

ENGINES

- A heat engine is a machine,
- which converts heat energy (Chemical energy to heat energy by combustion) into mechanical energy.
- The combustion of fuel such as coal, petrol, and diesel generates heat.

ENGINES

- Heat engines can be further divided into two types based on where the combustion of fuel take place:
 - (i)External combustion Engine (E C Engine)

(ii) Internal combustion (I C Engine)

ENGINES

Difference between I C Engine and E C Engine

I.C. ENGINE	E.C. ENGINE
Combustion of fuel takes place inside the cylinder	Combustion of fuel takes place outside the cylinder
Working fluid may be Petrol, Diesel & Various types of gases	Working fluid is steam
Require less space	Require large space
Capital cost is relatively low	Capital cost is relatively high
Starting of this engine is easy & quick	Starting of this engine requires time
Thermal efficiency is high	Thermal Efficiency is low
Power developed per unit weight of these engines is high	Power Developed per unit weight of these engines is low
Fuel cost is relatively high	Fuel cost is relatively low

CLASSIFICATION OF IC ENGINES:

1.Type of fuel used:	(i) Petrol or Gasoline engine	(ii) Diesel engine
2. Number of stroke per cycle	(i) Four stroke engine	(ii)Two stroke engine
3. Type of Ignition used	(i) Spark ignition (SI) engine	(ii) Compression ignition (CI) engine
4. Type of cycle of combustion	(i) Otto cycle (Constant volume combustion cycle)(ii) Diesel cycle (Constant pressure combustion cycle)	
5. Number of cylinders	(i) Single cylinder engine	(ii)Multiple cylinder engine
6. Type of cooling system	(i) Air cooled engine	(ii) Water cooled engine
7. Based on arrangement of cylinder		ntal engine (iii) Radial engine d cylinder & Opposed piston engine
8. Applications		Automotive engine (iii) Marine engine ocomotive engine

CLASSIFICATION OF IC ENGINES:

Multi cylinder engine

PARTS OF IC ENGINES:

- Cylinder Block
- Cylinder head
- Piston
- Piston rings
- Connecting rod
- Crank
- Crankshaft
- Crank case
- Spark plug/fuel injector
- Intake/Inlet Valve
- exhaust/outlet Valve
- Combustion Chamber
- Cooling water Jackets
- Cam mechanism

IC ENGINE TERMINOLOGY:

Bore: The nominal inside diameter of the engine cylinder is called bore.

Top Dead Centre (TDC): The extreme position of the piston at the top of the cylinder of the vertical engine is called top dead centre (TDC)

Bottom Dead Centre (BDC): The extreme position of the piston at the bottom of the cylinder of the vertical engine called bottom dead centre (BDC).

Stroke: The distance travelled by the piston from TDC to BDC is called stroke. It is equal to twice the radius of the crank.

Clearance Volume (Vc): The volume contained in the cylinder above the top of the piston, when the piston is at top dead centre is called the clearance volume.

IC ENGINE TERMINOLOGY:

Swept Volume (Vs): The volume swept by the piston during one stroke is called the swept volume or piston displacement.

Swept volume is the volume covered by the piston while moving from TDC to BDC.

Swept volume= $Vs = A * L = (\pi 4)*D2*L$ where

A = Cross sectional area of the piston in Sq.m,

L = Stroke in m, and

D = Cylinder bore i.e., inner diameter of the cylinder in m.

IC ENGINE TERMINOLOGY:

Compression Ratio (CR):Compression ratio is a ratio of the volume when the piston is at bottom dead centre to the volume when the piston is at top dead centre.

Mathematically,

Compression ratio $= \frac{MaximumCylinderVolume}{MinimumCylinderVolume}$

Compression ratio $= \frac{(Swept \ volume + Clearnce \ Voume)}{Clearnce \ Voume}$

Compression ratio
$$=\frac{(V_s+V_c)}{V_c}$$

4-S Petrol engine

The first practical petrol engine was built in 1876 in Germany by Nicolaus August Otto. 4-S Petrol engine works on Otto cycle.

4-S Petrol engine

The first practical petrol engine was built in 1876 in Germany by Nicolaus August Otto. 4-S Petrol engine works on Otto cycle.

