BÀI 10 Mạng Neuron Nhân Tạo

Nội dung buổi học

- Neural Network
 - ▶Bộ phân lớp tuyến tính
 - ➤ Multiple Perceptron: Neural network
 - ➤ Huấn luyện mạng với gradient descent
- Bài toán nhận dạng chữ số viết tay
 - Bộ dữ liệu MNIST
 - Định dạng dữ liệu
 - Phát biểu bài toán
 - Xây dựng mạng và thử nghiệm

Neural Network

Phân lớp tuyến tính (Linear Classification)

 Tìm một đường thẳng phân tách giữa hai lớp positive và negative

Phân lớp tuyến tính (Linear Classification)

Ví dụ với phân loại ảnh CIFAR-10

Phân lớp tuyến tính (Linear Classification)

Linear Classification

 Ví dụ với phân loại ảnh có 4 pixels và 3 lớp đối tượng (cat/dog/ship)

$$f(x,W) = Wx + b$$

Linear Classification

Trực quan hóa bộ phân lớp với các đường phân tách

Mang Neuron (Neural Network)

Linear classification

$$ext{output} = egin{cases} 0 & ext{if } w \cdot x + b \leq 0 \ 1 & ext{if } w \cdot x + b > 0 \end{cases}$$

Output = sign(Wx+b)

Perceptron

Biological Neuron

Mang Neuron (Neural Networks)

- Vấn đề của Linear Classification
 - Một số phân bố dữ liệu có thể phân tách bằng các đường thẳng
 - Vấn đề với XOR: phân tách bằng non-linearly

Neural Network

Multiple perceptron

Neural Network

- Multi-layers Perceptron
 - Layers: Chơi xếp hình với các kiểu kết nối
 - Cấu trúc mạng: Thiết kế các lớp và các kết nối

Các kiến trúc kết nối

Multi-perceptron

- Mạng neuron 1 lớp ẩn f=Wx
- Mạng neuron 2 lớp ẩn $f = W_2 \max(0, W_1 x)$
- f = Wx

Hàm kích hoạt (Activate function)

• Mạng neuron 3 lớp ẩn $f=W_3\max(0,W_2\max(0,W_1x))$

Hàm kích hoạt (Activate functions)

Maxout

$$\max(w_1^T x + b_1, w_2^T x + b_2)$$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Thường sử dụng thực tế

Huấn luyện mạng

Huấn luyện mạng

- Định nghĩa hàm mất mát (loss function): định lượng về độ lệch của dự đoán đối với nhãn thực của tập dữ liệu huấn luyện
- Nhiệm vụ: tìm bộ tham số sao cho loss function là nhỏ nhất có thể (tối ưu hóa – optimization)

airplane	-3.45	-0.51	3.42
automobile	-8.87	6.04	4.64
bird	0.09	5.31	2.65
cat	2.9	-4.22	5.1
deer	4.48	-4.19	2.64
dog	8.02	3.58	5.55
frog	3.78	4.49	-4.34
horse	1.06	-4.37	-1.5
ship	-0.36	-2.09	-4.79
truck	-0.72	-2.93	6.14

Cat image by Nikita is licensed under CC-BY 2.0; Car image is CC0 1.0 public domain; Frog image is in the public domain

Loss Function

- Bài toán: Tập huấn luyện gồm
 3 ảnh với 3 lớp đối tượng
- Sử dụng parameter W với hàm f(x, W)=Wx

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1
Losses:	2.9	0	12.9

- Multiple SVM loss
- Tập huấn luyện (x_i, y_i) với
 - x_i là dữ liệu vector ảnh
 - y_i là nhãn
- Loss tổng:

$$L = rac{1}{N} \sum_{i=1}^{N} L_i$$

$$L = (2.9 + 0 + 12.9)/3$$

= **5.27**

Softmax classifier

Chuẩn hóa từ score sang miền xác suất

$$P(Y=k|X=x_i) = rac{e^{s_k}}{\sum_j e^{s_j}}$$
 Softmax Function

Cross Entropy H(P,Q)

