Linear Algebra Review

GIAN course, 18-22 Dec, 2017, IIIT-Delhi

Outline

Chapter 0 - Miscellaneous Preliminaries

Chapter 1 - Eigen Values and Similarity

Chapter 2 - Triangularization and Factorizations

Chapter 3 - Variational Characteristics of Hermitian Matrices

Chapter 4 - Norms and Inner Products

Chapter 5 - SVD and Pseudoinverse

Unless otherwise noted, all vectors are elements of \mathbb{R}^n , although results extend to complex vector spaces.

Let $S = {\mathbf{v}_i}_1^k \subseteq \mathbb{C}^n$. We define **span** of S by

$$span\{S\} = \left\{ \mathbf{x} \in \mathbb{C}^n \, | \, \exists \{\alpha_i\}_1^k \subseteq \mathbb{C} \, \text{with} \, \mathbf{x} = \sum_1^k \alpha_i \mathbf{v}_i \right\}$$

- ► The set S is **linearly independent** if $\sum_{i=1}^{k} \alpha_i \mathbf{v}_i = \mathbf{0}$ if and only if $\alpha_i = 0$ for all i.
- ▶ S is a spanning set for vector space V if span $\{S\} = V$.
- ightharpoonup A linearly independent spanning set for a vector space V is called a **basis**.
- ▶ The **dimension** of a vector space V, dim(V), is the size of the smallest spanning set for V.

- ▶ The rank of a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, rank(\mathbf{A}), is the size of the largest linearly independent set of columns of \mathbf{A} . Rank satisfies rank(\mathbf{A}) ≤ min{m,n}.
- $\operatorname{rank}(\mathbf{A}) + \operatorname{rank}(\mathbf{B}) k \le \operatorname{rank}(\mathbf{AB}) \le \min\{\operatorname{rank}(\mathbf{A}), \operatorname{rank}(\mathbf{B})\}.$
- ▶ For the two matrices of same size, we have

For matrices $\mathbf{A} \in \mathbb{R}^{m \times k}$ and $\mathbf{B} \in \mathbb{R}^{k \times n}$, we have

$$rank(\mathbf{A} + \mathbf{B}) \le rank(\mathbf{A}) + rank(\mathbf{B}).$$

▶ The **trace** of a matrix is the sum of its main diagonal entries, that is, $\operatorname{trace}(\mathbf{A}) = \sum a_{ii}$. For two matrices \mathbf{A} and \mathbf{B} , $\operatorname{trace}(\mathbf{A}\mathbf{B}) = \operatorname{trace}(\mathbf{B}\mathbf{A})$.

▶ The range of a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, range(\mathbf{A}), is the set

$$\operatorname{range}(\mathbf{A}) = \{ \mathbf{b} \in \mathbb{R}^m \, | \, \exists \, \mathbf{x} \in \mathbb{R}^n \ \, \text{with} \ \, \mathbf{A}\mathbf{x} = \mathbf{b} \}$$

Equivalently, the range of \mathbf{A} is the set of all linear combinations of columns of \mathbf{A} .

▶ The nullspace of a matrix, $null(\mathbf{A})$ is the set of all vectors \mathbf{x} such that $\mathbf{A}\mathbf{x} = 0$.

Suppose we have the matrix-vector equation $\mathbf{A}\mathbf{x} = \mathbf{b}$ with $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{x} \in \mathbb{R}^n$, and $\mathbf{b} \in \mathbb{R}^m$.

- ▶ The equation is **consistent** if there exists a solution \mathbf{x} to this equation; equivalently, we have $\operatorname{rank}([\mathbf{A}, \mathbf{b}]) = \operatorname{rank}(\mathbf{A})$, or $\mathbf{b} \in \operatorname{range}(\mathbf{A})$.
- ▶ The equation has a **unique solution** if $rank([\mathbf{A}, \mathbf{b}]) = rank(\mathbf{A}) = n$.
- ► The equation has **infinitely many solutions** if rank([\mathbf{A} , \mathbf{b}]) = rank(\mathbf{A}) < n.
- ▶ The equation has **no solution** if rank([A, b]) > rank(A).

- ▶ A matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ is **nonsingular** if $\mathbf{A}\mathbf{x} = 0$ if and only if $\mathbf{x} = 0$.
- ▶ When $m \ge n$ and **A** has full rank (rank(**A**)= n), **A** is nonsingular.
- ▶ If m < n, then **A** must be singular, since rank(**A**) $\leq min\{m, n\} = m < n$.
- ▶ If m = n and \mathbf{A} is nonsingular, then there exists a matrix \mathbf{A}^{-1} with $\mathbf{A}\mathbf{A}^{-1} = \mathbf{I}_n = \mathbf{A}^{-1}\mathbf{A}$ and we call \mathbf{A} invertible and the matrix-vector equation $\mathbf{A}\mathbf{x} = \mathbf{b}$ has the unique solution $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$ in this case.

- ▶ The Euclidean inner product is a function defined by $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^* \mathbf{y} = \sum_{i=1}^{n} \bar{x}_i y_i$, where the vectors in use are the same size and could be complex-valued.
- ► The Euclidean norm is a function defined by $\|\mathbf{x}\| = \|\mathbf{x}\|_2 = (\sum_{i=1}^{n} |x_i|^2)^{1/2}$ and satisfies $\langle \mathbf{x}, \mathbf{x} \rangle = \|\mathbf{x}\|_2^2$.
- ▶ Two vectors x and y are **orthogonal** if $\langle \mathbf{x}, \mathbf{y} \rangle = 0$.
- ► Two vectors are **orthonormal** if they are are orthogonal and $\|\mathbf{x}\|_2 = \|\mathbf{y}\|_2 = 1$.

Given a set $S = \{\mathbf{v}_i\}_1^k \subseteq \mathbb{R}^n$, we define the orthogonal complement of S ("S perp") by

$$S^{\perp} = \{ \mathbf{x} \in \mathbb{R}^n \mid \langle \mathbf{x}, \mathbf{v}_i \rangle = 0 \text{ for all } i \}.$$

$$(S^{\perp})^{\perp} = S$$

For a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, we have the relation

$$range(\mathbf{A})^{\perp} = null(\mathbf{A}^*).$$

Proof: (\subseteq) Let $\mathbf{y} \in \text{range}(\mathbf{A})^{\perp}$. Then for all $\mathbf{b} = \mathbf{A}\mathbf{x} \in \text{range}(\mathbf{A})$, $0 = \langle \mathbf{b}, \mathbf{y} \rangle = \langle \mathbf{A}\mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{x}, \mathbf{A}^*\mathbf{y} \rangle$. In particular, if $\mathbf{x} \equiv \mathbf{A}^*\mathbf{y}$, then we have $\|\mathbf{A}^*\mathbf{y}\|_2^2 = 0$, so that $\mathbf{A}^*\mathbf{y} \equiv 0$. Thus $\mathbf{y} \in \text{null}(\mathbf{A}^*)$. (\supseteq) Let $\mathbf{y} \in \text{null}(\mathbf{A}^*)$. Then for all $\mathbf{x} \in \mathbb{R}^n$, we have $0 = \langle \mathbf{x}, \mathbf{A}^*\mathbf{y} \rangle = \langle \mathbf{A}\mathbf{x}, \mathbf{y} \rangle$. As this holds for all choices of \mathbf{x} , we conclude that $\mathbf{y} \in \text{range}(\mathbf{A})^{\perp}$. Hence, the set equality follows.

