Chapter6

31202008881

Bao Ze an

Saturday 30th January, 2021

6.1

The system is a continuous linear time invariant system, its controllability matrix:

$$C = \begin{bmatrix} B & AB & A^2B & A^3B \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 3 \end{bmatrix}$$

 $\rho(C) = 3$, so the controllability matrix is full row rank, it is controllable. its observability matrix:

$$O = \begin{bmatrix} C \\ CA \\ CA^2 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 1 \\ -1 & -2 & -1 \\ 1 & 2 & 1 \end{bmatrix}$$

 $\rho(O) = 1 < 3$, so the system is not observable.

6.2

in the same way as in problem 6.1, but we can use the controllability index and observability index to simplify the calculation.

$$C_{\mu} = \left[egin{array}{ccc} B & AB \end{array}
ight] = \left[egin{array}{cccc} 0 & 1 & 1 & 0 \ 1 & 0 & 0 & 0 \ 0 & 0 & 2 & 0 \end{array}
ight]$$

the controllability matrix is full row rank, it is controllable.

$$O = \begin{bmatrix} C \\ CA \\ CA^2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 3 & -1 \\ 0 & -2 & 4 \end{bmatrix}$$

 $\rho(O) = 3$, so the system is observable.

it is not true, only if the matrix A is nonsingular, it will be true.

6.4

if the state equation is controllable ,so it must satisfy the PBH criterion.

$$rank \begin{bmatrix} A_{11} - \lambda I & A_{12} & B_1 \\ A_{21} & A_{22} - \lambda I & 0 \end{bmatrix} = n$$

thus just means $[A_{21}A_{22}-SI]$ has full row rank. $\iff A_{22},A_{21}$ controllable.

6.5

Let X_i be the voltage across the capacitor with capacitance.

$$\begin{cases} \dot{x_1} = u - x_1 \\ \dot{x_2} = -x_2 \Rightarrow \\ y = 2u - x_2 \end{cases} \Rightarrow$$

$$\dot{x} \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} x + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u$$

$$y = \begin{bmatrix} 0 & -1 \end{bmatrix} x + 2u$$

The state equation is in Jordan-form, There are two jordan blocks, both with oreder 1, and associated with eigenvalue -1, the entry of B corresponding to the second Jordan block is zero, so the state equation is not controllable.in the dual way, we can conclude it is not observable.

for the problem 6.1:

The controllability matrix:

$$C = \left[\begin{array}{ccc} B & AB & A^2B \end{array} \right] = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 3 \end{array} \right]$$

it is controllable, so its controllability index is $\mu=3$ because the system is not observable, so it is doesn't have a observability index.

for problem 6.2: The controllability matrix:

$$C = \left[\begin{array}{cccc} B & AB & \cdots \end{array} \right] = \left[\begin{array}{ccccc} 0 & 1 & 1 & 0 & \cdots \\ 1 & 0 & 0 & 0 & \cdots \\ 0 & 0 & 2 & 0 & \cdots \end{array} \right]$$

because $Ab_2 = [0\ 0\ 0]'$, so the controllability indices are 2,1,so the controllability index is $\mu = max(\mu_1, \mu_2) = 2$ The system is observable, and the matrix C's row rank is 1,so the observability index is v = 3.

6.7

The controllability index is 1.

6.8

The controllability matrix is:

$$C = \left[\begin{array}{cc} B & AB \end{array} \right] = \left[\begin{array}{cc} 1 & 3 \\ 0 & 3 \end{array} \right]$$

 $\rho(C) = 1$, take a canonical decomposition

$$P^{-1} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} P = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}$$

$$PAP^{-1} = \begin{bmatrix} 3 & 4 \\ 0 & -5 \end{bmatrix} PB = \begin{bmatrix} 1 \\ 0 \end{bmatrix} CP^{-1} = \begin{bmatrix} 2 & 1 \end{bmatrix}$$

$$\dot{\bar{x}} = PAP^{-1}\bar{x} + PBu$$

$$y = CP^{-1}\bar{x}$$

so the reduced controllable equation is:

$$\dot{\bar{x}}_c = 3\bar{x}_c + u$$
$$y = 2\bar{x}_c$$

The reduced equation is observable.

