201 Real Analysis Assignment 2

- 1. Prove that both weak and weak* topologies are Hausdorff.
- 2. Find the $\sigma(X, X^*)$ -closure (the weak closure) of the unit sphere $S = \{x: ||x|| = 1\}$. (Think X is Banach.)
- 3. Give the detailed proof of the statement from the lectures: sets $W(\phi; x_1, \ldots, x_n)$ with $\phi \in X^*$, $x_j \in X$, $n < \infty$, form a basis of a topology on X^* . Convergence of a sequence (ϕ_n) in this topology is equivalent to the weak* convergence as defined earlier.
- 4. Let (x_n) be a sequence in l^1 such that $x_n \xrightarrow{w} x$ and $||x_n||_{l^1} \to ||x||_{l^1}$. Prove that (x_n) converges to x strongly.
- 5. Prove that the closed unit ball $\bar{B}(X)$ in a Banach space X is $\sigma(X, X^*)$ -closed. Prove that the closed unit ball $\bar{B}(X^*)$ is $\sigma(X^*, X)$ -closed.
- 6. Prove the statement from the lectures: let X be a separable Banach space with the dense set $\{x_n\}_{n\in\mathbb{N}}$, and let \bar{B}^* be the closed unit ball in X^* . Then the weak* topology restricted to \bar{B}^* , $\sigma(X^*,X)|_{\bar{B}^*}$, coincides with the topology of the metric

$$d(\phi, \psi) = \sum_{n=1}^{\infty} 2^{-n} \frac{|(\phi - \psi)(x_n)|}{1 + |(\phi - \psi)(x_n)|}.$$

The problems below will not be graded and are not obligatory. However, if you are thinking of choosing "analysis" for your research subject, then it's a good idea to attempt to solve them.

- 7. Prove that for a linear operator $A: X \to X$ in a Banach space X the following are equivalent: (i) A is continuous: if $x_n \to 0$ then $Ax_n \to 0$; (ii) if $x_n \xrightarrow{w} 0$ then $Ax_n \xrightarrow{w} 0$; (iii) if $x_n \to 0$ then $Ax_n \xrightarrow{w} 0$.
- 8. Prove in full details that the weak topology on X is the weakest topology in which all $\phi \in X^*$ are continuous.
- 9. Prove that a sequence in the space l^1 converges weakly if and only if it converges strongly. However, the weak topology on l^1 is different from the strong topology.