# CS F402: Computational Geometry

### Lecture 9:

## GD - Force-Directed Drawing Algorithms-I



Siddharth Gupta

February 12+14, 2025



**Input:** Graph G = (V, E)



**Input:** Graph G = (V, E)

Output: Clear and readable straight-line drawing of *G* 





**Input:** Graph G = (V, E)

Output: Clear and readable straight-line drawing of *G* 



**Input:** Graph G = (V, E)

Output: Clear and readable straight-line drawing of *G* 

### **Drawing aesthetics:**

adjacent vertices are close



**Input:** Graph G = (V, E)

Output: Clear and readable straight-line drawing of *G* 

- adjacent vertices are close
- non-adjacent vertices are far apart



**Input:** Graph G = (V, E)

Output: Clear and readable straight-line drawing of *G* 

- adjacent vertices are close
- non-adjacent vertices are far apart
- edges short, straight-line, similar length



**Input:** Graph G = (V, E)

Output: Clear and readable straight-line drawing of *G* 

- adjacent vertices are close
- non-adjacent vertices are far apart
- edges short, straight-line, similar length
- densely connected parts (clusters) form communities



**Input:** Graph G = (V, E)

Output: Clear and readable straight-line drawing of *G* 

- adjacent vertices are close
- non-adjacent vertices are far apart
- edges short, straight-line, similar length
- densely connected parts (clusters) form communities
- as few crossings as possible



**Input:** Graph G = (V, E)

Output: Clear and readable straight-line drawing of *G* 

- adjacent vertices are close
- non-adjacent vertices are far apart
- edges short, straight-line, similar length
- densely connected parts (clusters) form communities
- as few crossings as possible
- nodes distributed evenly



**Input:** Graph G = (V, E)

Output: Clear and readable straight-line drawing of *G* 

#### **Drawing aesthetics:**

- adjacent vertices are close
- non-adjacent vertices are far apart
- edges short, straight-line, similar length
- densely connected parts (clusters) form communities
- as few crossings as possible
- nodes distributed evenly

Optimization criteria partially contradict each other



**Input:** Graph G = (V, E), required edge length  $\ell(e)$ ,  $\forall e \in E$ 

**Input:** Graph G = (V, E), required edge length  $\ell(e)$ ,  $\forall e \in E$ 



**Input:** Graph G = (V, E), required edge length  $\ell(e)$ ,  $\forall e \in E$ 





**Input:** Graph G = (V, E), required edge length  $\ell(e)$ ,  $\forall e \in E$ 







**Input:** Graph G = (V, E), required edge length  $\ell(e)$ ,  $\forall e \in E$ 









**Input:** Graph G = (V, E), required edge length  $\ell(e)$ ,  $\forall e \in E$ 









NP-hard for

**Input:** Graph G = (V, E), required edge length  $\ell(e)$ ,  $\forall e \in E$ 

Output: Drawing of *G* which realizes all the edge lengths









NP-hard for

uniform edge lengths in any dimension [Johnson '82]

**Input:** Graph G = (V, E), required edge length  $\ell(e)$ ,  $\forall e \in E$ 

Output: Drawing of *G* which realizes all the edge lengths









#### NP-hard for

- uniform edge lengths in any dimension [Johnson '82]
- uniform edge lengths in planar drawings [Eades, Wormald '90]

**Input:** Graph G = (V, E), required edge length  $\ell(e)$ ,  $\forall e \in E$ 

Output: Drawing of *G* which realizes all the edge lengths









#### NP-hard for

- uniform edge lengths in any dimension [Johnson '82]
- uniform edge lengths in planar drawings [Eades, Wormald '90]
- edge lengths {1,2} [Saxe '80]

#### Idea.

[Eades '84]

"To embed a graph we replace the vertices by steel rings and replace each edge with a **spring** to form a mechanical system .

Idea. [Eades '84]

"To embed a graph we replace the vertices by steel rings and replace each edge with a **spring** to form a mechanical system .



#### Idea.

[Eades '84]

"To embed a graph we replace the vertices by steel rings and replace each edge with a **spring** to form a mechanical system ... The vertices are placed in some initial layout and let go so that the spring forces on the rings move the system to a minimal energy state."



