Toolbox Manual

Copyright Notice

Copyright © 2023, Sichen Yuan. All Rights Reserved. Rights to use, copy, modify, and distribute this software and its documentation for educational, research, not-for-profit and for-profit purposes, both with and without either a fee or a signed licensing agreement are hereby restricted unless permitted by the copyright owners.

Introduction

This toolbox is designed for design, form finding and dynamic modeling of large deployable pin-jointed (DPJ), structures, which implements the first part, determination of initial configuration, of the stochastic fixed nodal position method (SFNPM) proposed in Refs. [1-3], and the Cartesian Spatial Discretization (CSD) method in Ref. [4,5] The surface accuracy of the generated mesh geometry of large DPJ structures is evaluated by the methods given in Refs. [6,7]. A user guide is provided in the manual, containing the detail information of functions in the toolbox. The toolbox used large deployable mesh reflectors which is a typical large DPJ structures as an example for illustration of the SFNPM. *But this toolbox can be easily generalized to apply to form finding of other types of DPJ structures*.

System Requirements for the MATLAB Toolbox

- PC with Win XP or Mac with OS 9.x and up
- The software MATLAB (version 2010 and up) on the computer.

Software Installation and Test

- 1. Drag the toolbox folder onto a hard disk of the computer;
- 2. Launch MATLAB and set a working path to the Toolbox folder; and
- 3. Test the toolbox by typing Demo_offsetpara.m in the MATLAB command window, which will launch a demo program showing how the toolbox works. The demo ends with a message: "The toolbox works properly."

Optimal Design Procedure for the Toolbox

The Demo_offsetpara.m follows the design procedure in Figure 1 and it shows how to use this toolbox. Another demo, a mesh geometry design for center parabolic shape is in Demo_centerpara.m file.

Figure 1 The complete design procedure.

Function Guide

1. MATLAB Function initialsetup

Purpose:

To set up the requirements for design of reflector surface geometry

Synopsis:

```
error_rms = initialsetup(F_required, D_required, e_required,
freq_op_required, flag_effect, flag_shape,rms_budget)
```

Inputs:

F_required required (parent) focal length.

D required (parent) diameter length.

e required required offset distance.

freq op required required operating frequency.

flag_effect 0: whole surface is effective; 1: effective region are part of the

surface.

flag shape 1: spherical; 2: center parabolic; 3: offset parabolic.

rms budget required surface accuracy budget.

Outputs:

error_rms allowable surface RMS error.

Note:

The toolbox is programmed based on the standard ISO units. The data in other units must be transferred into ISO system before it is input into the function.

2. MATLAB Function

designattempt

Purpose:

To attempt a design implementing the design core twice.

Synopsis:

```
[n_r, n_c, zeta_final, wb_final, MemberL_prop, M_indx, Node_design,
Node_design_global, B_C, Indx_node_load, L_t, L_t_nobc, F, D, e_p] =
designattempt(tao_r, n_s, tao_c, rou, c_b, flag_wb, w_b)
```

Inputs:

tao r the design parameter τ_r for number of rings.

 n_s the design parameter n_s for number of subdivisions.

tao c the design parameter τ_c for index of the first converging ring.

rou the design parameter ρ for the converging speed.

c_b the design parameter c_B for the boundary type.

flag_wb 0: the whole surface is effective and w_B is not needed; 1: effective surface is part of the working surface and w_B is needed.

 w_b the design parameter w_B for the boundary thickness.

Outputs:

n_r number of rings.

n_c index of the first converging ring.

zeta final final value of design parameter ς in the design attempt.

wb_final final value of design parameter w_B in the design attempt.

MemberL prop vector of member lengths.

M indx index matrix of member connectivity.

Node design designed nodal coordinates (locally for the offset parabolic case).

Node design global designed global coordinates for offset parabolic case.

B C the boundary conditions of designed reflector surface.

$$BC_Spec = \begin{bmatrix} node_no & support_type \\ \vdots & \vdots \end{bmatrix}$$

where *node_no* is the node number of the support and the surface boundary of reflector is fixed or

$$support_type = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}$$

Indx node load index vector of nodes except the boundary nodes.

 $_{\text{L}}$ t total length of members $l_{\scriptscriptstyle total}$.

L t nobc total length of members within the effective region.

focal length of the whole surface.

D diameter of the whole surface.

e p offset distance of the whole surface.

Note:

Please see Figure 1 for the completed design procedure and the role of the function within the procedure.

3. MATLAB Function

actual rms evalu

Purpose:

To measure the exact best-fit surface RMS error.

Synopsis:

```
[error_rms, deta_bestfit, F_bestfit] = actual_rms_evalu(n_r, n_s,
w b, Node inuse, M indx, center lengthmem)
```

Inputs:

n r number of rings.

 n_s the design parameter n_s for number of subdivisions.

w_b the design parameter w_B for the boundary thickness.

