dcFCI: Robust Causal Discovery Under Latent Confounding, Unfaithfulness, and Mixed Data

Adèle H. Ribeiro¹ and Dominik Heider¹

Abstract—Causal discovery is central to inferring causal relationships from observational data. In the presence of latent confounding, algorithms such as Fast Causal Inference (FCI) learn a Partial Ancestral Graph (PAG) representing the true model's Markov Equivalence Class. However, their correctness critically depends on empirical faithfulness, the assumption that observed (in)dependencies perfectly reflect those of the underlying causal model, which often fails in practice due to limited sample sizes. To address this, we introduce the first nonparametric score to assess a PAG's compatibility with observed data, even with mixed variable types. This score is both necessary and sufficient to characterize structural uncertainty and distinguish between distinct PAGs. We then propose data-compatible FCI (dcFCI), the first hybrid causal discovery algorithm to jointly address latent confounding, empirical unfaithfulness, and mixed data types. dcFCI integrates our score into an (Anytime)FCI-guided search that systematically explores, ranks, and validates candidate PAGs. Experiments on synthetic and real-world scenarios demonstrate that dcFCI significantly outperforms state-of-the-art methods, often recovering the true PAG even in small and heterogeneous datasets. Examining top-ranked PAGs further provides valuable insights into structural uncertainty, supporting more robust and informed causal reasoning and decision-making.

Index Terms—

I. INTRODUCTION

PEARL's causality framework [1], has profoundly transformed the field of causal inference. Based on the principles of Structural Causal Models (SCMs), it provided rigoroups and intuitive tools for accurately modeling and inferring causal relationships from observational studies. This framework not only deepens our understanding of the true underlying causal mechanisms – thereby offering explanations for real-world phenomena – but also enables the prediction of effects of *unrealized* interventions and the evaluation of counterfactual scenarios. These capabilities are instrumental for decision-making and policy analysis in complex systems and can inform the design of follow-up interventional studies.

Causal discovery is central to causal inference, particularly when background knowledge alone cannot fully describe the underlying causal structure. It aims to recover the directed acyclic graphical model (or causal diagram) G, implied by the underlying SCM \mathcal{M} . Since some variables in \mathcal{M} may be unobserved, the goal is to reconstruct G using only the observed variables V and a dataset \mathcal{D} sampled from the joint distribution P(V). If V excludes certain confounder variables, a situation known as *causal insufficiency*, and no functional or distributional assumptions are imposed on \mathcal{M} ,

multiple graphical models can equally represent $P(\mathbf{V})$, rendering G unidentifiable in general. As a result, algorithms aim to recover the Markov Equivalence Class (MEC) of G, which consists of all models that entail exactly the same set of conditional (in)dependencies and are asymptotically indistinguishable based on goodness-of-fit scores.

Typically, a MEC is graphically represented by a Partial Ancestral Graph (PAG), which encodes both the set of conditional independencies – accessible via *m-separation*, an extension of d-separation for PAGs [2] – and the ancestral relationships shared by all models in the class. Specifically, tails and arrowheads in a PAG indicate, respectively, ancestral (causal) and non-ancestral (non-causal) relationships common to all models within the MEC. A circle (o) edge mark indicates a non-invariant relationship, meaning that within the MEC, there is at least one model where the edge mark is a tail and another where it is an arrowhead. Once a PAG is learned, it can be utilized in downstream causal analysis, including effect identification and estimation [2–4], enabling a complete and fully data-driven approach to causal inference.

The Fast Causal Inference (FCI) algorithm [5, 6] is a seminal approach to causal discovery, renowned for its theoretical rigor, ability to handle latent confounding and selection bias, and adaptability to various data types by accepting any type of conditional independence test. However, its soundness heavily relies on both distributional and empirical faithfulness. Distributional faithfulness ensures that $P(\mathbf{V})$ precisely reflects all and only the conditional (in)dependencies implied by dseparation in the true causal diagram. Some studies have explored detecting and relaxing this assumption, though they are limited to causally sufficient settings [7-9]. However, empirical faithfulness, which states that \mathcal{D} perfectly reflect these (in)dependencies, has received far less attention. In practice, this translates to assuming that inferences from conditional independence tests are *perfect*, allowing FCI to operate without accounting for any uncertainty in these decisions. This is critical, as errors in these inferences - often due to limited sample size – can propagate through the learning process, potentially leading to multiple incorrect causal orientations.

To address FCI's limitations, several extensions and alternative approaches have been developed. Conservative FCI (cFCI) [10, 11] improves robustness by leaving edges unoriented when their orientation relies on potentially unfaithful conditional independencies. Other methods integrate scoring techniques, such as Bayesian Constraint-Based Causal Discovery (BCCD) [12], which combines a logical adaptation of cFCI with Bayesian reliability scores. Recent search-based algorithms focus on identifying the optimal Maximal Ancestral

¹University of Münster, Institute of Medical Informatics, Münster, Germany

Graph (MAG) [13] – a subclass of Markov-equivalent models that share all ancestral relationships – using the Bayesian Information Criterion (BIC) for linear Gaussian models. Notable methods include Differentiable Causal Discovery (DCD) [14], which employs gradient-based optimization, and MAG Structure Learning (MAGSL) [15], which guarantees the globally optimal MAG through exact search. Moreover, Greedy PAG Search (GPS) [16] performs a greedy search directly in the space of PAGs, also leveraging the Gaussian BIC. Section B provides a detailed discussion of the related literature.

Despite these advances, significant challenges remain due to empirical unfaithfulness. Conditional independence tests often yield inaccurate results in low-data scenarios and can still be unreliable with relatively large sample sizes and a handful of variables. Additionally, their effectiveness depends on the significance level, which is often arbitrarily set and may not reflect the varying levels of uncertainty in the data. As a result, most existing algorithms tend to produce a PAG that is *fundamentally flawed*, failing not only to accurately represent the true model's MEC but also to ensure its correct characterization and encode best data-supported conditional (in)dependencies (see Figure 1 and Section II for details).

Fig. 1. True causal diagram (a) and PAG (b) compared with PAGs inferred by SOTA algorithms: FCI (c), cFCI and GPS (d), BCCD (e), and DCD (f).

The fact that state-of-the-art (SOTA) algorithms produce fundamentally different outputs from the same data raises serious concerns about their robustness in practice. Constraintbased approaches have a strong theoretical foundation, but are highly vulnerable in unfaithful scenarios due to their sensitivity to the order of independence tests and error propagation. In contrast, scoring procedures offer greater robustness by assessing overall compatibility with the data. However, their effectiveness depends on conducting a well-structured search and scores are often constrained by specific parametric and distributional assumptions. This underscores the urgent need for a hybrid approach that combines the strengths of both worlds. Such an approach should integrate a flexible and reliable global measure of data-PAG compatibility, adaptable to various data types, ensuring optimal alignment between observed (in)dependences and m-separations, while effectively addressing inconsistencies in MEC characterization.

In light of this, this work makes the following contributions:

 A sufficient and necessary nonparametric score is introduced to assess data-PAG alignment, the first to support mixed data types, by accounting for posterior probabili-

- ties of essential (in)dependencies, directly derived from pvalues of likelihood-ratio conditional independence tests.
- 2) A novel hybrid causal discovery algorithm, called datacompatible FCI (dcFCI), is presented, enhancing the robustness and reliability of inferred PAGs by accurately encoding best supported (in)dependencies, while adhering to the MEC characterization and quantifying uncertainty.
- 3) Simulation studies demonstrate that dcFCI outperforms SOTA algorithms in low-data, empirically unfaithful regimes, with its top-ranked inferred PAGs often including the true PAG, even in datasets with mixed data types.
- 4) In a real-world application, dcFCI demonstrated greater robustness than SOTA algorithms, consistently identifying causal relations across overlapping variable subsets.
- 5) The dcFCI R package, which implements the algorithm with support for PAG scoring from conditional independence tests across continuous, binary, and multinomial variables, is available at https://github.com/adele/dcFCI.

II. ILLUSTRATIVE EXAMPLE – FIGURE 1

To illustrate the unreliability of SOTA algorithms under unfaithfulness, consider the causal diagram in Figure 1a. The independencies implied by d-separation are exactly $\{(B \perp \!\!\! \perp X), (X \perp \!\!\! \perp Y \mid A, B)\}$. From a finite dataset $\mathcal D$ of 10,000 samples generated by a Gaussian linear SCM adhering to the true causal diagram, and using appropriate conditional independence tests, one observes, at a significance level of 0.01 (a typical choice in practice), the results in Table VIII, including not only all the expected true independencies but also unfaithful ones: $\{(B \perp \!\!\! \perp X \mid A), (B \perp \!\!\! \perp X \mid Y), (B \perp \!\!\! \perp X \mid A, Y), (A \perp \!\!\! \perp Y \mid X), (X \perp \!\!\! \perp Y \mid A)\}$.

Based on these results, FCI produces the PAG in Figure 1c.¹ It not only significantly differs from the true PAG in Figure 1b, suggesting incorrect non-ancestral relationships $(B \leftarrow \circ Y)$, but also encodes (in)dependence constraints that are not well-supported by the data. For example, it erroneously implies (through m-separation) that $(A \perp \!\!\!\perp Y)$, $(X \perp \!\!\!\perp Y)$, and $(X \perp \!\!\!\perp Y \mid B)$. Furthermore, it encodes false, not well-supported dependencies, such as $(B \perp \!\!\!\perp X \mid A)$ and $(X \perp \!\!\!\perp Y \mid A, B)$.

In contrast, cFCI detects ambiguity in the triple $\langle B,A,X\rangle$, leaving it unoriented in the resulting PAG (Figure 1d). However, this disrupts the MEC characterization, making it incompatible with probabilistic or causal inference tools designed for PAGs. For instance, applying m-separation considering this ambiguous triple falsely implies that $(B \not \perp X)$. A similar issue arises with BCCD: while it correctly recovers the true PAG's skeleton, the resulting graph (Figure 1e) fails to represent a unique MEC, rendering it unsuitable for downstream analyses.

Turning to score-based algorithms, leveraging the Gaussian BIC (well-suited for this dataset), GPS learns the same PAG as cFCI. DCD and MAGSL, by first searching for a MAG before deriving the corresponding PAG, produce valid PAGs. However, while MAGSL accurately recovers the true PAG, DCD infers the structure in Figure 1f, which poorly represents the actual causal relationships and observed (in)dependencies.

 1 This is achieved by removing the edges between the variable pairs identified as conditionally independent and then applying Rule 0, which results in the unshielded colliders $X{*}{\to} A \leftarrow {*}B$ and $A{*}{\to} B \leftarrow {*}Y$.

III. BACKGROUND

A. Notation and Terminology

We use boldface capital letters for variable sets and boldface lowercase letters for their value assignments.

We denote $P(\mathbf{V})$ as the joint distribution over \mathbf{V} . For any disjoint subsets \mathbf{X} , \mathbf{Y} , and \mathbf{Z} of \mathbf{V} , the conditional independence relation between \mathbf{X} and \mathbf{Y} given \mathbf{Z} , where \mathbf{Z} may be empty, is denoted by $(\mathbf{X}, \mathbf{Y} \mid \mathbf{Z})_P$. This relation must either indicate conditional independence, written as $(\mathbf{X} \perp \!\!\! \perp \mathbf{Y} \mid \mathbf{Z})_P$, or conditional dependence, represented by $(\mathbf{X} \not\perp \!\!\! \perp \mathbf{Y} \mid \mathbf{Z})_P$.

To characterize conditional independence in graphical models, we consider the m-separation criterion for MAGs and PAGs as defined in [17] and [2], respectively. Let M be a MAG and \mathcal{P} be a PAG, both on the vertex set \mathbf{V} . For any disjoint subsets \mathbf{X} , \mathbf{Y} , and $\mathbf{Z} \subset \mathbf{V}$, m-separation of \mathbf{X} and \mathbf{Y} by \mathbf{Z} in M (resp. \mathcal{P}) is denoted by $(\mathbf{X} \perp \!\!\! \perp_m \mathbf{Y} \mid \mathbf{Z})_M$ (resp. $(\mathbf{X} \perp \!\!\! \perp_m \mathbf{Y} \mid \mathbf{Z})_{\mathcal{P}})$. Conversely, m-connectedness is represented by $(\mathbf{X} \not\perp \!\! \perp_m \mathbf{Y} \mid \mathbf{Z})_M$ (resp. $(\mathbf{X} \not\perp \!\! \perp_m \mathbf{Y} \mid \mathbf{Z})_{\mathcal{P}})$. When the context is unambiguous, we may omit the subscript indicating the associated probability distribution or model for clarity.

Further foundational concepts are provided in Section A.

B. Characterization of the Markov Equivalence Class in the Presence of Latent Confounding

As noted in the introduction, MAGs are commonly used in causal discovery when latent confounders are present. Their advantage lies in encoding all (non-)ancestral and conditional (in)dependence relations implied by a causal diagram, without explicitly modeling latent variables [13]. If M is the MAG of a causal diagram G, then the class of MAGs that encode (via m-separation) the same set of conditional (in)dependence relations as M constitutes the MEC of M and, consequently, of G, and is represented by a PAG \mathcal{P} [18].

The most straightforward way to characterize a MEC is through the set of conditional (in)dependence relations it entails. Two MAGs, M_1 and M_2 , over a set of variables \mathbf{V} , are Markov-equivalent if and only if, for any three disjoint subsets $\mathbf{X}, \mathbf{Y}, \mathbf{Z} \subset \mathbf{V}$, it holds that $(\mathbf{X} \perp \!\!\! \perp_m \mathbf{Y} \mid \mathbf{Z})_{M_1}$ if and only if $(\mathbf{X} \perp \!\!\! \perp_m \mathbf{Y} \mid \mathbf{Z})_{M_2}$. In other words, MECs that differ in any of these implied (in)dependencies are distinct.

A clear limitation of this characterization is that the number of conditional independence relations involved can quickly become impractical. To reduce the complexity, one can leverage that m-separations and m-connections implied by a MAG define an independence model that forms a graphoid [19, 20], thereby enabling the use of the composition property. Specifically, for any disjoint sets of variables \mathbf{X}_1 , \mathbf{X}_2 , \mathbf{Y} , and \mathbf{Z} , the conditions $(\mathbf{X}_1 \perp \!\!\!\perp_m \mathbf{Y} \mid \mathbf{Z})$ and $(\mathbf{X}_2 \perp \!\!\!\perp_m \mathbf{Y} \mid \mathbf{Z})$ imply $(\mathbf{X}_1 \cup \mathbf{X}_2 \perp \!\!\!\perp_m \mathbf{Y} \mid \mathbf{Z})$. In words, pairwise conditional (in)dependence relations are sufficient to determine higher-order (in)dependencies. However, even with this simplification, the number of relations still grows rapidly as the number of variables increases, making it impractical for large systems.

Specifically, for a set V with |V| = p variables, the number of pairwise conditional independence relations, when

considering all possible conditioning sets of up to $r_{\text{max}} = p-2$ variables, grows combinatorially with p and is given by:

$$T = \binom{p}{2} \times \sum_{r=0}^{r_{\text{max}}} \binom{p-2}{r}.$$
 (1)

For p = 4, 5, 10, and 20, this results in T = 24, 80, 11,520, and 49,807,360 conditional independence relations, respectively.

Despite these challenges, MECs of MAGs can be uniquely characterized by their skeleton (adjacencies) and collider triples, either unshielded of identified via discriminating paths, also known as colliders with order [18, 21]. Recently, [16] proposed a simpler recursive definition of triples with order that eliminates the need to explicitly identify discriminating paths. They also introduced the MAG-to-MEC algorithm, which efficiently computes all such triples in polynomial time. These results show that the skeleton and colliders with order encapsulate all conditional independencies needed to define the complete PAG, with all other orientations derived purely from graphical rules. Any change to these components necessarily alter the MEC. For further details, see Section C.

C. Likelihood-Ratio Tests for Conditional Independence Among Variables of Diverse Types

Constraint-based causal discovery algorithms such as the FCI and its variants aim to learn the true model's MEC by leveraging observed conditional (in)dependencies, typically determined via conditional independence tests.

The most commonly used conditional independence tests are likelihood-ratio tests or their approximations [22]. Examples include the partial correlation test for continuous multivariate Gaussian variables, as well as the G-test, and the asymptotically equivalent χ^2 -test for categorical variables. As shown by [22], likelihood-ratio tests can be straightforwardly constructed to evaluate conditional independence among variables of diverse types. See further details in Section D. These tests can be efficiently implemented using regression models, such as linear, logistic, multinomial, or ordinal regression, for continuous, binary, nominal, and ordinal variables, respectively. Non-linear, more complex models may also be employed, depending on the data and specific requirements.

D. Bayes Factor for Standard Test Statistics

The performance of constraint-based causal discovery algorithms heavily relies on accurately inferring both (conditional) dependencies and independencies among observed variables. These inferences are typically made using statistical tests for the null hypothesis of (conditional) independence, against the alternative hypothesis of (conditional) dependence. This approach has two major drawbacks: 1) it depends on arbitrarily chosen p-value thresholds (e.g., 0.01 or 0.05) to define statistical significance, and 2) p-values do not quantify the evidence for either the null or alternative hypotheses. Note that it is incorrect to interpret the absence of evidence to reject the null hypothesis as support for or acceptance of the null hypothesis. Failing to reject the null hypothesis simply means that the data do not provide sufficient evidence to contradict it.

In contrast, in a Bayesian framework, Bayes factors quantify the relative evidence provided by the data \mathcal{D} in favor of one hypothesis over another. Let H_0 be the null hypothesis (e.g., conditional independence) and H_1 the alternative (e.g., conditional dependence). The Bayes factor in favor of H_1 is:

$$BF_{10} = \frac{P(\mathcal{D} \mid H_1)}{P(\mathcal{D} \mid H_0)},$$

in which $P(\mathcal{D} \mid H_1)$ and $P(\mathcal{D} \mid H_0)$ denote the marginal likelihoods of the data (\mathcal{D}) under H_1 and H_0 , respectively. A $BF_{10} > 1$ favors H_1 , while $BF_{10} < 1$ favors H_0 .

By applying Bayes' theorem, we can further compute the posterior probability of each hypothesis. This incorporates both prior beliefs, $P(H_0)$ and $P(H_1)$, which can be non-informative (equal to 0.5), and the Bayes factor, thus considering both data and any prior knowledge.

Despite their potential, the practical use of Bayes factors has been limited by the need to explicitly define alternative hypotheses. However, recently, [23] provided closed-form expressions for Bayes factors derived from standard test statistics, including χ^2 from likelihood-ratio tests, which are widely used for testing conditional independencies in causal discovery, as discussed in Section III-C. The authors have also made an R package called BFF publicly available, offering tools to calculate the Bayess factor for various standard test statistics [24]. See further details in Section E.

IV. A NONPARAMETRIC PAG SCORE

The set of conditional (in)dependence relations in the true distribution $P(\mathbf{V})$ defines an independence model, $\mathcal{I}(P)$. Since $P(\mathbf{V})$ is typically unknown in practice, it must be estimated from an observational dataset \mathcal{D} for \mathbf{V} , which defines $\mathscr{I}(\mathcal{D})$, the independence model of \mathcal{D} . Importantly, the equality $\mathscr{I}(\mathcal{D}) = \mathscr{I}(P)$ holds only under empirical faithfulness, which is rarely the case in limited datasets due to sampling variability or noise [8]. Similarly, the set of all m-separations and m-connections in a PAG $\mathcal P$ defines an independence model, $\mathscr{I}_m(\mathcal{P})$. Causal discovery aims to identify a PAG \mathcal{P} such that $\mathscr{I}_m(\mathcal{P})$ best matches $\mathscr{I}(\mathcal{D})$. In empirically faithful settings, $\mathscr{I}(\mathcal{D})$ accurately reflects $\mathscr{I}(P)$, ensuring $\mathscr{I}_m(\mathcal{P})$ aligns with $\mathscr{I}(P)$. Consequently, under distributional faithfulness, inferences drawn from \mathcal{P} , including ancestral (causal) relationships, are guaranteed to be valid in the true model and all Markov equivalent models.

We formalize this compatibility between the independence models of a PAG and a dataset in the following definition:

Definition 1 (Data-PAG Compatibility). It refers to the degree of alignment between the independence model induced by a given PAG \mathcal{P} , denoted $\mathcal{I}_m(\mathcal{P})$, and the independence model derived from the observed dataset \mathcal{D} , denoted $\mathcal{I}(\mathcal{D})$.

Here, we aim to develop a compatibility score for a PAG \mathcal{P} with respect to a dataset \mathcal{D} , denoted $S_{\mathcal{P},\mathcal{D}}$. This score is designed to quantify the alignment between the (in)dependence relations in $\mathscr{I}_m(\mathcal{P})$ and those in $\mathscr{I}(\mathcal{D})$, thereby providing a measure of how well the observed data \mathcal{D} supports \mathcal{P} .

Due to space constraints, all proofs are in Section F.

A. A Straightforward Score for Data-PAG Compatibility

Building on the most straightforward characterization of MECs and leveraging the compositional property of independence models for mixed graphs, we propose a straightforward compatibility score $S_{\mathcal{P},\mathcal{D}}$ that reflects how well the observed data \mathcal{D} supports *all* pairwise conditional (in)dependencies implied by m-separations and m-connections in a PAG \mathcal{P} .

Let $H_{(X \perp\!\!\!\perp Y \mid \mathbf{Z})_P}$ be the hypothesis that $(X \perp\!\!\!\perp Y \mid \mathbf{Z})_P$ and $H_{(X \not\perp\!\!\!\perp Y \mid \mathbf{Z})_P}$ be the hypothesis that $(X \not\perp\!\!\!\perp Y \mid \mathbf{Z})_P$. The sets of (conditional) (in)dependence hypothesesimplied by $\mathcal P$ are:

$$\mathbf{H}_{\perp(\mathcal{P},P)} = \{ H_{(X\perp Y|\mathbf{Z})_{P}} \mid X,Y \in \mathbf{V}, \mathbf{Z} \subseteq \mathbf{V} \setminus \{X,Y\},$$
 and $(X\perp_{m}Y|\mathbf{Z})_{\mathcal{P}}\}$
$$\mathbf{H}_{\perp(\mathcal{P},P)} = \{ H_{(X\perp Y|\mathbf{Z})_{P}} \mid X,Y \in \mathbf{V}, \mathbf{Z} \subseteq \mathbf{V} \setminus \{X,Y\},$$
 and $(X\perp \perp_{m}Y|\mathbf{Z})_{\mathcal{P}}\}.$ (2)

As outlined in Section III-D, the posterior probability for a single conditional independence hypothesis or its alternative, the conditional dependence hypothesis, can be derived from any χ^2 statistic or corresponding p-value of likelihood-ratio tests. However, calculating the joint probability of multiple hypotheses is challenging, as they are typically not mutually independent. To address this, we propose estimating the bounds on the probability of the conjunction of these hypotheses using the Fréchet inequality [25].

Definition 2. Let $\mathbf{H}_{\perp(\mathcal{P},P)}$ and $\mathbf{H}_{\not\perp(\mathcal{P},P)}$ be as in Equation (2) and define $\mathbf{H}_{\mathcal{P},P} = \mathbf{H}_{\perp(\mathcal{P},P)} \cup \mathbf{H}_{\not\perp(\mathcal{P},P)}$. Further, let $H_i \in \mathbf{H}_{\mathcal{P},P}$, with $i = 1, \ldots, T$. The straightforward data-PAG compatibility score is the posterior probability:

$$S_{\mathcal{P},\mathcal{D}} = P\left(\mathbf{H}_{\mathcal{P},P}|\mathcal{D}\right) = P\left(\bigcap_{i=1}^{T} H_i \mid \mathcal{D}\right),$$

with Fréchet bounds :

$$\max\left(0, \sum_{i=1}^{T} P(H_i \mid \mathcal{D}) - (T-1)\right) \leq S_{\mathcal{P},\mathcal{D}} \leq \min_{i} P(H_i \mid \mathcal{D}).$$

Remark 1. Since $S_{\mathcal{P},\mathcal{D}}$ in Definition 2 captures all (in)dependence relations implied by \mathcal{P} , it is evident that it fully characterizes its MEC and data compatibility.

Refer to Example 2 for scoring of the PAGs in Figure 1 using the straightforward data-PAG compatibility score.

Limitations. The straightforward score offers a key advantage: it functions as a standalone measure, relying solely on the data and the PAG, making it well-suited for evaluating and comparing the compatibility of any PAG with the observed dataset. However, it has several notable limitations. First, it relies on the joint distribution of all pairwise conditional independence relations. As the number of relations increases combinatorially with the number of variables, the score quickly approaches a Fréchet lower bound of zero, complicating statistically meaningful comparisons among PAGs, as shown in Example 2. Second, the estimation of the score's bounds treats all hypotheses equally, ignoring their relevance to the model's structure and interdependencies.

