

DEPARTMENT OF EDUCATION

DEPARTEMENT VAN ONDERWYS

LEFAPHA LA THUTO

ISEBE LEZEMFUNDO

PROVINCIAL PREPARATORY EXAMINATION/ PROVINSIALE VOORBEREIDINGSEKSAMEN

GRADE/GRAAD 12

MATHEMATICS P1/WISKUNDE V1 MARKING GUIDELINES/NASIENRIGLYNE SEPTEMBER 2021

MARKS/PUNTE: 150 TIME/TYD: 3 hours/uur

This memorandum consists of 18 pages

Hierdie memorandum bestaan uit 18 bladsye.

NOTE:

- If a candidate answered a question TWICE, mark only the FIRST attempt.
- If a candidate has crossed out an attempt to answer a question and did not redo it, mark the crossed-out version.
- Consistent accuracy applies in ALL aspects of the marking memorandum. Stop marking at the second calculation error.
- (A) is an accuracy mark.
- Assuming answers/values in order to solve a problem is NOT acceptable.

LET WEL:

- Indien 'n kandidaat 'n vraag TWEE keer beantwoord het, sien slegs die EERSTE poging na.
- As 'n kandidaat 'n poging om 'n vraag te beantwoord, doodgetrek en nie oorgedoen het nie, sien die dood getrekte poging na.
- Volgehoue akkuraatheid is op ALLE aspekte van die memorandum van toepassing. Staak nasien by die tweede berekeningsfout.
- Om antwoorde/waardesom 'n probleem op te los, te veronderstel, word NIE toegelaat NIE.

1.1.1	2 6 0	1 ,
1.1.1	$x^2 - x - 6 = 0$	√factors
	(x-3)(x+2)=0	✓✓ answers
	x = 3 or x = -2	(3)
1.1.2	x(x+6)+1=0 Penalise 1 mark for	✓Standard form
	$x^2 + 6x + 1 = 0$ remarks 1 mark for incorrect rounding	✓ substitution into
	$-6+\sqrt{(6)^2-4(1)(1)}$	formula
	$x = \frac{-6 + \sqrt{(6)^2 - 4(1)(1)}}{2(1)}$	
	x = -0.17 or $x = -5.83$	$\checkmark x = -0.17$
	0,17 0. 11 0,00	$\checkmark x = -0.17$ $\checkmark x = -5.83$
		(4)
1.1.3	$6x - 2x^2 \le 0$	✓Critical
	-2x(-3+x)=0	value(s)
	x = 0 or $x = 3$	
		✓ method
	If 'and' instead of	
	\bullet 0/ \bullet 3 'or' penalise 1	✓ answer
	mark	
		(3)
	$x \le 0$ or $x \ge 3$	(6)
1.1.4	$\left(\sqrt{\sqrt{2}-x}\right)\left(\sqrt{\sqrt{2}+x}\right) = x$	$\sqrt{\sqrt{2-x^2}}$
	$\sqrt{2-x^2} = x$	✓ squaring both
	$\left(\sqrt{2-x^2}\right)^2 = x^2$	Sides
	$(2-x^2=x^2)$	
	$\begin{vmatrix} 2x^2 - 2 = 0 \end{vmatrix}$	✓ standard form
	$\begin{vmatrix} 2x - 2 = 0 \\ x^2 - 1 = 0 \end{vmatrix}$	
		(6.4
	(x+1)(x-1) = 0	√factors
	x = -1 or $x = 1$	
	$\therefore x = 1$	✓selection
		(5)

