Access DB# 85686

SEARCH REQUEST FORM

Scientific and Technical Information Center

Requester's Full Name: MIKE	Heyes	Examiner #: 74069 Date: $1/36/63$ 73 Serial Number: $9/456110$
Art Unit: 3763 Phone 1	Number 30 5-587	73 Serial Number: 9/456110
Mail Box and Bidg/Room Location	n: <u> </u>	sults Format Preferred (circle): PAPER DISK E-MAI
If more than one search is subm	nitted, please prioriti	ze searches in order of need.

Include the elected species or structures, I	keywords, synonyms, acro that may have a special m	e as specifically as possible the subject matter to be searched. nyms, and registry numbers, and combine with the concept or leaning. Give examples or relevant citations, authors, etc, if d abstract
•••		
Title of Invention:	+ System to	ached sheet
Inventors (please provide full-names):	see att	ached sheet
Nia Law , Scott	MEVGUS, (Villiam J. Worthen -
Earliest Priority Filing Date:	12/7/99	
	de all pertinent information	(parent, child, divisional, or issued patent numbers) along with the
appropriate serial number.	# /	elicet to claves to
566	allache	3/1627 /302 2/411 2 /3
be search	ed and	sheet for claims to
	(F)	
		•
		•
ru .		
		•
	*	•
\		
		,
*		
	•	
•	••	 .
STAFF USE ONLY	Type of Search	Vendors and cost where applicable
Searcher: JEANNE HORRIGAN	NA Sequence (#)	STN
Searcher Phone #: 305 - 5934	AA Sequence (#)	Dialog
Searcher Location: <u>CP2-2W8</u>	Structure (#)	Questel/Orbit
Date Searcher Picked Up: 1/3/	Bibliographic	Dr.Link
Date Completed: 2/3	Litigation	Lexis/Nexis
Searcher Prep & Review Time:	Fulltext	Sequence Systems
Clerical Prep Time:	Patent Family	WWW/Internet
Online Time: 94	Other	Other (specify)

PTO-1590 (8-01)

File 350:Derwent WPIX 1963-2003/UD,UM &UP=200307 (c) 2003 Thomson Derwent

File 347: JAPIO Oct 1976-2002/Sep (Updated 030102)

(c) 2003 JPO & JAPIO

File 371: French Patents 1961-2002/BOPI 200209

(c)	2002	INPI.	All	rts.	reserv.

Set	Items	Description
S1	222	AU='LUO X'
S2	1	AU='LUO XIAOHUA'
S3	113	AU='XIA L'
S4	45	AU='EVANS S M'
S5	14	AU='WORTHEN W J'
S 6	2	AU='WORTHERN W J'
s7	806	HYPOTHERMI? ?
, s 8	4	S1:S3 AND S4 AND S5:S6
ົs9	68	THERAP? (3N) COOLING
S10	375	S1:S6 NOT S8
S11	9	(S7 OR S9) AND S10

(Item 3 from file: 350) 8/26,TI/3 DIALOG(R) File 350: Derwent WPIX (c) 2003 Thomson Derwent. All rts. reserv. 013760246 WPI Acc No: 2001-244458/200125 High intracranial pressure treating method for treating patient with head injury involves lowering patient's temperature by placing catheter in venous system of patient if patient's high ICP is detected 8/26,TI/4 (Item 4 from file: 350) DIALOG(R) File 350: Derwent WPIX (c) 2003 Thomson Derwent. All rts. reserv. 013726883 WPI Acc No: 2001-211113/200121 Introducer sheath for central venous line catheter comprises hollow body, barrier, and temperature sensor ?t8/7/1,2 8/7/1 (Item 1 from file: 350) DIALOG(R) File 350: Derwent WPIX (c) 2003 Thomson Derwent. All rts. reserv. 014727624 **Image available** WPI Acc No: 2002-548328/200258 Therapeutic cooling for patient, uses central venous catheter with heat-exchange properties controlled by e.g. inflatable balloon, including also Foley catheter improvement for cooling urinary tract Patent Assignee: ALSIUS CORP (ALSI-N) Inventor: EVANS S M ; LUO X ; PECOR R; SHIMADA L M; WALKER B; WORTHERN W Number of Countries: 094 Number of Patents: 001 Patent Family: Applicat No Kind Date Week Patent No Kind Date WO 200258606 A1 20020801 WO 2001US2431 A 20010124 200258 B Priority Applications (No Type Date): WO 2001US2431 A 20010124 Patent Details: Patent No Kind Lan Pg Main IPC Filing Notes WO 200258606 A1 E 30 A61F-007/12 Designated States (National): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW Designated States (Regional): AT BE CH CY DE DK EA ES FI FR GB GH GM GR IE IT KE LS LU MC MW MZ NL OA PT SD SE SL SZ TR TZ UG ZW Abstract (Basic): WO.200258606 A1 NOVELTY - The inventive device comprises an introducer sheath for a central venous catheter having a sheath body and temperature sensor mounted distally on the body. The catheter or sheath contains a heat-exchange region through which coolant is circulated, the coolant temperature being controlled in response to signals from the temperature sensor. The system also includes heat-exchange catheters for arterial dialysis and jugular vein cooling, and an improved Foley catheter for heat-exchange cooling via a patient's urinary tract. USE - For cooling a patient's blood temperature, and hence ameliorating possible fever 'spikes'. ADVANTAGE - Improves healing for patients suffering from severe brain trauma or ischemia resulting from stroke/heart attack, such

protective short-term hypothermia being particularly applicable for patients undergoing minimally invasive heart/aneurysm surgery, the inventive system applying to patients already intubated with central venous catheters for other purposes, thus adding a blood-cooling catheter would require no additional surgery to be carried out.

```
view in perspective of a first embodiment of the inventive system for
     cooling using a venous catheter.
         Therapeutic catheter system (10)
         Coolant supply line, and (14)
         Return line (16)
         Catheter (18)
         Sheath, having (42)
         Hollow body and (42A)
         Side port (43)
         Proximal end (44)
         Distal end (46)
         Barrier for sealing after catheter introduction (48)
         Temperature sensor, connected to (50)
         Cooling system via (12)
         Cable, wireless or fibreoptic connection through wall of sheath 12
     (52)
         pp; 30 DwgNo 1/9
 Derwent Class: P32; P34
 International Patent Class (Main): A61F-007/12
 International Patent Class (Additional): A61M-025/10
            (Item 2 from file: 350)
  8/7/2
 DIALOG(R) File 350: Derwent WPIX
 (c) 2003 Thomson Derwent. All rts. reserv.
 013924194
              **Image available**
 WPI Acc No: 2001-408407/200143
   Treating stroke patients involves inducing hypothermia using heat
   exchange catheter
 Patent Assignee: ALSIUS CORP (ALSI-N); EVANS S M (EVAN-I); LUO X (LUOX-I);
   WORTHEN W J (WORT-I)
 Inventor: EVANS S M ; LUO X ; WORTHEN W J ; LUO Z
 Number of Countries: 094 Number of Patents: 004
 Patent Family:
                     Date
                              Applicat No
                                            Kind Date
 Patent No
               Kind
 WO 200141708 A2 20010614
                              WO 2000US42676 A
                                                 20001207 200143 B
 AU 200147136
              A 20010618 AU 200147136
                                             Α
                                                 20001207 200161
 US 20020022823 Al 20020221 US 99456110
                                                 19991207 200221
                                              Α
                              US 2001900619
                                                 20010706
                                            Α
 US 20020032430 A1 20020314 US 99456110
                                             A 19991207 200222
                              US 2001900378 A 20010706
 Priority Applications (No Type Date): US 99456110 A 19991207; US 2001900619
   A 20010706; US 2001900378 A 20010706
 Patent Details:
 Patent No Kind Lan Pg
                         Main IPC
                                      Filing Notes
 WO 200141708 A2 E 23 A61K-000/00
    Designated States (National): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA
    CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP
    KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT
    RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW
    Designated States (Regional): AT BE CH CY DE DK EA ES FI FR GB GH GM GR
    IE IT KE LS LU MC MW MZ NL OA PT SD SE SL SZ TR TZ UG ZW
                      A61K-000/00 Based on patent WO 200141708
AU 200147136 A
                        H05B-001/00
                                       Div ex application US 99456110
 US 20020022823 A1
                                       Div ex application US 99456110
 US 20020032430 A1
                        A61M-031/00
 Abstract (Basic): WO 200141708 A2
         NOVELTY - Treating stroke patients comprises:
         (1) identifying a stroke patient (12) for treatment;
         (2) advancing a heat exchange catheter into the patient, and
         (3) inducing hypothermia using heat exchange catheter.
         DETAILED DESCRIPTION - An INDEPENDENT CLAIM is also included for a
     therapeutic system (10) for treating a stroke patient which comprises
     at least cooling catheter (18) having a heat exchange region (24) on a
```

DESCRIPTION OF DRAWING(S) - The drawing illustrates an exploded

distal portion and at least one blood pressure probe to provide indication of the patient's blood pressure.

USE - Used for treating stroke patients.

ADVANTAGE - The method is easy to use and requires minimal added work for medical personnel.

DESCRIPTION OF DRAWING(S) - The drawing the cooling system.

Therapeutic system (10)

Patient (12)

Cooling catheter (18)

Heat exchange region (24)

pp; 23 DwgNo 1/4

Derwent Class: B05; B07; P32; P34

International Patent Class (Main): A61K-000/00; A61M-031/00; H05B-001/00

International Patent Class (Additional): A61F-007/12

11/26,TI/1 (Item 1 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2003 Thomson Derwent. All rts. reserv.

014835336

WPI Acc No: 2002-656042/200270

Patient's cardiac arrest treatment involves inducing hypothermia in patient, after subjecting patient to resuscitation

(Item 2 from file: 350) 11/26,TI/2

DIALOG(R) File 350: Derwent WPIX

(c) 2003 Thomson Derwent. All rts. reserv.

014835334

WPI Acc No: 2002-656040/200270

Patient warming method for hypothermia treatment and prevention, involves increasing patient's body core temperature by managing electromagnetic energy characteristics based on sensed bodily properties of patients

(Item 3 from file: 350) 11/26.TI/3

DIALOG(R) File 350: Derwent WPIX

(c) 2003 Thomson Derwent. All rts. reserv.

014624100

WPI Acc No: 2002-444804/200247

Heat exchange vascular catheter for warming blood and dispelling hypothermia has electrodes that generates an electric field that radiates heat

(Item 4 from file: 350) 11/26,TI/4

DIALOG(R) File 350: Derwent WPIX

(c) 2003 Thomson Derwent. All rts. reserv.

014086271

WPI Acc No: 2001-570485/200164

Therapeutic hypothermia establishing kit e.g. for treating brain trauma and brain ischemia such as that caused by cardiac arrest by inducing hypothermia in patient

(Item 5 from file: 350) 11/26,TI/5

DIALOG(R) File 350: Derwent WPIX

(c) 2003 Thomson Derwent. All rts. reserv.

013564874

WPI Acc No: 2001-049081/200106

Treating cardiac arrest by defibrillating and/or ventilating patient by administering epinephrine to resuscitate and cooling patient using cooling catheter positioned in central venous system

11/26,TI/6 (Item 6 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2003 Thomson Derwent. All rts. reserv.

013547314

WPI Acc No: 2001-031520/200104

Kit for lowering and maintaining temperature of patient, has catheters of different cooling capacity for placement in patient's circulatory system

11/26,TI/7 (Item 7 from file: 350)

4.5

DIALOG(R) File 350: Derwent WPIX

5amo inv.

data n

(c) 2003 Thomson Derwent. All rts. reserv. 013531683 WPI Acc No: 2001-015889/200102 Heat exchange catheter for therapeutic cooling of patients has coolant supply and return lumens in contact with heat exchange membranes (Item 8 from file: 350) 11/26,TI/8 DIALOG(R) File 350: Derwent WPIX (c) 2003 Thomson Derwent. All rts. reserv. 013361014 WPI Acc No: 2000-532953/200048 Hyperthermic catheter for treating body fluid in body conduit has shaft with heat exchange region at distal end, this region including balloon receiving remotely cooled heat exchange fluid (Item 9 from file: 350) 11/26,TI/9 DIALOG(R) File 350: Derwent WPIX (c) 2003 Thomson Derwent. All rts. reserv. 013052288 WPI Acc No: 2000-224143/200019 Indwelling heat exchange catheter useful for hypothermic treatment of body fluid e.g. blood comprises an inner tube in an outer tube and hollow fibers ?t11/7/4,6,7,9 (Item 4 from file: 350) 11/7/4 DIALOG(R)File 350:Derwent WPIX (c) 2003 Thomson Derwent. All rts. reserv. **Image available** 014086271 WPI Acc No: 2001-570485/200164 Therapeutic hypothermia establishing kit e.g. for treating brain trauma and brain ischemia such as that caused by cardiac arrest by inducing hypothermia in patient Patent Assignee: ALSIUS CORP (ALSI-N) Inventor: WORTHEN W J Number of Countries: 094 Number of Patents: 003 Patent Family: Applicat No Kind Patent No Kind Date Date Week A1 20010809 WO 2001US3576 20010202 200164 WO 200156517 Α 6,458 hodel. AU 200133296 20010814 AU 200133296 Α 20010202 200173 Α US 99266452 US 6460544 B1 20021008 Α 19990311 200269 US 2000498499 Α 20000204 Priority Applications (No Type Date): US 2000498499 A 20000204; US 99266452 A 19990311 Patent Details: Patent No Kind Lan Pg Main IPC Filing Notes WO 200156517 A1 E 14 A61F-007/00 Designated States (National): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW Designated States (Regional): AT BE CH CY DE DK EA ES FI FR GB GH GM GR IE IT KE LS LU MC MW MZ NL OA PT SD SE SL SZ TR TZ UG ZW A61F-007/00 Based on patent WO 200156517 AU 200133296 A US 6460544 В1 A61B-019/00 CIP of application US 99266452

Abstract (Basic): WO 200156517 Al

NOVELTY - The kit has a high cooling capacity catheter which is
advanced into the patient's central venous system to quickly cool the
patient to, e.g., 32 degrees C. Once hypothermia has been

```
Designated States (Regional): AT BE CH CY DE DK EA ES FI FR GB GH GM GR
  IE IT KE LS LU MC MW NL OA PT SD SE SL SZ TZ UG ZW
                                   Based on patent WO 200053135
AU 200037343 A
                     A61F-007/00
                                    Based on patent WO 200053135
                     A61F-007/00
DE 10084338
                     A61F-007/00
                                    Cont of application US 99266452
US 6432124
             В1
                       A61F-007/00
                                     CIP of application US 9863984
US 20020120314 A1
                                    Cont of application US 9863984
                                    CIP of application US 99253109
                                    CIP of application US 99266452
                                    Cont of application US 99375079
                                    CIP of application US 2000503014
                                     Cont of application US 2000565039
                                     CIP of patent US 6126684
                                     Cont of patent US 6126684
                                     Cont of patent US 6149670
                                    CIP of patent US 6409747
US 6454793
              В1
                      A61F-007/00
                                     Cont of application US 99266452
US 6458150
                      A61F-007/00
                                    CIP of application US 99253109
Abstract (Basic): WO 200053135 A1
       NOVELTY - The kit has catheters that have fluid circulation
    passageways connected to a coolant source, and are configured for
    placement in the patient's circulatory system. One catheter has a
    cooling capacity that is less than the cooling capacity of the other
    catheter.
        DETAILED DESCRIPTION - An INDEPENDENT CLAIM is also included for
    the establishment and maintenance of desired temperature in a patient.
        USE - Used in cooling patients for therapeutic purposes. For
    treating brain trauma and brain ischemia by inducing hypothermia in a
    patient.
        ADVANTAGE - Recognizes that a patient requiring hypothermia
    preferably be cooled down rapidly at a rate of two degrees or more an
    hour. Has central venous catheter that facilitates uses other than just
    cooling and which can be used to replace high capacity catheter to
    maintain desired temperature.
        DESCRIPTION OF DRAWING(S) - The figure shows the flowchart for
    establishing and maintaining hypothermia in a patient.
        pp; 15 DwgNo 3/3
Derwent Class: P32; S05
International Patent Class (Main): A61F-007/00
International Patent Class (Additional): A61F-007/00
            (Item 7 from file: 350)
11/7/7
DIALOG(R) File 350: Derwent WPIX
(c) 2003 Thomson Derwent. All rts. reserv.
013531683
             **Image available**
WPI Acc No: 2001-015889/200102
                                          cooling of patients has
  Heat exchange catheter for therapeutic
  coolant supply and return lumens in contact with heat exchange membranes
Patent Assignee: ALSIUS CORP (ALSI-N); ALIBERTO A C (ALIB-I); EVANS S M
  (EVAN-I); WORTHEN W J (WORT-I)
Inventor: ALIBERTO A C; EVANS S M; WORTHEN W J
Number of Countries: 091 Number of Patents: 006
Patent Family:
Patent No
              Kind
                    Date
                             Applicat No
                                           Kind
                                                  Date
                                                           Week
WO 200066053
             A1 20001109 WO 2000US12137 A
                                                20000504
                                                          200102
AU 200046988
                   20001117 AU 200046988
                                                20000504
                                                          200111
             Α
                                            Α
US 20010010011 A1 20010726 US 99305613
                                             А
                                                19990505 200146
                                                20010307
                             US 2001800706
                                            Α
                                                20000504
EP 1180005
              A1
                  20020220
                            EP 2000928808
                                            Α
                                                          200221
                             WO 2000US12137 A
                                                20000504
                            US 99253109
                   20020409
                                                19990219
                                                          200227
US 6368304
              В1
                                            Α
                             US 99305613
                                            Α
                                                19990505
                    20020606 US 9863984
                                                19980421 200241
                                            Α
US 20020066458 A1
                                                19990219
                             US 99253109
                                            Α
```

. . . .

Priority Applications (No Type Date): US 99305613 A 19990505; US 2001800706 A 20010307; US 99253109 A 19990219; US 9863984 A 19980421; US 200257334 A 20020123 Patent Details: Patent No Kind Lan Pg Main IPC Filing Notes WO 200066053 A1 E 24 A61F-007/12 Designated States (National): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW Designated States (Regional): AT BE CH CY DE DK EA ES FI FR GB GH GM GR IE IT KE LS LU MC MW NL OA PT SD SE SL SZ TZ UG ZW Based on patent WO 200066053 AU 200046988 A A61F-007/12 A61F-007/00 US 20010010011 A1 Cont of application US 99305613 EP 1180005 A1 E A61F-007/12 Based on patent WO 200066053 Designated States (Regional): AL AT BE CH CY DE DK ES FI FR GB GR IE IT LI LT LU LV MC MK NL PT RO SE SI A61F-007/12 CIP of application US 99253109 US 6368304 В1 A61F-007/12 CIP of application US 9863984 US 20020066458 A1 CIP of application US 99253109 Div ex application US 99305613 Abstract (Basic): WO 200066053 A1 NOVELTY - Heat exchange catheter with a coolant supply and return membranes which communicate with first and second heat exchange membranes (66,68) arranged along the distal end of the catheter. These form a closed loop heat exchanger for cooling and/or warming a patient. DETAILED DESCRIPTION - The catheter is made of a urethane and is anchored in position in the body. It may also include a drug delivery lumen and a guide wire lumen. A connector manifold (44) defines a series of channels, each establishing a pathway for fluid communication between a connector line and respective lumen. Preferably a drug delivery port (64) is formed between the two heat exchange membranes. INDEPENDENT CLAIMS are also included for the following: (a) a method for making a heat exchange catheter; and (b) a method of treating a patient by advancing the catheter into the patient and circulating coolant through it while preventing direct infusion of the coolant directly into the patient's blood stream. USE - For treating a patient suffering from severe brain trauma or from ischemia caused by a stroke or heart attack. It may also be used to help patients undergoing minimally invasive heart surgery and aneurysm surgery. DESCRIPTION OF DRAWING(S) - The figure shows a perspective view of the cooling catheter. connector manifold (44) drug delivery port (64) heat exchange membranes (66,68) pp; 24 DwgNo 1/4 Derwent Class: A25; A96; B07; P31; P32; P34 International Patent Class (Main): A61F-007/00; A61F-007/12 International Patent Class (Additional): A61B-019/00; A61M-025/00; A61M-025/16; A61M-025/18; A61M-039/00; A61M-039/10 (Item 9 from file: 350) DIALOG(R) File 350: Derwent WPIX (c) 2003 Thomson Derwent. All rts. reserv. 013052288 **Image available** WPI Acc No: 2000-224143/200019 Indwelling heat exchange catheter useful for hypothermic treatment of body fluid e.g. blood comprises an inner tube in an outer tube and hollow

Patent Assignee: ALSIUS INC (ALSI-N); EVANS S M (EVAN-I); JONES M L

(JONE-I); NODA W A (NODA-I); WALKER B D (WALK-I); WORTHEN W J (WORT-I); UNIV CALIFORNIA (REGC); GOBIN Y P (GOBI-I); ALSIUS CORP (ALSI-N) Inventor: EVANS S M ; GOBIN P; JONES M L; NODA W A; WALKER B D; WORTHEN W J ; GOBIN Y P Number of Countries: 073 Number of Patents: 008 Patent Family: Date Applicat No Kind Date Patent No Kind WO 200009054 A1 20000224 WO 99US8455 A 19990416 200019 B AU 9936500 A 20000306 AU 9936500 A 19990416 200030 EP 1104273 Al 20010606 EP 99918635 A 19990416 200133 WO 99US8455 A 19990416
US 6338727 B1 20020115 US 98133813 A 19980813 200208
US 20020049409 A1 20020425 US 98133813 A 19980813 200233 Α 20010904 US 2001946835 US 98133813 US 20020049410 A1 20020425 Α 19980813 200233 Α 20010904 US 2001946969 US 20020156421 A1 20021024 US 9863984 US 98133813 Α 19980421 200273 A A 19980813 US 2001167619 20011019 US 20020161331 A1 20021031 US 9863984 A 19980421 200274 US 98133813 A 19980813 US 200195755 A 20011019 Priority Applications (No Type Date): US 98133813 A 19980813; US 2001946835 A 20010904; US 2001946969 A 20010904; US 9863984 A 19980421; US 2001167619 A 20011019; US 200195755 A 20011019 Main IPC Filing Notes Designated States (National): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US

Patent Details: Patent No Kind Lan Pg WO 200009054 A1 E 64 A61F-007/12 Designated States (Regional): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE A61F-007/12 Based on patent WO 200009054 AU 9936500 Α EP 1104273 A1 E A61F-007/12 Based on patent WO 200009054 Designated States (Regional): AT BE CH DE DK ES FI FR GB IE IT LI NL PT US 6338727 A61F-007/12 В1 A61F-007/12 US 20020049409 A1 Cont of application US 98133813 A61F-007/12 Div ex application US 98133813 US 20020049410 A1 CIP of application US 9863984 US 20020156421 A1 A61F-007/12 Cont of application US 98133813 CIP of patent US 6126684 Cont of patent US 6338727 US 20020161331 A1 A61F-007/12 CIP of application US 9863984 Cont of application US 98133813 CIP of patent US 6126684 Cont of patent US 6338727

Abstract (Basic): WO 200009054 Al

. . . .

NOVELTY - Catheter comprises an inner tube (125) disposed in a first lumen (130) of an outer tube (121). The inner tube has a second lumen (127). Portions of the inner tube define a first fluid flow path extending along the second lumen. Portions of the outer tube and inner tube define a second flow path extending between the outer and inner tubes. Hollow fibers provide fluid communication between the first and second fluid flow paths.

DETAILED DESCRIPTION - INDEPENDENT CLAIMS are also included for methods of making and operating a heat exchange catheter.

USE - To produce **hypothermia** typically in a selected portion of the body without varying the temperature of the remaining portions of the body e.g. it can be disposed in the carotid artery where the arterial blood flowing to the brain can be cooled.

ADVANTAGE - Selective hypothermia treatment of the brain captures the advantages of hypothermia during operative procedures associated

with the brain without also capturing the disadvantages of hypothermia with respect to other areas of the body. A multiple balloon design enables the flow and temperature of the heat exchange fluid to be more easily controlled along the entire length of the heat exchange region and the ability of the catheter to bend and flex when placed in a curved vasculature. The hollow fibers can be provided with micropores which permit the leaching of such clot inhibiting pharmaceuticals as heparinized saline which could also serve as heat exchange fluid.

DESCRIPTION OF DRAWING(S) - The drawing shows a catheter.

Outer tube (121) Inner tube (125) Second lumen (127) First lumen (130) pp; 64 DwgNo 9/37

Derwent Class: B07; D22; P31; P32; P34

International Patent Class (Main): A61F-007/12

International Patent Class (Additional): A61B-018/04; A61F-007/00;

A61M-003/00; A61M-025/00; H05B-007/12

File 348:EUROPEAN PATENTS 1978-2003/Jan W04
(c) 2003 European Patent Office
File 349:PCT FULLTEXT 1979-2002/UB=20030130,UT=20030123
(c) 2003 WIPO/Univentio

Set	Items	Description
S1	8	AU='LUO XIA'
S2	41	AU='EVANS SCOTT M'
s3	22	AU='WORTHEN WILLIAM J'
S4	10	PN=(WO 200009054 OR WO 200258606 OR WO 200141708 OR WO 200-
	15	66517 OR WO 200053135 OR WO 200066053)
S5	2	PN=(EP 1104273 OR EP 1180005)
s6	6	S1 AND S2 AND S3
. s _. 7	5	S6 NOT S4:S5
S8	28	S1:S3 NOT S4:S6
S9	1407	HYPOTHERMI? ?
_S10	5	S8 AND S9

7/3,AB/1 (Item 1 from file: 348) Auglicall
DIALOG(R)File 348:EUROPEAN PATENTS
(c) 2003 European Patent Office. All rts. reserv.

01312949

METHOD AND SYSTEM FOR TREATING STROKE USING HYPOTHERMIA
PROCEDE ET SYSTEME DE TRAITEMENT D'ACCIDENT VASCULAIRE CEREBRALE EN
UTILISANT L'HYPOTHERMIE

PATENT ASSIGNEE:

Alsius Corporation, (2758731), Suite 150, 15770 Laguna Canyon Road, Irvine, California 92618, (US), (Applicant designated States: all) INVENTOR:

LUO, Xia, 5869 West 74th Street, Los Angeles, CA 90045, (US) EVANS, Scott, M., 1252 Country Hills Drive, Santa Ana, CA 92705, (US) WORTHEN, William, J., 37 Oakbrook, Coto de Caza, CA 92679, (US PATENT (CC, No, Kind, Date):

WO 2001041708 010614

APPLICATION (CC, No, Date): EP 2000992869 001207; WO 2000US42676 001207 PRIORITY (CC, No, Date): US 456110 991207

DESIGNATED STATES: AT; BE; CH; CY; DE; DK; ES; FI; FR; GB; GR; IE; IT; LI; LU; MC; NL

EXTENDED DESIGNATED STATES: AL; LT; LV; MK; RO; SI

INTERNATIONAL PATENT CLASS: A61K-006/00

LANGUAGE (Publication, Procedural, Application): English; English; English

7/3,AB/2 (Item 2 from file: 348)
DIALOG(R)File 348: EUROPEAN PATENTS desplicate of 7/3,RB/4 (See rest page)
(c) 2003 European Patent Office. All rts. reserv.

01277399

METHOD AND SYSTEM FOR TREATING HIGH INTRACRANIAL PRESSURE USING HYPOTHERMIA PROCEDE ET SYSTEME DESTINES AU TRAITEMENT PAR HYPOTHERMIE DE LA PRESSION INTRACRANIENNE ELEVEE

PATENT ASSIGNEE:

Alsius Corporation, (2758731), Suite 150, 15770 Laguna Canyon Road, Irvine, California 92618, (US), (Applicant designated States: all) INVENTOR:

LUO, Xia , 5869 W. 74th, Los Angeles, CA 90045, (US)

EVANS, Scott, M., 1252 Country Hills Drive, Santa Ana, CA 92705, (US) WORTHEN, William, J., 37 Oakbrook, Coto De Caza, CA 92679, (US PATENT (CC, No, Kind, Date):

WO 2001017471 010315

APPLICATION (CC, No, Date): EP 2000961573 000905; WO 2000US24404 000905 PRIORITY (CC, No, Date): US 390600 990903

DESIGNATED STATES: AT; BE; CH; CY; DE; DK; ES; FI; FR; GB; GR; IE; IT; LI; LU; MC; NL; PT; SE

EXTENDED DESIGNATED STATES: AL; LT; LV; MK; RO; SI

INTERNATIONAL PATENT CLASS: A61F-007/12

LANGUAGE (Publication, Procedural, Application): English; English; English

7/3,AB/3 (Item 3 from file: 348)
DIALOG(R)File 348:EUROPEAN PATENTS

(c) 2003 European Patent Office. All rts. reserv.

01269443

CENTRAL VENOUS CATHETER WITH HEAT EXCHANGE PROPERTIES
ZENTRALVENOSER KATHETER MIT WARMETAUSCHEIGENSCHAFTEN
CATHETER VEINEUX CENTRAL POSSEDANT DES PROPRIETES D'ECHANGE THERMIQUE
PATENT ASSIGNEE:

Alsius Corporation, (2758731), Suite 150, 15770 Laguna Canyon Road, Irvine, California 92618, (US), (Applicant designated States: all)

SHIMADA, Lynn, M., 7906 E. Deerfield Lane, Orange, CA 92869, (US) WORTHEN, William, J., 37 Oakbrook, Coto de Caza, CA 92679, (US) EVANS, Scott, M., 1252 County Hills Drive, Santa Ana, CA 92705, (US)

```
LUO, Xia , 5869 W. 74th, Los Angeles, CA 90045, (US)
  PECOR, Robert, 9 Woodcrest Lane, Aliso Viejo, CA 92656, (US)
  WALKER, Blair, 24742 San Doval Lane, Mission Viejo, CA 92691, (US
LEGAL REPRESENTATIVE:
  Shortt, Peter Bernard (35852), TOMKINS & CO., 5 Dartmouth Road, Dublin 6,
    (IE)
PATENT (CC, No, Kind, Date): EP 1204368 Al 020515 (Basic)
                              WO 200112061 010222
APPLICATION (CC, No, Date):
                              EP 2000968972 000816; WO 2000US40654
PRIORITY (CC, No, Date): US 376524 990818
DESIGNATED STATES: AT; BE; CH; CY; DE; DK; ES; FI; FR; GB; GR; IE; IT; LI;
  LU; MC; NL; PT; SE
EXTENDED DESIGNATED STATES: AL; LT; LV; MK; RO; SI
INTERNATIONAL PATENT CLASS: A61B-005/00; A61M-025/00
  No A-document published by EPO
LANGUAGE (Publication, Procedural, Application): English; English; English
              (Item 1 from file: 349)
 7/3, AB/4
DIALOG(R) File 349: PCT FULLTEXT
(c) 2003 WIPO/Univentio. All rts. reserv.
00784309
METHOD AND SYSTEM FOR TREATING HIGH INTRACRANIAL PRESSURE USING HYPOTHERMIA
PROCEDE ET SYSTEME DESTINES AU TRAITEMENT PAR HYPOTHERMIE DE LA PRESSION
    INTRACRANIENNE ELEVEE
Patent Applicant/Assignee:
  ALSIUS CORPORATION, 15770 Laguna Canyon Road, Suite 150, Irvine, CA 92618
    , US, US (Residence), US (Nationality), (For all designated states
    except: US)
Patent Applicant/Inventor:
   LUO Xia , 5869 W. 74th, Los Angeles, CA 90045, US, US (Residence), US
    (Nationality), (Designated only for: US)
   EVANS Scott M , 1252 Country Hills Drive, Santa Ana, CA 92705, US, US
    (Residence), US (Nationality), (Designated only for: US)
   WORTHEN William J , 37 Oakbrook, Coto De Caza, CA 92679, US, US
    (Residence), US (Nationality), (Designated only for: US
Legal Representative:
  ALONZO Arlyn L (agent), Alsius Corporation, Suite 150, 15770 Laguna
    Canyon Road, Irvine, CA 92618, US,
Patent and Priority Information (Country, Number, Date):
                        WO 200117471 A1 20010315 (WO 0117471)
  Patent:
                        WO 2000US24404 20000905 (PCT/WO US0024404)
  Application:
  Priority Application: US 99390600 19990903
Designated States: AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK
  DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR
  LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ
  TM TR TT TZ UA UG US UZ VN YU ZA ZW
  (EP) AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE
  (OA) BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG
  (AP) GH GM KE LS MW MZ SD SL SZ TZ UG ZW
  (EA) AM AZ BY KG KZ MD RU TJ TM
Publication Language: English
Filing Language: English
Fulltext Word Count: 3096
English Abstract
```

A method for treating high ICP includes inducing mild or moderate hypothermia in the patient using one or more closed loop heat exchange catheters positioned in the patient's central venous system when the patient's ICP is above a predetermined threshold. Additional steps for lowering ICP can also be undertaken, e.g., infusing sedatives, paralytics, diuretics, or barbiturates into the patient and/or draining excess CSF fluid and/or hyperventilating the patient.

