CPU Registers

- Registers are temporary data storage inside the CPU
- The General Purpose Registers (GPR) are used for basic integer operations
 - These are the "architected" registers
 - Architected registers are visible to the assembly language programmer (and compiler)
- There are also special registers that we will identify later
- Registers are one type of operand
 - An operand is a reference to a data item needed by an instruction
 - Depending on the instruction, 1 to 3 operands may be needed

Structure of Registers

 The size of a register in a RISC-V processor is 64 bits

- Bit positions are numbered from 0 to 63
- LSB = least significant bit (bit 0)
- MSB = most significant bit (bit 63)
- Registers may only contain single numeric values:
 - Byte (8 bits)
 - Word (32 bits)

- Halfword (16 bits)
- Double Word (64 bits)

RISC-V Registers

- There are 32 general purpose registers (GPR)
- We will not use all of them
 - Some are reserved for special assembler functions
 - Others have special uses that we will not address
- Registers are numbered from 0 to 31
- Alternatively, registers have names for easier use in assembly language programming
 - References to registers in assembly language source programs use the name, not the number
 - The assembler will map the register name to its number in machine code

The Registers We Will Use

- t registers (t0 t6)
 - Can be used for any data values needed by instructions
 - "t" = temporary (values aren't not assumed preserved across subroutine calls more about his later)
- s registers (s0 s11)
 - Can also be used for any data values
 - "s" = saved (values that must be preserved across subroutine calls – more about this later)
- zero is actually register 0 and always contains the numeric value zero
 - Whenever zero is needed and for copying data values from one register to another; i.e. or t0, t1, zero
- a registers (a0 a7)
 - "a" = argument (used to pass values to subroutines and for system calls (e.g. end of program)

RISC-V Registers in RARS

- The registers in RARS are displayed in a window on the right of the screen
- There are 32 registers numbered 0 – 31 plus the PC register that is not numbered
- PC cannot be directly accessed from code
- Registers ra, sp, gp and tp will be discussed later

Name	Number	Value
zero	0	0x00000000000000000
ra	1	0x00000000000000000
sp	2	0x000000007fffeffc
gp	3	0x000000010008000
tp	4	0x00000000000000000
t0	5	0x0000000000000000
tl	6	0x00000000000000000
t2	·7	0x0000000000000000
s0	8	0x00000000000000000
sl	9	0x00000000000000000
a0	10	0x00000000000000000
al	11	0x0000000000000000
a2	12	0x00000000000000000
a3	13	0x00000000000000000
a4	14	0x00000000000000000
a5	15	0x00000000000000000
a6	16	0x00000000000000000
a7	17	0x0000000000000000
s2	18	0x00000000000000000
s 3	19	0x00000000000000000
s4	20	0x00000000000000000
s5	21	0x00000000000000000
s6	22	0x00000000000000000
s 7	23	0x0000000000000000
s 8	24	0x00000000000000000
s9	25	0x00000000000000000
s10	26	0x00000000000000000
sll	27	0x00000000000000000
t3	28	0x0000000000000000
t4	29	0x0000000000000000
t5	30	0x0000000000000000
t6	31	0x0000000000000000
pc		0x000000000400000

Program Counter Register

- A program resides in memory during execution.
 - the instructions that make up the program are read sequentially from memory by the CPU
- The program counter (PC) is a special register
 - also known as an instruction counter, instruction pointer, instruction address register or sequence control register.
 - part of the datapath
 - not directly accessible through programming
 - initialized by operating system when a program is loaded
 - used to access the instructions in memory during execution

Program Counter Register in RISC-V

- RISC-V instructions are always 4 bytes
 - the program counter increments by 4 after each instruction is read from memory
 - this is automatically done in the hardware
- After an instruction is read from memory, the PC is incremented immediately
 - PC value is then the address of the next instruction to be read from memory
 - While the PC value cannot be directly changed, its value can be altered through programming
 - Branches, subroutine calls and returns