TATA69 Föreläsningar

Adnan Avdagic Linköpings Universitet forelasningar@avdagic.net

 $22~\mathrm{maj}~2017$

Innehåll

2	För	eläsnin	ng II	1
	2.1		<u> </u>	1
		2.1.1		1
		2.1.2		1
		2.1.3		2
		2.1.4	Exempel 3	3
	2.2	Oändl	ighet i envarre och flervarre	4
		2.2.1	Definition	4
		2.2.2		5
	2.3	3-varia	abler mot origo	5
		2.3.1	Exempel 5	5
	2.4	Rymd		6
		2.4.1		7
3	För	eläsnin	ıø III	8
•	3.1		S .	8
	0.1	3.1.1		8
		3.1.2	*	8
		3.1.3		9
		3.1.4	•	9
		3.1.5		9
		3.1.6	Exempel 3	
		3.1.7	Exempel 4	
	3.2		entierbarhet	
		3.2.1	Definition	
		3.2.2	Sats	
		3.2.3	Linjär avbildning	
		3.2.4	Exempel 5	
4	För	eläsnin	ıg IV	3
•	4.1		regeln	
	7.1	4.1.1	Exempel 1	
		4.1.2	Linjärt variabelbyte	
		4.1.2	Byte till polära koordinater	
		4.1.4	Exempel 2	
5	Da.	eläsnin	$_{ m 1g}$ V	7
ə	5.1			
	5.1	5.1.1	enter	•
		5.1.1	Hur tolkar man gradienter i 2D & 3D?	
	5.2		tor i 3D	
	0.2	5.2.1	Exempel 1	
		5.2.1 $5.2.2$	Exempel 2	
		5.2.2 $5.2.3$	Definition	
		5.2.3 $5.2.4$	Sats	
		5.2.4 $5.2.5$	Exempel 3	
		5.2.6	Exempel 4	
		5.2.0 $5.2.7$	Allmänt	
		0.4.1	111111111111	J

6	För	eläsning VI	21
	6.1	Lokala max och min	21
		6.1.1 Definition	21
		6.1.2 Hur hittas lokala max & min?	21
		6.1.3 Sats	21
	6.2	Avgör om max, min eller sadelpunkt (\bar{a} stationär)?	22
		_	23
		6.2.2 Två metoder för att avgöra Q:s karaktär:	24
		6.2.3 Exempel	25
7	För	eläsning VII	26
·	7.1	,	26
			26
			26
	7.2		27
			27
			27
			27
	7.3		28
	7.4		28
			30
			30
			30
8	För	eläsning VIII	31
	8.1		31
		•	31
		1	31
			32
	8.2	±	32
			33
	8.3		33
			34
	8.4		34
			34
9	För	eläsning IX	35
Ü	9.1		35
	0.1		35
			36
	9.2		37
	0.2		37
		<u> </u>	38
			38
		<u> </u>	39
		*	39
	9.3	•	40
	0.0		40
			~

10 Föreläsning X	41
10.1 Variabelbyte i dubbelintegraler - Sats	41
10.1.1 Bevisidé	41
10.1.2 Exempel	41
10.1.3 På en elipsskiva	42
10.2 Trippelintegraler	43
10.2.1 Exempel	43
10.3 Integrationsordningar	44
11 Föreläsning XI	47
11.1 Cylinderkoordinater ρ , φ och z	47
11.1.1 Exempel	47
11.1.2 Exempel	49
11.2 Tyngdpunkt/masscentrum	50
11.2.1 Exempel	50
11.2.2 Exempel	51
12 Föreläsning XII	52
12.1 Generaliserade multipelintegraler	52
12.1.1 Exempel	52
12.1.2 Exempel	52
12.1.3 Definition	52
12.1.4 I exempel (12.1) ovan	53
13 Appendix	

2 Föreläsning II

2.1 Gränsvärden för flervarre

2.1.1 Exempel 1

$$f(x,y) = \frac{\sin(x^4 + y^2)}{x^4 + y^2}, \text{ ej definierad i origo}$$
 (2.1)

Vad händer då (x,y) närmar sig (0,0)?

