Foundations of Data Science

Master in Data Science 2022 / 2023

TABLE OPERATIONS

Tables

Tables

ID	age	wgt_kg	hgt_cm
1	12.2	42.3	145.1
2	11.0	40.8	143.8
3	15.6	65.3	165.3
4	35.1	84.2	185.8

ID	Address
1	College Park, MD, 20742
2	Washington, DC, 20001
3	Silver Spring, MD 20901

199.72.81.55 - - [01/Jul/1995:00:00:01 -0400] "GET /history/apollo/ HTTP/1.0" 200 6245

unicomp6.unicomp.net - - [01/Jul/1995:00:00:06 -0400] "GET /shuttle/countdown/ HTTP/1.0" 200 3985

199.120.110.21 - - [01/Jul/1995:00:00:09 -0400] "GET /shuttle/missions/sts-73/mission-sts-73.html HTTP/1.0" 200 4085

1. Select/slicing

• Select only some of the rows, or some of the columns, or a

combination

ID	age	wgt_kg	hgt_cm
1	12.2	42.3	145.1
2	11.0	40.8	143.8
3	15.6	65.3	165.3
4	35.1	84.2	185.8

Only columns ID and Age

ID	age
1	12.2
2	11.0
3	15.6
4	35.1

Only rows with wgt > 41

ID	age	wgt_kg	hgt_cm
1	12.2	42.3	145.1
3	15.6	65.3	165.3
4	35.1	84.2	185.8

Both

ID	age
1	12.2
3	15.6
4	35.1

2. Aggregate/Reduce

• Combine values across a column into a single value

					73.9	232.6	640.0
ID	age	wgt_kg	hgt_cm	SUM			
1	12.2	42.3	145.1				
2	11.0	40.8	143.8	MAX	35.1	84.2	185.8
3	15.6	65.3	165.3		-		
4	35.1	84.2	185.8	SUM(wgt kg	۸2 - hat cr	m)	
				JOIVI(Wgt_kg	Z - ligt_ci	11)	
What	about ID/In	dex column?			14	4167.66	
vviiat	_	not meaning		ate across it			

Usually not meaningful to aggregate across it May need to explicitly add an ID column

3. Map

 Apply a function to every row, possibly creating more or fewer columns

ID	Address
1	College Park, MD, 20742
2	Washington, DC, 20001
3	Silver Spring, MD 20901

ID	City	State	Zipcode
1	College Park	MD	20742
2	Washington	DC	20001
3	Silver Spring	MD	20901

Variations that allow one row to generate multiple rows in the output (sometimes called "flatmap")

4. Group By

Group tuples together by column/dimension

ID	Α	В	С
1	foo	3	6.6
2	bar	2	4.7
3	foo	4	3.1
4	foo	3	8.0
5	bar	1	1.2
6	bar	2	2.5
7	foo	4	2.3
8	foo	3	8.0

By 'A'

A = foo

ID	В	C
1	3	6.6
3	4	3.1
4	3	8.0
7	4	2.3
8	3	8.0

A = bar

ID	В	С
2	2	4.7
5	1	1.2
6	2	2.5

4. Group By

Group tuples together by column/dimension

ID	Α	В	С
1	foo	3	6.6
2	bar	2	4.7
3	foo	4	3.1
4	foo	3	8.0
5	bar	1	1.2
6	bar	2	2.5
7	foo	4	2.3
8	foo	3	8.0
8	foo	3	8.0

B = 1

ID	Α	C
5	bar	1.2

B = 2

ID	A	C
2	bar	4.7
6	bar	2.5

B = 3

ID	Α	C
1	foo	6.6
4	foo	8.0
8	foo	8.0

B = 4

ID	Α	С
3	foo	3.1
7	foo	2.3

4. Group By

A = bar, B = 1

ID	С
5	1.2

• Group tuples together by column/dimension

ID	Α	В	С
1	foo	3	6.6
2	bar	2	4.7
3	foo	4	3.1
4	foo	3	8.0
5	bar	1	1.2
6	bar	2	2.5
7	foo	4	2.3
8	foo	3	8.0

