CS 2022: DATA STRUCTURES & ALGORITHMS

Lecture 2: Complexity Analysis

Malaka Walpola

OUTLINE

- Analyzing Algorithms
- Analysis of Insertion Sort
- Analysis of Bubble Sort
- Asymptotic Notation

LEARNING OUTCOMES

- After successfully studying contents covered in this lecture, students should be able to,
 - explain the major factors considered for analyzing algorithms
 - * explain the use of asymptotic analysis to examine the growth of functions
 - express the time complexity of simple (non recursive) algorithms using asymptotic notation

- What are the factors that affect the running time of a program?
 - * The processing
 - * CPU speed
 - * Memory
 - * Size of input data set
 - * Nature of input data set

- Factors to Consider
 - * Speed/Amount of work done/Efficiency
 - * Space efficiency/ Amount of memory used
 - * Simplicity
- We want an analysis that does not depend on
 - * CPU speed
 - * Memory

- ₩ Why?
 - * We want to have a hardware independent analysis
- Thus, we use Asymptotic Analysis
 - * Ignore machine dependant constants
 - * Look at the growth of the running time
 - * Running time of an algorithm as a function of input size *n* for large *n*
 - * Written using **Asymptotic Notation**

- * Kinds of Analysis
 - * Worst-case: (usually)
 - * Average-case: (sometimes)
 - * Need assumption of statistical distribution of inputs.
 - * Best-case: (bogus?)

ANALYSIS OF INSERTION SORT

Code	Cost	Times
INSERTION-SORT (A)		
1. for j = 2 to A.length	C_1	n
2. $key = A[j]$	C_2	n-1
3. //	0	n-1
4. $i = j-1$	C_4	n-1
5. while $i > 0$ and $A[i] > key$	C_5	$\sum_{j=2}^n t_j$
6. $A[i+1] = A[i]$	C_6	$\sum_{j=2}^{n} \left(t_{j} - 1 \right)$
7. $i = i-1$	C_7	$\sum_{j=2}^{n} \left(t_{j} - 1 \right)$
8. $A[i+1] = key$	C^8	n-1

- n = A.length
- * t_i = the number of times the while loop test in line 5 is executed

ANALYSIS OF INSERTION SORT

*
$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j$$

$$+c_6\sum_{j=2}^{n}(t_j-1)+c_7\sum_{j=2}^{n}(t_j-1)+c_8(n-1)$$

Best Case – Sorted Array

*
$$t_i = 1$$
 for j=2, 3,, n

ANALYSIS OF INSERTION SORT

*
$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j$$

$$+c_6\sum_{j=2}^{n}(t_j-1)+c_7\sum_{j=2}^{n}(t_j-1)+c_8(n-1)$$

Worst Case – Reverse Sorted Array

*
$$t_j = j$$
 for $j=2, 3,, n$

*
$$\sum_{j=2}^{n} j = \frac{n(n+1)}{2} - 1$$
 & $\sum_{j=2}^{n} (j-1) = \frac{n(n-1)}{2} - 1$

ANALYSIS OF BUBBLE SORT

Code	Cost	Times
BUBBLE-SORT (A)		
1. do		
2. swapped ← false		
3. for i = 2 to A.length		
4. if $A[i-1] > A[i]$		
5. $temp \leftarrow A[i]$		
6. $A[i] \leftarrow A[i-1]$		
7. $A[i-1] \leftarrow temp$		
8. swapped ← true		
9. while swapped		

ASYMPTOTIC NOTATION

Θ-Notation

- * Asymptotically tight bound
- * $\Theta(g(n)) = \{f(n) : \text{there exist positive constants}$ $c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n)$ for all $n \ge n_0 \}$

ASYMPTOTIC NOTATION

O-Notation

- * Asymptotic upper bound
- * $O(g(n)) = \{f(n) : \text{there exist positive constants } c,$ and n_0 such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$ }
- * A General Guideline
 - * Ignore lower order terms
 - * Ignore leading constants

THE O NOTATION - EXAMPLES

$$f(x) = 3x$$

$$g(x) = x$$

$$C = 3, N = 0$$

$$f(x) \le 3*g(x)$$

$$f(x) = 3x = 3g(x)$$

$$g(x) = x$$

$$3x = O(x)$$

$$f(x) = 4+7x$$

$$g(x) = x$$

$$C = 8, N = 4$$

$$f(x) \le 8*g(x)$$

$$f(x) = 4+7x$$

$$g(x) = x$$

$$4+7x = O(x)$$

THE @ NOTATION - EXAMPLES

$$f(x) = 3x$$

 $g(x) = x$
 $C_1 = 1, N = 0, C_2 = 3$
Show
 $g(x) \le f(x) \le 3*g(x)$
 $g(x) = x < f(x)$
 $f(x) = 3x = 3g(x)$
Therefore
 $f(x) = 3x = \theta(x) = \theta(g(x))$

$$f(x) = 4+7x$$
 $g(x) = x$
 $C_1 = 7, N = 4, C_2 = 8$
Show
 $7*g(x) \le f(x) \le 8*g(x)$
 $7*g(x) = 7x < f(x)$
 $f(x) = 7x+4 \le 8x \text{ (when } x \ge 4)$
Therefore
 $f(x) = 7x+4 = \theta(x) = \theta(g(x))$

