Linear System Theory Solution to Midterm

11/9/2023

1. (a) Suppose that $\mathbf{x} \in \mathcal{R}(\mathbf{P})$. Then $\exists \mathbf{z} \in \mathbb{R}^m$ such that $\mathbf{x} = \mathbf{P}\mathbf{z} = \mathbf{A}(\mathbf{A}^T\mathbf{A})^{-1}\mathbf{A}^T\mathbf{z} = \mathbf{A}\mathbf{w}$, where $\mathbf{w} = (\mathbf{A}^T\mathbf{A})^{-1}\mathbf{A}^T\mathbf{z}$. Hence $\mathbf{x} \in \mathcal{R}(\mathbf{A})$, and therefore $\mathcal{R}(\mathbf{P}) \subset \mathcal{R}(\mathbf{A})$. On the other hand, if $\mathbf{x} \in \mathcal{R}(\mathbf{A})$, then $\exists \mathbf{z} \in \mathbb{R}^n$ such that $\mathbf{x} = \mathbf{A}\mathbf{z}$. Define $\mathbf{y} = \mathbf{A}\mathbf{z}$; then $\mathbf{A}^T\mathbf{A}\mathbf{z} = \mathbf{A}^T\mathbf{y}$, or $\mathbf{z} = (\mathbf{A}^T\mathbf{A})^{-1}\mathbf{A}^T\mathbf{y}$. This means $\mathbf{x} = \mathbf{A}(\mathbf{A}^T\mathbf{A})^{-1}\mathbf{A}^T\mathbf{y} = \mathbf{P}\mathbf{y}$. Thus $\mathbf{x} \in \mathcal{R}(\mathbf{P})$. and $\mathcal{R}(\mathbf{A}) \subset \mathcal{R}(\mathbf{P})$.

According to the above arguments, we conclude that $\mathcal{R}(\mathbf{P}) = \mathcal{R}(\mathbf{A})$.

(b) Suppose that $\mathbf{x} \in \mathcal{R}(\mathbf{I} - \mathbf{P})$. Then $\exists \mathbf{z} \in \mathbf{R}^m$ such that $\mathbf{x} = (\mathbf{I} - \mathbf{P})\mathbf{z}$. Hence $\mathbf{A}^T\mathbf{x} = (\mathbf{A}^T - \mathbf{A}^T\mathbf{A}(\mathbf{A}^T\mathbf{A})^{-1}\mathbf{A}^T)\mathbf{z} = \mathbf{0}$, implying $\mathbf{x} \in \mathcal{N}(\mathbf{A}^T)$ and $\mathcal{R}(\mathbf{I} - \mathbf{P}) \subset \mathcal{N}(\mathbf{A}^T)$.

On the other hand, if $\mathbf{x} \in \mathcal{N}(\mathbf{A}^T)$, i.e. $\mathbf{A}^T\mathbf{x} = \mathbf{0}$, then $\mathbf{P}\mathbf{x} = \mathbf{A}(\mathbf{A}^T\mathbf{A})^{-1}\mathbf{A}^T\mathbf{x} = \mathbf{0}$. Thus $\mathbf{x} = \mathbf{x} - \mathbf{P}\mathbf{x} = (\mathbf{I} - \mathbf{P})\mathbf{x}$, implying that $\mathbf{x} \in \mathcal{R}(\mathbf{I} - \mathbf{P})$ and $\mathcal{N}(\mathbf{A}^T) \subset \mathcal{R}(\mathbf{I} - \mathbf{P})$.

According to the above arguments, we conclude that $\mathcal{R}(\mathbf{I} - \mathbf{P}) = \mathcal{N}(\mathbf{A}^T)$.

2. (a) Since $\mathbf{v} = \mathbf{x}(t+1) - \mathbf{x}(t)$ for all $t \ge 0$, we have

$$\mathbf{v} = \mathbf{x}(2) - \mathbf{x}(1) = e^{\mathbf{A}}(\mathbf{x}(1) - \mathbf{x}(0)) = e^{\mathbf{A}}\mathbf{v}$$
 (1)

In other words, $e^{\mathbf{A}}$ has an eigenvalue 1 and the associated eigenvector is \mathbf{v} . By the spectral mapping theorem, $\lambda = \ln 1 = 0$ is an eigenvalue of \mathbf{A} , and the associated eigenvector is \mathbf{v} .

