}{4 km}}\right) t\right) + B\sin\left(\left(\sqrt{\frac{k}{m}} \sqrt{1 - \frac{\lambda^2}{4 km}}\right) t\right)\right].$$

Q5. On a vu en Q3 que
$$f_0 = \frac{\omega_0}{2\pi} = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$$
; donc on a : $f_0^2 = \frac{1}{4\pi^2} \frac{k}{m}$; soit : $k = 4\pi^2 m f_0^2$.

<u>AN</u>: $k = 4\pi^2 \times 30.10^{-3} \times 500^2$. On obtient: $\underline{k} \approx 3.10^5 \text{ N.m}^{-1}$.

Q6. On peut estimer le fait que le retour à zéro se fait en une trentaine de secondes, comme précisé dans l'énoncé.

Le retour à zéro se fait au bout de $5\tau \approx 30 \, \text{s}$, soit $\tau \approx 6 \, \text{s}$.

avec
$$\tau = \frac{2Q}{\omega_0}$$
; Soit $5\tau = \frac{10 Q}{\omega_0}$; Alors: $Q = \frac{5 \tau \omega_0}{10} = \frac{\tau \omega_0}{2}$.

avec
$$\tau = \frac{2Q}{\omega_0}$$
; Soit $5\tau = \frac{10 \ Q}{\omega_0}$; Alors : $Q = \frac{5\tau \omega_0}{10} = \frac{\tau \omega_0}{2}$.
AN: $Q = \frac{5\tau \omega_0}{10} = \frac{30\times500\times2\times\pi}{10} = 3\times500\times2\times\pi$; On obtient $Q \approx 9500$.

Remarque : Ces deux valeurs sont énormes par rapport aux valeurs usuelles de mécanique.

Q7. Cela revient à se demander si on peut assimiler la pulsation propre ω_0 à la pseudo pulsation Ω , ou la période propre T_0 à la pseudo période T, la fréquence propre f_0 à la pseudo fréquence f .

Or, on sait que la pseudo pulsation Ω est telle que : $\Omega = \omega_0 \sqrt{1 - \frac{1}{4Q^2}}$.

Dans notre cas, comme $Q\gg 1$, alors $\frac{1}{40^2}\ll 1$, ainsi $\Omega\approx \omega_0$ et $T\approx T_0$ et $f\approx f_0$.

Conclusion: L'affirmation est donc bien correcte.

Q8.

<u>Sur la seconde figure 2</u>: **22** $T_0 \approx 0.05 \text{ s}$; D'où $T_0 \approx \frac{0.05}{22} \approx 2.3.10^{-3} \text{s et} | f_0 = \frac{1}{T_0} |$; <u>AN</u>: $\underline{f_0 \approx 440 \text{ Hz}}$. Sur la 1ère figure, on estime τ grâce à la tangente à l'origine de l'enveloppe exponentielle : $\underline{\tau} \approx 1.8 \text{ s}$. Or $\tau = \frac{2Q}{\omega_0}$; Donc : $Q = \frac{\omega_0 \tau}{2} = \frac{2\pi f_0 \tau}{2}$; Soit : $\overline{Q = \pi f_0 \tau}$; $\overline{AN} : Q \approx \pi \times 440 \times 1.8$; On obtient $\underline{Q} \approx 2500$. <u>Conclusion</u>: On obtient un écart relatif égal à $\frac{500-440}{500} \approx 12$ <u>% sur la fréquence</u>, ce qui est à peu près correct, par contre on a un écart relatif de $\left| \frac{1500-2500}{2500} \right| = 40 \frac{\%}{\text{ sur le facteur de qualité}}$! Ce dernier est plus grand que celui estimé à la question Q6.

