A high-level programming language for generative protein design

Brian Hie, Salvatore Candido, Zeming Lin, Ori Kabeli, Roshan Rao, Nikita Smetanin, Tom Sercu, Alexander Rives

Shuxian Zou 2023-01-12

Outlines

- Abstract
- Background & Motivation
- Methods
- Experiments
- Conclusions

Abstract

• Top-down design of proteins

- Provide a language for user to specify desired properties of proteins
- Properties include atomic coordinates, secondary structures, symmetry and multimerization
- Modularity and programmability

An energy-based generative model

- The specified properties are complied into an energy function using ESMFold
- The energy function is used to guide the search of protein sequences
- Generality and controllability

Background & Motivation

• De novo protein design

• Design novel amino acid sequences that encode proteins with desired properties

Motivation

- Previous methods use bottom-up design or top-down design with low combinatorial complexity
- We propose a programming language for generative protein design, which allows a designer to specify intuitive, modular, and hierarchical programs

Challenge

• Proteins cannot be decomposed into easily recombinable parts because the local structure of the sequence is entangled in its global context

• Idea

• Translate the high-level programs into low-level sequences and structures by a generative model

Overview of Methods

A protein design system equipped with high-level programming language and powered by a language model based protein structure prediction model

A High-level Programming Language for Protein Design

The language requires: (1) a syntax tree

- Terminal symbols: define a unique protein sequence
 - Denoted as A, B, C
- Nonterminal symbols: enable hierarchical organization
 - Denoted as x_i , x_1 is the special start symbol
 - Additional nonterminal symbols are used to define hierarchical complexity
- Rules: a nonterminal can produce any finite-length permutation of
 - higher-numbered nonterminals
 - terminals
 - mixed terminals and higher-numbered nonterminals
- A complete syntax tree is built by fully expanding the non-terminal x_1 into a set of terminals

$$x_1 \rightarrow x_2 x_3$$
 \checkmark
 $x_2 \rightarrow x_1 x_3$ \times
 $x_2 \rightarrow x_2 x_3$ \times
 $x_1 \rightarrow AB$ \checkmark
 $x_1 \rightarrow x_2 B$ \checkmark
 $x_1 \rightarrow Bx_2$ \checkmark

A High-level Programming Language for Protein Design

The language requires: (2) a set of constraints

- A single constraint is defined w.r.t a single node and all of its descendants in the syntax tree
- A constraint is a function that takes as input the (sub)tree and its corresponding (sub)sequence and (sub)structure, and outputs a number
 - $f_j(x_i)$: constraint j defined w.r.t node x_i
 - E.g., $f_j(x_1)$ takes the entire syntax tree, the full-length sequence, and full protein structure as input
- Can be **arbitrary and nondifferentiable**, can span a multiple scales of biological complexity

A program fully specified by a syntax tree and its constraints in the high-level language

Compilation of a Program into an Energy Function

• The energy function:

$$E(x) = \sum_{i} \sum_{j} a_{j} f_{j}(x_{i})$$

- $f_i(x_i) = 0$ if a constraint j is not applied to a given node
- a_i : user-specified scalar

• Top-down protein design \rightarrow black-box optimization problem:

$$\min_{x} E(x)$$

Simulated Annealing as Optimization Algorithm

- Initialize the sequence state x^1 (one unique sequence per terminal node) with uniform amino acid probability to a given user-specified length
- Predict the structure of x^1 using ESMFold and compute the energy $E(x^1)$
- In iteration i, propose a mutation to the current protein state x^i and generate x^* :
 - Uniformly sample a terminal symbol
 - Sample a kind of mutation: substitution 60%, insertion 20%, deletion 20%
 - For substitution and insertion, uniformly sample an amino acid (except cysteine)
 - Uniformly sample a sequence position for the mutation
- Predict the structure of x^* using ESMFold and compute the energy $E(x^*)$
- Let $\Delta E = E(x^*) E(x^i)$,
 - If $\Delta E < 0$, accept x^* as a new sequence state
 - Else, accept x^* with probability $e^{-\frac{\Delta E}{T_i}}$
- Return x^M and its predicted structure

Cooling schedule:
$$T_i = (\frac{T_{min}}{T_{max}})^{\frac{i}{M}}$$

 $T_{min} = 0.0001, T_{max} = 1$
M: user-specified number of annealing steps

Overview of Methods

Basis of constraint compilation: structure predicted by ESMFold

- Input the entire protein sequence to ESMFold and get all-atom structure predictions (atomic coordinates)
- 11 constraints in total

(1) Single chain constraint (part of structure prediction)

- By default, all terminal nodes correspond to separate chains without this constraint
- When this constraint is applied to a given node, it constrains all terminal symbols to be part of a single chain, according to the left-to-right order defined in the syntax tree.
- Enforced as part of the structure prediction, prior to the energy function compilation.

