

: Master thm I cholomas

T(n) =
$$\alpha T(\frac{\pi}{2}) + f(n)$$
 $\pi(1) = O(1)$

case: $f(n) = O(n^{\frac{1}{2}}y^{\frac{1}{2}}) \rightarrow T(n) = \Theta(n^{\frac{1}{2}}y^{\frac{1}{2}})$

case: $f(n) = O(n^{\frac{1}{2}}y^{\frac{1}{2}}) \rightarrow T(n) = \Theta(n^{\frac{1}{2}}y^{\frac{1}{2}} + \log n)$

case: $f(n) = \Omega(n^{\frac{1}{2}}y^{\frac{1}{2}}) \rightarrow T(n) = \Theta(f(n))$

case: $f(n) = \Omega(n^{\frac{1}{2}}y^{\frac{1}{2}}) \rightarrow T(n) = \Theta(f(n))$

T(n) = $\Gamma T(\frac{n}{2}) + \frac{1}{n}$ (Obs. π

10 2 = 360 nl

case:
$$T(a) = \theta(n!)$$
 $T(a) = \Gamma T(\frac{n}{r}) + \frac{n!}{r!}$ (July to See 2: $T(n) = \theta(n \log n)$)

 $T(n) = \Gamma T(\frac{n}{r}) + \frac{n}{\log n}$ (July to See 2: $T(n) = \theta(n \log n)$)

 $T(n) = \Gamma T(\frac{n}{r}) + \frac{n}{\log n}$ (July to See 2: $T(n) = \theta(n \log n)$)

 $P \times \frac{n!}{\log n}$
 $P \times \frac{n!}{\log$

