FINGER PIER/SPINE PIER CONNECTION FOR THE EXPEDITIONARY PIER(U) LIN (T Y) INTERNATIONAL SAN FRANCISCO CA APR 84 2/84 N00014-83-C-0869 1/2 AD-A146 144 F/G 13/13 NL UNCLASSIFIED

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS ~ 1963 - A

9 1 1

augus 1 199

NAVY PIER CONCEPTS REPORT NO. 2/84

AD-A146 144

SUBMITTED TO:

DEPARTMENT OF THE NAVY

OFFICE OF NAVAL RESEARCH ARLINGTON, VIRGINIA

SUBMITTED BY:

T.Y. LIN INTERNATIONAL

APRIL 1984

This downsent has been approved for public release and sales in diesthution in unlimited.

8

DTIC FILE COPY

FINGER PIER/SPINE PIER CONNECTION FOR THE EXPEDITIONARY PIER

List of Figures

- 1. INTRODUCTION
- 2. DESIGN CONSIDERATIONS
- 3. ABBREVIATED ANALYTICAL SOLUTION
- 4. DISCUSSION OF RESULTS
- 5. THE CONNECTING SYSTEM
- 6. ALTERNATIVE SOLUTION
- 7. PROBLEM AREAS
- 8. CONCLUDING REMARKS

APPENDICES

- A. Free Floating Behavior
- B. Connection Analysis
- C. Extendable Link Design

FIGURES

- l. Expeditionary Pier
- 2. Spine Pier Details
- 3. Finger Pier Sections and Details
- 4a. Extendable Link
- 4b. Hydraulic Shock-Absorber
- 5. Revised Anger Pier Configuration
- 6. Finger Pier Elevation Section
- 7. Possible Applications of Retractable Pier
- 8. Effect of Increased Link Distance

SECUAITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 2/84 2/84 2/84 2/84 2/84	NO SEPIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitio)	S. TYPE OF REPORT & PERIOD COVERED
FINGER PIER/SPINE PIER CONNECTION FOR THE	Technical
EXPEDITIONARY PIER	4. PERFORMING ORG. REPORT NUMBER 2/84
7. AUTHOR(e)	8. CONTRACT OR GRANT NUMBER(s)
T. Y. Lin International	N00014-83-C-0869
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
T. Y. Lin International 315 Bay Street San Francisco, Calif. 94133	NR 294-083
11. CONTROLLING OFFICE NAME AND ADDRESS Office of Naval Research	12. REPORT DATE April 1984
800 N. Quincy Street	13. NUMBER OF PAGES
Arlington, VA 22217	91 (ce) 15. SECURITY CLASS. (of this report)
14. MONITORING AGENCY NAME & ADDRESS(II dillerent from Controlling Offi	UNCLASSIFIED
	15a. DECLASSIFICATION/DOWNGRADING
16. DISTRIBUTION STATEMENT (of this Report)	
Approved for public release; distribution unli	mited
17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different	nt from Report)
18. SUPPLEMENTARY NOTES	
•	
19. KEY WORDS (Continue on reverse side II necessary and identity by block nu 1. Pier Design 2. Pier Connections 3. Floating Pier Motions	unber)
20. ABSTRACT (Continue on reverse side if necessary and identify by block num	
A critical component of the floating expedition nection between the finger piers and the main provides an assessment of the present design of structure. Shock absorbing system and hinge particularly difficult design problems.	body or spine. This report capabilities for such a

FINGER PIER/SPINE PIER CONNECTION FOR

THE EXPEDITIONARY PIER

1. INTRODUCTION

The connection between the finger pier and the spine pier in the expeditionary pier concept was selected for further development in the current contract year with the Office of Naval Research, mainly because it represents one of the more serious technological obstacles that had to be overcome before the expeditionary pier could become a reality in the form it was originally concieved. To recap, the expeditionary pier that provides berthing facilities to 6 combatant ships of the destroyer class has the shape of an arrow on plan, and moored by a single-point mooring, partly to reduce wave and current forces to a minimum. The finger piers form the extensions to the arrow head, attached at about 45 degrees with the axis of the spine pier by means of a connecting structure, which is the subject of this report (referred to as the finger/spine hinge joint in previous reports). During tow, the finger piers are retracted and stowed alongside the spine pier. The general arrangement showing the relationship between the finger pier and the spine pier is presented in Figure 1.

As indicated above, the purpose of this report is to test the feasibility of the retractable finger pier concept, and to assess the technological gap, if any, that separates it from the state of the art. The undertaking proved to be more formidable than expected. However, enough had been accomplished within the limited time for the study to understand the problem better, and to produce a set of reasonable figures for the preliminary design of the connection.

2. DESIGN CONSIDERATIONS

In order to quantify the forces that can be used in the design of the connection structure, it is first necessary to establish the conditions for which the connection is to be designed. In fact, there is only one such condition that needs to be considered for the purpose of this report; namely, the environment conditions under which the finger piers will operate. There are other conditions, but they are not expected to be of significant magnitude to influence the outcome of the order-of-magnitude assessment, and may be disregarded to simplify the procedure.

Since the finger pier will be in operation only when the expeditionary pier is safely anchored in sheltered waters, it is reasonable to assume that the connection structure will not be subjected to environmental conditions more severe than Sea State 4. This, therefore, has been assumed as the basis for the connection design.

3. THE ABBREVIATED ANALYTICAL SOLUTION

It is recognized at the outset that an in-depth analysis of the connection with its multiple degree of movement under exciting conditions that can emanate from a dozen sources would be an extremely complex, exacting and time-consuming exercise. An abbreviated, or a short-cut solution must be found that will produce reasonable answers within the available time. As explained below, the abbreviated method consists simply of considering the most significant factors in the analysis, ignoring the rest, and of making broad assumptions on boundary conditions that are not unreasonable for the purpose of getting some quick answers.

The abbreviated method was partly based on the following observations about the connecting elements (links and shear key), see Figures 2 and 3.

- a. The system is extremely rigid in restraining horizontal movements, huge forces will be developed in the elements as a consequence to inhibiting the pier against wave induced motion.
- b. The relative size difference between the finger pier and the spine pier is such that the analysis could justifiably be simplified by considering the finger pier to be connected to a fixed rather than another floating body. This assumption presupposes that the effect due to phase differences in the motion of the finger and the spine piers will be small and can be neglected in this evaluation. An analytical model has been constructed on this basis. If a more exact analysis is required, the above mentioned behavior can be determined by modelling the finger and the spine piers together and then obtain a time history of motions for the desired sea state. It is also observed that the forces due to wind current and wave drift should be more or less constant, much lower than the transient wave forces induced by the vehicle motion.

Based on the above observations and assumptions, an appropriate model and approach were developed. The approach is to determine the free floating equations of motion (dynamic matrix, and displacement and force vectors), and then by including the stiffness of the connection system in the free-floating dynamic matrix, solve the equations of motion for displacements. The forces in the connection elements are calculated based on the determined displacements.

The analysis began with determining the free floating motions of the finger pier for various sea headings. The connection elements are so configured that they resist forces in the horizontal plane, tension in the links is expected to be caused mainly by yaw moments. Forces due to surge will not be as significant because of the small beam of the pier relative to its length. Additional forces will be caused by pitching of the finger pier relative to the spine pier. These forces could be controlled to a great extent by narrowing the contact depth between the 2 piers.

Strip theory was used to compute the free floating motions of the pier, modelled as a stationary vessel, and a Sea State 4 spectrum having 6 feet significant wave height, and mean period of 5.5 seconds. Figure 1-A (Appendix A) illustrates the analytical model description.

A description of the mathematical model of the connection structure is shown in Figure B-1 (Appendix B). The model assumes that all vertical motions at the connection interface are unconstrained for pitch and heave motions. The connector, or link, is designed to resist forces generated by yaw, surge, and pitch, and the shear key is designed to resist forces due to sway.

Tolerance at shear key interface and the hinges in the links will provide the freedom of movement in the vertical direction.

A detailed explanation of the analytical model and its limitations are given in greater details in the Appendeses following this report.

4. **DISCUSSION OF RESULTS**

The magnitude of the free floating motions for various headings can indicate the critical loading conditions for the connection elements. A wave heading of 110° (from the longitudinal axis) was found to produce the maximum motions for the imposed irregular sea. Hence, further analysis was done only for the above wave heading.

The drift forces due to wind, current and wave drift were added to the calculated transient forces. The forces in the links were determined to be in the order of 6,000 kips tension, or a reversible tension and compression of 5,000 kips based on the system design. The force in the shear key was found to be 1,300 kips.

If the links are absolutely rigid, a tension-compression couple of 5,000 kips is developed in the links in order to resist the yaw moments. It is structurally undesireable to develop compression in a slender member such as the link. The compression could be eliminated if the link was allowed to displace when in compression and the finger pier could contact (or bear against) the spine pier. This effect somewhat shortens the couple arm resisting the yaw moments, the tension is estimated to be 6,000 kips and the compression component of the couple is provided by the bearing stresses developed by the contact of the two piers.

The analysis showed considerable heave (5 ft. relative to spine pier) and pitch displacements. In order to keep the link forces low and to conform with the assumptions of the analytical model, the heave and pitch displacements should be allowed. For instance, considering a total length of 30 ft. for the link, a 5 ft. vertical displacement requires an axial extension of about 5 inches in the link.

The preceding discussion indicates that the link should have a "shock absorbing" ability or in other words an "extendable" link is desired. For design purposes, the object will be to provide an axial extension of up to 18 inches before the load capacity of the system is exceeded. A proposed design for an "extendable" link is discussed in the following section.

The shape and dimensions of the finger pier may be altered to ensure efficient behavior. The effects of pitching can be minimized by reducing the depth of the contact area of the finger and spine piers. See Figure 6. The forces in the links can be reduced by increasing the distance between the two links. The effect of the forces in the links for a particular value of yaw moment, versus the distance is illustrated in Figure 8.

5. THE CONNECTING SYSTEM

An obvious first solution is represented by the pinned joint used by the offshore industry to connect the "Stinger" to the barge in the pipe-laying operation. The difference is however the magnitude of the forces that the joint has to deal with. For the stinger-type connection, the pin would have to be much larger and heavier, making connection in the relatively open sea difficult. It is also not possible for the finger pier to be swung around a pinned joint, with the pin aligned in the horizontal direction. If this method of connection is used, it will be necessary to disengage the connection completely when the finger pier is not in use, and to attach it to the spine pier by other means.

The following considerations therefore govern the design.

a. A system that lends itself to rapid installation and disengagement. This means the system should preferably be located on top of the deck for easy access, control and operation.

- b. A system that provides restraint in the horizontal direction, but relative freedom of movement in the vertical direction.
- c. A system that incorporates "shock-absorbing" capabilities to reduce the huge forces generated by pier motions, and thereby bringing the design of the connection closer to the state of the art.

The design that had resulted from the above described constraints and considerations is shown in Figure 4. The member has a length of about 30 feet. There are two hinges at each end (labeled as horizontal hinge and vertical hinge), that provide vertical and horizontal rotational freedom. To avoid any moments on the vertical hinge due to inclined loads on the horizontal hinge, the "frame leaf" or the stationary part of the horizontal hinge is restrained by an anchor which is free to slide in a circular guide track. By an appropriate alignment of the two hinges (as shown in Figure 4), it is assumed that the vertical component of the inclined load will be taken by the "sliding anchor" and the horizontal component will be uniformly distributed over the height of the vertical hinge.

Another unusual feature of the link is the hydraulic tension "shock-absorber". A shock-absorber to meet our requirements, such as a capacity of 6,000 kips, stroke of 12" to 18", and a smaller compressive stiffness compared to a tensile stiffness is not readily available but can be specially fabricated. If a single shock absorber is used, the cylinder size is estimated to be 32 inches O.D. and ultra high strength, aircraft quality materials would have to be used. A survey of the industry, indicates that a 32 inch shock-absorber can be fabricated within the state-of-the-art technology with some upgrading of existing manufacturing facilities. Another approach could be to use a cluster of two smaller shock-absorbers in parallel. Details of a proposed design by Taylor Devices Inc., New York, are shown in Figure 4-a.

The amount of steel estimated for each link is about 88 tons. The member

was designed using stress levels recommended by the American Welding Society code (AWS code). Grade 36 steel can be used for the members, but ultra-high strength steel, having higher stress levels than the AWS code recommended values, has to be used for the hinge pins in order to obtain practical dimensions. A total cost of \$360,000 is estimated for each link. This price includes the cost of the hydraulic shock-absorber which is about \$100,000.

6. ALTERNATIVE SOLUTION

The finger pier must be modified to better cope with the large forces, particularly the force generated by yaw moments on the two-point link connection. Having identified this as the prime force generator, one method to deal with it would be to spread the distance between the two connection points as much as possible. Thus if it is possible to increase this distance by 100%, the effect would be to reduce the yaw-induced force in the links by half. One might also taper the plan shape of the finger pier to that of perhaps half its present width of 80 feet, toward the end of the pier. The advantage of this modification is to bring the centre of gravity of the pier closer to the connection, thereby reducing the effects due to rotational forces.

Displacements at deck level due to pitching can be reduced by narrowing the depth of the contact area between the spine and finger piers. For a particular pitching angle the displacement at the deck level is directly proportional to the distance to the point of "pivoting".

The widening of the contact face at the connection, and the tapering of the pier have been combined in an alternative system shown in Figure 5. A proposed longitudinal section for the finger pier is shown in Figure 6. These modifications would be the first direct result of the further development of the retractable finger pier as described in this report.

7. PROBLEM AREAS

The design of the connection is generally within the state of the art. It would however take considerable time and effort to develop this concept to the application stage.

The biggest problem area is due to the escalation of scale as represented by the exceedingly large forces that must safely be handled by the connecting link structure, the shock-absorbing capacity, and the articulating mechanism in the connection system. The analysis part should therefore present the least problem. There is no shortage of computer software capable of solving dynamic problems connected with the pier. The program OSCAR has been used here only because it was readily available.

The problem pertaining to the design has to do with the development of equipment, particularly the hydraulic shock-absorbers. The fabrication of a large (32"O.D.) shock-absorber is not feasible within the present state of the art. The major portion of the total cost (100,000) of each shock absorber, is the cost of special high-strength, corrosion resistant materials. Further research may be feasible to develop more economical materials for our application.

It was felt that practical dimensions for the hinge pins could not be obtained by using the available design guidelines for fatigue loadings. The only way to obtain a reasonable design is to use ultra-high strength steel, with higher allowable fatigue stresses.

Figures 6 and 4 illustrate some rather unusual features of the connecting system. The proposed rub-strips and fenders at the interface of the finger and spine piers perform unusual functions and require to be developed. The

rub-strips need to have a low coefficient of friction, and at the same time durable enough to justify its use and cost. The design of the sliding anchor will also be complex. It is required to provide constraint in the vertical plane but is relatively free in the horizontal plane.

We would also require auxiliary equipment for extending and retracting the pier, e.g. large capacity winches with which to move the pier. These are not so unusual that they are not already available commercially.

8. CONCLUDING REMARKS

In the generic sense, the flexible connecting system as envisaged in this study, may be adapted to other purposes. For example, they could be used to join several barge-like vessels to form:

- a. Floating roadway to offshore installations.
- b. Floating platform for offshore installations.
- c. Floating breakwater for offshore habour.

These possibilities are shown in Figure 7.

The constraint of time is particularly telling in a heavily analytical undertaking such as this report. Unlike some of the previous efforts, this report cannot therefore lay claim to any development or discovery of significance. It does however contribute to a better understanding of the problem connected with the hitching of the pier, therefore representing another step toward building up the technology for the retractable finger pier.

APPENDIX A

FREE FLOATING BEHAVIOR

Appendix A: FREE FLOATING BEHAVIOR

In order to determine the critical, wave loading conditions for the finger/spine joint, free floating response amplitude operators were calculated for sea headings of 180°, 160°, 135°, 110° and 100°. Motions were also calculated for a sea spectrum with a significant height of 6 ft. and mean period of 5.5 seconds. Fig. A-l illustrated the orientation of the heading angles.

Strip theory was used to estimate the vessel motions, the pier was divided into thirty-two stations (strips), the distribution of the stations over the length is shown in Fig. 1-A. The pier was modelled as a free floating stationary vessel.

The response amplitude operators, and the statistics of motion for the specified sea spectrum are included in Pages A-8 to A-17. The response reported in the outputs is for the local origin specified for the mathematical model (see Fig. A-1). Or, the motions represent the displacements of the joint end of the finger pier.

It is seen that a wave heading of 110° is most severe for the imposed sea spectrum, except for sway and roll motions which are greater for a heading of 100°. (See p. A-6)

A computer program, Ocean Systems Computer analysis Routines (OSCAR), compiled by Ultramarine Inc., of Houston, Texas was used for the free floating analysis.

STRUCTURAL ENGINEERING 315 Bay St., Sen Francisco, Ca. 94133

PROJECT	" Navy A	er	Concepts
ITEM:	finger/sp	ne	connection
DESIGNI	Forces	CP	relim.)
DATE		84	HN

A-2

Forces on spine/finger joint. Most severe landing condition. @ service mode.

white

Environment:

Wore ht = 6'

Wand rel = 18 knots

Current rel = 1 knot

Ware Period = 55 sec

Ware length = 150'

Calculate force: on joint:

Wind: (@ 18 knots of 30.4 F/s)

Assume 1 DD --- type ship is berthed against Fuiger pier

Appa draft= 35' and projected surface area = 25000 FT2; L=500 FT.

FW = Bec Ap V2

 $F_W = \frac{1}{2} \times 0.00237 \times 1 \times 25000 \times 30.4^2$

FW = 30 Kips at 333 FT from joint

surge:

Fs = 1 33 FW = 10 Kins .

STRUCTURAL ENGINEERING 315 Bey St., Sen Frencisco, Ca. 94133

PROJECT;	Navy Pier Concepts
ITEM:	Friger / Spine conn.
DESIGN;	Forces (Relim)
DATE	2/84 HN

BHEET;
A-3
OF______
REVISIONS

Current:

(@ 1 mot or 1.69 F/s)

Fcs = 12 C G A V2

Ro = Bx 4.99 x 1.2 x 500 x 35 x 1.692

RD = 60 Kip6

 $F_{cs} = \frac{1}{2} e^{-C_s} A_s V^2$

Cs = 001

Fis = 1/2 x 199 x 0 01 x 40000 x 1692

As ~ 40000 FT2

Fu = 2 Kipi.

Wave Forces: (h=6', L2150', T=5.5 s)

- For conservative estimate use Sainflous formula

(DM 26-2-16)

Assume water depth of BOFT.

 $\therefore \quad \frac{d}{L} = \frac{B0}{150} = 0.5$

FROM DM 26 Fig 2-14

P = 2.8 155/Fi2 acting on broadside

· France = 2.8 x 35 x 500 = 49 Kips.

Total lateral Force on Finger pier F = 30+10+62+49 = 181 Kips.

Octain @ 330 FT from joint.

 $\Sigma M@0 = 0$ 181 Mps 181 Mps 181 Mps 170' 181 Mps 170' 181 Mps 170' 181 Mps 170' 181 Mps

OR if compression is provided by finger pier bearing against spine pier, say moment arm is 60 Ft

: T = 181 x 330 = 1000 K

ICTURAL ENGINEERING 315 Bey St., Sen Francisco, Ca. 94133

PROJE	ETIONR, NOV	y Pier Conce	pts
ITEM;	Finger/ Soin	e Connectio	n
DESIGN	Finger Pier	water plane	props.
DATE;	2/84	4N	

Plan

$$Ap = 40000 FT^2$$
.
 $I_{XX} = 21.33 \times 10^6 FT^4$
 $I_{YY} = 833.33 \times 10^6 FT^4$

KB = 6 FT.

Transverse metacenter:

$$GM_T = \frac{21.33 \times 10^6}{(40,000 \times 12)} - (18-6) = 32.4 \text{ FT.}$$

$$r_x \simeq \left(\frac{21.33 \times 10^6}{40,000}\right)^{1/2} = 23.1 \ FT \implies T_r = \frac{1108 \ fx}{1000} = 45 \ sec$$

Longitudinal metacenter;

$$GM_L = \frac{833.33\times10^6}{(40000\times12)} - (18-6) = 1720 FT.$$

$$r_Y \propto \left(\frac{83333\times10^6}{40000}\right)^{\frac{1}{2}} = 144 FT = 7 T_1 = \frac{1.108 T_Y}{\sqrt{GM_1}} = 3.8 sec$$

For typical barge type vessels:

Real = 0.32 B = 25.6 FT.

RPITCH = 0.29 L = 145 FT.

RYAN = 079L = 145 FT.

PROJEC	TIONR,	Navy Pier	Concepts	SHEET
TEM		/spine		<u> </u>
DESIGN	NIA.	Analytic	>1 MUdel	o

Anzlyticz Model 2/84 HN

DATE

PROJEC	ONR NOVY	Aer Concepts	SHEET
	Finger/spine		7 <u>7-6</u>
DESIGNI	Free Floating	Motions	PEVISION:
DATE:	3/84	4M	71

SUMMARY OF FREE-FLOATING MOTIONS:

Motions for Average of 1/3 of spectral peaks.

Significant wave height = 6.0ft., Mean period = 5.5 sec.

Heading (deg)	Surge (ft)	Sway (Ft)	Heave (ft)	ROII (deg)	Pikh (deg.)	Yaw (deg)
180	0.268	0.0	0.399	0.0	0.091	0.0
160	0.260	0.25	0.844	0.003	0.191	0.057
135	0.253	0.629	1.182	0.614	0.270	0.144
110	0.296	1.368	2.314	0.812	0.483	0.260
100	0.147	1.503	1.848	1.913	0.216	0.126

Note: To obtain values that have a probability to be exceeded of 0.001, the above values should be multiplied by 1.92

STRUCTURAL ENGINEERING 315 Bey Bt., Sen Frencisco, Ca. 94133 THEM! Finger Spine Conn.

DESIGN: YAW RAD'S.

DATE:

A-7

OF _____

PROJE	ONR, NOVY PIET Concepts	
ITEM	Finger/spine conn.	
DESIGN	Conn. Analytical model	
DATE	2/84 HTV	

B-7
OF REVISIONS

Finger/Spine connection: Analytical Model.

Note: all motions in vertical plane are unconstrained.

Fig. B-1

STRUCTURAL ENGINEERING 315 Bey St., Sen Frencisco, Ca. 94133 PROJECTIONR NOVY Dier Concepts
ITEM: Finger / Spine Connection

DESIGN: Connection loading

£ 110°

80'

DATE

SHEET:

3-8

REVISION

Connection loading:

Linear motion (wave) 110° heading From p. 8-46

surge: 440/2 = 220 K / Link

Sway: 1137 K

Yaw: 323400 K-F = +4040 K/Link.

BOF

Wave Drift: (110° heading) FROM p.

surge: 7.7/2 = 3.85 K / Link

sway: 42.7 K

Yaw: 10900 K-F = ±136 K / Link.

Wind and current: (broadside)

Total lateral force = $30+67 = 92^{K}$ @ 333 FT. from conn. (calculated on pp A-1 & A-2)

 $SW2Y' = 92^{K}$ $Y2W' = \frac{92 \times 333}{2} = \pm 383^{K} / link$

 $F_{5} = 1137 + 42.7 + 92 = 1272 \text{ mps}$

FL = 220 + 4 + 4040 + 136 + 353 ~ 4800 kg/s

Tension or comp.

If figer pier is allowed to bear against the spine pier at the compression and the moment arm well be reduced.

Assume moment orm is 60'

 $\tilde{R} = 224 + (4559) \frac{80}{60} \approx 6300 \text{ Mps}$ Tension.

