DIFFERENT ASPECTS OF CLASSIFICATION

Evgeny Burnaev

Skoltech, Moscow, Russia

OUTLINE

IMBALANCED CLASSIFICATION

2 Multi-Class Classification

ML Burnaev

IMBALANCED CLASSIFICATION

2 Multi-Class Classification

Introduction

- Between-class imbalance (relative imbalance)
- Relative imbalance vs. imbalance due to rare instances or "absolute rarity"
 - Within class imbalance
- Data complexity vs. imbalanced data vs. small sample size

Introduction

- Binary classification: often dataset has unavoidable (natural) imbalance
- Minor class (of prime interest) vs. major class:
 e.g. classification of "cancerous" vs. "healthy"
 mammography image
- Standard classifiers (SVM, kNN, log. reg., etc.): classes are equally important ⇒ results are biased towards the major class
- Poor prediction of minor class while the average quality can be good:
 - target events occurs in 1% of all cases,
 - classifier always gives a 'no-event' answer,
 - it is wrong just 1% of all cases

- Approaches to increase importance of the minor class:
 - Adapt a probability threshold for classifiers,
 - Modify a loss function, e.g., by assigning more weight to the minor class error,
 - Resample a dataset in order to soften or remove class imbalance
- We focus on resampling: convenient, allows to use standard classifiers
- The main aim:
 - review and compare main resampling methods,
 - compare strategies of resampling amount (i.e., how many observations to add or drop) selection,
 - explore their influence on quality of classification

NOTATIONS AND PROBLEM STATEMENT

- Dataset $S_m = (\mathbf{x}_i, y_i)_{i=1}^m$, where $\mathbf{x}_i \in \mathbb{R}^N$, $y_i \in \{0, 1\}$
- $C_0(S_m) = \{(\mathbf{x}_i, y_i) \in S_m \mid y_i = 0\}$ is a major class,
- $C_1(S_m)=\{(\mathbf{x}_i,y_i)\in S_m\mid y_i=1\}$ is a minor class, i.e. $|C_0(S_m)|>|C_1(S_m)|$
- Imbalance ratio $IR(S_m) = \frac{|C_0(S_m)|}{|C_1(S_m)|}$, $IR(S_m) \ge 1$

LEARNING A CLASSIFIER

- Llearn a classifier using imbalanced training sample S_m ,
- The dataset S_m is resampled using a method r:
 - some observations in S_m are dropped, or
 - some new synthetic observations are added to \mathcal{S}_m
- The result of resampling is a dataset $r(S_m)$ with $IR(r(S_m)) < IR(S_m)$,
- Standard classification model h is learned on $r(S_m)$ to construct a classifier $h_{r(S_m)}: \mathbb{R}^N \to \{0,1\}$

BURNAEV ML

- Performance is determined by a predefined classifier quality metrics $Q(h_{S_{train}}, S_{test})$ (e.g. AUC under Precision-Recall curve):
 - input classifier $h_{S_{train}}$,
 - testing dataset S_{test} ,
 - the higher value is the better
- \bullet k-fold cross-validation is used to estimate $Q^{CV}(S_m)$

OVERVIEW OF RESAMPLING METHODS

Resampling method r:

- Takes input:
 - dataset S_m ;
 - resampling multiplier m>1 for resulting imbalance ratio $IR(r(S_m))=\frac{1}{m}\cdot IR(S_m)$;
 - additional parameters, specific for the method
- Add synthesized objects to the minor class (oversampling), or drop objects from the major class (undersampling), or both
- Outputs resampled dataset $r(S_m)$ with imbalance ratio $IR(r(S_m)) = \frac{1}{m} \cdot IR(S_m)$

RANDOM OVERSAMPLING (ROS)

- ROS, also known as bootstrap oversampling
- No additional input parameters
- It adds to the minor class new $(m-1)|C_1(S_m)|$ objects
- Each of objects is drawn from uniform distribution on $C_1(S_m)$

RANDOM UNDERSAMPLING (RUS)

- No additional input parameters
- It chooses random subset of $C_0(S_m)$ with $|C_0(S_m)|^{\frac{m-1}{m}}$ elements and drops it from the dataset
- ullet All subsets of $C_0(S_m)$ have equal probabilities to be chosen

SYNTHETIC MINORITY OVERSAMPLING TECHNIQUE (SMOTE)

SYNTHETIC MINORITY OVERSAMPLING TECHNIQUE (SMOTE)

- Input parameter: k (number of neighbors)
- Oversampling, it adds to the minor class new synthesized objects
- Initialize: $S_{new} := \emptyset$. Repeat $(m-1)|C_1(S_m)|$ times:
 - Select randomly $x_i \in C_1(S_m)$
 - ② Find k minor class NN of x_i , randomly select x_j from them
 - f 3 Select randomly x on the segment connecting x_i and x_j
 - \bullet $S_{new} := S_{new} \cup \{(x,1)\}$
- Add objects to the dataset: $\tilde{S} = S_m \cup S_{new}$

ARTIFICIAL DATA

- ullet Artificial pool of data with $\sim\!1000$ datasets
- Artificial datasets were drawn from a Gaussian mixture distribution
- Each of two classes is represented as a Gaussian mixture with not more than 3 components
- Number of features varies from 6 to 40, size of dataset from 200 to 1000, IR from 0.05 to 0.35.