6.9

The controllable and observable equation is y = 2u, none of the states are controllable and observable.

6.10

The state equation is in Jordan-form. using the corollary 6.8, we can conclude that x_3 is not controllable, we rearrange the equation as:

$$\begin{bmatrix} \dot{x_1} \\ \dot{x_2} \\ \dot{x_4} \\ \dot{x_5} \\ \dot{x_3} \end{bmatrix} = \begin{bmatrix} \lambda_1 & 1 & 0 & 0 & 0 \\ 0 & \lambda_1 & 0 & 0 & 1 \\ 0 & 0 & \lambda_2 & 1 & 0 \\ 0 & 0 & 0 & \lambda_2 & 0 \\ 0 & 0 & 0 & 0 & \lambda_1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_4 \\ x_5 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} u$$

$$y = \begin{bmatrix} 0 & 1 & 0 & 1 & 1 \end{bmatrix} x$$

thus we can reduce the equation as:

$$\begin{bmatrix} \dot{x_1} \\ \dot{x_2} \\ \dot{x_4} \\ \dot{x_5} \end{bmatrix} = \begin{bmatrix} \lambda_1 & 1 & 0 & 0 \\ 0 & \lambda_1 & 0 & 0 \\ 0 & 0 & \lambda_2 & 1 \\ 0 & 0 & 0 & \lambda_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_4 \\ x_5 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix} u$$
$$y = \begin{bmatrix} 0 & 1 & 0 & 1 \end{bmatrix} x$$

from the output equation, we can easily find that state x_1 and x_4 is not observable.

$$\begin{bmatrix} \dot{x_2} \\ \dot{x_5} \\ \dot{x_1} \\ \dot{x_4} \end{bmatrix} = \begin{bmatrix} \lambda_1 & 0 & 0 & 0 \\ 0 & \lambda_2 & 0 & 0 \\ 1 & 0 & \lambda_1 & 0 \\ 0 & 1 & 0 & \lambda_2 \end{bmatrix} \begin{bmatrix} x_2 \\ x_5 \\ x_1 \\ x_4 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} u$$
$$y = \begin{bmatrix} 1 & 1 & 0 & 0 \end{bmatrix} x$$

so the controllable and observable equation is:

$$\dot{x} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} x + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u$$

$$y = \begin{bmatrix} 1 & 1 \end{bmatrix} x$$

6.11

Select an arbitrary Q_2 such that $[Q_1 \ Q_2]$ is nonsingular, define

$$\left[\begin{array}{c} P_1 \\ P_2 \end{array}\right] = \left[\begin{array}{cc} Q_1 & Q_2 \end{array}\right]^{-1}$$

thus

$$\left[\begin{array}{c} P_1 \\ P_2 \end{array}\right] \left[\begin{array}{cc} Q_1 & Q_2 \end{array}\right] = \left[\begin{array}{cc} P_1Q_1 & P_1Q_2 \\ P_2Q_1 & P_2Q_2 \end{array}\right] = \left[\begin{array}{cc} I_{n_1} & 0 \\ 0 & I_{n-n_1} \end{array}\right]$$

we know $P_2Q_1=0$ and Q_1 consists of all linearly indepedent columns of

$$\left[\begin{array}{cccc} B & AB & \cdots & A^{n-1}B \end{array}\right]$$

we can conclude that $P_2B=0$ and $P_2AQ_1=0$, let consider the transformation

$$\dot{x} = \begin{bmatrix} P_1 \\ p_2 \end{bmatrix} x$$

$$\bar{A} = \begin{bmatrix} P_1 \\ P_2 \end{bmatrix} A \begin{bmatrix} Q_1 & Q_2 \end{bmatrix} = \begin{bmatrix} P_1 A Q_1 & P_1 A Q_2 \\ P_2 A Q_1 & P_2 A Q_2 \end{bmatrix}$$

$$\bar{B} = \begin{bmatrix} P_1 \\ P_2 \end{bmatrix} B = \begin{bmatrix} P_1 B \\ P_2 B \end{bmatrix}$$

$$\bar{C} = C \begin{bmatrix} Q_1 & Q_2 \end{bmatrix} = \begin{bmatrix} C Q_1 & C Q_2 \end{bmatrix}$$