A = bar, B = 2

ID	C
2	4.7
6	2.5

A = foo, B = 3

By 'A', 'B'

ID	С
1	6.6
4	8.0
8	8.0

A = foo, B = 4

ID	С
3	3.1
7	2.3

5. Group By Aggregate

• Compute one aggregate per group

ID	Α	В	С
1	foo	3	6.6
2	bar	2	4.7
3	foo	4	3.1
4	foo	3	8.0
5	bar	1	1.2
6	bar	2	2.5
7	foo	4	2.3
8	foo	3	8.0

Group by 'B' Sum on C

5. Group By Aggregate

B = 1

Sum (C)

1.2

• Final result usually seen as a table

ID	Α	В	С
1	foo	3	6.6
2	bar	2	4.7
3	foo	4	3.1
4	foo	3	8.0
5	bar	1	1.2
6	bar	2	2.5
7	foo	4	2.3
8	foo	3	8.0

B = 2

Sum (C)

7.2

B = 3

Group by 'B'

Sum on C

Sum (C)

22.6

В	SUM(C)
1	1.2
2	7.2
3	22.6
4	5.4

$$B = 4$$

Sum (C)

5.4

6. Union/Intersection/Difference

 Set operations – only if the two tables have identical attributes/columns

ID	Α	В	C
1	foo	3	6.6
2	bar	2	4.7
3	foo	4	3.1
4	foo	3	8.0

ID	Α	В	С	
5	bar	1	1.2	
6	bar	2	2.5	-
7	foo	4	2.3	
8	foo	3	8.0	

ID	A	В	С
1	foo	3	6.6
2	bar	2	4.7
3	foo	4	3.1
4	foo	3	8.0
5	bar	1	1.2
6	bar	2	2.5
7	foo	4	2.3
8	foo	3	8.0

7. Merge or Join

Combine rows/tuples across two tables if they have the same key

ID	Α	В		ID	С
1	foo	3		1	1.2
2	bar	2		2	2.5
3	foo	4		3	2.3
4	foo	3	_	5	8.0

What about IDs not present in both tables?

Often need to keep them around

Can "pad" with NaN

7. Merge or Join

- Combine rows/tuples across two tables if they have the same key
- Outer joins can be used to "pad" IDs that don't appear in both tables
- Three variants: LEFT, RIGHT, FULL
- SQL Terminology -- Pandas has these operations as well

ID	Α	В		ID	С
1	foo	3		1	1.2
2	bar	2	>	2	2.5
3	foo	4	\mathbf{M}	3	2.3
4	foo	3		5	8.0
<u> </u>	100				0.0

Pandas

Pandas: Series

- Subclass of numpy.ndarray
- Data: any type
- Index labels need not be ordered
- Duplicates possible but result in reduced functionality

Pandas: DataFrame

- Each column can have a different type
- Row and Column index
- Mutable size: insert and delete columns

Index

```
s = pd.Series(np.random.random(4))
s

v  0.3s

0  0.806355
1  0.285593
2  0.154172
3  0.480174
dtype: float64
```

```
s.index

✓ 0.4s
```

RangeIndex(start=0, stop=4, step=1)

	0	1	2	3
0	21.0	0.613801	0.176179	0.460320
1	22.0	0.658697	0.257065	0.868803
2	23.0	0.495096	0.629086	0.484089
3	24.0	0.360152	0.564157	0.911771
4	25.0	0.612299	0.387282	0.058688
5	26.0	0.629878	0.224060	0.899951

```
df.index
✓ 0.9s
```

RangeIndex(start=0, stop=6, step=1)

Index

```
weekdays = ['monday', 'tuesday', 'wednesday', 'thursday', 'friday', 'saturday', 'sunday']
   s2 = pd.Series(np.random.random(7), index=weekdays)
   s2

√ 0.6s

monday
            0.408381
            0.062953
tuesday
wednesday
            0.931653
thursday
            0.222275
friday
            0.187165
saturday
            0.701107
sunday
            0.328268
dtype: float64
   s2.index

√ 0.4s

Index(['monday', 'tuesday', 'wednesday', 'thursday', 'friday', 'saturday',
       'sunday'],
      dtype='object')
```

