1.

Suppose $C \cong C'$. Then there is an isomorphism $f: C \to C'$ with inverse f^{-1} . Thus $Ff: FC \to FC'$ is an isomorphism with inverse Ff^{-1} . Conversely, suppose $FC \cong FC'$. Then there is an isomorphism $h: FC \to FC'$. Since F is full, there are $f: C \to C', g: C' \to C$ such that $Ff = h, Fg = h^{-1}$. Then $1_{FC} = h \circ h^{-1} = Ff \circ Fg = F(f \circ g)$. Since F is faithful, $f \circ g = 1_C$ and thus $g = f^{-1}$, meaning $C \cong C'$.

2.

Let $P, Q \in \mathbf{Sets}^{\mathbf{C}^{\mathrm{op}}}$ and $\varphi, \psi : P \to Q$ such that $\varphi \circ \vartheta = \psi \circ \vartheta$ for $\vartheta : yC \to P$ for each $C \in \mathbf{C}$. We can define a map

$$\varphi_{C*} = \psi_{C*} : \operatorname{Hom}(yC.P) \to \operatorname{Hom}(yC,Q)$$

by $\varphi_{C*}(\vartheta) = \psi_{C*}(\vartheta) = \varphi \circ \vartheta = \psi \circ \vartheta$. By Yoneda lemma, we can deduces $\operatorname{Hom}(yC, P) \cong PC$ and $\operatorname{Hom}(yC, Q) \cong QC$, making a commutative diagram

$$\operatorname{Hom}(yC,P) \xrightarrow{\cong} PC .$$

$$\psi_{C*} \middle| \varphi_{C*} \qquad \psi_{C} \middle| \varphi_{C}$$

$$\operatorname{Hom}(yC,Q) \xrightarrow{\cong} QC$$

But since $\varphi_{C*} = \psi_{C*}$, we conclude that $\varphi_C = \psi_C$ for all C, meaning $\varphi = \psi$.

3.

$$\begin{aligned} \operatorname{Hom}(X,A^B\times A^C) &\cong \operatorname{Hom}(X,A^B) \times \operatorname{Hom}(X,A^C) \\ &\cong \operatorname{Hom}(X\times B,A) \times \operatorname{Hom}(X\times C,A) \\ &\cong \operatorname{Hom}(X\times B+X\times C,A) \\ &\cong \operatorname{Hom}(X\times (B+C),A) \\ &\cong \operatorname{Hom}(X,A^{B+C}). \end{aligned}$$

By Yoneda lemma, $A^B \times A^C \cong A^{B+C}$. Similarly, $(A \times B)^C \cong A^C \times B^C$.

4.

Let $f: P \to Q$. Then $S(f) = \operatorname{Hom}(-, f): \operatorname{Hom}(-, P) \to \operatorname{Hom}(-, Q)$ and hence S is a functor. This functor is faithful. From text, simplicial nerve is defined by for any n and a poset P,

$$S(P)_n = \{(p_1, \dots, p_n) \in P^n \mid p_1 \le \dots \le p_n\},\$$

which is just a set of monotone map

$$S(P)(n) = \text{Hom}([n], P).$$

5.

Define $S: \mathbf{Cat} \to \mathbf{Cat}^{\Delta^{\mathrm{op}}}$ by $S(\mathbf{C}) = \mathrm{Fun}(-, \mathbf{C})$. Then it generalizes the concept of simplicial nerve.

6.

Consider a diagram $J \to D^C$. Then for some $C \in C_0$, we have an induced diagram $J \to D$ defined by $i \mapsto F_i(C)$ and $(i \to j) \mapsto (F_i(C) \to F_j(C))$. Since D is complete, we have a limit $\lim_{\stackrel{\longleftarrow}{\downarrow}} F_i(C)$. Thus from the diagram, we have the limit $\lim_{\stackrel{\longleftarrow}{\downarrow}} F_i$ defined by $\lim_{\stackrel{\longleftarrow}{\downarrow}} F_i(C) = \lim_{\stackrel{\longleftarrow}{\downarrow}} (F_i(C))$. Colimit of D^C is the limit of $(D^{\text{op}})^{C^{\text{op}}} = (D^C)^{\text{op}}$.

7.

