Melbourne

Housing Price Prediction

Team 2 Chiebuka Onwuzurike, Tzu-Hua Huang, Yangyang Zhou, Yichi Zhang

Outline

- 1. Business Objective
- 2. Dataset + Variables
- 3. Data Preparation
- 4. Exploratory Data Analysis
- 5. Models
- 6. Conclusion

- Linear
- Ridge
- Lasso
- Regression Tree
- Bagging
- Random Forest
- Boosting

Objective

- Business Question/Objective
- Why it is important
- Other applications

Dataset

- Kaggle: https://www.kaggle.com/anthonypino/melbourne-housing-market
- 21 columns / 34,009 rows
- Goals:
 - Trying different models to make accurate price prediction
 - Finding important variables influence price the most
 - Giving advice to buyers and sellers
- Variables:
 - o 8 characters: Address, Regionname, Type...
 - o 7 integers: Rooms, Landsize, YearBuilt...
 - o 6 numeric: BuildingArea, Distance...

Variables

Price: Price in Australian dollars	SellerG: Real Estate Agent	Date: Date sold
Туре:	Method:	Regionname: General Region (West, North, etc)
br - bedroom(s);	S - property sold;	Suburb: Suburb
h - house,cottage,villa, semi,terrace;	SP - property sold prior;	Propertycount : Number of properties in the suburb.
u - unit, duplex;	PI - property passed in;	Rooms: Number of rooms
t - townhouse;	PN - sold prior not disclosed;	Bedroom2 : Scraped # of Bedrooms
	SN - sold not disclosed;	Bathroom : Number of Bathrooms
dev site - development site;	NB - no bid;	Car: Number of carspots
o res - other residential.	VB - vendor bid;	Landsize: Land Size in Metres
Address: Address	W - withdrawn prior to auction;	
Distance : Distance from Major City(km)	SA - sold after auction;	BuildingArea: Building Size in Metres
Latitude: Self explanatory	SS - sold after auction price not disclosed.	YearBuilt: Year the house was built
Longitude: Self explanatory	N/A - price or highest bid not available.	CouncilArea: Governing council for the area

Data Preparation

- Data Formatting
- Null Values
 - Landsize, YearBuilt, Car, Latitude, BuildingArea
- Feature Engineering
 - SellYear, SellMonth
- Factored
 - O Type, Method, Regionname, CouncilArea
- Scaling
- Splitting Train/Test (70/30)

Exploratory Data Analysis

Exploratory Data Analysis

Price Range

• The majority of those houses lies below \$2,500,000

Price vs. Rooms/Types

- House is the common type
- House has the highest price

- 4-6 rooms have higher price
- There are some outliers

Price vs. Seasons

- January April and July have low house price
- Fall has higher house price than other seasons

Price vs. Regions

- Southern Metropolitan has the highest average price and more properties.
- Western Victoria has the lowest house price and least properties.

Linear Regression

Linear regression

• Model 1: Full model contains all variables

Train MSE: 0.3314157

Test MSE: 0.3560723

• **Model 2**: Delete insignificant variables

Train MSE: 0.3362878

Test MSE: 0.3626219

• Model 3: Combine 'Landsize' and 'Age' to create a interaction model

Train MSE: 0.334264

Test MSE: 0.360624

Ridge & Lasso Regression

Ridge regression

- 10 fold cross validation model to find the best lambda
- CouncilArea seemed to have a strongest effect on the price of a house.
 - Boroondara City Council 2
 - Hume City Council 11
 - O Wyndham City Council 30

	Train MSE	Test MSE
Ridge	0.3353068	0.3611925
Lasso	TBD	TBD

Lasso regression

- 10 fold cross validation model to find the best lambda
- Again the CouncilArea, but now Type and Regionname are among the top 3
 - Boroondara City Council Council Area 2
 - Unit style Home Type 3
 - O Southern Metropolitan Regionname 6

	Train MSE	Test MSE
Lasso	0.3316269	0.3562078
Ridge	0.3353068	0.3611925

Regression Trees

Regression Tree

- 12 variables are used to construct the tree with 11 internal nodes resulting in 12 terminal nodes.
- After 10 cross-validation: Train MSE:0.3827; Test MSE: 0.4011.

Regression Tree

• The CouncilArea, Rooms and bedrooms seem to have a stronger effect on the price of a house.

