University of Iowa Department of CS Homework 1 Fall 2024

CS 3330

Assigned: Friday 11:59 PM, August 30, 2024 **Due:** Friday 11:59 PM, September 6, 2024

Reading: Kleinberg and Tardos, Chapter 1.1, Slides of Week 1

1. [10 points] [A Human Compiler] Show the execution of the Gale-Shapley algorithm presented in 01StableMatching (including proposal, acceptance, rejections, and switches) on input with 3 hospitals and 3 students having the following preferences:

$$h_1: s_1 > s_2 > s_3$$
 $h_2: s_2 > s_1 > s_3$ $h_3: s_2 > s_1 > s_3$
 $s_1: h_2 > h_3 > h_1$ $s_2: h_1 > h_3 > h_2$ $s_3: h_1 > h_2 > h_3$

Let us suppose that whenever your algorithm has a choice of "free" hospital to pick for making a proposal, it picks the one with the **highest** index. Hence, h_3 will make the first proposal.

- 2. [Gale-Shapley Execution Times]: Consider the Gale-Shapley algorithm discussed in class.
 - (a) [15 points] Show that there is an input with n hospitals and n med-school students to the Gale-Shapley algorithm that forces it to execute $\Omega(n^2)$ iterations of the **while**-loop. Describe both the input and the algorithm execution.
 - (b) [15 points] Prove that there is an input with n hospitals and n med-school students to the Gale-Shapley algorithm where the algorithm terminates after only O(n) iterations of the **while**-loop. Describe both the input and the algorithm execution.
- 3. [Matched/Unmatched]: Consider a stable matching problem instance where a medical school m_1 prefers a student s_1 the most among all the students. Similarly, the student s_1 prefers the medical school m_1 the most among the medical schools.
 - (a) [10 points] Prove that the matching produced by the Gale-Shapley Algorithm always includes (s_1, m_1) pair.
 - (b) [10 points] Argue that any matching S which does not include the (s_1, m_1) pair is unstable.
 - (c) [20 points] Now consider the opposite situation where m_1 prefers the student s_1 the least among all students and s_1 also prefers m_1 the least among all medical schools. Prove that the following statement is **false**:

Any matching S which pairs m_1 and s_1 is unstable.

- 4. [Stable Teammates Problem]: Let us consider the problem of creating teams for a 3v3 pickup basketball (where each team consists of 3 players) event. Let us assume a total of $3 \times n$ players, where n is an integer greater than 2. We aim to test if we can use the ideas from the Gale-Shapley algorithm to create a 'stable team matching'. First, we ask all the players to rank the remaining players according to their preferences.
 - (a) [10 points] Design a variant of the Gale-Shapley algorithm, which leverages the preference list to produce a set of teams, each consisting of 3 players. Provide concise and clear pseudocode.

(b) [10 points] Now, given a matching \mathcal{M} of a set of teams (each consisting of 3 players), let us define an unstable team as a tuple $\mathcal{T}=(a,b,c)$ of players, where all a,b, and c, prefer both teammates in T than both the teammates they are assigned in \mathcal{M} . Now, construct an input of 9 players (including their preferences) to the Stable Teammates problem for which there is a matching with an unstable team. Show the unstable team.