An Introduction to Computational Macroeconomics

Dynamic Programming: Chapter 2

John Stachurski

June - July 2022

Introduction

Summary of this lecture:

- TBA
- TBA

Markov Dynamics

Our next task is to review Markov dynamics

- An essential workhorse for countless models in
 - economics
 - finance,
 - operations research, etc.
- Very general can handle most processes of interest
- Elegant theory
- Natural fit for dynamic programming (Markov decisions)

Reminders

Recall that $(\lambda,v)\in\mathbb{C} imes\mathbb{C}^n$ is an **eigenpair** of n imes n matrix A if v
eq 0 and $Av=\lambda v$

Fix eigenvalue λ and let

$$E_{\lambda} := \{ w \in \mathbb{C}^n : w = 0 \text{ or } (\lambda, w) \text{ is an eigenpair of } A \}$$

Ex. Show that E_{λ} is a linear subspace of \mathbb{C}^n

<u>Proof</u>: If $v, w \in E_{\lambda}$ and $\alpha, \beta \in \mathbb{C}$, then

$$A(\alpha w + \beta v) = \alpha Aw + \beta Av = \alpha \lambda w + \beta \lambda v = \lambda(\alpha w + \beta v)$$

Hence $\alpha w + \beta v \in E_{\lambda}$

Implication: \exists continuum of eigenvectors paired with λ So what can we say about uniqueness?

Let (λ, v) be an eigenpair for A

We say that v has (geometric) multiplicity one if $\dim E_{\lambda}=1$ In other words,

$$w \in E_{\lambda} \implies w = \alpha v \text{ for some } \alpha \in \mathbb{C}$$

In a sense, there is "just one" eigenvector corresponding to λ , since any other is a scalar multiple

Nonnegative Matrices

We call a matrix A nonnegative and write $A\geqslant 0$ if all the elements of A are nonnegative

A is called **positive**, and we write $A\gg 0$, if every element of A is strictly positive

A nonnegative square matrix A is called **irreducible** if

$$\sum_{k\in\mathbb{N}}A^k\gg 0$$

(Stronger than nonnegativity but weaker than positivity)

A nonnegative square matrix P is called **stochastic** if P1 = 1

Let A be $n \times n$

It is <u>not</u> always true that r(A) is an eigenvalue of A

Example. Let

$$A := \begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix}$$

Eigenvalues of A are $\{-1,0\}$

Hence r(A) = |-1| = 1, which is not an eigenvalue of A

However, when $A \geqslant 0$, we have the following result

Theorem. (Perron–Frobenius) If $A \geqslant 0$, then r(A) is an eigenvalue of A with nonnegative, real-valued right and left eigenvectors

In particular, there exists

- a nonnegative, nonzero <u>column</u> vector e s.t. Ae = r(A)e
- ullet a nonnegative, nonzero $\underline{\mathrm{row}}$ vector arepsilon s.t. arepsilon A = r(A)arepsilon

If A is irreducible, then these eigenvalues are everywhere positive and have multiplicity of one

If A is positive, then with e and ε such that $\langle \varepsilon, e \rangle = 1$, we have

$$r(A)^{-t}A^t \to e\,\varepsilon^{\top} \qquad (t \to \infty)$$

Bounds on the Spectral Radius

Fix $n \times n$ matrix $A = (a_{ij})$ and set

- $rs_i(A) := the i-th row sum of A and$
- $cs_j(A) := the j-th column sum of A$

Lemma. If $A \geqslant 0$, then

- 1. $\min_i \operatorname{rs}_i(A) \leqslant r(A) \leqslant \max_i \operatorname{rs}_i(A)$ and
- 2. $\min_{j} \operatorname{cs}_{j}(A) \leqslant r(A) \leqslant \max_{j} \operatorname{cs}_{j}(A)$
- **Ex.** Prove this. (Solved exercise in text)
- **Ex.** Show that P is stochastic $\implies r(P) = 1$

Existence of Stationary Distributions

Let P be a stochastic matrix

Ex. Prove: \exists a row vector $\psi \in \mathbb{R}^n_+$ such that $\psi \mathbb{1} = 1$ and $\psi P = \psi$

Proof:

By the Perron–Frobenius theorem, there exists a nonzero, nonnegative row vector φ satisfying $\varphi P=\varphi$

