

### Université de Mons

Datawarehousing and datamining

# Travaux pratiques avec Weka

Auteur : Maxime De Wolf

12 mars 2018

### Table des matières

| 1 | Weka: Tutoriel                  |   |  |  |  |  |  |
|---|---------------------------------|---|--|--|--|--|--|
|   | 1.1 Questions 1.7.1.9 et 1.7.10 | 2 |  |  |  |  |  |
| 2 | Coll. Challenge 2000            | 9 |  |  |  |  |  |

### 1 Weka: Tutoriel

#### 1.1 Questions 1.7.1.9 et 1.7.10

Ces questions portent sur l'arbre de décision crée à partir du fichier *iris.arff*. Voici donc l'arbre de décision obtenu :



Figure 1 – Arbre de décision du dataset iris.arff

#### **Question 1.7.1.9**

Cette question consiste à évaluer la qualité de cet arbre (Figure 1) grâce à différentes options de tests. Ici, on effectuera ces tests une première fois avec le dataset complet et la  $2^e$  fois avec la technique 10-fold cross-validation. Nous comparons ensuite les résultats obtenus sur base des 2 confusion matrix:

| a  | b  | c  |                     |
|----|----|----|---------------------|
| 50 | 0  | 0  | a = Iris-setosa     |
| 0  | 49 | 1  | b = Iris-versicolor |
| 0  | 2  | 48 | c = Iris-virginica  |

| a  | b  | c  |                     |
|----|----|----|---------------------|
| 49 | 1  | 0  | a = Iris-setosa     |
| 0  | 47 | 3  | b = Iris-versicolor |
| 0  | 2  | 48 | c = Iris-virginica  |

(a) Dataset complet.

(b) 10-fold cross-validation.

FIGURE 2 - Confusion matrix obtenues grâce à deux méthodes de test différentes.

Nous remarquons que le test sur le dataset complet classifie correctement 98% des instances tandis que ce chiffre descend à 96% avec le test 10-fold cross-validation. Tester le modèle avec le dataset complet est une mauvaise idée car il donne une estimation optimiste de la qualité du modèle. En revanche, 10-fold cross-validation permet de se faire une bonne idée de la généralisation du modèle et offre donc une meilleure mesure de qualité.

#### Question 1.7.10

En observant la localisation de ces erreurs, nous remarquons que certaines instances de classe *Iris-Verginica* ont des valeurs d'attributs équivalentes à celles d'instance de classe *Iris-Versicolor*. Le modèle n'a donc aucune chance de les différencier si nous voulons éviter l'overfitting. D'autre part, nous remarquons que l'instance de classe *Iris-Setosa* qui a été mal identifier aurait dû être correctement classé selon l'arbre de décision final obtenu.

## 2 CoIL Challenge 2000