(b) $\mathbf{x}(1) - \mathbf{x}(0) = \mathbf{v} \implies e^{\mathbf{A}}\mathbf{x}(0) = \mathbf{x}(0) + \mathbf{v}$ (2)

Thus (2) implies that $\mathbf{x}(0)$ is a generalized eigenvector of $e^{\mathbf{A}}$ associated with the eigenvalue 1. Combining (1) and (2) yields

$$e^{\mathbf{A}} \begin{bmatrix} \mathbf{v} & \mathbf{x}(0) \end{bmatrix} = \begin{bmatrix} \mathbf{v} & \mathbf{x}(0) \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$
 (3)

Since $\mathbf{x}(0)$ and \mathbf{v} are linearly independent, $e^{\mathbf{J}} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ is the Jordan form of $e^{\mathbf{A}}$.

(c) $\mathbf{v} = \mathbf{x}(1) - \mathbf{x}(0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}^T$. Let $\mathbf{T} = \begin{bmatrix} \mathbf{v} \\ \mathbf{x}(0) \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$. Note that if $\mathbf{J} = \begin{bmatrix} \lambda & 1 \\ 0 & \lambda \end{bmatrix}$, then $e^{\mathbf{J}t} = e^{\lambda t} \begin{bmatrix} 1 & t \\ 0 & 1 \end{bmatrix}$. For t = 1 and $\lambda = 0$, we have $e^{\mathbf{J}} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$.

Hence $\mathbf{J} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$. Then from (3) we have

$$\mathbf{A} = \mathbf{T}\mathbf{J}\mathbf{T}^{-1} = \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}$$

3. (a) The characteristic equation of \mathbf{A} is

$$\det(\lambda \mathbf{I} - \mathbf{A}) = \det \begin{bmatrix} \lambda + 2 & -2 \\ 1 & \lambda \end{bmatrix} = \lambda(\lambda + 2) + 2 = \lambda^2 + 2\lambda + 2 = 0$$

Hence the eigenvalues of **A** is $\lambda = \sigma \pm j\omega = -1 \pm j$, i.e. $\sigma = -1$ and $\omega = 1$. For $\lambda = -1 + j$, the corresponding eigenvector is $\mathbf{v} = [v_1, v_2]^T \in \mathbb{C}^2$. Then

$$((-1+j)\mathbf{I} - \mathbf{A})\mathbf{v} = \begin{bmatrix} 1+j & -2 \\ 1 & -1+j \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow v_1 = (1-j)v_2$$

Hence the eigenvector is $\mathbf{v} = \begin{bmatrix} 1-j \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} + j \begin{bmatrix} -1 \\ 0 \end{bmatrix}$. Choose $\mathbf{T} = \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix}$. Then

$$\mathbf{A} = \mathbf{T} \mathbf{\Lambda} \mathbf{T}^{-1}$$
, where $\mathbf{\Lambda} = \begin{bmatrix} -1 & 1 \\ -1 & -1 \end{bmatrix} = \begin{bmatrix} \sigma & \omega \\ -\omega & \sigma \end{bmatrix}$

and

$$\dot{\mathbf{z}} = \mathbf{T}^{-1}\dot{\mathbf{x}} = \mathbf{T}^{-1}\mathbf{A}\mathbf{T}\mathbf{z} = \mathbf{\Lambda}\mathbf{z}$$

(b)

$$\dot{r} = \frac{1}{2} \frac{2z_1 \dot{z}_1 + 2z_2 \dot{z}_2}{\sqrt{z_1^2 + z_2^2}} = \frac{z_1(\sigma z_1 + \omega z_2) + z_2(-\omega z_1 + \sigma z_2)}{r} = \frac{\sigma r^2}{r} = \sigma r = -r$$

$$\dot{\theta} = \frac{\frac{\dot{z}_2 z_1 - z_2 \dot{z}_1}{z_1^2}}{1 + (\frac{z_2}{z_1})^2} = \frac{z_1(-\omega z_1 + \sigma z_2) - z_2(\sigma z_1 + \omega z_2)}{z_1^2 + z_2^2} = \frac{-\omega r^2}{r^2} = -\omega = -1$$