#### Idea.

[Eades '84]

"To embed a graph we replace the vertices by steel rings and replace each edge with a **spring** to form a mechanical system ... The vertices are placed in some initial layout and let go so that the spring forces on the rings move the system to a minimal energy state."



#### Idea.

[Eades '84]

"To embed a graph we replace the vertices by steel rings and replace each edge with a **spring** to form a mechanical system ... The vertices are placed in some initial layout and let go so that the spring forces on the rings move the system to a minimal energy state."



#### Idea.

[Eades '84]

"To embed a graph we replace the vertices by steel rings and replace each edge with a **spring** to form a mechanical system ... The vertices are placed in some initial layout and let go so that the spring forces on the rings move the system to a minimal energy state."

#### Attractive forces.



#### Idea.

[Eades '84]

"To embed a graph we replace the vertices by steel rings and replace each edge with a **spring** to form a mechanical system ... The vertices are placed in some initial layout and let go so that the spring forces on the rings move the system to a minimal energy state."

#### Attractive forces.

adjacent vertices u and v:

#### Idea.

[Eades '84]

"To embed a graph we replace the vertices by steel rings and replace each edge with a **spring** to form a mechanical system ... The vertices are placed in some initial layout and let go so that the spring forces on the rings move the system to a minimal energy state."



#### Attractive forces.

adjacent vertices *u* and *v*:

 $u \circ f_{\text{attr}}$ 

#### Idea.

[Eades '84]

"To embed a graph we replace the vertices by steel rings and replace each edge with a **spring** to form a mechanical system ... The vertices are placed in some initial layout and let go so that the spring forces on the rings move the system to a minimal energy state."



#### Attractive forces.

adjacent vertices u and v:

 $u \circ f_{\text{attr}}$ 

Repulsive forces.

#### Idea.

[Eades '84]

"To embed a graph we replace the vertices by steel rings and replace each edge with a **spring** to form a mechanical system ... The vertices are placed in some initial layout and let go so that the spring forces on the rings move the system to a minimal energy state."



#### Attractive forces.

adjacent vertices u and v:

 $u \circ f_{\text{attr}}$ 

#### Repulsive forces.

all vertices *x* and *y*:

#### Idea.

[Eades '84]

"To embed a graph we replace the vertices by steel rings and replace each edge with a **spring** to form a mechanical system ... The vertices are placed in some initial layout and let go so that the spring forces on the rings move the system to a minimal energy state."



#### Attractive forces.

adjacent vertices *u* and *v*:

$$u \circ f_{\text{attr}}$$

#### Repulsive forces.

all vertices *x* and *y*:



#### Idea.

[Eades '84]

"To embed a graph we replace the vertices by steel rings and replace each edge with a **spring** to form a mechanical system ... The vertices are placed in some initial layout and let go so that the spring forces on the rings move the system to a minimal energy state."



So-called **spring embedders** or **force-directed** algorithms that work according to this or similar principles are among the most frequently used graph-drawing methods in practice.

#### Attractive forces.

adjacent vertices u and v:

$$u \circ f_{\text{attr}}$$

#### Repulsive forces.

all vertices *x* and *y*:



ForceDirected(G = (V, E),  $p = (p_v)_{v \in V}$ ,  $\varepsilon > 0$ ,  $K \in \mathbb{N}$ )

return p

initial layout

ForceDirected(
$$G = (V, E), p = (p_v)_{v \in V}, \varepsilon > 0, K \in \mathbb{N}$$
)

return *p* 

initial layout

ForceDirected(
$$G = (V, E), p = (p_v)_{v \in V}, \varepsilon > 0, K \in \mathbb{N}$$
)

return p

end layout

initial layout threshold ForceDirected(G = (V, E),  $p = (p_v)_{v \in V}$ ,  $\varepsilon > 0$ ,  $K \in \mathbb{N}$ ) return p end layout

