Shrinkage and partial pooling

Mixed Models 3

Daniela Palleschi

2024 - 01 - 12

Table of contents

Se	t-up		2						
	Loa	d packages	2						
	Loa	d data	2						
	0.1	Set contrasts							
	0.2	Run models	3						
1	Poo	ling	4						
	1.1	No pooling	5						
	1.2	Complete pooling							
	1.3	Complete vs. no pooling	6						
	1.4	Partial pooling: mixed models	6						
2	Shrinkage								
	2.1	Shrinkage	8						
	2.2	Centre of gravity							
3	Wh	y shrinkage?	8						
In	port	ant terms	9						

Learning Objectives

Today we will learn...

- about no/complete/partial pooling
- about shrinkage

Resources

- this lecture covers
 - Blog post "Plotting partial pooling in mixed-effects models" from Tristin Mahr (2017)
 - Section 15.9 'Shrinkage and Individual Differences' in Winter (2019)
 - Box 8.2 'Broader Context: Shrinkage and Partial Pooling' in Sonderegger (2023)
- we will be using the data from Biondo et al. (2022)

Set-up

```
# suppress scientific notation
options(scipen=999)
```

Load packages

Load data

• data from Biondo et al. (2022)

```
droplevels() |>
filter(adv_type == "Deic")
```

0.1 Set contrasts

```
contrasts(df_biondo$verb_t) <- c(-0.5, +0.5)
  contrasts(df_biondo$gramm) <- c(-0.5,+0.5)
  contrasts(df_biondo$adv_type) <- c(-0.5,+0.5)
  contrasts(df_biondo$verb_t)
       [,1]
       -0.5
Past
Future 0.5
  contrasts(df_biondo$gramm)
        [,1]
        -0.5
gramm
ungramm 0.5
  contrasts(df_biondo$adv_type)
         [,1]
         -0.5
Deic
Non-deic 0.5
```

0.2 Run models

 \bullet random-intercepts only

```
subset = roi == 4)
```

• by-item varying tense slopes

```
fit_fp_item <-
  lmerTest::lmer(log(fp) ~ verb_t*gramm +
         (1 | sj) +
         (1 + verb_t|item),
       data = df_biondo,
       subset = roi == 4)
```

1 Pooling

- do the random effects represent the exact average of participants?
 - below we see the mean logged first-pass reading time per participant (mean) and the by-participant intercepts from fit_fp_1 and fit_fp_item
- to understand what's happening, we first have to understand pooling

```
sum_shrinkage <- df_biondo |>
    filter(roi == 4) |>
    summarise(mean = mean(log(fp), na.rm = T),
              .by = "sj") |>
    mutate(population_mean = mean(mean, na.rm = T)) |>
    left_join(coef(fit_fp_1)$sj["(Intercept)"] |> rownames_to_column(var = "sj")) |>
    rename(intercept_1 = `(Intercept)`) |>
    left_join(coef(fit_fp_item)$sj["(Intercept)"] |> rownames_to_column(var = "sj")) |>
    rename(intercept_item = `(Intercept)`)
  sum_shrinkage |>
    head()
# A tibble: 6 x 5
        mean population_mean intercept_1 intercept_item
```

```
<chr> <dbl>
                         <dbl>
                                      <dbl>
1 1
         6.42
                                       6.40
                                                        6.40
                          5.96
2.2
         5.79
                          5.96
                                       5.79
                                                       5.80
3 07
         5.87
                          5.96
                                       5.87
                                                       5.87
4 09
         5.78
                          5.96
                                       5.78
                                                       5.78
5 10
         6.67
                          5.96
                                       6.62
                                                        6.62
```

6 11 5.91 5.96 5.91 5.92

1.1 No pooling

- no pooling refers to separate regression lines fit e.g., per participant
 - each regression line is fit ignoring the population-level information
 - the intercepts are the true mean from each participant

```
head(df_no_pooling)
```

```
model sj intercept
                             verb_t1
                                          gramm1 verb_t1:gramm1
1 No pooling 1
                 6.422811 0.16094962
                                     0.07844247
                                                     0.12950513
2 No pooling 2
                 5.792669 0.10115512 -0.10571656
                                                    -0.23199316
3 No pooling 07
                 5.870556 0.15344172 -0.25264603
                                                    -0.29866189
4 No pooling 09
                 5.780839 0.16938275 0.14074977
                                                    -0.07324559
5 No pooling 10
                 6.664530 0.04786447 -0.13824470
                                                     0.21824110
6 No pooling 11
                 5.912309 0.07573670 -0.06469794
                                                     0.35318406
```

```
sum_shrinkage |> head(6)
```

