prizeSpanish (SLV)

El Gran Premio

El Gran Premio es un juego famoso de TV. Usted es el afortunado concursante que ha avanzado hasta la ronda final. Está parado frente a una fila de n cajas, numeradas del 0 al n-1 de izquierda a derecha. Cada caja contiene un premio que no puede ser visto sino hasta que la caja sea abierta. Existen $v \geq 2$ tipos diferentes de premios. Los tipos son numerados del 1 al v en orden descendente de valor.

El premio de tipo 1 es el mas valioso: un diamante. Existe exactamente un diamante en las cajas. El premio de tipo v es el menos valioso: una paleta. Para hacer el juego más emocionante, la cantidad de premios de bajo valor es mucho mayor que la cantidad de premios más valiosos. Más concretamente, para todo t tal que $0 \le t \le v$ sabemos lo siguiente: si existen t0 premios de tipo t1, existen estrictamente más de t2 premios de tipo t3.

Su objetivo es ganar el diamante. Al final del juego usted tendrá que abrir una caja y recibirá el premio que esta contiene. Antes de elegir qué caja abrir, puede hacerle a Rambod, el presentador del juego, algunas preguntas. Para cada pregunta, usted elige alguna caja i. Como respuesta, Rambod le dará un arreglo a que contiene dos enteros.

Su significado es el siguiente:

- Entre las cajas a la izquierda de la caja i hay exactamente a[0] cajas que contienen un premio más valioso que el de la caja i.
- ullet Entre las cajas a la derecha de la caja i hay exactamente a[1] cajas que contienen premios más valiosos que el de la caja i.

Por ejemplo, suponga que n=8. En su pregunta, usted elige la caja i=2. Rambold le responde a=[1,2]. Esta respuesta significa que:

- Exactamente una de las cajas 0 y 1 contienen un premio más valioso que el de la caja 2.
- Exactamente dos de las cajas $3, 4, \ldots, 7$ contienen un premio más valioso que el de la caja 2.

Su tarea es encontrar la caja que contiene el diamante haciendo la menor cantidad de preguntas posible.

Detalles de implementación

Debe implementar el siguiente procedimiento:

int find best(int n)

- Este procedimiento es llamado exactamente una vez por el calificador.
- n: la cantidad de cajas.
- El procedimiento debe retornar el número de la caja que contiene el diamante. Es decir, el único entero d $(0 \le d \le n-1)$ tal que la caja d contiene un premio de tipo 1.

El procedimiento anterior puede hacer llamadas al siguiente procedimiento:

```
int[] ask(int i)
```

- i: el número de la caja por la que decide preguntar. El valor de i debe estar entre 0 y n-1, inclusive.
- Este procedimiento retorna un arreglo a con 2 elementos. Aquí, a[0] es la cantidad de premios más valiosos en las cajas a la izquierda de la caja i y a[1] es la cantidad de premios más valiosos en las cajas a la derecha de la caja i.

Ejemplo

El calificador hace la siguiente llamada:

```
find_best(8)
```

Hay n=8 cajas. Suponga que los tipos de premios son [3,2,3,1,3,3,2,3]. Todos las llamadas posibles al procedimiento ask y sus correspondientes valores de retorno son listados a continuación.

- ask(0) retorna [0,3]
- ask (1) retorna [0,1]
- ask (2) retorna [1,2]
- ask(3) retorna [0,0]
- ask(4) retorna [2,1]
- ask (5) retorna [2,1]
- ask(6) **retorna** [1,0]
- ask(7) retorna [3,0]

En este ejemplo, el diamante se encuentra en la caja 3. Por lo tanto, el procedimiento find_best debe retornar 3.

La figura de arriba ilustra este ejemplo. La parte superior muestra los tipos de los premios en cada caja. La parte inferior ilustra la pregunta ask(2). Las cajas marcadas contienen premios más valiosos que el de caja 2.

Restricciones

- $3 \le n \le 200\,000$.
- El tipo del premio en cada caja se encuentra entre 1 y v, inclusive.
- Existe exactamente un premio de tipo 1.
- Para todo $2 \le t \le v$, si existen k premios de tipo t-1, existen *estrictamente* más de k^2 premios de tipo t.

Subtareas y puntuación

En algunos casos de prueba el comportamiento del calificador es adaptable. Esto significa que en estos casos de prueba el calificador no tiene una secuencia fija de premios. En su lugar, las respuestas devueltas por el calificador pueden depender de las preguntas hechas por su solución. Se garantiza que el calificador responde de tal manera que después de cada pregunta existe al menos una secuencia de premios consistente con todas las respuestas devueltas hasta ese momento.

- 1. (20 puntos) Existe exactamente 1 diamante y n-1 paletas (por lo tanto, v=2). Puede llamar al procedimiento ask a lo sumo $10\,000$ veces.
- 2. (80 puntos) Sin restricciones adicionales.

En la subtarea 2 puede obtener una puntuación parcial. Sea q la máxima cantidad de llamadas al procedimiento ask entre todos los casos de prueba en esta subtarea. Entonces, su puntuación para esta subtarea se calcula de acuerdo a la siguiente tabla:

Preguntas	Puntuación
10000 < q	0 (reportada en CMS como 'Wrong Answer')
$6000 < q \le 10000$	70
$5000 < q \leq 6000$	80-(q-5000)/100
$q \leq 5000$	80

Calificador de ejemplo

El calificador de ejemplo no es adaptable. En su lugar, únicamente lee y usa un arreglo fijo p de tipos de premios. Para todo $0 \le b \le n-1$, el tipo del premio en la caja b es dado como p[b]. El calificador de ejemplo espera entradas en el siguiente formato:

ullet línea 1: n

ullet línea 2: p[0] p[1] \dots p[n-1]

El calificador de ejemplo imprime una sóla línea que contiene el valor de retorno de find_best y la cantidad de llamadas al procedimiento ask.