PROBLEME 2 : Décharge d'un condensateur à travers une bobine :

(D'après Concours national d'admission dans les écoles d'ingénieur) (≈ 58 pts)

I - Décharge du condensateur à travers une bobine idéale :

 $\mathbf{O1}$ – Pour t < 0, K est en 2 et K' en 1' : Le circuit devient donc :

Quand le condensateur est entièrement chargé, on est en régime permanent, donc il se <u>comporte comme un interrupteur ouvert</u>. Ainsi $I_{per} = 0$ et $u_R(0^-) = 0$

Alors $u_{\mathcal{C}}(\mathbf{0}^{-}) = \overline{E}$ et $\overline{q_{\mathbf{0}} = q(\mathbf{0}^{-}) = CE}$;

i(t)

 $u_L(t)$

Q2 – Pour A $t \ge 0$ K ouvert et K' fermé, on a alors le nouveau circuit ci-contre.

Loi des mailles : $u_c(t) + u_L(t) = 0$

Or en convention récepteur, $u_L(t) = L \frac{di}{dt}$ et $i = C \frac{du_c(t)}{dt}$

On en déduit : $u_c(t) + LC \frac{d^2 u_C}{dt^2} = 0$

ou encore : $\frac{d^2u_c}{dt^2} + \frac{1}{LC} \overline{u_c(t)} = 0$.

Par identification avec $\frac{d^2u_c(t)}{dt^2} + \omega_0^2u_c(t) = 0$, il vient : $\omega_0 = \sqrt{\frac{1}{Lc}}$: pulsation propre de l'oscillateur.

Q3 – Solution de l'équation différentielle :

 $u_c(t) = u_{ch}(t) = A\cos(\omega_0 t) + B\sin(\omega_0 t)$; $1^{\text{ère}}$ CI : A t = 0, $u_c(0^-) = u_c(0^+) = E$, car C assure la continuité de la tension à ses bornes.

Ainsi : $\underline{A} = \underline{E}$;

Dérivons $u_c(t)$: $\frac{du_c(t)}{dt} = -A\omega_0 \sin(\omega_0 t) + B\omega_0 \cos(\omega_0 t)$;

De plus, on a vu : $i = C \frac{du_c(t)}{dt}$; donc : $\frac{du_c(t)}{dt} = \frac{i(t)}{c}$.

 $2^{\text{ème}}$ CI : A t = 0, $\frac{du_c(0^-)}{dt} = \frac{i(0^-)}{c} = \frac{i(0^+)}{c} = 0$, car L assure la continuité de l'intensité dans sa branche.

Ainsi : $B\omega_0 = 0$; D'où : $\underline{B} = 0$

 $\underline{\operatorname{Ccl}}: u_c(t) = E \, \cos(\omega_0 t) = E \, \cos\left(\sqrt{\frac{1}{LC}}t\right)$

De même : et $W_L(t) = \frac{1}{2} L i^2(t)$; Or $i = C \frac{du_c(t)}{dt}$; Donc : $i(t) = -EC\omega_0 \sin(\omega_0 t)$;

D'où: $W_L(t) = \frac{1}{2} L E^2 C^2 \omega_0^2 \sin^2(\omega_0 t)$; Soit: $W_L(t) = \frac{1}{2} L E^2 C^2 \frac{1}{LC} \sin^2(\omega_0 t)$;

Enfin: $\overline{W_L(t)} = \frac{1}{2} C E^2 sin^2(\omega_0 t)$;

$$= \frac{\text{Enfin, } W_{\text{T}} = W_{\text{C}}(t) + W_{\text{L}}(t);}{\text{Enfin, } W_{\text{T}} = W_{\text{C}}(t) + W_{\text{L}}(t);}$$

D'où : $W_T = \frac{1}{2} C E^2 = cste$.

Pas de dissipation d'énergie car pas de

résistance dans le circuit.

L'énergie passe périodiquement du condensateur à la bobine et inversement.

II - Cas d'une bobine réelle :

Q5 – On peut visualiser $u_c(t)$ grâce à **un oscilloscope**.

Q6 - Loi des mailles : $u_c(t) + u_L(t) + u_r(t) = 0$.

