

LG Advanced Data Scientists Program Deep Learning

[9: Reinforcement Learning (Part 2)]

Prof. Sungroh Yoon

Electrical & Computer Engineering | Seoul National University

© 2020 Sungroh Yoon. this material is for educational uses only. some contents are based on the material provided by other paper/book authors and may be copyrighted by them.

(last compiled at 15:32:00 on 2020/02/28)

Outline

Value-Based Methods

Full Backup: Dynamic Programming

Summary

References

- books/papers:
 - ► Reinforcement Learning (2nd edition)¹ ► Link
 - Artificial Intelligence: A Modern Approach²
 - ► A brief survey of deep reinforcement learning³
- online resources:
 - ► Silver UCL class ► Link & ICML tutorial ► Link
 - Schulman MLSS tutorial Link
 - Abbeel & Schulman NIPS tutorial
 - ► UC Berkeley CS188 (AI) Link & CS294 (DRL) Link
 - ► Stanford CS234 (RL) ► Link

¹Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press

²Russell, S. J. and Norvig, P. (2016). Artificial intelligence: a modern approach. Pearson Education Limited

³Arulkumaran, K., Deisenroth, M. P., Brundage, M., and Bharath, A. A. (2017). A brief survey of deep reinforcement learning. arXiv preprint arXiv:1708.05866

Outline

Value-Based Methods

Full Backup: Dynamic Programming

Summary

Value-based methods

- ullet estimate optimal value function \Rightarrow derive optimal policy π^* therefrom
- learning = changing values of states we visit
 - ▶ for more accurate value estimation (e.g. winning probabilities)
- to do this: we " " the value of
 - \triangleright s': state after each move to
 - ightharpoonup s : state before the move

- i.e. current value of earlier state s:
 - \triangleright adjusted to be closer to value of later state s'
- learning involves a lot of backup operations

Example: a sequence of moves in a two-player game

- solid lines:
 - moves taken during a game
- dashed lines:
 - moves considered but not taken
 - discarded by "exploitation"
- exploratory moves
 - e.g. our second move
 - ▶ taken even if another sibling move (leading to e^*) was better
 - "exploration"
- curved arrows
 - ▶ backups ⇒

(source: [Sutton and Barto, 2018]⁴)

⁴Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press

Backup operations

- transfer value information back
 - to a state from its successor states or
 - ▶ to a state-action pair from its successor state-action pairs
- that is, "backup" refers to " " of values
- backups are at the heart of RL methods

Three ways to do backup

1. full backup by dynamic programming (DP)

$$V(s) \leftarrow \mathbb{E}\left[r + \gamma V(s')\right]$$

2. sample backup by Monte Carlo (MC) learning

$$V(s) \leftarrow V(s) + \alpha \left[R - V(s) \right]$$

3. sample backup by temporal-difference (TD) learning

$$V(s) \leftarrow V(s) + \alpha \left[r + \gamma V(s') - V(s) \right]$$

- ightharpoonup R: sample return (actual return from a trajectory)
- ightharpoonup lpha : step-size parameter
 - a small positive fraction that influences ______

more on way #3:

• use a simple rule to update V(s)

$$V(s) \leftarrow V(s) + \alpha \left[r + \gamma V(s') - V(s) \right]$$

$$\iff V(s) \leftarrow \underbrace{(1 - \alpha)}_{\text{weight on old value}} V(s) + \underbrace{\alpha}_{\text{new value}} \left[r + \gamma V(s') \right]$$
weight on new value

- update rule (1): an example of temporal-difference (TD) learning
 - ▶ changes are based on $\underbrace{r + \gamma V(s') V(s)}_{\uparrow}$

difference between estimates at two different times

Backup diagram

• depict relationships that form the basis of _____ operations e.g. for dynamic programming to compute V(s) and Q(s,a):

- notations
 - ▶ open circle: a state
 - solid circle: a state-action pair

Taxonomy of value-based methods

two kinds of defining characteristics:

- if we bootstrap
 - we update estimates based on other _____ (not true target)
- if we sample
 - we do not compute but just sample an expectation

	sample backup	full backup
bootstrap (shallow backup)	temporal-difference (TD) learning	dynamic programming (DP)
no bootstrap (deep backup)	Monte Carlo (MC) learning	exhaustive search

example: sample-backup methods

- Monte-Carlo (MC) learning
 - go all the way to ___ of a trajectory and
 - estimate the value just by looking at sample return
 - ⇒ no bootstrapping
- temporal-difference (TD) learning⁵
 - just look one step ahead and
 - estimate the value after one step using one-step lookahead value estimate
 - ⇒ bootstrapping
- TD(λ): generalize/unify⁶
 - use arbitrary # of lookaheads

⁵more precisely, one-step TD or TD(0)

