Professional Evaluation and Growth Plan

Jordan C Hanson, PhD

September 22, 2018

Contents

1	Intr	roduction	5
	1.1	Background	Ę
	1.2	General Reflection and Future Directions	6
2	Tea	ching	7
	2.1	Teaching Philosophy	7
	2.2	Introductory Course Descriptions	10
		2.2.1 Analysis of Student Evaluations	13
	2.3	Advanced Course Descriptions	15
		2.3.1 Analysis of Student Evaluations	17
	2.4	Proposed Future Courses	18
3	Sch	olarship	19
	3.1	Professional Background	19
		3.1.1 History of Undergraduate Involvement and Public Engagement	
	3.2	Astroparticle Physics	20
		3.2.1 Recent Peer-Reviewed Publications, with Brief Descriptions	20
	3.3	The Future of UHE Neutrino Science	22
		3.3.1 Conferences, Workshops and Colloquia	23
	3.4	RF Pulse Propagation in Ice	23
	3.5	RF Circuit Fabrication and Testing Laboratory	24
	3.6	Digtal Storytelling and Physics: The Primer	25
	3.7	Funding Received, and Future Plans	25
4	Ser	vice	27
	4.1	Service to Student Organizations - CRU	27
	4.2	Faculty Search for the Department of Mathematics	28
	4.3	Recruitment and Service to the Physics Department	28
	4.4	Public Lectures	28
	4.5	Enrollment and Student Affairs Committee	29
5	Ads	vising and Mentoring	31

Chapter 1

Introduction

1.1 Background

My name is Jordan Hanson, and I am formally submitting my first Professional Evaluation and Growth Plan (PEGP). As required by Whittier College, and in accordance with the regulations in the Whittier College Faculty handbook, the material herein pertains to my first complete academic year as a tenure-track Assistant Professor of Physics and Astronomy. Being new to the Whittier College community, I have included this professional introduction for those readers to whom I have not yet been introduced. I look forward to meeting and working with my colleagues in other departments over the years, and I hope that this brief introduction will explain why I chose to become a professor. Accordingly, I share my vision for teaching physics and scholarship in the area of astroparticle physics at Whittier College.

My professors and colleagues in the professional-track physics program at Yale University inspired me to excel beyond what I thought was possible for myself. I was introduced to the world of academic scholarship by faculty who had known they would enter this world from from a young age. I fell in love with physics for the beauty of its theoretical simplicity, and the surge of excitement as observations spark to life through hard laboratory work. After receiving my Bachelor of Science degree, I landed at UC Irvine, the home of the Nobel Laureate who made the first observation of a sub-atomic particle called a neutrino. UC Irvine excels in the study of extrasolar, high-energy sub-atomic particles: astroparticle physics. I was introduced to Professors Steve Barwick and Stuart Kleinfelder. Dr. Barwick is a professor of physics in the Department of Physics and Astronomy, and Dr. Kleinfelder is a professor of physics in the Department of Electrical Engineering. Together we embarked on a journey to produce world record-breaking observations of high-energy neutrinos from beyond the solar system.

UC Irvine served as a training ground for my ability to teach, and I began to understand why teachers love to witness the flash of light in a student's eyes. I taught as an assistant under Dr. Barwick, serving students in sections associated with introductory physics courses comprised of several hundred students. During the early semesters in my graduate career, I was teaching physics sections of twenty students each for five continuous hours, three days per week. After concluding my teaching duties, I focused on research for several years. Upon completing my dissertation and receiving my doctorate, I solo-taught an introductory physics course during one of my post-doctoral fellowships. During that summer I learned the difference between teaching a course and creating a course. I enjoy creating new courses, and I have already created and taught new courses for students at Whittier. Above all else, I hope my work at Whittier will serve to enlighten our students.

1.2 General Reflection and Future Directions

Any general reflection for academics at Whittier must begin and end with our students. Over the past year and a half, I have chosen to become an active participant in this community and to push beyond what is required of me as a young professor. I have taught introductory physics courses to students who have no prior experience in physics, and created a new advanced computer science course. I've attended conferences to improve and expand my teaching methods, taking advantage of the broad research in physics education. I decided to take a class from a professor in another department for the shear joy of learning, but also to learn methods from an experienced teacher. I've involved a group of students in all facets of my research, including software and algorithm development, firmware development, and digital storytelling. Two of these students won Keck Fellowships and have engaged in summer physics research in my laboratory. We are preparing to become part of a collaboration of researchers who plan to build a world-class astroparticle detector at the South Pole. Additionally, I've become a mentor and advisor to a student organization, and helped serve the Math Department in a tenure-track faculty search. Each action I've taken during these past months has been geared towards serving our students thoughtfully and rigorously, to provide them with a quality education and research environment.

Despite these accomplishments, I am not satisfied with some aspects of my teaching. I was surprised to find that in my introductory courses, a group of students felt that the level of mathematical and technical detail was too advanced, and that the pace of the courses was too rapid. A group of students has been vocal in their assessment of these issues, and I take them seriously. Some of my students in an introductory course actively worked with me in office hours to find common ground. It is my hope that in the coming years, I will be able to implement a pace and difficulty level suitable for the academic environment at Whittier that does the most good, for the largest number of students. Although I do not feel it would be right to omit core physics principles from introductory courses, I will rely on the past experiences of my department to find a solution. My hypothesis is that many of my students in introductory courses are not prepared to make logical abstractions of physical systems, and require a larger number of concrete examples and demonstrations before gaining that ability. I will work diligently during the coming academic year to boost the abstract problem-solving ability of my students through leading by example.

Chapter 2

Teaching

2.1 Teaching Philosophy

The heart of the intelligent acquires knowledge, and the ear of the wise seeks knowledge. - Proverbs 18:15

I guess you could call it a "failure," but I prefer the term "learning experience." - Astronaut Mark Watney in *The Martian* by Andy Weir

Teaching is about beautiful failure. Learning takes place between at least two people where at least one lacks knowledge. A lack of knowledge is an advent to *enlightenment* and is therefore beautiful. Regardless of the teaching methods chosen for a given teacher and student, the student should leave the encounter *enlightened*, with increased knowledge of the truth. The success of the encounter is measured by the varying degree to which the student can retain, apply, understand, and reflect upon the knowledge. I believe that lifting a student learning physics from retention to reflection is beautiful, in that I witnesses a student extending their mind outside *their model* of the world, into *the model* of the world. In general, both the teacher and student succeed imperfectly in imparting ideas about *the model* of nature, and therefore the process will contain periodic failures. Further, the physics model itself may be an imperfect description of true nature. Growing through these "failures" is a hallmark of learning modern physics, a subject built upon increasingly accurate approximations to the truth.

Teaching physics begins with defining the concept of a "system" about which we can make measurements. All physics students must begin at this common place. With well-defined concepts of distance, mass, displacement, and time, the entire subject of classical physics may be undertaken. Students who are non-majors usually experience exclusively classical physics. Physics majors grow through the inaccuracies of classical physics to modern physics, which includes relativity and quantum mechanics ¹. Mastering these subjects represents maturity made possible through diligent and patient teaching. Teachers capable of bringing students to the advanced level and enlightening beginners are not molded upon the completion of graduate school. Physics teaching requires experiences shaped by failures and successes enlightening students studying classical and modern physics.

A good teacher loves growth. Each semester at the beginning of my introductory courses, I give a speech about learning to embrace failure entitled "It's OK to Be Wrong." The introductory student fears being wrong, losing points, and receiving a low grade. Counter-intuitively, those students who embrace their mistakes and learn from them turn out to be the strongest students. Converting failure to growth has two components. First, there is no substitute for hard work and sacrifice. A good teacher leads by example, pouring effort into the semester until the job is done. A good teacher works to master new skills by attending teaching conferences in his field, consulting students through mid-semester feedback mechanisms, analyzing student evaluations. A good teacher also works to become nimble, switching from method to method, until the suitable vehicle properly engages the student. Second, a good teacher creates a proper learning space. In my classrooms, no student is penalized for being wrong, with the single exception of taking exams. By creating a space in which it is ok to be wrong, we take

¹Students satisfying liberal arts requirements via specialty courses do experience non-classical physics qualitatively.

advantage of the learning moments brought forward by mistakes, and make real progress.

A good professor is a special kind of teacher, in that he is a teacher that also performs scientific research and serves a college or university. A good professor successfully involves undergraduate students in his research. One crucial fact about myself that I learned during the past two semesters is that I love the *instructive* act of research just as much as I love the *investigative* act. Even when I am conducting research with my students, I should still be instructing them, and I've found that I love it. The instructive act of research lies in pausing to reflect upon what our actions in the laboratory imply. Whether a procedure succeeds or fails my laboratory, the student and I must take time away from the procedure to step back and understand why we observed the result. I hope to grow as much in the area of research instruction as I will grow in classroom instruction, and to produce students who will become quality researchers.

Instruction of Students in Introductory Courses

The first categorization of physics student at Whittier College is whether they are a liberal-arts non-major or physics major. Non-majors encounter physics for two semesters in either a calculus-based or algebra-based environment. We categorize students in this fashion because classical physics at the standard undergraduate introductory level is built upon single-variable calculus, with some multi-variable or vector calculus introduced in the second semester. Students who will not take calculus for their degree can still learn to apply core mathematical concepts like vectors and instantaneous quantities and apply them to physics. Thus, non-major students usually take the algebra-based version of mechanics, and physics majors and students who have chosen another technical degree take the calculus based version of mechanics.

