	from scipy.stats import bernoulli from scipy.stats import norm, chi2, binom, beta, multivariate_normal, gamma import matplotlib.pyplot as plt import matplotlib.cm as cm plt.close("all") plt.rc('text', usetex = True) import matplotlib.gridspec as gridspec import math import statistics as st from scipy.optimize import minimize import pandas as pd from progressbar import ProgressBar (1) Introduction 1. Sample a univariate Gaussian using scipy.stats.
[5]:	<pre>2. Evaluate the PDF of a univariate Gaussian using scipy.stats. 3. Visualize the PDF of a univariate and a normalized sample histogram of samples from a univariate Gaussian with identical parameters on top of each other using Matplotlib. #initialization n=100 #sample size x_min=-4 #minimum x x_max= 8 #maximum x x_resolution=100 x=np.linspace(x_min, x_max, x_resolution) #x space mu=2 sigmasqr=5 random_samples= rv.norm.rvs(mu, np.sqrt(sigmasqr), size=n) print(random_samples) fig, ax = plt.subplots(1,1, figsize=(15, 5))</pre>
	ax.hist(random_samples, density=True, bins='auto', facecolor=[.9, .9, .9], edgecolor='black', linewidth=1, lat ax.plot(x,rv.norm.pdf(x,mu,np.sqrt(sigmasqr)), linewidth=2, label=r'\$ N(x;{},{})\$'.format(mu,sigmasqr)) ax.set_title('Univariate Gaussian', fontsize=20) ax.set_xlabel(r'x', fontsize=20) ax.legend(loc='upper right', fontsize=20) fig.tight_layout() plt.show() [-1.43218809e+00 7.10115066e+00 -2.85653883e+00 9.01872584e-01 3.88944954e-01 -5.90164083e-01 2.41542669e+00 -4.76953020e-03 4.72807363e+00 3.31342501e+00 -1.80008741e+00 6.42037180e+00 -4.41979354e-01 3.42399541e+00 3.13918213e-01 2.80339421e+00 7.12482077e-01 6.93626187e-01 5.05795653e+00 4.52050468e-01 2.86345035e+00 2.21981088e+00 -1.26010787e+00 7.77443082e-01 1.49806966e+00 6.05176038e+00 3.03981599e+00 3.96552313e+00 6.02857704e-01 2.83618055e+00 -7.53700991e-01 1.05531554e+00
	1.96798695e+004.30404432e+001.11497596e+006.87815388e+008.45654911e-011.67882339e+004.20939542e-014.37415970e+00-1.19428168e-022.81665784e+00-8.59832786e-025.37693122e+009.83117090e-014.00822530e+003.20435510e-011.52662796e+00-3.33052707e+00-7.57549239e-013.54026203e+00-4.87773543e-012.72828296e+006.08886143e+002.72461172e+003.51096437e+003.03157449e+005.10985705e+00-1.48082130e+003.06299303e+003.18390920e+005.67678167e-012.17156161e+00-1.90252618e+003.87396073e+003.06526373e+001.33601614e+004.69736816e+00-5.08283059e+002.49559088e+003.00210592e+006.27515862e-013.92081356e+007.56937171e+002.02120790e+003.83278043e+001.67793105e+00-2.34420131e+005.78046227e+002.74349475e-011.08892391e+002.94270264e+003.41420531e+002.01279338e+001.83534390e+002.23136741e-01-1.45530886e+008.18996249e-014.30749554e+002.36382239e+003.43996455e+00-9.07995033e-01
	1.91934796e+00 -5.06934006e-01 3.83272675e+00 -2.18645028e-01 8.50384571e-01 3.98785521e-01 3.78829119e+00 4.55603840e+00] Univariate Gaussian N(x; 2, 0.155 - 0.100 - 0.075 - 0.050 -
	(2) Probability spaces 1. (Dice experiment 1) Consider the probability space model of tossing a fair dice. Let A = {2, 4, 6} and B = {1, 2, 3, 4} be two event Then, P(A) = 1/2, P(B) = 2/3 and P(A \cap B) = 1/3. Since P(A \cap B) = P(A)P(B), the events A and B are independent. Simulate draw from the outcome space and verify that P^(A \cap B) = P^(A)P^(B), where P^(E) denotes the proportion of times an event E occurs in
65]:	the simulation.
	<pre>r_number = rv.randint.rvs(1,7) #random number if r_number in A and r_number in B: cn_AB = cn_AB + 1 if r_number in A: cn_A = cn_A + 1 if r_number in B: cn_B = cn_B + 1 print("Dice Experiment I-probability estimation") prob_A_B=cn_AB/n print("Estimated Probabilty of event A and B :",prob_A_B) # P(A∩B) prob_A=cn_A/n print("Estimated Probability of event A : ", prob_A) prob_B=cn_B/n</pre>
	print("Estimated Probability of event B : ", prob_B) print("Estimated Probability of event A & B = P(A)P(B): ",prob_A*prob_B) #P(A)P(B) print("So, from above we can conclude that P(A∩B) = P(A)P(B), given events A and B are independent.") Dice Experiment I-probability estimation Estimated Probability of event A and B : 0.323 Estimated Probability of event A : 0.485 Estimated Probability of event B : 0.677 Estimated Probability of event A & B = P(A)P(B): 0.328345 So, from above we can conclude that P(A∩B) = P(A)P(B), given events A and B are independent. 1. (Dice experiment 2) Consider the probability space model of tossing a fair dice. Identify two events A and B that are not
66]:	independent. Analytically, evaluate P(A), P(B), P(A \cap B), P(A B) and P(B A) and verify these values by means of simulation. #Probability spaces - Ex 2 A= [1,3,5] B= [2,4,6] n = np.int(1e3) cn_A = 0 cn_B = 0 cn_AB = 0 for i in range(n): r_number = rv.randint.rvs(1,7) #random number
	<pre>if r_number in A and r_number in B: cn_AB = cn_AB + 1 if r_number in A: cn_A = cn_A + 1 if r_number in B: cn_B = cn_B + 1 print("Dice Experiment II probabilty estimation") prob_AB=cn_AB/n print("Estimated Probabilty (P) of event A & B :",prob_AB) prob_A=cn_A/n print("Estimated Probabilty (P) of event A : ", prob_A)</pre>
	<pre>prob_B=cn_B/n print("Estimated Probabilty (P) of event B : ", prob_B) prob_A_given_B=cn_AB/cn_B print("Estimated Probability of event A given event B ,P(A/B): ",prob_A_given_B) prob_B_given_A=cn_AB/cn_A print("Estimated Probability of event B given event A ,P(B/A): ",prob_B_given_A) Dice Experiment II probability estimation Estimated Probability (P) of event A & B : 0.0 Estimated Probability (P) of event A : 0.495 Estimated Probability (P) of event B : 0.505 Estimated Probability of event A given event B ,P(A/B): 0.0 Estimated Probability of event B given event A ,P(B/A): 0.0</pre>
67]:	<pre>n = np.int(1e3) cn_S0 = 0 # number of same output cn_H1 = 0 #number of heads on toss 1 cn_H2 = 0 #number of heads on toss 2</pre>
