Section 2.4, Question 19: Sketch the graph of $f(x) = x^4 - 6x^2$.

Answer: To sketch this curve, we'll construct a chart like we did in section 2.3, of the following type:

X		
f(x)		
f'(x)		
f"(x)		

First, we find f'(x), set it equal to 0 and then solve for x.

$$f(x) = x^4 - 6x^2$$

So,

$$f'(x) = 4x^3 - 12x$$

Setting this equal to 0 gives:

$$f'(x) = 4x^3 - 12x = 0$$

$$4x^3 - 12x = 0$$

$$4x(x^2 - 3) = 0$$

The quadratic in the parentheses factors into $(x^2-3)=(x-\sqrt{3})(x+\sqrt{3})$ using the algebraic identity $(x^2-a^2)=(x-a)(x+a)$. In this case, we take $a=\sqrt{3}$.

So we get:

$$4x(x-\sqrt{3})(x+\sqrt{3}) = 0$$

1

So we get that f'(x) = 0 when $x = -\sqrt{3}, 0, \sqrt{3}$.

Next we find f''(x), set it equal to 0 and solve for x.

We have found:

$$f'(x) = 4x^3 - 12x$$

So,

$$f''(x) = 12x^2 - 12$$

Setting this equal to 0 gives:

$$f''(x) = 12x^2 - 12 = 0$$

$$12x^2 - 12 = 0$$

$$12(x^2 - 1) = 0$$

$$12(x-1)(x+1) = 0$$

So we get that f''(x) = 0 when x = -1, +1.

Now we have our points that we'll use to divide up $(-\infty, \infty)$.

We write these in as a first step in making our chart:

	X	$-\sqrt{3}$	-1	0	1	$\sqrt{3}$	
ſ	f(x)						
ſ	f'(x)						
ſ	f"(x)						

In the next step, we'll fill in the intervals in between:

X	$(-\infty, -\sqrt{3})$	$-\sqrt{3}$	$(-\sqrt{3}, -1)$	-1	(-1,0)	0	(0,1)	1	$(1,\sqrt{3})$	$\sqrt{3}$	$(\sqrt{3},\infty)$
f(x)	•				•						•
f'(x)					•		•		•		•
f"(x)	•										

This finishes the x row.

Next, we fill in the f(x) row, filling in values for the columns containing points.

X	$(-\infty, -\sqrt{3})$	$-\sqrt{3}$	$(-\sqrt{3}, -1)$	-1	(-1,0)	0	(0,1)	1	$(1,\sqrt{3})$	$\sqrt{3}$	$(\sqrt{3},\infty)$
f(x)		-9		-5		0		-5		-9	
f'(x)									•		
f"(x)									•		

This finishes the f(x) row.

Next we fill in the f'(x) row.

Remember that we found:

$$f'(x) = 4x^3 - 12x$$

which factors as:

$$f'(x) = (4x)(x - \sqrt{3})(x + \sqrt{3})$$

So we get that f'(x) = 0 when $x = -\sqrt{3}, 0, \sqrt{3}$. We can fill this in immediately in the chart:

X	$(-\infty, -\sqrt{3})$	$-\sqrt{3}$	$(-\sqrt{3}, -1)$	-1	(-1,0)	0	(0,1)	1	$(1, \sqrt{3})$	$\sqrt{3}$	$(\sqrt{3},\infty)$
f(x)		-9		-5		0		-5		-9	
f'(x)		0				0				0	
f"(x)											

Next, notice that in between these points, f'(x) can only have one sign: either + or -. We can see this by looking at an example. If f'(x) switched from + to - on $(-\infty, -\sqrt{3})$ for example, then it would have to equal 0 in between the + and - signs. Then, there would be a point in $(-\infty, -\sqrt{3})$ where f'(x) = 0. But we know this is impossible, since we have already found the roots of f'(x) = 0, and they were $x = -\sqrt{3}, 0, \sqrt{3}$.

So on $(-\infty, -\sqrt{3})$, f'(x) has only one sign.

