Universidade Federal da Bahia Departamento de Matemática

Matemática Discreta II Prof. Ciro Russo Segunda unidade – 3 de abril de 2017

Atenção: é preciso justificar todas as respostas.

- 1. Usando os critérios de divisibilidade, encontre a decomposição, no produto de potências de primos, do número 3773.
- **2.** Considere o conjunto ordenado $(D_{60}, |)$.
 - (a) Desenhe o diagrama de Hasse dele.
 - (b) Encontre os elementos minimais e maximais de $D_{60} \setminus \{1, 60\}$.
 - (c) Determine se D_{60} é ou não uma álgebra de Boole. Caso não seja, apresente pelo menos um elemento não complementado.
 - (d) Se possível, encontre um elemento de D_{60} que tenha mais de um complemento. Se não, explique porque um tal elemento não existe.
- 3. Considere a álgebra de Boole $\mathbf{D_{110}} = (D_{110}, \text{mmc}, \text{mdc}, \frac{110}{\cdot}, 1, 110)$. Encontre, explicando como, um conjunto X tal que a álgebra de Boole $\mathbf{2^X} = (\wp(X), \cup, \cap, {}^c, \varnothing, X)$ seja isomorfa a $\mathbf{D_{110}}$ e apresente um isomorfismo entre as duas.
- **4.** Desenhe o diagrama de Hasse do produto lexicográfico $X \times_{\text{lex}} Y$, onde $X = (\{0,1\}, \leq)$ e $Y = (\wp(\{a,b\}), \subseteq)$.
- 5. (Optativa) Demonstre que, em qualquer álgebra de Boole B, vale:

$$\forall x (x < \neg x \iff x = \bot).$$

1. Os algarismos de lugar par de 3773 são os mesmos que aqueles de lugar impar, então a diferença entre as somas deles dá 0, que é múltiplo de 11. Portanto 3773 é múltiplo de 11: $3773 = 11 \cdot 343$.

343 tem o algarismo das unidades que é impar e não é 5, então não é múltiplo de 2, nem de 5. Igualmente, não é múltiplo de 3, pois 3+4+3=10 e 10 não é múltiplo de 3.

343 é múltiplo de 7, pois $34 - 2 \cdot 3 = 28 = 4 \cdot 7$. Dividindo 343 por 7, obtemos $343 = 49 \cdot 7$ e, como $49 = 7^2$, segue: $3773 = 7^3 \cdot 11$.

2. (a) O diagrama de Hasse de D_{60} é o seguinte

- (b) Os elementos minimais de $D_{60} \setminus \{1,60\}$ são 2, 3 e 5 e os maximais 12, 20 e 30.
- (c) Sabemos que D_n é uma álgebra de Boole se, e só se, n se, a decomposição de n, em produto de potências de primos dois a dois distintos, tem todos os expoentes iguais a 1. Neste caso, $60 = 2^2 \cdot 3 \cdot 5$, então D_{60} não é uma álgebra de Boole.

Um elemento não complementado é, por exemplo, 2. De fato, o único $x \in D_{60}$ tal que $x \lor 2 = 60$ é o próprio 60, mas $2 \land 60 = 2 \neq 1$.

- (d) D_{60} , apesar de não ser uma álgebra de Boole, é um reticulado distributivo e limitado. Em um reticulado distributivo e limitado, se um elemento tiver complementar, esse complementar é único. Portanto D_{60} não tem elementos com mais de um complementar.
- 3. $D_{110} = \{1, 2, 5, 11, 10, 22, 55, 110\}$, então $|D_{110}| = 2^3$. Pelo Teorema de Representação de Stone (caso finito), $\mathbf{D_{110}}$ é isomorfa à álgebra de Boole das partes de um conjunto de três elementos. Seja $X = \{a, b, c\}$; $\mathbf{D_{110}} \cong \mathbf{2^X}$.

Uma função entre as duas álgebras é um isomorfismo se, e somente se, ela associa 1 a \emptyset , 110 a X, átomos a átomos, e o complementar de cada átomo ao complementar da imagem do mesmo átomo. Por exemplo, a função a seguir é um isomorfismo:

$$f: D_{110} \rightarrow \wp(X)$$

$$1 \mapsto \varnothing$$

$$2 \mapsto \{a\}$$

$$5 \mapsto \{c\}$$

$$11 \mapsto \{b\}$$

$$10 \mapsto \{a, c\}$$

$$22 \mapsto \{a, b\}$$

$$55 \mapsto \{b, c\}$$

$$110 \mapsto X$$

4. Os diagramas de Hasse de X e Y, respectivamente,

Então o diagrama de Hasse de $X\times_{\operatorname{lex}}Y$ é o seguinte:

5. Sabemos que, em todo reticulado, vale, por definição:

$$\forall x \forall y (x \le y \iff x \lor y = y).$$

Por outro lado, nas álgebras de Boole, vale:

$$\forall x (x \vee \neg x = \top).$$

Portanto, em qualquer álgebra de Boole Be para todo $x \in B,$ vale a seguinte cadeia de equivalencias:

$$x \leq \neg x \iff x \vee \neg x = \neg x \iff \top = \neg x \iff \bot = x.$$