MAT4MDS — Practice 2

Functions

Topics 2 and 3 covered:

- representing functions in formulae (rules) and graphs
- using transformations to produce new graphs from known graphs
- composition of functions
- inverse functions.

An important function that is used to model data is the cumulative distribution function of the Pareto distribution:

$$F:[a,\infty)\to\mathbb{R}$$
 $F(x)=1-\left(\frac{a}{x}\right)^b$

Here b is called the shape parameter and b > 0. As well as being the minimum input value, a > 0 is called the scale parameter. Questions 1–4 all relate to this function.

Question 1.

- (a) What is F(a)?
- (b) As x gets very large, what will happen to the graph of F? (Answer from the rule.)

Question 2. We are now going to construct the graph of F.

- (a) First sketch the graph of x^{-b} , for $x \ge 1$. How would this be different if b were increased?
- (b) Now sketch the graph of $\left(\frac{x}{a}\right)^{-b}$ for $x \ge a$. How would this be different if a were increased?
- (c) Reflect your graph in the *x*-axis to obtain the graph of $-\left(\frac{x}{a}\right)^{-b}$.
- (d) What is the final step needed to complete the graph of F(x)? (Identify it and then perform it.)

Check that your graph fulfils the two behaviours found in Question 1.

Question 3. The function F (from above) can be written as a function composition in more than one way.

- (a) Let $f(x) = \frac{a}{x}$. Identify a function g such that g(f(x)) = F(x).
- (b) Let $h(x) = x^b$. Identify a function k such that k(h(x)) = F(x).

Question 4.

- (a) Consider your final graph for F in Question 2. How do you know that F^{-1} will exist? What input values will it take (i.e. its domain)? What output values will it give (i.e. its range)?
- (b) By reflecting in the line y = x, sketch the graph of F^{-1} .
- Following the model in Example 2.4.3 in the reading on inverse functions, write $y = F^{-1}(x)$ and use the fact that $F(F^{-1}(x)) = x$ to find the rule for F^{-1} .

Question 5. The Pareto distribution is an example of a heavy-tailed distribution. (Extreme events have a higher probability than in the exponential distribution.) Another such distribution is the Cauchy distribution, the probability density function of which behaves like:

$$f: \mathbb{R} \to \mathbb{R} \ f(x) = \frac{1}{1+x^2}.$$

- (a) Identify two functions h and k, such that f(x) can be written as the composition h(k(x)).
- (b) Sketch the graph of k, where $k(x) = 1 + x^2$. Use this to help you sketch the graph of f.
- (c) Does f(x) have an inverse? What about the following related function?

$$g:(-\infty,0]\to\mathbb{R}\ g(x)=\frac{1}{1+x^2}.$$

(d) Find the inverse function g^{-1} using the method in Question 4(c). Also sketch the graph of g^{-1} .

Question 6. Consider this restriction of the Gaussian curve:

$$f:[0,\infty)\to\mathbb{R}$$
 $f(x)=e^{-x^2}$.

Find an expression for the rule of f^{-1} .

