Prover logiki temporalnej

Stanisław Maciąg, Piotr Mitana

2014

1 Założenia projektowe

W ramach projektu zaprojektowana oraz zaimplementowana zostanie aplikacja sprawdzająca spełnialność formuły logicznej zawierającej operatory klasyczne oraz temporalne, danej w postaci ciągu znaków wprowadzonego przez użytkownika lub wczytanego z pliku. Do realizacji tego zadania wykorzystana zostanie metoda tablic semantycznych dla logiki temporalnej (ang. the Tableau Method for Temporal Logic).

1.1 Środowisko

- 1. System operacyjny Linux
- 2. Języki programowania C++ oraz D
- 3. Framework Qt w wersji 5

1.2 Implementowane funkcjonalności

- 1. Graficzny interfejs użytkownika (GUI), umożliwiający wygodną obsługę aplikacji
- 2. Dane wejściowe (formuły logiczne) wprowadzane ręcznie w postaci ciągu znaków, lub z pliku tekstowego (składnia wyrażeń opisana w 3.1)
- 3. Wizualizacja formuły wejściowej w postaci drzewa
- 4. Wizualizacja przeprowadzonego procesu dekompozycji formuły w postaci drzewa
- 5. Interpretacja wynikowego drzewa dostarczająca informacji o spełnialności formuły
- 6. Możliwość edycji stosowanych operatorów

2 Obsługa aplikacji

Rysunek 1: Widok głównego okna programu

- 1. Obszar rysowania drzewa
- 2. Bieżąca formuła logiczna
- 3. Przycisk otwierający okno wprowadzania formuły
- 4. Przycisk definicji operatorów
- 5. Informacja o wyniku działania algorytmu
- 6. Przycisk inicjalizacji dekompozycji
- 7. Widok na drzewo dekompozycji
- 8. Widok na drzewo formuły

2.1 Przykład dekompozycji

2.1.1 Wprowadzenie formuły

Rysunek 2: Okno definicji operatorów

Program posiada możliwość edycji stosowanych operatorów logicznych i temporalnych. Powyżej przedstawiono zestaw domyślnych operatorów.

2.1.2 Wprowadzenie formuły

Rysunek 3: Okno wprowadzania formuły

Wprowadzana formuła powinna zawierać symbole operatorów zgodne ze zdefiniowanymi. Po zakończeniu edycji należy zaakceptować (1) lub odrzucić (2)

zmiany. Istnieje także możliwość wczytania formuły z pliku (3). Po zdefiniowaniu formuły wejściowej użytkownikowi zostanie zaprezentowana jej wizualizacja w postaci drzewa:

Rysunek 4: Wizualizacja formuły logicznej

2.1.3 Dekompozycja

Rysunek 5: Przedstawienie wyników

Po zakończeniu działania algorytmu program wyświetli uzyskane drzewo dekompozycji oraz informację o spełnialności formuły wejściowej. Kliknięcie na węzeł powoduje wyświetlenie jego zawartości:

Rysunek 6: Zawartość przykładowego węzła w drzewie dekompozycji

3 Analiza leksykalna

3.1 Składnia formuły wejściowej

Ciąg znaków	Znaczenie
Ciąg znaków	Zmienna logiczna
alfanumerycznych	rozumiana jako formuła
	atomowa
![formuła]	Jednoargumentowy
	operator negacji
[formuła] & [formuła]	Dwuargumentowy operator
	koniunkcji logicznej
[formula] [formula]	Dwuargumentowy operator
	alternatywy logicznej
[formuła] ^ [formuła]	Dwuargumentowy operator
	alternatywy wykluczającej
[formula] > [formula]	Dwuargumentowy operator
	implikacji logicznej
[formula] = [formula]	Dwuargumentowy operator
	ekwiwalencji logicznej
X[formuła]	Jednoargumentowy
	operator temporalny Next
F[formula]	Jednoargumentowy
	operator temporalny
	Finally
G[formuła]	Jednoargumentowy
	operator temporalny
	Globally
[formuła] U [formuła]	Dwuargumentowy operator
	temporalny <i>Until</i>
([formula])	Nawiasy okrągłe -
	grupowanie wyrażeń