Node_inuse nodal coordinate matrix (global nodal coordinates for offset parabolic case).

M indx index matrix of member connectivity.

center lengthmem the length of the first member in MemberL prop.

Outputs:

error_rms exact best-fit surface RMS error $\delta_{ms,bf}$. deta_bestfit δ in the exact formulation of best-fit surface RMS error. F_bestfit focal length of the whole best-fit surface.

4. MATLAB Function

bestfitcompe

Purpose:

To compensate the deviation between best-fit surface and the surface where the vertices of mesh facets are located.

Synopsis:

```
[D_bestfit, D_mod, F_mod, D_ca_bestfit, e_off_bestfit, D_p_bestfit,
F_p_mod, D_p_mod, e_off_mod] =
bestfitcompe(deta bestfit,F bestfit,F surface,D surface,e surface)
```

Inputs:

deta_bestfit δ in the exact formulation of best-fit surface RMS error.

F bestfit focal length of the whole best-fit surface.

F_surface focal length of the whole surface where the vertices of mesh facets are located.

D_surface diameter of the whole surface where the vertices of mesh facets are located.

e_surface of the whole surface where the vertices of mesh facets are located.

Outputs:

D_bestfit diameter of the whole best-fit surface in spherical or

center parabolic case.

D mod diameter of the modified desired surface in spherical or

center parabolic case.

F_mod focal length of the modified desired surface in spherical

or center parabolic case.

D_ca_bestfit circular diameter of the whole best-fit surface in offset

parabolic case.

e off bestfit offset distance of the whole best-fit surface in offset

parabolic case.

D p bestfit parent diameter of the whole best-fit surface in offset

parabolic case.

F p mod parent focal length of the modified desired surface in offset

parabolic case.

D_p_mod parent diameter of the modified desired surface in offset

parabolic case.

e off mod offset distance of the modified desired surface in offset

parabolic case.

5. MATLAB Function

updatesetup

Purpose:

To update the modified desired surface as the new desired working surface.

Synopsis:

```
updatesetup(F update, D update, e update)
```

Inputs:

- F_update modified (parent) focal length of whole surface.
- D update modified (parent) diameter length of whole surface.
- e update modified offset distance of whole surface.

MATLAB Function

AutoMesh

Purpose:

The design core of the toolbox for spherical and center parabolic cases.

Synopsis:

```
[MemberL_prop, M_indx, Node_design, B_C, Indx_node_load, L_t,
L t nobc, F, D] = AutoMesh(n r, n s, n c, rou, c b, ratio zeta, w b)
```

Inputs:

- n r the design parameter n_r as number of rings.
- n_s the design parameter n_s as number of subdivisions.
- n c the design parameter n_c as index of the first converging ring.
- rou the design parameter ρ as the converging speed.
- c_b the design parameter c_B as the boundary type.
- ratio zeta the design parameter ς for the layer thicknesses.
- w b the design parameter w_B as the boundary thickness.

Outputs:

MemberL prop vector of member lengths.

M indx index matrix of member connectivity.

Node design designed nodal coordinates (locally for the offset parabolic case).

B C the boundary conditions of designed reflector surface.

Indx node load index vector of nodes except the boundary nodes.

 $_{\perp}$ t total length of members l_{total} .

L t nobe total length of members within the effective region.

- F focal length of the whole surface.
- D diameter of the whole surface.

7. MATLAB Function

AutoMesh_offset

Purpose:

The design core of the toolbox for offset parabolic case.

Synopsis:

```
[MemberL_prop,M_indx, Node_design,Node_design_global, B_C,
Indx_node_load, L_t, L_t_nobc, F_p, D_p, e_p] = AutoMesh_offset(n_r,
n s, n c, rou, c b, ratio zeta, w b)
```

Inputs:

- n r the design parameter n_r as number of rings.
- n_s the design parameter n_s as number of subdivisions.
- n c the design parameter n_c as index of the first converging ring.
- rou the design parameter ρ as the converging speed.
- c b the design parameter c_R as the boundary type.

ratio_zeta the design parameter ς for the layer thicknesses.

w b the design parameter w_B as the boundary thickness.

Outputs:

MemberL prop vector of member lengths.

M indx index matrix of member connectivity.

Node design designed nodal coordinates (locally for the offset parabolic case).

Node design global designed global coordinates for offset parabolic case.

B_C the boundary conditions of designed reflector surface.

Indx node load index vector of nodes except the boundary nodes.

 $_{\perp}$ t total length of members $l_{\scriptscriptstyle total}$.

L t nobc total length of members within the effective region.

F p parent focal length of the whole surface.

D p parent diameter of the whole surface.

e p offset distance of the whole surface.

8. MATLAB Function

setup_struc_parameter

Purpose:

To setup the reflector structure for plotting purpose.