Regularization

Dự đoán từ mô

hình

regularization loss W score function $f(x_i,W)$ data loss L

Tham khảo

L2 regularization: $R(W) = \sum_k \sum_l W_{k,l}^2$ L1 regularization: $R(W) = \sum_k \sum_l |W_{k,l}|$ Elastic net (L1 + L2): $R(W) = \sum_k \sum_l \beta W_{k,l}^2 + |W_{k,l}|$ hình biểu diễn

quá tốt trên dữ

liệu huấn luyện

Gradient Descent


```
Input: Y, \Theta, \mathbf{X}, \alpha, tolerance, max iterations Output: \mathbf{\Theta}
```

```
1 for i=0; i < max iterations; i++ do
2 | current cost = Cost(Y, \mathbf{X}, \mathbf{\Theta})
3 | if current \ cost < tolerance then
4 | break
5 | else
6 | gradient = Gradient(Y, \mathbf{X}, \mathbf{\Theta})
7 | \theta_j \leftarrow \theta_j - \alpha gradient
```


 Minibatch: dùng batch nhỏ để huấn luyện

Learning rate: bước nhảy dài hay ngắn

Lan truyền ngược (Back propagation)

 Tính gradient cho từng tham số w_i với mạng nhiều lớp

(Có thể coi là hộp đen nếu bạn chưa muốn tìm hiểu ngay)

Ưu nhược điểm của Neural Networks

- Dễ dàng xây dựng được mô hình biểu diễn, tính toán
- Mô hình đa dạng, có thể sử dụng trong nhiều bài toán khác nhau (phân lớp, phân cụm, phân tích chuỗi)
- Sử dụng trong nhiều ứng dụng khác nhau: ảnh, text, voice ...

- Vấn đề hộp đen (blackbox): không giải thích được, không suy diễn được
- Cần nhiều dữ liệu tính toán
- Huấn luyện mô hình phức tạp

BÀI TOÁN PHÂN LOẠI CHỮ VIẾT TAY

Bài toán phân loại chữ viết tay

- Dữ liệu: Bộ dữ liệu MNIST
- http://yann.lecun.com/exdb/mnist/

- 60,000 ảnh cho huấn luyện
- 10,000 ảnh cho kiểm thử mô hình
- Mọi ảnh chữ số viết tay trong tập dữ liệu được chuẩn hóa về kích thước, cụ thể là (28x28) với giá trị pixels nằm trong khoảng 0 đến 1

Dữ liệu đầu vào cho mạng neuron

- Vector đầu vào: 784 feature với các số trong khoảng từ 0-255
- Nhãn từ 0 đến 9

Xây dựng mô hình

- Input: vector 784 features
- Hai lớp ẩn với hàm kích hoạt là ReLU
- Lóp output với softmax classifier


```
K Keras
```

```
# build model
from keras.layers import Dense, Flatten
from keras.models import Sequential

model = Sequential()
model.add(Flatten(input_shape=(28, 28)))
model.add(Dense(n_hidden_1, activation='relu')) # hidden layer1
model.add(Dense(n_hidden_2, activation='relu')) # hidden layer2
model.add(Dense(num_classes, activation='softmax')) # output layer
```

Huấn luyện mô hình

- Hàm mất mát (loss function): cross entropy
- Cập nhật tham số bằng Stochastic Gradient Desent
- Các siêu tham số:
 - learning_rate = 0.1
 - num_epoch = 10
 - batch_size = 128

Tham khảo các bước còn lại trên github

Bài tập

- Quan sát và làm lại mẫu bài tập trên website
- Tìm và thay thế các phần thiếu hoặc thay thế các tham số, các phương pháp huấn luyện
- Thử với các bài toán trong các buổi học trước

Thank you!