# Implementation of an algorithm for artifact detection in photoplethysmograms

based on the article:

Real-Time Pulse Waveform Segmentation and Artifact
Detection in Photoplethysmograms [FDWP17]

Teresa Tanzi, 925574 2020 F9440: Biomedical Signal Processing LM-18, Università degli Studi di Milano

## **Photoplethysmography**

Optical technology

Light measures oxygen saturation in a noninvasive way → Photoplethysmogram (PPG).



#### **Pulse waveform**



### **Algorithm**



#### **Decision lists**



#### **Dataset**

|                        | Karlen et al. | Pimentel et al. | This Work |
|------------------------|---------------|-----------------|-----------|
| Number of recordings   | 42            | 53              | 10        |
| Sampling rate          | 300 Hz        | 125 Hz          | 75 Hz     |
| Duration               | 8 min         | 8 min           | 5 min     |
| <b>Artifact labels</b> | 1             | ×               | ×         |
| Reference              | [KRAD13]      | [PJCBWTC17]     |           |

# Example: raw signal



Teresa Tanzi

Implementation of an algorithm for artifact detection in PPG

2020

6/19

# 1st stage: raw signal artifact detection



## Clipped bottom

Implementation of an algorithm for artifact detection in PPG

# 2nd stage: low-pass filter



Teresa Tanzi

Implementation of an algorithm for artifact detection in PPG

2020

8/19

# 3rd stage: high-pass filter



# 4th stage: pulse wave valleys and peaks detection



# 5th stage: absolute and relative artifact detection



#### **Limits**

4: Rise time outside absolute range



8: Not monotonically increasing systolic phase

#### **Results**



## **Statistics**



## 8. Not monotonically increasing systolic phase



# 4. Rise time outside absolute ranges



# 5. S/D duration outside absolute range



#### **Improvements**

- HP filter frequency cutoff 0.01 Hz  $\rightarrow$  0.4 Hz
- · Check 4: change threshold
- Check 5: change threshold
- · Check 8: add tollerance



## **Bibliography**



C. Fischer, B. Dömer, T. Wibmer, and T. Penzel.

An algorithm for real-time pulse waveform segmentation and artifact detection in photoplethysmograms.

IEEE Journal of Biomedical and Health Informatics, 21:372–381, 2017.



W. Karlen, S. Raman, J. M. Ansermino, and G. A. Dumont. Multiparameter respiratory rate estimation from the photoplethysmogram.

IEEE Transactions on Biomedical Engineering, 60:1946-1953. 2013.



M. A. F. Pimentel, A. E. W. Johnson, P. H. Charlton, D. Birrenkott, P. J. Watkinson, L. Tarassenko, and D. A. Clifton.

Toward a robust estimation of respiratory rate from pulse oximeters.

IEEE Transactions on Biomedical Engineering, 64:1914–1923, 2017.