3.2 Hierarchia operatorów

Operator	Priorytet
Negacja,	Najwyższy
jednoargumentowe	
operatory temporalne	
Dwuargumentowy operator	Wysoki
temporalny <i>Until</i>	
Koniunkcja, alternatywa,	Średni
alternatywa wykluczająca	
Implikacja, Ekwiwalencja	Najniższy

4 Algorytm działania

Rysunek 7: Przebieg głównego algorytmu

4.1 Dekompozycja formuły

4.1.1 Reguły dekompozycji

Postać dekompozycji	Nazwa
A	Koniunkcja
$p \wedge q$	
p	
q	
	Alternatywa
$p \lor q$	
p q	
$m \rightarrow a$	Implikacja
$p \Rightarrow q$	
$\neg p q$	
	Ekwiwalencja
$p \Leftrightarrow q$	
$p \neg p$	
$\begin{vmatrix} p & p \\ q & \neg q \end{vmatrix}$	
1 1	Negacja koniunkcji
$\neg (p \land q)$	
q	
P 'Y	Negacja alternatywy
$\neg (p \lor q)$	Trogueja arternaty wy
$\neg (p \lor q) \\ \mid \\ \neg p$	
$\neg q$	Negacja implikacji
$\neg(p \Rightarrow q)$	rvegacja impilkacji
$\neg(p \Rightarrow q)$	
p	
$\neg q$	Negacja ekwiwalencji
$\neg (p \Leftrightarrow q)$	1108acja chimimatolicji
$ \begin{array}{c c} p & \neg p \\ \neg q & q \end{array} $	
1 1	Negacja negacji
$\neg \neg p$	
	8
p	

	Namasia anamatana Mamt
V	Negacja operatora <i>Next</i>
$\neg Xp$	
$X \neg P$	
71 1	On anaton Pinalla
	Operator Finally
Fp	
p XFp	
	Negacja operatora Finally
$\neg Fp$	
- F	
$\neg p$	
$\neg XFp$	
	Operator <i>Until</i>
pUq	1
q p	
X(pUq)	
	Negacja operatora <i>Until</i>
$\neg (pUq)$	1 vegacja operatora o www
(pc q)	
$\neg q$	
$\neg p \vee \neg X(pUq)$	
	Operator Globally
Gp	
p XGp	

4.1.2 Algorytm metody tablic semantycznych

- 1. Tworzenie korzenia drzewa zawierającego formułę wejściową (lub jej zaprzeczenie)
- 2. Dekompozycja następnego w kolejności wyrażenia logicznego. Kolejność dekomponowania wyrażeń znajdujących się w węzłach drzewa jest dowolna, jednak ze względu efektywność algorytmu najlepiej przyjąć następujący porządek:
 - 1 Dekomponowanie wyrażeń niepowodujących rozgałęziania
 - 2 Dekomponowanie wyrażeń powodujących rozgałęzianie oraz tworzących dwa pod-wyrażenia w węzłach potomnych

- 3 Dekomponowanie wyrażeń powodujących rozgałęzianie oraz tworzących jedno wyrażenie w węzłach potomnych
- 3. W przypadku węzła, który zawiera wyrażenia z operatorem Next rozszerzenie drzewa, przez przyłączenie potomka zawierającego wyrażenia nieatomiczne, z usuniętym zewnętrznym operatorem Next, lub w przypadku gdy takie wyrażenie już występowało w nadrzędnym węźle, utworzenie ścieżki do tego węzła
- 4. Dekompozycję powtarza się, w każdym węźle nie zostaną sprawdzone wszystkie wyrażenia
- 5. Eliminacja węzłów węzeł oznacza się jako usunięty, jeśli:
 - 1 Zawiera on dwie osobne formuły, które są zmienną logiczną i jej zaprzeczeniem
 - 2 Wszyscy potomkowie węzła zostali usunięci
 - 3 Jeśli węzeł zawiera operatory temporalne Fplub qUpi jeśli nie istnieje w drzewie ścieżka prowadząca do węzła zawierającego formułę p
- 6. Interpretacja wyników jeżeli korzeń drzewa został usunięty, to formuła jest niespełnialna (w przypadku, gdy w korzeniu zostało podane jej zaprzeczenie jest spełnialna)