1.-SUSTANCIAS SIMPLES

Son sustancias puras formadas por uno o varios átomos de un mismo elemento químico.

Se nombran según la nomenclatura estequiométrica; es decir, indicando el número de átomos que forman la molécula. Para ello, se utilizan los prefijos multiplicadores correspondientes. Mono- (1), di- (2), tri- (3), tetra-(4), penta-(5), hexa-(6),hepta-(7)

Algunas de esas sustancias son las siguientes:

Fórmula	Nomenclatura estequiométrica	Nombre común aceptado
0	Monooxígeno	
O ₂	Dioxígeno	Oxígeno
O ₃	Trioxígeno	Ozono
P ₄	Tetrafósforo	Fósforo blanco
S ₈	Octaazufre	

2.-COMPUESTOS BINARIOS

2.1.-COMBINACIONES BINARIAS DEL OXÍGENO.

El oxígeno se combina con todos los elementos químicos, excepto con los gases nobles. Estas combinaciones dan lugar a óxidos, haluros de oxígeno y peróxidos.

2.1.1 ÓXIDOS.

Un óxido es la combinación del oxígeno con un metal o un no metal, excepto los halógenos.

Oxígeno + metal ______ óxido básico Oxígeno + no metal Sóxido ácido

En estos compuestos el oxígeno actúa con número de oxidación - 2

Para formular los óxidos, se escribe, en primer lugar, el símbolo del elemento más metálico y después el símbolo del elemento menos metálico, que en este caso es el símbolo del oxígeno.

<u>Ejemplo</u>

Número de oxidación del Fe (+3) Número de oxidación del O (-2)

Se intercambian los números de oxidación Fe₂O₃

Siempre que se pueda se simplifican los subíndices Fe₂O₂ FeO

❖ Se nombran:

NOMENCLATURA DE COMPOSICIÓN				
Con prefijos multiplicadores	Con el número de oxidación			
Utiliza los prefijos di-, tri-, etc, para indicar el número de átomos de oxígeno y del otro elemento que contiene el óxido.	Utiliza el número de oxidación del elemento que se combina con el oxígeno, con números romanos y entre paréntesis.			
(Prefijo) óxido de (prefijo) (nombre del elemento).	Óxido de (nombre del elemento) (número de oxidación)			
Fe ₂ O ₃ Trióxido de dihierro.	Fe ₂ O ₃ Óxido de hierro (III)			
	Si elemento que se combina con el oxígeno posee un solo número de oxidación entonces el número de oxidación no se puede indicar.			

FÓRMULA	PREFIJOS MULTIPLICADORES	NÚMERO DE OXIDACIÓN
ВаО		
Na₂O		
Al ₂ O ₃		
CuO		
Cu ₂ O		
PbO		
PbO ₂		
SO		
SO ₂		
SO₃		
P ₂ O ₃		
P_2O_5		
N_2O_3		
N_2O_5		
CO ₂		
СО		

2.1.2 ÓXIDOS DEL GRUPO 17

Los óxidos de los halógenos pasan a ser haluros de oxígeno ya que se escriben al contrario de lo que hemos estudiado hasta ahora. A pesar de esto el oxígeno sigue actuando con el número de oxidación –2 (menos con el flúor) y el halógeno con los números de oxidación positivos (menos el flúor). Según esta nueva recomendación el pentaóxido de dicloro (Cl₂O₅) se escribirá: O₅Cl₂ y se llamará dicloruro de pentaoxígeno.