Three focuses are relevant for teaching non-majors algebra-based physics:

- 1. Curiosity. I regularly give colloquia at universities, seminars in physics departments, public lectures to children in libraries and adults in astronomical societies. I believe that experiencing people's curiosity is necessary to become a great professor. I've continued this practice as Whittier professor by giving a lecture at Los Nietos Middle School. All people seek an understanding of nature. Further, people have a need to know that the answers exist, even if we do not yet fully grasp them as a society. I believe good teaching for non-majors should therefore convince them that physics is interesting by enticing their curiosity. I have built into the algebra-based curriculum specific learning activities designed to entice student curiosity. Presenting science articles to the class and presentations on home-built circuit projects are two examples. I regularly give colloquia at Whittier and incentivize my students to participate, thereby exposing them to astroparticle physics research ².
- 2. Improvement of Analysis Skill. The scientific method is not possible without the skill of analysis. We as physicists best serve Whittier non-majors when we are developing their ability to apply physical theory via problem-solving. The Whittier College physics faculty have several important tools for developing introductory student problem solving. Peer Instruction is becoming a standard method in many American colleges [20], which is laser-focused on analyzing concepts in small groups. Just in Time Teaching is an auxiliary method designed to modify class time, focusing on exactly the problem solving strategies the students find challenging [16]. A third analytical tool is PhET (Physics Education Technology) [21], in which students compare analysis results to computer simulations built in conjunction with physics education research. At Whittier we employ an integrated lecture/laboratory format, which is facilitated by the design of the Science and Learning Center. The integrated techniques allow the instructor to provide versatility in problem solving practice, such as group problem solving, checking answers against computer simulations, and verification of analysis results via direct experimentation. One interesting emergent property is that students from different lab groups verify techniques and solutions with each other, providing encouragement. Finally, we incorporate traditional lecture methods to provide the concrete examples of analysis with which we begin new material for our students ³.
- 3. Applications to Society. Whittier College non-majors gain potential in technically oriented careers if they can qualitatively explain phenomenon using physics. In recent years, our standard open-source textbooks have included material relevant to popular majors (e.g medicine and KNS). I have incorporated

 $^{^2\}mathrm{See}$ supporting materials for notes from students on my spring colloquium.

³Traditional lecture methods refer to a broad class of instruction methods, but generally refer to the professors performing example calculations on the chalkboard while students take notes and learn through repetition.

special units centered on these practical applications, including human nerve systems (in PHYS135B) and human metabolism (PHYS180). I also use the final group project rubric to allow non-majors who've chosen pre-medicine or KNS as their major to go further in their study of the intersection of physics and the human body. I proposed a new course entitled *Physics of the Five Senses*, designed to be connecteed with KNS courses. I plan to reintroduce this course in the near future when appropriate ⁴. Being able to quantitatively understand science is vital for conducting fact-based discussions and economic participation. I included a brief unit on climate change and the solar system in PHYS135B and PHYS180, analytical problem solving and simulations. One additional tool for the non-majors is the inclusion of a individual presentation in which the student summarizes a scientific journal article in 5-10 minutes. The brevity requirement causes the students to focus on important details, decide whether they support the hypothesis, and on identification of the societal implications.

Instruction of Students in Advanced Courses

Physics majors are the second category of students we typically encounter. I broaden my discussion to Mathematics and Computer Science majors due to the specific circumstances under which I was hired. The Departments of Mathematics and Physics at Whittier College seek to build a separate Major in Computer Science. Currently, our college allows students interested in computer science to combine computer science with physics or math, or enter the 3-2 program in which they obtain two degrees in five years from Whittier College and The University of Southern California. The advanced course I have taught is Computer Logic and Digital Circuit Design (COSC330/PHYS306), a brand new course at Whittier College I've created. Those who participated were physics majors, mathematics majors, and Whittier Scholars Program majors, all having some connection to computer science. This course is under rapid development in parallel with developments in my research laboratory, as I will explain below.

Three focuses are relevant for teaching physics, mathematics, and computer science majors at the advanced level, in addition to those above for non-majors and introductory courses:

- 1. Mental Discipline. Advanced physics, math and computer science courses require discipline. When tackling a hard physics problem involving both advanced math and the cleverness to set up the problem correctly, there is no substitute for grit. The professor has a roll in calling it forth. Showing advanced students that consistency beats intensity is vital, and that value can be communicated in two ways. The first is delivering a rigorous curriculum. Problem sets and exams should be difficult, requiring time and reflection. For example, in COSC330, homeworks were assigned in two-week increments, with both mathematical repetition (to facilitate learning binary) and open-ended design questions (like designing a device that adds two binary numbers). Second, the content delivery should be efficient, demonstrating to the students that the professor is invested in them and carries expertise in the material. Advanced classes in large universities sometimes leave the student with a blunt delivery that merely entices the student to teach themselves in the library. The right path leaves the student motivated to fill in gaps in their understanding, with the professor happily rising to the challenge of elevating students' understanding outside of class. For example, in COSC330 my students and I happily debugged digital circuits in simulation software together in office hours, before building them for class presentation.
- 2. Strength in all Phases of Science. Good curriculum in these advanced topics must include the following phases of scientific activity: theoretical problem solving, numerical modeling or simulation, experimental design and execution, and data analysis. We may think of these phases as the activity that move the student through the scientific method. In COSC330, an example of the incorporation of all four phases occurs in teaching the students to work with binary numbers and code. First, the mathematics for conversion from decimal to binary is introduced along with addition and subtraction techniques, and we work example problems. Second, we model addition and subtraction via 8-bit adders in a computer simulation. Third, we actually build the adders, and fourth, we demonstrate that they work by analyzing the outputs. When students gain experience in all four phases, they more firmly grasp the concept. Students are also more likely to have a breakthrough in understanding a concept if they encounter it in multiple phases.
- 3. **Communication**. Two skills that should never go overlooked in technical fields are oral and written communication. Presentations, papers, lab reports, and summarizing peer-reviewed articles for the class are

⁴The KNS department declined to allow personel for pairing or team-teaching. Subsequently, the number of new students requiring introductory courses increased, and we modified my schedule by dropping my proposed course and adding an introductory one.

Semester	Course	Credits	Students	Curriculum feature
Fall 2017	PHYS135A-01	4.0	24	None
Fall 2017	PHYS150-01	4.0	17	COM1
Spring 2018	PHYS135B-01	4.0	18	None
Spring 2018	PHYS180-02	5.0	19	COM1
Spring 2018	COSC330/PHYS306	3.0	6	Advanced course
_	Total	20.0	_	_

Table 2.1: This table is a summary of the courses I have taught since Fall 2017. The introductory courses carry the course numbers 135A, 135B, 150, and 180. The advanced course, PHYS306, is cross-listed as a computer science course (COSC330).

several examples of rubrics that I use in advanced courses to hone communication skills. From personal experience, work in technical subjects would often proceed more quickly if not for the inability of group members to express themselves clearly. When dealing with abstract concepts in engineering discussions, clear communication prevents the introduction of design flaws and the introduction of bugs in software. No matter which advanced class I am teaching, my students will write at least one report, or give one presentation. I often allow students to write for extra credit, going beyond the scope of the course in the subject matter. Any practice in technical writing Whittier majors receive now will benefit them down the line as they proceed to graduate school or private sector engineering careers. ⁵

Department-Level Goals

I have identified three focuses each for instruction of non-majors and majors. In addition, the Department of Physics and Astronomy has eight well-defined goals as part of our 5-year assessment cycle. In the coming course descriptions, these goals and my three focuses will be referenced. The departmental goals are:

- 1. Develop and offer a wide range of physics courses using the most effective pedagogical methods and styles. Such courses shall include appropriate contributions to the Liberal Education Program (currently COM1 and CON2).
- 2. Create research experiences for physics majors that will engage and inspire them in their discovery of physics.
- 3. Build a departmental community that is supportive and welcoming and that encourages students in their studies of physics.
- 4. Keep the physics curriculum current so that students gain the skills necessary for success in today's scientific environment.
- 5. Teach students how to teach themselves. Give them the intellectual tools necessary for independent thinking and learning.
- 6. Train students to think "scientifically" i.e. critically, rigorously, quantitatively, and objectively, so that they can analyze problems and generate solutions.
- 7. Train students to effectively communicate scientific ideas to others.
- 8. Advise students about various career paths and help them along these paths.

2.2 Introductory Course Descriptions

Algebra-based physics (135A/B). Algebra-based physics, PHYS135 A/B, is a two-semester integrated lecture/laboratory sequence that covers algebra-based kinematics, mechanics, and electromagnetism ⁶. Algebra-based physics is a core requirement for many technical majors other than physics, such as kinesiology and chemistry. I have taught one section of PHYS135A and one section of PHYS135B, for a total of 42 students. I am currently teaching two sections of PHYS135A with a total of 50 students. In addition to traditional lecture-based

 $^{^5\}mathrm{See}$ supplemental materials for examples of student presentations and writing.

⁶See supplemental material for example syllabi.

methods, I employ research-based physics teaching methods, and use the latest version of the OpenStax open-source textbooks, **satisfying departmental goals 1, 4, and 6**. These methods are *Peer Instruction (PI)*, *Just in Time Teaching (JITT)*, and *Physics Education Technology (PhET)*. I attended the American Association of Physics Teachers (AAPT) Workshop to learn how to implement these practices ⁷. (See description of module types in the next section).

To reach the first learning focus I identify for non-majors, **basic curiosity**, I use the three research-based methods plus a few other techniques. For example, laboratory activities centered on constructing DC circuits and matching them to PhET simulations are meant to arouse basic curiosity about how electronics work. Second, integrating laboratory and lecture activities is meant to satisfy curiosity by providing laboratory confirmation of results derived on the board only moments ago. Finally, group projects prompt students to design and test their own projects ⁸.

To reach the second of the three learning focuses, **improvement of analysis skill**, I utilize the peer instruction method (PI modules), which has been shown to yield higher learning gains than traditional lectures concerning theoretical physics concepts. I strive to enhance problem solving ability through repeated conceptual exercises meant to show the students that textbook problems can be translated into equations that produce answers. After introduction of new material in the traditional sense, I provide repeated PI-modules that prompt students to examine misconceptions and use decuctive reasoning. Sometimes I will provide a film clip or popular science article to propose a system for examination, and the class explores facets of the system with PI modules. For example, the text provides a model of a nerve fiber transmitting an electrical signal, or a link to a TED video explaining solar wind. After watching the clip or examining the diagram, I post a series of PI questions on the real-world topic that the class works through together. In other cases where I can physically build the system in question, we perform laboratory style measurements meant to prove efficacy of a formula we derived in the lecture portion. The students gain analysis experience via the process of understanding statistical and systematic measurement errors.

To reach my focus of **applications to society**, I begin with the prompts to applications in the OpenStax texts, creating units that are relevant for the majors in my class. Examples have included nerve signals, forces in the body, and kinesiological measurements made in group projects. The JITT modules demonstrate if the students have done the reading I assign, and whether they comprehend how the physics we are learning applies to society. For extra credit, I sometimes assign term-papers asking students to explain the physics in a chapter of a science fiction novel or film. More often I assign students needing extra credit a paper on the history of science. Some brilliant examples have emerged regarding the first measurements of the distance between the Earth and the Sun.