$$\lim_{x,y\to 0,0} \frac{\sin(x^4+y^2)}{x^4+y^2}$$

//sätt
$$t=x^4+y^2,\,t\to 0$$
 då $(x,y)\to (0,0)//$ då fås $\lim_{t\to 0}\frac{t}{t}=1,$ (standard gränsvärde)

2.1.2 Exempel 2

$$f(x,y) = \frac{x^3 + xy}{x^2 + y^2}$$
, ej definierad i origo (2.2)

Gå mot origo via x-axeln (där y = 0)

$$f(x,0) = \frac{x^3 + 0 * x}{x^2 + 0^2} = \frac{x^3}{x^2} = x \rightarrow 0 \text{ då } x \rightarrow 0$$

Gå mot origo via y-axeln (där x = 0)

$$f(0,y) = \frac{0^3 + 0 * y}{0^2 + y^2} = \frac{0}{y^2} = 0 \to 0 \text{ då } y \to 0$$

Gå mot origo längs y = x

$$f(x,x) = \frac{x^3 + x * x}{x^2 + x^2} = \frac{x+1}{2} \rightarrow \frac{1}{2} \text{ då } x \rightarrow 0$$

Olika värden från olika riktningar

Innanför varje liten cirkel kring origo har f
 värden nära 0 och nära $\frac{1}{2}$. Vi säger därför att gränsvärde ej existerar. Se 1 on the following page

Figur 1: Graf i 2D

2.1.3 Definition

Funktionen \bar{f} av typ $\mathbb{R}^n \to \mathbb{R}^m$ har gränsvärdet $\bar{b} \in \mathbb{R}^m$ då $\bar{x} \to \bar{a} \in \mathbb{R}^n$ om $\forall \epsilon > 0 \quad \exists \delta > 0$ så att $|\bar{f}(x) - \bar{b}| < \epsilon$ om $0 < |\bar{x} - \bar{a}| < \delta$ och $\bar{x} \in D_f$. Skrivs

$$\lim_{\bar{x}\to\bar{a}}\bar{f}(\bar{x})=\bar{b}$$

2.1.4 Exempel 3

$$f(x,y) = \frac{x^3}{x^2 + y^2}$$
, ej definierad i origo (2.3)

$$0 \le |f(x,y)| = \frac{|x^3|}{x^2 + y^2} = |x| \frac{x^2}{x^2 + y^2} \le |x| \to 0 \text{ då } (x,y) \to (0,0)$$
$$\Rightarrow f(x,y) \to (0,0) \text{ då } (x,y) \to (0,0)$$

Vanliga räkneregler för gränsvärden (summa, produkt, instängning) gäller också för flervarregränsvärden Undersökning/beräkning av gränsvärden

- \bullet Om test av värden längs olika riktningar eller olika kurvor ger olika resultat så saknas gränsvärde, se (2.2)
- \bullet Sådana test kan <u>INTE</u> visa att gränsvärde existerar, andra metoder behövs, som (2.1) eller (2.3), eller polära koordinater

Figur 2: Graf för polära koordinater

$$\left. \begin{array}{l} x = \rho \cos(\varphi) \\ y = \rho \sin(\varphi) \\ \rho = \sqrt{x^2 + y^2}, \ \rho > 0 \\ \tan \varphi = \frac{y}{x}, \ 0 \leq \varphi \leq 2\pi \end{array} \right.$$

Viktigt för gränsvärden: $(x,y) \to (0,0) \iff \rho \to 0$

Exempel (2.2) med polära koordinater

$$\lim_{(x,y)\to 0} \frac{x^3 + xy}{x^2 + y^2} \stackrel{\text{pol.koord}}{=} \lim_{\rho \to 0} \frac{\rho^3 \cos^3(\varphi) + \rho^2 \cos(\varphi) \sin(\varphi)}{\rho^2} =$$

$$= \lim_{\rho \to 0} (\rho \cos^3(\varphi) + \underbrace{\cos(\varphi) \sin(\varphi)}_{\text{vinkelberoende}}) \Rightarrow \text{gränsvärde existerar ej}$$