Because $P_2B = 0$ and $P_2AQ_1 = 0$, the equation can be reduced to the controllable equation:

$$\dot{\bar{x}}_1 = P_1 A Q_1 \bar{x}_1 + P_1 B u$$
$$y = C Q_1 \bar{x}_1 + D u$$

6.12

Let P be a unit-matrix, take elementary row operation to tranformate Q_1 inducto

$$PQ_1 = \left[\begin{array}{c} I_{n_1} \\ 0 \end{array} \right]$$

The first n_1 row of P is P_1 .

consider the n-dimensional state equation:

$$\dot{x} = Ax + Bu$$

$$u = Cx + Du$$

The rank of its observability matrix is assumed to be $n_2 < n$.Let P_2 be an n_2xn matrix whose rows are any n_2 linearly indepedent rows of the observability matrix .Let Q_2 be an nxn_2 matrix such that $P_2Q_2 = I_{n_2}$ where I_{n_2} is the unit matrix of order n_2 , the following n_2 -dimensional state equation

$$\begin{cases} \dot{\bar{x_2}} = P_2 A Q_2 \bar{x_2} + P_2 B u \\ \bar{y} = C Q_2 \bar{x_2} + D u \end{cases}$$

is observable and has the same transfer matrix as the original state equation.

6.14

There are three Jordan blocks, with order 2,1 and 1 associated with 2 and two Jordan blocks, with order 2,1 associated with 1. The entry of B corresponding to the last row of the the first three block are [2,1,1],[1,1,1] and [3,2,1], and they are linearly indepedent .The entry of B corresponding to the last row of the second two Jordan block are [1,0,1] and [1,0,0], they are also linearly indepedent ,so the Jordan-form state equation is controllable.

unforately, The entry of C corresponding to the first column of the first three Jordan block are [2, 1, 0]', [1, 1, 1]' and [3, 2, 1]', but they are linearly depedent. so the Jordan-form state equation is not observable.

6.15

if required Jordan-form state equation is controllable, only if the $[b_{21} \ b_{22}]$, $[b_{41} \ b_{42}]$ and $[b_{51} \ b_{52}]$ is linearly indepedent, this is obviously impossible. so it is not impossible to find a set of b_{ij} such that the state equation is controllable, but, we can find a set of c_{ij} such that the state equation is observable, just make the

$$\begin{bmatrix} c_{11} & c_{13} & c_{15} \\ c_{21} & c_{23} & c_{25} \\ c_{31} & c_{33} & c_{35} \end{bmatrix}$$

is nonsingular.

Take an equivalence transformation $,\bar{x}=Px$

$$P = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0.5 & -0.5j & 0 & 0 \\ 0 & 0.5 & 0.5j & 0 & 0 \\ 0 & 0 & 0 & 0.5 & -0.5j \\ 0 & 0 & 0 & 0.5 & 0.5j \end{bmatrix}$$

$$\bar{A} = PAP^{-1} = \begin{bmatrix} \lambda_1 & 0 & 0 & 0 & 0 \\ 0 & \alpha_1 + j\beta_1 & 0 & 0 & 0 \\ 0 & 0 & \alpha_1 - j\beta_1 & 0 & 0 \\ 0 & 0 & 0 & \alpha_2 + j\beta_2 & 0 \\ 0 & 0 & 0 & 0 & \alpha_2 - j\beta_2 \end{bmatrix}$$

$$\bar{B} = PB = \begin{bmatrix} b_1 \\ 0.5b_{11} - 0.5b_{12}j \\ 0.5b_{21} - 0.5b_{22}j \\ 0.5b_{21} + 0.5b_{22}j \end{bmatrix}$$

$$\bar{C} = CP^{-1} = \begin{bmatrix} c_1 & c_{11} + jc_{12} & c_{11} - jc_{12} & c_{21} + jc_{22} & c_{21} - jc_{22} \end{bmatrix}$$

