Лекции по курсу

Математические основы криптологии

Университет ИТМО

Преподаватель: Петтай Павел Пээтерович

Лекция 1

0. Простейшие свойства арифметических операций на множестве целых чисел

Договоримся, что в рамках данного курса, если не оговорено противное, *всюду* речь идёт о целых числах.

Вспомним некоторые свойства операций сложения и умножения (на множестве целых чисел $\mathbb Z$).

- 1. $\forall a,b \ a+b=b+a$ коммутативность сложения
- 2. $\forall a,b,c (a+b)+c=a+(b+c)$ ассоциативность сложения
- 3. $\boxed{\exists 0 \ \forall a \ 0 + a = a + 0 = a}$ существование нейтрального по сложению элемента (нуля)
- 5. $\forall a,b \ a \cdot b = b \cdot a$ коммутативность умножения
- 6. $\forall a,b,c (a \cdot b) \cdot c = a \cdot (b \cdot c)$ ассоциативность умножения

Выполнение всех этих свойств говорит о том, что $(\mathbb{Z}, +, \cdot)$ - коммутативное кольцо с единицей.

Отсюда легко выводятся различные простые свойства целых чисел. Например,

9.
$$\forall a \in \mathbb{Z} \ a \cdot 0 = 0 \cdot a = 0$$
.

Доказательство.

$$a = a \cdot 1 = a \cdot (1+0) = a \cdot 1 + a \cdot 0 = a + a \cdot 0 \Rightarrow -a + a = -a + (a+a\cdot 0) \stackrel{'4','2'}{\Leftrightarrow} 0 = (-a+a) + a \cdot 0 \stackrel{'4'}{\Leftrightarrow} 0 = 0 + a \cdot 0 \stackrel{'3'}{\Leftrightarrow} 0 = a \cdot 0 \stackrel{'5'}{\Leftrightarrow} 0 = 0 \cdot a$$
. Ч.т.д.

10.
$$|\forall a \in \mathbb{Z} (-1) \cdot a = a \cdot (-1) = -a |.$$

Доказательство.

$$0=0 \cdot a=(1+(-1)) \cdot a=1 \cdot a+(-1) \cdot a=a+(-1) \cdot a \Rightarrow -a+0=-a+(a+(-1) \cdot a) \Leftrightarrow -a=(-a+a)+(-1) \cdot a \Leftrightarrow -a=(-1) \cdot a \cdot a \cdot a=(-1) \cdot a=($$

11.
$$| \forall a \in \mathbb{Z} - (-a) = a |$$

Доказательство. В Свойстве "4" элементы a и -a симметричны. **Ч.т.д.**

12.
$$(-1) \cdot (-1) = 1$$

Доказательство.

$$a \cdot ((-1) \cdot (-1)) \stackrel{'6'}{=} (a \cdot (-1)) \cdot (-1) \stackrel{'10'}{=} (-a) \cdot (-1) \stackrel{'10'}{=} - (-a) \stackrel{'11'}{=} a$$
 , подставляя сюда $a = 1$, получим: $1 = 1 \cdot ((-1) \cdot (-1)) \stackrel{'7'}{=} (-1) \cdot (-1)$. **Ч.т.д.**

13.
$$\forall a,b \in \mathbb{Z} (-a) \cdot (-b) = a \cdot b$$

Доказательство.

$$(-a)(-b)\stackrel{'10'}{=}(a\cdot(-1))((-1)\cdot b)\stackrel{'6'}{=}(a\cdot((-1)\cdot(-1)))\cdot b\stackrel{'12'}{=}(a\cdot1)\cdot b\stackrel{'7'}{=}a\cdot b$$
. Ч.т.д.

