	te la prima ora									mom	
	FIRMA	1	2	3	4	5	6	7	8	TOT.	
Rispondere alle seguenti a. E' vero che per ogni	domande forne	endo	una g	iustif	icazio	ne di	una	riga:			
a. E' vero che per ogni	$q \in \mathbf{Q}, \cos(q\pi)$	e) è al	gebrio	co su	Q ?						
			• • • • •	• • • • •		• • • • •					
b. E' vero che l'estensio	one $\mathbf{Q}[\pi]/\mathbf{Q}[\pi^4]$	e tr	ascen	dente	?						
				• • • • •							
c. Determinare il grado	del campo O	[51/m	51/n] en (7 le (_{zariar}	a di n	пдп	in N		
c. Determinate it grade	der campo 🕹	U	, 0] su C	2 (11)	arrar	c di n	10 0 10	111 1 1		
											•••••
					••••				• • • • •		
				••••							
			••••								
d. E' vero che $\mathbf{Q}(\pi)$ è is	somorfo a $\mathbf{Q}(\sqrt{2})$	$\sqrt{\pi}$)?									

4. Data un estensione E/F , si dica cosa significa che $\alpha \in E$ è algebrico su F e cosa è il polinomio minimo di α su F dimostrando che è irriducibile.
5. Determinare il grado del campo di spezzamento su \mathbf{Q} , su \mathbf{R} e su \mathbf{F}_5 di $f(X)=(X^4-1)(X^4-2)((X-3)^2+2)$.
5. Determinare il grado del campo di spezzamento su \mathbf{Q} , su \mathbf{R} e su \mathbf{F}_5 di $f(X)=(X^4-1)(X^4-2)((X-3)^2+2)$.
5. Determinare il grado del campo di spezzamento su ${\bf Q}$, su ${\bf R}$ e su ${\bf F}_5$ di $f(X)=(X^4-1)(X^4-2)((X-3)^2+2)$.
5. Determinare il grado del campo di spezzamento su \mathbf{Q} , su \mathbf{R} e su \mathbf{F}_5 di $f(X)=(X^4-1)(X^4-2)((X-3)^2+2)$.
5. Determinare il grado del campo di spezzamento su ${\bf Q}$, su ${\bf R}$ e su ${\bf F}_5$ di $f(X)=(X^4-1)(X^4-2)((X-3)^2+2).$
5. Determinare il grado del campo di spezzamento su ${\bf Q}$, su ${\bf R}$ e su ${\bf F}_5$ di $f(X)=(X^4-1)(X^4-2)((X-3)^2+2).$
5. Determinare il grado del campo di spezzamento su ${\bf Q}$, su ${\bf R}$ e su ${\bf F}_5$ di $f(X)=(X^4-1)(X^4-2)((X-3)^2+2).$
5. Determinare il grado del campo di spezzamento su ${\bf Q}$, su ${\bf R}$ e su ${\bf F}_5$ di $f(X)=(X^4-1)(X^4-2)((X-3)^2+2).$
5. Determinare il grado del campo di spezzamento su ${\bf Q}$, su ${\bf R}$ e su ${\bf F}_5$ di $f(X)=(X^4-1)(X^4-2)((X-3)^2+2).$

6. Si consideri $E = \mathbf{F}_5[\alpha]$ dove α è una radice del polinomio $X^2 + 2$. Determinare il polinomio minimo su \mathbf{F}_5 di $1/(\alpha + 3)$.

- 7. Dopo aver mostrato che $x^3-3x-6\in \mathbf{Q}[x]$ è irriducibile, si consideri il campo $\mathbf{Q}[\omega], \omega^3=3\omega+6$. a. Determiniare $a,b,c\in \mathbf{Q}$ tali che $\omega^{-3}=a+b\omega+c\omega^2$. b. Calcolare il polinomio minimo su \mathbf{Q} di ω^2 .

- a. calcolare il polinomio minimo di $3^{1/6}$ su $\mathbf{Q}[\sqrt{3}]$. b. verificare che $\mathbf{Q}[3^{1/6}] \subset \mathbf{Q}[\sqrt{3},3^{1/9}]$; c. descrivere i $\mathbf{Q}[3^{1/6}]$ -omomorfismi del campo $\mathbf{Q}[\sqrt{3},3^{1/9}]$ in \mathbf{C} ;