- ▶ Projection Matrix: Let $\mathbf{A} \in \mathbb{R}^{m \times n}$. Then for all $\mathbf{y} \in \mathbb{R}^m$, there exists unique vectors \mathbf{y}_A and \mathbf{y}_{\perp} in \mathbb{R}^m such that $\mathbf{y} = \mathbf{y}_A + \mathbf{y}_{\perp}$, where $\mathbf{y}_A \in \text{range}(\mathbf{A})$ and $\mathbf{y}_{\perp} \in \text{range}(\mathbf{A})^{\perp} \equiv \text{null}(\mathbf{A}^*)$
- ▶ A normal matrix is a matrix N such that $NN^* = N^*N$.
- ▶ A Hermitian matrix is one such that $A^* = A$. A real valued Hermitian matrix is called a symmetric matrix.
- ▶ A skew Hermitian matrix is one such that $A^* = -A$.
- A unitary matrix is a square matrix with $UU^* = I = U^*U$.
- ► A real-valued unitary matrix is called an **orthogonal** matrix.
- ▶ An idempotent matrix satisfies $A^2 = A$.

- ▶ A Projection matrix P satisfies $P^2 = P$ (P is idempotent). If $P = P^*$, then P is called an **orthogonal projection**.
- For any projection \mathbf{P} which projects onto a subspace S, the projector onto subspace S^{\perp} is given by $(\mathbf{I} \mathbf{P})$. Given a matrix \mathbf{U} with orthonormal columns, the (orthogonal) projector onto column space of \mathbf{U} is given by $\mathbf{P} = \mathbf{U}\mathbf{U}^*$.
- ▶ Classical Gram Schmidt Algorithm is a theoretical tool which takes a set of vectors $\{\mathbf{v}_i\}_1^k$ and creates a set of orthonormal vectors $\{\mathbf{q}_i\}_1^k$ which span the same space as the original set.

Let $\{\mathbf{v}_i\}_1^k$ be a linearly independent set of vectors. Initialize $\mathbf{z}_1 = \frac{\mathbf{v}_1}{\|\mathbf{v}_1\|_2}$. For l = 2...k, compute

$$\mathbf{y}_l = \left(\mathbf{v}_l - \sum\limits_{i=1}^{l-1} \langle \mathbf{z}_i, \mathbf{v}_l \rangle \mathbf{z}_i \right)$$
 and then let $\mathbf{z}_l = \frac{\mathbf{y}_l}{\|\mathbf{y}_l\|_2}$.

- ▶ A **permutation matrix** is a matrix obtained by permuting rows and(or) columns of an identity matrix. Permutation matrices satisfy **P**² = **I**, so that a permutation matrix is its own inverse.
- ▶ Permutation matrices are symmetric and orthogonal.
- ▶ A circulant matrix has the general form

$$\begin{pmatrix} a_1 & a_2 & \dots & a_{n-1} & a_n \\ a_n & a_1 & a_2 & \ddots & a_{n-1} \\ a_{n-1} & a_n & a_1 & \dots & a_{n-2} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ a_2 & a_3 & \dots & a_n & a_1 \end{pmatrix}$$

Each row of a circulant matrix is a cyclic permutation of the first row.

▶ A **Toeplitz matrix** has the general form

$$\begin{pmatrix} a_0 & a_1 & a_2 & \dots & a_{n-1} & a_n \\ a_{-1} & a_0 & a_1 & \ddots & a_{n-1} & a_{n-1} \\ a_{-2} & a_{-2} & a_0 & \ddots & \ddots & a_{n-2} \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ a_{-n+1} & a_{-n+2} & \ddots & \ddots & a_0 & a_1 \\ a_{-n} & a_{-n+1} & a_{-n+2} & \dots & a_{-1} & a_0 \end{pmatrix}$$

where $\{a_i\}_{-n}^n$ is any collection of scalars.

- ▶ An **upper triangular matrix** is a matrix whose entries below (above) the main diagonal are all zero.
- ▶ A diagonal matrix is one whose only nonzero entries lie on the main diagonal. The eigen values of a triangular matrix or a diagonal matrix are the diagonal entries.

- ▶ Let **T** be an upper-triangular matrix. **T** is invertible if and only if its diagonal entries are nonzero (since these are its eigenvalues).
- ▶ The matrix \mathbf{T}^{-1} is also upper-triangular.
- ▶ Given any two upper-triangular matrices \mathbf{T}_1 and \mathbf{T}_2 , their sum $\mathbf{T}_1 + \mathbf{T}_2$ and their product $\mathbf{T}_1\mathbf{T}_2$ are also upper-triangular.
- ▶ A Hermitian upper-triangular matrix is necessarily diagonal (and real-valued).
- More generally, any normal upper-triangular matrix is diagonal.

These results also hold for lower-triangular matrices.

Chapter 1: Eigen Values and Similarity

Suppose $\mathbf{A} \in \mathbb{C}^{n \times n}$ and there exist $\lambda \in \mathbb{C}$ and $\mathbf{x} \in \mathbb{C}^n$ (with $\mathbf{x} \neq 0$) such that $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$. Then we call λ an eigenvalue of \mathbf{A} with the corresponding **eigenvector** \mathbf{x} .

- ▶ The **spectrum** of \mathbf{A} , $\sigma(\mathbf{A})$, is the set of all eigenvalues of \mathbf{A} .
- ▶ The spectral radius of \mathbf{A} , $\rho(\mathbf{A})$, is defined as $\rho(\mathbf{A}) = max_{\lambda \in \sigma(\mathbf{A})}\{|\lambda|\}.$
- ▶ If $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$, then $\mathbf{A}^k \mathbf{x} = \lambda^k \mathbf{x}$ for $k \in \mathbb{N} \cup \{0\}$. Proof: By induction For the base case k = 0, the result is obvious. (Note $\mathbf{A}^0 = \mathbf{I}$). Suppose the result is true for $k = m \geq 0$. Consider $\mathbf{A}^{m+1}\mathbf{x} = \mathbf{A}^m(\mathbf{A}\mathbf{x}) = \mathbf{A}^m(\lambda \mathbf{x}) = \lambda(\mathbf{A}^m\mathbf{x}) = \lambda.\lambda^m\mathbf{x} = \lambda^{m+1}\mathbf{x}$. By the Principle of Mathematical Induction, the desired result follows.

