Pricing Inequality

Simon Mongey Michael Waugh

FRB Minneapolis FRB Minneapolis

October 30, 2024 UF MRG by Min Fang

The Question

Q: Does household heterogeneity matter for firm pricing and aggregate price dynamics?

- Two facts about households:
 - Poor households are more price elastic (Auer-Burstein-Lein-Vogel'24)
 - Poor households buy low price varieties of the same good (Jaimovich et al'19; Bils-Klenow'01)
- Heterogeneity in income/wealth has direct implications for how firms set prices:
 - Who the firm sells to and how elastic they are determines firms' markups
 - Government policies affecting income/wealth will affect markups and inflation

The Answers

Q: Does household heterogeneity matter for firm pricing and aggregate price dynamics?

- Two facts about households:
 - Poor households are more price elastic (Auer-Burstein-Lein-Vogel'24)
 - Poor households buy low price varieties of the same good (Jaimovich et al'19; Bils-Klenow'01)
- Heterogeneity in income/wealth has direct implications for how firms set prices:
 - Who the firm sells to and how elastic they are determines firms' markups
 Result 1 Household het. accounts for nearly 70% of large vs small firm markups
 - Government policies affecting income/wealth will affect markups and inflation
 Result 2 40% less inflation when household heterogeneity is turned off

This Paper

- Simple model for the basic mechanism:
 - Static Two households Endowment
 - Extensive margin demand: One good in two varieties
- Quantitative model for quantification:
 - Dynamic Many households Bewley
 - Extensive margin demand: G goods in J varieties
- Importance of household heterogeneity:
 - Cross-section of markups
 - Following a fiscal transfer shock

Simple Model

Households' Problem

- Two types, with low, high endowments $i \in \{L, H\}$. A unit measure of each
- 1. Draw preferences for two varieties $j \in \{1, 2\}$:

$$\left(\zeta_1^i, \zeta_2^i\right) \sim \Gamma(\zeta), \quad \text{where} \quad \log \Gamma(\zeta) = -\sum_i e^{-\eta \zeta_j}$$

2. Choose which variety to consume with: Quality $\phi_1 > \phi_2$

$$\max\left\{V_1^i + \zeta_1^i + \frac{1}{\eta}\log\varphi_1, V_2^i + \zeta_2^i + \frac{1}{\eta}\log\varphi_2\right\}$$

3. Choose how much to consume

$$V_{j}^{i} = \max_{c_{i}^{i}} u\left(c_{j}^{i}\right)$$
 subject to $p_{j}c_{j}^{i} = e^{i}$ $\left[\lambda_{j}^{i}\right]$

Households - Elasticities & Sorting

• Demand - Let $v^i = e^{V^i}$

$$x_1^i = \rho_1^i c_1^i$$
 , $\rho_1^i = \varphi_1 \left(\frac{v_1^i}{\widetilde{v}^i}\right)^{\eta}$, $\widetilde{v}^i = \left[\varphi_1 \left(v_1\right)^{i\eta} + \varphi_2 \left(v_2\right)^{i\eta}\right]^{\frac{1}{\eta}}$

Elasticity

$$-\frac{\partial \log x_1^i}{\partial \log x_1} = \eta \left(1 - \rho_1^i\right) \times c_1^{i, -(\sigma - 1)} + 1$$

Sorting

$$\log\left(\frac{\rho_1^H/\rho_2^H}{\rho_1^L/\rho_2^L}\right) \approx \left(\lambda_1^L - \lambda_2^L\right) \left(e^H - e^L\right) > 0$$

- Data
 - 1. Elasticity Higher-income households are less elastic Auer et al. (2023)
 - 2. Sorting Higher-income households pay higher prices Jaimovich et al. (2019)

Firms - Markups

Problem

$$\pi_1 = \max_{p_1} (p_1 - MC) x_1$$
 subject to $x_1 = \sum_{i} x_1^i$

Nash equilibrium

$$p_1^* = \frac{\varepsilon_1}{\varepsilon_1 - 1} MC \quad , \quad \varepsilon_1 = \sum_i \left(\frac{x_1^i}{x_1} \right) \left[\eta \left(1 - \rho_1^i \right) c_1^{i, -(\sigma - 1)} + 1 \right]$$

