9.1

Part B

$$\lim \frac{3n+7}{6n-5} = \lim \frac{3+\frac{7}{n}}{6-\frac{5}{n}}$$

$$= \frac{\lim \left(3+\frac{7}{n}\right)}{\lim \left(6-\frac{5}{n}\right)}$$

$$= \frac{3+7\lim \frac{1}{n}}{6-5\lim \frac{1}{n}}$$

$$= \frac{3+7(0)}{6-5(0)}$$

$$= \frac{3}{6} = \frac{1}{2}.$$

Part C

$$\lim \frac{17n^5 + 73n^4 - 18n^2 + 3}{23n^5 + 13n^3} = \lim \frac{17 + \frac{73}{n} - \frac{18}{n^3} + \frac{3}{n^5}}{23 + \frac{13}{n^2}}$$

$$= \frac{17 + 73 \cdot \lim \frac{1}{n} - 18 \cdot \lim \frac{1}{n^3} + 3 \cdot \frac{1}{n^5}}{23 + 13 \cdot \lim \frac{1}{n^2}}$$

$$= \frac{17 + 73(0) - 18(0) + 3(0)}{23 + 13(0)}$$

$$= \frac{17}{23}$$

9.3

Since $b_n^2 + 1 > 0$ for all $n \in \mathbb{N}$,

$$\lim s_n = \frac{\lim a_n^3 + 4a_n}{\lim b_n^2 + 1} = \frac{\lim a_n^3 + 4\lim a_n}{b^2 + 1}$$
$$= \frac{(\lim a_n)^3 + 4a}{b^2 + 1} = \frac{a^3 + 4a}{b^2 + 1}$$

9.4

Part A

$$s_1 = 1$$

$$s_2 = \sqrt{2}$$

$$s_3 = \sqrt{\sqrt{2} + 1}$$

$$s_4 = \sqrt{\sqrt{\sqrt{2} + 1} + 1}$$

Part B

Since s_n converges, let $\lim_{n\to\infty} s_n = s$. Then

$$\lim_{n\to\infty} s_{n+1} = \lim_{n\to\infty} \sqrt{s_n + 1}$$

meaning

$$s = \sqrt{s+1} \implies s^2 - s - 1 = 0$$
$$\implies s = \frac{1 \pm \sqrt{5}}{2}$$

Since $s_n > 0$ for all $n \in \mathbb{N}$, it follows that $s = \frac{1+\sqrt{5}}{2}$.

9.9

Suppose that $\exists N_0 \in \mathbb{N}$ such that $s_n \leq t_n$ for all $n > N_0$.

Part A

Proof. Assume that $\lim s_n = +\infty$. That is

$$\forall M > 0, \exists N_1 \in \mathbb{N} \text{ such that } s_n > M, \forall n > N_1$$

 $orall M>0, \exists N_1\in\mathbb{N} ext{ such that } s_n>M, orall n>N_1$ Take $N=\max\{N_0,N_1\}.$ If n>N, then $t_n\geq s_n>M.$ Therefore $\lim t_n=+\infty.$

Part B

Proof. Assume that $\lim t_n = -\infty$. That is

$$\forall M < 0, \exists N_1 \in \mathbb{N} \text{ such that } t_n < M, \forall n > N_1$$

 $\forall M<0, \exists N_1\in\mathbb{N} \text{ such that } t_n< M, \forall n>N_1$ Take $N=\min{\{N_0,N_1\}}.$ If n>N, then $s_n\leq t_n< M.$ Therefore $\lim s_n=-\infty.$

Part C

Proof. Assume that $\lim s_n = s$ and $\lim t_n = t$ exist. Consider the case that s and t are finite. Let $\epsilon > 0$. Then there exists $N_1, N_2 \in \mathbb{N}$ such that

$$|s_n - s| < \epsilon, \forall n > N_1$$

 $|t_n - t| < \epsilon, \forall n > N_2$

Therefore considering $N = \max\{N_0, N_1, N_2\},\$

$$s - \epsilon < s_n \le t_n < t + \epsilon \implies s < t + 2\epsilon$$

Since ϵ is arbitrary, it follows then that $s \leq t$. If $s = -\infty$, then $t \geq s$ no matter what t is. If $s = \infty$, then by part A it follows that $t = \infty \geq \infty$.