We can find it by taking a test point, say x = -3 and plugging it into:

$$f'(x) = (4x)(x - \sqrt{3})(x + \sqrt{3})$$

When x=-3, the three factors are negative, negative and negative respectively. So, f'(-3) < 0 overall. So we can write in a "-" in all the cells where $x < -\sqrt{3}$:

x	$(-\infty, -\sqrt{3})$	$-\sqrt{3}$	$(-\sqrt{3},-1)$	-1	(-1,0)	0	(0,1)	1	$(1, \sqrt{3})$	$\sqrt{3}$	$(\sqrt{3},\infty)$
f(x)	•	-9		-5	•	0		-5	•	-9	
f'(x)	_	0	•		•	0			•	0	
f"(x)	•		•		•				•		•

On $(-\sqrt{3}, 0)$, f'(x) has only one sign.

We can find it by taking a test point, say x = -1.5 and plugging it into:

$$f'(x) = (4x)(x - \sqrt{3})(x + \sqrt{3})$$

When x = -1.5, the three factors are negative, negative and positive respectively. So, f'(-1.5) > 0 overall. So we can write in a "+" in all the cells where $-\sqrt{3} < x < 0$:

X	$(-\infty, -\sqrt{3})$	$-\sqrt{3}$	$(-\sqrt{3}, -1)$	-1	(-1,0)	0	(0,1)	1	$(1, \sqrt{3})$	$\sqrt{3}$	$(\sqrt{3},\infty)$
f(x)	•	-9	•	-5	•	0		-5	•	-9	
f'(x)	_	0	+	+	+	0	•		•	0	
f"(x)											

On $(0, \sqrt{3})$, f'(x) has only one sign.

We can find it by taking a test point, say x = 1.5 and plugging it into:

$$f'(x) = (4x)(x - \sqrt{3})(x + \sqrt{3})$$

When x = 1.5, the three factors are positive, negative and positive respectively. So, f'(1.5) < 0 overall. So we can write in a "-" in all the cells where $0 < x < \sqrt{3}$:

X	$(-\infty, -\sqrt{3})$	$-\sqrt{3}$	$(-\sqrt{3}, -1)$	-1	(-1,0)	0	(0,1)	1	$(1,\sqrt{3})$	$\sqrt{3}$	$(\sqrt{3},\infty)$
f(x)		-9		-5		0		-5		-9	
f'(x)	_	0	+	+	+	0	_	_	_	0	
f"(x)									•		

On $(\sqrt{3}, \infty)$, f'(x) has only one sign.

We can find it by taking a test point, say x = 3 and plugging it into:

$$f'(x) = (4x)(x - \sqrt{3})(x + \sqrt{3})$$

When x = 3, the three factors are positive, positive and positive respectively. So, f'(3) > 0 overall. So we can write in a "+" in all the cells where $0 < x < \sqrt{3}$:

X	$(-\infty, -\sqrt{3})$	$-\sqrt{3}$	$(-\sqrt{3}, -1)$	-1	(-1,0)	0	(0,1)	1	$(1, \sqrt{3})$	$\sqrt{3}$	$(\sqrt{3},\infty)$
f(x)		-9		-5		0		-5		-9	
f'(x)	_	0	+	+	+	0	_	_	_	0	+
f"(x)	•										

This finishes the f'(x) row.

Next we'll do the f''(x) row.

Remember that we found:

$$f''(x) = 12x^2 - 12$$

which factorizes as:

$$12(x-1)(x+1)$$

So we get that f''(x) = 0 when x = -1, +1. We can fill this in immediately in the chart:

X	$(-\infty, -\sqrt{3})$	$-\sqrt{3}$	$(-\sqrt{3}, -1)$	-1	(-1,0)	0	(0,1)	1	$(1, \sqrt{3})$	$\sqrt{3}$	$(\sqrt{3},\infty)$
f(x)		-9		-5		0		-5		-9	
f'(x)	_	0	+	+	+	0	_	_	_	0	+
f"(x)				0				0			

Next, notice that in between these points, f''(x) can only have one sign: either + or -. We can see this by looking at an example. If f''(x) switched from + to - on $(-\infty, -1)$ for example, then it would have to equal 0 in between the + and - signs. Then, there would be a point in $(-\infty, -1)$ where f''(x) = 0. But we know this is impossible, since we have already found the roots of f''(x) = 0, and they were x = -1, +1.

