# N.B. Reminder about Assignment 3: Game Tech Talk

Schedule of talks will be sent out later today

#### **Game Tech Talks**

#### 15% of Module Assessment

- Choose a video game or commercial interactive application (of any era) which excelled in its use of 3D graphics
- Research the game. Find related screenshots, presentations, technical articles
- 3. Prepare a 10-minute presentation (With Slides)
  - a. Introduction to the game: history, details of platforms, developer etc.
  - b. Reason for choosing the game: what aspect of 3d did it excel in
  - c. Technical overview: overview of the tech behind the 3d features
  - d. Examples of the technology: *movies, pictures*
  - e. Conclusion: impact, did future games improve upon it, could you improve on it
- **4. Present** your work. Strict 15 mins for presentation & 5 mins for Q&A.



### **Schedule of Talks**

Note that this schedule (including games chosen) is up on the module webpage:

•https://www.scss.tcd.ie/Michael.Manzke/index.php/mm-teaching/msc-taught/cs7055



# **Assignment 4**

Research Paper Study





### **Submission**

- Note that this is worth 50% of the module and is the equivalent of an exam. It is expected that you will spend approx. 45 hours of work on this assignment.
- Demo due on Thursday 2<sup>nd</sup>April
- Submit youtube video and 1 paragraph abstract
- Also submit presentation materials (e.g. slides) and zip file with source code for the record
- You should pick a paper or topic by 6<sup>th</sup> March



### **Main Objectives**

- 1. Pick a theme: one of realism, stylisation or complexity
- Pick a research paper from SIGGRAPH, EGSR, EG, SIGGRAPH-ASIA, I3D, GDC or SCA (see next slide)
- 3. Create an interactive demo inspired by this (n.b. the point is not to implement the whole paper but some aspects of it). Some marks for making something interesting
- 4. Prepare a presentation:
  - Overview of paper
  - Demo (how well does it fit the theme)
  - Technical content: in the form of a lecture to the class on how to implement that part of the demo inspired by the paper
  - Limitations of the approach, of your implementation

#### 5. Submit

- Upto 5 minute video (you-tube link)
- Source code
- A 1-para summary with relevant acknowledgements
- Slides from your presentation



### Realism



Painting by Richard Estes, a Photorealist



Offline Rendered Photorealism, Image Rendered in POVRay

For the purposes of this project define realism as using as perceptually accurate an approximation of the Rendering Equation as possible; i.e. better illumination/shading models as opposed to better data



### Complexity



200 dragons with 202k polygons rendering using Geometry Shaders



Screenshot from Unlimited Detail Technologies showing "unlimited" object instantiation

The focus here is on creating/rendering large numbers of display primitives rather than more realistic lighting models: i.e. better more detailed inputs rather than more detailed lighting/shading model



### **Stylisation**





Madworld

ATI Demo

**Intentionally** not optimising for realism or detail; possibly exploiting human perception, rules of art and aesthetics, human styles, pen and ink etc. see papers on Non-photorealistic Rendering and Computational Aesthetics for examples



# **Major Publications in Rendering**

- You may pick your own choice of a rendering paper from:
  - ACM SIGGRAPH Annual Conference
  - ACM Transaction on Graphics [journal],
  - IEEE Transaction on Visualisation and Computer graphics [journal],
  - Symposium on Interactive 3D Graphics and Games,
  - Eurographics Rendering Symposium (a.k.a. Rendering Techniques),
  - Eurographics Annual Conference
  - Symposium on Computer Animation,
  - Siggraph Asia Annual Conference



### **Assessment**

Note that this is worth 50% of the module and is the equivalent of an exam.

- Completed Implementation 30%
  - Demo shows some aspects of theme: Realism, Stylisation or Complexity
- Presentation 20%
  - Explains what you have done, motivates the technique
  - Explains how to do it in sufficient detail
- Video (you will get marks for a good video here) 10%
  - Brief summary of demo/presentation
  - Self explanatory
- Top-level marks 40%
  - Very Real? Very Stylistic? Very Complex?
  - Originality
  - Technical-difficulty
- There will be a penalty of 20% for each day late (strictly enforced)



### **Suggested Papers (1)**

#### Caustics

 Musawir A. Shah, Jaakko Konttinen, Sumanta Pattanaik "Caustics Mapping: An Image-space Technique for Realtime Caustics" IEEE Transactions on Visualization and Computer Graphics

#### Refraction (at two surfaces)

 Chris Wyman "An Approximate Image-Space Approach for Interactive Refraction" in SIGGRAPH 2005 http://www.cs.uiowa.edu/~cwyman/pubs.html

#### Sub surface scattering

Rui Wang, John Tran, David Luebke "All-Frequency Interactive Relighting of Translucent Objects with Single and Multiple Scattering" Sigraph 2005 <a href="http://www.cs.virginia.edu/~rw2p/s2005/">http://www.cs.virginia.edu/~rw2p/s2005/</a>





## **Suggested Papers (2)**

#### Ambient occlusion

Perumaal Shanmugam and Okan Arikan "Hardware Accelerated Ambient Occlusion Techniques on GPUs" in I3D 2007 http://sites.google.com/site/perumaal/

#### Translucent objects with depth-peeling

Louis Bavoil, Steven P. Callahan, Aaron Lefohn, Joao L. D. Comba, Claudio T. Silva "Multi-Fragment Effects on the GPU using the k-Buffer" in I3D 2007 <a href="http://www.sci.utah.edu/~bavoil/research/kbuffer/">http://www.sci.utah.edu/~bavoil/research/kbuffer/</a>

#### Relief mapping

Oliveira, Manuel M., Gary Bishop, David McAllister. Relief Texture Mapping. Proceedings of SIGGRAPH 2000. (see:

http://www.inf.ufrgs.br/~oliveira/RTM.html)





### **Suggested Papers (3)**

### Non-Photorealistic Rendering

■ T. Saito and T. Takahashi, "Comprehensible rendering of 3-D shapes", SIGGRAPH 1990



 S. Dobbyn, J. Hamill, K. O'Conor, C. O'Sullivan "Geopostors: A Real-Time Geometry/Impostor Crowd Rendering System" - i3d 2005. <a href="http://isg.cs.tcd.ie/dobbyns/VirtualDublinProject.html">http://isg.cs.tcd.ie/dobbyns/VirtualDublinProject.html</a>

### Point Based Rendering / Splatting

■ J.P. Grossman, "Point sample rendering" In Rendering Techniques (Eurographics Symposium on Rendering) 1998







### Other Inspirations (on what kind of demo to create)

- Some coursework from previous years (note slightly different project spec)
  - http://www.youtube.com/watch?v=IdHIROC9PXw
  - http://www.youtube.com/watch?v=5gorm90TXJM
  - http://www.youtube.com/watch?v=1Q639I7gHtg

- Some older Nvidia/ATI tech demos
  - http://www.youtube.com/watch?v=Cx8NiEnz5 o
  - http://www.youtube.com/watch?v=NAsoXHHCqWM