PAGE 22 USCAH DRAFT = 12.0 FEET THIM ANGLE = DOOU DEG. HEADING = 140.00 DEG. FURWARD SEFED = 0.00 KNOT ROLL GY. HAUTUS =25.60 FEET PITCH by. PAULUS = 145.0 F ********************************* VESSEL RESPUNSÉ OF BODY FPIER __SURGE/ SHAY/ --HEAVE/ WAVE AMPL. WAVE AMPL. WAVE AMP PERIOD FREQUENCY (RAD/SEC) - - (SEC) - ____AMPL - PHASE AMPL. PHASE AMPL . PHAS .0000 .2513 ·9863 -119.3 -88.8 .7474 -11 25.000 _3142. -.8284 -19 .3307 19.000 .8889 -139.6.0000 -91.4 .8545 -23 .0000 -92.7 .8850 .3491 18.000 .8628 -145.4 -21 .0000. -94.R -**.**3696. -17.000 ---- 8292 -----152.2 -- 9196 -32 -47.3 .3927 16.000 ·7451 -150.5 .0000 .9573 -39 .4189 15.000 .7265 -170.5 .0000 -101.0 . 4958 -41 _ 14.500___ .0000 ...6902 **.**4333_ -176.4 -103.5 -- 1.0137 -52 .44EB 14.000 .6483 177.0 .0000 -106.2 1.0293 -51 .4654 13.500 .5998 169.7 .0000 -104.2 1.0407 -64 161.4 .4633 -13.000 ---- • 5439 .0000 -113.0 1.0461 -72 .5027 12.500 .4798 151.9 .0000 -117.61.0422 -81 .5236 140.9 .0000 -122.5 1.0246 12.000 -406R -96 -5464 -11-500------ +3247 - --- 127 • 9 --•0000 --128.5 --·9883 \ -101 .5712 .0000 11.000 ·2342 111.9 -135.A .9264 -114 .5984 89.4 .0000 10.500 .1384 -143.8 .8306 -129 -153.5 .6293 --- 10.000 - ---- 35.1 .0000 ·6927----149 • 0520 .6614 9.500 .0788 -78.5 .0000 -164.0.5062 -161 .6981 9.000 .1517 -119.4 .0000 -174.8 **•2756** -174 .0000 .7342 --- 5.500 .1030 -153.2 -175.7 -.1108 -120 -99.9 168.9 .0000 .7854 0.000 1813 .3115 -101 .×378 7.500 .1023 118.5 .0000 -96.8 .4647 -149 -8976 - · 7 • 0 0 0 - ··· - - - • 0 3 85 · -44.9 .0000 -125.2--- 3755 -1 6**2** .0000 -156.3.9666 6.500 .1028 -146.4 .1368 169 .0000 152.1 -84.7 1.0472 6.000 . (1440 **.2962** 112 ..0000....-144.2 1-1424 5.50 Q ...0628 ... =137..4 ... **→1336**. -137.8 1.2566 5.000 .0101 146.5 :0000 .1192 1.3963 .0000 127.0 4.500 .0127 129.5 .0244 -31 - .0000 J., 570A. -113.3 -56.6 4.000 -0191 .0915 -149.9 2.0444 .0000 3.000 .0005 9.7 .0634 -121 (

DATE 84/02/1

NGLE = G-METACENTER = 32.4 FEET 0.00 DEG. D SPEED = 0.00 KNOTS WAVE STEEPNESS = 1/ 20 GY. PAULUS = 145.0 FEET

YAW GY. RADIUS = 145.0 FEET

RESPONSE OPERATORS

OF BODY FPIER

AMPL. WAVE AMPL. PHASE - AMPL. PHASE AMPL. PHASE AMPL. PHASE AMPL. PHASE - AMPL. PHASE - AMPL. PHASE AMPL. PHASE -		HEAVE/		ROLL/		PITCH/		YAW/	
-88.8	AMPL.							kAV	E AMPL.
-90.6	HASE -	AMPL.	PHASE -	AMPL.	PHASE	AMPL.	PHASE	AMPL.	PHASE
-91.4	-88.8	.7474	-			.0911			
-94.89196	-90.6_	8284			-				
-94.89196	-91.4	. 8545	-						
-97.3	-92.7	.8850	-27.2		_				
101.0	-94.R								128.3
103.5 1.0137 -52.6 .0000 -90.0 -2109 -25.6 .0000 108.3 106.2 1.0293 -58.4 .0000 -90.0 .2180 -33.8 .0000 103.1 109.2 1.0407 -65.0 .0000 -90.0 .2241 -42.9 .0000 97.5 113.0 1.0461 -72.5 .0000 -175.0 .2288 -53.0 .0000 90.0 117.6 1.0422 -81.1 .0000 90.0 .2313 -64.3 .0000 90.0 122.5 1.0246 -90.9 .0000 90.0 .2304 -77.0 .0000 95.6 128.5 .9883 -102.0 .0000 90.0 .2250 -91.2 .0000 66.7 135.8 .9264 -114.9 .0000 90.0 .1933 -126.1 .0000 56.0 143.8 .8306 -129.4 .0000 90.0 .1933 -126.1 .0000 29.9 164.0 .5062 -163.7 .0000 -90.0 .1933 -126.1	-97.3	.9573		000n				•0000	121.4
106.2 1.0293 -58.4 .0000 -90.0 .2180 -33.8 .0000 103.1 109.2 1.0407 -65.0 .0000 -90.0 .2241 -42.9 .0000 97.5 113.0 1.0461 -72.5 .0000 -175.0 .2288 -53.0 -0000 90.0 117.6 1.0422 -81.1 .0000 90.0 .2313 -64.3 .0000 83.6 122.5 1.0246 -90.9 .0000 90.0 .2304 -77.0 .0000 75.8 128.5 .9883 -102.0 .0000 90.0 .2250 -91.2 .0000 66.7 135.8 .9264 -114.9 .0000 90.0 .1933 -126.1 .0000 56.0 143.8 .8306 -129.4 .0000 90.0 .1933 -126.1 .0000 44.2 153.5 .6927 -145.9 .0000 -90.0 .1197 -173.5 .0000 29.0 164.0 .5062 -163.7 .0000 -90.0 .0639 153.4	101.0	• 4958	-47.5	.0000	-90.0	• 2032	-18.1	.0000	113.2
109.2 1.0407 -65.0 .0000 -90.0 .2241 -42.9 .0000 97.5 113.0 1.0461 -72.5 .0000 -175.0 .2288 -53.0 .0000 90.0 117.6 1.0422 -81.1 .0000 90.0 .2313 -64.3 .0000 83.6 122.5 1.0246 -90.9 .0000 90.0 .2304 -77.0 .0000 75.8 126.5 .9883 -102.0 .0000 90.0 .2250 -91.2 .0000 66.7 135.8 .9264 -114.9 .0000 90.0 .1933 -126.1 .0000 56.0 143.8 .8306 -129.4 .0000 90.0 .1933 -126.1 .0000 44.2 153.5 .6927 -145.9 .0000 90.0 .1197 -173.5 .0000 29.9 164.0 .5062 -163.7 .0000 -90.0 .0106 21.7 .0000 -7.7 175.7 .1108 -128.5 .0000 -0000 -85.4 .0000 <t< td=""><td>103.5</td><td> 1.0137</td><td>-52.6</td><td> • 0000</td><td>90.0</td><td>2109</td><td>-25.6</td><td> • 0000</td><td>-108.3</td></t<>	103.5	1.0137	-52.6	• 0000	90.0	2109	-25.6	• 0000	-108.3
113.0	106.2	1.0293	-58.4	•0000	-90.0	.2180	-33.8	.0000	103.1
117.6 1.0422 -81.1 .0000 90.0 .2313 -64.3 .0000 83.6 122.5 1.0246 -90.9 .0000 90.0 .2304 -77.0 .0000 75.8 126.5 .9883 -102.0 .0000 90.0 .2250 -91.2 .0000 66.7 135.8 .9264 -114.9 .0000 90.0 .1933 -126.1 .0000 56.0 143.8 .8306 -129.4 .0000 90.0 .1933 -126.1 .0000 44.2 153.5 .6927 -145.9 .0000 90.0 .1627 -147.8 .0000 29.9 164.0 .5062 -163.7 .0000 -90.0 .1197 -173.5 .0000 29.9 174.8 .2756 -178.0 .0000 -90.0 .0639 153.4 .0000 -7.7 175.7 .1108 -128.5 .0000 -161.0 .0106 21.7 .0000 -38.4 -99.9 .3115 -107.9 .0000 142.9 .0691 -85.4	109.2	1.0407	-65.0	.0000	-90.0	.2241	-42.9	•0000	97.5
122.5 1.0246 -90.9 .0000 90.0 .2304 -77.0 .0000 75.8 126.5 .9883 -102.0 .0000 90.0 .2250 -91.2 .0000 66.7 135.8 .9264 -114.9 .0000 90.0 .2133 -107.5 .0000 56.0 143.8 .8306 -129.4 .0000 90.0 .1933 -126.1 .0000 44.2 153.5 .6927 -145.9 .0000 90.0 .1627 -147.8 .0000 29.9 164.0 .5062 -163.7 .0000 -90.0 .1197 -173.5 .0000 13.3 174.8 .2756 -178.0 .0000 -90.0 .0639 153.4 .0000 -7.7 175.7 .1108 -128.5 .0000 -161.0 .0106 21.7 .0000 -38.4 -99.9 .3115 -107.9 .0000 142.9 .0691 -85.4 .0000 99.1 125.2 .3755 -162.5 .0000 90.0 .0055 -14.8	113.0	1.0461	-72.5	- •0000-	175.0	.2288	-53.0	0000	90.0
128.5 .9883 ' -102.0 .0000 .90.0 .2250 -91.2 .0000 .66.7 135.8 .9264 -114.9 .0000 .90.0 .2133 -107.5 .0000 .56.0 143.8 .8306 -129.4 .0000 .90.0 .1933 -126.1 .0000 .44.2 153.5 .6927 -145.9 .0000 .90.0 .1197 -173.5 .0000 .29.9 164.0 .5062 -163.7 .0000 -90.0 .1197 -173.5 .0000 .29.9 164.0 .5062 -178.0 .0000 -90.0 .0639 .153.4 .0000 -7.7 175.7 .1108 -128.5 .0000 -161.0 .0106 .21.7 .0000 -38.4 -99.9 .3115 -107.9 .0000 142.9 .0691 -85.4 .0000 .036.4 -96.8 .4647 -145.2 .0000 90.0 .1102 -141.7 .0000 .93.3 156.3 .1368 165.3 .0000 90.0 .0055 -14.8	117.6	1.0422	-81.1	•0000	90.0	•5313	-64.3	.0000	83.6
128.5 .9883 ' -102.0 .0000 90.0 .2250 -91.2 .0000 66.7 135.8 .9264 -114.9 .0000 90.0 .2133 -107.5 .0000 56.0 143.8 .8306 -129.4 .0000 90.0 .1933 -126.1 .0000 44.2 153.5 .6927 -145.9 .0000 90.0 .1197 -173.5 .0000 29.9 164.0 .5062 -163.7 .0000 -90.0 .1197 -173.5 .0000 13.3 174.8 .2756 -178.0 .0000 -90.0 .0639 153.4 .0000 -7.7 175.7 .1108 -128.5 .0000 -161.0 .0106 21.7 .0000 -38.4 -99.9 .3115 -107.9 .0000 142.9 .0691 -85.4 .0000 148.4 -96.8 .4647 -145.2 .0000 90.0 .1102 -141.7 .0000 99.1 125.2 .3755 -162.5 .0000 -90.0 .0055 -14.8 .0000<	122.5	1.0246	-90.9	.0000	90.0	•2304	-77.0	.0000	75.8
143.8 .8306 -129.4 .0000 90.0 .1933 -126.1 .0000 44.2 153.5 .6927 -145.9 .0000 90.0 .1627 -147.8 .0000 29.9 164.0 .5062 -163.7 .0000 -90.0 .1197 -173.5 .0000 13.3 174.8 .2756 -178.0 .0000 -90.0 .0639 153.4 .0000 -7.7 175.7 .1108 -128.5 0000 -161.0 .0106 21.7 .0000 -38.4 -99.9 .3115 -107.9 .0000 142.9 .0691 -85.4 .0000 148.4 -96.8 .4647 -145.2 .0000 90.0 .1102 -141.7 .0000 99.1 125.2 .3755 -162.5 .0000 -90.0 .0924 -148.0 .0000 53.3 156.3 .1368 165.3 .0000 90.0 .0652 120.1 .0000 -6.3 -89.7 .2962 112.1 .0000 90.0 .0652 120.1		9883				.2250	-91.2	.0000	66.7
143.8 .8306 -129.4 .0000 90.0 .1933 -126.1 .0000 44.2 153.5 .6927 -145.9 .0000 90.0 .1627 -147.8 .0000 29.9 164.0 .5062 -163.7 .0000 -90.0 .1197 -173.5 .0000 13.3 174.8 .2756 -178.0 .0000 -90.0 .0639 153.4 .0000 -7.7 175.7 .1108 -128.5 0000 -161.0 .0106 21.7 .0000 -38.4 -99.9 .3115 -107.9 .0000 142.9 .0691 -85.4 .0000 148.4 -96.8 .4647 -145.2 .0000 90.0 .1102 -141.7 .0000 99.1 125.2 .3755 -162.5 .0000 -90.0 .0924 -148.0 .0000 53.3 156.3 .1368 165.3 .0000 90.0 .0652 120.1 .0000 -6.3 -89.7 .2962 112.1 .0000 90.0 .0652 120.1	135.8	. 9264	-114.9	.0000	90.0	• 2133	-107.5	.0000	56.0
153.56927145.90000	143.8	.8306	-129.4		90.0	.1933	-126.1	.0000	44.2
164.0 .5062 -163.7 .0000 -90.0 .1197 -173.5 .0000 13.3 174.8 .2756 -178.0 .0000 -90.0 .0639 153.4 .0000 -7.7 175.7 .1108 -128.5 0000 -161.0 .0106 21.7 .0000 -38.4 -99.9 .3115 -107.9 .0000 142.9 .0691 -85.4 .0000 148.4 -96.8 .4647 -145.2 .0000 90.0 .1102 -141.7 .0000 99.1 125.2 .3755 -162.5 .0000 -90.0 .0924 -148.0 .0000 99.1 125.2 .3755 -162.5 .0000 -90.0 .0055 -14.8 .0000 -6.3 156.3 .1368 165.3 .0000 90.0 .0652 120.1 .0000 -6.3 -89.7 .2962 112.1 .0000 -90.0 .0247 -27.8 .0000 -27.4 137.8 .1192 -44.2 .0000 -90.0 .0260 -21.0						.1627	-147.8	.0000	29.9
174.8 .2756 -178.0 .0000 -90.0 .0639 153.4 .0000 -7.7 175.7 .1108 -128.5 .0000 -161.0 .0106 21.7 .0000 -38.4 -99.9 .3115 -107.9 .0000 142.9 .0691 -85.4 .0000 148.4 -96.8 .4647 -145.2 .0000 90.0 .1102 -141.7 .0000 99.1 125.2 .3755 -162.5 .0000 -90.0 .0924 -148.0 .0000 99.1 156.3 .1368 165.3 .0000 90.0 .0055 -14.8 .0000 -6.3 -89.7 .2962 112.1 .0000 90.0 .0652 120.1 .0000 124.1 144.2 .1336 .11.0 .0000 .0247 -27.8 .0000 -27.4 137.8 .1192 -44.2 .0000 -90.0 .0260 -21.0 .0000 -70.6 -86.6 .0915 -41.3 .0000 -90.0 .0117 -76.2 .0000	164.0				-90.0	.1197	-173.5	.0000	13.3
175.7 .1108 -128.5 0000 -161.0 .0106 21.7 .0000 -38.4 -99.9 .3115 -107.9 .0000 142.9 .0691 -85.4 .0000 148.4 -96.8 .4647 -145.2 .0000 90.0 .1102 -141.7 .0000 99.1 125.2 .3755 -162.5 .0000 -90.0 .0924 -148.0 .0000 99.1 156.3 .1368 165.3 .0000 90.0 .0055 -14.8 .0000 -6.3 -89.7 .2962 112.1 .0000 90.0 .0652 120.1 .0000 124.1 144.2 .1336 .11.0 .0000 -90.0 .0247 -27.8 .0000 -27.4 137.8 .1192 -44.2 .0000 -90.0 .0057 .1 .0000 -70.6 -86.6 .0915 -41.3 .0000 -90.0 .0117 -76.2 .0000 -76.6	174.8				-90.0	.0639	153.4	.0000	-7.7
-99.9 .3115 -107.9 .0000 142.9 .0691 -85.4 .0000 148.4 -96.8 .4647 -145.2 .0000 90.0 .1102 -141.7 .0000 99.1 125.2 .3755 -162.5 .0000 -90.0 .0924 -148.0 .0000 53.3 156.3 .1368 165.3 .0000 90.0 .0055 -14.8 .0000 -6.3 -89.7 .2962 112.1 .0000 90.0 .0652 120.1 .0000 124.1 144.2 .1336 11.0 .0000 -90.0 .0247 -27.8 .0000 -27.4 137.8 .1192 -44.2 .0000 90.0 .0260 -21.0 .0000 109.1 127.0 .0244 -37.8 .0000 -90.0 .0057 .1 .0000 -70.6 -86.6 .0915 -41.3 .0000 -90.0 .0117 -76.2 .0000 76.6									-38.4
-96.8	-99.9								148.4
125.2	-96.8								99.1
156.3 .1368 165.3 .0000 90.0 .0055 -14.8 .0000 -6.3 -89.7 .2962 112.1 .0000 90.0 .0652 120.1 .0000 124.1 144.2 .1336 11.0 .0000 90.0 .0247 -27.8 -0000 -27.4 137.8 .1192 -44.2 .0000 90.0 .0260 -21.0 .0000 109.1 127.0 .0244 -37.4 .0000 -90.0 .0057 .1 .0000 -70.6 -86.6 .0915 -41.3 .0000 -90.0 .0117 -76.2 .0000 76.6		3755	162.5						53.3
-89.7 .2962 112.1 .0000 90.0 .0652 120.1 .0000 124.1 144.2 .1336 11.0 .0000 90.0 .0247 -27.8 -0000 -27.4 137.8 .1192 -44.2 .0000 90.0 .0260 -21.0 .0000 109.1 127.0 .0244 -37.4 .0000 -90.0 .0057 .1 .0000 -70.6 -66.6 .0915 -41.3 .0000 -90.0 .0117 -76.2 .0000 76.6	-						-14.8	.0000	-6.3
144.2 1336 11.0 0000 90.0 0247 27.8 0000 27.4 137.8 1192 -44.2 0000 90.0 0260 -21.0 0000 109.1 127.0 0244 -37.4 0000 -90.0 0057 1 0000 -70.6 -66.6 0915 -41.3 0000 -90.0 0117 -76.2 0000 76.6	-84.7								124.1
137.8 .1192 -44.2 .0000 90.0 .0260 -21.0 .0000 109.1 127.0 .0244 -37.4 .0000 -90.0 .0057 .1 .0000 -70.6 -86.6 .0915 -41.3		1336	11	- 0000 -					
127.0 .0244 -37.8 .0000 -90.0 .0057 .1 .0000 -70.6 -86.6 .0915 -41.3							-21.0		
-86.6091541.30000 -90.00117 -76.20000 - 76.6									
	149.9								

©		Ø	pee USCA
6 8		-	,
* DRAFT = 12. * HFADING = 10	.O FEET SO.OO DEG.	THIM ANGLE =	
- POLL GY. PAD) IUS =25.60 FEET	PITCH GY. RA	ADIUS = 1
************	16666666666666666	*******	****
<u> </u>	TATISTICS	5 0 F M O	T I O N
===	:======================================	oF	======= BOUY FP
		O,	יייייייייייייייייייייייייייייייייייייי
		5 5 1	SPE
		3 E #	3 F E .
	ISSC SIGNIFI	POANT METCHT -	4.0 FF
	155C 510MF1	.CANT MEIGHT -	O . V F L
	e '	INGLE A	и р (Т
		. N. U. L. E	~ F L I
		SURGE	SWAY
		-(FEET)(_
ROOT MEAN SQUA	ADF	,134	.000
			• 000
AVE OF 1/3 HIG	HEST	. 268	• 000
	GHEST	341	
AVE OF 1/100 H	IGHEST	.447	.000
			Annual state of the Annual of
STATIS	STICS OF	ACCELE	RATI
		- • · · · ·	
	•	SINU	LE A
	-		
(FE	SURGE	FEET /SEC##2)	(FEE
ROOT_MFAN_SQUARE	100		
AVE OF 1/3 HIGHEST	.200		
AVE OF 1/10 HIGHEST			
AVEOF-1/100-HIGHEST	.334	• 500	

DATE 84/02/1 0.00 DEG. M ANGLE = G-METACENTER = 32.4 FEET MARD SPEED = 0.00 KNOTS WAVE STEEPNESS = 1/ 20 CH GY. RADIUS = 145.0 FEET YAW GY. FADIUS = 145.0 FEET MOTIONS IN IRREGULAR SEAS OF ROUY FPILM SEA SPECTRUM MEIGHT = 6.0 FEET MEAN PERIOD = 5.5 SECONDS LE AMPLITUDE MOTIONS GF SWAY HEAVE ROLL PITCH YAW
T)- -(FEET)- -- (DEG)-- -- (DEG)--.134 .000 .399 • 000 .091 .000 .797 .182 .000 -268 • 000 .000 •231 .341 .000 .000 .303 .000 .000 1.332 CELERATION IN IRREGULAR SEAS BINGLE AMPLITUDES AY - - PITCH SEC**2) (FEET /SEC**2) (DEG/SEC**2) (DEG/SEC**2) (DEG/SEC**2) .072 --- •338 ---- •000 --- --000 .144 .000 .675 .184 .000 .861 •000 .241 . . . 000 --- - 1.128 •000

ESPONSE OPERATORS

OF BODY FPIER

PL.		L AMPL.	ROLL- WAV		PITCH/ WAV		YAW/ WAV	E AMPL.
SE -	AMPL.	-PHASE -	AMPL	PHASE	- AMPL.	PHASE	- AMPL.	PHASE
1.2	•7378		.0006	63.0	.0854	56.4	0311_	
			0009-		1248			36.4
8.6	. 8357	-22.1	.0009	45.3	•1362	27.0	.0473	-40.6
7.3	.8644	~25.8	.0010	40.4	.1489	19.3	.0515	-45.7
5.2	8977	-30.6	0011	34.4	•1630	10.3	0561	<u>-51.7</u>
2.7	•9352	-36.7	.0012	27.4	.1734	2	.0609	-58.6
9.0	•9752	-44.6	.0013	18.9	.1946	-12.7	.0659	
6.5 -	.9950	49.3-		13.6	.2028	-19.9		71.7
3.8	1.0136	-54.7	.0014	8.3	-2107	-27.7	.0706	76.9
0.8	1.0296	-60.8	.0014	2.1	.2180	-36.4	.0725	
7.0	1.0414	67.9	.0015		•2243	-46.0	.0741	89.0
2.4	1.0463	-75.9	.0015	-13.1	- 2289	-56.8	.0749	
7.5	1.0407	-85.1	.0014	-22.3	.2311	-68.8	.0749	-104.2
1.5-			0013				0736	
4.2	.9780	-107.8	.0011	-46.4	•2229	-97.8	.0705	-124.0
6.2	.9067	-121.7	.0008	-63.0	.2091	-115.3	.0653	-135.8
6.5	.7971	-137.7			_	-135.7		-150.1
6.0	.6399	-155.6	.0003	104.7	•1505	-159.6	.0456	-166.7
5.2	.4302	-174.3	.0012	60.9	.1014	171.5	.0305	172.3
4.3		- 179.5		19.0	.0393	131.0	.0125	
0.1	.1862	-111.3	.0028		.0332	-61.0	.0078	-31.6
3.2	.4092	-132.7	.0017		.0934	-120.9	.0232	-80.9
4.8			0003			172.5		-126.7
3.7		125.0	.0010		.0483	83.6	.0148	173.7
0.3	.2388	126.0	.0006			151.6	.0131	-55.9
5.B.		28.5 ··		-12.2-		16.4	.0237	
5.5	.0926	-20.9	.0001			28.8	.0068	-70.9
3.0	•	-120.1	.0001	36.7		-145.1	.0054	109.4
3.4	•0650	1.1	•0002	140.6	.0110	-15.3	.0074	-103.4
0.1	.0266	-59.8	.0006	86.8	•0046	-94.8	.003A	157.3

♦	**********	•	+++ ()
•		-	

• DRAFT = 12 • HEADING = 1	2.0 FEET 160.00 DEG.	TRIM ANGLE = FORWARD SPEE	
ROLL GY. PA	UIUS =25.60 FEE	T PITCH GY. RA	DIUS
************	100000000000000000000000000000000000000	. # # # # # # # # # # # # # # # # # # #	****
<u> </u>	TATISTIC	S UF MU	TIO
==	:======================================	======================================	#007
		SEA	5 P
	-	****	
	ISSC SIGNI	FICANT HEIGHT =	6.0
		INGLE AM	PL
		SURGE(SWAY FELT
ROOT MEAN SQL		.130	•12
AVE OF 1/3 HI	GHEST	.260	• 29
AVE-OF-1/10 +	IIGHEST	332	3
AVE OF 1/100	HIGHEST	.434	.4
STATI	STICS OF	ACCELER	AT
		S -I N-G L	- E /
		SWAY	
(F	EET /SEC**2)	(FEET /SEC##2)	(FE
ROOT_MEAN_SOLARE	106		
	•211	.235	
AVE OF 1/3 HIGHEST		•299	
	•269	• 6 7 7	

DATE . 84/02/1 M ANGLE = 0.00 DEG. G-METACENTER = 32.4 FEET WARD SPEED = 0.00 KNUTS WAVE STEEPNESS = 1/ 20 CH GY. RADIUS = 145.0 FEET YAW GY. FADIUS = 145.0 FEET MUTIONS IN IRREGULAR SEAS OF BODY FPIER SEA SPECTRUM MEIGHT = 6.0 FEET MEAN PERIOD = 5.5 SECONDS E AMPLITUDE MOTIONS ROLL PITCH HEAVE Y A W ---- (FEET)- -- (FEET)- --- (DEG)-- -- (DEG)-- -- (DEG)--.125 .422 130 .029 •002 260 .003 .250 .844 .191 .057 434 • 006 .096 .418 •319 ELERATION IN IRREGULAR SEAS H-N-G-L-E---AMPLITUDES ------35 •003 .864 .003 .188 • 066 .004 .247 .087