To address these limitations, we propose a targeted scoring approach in the following section, specifically designed for selecting the highest-scoring PAGs from a list of candidates.

B. An Incremental, MEC-Targeted PAG Score

As discussed in the previous section, the straightforward data-PAG compatibility score can be overly conservative in practice. This is because it not only typically considers a large number of conditional independence hypotheses, but also overlooks their structural relevance and interconnectness.

We propose refining the scoring approach by focusing exclusively on the conditional (in)dependence hypotheses essential for identifying the skeleton and triples with order, which, as described in Section III-B, fully characterize the MEC.

We also propose leveraging the iterative PAG construction from Anytime FCI [26]. For p = |V| variables, the algorithm iterates over conditioning set sizes $r = 0, \dots, p - 2$. At each iteration r, it constructs an intermediate PAG, called the r-PAG, denoted as $\mathcal{P}^{(r)} = (\mathbf{V}, \mathbf{E}^{(r)})$, by incorporating independencies conditioned on sets of size $\leq r$. The equivalence class of $\mathcal{P}^{(r)}$ is referred to as the r-MEC. Notably, every m-separation, m-connection relative to a set of size $\leq r$, and definite (non-)ancestral relation in $\mathcal{P}^{(r)}$ remains valid in \mathcal{P} and, consequently, in all models within its MEC. Over iterations, this r-PAG is refined with larger conditioning sets, integrating new information while ensuring consistency with earlier stages. This incremental approach allows stopping the algorithm's outer loop at any iteration, yielding a valid but potentially less informative r-PAG. Notably, r-PAGs constructed with smaller r values are generally more reliable, as larger conditioning sets often reduce statistical power, increasing the risk of false conclusions and a cascade of orientation errors.

Under faithfulness, identifying a minimal separator of at most r variables for each (conditionally) independent pair is sufficient to accurately recover the skeleton and colliders with order, fully determining the r-PAG $\mathcal{P}^{(r)}$. This follows directly from the soundness and completeness of the *Anytime FCI*.

Under unfaithfulness, observed (in)dependencies may be false or non-minimal, leading to conflicts and ambiguities in collider detection. To address this, we propose quantifying uncertainty in the r-MEC's key components by assessing the posterior probabilities of relevant (in)dependence hypotheses.

Let $\mathfrak{S}(\mathcal{P}^{(r)})$ denote the skeleton of $\mathcal{P}^{(r)}$. The set of (in)dependence hypotheses on $P(\mathbf{V})$ relevant to $\mathfrak{S}(\mathcal{P}^{(r)})$, denoted $\mathbf{H}_{\mathfrak{S}(\mathcal{P}^{(r)}),\mathcal{P}}$, includes those ensuring that adjacent nodes remain dependent given any set of size of at most r, while non-adjacent nodes are independent given their minimal separators but dependent when conditioning on any subset of the minimal separator that omits at least one node [27].

Definition 3. Let $\operatorname{MinSep}_{\mathcal{P}^{(r)}}(X,Y)$ be the set of minimal separators for a pair of non-adjacent nodes $\{X,Y\}$ implied by $\mathcal{P}^{(r)}$. The set of in(dependence) hypotheses relevant to $\mathfrak{S}(\mathcal{P}^{(r)})$, denoted by $\mathbf{H}_{\mathfrak{S}(\mathcal{P}^{(r)}),P}$, is given by the union of

- (a) $\{H_{(X \not\perp Y \mid \mathbf{Z})_P} \mid \{X,Y\} \in \mathbf{E}^{(r)} \text{ and } \mathbf{Z} \subseteq \mathbf{V} \setminus \{X,Y\}, \text{ with } |\mathbf{Z}| < r\}$
- (b) $\{H_{(X \perp \! \! \perp Y \mid \mathbf{Z})_P} | \{X,Y\} \notin \mathbf{E}^{(r)}, \mathbf{Z} \in \operatorname{MinSep}_{\mathcal{P}^{(r)}}(X,Y) \}$
- (c) $\{H_{(X \not\perp Y \mid \mathbf{Z}')_P} \mid \{X,Y\} \not\in \mathbf{E}^{(r)} \text{ and } |\mathbf{Z}'| = |\mathbf{Z}| 1, \text{ where } \mathbf{Z} \neq \emptyset \text{ and } \mathbf{Z} \in \operatorname{MinSep}_{\mathcal{D}^{(r)}}(X,Y) \}.$

Before definining the the in(dependence) hypotheses relevant to the colliders with order $\mathfrak{C}(\mathcal{P}^{(r)})$ in $\mathcal{P}^{(r)}$, consider:

Definition 4. A triple with order $\langle A, B, C \rangle$ corresponds to a (not necessarily unique) pair of non-adjacent nodes $\{X,Y\}$ in a PAG $\mathcal{P}^{(r)}$ if one of the following holds:

- X = A, Y = C, and $\langle A, B, C \rangle$ is an unshielded triple;
- $\langle X, \dots, A, B, Y \rangle$ (with Y = C) or $\langle Y, \dots, A, B, X \rangle$ (with X = C) forms a discriminating path for B.

The next two results establish the relevance of $\operatorname{MinSep}_{\mathcal{P}^{(r)}}$ for both non-collider and collider triples with order:

Proposition 1. Let $\mathbf{Z} \in \operatorname{MinSep}_{\mathcal{P}^{(r)}}(X,Y)$. For every $Z_i \in \mathbf{Z}$, there exist nodes (X',Y'), possibly equal to (X,Y), and $\mathbf{Z}' \in \operatorname{MinSep}_{\mathcal{P}^{(r)}}(X',Y')$ such that $Z_i \in \mathbf{Z}'$ and $\langle X', Z_i, Y' \rangle$ is a non-collider triple with order corresponding to (X',Y').

Proposition 2. Any triple with order $\langle A, B, C \rangle$ in $\mathcal{P}^{(r)}$ corresponds to a pair of non-adjacent nodes (X,Y) such that: $\langle A, B, C \rangle$ is a non-collider triple iff $B \in \operatorname{MinSep}_{\mathcal{P}^{(r)}}(X,Y)$, and $\langle A, B, C \rangle$ is a collider triple iff $B \notin \operatorname{MinSep}_{\mathcal{P}^{(r)}}(X,Y)$. Thus, the sets $\operatorname{MinSep}_{\mathcal{P}^{(r)}}$ fully characterize all such triples.

We now define $\mathbf{H}_{\mathfrak{C}(\mathcal{P}^{(r)}),P}$, the set of dependence hypotheses relevant to $\mathfrak{C}(\mathcal{P}^{(r)})$, the colliders with order in $\mathcal{P}^{(r)}$:

Definition 5. The set of dependence hypotheses relevant to $\mathfrak{C}(\mathcal{P}^{(r)})$, the colliders with order in $\mathcal{P}^{(r)}$, is given as follows:

$$\mathbf{H}_{\mathfrak{C}(\mathcal{P}^{(r)}),P} = \{ H_{(X \not\perp Y \mid \mathbf{Z})_P} \mid \exists \langle A, B, C \rangle \in \mathfrak{C}(\mathcal{P}^{(r)})$$
s.t.: $\langle A, B, C \rangle$ corresponds to $\{X, Y\}$ and
$$\mathbf{Z} = \mathbf{S} \cup \{B\}, \text{ where } \mathbf{S} \in \operatorname{MinSep}_{\mathcal{P}^{(r)}}(X, Y) \}.$$

Theorem 1 (Score Completeness). The set of (in)dependence hypotheses $\mathbf{H}_{\mathcal{P}^{(r)},P} = \mathbf{H}_{\mathfrak{S}(\mathcal{P}^{(r)}),P} \cup \mathbf{H}_{\mathfrak{C}(\mathcal{P}^{(r)}),P}$, as defined in Definitions 3 and 5, is both sufficient and necessary to fully characterize the uncertainty involved in both identifying $\mathcal{P}^{(r)}$ and discriminating it from any distinct r-PAG.

Additionally, the next Corollary follows from Theorem 1:

Corollary 1 (Score Equivalence). The score $S_{\mathcal{P}^{(r)},P} = P(\mathbf{H}_{\mathcal{P}^{(r)},P}|\mathcal{D})$, where $\mathbf{H}_{\mathcal{P}^{(r)},P}$ is defined in Theorem 1, is score-equivalent. Asymptotically, MAGs within $\mathcal{P}^{(r)}$ receive identical scores, while distinct r-PAGs receive different scores.

Although $\mathbf{H}_{\mathcal{P}^{(r)},P}$ fully characterizes the uncertainty in $\mathcal{P}^{(r)}$, if often omits relations, making some PAGs potentially incomparable. To enable effective comparison, their scores should account for the union of all relevant hypotheses and focus exclusively on the hypotheses where the PAGs differ.

Let $\mathcal{L}^{(r)} = \{\mathcal{P}_i^{(r)}\}_{i=1}^m$ be a list of m candidate PAGs, each associated with relevant conditional (in)dependencies $\mathbf{H}_{\mathcal{P}_i^{(r)},P}$. Define $\mathbf{R}_{\mathcal{L}^{(r)}}$ as the union of these relations. Specifically:

$$\mathbf{R}_{\mathcal{L}^{(r)}} = \{ (X, Y | \mathbf{Z}) \mid H_{(X \perp \! \! \perp Y | \mathbf{Z})_P} \in \bigcup_{i=1}^m \mathbf{H}_{\mathcal{P}_i^{(r)}, P} \text{ or } (3)$$

$$H_{(X \not\perp\!\!\!\perp Y \mid \mathbf{Z})_P} \in \bigcup_{i=1}^m \mathbf{H}_{\mathcal{P}_i^{(r)},P} \}.$$

The hypotheses for each $\mathcal{P}_i \in \mathcal{L}^{(r)}$ are augmented as follows:

$$\mathbf{H}_{\mathcal{P}_{i}^{(r)},P}^{+} = \{H_{(X \perp \! \! \perp Y \mid \mathbf{Z})_{P}} \mid (X,Y \mid \mathbf{Z}) \in \mathbf{R}_{\mathcal{L}^{(r)}} \text{ and}$$

$$(X \perp \! \! \! \perp_{m} Y \mid \mathbf{Z})_{\mathcal{P}_{i}}\} \cup \{H_{(X \not \perp \! \! \! \perp Y \mid \mathbf{Z})_{P}} \mid$$

$$(X,Y \mid \mathbf{Z}) \in \mathbf{R}_{\mathcal{L}^{(r)}} \text{ and } (X \not \perp_{m} Y \mid \mathbf{Z})_{\mathcal{P}_{i}}\}$$

$$(4)$$

Define the set of hypotheses common to all PAGs in $\mathcal{L}^{(r)}$:

$$\mathbf{H}_{\cap_{\mathcal{L}^{(r)},P}} = \bigcap_{\mathcal{P}_{i}^{(r)} \in \mathcal{L}^{(r)}} \mathbf{H}_{\mathcal{P}_{i}^{(r)},P}^{+}. \tag{5}$$

Then, we can define a score for any $\mathcal{P}_i^{(r)} \in \mathcal{L}^{(r)}$, conditional on the common hypotheses in $\mathcal{L}^{(r)}$, as follows:

$$S_{\mathcal{P}_{i}^{(r)},\mathcal{D},\mathcal{L}^{(r)}} = P\left(\mathbf{H}_{\mathcal{P}_{i}^{(r)},P}^{+} \backslash \mathbf{H}_{\cap_{\mathcal{L}^{(r)}},P} \mid \mathbf{H}_{\cap_{\mathcal{L}^{(r)}},P},\mathcal{D}\right).$$
(6)

Note that, if $\mathcal{L}^{(r)}$ encompass all plausible r-PAGs consistent with the (in)dependencies observed in \mathcal{D} , conditioned on sets of size up to r, then the shared hypotheses can be considered certain (i.e., $P\left(\mathbf{H}_{\bigcap_{\mathcal{L}^{(r)}},P}\mid\mathcal{D}\right)=1$). In this case, the highest-scoring r-PAGs in $\mathcal{L}^{(r)}$ can be identified by comparing only the posterior probability of the conflicting hypotheses.

Next theorem follows directly from the preceding reasoning and Theorem 1, establishing a sufficient and necessary MEC-targeted PAG score, conditional on a list of candidate r-PAGs.

Theorem 2 (Score Completeness for Candidate Comparison). If $\mathcal{L}^{(r)}$ includes all r-PAGs consistent with \mathcal{D} , then the score of any r-PAG $\mathcal{P}_i^{(r)} \in \mathcal{L}^{(r)}$ simplifies to

$$S_{\mathcal{P}_i^{(r)},\mathcal{D},\mathcal{L}^{(r)}} = P\left(\mathbf{H}_{\mathcal{P}_i^{(r)},P}^+ \setminus \mathbf{H}_{\cap_{\mathcal{L}^{(r)}},P} \mid \mathcal{D}\right),$$

with Fréchet bounds as in Definition 2, and is both sufficient and necessary to discriminate $\mathcal{P}_i^{(r)}$ from any $\mathcal{P}_i^{(r)} \in \mathcal{L}^{(r)}$.

This score not only disregards the conditional independence hypotheses shared by all candidate r-PAGs in the given list but also those irrelevant for characterizing the r-MECs of candidate r-PAGs. We next demonstrate how this score can guide decisions in a novel hybrid causal discovery algorithm.

V. DATA-COMPATIBLE FAST CAUSAL INFERENCE (DCFCI)

In this section, we introduce a novel hybrid causal discovery algorithm, data-compatible Fast Causal Inference (dcFCI). It combines the strengths of constraint-based methods, such as FCI and its variants, with our nonparametric, MEC-targeted scoring approach. The approach is highly adaptable, as it accommodates various data types and distributions by accepting any likelihood-ratio-based conditional independence test.

The dcFCI algorithm follows a structure akin to the FCI algorithm and its variants, with a main loop iterating over increasing sizes r of conditioning sets. However, a key distinction is that, rather than incrementally refining a single PAG, it performs a greedy search over plausible PAGs, systematically refining and selecting valid, top-scoring candidates as it progresses. In doing so, dcFCI effectively overcomes the limitations of SOTA techniques, particularly when dealing with limited, empirically unfaithful datasets. Its hybrid design allows it to systematically account for uncertainties during the learning process while ensuring the validity of the MEC characterization and greater alignment with observed dependencies and independencies. By refining the search for plausible causal structures, dcFCI provides a powerful framework for causal discovery in complex, real-world settings, offering both accuracy and robustness with enhanced flexibility.

Algorithm 1 dcFCI Algorithm

Require: Data set \mathcal{D} , maximum size for the separating sets r_{\max} , significance level α , number k of selected PAGs at each iteration.

```
1: Step 1: Initialize list of candidate PAGs
 2: p \leftarrow number of variables in \mathcal{D}, i.e., |\mathbf{V}|.
 3: \mathcal{L}^{(-1)} \leftarrow \{\mathcal{P}^{(-1)}\}

    ▷ Initialize with the complete graph

                                                       ▶ Initialize separator size
 5: while r \leq \min\{r_{\max}, p-2\} do
           Step 2: Construct candidate (r)-PAGs
 6:
           \mathcal{L}^{(r)} \leftarrow \mathcal{L}^{(r-1)}
 7:
                                                  for each \mathcal{P}_i^{(r)} in \mathcal{L}^{(r)} do
 8:
                PotMinSeps_i^{(r)} \leftarrow empty list
 9:
                for each pair of adjacent nodes (X,Y) in \mathcal{P}_i^{(r)} do
10:
                      for each plausible separating set S \subset V \setminus
11:
     \{X,Y\} with |\mathbf{S}|=r do
                            if (X \perp \!\!\!\perp Y | \mathbf{S})_{\mathcal{D}} with p-value > \alpha or
12:
     P(H_{(X \perp\!\!\!\perp Y \mid S)_P}) > 0.5 then
                                  Add S to PotMinSeps<sub>i</sub><sup>(r)</sup>[\{X, Y\}]
13:
                SepSetsList_{i}^{(r)} \leftarrow PowerSet(PotMinSeps_{i}^{(r)})
14:
                for each SepSet<sub>ij</sub> in SepSetsList<sub>i</sub><sup>(r)</sup> do
15:
                      Build \mathcal{P}_{ij}^{(r)} from \mathcal{P}_{i}^{(r)} by cutting edges between
16:
     separated nodes in SepSet_{ij} and applying Zhang's rules.
     if \mathcal{P}_{ij}^{(r)} is a valid PAG and captures exactly the selected minimal m-separations then
\operatorname{Add} \mathcal{P}_{ij}^{(r)} \text{ to } \mathcal{L}^{(r)}
17:
18:
           Step 3: Score All Valid (r)-PAG Candidates
19:
           for each \mathcal{P}_i^{(r)} in \mathcal{L}^{(r)} do
20:
                Estimate Fréchet bounds for score S_{\mathcal{P}^{(r)},\mathcal{D},\mathcal{L}^{(r)}}
21:
           Step 4: Select Best (r)-PAG Candidates
22:
           Sort \mathcal{L}^{(r)} by the upper bound of each PAG's score
23:
           \mathcal{L}^{(r)} \leftarrow \text{top } k \text{ PAGs in } \mathcal{L}^{(r)}
           r \leftarrow r + 1
25:
26: return \langle \mathcal{L}^{(r)}, S_{\mathcal{P}^{(r)} \mathcal{D} \mathcal{L}^{(r)}} \rangle
```

The pseudo-algorithm of dcFCI is shown in Algorithm 1. It starts with a list $\mathcal{L}^{(-1)}$ containing the complete PAG over p variables. In each iteration $r = 0, \dots, r_{\text{max}}$, where $r_{\text{max}} \leq p-2$, dcFCI initializes a list $\mathcal{L}^{(r)}$ of candidate r-PAGs by carrying over the PAGs from the previous interation's list $\mathcal{L}^{(r-1)}$. This ensures a consistent and incremental refinement of the candidate PAGs. For each PAG $\mathcal{P}_i^{(r)}$ in $\mathcal{L}^{(r)}$, the algorithm evaluates all pairs of adjacent nodes $\{X,Y\}$ and identifies a set of potential minimal separating sets PotMinSeps_i^(r)[{X, Y}]. These sets, S, with |S| = r, are selected based on their plausibility as separators in the oriented $\mathcal{P}_{i}^{(r)}$ and the satisfaction of $(X \perp \!\!\! \perp Y \mid \mathbf{S})$, either with the p-value above the specified significance level α , or with $P(H_{(X \perp \! \! \! \perp Y \mid \mathbf{S})_P}) > 0.5$. Note that α is used solely to select potential conditional independencies, with lower α values admitting more candidate separators. Thus, dcFCI relies minimally on α , using it primarily to define the search space.

Rather than updating the PAG skeleton with all identified minimal separators, as in FCI, dcFCI constructs all possible *r*-

PAGs from subsets of PotMinSeps $_i^{(r)}$, refining the skeleton and applying orientation rules. It then retains only valid PAGs that accurately encode via m-separation the used minimal conditional independencies, preventing conflicts due to conditioning set order [11]. Each PAG in $\mathcal{L}^{(r)}$ is then scored (Theorem 2), and the top k are selected for output or the next iteration.

Theorem 3 (dcFCI Soundness). Given a dataset \mathcal{D} for \mathbf{V} with $|\mathbf{V}| = p$ and a sufficiently small significance level α , if, for each $r = 0, \ldots, r_{max}$, where $r_{max} \leq p - 2$, the true $\mathcal{P}^{(r)}$ is among the k most data-compatible r-PAGs, (according to $S_{\mathcal{P}^{(r)}, \mathcal{D}, \mathcal{L}^{(r)}}$) then dcFCI's output includes the true $\mathcal{P}^{(r_{max})}$.

The following corollary establishes a weaker notion of empirical faithfulness that is sufficient (but not necessary) to guarantee that dcFCI outputs the true PAG with k=1.

Corollary 2. If, for each $r = 0, ..., r_{max}$, $\forall H_i \in \mathbf{H}_{\mathcal{P}^{(r)}, P} = \mathbf{H}_{\mathfrak{S}(\mathcal{P}^{(r)}), P} \cup \mathbf{H}_{\mathfrak{C}(\mathcal{P}^{(r)}), P}$ (Definitions 3 and 5) satisfies $P(H_i \mid \mathcal{D}) \geq 0.5$, then dcFCI outputs the true $\mathcal{P}^{(r_{max})}$ with k = 1.

Besides setting k to a small value (e.g., k=1 or 2), potential PAGs are constructed in parallel to manage computational complexity. Also, dcFCI can also be halted earlier by setting $r_{\rm max} < p-2$, reducing reliance on conditional independence tests with larger sets, which often lack statistical power. This enables the inference of more reliable, though potentially less informative, PAGs. The complexity analysis of dcFCI and optimization strategies are detailed in Section G.

Importantly, dcFCI outputs the highest-scoring PAG(s) and provides access to all evaluated PAGs, enabling uncertainty quantification by allowing users to compare scores across different causal hypotheses. This facilitates more informed decisions based on the most robust orientations.

In summary, dcFCI stands out as a powerful and versatile causal discovery algorithm for real-world applications by:

1) effectively addressing latent confounding, enabling causal learning given data from any subset of variables; 2) accommodating a wide range of datasets, including those with mixed data types and distributions, ensuring broad applicability; 3) providing greater robustness to empirical unfaithfulness by evaluating data compatibility and ensuring the validity of MEC characterization of the output PAG, thus supporting downstream causal analyses designed for PAGs; and 4) enabling uncertainty quantification, allowing users to explore and assess the reliability of a range of plausible causal hypotheses. Table I compares dcFCI's features with other SOTA algorithms. The parentheses in BCCD's handling of latent confounding reflect its scoring limitation, which assumes causal sufficiency.

 $\label{thm:comparison} TABLE\ I$ Comparison of DCFCI's features with SOTA algorithms.

Algorithm	Latent Confounding	Mixed Data Type	MEC Validity	Uncertainty Quantification
FCI [6]	/	/	Х	X
cFCI [10]	1	✓	×	X
BCCD [12]	(✔)	×	×	X
DCD [14]	1	X	✓	X
MAGSL [15]	1	X	✓	X
GPS [16]	1	X	×	X
dcFCI	1	✓	✓	✓

Fig. 2. All candidate r-PAGs generated by dcFCI in Example 1 for r=0,1,2. (a) initial PAG $\mathcal{P}^{(-1)}$ and 0-PAG $\mathcal{P}^{(0)}_1$, implying the set of (conditional) independencies $\mathscr{I}^{(-1)}=\mathscr{I}^{(0)}_1=\emptyset$; (b) $\mathcal{P}^{(0)}_2,\mathcal{P}^{(1)}_1$, and $\mathcal{P}^{(2)}_1$, implying $\mathscr{I}^{(0)}_2=\mathscr{I}^{(1)}_1=\mathscr{I}^{(2)}_1=(B \perp \!\!\! \perp X)$; (c)-(e) 1-PAGs $\mathcal{P}^{(1)}_2,\mathcal{P}^{(1)}_3$, and $\mathcal{P}^{(1)}_4$, derived from $\mathcal{P}^{(0)}_2$, implying, respectively, $\mathscr{I}^{(1)}_2=\mathscr{I}^{(0)}_2\cup(X \perp \!\!\! \perp Y|A)$, $\mathscr{I}^{(1)}_3=\mathscr{I}^{(0)}_2\cup(A \perp \!\!\! \perp Y|X)$, and $\mathscr{I}^{(1)}_4=\mathscr{I}^{(0)}_2\cup(X \perp \!\!\! \perp Y|A)$, $(A \perp \!\!\! \perp Y|X)$; (f) 2-PAG $\mathcal{P}^{(2)}_2$, derived from $\mathcal{P}^{(1)}_1$, with $\mathscr{I}^{(2)}_2=\mathscr{I}^{(1)}_1\cup(X \perp \!\!\! \perp Y|A,B)$, representing dcFCI's optimal and true PAG.

Example 1. Consider the example from Figure 1, with conditional independence test results in Table VIII. As noted in the Introduction, MAGSL, which performs an exact search, successfully recovers the true PAG. In contrast, all other SOTA algorithms (FCI, cFCI, BCCD, DCD, and GPS) failed to do so. As shown below, dcFCI also recovers the true PAG.

The algorithm starts with a complete graph, with all nodes connected by circle-circle edges (see line 3 of the pseudo-algorithm). At iteration r=0, all 0-PAGs are constructed. Consider $\alpha=0.01$. The only observed marginal independence is $(B \perp \!\!\! \perp X)$, with a p-value of 0.496, $P_{H_0}=0.671$, and $P_{H_1}=0.328$. Thus, two candidate 0-PAGs are identified:

- PAG $\mathcal{P}_1^{(0)}$: No independence applied, yielding the PAG in Figure 2a, with score $S_{\mathcal{P}_1^{(0)},\mathcal{D}}=[0.328,0.328].$
- PAG $\mathcal{P}_2^{(0)}$: Independence $(B \perp \!\!\! \perp \!\!\! X)$ applied, producing the PAG in Figure 2b, with score $S_{\mathcal{P}_2^{(0)},\mathcal{D}} = [0.671,0.671]$.