Exempel (2.3) med polära koordinater

$$\lim_{(x,y)\to(0,0)}\frac{x^3}{x^2+y^2}\stackrel{\mathrm{pol.koord}}{=}\lim_{\rho\to 0}\frac{\rho^3\cos^3(\varphi)}{\rho^2}=\lim_{\rho\to 0}\overbrace{\rho}^{\to 0}\underbrace{\cos^3(\varphi)}_{\text{begränsad}}=0$$

2.2 Oändlighet i envarre och flervarre

Envarre

x kan gå mot $\pm \infty$

Flervarre

bara en ∞ nämligen $|\bar{x}| \to \infty$

2D polära

$$|\bar{x}| \to \infty \iff \rho \to \infty$$

2.2.1 Definition

$$\bar{f}(\bar{x}) \to \bar{b} \text{ då } |\bar{x}| \to \infty \text{ om } \forall \epsilon > 0 \quad \exists \omega \text{ så att } |\bar{f}(\bar{x}) - \bar{b}| < \epsilon \text{ om } |\bar{x}| > \omega$$

Föreläsning 2 Adnan Avdagic

2.2.2 Exempel 4

$$\lim_{(x,y)\to\infty} \frac{y}{x^2 + y^2} \stackrel{\text{pol.koord}}{=} \lim_{\rho\to\infty} \frac{\rho \sin(\varphi)}{\rho^2} = \lim_{\rho\to\infty} \frac{1}{\rho} \underbrace{\sin(\varphi)}_{\text{Begränsad}} = 0 \qquad (2.4)$$

 $\textbf{OBS!}\;\;$ 2-variabelfunktioner som uttryckta i polärakoordinater inte beror på φ har rotationssymmetriska grafer kring z-axeln

Figur 3: Exempel på rotationssymmetri

$$z = \sqrt{x^2 + y^2} = \rho$$

2.3 3-variabler mot origo

2.3.1 Exempel 5

$$\lim_{(x,y,z)\to(0,0,0)} \frac{xyz}{x^2 + y^2 + 2z^2} = ???$$

$$0 \le \left| \frac{xyz}{x^2 + y^2 + 2z^2} \right| = \frac{|x||y||z|}{x^2 + y^2 + 2z^2} \le \frac{|x||y||z|}{x^2 + y^2 + z^2} \le \frac{|x| \le \sqrt{x^2 + y^2 + z^2}}{|y| \le \sqrt{x^2 + y^2 + z^2}}$$

$$|y| \le \sqrt{x^2 + y^2 + z^2}$$

$$|z| \le \sqrt{x^2 + y^2 + z^2}$$

$$\leq \frac{\sqrt{x^2 + y^2 + z^2}}{x^2 + y^2 + z^2} = \sqrt{x^2 + y^2 + z^2} \to 0 \text{ då } (x, y, z) \to (0, 0, 0)$$

$$\Rightarrow \lim_{(x, y, z) \to (0, 0, 0)} \frac{xyz}{x^2 + y^2 + 2z^2} = 0$$

2.4 Rymdpolära koordinater

Figur 4: Rymdpolära koordinater

$$\begin{cases} x = r \sin(\theta) \cos(\varphi) \\ y = r \sin(\theta) \sin(\varphi) \\ z = r \cos(\theta) \end{cases}$$
$$r = \sqrt{x^2 + y^2 + z^2}, r > 0$$
$$0 \le \theta \le \pi$$
$$r \sin(\theta) = \rho$$

För gränsvärden där $(x,y,z) \rightarrow (0,0,0) \iff r \rightarrow 0$

Föreläsning 2 Adnan Avdagic

Exempel (2.5) med rymdpolära koordinater

$$\lim_{(x,y,z)\to(0,0,0)} \frac{xyz}{x^2+y^2+2z^2} \xrightarrow{\text{rymdpol.koord}} = \lim_{r\to 0} \frac{r^3\sin^2(\theta)\cos(\theta)\sin(\varphi)\cos(\varphi)}{r^2+r^2\cos^2(\theta)} = \lim_{r\to 0} \frac{\sin^2(\theta)\cos(\theta)\sin(\varphi)\cos(\varphi)}{1+\cos^2(\theta)}$$

$$= \lim_{r\to 0} \frac{r}{r} \underbrace{\sin^2(\theta)\cos(\theta)\sin(\varphi)\cos(\varphi)}_{\text{begränsad, nämnare}} \ge 1 \text{ ingen risk för } /0$$

