후판공정 Scale 불량 핵심영향인자 분석 개선안 도출

주제

• 급증하는 압연공정 Scale 불량의 원인 분석 및 개선 방안 도출

과제 정의

- 1. Pos Scale 불량 데이터에 기술통계 적용 계획 수립
- 2. Scale 불량 데이터의 속성을 특정하여 통계량을 사용해 정리, 요약, 설명
- 3. Scale 불량에 핵심영향인자가 무엇인지 파악
- 4. Scale 불량을 예방하고 현장 개선안 도출
- 5. 방안 도출을 위해서 과정 및 피드백 기술

목표 정의

후판 제품 Scale 불량 원인 분석 및 불량 발생률 0% 달성을 위한 핵심영향인자 도출과 모델 개선 방안 도출

분석계획

- 1. 데이터 현황
- 2. 데이터 전처리
- 3. 가설검정 및 그래프 탐색
- 4. 모델링
- 5. 핵심영향인자 도출
- 6. 개선안 제시

• 다음과 같은 절차에 따라 EDA(탐색적 데이터 분석) 실시

데이터셋 정제

원시 데이터 수집

 후판공정 센서 데이터 수 ('SCALE불량.csv')

데이터 전처리

- 결측치 처리
- 이상치 확인
 - 연속형 변수: boxplot 활용
 - 범주형 변수: 개별 값 확인

변수 파생·변형

- 변수 간 상관성 검토
- 도메인 지식 적용
- 날짜 변수 변형 예) 연/월/일/시간 정보가 한 열에 같이 있을 경우 분리하여 유의성 확인

Data Solution

모델 성능 개선

- Train-test 점수 기반 정확도·과 적합 판단
- 최적의 하이퍼 파라미터 지정

핵심 영향인자 도출

- 최종 모델링 후 변수 중요도 도출
- 핵심 영향 요인 식별 및 분석

개선안 제시

- Scale 불량률 0% 예방 및 품질 향 상 (안) 제시
- 예) 적정온도 유지, 탈탄 및 표면 품질 저하 방지 등

1. 데이터 현황

• 목표변수 'scale'를 예측하기 위한 데이터 정제 (자료수: 1,000, 특징: 21개)

파일 불러온 후 '.head()' 실행 결과:

- Column 총 21개
- 총 21개의 변수로 구성된 데이터 (설명변수 20개)

df														
	plate_no	rolling_date	scale	spec_long	spec_country	steel_kind	pt_thick	pt_width	pt_length	hsb		fur_input_row	fur_heat_temp	fur_heat
0	PLT_1001	03JAN2023:07:07:53	양품	AB/EH32- TM	미국	Т	32	3700	15100	적 용		19	1144	
1	PLT_1002	03JAN2023:07:21:22	양품	AB/EH32- TM	미국	Т	32	3700	15100	적 용		29	1144	
2	PLT_1003	03JAN2023:07:31:15	양품	NV-E36- TM	영국	T	33	3600	19200	적 용		19	1129	
3	PLT_1004	03JAN2023:07:41:01	양품	NV-E36- TM	영국	Т	33	3600	19200	적 용	***	29	1152	
4	PLT_1005	03JAN2023:07:52:40	양품	BV-EH36- TM	프랑스	T	38	3100	13300	적 용		19	1140	
	***	3***	***	***	***	***	***	***	***			***	***	
995	PLT_1996	10JAN2023:05:32:25	양품	BV-A	프랑스	С	19	3400	41500	적 용		29	1142	
996	PLT_1997	10JAN2023:05:39:19	양품	LR-A	영국	С	19	3400	41500	적 용		29	1142	
997	PLT_1998	10JAN2023:05:52:41	양품	AB/AH32	미국	С	17	3400	43700	적 용		29	1169	
998	PLT_1999	10JAN2023:06:01:50	양품	NV-A32	영국	С	17	3400	43700	적 용		29	1169	
999	PLT_2000	10JAN2023:06:16:27	양품	GL-A32	독일	С	16	3400	54200	적 용		19	1186	
1000	rows × 21	columns												

