Intervals, Transformations, and Slope Solution (version 168)

1. The function f is graphed below.

Indicate the following intervals using interval notation. Remember, you can use \cup between two intervals to indicate the union. Except for range, all intervals will indicate x values; this is standard.

Feature	Where
Positive	$(-4,-1) \cup (5,7)$
Negative	$(-1,5) \cup (7,9)$
Increasing	$(4,6) \cup (8,9)$
Decreasing	$(-4,4) \cup (6,8)$
Domain	(-4,9)
Range	(-10, 10)

Intervals, Transformations, and Slope Solution (version 168)

2. In the four graphs below, y = f(x) is graphed as a dotted line. With a solid line, please graph the transformations indicated by the equations below.

3. Let function g be defined by the table below. Use the formula $\frac{g(x_2)-g(x_1)}{x_2-x_1}$ to find the average rate of change between $x_1=53$ and $x_2=78$. Express your answer as a reduced fraction.

\overline{x}	g(x)
53	85
75	53
78	75
85	78

$$\frac{g(78) - g(53)}{78 - 53} = \frac{75 - 85}{78 - 53} = \frac{-10}{25}$$

The greatest common factor of -10 and 25 is 5. Divide numerator and denominator by the greatest common factor.

$$AROC = \frac{-2}{5}$$

2