Machine learning for ligand-based virtual screening and chemogenomics

Jean-Philippe Vert

Institut Curie - INSERM U900 - Mines ParisTech

In silico discovery of molecular probes and drug-like compounds: Success & Challenges INSERM workshop, Saint-Raphaël, France, March 25, 2010

Outline

- Machine learning for ligand-based virtual screening
- 2. 2D kernels
- 3. 3D kernels
- 4. Towards in silico chemogenomics

Machine learning for ligand-based virtual screening

Ligand-based virtual screening / QSAR

From http://cactus.nci.nih.gov

Represent each molecule as a vector...

...and discriminate with machine learning

Support Vector Machine (SVM)

- Nonlinear

-Large margin(useful in high dim)

Need pairwise
 distance / similarity
 as input instead of
 vectors / fingerprints

$$f(x) = \sum_{i=1}^{n} \alpha_i K(x_i, x)$$

From descriptors to similarities

Representation **Discrimination** -Neural Net Vectors / Fingerprints -LDA -Decision trees Tanimoto -PLS, ... Inner product Molecules « Kernel » -SVM -Kernel PLS Pairwise distance / -Kernel LDA similarity

2D kernels

2D fragment kernels (walks)

 For any d > 0 let φ_d(x) be the vector of counts of all fragments of length d:

$$\phi_1(x) = (\#(C), \#(N), \dots)^{\top}$$

$$\phi_2(x) = (\#(C-C), \#(C-N), \dots)^{\top} \text{ etc...}$$

• The 2D fingerprint kernel is defined, for $\lambda < 1$, by

$$K_{2D}(\mathbf{x},\mathbf{x}') = \sum_{d=1}^{\infty} \lambda(d) \phi_d(\mathbf{x})^{\top} \phi_d(\mathbf{x}').$$

Kashima et al. (2003), Gärtner et al. (2003)

Properties of the 2D fragment kernel

- Corresponds to a fingerprint of infinite size
- Can be computed efficiently in O(|x| ^3 |x'|^3) (much faster in practice)
- Solves the problem of clashes and memory storage (fingerprints are not computed explicitly)

Kashima et al. (2003), Gärtner et al. (2003)

2D kernel computational trick

 Rephrase the kernel computation as that of counting the number of walks on a graph (the product graph)

The infinite counting can be factorized

$$\lambda A + \lambda^2 A^2 + \lambda^3 A^3 + \ldots = (I - \lambda A)^{-1} - I.$$

Extension 1: label enrichment

- -Increases the expressiveness of the kernel
- -Faster computation with more labels
- -Other relabeling schemes are possible (pharmacophores)

Mahé et al. (2005)

Extension 2: subtree patterns

« All subtree patterns »

Mahé and V., Mach. Learn, 2009.

$$\mathcal{T}(v, n+1) = \sum_{R \subset \mathcal{N}(v)} \prod_{v' \in R} \lambda_t(v, v') \mathcal{T}(v', n)$$

Ramon et al. (2004), Mahé & V. (2009)

2D subtree vs walk kernel

NCI 60 dataset Mahé & V. (2009)

Other 2D kernels

Indexing by all shortest paths (Borgwardt & Kriegel 2005)

(Shervashidze et al. 2009)

Optimal assignment kernel (Fröhlich et al. 2005)

3D pharmacophore kernel

3-point pharmacophores

A set of 3 atoms, and 3 inter-atom distances:

$$T = \{((x_1, x_2, x_3), (d_1, d_2, d_3)), x_i \in \{\text{atom types}\}; d_i \in \mathbb{R}\}$$

Mahé et al., J. Chem. Inf. Model., 2006.

3D fingerprint kernel

- Discretize the space of pharmacophores T (e.g., 6 atoms or groups of atoms, 6-7 distance bins) into a finite set T_d
- ② Count the number of occurrences $\phi_t(x)$ of each pharmacophore bin t in a given molecule x, to form a pharmacophore fingerprint.

A simple 3D kernel is the inner product of pharmacophore fingerprints:

$$K(x, x') = \sum_{t \in \mathcal{T}_d} \phi_t(x) \phi_t(x')$$
.

Removing discretization artifacts

From the fingerprint kernel to the pharmacophore kernel

$$K(x,y) = \sum_{t \in \mathcal{T}_d} \phi_t(x) \phi_t(y)$$

$$= \sum_{t \in \mathcal{T}_d} (\sum_{p_x \in \mathcal{P}(x)} \mathbf{1}(\text{bin}(\mathbf{p_x}) = \mathbf{t})) (\sum_{p_y \in \mathcal{P}(y)} \mathbf{1}(\text{bin}(\mathbf{p_y}) = \mathbf{t}))$$

$$= \sum_{p_x \in \mathcal{P}(x)} \sum_{p_y \in \mathcal{P}(y)} \mathbf{1}(\text{bin}(\mathbf{p_x}) = \text{bin}(\mathbf{p_y}))$$

$$K(x,y) = \sum_{p_x \in \mathcal{P}(x)} \sum_{p_y \in \mathcal{P}(y)} \exp\left(-\gamma ||p_x - p_y||^2\right)$$

Experiments

- BZR: ligands for the benzodiazepine receptor
- COX: cyclooxygenase-2 inhibitors
- DHFR: dihydrofolate reductase inhibitors
- ER: estrogen receptor ligands

Kernel	BZR	COX	DHFR	ER
2D (Tanimoto)	71.2	63.0	76.9	77.1
3D fingerprint	75.4	67.0	76.9	78.6
3D not discretized	76.4	69.8	81.9	79.8

Mahé et al., J. Chem. Inf. Model., 2006.

