Parallel programming: Introduction to GPU architecture

Graphics processing unit (GPU)

- Graphics rendering accelerator for computer games
 - Mass market: low unit price, amortized R&D
 - Increasing programmability and flexibility
- Inexpensive, high-performance parallel processor
 - GPUs are everywhere, from cell phones to supercomputers
- General-Purpose computation on GPU (GPGPU)

GPUs in high-performance computing

GPU/accelerator share in Top500 supercomputers

In 2010: 2%

In 2018: 22%

 2016+ trend: Heterogeneous multi-core processors influenced by GPUs

#1 Summit (USA) 4,608 × (2 Power9 CPUs + 6 Volta GPUs)

#3 Sunway TaihuLight (China) 40,960 × SW26010 (4 big + 256 small cores)

Technology evolution

- Memory wall
 - Memory speed does not increase as fast as computing speed
 - Harder to hide memory latency
- Power wall
 - Power consumption of transistors does not decrease as fast as density increases
 - Performance is now limited by power consumption
- ILP wall
 - Law of diminishing returns on Instruction-Level Parallelism
 - → Pollack rule: cost ≃ performance²

Usage changes

- New applications demand parallel processing
 - Computer games : 3D graphics
 - Search engines, social networks...
 "big data" processing
- New computing devices are power-constrained
 - Laptops, cell phones, tablets...
 - Small, light, battery-powered
 - Datacenters
 - High power supply and cooling costs

Latency vs. throughput

- Latency: time to solution
 - Minimize time, at the expense of power
 - Metric: time e.g. seconds
- Throughput: quantity of tasks processed per unit of time
 - Assumes unlimited parallelism
 - Minimize energy per operation
 - Metric: operations / time e.g. Gflops / s
- CPU: optimized for latency
- GPU: optimized for throughput

Amdahl's law

Bounds speedup attainable on a parallel machine

- S Speedup
- P Ratio of parallel portions
- N Number of processors

G. Amdahl. Validity of the Single Processor Approach to Achieving Large-Scale Computing Capabilities. AFIPS 1967.

Why heterogeneous architectures?

Time to run sequential portions $S = \frac{1}{(1-P) + (P)}$ Time to run parallel portions

- Latency-optimized multi-core (CPU)
 - Low efficiency on parallel portions: spends too much resources
- Throughput-optimized multi-core (GPU)
 - Low performance on sequential portions
- Heterogeneous multi-core (CPU+GPU)
 - Use the right tool for the right job
 - Allows aggressive optimization for latency or for throughput

Example: System on Chip for smartphone

GPGPU: General-Purpose computation on GPUs

GPGPU history summary

Microsoft DirectX

	7.x	8.0	8.1	9.0 a	9.0b	9.0c	10.0	10.1	11
_	Lipition chadore								

Unified shaders

NVIDIA

NV10	NV20	NV30	NV40	G70	G80-G90	GT200	GF100
FP 16	Programmable shaders	FP 32	Dynamic control flow	SIMT	CUDA		

Today: what do we need GPUs for?

- 1. 3D graphics rendering for games
 - Complex texture mapping, lighting computations...
- 2. Computer Aided Design workstations
 - Complex geometry
- 3. High-performance computing
 - Complex synchronization, off-chip data movement, high precision
- 4. Convolutional neural networks
 - Complex scheduling of low-precision linear algebra
- One chip to rule them all
 - Find the common denominator

Uses of parallelism

- "Horizontal" parallelism for throughput
 - More units working in parallel

- "Vertical" parallelism for latency hiding
 - Pipelining: keep units busy when waiting for dependencies, memory

Α

Sequential processor

```
for i = 0 to n-1
X[i] \leftarrow a * X[i]

Source code

move i \leftarrow 0
loop:
load t \leftarrow X[i]
mul t \leftarrow a \times t
store X[i] \leftarrow t
add i \leftarrow i+1
```

branch i<n? loop

Machine code

- Focuses on instruction-level parallelism
 - Exploits ILP: vertically (pipelining) and horizontally (superscalar)

The incremental approach: multi-core

Several processors
 on a single chip
 sharing one memory space

Intel Sandy Bridge

- Area: benefits from Moore's law
- Power: extra cores consume little when not in use
 - e.g. Intel Turbo Boost

Source: Intel

Homogeneous multi-core

Horizontal use of thread-level parallelism

Threads: T0 T1

Improves peak throughput

What is inside a graphics card?

NVIDIA Volta V100 GPU. Artist rendering!

External memory: embedded GPU

Most GPUs today are integrated

- Same physical memory
- May support memory coherence
 - GPU can read directly from CPU caches
- More contention on external memory

