

1/15

SEQUENCE LISTING

<110> Takada Pharmaceutical Company Limited

<120> Antibody and its use

<130> G05-0070

<140> PCT/JP2004/007667

<141> 2004-05-27

<150> JP2003-151577

<151> 2003-05-28

<160> 20

<210> 1

<211> 14

<212> PRT

<213> Artificial Sequence

<220>

<223> immunogen

<400> 1

Trp Tyr Lys His Val Ala Ser Pro Arg Tyr His Thr Val Cys

5

10

<210> 2

<211> 14

<212> PRT

<213> Artificial Sequence

<220>

<223> immunogen

<400> 2

Cys His Thr Val Gly Arg Ala Ala Gly Leu Leu Met Gly Leu

5 10

<210> 3

<211> 16

<212> PRT

<213> Artificial Sequence

<220>

<223> immunogen

<400> 3

Cys Ala Ser Gly Leu Leu Met Gly Leu Arg Arg Ser Pro Tyr Leu Trp

5 10 15

<210> 4

<211> 23

<212> PRT

<213> Homo sapiens

<400> 4

Trp Tyr Lys His Val Ala Ser Pro Arg Tyr His Thr Val Gly Arg Ala

3/15

1 5 10 15

Ala Gly Leu Leu Met Gly Leu

20

<210> 5

<211> 30

<212> PRT

<213> Homo sapiens

<400> 5

Trp Tyr Lys His Val Ala Ser Pro Arg Tyr His Thr Val Gly Arg Ala

1 5 10 15

Ala Gly Leu Leu Met Gly Leu Arg Arg Ser Pro Tyr Leu Trp

20 25 30

<210> 6

<211> 23

<212> PRT

<213> Rattus norvegicus

<400> 6

Trp Tyr Lys His Val Ala Ser Pro Arg Tyr His Thr Val Gly Arg Ala

1 5 10 15

Ser Gly Leu Leu Met Gly Leu

20

<210> 7

<211> 30

<212> PRT

4/15

<213> Rattus norvegicus

<400> 7

Trp Tyr Lys His Val Ala Ser Pro Arg Tyr His Thr Val Gly Arg Ala
1 5 10 15

Ser Gly Leu Leu Met Gly Leu Arg Arg Ser Pro Tyr Leu Trp
20 25 30

<210> 8

<211> 23

<212> PRT

<213> Mus musculus

<400> 8

Trp Tyr Lys His Val Ala Ser Pro Arg Tyr His Thr Val Gly Arg Ala
1 5 10 15

Ser Gly Leu Leu Met Gly Leu
20

<210> 9

<211> 30

<212> PRT

<213> Mus musculus

<400> 9

Trp Tyr Lys His Val Ala Ser Pro Arg Tyr His Thr Val Gly Arg Ala
1 5 10 15

Ser Gly Leu Leu Met Gly Leu Arg Arg Ser Pro Tyr Gln Trp
20 25 30

<210> 10

<211> 23

<212> PRT

<213> Sus scrofa

<400> 10

Trp Tyr Lys His Thr Ala Ser Pro Arg Tyr His Thr Val Gly Arg Ala

1

5

10

15

Ala Gly Leu Leu Met Gly Leu

20

<210> 11

<211> 30

<212> PRT

<213> Sus scrofa

<400> 11

Trp Tyr Lys His Thr Ala Ser Pro Arg Tyr His Thr Val Gly Arg Ala

1

5

10

15

Ala Gly Leu Leu Met Gly Leu Arg Arg Ser Pro Tyr Met Trp

20

25

30

<210> 12

<211> 14

<212> PRT

<213> Artificial Sequence

<220>

6/15

<223> Biotin-labeled peptide

<220>

<221> MOD_RES

<222> 14

<223> Xaa means biotin-labeled Cys modified with Biotin (Long Arm) Maleimide (Vector Laboratories).

