

Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica

C.d.L. Magistrale in Ingegneria Civile

Corso di <u>TECNICA delle COSTRUZIONI 2</u>

Domenico RAFFAELE

domenico.raffaele@poliba.it

PARTE III: Strutture in Acciaio

Lezione n.9 : Verifiche agli S.L.E. e allo S.L. di Fatica

La verifica agli SLE: necessità di limitare:

- □ deformazioni che possono compromettere l'uso della struttura;
- □- vibrazioni che possono dare fastidio o danno;
- □- danni agli elementi non strutturali.

Quasi sempre nelle strutture in acciaio, tale verifica è predominante rispetto alle verifiche di resistenza e determinante per il dimensionamento degli elementi strutturali.

Ai fini delle verifiche agli SLE, le NTC definiscono tre differenti combinazioni di carico:

- 1 C.C. rara, impiegata per gli SLE irreversibili correlati ad esempio alla rottura della pavimentazione o dei divisori $G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$
- **C.C. frequente**, impiegata per gli **SLE reversibili** ad esempio prodotti dalle vibrazioni che non causano rotture di parti non strutturali;

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

3 C.C. quasi permanente, impiegata per gli effetti a lungo termine

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

Definizione degli spostamenti verticali per le verifiche in esercizio

- C.C. RARA
$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$
 -

Elementi strutturali	Limit δ_{\max} ri per gl	i spostar $\frac{\delta_2}{L}$ erticali		
Coperture in generale	1/200	1/250		
Coperture praticabili	1/250	1/300		
Solai in generale	1/250	1/300		
Solai o coperture che reggono intonaco o altro materiale di finitura fragile o tramezzi non flessibili	1/250	1/350		
Solai che supportano colonne	1/400	1/500		VALORI MINIMI DA UTILIZZARE PER I PONTI
Nei casi in cui lo spostamento può compromettere l'aspetto dell'edificio	1/250	N.B.	: nel caso di	mensole, L = doppio dello sbalzo

HOYA

Nel calcolo delle frecce occorre tenere conto delle deformazioni indotte da **scorrimenti nei collegamenti bullonati**.

Ad esempio per una travatura reticolare si hanno ulteriori frecce dovuta agli scorrimenti nei correnti (δ_c) e nelle <u>diagonali</u> (δ_d) che possono essere valutate con le espressioni:

NUMERO DI GIUNTI NEI CORRENTI

LUNGHEZZA DELLE ASTE DI AGONALI

PASSO DELLE ASTE DI AGONALI

I potizzando 2 giunti nella mezzeria dei correnti ed un gioco foro-bullone di 0.5 mm risulta:

$$\delta_c = 2/6 \cdot 12/0.6 \cdot 0.5 = 3.4 \text{ mm}$$

$$\delta_d = 1.36/1 \cdot 12/0.6 \cdot 0.5 = 13.6 \text{ mm}$$

<u>Freccia aggiuntiva</u> indotta da scorrimenti nei collegamenti bullonati

= 17.0 mm

Controllo degli SPOSTAMENTI ORIZZONTALI

Tabella 4.2.XI Limiti di deformabilità per costruzioni ordinarie soggette ad azioni orizzontali

Limiti superiori per gli spostamenti orizzontali		
δ	<u> </u>	
h	H	
1 150	/	
1 300	/	
1 300	1 500	
	δ h 1 150 1 300	

In caso di specifiche esigenze tecniche e/o funzionali tali limiti devono essere opportunamente ridotti.

Per CIASCUN PIANO:

$$\frac{1}{300}h$$

Per L'INTERA STRUTTURA

$$\frac{1}{500}h_{tot}$$

Controllo delle VIBRAZIONI per le verifiche in esercizio

- C.C. FREQUENTE
$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$
 -

Negli edifici occorre inoltre limitare eccessive vibrazioni verificando che la **frequenza fondamentale** (f_o) del sistema strutturale (frequenza più bassa) sia superiore ad assegnati valori limite (f_{lim}) con l'intento di <u>limitare il disagio degli utenti</u>.

