

AD-A103 856

WISCONSIN UNIV-MADISON MATHEMATICS RESEARCH CENTER
WEAKLY NONLINEAR INTERACTIONS AND WAVE-TRAPPING. (U)

F/6 12/1

JUL 81 Y RENARDY

DAAG29-80-C-0041

UNCLASSIFIED

MRC-TSR-2243

NL

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
70310
70311
70312
70313
70314
70315
70316
70317
70318
70319
70320
70321
70322
70323
70324
70325
70326
70327
70328
70329
70330
70331
70332
70333
70334
70335
70336
70337
70338
70339
70340
70341
70342
70343
70344
70345
70346
70347
70348
70349
70350
70351
70352
70353
70354
70355
70356
70357
70358
70359
70360
70361
70362
70363
70364
70365
70366
70367
70368
70369
70370
70371
70372
70373
70374
70375
70376
70377
70378
70379
70380
70381
70382
70383
70384
70385
70386
70387
70388
70389
70390
70391
70392
70393
70394
70395
70396
70397
70398
70399
703100
703101
703102
703103
703104
703105
703106
703107
703108
703109
703110
703111
703112
703113
703114
703115
703116
703117
703118
703119
7031100
7031101
7031102
7031103
7031104
7031105
7031106
7031107
7031108
7031109
7031110
7031111
7031112
7031113
7031114
7031115
7031116
7031117
7031118
7031119
70311100
70311101
70311102
70311103
70311104
70311105
70311106
70311107
70311108
70311109
70311110
70311111
70311112
70311113
70311114
70311115
70311116
70311117
70311118
70311119
703111100
703111101
703111102
703111103
703111104
703111105
703111106
703111107
703111108
703111109
703111110
703111111
703111112
703111113
703111114
703111115
703111116
703111117
703111118
703111119
7031111100
7031111101
7031111102
7031111103
7031111104
7031111105
7031111106
7031111107
7031111108
7031111109
7031111110
7031111111
7031111112
7031111113
7031111114
7031111115
7031111116
7031111117
7031111118
7031111119
70311111100
70311111101
70311111102
70311111103
70311111104
70311111105
70311111106
70311111107
70311111108
70311111109
70311111110
70311111111
70311111112
70311111113
70311111114
70311111115
70311111116
70311111117
70311111118
70311111119
703111111100
703111111101
703111111102
703111111103
703111111104
703111111105
703111111106
703111111107
703111111108
703111111109
703111111110
703111111111
703111111112
703111111113
703111111114
703111111115
703111111116
703111111117
703111111118
703111111119
7031111111100
7031111111101
7031111111102
7031111111103
7031111111104
7031111111105
7031111111106
7031111111107
7031111111108
7031111111109
7031111111110
7031111111111
7031111111112
7031111111113
7031111111114
7031111111115
7031111111116
7031111111117
7031111111118
7031111111119
70311111111100
70311111111101
70311111111102
70311111111103
70311111111104
70311111111105
70311111111106
70311111111107
70311111111108
70311111111109
70311111111110
70311111111111
70311111111112
70311111111113
70311111111114
70311111111115
70311111111116
70311111111117
70311111111118
70311111111119
703111111111100
703111111111101
703111111111102
703111111111103
703111111111104
703111111111105
703111111111106
703111111111107
703111111111108
703111111111109
703111111111110
703111111111111
703111111111112
703111111111113
703111111111114
703111111111115
703111111111116
703111111111117
703111111111118
703111111111119
7031111111111100
7031111111111101
7031111111111102
7031111111111103
7031111111111104
7031111111111105
7031111111111106
7031111111111107
7031111111111108
7031111111111109
7031111111111110
7031111111111111
7031111111111112
7031111111111113
7031111111111114
7031111111111115
7031111111111116
7031111111111117
7031111111111118
7031111111111119
70311111111111100
70311111111111101
70311111111111102
70311111111111103
70311111111111104
70311111111111105
70311111111111106
70311111111111107
70311111111111108
70311111111111109
70311111111111110
70311111111111111
70311111111111112
70311111111111113
70311111111111114
70311111111111115
70311111111111116
70311111111111117
70311111111111118
70311111111111119
703111111111111100
703111111111111101
703111111111111102
703111111111111103
703111111111111104
703111111111111105
703111111111111106
703111111111111107
703111111111111108
703111111111111109
703111111111111110
703111111111111111
703111111111111112
703111111111111113
703111111111111114
703111111111111115
703111111111111116
703111111111111117
703111111111111118
703111111111111119
7031111111111111100
7031111111111111101
7031111111111111102
7031111111111111103
7031111111111111104
7031111111111111105
7031111111111111106
7031111111111111107
7031111111111111108
7031111111111111109
7031111111111111110
7031111111111111111
7031111111111111112
7031111111111111113
7031111111111111114
7031111111111111115
7031111111111111116
7031111111111111117
7031111111111111118
7031111111111111119
70311111111111111100
70311111111111111101
70311111111111111102
70311111111111111103
70311111111111111104
70311111111111111105
70311111111111111106
70311111111111111107
70311111111111111108
70311111111111111109
70311111111111111110
70311111111111111111
70311111111111111112
70311111111111111113
70311111111111111114
70311111111111111115
70311111111111111116
70311111111111111117
70311111111111111118
70311111111111111119
703111111111111111100
703111111111111111101
703111111111111111102
703111111111111111103
703111111111111111104
703111111111111111105
703111111111111111106
703111111111111111107
703111111111111111108
703111111111111111109
703111111111111111110
703111111111111111111
703111111111111111112
703111111111111111113
703111111111111111114
703111111111111111115
703111111111111111116
703111111111111111117
703111111111111111118
703111111111111111119
7031111111111111111100
7031111111111111111101
7031111111111111111102
7031111111111111111103
7031111111111111111104
7031111111111111111105
7031111111111111111106
7031111111111111111107
7031111111111111111108
7031111111111111111109
7031111111111111111110
7031111111111111111111
7031111111111111111112
7031111111111111111113
7031111111111111111114
7031111111111111111115
7031111111111111111116
7031111111111111111117
7031111111111111111118
7031111111111111111119
70311111111111111111100
70311111111111111111101
70311111111111111111102
70311111111111111111103
70311111111111111111104
70311111111111111111105
70311111111111111111106
70311111111111111111107
70311111111111111111108
70311111111111111111109
70311111111111111111110
70311111111111111111111
70311111111111111111112
70311111111111111111113
70311111111111111111114
70311111111111111111115
70311111111111111111116
70311111111111111111117
70311111111111111111118
70311111111111111111119
703111111111111111111100
703111111111111111111101
703111111111111111111102
703111111111111111111103
703111111111111111111104
703111111111111111111105
703111111111111111111106
703111111111111111111107
703111111111111111111108
703111111111111111111109
703111111111111111111110
703111111111111111111111
703111111111111111111112
703111111111111111111113
703111111111111111111114
703111111111111111111115
703111111111111111111116
703111111111111111111117
703111111111111111111118
703111111111111111111119
7031111111111111111111100
7031111111111111111111101
7031111111111111111111102
7031111111111111111111103
7031111111111111111111104
7031111111111111111111105
7031111111111111111111106
7031111111111111111111107
7031111111111111111111108
7031111111111111111111109
7031111111111111111111110
7031111111111111111111111
7031111111111111111111112
7031111111111111111111113
7031111111111111111111114
7031111111111111111111115
7031111111111111111111116
7031111111111111111111117
7031111111111111111111118
7031111111111111111111119
70311111111111111111111100
70311111111111111111111101
70311111111111111111111102
70311111111111111111111103
70311111111111111111111104
70311111111111111111111105
70311111111111111111111106
70311111111111111111111107
70311111111111111111111108
70311111111111111111111109
70311111111111111111111110
70311111111111111111111111
70311111111111111111111112
70311111111111111111111113
70311111111111111111111114
70311111111111111111111115
70311111111111111111111116
70311111111111111111111117
70311111111111111111111118
70311111111111111111111119
703111111111111111111111100
703111111111111111111111101
703111111111111111111111102
703111111111111111111111103
703111111111111111111111104
703111111111111111111111105
703111111111111111111111106