VESSEL RESPONSE OPER

UF HOUY FPIER

	ENCOUN	SURGE/ WAVE AMPL.		SWAY/		HEAVE/		
(FREQUENCY PERIOD							
	FREQUENCY 		A '4DI	PHASE -	AMPL.	DHASE	AMPL.	PHASE
_		(566)	MINEL	FRESE -	MULTIP	FIRSE	MARES	FIIASE
\boldsymbol{C}	.2513	25.000	.7136	-110.7	•5991	90.9	.7090	-10.7
	3142			_=121_8			.7571	
	.3307	19.000	•6707	-125.3	.6220	89.5	.7742	-19.3
:	.3491	18.000	.6614	-129.4	.6333	88.8	.7953	-22.1
		17.000	•6495	-134.3	. 6466		.8212	-25.6
	.3927	16.000	•6336	-140.2	.6620	86.1	·H527	-30.1
ľ	.4189	15.000	.6118	-147.5	.6789	84.0	.8905	-35.9
	4333_	14-500		1517		_82.5	9118	
•	.4488	14.000	•5A13	-156.4	•6956	80.8	.9344	-43.5
•	.4654	13.500	•5616	-161.6	.7031	79.0	.9581	-48.2
		_ 13.000-	5386	-167.6			.9825	53.5
	.5027	12.500	•5109	-174.3	.7131	73.7	1.0066	-59.8
•	•5236	12.000	.4780	178.1	.7133	70.7	1.0288	-66.9
		11.500 ~		- 169.3				-75.2
	.5712	11.000	•3923	159.0	.6963	62.1	1.0588	-84.9
•	5984	10.500	•3377	146.9	.6739	56.9	1.0584	-96.2
		10.000	.2742	132.2	6379	50.3		109.6
	.6614	9.500	• 2023	113.5	•5843	42.9	.9928	-125.3
	.6981	9.000	•1250	86.3	.50H7	33.9	.9051	-144.0
		8.500	.0589		4093	- 24.4		166.1
	.7854	8.000	•0730	-71.1	.2897	16.2	.5413	168.5
•	.8378	7.500	.1202	-123.2	.1768	18.6	.2482	148.2
		7.000	1262	-167.8	- 1446	36.4	.2098	-149.9
	9666	6.500	.0668	146.5	.0342	49.5	.4722	165.8
•	1.0472	6.000	.0172	-120.7	.1974	31.2	.3716	87.8
	1-1424_	5.500		142-2-		3.8		49.8 - -
1	1.2566	5.000	• 0378	148.9	.1455	49.1	.1558	14.0
`	1.3963	4.500	.0441	-163.8	.0508	-6.H	.0522	-52.1
								-121.1 -
							.0007	-168.9
		3.000	•0294 •0076	-147.7 150.3	.0341	-73·1 -179·2	.0276	

(

UNSE OPERATORS

UY FPIEK

EAVE/ WAV		ROLL/ WAV		PITCH/ WAV	E AMPL.		E AMPL.	
AHPL.	- PHASE	- AMPL.	PHASE -	- AMPL.	PHASE	AMPL.	PHASE	
.7.090	-10.7		69.4			_0500		
 7571 ⋅	17.1	- ·- • 0877	59.1	0975	45.2	0710	-25.6	
.7742	-19.3	•0959	56.1	.1069	39.4	.0774	-29,0	
• 7953	-22.1	.1052	52.4	•1176	32.8	.0847	-32.9	
- 8212	-25.6	•1156	47.9	1299	25.1	.0930	-37.6	
·#527	-30.1	.1270	42.8	.1440	16.2	.1023	-42.8	
.8905	-35.9	•1391	36.6	.1599	5.6	.1124	-49.1	
9118	39 .5		-32.9-	• 1685	 4 ***		52.8	
.9344	-43.5	•1512	28.9	.1776	-7.0	.1232	-56.7	
•9581	-48.2	.1569	24.6	.1869	-14.3			
9825	~-53.5	. 1619	19.6	.1965	-22.3	.1339	-65.7	
1.0066	-59.8	.1657	13.9	.2061	-31.3	.1388	-71.2	
1.0288	-66.9	.1678	7.8	.2153	-41.3	.1430	-77.0	
1-0472	-75.2	.1672	• •6	• 2236	-52.6	.1462	-83.7	_
1.0588	-84.9	•1627	-7.8	.2303	-65.4			
1.0584	-96.2	.1525	-17.2	.2342	-79.9	.1467	-100.2	
1.0396	109.6	. 1346	-28.6	.2338	-96.7	.1423	-110.7	
.9928	-125.3	.1059	-42.5	• 2265	-116.1	.1334	-122.8	
.9051	-144.0	.0635	-61.4	.2094	-139.2	.1182	-137.5	
7602 -	-166.1	0103	-149.4	.1784		•0958		
•5413	168.5	.0805	93.2	.1287	158.5	.0651	-178.1	
.2482	148.2	.1854	58.6	.0574	110.9	.0275	149.1	
.2098	-149.9	3213	- 13.9	0341	-97.2	~ .0138~	-31.8	
.4722	165.8	.4746	-89.6	.1051	176.0	.0427	-90.3	•
.3716	87.8	.0895	-19.2	.0876	78.1	.0437	-148.0	
1008	49.8		-116.0	0062	40.9	.0067	110.2	
	14.0		127.0		20.0	.0343	-125.8	
.0522			32.7	.0036	-140.9	.0052	80.2	-
		0032						
.0007	-168.9		-51.0	.0000	52.7	.0013	-41.3	

PAGF 27 DRAFT = 12.0 FEET TRIM ANGLE = 0.00 DEG. DRAFT = 12.0 FEET TRIM ANGLE = 0.00 DEG.
HEADING = 135.00 DEG. FORWARD SPEED = 0.00 KNOTS
--ROLL GY. FADIUS = 25.60 FEET PITCH GY. RADIUS = 145.0 FEET STATISTICS OF MOTIONS IN OF HOUY FPILK SEA SPECTRUM ISSC --- SIGNIFICANT HEIGHT = 6.0 FEET MEAN SINGLE AMPLITUDE SURGE SWAY HEAVE -- (FEET)- - (FEET)- -- (FEET)-ROOT MEAN SQUARE .126 .314 .591 . .___ -•629 AVE OF 1/3 HIGHEST .253 1.182 AVE -OF-1/10-HIGHEST - - - **- - 801** 1.507 1.050 AVE OF 1/100 HIGHEST 1.974 .422 STATISTICS OF ACCELERATION IN SINGLE (FEET /SEC**2) (FEET /SEC**2) (FEET /SEC**2) _____.226-------- 428 - --.453 .856 AVE OF 1/3 HIGHEST .211 AVE OF 1/10 HIGHEST .268 .577 1.091 ---- AVF -OF 1/100 HIGHEST .352 .756 1.429

a number of the

DATE 84/02/1 NGLE = 0.00 DEG. G-METACENTER = 32.4 FEET D SPEED = 0.00 KNOTS WAVE STEEPNESS = 1/ 20 SY. RADIUS = 145.0 FEFT YAW GY. PADIUS = 145.0 FEET MOTIONS IN IRREGULAR SEAS OF BODY FPILE EA SPECTRUM THT = 6.0 FEET MEAN PERIOD = 5.5 SECONDS AMPLITUDE MOTIONS SWAY HEAVE ROLL PITCH YAW •314 •591 •307 •135 .072 .270 .629 1.182 •614 -144 - -- -.801 - 1.507 .783 .344 .184 1.050 .450 .241 1.974 1.025 LERATION IN IRPEGULAR SEAS AMPLITUDES (FEET /SEC##2) (DEG/SEC##2) (DEG/SEC##2) (DEG/SEC##2) -- - •053 -- --.856 •548 .193 .106 1.091 •699 .245 .135

•915

.322

• 177

- 1.429

(3)°

```
PAGE
                                                                         OSCAR
                       DRAFT = 12.0 FEET
                                                        TRIM ANGLE =
                                                                        O. NO UEG.
                       HFADING = 110.00 DEG.
                                                        FURWARD SPEED = 0.00 KNOTS
                       HOLL GY. RADIUS =25.60 FEET
                                                        PITCH GY. PADIUS = 145.0 FE
                     VESSEL
                                                              RESPONSE
                                               OF BODY FPILE
                                 SURGE/ -- SWAY/
         E-N-C-0-U-N T-E-R---
                                                                    ·· HEAVE/ ··· ··
                                      WAVE AMPL.
                                                         WAVE AMPL.
                                                                           WAVE AMPL
(
         FREQUENCY
                      PERIOD
        -(PAD/SEC)----(SEC)- ----AMPL. PHASE ---
                                                    AMPL. PHASE - AMPL.
                                                                               PHASE
C
                                           -100.9
                                                      .7637
                                                               91.0
                                                                        .6765
                                                                                -11.
               .2513
                       25.000
                                   .3493
                                                                                 -16.
                                                     .. 7574
                       20.000
                                   -.3391 --- 107.2
                                                              -- 91.4 -- -- 6894
               -3142
                                                                                -18.
                                                               91.6
                                                                        .6945
                                           -109.1
                                                      .7614
1
               .3307
                       19.000
                                   .3361
                                                               91.7
                                                      .7666
                                                                        .7013
                                                                                 -20.
               .3491
                       18.000
                                   • 3371
                                           -111.5
                                   .3359
                                          -114.3
                                                      .7733
                                                               91.6
                                                                        .7103
                                                                                 -22.
               .3696-
                      --1-7.000 -----
                                                      .7817
               .3927
                       16.000
                                                               91.7
                                                                        .7224
                                                                                 -25
                                   .3341
                                           -117.7
(
                                                                                 -28
                                                      .7917
                                                                        .7388
                                                               91.7
               .4189
                       15.000
                                   .3315
                                           -121.8
                                                             --- 91-5 --
                                   -3297--- -124.2-
                                                                        -7492
                                                                                -30
               4333
                                                      ¬7971 ---
                       -14-500-
                                                               91.3
                                                                        .7612
               .4488
                                   .3275
                                           -126.9
                                                      .8029
                                                                                 -33.
                       14.000
                                                                                 -35
                                                               91.3
                                                                        .7751
                                   .3247
                                           -129.9
                                                      .8090
               .4654
                       13.500
                                                                                --36
                                                               90.9
                                                                        .7913
                                  - •3212 -- -133 •3---
                                                     --.8151 - -
               ~4&33-
                       13.000
                                                               90.3
                                                      .8212
                                                                        .8103
               .5027
                       12.500
                                   •3168
                                           -137.2
                                                                                 -42.
(
                       12.000
                                   .3113
                                           -141.5
                                                      .8267
                                                               89.9
                                                                        .8322
                                                                                 -46.
               .5236
                                                             --89.1
                                                                        .8576
                                                                                -51.
               .5464 -
                       -11-500 -
                                 ---3044
                                          -146.6-
                                                   -- .8313
                                                      .8344
                                                                                -56.
               .5712
                                                               87.8
                                   .2956
                                           -152.4
                                                                        .8870
                       11.000
                                                                                -63
               .5984
                                                               86.5
                                                                        .9204
                       10.500
                                   . 2845
                                           -159.1
                                                      .8343
                                                                                -71
               ~6283.-
                       10.000
                                   .2702
                                           -167.1
                                                      .8303
                                                               84.3
                                                                        .9547
                                                                                -80.
                                                               81.7
               .6614
                        9.500
                                   .2521
                                           -176.6
                                                      .8197
                                                                       1.0013
                                                                                -92.
               .6981
                        9.000
                                            171.9
                                                      .8001
                                                               77.7
                                                                       1.0480
                                   ·2288
                                                      .7679
                                                               72.6
               •73<del>9</del>2-
                        A.500-
                                  - •1990 -
                                           157.4
                                                                       1.0969
                                                                               -107.
               .7854
                        8.000
                                            138.7
                                                      .7154
                                                               65.4
                                                                       1.1431
                                   .1610
                                                                               -125.
               .8378
                                            112.1
                                                      .6459
                                                               55.7
                                                                               -150.
                        7.500
                                   .1134
                                                                       1.1722
                                                      .5464 --
                                                              43.5
               A976
                        -7.000-
                                  - • 0595---- -- 65 • 5 ·
                                                                      - 1 • 1420 --- - 175
                        6.500
                                                               30.7
                                   .0366
                                            -45.4
                                                      .4871
                                                                        .9392
               .9666
                                                                                129.
                                                               -7.3
                                                                                 73.
              1.0472
                        6.000
                                   .0495
                                           -118.0
                                                      .2796
                                                                        .4955
                                                      -0749 ---- -30+6
                                                                                 44
              1.1424
                        5.500
                                   →0510 --140.2
                                                                        .1374
              1.2566
                                           -173.3
                                                      .0931
                                                               65.1
                        5.000
                                   .0539
                                                                                 49.
                                                                        .1144
                                           128.7
              1.3963
                        4.500
                                   .0192
                                                      .1220
                                                                4.3
                                                                        .0911
                                                                                -14.
                                           -149.6-
              1.5708--
                                                     .0347---
                                                               -7.6
                        4.000 --
                                   .0267
                                                                        .0186
                                                                                -144
             2.0944
                        3.000
                                   .0079
                                           -115.7
                                                      .0200
                                                              160.P
                                                                        .0024
                                                                                119.
```

(I)

Ċ

(

```
| SPEED = 0.00 KNOTS | WAVE STEEPNESS = 1/20 | SPEED = 145.0 FEET | SPEED = 145.0 FEED | SPEE
```

.

RESPUNSE OPERATORS

OF BODY FPILM

	HEAVE/		ROLL/		PITCH/		YAW/		
IMPL.	WAV	E AMPL.	WAV	E AMPL.	WAV	E AMPL.	WAV	E AMPL.	
HASE	AMPL.	PHASE -	AMPL.	PHASE	AMPL.	PHASE	AMPL.	PHASE	
91.0	.6765	-11.4	.0794	80.3	.0340	85.0	.0323	3.6	
-91.4	6894	-16.6	119A	75.6	- • 0495	66.6	0457	-6.3	
91.6	.6945	-18.4	.1321	74.3	.0543	61.7	.0500	-8.6	
91.7	.7013	-20.3	.1464	72.7		56.3	.0550	-11.1	
-91.6	.7103	-22.6	•1631	···· 70.7	0665	50.1	0608	-14.1	
91.7	.7224	-25.4	.1826		.0744	43.1	.0675		
91.7	.7388	-28.8	.2055	65.9	.0838	35.1	.0753	-20.8	
-91-5	7492	-30.9	.2184	64.2	0892 -	30.5	0796	22.9	
91.3	.7612		.2323				.0843		
91.3	.7751		.2473			20.2		-27.1	
90.9	7913	36.8	.2634	- 58.6	.1087	14.3	0945	29.6	
90.3	.8103	-42.3	.2807	56.1	.1166	7.8	.1001	-32.5	
89.9	.8322		.2989		.1253	•6	.1059		
89.1	8576	-51.1-	3181-	50.6	.1349	-7.5	.1119	-38.6	
87.8		-56.7			.1455	-16.6		-42.6	
86.5			.3577		.1572	-26.8		-46.7	
84.3	.9587	-71.2	.3768	38.3		-38.6		-52.0	
81.7		-80.7			.1841		.1344		
77.7		-92.6		25.4		-68.3		-65.3	
72.6			4103					-74.2	a comment of the
65.4			.4020			-110.9		-85.8	
55.7	1.1722		.3715			-140.9			
43.5			2952				- 1144-		
30.7	.9392		.2733		.2087	124.0	.0911	-145.8	
-7.3	.4955		.3274			53.0		179.3	
30-6			1715				0188		
65.1			.0502		.0176				
4.3		-14.4			.0191	-25.4	.0256	176.1	
-7.6	.0186				0008	89.0	.0019	-39.7	-
60.P	.0024		.0017		•0006				
							••••		

(3)

```
PAGE
           DRAFT = 12.0 FEET
                                  TEIM ANGLE =
                                            0.00 DEG.
           HEADING = 110.00 DEG.
                                  FURWARD SPEED = 0.00 KNOTS
                                  PITCH GY. RADIUS = 145.0 FE
           ROLL GY. HADJUS =25.60 FEET
        STATISTICS OF
                                       MOTIONS
                  UF BODY FPIER
                                           SPECTRU
                                     SEA
                    ISSC --- SIGNIFICANT HEIGHT =
                                        AMPLITUDE
                              SINGLE
                                  SURGE
                                          SWAY
                                                   HEA
                              --- ( FEET ) - - - ( FEET -- ) - - ( FEE
          ROOT MEAN SOUARE
                                             .684
                                    .148
      1.92 X AVE OF 1/3 HIGHEST
                                            1.368
                                    .296
         -AVE- OF 1/10 HIGHEST
                                    .377
          AVE OF 1/100 HIGHEST
                                            2.284
            STATISTICS OF ACCELERATION
                                    SINGLE -- AMPLI
                 ( FEET /SEC**2) ( FEET /SEC**2) ( FEET /SEC**
 ROOT_MEAN_SQUARE___
 AVE OF 1/3 HIGHEST
                                                1.751
 AVE OF 1/10 HIGHEST
                       .267
                                   1.268
                                                2.233
 AVE-OF-1/1AA HIGHEST....
                       .349 .... ..
                                           1.661
```

	*** USCAH	***				<u></u>	
•	(/)\/	· · · · ·		DATE 8	4/07/1	*	
		-				*	
D SPE	= 0.00 DEG ED = 0.00 K	NOTS	WAVE STE	NTER = 32 EPNESS = 1/	20	•	
01. KI	************** ***************		YAW GY.	PADIUS = 14	5.0 FEET *****	\$ \$\$\$\$	
M 0	7 1 0 N 5	7 N 7 D	REGULAR	5 5 A 5	•		
====:	=========	:=========	:==========	2 E A 3			
UF	PODA ŁЫГРИ						
. .		45 81 84					
t p 	SPECT	R U M					
GHT -	6.0 FF4T	MEAN DE	RIOD = 5.5 SEC	ONDE			
UIII =	OFV FEET	FICAN PE			<u></u>		-
A .	PLITU	DE MOT	TONS				
					·		
	SWAY	HEAVE	ROLL	PITCH	YAW		
(FEET)	(DEG)	(DEG)	- (DEG)	··· · · · · ·	
8	•684	1.157	•406	•241	-130		
6	1.368	2.314	•812	.483	•260		
7	-1-744	2.951	1.035	. 616	331		
4	2.284	3.865	1.356	.806	. 434		
LER	ATION	I N I	RREGULAI	RSEAS			
		*****			• • • • • • • • • • • • • • • • • • • •		
			_				
		1 T T N E					
NGL	. EA-M P	CITODE	3				
N 6 L							
		E		PITCH (DEG/SEC*		YAW (DEG/SEC##2)	
C++2)	FEET /S	EC**2)	 ROLL (DEG/SEC**2)	(DEG/SEC*	**2)	(DEG/SEC##2)	
C++2)	FEET /S	E	 ROLL	(DEG/SEC*	**2)	(DEG/SEC##2)	
C++2)	FEET /S	E	 ROLL (DEG/SEC**2)	(DEG/SEC*	'+2) '	(DEG/SEC##2)	
	FEET /S	E	 ROLL (DEG/SEC##2)	(DEG/SEC*	· +2)	(DEG/SEC**2)	

```
DRAFT = 12.0 FEET
                                                            0.00 UEG.
                                            IHIM ANGLE =
             HEADING = 100.00 DEG.
                                            FORWARD SPEED = 0.00 KNOTS
          -- HOLL GY. RADIUS =25.60 FEET PITCH GY. RADIUS = 145.0 FEET
     VESSEL RESPONSE
                                    OF BODY FPIER
                       SURGE/
                                     - -- S#AY/--
                                                          HEAVE/ -
                           WAVE AMPL.
                                                           WAVE AMPL.
                                              WAVE AMPL.
            PERIOD
                      --AMPL ---- PHASE ---- AMPL - PHASE ---
(RAD/SEC) ---- - (SEC) ---
                         ·1749 -100·3
                                                    90.7
                                                             •6696
                                           .7863
                                                                     -12.1
     .2513
             25.000
                                          ___7744--
                                                   ---91.3 -----6741
                                                                   ------17.7-
     .3142
             -20+000------1699-----106+5-
     .3307
                                -108.5
                                           .7768
                                                    91.6
                                                             .6760
                                                                     -19.3
             19.000
                        •1695
                                           .7799
     .3491
             18.000
                         .1690
                                -110.8
                                                    91.9
                                                             .6786
                                                                     -21.2
                                          ___7837----92.0----6824--<del>---</del>23.5-
     .3696
             47.000 ---
                       .7889
                                                    92.4
                                                             .6878
     .3927
             16.000
                                -117.0
                                                                     -26.2
                         .1675
                                           .7949
                                                    92.7
                                                             .6954
     4189
             15.000
                         .1663
                                -121.1
                                                                     -24.5
                                                    92.8.
                                                            -7.004 ----31.4
     .4333
             14.500-
                        --1654-- -123-5 -------7980---
     .4488
                                                    92.9
             14.000
                               -126.2
                                           .8013
                                                             .7063
                                                                     -33.5
                         •1643
                                                    93.2
                                                                     -35.8
     .4654
             13.500
                                -129.2
                                           .8048
                                                             .7131
                         .1629
                                                   .. 93.4...
     _4833
             -13.000...
                                -132.6 --- 8081 ---
                                                           - •7213 -- -38.5
                       ------1611
                                           .8113
             12.500
                         .1590
                                                             .7311
     .5027
                                -136.4
                                                    93.3
                                                                     -41.6
                                           .8139
     .5236
                                                    93.5
                                                             .7423
                                                                     -45.1
             12.000
                         .1562
                                -140.8
                                                                    -49.1-
                                                           ---- 7556 -
                               __-145.8 ____8159 - ___93.5__
     5464-
             .-11-500.---- 1527--
     .5712
                                           .8166
                                                    93.2
                                                            .7710
                                                                     -53.9
             11.000
                         .1483
                               -151.5
                                                                     -59.4
                                           .8152
                                                    93.1
     .5984
             10.500
                         ·1428
                                -158.2
                                                             .7885
                                          .8112
                                                    92.4
     .6283----10.000
                       - • 1356
                                -166.1
                                                             8084
                                                                     -66.0
                                                    91.6
                                                                     -73.9
     .6614
              9.500
                         • 1266
                                -175.5
                                           .8032
                                                             .A301
                                                    89.9
     .6981
              9.000
                         .1149
                                 173.1
                                           .7901
                                                             .8531
                                                                     -83.6
                                          -.7714
                                                    87.7 --
     ..7392...
             - 8.50U -
                      . 159.0...
                                                             ·8749
                                                                    -- -95.4
     .7854
                                           .7483
                         .0808
                                                             .8910
              8.000
                                 140.9
                                                    84.4
                                                                    -110.4
     .8378
                                 115.A
                                           .7299
                                                             .6902
              7.500
                         .0569
                                                    79.5
                                                                    -129.7
                                          ...7471----
     . 4976
                         .0291 -- 73.7--
                                                    69.2 ---
                                                                    -154.B
              -7-000--
                                                            .8460
     .9666
              6.500
                                 -39.0
                                           .5185
                                                    41.4
                                                             .7166
                                                                     173.A
                         .0139
                                                   -20.4
                                           .2610
                                                             .5188
   1.0472
              6.000
                                -114.7
                                                                     138.7
                         .0216
                                                   .28.5 ---
                                                                   --105.3
                                                            ⊸3159
    1-1424
              5.500.
                         →0251------137-,4 -----
                                           -0497
                                                    65.6
   1.2566
              5.000
                         .0270
                               -172.6
                                           .1268
                                                             .1965
                                                                      64.9
                                           .1304
   1.3963
              4.500
                         .0096
                                                    26.6
                                                             .1103
                                                                      17.0
                                 129.1
                                -149.6
                                           .0878
                                                            .0404
   4.5708-
            -- 4.000 --
                         .0134
                                                     6.5
                                                                   · ·- -.1
   2.0944
              3.000
                                -115.7
                                                  -141.7
                                                             .0038
                         .0040
                                           .0340
                                                                   -157.2
```

PAGE

(

ааны вереневаны верен

eee OSCAR POP

DATE 84/02/1

ANGLE = 0.00 DEG. G-METACENTER = 32.4 FEET
RD SPFFD = 0.00 KNOTS WAVE STEEPNESS = 1/20

RD SPFFD = 0.00 KNOTS WAVE STEEPHESS = 1/20
1 GY. RADIUS = 145.0 FFET YAW GY. MADIUS = 145.0 FEET

RESPONSE OPERATORS

OF BODY FPIER

E AMPL.		E AMPL.		E AMPL.		E AMPL.		E AMPL.	
-PHASE	AMPL.	PHASE	AMPL.	PHASE -	AMPL.	PHASE	AMPL.	PHASE	
90.7	•6696	-12.1	.0824	85.4	.0193	102.2	.0169	18.2	
91.3	6741	17.7	1242	63.5 	0260	80.1	0226	3.9	
91.6	.6760	-19.3		83.1	.0281		.0245	•7	
91.9	.6786	-21.2	.1519	82.5	.0306		.0268	-2.9	
92.0	6824	23.5-	.16º3	81.7-	.0336	60.8	.0294		
92.4	.6978	-26.2	.1897	80.9	.0371	52 . 9	.0325	-10.9	-
92.7	.6954	-29.5		80.1	.0414	43.9	.0361	-15.4	
92.8_				79.5	0438-	38.8	0381	17.9	=
92.9	.7063			79.0	.0465	33.4	.0403	-20.5	
93.2	.7131	-35.8	• •	78.6	.0495	27.6	.0426	-23.0	
				78.0 ·			.0450		
93.3	.7311		.2933	77.2	.0563	14.2	.0477		
93.5	.7423	~45 · 1	•3131	76.7	.0603	6.6	.0504		
93.5		-49.1		76.1				-36.3	 , , ,
93.2	.7710	-53.9	.3568	75.3	.0695	-11.5	.0561	-40.8	
93.1	.7885	-59.4	.3802	74.9	.0747	-22.1	.0590		_
92.4	.8084		.4050	74.2	.0805	-34.4	.0617		
91.6	.8301	-73.9	.4307	73.8	.0857	-48.4	.0641		
89.9	.8531	-83.6	.458A	73.5	.0933	-64.9	.0658		
87.7		95.4	- 4930	73.7		-84.5	.0665	-74.7	
84.4	.8910	-110.4		74.6	.1064	-108.6	.0656	-86.7	
79.5	.8902	-129.7	.6652	75.3	.1107	-139.1	.0623	-102.0	
69.2		-154.B		66.0-				-121.9	
41.4		173.A		13.8	•	125.4	.0454		
-20.4	.5188	138.7	•	_		56.1	.0304		
	. 2150	1001	110409	90.6					
65.6	.1965	64.9	- 1662	-110.4	-0095	74.3	.0068	-90.8	
26.6	.1103	17.0		-124.2		-24.3		170.1	
6.5 -			0003	165.8		86.7			
-141.7		-157.2	.0117	-121.1	.0003		.0024	-45.4	