Hence the state equation is

$$\frac{d}{dt} \begin{bmatrix} r \\ \theta \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} r \\ \theta \end{bmatrix} + \begin{bmatrix} 0 \\ -1 \end{bmatrix} \tag{4}$$

(c) Given an initial state $[r(0), \theta(0)]^T$, the solution to (4) is

$$r(t) = e^{-t}r(0), \quad \theta(t) = -t + \theta(0).$$

4. (a) False

Suppose that $\mathbf{A} = \begin{bmatrix} 0 & \frac{3\pi}{4} \\ -\frac{3\pi}{4} & 0 \end{bmatrix}$. The eigenvalues of \mathbf{A} are $\pm j\frac{3\pi}{4}$. Then by the spectral mapping theorem, the eigenvalues of $e^{\mathbf{A}}$ are $e^{\pm j\frac{3\pi}{4}} = \cos\frac{3\pi}{4} \pm j\sin\frac{3\pi}{4} = \frac{1}{\sqrt{2}}(-1 \pm j)$. Hence the eigenvalues of $e^{\mathbf{A}}$ have negative real parts.

(b) True

Let $\mathbf{A} = \mathbf{T}\mathbf{J}\mathbf{T}^{-1}$, where $\mathbf{J} = \operatorname{diag}(\mathbf{J}_1, \cdots, \mathbf{J}_r)$, and $\mathbf{J}_i \in \mathbf{R}^{n_i \times n_i}$ is the *i*-th Jordan block. $\mathbf{T} = [\mathbf{T}_1, \cdots, \mathbf{T}_r]$, where $\mathbf{T}_i \in \mathbf{R}^{n \times n_i}$. Without loss of generality, we can assume that $\mathbf{T}_1 = [\mathbf{v}, \cdots,]$. \mathbf{v} is an eigenvector of \mathbf{A} associated with the eigenvalue λ . Note that $\mathbf{T}^{-1}\mathbf{T} = [\mathbf{T}^{-1}\mathbf{v}, \cdots] = \mathbf{I}$. Thus $\mathbf{T}^{-1}\mathbf{v} = \mathbf{e}_1 = [1, 0, \cdots, 0]^T$. In addition, $e^{\mathbf{J}t} = \operatorname{diag}(e^{\mathbf{J}_1t}, \cdots, e^{\mathbf{J}_rt})$, and $e^{\mathbf{J}t}\mathbf{e}_1 = e^{\lambda t}\mathbf{e}_1$.

Suppose that $\mathbf{x}(0) = \mathbf{v}$. Then

$$\mathbf{x}(t) = e^{\mathbf{A}t}\mathbf{v} = \mathbf{T}e^{\mathbf{J}t}\mathbf{T}^{-1}\mathbf{v} = \mathbf{T}e^{\mathbf{J}t}\mathbf{e}_1 = e^{\lambda t}\mathbf{T}\mathbf{e}_1 = e^{\lambda t}\mathbf{v}$$

5. (a) The characteristic equation of **A** is

$$\det(\lambda \mathbf{I} - \mathbf{A}) = \det \begin{bmatrix} \lambda - 1 & 0 & 0 \\ -3 & \lambda - 1 & 2 \\ -2 & 0 & \lambda + 1 \end{bmatrix} = (\lambda - 1)^2 (\lambda + 1) = 0$$

Hence the eigenvalues of **A** are $\lambda_1 = 1$ (with multiplicity 2 and $\lambda_2 = -1$. Let $\mathbf{t}_1 = [t_{11}, t_{21}, t_{31}]^T$ be the eigenvector associated with λ_1 , i.e.

