

이론, 실습, 시뮬레이션 디지털논리회로

Chapter 10. 카운터

학습목표 및 목차

- 비동기식 카운터의 동작을 이해하고 설계할 수 있다.
- 동기식 카운터의 동작을 이해하고 설계할 수 있다.
- 링 카운터와 존슨 카운터의 동작을 이해하고 응용할 수 있다.
- · IC 카운터를 이용하여 다양한 형태의 카운터를 설계할 수 있다.
- 카운터의 주요 응용으로서 디지털 시계와 주파수 카운터의 동작 원리를 이해할 수 있다.

01. 비동기식 카운터

02. 동기식 카운터

03. 기타 카운터

04. IC 카운터

05. 카운터의 응용

- 비동기식 카운터는 첫 번째 플립플롭의 *CP* 입력에만 클록펄스가 입력되고, 각 플립플롭의 출력을 다음 플립플롭의 *CP* 입력으로 사용한다.
- 플립플롭의 출력 전이가 다음 플립플롭을 트리거시킨다.
- 비동기식 카운터는 리플(ripple) 카운터라고도 부른다.
- 카운터에서 구별되는 상태의 수가 m일 때 modulo-m(간단히 mod-m; m 진)의 카운터이다.
- 비동기식 카운터는 JK 플립플롭 또는 T 플립플롭을 사용하여 구성한다.
- 카운터는 상향 카운터(up counter)와 하향 카운터(down counter)가 있다.

1. 비동기식 상향 카운터

■ 4비트 2진 상향 카운터

클록펄스	Q_D	Q_C	Q_B	Q_A	10진수
1	0	0	0	0	0
2	0	0	0	1	1
3	0	0	1	0	2
4	0	0	1	1	3
5	0	1	0	0	4
6	0	1	0	1	5
7	0	1	1	0	6
8	0	1	1	1	7
9	1	0	0	0	8
10	1	0	0	1	9
11	1	0	1	0	10
12	1	0	1	1	11
13	1	1	0	0	12
14	1	1	0	1	13
15	1	1	1	0	14
16	1	1	1	1	15

- 각 플립플롭은 클록펄스의 하강에지에서 변화한다.
- ullet Q_A 에서는 입력 클록 주파수의 1/2, Q_B 에서는 1/4, Q_C 에서는 1/8, Q_D 에서는 1/16의 주파수를 갖는 구형파가 얻어진다.

■ 비동기식 계수기의 동작속도

$$f_{\max} \le \frac{1}{n \times t_{pd}}$$

 f_{\max} : 최대 클록 주파수, n : 플립플롭 수, t_{pd} : 플립플롭 당 전파지연시간

예를 들어, t_{pd} =20ns, 플립플롭의 수가 4개인 4비트 2진 비동기식 카운터를 설계할 경우 클록 주파수는 12.5[MHz] 이하이어야 한다.

$$f_{\text{max}} \le \frac{1}{n \times t_{pd}} = \frac{1}{4 \times 20 \times 10^{-9}} = 12.5 \text{MHz}$$

2. 비동기식 하향 카운터

클록펄스	Q_D	Q_C	Q_B	Q_A	10진수
1	1	1	1	1	15
2	1	1	1	0	14
3	1	1	0	1	13
4	1	1	0	0	12
5	1	0	1	1	11
6	1	0	1	0	10
7	1	0	0	1	9
8	1	0	0	0	8
9	0	1	1	1	7
10	0	1	1	0	6
11	0	1	0	1	5
12	0	1	0	0	4
13	0	0	1	1	3
14	0	0	1	0	2
15	0	0	0	1	1
16	0	0	0	0	0

3. 상승에지에서 동작하는 비동기식 카운터

■ 4비트 2진 상향 카운터(상승에지 트리거)

4. 비동기식 상향/하향 카운터

- S=0으로 하면 MUX의 입력 D_0 와 출력 F가 연결 : 상향 카운터
- S=1로 하면 MUX의 입력 D_1 과 출력 F가 연결 : 하향 카운터

<비동기식 4비트 상향/하향 카운터>

5. 비동기식 modulo-m 카운터

- 비동기식 10진 카운터(BCD 카운터, decade counter)
 - 0에서 9까지의 카운트를 반복
 - BCD 카운터를 구성하려면 4개의 플립플롭이 필요
 - 16개의 상태 중에서 10개의 상태만을 사용