Index

```
df = pd.DataFrame(dummy_data[:, 1:], index = dummy_data[:, 0], columns=['A', 'B', 'C'])
df

$\square 0.6s$
```

	Α	В	С
21.0	0.613801	0.176179	0.460320
22.0	0.658697	0.257065	0.868803
23.0	0.495096	0.629086	0.484089
24.0	0.360152	0.564157	0.911771
25.0	0.612299	0.387282	0.058688
26.0	0.629878	0.224060	0.899951

Reindex

```
df.reindex(np.arange(23,30))
```

С	В	А	
0.962559	0.074822	0.480339	23
0.022252	0.802457	0.134096	24
0.947367	0.869059	0.396679	25
0.016198	0.661447	0.241331	26
NaN	NaN	NaN	27
NaN	NaN	NaN	28
NaN	NaN	NaN	29

```
df.reindex(np.arange(23,30), method='ffill')

0.5s
```

С	В	Α	
0.962559	0.074822	0.480339	23
0.022252	0.802457	0.134096	24
0.947367	0.869059	0.396679	25
0.016198	0.661447	0.241331	26
0.016198	0.661447	0.241331	27
0.016198	0.661447	0.241331	28
0.016198	0.661447	0.241331	29

Indexing on columns

	В	С
0.029	29455	0.785111
0.043	43754 (0.661880
0.074	74822 0	.962559
0.80	02457 (0.022252
0.869	69059 (0.947367
0.66	61447	0.016198

Boolean indexing

	Α	В	С
21.0	0.511241	0.029455	0.785111
22.0	0.370496	0.043754	0.661880
23.0	0.480339	0.074822	0.962559
25.0	0.396679	0.869059	0.947367

Selection: loc / iloc

```
df2 = pd.DataFrame(s2)
df2

<pr
```

	Rain probability
monday	0.057201
tuesday	0.938698
wednesday	0.986811
thursday	0.663835
friday	0.081591
saturday	0.496326
sunday	0.273386

df.loc selects by label

```
df2.loc['friday']

v 0.3s

Rain probability 0.081591

Name: friday, dtype: float64
```

We can use a list or range

```
df2.loc['friday':'sunday']

# note the use of a range of labels, which results in the same as
# df2.loc[['friday', 'saturday', 'sunday']]

$\square$ 0.5s
```

	Rain probability
friday	0.081591
saturday	0.496326
sunday	0.273386

Selection: loc / iloc

```
df2 = pd.DataFrame(s2)
df2
```

	Rain probability
monday	0.057201
tuesday	0.938698
wednesday	0.986811
thursday	0.663835
friday	0.081591
saturday	0.496326
sunday	0.273386

df.iloc selects by integer position

	Rain probability
friday	0.081591
saturday	0.496326
sunday	0.273386

```
df2.iloc[:3, 0]

✓ 0.6s

monday 0.057201

tuesday 0.938698

wednesday 0.986811

Name: Rain probability, dtype: float64
```

Selection: loc / iloc

```
df2 = pd.DataFrame(s2)
df2

<pre
```

	Rain probability
monday	0.057201
tuesday	0.938698
wednesday	0.986811
thursday	0.663835
friday	0.081591
saturday	0.496326
sunday	0.273386

We can loc/iloc on rows, columns, or both

```
df.loc[:, ['A', 'C']]
```

	A	С
21.0	0.511241	0.785111
22.0	0.370496	0.661880
23.0	0.480339	0.962559
24.0	0.134096	0.022252
25.0	0.396679	0.947367
26.0	0.241331	0.016198

```
df.loc[25:, ['A', 'C']]
```

