Taller 1

Instrucciones:

- ♦ Sólo se permitirán grupos de mínimo 3 integrantes y máximo 4 integrantes, o de lo contrario existirá una penalización en la nota.
- ♦ El taller se entrega de manera presencial en la sala al profesor de cátedra.

1 Ejercicio 1

En una refinería se producen 3 tipos de gasolinas, las cuales se describen a continuación en la siguiente tabla:

Tipo	Variedad	Octanaje
A	STAR-98	98
В	Sin Plomo	95
\mathbf{C}	Súper	93

Para ello se mezclan cuatro productos base, que representaremos con un número, y cuyo costo y disponibilidad son:

Producto	Disponibilidad	Costo/unidad
1	3000	3
2	2000	6
3	4000	4
4	1000	5

Para la clasificación de la mezcla en uno de los tres tipos de gasolina, se atiende a la proporción de los productos que la componen según la siguiente tabla:

Producto	Prod. 1	Prod. 2	Prod. 3	Prod. 4	Beneficio/Utilidad
A	$\leq 30\%$	$\geq 40\%$	$\leq 50\%$	n/a	5.5
В	$\leq 50\%$	$\geq 10\%$	n/a	n/a	4.5
C	$\geq 70\%$	n/a	n/a	n/a	3.5

Realice un modelo matemático que maximice la utilidad.

2 Ejercicio 2

Una persona que acaba de ganar un premio decide celebrarlo y hacer una fiesta con sus amigos. Para esto ha decidido invertir \$1.300.000, los cuales se dividen en \$1.000.000 para el arriendo del local y \$300.000 para insumos. El objetivo del evento es que todos lo pasen lo mejor posible, y para medir esto se utilizará una función denominada "función de felicidad", la cual dependerá de 7 variables (x_i) : donde x_1 corresponde al número de personas, x_2 a la duración (en horas), x_3 a los litros de cerveza con un costo unitario de c_3), x_4 corresponde a los litros de otros tragos (con un costo unitario de c_4), c_5 a los litros de bebida (con un costo unitario de c_5), c_6 a los paquetes de picadillo (con un costo unitario de c_6 y c_6 y c_7 corresponde a la ambientación. El valor de esta función se mide en "unidades de felicidad" c_7 0.

Luego de una encuesta entre los amigos se concluyó que, por cada 50 personas que asisten a la fiesta, se alegran $15\ (15f)$ y que por cada hora de duración se alegran 100 personas (100f). Por el lado de los bebestibles, se obtuvo que, por cada litro de cerveza se alegran 2 personas (2f), por cada litro de los otros tragos se legran 4 personas (4f) y por cada litro de bebida se alegra solo una persona (1f). Finalmente, por cada paquete de picadillo se alegra persona (1f) y por cada \$10.000 que se gasten en ambientación se alegran 15 personas (15f). además, se sabe que para que la fiesta resulte no se podrá gastar menos de \$80.000 en ambientación. Para la organización del evento habrá que considerar varios aspectos; primero, la cantidad de cada tipo de bebestible y picadillo deberá ser mayor o igual a 1; el arriendo del local parte de un precio base de \$100.000 y aumenta en \$150.000 por cada hora de arriendo, con una disponibilidad máxima de 8 horas; por otra parte, el local cuenta con un sistema de refrigeración con una capacidad máxima de 800 litros. También, por seguridad, se pide que el grado alcohólico no supere los 30° por persona, considerando que cada litro de cerveza tiene 5° y cada litro de otro trago tiene 40° . Por último, existe una capacidad del local, donde el número máximo de personas es 800.

En base a esto, se pide establecer un modelo matemático que maximice la función de felicidad.

3 Ejercicio 3

A continuación, se presenta una escena de un juego de acertijos, donde el jugador requiere seleccionar una combinación correcta de los alimentos para seguir avanzando en su aventura:

El objetivo del puzzle es el siguiente: Se cuenta con 5 tipos distintos de comida (ensalada, sopa, carne, pescado y pasta). Cada uno de ellos tiene un aporte nutricional (naranjo, rojo y verde), el cual se muestra en la siguiente figura:

Debido a esto, el juego requiere que se planifique la cantidad de platos de comida para los 5 días, considerando que en cada día se tiene que alcanzar un requerimiento nutricional distinto, el cual se muestra en la siguiente figura:

Por último, considerar que sólo se cuenta con 5 platos de cada comida. En base a esto, formule un modelo matemático que encuentre una solución.