ESEMPIO 11

Verifica allo SLE per spostamenti verticali di un elemento inflesso

S275 ν

Dati

IPE300

= 300 mm

= 150 mm

 $t_f = 10.7 \text{ mm}$

t = 7.1 mm

r = 15 mm

 $A = 53.8 \text{cm}^2$

 $G_k = 8.42 \text{ kN/m}$

 $= 8356 \text{ cm}^4$

 $W_{pl,y} = 628 \text{ cm}^3$

Combinazione rara

$$F_{d(\text{SLE})} = G_{\text{K}} \cdot \gamma_{\text{G}} + Q_{\text{K}} \cdot \gamma_{\text{Q}} = (8.42 \cdot 1.0) + 4 \cdot 1.0) \text{ kN/m} = 12.42 \text{ kN/m}$$

Abbassamento massimo totale

$$\delta_{\text{max}} = \frac{5}{384} \cdot \frac{F_{d(\text{SLE})} \cdot L^4}{E \cdot I_{\text{y}}} = \frac{5}{384} \cdot \frac{12.42 \cdot 7000^4}{210000 \cdot (8356 \cdot 10^4)} = 22.12 \text{mm}$$

$$\delta_{\text{max}} = 22.12 \text{mm} \le \frac{L}{250} = 28 \text{mm}$$

OK

S.L. di Vibrazione $\delta \le 30 \text{ mm}$

Abbassamento dovuto ai soli carichi variabili

$$\delta_2 = \frac{5}{384} \cdot \frac{Q_k \cdot L^4}{E \cdot I_v} = \frac{5}{384} \cdot \frac{4 \cdot 7000^4}{210000 \cdot (8356 \cdot 10^4)} = 7.13 \text{mm}$$

$$\delta_2 = 7.13 \text{mm} \le \frac{L}{300} = 23 \text{mm}$$

OK

Caratteristiche della sezione

Classe: 1

Geometria

B = 220.0 mm; H = 220.0 mmtw = 9.5 mm; tf = 16 mm; r = 18 mm

Spessori

anima 9.5 mm; ali 16.0 mm

Caratteristiche Plastiche

Wpl,x=827.00 cm3; Wpl,y=393.90 cm3

Caratteristiche Elastiche

Peso = 71.48 daN/m; Area = 91.05 cm^2 Wx = 735.50 cm³; Wy = 258.50 cm^3

Momenti d'inerzia

Jx 8091.78 cm⁴; Jy 2843.29 cm⁴

SLE: Verifica deformazioni in esercizio

$$\delta_{\text{tot}} = \delta_1 + \delta_2 = \frac{5}{384} \frac{(7 + 250) \cdot 400^4}{20000000 \cdot 8091.78} = 0.529 \text{ cm} < L/200 = 2.00 \text{ cm}$$

$$\frac{\text{Freccia totale}}{\text{Freccia per solo carico variabile}} \quad \delta_{\text{tot}} = \delta_1 + \delta_2 = \frac{5}{384} \frac{(7 + 250) \cdot 400^4}{20000000 \cdot 8091.78} = 0.529 \ cm < L/200 = 2.00 \ cm$$

$$\frac{5}{384} \frac{(250) \cdot 400^4}{20000000 \cdot 8091.78} = 0.515 \ cm < L/250 = 1.60 \ cm$$

Verifica di resistenza a **Flessione**

$$\frac{\text{sezione in classe 1}}{M_{Rd}^{p}} = \frac{W_{pl} \cdot f_{yk}}{1.05} = \frac{827000 \cdot 235}{1.05} = 185090476 \ Nmm = 185 \ kNm \ > M_{Sd} = 77 \ kNm$$

Verifica di resist. a Taglio

Area resistente al taglio $A = h \cdot t_w + 4 \cdot r \cdot t_f = 22 \cdot 0.95 + 4 \cdot 1.8 \cdot 1.6 = 14.54 \text{ cm}^2$

$$V_{Rd}^{p} = \frac{A \cdot f_{yk}}{1.05 \cdot \sqrt{3}} = \frac{14.54 \cdot 23500}{1.05 \cdot \sqrt{3}} = 188 \ kN > V_{Sd} = 77 \ kN$$

Carichi mq di solaio

• Permanente strutturale (G₁)

Profilati IPE 140: 0.129 kN/m / 0.80 m = 0.161 kN/mq

• Permanente non strutturale (G2)

Tavelloni in laterizio (6 cm):	1.00 x 1.00 x 0.06 x 8		= 0.48 kN/mg
Calcestruzzo alleggerito (6 cm):	$1.00 \times 1.00 \times 0.06 \times 13$		= 0.78 kN/mq
Massetto armato (4 cm):	$1.00 \times 1.00 \times 0.04 \times 25$		= 1.00 kN/mq
Massetto in malta di cemento (2 cm):	$1.00 \times 1.00 \times 0.02 \times 21$		= 0.42 kN/mq
Intonaco soffitto in gesso (1.5 cm):	$1.00 \times 1.00 \times 0.015 \times 12$		= 0.18 kN/mq
Pavimento in ceramica:			= 0.40 kN/mq
		Totale	= 3.26 kN/mg

