GCE January, 2017

Jiamin JIAN

Exercise 1:

Consider the sequence of functions f_n defined on the non-negative reals by $f_n(x) = 2nxP(x)e^{-nx^2}$, where P is a polynomial function.

- (i) Is f_n pointwise convergent on $[0, +\infty)$? Is f_n uniformly convergent on $[0, +\infty)$? Explain your answers to both questions.
- (ii) Let g_n be a sequence of continuous functions defined on $[0, +\infty)$ and valued in \mathbb{R} . Assume that each g_n is in $L^1([0, +\infty))$ and that sequence g_n is uniformly convergent to zero. Prove or disprove: $\lim_{n\to\infty} \int_0^\infty g_n = 0$.
 - (iii) Determine (with proof) $\lim_{n\to\infty} \int_0^\infty f_n$.

Solution:

(i) For any $x \in [0, \infty)$, as P(x) is a polynomial function, by the L'Hospital's Rule, we have

$$\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} 2nx P(x) e^{-nx^2} = \lim_{n \to \infty} \frac{2nx P(x)}{e^{nx^2}} = 0,$$

then for any $\epsilon > 0$, there exist a $N \in \mathbb{N}$, such that n > N we have

$$|2nxP(x)e^{-nx^2} - 0| < \epsilon,$$

thus we know that f_n converges to f(x) = 0 pointwise on $[0, \infty)$. But f_n is not uniformly convergent to f(x) = 0. We suppose P(x) = 1, then we have $f_n(x) = 2nxe^{-nx^2}$. When $x = \frac{1}{\sqrt{n}}$,

$$f_n(x) = 2n \frac{1}{\sqrt{n}} e^{-n\frac{1}{n}} = 2\sqrt{n}e^{-1},$$

so we have

$$\sup_{x \in [0,\infty)} |f_n(x) - 0| \ge 2\sqrt{n}e^{-1} \to \infty$$

when n goes to $+\infty$. Thus we know that f_n is not uniformly converges on $[0, +\infty)$.

(ii) The statement is not true. Let

$$g_n(x) = \begin{cases} \frac{\frac{4}{n^2}x}{n}, & x \in [0, \frac{n}{2}) \\ \frac{4}{n} - \frac{4}{n^2}x, & x \in [\frac{n}{2}, n] \\ 0, & x \in (n, +\infty). \end{cases}$$

For each $n \in \mathbb{N}$, we have

$$\int_{[0,\infty)} g_n(x) \, dx = \int_0^{\frac{n}{2}} \frac{4}{n^2} x \, dx + \int_{\frac{n}{2}}^n \frac{4}{n} - \frac{4}{n^2} x \, dx = 1,$$

thus $g_n(x) \in L^1([0,\infty))$. When $x \in [0,\frac{n}{2})$, $g_n(x) = \frac{4}{n^2}x \leq \frac{2}{n}$ and when $x \in [\frac{n}{2},n]$, $g_n(x) = \frac{4}{n} - \frac{4}{n^2}x \leq \frac{2}{n}$, thus g_n uniformly converges to 0. But since for each $n \in \mathbb{N}$, $\int_0^\infty g_n(x) dx = 1$, we have

$$\lim_{n \to +\infty} \int_{[0,\infty)} g_n(x) \, dx = \lim_{n \to \infty} 1 = 1.$$

Thus $\lim_{n\to\infty} \int_0^\infty g_n = 0$ can not hold.

(iii) We denote $y = nx^2$, then we have

$$\int_0^\infty 2nx P(x)e^{-nx^2}\,dx = \int_0^\infty e^{-y} P\left(\sqrt{\frac{y}{n}}\right)dy.$$

Since P(x) is a polynomial function, for any fixed y, when $n \to \infty$, $P(\sqrt{\frac{y}{n}}) \to P(0)$ and then $e^{-y}P(\sqrt{\frac{y}{n}}) \to e^{-y}P(0)$. Since P(x) is a polynomial function, there exist a M > 0, such that when $y \in [M, \infty)$, $e^{-y}P(\sqrt{\frac{y}{n}}) < \frac{1}{y^2}$, then we have

$$\lim_{n \to \infty} \int_0^\infty f_n = \lim_{n \to \infty} \int_0^M f_n + \lim_{n \to \infty} \int_M^\infty f_n$$

$$= \lim_{n \to \infty} \int_0^M e^{-y} P\left(\sqrt{\frac{y}{n}}\right) dy + \lim_{n \to \infty} \int_M^\infty e^{-y} P\left(\sqrt{\frac{y}{n}}\right) dy.$$

