Speech Recognition

Speech recognition is hard...

Inherent ambiguity

"It's not easy to wreck a nice beach" vs

"It's not easy to recognize speech"

Pronunciation differences

"You say tomato, I say tomato"

In-user variability

How consistent are you, really?

Not to mention...

accents

Colloquialisms "jeet yet" "init"

noise

Homophonous Phrases

- "I scream, you scream, we all scream for ice cream!"
- "The boys are hoarse" and "The boy's a horse"
- "outstanding in the field" and "out standing in the field"
- "The good can decay many ways." and "The good candy came anyways."
- "The stuffy nose can lead to problems" and "The stuff he knows can lead to problems."
- "Some others I've seen." and "Some mothers I've seen."
- "Oh, say! can you see by the dawn's early light." "Jose can you see by the donzerly light?"

Speech Recognition Tasks

- Phones
- Words
- Sentences
- Meaning

Speech recognition as probabilistic inference

Goal: find the most likely word sequence, given a sound signal

$$P(words | signal) = \alpha P(signal | words) P(words)$$
Acoustic mode Language model

Phones

Phones are the smallest unit of language

English is derived from 40-50 phones

Phone determined by configuration of articulators (lips, teeth, tongue, etc.)

Phones

Phones are the smallest unit of language

English is derived from 40-50 phones

Phone determined by configuration of articulators (lips, teeth, tongue, etc.)

[iy]	b <u>ea</u> t	[b]	<u>b</u> et	[p]	<u>p</u> et
[ih]	b <u>i</u> t	[ch]	$\underline{\mathbf{Ch}}$ et	[r]	${f r}$ at
[ey]	b <u>e</u> t	[d]	${ m \underline{d}}$ ebt	[s]	<u>s</u> et
[ao]	bought	[hh]	${f h}$ at	[th]	${f th}$ ick
[ow]	b <u>oa</u> t	[hv]	${f h}$ igh	[dh]	${ m \underline{th}}$ at
[er]	B <u>er</u> t	[1]	${f l}$ et	[w]	$\underline{\mathbf{w}}$ et
[ix]	ros <u>e</u> s	[ng]	$si\mathbf{n}\mathbf{g}$	[en]	butt <u>on</u>
:	:	:	:	:	i .

E.g., "ceiling" is [s iy l ih ng] / [s iy l ix ng] / [s iy l en]

Speech Recognition: Task Layers

Speech Signal

- How do we recognize phones?
 - What is a speech signal anyway?

Speech Signal

Raw signal is the microphone displacement as a function of time; processed into overlapping 10ms frames, each described by features

Phone model

- Problem #1: Feature space
 - Say there are *n* features, each of which has 256 values… what is the problem here?

Phone model

- Problem #1: Feature space
- Solution:
 - Vector quantization: Divide feature space into some number of regions, named C1...C255, for example

Phone model

Problem #2: Phone state

Say the phone [t] a few times... what do you notice about the sound you produce?

Solution:

Three State Model

Phone Model

Problem #3: Co-articulation

Say the words "soft" and "sweet" a few times paying specific attention to the shape of your mouth... What do you notice about the "s" sound?

Solution:

Tri-Phone Model

Phone Model

Problem #3: Co-articulation

Say the words "soft" and "sweet" a few times paying specific attention to the shape of your mouth... What do you notice about the "s" sound?

Solution:

Phone Model Example

Phone HMM for [m]:

Output probabilities for the phone HMM:

Onset:	Mid:	End:
C1: 0.5	C3: 0.2	C4: 0.1
C2: 0.2	C4: 0.7	C6: 0.5
C3: 0.3	C5: 0.1	C7: 0.4

Modeling words

 Given phones, how could you model words? (a) Word model with dialect variation:

(b) Word model with coarticulation and dialect variations

Where do these models come from?

(a) Word model with dialect variation:

(b) Word model with coarticulation and dialect variations

Isolated Words

Phone models + word models give P(e_{1:t}|word) for isolated word

$$P(word \mid e_{1:t}) = \alpha P(e_{1:t} \mid word) P(word)$$

How do you find P(word)?

Continuous Speech

A sequence of isolated word recognitions?

- Challenges:
 - The sequence of most likely words is not the most likely sequence of words
 - segmentation

Language Model

 What is the prior probability of a sequence of words? P(w₁...w_n) =

Word	Unigram count	Previous words							
		of	in	is	on	to	from	model	agent
the	33508	3833	2479	832	944	1365	597	28	24
on	2573	1	0	33	2	1	0	0	6
of	15474	0	0	29	1	0	0	88	7
to	11527	0	4	450	21	4	16	9	82
is	10566	3	6	1	4	2	1	47	127
model	752	8	1	0	1	14	0	6	4
agent	2100	10	3	3	2	3	0	0	36
idea	241	0	0	0	0	0	0	0	0

Figure 15.21 A partial table of unigram and bigram counts for the words in this book.
"The" is the most common single word with a count of 33,508 (out of 513,893 total words).
The bigram "of the" is the most common, at 3,833. Some counts are higher than expected
(e.g. 4 for "on is") because the bigram counts ignore punctuation: one sentence might end
with "on" and the next begin with "is."

Putting it all together...

What are the states in the combined model?

How many states are there?

 How do we find the most likely sequence of words?

Inference Tasks

- Filtering: P(X_t|e_{0:t})
 - Decision making in the here and now
- Prediction: $P(X_{t+k}|e_{0:t})$
 - Trying to plan the future
- Smoothing: $P(X_k|e_{0:t})$ for $0 \le k \le t$
 - "Revisionist history" (essential for learning)
- Most Likely Explanation (MLE): argmax_{x1:t}P(x_{1:t}|e_{1:t})
 - e.g., speech recognition

Finding the most likely sequence of words

Find most likely sequence of states, then map to words

State of the Art?

- IBM's Via Voice
- DragonFly Naturally Speaking
- Integrated into Widows Vista... well sort of
- http://www.youtube.com/watch?
 v=kX8oYoYy2Gc

Applications of Speech Recognition

- IChef
- News at Seven on Stage
- Jackie

