ЛЕКЦІЯ 3(А).

Умовні ймовірності. Незалежні події.

1. Умовні ймовірності: приклад. 2. Умовні ймовірності: визначення. 3. Незалежні події. 4. Незалежність та несумісність події в сукупності. 5. Формула повної ймовірності. 6. Формули Байєса.

1. Умовні ймовірності: приклад.

Часто, вивчаючи той чи інший стохастичний експеримент, доводиться шукати ймовірності деяких подій після того, як якісь інші події уже відбулись. Наведемо такий приклад.

Приклад 1. Припустимо, що двічі кидаємо гральний кубик. Розглянемо пов'язані з ним дві події.

 $A = \{ Cyma \ peзультатів кидання буде парним числом \}.$

Використовуючи класичне визначення ймовірності легко знаходимо:

- Простір елементарних наслідків $\Omega = \{(i, j), i = 1, ..., 6; j = 1, ..., 6\}$, який складається з n = 36 елементів.
- Для випадкової події A сприятливих буде половина ($m_A = 18$) з цих наслідків.

А отже на підставі класичного визначення:

$$P(A) = \frac{18}{36} = \frac{1}{2}.$$

Нехай подія B полягає на тому, що

 $B = \{Peзультатом першого кидання <math>\epsilon \ll 3$ » $\}.$

Сприятливих для події B буде шість ($m_B = 6$) наступних наслідків:

$$B = \{(3, j), j = 1, ..., 6\},\$$

а тому:

$$P(B) = \frac{6}{36} = \frac{1}{6}.$$

Припустимо, що виконано одне кидання і в результаті отримано «3». Повстає питання:

 \blacktriangleright Якою тепер буде ймовірність події *A*?

Якщо відомо, що подія B відбулись, фактично замість простору елементарних наслідків Ω треба розглядати новий простір:

 $\Omega_B = \{(3, j) | j = 1, ..., 6\} = \{(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6)\} = B,$ тобто при продовжені експерименту серед елементарних наслідків актуальними залишаться тільки сприятливі для події B. Всі ці 6 наслідків будуть рівноможливі.

Сприятливими для події A при умові, що подія B відбулись, будуть елементарні наслідки події $(A \cap B)$, тобто:

$$A \cap B = \{(3, 1), (3, 3), (3, 5)\},\$$

Позначимо умовну ймовірність A, при умові, що B відбулась, символом P(A/B). Тоді:

$$P(A/B) = \frac{3}{6} = \frac{1}{2}$$
.

Аналізуючи проведені міркування легко приходимо до висновку, що фактично:

$$P(A/B) = \frac{3}{6} = \frac{\frac{3}{36}}{\frac{6}{36}} = \frac{P(A \cap B)}{P(B)}.$$

Це пояснює зміст та визначення поняття «умовні ймовірності».

2. Умовні ймовірності: визначення.

Визначення. Нехай (Ω , \Im , P) деякий ймовірнісний простір. Розглянемо дві події A $\in \mathfrak{F}$ та $B \in \mathfrak{F}$, причому P(B) > 0. Умовною ймовірністю події A при умові, що відбулись подія B, називається число P(A/B), визначене за формулою:

$$P(A/B) = \frac{P(A \cap B)}{P(B)}.$$

Якщо покласти в цьому визначенні $B = \Omega$, то P(A/B) = P(A). В загальному випадку, якщо $B \neq \Omega$, ця формула кожній події $A \in \mathfrak{F}$ ставить у відповідність додатне число P(A/B), а отже визначає на множині \mathfrak{I} функцію P(A/B), $A \in \mathfrak{I}$, що відрізняється від P(A).

Легко переконатися, що для функції P(A/B), $A \in \mathcal{F}$, виконуються всі аксіоми **P1**, **P2**, **P3**, а значить і всі вже доведені властивості 1-11 ймовірності P(A).

Крім того для умовної ймовірності виконуються наступні властивості. **Властивість 12.** (Формула множення ймовірностей). Для довільної події $A \in \mathcal{F}$

та події $B \in \mathcal{F}$, такої, що P(B) > 0, виконується рівність:

$$P(A \cap B) = P(B) \cdot P(A/B)$$
.

Якщо також P(A) > 0, то

$$P(A \cap B) = P(A) \cdot P(B/A) i P(A) \cdot P(B/A) = P(B) \cdot P(A/B).$$

Доведення цієї формули випливає з визначення умовної ймовірності.