변수	변수 역할	형태
plate_no	ID	범주형
rolling_date	날짜	연속형
scale	목표변수	범주형
spec_long	설명변수	범주형
spec_country	설명변수	범주형
steel_kind	설명변수	범주형
pt_thick	설명변수	연속형
pt_width	설명변수	연속형
pt_length	설명변수	연속형
hsb	설명변수	범주형
fur_no	설명변수	범주형
fur_input_row	설명변수	범주형
fur_heat_temp	설명변수	연속형
fur_heat_time	설명변수	연속형
fur_soak_temp	설명변수	연속형
fur_soak_time	설명변수	연속형
fur_total_time	설명변수	연속형
rolling_method	설명변수	범주형
rolling_temp	설명변수	연속형
descaling_count	설명변수	연속형
work_group	설명변수	범주형

2. 데이터 전처리

• 원본 데이터의 결측치·이상치 검토

'.info()' 실행 결과 (결측치 검토):

df.info();df.shape # 연속형 10개 / 그 외 11개 범주형 <class 'pandas.core.frame.DataFrame'> RangeIndex: 1000 entries, 0 to 999 Data columns (total 21 columns): Column Non-Null Count Dtype 0 plate_no 1000 non-null object rolling date 1000 non-null object 1000 non-null object scale spec_long 1000 non-null object spec_country 1000 non-null object steel_kind 1000 non-null object pt_thick 1000 non-null int64 pt_width 1000 non-null int64 pt_length 1000 non-null int64 9 hsb 1000 non-null object fur_no 1000 non-null object 10 fur_input_row 1000 non-null object fur_heat_temp 1000 non-null int64 fur heat time 1000 non-null int64 fur_soak_temp 1000 non-null int64 fur soak time 1000 non-null int64 fur_total_time 1000 non-null int64 rolling_method 1000 non-null object rolling_temp 1000 non-null int64 descaling_count 1000 non-null int64 work_group 1000 non-null object dtypes: int64(10), object(11) memory usage: 164.2+ KB (1000, 21)

.Boxplot 활용 결과 (이상치 확인):

	이상치 처리		근거
Pt_thick	>= 81.17	유지	이상치 중 수치가 제일 높은 100의 값 2개를 제거하였습니다
Pt_width	>= 4314.2	유지	이상치가 7개 존재하지만, 평균과 표준편차를 비교한 결과 큰 문제가 없다고 판단하여 처리하지 않았습니다.
Fur_heat_time	>= 164.8	제거	이상치가 존재하지 않습니다.
Fur_soak_time	>= 133.5	유지	이상치가 존재하지만, 평균과 편차를 고려했을 때 제거하지 않았습니다.
Fur_total_time	>= 352.8	유지	이상치가 존재하지만, 평균과 편차를 고려했을 때 제거하지 않았습니다.
Rolling_temp	<=748.6	4개 제거	이상치가 존재하지만, 평균과 표준편차를 고려 했을때 제거하지 않았습니다
Rolling_temp	== 0	4개 제거	수치가 0인 값이 6개를 발견하고 제거하였습니다.

2. 데이터 전처리

• 변수 파생 및 변형

```
df.info();df.shape
                   # 연속형 10개 / 그 외 11개 범주형
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 21 columns):
    Column
                      Non-Null Count Dtype
                      1000 non-null
     plate no
                                      object
   rolling_date
                      1000 non-null
                                      object
                      1000 non-null
     scale
                                      object
     spec_long
                      1000 non-null
                                      object
                      1000 non-null
                                      object
     spec_country
     steel_kind
                      1000 non-null
                                      object
     pt thick
                      1000 non-null
                                      int64
     pt_width
                      1000 non-null
                                      int64
    pt_length
                      1000 non-null
                                      int64
                      1000 non-null
                                      object
10 fur_no
                      1000 non-null
                                      object
    fur input row
                      1000 non-null
                                      object
     fur_heat_temp
                      1000 non-null
                                      int64
    fur heat time
                     1000 non-null
                                      int64
14 fur_soak_temp
                      1000 non-null
                                      int64
     fur soak time
                      1000 non-null
                                      int64
 16 fur_total_time
                     1000 non-null
                                      int64
    rolling method
                     1000 non-null
                                      object
    rolling_temp
                      1000 non-null
                                      int64
    descaling_count 1000 non-null
    work_group
                      1000 non-null
                                      object
dtypes: int64(10), object(11)
memory usage: 164.2+ KB
(1000, 21)
```

범주형 설명변수의 '.unique()' 수행 결과 별도 이상치 없었음.