	<pre>for i in range(n): C = np.full((2,1), np.nan) # coin sample with head and tail C[1] = rv.bernoulli.rvs(0.5) # random sample C[0] = rv.bernoulli.rvs(0.5) # random sample if C[0] == C[1]: cn_S0 = cn_S0 + 1 if C[1] == 0: cn_H2 = cn_H2 + 1 if C[0] == 0: cn_H1 = cn_H1 + 1</pre>
	print('Estimated Probabilty with heads on first toss is : ', cn_H1/n) print('Estimated Probabilty with heads on second toss is : ', cn_H2/n) print('Estimated Probabilty with heads on second toss is : ', cn_S0/n) print("Hence we can verify that the events 1) H appears on the first toss 2) H appears on the second toss Estimated Probabilty with heads on first toss is : 0.509 Estimated Probabilty with heads on second toss is : 0.496 Estimated Probabilty with heads on second toss is : 0.497 Hence we can verify that the events 1) H appears on the first toss 2) H appears on the second toss 3) bot osses have the same outcome[]- each have probability of 1/2 (3) Random variables
85]:	1. Simulate the probability space model of throwing to dice and the random variable corresponding the sum of the pips. Visualize a normalized histograms of simulated outcomes of this random variable and compare it to the theoretical prediction. N = int(1e4) dice1 = np.random.randint(low=1, high=7, size=N) dice2 = np.random.randint(low=1, high=7, size=N) rv = dice1 + dice2 fig, ax = plt.subplots(1,1,figsize=(15, 5)) plt.title("histograms of simulated outcomes of random variable") plt.hist(rv, bins=np.arange(2, 14), align="left", rwidth=0.8) plt.show() histograms of simulated outcomes of random variable
	1600 - 1400 - 1200 - 1000 - 800 - 600 -
82]:	fig, ax = plt.subplots(1,1,figsize=(15, 5)) x=np.linspace(2,12,11) p=np.array([1,2,3,4,5,6,5,4,3,2,1])/36 plt.title("Visualization of theoretical prediction") plt.bar(x,p) plt.show() Visualization of theoretical prediction
	0.16 - 0.14 - 0.12 - 0.10 - 0.08 - 0.06 - 0.04 -
86]:	1. Visualize the PMF of a Bernoulli random variable and a normalized histogram of many samples of a Bernoulli random variable we identical parameter setting on top of each other. #Programming Ex - 2 p=0.3 x = bernoulli.rvs(p, size=100) #random samples pmf = bernoulli.pmf(x,p)
86]:	fig, ax = plt.subplots(1,1,figsize=(15, 5)) plt.bar(x,pmf,width=0.1,color=["r","g"]) plt.title("Visualizarion of PMF of a Bernoulli random variable") plt.xlabel("Samples") plt.ylabel("Probability") Text(0, 0.5, 'Probability') Visualizarion of PMF of a Bernoulli random variable 0.7- 0.6-
	0.5 - \frac{\frac}\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac
88]:	<pre>print("Normalized histogram of many samples of a Bernoulli random variable ") fig, ax = plt.subplots(1,1,figsize=(15, 5)) plt.hist(x, density=True, align="left", rwidth=0.9) plt.show() Normalized histogram of many samples of a Bernoulli random variable 7-6-5-</pre>
	1. Visualize the PDF of a Gaussian random variable and a normalized histogram of many samples of a Gaussian random variable
92]:	<pre>with identical parameter settings on top of each other. fig, ax = plt.subplots(1,1,figsize=(15, 5)) n=10000 #sample size x = np.linspace(-10,10,100) #x space r_x = norm.rvs(scale=2, size=n) #random numbers using N(0,1) p = norm.pdf(x,scale=2) # generate pdf v = np.var(r_x) m = np.mean(r_x) print("PDF of a Gaussian random variable and histogram of many samples of Gaussian RV") ax.hist(r_x, bins=10, alpha=0.5, density=True) ax.plot(x,p, 'g-', lw=2)</pre>
	ax.set_xlabel('x') ax.set_ylabel('pdf(x)') ax.set_title(f' Gaussian with mean={m:.2f}, variance={v:.2f}') ax.grid(True) PDF of a Gaussian random variable and histogram of many samples of Gaussian RV Gaussian with mean=-0.02, variance=4.01
	(4) Joint distributions
96]:	1. Write a simulation that demonstrates that the marginal distributions of a bivariate Gaussian distribution with expectation paramet μ =(1,2) T and covariance matrix parameter Σ =(0.30.20.20.5) are given by univariate Gaussian distributions with expectation parameters μ 1=1, μ 2=2 and variance parameters σ 2=0.3 and σ 2=0.5, respectively. For the simulation, make use of multivariate Gaussian probability density and random number generators. Visualize and document your results.
	<pre>sample_multi_gaussian = np.random.multivariate_normal(exp, cov, size = n) #random sample x = sample_multi_gaussian[:,0] #X y = sample_multi_gaussian[:,1] #Y x_space = np.linspace(min(x), max(x), 100) #x space y_space = np.linspace(min(y), max(y), 100) #y space fig, axs = plt.subplots(1,2,figsize=(20, 5)) for kk, ax in enumerate(axs.reshape(-1)): if kk==0: ax.plot(x_space, norm.pdf(x_space, 1, np.sqrt(0.3)),label=r'\$N (x1;1,0.3)\$')</pre>
	$\begin{array}{c} \text{ax.hist}(\textbf{x}, \text{ density=True}, \text{ bins} = \text{'auto'}, \text{ label} = \text{"Simulation n} = \text{Marginal histogram"}) \\ \text{ax.legend}(\text{frameon=False}) \\ \text{ax.set_title}(\textbf{r'}\$\textbf{mu} = \textbf{1}, \texttt{\sigma^2} = \textbf{0}.3\$') \\ \text{else:} \\ \text{ax.plot}(\textbf{y}_\texttt{space}, \text{ norm.pdf}(\textbf{y}_\texttt{space}, \textbf{2}, \text{ np.sqrt}(\textbf{0}.5)), \text{ label=r'$N (x2;2,0.5)$')} \\ \text{ax.hist}(\textbf{y}, \text{ density=True}, \text{ bins} = \text{'auto'}, \text{ label} = \text{"Marginal histogram"}) \\ \text{ax.legend}(\textbf{loc='best'}, \text{ frameon=False}) \\ \text{ax.set_title}(\textbf{r'}\$\textbf{mu} = \textbf{\{}\}, \texttt{\sigma^2} = \textbf{\{}\}\$'.\text{format}(\textbf{2},\textbf{0}.5)) \\ \text{plt.show}() \\ \text{# Visualization} \\ \\ \mu = 1, \sigma^2 = 0.3 \\ \hline \\ marginal histogram \\ \hline \\ marginal histo$
	1. Write a simulation that verifies that obtaining samples from 2 independent univariate Gaussian distributions with parameters μ i,
105	$\label{eq:continuous_propriete} i > 0, i = 1, 2 \text{ is equivalent to obtaining samples from a two dimensional Gaussian distribution with the appropriately specified parameters $\mu \in \mathbb{R}$ 2 and $\Sigma \in \mathbb{R}$ 2×2 .}$ $\label{eq:continuous_propriete} n = 1000$ $eq:continuous_propr$
