Total No. of Questions	3:	8]	
-------------------------------	----	----	--

P3060

[Total No. of Pages :3

[4660]-1202

M.E. (E&TC-VLSI and Embedded Systems)

		ASIC DESIGN					
		(Semester-III) (2013 Credit Pattern) (604202)					
Time: 3 Hours] [Max. M			c. Marks : 50				
Insti	1) 2) 3)	ions to the candidates: Attempt any five questions out of 8. Neat diagrams must be drawn wherever necessary. Figures to the right indicate full marks.					
	<i>4) 5)</i>	Use of electronic pocket calculators is allowed. Assume suitable data, if necessary.					
Q1)	a)	Draw the design flow for an ASIC design process and explain	each step. [4]				
	b)	Classify and explain in detail gate array based ASIC.	[3]				
	c)	What is test bench? Explain with example.	[3]				
Q2) a)		Explain the terms:	[3]				
		i) Constants					
		ii) Attributes					
		iii) Variables					
	b)	Explain in brief the combinational and sequential modelling with respect to 4 bit multiplexer and 4bit SISO shift register. [5]					
	c)	Write a short note on static Timing Analysis.	[2]				
Q3)	a) Explain the terms:		[4]				
		i) Gate level simulation					
		ii) Switch level simulation					
		iii) Transistor level simulation					
	b)	Explain mixed mode synthesis of ASIC.					
	c)	Write a note on gate level mixed mode testing.					

- **Q4)** a) Explain the practical aspects of mixed signal analog digital design. [5]
 - b) Write in brief about signal integrity effects in ASIC design. [5]
- **Q5)** a) Explain with step by step process K-L algorithm for system partitioning. [5]
 - b) Differentiate between Global routing and detailed routing. Calculate Elmore constants for node 4 and node 2 for the circuit shown in fig.1.[5]

Given Parameters

- m_2 resistance 50 m Ω /square
- m₂ capacitance 0.2 PF/mm
- 4x inverter delay is 0.02 ns+0.5 $C_L n_S$ (C_L is in PF)
- Delay is measured using 0.35/0.65 output trip points
- m_2 minimum width is $3 \lambda = 0.9 \mu m$
- 1x inverter input capacitance is 0.02 PF
- **Q6)** a) List the goals and objectives for ASIC physical design steps. [4]
 - b) Explain wrt floorplanning: [3]
 - i) Channel capacity
 - ii) Channel density
 - iii) Channel allocation and ordering
 - c) What are the different approaches to global routing? [3]

Q7)	a)	Writ	te short note on any two:	[4]
		i)	Features of EDA tools	
		ii)	Issues in verification	
		iii)	Testing techniques used in ASIC design.	
	b)	Brie	fly describe about boundary scan testing.	[4]
	c)	Defi	ne the terms, controllability and observability.	[2]
Q8)	a)		lain in detail about ATPG algorithm using test vectors with nram.	eat
	b)		at is the need of testing and explain with neat diagram the SCAN Pagement.	ath [5]