2. Montículo (Heap) Binario-Representación minHeap (cont.)

Representación

- elArray[1] representa a su Nodo Raíz
- si elArray[i] representa a su i-ésimo Nodo (Por Niveles)
 - Su Hijo Izquierdo es elArray[2i], si 2i ≤ talla
 - Su Hijo Derecho es elArray[2i+1], si 2i + 1 ≤ talla
 - Su Padre es elArray[i/2], excepto para i = 1

Propiedad de orden en un minHeap: elArray[padre(i)] <= elArray[i], 2<=i<=talla

3. La clase Java MonticuloBinario -

Método insertar(e): algoritmo en 2 pasos, ejemplo con e = 29

3. La clase Java MonticuloBinario - Método

Construir maxHeap a partir del vector: 32, 26, 65, 68, 19, 31, 21, 13, 13, 6

- Restablece la propiedad de orden a partir de un Árbol Binario Completo para obtener un Montículo Binario
- Se basa en hundir los nodos en orden inverso al recorrido por niveles

3. La clase Java MonticuloBinario - Método arreglarMonticulo() iterativo (buildHeap)


```
/* Restablece la propiedad de orden de un Heap */
// "hunde" Por-Niveles y Descendente los nodos Internos
// de elArray, pues las Hojas ya son Heaps
public void arreglar() {
    for (int i = talla / 2; i > 0; i --) {
        hundir(i);
    }
}
```

Método arreglarMonticulo() iterativo (buildHeap) cont.

Complejidad temporal:

- Cota NO ajustada: O(n) Ilamadas a Heapify (hundir): $O(n \log n)$
- Cota ajustada: O(n)
 - Coste Heapify de un nodo es proporcional a su altura O(h)
 - Propiedad: En un Heap de n elementos hay, como mucho, $2^{\lfloor \log n \rfloor}/2^h$ nodos de altura h.

Coste total
$$=\sum_{j=0}^{h-1} 2^{j} (h-j) \in O(2^{h}) = O(n)$$

3. La clase Java MonticuloBinario — buildHeap - Ejemplo

Ejercicio: Hacer una traza del método arreglarMonticulo sobre el árbol binario completo [7, 3, 5, 9, 1, 8] para obtener un minHeap.