Only the top k scoring 0-PAGs proceed to iteration r=1. With k=1, dcFCI retains only $\mathcal{P}_2^{(0)}$ and evaluates conditional independencies given sets of size r=1. It identifies $(X \perp \!\!\! \perp Y \mid A)$, with a p-value of 0.105, $P_{H_0}=0.388$, and $P_{H_1}=0.612$, as well as $(A \perp \!\!\! \perp Y \mid X)$, with a p-value of 0.0270, $P_{H_0}=0.198$, and $P_{H_1}=0.802$. These yield four candidate 1-PAGs, differing only in the inclusion of these two independencies:

- PAG $\mathcal{P}_1^{(1)}$: None is applied to $\mathcal{P}_2^{(0)}$, yielding the PAG in Figure 2b, with score $S_{\mathcal{P}_1^{(1)},\mathcal{D}}=[0.413,0.611]$, reflecting the probabilities of $(X\not\perp\!\!\!\perp Y|A)$ and $(A\not\perp\!\!\!\perp Y|X)$.
- PAG $\mathcal{P}_2^{(1)}$: $(X \perp \!\!\!\perp Y|A)$ is applied to $\mathcal{P}_2^{(0)}$, yielding the PAG in Figure 2c, with score $S_{\mathcal{P}_2^{(1)},\mathcal{D}}=[0.190,0.388]$, reflecting the probabilities of $(X \perp \!\!\!\perp Y|A)$ and $(A \not \!\!\!\perp Y|X)$.
- PAG $\mathcal{P}_3^{(1)}$: $(A \perp \!\!\! \perp Y|X)$ is applied to $\mathcal{P}_2^{(0)}$, yielding the PAG in Figure 2c, with score $S_{\mathcal{P}_3^{(1)},\mathcal{D}}=[0.000,0.198]$, reflecting the probabilities of $(X \not\perp\!\!\!\! \perp Y|A)$ and $(A \perp \!\!\! \perp Y|X)$.
- PAG $\mathcal{P}_4^{(\bar{1})}$: Both $(X \perp\!\!\!\perp Y | A)$ and $(A \perp\!\!\!\perp Y | X)$ are applied to $\mathcal{P}_2^{(0)}$. However, the resulting PAG introduces unintended m-separations, implying $(A \perp\!\!\!\perp Y)$ and $(X \perp\!\!\!\perp Y)$, and therefore, contradicting the minimality of the applied independencies. Thus, this candidate is discarded.

As before, only the top k scoring 1-PAGs proceed to the next iteration. At this stage, the algorithm retains only $\mathcal{P}_{1}^{(1)}$ and evaluates conditional independencies given sets of size r=2. The only observed independence is $(X \perp\!\!\!\perp Y \mid A, B)$, with a p-value of 0.536, $P_{H_0} = 0.683$, and $P_{H_1} = 0.317$. Based on this, two candidate 2-PAGs are identified:

• PAG $\mathcal{P}_1^{(2)}$: No independence is applied to $\mathcal{P}_1^{(1)}$, yielding the PAG in Figure 2a, with score $S_{\mathcal{P}_1^{(2)},\mathcal{D}} = 0.317$.

- [0.317, 0.317], reflecting the probability of $(X \not\perp Y \mid A, B)$.
- PAG $\mathcal{P}_2^{(2)}$: $(X \perp \!\!\!\perp Y | A, B)$ is applied to $\mathcal{P}_1^{(1)}$, yielding the PAG in Figure 2f, with score $S_{\mathcal{P}_2^{(0)},\mathcal{D}} = [0.683,0.683]$, reflecting the probability of this independence.

At this point, the while loop in line 5 terminates without proceeding to r=3. The highest-scoring PAG in $\mathcal{L}^{(2)}$, $\mathcal{P}_2^{(2)}$, is selected and returned as the sole estimated PAG by the dcFCI algorithm. Notably, this PAG corresponds to the true PAG.

VI. SIMULATION STUDIES

We evaluate the performance of the dcFCI against SOTA algorithms - FCI, cFCI, BCCD, DCD, and GPS. To assess the accuracy of the inferred PAGs, we use the Structural Hamming Distance (SHD), along with the False Discovery Rate (FDR) and False Omission Rate (FOR). We also compare the algorithms' ability to recover the true PAG, ensure the output validity as a MEC, and recover structures compatible with the data. For the latter, we use the straightforward data-PAG compatibility score, as defined in Definition 2, which measures how well the inferred PAG aligns with the data, independent of a candidate PAG list. Details on these metrics and the execution of each algorithm are provided in Section J.

We consider two sets of simulations: one in Section VI-A, focused on causal discovery with Gaussian variables, as existing score-based approaches are implemented exclusively for this setting, and another in Section VI-B, focused on datasets with mixed (continuous, binary and multinomial) data types.

For conditional independence testing, we use likelihoodratio tests for diverse variable types, implemented in our dcFCI R package, with a significance threshold of $\alpha = 0.05$. These tests rely on generalized linear regression models, following the approach by [22], detailed in Sections III-C and D.

For simulations with Gaussian datasets, we further assessed the algorithms' performance using both the BIC distance, which measures how closely the BIC of the inferred model aligns with that of the true model, and the BIC of the inferred model itself, a widely used goodness-of-fit metric for linear Gaussian SEMs. These additional metrics offer deeper insights into not only the accuracy and data compatibility of the inferred PAGs, but also the broader implications of leveraging the BIC score in causal discovery.

Finally, while this work focuses on improving robustness under empirical unfaithfulness rather than scalability we also compare dcFCI's time efficiency for completeness.

A. Using Gaussian Datasets

Our first set of simulations focuses on causal discovery of Gaussian linear Structural Equation Models (SEMs), as scorebased approaches - BCCD, DCD, MAGSL, and GPS - are implemented exclusively under this assumption.

For this study, we randomly generated 10 unique PAGs, each comprising 5 nodes and featuring a diverse combination of directed and bidirected edges. Then, for each PAG and sample sizes of $N = \{1000, 5000, 10000, 50000\}$, 30 distinct datasets were generated based on Gaussian linear SEMs adhering to the structure of a valid causal diagram within the the PAG. This was achieved using the simulateSEM function from the dagitty R package [28]. The model coefficients were randomly assigned, but their absolute values were constrained to exceed 0.2 to prevent very weak associations. As a result, this process yielded a random sample of 300 potentially unfaithful Gaussian datasets for each considered sample size.

Despite its greedy approach, dcFCI captures uncertainty in the causal orientations, potentially outputting multiple PAGs equally compatible with the data. As the sample size increases and uncertainty decreases, the algorithm tends to return a single PAG. Details on the distribution of PAGs are in Section K.

We begin the comparison of dcFCI with SOTA algorithms by presenting in Table II their ability to infer valid PAGs. A PAG is valid if it represents the expected MEC of a valid MAG or causal diagram (see further details in Section J).

TABLE II PERCENTAGE OF VALID INFERRED PAGS FROM GAUSSIAN DATASETS.

N	FCI	cFCI	BCCD	DCD	MAGSL	GPS	dcFCI
1,000	97.7	46.7	68.7	100.0	100.0	96.7	100.0
5,000	96.3	49.3	74.7	100.0	100.0	91.3	100.0
10,000	97.0	67.0	77.7	100.0	100.0	88.0	100.0
50,000	99.7	94.3	87.0	100.0	100.0	86.7	100.0

Notably, FCI and GPS occasionally generate invalid PAGs when applied to unfaithful data. Since both cFCI and BCCD determine edge orientations without accounting for the overall MEC characterization and the implications of m-separation, they often produce invalid PAGs, even with large datasets. In contrast, since DCD and MAGSL are specifically designed to first learn a MAG and then convert it into a PAG, the resulting PAG is always valid. For dcFCI, which may output a list of compatible PAGs rather than a single one, we considered the output valid only if all PAGs in the list were valid. Remarkably, dcFCI exclusively infers valid PAGs, as its design inherently enforces this restriction.

Table III shows the recovery rate (percentage) of the true PAG across increasing sample sizes. For dcFCI, we provide percentages for three cases: when the output list contains only the true PAG, when it includes the true PAG with others having the same upper score bound, and when it includes the true PAG with others having overlapping score bounds (i.e., statistically equally plausible PAGs). A hyphen is used to avoid repetition when percentages do not change across cases.

TABLE III TRUE PAG RECOVERY RATE IN SIMULATIONS WITH GAUSSIAN DATASETS.

N	FCI	cFCI	BCCD	DCD	MAGSL	GPS	$\begin{array}{c} \text{dcFCI} \\ (k=1) \end{array}$	$\begin{array}{c} \text{dcFCI} \\ (k=2) \end{array}$
1,000	3.3	0.3	0	2	10.3	5.3	8.3/8.7/-	8.3/-/13.3
5,000	16.3	5	0.3	0.3	30.3	12	32.7/33/-	32.7/35.7/51.7
10,000	56.3	33.7	0	2.7	78.3	28	74.7/-/-	80.3/81.7/85.3
50,000	93.3	86.3	0	1.3	98.3	33	98.3/-/-	98.67/-/-

Interestingly, dcFCI and MAGSL achieve comparable results with recovery rates substantially higher than those of other algorithms, even in low-sample settings. Notably, dcFCI outperforms MAGSL (which performs an exact search) in some cases with k=1 and consistently with k=2, demonstrating its effectiveness in identifying the true PAG with its greedy approach, while still accounting for uncertainty. Notably, for five-variable graphs, 1,000 samples, often the practical limit, is usually insufficient to recover the true PAG. With 50,000 samples, MAGSL and dcFCI succeed nearly always, while FCI and cFCI perform slightly worse, and other algorithms struggle even with larger datasets.

Table IX shows true PAG recovery rates for varying degrees of empirical faithfulness. Under full faithfulness based on pvalues (all and only dependencies with p-value $\leq \alpha$), FCI, cFCI, MAGSL, and dcFCI always recover the true PAG. However, achieving this level of faithfulness is very difficult, even with large samples. Full faithfulness based on posterior probabilities (all and only dependencies with $P(H_1|\mathcal{D}) >$ 0.5)) is more attainable but still challenging. Many more datasets, however, satisfy r-MEC faithfulness, where all key (in)dependencies for the skeleton and colliders with order hold. In these cases, as stated in Corollary 2, dcFCI consistently recovers the true PAG, unlike the SOTA methods. Importantly, r-MEC faithfulness is a sufficient, but not necessary condition. As shown in the last column of Table IX, dcFCI can still recover the true PAG even when some of these essential (in)dependencies are weakly supported by the data.

Table IV compares dcFCI with SOTA algorithms in terms of SHD, while Table X and Table XI present FDR and FOR, respectively. For each sample size, we report the minimum (Min), first quartile (Q1), median (Med), mean, third quartile (Q3), and maximum (Max) values across 300 simulations, with lower values indicating better accuracy. The second-to-last column shows the p-value from a sign test comparing each SOTA algorithm with dcFCI (k=1). Significant improvements (i.e., significantly lower values for dcFCI) are marked by a green downward arrow in the last column.

The results for SHD, FDR, and FOR further confirm that dcFCI performs on par with MAGSL, while significantly outperforming all other SOTA algorithms across all scenarios. Notably, dcFCI consistently exhibits a superior performance as the sample size increases. With 1,000 and 5,000 samples, it achieves reasonable accuracy, while with 10,000 and 50,000 samples, the accuracy improves substantially, with error rates dropping to zero at the median. FCI, cFCI, and GPS also show improvement with increasing sample sizes, although GPS's performance improvement is less pronounced. In contrast, BCCD and DCD remain among the worst-performing algorithms throughout all considered scenarios.

For comparisons based on the data-PAG compatibility score, which requires identifying conditional independencies implied by m-separation, as well as BIC distance and actual BIC, which involve selecting a valid MAG within the given PAG, the output PAG must be valid. Tables XVI, XVII, and XVIII summarize these comparisons. The third column in each table reports the number of simulations in which the SOTA algorithm produced a valid PAG.

TABLE IV

COMPARISON IN TERMS OF STRUCTURAL HAMMING DISTANCE (SHD) IN SIMULATIONS WITH GAUSSIAN VARIABLES. LOWER SHD INDICATES MORE ACCURATE EDGES. GREEN DOWNWARD ARROWS INDICATE SIGNIFICANT IMPROVEMENT OF DCFCI OVER SOTA ALGORITHMS.

A.1. '.1	N.T.		0 4 5 5.3 7 12 0.097 0 5.8 7 7.2 9 12 1.9e-11 2 5 7 6.8 9 15 6.1e-08 0 6 8 8 10 16 4.9e-19 0 3 5 5 7 14 0.125 0 5 7 6.5 9 15 4.3e-06 0 3 5 5.6 8 15 0 2 4 3.9 6 13 0.021 0 4 6 5.9 8 13 6.9e-24 0 4 5.5 5.8 8 14 2.7e-24 0 7 9 8.4 10 14 4.5e-47 0 0 3 3.4 5 14 0.45 0 3 6 5.6 8 17 1.3e-19 0 0 3 3.5 5 16						
Algorithm	N	Min	Q1	Med	Mean	Q3	Max	p-value	Diff
FCI		0	4	5	5.3	7	12	0.097	_
cFCI		0	5.8	7	7.2	9	12	1.9e-11	↓
BCCD		2	5	7	6.8	9	15	6.1e-08	
DCD	1,000	0	6			10	16	4.9e-19	+
MAGSL		0	3	5	5	7	14	0.125	-
GPS		0			6.5	9	15	4.3e-06	↓
dcFCI		0	-	5	5.6	8	15		
FCI		0	2	4	3.9	6	13	0.021	+
cFCI		0	4	6	5.9	8	13	6.9e-24	↓
BCCD		0	4	5.5	5.8	8	14	2.7e-24	↓ ↓ ↓
DCD	5,000	0	7	9	8.4	10	14	4.5e-47	↓
MAGSL		0	0	3	3.4	5	14	0.45	_
GPS		0	3	6	5.6	8	17	1.3e-19	↓
dcFCI		0	0	3	3.5	5	16		
FCI		0	0	0	1.7	3	13	3.3e-07	+
cFCI		0	0	2	2.9	5	13	3.3e-26	1
BCCD		2	2	5	5.1	7	16	2.4e-56	+
DCD	10,000	0	6	8	7.8	10	18	1.3e-76	+
MAGSL		0	0	0	0.82	0	15	0.45	_
GPS		0	0	3	3.7	6.2	14	5.9e-30	↓
dcFCI		0	0	0	1	2	15		
FCI		0	0	0	0.27	0	9	6.1e-05	+
cFCI		0	0	0	0.42	0	9	1.5e-11	↓
BCCD		2	4	6	6.7	10	13	9.8e-91	+
DCD	50,000	0	6	9	8.1	10	15	1.6e-89	+
MAGSL		0	0	0	0.08	0	8	1	_
GPS		0	0	2	2.9	4	14	5.9e-53	↓
dcFCI		0	0	0	0.05	0	5		

Across nearly all scenarios, from small to large sample sizes – except for comparisons with BCCD and MAGSL at 1,000 samples – dcFCI significantly outperforms the SOTA algorithms, inferring PAGs with substantially higher compatibility with the data. Additionally, dcFCI consistently infers PAGs with BIC values closer to those of the true PAGs, although these values are not always the smallest. Notably, all scorebased algorithms, except MAGSL, infer PAGs with lower BIC values. This somewhat surprising result, previously observed in the GPS work, raises concerns about the instability of BIC score computation and its use in causal discovery [16].

For completeness, Tables XIII, XIV, and XV present comparisons in terms of SHD, FDR, and FOR, focusing exclusively on simulations where the SOTA algorithms produced valid PAGs. The results are consistent with those obtained using all simulations, further demonstrating dcFCI's robustness, which extends beyond ensuring PAG validity.

Table XII provides the runtime comparison showing that dcFCI is significantly faster than both MAGSL and DCD.

B. Using Datasets with Mixed Data Types

A key advantage of dcFCI lies in its versatility, as the proposed MEC-targeted data-PAG compatibility score is nonparametric and, therefore, not constrained by specific distributional assumptions. This flexibility allows dcFCI to be applied to any dataset, provided there is a method to compute the posterior probabilities of conditional (in)dependence hypotheses. As discussed in Section III-C, such probabilities can be easily

derived from standard statistics, such as the χ^2 statistic from likelihood-ratio tests – a widely used approach for assessing conditional independence among diverse types of variables.

In this section, we evaluate and compare dcFCI's performance in causal discovery on datasets containing a mixture of 3 continuous, 1 binary, and 1 multinomial variables. Unlike dcFCI, existing hybrid and score-based algorithms, such as BCCD, DCD, MAGSL, and GPS, are limited to causal discovery in linear Gaussian models, making them unsuitable for this comparison. Therefore, the results presented here focus on a direct comparison of dcFCI with the FCI and cFCI algorithms.

We used the same 10 PAGs from the previous study. We generated 30 distinct datasets for each PAG and sample sizes of $N=\{1000,5000,10000,50000\}$, using generalized additive models, adhering to the PAG structure. This was done using the simMixedDAG R package [29], with model coefficients randomly assigned, ensuring their absolute values exceeded 0.2. This process yielded 300 potentially unfaithful mixed-data type datasets for each sample size.

The comparison of dcFCI with FCI and cFCI yielded results consistent with those for Gaussian datasets, demonstrating dcFCI's superior robustness, accuracy, data compatibility, and adaptability across various data types and scenarios.

 $\label{thm:table V} TABLE\ V$ Percentage of valid PAGs from mixed-data type datasets.

N	FCI	cFCI	dcFCI
1,000	97.67	52.00	100.00
5,000	99.00	63.33	100.00
10,000	97.67	69.33	100.00
50,000	99.33	91.67	100.00

 $\label{thm:constraint} TABLE\ VI$ True PAG recovery rate in mixed-data type simulations.

N	FCI	cFCI	dcFCI (k = 1)	dcFCI (k = 2)
1,000	5.67	0.33	15.67 / 18 / 19.67	17 / 19.67 / 35.67
5,000	39.67	23.67	55 / 56 / 56.33	56.33 / 60.67 / 68
10,000	58.33	43.33	72.67 / 73.67 / -	73.67 / 75.33 / 79
50,000	87.33	80	94.67 / 95 / -	94.67 / 95 / 95.33

As shown in Table V, dcFCI reliably recovers only valid PAGs, whereas FCI and particularly cFCI produce invalid PAGs. Moreover, as demonstrated in Table VI, dcFCI achieves a substantially higher recovery rate of the true PAG, even with smaller sample sizes. Additionally Tables VII, XIX and and XX (covering all simulations) and Tables XXIII, XXIV, and XXV (focusing on simulations that yielded only valid PAGs), show that dcFCI infers PAGs with significally lower (better) SHD, FDR, and FOR values compared to both FCI and cFCI. Finally, Table XXII shows that dcFCI consistently generates PAGs with significantly higher overall data-PAG compatibility scores than those produced by FCI and cFCI, further emphasizing its robustness and superior ability to infer PAGs that better align with the data.

VII. REAL-WORLD APPLICATION

We applied dcFCI to the Diabetes Health Indicators Dataset (DHID) from Kaggle, a curated subset of the 2015 Behavioral

TABLE VII

COMPARISON IN TERMS OF STRUCTURAL HAMMING DISTANCE (SHD) IN SIMULATIONS WITH MIXED DATA TYPES. LOWER SHD INDICATES MORE ACCURATE EDGES. GREEN DOWNWARD ARROWS INDICATE SIGNIFICANT IMPROVEMENT OF DCFCI OVER SOTA ALGORITHMS.

Algorithm	N			S	HD			Compar	ison
Aigoriuiii	IN	Min	Q1	Med	Mean	Q3	Max	p-value	Diff
FCI		0	3	5	5.3	7	13	1e-05	+
cFCI	1,000	0	5	7	7.1	9.2	13	2.7e-24	1
dcFCI		0	2	4	4.4	6	15		
FCI		0	0	2	2.8	4	12	0.012	+
cFCI	5,000	0	1	4	4	7	13	2.3e-12	↓
dcFCI		0	0	0	2.2	4	14		
FCI		0	0	0	1.9	3	12	0.00085	+
cFCI	10,000	0	0	2	2.6	4	13	1.5e-14	↓
dcFCI		0	0	0	1.2	2	11		
FCI		0	0	0	0.59	0	11	0.006	+
cFCI	50,000	0	0	0	0.79	0	11	8.1e-08	↓
dcFCI		0	0	0	0.23	0	11		

Risk Factor Surveillance System (BRFSS), which includes responses from 253,680 individuals, focusing on lifestyle factors and health indicators related to chronic conditions and acute events (see Section M). We used 16 mixed-type variables, with Body Mass Index (BMI) as the only continuous variable, and the others categorical (binary or multinomial). To satisfy the conditional Gaussianity assumption for certain independence tests, we transformed BMI using a rank-based inverse normal transformation from the RNOmni R package [30].

The simulation results in Section VI suggest that 50,000 samples are sufficient to reliably infer five-variable PAGs. Based on this, we began by applying dcFCI, FCI, and cFCI algorithms to all possible five-variable subsets and evaluating the consistency of the inferred relationships across PAGs.

The PAGs in Figure 3 were inferred by all three algorithms. PAG (a) suggests with moderate confidence (score bounds of [0.252, 0.484]) that physical activity (PhysActivity), BMI, and smoking status (Smoker) causally contribute to high blood pressure (HighBP). PAG (b), with lower confidence (score bounds of [0,0.0463]), indicates that heart disease or myocardial infarction (HeartDiseaseorAttack) and education causally influence the likelihood of having a stroke.

Fig. 3. dcFCI, FCI, and cFCI agree on the inferred PAGs (a) and (b). In (a), physical activity (PhysActivity), BMI, and smoking status (Smoker) are causal contributors to HighBP. In (b), heart disease or myocardial infarction (HeartDiseaseorAttack) and education causal contributors to stroke.

The orientations inferred by dcFCI show strong consistency across all 5-variable PAGs. Additionally, dcFCI identifies more

causes of HighBP, including income, sex, and healthcare coverage (AnyHealthcare) (Figures 4a,d,g), as well as additional causes of stroke, such as income, healthcare coverage, physical activity, high cholesterol, and heavy alcohol consumption (HvyAlcoholConsump) (Figures 5a,d,g). In contrast, FCI produced several inconsistencies. For instance, smoking status and physical activity, inferred as causes of HighBP in Figure 3a, appear as definite non-causes in other PAGs (Figures 4e,h). Similarly, HeartDiseaseorAttack, inferred as cause of stroke in Figure 3b, is identified as a non-cause in Figure 5h. Additionally, income appears both as a cause (Figure 5b) and as a non-cause of stroke (Figure 5e,h). While cFCI did not contradict itself in these relationships, it was often overly conservative, leaving many edges unoriented and occasionally producing invalid PAGs (Figures 4c,f,i and 5c,f,i).

When applying dcFCI to generate PAGs over six variables, reliability dropped significantly. The resulting PAGs had very low scores, and some orientations observed in the 5-variable PAGs were contradicted, violating what we define as marginal consistency [31] (see Figure 6). This highlights a key scalability challenge in causal discovery: the primary limitation is not computational complexity but insufficient sample size. In complex real-world applications, particularly in medicine, collecting datasets large enough to support reliable causal inference is often impractical. The compatibility score thus serves as a valuable indicator of the maximum number of variables that can be reliably analyzed, helping to balance the scope of causal discovery with the statistical power of the data.

VIII. CONCLUSION, LIMITATIONS, AND FUTURE WORK

We introduced a nonparametric score to assess data-PAG compatibility, based on the skeleton and colliders with order, which jointly define the MEC. We then developed dcFCI, a hybrid causal discovery algorithm that integrates this score into a greedy (Anytime-)FCI-guided search. It recovers PAGs that best reflect the data while seamlessly resolving conflicts that often arise in empirically unfaithful settings. Additionally, it ensures that inferred PAGs are valid and reliable for downstream causal analyses, such as effect identification [2]. Crucially, dcFCI supports likelihood-ratio conditional independence tests, which are especially effective for heterogeneous real-world datasets (e.g. electronic health records) with mixed variable types. Despite its greedy nature, dcFCI with k=1matches the performance of MAGSL, which guarantees global optimality but is restricted to Gaussian data. Moreover, dcFCI consistently outperforms SOTA algorithms across all evaluated scenarios, including small sample sizes, achieving superior results in SHD, FDR, FOR, true PAG recovery, MEC validity, and data compatibility, while supporting mixed variable types.

Despite dcFCI's substantial improvements in robustness, accuracy, and flexibility, its greedy search may overlook PAGs that, with additional iterations, could evolve into more compatible structures. For practical use, we recommend users assess the stability of the output by varying k. However, it is important to note that larger values of k may diminish the score's discriminative power, as they require evaluating a greater number of conditional independence hypotheses.

