Recent Advances in Automated Recommender System

Chen Gao

Ph.D Candidate, Tsinghua University gc16@mails.tsinghua.edu.cn

Outline

AutoML for Collaborative Filtering Task

AutoML for Click-through Rate Prediction Task

AutoML for Tuning Hyper-parameters in RecSys

Outline

AutoML for Collaborative Filtering Task

AutoML for Click-through Rate Prediction Task

AutoML for Tuning Hyper-parameters in RecSys

Collaborative Filtering – Problem Setup

Study the fundamental CF problem [1]

- Data: a rating matrix with many unknown positions
- Task: estimate ratings on unknown positions
- Measurement: RMSE on estimated ratings.

Collaborative Filtering – Low-rank approach [1,2]

- Partially observed rating matrix O can be wellapproximated by a low-rank matrix X
- Matrix U: user embedding, matrix V: item embedding
- Rating prediction is given by an inner product of user embedding and item embedding

Collaborative Filtering – More Example IFCs

	IFC	operation	space	predict time	recent examples
	$\langle u_i, v_j \rangle$	inner product	O((m+n)k)	O(k)	MF [28], FM [37]
	$u_i - v_j$	plus (minus)	O((m+n)k)	O(k)	CML [19]
human-designed	$\max (\boldsymbol{u}_i, \boldsymbol{v}_j)$	max, min	O((m+n)k)	O(k)	ConvMF [25]
	$\sigma([\boldsymbol{u}_i; \boldsymbol{v}_j])$	concat	O((m+n)k)	O(k)	Deep&Wide [9]
	$\sigma \left(\boldsymbol{u}_i \odot \boldsymbol{v}_j + \boldsymbol{H} \left[\boldsymbol{u}_i; \boldsymbol{v}_j \right] \right)$	multi, concat	O((m+n)k)	$O(k^2)$	NCF [17]
	$u_i * v_j$	conv	O((m+n)k)	$O(k \log(k))$	ConvMF [25]
	$u_i \otimes v_j$	outer product	O((m+n)k)	$O(k^2)$	ConvNCF [16]

Is there an absolute best IFC?: NO, depends on tasks and datasets [1]

SIF (Yao et al, WWW2020)

IFC	operation
$\langle u_i, v_j \rangle$	inner product
$u_i - v_j$	plus (minus)
$\max\left(\boldsymbol{u}_{i},\boldsymbol{v}_{j}\right)$	max, min
$\sigma([\boldsymbol{u}_i; \boldsymbol{v}_j])$	concat
$\sigma\left(\boldsymbol{u}_{i}\odot\boldsymbol{v}_{j}+\boldsymbol{H}\left[\boldsymbol{u}_{i};\boldsymbol{v}_{j}\right]\right)$	multi, concat
$u_i * v_j$	conv
$u_i \otimes v_j$	outer product

Cut the search space into two blocks

- Vector-level: simple linear algebra operations
- Elementwise: shared nonlinear transformation

Learning from Existing IFCs!

/

SIF (Yao et al, WWW2020)

Can be seen as choices on operations

Implement using a small MLP

A Supernet Representation

S: architecture hyper-parameters

T: parameters

$$\min_{S} \quad H(S,T) \equiv \sum_{(i,j) \in \tilde{\Omega}} \mathcal{M}(h_{\alpha}(\boldsymbol{u}_{i}^{*},\boldsymbol{v}_{j}^{*})^{\top} \boldsymbol{w}_{\alpha}^{*}, O_{ij}) \qquad (9) \quad \text{High}$$
s.t. $\boldsymbol{\alpha} \in C \text{ and } T^{*} \equiv \{\boldsymbol{U}^{*}, \boldsymbol{V}^{*}, \{\boldsymbol{w}_{m}^{*}\}\} = \arg\min_{T} F_{\alpha}(T;S), \quad \text{level}$

where F_{α} is the training objective:

$$F_{\alpha}(T;S) \equiv \sum_{(i,j)\in\Omega} \ell(h_{\alpha}(\boldsymbol{u}_{i},\boldsymbol{v}_{j}),\boldsymbol{O}_{ij}) + \frac{\lambda}{2} \|\boldsymbol{U}\|_{F}^{2} + \frac{\lambda}{2} \|\boldsymbol{V}\|_{F}^{2},$$
 Low level