	<pre># non iterative bivariate sampling Sigma = [[sigsqr[0],0], [0,sigsqr[1]]] X[:,:,1] = multivariate_normal.rvs(mu,Sigma,n) fig, axs = plt.subplots(1,2,figsize=(20, 5)) for i, ax in enumerate(axs.reshape(-1)): ax.plot(X[:,0,i], X[:,1,i], linestyle = '', marker = 'o', color = 'r', alpha = .5) ax.set_aspect('equal') ax.set_xlim(-6,6) ax.set_ylim(-5,8) ax.grid(True, linewidth = .5) ax.set_title(subplotlab[i], fontsize = 20) plt.show()</pre>
	#visualization Indepedent univariate samples Independent bivariate samples 4 2 0 Independent bivariate samples 6 4 2
106	1. Write a simulation that exemplary verifies the analytical results on conditional Gaussian distributions for the case of a bivariate Gaussian distribution. #Joint distr specifications mu = [0,0]
	<pre>Sigma = np.array([[1,.6],[.6,1]]) #A conditional distri specifications x = np.linspace(-4,8,100) y = [1,-1] n = 1000 S = np.full((n,2), np.nan) #a censored bivariate sampling for i in range(2): j = 0 while j < n: X = multivariate_normal.rvs(mu,Sigma) #random samples if X[1] > y[i] - 1e-2 and X[1] < y[i] + 1e-2:</pre>
	<pre>if X[1] > y[i] - 1e-2 and X[1] < y[i] + 1e-2: S[j,i] = X[0] j = j + 1 fig, axs = plt.subplots(1,2,figsize=(20, 5)) for i, ax in enumerate(axs.reshape(-1)): ax.hist(S[:,i],</pre>
	Sigma_x_giv_y = Sigma[0,0] - Sigma[0,1]*(1/Sigma[1,1])*Sigma[1,0] ax.plot(x,
113	<pre>x = np.linspace(0,1,res) y_min=0.001</pre>
	<pre>y_min=0.001 y_max=5 y= np.linspace(y_min,y_max,res) n=1000 # sample size lamb = 2 Y = uniform.rvs(size = n) #uniform random samples transform = -(1/lamb)*np.log(1-Y) #pdf = stats.expon.pdf(y) pdf2= lamb*np.exp(-lamb*y) #Visualization fig, axs = plt.subplots(1,3,figsize=(20, 5)) for i, ax in enumerate(axs.reshape(-1)): if i==0: ax.hist(Y, density = True, bins = 'auto', linewidth = .5)</pre>
	<pre>elif i==1: ax.plot(x,-1/lamb*np.log(1-x),linewidth = 2) ax.set_title(r'\$P_X ^{-1}(y) = -1/\lambda*ln(1 - y)\$',fontsize=20) else: ax.hist(transform, density = True, bins = 'auto', linewidth = .5, label ="Histogram X") ax.plot(y,pdf2,linewidth = 2, label=r'\$p_X(x)\$') ax.set_title(r'\$X = P_X^{-1}(Y)\$',fontsize=20) ax.legend() plt.show()</pre>
	<pre><ipython-input-113-c5b1c566ce0a>:22: RuntimeWarning: divide by zero encountered in log ax.plot(x,-1/lamb*np.log(1-x),linewidth = 2) $Y \sim U(0,1)$ $P_X^{-1}(y) = -1/\lambda * ln(1-y)$ $X = P_X^{-1}(Y)$ 1.5 1.5 2.0 1.5 0.4 0.2 0.50 0.50 0.25 </ipython-input-113-c5b1c566ce0a></pre>
	res=1000 x = np.linspace(-4,4,res) y = np.linspace(0.001,4,res) n = 10000 #sample size r_samples = norm.rvs(size = n) exp_zsample = np.exp(r_samples) #Visualization fig, axs = plt.subplots(1,3,figsize=(20, 5)) for i, ax in enumerate(axs.reshape(-1)): if i==0:
120	
	<pre>ax.plot(x,norm.pdf(x)) ax.set_title(r'\$X \sim N(0, 1)\$') elif i==1: ax.plot(x,np.exp(x),linewidth = 2) ax.set_title("f(x) = exp(x)") else: ax.hist(exp_zsample,density = True, bins = 'auto', linewidth = 0.5,label=r'Histogram Y = exp(X)' ax.plot(y,(1/np.sqrt(2*np.pi)) * (1/np.abs(y)) * np.exp(-1/2*(np.log(y)**2)),linewidth = 2, label ax.set_title("Histogram Y = exp(X)") ax.legend(fontsize=20) plt.show</pre>
120	<pre>ax.set_title(r'\$X \sim N(0, 1)\$') elif i==1: ax.plot(x,np.exp(x),linewidth = 2) ax.set_title("f(x) = exp(x)") else: ax.hist(exp_zsample,density = True, bins = 'auto', linewidth = 0.5,label=r'Histogram Y = exp(X)' ax.plot(y,(1/np.sqrt(2*np.pi)) * (1/np.abs(y)) * np.exp(-1/2*(np.log(y)**2)),linewidth = 2, label ax.set_title("Histogram Y = exp(X)") ax.legend(fontsize=20) plt.show</pre>
	ax.set_title(r'\$x \sim N(0, 1)\$') elif i==1: ax.plot(x,np.exp(x),linewidth = 2) ax.set_title("f(x) = exp(x)") else: ax.hist(exp_zsample,density = True, bins = 'auto', linewidth = 0.5,label=r'Histogram Y = exp(X)' ax.plot(y,(1/np.sqrt(2*np.pi)) * (1/np.abs(y)) * np.exp(-1/2*(np.log(y)**2)),linewidth = 2, label ax.set_title("Histogram Y = exp(X)") ax.legend(fontsize=20) plt.show cfunction matplotlib.pyplot.show(close=None, block=None)>
120	ax.set_title(r'sx \sim N(0, 1)\$') elif i==1: ax.plot(x,np.exp(x),linewidth = 2) ax.set_title("f(x) = exp(x)") else: ax.hist(exp.zsample.density = True, bins = 'auto', linewidth = 0.s, label=r'Histogram Y = exp(X)' ax.plot(y,(1/m).sqrt(2^np.pi)) * (1/np.abs(y)) * np.exp(-1/2*(np.log(y)**2)), linewidth = 2, label ax.set_title("Histogram Y = exp(X)") ax.legend(fontsize=20) plt.show <pre> function matplotlib.pyplot.show(close=None, block=None)></pre>
120	ax.set_title(r'sX \sim N(0, 1)\$') elif i==1: ax.plot(x,np.exp(x), linewidth = 2) ax.set_title("f(x) = exp(x)") else: ax.hist(exp_zsample, density = True, bins = 'auto', linewidth = 0.5, label=r'Histogram Y = exp(X)' ax.plot(x,(1/np.sqr(2^np.pil)) * (1/np.abs(y)) * np.exp(-1/2*(np.log(y)**2)), linewidth = 2, label ax set_title("Histogram Y = exp(X)") ax.legend(fontsize=20) plt.show cfunction matplotlib.pyplot.show(close=None, block=None)> n = 10000 #sample size res=100 x = np.linspace(0, 30, res) Theta = (1,10) fig = plt.figure(figsize = (20,5)) gs = gridspec.dridspec(1,3) ax = {} #### iterations for i, theta in enumerate(Theta): sample = np.full((n, theta), np.nan) ###################################
120	ax set title(r'sX (sim N(0, 1)8') elif 1==1; ax.plot(x,np.exp(x), linewidth = 2) ax.set title("f(x) = exp(x)") else: ax.sift(exp_asmple_density = True, bins = 'auto', linewidth = 0.5, label=r'Histogram Y = exp(X)' ax.plot(y,(inp.sqr((2"np.il)) * (1/np.abs(y)) * np.exp(-1/2*(np.log(y)**2)), linewidth = 2, label ax.legend(fontsize=28) plt.show <pre></pre>
120	as set cit le("48 vain ((4, 1)8") elst 'int' est plac(x, 6, exp(x), lineaddth = 2)
120	ac. sec_itiz(ry, p. eag(x), is sep(x)) aif case: ac. old(x, p. eag(x), is sep(x)) ac. old(x, p. eag(x), p. eag(x)) ac. old(x) (2) per set (2*pt.) ac. old(x) (2*pt. per (2*pt.)) ac. old(x) (2*pt.)