Since P(x) is a polynomial function, then $P(\sqrt{\frac{y}{n}})$ is continuous on $y \in [0, M]$, then we have when $y \in [0, M]$,

$$\left| e^{-y} P\left(\sqrt{\frac{y}{n}}\right) \right| \le e^{-y} \|P\|_{\infty}.$$

Since $e^{-y}||P||_{\infty} \in L^1([0,M])$ and $\frac{1}{y^2} \in L^1([M,+\infty))$, by the dominate convergence theorem, we have

$$\lim_{n \to \infty} \int_0^M e^{-y} P\left(\sqrt{\frac{y}{n}}\right) dy = \int_0^M e^{-y} P(0) dy = P(0)(1 - e^{-M}),$$

and

$$\lim_{n\to\infty} \int_{M}^{\infty} e^{-y} P\left(\sqrt{\frac{y}{n}}\right) dy = \int_{M}^{\infty} e^{-y} P(0) dy = P(0)e^{-M}.$$

Thus we know that

$$\lim_{n \to \infty} \int_0^\infty f_n = \lim_{n \to \infty} \int_0^M e^{-y} P\left(\sqrt{\frac{y}{n}}\right) dy + \lim_{n \to \infty} \int_M^\infty e^{-y} P\left(\sqrt{\frac{y}{n}}\right) dy$$
$$= P(0)(1 - e^{-M}) + P(0)e^{-M}$$
$$= P(0).$$

Exercise 2: (all answers require proofs:)

Let f_n be the sequence in $L^2(\mathbb{R})$ defined by $f_n = \mathbb{I}_{[n,n+1]}$.

- (i) Let g be in $L^2(\mathbb{R})$. Does $\int f_n g$ have a limit as n tends to infinity?
- (ii) Does the sequence f_n converge in $L^2(\mathbb{R})$?

Solution:

(i) Firstly we show that $f_n = \mathbb{I}_{[n,n+1]}(x)$ converges to f(x) = 0 pointwise on \mathbb{R} . Since

$$|f_n - f| = |\mathbb{I}_{[n,n+1]}(x) - 0| = \mathbb{I}_{[n,n+1]}(x),$$

let $x \in \mathbb{R}$ be fixed, $\forall \epsilon > 0$, we can find a N = [x] + 1, such that for all n > N, we have

$$|f_n - f| = \mathbb{I}_{[n,n+1]}(x) = 0 < \epsilon.$$

Thus f_n converges to f(x) = 0 pointwisely on \mathbb{R} . Since

$$\left| \int_{\mathbb{R}} f_n g \, dx \right| \le \int_{\mathbb{R}} |f_n g| \, dx = \int_n^{n+1} |g(x)| \, dx,$$

by Cauchy-Schwarz inequality(Hölder inequality), we have

$$\left| \int_{\mathbb{R}} f_n g \, dx \right| \leq \int_n^{n+1} |g(x)| \, dx$$

$$\leq \left(\int_n^{n+1} |g|^2 \, dx \right)^{\frac{1}{2}} \left(\int_n^{n+1} 1^2 \, dx \right)^{\frac{1}{2}}$$

$$= \left(\int_n^{n+1} |g|^2 \, dx \right)^{\frac{1}{2}}$$

$$= \left(\int_{\mathbb{R}} |g|^2 \mathbb{I}_{[n,n+1]}(x) \, dx \right)^{\frac{1}{2}}.$$

Since $|g|^2\mathbb{I}_{[n,n+1]}(x) \leq |g(x)|^2$ and $g \in L^2(\mathbb{R})$, we have $\int_{\mathbb{R}} |g(x)|^2 dx < +\infty$. Thus $|g(x)|^2 \in L^1(\mathbb{R})$, by the dominate convergence theorem,

$$\lim_{n \to \infty} \left| \int_{\mathbb{R}} f_n g \, dx \right|^2 \le \lim_{n \to \infty} \left(\int_{\mathbb{R}} |g|^2 \mathbb{I}_{[n,n+1]}(x) \, dx \right)$$
$$= \int_{\mathbb{R}} \lim_{n \to \infty} \left(|g|^2 \mathbb{I}_{[n,n+1]}(x) \right) dx.$$