- High level: optimize S
- Low level: optimize *T*
- Bilevel programming is expensive to solve T^* needs to be obtained from model training

Algorithm & Evaluation – Reusing NASP

Bilevel objective:

$$\min_{S} \quad H(S,T) \equiv \sum_{(i,j) \in \bar{\Omega}} \mathcal{M}(h_{\alpha}(\boldsymbol{u}_{i}^{*},\boldsymbol{v}_{j}^{*})^{\top} \boldsymbol{w}_{\alpha}^{*}, O_{ij})$$
(9)
s.t. $\boldsymbol{\alpha} \in C$ and $T^{*} \equiv \{\boldsymbol{U}^{*}, \boldsymbol{V}^{*}, \{\boldsymbol{w}_{m}^{*}\}\} = \arg\min_{T} F_{\alpha}(T;S),$

where F_{α} is the training objective:

$$F_{\alpha}(T;S) \equiv \sum_{(i,j)\in\Omega} \ell(h_{\alpha}(u_{i}, v_{j}), O_{ij}) + \frac{\lambda}{2} ||U||_{F}^{2} + \frac{\lambda}{2} ||V||_{F}^{2},$$

s.t. $||w_{m}||_{2} \leq 1$ for $m = 1, ..., |O|$.

Reuse NASP for fast optimization

- **Effectiveness:** Maintain discrete architectures for *S*
- Efficiency: Update both *S* and *T* in an end-to-end and stochastic manner

Algorithm 2 Searching Interaction Function (SIF) algorithm.

- 1: Search space \mathcal{F} represented by a structured MLP (Figure 1);
- 2: **while** epoch $t = 1, \dots, T$ **do**
- 3: Select one operation $\bar{\alpha} = \operatorname{prox}_{C_1}(\alpha)$;
- 4: sample a mini-batch on validation data set;
- 5: Update continuous α for vector-wise operations

$$\alpha = \operatorname{prox}_{C_2} (\alpha - \eta \nabla_{\bar{\alpha}} H(T, S));$$

6: Update element-wise transformation

$$p = \operatorname{prox}_{\|\cdot\|_{2} \le 1} \left(p - \eta \nabla_{p} H(T, S) \right),$$

$$q = \operatorname{prox}_{\|\cdot\|_{2} \le 1} \left(q - \eta \nabla_{q} H(T, S) \right);$$

- 7: sample a mini-batch on training data set;
- 8: Get selected operation $\bar{\alpha} = \operatorname{prox}_{C_1}(\alpha)$;
- 9: Update training parameters T with gradients on F_{α} ;
- 10: end while
- 11: **return** Searched interaction function (parameterized by α , p and q, see (7) and (8)).

Comparison with CF Approaches

(i) Alternating gradient descent ("AltGrad"); (ii) Factorization machine ("FM"); (iii) Deep&Wide; (iv) Neural collaborative filtering ("NCF"); (v) SIF; and (iv) SIF(no-auto), architecture is optimized with training data

Figure 2: Comparison of testing RMSEs between SIF and other CF approaches with different embedding dimension.

SIF is the best, and validation set helps architecture search

Comparison with CF Approaches

Figure 3: Comparison of the convergence between SIF (with searched IFC) and other CF methods when embedded dimension is 8. FM and HOFM are not shown as their code donot support a callback to record testing performance.

Interaction function obtained from SIF can be trained as fast as state-of-the-art

Comparison with AutoML Approaches

(i) "Random"; (ii) "RL": reinforcement learning; (iii) "Bayes": HyperOpt

Figure 4: Comparison of testing RMSEs between SIF and other AutoML approaches with different embedding dimensions. Genapprox is slow with bad performance, thus is not run on Youtube.

