

Concepts in Risk & Safety

Erasn

Overview

Historic Overview

- Changing nature of risk
- Timeline

<u>Traditional Risk</u>

Analysis Methods

• Some methods explained

Emerging Safety Paradigms:

- -Systems & complexity thinking
- Safety-II
- Resilience Engineering

OPETUSHALLITUS UTBILDNINGSSTYRELSEN

HELP – Healthcare Logistics Education and Learning Pathway

Safety Management

Age of Human Factors

Age of Technology

1800 1980 2000

1769 Industrial Revolution

1893 Railroad Safety Act (1st safety legislation)

1931 Industrial Accident Prevention (First safety science theory by Heinrich)

1979 Three Mile Island

1987 Herald of Free Enterprise

1984 1986 **NASA Challenger Bophal** Leak Crash

2011 Fukushima

2003 **NASA** Columbia Crash

Socio-Technical Accidents

HELP – Healthcare Logistics Education and Learning Pathway

Actual Root Case

FMEA FOR A SYSTEM OF TWO AMPLIFIERS IN PARALLEL

Probability			Prob	ability	and Im	pact Ma	trix		
0.9	0.09	0.18	0.27	0.36	0.45	0.54	0.63	0.72	0.81
0.8	0.08	0.16	0.24	0.32	0.4	0.48	0.56	0.64	0.72
0.7	0.07	0.14	0.21	0.28	0.35	0.42	0.49	0.56	0.63
0.6	0.06	0.12	0.18	0.24	0.3	0.36	0.42	0.48	0.54
0.5	0.05	0.1	0.15	0.2	0.25	0.3	0.35	0.4	0.45
0.4	0.04	0.08	0.12	0.16	0.2	0.24	0.28	0.32	0.36
0.3	0.03	0.06	0.09	0.12	0.15	0.18	0.21	0.24	0.27
0.2	0.02	0.04	0.06	0.08	0.1	0.12	0.14	0.16	0.18
0.1	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
Impact	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9

1980s

Probabilistic Risk Assessment

PRA

< 1945 First Root Cause models RCA 1949
Failure Mode and Effect
Analysis
FMEA

1960 Hazard and Operability Study HAZOP

Overview

Historic Overview

- Changing nature of risk
- Timeline

<u>Traditional Risk</u>

Analysis Methods

• Some methods explained

Emerging Safety Paradigms:

- -Systems & complexity thinking
- Safety-II
- Resilience Engineering

HELP – Healthcare Logistics Education and Learning Pathway

Safety cycle

HELP – Healthcare Logistics Education and Learning Pathway

Root Cause Analysis (RCA)

on a disconnected pacemaker

Root Cause Analysis

Root Cause Analysis (Fishbone)

HELP – Healthcare Logistics Education and Learning Pathway

Failure Mode Effect and Analysis - FMEA

on a disconnected pacemaker

Item/Part														Action	R	su	lt	5
Function	Requirements	Potential Failure Mode	Potential Effect(s) of Failure	Severity	Class	Potential Cause(s) / Mechanism(s) of Failure	Occurrence	Current Production Controls Prevention	Current Production Controls Detection	etec	R. P. N.	111111111111111111111111111111111111111	Responsibility & Target Completion Date	Actions Taken	Severity	Occurrence	Detection	R. P. N.
Regulates heart beat Transmits signals between heart and electronic circuit.	error in reporting	wires connecting the electronic circuit to other pacemaker components, such as the battery.	The wiring separation will prevent signal transfer. The device will not be able to sense or respond to such event.	9	Critical	1- wrong soldering material is used.		Material Control Purchasing Control	QSR.	3	216	Suppliers control (selection criteria) Auditing Control. Statistical process control. Sampling and Testing Control. Working environment control	and manufacturing team.	CAPA Control ICH Q9, Risk Management techniques implementation and verification, ongoing control and monitoring. Validation documents control.				0
				10		2- The material become contaminated during processing.		cleanroom Practices.	QSR.	4	→ ₃₂₀	applying suitable controls	Risk Reduction due to more ability to detect it	which reflect on its occurance probability.	10	2	2	→ 40
				8		3- The wires material/charactristics are not suitable.		Design controls supplier Control	QSR.	5	200		SxO 1	Criticality				0
				8		4-The wires are under extra tension.		Process Control	QSR.	4	192	8	8 2 3	R.P.N	٦			0
				9		5- Overheated wires and connections due to compact size.		Design and process controls	QSR.	5	315	6 5 4		R.P.N				0

