M42: Formes bilinéaires, espaces euclidiens

Licence de Mathématiques L2 S4 – Université de Lille – Année 2020-2021

Feuille de TD 2. Formes bilinéaires et quadratiques

Dans cette feuille K désigne un des corps \mathbb{R} , \mathbb{C} .

EXERCICE 1. Lesquelles des fonctions $f: E \times E \to K$ suivantes sont des formes bilinéaires sur les K-espaces vectoriels E donnés? Dans les cas où f est bilinéaire, donner la matrice de f dans une base convenable; au cas où f est bilinéaire symétrique, donner une expression pour la forme quadratique associée :

- 1. $E = \mathbb{R}^n$, $n \ge 1$, $f((x_1, \dots, x_n), (y_1, \dots, y_n))$ un monôme en x_i, y_i . Même question pour f un polynôme en x_i, y_i .
- 2. $E = \mathbb{R}^n$, $f(x,y) = (\sum (x_i + y_i))^2 (\sum x_i)^2 (\sum y_i)^2$.
- 3. $E = \mathbb{R}^n$, $f(x, y) = (\sum x_i)^2 (\sum y_i)^2$.
- 4. $E = M_n(\mathbb{R}), f(A, B) = \det(A + B) \det(A B).$
- 5. $E = \mathbb{R}_n[X], f(P,Q) = \int_{-1}^1 x P(x) Q'(x) dx.$
- 6. $E = \mathbb{C}$ vu comme un \mathbb{R} -espace vectoriel, f(x,y) = |xy|, $f(x,y) = \operatorname{Re}(x\bar{y})$, $f(x,y) = \operatorname{Im}(x\bar{y})$, $f(x,y) = |x+y|^2 |x|^2 |y|^2$.
- 7. $E = \mathbb{C}^2$ vu comme un \mathbb{R} -espace vectoriel, $f(x,y) = \bar{x}_1 y_2 + x_1 \bar{y}_2$.
- 8. $E = \mathbb{C}^2$, $f(x,y) = \bar{x}_1 y_2 \bar{x}_2 y_1$.

EXERCICE 2. Ecrire et démontrer la formule pour la matrice A' d'une forme bilinéaire f dans une base (e'_1, e'_2, e'_3) en fonction de A, P, où A est la matrice de f dans la base (e_1, e_2, e_3) et P est la matrice de passage de (e_1, e_2, e_3) à (e'_1, e'_2, e'_3) . Réaliser le calcul de A' pour A et le

changement de base donnés :
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}, \quad \begin{cases} e_1' = e_1 - e_2 \\ e_2' = e_1 & + e_3 \\ e_3' = e_1 + e_2 + e_3 \end{cases}$$

EXERCICE 3. Soient E un K-espace vectoriel muni d'une base $\mathscr{E}, g \in \mathscr{B}(E)$ une forme bilinéaire sur E et $u \in \mathscr{L}(E)$ un endomorphisme linéaire de E. Montrer que les fonctions $\alpha, \beta : E \times E \to K, \beta(x,y) = g(u(x)x,y), \gamma(x,y) = g(x,u(y))$, sont des formes bilinéaires et donner leurs matrices en fonction des matrices G de g et A de u, dans la base \mathscr{E} . Soient $E = \mathbb{R}^2$, $\mathscr{E} = (e_1,e_2)$ la base standard, et $g((x_1,x_2),(y_1,y_2)) = x_1y_1 - x_1y_2 + x_2y_1 + x_2y_2$. Déterminer tous les endomorphismes $u \in \mathscr{L}(E)$ pour lesquels la forme β est symétrique et γ est alternée simultanément.

EXERCICE 4. Vérifier que l'application $q: \mathbb{R}^3 \to \mathbb{R}$ définie ci-dessous est une forme quadratique et déterminer la forme bilinéaire symétrique qui lui est associée :

$$q((x, y, z)) = x^2 + 3(x + y - z)^2 + (z - y)^2.$$

La forme q est-elle définie positive?