EJERCICIO 2

FÓRMULA	NOMBRE	
O ₇ Cl ₂		
O ₃ Br ₂		
O ₅ I ₂		
OBr ₂		
O ₅ Cl ₂		
O ₃ Cl ₂		
	Dicloruro de oxígeno	
	Dibromuro de heptaoxígeno	
	Diyoduro de trioxígeno	
	Dicloruro de pentaoxígeno	
	Dibromuro de oxígeno	
	Diyoduro de heptaoxígeno	

FÓRMULA	PREFIJOS MULTIPLICADORES	NÚMERO DE OXIDACIÓN
	Monóxido de dilitio	
		Óxido de calcio
		Óxido de oro (III)
ZnO		
		Óxido de cromo (II)
	Trióxido de dicromo	
HgO		
	Monóxido de dimercurio	
		Óxido de nitrógeno (IV)
		Óxido de fósforo (III)
SeO₃		
As ₂ O ₃		
	Dióxido de azufre	
SO		Óxido de azufre (II)
N ₂ O ₃		
	Pentaóxido de difósforo	
CuO		

2.1.3 LOS PERÓXIDOS

Un peróxido es un compuesto químico resultante de la combinación del grupo peróxido,

 O_2^{2-}

con otros elementos químicos, de los que recibe el nombre, generalmente metálicos. En este tipo de compuestos el número de oxidación del oxígeno es -1. El elemento acompañante, que da nombre al peróxido, actúa siempre con número de oxidación positivo. La fórmula general de los peróxidos es la siguiente:

$X_2(O_2)_X$

Cuando los índices que hay fuera del paréntesis se pueden simplificar se simplificarán pero, nunca lo hará el 2 que hay dentro de paréntesis. Si x vale 1 se quita el paréntesis. Los peróxidos suelen nombrarse utilizando la nomenclatura del número de oxidación siguiendo el siguiente patrón: **peróxido de**, seguido del nombre que acompaña al grupo peróxido y, a continuación, sin espacio, el número de oxidación del elemento en números romanos y sin signo

EJEMPLOS:

H₂O₂ Peróxido de hidrógeno.

BaO₂ Peróxido de bario.

FÓRMULA	NÚMERO DE OXIDACIÓN
Li ₂ O ₂	
	Peróxido de hierro (II)
K ₂ O ₂	
Ag ₂ O ₂	
	Peróxido de calcio
	Peróxido de níquel (III)
	Peróxido de rubidio

EJERCICIO 5 (REPASO ÓXIDOS)

	FÓRMULA	NÚMERO DE OXIDACIÓN	PREFIJOS MULTIPLICADORES
1	K ₂ O		
2	SrO		
3	Al203		
4	CO ₂		
5	SnO		
6	PbO ₂		
7	N ₂ O		
8	SO3		
9	O5Br2		
10	CoO		
11	Fe2O3		
12	Ag2O		
13	со		
14	TeO ₂		
15			(Mon)óxido de calcio
16			(Mon)óxido de disodio
17			Dicloruro de trioxígeno
18			Dióxido de estaño
19			(Mon)óxido de cobre
20			Trióxido de dioro
21			(Mon)óxido de dimercurio
22			Pentaóxido de dinitrógeno
23			Dióxido de selenio
24			Diyoduro de heptaoxígeno
25			Trióxido de cromo
26			Pentaóxido de difósforo
27	Rb₂O	Oxido de rubidio	
28	Au ₂ O	Óxido de oro(I)	
29	NiO	Óxido de níquel (II)	
30	Hg ₂ O	Óxido de mercurio(I)	
31	SO ₃	Óxido de azufre (VI)	
32	MgO	Óxido de magnesio	
33	As ₂ O ₃	Óxido de arsénico (III)	
34	TeO	Óxido de teluro (II)	
35	Sb ₂ O ₅	Óxido de antimonio (V)	
36	MnO ₂	Óxido de manganeso (IV)	

2.2.- COMBINACIONES CON EL HIDRÓGENO:

2.2.1 LOS HIDRUROS (GRUPOS 1-15)

Es la combinación del hidrógeno con un elemento de los grupos del 1 al 15 de la tabla periódica. En este tipo de compuesto el hidrógeno es el que tiene menor carácter metálico y por tanto irá escrito a la derecha y actuará con número de oxidación -1. **MHm**

NOMENCLATURA DE COMPOSICIÓN			
Con prefijos multiplicadores	Con el número de oxidación		
Utiliza los prefijos di-, tri-, etc, para indicar el número de átomos de hidrógeno que contiene el hidruro.	Utiliza el número de oxidación del elemento que se combina con el hidrógeno, con números romanos y entre paréntesis. Hidruro de (nombre del elemento) (número		
(Prefijo) hidruro de (prefijo) (nombre del elemento).	de oxidación) CuH ₂ Hidruro de cobre (II)		
CuH ₂ Dihidruro de cobre	Si elemento que se combina con el oxígeno posee un solo número de oxidación entonces el número de oxidación no se puede indicar		

EJERCICIO 6.

