# **Segmentation of the VOCAL TRACT**

Neuroengineering project (PW 2) Group 3 2023-2024

#### Students:

Francesco Benedetto Angelica Bombacigno Livia Fabiano Federico Pivetta Letizia Santini **Professor:** 

Pietro Cerveri

Tutor:

Matteo Cavicchioli



Angelica

### TABLE OF CONTENTS

01 Context

02
Data preparation

03

Network

**04**Validation and Test

05

Conclusions



#### **Clinical overview**



#### MRI

Magnetic resonance is a medical imagine technique and, as it is non-invasive, it can be used to visualize human features to extract information



#### **VOCAL TRACT**

In this case, using segmentation, information from the vocal tract were extracted. The aim of is to perform some quantitative analysis





Letizia

### **TABLE OF CONTENTS**

O1 Context

02
Data preparation

03 Network

04 Validation and Test

05 Conclusions



### **Dataset composition**



\$00001 280 images



\$00002 240 images



\$00004 150 images



\$00005 150 images

Letizia

### **Dataset division**



### **Pre-processing**

# Gamma transformation

- $\gamma = 1.5$
- Amplify the grey levels on the darker part of the spectrum

#### Gaussian filter

- $\sigma = 0.4$
- Eliminate noisy pixels

#### Saturation

- Saturation to black pixels that are below a predefined threshold
- Remove dots from the background







# **Pre-processing**







#### **Data augmentation**



10° rotation 5 side translation 5 height translation 0.1 zoom









- Increase the overall amount of data
- Control data in case of rotation and translation of patients
- Increase the generalizing capability of the network
- Images concatenated to the training set

### Final dataset for training



#### 400 images



#### 300 images



### Final dataset for training

# 

#### 400 images



#### 300 images



### Final dataset for training





Federico **TABLE OF CONTENTS** 03 **Data preparation** Network Context

Validation and Test

05 Conclusions



### IMproved U-Net [1]

- Improved:
  - → residual connections
  - → larger bottleneck section
- Composed by:
  - → encoder section
  - → decoder section



Federico

### **Network implemented in the project**





### **Network implemented**







### **Network implemented**







#### Encoding

- Kernel\_size=3
- Number of activation maps: double block by block
- MaxPool: pool\_size=2, strides=2
- Dropout: rate=0.5



### **Network implemented**







#### Decoding

- Transpose Conv: kernel\_size=1, strides=2
- Kernel\_size=3
- Number of activation maps: half block by block

### Training methodology





#### Callbacks:

- Early stopping
- LR scheduler

### TABLE OF CONTENTS

01 Context

**02**Data preparation

03 Network

04
Validation and Test

05 Conclusions



### **Choice of dataset**

#### **Dataset division**



**70% Training 20% Validation 10% Test** 

#### **Cross-Validation**



Combination of:

- 3 patients' datasets used for training
- 1 for validation

We performed trials using different approaches to the choice of the dataset



# **Choice of dataset**











### Results obtained by each model





### **Best model**



|     |           | ning   | Validation |        |           |        |          |        |
|-----|-----------|--------|------------|--------|-----------|--------|----------|--------|
|     | Precision | DICE   | Accuracy   | Loss   | Precision | DICE   | Accuracy | Loss   |
| 1   | 0.9845    | 0.8468 | 0.9843     | 0.0497 | 0.9856    | 0.8482 | 0.9855   | 0.0737 |
| 2.1 | 0.9847    | 0.8576 | 0.9845     | 0.0463 | 0.9819    | 0.8533 | 0.9817   | 0.0930 |
| 2.2 | 0.9836    | 0.8394 | 0.9833     | 0.0511 | 0.9870    | 0.8522 | 0.9868   | 0.0769 |
| 2.3 | 0.9835    | 0.8453 | 0.9833     | 0.0497 | 0.9870    | 0.8648 | 0.9868   | 0.0830 |
| 3.1 | 0.9855    | 0.8839 | 0.9853     | 0.0401 | 0.9848    | 0.8637 | 0.9877   | 0.1123 |
| 3.2 | 0.9852    | 0.8340 | 0.9850     | 0.0441 | 0.9885    | 0.8787 | 0.9887   | 0.0988 |
| 3.3 | 0.9834    | 0.8241 | 0.9831     | 0.0508 | 0.9811    | 0.8173 | 0.9808   | 0.0927 |
| 3.4 | 0.9818    | 0.8318 | 0.9815     | 0.0579 | 0.9840    | 0.8155 | 0.9738   | 0.1207 |
| 4   | 0.9504    | 0.6505 | 0.9492     | 0.2250 | 0.9447    | 0.6578 | 0.9441   | 0.1339 |

$$Validation \ sum = \frac{Precision_{validation} + DICE_{validation} + Accuracy_{validation}}{3}$$