Or
$$u_r(t) = r i(t)$$
, $u_L(t) = L \frac{di}{dt}$ et $i = C \frac{du_c(t)}{dt}$;

On en déduit : $u_c(t) + L \frac{di}{dt} + r i(t) = 0$;

Ou encore :
$$u_c(t) + LC \frac{d^2 u_c}{dt^2} + rC \frac{du_c(t)}{dt} = 0$$
.
Enfin :
$$\frac{d^2 u_c}{dt^2} + \frac{r}{L} \frac{du_c(t)}{dt} + \frac{1}{LC} u_c(t) = 0$$
.

De la forme :
$$\frac{d^2 u_c(t)}{dt^2} + \frac{\omega_0}{Q} \frac{du_c(t)}{dt} + \omega_0^2 u_c(t) = 0$$
 avec $\omega_0 = \sqrt{\frac{1}{LC}}$ et $\frac{\omega_0}{Q} = \frac{r}{L}$; Soit : $Q = \frac{L\omega_0}{r} = \frac{1}{r}\sqrt{\frac{L}{C}}$;

Q7 – Equation caractéristique associée : $s^2 + \frac{\omega_0}{\rho}s + \omega_0^2 = 0$.

Discriminant :
$$\Delta = \frac{\omega_0^2}{\rho^2} - 4\omega_0^2 = \omega_0^2(\frac{1}{\rho^2} - 4)$$
.

D'après le graphe, on visualise un régime pseudopériodique, car retour à zéro avec de nombreuses oscillations, donc $\Delta < 0$; ainsi Q > 1/2.

Q8.a – On a vu
$$\omega_0 = \sqrt{\frac{1}{LC}}$$
; AN: $\omega_0 = \sqrt{\frac{1}{1.10^{-2} \times 1.10^{-6}}} = \sqrt{10^8}$; Ainsi : $\underline{\omega_0 = 10^4 \text{ rad.s}^{-1}}$

Q8.b – On sait que T =
$$\frac{2\pi}{\Omega}$$
; Donc : $\Omega = \frac{2\pi}{T}$; $\Delta N : \Omega = \frac{2\pi}{6,3.10^{-4}}$; On trouve : $\Omega = 9.97.10^{-3}$ ras.s⁻¹.

De plus,
$$\Delta < 0$$
, $s_{1,2} = -\frac{\frac{\omega_0}{Q} \mp i\sqrt{-\Delta}}{2} = -\frac{\omega_0}{2} \left(\frac{1}{Q} \mp i\sqrt{4 - \frac{1}{Q^2}} \right)$

On pose
$$\alpha = \frac{-b}{2a} = -\frac{\omega_0}{2Q}$$
 et la pseudo -pulsation: $\Omega = \frac{\sqrt{-\Delta}}{2a} = \omega_0 \sqrt{1 - \frac{1}{4Q^2}}$:

Or
$$Q^2 = \frac{L}{cr^2}$$
; donc : $\frac{1}{4Q^2} = \frac{Cr^2}{4L}$ Ainsi $\Omega = \omega_0 \sqrt{1 - \frac{Cr^2}{4L}}$; D'où : $\frac{\Omega^2}{\omega_0^2} = 1 - \frac{Cr^2}{4L}$;

Ou encore :
$$\frac{cr^2}{4L} = 1 - LC \Omega^2$$
; Et $r^2 = \frac{4L}{c} - 4L^2\Omega^2$; Enfin : $r = \sqrt{\frac{4L}{c} - 4L^2\Omega^2}$;

AN:
$$r = \sqrt{\frac{4 \times 0.01}{1.10^{-6}} - 4(0.01)^2(9.97.10^3)^2}$$
; On trouve: $\underline{r = 15.5 \Omega}$.

Q9 – Si la résistance r avait été très élevée, alors l'amortissement aurait été très grand et on aurait obtenu un régime apériodique, avec un retour à zéro sans oscillation.

Attention aux conditions initiales pour la courbe.

$$u_c(\mathbf{0}^+) = E$$
 et $\frac{du_c(\mathbf{0}^+)}{dt} = \frac{i(\mathbf{0}^+)}{c} = \mathbf{0}$ pour la tangente à l'origine.