['scale' 원 핫 인코딩]

[Rolling 일자 & 시간 변수 파생]

[가열로 호기·열 변수 파생]

'fur_no' + 'fur_input_row' → 'fur_combined'

2. 데이터 전처리

• 데이터 전처리 전/후 비교

memory usage: 164.2+ KB

원본 데이터 분포

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 21 columns):

#	Column	Non-Null Count	Dtype				
0	plate_no	1000 non-null	object				
1	rolling_date	1000 non-null	object				
2	scale	1000 non-null	object				
3	spec_long	1000 non-null	object				
4	spec_country	1000 non-null	object				
5	steel_kind	1000 non-null	object				
6	pt_thick	1000 non-null	int64				
7	pt_width	1000 non-null	int64				
8	pt_length	1000 non-null	int64				
9	hsb	1000 non-null	object				
10	fur_no	1000 non-null	object				
11	fur_input_row	1000 non-null	object				
12	fur_heat_temp	1000 non-null	int64				
13	fur_heat_time	1000 non-null	int64				
14	fur_soak_temp	1000 non-null	int64				
15	fur_soak_time	1000 non-null	int64				
16	fur_total_time	1000 non-null	int64				
17	rolling_method	1000 non-null	object				
18	rolling_temp	1000 non-null	int64				
19	descaling_count	1000 non-null	int64				
20	work_group	1000 non-null	object				
dtypes: int64(10), object(11)							

데이터 전처리 후 데이터 분포

<class 'pandas.core.frame.DataFrame'>
Int64Index: 992 entries, 0 to 999
Data columns (total 23 columns):

Data	columns (total 2	23 columns):	
#	Column	Non-Null Count	Dtype
0	spec_long	992 non-null	object
1	spec_country	992 non-null	object
2	steel_kind	992 non-null	object
3	pt_thick	992 non-null	int64
4	pt_width	992 non-null	int64
5	pt_length	992 non-null	int64
6	hsb	992 non-null	object
7	fur_no	992 non-null	object
8	fur_input_row	992 non-null	object
9	fur_heat_temp	992 non-null	int64
10	fur_heat_time	992 non-null	int64
11	fur_soak_temp	992 non-null	int64
12	fur_soak_time	992 non-null	int64
13	fur_total_time	992 non-null	int64
14	rolling_method	992 non-null	object
15	rolling_temp	992 non-null	int64
16	descaling_count	992 non-null	int64
17	work_group	992 non-null	object
18	fur_combined	992 non-null	category
19	day	992 non-null	object
20	hour	992 non-null	object
21	scale_불량	992 non-null	uint8
22	scale	992 non-null	uint8
dtype	es: category(1),	int64(10), objec	t(10), uint8(2)

memory usage: 198.2+ KB

• //

• Spec_country와 scale의 독립성 가설검정 → <u>제품 규격별 scale 차이 有</u>

Spec_country

기무가설 (H0): 'spec_country'와 'scale' 변수는 독립이다.

(H1): 'spec_country'와 'scale' 변수는 독립적이지 않다.

[결론]: 대립가설 채택

• "제품 규격 과 불량률은 관련이 있다."

- •P-값이 0에 수렴한다.
- •유의수준 5%에서 귀무가설을 기각할 수 있다.
- •그러므로, 제품 규격과 불량률은 관련이 있다.

• Steel_kind와 scale의 독립성 가설검정 → <u>강종별 scale 차이 有</u>

Steel_kind

chi-squared statistic: 75.56078768326427

p-value: 3.543287859042724e-18

degrees of freedom: 1 expected frequencies:

[[233.1733871 74.8266129] [517.8266129 166.1733871]] 대립가설 (H0): 'scale'변수와 'steel_kind' 변수 독립이다.

(H1): 'scale'변수와 'steel_kind' 변수는 독립이지 않다.

[결론]: 대립가설 채택

•"강종과 불량률은 관련이 있다."

- •P-값이 0에 수렴한다.
- •유의수준 5%에서 귀무가설을 기각할 수 있다.
- •그러므로, 강종과 불량률은 관련이 있다.

• Hour와 scale의 독립성 가설검정 → <u>시간별 scale 차이 有</u>

Hour

chi-squared statistic: 43.14039558813147

p-value: 0.006664858637988756

degrees of freedom: 23 expected frequencies:

귀무가설

(H0): 'hour' 변수와 'scale' 변수는 독립이다.

대립가설

(H1): 'hour' 변수와 'scale' 변수는 독립적이지 않다.

[결론]: 대립가설 채택

• "시간과 불량률은 관련이 있다."

