

IRF6201PbF

HEXFET® Power MOSFET

V _{DS}	20	٧
$R_{DS(on) max}$ (@V _{GS} = 4.5V)	2.45	$\mathbf{m}\Omega$
$R_{DS(on) max}$ (@V _{GS} = 2.5V)	2.75	$\mathbf{m}\Omega$
Q _{g (typical)}	130	nC
I _D (@T _A = 25°C)	27	A

Applications

- OR-ing or hot-swap MOSFET
- Battery operated DC motor inverter MOSFET
- System/Load switch

Features and Benefits

Features and Benefits

Lo	ow R_{DSon} ($\leq 2.45 m\Omega$ @ Vgs = 4.5V)
In	ndustry-standard SO-8 package
R	oHS compliant containing no lead, no bromide and no halogen

Benefits

reculte in	Lower conduction losses Multi-vendor compatibility
Tesuits III	Multi-vendor compatibility
\Rightarrow	Environmentally Friendly

Orderable part number	Package Type	Standard Pack		Note
		Form	Quantity	
IRF6201PbF	SO8	Tube/Bulk	95	
IRF6201TRPbF	SO8	Tape and Reel	4000	

Absolute Maximum Ratings

Parameter		Parameter Max.	
V _{DS}	Drain-to-Source Voltage	20	V
V _{GS}	Gate-to-Source Voltage	±12	v
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 4.5V	27	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 4.5V	22	A
I _{DM}	Pulsed Drain Current ①	110	
P _D @T _A = 25°C	Power Dissipation ③	2.5	w
P _D @T _A = 70°C Power Dissipation ③		1.6	VV
Linear Derating Factor		0.02	W/°C
TJ	Operating Junction and	-55 to + 150	°C
T _{STG} Storage Temperature Range			

IRF6201PbF

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
BV _{DSS}	Drain-to-Source Breakdown Voltage	20			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		4.6		mV/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Ctatic Dunin to Course On Desistance		1.90	2.45	0	V _{GS} = 4.5V, I _D = 27A ②
	Static Drain-to-Source On-Resistance		2.10	2.75	mΩ	V _{GS} = 2.5V, I _D = 22A ②
V _{GS(th)}	Gate Threshold Voltage	0.5		1.1	V	$V_{DS} = V_{GS}, I_{D} = 100 \mu A$
I _{DSS}	Drain-to-Source Leakage Current			1.0		$V_{DS} = 16V, V_{GS} = 0V$
				150	μΑ	$V_{DS} = 16V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 12V
	Gate-to-Source Reverse Leakage			-100	IIA.	V _{GS} = -12V
Q_g	Total Gate Charge		130	195		$V_{GS} = 4.5V$
Q _{gs}	Gate-to-Source Charge		16		nC	$V_{DS} = 10V$
Q_{gd}	Gate-to-Drain Charge		60			$I_D = 22A$
t _{d(on)}	Turn-On Delay Time		29			$V_{DD} = 20V, V_{GS} = 4.5V$
t _r	Rise Time		100			$I_{D} = 1.0A$
t _{d(off)}	Turn-Off Delay Time		320		ns	$R_G = 6.8\Omega$
t _f	Fall Time		265			See Figs. 10a & 10b
C _{iss}	Input Capacitance		8555			V _{GS} = 0V
C _{oss}	Output Capacitance	l	1735		pF	V _{DS} = 16V
C _{rss}	Reverse Transfer Capacitance		1290			f = 1.0MHz

Diode Characteristics

21040 011414010110100						
	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			0.5		MOSFET symbol
	(Body Diode)			2.5	_	showing the
I _{SM}	Pulsed Source Current			110	Α	integral reverse
	(Body Diode) ①			110		p-n junction diode.
V_{SD}	Diode Forward Voltage	_		1.2	V	$T_J = 25^{\circ}C$, $I_S = 2.5A$, $V_{GS} = 0V$ ②
t _{rr}	Reverse Recovery Time	_	82	120	ns	$T_J = 25^{\circ}C$, $I_F = 2.5A$, $V_{DD} = 16V$
Q _{rr}	Reverse Recovery Charge		180	270	nC	di/dt = 100/µs ②

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JL}$	Junction-to-Drain Lead @		20	°C/M
$R_{\theta JA}$	Junction-to-Ambient ③		50	°C/W

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Pulse width \leq 400 μ s; duty cycle \leq 2%.
- ③ When mounted on 1 inch square copper board.
- 4 R_{θ} is measured at T_J approximately 90°C.

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance vs. Temperature

IRF6201PbF

Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current vs. Case Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Typical Effective Transient Thermal Impedance, Junction-to-Ambient

Fig 12. Typical On-Resistance vs. Gate Voltage

Fig 13. Typical On-Resistance vs. Drain Current

Fig 14a. Basic Gate Charge Waveform

Fig 14b. Gate Charge Test Circuit

Fig 15. Typical Threshold Voltage vs. Junction Temperature

Fig 16. Typical Power vs. Time

SO-8 Package Outline (Mosfet & Fetky)

Dimensions are shown in milimeters (inches)

ЫМ	INCHES		MILLIM	ETERS	
DIIVI	MIN MAX		MIN	MAX	
Α	.0532	.0688	1.35	1.75	
A1	.0040	.0098	0.10	0.25	
b	.013	.020	0.33	0.51	
С	.0075	.0098	0.19	0.25	
D	189	.1968	4.80	5.00	
Е	.1 497	.1574	3.80	4.00	
е	.050 B	ASIC	1.27 BASIC		
e 1	.025 B	ASIC	0.635 BASIC		
Н	2284	.2440	5.80	6.20	
K	.0099	.01 96	0.25	0.50	
L	.016	.050	0.40	1.27	
у	0°	8°	0°	8°	

NOTES:

- 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: MILLIMETER
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-01 2AA.
- (5) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006].
- (6) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010].
- [7] DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE.

SO-8 Part Marking Information

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

SO-8 Tape and Reel

- NOTES:
 1. CONTROLLING DIMENSION: MILLIMETER.
 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).
 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

- NOTES:
 1. CONTROLLING DIMENSION: MILLIMETER.
 2. OUTLINE CONFORMS TO EIA-481 & EIA-541.

Qualification Information[†]

Qualification level	Consumer †† (per JEDEC JESD47F ^{†††} guidelines)				
Moisture Sensitivity Level	SO-8	MSL1 (per JEDEC J-STD-020D ^{†††})			
RoHS Compliant	Yes				

- Qualification standards can be found at International Rectifier's web site http://www.irf.com/product-info/reliability
- †† Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information: http://www.irf.com/whoto-call/salesrep/
- ††† Applicable version of JEDEC standard at the time of product release.

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information. 11/10