Ejercicio: Demostrar que I^{i}_{j} es un tensor (inciso a)

Enunciado y definición

Para un cuerpo continuo, el tensor de inercia mixto se define por

$$I^{i}{}_{j} \equiv \int_{V} \rho(\boldsymbol{r}) \left(\delta^{i}{}_{j} x^{k} x_{k} - x^{i} x_{j} \right) d\nu, \qquad x^{i} = \{x, y, z\}, \quad d\nu = dx \, dy \, dz. \tag{1}$$

Definiciones usadas (del VolumenUNO)

- 1. Delta de Kronecker: $\delta^p_{\ q}=1$ si p=q y 0 en otro caso.
- 2. Transformación cartesiano → cartesiano (rotación):

$$x^{i'} = A^{i'}{}_k x^k, \qquad x^k = \tilde{A}^k{}_{i'} x^{i'}, \qquad A^{i'}{}_k \tilde{A}^k{}_{j'} = \delta^{i'}{}_{j'}.$$

3. Componentes covariantes (índice abajo): $x_j = g_{jk}x^k$. En Euclídea $g_{jk} = \delta_{jk}$, y bajo rotaciones

$$x_{j'} = \tilde{A}^{q}_{j'} x_{q}$$
 (transforman con la inversa).

- 4. Invariancias de una rotación: $x^{k'}x_{k'} = x^kx_k$ (el producto interno r^2 no cambia) y $d\nu' = d\nu$.
- 5. Ley de transformación de un tensor (1,1):

$$T^{i'}_{j'} = A^{i'}_{p} \tilde{A}^{q}_{j'} T^{p}_{q}.$$

Demostración de que I^{i}_{j} es tensor

Queremos verificar que I_{j}^{i} satisface la ley anterior.

1. Escribir $I^{i'}_{j'}$ en el sistema rotado

Por (1),

$$I^{i'}{}_{j'} = \int_{V'} \rho(\mathbf{r}') \left(\delta^{i'}{}_{j'} x^{k'} x_{k'} - x^{i'} x_{j'} \right) d\nu'.$$

2. Sustituir las transformaciones básicas

Usamos:

$$x^{i'} = A^{i'}{}_{n}x^{p}, \qquad x_{i'} = \tilde{A}^{q}{}_{i'}x_{q}, \qquad \delta^{i'}{}_{i'} = A^{i'}{}_{n}\tilde{A}^{q}{}_{i'}\delta^{p}{}_{q},$$

y las invariancias $x^{k'}x_{k'}=x^kx_k,\ \mathrm{d}\nu'=\mathrm{d}\nu.$ Entonces

$$I^{i'}{}_{j'} = \int_{V} \rho \left[\left(A^{i'}{}_{p} \tilde{A}^{q}{}_{j'} \delta^{p}{}_{q} \right) x^{k} x_{k} - \left(A^{i'}{}_{p} x^{p} \right) \left(\tilde{A}^{q}{}_{j'} x_{q} \right) \right] d\nu.$$

Pregunta frecuente: ¿de dónde sale $x_{j'} = \tilde{A}^{q}{}_{j'}x_{q}$? Partimos de $x_{j'} = g_{j'i'}x^{i'}$ y de $x^{i'} = A^{i'}{}_{k}x^{k}$:

$$x_{j'} = g_{j'i'} A^{i'}{}_k x^k = (\tilde{A}^p{}_{j'} \tilde{A}^q{}_{i'} g_{pq}) A^{i'}{}_k x^k = \tilde{A}^p{}_{j'} g_{pq} \underbrace{\tilde{A}^q{}_{i'} A^{i'}{}_k}_{= \delta^q{}_k} x^k = \tilde{A}^p{}_{j'} g_{pq} x^q = \tilde{A}^q{}_{j'} x_q.$$

3. Reorganizar y factorizar constantes

 $A^{\,i'}{}_p,\tilde{A}^{\,q}{}_{j'},\delta^p{}_q$ no dependen del punto, así que salen de la integral:

$$I^{i'}{}_{j'} = A^{i'}{}_{p} \tilde{A}^{q}{}_{j'} \int_{V} \rho \left(\delta^{p}{}_{q} x^{k} x_{k} - x^{p} x_{q} \right) d\nu.$$

Pregunta frecuente: la "simplificación" paso a paso

- 1. Distribuyo: $(A\tilde{A}\delta) x^k x_k (Ax)(\tilde{A}x) = A\tilde{A}(\delta x^k x_k x^p x_q).$
- 2. Saco $A^{i'}_{p}\tilde{A}^{q}_{j'}$ de la integral por linealidad.
- 3. Observo que k es índice mudo (se contrae en $x^k x_k = r^2$) y que p, q quedan libres fuera de la integral.

4. Reconocer la definición original

El integral que queda es exactamente la definición de I_{q}^{p} :

$$I^{p}_{q} = \int_{V} \rho \left(\delta^{p}_{q} x^{k} x_{k} - x^{p} x_{q} \right) d\nu.$$

Por tanto,

$$\boxed{I^{i'}_{\ j'} = A^{i'}_{\ p} \, \tilde{A}^{\, q}_{\ j'} \, I^{\, p}_{\ q}}$$

que coincide con la ley de transformación de un tensor (1, 1).

Conclusión

Como $I^{i'}_{j'} = A^{i'}_{p} \tilde{A}^{q}_{j'} I^{p}_{q}$ para cualquier rotación cartesiana, I^{i}_{j} es un tensor mixto (1, 1). El paso clave es escribir $x^{i'}$ y $x_{j'}$ con A y \tilde{A} y factorizar las constantes para reconocer dentro de la integral la misma expresión que define I^{p}_{q} .