Tema 7 Problema 1. Voi descrie subgrupurile grupului abelian $\mathbb{Z}_2 \times \mathbb{Z}_4$.

 $\mathbb{Z}_2 \times \mathbb{Z}_4 = \{e = (\hat{0}, \overline{0}), (\hat{0}, \overline{1}), (\hat{0}, \overline{2}), (\hat{0}, \overline{3}), (\hat{1}, \overline{0}), (\hat{1}, \overline{1}), (\hat{1}, \overline{2}), (\hat{1}, \overline{3})\}.$ ord(e) = 1, ord $((\hat{0}, \overline{1})) = 4$, ord $((\hat{0}, \overline{2})) = 2$, ord $((\hat{0}, \overline{3})) = 4$, ord $((\hat{1}, \overline{0})) = 2$, ord $((\hat{1}, \overline{1})) = 4$.

Subgrupuri: e,

 $\langle (\hat{0}, \overline{2}) \rangle = \{e, (\hat{0}, \overline{2})\}$ subgrup de ordin 2,

 $\langle (\hat{1}, \overline{0}) \rangle = \{e, (\hat{1}, \overline{0})\}$ subgrup de ordin 2,

 $\langle (\hat{1}, \overline{2}) \rangle = \{e, (\hat{1}, \overline{2})\}$ subgrup de ordin 2,

 $<(\hat{0}, \overline{1})>=\{e, (\hat{0}, \overline{1}), (\hat{0}, \overline{2}), (\hat{0}, \overline{3})\}=<(\hat{0}, \overline{3})>$ subgrup de ordin 4

 $<(\hat{1}, \overline{1})>=\{e, (\hat{1}, \overline{1}), (\hat{0}, \overline{2}), (\hat{1}, \overline{3})\}=<(\hat{1}, \overline{3})>$ subgrup de ordin 4.

 $Dar (\hat{0}, \overline{2}) + (\hat{1}, \overline{0}) = (\hat{1}, \overline{2}), (\hat{1}, \overline{0}) + (\hat{1}, \overline{2}) = (\hat{0}, \overline{2}) \text{ si } (\hat{1}, \overline{2}) + (\hat{0}, \overline{2}) = (\hat{1}, \overline{0}).$

Deci $\{e, (\hat{0}, \overline{2}), (\hat{1}, \overline{0}), (\hat{1}, \overline{2})\}$ formează un subgrup de ordin 4, izomorf cu grupul Klein. Laticea subgrupurilor este:

Toate subgrupurile sunt normale pentru că grupul $\mathbb{Z}_2 \times \mathbb{Z}_4$ este abelian.

Tema 7 Problema 3. Considerăm morfismul $F:G \longrightarrow \operatorname{Inn}(G)$ definit prin $F(g) = \varphi_g$. Arătăm că $\operatorname{Inn}(G) \lhd \operatorname{Aut}(G)$. Considerăm $f \in \operatorname{Aut}(G)$ și $\varphi_g \in \operatorname{Inn}(G)$. $f \circ \varphi_g \circ f^{-1} \in \operatorname{Aut}(g)$. Avem $(f \circ \varphi_g \circ f^{-1})(x) = f(\varphi_g(f^{-1}(x))) = f(gf^{-1}(x)g^{-1}) = f(g)f(f^{-1}(x))(f(g))^{-1} = f(g)(f \circ f^{-1})(x)(f(g))^{-1} = f(g)\operatorname{id}_G(x)(f(g))^{-1} = f(g)x(f(g))^{-1} = \varphi_{f(g)}(x) \Rightarrow f \circ \varphi_g \circ f^{-1} = \varphi_{f(g)} \in \operatorname{Inn}(G)$. Deci conjugarea unui element din $\operatorname{Inn}(G)$ cu un element arbitrar din $\operatorname{Aut}(G)$ ne dă un element din $\operatorname{Inn}(G)$. Astfel $\operatorname{Inn}(G)$ este subgrup normal în $\operatorname{Aut}(G)$.