AD A103856

MRC Technical Summary Report #2243 ✓
(P D)

WEAKLY NONLINEAR INTERACTIONS
AND WAVE-TRAPPING

Yuriko Renardy

**Mathematics Research Center
University of Wisconsin-Madison
610 Walnut Street
Madison, Wisconsin 53706**

July 1981

Received May 4, 1981

**S DTIC
ELECTED
SEP 8 1981**

MRC FILE COPY

sponsored by

U. S. Army Research Office
P. O. Box 12211
Research Triangle Park
North Carolina 27709

**Approved for public release
Distribution unlimited**

National Science Foundation
Washington, D. C. 20550

(P)
81 9 08 044

UNIVERSITY OF WISCONSIN - MADISON
MATHEMATICS RESEARCH CENTER

WEAKLY NONLINEAR INTERACTIONS AND WAVE-TRAPPING

Yuriko/Renardy

Technical Summary Report #2243
July 1981

ABSTRACT

When the flow over a submerged, round, upright cylinder, situated in a large ocean, is forced by a train of plane waves, linear theory (Yamamoto, 1981) shows that the response can be abnormally large for certain forcing frequencies. The aim of this paper is to present a weakly nonlinear theory, where wave interactions, arising from the quadratic terms in the free-surface boundary conditions, can yield abnormally large responses.

A specific interaction will be considered between a flow at a subharmonic frequency and a flow at the driving frequency. The reason for considering such an interaction derived from a consideration of some experimental results of Barnard, Pritchard and Provis (1981).

AMS(MOS) Subject Classification - 76B15

Key words: surface gravity water waves, trapping modes,
nonlinear interactions.

Work Unit No. 2 - Physical Mathematics

Accession For	
NTIS GRA&I	<input type="checkbox"/>
DTIC TAB	<input type="checkbox"/>
Unannounced	<input type="checkbox"/>
Justification	
By	
Distribution	
Availability Codes	
Avail and/or	
Dist	Special

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This material is based upon work supported by the National Science Foundation under Grant No. MCS-7927062.

SIGNIFICANCE AND EXPLANATION

Observations of unusually large response in the wave records at Macquarie Island, in the ocean south of Australia, have been explained as being due to the excitation of nearly resonant trapped modes. This phenomenon has motivated much experimental investigation of trapped modes around a submerged upright cylinder in water of constant depth. Theories, based on the small-amplitude approximation, lead to predictions of resonances. However, some experimental work indicated the presence of subharmonic components in the wavefield. This paper develops a possible explanation for this by showing that nonlinear interactions could yield resonance of subharmonic modes. Moreover, a particular set of conditions is presented, in which the amplitudes of plane waves incident on the obstacle are significantly magnified above it by subharmonic resonance.

WEAKLY NONLINEAR INTERACTIONS AND WAVE-TRAPPING

Yuriko Renardy

§1. Introduction.

If a train of plane waves of a certain frequency is incident on a submerged round sill, situated in a large ocean (Figure 1), linear theory (Yamamoto, 1981) predicts that the overall amplitudes over the sill may become much larger than those of the deeper ocean. Such a phenomenon may be called "wave-trapping" or "near-resonance", referring to the unusually large response. The purpose of this paper is to examine a contribution of nonlinear effects to the wave-trapping phenomenon.

Let the fluid over the submerged sill be denoted by D_1 and the fluid outside this region by D_2 . The total domain for the flow will be denoted by $D = D_1 \cup D_2$. The boundary conditions at the free surface are nonlinear. However, the amplitudes of the motion in D_2 are assumed to be small enough so that those conditions may be linearized. An investigation is made of a wave-trapping phenomenon in which 'small-amplitude' waves enter D_1 and become magnified, so that in this region some nonlinear terms are included in the free-surface conditions. A possible mechanism of magnification is a wave interaction arising from the quadratic terms in the free-surface boundary conditions (Phillips, §3.8), and it seems appropriate to restrict attention to these in an initial investigation. Therefore, if σ is the driving frequency, attention will be limited to interactions, in D_1 , with waves of frequencies $\sigma/2$ and 2σ .

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This material is based upon work supported by the National Science Foundation under Grant No. MCS-7927062.

Figure 1

The structure of the paper is as follows.

§2, §3. In §2, the equations governing the flow are presented. An attempt to satisfy them by a modal decomposition of the velocity potential in the radial variable leads to an infinite matrix equation. The organization of the solution method for this set of equations is described in §3. A linear calculation (Yamamoto, 1981) shows that, in order to make the velocity continuous across the sill-edge, the wave-field necessarily contains modes that decay away from the sill-edge and are named "decaying modes". Resonance of such modes will not be considered here. Hence the solutions exhibiting large response are assumed to be combinations of eigenstates, each of which consists of a principal part, which is wavelike, together with associated decaying modes.