French Abstract

L'invention concerne un procede destine au traitement de la pression

intracranienne elevee consistant a effectuer une hypothermie faible ou moderee chez un patient a l'aide d'un ou de plusieurs catheters echangeurs de chaleur en circuit ferme positionnes dans le systeme veineux central lorsque la pression intracranienne du patient depasse un seuil predetermine. Pour abaisser la pression intracranienne, on peut egalement effectuer des etapes supplementaires, comme par exemple, pratiquer une perfusion de solute contenant des sedatifs, des paralysants, des diuretiques, ou des barbituriques chez un patient et/ou drainer le liquide cephalo-rachidien et/ou hyperventiler le patient.

```
7/3,AB/5
              (Item 2 from file: 349)
DIALOG(R) File 349: PCT FULLTEXT
(c) 2003 WIPO/Univentio. All rts. reserv.
00778878
CENTRAL VENOUS CATHETER WITH HEAT EXCHANGE PROPERTIES
CATHETER VEINEUX CENTRAL POSSEDANT DES PROPRIETES D'ECHANGE THERMIQUE
Patent Applicant/Assignee:
  ALSIUS CORPORATION, 15770 Laguna Canyon Road, Suite 150, Irvine, CA 92618
    , US, US (Residence), US (Nationality), (For all designated states
    except: US)
Patent Applicant/Inventor:
  SHIMADA Lynn M, 7906 E. Deerfield Lane, Orange, CA 92869, US, US
    (Residence), US (Nationality), (Designated only for: US)
   WORTHEN William J , 37 Oakbrook, Coto de Caza, CA 92679, US, US
    (Residence), US (Nationality), (Designated only for: US )
  EVANS Scott M , 1252 County Hills Drive, Santa Ana, CA 92705, US, US
    (Residence), US (Nationality), (Designated only for: US)
   LUO Xia , 5869 W. 74th, Los Angeles, CA 90045, US, US (Residence), US
    (Nationality), (Designated only for: US)
  PECOR Robert, 9 Woodcrest Lane, Aliso Viejo, CA 92656, US, US (Residence)
    , US (Nationality), (Designated only for: US )
  WALKER Blair, 24742 San Doval Lane, Mission Viejo, CA 92691, US, US
    (Residence), US (Nationality), (Designated only for: US
Legal Representative:
  ALONZO Arlyn L, Alsius Corporation, Suite 150, 15770 Laguna Canyon Road,
    Irvine, CA 92618, US
Patent and Priority Information (Country, Number, Date):
                        WO 200112061 A1 20010222 (WO 0112061)
  Patent:
                        WO 2000US40654 20000816 (PCT/WO US0040654)
  Application:
  Priority Application: US 99376524 19990818
Designated States: AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK
  DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR
  LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ
  TM TR TT TZ UA UG US UZ VN YU ZA ZW
  (EP) AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE
  (OA) BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG
  (AP) GH GM KE LS MW MZ SD SL SZ TZ UG ZW
  (EA) AM AZ BY KG KZ MD RU TJ TM
Publication Language: English
Filing Language: English
```

English Abstract

Fulltext Word Count: 5387

. . . .

An introducer sheath (42) for a central venous catheter (54) includes a sheath body (56) and a temperature sensor (80) mounted distally on the body (56).

10/6/1 (Item 1 from file: 348) 01268639

METHOD AND SYSTEM FOR TREATING CARDIAC ARREST USING HYPOTHERMIA

PROCEDE ET SYSTEME DE TRAITEMENT DE L'ARRET CARDIAQUE PAR HYPOTHERMIE

LANGUAGE (Publication, Procedural, Application): English; English

10/6/2 (Item 1 from file: 349) 00816075 **Image available**

METHOD AND SYSTEM FOR TREATING CARDIAC ARREST

PROCEDE ET SYSTEME DE TRAITEMENT DE L'ARRET CARDIAQUE

Publication Language: English Filing Language: English Fulltext Availability: Detailed Description Claims

Fulltext Word Count: 5011
Publication Year: 2001

10/6/3 (Item 2 from file: 349) 00797162 **Image available**

DUAL BALLOON CENTRAL VENOUS LINE CATHETER TEMPERATURE CONTROL SYSTEM SYSTEME DE REGULATION DE TEMPERATURE POUR CATHETER VEINEUX CENTRAL A DEUX BALLONNETS

Publication Language: English
Filing Language: English
Fulltext Availability:
 Detailed Description
 Claims
Fulltext Word Count: 7980

10/6/4 (Item 3 from file: 349) 00778932 **Image available**

METHOD AND SYSTEM FOR TREATING CARDIAC ARREST USING HYPOTHERMIA PROCEDE ET SYSTEME DE TRAITEMENT DE L'ARRET CARDIAQUE PAR HYPOTHERMIE

Publication Language: English
Filing Language: English
Fulltext Availability:
Detailed Description

Publication Year: 2001

Claims

Fulltext Word Count: 3274 Publication Year: 2001

10/6/5 (Item 4 from file: 349) 00749746 **Image available**

CATHETER WITH MULTIPLE HEATING/COOLING FIBERS EMPLOYING FIBER SPREADING FEATURES

CATHETER POURVU DE MULTIPLES FIBRES DE CHAUFFAGE REFROIDISSEMENT UTILISANT DES ELEMENTS DE MISE EN PLACE DES FIBRES

Publication Language: English
Filing Language: English
Fulltext Availability:
Detailed Description
Claims

Fulltext Word Count: 11642 Publication Year: 2000

```
File 155:MEDLINE(R) 1966-2003/Jan W4
      5:Biosis Previews(R) 1969-2003/Jan W4
         (c) 2003 BIOSIS
File 73:EMBASE 1974-2003/Jan W4
         (c) 2003 Elsevier Science B.V.
File 34:SciSearch(R) Cited Ref Sci 1990-2003/Jan W4
         (c) 2003 Inst for Sci Info
File 434:SciSearch(R) Cited Ref Sci 1974-1989/Dec
        (c) 1998 Inst for Sci Info
       Items
               Description
          599 AU='LUO X'
S1
          13 AU='LUO XIA'
S2
              AU='EVANS S M'
S3
          390
         308 AU='EVANS SM'
180 AU='EVANS S.M.'
S4
S5
S6
          14 AU='EVANS SCOTT M'
s7
          11 AU='WORTHEN WILLIAM J'
          1 S2 AND S6 AND S7 too recent
233 CENTRAL() VENOUS() CATHETER? AND (STROKE OR CEREBROVASCULAR(-
S8
S9
           ) ACCIDENT OR ISCHEMI? ? OR APOPLEXY)
        1505 S1:S7 NOT S8
S10
           0 S10 AND S9
S11
       814575 STROKE OR (CEREBROVASCULAR OR VASCULAR) () ACCIDENT? ? OR IS-
S12
           CHEMI? ? OR APOPLEXY
        76298 HYPOTHERMI? ?
           44 S10 AND S12
           11 S10 AND S13
          5 S14 AND S15
S16
           3 RD (unique items)
S17
```

(Item 1 from file: 350) 11/26,TI/1

DIALOG(R) File 350: Derwent WPIX

(c) 2003 Thomson Derwent. All rts. reserv.

013924194

WPI Acc No: 2001-408407/200143

Same my & gr Treating stroke patients involves inducing hypothermia using heat

exchange catheter

11/26,TI/2 (Item 2 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2003 Thomson Derwent. All rts. reserv.

012687919

WPI Acc No: 1999-494028/199941

Vasodilating composition used to stimulate blood flow and treat vascular

insufficiency

established, the high capacity catheter is removed and replaced with a lower cooling capacity catheter which maintains a desired reduced temperature.

DETAILED DESCRIPTION - An INDEPENDENT CLAIM is included for a method for establishing and maintaining a predetermined temperature in a patient

USE - For cooling patients for therapeutic purposes. For treating brain trauma and brain ischemia such as that caused by cardiac arrest by inducing hypothermia in a patient

ADVANTAGE - The lower capacity catheter can be configured as a central venous catheter for permitting catheter to be used for multiple functions. Alternatively, high cooling capacity catheter can be used to attenuate a fever and lower the patient's body temperature to normal, with the lower capacity catheter being used to maintain normal body temperature.

DESCRIPTION OF DRAWING(S) - The figure shows a flow chart of the invention for establishing and maintaining hypothermia in a patient.

pp; 14 DwgNo 3/4 Derwent Class: P31; P32

International Patent Class (Main): A61B-019/00; A61F-007/00

11/7/6 (Item 6 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2003 Thomson Derwent. All rts. reserv.

013547314 **Image available** WPI Acc No: 2001-031520/200104

Kit for lowering and maintaining temperature of patient, has catheters of different cooling capacity for placement in patient's circulatory system Patent Assignee: ALSIUS CORP (ALSI-N); EVANS S M (EVAN-I); WALKER B D (WALK-I)

Inventor: EVANS S M ; WORTHEN W; WALKER B D; BALDING D; WINTER S C;
WORTHEN W J

Number of Countries: 090 Number of Patents: 007

Patent Family:

rai	ent tamita:								
Pat	ent No	Kind	Date	App	olicat No	Kind	Date	Week	
WO	200053135	Al	20000914	WO	2000US6187	Α	20000309	200104	В
ΑU	200037343	Α	20000928	ΑU	200037343	Α	20000309	200105	
DE	10084338	T	20020425	DE	1084338	Α	20000309	200235	
	·			WO	2000US6187	Α	20000309		
US	6432124	В1	20020813	US	99266452	Α	19990311	200255	
				US	2000565039	Α	20000503		
US	20020120314	A1	20020829	US	5 9863984	Α	19980421	200259	
				US	9863984	Α	19980421		
				US	99253109	Α	19990219		
				US	99266452	Α	19990311		
			_	US	99375079	Α	19990816		
	* * *			US	2000503014	Α	20000211	•	
				US	2000565039	Α	20000503		
				US	200261488	Α	20020201		
US	6454793	В1	20020924	US	99266452	Α	19990311	200266	
				US	2000703791	Α	20001102		
US	6458150	В1	20021001	US	99253109	Α	19990219	200268	
				US	99266452	Α	19990311		

Priority Applications (No Type Date): US 99266452 A 19990311; US 2000565039 A 20000503; US 9863984 A 19980421; US 99253109 A 19990219; US 99375079 A 19990816; US 2000503014 A 20000211; US 200261488 A 20020201; US 2000703791 A 20001102

Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes WO 200053135 A1 E 15 A61F-007/00

. . .

Designated States (National): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

17/6/2 (Item 1 from file: 5) 13828751 BIOSIS NO.: 200200457572

Indwelling heat exchange catheter and method of using same. 2002

17/6/3 (Item 1 from file: 34)

04599596 Genuine Article#: TV955 Number of References: 35

Title: THE ROLE OF GLUTAMIC-ACID IN THE PATHOGENESIS OF STROKE AND THE DEVELOPMENT OF NEUROPROTECTIVE DRUGS (Abstract Available) ?t17/7/1,3

17/7/1 (Item 1 from file: 155)
DIALOG(R)File 155:MEDLINE(R)

10514459 20035606 PMID: 10569121

Author aut,

Retrograde transvenous perfusion.

Frazee J G; Luo X
Division of Neurosurgery, University of California Los Angeles, School of Medicine, USA.

Critical care clinics (UNITED STATES) Oct 1999, 15 (4) p777-88, vii, ISSN 0749-0704 Journal Code: 8507720

Document type: Clinical Trial; Journal Article

Languages: ENGLISH

Main Citation Owner: NLM Record type: Completed

Serious consequences of **stroke** dictate that new approaches to the treatment of **stroke** be investigated. We have developed a method for perfusing the patient's own arterial blood retrograde through the venous system to **ischemic** brain tissue. This treatment has proven beneficial in preventing and reversing serious injury in the laboratory and in a small clinical trial. The laboratory investigation has also demonstrated that this therapy, retrograde transvenous neuroperfusion, can be coupled with **hypothermia** to potentially increase its benefit. History, experimental development, and the clinical trial are reviewed in this article.

Record Date Created: 19991228

17/7/3 (Item 1 from file: 34)
DIALOG(R)File 34:SciSearch(R) Cited Ref Sci
(c) 2003 Inst for Sci Info. All rts. reserv.

04599596 Genuine Article#: TV955 Number of References: 35

Title: THE ROLE OF GLUTAMIC-ACID IN THE PATHOGENESIS OF STROKE AND THE DEVELOPMENT OF NEUROPROTECTIVE DRUGS

Author(s): EVANS SM ; ADDAE JI.

Corporate Source: UWI, FAC MED SCI, DEPT PHYSIOL/ST AUGUSTINE//TRINID & TOBAGO/

Journal: WEST INDIAN MEDICAL JOURNAL, 1995, V44, N4 (DEC), P119-123

ISSN: 0043-3144

Language: ENGLISH Document Type: REVIEW

Abstract: The role of glutamic acid (glutamate) in the pathogenesis of stroke is now fairly well established. As a result, many drugs which act on glutamate receptors are currently under investigation for their ability to prevent the damage induced by glutamate under ischaemic conditions. The efficacy of these compounds in protecting central neurones from the effects of stroke may be indicative of the importance of the role that glutamate plays in this process.

?t17/k/3,

17/K/3 (Item 1 from file: 34)
DIALOG(R) File 34: (c) 2003 Inst for Sci Info. All rts. reserv.

Title: THE ROLE OF GLUTAMIC-ACID IN THE PATHOGENESIS OF STROKE AND THE DEVELOPMENT OF NEUROPROTECTIVE DRUGS

Author(s): EVANS SM ; ADDAE JI

Abstract: The role of glutamic acid (glutamate) in the pathogenesis of

stroke is now fairly well established. As a result, many drugs which
act on glutamate receptors...

- ...ischaemic conditions. The efficacy of these compounds in protecting central neurones from the effects of **stroke** may be indicative of the importance of the role that glutamate plays in this process.
- ...Identifiers--RAT HIPPOCAMPAL SLICE; CEREBRAL-ARTERY OCCLUSION; SPINAL-CORD NEURONS; EXTRACELLULAR RELEASE; ISCHEMIA; CALCIUM; PROTECTION; MK-801; RECEPTORS; AGONIST
- ...Research Fronts: INHIBITION; INTRACELLULAR CA2+ CONCENTRATION)
 94-3387 001 (TEMPORARY MIDDLE CEREBRAL-ARTERY OCCLUSION IN RATS;
 THERAPEUTIC HXPOTHERMIA; TRANSIENT FOCAL ISCHEMIA; NEURONAL DAMAGE VOLUME; DELAYED INDUCTION)
 - 94-4035 001 (N-METHYL-D-ASPARTATE RECEPTOR-MEDIATED GLUTAMATE...

```
File 350: Derwent WPIX 1963-2003/UD, UM &UP=200307
          (c) 2003 Thomson Derwent
File 344:Chinese Patents Abs Aug 1985-2002/Dec
          (c) 2003 European Patent Office
File 347: JAPIO Oct 1976-2002/Sep (Updated 030102)
          (c) 2003 JPO & JAPIO
File 371: French Patents 1961-2002/BOPI 200209
          (c) 2002 INPI. All rts. reserv.
                 Description
Set
        Items
               STROKE OR STROKES OR TIA
S1
        99417
         1509
                 (CEREBROVASCULAR OR VASCULAR) () ACCIDENT? ? OR APOPLEXY
S2
S2 1309 (CEREBROVASCULAR OR VASCULAR) (TACCI

S3 7699 ISCHEMI? ?

S4 821 HYPOTHERMI?

S5 894394 COOLING OR COOL OR COOLS OR COOLED

S6 10669 (BLOOD OR ARTERIAL) () PRESSURE

S7 25343 CATHETER?
        654 CENTRAL()(VEIN OR VENOUS) OR VENA()CAVA 47119 HEAT()EXCHANGE
S8
S 9
        42 S1:S3 AND S4:S5 AND S6
S10
            2 S7 AND S10
S114
            1 S8 AND S10
S12
            0 S12 NOT S11
S13
            1 S9 AND S10
S14
            0 S14 NOT S11
S15
S16 19869 IC=A61K-000/00
        3772 IC=A61M-031/00
S17
          716 IC=A61F-007/12
S18
         1907 IC=H05B-001/00
S19
          1 S16 AND S17 AND S18 AND S19
S20
S21
            0 S20 NOT S11
S22
           3 S10 AND S16:S19
           1 S22 NOT S11
S23.
```

(Item 1 from file: 350) DIALOG(R) File 350: Derwent WPIX (c) 2003 Thomson Derwent. All rts. reserv. **Image available** 012976720 WPI Acc No: 2000-148570/200014 New heterocyclyl-substituted fused pyrazole derivatives, used for treating cardiovascular disorders such as hypertension, thromboembolic disease or ischemia Patent Assignee: BAYER AG (FARB) Inventor: ALONSO-ALIJA C; DEMBOWSKY K; FEURER A; HUETTER J; PERZBOM E; STAHL E; STASCH J; STRAUB A; DEMBOWKSY K; PERZBORN E; HUTTER J Number of Countries: 087 Number of Patents: 015 Patent Family: Kind Date Kind Date Applicat No Week Patent No A1 20000203 DE 1034044 Α 19980729 200014 В DE 19834044 A1 20000210 WO 200006569 WO 99EP5074 · A٠ 19990716 200016 AU 9952840 Α 19990716 200029 Α 20000221 AU 9952840 BR 9912562 Α 19990716 200129 BR 9912562 Α 20010502 WO 99EP5074 Α 19990716 19990716 Α NO 200100149 20010326 WO 99EP5074 200130 NO 2001149 Α 20010109 EP 99938273 Α 19990716 EP 1102768 A1 20010530 200131 WO 99EP5074 Α 19990716 CZ 200100333 А3 20010613 WO 99EP5074 Α 19990716 200138 CZ 2001333 Α 19990716 SK 200100130 A3 20010806 WO 99EP5074 Α 19990716 200157 SK 2001130 Α 19990716 20011031 20010109 ZA 200100222 Α ZA 2001222 Α 200173 CN 1317005 20011010 CN 99810504 Α 19990716 200207 Α 20010907 KR 2001701215 20010129 200218 Α KR 2001085314 Α 20010126 200239 20010901 MX 2001991 Α MX 2001000991 A1WO 99EP5074 Α 19990716 200258 20020729 HU 200103815 A2 HU 20013815 Α 19990716 JP 2002521483 W 20020716 WO 99EP5074 Α 19990716 200261 JP 2000562371 19990716 Α AU 751316 ---В 20020815 AU 9952840 А٠ 19990716 200264 Priority Applications (No Type Date): DE 1034044 A 19980729 Patent Details: Filing Notes Patent No Kind Lan Pg Main IPC DE 19834044 A1 36 C07D-231/12 Al G C07D-471/04 WO 200006569 Designated States (National): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZA ZW Designated States (Regional): AT BE CH CY DE DK EA ES FI FR GB GH GM GR IE IT KE LS LU MC MW NL OA PT SD SE SL SZ UG ZW C07D-471/04 Based on patent WO 200006569 AU 9952840 Α C07D-471/04 Based on patent WO 200006569 BR 9912562 Α NO 200100149 C07D-471/04 Α Based on patent WO 200006569 C07D-471/04 EP 1102768 A1 G Designated States (Regional): AL AT BE CH CY DE DK ES FI FR GB GR IE IT LI LT LU LV MC MK NL PT RO SE SI CZ 200100333 A3 C07D-471/04 Based on patent WO 200006569 C07D-471/04 SK 200100130 A3 Based on patent WO 200006569 157 A61K-000/00 ZA 200100222 A CN 1317005 Α C07D-471/04

Abstract (Basic): DE 19834044 Al

В

KR 2001085314 A

MX 2001000991 A1

HU 200103815 A2

JP 2002521483 W

AU 751316

C07D-471/04

C07D-471/04

C07D-471/04

134 C07D-471/04

A61K-031/435

Based on patent WO 200006569

Based on patent WO 200006569

Based on patent WO 200006569

Previous Publ. patent AU 9952840

NOVELTY - 1-(Cyclic substituted methyl) 3-heterocyclyl 4,5-fused pyrazole derivatives (I) are new.

DETAILED DESCRIPTION - Pyrazole derivatives of formula (I) and their isomers and salts are new.

R1=saturated or aromatic 5- or 6-membered heterocyclyl (containing 1-3 of O, S and N and optionally bonded via N), optionally substituted by a very wide range of specific groups;

R2 + R3=group completing a phenyl ring or a 6-membered saturated or aromatic heterocycle (containing 1-3 of N, O and S), optionally substituted by a wide range of specific groups;

A=5- or 6-membered saturated or aromatic heterocycle (containing 1-3 of N, O and S), optionally substituted by a wide range of specific groups.

Full definitions are given in the 'DEFINITIONS - Full Definitions' field.

ACTIVITY - Thrombolytic; hypotensive; cardiant; antianginal; antiarrhythmic; vasotropic; cerebroprotective; antiarteriosclerotic; gynecological; uropathic.

3-(4-Amino-5-methylsulfonyl-pyrimidin-2-yl)-1-(2-fluorobenzyl)-1H-pyraz olo (3,4-b) pyridine (Ia) had IC50 0.23 microM for aortic relaxation.

MECHANISM OF ACTION - Soluble guanyl cyclase stimulant; intracellular cyclic guanosine monophosphate (cGMP) level increasing agent. (I) also potentiate the activity of other agents which increase cGMP levels, e.g. endothelium derived relaxing factor (EDRF), nitrogen monoxide donors, protoporphyrin IX, arachidonic acid or phenylhydrazine derivatives.

USE - (I) cause vascular relaxation, inhibit thrombocyte aggregation, reduce **blood pressure** and increase coronary blood flow. They are used for treating cardiovascular disorders (claimed), e.g. hypertension, cardiac insufficiency, angina pectoris, peripheral or cardiac vascular disease, arrhythmia, thromboembolic disease or **ischemia** (claimed) (e.g. myocardial infarction, cerebral **stroke**, transitory **ischemic** attacks, peripheral blood flow disorders or restenosis), arteriosclerosis or diseases of the urogenital system (e.g. prostate hypertrophy, erectile dysfunction, female sexual dysfunction or incontinence).

pp; 36 DwgNo 0/0
Derwent Class: B02; B03
International Patent Class (Main): A61K-000/00; A61K-031/435; C07D-231/12; C07D-471/04
International Patent Class (Additional): A61K-031/437; A61K-031/44; A61K-031/4439; A61K-045/00; A61P-007/02; A61P-009/00; A61P-009/10; A61P-009/12; A61P-015/00; A61P-015/08; A61P-029/00; A61P-043/00;

C07D-221/00; C07D-221-00; C07D-231/00; C07D-487/04; C07D-491/113;

C07D-231-02; C07D-471/04; C07D-231-00

File 348:EUROPEAN PATENTS 1978-2003/Jan W04 (c) 2003 European Patent Office

File 349:PCT FULLTEXT 1979-2002/UB=20030130,UT=20030123

(c) 2003 WIPO/Univentio

Set S1	Items 60683	Description STROKE OR STROKES OR TIA
52	1055	(CEREBROVASCULAR OR VASCULAR) () ACCIDENT? ? OR APOPLEXY
S3	14360	ISCHEMI? ?
S4	1433	HYPOTHERMI?
S5	271739	COOLING OR COOL OR COOLS OR COOLED
S6	14170	(BLOOD OR ARTERIAL) () PRESSURE
s7	28511	CATHETER?
S8	3863	CENTRAL()(VEIN OR VENOUS) OR VENA()CAVA
S 9	16110	HEAT () EXCHANGE
S10	91	IC=A61K-000/00
S11	883	IC=A61M-031/00
S12	224	IC=A61F-007/12
S13	118	IC=H05B-001/00
S14	0	S10 AND S11 AND S12 AND S13
S15	0	1: 53
S16	272414	\$4:\$5
S17	0	1:S3(S)S4:S5(S)S6
S18	14	S1:S3(S)S4:S5(S)S6
S 1 9	1	S18 AND S10:S13
S20	13	S18 NOT S19

19/6, PN/1 (Item 1 from file: 349) displicate of 8/7/2 in swenter pertiant DIALOG(R) File 349: (c) 2003 WIPO/Univentio. All rts. reserv.

Appendix

00808543

METHOD AND SYSTEM FOR TREATING STROKE USING HYPOTHERMIA PROCEDE ET SYSTEME DE TRAITEMENT D'ACCIDENT VASCULAIRE CEREBRALE EN UTILISANT L'HYPOTHERMIE

Patent and Priority Information (Country, Number, Date):

Patent: WO 200141708 A2-A3 20010614 (WO 0141708)

Publication Language: English Filing Language: English Fulltext Word Count: 5477

Publication Year: 2001

```
(Item 1 from file: 348)
 20/6/1
00751959
COMMUNICATION METHOD AND APPARATUS THEREFOR
KOMMUNIKATIONSVERFAHREN UND VORRICHTUNG DAFUR
PROCEDE ET APPAREIL DE COMMUNICATION
LANGUAGE (Publication, Procedural, Application): English; English; Japanese
FULLTEXT AVAILABILITY:
                                     Word Count
                           Update
Available Text Language
                                       456
                           9941
     CLAIMS B
               (English)
                           9941
                                       488
     CLAIMS B
                 (German)
     CLAIMS B
                 (French)
                           9941
                                       497
                                      4391
     SPEC B
                (English)
                           9941
                                         0
Total word count - document A
Total word count - document B
                                      5832
Total word count - documents A + B
                                      5832
            (Item 2 from file: 348)
 20/6/2
00536333
Adenosine kinase inhibitors
Adenosinkinaseinhibitoren
Inhibiteurs de kinase d'adenosine
LANGUAGE (Publication, Procedural, Application): English; English; English
FULLTEXT AVAILABILITY:
                                     Word Count
Available Text Language
                           Update
     CLAIMS B (English)
                           9948
                                      2762
      CLAIMS B
                (German) 9948
                                      2694
      CLAIMS B
                 (French) 9948
                                      3401
                (English)
                           9948
                                     20492
      SPEC B
Total word count - document A
                                         0
                                     29349
Total word count - document B
Total word count - documents A + B
                                     29349
 20/6/3
            (Item 1 from file: 349)
            **Image available**
00958376
SHOCK TREATMENT SYSTEMS AND METHODS
SYSTEMES ET PROCEDES DE TRAITEMENT DE L'ETAT DE CHOC
Publication Language: English
Filing Language: English
Fulltext Availability:
  Detailed Description
  Claims
Fulltext Word Count: 25183
Publication Year: 2002
 20/6/4
            (Item 2 from file: 349)
00761648
            **Image available**
INTRAVASCULAR SYSTEMS FOR CORPOREAL COOLING
SYSTEMES INTRAVASCULAIRES DE REFROIDISSEMENT CORPOREL
Publication Language: English
Filing Language: English
Fulltext Availability:
  Detailed Description
  Claims
Fulltext Word Count: 4905
Publication Year: 2000
```

20/6/5 (Item 3 from file: 349)

Publication Language: English

00495307

COMBINATION OF AN ALDOSE REDUCTASE INHIBITOR AND A GLYCOGEN PHOSPHORYLASE INHIBITOR

COMBINAISON D'UN INHIBITEUR DE REDUCTASE D'ALDOSE ET D'UN INHIBITEUR DE PHOSPHORYLASE DE GLYCOGENE

Fulltext Availability: Detailed Description Claims Fulltext Word Count: 34830

Publication Year: 1999

(Item 4 from file: 349) 20/6/6 00466287

COMPOUNDS ACTIVE AT A NOVEL SITE ON RECEPTOR-OPERATED CALCIUM CHANNELS USEFUL FOR TREATMENT OF NEUROLOGICAL DISORDERS AND DISEASES

COMPOSES ACTIFS SUR UN NOUVEAU SITE DES CANAUX CALCIQUES ACTIVES PAR LES SERVANT AU TRATITEMENT DES TROUBLES ET DES MALADIES RECEPTEURS NEUROLOGIQUES

Publication Language: English Fulltext Availability: Detailed Description Claims

Fulltext Word Count: 63266 Publication Year: 1998

20/6/7 (Item 5 from file: 349) **Image available** 00416281

PEPTIDES FOR TREATMENT OF INFLAMMATION AND SHOCK

PEPTIDES SERVANT A TRAITER DES ETATS D'INFLAMMATION ET DE CHOC

Publication Language: English

Fulltext Availability: Detailed Description Claims

Fulltext Word Count: 10984 Publication Year: 1998

20/6/8 (Item 6 from file: 349) 00405766

COUMPOUNDS ACTIVE AT A NOVEL SITE ON RECEPTOR-OPERATED CALCIUM CHANNELS USEFUL FOR TREATMENT OF NEUROLOGICAL DISORDERS AND DISEASES

COMPOSES AGISSANT SUR UN NOUVEAU SITE DES CANAUX A CALCIUM ACTIVES PAR RECEPTEUR ET UTILES POUR TRAITER DES TROUBLES ET DES MALADIES NEUROLOGIOUES

Publication Language: English Fulltext Availability:

Detailed Description

Claims

Fulltext Word Count: 64042 Publication Year: 1997

20/6/9 (Item 7 from file: 349) **Image available** 00356871

SUBSTITUTED N-(INDOLE-2-CARBONYL-) AMIDES AND DERIVATIVES AS GLYCOGEN PHOSPHORYLASE INHIBITORS

(INDOLE-2-CARBONYL-)-AMIDES SUBSTITUES EN N ET LEURS DERIVES, SERVANT D'INHIBITEURS DE LA GLYCOGENE PHOSPHORYLASE

Publication Language: English

Fulltext Availability: Detailed Description

Claims

Fulltext Word Count: 40038 Publication Year: 1996

20/6/10 (Item 8 from file: 349)

00356870 **Image available** SUBSTITUTED N-(INDOLE-2-CARBONYL)-GLYCINAMIDES AND DERIVATIVES AS GLYCOGEN PHOSPHORYLASE INHIBITORS

```
(INDOLE-2-CARBONYL-)-GLYCINAMIDES SUBSTITUES EN N ET LEURS DERIVES, SERVANT
   D'INHIBITEURS DE LA GLYCOGENE PHOSPHORYLASE
Publication Language: English
Fulltext Availability:
  Detailed Description
  Claims
Fulltext Word Count: 54267
Publication Year: 1996
 20/6/11
             (Item 9 from file: 349)
00234568
METHODS FOR THE TREATMENT OF NEURONAL DAMAGE ASSOCIATED WITH ISCHEMIA,
    HYPOXIA OR NEURODEGENERATION
TRAITEMENTS DE LESIONS NEURONALES LIEES A L'ISCHEMIE, A L'HYPOXIE OU A LA
    DEGENERESCENCE NEURONALE
Publication Language: English
Fulltext Availability:
  Detailed Description
  Claims
Fulltext Word Count: 10989
Publication Year: 1993
 20/6/12
             (Item 10 from file: 349)
00215500
ADENOSINE KINASE INHIBITORS
INHIBITEURS DE L'ADENOSINE-KINASE
Publication Language: English
Fulltext Availability:
  Detailed Description
  Claims
Fulltext Word Count: 30453
Publication Year: 1992
 20/6/13
            (Item 11 from file: 349)
00205021
AICA RIBOSIDE ANALOGS
ANALOGUES D'AICA RIBOSIDE
Publication Language: English
Fulltext Availability:
  Detailed Description
  Claims
Fulltext Word Count: 32601
Publication Year: 1992
?t20/3,k/3,4,11
 20/3,K/3
              (Item 1 from file: 349)
DIALOG(R) File 349: PCT FULLTEXT
(c) 2003 WIPO/Univentio. All rts. reserv.
00958376
           **Image available**
SHOCK TREATMENT SYSTEMS AND METHODS
SYSTEMES ET PROCEDES DE TRAITEMENT DE L'ETAT DE CHOC
Patent Applicant/Assignee:
  CPRX LLC, 4330 Upton Avenue South, Minneapolis, MN 55410, US, US
    (Residence), US (Nationality)
Inventor(s):
  LURIE Keith G, 4751 Girard Avenue South, Minneapolis, MN 55409, US,
  ZIELINSKI Todd M, 3549 43rd Ave. South, Minneapolis, MN 55406, US,
Legal Representative:
```

GIBBY Darin J (et al) (agent), Townsend and Townsend and Crew LLP, Two Embarcadero Center, Eighth Floor, San Francisco, CA 94111-3834, US,

WO 200292169 A1 20021121 (WO 0292169)

WO 2002US14039 20020501 (PCT/WO US0214039)

Patent and Priority Information (Country, Number, Date):

Patent:

Application:

Priority Application: US 2001854238 20010511; US 2002 20020408

Designated States: AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG UZ VN YU ZA ZM ZW (EP) AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR (OA) BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

(AP) GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW

(EA) AM AZ BY KG KZ MD RU TJ TM

Publication Language: English Filing Language: English Fulltext Word Count: 25183

Fulltext Availability: ... Detailed Description

Detailed Description

... a process may be used to treat a variety of conditions where the person's **blood pressure** is low. For example, such a procedure may be used where the person has low **blood pressure** due to blood loss, due ...to a high gravitational state, due to vasodepressor syncope, due to drowning, due to heat **stroke**, due to heart attack, due to **hypothermia**, due to right heart failure, after a return to earth from space, due to sepsis...

