Biometría

Clase 13

Análisis de la varianza (ANOVA) de un factor

Objetivo

- El análisis de la varianza (ANOVA) permite comparar dos o más medias poblacionales asociadas a tratamientos
- Se utiliza cuando existe una variable dependiente o respuesta (cuantitativa) y una o más variables explicatorias o independientes o factores cualitativas que afectan a la variable respuesta

¿Qué son los tratamientos?

En un experimento de un factor, los tratamientos son los niveles del factor (los distintos valores que toma)

Ej: Se prueban 2 dietas y un control

- Existe un solo factor (tratamiento con dietas)
- con tres niveles o tratamientos

¿En qué consiste el Anova?

- La manera para determinar si existen diferencias entre dos o más medias poblacionales es examinar la diferencia entre las medias muestrales y compararla con una medida de variabilidad dentro de las muestras
- La separación entre las medias es una parte de la historia; la otra parte es la variabilidad dentro de cada grupo
- El ANOVA usa esta estrategia para comparar dos o más medias

¿En qué consiste el Anova?

La diferencia entre las medias muestrales es relativamente **pequeña** cuando se la compara con la variabilidad dentro de cada grupo

Ho: $\mu_1 = \mu_2$ No se rechaza Ho

La diferencia entre las medias muestrales es relativamente **grande** cuando se la compara con la variabilidad dentro de cada grupo

Se rechaza Ho

5

Anova

- Consiste en descomponer la variabilidad de la variable respuesta en:
- Variabilidad explicada o debida a los tratamientos (variabilidad entre tratamientos)
- Variabilidad no explicada por los tratamientos o variabilidad aleatoria o residual (variabilidad dentro de los tratamientos)

Efecto de la suplementación durante la lactancia sobre la ganancia en peso de las crías de cabras al destete

- 15 cabritos recién nacidos fueron asignados al azar a alguno de los siguientes tratamientos:
- Sin suplementación (control)
- Suplementación con 500 g de alfalfa / día
- Suplementación con 500 g de alfalfa y 125 g de maíz partido / día

Los cabritos fueron pesados al nacimiento y al momento del destete y se calculó la ganancia en peso (y)

Resultados (en kg)

	Control	Suplem alfalfa	Suplem alfalfa y maiz	
a=3	1.93	2.54	2.95	
n _i =5	2.72	2.65	3.24	
n=15	2.44	2.57	2.55	
	2.2	2.94	2.84	
	1.97	2.93	3.05	
Media	2.252	2.726	2.926	2.6347
varianza	0.1101	0.038	0.0658	
desvío std	0.3318	0.1950	0.2566	8

El modelo estadístico es:

$$y_{ij} = \mu + \alpha_i + \varepsilon_{ij}$$

- donde µ es la media general o media de la población
- α_i es el efecto del tratamiento i y que es común a todos los individuos que recibieron ese tratamiento
- ε_{ij} es el residuo o error aleatorio que existe dentro de cada tratamiento, entre los individuos

Hipótesis en ANOVA

- □ Ho: $\mu_1 = \mu_2 = \mu_3 = \mu$ es decir:
 - la respuesta (ganancia en peso) promedio de los tratamientos es la misma
 - $\alpha_i = 0$
 - No existe efecto debido a la suplementación sobre la ganancia en peso
- □ H_1 : alguna $μ_i ≠ μ$ es decir:
 - al menos un tratamiento difiere del resto en cuanto a la ganancia en peso promedio
 - Algún $\alpha_i \neq 0$
 - Existe efecto debido a la suplementación sobre la ganancia en peso

Tabla de ANOVA

Se descompone la variabilidad de los datos en:

- Variabilidad entre tratamientos
- Variabilidad dentro de los tratamientos

La variabilidad se cuantifica mediante varianzas

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n-1}$$

Tabla de ANOVA

Fuente de Variación	SC	GL	CM	F
Entre	$\sum n_i (\overline{y}_i - y)^2$	a-1	<u>SCe</u>	<u>CMe</u>
Tratamientos	$\left \frac{\sum n_i (y_i - y_i)}{\sum n_i (y_i - y_i)} \right $	3	GLe	CMd
Dentro de	$\sum (y_{ii} - \overline{y}_i)^2$	(ni-1)a	<u>SCd</u>	
tratamientos	$\sum (y_{ij} y_i)$	= n-a	GLd	
Total	$\sum (y_{ij} - y)^2$	n-1		