§4. In order to calculate the amplitudes of the wave motion, it is necessary to solve a 'homogeneous' problem in D_2 , namely a linearized problem with no incident waves. This is investigated in §4. The problem posed in D_2 is solved from an existing linear theory. The flow structure in D_2 is then used to generate a boundary condition at the sill-edge $r = 1$ so that the problem is reduced to a boundary-value problem in D_1 . It is found from a separation of variables that an eigenstate in D_1 , periodic in time with a complex-valued frequency Ω , consists of a 'wavelike' mode and an infinite number of 'decaying' modes. In addition, there are an infinite number of complex-valued coefficients to be determined from the boundary conditions.

The eigenfrequencies Ω and the coefficients have been determined simultaneously by finding the zeros of an expression in the depth variable. A collocation method is used and consists of applying that expression at N values of the depth variable and including the first N modes of each eigenstate. This yields an $N \times N$ matrix, whose zeros can be found by the following method. The condition number of the matrix is computed over a grid of complex frequencies and those with relatively large condition numbers are taken to be approximations to the Ω 's. This method was, however, time-consuming and an alternative, non-standard, method was devised. The method is an iterative scheme, based on the smallness of the response of the decaying modes compared with that of the wavelike modes.

§5. The solution to the homogeneous problem provides a set of orthogonal functions, a combination of which can be used to form an expression for the surface elevation. The total sill solution is then written as a suitable combination of the orthogonal functions, superposed on the linear solution. In §5, an example of such a nonlinear interaction is constructed. The example chosen here displays subharmonic resonance and was motivated by previous work

on edge waves (Guza & Davis, 1974; Minzoni & Whitham, 1977; Rockliff, 1978). The interaction involves three modes: two $\cos 2\theta$ modes at the forcing frequency, and a $\cos \theta$ mode at half that frequency. It is found that near-resonance occurs for two ranges of forcing frequencies. One range occurs near an eigenfrequency of the $\cos 2\theta$ mode, and the other occurs near twice an eigenfrequency of the $\cos \theta$ mode.

§2. Formulation of the problem.

It is assumed that the motion is inviscid and irrotational. The domain of the flow above the sill ($r < 1$) is denoted by D_1 and that outside the sill region ($r > 1$) by D_2 . The amplitudes of the flow in D_2 are assumed to be sufficiently small so that the free-surface boundary conditions may be linearized and applied at an equilibrium level. Such a linearization is not assumed in D_1 . The geometry of the problem is shown in Figure 1.

Cylindrical coordinates r, θ, z are used: r is measured outward in units of the sill radius a , and z is measured vertically upward in units of the undisturbed water depth d above the sill. The depth outside the sill is denoted by $D = d/\delta$. The velocity potential $\phi(r, \theta, z, t)$, which is in units of $d^2\sigma$, satisfies Laplace's equation, namely,

$$\phi_{rr} + \frac{1}{r}\phi_r + \frac{1}{r^2}\phi_{\theta\theta} + \frac{a^2}{d^2}\phi_{zz} = 0. \quad (2.1)$$

Let $\eta(r, \theta, t)$ denote the surface displacement and x denote the horizontal coordinate in the direction $\theta = 0$. A train of plane waves is assumed to be incident from the positive x -axis and is represented by the real part of

$$\eta = |\eta|_I e^{-i(kx + \sigma t)} \quad (2.2)$$

where k is the positive real root of

$$(KD/a) \tanh (KD/a) = D\sigma^2/g. \quad (2.3)$$

The free-surface boundary conditions are:

at $z = \eta(r, \theta, t)$, $0 < \theta < 2\pi$, $r > 0$, a kinematic condition

$$\phi_z = \dot{\eta}/\sigma + (d^2/a^2)(\nabla_h \phi) \cdot (\nabla_h \eta) \quad (2.4)$$

where $\nabla_h \equiv (\partial/\partial x, \partial/\partial y)$, and a dynamical condition

$$d^2\sigma(\phi_{tt} + (g/d)\phi_z) + \frac{\partial}{\partial t}(\underline{u}^* \cdot \underline{u}^*) + \frac{1}{2}(\underline{u}^* \cdot \nabla(\underline{u}^* \cdot \underline{u}^*)) = 0 \quad (2.5)$$

where

$$\underline{u}^* = d^2\sigma(\phi_r/a, \phi_\theta/ar, \phi_z/d). \quad (2.6)$$

The small-amplitude approximation of condition (2.4) to second order is found (Phillips, §3.1) to be, for $z = 0$, $0 < \theta < 2\pi$, $r > 0$,

$$\phi_{tt} + (g/d)\phi_z = -\eta \frac{\partial}{\partial z} (\phi_{tt} + (g/d)\phi_z) - \frac{\partial}{\partial t} (\underline{u}^* \cdot \underline{u}^*)/d^2\sigma. \quad (2.7)$$

The possibility of a resonance, in which the right-hand-side becomes of the same order as the combined expression on the left-hand-side, will be investigated for the sill region. The possibility of a similar kind of resonance through condition (2.5) will not be considered. Under these assumptions, the free-surface boundary conditions to be used are: for $z = 0$,

$$\phi_{tt} + (g/d)\phi_z = \begin{cases} -\eta \frac{\partial}{\partial z} (\phi_{tt} + (g/d)\phi_z) - \frac{\partial}{\partial t} (\underline{u}^* \cdot \underline{u}^*)/d^2\sigma & \text{for } D_1 \\ 0 & \text{for } D_2 \end{cases} \quad (2.8)$$

and

$$\eta_t = \sigma \phi_z \quad \text{for } D. \quad (2.9)$$

As mentioned in §1, only flows of frequencies σ , 2σ and $\sigma/2$ will be investigated, so that condition (2.8) can be expressed in the following form:

$$\phi_{tt} + g/d \phi_z = \begin{cases} f_1(r, \theta) e^{-i\sigma t} + f_2(r, \theta) e^{-1/2 i\sigma t} + f_3(r, \theta) e^{-2i\sigma t} + * & \text{for } D_1 \\ 0 & \text{for } D_2. \end{cases} \quad (2.10)$$

Here, the asterisk denotes the complex conjugate of preceding terms. The f_i ($i = 1, 2, 3$) are complex functions of ϕ and are determined. Once ϕ is known and substituted into equations (2.8) and (2.9).

