Data-driven Analytical Models for Porosity Detection in Thermal Melt Pool Images

Pius Gyamenah

Keval Parmar

Karteek Menda

Outline

- Objectives
- Data Collection (Experimental Design)
- Dataset Description
- Data Visualization
- Methodology
- Hyperparameter Tuning/Optimization
- User Interface
- Future Work

Objectives

- Visualize thermal porosity characterization data of Additively Manufactured Ti–6Al–4V Thin-walled Structure via Laser Engineered Net Shaping.
- Perform feature extraction using a pre-trained VGG16 model to extract meaningful features from the images after conversion from csv
- Train machine learning algorithms (Random Forest and XGBoost) to detect the presence of porosity and estimate porosity size.
- Conduct a Random Search hyperparameter search to optimize the performance of the machine learning models.
- Evaluate the effectiveness of the trained models in accurately detecting porosity and estimating porosity size in the manufactured structures.
- Provide insights into the potential applications of machine learning models for thermal porosity characterization in additive manufacturing processes.
- Contribute to the advancement of quality control and defect detection methodologies in additive manufacturing industries.

Data Collection (Experimental design)

- Pyrometer Captures melt pool images which are cropped and saved to CSV
- X-ray Computed Tomography camera captures porosity records which are also saved to an Excel CSV

Christian Zamiela, Wenmeng Tian, Shenghan Guo, Linkan Bian, Thermal-porosity characterization data of additively manufactured Ti–6Al–4V thin-walled structure via laser engineered net shaping, Data in Brief, Volume 51,2023,109722, ISSN 52-3409, https://doi.org/10.1016/j.dib.2023.109722.

Dataset Description

- The data presented here consists of a folder with 1,564 cropped pyrometer melt pool images in CSV format and and thermal-porosity table in Excel format.
- The thin wall builds coordinates Y(mm) and Z(mm) within the thermal-porosity Excel sheet are linked to XCT porosity coordinates within the 0.5 mm range.
- The *Time (Sec)* is based on the Frame Rate of the Pyrometer.
- The x-coordinate is not present in the thermal-porosity Excel sheet because it is constant due to moving in one direction along the y-axis.
- MP Area, MP Eccentricity, Tmax, Row, and Column provide descriptive characteristics of the heat-affected zone (HAZ) and shape of the melt pool for melt fusion.

Data Summary

Parameters	Summary Values		
Pyrometer CSVs			
Array size	200 imes 200		
Pixel pitch	$6.45~\mu m$		
Temperature Range	1000-2500°C		
Frame Rate	~ 6.67 fps		
Eccentricity Range	$0.13-0.95\ mm$		
Maximum Temperature Range	1602-2107°C		
Melt Pool Area Range	$0-7274\ pixels$		
Number of CSVs Per Layer Range	16-34 layers		
Average Signal-to-Noise Ratio (SNR)	10.97		
XCT Porosity Labels			
Binary Labels	0=No Porosity, 1=Porosity		
Number of Label Occurrences	0=1490, 1=70		
Porosity Size Range	$0.05-0.98\ mm$		
Image Class Correlation	0.78		
Thin Wall Build Parameters			
Build Layers	60		
Print Direction	Unidirectional		
Print Speed	$12.7 \ mm/s$		
Layer Thickness	$0.508\ mm$		

Data Visualization

Frame with Porosity

Frame without Porosity

Methodology

Algorithms Used:

- Random Forest
- **♦** XGBoost

Why Only above Algorithms:

- **Ensemble Learning:** They build **multiple models** and **combine** them to make more accurate predictions. This helps in **reducing overfitting** and **improving generalization**
- ♦ High Accuracy: They can capture complex relationships in the data and handle a large number of features effectively
- **Handling Non-Linearity:** They can **capture non-linear relationships** in the data, making them suitable for a wide range of problems where the **underlying patterns** are **complex**
- **Robustness to Overfitting :** Both algorithms have mechanisms to **control overfitting**
 - Random Forest uses random feature selection and bagging
 - > XGBoost includes **regularization** terms in its **objective function**
- **Parallelization:** They can be parallelized, allowing for **efficient computation** on **multicore** machines, which can lead to **faster training times**

Hyperparameter Tuning

- Hyperparameter tuning: Finding the **optimal set** of **hyperparameters** for ML Models

Hyper Parameter Tuning for Improved performance

- Adjusting hyperparameters results in **improved performance**. This may involve **increasing** or **decreasing** the **learning rate**, **adjusting the depth of a decision tree**, or **fine-tuning other parameters**
- Overfitting occurs when a model learns the training data too well, including its noise, and performs poorly on new, unseen data. Underfitting occurs when a model is too simple and cannot capture the underlying patterns in the data. Hyperparameter tuning helps strike a balance to avoid these issues

Hyper Parameter tuning for Imbalanced Data

- When dealing with an imbalanced dataset, where the distribution of classes is uneven, hyperparameter tuning becomes even more important
- Imbalanced datasets can pose challenges because a model may become biased towards the majority class, leading to poor performance on the minority class
- Hyperparameter tuning can help **mitigate** this issue by **optimizing** the model's ability to handle imbalanced data and contributes to the **generalization ability** of a model

Target Feature Analysis

Classification Target(Porosity Label)

Regression Target(Porosity Size(mm))

Classification(Random Forest)