9.12

Part A

Proof. Assume that L < 1. Let $a \in (L, 1) > 0$ such that L < a < 1. Take $\epsilon = a - L > 0$. Since $\left| \frac{s_{n+1}}{s_n} \right|$ converges to L, there exists $N \in \mathbb{N}$ such that

$$L - \epsilon < \left| \frac{s_{n+1}}{s_n} \right| < L + \epsilon, \forall n > N$$

meaning

$$-a + 2L < \left| \frac{s_{n+1}}{s_n} \right| < a \implies \left| \frac{s_{n+1}}{s_n} \right| < a, \forall n > N.$$

Therefore $|s_{n+1}| < a|s_n|$ for all n > N. Proceed with induction to show that $|s_n| < a^{n-N}|s_N|$ for n > N. Consider the base case n = N+1. By the previous result, $|s_{N+1}| < a|s_N| = a^{N+1-N}|s_N|$, hence the base case holds. Assume for some fixed n > N that $|s_n| < a^{n-N}|s_N|$. Since a > 0,

$$a|s_n| < a^{(n+1)-N}|s_N|$$

And since $|s_{n+1}| < a|s_n|$ for all n > N,

$$|s_{n+1}| < a|s_n| < a^{(n+1)-N}|s_N| \implies |s_{n+1}| < a^{(n+1)-N}|s_N|$$

Therefore the statement holds for all n > N. Note then that

$$0 \le |s_n| \le \alpha^{n-N} |s_N|, \forall n > N$$

Since 0 < a < 1, $a^{n-N}|s_N|$ converges to 0. By the squeeze theorem, $\lim |s_n| = 0$ hence $\lim s_n = 0$.

Part B

Proof. Assume that L>1 and let $t_n=\frac{1}{|s_n|}$. Note that then $\lim \left|\frac{t_{n+1}}{t_n}\right|=\frac{1}{L}$ when $L<\infty$ and 0 when $L=+\infty$. Therefore $\lim \left|\frac{t_{n+1}}{t_n}\right|<1$, which by part A means $\lim t_n=0$. By Theorem 9.10, $\lim s_n=+\infty$.

10.1

Empty means false.

	A	В	C	D	E	F
Increasing			✓			
Decreasing	✓					✓
Bounded	✓	✓		✓		✓

10.3

Proof. Let $K.d_1d_2d_3...$ be a decimal expansion of a real number. Note that for all

$$\frac{d_1}{10} + \frac{d_2}{10^2} + \ldots + \frac{d_n}{10^n} \le \frac{9}{10} + \frac{9}{10^2} + \ldots + \frac{9}{10^n} = 1 - \frac{1}{10^n} < 1$$

Proof. Let
$$K.d_1d_2d_3\dots$$
 be a decimal expansion of a real number. Note to $n\in\mathbb{N},$
$$\frac{d_1}{10}+\frac{d_2}{10^2}+\dots+\frac{d_n}{10^n}\leq \frac{9}{10}+\frac{9}{10^2}+\dots+\frac{9}{10^n}=1-\frac{1}{10^n}<1$$
 hence
$$\frac{d_1}{10}+\frac{d_2}{10^2}+\dots+\frac{d_n}{10^n}<1\implies K+\frac{d_1}{10}+\frac{d_2}{10^2}+\dots+\frac{d_n}{10^n}< K+1$$
 for all n . By the definition (s_n) , it follows that $s_n< K+1, \forall n\in\mathbb{N}$

for all n. By the definition (s_n) , it follows that $s_n < K+1, \forall n \in \mathbb{N}$

10.4

Both theorems rely on the completeness axiom to ensure the existence of a supremum which does not hold for \mathbb{Q} .