Chapter 1: Eigen Values and Similarity

- ▶ If **A** is a Hermitian Matrix, then $\sigma(\mathbf{A}) \subset \mathbb{R}$. Proof: Let $\mathbf{A}\mathbf{x} = \lambda\mathbf{x}$. Then $\langle \mathbf{A}\mathbf{x}, \mathbf{x} \rangle = \langle \lambda\mathbf{x}, \mathbf{x} \rangle = \bar{\lambda}\langle \mathbf{x}, \mathbf{x} \rangle$. However, $\langle \mathbf{A}\mathbf{x}, \mathbf{x} \rangle = \langle \mathbf{x}, \mathbf{A}^*\mathbf{x} \rangle = \langle \mathbf{x}, \mathbf{A}\mathbf{x} \rangle = \langle \mathbf{x}, \lambda\mathbf{x} \rangle = \lambda\langle \mathbf{x}, \mathbf{x} \rangle$. Since, \mathbf{x} is an eigenvector, $\mathbf{x} \neq \mathbf{0}$, so $\langle \mathbf{x}, \mathbf{x} \rangle = \|\mathbf{x}\|_2^2 \neq 0$. Thus $\lambda = \bar{\lambda}$, so $\lambda \in \mathbb{R}$.
- ▶ A square matrix **A** is invertible if and only if 0 is not an eigenvalue of **A**.
- ▶ $\mathbf{A} \sim \mathbf{B}$ if there exists a nonsingular matrix \mathbf{S} such that $\mathbf{A} = \mathbf{S}^{-1}\mathbf{B}\mathbf{S}$.
- $\mathbf{A} = \mathbf{S}^{-1}\mathbf{B}\mathbf{S}$. $\mathbf{A} \sim \mathbf{B}$ implies $\sigma(\mathbf{A}) = \sigma(\mathbf{B})$. Proof: Let $\lambda \in \sigma(\mathbf{A})$. Then there exists $\mathbf{x} \neq 0$ such that $\mathbf{A}\mathbf{x} = \lambda\mathbf{x}$. Applying similarity, we have $\mathbf{A}\mathbf{x} = \mathbf{S}^{-1}\mathbf{B}\mathbf{S}\mathbf{x} = \lambda\mathbf{x}$, which implies that $\mathbf{B}(\mathbf{S}\mathbf{x}) = \lambda(\mathbf{S}\mathbf{x})$. Since \mathbf{S} is invertible and $\mathbf{x} \neq 0$, $\mathbf{S}\mathbf{x} \neq 0$, so $\lambda \in \sigma(\mathbf{B})$.

Chapter 1: Eigen Values and Similarity

- ▶ Let $\mathbf{A} \in \mathbb{C}^{n \times n}$. A is diagonalizable if \mathbf{A} is similar to a diagonal matrix Λ whose (diagonal) entries are the eigenvalues of \mathbf{A} , that is, there exists \mathbf{S} such that $\mathbf{A} = \mathbf{S}^{-1}\Lambda\mathbf{S}$.
- ▶ A matrix **A** is **unitarily diagonalizable** if **S** is a unitary matrix: $\mathbf{A} = \mathbf{U}^* \Lambda \mathbf{U}$ for **U** unitary.
- ▶ A matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$ is diagonalizable if and only if \mathbf{A} has n linearly independent eigenvectors.

Proof: Suppose $\mathbf{A} = \mathbf{S}^{-1}\Lambda\mathbf{S}$. Then $\mathbf{A}\mathbf{S}^{-1} = \mathbf{S}^{-1}\Lambda$. The matrix $\mathbf{A}\mathbf{S}^{-1}$ has columns $(\mathbf{A}\mathbf{S}^{-1})_j = \mathbf{A}(\mathbf{S}^{-1})_j$ and the matrix $\mathbf{S}^{-1}\Lambda$ has columns $(\mathbf{S}^{-1}\Lambda)_j = \lambda_j(\mathbf{S}^{-1})_j$. Therefore, the columns of \mathbf{S}^{-1} are the eigenvectors of \mathbf{A} . Since \mathbf{S}^{-1} is invertible, it has n linearly independent columns, which proves the result.

- ▶ Two matrices **A** and **B** in $\mathbb{C}^{n \times n}$ are unitarily equivalent if there exists unitary matrices **U** and **V** such that $\mathbf{A} = \mathbf{U}\mathbf{B}\mathbf{V}$.
- ▶ The matrices are unitarily similar if $A = U^*BU$ for some unitary U.
- Schur's Unitary Triagularization Theorem: Every matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$ is unitarily similar to an upper-triangular matrix \mathbf{T} whose diagonal entries are the eigenvalues of \mathbf{A} ; that is, there exist \mathbf{U} unitary and \mathbf{T} upper-triangular with $t_{ii} = \lambda_i(\mathbf{T})$ such that $\mathbf{A} = \mathbf{U}^*\mathbf{T}\mathbf{U}$. If \mathbf{A} is real and has only real eigenvalues, then \mathbf{U} can be chosen real (orthogonal).

▶ A consequence of Schurs theorem is that if **A** is normal, then **T** is also normal.

Proof: Let $\mathbf{A} = \mathbf{U}^*\mathbf{T}\mathbf{U}$. Then $\mathbf{A}\mathbf{A} = \mathbf{U}^*\mathbf{T}^*\mathbf{U}\mathbf{U}^*\mathbf{T}\mathbf{U} = \mathbf{U}^*\mathbf{T}\mathbf{T}^*\mathbf{U}$ and $\mathbf{A}\mathbf{A}^* = \mathbf{U}^*\mathbf{T}\mathbf{U}\mathbf{U}^*\mathbf{T}^*\mathbf{U} = \mathbf{U}^*\mathbf{T}\mathbf{T}^*\mathbf{U}$. Therefore, $\mathbf{U}^*\mathbf{T}\mathbf{U} = \mathbf{A}^*\mathbf{A} = \mathbf{A}\mathbf{A}^* = \mathbf{U}^*\mathbf{T}\mathbf{T}^*\mathbf{U}$, so $\mathbf{T}^*\mathbf{T} = \mathbf{T}\mathbf{T}^*$, as desired.

Another consequence of Schur's theorem is that $\operatorname{trace}(\mathbf{A}) = \sum_{\sigma(\mathbf{A})} \lambda_i$. Proof: There exist **U** unitary and **T** upper-triangular such that $\mathbf{A} = \mathbf{U}^*\mathbf{T}\mathbf{U}$ with $t_{ii} = \lambda_i$. So, $\operatorname{trace}(\mathbf{A}) = \operatorname{trace}(\mathbf{U}^*\mathbf{T}\mathbf{U}) = \operatorname{trace}(\mathbf{T}\mathbf{U}\mathbf{U}^*) = \operatorname{trace}(\mathbf{T}) = \sum_{\sigma(\mathbf{A})} \lambda_i$.

The following are equivalent:

- 1. **A** is normal.
- 2. A is unitarily diagonalizable.
- 3. Ahas n orthonormal eigenvectors.
- 4. $\sum |a_{ij}|^2 = \sum |\lambda_i|^2.$

Proof:

- ▶ $(1 \Rightarrow 2)$ If **A** is normal, then **A** = **U*****TU** implies **T** is also normal. A normal triangular matrix is diagonal, so **A** is unitarily diagonalizable.
- ▶ $(2 \Rightarrow 1)$ Let $\mathbf{A} = \mathbf{U}^* \mathbf{\Lambda} \mathbf{U}$. Since diagonal matrices commute, $\mathbf{\Lambda}^* \mathbf{\Lambda} = \mathbf{\Lambda} \mathbf{\Lambda}^*$, so $\mathbf{A}^* \mathbf{A} = \mathbf{U}^* \mathbf{\Lambda}^* \mathbf{\Lambda} \mathbf{U} = \mathbf{U}^* \mathbf{\Lambda} \mathbf{\Lambda}^* \mathbf{U} = \mathbf{A} \mathbf{A}^*$, and thus \mathbf{A} is normal.