$$Validation \ sum_{3.2} = \frac{0.9885 + 0.8787 + 0.9887}{3} = 0.952$$



### **Best model**



|     | Training  |        |          |        | Validation |        |          |        |  |
|-----|-----------|--------|----------|--------|------------|--------|----------|--------|--|
|     | Precision | DICE   | Accuracy | Loss   | Precision  | DICE   | Accuracy | Loss   |  |
| 1   | 0.9845    | 0.8468 | 0.9843   | 0.0497 | 0.9856     | 0.8482 | 0.9855   | 0.0737 |  |
| 2.1 | 0.9847    | 0.8576 | 0.9845   | 0.0463 | 0.9819     | 0.8533 | 0.9817   | 0.0930 |  |
| 2.2 | 0.9836    | 0.8394 | 0.9833   | 0.0511 | 0.9870     | 0.8522 | 0.9868   | 0.0769 |  |
| 2.3 | 0.9835    | 0.8453 | 0.9833   | 0.0497 | 0.9870     | 0.8648 | 0.9868   | 0.0830 |  |
| 3.1 | 0.9855    | 0.8839 | 0.9853   | 0.0401 | 0.9848     | 0.8637 | 0.9877   | 0.1123 |  |
| 3.2 | 0.9852    | 0.8340 | 0.9850   | 0.0441 | 0.9885     | 0.8787 | 0.9887   | 0.0988 |  |
| 3.3 | 0.9834    | 0.8241 | 0.9831   | 0.0508 | 0.9811     | 0.8173 | 0.9808   | 0.0927 |  |
| 3.4 | 0.9818    | 0.8318 | 0.9815   | 0.0579 | 0.9840     | 0.8155 | 0.9738   | 0.1207 |  |
| 4   | 0.9504    | 0.6505 | 0.9492   | 0.2250 | 0.9447     | 0.6578 | 0.9441   | 0.1339 |  |



Epoch = 1









Post-processing

Test-phase



### **Best model**



Post-processing

Test-phase



Argmax on the predicted images



- Precision, Recall, mean DICE in each class
- Confusion Matrix



| Class                         | Precision | Recall | Mean DICE |
|-------------------------------|-----------|--------|-----------|
| 0: background and vocal tract | 0.9938    | 0.9926 | 0.9948    |
| 1: upper limb                 | 0.7128    | 0.9770 | 0.8145    |
| 2: hard palate                | 0.7115    | 0.9554 | 0.7961    |
| 3: soft palate                | 0.6367    | 0.9610 | 0.7744    |
| 4: tongue                     | 0.9242    | 0.9720 | 0.9585    |
| 5: lower lip                  | 0.9153    | 0.9681 | 0.9532    |
| 6: head                       | 0.9807    | 0.9670 | 0.9823    |



### **Choice of dataset**

#### **Dataset division**



70% Training20% Validation10% Test

#### **Cross-Validation**



#### Combination of:

- 3 patients' datasets used for training
- 1 for validation

We performed trials using different approaches to the choice of the dataset



















S00001

S00002

S00004

S00005

#### **Combination A**









# Combination B









#### **Combination C**









#### **Combination D**









S00002

S00004



#### **PURPOSE**

The aim of this kind of analysis was to understand and give a numerical evaluation of the model's capability to generalize target features

- ✓ Prevent Overfitting
- ✓ Generalization capability on external dataset



|                     | Comb. A | Comb. B | Comb. C | Comb. D | Final mean |
|---------------------|---------|---------|---------|---------|------------|
| DICE without argmax | 0.865   | 0.9635  | 0.848   | 0.8132  | 0.8723     |
| DICE with argmax    | 0.8744  | 0.8698  | 0.8549  | 0.8249  | 0.8560     |
| Accuracy            | 0.9809  | 0.9794  | 0.9836  | 0.9690  | 0.9782     |
| Precision           | 0.8152  | 0.8145  | 0.7863  | 0.7774  | 0.7983     |
| Recall              | 0.9617  | 0.9492  | 0.9637  | 0.9263  | 0.9502     |
| IoU                 | 0.7467  | 0.8474  | 0.6727  | 0.7819  | 0.7620     |



|                     | Comb. A | Comb. B | Comb. C | Comb. D | Final mean |
|---------------------|---------|---------|---------|---------|------------|
| DICE without argmax | 0.865   | 0.9635  | 0.848   | 0.8132  | 0.8723     |
| DICE with argmax    | 0.8744  | 0.8698  | 0.8549  | 0.8249  | 0.8560     |
| Accuracy            | 0.9809  | 0.9794  | 0.9836  | 0.9690  | 0.9782     |
| Precision           | 0.8152  | 0.8145  | 0.7863  | 0.7774  | 0.7983     |
| Recall              | 0.9617  | 0.9492  | 0.9637  | 0.9263  | 0.9502     |
| IoU                 | 0.7467  | 0.8474  | 0.6727  | 0.7819  | 0.7620     |

#### Final mean

0.8723

0.8560

0.9782

0.7983

0.9502

0.7620

$$MEAN_{Accuracy} = \frac{Accuracy_{Comb A} + Accuracy_{Comb B} + Accuracy_{Comb C} + Accuracy_{Comb D}}{4}$$





#### Final mean

0.8723

0.8560

0.9782

0.7983

0.9502

0.7620

$$recall = \frac{TP}{TP + FN}$$

$$precision = \frac{TP}{TP + FP}$$

As the **recall** is higher than the **precision** 



Under segmentation

Francesco

### TABLE OF CONTENTS

O1 Context

02
Data preparation

03 Network

04
Validation and Test

05 Conclusions



### **Clinical evaluation**





Many speech pathologies are caused by the absence of the soft palate closure

### **Clinical evaluation**





