MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 3 - DECEMBER 2007 SOLUTION KEY

Team Round

A) An acute triangle must have 3 acute angles.

Therefore, $\cos A$, $\cos B$ and $\cos C$ must each be positive.

The triangle inequality requires that $a + c > b \rightarrow 7 + c > 13 \rightarrow c \ge 7$. Using the Law of Cosines,

$$\cos C = \frac{a^2 + b^2 - c^2}{2ab} = \frac{218 - c^2}{2(7)(13)} \ge 0 \Rightarrow c \le 14$$

$$\cos B = \frac{a^2 + c^2 - b^2}{2ac} = \frac{c^2 - 120}{2(7)(c)} \ge 0 \Rightarrow c \ge 11$$

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc} = \frac{120 + c^2}{2(13)(c)} \ge 0 \text{ (true for all values of } c \text{ in consideration)}$$

Thus, for $11 \le c \le 14$, $\triangle ABC$ is acute $\rightarrow 11, 12, 13,$ and 14

$$8a+b$$

B) $\{10a+b \text{ each represent a prime number.}\}$

$$12a+b$$

The possible values of a and b are limited to the digits 0.. 7 (allowable digits in all 3 bases). b can't be even (otherwise each expression would generate a nonprime)

 $b \neq 5$ (otherwise 10a + b would not be prime)

 $b \neq 3$ (otherwise 12a + b would not be prime)

Thus, we exam only those cases where b = 1 or 7.

		b = 1			b=7	
а	8a+b	10a+b	12a+b	8a+b	10a+b	12a+b
1	9	×	x	15	x	×
2	17	21	x	23	27	×
3	25	×	X	31 39	<u>37</u>	<u>43</u>
4	33	×	X	39	x	×
5	41	51	x	47	57	x
6	49	×	X	55	x	X
7	57	Х	Х	63	Х	Х

Thus, the only ordered pair producing 3 primes is (3, 7).