My Name (shixuef2) IE598 MLF F19 Module 4 Homework (Regression)

# Part 1 Exploratory Data Analysis

# The Shape of the Data:

(452, 27)

#### The Head:

|   | ATT1     | ATT2     | ATT3     | ATT4     | <br>PTRATIO | В      | LSTAT | MEDV |
|---|----------|----------|----------|----------|-------------|--------|-------|------|
| 0 | 0.038327 | 0.592379 | 0.655174 | 0.119839 | <br>15.3    | 396.90 | 4.98  | 24.0 |
| 1 | 0.225022 | 0.983103 | 0.803619 | 0.836315 | <br>17.8    | 396.90 | 9.14  | 21.6 |
| 2 | 0.423233 | 0.375808 | 0.271293 | 0.729824 | <br>17.8    | 392.83 | 4.03  | 34.7 |
| 3 | 0.743370 | 0.929103 | 0.589894 | 0.644012 | <br>18.7    | 394.63 | 2.94  | 33.4 |
| 4 | 0.378623 | 0.786609 | 0.712752 | 0.110274 | <br>18.7    | 396.90 | 5.33  | 36.2 |

#### The Tail:

|     | ATT1     | ATT2     | ATT3     | ATT4     | <br>PTRATIO | В      | LSTAT | MEDV |
|-----|----------|----------|----------|----------|-------------|--------|-------|------|
| 501 | 0.838552 | 0.423363 | 0.534418 | 0.215346 | <br>21.0    | 391.99 | 9.67  | 22.4 |
| 502 | 0.957070 | 0.852536 | 0.336440 | 0.517798 | <br>21.0    | 396.90 | 9.08  | 20.6 |
| 503 | 0.038568 | 0.809151 | 0.593635 | 0.057473 | <br>21.0    | 396.90 | 5.64  | 23.9 |
| 504 | 0.199874 | 0.434272 | 0.209508 | 0.494747 | <br>21.0    | 393.45 | 6.48  | 22.0 |
| 505 | 0.885157 | 0.759896 | 0.073785 | 0.368307 | <br>21.0    | 396.90 | 7.88  | 11.9 |

# The Summary:

|       | ATT1       | ATT2       | ATT3       | <br>В          | LSTAT      | MEDV       |
|-------|------------|------------|------------|----------------|------------|------------|
| count | 452.000000 | 452.000000 | 452.000000 | <br>452.000000 | 452.000000 | 452.000000 |
| mean  | 0.507191   | 0.500668   | 0.506658   | <br>369.826504 | 11.441881  | 23.750442  |
| std   | 0.284419   | 0.299411   | 0.294063   | <br>68.554439  | 6.156437   | 8.808602   |
| min   | 0.000727   | 0.000321   | 0.000013   | <br>0.320000   | 1.730000   | 6.300000   |
| 25%   | 0.256733   | 0.239338   | 0.236364   | <br>377.717500 | 6.587500   | 18.500000  |
| 50%   | 0.509351   | 0.480324   | 0.526013   | <br>392.080000 | 10.250000  | 21.950000  |
| 75%   | 0.759448   | 0.776950   | 0.755411   | <br>396.157500 | 15.105000  | 26.600000  |
| max   | 0.995798   | 0.999265   | 0.998746   | <br>396.900000 | 34.410000  | 50.000000  |

# The Summary Statistics for each Feature/Target Column: Feature 1: CRIM

```
The summary statistics of \mathsf{CRIM}
```

Mean = 1.4208250442477868 Standard Deviation = 2.493131918118261

Boundaries for 4 Equal Percentiles

[0.01585025 0.069875 0.19103 1.21146 9.1309035 ]





Feature 2: ZN
The summary statistics of ZN

Boundaries for 4 Equal Percentiles
[ 0. 0. 0. 20. 84.3125]





**Feature 3: INDUS** 

Mean = 10.304889380530954

Standard Deviation = 6.7895796483967095

Boundaries for 4 Equal Percentiles [ 1.52 4.93 8.14 18.1 24.616]





**Feature 4: CHAS** 

The summary statistics of  $\operatorname{CHAS}$ 

Mean = 0.07743362831858407

Standard Deviation =

0.2672782473827653

Boundaries for 4 Equal Percentiles [0. 0. 0. 0. 1.]





**Feature 5: NOX** 

Boundaries for 4 Equal Percentiles [0.401 0.447 0.519 0.605 0.871]





Feature 6: RM

The summary statistics of RM Mean = 6.343537610619477

Standard Deviation =

0.6660695144975209

Boundaries for 4 Equal Percentiles [5.34895 5.92675 6.229 6.635 8.03835]





#### Feature 7: AGE





**Feature 8: DIS** 

The summary statistics of DIS  $\,$ 

Mean = 4.0435703539822985 Standard Deviation = 2.0881782846436736

Boundaries for 4 Equal Percentiles

[1.4563775 2.35475 3.5504 5.4011 8.875185 ]





Feature 9: RAD

The summary statistics of RAD

Mean = 7.823008849557522

Standard Deviation = 7.535144898801841

Boundaries for 4 Equal Percentiles

[ 1. 4. 5. 7. 24.]





Feature 10: TAX

The summary statistics of TAX

Mean = 377.4424778761062 Standard Deviation = 151.1600826442304

Boundaries for 4 Equal Percentiles [193. 276.75 307. 411. 666.]