6666	********	*****	****	****
6				### USCAH
·				
		+· · · · · · ·		
₽	DPAFT = 12		TRIM ANGLE	
&		Un.00 DEG.		
~~~~***************************		UIUS =25.60 FEET		
	s · · · · · · · · · · · · · · · · · · ·	TATISTIC	5 0 F M	0 T I O N S
	==:	=======================================	::::::::::::::::::::::::::::::::::::::	)F BUDY FPIC
			-	
			SE	SPEC
		ISSC SIGNIF	ICANT HEIGHT	= 6.0 FEE1
<del></del>			INGLE	MPLIT
			SURGE	SWAY
			-( FEET )	• ( FEET ) = ·
	ROOT MEAN SOUR	ARE	.074	.751
	AVE OF 1/3 HIG	PHEST	.147	1.503
	AVE- OF 1/10 H	IGHEST · ·	188	··· ·· 1.916
	AVE OF 1/100 F	IGHEST	.246	2.510
	STATIS	STICS OF	ACCELE	PATIO
-	and and the second of the seco		S I N 6	LE-A-M-
		SURGE	- · · · SWAY	
		ET /SEC++2) (		
ROOT-MEAN-S	QUARE-	052		
AVE OF 1/3	HIGHEST	.103	1.129	1
AVE OF 1/10	HIGHEST		1.440	1
AVE-OF 1/10	O-HIGHEST	.172 -	1.886	<b>2</b>

d	WW USCAH WE	•		5. A T.E	847073	<b>\$</b>
-	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			DATE	84/02/1	•
SFFF SY. HA		FEET	G=META WAVE S YAW GY	•	1/ 20 145.0 FEET	
мо	T I O N S I	LN IF	PREGULA	R SEA	S	
0F	:======= BODY FP1tk	:=====:				
E A	SPECIA	U M				
GH7 =	6.0 FFFI	MFAN F	PERIOD = 5.5 S	FCONDS		
<b>-</b>						
À M	PLITUD	E MO	TIONS			
<b>-</b> -(			ROLL (DEG)			
4	.751	.924	•957	.108	.063	
7	1.503	1.848	1.913	.216	•126	AND THE RESERVE OF THE PROPERTY OF THE PROPERT
	- 1.916	2.356		.270	•161	
6	2.510	3.086	3.195	.361	•211	
LER	ATION	IN I	RREGUL	AP SEA	S	
- N & L	. E A·M +P L	ITUD	£ S			
C##2)	FEET /SEC	.##2)	(DEG/SEC##2)	DEG/S	EC##2)	(DEG/SEC##2)
5		)			082	
9	1.472	•	1.788	•	165	.095
	1.877	· · · ·	2.280	•	210	.122
		)		•	275	

## APPENDIX B

CONNECTION ANALYSIS

### Appendix B: FINGER/SPINE CONNECTION ANALYSIS

A description of the mathematical model of the connection is shown in Fig. B-1. The links are modelled as struts with an axial stiffness of 232,000 kips/ft. The shear key is also modelled as a strut, the stiffness of this strut can be assumed to have a value which represents the stiffness of the fendering at the key interface. In actuality the stiffness will not be linear and will be effective for a certain displacement equivalent to the maximum displacement the fender can withstand. The non-linearity of the stiffness will be neglected in this analysis. The effect of increased stiffness can be determined by varying the stiffness of the structural components relative to each other.

The model assumes that all vertical motions due to roll, pitch and heave at the connection interface are unconstrained. The links resist yaw and surge and the shear key resists sway. It is assumed that the tolerance and low friction at the shear key, and the hinges in the links will provide the freedom of movement in the vertical plane.

The most significant limitation is due to the assumption that neglects the effect of pitch. Pitching can cause axial deformation in the links which are placed at the deck level. The displacements at the deck level will be increased if the bottom of the finger pier pivots against the hull of the spine pier. This effect can be reduced by tapering the connection end of the finger pier, shown in Fig. 6. Or in other words the depth of the area bearing against the spine pier should be minimized.

From the summary of motions (p.A-6) it is evident that a wave heading of 110 degrees will impose the most severe forces on the links. The forces in the links are caused by surge and the yaw moment. The contribution from surge will not be very significant, but the yaw moment has to be resisted by a tension-compression couple in the links.

OSCAR could not be used to model the connection as described above. Another approach was taken to estimate the forces in the links. The theoretical justification of the approach taken to analyze the foces in the connection structure is as follows:

### Virtual Mass Matrix

The virtual (added) mass and damping co-efficients for various frequencies for the finger pier are reported in the OSCAR output.

If the mass coefficients are multiplied by  $M_{I}$ .

M_I = inherant vessel mass

The results represent the diagonal of the virtual mass matrix evaluated 250 ft. from the centeroid of the vessel. The actual virtual mass matrix is nearly diagonal when evaluated at the centeroid. If:

Surge: 
$$Moi = M_i'$$

Heave: 
$$Mo3 = M_3'$$

$$Roll$$
:  $Moq = M'_4$ 

Pitch: 
$$Mos + Mos(250)^2 = M's$$
  
 $Mos = M's - Mos(250)^2$ 

Yaw: 
$$M_{06} + M_{02} (250)^2 = M'_{6}$$
  
 $M_{06} = M'_{6} - M_{02} (250)^2$ 

The computed mass properties at centeroid are included in Appendix B., P. B-13.

#### Inherent Mass Matrix

The inherent mass matrix is diagonal at the centeroid.

### Damping Matrix

Assume if the added damping coefficients reported in OSCAR are multiplied by  $M_{\rm I}$ , the results represent the diagonal—the damping matrix evaluated 250 feet from the centeroid of the vessel. The actual damping matrix at the centeroid is nearly diagonal. If:

$$Ci' = diagonal$$
 from  $DSCAR$ .

 $Coi = diagonal$  at centeroid.

 $Surge : Coi = Ci'$ 
 $Sway : Coz = Cz'$ 
 $Heave : Co3 = Cs'$ 
 $Roll : Co4 = Cs'$ 
 $Pitch : Co5 = Cs' - Co3(250)^2$ 
 $Yaw : Co6 = Cs' - Co2(250)^2$ 

#### Stiffness Matrix

At the centeroid of the vessel, the stiffness matrix is diagonal.

$$K_{11} = 0$$
 surge

 $K_{22} = 0$  sway

 $K_{33} = 500 \times 80 \times 0.064 = 2560 \text{ Kip/ft.}$  heave.

 $K_{44} = GM \times \text{displacement} = 32.4 \times 30720 = 995 \times 10^3 \text{ Kip-ft.}$  roll.

 $K_{55} = \frac{1}{12} \times 80 \times 500^3 \times 0.064 = 53.3 \times 10^6 \text{ Kip-ft.}$  pitch

 $K_{64} = 0$  Yaw

Dyna.. ic Equations:

λ

The equation of motion is:

$$M\ddot{v} + C\dot{v} + Kv = P$$

where:

 $V = Vc Cos(wt) + Vs Sin(wt)$ 
 $Vc = V Cos(\theta)$ 
 $Vs = V Sin(\theta)$ 
 $\dot{v} = -w Vc Sin(wt) + w Vs Cos(wt)$ 
 $\ddot{v} = -w^2 Vc Cos(wt) - w^2 Vs Sin(wt)$ 
 $P = Pc Cos(wt) + Ps Sin(wt)$ 
 $V = -w^2 M Vc + w C Vc + K Vc = Pc$ 
 $V = -w^2 M Vs - w C Vc + K Vs = Ps$ 

expressing in complex numbers.

$$-w^{2}Mv_{c} - iwCiV_{s} + KV_{c} = P_{c}$$

$$-w^{2}MiV_{s} - iwCV_{c} + KiV_{s} = iP_{s}$$

(*for each encounter frequency)

The dynamic matrix was evaluated at the joint end of the finger pier. Then for a heading of  $110^{\circ}$  the RAO's reported for the free-floating case were converted to  $V_c$  and  $V_s$  for the respective phase angles. These were multiplied with the dynamic matrix to obtain the force vectors. After the force vectors were computed the system of equations was solved for displacements, with the joint stiffness included in the stiffness component of the dynamic matrix.

The forces in the structural components were calculated from the computed displacement for each wave frequency. Then a force amplitude spectrum was obtained for an irregular sea with 6 feet significant wave height and a mean period of 5.5 seconds. Results were reported for average of 1/3 of spectral peak values times 1.92, to give a value which has a probability of being exceeded of 0.001.

A parametric study was done to determine the effect of varying the stiffness of the connection components relative to each other. The response of the system (RAO's) was calculated for the following structural stiffnesses:

	Surge (k/f)	Sway (k/f)	$\underline{\text{Yaw}}(k-f/f)$
Case l	4.64E5	1.0E5	7.4E8
Case 2	2.32E5	1.0E5	3.712E8
Case 3	2.3E5	0.5E5	3.712E8
Case 4	∞	∞	•••

An insignificant difference was observed in the response for the above four trials see pp. B-36 to B-44. Hence, it can be concluded that for the range of stiffness and wave frequencies studied, the system was insignificant dynamic amplification and the forces generated in the connection components are essentially due to resisting the motions of the pier.



STRUCTURAL ENGINEERING 315 Bey St., Sen Francisco, Ce. 94133 PROJECTIONR Navy Dier Concepts

ITEM: Finger / spine Connection

DESIGNI Connection loading

DATE

SHEET:

wave heading

£ 110°

80'

<u>3-3</u>

F____

REVISION:

## Connection loading:

Linear motion (wave) 110° heading FROM P. B-46

surge: 440/2 = 220 K / Link

SW2Y: 1137 K

4.

Yaw: 323400 K-F = ±4040 K/Link.

Wave Drift: (110° haading) From p.__

surge: 7.7/2 = 3.85 K / Link

sway: 42.7 K

Yaw: 10900 L-F = ±136 K / Link.

Wind and current: (broadside)

Total lateral force =  $30+67 = 92^{K}$  @ 333 FT. from conn. (calculated on PP A-1 & A-2)

:. SW2Y: =  $92^{K}$ Y2W: =  $\frac{92 \times 333}{20}$  =  $\pm 383^{K} / link$ .

 $F_5 = 1137 + 42.7 + 92 = 1272 \text{ mps}$ 

FL = 220 + 4 + 4040 + 136 + 383 ~ 4800 kgs

Tension or comp. in each link.

If finger pier is allowed to bear against the spine pier of the compression end. The moment arm will be reduced.

Assume moment arm is 60'

:.  $F_2 = 224 + (4559) \frac{80}{60} \approx 6300 \frac{\text{Kips}}{\text{Tension}}$ 



PROJE	CTIONR, Navy Pier Concepts
ITEM;	Finger / Spine conn.
DESIGN	Conn. Analytical model
DATE;	2/BC 44V

Finger/Spine connection: Analytical Model.



Note: all motions in vertical plane are unconstrained.

Fig. B-1

CONTENTS	PAGE
Wave drift forces on Finger Pier	B-10
Virtual Mass Coefficients (from OSCAR)	B-11
Damping Coefficients (from OSCAR)	B-12
Virtual Mass at Centeroid	B-13
Damping at Centeroid	B-14
Dynamic Matrices	B-15 to B-25
RAO's and phase angles at local origin (from OSCAR)	B-26 to B-29
Load Vectors	B-30 to B-31
RAO Reverification	B-32 to B-34
Constrained RAO's and Forces:	
Case 1	B-34 to B-36
Case 2	B-37 to B-39
Case 3	B-40 to B-42
Case 4	B-43 to B-45
Motions and displacements for irregular Seas (Case 4)	B-46

K

K

\$ \$ \$	
USCAR	
\$ \$ \$	

NATE 84/02/2

* * ^

DRIFT FORCE METHOD = FREQUENCY DOWAIN

SMAY DRIFT FACTOR = 1.000 SUPPLE DRIFT FACTOR = 1.000

1	WAVE DRIFT F 1)	R C E S C	DRCESON HODY PPIER	#	SEA	FOR SEA HEADING = 110°
TYPE OF		FUMCES ( FEET )		MUMENTS	MUMENTS ( KIPS - FLET )	FLET )
1	39805	SUPPLEMENT SAN PEAVE	HFAVE	ROLL	ROLL PITCH YAW	347
18-D	0.0	0 • 0	0.0	• 6	5	• 0
F. B V.F.	7.7	1.64-	-16.5	-514.	4215.	-10H9R.
Lu ee no	•	0.	0.0		* a	• 0
0.41 ldav	a • o	0 • 0	0 • 0	· u	0	• 0
10141	7.7	1-47-1	-16.5	-514.	4215.	-10898.

	YAW	181 186.0253 188.0253 189.7797 190.7797 194.5501 195.1736 197.1736 198.3503 198.9460 198.947 198.947 198.947 198.968 197.7534 187.7534 123.8831 123.8831 123.88831 123.88831 123.88831 123.88831 123.88831 123.88831
HEADING	PITCH	580.9455 524.4749 513.2859 490.18358 471.6106 471.6106 471.6106 471.6106 471.6106 471.6106 471.6106 471.6106 471.6106 471.6106 471.6106 471.6106 471.6106 471.6116 387.6119 387.6119 387.6155 387.6155 487.715 487.715 487.715 487.716
110° HE	ROLL	26,5903 27,122,03 27,122,03 27,122,03 27,122,03 27,122,03 27,122,03 27,122,03 27,122,03 27,132,03 27,132,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,03 27,133,0
s FOR	HEAVE	25.25.25.25.25.25.25.25.25.25.25.25.25.2
MASS COEFFICIENTS	SWAY	0.000000000000000000000000000000000000
CATION - VIRTUAL	SURGE	00000000000000000000000000000000000000
COEFFICIENT VERIFICA	FRED	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1.

	YAW	140. 428. 428. 428. 428. 428. 4000 1373. 4000 1373. 4000 1373. 4000 1373. 1000 1000 1000 1000 1000 1000 1000 10
	PITCH	79270,7031 89191,7969 91224,7031 93259,7969 95294,8984 97140,2969 98861,5000 100929,2031 101932,8984 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 101943,1016 1
	ROLL	2.3815 7.0537 7.0537 2.38482 21.7893 37.45396 45.1498 85.13529 85.13529 85.13529 85.13529 85.13529 85.13529 85.13529 85.13529 85.13529 85.13529 86.13529 86.13529 86.13529 86.13529 187.6565 187.6565 108.0222
	HEAVE	0.900 1.00110 1.0036 1.1036 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.1133 1.
CALION - DAMPING COEFFICIENTS	SWAY	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
	SURGE	
COEFFICTENT VERIFI	FRED	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

`

)

•

.

YAW	9629.6699 10036.6621	10441.3320 10536.2480 10744.1470	10978.6299 11042.7314 11149.5625	11297.4639 11405.3379 11479.5137 11571.3740	11634.8721 11645.3418 11589.1377 11479.2686	11198.8076 10848.9932 10241.6736 9471.6797 8531.0186	7415,6411 6169,3784 4892,9829 3659,1724	2539,0281 1606,4170 901,1288 308,1364
PITCH	97866.3984 82838.4375 79448.4172	76399-9141 73032-9219 69668-6563	66252,4063 64497,7891 62782,7695	61094.6016 59374.3516 57616.4805 55987.3477	54335.3945 52650.6211 51156.3242 49578.4492	48233.0156 46842.3711 45750.6133 44790.1250 44032.9453	43576,7109 43578,4492 44040,3828 44984,9180	49155.7656 55108.2422 58649.8008 58475.5156
ROLL	724.8749	742.3936 743.9966 750.9628	757.9614 758.7711 760.7336	764.4285 765.8337 764.9539 764.1907	755.7275 745.4756 732.9257	/12.1320 689.2568 654.7457 616.5388 573.9619	529.1702 486.3039 449.4739 421.3166	405.8573 402.0426 409.7831 441.6260
HEAVE	3,2452 3,2452 3,1210	2.9930 2.8609 2.7291	2.5954 2.5267 2.5267 2.5267	2.2375 2.2375 2.2570 2.2570	2.0624 2.0624 1.9922	1.8833 1.8349 1.7923 1.7546 1.7249	1.7077 1.7071 1.7253 1.7621	1,9255 2,1588 2,2974 2,2909
SWAY	0.3931 0.4024	0.4092 0.4128 0.4211	0.4300 0.4328 0.4368	0.000 0.000 0.000 0.000 0.000 0.000	0.4500 0.4500 0.44539 0.44939	0.4350 0.4250 0.3712 0.3343	0.2904 0.2418 0.1916 0.1433	0.0995 0.0628 0.0354 0.0119
SURGE	0.0434 0.0434	0.00 0.00 0.00 0.00 0.00 0.00	0.0434 0.0434 0.0434	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.000 0.000 0.004 0.004 0.004 0.004	0000 0000 0000 0000 0000 0000	0.0434 0.0434 0.0434 0.0434	0.0434 0.0434 0.0434 0.0434
FREG	0.3140	0.3490 0.3700 0.3930	0.4190 0.4330 0.4490	00000 00000 000000	0.1710 0.1710 0.6780	0.6980 0.7390 0.7850 0.8380	0.8980 0.9670 1.0470 1.1420	1.2570 1.3960 1.5710 2.0940

Children was a clan and the control

)

PROFERTIES AT CENTROID - VIRTUAL MASS / VESSEL MASS

	YAW	9629 9629 10036,6699 100413,3320 100746,1670 11042,3320 11042,7314 111597,4639 11634,8721 11645,3379 11645,3418 11645,3418 11648,9921 11648,9932 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,6436 10241,643
	PITCH	7/866.3/84 7/866.3/84 7/806.3/84 7/808.4375 7/808.4375 6/806.8.6563 6/80.9/891 6/80.9/891 6/80.9/891 5/80.9/891 5/80.9/891 5/80.9/891 5/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80.9/891 6/80
	ROLL	724.8749 732.3936 742.3936 750.9628 750.9628 764.1936 764.9539 764.9539 765.7275 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732.9257 732
	HEAUE	201020202020202020202020202020202020202
1000	SWAY	00000000000000000000000000000000000000
ONT ##2 4100	SURGE	1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
	FREG	0.000000000000000000000000000000000000

PROPERTIES AT CENTROID - DAMFING / VESSEL MASS

c

	CES
	MATE
•	アイエグ
	2

K(REAL) - FREG = 0.251

0.0000E+00 -2.0661E+04 0.0000E+00 0.0000E+00 -7.0283E+06	0.0000E+00 -9.5785E+01 0.0000E+00 0.0000E+00 -3.3645E+04	0.0000E+00 -3.2760E+04 0.0000E+00 0.0000E+00 -1.1144E+07	0.0000E+00 -3.6697E+02 0.0000E+00 0.0000E+00 -1.2848E+05	0.0000E+00 -3.6647E+04 0.0000E+00 0.0000E+00 -1.2469E+07	0.0000E+00 -5.5263E+02 0.0000E+00 0.0000E+00
0.0000E+00 0.0000E+00 -5.6736E+05 0.0000E+00 1.8803E+08 0.0000E+00	0.0000E+00 0.0000E+00 5.3915E+04 0.0000E+00 -1.8982E+07 0.0000E+00	0.0000E+00 0.0000E+00 -5.4017E+05 0.0000E+00 1.7862E+08 0.0000E+00	0.0000E+00 0.0000E+00 7.588E+04 0.0000E+00 -2.6719E+07 0.0000E+00	0.0000E+00 0.0000E+00 -5.3231E+05 0.0000E+00 1.7590E+08 0.0000E+00	0.0000E+00 0.0000E+00 8.1820E+04 0.0000E+00
0.0000E+00 0.0000E+00 0.0000E+00 9.1627E+05 0.0000E+00	0.0000E+00 0.0000E+00 0.0000E+00 -5.7028E+02 0.0000E+00	0.0000E+00 0.0000E+00 0.0000E+00 8.6992E+00 0.0000E+00	0.0000E+00 0.0000E+00 0.0000E+00 -2.1131E+03 0.0000E+00	0.0000E+00 0.0000E+00 0.0000E+00 8.5484E+00 0.0000E+00	0.0000E+00 0.0000E+00 0.0000E+00 -3.1285E+03 0.0000E+00
0.0000E+00 0.0000E+00 2.2694E+03 0.0000E+00 -5.6736E+05 0.0000E+00	0.0000E+00 0.0000E+00 -2.1566E+02 0.000E+00 5.3915E+04	0.0000E+00 0.0000E+00 2.1607E+03 0.0000E+00 -5.4017E+05 0.0000E+00	0.0000E+00 0.0000E+00 -3.0355E+02 0.0000E+00 7.5888E+04 0.0000E+00	0.0000E+00 0.0000E+00 2.1293E+03 0.0000E+00 -5.3231E+05 0.0000E+00	0.0000E+00 0.0000E+00 -3.2728E+02 0.0000E+00 8.1820E+04
0.0000E+00 -8.2645E+01 0.0000E+00 0.0000E+00 0.0000E+00	FRED = 0.251 0.0000E+00 -3.8314E-01 0.0000E+00 0.0000E+00 -9.5785E+01	= 0.314 0.0000E+00 -1.3104E+02 0.0000E+00 0.0000E+00 -3.2760E+04	FREG = 0.314 0.0000E+00 -1.4679E+00 0.0000E+00 0.0000E+00 -3.6697E+02	0.331 0.0000E+00 -1.4659E+02 0.0000E+00 0.0000E+00 -3.6647E+04	FREG = 0.331 0.0000E+00 -2.2105E+00 0.0000E+00 0.0000E+00