2.4.1 Cylindriska koordinater

Polära koordinater i (x,y) och vanliga i z

$$\begin{cases} x = r\cos(\varphi) \\ y = r\sin(\varphi) \\ z = z \end{cases}$$

3 Föreläsning III

3.1 Partiella derivator

3.1.1 Exempel 1

$$f(x,y) = x^2y + x\sin(y) \tag{3.1}$$

Hur förändras f om bara x varieras? Vi vill derivera f m.a.p x och hålla y konstant. Skrivs:

$$\underbrace{f_x'(x,y) = \frac{\partial f}{\partial x}(x,y)}_{\text{båda skrivsätten används}} = 2xy + \sin(y)$$

Motsvarande då bara y varieras

$$f'_y(x,y) = \frac{\partial f}{\partial y}(x,y) = x^2 + x\cos(y)$$

3.1.2 Definition

Partiella derivatan av f(x,y) m.a.p x i punkten (x,y) är

$$f_x'(x,y) = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h}$$

Om gränsvärde existerar!

Motsvarande för y:

$$f'_y(x,y) = \lim_{k \to 0} \frac{f(x,y+k) - f(x,y)}{k}$$

Figur 5: Grafisk visning av hur f ändras i x- & y-riktningen

3.1.3 Exempel 2

3 variabler

$$f(x, y, z) = x^{3}y^{2}z + z^{2}e^{y} \Rightarrow$$

$$\Rightarrow \begin{cases} f'_{x}(x, y, z) = 3x^{2}y^{2}z \\ f'_{y}(x, y, z) = 2x^{3}yz + z^{2}e^{y} \\ f'_{z}(x, y, z) = x^{3}y^{2} + 2ze^{y} \end{cases}$$

3.1.4 And raderivator

$$f_{xx}'' = \frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right)$$
$$f_{xy}'' = \frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right)$$

Exempel (3.1) andra derivator

$$f''_{xx} = 2y$$

$$f''_{yy} = 2x + \cos(y)$$

$$f''_{yx} = 2x + \cos(y)$$
 lika, ingen slump
$$f''_{yy} = -x\sin(y)$$

Skriv $f \in C^r$ om f:s alla r:te-derivator är kontinuerlig.

3.1.5 Sats

$$f \in C^2 \Rightarrow f_{xy}^{"} = f_{yx}^{"}$$

motsvarande för ≥ 3 varianter

f(x,y) har 4 andraderivator varav 3 olika f(x,y,z) har 9 andraderivator varav 6 olika

3.1.6 Exempel 3

Bestäm alla f(x, y, z) som uppfyller

$$f'_{x} = p(x, y, z) = 3x^{2}yz$$
 (1)

$$f'_{y} = q(x, y, z) = x^{3}z + 2ye^{z}$$
 (2)

$$f'_{z} = r(x, y, z) = x^{3}y + y^{2}e^{z}$$
 (3)

Systematisk lösning

$$(1) \Rightarrow f(x,y,z) = x^3yz + \underbrace{g(y,z)}_{\text{2-variabel}f}$$

$$\underbrace{\text{Derivera detta m.a.p } y}_{\text{2-variabel}f}$$

$$\Rightarrow x^3z + g'_y(y,z) = x^3z + 2ye^z \Rightarrow$$

$$\Rightarrow g'_y(y,z) = 2ye^z \Rightarrow$$

$$\Rightarrow g(y,z) = y^2e^z + \underbrace{h(z)}_{\text{envarre } f}$$

$$\Rightarrow f(x,y,z) = x^3yz + y^2e^z + h(z)$$

$$\underbrace{\text{Derivera detta m.a.p } z}_{\text{position}}$$

$$\Rightarrow x^3y + y^2e^z + h'(z) = x^3y + y^2e^z \Rightarrow$$

$$\Rightarrow h'(z) = 0 \Rightarrow h(z) = C \Rightarrow$$

 \Rightarrow Svar: $f(x,y,z)=x^3yz+y^2e^z+C$,
C är en godtycklig konstant Man kan visa att systemet (1) - (3) är lösbart