<400> 12

Trp Tyr Lys His Val Ala Ser Pro Arg Tyr His Thr Val Xaa

5 10

<210> 13

<211> 14

<212> PRT

<213> Artificial Sequence

<220>

<223> Biotin-labeled peptide

<220>

<221> MOD_RES

<222> 1

<223> Xaa means biotin-labeled Cys modified with Biotin (Long Arm) Maleimide (Vector Laboratories).

<400> 13

Xaa His Thr Val Gly Arg Ala Ala Gly Leu Leu Met Gly Leu

5 10

<210> 14

<211> 16

<212> PRT

<213> Artificial Sequence

<220>

<223> Biotin-labeled peptide

<220>

<221> MOD_RES

<222> 1

<223> Xaa means biotin-labeled Cys modified with Biotin (Long Arm) Maleimide (Vector Laboratories).

<400> 14

Xaa Ala Ser Gly Leu Leu Met Gly Leu Arg Arg Ser Pro Tyr Leu Trp

5

10

15

<210> 15

<211> 328

<212> PRT

<213> Homo sapiens

<400> 15

Met Asp Asn Ala Ser Phe Ser Glu Pro Trp Pro Ala Asn Ala Ser Gly

1

5

10

15

Pro Asp Pro Ala Leu Ser Cys Ser Asn Ala Ser Thr Leu Ala Pro Leu

20

25

30

Pro Ala Pro Leu Ala Val Ala Val Pro Val Val Tyr Ala Val Ile Cys
 35 40 45
 Ala Val Gly Leu Ala Gly Asn Ser Ala Val Leu Tyr Val Leu Leu Arg
 50 55 60
 Ala Pro Arg Met Lys Thr Val Thr Asn Leu Phe Ile Leu Asn Leu Ala
 65 70 75 80
 Ile Ala Asp Glu Leu Phe Thr Leu Val Leu Pro Ile Asn Ile Ala Asp
 85 90 95
 Phe Leu Leu Arg Gln Trp Pro Phe Gly Glu Leu Met Cys Lys Leu Ile
 100 105 110
 Val Ala Ile Asp Gln Tyr Asn Thr Phe Ser Ser Leu Tyr Phe Leu Thr
 115 120 125
 Val Met Ser Ala Asp Arg Tyr Leu Val Val Leu Ala Thr Ala Glu Ser
 130 135 140
 Arg Arg Val Ala Gly Arg Thr Tyr Ser Ala Ala Arg Ala Val Ser Leu
 145 150 155 160
 Ala Val Trp Gly Ile Val Thr Leu Val Val Leu Pro Phe Ala Val Phe
 165 170 175
 Ala Arg Leu Asp Asp Glu Gln Gly Arg Arg Gln Cys Val Leu Val Phe
 180 185 190
 Pro Gln Pro Glu Ala Phe Trp Trp Arg Ala Ser Arg Leu Tyr Thr Leu
 195 200 205
 Val Leu Gly Phe Ala Ile Pro Val Ser Thr Ile Cys Val Leu Tyr Thr
 210 215 220
 Thr Leu Leu Cys Arg Leu His Ala Met Arg Leu Asp Ser His Ala Lys
 225 230 235 240
 Ala Leu Glu Arg Ala Lys Lys Arg Val Thr Phe Leu Val Val Ala Ile
 245 250 255
 Leu Ala Val Cys Leu Leu Cys Trp Thr Pro Tyr His Leu Ser Thr Val

260	265	270
Val Ala Leu Thr Thr Asp Leu Pro Gln Thr Pro Leu Val Ile Ala Ile		
275	280	285
Ser Tyr Phe Ile Thr Ser Leu Ser Tyr Ala Asn Ser Cys Leu Asn Pro		
290	295	300
Phe Leu Tyr Ala Phe Leu Asp Ala Ser Phe Arg Arg Asn Leu Arg Gln		
305	310	315
Leu Ile Thr Cys Arg Ala Ala Ala		
325		