Variabile (Q_k)

Sovraccarico per uffici aperti al pubblico: = 3.00 kN/mq

✓ Caratteristiche della sezione (Classe: 1)

Peso = 12.90 daN/m; Area = 16.40 cm^2

Moduli di resistenza

 $Wpl,x=88.40 \text{ cm}^3$; $Wx=77.30 \text{ cm}^3$;

Geometria

B = 73 mm; H = 140 mmtw = 4.7 mm; tf = 6.9 mm; r = 7 mm Momenti d'inerzia

 $Jx = 541 \text{ cm}^4$; $Jy = 44.90 \text{ cm}^4$

✓ Caratteristiche dei materiali

Acciaio S235

fyk= 235 MPa; E= 200000 MPa

√ Combinazione di carico allo SLU

$$q = (\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{O1} \cdot Q_1) \cdot i = [(1.3 \cdot 0.16) + (1.5 \cdot 3.26) + (1.5 \cdot 3.00)] \cdot 0.8 = 9.56 \cdot 0.80 = 7.65 \text{ kN/m}$$

✓ Combinazione di carico allo SLE (RARA)

$$q = (G_1 + G_2 + Q_1) \cdot i = [0.16 + 3.26 + 3.00] \cdot 0.80 = 6.39 \cdot 0.80 = 5.12 \text{ kN/m}$$

√ Calcolo della luce teorica

 q_{SLE} = 5,12 KN/m

$$V_{Sd} = \frac{1}{2}ql = \frac{1}{2} \cdot 7.65 \cdot 3.90 \approx 15 \text{ kN}$$

 $\delta = \frac{5qL^4}{384EJ}$

q_{SLU}= 7,65 KN/m

$$M_{Sd} = \frac{1}{8}ql^2 = \frac{1}{8} \cdot 7.65 \cdot 3.90^2 \approx 14.55 \text{ kNm}$$

s.L. di Vibraz. $\delta \le 30 \text{ mm} \rightarrow f_0 \ge 3 \text{Hz} \cdot \text{OK}$

SLE: Verifica deformazioni in esercizio

Freccia totale

$$\delta_1 = \delta_1 + \delta_1 = \frac{5}{384} \frac{\left[16 + 326 + 300\right] \cdot 390^4}{200000000 \cdot 541} = 1.43 \ cm < L/200 = 1.56 \ cm$$

Freccia per solo carico variabile

$$\delta_2 = \frac{5}{384} \frac{(300) \cdot 390^4}{20000000 \cdot 541} = 0.67 \ cm < L/300 = 1.30 \ cm$$

Verifica di resistenza a Flessione

sezione in classe 1

$$M_{Rd}^{p} = \frac{W_{pl} \cdot f_{yk}}{1.05} = \frac{88400 \cdot 235}{1.05} = 19784762 \ Nmm = 19.8 \ kNm \ > M_{Sd} = 14.55 \ kNm$$

Verifica di resist. a Taglio

Area resistente al taglio

$$A = h \cdot t_w + 4 \cdot r \cdot t_f = 14 \cdot 0.47 + 4 \cdot 0.7 \cdot 0.69 = 8.51 \, cm^2$$

Politecnico di Bari Tecnica delle Costruzioni 2 Domenico RAFFAELE

$$V_{Rd}^{p} = \frac{A \cdot f_{yk}}{1.05 \cdot \sqrt{3}} = \frac{8.51 \cdot 23.5}{1.05 \cdot \sqrt{3}} = 110 \ kN > V_{Sd} = 15 \ kN$$

LA FATICA

La **fatica** è quel fenomeno secondo cui i materiali sottoposti a dei carichi variabili tra un valore massimo (σ_{max}) e uno minimo (σ_{min}), e ripetuti nel tempo per un certo numero di volte (cicli), presentano una diminuzione della sollecitazione massima sopportabile.

- Il fenomeno è descritto da diagrammi sperimentali ($logN-\Delta\sigma$), detti curve di Wohler nei quali:
- □ Δσ rappresenta l'entità della variazione di tensione prodotta dai carichi di servizio
- □ Nè il numero di cicli in cui tale variazione può verificarsi senza danneggiamento per il materiale

Le due curve evidenziano caratteristiche marcatamente diverse:

- 1) mentre le curve sperimentali relative all' $\underline{acciaio}$ presentano asintoti orizzontali che indicano la possibilità di realizzare una vita illimitata a fatica per cicli di tensioni di ampiezza minore di $\Delta\sigma_R$
- 2) nel caso del **conglomerato** non è stata dimostrata l'esistenza di un tale asintoto orizzontale.

