## 仿真和预习

实验要求设计数字电压表,显示输入正弦波电压的峰 值。因此考虑将电路分割为如下几个部分进行设计

# 1.1 峰值提取部分

这部分输入将输入的正弦波电压转换为尽可能稳定 的输出电压,输出电压的值为输入正弦波的峰峰值。 具体的电路如图 1所示,这是两个对称峰值检测电路 分别检测电路的上峰值和下谷值。 其中,上半侧电路检测峰值,U1A 为一个输入阻抗

变换和 U1B, 二极管同时构成精密二极管, 串接电 容 C6 接地,完成正峰值检测。C6 并联 R10 完成放 电过程,方便动态检测电路。 在 U1B 输出正向峰值。 下半部电路输出谷值,这里就不加赘述了。

输出之后进行 R4C2 的一个简单的一节低通滤波虑 去前面 C6 放电出现的不稳定震荡,这方面 R5C3, R8C4 组成的简答低通滤波均完成此项内容, 且效果

之后, U2A 运放完成减法操作, 检出峰峰值, 之后滤 波后阻抗变换跟随输出,稳定这个模块内部的工作, 输出稳定电压。

经过仿真可以得到输出的电压准确度,稳定性均较

相对于其他设计,这个电路能够应对多种波形输入, 并且尤其适合中高频信号的输入。对于极低频信号, 可能因为峰值检测电容放电的影响出现明显的纹波 影响电路稳定性。



Fig. 1: 峰值提取电路

# 1.2 电压转换部分

这部分输入一个稳定的正电压,输出一个频率稳定的 方波,具体的电路如图 2所示



Fig. 2: 压频转换电路

这个电路参考了模拟电子技术基础书上的压频转换 电路的设计,具体原理略去。经过简单计算可以得到, 电路在输入电压的控制下可以约为输出  $50U_I$ Hz/V 频率的方波,经过稳压之后输出共后级电路处理。 电路涉及的电阻较多,因此受到电阻型号和相对误差 的影响,电路的具体的参数(如选择的电阻电容)选择在电路搭建的过程中也需要进一步的选取,这里的 仿真就先略去。

# 1.3 FPGA 部分

这部分要求将模拟电路输 出的方波信号计数,得到最后要求显示的频率,为数字 电路部分, 电路模块图如图 3所示。其中 FCore 模块是核心模块,负责在 FPGA上的 50MHz 时钟下输出 输入波形 in 的频率并在数 码管中扫描显示。选通端由 74138 确定, 数码管由 7448 驱动。 FCore 模块的具体实现由 Verilog 代码给出。模块首先 将输入时钟分频为 1Hz,并

在 1Hz 时钟上升沿设置输



Fig. 3: 频率计数 电路布置

出记号。在输入 in 的每个 上升沿,模块进行十进制计 数。如果此时发现设置了输 出记号,则清除上记号之后 将当前值输出显示清零。 FCore 也同时满足了一些诸如扫描数码管的功能,具 体见下面的代码

01 module FCore (clk,in,out,digit); 02 input clk; 03 input in; 04 output [1:0] digit; 05 output [3:0] out; 06 reg sec; 07 reg a = 0;08 reg b = 0;09 reg [1:0] digit = 2'b00; 10 reg [3:0] out; 11 reg [3:0] num [2:0];

25 26

27 28

29

30

31

12 reg [3:0] \_num [2:0]; 13 reg [11:0] div = 12'b1; 14 reg [27:0] counter = 28'b0; 15 always @ (posedge clk)

16 begin 17 //TODO: div the 50MHz clock to 1Hz 18 if(counter == 28'd25000000) begin  $sec <= \sim sec;$  counter = 28'b1;counter <= counter + 1'b1;</pre> //TODO: div a sweeping signal if(div == 28'b0)begin div <= div + 1'b1;

if(digit == 2'b10)

digit <= 2'b00;

digit <= digit + 1'b1:

# 2.1.1 简单峰值提取电路

如图 4所示是简单峰值提取 电路, 我们首先先认为二极 管导通压降为 0,则若输入 电压大于电容 C 上的电压, 电容充电升压,如果输入电 压小于电容 C 上的电压, 电 容不放电, 因此电容上保持

 $div \ll div + 1'b1;$ 

out <= num[digit];</pre>

44 //TODO: clear the output

if(num[0] < 4'd9)

 $if(_num[1] < 4'd9)$ 

\_num[0] <= 4'b0000;

\_num[0] <= 4'b0000;

\_num[1] <= 4'b0000;

num[0] <= \_num[0];

num[1] <= \_num[1];

num[2] <= \_num[2];

num[0] <= 4'b0001;

\_num[1] <= 4'b0000; \_num[2] <= 4'b0000;

电路工作原理说明

峰峰值提取部分

由于采取了和老师给出的

电路不同的设计,因此这里

重新将模拟部分的两个电

路的工作原理详细说明如

num[0] <= num[0] + 4'b0001;

 $num[1] \le num[1] + 4'b0001;$ 

\_num[2] <= \_num[2] + 4'b0001;

if(div == 28'd10)

40 end 41 42 always @ (posedge sec)

48 always @ (posedge in)

37

39

43 begin

46 end

52

53

54

57 58

59

64

65

72

73

74

75

76

77

78

下。

49 begin

45 a  $<= \sim b$ :

50 //TODO: count 51 if(a == b)

begin

else begin

begin

else

end end else

begin

79 end 80 end 81 endmodule

b <= a;



Fig. 4: 基本峰值 提取电路

的是整个电路的历史最高 输入电压。

然而实际电路中, 由于存在 二极管分压,输出的电压值 显然和最大峰值相差二极 管导通电压。需要采用其他 的电路来改进这个电路

## 2.1.2 精密峰值提取电路

如图 5所示,首先分析二极 管 D5 能否导通,如果 D5 能导通,则运放 U3A 工作 在负反馈状态,而如果 D5 截断,运放 U3A 处于比较器状态。我们假设 D5 导通,则可以看出运放 U3A 输出电压为  $V_2 - V_{PN}$ ,电容 C6 随运放 U3B 跟随,此时可以明显的发 C6 上电压大于输入电压, 因此此时 C6 电压保持不 变,条件为 V<sub>2</sub> < U<sub>C6</sub>

当输入电压大于电容上电 压时,上述推理不成立,运 放工作在非线性区。可以看 出,此时 U3A 上有  $U_P =$  $V_2, U_N = VC6$ ,运放输出正 摆幅,对 C6 高速充电(因为 输入电压很大而电阻很小) 保证电路响应顺畅。



因此在当前环境下 U3B 阻 抗变换之后可以输出质量 相当好的输入电压峰值。

Fig. 5: 精密峰值 提取电路

## 2.1.3 其他辅助设计

• 峰值电容放电回路

上述设计能够准确检 测出输入电压的历史 最大值,但如果使用 者希望动态测量峰峰 值的话, 当输入电压 峰值减小之后整个电路将被锁死不工作。 因此在 C 上并联放电 电阻 R 使得当输入减小之后 C 能够缓慢放电 最后达到测量目的。当输入电压峰值稳定时,

• 双向峰峰值检测电路

稳定, 但略有纹波。

由于不断有周期性峰值的影响,整个电路整体

将上述设计反向,得 到负峰值检测电路, 整个前级电路的如图 6所示。



Fig. 6: 双向峰峰值检测电路

#### 2.1.4 综合输出

最后利用减法器将正峰值和负峰值相减,得到峰峰 值。同时在电路上引入适当的一节低通滤波电路消除之前由于 RC 环节引入的纹波, 整个电路如图 1所 示。在  $V_{PP}=5\mathrm{V}, f=20\mathrm{Hz}$  的作用下输出的波形 如图 7所示。

