

信息与软件工程学院

数据结构与算法

至讲教师,陈安龙

第5章 数组和广义表

- ▶ 5.1 数组的定义
- > 5.2 矩阵的一般存储
- > 5.3 三角矩阵的压缩存储
- > 5.4 带状矩阵的压缩存储
- > 5.5 稀疏矩阵的压缩存储
- ▶ 5.6 广义表(自学)

6.1 数组

6.1.1 数组的基本概念

从逻辑结构上看,一维数组A是n (n>1) 个相同类型数据元素 a_1 、 a_2 、…、 a_n 构成的有限序列,其逻辑表示为:

$$A = (a_1, a_2, ..., a_n)$$

其中, a_i (1 $\leq i \leq n$) 表示数组A的第i个元素。

一个m行n列的二维数组A可以看作是每个数据元素都是相同类型的一维数组的一维数组。

$$A = \begin{bmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \\ a_{2,1} & a_{2,2} & \dots & a_{2,n} \\ \dots & & & & \\ a_{m,1} & a_{m,2} & \dots & a_{m,n} \end{bmatrix} \longrightarrow A = \begin{bmatrix} A_1, & A_2, & \dots, & A_m \end{bmatrix}$$

$$A_1 = \begin{bmatrix} a_{1,1}, & a_{1,2}, & \dots, & a_{1,n} \end{bmatrix}$$

$$A_2 = \begin{bmatrix} a_{1,1}, & a_{2,2}, & \dots, & a_{2,n} \end{bmatrix}$$

$$\dots$$

$$A_m = \begin{bmatrix} a_{m,1}, & a_{m,2}, & \dots, & a_{m,n} \end{bmatrix}$$

由此看出,多维数组是线性表的推广。

数组的抽象数据类型定义:

数据对象: $D=\{a_{j_1j_2...j_n}|n>0$,称为数组的维数, j_i 是数组的第i维下标, $1\leq j_i\leq b_i$, b_i 为数组第i维的长度, $a_{j_1j_2...j_n}\in ElementSet\}$

数据关系: $R=\{R_1,R_2,...,R_n\}$

$$R_{i} = \{ \langle \mathbf{a}_{j_{1} \dots j_{i} \dots j_{n}}, \mathbf{a}_{j_{1} \dots j_{i+1} \dots j_{n}} \rangle \mid 1 \leq j_{k} \leq b_{k}, 1 \leq k \leq n \leq k \neq i, 1 \leq j_{i} \leq b_{i} - 1, \mathbf{a}_{j_{1} \dots j_{i} \dots j_{n}}, \mathbf{a}_{j_{1} \dots j_{i+1} \dots j_{n}} \in \mathbf{D}, i = 1, \dots, n \}$$

基本操作:

- (1) InitArray(A,n,bound₁,...,bound_n): 若维数n和各维的长度合法,则构造相应的数组A,并返回TRUE;
 - (2) DestroyArray(A): 销毁数组A;
- (3) GetValue (A,e, index₁, ...,index_n): 若下标合法,用e返回数组A中由index₁, ...,index_n所指定的元素的值。
- (4) Set Value (A,e,index1, ...,index_n): 若下标合法,则将数组A中由index₁, ...,index_n所指定的元素的值置为e。

注意: 这里定义的数组下标是从1开始,与C语言的数组略有不同。

6.1.2 数组的存储结构

将数组的所有元素存储在一块地址连续的内存单元中,这是一种顺序存储结构。

几乎所有的计算机语言都支持数组类型,以C/C++语言为例,其中数组数据类型具有以下性质:

- ✓ 数组中的数据元素数目固定。
- ✓ 数组中的所有数据元素具有相同的数据类型。
- ✓ 数组中的每个数据元素都有一组唯一的下标。
- ✓ 数组是一种随机存储结构。可随机存取数组中的任意数据元素。

一维数组:一旦 a_1 的存储地址 $LOC(a_1)$ 确定,并假设每个数据元素占用k个存储单元,则任一数据元素 a_i 的存储地址 $LOC(a_i)$ 就可由以下公式求出:

一维数组具有随机存储特性:可以在O(1)时间内找到序号为i的元素值。

$m行n列的二维数组A_{m\times n}$, 存储方式:

 $A = \begin{bmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \\ a_{2,1} & a_{2,2} & \dots & a_{2,n} \\ & \dots & & & \\ a_{m,1} & a_{m,2} & \dots & a_{m,n} \end{bmatrix}$