Зауважимо, що у випадку класичного визначення ймовірності:
$$P(A/B) = \frac{P(A \cap B)}{P(B)} = \frac{n(A \cap B)/n}{n(B)/n} = \frac{n(A \cap B)}{n(B)} \, .$$

Тобто у випадку умовної ймовірності випадкова подія $B \in \mathcal{S}$ виконує роль простору елементарних наслідків Ω , що підтверджує розглянутий вище приклад.

3. Незалежні події.

Визначення. Випадкові події *A* та *B* називаються незалежними, якщо:

$$P(A \cap B) = P(A) \cdot P(B)$$
.

Використовуючи визначення умовної ймовірності легко переконатися в тому, що у випадку, коли A та B незалежні випадкові події і крім того P(A) > 0 та P(B) > 0, To:

$$P(A/B) = P(A) i P(B/A) = P(B).$$

Визначення. Послідовність подій $A_1, A_2, ..., A_n, ...$ (скінчена або нескінчена) називається послідовністю незалежних *в сукупності* подій, якщо для довільного числа k і довільних подій:

$$A_{i_1}, A_{i_2}, ..., A_{i_k} \in \{A_1, ..., A_n, ...\}, i_1 \neq i_2 \neq ... \neq i_k,$$

виконується рівність:

$$P(A_{i_1} \cap A_{i_2} \cap ... \cap A_{i_k}) = P(A_{i_1}) \cdot P(A_{i_2}) \cdot ... \cdot P(A_{i_k}).$$

Наприклад три події А, В, С незалежні в сукупності, якщо:

$$P(A \cap B) = P(A) \cdot P(B),$$

$$P(A \cap C) = P(A) \cdot P(C),$$

 $P(B \cap C) = P(B) \cdot P(C).$

Ta

$$P(A \cap B \cap C) = P(A) \cdot P(B) \cdot P(C)$$
.

Визначення. Послідовність подій $A_1, A_2, ..., A_n, ...$ (скінчена або нескінчена) називається послідовністю незалежних *парами* подій, якщо для довільних $i \neq j$

$$P(A_i \cap A_j) = P(A_i) \cdot P(A_j).$$

Зауваження. Очевидно, що незалежність подій в сукупності гарантує також їх попарну незалежність. Не завжди, однак, виконується протилежне, тобто попарна незалежність *не гарантує* незалежності подій в сукупності. Класичним з цього приводу є наступний приклад Бернштейна:

• Припустимо, що стінки правильної трикутної піраміди пофарбовані трьома кольорами: *білим*, *жовтим* та *синім*. Три стінки – кожна окремим кольором. А на четвертій є три смуги різного кольору. Кидаємо випадковим чином піраміду і визначаємо, які кольори є на її основі. Розглянемо наступні події:

 $B = \{$ на основі піраміди присутній *білий* колір $\}$;

 $G = \{$ на основі піраміди присутній жовтий колір $\}$;

 $S = \{$ на основі піраміди присутній *синій* колір $\}$.

Легко перевірити, що

$$P(B \cap G) = P(B) \cdot P(G) = \frac{1}{4}, P(G \cap S) = P(G) \cdot P(S) = \frac{1}{4},$$

 $P(B \cap S) = P(B) \cdot P(S) = \frac{1}{4}.$

Але

$$P(B \cap G \cap S) = {}^{1}/_{4} \neq P(B) \cdot P(G) \cdot P(S) = {}^{1}/_{8}.$$

4. Незалежність та несумісність події в сукупності.

Зауваження. Несумісність подій, тобто наступна їх властивість $A \cap B = \emptyset$, у випадку послідовність подій $A_1, A_2, ..., A_n$, ... теж може мати дві інтерпретації: *попарну* несумісність і несумісність *в сукупності*. Однак для *несумісності* ці поняття *еквівалентні*. Приклад Бернштейна остерігає, що не варто змішувати поняття *несумісності* та *незалежності* випадкових подій.

Незалежність випадкових подій — це одне з 6азових, найважливіших понять теорії ймовірності. Тому доведемо ще одну властивість незалежних в сукупності подій, а саме:

• Якщо в послідовності незалежних в сукупності подій $A_1, A_2, ..., A_n, ...$, всі ці події, або якусь їх частину замінимо протилежними до них, то знову будемо мати послідовність незалежних в сукупності подій.

Справедливе наступне твердження.