-6.2714E+01 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00	M(IMMGINARY) - F 0.0600E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00	K(REAL) - FREG = -9.8147E+01 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00	K(IMAGINARY) - F 0.0000E400 0.0000E400 0.0000E400 0.0000E400	K(REAL) - FREQ = -1.0706E+02 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00	K(IMAGINGRY) - F 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

		•				
-1.9377E+05	0.0000E+00 -4.0938E+04 0.0000E+00 0.0000E+00 -1.3931E+07	0.0000E+00 -7.5748E+02 0.0000E+00 0.0000E+00 -2.6773E+05	0.0000E+00 -4.6131E+04 0.0000E+00 0.0000E+00 -1.5699E+07	0.0000E+00 -9.9721E+02 0.0000E+00 0.0000E+00 -3.5105E+05	0.0000E400 -5.2350E404 0.0000E400 0.0000E400 -1.7819E407	0.0000E+00 -1.4623E+03 0.0000E+00
0.0000E+00	0.0000E+00 0.0000E+00 -5.2400E+05 0.0000E+00 1.7303E+08 0.0000E+00	0.0000E+00 0.0000E+00 8.8193E+04 0.0000E+00 -3.1052E+07	0.0000E+00 0.0000E+00 -5.1393E+05 0.0000E+00 1.6955E+08	0.0000E+00 0.0000E+00 9.5538E+04 0.0000E+00 -3.3639E+07 0.0000E+00	0.0000E+00 0.0000E+00 -5.0263E+05 0.0000E+00 1.6564E+08 0.0000E+00	0.0000E+00 0.0000E+00 1.0345E+05 0.0000E+00
0.0000E+00	0.0000E+00 0.0000E+00 0.0000E+00 8.3837E+05 0.0000E+00	0.0000E+00 0.0000E+00 0.0000E+00 -4.2779E+03 0.0000E+00	0.0000E+00 0.0000E+00 0.0000E+00 8.1870E+05 0.0000E+00	0.0000E+00 0.0000E+00 0.0000E+00 -5.5735E+03 0.0000E+00	0.0000E+00 0.0000E+00 0.0000E+00 7.9504E+05 0.0000E+00	0.0000E+00 0.0000E+00 0.0000E+00 -8.0132E+03
0.0000E+00	0.0000E+00 0.0000E+00 2.0960E+03 0.0000E+00 -5.2400E+05 0.0000E+06	0.0000E+00 0.0000E+00 -3.5277E+02 0.0000E+00 8.8193E+04 0.0000E+00	0.0000E+00 0.0000E+00 2.0557E+03 0.0000E+00 -5.1393E+05 0.0000E+00	0.0000E+00 0.0000E+00 -3.8215E+02 0.0000E+00 9.5538E+04 0.0000E+00	0.0000E+00 0.0000E+00 2.0105E+03 0.0000E+00 -5.0263E+05 0.0000E+00	0.0000E+00 0.0000E+00 -4.1378E+02 0.0000E+00
-5.5263E+02	0.349 0.0000E+00 -1.6375E+02 0.0000E+00 0.0000E+00 -4.0938E+04	FRED = 0.349 0.0000E+00 -3.0299E+00 0.0000E+00 0.0000E+00 -7.5748E+02	0.370 0.0000E+00 -1.8452E+02 0.0000E+00 0.0000E+00	FREG = 0.370 0.0000E+00 -3.988E+00 0.0000E+00 0.0000E+00 -9.9721E+02	0.393 0.0000E+00 -2.0940E+02 0.0000E+00 0.0000E+00 -5.2350E+04	FREG = 0.393 0.0000E+00 -5.8490E+00 0.0000E+00 0.0000E+00
0.0000E+00	K(REAL) - FREG = -1.2125E+02 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00	K(IMAGINARY) - F 0.0000E+00 0.0000E+00 0.000E+00 0.000E+00 0.000E+00	K(REAL) - FREG = -1.3628E+02 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00	K(IMAGINARY) - F 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00	K(REAL) - FREG = -1.5375E+02 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00	K(IMAGINARY) - FI 0.0000E+00 0.0000E+00 0.0000E+00

		•				
-1.9377E+05	0.0000E+00 -4.0938E+04 0.0000E+00 0.0000E+00 -1.3931E+07	0.0000E+00 -7.5748E+02 0.0000E+00 0.0000E+00 -2.6773E+05	0.0000E+00 -4.6131E+04 0.0000E+00 0.0000E+00 -1.5699E+07	0.0000E+00 -9.9721E+02 0.0000E+00 0.0000E+00 -3.5105E+05	0.0000E+00 -5.2350E+04 0.0000E+00 0.0000E+00 -1.7819E+07	0.0000E+00 -1.4623E+03 0.0000E+00
0.0000E+00	0.0000E+00 0.0000E+00 -5.2400E+05 0.0000E+00 1.7303E+08	0.0000E+00 0.0000E+00 8.8193E+04 0.0000E+00 -3.1052E+07 0.0000E+00	0.0000E+00 0.0000E+00 -5.1393E+05 0.0000E+00 1.6955E+08 0.0000E+00	0.0000E+00 0.0000E+00 9.5538E+04 0.0000E+00 -3.3639E+07 0.0000E+00	0.0000E+00 0.0000E+00 -5.0263E+05 0.0000E+00 1.6564E+08 0.0000E+00	0.0000E+00 0.0000E+00 1.0345E+05 0.0000E+00
0.0000E+00	0.0000E+00 0.0000E+00 0.0000E+00 8.3837E+05 0.0000E+00	0.0000E+00 0.0000E+00 0.0000E+00 -4.2779E+03 0.0000E+00	0.0000E+00 0.0000E+00 0.0000E+00 8.1870E+05 0.0000E+00	0.0000E+00 0.0000E+00 0.0000E+00 -5.5735E+03 0.0000E+00	0.0000E+00 0.0000E+00 0.0000E+00 7.9504E+05 0.0000E+00	0.0000E+00 0.0000E+00 0.0000E+00 -8.0132E+03
0.0000E+00	0.0000E+00 0.0000E+00 2.0960E+03 0.000E+00 -5.2400E+05 0.0000E+05	0.0000E+00 0.0000E+00 -3.5277E+02 0.0000E+00 8.8193E+04 0.0000E+00	0.0000E+00 0.0000E+00 2.0557E+03 0.0000E+00 -5.1393E+05 0.0000E+00	0.0000E+00 0.0000E+00 -3.8215E+02 0.0000E+00 9.5538E+04 0.0000E+00	0.0000E+00 0.0000E+00 2.0105E+03 0.0000E+00 -5.0263E+05 0.0000E+00	0.0000E+00 0.0000E+00 -4.1378E+02 0.0000E+00
-5.5263E+02	0.349 0.0000E+00 -1.6375E+02 0.0000E+00 0.0000E+00 -4.0938E+04	FREG = 0.349 0.0000E+00 -3.0299E+00 0.0000E+00 0.0000E+00 -7.5748E+02	0.370 0.0000E+00 -1.8452E+02 0.0000E+00 0.0000E+00	FREQ = 0.370 0.0000E+00 -3.988E+00 0.0000E+00 0.0000E+00 -9.9721E+02	0.393 0.0000E+00 -2.0940E+02 0.0000E+00 0.0000E+00 -5.2350E+04	FREQ = 0.393 0.0000E+00 -5.8490E+00 0.0000E+00
0.0000E+00	K(REAL) - FREU = -1.2125E+02 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00	K(IMAGINARY) - F 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00	K(REAL) - FREG = -1.3628E+02 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00	K(IMAGINARY) - F 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00	K(REAL) - FREQ = -1.5375E+02 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00	K(IMAGINARY) - F 0.0000E+00 0.0000E+00 0.0000E+00

		•				
0.0000E+00 -5.1479E+05	0.0000E+00 -5.9878E+04 0.0000E+00 0.0000E+00 -2.0387E+07	0.0000E+00 -2.1286E+03 0.0000E+00 0.0000E+00	0.0000E+00 -6.4072E+04 0.0000E+00 0.0000E+00 -2.1815E+07	0.0000E+00 -2.4889E+03 0.0000E+00 0.0000E+00 -8.7787E+05	0.0000E+00 -6.9087E+04 0.0000E+00 0.0000E+00 -2.3526E+07	0.0000E+00 -3.0521E+03 0.0000E+00
-3.6421E+07 0.0000E+00	0.0000E+00 0.0000E+00 -4.8945E+05 0.0000E+00 1.6110E+08	0.0000E+00 0.0000E+00 1.1224E+05 0.0000E+00 -3.9519E+07 0.0000E+00	0.0000E+00 0.0000E+00 -4.8229E+05 0.0000E+00 1.5863E+08 0.0000E+00	0.0000E+00 0.0000E+00 1.1700E+05 0.0000E+00 -4.1195E+07	0.0000E+00 0.0000E+00 -4.7367E+05 0.0000E+00 1.5565E+08 0.0000E+00	0.0000E+00 0.0000E+00 1.2218E+05
0.0000E+00 0.0000E+00	0.0000E+00 0.0000E+00 0.0000E+00 7.6649E+05 0.0000E+00	0.0000E+00 0.0000E+00 0.0000E+00 -1.1466E+04 0.0000E+00	0.0000E+00 0.0000E+00 0.0000E+00 7.5079E+05 0.0000E+00	0.0000E+00 0.0000E+00 0.0000E+00 -1.3359E+04 0.0000E+00	0.0000E+00 0.0000E+00 0.0000E+00 7.3201E+05 0.0000E+00	0.0000E+00 0.0000E+00 0.0000E+00
1.0345E+05 0.0000E+00	0.0000E+00 0.0000E+00 1.9578E+03 0.0000E+00 -4.8945E+05 0.0000E+00	0.0000E+00 0.0000E+00 -4.4895E+02 0.0000E+00 1.1224E+05	0.0000E+00 0.0000E+00 1.9292E+03 0.0000E+00 -4.8229E+05 0.0000E+00	0.0000E+00 0.0000E+00 -4.6800E+02 0.0000E+00 1.1700E+00	0.0000E+00 0.0000E+00 1.8947E+03 0.0000E+00 -4.7367E+05 0.0000E+00	0.0000E+00 0.0000E+00 -4.8872E+02
0.0000E+00 -1.4623E+03	0.419 0.0000E+00 -2.3951E+02 0.0000E+00 0.0000E+00 -5.9878E+04	FKEU = 0.419 0.0000E+00 -8.5145E+00 0.0000E+00 0.0000E+00 -2.1286E+03	0.433 0.0000E+00 -2.5629E+02 0.0000E+00 0.0000E+00 -6.4072E+04	FREQ = 0.433 0.0000E+00 -9.9557E+00 0.0000E+00 0.0000E+00 -2.4889E+03	0.449 0.0000E+00 -2.7635E+02 0.0000E+00 0.0000E+00 -6.9087E+04	FREG = 0.449 0.0000E+00 -1.2208E+01 0.0000E+00
0.9909E+00 0.0000E+00	K(REAL) - FREQ = -1.7476E+02 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00	K(IMAGINARY) - F 0.0090E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00	K(REAL) - FREQ = -1.8663E+02 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00	K(IMAGINARY) - F 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00	K(KEAL) - FREQ = -2.0068E+02 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00	K(IMAGIHARY) F 0.0500E+00 0.0000E+00

		•				
0.0000E+00 0.0000E+00 -1.0733E+06	0.0000E+00 -7.4402E+04 0.0000E+00 0.0000E+00 -2.5339E+07	0.0000E+00 -3.8485E+03 0.0000E+00 0.0000E+00 -1.3555E+06	0.0000E+00 -8.0513E+04 0.0000E+00 0.0000E+00 -2.7422E+07	0.0000E+00 -4.7232E+03 0.0000E+00 0.0000E+00 -1.6614E+06	0.0000E+00 -8.7476E+04 0.0000E+00 0.0000E+00 -2.9797E+07	0.0000E+00 -5.6626E+03
0.0000E+00 -4.3019E+07 0.0000E+00	0.0000E+00 0.0000E+00 -4.6499E+05 0.0000E+00 1.5267E+08 0.0000E+00	0.0000E+00 0.0000E+00 1.2717E+05 0.0000E+00 ~4.4775E+07 0.0000E+00	0.0000E+00 0.0000E+00 -4.5493E+05 0.0000E+00 1.4920E+08 0.0000E+00	0.0000E+00 0.0000E+00 1.3274E+05 0.0000E+00 -4.6739E+07 0.0000E+00	0.0000E+00 0.0000E+00 -4.4346E+05 0.0000E+00 1.4524E+08 0.0000E+00	0.0000E+00 0.0000E+00
-1.6131E+04 0.0000E+00 0.0000E+00	0.0000E+00 0.0000E+00 0.0000E+00 7.1215E+05 0.0000E+00	0.0000E+00 0.0000E+00 0.0000E+00 -2.0030E+04 0.0000E+00	0.0000E+00 0.0000E+00 0.0000E+00 6.8948E+05 0.0000E+00	0.0000E+00 0.0000E+00 0.0000E+00 -2.4257E+04 0.0000E+00	0.0000E+00 0.0000E+00 0.0000E+00 6.6384E+05 0.0000E+00	0.0000E+00 0.0000E+00
0.0000E+00 1.221BE+05 0.0000E+00	0.0000E+00 0.0000E+00 1.8600E+03 0.0000E+00 -4.6499E+05 0.0000E+00	0.0000E+00 0.0000E+00 -5.0866E+02 0.0000E+00 1.2717E+05 0.0000E+00	0.0000E+00 0.0000E+00 1.8197E+03 0.0000E+00 -4.5493E+05 0.0000E+00	0.0000E+00 0.0000E+00 -5.309BE+02 0.0000E+00 1.3274E+05 0.0000E+00	0.0000E+00 0.0000E+00 1.773BE+03 0.0000E+00 -4.4346E+05 0.0000E+00	0.0000E+00 0.0000E+00
0.0000E+00 0.0000E+00 -3.0521E+03	0.465 0.0000E+00 -2.9761E+02 0.0000E+00 0.0000E+00 -7.4402E+04	FREQ = 0.465 0.0000E+00 -1.5394E+01 0.0000E+00 0.0000E+00 -3.8485E+03	0.483 0.0000E+00 -3.2205E+02 0.0000E+00 0.0000E+00	FREG = 0.483 0.0000E+00 -1.8893E+01 0.0000E+00 0.0000E+00 -4.7232E+03	0.503 0.0000E+00 -3.4990E+02 0.0000E+00 0.0000E+00 -8.7476E+04	FREG = 0.503 0.0000E+00 -2.2650E+01
0.0000E+00 0.0000E+00 0.0000E+00	K(REAL) - FREG = -2.1524E+02 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00	K(IMAGINARY) - FF 0.0500E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00	K(REAL) - FREG = -2.323E+02 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00	K(IMAGINARY) - FF 0.0000E400 0.0000E400 0.0000E400 0.0000E400 0.0000E400	K(REAL) - FREG = -2.5186E+02 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00	K(IMAGINARY) - FR 0.0000E400 0.0000E400

		•		·		
0.0000E+00 0.0000E+00 0.0000E+00 -1.9941E+06	0.0000E+00 -9.518BE+04 0.0000E+00 0.0000E+00 -3.2425E+07	0.0000E+00 -7.2613E+03 0.0000E+00 0.0000E+00 -2.5564E+06	0.0000E+00 -1.0352E+05 0.0000E+00 0.0000E+00 -3.5266E+07	0.0000E+00 -9.0768E+03 0.0000E+00 0.0000E+00 -3.1978E+06	0.0000E+00 -1.1326E+05 0.0000E+00 0.0000E+00 -3.8582E+07	0.0000E+00
1.3893E+05 0.0000E+00 -4.8916E+07 0.0000E+00	0.0000E+00 0.0000E+00 -4.3087E+05 0.0000E+00 1.4091E+08 0.0000E+00	0.0000E+00 0.0000E+00 1.4474E+05 0.0000E+00 -5.0963E+07 0.0000E+00	0.0000E+00 0.0000E+00 -4.1755E+05 0.0000E+00 1.3632E+08 0.0000E+00	0.0000E+00 0.0000E+00 1.5071E+05 0.0000E+00 -5.3066E+07 0.0000E+00	0.0000E+00 0.0000E+00 -4.0186E+05 0.0000E+00 1.3092E+08 0.0000E+00	0.0000E+00
0.0000E+00 -2.8857E+04 0.0000E+00	0.0000E+00 0.0000E+00 0.0000E+00 6.3579E+05 0.0000E+00	0.0000E+00 0.0000E+00 0.0000E+00 -3.6120E+04 0.0000E+00	0.0000E+00 0.0000E+00 0.0000E+00 6.0578E+05 0.0000E+00	0.0000E+00 0.0000E+00 0.0000E+00 -4.4347E+04 0.0000E+00	0.0000E+00 0.0000E+00 0.0000E+00 5.7103E+05 0.0000E+00	0.0000E+00
-5.5570E+02 0.0000E+00 1.3893E+05 0.0000E+00	0.0000E+00 0.0000E+00 1.7235E+03 0.0000E+00 -4.3087E+05 0.0000E+00	0.0000E+00 0.0000E+00 -5.7895E+02 0.0000E+00 1.4474E+05 0.0000E+00	0.0000E+00 0.0000E+00 1.6702E+03 0.0000E+00 -4.1755E+05 0.0000E+00	0.0000E+00 0.0000E+00 -6.0284E+02 0.0000E+00 1.5071E+05 0.0000E+00	0.0000E+00 0.0000E+00 1.6074E+03 0.0000E+00 -4.0186E+05 0.0000E+00	0.0000E+00
0.0000E+00 0.0000E+00 0.0000E+00 -5.6626E+03	0.524 0.0000E+00 -3.8075E+02 0.0000E+00 0.0000E+00 -9.5188E+04	FREG = 0.524 0.0000E+00 -2.9045E+01 0.0000E+00 0.0000E+00 -7.2613E+03	0.546 0.0000E+00 -4.1408E+02 0.0000E+00 0.0000E+00 -1.0352E+05	FRED = 0.546 0.0000E+00 -3.6307E+01 0.0000E+00 0.0000E+00 -9.0768E+03	0.571 0.0000E+00 -4.5302E+02 0.0000E+00 0.0000E+00	FREG = 0.571 0.0000E+00
0.0000E+00 0.0000E+00 0.0000E+00	K(REAL) - FREG = -2.7332E+02 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00	K(IMAGINARY) - FR 0.0006E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00	K(REAL) - FREG = -2.9676E+02 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00	K(IMGINARY) - FF 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00	K(REAL) - FKEG = -3.2456E+02 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00	K(IMAGIHARY) - FR O.Ocooe+oo

		•			
-1.1167E+04 0.0000E+00 0.0000E+00 -3.9304E+06	0.0000E+00 -1.2401E+05 0.0000E+00 0.0000E+00 -4.2245E+07	0.0000E+00 -1.4348E+04 0.0000E+00 0.0000E+00 -5.0518E+06	0.0000E+00 -1.3437E+05 0.0000E+00 0.0000E+00 -4.6452E+07	0,0000E+00 -1,7854E+04 0,0000E+00 0,0000E+00 -6,2877E+06	0.0000E+00 -1.4992E+05 0.0000E+00 0.0000E+00 -5.1054E+07
0.0000E+00 1.5741E+05 0.0000E+00 -5.5421E+07 0.0000E+00	0.0000E+00 0.0000E+00 -3.8378E+05 0.0000E+00 1.2469E+08	0.0000E+00 0.0000E+00 1.6345E+05 0.0000E+00 -5.7551E+07 0.0000E+00	0.0000E+00 0.0000E+00 -3.6324E+05 0.0000E+00 1.1762E+08	0.0000E+00 0.0000E+00 1.7018E+05 0.0000E+00 -5.9922E+07	0.0000E+00 0.0000E+00 -3.3889E+05 0.0000E+00 1.0923E+08 0.0000E+00
0.0000E+00 0.0000E+00 -5.3653E+04 0.0000E+00	0.0000E+00 0.0000E+00 0.0000E+00 5.3345E+05 0.0000E+00	0.0000E+00 0.0000E+00 0.0000E+00 -6.6835E+04 0.0000E+00	0.0000E+00 0.0000E+00 0.0000E+00 4.9067E+05 0.0000E+00	0.0000E+00 0.0000E+00 0.0000E+00 -8.1368E+04 0.0000E+00	0.0000E+00 0.0000E+00 0.0000E+00 4.4491E+05 0.0000E+00
0, CODOE+00 -6,2963E+02 0,0000E+00 1,5741E+05 0,0000E+00	0.0000E+00 0.0000E+00 1.5351E+03 0.0000E+00 -3.8378E+05 0.0000E+00	0.0000E+00 0.0000E+00 -6.5381E+02 0.0000E+00 1.6345E+00	0.0000E+00 0.0000E+00 1.4530E+03 0.0000E+00 -3.4324E+05 0.0000E+00	0.0000E+00 0.0000E+00 -6.8074E+02 0.0000E+00 1.7018E+05 0.0000E+00	0.0000E+00 0.0000E+00 1.3555E+03 0.0000E+00 -3.3889E+05 0.0000E+00
-4.4670E+01 0.0000E+00 0.0000E+00 0.0000E+00 -1.1167E+04	0.598 0.0000E+00 -4.9602E+02 0.0000E+00 0.0000E+00	FKEQ = 0.598 0.0000E+00 -5.7394E+01 0.0000E+00 0.0000E+00 -1.4348E+04	0.628 0.0000E+00 -5.4550E+02 0.0000E+00 0.0000E+00 0.0000E+00	FKER = 0.628 0.0000E+00 -7.1417E+01 0.0000E+00 0.0000E+00 -1.7854E+04	0.661 0.0000E+00 -5.9966E+02 0.0000E+00 0.0000E+00
0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00	K(REAL) - FREQ = -3.5597E+02 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00	N(IMAGIHARY) - F 0.6000E400 0.6000E400 0.6000E400 0.6000E400 0.6000E400	K(REAL) - FREG = -3.9259E+02 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00	K(IMAGINARY) - F 9,0000E+00 0,0000E+00 0,0000E+00 0,0000E+00 0,0000E+00 0,0000E+00	K(REAL) - FREG = -4.3493E+02 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

KIIMAGINARY) - FREO = 0.661

		•			
0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
-2.2702E+04	-1.6559E+05	-2.8302E+04	-1.8250E+05	-3.5428E+04	-2.0153E+05
0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
-7.9930E+06	0.0000E+00	-9.9647E+06	-6.2094E+07	-1.2476E+07	-6.8513E+07
0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
1.7604E+05	-3.1058E+05	1.8226E+05	-2.7629E+05	1.8687E+05	-2.3514E+05
0.0000E+00	0.0000E+00	0.000E+00	0.0000E+00	0.0000E+00	0.0000E+00
-6.1983E+07	9.9486E+07	-6.4174E+07	8.7675E+07	-6.5797E+07	7.3494E+07
0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
-9.9626E+04	3.9219E+05	-1.2035E+05	3.3724E+05	-1.4371E+05	2.7522E+05
0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
-7.0415E+02	1.2423E+03	-7.2905E+02	1.1052E+03	-7.4748E+02	9.4057E+02
0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
1.7604E+05	-3.1058E+05	1.8226E+05	-2.7629E+05	1.8687E+05	-2.3514E+05
0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
0.0000E+00 -9.0809E+01 0.0000E+00 0.0000E+00 -2.2702E+04	0.698 0.0000E+00 -6.6236E+02 0.0000E+00 0.0000E+00 -1.6559E+05	FREG = 0.698 0.0000E+00 -1.1321E+02 0.0000E+00 0.0000E+00 -2.8302E+04	0.739 0.0000E+00 -7.3000E+02 0.0000E+00 0.0000E+00 -1.8250E+05	FREG = 0.739 0.0000E+00 -1.4171E+02 0.0000E+00 0.0000E+00 -3.5428E+04	0.785 0.0000E+00 -8.0613E+02 9.0000E+00 0.0000E+00 -2.0153E+05
0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	K(REAL) - FREQ = -4.8498E+02 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00	K(IMAGINARY) - FI 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00	K(REAL) - FREG = -5.4343E+02 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00	K(IMAGINARY) - FI 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00	K(REAL) - FREG = -6.1342E+02 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

K(IMAGINARY) - FREQ = 0.785