클록펄스	Q_D	Q_C	Q_B	Q_A	10진수
1	0	0	0	0	0
2	0	0	0	1	1
3	0	0	1	0	2
4	0	0	1	1	3
5	0	1	0	0	4
6	0	1	0	1	5
7	0	1	1	0	6
8	0	1	1	1	7
9	1	0	0	0	8
10	1	0	0	1	9

<상태표>

- 카운터 출력이 [목표하는 최고 카운트]+1에 도달한 순간을 포착하여 모든 플립 플롭을 0으로 Clear
- lacktriangle Q_D 출력을 NAND 게이트로 결합하고 그 출력을 모든 플립플롭이 clear 입력에 연결

■ 4자리 10진 카운터의 블록도

■ 4자리 10진수인 0000~9999까지 카운트할 수 있는 카운터

6. 프리세트 카운터

• 0보다 큰 수로부터 카운터를 시작할 수 있다.

■ LOAD=0 : 정상적인 상향 카운터로 동작

• LOAD=1 : 프리세트 입력으로 초기화($P_DP_CP_BP_A=0110$ 이면, $Q_DQ_CQ_BQ_A=0110$)

■ $Q_DQ_CQ_BQ_A$ =0000일 때에 한해서 NOR 게이트의 출력 즉, LOAD=1이 되고, 기타의 경우에는 출력이 0이 된다. 따라서 $P_DP_CP_BP_A$ =0110으로 설정하고 카운터가 계수를 하여 $Q_DQ_CQ_BQ_A$ =0000 이 되는 순간 카운터의 출력은 0110으로 프리세트된다.

❖ Modulus 설정방법

n: 카운터에서 플립플롭의 수

- 플립플롭에서의 전파지연 t_{PD} 인 경우 n개의 플립플롭을 종속 연결한 비동기식 카운터의 전체 전파지연은 $n \times t_{PD}$ 가 된다.
- 이러한 지연 때문에 입력 클록펄스를 모든 플립플롭에 공통으로 인가하는 동 기식 카운터를 사용

1. 2비트 동기식 2진 카운터

현재	상태	다음	상태	플립플롭 입력					
Q_B	Q_A	Q_B	Q_A	J_B	K_B	J_A	K_A		
0	0	0	1	0	×	1	×		
0	1	1	0	1	×	×	1		
1	0	1	1	×	0	1	×		
1	1	0	0	×	1	×	1		

<상태도>

<상태 여기표>

<카르노 맵>

<2비트 동기식 2진 카운터 회로 및 타이밍도>

2. 3비트 동기식 2진 카운터

■ JK 플립플롭을 사용하여 설계

<3비트 동기식 2진 카운터의 상태도>

흔	재 상	태	Cl	음상	태	플립플롭 입력						
Q_C	Q_B	Q_A	Q_C	Q_B	Q_A	J_C	K_C	J_{B}	K_{B}	J_A	K_{A}	
0	0	0	0	0	1	0	X	0	X	1	X	
0	0	1	0	1	0	0	×	1	X	X	1	
0	1	0	0	1	1	0	X	×	0	1	X	
0	1	1	1	0	0	1	×	×	1	X	1	
1	0	0	1	0	1	×	0	0	×	1	X	
1	0	1	1	1	0	×	0	1	×	X	1	
1	1	0	1	1	1	×	0	×	0	1	X	
1	1	1	0	0	0	×	1	X	1	X	1	

<3비트 동기식 2진 카운터 회로 및 타이밍도>

3. 4비트 동기식 2진 카운터

■ JK 플립플롭을 사용하여 설계

<4비트 동기식 2진 카운터의 상태도>

	현재	상타			다음	상타	1			플	립플	롭 인	J력		
Q_D	Q_C	Q_B	Q_A	Q_D	Q_C	Q_B	Q_A	J_D	K_D	J_C	K_C	J_B	K_B	J_A	K_A
0	0	0	0	0	0	0	1	0	×	0	×	0	×	1	×
0	0	0	1	0	0	1	0	0	×	0	×	1	×	×	1
0	0	1	0	0	0	1	1	0	×	0	×	×	0	1	×
0	0	1	1	0	1	0	0	0	×	1	×	×	1	×	1
0	1	0	0	0	1	0	1	0	×	×	0	0	×	1	×
0	1	0	1	0	1	1	0	0	×	×	0	1	×	×	1
0	1	1	0	0	1	1	1	0	×	×	0	×	0	1	×
0	1	1	1	1	0	0	0	1	×	×	1	×	1	×	1
1	0	0	0	1	0	0	1	×	0	0	×	0	×	1	X
1_	0	0	1	1	0	1	0	×	0	0	×	1	×	×	1
1	0	1	0	1	0	1	1	×	0	0	×	×	0	1	×
1	0	1	1	1	1	0	0	×	0	1	×	×	1	×	1
1	1	0	0	1	1	0	1	×	0	×	0	0	×	1	×
1	1	0	1	1	1	1	0	X	0	×	0	1	×	×	1
1_	1	1	0	1	1	1	1	X	0	×	0	×	0	1	×
1	1	1	1	0	0	0	0	X	1	X	1	X	1	X	1