So on $(-\infty, -1)$, f''(x) has only one sign .

We can find it by taking a test point, say x = -2 and plugging it into:

$$f''(x) = 12(x-1)(x+1)$$

When x = -2, the two factors are negative and negative respectively. So, f''(-2) > 0 overall. So we can write in a "+" in all the cells where x < -1:

x	$(-\infty, -\sqrt{3})$	$-\sqrt{3}$	$(-\sqrt{3},-1)$	-1	(-1,0)	0	(0,1)	1	$(1,\sqrt{3})$	$\sqrt{3}$	$\left (\sqrt{3}, \infty) \right $
f(x)		-9		-5	•	0		-5	•	-9	
f'(x)	_	0	+	+	+	0	_	_	_	0	+
f"(x)	+	+	+	0	•			0	•		

On (-1,1), f''(x) has only one sign.

We can find it by taking a test point, say x = 0 and plugging it into:

$$f''(x) = 12(x-1)(x+1)$$

When x = 0, the two factors are negative and positive respectively. So, f''(0) < 0 overall. So we can write in a "-" in all the cells where -1 < x < 1:

X	$(-\infty, -\sqrt{3})$	$-\sqrt{3}$	$(-\sqrt{3}, -1)$	-1	(-1,0)	0	(0,1)	1	$(1, \sqrt{3})$	$\sqrt{3}$	$(\sqrt{3},\infty)$
f(x)		-9		-5	•	0		-5	•	-9	
f'(x)	_	0	+	+	+	0	_	_	_	0	+
f"(x)	+	+	+	0	_	_	_	0			

On $(1, \infty)$, f''(x) has only one sign.

We can find it by taking a test point, say x=2 and plugging it into:

$$f''(x) = 12(x-1)(x+1)$$

When x=2, the two factors are positive and positive respectively. So, f''(2) > 0 overall. So we can write in a "+" in all the cells where x > 1:

X	$(-\infty, -\sqrt{3})$	$-\sqrt{3}$	$(-\sqrt{3}, -1)$	-1	(-1,0)	0	(0,1)	1	$(1,\sqrt{3})$	$\sqrt{3}$	$(\sqrt{3},\infty)$
f(x)		-9		-5		0		-5		-9	
f'(x)	_	0	+	+	+	0	_	_	_	0	+
f"(x)	+	+	+	0	_	_	_	0	+	+	+

This finishes the f''(x) row, and the chart.

Lastly, we'll use this chart to sketch the graph.

Let's look at the chart again:

X	$(-\infty, -\sqrt{3})$	$-\sqrt{3}$	$(-\sqrt{3}, -1)$	-1	(-1,0)	0	(0,1)	1	$(1, \sqrt{3})$	$\sqrt{3}$	$(\sqrt{3},\infty)$
f(x)		-9		-5		0		-5		-9	
f'(x)	_	0	+	+	+	0	_	_	_	0	+
f"(x)	+	+	+	0	_	_	_	0	+	+	+

It tells us that:

- 1. f(x) has a local maximum at (0,0)
- 2. f(x) has local minima at $(-\sqrt{3}, -9)$ and $(\sqrt{3}, -9)$
- 3. f(x) has inflection points at (-1, -5) and (1, -5)
- 4. f(x) is increasing on $(-\sqrt{3},0)$ and $(\sqrt{3},\infty)$
- 5. f(x) is decreasing on $(-\infty, -\sqrt{3})$ and $(0, \sqrt{3})$
- 6. f(x) is concave up on $(-\infty, -1)$ and $(1, \infty)$
- 7. f(x) is concave down on (-1,1)

We can sketch these details into a graph as follows:

and then fill in the rest of graph as smoothly as possible, making sure that the concavity and direction are correct everywhere.