The boundary condition on rigid surfaces is one of zero normal velocity, i.e.

$$\phi_z = 0 \quad \text{for } z = -1, r < 1 \text{ and } z = -1/\delta, r > 1, \quad (2.11)$$

and

$$\phi_r = 0 \quad \text{for } r = 1, -1/\delta < z < -1. \quad (2.12)$$

At the sill-edge, the velocity is assumed to be continuous, a condition that is equivalent to the ϕ and ϕ_r being continuous there. At large distances from the sill, the wavefield is assumed to consist of the incident wave, and waves that either decay or radiate outward.

§3. Form of 'resonant' solutions.

The problem formulated in §2, with (2.8) and (2.9) as the free-surface conditions, is essentially a superposition of two problems. Hence the solutions are expressed as $\phi = \phi_L + \phi_N$. The ϕ_L satisfies the linearized free-surface conditions, namely,

$$\phi_{Ltt} + (g/d)\phi_{Lz} = 0 \text{ at } z = 0, \quad 0 < \theta < 2\pi, \quad 0 < r < \infty, \quad (3.1)$$

and is forced by the plane waves represented by (2.2) and (2.3). The ϕ_N is constructed to make the total velocity potential ϕ satisfy the nonlinear free-surface conditions (2.8) and (2.9), and is not forced by the plane waves. Both ϕ_L and ϕ_N satisfy the conditions (2.11) and (2.12) at the solid walls. The ϕ_N interacts with ϕ_L through the free-surface conditions and the solutions of interest are those in which ϕ_N becomes comparable with ϕ_L .

The linear solution ϕ_L has been calculated (Yamamoto, 1981) by a separation of variables for the regions $0 < r < 1$ and $r > 1$, and the velocity is made continuous throughout the flow.

The ϕ_N are expressed as a linear combination of orthogonal functions that satisfy equation (2.1) and conditions (2.8), (2.11), (2.12), and the radiation condition that the flow be non-growing at large r . Let the part of ϕ_N in D_1 be denoted by ϕ_{N1} and that in D_2 by ϕ_{N2} . ϕ_{N2} is to satisfy linearized conditions and to consist of flows of frequencies σ , $\sigma/2$ and 2σ . Separation of variables then yields

$$\begin{aligned} \phi_{N2} = & e^{-i\sigma t} \sum_{m=0}^{\infty} \cos m\theta B_{m0} H_m^{(1)}(a\lambda_0 r/D) \cosh \lambda_0(\delta z + 1) \\ & + \sum_{n=1}^{\infty} B_{mn} K_m(a\lambda_n r/D) \cos \lambda_n(\delta z + 1) / K_m(a\lambda_n/D) \} + * \end{aligned} \quad (3.2)$$

+ {similar expressions for flows at frequencies $\sigma/2$ and 2σ }

where $\{\pm\lambda_0, \pm i\lambda_1, \pm i\lambda_2, \dots\}$ are the roots of the dispersion relation (Davis & Hood, 1976)

$$\lambda \tanh \lambda = D\sigma^2/g. \quad (3.3)$$

Notations for the Bessel functions $H_n^{(1)}(x)$ and $K_m(x)$ are those used by Abramowitz and Stegun (1972). The complex coefficients B_{mn} are yet to be determined. However a boundary condition for ϕ_{N1} is first constructed by the elimination of the B_{mn} .

At $r = 1$, the condition that ϕ_N and $\partial\phi_N/\partial r$ be continuous is:

$$\partial\phi_{N2}/\partial r = \begin{cases} \partial\phi_{N1}/\partial r & \text{for } -1 < z < 0 \\ 0 & \text{for } -1/\delta < z < -1, \end{cases} \quad (3.4)$$

and

$$\phi_{N2} = \phi_{N1} \quad \text{for } -1 < z < 0 \quad (3.5)$$

The expression (3.2) is substituted in equation (3.4). In what follows, the discussion is focused on flow at one of the three frequencies (σ , $\sigma/2$ or 2σ) denoted by ω . The orthogonality of the set $\{\cosh \lambda_0(\delta z+1), \cos \lambda_n(\delta z+1); n = 1, 2, \dots\}$ over $-1/\delta < z < 0$ is used and integration over z yields the B_{mn} in terms of $\partial\phi_{N1}/\partial r$ at $r = 1$. These equations are then used in equation (3.5) to eliminate the B_{mn} . A boundary condition results for $\phi_m(z)$, the coefficient of $\cos m\theta e^{-i\omega t}$ in ϕ_{N1} at $r = 1$:

$$\phi_m(z) = \int_{-1}^0 \frac{\partial\phi_m}{\partial r}(z') k_\omega(z, z') dz' \quad \text{for } -1 < z < 0, \quad (3.6)$$

where

$$K_\omega(z, z') = \frac{H_m(a\lambda_0/D) \cosh \lambda_0(\delta z+1) \cosh \lambda_0(\delta z'+1)}{H'_m(a\lambda_0/D)(a\lambda_0/D) h(\lambda_0)} + \sum_{n=1}^{\infty} \frac{K_m(a\lambda_n/D) \cos \lambda_n(\delta z+1) \cos \lambda_n(\delta z'+1)}{K'_m(a\lambda_n/D)(a\lambda_n/D) h(i\lambda_n)}. \quad (3.7)$$

Thus, the remaining problem is to solve for ϕ_{N1} using equations (2.1), (2.11) and (3.6). The details are given in §4. For each of the frequencies w (σ , $\sigma/2$ or 2σ), the corresponding flow in ϕ_{N1} is constructed as follows. The spatial variation of ϕ_{N1} is constructed to be that of the solutions $\phi_{mn}(r,z)\cos m\theta e^{-i\Omega_m t} + *$ which satisfy the "homogeneous" problem for ϕ_{N1} , i.e. condition (2.8) is replaced by the linearized form. The set $\{\phi_{mn}(r,0): m \text{ fixed}, n = 1, 2, \dots\}$ can be shown to be orthogonal for $0 < r < 1$ by the application of Green's theorem (Jeffries & Jeffries, §5.081) to the domain D_1 . Thus ϕ_{N1} can be written as

$$\begin{aligned}\phi_{N1} = & \sum_{m=0}^{\infty} \cos m\theta \sum_{n=1}^{\infty} \{a_{mn} e^{-i\sigma t/2} \phi_{amn}(r,z) \\ & + B_{mn} e^{-i\sigma t} \phi_{Bmn}(r,z) + Y_{mn} e^{-2i\sigma t} \phi_{Ymn}(r,z)\} + *\end{aligned}\quad (3.8)$$

where $\phi_{amn}(r,z)\cos m\theta e^{-i\Omega_m t}$, $\phi_{Bmn}(r,z)\cos m\theta e^{-i\Omega_B t}$ and

