In [18]: import pandas as pd

df = pd.read_csv("C:/Users/jain/Desktop/blockchain_interoperability/Finality Time Analysis/Mainnet.csv")
df.head()

Out[18]:

	Unnamed: 0	Transaction Hash	Status	Time Consumed (Seconds)	Value (Ether)	Transaction Fees (Ether)	Gas Price (Ether)
0	0	0x93666f74bcd9ca5df77db3c2f4a48407004251cb316f	Success	30	48.796871	0.003129	1.490000e- 07
1	1	0x1598196dfb6b1323e2ac5a9f4dd9efc4867e6b7e50a9	Success	30	0.000000	0.003907	1.490000e- 07
2	2	0x5941f5c381e75eb8421ea1d49cb36ca6ada6ff53074d	Success	30	0.000000	0.006140	1.490000e- 07
3	3	0xec991377dffb16f70cb943ef976a2a31476e86cc21f3	Success	30	0.000000	0.006355	1.500000e- 07
4	4	0x0663c86faf9888e61e5b751a29534734bfd13ed9908b	Success	30	0.000000	0.028795	1.500000e- 07

```
In [19]: df['Status'].value_counts().plot.bar()
```

Out[19]: <matplotlib.axes._subplots.AxesSubplot at 0x15447d2bcf8>


```
In [20]: import pandas as pd
    df.drop(df.index[(df["Time Consumed (Seconds)"] == "Remove")],axis=0,inplace=True)
    #pd.to_numeric(df['Time Consumed (Seconds)'])
    #df['Time Consumed (Seconds)'].value_counts()
    df['Time Consumed (Seconds)'] = df['Time Consumed (Seconds)'].astype(int)
```

In [21]: df.describe()

Out[21]:

	Unnamed: 0	Time Consumed (Seconds)	Value (Ether)	Transaction Fees (Ether)	Gas Price (Ether)	Gas Limit	Gas Used
count	5169.000000	5169.000000	5169.000000	5169.000000	5.169000e+03	5.169000e+03	5.169000e+03
mean	2584.763591	49.946605	1.809618	0.011200	1.733460e-07	1.571153e+05	6.662727e+04
std	1492.618829	85.703142	26.361856	0.017238	1.273859e-07	3.530212e+05	1.042495e+05
min	0.000000	1.000000	0.000000	0.000021	1.000000e-09	2.100000e+04	1.496000e+04
25%	1293.000000	30.000000	0.000000	0.003780	1.480000e-07	3.473100e+04	2.100000e+04
50%	2585.000000	30.000000	0.000000	0.006696	1.640000e-07	8.100000e+04	4.120900e+04
75%	3877.000000	30.000000	0.060000	0.011938	1.790000e-07	2.000000e+05	6.709400e+04
max	5169.000000	2632.000000	1250.000000	0.609017	4.872186e-06	1.237656e+07	4.258861e+06

In [22]: from matplotlib import pyplot as plt
df['Time Consumed (Seconds)'].value_counts().sort_values()

Out[22]:	1739	1
	7	1
	528	1
	494	1
	458	1
	390	1 1
	362	1
	350 334	1
	330	1
	318	1
	314	1
	294	1
	222	1
	482	1
	480	1
	303	1
	344	1
	372	1
	312	1
	196	1
	360	1
	308	1
	112	1
	152	1
	108	1
	56	1
	184	1
	256	1
	176	1
	13	 14
	9	15
	64	15
	46	15
	21	16
	19	16
	130	17
	45	17
	33	19
	40	19
	27	19
	24	20

```
20
11
5
           23
59
           23
39
           24
29
           24
           27
4
3
           27
34
           28
22
           29
           29
43
32
           30
26
           34
14
           34
15
           39
10
           40
2
           51
          271
1
30
        3347
```