⁶Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press

Unified view of RL

(source: $[Sutton and Barto, 2018]^7$)

⁷Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press

Outline

Value-Based Methods

Full Backup: Dynamic Programming

Summary

Dynamic programming (DP)

- refers to a collection of algorithms
 - ▶ that can compute optimal policies given a perfect model as an MDP
- classical DP algorithms: of limited utility in RL because
 - assume a perfect model
 - computationally very _____
- why do we learn DP then?
 - \blacktriangleright essential foundation for many $\underbrace{RL\ methods}_{\uparrow}$ achieve much the same effect as DP with less computation and no model
- key idea of DP (and of RL in general):
 - use of value functions to organize/structure the search for good policies
 - ▶ if find optimal value fcns $(V^* \text{ or } Q^*)$ ⇒ easily obtain optimal policies

- etymology
 - dynamic: sequential/temporal component to the problem
 - programming: optimizing a "program" (i.e. a policy)
- properties required to apply DP
 - optimal substructure
 - overlapping subproblems
- MDPs satisfy both
 - ▶ Bellman equations gives recursive decomposition
 - value function stores and solutions

Richard E. Bellman (1920-1984)

(source: Wikipedia)

Planning in MDP

- dynamic programming: used for planning in MDP
 - assumes ___ knowledge of MDP
- prediction problem
 - ▶ input: MDP $\langle S, A, P, R, \gamma \rangle$ and policy π
 - ightharpoonup output: value function V^{π}
- control problem
 - ▶ input: MDP $\langle S, A, P, R, \gamma \rangle$
 - lacktriangle output: optimal value function V^* optimal policy π^*

How to compute the value of a state?

- two scenarios:
- 1. no explicit policy is given
 - \triangleright value iteration: find optimal V^*
 - byproduct: optimal policy π^* (policy extraction)
- 2. policy π is given
 - policy evaluation
 - ▶ components of policy iteration (policy _____ → policy improvement)
- ullet we assume deterministic policy $\pi(s)=a$ for clarity
 - lacktriangle same framework applies to stochastic policy $\pi(a \,|\, s)$

Scenario #1: no policy is given

- big question: how to act in each state?
 - no explicit policy is given
 - \Rightarrow agent should decide which action to take
- principle of maximum expected utility (MEU)⁸
 - a rational agent should choose
 - ▶ the action that maximizes agent's expected utility
- that is, we can assume the agent act optimally
 - then try to find the optimal _____ of each state
 - this will also lead to finding optimal policy

⁸Russell, S. J. and Norvig, P. (2016). Artificial intelligence: a modern approach. Pearson Education Limited

Bellman optimality equation

- Bellman found a way to estimate $V^*(s)$
- $V^*(s)$: the optimal value of any state s
 - sum of all discounted future rewards the agent can expect on average after it reaches s, assuming it acts

- Bellman showed: if the agent acts optimally
 - ▶ Bellman equation applies: $\forall s$

$$V^{*}(s) = \max_{a \in \mathcal{A}} \mathbb{E}_{s'}[r(s, a, s') + \gamma V^{*}(s')]$$

$$= \max_{a \in \mathcal{A}} \sum_{s'} T(s, a, s')[r(s, a, s') + \gamma V^{*}(s')]$$
(2)

- ightharpoonup T(s,a,s'): transition probability from s to s', given that agent chose a
- ightharpoonup r(s,a,s') : reward from s to s', given that agent chose a
- $ightharpoonup \gamma$: discount rate
- that is, optimal value $V^*(s)$
 - = average reward after taking one optimal action
 - + expected optimal value of all possible next states

Value iteration

- eq (2): _____
 - ▶ linear algebra techniques are not applicable
 - ▶ instead we solve it using an *iterative* approach called value iteration
- value iteration
 - main idea: turn Bellman equation into update rule

Bellman update:

$$\mathbf{V}_{k+1}(s) = \max_{a \in \mathcal{A}} \sum_{s'} T(s, a, s') [r(s, a, s') + \gamma \mathbf{V}_{k}(s')]$$

▶ an instance of dynamic programming

- VI algorithm sketch
 - 1. start with some initial guess $V_0(s), \forall s$
 - 2. for every iteration k, update value function estimates, $\forall s$:

$$\mathbf{V_{k+1}}(s) = \max_{a \in \mathcal{A}} \sum_{s'} T(s, a, s') [r(s, a, s') + \gamma \mathbf{V_k}(s')]$$

- 3. stop when appropriate (e.g. when no significant change occurs)
- amazing facts:
 - ▶ convergence is guaranteed: as $k \to \infty$, $V_k(s) \to V^*(s)$
 - unique solution
 - corresponding is optimal

• example: grid world

- ▶ left: evolution of values of selected states using VI
- right: state values¹⁰