- •P-값이 0에 수렴한다.
- •유의수준 5%에서 귀무가설을 기각할 수 있다.
- •그러므로, 시간과 불량률은 관련이 있다.

• Day와 scale의 독립성 가설검정 → <u>날짜별 scale 차이 有</u>

Day

chi-squared statistic: 117.11128587001863

p-value: 3.0589281000689563e-22

degrees of freedom: 7

귀무가설 (H0): 'day' 변수와 'scale' 변수는 독립이다.

대립가설

(H1): 'day' 변수와 'scale' 변수는 독립적이지 않다.

[결론]: 대립가설 채택

•"날짜와 불량률은 관련이 있다."

- •P-값이 0에 수렴한다.
- •유의수준 5%에서 귀무가설을 기각할 수 있다.
- •그러므로, 날짜와 불량률은 관련이 있다.

• Pt_thick와 scale의 독립성 가설검정 → <u>후판 지시 두께별 scale 차이 有</u>

Pt_thick

귀무가설

(H0): 'pt_thick' 변수와 'scale' 변수는 독립이다.

대립가설

(H1): 'pt_thick' 변수와 'scale' 변수는 독립적이지 않다.

- P-값이 0.05보다 작다.
- 유의수준 5%에서 귀무가설을 기각할 수 있다
- [결론] 후판 지시 두께와 불량률은 관련이 있다.

• Pt_width와 scale의 독립성 가설검정 → <u>후판 지시 폭별 scale 차이 有</u>

Pt width

귀무가설

(H0): 'pt_width' 변수와 'scale' 변수는 독립이다.

대립가설

(H0): 'pt_width' 변수와 'scale' 변수는 독립이다.

- P-값이 0.05보다 작다.
- 유의수준 5%에서 귀무가설을 기각할 수 있다.
- [결론] "후판 지시폭은 불량률은 관련이 있다.

• Pt_length와 scale의 독립성 가설검정 → <u>후판 지시 길이별 scale 차이 無</u>

Pt_length

귀무가설

(H0): 'pt_length' 변수와 'scale' 변수는 독립이다.

대립가설

(H1): 'pt_length' 변수와 'scale' 변수는 독립적이지 않다.

- P-값이 0.05보다 크다.
- 유의수준 5%에서 귀무가설을 기각할 수 없다.
- [결론] 후판 지시길이는 불량률은 관련이 없다.

• Hsb와 scale의 독립성 가설검정 → HSB(Hot Scale Bracker)별 scale 차이 有

Hsb

chi-squared statistic: 106.21295741716654

p-value: 6.622223001546653e-25

degrees of freedom: 1

[결론]: 대립가설 채택

•"hsb와 불량률은 관련이 있다."

- •P-값이 0.05보다 작다.
- •유의수준 5%에서 귀무가설을 기각할 수 있다.
- •그러므로, hsb와 불량률은 관련이 있다.

• Fur_no와 scale의 독립성 가설검정 → <u>가열로 호기별 scale 차이 無</u>

Fur_no

chi-squared statistic: 2.964674399054447

p-value: 0.22710627493767527

degrees of freedom: 2

[결론]: 귀무가설 채택

•"fur_no와 불량률은 관련이 없다."

- •P-값이 0.05보다 크다.
- •유의수준 5%에서 귀무가설을 기각할 수 없다.
- •그러므로, hsb와 불량률은 관련이 없다.

• Fur_input_row와 scale의 독립성 가설검정 → <u>가열로 장입열별 scale 차이 無</u>

Fur_input_row

chi-squared statistic: 0.9274125630590576

p-value: 0.33553617272380376

degrees of freedom: 1

[결론]: 귀무가설 채택

•"fur_input_row와 불량률은 관련이 없다."

- •P-값이 0.05보다 크다.
- •유의수준 5%에서 귀무가설을 기각할 수 없다.
- •그러므로, hsb와 불량률은 관련이 없다.

Fur_heat_temp의 독립성 가설검정 → <u>가열로 가열대 소재 온도별 scale 차이 有</u>

Fur_heat_temp

귀무가설

(H0): 'fur_heat_temp' 변수와 'scale' 변수는 독립이다.

대립가설

(H1): 'fur_heat_temp' 변수와 'scale' 변수는 독립적이지 않다.

- P-값이 0.05보다 작다.
- 유의수준 5%에서 귀무가설을 기각할 수 있다.
- [결론] fur_heat_temp와 불량률은 관련이 있다.

