Problem Sheet #7

Symplectic geometry. 2024 Winter Term. Heidelberg University Course taught by J.-Pr. Agustín Moreno*

November 26, 2024

Please solve the following problems. Show all your work and justify your answers. The dagger † denotes optional exercises.

Problems

Exercise 1. (Contact squeezing) Darboux's theorem implies that you can always symplectically embed a small enough ball in any symplectic manifold. For contact manifolds the situation is even better (or worse, depending on how you view things). Let (M^{2n+1}, ξ) be a contact manifold. Show that for any r > 0, you can find a contact embedding $(B(r), \ker \alpha_0) \to (M, \xi)$, where α_0 is the standard contact structure on \mathbb{R}^{2n+1} .

Exercise 2. Let M, N be manifolds of the same dimension and assume M is compact. Let $f: M \to N$ be a smooth function and $q \in N$ a regular value.

- 1. Show that $\#f^{-1}(q)$ is finite, where #A denotes the cardinality of the set A.
- 2. Show that the map $\mathcal{R}_f \to \mathbb{N}$: $q \mapsto \#f^{-1}(q)$ is locally constant, where $\mathcal{R}_f \subseteq N$ is the set of regular values of f.

Exercise[†] 3. (Some functional analysis) Let X, Y be topological spaces. If $K \subseteq X$ is compact and $U \subseteq Y$ is open, define

$$S(K, U) = \{ f \in C(X, Y) \mid f(K) \subseteq U \}.$$

These sets form a subbasis for a topology on C(X,Y), which is called *compact open topology*.

1. Show that if X is compact and Y is a metric space with metric d_Y , the compact open topology is defined by the metric

$$d(f,g) = \sup_{x \in X} d_Y \big(f(x), g(x) \big).$$

2. Show that if X is σ -compact (i.e. it is the union of a countable set of compact subsets), then the compact open topology is metrizable. In particular, continuous functions between manifolds carry a metrizable topology, often called the C^0 -topology.

 $[*]For\ comments,\ questions,\ or\ potential\ corrections\ on\ the\ exercise\ sheets,\ please\ email\ alimoge@mathi.uni-heidelberg.de,\ or\ ruscelli.francesco1@gmail.com$

Exercise 4. Let $Q(r) = (0, r)^{2n} \subseteq (\mathbb{R}^{2n}, \omega_0)$ for r > 0 and define

$$\gamma(M,\omega) = \sup\{r^2 \mid \exists \text{ symplectic embedding } \varphi \colon Q(r) \to M\}.$$

Show that γ is monotone, conformal and nontrivial, in the sense that $\gamma(Z(1), \omega_0) < \infty$ and $\gamma(B(1), \omega_0) > 0$ (it is a capacity in a weaker sense, not in the sense we defined in class).

Exercise 5. Assume $h: \mathbb{R}^{2n} \to \mathbb{R}^{2n}$ is a homemomorphism so that $\gamma(h(U)) = \gamma(U)$ for all open sets U. Let μ be the Lebesgue measure on \mathbb{R}^{2n} .

- 1. Show that $\mu(Q(r)) = \gamma((Q(r)))^n$ and $\mu(U) \ge \gamma(U)^n$ for all open sets $U \subseteq \mathbb{R}^{2n}$.
- 2. Show that $\mu(Q(r)) \leq \mu(h(Q(r)))$.
- 3. Show that $\mu(U) \leq \mu(h(U))$ for all open sets $U \subseteq \mathbb{R}^{2n}$.
- 4. Conclude that h preserves the Lebesgue measure μ .