Future work should explore strategies for selecting the optimal k, balancing computational efficiency with accuracy.

Remarkably, dcFCI also demonstrated significantly faster performance than existing search-based algorithms, such as DCD and MAGSL. While this highlights its potential scalability, the primary challenge in causal discovery remains capturing statistical uncertainty rather than computational complexity alone. Future directions also involve extending dcFCI to start with a carefully selected subset of variables and progressively expand the PAG, continuing the process as long as the score indicates sufficient reliability. Additionally, the Bayesian score could be further leveraged to incorporate prior knowledge, by either adjusting (in)dependency priors or updating scores based on known (non-)ancestral relations [32, 33]. These advancements could further improve the robustness and applicability of dcFCI in real-world causal discovery tasks.

REFERENCES

- [1] J. Pearl, *Causality: Models, Reasoning, and Inference*, 2nd ed. NY, USA: Cambridge University Press, 2000.
- [2] A. Jaber, A. Ribeiro, J. Zhang, and E. Bareinboim, "Causal identification under markov equivalence: calculus, algorithm, and completeness," *Adv Neural Inf Process Syst (NeurIPS)*, vol. 35, pp. 3679–3690, 2022.
- [3] M. H. Maathuis and D. Colombo, "A generalized back-door criterion," *The Annals of Statistics*, vol. 43, no. 3, pp. 1060 1088, 2015.
- [4] E. Perković, J. Textor, M. Kalisch, M. H. Maathuis *et al.*, "Complete graphical characterization and construction of adjustment sets in markov equivalence classes of ancestral graphs," *Journal of Machine Learning Research*, vol. 18, no. 220, pp. 1–62, 2018.
- [5] P. Spirtes, C. Glymour, and R. Scheines, *Causation, Prediction, and Search*, 2nd ed. Cambridge, MA: MIT Press, 2001.
- [6] J. Zhang, "On the completeness of orientation rules for causal discovery in the presence of latent confounders and selection bias," *Artificial Intelligence*, vol. 172, no. 16, pp. 1873–1896, 2008.
- [7] J. Zhang and P. Spirtes, "Detection of unfaithfulness and robust causal inference," *Minds and Machines*, vol. 18, pp. 239–271, 2008.
- [8] C. Uhler, G. Raskutti, P. Bühlmann, and B. Yu, "Geometry of the faithfulness assumption in causal inference," *The Annals of Statistics*, pp. 436–463, 2013.
- [9] Zhalama, J. Zhang, and W. Mayer, "Weakening faithfulness: some heuristic causal discovery algorithms," *Int. J. Data Sci. Anal.*, vol. 3, no. 2, pp. 93–104, 2017.
- [10] D. Colombo, M. H. Maathuis, M. Kalisch, and T. S. Richardson, "Learning high-dimensional directed acyclic graphs with latent and selection variables," *The Annals of Statistics*, vol. 40, no. 1, pp. 294–321, 2012.
- [11] D. Colombo and M. H. Maathuis, "Order-independent constraint-based causal structure learning," *J. Mach. Learn. Res.*, vol. 15, no. Nov, pp. 3741–3782, Jan. 2014.
- [12] T. Claassen and T. Heskes, "A bayesian approach to constraint based causal inference," in *Uncertainty in Artificial Intelligence (UAI)*, 2012.

- [13] T. Richardson and P. Spirtes, "Ancestral graph Markov models," *The Annals of Statistics*, vol. 30, no. 4, pp. 962 1030, 2002.
- [14] R. Bhattacharya, T. Nagarajan, D. Malinsky, and I. Shpitser, "Differentiable causal discovery under unmeasured confounding," in *Int. Conf. Artif. Intell. Stat. (AISTATS)*. PMLR, 2021, pp. 2314–2322.
- [15] K. Rantanen, A. Hyttinen, and M. Järvisalo, "Maximal ancestral graph structure learning via exact search," in *Uncertainty in Artificial Intelligence (UAI)*. PMLR, 2021, pp. 1237–1247.
- [16] T. Claassen and I. G. Bucur, "Greedy equivalence search in the presence of latent confounders," in *Uncertainty in Artificial Intelligence (UAI)*. PMLR, 2022, pp. 443–452.
- [17] J. Zhang, "Causal reasoning with ancestral graphs," *Journal of Machine Learning Research*, vol. 9, pp. 1437–1474, 2008.
- [18] —, "A characterization of markov equivalence classes for directed acyclic graphs with latent variables," *Uncertainty in Artificial Intelligence (UAI)*, 2007.
- [19] K. Sadeghi and S. Lauritzen, "Markov properties for mixed graphs," *Bernoulli*, vol. 20, no. 2, pp. 676 696, 2014.
- [20] S. Lauritzen and K. Sadeghi, "Unifying Markov properties for graphical models," *The Annals of Statistics*, vol. 46, no. 5, pp. 2251 2278, 2018.
- [21] R. Ali, T. Richardson, and P. Spirtes, "Markov Equivalence for Ancestral Graphs," *The Annals of Statistics*, vol. 37, no. 5B, pp. 2808–2837, 2009.
- [22] M. Tsagris, G. Borboudakis, V. Lagani, and I. Tsamardinos, "Constraint-based causal discovery with mixed data," *International journal of data science and analytics*, vol. 6, pp. 19–30, 2018.
- [23] V. E. Johnson, S. Pramanik, and R. Shudde, "Bayes factor functions for reporting outcomes of hypothesis tests," *Proceedings of the National Academy of Sciences*, vol. 120, no. 8, p. e2217331120, 2023.
- [24] R. Shudde, S. Datta, R. Guha, S. Pramanik, and V. Johnson, BFF: An R package to calculate Bayes Factor Functions, 2023, r package version 3.0.1. [Online]. Available: https://github.com/rshudde/BFF
- [25] M. Fréchet, "Généralisation du théoreme des probabilités totales," *Fund. Math.*, vol. 25, no. 1, pp. 379–387, 1935.
- [26] P. Spirtes, "An anytime algorithm for causal inference," in *Int. Conf. Artif. Intell. Stat. (AISTATS)*, 2001.
- [27] J. Tian, A. Paz, and J. Pearl, *Finding minimal d-separators*. Citeseer, 1998.
- [28] J. Textor, B. Van der Zander, M. S. Gilthorpe, M. Liśkiewicz, and G. T. Ellison, "Robust causal inference using directed acyclic graphs: the r package 'dagitty'," *International journal of epidemiology*, vol. 45, no. 6, pp. 1887–1894, 2016.
- [29] I. Lin, "simMixedDAG," https://github.com/IyarLin/simMixedDAG, 2019.
- [30] Z. McCaw, RNOmni: Rank Normal Transformation Omnibus Test, 2023, r package version 1.0.1.2.
- [31] A. Roumpelaki, G. Borboudakis, S. Triantafillou, and I. Tsamardinos, "Marginal causal consistency in

- constraint-based causal learning," in *Causation: Foundation to Application Workshop, UAI*, 2016.
- [32] A. H. Ribeiro, M. Crnkovic, J. L. Pereira, R. M. Fisberg, F. M. Sarti, M. M. Rogero, D. Heider, and A. Cerqueira, "AnchorFCI: harnessing genetic anchors for enhanced causal discovery of cardiometabolic disease pathways," *Frontiers in Genetics*, vol. 15, p. 1436947, 2024.
- [33] T. Silva, E. d. S. da Silva, A. Góis, D. Heider, S. Kaski, D. Mesquita, and A. H. Ribeiro, "Human-aided discovery of ancestral graphs," in *Latinx in AI@ NeurIPS*, 2024.
- [34] C. Glymour, K. Zhang, and P. Spirtes, "Review of causal discovery methods based on graphical models," *Frontiers in genetics*, vol. 10, p. 524, 2019.
- [35] T. Claassen and T. Heskes, "A logical characterization of constraint-based causal discovery," in *Uncertainty in Artificial Intelligence (UAI)*, 2011.
- [36] A. Hyttinen, F. Eberhardt, and M. Järvisalo, "Constraint-based causal discovery: Conflict resolution with answer set programming." in *Uncertainty in Artificial Intelligence (UAI)*, 2014.
- [37] S. Magliacane, T. Claassen, and J. M. Mooij, "Ancestral causal inference," in Adv Neural Inf Process Syst (NeurIPS), 2016.
- [38] J. M. Ogarrio, P. Spirtes, and J. Ramsey, "A hybrid causal search algorithm for latent variable models," in *Conference on probabilistic graphical models*. PMLR, 2016, pp. 368–379.
- [39] J. D. Ramsey, "Scaling up greedy causal search for continuous variables," *preprint arXiv:1507.07749*, 2015.
- [40] K. Tsirlis, V. Lagani, S. Triantafillou, and I. Tsamardinos, "On scoring maximal ancestral graphs with the max min hill climbing algorithm," *International Journal of Approximate Reasoning*, vol. 102, pp. 74–85, 2018.
- [41] M. Drton, M. Eichler, and T. S. Richardson, "Computing maximum likelihood estimates in recursive linear models with correlated errors." *Journal of Machine Learning Research*, vol. 10, no. 10, 2009.
- [42] A. Hauser and P. Bühlmann, "Characterization and greedy learning of interventional Markov equivalence classes of directed acyclic graphs," *Journal of Machine Learning Research*, vol. 13, pp. 2409–2464, 2012.
- [43] M. Grassi, F. Palluzzi, and B. Tarantino, "SEMgraph: an R package for causal network inference of high-throughput data with structural equation models," *Bioinformatics*, vol. 38, no. 20, pp. 4829–4830, 08 2022.

IX. BIOGRAPHY SECTION

Adèle Ribeiro is a researcher at the Institute of Medical Informatics, University of Münster, since 2024. Previously, she worked at the University of Marburg (2022-2024), Columbia University (2019-2022), and the Heart Institute (InCor) at University of São Paulo (USP). She holds a Ph.D., M.Sc., and B.Sc. from the Institute of Mathematics and Statistics at USP. Her research focuses on enhancing AI and Machine Learning through causal reasoning.

Dominik Heider is the director of the Institute of Medical Informatics, University of Münster, since 2024. He was a professor at University of Düsseldorf (2023-2024), Marburg (2016-2023), and TUM Campus Straubing (2014-2016), and has been a visiting professor at Harvard University since 2023. He holds a diploma in computer science (2006) and a PhD (2008) from Münster and a habilitation (2012) from the University of Duisburg-Essen. His research focuses on developing AI and Machine Learning tools to address critical biomedical challenges.

APPENDIX A BASIC CONCEPTS AND DEFINITIONS

This work builds on established causality literature, utilizing conceptual frameworks and tools under the assumption that the underlying SCM is free from non-recursive mechanisms, ensuring that the corresponding causal diagram is acyclic [1].

Structural Causal Model (SCM): [1] An SCM \mathcal{M} is a 4-tuple $\langle \mathbf{U}, \mathbf{V}, \mathcal{F}, P(\mathbf{U}) \rangle$, where \mathbf{U} represents the set of exogenous (unobserved) variables, and \mathbf{V} denotes the set of endogenous (observed) variables. The collection $\mathcal{F} = \{f_i\}_{i=1}^{|\mathbf{V}|}$ consists of functions where each function $f_i \in \mathcal{F}$ describes how each endogenous variable $V_i \in \mathbf{V}$ is determined by its direct causes, which include both its exogenous causes $\mathbf{U}_i \subseteq \mathbf{U}$ and its endogenous causes (or parents) $Pa(V_i) \subseteq \mathbf{V} \setminus \{V_i\}$. Additionally, $P(\mathbf{U})$ represents the probability distribution over the exogenous variables.

The following procedure shows that an SCM is uniquely represented by a graphical causal model, commonly known as a causal diagram. In this model, directed edges indicate causal relationships, while dashed bidirected edges denote latent confounding, meaning the connected variables share an unobserved common cause.

Causal Diagram: [1] Each SCM \mathcal{M} induces a directed acyclic graph (DAG) with bidirected edges – or an acyclic directed mixed graph (ADMG) – denoted $G(\mathbf{V}, \mathbf{E})$, which is known as a causal diagram. This diagram captures the structural relationships among the variables in $\mathbf{V} \cup \mathbf{U}$. In this representation, each endogenous variable $V_i \in \mathbf{V}$ is depicted as a vertex, with directed edges $(V_j \to V_i)$ connecting each parent $V_j \in Pa(V_i)$ to V_i . Additionally, dashed bidirected edges $(V_j \leftrightarrow V_i)$ are drawn between pairs of endogenous variables V_i and V_j whenever they share a common exogenous cause, i.e., $\mathbf{U}_i \cap \mathbf{U}_j \neq \emptyset$.

Importantly, G is not merely a depiction of causal directions among V. Rather, it is a formal construct – a Causal Bayesian Network (CBN) – that precisely encodes not only the (in)dependence constraints among V, thereby accurately representing P(V), but also the full set of interventional distributions P(V|do(X=x)) for every $X\subset V$ induced by \mathcal{M} [1]. This property is essential to any causal analysis.

Maximal Ancestral Graph (MAG): [13] A MAG is a mixed graph – containing directed (\rightarrow) and bidirected (\leftrightarrow) edges - that represents a set of causal diagrams with the same set of observed variables, capturing identical conditional independence and ancestral relationships. It is both ancestral and maximal. A node A is said to be an ancestor of another node B if there is a directed path from A to B. In contrast, A is said to be a *spouse* of B if $A \leftrightarrow B$ is present. A graph is ancestral if it does not contain directed or almost directed cycles. In this context, a directed cycle occurs when a node is an ancestor of itself through directed paths, while an almost directed cycle occurs when a node is both a spouse and an ancestor of another node. A graph is *maximal* if no inducing path exists between any two non-adjacent nodes. An inducing path is a path where every non-endpoint node is a collider and an ancestor of one of the path's endpoints.

Partial Ancestral Graph (PAG): [6] A PAG is a mixed graph that includes directed (\rightarrow) , bidirected (\leftrightarrow) , partially directed $(\circ\rightarrow)$, undirected (-), and unspecified $(\circ-\circ)$ edges. It represents an equivalence class of MAGs with the same observed variables, known as a Markov Equivalence Class (MEC). All models within a MEC share the same set of conditional (in)dependence relations. A PAG has the same adjacencies as every MAG in the class and displays all and only those edge marks that are shared across all models in the MEC. Tails and arrowheads indicate ancestral (causal) and non-ancestral (non-causal) relationships, respectively, common to all models within the MEC. A circle (\circ) edge mark indicates a non-invariant relationship, meaning there is at least one model in the MEC where the edge mark is a tail and another where it is an arrowhead.

M-separation in MAGs [17]: M-separation extends d-separation to MAGs, where d-separation in a causal diagram corresponds to m-separation in its unique associated MAG over the observed variables, and vice versa. In a MAG, a path p between X and Y is active (or m-connecting) relative to \mathbf{Z} (with $X, Y \notin \mathbf{Z}$) if: (1) Every non-collider on p is not in \mathbf{Z} ; and (2) Every collider on p is an ancestor of some $E \in \mathbf{Z}$. Two disjoint sets of variables \mathbf{X} and \mathbf{Y} are \mathbf{m} -separated by \mathbf{Z} if no m-connecting path exists between any variable E0 and E1 relative to E2.

M-separation in PAGs [2]: In a PAG, let $\langle A, B, C \rangle$ be a triple along a path p. The node B is a collider on p if both edges are into B (i.e., $A*\to B \leftarrow *C$). Conversely, B is a definite non-collider on p if one of the edges is directed away from B (i.e., $A \leftarrow B *-* C$ or $A *-* B \rightarrow C$), or both edges have circle marks at B and there is no edge between A and C (i.e., $A \circ \multimap B \circ \multimap C$, where A and B are not adjacent). A path is said to have definite status if every non-endpoint node along it is either a collider or a definite non-collider. Further, a path p between X and Y is a definite m-connecting path relative to a (possibly empty) set \mathbf{Z} $(X, Y \notin \mathbf{Z})$ if (1) p has definite status; (2) every definite non-collider on p is not in **Z**; and (3) every collider on p is an ancestor of some $Z \in \mathbf{Z}$. Two disjoint sets of variables X and Y are *m-separated* by Zif no definite m-connecting path exists between any variable $X \in \mathbf{Z}$ and $Y \in \mathbf{Y}$ relative to \mathbf{Z} .

APPENDIX B RELATED WORK

Over the years, numerous causal discovery algorithms have been proposed, leveraging conditional independence constraints, goodness-of-fit scores, or a combination of both [34]. However, most of these methods are tailored to simplified, potentially unrealistic scenarios where causal sufficiency – the inclusion of all confounder variables in the observed set – or specific parametric and distributional constraints are imposed. In more complex real-world scenarios involving latent confounding and mixed types of variables, causal discovery becomes significantly more challenging.

a) Fast Causal Inference (FCI) Algorithm: The seminal FCI algorithm, first introduced by [5] and later refined with a complete set of orientation rules by [6], remains a cornerstone

in this area due to its solid theoretical foundations, relatively few assumptions compared to alternative approaches, and flexibility in accepting any appropriate statistical test for conditional independencies. Remarkably, it is nonparametric (i.e., it does not require any functional or distributional assumptions beyond those of the conditional independence tests), and it is both sound and complete, even in the presence of latent confounding and selection bias. This makes it particularly well-suited for analyzing real-world datasets. However, in data-limited scenarios, where the empirical faithful assumption is likely to be violated and statistical tests for conditional independence are prone to errors, it often produces highly unreliable results, particularly due to the sensitivity to the order of independence tests and the propagation of errors [10].

b) Extensions of FCI and Hybrid Approaches: Due to the FCI's lack of robustness, several algorithms have been developed to improve the reliability of causal discovery under latent confounding. Some approaches focus on mitigating the impact of potentially unfaithful conditional independence relations. Examples include Anytime FCI [26], Really Fast Causal Inference (RFCI) [10], and Conservative FCI (cFCI) [10, 11]. Other methods leverage a logical characterization of constraint-based causal discovery [35], translating conditional independence constraints into logical statements about ancestral relationships, and use Answer Set Programming (ASP) solvers to identify optimal causal structures [12, 36, 37]. Hybrid and score-based approaches offer greater robustness by integrating a scoring function that (approximately) measures the compatibility between a candidate model and the observed data. Notable early hybrid approaches include Greedy FCI (GFCI) [38] and Bayesian Constraint-Based Causal Discovery (BCCD) [12], though both use scoring functions that do not account for latent confounding. GFCI first applies the Fast Greedy Search (FGS) algorithm [39] - a score-based search algorithm designed for causally sufficient settings - to obtain an approximate structure and then applies FCI to adjust for potential confounding, modifying the structure accordingly. In contrast, BCCD integrates a logical version of cFCI with Bayesian reliability scores for both pairwise conditional independence tests and logical causal statements, guiding both the adjacency and orientation phases.

c) Score-Based Methods: More recently, score-based approaches have been developed to explicitly account for latent confounding by searching the space of MAGs. As shown by [13, 40], the Bayesian Information Criterion (BIC) asymptotically approximates the posterior probability of MAGs under a linear Gaussian parameterization. Importantly, BIC is score-equivalent, meaning that Markov-equivalent MAGs receive the same asymptotic score. Additionally, the maximum likelihood estimates (MLEs) required for its computation can be efficiently obtained using the Residual Iterative Conditional Fitting (RICF) algorithm [41]. Due to its theoretical properties and computational efficiency, the Gaussian BIC has become widely adopted in score-based causal discovery. Several algorithms have been proposed to identify a MAG that represents the optimal MEC and its corresponding PAG according to this score. These include Greedy Search for MAGs (GSMAG), MAG Max-Min Hill-Climbing (M3HC) [40], MAG Structure Learning (MAGSL) [15], and Differentiable Causal Discovery (DCD) [14]. Notably, MAGSL is an exact search algorithm that guarantees optimality under the Gaussian BIC, rather than a greedy search method. Furthermore, DCD defines the space of ancestral graphs using differentiable algebraic constraints and employs gradient-based optimization to identify the optimal structure, instead of relying on traditional search approaches. Finally, Greedy PAG Search (GPS) [16] proposes a greedy search for the optimal PAG based on the Gaussian BIC score while distinguishing itself by operating directly in the space of PAGs. These advancements underscore the growing role of score-based and hybrid approaches in causal discovery, particularly in settings with latent confounding.

APPENDIX C

ON THE CHARACTERIZATION OF THE MECS OF MAGS

To enhance practical applicability, [18] presents a graphical characterization of MECs that depends exclusively on adjacencies and specific triples and paths within the graph. Specifically, he shows that two MAGs belong to the same MEC if and only if they share the same adjacencies, unshielded colliders, and colliders identified by discriminating paths. This characterization was later refined by [21], utilizing the concept of triples with order. In their definition [21, Definition 3.11], triples of order 0 are equivalent to unshielded triples, while triples of higher orders are defined by discriminating paths, with the order being roughly related to the length of these paths. They demonstrated that two MAGs, G_1 and G_2 , are Markov equivalent if and only if they share the same adjacencies (skeleton) and the same colliders with order [21, Theorem 3.7]. Moreover, they established that for any two Markov equivalent MAGs G_1 and G_2 , a collider (or noncollider) of a specific order in G_1 is also a collider (or noncollider) of the same order in G_2 [21, Proposition 3.12].

Despite the significant simplification offered by this characterization, algorithmically detecting triples of order higher than 0 in a graph is not straightforward. To address this, [16] recently proposed an even simpler characterization of the MEC of a MAG that does not depend on identifying discriminating paths. Their characterization is based on the following recursive definition of triples with order:

Definition 6 (Triple with Order as in [16]). Let \mathfrak{C}_i resp. \mathfrak{D}_i $(i \geq 0)$ be the set of collider resp. non-collider triples with order i in a MAG G, defined recursively as follows:

- A triple $\langle a,b,c\rangle \in \mathfrak{C}_0$ (resp. \mathfrak{D}_0), if a *-* b *-* c is an unshielded collider (resp. non-collider) in G.
- A triple $\langle a, b, c \rangle \in \mathfrak{C}_i$ (resp. \mathfrak{D}_i), with $i \geq 1$, if $\langle a, b, c \rangle \notin \mathfrak{C}_{j < i}$ (resp. $\mathfrak{D}_{j < i}$), and
- 1) a *-* b *-* c is a collider (resp. non-collider) in G, 2) $\exists q : \langle q, a, b \rangle \in \mathfrak{C}_{j < i}$, and $\langle q, a, c \rangle \in \mathfrak{D}_{k < i}$.

They specifically demonstrate that the MEC of a MAG G is fully characterized by the triple $\langle \mathfrak{S}, \mathfrak{C}, \mathfrak{D} \rangle$, where \mathfrak{S} is the (undirected) skeleton of G, and \mathfrak{C} and \mathfrak{D} are the corresponding lists of colliders and non-colliders with order, respectively, as defined above – see [16, Corollary 3]. [16] also introduced the MAG-to-MEC algorithm, which efficiently identifies all

collider and non-collider triples with order in a given MAG. The output of the MAG-to-MEC algorithm is the skeleton, besides the lists $\mathfrak C$ and $\mathfrak D$ of the MAG. This algorithm enables the determination of Markov equivalence between MAGs with polynomial time complexity $\mathcal O(pe^4)$, where p is the number of vertices and e is the number of edges in the graph.

APPENDIX D

ON LIKELIHOOD-RATIO TESTS FOR CONDITIONAL INDEPENDENCE AMONG VARIABLES OF DIVERSE TYPES

As shown by [22], conditional independence among variables of diverse types, including continuous, binary, nominal, and others, can be tested by fitting two nested models.

Specifically, to test the conditional independence of X and Y, given a (possibly empty) set \mathbf{Z} , the procedure involves constructing: (1) a full model (M_1) for Y that depends on both X and \mathbf{Z} , and (2) a reduced model (M_0) , nested within M_1 , that depends only on \mathbf{Z} . Model M_0 is considered nested within M_1 if M_1 can be reduced to M_0 by setting the contribution of X to zero. A likelihood-ratio test is then used to compare the goodness-of-fit of the two models. If the models fit the data equally well, X and Y are deemed conditionally independent given \mathbf{Z} , assuming the models are correctly specified. In practical terms, this indicates that X provides no additional predictive information for Y once \mathbf{Z} has been accounted for.

The test statistic for a likelihood-ratio test follows a χ^2 -distribution with degrees of freedom equal to $|\Theta_1| - |\Theta_0|$, where $|\Theta_1|$ and $|\Theta_0|$ are the number of parameters in M_1 and M_0 , respectively. While the test is asymptotically symmetric (yielding the same p-value when flipping X and Y), this symmetry may not hold in finite samples. To address this, [22] proposed a symmetric conditional independence test that combines the p-values from both directions $(p_1 \text{ and } p_2)$ using the formula: $p = \min\{2 \min\{p_1, p_2\}, \max(p_1, p_2)\}$.