Determinăm acum subgrupul $\operatorname{Ker}(F) = \{g \in G \mid F(g) = \operatorname{id}_G\} = \{g \in G \mid \varphi_g = \operatorname{id}_G\}.$

 $\varphi_g = \operatorname{id}_G \Leftrightarrow \varphi_g(x) = \operatorname{id}_G(x), (\forall) x \in G \Leftrightarrow gxg^{-1} = x, (\forall) x \in G \Leftrightarrow gx = xg, (\forall) x \in G.$ Deci $\operatorname{Ker}(F) = \{g \in G \mid gx = xg, (\forall) x \in G\}.$ Acest subgrup normal (nucleul oricărui morfism este un subgrup normal) în G se numețe centrul grupului G și se notează cu Z(G). Este subgrupul elementelor care comută cu toate elementele grupului G.

1

Problema 1. Demonstrați că orice subgrup finit generat al grupului $(\mathbb{Q}, +)$ este ciclic.

Soluţie: Considerăm $H = \langle \frac{p_1}{q_1}, \dots, \frac{p_n}{q_n} \rangle \langle \mathbb{Q}$, unde $q_j \in \mathbb{N}^*$ pentru orice $1 \leqslant j \leqslant n$. Considerăm $s = [q_1, q_2, \dots, q_n]$, c.m.m.m.c. al numitorilor și fractiile echivalente $\frac{p_1}{q_1} = \frac{p'_1}{s}, \dots \frac{p_n}{q_n} = \frac{p'_n}{s}$. Atunci $H = \langle \frac{p_1}{q_1}, \dots, \frac{p_n}{q_n} \rangle = \langle \frac{p'_1}{s}, \dots, \frac{p'_n}{s} \rangle = \langle \frac{1}{s} \rangle$ pentru că oricare dintre generatorii $\frac{p'_j}{s} = \frac{1}{s} + \dots + \frac{1}{s}$ sumă cu p'_j termeni dacă $p'_j > 0$ și opusul acestei sume dacă $p'_j < 0$.

Problema 2. Determinați morfismele între grupurile aditive \mathbb{Z}_{12} și \mathbb{Z}_{18} .

Soluție: Fie $f: \mathbb{Z}_{12} \longrightarrow \mathbb{Z}_{18}$, f morfism. Întrucât $\mathbb{Z}_{12} = <\hat{1}>$, grup ciclic generat de $\hat{1}$, este suficient să dăm valoarea lui f pe generatorul $\hat{1}$

(pentru fiecare $\hat{g} \in \mathbb{Z}_{12}$, $f(\hat{g}) = f(\hat{1} + ... + \hat{1})$, cu g termeni în sumă, $= f(\hat{1}) + ... + f(\hat{1}) = gf(\hat{1})$). Fie așadar $f(\hat{1}) = \overline{k} \in \mathbb{Z}_{18}$. Ştim că ordinul elementului divide ordinul grupului, deci ord (\overline{k}) |18.

 $\begin{array}{l} \operatorname{Dar} f(\hat{0}) = \overline{0} \ (f \ \operatorname{morfism}), \ \overline{0} = f(\hat{0}) = f(\widehat{12}) = f(12 \cdot \hat{1}) = 12 f(\hat{1}) = 12 \cdot \overline{k}. \ \operatorname{Dar} \ \operatorname{ord}(\overline{k}) \ \operatorname{este} \ \operatorname{cel} \\ \operatorname{mai} \ \operatorname{mic} \ \operatorname{num} \ \operatorname{mai} \ \operatorname{natural} \ \operatorname{nenul} \ \operatorname{cu} \ \operatorname{proprietatea} \ p \cdot \overline{k} = \overline{0}. \ \operatorname{Deci} \ \operatorname{ord}(\overline{k}) | 12. \ \operatorname{Deci} \ \operatorname{ord}(\overline{k}) \ \operatorname{divide} \ \operatorname{si} \ 12 \ \operatorname{si} \\ 18, \ \operatorname{deci} \ \operatorname{ord}(\overline{k}) \ \operatorname{divide} \ \operatorname{c.m.m.d.c} \ (12,18) = 6. \ \operatorname{Astfel} \ \operatorname{ord}(\overline{k}) \in \{1,2,3,6\}. \ \operatorname{Vom} \ \operatorname{nota} \ \operatorname{cu} \ f_{\overline{k}} \ \operatorname{morfismul} \\ \operatorname{cu} \ \operatorname{valoarea} \ \operatorname{in} \ \hat{1} \ \operatorname{egal} \ \operatorname{in} \ \overline{k}. \ \operatorname{Deci} \ f_{\overline{k}}(\hat{1}) = \overline{k}. \end{array}$

