

Automated and Connected Driving Challenges

Section 3 – Object Fusion and Tracking

Object Fusion

Bastian Lampe

Institute for Automotive Engineering

Object Fusion

- Fuse the recently measured \hat{x}_S into the predicted existing global object \hat{x}_G to get an updated estimate \hat{x}_G
- Weigh measurement \widehat{x}_S and prediction of \widehat{x}_G according to their error covariances
 - Large error covariance → less weight in estimation

RWTHAACHEN UNIVERSITY

Object Fusion

Kalman Filter update step summary:

Fuse \hat{x}_S into \hat{x}_G , taking into account their uncertainties P_S and P_G

 $z = C\hat{x}_S$ (measurement: obtain only these variables that are actually

measured. C maps full state space to measured state space)

 $R = CP_SC^T$ (measurement error covariance; in measurement space)

RWTHAACHEN UNIVERSITY

Object Fusion

Kalman Filter update step summary:

Fuse \widehat{x}_S into \widehat{x}_G , taking into account their uncertainties P_S and P_G

 $z = C\hat{x}_S$ (measurement: obtain only these variables that are actually

measured. C maps full state space to measured state space)

 $R = CP_SC^T$ (measurement error covariance; in measurement space)

 $\widetilde{y} = z - C\widehat{x}_G$ (innovation: direction from G ("global") to S ("sensor"))

 $S = R + CP_GC^T$ (innovation error covariance: uncertainty of going into that

direction)

RWTHAACHEN UNIVERSITY

Object Fusion

Kalman Filter update step summary:

Fuse \hat{x}_S into \hat{x}_G , taking into account their uncertainties P_S and P_G

 $z = C\hat{x}_S$ (measurement: obtain only these variables that are actually measured. C maps full state space to measured state space)

 $R = CP_SC^T$ (measurement error covariance; in measurement space)

 $\widetilde{y} = z - C\widehat{x}_G$ (innovation: direction from G ("global") to S ("sensor"))

 $S = R + CP_GC^T$ (innovation error covariance: uncertainty of going into that

direction)

 $K = P_G C^T S^{-1}$ (Kalman gain: weight factor between staying at \hat{x}_G (K=0) or

going to measurement z (K=1))

 $\widehat{x}_G := \widehat{x}_G + K \widetilde{y}$ (fused state estimate: go along innovation direction according to Kalman gain)

RWTHAACHEN UNIVERSITY

Object Fusion

Kalman Filter update step summary:

Fuse \hat{x}_S into \hat{x}_G , taking into account their uncertainties P_S and P_G

 $z = C\hat{x}_S$ (measurement: obtain only these variables that are actually

measured. C maps full state space to measured state space)

 $R = CP_SC^T$ (measurement error covariance; in measurement space)

 $\widetilde{y} = z - C\widehat{x}_G$ (innovation: direction from G ("global") to S ("sensor"))

 $S = R + CP_GC^T$ (innovation error covariance: uncertainty of going into that

direction)

 $K = P_G C^T S^{-1}$ (Kalman gain: weight factor between staying at \hat{x}_G (K=0) or

going to measurement z (K=1))

 $\widehat{x}_G \coloneqq \widehat{x}_G + K \, \widetilde{y}$ (fused state estimate: go along innovation direction according

to Kalman gain)

 $P_G := (I - KC)P_G$ (fused state uncertainty; required for next time step)

RWTHAACHEN UNIVERSITY

Object Fusion

Kalman Filter update step summary:

Fuse \hat{x}_S into \hat{x}_G , taking into account their uncertainties P_S and P_G

 $\mathbf{z} = \mathbf{C}\widehat{\mathbf{x}}_{\mathcal{S}}$ (measurement: obtain only these variables that are actually

measured. C maps full state space to measured state space)

 $R = CP_SC^T$ (measurement error covariance; in measurement space)

 $\widetilde{y} = z - C\widehat{x}_G$ (innovation: direction from G ("global") to S ("sensor"))

 $S = R + CP_GC^T$ (innovation error covariance: uncertainty of going into that

direction)

 $K = P_G C^T S^{-1}$ (Kalman gain: weight factor between staying at \hat{x}_G (K=0) or

going to measurement z (K=1))

 $\hat{x}_G \coloneqq \hat{x}_G + K \tilde{y}$ (fused state estimate: go along innovation direction according

to Kalman gain)

 $P_G := (I - KC)P_G$ (fused state uncertainty; required for next time step)

