Oefensessie 5 Synchrone Tellers

Synchrone teller

Herhaling methode:

- Bepalen aantal FF's (hangt af van het aantal combinaties)
- Teken het statendiagramma
- Statentabel opstellen: met huidige en volgende staat.
- Via excitatietabel de niveau's op de J- en K-ingangen bepalen
- De Karnaughkaarten opstellen
- Hieruit de logische vergelijkingen bepalen
- Schema van de teller tekenen
- Eventueel: impulsdiagramma tekenen

Gebruik hulpkaart

• Zie de extra hulpkaart op Toledo, om de Karnaughkaart op te stellen!

Ontwerp van een synchrone 4-bit teller met JK-flipflops

Gebruik hulpkaart

- Eenvoudige nummering kan gebruikt worden bij invullen van de Karnaughkaart als bij de huidige toestand in tabel alle locaties o ... 15 zijn ingevuld in de juiste volgorde.
- Zoniet moet je elk vak van de Karnaughkaart individueel invullen op basis van het nummer bij de huidige locatie.

Oefeningen

Opgaven

- 1) Maak een synchrone binaire voorwaartse modulo-6 teller met JK-FF's.
- 2) Maak op de hulpkaart een synchrone modulus 8 afteller.
- 3) Ontwerp een 4-bits synchrone teller met JKflipflops die volgende staten doorloopt:

$$\rightarrow 1 \rightarrow 3 \rightarrow 5 \rightarrow 7 \rightarrow 9 \rightarrow 11 \rightarrow 13 \rightarrow 15 \rightarrow 0 \rightarrow 2 \rightarrow 4 \rightarrow 6 \rightarrow 8 \rightarrow 10 \rightarrow 12 \rightarrow 14$$

Opgave 1: Maak een synchrone binaire voorwaartse modulo-6 teller met JK-FF's.

Methode:

- Bepalen aantal FF's: 3 (8 combinaties)
- Statendiagramma:

$$\rightarrow$$
 0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 $---$

Statentabel opstellen: met huidige en volgende staat.

				nair				Deci	maal									
h	huidige staat				volgende staat				nieuw								LSB	
Q_3	Q_2	Q ₁	Q_0	Q ₃	Q_2	Q ₁	Q_0	#	#	J_3	K ₃	J_2	K ₂	J_1	K ₁	Jo	K ₀	

Methode:

...

• Via excitatietabel de niveau's op de J- en K-ingangen bepalen

			Bir	nair				Deci	maal								
h	huidige staat volgende staat						oud	nieuw	M:	SB	\leftarrow			_	LS	SB	
Q_3				Q_3			Q_0		#	J_3	K ₃	J_2	K ₂	J_1	K ₁	J_0	K ₀
															Ш		
															\vdash		
															\vdash		
															Н		

Methode:

...

• Via excitatietabel de niveau's op de J- en K-ingangen bepalen

Q(t)	Q(t+dt)	J	K
0	0	0	×
0	1	1	×
1	0	×	1
1	1	×	0

Binair									maal	1						-	
huidige staat volgende staat						oud	nieuw	M	SB	<			— LSB				
Q_3	Q_2	Q_1	Q_0			Q_1	Q_0	#	#	J_3	K ₃	J ₂	K ₂	J ₁	K ₁	J_0	K ₀
	0	0	0		0	0	1	0	1			0	Х	0	Х	1	Х
	0	0	1		0	1	0	1	2			0	Х	1	Х	Х	1
	0	1	0		0	1	1	2	3			0	X	Х	0	1	X
	0	1	1		1	0	0	3	4			1	X	Х	1	Х	1
	1	0	0		1	0	1	4	5			X	0	0	X	1	X
	1	0	1		0	0	0	5	0			X	1	0	X	Х	1
	1	1	0		X	Χ	X	6	Χ			X	X	X	X	X	X
	1	1	1		Х	Χ	Х	7	Χ			Х	Х	Χ	Х	Х	Х

Methode:

 De Karnaughkaarten opstellen (zie extra hulpkaart op Toledo) (soms zie je de vergelijkingen onmiddellijk)

Methode:

- - -

Hieruit de logische vergelijkingen bepalen

$$J_0 = 1$$
 $K_0 = 1$
 $J_1 = Q_0 \cdot \bar{Q}_2$ $K_1 = Q_0$
 $J_2 = Q_0 \cdot Q_1$ $K_2 = Q_0$

Methode:

- -

Schema van de teller tekenen

Bemerk dat de asynchrone set- en resetingangen hier niet getekend zijn. Je kan ze beter wel tekenen (omdat ze op een IC voorzien zijn) en allemaal verbinden met '1' (+V_{cc}).

• De logische vergelijkingen:

$$J_0 = 1$$
 = $K_0 = 1$
 $J_1 = \bar{Q}_0$ = $K_1 = \bar{Q}_0$
 $J_2 = \bar{Q}_0 \cdot \bar{Q}_1$ = $K_2 = \bar{Q}_0 \cdot \bar{Q}_1$

Je hebt dus 3 FF's en 1 AND poort nodig om deze teller te maken.