120	and contribution of a state (mp. 1961) and state (mp. 1969), throughth = 2) and state (mp. 1969), marely = Train, store = Batta, throughth = 6.8, leader throughth = 9, taked as state (mp. 1969), marely = Train, store = Batta, throughth = 6.8, leader throughth = 9, taked as state (mp. 1969), marely = 1969), marely = 1969, marely = 19
120	a = south (sup reside) * Throughth = 2) a the conduction of the control of the
120 54]:	existic contribution project interestable 2 contributions and contributions of the complete and contributions of the contribution of the contribut
120 54]:	control (10): 28 (-5 10): 100; 100; 100; 100; 100; 100; 100; 100
120 54]:	desired at 14-15 (to Nation 18, 19, 197) and the state of the state o
120 54]:	Color Expectation and covariance 1. Some - 2 does not control (1992) 1. Some - 2 do
120 64]:	Service Control of the Control of th

	validation of estimato number of samples: 100 MSE Bias^2 0 12.004170 0.112310 1 12.140706 0.007394 2 11.993171 0.335628 Bias/Var						
	Bias/Var	iance : estimator2					
	26.5 -	0	0		0		
	25.5 - 25.0 -		0		• • • • • • • • • • • • • • • • • • •		
	validation of estimato number of samples: 100	00 Variance MSE=Bias 0.132002 0.132028		positions of	estimator2 mean squared en	rors through	simulatio w
06	1. Write a simulation that v univariate Gaussian dist mu=0 Sigmasqr=1 n=100000 #sample size n_sim = 10000 s = range(n_sim) v_X = 0.21 S_X = 0.7071 samples = [10,25,50,10]	erifies the asymptotic un ribution. Include a verific	r prope This prope of the unit of the uni	rties f the maximum li			e parameter of
	<pre>#simulation iteration V_hat = [] V_hat_b = [] for n_s in samples: v_res =[] vb_res =[] for i in range(n_s) X = rv.norm.rr v_res.append(nos) V_hat.append(nos) V_hat_b.append(nos)</pre>	sim): vs(mu,np.sqrt(Sigma np.var(X, ddof = 1) (np.var(X, ddof = 0) um(np.array(v_res)) .sum(np.array(vb_re	sqr), size =))) /n_sim)	= n_s)			
	<pre>ax.plot (samples,</pre>	<pre>r',label = r"\$ g',label = r"\$\hat{ (9), b',label=r'\$\sigma) tsize=20)</pre>	E}(\sio	·	5")		
	1.00						
23	1. Write a simulation that v distribution. # Initializations sample_sizes = [50,300 p = 0.7 repeats = 1000 #Setup the Plot		4000 fficiency of the	n maximum likelih		sooo he parameter o	a Bernoulli
	<pre>count_sample_sizes = fig, axs = plt.subplo #Estimate the Bern pa for i, ax in enumerate n = sample_sizes[i] estimators = np.ful for j in range(repe bernoulli_sample s</pre>	ts(2,2,figsize=(20, rameter and plot PD e(axs.reshape(-1)): l(repeats, np.nan) ats): = bernoulli.rvs(p, an(bernoulli_sample stimator	F of normal size=n)	dist and the	p-estimations		
	<pre>x_min = min(estimate x_max = max(estimate x_res = 1000 x_space = np.linspace EFI = n/p + n/(1-p) EFI_power_minus1 = 1 #define plot labels label_norm = r'\$N(\) label_estimators = title_string = r'\$\)</pre>	ors) ce(x_min,x_max,x_re # Expected Fisher EFI**(-1) theta, J_{n}(\thet r'\$\hat{ \theta }_n	info a)^{-1})\$' \$'	'{:,}'.format	(n)		
	ax.hist(estimators, d b.	u\$',fontsize=20)	;	FI_power_minus	s1)),	$\mu = 0.7, n = 300$	
	1. Write a simulation that v	μ	$ \begin{array}{c c} N(\theta, J_n(\theta)^{-1}) \\ & \hat{\theta}_n \end{array} $ 0.85 0.90 $ \begin{array}{c c} N(\theta, J_n(\theta)^{-1}) \\ & \hat{\theta}_n \end{array} $ 1.74 0.76	20 - 15 - 15 - 10 - 10 - 10 - 10 - 10 - 1	0.690 0.695	$\mu = 0.7, H = 10,000$ 0.700 μ	
35	<pre># Initializations sample_sizes = [100,10] repeats = 1000 #Setup the Plot count_sample_sizes = mu = 0.7 Sigmasqr = 2 #Estimate the S_sqr partial.</pre> fig, axs = plt.subplo	ribution. 000,10000,100000] len(sample_sizes) arameter and plot P	DF of normal				
		e(axs.reshape(-1)): l(repeats, np.nan) ats): norm.rvs(mu,np.sqr r(gaussian_sample, stimator e ors) ors)	t(Sigmasqr), ddof = 0)		μ-estimations		
	<pre>ax.hist(estimators,</pre>	theta, J_{n}(\thet r'\$\hat{ \theta }_n	a)^{-1})\$' \$' n) gmasqr,math	.sqrt(EFI)),			
	b.	<pre>ins='auto', olor = 'blue', abel=label_estimato string) igma ^{2}\$',fontsiz ity') eta, J_{n} (\theta)</pre>	e=20) ^{-1}) \sim	N(\sigma ^{2} $\sim N(\sigma^2, (2*))$		(4})/n)\$', f	ontsize=30) $\begin{array}{c} N(\theta \\ \hline & \hat{\theta}_n \end{array}$
	0.0 1.25 1.50 1.75 12.5 1.50 1.75 12.5 1.50 1.75 1.950 1.975 (11) Confidence 1.Write a simulation that veri	ce intervals		1 - 0 - 1.7 - 50 - 40 - 40 - 40 - 40 - 40 - 40 - 40	1.8 1.9 1.98 1.99	n = 10 000 0	2.1 2.2 $\frac{N(\theta)}{\hat{\theta}_n}$ edom.