14.
$$\forall a,b \in \mathbb{Z} \ a \cdot (-b) = (-a) \cdot b = -(a \cdot b)$$

Доказательство.

$$a \cdot b + a \cdot (-b) = a \cdot (b + (-b)) = a \cdot 0 = 0 \Rightarrow -(a \cdot b) + (a \cdot b + a \cdot (-b)) = -(a \cdot b) + 0 \Leftrightarrow$$

$$(-(a \cdot b) + a \cdot b) + a \cdot (-b)) = -(a \cdot b) \Leftrightarrow 0 + a \cdot (-b)) = -(a \cdot b) \Leftrightarrow -(a \cdot b) \Leftrightarrow a \cdot (-b)$$

Тогда, по доказанному,
$$(-a) \cdot b = b \cdot (-a) = -(b \cdot a) = -(a \cdot b)$$
. **Ч.т.д.**

15.
$$\forall a,b,c \in \mathbb{Z}$$
 $a \cdot (b-c) = a \cdot b - a \cdot c$ \bowtie $\forall a,b,c \in \mathbb{Z}$ $(b-c) \cdot a = b \cdot a - c \cdot a$

дистрибутивность умножения относительно вычитания

Доказательство.

Вспомним, что b-c=b+(-c) по определению операции вычитания. А тогда,

$$a \cdot (b-c) = a \cdot (b+(-c)) = a \cdot b + a \cdot (-c) = a \cdot b + (-(a \cdot c)) = a \cdot b - (a \cdot c)$$
 $(b-c) \cdot a = (b+(-c)) \cdot a = b \cdot a + (-c) \cdot a = b \cdot a + (-(c \cdot a)) = b \cdot a - (c \cdot a)$. Ч.т.д.

1. Делимость в кольце целых чисел.

Опр.1.1. Говорят, что *число а делится на число b* (*кратно числу b*) и пишут a:b, если существует такое единственное число c, что $a=b\cdot c$.

Итак,
$$a:b \Leftrightarrow \exists !c \ a=b\cdot c$$
.

Опр.1.1'. Если существует такое единственное число c, что $a = b \cdot c$, то говорят также, что *число* b *делит число* a и пишут $b \mid a$.

Опр.1.2. *Разделить число* a *на число* b (без остатка), значит представить число a в виде $a = b \cdot c$.

Естественно задаться вопросом, верно ли, что любое число можно разделить на любое? Не сложно понять, что ответ на этот вопрос отрицательный. Попробуем, например, разделить число 3 на число 2. Т.к. произведение только положительных чисел является положительным числом, то результат деления тоже должен быть положительным числом. Сложение с положительным числом увеличивает сумму. Отсюда следует, что умножение положительного числа на большее положительное вернёт больший результат. В самом деле, если c > b, то есть a > 0 такой что a = b + a, тогда при a > 0 имеем: $a \cdot c = a \cdot (b + x) = ab + ax > ab$. Заметим, что a = b + a, тогда при a > 0 имеем: $a \cdot c = a \cdot (b + x) = ab + ax > ab$. Заметим, что a = b + a, тогда при a = b + a, тогда п

Утверждение 1.1. Никакое число не делится на ноль.

Доказательство. Предположим, что некоторое число a:0, при этом $a \neq 0$. Это значит, что существует такое c, что $a=0\cdot c=0$, но $a\neq 0$ - противоречие. Теперь попробуем разделить 0 на 0. Это значит, что существует такое c, что $0=0\cdot c=0$. Это верно при <u>любых</u> c, в этом случае результатом деления 0 на 0 будет является любое число, т.е. нет единственности (деление не будет операцией). Таким образом, 0 тоже нельзя разделить на 0. **Ч.т.д.**

Утверждение 1.2. Если $\exists c \ a = bc \ u \ b \neq 0$, то такое число $c \ e \partial u$ нственно.

Доказательство. Если b > 0, то при x < c bx < bc = a, при x > c bx > bc = a. Таким образом, при $x \ne c$ $bx \ne a$. Если b < 0, то при x < c bx > bc = a, при x > c bx < bc = a. Таким образом, при $x \ne c$ $bx \ne a$. **Ч.т.д.**

<u>Следствие 1.1.</u> При b = 0 по Утверждению 1.1, делимость на b невозможна, при $b \neq 0$ для доказательства делимости a:b достаточно доказать (например, предъявить явно) существование такого c, что a = bc, т.е. единственность можно не доказывать.

Свойства делимости

Свойство 1.1.

а.)
$$\forall a \neq 0 \ a : a$$
 6.) $\forall a \neq 0 \ a : (-a)$ в.) $\forall a \ a : 1$ г.) $\forall a \ a : (-1)$ Доказательство. а.) $a = a \cdot 1$, б.) $a = (-a) \cdot (-1)$, в.) $a = 1 \cdot a$, г.) $a = (-1) \cdot (-a)$ Ч.т.д.