SIF can find better architecture than other AutoML search algorithms

Comparison with AutoML Approaches

Figure 5: Comparison of search efficiency among SIF and other AutoML approaches when embedded dimension is 8.

SIF is much faster than other AutoML search algorithms

Efficient Neural Interaction Functions Search for Collaborative Filtering

- Design interaction function automatically
- Cover both existing and new interaction functions
- One-shot search, update interaction function and embedding jointly
- Better performance than experts with slightly higher computation cost

Outline

AutoML for Collaborative Filtering Task

AutoML for Click-through Rate Prediction Task

AutoML for Tuning Hyper-parameters in RecSys

A pipeline of modern recommendation engine

Data Input: User-item interaction/rating data Data Input: Rich attributes and context

Click-through rate prediction: tabular data

	age (n)	job (c)	marital (c)	education (c)	balance (n)	housing (c)
0	30	unemployed	married	primary	1787	no
1	33	services	married	secondary	4789	yes
2	35	management	single	tertiary	1350	yes
3	30	management	married	tertiary	1476	yes
4	59	blue-collar	married	secondary	0	yes
5	35	management	single	tertiary	747	no

An example of tabular data (UCI-Bank)

Cross-feature

- What is cross-features?
 - Taking cross-product of sparse features
- Why do we need cross-features?
 - Capture the interaction among categorical features
 - "job ⊗ company" can be a strong feature to predict one's income
 - Achieve great success in real-world business
- Traditional methods
 - Explicit methods: RMI, CMI, etc.
 - Implicit methods: DeepFM[1], xDeepFM[2], etc.

[1] Guo, Huifeng, et al. "DeepFM: a factorization-machine based neural network for CTR prediction." IJCAI 2017 [2] Lian, Jianxun, et al. "xdeepfm: Combining explicit and implicit feature interactions for recommender systems." KDD 2018

Motivation

Weaknesses of existing methods

High-order Feature Crossing	Simplicity	Fast Inference	Interpretability
×	medium	√	\checkmark
×	low	×	X
×	low	X	V
√	high	√	√
		Crossing Simplicity × medium × low × low	Crossing Simplicity Fast Inference × medium √ × low × × low ×

Luo, Y et al., Autocross: Automatic feature crossing for tabular data in real-world applications. KDD 2019.

System Framework of AutoCross

- Input
 - Training data
 - Feature type

- Output
 - Feature producer

AutoCross Loop

- Feature set generation
 - where candidate feature sets with new cross features are generated

- Feature set evaluation
 - where candidate feature sets are evaluated and the best is selected as a new solution

Method (feature search)

multi-granularity discretization

beam search

Method (feature evaluation)

field-wise logistic regression

Parameter Server candidate feature 1 (f1) parameter candidate feature 2 (f2) parameter gradient parameter gradient candidate feature n (fn) gradients parameters Worker 1 Worker 2 Worker m generate conjunction selected features bsum selected features bsum selected features bsum

Memory Cache (blocks)

successive mini-batch gradient descent

Algorithm 2 Successive Mini-batch Gradient Descent (SMBGD).

Require: set of candidate feature sets $\mathbb{S} = \{S_i\}_{i=1}^n$, training data equally divided into $N \geq \sum_{k=0}^{\lceil \log_2 n \rceil - 1} 2^k$ data blocks.

Ensure: best candidate S'.

- 1: **for** $k = 0, 1, \dots, \lceil \log_2 n \rceil 1$ **do**
- use additional 2^k data blocks to update the field-wise LR models of all $S \in \mathbb{S}$, with warm-starting;
- evaluate the models of all S's with validation AUC;
- 4: keep the top half of candidates in S: S ← top_half(S) (rounding down);
- 5: break if S contains only one element;
- 6: end for
- 7: **return** S' (the singleton element of S).

