1)
$$X_{a}(t) = 4 + 2 \cos (150\pi t + \sqrt{3}) + 4 \sin (350\pi t)$$

$$= 4 + 2 \cos (160\pi t + \sqrt{3}) + 4 \cos (350\pi t - \sqrt{2})$$

$$X[n] = 4 + 2 \cos (\frac{150}{200}\pi n + \sqrt{3}) + 4 \cos (\frac{350}{200}\pi n - \sqrt{3})$$

$$X[e^{j\omega}] = \sum_{k=\infty}^{\infty} 2\pi \delta(\omega + 2\pi k) + \sum_{k=-\infty}^{\infty} 2\pi e^{j\frac{\pi}{3}} \delta(\omega - \sqrt{3}\pi + 2\pi k) + \pi e^{j\frac{\pi}{3}} \delta(\omega + \sqrt{3}\pi + 2\pi k)$$

$$+4 \sum_{k=-\infty}^{\infty} [\pi e^{j\frac{\pi}{3}} \delta(\omega - \sqrt{3}\pi + 2\pi k) + \pi e^{j\frac{\pi}{3}} \delta(\omega + \sqrt{3}\pi + 2\pi k)]$$

Para WIZT

$$Y(e^{j\omega}) = 8\pi S(\omega) + 2\pi (e^{j\frac{\pi}{3}} (\omega - \frac{\pi}{3}\pi) + e^{-j\frac{\pi}{3}} (\omega + \frac{\pi}{3}\pi)) + 4\pi (e^{j\frac{\pi}{3}} (\omega - \frac{\pi}{3}\pi) + e^{-j\frac{\pi}{3}} (\omega + \frac{\pi}{3}\pi))$$

C) T < TT one

a)
$$T = \frac{1}{5}$$
; $5728 = 5 T \le \frac{1}{28}$; $T_{MAX} = \frac{1}{28}$
 $T = \frac{1}{2.5000} = 10^{-4}$

$$\frac{\omega}{T} = 2\pi f_c = 0.10^4 \cdot \frac{\pi}{8} \cdot \frac{1}{2\pi} = 3c$$

4) m	(2 fc-B)/m	(2 fc+B)/m +3)	Inversas
7	45kHz	27,5 KHz	5
2	22,5XHz J5 kHz	18,33 kH2 33,75 kH2	N S
4	13,25kHz	17KW5	N
5	9 khz	9,166 kHz	5

fe= 25kHz; B=5 KHz

Aporto de 5 répliers começa a horser aliasing por vas obledeen 55228.

Pelo teorenno de Porsevol:

$$Ed = \frac{1}{2\pi} \int_{V}^{T} |x(e^{iw})|^2 dw \qquad E_{\alpha} = \frac{1}{2\pi} \int_{0}^{a} |x(i\alpha)|^2 dix$$

Para o coso de bonda

limitado e respectantes o termo de Nyquist

$$E_{d} = \frac{T_{o}}{2\pi} \int_{|X(e^{j\omega})|^{2} d\omega} \qquad E_{a} = \frac{1}{2\pi} \int_{-\Omega_{o}}^{\Omega_{o}} |X(j\Omega)|^{2} dj\Omega$$

$$E_{a} = \frac{1}{2\pi} \int_{-\Omega_{a}}^{\Omega_{a}} |\chi(j\Omega)|^{2} dj\Omega$$

Rela relações:

$$X(e^{j\omega}) = X(e^{j\Omega T}) = \frac{1}{T_s} \sum_{k=-\infty}^{\infty} X(j(n-kn_s))$$

Para um periodo:

$$\times (e^{j\alpha T_j} = \frac{1}{T_s} \times (j\alpha)$$