Fur_heat_time의 독립성 가설검정 → <u>가열로 가열대 재로 시간별 scale 차이 無</u>

Fur_heat_time

귀무가설

(H0): fur_heat_time' 변수와 'scale' 변수는 독립이다.

대립가설

(H1): 'fur_heat_time' 변수와 'scale' 변수는 독립적이지 않다.

- P-값이 0.05보다 크다.
- 유의수준 5%에서 귀무가설을 기각할 수 없다.
- [결론] fur_heat_time과 불량률은 관련이 없다.

Fur_soak_temp의 독립성 가설검정 → <u>가열로 균열대 소재 온도별 scale 차이 有</u>

Fur_soak_emp

귀무가설

(H0): fur_soak _temp' 변수와 'scale' 변수는 독립이다.

대립가설

(H1): 'fur_soak_temp' 변수와 'scale' 변수는 독립적이지 않다.

- P-값이 0.05보다 작다.
- 유의수준 5%에서 귀무가설을 기각할 수 있다.
- [결론] fur_soak_temp와 불량률은 관련이 있다.

Fur_soak_time의 독립성 가설검정 → <u>가열로 균열대 재로 시간별 scale 차이 有</u>

Fur_soak_time

귀무가설

(H0): fur_soak_time' 변수와 'scale' 변수는 독립이다.

대립가설

(H1): 'fur_soak_time' 변수와 'scale' 변수는 독립적이지 않다.

- P-값이 0.05보다 작다.
- 유의수준 5%에서 귀무가설을 기각할 수 있다.
- <u>[결론] fur_soak_time과 불량률은 관련이 있다.</u>

Fur_total_time의 독립성 가설검정 → <u>가열로 총 재로 시간별 scale 차이 有</u>

Fur_total_time

귀무가설

(H0): 'fur_total_time' 변수와 'scale' 변수는 독립이다.

대립가설

(H1): 'fur_total_time' 변수와 'scale' 변수는 독립적이지 않다.

- P-값이 0.05보다 작다.
- 유의수준 5%에서 귀무가설을 기각할 수 있다.
- [결론] fur_total_time과 불량률은 관련이 있다.

Rolling_method의 독립성 가설검정 → <u>압연방법별 scale 차이 有</u>

Rolling_method

chi-squared statistic: 44.4571776284064

p-value: 2.5998205948808205e-11

degrees of freedom: 1

변수는 독립적이지 않다.

[결론]: 대립가설 채택

•"rolling_method와 불량률은 관련이 있다."

- •P-값이 0에 수렴한다.
- •유의수준 5%에서 귀무가설을 기각할 수 있다.
- •그러므로, rolling_method와 불량률은 관련이 있다.

Rolling_temp의 독립성 가설검정 → <u>압연온도별 scale 차이 有</u>

Rolling_temp

귀무가설

(H0): rolling_temp' 변수와 'scale' 변수는 독립이다.

대립가설

(H1): 'rolling_temp' 변수와 'scale' 변수는 독립적이지 않다.

- P-값이 0.05보다 작다.
- 유의수준 5%에서 귀무가설을 기각할 수 있다.
- [결론] rolling_temp와 불량률은 관련이 있다.

• Descaling_count의 독립성 가설검정 → <u>압연 Descaling 횟수별 scale 차이 有</u>

Descaling_count

chi-squared statistic: 216.52886196955083

p-value: 8.230963010047285e-45

degrees of freedom: 5

[결론]: 대립가설 채택

• "연료 타입 별과 불량률은 관련이 있다."

- P-값이 0에 수렴한다.
- 유의수준 5%에서 귀무가설을 기각할 수 있다.
- 그러므로, descaling_count와 불량률은 관련이 있다.

• Fur_combined의 scale차 가설검정 → <u>가열로 호기와 장입열별 scale 차이 有</u>

Fur_combined

chi-squared statistic: 14.030960672980973

p-value: 0.002863311465440309

degrees of freedom: 3

[결론]: 대립가설 채택

• "가열로 호기와 장입열별 불량률은 관련이 있다."

- P-값이 0.2092로 0.05보다 크다.
- 유의수준 5%에서 귀무가설을 기각할 수 없다.
- 그러므로, 가열호 호기와 장입열별 불량률은 관련이 있다.

