Part 1:

MATLAB Program:

1.
$$V_R + V_C = x(t)$$
 $Ri(t) + \frac{1}{C} \int_{-\infty}^{t} i(\tau) d\tau = x(t)$ $Ri(t) + \frac{1}{CD} i(t) = x(t)$

$$RDi(t) + \frac{i(t)}{c} = Dx(t)$$
 $\left(RD + \frac{1}{c}\right)i(t) = Dx(t)$ $i(t) = CDy(t)$

$$\left(RD + \frac{1}{c}\right)\left(CDy(t)\right) = Dx(t) \qquad (RCD^2 + D)y(t) = Dx(t) \qquad (RCD + 1)y(t) = x(t)$$

2.
$$RC\frac{dy(t)}{dt} + y(t) = x(t)$$
 $RC(sY(s) - y(0)) + Y(s) = X(s)$ Let $y(0)$ be 0.

$$RCsY(s) + Y(s) = X(s)$$
 $(RCs + 1)Y(s) = X(s)$ $H(s) = \frac{Y(s)}{X(s)} = \frac{1}{RCs + 1}$

3.
$$((10000)(1*10^{-6})s+1)Y(s)=\frac{1}{s}$$
 $(0.01s+1)Y(s)=\frac{1}{s}$

$$Y(s) = \frac{1}{s(0.01s+1)} = \frac{A}{s} + \frac{B}{0.01s+1} A = \frac{1}{s(0.01s+1)} |_{s=0} = \frac{1}{0+1} = 1$$

$$B = \frac{1}{s(0.01s+1)}|_{s=-100} = -\frac{1}{100} = -0.01$$

$$Y(s) = \frac{1}{s} - \frac{0.01}{0.01s + 1} = \frac{1}{s} - \frac{1}{s + 100}$$

$$y(t) = u(t) - e^{-100s}$$

Part 2:

MATLAB Program:

```
1 -
     L=10e-3; C=1e-6; R=[50 10 1 0.5 0];
2
3- | for i=1:5
4 -
     den=[L*C, R(i)*C, 1];
5 --
       roots (den)
6 -
       r=roots(den);
7-
        figure(1)
      plot(r, 'o'); hold on;
8-
9- end
10-
     xlim([-3000, 500])
11-
     ylim([-12000, 12000])
12-
    xlabel('Real')
13-
     ylabel('Imaginary')
14-
     grid
15
16-
    figure(2)
17- R=50; %Toggle between all R values
18- num=[1]; den=[L*C R*C 1];
19
20 - G=tf(num,den);
21-
    step(G);
22-
     grid
```

1.
$$V_L + V_R + V_C = x(t)$$
 $L\frac{di(t)}{dt} + Ri(t) + \frac{1}{c} \int_{-\infty}^t i(\tau) d\tau = x(t)$ $LDi(t) + Ri(t) + \frac{1}{cD}i(t) = x(t)$ $LD^2i(t) + RDi(t) + \frac{i(t)}{c} = Dx(t)$ $\left(LD^2 + RD + \frac{1}{c}\right)i(t) = Dx(t)$ $i(t) = CDy(t)$ $\left(LD^2 + RD + \frac{1}{c}\right)(CDy(t)) = Dx(t)$ $\left(LCD^3 + RCD^2 + D\right)y(t) = Dx(t)$ $\left(LCD^2 + RCD + 1\right)y(t) = x(t)$ $LC\frac{d^2y(t)}{dt^2} + RC\frac{dy(t)}{dt} + y(t) = x(t)$ $LC\left(s^2Y(s) - sy(0) - y'(0)\right) + RC\left(sY(s) - y(0)\right) + Y(s) = X(s)$ Let $y(0)$ and $y'(0)$ be 0. $LCs^2Y(S) + RCsY(s) + Y(s) = X(s)$ $\left(LCs^2 + RCs + 1\right)Y(s) = X(s)$ $H(s) = \frac{Y(s)}{X(s)} = \frac{1}{LC^2 + RCs + 1} = \frac{1}{((10*10^{-3})(10^{-6})) + (10^{-6})Rs + 1} = \frac{1}{10^{-8}s^2 + R*10^{-6}s + 1}$

2.

R Value (Ω)	Roots
50	$1000(-2.5 \pm j9.6825)$
10	$1000(-0.5 \pm j9.9875)$
1	$1000(-0.05 \pm j9.9991)$
0.5	$1000(-0.025 \pm j10.0000)$
0	±j10000

Decreasing the resistance decreases system stability.

$R = 50 \Omega$:

$R = 10 \Omega$:

$R = 1 \Omega$:

 $R = 0.5 \Omega$:

 $R = 0 \Omega$:

4. The further away from the complex axis (imaginary part = 0), the faster the signal dampens. When the poles are on the complex axis, the output oscillates permanently.

5.

Poles: $1000(0.05 \pm 9.9999i)$

The system becomes unstable with negative resistance, with the magnitude of oscillation increasing infinitely.