Calculus-based physics (150/180). Calculus-based physics, PHYS150/PHYS180, is a two-semester sequence that covers calculus-based kinematics, mechanics, thermodynamics, and electromagnetism ⁹. As with algebra-based courses, I aim to satisfy departmental goals 1, 4, and 6. I have taught one section of PHYS150 and one section of PHYS180, for a total of 36 students. As in the algebra-based classes, I implement Peer Instruction (PI), Just in Time Teaching (JITT), and Physics Education Technology (PhET), and use OpenStax textbooks. The key difference between calculus and algebra-based physics methods is the increased use of PhET simulations to visualize calculus concepts. Because PHYS150 and PHYS180 require tools from single and multi-variable calculus, students taking those courses concurrently require PhET simulations to help visualize mathematical concepts. Examples include operations with scalar and vector fields in electromagnetism, single-variable integrals and derivatives in kinematics, and line integral calculation of work and energy.

To reach the first learning focus I identify for non-majors, **basic curiosity**, I use the three research-based methods plus a few other techniques. For example, PhET simulations allow us to visualize the electric field generated by a specific charge distribution. I can combine the field visualization with a PI module that asks the students conceptual questions about the field, including what geometric symmetry is being displayed and why. Symmetry is a hugely important topic within physics, but some students might not see it straight from the equations or diagrams. Group projects in calculus-based physics have generally been more sophisticated. For example, students used the 3D printer to build a Sterling engine as a study of thermodynamics. Another group studied 2D kinematics with air-pressure rockets on the football field. A side benefit of these presentations is that

 $^{^7{\}rm See}$ supplemental material for details.

⁸Examples of student work provided in supplemental material.

⁹See supplemental material for example syllabi.

the students practice good oral communication.

To reach the second of the three learning focuses, **improvement of analysis skill**, I utilize the peer instruction method (PI modules), in conjunction with a procedure I learned on the fly during my first semester. I require the students to leave their tables, and solve the technical or numerical problem together on the whiteboards that cover the walls of my classrooms. Students are able to see each other's approach, and validate it against their own group's method. Upon returning to the tables, the groups feel more prepared and eager to solve the PI module problems that follow. The students report in their evaluations that adding this step greatly benefitted their learning, and that they felt more comfortable with the material afterwards. I wish I had known to do this from the beginning of the semester, and it will be incorporated into all future classes that I teach. The students also gain analysis experience via the process of understanding statistical and systematic measurement errors. Relative to the algebra-based activities, the calculus-based activities require a more complete understanding of error propagation and quantitification.

To reach my focus of applications to society, I begin with the prompts to applications in the OpenStax texts, creating units that are relevant for the majors in my class. Examples have included nerve signals, solar wind, and global warming. The JITT modules demonstrate if the students have done the reading I assign, and whether they comprehend how the physics we are learning applies to society. For extra credit, I sometimes assign term-papers asking students to explain the history of science for a particular topic. The Nobel Prize in Physics last year was for the discovery of gravitational waves, and several students chose to write about Advanced LIGO, the experiment that recorded the famous signals. Group presentations on topics of their choice at the end of the course offer a chance to practice oral communication skills. Finally, I required in PHYS180 each student to briefly summarize a scientific journal article for the class, in an attempt to further practice oral communication of science.

Descriptions of each Module Type

PI Modules - Implementation of an active learning strategy involving group problem solving.

- PI-based modules contain conceptual, multiple-choice questions for the class about a physical system.
- Students respond individually with an electronic device, and the distribution of answers for choices A-D is shown on the class screen (answer E indicates the student is lost).
- One of two actions is taken next:
 - 1. If the fraction of correct answers to the conceptual question is larger than 0.7, the class proceeds.
 - 2. If the fraction is less than 0.7, the professor initiates table discussion.
- Table discussions take place between 2-4 students at the same table. The professor tells the students to attempt to convince each other they are right, and that just because they gave the same answer does not indicate correctness¹⁰.
- A second poll of the class is taken, to measure the increased fraction of correct answers, or *gain*. If more than one person selects E after the second round, the material is covered again.

JITT Modules - Modification of lecture time based on student reading the day before class.

- JITT activities grew out of reading quizzes in a traditionally structured course. Through Moodle, students are sent 3-4 questions the day before class based on the assigned reading.
- JITT questions are conceptual, and if a large portion of students are answering correctly, the material is covered more lightly. Questions that trigger many incorrect responses becomes the focus of class time.
- PI-module questions are drawn from a database, tailored to the misconceptions.
- Students' anonymous responses are included in the lecture itself, and the class gets a chance to analyze correct and incorrect responses.

PhET Modules - Simulation activities integrated into the textbook and laboratory/PI modules.

 $^{^{10}}$ The effect of adding this specific phrase has been studied and shown to benefit the utility of table discussions.

Question	135A N	135A Mean	135A Std. dev.	135B N	135B Mean	135B Std. dev.
10	21	3.76	1.04	18	3.72	0.96
11	21	4.57	0.75	18	4.78	0.43
12	21	4.29	1.01	18	3.78	1.00
13	21	3.52	1.33	18	3.33	1.53
14	21	3.48	1.36	18	2.72	1.32
15	21	3.29	1.68	18	2.28	1.53
16	21	3.19	1.57	18	2.94	1.30

Table 2.2: Summary of questions 10-16 on the student evaluation form, for PHYS135A/B taught in Fall 2017 and Spring 2018. These questions pertain to the *course*.

Question	135A N	135A Mean	135A Std. dev.	$135B\ N$	135B Mean	135B Std. dev.
17	21	4.24	1.04	18	3.67	1.03
18	21	3.52	1.33	18	3.11	1.57
19	21	3.48	1.40	18	2.89	1.29
20	21	4.24	1.09	18	4.06	1.25
21	21	4.48	1.03	18	3.78	1.17
22	21	4.10	0.89	18	3.88	1.02
23	21	3.95	1.20	18	3.53	1.33
24	21	4.67	0.58	18	4.24	0.97
25	21	3.24	1.55	18	3.12	1.36

Table 2.3: Summary of questions 17-25 on the student evaluation form, for PHYS135A/B taught in Fall 2017 and Spring 2018. These questions pertain to the *professor*.

- The OpenStax textbooks for PHYS135 and PHYS150/PHYS180 have built-in HTML links to JAVA-based simulations called PhET simulations¹¹.
- PhET simulations are incorporated into laboratory activities, in which simulated results of a system are compared to measurements of identical systems.
- Systems that cannot be constructed in the lab are studied via PhET activities as well.
- PhET simulations often augment special curricular activities pertaining to other majors, like the human body. For example, in PHYS135B we used a PhET simulation to understand the behavior of human nerve signals.

2.2.1 Analysis of Student Evaluations

Tables 2.2 and 2.3 show the results of the *algebra-based* introductory physics courses taught in the 2017-2018 academic year. Tables 2.4 and 2.5 show the results of the *calculus-based* introductory physics courses taught in the 2017-2018 academic year. The results show an interesting correlation that reveals a potential strategy for continual improvement of my teaching in these courses.

First, there are obvious areas that need improvement. Questions 14-16 and 19 for 135B for example correspond to student understanding of the material, interest in the material, recommending the course to others, and my ability to explain complicated ideas, respectively. This particular algebra-based course is meant to cover electricity and magnetism. We introduce students without a technical background to abstract ideas like electromagnetic fields and how they connect to applications like DC circuits. Skills necessary to complete the work in this course include solving algebraic equations and systems of equations, analyzing graphs of functions, and correctly measuring properties of circuits and magnets. It is no surprise that students struggle with the material upon encountering it for the first time. I have been trained to teach much faster and more intensely than the students who disapproved of the course desired.

¹¹see https://phet.colorado.edu

Question	150 N	150 Mean	150 Std. dev.	180 N	180 Mean	180 Std. dev.
10	16	4.19	0.83	18	4.00	0.91
11	16	4.19	1.38	18	4.67	0.49
12	16	3.63	1.31	18	4.06	0.94
13	16	4.00	1.10	18	4.00	0.97
14	16	3.93	1.33	18	3.89	0.90
15	16	3.56	1.26	18	3.67	1.03
16	16	3.56	1.26	18	3.83	0.86

Table 2.4: Summary of questions 10-16 on the student evaluation form, for PHYS150 taught in Fall 2017, and PHYS1809 taught in Spring 2018. These questions pertain to the *course*.

On the other hand, there are many areas in which the courses and my teaching scored well. I am especially proud of the fact that Q25 jumped in 2018 relative to 2017 for the calculus-based courses. Further, students in both sections believed that the courses were rigorous and challenging. Some students appreciated the PI modules, PhET simulations, and JITT exercises. This is reflected in responses to question 12 on the standard evaluation, which is a key data point. The reason I focus on this data point is that I am being asked by my department to teach in an activities based style, far different from the traditional lecture format. The purpose of the activities and group exercises is to satisfy the focus on improvement of analysis skill. The PI, JITT, and PhET modules are constructed to improve analysis skill. However, upon reflecting on the students' constructive comments, it seems that these modules benefit some students but not all.

In the students' remarks, many shared with me that these courses were the very first physics courses they have taken, or that they have anxieties with mathematics. In consultation with my department chair, and in studying past PEGP documents in my department, it appears that an increase in traditional lecture style is necessary. The reason is that if every single concept and number in physics is confusing to a first-time student, then merely updating the teaching style with researched-based modules will not help that student. The traditional lecture style offers the benefit that students see many example problems done in explicit detail, such that they can copy and repeat the technique. I was taught to never expect this as an undergraduate student, because it is wrong. My colleagues in my department have reassured me that it is not only not wrong, but necessary to give inexperienced students an explicit starting point. Thus, this will be the first major change to my introductory teaching this coming semester: fifty percent of class-time will be spent on concrete examples in the traditional style.

The second major change I will be making to my introductory course teaching style is to slow the pace. In reading students' remarks, this is the second most common desire on their part. I was taught at the undergraduate and graduate levels at high speed, with intense focus on both content and mathematical detail. Of course I must make adjustments for the environment at Whittier College, and not merely teach to myself. I must teach to the middle, as one of my colleagues recommended. The students felt major relief when I began assigning them a problem to work on the whiteboards in groups precisely because it allowed them to slow the class down, and check their work with each other. Thus, that move solved both problems at once: the problem of pace and the problem of adding more traditional lecture content. The students got a chance to lecture to each other momentarily. In the upcoming semester, I will include the group-board technique in the normal course plan.