(2) Structure prediction confidence (pTM and pLDDT)

- Prefer proteins with higher structure prediction confidence (more naturally plausible and designable)
- pTM: model's confidence on the overall structure prediction
- mean pLDDT: model's confidence in the backbone atomic coordinate predictions
- energy = $\alpha(1-pTM) + \beta(1-pLDDT)$ (α, β : user-specified weights)

Full-protein constraints E.g., free "hallucination" Constraints: pTM, pLDDT, hydrophobics

(3) Surface-exposed hydrophobics

- Prefer soluble and monomeric proteins (high hydrophobicity leads to protein aggregation and insolubility)
- Detect surface-exposed atoms: Shrake-Rupley "rolling probe" algorithm (biotite)
- energy = # (surface exposed hydrophobic residues) / # (hydrophobic residues)

(4) Globularity

- Prefer a protein chain to pack into a globular structure
- Compute the centroid *c* of a set of atomic coordinates
- energy = variance($\{d(a_i, c)|i = 1, ..., n\}$)

(5) Secondary structure

- Prefer proteins with user-defined secondary structure
- Annotate residue secondary structure: P-SEA algorithm (*biotite*)
- energy = 1 (# residues belongs to the desired secondary structure / # residues)

(6) Rotational symmetry

- Prefer ring-like structures (equally locate each substructures)
- Consider the centroids of the immediate children of the constraint's node
- E.g., $x_1 \rightarrow x_2 x_3 x_4$, compute centroids $c(x_2)$, $c(x_3)$, $c(x_4)$
- energy = variance($\{d_{23}, d_{34}, d_{42}\}$) (adjacent distances)

Constraints: pTM, pLDDT, symmetry, globularity, single chain A Constraints: Length

E.g., 3-fold symmetry

(7) Globular symmetry

- Prefer globular symmetric structures (such as polyhedral)
- Consider the centroids of the immediate children of the constraint's node
- E.g., $x_1 \rightarrow x_2 x_3 x_4 x_5$, compute centroids $c(x_2)$, $c(x_3)$, $c(x_4)$, $c(x_5)$
- energy = variance($\{d_{23}, d_{24}, d_{25}, d_{34}, d_{35}, d_{45}\}$) (all pairwise distances)

Partial constraints E.g., functional site scaffolding Constraints: pTM, pLDDT, hydrophobics, single chain Constraints: All-atom coordination (RMSD)

Full-protein constraints E.g., fixed backbone design Constraints: pTM, pLDDT, hydrophobics, backbone coordination (RMSD)

(8) All-atom coordination

- For functional site scaffolding
- Constrain (a portion of) the protein to match the structure of a known functional site in nature
- y_{native} : coordinates of a list of atoms from a native protein structure
- y_{design} : coordinates of all atoms in the corresponding (sub)tree

T: structural transformation a_i : coordinates of the ith atoms

• constrained root mean square deviation (cRMSD):

$$\operatorname{cRMSD}(y_{native}, y_{design}) = \min_{T} \frac{1}{n} \sum_{i=1}^{n} \|a_i(y_{native}) - T(a_i(y_{design}))\|^{1/2}$$

• distance-matrix RMSD (dRMSD):

$$dRMSD(y_{native}, y_{design}) = \left(\frac{2}{n(n-1)} \sum_{i=1}^{n} \sum_{j=1}^{n} (d_{ij}(y_{native}) - d_{ij}(y_{design}))^2\right)^{1/2}$$

• energy = $\alpha cRMSD(y_{native}, y_{design}) + \beta dRMSD(y_{native}, y_{design})$ (α, β : user-specified weights)

(9) Backbone atom coordination

• For fixed backbone design, only constrain the backbone atoms of the protein structure (no side chains)

(10) Surface exposure

- Desire a given set of residues be exposed on the surface of the protein (e.g. a protein binding site)
- energy = 1 (# surface exposed atoms within the (sub)tree structure / # atoms within the (sub)tree structure)