REAL DATA

- \bullet Real pool of data with ~ 100 datasets
- Different areas: biology, medicine, engineering, sociology
- \bullet All features are numeric or binary, their number varies from 3 to 1000
- \bullet Size of dataset varies from 200 to $1000,\ I\!R$ from 0.02 to 0.75

SETUP OF EXPERIMENTS

- For each dataset we varied classifier model, resampling method and resampling multiplier
- We used Bootstrap, RUS and SMOTE with k=5
- ullet We varied resampling multiplier from 1.25 to 10.0
- We used Decision Trees, k-Nearest Neighbors, and Logistic Regression with ℓ_1 regularization
- Optimal parameters of a classifier were selected by cross-validation

SETUP OF EXPERIMENTS

- Accuracy measure = Area under precision-recall curve Q_{PRC}
- \bullet We performed 10-fold cross-validation and calculated Q^{CV}_{PRC} average of Q_{PRC}

RESAMPLING MULTIPLIER SELECTION

- Two strategies of resampling multiplier selection:
 - equalizing strategy, EqS: select multiplier providing balanced classes (IR = 1) in resulting dataset
 - CV-search, $\it CVS$: select optimal multiplier (i.e., providing maximum of $\it Q^{CV}$) by cross-validation
- The equalizing strategy seems to be reasonable as it removes class imbalance which we initially tried to tackle.
 It is quick and widely used
- CV-search may provide better quality but it is more time-consuming

DOLAN-MORE CURVES

- $\{r_1, \ldots, r_n\}$ the set of considered resampling methods
- $\{S_1, \dots S_T\}$ the set of tasks (datasets),
- ullet q_{ti} the quality of the method i on the dataset t,
- $p_i(\beta)$ is a fraction of datasets, on which the method i is worse than the best one not more than β times:

$$p_i(\beta) = \frac{1}{T} \left| \left\{ t : q_{ti} \ge \frac{1}{\beta} \max_i q_{ti} \right\} \right|, \ \beta \ge 1$$

DOLAN-MORE CURVES

- $p_i(1)$ is a fraction of datasets where the method i is the best
- A graph of $p_i(\beta)$ on β is called Dolan-More curve for the method i
- The higher the curve, the better the method!

 $ext{Figure}$: Dolan-More curves for metric Q^{CV}_{PRC}

 $ext{Figure}$: Dolan-More curves for metric Q_{PRC}^{CV}

 $ext{Figure}$: Dolan-More curves for metric Q^{CV}_{PRC}

 ${\it Figure}$: Value of Q^{CV}_{PRC} vs. resulting $I\!R$ for dataset "Delft pump 1x3"

CONCLUSIONS

- Influence of resampling on the quality strongly depends on resampling multiplier
- All resampling methods with CV-search of multiplier improve the quality on most datasets, especially for Decision trees and Logistic regression
- The equalizing strategy of multiplier selection (EqS) shows much lower quality, and it is even worse than no resampling for k-Nearest neighbors and Logistic regression

Conclusions

- Performance of resampling method depends on the classifier used, and there is no method that would always outperform the others
- Impact of resampling on quality depends on the data it is applied to. E.g. RUS EqS used with Decision tree demonstrates this distinctly: it is worse than no resampling for the real datasets but outperforms it on the artificial data
- Classification without resampling is the best choice in some cases. E.g., for Logistic regression it is about 15% of real datasets and 5% of artificial

CONCLUSIONS

- The overall conclusion is the following.
 Resampling improves classification of imbalanced datasets in most cases if a method and a multiplier are selected properly. But if not, resampling may have negative effect on quality of classification
- So, to improve quality of classification, one has to determine optimal resampling method (also considering no resampling) and multiplier in every particular imbalanced task

