Activation and Scattering Results

Scattering from TiO2

Source neutrons: 1.000 Å = 81.80 meV = 3956 m/s

Source X-rays: 1.542 Å = 8.042 keVSample in beam: TiO_2 at 4.23 g/cm^3

1/e penetration depth				Scattering cross section		X-ray SLD	
(cm)		(10	$0^{-6}/\tilde{A}^2) (1/cm)$		/cm)	$(10^{-6}/\text{Å}^2)$	
abs	9.256	real	2.628	coh	0.091	real	34.466
abs+incoh	2.347	imag	-0.001	abs	0.108	imag	-1.742
abs+incoh+coh	1.935	incoh	4.921	incoh	0.318		

Neutron transmission is 65.31% for 1 cm of sample (after absorption and incoherent scattering).

Transmitted flux is 6.531e+7 n/cm²/s for a 1e8 n/cm²/s beam.

Contrast match point: 45.9% D₂O by volume (real SLD = 2.628×10^{-6} /Å²)

Scattering from Ti

Source neutrons: 1.000 Å = 81.80 meV = 3956 m/s

Source X-rays: 1.542 Å = 8.042 keVSample in beam: Ti at 4.51 g/cm^3

1/e penetration depth (cm)			length density ()-6/Å ²)	Scattering cross section (1/cm)		X-ray SLD (10 ⁻⁶ /Å ²)	
abs	5.208	real	-1.910	coh	0.081	real	35.531
abs+incoh	2.796	imag	-0.001	abs	0.192	imag	-2.988
abs+incoh+coh	2.280	incoh	2.734	incoh	0.166		

Neutron transmission is 69.93% for 1 cm of sample (after absorption and incoherent scattering).

Transmitted flux is 6.993e+7 n/cm²/s for a 1e8 n/cm²/s beam.

Contrast match point: < 0% D₂O

Scattering from Si

Source neutrons: 1.000 Å = 81.80 meV = 3956 m/s

Source X-rays: 1.542 Å = 8.042 keVSample in beam: Si at 2.33 g/cm^3

1/e penetration depth (cm)				Scattering cross section		X-ray SLD	
		$(10^{-6}/\text{Å}^2)$		(1/cm)		$(10^{-6}/\text{Å}^2)$	
abs	210.550	real	2.073	coh	0.108	real	20.062
abs+incoh	206.179	imag	-0.000	abs	0.005	imag	-0.458
abs+incoh+coh	8.852	incoh	0.063	incoh	0.000		

Neutron transmission is 99.52% for 1 cm of sample (after absorption and incoherent scattering).

Transmitted flux is 9.952e+7 n/cm²/s for a 1e8 n/cm²/s beam.

Contrast match point: 37.9% D₂O by volume (real SLD = 2.073×10^{-6} /Å²)

Scattering from 49%wt Fe // 49%wt Co // V

Source neutrons: 1.000 Å = 81.80 meV = 3956 m/s

Source X-rays: 1.542 Å = 8.042 keV

Sample in beam: Fe_{22.34876443728176}Co_{21.177651137219765}V at 8.29 g/cm³

1/e penetration depth (cm)			length density ()-6/Å ²)	Scattering cross section (1/cm)		X-ray SLD (10 ⁻⁶ /Å ²)	
abs abs+incoh abs+incoh+coh	1.079 0.773 0.596	real imag	5.167 -0.005 5.054	coh abs incoh	0.384 0.927 0.368	real imag	60.744 -8.264

Neutron transmission is 27.41% for 1 cm of sample (after absorption and inconerent scattering).

Transmitted flux is 2.741e+7 n/cm²/s for a 1e8 n/cm²/s beam.

Contrast match point: 82.4% D₂O by volume (real SLD = 5.167×10^{-6} /Å²)

Scattering from 85.063%wt Ni // Mo

Source neutrons: 1.000 Å = 81.80 meV = 3956 m/s

Source X-rays: 1.542 Å = 8.042 keV

Sample in beam: Ni_{9.308672697961754}Mo at 9.08 g/cm³

1/e penetration depth (cm)			length density) ⁻⁶ /Å ²)	Scattering cross section (1/cm)		X-ray SLD (10 ⁻⁶ /Å ²)	
abs	4.772	real	8.731	coh	1.092	real	65.927
abs+incoh	1.583	imag	-0.001	abs	0.210	imag	-1.831
abs+incoh+coh	0.580	incoh	5.429	incoh	0.422		

Neutron transmission is 53.16% for 1 cm of sample (after absorption and incoherent scattering).

Transmitted flux is 5.316e+7 n/cm²/s for a 1e8 n/cm²/s beam.

Contrast match point: > 100% D₂O

Scattering from 90.3%wt Ni // Mo

Source neutrons: 1.000 Å = 81.80 meV = 3956 m/s

Source X-rays: 1.542 Å = 8.042 keV

Sample in beam: Ni_{15.216909651655099}Mo at 9.01 g/cm³

1/e penetration depth (cm)			length density ()-6/Å ²)	Scattering cross section (1/cm)		X-ray SLD (10 ⁻⁶ /Å ²)	
abs	4.627	real	8.971	coh	1.136	real	65.387
abs+incoh	1.524	imag	-0.001	abs	0.216	imag	-1.661
abs+incoh+coh	0.558	incoh	5.584	incoh	0.440		

Neutron transmission is 51.87% for 1 cm of sample (after absorption and incoherent scattering).

Transmitted flux is 5.187e+7 n/cm²/s for a 1e8 n/cm²/s beam.

Contrast match point: > 100% D₂O

Questions?

Neutron activation: NCNR Health Physics < hp@nist.gov>

Scattering calculations: Paul Kienzle < <u>paul.kienzle@nist.gov</u>>

Last modified 25-March-2024 by website owner: NCNR (attn:)

Using periodictable v1.7.0

3 of 3