The equivalence transformation doesn't change the controllability and observability. for:

$$\dot{\bar{x}} = \bar{A}\bar{x} + \bar{B}u$$

$$u = \dot{C}\bar{x}$$

it is controllable $\iff b_1 \neq 0, b_{i1} \neq 0 \text{ or } b_{i2} \neq 0 \text{ (for i=1,2)}$ it is observable $\iff c_1 \neq 0, c_{i1} \neq 0 \text{ or } c_{i2} \neq 0 \text{ (for i=1,2)}$

6.17

Let x_1, x_2 be the states and x_3 can be expressed by x_1, x_2 , so the two-dimensional state equation is :

$$\begin{cases} y = -x_1 - x_2 \\ \dot{x}_2 = -3(\dot{x}_1 + \dot{x}_2) \\ \frac{u + x_1}{2} + 2\dot{x}_1 = \dot{x}_2 \end{cases}$$

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -\frac{11}{2} & 0 \\ \frac{3}{22} & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} -\frac{2}{11} \\ \frac{3}{22} \end{bmatrix} u$$

$$y = \left[\begin{array}{cc} -1 & -1 \end{array} \right] \left[\begin{array}{c} x_1 \\ x_2 \end{array} \right]$$

The controllability matrix:

$$C = \begin{bmatrix} -\frac{2}{11} & -\frac{2}{11} \times \left(-\frac{2}{11}\right) \\ \frac{3}{22} & \frac{3}{22} \times \left(-\frac{2}{11}\right) \end{bmatrix}$$

it is easily to see that $\rho(c)=1<2$, it is not controllable. The three-dimensional state equations: from $x_3=-x_1-x_2$, we can get $\dot{x_3}=-\dot{x_1}-\dot{x_2}=\frac{1}{22}x_1+\frac{1}{22}u$

$$\begin{bmatrix} \dot{x_1} \\ \dot{x_2} \\ \dot{x_3} \end{bmatrix} = \begin{bmatrix} -\frac{11}{2} & 0 & 0 \\ \frac{3}{22} & 0 & 0 \\ \frac{1}{22} & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} -\frac{2}{11} \\ \frac{3}{22} \\ \frac{1}{22} \end{bmatrix} u$$

$$y = \left[\begin{array}{ccc} 0 & 0 & 1 \end{array} \right] \left[\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array} \right]$$

6.18

The voltage across the 1-F capacitor number 1 is assigned x_1 , then its current is $\hat{x_1}$,the voltage across the other 1-F capacitor is assigned x_2 ,then its current is $\hat{x_2}$,the current through the 1-H inductor is assigned as x_3 , then its voltage is $\hat{x_3}$

According to the Kirchhoff's current law and Kirchhoff's voltage law, we can get the equation

following:

$$\begin{cases} \dot{x_1} = x_1 + u \\ \dot{x_2} = -x_3 + u \\ \dot{x_3} = x_2 - x_3 \\ y = x_2 \end{cases}$$

Rewrite them in matrix form:

$$\begin{bmatrix} \dot{x_1} \\ \dot{x_2} \\ \dot{x_3} \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} u$$
$$y = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

its controllability matrix:

$$C = \left[\begin{array}{ccc} B & AB & A^2B \end{array} \right] = \left[\begin{array}{ccc} 1 & -1 & 1 \\ 1 & 0 & -1 \\ 0 & 1 & -1 \end{array} \right]$$

 $\rho(C) = 3$, it is have full row rank, so the state equation is controllable. its controllability matrix is:

$$O = \left[\begin{array}{c} C \\ CA \\ CA^2 \end{array} \right] = \left[\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 1 \end{array} \right]$$

 $\rho(O) = 2 < 3$, so the state equation is not observable. The RC loop doesn't have influence on the current source, the RC loop can be regarded as a wire, so the response of x_1 will not affect the output of the network so the network is not observable.