Third, I'd like to include calculus in the *calculus-based* versions of our introductory sequences. Currently, our department does not include enough calculus-based content in PHYS150 and PHYS180. However, I am congizant of the risks in adding content to these courses, in which we are already pushing the majority of students to their limits. From the feedback from my department, I need to include more laboratory/measurement activities. Thus, I propose solving both problems simultaneously. When I teach *calculus-based* introductory courses in the future, I will use the laboratory activities as a venue for demonstrating the difference between results obtained from calculus (derivatives and integrals) and the average results one obtains without calculus. It is my hope that the students will learn to use some calculus tools, even if the majority cannot deploy calculus in some challenging homework problems. The inclusion of more lab activities is already required of me, now that I am trained on all of our equipment, so this idea will require no additional effort above what I'm already scheduled to do.

Finally, I will put more focus on struggling students through organization of class time (in response to Q17). My department colleagues feel that many numbers will rise in correlation with Q17. It is my hypothesis that students

Question	150 N	150 Mean	150 Std. dev.	180 N	180 Mean	180 Std. dev.
17	16	3.31	1.14	18	3.44	1.15
18	16	2.88	1.36	18	3.39	1.14
19	16	3.13	1.54	18	3.83	1.04
20	16	3.69	1.25	18	4.22	0.65
21	16	3.88	1.09	18	4.11	0.96
22	16	3.81	1.33	18	4.44	0.70
23	16	3.67	1.37	18	4.33	0.77
24	16	4.50	0.63	18	4.56	0.51
25	16	3.13	1.63	18	3.61	1.04

Table 2.5: Summary of questions 17-25 on the student evaluation form, for PHYS150 taught in Fall 2017, and PHYS180 taught in Spring 2018. These questions pertain to the *professor*.

Figure 2.1: (Left) Aggregate standard deviations versus mean scores for questions 10\(^{10}\)25 for introductory courses taught in Fall 2017. (Right) Same, for introductory courses taught in Spring 2018.

that felt class was not organized properly felt so because it was not organized to help them. Of course I prepared for my courses; I have built an interactive, open-source GB-scale database of lecture content 12 . However, when I identify the students who are struggling, I can use the discussion time during PI modules and other activities to focus on helping them one-on-one, while letting the more advanced students help others. In general, when I score low in a particular category, there is large variance in student opinion. When I score high, my students are in closer alignment with each other. One way of showing this numerically is Fig. 2.1 below. For both Fall and Spring courses, the standard deviation for all my scores is inversely correlated with the mean scores. In fact the fractional error is typically $\approx 50\%$ for low scores, compared to 10% when I score well. By locating the struggling students and focusing one-on-one discussion time with them, I hope to draw the data points down and to the right in Fig. 2.1.

2.3 Advanced Course Descriptions

Computer Logic and Digital Circuit Design. My premier advanced course was ambitious, and has a well-defined direction for continual improvement. Digital design is as broad a topic as any undergraduate would encounter. To cover it adequately at Whittier College, I had to make hard choices about where to spend class-time. My first goal for the students was to impart my advanced learning focus of strength in all phases of science, and to satisfy departmental goals 4-7. Naturally multi-disciplinary, digital design has many sub-topics within it 13. COSC330/PHYS306 is a 300-level integrated computer science course that satisfies core requirements in the following majors: ICS/Math, ICS/Physics, ICS/Economics, 3-2 Engineering/Math, and the scientific computing minor. Such a broad course that serves a wide variety of students should touch on at least the

¹²see my account on Github.com: https://github.com/918particle/AlgebraBasedMechanics1.

¹³See supplemental material for a course syllabus. Although listed as COSC330, this course is also cross-listed as PHYS306, so I felt our departmental goals should apply.

Semester	Course	Credits	Students	Curriculum feature
Fall 2017	PHYS135A-01	4.0	24	None
Fall 2017	PHYS150-01	4.0	17	COM1
Spring 2018	PHYS135B-01	4.0	18	None
Spring 2018	PHYS180-02	5.0	19	COM1
Spring 2018	COSC330/PHYS306	3.0	6	Advanced course
_	Total	20.0	_	_

Table 2.6: This table is a summary of the courses I have taught since Fall 2017. The introductory courses carry the course numbers 135A, 135B, 150, and 180. The advanced course, PHYS306, is cross-listed as a computer science course (COSC330).

following sub-topics:

- 1. Binary mathematics and non-decimal base systems
- 2. Boolean algebra and logic
- 3. Implementing boolean algebra with transistors
- 4. Digital clock signals and digital component specifications
- 5. Digital components built from clocks and transistors
- 6. Complex digital systems (microprocessors, microcontrollers)

Additionally, any good digital design course at a liberal arts college must evenly cover the following phases of the field: mathematics, computer programming, hardware design and function, and computer modelling. I attempted to design a course syllabus that incorporated all phases of the field.

My first advanced course learning focus is **mental discipline**, and I attempted to reach that goal in three ways. First, the homework assignments were difficult, and assigned in two-week increments, with both mathematical repetition (to facilitate learning to speak with binary and boolean algebra) and open-ended design questions ¹⁴. Second, I chose to combine a traditional lecture component with electronic slides that meshed with my work on the whiteboard, as I've observed with professors of foreign language at Whittier College. Teaching binary to newcomers felt like teaching a new programming or spoken language. Solving problems individually and in pairs helped those struggling during the introduction of Boolean algebra. A language course requires a student *verbally communicate* repeatedly with others to improve grammar and comprehension, so I required my students to practice the same mental discipline. Finally, I assigned design problems in the homework and group projects. The students' project designs had to achieve an agreed-upon task, via a project proposal. Next, they had to be modelled with software, built, tested, and presented to the group. The group projects were designed also as additional oral and written communication practice.

My second advanced course learning focus is **strength in all phases of science**. By design, this course incorporated multiple sub-topics and four phases (as listed above): mathematics, computer programming, hardware design and function, and computer modelling. The first month of the course required me to focus on binary math and boolean algebra, finishing with the topic of Karnaugh maps ¹⁵. Unfortunately, although I ordered the digital components for this course over a month in advance, the purchase orders were not followed and we did not received the parts until about 1 month into the course. This disrupted my curriculum, but the parts are reusable so it cannot happen again. While waiting for components, we focused on simulating the circuits implied by our algebraic derivations with a software package called LogicWorks. LogicWorks gave the students the benefit of seeing how their designs would behave over time, once activated. It also allowed student to locate rare cases for which the algorithm implied by their design would fail. When the hardware arrived, we built everything from super-heterodyne AM transistor radios, to circuits that could add two 8-bit binary numbers. The students enjoyed the tinkering aspect of the course in the lab, but I would have wanted the lab and lecture activities to be more integrated.

 $^{^{14}\}mathrm{See}$ supplemental material for examples of assignments.

 $^{^{15}}$ Karnaugh maps are a way of speeding through boolean algebraic derivations efficiently.

Question	COSC330 N	COSC330 Mean	COSC330 Std. dev.
10	8	3.13	1.46
11	8	3.71	1.38
12	8	3.75	1.04
13	8	3.25	1.39
14	8	3.63	1.19
15	8	3.86	0.69
16	8	3.29	1.25

Table 2.7: Summary of questions 10-16 on the student evaluation form, for COSC330/PHYS306, taught in Spring 2018. These questions pertain to the *course*.

Question	COSC330 N	COSC330 Mean	COSC330 Std. dev.
17	8	3.38	1.60
18	8	3.50	1.20
19	8	3.13	1.46
20	8	4.25	0.71
21	8	3.50	1.41
22	8	4.00	0.89
23	8	4.25	1.16
24	8	4.29	1.25
25	8	2.88	1.36

Table 2.8: Summary of questions 17-25 on the student evaluation form, for COSC330/PHYS306, taught in Spring 2018. These questions pertain to the *professor*.

My third advanced learning focus is **communication**. I had groups of two and three submit project proposals to me for approval. The project proposal rubric is graded on *attention to detail*, and the students responded with diagrams, sketches, and text explaining their design. Once everyone was on the same page, I required them to simulate the design in LogicWorks, checking it for flaws, and to show me progress. The students used office hours to ask for help "de-bugging" their designs, which is jargon for trouble-shooting. I recall spending a few hours with each group during the semester thinking about their design logic in an attempt to locate algorithm flaws. In these moments I admired the growth in the students' mathematical communication. The final presentations were good, and would have been excellent had I provided more specific guiderails for the presentation content. What we experienced was two main presentation components: the demonstration and the explanation with data. In the future, I will formalize the requirement of both, and provide a structured schedule for the components of the assignment.

2.3.1 Analysis of Student Evaluations

Tables 2.7 and 2.8 show the results of my advanced computer science and physics course. The results show a similar correlation as the introductory courses (see Fig. 2.2). For the lower scores, the fractional error is about 50%, whereas the higher scores have fractional error of about 20%. The correlation is not as strong as the introductory courses, because the sample size is smaller. These numbers do inform the analysis of my teaching of digital design, however the students' remarks in the evaluations provide more detail.

Some students remarked that the course did not seem adequately structured or prepared. This was in large part caused by the disruption of not having the equipment I needed. Although I did order the textbooks and digital components long before the first day of class, the company shipping the parts refused to accept our department check, wanting a credit card. I had chosen a standard electronics textbook and lab companion book written by professors at MIT¹⁶ which assumed we would have the parts. Upon hearing that the parts would be delayed, I was forced to revert to an alternative textbook a colleague provided me¹⁷. This text was excellent for

 $^{^{16}\,} The\ Art\ of\ Electronics,\ 3rd\ Ed.,$ Horowitz and Hill. Cambridge University Press (2017).

¹⁷ Digital Fundamentals, 8th Ed., Floyd. Pearson Education (2003).

Figure 2.2: Aggregate standard deviations versus mean schressfor questions 10-25 for advanced courses taught in Spring 2018.

demonstrations of binary math and boolean algebra, but was lighter on hardware. The students were unhappy that the textbooks they bought would not be used until later in the course.