EXERCICE 5. Diagonaliser les formes quadratiques par la méthode de Gauss, déterminer le rang et la signature et présenter une base orthogonale par chacune des formes :

- 1. $x^2 + y^2 + z^2 4(xy + yz + zx)$;
- 2. $2x^2 + 6y^2 4xy + 8xz$;
- 3. xy + yz + 2zx;
- 4. $9x^2 6y^2 8z^2 + 6xy 14xz + 18xw + 8yz + 12yw 4zw$;
- 5. $M_2(\mathbb{R}) \ni M \mapsto \det M$.

EXERCICE 6. a) Combien y a-t-il de classes d'équivalence de formes quadratiques sur \mathbb{R}^n pour n fixé? b) On dit que deux formes Q, Q' sont semblables s'il existe un $\lambda \in \mathbb{R} \setminus \{0\}$ tel que $Q, \lambda Q'$ sont équivalentes. Combien y a-t-il de classes de similitude de formes quadratiques sur \mathbb{R}^n ?

EXERCICE 7. Pour quelles valeurs de paramètres λ, μ les formes bilinéaires ci-dessous définissent-elles un produit scalaire sur \mathbb{R}^3 ?

- 1. $f(x,y) = x_1y_1 + 6x_2y_2 + 3x_3y_3 + 2x_1y_2 + 2x_2y_1 + 3\lambda x_1y_3 + 3\mu x_3y_1$
- 2. $g(x,y) = x_1y_1 + 10x_2y_2 + 6x_1y_2 + \lambda x_3y_3 x_2y_3 x_3y_2$
- 3. $h(x,y) = 2x_1y_1 + 7x_1y_2 + 7x_2y_1 + 8x_2y_2 3x_3y_3 + \lambda x_2y_3 + \mu x_3y_2$
- 4. $i(x,y) = (x_1+x_2)(y_1+y_2) + (x_1+x_3)(y_1+y_3) + (x_2+x_3)(y_2+y_3) \lambda(x_1+x_2+x_3)(y_1+y_2+y_3)$

EXERCICE 8. Deux formes bilinéaires $f: E \times E \to K$, $f': E' \times E' \to K$ sont dites équivalentes si E, resp. E' admettent des bases \mathscr{E} , resp. \mathscr{E}' telles que $\mathrm{Mat}_{\mathscr{E}}(f) = \mathrm{Mat}_{\mathscr{E}'}(f')$. Dire, sans aucun calcul, si les deux formes bilinéaires données sur \mathbb{R}^3 sont équivalentes ou pas :

$$f(x,y) = x_1y_1 + 2x_1y_2 + 3x_1y_3 + 4x_2y_1 + 5x_2y_2 + 6x_2y_3 + 7x_3y_1 + 8x_3y_2 + 9x_3y_3,$$

$$f'(x,y) = 2x_1y_1 - x_1y_3 + x_2y_2 - x_3y_1 + 5x_3y_3.$$

EXERCICE 9. Sans aucun calcul, dire si les formes bilinéaires données sur \mathbb{R}^3 se réduisent à une forme diagonale dans une base convenable :

- a) $f_1(x,y) = -x_1y_1 2x_1y_2 3x_2y_2 + x_3y_1 4x_3y_3$;
- b) $f_2(x,y) = -x_1y_2 x_2y_1 + 3x_2y_2 + 5x_2y_3 + 5x_3y_2 x_3y_3$.

EXERCICE 10. Pour $P, Q \in K_n[X]$ on pose $\phi(P, Q) = P(1)Q(1)$. Montrer que ϕ est une forme bilinéaire symétrique sur $K_n[X]$. Déterminer son noyau et son rang. Donner une base ϕ -orthogonale.

