ÉCOLE POLYTECHNIQUE UNIVERSITAIRE DE MONTPELLIER DÉPARTEMENT PEIP

Cours de mathématiques

Julien FAUCHER 10 décembre 2014

HLMA319

Table des matières

In	ntroduction – Définition d'une limite
	Comparaison de fonctions et développements limités
	0.1 Négligeabilité et équivalence
	0.2 Développements limités
_	Suites
	1.1 Propriété fondamentale de $\mathbb R$
	1.2 Suites

TABLE DES MATIÈRES

1

Introduction – Définition d'une limite

On se demande quel est le sens de $\lim_{x\to a} f(x) = l$.

Considérons une fonction f continue quelconque. Si $]l - \epsilon; l + \epsilon[$ est un intervalle centré en l, il existe $]a - \delta; a + \delta[$ tel que si $x \in]a - \delta; a + \delta[$, $f(x) \in]l - \epsilon; l + \epsilon[$

Définition : Soit $f : \mathbb{R} \to \mathbb{R}$ une fonction. Soit $a \in \mathbb{R}$. On dit que $l \in \mathbb{R}$ est la limite de f quand x tend vers a si :

$$\forall \epsilon > 0, \exists \delta > 0 \text{ tq si } x \in [a - \delta; a + \delta[, f(x) \in]l - \epsilon; l + \epsilon[$$

Notation : On peut écrire $\lim_{x\to a} f(x) = l$ ainsi : $\lim_{a} f(x) = l$

Remarque: Cela ne fonctionne que pour $l \in \mathbb{R}$.

Remarque: On a:

$$\begin{aligned} x \in \left] a - \delta; a + \delta \right[\\ \Leftrightarrow & a - \delta < x < a + \delta \\ \Leftrightarrow & -\delta < x - a < \delta \\ \Leftrightarrow & \left| x - a \right| < \delta \end{aligned}$$

Ce qui nous donne :

$$\forall \epsilon > 0, \ \exists \delta > 0 \ \text{tq} \ \forall x, \ |x - a| < \delta, \ |f(x) - l| < \epsilon$$

ainsi que les formules suivantes :

$$\lim_{\substack{a \\ +\infty}} f = +_{\infty} \quad \text{si} \quad \forall A > 0, \ \exists \delta > 0 \quad \text{tq} \ \ \forall x, \ |x-a| < \delta \Rightarrow f(x) > A \\ \lim_{\substack{+\infty}} f = l \quad \quad \text{si} \quad \forall \epsilon > 0, \ \exists B > 0 \quad \text{tq} \ \ \forall x, x < B \Rightarrow |f(x) - l| < \epsilon \\ \lim_{\substack{+\infty}} f = +_{\infty} \quad \text{si} \ \ \forall A > 0, \ \exists B > 0 \ \ \text{tq} \ \ \forall x, x < B \Rightarrow f(x) > A$$

Chapitre 0

Comparaison de fonctions et développements limités

0.1 Négligeabilité et équivalence

Définition (Abus) : Soit $a \in \mathbb{R}$. Un voisinage de a est un intervalle de la forme $]a - \delta; a + \delta[$ ou $]a - \delta; a + \delta[$ /{0} avec $\delta > 0$

Définition : Négligeabilité Soit $f, g : I \subset \mathbb{R} \to \mathbb{R}$ deux fonctions.

On dit que f est négligeable devant g en $a \in \mathbb{R}$ s'il existe un voisinage V de a et une fonction $\epsilon: \mathcal{V} \to \mathbb{R}$ telle que :

$$-f(x) = g(x)\epsilon(x)$$
 pour $x \in V$
 $-\lim_{a} \epsilon(x) = 0$

Notation: Si f est négligeable devant g, on note $f \ll_a g$ (Physique) ou $f = o_a(g)$ (Maths)

Remarque: Si g ne s'annule pas sur V, $f \ll_a g \Leftrightarrow \lim_{x \to a} \frac{f(x)}{g(x)} = 0$

Exemple:

Définition : Équivalence Soit $f,g: I \subset \mathbb{R} \to \mathbb{R}$ deux fonctions. Soit $a \in \mathbb{R}$. On dit que f est équivalente à g en a si on a :

$$f(x) = g(x) + o_a(g(x))$$

C'est à dire si f = g + quelque chose de négligeable devant g.

Remarque:

$$f(x) = g(x) + o_a(g(x))$$

$$\Leftrightarrow f(x) = g(x) + g(x)\epsilon(x)$$

$$\Leftrightarrow f(x) = g(x)(1 + \epsilon(x))$$

$$\Leftrightarrow \frac{f(x)}{g(x)} = 1 + \epsilon(x)$$

$$\Leftrightarrow \lim_{a} \frac{f(x)}{g(x)} = 1$$

itemize Les deux dernières notations ne sont valides que si $g \neq 0$ au voisinage de a. ϵ est une fonction telle que $\lim_a \epsilon = 0$

Notation : f est équivalente à g en a s'écrit $f \sim_a g$

Remarque : Si $f \sim_a g$ et $\lim_a g = l$ alors,

$$\lim_{a} f(x) = \lim_{a} g(x) * \lim_{a} (1 + \epsilon(x))$$
$$= \lim_{a} g(x)$$
$$= l$$

Proposition : Si $f \sim_a g$ et si $\lim_a g$ existe, alors $\lim_a f = \lim_a g$. Attention : la réciproque est fausse !

Démonstration:

Exemple:

0.2 Développements limités

Idée: On va faire l'approximation de fonctions par des polynômes.

Définition : Soit $f: I \subset \mathbb{R} \to \mathbb{R}$ et $a \in I$.