• Work_group의 독립성 가설검정 → <u>가열로 호별 scale 차이 有</u>

Work_group

chi-squared statistic: 14.030960672980973 p-value: 0.002863311465440309

degrees of freedom: 3

[결론]: 대립가설 채택

• "work_group과 불량률은 관련이 있다."

- p-value가 0.05보다 작다.
- 유의수준 5%에서 귀무가설을 기각할 수 있다.
- 그러므로, work_group과 불량률은 관련이 있다.

기본 모델을 활용하여 score 비교

>>> Test Score: 0.990

>>> Test Score: 0.960

Train Score

Test Score

1. Decision Tree Classifier (의사결정나무) from sklearn.tree import DecisionTreeClassifier #의사결정나무 #기본 옵션으로 모델 생성 tree_uncustomized = DecisionTreeClassifier(random_state = 1234) tree_uncustomized.fit(train_x, train_y) #train 모델 경화도 print('Accuracy on training set : {:.3f}'.format(tree_uncustomized.score(train_x, train_y))) #test 모델 경화도 print('Accuracy on test set : {:.3f}'.format(tree_uncustomized.score(test_x, test_y))) #의사결정나무 정화도 산출 Accuracy on training set : 1.000 Accuracy on test set : 0.990

```
3. Random Forest Classifier (랜덤포레스트)
from sklearn.ensemble import RandomForestClassifier #현업포레스트

rf_uncustomized = RandomForestClassifier(random_state = 1234)
rf_uncustomized.fit(train_x,train_y)
print("Score on training set: {:.3f}".format(rf_uncustomized.score(train_x,train_y)))
print("Score on test set: {:.3f}".format(rf_uncustomized.score(test_x,test_y)))
# 앤덤포레스트 정희도 산출

Score on training set: 1.000
Score on test set: 0.960
```

Random Forest

100.0

96.0

Decision Tree

100.0

99.0

Gradient Boost

100.0

99.0

```
XG Boost

100.0

99.3
```

```
2. Gradient Boosting Classifier (그래디언트 부스팅)
```

```
from sklearn.ensemble import GradientBoostingClassifier #그래디언트 부스팅

tree_uncustom = GradientBoostingClassifier(random_state=1234)

tree_uncustom.fit(train_x, train_y)

print("train_data의 score: {:.3f}".format(tree_uncustom.score(train_x, train_y)))

print("test_data의 score: {:.3f}".format(tree_uncustom.score(test_x, test_y)))
#그래디언스 부스팅 정확도 산출

train_data의 score: 1.000

test_data의 score: 0.990
```

>>> Test Score: 0.990

4. XG Booster

```
rom xgboost import XGBClassifier #XGBoost

xgboost_uncust = XGBClassifier(random_state=1234)
xgboost_uncust.fit(train_x, train_y)

print("train data or score: {:.3f}".format(xgboost_uncust.score(train_x, train_y)))
print("test data or score: {:.3f}".format(xgboost_uncust.score(test_x, test_y)))

train data or score: 1.000
test data score: 0.993
```

>>> Test Score: 0.993

→ 그래디언트 부스트 선정

최종 모델으로 XG Boost 선정 (Score = 0.993)

[최종 모델링 결과]

조기 중단 모델 평가 : Test

오차행렬: [[90 4] [0 204]]

정확도: 0.9866 정밀도: 0.9808 재현율: 1.0000 F1 : 0.9903 AUC : 0.9787

	precision	recall	f1-score	support
0	1.00	0.96	0.98	94
1	0.98	1.00	0.99	204
accuracy			0.99	298
macro avg	0.99	0.98	0.98	298
weighted avg	0.99	0.99	0.99	298

- 정확도(98.66%) → 전체 데이어의 98.66% 정확히 예측
- 정밀도 (0: 100%, 1: 98%) → 1로 예측한 것 중 98%가 실제로 1
- 재현율 (0: 96%, 1: 100%) → 0으로 예측한 것 중 96%가 실제로 0
- F1점수 (0: 98%, 1: 99%) → 0과 1에 두 값에 대한 예측이 얼마나 균형있게 높은지
- AUC (97.87%) → 모델의 성능이 매우 높은것으로 판단

- 1순위: descaling count (85.0%) → 모델에서 가장 중요한 변수 (유지보수, 적정온도 설정 필요)
- 2순위: rolling temp (59.0%) → 적정 롤링 온도와 스케일 불량발생 상관성
- 3순위: hsb_미적용 (33.0%) → hsb 적용 여부에 따라 불량 발생
- 4순위: pt_thick (33.0%) → 후판이 두꺼워질수록 스케일 불량 가능성 감소