Name: Time Consumed (Seconds), Length: 250, dtype: int64

```
In [23]: a = plt.subplots(1,2,figsize=(5,3))[1].ravel()
a[0].hist(df['Time Consumed (Seconds)'],range=[0,1])
a[1].hist(df['Time Consumed (Seconds)'],range=[30,31])
plt.tight_layout()
plt.show()
```



```
In [24]: | a = plt.subplots(4,3,figsize=(15,10))[1].ravel()
         a[0].hist(df['Time Consumed (Seconds)'],bins=30,range=[2,29])
         a[1].hist(df['Time Consumed (Seconds)'],bins=30,range=[31,60])
         a[2].hist(df['Time Consumed (Seconds)'],bins=30,range=[61,90])
         a[3].hist(df['Time Consumed (Seconds)'],bins=30,range=[91,120])
         a[4].hist(df['Time Consumed (Seconds)'],bins=30,range=[121,150])
         a[5].hist(df['Time Consumed (Seconds)'],bins=30,range=[151,180])
         a[6].hist(df['Time Consumed (Seconds)'],bins=30,range=[181,210])
         a[7].hist(df['Time Consumed (Seconds)'],bins=30,range=[211,240])
         a[8].hist(df['Time Consumed (Seconds)'],bins=30,range=[241,270])
         a[9].hist(df['Time Consumed (Seconds)'],bins=30,range=[271,300])
         a[10].hist(df['Time Consumed (Seconds)'],bins=100,range=[301,500])
         a[11].hist(df['Time Consumed (Seconds)'],bins=200,range=[501,2700])
         #plt.tight layout()
         #plt.show()
         #a[7].set ylim([0,5])
         plt.tight layout()
         plt.show()
```


In [25]: v = df[df['Time Consumed (Seconds)'] > 150].count()/df.count()
v['Time Consumed (Seconds)']*100

Out[25]: 5.765138324627587

```
In [26]: v = df[df['Time Consumed (Seconds)'] > 500 ].count()/df.count()
         v['Time Consumed (Seconds)']*100
Out[26]: 0.15476881408396206
In [27]: v= df[df['Time Consumed (Seconds)'].between(150,500, inclusive=True)].count()
         print(v['Time Consumed (Seconds)'])
         v = (df[df['Time Consumed (Seconds)'].between(150,500, inclusive=True)].count()/df.count())*100
         print(v['Time Consumed (Seconds)'])
         v = (df[df['Time Consumed (Seconds)'].between(0,150, inclusive=True)].count()/df.count())*100
         print(v['Time Consumed (Seconds)'])
         v = (df[df['Time Consumed (Seconds)'].between(501,2700, inclusive=True)].count()/df.count())*100
         print(v['Time Consumed (Seconds)'])
         292
         5.649061714064616
         94.23486167537241
         0.15476881408396206
In [28]: v = df[df['Time Consumed (Seconds)'] <= 30].count()/df.count()</pre>
         v['Time Consumed (Seconds)']*100
```

In [29]: df[df['Time Consumed (Seconds)'].between(0,150, inclusive=True)].describe()

Out[29]:

	Unnamed: 0	Time Consumed (Seconds)	Value (Ether)	Transaction Fees (Ether)	Gas Price (Ether)	Gas Limit	Gas Used
count	4871.000000	4871.000000	4871.000000	4871.000000	4.871000e+03	4.871000e+03	4.871000e+03
mean	2601.823445	33.018887	1.858968	0.011183	1.750269e-07	1.591509e+05	6.584072e+04
std	1498.593868	22.208173	27.071288	0.016953	1.309868e-07	3.600422e+05	1.001020e+05
min	0.000000	1.000000	0.000000	0.000210	1.000000e-08	2.100000e+04	1.496000e+04
25%	1310.500000	30.000000	0.000000	0.003822	1.490000e-07	3.415250e+04	2.100000e+04
50%	2574.000000	30.000000	0.000000	0.006747	1.660000e-07	8.241800e+04	4.120900e+04
75%	3946.500000	30.000000	0.060209	0.011916	1.801800e-07	2.012555e+05	6.510700e+04
max	5169.000000	150.000000	1250.000000	0.609017	4.872186e-06	1.237656e+07	4.258861e+06

For the transaction having time upto 150 seconds, the mean is 33, standard deviation is 22 and amximum time taken is 150 seconds. Though, 80% of transactions completed upto 30 seconds. So, finality time for the bracket [0-150] seconds is as calculated ((Mean + Std. Deviation + Maximum value -150 seconds(As considerable amount of transactions))/2) = 103.