545557	7 <b>9</b> 2939	. 22225	22222	5 45557	5 5 5 5 5 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1
0.0000E+00 -4.3662E+04 0.0000E+00 0.0000E+00 -1.5375E+07	0.0000E+00 -2.2348E+05 0.0000E+00 0.0000E+00 -7.5902E+07	0.0000E+00 -5.3186E+04 0.0000E+00 0.0000E+00 -1.8724E+07	0.0000E+00 -2.4819E+05 0.0000E+00 0.0000E+00 -8.4191E+07	0.0000E+00 -6.3676E+04 0.0000E+00 0.0000E+00 -2.2420E+07	0.0000E+00 -2.7696E+05 0.0000E+00 0.0000E+00 -9.3804E+07
0.0000E+00 0.0000E+00 1.9051E+05 0.0000E+00 -6.7076E+07 0.0000E+00	0.0000E+00 0.0000E+00 -1.8360E+05 0.0000E+00 5.5725E+07 0.0000E+00	0.0000E+00 0.0000E+00 1.9260E+05 0.0000E+00 -6.7813E+07 0.0000E+00	0.0000E+00 0.0000E+00 -1.1921E+05 0.0000E+00 3.3511E+07	0.0000E+00 0.0000E+00 1.9174E+05 0.0000E+00 -6.7509E+07	0.0000E+00 0.0000E+00 -3.6242E+04 0.0000E+00 4.8647E+06 0.0000E+00
0.0000E+00 0.0000E+00 0.0000E+00 -1.6834E+05 0.0000E+00	0.0000E+00 0.0000E+00 0.0000E+00 2.0323E+05 0.0000E+00	0.0000E+00 0.0000E+00 0.0000E+00 -1.9340E+05 0.0000E+00	0.0000E+00 0.0000E+00 0.0000E+00 1.2020E+05 0.0000E+00	0.0000E+00 0.0000E+00 0.0000E+00 -2.1582E+05 0.0000E+00	0.0000E+00 0.0000E+00 0.0000E+00 1.8792E+04 0.0000E+00
0.0000E+00 0.0000E+00 -7.6203E+02 0.0000E+00 1.9051E+05 0.0000E+00	0.0000E+00 0.0000E+00 7.3441E+02 0.0000E+00 -1.8360E+05 0.0000E+00	0.0000E+00 0.0000E+00 -7.7038E+02 0.0000E+00 1.9260E+05 0.0000E+05	0.0000E+00 0.0000E+00 4.7686E+02 0.0000E+00 -1.1921E+05 0.0000E+00	0.0000E+00 0.0000E+00 -7.6694E+02 0.0000E+00 1.9174E+05 0.0000E+00	0.0000E+00 0.0000E+00 1.4497E+02 0.0000E+00 -3.6242E+04 0.0000E+00
0.0000E+00 -1.7465E+02 0.0000E+00 0.0000E+00 0.0000E+00	= 0.838 0.0000E+00 -8.9394E+02 0.0000E+00 0.0000E+00 -2.2348E+05	FREQ = 0.838 0.0000E+00 -2.1274E+02 0.0000E+00 0.0000E+00 -5.3186E+04	= 0.898 0.0000E+00 -9.9276E+02 0.0000E+00 0.0000E+00 -2.4819E+05	FREQ = 0.898 0.0000E+00 -2.5470E+02 0.0000E+00 0.0000E+00 -6.3676E+04	= 0.967 0.0000E+00 -1.1078E+03 0.0000E+00 0.0000E+00 0.0000E+00 -2.7696E+05
0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00	** ** *** *** *** *** *** *** *** ***	K(IMAGIMARY) - F 0.0969E400 0.0909E400 0.0909E400 0.0000E400 0.0000E400	K(REAL) - FREG = -8.6273E+02	K(IMAGINARY) - F 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00	K(REAL) - FREQ = -9.3083E+02 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

	•				
0.0000E+00 -7.4727E+04 0.0000E+00 0.0000E+00 -2.6312E+07	0.0000E+00 -3.1155E+05 0.0000E+00 0.0000E+00 0.0000E+00	0.0000E+00 -8.5878E+04 0.0000E+00 0.0000E+00 -3.0234E+07	0.0000E+00 -3.5563E+05 0.0000E+00 0.0000E+00 -1.2005E+08	0.0000E+00 -9.6803E+04 0.0000E+00 0.0000E+00 -3.4083E+07	0.0000E+00 -4.1435E+05 0.0000E+00 0.0000E+00 0.0000E+00 -1.3962E+08
0.0000E+00 0.0000E+00 1.8679E+05 0.0000E+00 -6.5771E+07 0.0000E+00	0.0000E+00 0.0000E+00 7.2546E+04 0.0000E+00 -3.272BE+07 0.0000E+00	0.0000E+00 0.0000E+00 1.7660E+05 0.0000E+00 -5.2178E+07 0.0000E+00	0.0000E+00 0.0000E+00 2.1917E+05 0.0000E+00 -8.344E+07 0.0000E+00	0.0000E+00 0.0000E+00 1.6021E+05 0.0000E+00 -5.6412E+07 0.0000E+00	0.0000E+00 0.0000E+00 4.6249E+05 0.0000E+00 -1.6791E+08 0.0000E+00
0.0000E+00 0.0000E+00 0.0000E+00 -2.3247E+05 0.0000E+00	0.0000E+00 0.0000E+00 0.0000E+00 -1.1095E+05 0.0000E+00	0.0000E+00 0.0000E+00 0.0000E+00 -2.4077E+05 0.0000E+00	0.0000E+00 0.0000E+00 0.0000E+00 -2.8578E+05 0.0000E+00	0.0000E+00 0.0000E+00 0.0000E+00 -2.3926E+05 0.0000E+00	0.0000E+00 0.0000E+00 0.0000E+00 -5.3349E+05 0.0000E+00
0.0000E+00 0.0000E+00 -7.4718E+02 0.0000E+00 1.8679E+05 0.0000E+00	0.0000E+00 0.0000E+00 -2.9019E+02 0.0000E+00 7.2546E+04 0.0000E+00	0.0000E+00 0.0000E+00 -7.0641E+02 0.0000E+00 1.7660E+05	0.0000E+00 0.0000E+00 -8.766E+02 0.0000E+00 2.1917E+05	0.0000E+00 0.0000E+00 -6.4085E+02 0.0000E+00 1.6021E+05 0.0000E+00	0.0000E+00 0.0000E+00 -1.8500E+03 0.0000E+05 4.6249E+05 0.0000E+00
0.0000E+00 -2.9891E+02 0.0000E+00 0.0000E+00 0.4727E+04	1.047 0.0000E+00 -1.2462E+03 0.0000E+00 0.0000E+00 -3.1155E+05	FREQ = 1.047 0.0000E+00 -3.4351E+02 0.0000E+00 0.0000E+00 -8.5878E+04	1.142 0.0000E+00 -1.4225E+03 0.0000E+00 0.0000E+00 0.0000E+00	FRED = 1.142 0.0000E+00 -3.8721E+02 0.0000E+00 0.0000E+00 -9.6803E+04	0.0000E+00 -1.6574E+03 0.0000E+00 0.0000E+00 -4.1435E+05
0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	K(REAL) - FREQ = -1.0912E+03 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00	N(IMAGINARY) - F 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00	K(KEAL) - FREG = -1.2982E+03 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00	K(IMAGTHARY) - F 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00	K(KEAL) - FREQ = -1.5/28E+03 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

K(IMAGINARY) - FREQ = 0.967

	•				
0.0000E+00 -1.0661E+05 0.0000E+00 0.0000E+00 0.0000E+00	0.0000E+00 -4.9400E+05 0.0000E+00 0.0000E+00 0.0000E+00 -1.6621E+08	0.0000E+00 -1.1470E+05 0.0000E+00 0.0000E+00 -4.0384E+07	0.0000E+00 -6.0949E+05 0.0000E+00 0.0000E+00 -2.0480E+08	0.0000E+00 -1.1998E+05 0.0000E+00 0.0000E+00 -4.2245E+07	0.0000E+00 -1.0583E+06 0.0000E+00 0.0000E+00 -3.5524E+08
0.0000E+00 0.0000E+00 1.4019E+05 0.0000E+00 -4.9360E+07 0.0000E+00	0.0000E+00 0.0000E+00 8.2824E+05 0.0000E+00 -2.9506E+08 0.0000E+00	0.0000E+00 0.0000E+00 1.2033E+05 0.0000E+00 -4.2364E+07 0.0000E+00	0.0000E+00 0.0000E+00 1.3010E+06 0.0000E+00 -4.5925E+08 0.0000E+00	0.0000E+00 0.0000E+00 9.5586E+04 0.0000E+00 -3.3659E+07 0.0000E+00	0.0000E+00 0.0000E+00 2.8017E+06 0.0000E+00 -9.7918E+08 0.0000E+00
0.0000E+00 0.0000E+00 0.0000E+00 -2.2501E+05 0.0000E+00	0.0000E+00 0.0000E+00 0.0000E+00 -8.8321E+05 0.0000E+00	0.0000E+00 0.0000E+00 0.0000E+00 -1.9867E+05 0.0000E+00	0.0000E+00 0.0000E+00 0.0000E+00 -1.4019E+06 0.0000E+00	0.0000E+00 0.0000E+00 0.0000E+00 -1.6190E+05 0.0000E+00	0.0000E+00 0.0000E+00 0.0000E+00 -3.3970E+06 0.0000E+00
0.0000E+00 0.0000E+00 -5.6076E+02 0.0000E+00 1.4019E+05	0.0000E+00 0.0000E+00 -3.3130E+03 0.0000E+00 8.2824E+05 0.0000E+00	0.0000E+00 0.0000E+00 -4.8133E+02 0.0000E+00 1.2033E+05 0.0000E+00	0.0000E+00 0.0000E+00 -5.2041E+03 0.0000E+00 1.3010E+06	0.0000E+00 0.0000E+00 -3.8234E+02 0.0000E+00 9.5586E+04 0.0000E+00	0.0000E+00 0.0000E+00 -1.1207E+04 0.0000E+00 2.8017E+06
0.0000E+00 -4.2644E+02 0.0000E+00 0.0000E+00 0.0000E+00	1.396 0.0000E+00 -1.9760E+03 0.0000E+00 0.0000E+00 -4.9400E+00	FREG = 1.396 0.0000E+00 -4.5882E+02 0.0000E+00 0.0000E+00 -1.1470E+05	1.571 0.0000E+60 -2.4380E+03 0.0000E+00 0.0000E+00 0.0000E+00	FREQ = 1.571 0.0000E+00 -4.7991E+02 0.0000E+00 0.0000E+00 -1.1998E+05	0.0000E+00 -4.2331E+03 0.0000E+00 0.0000E+00 0.0000E+00
0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	K(REAL) - FREG = -1.9399E+03 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00	K(IMAGINARY) - F 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00	K(REAL) - FREG = -2.4568E+03 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00	K(IMAGIHARY) - F 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00	K(REAL) - FREG = -4.3649E+03 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

KCIMAGINARY) - FREG = 1.257

	0.0000E+00 -1.1452E+05 0.0000E+00 0.0000E+00
	0.0000E+00 0.0000E+00 2.1326E+04 0.0000E+00 -7.5006E+06
	0.0000E+00 0.0000E+00 0.0000E+00 -7.9926E+04 0.0000E+00
	0.0000E+00 0.0000E+00 -8.5304E+01 0.0000E+00 2.1326E+04 0.0000E+00
· FREQ = 2,094	0.0000E+00 -4.5809E+02 0.0000E+00 0.0000E+00 0.0000E+00
K(IMAGINARY) - FR	0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

KA0	RAD VERTETCATION	- AMPLITUDES	AT LOCAL	ORIGIN		
FREQ	SURGE	SWAY	HEAVE	, ROLL (CALS)	РІТС <b>К (4eg)</b>	YAU (Gleg)
0.251	0.3493	0.7637	0,6765	.0.0794	0.0340	0.0323
_	0.3391	0.7574	0.6894	0.1198	0.0495	0.0457
	0,3381	0.7614	0.6945	0.1321	0.0543	0.0500
	0,3371	0.7568	0.7013	0.1464	0.0599	0.0000
	0.3359	0.7733	0.7103	0.1631	0.0665	8090.0
_	1455.0	7187.0	777.0	0,1020	0.00	0,00,0
	0.3397	0.7971	0.7490	0.2184	0.0892	0.0796
	0.3275	0.8029	0.7612	0.2323	0.0951	0.0843
	0,3247	0.8090	0.7751	0,2473	0.1015	0.0893
_	0.3212	0.8151	0.7913	0.2634	0.1087	0.0945
_	0.3168	0.8212	0.8103	0.2807	0.1166	0.1001
	0,3113	0.8267	0.8322	0.2989	0.1253	0.1059
	0,3044	0.8313	0.8576	0.3181	0.1349	0.1119
	0.2956	0.8344	0.8870	0.3380	0.1455	0.1180
_	0.2845	0.8343	0.9204	0.3577	0.1572	0.1240
	0.2702	0.8303	0.9587	0.3768	0.1701	0.1296
	0.2521	0.8197	1.0013	0,3934	0.1841	0.1344
	0.2288	0.8001	1.0480	0.4058	0.1992	0.1377
	0.1990	0.767	1.0969	0.4103	0,2151	0.1388
_	0.1010	#21/•O	1.1701	2250	0.62.0	0.1304
	0.0505	4745	1.1420	0.0050	0.2444	0.1144
	0.0366	0.4871	2920	0.2733	0.2087	0.0911
	0.0493	0.2796	0.4900	0.3274	0.1151	0.0583
	0.0510	0.0749	0.1374	0.1715	0.0238	0.0188
	0.0539	0.0931	0.1144	0.0502	0.0176	0.0171
<b>&gt;</b>	0.0192	0.1220	0.0911	0.0124	0.0191	0.0256
2.094	0.0079	0.0347	0.0024	0.0017	0.0006	0.0017

* same minements as on p. 8-11

	YAN	3.6	-6.3	9.8-	-11.4	-14.1	-17.2	-20.8	-22.9	-25.0	-27.1	-29.6	-32.5	-35.3	-38.6	-42.6	-46.7	-52.0	-57.8	50.00	-74.2	000	9000	145.0	2001	126.55	-91.4	176.1	-39.7 -34.4
	PITCH	85.0	9.99	61.7	56.3	50.	43.1	35,1	30.5	25.6	20.2	14.3	7.8	9.0	-7,5	-16.6	-26.8	-386 -386 -4	-52.2	5.89-	4.70	**************************************	1001	70 401	0.25	-26.1	73.0	-25.4	89.0 108.1
	ROLL	80.3	75.6	74.3	72.7	70.7	68.5	62.9	64.2	62.5	60.7	58.6	56.1	53.6	20.6	47.0	43.2	285	32.6	4. (3.	10°	ָ ספּ	-24.0	17.1	7-64-7	-109.2	-153.3	-115.6	79.6
(ale.g)	HEAVE	-11.4	-16.8	-18.4	-20.3	-22.6	-25.4	-28.8	-30.9	-33.2	-35.8	-38.8	-42,3	-46.3	-51.1	-56.7	-63.2	2.1.2	-80°.	9.24-	-10/.2	F. CALL	175.0	100.1	73.1	44.2	49.1	-14.4	-18.3 119.1
- PHASE ANGLES	SWAY	91.0	91.4	91.6	91.7	91.6	91.7	91.7	91.5	91.3	91.3	6.06	90.3	86.3	89.1	87.8	86.5		, ie	\.\ \.\	9.7/	* ^ C	, PA	20.7		-30.6	65.1	4.4	160.8
RAD VERIFICATION	SURGE	-100.9	-107.2	-109.1	-111.5	-114,3	-117.7	-121.8	-124.2	-126.9	-129.9	-133,3	-137.2	-141.5	-146.6	-152.4	-159.1	-16/01	0.0/1-	1/1.7	13/.4	1,001	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A A	-118.0	-140.2	-173.3	128.7	-149.6 -115.7
RAO VE	REA	0.251				_	-							_									•				<b>-&gt;</b>	>	2.094

RAO V	VERIFICATION -	- COSINE COMPONENTS				
<b>E</b>	SURGE	SWAY	HEAVE	ROLL	PITCH	YAU
0.251	-0.06594	-0.01310	0.66316	0,00023	0.00005	0.00056
_	-0.10016	-0.01828	0.65999	0.00052	0.00034	0.00079
_	-0.11052	-0.02103	0.65901	0.00062	0.00045	0.00086
	-0.12343	70,0232	0.63//6	9/0000	8,000,0	0.00094
	-0.13811 -0.15510	-0.07130	8/00°0	0.0004	4/0000	0.00103
Ψ.	-0.17457	-0.02325	0.64745	0.00146	0.00120	0.00113
	-0.18521	-0.02063	0.64290	0.00166	0.00134	0.00128
	-0.19653	-0.01797	0.63699	0.00187	0.00150	0.00133
	-0.29817	-0.01811	0.62871	0.00211	0.00166	0.00139
	-0.22018	-0.01256	0.61675	0.00240	0.00184	0.00143
	-0.23235	-0.00406	0.19940	0.00273	0.00202	0.00147
	10.04001 -0.04001	0.01330	0.170	0.00352	0.00217	0.00 10101
_	-0.26189	0.03227	0.48712	0.00402	0.00243	0.00152
	-0.26573	0.05117	0.41516	0.00455	0.00245	0.00148
	-0.26335	0.08269	0.30917	0.00516	0.00232	0,00139
	-0.25165	0.11855	0.16208	0.00578	0.00197	0.00125
	0.22650	0.1/065	-0.04/22	0.00640	0.00129	0,00100
	-0.18368	0.22981	-0.52399	0.00686	0.00017	9,000,0
· <u></u>	-0.12070	0.29920	-1.00070	0.00678	-0.00144	0.0001
	0.02469	0.39640	-1,13903	0.00467	-0.00424	14,000,0-
	0.02570	0.41886	-0.59075	0.00464	-0.00204	-0.00131
	-0.02322	0.27733	0.14416	0.00244	0.00121	-0.00102
	-0.03917	0.06447	0.09852	86000.0-	0,00037	-0,00020
	-0.0555	0.03922	0.0/492	8/000'0-	0,0000	-0.00001
>	-0.02302	0.03440	0.01766	0.0000	00000	0.000
2.08	-0.00342	-0.01888	-0.00117	-0.00001	0.0000	0.00007

EE. 9.251	SURGE -0.34302	SWAY 0.74359	# F	HEAVE	
_	-0.34302 -0.32397 -0.31953	0.75339 0.75718 0.76111	-0.13359 -0.19922 -0.21918	5000	0.00202
	-0,31367 -0,30619 -0,29587 -6,78181	0.7300 0.7300 0.78136 0.79156	-0.24326 -0.27292 -0.30981 -0.35586		0296 0296 0277
	-0.27276 -0.26198 -0.26198	0.79683 0.80270 0.80880	-0.38468 -0.41674 -0.45333	666	343
	-0.23386 -0.21535	0.82119 0.82119	-0.49575 -0.54526	999	407 407
	-0.16769	0.83119 0.83378	-0.74127		429 431
	-0,10163 -0,06047	0.83273 0.82617 0.91109	-0.82145 -0.90748	999	427
	0.03237	0.78169	-1.04694	999	200 200 200 200 200 200 200 200 200 200
	0.10632	0.53351	-0.92624	00	9068
	0.05414 -0.02606	0.24864 0.24864	0.08231	900	217 110
	-0.043/1	-0.03552 -0.03812	0.4/40/	999	283 283 570
	0.01499	0.00915	-0.02265	99	203
760 :	-0.00712	0.00659	0.00210	50	0003

RAD VERIFICATION - SIN COMPONENTS

FRE 0.2

2.0

104	LOADS - COSINE (	COMFONENTS					
FREQ	SURGE	SWAY	HEAVE	ROLL	PITCH	YAU	
0.251	4.1354E+00	-1,0191E+01	1.4160E+03	2.1152E+02	-3,4844E+05	-3.5907E+03	
		-2.6823E+01	1.0240E+03	5.3694E+02	2980E+0	-9.5571E+03	
		-3.2616E+01 -4.0749E+01	9,1220E+02 7,7847E+02	6.4760E+02 7.8457E+02	-1.9584E+05 -1.5555E+05	-1.1643E+04 -1.4505E+04	
	2.3860E+01	-5.0291E+01 -4.2342E+01	6.1431E+02 4.2419E+02	9.5391E+02	3619E+0	-1.7972E+04	
	3.4567E+01	-7.0136E+01	3,21536+02	1.2921E+03	;	-2.5092E+04	
	4.4806E+01	-/.9012E+01 -8.8312E+01	2.04/5E+02 8.9330E+01	1.4269E+03	1.3649E+04 4.6040E+04	-2.8263E+04 -3.1723E+04	
	5.1131E+01	-9.9517E+01 -1.1389E+02	-4.0382E+01 -1.7445E+02	1.7499E+03	8.1721E+04 1.1703E+05	-3.5699E+04 -4.0672E+04	•
	5.6565E+01 7.5391E+01	-1,2814E+02 -1,4479F+02	-3.0371E+02 -4.2881E+02	2.1226E+03	1.4891E+05	-4.5856E+04 -5.1691E+04	
_	8.4998E+01	-1.6504E+02	-5.4532E+02	2.5268E+03	1.9860E+05	-5.8452E+04	
	1.0339E+02	-1.8364E+02 -2.0745E+02	-6.9642E+02	2.8630E+03	2.0417E+05	-6.4851E+04 -7.2287E+04	
	1.0945E+02	-2.2978E+02 -2.5183F+02	-6.9653E+02 -6.3387E+02	2.9402E+03	1.7677E+05	-7.9002E+04 -8.4229E+04	
	9.9854E+01	-2.6693E+02	-4.8760E+02	2.6095E+03	5.3513E+04	-8.6034	
_	2.9800E+01	-2.3788E+02	-7.3911E+01	1.1190E+03	-6.6546E+04	-6.3251E+04	
<del>-</del>	-1.9819E+01 -2.3922E+01	-1.5971E+02 -9.3397E+01	1.6321E+01 -3.0274E+01	9.3017E+01 3.4291E+02	-1.8698E+04 7.3726E+04	-2,9032E+04 2,0399E+03	
•	2.5338E+01 5.0851E+01	-3.9171E+01 -1.0176F+01	9.8271E+01 8.4941F+01	-1.5131E+03	-1.3380E+04 -3.4781F+04	1.8307E+04	
>	8.4195E+01	-5.6835E+01	-8.9147E+01	3.2837E+02	2.1732E+04	-1.7114E+04	
5	2.52/9E+01 5.6555E+01	-1.0461E+01 -1.0675E+02	-3.7919E+01 -9.5093E+01	3.9756E+01 -1.3467E+01	-1.8639E+04 2.3871E+04	1.6957E+04 -2.8506E+04	
ko.;	1.4928E+01	3,1344E+00	1.3078E+01	3,1572E+01	-3.2478E+03	-6.1480E+03	

ゴ	LUADS - SINE CON	COMPONENTS				
FXER	SI/KGE	SWAY	HEAVE	ROLL	PITCH	YAW
0.251	***	-6.3982E+01	-7.7847E+02	1.2552E+03	2.2160E+05	-1.6075F+04
-	3.1/9/E+01		•	1.7561E+03	2.8972E+05	-2,3897E+04
	3.4948E+01	-1.0723E+02		1.8958E+03	3.0363E+05	-2.6426E+04
	3.8034E+01	-1,1838E+02	-1.1466E+03	2.0424E+03	3.1800E+05	-2.8966E+04
	4.1726E+01	-1.3158E+02	-1.1984E+03	2.1971E+03	3.2892E+05	-3.1917E+04
	4.53896+01	-1.4681E+02		2.3439E+03	3.3605E+05	-3.5215E+04
	4.9249E+01	-1.6387E+02	-1.2638E+03	2.4897E+03	3.3474E+05	-3.8687E+04
	5.0306E+01	-1.7260E+02	-1.2672E+03	2.5530E+03	3,3086E+05	-4.0347E+04
	5.25756+01	-1.8283E+02	-1.2587E+03	2.60516+03	3.2277E+05	-4.2243F+04
	5.3636E+01	-1.9295E+02	-1,2355E+03	2.6354E+03	3.0954E+05	-4.4001E+04
_	5.4308E+01	-2.0377E+02	-1,1992E+03	2.6446E+03	2.9152E+05	-4.5723E+04
	5.4237E+01	-2.1334E+02	-1,1438E+03	2.6231E+03	2.66935+05	-4.6733F+04
	5.2998E+01	-2.2393E+02	-1.0613E+03	2.55836+03	2.3364F+05	-4.7869F+04
	4.9763E+01	-2.3225E+02	-9.5869E+02	2,4427E+03	1.9392E+05	-4.8033E+04
	4.4490E+01	-2.3871E+02	-8.2239E+02	2.2455E+03	1.4432E+05	-4.7135E+04
	3.6178E+01	-2.4254E+02	-6.5612E+02	1.9737E+03	8.7499E+04	-4.5150E+04
	2,3740E+01	-2,3865E+02	-4.6218E+02		2.5632E+04	-4.0200E+04
_	6.5674E+00	-2.2869E+02	-2,4598E+02	1.0703E+03	-3.6175E+04	-3.3191E+04
	-1.5699E+01	-2.0439E+02	-2.7915E+01	4.2204E+02	-8.7576E+04	-2.1344E+04
_	-4.1626E+01	-1.6560E+02	1.5187E+02	-2.9112E+02	-1.1097E+05	-5.4177E+03
	-6.5218E+01	-1.0855E+02	2,4909E+02	-9.8784E+02	-8.9573E+04	1.5072E+04
	-7.3455E+01	-3.8673E+01	2.1988E+02	-1.4327E+03	-1.6604E+04	3.6824E+04
	-4.3460E+01	1.8742E+01	8.8874E+01	-1.2687E+03	6.1393E+04	4.9494E+04
_	2.4257E+01	-5.6267E+01	5.6732E+01	-1.0580E+03	1.2053E+04	1.7792E+04
	4.7697E+01	3.3479E+01	9.0358E+01	~1.4954E+01	-6.7750E+04	1.7035E+04
	4.2400E+01	-4.3840E+01	-1.2727E+02	1.0432E+03	3.0923E+04	-1.7079E+04
>	9.9404E+00	-3,1305E+01	-5.5221E+01	3,8357E+02	-2.6451E+03	3.0934E+03
•	-2.9080E+01	-3.7103E+01	-4.7288E+01	1.9452E+02	2.0458E+04	-5,2885E+03
2.091	3.3216E+01	3.2716E+00	3.6650E+01	-1.2941E+02	-1.0502E+04	1.4990E+03
1		2.5650E+01	4.5825E+00	1.02/1E+02	-3.9332E+03	1.0128E+04

	YAU	7.5 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6