I tipi di fatica

VERIFICA A FATICA

Si definisce limite di fatica ($\Delta \sigma_R$) la massima resistenza residua del materiale per un numero elevato di cicli (generalmente 10 milioni di cicli per gli acciai).

Per strutture soggette a carichi ciclici deve essere verificata la resistenza a fatica imponendo:

	Criteri di valutazione	Conseguenze della rottura		
		Conseguenze moderate	Conseguenze significative	
	Danneggiamento accettabile	$\gamma_{\rm M}=1,00$	$\gamma_{\rm M}=1,15$	
	Vita utile a fatica	$\gamma_{\rm M}=1,15$	$\gamma_{\rm M} = 1,35$	
1 4				

richiede dettagli idonei alla ridistribuzione degli sforzi e prestabilite **procedure di ispezione e manutenzione**

CURVE DI RESISTENZA A FATICA

La resistenza a fatica può ricavarsi dai grafici seguenti in funzione della categoria del dettaglio costruttivo e del numero totale di cicli di sollecitazione cui si prevede sarà sottoposta la struttura

Nel caso degli edifici <u>la verifica a fatica non e generalmente necessaria</u>, salvo che per membrature che sostengono macchine vibranti o dispositivi di sollevamento e trasporto dei carichi

classe del dettaglio	Dettaglio costruttivo	Descrizione	Requisiti
		Prodotti laminati e estrusi	
160 140 ⁽¹⁾ 1	2 3	1) lamiere e piatti laminati; 2) Lamiere e piatti; 3) Profili cavi senza saldatura,	Difetti superficiali e di laminazione e spigoli vivi devono essere eliminati mediante molatura
		rettangolari e circolari	
140		Lamiere tagliate con gas o meccanicamente	Tutti i segni visibili di intaglio sui bordi devono essere eliminati Le aree di taglio devono essere lavorate a
125 ⁽¹⁾	(4)	Taglio a gas automatico o taglio meccanico e successiva eliminazione delle tracce del taglio	macchina. Graffi e scalfitture d lavorazione devono essere paralleli agli sforzi.
125 112 ⁽¹⁾	5	Taglio a gas manuale o taglio a gas automatico con tracce del taglio regolari e superficiali e	4) e 5) Angoli rientranti devono essere raccordati con pendenza ≤1:4, in caso contrario occorre impiegare opportuni fattori di
112"		successiva eliminazione di tutti i difetti dei bordi	concentrazione degli sforzi. Non sono ammesse riparazion mediante saldatura

(1) classe da adottare per acciai resistenti alla corrosione

Classe del dettaglio	Dettaglio costruttivo	Descrizione	Requisiti
100		6) e 7) Prodotti laminati e estrusi (come quelli di tabella C4.2.XVII.a) soggetti a tensioni tangenziali	$\Delta \tau \ \mbox{calcolati con}$ $\Delta \tau = \frac{\Delta V \cdot \mbox{S}(t)}{I \cdot t}$

CLASSIFICAZIONE DEI DETTAGLI STRUTTURALI TIPO PER VERIFICHE A FATICA

Riassumendo:

Si individua il dettaglio e le corrispondenti resistenze a fatica per il prefissato numero di cicli (2 milioni)

⇒ La verifica a fatica (per tensioni normali) si effettua con:

$$\gamma_{\mathsf{Ff}} \Delta \sigma_{\mathsf{E}} \leq \frac{\Delta \sigma_{\mathsf{C}}}{\gamma_{\mathsf{Mf}}}$$

⇒ La verifica a fatica (per tensioni tangenziali) si effettua con:

$$\gamma_{\mathsf{Ff}} \Delta \tau_{\mathsf{E}} \leq \frac{\Delta \tau_{\mathsf{C}}}{\gamma_{\mathsf{Mf}}}$$

In presenza di <u>azione combinata</u> la verifica a fatica si effettua con:

$$\left(\frac{\gamma_{\text{Ff}}\Delta\sigma_{\text{E}}}{\Delta\sigma_{\text{C}}/\gamma_{\text{Mf}}}\right)^{\!3} + \left(\frac{\gamma_{\text{Ff}}\Delta\tau_{\text{E}}}{\Delta\tau_{\text{C}}/\gamma_{\text{Mf}}}\right)^{\!5} \leq 1.0$$

ESERCIZI RIASSUNTIVI: S.L.U. - S.L.E.