- ▶ $(2 \Rightarrow 3)$ **A** = **U*** Λ **U** if and only if **AU*** = **U*** Λ . As we saw in the section on eigenvalues, this is true if and only if the columns of **U*** are the eigenvectors of **A**. These eigenvectors are orthonormal since **U*** is unitary.
- ▶ $(2 \Rightarrow 4)$ Let $\mathbf{A} = \mathbf{U}^* \mathbf{\Lambda} \mathbf{U}$. Consider $\sum |a_{ij}|^2 = \operatorname{trace}(\mathbf{A}^* \mathbf{A}) = \operatorname{trace}(\mathbf{U}^* \mathbf{\Lambda}^* \mathbf{\Lambda} \mathbf{U}) = \operatorname{trace}(\mathbf{\Lambda}^* \mathbf{\Lambda} \mathbf{U} \mathbf{U}^*) = \operatorname{trace}(\mathbf{\Lambda}^* \mathbf{\Lambda}) = \sum |\lambda_i|^2$.
- ▶ $(4 \Rightarrow 2)$) Suppose that $\sum |a_{ij}|^2 = \operatorname{trace}(\mathbf{A}^*\mathbf{A}) = \sum |\lambda_i|^2$. By Schurs thereom, $\mathbf{A} = \mathbf{U}^*\mathbf{T}\mathbf{U}$ for some upper-triangular \mathbf{T} . We have $\operatorname{trace}(\mathbf{A}^*\mathbf{A}) = \operatorname{trace}(\mathbf{T}^*\mathbf{T}) = \sum_{i,j} |t_{ij}|^2 = \sum |t_{ii}|^2 + \sum_{i\neq j} |t_{ij}|^2$. Since $t_{ii} \equiv \lambda_i$, we see that $\sum_{i\neq j} |t_{ij}|^2 = 0$, which implies that $t_{ij} \equiv 0$ for all $i \neq j$. Thus, \mathbf{T} is diagonal and \mathbf{A} is, therefore, unitarily diagonalizable.

- A matrix is Hermitian if and only if A = UΛU* with Λ diagonal and real. Further, a normal matrix whose eigenvalues are real is necessarily Hermitian.
 Proof: A = A* ⇔ U*TU = U*T*U ⇔ T = T* ⇔ T = Λ is diagonal and real valued, which proves the first result.
 Since normal matrices are unitarily diagonizable, the second result follows.
- ▶ **QR** factorization: Let $\mathbf{A} \in \mathbb{C}^{m \times n}$ with $m \geq n$. There exist matrices $\mathbf{Q} \in \mathbb{C}^{m \times m}$ unitary and $\mathbf{R} \in \mathbb{C}^{m \times n}$ upper-triangular such that $\mathbf{A} = \mathbf{Q}\mathbf{R}$. If \mathbf{A} is nonsingular, then the diagonal entries of \mathbf{R} can be chosen positive and the resulting $\mathbf{Q}\mathbf{R}$ factorization is unique. \mathbf{R} is invertible in this case.

- ▶ **QR** factorisation: If m > n, then we can form the reduced QR factorization $\mathbf{A} = \hat{\mathbf{Q}}\hat{\mathbf{R}}$, where $\hat{\mathbf{Q}} \in \mathbb{C}^{m \times n}$ has orthonormal columns and $\hat{\mathbf{R}} \in \mathbb{C}^{n \times n}$ is upper-triangular. Lastly, if **A** is nonsingular, then the columns of **Q** span the same space as the columns of **A**.
- ▶ Cholesky factorisation: Suppose $\mathbf{B} = \mathbf{A}^*\mathbf{A}$ for some matrix \mathbf{A} . Then \mathbf{B} has a Cholesky factorization $\mathbf{B} = \mathbf{L}\mathbf{L}^*$, where \mathbf{L} is lower-triangular.

Proof: Since A has a full QR factorization, $\mathbf{B} = \mathbf{A}^* \mathbf{A} = \mathbf{R}^* \mathbf{Q}^* \mathbf{Q} \mathbf{R} = \mathbf{R}^* \mathbf{R} = \mathbf{L} \mathbf{L}^*$, where $\mathbf{L} = \mathbf{R}^*$.

Chapter 3: Variational Characteristics of Hermitian Matrices

In this section, all matrices are $(n \times n)$ Hermitian matrices unless otherwise noted. Since the eigenvalues of Hermitian matrices are real-valued, we can order the eigenvalues,

$$\lambda_{min} = \lambda_1 \le \lambda_2 \le \ldots \le \lambda_n = \lambda_{max}.$$

- ▶ For $\mathbf{x} \neq \mathbf{0}$, the value $\frac{\mathbf{x}^* \mathbf{A} \mathbf{x}}{\mathbf{x}^* \mathbf{x}} = \frac{\langle \mathbf{x}, \mathbf{A} \mathbf{x} \rangle}{\langle \mathbf{x}, \mathbf{x} \rangle}$ is called a **Rayleigh** quotient.
- ▶ Rayleigh-Ritz Theorem: we have the following relations:

$$\lambda_{max} = \max_{\mathbf{x} \neq 0} \frac{\mathbf{x}^* \mathbf{A} \mathbf{x}}{\mathbf{x}^* \mathbf{x}} = \max_{\|\mathbf{x}\|_2 = 1} \mathbf{x}^* \mathbf{A} \mathbf{x}.$$
$$\lambda_{min} = \min_{\mathbf{x} \neq 0} \frac{\mathbf{x}^* \mathbf{A} \mathbf{x}}{\mathbf{x}^* \mathbf{x}} = \min_{\|\mathbf{x}\|_2 = 1} \mathbf{x}^* \mathbf{A} \mathbf{x}.$$

► Courant-Fisher Theorem: Let $\lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n$. Let $\{\mathbf{w}_i\}$ be arbitrary sets of linearly independent vectors in \mathbb{C}^n . Then the following characterizations of λ_k hold:

$$\lambda_k(\mathbf{A}) = \min_{\{\mathbf{w}_1, \dots, \mathbf{w}_{n-k}\}} \max_{\mathbf{x} \neq 0; \mathbf{x} \perp \{\mathbf{w}_1, \dots, \mathbf{w}_{n-k}\}} \frac{\mathbf{x}^* \mathbf{A} \mathbf{x}}{\mathbf{x}^* \mathbf{x}}.$$

$$\lambda_k(\mathbf{A}) = \max_{\{\mathbf{w}_1, \dots, \mathbf{w}_{k-1}\}} \min_{\mathbf{x} \neq 0; \mathbf{x} \perp \{\mathbf{w}_1, \dots, \mathbf{w}_{k-1}\}} \frac{\mathbf{x}^* \mathbf{A} \mathbf{x}}{\mathbf{x}^* \mathbf{x}}$$

Chapter 3: Variational Characteristics of Hermitian Matrices

▶ Courant-Fisher Theorem: To simplify previous notations, we can express them in terms of an arbitary subspace S:

$$\lambda_k(\mathbf{A}) = \min_{dim(S)=n-k} \max_{\mathbf{x} \neq 0; \mathbf{x} \in S^{\perp}} \frac{\mathbf{x}^* \mathbf{A} \mathbf{x}}{\mathbf{x}^* \mathbf{x}}$$
$$\lambda_k(\mathbf{A}) = \max_{dim(S)=k-1} \min_{\mathbf{x} \neq 0; \mathbf{x} \in S^{\perp}} \frac{\mathbf{x}^* \mathbf{A} \mathbf{x}}{\mathbf{x}^* \mathbf{x}}$$

dim(S)=k-1 $\mathbf{x}\neq 0; \mathbf{x}\in S^{\perp}$ $\mathbf{x}^{\perp}\mathbf{x}$ One final equivalent version of the theorem (Horn and