$$(\lambda_1 \mathbf{I} - \mathbf{A}) \mathbf{t}_1 = \begin{bmatrix} 0 & 0 & 0 \\ -3 & 0 & 2 \\ -2 & 0 & 2 \end{bmatrix} \begin{bmatrix} t_{11} \\ t_{21} \\ t_{31} \end{bmatrix} = \mathbf{0} \implies \begin{cases} -3t_{11} + 2t_{31} &= 0 \\ -2t_{11} + 2t_{31} &= 0 \end{cases} \implies \begin{cases} t_{11} = 0 \\ t_{31} = 0 \end{cases}$$

Therefore the eigenvalue λ_1 has only one linearly independent eigenvector $\mathbf{t}_1 = [0, 1, 0]^T$. The generalized eigenvector $\mathbf{t}_2 = [t_{12}, t_{22}, t_{32}]^T$ is

$$(\lambda_1 \mathbf{I} - \mathbf{A}) \mathbf{t}_2 = \begin{bmatrix} 0 & 0 & 0 \\ -3 & 0 & 2 \\ -2 & 0 & 2 \end{bmatrix} \begin{bmatrix} t_{12} \\ t_{22} \\ t_{32} \end{bmatrix} = -\mathbf{t}_1 = \begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix} \Rightarrow \mathbf{t}_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

On the other hand, let $\mathbf{t}_3 = [t_{13}, t_{23}, t_{33}]^T$ be the eigenvector associated with λ_2 , i.e.

$$(\lambda_2 \mathbf{I} - \mathbf{A}) \mathbf{t}_3 = \begin{bmatrix} -2 & 0 & 0 \\ -3 & -2 & 2 \\ -2 & 0 & 0 \end{bmatrix} \begin{bmatrix} t_{13} \\ t_{23} \\ t_{33} \end{bmatrix} = \mathbf{0} \implies \begin{cases} t_{13} & = 0 \\ -t_{23} + t_{33} & = 0 \end{cases} \implies \mathbf{t}_3 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$

Let $\mathbf{T} = [\mathbf{t}_1, \mathbf{t}_2, \mathbf{t}_3]$. Then, the Jordan form of \mathbf{A} is

$$\mathbf{J} = \mathbf{T}^{-1} \mathbf{A} \mathbf{T} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

(b) Given **T** in part (a), we have $\mathbf{T}^{-1} = \begin{bmatrix} 1 & 1 & -1 \\ 1 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}$. Then $\mathbf{T}^{-1}\mathbf{b} = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$.

$$H(s) = \mathbf{c}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{b} = \mathbf{c}\mathbf{T}(s\mathbf{I} - \mathbf{J})^{-1}\mathbf{T}^{-1}\mathbf{b}$$

$$= \mathbf{c} \begin{bmatrix} \mathbf{t}_1 & \mathbf{t}_2 & \mathbf{t}_3 \end{bmatrix} \begin{bmatrix} s - 1 & -1 & 0 \\ 0 & s - 1 & 0 \\ 0 & 0 & s + 1 \end{bmatrix}^{-1} \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$$

$$= \mathbf{c} \begin{bmatrix} \mathbf{t}_1 & \mathbf{t}_2 & \mathbf{t}_3 \end{bmatrix} \begin{bmatrix} \frac{1}{s-1} & \frac{1}{(s-1)^2} & 0 \\ 0 & \frac{1}{s-1} & 0 \\ 0 & 0 & \frac{1}{s+1} \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$$

$$= \frac{\mathbf{c}\mathbf{t}_1 + \mathbf{c}\mathbf{t}_2}{s-1} + \frac{\mathbf{c}\mathbf{t}_1}{(s-1)^2} + \frac{-\mathbf{c}\mathbf{t}_3}{s+1}$$

(c) For the unstable eigenvalue $\lambda_1 = 1$ not shown in H(s), the residues associated with λ_1 must vanish. In other words, \mathbf{c} should be orthogonal to both \mathbf{t}_1 and \mathbf{t}_2 . Thus we choose $\mathbf{c} = (\mathbf{t}_1 \times \mathbf{t}_2)^T = [1, 0, -1]$. In this case, we have $H(s) = -\frac{\mathbf{c}\mathbf{t}_3}{s+1} = \frac{1}{s+1}$.