6.19

Let u(t) is piecewise constant, that is to say, the input changes values only at discrete-time instants. we get the discrete-time equation without the approximation:

$$x[k+1] = A_d x[k] + B_d u[k]$$
$$y[k] = C_d x[k] + D_d u[k]$$

where $A_d = e^{AT}, B_d = (\int_0^T e^{A\tau} d\tau) B, C_d = C, D_d = D$ when T = 1:

$$A_d = e^A = \begin{bmatrix} e^{-1}(\cos 1 + \sin 1) & e^{-1}\sin 1 \\ -2e^{-1}\sin 1 & e^{-1}(\cos 1 - \sin 1) \end{bmatrix}$$

Because A is nonsingular, so we can compute the

$$B_d = A^{-1}(A_d - I)B = \begin{bmatrix} 1.0491 \\ -0.1821 \end{bmatrix}$$
$$C_d = C = \begin{bmatrix} 2 & 3 \end{bmatrix}$$

thus the discrete-time equation:

$$x[k+1] = \begin{bmatrix} e^{-1}(\cos 1 + \sin 1) & e^{-1}\sin 1 \\ -2e^{-1}\sin 1 & e^{-1}(\cos 1 - \sin 1) \end{bmatrix} x[k] + \begin{bmatrix} 1.0491 \\ -0.1821 \end{bmatrix} u[k]$$
$$y[k] = \begin{bmatrix} 2 & 3 \end{bmatrix} x[k]$$

in the same way, for $T = \pi$:

$$x[k+1] = \begin{bmatrix} -0.0432 & 0 \\ 0 & -0.0432 \end{bmatrix} x[k] + \begin{bmatrix} 1.5648 \\ -1.0432 \end{bmatrix} u[k]$$
$$y[k] = \begin{bmatrix} 2 & 3 \end{bmatrix} x[k]$$

for the original state equation (continuous), its controllability matrix:

$$C = \left[\begin{array}{cc} B & AB \end{array} \right] = \left[\begin{array}{cc} 1 & 1 \\ 1 & -4 \end{array} \right]$$

 $\rho(C)=2$, so the continuous system is controllable. its observability matrix:

$$O = \left[\begin{array}{c} C \\ CA \end{array} \right] = \left[\begin{array}{cc} 2 & 3 \\ -6 & -4 \end{array} \right]$$

 $\rho(O) = 2$, so the continous system is observable.

its eigenvalues are: $\lambda_1 = -1 + i, \lambda_2 = -1 - i$

the sufficient condition: $|Im[\lambda_1 - \lambda_2]| \neq \frac{2\pi m}{T}$ thus to say: $2 \neq \frac{2\pi m}{T}, T \neq \pi m$

for sampling period T=1:

it satisfy the condition, so it is controllable and observable.

for sampling period $T=\pi$:

it doesn't satisfy the condition, and it is a SISO problem, so it is also a necessary condition. so it is not controllable and observable.

6.20

This is a LTV system, using the theorem $6.12, M_0(t) = B(t), M_1(t) = -A(t)M_0(t) + \frac{d}{dt}M_0(t)$ we have:

$$\left[\begin{array}{cc} M_0(t) & M_1(t) \end{array}\right] = \left[\begin{array}{cc} 0 & -1 \\ 1 & -t \end{array}\right]$$

for any $t,rank[M_0(t) \ M_1(t)] = 2$, so the state eqution is controllable.