- Data Large firms:
 - 1. Higher markups Edmond et al. (2023) via market power and heterogeneity of customers
 - 2. Higher sales more customers, higher quality Afrouzi et al. (2024)

Comparative static - $e'_L = e_L + T$

A. Sorting

- Poor less elastic ⇒ Reallocate consumption to higher price, higher quality good
- Data Consistent with 'trading up' Jaimovich, Rebelo, Wong (2019), & Zhang (2019)

Comparative static - $e'_L = e_L + T$

B. Markups

- Firm 1 More market power ↑ p₁
- Firm 2 Less choosy customers ↑ p₂
- Data Consistent with 'cheapflation' Cavallo Kryvstov (2024)

Quantitative Model

Nested Logit + Bewley

Differentiated goods

```
- Goods g \in \mathcal{G}, each has J varieties j \in \{1, ..., J\} \eta, \theta, J
- Pareto quality \phi_j (identical draws for each good) \xi
- Decreasing returns: y_j = n_i^{\alpha} \alpha
```

Homogeneous good

- Continuum of identical firms: $Y_c = N_c$. Used for government spending, \overline{G} .

Households

```
    Stochastic income We<sup>i</sup><sub>t</sub> (AR(1) + Transitory - Krueger Perri Mitman, 2016)
    Taxes τ, transfers Τ (20% and 5% of GDP - Kaplan Moll Violante, 2020)
```

- Save in government debt r = 2%, liquid asset calibration (B/W = 0.56 Kaplan Violante, 2022)
- Preferences only over differentiated good, CRRA

Households' Problem

- Today, conditional on choosing good-variety jg

$$V\left(a, e, p_{jg}\right) = \max_{a', c_{jg}} u(c_{jg}) + \beta \int \overline{V}\left(a', e'\right) d\Gamma_{e}(e'|e)$$

$$p_{jg}c_{jg} + a' = \left(1 - \tau\right)We + (1 + r)a + \Pi + T$$

$$a' \geq \underline{a}$$

- Tomorrow, given prices p_{jg} and preferences ζ_{jg}'

$$\overline{V}\left(a',e'
ight) = \int \max_{j,g} \left\{ V\left(a',e',p_{jg}
ight) + rac{1}{\eta} \log \phi_{jg} + \zeta'_{jg}
ight\} d\Gamma_{\zeta}\left(\zeta'
ight)$$

Elasticities

- Demand

$$\rho_{jg}^{i} = \underbrace{\phi_{jg} \left(\frac{v_{jg}^{i}}{\widetilde{v}_{g}^{i}} \right)^{\eta}}_{\rho_{g}^{i}} \underbrace{\left(\frac{\widetilde{v}_{g}^{i}}{\overline{v}^{i}} \right)^{\theta}}_{\rho_{g}^{i}} \quad , \quad \widetilde{v}_{g}^{i} = \left[\sum_{j \in g} \phi_{jg} \left(v_{j}^{i} \right)^{\eta} \right]^{1/\eta} \quad , \quad \overline{v}^{i} = \left[\sum_{g \in \mathcal{G}} \left(\widetilde{v}_{g}^{i} \right)^{\theta} \right]^{1/\theta}$$

- Household price elasticity

$$\varepsilon_{jg}^{\rho\,i} = \left[\theta\,\rho_{j|g}^{i} + \eta\left(1 - \rho_{j|g}^{i}\right)\right] \frac{\partial V\left(\mathbf{a}^{i}, \mathbf{e}^{i}, \mathbf{p}_{jg}\right)}{\partial \log p_{jg}} \quad , \quad \varepsilon_{jg}^{c\,i} \in \left[\frac{1}{\sigma}, 1\right]$$

