Universidade de Évora

Compressão e Descompressão de imagens binárias

Teoria da Informação

10 de Janeiro de 2019

Autores: Diogo Rafael, 37859 Vasco Crespo, 37913

 $\begin{array}{c} Professor: \\ \text{Miguel Barão} \end{array}$

Introdução

Este é o trabalho final de Teoria de Informação que tem como objetivo fazer compressão e descompressão binária de um ficheiro .pbm(Portable Bitmap Format) sendo que a compressão vai ser feita para dentro de um ficheiro .txt utilizando a linguagem Python.

Para a **compressão**, o ficheiro .pbm é lido pelo programa e através do algoritmo LZW é então escrito num ficheiro diferente .txt tal como é feito também o calculo da entropia, da entropia condicional e do desempenho da compressão.

Para a **descompressão**, utilizamos o ficheiro .txt previamente comprimido e, novamente através do algoritmo LZW, efetuamos a descompressão e é escrito um ficheiro .pbm.

Algoritmo LZW

O algoritmo LZW é um algoritmo de compressão e descompressão que utiliza um dicionário com um alfabeto pré-definido, encontrando combinações desse alfabeto lendo o simbolo de uma certa posição(A, por exemplo) e próxima posição do ficheiro a comprimir(B, por exemplo).

Quando o próximo elemento já se encontra no dicionário(A), há uma inserção no dicionário do elemento atual mais o próximo elemento(A+A). Isto é executado até ao fim do ficheiro de modo a obter um ficheiro diferente, sendo este uma versão comprimida do primeiro utilizando o algoritmo. A descompressão é feita com o "inverso" deste processo, onde a partir dos índices do dicionário o ficheiro é descomprimido voltando à versão original.

Este algoritmo faz uma ompressão mais eficiente em ficheiros maiores.

Entrada:	а	a 0	ь 1	ab 3	aba 5	aa 2	
Saída:	0						
Palavra- Código		Seqüência		1599	Derivada da seqüência		
0		a		Т			
1		b		1	Inicial		
2		aa		1	0+a		
3		ab		Т	0 + b		
4		ba			1 + a		
5		aba		3 + a			
6		ab	aa	5+a			

compress.py

Neste programa é lido o ficheiro pbm na função **read_file(ficheiro)**, onde são ignoradas todas as linhas de comentário tal como as linhas que começam com "P". É adicionado a um array **new** toda a informação dessa imagem e a um array **size** o tamanho em linhas e colunas da informação contida na imagem.

Depois, é feito um novo array **compressed** onde vai ser inserida a compressão através do algoritmo LZW do ficheiro pbm—.

Finalmente, é escrita a compressão num ficheiro novo .txt(com o tamanho linha/coluna da compressão) e é calculada a entropia(condicional e normal) e o desempenho da compressão.

decompress.py

Neste programa é lido o ficheiro txt criado com o compress.py e é feito um novo array **compressed**, desta vez com os índices do dicionário feito no compress.py e com esses indices é feita a descompressão através de LZW novamente.

Entropia e Entropia Condicional

A entropia é uma medida de incerteza gerada por uma fonte, é calculada através da seguinte formula:

$$H(X) = E\left[\log_2 \frac{1}{p(x)}\right] = -\sum_{x \in \mathcal{X}} p(x) \log_2 p(x).$$

*Neste caso, o logaritmo tem base 2 porque a base é binária.

A entropia condicional é a entropia causada por uma variável sabendo a outra, sendo as duas variáveis aleatórias e é calculada através da seguinte formula:

$$H(Y|X) = -\sum_{x \in \mathcal{X}} p(x) \sum_{y \in \mathcal{Y}} p(y|x) \log_2 p(y|x)$$

Desempenho

O desempenho é a medida que quantifica a eficácia da compressão e é calculada através da seguinte formula:

$$\frac{\textit{New}-\textit{Old}}{\textit{Old}}*\mathbf{100}\%$$

^{*}Em que new é o tamanho novo do ficheiro após a compressão e old é o tamanho do ficheiro original

Conclusão

De ambos os processos, tanto na compressão tal como na descompressão conseguimos averiguar que para ficheiros mais pequenos o algoritmo LZW talvez não seja o mais apropriado pois apesar da sua compressão ser realizada com sucesso, o seu desempenho não é tao eficaz como num ficheiro grande, onde se pode verificar um desempenho muito melhor.