- ① 以行序为主序的存储
- ② 以列序为主序的存储

● 以行序为主序的存储方式

2 以列序为主序的存储方式

同理可推出在以列序为主序的计算机系统中有):

$$LOC(a_{i,j}) = LOC(a_{1,1}) + [(j-1) \times m + (i-1)] \times k$$

二维数组采用顺序存储结构时,也具有随机存取特性。

是指给定序号*i*(下标),可以在O(1)的时间内找到相应的元素值。

多维数组采用顺序存储时具有随机存储特性。

int a[5][4][6] 三维数组的行优先存储

$m_1 = 5, m_2 = 4, m_3 = 6$

$a[i_1][i_2][i_3]$

页向量 下标 ii 行向量 下标 ii 列向量 下标 ii

a[3][2][2]的存储地址:

LOC (3, 2, 2) =
$$a_{111}$$
 + (2*4*6+1*6+1)* l

四维数组的行优先存储

- ① 各维元素个数为 m_1, m_2, m_3, m_4
- ② 如果第1个元素为a_{1,1,1,1}
- ③ 下标为 i₁, i₂, i₃, i₄ 的数组元素的存储地址:

$$LOC(i_1, i_2, i_3, i_4) = Loc(a_{1,1,1,1}) + ((i_1-1)*m_2*m_3*m_4 + (i_2-1)*m_3*m_4+(i_3-1)*m_4$$
 如果第1个元素为: a_{c_1,c_2,c_3,c_4} + (i_4-1)) * l

LOC
$$(i_1, i_2, i_3, i_4) = \text{Loc}(a_{c_1,c_2,c_3,c_4}) + ((i_1-c_1)*(m_2-c_2+1)*(m_3-c_3+1)*(m_4-c_4+1) + (i_2-c_2)**(m_3-c_3+1)*(m_4-c_4+1) + (i_3-c_3)*(m_4-c_4) + (i_4-c_4))*l$$

n维数组的行优先存储

- ▶ 各维元素个数为 m₁, m₂, m₃, ..., m_n
- \rightarrow 如果第1个元素为 $a_{1,1,...,1}$
- 下标为 $i_1, i_2, i_3, ..., i_n$ 的数组元素的存储地址:

LOC
$$(i_1, i_2, ..., i_n) = \text{Loc}(a_{1...1}) + ((i_1-1)*m_2*m_3*...*m_n + (i_2-1)*m_3*m_4*...*m_n + ... + (i_{n-1}-1)*m_n + (i_n-1))*l$$

$$= Loc(a_{1,...,1}) + \left(\sum_{j=2}^{n-1} \left((i_j-1)*\prod_{k=j+1}^n m_k\right) + (i_n-1)\right)*l$$

n维数组的行优先存储

- \triangleright 各维元素个数为 $m_1, m_2, m_3, ..., m_n$
- \rightarrow 如果第1个元素为 $a_{c1,c2...,cn}$
- \triangleright 下标为 $i_1, i_2, i_3, ..., i_n$ 的数组元素的存储地址:

$$= Loc(a_{c_1, \dots, c_n}) + \left(\sum_{j=2}^{n-1} \left((i_j - c_j) * \prod_{k=j+1}^n (m_k - c_k + 1) \right) + (i_n - c_n) \right) * l$$

例1【软考题】:一个二维数组A,行下标的范围是1到6,列下标的范围是0到7,每个数组元素用相邻的6个字节存储,存储器按字节编址。那么,这个数组的体积是 288 个字节。

答: Volume=
$$m*n*L=(6-1+1)*(7-0+1)*6=48*6=288$$

例2: 已知二维数组Amm按行存储的元素地址公式是:

$$Loc(a_{ij}) = Loc(a_{11}) + [(i-1)*m + (j-1)]*L$$

按列存储的公式是?

 $Loc(a_{ij})=Loc(a_{11})+[(j-1)*m+(i-1)]*L$ (尽管是方阵,但公式仍不同)

例3: 【00年计算机系考研题】设数组a[1...60,1...70]的基地址为2048,每个元素占2个存储单元,若以列序为主序顺序存储,则元素a[32,58]的存储地址为_8950_。

答:请注意审题!利用列优先通式:

$$LOC(a_{ij})=LOC(a_{1,1})+[(j-1)*m+(i-1)]*L$$

得: $LOC(a_{32,58})=2048+[(58-1)*60+32-1)]*2=8950$

6.1.3 特殊矩阵的压缩存储

特殊矩阵的主要形式有:

- (1) 对称矩阵
- (2) 上三角矩阵 / 下三角矩阵
- (3) 对角矩阵

它们都是方阵,即行数和列数相同。

1 对称矩阵的压缩存储

若一个n阶方阵A[n][n]中的元素满足 $a_{i,j}=a_{j,i}$ ($1 \le i, j \le n$),则称其为n阶对称矩阵。

2020年3月31日 数据结构与算法课程组 20

以行序为主序存储其下三角+主对角线的元素。

对于对称矩阵A,采用一维数组B存储,并提供A的所有运算。

 $B = (a_{1,1}, a_{1,2}, \dots, a_{1,n}, a_{2,2}, \dots, a_{2,n}, \dots, a_{i-1,i-1}, \dots, a_{i-1,n}, a_{i,i}, \dots, a_{i,j-1}, a_{i,j}, \dots)$

● 上三角矩阵:

$$B = (a_{1,1}, a_{1,2}, ..., a_{1,n}, a_{2,2}, ..., a_{2,n}, ..., a_{i-1,i-1}, ..., a_{i-1,n}, a_{i,i}, ..., a_{i,j-1}, a_{i,j}, ...$$

$$n \land 元素 \qquad n-1 \land 元素 \qquad n-i+1 \land 元素 \qquad j-i \land 元素$$

共计(*i*-1)*(2*n*-*i*+1)/2+*j*-*i*个元素

【例(补充)】若将n阶上三角矩阵A按列优先顺序压缩存放在一维数组

B[1..n(n+1)/2]中,A中第一个非零元素 $a_{1.1}$ 存于B数组的 b_1 中,则应存放到 b_k 中的非 零元素 $a_{i,i}$ ($i \leq j$) 的下标i、 $j \leq k$ 的对应关系是_

A.
$$i(i+1)/2+j$$

$$C. j(j+1)/2+i$$

B.
$$i(i-1)/2+j$$

D.
$$j(j-1)/2+i$$

 $1 \sim j - 1$ 列的元素个数: j(j-1)/2

第j列 a_{ii} 之前的元素个数: i-1

k=j(j-1)/2+i-1+1=j(j-1)/2+i分加上自己海身的位置

- 按行还是按列
- 初始下标从0还是从1开始

3

带状矩阵(对角矩阵)的压缩存储

半带宽为b的对角矩阵

带状矩阵, 以三对角矩阵为例

特点:

对角矩阵 压缩存储

 $A \longleftrightarrow B$ $a[i][j] \longleftrightarrow b[k]$

当b=1时称为三对角矩阵

$$\begin{bmatrix} a_{1,1} & a_{1,2} & 0 & \dots & 0 \\ a_{2,1} & a_{2,2} & a_{2,3} & 0 & \dots & 0 \\ 0 & a_{3,2} & a_{3,3} & a_{3,4} & 0 & \dots & 0 \\ \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & \dots & a_{n-1,n-2} & a_{n-1,n-1} & a_{n-1,n} \\ a_{n,n-1} & a_{n,n} & a_{n,n} \end{bmatrix}$$

其以行为主序的压缩后k计算公式如: k = 2(i-1)+j

三对角带状矩阵的压缩存储,以行序为主序进行存储,并且只存储非零元素。其方法为:

1. 确定存储该矩阵所需的一维向量空间的大小

从三对角带状矩阵中可看出:除第一行和最后一行只有两个元素外,其余各行均有 3个非零元素。由此可得到一维向量所需的空间大小为:3n-2。

2. 确定非零元素在一维数组空间中的位置

 $LOC[i,j] = LOC[1,1] + (3 \times (i-1)-1+j-i+1)*size = LOC[1,1] + (2(i-1)+j-1)*size$

2018年4月12日 **数据结构与算法课程组** 31

思考题:

特殊矩阵为什么采用压缩存储,需要解决什么问题?

5.2 稀疏矩阵

稀疏矩阵的定义

一个阶数较大的矩阵中的非零元素个数s相对于矩阵元素的总个数t十分小时,即s<<t时,称该矩阵为稀疏矩阵。

例如一个100×100的矩阵,若其中只有100个非零元素,就可称其为稀疏矩阵。

定性的描述

稀疏矩阵和特殊矩阵的不同点:

- ▶ 特殊矩阵的特殊元素(值相同元素、常量元素)分布有规律。
- 稀疏矩阵的特殊元素(非0元素)分布没有规律。

2020年3月31日 **数据结构与算法课程组** 34

5.2.1 稀疏矩阵的三元组表示

稀疏矩阵的压缩存储方法是只存储非零元素。

稀疏矩阵中的每一个非零元素需由一个三元组:

$$(i, j, a_{i,j})$$

唯一确定,稀疏矩阵中的所有非零元素构成三元组线性表。

稀疏矩阵三元组表示的演示

一个6×7阶稀疏矩阵A的三元组线性表表示

把稀疏矩阵的三元组线性表按顺序存储结构存储,则称为稀疏矩阵的三元组顺序表。

```
#define MaxSize 100 //矩阵中非零元素最多个数
                                              存
                                              放
typedef struct
                   //行号
   int row;
                   //列号
   int col;
                                              非
                   //元素值
   ElemType e;
                                              元素
                   //三元组定义
  Triple;
typedef struct
                                              存
                                              放
                   //行数值
   int m;
                   //列数值
   int n;
                   //非零元素个数
   int len;
                                              稀
                                              疏
   Triple data[MaxSize+1];
                                              矩
  TSMatrix; //三元组顺序表定义
                                              阵
```

(1) 从一个二维矩阵创建其三元组表示

以行序方式扫描二维矩阵A,将其非零的元素插入到三元组t的后面。

 a_{ii} $A_{6\times7} = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 & 0 & 0 \\ 3 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 5 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 6 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 7 & 4 \end{bmatrix}$ 4

约定: data域中表示的非零元素通常以行序为主序顺序排列,它是一种下标按行有序的存储结构。

这种有序存储结构可简化大多数矩阵运算算法。

```
void CreatMat(TSMatrix *t,ElemType A[M][N])
    int i,j; t->m=M; t->n=N; t.len=0;
   for (i=1;i<=M;i++)
                                                   按行序方式扫描
                                                      所有元素
       for (j=1;j<=N;j++)
        if (A[i][j]!=0)
            t->data[t.len].r=i;
            t->data[t.len].c=j;
                                                 只存储非零元素
            t->data[t.len].d=A[i][j];
            t->len++;
```

(2) 三元组元素赋值: A[i][j]=x

分为两种情况:①将一个非0元素修改为另一个非0值,如A[6][7]=8。

i	j	a_{ij}	i	j	a_{ij}
1	3	1	1	3	1
2	2	2	2	2	2
3	1	3	3	1	3
4	4	5	4	4	5
5	5	6	5	5	6
6	6	7	6	6	7
6	7	4 -	6	7	> 8

②将一个0元素修改为非0值。如A[4][6]=8

i	j	a_{ij}
1	3	1
2	2	2
3	1	3
4	4	5
5	5	6
6	6	7
6	7	4

算法如下:

在t中按行、列号查找

```
if (t->data[k].row==i && t->data[k].col==j) //存在这样的元素
     t->data[k].e=x;
             <u>//不存在文样的元麦时插 λ 一个元麦</u>
else
     for (k1=t->len+1;k1>=k;k1--)
        t->data[k1].row=t->data[k1].row;
                                                               增加元素
        t->data[k1].col=t->data[k1].col;
        t->data[k1].e=t->data[k1].e;
     t->data[k].row=i;t->data[k].col=j;t->data[k].e=x;
     t->len++;
                            //成功时返回true
return true;
```

2020年3月31日

(3) 将指定位置的元素值赋给变量 执行x=A[i][j]

先在三元组t中找到指定的位置,再将该处的元素值赋给x。

```
bool Assign(TSMatrix t, ElemType &x, int i, int j)
   int k=1;
  if (i>=t.m || j>=t.n)
                                     //失败时返回false
        return false;
   while (k<=t.len && i<t.data[k].row) k++; //查找行
                                                         在t中按行、
   while (k<=t.len && i==t.data[k].row
                                                         列号查找
                                     //查找列
      && j<t.data[k].col) k++;
  if (t.data[k].row==i && t.data[k].col==j)
                                                          找到了非
                                                          0的元素
       x=t.data[k].e;
   else
                                                        没有找到:
       x=0;
                                                        为0元素
                      //成功时返回true
  return true;
```

(4) 输出三元组

从头到尾扫描三元组t,依次输出元素值。

(5) 矩阵转置

对于一个 $m \times n$ 的矩阵 $A_{m \times n}$,其转置矩阵是一个 $n \times m$ 的矩阵 $B_{n \times m}$,满足 $b_{i,i} = a_{i,i}$,其中 $1 \le i \le m$, $0 \le j \le n$ 。

$$A_{6\times 7} = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 & 0 & 0 \\ 3 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 5 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 6 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 7 & 4 \end{bmatrix}$$