How Gasoline Engine Works

4-S Petrol engine

The first practical petrol engine was built in 1876 in Germany by Nicolaus August Otto

P V diagram of otto cycle

4-S Diesel engine

The first practical Diesel engine was built in 1878 in Germany by <u>Rudolf Diesel</u> 4-S Diesel engine works on Diesel cycle.

I C ENGINES 4-S Diesel engine

The first practical Diesel engine was built in 1878 in Germany by <u>Rudolf Diesel</u> 4-S Diesel engine works on Diesel cycle.

1 C ENGINES 4-S Diesel engine

The first practical Diesel engine was built in 1878 in Germany by Rudolf Diesel

P V diagram of Diesel cycle

Thermal efficiency

Initial cost & Maintenance cost

Size & Weight

Application

13.

Less

Less

Small & Less for unit kw power output

Used in Lighter vehicles

I C ENGINES

W	Difference between 4 stroke petrol (SI engine) and 4 stroke diesel engine (CI engine)		
Sl No	Parameters	SI Engine (4 stroke petrol engine)	CI Engine (4 stroke Diesel engine)
1.	Cycle of operation	Otto cycle	Diesel cycle
2.	Presence of spark plug/Fuel injector	Spark Plug	Fuel injector
3.	Inlet of fresh charge to cylinder during suction stroke	Mixture of fuel & Fuel from carburetor	Only air through air filter
4.	Compression ration	1:6 to 1:12	1:12 to 1:22

•	suction stroke	Whature of fuel & I del from carburetor	Only all unough an inter
	Compression ration	1:6 to 1:12	1:12 to 1:22
•	Ignition of fuel	By spark given by spark plug	High temperature compressed air ignites the fuel when it mixed with it

6.	Type of combustion	Constant volume combustion	Constant pressure combustion
7.	Starting of engine	Easy due to less compression ratio	Difficult due to High compression ratio
8.	Speed	Operates at High speed	Operates at Low speed
9.	Rate of combustion	Almost complete combustion (combustion of whole mass of fuel)	Full complete combustion (fuel injected in spray from, so each molecules of fuel combust completely)
10.	Fuel consumption	More	Less

More

More

Big & More for unit kw power output

Used in Heavy vehicles

2-S Petrol engine

1 cycle of heat energy to mechanical energy conversion take place in 2 Stokes

1. Downward stroke

2. Upward stroke

Comparison with 4 Stroke engine—the physical differences are

Piston – Crown shaped head Piston instead of flat head piston

Valves – 3 ports (Intake/inlet, Exhaust/outlet, Transferport) instead of 2 valves

Cooling – Air cooling though fins

2-S Petrol engine

Downward stroke

When the piston at -TDC

Inlet port opened fully, exhaust port & transfer port completely closed

- 1. Combustion of previous cycle compressed air fuel mixture due to spark given by spark plug
- 2. Staring of power stroke
- 3. Inlet of fresh air fuel mixture to crank case

When the piston moving from TDC to BDC

Inlet port gradually closed, exhaust port & transfer port gradually opened.

- 1. Power stroke
- 2. Initial compression of air fuel mixture in the crank case
- 3. Exhaust of expanded hot gases
- 4. Transfer of initially compressed air fuel mixture to cylinder through transfer port

When the piston at -BDC

Inlet port completely closed, exhaust port & transfer port opened fully.

- 1. Exhaust of expanded hot gases
- 2. Transfer of initially compressed air fuel mixture to cylinder through transfer port

2-S Petrol engine

Upward stroke

When the piston at -BDC

Inlet port completely closed, exhaust port & transfer port opened fully.

- 1. Exhaust of expanded hot gases
- 2. Transfer of initially compressed air fuel mixture to cylinder through transfer port

When the piston moving from BDC to TDC

exhaust port & transfer port gradually closed, Inlet port gradually opened.

- . Stop of Exhaust of expanded hot gases & Transfer of initially compressed air fuel mixture to cylinder through transfer port
- 2. Secondary compression of air fuel mixture in the cylinder

When the piston at -TDC

Inlet port opened fully, exhaust port & transfer port completely closed

- 1. Combustion of compressed air fuel mixture due to spark given by spark plug
- 2. Staring of power stroke
- 3. Inlet of fresh air fuel mixture to crank case

2-S Diesel engine

Downward stroke

When the piston at -TDC

Inlet port opened fully, exhaust port & transfer port completely closed

- 1. Combustion of spray formed fuel injected though fuel injector mixed with previous cycle compressed air
- 2. Staring of power stroke
- 3. Inlet of only fresh air to crank case

When the piston moving from TDC to BDC

Inlet port gradually closed, exhaust port & transfer port gradually opened.