$$J_D = Q_C Q_B Q_A$$

Q_B	Q_A			
Q_DQ_C	00	01	11	10
00	Χ	Χ	Χ	Χ
01	Χ	Х	X	Χ
11			1	
10				

$$K_D = Q_C Q_B Q_A$$

$$K_C = Q_B Q_A$$

\boldsymbol{J}	R	=	Q_A
	D		\sim A

$$K_B = Q_A$$

$$K_A = 1$$

<탁이밍도>

〈4비트 동기식 2진 카운터의 상태표〉

클록펄스	Q_D	Q_C	Q_{B}	Q_A	10 진수
1	0		000	0	0
2	0 0	0 0	0	(1)	1
2 3	0	0	1 4	0	2
4	0	0	1	1)	2 3
4 5 6	0	1 🚽	0	0	4
	0	1	0	1	4 5 6 7
7	0	1	1	0	6
8 9	0	1	1	1)	
9	1 🚽	0	0	0	8 9
10	1	0 0	0	1	
11	1	0	1 🚽	0	10
12	1	0	1	1	11
13	1	1 🛂	0	0	12
14	1	1	0	1	13
15	1	1	1	0	14
16	1 7	1	1	1	15
17	0	0	0	0	0

■ n비트 동기식 2진 카운터

- 상태표로부터 플립플롭의 입력함수를 추정할 수 있다.
- 하위의 모든 출력이 1일 때, 각 출력은 0은 1로, 1은 0으로 변화한다.
- 토글동작이 필요할 때, J와 K 입력은 모두 1이 되어야 한다.
- 따라서 플립플롭의 입력 함수는 간단하게 하위비트의 논리적 AND이다.

$$J_A = K_A = 1$$

$$J_B = K_B = Q_A$$

$$J_C = K_C = Q_B Q_A$$

$$J_D = K_D = Q_C Q_B Q_A$$

$$J_E = K_E = Q_D Q_C Q_B Q_A$$

$$J_F = K_F = Q_E Q_D Q_C Q_B Q_A$$

- 4. 동기식 BCD 카운터
- 동기식 BCD 카운터의 상태도

■ 동기식 BCD 카운터의 상태 여기표

■ 자리 올림수 출력 C는 BCD 카운터의 계수가 9(1001)가 되었을 때 논리 1이 되도록 한다.

	현재	상태			다음	상태		플립플롭 입력						출력		
Q_D	Q_C	Q_B	Q_A	Q_D	Q_C	Q_B	Q_A	J_D	K_D	J_C	K_C	J_B	K_B	J_A	K_{A}	C
0	0	0	0	0	0	0	1	0	×	0	×	0	×	1	×	0
0	0	0	1	0	0	1	0	0	×	0	×	1	×	×	1	0
0	0	1	0	0	0	1	1	0	×	0	×	×	0	1	×	0
0	0	1	1	0	1	0	0	0	×	1	×	×	1	×	1	0
0	1	0	0	0	1	0	1	0	×	×	0	0	×	1	×	0
0	1	0	1	0	1	1	0	0	×	×	0	1	×	×	1	0
0	1	1	0	0	1	1	1	0	×	×	0	×	0	1	×	0
0	1	1	1	1	0	0	0	1	×	×	1	×	1	×	1	0
1	0	0	0	1	0	0	1	×	0	×	×	0	×	1	×	0
1	0	0	1	0	0	0	0	×	1	0	×	0	×	×	1	1

■ 카르노 맵

■ 동기식 BCD 카운터 회로도

$$J_A = 1$$
 $J_B = \overline{Q}_D Q_A$ $J_C = Q_B Q_A$ $J_D = Q_C Q_B Q_A$ $K_A = 1$ $K_C = Q_D Q_A$ $K_C = Q_D Q_A$ $K_C = Q_D Q_A$