20/3,K/4 (Item 2 from file: 349) DIALOG(R)File 349:PCT FULLTEXT

(c) 2003 WIPO/Univentio. All rts. reserv.

00761648 **Image available**

INTRAVASCULAR SYSTEMS FOR CORPOREAL COOLING SYSTEMES INTRAVASCULAIRES DE REFROIDISSEMENT CORPOREL

Patent Applicant/Assignee:

THE TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK, 116th Street and Broadway, New York, NY 10027, US, US (Residence), US (Nationality), (For all designated states except: US)

Patent Applicant/Inventor:

SCHWARTZ Arthur E, 393 Gloucester Street, Englewood, NJ 07631, US, US (Residence), US (Nationality), (Designated only for: US)

Legal Representative:

DIPPERT William H, Cowan, Liebowitz & Latman, P.C., 1133 Avenue of the Americas, New York, NY 10036-6799, US

Patent and Priority Information (Country, Number, Date):

Patent:

WO 200074749 A1 20001214 (WO 0074749)

Application:

WO 2000US15751 20000608 (PCT/WO US0015751)

Priority Application: US 99330428 19990608

Designated States: AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM HR HU ID IL IS JP KE KG KP KR KZ LC LK LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

(EP) AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

(OA) BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

(AP) GH GM KE LS.MW MZ. SD SL SZ TZ UG ZW

(EA) AM AZ BY KG KZ MD RU TJ TM

Publication Language: English

Filing Language: English Fulltext Word Count: 4905

Fulltext Availability: Detailed Description

Detailed Description

... flow rate

and/or pressure of the cooled blood should be adjusted so that the **blood pressure** in the **stroke** patient's internal carotid artery is slightly greater than systemic **blood**

In a preferred embodiment of the invention the brain cooling is administered in conjunction with... (Item 9 from file: 349) 20/3,K/11

```
DIALOG(R) File 349: PCT FULLTEXT
(c) 2003 WIPO/Univentio. All rts. reserv.
00234568
METHODS FOR THE TREATMENT OF NEURONAL DAMAGE ASSOCIATED WITH ISCHEMIA,
    HYPOXIA OR NEURODEGENERATION
TRAITEMENTS DE LESIONS NEURONALES LIEES A L'ISCHEMIE, A L'HYPOXIE OU A LA
    DEGENERESCENCE NEURONALE
Patent Applicant/Assignee:
  SYNTEX-SYNERGEN NEUROSCIENCE JOINT VENTURE,
  THE GENERAL HOSPITAL CORPORATION,
 ALPS Brian J,
  BROWN Christine Mary,
  COLLINS Franklin D,
  EMMETT Caroline J,
  SPEDDING Michael,
  RUSSELL Deborah,
  FINKLESTEIN Seth P,
  MOSKOWITZ Michael A,
  WHITING Roger Lewis,
Inventor(s):
  ALPS Brian J,
  BROWN Christine Mary,
  COLLINS Franklin D,
  EMMETT Caroline J,
  SPEDDING Michael,
  RUSSELL Deborah,
  FINKLESTEIN Seth P,
 MOSKOWITZ Michael A,
 WHITING Roger Lewis,
Patent and Priority Information (Country, Number, Date):
                       WO 9308828 A1 19930513
  Patent:
                        WO 92US9618 19921106 (PCT/WO US9209618)
  Application:
  Priority Application: US 91734 19911108
Designated States: AT AU BB BG BR CA CH CS DE DK ES FI GB HU JP KP KR LK LU
  MG MN MW NL NO PL RO RU SD SE US AT BE CH DE DK ES FR GB GR IE IT LU MC
  NL SE BF BJ CF CG CI CM GA GN ML MR SN TD TG
Publication Language: English
Fulltext Word Count: 10989
Fulltext Availability:
  Detailed Description
Detailed Description
... Data for the blood pressure in the rat is
  presented in Table 2.
  TABLE 2
  BLOOD PRESSURE (SYSTOLIC/DIASTOLIC BP) (mmHg
  IN RATS SUBJECTED TO 10 MINE FOREBRAIN ISCHEMI ,
  Group Starting Pre-occlusion Peak Pressor Isoelectric R
  BP BP BP EEG
  Drug@ *8508...8 92,0+13,2
  *systolic
  **diastolic
  Rectal body temperatures measured at the end of
  ischemia were acceptable, with no evidence of
   hypothermia nor hyperthermia, The mean drug-treated
```

animal temperature was 37,7 + 0.12oC and for...

- ...unaffected by the procedure in either group, where the drug-treated animals showed a pre- ischemia value of 7,5 + 0.2 mM and post- ischemia value of 7,0 + 0,3 mM, and where these respective values for vehicle controls...in oxygen. The right femoral artery and vein were cannulated for monitoring of mean arterial blood pressure (MABP; Gould RS3200 Blood Pressure Monitor, Gould Inc,, Valley View, OH), drug delivery, and blood sampling, Animals were then paralyzed...
- ...hematocrit were measured at least twice during surgery and the immediate post operative period, The **stroke** volume and rate of the ventilator was adjusted to maintain PaO.- between 100 200 mm...
- ...36-37,50C with a homeothermic blanket control unit (Harvard Bioscience, South Natick, MA),
 Focal ischemic infarcts were made in the right lateral cerebral cortex in the territory of the middle cerebral artery (MCA) by the method of Chen, et al, Stroke, 17:738@743, 1986, Both common carotid arteries were exposed by midline ventral incision. The...
- ...was made at the junction of the zygoma and squamosal bone using a dental drill cooled with saline. Using a dissecting microscope, the dura was opened with fine forceps, and the...

File 349:PCT FULLTEXT 1979-2002/UB=20030130,UT=20030123 (c) 2003 WIPO/Univentio

Set Items Description

4.5

***s1 6 HYPOTHERMI? ? (S)CENTRAL()(VEIN OR VENOUS)(3N)CATHETER? (S-)(STROKE OR ISCHEMI? ?)

.

.

.

```
1/6/1
           **Image available**
00816075
METHOD AND SYSTEM FOR TREATING CARDIAC ARREST
PROCEDE ET SYSTEME DE TRAITEMENT DE L'ARRET CARDIAQUE
Publication Language: English
Filing Language: English
Fulltext Availability:
  Detailed Description
  Claims
Fulltext Word Count: 5011
Publication Year: 2001
 1/6/2
           **Image available**
00808543
METHOD AND SYSTEM FOR TREATING STROKE USING HYPOTHERMIA
PROCEDE ET SYSTEME DE TRAITEMENT D'ACCIDENT VASCULAIRE CEREBRALE EN
    UTILISANT L'HYPOTHERMIE
Publication Language: English
Filing Language: English
Fulltext Availability:
  Detailed Description
  Claims
Fulltext Word Count: 5477
Publication Year: 2001
 1/6/3
00778932
            **Image available**
METHOD AND SYSTEM FOR TREATING CARDIAC ARREST USING HYPOTHERMIA
PROCEDE ET SYSTEME DE TRAITEMENT DE L'ARRET CARDIAQUE PAR HYPOTHERMIE
Publication Language: English
Filing Language: English
Fulltext Availability:
  Detailed Description
  Claims
Fulltext Word Count: 3274
Publication Year: 2001
 1/6/4
00761022
APPARATUS AND METHOD FOR ADVANCING COOLING CATHETER
SYSTEME ET PROCEDE POUR FAIRE AVANCER UN CATHETER DE REFROIDISSEMENT
Publication Language: English
Filing Language: English
Fulltext Availability:
  Detailed Description
  Claims
Fulltext Word Count: 2443
Publication Year: 2000
 1/6/5
00744796
            **Image available**
TEMPERATURE
             PROBE
                      AND
                            INTERCONNECT CABLE FOR HYPOTHERMIA CATHETER
    TEMPERATURE FEEDBACK
SONDE THERMIQUE ET CABLE D'INTERCONNEXION POUR RETROACTION THERMIQUE DE
    CATHETER D'HYPOTHERMIE
Publication Language: English
Filing Language: English
Fulltext Availability:
  Detailed Description
  Claims
Fulltext Word Count: 4418
Publication Year: 2000
```

```
1/6/6
00740117
            **Image available**
        AND
              APPARATUS
                         FOR ESTABLISHING AND MAINTAINING
                                                                THERAPEUTIC
METHOD
   HYPOTHERMIA
PROCEDE ET APPAREIL PERMETTANT D'EFFECTUER ET DE MAINTENIR UNE HYPOTHERMIE
   A DES FINS THERAPEUTIQUES
Publication Language: English
Filing Language: English
Fulltext Availability:
  Detailed Description
  Claims
Fulltext Word Count: 3095
Publication Year: 2000
?t1/3, k/2, 4, 5, 6
 1/3, K/2
                                       duplicate
DIALOG(R) File 349: PCT FULLTEXT
(c) 2003 WIPO/Univentio. All rts. reserv
            **Image available**
00808543
METHOD AND SYSTEM FOR TREATING STROKE USING HYPOTHERMIA
PROCEDE ET SYSTEME DE TRAITEMENT D'ACCIDENT VASCULAIRE CEREBRALE EN
    UTILISANT L'HYPOTHERMIE
Patent Applicant/Assignee:
  ALSIUS CORPORATION, Suite 150, 15770 Laguna Canyon Road, Irvine, CA 92618
    , US, US (Residence), US (Nationality), (For all designated states
    except: US)
Patent Applicant/Inventor:
  LUO Xia, 5869 West 74th Street, Los Angeles, CA 90045, US, US (Residence)
    , US (Nationality), (Designated only for: US)
  EVANS Scott M, 1252 Country Hills Drive, Santa Ana, CA 92705, US, US
    (Residence), US (Nationality), (Designated only for: US)
  WORTHEN William J, 37 Oakbrook, Coto de Caza, CA 92679, US, US
    (Residence), US (Nationality), (Designated only for: US)
Legal Representative:
  KREBS Robert E (agent), Burns, Doane, Swecker & Mathis, LLP, P.O. Box
    1404, Alexandria, VA 22313-1404, US,
Patent and Priority Information (Country, Number, Date):
                        WO 200141708 A2-A3 20010614 (WO 0141708)
  Patent:
                        WO 2000US42676 20001207 (PCT/WO US0042676)
 Application:
  Priority Application: US 99456110 19991207
Parent Application/Grant:
  Related by Continuation to: US 99456110 19991207 (CON)
Designated States: AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ
  DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ
  LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG
  SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW
  (EP) AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR
  (OA) BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG
  (AP) GH GM KE LS MW MZ SD SL SZ TZ UG ZW
  (EA) AM AZ BY KG KZ MD RU TJ TM
Publication Language: English
Filing Language: English
Fulltext Word Count: 5477
Fulltext Availability:
  Detailed Description
```

English Abstract

A method for treating stroke patients includes inducing mild or moderate hypothermia in a patient using one or more closed...
...and/or brain temperature are above predetermined thresholds. Additional steps for treating and managing a stroke patient can also be undertaken, e.g., infusing paralytics, infusing neuro-protectants, infusing anti-clot and/or clot lysis medications, performing neuro-protection procedures, performing non-catheter -based hypothermia

, performing angioplasty, deploying stent, removing clot(s), maintaining a predetermined ICP level such as draining...

Detailed Description

- ... vena cava of the central venous system. Moreover, since many patients already are intubated with central venous catheters for other clinically approved purposes, providing a central venous catheter that can also cool the blood requires no additional surgical procedures for those patients. A cooling central venous catheter is disclosed in the present assignee's co-pending U.
 - S. Pat. Applications Serial Nos...
- ...stroke, and in response. lowering the patient's temperature using at least one heat exchange **catheter** placed in the **central venous** system of the patient. In another embodiment, a heat exchange catheter is placed through the...

1/3,K/4

DIALOG(R) File 349:PCT FULLTEXT

(c) 2003 WIPO/Univentio. All rts. reserv.

00761022

APPARATUS AND METHOD FOR ADVANCING COOLING CATHETER SYSTEME ET PROCEDE POUR FAIRE AVANCER UN CATHETER DE REFROIDISSEMENT Patent Applicant/Assignee:

ALSIUS CORPORATION, Suite 150, 15770 Laguna Canyon Road, Irvine, CA 92618, US, US (Residence), US (Nationality), (For all designated states except: US)

Patent Applicant/Inventor:

WALKER Blair D, 24742 San Doval Lane, Mission Viejo, CA 92691, US, US (Residence), US (Nationality), (Designated only for: US)

Legal Representative:

ALONZO Arlyn L, Alsius Corporation, Suite 150, 15770 Laguna Canyon Road, Irvine, CA 92618, US

Patent and Priority Information (Country, Number, Date):

Patent:

WO 200072779 A2 20001207 (WO 0072779)

Application: WO 2000US14782 20000526 (PCT/WO.US0014782) Priority Application: US 99321350 19990527

Designated States: AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

(EP) AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

(OA) BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

(AP) GH GM KE LS MW MZ SD SL SZ TZ UG ZW

(EA) AM AZ BY KG KZ MD RU TJ TM

Publication Language: English

Filing Language: English Fulltext Word Count: 2443

Fulltext Availability: Detailed Description

Detailed Description

- ... of which are incorporated herein by reference, the above-mentioned advantages in treating brain trauma/ ischemic patients by cooling can also be realized by cooling the patient's entire body, i...
- ...advantage of systemic hypothermia is that, as recognized by the present assignee, to induce systemic **hypothermia** a cooling **catheter** or other cooling device need not be advanced into the blood supply of the brain...

1/3,K/5 DIALOG(R) File 349:PCT FULLTEXT

. . .

00744796 **Image available**

TEMPERATURE PROBE AND INTERCONNECT CABLE FOR HYPOTHERMIA CATHETER TEMPERATURE FEEDBACK

SONDE THERMIQUE ET CABLE D'INTERCONNEXION POUR RETROACTION THERMIQUE DE CATHETER D'HYPOTHERMIE

Patent Applicant/Assignee:

ALSIUS CORPORATION, 15770 Laguna Canyon Road, Suite 150, Irvine, CA 92618, US, US (Residence), US (Nationality), (For all designated states except: US)

Patent Applicant/Inventor:

PHILIPS Peter J, 18872 Vista Modjeska, Trabuco Canyon, CA 92679, US, US (Residence), NL (Nationality), (Designated only for: US)

Legal Representative:

ALONZO Arlyn L, Alsius Corporation, Suite 150, 15770 Laguna Canyon Road, Irvine, CA 92618, US

Patent and Priority Information (Country, Number, Date):

Patent: WO 200057823 A1 20001005 (WO 0057823)

Application: WO 2000US7936 20000324 (PCT/WO US0007936)

Priority Application: US 99282971 19990331

Designated States: AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

(EP) AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

(OA) BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

(AP) GH GM KE LS MW SD SL SZ TZ UG ZW

(EA) AM AZ BY KG. KZ MD. RU TJ TM

Publication Language: English

Filing Language: English Fulltext Word Count: 4418

Fulltext Availability: Detailed Description

Detailed Description

... the present assignee and incorporated herein by reference, the abovementioned advantages in treating brain trauma/ ischemic patients by cooling can also be realized by cooling the patient's entire body, i...

...advantage of systemic hypothermia is that, as recognized by the present assignee, to induce systemic **hypothermia** a cooling **catheter** or other cooling device need not be advanced into the blood supply of the brain...

1/3,K/6
DIALOG(R) File 349:PCT FULLTEXT a duple cate
(c) 2003 WIPO/Univentio. All rts. reserv.

00740117 **Image available**

METHOD AND APPARATUS FOR ESTABLISHING AND MAINTAINING THERAPEUTIC HYPOTHERMIA

PROCEDE ET APPAREIL PERMETTANT D'EFFECTUER ET DE MAINTENIR UNE HYPOTHERMIE A DES FINS THERAPEUTIQUES

Patent Applicant/Assignee:

ALSIUS CORPORATION, Suite 150, 15770 Laguna Canyon Road, Irvine, CA 92618, US, US (Residence), US (Nationality), (For all designated states except: US)

Patent Applicant/Inventor:

EVANS Scott M, 1252 Country Hills Drive, Santa Ana, CA 92705, US, US (Residence), US (Nationality), (Designated only for: US) WORTHEN William J, 37 Oakbrook, Coto de Caza, CA 92679, US, US (Residence), US (Nationality), (Designated only for: US)

Legal Representative:

ALONZO Arlyn L (agent), Alsius Corporation, Suite 150, 15770 Laguna Canyon Road, Irvine, CA 92618, US,

File 350:Derwent WPIX 1963-2003/UD,UM &UP=200307 (c) 2003 Thomson Derwent

Set Items Description
SM 1 HYPOTHERMI?

1 HYPOTHERMI? ? (S)CENTRAL()(VEIN OR VENOUS)(3N)CATHETER? (S)(STROKE OR ISCHEMI? ?) a deplicate

```
File 350:Derwent WPIX 1963-2003/UD, UM &UP=200307
         (c) 2003 Thomson Derwent
File 344: Chinese Patents Abs Aug 1985-2002/Dec
         (c) 2003 European Patent Office
File 347: JAPIO Oct 1976-2002/Sep (Updated 030102)
         (c) 2003 JPO & JAPIO
```

File 371:French Patents 1961-2002/BOPI 200209

(c) 2002 INPI. All rts. reserv.

Set	Items	Description
S1	99417	STROKE OR STROKES OR TIA
S2	1509	APOPLEXY OR (CEREBROVASCULAR OR VASCULAR) () ACCIDENT? ?
S 3	7699	ISCHEMI? ?
S4	821	HYPOTHERMI?
\$5	894394	COOL OR COOLS OR COOLED OR COOLING
S6	943003	CATHETER? OR TUBE OR TUBES OR TUBULAR OR TUBING
S 7	12386	VEIN? ? OR VENOUS OR VENA OR VENAE
S8	6287	CANNULA?
S9	5	S1:S3 AND S4:S5 AND S7 AND S8
S10	1	S1:S3 AND S4:S5 AND S6 AND S8
S11	6	S9:S10

11/26,TI/1 (Item 1 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2003 Thomson Derwent. All rts. reserv.

014929683

WPI Acc No: 2002-750392/200281

New triazolo-pyrimidine compounds useful for the treatment of e.g. deep vein thrombosis, stroke, atherosclerosis, reocclusion, cerebrovascular disease, angina, myocardial infarction and ischemic attacks

11/26,TI/2 (Item 2 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2003 Thomson Derwent. All rts. reserv.

014507170

WPI Acc No: 2002-327873/200236

New thiazolindinedione derivatives useful in treatment of diseases imposing oxidative stress e.g. diabetes mellitus have peroxisome proliferator-activated receptor-gamma agonist activities

11/26,TI/3 (Item 3 from file: 350)

DIALOG(R)File 350:Derwent WPIX

(c) 2003 Thomson Derwent. All rts. reserv.

014269321

WPI Acc No: 2002-090019/200212

Nev

3-fluoro-2-pyridylmethyl-3-(2,2-difluoro-2-(2-pyridyl)ethylamino)-6-chlor opyrazin-2-one-1-acetamide compounds are thrombin inhibitors useful for treating or preventing unstable angina, myocardial infarction transient ischemic attacks

11/26,TI/4 (Item 4 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2003 Thomson Derwent. All rts. reserv.

013447105

WPI Acc No: 2000-619048/200059

Vessel perfusion assembly for cooling spinal vasculature during aortic surgery has tubular branches attached to tubular member and cooler acting on lumen of tubular member

11/26,TI/5 (Item 5 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2003 Thomson Derwent. All rts. reserv.

013327288

WPI Acc No: 2000-499227/200044

Composition comprising an enriched population of human liver progenitors, useful for treatment of liver disorders such as cirrhosis, fibrosis, hepatitis, chronic liver failure, and cancer, and for production of a bioartificial liver

11/26,TI/6 (Item 6 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2003 Thomson Derwent. All rts. reserv.

013052340

WPI Acc No: 2000-224195/200019

Intravascular method for passing oxygenated medium through cerebral vasculature, for treatment of diminished cerebral circulation as a result of stroke or due to cardiac arrest, surgery or trauma

?t11/7/6 (Item 6 from file: 350) 11/7/6 DIALOG(R) File 350: Derwent WPIX (c) 2003 Thomson Derwent. All rts. reserv. **Image available** 013052340 WPI Acc No: 2000-224195/200019 Intravascular method for passing oxygenated medium through cerebral vasculature, for treatment of diminished cerebral circulation as a result of stroke or due to cardiac arrest, surgery or trauma Patent Assignee: COAXIA INC (COAX-N) Inventor: BARBUT D R; PATTERSON R H Number of Countries: 082 Number of Patents: 003 Patent Family: Patent No Kind Date Applicat No Kind Date Week A 19990226 200019 B Al 20000224 WO 99US4345 WO 200009200 Α Α 20000306 AU 9928820 19990226 200030 AU 9928820 Α EP 1027097 A1 20000816 EP 99909663 19990226 200040 A 19990226 WO 99US4345 Priority Applications (No Type Date): US 99256965 A 19990224; US 9896218 P 19980812 Patent Details: Patent No Kind Lan Pg Main IPC Filing Notes WO 200009200 A1 E 57 A61M-037/00 Designated States (National): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW Designated States (Regional): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE AU 9928820 A61M-037/00 Based on patent WO 200009200 Α Based on patent WO 200009200 EP 1027097 A1 E A61M-037/00 Designated States (Regional): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE Abstract (Basic): WO 200009200 Al NOVELTY - A vein (V) and an artery (A) are accessed at locations which drain and feed at least some of the cerebral vasculature. The medium is passed from the arterial access location through the cerebral vasculature to the venous access location. DETAILED DESCRIPTION - An INDEPENDENT CLAIM is also included for a system for recirculating and oxygenating blood in the cerebral vasculature of a patient. It includes a venous cannula (20) with a distal occlusion balloon (22), an arterial cannula (10) with a distal occlusion balloon (12), a pump which circulates blood from the venous to the arterial cannula , and an oxygenator which oxygenates blood circulated by the pump. The vein which is accessed is generally the internal jugular which may be accessed at a location on the neck, through an incision in the femoral vein , or through an incision in the subclavian $\ensuremath{\mathbf{vein}}$. The artery accessed is the common carotid which may be accessed at a location in the neck, through an incision in the femoral artery or through an incision in the subclavian artery. The oxygenation rate is initially low to inhibit reperfusion injury. The flow rate is gradually increased. The occlusion balloons are used to prevent flow past the access location in a direction away from the cerebral vasculature. The oxygenated medium may be blood, especially autologous blood, or a synthetic oxygen carrier. It is cooled during recirculation to a temperature of 7 to 35degreesC. A therapeutic agent,

USE - The method may be used for protracted perfusing and optionally cooling the cerebral vasculature of a patient with oxygenated blood or other media to treat cerebral ischemia. This may be caused by a stroke, subarachnoid hemorrhage spasms, iatrogenic

e.g. NMDA receptor inhibitors, calcium-channel blockers, anticoagulants, glutamate inhibitors or vasodilators, may be

incorporated in the flow of oxygenating medium.

vasospasm, or systemic circulatory failure caused by cardiac arrest, shock, circulatory arrest and septicemia.

ADVANTAGE - The method may be used to provide selective isolated cerebral perfusion, and also reduces the dosage of vasoconstrictors required to achieve a desired perfusion pressure.