For product,

$$y(A \times B)(C) \cong \operatorname{Hom}(C, A \times B)$$

$$\cong \operatorname{Hom}(C, A) \times \operatorname{Hom}(C, B)$$

$$\cong yA(C) \times yB(C)$$

$$\cong (yA \times yB)(C).$$

Thus, $yA \times yB \cong y(A \times B)$. For exponential,

$$(yB)^{(yA)}(C) \cong \operatorname{Hom}(yC, (yB)^{(yA)})$$

$$\cong \operatorname{Hom}(yC \times yA, yB)$$

$$\cong \operatorname{Hom}(y(C \times A), yB)$$

$$\cong \operatorname{Hom}(C \times A, B)$$

$$\cong \operatorname{Hom}(C, B^{A})$$

$$\cong y(B^{A})(C).$$

Thus $(yB)^{(yA)} \cong y(B^A)$.

8.

Let $C,C'\in P$ and AC=x,AC'=x'. In $\int_P A$, define $(x,C)\leq (x',C')$ if $C\leq C'$ and there is a map $f:x\mapsto x'$. Then it is a poset and the projection π is monotone. Finally, consider a natural transformation $\alpha:A\to B$. Then we can define $\int_P \alpha:\int_P A\to\int_P B$ by $(AC,C)\mapsto (BC,C)$ for all $C\in P$. It clearly defines the functor

$$\int_P:\mathbf{Sets}^{P^\mathrm{op}}\to\mathbf{Pos}/P.$$

9,10.

skip

11.

Product of $a:A\to X$ and $b:B\to X$ is a pullback of them. Since X is a set, \mathbf{Sets}^X is equivalent to \mathbf{Sets}/X . Therefore, it is enough to find the exponential of \mathbf{Sets}^X to show that \mathbf{Sets}/X is cartesian closed. As a category, X is a discrete category. Yoneda embedding $y:X\to \mathbf{Sets}^X$ is defined by $y(x)=\mathrm{Hom}_X(-,x):X\to \mathbf{Sets}$ for $x\in X$. Since X is discrete, $y(x)(z)=\varnothing$ for all $z\neq x$ and $y(x)(x)=\{1_x\}$. Now for $P,Q\in \mathbf{Sets}^X$, exponential Q^P can be defined by $Q^P(x)=\mathrm{Hom}(y(x)\times P,Q)$, which exists. For a category \mathbf{C} , the subobject classifier is the pair $(\Omega,t:1\to\Omega)$ where $\Omega(C)$ is a set of sieves on C and t_C is a total sieve. Since X is discrete, $\Omega(x)=\{1_x\}$ and $t_x=\{1_x\}$ for all $x\in X$.

12.

(a) We know that $\Omega(C) = \{S \mid S \text{ sieve on } C\}$. For $p \in P^{\text{op}}$ where P is a poset, then S is the set of arrows $\{p \leq x\}$, which is identical to $\{x \mid p \leq x\}$. Therefore, for $\mathbf{P} = \mathbf{2} = \{0 \leq 1\}$, $\Omega : \mathbf{2}^{\text{op}} \to \mathbf{Sets}$ where $\Omega(0) = \{\{0,1\},\{1\}\},\Omega(1) = \{\{1\}\} \text{ and } t : 1 \to \Omega \text{ where } t_0(*) = \{0,1\},t_1(*) = \{1\}$. For $\mathbf{P} = \boldsymbol{\omega}$, the subobject classifier is defined by

$$\begin{split} \Omega(0) &= \{\{0,1,2,\dots\},\{1,2,3,\dots\},\{2,3,4,\dots\},\dots\}\\ \Omega(1) &= \{\{1,2,3,\dots\},\{2,3,4\dots\},\{3,4,5\dots\},\dots\}\\ &\vdots\\ \Omega(n) &= \{\{n,n+1,\dots\},\{n+1,n+2,\dots\},\dots\} \end{split}$$

and $t_n = \{n, n+1, \dots\}.$

(b) Since all topos operations(pullbacks, exponentials, subobject classifiers) are finite, it is also a topos.

13.

Recall that the category of graphs is equivalent to the functor category $\mathbf{Sets}^{\Gamma^{\mathrm{op}}}$ where Γ is a category

$$C \rightrightarrows D$$
.

Thus the category of graphs is a topos. Then the subobject classifier Ω is defined by $\Omega(C) = \{1_C\}$ and $\Omega(D) = \{1_D, s : C \to D, t : C \to D\}$. point $1 \to \Omega$ is the same.