Machine Learning from Data

Lecture 8: Spring 2021

Today's Lecture

- Linear Models
 - Classification and
 - Regression

TRADE - OFF

VC Analysis

$$E_{\rm out} \le E_{\rm in} + \Omega(d_{\rm VC})$$

- 1. Did you fit your data well enough (E_{in}) ?
- 2. Are you confident your $E_{\rm in}$ will generalize to $E_{\rm out}$

Mphy Drings out-of-sample error out-of-sample error model complexity

in-sample error

Vi Nimension, dvc

The VC Insuarance Co.

The VC warranty had conditions for becoming void:

You can't look at your data before choosing \mathcal{H} . Data must be generated i.i.d from $P(\mathbf{x})$. Data and test case from same $P(\mathbf{x})$ (same bin).

Bias-Variance Analysis

$$E_{\mathrm{out}} = \mathsf{bias} + \mathsf{var}$$

1. How well can you fit your data (bias)?

 $E_{\rm out} = 0.75$ \checkmark

2. How close to that best fit can you get (var)?

 $E_{\rm out} = 1.90$

Linear Model

y-soutcome able

Linear Model: FUNDAMENTAL i) On its own its able to solve most

ML problems

ii) It's a building block for other model.

NN, SVM (rhobust linear model)

S = WM where w ER dH

I was in linear in, linear in linear in burghes. hyperplane 2d line

Is it possible to some any kind of problem using linear model? \rightarrow sign function h(x) = sign (classification) -1 (classification) -1|RANSFORM > Identity transform \[\h=5 \h(x)=W^TM \]
(Regression) S=WTU linear Signoid function h=|O(s)|(Logistic min) $h(n)=O(w^n)$

Classification (Perception) $\mathcal{H}_{linear} = \left\{ h(x) = \operatorname{Sign}(wx) \middle| w \in \mathbb{R}^{d+17} \right\}$ $\int dv_{c} = d+1, \quad \exists \text{ Eout } \leq \operatorname{Ein} + 0 \left(\operatorname{FalmN} \right)$ Q1. What happens if data is not linearly suparable of Town we en sure Einly) =0

Town was to happens of the finity of the formation of the finity of the formation of the finity of the Tolunte mod itm)
(Pocket Algorithm) Feature Set

PLA: Pocket Agribum

3 Cret a better stacting 3 Agouthons.

Minimizing $E_{\rm in}$ is a *hard* combinatorial problem.

The Pocket Algorithm

- − Run PLA ✓
- At each step keep the best $E_{\rm in}$ (and \mathbf{w}) so far.

(Its not rocket science, but it works.)

Stopping Crituia 10000 iterations Pre-prousting.

Each digit is a 16×16 image.

Feature Construction

Summarize the input into feature that are until i) Reduce the dimension (dyc) significantly dyc Edn = Eont important? ii) What is really important? Mathematical form. U L> Algorithm

Linear Model

· Powerful : Ein=Eont Feature Construction.

Intensity and Symmetry Features

<u>feature</u>: an important property of the input that you think is useful for classification.

age	32 years
gender	male
salary	40,000
debt	26,000
years in job	1 year
years at home	3 years

Classification: Approve/Deny

Regression: Credit Line (dollar amount)

regression $\equiv y \in \mathbb{R}$

$$h(\mathbf{x}) = \sum_{i=0}^{d} w_i x_i = \mathbf{w}^{\mathrm{T}} \mathbf{x}$$

Least Squares Linear Regression

MATRIX NOTATION

$$y = \begin{pmatrix} y \\ y \\ y \end{pmatrix}$$

$$= \begin{pmatrix} y \\ y \\ y \end{pmatrix}$$

$$X \in \mathbb{R}^{N \times (d+1)}$$

$$X \in \mathbb{R}^{N \times (d+1)}$$

$$(3i-yi)^{2}$$

$$Ein(\omega) = 1 \cdot ||9-y||^{2}$$

 $\hat{y}_{1} = \omega \chi_{1} = \chi_{1} \omega \longrightarrow (-\chi_{1}) \omega$ $\hat{y}_{2} = \omega \chi_{2} = \chi_{2} \omega \longrightarrow (-\chi_{1}) \omega$ $= \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \right)$ yn = ŷ = Xw (Vuijy) $: E_{in}(w) = \frac{1}{N} || \times w - y||^2 \longrightarrow LA dy.$

2 = 22 $Ein(w) = \frac{1}{1}(xw-y)(xw-y)$ ut TEin(w)—

 $Ein(w) = \bot (w'x'xw - 2w'x'y)$ $ax^2+bn+c-$ 2ax+b $\nabla E_{in}(w) = \frac{1}{N} \left(\frac{2x^{2}x^{2}w^{2} - 2x^{2}y}{2x^{2}w^{2}} \right)$) in = (XTX) 'X'Y Psendo Inverse Algo.

nverse Algorithm 8m y= psendo inverse, $g(x) = W_{in} \chi$ $g(x) \sim \chi_i$

Yocket Algorithm Fin = D (Mard) Psudu Inverse Algorithm (sign(win i) ~ yi) Jor dassification problem. -> Make his your starting point Regression for (lashification)

Thanks!