initial layout threshold max # iterations ForceDirected( $G = (V, E), p = (p_v)_{v \in V}, \varepsilon > 0, K \in \mathbb{N}$ ) return p end layout

```
initial layout
                                                                 threshold
                                                                          max # iterations
ForceDirected(G = (V, E), p = (p_v)_{v \in V}, \varepsilon > 0, K \in \mathbb{N})
  t \leftarrow 1
  while t < K and \max_{v \in V} ||F_v(t)|| > \varepsilon do
  return p
                    end layout
```

```
initial layout
                                                                threshold
                                                                         max # iterations
ForceDirected(G = (V, E), p = (p_v)_{v \in V}, \varepsilon > 0, K \in \mathbb{N})
  t \leftarrow 1
  while t < K and \max_{v \in V} ||F_v(t)|| > \varepsilon do
       foreach u \in V do
                                                                                              u \circ
  return p
                   end layout
```









```
initial layout
                                                                       threshold
                                                                                 max # iterations
ForceDirected(G = (V, E), p = (p_v)_{v \in V}, \varepsilon > 0, K \in \mathbb{N})
   t \leftarrow 1
   while t < K and \max_{v \in V} ||F_v(t)|| > \varepsilon do
        foreach u \in V do
         F_u(t) \leftarrow \sum_{v \in V} f_{\text{rep}}(u, v) + \sum_{uv \in E} f_{\text{attr}}(u, v)
        foreach u \in V do
         p_u \leftarrow p_u + \delta(t) \cdot F_u(t)
   return p
                     end layout
```



```
initial layout
                                                               threshold
                                                                       max # iterations
ForceDirected(G = (V, E), p = (p_v)_{v \in V}, \varepsilon > 0, K \in \mathbb{N})
  t \leftarrow 1
  while t < K and \max_{v \in V} ||F_v(t)|| > \varepsilon do
       foreach u \in V do
        F_u(t) \leftarrow \sum_{v \in V} f_{\text{rep}}(u, v) + \sum_{uv \in E} f_{\text{attr}}(u, v)
       foreach u \in V do
      return p
                  end layout
```







```
ForceDirected(G = (V, E), p = (p_v)_{v \in V}, \varepsilon > 0, K \in \mathbb{N})
  t \leftarrow 1
  while t < K and \max_{v \in V} ||F_v(t)|| > \varepsilon do
       foreach u \in V do
        F_u(t) \leftarrow \sum_{v \in V} f_{\text{rep}}(u, v) + \sum_{uv \in E} f_{\text{attr}}(u, v)
       foreach u \in V do
        t \leftarrow t + 1
  return p
```

Repulsive forces

■ Attractive forces

Resulting displacement vector

Repulsive forces

**Attractive forces** 

Resulting displacement vector

$$F_{u} = \sum_{v \in V} f_{\text{rep}}(u, v) + \sum_{uv \in E} f_{\text{attr}}(u, v)$$

```
ForceDirected(G = (V, E), p = (p_v)_{v \in V}, \varepsilon > 0, K \in \mathbb{N})
  t \leftarrow 1
   while t < K and \max_{v \in V} ||F_v(t)|| > \varepsilon do
        foreach u \in V do
           F_u(t) \leftarrow \sum_{v \in V} f_{\text{rep}}(u, v) + \sum_{uv \in E} f_{\text{attr}}(u, v)
        foreach u \in V do
           p_u \leftarrow p_u + \delta(t) \cdot F_u(t)
   return p
```

Repulsive forces

$$f_{\text{rep}}(u,v) = \frac{c_{\text{rep}}}{||p_v - p_u||^2} \cdot \overrightarrow{p_v p_u}$$

Attractive forces

Resulting displacement vector

$$F_{u} = \sum_{v \in V} f_{\text{rep}}(u, v) + \sum_{uv \in E} f_{\text{attr}}(u, v)$$

Repulsive forces

$$f_{\text{rep}}(u,v) = \frac{c_{\text{rep}}}{||p_v - p_u||^2} \cdot \overrightarrow{p_v p_u}$$

Attractive forces

Resulting displacement vector

$$F_{u} = \sum_{v \in V} f_{\text{rep}}(u, v) + \sum_{uv \in E} f_{\text{attr}}(u, v)$$

#### Notation.

 $||p_u - p_v|| = \text{Euclidean}$  distance between u and v

Repulsive forces

$$f_{\text{rep}}(u,v) = \frac{c_{\text{rep}}}{||p_v - p_u||^2} \cdot \overrightarrow{p_v p_u}$$

Attractive forces

Resulting displacement vector

$$F_{u} = \sum_{v \in V} f_{\text{rep}}(u, v) + \sum_{uv \in E} f_{\text{attr}}(u, v)$$

```
ForceDirected(G = (V, E), p = (p_v)_{v \in V}, \varepsilon > 0, K \in \mathbb{N})
t \leftarrow 1
while t < K and \max_{v \in V} \|F_v(t)\| > \varepsilon do

foreach u \in V do

\Gamma_u(t) \leftarrow \sum_{v \in V} f_{\text{rep}}(u, v) + \sum_{uv \in E} f_{\text{attr}}(u, v)
foreach u \in V do
\Gamma_u(t) \leftarrow \Gamma_u(t) \cdot \Gamma_u(t)
\Gamma_u(t) \leftarrow \Gamma_u(t) \cdot \Gamma_u(t)
\Gamma_u(t) \leftarrow \Gamma_u(t)
\Gamma_u(t) \leftarrow \Gamma_u(t)
\Gamma_u(t) \leftarrow \Gamma_u(t)
\Gamma_u(t) \leftarrow \Gamma_u(t)
```

- $||p_u p_v|| =$  Euclidean distance between u and v
- $\overrightarrow{p_u p_v} = \text{unit vector}$ pointing from u to v

Repulsive forces

$$f_{\text{rep}}(u,v) = \frac{c_{\text{rep}}}{||p_v - p_u||^2} \cdot \overline{p_v p_u}$$

repulsion constant (e.g. 2.0)

■ Attractive forces

Resulting displacement vector

$$F_{u} = \sum_{v \in V} f_{\text{rep}}(u, v) + \sum_{uv \in E} f_{\text{attr}}(u, v)$$

- $||p_u p_v||$  = Euclidean distance between u and v
- $\overrightarrow{p_u p_v} = \text{unit vector}$ pointing from u to v

Repulsive forces

forces repulsion constant (e.g. 2.0)
$$f_{\text{rep}}(u,v) = \frac{c_{\text{rep}}}{||p_v - p_u||^2} \cdot \overline{p_v p_u}$$

■ Attractive forces

$$f_{\text{spring}}(u, v) = c_{\text{spring}} \cdot \log \frac{||p_v - p_u||}{\ell} \cdot \overrightarrow{p_u p_v}$$

Resulting displacement vector

$$F_{u} = \sum_{v \in V} f_{\text{rep}}(u, v) + \sum_{uv \in E} f_{\text{attr}}(u, v)$$

- $||p_u p_v|| = \text{Euclidean}$  distance between u and v
- $\overrightarrow{p_u p_v} = \text{unit vector}$ pointing from u to v

Repulsive forces

forces repulsion constant (e.g. 2.0)
$$f_{\text{rep}}(u,v) = \frac{c_{\text{rep}}}{||p_v - p_u||^2} \cdot \overline{p_v p_u}$$

Attractive forces

$$f_{\text{spring}}(u, v) = c_{\text{spring}} \cdot \log \frac{||p_v - p_u||}{\ell} \cdot \overrightarrow{p_u p_v}$$

Resulting displacement vector

$$F_{u} = \sum_{v \in V} f_{\text{rep}}(u, v) + \sum_{uv \in E} f_{\text{attr}}(u, v)$$

- $|p_u p_v|| =$  Euclidean distance between u and v
- $\overrightarrow{p_u p_v} = \text{unit vector}$  pointing from u to v
- $\ell$  = ideal spring length for edges

Repulsive forces

$$f_{\text{rep}}(u,v) = \frac{c_{\text{rep}}}{||p_v - p_u||^2} \cdot \overline{p_v p_u}$$

Attractive forces

$$f_{\text{spring}}(u, v) = c_{\text{spring}} \cdot \log \frac{||p_v - p_u||}{\ell} \cdot \overrightarrow{p_u p_v}$$

Resulting displacement vector

$$F_{u} = \sum_{v \in V} f_{\text{rep}}(u, v) + \sum_{uv \in E} f_{\text{attr}}(u, v)$$

- $||p_u p_v|| = \text{Euclidean}$ distance between uand v
- $\overrightarrow{p_u p_v} = \text{unit vector}$  pointing from u to v
- $\ell$  = ideal spring length for edges

Repulsive forces

forces repulsion constant (e.g. 2.0)
$$f_{\text{rep}}(u,v) = \frac{c_{\text{rep}}}{||p_v - p_u||^2} \cdot \overline{p_v p_u}$$

■ Attractive forces

$$f_{\text{spring}}(u, v) = c_{\text{spring}} \cdot \log \frac{||p_v - p_u||}{\ell} \cdot \overrightarrow{p_u p_v}$$

$$f_{\text{attr}}(u, v) = f_{\text{spring}}(u, v) - f_{\text{rep}}(u, v)$$

Resulting displacement vector

$$F_{u} = \sum_{v \in V} f_{\text{rep}}(u, v) + \sum_{uv \in E} f_{\text{attr}}(u, v)$$

- $||p_u p_v|| = \text{Euclidean}$ distance between uand v
- $\overrightarrow{p_u p_v} = \text{unit vector}$  pointing from u to v
- $\ell$  = ideal spring length for edges







$$f_{\text{attr}}(u, v) = f_{\text{spring}}(u, v) - f_{\text{rep}}(u, v)$$



$$f_{\text{rep}}(u,v) = \frac{c_{\text{rep}}}{||p_v - p_u||^2} \cdot \overrightarrow{p_v p_u}$$

$$f_{\text{attr}}(u, v) = f_{\text{spring}}(u, v) - f_{\text{rep}}(u, v)$$



$$f_{\text{rep}}(u,v) = \frac{c_{\text{rep}}}{||p_v - p_u||^2} \cdot \overrightarrow{p_v p_u}$$

Advantages.

### Advantages.

very simple algorithm

### Advantages.

- very simple algorithm
- good results for small and medium-sized graphs

#### Advantages.

- very simple algorithm
- good results for small and medium-sized graphs
- empirically good representation of symmetry and structure

#### Advantages.

- very simple algorithm
- good results for small and medium-sized graphs
- empirically good representation of symmetry and structure

### Disadvantages.

### Advantages.

- very simple algorithm
- good results for small and medium-sized graphs
- empirically good representation of symmetry and structure

### Disadvantages.

system is not stable at the end

### Advantages.

- very simple algorithm
- good results for small and medium-sized graphs
- empirically good representation of symmetry and structure

### Disadvantages.

- system is not stable at the end
- converging to local minima

### Advantages.

- very simple algorithm
- good results for small and medium-sized graphs
- empirically good representation of symmetry and structure

### Disadvantages.

- system is not stable at the end
- converging to local minima
- timewise  $f_{\text{spring}}$  in  $\mathcal{O}(|E|)$  and  $f_{\text{rep}}$  in  $\mathcal{O}(|V|^2)$

### Advantages.

- very simple algorithm
- good results for small and medium-sized graphs
- empirically good representation of symmetry and structure

### Disadvantages.

- system is not stable at the end
- converging to local minima
- timewise  $f_{\text{spring}}$  in  $\mathcal{O}(|E|)$  and  $f_{\text{rep}}$  in  $\mathcal{O}(|V|^2)$

#### Influence.

### Advantages.

- very simple algorithm
- good results for small and medium-sized graphs
- empirically good representation of symmetry and structure

### Disadvantages.

- system is not stable at the end
- converging to local minima
- timewise  $f_{\text{spring}}$  in  $\mathcal{O}(|E|)$  and  $f_{\text{rep}}$  in  $\mathcal{O}(|V|^2)$

#### Influence.

lacktriangle original paper by Peter Eades [Eades '84] got  $\sim$  2000 citations

### Advantages.

- very simple algorithm
- good results for small and medium-sized graphs
- empirically good representation of symmetry and structure

### Disadvantages.

- system is not stable at the end
- converging to local minima
- timewise  $f_{\text{spring}}$  in  $\mathcal{O}(|E|)$  and  $f_{\text{rep}}$  in  $\mathcal{O}(|V|^2)$

#### Influence.

- lacksquare original paper by Peter Eades [Eades '84] got  $\sim$  2000 citations
- basis for many further ideas