

This material, no matter whether in printed or electronic form, may be used for personal and non-commercial educational use only. Any reproduction of this material, no matter whether as a whole or in parts, no matter whether in printed or in electronic form, requires explicit prior acceptance of the authors.

Initializing neural networks

 Neural networks are trained iteratively starting with initial weights

$$oldsymbol{w}^{(0)}
ightarrow \ldots
ightarrow oldsymbol{w}^{(t)}$$

- Choice of initial weights matters for learning (strong effect!)
 - Initial point determines whether algorithm converges at all

Recap on prob. theory.

Example of discrete distribution: Part 1

Suppose we roll two dice. Then we have

 $\Omega = \{(i,j) \mid i,j=1,\ldots,6\}$, i.e. 36 different outcomes. All 36 elementary events have the same probability $\frac{1}{36}$. If Z is the function that maps each outcome to the sum of the two numbers, we see, for example,

$$Z^{-1}(\{6\}) = \{(1,5), (2,4), (3,3), (4,2), (5,1)\}.$$

Then the distribution density of Z is given as

Example of discrete distribution: Part 2

Example of continuous distribution: Part 1

Every industrial process has some (minor) random components. Even if the deviations of the produced pieces are very small, we can speak of a "random experiment".

Suppose we consider a certain physical parameter of the produced pieces (lengths, weights, etc.) as the random variable of interest. Such random variables are often normally (Gaussian) distributed, i.e.

$$p_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \cdot e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

for some μ and σ .

Example of continuous distribution: Part 2

Expected value of a random variable

The expected value, aka expectation (value), of a random variable is its average outcome (in a large number of trials). It is not necessarily the most probable value!

Discrete distribution:

$$\mathsf{E}(X) = \sum_{x} x \cdot p_X(x)$$

Continuous distribution:

$$\mathsf{E}(X) = \int\limits_x x \cdot p_X(x) dx$$

It is quite common to denote the expected value by μ_X (or simply μ if it is clear which random variable/distribution is meant).

Higher moments: Part 1

For a random variable X, the k-th moment is defined as follows:

$$m_X^k = \mathsf{E}(X^k) = \int x^k \cdot p_X(x) dx$$

■ The k-th central moment is defined as follows:

$$\mu_X^k = E((X - \mathsf{E}(X))^k) = \int (x - \mathsf{E}(X))^k \cdot p_X(x) dx$$

The second central moment,

$$E((X - \mathsf{E}(X))^2) = \int (x - \mathsf{E}(X))^2 \cdot p_X(x) dx$$

is called variance of X and denoted with Var(X) or σ_Z^2 .

As in UNIT 1: $\sqrt{\text{Var}(X)}$ is called the standard deviation of X.

Some fundamental rules:

Let X, Y, Z be random variables.

$$\blacksquare \mathsf{E}(\alpha \cdot Z + \beta) = \alpha \cdot \mathsf{E}(Z) + \beta$$

$$\blacksquare \mathsf{E}(\alpha \cdot X + \beta \cdot Y) = \alpha \cdot \mathsf{E}(X) + \beta \cdot \mathsf{E}(Y)$$

If
$$X \leq Y$$
 then $E(X) \leq E(Y)$.

■
$$Var(Z) = E(Z^2) - E(Z)^2$$

$$ightharpoonup Var(\alpha \cdot Z + \beta) = \alpha^2 \cdot Var(Z)$$

Continuous distributions: Normal distribution: Part 1

- Suppose we have a random variable that is the sum of many independent random variables and whose expected value is μ and whose variance is σ^2 . Then this random variable is distributed according to the normal distribution $\mathcal{N}(\mu, \sigma^2)$.
- Density: for $x \in \mathbb{R}$

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \cdot e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Moments:

- \square $\mathsf{E}(X) = \mu$
- \square Var $(X) = \sigma^2$

Central limit theorem

Suppose we have random variables $X_1, X_2, ...$ which are independent and identically distributed (i.i.d.); suppose they have expected value μ and variance σ^2 . Let

$$X_n' = \frac{X_1 + \dots + X_n - n\mu}{\sigma\sqrt{n}}$$

be the standardized n-th partial sum of random variables. Then the distribution of X'_n converges to $\mathcal{N}(0,1)$ as n goes to infinity. We won't formalize this further here!

Fundamental rules

Let X, Y be random variables.

- $R(X,Y) \in [-1,1]$
- $\mathsf{R}(X,Y) \in \{-1,1\}$ if and only if X and Y are linearly correlated, i.e. there exist $\alpha,\beta \in \mathbb{R}$ such that $Y = \alpha \cdot X + \beta$.