	FÓRMULA	PREFIJOS MULTIPLICADORES	NÚMERO DE OXIDACIÓN
1	КН		
2	MgH ₂		
3	FeH3		
4	HgH2		
5	PtH4		
6	CdH2		
7		(Mono)hidruro de litio	
8		Dihidruro de berilio	
9		Trihidruro de aluminio	
10		(Mono)hidruro de cobre	
11		Trihidruro de níquel	
12		Dihidruro de cinc	
13		(Mono)hidruro de oro	
14			Hidruro de cesio
15			Hidruro de estaño (II)
16			Hidruro de calcio
17			Hidruro de plata
18			Hidruro de cobre (II)
19			Hidruro de cobalto (III)

LOS HIDRUROS DE LOS NO METALES RECIBEN NOMBRES ESPECIALES:

BH3	borano	NH3	azano (amoníaco)	SbH3	estibano (estibina)
CH4	metano	PH3	fosfano (fosfina)	H ₂ O	oxidano (agua)
SiH4	silano	AsH3	arsano (arsina)		

Entre paréntesis aparece el nombre tradicional aceptado por la IUPAC.

<u>Nota</u>: Estos hidruros de los no metales se nombran también utilizando la nomenclatura de prefijos multiplicadores.

AlH₃ Hidruro de aluminio

2.2.2 LOS HIDRUROS (GRUPOS 16-17)

En estos compuestos el hidrógeno se escribe a la izquierda.

En estos compuestos, el hidrógeno actúa con número de oxidación +1, y los elementos de los grupos 16 y 17, anfígenos y halógenos, con -2 y -1, respectivamente.

Grupo 16	-2	0	S	Se	Те
Grupo 17	-1	F	Cl	Br	I

Se nombran:

(Raíz del no metal acabado en uro) de hidrógeno.

EJEMPLO: HCl Cloruro de hidrógeno

LAS DISOLUCIONES ACUOSAS DE LOS COPUESTOS FORMADOS POR HIDRÓGENO Y UN ELEMENTO DE LOS GRUPOS 16 Y 17 PRESENTAN CARÁCTER ÁCIDO, POR LO QUE SE LAS CONOCE COMO ÁCIDOS HIDRÁCIDOS.

EJEMPLO: HCl ácido clorhídrico.

FÓRMULA	NOMBRE	EN DISOLUCIÓN ACUOSA
HI		
	Fluoruro de hidrógeno	
HBr		
	Seleniuro de hidrógeno	
H ₂ S		
	Telururo de hidrógeno	

2.3 SALES BINARIAS

Son la combinación de un metal con un no metal. En este tipo de compuesto el no metal es quien tiene menor carácter metálico y por tanto irá escrito a la derecha y actuará con número de oxidación negativo.

NOMENCLATURA		
Con prefijos multiplicadores Con el número de oxidación		
(Prefijo) (raíz del no metal acabada en uro) de (prefijo) (nombre del metal)	(Raíz del no metal acabada en uro) de (nombre del metal) (número de oxidación)	
FeCl ₂ Dicloruro de hierro	FeCl ₂ Cloruro de hierro (II)	
	Si elemento que se combina con el oxígeno posee un solo número de oxidación entonces el número de oxidación no se puede indicar	

Existen también combinaciones de dos elementos no metálicos.

Las reglas para formularlos y nombrarlos son las mismas.