Towards in silico chemogenomics

Chemogenomics

Chemical space

In silico Chemogenomics

Chemical space

Fingerprint for a (target, molecule) pair?

$$\Phi_{tar}(t) = \begin{cases} -\text{Sequence} \\ -\text{Structure} \\ -\text{Evolution} \\ -\text{Expression} \\ -\dots \end{cases}$$

$$\Phi_{lig}(c) = \begin{cases} -2D \\ -3D \\ -\text{Pharmacophore} \\ -\text{MW, logP, ...} \end{cases}$$

$$\Phi(c,t) = ???$$

Fingerprint for a (target, molecule) pair?

$$T = \frac{1}{2} = \begin{cases} -\text{Sequence} \\ -\text{Structure} \\ -\text{Evolution} \\ -\text{Expression} \end{cases}$$

$$\Phi_{lig}(c) = \begin{cases} -2D \\ -3D \\ -\text{Pharmacophore} \\ -\log P, \dots \end{cases}$$

$$\Phi(c,t) = \Phi_{lig}(c) \otimes \Phi_{tar}(t)$$
10⁶ 10³ 10³

Similarity for (target, molecule) pairs

$$t = \sum_{c = 1}^{c} \frac{1}{c} =$$

$$K((c,t),(c',t')) = K_{target}(t,t') \times K_{ligand}(c,c')$$

Summary: SVM for chemogenomics

- 1. Choose a kernel (similarity) for targets
- 2. Choose a kernel (similarity) for ligands
- 3. Train a SVM model with the product kernel for (target/ligand) pairs

Important remark

 New methods are being actively developed in machine learning for

learning over pairs

 « Collaborative filtering », « transfer learning », « multitask learning », « MMMF », « pairwise SVM », etc...

37k registered teams from 180 countries!

Application: virtual screening of GPCR

Data: GLIDA database filtered for drug-like compounds

- 2446 ligands
- 80 GPCR
- 4051 interactions
- 4051 negative interactions generated randomly

Ligand similarity

- -2D Tanimoto
- -3D pharmacophore

Target similarities

- -0/1 Dirac (no similarity)
- -Multitask (uniform similarity)
- -GLIDA's hierarchy similarity
- -Binding pocket similarity (31 AA)

(Jacob et al., BMC Bioinformatics, 2008)

Results (mean accuracy over GPCRs)

K ... \K ...

	•	
E fold	cross-va	lidatian
\mathfrak{I}	C1055-VA	ncanon

r star " slig	22 / 4	84.4 ± 2.0	
Dirac	86.2 ± 1.9		
multitask	88.8 ± 1.9	85.0 ± 2.3	
hierarchy	93.1 ± 1.3	88.5 ± 2.0	
binding pocket	90.3 ± 1.9	87.1 ± 2.3	

2D Tanimoto

Orphan GPCRs setup

K _{tar} \K _{lig}	2D Tanimoto	3D pharmacophore
Dirac	50.0 ± 0.0	50.0 ± 0.0
multitask	56.8 ± 2.5	58.2 ± 2.2
hierarchy	77.4 ± 2.4	76.2 ± 2.2
binding pocket	78.1 ± 2.3	76.6 ± 2.2

(Jacob et al., BMC Bioinformatics, 2008)

3D pharmacophore

Influence of the number of known ligands

Screening of enzymes, GPCRs, ion channels

Data: KEGG BRITE database, redundancy removed

Enzymes

-675 targets-524 molecules-1218 interactions-1218 negatives

GPCRs

-100 targets
-219 molecules
-399 interactions
-399 negatives

Ion channels

-114 targets

-462 molecules

-1165 interactions

-1165 negatives

Results (mean AUC)

10-fold CV

$K_{tar} \setminus \text{Target}$	Enzymes	GPCR	Channels
Dirac	0.646±0.009	0.750±0.023	0.770±0.020
Multitask	0.931 ± 0.006	0.749 ± 0.022	0.873 ± 0.015
Hierarchy	0.955 ± 0.005	0.926 ± 0.015	0.925 ± 0.012
Mismatch	0.725 ± 0.009	0.805 ± 0.023	0.875 ± 0.015
Local alignment	0.676 ± 0.009	0.824 ± 0.021	0.901 ± 0.013

Orphan setting

$K_{tar} \setminus \text{Target}$	Enzymes	GPCR	Channels
Dirac	0.500±0.000	0.500±0.000	0.500±0.000
Multitask	0.902 ± 0.008	0.576 ± 0.026	0.704 ± 0.026
Hierarchy	0.938 ± 0.006	0.875 ± 0.020	0.853 ± 0.019
Mismatch	0.602 ± 0.008	0.703 ± 0.027	0.729 ± 0.024
Local alignment	0.535 ± 0.005	0.751 ± 0.025	0.772 ± 0.023

(Jacob and V., Bioinformatics, 2008)

Influence of the number of known ligands

Relative improvement : hierarchy vs Dirac

(Jacob and V., Bioinformatics, 2008)

Conclusion

- SVM offer state-of-the-art performance in many chemo- and bio-informatics applications
- The kernel trick is useful to
 - Work implicitly with many features without computing them (2D fragment kernels)
 - Work with similarity measures that cannot be derived from descriptors (optimal alignment kernel)
 - Relax the need for **discretization** (3D pharmacophore kernel)
 - Work in a product space (chemogenomics)
- Promising direction:
 - Multiple kernel learning
 - Collaborative filtering in product space

Thank you!

Collaborators: P. Mahé, L. Jacob, V. Stoven, B. Hoffmann

References:

http://cbio.ensmp.fr/~jvert

Open-source kernels for chemoinformatics:

http://chemcpp.sourceforge.net