Evaluations

• Effectiveness

		Benchmar	k Datasets		
Method	Bank	Adult	Credit	Criteo	
LR (base)	0.9400	0.9169	0.8292	0.8655	0.7855
AC+LR	0.9455	0.9280	0.8567	0.8942	0.8034
AC+W&D	0.9420	0.9260	0.8623	0.9033	0.8068
CMI+LR	0.9431	0.9153	0.8336	0.8901	0.7844
Deep	0.9418	0.9130	0.8369	0.8745	0.7985
xDeepFM	0.9419	0.9131	0.8358	0.8746	0.8059
		Real-World Bu	siness Datasets		
Method	Data1	Data2	Data3	Data4	Data5
LR (base)	0.8368	0.8356	0.6960	0.6117	0.5992
AC+LR	0.8545	0.8536	0.7065	0.6276	0.6393
AC+W&D	0.8531	0.8552	0.7026	0.6260	0.6547
Deep	0.8479	0.8463	0.6936	0.6207	0.6509
xDeepFM	0.8504	0.8515	0.6936	0.6241	0.6514

Evaluations

• Efficiency of Inference

Benchmark Datasets								
Method	Bank	Employee	Criteo					
AC+LR	0.00048	0.00048	0.00062	0.00073	0.00156			
AC+W&D	0.01697	0.01493	0.00974	0.02807	0.02698			
Deep	0.01413	0.01142	0.00726	0.02166	0.01941			
xDeepFM	0.08828	0.05522	0.04466	0.06467	0.18985			
Real-World Business Datasets								
Method	Data1	Data2	Data3	Data4	Data5			
AC+LR	0.00367	0.00111	0.00185	0.00393	0.00279			
AC+W&D	0.03537	0.01706	0.04042	0.02434	0.02582			
Deep	0.02616	0.01348	0.03150	0.01414	0.01406			
xDeepFM	0.32435	0.11415	0.40746	0.12467	0.13235			

Outline

AutoML for Collaborative Filtering Task

AutoML for Click-through Rate Prediction Task

AutoML for Tuning Hyper-parameters in RecSys

Regularization term in RecSys (take MF-BPR as an example)

$$\begin{split} l_{S_T}(\Theta|\lambda) &= \tilde{l}_{S_T}(\Theta) + \Omega(\Theta|\lambda) \\ &= -\sum_{(u,i,j) \in S_T} \ln(\sigma(\hat{y}_{ui}(\Theta) - \hat{y}_{uj}(\Theta))) + \Omega(\Theta|\lambda). \end{split}$$

A common concern of RecSys models: Regularization Tuning Headache

What if we can do the regularization automatically?

Why hard to tune?

Hypothesis 1: fixed regularization strength throughout the process

Why hard to tune?

Hypothesis 2: compromise on regularization granularity

What we usually do to determine λ ?

• Usually Grid Search or Babysitting \rightarrow global λ

Fine-grained regularization works better

- But unaffordable if we use grid-search!
- Resort to automatic methods!

Dataset Characteristic

Diverse frequencies among users/items

Characteristic
Different
importance of
each latent
dimension

Model

Alternating Optimization

$$\min_{\Lambda} \sum_{\{(u',i',j')\in S_V\}} l(u',i',j'|\arg\min_{\Theta} \sum_{\{(u,i,j)\in S_T\}} l(u,i,j|\Theta,\Lambda))$$

At iteration *t*

Train the wheel!

- Fix Λ , Optimize Θ
 - \rightarrow Conventional MF-BPR except λ is fine-grained now

Train the brake!

- Fix Θ , Optimize Λ
 - \rightarrow Find Λ which achieve the smallest validation loss

MF-BPR with fine-grained regularization

Fix Θ , Optimize Λ

Taking a greedy perspective, we look for Λ which can minimize the next-step validation loss

- If we keep using current Λ for next step, we would obtain $\overline{\Theta}_{t+1}$
- Given $\overline{\Theta}_{t+1}$, our aim is $\min_{N} l_{S_V}(\overline{\Theta}_{t+1})$ with the constraint of non-negative Λ

But how to obtain $\overline{\Theta}_{t+1}$ without influencing the normal Θ update?