On dira que f admet un développement limité d'ordre n en a (noté $DL_n(a)$) s'il existe un polynôme P de degré n tel qu'au voisinage de a,

$$f(x) = P(x-a) + o_a((x-a)^n)$$

Remarque : On a $f(x+a) = P(x) + o_0(x^n)$ donc on fera les développements limités en 0

Propriété : Si f admet un $DL_n(0)$ alors, de développement limité est unique.

Démonstration:

Exemple:

Théorème : Formule de Taylor Soit f définie au voisinage de 0 et de classe \mathscr{C}^n (n fois dérivable avec $f^{(n)} = \frac{d^n f(0)}{dx^n}$ continue). On a :

$$f(x) = \sum_{k=0}^{n} \left(\frac{f^{(n)}(0)}{k!} x^{k} \right) + o(x^{n})$$

Démonstration : Voire Wikipédia.

Corollaire: Si f est \mathscr{C}^n alors elle admet un $DL_n(0)$

Exemple: Posons $f(x) = e^x$. $\forall n, f(x)^{(n)} = e^x$ et $f(0)^{(n)} = 1$. On a donc

$$e^x = \sum_{k=0}^{n} \frac{1}{k!} x^n + o(x^n)$$

Soit

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + o(x^{n})$$

Remarque : C'est LA bonne définition de e^n .

Exemple:

Remarque : Taylor c'est bien, mais parfois très complexe (par exemple le $DL_{10}(0)$ de $\frac{1+x}{1-x^2}$

Remarque: Un développement limité est une égalité et non une approximation.

Propriété : Opérations sur les DL : Soit f et g deux fonctions. Admettons un $DL_n(0)$ tel que :

$$-f(x) = P(x) + o(x^n)$$

$$-g(x) = Q(x) + o(x^n)$$

Avec $\deg P = \deg Q = n$. On a alors :

Addition: $f(x) + g(x) = P(x) + Q(x) + o(x^n)$

Produit : $f(x) * g(x) = R(x) + o(x^n)$ où R(x) est le polynôme P(x)Q(x) tronqué à l'ordre n

Composition : $f \circ g(x) = T(x) + o(n)$ où T(x) est le polynôme $P(x) \circ Q(x)$ (deg $R(x) = n^2$) tronqué au rang n.

Dérivation : Si f est dérivable, $f'(x) = P'(x) + o(x^{n-1})$

Intégration : Si f est continue, $F(x) = \int_0^x f(t)dt = \int_0^x P(t)dt + o(x^{n+1})$

Propriété : Si $f(x) = P(x) + o(x^n)$ est un $DL_n(0)$ de f avec deg P = n, alors $P \sim_0 f$

Chapitre 1

Suites

Dans ce chapitre, on pose $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} ou \mathbb{Q}

1.1 Propriété fondamentale de \mathbb{R}

Soit $A \subset \mathbb{R}$.

Définition : On dit que $M \in \mathbb{R}$ est un majorant / minorant de A si $\forall x \in A, x \leq M / x \geq M$

Définition : On dit que M est une borne supérieure/inférieure de A si :

- M est majorant/minorant de A
- Si M' est majorant/minorant de A, on doit avoir M'>M / M'< M. C'est à dire que M doit être le plus petit/grand majorant/minorant de A

Propriété: Si A admet une borne supérieure ou inférieure, cette borne est unique.

Démonstration : Soient M_1 et M_2 deux bornes supérieures de A. Alors M_1 majore A $\Rightarrow M_1 \geq M_2$ M_2 majore A $\Rightarrow M_2 \geq M_1$ Donc $M_1 = M_2$.

Notation: On note une borne supérieure sup A et une borne inférieure inf A.

Remarque : On se place dans $\mathbb{K} = \mathbb{Q}$ et $A = \{x \in \mathbb{Q}, x^2 \leq 2\}$ Alors on a $A = [-\sqrt{2}; \sqrt{2}] \cap \mathbb{Q}$. Dans ce cas, A n'a pas de bornes dans \mathbb{Q} . En effet, si ces bornes existent, elles valent $\pm \sqrt{2} \notin \mathbb{Q}$. C'est une des raisons de la création de l'ensemble des réels.

Axiome : Soit $A \subset \mathbb{R}$ tel que $A \neq \emptyset$ et A majorée. Alors sup $A \in \mathbb{R}$ existe.

1.2 Suites

Définition : Une suite de \mathbb{K} est une application de \mathbb{N} dans \mathbb{K}

 $\begin{array}{ccc} u: \mathbb{N} & \longmapsto & \mathbb{K} \\ n & \to & u(n) \end{array}$

Notation : u(n) est noté u_n et la suite u est notée $(u_n)_{n\in\mathbb{N}}$ ou simplement u_n .

Exemple: $u_n = \ln\left(1 + \frac{1}{n}\right)$

Remarque: On peut dire qu'une suite est une restriction à \mathbb{N} d'une fonction $f:[0;+\infty[\longrightarrow \mathbb{K}$

Axiome : Récurrence Soit P(n) une propriété dépendant de $n \in \mathbb{N}$. Si

- il existe x tel que P(x) est vérifiée,
- pour tout n > x, P(n) nous permet de déduire P(n+1) alors, P(n) est vérifiée pour tout n > x.

Propriété:

Démonstration:

Définition : Monotonie Pour $\mathbb{K} \neq \mathbb{C}$, soit (u_n) une suite de \mathbb{K} , alors (u_n) est croissante si

$$\forall p, q \in \mathbb{N}, p \leq q \Rightarrow u_p \leq u_q$$