- 1. Power stroke
- 2. Initial compression of only air in the crank case
- 3. Exhaust of expanded hot gases
- 4. Transfer of initially compressed only air to cylinder through transfer port

When the piston at -BDC

Inlet port completely closed, exhaust port & transfer port opened fully.

- 1. Exhaust of expanded hot gases
- 2. Transfer of initially compressed only air to cylinder through transfer port

2-S Diesel engine

Upward stroke

When the piston at -BDC

Inlet port completely closed, exhaust port & transfer port opened fully.

- 1. Exhaust of expanded hot gases
- 2. Transfer of initially compressed only air to cylinder through transfer port

When the piston moving from BDC to TDC

exhaust port & transfer port gradually closed, Inlet port gradually opened.

- 1. Stop of Exhaust of expanded hot gases & Transfer of initially compressed only air to cylinder through transfer port
- 2. Secondary compression of only air fuel in the cylinder

When the piston at -TDC

Inlet port opened fully, exhaust port & transfer port completely closed

- 1. Combustion of spray formed fuel injected though fuel injector mixed with previous cycle compressed air
- 2. Staring of power stroke
- 3. Inlet of fresh only fresh air to crank case

Difference between 2 stroke engine and 4 stroke engine

			ENGINEE IN ENGINEER
Sl no	Principle	Four-stroke engine	Two-stroke engine
1	Number of strokes	Four strokes per	cycle Two strokes per cycle
	per cycle		
2	Number of cycles	Half of the speed of the engine n=N/2	Equal to the speed of the engine n=N
	per min		
3	Power	Power is developed in every alternate revolution	Power is developed in every revolution of the
		of the crankshaft	crankshaft
4	Flywheel	Heavy flywheel is required	Lighter flywheel is required
5	Admission of the	The charge is directly admitted into the engine	The charge is first admitted into the crankcase and
	charge	cylinder during the suction stroke	then transferred to the engine cylinder
6	Exhaust gases	The exhaust gases are driven out through the	The exhaust gases will be expelled out of the
		outlet by the piston during the exhaust stroke	cylinder by scavenging operation by the incoming
			fresh charge
7	Valves/Ports	Inlet and the exhaust valves	inlet, transfer and the exhaust ports

Difference between 2 stroke engine and 4 stroke engine

Sl no	Principle	Four-stroke engine	Two-stroke engine
8	Valves	The inlet and the exhaust are opened and closed	The piston itself opens and closes the inlet, transfer
		by mechanical valves	and the exhaust ports
9	Engine cooling	The cooling can be made more effective since the	The rate of cooling must be very high since the
		combustion takes place in alternate revolution of	combustion takes place in every revolution of the
		the crankshaft	crankshaft
10	fuel consumption	Fuel consumption is Less	Fuel consumption is More (fresh fuel mixed with
	-		exhaust gas)
11	Mechanical	Less (due to 4 stroke, more movement of piston)	High (due to 2 stroke, less movement of piston)
	efficiency		
12	Thermal efficiency	More (Due to less fuel consumption)	Less (Due to more fuel consumption)
13	Noise	Noise will be less	Noise will be More
14	Uses	Used in slow speed and High power applications	Used in High speed and Low power applications
		like cars, trucks, tractors, jeeps, buses etc	like mopeds, scooters, motor cycles etc

Performance of IC Engines

Mean effective pressure (MEP): P_m

- mean or average pressure acting on a piston throughout the power stroke.
- It is also the developed inside the engine cylinder of an IC engine. It is expressed in Bar.
- The mean effective average pressure of an engine is obtained from indicator diagram (p –V diagram diagram), which is get by indicator fitted on the engine.

$$\mathbf{P}_{m} = \frac{\left(\begin{array}{c} \textit{Spring value or spring stiffness of the} \\ \textit{spring used in the indicator (S)in bar per mt} \end{array} \right) * \textit{Net are of the indicator digram (a) in } m^2}{\left(\textit{Length of the indicator diagram (l)in m} \right)}$$

$$P_{m} = \frac{S*a}{l}$$
 in bar

Performance of IC Engines

Indicated Power (IP): Indicated power is defined as the total power developed inside the engine cylinder due to combustion of fuel. It denoted by IP and is expressed in kW.