ESERCIZIO 01

Resistenza allo SLU di un diagonale teso di controvento

 f_{yk} = 275 MPa

tensione di snervamento per t <40mm

acciaio S275

 f_{tk} = 430 MPa

tensione di rottura per t <40mm

$$\gamma_{MO}$$
 = 1.05

 $\gamma_{M2} = 1.25$

coefficiente di sicurezza parziale per resistenza

coefficiente di sicurezza parziale per rottura localizzata

 $A = 2x 2269 \text{ mm}^2$

Area trasversale LORDA

$$N_{pl.Rd} = \frac{A \cdot f_{yk}}{\gamma_{M0}} = 1189 \, kN$$

 $d_0 = 17mm$

diametro del foro bulloni

t = 12mm

spessore angolare Area trasversale NETTA

$$A_{net} = A - t \cdot d_o = 4334 \text{ mm}^2$$

$$N_{u.Rd} = \frac{0.9 A_{net} \cdot f_{tk}}{\gamma_{M2}} = 1342 \, kN$$

RESISTENZA DI PROGETTO A TRAZIONE

p₁=90 mm

$$N_{t.Rd} = min(N_{pl.Rd}, N_{u.Rd}) = 1189kN$$

la resistenza a trazione della diagonale è governata dalla rottura della sezione lorda (ROTTURA DUTTILE)

n.ro 3 fori

 $d_0=17 \text{ mm}$

ESERCIZIO 02

Progetto allo SLU di un diagonale teso di controvento

 f_{yk} = 275 MPa

tensione di snervamento per t < 40mm

acciaio S275

 f_{tk} = 430 MPa

tensione di rottura per t <40mm

$$\gamma_{MO}$$
 = 1.05

coefficiente di sicurezza parziale per resistenza

 $\gamma_{M1} = 1.25$

coefficiente di sicurezza parziale per rottura localizzata

AREA TEORICA di PROGETTO

ALTEZZA Teorica

$$h_d = \frac{A_d}{t} = 76 \, mm$$

ALTEZZA Reale

$$h = 80mn$$

spessore piatto

t = 10mn

La dimensione del piatto in acciaio S275 che sopporta lo sforzo di progetto è FL 80x10

Determinazione del foro limite

Resistenza plastica della sezione lorda

$$A = t \cdot h = 800 \, nm^2$$

area sezione lorda

$$N_{pl.Rd} = \frac{A \cdot f_{yk}}{\gamma_{M0}} = 210 \, kV$$
 sforzo normale plastico

Resistenza ultima della sezione netta

$$A_{net}(d_0) = A - t \cdot d_0$$

area netta

$$N_{u.Rd}(d_0) = \frac{0.9A_{net}(d_0) \cdot f_{tk}}{\gamma_{M2}}$$

sforzo normale ultimo

Per bulloni con diametro superiore ad M12 (d₀=13mm) l'asta è soggetta a rottura fragile.

ESERCIZIO 03

MODELLO GEOMETRICO

Verifica allo SLU di un'asta compressa tozza

(profilo **HE160B** alto **L=0,3 m** incastrato alla base ed utilizzato come dispositivo di appoggio sottoposto a sforzo normale centrato)

tensione di snervamento per t < 40mm

$$f_{tk}$$
= 430 MPa

tensione di rottura per t <40mm

$$\gamma_{M1} = 1.05$$

coefficiente di sicurezza parziale per INSTABILITA'

$$\lambda_p = \pi \cdot \sqrt{\frac{E}{f_{yk}}} = 86.815$$

SNELLEZZA LIMITE

soglia oltre la quale occorre sostituire ad f_{vk} la σ_{cr}

N_{Fd}=250kN

area della sezione trasversale lorda

 $I_{v} = 24919983mm^{4}$

momento d'inerzia secondo l'asse forte

$$i_y = \sqrt{\frac{I_y}{A}} = 68 mm$$

raggio giratore secondo l'asse forte

 $I_{\tau} = 8892339mm^4$

momento d'inerzia secondo l'asse debole

$$i_Z = \sqrt{\frac{I_Z}{A}} = 40 \, mm$$

raggio giratore secondo l'asse debole

Sbandamento intorno all' asse forte y-y

$$L_{0.y} = 2 \cdot L$$

 $L_{0,y} = 2 \cdot L$ $\lambda_y = \frac{L_{0,y}}{i_y} = 8.853$

snellezza adimensionale intorno ad y-y

$$\lambda'_{y} = \frac{\lambda_{y}}{\lambda_{p}} = 0.1$$

Sbandamento intorno all' asse debole z-z

$$L_{0.z} = 2 \cdot L$$

= 14.82

snellezza adimensionale intorno ad z-z

$$\lambda'_{Z} = \frac{\lambda_{Z}}{\lambda_{p}} = 0.17$$

< 0.2

Politecnico di Bari Tecnica delle Costruzioni 2 **Domenico RAFFAELE**

ASTA TOZZA

Trattandosi di ASTA TOZZA la resistenza a compressione di progetto vale:

 $N_{Ed} = 250kN$ < $N_{c.Rd} = 1421kN$

OK

ESERCIZIO 04

Capacità portante di una colonna compressa snella

f_{yk}= 275 MPa

tensione di snervamento per t < 40mm

$$f_{tk}$$
= 430 MPa

tensione di rottura per t <40mm

$$\gamma_{M1} = 1.05$$

coefficiente di sicurezza parziale per INSTABILITA'

Si assume uno SCHEMA PENDOLARE

Sbandamento intorno all' asse forte y-y

interne Profilo di Classe 1

$$A = 5425 mm^2$$

area della sezione trasversale

lorda

 $I_{y} = 24919983mm^{4}$

momento d'inerzia secondo

l'asse forte

$$i_y = \sqrt{\frac{I_y}{A}} = 68 \, mm$$

raggio giratore secondo

l'asse forte

$$I_7 = 8892339mm^4$$

momento d'inerzia secondo

l'asse debole

$$i_Z = \sqrt{\frac{I_Z}{A}} = 40 \, mm$$

raggio giratore secondo l'asse

debole

snellezza adimensionale intorno ad y-y

CARICO CRITICO EULERIANO per instabilità flessionale

$$\lambda' y = \sqrt{\frac{A \cdot f_{yk}}{N_{cr.y}}} = 0.59$$

Sbandamento intorno all' asse debole z-z

$$N_{CP.Z} = \frac{\pi^2 \cdot E \cdot I_Z}{L_{0.Z}^2} = 1505 \, kN$$

CARICO CRITICO EULERIANO per instabilità flessionale

snellezza adimensionale intorno ad z-z

$$\lambda'_{z} = \sqrt{\frac{A \cdot f_{yk}}{N_{cr.z}}} = 1$$

Determinazione dei coefficienti di riduzione per instabilità $\chi(\lambda,\alpha)$

$\overline{\lambda} = \frac{\lambda}{2}$		314	coefficiente χ	
λ_y	а	b	/ \	С
0.1	1.000	1.000		1.000
0.2	1.000	1.000		1.000
0.3	0.977	0.964		0.949
0.4	0.953	0.926		0.897
0.5	0.924	0.884		0.843
0.6	0.890	0.837		0.785
0.7	0.848	0.784		0.725
0.8	0.796	0.724		0.662
0.9	0.734	0.661		0.600
1	0.666	0.597		0.540
1.1	0.596	0.535		0.484
1.2	0.530	0.478		0.434
		The second second		The state of the s

$$\chi_d = min(\chi_y, \chi_z) = 0.54$$

La colonna compressa è soggetta ad instabilità globale intorno all'asse debole z-z.

$$Rd = \frac{\chi_d \cdot A \cdot f_{yk}}{\gamma_{M1}} = 771 \cdot kN$$

La resistenza a compressione allo SLU per instabilità è pari a 771 kN

ESERCIZIO 05

Valutazione comparata (a parità di area) della capacità portante allo SLU di aste compresse in acciaio

OHS

177,8x10

 $A_{IPE} = 5381 \cdot mm^2$

 $\lambda'_{y_IPE} = 0.32$

 $\lambda'_{z} IPE = 1.2$

$$\lambda'_{z_OHS} = 0.59$$

acciaio S275

tensione di snerv. per t < 40mm

$$f_{vk}$$
= 275 MPa

tensione di rottura per t <40mm

$$f_{tk} = 430 \, MPa$$

Coeff. parziale per INSTABILITA'

$$\gamma_{M1} = 1.05$$

$$\lambda'_{y \ croce} = 1.08$$

$$\lambda'_{z_croce} = 1.08$$

$$\lambda'_{y} = \sqrt{\frac{A \cdot f_{yk}}{N_{cr.y}}}$$

Snellezze adimensionali asse forte y-y

Snellezze adimensionali asse debole z-z

 $A_{HEB} = 5425 mm^2$

 $\lambda'_{y} HE = 0.59$

 $\lambda'_{Z_HE} = 1.0$

Politecnico di Bari Tecnica delle Costruzioni 2 **Domenico RAFFAELE**

Profilo HEB

Coefficienti di riduzione per instabilità

$$\lambda'_{y_{-}HE} = 0.59$$

$$\chi_{y_HEB} = \chi \left(\lambda'_{y_HE}, \alpha_b \right) = 0.842$$

$$\chi_{z_HEB} = \chi \left(\lambda'_{z_HE}, \alpha_c \right) = 0.54$$

$$\lambda'_{z_{-HE}} = 1.00$$

$$\chi_{z HEB} = \chi \left(\lambda'_{z HE}, \alpha_c \right) = 0.54$$

La colonna compressa è soggetta ad instabilità globale intorno all'asse debole z-z.