DESCRIPTION OF DRAWING(S) - The figure shows the use of a pair of access cannulas for perfusing the oxygenating medium through the cerebral vasculature.

arterial cannula (10)
occlusion balloon (12)
venous cannula (20)
occlusion balloon (22)
artery (A)

vein (V)
pp; 57 DwgNo 2B/11
Derwent Class: B07; P34

International Patent Class (Main): A61M-037/00

File 348: EUROPEAN PATENTS 1978-2003/Jan W04

(c) 2003 European Patent Office

File 349:PCT FULLTEXT 1979-2002/UB=20030130,UT=20030123

(c) 2003 WIPO/Univentio

Set	Items	Description
S1	60683	STROKE OR STROKES OR TIA
\$2	1055	APOPLEXY OR (CEREBROVASCULAR OR VASCULAR) () ACCIDENT? ?
S3	14360	ISCHEMI? ?
S4	1433	HYPOTHERMI?
S5	271739	COOL OR COOLS OR COOLED OR COOLING
S6	343306	CATHETER? OR TUBE OR TUBES OR TUBULAR OR TUBING
s7	33742	VEIN? ? OR VENOUS OR VENA OR VENAE
S8	14554	CANNULA?
S9	68657	S1:S3
S10	272414	S4:S5
S11	347431	S6 OR S8
S12	48	S9(S)S10(S)S11(S)S7
S13	9412	S9/TI,AB,DE
S14.	. 12	S12 AND S13

```
(Item 1 from file: 348)
 14/6/1
00532729
4-((2-Benzothiazolyl)methylamino)-alpha-((3,4-difluorophenoxy)methyl)-1-pip
    eridineethanol.
4-((2-Benzothiazolyl)methylamino)-alpha-((3,4-difluorphenoxymethyl)-1-piper
    idinethanol.
4-((2-Benzothiazolyl)methylamino)-alpha-((3,4-difluorophenoxy)methyl)-1-pip
    eridinethanol.
LANGUAGE (Publication, Procedural, Application): English; English; English
FULLTEXT AVAILABILITY:
Available Text Language
                           Update
                                     Word Count
      CLAIMS A
               (English)
                           EPABF1
                                       597
                (English) EPABF1
                                      5158
      SPEC A
Total word count - document A
                                      5755
Total word count - document B
Total word count - documents A + B
                                      5755
 14/6/2
            (Item 2 from file: 348)
00313253
Method of using superoxide dismutase during surgical procedures.
Verwendung von Superoxiddismutase bei chirurgischen Prozessen.
Methode d'utilisation de la superoxyde dismutase pendant des procedures
    chirurgicales.
LANGUAGE (Publication, Procedural, Application): English; English; English
FULLTEXT AVAILABILITY:
Available Text Language
                           Update
                                     Word Count
                           EPABF1
                                       457
      CLAIMS A (English)
                (English)
                                      3613
      SPEC A
                           EPABF1
Total word count - document A
                                      4070
Total word count - document B
                                         0
Total word count - documents A + B
                                      4070
 14/6/3
            (Item 1 from file: 349)
            **Image available**
00934805
INHIBITION
             OF
                  PLATELET
                             ACTIVATION,
                                          AGGREGATION AND/OR ADHESION BY
    HYPOTHERMIA
INHIBITION
           DE
                  L'ACTIVATION,
                                  DE
                                       L'AGREGATION
                                                      ET/OU DE L'ADHESION
    PLAQUETTAIRE PAR HYPOTHERMIE
Publication Language: English
Filing Language: English
Fulltext Availability:
  Detailed Description
  Claims
Fulltext Word Count: 11726
Publication Year: 2002
 14/6/4
            (Item 2 from file: 349)
00909384
FLUSH PRESERVATION SOLUTION
SOLUTION DE PRESERVATION PAR PURGE
Publication Language: English
Filing Language: English
Fulltext Availability:
  Detailed Description
Fulltext Word Count: 11760
Publication Year: 2002
 14/6/5
            (Item 3 from file: 349)
```

Image available

METHOD AND APPARATUS FOR CEREBRAL TEMPERING

Publication Language: English

METHODE ET APPAREIL DE REGULATION DE LA TEMPERATURE CEREBRALE

00860672

Filing Language: Swedish Fulltext Availability: Detailed Description Claims Fulltext Word Count: 3833

Fulltext Word Count: 3833 Publication Year: 2001

14/6/6 (Item 4 from file: 349) 00810502 **Image available**

METHOD FOR REDUCING MYOCARDIAL INFARCT BY APPLICATON OF INTRAVASCULAR HYPOTHERMIA

TECHNIQUE PERMETTANT DE LIMITER UN INFARCTUS DU MYOCARDE PAR APPLICATION D'UNE HYPOTHERMIE INTRAVASCULAIRE

Publication Language: English
Filing Language: English
Fulltext Availability:
Detailed Description
Claims

Fulltext Word Count: 12039
Publication Year: 2001

14/6/7 (Item 5 from file: 349) 00808543 **Image available**

METHOD AND SYSTEM FOR TREATING STROKE USING HYPOTHERMIA

PROCEDE ET SYSTEME DE TRAITEMENT D'ACCIDENT VASCULAIRE CEREBRALE EN UTILISANT L'HYPOTHERMIE

Publication Language: English Filing Language: English Fulltext Availability:
Detailed Description Claims

Fulltext Word Count: 5477 Publication Year: 2001

14/6/8 (Item 6 from file: 349) 00578389 **Image available**

A MEDICAL DEVICE FOR REMOVING THROMBOEMBOLIC MATERIAL FROM CEREBRAL ARTERIES AND METHODS OF USE

DISPOSITIF MEDICAL PERMETTANT D'EXTRAIRE UN MATERIAU THROMBO-EMBOLIQUE D'ARTERES CEREBRALES; METHODE D'UTILISATION

Publication Language: English

Fulltext Availability: Detailed Description Claims

Fulltext Word Count: 7046 Publication Year: 2000

14/6/9 (Item 7 from file: **349**) 00572119

VITRONECTIN RECEPTOR ANTAGONIST PHARMACEUTICALS
MEDICAMENTS ANTAGONISTES DU RECEPTEUR DE LA VITRONECTINE

Publication Language: English

Fulltext Availability:
Detailed Description

Claims

Fulltext Word Count: 70048
Publication Year: 2000

14/6/10 (Item 8 from file: 349)

00495307

COMBINATION OF AN ALDOSE REDUCTASE INHIBITOR AND A GLYCOGEN PHOSPHORYLASE INHIBITOR

```
COMBINAISON D'UN INHIBITEUR DE REDUCTASE D'ALDOSE ET D'UN INHIBITEUR DE
    PHOSPHORYLASE DE GLYCOGENE
Publication Language: English
Fulltext Availability:
  Detailed Description
 Claims
Fulltext Word Count: 34830
Publication Year: 1999
 14/6/11
             (Item 9 from file: 349)
            **Image available**
00356870
SUBSTITUTED N-(INDOLE-2-CARBONYL)-GLYCINAMIDES AND DERIVATIVES AS GLYCOGEN
    PHOSPHORYLASE INHIBITORS
(INDOLE-2-CARBONYL-)-GLYCINAMIDES SUBSTITUES EN N ET LEURS DERIVES, SERVANT
    D'INHIBITEURS DE LA GLYCOGENE PHOSPHORYLASE
Publication Language: English
Fulltext Availability:
  Detailed Description
  Claims
Fulltext Word Count: 54267
Publication Year: 1996
 14/6/12
             (Item 10 from file: 349)
00234568
METHODS FOR THE TREATMENT OF NEURONAL DAMAGE ASSOCIATED WITH ISCHEMIA ,
    HYPOXIA OR NEURODEGENERATION
TRAITEMENTS DE LESIONS NEURONALES LIEES A L' ISCHEMIE , A L'HYPOXIE OU A LA
    DEGENERESCENCE NEURONALE
Publication Language: English
Fulltext Availability:
  Detailed Description
  Claims
Fulltext Word Count: 10989
Publication Year: 1993
?t14/3, k/5, 7, 12
            (Item 3 from file: 349)
 14/3,K/5
DIALOG(R)File 349:PCT FULLTEXT
(c) 2003 WIPO/Univentio: All rts. reserv.
           **Image available**
00860672
METHOD AND APPARATUS FOR CEREBRAL TEMPERING
METHODE ET APPAREIL DE REGULATION DE LA TEMPERATURE CEREBRALE
Patent Applicant/Assignee:
  ARGMED KOMMANDITBOLAG, Parkallen 15, S-237 36 Bjarred, SE, SE (Residence)
    , SE (Nationality), (For all designated states except: US)
Patent Applicant/Inventor:
  ALLERS Mats, Kavlingevagen 106, S-226 50 Lund, SE, SE (Residence), SE
    (Nationality), (Designated only for: US)
  LUNDERQUIST Anders, Svenska vagen 48, S-226 39 Lund, SE, SE (Residence),
    SE (Nationality), (Designated only for: US)
Legal Representative:
  BERGMAN Kerstin (et al) (agent), Albihns Malmo AB, P.O. Box 4289, S-203
    14 Malmo, SE,
Patent and Priority Information (Country, Number, Date):
  Patent:
                        WO 200193922 A1 20011213 (WO 0193922)
                        WO 2001SE1259 20010605 (PCT/WO SE0101259)
  Application:
  Priority Application: SE 20002100 20000605
Designated States: AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU C2
  DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ
  LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG
  SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW
  (EP) AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR
```

(OA) BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

(AP) GH GM KE LS MW MZ SD SL SZ TZ UG ZW

(EA) AM AZ BY KG KZ MD RU TJ TM Publication Language: English

Filing Language: Swedish Fulltext Word Count: 3833

Fulltext Availability: Claims

English Abstract

...low temperature in the selected brain hemisphere. When used in conjunction with the treatment of **stroke**, the present invention comprises cooling the **stroke** -affected brain hemisphere during the time necessary to make a diagnosis and provide medication, and...

Claim

It may be noted that a selected brain hemisphere is **cooled** primarily in relation to the choice of artery into which the **cooled** blood is introduced, but a secondary **cooling** of the entire brain also takes place, as a result of the blood flow between the hemispheres. System and method for the treatment of **stroke**Figs. 1, 2 and 3 illustrate an embodiment of the system and the method according...

...different order. A first embodiment comprises the steps of I . Percutaneous insertion of a first **catheter** into the **vena** femoralis

A device for the extraction of **venous** blood, preferably in the form of an introducer or a first **catheter**, is inserted percutaneously into for example the patient's **vena** femoralis, to extract **venous** blood from the patient. Some other **vein** may be used to extract **venous** 5 blood, but the **vena** femoralis is suitable because it is fairly large and is easily reached for percutaneous attachment of a blood extraction conduit. This first **catheter** preferably has an outer diameter smaller than the normal inner diameter of the **vena** fernoralis, so as not to stop entirely the flow of **venous** blood around the introducer, but large enough to give a sufficient flow of extracted blood...

- ...a lateral opening provided for this purpose in the extra-corporeal part of the arterial **catheter**. Such substances might for example be contrast medium for the fluoroscopic observation of the flow...
- ...intra-cerebral arteries, for example drugs like heparin and fibrinolytic substances. 3 . Attachment of the **venous catheter** and the arterial **catheter** to an extra-coWoreal blood conduit

The inlet of a blood conduit such as a blood tube is attached according to prior art to the other opening of the **venous catheter**, and the **tube** is passed through a perfusion pump. The blood **tube** preferably consists of an internally heparinized biocompatible plastic material, and has a diameter suited to its purpose. The blood tube passes through a circulation pump according to prior art, a so called perfusion pump, preferably equipped 1 5 with rollers exerting a peristaltic effect externally on the tube . The blood tube extends from the pump to a heat exchanger, which in this particular embodiment is arranged for cooling the blood, but which in another embodiment may be arranged for heating it. In one type of heat exchanger the blood tube passes through a device which supplies or removes heat energy from the blood through the walls of the blood tube . In another type of heat exchanger, the blood tube is attached to a heparinized heat-exchanging bag with blood canals, providing a large surface area for heating/ cooling . In the embodiment intended for the treatment of stroke , the heat exchanger should be capable of cooling blood to a temperature between 0 and 37C. In some cases, a small temperature fall of only a few degrees is desirable, for example a cooling to 34'C, whereas in other cases a larger temperature fall is desirable, such as...

...such as from 37'C to 40- 42'C. As the selected brain hemisphere is

cooled /heated, the general body temperature also falls/rises, and
accordingly the temperature of the venous blood extracted. The heat
exchanger therefore must be controlled so as to keep the blood returned
to the body after 3 0 cooling /heating at the desired temperature.
Optionally, the blood conduit may be attached to an oxygenator...

- ...extra-corporeal blood circuit is attached to the proximal end 3 5 of the arterial catheter reaching into the arteria carotis communis, from the heat exchanger or in relevant cases from...
- ...has been assumed to be placed in the proximity of the place of extraction of venous blood, but it can also be placed elsewhere in the extra-corporeal blood circuit, for example immediately before the blood return catheter. In such a case, the rest of the blood conduit should be primed before start...
- ...an open reservoir containing, for example, 5 priming solution or blood, is arranged between the venous catheter and the circulation pump, and a shunt, in the form of an internally heparinized blood tube , has been arranged extra-corporeally to create a connection from one section between the **venous** catheter and the reservoir to another section between the arterial catheter and the heat exchanger/oxygenator. By closing the flow of blood to/from the vein and opening the now I O from the artery, blood will flow out of the arterial catheter, and will be pumped by the circulation pump to the reservoir, whereby the system will be purged of any air present. Any air present on the venous side can then be removed similarly by stopping the flow of blood to/from the artery and using the circulation pump to make the venous blood flow to the reservoir.)When the system has been purged of ...description below, can be started. A kit containing disposable articles comprises one or several blood tubes according to the specifications above, configured to be attached to the inlet and the outlet ...

14/3,K/7 (Item 5 from file: 349) a duplicate
DIALOG(R) File 349: PCT FULLTEXT
(c) 2003 WIPO/Univentio. All rts. reserv.

00808543 **Image available**

METHOD AND SYSTEM FOR TREATING STROKE USING HYPOTHERMIA
PROCEDE ET SYSTEME DE TRAITEMENT D'ACCIDENT VASCULAIRE CEREBRALE EN
UTILISANT L'HYPOTHERMIE

Patent Applicant/Assignee:

ALSIUS CORPORATION, Suite 150, 15770 Laguna Canyon Road, Irvine, CA 92618, US, US (Residence), US (Nationality), (For all designated states except: US)

Patent Applicant/Inventor:

LUO Xia, 5869 West 74th Street, Los Angeles, CA 90045, US, US (Residence), US (Nationality), (Designated only for: US)

EVANS Scott M, 1252 Country Hills Drive, Santa Ana, CA 92705, US, US (Residence), US (Nationality), (Designated only for: US)

WORTHEN William J, 37 Oakbrook, Coto de Caza, CA 92679, US, US (Residence), US (Nationality), (Designated only for: US)

Legal Representative:

KREBS Robert E (agent), Burns, Doane, Swecker & Mathis, LLP, P.O. Box 1404, Alexandria, VA 22313-1404, US,

Patent and Priority Information (Country, Number, Date):

Patent: WO 200141708 A2-A3 20010614 (WO 0141708)

Application: WO 2000US42676 20001207 (PCT/WO US0042676)

Priority Application: US 99456110 19991207

Parent Application/Grant:

Related by Continuation to: US 99456110 19991207 (CON)

Designated States: AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW (EP) AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

(OA) BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

(AP) GH GM KE LS MW MZ SD SL SZ TZ UG ZW

(EA) AM AZ BY KG KZ MD RU TJ TM

Publication Language: English

Filing Language: English Fulltext Word Count: 5477

METHOD AND SYSTEM FOR TREATING STROKE USING HYPOTHERMIA

Fulltext Availability: Detailed Description

English Abstract

A method for treating stroke patients includes inducing mild or moderate hypothermia in a patient using one or more closed loop heat exchange catheters positioned either in the patient's central venous system, carotid artery or both when the patient's body temperature and/or brain temperature are above predetermined thresholds. Additional steps for treating and managing a stroke patient can also be undertaken, e.g., infusing paralytics, infusing neuro-protectants, infusing anti-clot and/or clot lysis medications, performing neuro-protection procedures, performing non- catheter -based hypothermia, performing angioplasty, deploying stent, removing clot(s), maintaining a predetermined ICP level such as draining...

Detailed Description

... by the present assignee and incorporated herein by reference, the above-mentioned advantages in treating stroke patients by internal cooling can also be realized by cooling the patient's entire body, i.e., by systemic, internally-induced hypothermia. The advantage of systemic hypothermia is that, as recognized by the present assignee, to induce systemic hypothermia a cooling catheter or other cooling device need not be advanced into the blood

supply of the brain, but rather can be easily and quickly placed into ifie fe,il@afixrely large vena cava of the central venous system. Moreover, since many patients already are intubated with central venous catheters for other clinically approved purposes, providing a central venous catheter that can also cool the blood requires no additional surgical procedures for those patients. A cooling central venous catheter is disclosed in the present assignee's co-pending U.

S. Pat. Applications Serial Nos...

...reference.

Summary of the Invention

The present invention relates to methods and systems for treating stroke patients who can benefit from hypothermia treatment. In one embodiment, the method for treating a stroke condition includes identifying that the patient has had a stroke, and in response. lowering the patient's temperature using at least one heat exchange catheter placed in the central venous system of the patient. In another embodiment, a heat exchange catheter is placed through the carotid artery of the patient to lower the temperature of the...

...s brain. In vet another embodiment, the patient may receive at least two heat exchange catheters, one placed in the central venous system, and another placed through the carotid artery to lower the body temperature with directed focus on the brain. In this embodiment, the heat exchange rates of each heat exchange catheter may be adjusted separately depending on the patient's relative body and brain temperatures.

In...Refeming to Figure 2, a second therapeutic system I I is shown for treating a stroke patient 12. In addition or in lieu of the first catheter 18, a second cooling catheter 28 which is configured for use as a central venous catheter can be advanced into the central venous system of the patient 12 through a neck entry point 29. The

second catheter 28 can be embodied by the catheter disclosed in the above-referenced patient application Serial Nos. 09/253,109 and 09/305,613. Accordingly, the second catheter 28 can communicate with the cooling system 14 via coolant supply and return lines 30, 32. Also, the second catheter 28 can communicate with one or more central venous components 34, such as IV infusion devices, drug delivery syringes, blood withdrawal devices, etc. Other central venous components will be understood by those skilled in the art. The component 34 can also... includes identifying a stroke patient who can benefit from hypothermia treatment 5 1.

Once the **stroke** patient 12 is identified, at least one heat exchange **catheter** 18, 28 is advanced into the patient 12 as shown in block 6 1. In one embodiment, the heat exchange **catheter** 18,28 is advanced into the central **venous** system of the patient 12. Once the heat exchange **catheter** 18,28 is advanced into the patient 12, **hypothermia** is induced via the coolant circulation in the heat exchange region 24, 36 of the **catheter** 18, 28. In another embodiment, the heat exchange **catheter** 18, 28 is placed through the carotid artery of the patient to lower the temperature...

...selectively. In yet another embodiment, the patient 12 may receive at least two heat exchange **catheters**, one placed in the central **venous** system, and another placed through the carotid artery to lower the body temperature with directed...

...on the brain. In this

embodiment, the heat exchange rates of each heat exchange catheter may be adjusted separately depending on the patient's relative body and brain temperatures and...Once a target temperature of about 32'C-36'C has been reached, the first catheter 18 can be removed and the second catheter 28 advanced into the vena cava through a neck entry point 29 to maintain the target temperature. It is to hypothermia in a stroke patient:, other sequences can be used. For example, the first catheter 18 can be used exclusively to the second catheter 28; the second catheter 28 can be used exclusively to the first catheter 18; or both the first and second catheters 18, 28 can be used together simultaneously. Additionally, the caregiver may decide to advance the first catheter IS into the carotid artery of the patient to cool or maintain the brain temperature.

In the embodiment where ICP is monitored and maintained, the...

14/3,K/12 (Item 10 from file: 349)
DIALOG(R)File 349:PCT FULLTEXT
(c) 2003 WIPO/Univentio. All rts. reserv.

00234568

METHODS FOR THE TREATMENT OF NEURONAL DAMAGE ASSOCIATED WITH ISCHEMIA , HYPOXIA OR NEURODEGENERATION

TRAITEMENTS DE LESIONS NEURONALES LIEES A L' ISCHEMIE , A L'HYPOXIE OU A LA DEGENERESCENCE NEURONALE

Patent Applicant/Assignee:
 SYNTEX-SYNERGEN NEUROSCIENCE JOINT VENTURE,
 THE GENERAL HOSPITAL CORPORATION,
 ALPS Brian J,
 BROWN Christine Mary,
 COLLINS Franklin D,
 EMMETT Caroline J,
 SPEDDING Michael,
 RUSSELL Deborah,
 FINKLESTEIN Seth P,
 MOSKOWITZ Michael A,
 WHITING Roger Lewis,
Inventor(s):
 ALPS Brian J,

BROWN Christine Mary, COLLINS Franklin D, EMMETT Caroline J, SPEDDING Michael, RUSSELL Deborah, FINKLESTEIN Seth P, MOSKOWITZ Michael A, WHITING Roger Lewis,

Patent and Priority Information (Country, Number, Date):

Patent: WO 9308828 A1 19930513

Application: WO 92US9618 19921106 (PCT/WO US9209618)

Priority Application: US 91734 19911108

Designated States: AT AU BB BG BR CA CH CS DE DK ES FI GB HU JP KP KR LK LU MG MN MW NL NO PL RO RU SD SE US AT BE CH DE DK ES FR GB GR IE IT LU MC

NL SE BF BJ CF CG CI CM GA GN ML MR SN TD TG

Publication Language: English Fulltext Word Count: 10989

METHODS FOR THE TREATMENT OF NEURONAL DAMAGE ASSOCIATED WITH ISCHEMIA , HYPOXIA OR NEURODEGENERATION

TRAITEMENTS DE LESIONS NEURONALES LIEES A L' ISCHEMIE , A L'HYPOXIE OU A LA DEGENERESCENCE NEURONALE

Fulltext Availability: Detailed Description

English Abstract

...system of individuals in need of such treatment are disclosed. The neuronal damage associated with <code>ischemia</code>, hypoxia, or neurodegeneration may result from <code>stroke</code> or cardiac arrest. This invention provides for the intravenous administration of neurotrophic factors such as...

French Abstract

...des lesions neuronales situees dans le systeme nerveux central. Ces lesions neuronales liees a l'ischemie, a l'hypoxie ou a la degenerescence neuronale peuvent provenir de crises ou d'arrets...

Detailed Description

... heparin; Biosynth International, Skokie, IL) had no biological activity in this assay,

Three days after cannula implantation, animals were reanesthetized with 2% halothane and given atropine (0.15 mg/kg, i...

...Ardmore, PA) delivering 1% halothane/70% nitrous oxide in oxygen. The right femoral artery and **vein** were **cannulated** for monitoring of mean arterial blood pressure (MABP; Gould RS3200 Blood Pressure Monitor, Gould Inc...

...hematocrit were measured at least twice during surgery and the immediate post operative period, The **stroke** volume and rate of the ventilator was adjusted to maintain PaO.- between 100 200 mm...

...36-37,50C with a homeothermic blanket control unit (Harvard Bioscience, South Natick, MA),
Focal ischemic infarcts were made in the right lateral cerebral cortex in the territory of the middle cerebral artery (MCA) by the method of Chen, et al, Stroke, 17:738@743, 1986, Both common carotid arteries were exposed by midline ventral incision. The...

...was made at the junction of the zygoma and squamosal bone using a dental drill

cooled with saline. Using a dissecting microscope, the dura was opened with fine forceps, and the...

File 350:Derwent WPIX 1963-2003/UD,UM &UP=200307 (c) 2003 Thomson Derwent

File 344:Chinese Patents Abs Aug 1985-2002/Dec

(c) 2003 European Patent Office

File 347: JAPIO Oct 1976-2002/Sep (Updated 030102)

(c) 2003 JPO & JAPIO

File 371:French Patents 1961-2002/BOPI 200209

(c) 2002 INPI. All rts. reserv.

Set	Items	Description
S1	99417	STROKE OR STROKES OR TIA
S2	1509	APOPLEXY OR (CEREBROVASCULAR OR VASCULAR) () ACCIDENT? ?
S3	7699	ISCHEMI? ?
S4	821	HYPOTHERMI?
S5	894394	COOL OR COOLS OR COOLED OR COOLING
s6	943003	CATHETER? OR TUBE OR TUBES OR TUBULAR OR TUBING
s7	12386	VEIN? ? OR VENOUS OR VENA OR VENAE
S8	6287	CANNULA?
S9	30	\$1:\$3 AND \$4:\$5 AND \$7 AND \$6
S10	30	S9 NOT S8

(Item 1 from file: 350) 10/26.TI/1

DIALOG(R) File 350: Derwent WPIX

(c) 2003 Thomson Derwent. All rts. reserv.

014958742

WPI Acc No: 2003-019256/200301

New 1,4,5,6-tetrahydropyrazolo-(3,4-c)-pyridin-7-one derivatives are factor Xa inhibitors, useful for treating thromboembolic disorders e.g. stroke, atherosclerosis, deep vein thrombosis, thrombophlebitis, arterial embolism

(Item 2 from file: 350) 10/26,TI/2

DIALOG(R) File 350: Derwent WPIX

(c) 2003 Thomson Derwent. All rts. reserv.

014939085

WPI Acc No: 2002-759794/200282

New aminomethyl-pyrroloquinazoline compounds are thrombin receptor antagonists useful in the treatment of e.g. osteoporosis

10/26,TI/3 (Item 3 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2003 Thomson Derwent. All rts. reserv.

014912042

WPI Acc No: 2002-732748/200279

Inhibition of platelet in a human or animal for treating acute coronary syndromes involves placing an intravascular heat exchange apparatus in the vasculature to cool the patient's body temperature

10/26,TI/4 (Item 4 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2003 Thomson Derwent. All rts. reserv.

014870881

WPI Acc No: 2002-691587/200274

New substituted carboxamides useful as antithrombotic agents

(Item 5 from file: 350) 10/26,TI/5

DIALOG(R) File 350: Derwent WPIX

(c) 2003 Thomson Derwent. All rts. reserv.

014727624

WPI Acc No: 2002-548328/200258

Therapeutic cooling for patient, uses central venous catheter with heat-exchange properties controlled by e.g. inflatable balloon, including also Foley catheter improvement for cooling urinary tract

10/26,TI/6 (Item 6 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2003 Thomson Derwent. All rts. reserv.

014541759

WPI Acc No: 2002-362462/200239

Kit of parts for intensive care unit patients, comprises central venous line catheter with elongate structure, anchor and element for heat exchange with central venous system, and instructions for use of catheter

(Item 7 from file: 350) 10/26,TI/7

DIALOG(R) File 350: Derwent WPIX

(c) 2003 Thomson Derwent. All rts. reserv.

014541751

WPI Acc No: 2002-362454/200239

Utilizing central venous line catheter by flushing first chemical through first lumen, removing guide wire from second lumen, and flushing second chemical through the second lumen

10/26, TI/8 (Item 8 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2003 Thomson Derwent. All rts. reserv.

014541750

WPI Acc No: 2002-362453/200239

. Venous line catheter system for access to the central venous blood supply of patient comprises pump feeding heating/ cooling agent at specified flow rate through heat exchange element

10/26,TI/9 (Item 9 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2003 Thomson Derwent. All rts. reserv.

014420916

WPI Acc No: 2002-241619/200229

New substituted heterocyclic amides are factor Xa inhibitors, useful as antithrombotic agents for treating, e.g. thrombosis, myocardial infarction and atherosclerotic disorders

10/26,TI/10 (Item 10 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2003 Thomson Derwent. All rts. reserv.

014406367

WPI Acc No: 2002-227070/200228

New 2-(3-ethylamino-2-oxo-1,2-dihydropyrazin-1-yl)-N-ethyl acetamide derivatives useful as thrombin inhibitors and associated thrombotic occlusions

10/26,TI/11 (Item 11 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2003 Thomson Derwent. All rts. reserv.

014326958

WPI Acc No: 2002-147661/200219

Amino substituted bicyclic compound useful for treating atherosclerosis, are obtained by coupling amino substituted 2-chromanyl derivative with benzoyl derivative via an amide bond

10/26,TI/12 (Item 12 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2003 Thomson Derwent. All rts. reserv.

014268879

WPI Acc No: 2002-089577/200212

Improved hypothermia medical procedure for cooling body of patient to below 35 degrees C using heat transfer device during beating heart procedures

10/26,TI/13 (Item 13 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2003 Thomson Derwent. All rts. reserv.

014196844

WPI Acc No: 2002-017541/200202

Coronary bypass procedure useful to induce hypothermia in connection with a medical procedure involves the use of a heat transfer element in a blood vessel of a patient

10/26,TI/14 (Item 14 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2003 Thomson Derwent. All rts. reserv.

014196437

WPI Acc No: 2002-017134/200202

New alpha-sulfonamido and alpha-sulfinamido containing carboxylic acid compounds are integrin antagonists, useful for preventing or treating thrombotic disorders e.g. acute coronary syndrome, myocardial infarction and unstable angina

10/26, TI/15 (Item 15 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2003 Thomson Derwent. All rts. reserv.

014141081

WPI Acc No: 2001-625292/200172

Reducing myocardial infarct by application of intra-vascular hypothermia using a heat exchange catheter inserted into a vein and advanced to the heart

10/26,TI/16 (Item 16 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2003 Thomson Derwent. All rts. reserv.

014123154

WPI Acc No: 2001-607366/200169

New pyridoxine phosphonate and malonate derivatives, useful for treating hypertension, myocardial ischemia, cardiovascular diseases, diabetes mellitus and related diseases

10/26,TI/17 (Item 17 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2003 Thomson Derwent. All rts. reserv.

014086271

WPI Acc No: 2001-570485/200164

Therapeutic hypothermia establishing kit e.g. for treating brain trauma and brain ischemia such as that caused by cardiac arrest by inducing hypothermia in patient

10/26,TI/18 (Item 18 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2003 Thomson Derwent. All rts. reserv.

013967562

WPI Acc No: 2001-451776/200148

Kit for treating cardiac arrest in patient, comprises catheter connected to coolant for placing in central venous system and catheter with fluid dispensing component connected to bolus of saline solution for placing in aortic arch

10/26,TI/19 (Item 19 from file: 350)

DIALOG(R)File 350:Derwent WPIX

(c) 2003 Thomson Derwent. All rts. reserv.

013924194

WPI Acc No: 2001-408407/200143

Treating stroke patients involves inducing hypothermia using heat exchange catheter

10/26,TI/20 (Item 20 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2003 Thomson Derwent. All rts. reserv.

013881867

WPI Acc No: 2001-366079/200138

New peptidyl heterocyclic compounds are selective factor Xa inhibitors useful as anticoagulants for treating thrombotic disorders and inhibiting coagulation in vitro

10/26,TI/21 (Item 21 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2003 Thomson Derwent. All rts. reserv.

013684541

WPI Acc No: 2001-168765/200117

System for intravascular cooling of patient's body for use in stroke therapy, comprises flexible cooling element having heat transfer segments connected with flexible joints, attached to catheter

10/26,TI/22 (Item 22 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2003 Thomson Derwent. All rts. reserv.

013577122

WPI Acc No: 2001-061329/200107

New organic derivatives as factor Xa inhibitors, useful for treating e.g. myocardial infarction, refractory angina or thrombotic stroke

10/26,TI/23 (Item 23 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2003 Thomson Derwent. All rts. reserv.

013547314

WPI Acc No: 2001-031520/200104

Kit for lowering and maintaining temperature of patient, has catheters of different cooling capacity for placement in patient's circulatory system

10/26,TI/24 (Item 24 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2003 Thomson Derwent. All rts. reserv.

013540925

WPI Acc No: 2001-025131/200103

New substituted alkylene derivatives, used to treat and prevent e.g. myocardial infarction, unstable angina, embolic and thrombotic stroke, transient ischemic attacks, venous thrombosis and pulmonary embolus, are inhibitors of factor Xa

10/26,TI/25 (Item 25 from file: 350)

DIALOG(R)File 350:Derwent WPIX

(c) 2003 Thomson Derwent. All rts. reserv.

```
013540924
```

WPI Acc No: 2001-025130/200103

New substituted alkylene derivatives, used to treat and prevent e.g. myocardial infarction, unstable angina, embolic and thrombotic stroke, transient ischemic attacks, venous thrombosis and pulmonary embolus, are inhibitors of factor Xa

10/26,TI/26 (Item 26 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2003 Thomson Derwent. All rts. reserv.

013540923

WPI Acc No: 2001-025129/200103

New substituted alkylene derivatives, used to treat and prevent e.g. myocardial infarction, unstable angina, embolic stroke, transient ischemic attacks, venous thrombosis and coagulopathy, are inhibitors of factor Xa

10/26, TI/27 (Item 27 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2003 Thomson Derwent. All rts. reserv.

013327039

WPI Acc No: 2000-498978/200044

Alkanoyl derivatives and their preparation as Factor Xa inhibitors useful for treating e.g. cardiovascular disorders such as restenosis

10/26, TI/28 (Item 28 from file: 350)

DIALOG(R)File 350:Derwent WPIX

(c) 2003 Thomson Derwent. All rts. reserv.

013303741

WPI Acc No: 2000-475676/200041

New pyridine-, pyrazine- or pyrimidine-carboxamide derivatives useful as anticoaqulants

10/26,TI/29 (Item 29 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2003 Thomson Derwent. All rts. reserv.

013065649

WPI Acc No: 2000-237521/200020

Catheter for inducing hyperthermia or hypothermia comprises an elongate flexible catheter, fluid lumen(s), a heat exchanger and a body-fluid channeling sleeve

10/26,TI/30 (Item 30 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2003 Thomson Derwent. All rts. reserv.

