WHAT IS CLAIMED IS:

1	1.	A sent-assembly method for depositing hallost deture-containing materials, the	
2	method comprising:		
3		forming a nanostructure-containing material;	
4		chemically functionalizing the nanostructure-containing material;	
5		dispersing the functionalized nanostructure-containing material in a liquid	
6	medium to fe	orm a suspension;	
7		bringing at least a portion of a substrate having a surface that can attract the	
8	functionalize	ed nanostructure-containing material into contact with the suspension; and	
9		separating the substrate from the suspension, wherein the nanostructure-	
10	containing m	naterial adheres to the portion of the substrate when separated from the suspension.	
1	2.	The method of claim 1, comprising:	
2		forming hydrophilic and hydrophobic regions on the surface of the substrate	
3	before bring	ing the substrate into contact with the suspension, wherein the functionalized	
4	nanostructure-containing material is hydrophilic and adheres to the hydrophilic region of the		
5	substrate when separated from the suspension.		
1	3.	The method of claim 2, wherein forming hydrophilic and hydrophobic regions	
2	comprises:		
3		forming on a surface of the substrate a self-assembled monolayer of organosilanes	
4	having a hyd	rophobic end-group termination; and	
5		exposing a portion of the self-assembled monolayer to ultraviolet (UV) light in an	
6	oxygen envii	conment; wherein the exposed portion of the self-assembled monolayer forms the	
7	hydrophilic r	region of the substrate and the remaining portion of the self-assembled monolayer	
8	forms the hy	drophobic region of the substrate.	
1	4.	The method of claim 2, wherein forming hydrophilic and hydrophobic regions	
2	comprises:		
3		depositing hydrophobic photoresist on the surface of the substrate;	
4		exposing a portion of the photoresist to ultraviolet (UV) light; and	
5		removing a portion of the photoresist to expose the hydrophilic region of the	
6	substrate, wh	nerein the remaining photoresist forms the hydrophobic region of the substrate.	

1	5.	The method of claim 4, comprising:	
2		applying a solvent to the substrate to remove the hydrophobic photoresist after	
3	separating th	e substrate from the suspension, wherein the nanostructure-containing material	
4	remains adhered to the substrate after applying the solvent.		
1	6.	The method of claim 5, comprising:	
2		annealing the substrate prior to removing the hydrophobic photoresist.	
1	7.	The method of claim 2, wherein when the substrate comprises glass, the method	
2	comprises:		
3	•	functionalizing a portion of the surface of the glass substrate corresponding to the	
4	hydrophilic region of the substrate with organosilanes having an anime end-group termination		
1	8.	The method of claim 1, comprising:	
2		annealing the substrate after separation from the suspension.	
1	9.	The method of claim 1, comprising:	
2		removing excess nanostructure-containing material from the substrate after	
3	separation from	om the suspension.	
1	10.	The method of claim 1, comprising:	
2		cleaning the substrate prior to bringing the portion into contact with the	
3	suspension.		
1	11.	The method of claim 10, wherein when the substrate comprises glass, cleaning the	
2	substrate comprises at least one of:		
3		placing the substrate into a sonication bath with a solvent;	
4		subjecting the substrate to a mixture of sulfuric acid and hydrogen peroxide; and	
5		exposing the substrate to ultraviolet (UV) light in an oxygen environment.	
1	12.	The method of claim 1, wherein bringing the substrate into contact with the	
2	suspension co	omprises:	
3		immersing the substrate in the nanostructure-containing suspension.	

1	13.	The method of claim 12, wherein separating the substrate from the suspension			
2	comprises at least one of:				
3		withdrawing the immersed substrate from the suspension; and			
4		evaporating the suspension while the substrate is immersed.			
1	14.	The method of claim 1, wherein bringing the substrate into contact with the			
2	suspension comprises:				
3		arranging the suspension on a portion of the surface of the substrate; and			
4		moving the suspension across the surface of the substrate, wherein the			
5	nanostructure-containing material dispersed in the suspension adheres to the surface that can				
6	attract the functionalized material.				
1	15.	The method of claim 1, wherein bringing the substrate into contact with the			
2	suspension comprises at least one of spin-coating and spraying the nanostructure-containing				
3	suspension onto the substrate.				
1	16.	The method of claim 1, wherein the liquid medium comprises water to form an			
2	aqueous nanostructure-containing suspension.				
1	17.	The method of claim 1, wherein a concentration of material included in the			
2	suspension is between about .0001 to 1 gram of nanostructure-containing material per liter of				
3	liquid medium.				
1	18.	The method of claim 1, wherein the nanostructure-containing material comprises			
2	at least one of single-walled carbon nanotubes, multi-walled carbon nanotubes, silicon, silicon				
3	oxide, germanium, germanium oxide, carbon nitrides, boron, boron nitride, dichalcogenide,				
4	silver, gold, iron, titanium oxide, gallium oxide, indium phosphide, and magnetic particles				
5	including at least one Fe, Co, and Ni enclosed within nanostructures.				
1	19.	The method of claim 1, wherein chemically functionalizing the nanostructure-			
2	containing material comprises:				
3		partially oxidizing the panostructure-containing material by reaction with an acid			

1	20.	The method of claim 1, wherein the substrate comprises at least one of silicon,
2	glass, indiun	n-tin-oxide (ITO) coated glass, a metal, metal-coated glass, a plastic, and a ceramic.
1	21.	The method of claim 1, wherein the nanostructure-containing material adhered to
2	the substrate	is substantially aligned in one direction.
1	22.	A method of fabricating a patterned carbon nanotube field emission cathode by
2	self-assembly, the method comprising:	
3		forming a material comprising carbon nanotubes;
4		chemically functionalizing the carbon nanotubes;
5		dispersing the material comprising the functionalized carbon nanotubes in a liquid
6	medium to fo	orm a suspension;
7		forming hydrophilic and hydrophobic regions on a surface of a substrate that can
8	attract the functionalized carbon-nanotubes;	
9		bringing at least a portion of the substrate into contact with the suspension; and
10		separating the substrate from the suspension, wherein the carbon nanotubes
11	adhere to the hydrophilic region of the substrate when separated from the suspension.	
1	23.	The method of claim 22, comprising:
2		annealing the substrate after separation from the suspension; and
3		removing excess carbon nanotubes from the substrate after separation from the
4	suspension.	
1	24.	The method of claim 22, wherein chemically functionalizing the carbon
2	nanotubes comprises:	
3		partially oxidizing the carbon nanotubes by reaction with an acid.
1	25.	A field emission cathode produced in accordance with the method of claim 1.
1	26	A field emission cathode produced in accordance with the method of claim 22

1	27.	An apparatus for depositing nanostructure-containing materials on a substrate, the	
2	apparatus comprising:		
3		means for forming a nanostructure-containing material;	
4		means for chemically functionalizing the nanostructure-containing material;	
5		means for dispersing the functionalized nanostructure-containing material in a	
6	liquid medium to form a suspension;		
7		means for bringing at least a portion of the substrate having a surface that can	
8	attract the functionalized nanostructure-containing material into contact with the suspension; and		
9		means for separating the substrate from the suspension, wherein the	
10	nanostructure-containing material adheres to the portion of the substrate when separated from the		
11	suspension.		
1	28.	The apparatus of claim 27, comprising:	
2		means for forming hydrophilic and hydrophobic regions on the surface of the	
3	substrate before bringing the substrate into contact with the suspension, wherein the		
4	functionalized nanostructure-containing material is hydrophilic and adheres to the hydrophilic		
5	region of the substrate when separated from the suspension.		