Johnson 2e) is given by:

$$\lambda_k(\mathbf{A}) = \min_{\dim(S) = k} \max_{\mathbf{x} \neq 0; \mathbf{x} \in S} \frac{\mathbf{x}^* \mathbf{A} \mathbf{x}}{\mathbf{x}^* \mathbf{x}}$$

$$\lambda_k(\mathbf{A}) = \max_{\dim(S) = n-k+1} \min_{\mathbf{x} \neq 0; \mathbf{x} \in S} \frac{\mathbf{x}^* \mathbf{A} \mathbf{x}}{\mathbf{x}^* \mathbf{x}}$$

Chapter 3: Variational Characteristics of Hermitian Matrices

▶ Weyl's Inequality: Let \mathbf{A} , \mathbf{B} be Hermitian matrices. Then $\lambda_k(\mathbf{A}) + \lambda_{min}(\mathbf{B}) \leq \lambda_k(\mathbf{A} + \mathbf{B}) \leq \lambda_k(\mathbf{A}) + \lambda_{max}(\mathbf{B})$. Using the fact that for a Hermitian matrix, $\|\mathbf{B}\|_2 = \max(|\lambda_{min}(\mathbf{B})|, |\lambda_{max}(\mathbf{B})|)$, we have that $-\|\mathbf{B}\|_2 \leq \lambda_{min}(\mathbf{B}) \leq \lambda_{max}(\mathbf{B}) \leq \|\mathbf{B}\|_2$. Using this, Weyl implies that $\lambda_k(\mathbf{A}) - \|\mathbf{B}\|_2 \leq \lambda_k(\mathbf{A} + \mathbf{B}) \leq \lambda_k(\mathbf{A}) + \|\mathbf{B}\|_2$. In general, we have $\lambda_{j+k-n}(\mathbf{A} + \mathbf{B}) \leq \lambda_j(\mathbf{A}) + \lambda_k(\mathbf{B})$ $\lambda_{j+k-1}(\mathbf{A} + \mathbf{B}) \geq \lambda_j(\mathbf{A}) + \lambda_k(\mathbf{B})$.

▶ Ostrowski's Theorem: Let **A** be Hermitian and **S** be nonsingular. Then there exists $\theta_k \in [\lambda_{min}(\mathbf{S}\mathbf{S}^*), \lambda_{max}(\mathbf{S}\mathbf{S}^*)]$ such that $\lambda_k(\mathbf{S}\mathbf{A}\mathbf{S}^*) = \theta_k\lambda_k(\mathbf{A})$. Corollary: $\lambda_{min}(\mathbf{S}\mathbf{S}^*)\lambda_k(\mathbf{A}) < \lambda_k(\mathbf{S}\mathbf{A}\mathbf{S}^*) < \lambda_{max}(\mathbf{S}\mathbf{S}^*)\lambda_k(\mathbf{A})$.

Chapter 3: Variational Characteristics of Hermitian Matrices

- ▶ Interlacing of eigenvalues: Let A be Hermitian and z be a vector. Then $\lambda_k(\mathbf{A} + \mathbf{z}\mathbf{z}^*) \leq \lambda_{k+1}(\mathbf{A}) \leq \lambda_{k+2}(\mathbf{A} + \mathbf{z}\mathbf{z}^*)$.
- ▶ Bordered matrices: Let $\mathbf{B} \in \mathbb{C}^{n \times n}$, $\mathbf{a} \in \mathbb{R}$, $\mathbf{y} \in \mathbb{C}^n$ and define

$$\mathbf{A} = \begin{pmatrix} \mathbf{B} & \mathbf{y} \\ \mathbf{y}^* & \mathbf{a} \end{pmatrix}$$

Then $\lambda_1(\mathbf{A}) \leq \lambda_1(\mathbf{B}) \leq \lambda_2(\mathbf{A}) \leq \lambda_2(\mathbf{B}) \leq \ldots \leq \lambda_n(\mathbf{B}) \leq$ $\lambda_{n+1}(\mathbf{A})$. If no eigenvector of **B** is orthogonal to **y**, then every inequality is a strict inequality.

Theorem: If $\mu_1 \leq \lambda_1 \leq \mu_2 \leq \ldots \leq \mu_n \leq \lambda_n \leq \mu_{n+1}$ then there exist $\mathbf{y} \in \mathbb{R}^n$ and $\mathbf{a} \in \mathbb{R}$ such that

$$\mathbf{M} = \begin{pmatrix} \Lambda & \mathbf{y} \\ \mathbf{y}^* & \mathbf{a} \end{pmatrix}$$

has the eigenvalues $\{\mu_i\}_1^{n+1}$, where $\lambda = \operatorname{diag}\left(\{\lambda_i\}_1^n\right)$.

A function $||.||: \mathbb{C}^n \to \mathbb{R}$ is a **vector norm** if it satisfies:

- 1. $||\mathbf{x}|| \ge 0$ for all $\mathbf{x} \in \mathbb{C}^n$ and $||\mathbf{x}|| = 0$ if and only if $\mathbf{x} \equiv \mathbf{0}$;
- 2. $||\alpha \mathbf{x}|| = |\alpha|||\mathbf{x}||$ for all $\alpha \in \mathbb{C}$, $\mathbf{x} \in \mathbb{C}^n$;
- 3. $||\mathbf{x} + \mathbf{y}|| \le ||\mathbf{x}|| + ||\mathbf{y}||$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{C}^n$ (Triangle Inequality)

Another useful form of the Triangle Inequality is

$$||\mathbf{x} - \mathbf{y}|| \ge |||\mathbf{x}|| - ||\mathbf{y}|||$$

Proof:

Let $\mathbf{z} = \mathbf{x} - \mathbf{y}$. Then

$$||\mathbf{x}|| = ||\mathbf{z} + \mathbf{y}|| \le ||\mathbf{z}|| + ||\mathbf{y}|| = ||\mathbf{x} - \mathbf{y}|| + ||\mathbf{y}||,$$

so that $||\mathbf{x}|| - ||\mathbf{y}|| \le ||\mathbf{x} - \mathbf{y}||$.

