Chapitre 6 - Loi binomiale

Terminales Spé maths

1 Epreuve de Bernoulli- Schéma de Bernoulli

Définition 1.1.

Soit p un réel appartenant à [0;1] Une épreuve de Bernoulli est une expérience aléatoire ayant deux issues : S(Succès) et $\bar{S}(Echec)$.

On note p(S) = p et $p(\bar{S}) = 1 - p = q$.

Définition 1.2.

On réalise une épreuve de Bernoulli dont le succès S a pour probabilité p. Une variable aléatoire X suit une loi de Bernoulli de paramètre p. Autrement dit, on a P(X=1)=p et P(X=0)=1-p On décrit une loi de probabilité par le tableau suivant :

x_i	1	0
$p(X=x_i)$	p	1-p

Propriété 1.1.

Soit X une variable aléatoire qui suit une loi de Bernoulli de paramètre p. L'espérance mathématique de X est E(X)=p. La variance de X est V(X)=p(1-p)

Définition 1.3.

Soit n un nombre entier naturel non nul. Un schéma de Bernoulli est la répétition de n épreuves de Bernoulli **identiques** et **indépendantes**

2 Loi Binomiale

Définition 2.1.

Soit n un nombre entier naturel non nul et p un réel appartenant à [0;1]. Soit X la variable aléatoire comptant le nombre de succès dans un schéma de Bernoulli à n épreuves; p désignent la probabilité d'un succès à chaque épreuve. Alors X suit la loi binomiale de paramètres n et p. On note $X \sim \mathcal{B}(n,p)$

Propriété 2.1.

On considère $X \backsim \mathcal{B}(n,p)$ Soient n et k deux entiers tels que $0 \leqslant k \leqslant n$.

On appelle **coefficient binomial** le nombre de chemin de l'arbre pondéré conduisant à k succès parmi les n épreuves. On le note : $\binom{n}{k}$ La loi de probabilité de X est :

$$P(X = k) = \binom{n}{k} \times p^k \times (1 - p)^{n - k}$$

3 Espérance et variance de la loi binomiale

On considère la variable aléatoire X qui suit une loi binomiale de paramètres n et p. On admettra que : l'espérance de X est E(x) = np et que la variance de X est V(x) = np(1-p) et son écart-type $\sigma(X) = \sqrt{V(X)}$

4 Introduction à l'échantillonnage

Propriété 4.1.

Soit n un entier naturel non nul, α et p deux nombres réels appartenant à [0;1], X une variable aléatoire qui suit la loi binomiale de paramètres n et p. Il existe un intervalle I non vide tel que $P(X \in I) \ge 1 - \alpha$.