79	<pre>#Initialisation n_sim = 100000 t_min = -5 t_max = 5 t_res = 1000 t = np.linspace(t_min mu = np.array ([2,2,1 Sigmasqr = np.array (n_s = np.array ([20,3) fig, axs = plt.subplo #Estimate the Bern pa for i, ax in enumerate ts = np.full([n_sim for j in range(n_sin r sample= norm.</pre>	<pre>,0]) [0.5,1,2,3]) 0,40,50]) ts(2,2,figsize=(20, rameter and plot PD e(axs.reshape(-1)): , 1], np.nan)</pre>	F of normal				
	<pre>ts[j] = np.sqrt ax.hist(ts,density=</pre>	<pre>(n_s[i])*(np.mean(r True, = np.linspace(t_min olor = 'black', lin = r'T statistics di pdf(t,n_s[i]-1), idth = 2, = r't(t;{})'.forma,Xn ~ N({},{})'.f fontsize = 12) _max)</pre>	_sample) - r ,t_max,30), ewidth = .5, stribution'; t(n-1)) ormat(mu[i],	mu[i]) / np.so , ,) ,Sigmasqr[i]),	qrt(np.var(r_sa		1))
	0.5 0.4 0.3 0.2 0.1	(1,,Xn N(2,0.5) t(t;4) T sta	9) tistics distribution	0.5 0.4 - 0.3 - 0.2 -		X1,,Xn N(2,1.0)	t(t;49) T statistics dist
	0.5 0.4 0.3 0.2 0.1 0.0		9) htistics distribution	0.1 - 0.0		X1,,Xn ⁰ N(0,3.0)	T statistics dist
94	1. Write a simulation that v unknown variance compound of the signal of	eri es that the 95%-corprises the true, but unknown exp parameter ut unknown var parata)/2,n-1) #from the simulations, np.nan) #sample sm,1], np.nan) #samp, np.nan) #cI upper	meter e formula ps td dev le mean n lower box	al for the expectation parameter in summaries $si^{\wedge}(-1)[(1+de)]$ undaries	ation parameter of ≈ 95% of its realiz	a Gaussian distations.	ribution with
94	1. Write a simulation that very unknown variance compositions of the signal of the sig	eri es that the 95%-cor orises the true, but unknown exp parameter ut unknown var para ta)/2,n-1) #from the simulations , np.nan) #sample s m,1], np.nan) #samp m,1], np.nan) #samp , np.nan) #CI upper sim,1], np.nan) #Co : np.sqrt(sigmasqr), X) f = 1)]/np.sqrt(n)) gamma[i] gamma[i] mu <= C[i,1]:	meter e formula ps td dev le mean n lower bou nfidence con	al for the expectation parameter in summaries $si^{\wedge}(-1)[(1+de)]$ undaries	ation parameter of ≈ 95% of its realiz	a Gaussian distations.	ribution with
94	1. Write a simulation that we unknown variance composite delta = 0.95 # Confidence of the composite delta = 0.9	eri es that the 95%-cor orises the true, but unknown exp parameter ut unknown var para ta)/2,n-1) #from the simulations , np.nan) #sample s m,1], np.nan) #sample, np.nan) #CI upper sim,1], np.nan) #CO : np.sqrt(sigmasqr), X) f = 1)]/np.sqrt(n)) gamma[i] gamma[i] mu <= C[i,1]: e(mu_in_c == False) -1) s(1,figsize=(20, 5) ([n_sim,1]), 6,.6,.6]) im), None, newarr, yle = '', dth = 1, e = 3, = [0,0,0])],	meter e formula ps td dev le mean n lower bou nfidence con	al for the expectation parameter in summaries $si^{\wedge}(-1)[(1+de)]$ undaries	ation parameter of ≈ 95% of its realiz	a Gaussian distantions.	ribution with
94	1. Write a simulation that we unknown variance composite delta = 0.95 # Confidence of the composite delta = 0.9	eriles that the 95%-corprises the true, but unknown exp parameter ut unknown var paratal/2, n-1) #from the simulations, np.nan) #sample sm,1], np.nan) #sample, np.nan) #cI upper sim,1], np.nan) #cI upper sim,1], np.nan) #cI upper sim,1], np.nan) #cI upper sim,1], np.nan) #cI upper sim,1]; e(mu_in_c == False) -1) s(1,figsize=(20, 5) ([n_sim,1]),6,.6,.6]) im), None, newarr, yle ='', dth = 1, e = 3, = [0,0,0]) im), len(mu_nin_c),1]), '', tion', fontsize = 3 e probability estian	meter e formula ps td dev le mean n lower bou nfidence con size = n)	al for the expects on parameter in solution $si^{\wedge}(-1)[(1+de)]$ $undaries$ $ndition$	ation parameter of ≈ 95% of its realized.	a Gaussian distantions. degrees of	ribution with
94	1. Write a simulation that v unknown variance composite delta = 0.95 # Confidmu = 2 # true but unknown variance composite delta = 0.95 # Confidmu = 2 # true but unknown variance composite delta = 0.95 # Confidmu = 100 # no. of S = np.full([n_sim,1] gamma = np.full([n_sim,2] mu_in_c = np.full([n_sim,2] mu_	eriles that the 95%-cordinates the true, but unknown exp parameter ut unknown var parata)/2,n-1) #from the simulations, np.nan) #sample sm,1], np.nan) #sample, np.nan) #sample, np.nan) #cI upper sim,1], np.nan) #cOole imp.sqrt(sigmasqr), x) f = 1)	meter e formula ps td dev le mean n lower bou nfidence con size = n) One shat {{ probability in the	all for the expectation parameter in some single formulation \hat{P} = \${0:1.21} estiamte \hat{P}	ation parameter of $\approx 95\%$ of its realizable. Italy/2 with $n-3$ The expectation of the expectation of the expectation $\approx 95\%$ of its realizable.	a Gaussian distantions. degrees of 15 15 15 16 17 18 18 18 18 18 18 18 18 18	ribution with Freedom The state of the sta
	1. Write a simulation that v unknown variance composite delta = 0.95 # Confide mu = 2 # true but unknown variance to the term of the term	eriles that the 95%-cor orises the true, but unknown ence level nown exp parameter ut unknown var para ta)/2,n-1) #from th simulations , np.nan) #sample s m,1], np.nan) #samp m,1], np.nan) #samp m,1], np.nan) #Co inp.sqrt(sigmasqr), X) f = 1)]/np.sqrt(n)) gamma[i] gamma[i] mu <= C[i,1]: e(mu_in_c == False) -1) s(1,figsize=(20, 5) ([n_sim,1]), 6,.6,.6]) im), None, newarr, yle = '', dth = 1, e = 3, e [0,0,0])], [len(mu_nin_c),1]), '', tion', fontsize = 3 e probability estia Coverage p Coverage p Coverage p ((1+delta)/2,0,1) # # number of simulat ((1+delta)/2,0,1) # # number of simulat ((1+delta)/2,0,1) # # number of simulat in, np.nan) # Confide sim,1], np.nan) # Co im,1], np.nan) # 1/e simu,1], np.nan) # 1/e simu, size = n) (X) [*(1-mu_hat[i])/n - np.sqrt(J_inv[i])	meter e formula n lower book n n lower book size = n) Sir size = n) Sir the state 95%-con[spectation para tr ~ N(0,1) from formula ions nce interval onfidence con xpected fish *z_delta	al for the expects on parameter in solution $Si^{(-1)}[(1+de)]$	ation parameter of $\approx 95\%$ of its realizable. Italy/2 with $n-3$ The expectation of the expectation of the expectation $\approx 95\%$ of its realizable.	a Gaussian distantions. degrees of 15 15 15 16 17 18 18 18 18 18 18 18 18 18	ribution with Freedom The state of the sta
	1. Write a simulation that v unknown variance composite the signal of th	eri[les that the 95%-convises the true, but unknown exp parameter ut unknown var parata)/2,n-1) #from the simulations, np.nan) #sample sm,1], np.nan) #samp, np.nan) #convision	meter e formula ps td dev le mean n lower bon fidence con size = n) Sir ate 95%-con expectation para r ~ N(0,1) from formula ions nce interval onfidence con xpectation para x z delta *z delta *z delta	al for the expectation parameter in sin(-1)[(1+dexide)] $si^{(-1)}[(1+dexide)]$ $si^{(-1)}[(1+dexide)]$ $undaries \\ ndition$	ation parameter of $\approx 95\%$ of its realizable. Italy/2 with $n-3$ The expectation of the expectation of the expectation $\approx 95\%$ of its realizable.	a Gaussian distantions. degrees of 15 15 15 16 17 18 18 18 18 18 18 18 18 18	ribution with Freedom The state of the sta
