Введение в комбинаторику и дискретную математику Лаборатория 2

Проф. Фролов Андрей Николаевич

	без повторений	с повторениями						
порядок важен	$A_n^k = \frac{n!}{(n-k)!}$	$\overline{A}_n^k = n^k$						
порядок не важен	$C_n^k = \frac{n!}{k!(n-k)!}$	$\overline{C}_n^k = C_{n+k-1}^k$						

- 1. Требуется создать флаг с тремя горизонтальными линиями. Для этого должны использоваться одни из следующих цветов: красный, зеленый, синий, желтый, черный и белый. Цвет средней линии должен отличаться от двух других. Сколько различных флагов может быть создано с такими условиями?
- 2. Сколько диагоналей у 12-стороннего выпуклого многоугольника?
- 3. Палиндром это слово, которое читается одинаково слева направо и справа налево (например, "потоп" или "ХҮҮХ"). Сколько существует 9-буквенных палиндромов, составленных из букв латинского алфавита (возможно, бессмысленных)?

- 4. Ректор университета Иннополис решил создать ученый совет из физиков и математиков. Всего в университете 20 физиков и 15 математиков. Сколько всего различных советов из 8 ученых можно создать, если в нем математиков должно быть больше, чем физиков (как минимум 1 физик должен быть в совете)?
- 5. Среди друзей 4 девушки: Анна, Беатрис, Валентина и Галина; и 6 мужчин: Дмитрий, Евгений, Жорж, Зиновий, Ипполит и Кирилл. Каждая девушка хочет выйти замуж за одного из этих мужчин. Сколькими различными способами можно поженить всех девушек.
- 6. Сколькими способами можно назначить четырёх человек на четыре должности, если всего есть девять кандидатов на эти должности?

- 7. Как много 5-элементных подмножеств множества $\{1,2,3,\ldots,10\}$, содержащих хотя бы одно нечетное число?
- 8. Как много 3-элементных подмножеств множества $\{1,2,3,\ldots,100\}$, содержащих хотя бы одно четное число и хотя бы одно число, делящееся на 5?
- 9. В кафе есть 4 вида пирожных: шоколадное, кремовое, ореховое и с джемом. Сколько различных заказов можно сделать, выбирая 7 пирожных?
- 10. Сколько различных решений в целых положительных имеет следующее уравнение?

$$x_1 + x_2 + x_3 + x_4 = 11$$

Домашняя работа

- 1. У королевы есть 12 одинаковых зеркал. Сколькими способами их можно повесить в 8 разных залах замка так, чтобы в каждом зале было хотя бы одно зеркало?
- 2. В пекарне продавались 4 вида пирожков: элеши, эчпочмаки, перемячи и кыстыбыи. Сколькими способами можно купить 7 пирожков?
- 3. Сколько имеется способов раздать 11 разных цветков, трём девушкам: какой-то 5, а остальным по 3 цветка?

Домашняя работа

- 4. На книжной полке стоят 40 книг. Сколькими способами их можно переставить так, чтобы
 - а) три тома сочинений А. С. Пушкина, имеющиеся среди них, расположились в правильном порядке (но не обязательно вплотную друг к другу)?
 - б) те же тома по-прежнему шли в порядке нумерации, но никакие два из них друг к другу не примыкали?
- 5. Сколько различных решений в натуральных числах (0 натуральное число) имеет следующее уравнение, если известно, что $x_1 \neq 0$?

$$x_1 + x_2 + x_3 = 15$$

				<u>;</u>	$x_1 +$	- x ₂ -	+ x3	3 =	15														
×,	×ı	×s																					
1	0	14)																				
	1	13		•													14	15					
	2		7	15	/	C01-6	0	peo	us	:	(5	+1	4+	≮	1	=	2	- • • •	5 -	- 1	7.15	` =	12
	14	0	1																				
2	Ð	13	7																				
	1	12																					
	2	11	\ 1	9																			
+	13	· 0	+																			_	
	13																						
• • •																							
15																							
+	D	٥		1																			
'																							
																						_	
																						+	
																						+	

1.11.7

11117 7

$$\frac{(n-t)(n-t)}{2} + \frac{n(n-t)}{2} + \frac{(n-t)(n)}{2} + \dots + \frac{t \cdot t}{2} = \frac{(n-t)(n-t)(n-t)(n-t)}{6}$$

$$\frac{(n-t)}{2} \cdot (n+t) + \frac{(n-t)}{2} \cdot n + \dots + 1 = \frac{(n-t)(n-t)(n-t)}{6}$$

$$\frac{n-t}{2} \cdot (n-t) = 1 + \frac{(n-t)}{2} \cdot 1 + \frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 1 = \frac{(n-t)(n-t)(n-t)}{6}$$

$$\frac{n-t}{2} \cdot (n-t) = 1 + \frac{(n-t)}{2} \cdot 1 + \frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 1 = \frac{(n-t)(n-t)(n-t)}{6}$$

$$\frac{n-t}{2} \cdot (n-t)(n-t) = 1 + \frac{(n-t)}{2} \cdot 1 + \frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 1 = \frac{(n-t)(n-t)(n-t)}{6}$$

$$\frac{n-t}{2} \cdot (n-t)(n-t) = 1 + \frac{(n-t)(n-t)}{2} \cdot 1 + \frac{1}{2} \cdot 1 = \frac{(n-t)(n-t)(n-t)(n-t)}{6}$$

$$\frac{n-t}{2} \cdot (n-t)(n-t) = 1 + \frac{(n-t)(n-t)(n-t)}{2} \cdot 1 + \frac{1}{2} \cdot 1 = \frac{(n-t)(n-t)(n-t)(n-t)}{6}$$

$$\frac{n-t}{2} \cdot (n-t)(n-t)(n-t) = 1 + \frac{(n-t)(n-t)(n-t)(n-t)}{2} \cdot 1 + \frac{1}{2} \cdot 1 = \frac{(n-t)(n-t)(n-t)(n-t)}{6}$$

$$\frac{n-t}{2} \cdot (n-t)(n-t)(n-t) = 1 + \frac{(n-t)(n-t)(n-t)(n-t)}{2} \cdot 1 + \frac{1}{2} \cdot 1 = \frac{(n-t)(n-t)(n-t)(n-t)}{6} = \frac{n-t}{2} \cdot 2 \cdot 1 = \frac{(n-t)(n-t)(n-t)(n-t)(n-t)}{6}$$