Bisimilarity of Pushdown Automata is Nonelementary

Michael Benedikt (Oxford) Stefan Göller (Bremen) Stefan Kiefer (Oxford) Andrzej Murawski (Warwick)

> Highlights 2013, Paris September 19th

Pushdown automata

A pushdown automaton P is given by

- ▶ a finite set of control states p, q, ...
- ▶ a finite set of stack symbols \bot , A, B, C, . . .
- labeled rules of the kind
 - $\triangleright pA \xrightarrow{a} q \text{ (pop)}.$
 - ▶ $pA \xrightarrow{b} qB$ (internal), where $A = \bot$ iff $B = \bot$.
 - ▶ $pA \xrightarrow{c} qBC$ (push), where $A = \bot$ iff $\bot \in \{B, C\}$.

Pushdown automata

A pushdown automaton P is given by

- ▶ a finite set of control states p, q, ...
- ▶ a finite set of stack symbols \bot , A, B, C, . . .
- labeled rules of the kind

 - ▶ $pA \xrightarrow{b} qB$ (internal), where $A = \bot$ iff $B = \bot$.
 - ▶ $pA \xrightarrow{c} qBC$ (push), where $A = \bot$ iff $\bot \in \{B, C\}$.

An example for a pushdown automaton P

Rules: $qA \xrightarrow{a} qAA \quad qA \xrightarrow{b} qBA \quad qB \xrightarrow{a} qAB \quad qB \xrightarrow{b} qBB$

Pushdown automata

A pushdown automaton P is given by

- ▶ a finite set of control states p, q, ...
- ▶ a finite set of stack symbols \bot , A, B, C, . . .
- ▶ labeled rules of the kind

 - ▶ $pA \xrightarrow{b} qB$ (internal), where $A = \bot$ iff $B = \bot$.
 - ▶ $pA \xrightarrow{c} qBC$ (push), where $A = \bot$ iff $\bot \in \{B, C\}$.

An example for a pushdown automaton P

Rules: $qA \xrightarrow{a} qAA$ $qA \xrightarrow{b} qBA$ $qB \xrightarrow{a} qAB$ $qB \xrightarrow{b} qBB$

Bisimilarity checking of pushdown processes: Results

Theorem (Sénizergues 1998)

Bisimilarity of pushdown processes is decidable.

(two semi-decision procedures, no prim. rec. upper bound known)

Theorem (Kučera, Mayr 2002)

Bisimilarity of pushdown processes is EXP-hard.

Two useful gadgets from Jančar/Srba and Chen/v. Breugel/Worrell

Proposition

We have

- ▶ in the **left** picture: $s_1 \sim s_2$ iff $(t_1 \sim t_2 \ \textbf{OR} \ t_1' \sim t_2')$.
- ▶ in the **right** picture: $s_1 \sim s_2$ iff $(t_1 \sim t_2 \text{ AND } t_1' \sim t_2')$.

Fix an input of length n.

A 0-counter is a sequence $c = b_0 \cdots b_{n-1} \in \{0, 1\}^n$. Its value is val $(c) \stackrel{\text{def}}{=} \sum_{i=0}^{n-1} 2^i \cdot b_i \in \{0, \dots, 2^n - 1\}$.

Convention: For each 0-counter write c_i we assume $val(c_i) = i$.

Fix an input of length n.

A 0-counter is a sequence $c = b_0 \cdots b_{n-1} \in \{0, 1\}^n$. Its value is val $(c) \stackrel{\text{def}}{=} \sum_{i=0}^{n-1} 2^i \cdot b_i \in \{0, \dots, 2^n - 1\}$.

Convention: For each 0-counter write c_i we assume $val(c_i) = i$.

Proposition

 \exists gadget with control states q, q' such that the following holds:

Assume the stack content

$$\sigma = [c_j b c_i] \mathbf{w} \perp,$$

where c_j and c_i are the 0-counters of value j and i, resp. We have

$$q(\sigma) \sim q'(\sigma)$$
 iff $j = i - 1$

$$q(\boxed{c_jbc_i} \mathbf{w}\perp) \sim q'(\boxed{c_jbc_i} \mathbf{w}\perp) \quad \text{iff} \quad j=i-1$$

$$q(\boxed{c_jbc_i} \mathbf{w}\perp) \sim q'(\boxed{c_jbc_i} \mathbf{w}\perp) \quad \text{iff} \quad j=i-1$$

Idea:

1. Lead the game to $p(\boxed{c_00} \ c_j b c_i \mathbf{w} \bot) \stackrel{?}{\sim} p'(\boxed{c_00} \ c_j b c_i \mathbf{w} \bot)$ by pushing bit 0 followed by the 0-counter c_0 .

$$q(\boxed{c_jbc_i} \mathbf{w}\perp) \sim q'(\boxed{c_jbc_i} \mathbf{w}\perp) \quad \text{iff} \quad j=i-1$$

- 1. Lead the game to $p(\boxed{c_00} c_j bc_i \mathbf{w} \perp) \stackrel{?}{\sim} p'(\boxed{c_00} c_j bc_i \mathbf{w} \perp)$ by pushing bit 0 followed by the 0-counter c_0 .
- 2. De-synchronize the two stacks by
 - popping the <u>two</u> top-most 0-counters from the left stack and
 - ▶ and popping the top-most 0-counter from the right stack.