(11) Length

- Desire a user-specified number of length
- Hard-length constraint: disallow insertions and deletions

Overview of Methods

Designed Protein Evaluation Metrics

- Structural novelty
 - Search exhaustively over the PDB database to find the experimental structure with the highest TM-score to the designed structure
- Inverse folding roundtrip experiments to access "designability" of a structure prediction
 - Assumption: a designed protein backbone is "designable" if it can be recovered by roundtripping

Experiments – Full-protein constraints

Free hallucination

- Constraints: ((1-pTM) + (1-pLDDT) + hydrophobics) on the whole protein
- Ran simulated annealing over 30,000 iterations with $T_{max} = 1$ across **200 seeds**

Result: Able to generate high-confidence structures.

ESMFold 100% pLDDT > 0.7

AlphaFold2 22% pLDDT > 0.7

Experiments – Full-protein constraints

Fixed backbone design

- Constraints: 2dRMSD + cRMSD + (1-pTM) + (1-pLDDT) + 0.5 hydrophobics
- Ran simulated annealing over 30,000 iterations with $T_{max} = 1$ across at least 50 seeds for each of the six de novo backbones.

Experiments – Partial constraints

Secondary structure design

- Constraints: 10 secondary structure + (1-pTM) + (1-pLDDT) + hydrophobics
- Ran simulated annealing over 30,000 iterations $T_{max} = 1$ for 10 seeds for each of the three programs (all alpha, all beta, mixed)

Experiments – Partial constraints

Single functional site scaffolding

• Ran simulated annealing over 30,000 iterations with $T_{max} = 1$ for **1,000** seeds for each of the five binding sites.

Experiments – Symmetric and multimeric group constraints

Symmetric protein design

- Constraints: rotational symmetry + (1-pTM) + (1-pLDDT) + hydrophobics, length, single chain
- Ran simulated annealing over 30,000 iterations with a starting temperature of 1 for 10 seeds for each of the six fold symmetries and each of the three length constraints

Experiments – Symmetric and multimeric group constraints

Symmetric protein design

- We observed that a more confident design is associated with roundtrip success (low roundtrip RMSD).
- We observed that a lower perplexity sequence is associated with roundtrip success.

1000 randomly sampled protein designs

1000 randomly sampled inverse folding samples

Experiments – Symmetric and multimeric group constraints

Homo-oligomer design

- Constraints: globular symmetry + (1-pTM) + (1-pLDDT) + hydrophobics + 0.1 globularity at each terminal symbol, length = 720 residues, single chain
- Ran simulated annealing over 30,000 iterations with $T_{max} = 1$ for 10 seeds for each of oligomerization levels

Two-level symmetry design → **homo-oligomers**

- Constraints: weights are all set to 1 for each constraint
- Dimer of 2-fold, 3-fold, 4-fold; Trimer of 2-fold, 3-fold, 4-fold; Tetramer of 2-fold, 3-fold, 4-fold
- Ran simulated annealing over 30,000 iterations with $T_{max} = 1$ for 10 seeds for each of these programs.

Dimer of 2-fold

((AA)(AA))

Trimer of 2-fold

Trimer of 3-fold ((AAA)(AAA))

Tetramer of 3-fold ((AAA)(AAA)(AAA))

Dimer of 4-fold ((AAAA))

Trimer of 4-fold ((AAAA)(AAAA))

Tetramer of 4-fold ((AAAA)(AAAA))

Symmetric functional cite scaffolding

- Constraints: weight 10 for cRMSD and dRMSD, 1 for others
- Ran simulated annealing over 30,000 iterations with a starting temperature of 1 over 20 seeds for the design of 3-fold scaffolds of the IL10 and ACE2 binding sites, as well as 20 seeds for the design of 5-fold scaffolds of the ACE2 binding site.

Hierarchical asymmetric symmetry design

• Ran simulated annealing over 30,000 iterations with $T_{max} = 1$ over 10 seeds for each of the three programs.

Hierarchical asymmetric symmetry design

Conclusion

- Provide a high-level language for modular and programmable design of proteins
- Use ESMFold to convert constraints into an energy function which can be optimized by simulated annealing
- Demonstrate impressive protein design examples for programs with a wide range of complexity

Thanks!

Q & A