	1. Write a simulation that vunknown variance composite of the composite of	eri[les that the 95%-convises the true, but unknown exp parameter ut unknown var paratal)/2,n-1) #from the simulations in p. nan) #sample simulations in p. nan) #sample simulations in p. nan) #convises the true, but unknown expersim, 1], np. nan) #convises the true, but unknown expersim, 1], np. nan) #convises the true, but unknown expersim, 1]; e(mu_in_c = False) for the true, but unknown, expersim, 1], np. nan) #convises the true, but unknown, expersim, 1], np. nan) #convises for true, 1], np. nan) #convises for true, 1], np.	meter e formula ps td dev le mean n lower boundidence con size = n) Sir ate 95%-con spectation para r ~ N(0,1) from formula ions not covering *z_delta *z_delta *z_delta *z_delta	al for the expects on parameter in single form of the expects on parameter in single form of the expects of th	ation parameter of $\approx 95\%$ of its realization. Italy/2 with $n-3$ or the expectation of its realizations.	a Gaussian distantions. degrees of so parameter of a light state of the state of	ribution with Freedom Bernoulli
	1. Write a simulation that v unknown variance comp n = 15 #sample size delta = 0.95 # Confid mu = 2 # true but unk sigmasqr = 1 # true t.2 = rv.t.ppf((1+del n_sim = 100 # no. of S = np.full([n_sim,1] gamma = np.full([n_sim,1] gamma = np.full([n_sim,2] mu_inc = np.full([n_sim,2] c[i,0] = X_bar[i] + c[i,0] = X_bar[i] + c[i,0] = X_bar[i] + c[i,1] = x_bar[i]	eri[les that the 95%-cordinates the true, but unknown ence level mown exp parameter ut unknown var parata)/2,n-1) #from the simulations, np.nan) #sample sim,1], np.nan) #sample, np.nan) #condinates the simulations in the true, but unknown, exp ence level ence leve	meter e formula ps td dev le mean n lower both indence con size = n) Sir ate 95%-con spectation para r ~ N(0,1) from formula note interval confidence con xpected fish *z_delta *z_delta *z_delta *z_delta	al for the expects on parameter in sin(-1)[(1+dex)] sin(-1)[(1+dex)] mulation Idence interval for ameter in $\approx 95\%$ of the sinfo	ation parameter of $\approx 95\%$ of its realization. Italy/2 with $n-3$ or the expectation of its realizations.	a Gaussian distantions. degrees of so parameter of a light of the state of the s	ribution with Freedom Bernoulli
96	1. Write a simulation that v unknown variance composed to the signature of	eri[les that the 95%-convises the true, but unknown var parameter ut unknown var parameter und var param	meter e formula ps td dev le mean n lower both independent of the state of the stat	al for the expects on parameter in some paramet	ation parameter of $\approx 95\%$ of its realization. Italy 2 with $n-3$ The expectation of its realizations. The expectation of its realizations.	a Gaussian distantions. degrees of so parameter of a light of the state of the s	ribution with Freedom Bernoulli
96	1. Write a simulation that we unknown variance composed by the composed by the control of the composed by the	eri[les that the 95%-conditions that the 95%-condition	meter e formula ps td dev le mean infidence con size = n) Sir size = n) Oher shat {{ robability of the shat {{ robabili	al for the expects on parameter in some paramet	ation parameter of $\approx 95\%$ of its realization. Fig. $n = \{1:1.01$ $= 0.90, n = 1$ $= 0.97, n = 1$ $= 1.1.01$	a Gaussian distations. degrees of aparameter of a limit of the state	ribution with Freedom Bernoulli
96	1. Write a simulation that we unknown variance composed to the sample size delta = 0 # 5 # 50 # 50 # 50 # 50 # 50 # 50 #	eriles that the 95%-corvises that the 95%-corvises that the 95%-corvises that the 95%-corvises that the your wind war para tail (2, n-1) #from the simulations mental (1, np.nan) #sample simulations mp.nan, mp.nan) #sample simulations mp.sqrt(sigmasqr), for 1 p.sqrt(sigmasqr), for 1 p.sqrt(sigmasqr), for 1 p.sqrt(n) gamma[i] mu <= C[i, 1]: e(mu_in_c == False)	# the out *z_delta	al for the expects on parameter in sin(-1)[(1+de. undaries ndition P)	ation parameter of a 95% of its realization. The expectation of its realizations. The expectation of its realization.	a Gaussian distance. degrees of parameter of a limit of the stance of	ribution with Freedom Bernoulli
96	1. Write a simulation that v unknown variance comp n = 15 #sample size delta = 0.95 # Confid mu = 2, #true but unk signasqu = 1 # true but 2 = vt. ppf((1-del n.sim = 100 # mo. of s = npf.ull([n.sim, 2] mu.sim = np. full([n.sim, 2] mu.sin_c = np.full([n.sim, 2] mu.in_c = np.argwher arr=gamma newarr = arr.reshape(#visualization fig, ax = plt.subplot ax.plot(range(n.sim), mu'np.ones(ax.errorbar(range(n.sim), mu'np.ones(ax.errorbar(range(n.sim), mu'np.ones(ax.errorbar(range(n.sim)) x. plot((mu.nin.c[:, 0] ax.errorbar(range(n.sim)) x. plot((mu.nin.c[:, 0] ax.errorbar(range(n.sim)) x. plot((mu.nin.c[:, 0] mu.hat = np.full([n.sim, 2] mu.in_c = np.f	eriles that the 95%-conditions that the yes when the true, but unknown the true, but unknown, the true, but unknown, the true, but unknown, expended the true, but unk	meter e formula ps td dev le mean n lower boo nfidence con size = n) o) mte \$\hat{{i} robability formula ions confidence con xpectation para r ~ N(0,1) from formula ions confidence con xpected fish *z_delta *z_delta not coverin) formula not coverin) sire ficance level a *z_delta *z_delta not coverin) output) utput, ddof) formula ions ficance level a *z_delta *z_delta not coverin) ficance level a res) f) #Critica # the out not coverin output) utput, ddof plane in the con xpected fish *z_delta *z_delta not coverin f) ficance level a res) f) #Critica # the out not coverin output) utput, ddof plane in the coun y, size = samp: ficance level a res) f) #Critica # the out not coverin output) y output) y output) y output y	al for the expectation parameter in sin(-1)[(1+de. and aries are aries and aries and aries are aries and aries are aries and aries are	ation parameter of a 95% of its realization. The expectation of its realizations. The expectation of its realization.	a Gaussian distance. degrees of parameter of a limit of the stance of	ribution with Freedom Bernoulli