		(С	
47	73	36	7	
16	61	19	8	

Arithmetic operations

Arithmetic operations on Series and DataFrames are index aligned

```
df1 = pd.DataFrame({'A': np.arange(5), 'B': np.arange(1, 6),
       'C': np.arange(2, 7)}, index=list('abcde'))
   df1

√ 0.4s

   A B C
b 1 2 3
c 2 3 4
e 4 5 6
   df2 = pd.DataFrame({'B': np.arange(10,14), 'C': np.arange(11, 15),
       'E': np.arange(12, 16)}, index=list('bcdf'))
   df2

√ 0.4s

   BCE
b 10 11 12
c 11 12 13
d 12 13 14
f 13 14 15
```

```
df1 + df2

√ 0.5s

             С
  NaN 12.0 14.0 NaN
  NaN NaN NaN NaN
f NaN NaN NaN NaN
   We can use arithmetic method, which allow fill values
   df1.add(df2, fill_value=0.0)

√ 0.6s

   1.0 12.0 14.0 12.0
       14.0 16.0 13.0
       16.0 18.0 14.0
f NaN 13.0 14.0 15.0
```

DATA CLEANING

Missing values

```
>>> df.isna()
age born name toy
0 False True False True
1 False False False
2 True False False
```

```
>>> df.notna()
age born name toy
0 True False True False
1 True True True
2 False True True
```

Missing values can be informative!

(in some cases)

Remove missing values

Joker

2 NaN 1940-04-25

```
>>> df = pd.DataFrame(dict(age=[5, 6, np.NaN],
                      born=[pd.NaT, pd.Timestamp('1939-05-27'),
                            pd.Timestamp('1940-04-25')],
...
                      name=['Alfred', 'Batman', ''],
. . .
                      toy=[None, 'Batmobile', 'Joker']))
...
>>> df
                                toy
   age
             born name
             NaT Alfred
                               None
1 6.0 1939-05-27 Batman Batmobile
```

Drop the rows where at least one element is missing.

```
>>> df.dropna()
    name
                toy
                          born
1 Batman Batmobile 1940-04-25
```

Drop the columns where at least one element is missing.

```
>>> df.dropna(axis='columns')
       name
     Alfred
     Batman
2 Catwoman
```

Drop the rows where all elements are missing.

```
>>> df.dropna(how='all')
      name
                  toy
                            born
    Alfred
                  NaN
                             NaT
    Batman Batmobile 1940-04-25
2 Catwoman Bullwhip
                             NaT
```

Remove missing values

Joker

2 NaN 1940-04-25

```
>>> df = pd.DataFrame(dict(age=[5, 6, np.NaN],
                      born=[pd.NaT, pd.Timestamp('1939-05-27'),
                             pd.Timestamp('1940-04-25')],
...
                      name=['Alfred', 'Batman', ''],
. . .
                      toy=[None, 'Batmobile', 'Joker']))
...
>>> df
                                toy
   age
                    name
0 5.0
             NaT Alfred
                                None
1 6.0 1939-05-27 Batman Batmobile
```

Keep only the rows with at least 2 non-NA values.

```
>>> df.dropna(thresh=2)
name toy born
1 Batman Batmobile 1940-04-25
2 Catwoman Bullwhip NaT
```

Define in which columns to look for missing values.

```
>>> df.dropna(subset=['name', 'toy'])
name toy born

1 Batman Batmobile 1940-04-25
2 Catwoman Bullwhip NaT
```

Fill missing data

Replace all NaN elements with 0s.

```
>>> df.fillna(0)
A B C D
0 0.0 2.0 0.0 0
1 3.0 4.0 0.0 1
2 0.0 0.0 0.0 5
3 0.0 3.0 0.0 4
```

Check also:

```
df.fillna(method='ffill', limit=2)
df.fillna(df.mean())
```

We can also propagate non-null values forward or backward.

```
>>> df.fillna(method="ffill")
A B C D
0 NaN 2.0 NaN 0
1 3.0 4.0 NaN 1
2 3.0 4.0 NaN 5
3 3.0 3.0 NaN 4
```

Replace all NaN elements in column 'A', 'B', 'C', and 'D', with 0, 1, 2, and 3 respectively.