HELP – Healthcare Logistics Education and Learning Pathway

FMEA

Sterilizer – autoclave

c Partnership
-034721
on and Learning Pathway

FMEA

Component	Function	Potential Failure Mode	Potential effects	Potential causes	Severity	Probability	Detection	RPN
Pressure regulator	regulate pressure	loss of integrity	pressure loss	corrosion	2	2	2	2*2*2=8
		blocked	pressure build up	contamination of water to produce steam	4	3	1	4*3*1=12

HELP – Healthcare Logistics Education and Learning Pathway

FMEA

Hazards and Operability Study - HAZOP

- Typical for petrochemical industry
- Operational parameter guide words on flow, pressure, temperature, level, ...
 - E.g. high flow, low flow, reverse flow, contamination, etc.

c Partnership -034721 on and Learning Pathway

HAZOP

Study node	Process parameter	Guide word	Deviation	Possible causes	Possible consequences	Action required	
		more	high pressure	pressure controller is broken	overpressure	pressure gauge warning	
	Droccuro	less	low pressure	pressure controller is broken	no sterilization	log process parameters & generate warning	
Steam supply	Pressure early unexpecte	unexpected pressure	supply valve cannot be fully closed	operator hazard	inspect intervals for supply valves & operator protection		
line							
		no	no flow	steam is not generated	no sterilization	log process parameters & generate warning	
	Flow	reverse	reverse flow	pressure build up in autoclave vessel	operator hazard	install safety valve	

HELP – Healthcare Logistics Education and Learning Pathway

HAZOP?

HELP – Healthcare Logistics Education and Learning Pathway

Probabilistic Risk Assessment - PRA

Simple parameter example

Probability	Probability and Impact Matrix											
0.9	0.09	0.18	0.27	0.36	0.45	0.54	0.63	0.72	0.81			
0.8	0.08	0.16	0.24	0.32	0.4	0.48	0.56	0.64	0.72			
0.7	0.07	0.14	0.21	0.28	0.35	0.42	0.49	0.56	0.63			
0.6	0.06	0.12	0.18	0.24	0.3	0.36	0.42	0.48	0.54			
0.5	0.05	0.1	0.15	0.2	0.25	0.3	0.35	0.4	0.45			
0.4	0.04	0.08	0.12	0.16	0.2	0.24	0.28	0.32	0.36			
0.3	0.03	0.06	0.09	0.12	0.15	0.18	0.21	0.24	0.27			
0.2	0.02	0.04	0.06	0.08	0.1	0.12	0.14	0.16	0.18			
0.1	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09			
Impact	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9			

Multiple parameter example

Overview

Historic Overview

- Changing nature of risk
- Timeline

<u>Traditional Risk</u> Analysis Methods

• Some methods explained

Emerging Safety Paradigms:

- -Systems & complexity thinking
- Safety-II
- Resilience Engineering

Systems Thinking

"Systems thinking marks the changing perspective from decomposition by analytical reduction to the analysis and design of the whole, as distinct from the components. It provides a means for studying emergent system safety properties"

Systems thinking methods

HELP – Healthcare Logistics Education and Learning Pathway

Resonance & Emergence

Resonance & Emergence

Complexity Thinking

 "Complexity thinking marks a changing perspective on causality, moving from sequential models to systemic models, which is a change from linear thinking to non-linear thinking."

Complexity thinking (non-linear) methods

HELP – Healthcare Logistics Education and Learning Pathway

Imbalance of things that go wrong versus things that go right

10⁻⁴: = 1 failure Learning from in 10.000 events incindents Classic safety managment $1 - 10^{-4}$: = 9.999 non-failure in 10.000 events

Learning from full performance variability

Safety-I vs Safety-II

Resilience Engineering

Resilience definitions:

- "a system's capability to sustain, restore, and even improve its functionality under turbulent circumstances" (Ruth et al., 2019)
- "the ability of the system to adjust its functioning prior to, during, or following changes and disturbances, so that it can sustain required performance under expected and unexpected conditions" (Robson, 2013)

HELP – Healthcare Logistics Education and Learning Pathway

Resilience Analysis

Resilience Engineering

HELP – Healthcare Logistics Education and Learning Pathway

Example of a Safety-II Risk Assessment Method

Functional Resonance Analysis Method (FRAM)

TIME CONTROL Temporal aspects that affect That which supervises or regulates how the function is carried out the function, e.g. plans, procedures, guidelines or other functions. (constraint, resource). INPUT OUTPUT **Function** That which activates That which is the result of the function and/or the function. Constitutes activity is used or transformed to the links to downstream produce the output. Constitutes functions. the link to upstream functions. RESOURCES PRECONDITION (execution conditions) System conditions that must That which is needed or consumed be fulfilled before a function by the function when it is active can be carried out. (matter, energy, competence, software, manpower).