EJEMPLOS:

CS₂ disulfuro de carbono

SCl₂ dicloruro de azufre

	FÓRMULA	PREFIJOS MULTIPLICADORES	NÚMERO DE OXIDACIÓN
1	NaF		
2	Rb2S		
3	AlBr3		
4	AgI		
5	FeCl3		
6	KCl		
7	MgI2		
8	FeBr3		
9	CdS		
10	PbI2		
11	CoS		
12	Ag2Te		
13	Hg2S		
14		Tricloruro de cobalto	
15		Difluoruro de cinc	
16		(Mono)sulfuro de disodio	
17		(Mono)seleniuro de cadmio	
18		Dicloruro de hierro	
19		Dibromuro de berilio	
20		(Mono)sulfuro de dicobre	
21		Tetrayoduro de estaño	
22		(Mono)fluoruro de oro	
23		Disulfuro de plomo	
24		(Mono)sulfuro de níquel	
25		Tritelururo de dicobalto	
26	CuCl ₂		Cloruro de cobre (II)
27	AgI		Yoduro de plata
28	NaBr		Bromuro de sodio
29	CaF ₂		Fluoruro de calcio
30	PbCl ₂		Cloruro de plomo (II)
31	PtI ₄		Yoduro de platino (IV)
32	Fe ₂ S ₃		Sulfuro de hierro (III)
33	Ni ₂ Te ₃		Telururo de níquel (III)
34	BeSe		Seleniuro de berilio
35	HgBr ₂		Bromuro de mercurio (II)

3.-COMPUESTOS TERNARIOS

3.1 HIDRÓXIDOS

Son combinaciones ternarias en las que el ion hidróxido, (OH⁻) de carga -1, se combina con cationes metálicos.

Para formular los hidróxidos, se escribe, en primer lugar, el símbolo del metal, y, a continuación, el grupo hidróxido (OH⁻) intercambiando cargas iónicas, sin signo.

Con prefijos multiplicadores	Con el número de oxidación
(Prefijo) hidróxido de (nombre del metal)	Hidróxido de (nombre del metal) (número de oxidación)
Cu (OH) ₂ Dihidróxido de cobre	Cu (OH) ₂ hidróxido de cobre (II)

	FÓRMULA	PREFIJOS MULTIPLICADORES	NÚMERO DE OXIDACIÓN
1	NaOH	(
2	Ca (OH)2		
3	Al (OH)3		
4	Pb (OH) ₂		
5	Co (OH)3		
6	КОН		
7	Pt (OH)4		
8	Zn (OH)2		
9	Sn (OH)4		
10	CuOH		
11	Ba (OH)2		
12		Dihidróxido de cobre	
13		Dihidróxido de magnesio	
14		Trihidróxido de hierro	
15		(Mono)hidróxido de litio	
16		Tetrahidróxido de estaño	
17		Dihidróxido de berilio	
18		(Mono)hidróxido de plata	
19		(Mono)hidróxido de cobre	
20		Trihidróxido de níquel	
21		Dihidróxido de cadmio	
22		(Mono)hidróxido de oro	
23		Dihidróxido de plomo	
24			Hidróxido de aluminio
25			Hidróxido de rubidio
26			Hidróxido de cobalto (II)
27			Hidróxido de hierro (II)
28			Hidróxido de níquel (III)
29			Hidróxido de cinc
30			Hidróxido de plomo (IV)
31			Hidróxido de cobre(I)
32			Hidróxido de cromo (III)
33			Hidróxido de estaño (II)
34			Hidróxido de plata

3.2 ÁCIDOS OXOÁCIDOS

Los ácidos oxoácidos son compuestos formados por oxígeno, hidrógeno y otro elemento, cuya fórmula general es:

Ha Xb Oc

Donde X representa, por lo general, un no metal, aunque también puede ser un metal de transición.