PROBLEME 3 : Étude de l'optimisation de la synthèse de l'éthanol en phase gazeuse : (≈ 53 pts)

I - Q1. A
$$T = 400$$
 K, $\ln(K^{\circ}(400)) = \frac{5655}{400} - 15.5 = -1.3625$ et $K^{\circ}(400) = e^{-1.3625}$.

On obtient : $K^{\circ}(400) \approx 0.256$. Réaction ni totale, ni négligeable.

On est en phase gazeuse : <u>Tableau d'avancement en moles et colonne supplémentaire</u> $n_{tot}(gaz)$:

Comme il n'y a pas de produit introduit, la réaction ne peut se faire que dans le sens direct.

A l'équilibre : $Q_{r,eq} = K^{\circ} = 0.256$ (ni totale ; ni négligeable).

(en mol)	$C_2H_{4(g)}$	$H_2O_{(g)} =$	$C_2H_5OH_{(g)}$	$n_{tot}(gaz)$
EI	1,00	1,00	0	2,00
E équilibre	$1,00 - \xi_{eq}$	$1,00 - \xi_{eq}$	ξ_{eq}	$2,00-\xi_{eq}$

Q2. Il faut exprimer $Q_{r,eq} = K^{\circ}$, en utilisant les activités des espèces en phase gazeuse :

$$K^{\circ} = \frac{\frac{P(C_{2}H_{5}OH)_{eq}}{P^{\circ}}}{\frac{P(C_{2}H_{4})_{eq}}{P^{\circ}} \frac{P(H_{2}O)_{eq}}{P^{\circ}}} = \frac{P(C_{2}H_{5}OH)_{eq}}{P(C_{2}H_{4})_{eq} P(H_{2}O)_{eq}} P^{\circ} = \frac{X(C_{2}H_{5}OH)_{eq} P_{tot}}{X(C_{2}H_{4})_{eq} X(H_{2}O)_{eq} P_{tot}^{2}} P^{\circ}$$

Ou encore :
$$\mathbf{K}^{\circ} = \frac{\left(\frac{n(C_2H_5OH)_{eq}}{n_{tot}}\right)}{\frac{n(C_2H_4)_{eq}}{n_{tot}}\left(\frac{n(C_2H_5OH)_{eq}}{n_{tot}}\right)} \frac{P^{\circ}}{P_{tot}}$$
; Soit : $\mathbf{K}^{\circ} = \frac{\left(n(C_2H_5OH)_{eq}\right)}{n(C_2H_4)_{eq}\left(n(H_2O)_{eq}\right)} \frac{P^{\circ}}{P_{tot}} \mathbf{n}_{tot}$

Q3. On cherche à calculer ξ_{eq} , sachant que $\xi_{eq} > 0$ (sens direct) mais ξ_{eq} doit être inférieur à 1 compte-tenu des quantités initiales introduites. Soit $0 < \xi_{eq} < 1$.

$$\underline{\text{AN}}: K^{\circ} = \frac{\xi_{eq}}{(1,00-\xi_{eq})^2} (2,00-\xi_{eq}) = 0,256.$$

Soit:
$$\xi_{eq}(2.00 - \xi_{eq}) = 0.256 (1.00 - \xi_{eq})^2$$
.

Ou encore :
$$2 \xi_{eq} - \xi_{eq}^2 = 0.256(1 - 2\xi_{eq} + \xi_{eq}^2)$$
.

Ainsi il faut résoudre le polynôme du second degré : $1,256 \xi_{eq}^2 - 2,512 \xi_{eq} + 0,256 = 0$.

$$\Delta \approx 5,024 \text{ et } \sqrt{\Delta} \approx 2,24 \text{ ; Alors } \underline{\xi_{eq1}} \approx 1,90 \text{ mol et } \underline{\xi_{eq2}} \approx 0,11 \text{ mol.}$$

La valeur de $\xi_{eq1} > 1,00$ est impossible ; Alors $\underline{\xi_{eq}} = \underline{\xi_{eq2}} \approx 0,11$ mol.