Since $f_n = \mathbb{I}_{[n,n+1]}(x)$ converges to f(x) = 0 pointwise on \mathbb{R} , we also have $|g|^2 \mathbb{I}_{[n,n+1]}(x)$ converges to f(x) = 0 pointwise on \mathbb{R} , then

$$\lim_{n \to \infty} \left| \int_{\mathbb{R}} f_n g \, dx \right|^2 \le \int_{\mathbb{R}} \lim_{n \to \infty} \left(|g|^2 \mathbb{I}_{[n,n+1]}(x) \right) dx = 0.$$

Thus we know that $\lim_{n\to\infty}\int_{\mathbb{R}}f_n(x)g(x)\,dx=0.$

(ii) Since $f_n = \mathbb{I}_{[n,n+1]}(x)$ converges to f(x) = 0 pointwise on \mathbb{R} , but

$$\int_{\mathbb{R}} |f_n(x) - 0|^2 dx = \int_{\mathbb{R}} f_n^2 dx = \int_n^{n+1} 1 dx = 1,$$

we know that f_n does not converges to f(x) = 0 in $L^2(\mathbb{R})$, then we can get that the sequence f_n does not converge in $L^2(\mathbb{R})$.

Exercise 3:

Let X be a matrix space. For any subset A of X, we denote by \bar{A} the closure of A and \mathring{A} the union of all open subsets contained in A. We set $\partial A = \bar{A} \setminus \mathring{A}$.

- (i) Show that A is closed if and only if $\partial A \subset A$.
- (ii) Show that A is open if and only if $\partial A \cap A = \emptyset$.
- (iii) Is the identity $\partial(\partial B) = \partial B$ valid for all subsets B of X?
- (iv) Show that if A is closed then $\partial(\partial A) = \partial A$.

Solution:

(i) When A is closed, we have $A = \bar{A}$, since \mathring{A} the union of all open subsets contained in A, then $\mathring{A} \subset A$. Thus we have $\partial A = \bar{A} \setminus \mathring{A} = A \setminus \mathring{A} \subset A$ as $\mathring{A} \subset A$.

When $\partial A \subset A$, we have $\partial A \cup A \subset A \cup A = A$, thus we know that $\bar{A} \subset A$. Since $A \subset \bar{A}$, we have $\bar{A} = A$. Thus A is closed.

(ii) When A is open, since \mathring{A} the union of all open subsets contained in A, then we have $A \subset \mathring{A}$. And we know that $\mathring{A} \subset A$, then we can get $A = \mathring{A}$. As $\partial A = \bar{A} \setminus \mathring{A}$, we have $\partial A = \bar{A} \setminus A$, then it is obviously that $\partial A \cap A = \emptyset$.

When $\partial A \cap A = \emptyset$, we suppose A is not an open set, then there exists a element $x \in A$ such that no open set containing x is a subset of A. Since \mathring{A} the union of all open subsets contained in A, we have $x \notin \mathring{A}$. And as $x \in A$, we know that $x \in \overline{A}$, then we have $x \in \overline{A} \setminus \mathring{A} = \partial A$. Then we can get $x \in \partial A \cap A$, it is contradict with the condition we have. So, the statement that A is not an open set is wrong. Thus we have A is an open set.

- (iii) No, the statement is not true. We suppose $B = \mathbb{Q} \cap [0,1]$, which represents the rational number in the interval [0,1]. Then we have $\partial B = [0,1]$ and $\partial(\partial B) = \{0,1\}$, which is not equal to ∂B .
- (iv) Since \bar{A} is closed and \mathring{A} is open, we have $\partial A = \bar{A} \setminus \mathring{A}$ is closed, then we can get $\overline{\partial A} = \partial A$. By the definition of ∂A , we have $\partial(\partial A) = \overline{\partial A} \setminus \mathring{\partial A} = \partial A \setminus \mathring{\partial A} \subset \partial A$. Next we need to show that $\partial A \subset \partial(\partial A) = \partial A \setminus \mathring{\partial A}$, then we just need to prove that $\mathring{\partial A} = \emptyset$ when A is closed.

