Department of Mathematics and Computer Science

Chulalongkorn University

2301365 Algorithm Designs and Analysis

Fall 2023

Lab #10

Name _____ Student ID _____

NP-Complete & Approximation Algorithm

1. จงเขียนโปรแกรมเพื่อหาคำตอบว่าในกราฟ G=(V,E) ที่กำหนดให้ มีเซ็ตของจุดคลุมกราฟ W หรือไม่ โดยที่ $|W|=K,W\subseteq V$ และสำหรับเส้นเชื่อม (a,b) ทุกเส้น a เป็นสมาชิกของ W หรือ b เป็นสมาชิกของ W

รูปแบบที่ต้องการ

 $\frac{\partial u \psi \sigma}{\partial u}$ ประกอบด้วย n+1 บรรทัด บรรทัดที่หนึ่ง แสดงค่า K

บรรทัดที่สองถึงบรรทัดที่ n+1 แสดง adjacency matrix ขนาด n imes n

เอาท์พุต ประกอบด้วย p+1 บรรทัด บรรทัดที่หนึ่งแสดงคำตอบ Yes ถ้าสามารถหาเซ็ต W ได้ และคำตอบ No กรณีที่ไม่มีเซ็ตดังกล่าว บรรทัดที่สองถึงบรรทัดที่ p+1 แสดงคำตอบทั้งหมด p คำตอบ แต่ละคำตอบแสดงสมาชิกทั้งหมดของ เซ็ต W

ตัวอย่าง

Input	Output
3	Yes
0 1 1 0 0	1 2 5
10110	1 3 4
1 1 0 0 1	2 3 4
0 1 0 0 1	2 3 5
0 0 1 1 0	

Input	Output
2	No
0 1 1 0 0	
10110	
1 1 0 0 1	
0 1 0 0 1	
00110	

2. จงเขียนโปรแกรมโดยใช้ขั้นตอนวิธีเชิงประมาณ (approximation algorithm) เพื่อหาเซ็ตของจุดคลุมกราฟ W ที่ เล็กที่สุดบนกราฟ G=(V,E) ใดๆ

รูปแบบที่ต้องการ

 $\frac{\partial u \psi \sigma}{\partial u}$ ประกอบด้วย n บรรทัด

บรรทัดที่หนึ่งถึงบรรทัดที่ n แสดง adjacency matrix ขนาด n imes n

<u>เอาท์พุต</u> ประกอบด้วย 2 บรรทัด

บรรทัดที่หนึ่งแสดงสมาชิกทั้งหมดของ Wบรรทัดที่สองแสดง |W|

<u>ตัวอย่าง</u>

Input	Output
0 1 1 0 0	2 3 4 5
10110	4
1 1 0 0 1	
0 1 0 0 1	
00110	

<u>หมายเหตุ</u> นิสิตอาจได้คำตอบอื่นที่ไม่ตรงกับตัวอย่าง

3. จงเขียนโปรแกรมเพื่อ reduce ปัญหา 3-SAT ให้เป็นปัญหาจุดคลุมกราฟ

รูปแบบที่ต้องการ

 $\frac{\partial uwn}{\partial u}$ ประกอบด้วย m+1 บรรทัด

บรรทัดที่หนึ่ง แสดง $m{m}$ แทนจำนวนข้อความ (clause)

บรรทัดที่สองถึงบรรทัดที่ m+1 แต่ละบรรทัดแสดงสัญพจน์ (literal) สามตัวที่ปรากฏในแต่ละข้อความ

<u>เอาท์พูต</u> ประกอบด้วย k+2 บรรทัด

บรรทัดที่หนึ่ง แสดงค่า k แทนจำนวนจุดทั้งหมดบนกราฟ

บรรทัดที่สอง แสดงค่า K แทนจำนวนจุดทั้งหมดในเซ็ตของจุดคลุมกราฟ

บรรทัดที่สามถึงบรรทัดที่ k+2 แสดง adjacency matrix ขนาด k imes k

โดย k=2n+3m และ K=n+2m เมื่อ n เป็นจำนวนตัวแปร (variable) ทั้งหมด

ตัวอย่าง

Input	Output
1	9
1 -2 3	5
	010000100
	100000000
	000100000
	001000010
	000001001
	000010000
	100000011
	000100101
	000010110

<u>หมายเหตุ</u> 1. 1 -2 3 ในบรรทัดที่สองของอินพุตแทนข้อความ $(x_1 + \overline{x_2} + x_3)$

2. สามารถนำเอาต์พุตบรรทัดที่สองถึงบรรทัดที่ k+2 ไปหาคำตอบด้วยโปรแกรมในข้อ 1.