Remove duplicates

```
>>> df = pd.DataFrame({
       'brand': ['Yum Yum', 'Yum Yum', 'Indomie', 'Indomie', 'Indomie'],
       'style': ['cup', 'cup', 'cup', 'pack', 'pack'],
     'rating': [4, 4, 3.5, 15, 5]
>>> df
   brand style rating
0 Yum Yum
            cup
1 Yum Yum
                    4.0
            cup
2 Indomie
            cup
                   3.5
3 Indomie pack
                  15.0
4 Indomie pack
                   5.0
```

By default, it removes duplicate rows based on all columns.

```
>>> df.drop_duplicates()
brand style rating
0 Yum Yum cup 4.0
2 Indomie cup 3.5
3 Indomie pack 15.0
4 Indomie pack 5.0
```

To remove duplicates on specific column(s), use subset.

```
>>> df.drop_duplicates(subset=['brand'])
    brand style rating
0 Yum Yum cup 4.0
2 Indomie cup 3.5
```

To remove duplicates and keep last occurrences, use keep.

```
>>> df.drop_duplicates(subset=['brand', 'style'], keep='last')
    brand style rating
1 Yum Yum cup 4.0
2 Indomie cup 3.5
4 Indomie pack 5.0
```

Replace duplicates

```
>>> df = pd.DataFrame({
       'brand': ['Yum Yum', 'Yum Yum', 'Indomie', 'Indomie'],
       'style': ['cup', 'cup', 'cup', 'pack', 'pack'],
       'rating': [4, 4, 3.5, 15, 5]
... })
>>> df
   brand style rating
                                                                 df.groupby(['brand', 'style']).mean()
0 Yum Yum
            cup
                   4.0
                   4.0
            cup
                                                              ✓ 0.5s
2 Indomie
                   3.5
3 Indomie pack
                  15.0
4 Indomie pack
                   5.0
                                                                             rating
                                                               brand style
                                                              Indomie
                                                                        cup
                                                                                3.5
                                                                               10.0
                                                                       pack
                                                             Yum Yum
                                                                        cup
                                                                                4.0
```

	brand	style	rating
0	Indomie	cup	3.5
1	Indomie	pack	10.0
2	Yum Yum	cup	4.0

Strings and regular expressions

```
data = pd.Series({'Dave': 'dave@google.com', 'Steve': 'steve@gmail.com',
                        'Rob': 'rob@gmail.com', 'Wes': np.nan})
   pattern = r'([A-Z0-9._%+-]+)@([A-Z0-9.-]+)\.([A-Z]{2,4})'
   data.str.findall(pattern, flags=re.IGNORECASE)
 ✓ 0.5s
         [(dave, google, com)]
Dave
         [(steve, gmail, com)]
Steve
          [(rob, gmail, com)]
Rob
Wes
                           NaN
dtype: object
   data.str.extract(pattern, flags=re.IGNORECASE)
 ✓ 0.8s
          0
                 1
                       2
       dave
             google com
Dave
Steve
      steve
              gmail com
              gmail com
 Rob
        rob
       NaN
               NaN NaN
 Wes
```

DATA WRANGLING

Merge

Merge

```
>>> df1 = pd.DataFrame({'left': ['foo', 'bar']})
>>> df2 = pd.DataFrame({'right': [7, 8]})
>>> df1
    left
0 foo
1 bar
>>> df2
    right
0 7
1 8
```

```
>>> df1.merge(df2, how='cross')
    left right
0 foo 7
1 foo 8
2 bar 7
3 bar 8
```

Merge

```
>>> df1
    lkey value
0 foo 1
1 bar 2
2 baz 3
3 foo 5
>>> df2
    rkey value
0 foo 5
1 bar 6
2 baz 7
3 foo 8
```

Merge df1 and df2 on the lkey and rkey columns. The value columns have the default suffixes, _x and _y, appended.

Merge DataFrames df1 and df2 with specified left and right suffixes appended to any overlapping columns.

Concat

```
df1 = pd.DataFrame([['a', 1], ['b', 2]], columns=['letter', 'number'])
df1

$\square$ 0.8s
```

	letter	number	
0	а	1	
1	b	2	

animal	number	letter		
cat	3	С	0	
dog	4	d	1	

animal	number	letter	
NaN	1	а	0
NaN	2	b	1
cat	3	С	0
dog	4	d	1

Concat

Combine DataFrame objects with overlapping columns and return only those that are shared by passing inner to the join keyword argument.

Combine DataFrame objects horizontally along the x axis by passing in axis=1.