Linear Systems TTK4115

Helicopter Lab Report

Bernt Johan Damslora (nr. 759477) Didrik Rokhaug (nr. 759528)

October 16, 2016

Contents

1	Par	t 1															1
_	Part 2: Monovariable Control												2				
	2.1	Proble	em 1														2
		2.1.1	Controllability														2

1 Part 1

To find a model of the system we started with Newton's 2nd law for rotation, which states that

$$\sum \tau = J\alpha \tag{1}$$

where τ is the external torque, J is the moment of inertia, and α is the angular acceleration. Using this for each of the three axis gives

$$J_p \ddot{p} = L_1 V_d \tag{2a}$$

$$J_e \ddot{e} = L_2 \cos(e) + L_3 V_s \cos(p) \tag{2b}$$

$$J_{\lambda}\ddot{\lambda} = L_4 V_s \cos(e) \sin(p) \tag{2c}$$

where

$$L_1 = K_f l_p$$

$$L_2 = (m_c l_c - 2m_p l_h)g$$

$$L_3 = K_f l_h$$

As the model in eq. (2) is non-linear we need to linearize the model to be able to design a linear controller. To do this we need a point to linearize around. For this we use $(p^*, e^*, \lambda^*)^T = (0, 0, 0)^T$. We also need to find the voltages V_s^* and V_d^* that makes $(p^*, e^*, \lambda^*)^T$ an equilibrium. Setting eq. (2a) and eq. (2b) to zero gives

$$V_d^* = 0$$
$$V_s^* = -\frac{L_2}{L_3}$$

The next thing we did was a coordinate transform, to simplify the model of the system. The new states are $(\tilde{p}, \tilde{e}, \tilde{\lambda})^T = (p, e, \lambda)^T - (p^*, e^*, \lambda^*)^T$ and the new inputs are $(\tilde{V}_s, \tilde{V}_d)^T = (V_s, V_d)^T - (V_s^*, V_d^*)^T$. This gives the system

$$\ddot{\tilde{p}} = \frac{L_1}{J_p} \tilde{V}_d \tag{5a}$$

$$\ddot{\tilde{e}} = \frac{L_2}{J_e} \cos \tilde{e} + (L_3 \tilde{V}_s - L_2) \cos \tilde{p}$$
 (5b)

$$\tilde{\tilde{\lambda}} =$$
 (5c)

Now that the system is on a nice form, we can linearize it. This gives us a system on the form $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}$, where the matrices is given by

$$\mathbf{A} = \begin{bmatrix} \frac{\partial \ddot{p}}{\partial \tilde{p}} = 0 & \frac{\partial \ddot{p}}{\partial \tilde{e}} = 0 & \frac{\partial \ddot{p}}{\partial \tilde{\lambda}} = 0 \\ \frac{\partial \ddot{e}}{\partial \tilde{p}} = 0 & \frac{\partial \ddot{e}}{\partial \tilde{e}} = 0 & \frac{\partial \ddot{e}}{\partial \tilde{\lambda}} = 0 \\ \frac{\partial \ddot{\lambda}}{\partial \tilde{p}} = -\frac{L_2}{J_{\lambda}} & \frac{\partial \ddot{\lambda}}{\partial \tilde{e}} = 0 & \frac{\partial \ddot{\lambda}}{\partial \tilde{\lambda}} = 0 \end{bmatrix}$$

$$\mathbf{B} = \begin{bmatrix} \frac{\partial \ddot{p}}{\partial \tilde{V}_s} = 0 & \frac{\partial \ddot{p}}{\partial \tilde{V}_d} = \frac{L_1}{J_p} \\ \frac{\partial \ddot{e}}{\partial \tilde{V}_s} = \frac{L_3}{J_e} & \frac{\partial \ddot{e}}{\partial \tilde{V}_d} = 0 \\ \frac{\partial \ddot{\lambda}}{\partial \tilde{V}_s} = 0 & \frac{\partial \ddot{\lambda}}{\partial \tilde{V}_d} = 0 \end{bmatrix}$$
(6b)

$$\mathbf{B} = \begin{bmatrix} \frac{\partial \ddot{p}}{\partial \bar{V}_{s}} = 0 & \frac{\partial \ddot{p}}{\partial \bar{V}_{d}} = \frac{L_{1}}{J_{p}} \\ \frac{\partial \ddot{e}}{\partial \bar{V}_{s}} = \frac{L_{3}}{J_{e}} & \frac{\partial \ddot{e}}{\partial \bar{V}_{d}} = 0 \\ \frac{\partial \ddot{\lambda}}{\partial \bar{V}_{s}} = 0 & \frac{\partial \ddot{\lambda}}{\partial \bar{V}_{d}} = 0 \end{bmatrix}$$
(6b)

Writing out eq. (6) we get

$$\ddot{\tilde{p}} = \frac{L_1}{J_p} \tilde{V}_d = K_1 \tilde{V}_d \tag{7a}$$

$$\ddot{\tilde{e}} = \frac{L_3}{J_e} \tilde{V}_s = K_2 \tilde{V}_s \tag{7b}$$

$$\ddot{\tilde{\lambda}} = -\frac{L_2}{J_{\lambda}}\tilde{p} = K_3\tilde{p} \tag{7c}$$

Part 2: Monovariable Control 2

2.1 Problem 1

Controllability

We look at the controllability matrix:

References