011750697

WPI Acc No: 1998-167607/199815

Pharmaco- hypothermia antegrade cardioplegia procedure - injecting carioplegic solution into left ventricle after clamping aorta and pulmonary trunk and massaging heart when asystolia is reached

PLEASE ENTER A COMMAND OR BE LOGGED OFF IN 5 MINUTES ?ds

Set Items Description

S1 99417 STROKE OR STROKES OR TIA

S2 1509 APOPLEXY OR (CEREBROVASCULAR OR VASCULAR) () ACCIDENT? ?

```
7699
              ISCHEMI? ?
S3
         821 HYPOTHERMI?
S4
S5
      894394 COOL OR COOLS OR COOLED OR COOLING
      943003 CATHETER? OR TUBE OR TUBES OR TUBULAR OR TUBING
56
       12386 VEIN? ? OR VENOUS OR VENA OR VENAE
S7
        6287 CANNULA?
S8
             S1:S3 AND S4:S5 AND S7 AND S6
          30
S 9
               S9 NOT S8
          30
S10
?t10/7/5,6,8,12,17,18,21,29
           (Item 5 from file: 350)
10/7/5
DIALOG(R) File 350: Derwent WPIX
(c) 2003 Thomson Derwent. All rts. reserv.
            **Image available** a duplicate
014727624
WPI Acc No: 2002-548328/200258
  Therapeutic cooling for patient, uses central venous
                                                          catheter with
 heat-exchange properties controlled by e.g. inflatable balloon, including
  also Foley catheter improvement for cooling urinary tract
Patent Assignee: ALSIUS CORP (ALSI-N)
Inventor: EVANS S M; LUO X; PECOR R; SHIMADA L M; WALKER B; WORTHERN W J
Number of Countries: 094 Number of Patents: 001
Patent Family:
                                           Kind
Patent No
             Kind
                    Date
                            Applicat No
                                                  Date
                                                           Week
WO 200258606 A1 20020801 WO 2001US2431 A
                                                20010124
                                                          200258 B
Priority Applications (No Type Date): WO 2001US2431 A 20010124
Patent Details:
Patent No Kind Lan Pg
                       Main IPC
                                    Filing Notes
WO 200258606 A1 E 30 A61F-007/12
   Designated States (National): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA
   CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP
   KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT
   RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW
   Designated States (Regional): AT BE CH CY DE DK EA ES FI FR GB GH GM GR
   IE IT KE LS LU MC MW MZ NL OA PT SD SE SL SZ TR TZ UG ZW
Abstract (Basic): WO 200258606 Al
       NOVELTY - The inventive device comprises an introducer sheath for a
    central venous catheter having a sheath body and temperature sensor
    mounted distally on the body. The catheter or sheath contains a
    heat-exchange region through which coolant is circulated, the coolant
    temperature being controlled in response to signals from the
    temperature sensor. The system also includes heat-exchange catheters
    for arterial dialysis and jugular vein cooling , and an improved
    Foley catheter for heat-exchange cooling via a patient's urinary
   tract.
       USE - For cooling a patient's blood temperature, and hence
    ameliorating possible fever 'spikes'.
       ADVANTAGE - Improves healing for patients suffering from severe
    brain trauma or ischemia resulting from stroke /heart attack, such
    protective short-term hypothermia being particularly applicable for
    patients undergoing minimally invasive heart/aneurysm surgery, the
    inventive system applying to patients already intubated with central
            catheters for other purposes, thus adding a blood- cooling
    catheter would require no additional surgery to be carried out.
        DESCRIPTION OF DRAWING(S) - The drawing illustrates an exploded
    view in perspective of a first embodiment of the inventive system for
    cooling using a venous
                              catheter .
       Therapeutic catheter system (10)
       Coolant supply line, and (14)
       Return line (16)
        Catheter (18)
        Sheath, having (42)
       Hollow body and (42A)
        Side port (43)
```

Proximal end (44)

Distal end (46)
Barrier for sealing after **catheter** introduction (48)
Temperature sensor, connected to (50)

Cooling system via (12)

Cable, wireless or fibreoptic connection through wall of sheath 12 (52)

pp; 30 DwgNo 1/9 Derwent Class: P32; P34

International Patent Class (Main): A61F-007/12

International Patent Class (Additional): A61M-025/10

10/7/6 (Item 6 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2003 Thomson Derwent. All rts. reserv.

014541759 **Image available**
WPI Acc No: 2002-362462/200239

Kit of parts for intensive care unit patients, comprises central venous line catheter with elongate structure, anchor and element for heat exchange with central venous system, and instructions for use of catheter

Patent Assignee: ALSIUS CORP (ALSI-N)

Inventor: ALIBERTO A C; EVANS S M; WORTHEN W J
Number of Countries: 097 Number of Patents: 002

Patent Family:

Patent No Kind Date Applicat No Kind Date Week WO 200226285 A2 20020404 WO 2001US30250 A 20010927 200239 B AU 200194800 A 20020408 AU 200194800 A 20010927 200252

Priority Applications (No Type Date): US 2000671114 A 20000928 Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes WO 200226285 A2 E 35 A61M-000/00

Designated States (National): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW Designated States (Regional): AT BE CH CY DE DK EA ES FI FR GB GH GM GR IE IT KE LS LU MC MW MZ NL OA PT SD SE SL SZ TR TZ UG ZW

AU 200194800 A A61M-000/00 Based on patent WO 200226285

Abstract (Basic): WO 200226285 A2

NOVELTY - A kit of parts comprises central venous (CV) line catheter (20) and instructions for use of CV line catheter. Catheter comprises elongate structure(s) configured for establishing CV access, heat exchange element(s), and CV line catheter suture anchor(s). Elongate structure has proximal and distal portions. Heat exchange element extends at least along distal portion for effecting heat exchange with CV system.

DETAILED DESCRIPTION - Elongate structure defines at least a first lumen in communication with exterior of structure at proximal and distal portions. CV line **catheter** suture anchor engage with exterior of elongate structure and includes structure configured to suturably affix elongate structure to patient.

USE - For use in access to central **venous** blood supply of patient, for use in intensive care unit (ICU) patients, particularly in patients who suffered **stroke** or other brain traumatic event, and neuro-ICU patients.

and a cantral venous catheter with additional capability of cooling or warming a patient, especially patient's blood. Hence, the patient temperature is effectively and precisely managed in a single device. The catheter enables access to the venous system by a single incision, and effectively reduces the risk of additional complications, with efficient cooling or warming of patient body temperature. The heat exchange relationship between the system and the central venous

system of the patient can be maintained for prolonged duration such as for 1 hour-29 days. The system effectively operates to maintain patient temperature at a desired level. The specific heat exchange fluid utilized, is biocompatible to avoid harm to the patient in the event of inadvertent rupture. By the multiple balloon design, the catheter has the ability of bend and flex when placed in a curved vasculature. The anchor enables the catheter to be maintained for prolonged period in the body.

DESCRIPTION OF DRAWING(S) - The figure shows a schematic diagram showing a central venous line catheter temperature control system.

Central venous line catheter (20)

pp; 35 DwgNo 1/9 Derwent Class: B07; P34

International Patent Class (Main): A61M-000/00

10/7/8 (Item 8 from file: 350) DIALOG(R) File 350: Derwent WPIX

(c) 2003 Thomson Derwent. All rts. reserv.

one of the onventors 014541750 **Image available**

WPI Acc No: 2002-362453/200239

Venous line catheter system for access to the central venous blood supply of patient comprises pump feeding heating/ cooling agent at specified flow rate through heat exchange element

Patent Assignee: ALSIUS CORP (ALSI-N)

Inventor: BALDING D P; BARKER P; EVANS S M; WALKER B D

Number of Countries: 095 Number of Patents: 002

Patent Family:

Patent No Kind Date Applicat No Kind Date Week WO 200226175 A1 20020404 WO 2001IB585 Α 20010409 200239 AU 200144461 20020408 AU 200144461 20010409 200252

Priority Applications (No Type Date): US 2000671114 A 20000928 Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes WO 200226175 A1 E 35 A61F-007/12

Designated States (National): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW Designated States (Regional): AT BE CH CY DE DK EA ES FI FR GB GH GM GR IE IT KE LS LU MC MW MZ NL OA PT SD SE SL SZ TR TZ UG ZW AU 200144461 A A61F-007/12 Based on patent WO 200226175

Abstract (Basic): WO 200226175 Al

NOVELTY - Venous line catheter system comprises a catheter having elongate structure(s) to establish central venous access, heat exchange element(s) extending along the distal portion of the structure, and a pump feeding heating/ cooling agent at 150-450 ml/minute through the heat exchange element. A lumen communicates with the exterior or the structure at its distal and proximal portions.

DETAILED DESCRIPTION - An INDEPENDENT CLAIM is also included for a method of operating a venous line catheter system.

USE - The venous line catheter system is used for access to the central venous blood supply of a patient. It is typically used in intensive care unit (ICU) patients, particularly those patients who have suffered a stroke or other brain traumatic event.

ADVANTAGE - The inventive catheter system has an additional capability of cooling a patient, thus effectively and precisely managing patient temperature in a single device. The cooling function is performed efficiently in tandem with a procedure, which is known to be likely attended by fever, thus anticipating such fever and facilitating its control. The heat exchange relationship between the system and the central **venous** system of the patient can be maintained for a prolonged duration, e.g. 1 hour to 29 days.

DESCRIPTION OF DRAWING(S) - The figure is a schematic side

elevational view of a central venous line catheter .

Balloon (24) pp; 35 DwgNo 2/9

Derwent Class: B07; P32

International Patent Class (Main): A61F-007/12

(Item 12 from file: 350) 10/7/12

DIALOG(R) File 350: Derwent WPIX

(c) 2003 Thomson Derwent. All rts. reserv.

014268879 **Image available** WPI Acc No: 2002-089577/200212

Improved hypothermia medical procedure for cooling body of patient to below 35 degrees C using heat transfer device during beating heart procedures

Patent Assignee: INNERCOOL THERAPIES INC (INNE-N); DOBAK J D (DOBA-I)

Inventor: DOBAK J D

Number of Countries: 094 Number of Patents: 003

Patent Family:

Date Applicat No Kind Date Week Patent No Kind A1 20011011 WO 2001US6880 A 20010305 200212 B WO 200174276 20011015 AU 200141963 Α 20010305 200214 AU 200141963 Α US 20020040717 A1 20020411 US 9812287 Α 19980123 200227 19980324 US 9847012 Α US 9852545 Α 19980331 US 98103342 Α 19980623 US 99292532 Α 19990415 US 99306866 Α 19990507 US 99373112 Α 19990811 US 2000539932 A 20000331 US 20018999 Α 20011207

Priority Applications (No Type Date): US 2000539932 A 20000331; US 9812287 A 19980123; US 9847012 A 19980324; US 9852545 A 19980331; US 98103342 A 19980623; US 99292532 A 19990415; US 99306866 A 19990507; US 99373112 A 19990811; US 20018999 A 20011207

Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes WO 200174276 A1 E 28 A61F-007/00

Designated States (National): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

Designated States (Regional): AT BE CH CY DE DK EA ES FI FR GB GH GM GR IE IT KE LS LU MC MW MZ NL OA PT SD SE SL SZ TR TZ UG ZW

A61F-007/00 AU 200141963 A US 20020040717 A1 A61F-007/00 Based on patent WO 200174276 CIP of application US 9812287

CIP of application US 9847012 CIP of application US 9852545

CIP of application US 98103342

CIP of application US 99292532

CIP of application US 99306866

CIP of application US 99373112

Div ex application US 2000539932

Abstract (Basic): WO 200174276 Al

NOVELTY - A working fluid supply (1) supplies a chilled aqueous solution via a catheter (12) and a heat transfer element (14) serving as the cooling tip of the flexible catheter , which is long enough to be passed through the vascular system and placed in the inferior vena cava. The body is cooled to less than 35 degrees C. to induce a bradycardia of the heart to facilitate surgery during a beating heart procedure.

DETAILED DESCRIPTION - AN INDEPENDENT CLAIM is included for a coronary bypass procedure.

USE - Inducing hypothermia during a medical heart procedure.

Derwent Class: P31; P32

International Patent Class (Main): A61B-019/00; A61F-007/00

(Item 18 from file: 350) 10/7/18 DIALOG(R) File 350: Derwent WPIX (c) 2003 Thomson Derwent. All rts. reserv. I of the ewentors 013967562 WPI Acc No: 2001-451776/200148 Kit for treating cardiac arrest in patient, comprises catheter connected to coolant for placing in central venous system and catheter with fluid dispensing component connected to bolus of saline solution for placing in aortic arch Patent Assignee: ALSIUS CORP (ALSI-N); BALDING D (BALD-I); EVANS S M (EVAN-I); LASERSOHN J W (LASE-I); WINTER S C (WINT-I); WORTHEN W J (WORT-I) Inventor: BALDING D; EVANS S M; LASERSOHN J W; WINTER S C; WORTHEN W J; BALDING D P Number of Countries: 088 Number of Patents: 007 Patent Family: Kind Date Kind Date Applicat No Week Patent No A 20010103 200148 B WO 200149236 A2 20010712 WO 2001US58 AU 200127542 A 20010716 AU 200127542 Α 20010103 200169 US 20010047191 A1 20011129 US 99253109 A 19990219 200202 A 19990311 US 99266452 US 99375079 A 19990816 A 20000104 US 2000477490 US 2001911370 A 20010724 US 20010047192 A1 20011129 US 99253109 A 19990219 200202 US 99266452 A 19990311 US 99375079 A 19990816 US 2000477490 A 20000104 US 2001911371 A 20010724 US 20010049545 A1 20011206 US 99253109 A 19990219 200203 US 99266452 US 99375079 A 19990311 A 19990816 US 2000477490 A 20000104 A 20010724 US 2001911369 A 19990219 US 6393320 B1 20020521 US 99253109 200239 US 99266452 19990311 Α US 99375079 19990816 Α 20000104 US 2000477490 Α US 2001911371 Α 20010724 20020611 US 99266452 US 6405080 B1 Α 19990311 200244 US 99375079 Α 19990816 US 2000477490 Α 20000104 Priority Applications (No Type Date): US 2000477490 A 20000104; US 99253109 A 19990219; US 99266452 A 19990311; US 99375079 A 19990816; US 2001911370 A 20010724; US 2001911371 A 20010724; US 2001911369 A 20010724 Patent Details: Patent No Kind Lan Pg Main IPC Filing Notes WO 200149236 A2 E 28 A61H-000/00 Designated States (National): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZA ZW Designated States (Regional): AT BE CH CY DE DK EA ES FI FR GB GH GM GR IE IT KE LS LU MC MW MZ NL OA PT SD SE SL SZ TR TZ UG ZW A61H-000/00 Based on patent WO 200149236 AU 200127542 A US 20010047191 A1 A61N-001/39CIP of application US 99253109 CIP of application US 99266452 CIP of application US 99375079 Div ex application US 2000477490

A61M-025/00

CIP of patent US 6149670

CIP of application US 99253109

US 20010047192 A1

```
CIP of application US 99266452
                                   CIP of application US 99375079
                                   Div ex application US 2000477490
                                   CIP of patent US 6149670
US 20010049545 A1
                      A61F-007/00
                                    CIP of application US 99253109
                                   CIP of application US 99266452
                                   CIP of application US 99375079
                                   Div ex application US 2000477490
                                   CIP of patent US 6149670
US 6393320
            B1
                     A61N-001/39
                                   CIP of application US 99253109
                                   CIP of application US 99266452
                                   CIP of application US 99375079
                                   Div ex application US 2000477490
                                   CIP of patent US 6149670
                                   CIP of application US 99266452
US 6405080
             В1
                      A61N-001/39
                                   CIP of application US 99375079
Abstract (Basic): WO 200149236 A2
       NOVELTY - The kit comprises a first catheter having fluid
    circulation passageway(s), which can be placed in a patient's central
   venous system and is connected to a coolant source, and a second
    catheter configured for at least partial placement in patient's aortic
    arch. The second catheter comprises a fluid dispensing component
    connectable to a bolus of saline solution.
       DETAILED DESCRIPTION - The kit further comprises component(s)
    containing drugs such as epinephrine, buffers, antiarrhythmics and/or
    atropine.
        INDEPENDENT CLAIMS are also included for the following:
        (1) treating cardiac arrest in a patient;
        (2) system for treating cardiac arrest in a patient
       USE - For treating cardiac arrest in a patient.
       ADVANTAGE - The system enables to reduce ischemia due to stroke
    or heart attack by cooling the patient below normal body temperature.
   The method improves the mortality rate of the patient and the
    neurological outcome of the patient. The cooling of patient is
   controllable, the kit is relatively easy to use and blood temperature
    can be maintained at a desired set point. The brain temperature can be
    reduced easily and quickly by the system, thereby reducing trauma.
       pp; 28 DwgNo 0/5
Derwent Class: B07; P32; P33; P34
International Patent Class (Main): A61F-007/00; A61H-000/00; A61M-025/00;
  A61N-001/39
 10/7/21
            (Item 21 from file: 350)
DIALOG(R) File 350: Derwent WPIX
(c) 2003 Thomson Derwent. All rts. reserv.
013684541
            **Image available**
WPI Acc No: 2001-168765/200117
  System for intravascular cooling of patient's body for use in stroke
  therapy, comprises flexible cooling element having heat transfer
  segments connected with flexible joints, attached to catheter
Patent Assignee: INNERCOOL THERAPIES INC (INNE-N)
Inventor: DOBAK J D
Number of Countries: 029 Number of Patents: 006
Patent Family:
                                                 Date
                            Applicat No
                                          Kind
                                                         Week
Patent No
             Kind
                    Date
                                               20000728 200117
             A1 20010215 WO 2000US20622 A
WO 200110365
                  20010305 AU 200067496 · A
                                               20000728 200130
AU 200067496
EP 1119321
              A1 20010801
                           EP 2000955269
                                           А
                                               20000728 200144
                            WO 2000US20622 A 20000728
                                           A 19990811 200172 ~
US 20010041923 A1 20011115 US 99373112
```

```
19980623 - 6 096, 068 ? selective
19990415 - Final 1
                             US 98103342
                                             Α
                                                 19990811 - NON Fma
                                             Α
                             US 99292532
                             US 99373112
                             บร์ 2002160611
                                                 20020530
                             US 9812287
                                                            200303
US 20020193855
                A1 20021219
                                              Α
                                                 19980123
                             US 9847012
                                                 19980324
                             us 9852545
                                                 19980331
                             us 98103342
                                                 19980623
                             US 99292532 ✓
                                                 19990415
                             us 99373112
                                             Α
                                                 19990811
                             US 2001907782
                                             Α
                                                 20010717
                             US 2002219735
                                                 20020815
                                             Α
Priority Applications (No Type Date): US 99373112 A 19990811; US 2001907782
  A 20010718; US 9812287 A 19980123; US 9847012 A 19980324; US 9852545 A
  19980331; US 98103342 A 19980623; US 99292532 A 19990415; US 2002160611 A
  20020530; US 2002219735 A 20020815
Patent Details:
Patent No Kind Lan Pg
                        Main IPC
                                     Filing Notes
WO 200110365 At E 42 A61F-007/00
   Designated States (National): AU CA JP
   Designated States (Regional): AT BE CH CY DE DK ES FI FR GB GR IE IT LU
   MC NL PT SE
                                     Based on patent WO 200110365
AU 200067496 A
                       A61F-007/00
                                     Based on patent WO 200110365
EP 1119321
              A1 E
                       A61F-007/00
   Designated States (Regional): AL AT BE CH CY DE DK ES FI FR GB GR IE IT
   LI LT LU LV MC MK NL PT RO SE SI
                                      Div ex application US 99373112
                        A61F-007/00
US 20010041923 A1
US 20020151946 A1
                        A61F-007/00
                                      CIP of application US 9812287
                                     CIP of application US 9847012
                                     CIP of application US 9852545
                                     CIP of application US 98103342
                                     CIP of application US 99292532
                                     Cont of application US 99373112
                                     CIP of patent US 5957963
                                     CIP of patent US 6051019
                                     CIP of patent US 6096068
                                     CIP of patent US 6231595
                        A61F-007/00
US 20020193855 A1
                                      CIP of application US 9812287
                                     CIP of application US 9847012
                                     CIP of application US 9852545
```

CIP of application US 9812287
CIP of application US 9847012
CIP of application US 9852545
CIP of application US 98103342
CIP of application US 99292532
Div ex application US 99373112
Div ex application US 2001907782
CIP of patent US 5957963
CIP of patent US 6051019
CIP of patent US 6096068

CIP of patent US 6231595

Abstract (Basic): WO 200110365 A1

NOVELTY - The system for intravascular cooling of a patient's body comprises a flexible catheter insertable into vena cavae, a flexible cooling element (14) having heat transfer segments (20,22,24) connected with flexible joints and attached to the distal end of catheter, and a heating blanket for heating selected portions of patient's body.

DETAILED DESCRIPTION - Each heat transfer segment comprises a number of interior surface irregularities like helical ridges (28,32,36) and grooves (26,30,34) which are shaped and arranged to mix the surrounding fluids. The flexible joints in the **cooling** element includes bellows (25,27) or a flexible **tube**. The helical ridges and grooves are twisted opposing the twist of the adjacent heat transfer segment. The heating blanket, preferably an electric heater employs a warm air blower and has air channels for evenly distributing air to selective areas. An INDEPENDENT CLAIM is also included for a method for intravascular **cooling** of a patient's body.

USE - For reducing platelet aggregation in blood vessels, reducing dependence on drug therapies in treating neurological insults or injuries resulting in ischemia , reducing cell damage during or after myocardial infarction, reducing stenoses recurrence following angioplasty and reducing reperfusion injury following reflow.

ADVANTAGE - The device effectively induces artificial state of hypothermia and indirectly cools the organs such as heart and brain which have high blood flow. The warming blanket or device applied on various parts of the body provides comfort to the patient and also inhibits thermoregulatory responses such as vasoconstriction. The disposable and flexible conductive heat transfer element effectively absorbs high amount of heat. The cooling system is administered safely and easily. The hypothermic therapy provides benefit to numerous cardiac and neural settings, for e.g. minimizing ischemic and stenoses.

DESCRIPTION OF DRAWING(S) - The figure shows the elevation of the an intravascular heat transfer element.

Flexible cooling element (14) Heat transfer segments (20,22,24) Bellows (25,27) Grooves (26, 30, 34)

Ridges (28, 32, 36)

pp; 42 DwgNo 3/9 Derwent Class: B07; P32

International Patent Class (Main): A61F-007/00

International Patent Class (Additional): A61F-007/12

(Item 29 from file: 350) 10/7/29

DIALOG(R) File 350: Derwent WPIX

(c) 2003 Thomson Derwent. All rts. reserv.

013065649 **Image available** WPI Acc No: 2000-237521/200020

Catheter for inducing hyperthermia or hypothermia comprises an elongate flexible catheter, fluid lumen(s), a heat exchanger and a body-fluid channeling sleeve

Patent Assignee: RADIANT MEDICAL INC (RADI-N) Inventor: DINEEN M T; GINSBURG R; MACHOLD T R Number of Countries: 089 Number of Patents: 006

Patent Family:

Patent No Kind Date Applicat No Kind Date Week WO 200010494 A1 20000302 WO 99US18939 Α 19990820 200020 B 20000314 AU 9955741 19990820 200031 AU 9955741 А Α A1 20010620 EP 99942341 19990820 200135 EP 1107714 Α WO 99US18939 Α 19990820 US 20010005791 A1 20010628 US 9315774 Α 19930210 200138 US 94324853 Α 19941018 US 96584013 Α 19960108 US 96769931 19961219 Α US 98138830 Α 19980824 US 2000739134 Α 20001215 US 20010047196 A1 20011129 US 9315774 A 19930210 200202 19941018 US 94324853 Α A 19960108 US 96584013 US 96769931 A 19961219 4.5 A 19980824 US 98138830 US 2000739427 A 20001215 JP 2002523138 W 20020730 WO 99US18939 A 19990820 200264 JP 2000565819 A 19990820

Priority Applications (No Type Date): US 98138830 A 19980824; US 9315774 A 19930210; US 94324853 A 19941018; US 96584013 A 19960108; US 96769931 A 19961219; US 2000739134 A 20001215; US 2000739427 A 20001215

Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes WO 200010494 A1 E 122 A61F-007/00

Designated States (National): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG UZ VN YU ZA ZW Designated States (Regional): AT BE CH CY DE DK EA ES FI FR GB GH GM GR IE IT KE LS LU MC MW NL OA PT SD SE SL SZ UG ZW A61F-007/00 AU 9955741 Based on patent WO 200010494 Α EP 1107714 A61F-007/00 Based on patent WO 200010494 Al E Designated States (Regional): AL AT BE CH CY DE DK ES FI FR GB GR IE IT LI LT LU LV MC MK NL PT RO SE SI A61F-007/00 US 20010005791 A1 CIP of application US 9315774 CIP of application US 94324853 CIP of application US 96584013 CIP of application US 96769931 Div ex application US 98138830 CIP of patent US 5486208 CIP of patent US 5837003 CIP of patent US 6033383 A61F-007/00 CIP of application US 9315774 US 20010047196 A1 CIP of application US 94324853 CIP of application US 96584013 CIP of application US 96769931 Div ex application US 98138830 CIP of patent US 5486208 CIP of patent US 5837003 CIP of patent US 6033383 106 A61F-007/12 JP 2002523138 W Based on patent WO 200010494

Abstract (Basic): WO 200010494 Al

NOVELTY - A **catheter** insertable into an anatomical structure of a mammalian patient through which body fluid may flow to a target region and is operative to effect in situ heat exchange with the body fluid to alter temperature of the target region comprises an elongate flexible **catheter** having two ends; at least one fluid lumen; a heat exchanger; and a body fluid channeling sleeve.

DETAILED DESCRIPTION - The catheter comprises an elongate flexible catheter having two ends, proximal and distal and the entire length of the catheter is defined as the distance from the proximal end to its distal end; at least one fluid lumen where the thermal exchange fluid may be circulated; a heat exchanger in the catheter to exchange heat between body fluid in heat exchange proximity to the heat exchanger and the heat exchange fluid circulating through the heat exchanger; a body fluid channeling sleeve (formed at a segment of the catheter where a portion of the heat exchanger is located) has a fluid flow space located between the channeling sleeve and the catheter with a body fluid inlet near the heat exchanger and an outlet far from the heat exchanger. The body fluid will enter the flow space through the body fluid inlet and flows through the flow space in heat exchange proximity to at least a portion of the heat exchanger and then out of the body fluid outlet to a conduit in fluid communication with the target region of the patient's body.

An INDEPENDENT CLAIM is also included for a system for controllably affecting the temperature of a patient comprising a **catheter** as above with an insertion portion extending from the distal end to a point short of the proximal end, a heat exchanger with fins extending from its surface increasing the surface area of the heat exchanger to enhance heat exchange; a sensor that generates a signal in response to the data sensed from the patient; a manual input where an operator may specify a target parameter; a controller unit for receiving the signal and the target parameter and controlling the operation of the **catheter** in response to the sensed data and in relation to the target parameter.

USE - To intentionally induce hyperthermia or hypothermia, particularly hypothermia in the body. Hypothermia is recognized in the medical community as a neuroprotectant during cardiovascular surgery or neurosurgery. It is also beneficial for victims of head trauma, brain attack (stroke), spinal surgery or surgery where blood

flow may be interrupted or compromised to the brain or spinal cord i.e. aneurysm repair.

ADVANTAGE - The heat exchange catheter is capable of heating or cooling liquid i.e. blood within the body and directing that liquid after it is heated or cooled to a target location (affecting the temperature of that target region) using only the patient's (mammalian) own heart as pump.

DESCRIPTION OF DRAWING(S) - A simplified perspective view of a variation of the heat transfer ${f catheter}$ in place within the left common carotid artery.

in-flow lumen (60)
finned balloon portion (362)
descending aorta (364)
blood vessel (366)
catheter shaft (368)

pp; 122 DwgNo 17A/24
Derwent Class: B07; P32; P34

International Patent Class (Main): A61F-007/00; A61F-007/12

International Patent Class (Additional): A61M-025/00; A61M-039/00

ADVANTAGE - Reduced risk of ischemia and or cardiac arrhythmia. DESCRIPTION OF DRAWING(S) - The drawing shows use of a heat transfer element.

Fluid supply (1)

Catheter (12)

Heat transfer element (14)

pp; 28 DwgNo 1/4

Derwent Class: P31; P32; S05

International Patent Class (Main): A61F-007/00

International Patent Class (Additional): A61B-019/00

10/7/17 (Item 17 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2003 Thomson Derwent. All rts. reserv.

014086271 **Image available**

one of the envintors WPI Acc No: 2001-570485/200164 Therapeutic hypothermia establishing kit e.g. for treating brain trauma and brain ischemia such as that caused by cardiac arrest by inducing

hypothermia in patient

Patent Assignee: ALSIUS CORP (ALSI-N)

Inventor: WORTHEN W J

Number of Countries: 094 Number of Patents: 003

Patent Family:

Patent No Kind Date Applicat No Kind Date Week A 20010202 200164 B WO 200156517 A1 20010809 WO 2001US3576 AU 200133296 A 20010814 AU 200133296 A 20010202 200173 US 6460544 B1 20021008 US 99266452 A 19990311 200269 US 2000498499 A 20000204

Priority Applications (No Type Date): US 2000498499 A 20000204; US 99266452 A 19990311

Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes

WO 200156517 A1 E 14 A61F-007/00

Designated States (National): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW Designated States (Regional): AT BE CH CY DE DK EA ES FI FR GB GH GM GR IE IT KE LS LU MC MW MZ NL OA PT SD SE SL SZ TR TZ UG ZW Based on patent WO 200156517 AU 200133296 A

A61F-007/00

US 6460544 CIP of application US 99266452 В1 A61B-019/00

Abstract (Basic): WO 200156517 A1

NOVELTY - The kit has a high cooling capacity catheter which is advanced into the patient's central venous system to quickly cool the patient to, e.g., 32 degrees C. Once hypothermia has been established, the high capacity catheter is removed and replaced with a lower cooling capacity catheter which maintains a desired reduced temperature.

DETAILED DESCRIPTION - An INDEPENDENT CLAIM is included for a method for establishing and maintaining a predetermined temperature in a patient

USE - For cooling patients for therapeutic purposes. For treating brain trauma and brain ischemia such as that caused by cardiac arrest by inducing hypothermia in a patient

ADVANTAGE - The lower capacity catheter can be configured as a central venous catheter for permitting catheter to be used for multiple functions. Alternatively, high cooling capacity catheter can be used to attenuate a fever and lower the patient's body temperature to normal, with the lower capacity catheter being used to maintain normal body temperature.

DESCRIPTION OF DRAWING(S) - The figure shows a flow chart of the invention for establishing and maintaining hypothermia in a patient. pp; 14 DwgNo 3/4

Set	Items	Description
S1	75408	'CEREBROVASCULAR ACCIDENT' OR DC='C10.228.140.300.301.' OR
	סמ	='C14.907.253.480.' OR 'APOPLEXY' OR 'CEREBRAL STROKE' OR '-
	CE	REBROVASCULAR APOPLEXY' OR 'STROKE' OR 'VASCULAR ACCIDENT, -
	BF	AIN' OR R10:R16
S2	5571	'CATHETERIZATION, CENTRAL VENOUS' OR DC='E2.148.167.' OR '-
	CE	NTRAL VENOUS CATHETERIZATION' OR 'VENOUS CATHETERIZATION, C-
	EN	TRAL'
\$3	168342	'BLOOD PRESSURE' OR DC='G9.330.612.114.' OR 'SYSTOLIC PRES-
•	SU	URE' OR R8:R11
S 4	9238	'HYPOTHERMIA, INDUCED' OR DC='E3.607.' OR 'ANESTHESIA, REF-
	RI	GERATION' OR 'CRYOANESTHESIA' OR 'GASTRIC HYPOTHERMIA' OR '-
	HI	BERNATION, ARTIFICIAL'
S5	0	S1 AND S2 AND S3 AND S4
s6	346	S1 AND S4
s7	0	S2 AND \$6
S8		S3 AND S6
S 9	126433	CATHETER?
S10	34601	CENTRAL()(VENOUS OR VEIN) OR VENA()CAVA
S11	4	S8 AND S9
S12	0	S10 AND S11

10669137 20213152 PMID: 10751100

Effects on dogs of surface-induced hypothermia and rewarming on the right heart function and pulmonary circulation.

Palo M; Lauri T; Timisjarvi J

University of Oulu, Department of Physiology, Finland.