1.2	$x - y = 3$ and $x^2 - 3y^2 = 13$	$\checkmark x = 3 + y$
	x = 3 + y	✓substitution
		✓ standard form
	$(3+y)^2 - 3y^2 = 13$	Standard 101111
	$9 + 6y + y^2 - 3y^2 - 13 = 0$	✓ factors
	$-2y^2 + 6y - 4 = 0$	✓y-values
	$y^2 - 3y + 2 = 0$	✓ <i>x</i> -values
	(y-1)(y-2)=0	v x-values
	y=1 or $y=2$	OR
	$\therefore x = 3+1 or x = 3+2$	$\checkmark y = x - 3$
	x = 4 or $x = 5$	\checkmark y = x - 3 \checkmark substitution
	OD	✓ standard form
	OR $x - y = 3$ and $x^2 - 3y^2 = 13$	✓ factors
	y = x - 3	✓ x-values
	$x^2 - 3(x-3)^2 = 13$	✓ <i>x</i> -values
	$x^2 - 3(x^2 - 6x + 9) - 13 = 0$	√y-values
	$x^2 - 3x^2 + 18x - 27 - 13 = 0$	(6)
	$-2x^2 + 18x - 40 = 0$	
	$x^2 - 9x + 20 = 0$	
	(x-4)(x-5)	
	x=4 or $x=5$	
	y = 4 - 3 or $y = 5 - 3$	
	y=1 $y=2$	
1.3	$x^2 = 7$	$\checkmark x = \sqrt{7}$
	$x = \sqrt{7}$	
	$x^5 = x^2.x^2.x$	$\checkmark x^5 = x^2.x^2.x$
	$x^5 = 7.7.\sqrt{7}$	
	$x^5 = 49\sqrt{7}$	✓ Answer
		(3)
		[24]

2.1.1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	√√Answer (2)
2.1.2	$2a = -6$ $a = -3$ $3a + b = 111$ $3(-3) + b = 111$ $b = 111 + 9$ $b = 120$ $-3 + 120 + c = 171$ $c = 171 - 117$ $c = 54$ $T_n = -3n^2 + 120n + 54$	$\sqrt{a} = -3$ $\sqrt{b} = 120$ $\sqrt{c} = 54$ \sqrt{answer} (4)
2.1.3	$T_n = -3n^2 + 120n + 54 and P_n = -60n + 2754$ $-3n^2 + 120n + 54 = -60n + 2754$ $3n^2 - 180n + 2700 = 0$ $n^2 - 60n + 900 = 0$ $(n - 30)^2 = 0$ $n = 30$	✓ equating the equations ✓ standard form ✓ factors ✓ answer (4)
2.2.1	$\frac{1}{8} + \frac{1}{16} + \frac{1}{32} \dots$ $a = \frac{1}{8} r = \frac{1}{2}$ $S_{16} = \frac{\frac{1}{8} \left(\left(\frac{1}{2} \right)^{16} - 1 \right)}{\frac{1}{2} - 1}$ $S_{16} = 0.2499 or 0.25 or 0.250 or 0.2500$	✓ value of a and r ✓ substitution ✓ answer (3)

2.2.2	$S_{\infty} - T_n = \frac{1023}{4096}$ $\frac{\frac{1}{8}}{1 - \frac{1}{2}} - \frac{1}{8} \left(\frac{1}{2}\right)^{n-1} = \frac{1023}{4096}$ $\frac{1}{4} - \frac{1}{8} \left(\frac{1}{2}\right)^{n-1} = \frac{1023}{4096}$ $-\frac{1}{8} \left(\frac{1}{2}\right)^{n-1} = \frac{1023}{4096} - \frac{1}{4}$ $\left(\frac{1}{2}\right)^{n-1} = \frac{1}{512}$ $\left(\frac{1}{2}\right)^{n-1} = \left(\frac{1}{2}\right)^9 or n-1 = \log_{\frac{1}{2}} \left(\frac{1}{512}\right)$ $n-1 = 9$ $n = 10$	✓ substitution $ \checkmark S_{\infty} = \frac{1}{4} $ $ \checkmark \left(\frac{1}{2}\right)^{n-1} = \frac{1}{512} $ $ \checkmark \left(\frac{1}{2}\right)^{n-1} = \left(\frac{1}{2}\right)^{9} \text{ or } $ $ n-1 = \log_{\frac{1}{2}} \left(\frac{1}{512}\right) $ $ \checkmark n = 10 $ (5)
		[18]