In [30]: df[df['Time Consumed (Seconds)'].between(151,500, inclusive=True)].describe()

Out[30]:

	Unnamed: 0	Time Consumed (Seconds)	Value (Ether)	Transaction Fees (Ether)	Gas Price (Ether)	Gas Limit	Gas Used
count	290.000000	290.000000	290.000000	290.000000	2.900000e+02	2.900000e+02	2.900000e+02
mean	2300.751724	308.286207	1.026980	0.011293	1.457768e-07	1.223201e+05	7.834090e+04
std	1363.707670	108.856040	8.779158	0.021540	1.497629e-08	2.063668e+05	1.583340e+05
min	232.000000	151.000000	0.000000	0.000021	1.000000e-09	2.100000e+04	2.100000e+04
25%	441.250000	207.000000	0.000000	0.003396	1.345000e-07	3.660075e+04	2.128900e+04
50%	2683.500000	293.000000	0.000000	0.006185	1.370000e-07	6.000000e+04	4.120900e+04
75%	3500.750000	396.500000	0.036101	0.012955	1.600000e-07	1.522732e+05	9.342800e+04
max	4384.000000	497.000000	110.047884	0.311431	1.660000e-07	2.601641e+06	2.324111e+06

For the transaction having time upto 150 seconds, the mean is 33, standard deviation is 22 and amximum time taken is 150 seconds. Though, 80% of transactions completed upto 30 seconds. So, finality time for the bracket [0-150] seconds is as calculated ((Mean + Std. Deviation + Maximum value -150 seconds(As considerable amount of transactions))/2) = 457.

In [31]: df[df['Time Consumed (Seconds)'].between(501,2700, inclusive=True)].describe()

Out[31]:

	Unnamed: 0	Time Consumed (Seconds)		Transaction Fees (Ether)	Gas Price (Ether)	Gas Limit	Gas Used
count	8.000000	8.000000	8.000000	8.000000	8.000000e+00	8.00000	8.000000
mean	2492.875000	992.000000	0.132651	0.018468	1.492500e-07	179005.37500	120924.500000
std	1441.603813	782.191244	0.188606	0.013958	1.258957e-08	102778.62817	88369.885874
min	279.000000	504.000000	0.000000	0.002835	1.342000e-07	21000.00000	21000.000000
25%	1963.000000	504.000000	0.000000	0.005686	1.352250e-07	130001.25000	36156.750000
50%	3036.500000	642.000000	0.008680	0.018567	1.542500e-07	174069.50000	120617.000000
75%	3529.500000	1011.500000	0.260387	0.027005	1.600000e-07	265766.25000	190224.750000
max	3727.000000	2632.000000	0.450000	0.037861	1.610000e-07	314240.00000	236634.000000

In [33]: df[df['Time Consumed (Seconds)'].between(501,2700, inclusive=True)]

Out[33]:

	Unnamed:	Transaction Hash	Status	Time Consumed (Seconds)	Value (Ether)	Transaction Fees (Ether)	Gas Pı (Etł
279	279	0x7e0a8e3990159e4f3f56cb9c698cb8cdd8c1db009248	Success	769	0.450000	0.018895	1.48500 07
280	280	0xae8ba6ae4274756b4de55bb669e4fe91f0c0766a3f5a	Success	528	0.000000	0.002841	1.35300 07
2524	2524	0xc13b3162f1ac5f352ecb8c054935bafaa61cb21e909b	Success	2632	0.223849	0.023792	1.34200 07
2545	2545	0x5edf1fdcb7742399065365ea808d5364c9ec92a8b15c	Success	1739	0.001000	0.002835	1.35000 07
3528	3528	0x2101f4ba90a93a0b5803420c7458de0524986c81c1c1	Success	504	0.370000	0.018239	1.60000 07
3529	3529	0x79f782190634b9aa74fe4759ecc30d55d859b69691be	Success	504	0.016360	0.036645	1.60000 07
3531	3531	0xd83e502efad5eda0a030f7487271f79c53c34a6598c1	Success	504	0.000000	0.037861	1.60000 07
3727	3727	0x9fbdb0eb4b20d21adf4d8bc60ba0fa973d5ddd3c8cec	Success	756	0.000000	0.006635	1.61000 07
4							•

For the transaction having time upto 150 seconds, the mean is 33, standard deviation is 22 and amximum time taken is 150 seconds. Though, 80% of transactions completed upto 30 seconds. So, finality time for the bracket [0-150] seconds is as calculated ((Mean + Std. Deviation + Maximum value -150 seconds(As considerable amount of transactions))/2) = 2203.