96	1. Write a simulation that vunknown variance common measure the street of the street o	eri[es that the 95%-cor wrises the true, but unknown ence level mown exp parameter ust unknown var para ta)/2,n-1) #ror the simulations n, n, nean) #samp, n, 1, np, nan) #samp, np, nan) #samp, np, nan, est unknown est, est in the approxim est, est in the approxim es	meter e formula ps to dev le mean n lower bon nfidence con size = n) Sir mate \$\$\hat{{ir} robability from formula nsize = sampla nor idence con size = n) Sir size = sampla not coverin) size = sampla) from formula nor idence con size = n) size = n) size = sampla) y from formula nor idence con size = n) size = sampla) y size = sampla) output, dofof) alpha = estima alpha /2s* y confidence in size = sampla) y size = sampla y s	al for the expects on parameter in sin (-1) [(1+de)] sin (-1) [(1+de)] sin (-1) [(1+de)] mulation Idence interval for the inter in = 95% of the interval for the inter	ation parameter of \$\approx\$ \$\appro	a Gaussian distantions. a degrees of begin and the second of the secon	mean(mu_in_
96	1. Write a simulation that we unknown variance composed by the control of the con	eriles that the 95%-con erises the true, but unknown exp parameter	meter e formula post deve le mean nower bounfidence con size = n) "Tobability of the state of the size in the state of the size in the si	al for the expecta on parameter in si^(-1)[(1+de. andaries andition parameter in = \$\frac{P}{2} \\ andition dence interval for ameter in \(\pi \) and value for there in \(\pi \) all value for the size) the mu_0)/sto and value for the size) the size) the size) the size) the size in the size and value for the size in the size in the size and value for the size in the size in the size and value for the size in the size in the size in the size and value for the size in the	ation parameter of \$\approx\$ \$\appro	a Gaussian distantions. a degrees of begin and the second of the secon	ribution with Freedom Bernoulli
96	1. Write a simulation that we unknown variance composed to the composed of the	erices that the 95%-cor rises that the 95%-cor rises that the 95%-cor rises the true, but unknown at explaining the probability of the probability extination of the probability extination, panel (1, 1); and the probability extination of the proba	meter and size distribution where the contribution with the contribution process and the contribution p	al for the expect in si^(-1)[(1+de. andaries andaries andaries andaries al a -N(0,1) andition ther info andition ther info and value for tputs for ther tputs for ther tputs for ther tputs for ther al value for tputs for ther tputs for ther al value for tput	ation parameter of the special parameter of the expectation of its realizations. The special parameter of the expectation of its realizations. The special parameter of the expectation of its realizations. The special parameter of the expectation of its realization of its real	a Gaussian distance of a dista	mean(mu_in_ in_ in_ in_ in_ in_ in_ in_ in_ in_
96	1. Write a simulation that we unknown variance comp n = 15	demonstrate that the approximation of standing and standi	Sir Control	al for the expect in si^(-1)[(1+de. andaries andaries andaries andaries al a -N(0,1) andition ther info andition ther info and value for tputs for ther tputs for ther tputs for ther tputs for ther al value for tputs for ther tputs for ther al value for tput	ation parameter of the special parameter of the expectation of its realizations. The special parameter of the expectation of its realizations. The special parameter of the expectation of its realizations. The special parameter of the expectation of its realization of its real	a Gaussian distance of a dista	mean(mu_in_ in_ in_ in_ in_ in_ in_ in_ in_ in_
96	1. Write a simulation that v unknown variance correct 1. Write a simulation that v unknown variance correct 1. Write a simulation that v unknown variance correct 1. Be an 9.6 # corrict 1. Be an 9.6 # corrict 1. Be an 9.6 # corrict 1. Be an 9.6 # correct 1. Be an	erices that the 95%-cord erices that the 95%-cord erices that the 95%-cord rises the rive, but unknown expendence lawer and rive	meter formula me	al for the expectation parameter in sin'(-1)[(1+de. de. de. de. de. de. de. de. de. de.	ation parameter of the special parameter of the expectation of its realizations. The special parameter of the expectation of its realizations. The special parameter of the expectation of its realizations. The special parameter of the expectation of its realization of its real	a Gaussian distance of a dista	mean (mu_in_ in_ in_ in_ in_ in_ in_ in_ in_ in_
96	1. Write a simulation that with the simulation comprises the simulation	entiles that the 95%-convises that the 95%-convises the true shut of the state of t	meter shat state of the state o	al for the expects on parameter in sin'(-1)[(1+de. ton parameter i	ation parameter of e 95% of its realization its realization. The state of the expectation of its realization is realization. The state of the expectation of its realization is realization. The state of the expectation is realization in the expectation of its realization. The state of the expectation is realization in the expectation is realization. The state of the expectation is realization in the expectation is realization. The state of the expectation is realization in the expectation is realization. The state of the expectation is realization in the expectation is realization. The state of the expectation is realization in the expectation is realization. The state of the expectation is realization in the expectation is realization. The state of the expectation is realization in the expectation in the expectation is realization. The state of the expectation is realization in the expectation in the expectation is realization. The state of the expectation is realization in the expectation in the expectation is realization. The state of the expectation is realization in the expectation in the expectation is realization in the expectation in the expectation is realization. The state of the expectation is realization in the expectation in the expectation is realization in	a Gaussian distribution of a lateral format (np) outside a la	mean(mu_in_ in_ in_ in_ in_ in_ in_ in_ in_ in_
96	Universe a simulation that with the control of the	erices that the 95%-corrises the true, but under erices that the approxim erices that the approximation erices that t	meter e formula ps tod dev meter e formula ps tod dev le mean nfidence con size = n) mote \$\text{size} ince interval onfidence con size = n) mote shat{{i robability from formul ons nce interval onfidence con xpected fish *z_delta *z_delta *z_delta not coverin) multiput, dofo) alpha_estima alpha_/2s*) colorable con interval on delta res) fidence boun), size=sampi)) end of shat{{i res) fidence level a res) fidence level a res) size = n)) size=sampi)) end of shat{{i res) fidence boun } y, size=sampi)) end of shat{{i res) fidence level a res) size = n) fidence boun fidence level a res) size = n)	al for the expects on parameter in si^(-1)[(1+de. de. de. de. de. de. de. de. de. de.	tation parameter of services and parameter of services and services are services and services are services and services are services and services are services ar	a Gaussian distance. a Gaussian distance. a Gaussian distance. a degrees of a degr	mean(mu_in_ in_ in_ in_ in_ in_ in_ in_ in_ in_