in the same way, $N_0(t) = C(t)$, and $N_1(t) = N_0(t)A(t) + \frac{\mathrm{d}}{\mathrm{d}t}N_0(t)$ because the theorem 6.12 is not a necessary and sufficient condition, but we can extend the therom 6.012

$$\begin{bmatrix} N_0(t) \\ N_1(t) \\ N_2(t) \\ \vdots \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & t \\ 0 & t^2 \\ \vdots & \end{bmatrix}$$

there doesn't exist a t make the

$$rank \left[egin{array}{c} N_0(t) \\ N_1(t) \\ dots \end{array}
ight] = 2$$

so the system is not observable.using the theorem 6.011, we can also check the observability. we can compute the solution of $x_1(t), x_2(t)$

$$\begin{cases} x_1(t) = \int_0^t x_2(0)e^{0.5t^2}dt + x_1(0) \\ x_2(t) = x_2(0)e^{0.5t^2} \end{cases}$$

let

$$\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} or \begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

we can get the fundamental matrix:

$$\begin{bmatrix} 1 & \int_0^t e^{0.5t^2} dt \\ 0 & e^{0.5t^2} \end{bmatrix}$$

so, from the fundamental matrix, we can easily get the state transition matrix:

$$\phi(t, t_0) = \begin{bmatrix} 1 & e^{-0.5t_0^2} \int_0^t e^{0.5\tau^2} d\tau \\ 0 & e^{0.5(t^2 - t_0^2)} \end{bmatrix}$$

we can get:

$$C\phi(\tau, t_0) = \begin{bmatrix} 0 & e^{0.5(\tau^2 - t_0^2)} \end{bmatrix}$$

so the

$$W_o(t_0, t_1) = \int_{t_0}^{t_1} \left[\begin{array}{cc} 0 & 0 \\ 0 & e^{\tau^2 - t_0^2} \end{array} \right] d au$$

it is singular, so it is not observable.

This is a LTV system, using the theorem $6.12, M_0(t) = B(t), M_1(t) = -A(t)M_0(t) + \frac{d}{dt}M_0(t)$ we have:

$$\left[\begin{array}{cc} M_0(t) & M_1(t) \end{array}\right] = \left[\begin{array}{cc} 1 & 0 \\ e^{-t} & 0 \end{array}\right]$$

for this sufficient condition, we can't check its controllability. its state transition matrix is:

$$\Phi(t, t_0) = \begin{bmatrix} 1 & 0 \\ 0 & e^{-(t - t_0)} \end{bmatrix}$$

we can get:

$$\Phi(t_1, \tau)B(\tau) = \begin{bmatrix} 1 \\ e^{-t_1} \end{bmatrix}$$

$$W_c(t_0, t_1) = \int_{t_0}^{t_1} \begin{bmatrix} 1 & e^{-t_1} \\ e^{-t_1} & e^{-2t_1} \end{bmatrix} d\tau = \begin{bmatrix} t_1 - t_0 & e^{-t_1}(t_1 - t_0) \\ e^{-t_1}(t_1 - t_0) & e^{-2t_1}(t_1 - t_0) \end{bmatrix}$$

the determinant of $W_c(t_0, t_1)$ is zero, so it is singular, so the state euqation is not controllable. in the same way, $N_0(t) = C(t)$, and $N_1(t) = N_0(t)A(t) + \frac{\mathrm{d}}{\mathrm{d}t}N_0(t)$

$$\left[\begin{array}{c} N_0(t) \\ N_1(t) \end{array}\right] = \left[\begin{array}{cc} 0 & e^{-t} \\ 0 & -2e^{-t} \end{array}\right]$$

there doesn't exist a t make the

$$rank \left[\begin{array}{c} N_0(t) \\ N_1(t) \end{array} \right] = 2$$

theorem 6.012 can not check the observability. so we use the theorem 6.011,

$$C(\tau)\Phi(\tau,t_0) = \left[\begin{array}{cc} 0 & e^{-(2\tau-t_0)} \end{array} \right]$$

$$W_o(t_0, t_1) = \int_{t_0}^{t_1} \begin{bmatrix} 0 & 0 \\ 0 & e^{-4\tau - 2t_0} \end{bmatrix} d\tau$$

it is easily to find the $W_o(t_0, t_1)$ is singular, so the state equation is not observable.