We now have the reusable digital components stored in the physics labs, so we will be able to integrate the lab and lecture activities and use free instructor desk copies of the MIT text I obtained. Also, this will allow me to do what I originally planned, which was to organize the course by *sub-topic* rather than simply doing all the mathematics first. This should raise the students' assessment of categories like course preparation and effective use of class time. Finally, having experienced once how long it takes students to assemble circuits, I can better plan future class times. Students remarked that the super heterodyne AM radio took too long to assemble, for example. In the future, those projects could be partially completed by me first, before allowing the students to finish them.

Some students remarked that they felt underprepared for the course material. I did notice that I had two Whittier Scholar Program majors (F. Capraro, and A. Dodds), and while one felt the course was easy and appeared comfortable with the material, the other did not. Nevertheless, I was pleased to have those students and would like to encourage WSP enrollment in the future. The others were either 3-2 engineering or mathematics majors, and some felt that they did not remember enough physics to understand some sub-topics (resistors, capacitors, and transistors, for example). I had a tough decision regarding the pre-requisites for the course, which are normally introductory-level physics and computer science courses. My department and I felt that in the course's inaugural year that I should be able to waive the pre-requisites on a case-by-case basis in order to gain more students. I promoted COSC330 in my PHYS150 and PHYS180 courses, and students who felt they could handle it approached me personally and asked to take it. It turned out to be the mathematics seniors who did not remember enough physics and struggled with circuit-based topics. In the future, I plan to review circuit analysis in more detail, before adding digital elements.

Note: this does not have to live in the final version. Finally, I must admit that I need more experience and training in classroom management. One of my students demonstrated behavioral problems. These included the following: persistent tardiness, sending inappropriate or disrespectful emails, not doing a fair share of group work, and complaining strongly about grades. This student even wrote on a midterm exam that the midterm was not fair, rather than spending time working the problem. The student remarked that even the student evaluation form was flawed. Finally, the student challenged my grading and submitted a grade appeal, all the while sending me aggressive emails over summer 2018. For the future, I'd like to work on my ability to handle difficult students and inspire them to be positive, and to focus on the work.

2.4 Proposed Future Courses

Some text.

Chapter 3

Scholarship

3.1 Professional Background

I began my professional career as a physicist when I entered graduate school in 2007 at the University of California at Irvine. UC Irvine was the home of Frederick Reines, the Nobel Laureate who discovered the neutrino along with Clyde Cowan. UC Irvine has a long tradition of neutrino and particle physics research, participating in the Nobel-winning Super-Kamiokande experiment¹, and the Nobel-winning ATLAS and CMS collaborations at the Large Hadron Collider at CERN². My PhD advisor was Dr. Steve Barwick, who helped to found the Antarctic Ross Ice Shelf Antenna Neutrino Array (ARIANNA) project (see below), an experiment searching for ultra high-energy (UHE) neutrinos from outside the solar system. I became an expert in analysis of pulsed radio-frequency (RF) data, RF antenna and circuit design, digital signal processing, and the corresponding software development.

After I received my doctorate, I was hired as a post-doctoral fellow at the University of Kansas, where I continued to work on ARIANNA and other RF-based projects. Finally, in an attempt to bridge the divide between two competing groups within my sub-field of astroparticle physics, I applied for and received a fellowship from the Center for Cosmology and Astroparticle Physics (CCAPP) at Ohio State University. CCAPP is the home of the Askaryan Radio Array (ARA), a competing project to ARIANNA. I deliberately chose to work with my competitors to better understand others' ideas, and to form a line of communication between two groups. In my publications and projects these past few years I have tried to build connections, in the hope of designing a combined version of both projects. Such a design will be capable of making record-breaking observations of UHE neutrinos [15]. I have published in all phases of my sub-field: theoretical calculations, computer simulations, hardware design and deployment, and data analysis³.

3.1.1 History of Undergraduate Involvement and Public Engagement

As a graduate student and post-doctoral fellow, I worked closely with undergraduates to help them understand and participate in the research. At the University of Kansas, I worked on the QuarkNet program with my advisor Dr. Dave Besson ⁴. The QuarkNet program recruits promising young high-school STEM students to work in a university physics lab over a summer. I volunteered to aid Dr. Besson with two young women who were making measurements of RF surface waves across materials with a variety of speeds of light. The students and I were attempting to show that RF surface waves could exist in Antartica, which is relevant to the research I describe below. As a post-doctoral fellow at CCAPP, I volunteered with my advisor Dr. Amy Connolly on the ASPIRE program, which she created to inspire female high school students to explore careers in STEM. The program was one week each summer, plus time to recruit the students at local schools. We gave them projects involving coding, both for computers and Arduino circuit boards ⁵ Also at Ohio State, I gave public lectures to the Columbus Astronomical Society, which is a tradition I am continuing in the Whittier Community by giving lectures at local

¹See http://www-sk.icrr.u-tokyo.ac.jp/sk/index-e.html

²See https://home.cern/

 $^{^3\}mathrm{My}$ C.V. has been included in the supplemental material.

⁴https://quarknet.org/

⁵Arduino is an ubiquitous open-source microcontroller company that supplies DIY boards for prototype designs.

middle schools. My first such lecture is this semester at Los Nietos Middle School. It is my hope that this history of community engagement aligns with the goals and ideals of Whittier College.

3.2 Astroparticle Physics

Astroparticle physics is simply the combination of astrophysics and particle physics. The study of astrophysics may be further subdivided into observational astronomy, which is the study of the origin and phenomenology of celestial objects, and the physics of celestial objects themselves. The former is based on observations from telescopes sentitive to various parts of the electromagnetic spectrum, and the latter involves topics like special relativity, general relativity and cosmology. Particle physics involves the study of atoms and photons, electrons and nuclei, and the quantum field theory (QFT) that governs all sub-atomic particles. Beginning with formative discoveries in 1911, the main sub-field at the juncture between astrophysics and particle physics has been the study of cosmic rays.

Cosmic rays are UHE nuclei, photons, electrons, and neutrinos that arrive at Earth from deep space. Particle physics data suggests that the fundamental forces in nature unify under one QFT as the particle energy increases, and the particle speed approaches the speed of light. Before humans could accelerate sub-atomic particles to such energies, we studied them exclusively in the form of cosmic rays. The Nobel prize-winning discoveries of cosmic radiation, antimatter, the cloud chamber, the muon (a heavier version of an electron), quantum neutrino oscillations and solar neutrinos, and gravitational waves have all come from a sub-field that evolved from cosmic-ray physics into what we now call astroparticle physics, or multi-messenger astronomy.

Owing to its remote location and isolation, the excellent transparency of ice at wavelengths ranging from optical through radio, and the presence of extensive scientific support at research bases, **Antarctica** now supports many astroparticle physics projects. Within the last five years, the IceCube experiment, sensitive to optical and near-optical Cherenkov radiation resulting from neutrino interactions in ice, has reported on the first observation of extraterrestrial neutrinos at world-record energies [1]. In-ice detection of RF radiation is a more efficient strategy at neutrino energies 1000 times higher than those observed at IceCube. This strategy arrises from the combination of the Askaryan effect [5, 6, 7] and the observation that RF pulses propagate for kilometers in ice [8, 9]. The Askaryan effect occurs when a UHE particle interacts in solid matter, creates a cascade of new particles that radiate RF pulses. Pioneering efforts to capture UHE neutrinos originating from beyond the solar system via the Askaryan effect have been undertaken in Antarctica [3, 10, 17, 19]. Two of these are the Askaryan Radio Array (ARA) and the Antarctic Ross Ice Shelf Antenna Neutrino Array (ARIANNA). My research focuses on combining the best of ARA/ARIANNA, and achieving world-record breaking UHE neutrino observations.

3.2.1 Recent Peer-Reviewed Publications, with Brief Descriptions

Below is a selection of seven recent peer-reviewed publications in this field, in reverse chronological order. I indicate in the list the papers for which I was the corresponding author with an asterisk (*). In the fields of particle and astrophysics, the corresponding author is the author who officially submits the work for publication. We also have a policy of strict alphabetical author listing, in order to recognize the contributions of all team members, even if they did not contribute to a particular paper. This style often runs counter to the expectations of researchers in other fields accustomed to reading the "first author" as the main contributor. I have averaged one peer-reviewed journal article for which I was the corresponding author per year since I graduated from UCI in 2013.

The purpose of the list is two-fold. First, I must demonstrate that I am committed to research excellence and that my research reaches out from Whittier College to the world of astroparticle physics. Second, I provide the list as evidence that I have begun to involve Whittier undergraduates in my research program.

- 1. J.C. Hanson et al. "Observation of classically 'forbidden' electromagnetic wave propagation and implications for neutrino detection." Journal of Cosmology and Astroparticle Physics. (2018) (2018).
 - In my first publication as a Whittier College Assistant professor, we reported the first measurements of horizontal RF propagation in Antarctic Ice. These observations and their significance to ARA and ARIANNA are described below.