Considering the above brackets of finality time, we are using ((0.94103 + 0.05457 + 0.00152203 = 127) + effective outliers value (0.94150 + 0.05497 + 0.001542632 = 169)/2) = 150 (approx) for ropsten network. For mainnet network, we took an average of outliers ranging between 500 and 2700 = (992 + 150)/2 = 571 seconds.

Analysis of relationship b/w Time Taken & different parameters.

- 1. Relationship of Time Consumed and amount value.
- 2. Relationship of Time Consumed and Transaction Fees.
- 3. Relationship of Time Consumed and Gas Price, Gas Limit, Gas Used.
- 4. Relationship of Gas Limit and Gas Used.
- 5. Relationship of value and Gas Price, Gas Limit.

```
In [60]: a = plt.subplots(1,2,figsize=(15,5))[1].ravel()
v = df[df['Time Consumed (Seconds)'] > 500]
v1 = df[df['Time Consumed (Seconds)'] > 500]
a[0].scatter(v['Time Consumed (Seconds)'], v['Value (Ether)'])
a[1].scatter(v1['Time Consumed (Seconds)'], v1['Value (Ether)'])
plt.xlabel('Time ')
plt.ylabel('Value')
plt.title("Relation between Time Consumed and Amount.")
plt.tight_layout()
plt.show()
```



```
In [63]: a = plt.subplots(1,2,figsize=(15,5))[1].ravel()
v = df[df['Time Consumed (Seconds)'] <= 400]
v1 = df[df['Time Consumed (Seconds)'] > 400]
a[0].scatter(v['Time Consumed (Seconds)'], v['Transaction Fees (Ether)'])
a[1].scatter(v1['Time Consumed (Seconds)'], v1['Transaction Fees (Ether)'])
plt.xlabel('Time ')
plt.ylabel('Value')
plt.title("Relation between Time Consumed and Transaction Fees.")
plt.tight_layout()
plt.show()
```



```
In [107]: | a = plt.subplots(2,2,figsize=(15,10))[1].ravel()
           d = df[df['Time Consumed (Seconds)'] <= 20]</pre>
           d['Gas Price (Ether)'] = d['Gas Price (Ether)']*1000000000
           d1 = df[df['Time Consumed (Seconds)'] <= 100]</pre>
           d1['Gas Price (Ether)'] = d1['Gas Price (Ether)']*1000000000
           v = df[df['Time Consumed (Seconds)'] <= 400]
           v['Gas\ Price\ (Ether)'] = v['Gas\ Price\ (Ether)']*1000000000
           v1 = df[df['Time Consumed (Seconds)'] > 400]
           v1['Gas Price (Ether)'] = v1['Gas Price (Ether)']*1000000000
           a[0].scatter(v['Time Consumed (Seconds)'], v['Gas Price (Ether)'])
           a[1].scatter(v1['Time Consumed (Seconds)'], v1['Gas Price (Ether)'])
           a[2].scatter(d['Time Consumed (Seconds)'], d['Gas Price (Ether)'])
           a[3].scatter(d1['Time Consumed (Seconds)'], d1['Gas Price (Ether)'])
           plt.xlabel('Time ')
           plt.ylabel('Value')
           plt.title("Relation between Time Consumed and Gas Price.")
           plt.tight layout()
           plt.show()
```

```
C:\Users\jain\Anaconda3\lib\site-packages\ipykernel launcher.py:3: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row indexer,col indexer] = value instead
See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view
-versus-copy
 This is separate from the ipykernel package so we can avoid doing imports until
C:\Users\jain\Anaconda3\lib\site-packages\ipykernel launcher.py:5: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row indexer,col indexer] = value instead
See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view
-versus-copy
  .....
C:\Users\jain\Anaconda3\lib\site-packages\ipykernel launcher.py:7: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row indexer,col indexer] = value instead
See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view
-versus-copy
  import sys
C:\Users\jain\Anaconda3\lib\site-packages\ipykernel launcher.py:9: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row indexer,col indexer] = value instead
See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view
-versus-copy
 if __name__ == '__main__':
```



```
In [81]: a = plt.subplots(2,3,figsize=(15,10))[1].ravel()
    a[0].hist(df['Gas Price (Ether)']*1000000000,bins=100,range=[1,100])
    a[1].hist(df['Gas Price (Ether)']*1000000000,bins=100,range=[101,200])
    a[2].hist(df['Gas Price (Ether)']*1000000000,bins=100,range=[201,300])
    a[3].hist(df['Gas Price (Ether)']*1000000000,bins=100,range=[301,400])
    a[4].hist(df['Gas Price (Ether)']*1000000000,bins=100,range=[501,5000])
    #plt.tight_layout()
    #plt.show()
    #a[7].set_ylim([0,5])
    plt.tight_layout()
    plt.show()
```