EXERCICE 11. Soit $E = M_n(\mathbb{R})$ $(n \geq 2)$ et $\phi \in \mathscr{S}(E)$ la forme bilinéaire symétrique définie par $(A, B) \mapsto \operatorname{tr}(AB)$.

- a) Montrer que ϕ est non dégénérée.
- b) Montrer que toute matrice symétrique est ϕ -orthogonale à toute matrice anti-symétrique.
- c) Déterminer la signature de ϕ .

EXERCICE 12. Soient P un plan vectoriel et q une forme quadratique non dégénérée sur P. On suppose qu'il existe un vecteur isotrope pour q, c'est à dire, un vecteur $v \in P$ tel que $v \neq 0$ et q(v) = 0. Montrer qu'il existe une base de P dans laquelle la matrice de q est de

la forme $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Un plan P muni d'une forme quadratique q comme celle-ci s'appelle plan hyperbolique.

EXERCICE 13. Soient E un \mathbb{R} -espace vectoriel de dimension finie $n \geq 2$, et Q une forme quadratique sur E. Un vecteur v de E est dit isotrope si $v \neq 0$ et si Q(v) = 0. Le cône isotrope C(Q) de Q est l'ensemble des vecteurs isotropes complété par le vecteur nul, ou de façon équivalente :

$$C(Q) = \{ v \in E \mid Q(v) = 0 \}.$$

- 1. Représenter graphiquement le cône $C(Q_i)$ pour les formes quadratiques $Q_1: \mathbb{R}^2 \to \mathbb{R}, (x,y) \mapsto x^2 y^2$, et $Q_2: \mathbb{R}^3 \to \mathbb{R}, (x,y,z) \mapsto x^2 y^2 z^2$. Montrer sur le dessin une base de \mathbb{R}^2 (resp. \mathbb{R}^3) formée de vecteurs de $C(Q_1)$ (resp. $C(Q_2)$).
- 2. Montrer que si C(Q) est un sous-espace vectoriel de E, alors Q est de signe constant, c'est à dire : ou bien $Q(v) \ge 0$ pour tout $v \in E$, ou bien $Q(v) \le 0$ pour tout $v \in E$.
- 3. Montrer que si Q est non-dégénérée et admet un vecteur isotrope, alors E a une base formée de vecteurs isotropes.

EXERCICE 14. Soit Q une forme quadratique de signature (n-1,1) sur \mathbb{R}^n $(n \geq 3)$. Déterminer toutes les signatures possibles pour la restriction $Q|_H$ sur un hyperplan H de \mathbb{R}^n . Illustrer les cas qui se présentent par un dessin, montrant la position de H par rapport au cône isotrope C(Q).

EXERCICE 15. En appliquant l'orthogonalisation de Gram-Schmidt à une base convenable de \mathbb{R}^3 , construire une base orthogonale pour la forme quadratique q donnée, déterminer la signature de q et donner une expression de q en fonction des coordonnées dans la base orthogonale :

- 1) $q(x) = x_1^2 + 4x_2^2 + 9x_3^2 + 2x_1x_2 + 6x_2x_3$;
- 2) $q(x,y,z) = x^2 + 3y^2 8z^2 4xy + 2xz 10xz$;
- 3) la forme quadratique q de matrice $\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$ dans la base canonique de \mathbb{R}^3 .

EXERCICE 16. Trouver une base orthonormée de l'hyperplan H de \mathbb{R}^n , d'équation $x_1 + \ldots + x_n = 0$.

Exercice 17.

- 1. Soit I un segment de \mathbb{R} et $f_1, \ldots, f_n : I \to \mathbb{R}$ des fonctions continues. On pose $a_{i,j} = \int_I f_i f_j$. Montrer que la matrice $(a_{i,j})$ est définie positive ssi la famille (f_1, \ldots, f_n) est libre.
- 2. En déduire que si $\lambda_1, \ldots, \lambda_n$ sont des réels strictement positifs distincts alors la matrice de terme général $1/(\lambda_i + \lambda_j)$ est définie positive.