• 핵심영향요인 도출 결과 후판 제품 scale 불량은 *HSB, 가열로 담금, 디스케일링, 압연 공정*에서 온도 이상 (고온)때문임을 식별함

열연 스케일 제거기 (HSB)

HSB 적용을 통해 재료를 균일하게 처리함으로써 제품의 일관성 보장 필요

가열로 담금

적정 온도 유지 및 관리를 통해 표면 품질을 강화와 탈탄 현상 방지 재료 가열 온도를 적정수준으로 유지하여 결함 발생 최소화

디스케일링

정기적 유지관리를 통한 장비 노후화 방지 적절한 온도 설정으로 스케일 형성 억제

압연공정

롤링 온도 과열로 인한 변형 예방 적정 온도 설정 및 모니터링을 통한 표면 결함 최소화

① <u>적절한 온도를 설정</u>, ② <u>충분한 장비 유지보수 탈탄 및 표면 품질 저하 방지</u>, ③ <u>압연 공정 개선</u>을 통해 Scale 불량률을 0%로 예방하고 품질 향상을 도모할 수 있을 것으로 기대

개선안 및 느낀점

도메인 지식

• 조원들과 자료 조사와 분석 계획을 수립하는 과정에서 도메인 지식과 비교하며 데이터를 분석하였다. 그 중에서도 Descaling count 데이터를 분석할 때, 홀수 횟수에서 100%의 불량률이 나온다는 점이 도메인 지식과는 상당히 위배되는 결과여서 무척 당황하였다.

데이터 전처리

데이터 전처리 과정에서 발견한 이상치를 제거할 것인지 대체할 것 인지에 대해 조원들과 오랜 시간 고민하였다. 각 데이터의 평균과 표준편차를 자세히 비교하면서 조원들과의 토의를 통해합리적인 의사 결정을 할 수 있었다.

모델링 및 파라미터 선정

- 모델링 과정에서 하이퍼 파라미터를 선정하며 모델을 train 했지만 예상보다 score 값이 좋지 않아서 모델 성능 향상을 위해 여러 번 파라미터를 조절하고 값을 변경하였고 결과 score를 비교하여 모델의 성능을 향상시키기 위해 노력하였 다.
- 모델링 성능 분석 과정에서 Grid Search CV와 하이퍼 파라 미터를 선정한 트리 모델들과 비교하였을 때 Grid Search CV 모델의 성능보다 직접 하이퍼 파라미터를 선정한 모델의 성능이 더 좋아서 오히려 모델의 성능을 의심하였다.

그래프 탐색

데이터의 분포와 상관성을 표현하는 그래프를 그리는 과정에서 가장 가독성이 높고 해석력이 좋은 그래프를 만들고 싶어 여러 가지 방법을 시도해보았다. 모델에 따른 다중공선성 검토와 같이 필요 과정에 대한 이해가 초기에 미흡하여 시행착오를 겪었다. 그 결과 아래와 같은 그래프를 작성하였으나 최종 코드에는 제외하였다.

핵심인자 정리 템플릿(참조용)_1/2

변수	변수설명	변수역할	변수형태	분석 제외사유
plate_no	Plate번호	ID	범주형	라벨링해주기위해생성된값으로내포된 의미가없기때문에
rolling_date	열연작업시각	날짜	연속형	열연작업시각에포함되어있는일,시각을구분하여분석에적용.
scale	Scale(산화철) 불량	목표변수	범주형	
spec_long	제품 규격	설명변수	범주형	제품 규격 첫 두글자가 기준국과 관련이 되어있는 것을 확인, 설명변수간의 상관성을 고려해서 삭제예정
spec_country	제품 규격 기준국	설명변수	범주형	
steel_kind	강종	설명변수	범주형	
pt_thick	Plate(후판) 지시두께(mm)	설명변수	연속형	
pt_width	Plate(후판) 지시폭(mm)	설명변수	연속형	
pt_length	Plate(후판) 지시길이(mm)	설명변수	연속형	P-value값이 0.05보다커서변수가유의미하지않은것으로판단.
hsb	HSB(Hot Scale Braker)적용여부	설명변수	범주형	
fur_no	가열로 호기	설명변수	범주형	P-value값이 0.05보다커서 변수가 유의미하지 않은 것으로 판단.
fur_input_row	가열로 장입열	설명변수	범주형	P-value값이 0.05보다커서 변수가 유의미하지 않은 것으로 판단.
fur_heat_temp	가열로 가열대 소재온도(°C)	설명변수	연속형	
fur_heat_time	가열로 가열대 재로시간(분)	설명변수	연속형	
fur_soak_temp	가열로 균열대 소재온도(°C)	설명변수	연속형	
fur_soak_time	가열로 균열대 재로시간(분)	설명변수	연속형	
fur_total_time	가열로 총 재로시간(분)	설명변수	연속형	
rolling_method	압연방법	설명변수	범주형	
rolling_temp	압연온도(°C)	설명변수	연속형	
descaling_count	압연Descaling 횟수	설명변수	연속형	
work_group	작업조	설명변수	범주형	
rolling_day	rolling_date의 일	파생변수	범주형	
rolling_hour	rolling_date의 시각	파생변수	범주형	