	Control	Suplem alfalfa	Sup alfalfa y maiz
a=3	1.93	2.54	2.95
n _i =5	2.72	2.65	3.24
n=15	2.44	2.57	2.55
	2.2	2.94	2.84
	1.97	2.93	3.05
Media	2.252	2.726	2.926

2.6347

Tabla de ANOVA

- La pregunta es: hay más variabilidad entre las medias de los tratamientos que dentro de los tratamientos?
- Para contestarla se hace un cociente entre la varianza entre tratamientos y la varianza dentro de los tratamientos (F_m)
- Si Ho es verdadera (no hay diferencias entre tratamientos) el cociente debería ser de 1 ya que ambas varianzas (entre y dentro) están estimando la misma variabilidad
- Por ser un cociente de varianzas, ese estadístico F sigue una distribución F de Fisher con GL del numerador y GL del denominador

Volviendo al ejemplo:

■ En Infostat

- Estadísticas >
- Medidas resumen

Estadística descriptiva

Trat	Variable	n	Media	D.E.	Var (n-1)	Mín	Máx
1	Ganancia en peso	5	2.252	0.332	0.110	1.930	2.720
2	Ganancia en peso	5	2.726	0.195	0.038	2.540	2.940
3	Ganancia en peso	5	2.926	0.257	0.066	2.550	3.240

Resultados:

Análisis de la varianza

Varis	ab le	<u> </u>	N	R²	Rª	Aj	CV	
Ganancia	en	peso	15	0.58	0.	.51	10.	14

Cuadro de Análisis de la Varianza (SC tipo III)

F.V.	ສc	gl	CM	F	p-valor
Modelo	1.20	2	0.60	8.40	0.0052
Trat	1.20	2	0.60	8.40	0.0052
Error	0.86	12	0.07		
Total	2.05	14			

Observese que SCentre + SCdentro = SC total GLentre + GLdentro = GL total

¿Cómo se decide si se rechaza o no Ho?

Asumiendo que Ho es verdadera, calcular la probabilidad de obtener un valor tan o más extremo que el obtenido en la muestra (p de la prueba o p valor). Si p es menor al nivel de significación α, se rechaza Ho y se concluye que al menos un promedio difiere del resto (existen diferencias significativas). Caso contrario, se concluye que no existen evidencias muestrales suficientes para rechazar Ho

Volviendo al ejemplo:

Cuadro de Análisis de la Varianza

F.V.	SC	gl	$C\mathtt{M}$	F	p-valor
Modelo	1.20	2	0.60	8.40	0.0052
Trat	1.20	2	0.60	8.40	0.0052
Error	0.86	12	0.07		
Total	2.05	14			

 $p < \alpha$ 0.0052 < 0.05

Rechazo Ho
Al menos un tratamiento difiere del resto
(con una probabilidad de error del 5%)

Supuestos del Anova

Supuestos del modelo

- Para que las conclusiones del Anova sean válidas, se deben verificar una serie de supuestos:
- Las muestras deben ser aleatorias y las observaciones independientes entre sí.
- Las observaciones de cada tratamiento deben proceder de poblaciones donde la variable presenta distribución normal
- Los tratamientos deben tener la misma variabilidad (homocedasticidad) ⇒ Muy importante!

Supuestos del modelo

Estos supuestos se pueden resumir en:

 ϵ_{ij} deben ser independientes y estar normalmente distribuidos, con una media de 0 y un desvío σ , es decir:

$$\varepsilon_{ij} \sim NID (0, \sigma)$$

Los ϵ_{ij} se estiman con los residuos e_{ij}

¿Qué son los residuos?

■ El residuo e_{ij} es la diferencia entre el valor observado en una unidad experimental y el valor esperado si no existiesen factores no controlados

Control	Suplem alfalfa	Suplem alfalfa y maiz
1.93	2.54	2.95
2.72	2.65	3.24
2.44	2.57	2.55
2.2	2.94	2.84
1.97	2.93	3.05
2.252	2.726	2.926

Control	Suplem alfalfa	Suplem alfalfa y maiz
-0,322	-0,186	0,024
0,468	-0,076	0,314
0,188	-0,156	-0,376
-0,052	0,214	-0,086
-0,282	0,204	0,124
		24

¿Cómo probar normalidad?