HELP – Healthcare Logistics Education and Learning Pathway

Example of a Safety-II Risk Assessment Method

Functional Resonance Analysis Method (FRAM)

HELP – Healthcare Logistics Education and Learning Pathway

Example of a Safety-II Risk Assessment Method

Functional Resonance Analysis Method (FRAM)

31

OPETUSHALLITUS UTBILDNINGSSTYRELSEN

HELP – Healthcare Logistics Education and Learning Pathway

Systems Theoretic Analysis Method and Processes

(STAMP)

The End

arie.adriaensen@kuleuven.be

References used in this presentation

- Adriaensen, A., Decré, W., & Pintelon, L. (2019). Can Complexity-Thinking Methods Contribute to Improving Occupational Safety in Industry 4.0? A Review of Safety Analysis Methods and Their Concepts. *Safety*, 5(4). doi:10.3390/safety5040065
- Ahn, J., Carson, C., Jensen, M., Juraku, K., Nagasaki, S., & Tanaka, S. (2015). Reflections on the fukushima daiichi nuclear accident: Toward social-scientific literacy and engineering resilience.
- Cimellaro, G. P. (2016). Resilience-Based Design (RBD). In *Urban Resilience for Emergency Response and Recovery: Fundamental Concepts and Applications* (pp. 31-48). Cham: Springer International Publishing.
- Conklin, T. (2012). Pre-Accident Investigations: An Introduction to Organizational Safety: Ashgate Publishing Limited.
- Eurocontrol. (2013). From Safety-I to Safety-II: A White Paper. Retrieved from http://www.skybrary.aero/bookshelf/books/2437.pdf
- Hale, A. R., & Hovden, J. (1998). Management and culture: the third age of safety. A review of approaches to organizational aspects of safety, health and environment. In A. M. Feyer & A. Williamson (Eds.), Occupational Injury. Risk Prevention and Intervention. London.: Taylor & Francis.
- Heinrich, H. W. (1931). *Industrial accident prevention: a scientific approach*: McGraw-Hill.
- Hollnagel, E., & Speziali, J. (2008). Study on Developments in Accident Investigation Methods: A Survey of the "State-of-the-Art. Retrieved from https://hal-mines-paristech.archives-ouvertes.fr/hal-00569424
- Hollnagel, E. (2014). Safety-I and Safety-II, The Past and Future of Safety Management. Farnham, Surrey; Burlington, Vermont: Ashgate.
- Hollnagel, E., Hounsgaard, J., & Colligan, L. (2014). FRAM the Functional Resonance Analysis Method a handbook for the practical use of the method: Centre for Quality, Region of Southern Denmark

References used in this presentation

- Ibrahim, I., & Chassapis, C. (2014). Recent Patents on Risk Management During Medical Device Lifecycle "Managing the Transition From Bench to Market". *Recent Patents on Engineering*, 8(2), 133-142. doi:10.2174/1872212108666140829011303
- Kritzinger, D. (2017). Aircraft system safety: assessments for initial airworthiness certification: Elsevier, Woodhead Publishing.
- Mosleh, A. (2014). PRA: A Perspective on Strengths, Current Limitations, and Possible Improvements. *Nuclear Engineering and Technology*, 46(1), 1-10. doi:10.5516/net.03.2014.700
- Pasman, H. J., Rogers, W. J., & Mannan, M. S. (2017). Risk assessment: What is it worth? Shall we just do away with it, or can it do a
 better job? Safety Science, 99, 140-155. doi:10.1016/j.ssci.2017.01.011
- Rasmussen, J. (1997). Risk management in a dynamic society: a modelling problem. *Safety Science*, 27(2/3), 183-213.
- Reason, Hollnagel, & Paries. (2006). Revisiting The « Swiss Cheese » Model of Accidents. Retrieved from Brétigny-sur-Orge: https://www.eurocontrol.int/eec/public/standard_page/DOC_Report_2006_017.html
- Robson, R. (2013). Resilient Health Care. In P. E. Hollnagel, P. J. Braithwaite, & P. R. L. Wears (Eds.), *Resilient Health Care*: Ashgate Publishing Limited.
- Ruth, M., & Goessling-Reisemann, S. (2019). *Handbook on Resilience of Socio-Technical Systems*. Celtenham UK, Northampton, MA, USA: Edward Elgar Publishing.
- Shiao, M., Y-T Wu, J., Ghoshal, A., Ayers, J., & Le, D. (2012). *Probabilistic structural risk assessment for fatigue management using structural health monitoring.* Paper presented at the Proceedings of SPIE The International Society for Optical Engineering.
- Vincent, C., & Amalberti, R. (2016). Safer Healthcare, Strategies for the Real World. In: Springer.

