

About Me

Education

- BSc Physiology

- Masters (Dist) in Research Techniques
- PhD in Immunology
- Data Analysis Certification

Professional Background - 6+ years

- Scientific Data Analysis
- Data communication and publication

- Scientific problem-solving

Tools and Skills

- Excel, Graphpad-Prism, SQL, Tableau, Python (pandas, numpy, matplot, visualizations)
- Data cleaning, statistical analysis, data communication, dashboarding

Portfolio Overview

PROJECT	ANALYSING GLOBAL VIDEO-GAME SALES - 1	PREPARING FOR INFLUENZA SEASON IN THE U.S.A - 2	VIDEO-RENTAL COMPANY, BUSINESS-DATA ANALYSIS - 3	ONLINE GROCERY STORE, MARKETING STRATEGY - 4	ANALYSIS OF COVID-19 EFFECTS ON WORLD DEMOGRAPHICS - 5
GOALS MET	- Challenge assumptions that video-game sales in geographic regions are constant over time	- Determine different Influenza trends across the U.S.A to help medical staffing agencies more efficiently prepare	 Determine rental statistics Geographic customer location and sales figures Movie-genre sales analyses 	 Wrangle, clean, organise & build database in Python with included customer profiles Determine peak times, most popular products, customer loyalty, and impact on sales 	 Source, clean, and merge data as well as ARIMA forecasting, clustering, and exploratory analysis, all in Python. Determine if forecasted world demographics have returned to baseline levels in 2025
OUTPUT	- PowerPoint presentation to stakeholders	- Interim Report - Video-presentation to stakeholders	Cleaned & joined SQL databaseData dictionaryPPT presentation to stakeholders	- Cleaned, joined, and expanded Python database - Inform marketing of findings regarding data-informed recommendations	 Coding Journey documented Data Dictionary Informed hypothesis rejection and Tableau presentation on findings
TOOLS USED	X P	X ++++	X Q S +++	X jupyter X	jupyter X ++++

GameCo – Video-Game sales across Geographic Regions

Background: GameCo assumed sales across regions remained stable over time. Ahead of the 2017 marketing budget, they needed to confirm this assumption using historical data.

Objective: Analyse game sales from 1980–2016 and evaluate trends geographically to confirm or deny assumptions

Dataset: VGChartz (via Kaggle)

GameCo Data Analyses and Insights

Geographic Observations:

While historically, North Americahas been the largest market, the last5 years have shown Europe tocompete

GameCo Data Analyses and Insights

Genre-specific geographical observations from the last five years:

- The biggest selling genre of games in North America and Europe
 - Action
- The biggest selling genre in Japan
 - Role Playing Games

GameCo Data-driven recommendations

- GameCo should reject their assumptions and adopt the new assumption that sales across regions do NOT remain stable over time
- Data suggests that the EU may start to become the largest market globally, going forward.
- GameCo should assume that different genres of games will sell differently across the globe.

Influenza Staffing Forecasting

Background: A U.S.-based temporary medical staffing agency needed help planning resource distribution ahead of flu season.

Objective:

- Determine where, when, and how many staff to deploy based on historical influenza mortality trends.
- Forecast Seasonality
- Rank states on any potential vulnerable populations

Dataset:

- Influenza death records from CDC (2009–2017)
- U.S. Census population data (by state and age)

Normalising Influenza deaths according to state population

With normalization, states with highest relative influenza death can be distinguished

Forecasting indicates flu season is between November - March

Age indicates influenza vulnerability

Vulnerable population deemed to be over 65 yearsof-age

Predicted increase in vulnerable population death in 2018 compared to 2017

Staffing requirement forecasting

State	Difference in 2018 from 2017 -0.0172%	Blue - Reduce Medi	cal staff			
Washington -0.0172% Alaska -0.0154%						
Hawaii -0.0152%		<u>Grey</u> - No suggested change				
Alabama -0.0132%		Orange - Increased medical staff				
Nebraska -0.0094%						
Montana -0.0093%		Red - Significantly increased medical staff				
Louisiana	-0.0084%	-0.01714%				
California	-0.0056%					
Oregon	-0.0052%	State	Difference in 201	8 from 2017		
Georgia	-0.0045%					
Florida	-0.0034%	Colorado		0.0059%		
South Carolina	-0.0023%	Kansas		0.0060%		
Texas	-0.0022%					
West Virginia	-0.0018%	Virginia		0.0071%		
Idaho Illinois	-0.0013% -0.0001%	Delaware		0.0072%	_	
Kentucky 0.0000					F	
Indiana 0.00		ATRATISAS 0.01		0.0104%	-	
Connecticut 0.0010%		Massachusetts		0.0111%	6	
Arizona 0.0011%		lowa 0.011		0.01120/	•	
District of Columbia 0.0017%					•	
Maine 0.00				0.0122%	•	
Oklahoma 0.0018%				0.0125%	i	
Missouri 0.0018%					ı	
Michigan 0.0020%		Rhode Island		0.0151%	L	
New Jersey	0.0024%	New Hampshire		0.0152%	Ĺ	
Tennessee	0.0025%	•			,	
Minnesota 0.0025% New Mexico 0.0029%		Maryland 0.0		0.0153%	2	
Nevada	0.0029% 0.0029%	South Dakota		0.0197%		
Pennsylvania	0.0029%					
Ohio 0.0050%		North Carolina 0.02		0.0204%		
Mississippi 0.0050%		North Dakota		0.0325%		
Wyoming	0.0055%	NOITH Dakuta				
New York	0.0057%	Vermont		0.0381%		
			•			