Swapping the roles of ${\bf x}$ and ${\bf y}$, we see

$$||\mathbf{y}|| - ||\mathbf{x}|| \le ||\mathbf{y} - \mathbf{x}|| = ||\mathbf{x} - \mathbf{y}||;$$

Thus,

$$-||x - y|| \le ||x|| - ||y|| \le ||x - y||$$

Common vector norms:

- $|\mathbf{x}||_1 = \sum_i |\mathbf{x}_i|$
- $||\mathbf{x}||_2 = \sqrt{\mathbf{x}^* \mathbf{x}} = \sqrt{\sum_i |\mathbf{x}_i|^2}$
- $||\mathbf{x}||_{\infty} = \max_{i} \{|\mathbf{x}_{i}|\}$
- ▶ $||\mathbf{x}||_p = (\sum |\mathbf{x}_i|^p)^{\frac{1}{p}}$ (the l_p -norm, $p \in \mathbb{N}$; these norms are convex)
- \diamond The three norms above are the l_1, l_2 and l_{∞} norms.
- ▶ $\sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$ for any inner product $\langle ., . \rangle$.
- ▶ $\|\mathbf{x}\|_{\mathbf{A}} = \|\mathbf{A}\mathbf{x}\|$ for **A** nonsingular, $\|.\|$ any vector norm.
- ▶ The **support** of a vector, supp(\mathbf{x}), is the set of indices i such that $\mathbf{x}_i \neq 0$. The size of the support of \mathbf{x} (that is, the number of nonzero entries of \mathbf{x}), $|\text{supp}(\mathbf{x})|$, is often denoted $||\mathbf{x}||_0$, although $||.||_0$ is not a vector norm.

Equivalence of norms:

Let $||.||_{\alpha}$ and $||.||_{\beta}$ be any two norms on \mathbb{C}^n . There exist constants m and M such that

$$m||\mathbf{x}||_{\alpha} \le ||\mathbf{x}||_{\beta} \le M||\mathbf{x}||_{\alpha} \text{ for all } \mathbf{x} \in \mathbb{C}^n$$

The best attainable bounds for $||\mathbf{x}||_{\alpha} \leq C_{\alpha,\beta}||\mathbf{x}||_{\beta}$ are given for $\alpha, \beta \in \{1, 2, \infty\}$;

- ▶ **Pseudonorm:** A function f(.) on \mathbb{C}^n that satisfies all the norm condition except that $f(\mathbf{x})$ may equal 0 for a nonzero \mathbf{x} (i.e. (1) is not totally satisfied).
- ▶ **Pre-norm:** A continuous function f(.) which satisfies $f(\mathbf{x}) \geq 0$ for all \mathbf{x} , $f(\mathbf{x}) = 0$ if and only if $\mathbf{x} \equiv \mathbf{0}$ and $f(\alpha \mathbf{x}) = |\alpha| f(\mathbf{x})$ (i.e. f satisfies (1) and (2) but not necessarily (3)).

Note: All norms are also pre-norms but pre-norms are not norms.

▶ Dual norm: $f^D(\mathbf{y}) = \max_{f(\mathbf{x})=1} |\mathbf{y}^*\mathbf{x}|$, given any pre-norm $f(\mathbf{x})$

Note: f could be a vector norm, as all norms are pre-norms. The dual norm of a pre-norm is always a norm, regardless of whether $f(\mathbf{x})$ is a (full) norm or not. If $f(\mathbf{x})$ is a norm, then $(f^D)^D = f$.

An **Inner product** is a function

$$\langle .,. \rangle : \mathbb{C}^n \times \mathbb{C}^n \to \mathbb{C}$$

such that:

- 1. $\langle \mathbf{x}, \mathbf{x} \rangle \in \mathbb{R}$ with $\langle \mathbf{x}, \mathbf{x} \rangle \geq 0$ for all $\mathbf{x} \in \mathbb{C}^n$ and $\langle \mathbf{x}, \mathbf{x} \rangle = 0$ if and only if $\mathbf{x} \equiv 0$
- 2. $\langle \mathbf{x} + \mathbf{y}, \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{z} \rangle + \langle \mathbf{y}, \mathbf{z} \rangle$ for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{C}^n$
- 3. $\langle \alpha \mathbf{x}, \mathbf{y} \rangle = \alpha \langle \mathbf{x}, \mathbf{y} \rangle$ for all $\alpha \in \mathbb{C}, \mathbf{x}, \mathbf{y} \in \mathbb{C}^n$
- 4. $\langle \mathbf{x}, \mathbf{y} \rangle = \overline{\langle \mathbf{y}, \mathbf{x} \rangle}$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{C}^n$

Note: Condition (4) and (3) together imply

$$\langle \mathbf{x}, \alpha \mathbf{y} \rangle = \overline{\alpha} \langle \mathbf{x}, \mathbf{y} \rangle$$

It should be noted that the engineering convention of writing $\mathbf{x}^*\mathbf{y} = \langle \mathbf{x}, \mathbf{y} \rangle$ (as opposed to the mathematically accepted notation $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{y}^*\mathbf{x}$) results in property (3) being re-defined as $\langle \mathbf{x}, \alpha \mathbf{y} \rangle = \alpha \langle \mathbf{x}, \mathbf{y} \rangle$.

Cauchy-Schwartz Inequality:

$$|\langle \mathbf{x}, \mathbf{y} \rangle|^2 \le \langle \mathbf{x}, \mathbf{x} \rangle \langle \mathbf{y}, \mathbf{y} \rangle$$

Proof:

Let
$$\mathbf{v} = a\mathbf{x} - b\mathbf{y}$$
, where $a = \langle \mathbf{y}, \mathbf{y} \rangle$ and $b = \langle \mathbf{x}, \mathbf{y} \rangle$. WLOG assume $\mathbf{y} \neq \mathbf{0}$. Consider

$$0 \le \langle \mathbf{v}, \mathbf{v} \rangle$$

$$= \langle a\mathbf{x}, a\mathbf{x} \rangle + \langle a\mathbf{x}, -b\mathbf{y} \rangle + \langle -b\mathbf{y}, a\mathbf{x} \rangle + \langle -b\mathbf{y}, -b\mathbf{y} \rangle$$

= $|a|^2 \langle \mathbf{x}, \mathbf{x} \rangle - a\overline{b} \langle \mathbf{x}, \mathbf{y} \rangle - \overline{a}b \langle \mathbf{x}, \mathbf{y} \rangle + |b|^2 \langle \mathbf{y}, \mathbf{y} \rangle$

$$\langle \mathbf{y}, \mathbf{y} \rangle^2 \langle \mathbf{x}, \mathbf{x} \rangle - \langle \mathbf{y}, \mathbf{y} \rangle \overline{\langle \mathbf{x}, \mathbf{y} \rangle} \langle \mathbf{x}, \mathbf{y} \rangle - \overline{\langle \mathbf{y}, \mathbf{y} \rangle} \langle \mathbf{x}, \mathbf{y} \rangle \overline{\langle \mathbf{x}, \mathbf{y} \rangle} + |\langle \mathbf{x}, \mathbf{y} \rangle|^{2\langle \mathbf{y}, \mathbf{y} \rangle}$$

$$=\langle \mathbf{y}, \mathbf{y} \rangle^2 \langle \mathbf{x}, \mathbf{x} \rangle - \langle \mathbf{y}, \mathbf{y} \rangle |\langle \mathbf{x}, \mathbf{y} \rangle|^2$$

Add $\langle \mathbf{y}, \mathbf{y} \rangle | \langle \mathbf{x}, \mathbf{y} \rangle |^2$ to both sides and divide by $\langle \mathbf{y}, \mathbf{y} \rangle$.