 $\mathrm{Dac\Break} \ \mathrm{ord}(\overline{k}) = 1 \Rightarrow \overline{k} = \overline{0} \ \mathrm{si} \ f_{\overline{0}} \ \mathrm{este} \ \mathrm{morfismul} \ \mathrm{nul}, \ \mathrm{Im}(f_{\overline{0}}) = \{\overline{0}\},$

dacă ord $(\overline{k}) = 2 \Rightarrow \overline{k} = \overline{9}, f_{\overline{9}}(\hat{1}) = \overline{9}, \operatorname{Im}(f_{\overline{9}}) = {\overline{0}, \overline{9}}$

 $\operatorname{dac\check{a}} \operatorname{ord}(\overline{k}) = 3 \Rightarrow \overline{k} \in \{\overline{6}, \overline{12}\}, \, f_{\overline{6}}(\widehat{1}) = \overline{6}, \, \operatorname{Im}(f_{\overline{6}}) = \{\overline{0}, \overline{6}, \overline{12}\} = \operatorname{Im}(f_{\overline{12}}); f_{\overline{12}}(\widehat{1}) = \overline{12},$

 $\operatorname{dac\check{a}} \operatorname{ord}(\overline{k}) = 6 \Rightarrow \overline{k} \in \{\overline{3}, \overline{15}\}, \ f_{\overline{3}}(\hat{1}) = \overline{3}, \ \operatorname{Im}(f_{\overline{6}}) = \{\overline{0}, \overline{3}, \overline{6}, \overline{9}, \overline{12}, \overline{15}\} = \operatorname{Im}(f_{\overline{15}}); f_{\overline{15}}(\hat{1}) = \overline{15},$

Aceste morfisme se pot și aduna și avem $\operatorname{Hom}(\mathbb{Z}_{12},\mathbb{Z}_{18}) \simeq \mathbb{Z}_6$. Tabla adunării este

Cum adunăm în general două funcții $f, h: A \longrightarrow (B, +)$, unde pe B avem o operație de adunare. $f + h: A \longrightarrow B$ este o altă funcție și aceasta este definită (f + h)(a) = f(a) + h(a). În acest fel adunăm și morfismele între \mathbb{Z}_{12} și \mathbb{Z}_{18} .

Să exemplificăm pentru două morfisme. Să vedem că $f_{\overline{9}} + f_{\overline{6}} = f_{\overline{15}}$.

$$(f_{\overline{9}} + f_{\overline{6}})(\hat{1}) = f_{\overline{9}}(\hat{1}) + f_{\overline{6}}(\hat{1}) = \overline{9} + \overline{6} = \overline{15} = f_{\overline{15}}(\hat{1}).$$

Mai mult pentru orice $\hat{k} \in \mathbb{Z}_{12}$, $(f_{\overline{9}} + f_{\overline{6}})(\hat{k}) = f_{\overline{9}}(\hat{k}) + f_{\overline{6}}(\hat{k}) = f_{\overline{9}}(k\hat{1}) + f_{\overline{6}}(k\hat{1}) = kf_{\overline{9}}(\hat{1}) + kf_{\overline{6}}(\hat{1}) = k(f_{\overline{9}}(\hat{1}) + f_{\overline{6}}(\hat{1})) = k(\overline{9} + \overline{6}) = k\overline{15} = kf_{\overline{15}}(\hat{1}) = f_{\overline{15}}(k\hat{1}) = f_{\overline{15}}(\hat{k})$. Deci $f_{\overline{9}} + f_{\overline{6}} = f_{\overline{15}}$. Vedem că este suficient să verificăm egalitatea pe generatorul $\hat{1}$.

In general avem $\operatorname{Hom}(\mathbb{Z}_p,\mathbb{Z}_q) \simeq \mathbb{Z}_{(p,q)}$.

Problema 3. Arătați că singurul morfism de grupuri de la $(\mathbb{Q},+)$ la $(\mathbb{Z},+)$ este cel nul.

Soluție: Fie $f:(\mathbb{Q},+)\longrightarrow (\mathbb{Z},+)$ morfism de grupuri. Deci f(0)=0 și $f(1)=k\in\mathbb{Z}$. Dar $1\in\mathbb{Q}$ se poate scrie ca fracție $\frac{p}{p}=1, (\forall)p\in\mathbb{N}^{\star}$. $k=f(1)=f(\frac{p}{p})=pf(\frac{1}{p})\Rightarrow p|k$ pentru $(\forall)p\in\mathbb{N}^{\star}$.

