Un AFD es una tupla de la forma:

$$A=$$

donde:

$$\begin{array}{ll} Q & \text{conjunto de estados} \\ \Sigma & \text{alfabeto o conjunto de símbolos} \\ \delta: Q \times \Sigma \to Q & \text{función de transición} \\ q_0 \in Q & \text{estado inicial} \\ F \subseteq Q & \text{conjunto de estados finales} \end{array}$$

Lenguajes regulares

Propiedades

Sean L_1 y L_2 lenguajes regulares, L_1 definido sobre el alfabeto Σ . Los siguientes también son lenguajes regulares:

- Unión: $L_1 \cup L_2$
- Concatenación: L₁L₂
- Intersección: $L_1 \cap L_2$
- ullet Complemento: $L_1{}^c=\Sigma^*\setminus L_1$
- Reversa: L₁^r

Traductor Finito Determinístico (TFD)

Un TFD A se define como

$$A=$$

donde Δ es el alfabeto de salida y donde la función de transición tiene la siguiente signatura:

$$\delta: Q \times \Sigma \to Q \times \Delta^*$$

Un autómata de pila ${\cal M}$ se define como:

$$M = \langle Q, \Sigma, \Gamma, \delta, q_0, \frac{z_0}{c_0}, F \rangle$$

Donde:

- Q es un conjunto finito de estados
- Σ es el alfabeto de entrada
- Γ es el alfabeto de la pila
- $q_0 \in Q$ es el estado inicial
- $z_0 \in \Gamma$ es el símbolo inicial de la pila
- $F \subseteq Q$ es el conjunto de estados finales
- δ es la función de transición: $Q \times (\Sigma \cup \{\lambda\}) \times \Gamma \to P(Q \times \Gamma^*)$

Lema de pumping

Traduciendo y llegando a la técnica

L no cumple "pumping" equivale a probar que la sig. fórmula es verdadera

$$\begin{split} \forall p > 0 \; (\exists \alpha \; (\alpha \in L \land |\alpha| \geq p \land \\ \forall x \forall y \forall z \; (\alpha = xyz \land |xy| \leq p \land |y| \geq 1 \land \exists i \geq 0 \; (xy^iz \notin L)))) \end{split}$$

Para todo p > 0

Existe α tal que α pertenece al lenguaje L, $|\alpha| \geq p$ Para toda descomposición $\alpha = xyz$ con $|xy| \leq p$ y $|y| \geq 1$ Existe un $i \geq 0$ tal que $xy^iz \notin L$

- Me dan un p > 0
- 2 Elijo una cadena α perteneciente a L con longitud mayor o igual a p
- **3** Me dan una descomposición $\alpha = xyz$ con $|xy| \le p$ y $|y| \ge 1$
- Elijo un i mayor o igual a cero tal que xy^iz no pertenezca a L

Formalmente, las notamos con una 4-upla

$$G = \langle V_N, V_T, P, S \rangle$$

donde,

- V_N son los símbolos no terminales.
- V_T son los **símbolos terminales**, disjuntos de V_N .
- P son las **producciones**.
- $S \in V_N$ es el símbolo distinguido (start).

Ejemplo

En el ejemplo de a^+ , tenemos

$$G = \langle \{S\}, \{a\}, P, S \rangle$$

 $P : S \rightarrow aS \mid a$