Recommendations are that these changes are implemented before November 2018

0.04000%

Rockbuster Stealth LLC SQL Analysis

Background: Rockbuster Stealth LLC is a traditional DVD-rental company exploring digital streaming

Objective:

- Identify customer regions and trends
- Reveal most profitable rental movie-genres

Dataset: DVD Rental SQL Database

Which countries are Rockbuster customers based in?

As population increases, so does Rockbuster customers

Which genres generate the most revenue

- Highest grossing genres
 - Sports
 - Sci-fi
 - Animation
 - Drama
- Lowest grossing genres
 - Music
 - Travel
 - Children
 - Classics

Rockbuster Data-driven recommendations

Customers increase with population:

 Recommendation would be to increase the availability of the product, as customers increase with populus

Sports, Sci-fi, Animation, and Drama are the most popular genres and generate the most revenue

 Recommendation would be to diversify further into these genres and away from those that are generating less revenue

InstacartUser Profiling and Analysis

Background: An online grocery store 'Instacart' would like understanding customer demographics and behavior in order to improve targeted advertising, and determine how different customers profiles impact customer behavior

Objective:

- Understand Instacart's busiest periods for advertising purposes
- Determine and analyse customer loyalty levels to provide insights into marketing decisions
- Design customer profiles and analyse buying trends

Dataset: "The Instacart Online Grocery Shopping Dataset 2017", Accessed from www.instacart.com/datasets/grocery-shopping-2017 via Kaggle

Instacart Peak ordering times

Customer-Loyalty and impact on orders

InstacartBiggest customer base

Instacart's biggest customer base:

- Is over the age of 40
- Resides in the south of the USA

Customer Profiling & Most-popular department

The most customers that use Instacart are:

- 1. High-income parents >40
- 2. Single Adults
- 3. High-income parents < 40

The most orders come from the departments:

- 1. Produce
- 2. Dairy/ eggs
- 3. Snacks
- 4. Beverages

Customer profiles and ordering habits

While produce is the most ordered-from department for most customer-profiles, low-income families are much more likely to order from the snacks department than other customer-profiles

InstacartData-driven recommendations

- To maximise on the time most customers use Instacart the least, scheduled targeted-ads should run in the evenings of weekdays or before 10am on weekends.
- Data shows that the more orders a customer has completed with Instacart, the more likely they are to order again, therefore it may be beneficial to incentivize customers to make more orders
- With regards to targeted ads, the largest customer base Instacart has are parents older than 40 and have more than 50,000 annual income
- Produce is most-often ordered by everyone except low-income families who prefer to use Instacart to order snacks

Has the world recovered from COVID-19 in 2025

- This Analyses seeks to answer the questions of:
 - Did all countries respond the same way to the pandemic and if they differed, how? Why?
 - IF forecasted, does demographic data line up with current data, indicating that the pandemic has been recovered from?
 - Which countries fared the worst and should be most prepared for the future similar scenario?

Dataset: "United Nations, Department of Economic and Social Affairs, PopulationDivision(2024). World Population Prospects 2024, Online Edition."

(https://population.un.org/wpp/downloads?folder=Standard%20Projections&group=CSV%20format)

COVID-19 AnalysesFinding Interesting Demographics

Most influential variables enable Clustering segmentation of countries for easier in-depth analysis

Death-rate has returned to normal in 2025

COVID-19 AnalysesClustering

Clusteringanalysis shows that the highest deathrate during COVID-19 pandemic is in High-GDP-percapita, High-Median-Age Countries

Death-rate in cluster 0 in 2020 is statistically-significantly larger than the death-rate in cluster 2, the countries with the lowest GDP-per-capita

COVID-19 Demographic analysis Data-driven recommendations

- All countries did NOT fare equally during COVID-19 with the countries with the highest GDP-per-capita having a larger death-rate during COVID-pandemic than the lowest GDP-percapita countries
- It would appear that in 2025, the death-rate has returned to a level comparable to forecasts from pre-COVID. This would indicate that the world has indeed recovered effectively from COVID-19 in 2025.