De aici k=0. Dar f este morfism deci $f(n)=nf(1)=n\cdot 0=0, (\forall)n\in\mathbb{N}$. Dacă $m\in\mathbb{Z}, m<0$, atunci $0 = f(0) = f(m-m) = f(m) + f(-m) = f(m) + 0 \Rightarrow f(m) = 0. \ 0 = f(\frac{p}{p}) = pf(\frac{1}{p}) \Rightarrow$ $f(\frac{1}{p}) = 0 \Rightarrow f(\frac{r}{p}) = rf(\frac{1}{p}) = r \cdot 0 = 0.$

Problema 4. Calculați tabla de înmulțire a grupului factor $Q/\{\pm 1\}$ unde Q este grupul cuaternionilor.

Soluție: Notăm $H = \{\pm 1\}$, unde $1 = I_2$. $\langle \mathbf{j} \rangle \cap \langle \mathbf{k} \rangle = \{\pm I_2\}$. H fiind intersecție de subgrupuri normale este un subgrup normal al grupului Q, deci Q/H este grup. Elementele sunt \overline{H} pe care o vom nota cu $\overline{1_H}$.

$$\mathbf{j} = \{\pm \mathbf{j}\}, \ \mathbf{k} = \{\pm \mathbf{k}\}, \ \mathbf{j}\mathbf{k} = \{\pm \mathbf{j}\mathbf{k}\}.$$

$$\mathbf{j}^{2} = \mathbf{j}^{2} = \overline{I_{2}} = \overline{I_{H}}.$$

$$\mathbf{k}^{2} = \mathbf{k}^{2} = \overline{I_{2}} = \overline{I_{H}}.$$

$$\mathbf{j}\mathbf{k}^{2} = (\mathbf{j}\mathbf{k})^{2} = \mathbf{j}\mathbf{k}\mathbf{j}\mathbf{k} = \overline{-\mathbf{j}\mathbf{j}\mathbf{k}\mathbf{k}} = \overline{I_{2}(-I_{2})} = \overline{-I_{2}} = \overline{I_{H}}.$$
Table impultivity a grupului factor $O((+1)$ actor

Tabla înmulțirii a grupului factor $Q/\{\pm 1\}$ este

Problema 5. Arătați că funcția

$$f: (\mathbb{Z} \times \mathbb{Z}, +) \longrightarrow (\mathbb{Z} \times \mathbb{Z}_2, +), \ f(a, b) = (a - b, \hat{a})$$

este morfism de grupuri. Deduceți că grupul factor $\mathbb{Z} \times \mathbb{Z}/<(2,2)>$ este izomorf cu $\mathbb{Z} \times \mathbb{Z}_2$.

Soluţie $f((a,b)+(c,d)) = f(a+c,b+d) = (a+c-(b+d),\widehat{a+c}) = (a-b+c-d,\hat{a}+\hat{c}) = (a+c-d,\hat{a}+\hat{c})$ $(a-b,\hat{a})+(c-d,\hat{c})=f(a,b)+f(c,d)$. Deci f este morfism.

Identificăm $\operatorname{Ker}(f) = \{(a,b) \in \mathbb{Z} \times \mathbb{Z} \mid f(a,b) = (0,\hat{0})\}.$ $f(a,b) = (0,\hat{0}) \Leftrightarrow (a-b,\hat{a}) = (0,\hat{0}) \Rightarrow$ a-b=0 si $\hat{a}=\hat{0} \Rightarrow a=b$ si a=2k. Deci Ker $(f)=\{(2k,2k)\mid k\in\mathbb{Z}\}=<(2,2)>$.

Să demonstrăm că f este surjectiv. Considerăm $(x, \hat{y}) \in \mathbb{Z} \times \mathbb{Z}_2$ și trebuie să găsim $(a, b) \in \mathbb{Z} \times \mathbb{Z}$ a.î. $f(a,b)=(x,\hat{y}) \Leftrightarrow (a-b,\hat{a})=(x,\hat{y}) \Leftrightarrow a-b=x$ şi a=y+2k (luăm k=0). Deci b=a-x=y-x, a=y. Deci pentru orice $(x,\hat{y})\in\mathbb{Z}\times\mathbb{Z}_2$ am găsit $(y,y-x)\in\mathbb{Z}\times\mathbb{Z}$ a.î. $f(y, y - x) = (y - y + x, \hat{y}) = (x, \hat{y}) \in \mathbb{Z} \times \mathbb{Z}_2$. Deci $\operatorname{Im}(f) = \mathbb{Z} \times \mathbb{Z}_2$.