Analysis of Findings

- 1. Gas Price is concentrated in the range of 130 to 220 Gwei. In normal cases, if user pays this gas price(near to 250 Gwei), the observed time taken would be <=500 seconds. For time greater than 500 seconds, the gas price is around maximum 170 Gwei.
- 2. There are some points where there is high gas price (around 5000 Gwei), the time taken is less than 40 seconds.
- 3. For the transactions completing below 20 seconds, the gas price is around 300 Gwei.

```
In [111]: v = df[df['Time Consumed (Seconds)'].between(0,20, inclusive=True)]
    x = v.groupby('Gas Limit').count()
    print(x['Status'].sort_values().tail(50))
    plt.scatter(v['Time Consumed (Seconds)'], v['Gas Limit'])
    plt.show()
```

1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3 3
3 3
3
3
4
4
5
6
6
6
6
7

Name: Status, dtype: int64


```
In [113]: v = df[df['Time Consumed (Seconds)'].between(20,50, inclusive=True)]
    x = v.groupby('Gas Limit').count()
    print(x['Status'].sort_values().tail(50))
    plt.scatter(v['Time Consumed (Seconds)'], v['Gas Limit'])
    plt.show()
```

Gas Limit	
66853	5
84000	5
56836	5
75247	5
41197	5
350000	5
61813	6
67451	6
67918	6
48846	6
51179	6
395317	6
1170500	7
48959	7
35000	7
65000	7
56209	7
82442	8
60001	8
84313	9
60010	11
25200	12
45000	12
210000	12
82418	12
70000	13
30000	13
120000	13
105000	15
1000000	15
41209	15
180000	15
600000	18
49070	21
400000	22
42000	23
800000	25
50000	29
420000	32
80000	51
150000	56
300000	69

Name: Status, dtype: int64


```
In [114]: a = plt.subplots(1,2,figsize=(15,5))[1].ravel()
v = df[df['Time Consumed (Seconds)'] <= 40]
v1 = df[df['Time Consumed (Seconds)'] > 400]
a[0].scatter(v['Time Consumed (Seconds)'], v['Gas Limit'])
a[1].scatter(v1['Time Consumed (Seconds)'], v1['Gas Limit'])
plt.xlabel('Time ')
plt.ylabel('Gas Limit')
plt.title("Relation between Time Consumed and Gas Limit.")
plt.tight_layout()
plt.show()
```



```
In [115]: a = plt.subplots(1,2,figsize=(15,5))[1].ravel()
    v = df[df['Time Consumed (Seconds)'].between(150,500, inclusive=True)]
    print(v.groupby('Gas Limit').count().tail(25))
    v1 = df[df['Time Consumed (Seconds)'] > 50]
    a[0].scatter(v['Time Consumed (Seconds)'], v['Gas Limit'])
    a[1].scatter(v1['Time Consumed (Seconds)'], v1['Gas Limit'])
```