$$\iff p'_y = q'_x$$

$$p'_z = r'_x$$

$$q'_z = r'_y$$

3.1.7 Exempel 4

$$f'_x = xy$$

$$f'_y = x^2$$
 olösbart ty
$$f''_{xy} = x \neq f''_{yx} = 2x$$

3.2 Differentierbarhet

Envarre

Om
$$f_a' = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$
 \exists (dvs f deriverbar i a) så finns talet $f_a' = A$ sådant att $\frac{f(a+h) - f(a)}{h} - A = \frac{1}{h}(f(a+h) - f(a) - Ah) = \rho(h) \to 0$

Vi vet att $f \in C^1 \Rightarrow f$ deriverbar $\Rightarrow f$ kontinuerlig

Flervarre

3.2.1 Definition

f(x,y) är differentierbar i (a,b) om \exists tal A,B så att

$$\frac{1}{\sqrt{h^2 + k^2}} (f(a+h, b+k) - f(a, b) - Ah - Bk) = \rho(h, k) \to 0 \text{ då } (h, k) \to (0, 0)$$

så deriverbar = differentierbar för envarre För ≥ 2 variabler gäller

3.2.2 Sats

$$f \in C^1 \overset{(1)}{\Rightarrow} f \text{ differentierbar} \left\{ \begin{array}{l} \overset{(2)}{\Rightarrow} f \text{ partiellt deriverbar} \overset{(4)}{\Rightarrow} f \text{ kontinuerlig} \\ \overset{(3)}{\Rightarrow} f \text{ kontinuerlig} \overset{(5)}{\Rightarrow} f \text{ partiellt deriverbar} \end{array} \right.$$

Förklaring av pilar

 $1. \, s.56-57 \, i \, boken$

$$2. \ f_x'(a,b) = \lim_{h \to 0} \frac{f(a+h,b) - f(a,b)}{h} \stackrel{f \text{ diff.bar med } k=0}{=} \\ \lim_{h \to 0} \frac{Ah + B * 0 + \sqrt{h^2 + 0^2} \, \rho(h,0)}{h} = \lim_{h \to 0} A + \underbrace{\frac{\sqrt{h^2}}{h}}_{\pm \text{ 1 begränsad}} \underbrace{\frac{\rho(h,0)}{h}}_{\to 0} = A \quad \exists$$

3.
$$f(a+h,b+k) = f(a,b) + \underbrace{Ah}_{\to 0} + \underbrace{Bk}_{\to 0} + \underbrace{\sqrt{h^2 + k^2}}_{\to 0} \underbrace{\rho(h,k)}_{\to 0} \to f(a,b)$$
 då $(h,k) \to (0,0) \Rightarrow f$ kontinuerlig

- 4. Motexempel finns i boken s.51
- 5. Motexempel f(x,y) = |x| i (0,0), kontinuerlig men $f'_x(x,y)$

3.2.3 Linjär avbildning

Den linjära avbildningen $df_{(a,b)}$ av typ $\mathbb{R}^2 \to \mathbb{R}$, som definieras av $df_{(a,b)}(h,k) = Ah + Bk = f_x'(a,b)h + f_y'(a,b)k$, kallas <u>differentialen</u> av f i (a,b) ofta skrivs variablerna $h = \mathrm{d}x$ & $k = \mathrm{d}y$ så $df_{(a,b)}(\mathrm{d}x,\mathrm{d}y) = f_x'(a,b)\,\mathrm{d}x + f_y'(a,b)\,\mathrm{d}y$ eller kort $df = f_x'\,\mathrm{d}x + f_y'\,\mathrm{d}y$

Exempel (3.1) omskrivet

$$f(x,y) = x^2y + x\sin(y) \Rightarrow df = (2xy + \sin(y)) dx + (x^2 + x\cos(y)) dy$$