96	1. Write a simulation that we will a serve and a simulation when we have a simulation that we will a serve a simulation that we will a simulate a simulation that we will a simulate a simulation that we will a simulate a simulation will a simulate a simulation of the simulation of t	erdies that the 95%-consider the shart new but union and a single proper and consider the shart new but union and a single proper and consider the shart new but union and a single proper	meter e formula particular dev le mean n lower boun midence con size = n) on the \$\text{\	al for the expectation parameter in sin(-1){(1+de. sin(-1){(ation parameter of the parameter of the special parameter of the specia	a Gaussian distance of a land of the state of the st	mean(mu_in_ mean(m
96	1. Write a simulation that v unknown watarons con not a state of the control of	erices that the 95%-consider the shart meters and the shart meters are and the shart meters ar	### And the control of the control o	al for the expects on parameter in sin' (-1) [(1+de. sindaries andition and sin an exact an exact and sin an exact an exact and sin an exact	ation parameter of all parameters of all parameters of a power of the speciation of its realizations. F), n = {1:1.01 10.90, n = 1 10.97, n	a Gaussian distance of a lateral state of a lateral	mean (mu_in_ mean
96	1. Write a simulation that or Uniform valitation close 1. Write a simulation that or Uniform valitation close 1. Sea year of the simulation 1. Sea year of year of year 2. Sea year	erijes that the 95%-cor erijes that the 95%-cor erises the true, but unken ence Ievel nown of parameter taj/2,n-10/ms/ man, non man year taj/2,n-10/ms/ man, non year taj/2,n-10/ms/ man, non year taj/2,n-10/ms/ taj/2,n-10/ms/ taj/2,n-10/ms/ (mu_in_c = False) ence (= i, i]: ence (= i, i]	# the out Sire Shat {	al for the expected on parameter in solution in soluti	ation parameter of the	a Gaussian distance of a land attention of a l	mean (mu_in_ mean
96	1. Write a simulation that with the state of	entiles that the abya-con interest the put under a control of the put under	# the out Sire Shat {	al for the expectation parameter in a special formation in the protection parameter in the paramete	ation parameter of the possible of the specializations. The special of the speci	a Gaussian distance of a land attention of a l	mean (mu_in_ mean
96 32	2. Write a simulation that work as a simulation of the simulation of t	eriles that the 95%-cor rises that the 95%-cor rises that the 95%-cor rises the true, but unknow rises the true, but unknow rises the true, but unknow rises that the 95%-cor rises the true, but unknow rises that the 95%-cor rises that th	## Shat (1) ## Shat (1) ## Confidence in and a plan a pl	al for the expecta on parameter in al for the expecta on parameter in sin (-1) [(1+de. and aries arie	ation parameter of expectation is realization. The state of the expectation of its realizations. The state of the expectation of its realization of its realization. The state of the expectation of its realization of its realization of its realization. The state of the expectation of its realization of its realization of its realization of its realization. The state of the expectation of its realization of its realization of its realization of its realization of its realization. The state of the expectation of its realization of its r	a Gaussian distance of a land	for but for a search of the se
96 32	1. White a simulation that we make a process of the control of th	eriles that the Swiccon rises the two but when rises the two but whe	## Shat (## ## Sh	al for the expects on parameter in a sink (-1) [(1+de. sink (-1) [ation parameter of 295% of its realization in the expectation of its realizations. The state of the expectation of its realizations. The state of the expectation of its realization in the expectation in the expectation of its realization in the expectation i	a Gaussian distance of a language of a langu	ribution with branch and a service of the second and a s
11 32	1. Write a simulation that we will a simula	eriles that the seve-consense the the seve-consense the consense that the seve-consense the consense that the seve-consense the consense the consens	## Consider of the consider of	al for the expected on parameter in an an an exact proper barribution in the protection protection in the protection protection in the pro	ation parameter of the expectation of the expectation of its realizations. The expectation of its realizations. The expectation of its realizations. The expectation of its realization of its realization of its realization of its realization. The expectation of its realization of its realizati	a Gaussian distribution of the result of the	ribution with branch and a service of the second and a s
11 32	1. Willow simulation that we was a service of an extended with the service of an extended with	encles that the 99-wood recommend the second to wish a se	## Shat(## ## Sha	al for the expected on parameter in an an an exact proper barribution in the protection protection in the protection protection in the pro	ation parameter of the expectation of the expectation of its realizations. The expectation of its realizations. The expectation of its realizations. The expectation of its realization of its realization of its realization of its realization. The expectation of its realization of its realizati	a Gaussian distribution of the result of the	ribution with branch and a service of the second and a s

plt.show() Analytical	Out() -0.9	Monte Carlo, n=10 -2 -1 -1	.0 L	-1.4	
3. Use ar	n acceptance- from Beta (2,	4 5 6 7 8 9 10 β	1 2 3 4 5 6 7 β	-0.2	andom
b=6 #beta mu=0 sigmasqr=1 cons=9 #scale desired_sample Y=np.full([deso_s=0 #obtaine while o_s <des: #condition="" if="" td="" u="rv.unife" u<="rv.l" x="rv.norm" y[o_s]<=""><td><pre>es=1000 sired_samples,1],np.named samples ired_samples: .rvs(mu,sigmasqr) orm.rvs() n beta.pdf(x,a,b)/(cons*]=x</pre></td><td></td><td>sigmasqr)):</td><td></td><td></td></des:>	<pre>es=1000 sired_samples,1],np.named samples ired_samples: .rvs(mu,sigmasqr) orm.rvs() n beta.pdf(x,a,b)/(cons*]=x</pre>		sigmasqr)):		
fig, axs = pl; for kk, ax in if kk==0: ax.plc ax.se ax.se ax.se ax.se ax.se	<pre>]=x 1 #increase count t.subplots(1,2,figsize enumerate(axs.reshape</pre>	=(20, 5)) (-1)):),label=r'Beta\$({ y,mu,sigmasqr),la target Density',f) ,{})\$'.format(co	ns,mu,sigmasqr
else: ax.hi: ax.se: ax.se:	st(Y, density=True, bins: t_title('Acceptance-re t_xlim(0,1) t_ylim(0,4) t_xlabel(r'y') Proposal and target Density	='auto',label=r'B jection sample, \$		t(a,b)) ed_samples),font eptance-rejection sam	
2.5 - 2.0 - 1.5 - 1.0 - 0.5 - 0.0 0.2	0.4 0.6 y	0.8 1.0	2.5 - 2.0 - 1.5 - 1.0 - 0.5 - 0.0 0.2	0.4 y	0.6 0.8