10.6

Part A

Proof. Let (s_n) be a sequence and assume that $|s_{n+1}-s_n|<2^{-n}$ for all $n\in\mathbb{N}$. Let $m,w\in\mathbb{N}$ and WLOG assume $m\geq w$. Note that $|s_m-s_w|=|s_m-s_{m-1}+s_{m-1}-s_{m-2}+\ldots+s_{w+1}-s_w|$

$$|s_m - s_w| = |s_m - s_{m-1} + s_{m-1} - s_{m-2} + \ldots + s_{w+1} - s_w|$$

which by triangle inequality

$$|s_m - s_w| \le |s_{m+1} - s_m| + |s_m - s_{m-1}| + \dots + |s_{w+1} - s_w| < 2^{-m} + 2^{1-m} + \dots + 2^{-w}$$

$$= \frac{1}{2^m} + \dots + \frac{1}{2^w}$$

$$= \frac{1}{2^m} \left(1 + \frac{1}{2} + \dots + \frac{1}{2^{w-m}} \right)$$

Since $1 + \frac{1}{2} + \ldots + \frac{1}{2^{w-m}} < 2$,

$$|s_m - s_w| < \frac{1}{2^m} \left(1 + \frac{1}{2} + \dots \frac{1}{2^{w-m}} \right) < \frac{1}{2^{w-1}}$$

Take $\epsilon>0$. Note that for any $n\in\mathbb{N},$ $n<2^n$ or equivalently $2^{-n}<\frac{1}{n}$ for all n. By the archimedean property, $\exists N_0$ such that $\frac{1}{N}<\epsilon$. Then $2^{-N}<\epsilon$. If m,w>N, then $\frac{1}{2^{m-1}}\leq \frac{1}{2^{-N}}$. Therefore

$$|s_m - s_w| < \frac{1}{2^{m-1}} \le \frac{1}{2^{-N}} < \epsilon$$

Therefore s_n is Cauchy and converges since all Cauchy sequences converge.

Part B

The result would not be true if we assume it is less than $\frac{1}{n}$. A key part of the proof is that the series $1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots$ has an upper bound. In the case of $\frac{1}{n}$, the series $1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}$ is not bounded and therefore it is not possible to obtain an N large enough that for any distance between m and n the difference $|s_m-s_n|$ stays below a fixed upper bound ϵ .

10.8

Proof. Note that

$$\sigma_{n+1} - \sigma_n = \frac{s_1 + \ldots + s_{n+1}}{n+1} - \frac{s_1 + \ldots + s_n}{n}$$

$$= \frac{(n+1)(s_1 + \ldots + s_{n+1})}{n(n+1)} - \frac{n(s_1 + \ldots + s_n)}{n(n+1)}$$

$$= \frac{(s_{n+1} - s_n) + (s_{n+1} - s_{n-1}) + \ldots + (s_{n+1} - s_1)}{n(n+1)}$$

Since s_n is increasing, $s_n \ge s_m \implies s_n - s_m \ge 0$ for all $n \ge m$, meaning $\ge \frac{0 + \ldots + 0}{n(n+1)} = 0$

Therefore $\sigma_{n+1} - \sigma_n \ge 0$ meaning $\sigma_{n+1} \ge \sigma_n$, hence σ_n is an increasing sequence.

10.11

Part A

Proof. First note that t_n is a decreasing sequence since t_{n+1} is t_n multiplied by a number between 0 and 1. Additionally, it is bounded above by 1 since it is decreasing and below by 0 since each successive term is positive and $t_1 > 0$. Therefore since t_n is a bounded monotonic sequence, it converges.

Part B

Intuitively, $t_n > 0.5$. By creating a desmos simulation, $t_{574} \approx 0.636$, and using Mathematica to solve the recurrence relation gives $\lim t_n = \frac{2}{\pi}$.

$$t_n = \frac{\left(\frac{1}{2}\right)_{n-1} \cdot \left(\frac{3}{2}\right)_{n-1}}{(1)_{n-1}^2}$$