Contents

	Definitions	1
	Eigens from another perspective	1
	Finding Eigenvalues, Eigenvectors, and Eigenspace	1
	Theorem 1	1
	Theorem 2	2
	Other points of interest	2
	Additional Eignevalue Propertives	2
\mathbf{R}	eferences	2

Linear Algebra Review X

- Nate Olson
- August 25, 2016

Section 5.1 Eigenvectors and Eigenvalues

Definitions

- eigenvector nonzero vector such that $A\mathbf{x} = \lambda \mathbf{x}$ for a scalar λ .
- eigenvalue the scalar λ , for the eigenvector \mathbf{x} .
- eigenspace the subspace of \mathbb{R}^n defined by set of all solutions of $(A \lambda I)\mathbf{x} = 0$ for A and λ .

Eigens from another perspective

khanacademy eigenvalues and eigenvector video

- Eigenvector (x) is a vector scaled (λ) by a transformation, $T(\mathbf{x}) = \lambda \mathbf{x}$, where transformation T is A.
- The transformed vectors make for better basis vectors, make for simpler computations or good coordinate systems.

By Lyudmil Antonov Lantonov 16:35, 13 March 2008 (UTC) - This vector image was created with Inkscape., GFDL, https://commons.wikimedia.org/w/index.php?curid=3698599

Finding Eigenvalues, Eigenvectors, and Eigenspace

- Vector \mathbf{x} is an eigenvector of \mathbf{A} if the resulting vector is a scalar multiple of \mathbf{x} . The scalar λ is the eigenvalue.
- λ is an eigenvalue of **A** if the columns in $(A \lambda I)$ are linearly dependent, e.g. has a nontrivial solution.
- Basis of an eigenspace is $(A 2I)\mathbf{x} = \mathbf{0}$, find by row reduction of the augmented matrix.

Theorem 1

The eigenvalues of a triangular matrix are the entries on its main diagonal. Key idea is that $(A - \lambda I)\mathbf{x} = 0$, therefore at least one entry on the diagonal of $A - \lambda I$ is zero.

$$A - \lambda I = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{bmatrix} - \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{bmatrix}$$
$$= \begin{bmatrix} a_{11} - \lambda & a_{12} & a_{13} \\ 0 & a_{22} - \lambda & a_{23} \\ 0 & 0 & a_{33} - \lambda \end{bmatrix}$$

Figure 1: Lay p. 306

Theorem 2

If $\mathbf{v}_1, \dots, \mathbf{v}_r$ are eigenvectors that correspond to distince eigenvalues, $\lambda_1, \dots, \lambda_r$ of an $n \times n$ matrix A, then the set $\{\mathbf{v}_1, \dots, \mathbf{v}_r\}$ is linearly independent.

Other points of interest

• 0 is an eigenvalue of A if and only if A is not invertible.

Additional Eignevalue Propertives

from Wikipedia

• determinant is equal to the product of the eigenvalues

References

Lay - Linear Algebra and its Applications