When Pm is in N/m2,
$$IP = \frac{nPmLANK}{60*1000}$$
 in Kw

When Pm is in bar
$$IP = \frac{100 * nPmLANK}{60}$$
 in Kw = $nPmLANK*\frac{10}{6}$ in Kw

Where

n= number of cylinders

Pm = indicated mean effective pressure in bar

L = length of stroke in m

A = cross-sectional area of the cylinder in $m^2 = A = \frac{\pi}{4} d^2$ in m^2

where

d= diameter of cylinder or bore in m

N =engine speed in rpm

K = factor used for easy simplification

K = 1/2 for four stroke engine K = 1 for two stroke engine

Performance of IC Engines

Brake Power (BP): The net power available at the crank shaft of the engine for performing useful work is called brake power. It is denoted by BP and expressed in kW.

$$\mathbf{BP} = \frac{2\pi NT}{60*1000} \text{ in kW}$$

Where

N =Speed of the engine in rpm

T = Torque is measured by using either belt or rope brake dynamometer.

T = Torque in N - m = W * R.

W = Net load acting on the brake drum in N

R = Radius of the brake drum in m

Friction power (FP) = Indicated power – Brake power. (FP=IP-BP) in Kw

Performance of IC Engines

Mechanical Efficiency (η_{mech}): It is the efficiency of the moving parts of mechanism transmitting the indicated power to the crankshaft. Therefore it is defined as the ratio of the brake power and the indicated power. It is expressed in percentage.

$$(\eta_{\text{mech}})$$
: Brake power (BP) * 100 in %

Thermal Efficiency ($\eta_{Thermal}$): it is the efficiency of the conversion of the heat energy produced by the actual combustion of the fuel into the power output of the engine.

Therefore it is defined as the ratio of power developed by the engine by the heat supplied by the fuel in the same interval of time. It is expressed in percentage.

$$\eta_{\text{Thermal}}$$
: $\frac{\text{Mechanical Output}}{\text{Heat Supplied}} * 100 \text{ in } \%$

$$\eta_{\text{Thermal}}$$
: $\frac{\text{Mechanical Output}}{\text{Heat supplied}} * 100 \text{ in } \%$

Where

Heat Supplied = $M_f * C_V$

 $M_f = Mass of the fuel in kg/sec$

 $C_V = \text{Calorific value of the fuel in KJ/Kg}$

Performance of IC Engines

Indicated Thermal Efficiency (η_{ITH}): Indicated thermal efficiency can be defined as the ratio of indicated power to the heat supplied by the burning fuel.

$$(\eta_{ITH})$$
: $\frac{Indicated\ power\ (IP)}{Heat\ Supplied}*100\ in\ \%$

Brake Thermal Efficiency (η_{BTH}): Indicated thermal efficiency can be defined as the ratio of indicated power to the heat supplied by the burning fuel.

$$(\eta_{BTH})$$
: $\frac{Brake\ power\ (BP)}{Heat\ Supplied}*100\ in\ \%$

Where

Heat Supplied= $M_f * C_V$

 $M_f = Mass of the fuel in kg/sec$

 $C_V = Calorific$ value of the fuel in KJ/Kg

Performance of IC Engines

Specific fuel consumption (SFC): SFC is defined as the amount of fuel consumed by an engine for one unit of power that is produced.

- SFC is used to express the fuel efficiency of an IC engine.
- It measures the amount of fuel required to provide a given power for a given period.
- It is expressed in kg/kW hr.
- Specific fuel consumption is expressed as the mass of fuel consumed per kW of power developed per hour

Indicated Specific fuel consumption (ISFC): ISFC is defined as the amount of fuel consumed by an engine for one unit of indicated power that is produced.

(ISFC):
$$\frac{\text{Mass of the fuel consumed in kg/}_{Indicated power (IP)}}{\text{Indicated power (IP)}}$$
 in $\frac{kg}{kw-hr}$

Brake Specific fuel consumption (BSFC): ISFC is defined as the amount of fuel consumed by an engine for one unit of brake power that is produced.

(ISFC):
$$\frac{\text{Mass of the fuel consumed in kg/}_{\textit{Hour}}}{\textit{Brake power (BP)}}$$
 in $\frac{\textit{kg}}{\textit{kw-hr}}$