$$q(\boxed{ c_j b c_i} \mathbf{w} oldsymbol{\perp}) \sim q'(\boxed{ c_j b c_i} \mathbf{w} oldsymbol{\perp}) \quad ext{iff} \quad j = i-1$$

- 1. Lead the game to $p(\boxed{c_00} c_j bc_i \mathbf{w} \perp) \stackrel{?}{\sim} p'(\boxed{c_00} c_j bc_i \mathbf{w} \perp)$ by pushing bit 0 followed by the 0-counter c_0 .
- 2. De-synchronize the two stacks by
 - popping the <u>two</u> top-most 0-counters from the left stack and
 - ▶ and popping the top-most 0-counter from the right stack.

leading us to
$$p(c_i w \perp) \stackrel{?}{\sim} p'(c_j bc_i w \perp)$$

$$q(\boxed{ c_j b c_i} \mathbf{w} oldsymbol{\perp}) \sim q'(\boxed{ c_j b c_i} \mathbf{w} oldsymbol{\perp}) \quad ext{iff} \quad j = i-1$$

- 1. Lead the game to $p(\boxed{c_00} c_j bc_i \mathbf{w} \perp) \stackrel{?}{\sim} p'(\boxed{c_00} c_j bc_i \mathbf{w} \perp)$ by pushing bit 0 followed by the 0-counter c_0 .
- 2. De-synchronize the two stacks by
 - popping the <u>two</u> top-most 0-counters from the left stack and
 - ▶ and popping the top-most 0-counter from the right stack.

leading us to
$$p(c_i w \perp) \stackrel{?}{\sim} p'(c_j bc_i w \perp)$$

- 3. Check if j = i 1 deterministically as follows:
 - 3.1 **Left automaton** outputs *c_i*
 - 3.2 **Right automaton** outputs $T(c_j)$, where T is a deterministic letter-to-letter transducer that outputs the successor function.

How to push

$$c_0 1 \cdots c_1 1 c_{2^n-1} 1$$

onto both stacks?

Idea:

1. First, we explicitly push $c_{2^n-1}1$ onto the stacks.

How to push

$$c_0 1 \cdots c_1 1 c_{2^n-1} 1$$

onto both stacks?

- 1. First, we explicitly push $c_{2^n-1}1$ onto the stacks.
- 2. We are thus in $q(c_{2^n-1}1\bot) \stackrel{?}{\sim} q'(c_{2^n-1}1\bot)$.

How to push

$$c_01\cdots c_11c_{2^n-1}1$$

onto both stacks?

- 1. First, we explicitly push c_{2^n-1} 1 onto the stacks.
- 2. We are thus in $q(c_{2^n-1}1\bot) \stackrel{?}{\sim} q'(c_{2^n-1}1\bot)$.
- 3. How push the remaining sequence $c_01c_11\cdots c_{2^n-2}1$?

How to push

$$c_01\cdots c_11c_{2^n-1}1$$

onto both stacks?

Idea:

- 1. First, we explicitly push $c_{2^n-1}1$ onto the stacks.
- 2. We are thus in $q(c_{2^n-1}1\bot) \stackrel{?}{\sim} q'(c_{2^n-1}1\bot)$.
- 3. How push the remaining sequence $c_0 1 c_1 1 \cdots c_{2^n-2} 1$?
- 4. Being in situation

$$q(c_i 1 c_{i+1} 1 \cdots c_{2^n-1} 1 \perp) \stackrel{?}{\sim} q(c_i 1 c_{i+1} 1 \cdots c_{2^n-1} 1 \perp)$$

Duplicator's job is to push $c_j 1$ with j = i - 1 onto the stacks.

How to push

$$c_0 1 \cdots c_1 1 c_{2^n-1} 1$$

onto both stacks?

Idea:

- 1. First, we explicitly push c_{2^n-1} 1 onto the stacks.
- 2. We are thus in $q(c_{2^n-1}1\bot) \stackrel{?}{\sim} q'(c_{2^n-1}1\bot)$.
- 3. How push the remaining sequence $c_0 1 c_1 1 \cdots c_{2^n-2} 1$?
- 4. Being in situation

$$q(c_i 1 c_{i+1} 1 \cdots c_{2^n-1} 1 \perp) \stackrel{?}{\sim} q(c_i 1 c_{i+1} 1 \cdots c_{2^n-1} 1 \perp)$$

Duplicator's job is to push $c_i 1$ with j = i - 1 onto the stacks.

- 5. She pushs some c_j onto the stacks (via n **OR**-gadgets)
 - ▶ If Spoiler believes j = i 1, then goto 4.
 - ▶ If Spoiler does not believe j = i 1, then play subgame!

We now know how Duplicator can push $\#d_{2^{2^n}-1}$ onto the stacks.

- \Rightarrow We now know how Duplicator can push any $\#d_i$ onto the stacks.
- \Rightarrow Duplicator can push

$$d_0 \# d_1 \cdots \# d_{2^{2^n}-1}$$

onto both stacks by using the same ideas!

Open questions

There are (too) many of them!

- Primitive recursive lower/upper bounds for PDA bisimilarity
- Complexity of DPDA language equivalence
- Decidability of equivalence of Deterministic Higher-Order PDA
- Decidability of bisimilarity of PA-processes
- Decidability of bisimilarity of Ground Tree Rewrite Systems
- Decidability of weak bisimilarity of Single-State PDA
- Decidability of weak bisimilarity of Basic Parallel Processes

•

Thank you for your attention!