APPENDIX E ON BAYES FACTOR FUNCTIONS

As detailed in [23], standard test statistics such as z, t, χ^2 , and F follow well-defined distributions under the null hypothesis. Under alternative hypotheses, their asymptotic distributions depend solely on scalar-valued noncentrality parameters. By leveraging prior density families indexed by standardized effect sizes, [23] define Bayes factors as functions of these effect sizes, referring to them as Bayes Factor Functions (BFFs). In particular, the authors leverage prior densities that are special cases of nonlocal alternative prior (NAP) densities, such as normal-moment and gamma priors, which vanish when the noncentrality parameter is zero. This property accelerates evidence accumulation for both true null and alternative hypotheses while enabling closed-form Bayes factor expressions, reducing computational complexity and improving practical usability.

The authors in [23] also propose that, in the absence of prior knowledge about effect size, one can assess how the evidence for a hypothesis varies across a range of plausible effect sizes. For instance, plotting BF_{10} against standardized effect size allows for selecting the maximum Bayes factor within

a meaningful range (e.g., effect sizes exceeding 0.1). thereby identifying the strongest support for the alternative hypothesis, derived from the specified family of prior densities on the noncentrality parameter, while ensuring that the respective effect size is practically meaningful. In causal discovery, particularly in conditional independence testing, this approach prioritizes evidence for conditional dependence, making it particularly valuable in low-sample settings where statistical power is limited, while also reducing the risk of drawing conclusions from weak or unreliable associations.

APPENDIX F PROOFS OF PROPOSITIONS AND THEOREMS

Proof of Proposition 1

Proof of Proposition 1. Given that \mathbf{Z} is a minimal separator of X and Y, for each $Z_i \in \mathbf{Z}$, there exists at least one m-connecting path between X and Y given $\mathbf{Z} \setminus Z_i$, and such a path includes Z_i . Let π^* be the shortest among these paths. Then, π^* is the closest m-connecting path to $\mathbf{Z} \setminus Z_i$ (see [21, Definition 3.23]) and, by [21, Proposition 3.24], it is also a minimal m-connecting path between X and Y given $\mathbf{Z} \setminus Z_i$ (see [21, Definition 3.18]).

By [27, Theorem 2], Z_i in π^* must be an ancestor of either X or Y, since otherwise, $\mathbf{Z} \setminus Z_i$ would also be a separator of X and Y, contradicting the minimality of \mathbf{Z} . This ensures that Z_i is part of a non-collider triple in π^* .

Let $\langle A, Z_i, C \rangle$ be the triple containing Z_i in π^* :

- If $\langle A, Z_i, C \rangle$ is unshielded, then it is a non-collider triple of order 0. Notably, (A, C), which can be equal to (X, Y), is a pair of non-adjancent nodes and, since Z_i is a non-collider, any minimal separator $\mathbf{Z}' \in \text{MinSep}_{\mathcal{D}(r)}(A, C)$ must contain Z_i .
- If $\langle A, Z_i, C \rangle$ is shielded, then, since π^* is a minimal m-connecting path, it follows from [21, Lemma 3.20] that $\langle A, Z_i, C \rangle$ lies on a unique section of π^* forming a discriminating path for Z_i . Thus, $\langle A, Z_i, C \rangle$ is a noncolider with order > 0. Notably, such a discriminating path takes the form $\langle X', \ldots, A, Z_i, C \rangle$, where (X', C) can be (X, Y). Thus, (X', C) is a pair of non-adjancent nodes and, since Z_i is a non-collider, any minimal separator $\mathbf{Z}' \in \mathrm{MinSep}_{\mathcal{P}(r)}(X', C)$ must contain Z_i .

Thus, every $Z_i \in \mathbf{Z}$ is part of a non-collider triple of order corresponding to some pair (X', Y').

Proof of Proposition 2

Proof of Proposition 2. By definition ([21, Definition 3.11]), every triple with order $\langle A, B, C \rangle$ in an r-PAG $\mathcal{P}^{(r)}$ corresponds to a pair of non-adjacent nodes (X,Y), where X and Y are either the endpoints of an unshielded triple (with X=A and C=Y), or the endpoints of a discriminating path for B.

(If:) Let $\langle A, B, C \rangle$ be a triple corresponding to (X,Y) in $\mathcal{P}^{(r)}$ and $\mathbf{Z} \in \mathrm{MinSep}_{\mathcal{P}^{(r)}}(X,Y)$. We show that, if $B \in \mathbf{Z}$, then $\langle A, B, C \rangle$ is a non-collider triple with order. Otherwise, if $B \notin \mathbf{Z}$, then $\langle A, B, C \rangle$ is a collider triple with order:

 $\langle A, B, C \rangle$ is an unshielded triple (with X = A and C = Y)]:

Since the triple is unshielded, it has order 0.

- If $B \in \mathbf{Z}$, then $\langle A, B, C \rangle$ must be a non-collider triple, otherwise, if B were a collider, the triple would be active, forming an m-connecting path between X and Y, contradicting the fact that \mathbf{Z} m-separates X and Y.
- If $B \notin \mathbf{Z}$, then $\langle A, B, C \rangle$ must be a collider triple, otherwise, if B were a non-collider, the triple would again be active, forming an m-connecting path between X and Y, contradicting the m-separation of X and Y by \mathbf{Z} .

 $\langle A,B,C\rangle$ is part of a discriminating path π between X and Y for B:

Since **Z** m-separates X and Y, it follows from [21, Lemma 3.19] that every nonendpoint node in π , except possibly B, is a collider in **Z**. Consequently, the classification of the triple $\langle A, B, C \rangle$ depends entirely on whether B belongs to **Z**:

- If $B \in \mathbf{Z}$, then $\langle A, B, C \rangle$ must be a non-collider triple. Otherwise, if B were a collider, the triple would be active, rendering the entire path π m-connecting and contradicting the separation of X and Y by \mathbf{Z} .
- If $B \notin \mathbf{Z}$, then $\langle A, B, C \rangle$ must be a collider triple. Otherwise, if B were non-collider, the triple would be active, once again making π m-connecting and contradicting the fact that \mathbf{Z} is a separator of X and Y.

(Only If:) Let $\langle A, B, C \rangle$ be a triple with order corresponding to (X,Y) in $\mathcal{P}^{(r)}$. We show that, for any $\mathbf{Z} \in \operatorname{MinSep}_{\mathcal{P}^{(r)}}(X,Y)$, if B is a non-collider in $\langle A, B, C \rangle$, then $B \in \mathbf{Z}$. Conversely, if B is a collider in $\langle A, B, C \rangle$, then $B \notin \mathbf{Z}$.

 $\langle A, B, C \rangle$ is an unshielded triple (with X = A and C = Y)]:

- If B is a non-collider in $\langle A,B,C\rangle$, then, for any $\mathbf{Z}\in \operatorname{MinSep}_{\mathcal{P}^{(r)}}(X,Y)$, we must have $B\in \mathbf{Z}$. Otherwise, if $B\not\in \mathbf{Z}$, the triple would be active, forming an m-connecting path between X and Y, contradicting the fact that \mathbf{Z} separates X and Y.
- If B is a collider in ⟨A,B,C⟩, then for any Z ∈ MinSep_{P(r)}(X,Y), we must have B ∉ Z. Otherwise, if B ∈ Z, the triple would again be active, forming an m-connecting path between X and Y, contradicting the m-separation of X and Y by Z.

 $\langle A,B,C\rangle$ is part of a discriminating path π between X and Y for B:

It follows from [21, Lemma 3.19] that every nonendpoint node in π , except possibly B, is a collider in any m-separator (minimal or not) of X and Y.

Since $\mathbf{Z} \in \operatorname{MinSep}_{\mathcal{P}^{(r)}}(X,Y)$, whether B belongs to \mathbf{Z} depends entirely on the classification of the triple $\langle A,B,C\rangle$:

- If B is a non-collider in $\langle A,B,C\rangle$, then, we must have $B\in \mathbf{Z}$. Otherwise, if $B\not\in \mathbf{Z}$, the triple would be active, rendering π m-connecting and contradicting the fact that $\mathbf{Z}\in \mathrm{MinSep}_{\mathcal{P}^{(r)}}(X,Y)$.
- If B is a collider in $\langle A, B, C \rangle$, then we must have $B \notin \mathbf{Z}$. Otherwise, if $B \in \mathbf{Z}$, the triple would be active, once again making π m-connecting and contradicting the fact that $\mathbf{Z} \in \operatorname{MinSep}_{\mathcal{P}(r)}(X,Y)$

This completes the proof.

Proof of Theorem 1

Proof of Theorem 1. Let $\mathcal{P}^{(r)} = (\mathbf{V}, \mathbf{E}^{(r)})$ be the r-PAG under evaluation.

(Sufficiency). We show that the (in)dependence relations in $\mathbf{H}_{\mathfrak{S}(\mathcal{P}^{(r)}),P} \cup \mathbf{H}_{\mathfrak{C}(\mathcal{P}^{(r)}),P}$ suffice to fully characterize the uncertainty in $\mathcal{P}^{(r)}$. To establish this, we show that these relations precisely characterize the uncertainty in the components that uniquely define the MEC of $\mathcal{P}^{(r)}$: the skeleton (adjacencies) and colliders with order in $\mathcal{P}^{(r)}$ [21, Theorem 3.7].

Identifying the skeleton requires: (a) Ensuring that pairs of adjacent nodes are dependent conditioned on any subset $\mathbf{Z} \subseteq \mathbf{V} \setminus \{X,Y\}$ such that $|\mathbf{Z}| \leq r$; and (b) Ensuring that pairs of non-adjacent nodes are independent given their (minimal) separators in $\operatorname{MinSep}_{\mathcal{D}(r)}$.

Thus, the uncertainty in identifying the skeleton arises from that in (a) and (b), which correspond precisely to the first and second sets of (in)dependence hypotheses in $\mathbf{H}_{\mathfrak{S}(\mathcal{P}^{(r)}),P}$, as defined in Definition 3, Items (a) and (b). Note that the minimality of the separators in MinSep $_{\mathcal{P}^{(r)}}$ is not directly relevant to identifying the skeleton $\mathfrak{S}(\mathcal{P}^{(r)})$. However, as shown in Proposition 2, it fully characterizes all triples with order in $\mathcal{P}^{(r)}$, including both non-collider and collider triples.

By Proposition 2, any non-collider triple with order $\langle A,B,C\rangle$ in $\mathcal{P}^{(r)}$ corresponds to a pair of non-adjacent nodes (X,Y) such that $B\in \operatorname{MinSep}_{\mathcal{P}^{(r)}}(X,Y)$. Thus, the third set of hypotheses in $\mathbf{H}_{\mathfrak{S}(\mathcal{P}^{(r)}),P}$, as defined in Definition 3, Item (c), corresponds to dependencies associated with the activation of all non-collider triples with order in $\mathcal{P}^{(r)}$.

These hypotheses not only suffice to characterize all noncollider triples with order, but also partially distinguish them from their collider triple counterparts. As a result, the process of quantifying their uncertainties is inherently linked to quantifying the uncertainty associated with colliders with order.

Proposition 2 also shows that, any collider triple with order corresponds to a pair of non-adjacent nodes (X,Y) such that $B \notin \operatorname{MinSep}_{\mathcal{P}^{(r)}}(X,Y)$. The set $\mathbf{H}_{\mathfrak{C}(\mathcal{P}^{(r)}),P}$ then precisely corresponds to dependencies associated with the activation of $\mathfrak{C}(\mathcal{P}^{(r)})$, thus completing the characterization of the uncertainty surrounding the identification of the collider triples with order.

Thus, the uncertainty in identifying both the skeleton and the colliders with order is fully captured through their directly implied (in)dependencies. Since these components are sufficient for determining the MEC, they are also adequate to both identify $\mathcal{P}^{(r)}$ and distinguish it from any distinct r-PAG.

(Necessity). To prove necessity, we argue by contrapositive: if any (in)dependence relation is omitted from $\mathbf{H}_{\mathfrak{S}(\mathcal{P}^{(r)}),P}$ or $\mathbf{H}_{\mathfrak{C}(\mathcal{P}^{(r)}),P}$, then two distinct r-MECs could appear indistinguishable in their accounted hypotheses, even though they would differ when the relation is included.

We divide the proof based on the types of sets of relations:

- 1) Sets (a) and (b) of $\mathbf{H}_{\mathfrak{S}(\mathcal{P}^{(r)}),P}$, as in Definition 3, allowing the distiction of PAGs differing in the presence or absence of an edge;
- 2) Set (c) of $\mathbf{H}_{\mathfrak{S}(\mathcal{P}^{(r)}),P}$, as in Definition 3, capturing dependencies arising from active non-collider triples with order;

3) Set $\mathbf{H}_{\mathfrak{C}(\mathcal{P}^{(r)}),P}$, capturing dependencies arising from active collider triples with order.

This categorization ensures that the necessity of hypotheses related to edge existence and triple classification with order is systematically addressed.

1) Relations in the sets (a) and (b) of $\mathbf{H}_{\mathfrak{S}(\mathcal{P}^{(r)}),P}$ (presence / absence of an edge). We establish the necessity of hypotheses in the set (a) of $\mathbf{H}_{\mathfrak{S}(\mathcal{P}^{(r)}),P}$, which captures dependencies due to existence of edges, paired with hypotheses in the set (b) of $\mathbf{H}_{\mathfrak{S}(\mathcal{P}^{(r)}),P}$, which accounts for independencies due to their absence.

We show that omitting a relation corresponding to a dependence hypothesis in set (a) (and the corresponding independence hypothesis in set (b)), may render two r-PAGs, differing by the presence of a single edge, indistinguishable, despite representing distinct r-MECs. Let $\{X,Y\}$ be an edge in $\mathbf{E}^{(r)}$. By contradiction, suppose that, for some set $\mathbf{Z} \subseteq \mathbf{V} \setminus \{X,Y\}$, the conditional independence relation $(X,Y|\mathbf{Z})$ is not necessary for characterizing the uncertainty in identifying the r-MEC represented by $\mathcal{P}^{(r)}$. For simplicity, take $|\mathbf{Z}| = r$.

Such a relation would be considered in set (a) of $\mathbf{H}_{\mathfrak{S}(\mathcal{P}^{(r)}),P}$. However, under the assumption, consider a modified set of hypotheses:

$$\mathbf{H}'_{\mathfrak{S}(\mathcal{P}^{(r)}),P} = \mathbf{H}_{\mathfrak{S}(\mathcal{P}^{(r)}),P} \setminus H_{(X \not\perp Y \mid \mathbf{Z})_{P}}.$$

Now, consider a PAG $\mathcal{P}^{'(r)} = (\mathbf{V}, \mathbf{E}^{'(r)})$ differing from $\mathcal{P}^{(r)}$ only in the absence of the edge $\{X,Y\}$ – i.e., $\mathbf{E}^{\prime(r)} = \mathbf{E}^{(r)} \setminus \{X,Y\}$ –, with \mathbf{Z} being a minimal separator of X and Y, i.e., $\mathbf{Z} \in \mathrm{MinSep}_{\mathcal{P}^{\prime(r)}}(X,Y)$. The relation $(X,Y|\mathbf{Z})$ would be considered in set (b) of $\mathbf{H}_{\mathfrak{S}(\mathcal{P}^{\prime(r)}),P}$. However, under the assumption that such a relation is not necessary, consider the corresponding set of hypotheses

$$\mathbf{H}'_{\mathfrak{S}(\mathcal{P}'^{(r)}),P} = \mathbf{H}_{\mathfrak{S}(\mathcal{P}'^{(r)}),P} \setminus H_{(X \perp \!\!\! \perp Y \mid \mathbf{Z})_{P}}.$$

Since the two r-PAGs differ only by a single edge in their skeletons, their corresponding modified set of hypotheses satisfy:

$$\mathbf{H}'_{\mathfrak{S}(\mathcal{P}^{(r)}),P} = \mathbf{H}'_{\mathfrak{S}(\mathcal{P}'^{(r)}),P}.$$

In cases where these r-PAGs share the same colliders with order, trivially when no colliders are present, we have:

$$\mathbf{H}'_{\mathfrak{S}(\mathcal{P}^{(r)}),P} \cup \mathbf{H}'_{\mathfrak{C}(\mathcal{P}^{(r)}),P} = \mathbf{H}'_{\mathfrak{S}(\mathcal{P}'^{(r)}),P} \cup \mathbf{H}'_{\mathfrak{C}(\mathcal{P}'^{(r)}),P}.$$

This equality implies that, although the two r-PAGs represent distinct MECs, their uncertainties are assessed by the same set of hypotheses.

However, if the omitted relation were included and $P(H_{(X \perp \!\!\! \perp Y|\mathbf{Z})_P} | \mathcal{D}) \neq P(H_{(X \perp \!\!\! \perp Y|\mathbf{Z})_P} | \mathcal{D})$, the two r-PAGs could exhibit distinct uncertainties, allowing the most plausible one to be identified. This contradicts the assumption that a relation in the set (a) of $\mathbf{H}_{\mathfrak{S}(\mathcal{P}^{(r)}),P}$ is unnecessary, thereby establishing its necessity.

The proof of necessaty for the relations in the set (b) of $\mathbf{H}_{\mathfrak{S}(\mathcal{P}^{(r)}),P}$ is analogous, with the roles of the r-PAGs $\mathcal{P}^{(r)}$ and $\mathcal{P}^{'(r)}$ being swapped in the argument.

2) Relations in the set (c) of $\mathbf{H}_{\mathfrak{S}(\mathcal{P}^{(r)}),P}$ (active non-collider with order). Now, we establish the necessity of hypotheses in the set (c) of $\mathbf{H}_{\mathfrak{S}(\mathcal{P}^{(r)}),P}$, with each hypothesis, as shown in Proposition 1, capturing a dependence arising from an active non-collider triplet with order

We show that omitting a relation from the set (c) makes $\mathcal{P}^{(r)}$ to be equally distant from two distinct r-PAGs $\mathcal{P}^{'(r)}$ and $\mathcal{P}^{''(r)}$, contradicting the assumption that the hypothesis is irrelevant for distinguishing PAGs that represent distinct MECs.

Let $\{X,Y\}$ be a pair of non-adjacent nodes in $\mathcal{P}^{(r)}$, with $\mathbf{Z} \in \operatorname{MinSep}_{\mathcal{P}^{(r)}}(X,Y)$ and $\mathbf{Z} \neq \emptyset$. By Proposition 1, each $Z_i \in \mathbf{Z}$ lies on a path π between X and Y as a non-collider with order. Thus, given $\mathbf{Z} \setminus Z_i$, this non-collider is active, rendering X and Y m-connecting. By contradiction, suppose that, for some $Z_i \in \mathbf{Z}$, the relation $(X,Y|\mathbf{Z} \setminus Z_i)$ is not necessary for characterizing the uncertainty in identifying the r-MEC represented by $\mathcal{P}^{(r)}$. Such a relation would be considered in set (c) of $\mathbf{H}_{\mathfrak{S}(\mathcal{P}^{(r)}),P}$. However, under the assumption, consider a modified set of hypotheses:

$$\mathbf{H}'_{\mathfrak{S}(\mathcal{P}^{(r)}),P} = \mathbf{H}_{\mathfrak{S}(\mathcal{P}^{(r)}),P} \setminus H_{(X \not\perp \!\!\! \perp Y \mid \mathbf{Z} \setminus Z_i)_P}.$$

Now, consider a PAG $\mathcal{P}^{'(r)} = (\mathbf{V}, \mathbf{E}^{'(r)})$ that differs from $\mathcal{P}^{(r)}$ solely in that the set $\mathbf{Z}' = \mathbf{Z} \setminus Z_i$ is a minimal separator of X and Y in $\mathcal{P}^{'(r)}$ – i.e., $\mathbf{Z}' \setminus Z_i \in \operatorname{MinSep}_{\mathcal{P}'^{(r)}}(X,Y)$. Structurally, PAG $\mathcal{P}^{'(r)}$ differs in that, the corresponding path π has now Z_i as part of a collider triple with order (see Proposition 2). The relation $(X,Y|\mathbf{Z}\setminus Z_i)$ would be considered in the set (b) of $\mathbf{H}_{\mathfrak{S}(\mathcal{P}^{'(r)}),P}$. However, under our assumption that such a relation is not necessary, consider the corresponding set of hypotheses

$$\mathbf{H}'_{\mathfrak{S}(\mathcal{P}'^{(r)}),P} = \mathbf{H}_{\mathfrak{S}(\mathcal{P}'^{(r)}),P} \setminus H_{(X \perp \!\!\! \perp Y \mid \mathbf{Z} \setminus Z_i)_P}.$$

Then, consider a PAG $\mathcal{P}^{''(r)} = (\mathbf{V}, \mathbf{E}^{''(r)})$ differing from $\mathcal{P}^{(r)}$ solely from that X and Y are adjacent, i.e., $\{X,Y\} \in \mathbf{E}^{''(r)}$. Structurally, PAG $\mathcal{P}^{''(r)}$ differs in that Z_i is no longer part of a triple with order corresponding to $\{X,Y\}$. The relation $(X,Y|\mathbf{Z}\setminus Z_i)$ would be considered in the set (a) of $\mathbf{H}_{\mathfrak{S}(\mathcal{P}''(r)),P}$. However, under our assumption that such a relation is not necessary, consider the corresponding set of hypotheses

$$\mathbf{H}'_{\mathfrak{S}(\mathcal{P}''(r)),P} = \mathbf{H}_{\mathfrak{S}(\mathcal{P}''(r)),P} \setminus H_{(X \not\perp Y \mid \mathbf{Z} \setminus Z_i)_P}.$$

An an example, let $\mathcal{P}^{(r)}$ consist of a single unshielded triple $X \circ \multimap Z_i \circ \multimap Y$, where $\mathbf{Z} = \{Z_i\}$ and $X \perp \!\!\!\perp Y | \mathbf{Z}$. Further, let the PAG $\mathcal{P}^{'(r)}$ be $X \circ \multimap Z_i \leftarrow \circ Y$, such that $(X \perp \!\!\!\perp Y)$. Finally, let the PAG $\mathcal{P}^{''(r)}$ be be a fully connected PAG between X, Y, and Z_i .

Under the assumption, the sets of modified hypotheses for $\mathcal{P}^{'(r)}$ and $\mathcal{P}^{''(r)}$ account for $(X,Y|Z_i)$ – both as $(X\not\perp \!\!\!\!\perp Y|Z_i)$ – but not for $X\perp\!\!\!\perp Y$ – where they would differ. As a result, the following equality holds:

$$\mathbf{H}_{\mathfrak{S}(\mathcal{P}'(r)),P}' \cup \mathbf{H}_{\mathfrak{C}(\mathcal{P}'(r)),P}' = \mathbf{H}_{\mathfrak{S}(\mathcal{P}''(r)),P}' \cup \mathbf{H}_{\mathfrak{C}(\mathcal{P}''(r)),P}'.$$

This implies that $\mathcal{P}^{'(r)}$ and $\mathcal{P}^{''(r)}$ are statistically indistinguishable, even asymptotically, despite representing distinct MECs. Furthermore, this results in the PAG $\mathcal{P}^{(r)}$ being equidistant from both $\mathcal{P}^{'(r)}$ and $\mathcal{P}^{''(r)}$, contradicting the premise that the given set of hypotheses is sufficient to distinguish between distinct MECs.

However, if the omitted relation were included and $P(H_{(X \not\perp Y)_P} | \mathcal{D}) \neq P(H_{(X \perp\!\!\!\perp Y)_P} | \mathcal{D})$, then the two r-PAGs, $\mathcal{P}^{'(r)}$ and $\mathcal{P}^{''(r)}$, could exhibit distinct levels of uncertainty. This would enable the proper distinction between $\mathcal{P}^{(r)}$ and either of these two r-PAGs, ensuring that their statistical differences are meaningfully captured. This establishes the necessity of the omitted relation in identifying and distinguishing between distinct MECs.

3) **Relations in \mathbf{H}_{\mathfrak{C}(\mathcal{P}^{(r)}),P} (active collider with order).** We now establish the necessity of relations in $\mathbf{H}_{\mathfrak{C}(\mathcal{P}^{(r)}),P}$, which captures dependencies arising from activation of collider triples with order.

Similarly from the previous case, we show that omitting a relation from the set $\mathbf{H}_{\mathfrak{C}(\mathcal{P}^{(r)}),P}$ makes $\mathcal{P}^{(r)}$ to be equally distant from two distinct $r\text{-PAGs }\mathcal{P}'^{(r)}$ and $\mathcal{P}''^{(r)}$, contradicting the assumption that the hypothesis is irrelevant for distinguishing PAGs that represent distinct MECs.

Let $\{X,Y\}$ be a pair of non-adjacent nodes in $\mathcal{P}^{(r)}$, with \mathbf{Z} being a minimal separator of X and Y, such that there exists a collider triple $\langle A,B,C\rangle$ corresponding to (X,Y). Notably, by Proposition 2, $B \notin \mathbf{Z}$ and $\langle A,B,C\rangle$ forms a collider triple with order. Thus, $\mathbf{Z} \cup \{B\}$ m-connects X and Y.

