Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

.96 31 Fso

3:

SUPPLEMENTAL REPORT

FEDERAL-STATE COOPERATIVE

SNOW SURVEYS AND IRRIGATION WATER FORECASTS

FOR OREGON

May 1, 1945

by

Division of Irrigation, Soil Conservation Service United States Department of Agriculture

and

Oregon Agricultural Experiment Station

* * * * * *

Oregon's 1945 water supply prospect has shown only slight change during the past month and this report, although presenting slight revisions in forecasts, is merely supplementary to that issued on April 1, 1945.

Mountain snow cover at low elevations has now largely disappeared. The higher elevations still retain a fair snow pack with parts of the Cascade Range bearing a near normal snow crop.

Total water stored in all reservoirs is 2-1/2 percent greater than of similar date last year, but is 15 percent less than in 1943, and 11 percent less than in 1942.

Precipitation accumulated in Oregon valleys since October 1 averages 88 percent of normal as compared with 76 percent of normal for the same period in 1944.

* * * * * *

Note: Data included in this report were obtained by the agencies named above in cooperation with the Oregon State Engineer, U. S. Forest Service, National Park Service and other Federal, State and local organizations.

The following revised run-off forecasts are based on mountain snow cover and on the assumption that precipitation and temperature during the remaining run-off season will be approximately normal. Appreciable deviations from normal of temperature and/or precipitation, especially during May or June, will correspondingly modify these forecasts.

			cy as of Ma	
Area	Stream	Acre Feet	As % of Avg. 1929-43	As % of Last Year
Northcentral	White River below Tygh Valley at Sta. 3613	76,000	56	87
Umatilla- Walla Walla	McKay Creek above McKay Reservoir (2213) S. Fk. Walla Walla River near	26,000	109	99
	Milton (214) Umatilla R. at Pendleton (223)	59,000 150,000	91 a 102	106 122
Northeastern	Grande Ronde River near LaGrande (1816) Hurricane Cr. nr. Joseph (1814) Imnaha River at Imnaha (172) Lostine R. near Lostine (1810) Powder River at Salisbury (152) Wallowa R., E. Fk. (1822+1823)	125,000 33,000 175,000 96,000 40,000 8,000	83 86 71 90 80 86	134 101 92 107 150
Eastern	Malheur River, Middle Fork, near Drewsey (1320) Malheur River, North Fork, at Beulah (139)	55,000 45,000	96	202 b
Harney Basin	Silvies R. near Burns (966)	47,000	76	209
Central	Crescent Lake Net Inflow	5,500	50	b
Southcentral	Chewaucan R. nr. Paisley (924) Deep Creek abv. Adel (9127)	40,000 c 35,000 c	76 70 a	119 87
Klamath Basin	Clear Lake Reservoir Net Inflow Gerber Reservoir Net Inflow Upper Klamath Lake Net Inflow	112,000 e 50,000 e 392,000	101 f 95 f 98	205 238 99
Southern	Fourmile Lake Net Inflow Rogue River, N. Fk., above Prospect (722)	6,100 250,000	91 g 91	ъ 105
Willamette Valley	Willamette R., Mid Fk., at Eula (512)	650,000	86	117

a - 1932-43

b - Not available

c - April-June, incl.,

rather than April-Sept.

d - 1930-43 average

e - Stream year 1944-45 f - 1905-43 average

g - Excl. 1931

TOTAL STATE STATE · va and in the control of the contr (a) a marting as a second The second secon 11/47 2000 - 30 是我们的一个大大概要要是 TOTAL THE TOTAL OF The second secon The second second makes and the second second 41,14 A Section of the sect we But have been afternoon West of the second 1.04 .4.10 1487 190,005 0000 大· 14.17 (1.4.15) (1.4.15) 我们的"一个"的意思的"一个"。 电电子电影 医电子 . 3 -The state of the

STATUS OF RESERVOIR STORAGE AS OF MAY FIRST

In the following tabulation, water storage in acre feet in important Oregon reservoirs as of about May 1, 1945, is compared with storage as of approximately the same date in 1944, 1943, 1942, and with 10 yr. average, 1935-44.

	ı		ı										-	3											
	10-yr .Avg.	1935-44	54,253c	236,580b	46,710		3,064e	39,217	36,419	56,9368	8,159		5,553	9,883h	67,112b	806 6	59,673	27,919	q160°969	17,400i	22,486	524,460f	25,210	144,975	ı
ခုဒ္	About	5-1-42	62,300	315,860b	49,700	1	No report	30,780	23,000a	No report	8,248	54,890b	4,182a	5,567	65,210b	10,380	71,770	36,470	716,000b	17,400	24,310	550,200f	39,430	192,000	ŧ
Acre Feet in Storage	About	5-1-43	58,440	383,931b	49,250	33 32 Ob	No report	48,860	40,050	No report	8,318	104,000b	7,328	11,850	74,690b	15,430a	71,820	46,520	715,000b	17,400	.25,120	544,800f	31,390	184,400	18,710
Acre	About	5-1-44	52,980	302,940b	49,800	31,940b	No report	49,850	53,540	49,560	8,342	50,470b	7,070	12 ,080a	57,236b	9,567	71,300	26,240	603,710b	17,400	18,340	444,600f	33,760	150,200	17,350
	About	5-1-45	60,200	293,340b	47,000	28,300b	3,685	35,130	35,950	000,09	8,220	d009,68	4,555	06266	70,340b	6,330	71,300	17,760	715,000b	17,400	19,750	383,440f	13,670	120,300	63,800
	Capacity	Acre Ft.	000 09	440°240b	50,000	30,000b	4,160	50,000	80,000	62,500	8,200	95,000b	7,720	14,000d	94,000b	16,000d	74,000	46,000	715,000b	17,400	25,260	583,900f	40,920	190,000	180,000
	Stream	Basin	Malheur	Lost River	Umatilla	Willamette	Goose Lake	Deschutes	Deschutes	Goose Lake	Rogue	Willamette	Rogue	Klamath	Klamath	Klama th	Umatilla	Crooked	Owyhee	Powder	Burnt	Klamoth	Wallowa	Ma lheur	Deschutes
	Storage	Reservoir	Agency Valley	Clear Lake	Cold Springs	Cottage Grove	Cottonwood	Crane Prairie	Crescent Lake	Drew Creek	Emigrant Gap	Fern Ridge	Fish Lake	Fourmile Lake	Gerber	Hyatt Prairie	Mc Kay	Ochoco	Owyhee	Thief Valley	Unity	Upper Klamath	Wallowa Lake	Warmsprings	Wickiup

