In [316]:

```
# IMPORT LIBRARIES
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

In [317]:

```
a=pd.read_csv(r"C:\Users\user\Downloads\22_countries.csv")
```

Out[317]:

	id	name	iso3	iso2	numeric_code	phone_code	capital	currency	currency _.
0	1	Afghanistan	AFG	AF	4	93	Kabul	AFN	Afghan
1	2	Aland Islands	ALA	AX	248	+358-18	Mariehamn	EUR	
2	3	Albania	ALB	AL	8	355	Tirana	ALL	Albar
3	4	Algeria	DZA	DZ	12	213	Algiers	DZD	Algeria
4	5	American Samoa	ASM	AS	16	+1-684	Pago Pago	USD	US
245	243	Wallis And Futuna Islands	WLF	WF	876	681	Mata Utu	XPF	CF
246	244	Western Sahara	ESH	EH	732	212	El-Aaiun	MAD	Mo I
247	245	Yemen	YEM	YE	887	967	Sanaa	YER	Yem
248	246	Zambia	ZMB	ZM	894	260	Lusaka	ZMW	Z: k
249	247	Zimbabwe	ZWE	ZW	716	263	Harare	ZWL	Zim
250 r	250 rows × 19 columns								

In [318]:

a=a.head(10)

а

Out[318]:

	id	name	iso3	iso2	numeric_code	phone_code	capital	currency	currency_na
0	1	Afghanistan	AFG	AF	4	93	Kabul	AFN	Afghan afgh
1	2	Aland Islands	ALA	AX	248	+358-18	Mariehamn	EUR	E
2	3	Albania	ALB	AL	8	355	Tirana	ALL	Albanian
3	4	Algeria	DZA	DZ	12	213	Algiers	DZD	Algerian di
4	5	American Samoa	ASM	AS	16	+1-684	Pago Pago	USD	US Do
5	6	Andorra	AND	AD	20	376	Andorra la Vella	EUR	E
6	7	Angola	AGO	АО	24	244	Luanda	AOA	Angolan kwar
7	8	Anguilla	AIA	Al	660	+1-264	The Valley	XCD	East Caribbe do
8	9	Antarctica	ATA	AQ	10	672	NaN	AAD	Antarctic do
9	10	Antigua And Barbuda	ATG	AG	28	+1-268	St. John's	XCD	East Caribbean do
4									

In [319]:

to find a.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 10 entries, 0 to 9 Data columns (total 19 columns):

#	Column	Non-Null Count	Dtype
0	id	10 non-null	int64
1	name	10 non-null	object
2	iso3	10 non-null	object
3	iso2	10 non-null	object
4	numeric_code	10 non-null	int64
5	phone_code	10 non-null	object
6	capital	9 non-null	object
7	currency	10 non-null	object
8	currency_name	10 non-null	object
9	currency_symbol	10 non-null	object
10	tld	10 non-null	object
11	native	10 non-null	object
12	region	10 non-null	object
13	subregion	9 non-null	object
14	timezones	10 non-null	object
15	latitude	10 non-null	float64
16	longitude	10 non-null	float64
17	emoji	10 non-null	object
18	emojiU	10 non-null	object
dtvp	es: float64(2), i	nt64(2), object(15)

dtypes: float64(2), int64(2), object(15)

memory usage: 1.6+ KB

In [320]:

```
# to display summary of statastic
a.describe()
```

Out[320]:

	id	numeric_code	latitude	longitude
count	10.00000	10.0000	10.000000	10.000000
mean	5.50000	103.0000	13.843333	-16.258667
std	3.02765	209.0598	38.895825	66.215478
min	1.00000	4.0000	-74.650000	-170.000000
25%	3.25000	10.5000	-5.112500	-45.975000
50%	5.50000	18.0000	23.125000	3.740000
75%	7.75000	27.0000	39.000000	19.550000
max	10.00000	660.0000	60.116667	65.000000

In [321]:

```
# to display colum heading
a.columns
```

Out[321]:

In [322]:

```
sns.pairplot(a)
```

Out[322]:

<seaborn.axisgrid.PairGrid at 0x243fcd6fe50>

In [323]:

sns.displot(a["currency_name"])

Out[323]:

<seaborn.axisgrid.FacetGrid at 0x243fd482190>

In [324]:

Out[324]:

	id	name	iso3	iso2	numeric_code	phone_code	capital	currency	currency_na
0	1	Afghanistan	AFG	AF	4	93	Kabul	AFN	Afghan afgh
1	2	Aland Islands	ALA	AX	248	+358-18	Mariehamn	EUR	E
2	3	Albania	ALB	AL	8	355	Tirana	ALL	Albanian
3	4	Algeria	DZA	DZ	12	213	Algiers	DZD	Algerian di
4	5	American Samoa	ASM	AS	16	+1-684	Pago Pago	USD	US Do
5	6	Andorra	AND	AD	20	376	Andorra la Vella	EUR	Е
6	7	Angola	AGO	АО	24	244	Luanda	AOA	Angolan kwar
7	8	Anguilla	AIA	Al	660	+1-264	The Valley	XCD	East Caribbe do
8	9	Antarctica	ATA	AQ	10	672	NaN	AAD	Antarctic do
9	10	Antigua And Barbuda	ATG	AG	28	+1-268	St. John's	XCD	East Caribbean do
4 (>

In [325]:

sns.heatmap(b.corr())

Out[325]:

<AxesSubplot:>


```
In [327]:
x=a[['id','numeric_code','latitude', 'longitude']]
y=a['latitude']
In [328]:
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3)
In [329]:
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
Out[329]:
LinearRegression()
In [330]:
lr.intercept_
Out[330]:
5.684341886080802e-14
In [331]:
coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
coeff
Out[331]:
```

id -7.981600e-15

Co-efficient

numeric_code -7.007334e-17

latitude 1.000000e+00

longitude -6.961740e-16

```
In [332]:
```

```
prediction = lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[332]:

<matplotlib.collections.PathCollection at 0x243fd91f100>

In [333]:

```
lr.score(x_test,y_test)
```

Out[333]:

1.0

In [334]:

```
lr.score(x_train,y_train)
```

Out[334]:

1.0

In [335]:

```
from sklearn.linear_model import Ridge,Lasso
```

In [336]:

```
rr=Ridge(alpha=10)
rr.fit(x_test,y_test)
```

Out[336]:

Ridge(alpha=10)

In [337]:

```
rr.score(x_test,y_test)
```

Out[337]:

0.9999127518112061

```
In [338]:
la=Lasso(alpha=10)
la.fit(x_test,y_test)
Out[338]:
Lasso(alpha=10)
In [339]:
la.score(x_test,y_test)
Out[339]:
0.9990595870788492
In [340]:
from sklearn.linear_model import ElasticNet
en=ElasticNet()
en.fit(x_train,y_train)
Out[340]:
ElasticNet()
In [341]:
en.coef_
Out[341]:
array([-0.00000000e+00, 1.81750425e-05, 9.99370331e-01, 0.00000000e+0
0])
In [342]:
en.intercept_
Out[342]:
0.004379878917040614
In [343]:
prediction=en.predict(x_test)
prediction
Out[343]:
array([ 32.98367349, -14.31963739, 42.47798244])
In [344]:
en.score(x_test,y_test)
Out[344]:
0.9999994934614883
```

EVALUATION METRICS

```
In [345]:
from sklearn import metrics
In [346]:
print("Mean Absolute Error:",metrics.mean_absolute_error(y_test,prediction))
Mean Absolute Error: 0.01734666956331014
In [347]:
print("Mean Squared Error", metrics.mean_squared_error(y_test, prediction))
Mean Squared Error 0.00031296888419924995
In [348]:
print("Root Mean Squared Error",np.sqrt(metrics.mean_squared_error(y_test,prediction)))
Root Mean Squared Error 0.017690926606575754
MODEL SAVING
In [349]:
import pickle
In [350]:
filename='prediction'
pickle.dump(lr,open(filename,'wb'))
In [351]:
import pandas as pd
import pickle
In [352]:
filename='prediction'
model=pickle.load(open(filename, 'rb'))
In [354]:
real=[[10,20,30,40],[13,23,33,43]]
result=model.predict(real)
result
Out[354]:
array([30., 33.])
```

In []:		