Since φ is nonzero, $\varphi \mathbb{1} > 0$

Setting $\varphi := \varphi/(\varphi\mathbb{1})$ gives the desired vector

The vector φ is called then **stationary distribution** of P

Existence of Stationary Distributions

Let P be a stochastic matrix

Ex. Prove: \exists a row vector $\psi \in \mathbb{R}^n_+$ such that $\psi \mathbb{1} = 1$ and $\psi P = \psi$

Proof:

By the Perron–Frobenius theorem, there exists a nonzero, nonnegative row vector φ satisfying $\varphi P = \varphi$

Since φ is nonzero, $\varphi\mathbb{1}>0$

Setting $\varphi := \varphi/(\varphi\mathbb{1})$ gives the desired vector

The vector φ is called then **stationary distribution** of P

Uniqueness of Stationary Distributions

Ex. Prove: If P is also **irreducible**, then the stationary vector ψ is everwhere positive and unique

Proof of Positivity: See Perron-Frobenius theorem

Proof of Uniqueness: Let $\varphi\geqslant 0$ satisfy $\varphi\mathbb{1}=1$ and $\varphi P=\varphi$

By the Perron–Frobenius theorem, $\varphi=\alpha\psi$ for some $\alpha>0$

But then $\phi \mathbb{1} = \alpha \psi \mathbb{1} = 1$ and $\psi \mathbb{1} = 1$

Hence $\alpha = 1$

Hence $\varphi = \psi$

Uniqueness of Stationary Distributions

Ex. Prove: If P is also **irreducible**, then the stationary vector ψ is everwhere positive and unique

Proof of Positivity: See Perron-Frobenius theorem

Proof of Uniqueness: Let $arphi\geqslant 0$ satisfy $arphi\mathbb{1}=1$ and arphi P=arphi

By the Perron–Frobenius theorem, $\varphi=\alpha\psi$ for some $\alpha>0$

But then $\phi \mathbb{1} = \alpha \psi \mathbb{1} = 1$ and $\psi \mathbb{1} = 1$

Hence $\alpha = 1$

Hence $\varphi = \psi$

Uniqueness of Stationary Distributions

Ex. Prove: If P is also **irreducible**, then the stationary vector ψ is everwhere positive and unique

Proof of Positivity: See Perron-Frobenius theorem

Proof of Uniqueness: Let $\varphi\geqslant 0$ satisfy $\varphi\mathbb{1}=1$ and $\varphi P=\varphi$

By the Perron–Frobenius theorem, $\phi=\alpha\psi$ for some $\alpha>0$

But then $\phi \mathbb{1} = \alpha \psi \mathbb{1} = 1$ and $\psi \mathbb{1} = 1$

Hence $\alpha = 1$

Hence $\varphi = \psi$

```
julia> P = [0.2 \ 0.8;
           0.1 0.9]
2×2 Matrix{Float64}:
   0.2 0.8
   0.1 0.9
julia> using QuantEcon
julia> mc = MarkovChain(P)
   Discrete Markov Chain
    stochastic matrix of type Matrix{Float64}:
    [0.2 0.8; 0.1 0.9]
julia> is irreducible(mc)
true
julia> stationary distributions(mc)
   1-element Vector{Vector{Float64}}:
    [0.111111111111111, 0.8888888888888888888]
```

A Local Spectral Radius Theorem

Lemma. Let $\|\cdot\|$ be any norm on \mathbb{R}^n

If A is $n \times n$, $A \geqslant 0$ and $h \gg 0$, then

$$||A^k h||^{1/k} \to r(A) \qquad (k \to \infty)$$

Interpretation: eventually, for any positive h, the norm of the vector A^kh grows at rate r(A)

Remarks

- Similar to Gelfand's formula
- but uses a vector norm rather than a matrix norm

Lake Model of Employment

An illustration of the Perron-Frobenius theorem

We analyze a model of employment and unemployment flows in a large population

The model is sometimes called a "lake model"

Two pools of workers:

- those who are currently employed and
- those who are currently unemployed but still seeking work

FP theorem helps us analyze dynamics

The flows between states are as follows:

- workers exit the labor market at rate d
- new workers enter the labor market at rate b
- ullet employed workers **separate** from their jobs and become unemployed at rate lpha
- unemployed workers **find jobs** at rate λ

We assume that all of these parameters lie in (0,1)

New workers are initially unemployed

Let

- $u_t :=$ number of unemployed workers at time t
- $e_t :=$ number of employed workers
- $n_t := e_t + u_t :=$ total population of workers

Dynamics are

$$u_{t+1} = (1-d)\alpha e_t + (1-d)(1-\lambda)u_t + bn_t$$

and

$$e_{t+1} = (1-d)(1-\alpha)e_t + (1-d)\lambda u_t$$

Can we say more about the dynamics of this system?