By contradiction, suppose that the relation $(X,Y|\mathbf{Z} \cup \{B\})$ is not necessary for characterizing the uncertainty in identifying the r-MEC represented by $\mathcal{P}^{(r)}$. Such a relation would be considered in $\mathbf{H}_{\mathfrak{C}(\mathcal{P}^{(r)}),P}$. However, under the assumption, consider a modified set of hypotheses:

$$\mathbf{H}'_{\mathfrak{C}(\mathcal{P}^{(r)}),P} = \mathbf{H}_{\mathfrak{C}(\mathcal{P}^{(r)}),P} \setminus H_{(X \not\perp \!\!\!\perp Y \mid \mathbf{Z} \cup \{B\})_P}.$$

An an example, let $\mathcal{P}^{(r)}$ be $X \circ \to Z_i \leftarrow \circ Y$, such that $(X \perp \!\!\!\perp Y)$. Further, let the PAG $\mathcal{P}^{'(r)}$ consist of a single unshielded triple $X \circ - \circ Z_i \circ - \circ Y$, where $\mathbf{Z} = \{Z_i\}$ and $X \perp \!\!\!\perp Y | \mathbf{Z}$. Finally, let the PAG $\mathcal{P}^{''(r)}$ be be a fully connected PAG between X, Y, and Z_i .

Under the assumption, the sets of modified hypotheses for $\mathcal{P}^{'(r)}$ and $\mathcal{P}^{''(r)}$ account for $(X,Y|\emptyset)$ – both as $(X\not\perp\!\!\!\perp Y)$ – but not for $X\perp\!\!\!\perp Y|Z_i$ – where they would differ. As a result, the following equality holds:

$$\mathbf{H}'_{\mathfrak{S}(\mathcal{P}'(r)),P} \cup \mathbf{H}'_{\mathfrak{C}(\mathcal{P}'(r)),P} = \mathbf{H}'_{\mathfrak{S}(\mathcal{P}''(r)),P} \cup \mathbf{H}'_{\mathfrak{C}(\mathcal{P}''(r)),P}.$$

This implies that $\mathcal{P}^{'(r)}$ and $\mathcal{P}^{''(r)}$ are statistically indistinguishable, even asymptotically, despite representing distinct MECs. Furthermore, this results in the PAG $\mathcal{P}^{(r)}$ being equidistant from both $\mathcal{P}^{'(r)}$ and $\mathcal{P}^{''(r)}$, contradicting the premise that the given set of hypotheses is sufficient to distinguish between distinct MECs.

However, if the omitted relation were included and $P(H_{(X \perp \!\!\! \perp Y|Z_i)_P}|\mathcal{D}) \neq P(H_{(X \perp \!\!\! \perp Y|Z_i)_P}|\mathcal{D})$, then the two r-PAGs, $\mathcal{P}^{'(r)}$ and $\mathcal{P}^{''(r)}$, could exhibit distinct levels of uncertainty. This would allow for a clear distinction

between $\mathcal{P}^{(r)}$ and either of these two r-PAGs, ensuring that their statistical differences are properly captured. Thus, this underscores the necessity of including the omitted relation to accurately capture the uncertainty in identifying and distinguishing between distinct MECs.

This concludes the proof.

Proof of Corollary 1

Proof. Due to their Markov equivalence, every MAG in an r-PAG $\mathcal{P}^{(r)}$ shares the same skeleton and colliders with order. Consequently, they encode exactly the same set of conditional (in)dependencies.

Tools for evaluating *m*-separation, identifying minimal separators, and determining collider with order – originally designed for MAGs – can be directly extended to PAGs by using the notion of *m*-separation for PAGs, which has been shown to be complete by [2].

From the proof of Theorem 1, the score $S_{\mathcal{P}^{(r)},P} = P(\mathbf{H}_{\mathcal{P}^{(r)},P}|\mathcal{D})$ accounts for only (in)dependencies associated with the skeleton and colliders with order. Since these properties are invariant across all MAGs in a given r-PAG $\mathcal{P}^{(r)}$, the corresponding (in)dependency hypotheses are also shared among all models in the PAG. This suffices to show that Markov-equivalent MAGs receive the same score, which, asymptotically, will always be equal.

Conversely, distinct PAGs, and thus MAGs belonging to different PAGs, necessarily differ in either at least one edge in the skeleton or in the classification of at least one triple with order (i.e., whether it is a collider with order or not). By Theorem 1, the score $S_{\mathcal{P}^{(r)},P} = P(\mathbf{H}_{\mathcal{P}^{(r)},P}|\mathcal{D})$ captures all (in)dependencies that define the skeleton and colliders with order, thereby fully capturing the differences that distinguish PAGs or MAGs that are not Markov-equivalent. Consequently, these distinct structures will receive a score that, asymptotically, are different. \Box

Proof of Theorem 3

Proof of Theorem 3. We show that under the given assumptions, dcFCI correctly identifies the true r_{max} -PAG $\mathcal{P}^{(r_{\text{max}})}$.

We leverage the soundness and completeness of FCI [6]: Given an accurate (faithful) set of minimal separators, FCI is sound and complete. That is, if the correct minimal separators are identified, FCI outputs the true PAG.

If the significance level α is sufficiently small and an appropriate conditional independence test is used, then all true (conditional) independencies are observed in the dataset \mathcal{D} . Consequently, the true set of minimal separators is a subset of the observed independencies in \mathcal{D} .

We prove this by induction on r, showing that for each iteration $r=0,\ldots,r_{\max}$, the true r-PAG $\mathcal{P}^{(r)}$ is included in the candidate list $\mathcal{L}^{(r)}$ and, under the assumption that it ranks among the k most data-compatible candidates (according to $S_{\mathcal{P}^{(r)},\mathcal{D},\mathcal{L}^{(r)}}$), it is retained for the next iteration. There, it is certainly refined to yield $\mathcal{P}^{(r+1)}$. By induction, $\mathcal{P}^{(r_{\max})}$ is guaranteed to be in $\mathcal{L}^{(r_{\max})}$.

At initialization (line 7), dcFCI starts with the complete graph (implying an empty set of independencies), which is

trivially sound when no independencies are observed. This represents the most conservative starting point.

- Base Case (r = 0): dcFCI constructs all 0-PAGs from every possible subset of the observed marginal independencies. Since the true set of marginal independencies is among theses subsets, it is considered, yielding the true P⁽⁰⁾. Hence, P⁽⁰⁾ is included in the candidate L⁽⁰⁾. By assumption, its score S_{P⁽⁰⁾,D,L⁽⁰⁾} ranks among the k highest in L⁽⁰⁾, ensuring its selection for iteration r = 1.
 Inductive Step (r → r + 1): Assume that at iteration r,
- the true $\mathcal{P}^{(r)}$ is among the k highest-scoring r-PAGs in $\mathcal{L}^{(r)}$. We show that the true $\mathcal{P}^{(r+1)}$ will also be among the k highest-scoring (r+1)-PAGs in $\mathcal{L}^{(r+1)}$. The dcFCI algorithm generates all possible (r+1)-PAGs by expanding the set of minimal separators of the current r-PAGs in $\mathcal{L}^{(r)}$, considering all subsets of observed independencies conditioned on sets of size r+1. Since all true conditional independencies of size r+1 are identified, the set of minimal separators for $\mathcal{P}^{(r)}$ is guaranteed to

is among the r+1-PAG candidates. By assumption, the true $\mathcal{P}^{(r+1)}$ ranks among the k most data-compatible (r+1)-PAGs - i.e., its score $S_{\mathcal{P}^{(r+1)},\mathcal{D},\mathcal{L}^{(r+1)}}$ is among the k highest. Thus, it is retained in $\mathcal{L}^{(r+1)}$ for the next iteration.

be expanded to include them, thus generating the set of true minimal separators for $\mathcal{P}^{(r+1)}$ and ensuring $\mathcal{P}^{(r+1)}$

• **Termination** $(r = r_{\text{max}})$: At r_{max} , the true $\mathcal{P}^{(r_{\text{max}})}$ is guaranteed to be in the output list, as all preceding $\mathcal{P}^{(0)}, \ldots, \mathcal{P}^{(r_{\text{max}}-1)}$ were selected in previous iterations. Since $\mathcal{P}^{(r_{\text{max}})}$ is among the top k highest-scoring r_{max} -PAGs, it is selected for output in $\mathcal{L}^{(r_{\text{max}})}$.

Thus, by induction, we demonstrate that dcFCI outputs the true $\mathcal{P}^{(r_{\max})}$ under the given assumptions.

APPENDIX G

ON THE COMPUTATIONAL COMPLEXITY OF DCFCI

A. Complexity Analysis

At each iteration r, dcFCI identifies all conditional independencies given subsets of size r for all pairs of adjacent nodes. For $\binom{p}{2} = O(p^2)$ pairs of variables, the number of conditional independence tests given subsets of size r is $\binom{p}{2} \times \binom{p-2}{r}$. This number grows combinatorially with p but can be approximated as $O(p^r)$ for moderate r, assuming $r \ll p$. Therefore, the total number of tests is $O(p^{r+2})$.

Let n_r be the number of identified conditional independencies given subsets of size r. Then, dcFCI generates an r-PAG for each of the possible subsets of these n_r independencies (i.e., the powerset), leading to a total of 2^{n_r} possible r-PAGs.

To generate each of these r-PAGs, dcFCI applies the FCI orientation rules and computes their scores, which involves identifying minimal separators and colliders with order. These tasks are done in polynomial time, with the most demanding operation being $O(p^5)$, even in the worst case:

- Finding minimal separators can be performed in at most $O(p^2)$, as nodes can be removed one by one [27].
- Applying FCI's orientation rules takes $O(p^5)$: for each of the $O(p^2)$ edge marks, FCI checks for specific paths in

- \mathcal{P} , a process that runs in O(pm), where m is the number of edges. In dense (complete) graphs, where $m=O(p^2)$, this results in an overall $O(p^5)$ complexity [6].
- Identifying colliders via the MAG-to-MEC algorithm has complexity $O(p^4)$ in general [16].

Therefore, each iteration of dcFCI takes $O(2^{n_r}p^5)$.

In practice, the number n_r of observed independencies is typically much smaller than the worst-case bound of $O(p^{r+2})$, making dcFCI computationally feasible in most cases. Consequently, the complexity of each iteration r of dcFCI when n_r is moderate, is $O(2^{n_r}p^5)$, which is significantly smaller than the worst-case exponential growth $O(2^{p^{r+2}})$, which can be even super-exponential when r=p-2.

When considering that the algorithm runs for $r_{\rm max}$ iterations (with $r=0,1,\ldots,r_{\rm max}$), the overall complexity depends on the complexity of each iteration. The total complexity of the $r_{\rm max}$ iterations is therefore the sum of the complexities for each individual iteration:

$$O\left(\sum_{r=0}^{r_{\max}} 2^{n_r} p^5\right).$$

Therefore, for a moderate number n_r of identified independencies and moderate values of $r_{\rm max}$, the growth remains manageable.

Worst-case performance: In the worst case, for each r, n_r could be of order $O(p^{r+2})$. Thus, the overall complexity across all iterations would be:

$$O\left(\sum_{r=0}^{r_{\max}} 2^{O(p^{r+2})} p^5\right).$$

This grows very quickly, and for large values of r_{max} , this sum becomes dominated by the highest values of r.

For comparison, the adjacency search phase is the most computationally demanding part of the FCI algorithm, with a complexity of $O(p^{r_{\max}+2})$. This arises from the algorithm's search for separating sets of up to r_{\max} nodes from a set of p-2 variables, while evaluating $O(p^2)$ node pairs [5]. small values of r_{\max} , the complexity remains polynomial, making the search computationally feasible. However, when considering large conditioning sets, particularly in the worst case where $r_{\max}=p-2$, the complexity also grows exponentially.

B. Computational Optimizations

Notably, dcFCI may not be efficient for when n_r is not moderated. One potential solution is to apply a threshold to the probabilities of the conditional independencies, classifying those with high probability as certain, and focusing only on the less probable independencies in the powerset.

Despite its higher computational cost, dcFCI implements several optimizations to reduce runtime and make the algorithm more practical for larger datasets. One such optimization is caching the results of conditional independence tests. These tests are performed once and stored, so that when the same test is needed in subsequent iterations, it can be retrieved rather than recomputed. This significantly reduces redundant computations and helps mitigate the exponential growth.

Additionally, dcFCI leverages parallelization to construct multiple r-PAGs simultaneously. Instead of running FCI sequentially for each subset of independencies, dcFCI utilizes parallel processing to handle different runs concurrently, thereby accelerating the computation. This parallelization is a significant advantage, allowing dcFCI to better handle the combinatorial growth of possible subsets.

APPENDIX H

EXAMPLE USING THE STRAIGHTFORWARD PAG SCORE

Example 2. Consider the example from Figure 2, over p=4 variables, namely A, B, X, and Y. Following the formula shown in Eq. (1), the total number T of pairwise conditional independencies relations when $r_{\rm max}$, the maximum size of the conditioning set, is set to 2 is:

$$T = \binom{4}{2} \times \sum_{r=0}^{2} \binom{4-2}{r} = 24.$$

Table VIII presents the p-values and posterior probabilities for testing hypotheses of independence and dependence for each pairwise conditional independence relation among A, B, X, and Y. The "Truth" column indicates the conditional dependencies and independencies implied by the true PAG, while the "FCI", "cFCI & GPS", "BCCD", and "DCD" columns show whether the PAGs inferred by these algorithms correctly reflect the true (in)dependence relationships.

Using the information from this table, we can compute the Fréchet bounds for the scores associated with the true PAG \mathcal{P}^* and the PAGs inferred by the SOTA algorithms. The bounds for the true PAG, which was accurately recovered by MAGSL, are $S_{\mathcal{P}^*,\mathcal{D}}\in(0,0.612)$. In comparison, the bounds for the PAG inferred by FCI are $S_{\mathcal{P}_{\text{FCI},\mathcal{D}}}\in(0,0.0136)$, while the bounds for the PAGs inferred by cFCI and GPS are $S_{\mathcal{P}_{\text{CFCI},\mathcal{K}}\text{GPS},\mathcal{D}}\in(0,0.0366)$. For the BCCD PAG, as it is invalid, inferring conditional (in)dependence relations via m-separation is not appropriate. However, the bounds for the closest valid PAG (with a circle instead of an arrowhead into Y) are $S_{\mathcal{P}'_{\text{BCCD}},\mathcal{D}}\in(0,0.1848)$. Finally, the bounds for the DCD PAG are $S_{\mathcal{P}_{\text{DCD}},\mathcal{D}}\in(0,0.0366)$.

While the Fréchet bounds for all PAGs overlap, making it difficult to identify statistically significant differences, a closer look at the upper bounds reveals that the true (and MAGSL) PAG aligns more closely with the data than those inferred by other algorithms. The Fréchet upper bound, determined by the minimum of the individual probabilities, indicates that the true PAG's score is supported by the strongest evidence in the data, with at least 61.2% probability for its implied (in)dependencies. In contrast, other PAGs represent hypotheses with much lower probabilities, such as $(X \perp \!\!\! \perp Y \mid B)$ (FCI PAG) at 1.36%, $(A \not\perp Y)$ (all but BCCD PAG) at 3.66%, and $(B \not\perp \!\!\!\perp X \mid A)$ (cFCI, GPS, BCCD PAGs) at 18.46%. This highlights the need for further improvement in causal discovery algorithms, particularly in accounting for uncertainty in conditional independence tests and achieving a closer alignment with the data.

APPENDIX I

EXAMPLE USING THE MEC-TARGETED PAG SCORE

Example 3. Let us revisit the example in Figure 1 and focus on comparing the PAGs inferred by FCI and cFCI, which differ only in the orientation of the triple $\langle A, B, Y \rangle$.

For illustration, suppose we narrowed the list down to only include the FCI and cFCI PAGs, allowing us to apply the proposed MEC-targeted compatibility score. Additionally, we set r=2, which, enables us to evaluate the PAGs after considering independence relations conditional on every possible conditioning set.

Both PAGs share the same skeleton, with $\mathbf{E}^{(r)} = \{\{X,A\},\{A,B\},\{B,Y\}\}$. As a result, both $\mathbf{H}_{\mathfrak{S}\left(\mathcal{P}_{\mathrm{FCI}}^{(r)}\right),P}$ and $\mathbf{H}_{\mathfrak{S}\left(\mathcal{P}_{\mathrm{FCI}}^{(r)}\right),P}$ include all dependence relationships between adjacent pairs of variables, conditioned on every set of up to r=2 variables.

The FCI PAG implies that the empty set is the minimal separator for the pairs $\{A,Y\}$, $\{B,X\}$, and $\{X,Y\}$. Consequently, $\mathbf{H}_{\mathfrak{S}\left(\mathcal{P}_{\mathrm{FCI}}^{(r)}\right),P}$ also includes the marginal independencies $(A \perp\!\!\!\perp Y), (B \perp\!\!\!\perp X)$, and $(X \perp\!\!\!\perp Y)$. The separation of A and Y led to the formation of the collider triple $\langle A,B,Y\rangle$, meaning that $\mathbf{H}_{\mathfrak{C}\left(\mathcal{P}_{\mathrm{FCI}}^{(r)}\right),P}$ includes the hypothesis $(A \not\!\!\perp Y|B)$. Additionally, the separation of B and X led to the formation of the collider triple $\langle B,A,X\rangle$, so $\mathbf{H}_{\mathfrak{C}(\mathcal{P}^{(r)}),P}$ also includes the hypothesis $(B \not\!\!\perp X|A)$.

In contrast, the cFCI PAG implies that the empty set is a minimal separator for the pairs $\{A,Y\}$ and $\{X,Y\}$, but not for $\{B,X\}$. This arises from the uncertainty regarding its minimal separator, which could instead be $\{A\}$. If we consider this possibility, $\mathbf{H}_{\mathfrak{S}\left(\mathcal{P}_{\mathsf{CFCI}}^{(r)}\right),P}$ includes the independencies $(A \perp\!\!\!\perp Y)$ and $(X \perp\!\!\!\perp Y)$, as well as $(B \perp\!\!\!\perp X|A)$ and the dependence hypothesis $(B \not\!\!\perp X)$, implied by the minimality of the separator. Notably, this separation led to the formation of the non-collider triple (B,A,X), so $\mathbf{H}_{\mathfrak{D}(\mathcal{P}^{(r)}),P}$ also includes the hypothesis $(B \not\!\!\perp X)$, which is already accounted for.

To compare both PAGs, we focus on independence relations that are relevant for either model but differ between them. These are exactly $(B, X|\emptyset)$ and (B, X|A). The Fréchet bounds of the score for the FCI PAG are $P(\{(X \perp\!\!\!\perp B), (X \not\!\!\perp B|A)\}) = (0.486, 0.671)$, while the Fréchet bounds of the score for the cFCI PAG are $P(\{(X \not\!\!\perp B), (X \perp\!\!\!\perp B|A)\}) = (0, 0.185)$. Based on these scores, a statistically meaningful decision can be made, favoring the FCI PAG as the best of the two.

APPENDIX J SIMULATIONS: TECHNICAL DETAILS

The FCI and cFCI algorithms were run using their implementations in the pcalg R package [42].

For the other SOTA algorithms, we used the lastest version of the code provided by their respective authors:

- **BCCD**: We used the latest R implementation available on GitLab at https://gitlab.science.ru.nl/gbucur/RUcausal/.
- DCD: The implementation is available on GitLab at https://gitlab.com/rbhatta8/dcd. To learn MAGs, we set admg_class = "ancestral" and kept all other hyperparameters at their default values, including

num_restarts = 5, which runs the algorithm five
times and selects the best result.

- MAGSL: Implemented in C++ and available at https://www.cs.helsinki.fi/group/coreo/magsl/. Following the example in their README file, we set max-vars = 5 (maximum number of variables), max-comp = 4 (c-component size limit), and max-pars = 6 (maximum number of parents), ensuring comprehensive search coverage for learning 5-variable MAGs.
- **GPS**: Implemented in MATLAB and available on GitHub at https://github.com/tomc-ghub/gps_uai2022. We used the hybrid version (GPS_RunType = 2), which runs the baseline search by default and switches to the extended version only when it gets stuck.

The performance metrics are briefly described as follows:

Structural Hamming Distance (SHD): Quantifies the total number of edgemark (circle, tail, or arrowhead) modifications needed to convert the inferred PAG into the true PAG, providing an overall measure of structural accuracy.

False Discovery Rate (FDR): Represents the proportion of incorrectly inferred definite relationships – ancestralities (adjacencies with an arrowhead), non-ancestralities (adjacencies with a tail), or non-adjacencies (missing edges) – among all inferred definite relationships. It quantifies the fraction of definite inferences that are incorrect, providing insight into the algorithm's reliability in identifying the invariances (independencies and non-circles) of the MEC.

False Omission Rate (FOR): Represents the proportion of incorrectly inferred non-definite relationships – adjacencies with a circle – among all inferred non-definite relationships. It quantifies the fraction of undetermined relationships that are incorrect, providing insight into the algorithm's reliability in identifying the non-invariances (circles) of the MEC.

Selecting a valid MAG in a PAG: A valid MAG within the MEC represented by a PAG can be obtained by applying the arrowhead augmentation method of [17] and then orienting each chordal component to ensure the resulting graph is a valid MAG. The pag2magAM function in the pcalg R package [42] facilitates this process.

Verifying the validity of a PAG: A PAG is considered valid if it accurately represents the MEC of a valid MAG. To verify this, we first select a valid MAG in the given PAG and then check whether the PAG reconstructed from this MAG matches the original. If so, the given PAG correctly encodes an MEC.

Computing the BIC for a PAG: To compute the BIC of a PAG, we first select a valid MAG in the given PAG and then estimate the BIC of a Gaussian linear SEM that aligns with the MAG structure and best fits the observed data using the SEMgraph R package [43].

APPENDIX K SIMULATION RESULTS WITH GAUSSIAN DATA

Due to uncertainty in the causal orientations, dcFCI can output a list of multiple PAGs identified as equally compatible with the data. To better understand the extent of this uncertainty, we analyze the number of PAGs generated by dcFCI. In the following, we present the distribution of PAGs in the output lists across 300 simulations for each sample size (N) considered. When we set k=1, the following were the numbers of PAGs generated by dcFCI across all simulations:

- For N=1,000: In 288 simulations, the output list contained a single PAG, while the remaining 12 simulations returned lists with 2 PAGs.
- For N=5,000: Similarly, 288 simulations produced a single PAG in the output list. The remaining 12 simulations were distributed as follows: 10 simulations returned lists with 2 PAGs, 1 simulation returned a list with 3 PAGs, and 1 run returned a list with 5 PAGs.
- For N=10,000: Almost all simulations (298) resulted in a single PAG in the output list, with only 2 simulations producing lists with 2 PAGs.
- For N=50,000: All 300 simulations consistently produced output lists with a single PAG.

In contrast, for k=2, the following were the numbers of PAGs generated by dcFCI across all simulations:

- For N = 1,000, 283 simulations yielded a single PAG. Among the remaining 17, 12 produced 2 PAGs, 3 produced 3 PAGs, and 2 produced 4 PAGs.
- For N=5,000, 257 simulations returned a single PAG, while 24 produced 2 PAGs, 8 produced 3 PAGs, and 11 generated lists ranging from 4 to 14 PAGs.
- For N=10,000, 291 simulations resulted in a single PAG. The remaining 9 were distributed as follows: 4 produced 2 PAGs, 2 produced 3 PAGs, 2 produced 4 PAGs, and 1 produced 14 PAGs.
- For N=50,000, all 300 simulations consistently produced a single PAG.

For larger k, more PAGs are evaluated, increasing the likelihood of selecting an intermediate PAG that is not among the top k'-scored ones for k' < k but may still lead, in subsequent iterations, to a more refined PAG that fits the data equally well or better and potentially aligns with the true PAG.

Note, however, that selecting more PAGs increases their divergence in hypotheses, reducing the number of shared assumptions treated as certain and raising the likelihood of multiple PAGs being considered equally compatible with the data. Nevertheless, simulation results indicate that as the sample size (N) grows, dcFCI more frequently returns output lists containing a single PAG, demonstrating that larger datasets enhance certainty about the plausible PAGs.

APPENDIX L SIMULATION RESULTS WITH MIXED DATA TYPES

As in the analysis of the Gaussian datasets, we illustrate how dcFCI's certainty about the plausible PAGs increases with the sample size. Below, we present the distribution of the number of output PAGs generated by dcFCI across all 300 simulations conducted for each sample size considered.

• For N=1,000: In 254 simulations, the output list contained a single PAG. The remaining 34 simulations were distributed as follows: 20 simulations returned lists

with 2 PAGs, 8 simulations returned lists with 3 PAGs, and 4 run returned a list with 4 PAGs.