2.1		<u> </u>
3.1	$\sum_{k=0}^{\infty} 6k + 13$	√19+25+31+
	$\frac{1}{k-1}$ 19+25+31+6 <i>n</i> +13	$\checkmark a \text{ and } d$
	$a = 19 \ d = 6$	
		✓ substitution
	$S_n = \frac{n}{2} (19 + 6n + 13)$	into correct formula
	$S = {n \choose (c_{n+1}, c_{n+2})}$	Tormura
	$S_n = \frac{n}{2} (6n + 32)$	(3)
	$S_n = 3n^2 + 16n$	(3)
	OR	
	$\sum_{n=0}^{\infty} 6k + 13$	
	k=1	
	$ \begin{array}{l} 19 + 25 + 31 + \dots & 6n + 13 \\ a = 19 \ d = 6 \end{array} $	
	$S_n = \frac{n}{2}(2(19) + (n-1)6)$	
	$\begin{bmatrix} -1 \\ 0 \end{bmatrix}$	
	$S_n = \frac{n}{2} (38 + 6n - 6)$	
	$S_n = \frac{n}{2} (6n + 32)$	
	-	
	$S_n = 3n^2 + 16n$	
2.2		
3.2	$S_n = 3n^2 + 16n$	√correct
	$S_{34} - S_{33} = 3(34)^2 + 16(34) - (3(33)^2 + 16(33))$	substitution
	=4012-3795	✓answer
	= 217	(2)
3.3	T_1 ; T_2 ; T_3 ; T_4 ; 120 $T_k = 6k + 13$	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	✓ sequence of first differences.
	$T_4 = 120 - 37$	inst differences.
	$T_4 = 120 - 37$ $T_4 = 83$	$\sqrt{T-83}$
	$T_4 = 83$ $T_3 = 83 - 31$	$\checkmark T_4 = 83$ $\checkmark T_3 = 52$
		$\checkmark T_3 = 52$
	$T_3 = 52$	
		503
		[8]
L	<u>I</u>	1

8 Memorandum

4.1	$f(x) = -x^2 + 4x + 5$	✓ substitution
	$x = \frac{-4}{2(-1)}$ OR $f'(x) = -2x + 4$ x = 2 $0 = -2x + 4$	/ derivative
	$x = 2 \qquad 0 = -2x + 4$	✓ x-value
	x = 2	
	$y = -(2)^2 + 4(2) + 5$	$\checkmark y = 8$
	y = 9	
	B(2;9)	(3)
4.2	p = -2 and $q = 9$	✓ p = -2
		$\checkmark p = -2$ $\checkmark q = 9$
		(2)
4.3	The graph of f reflects over the x-axis and shifts 10 units up to form the	√√answer
	graph of $t(x) = -f(x) + 10$.	(2)
	The roots will be non-real.	(=)
	OR	
	t(x) = -f(x) + 10	

	The roots will be non-real.	
	The roots will be non-real.	
4.4	The graph shifted 2 units to the right and 6 units down	$\sqrt{m} = -2$
	$\therefore m = -2 and n = -6$	$\sqrt{n} = -6$
		(2)
4.5	y = 8x + k	√derivative
	$f(x) = -x^2 + 4x + 5$	$\checkmark 6 = -2x + 4$
	f'(x) = -2x + 4	✓x-value
	$f(x) = -x^{2} + 4x + 5$ $f'(x) = -2x + 4$ $8 = -2x + 4$	
	4 = -2x	√y-value
	x = -2	
	$y = -(-2)^2 + 4(-2) + 5$	(4)
	y = -7	
	$\therefore P(-2;-7)$	
4.6.1	$2 < x < 3 \text{ or } x \in (2;3)$	✓critical
		value(s)
		✓ notation (2)
4.6.2	$0 = -x^2 + 4x + 5$	√standard (2)
		form=0
	$0 = x^{2} - 4x - 5$ $(x-5)(x+1) = 0$	✓ Critical value(s)
	$\begin{bmatrix} (\lambda - J)(\lambda + 1) - 0 \\ 1 - 5 \end{bmatrix}$	$\sqrt{x} < -1$
	x = -1 or x = 5	$\sqrt{x} > 5$
	$\therefore x < -1 \text{ or } x > 5$	
		(4)
		[19]
L		

