

C code:
$$go = fo * co$$

 $gi = fi * ci$
 $g2 = (gi * gi) * ci$
 $g2 = (gi) * gi) * ci$
 $g2 = (gi) * gi) * ci$
 $g3 = (gi) * gi) * ci$
 $g2 = (gi) * gi) * ci$
 $g3 = (gi) * gi) * ci$
 $g1 = (gi) * gi) * ci$
 $g2 = (gi) * gi) * ci$

CDFG:

List_L schedule:

Resource constraints, latercy multipliere 2, 1 cycle Adder/subtractor: 1, 1 cycle Logic: 1, 1 cycle

	Time		
	i	$u = \{1, 2, 3\}$ $u = \{3\}$ $u = \{3\}$	
		$S = \{1, 2\}$ $S = \{3\}$ $S = \{3\}$	
	2	u = 83,63 W=94,53	
		s = 23,63 s = 853	
	3	u = 873 x=84,93 v4 (+)	-
		s = {73 s = {4}	
1	4	N = {8,9,103	-
_		S = {93	
	5	u = {8, 10}	
-		S = {10}	_
	6	U={12} H={83	
-		$S = \{12\}$ $S = \{8\}$	
-	7	u=911,13) VII	
+		S = \(\frac{5}{11} \)	_
	8	u={13}	
-	_	s = {13}	
ļ			

Is this the minimum latency schedule?

Homework: Find a lower latency schedule!

Klhat if multiplier latency was 2 cycles?

$$f = e + 7$$

 $g = (f+a)/2$

Latency constraint: 11
Multipliers: 2 cycle
Adders: 1 cycle
Dividers: 2 cycle

Segnencing graph

ALAP:

Node	Time		
1	#	6	
2	2	3	
3	2	3	
4	\$	7	
5	3	5	
6	4	6	
7	5	8	
8	6	9	
9	7	10	

Given a latency constraint of 5, and assuming all resources (multiplier, adder/subtractor, and divider) have a 1 cycle delay, calculate the total force for the following vertex.

V1	[1, 2]
V2	[1,4]
V 3	[2,3]
VH	[1,4]
45	[1, 2]
V6	[3,4]
v 7	[2, 5]
V 8	[1,2]
v9	[4,5]
AID	[2,3]
V11	[3,4]
V12	[4,5]

Time frames:

Opera	tion pro	babilitie	es and	type	distribution
multiplier	P(1)	P(2)	P(3)	P(4)	P(5)
V1	0.5	0.5	0	0	0
v 5	0.5	0.5	0	0	0
٧7	0	0.25	0.25	0.15	0.25
V10	0	0.5	0.5	0	D
V 11	0	0	0.5	0.5	0
Type dist:	1	1.75	1.25	0.75	0.25
	P(1)	P(2)	P(3)	P(+)	P(5)
Divider	0	0	10.5	0.5	0
v6	0.5	0.5	0	0	0
18		0.5	0.5	0.5	0
Type dist:	0.5	0.3			
X 11 15 14	P (1)	P(2)	P(3)	P(4)	P(5)
Adder Subt.		0.25	0.25	0.25	
15	0.25	0.5	0.5	0	0
V 3	0	0.25	0.25	0.25	5 0
V	0.25	0.2	0	0.5	0.5
49	0	D	0	0.5	0.5
V12	0		1_	1.5	1
Type dist	0.5	1	-		

	Total forces Iteration 1					
		1	2	3	4	5
V	1	-0.375	0.375			
V :	2	-0.5	0	0	-0.25	
ν:	3		-0.375	0		
V	4	- 0.5	0	0	-0.25	
15	5	-0.375	0.125			
V6	0			0	- 0.25	
V'	7		-0.25	0.25	-0.15	-0.75
48	3	0	-0.25			
V9					0.25	-0.25
V1	0	-	-0.125	-0.5		
41	1			0.5	0.5	
VΙ	2				0.5	-0.25

- Schedule: V7 in time 5 - Update operator probabilities for V7 (New time frame = [5,5]) - Update type probabilities