	PITCH	25.0000E-04 7.80000E-04 7.80000E-04 7.80000E-04 1.50000E-04 1.50000E-04 1.5000E-03 1.5000E-03 1.7000E-03 1.7000E-03 1.7000E-03 1.7000E-03 1.7000E-03 1.7000E-03 1.7000E-03 1.7000E-03 1.7000E-03 1.7000E-03 1.7000E-03 1.7000E-03 1.7000E-03 1.7000E-03 1.7000E-03 1.7000E-03 1.7000E-03 1.7000E-03
	ROLL	2.3000E-04 7.5000E-04 7.5000E-04 1.14600E-04 1.6600E-04 2.17000E-04 2.17000E-03 2.17000E-03 2.17000E-03 2.17000E-03 2.17000E-03 2.17000E-03 4.6700E-03 6.8800E-03 6.8800E-03 6.8800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03
FONENTS	HEAVE	6.5316E-01 6.5399E-01 6.5278E-01 6.5278E-01 6.5278E-01 6.4290E-01 6.2871E-01 6.2871E-01 6.2875E-01 7.7504E-01 7.7504E-01 7.7220E-01 1.6208E-01 1.6208E-01 1.6208E-01 1.6208E-01 1.6208E-01 1.6208E-01 1.6208E-01 1.6208E-01 1.6208E-01 1.6208E-01 1.6208E-01 1.6208E-01 1.6208E-01 1.6208E-01 1.6208E-01 1.6208E-01 1.6208E-01 1.6208E-01 1.6208E-01 1.6208E-01 1.7266E-01 1.7266E-02
ION - COSINE CONFONENTS	SWAY	-1.3100E-02 -2.2520E-02 -2.2520E-02 -2.3250E-02 -2.3250E-02 -1.3250E-02 -1.7970E-02 -1.7970E-02 -1.550E-02 -1.550E-02 -1.550E-02 -1.550E-02 -1.550E-02 -1.550E-02 -1.550E-02 -1.550E-02 -1.550E-02 -1.550E-02 -1.550E-02 -1.550E-02 -1.550E-02 -1.550E-02 -1.550E-02 -1.550E-02 -1.550E-02 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.550E-01 -1.
RAO RE-VERIFICATION	SURGE	6.55.400 1.1.538436 1.1.538436 1.1.538436 1.1.538436 1.1.538436 1.1.538436 1.1.538436 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.58536 1.1.5
RA	KE	2009

	ROLL(PLADS) YAU CRADS)	9922E-01 1,3700E-03 7,9000E-04 4,0000E-05 1,918E-01 2,0200E-03 7,9000E-04 -1,3000E-04 -1,3000E-03 -1,3000E-04 -1,3000E-05 -1,0000E-05 -1,0
ON - SINE COMPONENTS	SWAY	7.6359E-01 -1.3369E-01 7.5718E-01 -1.9922E-01 7.6111E-01 -2.4326E-01 7.7306E-01 -2.7326E-01 7.8136E-01 -3.5386E-01 7.9683E-01 -3.5386E-01 8.0270E-01 -4.1674E-01 8.0270E-01 -4.575E-01 8.1500E-01 -4.5375E-01 8.319E-01 -6.0157E-01 8.319E-01 -6.0157E-01 8.319E-01 -6.0157E-01 8.319E-01 -6.0157E-01 8.319E-01 -6.0157E-01 8.319E-01 -6.0157E-01 8.313E-01 -6.0157E-01 8.313E-01 -6.0157E-01 8.313E-01 -7.7427E-01 9.2446E-01 -7.3616E-01 7.351E-01 -9.8810E-01 7.351E-01 -7.2650E-02 9.5780E-02 9.5780E-02 9.5780E-03 9.5780E-03 9.5780E-03 9.5780E-03 9.5780E-03
RAO RE-VERIFICATION	SURGE	-3.4302E-01 -3.1357E-01 -3.1367E-01 -2.1367E-01 -2.7276E-01 -2.43187E-01 -2.43187E-01 -2.43187E-01 -1.5756E-01 -1.5756E-01 -1.5756E-01 -1.5756E-01 -1.5756E-01 -1.5756E-01 -2.5756E-01 -2.5756E-01 -2.5756E-02 -2.5756E-02 -2.5756E-02 -2.5756E-02 -2.5756E-02 -2.5756E-02 -2.5756E-02 -2.5756E-02 -2.5756E-02 -2.5756E-02 -2.5656E-02 -2.5756E-02 -2.5756E-02 -2.5756E-02 -2.5756E-02 -2.5756E-03 -2.5756E-03 -2.5756E-03 -2.5756E-03 -2.5756E-03 -2.5756E-03 -2.5756E-03 -2.5756E-03 -2.5756E-03 -2.5756E-03 -2.5756E-03 -2.5656E-03 -2.5756E-03 -2.5756E-03 -2.5756E-03
뜐	FRED	2.85

CONSTRAINED RAD - COSINE COMPONENTS

	CHANGE WITH THE	COSTUL COM CHEMIS				
FRED	SURGE	SUAY	HEAVE	ROLL	PITCH	YAU
0.051	8.9136F-04	-1.0299F-04	A. 6316F-01	2.3000F-04	5.00005-05	-4.9007E-04
	2.1191F-05	-2.2780F-04	• -	5.2000F-04	3.4000F-04	-1.089/E-05
	2.5983E-05	-2.7322E-04	6.5901E-01	6.2000E-04	4.5000F-04	-1.3140F-05
	3.2261E-05	-3.3293E-04	6.5776E-01	7.6000E-04	5.8000E-04	-1.6039E-05
	4.0575E-05	-4.1701E-04	6.5578E-01	9.4000E-04	7.4000E-04	-2.0030E-05
- Lasi-	5.1439E-05	-5.1622E-04	6.5260E-01	1.1700E-03	9.5000E-04	-2.4885E-05
	6.5775E-05	-6.4226E-04	6.4745E-01	1.4600E-03	1,2000E-03	-3.1052E-05
	7.4527E-05	-7.2401E-04	6.4290E-01	1.6600E-03		-3.4928E-05
	8.5037E-05	-8.1758E-04	6.3699E-01	1.8700E-03	1.5000E-03	-3.9430E-05
	9.6610E-05	-9.1616E-04	6.2871E-01	2.1100E-03	1.6600E-03	-4.4357E-05
	1,1025E-04	-1.0354E-03	6.1675E-01	2.4000E-03	1.8400F-03	-5.0051E-05
	1.2517E-04	-1,1889E-03	5.9940E-01	2.7300E-03	2.0200E-03	-5.7210E-05
	1.4354E-04	-1.3424E-03	5.75046-01	3.1000E-03	2,1900E-03	-6.4717E-05
	1.6259E-04	-1,5229E-03	5.3865E-01	3.5200E-03	2.3300E-03	-7.3228E-05
<b></b> -	1.8331E-04	-1.7439E-03	4.8712E-01	4.0200E-03	2.4300E-03	-8.3194E-05
	2.0402E-04	-1.9502E-03	4.1516E-01	4.5500E-03	2.4500E-03	-9.2760E-05
	2,2301E-04	-2,2161E-03	3.0917E-01	5.1600E-03	2.3200E-03	-1.0406E-04
	2.36f1E-04	-2.4708E-03	1.6208E-01	5.7800E-03	1.9700E-03	-1.1455E-04
	2.3699E-04	-2.7285E-03	-4.7220E-02	6.4000E-03	1.2900E-03	-1.2329E-04
	2.1546E-04	-2,9167E-03	-3.2399E-01	6.8600E-03	1.7000E-04	-1.2740E-04
	1.6004E-04	-2.9208E-03	-6.6770E-01	6.7800E-03	-1,4400E-03	-1.2018E-04
	0 - 43222 00 4 03000 00	**************************************	-1.0177E+00	0.4100E-03	-3.2700E-03	-4./384E-05
_	-4.7.48E-03	-1./806E-03	-1.1390E+00	4.6/00E-03	-4.2600E-03	-4./498E-05
	-2.1660E03	-7.3882E-04	-5.40/5E-01	4.6400E-03	-2.0400E-03	1.6922E-06
	0.4/30E-00	-3.3681E-04	1.4416E-01	2.4400E-03	1.2100E-03	2./2/1E-05
	10077001	10.2007	7.03205	#0-3000 ×	3. / VVOE 104	T . 104/E-03
•	1.620/E-04	-/.0234E-04	7.4920E-02	-7.8000E-04	9.0000E-05	-2,9115E-05
>	5.0381E-05	5.3915E-05	8.8240E-02	-9.0000E-05	3.0000E-04	3.0198E-05
	1 - 2254E-04	-1.4555E-03	960	2.0000E-05	2.9557E-11	-5.4734E-05
DC0.7	つり-ゴ//ナブ・ウ	-2.130/6-04	-1.1.00E-US	-1.0000E-US	1.34186-12	-1.7418E-UD

2.094

YAW	-2.1950E-03 -3.52833E-03 -4.49462EE-03 -6.48462EE-03 -6.48430EE-03 -6.48430EE-03 -6.48430EE-03 -6.48431E-03 -6.48431E-03 -6.58646E-03 -6.58646E-03 -6.58646E-03 -6.58646E-03 -6.58646E-03 -6.58646E-03 -6.58646E-03 -6.58646E-03 -6.58646E-03 -6.58646E-03 -6.58646E-03 -6.58646E-03 -6.5864E-03 -6.5864E-03 -6.5864E-03 -6.5864E-03 -6.5864E-03 -6.5864E-03 -6.5864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.6864E-03 -6.68	ていつの/ ひだーひつ
PITCH	2. 29000 E - 04	1100005
ROLL	17.22.22.22.22.22.22.22.22.22.22.22.22.22	20000
HEAVE	-1,3369E-01 -2,4328E-01 -2,4328E-01 -3,0981E-01 -3,5586E-01 -4,5337E-01 -4,5337E-01 -4,5337E-01 -4,5375E-01 -4,5375E-01 -4,60157E-01 -4,60157E-01 -4,60157E-01 -4,60157E-01 -4,60157E-01 -4,60157E-01 -4,60157E-01 -4,6015E-01 -5,6016E-01 -5,6016E-01 -5,6016E-01 -5,6016E-01 -5,6016E-01 -5,6016E-01 -5,6016E-01	7,7,7,7,7
SWAY	-6.4489E-04 -1.00878E-04 -1.00878E-04 -1.3389E-03 -1.4972E-03 -1.6757E-03 -1.983387E-03 -2.10896E-03 -2.10896E-03 -2.10896E-03 -2.10896E-03 -2.1089E-03 -2.1089E-03 -2.1089E-03 -2.1089E-03 -3.3017E-04 -3.3017E-04 -3.4089E-04	
SURGE	4,6368 - 05 8,5368 - 05 1,5368 - 05 1,5368 - 05 1,13568 - 05 1,13568 - 05 1,1356 - 04 1,1368 - 05 1,1368 - 05 1,1	71.77

CONSTRAINED RAD - SINE COMPONENTS

FRED 0.251

2.094

CO	CONSTRATMT FORCES SURGE-C	KINS &	LYS - FT. SWAY-C	SWAY~S	YAW-C	YAW-S
0.251	4.1359F100	2.1515F401	-1,0299F+01	-6.4489F+01	-3.6265F+03	-1.6243F±04
-	9.8324E100	3, 1803E+01	-2.2780E+01	-9.7744E+01	-8.0629E+03	-2,4297E+04
	1.2056E+01	3.4857E+01	-2,7322E+01	-1.0873E+02	-9.7233E+03	-2.6922E+04
	1.4969E+01	3.8044E+01	-3.3293E+01	-1.2022E+02	-1.1869E+04	-2.9576E+04
	1.682/E+01	4.1/39E+01	-4.1/01E+01	-1.3387E+02	-1.4822E+04 -1.841=5404	-3.2680E+04
	3.0519E+01	4.9268E+01	-6.4226E+01	-1.6757E+02	-2.2979E+04	-3.9912F+04
	3.4580E+01	5.0927E+01	-7.2401E+01	-1.7676E+02	-2.5847E+04	-4.1722E+04
	3.9457E+01	5.2597E+01	-8.1758E+01	-1,8757E+02	-2,9178E+04	-4.3810E+04
	4.432/E+01	5.3660E+01	-9.1616E+01	-1.9833E+02	-3.2824E+04	-4.5779E+04
	5.1157E+01	5.4336E+01	-1,0354E+02	-2.0990E+02	-3.7038E+04	-4.7749E+04
	5, 5351E+01	5.4267E+01	-1.1889E+02	-2,2026E+02	-4.2336E+04	-4.9021E+04
_	6.6605E+01	5,3029E+01	-1.3424E+02	-2.3182E+02	-4.7891E+04	-5.0477E+0
		4.9795E+01	-1.5229E+02	-2.4110E+02	-5.4189E+04	-5.0959E+0
		4.4521E+01	-1,7439E+02	-2,4856E+02	-6.1564E+04	-5.0390E+0
		3.6205E+01	-1.9502E+02	-2.5340E+02	-6.8642E+04	-4.8743E+04
		2.3760E+01	-2.2161E+02	-2.5014E+02	-7.7004E+04	-4.3997E+04
		6.5/36E+00	-2.4/08E+02	-2.4046E+02	-8.4766E+04	-3,7081E+0
		-1.5715E+01	-2.7285E+02	-2.1519E+02	-9.1235E+04	-2.4903E+04
		-4.16/3E+01	-2, 716/E+02	-1./380E+02	-7.42/%E+04	-8.1081E+0
	7.4.50E+01	-6.3303E+01	-2.4.208E+02	-1.1134E+02 -7.2017E±01	-8.87.36E+04	1.4185£+0
		-4.3535E+01	-1.7806E+02	3.3918F+01	-3.5149F+04	5-4614F+04
		2.4306E+01	-9.5882E+01	-4.9419E+01	1,2522E+03	2.0187E+0
•		4.7809E+01	-3.3681E+01	4.5089E+01	2.0180E+04	2.0954E+0
		4.2519E+01	-3,2389E+00	-5.3162E+01	8.6187E+03	-2.0142E+04
	8.4481E+01	9.9742E+00	-7.0234E+01	-3.4041E+01	-2.1545E+04	2.1996E+0;
>	2,3377E+01	-2.9202E+01	5.59156+00	-3.8025E+01	2,2346E+04	-5.4817E+0
2.094	1.5070F±01	3.3373E+01	-1,4335E+02	5.2702E ±00	-4.0503E+04 -1.4749E±04	-1.4066E+03
						LA 170 / 1014

SURGE 4.6400E+05 K SWAY 1.0000E+05 K YAW 7.4000E+08 K

ב	FONSTRAINED RAD -	- COSINE COMFONEN	ENTS				
FX ES	SURGE	SWAY	HEAVE	ROLL	PITCH	YAW	CASEZ
0.251	1.7830E-05	-1.0400E-04	6.6316E-01	2,3000E-04	5.0000E-05	-9.8942F-06	
_	306	-2,3136E-04	6.5999E-01	5.2000E-04	3.4000E-04	-2,2118E-05	
_	5.1979E-05	-2,7799E-04	6.5901E-01		•	-2.6717E-05	
	6,4540E-05	-3.3944E-04	6.5776E-01		5.8000E-04	-3,2675E-05	
_	8,1173E-05	-4.2619E-04	6.5578E-01		7.4000E-04	-4.0903E-05	
	1.0791E-04	-5,2914E-04	6.5260E-01		9.5000E-04	-5.0956E-05	
_	1.3160E-04	-6.6070E-04	6.4745E-01		1,2000E-03	-6.3796E-05	
	1.4911E-04	-7.4626E-04	6,4290E-01	1.6600E-03		-7.1897E-05	
	1.7015E-04	-8,4468E-04	6.3699E-01	1.8700E-03	1,5000E-03	-8.1346E-05	
	1.9331E-04	-9.4892E-04	6,2871E-01	2.1100E-03	1,6600E-03	-9.1719E-05	
	2.062E-04	-1,0754E-03	6.1675E-01	2.4000E-03	1.8400E-03	-1,0378E-04	•
	2.5271F-04	-1,2390E-03	5.9940E-01	2,7300E-03	2,0200E-03	-1,1902E-04	
	2.837.6F-04	-1.4042E-03	5,7504E-01	3.1000E-03		-1.3510E-04	
	3.25386-04	-1.5992E-03	5.3865E-01	3.5200E-03		-1.5346E-04	
	3,6688E-04	-1.8398E-03	4.8712E-01	4,0200E-03	2.4300E-03	-1.7519E-04	
	4.08365-04	-2.0683E-03	4.1516E-01	4.5500E-03		-1.9634E-04	
<u> </u>	4.4639E-04	-2.3647E-03	3.0917E-01	5.1600E-03		-2.2175E-04	
	4,7365E-04	-2.6549E-03	1.6208E-01	5.7800E-03		-2.4597E-04	
	4.7448E-04	-2.9560E-03	-4.7220E-02	6.4000E-03	1,2900E-03	-2.6744E-04	
	4,31.12E-04	-3,1899E-03	-3,2399E-01	6.8600E-03	1.7000E-04	-2.7986E-04	
	3,2051E-04	-3.2295E-03	-6.6990E-01	6.9800E-03	-1,4400E-03	-2.6869E-04	
	1.2834E-04	-2.9645E-03	-1.0199E+00	6.4100E-03	-3.2900E-03	-2.2429E-04	
	-8,5725E-05	-2.0116E-03	-1,1390E+00	4.6700E-03	.2600	-1,1631E-04	
_	-1.0353E-04	-9.9027E-04	-5.9075E-01	4.6400E-03	-2.0400E-03	4.2134E-07	
_	1.0973E-04	-2.7065E-04	1.4416E-01	2.4400E-03		6.0441E-05	
	2,2042E-04	8.6037E-05	9.8520E-02	-9.8000E-04		3.4190E05	
	3.6538E-04	-8.9508E-04	7.4920E-02	8	9.0000E-05	-7.5701E-05	
>	1.0119E-04	3.3977E-04	8.8240E-02	-9.0000E-05		8.6093E-05	
700	2.4538E-04	-2,1106E-03	1.7660E-02	2,0000E-05		-1,7043E-04	
4.0.4	6.55 /8E-05	-2.59/0E-03	-1:1/00E-03			-2.5204E-04	

1 04	ENTS		ROLL	PITCH	YAW
-6.4952E-04 -9.8859E-04 -1.1012E-03	-1,3369E- -1,9922E- -2,1918E-	555 555	1,3700E-03 2,0200E-03 2,2200E-03	5.9000E-04 7.9000E-04 8.3000E-04	-4.4326E-05 -6.6691E-05 -7.4041E-05
-1,2194E-03 -1,3604E-03 -1,524E-03 -1,7107E-03 -1,9209E-03 -2,0348E-03	2.4326E 2.7252E 3.0981E- -3.5586E- 3.8468E- 4.5333E-	0000000	2.4400E-03 2.6400E-03 3.2700E-03 3.6000E-03 3.7600E-03	8.7000E-04 8.9000E-04 8.9000E-04 7.9000E-04 7.2000E-04 6.1000E-04	-8.1514E-05 -1.00305E-05 -1.1109E-04 -1.1109E-04 -1.2556E-04
2.3432E-04 -2.1581E-03 -5.4526E-01 2.3493E-04 -2.2697E-03 -5.4526E-01 2.1477E-04 -2.4983E-03 -6.0157E-01 1.5618E-04 -2.5837E-03 -7.4127E-01 1.0250E-04 -2.6438E-03 -7.4127E-01 2.8361E-05 -2.5191E-03 -9.8810E-01 -6.7816E-05 -2.5276E-03 -9.4810E-01 -6.7816E-04 -1.8285E-03 -1.0469E+00 -2.8186E-04 -1.1471E-03 -9.2624E-01	-4,95/5E-0 -5,4526E-0 -7,4127E-0 -9,2145E-0 -9,8810E-0 -1,0480E+0		3.9200E-03 4.2200E-03 4.2200E-03 4.2700E-03 3.7000E-03 3.0400E-03 5.0600E-03 6.8000E-03	4,7000E-04 2,8000E-04 -7,3000E-04 -1,2400E-03 -2,5400E-03 -3,7500E-03 -3,7500E-03	-1,3449E-04 -1,3867E-04 -1,4538E-04 -1,4538E-04 -1,4187E-04 -1,1167E-04 -7,8915E-05 -3,0386E-05 3,5054E-05
	2.772E-0 8.2310E-0 7.7401E-0 9.5780E-0 8.6460E-0 2.2650E-0 2.1000E-0	-245000000	-9.5000E-04 -2.1700E-03 1.1000E-03 -2.8300E-03 -2.0000E-04 9.0000E-05	-2.6800E-03 6.0001E-05 3.0200E-03 1.6000E-04 2.9000E-04 -1.4000E-04 1.0000E-05	1.1019E-04 1.6405E-04 6.3797E-05 7.1912E-05 -6.4551E-05 -9.4844E-06 -3.7596E-05

CASEZ

N	
SE	
X	

	YAW-S	-1.6401E+04 -2.7456E+04 -3.0160E+04 -4.7395E+04 -4.7395E+04 -4.735E+04 -4.735E+04 -4.735E+04 -5.3749E+04 -5.3749E+04 -5.3749E+04 -6.3749E+04 -7.376E+04 -7.376E+04 -7.376E+04 -7.376E+04 -7.376E+04 -7.376E+04 -7.376E+04 -7.376E+04 -7.376E+04 -7.376E+04 -7.376E+04 -7.376E+04 -7.376E+04 -7.376E+04 -7.376E+04 -7.376E+04 -7.376E+04 -7.376E+04 -7.376E+04 -7.376E+04 -7.376E+04 -7.376E+04 -7.376E+04 -7.376E+04 -7.376E+04 -7.376E+04 -7.376E+04
	YAW-C	-3.6609E+03 -9.8855E+03 -1.2090E+04 -1.5134E+04 -2.3605E+04 -2.3605E+04 -3.0098E+04 -3.0098E+04 -3.0098E+04 -3.0098E+04 -4.9985E+04 -5.679E+04 -7.2647E+04 -7.2647E+04 -7.2647E+04 -7.2647E+04 -7.2647E+04 -7.2647E+04 -7.2647E+04 -7.2650E+04 -7.2650E+04 -7.3034E+04 -7.3034E+04 -7.3034E+04 -7.3034E+04 -7.3034E+04 -7.3034E+04 -7.3034E+04 -7.3034E+04 -7.3034E+04 -7.3034E+04 -7.3034E+04 -7.3034E+04 -7.3034E+04 -7.3034E+04 -7.3034E+04
	SWAY-S	-6.4952E+01 -9.8859E+01 -1.5194E+02 -1.5194E+02 -1.53604E+02 -1.7104E+02 -1.9209E+02 -2.0348E+02 -2.0348E+02 -2.0348E+02 -2.0348E+02 -2.0348E+02 -2.0348E+02 -2.0348E+02 -2.0348E+02 -2.0349E+02 -2.0363E+02 -2.0363E+02 -2.0363E+02 -2.0363E+02 -2.0363E+02 -2.0363E+02 -2.0363E+02 -2.0363E+02 -2.0363E+02 -2.0363E+02 -2.0362E+02 -2.0363E+02 -2.0363E+02 -2.0363E+02 -2.0363E+02 -2.0363E+02 -2.0363E+02 -2.0363E+02 -2.0363E+02 -2.0363E+01 -3.239E+01 -4.048E+01 -4.2130E+01
K1,0- FT.	SWAY-C	-1.0400E+01 -2.3136E+01 -3.3744E+01 -5.2519E+01 -5.2519E+01 -5.6070E+01 -7.4626E+01 -9.4892E+02 -1.2390E+02 -1.2390E+02 -1.3992E+02 -1.3992E+02 -2.9560E+02 -2.9560E+02 -2.9560E+02 -2.9560E+02 -2.9560E+02 -2.9560E+02 -2.9560E+02 -2.9560E+02 -2.9560E+02 -2.9560E+02 -2.9560E+02 -2.9560E+02 -2.9560E+02 -2.960E+01 -2.960E+01 -2.9602E+01 -2.9602E+01 -2.9602E+01 -2.9602E+01 -2.9602E+01 -2.9602E+01 -2.9602E+01
Kips s	SURGE-S	2.1518E+01 3.1810E+01 3.885E+01 3.885E+01 4.551E+01 5.985E+01 5.985E+01 5.985E+01 5.985E+01 5.986E+01 5.986E+01 5.986E+01 5.986E+01 5.986E+01 6.5796E+01 6.5796E+01 6.5798E+01 6.579E+01 6.579E+01 6.579E+01 6.579E+01 6.579E+01 6.579E+01 7.3675E+01 7.3675E+01 6.579E+01 6.579E+01 6.579E+01 7.3675E+01 7.3675E+01 7.3676E+01 6.579E+01 6.579E+01 7.3676E+01 7.3676E+01 7.3676E+01 7.3676E+01 7.3676E+01 7.3676E+01 7.3676E+01 7.3676E+01 7.3676E+01 7.3676E+01 7.3676E+01 7.3676E+01
CONSTRUCTOR FORCES	SURGE-C	4.1365E+00 1.2059E+01 1.2059E+01 1.2059E+01 2.3832E+01 3.0531E+01 3.0531E+01 3.6531E+01 3.6531E+01 3.6531E+01 4.738E+01 1.0008E+01 1.0008E+01 1.0008E+01 1.0008E+01 1.0008E+01 1.0008E+01 1.0008E+01 1.0008E+01 1.0008E+01 1.0008E+01 1.0008E+01 1.0008E+01 1.0008E+01 1.0008E+01 1.0008E+01 1.0008E+01 1.0008E+01 1.0008E+01 1.0008E+01 1.0008E+01 1.0008E+01 1.0008E+01 1.0008E+01 1.0008E+01 1.0008E+01 1.0008E+01 1.0008E+01 1.0008E+01 1.0008E+01 1.0008E+01 1.0008E+01 1.0008E+01 1.0008E+01 1.0008E+01 1.0008E+01 1.0008E+01
NGO	FREA	≥ 0.55 → 0.55

SURGE SUAY YAU

CONSTRAINT STIFFNESSES

		•
	YAW	-9.9000E-05-2.2138E-05-2.2138E-05-2.2138E-05-2.2138E-05-2.2138E-05-2.2138E-05-2.2138E-05-2.2001E-055-2.2258E-04-2.2258E-04-2.2258E-04-2.2258E-04-2.2258E-04-2.2258E-04-2.2258E-04-2.2258E-04-2.2258E-04-2.2258E-04-2.2258E-05-04-2.2258E-05-04-2.2258E-05-04-2.2258E-05-04-2.2258E-05-04-2.2258E-05-04-2.2258E-05-05-05-05-2.2258E-05-05-05-2.2258E-05-05-05-2.2258E-05-05-2.2258E-05-05-05-2.2258E-05-05-2.2258E-05-05-2.2258E-05-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E-05-2.2258E
	FITCH	5.0000E 7.4000E 7.4000E 7.4000E 1.2000E 1.2000E 1.3400E 1.4600E 2.13400E 2.13400E 2.1300E 2.1300E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.72900E 1.7290
	ROLL	2.3000E-04 6.2000E-04 7.6000E-04 1.1700E-04 1.4600E-04 1.4600E-04 1.6600E-03 2.7300E-03 3.5200E-03 3.5200E-03 4.5500E-03 4.5500E-03 4.6700E-03 6.8800E-03 6.8600E-03 6.8600E-03 7.7800E-03 6.8600E-03 6.8600E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03 6.9800E-03
HTS	HEAVE	6.6316E-01 6.5979E-01 6.5576E-01 6.5576E-01 6.4790E-01 6.36799E-01 6.1675E-01 6.1675E-01 7.3899E-01 7.4920E-01 7.4920E-01 7.4920E-01 7.4920E-02 7.4920E-02 7.4920E-02
COSINE COMPONENTS	SWAY	-2.0816E-04 -6.5331E-04 -6.5331E-04 -1.0504E-04 -1.0504E-03 -1.3244E-03 -1.9538E-03 -2.19538E-03 -2.19538E-03 -2.19538E-03 -2.19538E-03 -2.19538E-03 -2.19538E-03 -2.19538E-03 -2.19538E-03 -2.19538E-03 -2.19538E-03 -2.1958E-03 -2.1958E-03 -2.1958E-03 -2.1958E-03 -2.1958E-03 -2.1958E-03 -2.1958E-03 -2.1958E-03 -2.1958E-03 -2.1958E-03 -2.1958E-03 -2.1958E-03 -2.1958E-03 -2.1958E-03 -2.1958E-03 -2.1958E-03 -2.1958E-03 -2.1958E-03 -2.1958E-03