**Feature 11: PTRATIO** 





Feature 12: B

The summary statistics of  $\ensuremath{\mathsf{B}}$ 

Mean = 369.8265044247781 Standard Deviation = 68.47856213335493

Boundaries for 4 Equal Percentiles
[ 88.1805 377.7175 392.08 396.1575 396.9





#### **Feature 13: LSTAT**

```
The summary statistics of LSTAT

Mean = 11.44188053097345 Standard Deviation = 6.149622785314263

Boundaries for 4 Equal Percentiles

[ 3.11 6.5875 10.25 15.105 27.139 ]
```





# **Target: MEDV**





# The Graphical Summary of the Relationships:

Scatter Plot with all features and target:



Scatter Plot with several features that are most highly correlated with the target:



#### Heat Map:



# Part 2 Linear Regression

#### **Basic Information:**

Coefficients: Slope0:2.2603541670043827 Slope1:-0.29546732487731375 Slope2:0.8573215004750421 Slope3:-0.011968223688245407 Slope4:-0.29636490820156575 Slope5:-0.8419043826314304 Slope6:-0.11565722489450571 Slope7:-0.7725143576216108 Slope8:-0.4477342881398197 Slope9:-0.8404322153553149 Slope10:-1.2910374063831622 Slope11:1.153976121469663 Slope12:-0.16097492854509315 Slope13:-0.20188695133586515 Slope14:0.03410534194317352 Slope15:0.05003594807397065 Slope16:1.7698406255457704 Slope17:-12.229505488831007 Slope18:5.42187003256788 Slope19:-0.023271376192637198 Slope20:-1.4151816451493384 Slope21:0.25444292117390516 Slope22:-0.009924684734397627

Slope23:-0.8609492991688549

Slope24:0.013616361792462266

Slope25:-0.4589604917547022

Intercept: 20.538

R^2: 0.6782810596985487

Root Mean Squared Error: 4.724496159712688

#### Residual Errors Plot:



Part 3.1 Ridge Regression

Basic Information (alpha=1):

#### Coefficients:

Slope0:2.1028140568415723 Slope1:-0.4008879923555803 Slope2:0.8015166712534275 Slope3:0.0022278178814300535 Slope4:-0.40949966730792353 Slope5:-0.8718283170681906 Slope6:-0.16866412859340024 Slope7:-0.683763268778345 Slope8:-0.40758099893026484 Slope9:-0.7843351192524964 Slope10:-1.3210754802359475 Slope11:1.0520236315792806 Slope12:-0.18324476745319004 Slope13:-0.2637469024378047 Slope14:0.03641580121322092 Slope15:0.025320199647566287 Slope16:1.6461769494504923 Slope17:-6.274457623086177 Slope18:5.455181162110687 Slope19:-0.027709323551092038 Slope20:-1.334963475362354

Slope21:0.25396717109820355

Slope22:-0.010519417824515183

Slope23:-0.788519417254506

Slope24:0.013842287644235018

Slope25:-0.4657716595121766

Intercept: 16.521

R^2: 0.6800988405173626

Root Mean Squared Error: 4.711130045751168

#### Residual Errors Plot:



The Best Alpha for Ridge Regression:

We choose alpha from 1 to 20, and make the plots of each one's R^2 & RMSE.



The best alpha has to have the smallest RMSE as well as the highest  $R^2$ , so it is alpha = 20. The  $R^2$  is 0.689, and the RMSE is 4.644.

# Part 3.2 Lasso Regression

# Basic Information (alpha=1):

#### Coefficients:

Slope0:0.0 Slope1:-0.0 Slope2:0.0 Slope3:-0.0 Slope4:-0.0 Slope5:-0.0 Slope6:0.0 Slope7:-0.0 Slope8:0.0 Slope9:-0.0

Slope11:0.0 Slope12:0.0

Slope13:0.0

Slope14:0.032150578683233184

Slope15:-0.0 Slope16:0.0 Slope17:-0.0

Slope18:2.3363860591335173 Slope19:0.007205457814205491

Slope20:-0.6788967152615303

Slope21:0.18139868170319404 Slope22:-0.011091636275928752 Slope23:-0.7257792135246338

Slope24:0.01315329509737102

Slope25:-0.720691131066822

Intercept: 30.283

R^2: 0.6697523122372079

Root Mean Squared Error: 4.786709576003073

# Residual Errors Plot:



# The Best Alpha for Lasso Regression:



The best alpha has to have the smallest RMSE as well as the highest  $R^2$ , so it is alpha = 1. The  $R^2$  is 0.670, and the RMSE is 4.787.

Part 4 Conclusions

|                         | R^2   | RMSE  |
|-------------------------|-------|-------|
| Linear Regression       | 0.678 | 4.724 |
| Ridge Regression (best) | 0.689 | 4.644 |
| Lasso Regression (best) | 0.670 | 4.787 |

According to the R^2 and RMSE from various regressions, we can know that Ridge Regression can best explain the data with the largest R^2 and the smallest RMSE compared with others. However, the Lasso Regression don't perform well as our expectation. I think we can try to find the reason from the coefficient form. Lasso Regression sets too many coefficients as 0. As a result, this model may explain the data inefficiently and present more errors.

# Part 5 Appendix

#### Link to my code:

https://github.com/fengzixue96/IE598 F19 HW4/blob/master/IE598 F19 HW4.py

#### The screenshot:

