

Proposition (Hockey- Stick)	
Proof by	For any fixed n, we argue by induction on K.
	Base case $K=0$: $ \frac{1}{2} \binom{n+1}{3} = \binom{n+1}{k} = \binom{n+k+1}{k} $
	Suppose (d) is true for k. Goal is to show that:
	$\sum_{j=0}^{K+1} \binom{n+j}{j} = \binom{n+(k+1)+1}{k+1} \tag{A4}$
	$\frac{1}{2}\left(\frac{1}{2}\right) = \frac{1}{2}\left(\frac{1}{2}\right) + \left(\frac{1}{2}\left(\frac{1}{2}\right)\right)$
	= (N+K+1) + (N+K+1) $= (N+K+1) + (N+K+1)$
	which is (bo). (n+1x+1)+1) (Pascals identity/rule p9, Lb) which is (bo).

ombinational	Regall from L4 (and p12 of L5):
PLOP	
•	# k-multisets of an n-set is:
	$\binom{R+n-1}{n-1}$
	(n-1)
	An example is distribution & indiction isb
	lable condies to n distinguishable
	An example 18 distributing k indistinguish- able condies to n distinguishable children: k candies.
DO	andy 0000 000 1 1 1 1 1 1 1 1 1
9	9 1919 9 1919 9
7 0	A X X X
	n children
0	In how many of these distributions does
	the first child receive i candies
	(i=0,1), oo, k
Α.	If the first child receives i cardies,
	then the romaining n-1 children
	receive R-i candies Using (1),
	this can happen in
	(k-i)+(n-i)-1
	(m-1)-1) ways

Since each distribution is characterized by the first child receiving i cardies for some in the range o to k, we must have that: $= \sum_{j=0}^{k} \left(\frac{j+n-2}{n-2} \right)$ $= \sum_{j=0}^{k} (n-2+j)$ Pritting n'=n-2 in (2) yields: $k + (n+1) = \sum_{j=0}^{k} (n+j)$ which is (a) since LHB is $\binom{(n+1)+k}{k} = \binom{n+k+1}{k}$

4.1 WP	Fibonacci Numbers.
	Left-justify the tows of Pascals Triangle.
	1
	111.3
	1 2 1 7 12 18
	1331
	4641
	5 10 10 5 1 1/5/10 10 5 1
1 6	15 20 15 6 1 1 6 15 20 15 6 1
	The sum of the diagonal elements.
<i>I</i> .	in left-justified table are known
	as the Fibonacci numbers.
	1 1 0 2 - 0 10
	1,1,2,3,5,8,13
	15 1 10 0 0 0 11
1.2	If you look at those for a while you'll notice that every number after the first two is the sum of the two
	first to is 18
	is acception on the sum of the TWB
	the beginning of the sequence, we have
	E = 0
	F = 1
	$\overline{f}_{n} = \overline{f}_{n-1} + \overline{f}_{n-2} \qquad n \ge 2$
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

	A nice visualization of this fact is
	Fibonacci Spiral.
,	3 Spiral.
#	
	3 2 8
	5
vojstien	(n) $(n \mid k)$
(Fibonacci	
Identity)	where $K = L^{n}/2J$
	K = L/2J
PC	Argue by induction on n.
P	
cases	
cases.	$n=1 \qquad \binom{1}{0} = 1 = F_2 \qquad \checkmark$
	Supasse true for n-2, n-1 (n > 3)
	Duplace 1,000 421, 11-1 (1122)
	Want to prove true for n. Consider:

for the control of th

But:

$$\binom{n}{0} + \binom{n-1}{1} + \binom{n-2}{2} + \cdots + \binom{n-1}{k}$$

But:

 $\binom{n}{1} = \binom{n-1}{1} + \binom{n-1}{2} + \binom{n-1}{k}$

Thus (3) can be written

 $\binom{n-1}{0} + \binom{n-2}{1} + \binom{n-2}{2} + \binom{n-2}{k} + \binom$

	E For exo	mple	J'.						
	· ·	3	4	-5	6	7	8		
	0 2	15	2	2.5	3	3,5	4		
	2.7							<u> </u>	
T.	Finally	(4) =)	4						
	F (n-1) +1	+		F (n-	2)+1		Lind	uction	hypothas
=	+ + +	Ŧ_n-1					\	Nices	18.
-	Fn+1							2 6	
	which is	the	bro	paiti	,on	for	n	odd.	Simular
0.0	nhation exists	for	~	ena	20				包
1								·	
						- 1			