European journal of applied physiology (GERMANY) Mar 2000, 81 (5) p391-6, ISSN 1439-6319 Journal Code: 100954790

Document type: Journal Article

Languages: ENGLISH

Main Citation Owner: NLM Record type: Completed

... To study the effects of hypothermia on the right heart function and pulmonary circulation, cardiac **catheterization** was carried out on nine anaesthetized beagle dogs. The dogs were cooled between ice bags...

Descriptors: **Hypothermia**, **Induced** --adverse effects--AE; *Pulmonary Circulation--physiology--PH; *Rewarming--adverse effects--AE; *Ventricular Function, Right...

; Blood Pressure --physiology--PH; Body Temperature--physiology--PH; Calibration; Cardiac Output--physiology--PH; Dogs; Electrocardiography; Heart Function Tests; Heart Rate--physiology--PH; Myocardial Contraction --physiology--PH; Stroke Volume--physiology--PH

11/3, K/2

DIALOG(R) File 155: MEDLINE(R)

09121463 97026442 PMID: 8872620

Cardiovascular responses to beta-stimulation with isoproterenol in deep hypothermia.

Lauri T

Department of Physiology, University of Oulu, Finland.

Journal of applied physiology (Bethesda, Md.: 1985) (UNITED STATES)

Aug 1996, 81 (2) p573-7, ISSN 8750-7587 Journal Code: 8502536

Document type: Journal Article

Languages: ENGLISH

Main Citation Owner: NLM Record type: Completed

...was to investigate the effects of beta-stimulation in deep (25 degrees C) hypothermia. Cardiac catheterization was performed on seven anesthetized beagle dogs. They were cooled between ice bags down to...

Descriptors: Adrenergic beta-Agonists--pharmacology--PD; *Hemodynamics-drug effects--DE; * Hypothermia, Induced; *Isoproterenol--pharmacology--PD; Algorithms; Blood Gas Analysis; Blood Pressure --drug effects--DE; Blood Pressure --physiology--PH; Body Temperature--drug effects--DE; Body Temperature--physiology--PH; Calibration; Dogs; Electrocardiography; Heart Rate--drug effects--DE; Heart Rate--physiology--PH; Stroke Volume--drug effects--DE; Stroke Volume--physiology--PH

11/3,K/3

DIALOG(R) File 155: MEDLINE(R)

04569063 84256422 PMID: 6146304

Increase of myocardial oxygen consumption due to active diastolic wall tension.

Baller D; Wolpers H G; Hoeft A; Korb H; Rosick A; Hellige G; Bretschneider H J

Basic research in cardiology (GERMANY, WEST) Mar-Apr 1984, 79 (2) p176-85, ISSN 0300-8428 Journal Code: 0360342

Document type: Journal Article

Languages: ENGLISH

Main Citation Owner: NLM

Record type: Completed

... on alterations in ventricular diastolic properties. 13 closed-chest experiments were carried out in clinical **catheterization** technique with situations of high PLVD (18-50 mm Hg) relative to volume induced by...

... wall tension (E5) was calculated from PLVD , mean ventricular diastolic volume estimated from endsystolic and ${f stroke}$ volume, diastolic time and heart rate in ml O2/min X 100 g. During pacing...

; Adrenergic beta-Antagonists--pharmacology--PD; **Blood Pressure**; Cardiac Pacing, Artificial; Cardiac Volume; Catecholamines--pharmacology --PD; Diastole; Dogs; Energy Metabolism; Heart Rate; Heart Ventricle --physiology--PH; **Hypothermia**, **Induced**; Myocardial Contraction--drug effects--DE; Tachycardia--physiopathology--PP

11/3,K/4 DIALOG(R)File 155:MEDLINE(R)

02643644 77231496 PMID: 881882

Induced hypothermia in dogs with acute myocardial infarction and shock.

Boyer N H; Gerstein M M

Journal of thoracic and cardiovascular surgery (UNITED STATES) Aug 1977 74 (2) p286-94, ISSN 0022-5223 Journal Code: 0376343

Document type: Journal Article

Languages: ENGLISH

Main Citation Owner: NLM Record type: Completed

... myocardial infarction with shock (AMI/S) was produced in 46 anesthetized "closed-chest" dogs by **catheter** injection of metallic mercury into the circumflex coronary artery. Twenty-four dogs were kept normothermic...

... and myocardial oxygen consumption by an estimated 30 to 40 percent, while cardiac output (CO), **stroke** volume, and **stroke** work were unchanged. Left ventricular end-diastolic pressure (LVEDP) was reduced by 40 percent during...

... percent on rewarming. HR during rewarming increased substantially more than CO and thereby significantly reduced **stroke** volume.

Descriptors: Disease Models, Animal; * Hypothermia, Induced; *Myocardial Infarction--physiopathology--PP; *Shock, Cardiogenic--physiopathology--PP; Acute Disease; Blood Pressure; Cardiac Output; Dogs; Heart --physiopathology--PP; Heart Block--physiopathology--PP; Heart Rate; Myocardial Contraction...

```
File 155:MEDLINE(R) 1966-2003/Jan W4
     5:Biosis Previews(R) 1969-2003/Jan W4
         (c) 2003 BIOSIS
File 73:EMBASE 1974-2003/Jan W4
         (c) 2003 Elsevier Science B.V.
File 34:SciSearch(R) Cited Ref Sci 1990-2003/Jan W4
         (c) 2003 Inst for Sci Info
File 434:SciSearch(R) Cited Ref Sci 1974-1989/Dec
         (c) 1998 Inst for Sci Info
File 144: Pascal 1973-2003/Jan W3
         (c) 2003 INIST/CNRS
       6:NTIS 1964-2003/Feb W1
File
         (c) 2003 NTIS, Intl Cpyrght All Rights Res
       2:INSPEC 1969-2003/Jan W3
File
         (c) 2003 Institution of Electrical Engineers
     8:Ei Compendex(R) 1970-2003/Jan W3
File
         (c) 2003 Elsevier Eng. Info. Inc.
File 99:Wilson Appl. Sci & Tech Abs 1983-2003/Dec
         (c) 2003 The HW Wilson Co.
File 65: Inside Conferences 1993-2003/Jan W4
         (c) 2003 BLDSC all rts. reserv.
File 94:JICST-EPlus 1985-2003/Nov W3
         (c)2003 Japan Science and Tech Corp(JST)
File 35:Dissertation Abs Online 1861-2003/Jan
        (c) 2003 ProQuest Info&Learning
       Items
                Description
Set
       315028 STROKE OR STROKES OR TIA
S1
       51588 (CEREBROVASCULAR OR VASCULAR) () ACCIDENT? ? OR APOPLEXY
S2
S3
       722604 ISCHEMI? ?
S4
      92445 HYPOTHERMI?
      619438 COOLING OR COOL OR COOLS OR COOLED
S5
     785812 (BLOOD OR ARTERIAL)()PRESSURE 449013 CATHETER?
S6
s7
     114597 CENTRAL()(VEIN OR VENOUS) OR VENA()CAVA
21087 HEAT()EXCHANGE
S8
       1256 S1:S3 AND S4:S5 AND S6
S10
        161 S8(S)S4:S5(S)S7
S11
          1 S10 AND S11
S12
S13 7174040 THERAP?/DE OR TREATMENT?/DE
      286 S10 AND S13
S14
      832723 VEIN OR VENOUS OR VENA OR VEINS
S15
       43 S14 AND S15
S16
           4 S7 AND S16
S17
          4 S17 NOT S12
S18
           2 RD (unique items)
S1.9
          79 S10 AND S7
S20
        58 S4:S5(S)S7 AND S20
S21
        14 S15 AND S21
25 S15 AND S20
20 S23 NOT (S12 OR S18)
14 RD (unique items)
S22
S23-
S24
S25
               S25/2003 OR S25/2002 OR S25/2001 OR S25/2000
S26
           3
         11 S25 NOT S26
209 S1:S3/DE AND S4:S5/DE AND S6/DE
S27
S28
       10 S7 AND S28
7 S29 NOT (S24 OR S12 OR S18)
7 RD (unique items)
2 S31/2003 OR S31/2002 OR S31/2001 OR S31/2000
S29
S30
S31
S32
          5 S31 NOT S32
s33
```

12/6/1 (Item 1 from file: 155) 05078840 86162025 PMID: 3830446

Cardiovascular adaptability to acute hypercalcemia in the dog. The role of peroperative myocardial ischemia]

Adaptabilite cardiovasculaire a une hypercalcemie aigue chez le chien. Role de l'ischemie myocardique peroperatoire.
1985

19/6/1 (Item 1 from file: 155) 10782160 20336783 PMID: 10876220

Retrograde venous perfusion with hypothermic saline and adenosine for protection of the ischemic spinal cord.

Jul 2000

19/6/2 (Item 1 from file: 73) 06407576 EMBASE No: 1996071109

Effect of mild hypothermia on ischemia -induced release of endothelin-1 in dog brain 1996

?t19/3,k/2

19/3,K/2 (Item 1 from file: 73)
DIALOG(R)File 73:EMBASE

(c) 2003 Elsevier Science B.V. All rts. reserv.

06407576 EMBASE No: 1996071109

Effect of mild hypothermia on ischemia -induced release of endothelin-1 in dog brain

Takasu A.; Yagi K.-I.; Okada Y.

Dept Traumatology Critical Care Med, National Defense Medical College,

3-2 Namiki, Tokorozawa, Saitama 359 Japan

Resuscitation (RESUSCITATION) (Ireland) 1996, 31/1 (59-64)

CODEN: RSUSB ISSN: 0300-9572 DOCUMENT TYPE: Journal; Article

LANGUAGE: ENGLISH SUMMARY LANGUAGE: ENGLISH

Effect of mild hypothermia on ischemia -induced release of endothelin-1 in dog brain

...in the physiologic or pathophysiologic regulation of cerebral circulation. To evaluate the effect of mild hypothermia on the cerebral concentration of ET-1 and on the cerebral metabolism of oxygen after complete global cerebral ischemia, we occluded the ascending aorta and caval veins of 9 dogs for 15 min. A fiberoptic catheter was inserted into the sagittal sinus to monitor venous oxygen saturation (S(SOinf 2)) continuously. Blood samples were collected 30 min before and 30 min, 1 h, 2 h, 4 h and 6 h after the ischemic insult. Concentrations of ET-1 were assayed in the blood of the sagittal sinus and...

...control Group 1 (pulmonary artery temperature 38.5degreeC) (n = 4) with those in the mildly **hypothermic** Group 2 (pulmonary artery temperature 34.0degreeC) (n = 5) by surface **cooling** induced before and maintained during and after **ischemia** for 6 h. Following **ischemia**, the plasma concentration difference of ET-1 (sagittal sinus-arterial) was significantly decreased in Group...

...05). Differences in S(SOinf 2) between the two groups were not statistically significant. Mild hypothermia reduced the ET-1 release in the cerebral circulation but did not improve cerebral oxygen metabolism after complete cerebral ischemia. Findings indicated that the decrease in ET-1 induced by mild hypothermia contributes to the improvement of the cerebral microcirculation after ischemia.

MEDICAL DESCRIPTORS:

*brain ischemia --etiology--et; *brain ischemia -- therapy --th; *
hypothermia

...tension; article; blood level; blood ph; brain oxygen consumption; controlled study; dog; heart output; mean arterial pressure; nonhuman; priority journal; superior sagittal sinus; venous oxygen tension

27/6/1 (Item 1 from file: 155) 09121463 97026442 PMID: 8872620

Cardiovascular responses to beta-stimulation with isoproterenol in deep hypothermia .

Aug 1996

27/6/2 (Item 2 from file: 155) 08715990 96069223 PMID: 7586433

Determinants of cerebral oxygenation during cardiac surgery. Nov $1\ 1995$

27/6/3 (Item 3 from file: 155) 05939473 89011068 PMID: 3049977

Simultaneous retrieval of the heart and liver from a single donor: an evaluation through preservation and transplantation.

Jul-Aug 1988

27/6/4 (Item 4 from file: 155) 04006781 83001549 PMID: 6981449

Continuous monitoring of mixed venous oxygen saturation in cardiac surgery.
Sep 1982

27/6/5 (Item 1 from file: 73) 07652541 EMBASE No: 1999139900

Segment VIII resection of the cirrhotic liver under continuous pringle maneuver with in situ cooling followed by temporary portal decompression 1999

27/6/6 (Item 2 from file: 73) 07033248 EMBASE No: 1997313264

Cerebral oxygenation during warming after cardiopulmonary bypass 1997

27/6/7 (Item 3 from file: 73) 05421057 EMBASE No: 1993189156

Long-term evaluation of prosthetic mitral valves in sheep 1993

27/6/8 (Item 1 from file: 34)

06152202 Genuine Article#: XY236 Number of References: 21

Title: The effects of intravenous anesthetics on intracranial pressure and cerebral perfusion pressure in two feline models of brain edema (ABSTRACT AVAILABLE)

Publication date: 19970900

27/6/9 (Item 2 from file: 34)

04916989 Genuine Article#: UR490 Number of References: 92

Title: THE EFFECT OF AGE ON SUSCEPTIBILITY TO BRAIN-DAMAGE IN A MODEL OF GLOBAL HEMISPHERIC HYPOXIA- ISCHEMIA (Abstract Available)

27/6/10 (Item 3 from file: 34)

04487732 Genuine Article#: TF735 Number of References: 26

Title: SEVOFLURANE IMPROVES NEUROLOGICAL OUTCOME AFTER INCOMPLETE CEREBRAL-ISCHEMIA IN RATS (Abstract Available)

27/6/11 (Item 4 from file: 34)

Number of References: 204 Genuine Article#: PE608 Title: MONITORING DURING PEDIATRIC CARDIAC ANESTHESIA (Abstract Available) ?t27/7/9

(Item 2 from file: 34) 27/7/9 DIALOG(R) File 34: SciSearch(R) Cited Ref Sci (c) 2003 Inst for Sci Info. All rts. reserv.

Genuine Article#: UR490 Number of References: 92 Title: THE EFFECT OF AGE ON SUSCEPTIBILITY TO BRAIN-DAMAGE IN A MODEL OF GLOBAL HEMISPHERIC HYPOXIA- ISCHEMIA

Author(s): YAGER JY; SHUAIB A; THORNHILL J

Corporate Source: ROYAL UNIV HOSP, DEPT PEDIAT NEUROL, 103 HOSP DR/SASKATOON/SK S7N 0W8/CANADA/; ROYAL UNIV HOSP, DEPT INTERNAL MED NEUROL/SASKATOON/SK S7N 0W8/CANADA/; ROYAL UNIV HOSP, DEPT PHYSIOL/SASKATOON/SK S7N 0W8/CANADA/; UNIV SASKATCHEWAN, COLL MED, SASKATCHEWAN STROKE RES CTR/SASKATOON/SK S7N 0W8/CANADA/

Journal: DEVELOPMENTAL BRAIN RESEARCH, 1996, V93, N1-2 (MAY 31), P143-154 ISSN: 0165-3806

Document Type: ARTICLE Language: ENGLISH

Abstract: Stroke occurs in all age groups, ranging from the newborn to the elderly. The immature brain is generally believed to be more resistant to the damaging effects of cerebrovascular compromise compared to the more mature brain. However, recent experiments suggest that the correlation between brain damage and age is not linear. To determine the effects of age and development on hypoxic- ischemic brain damage, we developed a model whereby rats of increasing age received identical cerebrovascular insults, and assessed neuropathologic outcome. Male Wistar rats of 1, 3, 6, and 9 weeks and 6 months underwent unilateral common carotid artery ligation and exposure to 12% oxygen for 35 min. Animals were all spontaneously breathing under Light halothane anesthesia (0.5%). Core temperatures were maintained at 37 degrees C. Blood pressures were monitored via indwelling carotid artery catheters on the side ipsilateral to the carotid artery ligation. Cerebral blood flow was assessed in separate groups utilizing Laser Doppler flowmetry. Physiologic monitoring revealed that under these experimental conditions, mean arterial blood

pressure and cerebral blood flow decreased to the same extent in each of the age groups, verifying that all animals experienced an identical insult. Neuropathologic assessment at 7 days of recovery showed that brain damage was most severe in the 1 and 3 week old animals followed by those that were 6 months. The 6 and 9 week old groups had significantly less injury than the other 3 age groups. Kippocampal damage was most severe in the 3 week and 6 month old rats compared to all other age groups. Our findings contrast previously held beliefs regarding the enhanced tolerance of the immature brain to hypoxic- ischemic damage and demonstrates that, in a physiologically controlled in vivo model of hemispheric global ischemia , (1) the immature brain is, in fact, less resistant to hypoxic- ischemic brain damage than its adult counterpart, (2) the brain damaging effects of hypoxic- ischemia are age dependent, but do not increase linearly with advancing age and development, and (3) the intermediate age groups are more tolerant to hypoxic- ischemic brain injury than either very young or more mature ages.

23/7,K/1 (Item 1 from file: 155)
DIALOG(R)File 155:MEDLINE(R)

10782160 20336783 PMID: 10876220

Retrograde venous perfusion with hypothermic saline and adenosine for protection of the ischemic spinal cord.

Parrino P E; Kron I L; Ross S D; Shockey K S; Fisher M J; Gaughen J R; Kallmes D F; Kern J A; Tribble C G

Departments of Surgery, Division of Thoracic and Cardiovascular Surgery, and Radiology, University of Virginia Health Sciences Center, Charlottesville, VA 22908, USA.

Journal of vascular surgery: official publication, the Society for Vascular Surgery and International Society for Cardiovascular Surgery, North American Chapter (UNITED STATES) Jul 2000, 32 (1) p171-8, ISSN 0741-5214 Journal Code: 8407742

Contract/Grant No.: 5F32HL09558; HL; NHLBI

Document type: Journal Article

Languages: ENGLISH

Main Citation Owner: NLM Record type: Completed

PURPOSE: Spinal cord injury and the resultant postoperative paraplegia are devastating complications of thoracic aortic surgery, for which no widely accepted protective interventions exist. We hypothesized that retrograde venous perfusion- cooling of the spinal cord with a hypothermic saline and adenosine solution would protect it from ischemic injury caused by thoracic aortic occlusion. METHODS: Adult domestic swine of either sex (weight range, 20 to 30 kg) were intubated and ventilated. A left thoracotomy was performed. The accessory hemiazygous vein was divided, and a catheter was inserted distally. The aorta was clamped at the left subclavian artery. The venous catheter was not used in the animals in the control group (n = 7); in the animals in the experimental group (n = 7), a cold (4 degrees C) saline and adenosine solution was infused into the accessory hemiazygous vein . After 30 minutes, the clamp and catheter were removed, and the chest was closed. A blinded observer evaluated the animals' hind-leg motor activity 24 hours later. The Tarlov scale was used: 0, complete paralysis; 1, minimal movement; 2, stands with assistance; 3, stands alone; 4, weak walk; 5, normal gait. The animals' rectal temperatures were measured at the end of the experiment, and blood pressure was measured throughout. Two other groups were studied to assess the effect of the intervention on spinal cord temperature. RESULTS: The animals in the control group had a mean Tarlov score of 1.7 \pm 0.6; the animals in the experimental group had a mean Tarlov score of 4.9 \pm 0.6 (P <.01). The animals in the experimental group had a significantly greater drop in spinal cord temperature than those in the control group (4. 05 +/- 0.6 degrees C vs 0.58 +/- 0.12 degrees C; P <.01). No significant difference in rectal temperatures was found, nor did any arrhythmias or hypotensive episodes occur in either group. Perfusion of the spinal cord was confirmed with angiography by using this approach. CONCLUSION: Retrograde venous perfusion- cooling of the spinal cord with a saline and adenosine solution protects the cord from hypothermic ischemic injury caused by clamping of the thoracic aorta.

Record Date Created: 20000802

Retrograde venous perfusion with hypothermic saline and adenosine for protection of the ischemic spinal cord.

... thoracic aortic surgery, for which no widely accepted protective interventions exist. We hypothesized that retrograde venous perfusion-cooling of the spinal cord with a hypothermic saline and adenosine solution would protect it from ischemic injury caused by thoracic aortic occlusion. METHODS: Adult domestic swine of either sex (weight range...

... to 30 kg) were intubated and ventilated. A left thoracotomy was performed. The accessory hemiazygous vein was divided, and a catheter was inserted distally. The aorta was clamped at the left subclavian artery. The venous catheter was not used in the animals in the control group (n = 7); in the animals...

... a cold (4 degrees C) saline and adenosine solution was infused into the accessory hemiazygous vein . After 30 minutes, the clamp and catheter were removed, and the chest was closed. A blinded observer evaluated the animals' hind-leg...

... normal gait. The animals' rectal temperatures were measured at the end of the experiment, and **blood pressure** was measured throughout. Two other groups were studied to assess the effect of the intervention...

... Perfusion of the spinal cord was confirmed with angiography by using this approach. CONCLUSION: Retrograde venous perfusion-cooling of the spinal cord with a hypothermic saline and adenosine solution protects the cord from ischemic injury caused by clamping of the thoracic aorta.

Descriptors: **Hypothermia**, Induced--methods--MT; *Intraoperative Complications--prevention and control--PC; * **Ischemia** --prevention and control--PC; *Perfusion--methods--MT; *Spinal Cord--blood supply--BS

23/7,K/2 (Item 2 from file: 155)
DIALOG(R)File 155:MEDLINE(R)

09121463 97026442 PMID: 8872620

Cardiovascular responses to beta-stimulation with isoproterenol in deep hypothermia .

Lauri T

Department of Physiology, University of Oulu, Finland.

Journal of applied physiology (Bethesda, Md.: 1985) (UNITED STATES)

Aug 1996, 81 (2) p573-7, ISSN 8750-7587 Journal Code: 8502536

Document type: Journal Article

Languages: ENGLISH

Main Citation Owner: NLM Record type: Completed

The aim of this study was to investigate the effects of beta-stimulation in deep (25 degrees C) hypothermia . Cardiac catheterization was performed on seven anesthetized beagle dogs. They were cooled between ice bags down to 25 degrees C and received isoproterenol administered intravenously three times: at the normal body temperature (37 degrees C) before cooling, after cooling at 25 degrees C, and after rewarming at 37 degrees C. Circulatory function was measured for every 1 degree C of temperature change. Isoproterenol infusion at 37 degrees C induced cardiac acceleration, including the increases of heart rate, cardiac output, and peak first derivative of the left ventricular pressure curve. Systemic vascular and mean outflow resistances and mean aortic pressure decreased. During cooling, shivering thermogenesis continued, even down to 25 degrees C. At 25 degrees C, cardiac acceleration after isoproterenol infusion did not exist but relaxation rate increased slightly. Systemic vascular and mean outflow resistances decreased, but left ventricular end-diastolic and filling pressures increased. beta-Stimulation at normal body temperature increases shivering thermogenesis during cooling . The return to the left ventricle at 25 degrees C increased after isoproterenol infusion while systemic vascular resistance decreased, indicating systemic vasodilatation. This increase in preload is probably due to vasoconstriction in pulmonary vessels, which may be mediated by prejunctional beta-adrenoceptors. For cardiac inotrophy, the isoproterenol had no physiologically significant effects at 25 degrees C. After rewarming at 37 degrees C, the effects of isoproterenol were physiologically similar to the effects at the same temperature before cooling .

Record Date Created: 19970123

Cardiovascular responses to beta-stimulation with isoproterenol in deep hypothermia .

... this study was to investigate the effects of beta-stimulation in deep (25 degrees C) hypothermia. Cardiac catheterization was performed on seven anesthetized beagle dogs. They were cooled between ice bags down to 25 degrees C and received isoproterenol administered intravenously three times: at the normal body temperature (37 degrees C) before cooling, after cooling at 25 degrees C, and after rewarming at 37 degrees C.

Circulatory function was measured...

... ventricular pressure curve. Systemic vascular and mean outflow resistances and mean aortic pressure decreased. During cooling, shivering thermogenesis continued, even down to 25 degrees C. At 25 degrees C, cardiac acceleration...

... diastolic and filling pressures increased. beta-Stimulation at normal body temperature increases shivering thermogenesis during **cooling**. The **venous** return to the left ventricle at 25 degrees C increased after isoproterenol infusion while systemic...

...the effects of isoproterenol were physiologically similar to the effects at the same temperature before ${f cooling}$.

Descriptors: Adrenergic beta-Agonists--pharmacology--PD; *Hemodynamics --drug effects--DE; * Hypothermia , Induced; *Isoproterenol--pharmacology --PD; Algorithms; Blood Gas Analysis; Blood Pressure --drug effects--DE; Blood Pressure --physiology--PH; Body Temperature--drug effects--DE; Body Temperature--physiology--PH; Calibration; Dogs; Electrocardiography; Heart Rate--drug effects--DE; Heart Rate--physiology--PH; Stroke Volume --drug effects--DE; Stroke Volume--physiology--PH

23/7,K/3 (Item 3 from file: 155)

DIALOG(R)File 155:MEDLINE(R)

08715990 96069223 PMID: 7586433

Determinants of cerebral oxygenation during cardiac surgery.

Nollert G; Mohnle P; Tassani-Prell P; Reichart B

Department of Cardiac Surgery, Klinikum Grosshadern, University of Munich, Germany.

Circulation (UNITED STATES) Nov 1 1995, 92 (9 Suppl) pII327-33,

ISSN 0009-7322 Journal Code: 0147763

Document type: Journal Article

Languages: ENGLISH

Main Citation Owner: NLM Record type: Completed

BACKGROUND: Neuropsychological deficits after cardiac surgery are attributed to the side effects of cardiopulmonary bypass (CPB). To protect the brain from ischemic damage, the influences of temperature, blood pressure, blood gases, acid-base status, and hemodilution on cerebral oxygenation have to be elucidated and quantified. METHODS: Forty-one consecutive patients were investigated during cardiac surgery while on CPB. Operative management included moderate hypothermia of 26 degrees C and the alpha-stat pH management. With near-infrared spectrophotometry, changes in oxygenated hemoglobin (HbO2, representing oxygen delivery) and oxidized cytochrome a,a3 (CtO2, cellular oxygenation) in brain tissue were obtained noninvasively. In addition, venous saturation of the brain was measured via a catheter in the jugular bulb (SBJO2). The influence of operative management parameters on cerebral oxygenation was calculated by univariate and multiple regression analyses. RESULTS: Before and after CPB there was no significant multivariate determinant of cerebral oxygenation. During CPB, HbO2 depended solely on PCO2 (P < .01; r = .89). CtO2 was determined by pH (P < .01), esophageal temperature (P < .01), PCO2 (P < .01), and Hb (P < .01). These parameters explained nearly all changes of the cytochrome measurements during CPB (r = .99). Arterial PCO2 (P < .01) and pH (P < .01) influenced brain **venous** oxygen saturation (SBJO2; r = .98). CONCLUSIONS: Cerebral oxygenation is autoregulated during cardiac surgery before and after CPB. During CPB, Hb, temperature, pH, and PCO2 determined at least 85% of all changes in cerebral oxygenation. The main causes of impaired oxygenation are the decrease in Hb with hemodilution, cerebral vasoconstriction due to hypocapnia, and the leftward shift of the Hb binding curve in alkalosis and hypothermia .

Record Date Created: 19951228

...are attributed to the side effects of cardiopulmonary bypass (CPB). To protect the brain from **ischemic** damage, the influences of temperature,

blood pressure , blood gases, acid-base status, and hemodilution on cerebral oxygenation have to be elucidated and...

... one consecutive patients were investigated during cardiac surgery while on CPB. Operative management included moderate **hypothermia** of 26 degrees C and the alpha-stat pH management. With near-infrared spectrophotometry, changes...

... oxidized cytochrome a,a3 (CtO2, cellular oxygenation) in brain tissue were obtained noninvasively. In addition, **venous** saturation of the brain was measured via a **catheter** in the jugular bulb (SBJO2). The influence of operative management parameters on cerebral oxygenation was...

... measurements during CPB (r=.99). Arterial PCO2 (P < .01) and pH (P < .01) influenced brain **venous** oxygen saturation (SBJO2; r=.98). CONCLUSIONS: Cerebral oxygenation is autoregulated during cardiac surgery before and...

... due to hypocapnia, and the leftward shift of the Hb binding curve in alkalosis and hypothermia

23/7,K/4 (Item 4 from file: 155)
DIALOG(R)File 155:MEDLINE(R)

05939473 89011068 PMID: 3049977

Simultaneous retrieval of the heart and liver from a single donor: an evaluation through preservation and transplantation.

Morishita Y; Harada T; Moriyama Y; Ikoma A; Koyanagi H; Kamimura R; Kumagae T; Hashiguchi M; Arikawa K; Taira A

Second Department of Surgery, Kagoshima University School of Medicine, Japan.

Journal of heart transplantation (UNITED STATES) Jul-Aug 1988, 7 (4) p269-73, ISSN 0887-2570 Journal Code: 8604172

Document type: Journal Article

Languages: ENGLISH

Main Citation Owner: NLM Record type: Completed

The simple, safe, and feasible procurement technique for the heart and liver with no warm <code>ischemic</code> time is reported. Fifteen mongrel dogs were used to form two recipients and one donor combination in each experiment. A midline incision is extended from the suprasternal notch to the pubis, and a catheter is advanced into the aortic root by means of the brachiocephalic artery for monitoring systemic arterial pressure and later for coronary vascular washout with a cold cardioplegic solution. Liver mobilization is carried out first when the core temperature of the liver reaches 27 degrees C, obtained with ice slush in the abdominal cavity. As the core temperature of the liver reaches 20 degrees to 22 degrees C, the aorta and inferior vena cava are clamped just above the diaphragm. After excision of the liver a second team harvests the heart while it continues to beat. The heart and liver were transplanted orthotopically after simple preservation into a cold solution for 12 and 6 hours, respectively. The maximum survival time was 7 hours in heart transplantation and 16 days in liver transplantation. Our method is a simple, safe, feasible technique for acquiring the heart and liver or other visceral for transplantation and may have broad clinical organs application.

Record Date Created: 19881115

The simple, safe, and feasible procurement technique for the heart and liver with no warm <code>ischemic</code> time is reported. Fifteen mongrel dogs were used to form two recipients and one donor...

... experiment. A midline incision is extended from the suprasternal notch to the pubis, and a **catheter** is advanced into the aortic root by means of the brachiocephalic artery for monitoring systemic **arterial pressure** and later for coronary vascular washout with a cold cardioplegic solution. Liver mobilization is carried...

... temperature of the liver reaches 20 degrees to 22 degrees C, the aorta and inferior **vena** cava are clamped just above the diaphragm. After excision of the liver a second team...

...; Triphosphate--metabolism--ME; Dogs; Graft Survival--drug effects--DE; Hypertonic Solutions--administration and dosage--AD; Hypothermia, Induced--methods--MT; Liver--metabolism--ME; Myocardial Contraction; Myocardium--metabolism--ME

23/7,K/5 (Item 5 from file: 155)
DIALOG(R)File 155:MEDLINE(R)

05078840 86162025 PMID: 3830446

Cardiovascular adaptability to acute hypercalcemia in the dog. The role of peroperative myocardial ischemia]

Adaptabilite cardiovasculaire a une hypercalcemie aigue chez le chien. Role de l'ischemie myocardique peroperatoire.