Para nombrar un ácido oxoácido es necesario conocer el número de oxidación del átomo central, X. Para ello, se tiene en cuenta la electroneutralidad de la molécula. Para ello tenemos que tener presente que en estos compuestos:

El O actúa con número de oxidación (-2)

El H actúa con número de oxidación (+ 1)

3.2.1 NOMENCLATURA TRADICIONAL

NOMBRARLOS:

En función del número de números de oxidación del átomo central usamos unos prefijos y sufijos u otros:

Cuatro números de oxidación:

Menor valencia	Hipooso
	oso
	ico
Mayor valencia	Perico

■ Tres números de oxidación:

Menor valencia	Hipooso
	oso
Mayor valencia	ico

Dos valencias:

Menor valencia	oso
Mayor valencia	ico

Para nombrarlos con esta nomenclatura utilizamos el nombre genérico de ácido y los prefijos y sufijos tal y como mostramos en los siguientes ejemplos:

Cuatro números de oxidación:

Valencia	Fórmula	Nombre
1	HCIO	Ácido hipocloroso
3	HClO ₂	Ácido cloroso
5	HCIO ₃	Ácido clórico
7	HCIO ₄	Ácido perclórico

■ Tres números de oxidación:

Valencia	Fórmula	Nombre
1	HNO	Ácido hiponitroso
3	HNO ₂	Ácido nitroso
5	HNO ₃	Ácido nítrico

Dos números de oxidación:

Valencia	Fórmula	Nombre
2	H ₂ CO ₂	Ácido carbonoso
4	H ₂ CO ₃	Ácido carbónico

Si el elemento del átomo central tiene un solo elemento:

Si el elemento tiene un solo estado de oxidación como el silicio (IV), se nombra con la palabra ácido seguida de la preposición de y el nombre del no metal.

FORMULAR LOS ÁCIDOS OXOÁCIDOS

Formulamos el óxido correspondiente y le sumamos una molécula de agua.

EJEMPLO

CI (1,3,5 7)

(1)
$$Cl_2 O + H_2 O \longrightarrow H_2 Cl_2 O_2$$
 Simplificamos HClO
(3) $Cl_2 O_3 + H_2 O \longrightarrow H_2 Cl_2 O_4$ Simplificamos HClO₂
(5) $Cl_2 O_5 + H_2 O \longrightarrow H_2 Cl_2 O_6$ Simplificamos HClO₃
(7) $Cl_2 O + H_2 O \longrightarrow H_2 Cl_2 O_8$ Simplificamos HClO₄

OBTENCIÓN DE LA VALENCIA

- +1 +1 -2
- H CI O
- +1 **+1** -2
- +1 +3 -4
- H Cl O₂
- **+1 +3 -2**
- **+1 +5** -6
- H Cl O₃
- +1 +5 -2
- +2 **+6** -8
- H_2 S O_4
- +1 +6 -2

3.2.2 NOMENCLATURA DE HIDRÓGENO PARA LOS OXOÁCIDOS.

Para los oxoácidos y sus derivados hay una forma específica de nomenclatura aceptada por la IUPAC.

(Prefijo)(hidrógeno) ((prefijo)(óxido) (prefijo)(raíz del nombre del átomo central acabada en ato))

FÓRMULA	NOMBRE	
HCIO ₂	Hidrógeno(dioxidoclorato)	
HBrO ₃	Hidrogeno(trioxidobromato)	
HNO ₂	Hidrogeno(dioxidonitrato)	

FÓRMULA	NOMENCLATURA	NOMENCLATURA DE HIDRÓGENO
	TRADICIONAL	
		Hidrogeno(oxidobromato)
		Hidrogeno(dioxidobromato)
		Hidrogeno(trioxidobromato)
	Ácido perbrómico	
	Ácido hipoyodoso	
	Ácido yodoso	
	Ácido yódico	
HIO ₄		
H ₂ CO ₃		
HNO ₂		
HNO₃		
H ₂ SeO ₂		
H ₂ SO ₃		
H ₂ SO ₄		
H ₂ TeO ₂		
H ₂ TeO ₃		
H ₂ TeO ₄		