If X are Y are independent, the following holds:

- $\blacksquare \ \mathsf{E}(X \cdot Y) = \mathsf{E}(X) \cdot \mathsf{E}(Y)$
- lacksquare $\mathbf{Cov}(X,Y)=0$
- $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$

Overview

- 9.1 Breaking symmetry
 - 9.1.1 Constant initialization
 - 9.1.2 Random initialization
 - 9.1.3 Bias Weights
- 9.2 Mean field theory for initialization
 - 9.2.1 Variance Propagation
 - 9.2.2 Error Propagation
- 9.3. Non-linearities
 - 9.3.1 Propagation function
 - 9.3.2 Gain factor

Notation: focus on mapping from one layer to the next

- Number of neurons in previous layer: J
- Number of neurons in next layer: I

9.1 Breaking symmetry

- Assume two units with same weights (and same activation functions)
 - Optimization will update weights identically
 - Same features represented in network
 - Equivalence of neurons is called "symmetry"
- Each unit initialized differently
 - Starts with random pattern in input data

9.1.2 Random initialization

- Each neuron should start with capturing distinct patterns from input
- Therefore, random initialization
 - Which distribution?
 - Which parameters (mean, var) of distribution?

9.1.2 Random initialization

- First idea: starting close to a linear network
- Sigmoid is linear close to zero
- Hence: initialize weights with small values

Uniform distribution with small interval:

$$W_{ij} \sim \mathcal{U}(-\epsilon, \epsilon)$$

Normal distribution with small variance:

$$W_{ij} \sim \mathcal{N}(0, \sigma^2)$$

9.1.2 Random initialization

Uniform distribution

$$W_{ij} \sim \mathcal{U}(-\epsilon, \epsilon)$$

Gaussian distribution

$$W_{ij} \sim \mathcal{N}(0, \sigma^2)$$

Truncated Gaussian distribution

$$W_{ij} \sim \mathcal{N}_{\text{trunc}}(0, \sigma^2)$$

Note that the variance of truncated Gaussians is lower than that of the original Gaussian!

9.2 Mean Field Theory

- Aim: investigate how a signal propagates through the network.
- Assumption: inputs can be modelled by i.i.d. random variables.
 - In practice, inputs will not be i.i.d., e.g. pixels in an image are generally highly correlated with neighboring pixels.
 - Could hold better for fully-connected networks
- Still useful to study the averaged effect of individual components in the often high dimensional inputs.
 - This can be considered as an application of mean field theory (effect of all components is approximated by single averaged effect)

9.2 Mean field theory: Averaged effects of neurons; Central limit theorem (CLT)

9.2 Variance propagation

- Fully-connected network.
- Mean propagation:

$$\mathbb{E}_{W_{ij},X_j} \left[\sum_j W_{ij} X_j \right] = J \mu_w \, \mathbb{E}_{X_j} [X_j]$$

Second-moment propagation:

$$\mathbb{E}_{W_{ij},X_j} \left[\left(\sum_j W_{ij} X_j \right)^2 \right] = J\sigma_w^2 \, \mathbb{E}_{X_j} \left[X_j^2 \right]$$

assuming that expected value of weights is zero

9.2 Variance propagation

Second-moment propagation:

$$\mathbb{E}_{W_{ij},X_j} \left[\left(\sum_j W_{ij} X_j \right)^2 \right] = J \sigma_w^2 \, \mathbb{E}_{X_j} \left[X_j^2 \right]$$

Variance can blow up ($J\sigma_w^2>1$) or decrease through layers ($J\sigma_w^2<1$).

• Solution/amelioration: set variance of weights to $\sigma_w^2 = \frac{1}{J}$

$$\mathbb{E}_{W_{ij},X_j} \left[\left(\sum_j W_{ij} X_j \right)^2 \right] = J \frac{1}{J} \mathbb{E}_{X_j} \left[X_j^2 \right] = \mathbb{E}_{X_j} \left[X_j^2 \right]$$

Result: Linear transformation does not affect variance.

9.2 Variance propagation: LeCun's initialization (LeCun, 1998)

Already suggested in 1998 to initialize as follows:

$$W_{ij} \sim \mathcal{N}(0, \frac{1}{J})$$

$$W_{ij} \sim \mathcal{U}(-\sqrt{\frac{3}{J}}, \sqrt{\frac{3}{J}}).$$

9.2. Error Propagation

- We now use similar thoughts for the backward pass:
 - Assume deltas as i.i.d random variables

$$\mathbb{E}_{W_{ij},D_i}\left[\sum_i D_i W_{ij}\right] = I\mu_w \,\mathbb{E}\left[D_i\right] = 0$$

$$\mathbb{E}_{W_{ij},D_i} \left[\left(\sum_i D_i W_{ij} \right)^2 \right] = I \sigma_w^2 \, \mathbb{E}_{D_i} \left[D_i^2 \right],$$