a - Estimated b - Available for use c - Excl. 1935

e - Excl. 1942, 143, 144 f - Based on gage zero elevation 4135.0 d - By ditch to Rogue River side

g - Excl. 1942, 143 h - Excl. 1936, 137 i - 1941-44

STATUS OF VALLEY PRECIPITATION AS OF OCTOBER 1 TO DATE

Month	Oct.	Nov •	Dec•	Jan•	Feb•	Mar •	Apr •	Period
Section	P D	P D	P D	P D	P D	P D	P D	P D
S. E. S. C. N. C. Col. Riv. Wal. Mts. Blue Mts. Southern	0.29 -0.39 0.86 -0.11 0.72 -0.04 0.44 -0.56 0.74 -0.70 0.61 -0.76 1.69 -0.32 1.59 -2.57	1.80 +0.92 2.76 +0.95 1.45 -0.10 1.56 -0.12 1.54 -0.31 1.66 -0.08 3.42 -0.04 5.90 -1.99	1.00 -0.17 1.20 -0.92 0.91 -0.52 0.72 -0.95 0.52 -0.86 0.87 -0.96 1.28 -2.56 3.12 -5.38	1.08 -0.23 1.06 -0.76 1.18 -0.25 1.51 -0.12 1.91 -0.20 2.17 -0.17 2.33 -1.21 6.74 -0.93	1.40 +0.35 2.42 +0.83 1.70 +0.36 1.67 +0.32 1.92 -0.25 2.54 +0.53 4.96 +1.99 8.46 +2.07	1.45 +0.56 1.24 0 0.73 -0.24 1.48 +0.35 1.76 +0.15 2.04 +0.20 2.82 +0.54 8.37 +2.65	0.1 -0.7 0.4 -0.8 0.5 -0.4 1.0 0 1.3 -0.2 1.2 -0.1 1.0 -0.8 4.1 +0.3	7.12 -0.22 9.94 -0.01 7.19 -1.19 8.38 -1.08 9.69 -2.37 11.09 -1.34 17.50 -2.40 38.28 -5.85
Area	0.87 -0.68	2.51 -0.10	1.20 -1.54	2 2 5 -0 48	3.13 +0.78	2 49 +0.53	1.2 -0.3	13.65 -1.81

D - Inches departure from normal. P - Inches precipitation.

S. E. - Southeastern Oregon range lands, Harney and Malheur Counties.

S. C. - Southcentral Oregon range lands, Lake County and Klamath County, except the Cascade Mountains. N.C. - Northcentral Oregon wheat and range lands, Crook, Deschutes, Jefferson, Wheeler and part of

Col. Riv. - Columbia River area, wheat and range lands, Gilliam, Morrow, Sherman, Wasco and part of

Umatilla Counties.

Blue Mts. - The Blue Mountain forest and range area, Union and parts of Baker, Grant and Umatilla Counties. Wal. Mts. - Wallowa Mountain area, forest and range lands, Wallowa and part of Baker County. - Southern Oregon irrigated section, Jackson and Josephine Counties. Southern

Willamette - Parts of Polk, Benton, Yamhill, Washington, Lane and all of Linn, Marion, Clackamas and

Multnomah Counties.

for earlier months have been corrected to include all the stations in Climatological Data for the area. Data for the last month shown above are preliminary, as they are based on a few stations only. Data

From the second The world distribution of the second of the 9 (r 5) ... 4 1 1 1 • : A THE PARTY OF THE \$100 miles | 100 m 45. 45. 45. The second secon ` 1

						•	5 =
1	Yrs. of rec-			വയ			10 to
R MEASUREMENTS Average Water Depth (Inches)	Avg.for past yrs.of record			43.8			47.5
ITS er Depth	Two Years Ago (5-1-43)			1 I			63.5 45.5
SNOW COVER MEASUREMENTS 5 Average Water	One One Two Avg.for Month Year Years past Ago Ago Ago Yrs.of (4-1-45)(5-1-44)(5-1-43) record			43.3			2.62
COVER M	One Month Ago (4-1-45)	표 5 V		47.1	M		49.2
194	Avg. Water Depth (In.)	DRAIN		58.8	5 V N I		50.2
About May 1,	Avg. Snow Depth (In.)			128.4	전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전		112.8 84.5
About	Date	V M B I A		4-30	C O A S H		4-27
	Elev.	COLU		5600			6450 6018
zi	Rang e	লা লা		9E 8 <u>1</u> E	田 (S)		9 9 9
LOCATION	Oregon Number Sec. Twp. Range	LOW		38 38	W	INS	31S 31S
리	လ မိလ			6 25		E BAS	19
				452		MATH LAK	838
TRIBUTARY BASINS	(Primary & Secondary & Snow Courses)		SANDY RIVER	Phlox Point-Mt. Hood Still Creek		ROGUE RIVER & KLAMATH LAKE BASINS	Park Headquarters Annie Spring

