Algebra Lee 19. Primitive element theorem, Finite fields.

Thm. 4.6 Primitive element theorem.

E. finite ext/R

∃ d∈E st E=kd) ← ∃ only finite numbers of F.

RefcE.

Pf. if |k| < ~ E: finite ext/k = 1E| < ~

 $\exists \alpha$. $\exists t \in k(x) = E$ generator of (E - 709)

i may assume k. is infinite field.

Assume \exists only finite numbers of intermedicate field \vdash Let α . $\beta \in \Xi$, consider $k(\alpha + c\beta)$. $C \in R$ $\Rightarrow k(\alpha + c\beta) = k(\alpha + c\beta)$. for some C_1 . $C_2 \in R$. $C_4 \neq C_L$ $\Rightarrow (G_1 - G_1)\beta \in k(\alpha + c\beta)$

BE k(x+c,b)

If
$$k(x, p) = k(x + c_1 p)$$

If $k(x, p) = k(x + c_1 p)$ for some ever k .

Now write $E = k(x), \dots, \infty$ = $k(x_1, x_1) (x_2, \dots, x_n)$

= $k(x_1 + c_1 x_2, \dots, x_n)$

= $k(x_1 + c_1 x_1, \dots, x_n)$

= $k(x_1 + c_1 x_1,$

$$g_{F(x)}$$
 irred in $F(x)$, odso irred in $F_{o}(x)$
. (deg of α over F) = (deg of α over F_{o})
: $F = F_{o}$

i.e. the int field F is uniquely determined by gray

$$Pf. \quad E = k(\alpha, \beta). \quad \alpha, \beta \quad \text{sep / k} \quad (\text{alg/k})$$

let
$$P(x) = \prod_{j \neq j} (\sigma_j \alpha + \chi \sigma_j \beta - \sigma_j \alpha - x \sigma_j \beta)$$

D(x): Not a zero poly nomial

if zero
$$\Rightarrow$$
 $\int \mathcal{D} x = \mathcal{D}_{0}^{2} x$

: acek. st. pla+0

 $n \leq \lceil k(\alpha + c\beta) \cdot k \rceil_s \leq \lceil k(\alpha, \beta) \cdot k \rceil = \lceil k(\alpha, \beta) \cdot k \rceil = n$ for kears) \Box

Finite fields.

Construct:
$$Z \xrightarrow{\mathcal{Y}} F$$

$$1 \longleftrightarrow 1$$

$$1+1 \longleftrightarrow 1+1$$

$$k_1 k_2 \longrightarrow (1+\cdots+1)(1+\cdots+1) = 0$$

$$k_1 \text{ times}$$

anse "+" to generate

· Consider multiplicative group

$$(F^{x} = F - 204, x)$$
. $|F^{x}| = 9 - 1$

$$\forall x \in F$$
. $x = 0$

$$f(x) = x^{2} - x \text{ has } 9 \text{ distinut roots in } T$$

$$= \pi(x-d)$$

The splitting field of
$$f(x) = x^2 - x \in \mathbb{F}_p[x]$$

The splitting field of $f(x) = x^2 - x \in \mathbb{F}_p[x]$

Conversely

Given The = Z/pz Tp : alg closure of Fp Consider the splitting field of Xph-x ETFIXI in The claim. the splitting field = { roots of x 2-x in Tto }

Pf. ? roots form a field)

X. B: roots of X-x=0

 $(\alpha+\beta)^{\frac{q}{2}}-(\alpha+\beta)=\alpha^{\frac{q}{2}}+\beta^{\frac{q}{2}}-\alpha-\beta=0$

 $f(x) = x^{p'} - x$

 $Df(x) = p_X^{n-1} - 1 = -1 \neq 0$.

-) are roots are distinct.

Thm 5.1 For each prime P N7.1

 $\exists a \text{ finite field of order } p^n$ $\text{Uniquely determined as a subfield of } \mathbb{F}_p^a \text{ (denote as } \mathbb{F}_p^a\text{)}$ $\text{It's the Splitting field of } \chi^2 - \chi \in \mathbb{F}_p(\chi) \text{ in } \mathbb{F}_p^a$ Splitting field = roots'

=> Every finite field is isomorphism to one Fig = Fig in Fig

Cor 5.2 Fg. finite field.

In a given For, I one and only one ext of For of degree n

and the ext is They

$$\begin{array}{ccc}
\text{Of find 1} \\
\text{Pf.} & Q = P^{m} \\
\end{array}$$

 $F_{2} \subseteq F_{2}^{n} = F_{pm} = \begin{cases} Splitting field of \\ X^{2}-X \end{cases} \subseteq F_{2}^{q}$ $\forall x \in F_{2} \quad x^{2} = x$

$$a' = (a^{9})^{9^{m_{1}}} = a^{9^{h-1}} = a^{9} = a$$

2. Unique ness

any ext of deg n over Fq has deg mn over Fp.

= 1t's Fpm (te. Fgh)

Rmk (Thm 5.3)

Frobenice mapping char(Fq)=p

In general char (F)=P (F) not finite.

Y: F > F field hom

x - x? & injective.

Thm 5.4 The group of automorphism $F_q \xrightarrow{r} F_q$ is cyclic of order n generated by Frobenice φ

$$\oint G = \langle Y \rangle \qquad Y^n : F_q \to F_q \\
\times \to \dots = \times \quad \text{ad}$$

Let d be order of $\varphi^d = id$

$$y^{d}(x) = x^{p^{d}} = x$$
 $\forall x \in \mathbb{F}_{q}$
i.e. each $x \in \mathbb{F}_{q}$ is a root of $x^{p^{d}} = x = 0$. \Rightarrow $d \in \mathbb{F}_{q}$.

②
$$\forall$$
 automorphism σ : $fixes$ $\mathbb{F}_p = (1)$

for σ : $\mathbb{F}_q \xrightarrow{\sim} \mathbb{F}_q$ $\sigma(1) = 1$

HW

Lay clop V (2n17

Thm 5.5