

KAUST Academy & Tech Camp Al Week

Presented By: Ali Alqutayfi & Hassain Alsayhah

Linear Regression Logistic Regression

Neural Networks

Deep Learning

Artificial Intelligence and Machine Learning

Linear Regression

Lecture 1: Outline

اکادیمیة کاوست KAUST ACADEMY

- What is Machine Learning?
- Linear Regression
- Loss Function (Mean Squared Error)
- How Do We Minimize MSE?
- Evaluating Our Model
- Regularization

Traditional Programming:

• Study problem → Write rules → Evaluate → Launch

Machine Learning:

• Study problem → Train algorithm with data → Evaluate → Launch

Key difference: Instead of writing rules manually, we let the algorithm learn patterns from data.

- Supervised: The algorithm l
 - Regression: Predict continuous value (e.g. house prices).
 - Classification: Predict discrete value (e.g. spam/not-spam).

- **Unsupervised:** The algorithm works on unlabeled data. We are interested in things like:
 - Clustering: Grouping

ML Algorithms Types

An example of Supervised Learning: Spam Classification

An example of Unsupervised Learning: Clustering

Linear Regression - The Goal

Problem: Given input data (x), predict a continuous output (y)

Examples:

- House size → House price
- Years of experience → Salary
- Temperature → Ice cream sales

Our goal: Find the best line that fits through our data points

The Linear Regression Equation

$$y = mx + b$$

- y: What we want to predict (target)
- x: Input feature
- m: Slope (how much y changes when x changes)
- **b**: Intercept (y-value when x = 0)

In ML notation: $\hat{y} = \theta_0 + \theta_1 x$

Finding the Best Line

Question: How do we find the best values for m and b?

Answer: Minimize the prediction errors!

Error for one point: error = actual_y - predicted_y

Problem: Errors can be positive or negative, they cancel out!

Solution: Square the errors: error² = (actual_y - predicted_y)²

Loss Function (Mean Squared Error)

$$MSE = (1/n) \times \Sigma (y_i - \hat{y}_i)^2$$

- Sum up all squared errors
- Divide by number of data points
- This gives us average squared error

Goal: Find m and b that minimize MSE

Two approaches:

• Closed-form solution (for simple linear regression):

$$\Theta = (X^T X)^{-1} X^T y$$

- Gradient Descent (iterative approach):
 - Start with random m, b
 - Calculate error
 - Adjust m, b to reduce error
 - Repeat until convergence

Closed-form:

Iterative:

R-squared (R²): How well does our line explain the data?

 $R^2 = 1 - (Sum of Squared Residuals)/(Total Sum of Squares)$

Interpretation:

- $R^2 = 1.0$: Perfect fit (100% of variance explained)
- $R^2 = 0.0$: No better than guessing the average
- $R^2 = 0.8$: 80% of variance explained (pretty good!)

Train/Test Split - Avoiding Cheating

Problem: How do we know if our model works on new data?

Solution: Split data into:

• Training set (80%): Use to learn m and b

• Test set (20%): Use to evaluate final performance

Rule: Never let your model see the test data during training!

The Overfitting Problem

Simple model (just x): May be too simple (underfitting) Complex model (x, x^2 , x^3 , x^4 ...): May memorize training data (overfitting)

Overfitting signs:

- Perfect performance on training data
- Poor performance on test data
- Model learned noise, not patterns

Regularization - Preventing Overfitting

Idea: Penalize complex models

Ridge Regression: Add penalty for large coefficients

Loss = MSE + λ × (sum of squared coefficients)

LASSO Regression: Can set some coefficients to exactly zero Loss = MSE + λ × (sum of absolute coefficients)

λ (lambda): Controls how much we penalize complexity

Real world: Usually have multiple input features

$$y = \theta_0 + \theta_1 \times feature 1 + \theta_2 \times feature 2 + \theta_3 \times feature 3 + ...$$

Example - House Prices:

price =
$$\theta_0 + \theta_1 \times \text{size} + \theta_2 \times \text{bedrooms} + \theta_3 \times \text{age} + \theta_4 \times \text{location_score}$$

Same process: Find θ values that minimize MSE

What we've learned:

- Linear regression finds the best line through data
- We minimize Mean Squared Error (MSE)
- We evaluate using R² and train/test split
- We prevent overfitting with regularization
- We can handle multiple features

Ready to Code!

أكاديمية كاوست KAUST ACADEMY

Next: Let's implement this in Python!

Tools we'll use:

- NumPy (for math)
- Pandas (for data)
- Scikit-learn (for models)
- Matplotlib (for visualization)

Salary Dataset - Simple linear regression

Your task is to visit the link below and create a simple linear regression to **predict the salary** of employees based on the **years of experience** they have.

Link: https://www.kaggle.com/datasets/abhishek14398/salary-dataset-simple-linear-regression/data