WHAT IS CLAIMED IS:

1. A compound having a structure according to Formula I:

$$R^2$$
 N
 R^5
 R^6
 R^6
 R^6
 R^6
 R^6
 R^6

3 wherein

4 a is either 0 or 1;

5 the dashed line represents a double bond between C* and N when a is 0;

R² is a member selected from (=O) and NR⁷R⁸;

R⁴ is a member selected from H, halogen, OR³, NR⁷R⁸, halogen, nitrile, and substituted and unsubstituted (C₁-C₅)alkyl;

R⁶ is a member selected from H, halogen, OR³, NR³R³, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted 3-to 7- membered cycloalkyl, substituted or unsubstituted 5- to 7- membered heterocycloalkyl, substituted or unsubstituted acyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl;

R⁷, R⁸, R⁵ and R¹ are members independently selected from H, OR³, NR³R³, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted or unsubstituted or unsubstituted 5- to 7- membered heterocycloalkyl, substituted or unsubstituted acyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl;

R³ is independently selected from H, substituted or unsubstituted alkyl and substituted or unsubstituted acyl;

wherein R⁷ and R⁸ together with the nitrogen to which they are joined optionally form a substituted or unsubstituted 5- to 7- membered ring;

wherein R⁸ and R⁵ together with the atoms to which they are joined optionally form a substituted or unsubstituted 5- to 7- membered ring;

wherein R⁵ and R⁶ together with the atoms to which they are joined optionally form a substituted or unsubstituted 5- to 7- membered ring; and wherein at least one member selected from R³, R⁵, R⁷, and R⁸, alone or together with the atom to which it is covalently bonded, is selected from carbamate and urea linkers.

- 1 2. The compound according to claim 1, wherein R² is selected from (=O), 2 -NH₂, and -NHOH.
- The compound according to claim 1, wherein R⁴ is selected from F, CN, -CCH, -CCMe, and CH₃.
- 1 4. The compound of claim 1, wherein R¹ comprises a hydroxyl moiety.
- The compound of claim 4, wherein R¹ comprises a saccharyl moiety.
- 1 6. The compound of claim 1, wherein R¹ is a structure according to
- 2 Formula II:

$$R^{11}$$
 $C^{a=--}C^{b}$
 R^{10}
 R^{9}
(II)

4 wherein

3

5

6

7

8

9

10

11

12

13

14

15

the dashed line represents a double bond between C^a and C^b;

R⁹, R¹⁰ and R¹¹ are members independently selected from H, -OH, -OR¹², -NH₂,

-NO₂, -SO₂NH₂, N₃, halogen, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted 3- to 7- membered cycloalkyl, substituted or unsubstituted 5- to 7- membered heterocycloalkyl, substituted or unsubstituted acyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl;

wherein R¹² is selected from an amino acid and a peptide comprising between

2 and 5 amino acids; wherein R⁹ and R¹⁰ together with the atoms to which they are joined optionally form a substituted or unsubstituted 5- to 7- membered ring; wherein R¹⁰ and R¹¹ together with the atoms to which they are joined optionally form a substituted or unsubstituted 5- to 7- membered ring.

The compound according to claim 6, wherein R⁹, R¹⁰ and R¹¹ are members independently selected from H, OH, (R¹³)₃SiO-, and a structure according to Formula III:

wherein each R¹³ is independently selected from substituted or unsubstituted alkyl, substituted or unsubstituted 4- to 7-membered cycloalkyl, substituted or unsubstituted 5- to 7-membered heterocycloalkyl, substituted or unsubstituted acyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl;

wherein more than one R¹³ together with the atoms to which they are joined optionally form a substituted or unsubstituted 5- to 7- membered ring; and wherein R¹⁶, R¹⁷, and R¹⁸ are independently selected from substituted and unsubstituted alkyl.

- 8. The compound of claim 7, wherein R^{16} , R^{17} , and R^{18} are ethyl.
- 9. The compound according to claim 1, wherein R³, R⁵, R⁷, and R⁸ are independently selected from H and a structure according to Formula IV:

$$R^{14}$$
 (IV)

wherein R¹⁴ is selected from substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted acyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl, an amino acid, and a peptide comprising between 2 and 5 amino acids;

wherein if R⁸ is a structure according to Formula IV, then R⁷ is H.

10. The compound according to claim 1, wherein R³, R⁵, R⁷, and R⁸ are independently selected from H and a structure according to Formula V:

$$R^{15}$$
 (V)

wherein R¹⁵ is selected from substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted acyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, an amino acid, and a peptide comprising between 2 and 5 amino acids;

wherein if R⁸ is a structure according to Formula V, then R⁷ is H.

1 11. The compound according to claim 9, wherein R^{14} is selected from 2 substituted or unsubstituted (C_4 - C_{12})alkyl, benzyl, 2-nitro-furanyl, retinol, α -tocopherol,

12. The compound according to claim 10, wherein R^{15} is selected from substituted or unsubstituted (C₄-C₁₂)alkyl, benzyl, 2-nitro-furanyl, retinol, α -tocopherol,

- 3 calciferol, vitamin K, cholesterol, CH₃, CCH₃, CCH₃, CCH₃, CCH₃, and CCH₃, CCH₃, and CCH₃, CCH₃, and CCH₃, CCH₃
- 1 The compound according to claim 11, wherein R^{14} is unsubstituted 2 (C_6 - C_{10})alkyl.
- 1 14. The compound according to claim 12, wherein R^{15} is unsubstituted 2 (C_6 - C_{10})alkyl.
- 1 15. The compound according to claim 9, wherein R² is selected from (=O), 2 -NH₂, and -NHOH.
- 1 16. The compound according to claim 10, wherein R² is selected from 2 (=O), -NH₂, and -NHOH.
- 1 The compound according to claim 9, wherein R⁴ is selected from -F, 2 -CN, -CCH, -CCMe, and -CH₃.
- 1 18. The compound according to claim 10, wherein R⁴ is selected from -F, 2 -CN, -CCH, -CCMe, and -CH₃.
- 1 19. The compound according to claim 11, wherein
- 2 R² is selected from (=O), -NH₂, and -NHOH; and
- R⁴ is selected from -F, -CN, -CCH, -CCMe, and -CH₃.
- 1 20. The compound according to claim 12, wherein
- 2 R² is selected from (=O), -NH₂, and -NHOH; and
- R⁴ is selected from -F, -CN, -CCH, -CCMe, and -CH₃.

1 21. A method for treating a viral disease comprising administering to a 2 subject in need of such treatment a therapeutically effective amount of a compound according 3 to claim 1. 1 22. The method of claim 21, wherein said compound is given orally. 1 23. The method of claim 22, wherein said compound is an enteric 2 formulation. 1 24. The method of claim 23, wherein said compound is delivered in an 2 osmotic oral delivery device. 1 25. The method of claim 21, wherein the viral disease is caused by a virus 2 selected from a RNA virus and a DNA virus. 1 26. The method of claim 25, wherein said virus is selected from a 2 retrovirus and a ribovirus. 1 27. The method of claim 26, wherein said retrovirus is selected from HIV 2 and Hepatitis B. 1 28. The method of claim 26, wherein said ribovirus is Hepatitis C. 1 29. A method for treating cancer comprising administering to a subject in 2 need of such treatment a therapeutically effective amount of a compound according to claim 1. 1 30. The method of claim 29, wherein said cancer is a hematopoietic 2 cancer. 1 31. A pharmaceutical composition comprising a pharmaceutically 2 acceptable carrier and a compound according to Formula I.