- For political reasons I could not be the corresponding author, despite the fact that I wrote one-third of this work. My contributions include collecting a large fraction of the data, and break-through theoretical calculations that led to a better understanding of the data.
- For the past few years, we have not been holding physics colloquia at Whittier College. I renewed that tradition by giving a colloquium at the end of Spring 2018 on this research.
- My student Cassady Smith was involved with this research, and I helped her to obtain a 2018 Keck summer research fellowship to work on this with me.
- 2. *J.C. Hanson and A. Connolly. "Complex Analysis of Askaryan Radiation: A Fully Analytic Treatment including the LPM effect and Cascade Form Factor." Astroparticle Physics. (91) pp. 75-89 (2017).
 - I derived the first complex analytical theory of the Askaryan effect to include crucial formulations of the LPM effect and the shape of the UHE particle cascade created by a neutrino in ice.
 - Complex analytical calculations facilitate high-speed computational simulations of ARA/ARIANNA neutrino detection.
 - Prior calculations neglected the LPM effect, which occurs at energies relevant to ARA/ARIANNA.
 - I'm grateful to my advisor Amy Connolly for editing the paper, so I gave her authorship credit. I published the paper during my first semester at Whittier College.
- 3. The ARIANNA Collaboration. "Radio detection of air showers with the ARIANNA experiment on the Ross Ice Shelf", Astroparticle Physics (90) pp. 50-68 (2017).
 - This is the world's only detection of UHE cosmic rays based exclusively on RF signals from air-showers. Air-showers are the high-energy cascades left by cosmic-ray protons in the atmosphere.
 - Other experiments rely on high-energy muon signals and record the RF signals as a by-product.
 - RF detection of cosmic rays is orders of magnitude cheaper than other methods.
 - I was involved in the data analysis of this paper. By measuring the time-domain "response" of the ARIANNA systems (one of my papers below), I was able to discern which RF signals in the data were cosmic rays. I provided these insights to others who finished the analysis with simulations.
- 4. The TARA Collaboration. "First Upper Limits on the Radar Cross Section of Cosmic-Ray Induced Extensive Air Showers", Astroparticle Physics (87) pp. 1-17 (2017).
 - In this project, we attempted to measure the radar cross-section of UHE proton air-showers in the Earth's atmosphere. A radar cross-section quantifies how much RF energy is reflected by an object illuminated by radar.
 - These cascades are several kilometers long, but it turns out that they are so thin that we could only set an upper limit on the radar cross-section.
 - Despite the null result, this was the first published upper limit on the radar cross section of proton air showers.
- 5. *J.C. Hanson et al. "Time-Domain Response of the ARIANNA Detector." Astroparticle Physics (62) pp. 139-151 (2015).
 - This paper provided key details to suppor the conclusions of other major recent publications, including the radio detection of air showers and the first-search for cosmogenic neutrinos with ARIANNA.
 - These were the first measurements of their kind, and taken at the University of Kansas.
- 6. *J.C. Hanson et al. "Radio-frequency Attenuation Length, Basal Reflectivity, Depth, and Polarization Measurements from Moore's Bay in the Ross Ice-Shelf." Journal of Glaciology (61) 227, pp. 438-446(9).
 - Similar to the above paper, this paper provided key details about the ice to the first-search paper below.
 - The ice properties affect the sensitivity of our projects to UHE neutrinos.
- 7. The ARIANNA Collaboration. "A First Search for Cosmogenic Neutrinos with the ARIANNA Hexagonal Radio Array." Astroparticle Physics (70) pp. 12-36 (2015).

- This work published the first upper limits on the UHE neutrino flux from outside the Milky Way by ARIANNA. This paper was the culmination of years of planning, construction, and analysis.
- I helped to deploy the hardware used to collect the data analyzed for this paper.
- I also contributed to the data analysis via my measurements of the ARIANNA system response, and developed criterion to recognize neutrino signals buried in RF noise.
- Given our current projects, this paper shows that ARA/ARIANNA will be the most sensitive detector in history to UHE neutrinos if construction is completed.

3.3 The Future of UHE Neutrino Science

Recently, I have facilitated merger discussions between the ARA and ARIANNA collaborations. National Science Foundation (NSF) program officers have committed to strongly support a brand new neutrino detector in Antarctica if ARA/ARIANNA merge. The NSF solicitation is entitled "Windows on the Universe: The Era of Mutli-Messenger Astrophysics"⁶, and is due December 4th, 2018. The NSF liason is Vladimir Papitashvili (vpapita@nsf.gov) from the NSF Office of Polar Programs (OPP). Five years after receiving my PhD, I am proud to state that we are on the verge of major detector construction, due to workshops I helped to organize at both UC Irvine and Ohio State this year. The timing of this merger is especially impactful for Whittier College undergraduates, for soon the joint ARA/ARIANNA⁷ collaboration will require a small army of undergraduate researchers. Whittier is ideally located near UC Irvine, a founding institution and the center for RF hardware and firmware development.

The funding scale for our Antarctic neutrino detector is approximately 15 million USD, with software, firmware, and hardware developed by multiple independent physics and engineering teams at different colleges and universities. A multi-institution collaboration is required to complete this scale of project. This is a standard field-wide in astroparticle physics, as these major science facilities cannot be supported by a single university or national lab. The detector will be comprised of ≈ 100 detector modules, all independently observing $\approx 1 \text{ km}^3$ of ice⁸. Antarctic deployments require coordination and planning best acheived by a collaboration.

My near-term research agenda for ARA/ARIANNA involvement focuses on several areas. The first is simulation software design, in which my student **Cassady Smith** and I study how the RF pulse propagation in the ice affects UHE neutrino sensitivity. The second is detector design, in the form of firmware and hardware development in my RF design and testing lab. My student **John-Paul Gómez-Reed** and I are working on a firmware upgrade without which the ARIANNA/ARA detector array could not expand further. Third, I participate in RF measurements of polar ice properties, to better understand how RF signals propagate ≈ 1 km to our detector modules. I was one of the first researchers in the world to quantify the energy loss of RF pulses for the ice of ARIANNA [18]. Finally, I have begun an RC drone construction program with my student **Nicholas Clarizio**. We have been asked by the collaboration to build drones that can emit RF pulses for detector calibration.

The future science goals fall into three categories which are unobtainable by any other current collaborations. The first line of research is to reveal the origin of cosmic rays, which remains unknown after 100 years. UHE neutrinos are predicted to exist up to the same energies as cosmic ray protons, as the protons produce neutrinos when they interact with other particles in deep space. Thus far, IceCube has only been able to observe neutrinos up to 1/1000th the energy of cosmic ray protons, and it's unclear they are related. Cosmic rays likely originate in other galaxies, but the initial directions and energies are modified because cosmic rays are charged. When charged particles pass through magnetic fields, like those created by our sun and our galaxy, the initial trajectory is bent and energy is lost. Neutrinos travel in straight lines through these magnetic fields because they are not charged. Thus, UHE neutrinos should reveal the origin of cosmic rays by pointing back to the source of the cosmic rays that created them.

The second line of research focuses on the UHE neutrinos themselves. QFT tells us that the laws of physics governing fundamental particles unify and change at ever higher energies. One example would be to measure the probability that UHE neutrinos interact in ice, and check for any deviation from standard QFT.

⁶See the website https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=505593.

⁷We are still in the process of choosing a new name.

⁸Currently, there are 11 ARIANNA and 6 ARA detector modules deployed.

Measuring the relative abundance of the three different types⁹ of UHE neutrinos and whether there is a deviation from standard QFT is another example. My former advisor Amy Connolly (Ohio State) has published recently in this area [13] [14].

The third line of future research focuses on the potential to correlate UHE neutrino sources with other UHE astrophysical sites, such as blazars. A blazar is a high-energy gamma-ray emitting galaxy with the beam of gamma-rays oriented toward the Earth. Recently, IceCube claimed to observe neutrinos from the direction of a blazar that emitted a flare of gamma rays [25]. Although not yet confirmed, this would represent an exciting development in the fields of blazars and my own field. This development would be serendipitous for Whittier College, given that Dr. Glenn Piner studies blazars [23] and I study UHE neutrinos. Thus, there is potential for interdepartmental collaboration.

3.3.1 Conferences, Workshops and Colloquia

I have summarized all my research lectures given in my first year as a Whittier Professor in Tab. 3.1, and I have included the undergraduates who helped me with the research. The purpose of this listing is two-fold: to demonstrate that I have already begun to expose my research students to the broader field of astroparticle physics, and to demonstrate that I am both an active member of the scientific and Whittier communities.¹⁰

Event	Date/Location	Undergraduates Involved
RF Prop. Coding Workshops	Oct. 2017 at UC Irvine	Accompanied by C. Smith
Invited Colloquium	April 19th, 2018 at Cal Poly San Luis Obispo	Research aided by C. Smith
Department Colloquium	May 4th, 2018 at Whittier College	Research aided by C. Smith
UHE eng. meeting	July 11th, 2018 at UC Irvine	Accompanied by Keck Fellows
UHE eng. meeting	August 29-31, 2018 at UC Irvine	Research aided by J.P. Gómez-Reed
Merger meeting	September 12-15, 2018 at Ohio State University	Research aided by Keck Fellows
Public lecture	September 26th, 2018 at Los Nietos Middle School	Research aided by Keck Fellows

Table 3.1: Cassady Smith (C. Smith) began performing software development and research with me in Fall 2017, and I took her to meet my colleagues at UC Irvine in Fall 2017. Also in Fall 2017, I was introduced to John-Paul (J.P.) Gónez-Reed, who began developing firmware in my lab. I was invited to Cal Poly San Luis Obispo to give a colloquium by Dr. Stephanie Wissel. I gave a similar colloquium at the end of Spring 2018. I helped J.P. and Cassady win Keck Summer Research Fellowships, and they both accompanied me to UC Irvine for ARIANNA engineering collaboration. A second such meeting took place at UCI in late August, beginning the merger discussions. Finally, I attended the merger meeting between ARA and ARIANNA researchers at Ohio State, where I presented my Keck Fellows' research alongside my own.

3.4 RF Pulse Propagation in Ice

Given that my sub-field is one collaboration, we publish papers as a collaboration. In my first publication as a Whittier College professor, we reported on the first-ever observations of horizontally propagating RF pulses in polar ice. Normally, RF pulses travel along curved paths in ice because the speed of light is correlated with density, which changes with depth. Because the RF pulses are inherently wave-like, *classical* electromagnetic theory states that the RF pulses should swerve downward, because the top of the wave in faster ice outpaces the bottom in the slower ice. This "shadowing effect" is similar to the physics of a mirage, and removes some ice volume from which neutrinos can geometrically originate while still being detectable. In stark contradiction with *classical* propagation theory, we have observed RF pulses traveling in horizontal paths with no apparent curvature, in multiple venues around Antarctica [11].

On a publication with 19 authors, with data collected from multiple Antarctic sites over a decade, I wrote the first third of this publication. I collected the entire set of index of refraction data, which yields a different speed of

⁹The three types are named *flavors*, and electrons also come in three *flavors*. In normal matter, we are accustomed to dealing with only the first type of electron.

 $^{^{10}}$ Student feedback on the Whittier College colloquium is provided in the supplemental material.

light at a given ice depth. I showed that if we account theoretically for density perturbations in the ice, classical horizontal RF propagation is still possible under certain conditions. I have also shown that internal reflection layers (independently observed via radar and field samples) could also lead to horizontally propagation. If true, the existence of horizontal RF propagation could increase the probability of UHE neutrino detection with ARA and ARIANNA, for the simple reason that a larger volume of ice per detector module becomes a potential UHE neutrino target. I already have one physics major, Cassady Smith, working with me on simulations that quantify these effects. With me as advisor, Cassady received a Keck Summer Research Fellowship for Summer 2018. I was a secondary author on two other peer-reviewed works this year on the topic of RF propagation in ice. One paper detailed observations of a solar flare with ARA [4], and the other quantified RF propagation measurements at the South Pole with ARA [24].