6.22

Let X(t) be a fundamental matrix of $\dot{x} = A(t)x$ we know $X^{-1}(t)X(t) = I$, taking differentiation on both sides of the equation, we can get

$$\frac{\mathrm{d}}{\mathrm{d}t}X^{-1}(t) = -X^{-1}(t)A(t)$$

in the same way, we suppose:

$$\dot{x(t)} = -A(t)'x(t)$$

Let $X_1(t)$ be a fundamental matrix of $\dot{x(t)} = -A'(t)x(t)$ we can easily find that

$$\frac{\mathrm{d}}{\mathrm{d}t}X_1(t) = -A'(t)X_1(t)$$

$$\frac{\mathrm{d}}{\mathrm{d}t}X_1'(t) = -X_1'(t)A(t)$$

we can conclude

$$\begin{split} X_1'(t) &= X^{-1}(t) \\ (X_1'(t))^{-1} &= X(t) \\ \Phi(t,\tau) &= X(t)X^{-1}(\tau) \\ \Phi_1(t,\tau) &= X_1(t)X_1^{-1}(\tau) \\ \Phi_1'(t,\tau) &= (X_1'(t))^{-1}X'(t) = X(\tau)X^{-1}(t) = \Phi(\tau,t) \end{split}$$

if (A(t), B(t)) is controllable, if and only if:

$$W_c(t_0, t_1) = \int_{t_0}^{t_1} \Phi(t, \tau) B(\tau) B'(\tau) \Phi'(t, \tau) d\tau$$

is nonsingular. we already know that $\phi(t,t_0)$ is nonsingular.

$$W_c(t_0, t_1) = \Phi(t, t_0) \int_{t_0}^{t_1} \Phi(t_0, \tau) B(\tau) B'(\tau) \Phi'(t_0, \tau) d\tau \Phi'(t, t_0)$$

so we just need

$$W_c(t_0, t_1) = \int_{t_0}^{t_1} \Phi(t_0, \tau) B(\tau) B'(\tau) \Phi'(t_0, \tau) d\tau$$

is nonsingular. for (-A'(t), B'(t)) is observable at t_0 , if and only if:

$$W_c(t_0, t_1) = \int_{t_0}^{t_1} \Phi_1'(\tau, t_0) B(\tau) B'(\tau) \Phi_1(\tau, t_0) d\tau$$

that is just

$$W_c(t_0, t_1) = \int_{t_0}^{t_1} \Phi(t_0, \tau) B(\tau) B'(\tau) \Phi'(t_0, \tau) d\tau$$

which is equal to the condition of (A(t), B(t)) is controllable.

6.23

For a time-invariant system, (A, B) is controllable, its controllability matrix:

$$C = \left[\begin{array}{cccc} B & AB & A^2B & \cdots & A^{n-1}B \end{array} \right]$$

must be full row rank. for (-A, B) is controllable, its controllability matrix is:

$$C_{1} = \begin{bmatrix} B & -AB & A^{2}B & -A^{3}B & \cdots & A^{n-1}B \end{bmatrix} = \begin{bmatrix} B & AB & A^{2}B & \cdots & A^{n-1}B \end{bmatrix} \begin{bmatrix} I & 0 & 0 & \cdots & 0 \\ 0 & -I & 0 & \cdots & 0 \\ 0 & 0 & I & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{bmatrix}$$

because the matrix:

$$\begin{bmatrix} I & 0 & 0 & \cdots & 0 \\ 0 & -I & 0 & \cdots & 0 \\ 0 & 0 & I & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{bmatrix}$$

is nonsingular, so C and C_1 have same rank. it is not true for time-varying system. for example, the system in problem 6.21 it is not controllable, but (-A(t), B(t)) is controllable.