For example,

- what long run unemployment rate should we expect?
- do outcomes depend on the initial conditions u_0 and e_0 ?
- Or are there general statements we can make?

Let's organize the linear system for (e_t) and (u_t) by setting

$$x_t := \begin{pmatrix} u_t \\ e_t \end{pmatrix}$$

and

$$A := \begin{pmatrix} (1-d)(1-\lambda) + b & (1-d)\alpha + b \\ (1-d)\lambda & (1-d)(1-\alpha) \end{pmatrix}$$

With these definitions, we can write the dynamics as

$$x_{t+1} = Ax_t$$

As a result, $x_t = A^t x_0$, where $x_0 = (u_0 e_0)^{\top}$

Ex. With g := b - d, show that

$$n_{t+1} = (1+g)n_t$$
 for all t

Ex. Prove that r(A) = 1 + g

PF theorem $\implies 1+g$ is an eigenvalue of A!

Ex. Show that $\mathbb{1}^{\top} := (1 \ 1)$ is a left eigenvector of 1 + g

Ex. Prove that the unique vector \bar{x} satisfying

$$A\bar{x} = r(A)\bar{x} \text{ and } \mathbb{1}^{\top}\bar{x}$$

is given by

$$\bar{x} := \begin{pmatrix} \bar{u} \\ \bar{e} \end{pmatrix}$$

with

$$\bar{u} := \frac{1 + g - (1 - d)(1 - \alpha)}{1 + g - (1 - d)(1 - \alpha) + (1 - d)\lambda}$$

and $\bar{e} := 1 - \bar{u}$

Let

$$D := \{ x \in \mathbb{R}^2 : x = \alpha \bar{x} \text{ for some } \alpha > 0 \}$$

Shown as a dashed black line in the last figure

The two time paths are of the form $(x_t)_{t\geqslant 0}=(A^tx_0)_{t\geqslant 0}$

In both cases, the paths converge to ${\cal D}$ over time

Suggests all paths are "eventually almost" multiples of \bar{x}

How can we explain this strong regularity?

From the Perron–Frobenius theorem, since $A \gg 0$, we have

$$A^t pprox r(A)^t \cdot \bar{x} \mathbb{1}^\top = (1+g)^t \begin{pmatrix} \bar{u} & \bar{u} \\ \bar{e} & \bar{e} \end{pmatrix}$$
 for large t

As a result, for any initial condition $x_0 = (u_0 \ e_0)^{\top}$, we have

$$A^{t}x_{0} \approx (1+g)^{t} \begin{pmatrix} \bar{u} & \bar{u} \\ \bar{e} & \bar{e} \end{pmatrix} \begin{pmatrix} u_{0} \\ e_{0} \end{pmatrix}$$
$$= (1+g)^{t} (u_{0} + e_{0}) \begin{pmatrix} \bar{u} \\ \bar{e} \end{pmatrix} = n_{t}\bar{x},$$

where $n_t = (1+g)^t n_0$ and $n_0 = u_0 + e_0$

Regardless of x_0 , state scales along \bar{x} at rate of population growth

We can give an additional interpretation to \bar{u} and \bar{e}

Since n_t = size of the workforce,

unemployment rate =
$$u_t/n_t$$

As just shown, for large t, we have $u_t \approx n_t \bar{u}$

Hence

unemployment rate
$$\approx (n_t \bar{u})/n_t = \bar{u}$$

Hence \bar{u} is the long term rate of unemployment

Similarly, \bar{e} is the long run employment rate

Extensions

Further analysis: think about how α , λ , b and d are determined

For the hiring rate λ , we could use the job search model

In particular, with w^* as the reservation wage, we could set

$$\lambda = \mathbb{P}\{w_t \geqslant w^*\} = \sum_{w \in W} \varphi(\mathbb{1}\{w \geqslant w^*\})$$

Doing so would allow us to study the crucial rate λ in terms of fundamental primitives, such as

- unemployment compensation
- impatience of individual agents, etc.