- For N = 5,000: 290 simulations produced a single PAG in the output list, while 9 simulations returned lists with 2 PAGs, and 1 simulation returned a list with 3 PAGs.
- For N=10,000: 291 simulations resulted in a single PAG in the output list, with 9 simulations producing lists with 2 PAGs.
- For N=50,000: All 300 simulations consistently produced output lists with a single PAG.

In contrast, for k=2, the following were the numbers of PAGs generated by dcFCI across all simulations:

- For N=1,000, 235 simulations yielded a single PAG, while the remaining 65 were distributed as follows: 41 produced 2 PAGs, 8 produced 3 PAGs, and 16 generated lists ranging from 4 to 33 PAGs.
- For N=5,000, 270 simulations resulted in a single PAG, 22 produced 2 PAGs, 5 produced 3 PAGs, and 3 produced 4 PAGs.
- For N=10,000, 288 simulations returned a single PAG, while 10 produced 2 PAGs, 1 produced 7 PAGs, and 1 produced 20 PAGs.
- For $N=50,000,\,298$ simulations generated a single PAG, and 2 produced 2 PAGs.

This analysis clearly demonstrates that, with larger sample sizes, the algorithm more consistently converges toward a single, most probable PAG.

APPENDIX M

FURTHER DETAILS ON THE APPLICATION TO THE DIABETES HEALTH INDICATORS DATASET

We used the Diabetes Health Indicators Dataset (DHID), available on Kaggle at https://www.kaggle.com/datasets/alexteboul/diabetes-health-indicators-dataset,

It is a cleaned and curated version of the Behavioral Risk Factor Surveillance System (BRFSS) dataset, also available on Kaggle at https://www.kaggle.com/datasets/cdc/behavioral-risk-factor-surveillance-system, under a Public Domain license. The BRFSS dataset is one of the largest ongoing health surveys, conducted annually by the Centers for Disease Control and Prevention (CDC) via telephone in the United States. The DHID is a cross-sectional subset of the 2015 BRFSS data, including complete responses from 253, 680 individuals.

Below, we describe the 16 out of the 21 variables we selected for our application, as they are all objectively quantifiable and clinically relevant, offering direct insight into the underlying health conditions.

- *Diabetes*: 0 (no diabetes), 1 (prediabetes), 2 (diabetes)
- Sex: 0 (female), 1 (male)
- Age: A 13-level age category, with 1 (18-24), 9 (60-64), and 13 (80 or older)
- Body Mass Index (BMI): A continuous variable, ranging from 12 to 98 (mean \pm sd: 28.4 \pm 6.61)
- High Blood Pressure (HighBP): 0 (no), 1 (yes)
- High Cholesterol (HighChol): 0 (no), 1 (yes)
- History of Stroke (Stroke): 0 (no), 1 (yes)

- History of Coronary Heart Disease or Myocardial Infarction (HeartDiseaseorAttack): 0 (no), 1 (yes)
- Physical Activity in the past 30 days, excluding jobrelated activity (PhysActivity): 0 (no), 1 (yes)
- Smoking Status (Smoker): Whether the individual has smoked at least 100 cigarettes in their lifetime (5 packs)
- Heavy Alcohol Consumption (HvyAlcoholConsump): 0 (no), 1 (yes) for adult men, more than 14 drinks per week, for adult women, more than 7 drinks per week
- Consumption of a fruit per day (Fruits): 0 (no), 1 (yes)
- Consumption of a vegetable per day (Veggies): 0 (no), 1 (yes)
- *Income per year (Income)*: From 1 to 8, where 1 (< \$10,000), 5 (< \$35,000), and 8 (\geq \$75,000)
- Health Care Coverage (AnyHealthcare): 0 (no),1 (yes)
- Education Level (Education): From 1 to 6, where 1 (never attended school or only kindergarten), 2 (grades 1–8, elementary), 3 (grades 9–11, some high school), 4 (grade 12 or GED, high school graduate), 5 (some college or technical school, 1–3 years), and 6 (college graduate, 4 years or more)

Fig. 4. Comparison of PAGs learned by dcFCI (left), FCI (center), and cFCI (right) for five variables: *HighBP*, *Sex*, *Income*, *Smoker*, and *HvyAlcoholComsump*. dcFCI inferred PAGs with higher compatibility scores (bounds: (a) [0, 0.0209], (d) [0, 0.0155], (g) [0, 0.0249]) compared to FCI ((b) [0, 0.0119], (e) [0, 0.0134], (h) [0, 0.00892]). cFCI yields invalid PAGs in two cases ((f) and (i)), with one valid result (c) [0, 2.8210⁻¹⁰].

Fig. 5. Comparison of PAGs learned by dcFCI (left), FCI (center), and cFCI (right) for five variables: *Stroke*, *BMI*, *HighChol*, *HeartDiseaseorAttack*, and *HvyAlcoholComsump*. dcFCI inferred PAGs with higher compatibility scores (bounds: (a) [0, 0.0302], (d) [0, 0.00976], (g) [0, 0.00795]) compared to FCI ((b) [0, 0.0099], (e) [0, 0.00955], (h) [0, 0.00672]). cFCI yields invalid PAGs in two cases ((c) and (i)), with one valid result (f) [0, 0.00955].

Fig. 6. 6-variable PAGs inferred by dcFCI, with score bounds of (a) [0, 0.0109], (b) [0, 0.0134], and (c) [0, 0.0134]. The identification of Smoker in (a) and PhysActivity in (b,c) as non-causes of HighBP contradicts Figure 3-a.

TABLE VIII
BOLD ROWS HIGHLIGHT FALSELY IDENTIFIED INDEPENDENCIES, WHERE P-VALUES FOR THE CONDITIONAL INDEPENDENCE TESTS EXCEED THE SIGNIFICANCE THRESHOLD OF 0.01.

r	X	Y	\mathbf{z}	pvalue	·	$P(H_{X \not \perp Y \mid \mathbf{Z}} \mathcal{D})$	Truth	FCI	cFCI & GPS	BCCD	DCD
0	A	В		2.64×10^{-14}	1.78×10^{-12}	1	dep	1	/	1	/
0	Α	X		4.13×10^{-311}	0	1	dep	1	/	✓	/
0	Α	Y		0.00276	0.0366	0.963	dep	Х	X	✓	X
0	В	X		0.496	0.672	0.328	indep	1	X	X	X
0		Y		0	0	1	dep	1	✓	✓	1
0	X	Y		0.00937	0.105	0.895	dep	X	X	✓	X
1	A	В	X	2.58×10^{-15}	1.87×10^{-13}	1	dep	1	✓	✓	1
1	Α	В	Y	7.69×10^{-25}	0	1	dep	1	✓	✓	1
1	Α	X	В	4.46×10^{-312}	0	1	dep	1	✓	✓	/
1	Α	X	Y	3.49×10^{-310}	0	1	dep	1	✓	✓	/
1	Α	Y	В	4.59×10^{-14}	3.02×10^{-12}	1	dep	1	✓	✓	/
1	A	Y	X	0.0279	0.198	0.802	dep	Х	X	✓	×
1		X	A	0.0246	0.185	0.815	dep	1	X	×	/
1		X	Y	0.0294	0.204	0.796	dep	X	/	✓	/
1	В	Y	A	0	0	1	dep	1	✓	✓	/
1	В	Y	X	0	0	1	dep	1	/	✓	/
1	X	Y	A	0.105	0.388	0.612	dep	X	×	×	×
1	X	Y	В	0.000895	0.0136	0.986	dep	X	✓	✓	/
2			X,Y		0	1	dep	1	✓	✓	/
2	A	X	B,Y	9.87×10^{-310}	0	1	dep	1	✓	✓	/
2	Α			1.04×10^{-11}	5.57×10^{-10}	1	dep	1	✓	✓	1
2			A,Y		0.368	0.632	dep	1	X	×	/
2	В		A,X		0	1	dep	1	/	/	/
2	X	Y	A,B	0.536	0.683	0.317	indep	X	_ /	_ /	X

TABLE IX

Number of Perfectly recovered PAG across 300 simulations per sample size, using Gaussian datasets under varying faithfulness degrees. "Total" indicated the number of datasets generated with full faithfulness (defined by all and only dependencies with a P-value ≤ 0.05 or $P(H_1|\mathcal{D}) \geq 0.5$) or R-MEC faithfulness.

Algorithm	N		l Faithful o-value)		l Faithful erior Prob.)	r-ME	C Faithfull	Un	faithful
i iigoriumi	1,	Total	Recoved	Total	,	Total	Recoved	Total	Recoved
FCI			0		0		0		10
cFCI			0		0		0		1
BCCD			0		0		0		0
DCD	1 000		0		0		0	200	6
MAGSL	1,000	0	0	0	0	0	0	300	31
GPS			0		0		0		16
dcFCI (k = 1)			0		0		0	İ	26
dcFCI(k=2)			0		0		0		25
FCI			1		4		9		40
cFCI			1		3		4		11
BCCD			0		0		0		1
DCD	5,000	1	0	9	0	20	0	280	1
MAGSL	3,000	1	1		8	20	16	200	75
GPS			0		1		5		31
dcFCI (k = 1)			1		9		20		79
dcFCI (k = 2)			1		9		20		87
FCI			14		30		68		101
cFCI			14		21		43		58
BCCD			0		0		0		0
DCD	10,000	14	1	34	1	73	5	227	3
MAGSL	.,		14		34		69		166
GPS			8		12		28		56
dcFCI (k = 1)			14		34		73 73		151
$\frac{\text{dcFCI } (k=2)}{\text{FCI}}$			14		34		73		172
FCI			159		180		218		62
cFCI			159		177		205		54
BCCD			0 3		0 3		0		0
DCD MAGSL	50,000	159	158	184	180	225	4 221	75	74
GPS			51		58		77		22
dcFCI $(k = 1)$			159		184		225		69
dcFCI $(k = 1)$ dcFCI $(k = 2)$			159		184		225		71
$\frac{dCICI(n-2)}{}$			137		104		223		/ 1

TABLE X

COMPARISON IN TERMS OF FALSE DISCOVERY RATE (FDR) IN SIMULATIONS WITH GAUSSIAN DATA. FOR EACH SAMPLE SIZE, ALL 300 SIMULATIONS ARE CONSIDERED. LOWER FDR INDICATES MORE ACCURATE ORIENTED EDGES. GREEN DOWNWARD ARROWS INDICATE SIGNIFICANT IMPROVEMENT OF DCFCI OVER SOTA ALGORITHMS.

A 1	N		FDR Compari n Q1 Med Mean Q3 Max p-value 0.12 0.2 0.2 0.27 0.6 0.81 0.091 0.14 0.17 0.25 0.6 0.0048 0.091 0.14 0.17 0.25 0.62 0.078 0.18 0.29 0.29 0.4 0.75 1.6e-16 0.083 0.14 0.18 0.25 0.67 0.019 0.12 0.25 0.26 0.36 0.69 6.7e-06										
Algorithm	N	Min	Q1	Med	Mean	Q3	Max		Diff				
FCI		0	0.12	0.2	0.2	0.27	0.6	0.81	_				
cFCI		0	0.091	0.14	0.17	0.25	0.6	0.0048	1				
BCCD		0	0.091	0.14	0.17	0.25	0.62	0.078	_				
DCD	1,000	0	0.18	0.29	0.29	0.4	0.75	1.6e-16	↓				
MAGSL		0	0.083	0.14	0.18	0.25	0.67	0.019	↑				
GPS		0	0.12	0.25	0.26	0.36	0.69	6.7e-06	↓				
dcFCI		0	0.091	0.17	0.21	0.3	0.67						
FCI		0	0.083	0.12	0.15	0.22	0.67	4.9e-07	→				
cFCI		0	0	0.1	0.11	0.17	0.67	0.16	-				
BCCD		0	0	0.1	0.12	0.17	0.62	0.11	_				
DCD	5,000	0	0.23	0.33	0.33	0.43	0.73	1.6e-51	↓				
MAGSL		0	0	0.083	0.12	0.18	0.67	1	-				
GPS		0	0.091	0.19	0.22	0.31	0.83	1.6e-13	↓				
dcFCI		0	0	0.091	0.12	0.18	0.83						
FCI		0	0	0	0.075	0.12	0.67	1.3e-06	→				
cFCI		0	0	0	0.06	0.093	0.67	0.22	-				
BCCD		0	0	0.071	0.078	0.093	0.83	9.7e-09	↓				
DCD	10,000	0	0.18	0.29	0.29	0.4	0.88	5.3e-68	↓				
MAGSL		0	0	0	0.035	0	0.69	0.28	-				
GPS		0	0	0.1	0.17	0.25	0.73	5.1e-26	↓				
dcFCI		0	0	0	0.046	0.071	0.6						
FCI		0	0	0	0.012	0	0.5	0.00098	$\overline{}$				
cFCI		0	0	0	0.011	0	0.5	0.0074	↓				
BCCD		0	0	0	0.023	0	0.45	3.3e-09	↓				
DCD	50,000	0	0.17	0.29	0.28	0.39	0.7	1e-87	↓				
MAGSL		0	0	0	0.0043	0	0.38	1	-				
GPS		0	0	0.071	0.14	0.25	0.69	4.4e-52	↓				
dcFCI		0	0	0	0.0034	0	0.33						

TABLE XI

COMPARISON IN TERMS OF FALSE OMISSION RATE (FOR) IN SIMULATIONS WITH GAUSSIAN DATA. FOR EACH SAMPLE SIZE, ALL 300 SIMULATIONS ARE CONSIDERED. LOWER FOR INDICATES MORE ACCURATE NON-ORIENTED EDGES. GREEN DOWNWARD ARROWS INDICATE SIGNIFICANT IMPROVEMENT OF DCFCI OVER SOTA ALGORITHMS.

A.1. 1.1				F	OR			Compai	ison
Algorithm	N	Min	Q1	Med	Mean	Q3	Max	p-value	Diff
FCI		0	0	0.5	0.45	0.75	1	0.4	_
cFCI		0	0.57	0.75	0.68	0.88	1	7.9e-23	1
BCCD		0	0.5	0.67	0.62	0.83	1	3.5e-14	↓
DCD	1,000	0	0.5	0.67	0.63	0.88	1	2.2e-13	→ →
MAGSL		0	0	0.5	0.45	0.75	1	0.32	_
GPS		0	0.24	0.5	0.51	0.88	1	0.015	↓
dcFCI		0	0	0.5	0.45	0.71	1		
FCI		0	0	0.33	0.34	0.6	1	0.024	\downarrow
cFCI		0	0.48	0.67	0.61	0.83	1	4.3e-37	↓
BCCD		0	0.44	0.6	0.6	0.75	1	3.3e-36	→ → →
DCD	5,000	0	0.5	0.67	0.64	0.88	1	7.8e-31	↓
MAGSL		0	0	0.25	0.33	0.57	1	0.067	_
GPS		0	0	0.5	0.45	0.8	1	3.2e-11	\downarrow
dcFCI		0	0	0	0.29	0.53	1		
FCI		0	0	0	0.11	0	1	0.0011	+
cFCI		0	0	0.3	0.34	0.67	1	3.2e-38	↓ ↓
BCCD		0	0.48	0.5	0.57	0.75	1	1.2e-74	+
DCD	10,000	0	0.5	0.71	0.63	0.88	1	1.5e-62	\downarrow
MAGSL		0	0	0	0.066	0	1	0.3	_
GPS		0	0	0	0.23	0.5	1	4.8e-13	↓
dcFCI		0	0	0	0.065	0	1		
FCI		0	0	0	0.018	0	0.75	0.002	+
cFCI		0	0	0	0.051	0	0.9	4.7e-10	↓
BCCD		0.17	0.5	0.62	0.64	0.82	0.92	9.8e-91	+
DCD	50,000	0	0.5	0.75	0.65	0.88	1	2.6e-82	+
MAGSL		0	0	0	0.0017	0	0.5	1	-
GPS		0	0	0	0.15	0	1	5.4e-20	↓
dcFCI		0	0	0	0	0	0		

TABLE XII

Time comparison in simulations with Gaussian data. Green downward arrows indicate significant improvement of DCFCI over SOTA algorithms.

			Time Ta	ken (sec)		Co	mparison	
Algorithm	Min	Q1	Med	Mean	Q3	Max	p-value	p-value	Diff
							k=1	k = 2	
FCI	0.0476	0.0562	0.0587	0.0602	0.0605	0.2988	0	0	1
cFCI	0.0518	0.0646	0.0681	0.0711	0.0729	0.4688	0	0	↑
BCCD	0.1453	0.1542	0.1610	0.1657	0.1717	0.4265	0	0	1
DCD	48.75	320.92	779.43	716.38	985.49	5322.20	0	0	1
MAGSL	3.3531	4.4828	4.9220	5.2544	5.4161	37.5230	1.3e-62	6.4e-257	↓
GPS	0.0481	0.1537	0.1889	0.1973	0.2309	0.5609	0	0	↑
dcFCI (k = 1)	1.6590	2.3843	2.5932	2.9106	2.9275	25.7740			
dcFCI (k = 2)	1.2230	2.5976	3.3894	4.6335	5.0313	47.7950			

TABLE XIII

COMPARISON IN TERMS OF STRUCTURAL HAMMING DISTANCE (SHD) IN SIMULATIONS WITH GAUSSIAN DATA. FOR EACH COMPARISON, ONLY SIMULATIONS WITH VALID INFERRED PAGS ARE CONSIDERED. LOWER SHD INDICATES MORE ACCURATE EDGES. GREEN DOWNWARD ARROWS INDICATE SIGNIFICANT IMPROVEMENT OF DCFCI OVER SOTA ALGORITHMS.

					S	HD			Compar	ison
Algorithm	N	# Sims	Min	Q1		Mean	Q3	Max	p-value	Diff
FCI		293	0	4	5	5.3	7	12	0.15	_
cFCI		140	0	6	7	7.4	10	12	0.0046	↓
BCCD		206	2	5	6.5	6.8	9	13	0.00037	+
DCD	1,000	300	0	6	8	8	10	16	4.9e-19	↓
MAGSL		300	0	3	5	5	7	14	0.125	_
GPS		290	0	5	7	6.5	9	15	3.4e-05	↓
dcFCI		300	0	3	5	5.6	8	15		
FCI		289	0	2	4	3.8	6	13	0.05	_
cFCI		148	0	4	5	5.4	7	13	9.7e-07	↓
BCCD		224	0	4	5	5.9	8	14	9.5e-16	↓
DCD	5,000	300	0	7	9	8.4	10	14	4.5e-47	↓
MAGSL		300	0	0	3	3.4	5	14	0.45	-
GPS		274	0	3	5	5.4	7.8	17	1.4e-16	↓
dcFCI		300	0	0	3	3.5	5	16		
FCI		291	0	0	0	1.5	3	13	9.7e-07	$\overline{}$
cFCI		201	0	0	0	2.2	4	13	3.2e-12	↓
BCCD		233	2	2	5	4.9	6	16	1.3e-41	↓
DCD	10,000	300	0	6	8	7.8	10	18	1.3e-76	+
MAGSL		300	0	0	0	0.82	0	15	0.45	–
GPS		264	0	0	2	3.5	6	14	1.5e-21	↓
dcFCI		300	0	0	0	1	2	15		
FCI		299	0	0	0	0.24	0	6	0.00012	$\overline{}$
cFCI		283	0	0	0	0.28	0	6	1.9e-06	↓
BCCD		261	2	4	6	7.1	10	13	5.4e-79	\downarrow \downarrow
DCD	50,000	300	0	6	9	8.1	10	15	1.6e-89	↓
MAGSL		300	0	0	0	0.08	0	8	1	-
GPS		260	0	0	2	2.8	4	14	2.2e-41	↓
dcFCI		300	0	0	0	0.05	0	5		

TABLE XIV

Comparison in terms of False Discovery Rate (FOR) in simulations with Gaussian data. For each comparison, only simulations with valid inferred PAGs are considered. Lower FDR indicates more accurate oriented edges. Green downward arrows indicate significant improvement of dcFCI over SOTA algorithms.

A 1: 41	NT.	щ С:		Compai	ison					
Algorithm	N	# Sims	Min	Q1	Med	Mean	Q3	Max	p-value	Diff
FCI		293	0	0.12	0.2	0.2	0.27	0.6	0.87	_
cFCI		140	0	0.12	0.2	0.21	0.3	0.6	0.85	_
BCCD		206	0	0.1	0.14	0.19	0.25	0.62	1	_
DCD	1,000	300	0	0.18	0.29	0.29	0.4	0.75	1.6e-16	↓
MAGSL		300	0	0.083	0.14	0.18	0.25	0.67	0.019	↑
GPS		290	0	0.12	0.25	0.25	0.36	0.69	4.4e-05	↓
dcFCI		300	0	0.091	0.17	0.21	0.3	0.67		
FCI		289	0	0.083	0.12	0.14	0.21	0.67	4.1e-06	→
cFCI		148	0	0.077	0.12	0.14	0.21	0.67	0.016	↓
BCCD		224	0	0.071	0.1	0.14	0.17	0.62	0.013	1
DCD	5,000	300	0	0.23	0.33	0.33	0.43	0.73	1.6e-51	↓
MAGSL		300	0	0	0.083	0.12	0.18	0.67	1	-
GPS		274	0	0.091	0.18	0.2	0.29	0.83	1.4e-10	↓
dcFCI		300	0	0	0.091	0.12	0.18	0.83		
FCI		291	0	0	0	0.066	0.12	0.67	5.9e-06	→
cFCI		201	0	0	0	0.06	0.1	0.67	0.0091	↓
BCCD		233	0	0	0.071	0.081	0.083	0.83	8.9e-07	↓
DCD	10,000	300	0	0.18	0.29	0.29	0.4	0.88	5.3e-68	↓
MAGSL		300	0	0	0	0.035	0	0.69	0.28	_
GPS		264	0	0	0.074	0.15	0.25	0.73	3.7e-18	↓
dcFCI		300	0	0	0	0.046	0.071	0.6		
FCI		299	0	0	0	0.011	0	0.33	0.0018	\downarrow
cFCI		283	0	0	0	0.0091	0	0.33	0.022	↓
BCCD		261	0	0	0	0.025	0	0.45	1.8e-08	↓
DCD	50,000	300	0	0.17	0.29	0.28	0.39	0.7	1e-87	\downarrow
MAGSL		300	0	0	0	0.0043	0	0.38	1	_
GPS		260	0	0	0.067	0.13	0.25	0.69	1.6e-40	\downarrow
dcFCI		300	0	0	0	0.0034	0	0.33		

TABLE XV

COMPARISON IN TERMS OF FALSE OMISSION RATE (FOR) IN SIMULATIONS WITH GAUSSIAN DATA. FOR EACH COMPARISON, ONLY SIMULATIONS WITH VALID INFERRED PAGS ARE CONSIDERED. LOWER FDR INDICATES MORE ACCURATE NON-ORIENTED EDGES. GREEN DOWNWARD ARROWS INDICATE SIGNIFICANT IMPROVEMENT OF DCFCI OVER SOTA ALGORITHMS.

A1 'd		" G:]	FOR			Compar	rison
Algorithm	N	# Sims	Min	Q1	Med	Mean	Q3	Max	p-value	Diff
FCI		293	0	0	0.5	0.45	0.75	1	0.39	_
cFCI		140	0	0.5	0.69	0.67	0.9	1	0.00013	↓
BCCD		206	0	0.5	0.59	0.61	0.83	1	7.5e-07	↓
DCD	1,000	300	0	0.5	0.67	0.63	0.88	1	2.2e-13	↓
MAGSL		300	0	0	0.5	0.45	0.75	1	0.32	_
GPS		290	0	0.25	0.5	0.53	0.88	1	0.005	↓
dcFCI		300	0	0	0.5	0.45	0.71	1		
FCI		289	0	0	0.33	0.35	0.6	1	0.018	—
cFCI		148	0	0.32	0.57	0.54	0.88	1	4.6e-11	↓
BCCD		224	0	0.42	0.57	0.6	0.75	1	9.7e-22	↓
DCD	5,000	300	0	0.5	0.67	0.64	0.88	1	7.8e-31	↓
MAGSL		300	0	0	0.25	0.33	0.57	1	0.067	_
GPS		274	0	0	0.5	0.49	1	1	1.9e-12	↓
dcFCI		300	0	0	0	0.29	0.53	1		
FCI		291	0	0	0	0.11	0	1	0.0011	→
cFCI		201	0	0	0	0.22	0.5	1	1.4e-13	↓
BCCD		233	0	0.42	0.5	0.55	0.71	1	9.7e-57	↓
DCD	10,000	300	0	0.5	0.71	0.63	0.88	1	1.5e-62	↓
MAGSL		300	0	0	0	0.066	0	1	0.3	-
GPS		264	0	0	0	0.26	0.5	1	1.4e-13	↓
dcFCI		300	0	0	0	0.065	0	1		
FCI		299	0	0	0	0.018	0	0.75	0.002	
cFCI		283	0	0	0	0.028	0	0.6	3.1e-05	↓
BCCD		261	0.17	0.5	0.62	0.65	0.82	0.92	5.4e-79	↓
DCD	50,000	300	0	0.5	0.75	0.65	0.88	1	2.6e-82	↓
MAGSL		300	0	0	0	0.0017	0	0.5	1	_
GPS		260	0	0	0	0.17	0.062	1	5.4e-20	↓
dcFCI		300	0	0	0	0	0	0		

TABLE XVI

COMPARISON IN TERMS OF (STRAIGHFORWARD) PAG SCORES IN SIMULATIONS WITH GAUSSIAN DATA. FOR EACH COMPARISON, ONLY SIMULATIONS WITH VALID INFERRED PAGS ARE CONSIDERED. HIGHER SCORES INDICATE STRONGER SUPPORT FROM THE DATA. GREEN UPWARD ARROWS INDICATE SIGNIFICANT IMPROVEMENT OF DCFCI OVER SOTA ALGORITHMS.

