EDA-challenge.qmd

Quarto

Quarto enables you to weave together content and executable code into a finished document. To learn more about Quarto see https://quarto.org.

Running Code

When you click the **Render** button a document will be generated that includes both content and the output of embedded code. You can embed code like this:

```
1 + 1
```

[1] 2

You can add options to executable code like this

[1] 4

The echo: false option disables the printing of code (only output is displayed).

library(tidyverse)

```
-- Attaching core tidyverse packages ----- tidyverse 2.0.0 --
v dplyr
        1.1.4
                v readr
                         2.1.5
v forcats
        1.0.0
                v stringr
                         1.5.1
        3.5.1
                v tibble
                         3.2.1
v ggplot2
v lubridate 1.9.4
                v tidyr
                         1.3.1
v purrr
         1.0.2
                      -- Conflicts -----
```

```
x dplyr::filter() masks stats::filter()
                  masks stats::lag()
x dplyr::lag()
i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become
library(ggplot2)
library(dplyr)
d <- read_csv("C:/Users/britt/OneDrive/Documents/ADA/data-wrangling.csv")</pre>
Rows: 213 Columns: 23
-- Column specification -----
Delimiter: ","
chr (6): Scientific_Name, Family, Genus, Species, Leaves, Fauna
dbl (17): Brain_Size_Species_Mean, Body_mass_male_mean, Body_mass_female_mea...
i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.
d_clean <- d %>%
  filter(!is.na(DayLength_km) & !is.na(Move)) %>%
    log_DayLength = log(DayLength_km + 1),
    log_Move = log(Move + 1)
ggplot(d_clean, aes(x = log_Move, y = log_DayLength)) +
  geom_point(alpha = 0.6) +
  geom_smooth(method = "lm", formula = y ~ x, se = FALSE, color = "blue") +
  labs(x = "Log(Time Spent Moving)", y = "Log(Day Range Length)",
       title = "Relationship Between Time Spent Moving and Distance Traveled") +
  theme_minimal()
```

Relationship Between Time Spent Moving and Distance Travele

Relationship by Primate Family

Log(Time Spent Moving)

```
d_clean <- d %>%
  filter(!is.na(DayLength_km) & !is.na(MeanGroupSize)) %>%
  mutate(
    log_DayLength = log(DayLength_km + 1),
    log_GroupSize = log(MeanGroupSize + 1)
)

ggplot(d_clean, aes(x = log_GroupSize, y = log_DayLength)) +
  geom_point(alpha = 0.6) +
  geom_smooth(method = "lm", formula = y ~ x, se = FALSE, color = "blue") +
  labs(x = "Log(Group Size)", y = "Log(Day Range Length)",
    title = "Relationship Between Group Size and Distance Traveled") +
  theme_minimal()
```

Relationship Between Group Size and Distance Traveled

Relationship by Primate Family


```
d <- d %>%
  mutate(Body_Size_Dimorphism = Body_mass_male_mean / Body_mass_female_mean)

d_clean <- d %>%
  filter(!is.na(Canine_Dimorphism) & !is.na(Body_Size_Dimorphism)) %>%
  mutate(
    log_CanineDimorphism = log(Canine_Dimorphism),
    log_BodySizeDimorphism = log(Body_Size_Dimorphism)
)

ggplot(d_clean, aes(x = log_BodySizeDimorphism, y = log_CanineDimorphism)) +
  geom_point(alpha = 0.6) +
  geom_smooth(method = "lm", formula = y ~ x, se = FALSE, color = "blue") +
  labs(x = "Log(Body_Size_Dimorphism)", y = "Log(Canine_Dimorphism)",
    title = "Relationship_Between_Body_Size_Dimorphism") +
  theme_minimal()
```

Relationship Between Body Size and Canine Dimorphism

Relationship by Primate Family


```
d$Fruit <- as.numeric(d$Fruit)
d$Leaves <- as.numeric(d$Leaves)</pre>
```

Warning: NAs introduced by coercion

Group Size Across Different Dietary Strategies

Wilcoxon rank sum test with continuity correction

```
data: MeanGroupSize by diet_strategy
W = 516.5, p-value = 0.7652
```

alternative hypothesis: true location shift is not equal to 0

```
d |>
  mutate(Binomial = paste(Genus, Species, sep = "_")) |>
  select(Binomial, Family, Brain_Size_Species_Mean, Body_mass_male_mean) |>
  group_by(Family) |>
  summarise(across(c(Brain_Size_Species_Mean, Body_mass_male_mean), ~ mean(.x, na.rm = TRUE)
  arrange(Brain_Size_Species_Mean)
```

```
# A tibble: 14 x 3
```

2	Cheirogalidae	4.04	193.
3	Galagidae	5.96	395.
4	Lepilemuridae	7.27	792
5	Lorisidae	8.67	512.
6	Lemuridae	23.1	2077.
7	Cebidae	23.9	1012.
8	Indriidae	27.3	3638.
9	Daubentonidae	44.8	2620
10	Pitheciidae	56.3	1955.
11	Atelidae	80.6	7895.
12	Cercopithecidae	85.4	9543.
13	Hylobatidae	101.	6926.
14	Hominidae	410.	98681.