- Para cada tratamiento la variable debe seguir una distribución normal
- O alternativamente, los residuos deben ajustar a una distribución normal
- Gráficamente: QQ plot
- Analíticamente:
 - Prueba de Shapiro-Wilks

Se trata de una prueba estadística no paramétricas

Ho: la variable tiene buen ajuste a una distribución normal

En el ejemplo:

- Supuesto: Para cada tratamiento la variable sigue una distribución normal
 - Pero como solo son 5 datos por tratamiento, se prueba normalidad con los 15 residuos

Normalidad

Algunas consideraciones

- No es crítica (el Anova es bastante robusto a la falta de normalidad)
- Si la cantidad de réplicas por tratamiento es grande (por ej. ≥ 30) no hace falta (Teorema Central del límite)
- Si la variable se aparta mucho de la normalidad puede ser necesario:
 - Ajustar modelos lineales generalizados o Transformar los datos (todos).

Homocedasticidad

Consiste en suponer que todos los tratamientos tienen la misma variabilidad

¿Cómo detectamos si hay heterocedasticidad?

□ Gráficamente:

- Se calculan los residuos y se grafican vs los valores esperados o predichos
- Se espera encontrar una distribución al azar y con variabilidad constante

¿Cómo detectamos si hay heterocedasticidad?

■ Prueba de Levene

Ho: $\sigma^2_1 = \sigma^2_2 = \sigma^2_3 = \sigma^2$

H1: alguna $\sigma^2_i \neq \sigma^2$

La prueba consiste en realizar un ANOVA con los residuos absolutos

Nota: La falta de homocedasticidad es más grave si el diseño es desbalanceado

Residuos vs predichos

Residuos absolutos vs predichos

Resumiendo:

- Los supuestos se cumplen, por lo tanto las conclusiones del análisis son válidas. De todas maneras los supuestos deben probarse antes de la PH
- □ Ho: $\mu_1 = \mu_2 = \mu_3 = \mu$ H₁: alguna $\mu_i \neq \mu$

Pruebas de hipótesis tipo III - prueba

	Source numDF	denDF	F-value	p-value
1	Dieta 2	12	8.40	0.0052

Esta hipótesis es muy general. Para decidir cuáles tratamientos difieren se deben efectuar 29 comparaciones múltiples

Comparaciones entre tratamientos

Comparaciones múltiples

- Sirven para detectar diferencias entre las medias de los tratamientos
- ¿Por qué no múltiples pruebas t para comparar los grupos entre sí?
 - El error global sería muy alto (cada prueba tendría asociado un α% de error)
 - Por ejemplo, si se comparan 4 tratamientos, hay pruebas t posibles. Si cada una tiene asociado un nivel de significación del 5%, la probabilidad de cometer al menos 1 error de tipo I (error global o tasa de error por experimento) es

$$P_{binomial}$$
 ($x \ge 1/n = 6, p = 0.05$) = 0.26

Existen distintos métodos de comparación. Cada método controla de alguna manera el error global, es decir la probabilidad de cometer al menos un error tipo I.

Clasificación de los métodos

- A priori: planeados
 - Las hipótesis se plantean antes del muestreo
 - Se basan en información independiente del experimento
 - pueden detectar diferencias aunque el anova no lo haya hecho, ya que incorporan información que ni la hipótesis global ni las comparaciones a posteriori poseen
 - Mayor sensibilidad, mayor potencia
 - Contrastes ortogonales
- A posteriori: no planeados
 - se aplican sólo si el Anova dio significativo
 - "búsqueda de significación", exploratorio
 - Más conservativos, menos potentes
 - Método de Tukey

Contrastes ortogonales

- □ **Contraste** *f* es una combinación lineal de los parámetros del modelo
- \blacksquare En cada contraste, $\Sigma_{C_i} = 0$
- Los contrastes ortogonales deben ser independientes entre sí
- Consisten en una descomposición de la SC de los tratamientos
- Como máximo #trat-1 contrastes
- Solo para diseños balanceados
- Para cada contraste se calcula una F

$$f = \Sigma c_i \mu_i \qquad \hat{f} = \Sigma c_i \overline{y}_i$$

$$\sum c_i c_j = 0$$
 para todos (i, j)