Feluppskattning med df

Om
$$\overline{\Delta x} = (\Delta x_1, ..., \Delta x_n) \in \mathbb{R}^n$$
 och f är differentierbar fås $f(\overline{x} + \overline{\Delta x}) - f(\overline{x}) = f'_{x_1} \Delta x_1 + ... + f'_{x_n} \Delta x_n + \underbrace{\rho(\Delta x_1, ..., \Delta x_n) \sqrt{(\Delta x_1)^2 + ... + (\Delta x_n)^2}}_{\text{Restterm}} \approx df(\overline{\Delta x})$

3.2.4 Exempel 5

Bestäm rörelse
energin och uppskatta felet för massan $m=1.0\pm0.1{\rm kg}$ med hastighete
n $v=4.0\pm0.2{\rm m\,s}^{-1}.$

Formel för rörelse
energi: $E = \frac{mv^2}{2}$ J

Utan fel:
$$E = \frac{1*1.4^2}{2} = 8.0$$
J

Fel:

$$\begin{split} \Delta E &= E(m + \Delta m, v + \Delta v) - E(m, v) \approx dE(\Delta m, \Delta v) = \\ &= \frac{\partial E}{\partial m} \Delta m + \frac{\partial E}{\partial v} \Delta v = \underbrace{\frac{v^2}{2}}_{\frac{4^2}{2}} \Delta m + \underbrace{mv}_{1*4} \Delta v = 8\Delta m + 4\Delta v \end{split}$$

 \Rightarrow maxfel $\leq 8|\Delta m| + 4|\Delta v| = 8*0.1 + 4*0.2 = 1.6 J <math>\Rightarrow E = 8.0 \pm 1.6 J$

4 Föreläsning IV

4.1 Kedjeregeln

Envarre

Exempel

$$\frac{d}{dx}e^{x^2} = e^{x^2}2x$$

Allmänt

$$f(g(x)) = \underbrace{f'(g(x))}_{\text{yttre}} \underbrace{g'(x)}_{\text{inre}}$$

Generalisering till flervarre

$$\underbrace{f(g(x))}_{\text{envarre}} \Rightarrow \left\{ \begin{array}{c} \stackrel{\text{(1)}}{\Rightarrow} f(g(\bar{x})) \\ \stackrel{\text{(2)}}{\Rightarrow} f(\bar{g}(x)) \end{array} \right\} \stackrel{\text{(3)}}{\Rightarrow} f(\bar{g}(\bar{x})) \Rightarrow \bar{f}(\bar{g}(\bar{x}))$$

Förklaring av pilar

1. Exempel 1

$$\frac{\partial}{\partial x}e^{x^2y} = e^{x^2y} * \underbrace{2xy}_{\text{inre m.a.p } x}$$

$$\frac{\partial}{\partial y}e^{x^2y} = e^{x^2y} * \underbrace{x^2}_{\text{inre m.a.p } y}$$

Allmänt

$$\begin{cases} \frac{\partial}{\partial x} f(g(x,y)) = f'(g(x,y)) g'_x(x,y) \\ \frac{\partial}{\partial y} f(g(x,y)) = f'(g(x,y)) g'_y(x,y) \end{cases}$$

Motsvarande för ≥ 3 variabler

Exempel 2

Visa att $xh'_x - 2yh'_y = 0 \quad \forall \ 2$ variabel funktioner h(x,y) på formen $h(x,y) = f(x^2y)$ där f är en envariabelfunktion. Lösning:

$$xh_x'-2yh_y'=xf'(x^2y)2xy-2yf'(x^2y)x^2=0 \quad \forall f$$

2.

$$\frac{d}{dx}(f(\bar{g}(x))) = \frac{d}{dx}(f(g_1(x), g_2(x))) \stackrel{\text{def av}}{=} \frac{d}{dx}$$