⁹Russell, S. J. and Norvig, P. (2016). *Artificial intelligence: a modern approach*. Pearson Education Limited

 $^{^{10}\}gamma = 1, r(s) = -0.004$

Q-value iteration

• Q-values are more useful (e.g. see policy extraction on page 27)

Bellman update:

$$Q_{k+1}(s, a) = \sum_{s'} T(s, a, s') \left[r(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right]$$

c.f. (state) value iteration

$$\frac{\mathbf{V_{k+1}}(s) = \max_{a \in \mathcal{A}} \sum_{s'} T(s, a, s') [r(s, a, s') + \gamma \frac{\mathbf{V_k}(s')}{}] }{}$$

• example: grid world

(source: Abbeel & Klein)

- ▶ left: state values (noise = 0.2, $\gamma = 0.9$, living reward = 0)
- ▶ right: Q-values (same condition)

Policy extraction

- · getting policy implied by values
 - from $V^*(s)$: not obvious

$$\pi^*(s) = \operatorname*{argmax}_{a} \sum_{s'} T(s, a, s') [r(s, a, s') + \gamma V^*(s')]$$

• from $Q^*(s, a)$: _____

$$\pi^*(s) = \operatorname*{argmax}_{a} Q^*(s, a)$$

(source: Abbeel & Klein)

Scenario #2: fixed policy π is given

• no π given (act optimally):

 max over all actions to compute the optimal values • π is given (do what π says to do):

simpler: only ____ action per state

Utilities for a fixed policy

- another basic operation
 - lacktriangledown compute V(s) under fixed (generally non-optimal) policy π
- define $V^{\pi}(s)$, the utility of state s under a fixed policy π
 - $lackbox{}V^{\pi}(s):$ expected total discounted rewards starting in s and following π
- Bellman equation

$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [r(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

c.f. Bellman optimality equation

$$V^*(s) = \max_{a \in \mathcal{A}} \sum_{s'} T(s, a, s') [r(s, a, s') + \gamma V^*(s')]$$

Policy evaluation

- how to calculate state values for a fixed policy π ?
- method #1: | iterative policy evaluation
 - ▶ turn Bellman _____ equation into update (like value iteration)

$$V_0^{\pi}(s) = 0$$

$$V_{k+1}^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') \left[r(s, \pi(s), s') + \gamma V_k^{\pi}(s') \right]$$

- ▶ cost: $O(|\mathcal{S}|^2)$ per iteration
- ► full backup¹¹ (c.f. MC or TD learning)
- convergence to V^{π} can be proved: $V_0 \to V_1 \to \cdots \to V^{\pi}$
- method #2: use a linear system solver
 - ▶ without max, Bellman equations are just a linear system

¹¹based on all possible next states rather than on a sample next state

Problems with value iteration

• VI repeats Bellman updates

$$V_{k+1}(s) = \max_{a \in \mathcal{A}} \sum_{s'} T(s, a, s') [r(s, a, s') + \gamma V_k(s')]$$

- problems
 - 1. slow: $O(|\mathcal{S}|^2|\mathcal{A}|)$ per iteration
 - 2. "max" operation at each state rarely changes
 - 3. policy often converges long before _____

(animation can be viewed only in Acrobat Reader)

Policy iteration

- an alternative approach to getting optimal policy
 - still optimal (always converges to π*)
 - can converge much faster than VI in some cases
- repeat the following (over i):
 - 1. policy evaluation: for fixed current (not optimal) π_i
 - ightharpoonup find state values with policy evaluation $(k \to \infty, \forall s)$

$$V_{k+1}^{\pi_i}(s) = \sum_{s'} T(s, \pi_i(s), s') \left[r(s, \pi_i(s), s') + \gamma V_k^{\pi_i}(s') \right]$$

- 2. policy improvement
 - ightharpoonup one-step look-ahead, update: $\forall s$

$$\pi_{i+1}(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} T(s, a, s') \left[r(s, a, s') + \gamma V^{\pi_i}(s') \right]$$

Outline

Value-Based Methods

Summary

Summary

- value-based reinforcement learning methods
 - lacktriangle estimate optimal value function $V^*(s)$ or $Q^*(s,a)$
 - \Rightarrow then find optimal policy π^* therefrom
 - ▶ key operation: backup (= update of V(s) using V(s'))
 - ▶ defining characteristic #1: sample vs full backup
 - defining characteristic #2: shallow (=bootstrap) vs deep backup
- tabular methods: represent value function by lookup table
 - dynamic programming: full + shallow backup
 - value iteration and policy iteration
 - temporal-difference (TD) learning: sample + shallow backup
 - Monte Carlo (MC) learning: sample + deep backup
- · value function approximation by deep neural net
 - deep Q-network (DQN): experience replay with fixed Q-learning target