Synopsis:

```
setup struc parameter(M indx, Node design, B C)
```

Inputs:

M indx index matrix of member connectivity.

Node design designed nodal coordinates (locally for the offset parabolic case).

B_C the boundary conditions of designed reflector surface.

9. MATLAB Function

plot desired

Purpose:

To plot the desired the surface geometry of deployable mesh reflectors in local coordinates.

Synopsis:

plot_desired(display_node_no)

Description:

This function plots the mesh geometry of desired working surface of reflectors with the following options, in which a ball-and-socket joint is expressed by a star (*),

```
display\_node\_no = 0 do not show the member and node numbers display\_node\_no = 1 show the node numbers display\_node\_no = 2 show the member numbers display\_node\_no = 3 show the member and node numbers
```

Solution Example

Here a large deployable mesh reflector example is presented to show how to use this toolbox.

MATLAB codes:

```
Copyright (c) 2023 by Sichen Yuan
   Created: 2022/08/01
   $Revision: 2.0 $ $Date: 2023/06/30 $
clear
clc
% Setup the desired shape and required operating frequency
F required = 8;
D required = 30;
e required = 5;
freq op required = 3*1e+9;
flag effect = 1;
flag shape = 3;
rms budget = 50;
% Initial problem setup
error rms = initialsetup(F required, D required, e required,
freq op required, flag effect, flag shape, rms budget);
% Preselection of design parameters
n s = 6;
c b = 5;% must be 0 when flag effect = 0
tao r = 1.1;
tao c = 0.1;
rou = 2.5;
```

```
% Design attempt
flag wb = 1;
[n r, n c, ratio zeta, w b, MemberL prop, M indx,
Node design, Node design global, B C, Indx node load, L t, L t nobc,
F p, D p, e p] = designattempt(tao r, n s, tao c, rou, c b, flag wb,
[]);
% RMS error evaluation
[error rms bestfit, deta bestfit, F bestfit] = actual rms evalu(n r,
n s, w b, Node design global, M indx, MemberL prop(1));
% Best-fit compensation
[temp1, temp3, temp3, D ca bestfit, e off bestfit, D p bestfit,
F p mod, D p mod, e off mod] =
bestfitcompe(deta bestfit,F bestfit,F p,D p,e p);
updatesetup(F p mod, D p mod, e off mod);
% Achieve the final design
[MemberL prop, M indx, Node design, Node design global, B C,
Indx node load, L t, L t nobc, F p mod, D p mod, e p mod] =
AutoMesh offset(n r, n s, n c, rou, c b, ratio zeta, w b);
% Measure the actual surface RMS error
[error rms mod, deta bestfit mod, F bestfit mod] =
actual rms evalu(n r, n s, w b, Node design global,
M indx, MemberL prop(1));
% Evaluate the shape of best-fit surface
[temp1, temp3, temp3, D ca bestfit mod, e off bestfit mod,
D p bestfit mod] =
bestfitcompe(deta bestfit mod,F bestfit mod,F p mod,D p mod,e p mod);
% Setup the reflector structure for plotting
setup struc parameter(M indx, Node design, B C);
% Plot the desired profile
figure
plot desired(0)
axis equal
view([0 0 1])
% The end of the toolbox demo
disp 'The toolbox works properly.'
```

MATLAB results:

Figure 2 Generated mesh geometry of the deployable mesh reflector

References

- [1] Shi, H., Yuan, S. and Yang, B., 2018. New methodology of surface mesh geometry design for deployable mesh reflectors. *Journal of Spacecraft and Rockets*, 55(2), pp.266-281.
- [2] Yuan, S. and Yang, B., 2019. The fixed nodal position method for form finding of high-precision lightweight truss structures. *International journal of Solids and Structures*, 161, pp.82-95.
- [3] Yuan, S. and Zhu, W., 2021. Optimal self-stress determination of tensegrity structures. *Engineering Structures*, 238, p.112003.
- [4] Yuan, S. and Zhu, W., 2023. A Cartesian spatial discretization method for nonlinear dynamic modeling and vibration analysis of tensegrity structures. *International Journal of Solids and Structures*, 270, p.112179.
- [5] Yuan, S. and Zhu, W., 2022, October. A New Approach to Nonlinear Dynamic Modeling and Vibration Analysis of Tensegrity Structures. In ASME International

Mechanical Engineering Congress and Exposition (Vol. 86670, p. V005T07A104). American Society of Mechanical Engineers.

- [6] Yuan, S., Yang, B. and Fang, H., 2020. Direct root-mean-square error for surface accuracy evaluation of large deployable mesh reflectors. *In AIAA SciTech 2020 Forum* (p. 0935).
- [7] Yuan, S., 2022. Review of Root-Mean-Square Error Calculation Methods for Large Deployable Mesh Reflectors. *International Journal of Aerospace Engineering*.