Et à l'équilibre, on a :
$$\underline{n(C_2H_5OH)_{eq}} \approx 0$$
, 11 mol

et
$$n(C_2H_4)_{eq} = n(H_2O)_{eq} \approx 1 - 0.11 \approx 0.89$$
 mol.

Q4. On sait que le taux de conversion τ_{eq} est défini par : $\tau_{eq} = \frac{\alpha_i \, \xi_{eq}}{n_i(0)}$;

$$\underline{\text{AN}}$$
: $\tau_{eq} = \frac{1 \times 0.11}{1}$; Soit: $\underline{\tau_{eq}} \approx 11 \%$. (faible valeur).

Q5. On sait que la fraction molaire X_i est définie par : $X_i = \frac{n_i}{n_{tot}}$.

Ainsi:
$$X(C_2H_5OH) = \frac{0.11}{2-0.11} = \frac{0.11}{1.89}$$
; Soit: $X(C_2H_5OH) \approx 6\%$.

Et
$$X(C_2H_4) = X(H_2O) = \frac{0.89}{1.89}$$
; Soit : $\underline{X(C_2H_4)} = \underline{X(H_2O)} \approx 47 \%$.

II – Q6. On a toujours à l'équilibre : $Q_{r,eq} = K^{\circ} = 0.256$ (car même température qu'en I).

On reprend l'expression trouvée en Q2 : $K^{\circ} = \frac{\left(n(C_2H_5OH)_{eq}\right)}{n(C_2H_4)_{eq}\left(n(H_2O)_{eq}\right)} \frac{P^{\circ}}{P_{tot}} n_{tot}$ avec $P_{tot} = 10$ bars.

$$\underline{\text{AN}}: K^{\circ} = \frac{\xi'_{eq}}{(1,00-\xi'_{eq})^2} \times \frac{1}{10} (2,00-\xi'_{eq}) = 0,256.$$

Soit:
$$\xi'_{eq}(2.00 - \xi'_{eq}) = 0.256 \times 10 (1.00 - \xi'_{eq})^2$$
.

Ou encore :
$$2 \xi'_{eq} - \xi'_{eq}^2 = 2,56(1 - 2\xi'_{eq} + \xi'_{eq}^2)$$
. Ainsi : $3,56 \xi'_{eq}^2 - 7,12 \xi'_{eq} + 2,56 = 0$.

$$\Delta \approx 14,24 \text{ et } \sqrt{\Delta} \approx 3,77 \text{ ; Alors } \xi'_{eq1} \approx 1,53 \text{ mol et } \xi'_{eq2} \approx 0,47 \text{ mol.}$$

La valeur de $\xi'_{eq1} > 1,00$ est impossible ; Alors $\underline{\xi'_{eq}} = \underline{\xi'_{eq2}} \approx 0$, 47 mol.

Et à l'équilibre, on a : $n(C_2H_5OH)_{eq} \approx 0$, 47 mol

et
$$n(C_2H_4)_{eq} = n(H_2O)_{eq} \approx 1 - 0.47 \approx 0.53 \text{ mol.}$$
 Alors $\tau'_{eq} \approx \frac{1 \times 0.47}{1}$; Soit : $\underline{\tau'_{eq}} \approx 47 \%$.

Conclusion: Une augmentation de la pression augmente le taux de conversion, donc le rendement de la réaction.

III – On a toujours à l'équilibre : $Q_{r,eq} = K^{\circ} = 0,256$ (car même température qu'en I).

Q7. Pour déterminer le sens d'évolution du système, il faut <u>calculer le Q_{rEI} et le comparer à K°.</u>