$\phi_{Ymn}(r,z)\cos m\theta e^{-i\Omega_Y t}$ are the solutions to the homogeneous problem for w equal to $\sigma/2$, σ and 2σ respectively. The complex coefficients a_{mn} , B_{mn} and Y_{mn} are determined by condition (2.8), in which the orthogonality property of those functions is used. For example, the a_{mn} are determined by

$$\begin{aligned}a_{mn}(-\sigma^2/4 + \Omega_{amn}^2) \int_0^1 \phi_{amn}^2(r,0) rdr \\ = \int_0^1 \phi_{amn}(r,0) \left[\frac{\int_0^{2\pi} f_2(r,0) \cos m\theta d\theta}{\int_0^{2\pi} \cos^2 m\theta d\theta} \right] rdr.\end{aligned}\quad (3.9)$$

Similar equations hold for B_{mn} and Y_{mn} . These equations in which ϕ_L and ϕ_N interact will be referred to as 'interaction' equations.

It can be seen that the 'response' $|\alpha_{mn}|$ is inversely proportional to $|-σ^2/4 + \Omega_{mn}^2|$ so that in actual computations involving a particular geometry, only the one α_{mn} , whose Ω_{mn} is the closest to $σ/2$, is expected to be important. Similarly, at most one β_{mn} and one $γ_{mn}$ are expected to be significant enough for inclusion in the interaction calculations.

We note in passing that the Longuet-Higgins eigenfunctions, referred to as 'free modes' in his paper (1967), cannot be used here for the construction of ϕ_{N1} because then the range of integration on the left hand side of (3.9) would extend to infinity and the integrand would grow almost exponentially with r .

§4. The homogeneous problem on D_1 .

This problem consists of equation (2.1), with the boundary conditions:

$$\text{at } z = 0, \phi_{tt} + (g/d)\phi_z = 0 \quad (4.1)$$

$$\text{at } z = -1, \phi_z = 0 \quad (4.2)$$

at $r = 1$, condition (3.6) holds and w is assumed to be the frequency of the flow in D_2 .

Separation of variables yields solutions of the form

$$\Phi(r, z) \cos m\theta e^{-i\Omega t}, \text{ where}$$

$$\Phi(r, z) = A_m J_m(akr/d) \cosh k(z+1) \quad (4.3)$$

$$+ \sum_{n=1}^{\infty} A_{mn} I_m(ak_n r/d) \cos k_n(z+1) / I_m(ak_n/d)$$

and $A_m, A_{mn}, k, k_n, \Omega$ are to be determined. Equations (4.1) and (4.2) yield a dispersion relation between k, k_n and Ω , namely

$$\left\{ \frac{k}{ik_n} \right\} \tanh \left\{ \frac{k}{ik_n} \right\} = d\Omega^2/g. \quad (4.4)$$

The A_m, A_{mn}, k and k_n are related through condition (3.6), which yields the following equation:

$$A_m L(k, z) + \sum_{n=1}^{\infty} A_{mn} L_n(k_n, z) = 0 \quad \text{for } -1 < z < 0 \quad (4.5)$$

where the operators $L(k, z)$ and $L_n(k_n, z)$ are defined in the appendix. The wave numbers λ and λ_n , appearing in the operators L and L_n , correspond to the fixed frequency w of the flow in D_2 . They are known through the dispersion relation

$$\left\{ \frac{\lambda}{i\lambda_n} \right\} \tanh \left\{ \frac{\lambda}{i\lambda_n} \right\} = Dw^2/g \quad (4.6)$$

where $\omega = \sigma$, $\sigma/2$ or 2σ . A matrix equation that expresses the A_{mn} in terms of A_n and also yields the Ω , is constructed by satisfying equation (4.5) at N values of z and neglecting the coefficients A_{mn} for $n > N$. Convergence with N was checked numerically. One way of obtaining the Ω 's is to search through the complex plane by computing the condition number of the matrix over a grid in the complex plane. If a grid point yields a near-singular matrix, then that complex number can be taken to approximate an Ω . An alternative, less time-consuming method is now described.

§4.1. Iterative scheme.

The scheme is constructed to take advantage of the largeness of $|A_m|$, representing the response of the wavelike modes, as compared to $|A_{mn}|$ representing the response of the decaying modes, and of the property that $|A_{mn}|$ is smaller for larger n : i.e. the wavefield contains little of the modes that decay very fast away from the sill-edge. Equation (4.5) is multiplied by each of the functions in the set $\{\cosh k(z+1), \cos k_n(z+1): n = 1, 2, \dots\}$ and integrated over $-1 < z < 0$. Since the elements of that set are orthogonal to each other, the resulting equations take the form:

for $m = 0, 1, 2, \dots$

$$A_m X(k, \lambda, \lambda_n) + \sum_{s=1}^{\infty} A_{ms} X_s(k_s, \lambda, \lambda_n) = 0 \quad (4.7)$$

and for $p = 1, 2, \dots$

$$A_{mp} Y(k_p, k_p, \lambda, \lambda_n) + \sum_{\substack{s=1 \\ s \neq p}}^{\infty} A_{ms} Y(k_s, k_p, \lambda, \lambda_n) = -A_m Y(k, k_p, \lambda, \lambda_n). \quad (4.8)$$

The functions X , X_p and Y are defined in the appendix.

The iteration proceeds as follows. The first iterate for k , denoted by $k^{(0)}$, is calculated from the following reduced form of equation (4.7), in which all decaying modes are neglected:

$$J_m(ak/d)H_m^*(a\lambda/D)f(k)\delta h(\lambda)\lambda - k J_m^*(ak/d)H_m(a\lambda/D)[g(\lambda, k)]^2 = 0 \quad (4.9)$$

where λ is known. The corresponding eigenfrequency $\Omega^{(0)}$ is calculated from

$$k^{(0)} \tanh k^{(0)} = d\Omega^{(0)2}/g, \quad (4.10)$$

after which the $k_n^{(0)}$'s are calculated from equation (4.4). Next, the equations (4.8) are used to express A_{mn}/A_m for $n = 1, 2, \dots$. Then, on using these relations to eliminate the A_{mn} 's, equation (4.7) takes the form:

$$x_1(k) + \delta\lambda h(\lambda)x_2(k, k_n)H_m^*(a\lambda/D) = 0 \quad (4.11)$$

where $x_1(k)$ represents the left hand side of equation (4.9) and contains no decaying modes, $x_2(k, k_n)$ involves the decaying modes, and the notation is defined in the appendix.