Свойство 1.2. Если среди чисел $a_1, a_2, ..., a_n$ хоть одно число кратно d, то и произведение $a_1 \cdot a_2 \cdot ... \cdot a_n$ кратно d.

<u>Доказательство</u>. Пусть a_i : d, т.е. $a_i = bd$ В силу коммутативности и ассоциативности умножения чисел, множитель d передвигаем вперёд перед произведением. **Ч.т.д.**

Свойство 1.3. (транзитивность отношения делимости)

$$a:b \land b:c \Rightarrow a:c$$

Доказательство. $a : b \Leftrightarrow \exists d_1 \ a = bd_1, \ b : c \Leftrightarrow \exists d_2 \ b = cd_2.$ Тогда $a = bd_1 = (cd_2)d_1 = c(d_2d_1) \Rightarrow a : c$. Ч.т.д.

Свойство 1.4.

$$|a:c \land b:d \Rightarrow (ab):(cd)|$$

Доказательство. $a:c \Leftrightarrow \exists x \ a = cx \ , \ b:d \Leftrightarrow \exists y \ b = dy \ .$ Тогда

$$ab = (cx)(dy) \stackrel{ac-mb}{=} c((xd)y) \stackrel{\kappa OM-mb}{=} c((dx)y) \stackrel{ac-mb}{=} (cd)(xy) \Rightarrow ab : (cd)$$
. **Ч.т.д.**

Свойство 1.5. Если a = b + c и в этом равенстве два числа делятся на число d, то третье число также делится на число d.

Доказательство. Если a:d и b:d, то существуют k_1 и k_2 , такие что $a=d\cdot k_1$ и $b=d\cdot k_2$. Подставляя в исходное равенство, получим:

$$d \cdot k_1 = d \cdot k_2 + c \Leftrightarrow d \cdot k_1 - d \cdot k_2 = c \Leftrightarrow d(k_1 - k_2) = c \Rightarrow c : d.$$

Случай a:d и c:d разбирается в точности так же.

Если b:d и c:d, то существуют k_1 и k_2 , такие что $b=d\cdot k_1$ и $c=d\cdot k_2$. Подставляя в исходное равенство, получим: $a=d\cdot k_1+d\cdot k_2\Rightarrow a=d(k_1+k_2)\Rightarrow a:d$. **Ч.т.д.**

Замечание 1.1. Доказанное свойство легко обобщается на случай суммы любого количества слагаемых: в равенстве $a_1 + a_2 + ... + a_n = b$ есть п чисел кратных d в том и только том случае, когда все входящие в равенство числа кратны d. Доказательство практически аналогично доказательству Свойства 1.5. и остаётся читателю в качестве несложного упражнения.

Пример.1 Пусть 246 = 66 + x, тогда, т.к. 246:6 и 66:6, то x:6.

Пример.2 Пусть 247 = 66 + x, тогда т.к. 247/6, а 66:6, то x/6 (если бы x:6, то по Свойству 1.4, 247:6, что не верно).

Свойство 1.6.

$$\forall n \in \mathbb{N} \ a : b \Rightarrow a^n : b^n$$

Доказательство. Достаточно n раз применить Свойство 1.4. Например, $a:b \wedge a:b \stackrel{C_{6-60\,1.4}}{\Rightarrow} (a \cdot a):(b \cdot b) \Leftrightarrow a^2:b^2$. Теперь $a:b \wedge a^2:b^2 \stackrel{C_{6-60\,1.4}}{\Rightarrow} (a \cdot a^2):(b \cdot b^2) \Leftrightarrow a^3:b^3$. Тогда $a:b \wedge a^3:b^3 \stackrel{C_{6-60\,1.4}}{\Rightarrow} (a \cdot a^3):(b \cdot b^3) \Leftrightarrow a^4:b^4$ и т.д. **Ч.т.д.**

Замечание 1.2. Данное простое свойство можно было доказывать разными способами. Например, можно необходимое количество раз воспользоваться свойствами коммутативности и ассоциативности умножения (а значит

множители можно переставлять в произведении, как хочется). Тогда $a:b \Leftrightarrow \exists c \ a=bc$, следовательно, $a^n=(bc)^n=b^n\cdot c^n\Rightarrow a^n:b^n$.