5. 3비트 동기식 2진 상향/하향 카운터

■ 외부 입력 *x*=0 : 증가 카운터

■ 외부 입력 *x*=1 : 감소 카운터

■ 3비트 동기식 상향/하향 카운터의 상태도

■ 3비트 동기식 상향/하향 카운터의 상태 여기표

현재 상태	입력	다음 상태			플립플	롭입력		
$Q_CQ_BQ_A$	x	$Q_CQ_BQ_A$	J_C	K_C	J_B	K_B	J_A	K_A
0 0 0	0	0 0 1	0	×	0	×	1	×
0 0 0	1	1 1 1	1	×	1	×	1	×
0 0 1	0	0 1 0	0	×	1	×	×	1
0 0 1	1	0 0 0	0	×	0	×	×	1
0 1 0	0	0 1 1	0	×	×	0	1	×
0 1 0	1	0 0 1	0	×	×	1	1	×
0 1 1	0	1 0 0	1	×	×	1	×	1
0 1 1	1	0 1 0	0	×	×	0	×	1
1 0 0	0	1 0 1	×	0	0	×	1	×
1 0 0	1	0 1 1	×	1	1	×	1	×
1 0 1	0	1 1 0	×	0	1	×	×	1
1 0 1	1	1 0 0	×	0	0	×	×	1
1 1 0	0	1 1 1	×	0	×	0	1	×
1 1 0	1	1 0 1	×	0	×	1	1	×
1 1 1	0	0 0 0	×	1	×	1	×	1
1 1 1	1	1 1 0	×	0	×	0	×	1

02 동기식 카운터

■ 카르노 맵

		_	_		
I –	$=Q_BQ_B$	$r \perp$	Ω	$\boldsymbol{\Omega}$	v
J_C –	$\mathcal{L}_B\mathcal{L}_A$	11	$\boldsymbol{\mathcal{L}}_{B}$	$\mathbf{\mathcal{L}}_{A}$	л

Q_CQ_B Q_A	<i>x</i> 00	01	11	10
00	Χ	X	Х	Χ
01	Χ	Х	Χ	X
11				1
10		1		

T/	$=Q_BQ_A$		$\boldsymbol{\cap}$	$\boldsymbol{\Omega}$
K ~ =	= ()_()	x +	-()_	() X
1 C	$\mathbf{z}_{B}\mathbf{z}_{A}$	4 20 1	$\sim E$	$3 \geq A^{\mathcal{N}}$
_			_	

$\ \ Q_A$	X				
Q_CQ_B	00	01	11	10	
00		1		1	
01	Χ	Х	X	Х	
11	Х	Х	Х	Х	
10		1		1	

$$J_B = Q_A \bar{x} + \overline{Q}_A x$$

Q_CQ_B Q_A	<i>x</i> 00	01	11	10
00	Χ	X	Х	X
01		1		1
11		1		1
10	Х	X	Х	X

$$K_B = \overline{Q_A x} + \overline{\overline{Q}_A x}$$

$$J_A = 1$$

$$K_A = 1$$

02 동기식 카운터

■ 3비트 동기식 2진 상향/하향 카운터의 회로도

$$J_{A} = 1$$

$$J_{B} = Q_{A} \overline{x} + \overline{Q}_{A} x$$

$$J_{C} = Q_{B} Q_{A} \overline{x} + \overline{Q}_{B} \overline{Q}_{A} x$$

$$K_{A} = 1$$

$$K_{B} = Q_{A} \overline{x} + \overline{Q}_{A} x$$

$$K_{C} = Q_{B} Q_{A} \overline{x} + \overline{Q}_{B} \overline{Q}_{A} x$$

02 동기식 카운터

6. 주파수 분할

1. 링 카운터

- 임의의 시간에 한 개의 플립플롭만 논리 1이 되고 나머지 플립플롭은 논리 0이 되는 카운터
- 논리 1은 입력펄스에 따라 그 위치가 한쪽 방향으로 순환

■ 상태도

■ 상태 역기표

5	현재 상태			다음 상태				플립플	롭입력	1	
Q_A	Q_B	Q_C	Q_D	Q_{A}	Q_B	Q_C	Q_D	D_A	D_B	D_C	D_D
1	0	0	0	0	1	0	0	0	1	0	0
0	1	0	0	0	0	1	0	0	0	1	0
0	0	1	0	0	0	0	1	0	0	0	1
0	0	0	1	1	0	0	0	1	0	0	0