▶ The l_2 inner-product is defined by

$$\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^* \mathbf{y} = \sum \overline{\mathbf{x}_i} \mathbf{y}_i$$

which induces the l_2 -norm: $||\mathbf{x}||_2 = \sqrt{\mathbf{x}^*\mathbf{x}} = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$

- ▶ If **A** is a Hermitian positive definite matrix, then $\langle \mathbf{x}, \mathbf{y} \rangle_{\mathbf{A}} = \langle \mathbf{x}, \mathbf{A} \mathbf{y} \rangle = \mathbf{x}^* \mathbf{A} \mathbf{y}$ is also an inner product.
- ► Any vector norm induced by an inner product must satisfy the Parallelogram Law:

$$||\mathbf{u} + \mathbf{v}||^2 + ||\mathbf{u} - \mathbf{v}||^2 = 2(||\mathbf{u}||^2 + ||\mathbf{v}||^2)$$

A matrix norm is a function $||.||: \mathbb{C}^{n\times n} \to \mathbb{R}$ which satisfies:

- 1. $||\mathbf{A}|| \ge 0$ for all $\mathbf{A} \in \mathbb{C}^{n \times n}$ and $||\mathbf{A}|| = 0$ if and only if $\mathbf{A} \equiv 0$
- 2. $||\alpha \mathbf{A}|| = |\alpha| \, ||\mathbf{A}||$ for all $\alpha \in \mathbb{C}, \mathbf{A} \in \mathbb{C}^{n \times n}$
- 3. $||\mathbf{A} + \mathbf{B}|| \le ||\mathbf{A}|| + ||\mathbf{B}||$ for all $\mathbf{A}, B \in \mathbb{C}^{n \times n}$ (Triangle Inequality)
- 4. $||\mathbf{A}\mathbf{B}|| \le ||\mathbf{A}|| \, ||\mathbf{B}|| \text{ for all } \mathbf{A}, \mathbf{B} \in \mathbb{C}^{n \times n}$

Common matrix norms:

- $||\mathbf{A}||_1 = \max_j \sum_i |a_{ij}| = \text{maximum absolute column sum}$
- $||\mathbf{A}||_2 = \sigma_1(\mathbf{A}) = \sqrt{\lambda_{max}(\mathbf{A}^*\mathbf{A})}$
- $||\mathbf{A}||_{\infty} = \max_{i} \sum_{j} |a_{ij}| = \text{maximum absolute row sum}$
- Matrix norms induced by vector norms: $||\mathbf{A}||_{\beta} = \max_{||\mathbf{x}||_{\beta}=1} ||\mathbf{A}\mathbf{x}||_{\beta} = \max_{\mathbf{x}\neq 0} \frac{||\mathbf{A}\mathbf{x}||_{\beta}}{||\mathbf{x}||_{\beta}}$
- ⋄ The three norms above are alternate characterizations of the matrix norms induced by the vector norms $||.||_1, ||.||_2$, and $||.||_{\infty}$, respectively.
- $||\mathbf{A}||_* = \sum_i \sigma_i(\mathbf{A}) = \sum_i \sqrt{\lambda_i(\mathbf{A}^*\mathbf{A})}$
- ▶ $||\mathbf{A}||_F = \sqrt{\sum |a_{ij}|^2} = \sqrt{\operatorname{trace}(\mathbf{A}^*\mathbf{A})} = \sqrt{\sum_i \lambda_i(\mathbf{A}^*\mathbf{A})},$ sometimes denoted by $||\mathbf{A}||_{2,vec}$

Statement: For any invertible matrix \mathbf{A} , we have

$$||\mathbf{A}^{-1}|| \ge ||\mathbf{A}||^{-1}$$

Proof:

$$\mathbf{I} = \mathbf{A}\mathbf{A}^{-1}$$

$$\Rightarrow 1 \le ||\mathbf{I}|| = ||\mathbf{A}\mathbf{A}^{-1}|| \le ||\mathbf{A}|| ||\mathbf{A}^{-1}||$$
$$\Rightarrow ||\mathbf{A}||^{-1} = \frac{1}{||\mathbf{A}||} \le ||\mathbf{A}^{-1}||$$

Statement: For any matrix A, we have

$$||\mathbf{A}||_2 \leq ||\mathbf{A}||_F$$

Proof:

$$||\mathbf{A}||_2^2 = \max_i \sigma_i^2(\mathbf{A}) \le \sum_i \sigma_i^2(\mathbf{A}) = \sum_i \lambda_i(\mathbf{A}^*\mathbf{A}) = \text{trace}(\mathbf{A}^*\mathbf{A}) = ||\mathbf{A}||_F^2.$$

- ▶ A matrix **B** is an **isometry** for the norm ||.|| if $||\mathbf{B}\mathbf{x}|| = ||\mathbf{x}||$ for all **x**
- ▶ If **U** is a unitary matrix, then $||\mathbf{U}\mathbf{x}||_2 = ||\mathbf{x}||_2$ for all vectors **x**
 - Proof: $||\mathbf{U}\mathbf{x}||_2^2 = \langle \mathbf{U}\mathbf{x}, \mathbf{U}\mathbf{x} \rangle = \langle \mathbf{x}, \mathbf{x} \rangle = ||\mathbf{x}||_2^2$.
- ▶ If $\mathbf{A} = \mathbf{U}^* \mathbf{B} \mathbf{U}$, then $||\mathbf{A}||_F = ||\mathbf{B}||_F$ $Proof: ||\mathbf{A}||_F^2 = trace(\mathbf{A}^* \mathbf{A}) = trace(\mathbf{U}^* \mathbf{B}^* \mathbf{B} \mathbf{U}) = trace(\mathbf{B}^* \mathbf{B} \mathbf{U} \mathbf{U}^*) = trace(\mathbf{B}^* \mathbf{B}) = ||\mathbf{B}||_F^2.$

- $\rho(\mathbf{A}) = \max_i |\lambda_i(\mathbf{A})|$
- For any matrix **A**, matrix norm ||.||, and eigenvalue $\lambda = \lambda(\mathbf{A})$, we have

$$\lambda \le \rho(\mathbf{A}) \le ||\mathbf{A}||$$

Proof: Let $\lambda \in \sigma(\mathbf{A})$ with corresponding eigenvector \mathbf{x} and let $\mathbf{X} = [\mathbf{x}, \mathbf{x}, \dots, \mathbf{x}]$ (n copies of \mathbf{x}).

Consider

$$\mathbf{A}\mathbf{X} = [\mathbf{A}\mathbf{x}, \mathbf{A}\mathbf{x}, \cdots, \mathbf{A}\mathbf{x}] = [\lambda\mathbf{x}, \lambda\mathbf{x}, \cdots, \lambda\mathbf{x}] = \lambda X.$$

 $\Rightarrow |\lambda| ||\mathbf{X}|| = ||\lambda\mathbf{X}|| = ||\mathbf{A}\mathbf{X}|| \le ||\mathbf{A}|| \, ||\mathbf{X}||.$
Since, \mathbf{x} is an eigenvector, $\mathbf{x} \ne 0$, so $||\mathbf{X}|| \ne 0$.
On dividing by $||\mathbf{X}||$, we obtain $|\lambda| \le ||\mathbf{A}||$. Since λ is arbitrary, we conclude that $|\lambda| \le \rho(\mathbf{A}) \le ||\mathbf{A}||$, as desired.