可以看出,经过 0.6s 的过渡时间之后,电路输出电 压已经很稳定了,而且由于采用负反馈运放,输出电 压的稳定性也特别理想。



Fig. 7: 峰峰值检测电路输出波形

## 2.2 V-F 转换部分

参考模拟电子技术基础的习题 7.24 搭建了基于运放的复位式压控振荡电路,如图 8所示。

#### 2.2.1 工作原理

复位式压控振荡电路主要由滞回比较器、积分器及电 子开关组成:运放 A2 与 R2,R3 以及稳压管 D1,D2 构成滞回比较器,运放 A1 与电容 C 及输入端电阻 构成积分器,晶体管 Q1 及电阻 R5 构成电子开关。 当运放 A2 输出高电平时,晶体管饱和导通,视为开 关接地,电容 C 充电,直到运放 A1 输出端  $u_{o1}$  达到阈值电压  $+U_T$  使得 A2 输出低电平。当 A2 输出 低电平,晶体管截止,电容 C 反向充电,直到运放 A1 输出端  $u_{o1}$  达到阈值电压  $-U_T$  使得 A2 输出高电平,进入下一个循环。



Fig. 8: VF 变换电路图

### 2.2.2 定量分析

当晶体管导通时  $i_c=\frac{0-u_N1}{3R1}=-\frac{u_I}{3R1}$  当晶体管截止时  $u_{o1}=u_{o1}(t_0)+\frac{u_I}{3R_1C}(t_1-t_0)$  另外,滯回 比较器阈值电压  $\begin{cases} i_C = \frac{u_I}{3R_1} \\ u_{o1} = u_{o1}(t_1) - \frac{u_I}{3R_1C}(t_2 - t_1) \end{cases}$ 

则可以得到振荡频率 $f = \frac{1}{T} = \frac{u_I}{12R_1CU_T}$  振荡频率与

输入电压呈线性 设计中要求前级输入电压  $U_I$  和输出信号频率 f 的 关系为  $f = 100U_I Hz/V$  因此设计电路参数图中 C 改为 20nF 其他参数不变。

可以提供给下级 FPGA 工作,剩余误差可以在实验 过程中微调解决。不是设计问题。



Fig. 9: VF 输出波形

# 实验结果

对实际电路进行测试的得到了如表 1的结果,可以看 出电路输出的电压值(在 FPGA 上显示得到)的精 度相当高。

# 总结

本次实验自己新设计了电路,相比于老师提供的电路,除了输出准确之外,还能够在一定程度上接受输 入电压的直流偏置和各种波形(因为前级电路峰值 提取不受波形的影响)

另外, 这次实验在 12 周提前两周就已经完成了电路 的搭建并利用 myDac 完成了初步的测试工作。由于 电路搭建和 FPGA 的设计是一起考虑的,体现了设 计的整体性和模块之间的相互兼容的特性, 如方波 仿真得到输入 1V 波形如图 9所示,测得频率接近 占空比适中,边沿锋利使得 FPGA 可以高精度工作 100Hz,效果还是比较理想的,同时方波波形稳定, 等。可以说,这次实验是相当成功的。

Tab. 1: 实验结果

| <u>v.</u>         |      |      | $\sim$ | 7    | <u>-11</u> |
|-------------------|------|------|--------|------|------------|
| $200 \mathrm{Hz}$ | 0.40 | 0.30 | 0.19   | 0.10 | 0.01       |
| $20 \mathrm{Hz}$  | 0.39 | 0.29 | 0.19   | 0.10 | 0.01       |
| $I_{A}$           | 0.4  | 0.3  | 0.2    | 0.1  | 0.0        |
| $200 \mathrm{Hz}$ | 0.90 | 0.78 | 0.68   | 0.59 | 0.49       |
| 20Hz              | 0.89 | 0.79 | 0.09   | 0.59 | 0.50       |
| $V_I$             | 6.0  | 8.0  | 0.7    | 0.0  | 0.5        |
| $200 \mathrm{Hz}$ | 4.98 | 3.98 | 2.98   | 1.98 | 0.99       |
| $20 \mathrm{Hz}$  | 4.95 | 3.95 | -2.96  | 1.97 | 0.98       |
| $V_I$             | ಬ    | 4    | က      | 2    | _          |