5.1	$f(x) = b^x$			✓substitution
	$8 = b^x$			✓ answer (2)
	$2^3 = b^3$			(2)
	b=2			
	$f(x) = 2^x$			
5.2	$y=2^x$	A		$\checkmark x = 2^y$
	$x=2^y$	Answer only full marks		$\checkmark y = \log_2 x$
	$y = \log_2 x$			(2)
5.3	x T			✓ shape ✓ asymptote ✓ point A(8;3) OR (1;0)
		<u>A(8;3)</u>	→	(3)
			x*	
5.4	$\log_2 x < 4$	Answer only		√ 16
	$x < 2^4$	full marks		√√answer
	0 < <i>x</i> < 16			(3)
5.5	$h(x) = \frac{1}{4} f(x)$ $= 2^{-2} (2^{x})$ $= 2^{x-2}$			$\checkmark 2^{x-2}$
	4°		х	✓2nits ✓right
	$=2^{-1}(2^{n})$		л	
	$=2^{\lambda-2}$			(3)
	The graph shifted 2 units to the right			

6.1.1		✓ substitution
	$F = \frac{x[(1+i)^n - 1]}{i}$	into correct
	$\frac{i}{i}$	formula
	$F = \frac{4100 \left[\left(1 + \frac{0.06}{4} \right)^{4 \times 20} - 1 \right]}{\frac{0.06}{4}}$	✓ 80 ✓ answer
	$F = \frac{4}{2}$	
	$\frac{0.06}{4}$	(3)
	$F = 626 \ 114,50$	
6.1.2	$A = 626114,50 \left(1 + \frac{0.062}{2}\right)^{2 \times 5}$	✓ substitution ✓ answer
	=849 650,68	(2)
6.2.1	$P = \frac{x \left[1 - \left(1 + i\right)^{-n}\right]}{x}$	✓substitution
	l	into correct formula
	$660\ 000 = \frac{x \left[1 - \left(1 + \frac{0.11}{12}\right)^{-180}\right]}{\frac{0.11}{}}$	Tormura
	$660000 = \frac{12}{12}$	0.11
	$\frac{0.11}{12}$	$\checkmark \frac{0.11}{12}$
	$r = \frac{660000}{12}$	✓ answer
	$x = \frac{660000 \left(\frac{0.11}{12}\right)}{1 - \left(1 + \frac{0.11}{12}\right)^{-180}}$	(2)
		(3)
	x = 7 501,54	
6.2.2	Outstanding balance after the 84 th payment	√-96
		✓substitution
	$7501,54 \left[1 - \left(1 + \frac{0.11}{12} \right)^{-96} \right]$	into correct formula
	$\frac{0.11}{12}$	√477 548,81
	12	(3)
	Outstanding Balance = 477 548,81	

Outstanding Balance = $660\ 000 \left(1 + \frac{0.11}{12}\right)^{84} - \frac{7501,54 \left(1 + \frac{0.11}{12}\right)^{84} - 1}{\frac{0.11}{12}}$ $= R477\ 548,77$	OR ✓ Substitutio n (A) ✓ answer (3)
6.2.3 $ \frac{10\ 000\left[1 - \left(1 + \frac{0.11}{12}\right)^{-n}\right]}{\frac{0.11}{12}} $ $ \frac{477\ 548.81\left(\frac{0.11}{12}\right)}{10000} - 1 = -\left(1 + \frac{0.11}{12}\right)^{-n} $ $ -0.5622469242 = -\left(1 + \frac{0.11}{12}\right)^{-n} $ $ -n = \log_{\left(1 + \frac{0.11}{12}\right)}(0.5622469242) $ $ -n = -63.10 $ $ n = 64\ payments $ $ \therefore 96 - 64 = 32\ payments\ sooner $	✓ Substitution (A) ✓ Application of logs ✓ 64 payments ✓ 32 payments sooner (4)
	[15]