Лема. (а) Якщо випадкові події A та B незалежні, то незалежними будуть також наступні пари подій: (A, \overline{B}) , (\overline{A}, B) , $(\overline{A}, \overline{B})$.

(б) Нехай $A_1, A_2, ..., A_n, ...$ – послідовність незалежних ε сукупності подій. Тоді послідовність подій $\widetilde{A}_1, \ \widetilde{A}_2, ..., \ \widetilde{A}_n, ...$, де $\widetilde{A}_k = A_k$, або $\widetilde{A}_k = \overline{A}_k$, також буде незалежною ε сукупності.

Доведення. Для прикладу доведемо перше твердження пункту (а) леми. Всі інші доводяться подібним чином.

Згідно з визначенням:

$$P(A \cap B) = P(A) \cdot P(B)$$
.

Легко переконатись в правильності наступної рівності для множин:

$$A \cap \overline{B} = A \setminus (A \cap B).$$

При цьому $(A \cap B) \subseteq A$.

Використовуючи властивості 1 та 3 ймовірності отримаємо:

$$P(A \cap \overline{B}) = P(A \setminus (A \cap B)) = P(A) - P(A \cap B) =$$

$$= P(A) - P(A) \cdot P(B) = P(A) \cdot (1 - P(B)) = P(A) \cdot P(\overline{B}).$$

5. Формула повної ймовірності.

Визначення. Випадкові події H_1 , H_2 , ..., H_n утворюють повну групу подій, якщо виконуються наступні умови:

- 1) Випадкові події $H_1, H_2, ..., H_n$ попарно несумісні: $H_i \cap H_i = \emptyset$, якщо $i \neq j$.
- 2) $H_1 \cup H_2 \cup ... \cup H_n = \Omega$.

Теорема. (Формула повної ймовірності) Припустимо, що:

- 1) Випадкові події $H_1, H_2, ..., H_n$ утворюють повну групу подій. І крім того:
 - 2) Для всіх i = 1, 2, ..., n:

$$P(H_i) > 0$$
,

Тоді для довільної події $B \in \mathcal{F}$ виконується наступна рівність:

$$P(B) = \sum_{i=1}^{n} P(B/H_i) \cdot P(H_i).$$

Доведення. Використовуючи властивість 2) повної групи подій маємо:

$$B = B \cap \Omega = B \cap (H_1 \cup H_2 \cup ... \cup H_n) =$$

= $(B \cap H_1) \cup (B \cap H_2) \cup ... \cup (B \cap H_n).$

Оскільки згідно з властивістю 1) повної групи подій, випадкові події $H_1, H_2, ..., H_n$ попарно несумісні, то попарно несумісними будуть також події $(B \cap H_1), (B \cap H_2), ..., (B \cap H_n)$. Тому

$$P(B) = P(B \cap H_1) + P(B \cap H_2) + \dots + P(B \cap H_n).$$

Але на підставі формули множення ймовірностей (властивість 12)

$$P(B \cap H_i) = P(B/H_i) \cdot P(H_i),$$

що й доводить теорему.

Для того, щоб краще зрозуміти зміст введених понять та спосіб практичного використання формули повної ймовірності, наведемо кілька простих приклалів.

Приклад 2. Припустимо, що в урні знаходиться n куль невідомого кольору, серед яких *можуть бути білі кулі*.

Не маємо ніякої інформації про те, *якого кольору* кулі ϵ в урні і скільки куль кожного кольору ϵ серед n куль.

Витягуємо випадковим чином одну кулю з урни.

Яка ймовірність того, що ця куля буде білою?

Розв'язок. Позначимо подію, що нас цікавить, літерою B:

$$B = \{$$
Витягнута куля – $біла\}$.

Ймовірність цієї події суттєво залежить від того, скільки є *білих* серед n куль, що знаходяться в урні.

Якби, наприклад, було відомо, що серед n куль ϵ точно k куль білих, то на підставі класичного визначення легко знаходимо, що ймовірність події B дорівнює k/n.

Тому для того, щоб можна було проводити *конструктивні міркування*, сформулюємо ряд *припущень*, або *гіпотез*.

• Символом H_k позначимо гіпотезу, яка передбачає, що в урні серед n куль є точно k куль білих.

