Exponentiation and logarithm

By combining the exponetial function and the natural logarithm, we may introduce new functions:

Definition

Let $a \in \mathbb{R}^+$.

The function

$$\exp_a : \mathbb{R} \to \mathbb{R}^+, x \mapsto \exp(x \ln(a)) = \alpha^x$$

is called **exponential function to the base** a.

Consistence: expe = exp

S.-J. Kimmerle

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Continuity

Applications for continuous functions

Inverse functions

Exponentiation and logarithm

Complex numbers

Differentiation in 1d

Integration in 1d

S.-J. Kimmerle

Theorem (Properties of exp_a)

The function

$$\exp_a : \mathbb{R} \to \mathbb{R}^+, x \mapsto \exp(x \ln(a))$$

is continuous and there holds:

- \bigcirc $\exp_a(x+y) = \exp_a(x) \cdot \exp_a(y)$ for all $x, y \in \mathbb{R}$

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Continuity

Applications for continuous functions

Inverse functions

Exponentiation and logarithm

Complex numbers

Differentiation in 1d

Integration in 1d

Compatibility with exponentiation and (natural) exponential function

As a consequence we may write

$$a^{x} = \exp_{a}(x)$$

for all $a \in \mathbb{R}^+$ and $x \in \mathbb{R}$.

= expa (line /

Moreover, the continuity of $e^{x}p_{a}$ yields:

$$\lim_{n\to\infty} \sqrt[n]{a} = \lim_{n\to\infty} \exp_a\left(\frac{1}{n}\right)^{\vee} = \exp_a(0) = 1 \quad \text{for all } a \in \mathbb{R}^+$$

Analysis 1

S.-J. Kimmerle

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Continuity

Applications for continuous functions

Inverse functions

Exponentiation and logarithm

Complex numbers

Differentiation in 1d

Integration in 1d

Theorem (Properties of a^x)

The function

$$a': \mathbb{R} \to \mathbb{R}^+, x \mapsto a^x \stackrel{\text{def}}{=} \exp(x \cdot \ln(a))$$
there holds:
$$= \exp(x \cdot \ln(a))$$

is continuous and there holds:

- $a^0 = 1$

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Continuity

Applications for continuous functions

Inverse functions

Exponentiation and logarithm

Complex numbers

Differentiation in 1d

Integration in 1d

Uniqueness of exponential functions

Theorem (Functional equation and exponentiation)

If $F : \mathbb{R} \to F(R) \subseteq \mathbb{R}$ be a continuous function with

$$F(x + y) = F(x) \cdot F(y)$$
 for all $x, y \in \mathbb{R}$

then either

$$F(x) = 0$$
 for all $x \in \mathbb{R}$

or we have a := F(1) and

$$F: \mathbb{R} \to \mathbb{R}^+, x \mapsto a^x$$
.

$$\exp(x) = \exp(x) \stackrel{x=1}{=} \exp(1 \cdot \ln(e)) = e$$

$$1^{x} = 1 = F(x) \qquad F(x+y) = 1 \qquad F(x) \cdot F(y) = 1$$

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Continuity

Applications for continuous functions

Inverse functions

Exponentiation and logarithm

Complex numbers

Differentiation in 1d

Integration in 1d

S.-J. Kimmerle

Theorem (Logarithms to the base a)

The exponential function to the base $a \in \mathbb{R}^+$ where $a \neq 1$

$$f: \mathbb{R} \to \mathbb{R}^+, x \mapsto \exp_a(x) = a^x = \exp(x \cdot \ln a)$$

is continuous, strictly monotonically (decreasing for a > 1, increasing for a < 1, resp.), and, thus, bijective. Thus we have the existence of the inverse function

$$f^{-1}: \mathbb{R}^+ \to \mathbb{R}, x \mapsto \log_a(x).$$

It fulfills the functional equation

$$\log_a(xy) = \log_a(x) + \log_a(y)$$
 for all $x, y \in \mathbb{R}^+$.

Moreover, we find

$$\log_a(x) = \frac{\ln(x)}{\ln(a)}$$

log_a is called logarithm to the base a.

Outlook: $log'(|x|) = \frac{1}{|X|}$ $x \neq 0$ Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Continuity

Applications for continuous functions

Inverse functions

Exponentiation and logarithm

Complex numbers

Differentiation in 1d

Integration in 1d

Important logarithms

Some logarithms that have a specific application are abbreviated as follows:

Decadic logarithm

$$(\text{Natural}) \log(x) := \log_{10}(x)$$
• (Natural) logarithm

Binary logarithm (also called dual logarithm)

$$\left(ld(x) = \right) lb(x) := log_2(x)$$

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Continuity

Applications for continuous functions

Inverse functions

Exponentiation and logarithm

Complex numbers

Differentiation in 1d

Integration in 1d

Limits involving exponentiation and logarithms

Analysis 1

S.-J. Kimmerle

Introduction

KX

ken

164

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Continuity

Applications for continuous functions

Inverse functions

Exponentiation and logarithm

Complex numbers

Differentiation in 1d

Integration in 1d

Summary - outlook and review

Theorem (Some limits of powers, exp, and log)

For any real number $\alpha > 0$ we have

1)
$$\lim_{x\downarrow 0}x^{\alpha}=0$$
,

2)
$$\lim_{x\to\infty} x^{\alpha} = \infty$$

4)
$$\lim_{x\to\infty}\ln(x)=\infty$$

3)
$$\lim_{x\downarrow 0} \ln(x) = -\infty$$
,

5)
$$\lim_{x\to\infty}\frac{\exp(x)}{x^{\alpha}}=\infty$$
,

6)
$$\lim_{x\to-\infty}x^{\alpha}\exp(x)=0$$

7)
$$\lim_{x\to\infty}\frac{\ln(x)}{x^{\alpha}}=0,$$

8)
$$\lim_{x\downarrow 0} x^{\alpha} \ln(x) = 0$$

Rule of thumb:

$$||\exp(ix)| = \cos(x) + i \sin(x)$$

The exponetial grows (i.e. diverges definitely to ∞) faster than any power, $\cos(\kappa x) \rightarrow \cos(x)$ the logarithm grows slower than any power.