Tensione di collasso

$$\sigma_{b.d_HEB} = \chi_{HEB} \cdot \frac{f_{yk}}{\gamma_{M1}} = 141 \cdot MPa$$

Profilo IPE

Coefficienti di riduzione per instabilità

$$\lambda'_{y_IPE} = 0.32$$

curva **a**

$$\chi_{y_IPE} = \chi \left(\lambda'_{y_IPE}, \alpha_a \right) = 0.97$$

$$\lambda'_{z_{\text{-IIPE}}}=1.20$$

curva **b**

$$\chi_{z_IPE} = \chi \left(\lambda'_{z_IPE}, \alpha_b \right) = 0.478$$

$\overline{\lambda} = \frac{\lambda}{2}$	Coefficiente χ		
$\lambda = \lambda_{y}$	а	b	С
0.1	1.000	1.000	1.000
0.2	1.000	1.000	1.000
0.3	0.977	0.964	0.949
0.4	0.953	0.926	0.897
0.5	0.924	0.884	0.843
0.6	0.890	0.837	0.785
0.7	0.848	0.784	0.725
0.8	0.796	0.724	0.662
0.9	0.734	0.661	0.600
1	0.666	0.597	0.540
1.1	0.596	0.535	0.484
1.2	0.530	0.478	0.434

La colonna compressa è soggetta ad instabilità globale intorno all'asse debole z-z.

Tensione di collasso

$$\sigma_{b.d_IPE} = \chi_{IPE} \cdot \frac{f_{yk}}{\gamma_{MI}} = 125 \cdot MPa$$

Profilo cavo OHS

Coefficienti di riduzione per instabilità

$$\lambda'_{y_HE}$$
 =0.59

$$\chi_{y_OHS} = \chi \left(\lambda'_{y_OHS}, \alpha_c \right) = 0.791$$

$$\lambda'_{z_{-HE}} = 0.59$$

$$\chi_{z_OHS} = \chi \left(\lambda'_{z_OHS}, \alpha_c \right) = 0.791$$

$\overline{\lambda} = \frac{\lambda}{2}$	Coefficiente χ		
λ_y	а	b	С
0.1	1.000	1.000	1.000
0.2	1.000	1.000	1.000
0.3	0.977	0.964	0.949
0.4	0.953	0.926	0.897
0.5	0.924	0.884	0.843
0.6	0.890	0.837	0.785
0.7	0.848	0.784	0.725
0.8	0.796	0.724	0.662
0.9	0.734	0.661	0.600
1	0.666	0.597	0.540
1.1	0.596	0.535	0.484
1.2	0.530	0.478	0.434

La colonna compressa è soggetta ad instabilità globale flessionale

$$\sigma_{b.d_OHS} = \chi_{OHS} \cdot \frac{f_{yk}}{\gamma_{M1}} = 207 \cdot MPa$$

Profilo a croce

Coefficienti di riduzione per instabilità

$$\lambda'_{y_HE} = 1.08$$

curva **c**

$$\chi_{y_croce} = \chi \left(\lambda'_{y_croce}, \alpha_c \right) = 0.495$$

$$\lambda'_{z_{-HE}} = 1.08$$

curva **c**

$$\chi_{z_croce} = \chi \left(\lambda'_{z_croce}, \alpha_c \right) = 0.495$$

La colonna compressa è soggetta ad instabilità globale flessionale

ESERCIZIO 06

VERIFICHE SLU-SLE di una trave secondaria inflessa impedita di sbandare lateralmente

acciaio S275

tensione di snerv. per t < 40mm

$$f_{vk}$$
= 275 MPa

tensione di rottura per t <40mm

$$f_{tk}$$
= 430 MPa

Coeff. Di sicurezza parziale'

$$\gamma_{MO} = 1.05$$

 $t_w = 6.5mm$

$$h_{\mathcal{W}} = h - 2 \cdot t_{\mathcal{W}} = 177 \cdot mm$$

$$A_v = A - 2 \cdot b \cdot t_f + (t_w + 2 \cdot r) \cdot t_f$$

$$A_{v.z} = 1808mm^2$$
 > $\eta \cdot t_w \cdot h_w = 1381 \cdot mm^2$

 $W_{pl.y} = 429485 mm^3$

Classe della sezione a flessione:

 $I_{v} = 36921492mm^{4}$

modulo di resistenza plastico

CLASSE 2

momento d'inerzia intorno all'asse fi

Politecnico di Bari Tecnica delle Costruzioni 2 **Domenico RAFFAELE**

ANALISI DEI CARICHI

$$g_{2K} = 4.00 \text{ KN/m}^2$$

Incidenza travi secondarie

$$q_{1K} = 0.21 \text{ KN/m}^2$$

Carichi di esercizio

$$q_{K} = 2.00 \text{ KN/m}^{2}$$

$$Q_k = (q_K) \cdot i$$

$$(1.5) \cdot i = 4.00 \text{ KN/m}$$

COMBINAZIONE DELLE AZIONI

$$F_{d_SLU} = \gamma_G G_k + \gamma_Q Q_k = 16.95 \text{ kN/m}$$

$$F_{d_SLE} = G_k + Q_k$$
 = 12.42 kN/m \Diamond SLE - c.c. rara

Controllo degli **SPOSTAMENTI**

$$F_{d_SLE_f} = G_k + \psi_{II} \cdot Q_k = 10.42 \text{ kN/m}$$
 | SLE - c.c. frequente

Controllo delle **VIBRAZIONI**

SLU - FLESSIONE

Analisi strutturale (domanda)

$F_{d_SLU} = 16.95 \text{ kN/m}$

$$M_{Ed.max} = \frac{F_{d_SLU} \cdot L_{Ts}^{2}}{8} = 103.8 \text{kN} \cdot m$$

$$W_{pl,y} = 429485 mm^3$$
 $f_{yk} = 275 MPa$

$$M_{c.Rd} = \frac{W_{pl.y}f_{yk}}{\gamma_{M0}} = 112.5kN \cdot m$$
1.05

La presenza di vincoli torsionali continui tramite la lamiera grecata esclude il pericolo di instabilità Latero-Torsionale

 $M_{Ed,max} < M_{c,Rd}$

OK

SLU - TAGLIO

Analisi strutturale (domanda)

$F_{d_SLU} = 16.95 \text{ kN/m}$

Resistenze di progetto (capacità)

$$h_{w} = \frac{h_{w}}{t_{w}} = 27.2$$

$$= \frac{h_{w}}{t_{w}} = 55.5$$

$$= \frac{72 \cdot \epsilon}{\eta} = 55.5$$
snellezza anima

snellezza locale limite dell'anima a taglio **per elementi non irrigiditi**

 $V_{Ed,max} < V_{pl,Rd}$

OK

NON SI ATTIVANO

FENOMENI INSTABILI

$$Q_k = 4.00 \text{ KN/m}$$

SLE - SPOSTAMENTI VERTICALI

$$G_k = 8.42 \text{ KN/m}$$

 $F_{d(SLF)r} = 12.42 \text{ KN/m}$

$$I_{v} = 36921492mm^{4}$$

Abbassamento massimo totale

$$\delta_{\text{max}} = \frac{5}{384} \cdot \frac{F_{d(\text{SLE})} \cdot L^4}{E \cdot I_y} = 50.1 \text{ mm} > \frac{L}{250} = 28 \text{mm}$$

$$\downarrow \text{NO}$$
SI con controfreccia di costruzione pari a (50.1-28)=22.1 mm

Abbassamento dovuto ai soli carichi variabili

$$\delta_2 = \frac{5}{384} \cdot \frac{Q_k \cdot L^4}{E \cdot I_y} = -16.1 \text{ mm} \quad \le \frac{L}{300} = 23 \text{mm}$$
 OK

Verifica NON soddisfatta

$\psi \cdot Q_k = 0.5 \cdot 4.00 = 2.00 \text{ KN/m}$

SLE - Controllo VIBRAZIONI

 $G_k = 8.42 \text{ KN/m}$

 $F_{d(SLE)f} = 10.42 \text{ KN/m}$

$$\delta_{\text{max}} = \frac{5}{384} \cdot \frac{F_{d(\text{SLE})} \cdot L^4}{E \cdot I_{\text{y}}} = 42 \text{ mm} > 30 \text{ mm} \quad \boxed{ } \qquad \qquad \int f_o < 3 \text{ Hz} \quad \boxed{ } \qquad \qquad \qquad$$