- Note the difference between J and I!
- Initialize weights with variance $\sigma_w^2 = \frac{1}{I}$

Note: "fan-in" and "fan-out"

• Number of incoming connections from lower layer: "fan-in" ${\it J}$

 Number of incoming connections from higher layer: "fan-out" I

9.2 Mean-field theory for initialization: trade-off between forward and backw.

 Glorot's initialization (Glorot and Bengio, 2010):

$$W_{ij} \sim \mathcal{N}(0, \frac{2}{J+I})$$
 $W_{ij} \sim \mathcal{U}(-\sqrt{\frac{6}{J+I}}, \sqrt{\frac{6}{J+I}})$

- So far we have considered the effect of the linear transformation
- Also activation functions change the distribution of the neuron activations
- We well consider the propagation from preactivation in one layer to the pre-activation in the next layer

 Propagation of moments with nonlinearities:

$$\mathbb{E}_{W_{ij}, S_j \sim \mathcal{N}(\mu_s, \sigma_s^2)} \left[\sum_j W_{ij} f(S_j) \right] = J \mu_w \, \mathbb{E}_{S_j \sim \mathcal{N}(\mu_s, \sigma_s^2)} \left[f(S_j) \right] = 0$$

$$\mathbb{E}_{W_{ij},S_j \sim \mathcal{N}(\mu_s,\sigma_s^2)} \left[\left(\sum_j W_{ij} f(S_j) \right)^2 \right] = J \sigma_w^2 \mathbb{E}_{S_j \sim \mathcal{N}(\mu_s,\sigma_s^2)} \left[f(S_j)^2 \right],$$

• We again assume centered weights $\mu_w = 0$

- Pre-activations are weighted sums of inputs
- Assuming wide networks, the CLT applies and the pre-activations can be considered normally-distributed: $S_i = \mathcal{N}(0, \sigma_s^2)$

$$\sigma_s^2 = J\sigma_w^2 \begin{cases} \mathbb{E}_{X_j} \left[X_j^2 \right] & l = 1 \\ \mathbb{E}_{S_j \sim \mathcal{N}(0, \sigma_s^2)} \left[f(S_j)^2 \right] & l > 1 \end{cases}.$$

Expressions for moments:

$$\mathbb{E}_{S_j \sim \mathcal{N}(0, \sigma_s^2)}[f(S_j)^n] = \mathbb{E}_{Z \sim \mathcal{N}(0, 1)}[f(\sigma_s Z)^n] = \frac{1}{\sqrt{2\pi\sigma_s^2}} \int_{\mathbb{R}} f(x)^n e^{-\frac{x}{2\sigma_s^2}} dx$$

Propagation function:

$$F_f: \mathbb{R}^+ \to \mathbb{R}^+: q \mapsto F_f(q) = J\sigma_w^2 \mathbb{E}_{Z \sim \mathcal{N}(0,1)} \left[f(\sqrt{q}Z)^2 \right]$$

Application of theory to ReLU activations:

$$\mathbb{E}[\operatorname{ReLU}(S)^2] = \mathbb{E}_{S<0}[0] + \mathbb{E}_{S\geq0}[S^2] = \frac{1}{2}\sigma_s^2.$$
where $S \sim \mathcal{N}(0, \sigma_s^2)$

Propagation function of ReLU:

$$F_{\text{ReLU}}(q) = J\sigma_w^2 \frac{1}{2}q.$$

9.3 Non-linearities: He's initialization (2015)

Account for the effect of ReLU:

$$J\sigma_w^2 \frac{1}{2} = 1$$

Initialize weights that counter keep unit variance:

$$\sigma_w^2 = \frac{2}{J}.$$

Resulting initialization:

$$W_{ij} \sim \mathcal{N}(0, \frac{2}{J})$$
 $W_{ij} \sim \mathcal{U}(-\sqrt{\frac{6}{J}}, \sqrt{\frac{6}{J}})$

Gain factor

 Effect of activation function can be modelled by a positive gain factor

$$F_f(\sigma_s^2) = J\sigma_w^2 \mathbb{E}[f(S)^2] \approx J\sigma_w^2 \frac{1}{g_f}\sigma_s^2$$

 As a result, the initial weights are sampled from a distribution with a variance

$$\sigma_w^2 = \frac{g_f}{J}$$
 or $\sigma_w^2 = g_f \frac{2}{I+J}$

Results: Fully-connected networks effect of initialization

Results: CNNS on MNIST effect of initialization

Summary

- Overview of initialization strategies
 - Constant initialization problems
 - Breaking symmetry
 - Variance/error propagation
 - The role of non-linearities