A tibble: 6 x 5

	sj	mean	<pre>population_mean</pre>	intercept_1	<pre>intercept_item</pre>
	<chr>></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	1	6.42	5.96	6.40	6.40
2	2	5.79	5.96	5.79	5.80
3	07	5.87	5.96	5.87	5.87
4	09	5.78	5.96	5.78	5.78
5	10	6.67	5.96	6.62	6.62
6	11	5.91	5.96	5.91	5.92

1.2 Complete pooling

- complete pooling refers to ignoring grouping factors
 - i.e., fixed-effects only models (e.g., with lm() or glm())
 - one regression line fit ignoring the individual-level information
 - the intercepts are the same as the population-level mean

head(df_pooled)

```
# A tibble: 6 x 6
 model
                         intercept verb_t1 gramm1 `verb_t1:gramm1`
                   sj
  <chr>
                   <fct>
                             <dbl>
                                     <dbl>
                                             <dbl>
                                                               <dbl>
                              5.96
1 Complete pooling 1
                                    0.0612 0.00310
                                                             -0.0152
2 Complete pooling 2
                              5.96 0.0612 0.00310
                                                             -0.0152
3 Complete pooling 07
                              5.96 0.0612 0.00310
                                                             -0.0152
4 Complete pooling 09
                              5.96 0.0612 0.00310
                                                             -0.0152
5 Complete pooling 10
                              5.96 0.0612 0.00310
                                                             -0.0152
6 Complete pooling 11
                              5.96 0.0612 0.00310
                                                             -0.0152
```

```
sum_shrinkage |> head(6)
```

A tibble: 6 x 5

	sj	mean	population_mean	intercept_1	<pre>intercept_item</pre>
	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	. 1	6.42	5.96	6.40	6.40
2	2 2	5.79	5.96	5.79	5.80
3	3 07	5.87	5.96	5.87	5.87
4	l 09	5.78	5.96	5.78	5.78
Ę	5 10	6.67	5.96	6.62	6.62
6	3 11	5.91	5.96	5.91	5.92

1.3 Complete vs. no pooling

- complete pooling (green solid line) and no pooling (orange dotted line) of grammaticality effects for 10 participants
 - describe what you see in terms of intercept and slopes across the participants

1.4 Partial pooling: mixed models

2 Shrinkage

- turns out the estimates are pulled towards the population-level estimates
 - all the information in the model is taken into account when fitting varying intercepts and slopes

Figure 1: Observations (black dots) with complete pooling regression line (solid green) and no pooling line (dotted orange) per 10 participants

Figure 2: Elaine Benes learns about shrinkage of random effect estimates towards the population-level estimates

2.1 Shrinkage

Figure 3: Shrinkage of 10 participants

2.2 Centre of gravity

- why are some points not being pulled directly to the 'centre of gravity'?
 - they're being pulled to a higher confidence region

3 Why shrinkage?

- with partial pooling, each random effect is liek a weighted average
 - it takes into account the effect for one group level (e.g., one participant) and the population-level estiamtes
 - the empirical effect for a group level is weighted by the number of observations
 - so if one participant has fewer observations than another, then more weight is given to the population-level estimates, and vice versa
- the implications (benefits) of this:

Figure 4: Shrinkage for all participants: each ellipsis represents a confidence level (really, a quantile: q1, q3, q5, q7, and q9); The inner ellipsis contains the centre 10% of the data, the outer ellipsis 90%

- imbalanced data are not a problem for linear mixed models
- the model can make predictions for unseen levels, i.e., it can generalise to new data

Learning objectives

Today we learned...

- what linear mixed models are
- how to fit a random-intercepts model
- how to inspect and interpret a mixed effects model

Important terms

Term	Definition	Equation/Code
linear mixed (effects) model	NA	NA

References

Biondo, N., Soilemezidi, M., & Mancini, S. (2022). Yesterday is history, tomorrow is a mystery: An eye-tracking investigation of the processing of past and future time reference during sentence reading. *Journal of Experimental Psychology: Learning, Memory, and Cognition*, 48(7), 1001–1018. https://doi.org/10.1037/xlm0001053

Sonderegger, M. (2023). Regression Modeling for Linguistic Data.

Winter, B. (2019). Statistics for Linguists: An Introduction Using R. In Statistics for Linguists: An Introduction Using R. Routledge. https://doi.org/10.4324/9781315165547