Свойство 1.7.

 $a:b \land |a| \lessdot |b| \Rightarrow a = 0$, иными словами, меньшее по модулю число не может делиться на большее по модулю за исключением случая, когда меньшее по модулю число - ноль.

Доказательство. $a:b\Rightarrow \exists c\ a=bc\Rightarrow |a|=|bc|=|b|\cdot|c|$. Тогда $|b|\cdot|c|<|b|\Leftrightarrow |b|\cdot|c|-|b|<0\Leftrightarrow |b|(|c|-1)<0$. Т.к. $a:b,\ b\neq 0\Rightarrow |b|>0$, следовательно, $|c|-1<0\Leftrightarrow |c|<1$, но $c\in\mathbb{Z}$, значит c=0, но тогда $a=b\cdot c=b\cdot 0=0$. **Ч.т.д.**

Опр.1.3. Числа a и b называются accouuupoванными, если ab и ba.

Свойство 1.8. $a:b \land b:a \Rightarrow |a| = |b|$ (ассоциированные числа либо совпадают, либо отличаются только знаком, т.е. являются противоположными).

Приведём два разных доказательства.

Доказательство 1. $a:b \Leftrightarrow \exists c \ a=bc$, $b:a \Leftrightarrow \exists d \ b=ad$. Объединяя вместе, получим, что a=bc=(ad)c=a(dc), т.к. b:a, то $a\neq 0$, следовательно, обе части равенства можно сократить на a и получить 1=dc. Если $|d|=0\lor |c|=0$, то равенство невозможно. Если $|d|\geq 2$, то $1=|1|=|dc|=|d|\cdot |c|\geq 2$ $|c|\geq 2\cdot 1=2$ противоречие. Значит |d|=1, а тогда $|b|=|ad|=|a|\cdot |d|=|a|\cdot 1=|a|$. **Ч.т.д.**

Доказательство 2. Если |a| = |b|, то a = b или a = -b, в каждом из этих случаев при $a \neq 0$ и $b \neq 0$ верно $a:b \wedge b:a$ в силу Свойства 1.1. Покажем, что другие случаи невозможны. Если |a| < |b|, то, т.к. a:b, по Свойству 1.7. a = 0, что противоречит тому, что b:a. Аналогично, если |a| > |b|, то, т.к. b:a, по Свойству 1.7. b = 0, что противоречит тому, что a:b. **Ч.т.д.**

Следствие 1.2. $a,b \in \mathbb{N} \land a:b \land b:a \Rightarrow a=b$

<u>Свойство 1.9.</u> Среди любых n подряд идущих целых чисел ровно одно кратно n.

Доказательство. Заметим, что раз речь идёт об n подряд идущих целых числах, то модуль разности любых двух из них меньше n. Пусть речь идёт о числах $a_1,a_2,...,a_n$, где $\forall k\in\mathbb{N}\ k< n \to a_{k+1}=a_1+k$. Предположим, что среди данных чисел хотя бы два числа кратны n, пусть это числа a_i и a_j , т.е. $\exists c_i \ \exists c_j \ a_i = nc_i \land a_j = nc_j$. Но тогда

 $\mid a_i - a_j \mid = \mid nc_i - nc_j \mid = n \mid c_i - c_j \mid < n \Longrightarrow \mid c_i - c_j \mid < 1 \Longrightarrow \mid c_i - c_j \mid = 0 \Longrightarrow c_i = c_j \Longrightarrow a_i = a_j$ противоречие.

Теперь докажем существование. Пусть b - максимальное число, кратное n среди чисел, меньших a_1 . Если $b+n < a_1$, то это противоречит максимальности числа b, следовательно, $b+n \ge a_1$. В свою очередь, $b < a_1$, т.е. $b \le a_1 - 1$, а тогда $b+n \le (a_1-1)+n=a_1+n-1=a_n$ Следовательно, $b+n \in \{a_1,a_2,...,a_n\}$. Т.к. b:n, то и b+n:n, т.е. одно из чисел $a_1,a_2,...,a_n$ кратно n. **Ч.т.д.**

Пример. Среди чисел -123, -122, -121, -120, -119, -118, -117 ровно одно число кратно 7 (конкретно, число -119).