3.5 RF Circuit Fabrication and Testing Laboratory

Given that I am striving for quality research in all phases of my sub-field, I have built an RF circuit fabrication and testing station in my laboratory in the Science and Learning Center. I have begun to teach my students firmware programming, which is a wholly different discipline than software programming. Software code is written in languages like C++ and compiled into assembly and then binary to be executed by a CPU. Firmware code is written in languages like Verilog and VHDL and is compiled directly to binary, which is translated into a physical circuit on a field-programmable gate array (FPGA). The combination of firmware code and FPGAs leads to reprogrammable microcircuits that perform repeated digital tasks at \approx GHz clock frequencies. This discipline is relevant to my research in that the ARIANNA and ARA detector modules make heavy use of FPGAs in their sub-systems to filter and process RF pulse data. John-Paul Gómez-Reed and I have already begun to modify and update the ARIANNA firmware on an actual ARIANNA detector module from UC Irvine. This has given my students hands-on experience with firmware development. The firmware upgrades we are developing are a vital part of the detector expansion currently underway in the merge of ARA/ARIANNA.

The sensitivity of ARA/ARIANNA to UHE cosmic rays and neutrinos is proportional to the number of RF antenna channels deployed. Currently, there is a limit on the number of channels we can deploy, caused by man-made and natural RF noise. Man-made radio noise comes from communications bands in the 100-1000 MHz range, including military satellites [2]. Examples of natural RF noise are thermal noise, in which the electrons radiate at the ice temperatures, leading to our detectors triggering at a random but predictable rate, and the synchrotron electron emissions below 100 MHz from the Milky Way [12]. This firmware upgrade must also adapt to changing wind conditions autonomously, because nearby wind turbines at South Pole emit noise that varies with wind speed. Whittier 3-2 Math/Computer-Science major J.P. Gómez-Reed has competed major research milestones in this area as a Keck Fellow. Now that we have begun to write Verilog and VHDL programs, we are giving ARIANNA detector modules new RF noise-rejecting abilities, and thus reducing the overall noise rate of the RF channels. This firmware upgrade is required to give the detector new sensitivity in the years ahead by allowing deployment of more RF channels, and thus more detector modules. By increasing the number of detector modules, we build up to the necessary 100 km³ of observed ice to record the first UHE neutrino signals. We plan on contracting with ARA/ARIANNA to bring funding to Whittier College as firmware developers in the coming months.

Firmware development is also crucial to the education of our students at Whittier College. I am the first professor at Whittier College to teach it, and soon it will become a core component of the computer science curriculum through my new upper division course, Computer Logic and Digital Circuit Design (COSC330/PHYS306). I am gradually increasing the firmware component of COSC330, as I get a feel for how it should be taught correctly. For students considering careers in physics and engineering, understanding firmware is slowly becoming standard knowledge. Students in the 3-2 engineering programs at Whittier, for example, will be better prepared to perform research and major in electrical engineering at places like USC if they understand firmware. Additionally, for those students considerin careers in science, those who can write firmware applications are of singular importance to collaborations like my own. For these reasons, I envision firmware instruction as adding enormous value to our students' education.

3.6 Digtal Storytelling and Physics: The Primer

The moment I learned of the DigLibArts group at Whittier, I had the following thought "I know exactly what I will do." The DigLibArts group introduced me to the Scalar project, which is a digital storytelling tool used to make digital scholarly works. There are currently no STEM Scalar projects. With this tool, I can produce an interactive digital physics book. Such a digital text would collect student learning pattern data, and the data could be analyzed with machine-learning techniques. I haved connected with Whittier Scholars Program (WSP) and digital media majors Amy Trinh and Brienne Estrada, who have helped design Adobe-based digital characters for this tool. I have received a grant from the DigLibArts group to aid in developing this project. We have named this project The Primer, after 19th Century finishing-school texts. The choice is in reference to a tool called "The Primer" in a novel entitled "The Diamond Age," by Neal Stephenson, in which a young girl named Nell becomes a world-class engineer when the primer falls into her hands. I had originally contracted with reknowned game designer and graphic artist Eric Torres¹¹ to help us with the designs, but he has had to withdraw for family reasons. Although losing Eric was a setback, it was a wonderful experience for Amy, Brienne, and Cassady to Skype with him and hear his ideas.

The Primer project has also been an excellent opportunity for Cassady Smith to learn about machine learning via the scikit-learn python module¹². Cassady Smith has been working on python code that will gather data on how students proceed through the physics problems, and will analyze the outcomes via machine-learning algorithms. Machine-learning algorithms evolve themselves based on training data, solving specific classes of problems efficiently. We train the algorithms by providing two items. First, we provide data classifiers, such as the probability students answer a particular question correctly. Second, we provide the real student outcome, such as the student score on a particular chapter. I plan to continue The Primer project through recruitment of WSP students, who have the ideal mixed skillset for such a project. Once the basic code is written and paired with the artwork of Amy Trinh and Brienne Estrada, I will begin sharing it with high-schoolers from the Artemis Program, who will share the Primer with their friends and use it to collect data on how people learn science. The Artemis program is a program sponsored by the Whittier College Center for Engagement with Communities (CEC) that seeks to empower young women in STEM. I have volunteered this year to be an Artemis professor coordinator. This project combines game-like python code editing with data collection and analysis, similar to a physics education research project I encountered at Ohio State as a post-doctoral fellow [22].

3.7 Funding Received, and Future Plans

Grant Name	Time	Amount	Purpose
Faculty Development Grant	Nov. 2017	\$1500	Attendance of AAPT Conf
Send, Learn, Return Grant	Nov. 2017	\$500	Air-travel to AAPT (above).
DigLibArts Grant	Dec. 2017	\$2000.0	Development of The Primer
Cotrell Scholars Program	Third year at Whittier	\$100,000	Antarctic deployments
NSF CAREER Grant	Third year at Whittier	\$100,000-\$500,000	Completing RF design lab

Table 3.2: A summary of funding for research projects already received, and (below double line) future planned grant applications. Projects above the double line help build toward successful applications below the double line. Internal Whittier College grants (Faculty Development and Send, Learn, Return) helped fund attendance to the American Association of Physics Teachers Conference for New Professors. The DigLibArts grant has helped begin The Primer project. I plan on attempting each of the two grants below the double line within the next two years. For the NSF CAREER grant, my sub-field of UHE neutrinos has had a nice track record, with three awards in the last decade.

In Tab. 3.2, I outline the grants I have already received¹³, and plan to submit. The purpose of this listing is to demonstrate my drive to build an externally funded NSF-based research program. I have the advantage of being at Whittier College, for which the NSF gives special grant-writing status to detail how our research has "broader impacts" for the surrounding community. Projects such as The Primer, and participation in the Artemis program

 $^{^{11} {\}tt https://ericimagines.com.}$

¹²http://scikit-learn.org/stable/

¹³The AAPT conference described in the table is listed here: http://www.aapt.org/Conferences/newfaculty/nfw.cfm

I've carefully chosen to demonstrate to the NSF my willingness to make an impact on the community. Thus far, I have received internal grants from Whittier College. However, these contributions to my startup funding as a professor help me seed projects that ultimately benefit the college, in that I can use the progress to build towards larger proposals.

Chapter 4

Service

When professors usually discuss service to Whittier College, it revolves around work done on comittees. Service on committees is the manifestation of the idea that a university should be self-governed by the faculty. Partnering with the administration, Whittier College faculty have a responsibility to shephard the institution forward into the future. I take this responsibility seriously, and although I was not assigned a committee during my first year as an assistant professor, I have volunteered to serve Whittier College in five ways. First, I served as a faculty advisor to a student organization. In recognition of my service, the students gave me The Most Outstanding Faculty Advisor Award for a student organization. Second, I volunteered to serve on a Faculty Search Committee in the Department of Mathematics, which led to the selection of Dr. David Claveau. Third, I've helped to both recruit new physics majors and to serve current physics majors by attending campus recruitment events and serving the Society of Physics Students' bi-annual Star Party. Fourth, I continue my usual program of giving public lectures, which is meant to serve Whittier College by increasing our recognition in the surrounding Los Angeles community. Finally, I've joined the Enrollment and Student Affairs Committee (ESAC), with a focus on analyzing admissions data. Below I outline a project I've recently undertaken in service to ESAC.

4.1 Service to Student Organizations - CRU

As a convert to the Christian faith, and a member of the Catholic Church, I believe that my purpose in life is to glorify and love the Lord by obeying The Golden Rule - "Love your neighbor as yourself," from The Gospel of Matthew (7:12 and 22:36-40). Whitter College has a student organization called Campus Crusade, which is colloquially known as CRU. CRU is actually a national organization that provides Christian ministry to college students. The Whittier chapter of CRU usually has 15-20 members each year, and meets weekly to read the Bible, sing, and have fellowship by building a community. Each year, CRU also creates Bible study groups, traditionally partitioned into the Men's Bible Study and the Women's Bible Study.

I can relate on a deep level to members of CRU. I have held on to my faith, through the adventure of graduating from college, graduate school, and finally becoming a professor. In addition to the necessary examination of the Christian faith that naturally occurs in a liberal arts college, the college experience in America can at times pull young people away from theology, philosophy, and religious practice. I experienced physics professors, mentors, that actively derided Christianity when I was their student in college. Although I would never presume to deliberately influence students, I'm more than happy to set a good example and to accept their invitation to read scripture in fellowship alongside them. During the weekly Men's Bible Study last year, I joined typically 5-7 students to read the letter of St. Paul to the Romans, in the New Testament. I can confidently say that we all grew in our spiritual knowledge after finishing Romans, and that I am especially proud of those young men from my Bible study group who graduated in Spring 2018 with the moral support of the group. What I find most important is to empathize with the students, and find ways to serve them in their growth as spiritual people alongside their intellectual growth.

At the end of the Spring 2018 semester, the student organizations held an award ceremony to recognize students and faculty who have gone above and beyond normal service to Whittier College and the surrounding community. The student government recognized with The Outstanding Student Organization Advisor Award, for my service to

CRU. It was a proud moment in my first year at Whittier College. I am the first professor to win this award in its inaugural year. I will continue to encourage my colleagues to connect with the students in new and inspiring ways, and I look forward to the award ceremony next spring.