	0	2	0	0	0	0
-	1	0	0	0	0	0
$B_{7\times 6}=$	0	0	0	5	0	0
	0 1 0 0 0 0	0	0	0	6	0
	0	0	0	0	0	7
	0	0	0	0	0	4
						_
		•			7	

i	j	a_{ij}
1	3	1
2	2	2
3	1	3
4	4	5
5	5	6
6	6	7
6	7	4

i	j	b_{ij}
1	3	3
2	2	2
3	1	1
4	4	5
5	5	6
6	6	7
7	6	4

 $\begin{bmatrix} 0 & 0 & 3 & 0 & 0 & 0 \end{bmatrix}$

一种非高效的算法: 按第1、2、…、n列进行转换

i	$oldsymbol{j}$	a _{ij}	i	$oldsymbol{j}$	b_{ij}
1	3	1	1	3	3
2	2	2	2	2	2
3	1	3	3	1	1
4	4	5	4	4	5
5	5	6	5	5	6
6	6	7	6	6	7
6	7	4	7	6	4
			矩阵	★	置

```
void TransTSMatrix(TSMatrix t,TSMatrix *tb)
                                   //j为tb.data的下标
   int i,j=1,v;
   tb->m=t.n; tb->n=t.m; tb->len=t.len;
                            //当存在非零元素时执行转置
   if (t.len!=0)
                                   //tb->data[j]中记录以列序排列
       for (v=1;v<=t.n;v++)
                                  //i为t.data的下标
         for (i=1;i<=t.len;i++)
            if (t.data[i].c==v)
                tb->data[j].row=t.data[i].col;
                tb->data[j].col=t.data[i].row;
                tb->data[j].e=t.data[i].e;
                j++;
                     按第1、2、 …、 n 列进行转换
```

m行n列,t个非0元素,时间复杂度为<math>O(nt)。

*快速高效的转置算法

实现: 设两个数组

num[col]:表示矩阵M中第col列中非零元个数

position[col]: 指示M中第col列第一个非零元在T中位置

显然有:

```
position[0]=0;
position[col]= position[col-1]+num[col-1]; (2≤col≤t.n)
```

col	1	2	3	4	5	6	7
num[col]	2	2	2	1	0	1	0
positon[col]	1	3	5	7	8	8	9

col	1	2	3	4	5	6	7
num[col]	2	2	2	1	0	1	0
position[col]	1	3	5	7	8	8	9


```
void FastTransTSMatrix(TSMatrix t, TSMatrix *tb)
{ tb->m=t.n; tb->n=t.m; tb->len=t.len;
 if(tb->len)
                                          //清零
  { for(int col=0;col<t.n;col++) num[col]=0;
   for(int k=1;k<=t.len;k++) ++num[t.data[k].c]; //求每列非零元素个数
    position[0]=0;
   for(int col = 2;col<=t.n;col++)
      position[col] = position[col-1]+num[col-1]; //每列第一个非零元素在tb中的序号
   for(int p = 0; p < t.tu; p++)
      { col=t.data[p].col;
        q=position[col]; //第col列在tb中的位置下标
        tb->data[q].row=t.data[p].col;
        tb->data[q].col = t.data[p].row;
        tb->data[q].e = t.data[p].e;
         ++position[col]; //下一个第col列非零元素的位置
```

6.2.2 稀疏矩阵的十字链表表示

● 每个非零元素对应一个结点。

2020年3月31日

● 每行的所有结点链起来构成一个带行头结点的循环单链 表。以h[i] ($0 \le i \le m-1$) 作为第i行的头结点。

● 每列的所有结点链起来构成一个带列头结点的循环单链表。 以h[i] ($0 \le i \le m-1$) 作为第i列的头结点。

3个行头结点

行、列头结点可以共享

增加一个总头结点,并把所有行、列头结点链起来构成一个循环单链表

总的头结点个数=MAX(m,n)+1

2020年3月31日 数据结构与算法课程组 59

为了统一,设计结点类型如下:

十字链表结点结构和头结点的数据结构可定义如下:

```
//矩阵行
#define M 3
                           //矩阵列
#define N 4
#define Max ((M)>(N)?(M):(N)) //矩阵行列较大者
typedef struct mtxn
                           //行号
   int row;
                           //列号
  int col;
                          //向右和向下的指针
  struct mtxn *right,*down;
                           //共用体类型
  union
      int value;
      struct mtxn *link;
  } tag;
                           //十字链表结点类型声明
 MatNode;
```

有关算法不做介绍。

【例(补充)】十字链表的启示:设计存储某年级所有学生的存储结构:

通过h来唯一标识学生存储结构。

思考题

一个稀疏矩阵采用压缩后,和直接采用二维数组存储

相比会失去____特性。

A.顺序存储

B.随机存取

C.输入输出

D.以上都不对

碑章结束