The n th iterate $k^{(n)}$ ($n = 1, 2, \dots$) is calculated by a Newton's method from equation (4.11) in which the term $x_2(k, k_n)$ is calculated at the known $(n-1)$ th iterate, i.e.,

$$x_1(k^{(n)}) + \delta\lambda h(\lambda)x_2(k^{(n-1)}, k_m^{(n-1)})H_m^*(a\lambda/D) = 0. \quad (4.12)$$

The corresponding $\Omega^{(n)}$ and $k_m^{(n)}$ are then calculated, as for the zeroth-iterate from equation (4.4).

A numerical check of the scheme was performed as follows. The Ω 's were compared with the eigenfrequencies for the domain D denoted by Ω_D because they were expected to have similar values. The Ω_D 's generalize the frequencies of the 'free modes' investigated by Longuet-Higgins (1967) using shallow-water theory, and were calculated in a similar way to the Ω 's. The only difference was that in equation (4.11), λ was also an unknown. Therefore, at each step of the iteration, the two equations, (4.11) and

$$k \tanh k - \delta\lambda \tanh \lambda = 0, \quad (4.13)$$

were solved simultaneously for k and λ by a Newton's method.

§5. Example of a near-resonance.

A particular set of conditions in which the foregoing theory yields near-resonance will be presented. In order to simplify computations, the parameters δ and d/a will be chosen to be small. The smallness of d/a ensures the smallness of the effect of the decaying modes in the flow in D_1 , so that in the 'interaction' equations, such as (3.9), the decaying modes will be assumed to be negligible. However, the decaying modes will not be neglected in the computation of the Ω 's since these are required to a high order of accuracy. Furthermore, the smallness of δ ensures that some of the Ω 's will have very small imaginary parts, so that if the flow is forced near such an eigenfrequency, near-resonance is possible.

The experimental scales of Barnard, Pritchard and Provis (1981) were examined for the presence of near-resonant nonlinear interactions but were found not to yield them. However, a choice of scales which do are:

$$d = 2 \text{ cm}, d/a = .005, \delta = .002, |\eta|_I = .01.$$

In this case, the maximum amplitudes of the decaying modes is at least an order of magnitude less than that of the wavelike mode. Although these scales are unusual, there may be other realistic combinations where the nonlinear theory is applicable.

An interaction of three modes will be considered: the $(\cos \theta e^{-i\sigma t/2} + *)$ and $(\cos 2\theta e^{-i\sigma t} + *)$ modes in ϕ_N and the $(\cos 2\theta e^{-i\sigma t} + *)$ mode in ϕ_L . In the sill region, these are represented as follows:

$$\phi_L = A_2 J_2 (akr/d) \cos 2\theta \cosh k(z+1) e^{-i\sigma t} + * + \text{decaying modes} \quad (5.2)$$

$$\begin{aligned} \phi_N = & a \cos \theta e^{-i\sigma t/2} J_1 (avr/d) \cosh v(z+1) + * + \text{decaying modes} \\ & + B \cos 2\theta e^{-i\sigma t} J_2 (avr/d) \cosh \mu(z+1) + * + \text{decaying modes} \end{aligned} \quad (5.3)$$

where

$$k \tanh k = d\sigma^2/g, v \tanh v = d\Omega_1^2/g, \quad (5.4)$$

$$\mu \tanh \mu = d\Omega_2^2/g.$$

Ω_1 represents the Ω defined in §4 which lies closest to $\sigma/2$ for the $\cos 2\theta$ mode and Ω_2 is the Ω which is closest to σ for the $\cos 2\theta$ mode.

The free-surface boundary conditions (2.8) and (2.9) yield

$$\alpha R_1 = i \alpha^* (A_2 V_1 + B V_2) \quad (5.5)$$

$$B R_2 = i \alpha^2 V_3 \quad (5.6)$$

where

$$R_1 = (d\Omega_1^2/g - d\sigma^2/4g) \cosh v \int_0^1 J_1^2(a vr/d) r dr \quad (5.7)$$

$$R_2 = (d\Omega_2^2/g - d\sigma^2/g) \cosh \mu \int_0^1 J_2^2(a \mu r/d) r dr. \quad (5.8)$$

The functions V_1 , V_2 and V_3 are defined in the appendix. The response for the linear forcing A_2 can be calculated from a method described in (Yamamoto 1981). A trivial solution is $\alpha = 0$ and $B = 0$. The questions to be resolved are whether there are any other solutions, and if so, under what conditions.

Eliminating B from equations (5.5) and (5.6) yields

$$\alpha/\alpha^* = i (A_2 V_1/V_2 + i \alpha^2 V_2 V_3/(R_1 R_2)) \quad (5.9)$$

Let

$$\alpha = |\alpha| e^{i\psi}, f = -V_2 V_3/(R_1 R_2) = |f| e^{i\theta},$$

and

$$g = i A_2 V_2/R_1 = |g| e^{i\theta}. \quad (5.10)$$

Then

$$|\alpha|^2 = [\cos \theta_1 \pm (\cos^2 \theta_1 - 1 + |g|^2)^{1/2}] / |f| \quad (5.11)$$

and

$$\psi = \frac{1}{2} (\theta_2 + \sin^{-1}(|\alpha|^2 |f| \sin \theta_1 / |g|)). \quad (5.12)$$

Next, B is evaluated via

$$B = i \alpha^2 V_3 / R_2. \quad (5.13)$$

In order that there be nontrivial solutions, two conditions must be satisfied. First, $|\alpha|^2$ must be positive and from (5.11), the conditions that must be met are:

$$(a) \quad \cos^2 \theta_1 - 1 + |g|^2 > 0,$$

$$(b) \quad \text{if } \cos \theta_1 + (\cos^2 \theta_1 - 1 + |g|^2)^{1/2} > 0,$$

there is at least one nontrivial $|\alpha|$. If

$$\cos \theta_1 - (\cos^2 \theta_1 - 1 + |g|^2)^{1/2} > 0,$$

then there are two solutions for $|\alpha|$. Secondly, equation (5.12) shows that $|\alpha|^2 |f| / |g|$ must be less than or equal to 1.