Random Forest with default Parameters

Confusion_matrix [[299 0]						
[10 4]]						
Accuracy: 0.96		26				
Precision: 1.0						
Recall: 0.2857142857142857						
F1 Score: 0.44	F1 Score: 0.44444444444445					
roc_auc_score: 0.6428571428571428						
Classification Report:						
	precision	recall	f1-score	support		
0.0	0.97	1.00	0.98	299		
1.0	1.00	0.29	0.44	14		
accuracy			0.97	313		
macro avg	0.98	0.64	0.71	313		
weighted avg	0.97	0.97	0.96	313		

Random Forest with tuned Parameters

1 10011 00 0 111				***			
Confusion	_matr	ix					
[5 9]]							
Accuracy:	Accuracy: 0.9744408945686901						
Precision: 0.75							
Recall: 0.6428571428571429							
F1 Score:	F1 Score: 0.6923076923076924						
roc_auc_s	core:	0.816411849	0205446				
(20) (20)							
Classification Report:							
		precision	recall	f1-score	support		
					200		
	0.0	0.98	0.99	0.99	299		
	1.0	0.75	0.64	0.69	14		
accuracy 0.97 313							
macro	avg	0.87	0.82	0.84	313		
weighted	avg	0.97	0.97	0.97	313		

Classification(XGBoost)

XGBoost with default Parameters

Confusion matrix [[297 [4 10]] Accuracy: 0.9808306709265175 Precision: 0.8333333333333334 Recall: 0.7142857142857143 F1 Score: 0.7692307692307692 roc auc score: 0.853798375537506 Classification Report: precision recall f1-score support 0.0 0.99 0.99 0.99 299 1.0 0.83 0.71 0.77 14 0.98 313 accuracy 0.85 0.88 313 macro avg 0.91 weighted avg 0.98 0.98 0.98 313

XGBoost with tuned Parameters

11020000	* * 1 61	i tuiica i aia			
Confusion_	natr	ix			
[[297 2]]				
[3 11]]				
Accuracy: (9.98	402555910543	13		
Precision:	0.8	461538461538	461		
Recall: 0.	7857	142857142857			
F1 Score: (9.81	481481481481	48		
roc_auc_sco	ore:	0.889512661	2517916		
Classifica	tion	Report:			
		precision	recall	f1-score	support
0	.0	0.99	0.99	0.99	299
1	.0	0.85	0.79	0.81	14
accura	cy			0.98	313
macro a	vg	0.92	0.89	0.90	313
weighted a	vg	0.98	0.98	0.98	313

Regression

Random Forest with default Parameters

Mean Squared Error (MSE): 0.0060568050777178

Mean Absolute Error (MAE): 0.018287519403401852

R-squared (R2): 0.5686842096026739

Explained Variance Score: 0.5700427303188629

Random Forest with tuned Parameters

Mean Squared Error (MSE): 0.005851111263269111
Mean Absolute Error (MAE): 0.0185249346559892
R-squared (R2): 0.5833320295375043
Explained Variance Score: 0.5833326530334406

XGBoost with default Parameters

Mean Squared Error (MSE): 0.0064840278846584444

Mean Absolute Error (MAE): 0.018085941952022514

R-squared (R2): 0.5382609187278748

Explained Variance Score: 0.5413046127951961

XGBoost with tuned Parameters

Mean Squared Error (MSE): 0.006493186825438868
Mean Absolute Error (MAE): 0.0181848739508939
R-squared (R2): 0.5376086943734137
Explained Variance Score: 0.5406365154155928

User Interface

- Target Features
 Distributions(Classification and Regression)
- 2. Model Metrics Comparison
- 3. Prediction on New Data

(Will host the web application after implementing the future work and will make it publicly available)

Web App Predictions

Input Images

Image-1 Ground Truth: 1(Porosity)

Image-2 Ground Truth: 1(Porosity)

Image-3 Ground Truth: 0 (No Porosity)

Predictions made

The prediction is [1.] which is Porosity Present

The Porosity Size is [0.29502049] mm

The prediction is [1.] which is Porosity Present

The Porosity Size is [0.43790621] mm

The prediction is [0.] which is Porosity Not Present

Future Work

- 1. As the Porosity Size(mm) is a highly zero-inflated feature, we need to come up with more sophisticated algorithms like Zero Inflated Poisson Regression, and Zero Inflated Negative Binomial Regression which could very well take care of these scenarios.
- 2. We want to come up with the **explainability** of the predictions made by our models. So, we need to **highlight** those portions(**some pixels of interest**) of the **thermal images** that **impacted** the **decision** made by the classification algorithm
- 3. **Finding** and **marking** the exact shape, locations, and distribution of the pores. Spherical pores created by gas are much less detrimental than a lack of fusion between layers as it is much easier to separate layers that have not fused properly. (also essential for post-processing e.g hot isostatic press (HIP))
- 4. **Beyond detection**, future work could also focus on finding the **source of the porosity**

References

- Christian Zamiela, Wenmeng Tian, Shenghan Guo, Linkan Bian, Thermal-porosity characterization data of additively manufactured Ti–6Al–4V thin-walled structure via laser engineered net shaping, Data in Brief, Volume 51,2023,109722,ISSN 352-3409,https://doi.org/10.1016/j.dib.2023.109722.
- 2. https://iopscience.iop.org/article/10.1088/2053-1591/abcc5d/pdf
- 3. https://www.ge.com/additive/blog/get-facts-porosity-metal-additive-manufacturing

Thank You