Din teorema fundamentală de izomorfism avem $\mathbb{Z} \times \mathbb{Z}/\operatorname{Ker}(f) \simeq \mathbb{Z} \times \mathbb{Z}_2$.

Problema 6. Considerăm grupul produs semidirect $\mathbb{Z} \rtimes \mathbb{Z}_2$ cu operația dată prin

$$(x,\hat{a})(y,\hat{b}) = (x + (-1)^a y, \widehat{a+b}) \operatorname{pentru}(x,\hat{a}) \operatorname{si}(y,\hat{b}) \in \mathbb{Z} \times \mathbb{Z}_2$$

- (i) Calculați ordinul fiecărui element
- (ii) Găsiți două elemente de ordin doi cu produsul de ordin infinit.

Solutie: (i) Considerăm elementele de tip $(x,\hat{0}), x \in \mathbb{Z}$. $(x,\hat{0})^2 = (x,\hat{0}) \cdot (x,\hat{0}) = (x+1)$ $(-1)^0 x, \widehat{(0+0)} = (2x, \hat{0})$. Pentru $p \in \mathbb{N}^*$ avem $(x, \hat{0})^p = (px, \hat{0})$ (se demonstrează prin inducție). Deci avem $\operatorname{ord}((x,\hat{0})) = \infty$.

Elementele $(x, \hat{1}), x \in \mathbb{Z}$. $(x, \hat{1})^2 = (x, \hat{1}) \cdot (x, \hat{1}) = (x + (-1)^1 x, \widehat{1+1}) = (0, \hat{0})$, unde $(0, \hat{0})$ este elementul neutru pentru operația dată $((x, \hat{y})(0, \hat{0}) = (x + (-1)^y 0, \widehat{y+0}) = (x, \hat{y})$). Deci ord $((x, \hat{1})) = 2$.

(ii) Avem $(x, \hat{1}) \cdot (0, \hat{1}) = (x, \hat{0})$. Fiecare din elementele membrului stâng sunt de ordin 2, iar elementul din membrul drept este de ordin infinit.

Problema 7. Arătați că grupul $(\mathbb{C}^{\star},\cdot)$ este izomorf cu $(\mathbb{R},+)\times(\mathbb{R},+)/\mathbb{Z}$.

Soluție: Orice număr $z \in \mathbb{C}$ se scrie $z = |z|(\cos(t) + i\sin(t))$, unde |z| > 0 și $t = \arg(z) \in [0, 2\pi)$ și $i = \sqrt{-1}$. Ştim că $|z_1 z_2| = |z_1| \cdot |z_2|$ și $\arg(z_1 z_2) \equiv \arg(z_1) + \arg(z_2) \pmod{2k\pi}, k \in \mathbb{Z}$.

Grupurile $((0, +\infty), \cdot) \simeq (\mathbb{R}, +)$ sunt izomorfe via izomorfismul $\ln, (\ln(x_1 \cdot x_2) = \ln(x_1) + \ln(x_2))$. Aplicația $(\mathbb{R}, +) \longrightarrow (\mathbb{S}^1, \cdot), t \mapsto (\cos(2\pi t) + i\sin(2\pi t))$ este un morfism cu nucleul \mathbb{Z} . Deci din teorema fundamentală de izomorfism rezultă că $(\mathbb{R}, +)/\mathbb{Z} \simeq (\mathbb{S}^1, \cdot)$.

Izomorfismul cerut este $f: \mathbb{C}^* \longrightarrow \mathbb{R} \times \mathbb{R}/\mathbb{Z}$, $f(z) = (\ln(|z|), \arg(z))$. Este un morfism pentru că $f(z_1 \cdot z_2) = (\ln(|z_1z_2|), \arg(z_1z_2)) = (\ln(|z_1|) + \ln(|z_2|), \arg(z_1) + \arg(z_2)) = (\ln(|z_1|), \arg(z_1)) + (\ln(|z_2|), \arg(z_2)) = f(z_1) + f(z_2)$. Este ușor de văzut că f este bijectivă. Deci f este un izomorfism.