Dumont L; Stanley P; Chartrand C

Chirurgie pediatrique (FRANCE) 1985, 26 (6) p362-8, ISSN 0180-5738 Journal Code: 7804068

Document type: Journal Article ; English Abstract

Languages: FRENCH

Main Citation Owner: NLM Record type: Completed

Since the hemodynamic consequences of acute hypercalcemia are altered by interferences we have evaluated the role of peroperative myocardial ischemia on the adaptability to rapid calcium increment. Twenty-two dogs served as control and 16 were submitted to 1 hour of myocardial ischemia along with topical myocardial cooling . Each animal was equipped with blood flow transducer positioned around the ascending aorta and with central venous and aortic catheters . During each study 0.90 mEq of calcium was rapidly injected and hemodynamic data were recorded until base-line resetting. This experimental protocol was carried out 3 postoperatively and then daily during one month. Base-line hemodynamic data indicated the presence of myocardial failure in the experimental group in the immediate postoperative period only. Rapid calcium administration elicited transient positive inotropic response, widening of the arterial pulse pressure, reflex bradycardia and no evidence of peripheral vasoconstriction. In the early postoperative period (3 hours after surgery) the failing myocardium is more sensitive to the inotropic effect of hypercalcemia. Twenty-four hours after surgery both groups of animals have the same hemodynamic response to this stress; thereafter for both groups this response gradually decreased and finally stabilized by the 6th to 10th day after surgery. Acute hypercalcemia bears hemodynamic consequences that are amplified early after peroperative myocardial ischemia. However in long term this surgical component widely used clinically does not interfered with the cardiovascular adaptability to this pharmacological stress.

Record Date Created: 19860509

Cardiovascular adaptability to acute hypercalcemia in the dog. The role of peroperative myocardial ischemia]

Adaptabilite cardiovasculaire a une hypercalcemie aigue chez le chien. Role de l'ischemie myocardique peroperatoire.

... acute hypercalcemia are altered by numerous interferences we have evaluated the role of peroperative myocardial **ischemia** on the adaptability to rapid calcium increment. Twenty-two dogs served as control and 16 were submitted to 1 hour of myocardial **ischemia** along with topical myocardial **cooling**. Each animal was equipped with blood flow transducer positioned around the ascending aorta and with central **venous** and aortic **catheters**. During each study 0.90 mEq of calcium was rapidly injected and hemodynamic data were...

... day after surgery. Acute hypercalcemia bears hemodynamic consequences that are amplified early after peroperative myocardial **ischemia**. However in long term this surgical component widely used clinically does not interfered with the...

; Acid-Base Equilibrium--drug effects--DE; Adaptation, Physiological; Blood Pressure --drug effects--DE; Constriction; Dogs; Electrolytes --metabolism--ME; Heart--drug effects--DE; Intraoperative Period; Vascular

File 73:EMBASE 1974-2003/Jan W4 (c) 2003 Elsevier Science B.V. File 155:MEDLINE(R) 1966-2003/Jan W4

Set Items Description

S1 2 HYPOTHERMI? ? (S)CENTRAL()(VEIN OR VENOUS)(3N)CATHETER? (S-

)(STROKE OR ISCHEMI? ?)

RD (unique items)

2/3,K/1 (Item 1 from file: 73)

DIALOG(R) File 73: EMBASE

(c) 2003 Elsevier Science B.V. All rts. reserv.

11381550 EMBASE No: 2001397455

Anesthetic issues associated with midline transfacial approaches Dodson B.A.

Dr. B.A. Dodson, Department of Anesthesia, Box 0648, University of California, 521 Parnassus Avenue, San Francisco, CA 94142-0648 United

Operative Techniques in Neurosurgery (OPER. TECH. NEUROSURG.) (United

States) 2000, 3/1 (16-24) CODEN: OTNEF ISSN: 1092-440X DOCUMENT TYPE: Journal; Article

LANGUAGE: ENGLISH SUMMARY LANGUAGE: ENGLISH

NUMBER OF REFERENCES: 93

...and nutritional status in addition to cardiovascular, pulmonary, and neurologic systems. Pulmonary function and anti- ischemic and antihypertension therapies should be optimized before surgery. Careful perioperative airway management is required. Awake...

...must be sufficient to treat rapid and extensive blood loss. Invasive cardiovascular monitoring, such as **central venous catheters**, pulmonary artery **catheters**, or transesophageal echocardiography, may be necessary. Mild intraoperative hypothermia may be useful for brain protection...

2/3,K/2 (Item 1 from file: 155)

DIALOG(R)File 155:MEDLINE(R)

10885816 20409675 PMID: 10953555

[Comparison of preoperative and postoperative hemodynamic parameters in replacement or reconstruction of the mitral valve in ischemic dilated cardiomyopathy]

Uporedivanje preoperativnih i postoperativnih vrednosti hemodinamickih parametara kod zamene i rekonstrukcije mitralnog zaliska u ishemicnoj dilatativnoj kardiomiopatiji.

Mijatov M; Jonjev Z; Konstantinovic Z; Golubovic M; Radovanovic N Institut za kardiovaskularne bolesti Univerzitetska klinika zakardiovaskularnu hirurgiju, Sremska Kamenica.

Medicinski pregled (YUGOSLAVIA) Jan-Feb 2000, 53 (1-2) p68-73, ISSN 0025-8105 Journal Code: 2985249R

SSN 0025-8105 Journal Code: 2985249R
Document type: Journal Article; English Abstract

Languages: SERBO-CROATIAN (ROMAN)

Main Citation Owner: NLM Record type: Completed

INTRODUCTION: **Ischemic** mitral insufficiency is a clinical syndrome described as a consequence of the coronary artery disease...

... mitral annulus dilatation. Mitral regurgitation occurs in different degrees during the natural evolution of the **ischemic** heart disease. The main reason for the existence of mitral regurgitation is global deterioration in...

... and complete myocardial revascularisation. MATERIAL AND METHODS: Complete hemodynamic monitoring was followed by Swan-Ganz catheter including: central venous pressure, mean pulmonary artery pressure, pulmonary capillary wedge pressure, cardiac output, cardiac index and pulmonary...

```
File 95:TEME-Technology & Management 1989-2003/Jan W2
         (c) 2003 FIZ TECHNIK
File 98:General Sci Abs/Full-Text 1984-2003/Dec
         (c) 2003 The HW Wilson Co.
      9:Business & Industry(R) Jul/1994-2003/Jan 30
File
         (c) 2003 Resp. DB Svcs.
File 16:Gale Group PROMT(R) 1990-2003/Jan 30
         (c) 2003 The Gale Group
File 160: Gale Group PROMT(R) 1972-1989
         (c) 1999 The Gale Group
File 148: Gale Group Trade & Industry DB 1976-2003/Jan 31
         (c) 2003 The Gale Group
File 621: Gale Group New Prod. Annou. (R) 1985-2003/Jan 29
         (c) 2003 The Gale Group
File 149:TGG Health&Wellness DB(SM) 1976-2003/Jan W2
         (c) 2003 The Gale Group
File 636: Gale Group Newsletter DB(TM) 1987-2003/Jan 30
         (c) 2003 The Gale Group
File 441:ESPICOM Pharm&Med DEVICE NEWS 2003/Jan W4
         (c) 2003 ESPICOM Bus. Intell.
File 20:Dialog Global Reporter 1997-2003/Jan 31
         (c) 2003 The Dialog Corp.
File 15:ABI/Inform(R) 1971-2003/Jan 31
         (c) 2003 ProQuest Info&Learning
File 88:Gale Group Business A.R.T.S. 1976-2003/Jan 30
         (c) 2003 The Gale Group
File 442:AMA Journals 1982-2003/Apr B2
         (c) 2003 Amer Med Assn -FARS/DARS apply
File 444: New England Journal of Med. 1985-2003/Feb W1
         (c) 2003 Mass. Med. Soc.
               Description
       Items
Set ·
S1
       278579
               STROKE OR STROKES OR TIA
S2
        5292
               (CEREBROVASCULAR OR VASCULAR) () ACCIDENT? ? OR APOPLEXY
       49391 ISCHEMI? ?
S3
       10572 HYPOTHERMI?
S4
       641725 COOLING OR COOL OR COOLS OR COOLED
S5
      131435
               (BLOOD OR ARTERIAL) () PRESSURE
S6
       76696 CATHETER?
s7
        8893 CENTRAL()(VEIN OR VENOUS) OR VENA()CAVA
S8
       13895 HEAT () EXCHANGE
$9
          83
S10
               S1:S3(S)S4:S5(S)S6
S11
          12
               S7(S)S10
S12
           0
               S8(S)S11
           2
               S11/2003 OR S11/2002 OR S11/2001 OR S11/2000
S13
          10
               S11 NOT S13
S14
$15
          6
               RD (unique items)
```

15/8/2 (Item 2 from file: 148)

DIALOG(R) File 148: (c) 2003 The Gale Group. All rts. reserv.

03523328 SUPPLIER NUMBER: 06466795 (USE FORMAT 7 OR 9 FOR FULL TEXT)

A close look at Swan-Ganz catheters. (includes related article)

Feb 15, 1988

WORD COUNT: 2355 LINE COUNT: 00204

SPECIAL FEATURES: illustration; chart; graph; table

INDUSTRY CODES/NAMES: HLTH Healthcare

DESCRIPTORS: Cardiac catheterization--Evaluation; Heart attack--Care and

treatment

SIC CODES: 8011 Offices & clinics of medical doctors

FILE SEGMENT: TI File 148

15/8/3 (Item 1 from file: 149)

DIALOG(R) File 149: (c) 2003 The Gale Group. All rts. reserv.

01418046 SUPPLIER NUMBER: 13778797 (USE FORMAT 7 OR 9 FOR FULL TEXT)

Invasive evaluation of patients with heat stroke.

1993

WORD COUNT: 2927 LINE COUNT: 00311

SPECIAL FEATURES: illustration; table

DESCRIPTORS: Heatstroke--Care and treatment

FILE SEGMENT: HI File 149

15/8/4 (Item 1 from file: 442)

DIALOG(R)File 442:(c)2003 Amer Med Assn -FARS/DARS apply. All rts. reserv.

00055440

A Prolongation of Hepatic Vascular Exclusion by In Situ Hypothermic Perfusion in Dogs (Article)

1992;

15/8/5 (Item 2 from file: 442)

DIALOG(R) File 442: (c) 2003 Amer Med Assn -FARS/DARS apply. All rts. reserv.

00050074

Effects of Positive End-Expiratory Pressure on Splanchnic Circulation and

Function in Experimental Peritonitis (Article) 1991;

15/8/6 (Item 3 from file: 442)

DIALOG(R) File 442: (c) 2003 Amer Med Assn -FARS/DARS apply. All rts. reserv.

00045160

Copyright (C) 1989 American Medical Association

Multiple Cholesterol Emboli Syndrome; Bowel Infarction After Retrograde

Angiography (CLINICAL OBSERVATIONS)

1989;

LINE COUNT: 00244 WORD COUNT: 03371

?t15/3, k/1, 4

15/3,K/1 (Item 1 from file: 148)

DIALOG(R) File 148: Gale Group Trade & Industry DB

(c) 2003 The Gale Group. All rts. reserv.

09654480 SUPPLIER NUMBER: 19105645 (USE FORMAT 7 OR 9 FOR FULL TEXT) Effects of acadesine on myocardial infarction, stroke, and death following

surgery: a meta-analysis of the 5 international randomized trials. (Multicenter Study of Perioperative Ischemia - McSPI - Research Group)

Mangano, Dennis T.

JAMA, The Journal of the American Medical Association, v277, n4, p325(8)

Jan 22, 1997

ISSN: 0098-7484 LANGUAGE: English LINE COUNT: 00630 RECORD TYPE: Fulltext; Abstract

WORD COUNT: 7167

to receive placebo.

Study Protocol

Prior to surgery, investigators ascertained cardiac history and recorded cardiac catheterization information. The use of agents potentially affecting endogenous adenosine concentration (which could complicate the analysis...

- ...prior to bypass, the usual monitors were applied, anesthetic techniques were standardized, and hemodynamic variables (blood pressure , heart rate) were to be maintained within specific boundaries for trials 1013, 1016, and 1023...
- ...hemodynamic control were recommended. For all studies, prophylactic use of cardiovascular agents having potential anti- ischemic properties (nitrates, calcium channel blockers) was specifically excluded to avoid confounding data interpretation. During cardiopulmonary...
- ...typically was conducted using a membrane oxygenator and arterial filter with hemodilution and moderate systemic hypothermia . Following bypass, the use of inotropic and vasodilating agents (excluding the prophylactic use of anti- ischemic medications) and treatment of clinically detected ischemia were not controlled; all medications administered were recorded.

Outcomes

For all studies, the primary outcome...

(Item 1 from file: 442) 15/3,K/4 DIALOG(R) File 442:AMA Journals (c) 2003 Amer Med Assn -FARS/DARS apply. All rts. reserv.

00055440

A Prolongation of Hepatic Vascular Exclusion by In Situ Hypothermic Perfusion in Dogs (Article)

Takeuchi, Toshihiko, MD; Egawa, Hiroto, MD; Yamaoka, Yoshio, MD; Taki, Yoshiro, MD; Ueda, Junichi, MD; Konishi, Yasuhiko, MD; Yamamoto, Naritaka, MD; Kagawa, Ryuzaburo, MD; Washida, Masanobu, MD; Okamoto, Ryoji, MD; Kumada, Kaoru, MD; Ozawa, Kazue, MD ARCHIVES OF SURGERY 1992; 127: 427 (5)

- arterial saturation. Muscular relaxation was obtained with pancuronium bromide (0.2 mg/kg). Arterial blood pressure was monitored directly through a catheter inserted into the right carotid artery. An electrolyte solution containing 5% glucose was infused intravenously...
- ...was done with group U3, consisting of another five dogs, which underwent cooling the liver with the UW solution. /TABULAR DATA 3-hour HVE, OMITTED/ Experiment 2' Additional groups of 3...compared with values in group U2' (P<.05; Fig 4). COMMENT The in situ hepatic hypothermic perfusion method was first reported in 1971 by Fortner et al, $\sqrt{18}$, 19/ who perfused the liver with Ringer's solution chilled to 4 /degrees/ C under total HVE. Hepatic hypothermic perfusion, however, has drawn little attention, ever since Huguet et al /2/ and other researchers /4, 20/ the human liver can tolerate normothermic reported that resulting from HVE up to 65 minutes. Although Huguet's method is an attractive one...

...thrombi in the hepatic vein and/or IVC. A longer period of isolation, as

hepatic **hypothermic** perfusion would conceivably allow, could relieve the time constraints, for an accurate and unhurried operation...

- ... that hepatic mitochondria attain a greater state of oxidization after recirculation than before induction of **ischemia**. Although the precise mechanism remains to be clarified, this ...hepatocytes. University of Wisconsin solution is based on lactobionate and melitose as impermeants to suppress hypothermia -induced cell swelling. /30/ Its superiority to all existing cold storage solutions has been demonstrated...
- ...processes in the liver completely. In this regard, the method would more accurately be called **hypothermic** perfusion. A preliminary study showed that excessive **cooling** of the liver during HVE resulted in severe hemodynamic instability and death of the dogs...
- ... by this in situ perfusion method, effective means of thermal isolation that will allow the **cooling** of the liver without affecting body temperature must also be devised. Our study demonstrates the possibility of applying hepatic **hypothermic** perfusion with UW solution to preserve the liver in situ for the longer periods required...

```
File 155:MEDLINE(R) 1966-2003/Jan W4
      5:Biosis Previews (R) 1969-2003/Jan W4
File
         (c) 2003 BIOSIS
File 73:EMBASE 1974-2003/Jan W4
         (c) 2003 Elsevier Science B.V.
File 34:SciSearch(R) Cited Ref Sci 1990-2003/Jan W4
         (c) 2003 Inst for Sci Info
File 434:SciSearch(R) Cited Ref Sci 1974-1989/Dec
         (c) 1998 Inst for Sci Info
File 144: Pascal 1973-2003/Jan W3
         (c) 2003 INIST/CNRS
       6:NTIS 1964-2003/Feb W1
File
         (c) 2003 NTIS, Intl Cpyrght All Rights Res
File
      2:INSPEC 1969-2003/Jan W3
         (c) 2003 Institution of Electrical Engineers
      8:Ei Compendex(R) 1970-2003/Jan W3
File
         (c) 2003 Elsevier Eng. Info. Inc.
File 99:Wilson Appl. Sci & Tech Abs 1983-2003/Dec
         (c) 2003 The HW Wilson Co.
     65:Inside Conferences 1993-2003/Jan W4
File
         (c) 2003 BLDSC all rts. reserv.
File 94:JICST-EPlus 1985-2003/Nov W3
         (c) 2003 Japan Science and Tech Corp(JST)
File 35:Dissertation Abs Online 1861-2003/Jan
         (c) 2003 ProQuest Info&Learning
       Items
                Description
                STROKE OR STROKES OR TIA
S1
      315028
               APOPLEXY OR (CEREBROVASCULAR OR VASCULAR) () ACCIDENT? ?
S2
       51588
s3
      722604
               ISCHEMI? ?
       92445 HYPOTHERMI?
S4
S5
      619438 COOL OR COOLS OR COOLED OR COOLING
S6
     1403685 CATHETER? OR TUBE OR TUBES OR TUBULAR OR TUBING
      840702 VEIN? ? OR VENOUS OR VENA OR VENAE
s7
               S1:S3 AND S4:S5 AND S6 AND S7
         192
S8
        57757
                S6(5N)S7
S 9
          75
               S8 AND S9
S10
                S4:S5(S)S9
S11
          315
                S10 AND S11
          58
S12
      675032
                S1:S3/TI,DE
S13
                S12 AND S13
S14
          31
                RD (unique items)
          17
S15
           7
                S15/2003 OR S15/2002 OR S15/2001 OR S15/2000
S16
          10
                S15 NOT S16
s17
          10
              Sort S17/ALL/PY,D
S18
```

18/6/1 (Item 1 from file: 73) 10851628 EMBASE No: 2000333006

Minimally invasive cardiac surgery: Surgical techniques and anaesthetic management

CHIRURGIE CARDIAQUE MINI-INVASIVE: TECHNIQUES CHIRURGICALES ET PARTICULARITES ANESTHESIQUES

1999

18/6/2 (Item 2 from file: 155) 09756010 98174523 PMID: 9513337

Mild hypothermia anesthesia for carotid microendoarterectomy in a patient with ischemic heart disease]
Feb 1998

18/6/3 (Item 3 from file: 155) 09683990 98120562 PMID: 9458941

Organ pathology following mild hypothermia used as neural rescue therapy in newborn piglets.

18/6/4 (Item 4 from file: 94)
03424103 JICST ACCESSION NUMBER: 98A0124583 FILE SEGMENT: JICST-E
Basic and Clinical Meanings of Oxygen Saturation Measured in Internal
Jugular Venous Bulb., 1997

18/6/5 (Item 5 from file: 155) 08939010 96298749 PMID: 8725410

Hepatic blood flow and right ventricular function during cardiac surgery assessed by transesophageal echocardiography.

Apr 1996

18/6/6 (Item 6 from file: 5) 08838767 BIOSIS NO.: 199395128118

Association between gastric intramucosal pH and splanchnic endotoxin, antibody to endotoxin, and tumor necrosis factor-alpha concentrations in patients undergoing cardiopulmonary bypass.

1993

18/6/7 (Item 7 from file: 73) 05617947 EMBASE No: 1994011017

Potassium substitution during coronary bypass surgery - Potassium magnesium aspartate versus potassium chloride

KALIUMSUBSTITUTION BEI KORONARCHIRURGISCHEN EINGRIFFEN: Ksup +-MGsup +sup +-ASPARTAT-KOMPLEX (INZOLEN(R)) VERSUS KALIUMCHLORID 1993

18/6/8 (Item 8 from file: 5) 07374782 BIOSIS NO.: 000091001462

SYSTEMIC PATTERN OF FREE RADICAL GENERATION DURING CORONARY BYPASS SURGERY 1990

18/6/9 (Item 9 from file: 155) 05078840 86162025 PMID: 3830446

Cardiovascular adaptability to acute hypercalcemia in the dog. The role of peroperative myocardial ischemia]

Adaptabilite cardiovasculaire a une hypercalcemie aigue chez le chien. Role de l'ischemie myocardique peroperatoire.
1985

18/6/10 (Item 10 from file: 5) 04199042 BIOSIS NO.: 000077025086

MYO CARDIAL PRESERVATION EFFECT OF VENOUS DRAINAGE

1983

?t18/3,k/9,10

18/3,K/9 (Item 9 from file: 155) DIALOG(R)File 155:MEDLINE(R)

05078840 86162025 PMID: 3830446

Cardiovascular adaptability to acute hypercalcemia in the dog. The role of peroperative myocardial ischemia]

Adaptabilite cardiovasculaire a une hypercalcemie aigue chez le chien. Role de l'ischemie myocardique peroperatoire.

Dumont L; Stanley P; Chartrand C

Chirurgie pediatrique (FRANCE) 1985, 26 (6) p362-8, ISSN 0180-5738

Journal Code: 7804068

Document type: Journal Article ; English Abstract

Languages: FRENCH
Main Citation Owner: NLM
Record type: Completed

Cardiovascular adaptability to acute hypercalcemia in the dog. The role of peroperative myocardial ischemia]

Adaptabilite cardiovasculaire a une hypercalcemie aigue chez le chien. Role de l'ischemie myocardique peroperatoire.

... acute hypercalcemia are altered by numerous interferences we have evaluated the role of peroperative myocardial <code>ischemia</code> on the adaptability to rapid calcium increment. Twenty-two dogs served as control and 16 were submitted to 1 hour of myocardial <code>ischemia</code> along with topical myocardial <code>cooling</code>. Each animal was equipped with blood flow transducer positioned around the ascending aorta and with central <code>venous</code> and aortic <code>catheters</code>. During each study 0.90 mEq of calcium was rapidly injected and hemodynamic data were...

... day after surgery. Acute hypercalcemia bears hemodynamic consequences that are amplified early after peroperative myocardial **ischemia**. However in long term this surgical component widely used clinically does not interfered with the...

18/3,K/10 (Item 10 from file: 5)
DIALOG(R)File 5:Biosis Previews(R)
(c) 2003 BIOSIS. All rts. reserv.

04199042 BIOSIS NO.: 000077025086

MYO CARDIAL PRESERVATION EFFECT OF VENOUS DRAINAGE

AUTHOR: BENNETT E V JR; FEWEL J G; GROVER F L; TRINKLE J K

AUTHOR ADDRESS: DIVISION OF CARDIOTHORACIC SURGERY, UTHSCSA, 7703 FLOYD CURL DR, SAN ANTONIO, TEXAS 78284.

JOURNAL: ANN THORAC SURG 36 (2). 1983. 132-142. 1983

FULL JOURNAL NAME: Annals of Thoracic Surgery

CODEN: ATHSA

RECORD TYPE: Abstract LANGUAGE: ENGLISH

MYO CARDIAL PRESERVATION EFFECT OF VENOUS DRAINAGE

ABSTRACT: The effect of 3 methods of **venous** drainage on myocardial temperature, coronary blood flow as determined with radioactive microspheres, myocardial metabolites (lactate...

...and glycogen), and left ventricular function were compared before, during and after cardiopulmonary bypass with **hypothermic**, hyperkalemic cardioplegic arrest. **Venous** drainage was established in the 6 dogs in group 1 using a Sarns 51F cavoatrial **catheter**, in the 7 dogs in group 2

using 2 USCI 32F vena caval catheters with tourniquets, and in the 7 dogs in group 3 using 2 USCI 32F vena caval catheters without tourniquets. The lowest myocardial temperature was achieved in group 1 (7.26.degree. .+-. 0...

- ...and lactate levels were similar in all 3 groups. Myocardial glycogen levels were maintained during **ischemia** in group 1 (1010 .+-. 76 mg/dl compared with 686 .+-. 39 mg/dl in group...
- ...Left ventricular function, as measured by the maximum rate of rise of left ventricular pressure, **stroke** work and pressure/volume curves, was similar in all groups. The postischemic blood flow data, glycogen levels and ventricular compliance differences suggest that the dogs in group 1 had less **ischemia**.

DESCRIPTORS: DOG CORONARY BLOOD FLOW ISCHEMIA HYPO THERMIA LACTATE ATP GLYCOGEN

File 155:MEDLINE(R) 1966-2003/Jan W4

Set	Items Description
S1	95991 'CEREBROVASCULAR ACCIDENT' OR DC='C10.228.140.300.301.' OR
	DC='C14.907.253.480.' OR 'APOPLEXY' OR 'CEREBRAL STROKE' OR '-
	CEREBROVASCULAR APOPLEXY' OR 'STROKE' OR 'VASCULAR ACCIDENT, -
	BRAIN' OR R9:R16
S2	5571 'CATHETERIZATION, CENTRAL VENOUS' OR DC='E2.148.167.' OR '-
	CENTRAL VENOUS CATHETERIZATION' OR 'VENOUS CATHETERIZATION, C-
	ENTRAL'
s3	9238 'HYPOTHERMIA, INDUCED' OR DC='E3.607.' OR 'ANESTHESIA, REF-
	RIGERATION' OR 'CRYOANESTHESIA' OR 'GASTRIC HYPOTHERMIA' OR '-
	HIBERNATION, ARTIFICIAL'
S4	0 S1 AND S2 AND S3
S 5	9 S2 AND S3
S6	1 S5/2003 OR S5/2002 OR S5/2001 OR S5/2000
S*7	8 S5 NOT S6
D-1	0 55 NOT 50

08840539 96196052 PMID: 8610907

Jugular venous bulb oxyhemoglobin saturation during cardiac surgery: accuracy and reliability using a continuous monitor.

May 1996

Tags: Comparative Study; Human; Support, Non-U.S. Gov't; Support, U.S. Gov't, P.H.S.

Descriptors: *Coronary Artery Bypass; *Jugular Veins; *Monitoring, Intraoperative--instrumentation--IS; *Oxyhemoglobins--analysis--AN; Aged; Cardiopulmonary Bypass; Catheterization, Central Venous --instrumentation --IS; Feasibility Studies; Fiber Optics--instrumentation--IS; Heart Valves --surgery--SU; Hypothermia, Induced; Linear Models; Middle Age; Monitoring, Intraoperative--statistics and numerical data--SN; Oximetry --instrumentation--IS; Oxygen--blood--BL; Reproducibility of Results; Rewarming; Surgical Procedures, Elective

CAS Registry No.: 0 (Oxyhemoglobins); 7782-44-7 (Oxygen)

7/8/2

DIALOG(R) File 155: MEDLINE(R)

08727690 96087644 PMID: 7488786

New technique for retrograde cerebral perfusion during arch aneurysm repair.

Sep 1995

Tags: Human

Descriptors: *Aortic Aneurysm--surgery--SU; *Aortic Aneurysm, Thoracic --surgery--SU; *Cerebrovascular Circulation; Aneurysm, Dissecting--surgery --SU; Brain Damage, Chronic--prevention and control--PC; Cardiopulmonary Bypass--instrumentation--IS; Catheterization, Central Venous --instrumentation--IS; Equipment Design; Heart Arrest, Induced; Hypothermia, Induced; Monitoring, Intraoperative; Transducers, Pressure; Vena Cava, Superior

7/8/3

DIALOG(R) File 155: MEDLINE(R)

08712806 96078768 PMID: 7579110

Continuous versus intermittent cardiac output measurement in cardiac surgical patients undergoing hypothermic cardiopulmonary bypass.

Aug 1995

Tags: Human

Descriptors: Cardiac Output; *Cardiopulmonary Bypass--methods--MT; *
Hypothermia, Induced; *Myocardial Revascularization; *Thermodilution
--methods--MT; Adult; Aged; Anesthesia, General; Bias (Epidemiology); Blood;
Body Temperature; Catheterization, Central Venous --instrumentation--IS;
Data Display; Middle Age; Monitoring, Intraoperative; Prospective Studies;
Respiration; Rewarming; Sensitivity and Specificity; Thermodilution
--statistics and numerical data--SN; Time Factors

7/8/4

DIALOG(R) File 155: MEDLINE(R)

08540242 95299072 PMID: 7780080

Case 2--1995. Continuous retrograde cerebral perfusion as an adjunct to brain protection during deep hypothermic systemic circulatory arrest.

Apr 1995

Tags: Case Report; Human; Male

Descriptors: Brain Ischemia--prevention and control--PC; *Cerebrovascular Circulation; *Heart Arrest, Induced; *Hypothermia, Induced; *Hypoxia, Brain--prevention and control--PC; Adult; Aortic Aneurysm--surgery--SU; Aortic Aneurysm, Thoracic--surgery--SU; Aortic Valve Insufficiency--surgery--SU; Cardiopulmonary Bypass; Catheterization, Central Venous;

Electroencephalography; Heart Arrest, Induced--methods--MT; Heart Valve Prosthesis; Hypothermia, Induced --methods--MT; Perfusion

7/8/5

DIALOG(R) File 155: MEDLINE(R)

07412522 92344454 PMID: 1637214

Hypothermic thoracic and thoracoabdominal aneurysm operation: a central cannulation technique.

Aug 1992

Tags: Human; Male

Descriptors: Aortic Aneurysm--surgery--SU; *Catheterization--methods--MT; * Hypothermia, Induced ; Aged; Aorta, Abdominal; Aorta, Thoracic; Catheterization, Central Venous --methods--MT; Constriction; Methods; Middle Age; Postoperative Complications

7/8/6

DIALOG(R) File 155:MEDLINE(R)

07343781 92277904 PMID: 1593811

[Selective jugular cannulation for hypothermic retrograde cerebral perfusion in thoracic aortic operations (reverse over the wire-catheter method)]

May 1992

Tags: Case Report; Female; Human

Descriptors: Aorta, Thoracic--surgery--SU; * Catheterization, Central Venous --methods--MT; *Cerebrovascular Circulation; * Hypothermia, Induced; *Jugular Veins; Heart Atrium; Middle Age; Perfusion--methods--MT

7/8/7

DIALOG(R) File 155: MEDLINE(R)

07168364 92095758 PMID: 1728241

Retrograde cerebral perfusion through a superior vena caval cannula protects the brain.

Jan 1992

Tags: Animal; Support, Non-U.S. Gov't

Descriptors: *Brain Ischemia--prevention and control--PC; *Cerebrovascular Circulation; *Perfusion--methods--MT; Aorta, Thoracic --surgery--SU; Carbon Dioxide--blood--BL; Cardiopulmonary Bypass; Catheterization, Central Venous; Dogs; Hypothermia, Induced; Oxygen Consumption--physiology--PH; Vascular Resistance--physiology--PH CAS Registry No.: 124-38-9 (Carbon Dioxide)

7/8/8

DIALOG(R) File 155: MEDLINE(R)

07010434 91322453 PMID: 1863743

Increased pulmonary artery perforating potential of pulmonary artery catheters during hypothermia.