	FÓRMULA	NÚMERO DE OXIDACIÓN	NOMBRE TRADICIONAL
1	HCIO		
2	H ₂ SO ₄		
3	HBrO ₄		
4	НЮ		
5	HNO ₂		
6	H ₂ SeO ₃		
7	HNO ₃		
8	HIO₃		
9	H ₂ SO ₃		
10	HBrO ₂		
11	H ₂ TeO ₃		
12	HIO ₂		
13	HNO		
14	HBrO ₃		
15	H ₂ CO ₃		
16	HIO ₄		
17	H ₂ SO ₂		
18			Ácido perclórico
19			Ácido hiponitroso
20			Ácido brómico
21			Ácido perclórico
22			Ácido hiposulfuroso
23			Ácido sufuroso
24			Ácido de silicio
25			Ácido yodoso
26			Ácido perbrómico
27			Ácido hipocloroso
28			Ácido yódico
29			Ácido carbónico
30			Ácido nitroso
31			Ácido hipoyodoso
32			Ácido bromoso
33			Ácido teluroso
34			Ácido clórico
35			Ácido selénico

3.3 IONES HETEROPOLIATÓMICOS

Los iones heteropoliatómicos son especies con carga constituidas por átomos de diferentes elementos químicos.

En estos iones, el valor de la carga se obtiene al sumar los números de oxidación de los elementos que lo constituyen.

Estos aniones resultan de la pérdida de uno o más iones hidrógeno (1+), es decir, H⁺ de un oxoácido:

+1 +1 -2 +1 -2

H Cl O si pierde el hidrógeno (H⁺) nos queda: Cl O

+1 +1 -2 +1 -2

Veamos otro ejemplo:

ÁCIDO	PÉRDIDA DE HIDRÓGENOS	ION	NOMBRE
HCIO ₄	-H ⁺	ClO_4^-	Perclorato
H ₂ SeO ₄	-2H ⁺	SeO_4^{2-}	Seleniato
HNO₃	-H⁺	NO_3^-	Nitrato
H ₂ SO ₃	-2H ⁺	SO_3^{2-}	Sulfito
HCIO	-H⁺	CIO-	Hipoclorito
HNO ₂	-H ⁺	NO_2^-	Nitrito
H ₃ PO ₄	-3H ⁺	PO ₄ ³⁻	Fosfato
H ₂ Cr ₂ O ₇	-2H ⁺	$Cr_2 \mathcal{O}_7^{2-}$	Dicromato (Hay que estudiar)
KMnO ₄	-H [†]	MnO_4^-	Permanganato (Hay que estudiar)

3.3.1 NOMENCLATURA TRADICIONAL

Se nombran sustituyendo la palabra ácido por ion o anion, y cambiando la terminación –oso o –ico del oxoácido de procedenciapor –ito o –ato, respectivamente, manteniendo los prefijos hipo- y per-

Oso ----ito Ico---ato

 SO_3^{2-} Sulfito

Cuando el oxoácido tiene varios hidrógenos, puede ocurrir que el anión derivado se forme por pérdida de algunos de ellos, pero no de todos. En este caso, se antepone el prefijo hidrógeno-, dihidrógeno-, etc, según el caso, al nombre del anión.

HSO₃ Hidrógeno sulfito

3.3.2 NOMENCLATURA ESTEQUIOMÉTRICA

(prefijo)(oxido)(prefijo)(raíz del nombre del átomo central acabada en ato)(carga del anión)

 SO_3^{2-} trioxidosulfato(2-)

 NO_2^- Dioxidonitrato(1-)

3.4 OXISALES NEUTRAS

Resultan de la unión de un catión de un oxoácido con un catión.

3.3.1 NOMENCLATUR TRADICIONAL

(nombre del oxoanión) de (nombre del catión) (número de oxidación).

Ca₃(PO₄)₂ Fosfato de calcio Al PO₄ Fosfato de aluminio

Fe(ClO₃)₂ Clorato de hierro (II) Ni₄ (SiO₄)₃ Silicato de níquel (III)

3.3.2 NOMENCLATURA ESTEQUIOMÉTRICA

(prefijo)(nombre del oxoanión, sin la carga) de (prefijo)(nombre del catión, sin la carga)

Prefijos numerales para el anión:

Bis-2 Tris-3 Tetrakis-4 Pentakis-5

Ca₃(PO₄)₂ Bis(tetraoxidofosfato) de tricalcio.