2. Деление с остатком.

Как мы увидели, далеко не всегда одно число делится на другое. Возникает естественное желание ввести некоторый аналог делимости, применимый всегда.

Опр.2.1. Разделить число a на число b с остатком, значит представить число a в виде a = bq + r, где $0 \le r < |b|$, при этом число a называют делимым, число b - делителем, число q - частным, а число r - остатком.

Например, $17 = 5 \cdot 3 + 2$, т.е. частным от деления 17 на 3 является 5, а остатком - число 2.

В свою очередь, $-17 = (-6) \cdot 3 + 1$, т.е. частным от деления числа -17 на число 3 является число -6, а остатком — число 1. Несмотря на то, что равенство $-17 = (-5) \cdot 3 - 2$ является верным, оно не является делением с остатком.

Возникают естественные вопросы: всегда ли можно разделить одно число на другое с остатком (возможно, равным нулю), определены ли частное и остаток единственным образом? Оказывается, если делимое отлично от нуля, то ответ на оба вопроса положительный.

Утверждение 2.1. Никакое число нельзя разделить на ноль с остатком.

Доказательство. Предположим, что некоторое число a делится на 0 с остатком. Это значит, что существуют такие целые q и r, что $a = 0 \cdot q + r$, где $0 \le r < |0| = 0$ - противоречие. **Ч.т.д.**

Теорема 2.1. $\forall a \ \forall b \ b \neq 0 \rightarrow \exists ! (q,r) \ a = bq + r \land 0 \leq r < |b|$ - Любое число можно разделить с остатком на любое ненулевое число, при этом частное и остаток определены однозначно.

Доказательство. Докажем существование. Пусть b>0, тогда по аксиоме Архимеда, найдётся такое целое число q, что $bq \le a$, а b(q+1)>a. Иными словами, в качестве q мы берём <u>самое большое</u> число, такое, что $bq \le a$. Тогда, раз $bq \le a$, то $\underline{a=bq+r}$, где $\underline{r\ge 0}$. Раз a < b(q+1), то $a = bq + r < b(q+1) = bq + b \Rightarrow \underline{r < b} = |b|$.

Пусть теперь b < 0, тогда по аксиоме Архимеда, найдётся такое целое число q, что $bq \le a$, а b(q-1) > a (раз q-1 < q и b < 0, то $(q-1)b > qb \Leftrightarrow bq < b(q-1)$). Иными словами, в качестве q мы берём <u>самое маленькое</u> число, такое, что $bq \le a$. Тогда, раз $bq \le a$, то $\underline{a = bq + r}$, где $\underline{r \ge 0}$. Раз a < b(q-1), то $a = bq + r < b(q-1) = bq - b = bq + (-b) = bq + |b| \Rightarrow r < |b|$.

Теперь докажем единственность.

Предположим, что есть хотя бы две пары подходящих частного и остатка, т.е. $a = bq_1 + r_1$, $0 \le r_1 < |b|$ и $a = bq_2 + r_2$, $0 \le r_2 < |b|$, где $\underline{(q_1, r_1) \ne (q_2, r_2)}$. Вычитая соответствующие части равенств, получим:

$$0=a-a=(bq_1+r_1)-(bq_2+r_2)=b(q_1-q_2)+r_1-r_2\Leftrightarrow r_2-r_1=b(q_1-q_2)\Rightarrow$$
 $\Rightarrow |r_2-r_1|=|b(q_1-q_2)|=|b|\cdot|q_1-q_2|$, но, т.к. $0\leq r_1<|b|$ и $0\leq r_2<|b|$, то $-|b|< r_2-r_1<|b|\Rightarrow |r_2-r_1|<|b|$, а тогда $|b|\cdot|q_1-q_2|<|b|$ $|a|-q_2|<1\Rightarrow q_1-q_2=0\Leftrightarrow q_1=q_2$. Наконец, $\underline{r_1}=a-bq_1=a-bq_1=a-bq_2=\underline{r_2}$ - противоречие. **Ч.т.д.**