Jun 1991

Tags: Human

Descriptors: Balloon Dilatation-adverse effects-AE; *Heart Catheterization-adverse effects-AE; *Hypothermia, Induced; *Pulmonary Artery-injuries-IN; Balloon Dilatation-instrumentation-IS; Catheterization, Central Venous --adverse effects-AE; Catheterization, Central Venous --instrumentation-IS; Cold--adverse effects-AE; Equipment Design; Heart Catheterization-instrumentation-IS; Membranes, Artificial; Models, Biological; Polyethylenes; Polyvinyl Chloride; Surface Properties CAS Registry No.: 0 (Polyethylenes); 9002-86-2 (Polyvinyl Chloride) ?t7/7/2,4-7

08727690 96087644 PMID: 7488786

New technique for retrograde cerebral perfusion during arch aneurysm repair.

Bartoccioni S; Lanzillo G; deJong A A; Fiaschini P; Martinelli G; Fedeli C; Di Lazarro D; Mercati U

Division of Cardiac Surgery, Ospedale R. Silvestrini, Perugia, Italy. Journal of cardiac surgery (UNITED STATES) Sep 1995, 10 (5) p592-3, ISSN 0886-0440 Journal Code: 8908809

Document type: Journal Article

Languages: ENGLISH
Main Citation Owner: NLM
Record type: Completed

Many techniques are used to reduce brain damage during surgery for dissecting aneurysms of the ascending aorta and arch. Recently, new techniques of protection were proposed, consistent with hypothermic circulatory arrest in association with retrograde cerebral perfusion via superior vena cava. We propose a simple, time-saving method, which does not require any manipulation of the heart. We use a multilumen cannula for cardioplegia (D 860-DIDECO FUNDARO') with pressure transducer. This cannula is inserted in superior vena cava by means of a simple purse-string, and linked to the arterial line with a "Y" derivation, allowing retrograde perfusion of the brain and monitoring the perfusion pressure at every moment. The superior vena cava placed downstream from the cannula is closed by a small vascular clamp, to avoid blood reflux in the right atrium. This method is time- and money-saving, is readily available, and can be prepared whenever necessary, also in the middle of the surgical procedure.

Record Date Created: 19960104

7/7/4

DIALOG(R) File 155: MEDLINE(R)

08540242 95299072 PMID: 7780080

Case 2--1995. Continuous retrograde cerebral perfusion as an adjunct to brain protection during deep hypothermic systemic circulatory arrest.

McLoughlin T M; Carter W R; King C D

Anesthesia and Operative Service, Walter Reed Army Medical Center, Washington, DC 20307, USA.

Journal of cardiothoracic and vascular anesthesia (UNITED STATES) Apr 1995, 9 (2) p205-14, ISSN 1053-0770 Journal Code: 9110208

Document type: Clinical Conference; Journal Article

Languages: ENGLISH

Main Citation Owner: NLM Record type: Completed

Record Date Created: 19950720

7/7/5

DIALOG(R) File 155: MEDLINE(R)

07412522 92344454 PMID: 1637214

Hypothermic thoracic and thoracoabdominal aneurysm operation: a central cannulation technique.

Westaby S

Oxford Heart Centre, John Radcliffe Hospital, England.

Annals of thoracic surgery (UNITED STATES) Aug 1992, 54 (2) p253-8, ISSN 0003-4975 Journal Code: 15030100R

Comment in Ann Thorac Surg. 1993 Aug;56(2) 397; Comment in PMID 8347039

Document type: Journal Article

Languages: ENGLISH

Main Citation Owner: NLM Record type: Completed

Surgical resection of the descending thoracic and thoracoabdominal aorta is associated with the risk of spinal cord ischemic injury, particularly in patients with aortic dissection. Hypothermic total cardiopulmonary bypass

with periods of circulatory arrest has been advocated for spinal cord protection with encouraging early results. However, techniques for this procedure are relatively complex. An alternative cannulation technique with venous return from the right atrium through the internal jugular vein and arterial return to the aortic arch is described. This has been used in 6 patients for replacement of the descending thoracic or thoracoabdominal aorta. Despite profound hypothermia and preservation of the principal spinal radicular artery, 1 patient suffered early paraparesis with some recovery but eventually died of multisystem failure. A second elderly patient with severe obstructive airways disease died of respiratory failure 11 days postoperatively. Four patients made a good recovery including 1 with a ruptured thoracoabdominal aneurysm who subsequently required gut resection for ischemic necrosis present preoperatively. This cannulation technique together with profound hypothermia has greatly improved the operating conditions for extensive aneurysms of the thoracoabdominal aorta. occurring despite hypothermic protection and attempted Paraparesis preservation of the spinal cord arterial supply suggests that unfavorable vascular anatomy still predominates in the risk factors for ischemic

Record Date Created: 19920824

7/7/6

DIALOG(R) File 155: MEDLINE(R)

07343781 92277904 PMID: 1593811

[Selective jugular cannulation for hypothermic retrograde cerebral perfusion in thoracic aortic operations (reverse over the wire-catheter method)]

Okamoto H; Sato K; Matsuura A; Yasuura K; Abe T; Ogawa H; Hoshino M; Asakura T; Seki A

Division of Thoracic Surgery, Yokkaichi Municipal Hospital.

Kyobu geka. The Japanese journal of thoracic surgery (JAPAN) May 1992,

45 (5) p415-8, ISSN 0021-5252 Journal Code: 0413533

Document type: Journal Article ; English Abstract

Languages: JAPANESE Main Citation Owner: NLM Record type: Completed

We have employed hypothermic retrograde total body perfusion via the caval cannulae as a supportive measures to protect the brain and other systemic organs in operations for aortic arch aneurysms or acute aortic dissection. But occasionally unsatisfactory results ensued, because competent valves located in the internal jugular vein near the jugulo-subclavian junction may block retrograde blood flow to the brain from the caval cannula. To cope with this problem, we designed an easy and safe method to cannulate the internal jugular vein transatrially utilizing guidewire and central venous catheter, and thereafter we have used this technique clinically and obtained good results.

Record Date Created: 19920626

7/7/7

DIALOG(R)File 155:MEDLINE(R)

07168364 92095758 PMID: 1728241

Retrograde cerebral perfusion through a superior vena caval cannula protects the brain.

Usui A; Hotta T; Hiroura M; Murase M; Maeda M; Koyama T; Tanaka M; Takeuchi E; Yasuura K; Watanabe T; et al

Department of Thoracic Surgery, Nagoya University School of Medicine, Japan.

Annals of thoracic surgery (UNITED STATES) Jan 1992, 53 (1) p47-53, ISSN 0003-4975 Journal Code: 15030100R

Document type: Journal Article

Languages: ENGLISH

Main Citation Owner: NLM Record type: Completed

Retrograde cerebral perfusion through a superior vena caval cannula is a new technique for protecting the brain during aortic arch operations. In mongrel dogs (n = 10; 13 to 15 kg) we have performed retrograde cerebral perfusion (300 mL/min) by infusing blood through a superior vena caval cannula with aortic and inferior vena caval drainage. We have measured the cerebral tissue blood flow, oxygen consumption, and carbon dioxide exudation during retrograde cerebral perfusion at normothermia (NT, 37 degrees C) and hypothermia (HT, 20 degrees C) and have compared these values with values obtained in dogs during cardiopulmonary bypass (1,200 mL/min). Cerebral tissue blood flow was measured by the hydrogen clearance method. During retrograde cerebral perfusion about 20% of the superior vena caval perfusate was returned through the aorta and the rest drained from the inferior vena cava. Cerebral vascular resistance during retrograde cerebral perfusion was lower than that during cardiopulmonary bypass (NT, 63.8 +/- 52.5 versus 126.9 +/- 58.4; HT, 28.4 +/- 32.8 versus 69.5 +/- 28.7 x 10(3) dynes.s.cm(-5). Retrograde cerebral perfusion provided half the cerebral tissue blood flow of cardiopulmonary bypass (NT, 14.7 +/- 6.4 versus 34.3 + - 7.8; HT, 17.6 + 5.6 versus 37.2 + 10.6 mL/min). Retrograde cerebral perfusion also provided a third of the oxygen (NT, 4.4 +/- 2.1 versus 12.3 +/- 7.1; HT, 1.4 +/- 0.8 versus 4.2 +/- 1.3 mL/min) and discharged 20% of the carbon dioxide (NT, 0.24 +/- 0.08 versus 1.19 +/-0.58; $\overline{\text{HT}}$, 0.15 +/- 0.06 versus 0.51 +/- 0.17 mmol/min) when compared with cardiopulmonary bypass. Retrograde cerebral perfusion may reduce ischemic damage during interruption of cerebral blood flow.

Record Date Created: 19920128

```
File 155:MEDLINE(R) 1966-2003/Jan W4
      5:Biosis Previews(R) 1969-2003/Jan W4
File
         (c) 2003 BIOSIS
File 73: EMBASE 1974-2003/Jan W4
         (c) 2003 Elsevier Science B.V.
File 34:SciSearch(R) Cited Ref Sci 1990-2003/Jan W4
         (c) 2003 Inst for Sci Info
File 434:SciSearch(R) Cited Ref Sci 1974-1989/Dec
         (c) 1998 Inst for Sci Info
File 144: Pascal 1973-2003/Jan W3
         (c) 2003 INIST/CNRS
File
      6:NTIS 1964-2003/Feb W1
         (c) 2003 NTIS, Intl Cpyrght All Rights Res
File
      2:INSPEC 1969-2003/Jan W3
         (c) 2003 Institution of Electrical Engineers
      8:Ei Compendex(R) 1970-2003/Jan W3
File
         (c) 2003 Elsevier Eng. Info. Inc.
File 99:Wilson Appl. Sci & Tech Abs 1983-2003/Dec
         (c) 2003 The HW Wilson Co.
     65: Inside Conferences 1993-2003/Jan W4
File
         (c) 2003 BLDSC all rts. reserv.
File 94: JICST-EPlus 1985-2003/Nov W3
         (c)2003 Japan Science and Tech Corp(JST)
File 35:Dissertation Abs Online 1861-2003/Jan
         (c) 2003 ProQuest Info&Learning
Set
       Items
               Description
               STROKE OR STROKES OR TIA
S1
      315028
               APOPLEXY OR (CEREBROVASCULAR OR VASCULAR) () ACCIDENT? ?
       51588
S2
      722604 ISCHEMI? ?
s3
       92445 HYPOTHERMI?
S4
      619438 COOL OR COOLS OR COOLED OR COOLING
S5
     1403685 CATHETER? OR TUBE OR TUBES OR TUBULAR OR TUBING
S6
      840702 VEIN? ? OR VENOUS OR VENA OR VENAE
s7
       84688 CANNULA?
S8
       10897 S7(5N)S8
S9
          73 S1:S3 AND S4:S5(S)S9
S10
S11
          54
               S1:S3(S)S4:S5(S)S9
S12
          47
               S11 NOT S6
S13
          21
               RD (unique items)
           3
               S13/2003 OR S13/2002 OR S13/2001 OR S13/2000
S14
S15
          18
               S13 NOT S14
S16
          18
               Sort S15/ALL/PY, D
```

16/6/1 (Item 1 from file: 144) 14094165 PASCAL No.: 99-0287584

Characterization of a recovery global cerebral ischemia model in the mouse

1999

Copyright (c) 1999 INIST-CNRS. All rights reserved.

16/6/2 (Item 2 from file: 73) 10554228 EMBASE No: 2000019506

Mitral valve surgery after previous CABG with functioning IMA grafts 1999

16/6/3 (Item 3 from file: 155) 10317508 99306252 PMID: 10379584

Characterization of a recovery global cerebral ischemia model in the mouse.

Apr 1 1999

16/6/4 (Item 4 from file: 144) 13443657 PASCAL No.: 98-0138120

Rapid active internal core Cooling for induction of Moderate hypothermia in head injury by use of an extracorporeal heat exchanger. Commentaries 1998

Copyright (c) 1998 INIST-CNRS. All rights reserved.

16/6/5 (Item 5 from file: 155) 09721357 98141285 PMID: 9482181

Rapid active internal core cooling for induction of moderate hypothermia in head injury by use of an extracorporeal heat exchanger. Feb 1998

16/6/6 (Item 6 from file: 155) 09199529 97116374 PMID: 8957462

Major extended hepatic resections in diseased livers using hypothermic protection: preliminary results from the first 12 patients treated with this new technique.

Dec 1996

16/6/7 (Item 7 from file: 5) 10056110 BIOSIS NO.: 199598511028

Continuous retrograde cerebral perfusion supplies substances for brain metabolism during hypothermic circulatory arrest.

1995

16/6/8 (Item 8 from file: 155) 08727673 96089858 PMID: 7488769

Continuous retrograde cerebral perfusion supplies substrates for brain metabolism during hypothermic circulatory arrest.

Jul 1995

16/6/9 (Item 9 from file: **155**) 08476226 95231045 PMID: 7715222

Systemic hypothermia and circulatory arrest combined with arterial perfusion of the superior vena cava. Effective intraoperative cerebral protection.

Apr 1995

16/6/10 (Item 10 from file: 155) 07938997 94075148 PMID: 8253606

Retrograde cerebral and coronary perfusion for acute dissection of Stanford type A with destruction of the right coronary ostia.

Sep 1993

16/6/11 (Item 11 from file: 5) 08362095 BIOSIS NO.: 000094102618

HYPOTHERMIC THORACIC AND THORACOABDOMINAL ANEURYSM OPERATION A CENTRAL CANNULATION TECHNIQUE

1992

16/6/12 (Item 12 from file: 5) 08017101 BIOSIS NO.: 000093062024

RETROGRADE CEREBRAL PERFUSION THROUGH A SUPERIOR VENA CAVAL CANNULA PROTECTS THE BRAIN

1992

16/6/13 (Item 13 from file: 155) 07254912 92186364 PMID: 1545544

Management of the severely atherosclerotic ascending aorta during cardiac operations. A strategy for detection and treatment.

Mar 1992

16/6/14 (Item 14 from file: 155) 05808640 88231594 PMID: 3374115

Hypothermia prevents increased capillary permeability following ischemia-reperfusion injury.

May 1988

16/6/15 (Item 15 from file: 155) 05390965 87142947 PMID: 3821143

Clinical comparisons of methods of myocardial protection. Mar 1987

16/6/16 (Item 16 from file: 155) 04004637 82282960 PMID: 7114950

Asymmetrical myocardial hypothermia during hypothermic cardioplegia. Sep 1982

16/6/17 (Item 17 from file: 5) 03938640 BIOSIS NO.: 000076024206

ASYMMETRICAL MYO CARDIAL HYPO THERMIA DURING HYPO THERMIC CARDIOPLEGIA 1982

16/6/18 (Item 18 from file: 155) 02051257 75117760 PMID: 1117752

The effect of different methods of protecting the myocardium on lysosomal activation and acid phosphatase activity in the dog heart after one hour of cardiopulmonary bypass.

Apr 1975 ?t16/7/3,5,9-11,14

16/7/3 (Item 3 from file: 155)
DIALOG(R)File 155:MEDLINE(R)

10317508 99306252 PMID: 10379584

. . . .

Characterization of a recovery global cerebral ischemia model in the

mouse.

Sheng H; Laskowitz D T; Pearlstein R D; Warner D S

Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA.

Journal of neuroscience methods (NETHERLANDS) Apr 1 1999, 88 (1) p103-9, ISSN 0165-0270 Journal Code: 7905558

Contract/Grant No.: RO1 GM39771-12; GM; NIGMS; RO1 NS37235-01; NS; NINDS Document type: Journal Article

Languages: ENGLISH

Main Citation Owner: NLM Record type: Completed

Transgenic/knockout murine variants allow roles of specific proteins to be studied in cerebral ischemia. Because of the size of mice, however, study of prolonged recovery from global ischemia has been limited. This project characterized an adaptation of the rat two-vessel occlusion model of global ischemia for use in the mouse. C57B1/6J mice (8 weeks old; 21 +/- 1 g) were overnight fasted, anesthetized with halothane, intubated and mechanically ventilated. The right internal jugular vein and femoral artery were cannulated. Pericranial temperature was held at 37.0 degrees C. The carotid arteries were occluded and mean arterial pressure was reduced to 35 mmHg with 0.3 mg intra-arterial trimethaphan and venous exsanguination. Electroencephalographic isoelectricity was confirmed in cohort mice. Ten minutes later **ischemia** was reversed. Mice were allowed 1, 3 or 5 days survival followed by histologic analysis. Regional cerebral blood flow (CBF) was determined autoradiographically. Outcome effects of intra- ischemic hyperglycemia (approximately 350 mg/dl) or hypothermia (34 degrees C) were also examined. The mortality rate was less than 10% in values in cortex, hippocampus, and caudoputamen. CBF was unchanged in thalamus, brainstem and cerebellum. CA1 damage, greater after 3 days vs. 1 day reperfusion, was not further increased at 5 days. Histologic injury was increased by hyperglycemia although seizures did not occur. Hypothermia reduced CA1 damage. This study demonstrates feasibility of using the two-vessel occlusion + hypotension recovery model in the mouse. Recovery intervals of > or = 3 days are required to account for delayed CA1 neuronal necrosis. Histologic outcome can be modulated by known physiologic determinants of ischemic brain damage.

Record Date Created: 19990728

16/7/5 (Item 5 from file: 155) DIALOG(R)File 155:MEDLINE(R)

09721357 98141285 PMID: 9482181

Rapid active internal core cooling for induction of moderate hypothermia in head injury by use of an extracorporeal heat exchanger.

Piepgras A; Roth H; Schurer L; Tillmans R; Quintel M; Herrmann P; Schmiedek P

Department of Neurosurgery, Faculty of Clinical Medicine Mannheim, University of Heidelberg, Germany.

Neurosurgery (UNITED STATES) Feb 1998, 42 (2) p311-7; discussion 317-8, ISSN 0148-396X Journal Code: 7802914

Document type: Clinical Trial; Journal Article

Languages: ENGLISH

Main Citation Owner: NLM Record type: Completed

. . .

OBJECTIVE: Moderate hypothermia (32 degrees C) may limit postischemic neuronal damage and is increasingly used clinically in head injury and stroke. For the use of hypothermia as a neuroprotective agent in the prevention of ischemic damage, it is necessary to induce it as soon as possible after the insult and to keep it at the lowest safe level. Active core cooling using an extracorporeal heat exchanger may circumvent the rather slow induction speed and temperature drifts experienced with surface cooling techniques. METHODS: In eight patients with severe head injuries (Glasgow Coma Scale score, 4-5), a venovenous extracorporeal circulation was established via a percutaneously introduced double-lumen cannula in the femoral vein. A heat exchanger was connected via a

pressure-controlled roller pump. In addition to standard parameters, brain white matter temperature was continuously recorded as the target Cooling was initiated as early as possible with an temperature. extracorporeal temperature of 30 degrees C and maintained at a 32 degrees C brain temperature for 48 hours, and then gradual rewarming for 24 hours. Cooling was able to be initiated within 6 hours and 48 minutes RESULTS: +/- 3 hours and 47 minutes (mean +/- standard deviation) after trauma. A brain temperature of 32 degrees C was reached within 1 hour and 53 minutes +/- 1 hour and 21 minutes after induction of cooling with a cooling speed of 3.5 degrees C per hour. Brain temperature was able to be controlled within 0.1 degrees C intervals, which was especially helpful in gradual rewarming. No cardiac abnormalities or statistically significant changes in coagulation parameters occurred. Mean platelet count decreased to 89,614+/-42,090 on Day 3 after treatment. No clinical bleeding complications or problems resulting from extracorporeal circulation occurred. Moderate hypothermia was a helpful tool for managing increased intracranial pressure; however, five patients of this series died either of their intracranial abnormalities (n = 4) or of a delayed septic shock after pneumonia (n = 1) at various points in time during therapy. The three survivors experienced either an excellent or a good recovery. CONCLUSION: The results of this investigation suggest that the use of an extracorporeal heat exchanger to achieve active core cooling is suitable for fast and accurately controllable induction, maintenance, and reversal of moderate hypothermia in emergency situations with reliable control of temperature. In this small series of highly selected patients with severe head injuries, we did not note a beneficial effect of hypothermic therapy on outcome. Record Date Created: 19980402

(Item 9 from file: 155) 16/7/9 DIALOG(R) File 155: MEDLINE(R)

95231045 PMID: 7715222

Systemic hypothermia and circulatory arrest combined with arterial perfusion of the superior vena cava. Effective intraoperative cerebral protection.

Lytle B W; McCarthy P M; Meaney K M; Stewart R W; Cosgrove D M Department of Thoracic and Cardiovascular Surgery, Cleveland Clinic Foundation, Ohio 44195, USA.

Journal of thoracic and cardiovascular surgery (UNITED STATES) Apr 1995 109 (4) p738-43, ISSN 0022-5223 Journal Code: 0376343

Document type: Journal Article

Languages: ENGLISH

Main Citation Owner: NLM Record type: Completed

We have used retrograde arterial perfusion of the superior vena cava as an adjunct to deep hypothermia and systemic circulatory arrest for intraoperative cerebral protection in 43 adult patients (18 of whom were 70 years old or older). The indications for the use of circulatory arrest were (37 patients) and atherosclerosis or aortic operations calcification of the ascending aorta (6 patients) in patients needing aortic valve or coronary operations. In all patients systemic hypothermia (16 degrees to 18 degrees C) was achieved with cardiopulmonary bypass and systemic arterial circulation was arrested. Retrograde arterial perfusion of the superior vena cava was established through a wire-reinforced venous cannula (with a superior vena cava tourniquet) at a temperature of 15 degrees C. In 36 patients a separate roller pump system was used for the retrograde cerebral perfusion. Central venous pressure was monitored at 25 to 30 mm Hg; mean flow rate was 250 ml/min. Periods of circulatory arrest and retrograde cerebral perfusion ranged from 4 to 110 minutes (mean 38 minutes), and for seven patients the period of circulatory arrest was longer than 60 minutes. Four postoperative deaths occurred, one related to stroke in a patient who had an aortic dissection coronary surgery and the others related to noncerebral complications. Three nonfatal cerebral complications occurred, although all had completely resolved by late follow-up. Advantages of retrograde cerebral perfusion are (1) simplicity of use and avoidance of vascular

(2) excellent exposure, (3) retrograde flow that minimizes embolization of air and atherosclerotic debris, and (4) effective cerebral oxygen delivery. Retrograde cerebral perfusion appears to be an important adjunct to hypothermia and circulatory arrest not only for patients undergoing operation for ascending aorta and aortic arch disease but also for patients with diffuse aortic atherosclerosis undergoing coronary or valve operations.

Record Date Created: 19950517

(Item 10 from file: 155) 16/7/10 DIALOG(R) File 155: MEDLINE(R)

PMID: 8253606 07938997 94075148

Retrograde cerebral and coronary perfusion for acute dissection of Stanford type A with destruction of the right coronary ostia.

Sueda T; Hayashi S; Nomimura T; Kurisu Y; Orihashi K; Shikata H; Matsuura

First Department of Surgery, Hiroshima University, School of Medicine, Japan.

journal of medical sciences (JAPAN) Sep 1993, 42 Hiroshima p117-9, ISSN 0018-2052 Journal Code: 0421060

Document type: Journal Article

Languages: ENGLISH

Main Citation Owner: NLM Record type: Completed

Repair of acute aortic dissection with destruction of the right coronary ostia and aortic valve regurgitation is described. The patient was a 54 year-old female with Marfan syndrome, who was admitted to our hospital for acute dissection with annulo aortic ectasia, accompanied by myocardial of the inferior wall. Retrograde dissection to the aortic annulus and destruction of the right coronary ostia due to extended dissection were noted. Retrograde coronary infusion through the coronary sinus was conducted during replacement of aortic annulus by the Cabrol method in conjunction with supplementary vein grafting to the right coronary artery. Distal repair was carried out, supported by hypothermic circulatory arrest and retrograde cerebral perfusion through the superior vena caval cannula . Retrograde cerebral and coronary sinus perfusion have been shown to be quite effective for treating patients requiring complex reconstruction of the ascending aorta.

Record Date Created: 19940113

16/7/11 (Item 11 from file: 5) DIALOG(R)File 5:Biosis Previews(R) (c) 2003 BIOSIS. All rts. reserv.

BIOSIS NO.: 000094102618 08362095

HYPOTHERMIC THORACIC AND THORACOABDOMINAL ANEURYSM OPERATION A CENTRAL CANNULATION TECHNIQUE

AUTHOR: WESTABY S

AUTHOR ADDRESS: OXFORD HEART CENTRE, JOHN RADCLIFFE HOSPITAL, OXFORD OX3

9DU, ENGL.

JOURNAL: ANN THORAC SURG 54 (2). 1992. 253-258. 1992

FULL JOURNAL NAME: Annals of Thoracic Surgery

. .

CODEN: ATHSA

RECORD TYPE: Abstract LANGUAGE: ENGLISH

ABSTRACT: Surgical resection of the descending thoracic and thoracoabdominal aorta is associated with the risk of spinal cord ischemic injury, particularly in patients with aortic dissection. Hypothermic total cardiopulmonary bypass with periods of circulatory arrest has been advocated for spinal cord protection with encouraging early results. However, techniques for this procedure are relatively complex. An alternative cannulation technique with venous return from the right atrium through the internal jugular vein and arterial return to

the aortic arch is described. This has been used in 6 patients for replacement of the descending thoracic or thoracoabdominal aorta. Despite profound hypothermia and preservation of the principal spinal radicular artery, 1 patient suffered early paraparesis with some recovery but eventually died of multisystem failure. A second elderly patient with severe obstructive airways disease died of respiratory failure 11 days postoperatively. Four patients made a good recovery including 1 with a ruptured thoracoabdominal aneurysm who subsequently required gut resection for ischemic necrosis present preoperatively. This cannulation technique together with profound hypothermia has greatly improved the operating conditions for extensive aneurysms of the thoracoabdominal aorta. Paraparesis occurring despite hypothermic protection and attempted preservation of the spinal cord arterial supply suggests that unfavorable vascular anatomy still predominates in the risk factors for ischemic injury.

16/7/14 (Item 14 from file: 155)
DIALOG(R)File 155:MEDLINE(R)

05808640 88231594 PMID: 3374115

Hypothermia prevents increased capillary permeability following ischemia-reperfusion injury.

Jurkovich G J; Pitt R M; Curreri P W; Granger D N
Department of Surgery, University of South Alabama, Mobile 36609.

Journal of surgical research (UNITED STATES) May 1988, 44 (5)
p514-21, ISSN 0022-4804 Journal Code: 0376340

Document type: Journal Article

Languages: ENGLISH
Main Citation Owner: NLM

Main Citation Owner: NLM Record type: Completed

Severely injured trauma victims are frequently hypothermic . It is however, whether hypothermia itself is a detrimental or protective physiologic response to injury. One of the major consequences of resuscitation following ischemic injury is edema formation, characterized by ischemia -reperfusion injury models. The purpose of this study was to examine the effect of regional hypothermia on a feline intestinal model of ischemia -reperfusion injury. An autoperfused segment of cat ileum was isolated and arterial, venous, and lymphatic vessels cannulated . Lymph flow (Q1), lymph (C1), and plasma (Cp) protein concentrations and segmental blood flow (Qb) were measured. Permeability changes were characterized by the minimal C1/Cp ratio obtained by elevating venous outflow pressure. Animals were divided into the following groups: Group I: 1 hr of intestinal ischemia (30 mm Hg) with autoreperfusion; Group II: 1 hr of intestinal hypothermia (28 degrees C) with subsequent rewarming; Group III: 1 hr of combined ischemia and hypothermia . Group III animals were either kept hypothermic (IIIA) or rewarmed (IIIB) during autoreperfusion. Minimal C1/Cp ratios (mean +/- SEM) were as follows: Control: 0.15 +/- 0.02; Group I*: 0.32 +/- 0.03; Group II: 0.15 +/- 0.01; Group IIIA: 0.18 +/- 0.02; Group IIIB*: 0.42 +/- 0.02; (* = P less than 0.01 vs control). Reperfusion flow rates were no different between Group IIIA and Group IIIB animals. Ischemia -reperfusion, but not hypothermia alone, caused a marked increase in intestinal capillary permeability. Permeability increased after combined ischemia and hypothermia only if reperfusion was accompanied by rewarming. Hypothermic protected against the increased permeability following ischemia .

Record Date Created: 19880707

```
File 95:TEME-Technology & Management 1989-2003/Jan W2
         (c) 2003 FIZ TECHNIK
File 98:General Sci Abs/Full-Text 1984-2003/Dec
         (c) 2003 The HW Wilson Co.
       9:Business & Industry(R) Jul/1994-2003/Jan 30
File
         (c) 2003 Resp. DB Svcs.
File 16:Gale Group PROMT(R) 1990-2003/Jan 30
         (c) 2003 The Gale Group
File 160: Gale Group PROMT(R) 1972-1989
         (c) 1999 The Gale Group
File 148: Gale Group Trade & Industry DB 1976-2003/Jan 31
         (c) 2003 The Gale Group
File 621: Gale Group New Prod. Annou. (R) 1985-2003/Jan 29
         (c) 2003 The Gale Group
File 149:TGG Health&Wellness DB(SM) 1976-2003/Jan W2
         (c) 2003 The Gale Group
File 636: Gale Group Newsletter DB(TM) 1987-2003/Jan 30
         (c) 2003 The Gale Group
File 441:ESPICOM Pharm&Med DEVICE NEWS 2003/Jan W4
         (c) 2003 ESPICOM Bus. Intell.
File 20:Dialog Global Reporter 1997-2003/Jan 31
         (c) 2003 The Dialog Corp.
File 15:ABI/Inform(R) 1971-2003/Jan 31
         (c) 2003 ProQuest Info&Learning
File 88:Gale Group Business A.R.T.S. 1976-2003/Jan 30
         (c) 2003 The Gale Group
File 442:AMA Journals 1982-2003/Apr B2
         (c) 2003 Amer Med Assn -FARS/DARS apply
File 444: New England Journal of Med. 1985-2003/Feb W1
         (c) 2003 Mass. Med. Soc.
        Items
                Description
Set
S1
       278579
                STROKE OR STROKES OR TIA
S2
        5292
                APOPLEXY OR (CEREBROVASCULAR OR VASCULAR) () ACCIDENT? ?
                ISCHEMI? ?
S3
        49391
       10572
               HYPOTHERMI?
S4
       641725
S5
               COOL OR COOLS OR COOLED OR COOLING
       557707
               CATHETER? OR TUBE OR TUBES OR TUBULAR OR TUBING
S6
       155410 VEIN? ? OR VENOUS OR VENA OR VENAE
s7
        8944
S8
               CANNULA?
               S1:S3
S 9
       312742
S10
       651115
               S4:S5
      562344
                S6 OR S8
S11
```

71540

· 5

2

S9/TI,AB,DE

S9(S)S10(5N)S11(5N)S7

RD (unique items)

S12

S13

S14

14/6/1 (Item 1 from file: 16)

08442894 Supplier Number: 71859827 (USE FORMAT 7 FOR FULLTEXT)

Radiant Medical Announces Approval of Stroke Clinical Trial With New Cooling Technology.

March 20, 2001 Word Count: 838

14/6/2 (Item 1 from file: 149)

01912504 SUPPLIER NUMBER: 62741366 (USE FORMAT 7 OR 9 FOR FULL TEXT)

The Effects of Hypothermia on Coronary Artery Bypass Graft Surgery.

2000

WORD COUNT: 4054 LINE COUNT: 00370