THE O NOTATION - EXERCISES

$$f(x) = x+100x^{2}$$

$$g(x) = x^{2}$$

$$Show that$$

$$f(x) = O(g(x))$$

$$f(x) = 20+x+5x^2+8x^3$$

$$g(x) = x^3$$
Show that
$$f(x) = O(g(x))$$

THE @ NOTATION - EXERCISES

$$f(x) = x+100x^{2}$$

$$g(x) = x^{2}$$

$$Show that$$

$$f(x) = \theta(g(x))$$

$$f(x) = 20+x+5x^2+8x^3$$

$$g(x) = x^3$$
Show that
$$f(x) = \theta(g(x))$$

ASYMPTOTIC NOTATION

Example

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j$$

$$+ c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1)$$

- Macro Substitution
 - Convention: A set in a formula represents an anonymous function in the set
 - * $f(n) = n^3 + O(n^2)$ * $f(n) = n^3 + h(n)$ for some $h(n) \in O(n^2)$

ASYMPTOTIC NOTATION

- O-Notation
 - * May or may not be asymptotically tight
- Other Notations (Self-Study)
 - * Ω-notation
 - * Asymptotic lower bound
 - * May or may not be asymptotically tight
 - * o-notation
 - * Asymptotic upper bound (Not asymptotically tight)
 - * ω-notation
 - * Asymptotic lower bound (Not asymptotically tight)

HOMEWORK

- * Study the Ω , o and ω asymptotic notations
 - * What are the relationships between the Θ , O, Ω , o and ω notations?
- Study the optimized Bubble sort algorithms given in the slides
 - Analyze the optimized versions of Bubble sort for worst case time complexity
 - * Is there a difference in worst case time complexity?
 - * Is there an easy method to analyze only the worst case time complexity?

OPTIMIZING BUBBLE SORT (1)

OPTIMIZED-BUBBLE-SORT (A)

```
for j = A.length to 2
     swapped = false
2.
     for i = 2 to j
3.
      if A[i-1] > A[i]
4.
        temp = A[i]
5.
        A[i] = A[i-1]
6.
        A[i-1] = temp
7.
        swapped = true
     if (!swapped)
9.
      break;
10.
```

OPTIMIZING BUBBLE SORT (2)

OPTIMIZED-BUBBLE-SORT (A)

```
n = A.length
2. do
      swapped = false
        for i = 2 to n
          if A[i-1] > A[i]
5.
            temp = A[i]
6.
            A[i] = A[i-1]
7.
            A[i-1] = temp
            swapped = true
9.
            newLimit = i-1
10.
        n = newLimit
11.
   while swapped
12.
```

REFERENCES

- [1] T.H. Cormen, C.E. Leiserson, R.L. Rivest and C. Stein, *Introduction to Algorithms*, 3rd Ed. Cambridge, MA, MIT Press, 2009.
- [2] S. Baase and Allen Van Gelder, *Computer Algorithms: Introduction to Design and Analysis*, 3rd Ed. Delhi, India, Pearson Education, 2000.
- [3] Wikipedia, "Insertion sort", Oct. 09, 2012. [Online]. http://en.wikipedia.org/wiki/Insertion_sort. [Accessed: Oct. 22, 2012].
- [4] Wikipedia, "Bubble sort", Oct. 17, 2012. [Online]. http://en.wikipedia.org/wiki/Bubble_sort. [Accessed: Oct. 22, 2012].
- [5] Lecture slides from Prof. Erik Demaine of MIT, available at http://dspace.mit.edu/bitstream/handle/1721.1/37150/6-046JFall-2004/NR/rdonlyres/Electrical-Engineering-and-Computer-Science/6-046JFall-2004/B3727FC3-625D-4FE3-A422-56F7F07E9787/0/lecture_01.pdf

READING ASSIGNMENT

- What we covered today
 - * IA -Sections 3.1
 - * Topic-wise
 - * Asymptotic Notation: Section 3.1 of IA
- Next class
 - * Recursion and Divide & Conquer Approaches and Merge Sort: Section 2.3.1