Dos medidas decrecientes para STLC

Pablo Barenbaum

Cristian Sottile

3er Encuentro FunLeP

FaMAF - UNC

18 y 19 de mayo de 2023

Medida decreciente

$$M \rightarrow_{\beta} N \implies \#(M) > \#(N)$$

El koan #26

Asignar a los $\lambda-$ términos, de una manera $\mathit{fácil}$, ordinales que decrezcan con la computación

Pruebas de SN

► Técnicas semánticas

$$\llbracket A \to B \rrbracket = \llbracket t \mid \forall s \in \llbracket A \rrbracket. \ ts \in \llbracket B \rrbracket \rrbracket$$

- ▶ Técnicas sintácticas
 - increasing functionals: traducción a naturales y funciones crecientes
 - ightharpoonup grados de redexes: medida de Turing, WN, traducción a λI
- Nuestro trabajo
 - Traducción a cálculo non-erasing
 - Definición de medida aprovechando las características de este cálculo

El cálculo auxiliar λ^m

Motivación

ightharpoonup Cualidad *erasing* de β

$$(\lambda x.y)t \rightarrow_{\beta} y$$

- Motivación para no borrar
 - ► $INC \land WCR \land WN \implies SN \land CR$
 - ► Consideramos los s alcanzables desde t: $\{s \mid t \rightarrow_{\beta}^* s\}$
 - Sea t con forma normal es v, valen:
 - La f.n. de s es v por confluencia
 - |v| > |t|
 - |t| < |s| < |v|
 - ▶ Defino #(t) = |v| |t|

El cálculo auxiliar λ^m

Definición

► Términos: wrappers v memories

$$\ldots \mid t\{s\} \qquad \qquad t\{s\{r\}\}\{u\} \implies t\mathsf{L}$$

- ► Reducción: $(\lambda x.t)$ L $s \rightarrow_m t[s/x]{s}$ L
- Operaciones básicas: altura de un tipo, grado de un redex, grado máximo de un término, peso w(t) de un término
- Propiedades: SR. confluencia
- Simplificación
 - $ightharpoonup S_d(D)$ t: contracción simultánea de los redexes de grado D en t
 - $ightharpoonup S_*(t)$: simplificación iterativa desde D hasta 1, i.e. $S_1(\ldots S_D(t)\ldots)$
 - Propiedades de S*(t)
 - Alcanzable mediante reducción: $t \to_m^* S_*(t)$
 - Es la forma normal de t
- Reducción forgetful
 - ▶ Def. $t\{s\} \triangleright t$
 - ightharpoonup e.g. $(\lambda x.x)t \rightarrow_m t\{t\} \triangleright t$
 - ightharpoonup Conmuta con \rightarrow_m
 - ▶ Si $M \rightarrow_{\beta} N$ entonces $M \rightarrow_{m} s \triangleright N$

Medida W

- $\triangleright \lambda^m$ es increasing: w(t)
- $ightharpoonup \mathcal{W}(M) = \mathsf{w}(\mathsf{S}_*(M))$
- lntuición: la f.n. de M en λ^m tiene más recuerdos que la de N

Remark: no hace falta WN para definir esta medida

Introducción: la medida de Turing ${\mathcal T}$

- ▶ Definición: $\mathcal{T}(M) = [d \mid R \text{ redex de grado } d \text{ en } M]$
- Decrece al contraer el redex de mayor grado ubicado más a la derecha
- Nuestra idea: generalización a todos los redexes
- Por qué no funciona
 - D grado máximo
 - ightharpoonup contraigo redex R de grado d < D
 - R copia un redex S de grado D

Primer intento

- ► Generalizar a familia de medidas indexada por grados
- Intuición: considero grado y redexes de menor grado
- ▶ Definición: $\mathcal{T}_D(M) = [(d, \mathcal{T}_{d-1}(M)) \mid R \text{ redex de grado } d \leq D \text{ en } M]$
- Funciona para el caso D > d
 - ► Grado máximo D
 - ightharpoonup Contraigo d < D, que copia redexes de grado D

 - $\qquad \qquad \mathcal{T}_D(N) = [(D, \mathcal{T}_{D-1}(N)), \dots]$
- No funciona para el caso D=dComo considero redexes de menor grado, no sirve al copiar redexes del mismo grado

Segundo intento

- ► Nociones de residuo y desarrollo
- Intuición: considero grado y desarrollos del grado
 Contemplo no solo los redexes existentes, también los que existirán
- Definición

$$\mathcal{T}_{\leq D}^{\beta}(M) = [(d, \mathcal{R}_{\leq d}^{\beta}(M)) \mid R \text{ redex de grado } d \leq D \text{ en } M]$$

$$\mathcal{R}_{\leq D}^{\beta}(M) = [\mathcal{T}_{\leq D-1}^{\beta}(M') \mid \rho : M \xrightarrow{D}_{\beta}^{*} M']$$

- Funciona para el caso D = d
 Se reduce a ver que tengo más desarrollos D en M que en N
- No funciona para el caso D>dPuede borrarse el redex original y $\mathcal{T}^{\beta}_{< D-1}(M')=\mathcal{T}^{\beta}_{< D-1}(N')$

Definición

- lntuición: considero grado y desarrollos del grado en λ^m
- lacktriangle Definición de $\mathcal{T}^m_{\leq D}$ y $\mathcal{R}^m_{\leq D}$

$$\begin{split} \mathcal{T}^m_{\leq D}(M) &= [(d, \mathcal{R}^m_{\leq d}(M)) \mid R \text{ redex de grado } d \leq D \text{ en } M] \\ \mathcal{R}^m_{\leq D}(M) &= [\mathcal{T}^m_{\leq D-1}(M') \mid \rho : M \xrightarrow{D}_m^* M'] \end{split}$$

- ightharpoonup Funciona para el caso D=d
- Funciona para el caso D > d
- ▶ Teorema: $\mathcal{T}^m_{\leq D}(M) > \mathcal{T}^m_{\leq D}(N)$

Resumen

- ► Koan sobre medida fácil
- ► Técnicas semánticas y sintácticas
- ightharpoonup Cálculo non-erasing λ^m
- ightharpoonup Medida \mathcal{W} : sencilla, costosa
- ightharpoonup Medida \mathcal{T}^m : compleja, más costosa, extiende resultados de Turing