Оскільки k може змінюватись від 0 до n, то загальна кількість всіх таких припущень становить n+1. Очевидно, що для сукупності H_0 , H_1 , ..., H_n всіх npuny- meh виконані постулати повної групи подій, тобто:

- Ці гіпотези несумісні, кожна з них виключає всі інші.
- Якась серед них правдива, тобто напевно одна серед них справдиться.

Згідно з умовою не маємо ніякої інформації про склад урни,

тобто не маємо підстав вважати, що якась серед цих гіпотез *більш ймовірна* в порівнянні з іншими.

Отже маємо всі підстави вважати їх рівноможливими і прийняти:

$$P(H_k) = 1/(n+1), k = 0, 1, ..., n.$$

3 іншого боку, як ми вже встановили,

$$P(B/H_k) = k/n$$
, $k = 0, 1, ..., n$.

Тому використовуючи формулу повної ймовірності отримаємо:

$$P(B) = \sum_{k=0}^{n} P(B/H_k) \cdot P(H_k) = \sum_{k=0}^{n} \frac{k}{n} \cdot \frac{1}{n+1} =$$

$$= \frac{1}{n(n+1)} \sum_{k=0}^{n} k = \frac{n(n+1)}{2n(n+1)} = \frac{1}{2}.$$

6. Формули Байєса.

Теорема. (Формула Байєса) Якщо випадкові події H_1 , H_2 , ..., H_n утворюють повну групу подій і, крім того, для всіх i = 1, 2, ..., n $P(H_i) > 0$, то для довільного k = 1, ..., n, для довільної події $B \in \mathcal{F}$, такої, що P(B) > 0 виконується наступна рівність:

$$P(H_k/B) = \frac{P(B/H_k) \cdot P(H_k)}{\sum_{i=1}^{n} P(B/H_i) \cdot P(H_i)}$$

Доведення. Як виникає з формули множення ймовірностей, для довільного числа k = 1, ..., n:

$$P(H_k/B) \cdot P(B) = P(B/H_k) \cdot P(H_k).$$

Оскільки P(B) > 0, то можемо поділити обидві частини цієї рівності на P(B):

$$P(H_k/B) = \frac{P(B/H_k) \cdot P(H_k)}{P(B)}.$$

Але на підставі формули повної ймовірності:

$$P(B) = \sum_{i=1}^{n} P(B/H_i) \cdot P(H_i),$$

що й завершує доведення.

Приклад 3. Припустимо, що в умовах прикладу 2 витягнута випадковим чином куля виявилась *білою*.

• Яким чином ця інформація вплине на ймовірність $P(H_k)$ гіпотези H_k ?

Нагадаємо, що згідно з гіпотезою H_k на початку експерименту в урні серед n куль було точно k білих куль і для довільного k:

$$P(B/H_k) = k/n$$
, $k = 0, 1, ..., n$.

Іншими словами, необхідно знайти умовні ймовірності:

$$P(H_k/B), k = 1, ..., n.$$

Розв'язок. Використовуючи формули Байєса, а також результати прикладу 2 отримаємо:

$$P(H_k/B) = \frac{P(B/H_k) \cdot P(H_k)}{\sum_{i=1}^{n} P(B/H_i) \cdot P(H_i)} =$$

$$=\frac{k/n\cdot 1/(n+1)}{0.5}=\frac{2k}{n\cdot (n+1)}\,,\,k=1,\,\ldots\,,\,n.$$

Таким чином серед (n+1) початкових *припущень* H_0 , H_1 , ..., H_n щодо ймовірного складу урни, при умові, що події B відбулась, *реально можсливих* залишилось n:

$$H_1, H_2, ..., H_n$$

оскільки

$$P(H_0/B) = \frac{2 \cdot 0}{n \cdot (n+1)} = 0.$$

Якщо витягнута навмання куля виявилась білою, то зникають також підстави вважати всі початкові припущення так само можливими. Хоча б тому, що гіпотеза H_0 взагалі виявляється неможливою.

Інтуїтивно, допускаючи можливість для будь-якої серед гіпотез H_1 , ..., H_n , більш ймовірними слід вважати ті, що передбачають більшу кількість білих куль. Саме такий результат дають формули Байєса:

- Ймовірності $P(H_k/B)$ монотонно зростають, якщо k зростає;
- Найбільш ймовірною гіпотезою, при умові, що витягнута випадковим чином куля виявилась білою, буде H_n , згідно з якою всі кулі в урні білі:

$$P(H_n/B) = \frac{2 \cdot n}{n \cdot (n+1)} = \frac{2}{n+1}.$$