▶ Let $\mathbf{A} \in \mathbb{C}^{n \times n}$ and let $\varepsilon > 0$ be given. Then there exists a matrix norm ||.|| such that

$$\rho(\mathbf{A}) \le ||\mathbf{A}|| \le \rho(\mathbf{A}) + \varepsilon$$

As a consequence, if $\rho(\mathbf{A}) < 1$, then \exists some matrix norm such that $||\mathbf{A}|| < 1$

- ▶ Let $\mathbf{A} \in \mathbb{C}^{n \times n}$. If $||\mathbf{A}|| < 1$ for some matrix norm, then $\lim_{k \to \infty} \mathbf{A}^k = 0$.
- ▶ $\lim_{k\to\infty} \mathbf{A}^k = 0$ if and only if $\rho(\mathbf{A}) < 1$.

Let $\mathbf{A} \in \mathbb{C}^{m \times n}$. Then, a singular value decomposition (SVD) of \mathbf{A} is given by $\mathbf{A} = \mathbf{U}\Sigma\mathbf{V}^*$, where

- . $\mathbf{U} \in \mathbb{C}^{m \times n}$ is unitary
- . $\Sigma = diag(\sigma_1, \sigma_2, \cdots, \sigma_p) \in \mathbb{R}^{m \times n}$ is diagonal with $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_p \geq 0 [p = \min(m, n)]$ and
- . $\mathbf{V} \in \mathbb{C}^{n \times n}$ is unitary

The values $\sigma_i = \sigma_i(\mathbf{A})$ are called the **singular values** of \mathbf{A} and are uniquely determined as the positive square roots of the eigenvalues of $\mathbf{A}^*\mathbf{A}$.

- ▶ If $rank(\mathbf{A}) = r$, then $\sigma_1 \ge \cdots \ge \sigma_r > 0$ and $\sigma_{r+1} = \sigma_{r+2} = \cdots = \sigma_p = 0$
- ▶ A **reduced SVD** of **A** is given by

$$\mathbf{A} = \hat{\mathbf{U}}\hat{\Sigma}\hat{\mathbf{V}}^*, where$$

- . $\hat{\mathbf{U}} \in \mathbb{C}^{m \times r}$ has orthonormal columns
- . $\hat{\Sigma} = diag(\sigma_1, \dots, \sigma_r) \in \mathbb{R}^{r \times r}$ is diagonal
- . $\hat{\mathbf{V}} \in \mathbb{C}^{n \times r}$ has orthonormal columns
- ▶ In particular, given an SVD $\mathbf{A} = \mathbf{U}\Sigma\mathbf{V}^*$, $\hat{\mathbf{U}}$ and $\hat{\mathbf{V}}$ in the reduced SVD are the first r columns of \mathbf{U} and \mathbf{V} .

• One useful identity is that if $\mathbf{A} = \mathbf{U}\Sigma\mathbf{V}^*$ with $rank(\mathbf{A}) = r$, then $A = \sum_{i=1}^{r} \sigma_i \mathbf{u}_i \mathbf{v}_i^*$, where \mathbf{u}_i and \mathbf{v}_i are the columns of \mathbf{U} and \mathbf{V} (or , $\hat{\mathbf{U}}$ and $\hat{\mathbf{V}}$), respectively

Statement: The first r columns of $\mathbf U$ in the SVD span the same space as the columns of $\mathbf A$.

Proof:

Let $\mathbf{x} \in \mathbb{C}^n$. Then $\mathbf{A}\mathbf{x} = \sum_{i=1}^n a_i x_i$ is in the columns space of \mathbf{A} . However,

$$\mathbf{A}\mathbf{x} = (\sum_{i=1}^{r} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{*}) x = \sum_{i=1}^{r} \beta_{i} \mathbf{u}_{i}, where \, \beta_{i} = \sigma_{i} \mathbf{v}_{i}^{*} \mathbf{x}$$

. $\Rightarrow \mathbf{A}\mathbf{x} = \sum_{i=1}^{r} \beta_i \mathbf{u}_i$ lies in the span of the first r columns of \mathbf{U} .

Statement: A matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$ has 0 as an eigenvalue if and only if 0 is also a singular value of \mathbf{A} .

Proof: (\Rightarrow) Suppose that 0 is an eigenvalue of **A**, that is,

 $\mathbf{A}\mathbf{x} = \mathbf{0}$ for some nonzero \mathbf{x} .

Then $\mathbf{A}^*\mathbf{A}\mathbf{x} = 0$, so 0 is also an eigenvalue of $\mathbf{A}^*\mathbf{A}$.

The $0 = \sqrt{0}$ is a singular value of \mathbf{A} . (\Leftarrow) Suppose 0 is a singular value of \mathbf{A} . Then there exists some nonzero \mathbf{x} such that

 $A^*Ax = 0$. This implies that

 $\mathbf{x}^* \mathbf{A}^* \mathbf{A} \mathbf{x} = 0 = (\mathbf{A} \mathbf{x})^* (\mathbf{A} \mathbf{x}) = ||\mathbf{A} \mathbf{x}||_2^2.$

By the properties of norms, we must have $\mathbf{A}\mathbf{x} = \mathbf{0}$

► The Moore-Penrose pseudoinverse of A is the matrix

$$\mathbf{A}^{\dagger} = \mathbf{V} \Sigma^{\dagger} \mathbf{U}^{*} ("A \, dagger")$$

where Σ^{\dagger} is obtained by replacing the nonzero singular values of **A** (in Σ) with their inverses and then transposing the resulting matrix.

- ► In terms of a reduced SVD, $\mathbf{A}^{\dagger} = \hat{\mathbf{V}}\hat{\Sigma}^{-1}\hat{\mathbf{U}}^*$.
- ► The pseudoinverse is uniquely determined by the following three properties:
 - 1. $\mathbf{A}\mathbf{A}^{\dagger}$ and $\mathbf{A}^{\dagger}\mathbf{A}$ are Hermitian;
 - 2. $\mathbf{A}\mathbf{A}^{\dagger}\mathbf{A} = \mathbf{A};$
 - 3. $\mathbf{A}^{\dagger}\mathbf{A}\mathbf{A}^{\dagger} = \mathbf{A}^{\dagger}$.

- ► Additionally,
 - $(\mathbf{A}^{\dagger})^{\dagger} = \mathbf{A}$
 - $\mathbf{A}^{\dagger} = \mathbf{A}^{-1}$, if **A** is square and nonsingular
 - $\mathbf{A}^{\dagger} = (\mathbf{A}^* \mathbf{A})^{-1} \mathbf{A}^*$, if **A** has full column rank
- ▶ One use of the pseudoinverse is to compute least-squares solutions of $\mathbf{A}\mathbf{x} = \mathbf{b}$
- ▶ A least-squares solution \mathbf{x} satisfies, $||\mathbf{x}||_2$ is minimal among all \mathbf{z} , such that $||\mathbf{A}\mathbf{z} \mathbf{b}||_2$ is also minimal.
- ▶ In this setup, the unique minimizer is computed as $\mathbf{x} = \mathbf{A}^{\dagger}\mathbf{b}$.

For Further Reading I

- Horn and Johnson.
 Matrix Analysis.
 2nd Edition, Cambridge University Press, 2012.
- F.R. Gantmacher.

 The Theory of Matrices.
 Chelsea Pub. Co., 1960.
- K.Hoffman and R.Kunze. Linear Algebra. Pearson Education, 1971.