Contrastes ortogonales

Contraste 1:
$$f_1$$
 $Ho: \mu_1 = \frac{\mu_2 + \mu_3}{2}$ o lo que es lo mismo $\mu_1 - \frac{\mu_2 + \mu_3}{2} = 0$
 $Ha: \mu_1 \neq \frac{\mu_2 + \mu_3}{2}$ o lo que es lo mismo $\mu_1 - \frac{\mu_2 + \mu_3}{2} \neq 0$

Contraste 2:
$$f_2$$
 $Ho: \mu_2 = \mu_3$ o lo que es lo mismo $\mu_2 - \mu_3 = 0$

$$Ha: \mu_2 \neq \mu_3$$
 o lo que es lo mismo $\mu_2 - \mu_3 \neq 0$

Comprobar ortogonalidad: $\sum c_i c_j = 0$ para todos (i, j)

Contrastes ortogonales

Contraste	Tratamiento	n _i	Media	C _i
f1	Control	5	2,252	2
	+ alfalfa	5	2,726	-1
	+ alfalfa +granos	5	2,926	-1
f2	Control	5	2,252	0
	+ alfalfa	5	2,726	1
	+ alfalfa +granos	5	2,926	-1

$$F_{(\hat{f}i)} = \frac{CM(\hat{f}_i)}{CMerror}$$

$$CM(\hat{f}_i) = \frac{SC(\hat{f}_i)}{GL(\hat{f}_i)}$$

$$SC(\hat{f}_i) = \frac{\hat{f}_i^2}{\sum c_i^2/n_i}$$

$$SC(\hat{f}_1) = \frac{-1,148^2}{6/5} = \frac{1,32}{1,20} = 1,098$$

$$SC(\hat{f}_2) = \frac{-0.20^2}{2/5} = \frac{0.04}{0.40} = 0.1$$

Cuadro de Análisis de la Varianza (SC tipo III)

F.V.	SC	gl	CM	F	p-valor
Modelo	1,198	2	0,599	8,402	0,0052
Dieta	1,198	2	0,599	8,402	0,0052
Error	0,856	12	0,071		
Total	2,054	14			

Contrastes

Dieta	SC	gl	CM	F	p-valor
Contraste1	1,098	1	1,098	15,401	0,0020
Contraste2	0,100	1	0,100	1,402	0,2593
Total	1,198	2	0,599	8,402	0,0052

Prueba de Tukey

- Compara todos los pares de medias posibles
 - H_0 : $\mu_i = \mu_j$ (o lo que es lo mismo, $\mu_i \mu_j = 0$)
 - H_1 : $\mu_i \neq \mu_j$ (o lo que es lo mismo, $\mu_i \mu_j \neq 0$)
- El estadístico es

$$\hat{f}_{ij} = \frac{\overline{y}_i - \overline{y}_j}{\sqrt{\frac{CM_{dentro}}{n_1} + \frac{CM_{dentro}}{n_2}}} \sim Q_{GL dentro,\alpha}$$

Utilizando Infostat:

\$Ismeans

Dieta	Ismean	SE	df	lower.CL	upper.CL	.group
Control	2.252	0.119	12	1.992	2.512	1
Alfalfa	2.726	0.119	12	2.466	2.986	2
Alfalfa y maiz	2.926	0.119	12	2.666	3.186	2

Confidence level used: 0.95

\$contrasts

contrast	estimate	SE	df	t.ratio	p.value
Control - Alfalfa	-0.474	0.169	12	-2.807	0.039
Control - Alfalfa y maiz	-0.674	0.169	12	-3.991	0.005
Alfalfa - Alfalfa y maiz	-0.200	0.169	12	-1.184	0.484

P value adjustment: tukey method for comparing a family of 3 estimates

Conclusión:

Resumiendo:

Efecto de la suplementación materna en cabritos

Gráfico de barras

Conclusiones:

- □ La suplementación produjo un aumento significativo de la ganancia en peso de los cabritos (p<0.05)</p>
- El agregado de maíz a la alfalfa no produjo un efecto significativo
 - Magnitud del efecto d: mide la diferencia promedio entre dos o más tratamientos en valores absolutos y/o relativos.
- □ El incremento en la ganancia en peso por suplementación con alfalfa fue de 474g o del 21% en promedio