- Firm's price elasticity

$$arepsilon_{j\mathbf{g}} = \int_{A imes E} \left(rac{
ho_{j\mathbf{g}}^{i} c_{j\mathbf{g}}^{i}}{\mathbf{x}_{j\mathbf{g}}}
ight) \left(\left[heta \
ho_{j|\mathbf{g}}^{i} + \eta \left(1-
ho_{j\mathbf{g}}^{i}
ight)
ight] \mathbf{c}_{j\mathbf{g}}^{i-(\sigma-1)} + arepsilon_{j\mathbf{g}}^{c\,i}
ight) dH\left(\mathbf{a}^{i}, \mathbf{e}^{i}
ight)$$

Parameters (Validation Omitted Here)

- J Concentration (Amiti Heise, 2024)
- ξ Sales share of top firms (Amiti Heise, 2024)
- 17 Average markup
- θ Relationship between market share and markup (Replicate: Edmond et al, 2023)
- σ How price elasticities decline with income (Replicate: Auer et al, 2022)
- α How prices paid increase with income (Replicate: Jaimovich et al, 2019)

Parameter	Value	Moment	Data	Model	
J	25	Sales share HHI	0.051	0.051	
ξ	9.30	Top 4 firms sales share	0.30	0.30	
η	10.96	Average cost-weighted markup	1.25	1.25	
θ	0.15	EMX elasticity of markups to shares	0.07	0.07	
σ	1.92	$3 \times$ higher income, $X \times$ lower elasticity	2.22	2.22	
α	0.64	Top vs. Bottom quintile of income households pay \times % higher prices	14.4	14.4	

I.Elasticities

- Simple regression: $\mathbb{E}\left[\varepsilon^{i}|e\right] = \beta_{0} \beta_{1}\log e, \quad \widehat{\beta}_{1} = 2.23$
- A household with an income 1 s.d. above the mean has a price elasticity about 20% [22.7%] below the price elasticity of the median consumer [6.23].
 Nakamura, Zerom (2010)

II.Sorting

- At the low quality firm, >50 percent of sales to below median expenditure households
- At the high quality firm, <15 percent of sales to below median expenditure households

III.Markups

- High quality firms are: Larger, Higher prices, Higher markups

Household Heterogeneity vs Market Power

• Which one is more important: Household heterogeneity and Market power? **Elasticity Decomposition**

	Market Power	Household Heterogenaity
Top — Bottom Quintile Firms	32.4	67.6
Middle - Bottom Quintile Firms	35.2	64.8

Note: Quintiles formed on the basis of sales.

Household heterogeneity dominates.

Welfare Effects of Markups

• Monopolistic competition: All firms markup equal to 25%

• Competitive: All firms markup equal to 0%

		Baseline	Manan Camp	Competitive
		Daseille	Monop. Comp	Competitive
A. Statistics	Average markup	22%	22%	0
	Interest rate	2.00%	1.99%	1.71%
B. Firms	Prices			
	Aggregate		0.52	-19.40
	Low quality goods		0.31	-20.00
	High quality goods		-0.45	-19.62
	Quantities			
	Aggregate		-0.00	-0.00
	Low quality goods		-2.42	-2.58
	High quality goods		6.24	7.54
C. Households	Quality			
	Aggregate		35.3	39.2
	Poor		11.6	36.2
	Rich		-3.4	-3.6
	Consumption			
	Aggregate		-0.0	-0.0
	Poor		0.0	-10.9
	Rich		0.1	3.3

Quantitative Results in the Aggregate Dynamics

How does the Economy Respond to a Fiscal Transfer?

- Data Excess savings peaked at 7.56% of GDP in August 2021
- Increase T1, . . . , T6 by 1.26% of GDP
- Result in excess savings:

Elasticities & Sorting

- Low income - Transfer: $\uparrow c_t^i$, High income - Face higher prices (next): $\downarrow c_t^i$

Prices & Output

- Consistent with Cheapflation and Trading up

Markups & Marginal Cost

- Markup differences account for more than 100% of *cheapflation*, and 35.1% of inflation

Conclusions & Discussions

- A good idea to build a framework for pricing inequality.
- Broadly consistent with many empirical facts (cross-section and time-series).
- Discussions: Not sure where the authors are exactly heading.