A 1 '41	N	# Sims			PAG Scor	e			Compar	ison
Algorithm	IN	# Sims	Min	Q1	Med	Mean	Q3	Max		Diff
FCI		293	0	0.018	0.021	0.027	0.023	0.71	5e-04	<u> </u>
cFCI		140	0	0.021	0.021	0.035	0.026	0.71	0.22	_
BCCD		206	0	0.021	0.022	0.041	0.03	0.71	1.5e-07	↓
DCD	1,000	300	1.3×10^{-9}	0.0005	0.013	0.017	0.021	0.39	2.2e-22	1
MAGSL		300	0.021	0.021	0.022	0.036	0.026	0.71	1.1e-15	↓
GPS		290	0	0.021	0.021	0.03	0.024	0.71	0.21	_
dcFCI		300	0.016	0.021	0.021	0.03	0.023	0.71		
FCI		289	0	0.07	0.35	0.26	0.36	0.56	1.8e-29	1
cFCI		148	0	0.075	0.35	0.26	0.36	0.56	5.5e-11	
BCCD		224	0	0.18	0.35	0.28	0.36		1.7e-11	
DCD	5,000	300	0	0	6.7×10^{-14}	0.016	5.7×10^{-7}	0.55	2.5e-88	
MAGSL		300	0.047	0.35	0.36	0.33	0.37	0.59	0.0013	
GPS		274	0	0.015	0.35	0.21	0.36	0.54	6.8e-28	↑
dcFCI		300	0.14	0.35	0.36	0.37	0.37	0.59		
FCI		291	0	0.27	0.32	0.31	0.4	0.72	4e-21	\uparrow
cFCI		201	0	0.24	0.31	0.3	0.39	0.72	6.3e-15	↑
BCCD		233	0	0.25	0.27	0.25	0.3	0.51	4e-31	↑
DCD	10,000	300	0	0	0	0.018	0	0.69	1e-87	↑
MAGSL		300	0.047	0.31	0.34	0.37	0.42	0.72	0.033	-
GPS		264	0	0.013	0.26	0.22	0.32	0.72	1.8e-29	↑
dcFCI		300	0.26	0.31	0.34	0.37	0.41	0.72		
FCI		299	0	0.4	0.57	0.55	0.71	0.9	0.00012	\uparrow
cFCI		283	0	0.41	0.58	0.55	0.71	0.9	1.9e-06	
BCCD		261	0	0.065	0.078	0.12	0.15	0.47	8.6e-78	
DCD	50,000	300	0	0	0	0.01	0	0.89	1.6e-89	1
MAGSL		300	0.07	0.41	0.57	0.56	0.71	0.9	1	-
GPS		260	0	0.0023	0.074	0.25	0.44	0.9	2.2e-41	
dcFCI		300	0.078	0.41	0.57	0.56	0.71	0.9		

TABLE XVII

COMPARISON IN TERMS OF BIC DISTANCE IN SIMULATIONS WITH GAUSSIAN DATA. FOR EACH COMPARISON, ONLY SIMULATIONS WITH VALID INFERRED PAGS ARE CONSIDERED. LOWER DISTANCES INDICATE MORE ACCURATE PAGS. GREEN UPWARD ARROWS INDICATE SIGNIFICANT IMPROVEMENT OF DCFCI OVER SOTA ALGORITHMS.

Alaamithma	N	# Sims			BIC Dista	ance			Compar	rison
Algorithm	IN .	# SIIIIS	Min	Q1	Med	Mean	Q3	Max	p-value	Diff
FCI		293	9.1×10^{-13}	5.3	2.8×10^{3}	1.8×10^{3}	2.8×10^{3}	8.4×10^{3}	3.8e-07	\perp
cFCI		140	4.5×10^{-12}	3.4	7.7	1.3×10^{3}	2.8×10^{3}	8.4×10^{3}	0.57	_
BCCD		206	0.01	3	14	1.5×10^{3}	2.8×10^{3}	5.7×10^{3}	0.059	_
DCD	1,000	300	2.7×10^{-12}	10	2.8×10^{3}	2.3×10^{3}	2.8×10^{3}	5.7×10^{3}	0.00015	↓
MAGSL		300	9.1×10^{-13}	2.6	7.1	1.2×10^{3}	2.8×10^{3}	5.7×10^{3}	0.016	↑
GPS		290	0	2.6	7.7	1.3×10^{3}	2.8×10^{3}	5.7×10^{3}	0.21	-
dcFCI		300	0	2	7.5	1.3×10^{3}	2.8×10^{3}	5.7×10^{3}		
FCI		289	0	1.4	10	6.5×10^{3}	1.4×10^{4}	2.8×10^{4}	1.6e-07	
cFCI		148	7.3×10^{-12}	3.8	12	6.7×10^{3}	1.4×10^{4}	2.8×10^{4}	0.0027	↓
BCCD		224	4.4×10^{-11}	5.4	1.4×10^{4}	8.2×10^{3}	1.4×10^4	2.8×10^{4}	1.4e-10	↓
DCD	5,000	300	4.4×10^{-11}	2.1×10^{2}	1.4×10^{4}	1.4×10^4	1.4×10^4	4.2×10^{4}	1.9e-25	↓
MAGSL		300	0	4.4×10^{-11}	7.6	5.6×10^{3}	1.4×10^4	2.8×10^{4}	0.00027	+
GPS		274	0	1.6	8.3	5.2×10^{3}	1.4×10^{4}	2.8×10^{4}	0.00045	+
dcFCI		300	0	3.6×10^{-11}	6.7	4.5×10^{3}	1.4×10^4	2.8×10^{4}		
FCI		291	0	4.4×10^{-11}	3.5×10^{-10}	6.7×10^{3}	56	5.7×10^{4}	1e-09	—
cFCI		201	0	4.4×10^{-11}	4.8×10^{-10}	7.6×10^{3}		5.7×10^4	4.2e-06	+
BCCD		233	0.026	8.5	2.8×10^{4}	1.6×10^{4}	2.8×10^4	5.7×10^4	3.5e-30	↓
DCD	10,000	300	1.5×10^{-11}	2.2×10^{2}	2.8×10^{4}	2.3×10^4	2.8×10^{4}	8.5×10^{4}	1.2e-44	↓
MAGSL		300	0	7.3×10^{-11}	2.3×10^{-10}	3.3×10^{3}	4.7×10^{-10}	5.7×10^4	0.051	-
GPS		264	0	2.3×10^{-10}	8.8	5.8×10^{3}	68	5.7×10^4	5.8e-17	↓
dcFCI		300	0	2.9×10^{-11}	2.3×10^{-10}	4.4×10^{3}	0.16	5.7×10^{4}		
FCI		299	0	1.2×10^{-10}	2.3×10^{-10}	3.3×10^{3}		1.4×10^{5}	0.0018	+
cFCI		283	0	1.2×10^{-10}	2.3×10^{-10}	5.5×10^{3}	4.1×10^{-10}	1.4×10^{5}	4e-04	↓
BCCD		261	0.7	9.8	11	4.4×10^{4}		1.4×10^{5}	2.3e-67	↓
DCD	50,000	300	1.2×10^{-10}	1.6×10^{3}	1.4×10^{5}	1×10^{5}	1.4×10^{5}	2.9×10^{5}	1.9e-78	↓
MAGSL		300	0	2.3×10^{-10}	4.7×10^{-10}	4.7×10^{2}		1.4×10^{5}	1.3e-17	↑
GPS		260	0	6.4×10^{-10}	10	1.8×10^{4}	1.1×10^{2}	2.8×10^{5}	1.8e-40	↓
dcFCI		300	0	1.2×10^{-10}	2.3×10^{-10}	2.4×10^{3}	3.5×10^{-10}	1.4×10^{5}		

TABLE XVIII

COMPARISON IN TERMS OF BIC VALUES IN SIMULATIONS WITH GAUSSIAN DATA. FOR EACH COMPARISON, ONLY SIMULATIONS WITH VALID INFERRED PAGS ARE CONSIDERED. LOWER SCORES INDICATE A BETTER GOODNESS-OF-FIT.

A.1. 2.1	N.T.	" G:			В	IC			Compar	rison
Algorithm	N	# Sims	Min	Q1	Med	Mean	Q3	Max	p-value	Diff
FCI		293	2.2×10^{3}	7.5×10^{3}	7.9×10^{3}	8.6×10^{3}	1×10^{4}	1.4×10^{4}	0.00094	<u> </u>
cFCI		140	2.2×10^{3}	7.5×10^{3}	7.8×10^{3}	8.5×10^{3}	1×10^{4}	1.3×10^{4}	0.057	_
BCCD		206	2.4×10^{3}	7.6×10^{3}	7.8×10^{3}	8.3×10^{3}	8.3×10^{3}	1.1×10^{4}	1.9e-13	↑
DCD	1,000	300	3.7×10^{3}	7.3×10^{3}	7.8×10^{3}	7.9×10^{3}	8.1×10^{3}	1.4×10^4	0.025	↑
MAGSL		300	4.8×10^{3}	7.7×10^{3}	8×10^{3}	8.8×10^{3}	1×10^{4}	1.1×10^4	1.5e-24	↑
GPS		290	4.7×10^{3}	7.6×10^{3}	8.1×10^{3}	8.9×10^{3}	1.1×10^{4}	1.4×10^4	0.064	_
dcFCI		300	5×10^{3}	7.7×10^{3}	8.1×10^{3}	9.2×10^{3}	1.1×10^{4}	1.4×10^{4}		
FCI		289	2.2×10^{4}	3.9×10^{4}	4.1×10^{4}	4.6×10^{4}	5.3×10^{4}	7×10^{4}	0.15	_
cFCI		148	2.3×10^{4}	3.8×10^{4}	4×10^{4}	4.3×10^{4}	5.3×10^4	6.8×10^{4}	0.017	↑
BCCD		224	2.3×10^{4}	3.8×10^{4}	4×10^{4}	4.2×10^{4}	4.2×10^{4}	5.6×10^{4}	5.2e-11	↑
DCD	5,000	300	1.2×10^{4}	2.7×10^{4}	3.8×10^{4}	3.6×10^{4}	4×10^{4}	5.5×10^{4}	2.1e-11	↑
MAGSL		300	2.3×10^{4}	3.9×10^{4}	4.1×10^{4}	4.5×10^{4}	5.3×10^{4}	5.6×10^{4}	6.4e-25	↑
GPS		274	2.2×10^{4}	3.9×10^{4}	5.2×10^{4}	4.7×10^{4}	5.4×10^{4}	7×10^{4}	0.32	-
dcFCI		300	2.3×10^{4}	4×10^4	5.1×10^{4}	4.8×10^{4}	5.4×10^{4}	7×10^{4}		
FCI		291	4.5×10^{4}	7.8×10^{4}	1×10^{5}	9.7×10^{4}	1.1×10^{5}	1.4×10^{5}	0.21	_
cFCI		201	4.5×10^{4}	7.6×10^{4}	1×10^{5}	9.3×10^{4}	1.1×10^{5}	1.4×10^{5}	0.37	-
BCCD		233	4.9×10^{4}	7.5×10^{4}	7.8×10^{4}	8.3×10^{4}	8.3×10^{4}	1.1×10^{5}	6.7e-05	↑
DCD	10,000	300	2.6×10^{4}	7.1×10^{4}	7.7×10^{4}	7.7×10^{4}	8.1×10^{4}	1.4×10^{5}	6.3e-06	↑
MAGSL		300	5.3×10^{4}	7.8×10^{4}	1×10^{5}	9.5×10^{4}	1.1×10^{5}	1.4×10^{5}	3.4e-08	↑
GPS		264	4.9×10^{4}	7.9×10^{4}	1×10^{5}	9.7×10^{4}	1.1×10^{5}	1.4×10^{5}	3.6e-06	↑
dcFCI		300	6.2×10^{4}	7.9×10^{4}	1×10^{5}	9.9×10^{4}	1.1×10^{5}	1.4×10^{5}		
FCI		299	1.3×10^{5}	3.9×10^{5}	5.2×10^{5}	4.8×10^{5}	5.3×10^{5}	6.8×10^{5}	0.057	_
cFCI		283	1.3×10^{5}	3.9×10^{5}	5.1×10^{5}	4.8×10^{5}	5.3×10^{5}	6.8×10^{5}	0.82	-
BCCD		261	2.5×10^{5}	3.8×10^{5}	4×10^{5}	4.4×10^{5}	5.2×10^{5}	5.5×10^{5}	8.7e-09	↑
DCD	50,000	300	2.1×10^{5}	3.6×10^{5}	3.9×10^{5}	3.9×10^{5}	4.1×10^{5}	6.7×10^{5}	0.0054	↑
MAGSL		300	2.5×10^{5}	3.9×10^{5}	5.1×10^{5}	4.8×10^{5}	5.3×10^{5}	6.9×10^{5}	0.36	_
GPS		260	2.5×10^{5}	3.9×10^{5}	5.1×10^{5}	4.8×10^{5}	5.3×10^{5}	6.9×10^{5}	1.9e-23	↓
dcFCI		300	2.5×10^{5}	3.9×10^{5}	5.2×10^{5}	4.8×10^{5}	5.3×10^{5}	6.8×10^{5}		

TABLE XIX

Comparison in terms of False Discovery Rate (FDR) in simulations with mixed data types. For each sample size, all 300 simulations are considered. Lower FDR indicates more accurate oriented edges. Green downward arrows indicate significant improvement of DcFCI over SOTA algorithms.

Alaanithaa	N			FI	DR			Compar	ison
Algorithm	IN	Min	Q1	Med	Mean	Q3	Max	p-value	Diff
FCI		0	0.12	0.21	0.22	0.3	0.67	1.1e-09	$\overline{}$
cFCI	1,000	0	0	0.2	0.18	0.29	0.67	0.61	_
dcFCI		0	0.083	0.14	0.17	0.23	0.67		
FCI		0	0	0.091	0.11	0.19	0.57	7.3e-05	\downarrow
cFCI	5,000	0	0	0	0.096	0.19	0.62	0.67	_
dcFCI		0	0	0	0.084	0.12	0.59		
FCI		0	0	0	0.073	0.12	0.58	8.5e-06	→
cFCI	10,000	0	0	0	0.065	0.12	0.58	0.084	_
dcFCI		0	0	0	0.045	0.073	0.54		
FCI		0	0	0	0.018	0	0.5	0.0052	$\overline{}$
cFCI	50,000	0	0	0	0.021	0	0.5	0.00082	↓
dcFCI		0	0	0	0.01	0	0.53		

TABLE XX

COMPARISON IN TERMS OF FALSE OMISSION RATE (FOR) IN SIMULATIONS WITH MIXED DATA TYPES. FOR EACH SAMPLE SIZE, ALL 300 SIMULATIONS ARE CONSIDERED. LOWER FOR INDICATES MORE ACCURATE NON-ORIENTED EDGES. GREEN DOWNWARD ARROWS INDICATE SIGNIFICANT IMPROVEMENT OF DCFCI OVER SOTA ALGORITHMS.

Alaamithaa	N				FOR			Compai	rison
Algorithm	IN	Min	Q1	Med	Mean	Q3	Max	p-value	Diff
FCI		0	0	0.45	0.42	0.75	1	0.22	-
cFCI	1,000	0	0.5	0.71	0.65	0.84	1	1.7e-24	↓
dcFCI		0	0	0.25	0.34	0.67	1		
FCI		0	0	0	0.21	0.4	1	0.069	-
cFCI	5,000	0	0	0.5	0.43	0.75	1	1.7e-23	↓
dcFCI		0	0	0	0.16	0.14	1		
FCI		0	0	0	0.13	0	1	0.02	+
cFCI	10,000	0	0	0	0.27	0.57	1	3.6e-21	↓
dcFCI		0	0	0	0.09	0	1		
FCI		0	0	0	0.048	0	1	3.6e-05	+
cFCI	50,000	0	0	0	0.081	0	1	2.6e-12	↓
dcFCI		0	0	0	0.0094	0	1		

TABLE XXI

Time comparison in simulations with mixed data types. Green downward arrows indicate significant improvement of DCFCI over SOTA algorithms.

Algorithm	N		Tin	ne Take	n	(se	conds)	Compar	rison
Aigorium	11	Min	Q1	Med	Mean	Q3	Max	p-value	Diff
FCI		0.016	0.027	0.035	0.035	0.041	0.069	9.8e-91	\uparrow
cFCI	1,000	0.017	0.04	0.053	0.055	0.066	0.12	9.8e-91	↑
dcFCI		1.3	5.9	7.2	9.2	9.7	56		
FCI		0.017	0.036	0.042	0.044	0.048	0.35	9.8e-91	\uparrow
cFCI	5,000	0.028	0.054	0.065	0.067	0.081	0.13	9.8e-91	↑
dcFCI		4.2	5.6	6	6.4	6.8	30		
FCI		0.021	0.038	0.043	0.05	0.053	0.41	9.8e-91	\uparrow
cFCI	10,000	0.034	0.056	0.069	0.074	0.084	0.42	9.8e-91	↑
dcFCI		4.1	5.8	6.1	6.3	6.4	36		
FCI		0.025	0.041	0.047	0.054	0.06	0.55	9.8e-91	\uparrow
cFCI	50,000	0.046	0.06	0.074	0.082	0.096	0.2	9.8e-91	↑
dcFCI		4.3	5.7	6.1	6	6.3	8.8		

TABLE XXII

COMPARISON IN TERMS OF (STRAIGHTFORWARD) PAG SCORE IN SIMULATIONS WITH MIXED DATA TYPES. FOR EACH COMPARISON, ONLY SIMULATIONS WITH VALID INFERRED PAGS ARE CONSIDERED. HIGHER SCORES INDICATE STRONGER SUPPORT FROM THE DATA. GREEN UPWARD ARROWS INDICATE SIGNIFICANT IMPROVEMENT OF DCFCI OVER SOTA ALGORITHMS.

Algorithm	N	# Sims			PAG Sco	ore			Compar	ison
Aigorium	IN	# Sillis	Min	Q1	Med	Mean	Q3	Max	p-value	Diff
FCI		293	0	0.01	0.021	0.022	0.023	0.25	3.2e-51	\sqcap
cFCI	1,000	156	0	0.0067	0.021	0.025	0.024	0.25	1.5e-23	↑
dcFCI		300	0.021	0.024	0.38	0.26	0.38	0.54		
FCI		297	0	0.0021	0.012	0.028	0.015	0.93	6.5e-66	\uparrow
cFCI	5,000	190	0	0.0012	0.012	0.038	0.016	0.93	3.9e-38	↑
dcFCI		300	0.0021	0.16	0.17	0.22	0.25	0.88		
FCI		293	0	0.0044	0.0052	0.052	0.02	0.99	3.6e-60	\uparrow
cFCI	10,000	208	0	0.0044	0.0075	0.071	0.03	0.99	9.4e-39	↑
dcFCI		300	0.0013	0.084	0.11	0.25	0.47	0.87		
FCI		298	0	0.0019	0.012	0.21	0.21	1	6.1e-42	\uparrow
cFCI	50,000	275	0	0.0019	0.015	0.22	0.24	1	2.8e-38	↑
dcFCI		300	0.00055	0.051	0.29	0.44	0.86	0.99		

TABLE XXIII

COMPARISON IN TERMS OF STRUCTURAL HAMMING DISTANCE (SHD) IN SIMULATIONS WITH MIXED DATA TYPES. FOR EACH COMPARISON, ONLY SIMULATIONS WITH VALID INFERRED PAGS ARE CONSIDERED. LOWER SHD INDICATES MORE ACCURATE EDGES. GREEN DOWNWARD ARROWS INDICATE SIGNIFICANT IMPROVEMENT OF DCFCI OVER SOTA ALGORITHMS.

Algorithm	N	# Sims			S	HD			Compar	ison
Algorithm	IN	# Sillis	Min	Q1	Med	Mean	Q3	Max	p-value	Diff
FCI		293	0	3	5	5.3	7	13	1.1e-05	\Box
cFCI	1,000	156	0	5	8	7.4	10	13	4.4e-07	↓
dcFCI		300	0	2	4	4.4	6	15		İ
FCI		297	0	0	2	2.8	4	12	0.014	\downarrow
cFCI	5,000	190	0	0	2	3.3	5	13	0.00022	↓
dcFCI		300	0	0	0	2.2	4	14		İ
FCI		293	0	0	0	1.8	3	12	0.0026	1
cFCI	10,000	208	0	0	0	1.9	2.2	13	1.1e-05	↓
dcFCI		300	0	0	0	1.2	2	11		
FCI		298	0	0	0	0.54	0	11	0.0046	+
cFCI	50,000	275	0	0	0	0.54	0	11	0.00088	↓
dcFCI		300	0	0	0	0.23	0	11		

TABLE XXIV

COMPARISON IN TERMS OF FALSE DISCOVERY RATE (FDR) IN SIMULATIONS WITH MIXED DATA TYPES. FOR EACH COMPARISON, ONLY SIMULATIONS WITH VALID INFERRED PAGS ARE CONSIDERED. LOWER FDR INDICATES MORE ACCURATE ORIENTED EDGES. GREEN DOWNWARD ARROWS INDICATE SIGNIFICANT IMPROVEMENT OF DCFCI OVER SOTA ALGORITHMS.

Algorithm	N	# Sims			FI	OR			Comparison	
Aigorium	11	# 311118	Min	Q1	Med	Mean	Q3	Max	p-value	Diff
FCI		293	0	0.12	0.21	0.22	0.3	0.67	5.5e-09	
cFCI	1,000	156	0	0.14	0.2	0.23	0.33	0.67	0.14	–
dcFCI		300	0	0.083	0.14	0.17	0.23	0.67		
FCI		297	0	0	0.091	0.11	0.19	0.57	0.00019	$\overline{}$
cFCI	5,000	190	0	0	0.083	0.1	0.2	0.57	0.26	–
dcFCI		300	0	0	0	0.084	0.12	0.59		
FCI		293	0	0	0	0.064	0.12	0.58	0.00013	$\overline{}$
cFCI	10,000	208	0	0	0	0.059	0.11	0.58	0.0032	↓
dcFCI		300	0	0	0	0.045	0.073	0.54		
FCI		298	0	0	0	0.015	0	0.38	0.013	\downarrow
cFCI	50,000	275	0	0	0	0.016	0	0.38	0.0066	↓
dcFCI		300	0	0	0	0.01	0	0.53		

TABLE XXV

COMPARISON IN TERMS OF FALSE OMISSION RATE (FOR) IN SIMULATIONS WITH MIXED DATA TYPES. FOR EACH COMPARISON, ONLY SIMULATIONS WITH VALID INFERRED PAGS ARE CONSIDERED. LOWER FOR INDICATES MORE ACCURATE NON-ORIENTED EDGES. GREEN DOWNWARD ARROWS INDICATE SIGNIFICANT IMPROVEMENT OF DCFCI OVER SOTA ALGORITHMS.

Algorithm	N	# Sims	FOR						Comparison	
			Min	Q1	Med	Mean	Q3	Max	p-value	Diff
FCI		293	0	0	0.5	0.43	0.75	1	0.16	_
cFCI	1,000	156	0	0.33	0.75	0.62	0.9	1	6.3e-05	↓
dcFCI		300	0	0	0.25	0.34	0.67	1		
FCI		297	0	0	0	0.22	0.4	1	0.069	_
cFCI	5,000	190	0	0	0	0.31	0.67	1	8.6e-06	↓
dcFCI		300	0	0	0	0.16	0.14	1		
FCI		293	0	0	0	0.14	0	1	0.02	
cFCI	10,000	208	0	0	0	0.15	0	1	6.6e-05	↓
dcFCI		300	0	0	0	0.09	0	1		
FCI		298	0	0	0	0.048	0	1	3.6e-05	\downarrow
cFCI	50,000	275	0	0	0	0.053	0	1	5.7e-06	↓
dcFCI		300	0	0	0	0.0094	0	1		