1 Imbalanced Classification

2 Multi-Class Classification

MULTI-CLASS CLASSIFICATION PROBLEM

ullet Training sample: i.i.d. generated by D

$$S_m = \{(\mathbf{x}_i, y_i)\}_{i=1}^m \in X^m \times Y^m$$

- mono-label case: Card(Y) = K
- multi-label case: $Y = \{-1, +1\}^K$
- Problem: find classifier $h: X \to Y$ in H with small generalization error
 - mono-label case: $R_D(h) = \mathbb{E}_{\mathbf{x} \sim D} \left[\mathbb{1}_{h(\mathbf{x}) \neq f(\mathbf{x})} \right]$
 - multi-label case: $R_D(h) = \mathbb{E}_{\mathbf{x} \sim D} \left[\frac{1}{K} \sum_{j=1}^K 1_{[h(\mathbf{x})]_j \neq [f(\mathbf{x})]_j} \right]$

COMMENTS

- Usually $K \leq 100$
- If $K \gg 1$ then some other methods are used, e.g. ranking
- \bullet Big values of K increases computational burden
- In general, classes are not balanced

BURNAEV

ONE-VS-ALL

Technique

— for each class $k \in Y$ learn a binary classifier

$$h_k(\mathbf{x}) = \operatorname{sign}(f_k(\mathbf{x}))$$

combine binary classifiers via voting, e.g. majority voting

$$h: \mathbf{x} \to \arg\max_{k \in Y} f_k(\mathbf{x})$$

Comments

- calibration: classifiers scores are not comparable
- simple and frequently used in practice, computational advantages in some cases

ONE-VS-ALL

Consider the use of K-1 classifiers each of which solves a two-class problem of separating points in a particular class from points not in that class. This approach leads to regions of input space that are ambiguously classified

ONE-VS-ONE

Technique

- for each pair $(k, k') \in Y$, $k \neq k'$ learn a binary classifier $h_{k,k'}: X \to \{0,1\}$
- combine binary classifiers via majority vote

$$h(\mathbf{x}) = \arg \max_{k' \in Y} |\{k : h_{k,k'}(\mathbf{x}) = 1\}|$$

Comments

- computational complexity: train K(K-1)/2 binary classifiers
- overfitting: size of a training sample can be small for a given pair of classifiers

APPROACH BASED ON ERROR-CORRECTING CODES

codes

			2	3	4	5	6
Classes	_	0	0	0	_	0	0
	2		0	0	0	0	0
	3	0	_	_	0	_	0
	4		ı	0	0	0	0
	5	-	ı	0	0	_	0
	6	0	0	I	I	0	ı
	7	0	0	I	0	0	0
	8	0	I	0		0	0

$f_1(x)$	$f_2(x)$	$f_3(x)$	$f_4(x)$	$f_5(x)$	$f_6(x)$
0	-	- 1	0	1	1

 $\mathsf{new}\,\,\mathsf{example}\,x$

APPROACH BASED ON ERROR-CORRECTING CODES

 \bullet Assign L-long binary code word to each class, i.e. represent each class as

$$\mathbb{C} = [\mathbb{C}_{k,j}] \in \{0,1\}^{[1,K] \times [1,L]}$$

- Learn a binary classifier $f_j: X \to \{0,1\}$ for each column. Example \mathbf{x} in class k is labeled with $\mathbb{C}_{k,j}$
- Classifier output:

$$\mathbf{f}(\mathbf{x}) = (f_1(\mathbf{x}), \dots, f_L(\mathbf{x})),$$

Final classifier

$$h: \mathbf{x} \to \arg\min_{k \in Y} d_{\text{Hamming}} \left(\mathbb{C}_{k,\cdot}, \mathbf{f}(\mathbf{x}) \right)$$

COMMENTS

- One-vs-all approach is the most widely used
- No clear empirical evidence of the superiority of other approaches
- Large structured multi-class problems are often treated as ranking problems

Multi-Class SVMs

Optimization problem

$$\min_{\mathbf{w}, \xi} \frac{1}{2} \sum_{k=1}^{K} \|\mathbf{w}_k\|^2 + C \sum_{i=1}^{m} i$$

$$s.t. \ \mathbf{w}_{y_i}^{\mathsf{T}} \mathbf{x}_i + \delta_{y_i, k} \ge \mathbf{w}_k^{\mathsf{T}} \mathbf{x}_i + 1 - \xi_i$$

$$(i, k) \in [1, m] \times Y$$

Decision function:

$$h: \mathbf{x} \to \arg\max_{k \in Y} (\mathbf{w}_k^{\mathrm{T}} \mathbf{x}) = \arg\max_{k \in Y} \left(\sum_{i=1}^m \alpha_{i,k} (\mathbf{x}_i \cdot \mathbf{x}) \right),$$

where $\{\alpha_{i,k}\}_{i=1}^m$, $k \in Y$ are dual variables

ullet Complex constraints, $m \cdot K$ size