<210> 16

<211> 984

<212> DNA

<213> Homo sapiens

<400> 16

```

atggacaacg cctcggttctc ggagccctgg cccgccaacg catcggttcccc ggaccggcg 60
ctgagctgct ccaacgcgtc gactctggcg ccgctgccgg cgccgctggc ggtggctgtta 120
ccagttgtct acgggtgat ctgcgcgtg ggtctggcg gcaactccgc cgtgctgtac 180
gtgttgctgc gggcgccccg catgaagacc gtcaccaacc tgttcatcct caacctggcc 240
atcgccgacg agctttcac gctgggtctg cccatcaaca tcgcccactt cctgctgcgg 300
cagtggccct tcggggagct catgtgcaag ctcatcggtt ctatcgacca gtacaacacc 360
ttctccagcc tctacttcct caccgtcatg agcgccgacc gctacctggt ggtgttggcc 420
actgcggagt cgccgggggt ggatcgac actcggtctg ctgccttcg cagtcttcgc ccggcttagac 480
gccgtgtggg ggatcgac actcggtctg ctgccttcg cagtcttcgc ccggcttagac 540
gacgagcagg gccggcgcca gtgcgtgcta gtctttccgc agcccgaggc cttctggtgg 600
cgccgcgagcc gcctctacac gctcggtctg ggcttcgcca tccccgtgtc caccatctgt 660
gtcctctata ccaccctgtt gtgcggctg catgccccatgc ggctggacag ccacgccaag 720
gccctggagc gcggcaagaa gcgggtgacc ttccctggtgg tggcaatcct ggccgggtgtc 780

```

10/15

ctcctctgct ggacgccta ccacctgagc accgtggtgg cgctcaccac cgacctccg 840
cagacgcccgc tggcatcgc tatctcctac ttcatcacca gcctgagcta cgccaacagc 900
tgcctcaacc ctttcctcta cgccttcctg gacgccagct tccgcaggaa cctccggcag 960
ctgataactt gccgcgcggc agcc 984