	$C_2H_{4(g)}$	$H_2O_{(g)} =$	$C_2H_5OH_{(g)}$	$n_{tot}(gaz)$
EI	1,00	1,00	1,00	3

Il faut exprimer, puis calculer le $Q_{r,EI}$ (même expression que $Q_{r,eq} = K^{\circ}$ mais en prenant les quantités initiales)

$$Q_{r,EI} = \frac{\frac{P(C_2H_5OH)_0}{P^\circ}}{\frac{P(C_2H_4)_0}{P^\circ}\frac{P(H_2O)_0}{P^\circ}} = \frac{P(C_2H_5OH)_0}{P(C_2H_4)_0 P(H_2O)_0} P^\circ = \frac{X(C_2H_5OH)_0 P_{tot}}{X(C_2H_4)_0 X(H_2O)_0 P_{tot}^2} P^\circ$$

$$Q_{r,EI} = \frac{\frac{P(C_2H_5OH)_0}{P^{\circ}}}{\frac{P(C_2H_4)_0}{P^{\circ}}\frac{P(H_2O)_0}{P^{\circ}}} = \frac{P(C_2H_5OH)_0}{P(C_2H_4)_0 P(H_2O)_0} P^{\circ} = \frac{X(C_2H_5OH)_0 P_{tot}}{X(C_2H_4)_0 X(H_2O)_0 P_{tot}^2} P^{\circ}$$
Ou encore :
$$Q_{r,EI} = \frac{\left(\frac{n(C_2H_5OH)_0}{n_{tot}}\right)}{\frac{n(C_2H_4)_0}{n_{tot}}\frac{n(H_2O)_0}{n_{tot}}} \frac{P^{\circ}}{P_{tot}} = \frac{(n(C_2H_5OH)_0)}{n(C_2H_4)_0 (n(H_2O)_0)} \frac{P^{\circ}}{P_{tot}} n_{tot};$$

$$\underline{AN}$$
: $Q_{r,EI} = \frac{1}{1} \times 3$; Ainsi, $Q_{r,EI} = 3 > K^{\circ}$: Réaction dans le sens indirect;

L'avancement final ξ''_{eq} sera négatif.

Q8. On a toujours à l'équilibre : $Q_{r,eq} = K^{\circ} = 0.256$ (car même température qu'en I).

	$C_2H_{4(g)}$	$H_2O_{(g)} =$	$C_2H_5OH_{(g)}$	$n_{tot}(gaz)$
Etat Initial	1,00	1,00	1,00	3,00
Etat d'équilibre	$1,00 - \xi''_{eq}$	$1,00 - \xi''_{eq}$	$1 + \xi''_{eq}$	3,00 - ξ " _{eq}

Il faut exprimer $Q_{r,eq} = K^{\circ}$ pour calculer $\underline{\xi}^{"}_{eq} < \underline{0}$!!

On reprend, de nouveau, l'expression trouvée en Q2 : $K^{\circ} = \frac{(n(C_2H_50H)_{eq})}{n(C_2H_4)_{eq}(n(H_20)_{eq})} \frac{P^{\circ}}{P_{tot}} n_{tot}$.

$$\underline{\text{AN}}: K^{\circ} = \frac{(1+\xi^{"}_{eq})}{(1,00-\xi^{"}_{eq})^2} (3,00-\xi^{"}_{eq}) = 0.256.$$

Soit:
$$(1 + \xi^{"}_{eq})(3.00 - \xi^{"}_{eq}) = 0.256 (1.00 - \xi^{"}_{eq})^{2}$$
.

Ou encore :
$$3 + 2 \xi_{eq} - \xi_{eq}^2 = 0.256(1 - 2\xi_{eq}^2 + \xi_{eq}^2)$$
. Ainsi : $1.256 \xi_{eq}^2 - 2.512 \xi_{eq} - 2.74 = 0$.

$$\Delta = 20,07 \text{ et } \sqrt{\Delta} = 4,48 \text{ ; Alors } \xi_{eq1} = -0,78 \text{ mol et } \xi_{eq2} = 2,78 \text{ mol.}$$

La valeur de $\xi''_{eq2} > 0$ est impossible ; Alors $\underline{\xi''_{eq}} = \underline{\xi''_{eq1}} = -0$, 78 mol.

Et à l'équilibre, on a : $n(C_2H_5OH)_{eq} = 1 + \xi^{"}_{eq}$; Soit : $n(C_2H_5OH)_{eq} = 0,22$ mol et $n(C_2H_4)_{eq} = n(H_2O)_{eq} = 1 + 0,78 = 1,78$ mol.