- Simulate* the MF update!
 - Obtain the gradients by combining the non-regularized part and penalty part

$$\frac{\overline{\partial l_{S_T}}}{\partial \Theta_t} = \frac{\overline{\partial \ \widetilde{l}_{S_T}}}{\partial \Theta_t} + \frac{\partial \Omega}{\partial \Theta_t}$$
 \tag{\Lambda is the only variable here}

 Λ is the only

• Simulate the operations that the MF optimizer would take

$$\overline{\Theta}_{t+1} = f(\Theta_t, \frac{\overline{\partial l_{S_T}}}{\partial \Theta_t})$$

$$f \text{ denotes the MF}$$

$$update function$$

^{*:} Using – over the letters to distinguish the simulated ones with normal ones

Fix Θ , Optimize Λ in Auto-Differentiation

Performance Comparison

Method	Amazon Food Review			MovieLens 10M						
Method	AUC	HR@50	HR@100	NDCG@50	NDCG@100	AUC	HR@50	HR@100	NDCG@50	NDCG@100
SGDA [26]	0.8130	0.1786	0.3857	0.1002	0.1413	0.9497	0.2401	0.3706	0.0715	0.0934
AMF [15]	0.8197	0.3541	0.4200	0.2646	0.2552	0.9495	0.2625	0.3847	0.0787	0.0985
NeuMF [16]	0.8103	0.3537	0.4127	0.2481	0.2218	0.9435	0.2524	0.3507	0.0760	0.0865
MF-λFix	0.8052	0.3482	0.4163	0.2251	0.2217	0.9497	0.2487	0.3779	0.0727	0.0943
МF-λОрт -D	0.8109	0.2134	0.3910	0.1292	0.1543	0.9501	0.2365	0.3556	0.0715	0.0909
-DU	0.8200	0.3694	0.4814	0.2049	0.2570	0.9554	0.2743	0.4109	0.0809	0.1031
-DI	0.8501	0.2966	0.4476	0.1642	0.2039	0.9516	0.2648	0.3952	0.0804	0.1013
-DUI	0.8743	0.4470	0.5251	0.2946	0.2920	0.9575	0.3027	0.4367	0.0942	0.1158

Analysis of λ -trajectory

- 1. Users with higher frequencies are allocated larger λ
- 2. Items with higher frequencies are allocated larger λ .
- 3. As training goes on, λ s gets larger gradually.

Conclusion

- AutoML can
 - help choose models
 - help select or generate data/feature
 - help tune hyper-parameters.

Discussion

- AutoML can be used in recommendation for more scenarios.
- For example, recommendation in social e-commerce.

In social e-commerce websites, user can purchase products via a link shared by a friend.

Lin, Tzu-Heng, Chen Gao, and Yong Li. "Recommender systems with characterized social regularization." CIKM 2018. Lin, Tzu-Heng, Chen Gao, and Yong Li. "Cross: Cross-platform recommendation for social e-commerce." SIGIR 2019.

Discussion

- Diverse recommendation tasks in social e-commerce
 - Traditional task: users want to buy some products
 - New task: some users want to share some products
 - New task: some users want to buy some products together with friends
 - New task: ...

AutoML can serve as powerful tools when there are diverse recommendation scenarios with different objectives and metrics.

Lin, Tzu-Heng, Chen Gao, and Yong Li. "Recommender systems with characterized social regularization." CIKM 2018. Lin, Tzu-Heng, Chen Gao, and Yong Li. "Cross: Cross-platform recommendation for social e-commerce." SIGIR 2019.

References

- Yao et al., Efficient Neural Interaction Functions Search for Collaborative Filtering. **WWW 2020.**
- Chen et al., lambdaOpt: Learn to Regularize Recommender Models in Finer Levels. **KDD 2019**.
- Luo et al., AutoCross: Automatic Feature Crossing for Tabular Data in Real-World Applications. KDD 2019.

Thank You!

gc16@mails.tsinghua.edu.cn