핵심인자정리템플릿(참조용)_2/2

шл	E	남색적 기	법	모델링 기법				+ +	HT (IIO)
변수	그래프	검정	상관분석	회귀분석	DT	RF	GB	총점	선정 (사유)
plate_no	х	Х	х	х	Х	х	х	0	
rolling_date	Х	Х	х	х	X	х	х	0	
scale	0	0	О	0	0	0	0	7	
spec_long	0	Х	х	х	Х	х	х	1	
spec_country	0	0	О	0	0	O	0	7	가설검정을 통해 scale값의 변화에 유의미한 것이 확인 되어서
steel_kind	0	0	О	0	0	0	0	7	가설검정을 통해 scale값의 변화에 유의미한 것이 확인 되어서
pt_thick	0	0	О	0	0	O	0	7	가설검정을 통해 scale값의 변화에 유의미한 것이 확인 되어서
pt_width	0	0	О	0	0	O	0	7	가설검정을 통해 scale값의 변화에 유의미한 것이 확인 되어서
pt_length	0	0	х	х	Х	х	х	2	
hsb	0	0	О	0	0	O	0	7	가설검정을 통해 scale값의 변화에 유의미한 것이 확인 되어서
fur_no	0	0	х	х	Х	х	Х	2	
fur_input_row	0	0	х	х	Х	х	х	2	
fur_heat_temp	0	0	О	0	0	O	0	7	가설검정을 통해 scale값의 변화에 유의미한 것이 확인 되어서
fur_heat_time	0	0	О	0	0	0	0	7	가설검정을 통해 scale값의 변화에 유의미한 것이 확인 되어서
fur_soak_temp	0	0	О	0	0	O	0	7	가설검정을 통해 scale값의 변화에 유의미한 것이 확인 되어서
fur_soak_time	0	0	О	0	0	0	0	7	가설검정을 통해 scale값의 변화에 유의미한 것이 확인 되어서
fur_total_time	0	0	О	0	0	o	0	7	가설검정을 통해 scale값의 변화에 유의미한 것이 확인 되어서
rolling_method	0	0	О	0	0	0	0	7	가설검정을 통해 scale값의 변화에 유의미한 것이 확인 되어서
rolling_temp	0	0	О	0	0	0	0	7	가설검정을 통해 scale값의 변화에 유의미한 것이 확인 되어서
descaling_count	0	0	0	0	0	0	0	7	가설검정을 통해 scale값의 변화에 유의미한 것이 확인 되어서
work_group	0	0	О	0	0	0	0	7	가설검정을 통해 scale값의 변화에 유의미한 것이 확인 되어서
rolling_day	0	0	О	0	0	0	0	7	가설검정을 통해 scale값의 변화에 유의미한 것이 확인 되어서
rolling_hour	0	0	О	0	0	o	0	7	가설검정을 통해 scale값의 변화에 유의미한 것이 확인 되어서

이름	역할
공통	데이터 분석 프로세스 설계, 모델링 성능 비교
손정우(조장)	분석 프로세스 검토, 변수 파생·변형, XG Boost 모델링 및 성능평가, 최종모델링
조현서	자료조사, 독립성 가설검정, 그래프 탐색, PPT
노성훈	자료조사, 데이터 전처리, 랜덤포레스트 모델링 및 성능평가
길배섭	데이터 전처리, 변수 파생·변형, 그래디언트 부스트 모델링 및 성능평가
정재원	자료조사, 데이터 전처리, 변수 파생·변형, 최종모델링, PPT