	Unnamed: 0 T	ransaction Has	sh St	tatus	Time	Consumed	(Second	s)
Gas Limit								
229125	1		1	1				1
230651	1		1	1				1
238434	1		1	1				1
239222	1		1	1				1
239452	1		1	1				1
240063	1		1	1				1
240639	1		1	1				1
250000	2		2	2				2
254733	1		1	1				1
254999	1		1	1				1
283152	1		1	1				1
300000	3		3	3				3
302112	1		1	1				1
315447	2		2	2				2
320140	1		1	1				1
326478	1		1	1				1
331604	1		1	1				1
355506	1		1	1				1
500000	3		3	3				3
800000	1		1	1				1
819200	1		1	1				1
938489	1		1	1				1
1000000	1		1	1				1
1312134	1		1	1				1
2601641	1		1	1				1
	Value (Ether)	Transaction	Fees	(Ether	r) Ga	s Price	(Ether)	\
Gas Limit				•	·			
229125	1				1		1	
230651	1				1		1	
238434	1				1		1	
239222	1				1		1	
239452	1				1		1	
240063	1				1		1	
240639	1				1		1	
250000	2				2		2	
254733	1				1		1	
254999	1				1		1	
283152	1				1		1	
300000	3				3		3	
302112	1				1		1	

315447	2	2	2
320140	1	1	1
326478	1	1	1
331604	1	1	1
355506	1	1	1
500000	3	3	3
800000	1	1	1
819200	1	1	1
938489	1	1	1
1000000	1	1	1
1312134	1	1	1
2601641	1	1	1

	Gas	Used
Gas Limit		
229125		1
230651		1
238434		1
239222		1
239452		1
240063		1
240639		1
250000		2
254733		1
254999		1
283152		1
300000		3
302112		1
315447		2
320140		1
326478		1
331604		1
355506		1
500000		3
800000		1
819200		1
938489		1
1000000		1
1312134		1
2601641		1

Out[115]: <matplotlib.collections.PathCollection at 0x154476e5d68>


```
In [91]: | a = plt.subplots(4,3,figsize=(15,10))[1].ravel()
         a[0].hist(df['Gas Limit'],bins=30,range=[21000,25000])
         a[1].hist(df['Gas Limit'],bins=30,range=[25000,35000])
         a[2].hist(df['Gas Limit'],bins=30,range=[35000,55000])
         a[3].hist(df['Gas Limit'],bins=30,range=[55000,80000])
         a[4].hist(df['Gas Limit'],bins=30,range=[80000,100000])
         a[5].hist(df['Gas Limit'],bins=30,range=[100000,150000])
         a[6].hist(df['Gas Limit'],bins=30,range=[150000,250000])
         a[7].hist(df['Gas Limit'],bins=30,range=[250000,500000])
         a[8].hist(df['Gas Limit'],bins=30,range=[500000,600000])
         a[9].hist(df['Gas Limit'],bins=30,range=[600000,700000])
         a[10].hist(df['Gas Limit'],bins=30,range=[700000,1000000])
         a[11].hist(df['Gas Limit'],bins=30,range=[1000000,10000000000])
         #plt.tight_layout()
         #plt.show()
         #a[7].set ylim([0,5])
         plt.tight layout()
         plt.show()
```


Table of Findings of Relation between Time Consumed with Gas Price and Gas Limit.

Gas Limit	Time Taken	Remarks	Gas Price
<= 3,00,000	0-20 sec	~42% (majority 21000 gas limit)	140-300(gas price in gwei), some high exceptions of gas price.
<= 5,00,000	20-400 sec	(majority 21000 gas limit)	140-200(gas price in gwei).
<= 3,00,000	40-2700 sec	Having wide array of values (sparsed)	130-175(gas price in gwei)

```
In [125]: | df['Gas Left'] = df['Gas Limit'] - df['Gas Used']
          df['Gas Left'].describe()
          #plt.hist(df['Gas Left'],bins=30,range=[0,10000])
Out[125]: count
                   5.169000e+03
                   9.048802e+04
          mean
          std
                   3.243448e+05
                   0.000000e+00
          min
          25%
                   0.000000e+00
                   3.000000e+04
          50%
          75%
                   7.592900e+04
          max
                   1.235556e+07
          Name: Gas Left, dtype: float64
```

Findings on Gas Limit and Gas Used.

1. Around 25% of transactions consumed whole gas. ANd around 75% of transactions having gas unused <= 75929. There are few transactions having high unused gas value.