<210> 17

<211> 333

<212> PRT

<213> Homo sapiens

<400> 17

Met Gln Ala Ala Gly His Pro Glu Pro Leu Asp Ser Arg Gly Ser Phe

1 5 10 15

Ser Leu Pro Thr Met Gly Ala Asn Val Ser Gln Asp Asn Gly Thr Gly

20 25 30

His Asn Ala Thr Phe Ser Glu Pro Leu Pro Phe Leu Tyr Val Leu

35 40 45

Pro Ala Val Tyr Ser Gly Ile Cys Ala Val Gly Leu Thr Gly Asn Thr

50 55 60

Ala Val Ile Leu Val Ile Leu Arg Ala Pro Lys Met Lys Thr Val Thr

65 70 75 80

Asn Val Phe Ile Leu Asn Leu Ala Val Ala Asp Gly Leu Phe Thr Leu

85 90 95

Val Leu Pro Val Asn Ile Ala Glu His Leu Leu Gln Tyr Trp Pro Phe

100 105 110

Gly Glu Leu Leu Cys Lys Leu Val Leu Ala Val Asp His Tyr Asn Ile

115 120 125

Phe Ser Ser Ile Tyr Phe Leu Ala Val Met Ser Val Asp Arg Tyr Leu

130 135 140

11/15

Val Val Leu Ala Thr Val Arg Ser Arg His Met Pro Trp Arg Thr Tyr
145 150 155 160
Arg Gly Ala Lys Val Ala Ser Leu Cys Val Trp Leu Gly Val Thr Val
165 170 175
Leu Val Leu Pro Phe Phe Ser Phe Ala Gly Val Tyr Ser Asn Glu Leu
180 185 190
Gln Val Pro Ser Cys Gly Leu Ser Phe Pro Trp Pro Glu Gln Val Trp
195 200 205
Phe Lys Ala Ser Arg Val Tyr Thr Leu Val Leu Gly Phe Val Leu Pro
210 215 220
Val Cys Thr Ile Cys Val Leu Tyr Thr Asp Leu Leu Arg Arg Leu Arg
225 230 235 240
Ala Val Arg Leu Arg Ser Gly Ala Lys Ala Leu Gly Lys Ala Arg Arg
245 250 255
Lys Val Thr Val Leu Val Val Leu Ala Val Cys Leu Leu Cys
260 265 270
Trp Thr Pro Phe His Leu Ala Ser Val Val Ala Leu Thr Thr Asp Leu
275 280 285
Pro Gln Thr Pro Leu Val Ile Ser Met Ser Tyr Val Ile Thr Ser Leu
290 295 300
Ser Tyr Ala Asn Ser Cys Leu Asn Pro Phe Leu Tyr Ala Phe Leu Asp
305 310 315 320
Asp Asn Phe Arg Lys Asn Phe Arg Ser Ile Leu Arg Cys
325 330

<210> 18

<211> 999

<212> DNA

<213> Homo sapiens

12/15

<400> 18

atgcaggccg	ctgggcaccc	agagcccctt	gacagcaggg	gctccttctc	cctccccacg	60	
atgggtgcc	a	ctca	ggacaatggc	actggccaca	atgcac	ctccgagcca	120
ctgcgttcc	tctatgtgct	cctgcccgc	gtgtactccg	ggatctgtgc	tgtgggctg	180	
actggcaaca	cggccgtcat	ccttgaatc	ctaagggcgc	ccaagatgaa	gacggtgacc	240	
aacgtttca	tcctgaacct	ggccgtcgcc	gacgggctct	tcacgctggt	actgcccgtc	300	
aacatcgcgg	agcacctgct	gcagtactgg	ccttcgggg	agctgctctg	caagctgg	360	
ctggccgtcg	accactacaa	catcttctcc	agcatctact	tcctagccgt	gatgagcgt	420	
gaccgataacc	tggtgtgtct	ggccaccgtg	aggtcccgc	acatgccctg	gcgcac	480	
cggggggcga	agg	tcgtgtgtc	tggctggcg	tcacggct	ggttctgccc	540	
ttcttcttt	tcgctggcgt	ctacagcaac	gagctgcagg	tcccaagctg	tggctgagc	600	
ttcccg	ccgagcaggt	ctggttcaag	gccagccgt	tctacacgtt	ggtcctggc	660	
ttcgtgtgc	ccgtgtgcac	catctgtgtg	ctctacacag	acccctgcg	caggctgcg	720	
gccgtgcggc	tccgctctgg	agccaaggct	ctaggcaagg	ccaggcggaa	ggtgaccgt	780	
ctggcctcg	tcgtgctggc	cgtgtgc	ctctgctgga	cgc	cctggcct	840	
gtcgtggcc	tgaccacgga	cctgcccag	accccactgg	tcatcagtat	gtcctacgt	900	
atcaccagcc	tca	ctacgc	caactcgtgc	ctgaacccct	tcctctacgc	960	
gacaacttcc	ggaagaactt	ccgcagcata	ttgcgg	gtgc		999	