QUESTION/VRAAG 7: PENALISE -1 FOR NOTATION ONLY IN 7.1

7.1	$f(x) = 4x^2 - 3$	✓
	$f(x+h) = 4(x+h)^2 - 3$	$4x^2 + 8xh + 4h^2 - 3$
	$f(x+h) = 4x^2 + 8xh + 4h^2 - 3$	✓ substitution
	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	✓simplification
	70	✓ common factor
	$= \lim_{h \to 0} \frac{4x^2 + 8xh + 4h^2 - 3 - (4x^2 - 3)}{h}$	
	n	✓ answer
	$=\lim_{h\to 0}\frac{8xh+4h^2}{h}$	
		(5)
	$=\lim_{h\to 0}\frac{h(8x+4h)}{h}$	
	$=\lim_{h\to 0}(8x+4h)$	
	=8x+4(0)	
	=8x	
7.2.1	y = (3x - 4)(5x + 2)	
	$=15x^2 + 6x - 20x - 8$	$\checkmark 15x^2 - 14x - 8$
	$=15x^2-14x-8$	$\sqrt{30}x - 14$
	$\frac{dy}{dx} = 30x - 14$	(2)
7.2.2	$\frac{d}{dx}\left(x\sqrt{x}-\frac{2}{x^2}\right)$	$\checkmark x^{\frac{3}{2}}$
		$\checkmark -2x^{-2}$
	$\frac{d}{dx}\left(x^{\frac{3}{2}}-2x^{-2}\right)$	$\frac{1}{2}$
		$\sqrt{\frac{1}{2}}x^2$
	$= \frac{3}{2}x^{\frac{1}{2}} + 4x^{-3}$ C.A only if exponent is a rational	$\sqrt{-2x^{-2}}$ $\sqrt{\frac{3}{2}x^{\frac{1}{2}}}$ $\sqrt{+4x^{-3}}$
	10 11 111111111111	(4)
		[11]
L		

0.1.1	2 - 2	
8.1.1	$x^3 - 5x^2 + 7x - 3 = 0$	\checkmark (x – 3)
	f(1) = 0	✓ A(1;0)
	$(x-1)^2(x-3) = 0$	✓ B(3;0)
	A(1;0) B(3;0)	(3)
	Does not have to be in a coordinate form. Accept $x = 1$ or $x = 3$	
8.1.2	7 Recept 30 1 07 30 5	
	$h(x) = x^3 - 5x^2 + 7x - 3$	✓ Derivative
	$h'(x) = 3x^2 - 10x + 7$	• Derivative
	$0 = 3x^2 - 10x + 7$	✓Equation
	0 = (3x-7)(x-1)	derivation to 0.
	7	
	at $C x = \frac{7}{3}$	✓x-value
	$f\left(\frac{7}{3}\right) = \left(\frac{7}{3}\right)^3 - 5\left(\frac{7}{3}\right)^2 + 7\left(\frac{7}{3}\right) - 3$	
	$(3)^{-}(3)$ (3) (3)	✓y-value
	$=\frac{-32}{27}$	
		(4)
	$C\left(\frac{7}{3};-\frac{32}{27}\right)$	
8.2.1	$x = \frac{1 + \frac{7}{3}}{2}$ 5 OP $-b$	✓substitution
	$x = \frac{1 + \frac{1}{3}}{3}$	
	2	✓x-value
	$x = \frac{5}{3}$ $x < \frac{-b}{3a}$ $x < \frac{-(-5)}{3a}$	√Answer
	5 - (-5)	(3)
	$x < \frac{5}{3}$ $x < \frac{-(-5)}{3(1)}$	
	$x < \frac{5}{3}$	
	OR	OR
	OK	
	$h(x) = x^3 - 5x^2 + 7x - 3$	✓✓Second
	$h'(x) = 3x^2 - 10x + 7$	derivative <0
	h'(x) = 6x - 10 < 0	
	6x - 10 < 0	
	$\therefore x < \frac{5}{3}$	√answer
	3	(3)
		(5)

8.2.2	h(x) > 0 for $x > 3$		
	since $h(-x)$ is a reflection over $y - axis$	√√answer	
	$\therefore x < -3$		(2)
8.3	h(x)+4=p	√√ p > 4	
	· ·	$\checkmark p = 0$	
	the turning points of $h(x)+4$ are $A(1;4)$ and $\left(\frac{7}{3};\frac{76}{27}\right)$	•	
		$\checkmark p < \frac{76}{27}$	
	$p > 4$ or $p < \frac{76}{27}$	27	(4)
	27 27		(4)
	OR		
	$ \frac{f(x) = x^{3} \cdot 5x^{2} + 7x + 1}{f(x) = x^{3} \cdot 5x^{2} + 7x \cdot 3} $		
	p = 4 $(1;4)$ $p > 4$ $(1;4)$ $p > 4$ $(1;4)$		
	<i>p</i> = 4		
	3+		
	$p = \frac{76}{27}$ $p = \frac{76}{27}$ $p > \frac{76}{27}$		
	$p = \frac{76}{27} \qquad \qquad \downarrow 2 \qquad \qquad \left(\frac{7}{3}; \frac{76}{27}\right) \qquad \qquad p > \frac{76}{27}$		
	1/		
	3 -2.5 -2 -1.5 -1 -0.5 05, 1 1 15 2 2.5 ,3 3.5 4 4.5 5 5.5 6 6.5 7 7.5		
	\int_{0}^{-2}		
	-3		
	4+		
	'		
			[12]