■ 카르노 맵

$$D_A = Q_D$$

Q_CQ_D						
Q_AQ_B	00	01	11	10		
00	Χ		Χ			
01		Χ	Χ	Χ		
11	X	Χ	Χ	X		
10	1	Χ	Χ	X		
		D_B =	$=Q_A$			

$$D_D = Q_C$$

- 처음에 INIT 단자를 논리 0으로 하면 첫 번째 플립플롭만 출력이 1이 되고, 나머지 플립플롭의 출력은 0이 된다. INIT 단자를 다시 논리 1로 하면 링 카운터의 최초의 출력은 $Q_AQ_BQ_CQ_D=1000$ 이다.
- 이후부터 클록펄스가 입력될 때마다 클록펄스의 상승에지에서 오른쪽으로 한 자리씩 이동을 하며, Q_D 의 출력은 다시 D_A 로 입력된다.

$$D_A = Q_D$$

$$D_B = Q_A$$

$$D_C = Q_B$$

$$D_D = Q_C$$

■ 링 카운터 응용: 커피 자판기(Vending Machine)

동작순서

[단계 1] 동전이 들어오는 것을 기다린다.

[단계 2] 동전을 확인하고 적절한 잔돈을 돌려준다.

[단계 3] 선택스위치(블랙, 크림, 및 설탕)을 읽어라.

[단계 4] 공급창(커피를 빼내는 곳)에 종이컵을 떨어뜨린다.

[단계 5] ○ 종이컵에 인스턴트 커피를 붓는다.

[단계 6] 선택된([단계 3])대로 크림이나(과) 설탕을 추가하라.

[단계 7] 컵에 뜨거운 물을 붓는다.

[단계 8] 물, 커피, 크림 및 설탕이 적절히 공급되었는지를 검사한다. 만약 적으면 적당한 메시지를 보이게 한다.

[단계 9] [단계 1]로 간다.

■ 처음에 \overline{CLR} 를 논리 0으로 하여 Q_A =1이 되고 Q_B = Q_C =... Q_H =0이 된다. 이제 \overline{CLR} 를 논리 1로 한다.

<링 카운터를 응용한 커피자판기 동작도>

2. 존슨 카운터

- n개의 플립플롭으로 구성된 링 카운터는 n 가지의 서로 다른 상태를 출력
- 존슨 카운터는 2n 가지의 서로 다른 상태를 출력

<4비트 존슨 카운터의 상태표 >

클록펄스	Q_A	Q_B	Q_C	Q_D	10진수
1	1	0	0	0	8
2	1	1	0	0	12
3	1	1	1	0	14
4	1	1	1	1	15
5	0	1	1	1	7
6	0	0	1	1	3
7	0	0	0	1	1
8	0	0	0	0	0

존슨 카운터의 단점은 사용되지 않는 초기상태가 주어지면 사용되지 않는 계수의 순서만이 계속하여 반복하게 된다. 이 단점은 회로에서 세 번째 플립플롭의 입력을 다음 불 함수로 수정하면 해결할 수 있다.

$$D_C = (Q_A + Q_C)Q_B$$

1. IC 비동기식 카운터

■ 7493(4bit binary counter)

- 2진 카운터와 8진 카운터가 독립적으로 내장
- lacktriangle 2진 카운터 : 클록 입력은 $Input\ A$ 이고 출력은 Q_A
- lacktriangle 8진 카운터 : 클록 입력은 $Input\ B$ 이고 출력은 $Q_DQ_CQ_B$
- 16진 카운터 : 클록 입력을 $Input\ A$ 에 넣고, Q_A 를 $Input\ B$ 에 연결하고 출력은 $Q_DQ_CQ_BQ_A$ 에서 얻는다.

<7493 핀 배치도>

■ 7492(divide-by-twelve counter)

- 2진 카운터(mod-2)와 6진 카운터(mod-6)가 독립적으로 내장
- 사용법은 7493에 준한다.

■ 7490(decade counter)

- 2진 카운터(mod-2)와 5진 카운터(mod-5)가 독립적으로 내장
- 사용법은 7493에 준한다.

<7492 핀 배치도>

<7490 핀 배치도>

2. IC 동기식 카운터

- 74163(synchronous presettable mod-16 counter with asynchronous clear)
 - 74163은 4비트 동기식 2진 카운터
 - 4개의 D 플립플롭으로 구성되며, 4 비트의 병렬입력과 병렬출력이 있다.

\overline{CLEAR}	\overline{LOAD}	ENP, ENT	기 능
0	×	×	플립플롭이 clear된다.
1	0	×	병렬입력이 수행된다.
1	1	0	불변상태가 된다.
1	1	1	카운터가 동작한다.