- We use bagging model and set coob = TRUE to use the OOB sample to estimate the test error.
- The test MSE is 0.3442
- The fit of Bagging is better than Regression Tree.

```
Bagging regression trees with 25 bootstrap replications

Call: bagging.data.frame(formula = Price ~ ., data = train, coob = TRUE)

Out-of-bag estimate of root mean squared error: 0.5964
```

- Use caret package performing a 10-fold cross-validated by using bagging model.
- The test MSE is 0.3956.

```
Pagged CART

7431 samples
14 predictor

No pre-processing
Resampling: Cross-Validated (10 fold)

Summary of sample sizes: 6688, 6687, 6689, 6686, 6687, 6689

Resampling results:

RMSE Requared MAE
0.6149614 0.6199037 0.4100107
```

- Feature importance:
- The Region name, bathrooms and rooms seem to have a stronger effect on the price of a house.

Random Forests

Random Forests

- Set ntree=500, mtry=4 (default)
- Test MSE: 0.2127

Optimal mtry Parameter

• tuneRF() function

```
## mtry OOBError
## 3 3 0.2193815
## 4 4 0.2175599
## 6 6 0.2159408
## 9 9 0.2175382
```


Tune Using The Optimal mtry

- Set ntree=500, mtry=6
- Test MSE: 0.2115

# of Trees	# of variables at each split	Test MSE
ntree=500	mtry=4	0.2127
ntree=500	mtry=6	0.2115

```
## Call:
## randomForest(formula = Price ~ ., data = train, mtry = 6, importance = TRUE)
## Type of random forest: regression
## Number of trees: 500
## No. of variables tried at each split: 6
##
## Mean of squared residuals: 0.2160597
## % Var explained: 78.05
```

Feature Importance

	%IncMSE	IncNodePurity
Rooms	28.236506717	798.97720
Туре	38.787836662	423.32872
Method	4.032808757	100.24231
Distance	45.273557453	608.95794
Bedroom2	23.188694391	501.99143
Bathroom	31.994683968	546.87787
Car	17.492084776	110.68837
Landsize	52.524638732	579.17912
CouncilArea	54.084471377	1688.40411
Regionname	24.208334041	436.28853
Propertycount	28.126708567	194.95971
SellYear	6.586972312	47.35067
SellMonth	-0.002773935	320.56163
age	50.737487069	783.28740

Top 10 Feature Importance

Boosting

Tune Manually

	# of Trees	shrinkage(learning rate)	Test MSE
boost1	n.trees=100	shrinkage=0.1	0.2525
boost2	n.trees=500	shrinkage=0.1	0.2072
boost3	n.trees=1000	shrinkage=0.1	0.2003
boost4	n.trees=5000	shrinkage=0.1	0.2014
boost5	n.trees=1000	shrinkage=0.2	0.2060

Optimal Iteration

relative.influence(boost6)

n.trees not given. Using 634 trees.

##	Rooms	Type	Method	Distance	Bedroom2	
##	2340.20033	1801.52152	76.13334	1320.24155	994.75387	
##	Bathroom	Car	Landsize	CouncilArea	Regionname	
##	2437.03614	308.81701	941.37716	6009.39939	146.72703	
##	Propertycount	SellYear	SellMonth	age		
##	249.87518	40.39025	224.18286	2188.69709		

Tune Using Grid Search

• hyper_grid:

- \circ n.trees = 500, 1000
- \circ interaction.depth = 2, 3
- \circ shrinkage = 0.1, 0.2
- \circ n.minobsinnode = 10

shrinkage	interaction.depth	n.trees	RMSE
0.1	2	500	0.4682779
0.1	2	1000	0.4577827
0.1	3	500	0.4531315
0.1	3	1000	0.4461076
0.2	2	500	0.4627059
0.2	2	1000	0.4600345
0.2	3	500	0.4555301
0.2	3	1000	0.4555548

Feature Importance

- 10-fold cross validation
- Using tuned parameters:
 - \circ n.trees = 1000
 - \circ interaction.depth = 3
 - \circ shrinkage = 0.1
- Test MSE: 0.1990

CouncilArea v.s. Price

- #1: Bayside City Council
- #2: Boroondara City Council
- #27: Stonnington City Council

Summary

Feature Importance:

CouncilArea

Model	Train MSE	Test MSE
Ridge Regression	0.3353068	0.3611925
Lasso Regression	0.3316269	0.3562078
Linear Regression	0.3314157	0.3560723
Regression Trees	0.3827541	0.4011495
Bagging	0.3605204	0.3956213
Random Forests	0.2012475	0.2115062
Boosting	0.1324614	0.1942090

Q&A