4.2 Faculty Search for the Department of Mathematics

I was brought on to the Department of Physics and Astronomy at Whittier College to help add value to our computer science curriculum, in addition to teaching physics courses. The computer science curriculum is currently delivered to the students by a combination of physics and mathematics professors. Since the Department of Mathematics identifies me as a stakeholder in the future computer science curriculum, I was asked to serve on the committee to select a new tenure-track mathematics professor. This new professor is expected to teach not only mathematics, but robotics and other forms of computer science. I participated in the following activities as part of this tenure-track search: I attended faculty search training led by Dean Darrin Good, I attended planning meetings to draft the job listing and interview questions, I helped schedule phone calls with the applicants. I conducted phone interviews with finalist candidates. Along with Professor Fritz Smith, I interviewe David Claveau, and I was happy when David was nominated for the position. I look forward to collaborating with David in the field of robotics and drones, which have come up recently in my research.

4.3 Recruitment and Service to the Physics Department

I have directly served my department in two major fashions. The first involves recruitment and mentoring. Along with Professor Seamus Lagan, I have attended recruitment events and mentoring events for physics majors admitted to Whittier College. The first such event was held in the student center in Spring 2018. Professor Lagan and I ran a booth distributing information to admitted incoming freshmen about majoring in 3-2 engineering, and physics. We seek to recruit new physics majors at events like these, and once they arrive on campus, we engage in the mentoring program. Professor Lagan asked me to help him serve as mentor to incoming freshmen taking introductory calculus-based physics. I helped Seamus run an ice-breaker session and an introduction to liberal arts education, as well as attending dinners for the new students and faculty mentors.

The second form of service directly tied to physics is my volunteer work with the Artemis program. Professor Serkan Zorba pitched the idea to me, and I have volunteered for the current academic year as an Artemis program sponsor. Physics is infamous for gender disparity, and programs like Artemis seek to balance the disparity by demonstrating to high-school aged female students that careers in physics are for them as well as the male students. I will be connecting my Primer project with Artemis, as I think it nicely dovetails conceptually. It is always a good idea to expose high school students to programming, as many do not have access to programming classes yet in high school but do need that skill in college. I have already received approval of my abstract from Sam Ruiz¹, my Artemis coordinator and liason.

4.4 Public Lectures

Professor Seamus Lagan also connected me with a local high school student, Cole Aedo, who has created STEM Lecture Nights. I have already given a public lecture as part of this program at a local middle school, Los Nietos Middle School in Los Nietos, CA. I created an hour-long lecture that provided content on my field of astroparticle physics tailored to the audience of middle school STEM students and their parents. I also answered questions and promoted Whittier College as a place that will provide them with both a good education and an opportunity to do quality scientific research. Giving public lectures is something I've always done, and my C.V. gives other examples of lectures in the past.

 $^{^1\}mathrm{For}$ more information, contact Sam Ruiz: sruiz3@whittier.edu

4.5 Enrollment and Student Affairs Committee

Finally, I have joined the Enrollment and Student Affairs Committee (ESAC). I have taken minutes and attended meetings, and therein was assigned to a sub-committee examining admissions data. Given that I have a background in analytics and know how to wield machine-learning algorithms, I've embarked on an analytics project seeking to understand recent admissions data and provide insights to the Admissions office. With me on this project are Professors Chuck Hill and Fritz Smith. We are currently collecting the data, which will focus on the last five years of admissions. We seek to derive insights into student outcomes, with the final goal of predicting which students will matriculate to their sophmore year. To achieve this, I proposed to use genetic algorithms to derive a function from the data that takes as inputs data classifiers such as SAT scores, freshman year GPA, and academic quintile classification (AQ1-5). Genetic algorithms have the ability to try vast combinations of linear and non-linear combinations of data classifiers until the best combination is found that correctly predicts the outcome. If successful, ESAC would be able to provide the Admissions Office with a formula that will most accurately predict which Whittier admittees would matriculate to sophmore year and beyond.

Chapter 5

Advising and Mentoring

Hello, here is some text without a meaning. This...

Bibliography

- [1] M. G. Aartsen et al. Observation and Characterization of a Cosmic Muon Neutrino Flux from the Northern Hemisphere using six years of IceCube data. *Astrophys. J.*, 833(1):3, 2016.
- [2] P. Allison, O. Banerjee, J.J. Beatty, A. Connolly, C. Deaconu, J. Gordon, P.W. Gorham, M. Kovacevich, C. Miki, E. Oberla, J. Roberts, B. Rotter, S. Stafford, K. Tatem, L. Batten, K. Belov, D.Z. Besson, W.R. Binns, V. Bugaev, P. Cao, C. Chen, P. Chen, Y. Chen, J.M. Clem, L. Cremonesi, B. Dailey, P.F. Dowkontt, S. Hsu, J. Huang, R. Hupe, M.H. Israel, J. Kowalski, J. Lam, J.G. Learned, K.M. Liewer, T.C. Liu, A.B. Ludwig, S. Matsuno, K. Mulrey, J. Nam, R.J. Nichol, A. Novikov, S. Prohira, B.F. Rauch, J. Ripa, A. Romero-Wolf, J. Russell, D. Saltzberg, D. Seckel, J. Shiao, J. Stockham, M. Stockham, B. Strutt, G.S. Varner, A.G. Vieregg, S. Wang, S.A. Wissel, F. Wu, and R. Young. Dynamic tunable notch filters for the antarctic impulsive transient antenna (anita). Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 894:47 56, 2018.
- [3] P. Allison et al. Performance of two Askaryan Radio Array stations and first results in the search for ultrahigh energy neutrinos. *Phys. Rev.*, D93(8):082003, 2016.
- [4] P. Allison et al. Observation of Reconstructable Radio Emission Coincident with an X-Class Solar Flare in the Askaryan Radio Array Prototype Station. 2018.
- [5] G. A. Askar'yan. Excess negative charge of an electron-photon shower and its coherent radio emission. *Sov. Phys. JETP*, 14(2):441–443, 1962. [Zh. Eksp. Teor. Fiz.41,616(1961)].
- [6] G. A. Askaryan. Excess Negative Charge of the Electron-Photon Shower and Coherent Radiation Originating from It. Radio Recording of Showers under the Ground and on the Moon. *Journal of the Physical Society of Japan Supplement*, 17:257, 1962.
- [7] G. A. Askar'yan. Coherent Radio Emission from Cosmic Showers in Air and in Dense Media. *Soviet Journal of Experimental and Theoretical Physics*, 21:658, September 1965.
- [8] Taylor Barrella, Steven Barwick, and David Saltzberg. Ross ice shelf (antarctica) in situ radio-frequency attenuation. *Journal of Glaciology*, 57(201):61–66, 2011.
- [9] S. Barwick, D. Besson, P. Gorham, and D. Saltzberg. South polar in situ radio-frequency ice attenuation. *Journal of Glaciology*, 51(173):231–238, 2005.
- [10] S. W. Barwick et al. A First Search for Cosmogenic Neutrinos with the ARIANNA Hexagonal Radio Array. Astropart. Phys., 70:12–26, 2015.
- [11] S.W. Barwick, E.C. Berg, D.Z. Besson, G. Gaswint, C. Glaser, A. Hallgren, J.C. Hanson, S.R. Klein, S. Klein-felder, L. Köpke, I. Kravchenko, R. Lahmann, U. Latif, J. Nam, A. Nelles, C. Persichilli, P. Sandstrom, J. Tatar, and E. Unger. Observation of classically 'forbidden' electromagnetic wave propagation and implications for neutrino detection. *Journal of Cosmology and Astroparticle Physics*, 2018(07):055, 2018.
- [12] SW Barwick, DZ Besson, A Burgman, E Chiem, A Hallgren, JC Hanson, SR Klein, S Kleinfelder, A Nelles, C Persichilli, S Phillips, T Prakash, C Reed, SR Shively, J Tatar, E Unger, J Walker, and G Yodh. Radio detection of air showers with the arianna experiment on the ross ice shelf. 2016.
- [13] Mauricio Bustamante and Amy Connolly. Measurement of the energy-dependent neutrino-nucleon cross section above 10 tev using icecube showers. 2017.

- [14] Amy Connolly, Robert S. Thorne, and David Waters. Calculation of high energy neutrino-nucleon cross sections and uncertainties using the martin-stirling-thorne-watt parton distribution functions and implications for future experiments. *Physical Review D*, 83(11):113009, 11 2011.
- [15] Amy L Connolly and Abigail G Vieregg. Radio detection of high energy neutrinos. arXiv, 2016.
- [16] John D.Bransford, Ann L.Brown, and Rodney R.Cocking, editors. *How People Learn: Brain, Mind, Experience, and School: Expanded Edition.* The National Academies Press, 2000.
- [17] P. W. Gorham et al. The Antarctic Impulsive Transient Antenna Ultra-high Energy Neutrino Detector Design, Performance, and Sensitivity for 2006-2007 Balloon Flight. Astropart. Phys., 32:10–41, 2009.
- [18] Jordan C. Hanson, Steven W. Barwick, Eric C. Berg, Dave Z. Besson, Thorin J. Duffin, Spencer R. Klein, Stuart A. Kleinfelder, Corey Reed, Mahshid Roumi, Thorsten Stezelberger, and et al. Radar absorption, basal reflection, thickness and polarization measurements from the ross ice shelf, antarctica. *Journal of Glaciology*, 61(227):438-446, 2015.
- [19] I. Kravchenko et al. Performance and simulation of the RICE detector. Astropart. Phys., 19:15–36, 2003.
- [20] Eric Mazur. Peer Instruction. Prentice Hall, Inc., 1997.
- [21] University of Colorado. Physics Education Technology. https://phet.colorado.edu/, 2018.
- [22] Chris Orban, Chris Porter, Joseph R H Smith, Nash K Brecht, Chris A Britt, Richelle M Teeling-Smith, and Kathy A Harper. A game-centered, interactive approach for using programming exercises in introductory physics. arXiv:1701.01867, 2017.
- [23] B Glenn Piner and Philip G Edwards. Multi-epoch vlba imaging of twenty new tev blazars: Apparent jet speeds. *The Astrophysical Journal*, 853(1):68, 2018.
- [24] The Askaran Radio Array Collaboration. Measurement of the real dielectric permittivity ϵ_r of glacial ice. Journal of Glaciology (arXiv:1712.03301), 2018, 2018.
- [25] The IceCube Collaboration. Neutrino emission from the direction of the blazar txs 0506+056 prior to the icecube-170922a alert. *Science*, 2018.