CONSTRUCTOR RAD -	SURGE	1.78820E - 0.58820E -
2	FREA	2.094

 $\omega$ 

CASE

YAW	-4.4363E-05 -4.4783E-05	-7.4154E-05	-8.1655E-05	-7.0484E-03	-1.1139E-04	-1,1674E-04	-1,2276E-04	-1.3502E-04	-1,3928E-04	-1.4425E-04	-1,4601E-U4 -1,4621E-04	-1,4299E-04	-1,3106E-04	-1.1303E-04 -7.0547E-05	-3.1935E-05	3,3686E-05	1.0928E-04	1.6389E-04	6.3029E-05	7.2496E-05	70 10000	-1.4/42E-06	-7.8383E-06	-1.7452E-04
PITCH	5,9000E-04	8.3000E-04	8.7000E-04	8.9000E-04	8.4000E-04	7.9000E-04	6,1000E-04	4.7000E-04	2.8000E-04	2.0001E-05	-3.1000E-04	-1.2400E-03	-1.8500E-03	-3.0300E-03	-3.7500E-03	-3.7600E-03	-2.6800E-03	6.0001E-05	3,0200E-03	1.6000E-03	100001	•	1 4000E - 04	1.0000E-05
ROLL	1.3700E-03	2,2200E-03	2.4400E-03	2.9600E-03	3.2700E-03	3.4300E-03	3.7600F-03	3.9200E-03	4.0700E-03	4.2000E-03	4.2100E-03	4.2700E-03	4.0700E-03	3. /UVUE - US	2.0600E-03	6.8000E-04	-9.5000E-04	-2,1700E-03	1.1000E-03	-5.1600E-03	1 0000 P	-3.YOUCE-04	-2,0000E-04	-3.0000E-05
HEAVE	-1,3369E-01	-2.1918E-01	-2,4326E-01	-2.0981E-01	-3.5586E-01	-3,8468E-01	-4.5333E-01	-4.9575E-01	-5,4526E-01	-6.0157E-01	-7.4127F-01	-8.2145E-01	-9.0748E-01	-7.8810E-01	-1,0480E+00	-9.2624E-01	-5.7772E-01	8.2310E-02	7,3015E-01	4./40/E-01	7.37.60E 02	8.0400E-02	-2.2000E-02	2.1000E-03
SWAY	-1,3001E-03	-2.2058E-03	-2,4429E-03	-2.0559E-03	-3,4301E-03	-3.6240E-03	-4.0828F-03	-4.3314E-03	-4.5571E-03	-4.8112E-03	-5,1950F-03	-5.3194E-03	-5.2743E-03	-0.07.06E-03	-3.7003E-03	-2.3320E-03	-5.6144E-04	1,0377E-03	-8.0667E-04	1,2514E-03	00 10010 T	-8,40Y0F-04	-6.3883E-04	-4.0116E-03
SURGE	9.2750E-05	1.50286-04	1.6402E-04	1.9620E-04	2.1244E-04	2,1969E-04	2, 3140F-04	2.3432E-04	2.3403E-04	2.2371E-04	1.9004F-04	1.5513E-04	1.0230E-04	-4.7810F-05	-1.7984F-04	-2.8186E-04	-3.1758E-04	-1.8798E-04	1.0498E-04	2.0656E-04	PO 100 / 50 / 7	4.01076-00	-1.2040E-04	1.3652E-04

1

CONSTRAINED RAD - SINE COMFONENTS

FREA D.251

											•	•																		
	YAW-S	-1,6414E+04	-2.4709E+04	-2.7437E+04	-3.0212E+04	-3.3479E+04	-3.7195E+04	-4.1214E+04	-4.3192E+04	-4.5494E+04	-4.9957F+04	-5.1534F+04	-5.3371F+04	-5.424E+04	-5.4096E+04	-5.2905E+04	-4.8492E+04	-4.1821E+04	-2.9433E+04	-1.1816E+04	1.2464E+04	4.0434E+04	6.0640E+04 ~	2.3321E+04	2.6823E+04	-2.4190E+04	-5.4547E+02	-3.64/6E+U3	-6.4572E+04	
	YAW-C	-3.6630E+03	-8,1912E+03	-9,8954E+03	-1.2103E+04	-1,5153E+04	-1,8881E+04	-2,3642E+04	-2.6648E+04	-3,0154E+04	-7.8480F+04	-4.4140F+04	-5.0112E+04	-5.6935E+04	-6.5018E+04	-7.2890E+04	-8.2356E+04	-9.1395E+04	-9.9443E+04	-1.0416E+05	-1.0014E+05	-8.3/93E+04	-4 . 3735E+04	-1.5172E+02	2,2137E+04	1 - 2840E+04	-2.8466E+04	3.2283E+04 -4. FF.19E+04	-7.3369E+04	
	SWAY-S	-6.5007E+01	-9.8992E+01	-1,1029E+02	-1.2215E+02	-1.3631E+02	-1.5280E+02	-1.7151E+02	-1.8120E+02	-1.9266E+02 -2.0414E+02	-2.1457F+02	-2.2785F+02	-2.4056E+02	-2.5102E+02	-2,5975E+02	-2.6597E+02	-2.6371E+02	-2.5478E+02	-2,2888E+02	-1.8502E+02	-1.1660E+02	-2,80/2E+01	5.1884E+01	-4.0334E+01	6.2571E+01	101207010101	-4.2298E+01	-3.2741E+01 -4.8458E+01	-2.0058E+02	i
4 Kp-F1.	SWAY-C	-1.0408E+01	-2.3165E+01	-2,7839E+01	-3,3997E+01	-4.2695E+01	-5.3020E+01	-6.6219E+01	-7.4807E+01	-8.4688E+01	-1.0787F+02	-1.2431F+02	-1.4091E+02	-1.6053E+02	-1,8476E+02	-2.0778E+02	-2.3768E+02	-2.6699E+02	-2.9750E+02	-3.2134E+02	-3.2573E+02	-2,9954t+02	-2.0380E+02	-1,0020E+02	-2,7881E+01	7.20/3E+00	-9.1219E+01	3.34//E+01	-2.0199E+02	
hips	SURGE-S	2.1518E+01	3,1810€+01	3.4865E+01	3.8054E+01	4.1751E+01	4.5519E+01	4.9286E+01	5.0947E+01	5.2620E+01	7. 4767F+01	5.4294F+01	5.3060E+01	4.9827E+01	4.4552E+01	3.6233E+01	2,3780E+01	6.5798E+00	-1.5732E+01	-4.1724E+01	-6.5391E+01	-/.36//E+01	-4.3611E+01	2,4355E+01	4.7922E+01	4.2038ETUI	1.0008E+01	7.7525+01	3.1674E+01	
CONSTRAINT FORCES	SURGE-C	4.1365E+00	8	10	10	10	<u>.</u>	<b>₹</b>	10		į	150	15	01	10	10	9	95	.1008E+02	.0009E+02	101	1,5	<b>;</b>	10		<b>.</b>	10.	ŞŞ	214E+01	
23	1,600	0.251	_														_				_						->	-	2.094	•

 $\omega$ 

CASE

2.3200E+05 K/F 5.0000E+04 K/F 3.7000E+08 KF/F CONSTRAINT STIFFNESSES
SURGE 2.3200E+05 K/
SUAY 5.0000E+04 K/
3.7000E+08 K/

CONSTRATHED RAD - COSINE COMPONENTS

FEFO	SURGE	SWAY	HEAVE	ROLL	PITCH	YAW
7.251	4.13546-12	-1,0191E-11	6.6316E-01	2.3000E-04	5.0000E-05	-3.5907F-12
	9.83046-12	-2,2407E-11	6.5999E-01	5.2000E-04	3.4000E-04	-7.9386E-12
	1. 35.6-11	-2,6823E-11	6.5901E-01	6.2000E-04	4.5000E-04	-9.5571E-12
	1,9'606-11	-3,2616E-11	6.5776E-01	7.6000E-04	5.8000E-04	-1.1643E-11
	1.8321E-11	-4.0749E-11	6.5578E-01	9.4000E-04	7.4000E-04	-1.4505E-11
	Z, 5560E-11	-5.0291E-11	6.5260E-01	1.1700E-03	9.5000E-04	-1.7972E-11
	3.02085-11	-6.2342E-11	6.4745E-01	1.4600E-03	1.2000E-03	-2.2351E-11
ا ترجوا	11-1/0/4-0	-7.0135E-11	6.4290E-01	1 • 6600E-03	1.3400E-03	-2,5092E-11
	5.7440F-11	-/.9012E-11	6.3699E-01	1.8700E-03	1.5000E-03	-2.8263E-11
	11-1000p+++	-6.8312E-11	6.28/1E-01	Z.1100E-03	1.6600E-03	-3.1723E-11
	0.11.51E-11	-7.751/E-11	6-16/5E-01	2.4000E-03	1.8400E-03	-3.5699E-11
	11-15-100-0	-1.1389E-10	5.9940E-01	2.7300E-03	2.0200E-03	-4,0672E-11
_	0.0000 L	-1.2814E-10	7.704E-01	3.1000E-03	2.1900E-03	-4.5856E-11
	11-31,004	-1.44/7E-10	0.5865E-01	3.3200E-03	2.3300E-03	-5.1691E-11
-	8.4778E-11	-1.6504E-10	4.8/12E-01	4.0200E-03	2.4300E-03	-5.8452E-11
_	9.459.4E-11	-1,8364E-10	4.1516E-01	4.5500E-03	2.4500E-03	-6.4851E-11
	1.0339E-10	-2.0745E-10	3.0917E-01	5.1600E-03	2.3200E-03	-7.2287E-11
	1.07456-10	-2.2978E-10	1.6208E-01	5.7800E-03	1.9700E-03	-7,9002E-11
	1.0785E-10	-2.5183E-10	-4.7220E-02	6.4000E-03	1,2900E-03	-8.4229E-11
	9.9954E-11	-2.6693E-10	-3,2399E-01	6.8600E-03	1.7000E-04	-8.6034E-11
	7.4162E-11	-2.6487E-10	-6.6990E-01	6.9800E-03	-1.4400E-03	-7.9867E-11
	2.5900E-11	-2,3788E-10	-1.0199E+00	6.4100E-03	-3,2900E-03	-6.3251E-11
	-1.9819E-11	-1.5971E-10	-1.1390E+00	4.6700E-03	-4.2600E-03	-2.9032E-11
	-2,3922E-11	-9.3397E-11	-5,9075E-01	4.6400E-03	-2.0400E-03	2.0399E-12
	2.5338E-11	-3.9171E-11	1.4416E-01	2.4400E-03	1.2100E-03	1.8307F-11
	2.0451E-11	-1.0176E-11	9.8520E-02	-9.8000E-04	3.7000E-04	6.2529E-12
->	8.41955-11	-5.6835E-11	7.4920E-02	-7.8000E-04	9.0000E-05	-1.7114F-11
>	2,3279E-11	-1.0461E-11	8.8240E-02	-9.0000E-05	3.0000E04	1.6957E-11
7600	5.6555E-11	-1,0675E-10	1,7660E-02	2.0000E-05	2.9557E-11	-2.8506E-11
4000	1,47286-11	3.1344E-12	-1:1700E-03	-1.0000E-05	1.5418E-12	-6.1480E-12

YAW	-1.6075E-11 -2.3897E-11	-2.8966E-11	-3.5215E-11	-3.000/E-11 -4.034/E-11	-4.4001E-11	-4.6733E-11	-4.7869E-11 -4.8033E-11	-4,7135E-11	-4.0200E-11	-3,3191E-11 -2,1344F-11	-5.4177E-12	1.50/2E-11 3.6824E-11	4.9494E-11	1.7035F-11	-1,7079E-11	3.0934E-12	-3.2885E-12	1,0128E-11
PITCH	5.9000E-04 7.9000E-04																-1.4000E-04	٠
ROLL	1.3700E-03 2.0200E-03	2.4400E-03	2.9600E-03	3.4300E-03	3.7600E-03	4.0700E-03	4.2900E-03	4.3100E-03	4.0700E-03	3.7000E-03 3.0400E-03	2,0600E-03	-9.5000E-04	-2.1700E-03	1.1000E-03	-2.8300E-03	-3.9000E-04	9.0000E-04	-3.0000E-05
HEAVE	-1.3369E-01 -1.9922E-01	-2.4326E-01	-3.0981E-01	-3,8468E-01 -4,1474E-01	-4.5333E-01 -4.9575E-01	-5.4526E-01	-6.6733E-01	-7.4127E-01	-9.0748E-01	-9.8810E-01 -1.0469E+00	-1.0480E+00	-5.7772E-01	8.2310E-02	4.7407E-01	9.5780E-02	8.6460E-02	-2.2650E-02	2.1000E-03
SWAY	-6.3982E-11 -9.6536E-11	-1.1838E-10	-1.4681E-10 -1.4681E-10	-1,526/E-10 -1,7260E-10	-1.9295E-10 -2.0377F-10	-2.1334E-10	-2.3338E-10	-2.3871E-10	-2.3865E-10	-2.2869E-10 -2.0439E-10	-1.6569E-10	-1,0855E-10 -3,8673E-11	1,8742E-11	-3.626/E-11 3.3479E-11	-4,3840E-11	-3,1305E-11	-3.7103E-11	
SURGE	2,1512E-11 3,1797E-11 7,4940E-11	3,80346-11	4.5489E-11	5.0906E-11	5,3636E-11	5.4237E-11	4.976E-11	4.4490E-11	2.3740E-11	6.5674E-12 -1.5699E-11	-4.1626E-11	-0.0218E-11	-4. 5460E-11	4.7597E-11	4.2400E-11	9.9404E-12	-2.5080E-11	3.1078E-11

2.094

FONSTRAINED RAD - SINE COMPONENTS

0.251

FRER

CONSTRAINT FORCES

FRED	SURGE-C	SURGE-S	SWAY-C	SWAY-S	YAW-C	
0.25/	4.1354E+00	2.15126+01	-1.0191E+01	-6.3982E+01	-3.5907E+03	-1.60
	7.8304E+00 1.2053E+01	3.179/E+01 3.4848E+01	-2,2407E+01 -2,6823E+01	-9.6536E+01 -1.0723E+02	-7.9386E+03 -9.5571F+03	-2,38
	1.4965E+01	3.80346+01	-3.2610E+01	-1.1838E+02	-1.1643E+04	-2.89
	1.8821E+01	4.1726E+01	-4.0749E+01	-1.3158E+02	-1.4505E+04	-3,19
	3.0508E+01	4.9249E+01	-5.2342E+01	-1.6387E+02	-2.2351F+04	-3.84 -4.84
	3.4567E+01	5.0906E+01	-7.0134E+01	-1.7260E+02	-2,5092E+04	-4.03
	4.4806E101	5.25/5E+01 5.3636E+01	-/.9012E+01 -8.8312E+01	-1.8283E+02 -1.9295E+02	-2.8263E+04 -3.1723E+04	-4.22
	5.1131E+01	5.4308E+01	-9.9517E+01	-2.0377E+02	-3.5699E+04	-4.57
	5.8519E+01	5.4237E+01	-1.1389E+02	-2,1334E+02	-4.0672E+04	-4.67
	7.53916+01	4.9763E+01	-1.4479E+02	-2,3225E+02	-5.1691E+04	-4.80
•	8.4998E+01	4.4490E+01	-1.6504E+02	-2,3871E+02	-5.8452E+04	-4.71
	9.4793E+01	3.6178E+01	-1.8364E+02	-2.4254E+02	-6.4851E+04	-4.51
	1.0337E+02	2.3740E+01 6.5474E+00	-2.0745E+02 -2.2978F+02	-2,3865E+02	-7.2287E+04 -7.9003E+04	4-02
	1.0985E+02	-1,5699E+01	-2.5183E+02	-2.0439E+02	-8.4229E+04	-2.13
	9.9854E+01	-4.1626E+01	-2.6693E+02	-1.6560E+02	-8.6034E104	-5.41
	7.4162E+01	-6.5218E+01	-2.6487E+02	-1.0855E+02 -7.8477F+01	-7.9867E+04 -4.1251E+04	1.50
- 11:	-1.9819E+01	-4.3460E+01	-1.5971E+02	1.8742E+01	-2.9032E+04	4.94
	-2,3922E+01	2,4257E+01	-9.3397E+01	-5.6267E+01	2.0399E+03	1.77
	2.5338E+01 5.0851E+01	4.7697E+01 4.2400E+01	-3,9171E+01 -1,0176E+01	3.3479E+01 -4.3840E+01	1.8307E+04 6.2529E+03	-1.70
>	8.4195E+01	9.9404E+00	-5.6835E+01	-3.1305E+01	-1,7114E+04	3.09
>			-1.0461E+01	-3.7103E+01	1.6957E+04	-5.28
2.094	5.6555E+01 1.4928E+01	3,3216E+01 3,1078E+01	-1.06/5E+02 3.1344E+00	3.2/16E+00 2.5650E+01	-2,8506E+04 -6.1480E+03	1.49

SURGE SUAY YAN

CONSTRAINT STIFFNESSES

5.50 SEC STGNIFICANT HEIGHT = MEAN ZERO-CROSSING PERIOD =

MAXINA

. Snethom

4.3859E-10 FT. 1.1377E-09 FT. 4.9076E+00 FT. 3.0153E-02 & E.D. 1.7564E-02 & E.D. 3.2339E-10 & E.D. SURGE SUAY HEAVE ROLL PITCH

SUNGE FORCE = SUNY FORCE = YAU MOHENT =

4.3859E+02 K 1.1377E+03 K 3.2339E+05 KF

Volves are: Arrege of (1/3 x Spectiol peops) x 1.92.

## APPENDIX C

## EXTENDABLE LINK DESIGN

JAAL ENGINEERING

(

6.

C

C

Finger / Spine Coun. Concepts. Schematic Link

REVISION





PROJEC	TONR	NOVY	Dier	Concepts
ITEM	Finger	1 spine	20	nn.
DESIGN	LINKS	;		
DATE:				

Consider max. tension & 10,000 kips / link.

For Fatigue loading over 2 million cycles and type B details, non-redundant load path.

Allowable American Welding Society (AWS) stress range For = 16 KSI.

Assume 50% compression load since compression will be taken by bearing against spine pier.

:. Allow tensile stress of 12 KSI

Since allow. Fatigue stress controls; use A36 steel.

Ft = 0.45 Fy = 162 KSI > 12 KSI (Static load requirement).

 $An reg. = \frac{10,000 \, \text{K}}{12 \, \text{KS}_1} = 833 \, \text{m}^2$ 

At pin connection (head) 1.5 Ang > An > 1.33 Ang. (A15C 1.14.5) Let  $An = 1.4 \text{ Ang} = 1.4 \times 833 = 1166 \text{ in}^2$ 

60"

 $A_n = 1170 \text{ m}^2$ 



<u>Pin design</u> (we no KSI steel)

VIL AASHTO design perometers \$ 1.718 for steel pins



clearance



PROJEC	TI ONR	NOVY D	ier concepts.
ITEM;	Em ge	1/5pme	COWN.
DESIGN	LINKS	/ huig.	e
DATE			

Forces on pin.







Bending:  

$$F_b^* = 0.8 F_Y = 80^{KSI}$$
 on extreme Abre

$$F_b = \frac{Mc}{I} = \frac{M}{\pi r^3/4}$$

$$r^{3} = \frac{4M}{\pi \, fb} = \frac{4 \times 140,000}{\pi \, x \, 80} = 2228 \, \text{m}^{3} \quad \text{OR} \quad r = 13.06 \, \text{m}^{2}$$
OR WE  $26\frac{1}{2}$  \$\phi\$ pin.

# Fotigue is not considered. Ultro-high strongth steel can be used to seep a practicle più diameter and appropriate stresses.



STRUCTURAL ENGINEERING 315 Bay St., San Francisco, Ca. 94133

PROJECT: ONR	Navy	Pier	Concepts
ITEM: Emger	/Spm	e co	י איי
DESIGN: UNK	5 /	hing	e
DATE			

C-4

shear:

$$F_V = 0.4F_Y = 40^{KI}$$

$$F_V = \frac{V}{A} = \frac{5000}{A} \qquad OR \qquad A = 125 \text{ in }^2$$

$$OR \quad d = 12.6 \text{ in}$$

Bearing:

$$\overline{B} = 0.4 \, \text{Fy}$$
 for pins subject to rotation.
$$\overline{B} = \frac{P}{dW} = \frac{5000}{d\chi 30} = 40^{KSI} \quad \text{or} \quad \underline{d} = 4.2 \, \text{in}$$

Bending controls. we 26 1/2 " \$ pin

Check required thicknesses for hinge end tear-out based on albuable fatigue stress.

$$F_V = 12^{K51}$$
  
 $Aveg = \frac{10,000}{12 \times 2} = 416.7 \text{ in}^2$ 

$$t = \frac{416.7}{60} \dot{m}^2 = 6.9 \, \dot{m}$$

we 93/4" as controlled by required net area.

Horizontal hunge head details:



(see Fig 4(a) for details)





MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS - 1963 - A



ICTURAL ENGINEERING 315 Bay St., San Francisco, Ca. 94133

PROJECTIONR NOVY Pier Concepts		
IT <b>EM</b> i	Finger / spine	Con A
DESIGN	" Links	
DATE:		

# Vertical hinge:

Ragd. net area @ head = 1166 
$$\text{m}^2$$

Area provided =  $(85 \times 23)6$ 

Fuxe

for head.

Head



Net area section @ vertical hunge

# Check più diameter :

# Bending:

Appx.

 $M = \frac{7}{3} \times 7.44''$ 

 $M = 10,000/3 \times 7.44 = 24800 ^{K-11}$ 

T/4

$$r^3 = \frac{4 \times 24800}{\pi B} = 394.7 \text{ m}^3$$

T/4

## Shear:

$$F_{V} = \frac{V}{A} = \frac{10,000/4}{A}$$

## Bearing:

$$\overline{B} = \frac{10,000/3}{14 \times 6.5} = 26 \times 51$$
 < 0.4 Fy for pins subject to rotation.



PROJECT	ONR NOVY ALL Concepts	SHEET:
ITEM;	Friger/Spine Conn.	<u>c-6</u>
DESIGN:	Link /ckerances	DF
DATE;		71



In order to allow unconstrained vertical motions of the finger & spine piers the links should be axially extendable. A design value of 5' heave will be considered to estimate the required extension

Total length of link = 30' = LFor 5' here  $4L = (5^2 + 30^2)^{1/2} - 30 = 0.41'$ or  $2 \le mchas$ 

Appx. pitch angle = 0.0175 rad

assume friger pier pirots @ 12' below deck level.

ii displacement @ deck level & 0.0175 x 12 = 0.21' or 2.5"

Total extension of hik & 7.5 in . say 12mi For design.

This can be provided by adding a hydraulic spring / damper to the link. The hydraulic spring can be manufactured for the desired requirements:

Stroke : 12" to 18"

Max. Force: 10,000 Kips

Acceleration of loading 2 23 ft /62

The compressive stiffness of the spring can be specified less than the tensile stiffness. This emables the the two pier to bear against each other without imposing high compressive forces in the links

# **FIGURES**













•>	SPINE PIER DETAILS	SHEET NO
	EXPEDITIONARY PIER	3







#### NOTES

- () COMPOSITE CENTERLEAF FOR EASY & QUICK ENGAGEMENT.
- (2) HORIZONTAL HINGE @ SPINE PIER CAN HAVE "TOOTHED" CENTER LEAF TO REDUCE PIN SIZE.
- (3) CYLINDER 32 IN. O.D., STROKE 12 IN. TO 18 IN. OR CLUSTER OF 2 SMALLER (22 IN. O.D.) SHOCK ABSORBERS CAN BE USED.
- (4) GUIDE PLATES WITH STIFFENERS TO PREVENT MOMENTS DUE TO SELF WT. ON SHOCK ABSORBERS
- (5) MAX. HEAVE OF UP TO 5 FT. 19 EXPECTED DURING OPERATION
- (G) LINK ARM IS FLARED TO PROVIDE BETTER BULKING STABILITY FOR COMPRESSIVE LOADS. CAN BE DISENGAGED (Q) FINGER PIER HORIZONTAL HINGE AND STOWED (Q) THE SPINE PIER.
- 7 SLIDING ANCHOR CONSTRAINS HORIZONTAL HINGE IN VERTICAL DIRECTION
- B ANCHOR GUIDE TRACK ALLOWS FREE ROTATION FOR VERTICAL HINGE.



DATE

REVISION

SHEET TITLE: EXTENDABLE LINK
PROJECT:
FINGER/SPINE CONNECTION
SHEET NO. 4 a

22.25 = 06 DIA.



#### SFECIFICATIONS:

DESCRIPTION OF THE STANSON MODE TO BE SOCCOOLER. (FEF) AT 36 IN/SEC (NOM) VELUCITY.

6.0C ± .03 (TYP)

- 23 NO APPRECIABLE DAMPING OUTPUT IN COMPRESSION MODE
  3 DAMPING OUTPUT IN EXTENSION MODE TO BE INDEPENDANT OF
  STRICKE ROSITION AND TO VARY WITH THE MPACT VELOCITY
  RAISED TO THE TO REF. POWER.
  4 JUNIT EXTENSION STROKE ZGCO IN (NOM)

- STINTERNAL COIL SPRING RESET SYSTEM 6. TWO UNITS TO BE USED IN PARALLEL PER SYSTEM.



REPRODUCED BY PERMISSION 4/6/84









CTURAL ENGINEERING 315 Bey St., Sen Francisco, Ca. 94133 PROJECT: NAVY PIER CONCEPTS

ITEM: FINGER SPINE PIER CONN.

DESIGN: FINGER PIER ELEV. SEC.

FIG.G REVISION





PROJECT: NAVY PIER CONCEPTS

ITEM: FINGER / SPINE PIER CONN.

CESIGN: APPLICATIONS OF

CATE: RETRACTABLE PIER

FIG. 7

(1) FLOATING ROADWAY TO OFFSHORE INSTALLATIONS



(2) FLOATING PLATFORM FOR OFFSHORE INSTALLATIONS



(3) FLOATING BREAKWATER FOR OFFSHORE HABOR

SOME OTHER APPLICATIONS OF RETRACTABLE PIER



PROJECT: NAVY PIER CONCEPTS
ITEM: FINGER/SAINE PIER CONN.

DESIGNIEFFECT OF INCREASED LINK

DATE: DISTANCE

F/G. 8

OP.....