If Ω_2 is close enough to σ , then k is approximately μ so that the total velocity potential in the sill region is, approximately,

$$\phi \doteq \alpha \cos \theta e^{-i\sigma t/2} J_1(a\sqrt{r/d}) \cosh \nu(z+1) \\ + (B+A_2) \cos 2\theta e^{-i\sigma t} J_2(akr/d) \cosh k(z+1) + *.$$
(5.14)

This approximation may be used for the present example. In this case, computations revealed two ranges of forcing frequencies σ , in which near-resonance occurs. One range lies near $2\Omega_1$ and the other is near Ω_2 . In most of these ranges, the wave amplitudes were calculated to be rather high so that instabilities may occur, after which the present theory may not be applicable. However, at the upper end of the range near $2\Omega_1$, the amplitudes were found to be small enough so that the present steady-state theory might be observable in practice.

Acknowledgement

The author is indebted to Professor J. J. Mahony (University of Western Australia) for suggesting this topic and for many helpful discussions. Thanks are also due to Dr. W. G. Pritchard (University of Essex) for help in drafting this paper. The work for this paper was supported by a Commonwealth Postgraduate Research Award, the National Science Foundation Grant No. MCS-7927062 and the U. S. Army Contract No. DAAG29-80-C-0041.

REFERENCES

- Abramowitz, M. and Stegun, I. A. (eds.) 1972. Handbook of Mathematical Functions. Washington: Nat. Bur. Stand.
- Barnard, B., Pritchard, W. G. and Provis, D. 1981. To appear.
- Davis, A. M. and Hood, M. J. 1976. Surface waves normally incident on a submerged horizontal cylinder. Siam. J. Appl. Math. Vol. 31, No. 1, July, 28.
- Guza, R. T. & Davis, R. E. 1974. Excitation of edge waves by waves incident on a beach. J. Geophys. Res. Vol. 79, No. 9, 1285-1291.
- Havelock, T. H. 1929. Forced surface-waves on water. Phil. Mag., S. 7, Vol. 8, No. 51, Oct., 569-576.
- Higher Transcendental Functions. 1953 Bateman Manuscript Project. California Inst. of Technology. A. Erdelyi (ed.). McGraw-Hill.
- Longuet-Higgins, M. S. 1967. On the trapping of wave energy round islands. J. Fluid Mech. Vol. 29, part 4, 781-821.
- Minzoni, A. A. & Whitham, G. B. 1977. On the excitation of edge waves on beaches. J. Fluid Mech. Vol. 79, Part 2, 273-287.
- Phillips, O. M. 1966. The dynamics of the upper ocean. Cambridge University Press.
- Rockliff, N. 1978. Finite amplitude effects in free and forced edge waves. Math. Proc. Camb. Phil. Soc., 83, 463.
- Yamamoto, Y. 1981. Trapping of water waves above a round sill. MRC Technical Summary Report #2195.

APPENDIX

$$\epsilon_m = \begin{cases} 1 & \text{if } m = 0 \\ 2 & \text{if } n \neq 0 \end{cases}$$

$$f(k) = \int_{-1}^0 \cosh^2 k(z+1) dz$$

$$F_m = \frac{\epsilon_m i^{-m} J_m(\frac{a\lambda}{D})}{2\lambda \sinh \lambda}$$

$$F_m^* = \frac{\epsilon_m i^{-m} J_m^*(\frac{a\lambda}{D})}{2\lambda \sinh \lambda}$$

$$g(\lambda, k) = \int_{-1}^0 \cosh \lambda(\delta z + 1) \cosh k(z+1) dz$$

$$h(\lambda) = \int_{-1}^0 \cosh^2 \lambda(\delta z + 1) dz - \frac{1}{\delta}$$

$$H_m(\frac{a\lambda}{D}) = H_m^{(1)}(\frac{a\lambda}{D})$$

$$H_m^*(\frac{a\lambda}{D}) = H_m^{(1)*}(\frac{a\lambda}{D})$$

$$L(k, z) = J_m(ak/d) \cosh k(z+1) - \left[\frac{H_m^{(1)}(a\lambda/D) \cosh \lambda(\delta z + 1) g(\lambda, k)}{H_m^{(1)*}(a\lambda/D) \lambda h(\lambda)} \right]$$

$$+ \sum_{p=1}^{\infty} \left[\frac{K_m(a\lambda_p/D) \cos \lambda_p(\delta z + 1) g(i\lambda_p, k)}{K_m^*(a\lambda_p/D) \lambda_p h(i\lambda_p)} \right] (k J_m^*(ak/d)/\delta)$$

$$L_n(k_n, z) = \cos k_n(z+1) - \left[\frac{H_m^{(1)}(a\lambda/D) \cosh \lambda(\delta z + 1) g(\lambda, ik_n)}{H_m^{(1)'}(a\lambda/D) \lambda h(\lambda)} \right]$$

$$+ \sum_{p=1}^{\infty} \left[\frac{K_m(a\lambda_p/D) \cos \lambda_p(\delta z + 1) g(i\lambda_p, ik_n)}{K_m'(a\lambda_p/D) \lambda_p h(i\lambda_p)} \right] \frac{k_n I_m'(ak_n/d)}{\delta I_m(ak_n/d)}$$

$$x(k, \lambda, \lambda_n) = J_m(ak/d) f(k) - \frac{k J_m'(ak/d)}{\delta} \left[\frac{H_m(a\lambda/D) [g(\lambda, k)]^2}{H_m'(a\lambda/D) \lambda h(\lambda)} \right]$$

$$+ \sum_{p=1}^{\infty} \left[\frac{K_m(a\lambda_p/D) [g(i\lambda_p, k)]^2}{K_m'(a\lambda_p/D) \lambda_p h(i\lambda_p)} \right]$$

$$x_p(k_p, \lambda, \lambda_n) = \frac{-I_m'(ak_p/d) k_p}{I_m(ak_p/d) \delta} \left[\frac{H_m(a\lambda/D) g(\lambda, ik_p) g(\lambda, ik_p)}{H_m'(a\lambda/D) \lambda h(\lambda)} \right]$$

$$+ \sum_{n=1}^{\infty} \left[\frac{K_m(a\lambda_n/D) g(i\lambda_n, k) g(i\lambda_n, ik_p)}{K_m'(a\lambda_n/D) \lambda_n h(i\lambda_n)} \right]$$

$$y(k, k_p, \lambda, \lambda_n) = - \frac{k J_m'(ak/d)}{\delta} \left[\frac{H_m(a\lambda/D) g(\lambda, ik_p) g(\lambda, k)}{H_m'(a\lambda/D) \lambda h(\lambda)} \right]$$