9.1	S.A = 2.l.w + 2l.h + 2w.h	√formula
	=2(x.5x+h.5x+x.h)	✓substitution
	$720 = 2(5x^2 + 6xh)$	✓simplification
	$360 = 5x^2 + 6xh$ $360 - 5x^2 = 6xh$	$\checkmark h = \frac{60}{x} - \frac{5}{6}x$
	$h = \frac{60}{x} - \frac{5}{6}x$	✓substitution
	$V = 5x \cdot x \left(\frac{60}{x} - \frac{5}{6}x \right)$	(5)
	$V = 300x - \frac{25}{6}x^3$ $V = 300x - \frac{25}{6}x^3$	
9.2	$V = 300x - \frac{25}{6}x^3$	√derivative
	$\frac{dV}{dx} = 300 - \frac{25}{2}x^2$	✓ equating the derivative to 0.
	$0 = 300 - \frac{25}{2}x^2$	✓x-value
	$\frac{25}{2}x^2 = 300$	✓substitution
	$x^2 = 24$	√Answer
	$x = 2\sqrt{6}$ $\therefore v = 300(2\sqrt{6}) + \frac{25}{2}(2\sqrt{6})^3 = 2939,39$	
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	(5)
		[10]

Events A and B are given such that $P(A \text{ or } B) = \frac{3}{5}$ and $P(A) = \frac{2}{5}$.

10.1.1	$P(A \ OR \ B) = P(A) + P(B)$	✓substitution
	$\frac{3}{5} = \frac{2}{5} + P(B)$	✓answer
	$P(B) = \frac{3}{5} - \frac{2}{5}$	(2)
	$P(B) = \frac{1}{5}$ $P(A \text{ or } B) = P(A) + P(B) - P(A) \cdot P(B)$	
10.1.2		√substitution
	$\frac{3}{5} = \frac{2}{5} + P(B) - \frac{2}{5}P(B)$	✓ simplification
	$\frac{1}{5} = \frac{3}{5}P(B)$	✓answer
	$P(B) = \frac{1}{3}$	(3)
10.2	$P(A \text{ or } B) = P(A) + P(B) - P(A) \cdot P(B)$	✓substitution
	0.84 = y + y - y.y	✓standard form
	$0.84 = 2y - y^2$	✓ substitution into
	$y^2 - 2y + 0.84 = 0$	formula/factors
	$y = \frac{-(-2) \pm \sqrt{(-2)^2 - 4(1)(0.84)}}{2(1)}$	✓ answers
	y = 1.4 OR $y = 0.6$	✓selection
	$\therefore y = 0.6$	(5)
		[10]

QUESTION/VRAAG 11

111		
11.1	$7 \times 7 \times 7 \times 7 = 2401 \ codes \ OR $	√7×7×7×7
		√ 2401
	NOTE: Answer only award full marks	(2)
	Also if left as $7^4 \text{ or } 7 \times 7 \times 7 \times 7$ award full marks	
11.2	Case 1: The code must start with 2 and end with 0	
	<u>2</u> 0	√ 1×5×4×1
	5 4 1 way	√1×5×4×1
	Number of codes starting with 2 and ending with 0 is	
	1×5×4×1=20	✓ 1×5×4×1
	INSKINI 20	√ 60
	Case 2: number of codes starting with 2 and ending with 4	
	2 4	
		OR
	1 way 5 4 1 way	✓✓ 1×5×4×1×3
	$1\times5\times4\times1=20$	√√60
		NOTE: Answer
	Case 3: number of codes starting with 2 and ending wil 6	only 2 marks
	$1 \times 5 \times 4 \times 1 = 20$	
	Total number of codes =20+20+20=60 codes	(4)
	OR	(4)
	$1 \times 5 \times 4 \times 1 \times 3 = 60$	
		[6]
1		

TOTAL:150