(d) Let
$$\mathbf{X}(s)$$
 be the Laplace transform of $\mathbf{x}(t)$ and $\mathbf{T}^{-1} = \begin{bmatrix} \mathbf{w}_1^T \\ \mathbf{w}_2^T \\ \mathbf{w}_3^T \end{bmatrix}$, where $\mathbf{w}_i \in \mathbb{R}^3$, $i = 1, 2, 3$. Following the same argument in part (b), we have

$$\mathbf{X}(s) = (s\mathbf{I} - \mathbf{A})^{-1}\mathbf{x}(0) = \begin{bmatrix} \mathbf{t}_1 & \mathbf{t}_2 & \mathbf{t}_3 \end{bmatrix} \begin{bmatrix} \frac{1}{s-1} & \frac{1}{(s-1)^2} & 0 \\ 0 & \frac{1}{s-1} & 0 \\ 0 & 0 & \frac{1}{s+1} \end{bmatrix} \begin{bmatrix} \mathbf{w}_1^T \\ \mathbf{w}_2^T \\ \mathbf{w}_3^T \end{bmatrix} \mathbf{x}(0)$$

$$= \frac{(\mathbf{t}_1 \mathbf{w}_1^T + \mathbf{t}_2 \mathbf{w}_2^T)\mathbf{x}(0)}{s-1} + \frac{\mathbf{t}_1 \mathbf{w}_1^T \mathbf{x}(0)}{(s-1)^2} + \frac{\mathbf{t}_3 \mathbf{w}_3^T \mathbf{x}(0)}{s+1}$$

The first two terms must vanish for $\mathbf{x}(t)$ to converge to zero. In other words, $\mathbf{x}(0)$ must be orthogonal to both \mathbf{w}_1 and \mathbf{w}_1 . Choose $\mathbf{x}(0) = \mathbf{w}_2 \times \mathbf{w}_1 = [0, 1, 1]^T$.

- 6. **A** has eigenvalue -1 with multiplicity 3. Since **A** is in the Jordan form and the maximum size of the Jordan block is 2, the minimal polynomial of **A** is $\varphi(s) = (s+1)^2$. This implies that $\varphi(\mathbf{A}) = (\mathbf{A} + \mathbf{I})^2 = \mathbf{0}$, or $\mathbf{A}^2 = -2\mathbf{A} \mathbf{I}$.
 - (a) We show $\mathbf{A}^k = (-1)^{k-1} (k\mathbf{A} + (k-1)\mathbf{I})$ by mathematical induction as follows.
 - i. For k = 2, we have just shown that the equality holds.
 - ii. Suppose that the equality holds for k = n, i.e. $\mathbf{A}^n = (-1)^{n-1} (n\mathbf{A} + (n-1)\mathbf{I})$.
 - iii. Consider the case of k = n + 1.

$$\mathbf{A}^{n+1} = \mathbf{A}\mathbf{A}^{n} = (-1)^{n-1} (n\mathbf{A}^{2} + (n-1)\mathbf{A})$$

= $(-1)^{n-1} (n(-2\mathbf{A} - \mathbf{I}) + (n-1)\mathbf{A}))$
= $(-1)^{n} ((n+1)\mathbf{A} + n\mathbf{I})$

This implies that the equality holds for k = n + 1.

iv. By mathematical induction, the equality holds for all $k \geq 2$.

(b) Choose $p(s) = \alpha_0 + \alpha_1 s$. Then the interpolation conditions are

$$p(-1) = \alpha_0 - \alpha_1 = \sin(-1) = -\sin(1)$$

 $p'(-1) = \alpha_1 = \cos(-1) = \cos(1)$

Hence $\alpha_0 = -\sin(1) + \cos(1)$ and

$$\sin \mathbf{A} = p(\mathbf{A}) = \alpha_0 \mathbf{I} + \alpha_1 \mathbf{A} = (\cos(1) - \sin(1))\mathbf{I} + \cos(1)\mathbf{A}$$