$$+ \sum_{n=1}^{\infty} \left[\frac{K_m(a\lambda_n/D) g(i\lambda_n, ik_p) g(i\lambda_n, k)}{K_m'(a\lambda_n/D) \lambda_n h(i\lambda_n)} \right]$$

$$y(k_p, k_p, \lambda, \lambda_n) = f(ik_p) - \frac{I_m'(ak_p/d) k_p}{I_m(ak_p/d) \delta} \left[\frac{H_m(a\lambda/D) [g(\lambda, ik_p)]^2}{H_m'(a\lambda/D) \lambda h(\lambda)} \right]$$

$$+ \sum_{n=1}^{\infty} \left[\frac{K_m(a\lambda_n/D) [g(i\lambda_n, ik_p)]^2}{K_m'(a\lambda_n/D) \lambda_n h(i\lambda_n)} \right]$$

$$Y(k_s, k_p, \lambda, \lambda_n) = -\frac{k_s}{\delta} \frac{I_m'(ak_s/d)}{I_m(ak_s/d)} \left[\frac{H_m(a\lambda/D)g(\lambda, ik_p)g(\lambda, ik_s)}{H_m'(a\lambda/D)\lambda h(\lambda)} \right] \\ + \sum_{t=1}^{\infty} \frac{K_m(a\lambda_t/D)g(i\lambda_t, ik_p)g(i\lambda_t, ik_s)}{K_m'(a\lambda_t/D)\lambda_t h(i\lambda_t)}$$

$$x_2(k, k_n) = -\frac{k J_n(ak/d)}{\delta} \sum_{p=1}^{\infty} \frac{K_m(a\lambda_p/D)[g(i\lambda_p, k)]^2}{K_m'(a\lambda_p/D)\lambda_p h(i\lambda_p)}$$

$$- \sum_{p=1}^{\infty} \frac{A_{mp}}{A_m} \frac{I_m'(ak_p/d)}{I_m(ak_p/d)} \frac{k_p}{\delta} \left[\frac{H_m(a\lambda/D)g(\lambda, k)g(\lambda, ik_p)}{H_m'(a\lambda/D)\lambda h(\lambda)} \right] \\ + \sum_{n=1}^{\infty} \frac{g(i\lambda_n, k)g(i\lambda_n, ik_p)K_m(a\lambda_n/D)}{\lambda_n h(i\lambda_n) K_m'(a\lambda_n/D)}$$

$$v_1 = -\frac{1}{2} [-2 \sqrt{v \sinh v} (-\alpha^2 k \sinh k + k^2 \cosh k) + k \sinh k \left(-\frac{\alpha^2}{4} \sqrt{v \sinh v} \right.$$

$$\left. + v \sinh v \right)] \times \int_0^1 J_1\left(\frac{avr}{d}\right) J_2\left(\frac{akr}{d}\right) J_1\left(\frac{avr}{d}\right) r dr$$

$$+ \alpha^2 \left(\frac{1}{2} k \cosh k \sqrt{v \cosh v} \int_0^1 J_1'\left(\frac{avr}{d}\right) J_1\left(\frac{avr}{d}\right) J_2'\left(\frac{akr}{d}\right) r dr \right)$$

$$+ \frac{d^2}{a^2} \cosh k \sqrt{\cosh v} \int_0^1 J_1\left(\frac{avr}{d}\right) J_2\left(\frac{akr}{d}\right) J_1\left(\frac{avr}{d}\right) \frac{dr}{r}$$

$$+ \frac{1}{2} k \sinh k \sqrt{\sinh v} \int_0^1 J_1\left(\frac{avr}{d}\right) J_1\left(\frac{avr}{d}\right) J_2\left(\frac{akr}{d}\right) r dr)$$

where $k \tanh k = \frac{dv^2}{g}$.

v_2 is identical to v_1 but with μ instead of k , where $\mu \tanh \mu = \frac{d\Omega^2}{g}$.

$$v_3 = v^2 \sinh v (-v \cosh v + \frac{3}{4} a^2 \sinh v) \int_0^1 J_2(\frac{apr}{d}) J_1(\frac{avr}{d}) J_1(\frac{avr}{d}) r dr$$
$$+ \frac{a^2}{2} (v^2 \cosh^2 v \int_0^1 J_2(\frac{apr}{d}) J_1(\frac{avr}{d}) J_1(\frac{avr}{d}) r dr$$
$$- \frac{a^2}{a^2} \cosh^2 v \int_0^1 J_2(\frac{apr}{d}) J_1(\frac{avr}{d}) J_1(\frac{avr}{d}) \frac{dr}{r})$$

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 2243	2. GOVT ACCESSION NO. <u>AD-A103</u>	3. RECIPIENT'S CATALOG NUMBER <u>856</u>
4. TITLE (and Subtitle) WEAKLY NONLINEAR INTERACTIONS AND WAVE-TRAPPING	5. TYPE OF REPORT & PERIOD COVERED Summary Report - no specific reporting period	
7. AUTHOR(s) Yuriko Renardy	6. PERFORMING ORG. REPORT NUMBER	
9. PERFORMING ORGANIZATION NAME AND ADDRESS Mathematics Research Center, University of 610 Walnut Street Wisconsin Madison, Wisconsin 53706	8. CONTRACT OR GRANT NUMBER(s) <u>DAAG29-80-C-0041</u> <u>MCS- 7927062</u>	
11. CONTROLLING OFFICE NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 2 - Physical Mathematics	
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)	12. REPORT DATE July 1981	
	13. NUMBER OF PAGES 23	
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited.	15. SECURITY CLASS. (of this report) UNCLASSIFIED	
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE	
18. SUPPLEMENTARY NOTES U. S. Army Research Office P. O. Box 12211 Research Triangle Park North Carolina 27709	National Science Foundation Washington, D. C. 20550	
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) surface gravity water waves, trapping modes, nonlinear interactions		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) When the flow over a submerged, round, upright cylinder, situated in a large ocean, is forced by a train of plane waves, linear theory (Yamamoto, 1981) shows that the response can be abnormally large for certain forcing frequencies. The aim of this paper is to present a weakly nonlinear theory,		

20. Abstract (continued)

where wave interactions, arising from the quadratic terms in the free-surface boundary conditions, can yield abnormally large responses.

A specific interaction will be considered between a flow at a subharmonic frequency and a flow at the driving frequency. The reason for considering such an interaction derived from a consideration of some experimental results of Barnard, Pritchard and Provis (1981).