When A is closed, since $\partial A = \bar{A} \setminus \mathring{A} = A \setminus \mathring{A}$. As $A \setminus \mathring{A} \subset A$, then we have $\partial \mathring{A} \subset \mathring{A}$. And since the union of subsets in $(A \setminus \mathring{A})$ is the subset of $A \setminus \mathring{A}$, we have $\partial \mathring{A} \subset A \setminus \mathring{A}$. Then we know that $\partial \mathring{A} \subset \mathring{A}$ and $\partial \mathring{A} \subset A \setminus \mathring{A}$. Thus we can get $\partial \mathring{A} \subset \mathring{A} \cap (A \setminus \mathring{A}) = \emptyset$. So, we have showed that $\partial \mathring{A} = \emptyset$. In conclusion, we have $\partial(\partial A) = \partial A$ when A is closed.

Exercise 4:

Let X be a measure space, f_n a sequence in $L^1(X)$ and f an element of $L^1(X)$ such that f_n converges to f almost everywhere and $\lim_{n\to\infty} \int |f_n| = \int |f|$. Show that $\lim_{n\to\infty} \int |f_n - f| = 0$.

Solution:

Method 1: Since $|f_n - f| \le |f_n| + |f|$ holds on X, we know that $|f_n| + |f| - |f_n - f|$ is a non-negative function. By the Fatou's lemma,

$$\int \lim_{n \to \infty} (|f_n| + |f| - |f_n - f|) \le \liminf_{n \to \infty} \int (|f_n| + |f| - |f_n - f|).$$

Since f_n converges to f almost everywhere, then $|f_n|$ converges to |f| almost everywhere. Thus we have

$$\lim_{n \to \infty} (|f_n| + |f| - |f_n - f|) = 2|f|.$$

Then we can get that

$$\int 2|f| \leq \liminf_{n \to \infty} \int (|f_n| + |f| - |f_n - f|)$$

$$\leq \liminf_{n \to \infty} \int (|f_n| + |f|) - \limsup_{n \to \infty} \int (|f_n - f|)$$

$$= \int 2|f| - \limsup_{n \to \infty} \int (|f_n - f|),$$

as $f \in L^1(X)$, then $\int |f| < +\infty$, we have

$$\limsup_{n \to \infty} \int (|f_n - f|) \le 0.$$

On the other hand, we have

$$0 \le \liminf_{n \to \infty} \int (|f_n - f|)$$

as $|f_n - f| \ge 0$. Thus we know that

$$\limsup_{n \to \infty} \int (|f_n - f|) \le 0 \le \liminf_{n \to \infty} \int (|f_n - f|),$$

which is equivalent to

$$\limsup_{n \to \infty} \int (|f_n - f|) = \liminf_{n \to \infty} \int (|f_n - f|) = 0.$$

So we have

$$\lim_{n \to \infty} \int |f_n - f| = 0.$$

<u>Method 2</u>: By the triangle inequality, $|f_n - f| \le |f_n| + |f|$ for all $n \in \mathbb{N}$. Let $g_n = |f_n| + |f|, \forall n \in \mathbb{N}$, as $f \in L^1(X)$ and $f_n \in L^1(X)$, we have

$$\int_{X} |g_{n}| = \int_{X} |f_{n}| + |f| = \int_{X} |f_{n}| + \int_{X} |f| < \infty,$$

thus $g_n \in L^1(X)$ for all $n \in \mathbb{N}$. Since f_n converges to f almost everywhere, we have $g_n \to 2|f|$ almost everywhere. Denote g = 2|f|, since $\lim_{n \to \infty} \int |f_n| = \int |f|$, we have

$$\lim_{n \to \infty} \int_X g_n = \lim_{n \to \infty} \int_X |f| + |f_n| = \int_X 2|f| = \int_X g.$$

Since $|f_n - f| \to 0$ almost everywhere, by the general dominate convergence theorem, we have

$$\lim_{n \to \infty} \int |f_n - f| = 0.$$