Master theorem Examples - part 2

$$T(n) = \sqrt{2}T(n/2) + \log n :$$

$$f(n) = \log n$$
It is case 1 because: $O(n^{\frac{1}{2}b}) = O(n^{\frac{1}{2}-\epsilon})$

Then:
$$T(n) = O(n^{605})$$

Then: $T(n) = O(n^{605})$

$$T(n) = O(n^{605})$$

$$= O(n^{605})$$

$$f(n) = \sqrt{n}$$

0=3

$$b=3$$

 $f(n)=\sqrt{n}$
It is case 1: $O(n^{\frac{3}{3}})$ for small $(n)=\sqrt{n}$

Then:
$$T(n) = \theta(n^{63}) = \theta(n)$$

$$f(n)=Cn$$
It is case 1 because: $O(n^{\frac{2}{3}})$

Then
$$T(n) = O(n^{\frac{6n}{2}}) = O(n^{2})$$

15
$$T(n) = 3T(\frac{1}{4}) + n gn$$
 $\alpha = 3$
 $b = 2n$
 $f(n) = n gn$

It is not case 3 because $O(n^{\frac{3}{2}})$

Thun $n gn > n gn$

It is not case $2: O(n^{\frac{3}{2}} g_n^{\kappa}) = n$

We cannot find a range for k to sondwitch $f(n)$
 $f(n) = n gn$
 $f(n) = n gn$

It night be case $3: gn$
 $f(n) = n gn$
 $f(n) = n gn$

It night be case $3: gn$
 $f(n) = n g$

b)
$$T(n) = 3 T(n/3) + \frac{h}{2}$$
 $a = 3$
 $b = 3$
 $f(n) = \frac{h}{2}$

It is not case 1 because: $\frac{h}{2} = 0$

It is case $h : \theta(n) = \frac{h}{3} = 0$

If is case $h : \theta(n) = \theta(n) = 0$
 $f(n) = \frac{h}{3} = 0$

Then: $T(n) = \theta(n) = 0$
 $f(n) = 0$

(1)
$$T(n) = 6T(\frac{n}{3}) + n^2 lgn$$
 $a = 6$
 $b = 3$
 $f(n) = n^2 lgn$

It is case 3 because: $n^2 lgn > \mathcal{N}(n)$

We have to examine regulation condition:
$$6(\frac{n}{3})^2 lg \frac{n}{3} < cn^2 lgn$$

$$6 for large $n - \frac{1}{3} \approx lgn$

$$6 for large $n - \frac{1}{3} \approx lgn$$$$$$$$$$$

(19)
$$T(n) = 64 T(n/8) - n^2 lgn$$
 $a = 64$
 $b = 8$
 $f(n) = -n^2 lgn$

Master theorem cannot be applied.

 $f(n)$ must be positive.

$$(20) T(n) = 7 T(n/3) + n^{2}$$

$$\alpha = 7$$

$$b = 3$$

$$f(n) = n^{2}$$
It is case 3, because $n^{2} > 2 (n^{3})$ or 27
But we have to examine regulation condition:
$$7(\frac{n}{3})^{2} < cn^{2} - \frac{7}{4} < cn^{2} > \frac{7}{4} < cn^{2}$$
Then: $T(n) = \theta(n^{2})$

2)
$$T(n)=4T(n/2)+gn$$
 $n=4$
 $b=1$
 $f(n)=gn$

It is case 1, $g_n < O(n^2)$

Then $T(n)=\Theta(n^2)=\Theta(n^2)$