9.4.24

BEERAM MADHURI - EE25BTECH11012

October 2025

Question

A cottage industry produces a certain number of toys in a day. The cost of production of each toy (in rupees) was found to be 55 minus the number of toys produced in a day. On a particular day, the total cost of production was 750Rs. We would like to find out the number of toys produced on that day.

finding the number of toys produced on that day:

Let number of toys produced per day = xcost of each toy = 55 - xTotal Cost of toys = x(55 - x)

On a particular day cost = 750

$$(55 - x)x = 750$$
 (1)
$$x^2 - 55x + 750 = 0$$
 (2)

$$x^2 - 55x + 750 = 0 (2)$$

this can be compared with the characteristic equation of a Matrix

$$A^{2} - tr(A)A + (\det(A))I = 0$$
 (3)

$$tr(A) = 55 (4)$$

$$\det(A) = 750 \tag{5}$$

from this Matrix A can be:

$$A = \begin{bmatrix} 0 & 1 \\ -750 & 55 \end{bmatrix} \tag{6}$$

Finding Eigenvalues of A

$$|A - \lambda I| = 0 \tag{7}$$

$$\begin{bmatrix} 0 & 1 \\ -750 & 55 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = 0 \tag{8}$$

$$\begin{bmatrix} -\lambda & 1\\ -750 & 55 - \lambda \end{bmatrix} = 0 \tag{9}$$

$$-\lambda(55 - \lambda) + 750 = 0 \tag{10}$$

By solving this equation, eigenvalues are:

$$\lambda_1 = 25, \quad \lambda_2 = 30 \tag{11}$$

∴ no. of toys produced that day can be either 25 or 30.

```
import numpy as np
import matplotlib.pyplot as plt

# --- 1. Solve the Quadratic Equation ---

# The equation is x^2 - 55x + 750 = 0

# Coefficients for ax^2 + bx + c = 0
a = 1
b = -55
c = 750
```

```
# Calculate the roots (solutions) of the equation
solutions = np.roots([a, b, c])
solution1, solution2 = solutions[0], solutions[1]

print(f"--- Problem Solution ---")
print(f"The quadratic equation is: {a}x^2 + ({b})x + {c} = 0")
print(f"The possible number of toys produced are: {int(solution1)}
} and {int(solution2)}")
```

```
# Create a range of x-values (number of toys) to plot
# We'll plot from 0 to 60 to get a good view of the parabola
x_values = np.linspace(0, 60, 400)
# Calculate the corresponding y-values using the quadratic
    function
y_values = a * x_values**2 + b * x_values + c
```

```
# Draw a horizontal line at y=0 (x-axis) to highlight where the
   roots are
ax.axhline(0, color='gray', linestyle='--')
# Plot the solutions (roots) on the graph as distinct points
ax.scatter(solutions, [0, 0], color='red', zorder=5, s=100, label
   =f'Solutions: x={int(solution1)}, x={int(solution2)}')
```

```
# --- 4. Customize and Show the Plot ---
# Adding titles and labels
ax.set_title('Graph of the Toy Production Cost Function',
    fontsize=16)
ax.set_xlabel('Number of Toys Produced (x)', fontsize=12)
ax.set_ylabel('Total Cost Equation (y)', fontsize=12)
```

```
// Calculate the discriminant (b^2 - 4ac)
discriminant = b * b - 4 * a * c;

// Check if real solutions exist
if (discriminant >= 0) {
    // Calculate the two possible roots using the quadratic
    formula
    root1 = (-b + sqrt(discriminant)) / (2 * a);
    root2 = (-b - sqrt(discriminant)) / (2 * a);
```

```
// Verification for both cases
printf("Verification:\n");
printf("Case 1: If %.Of toys were produced, the cost per
        toy is (55 - %.Of) = %.Of. Total cost = %.Of * %.Of =
        %.Of\n", root1, root1, (55-root1), root1, (55-root1),
        root1*(55-root1));
printf("Case 2: If %.Of toys were produced, the cost per
        toy is (55 - %.Of) = %.Of. Total cost = %.Of * %.Of =
        %.Of\n", root2, root2, (55-root2), root2*(55-root2));
```

```
# Check if real solutions exist
if discriminant.value >= 0:
    # Calculate the two possible roots using the quadratic
    formula
    root1 = c_double((-b.value + sqrt(discriminant.value)) /
        (2 * a.value))
    root2 = c_double((-b.value - sqrt(discriminant.value)) /
        (2 * a.value))
```


Figure: plot 9.4.24