Ni₄ (SiO₄)₃ Tris(tetraoxidosilicato) de tetraníquel

FÓRMULA	CATIÓN	ANIÓN	NOMBRE TRADICIONAL
Cu (NO ₃) ₂	Cu ²⁺	2NO ₃	Nitrato de cobre (II)
CuNO₃	Cu⁺	NO_3^-	Nitrato de cobre (I)
FeCO ₃	Fe ²⁺	CO ₃ ²⁻	Carbonato de hierro (II)
Fe ₂ (CO ₃) ₃	2Fe ³⁺	3 <i>CO</i> ₃ ²⁻	Carbonato de hierro (III)
CaCO ₃	Ca ²⁺	CO ₃ ²⁻	Carbonato de calcio
KCIO ₄	K ⁺	ClO_4^-	Perclorato de potasio
NaClO	Na⁺	CIO-	Hipoclorito de sodio
FeSO ₃	Fe ²⁺	SO_3^{2-}	Sulfito de hierro (II)
KMnO ₄	K ⁺	MnO_4^-	Permanganato de potasio
K ₂ Cr ₂ O ₇	2K ⁺	$Cr_2 \mathcal{O}_7^{2-}$	Dicromato de potasio.

FÓRMULA	TRADICIONAL	ESTEQUIOMÉTRICA
Na ₂ SO ₄		
Al(ClO ₃) ₃		
CaSO ₄		
AgNO ₃		
Na₃PO₄		
	Sulfato de hierro (II)	
	Permanganato de potasio	
	Sulfato de cobre (II)	
	Carbonato de calcio	
	Perclorato de potasio	
		Trioxidobromato de litio
		Tris(trioxidosulfato) de dialuminio
		Dioxobromato de potasio
		Bis(trioxidonitrato) de plomo

	FÓRMULA	ÁCIDO DE	PARTIDA	NOMBRE TRADICIONAL
1	Fe (NO ₃) ₂	HNO ₃	A. nítrico	
2	NaClO	HCIO	A. hipocloroso	
3	MgSO ₄	H ₂ SO ₄	A. sulfúrico	
4	K ₂ TeO ₂	H ₂ TeO ₂	A. hipoteluroso	
5	RbIO ₄	HIO ₄	A.peryódico	
6	NiSO₃	H ₂ SO ₃	A. sulfuroso	
7	CoSeO ₄	H ₂ SeO ₄	A. selénico	
8	Zn(BrO ₃) ₂	HBrO₃	A. brómico	
9	CuNO ₃	HNO₃	A. nítrico	
10	KCIO ₄	HCIO ₄	A. perclórico	
11		HCIO ₂	A. cloroso	Clorito de cobre(I)
12		H ₂ SO ₃	A. sulfuroso	Sulfito de mercurio (II)
13		H ₂ SO ₄	A. sulfúrico	Sulfato de plomo (IV)
14		HIO₄	A. peryódico	Peryodato de mercurio (II)
15		H ₂ CO ₃	A. carbónico	Carbonato de potasio
16		HCIO	A. hipocloroso	Hipoclorito de cinc
17		HIO₃	A. yódico	Yodato de oro (III)
18		HBrO ₄	A. perbrómico	Perbromato de plata
19		H ₂ SO ₂	A. hiposulfuroso	Hiposulfito de bario
20		H ₂ CO ₃	A. carbónico	Carbonato de estroncio
21		HClO₃	A. clórico	Clorato de cobalto(II)
22		HNO ₂	A. nitroso	Nitrito de sodio
23		H ₂ SO ₄	A. sulfúrico	Sulfato de aluminio
24		НЮ	A. hipoyodoso	Hipoyodito de litio
25		H ₂ SO ₃	A. sulfuroso	Sulfito de niquel (III)
26		HBrO	A. bromoso	Bromito de cobre (I)
27		H ₂ SO ₄	A. sulfúrico	Sulfato de plomo(IV)
28		HNO	A. hiponitroso	Hiponitrito de estaño (II)