<210> 19

<211> 329

<212> PRT

<213> Rattus norvegicus

<400> 19

Met His Asn Leu Ser Leu Phe Glu Pro Gly Arg Gly Asn Val Ser Cys

5

10

15

Gly Gly Pro Phe Leu Gly Cys Pro Asn Glu Ser Asn Pro Ala Pro Leu

20	25	30
Pro Leu Pro Gln Pro	Leu Ala Val Ala Val	Pro Val Val Tyr Gly Val
35	40	45
Ile Cys Ala Val Gly	Leu Ala Gly Asn Ser	Ala Val Leu Tyr Val Leu
50	55	60
Leu Arg Thr Pro Arg Met	Lys Thr Val Thr Asn Val	Phe Ile Leu Asn
65	70	75
Leu Ala Ile Ala Asp Glu	Leu Phe Thr Leu Val	Leu Pro Ile Asn Ile
85	90	95
Ala Asp Phe Leu Leu Arg Arg	Trp Pro Phe Gly Glu Val	Met Cys Lys
100	105	110
Leu Ile Val Ala Val Asp Gln	Tyr Asn Thr Phe Ser Ser	Leu Tyr Phe
115	120	125
Leu Ala Val Met Ser Ala Asp Arg Tyr	Leu Val Val Leu Ala Thr Ala	
130	135	140
Glu Ser Arg Arg Val Ser Gly Arg Thr Tyr	Gly Ala Ala Arg Ala Val	
145	150	155
Ser Leu Ala Val Trp Ala Leu Val Thr	Leu Val Val Leu Pro Phe Ala	
165	170	175
Val Phe Ala Arg Leu Asp Glu Glu Gln	Gly Arg Arg Gln Cys Val Leu	
180	185	190
Val Phe Pro Gln Pro Glu Ala Phe Trp	Trp Arg Ala Ser Arg Leu Tyr	
195	200	205
Thr Leu Val Leu Gly Phe Ala Ile Pro Val Ser	Thr Ile Cys Ala Leu	
210	215	220
Tyr Ile Thr Leu Leu Cys Arg Leu Arg Ala Ile	Gln Leu Asp Ser His	
225	230	235
Ala Lys Ala Leu Asp Arg Ala Lys Lys Arg Val	Thr Leu Leu Val Val	
245	250	255

Ala Ile Leu Ala Val Cys Leu Leu Cys Trp Thr Pro Tyr His Leu Ser
 260 265 270
 Thr Ile Val Ala Leu Thr Thr Asp Leu Pro Gln Thr Pro Leu Val Ile
 275 280 285
 Gly Ile Ser Tyr Phe Ile Thr Ser Leu Ser Tyr Ala Asn Ser Cys Leu
 290 295 300
 Asn Pro Phe Leu Tyr Ala Phe Leu Asp Asp Ser Phe Arg Arg Ser Leu
 305 310 315 320
 Arg Gln Leu Val Ser Cys Arg Thr Ala
 325

<210> 20

<211> 987

<212> DNA

<213> Rattus norvegicus

<400> 20

```

atgcacaact tgcgtcttt cgagcctggc agggcaatg tgtttcgcc cggccattt 60
ttggcgtgtc ctaacgagtc gaaccagcg cctctgccac tgccgcagcc tctggcggt 120
gcagtgcctg tggctacgg ggtgatctgc gcgggtggac tggcggcaa ctccgcgg 180
ctgtacgtac tgctgcac gcccgcac aagactgtt ccaacgttt cattctaac 240
ctggctatcg cggacgagct cttcacccctc gtgctgcca tcaacatcgc ggacttcct 300
ctgaggcgct gccccttcgg ggaagtcatg tgcaagctca tcgtggctgt cgaccagtt 360
aacactttct ctagcctcta cttcctcgcc gtcatgagcg cagaccgcta cctgggtgtc 420
ctggccacag ccgagtcgcg ccgggtgtcc gggcgcactt atgggtcagc gcgggctgtc 480
agtctggcgg tgtggcgct ggtgacattg gtcgtgtgc ctttgcggt attcgcccc 540
ctggacgaag agcagggtcg gcgtcagtgc gtgctggct tcccgagcc tgaggccctc 600
tgtggcgcg ccagccgtct gtacactcta gtgttggct tcgccatccc ggtgtccacc 660
atctgcgccc tctatatcac cctgttgtgc cgactgcgtg ctatccagct agacagccac 720

```

15/15

gccaaggccc tggaccgtgc caagaagcgc gtgaccttgt tggtggtggc gattctggct	780
gtgtgcctcc tctgctggac accgtaccac ctgagcacca tagtggcgct caccaccgac	840
ctccccgcaaa caccgttggt catcgcatc tcttacttca tcaccagtct gagctatgcc	900
aacagctgcc tcaacccttt cctctatgcc ttccctggacg acagcttccg caggagcctg	960
cggcagctgg tgtcatgccg cacagcc	987