<74163 핀 배치도>

<74163 카운터의 동작표>

- 카운터가 마지막 상태인 15(1111₂)가 되면 *RCO*는 논리 1이 된다.
- *ENP*와 *ENT* 입력 및 *RCO* 출력은 더 높은 계수순서를 갖는 카운터를 설계할 때 사용

<8비트 카운터>

■ mod-*m* 카운터로 사용 가능

<5에서 15까지 카운트하는 mod-11 카운터>

mod-13 카운터>

- 74162(synchronous presettable BCD counter with asynchronous clear)
 - 핀 기능, 동작, 사용법 등은 74163과 같다.
 - 74163은 4비트 동기식 16진 카운터이지만, 74162는 4비트 10진 동기식 카운터
- 74161(synchronous presettable mod-16 counter with asynchronous clear)
 - 핀 기능, 동작, 사용법 등이 74163과 같은 presettable 16진 동기식 상향 카운 터이다. 또한 비동기적인 클리어 입력을 갖는다.
- 74160(synchronous presettable BCD counter with asynchronous clear)
 - 74160은 74161과 동일한 입력과 출력을 가지며, 74161은 4비트 동기식 16진 카운터이지만, 74160은 4비트 10진 동기식 카운터이다.

■ 74169(Synchronous presettable up/down mod-16 counter)

- 16진 상향/하향 동기식 카운터이다.
- 제어입력 U/\bar{D} 를 논리 1로 하면 상향 카운터,0으로 하면 하향 카운터로 동작
- 프리세트 데이터 입력 DCBA는 \overline{LOAD} 를 논리 0으로 할 때 클록펄스의 상승 에지에서 출력을 프리세트시킨다. 카운트가 일어나려면 ENP와 ENT가 둘 다 논리 0으로 되어야 한다.
- 출력 Q_D , Q_C , Q_B , Q_A 가 상향 모드 시에는 1111, 하향 모드 시에는 0000에 도달하면 RCO(ripple carry output)가 논리 0이 된다.

<74169 핀 배치도>

- 74168(synchronous presettable up/down BCD counter)
 - 10진의 단일 modulus를 가지며 동작은 74169에 준한다.
- 74190(presettable synchronous up/down BCD counter)
 - 핀 기능, 동작, 사용법 등이 74163과 같은 presettable 16진 동기식 상향 카운 터이다. 또한 비동기적인 클리어 입력을 갖는다.

\overline{LOAD}	\overline{CTEN}	DN/UP	기 능
0	×	×	증가 카운터로 동작한다.
1	0	×	감소 카운터로 동작한다.
1	1	0	병렬입력이 수행된다.
1	1	1	불변상태가 된다.

<74190의 동작표>

<74190 핀 배치도>

- 74191(presettable synchronous up/down mod-16 counter)
 - 74191은 4비트 16진 상향/하향 동기식 카운터로서 핀 배치도는 74190과 같다.
 - *CTEN*=0이면 계수가능 상태이고, 1이면 계수정지 상태가 된다.
 - D/\overline{U} =0이면 상향 카운터로 동작하고, 1이면 하향 카운터로 동작한다.
 - 이 외의 모든 동작은 74190에 준한다.

1. 디지털 시계

■ 발진회로

- 디지털 시계에 안정적인 클록(clock)을 제공할 목적으로 설계되는 회로
 - 첫 번째 방법: 가정용 220[V] 전원의 안정된 60Hz의 주파수를 이용
 - 두 번째 방법: CR 발진회로를 이용하는 방법
 - 세 번째 방법 : 수정 발진자(crystal oscillator)를 사용하는 방법

■ 분주회로

■ 발진회로로부터 얻어진 구형파를 이용하여 디지털 시계의 기본 단위인 1초를 나타내기 위한 1Hz 주파수를 얻는 회로

<60Hz 정현파에서 1Hz 구형파를 얻는 회로>

<시 단위의 카운터, 디코더 및 드라이브 회로>

〈디지털 시계의 전체 회로도〉

2. 주파수 카운터

- 임의의 주기적인 파형의 주파수(frequency)를 측정하는 디지털 기기
- 측정 주파수는 $Frequency = \frac{Counter\ Output}{t}$
- *t*=1초이면 표시된 수치가 곧 주파수가 된다.
- *t*=10초이면 소수점을 한 자리 높인다.
- *t*=0.1초이면 소수점을 한 자리 낮춘다.

〈주파수 카운터의 블록도〉

감사합니다 ☺