$$= \lim_{l \to 0} \frac{f(g_1(x+l), g_2(x+l)) - f(g_1(x), g_2(x))}{l} = \lim_{\text{diff.bar}} \frac{f'_s(s,t)h + f'_t(s,t)k + \sqrt{h^2 + k^2} \rho(h,k)}{l} = \lim_{l \to 0} \frac{f'_s(s,t)h + f'_t(s,t)k + \sqrt{h^2 + k^2} \rho(h,k)}{l} = \lim_{l \to 0} \left\{ f'_s(s,t) - g_1(s) \to 0 \text{ då } l \to 0 \text{ om } g_1 \text{ är kontinuerlig} \right\} = \lim_{l \to 0} \left\{ f'_s(s,t) \frac{g_1(x+l) - g_1(x)}{l} + f'_t(s,t) \frac{g_2(x+l) - g_2(x)}{l} \pm \sqrt{\frac{h}{l}^2 + \left(\frac{h}{l}\right)^2 + \left(\frac{h}{l}\right)^2} \frac{1}{\rho(h,k)} \right\} = \lim_{l \to 0} \left\{ f'_s(s,t)g'_1(x) + f'_t(s,t)g'_2(x) \\ = \lim_{l \to 0} \frac{df}{dx} = f'_s s'_x + f'_t t'_x \right\}$$

3. Fås av 1 & 2

$$\frac{\partial}{\partial x} f(\overbrace{g_1(x,y)}, \overbrace{g_2(x,y)}^t) = f_s' s_x' + f_t' t_x'$$

$$\frac{\partial}{\partial y} f(g_1(x,y), g_2(x,y)) = f_s' s_y' + f_t' t_y'$$

Matrisform

$$\underbrace{\left(f'_x \quad f'_y\right)}_{\text{derivator av } f(x,y)} = \underbrace{\left(f'_s \quad f'_t\right)}_{\text{derivator av } f(s,t)} \begin{pmatrix} s'_x \quad s'_y \\ t'_x \quad t'_y \end{pmatrix}$$

Motsvarande för ≥ 3 variabler

4.1.1 Exempel 1

Lös den partiella differentialekvationen

$$f_x' - f_y' = y - x (4.1)$$

med bivillkoret

$$f(x,0) = x^2 \tag{4.2}$$

Ledning: inför nya variabler $\begin{cases} s = x + y \\ t = xy \end{cases}$

Kedjeregeln
$$\left\{ \begin{array}{l} f_s' s_x' + f_t' t_x' = f_s' * 1 + f_t' y \\ f_s' s_y' + f_t' t_y' = f_s' * 1 + f_t' x \end{array} \right. \text{ sätt in i } (\textbf{4.1})$$

$$\Rightarrow (f'_s + f'_t y) - (f'_s + f'_t x) = y - x \Rightarrow f'_t * (y - x) = y - x, \text{ ska g\"{a}lla alla } (x, y)$$

$$\Rightarrow f'_t = 1 \Rightarrow f_t = t + \underbrace{g(s)}_{godtycklig} \Rightarrow \underline{f(x, y) = xy + g(x, y)}_{godtycklig} \text{ [alla l\"{o}sningar på (4.1)]}$$

Bivillkoret (4.2) ger oss $f(x,0)=x*0+g(x)=x^2\Rightarrow g(x+0)=x^2\Rightarrow$ Lösningen blir $f(x,y)=xy+(x+y)^2$

4.1.2 Linjärt variabelbyte

$$\begin{cases} s = ax + by \\ t = cx + dy \end{cases} \Rightarrow \begin{pmatrix} s \\ t \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$
$$X_{\mathbf{f}} \qquad T^{-1} \qquad X_{\underline{\mathbf{e}}}$$

Matris för kedjeregeln

$$\begin{pmatrix} s'_x & s'_y \\ t'_x & t'_y \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} = T^{-1} !$$

4.1.3 Byte till polära koordinater

 $\begin{cases} x = \rho \cos(\varphi) \\ t = \rho \sin(\varphi) \end{cases}$ Enklast med ρ & φ derivator i vänsterled i kedjeregeln

$$\left\{ \begin{array}{l} f_\rho' = f_x' x_\rho' + f_y' y_\rho' = f_x' \cos(\varphi) + f_y' \sin(\varphi) \\ f_\varphi' = f_x' x_\varphi' + f_y' y_\varphi' = f_x' (-\rho \sin(\varphi)) + f_y \rho \cos(\varphi) \end{array} \right.$$

Matrisform

$$(f_{\rho}' \quad f_{\varphi}') = (f_x' \quad f_y') \begin{pmatrix} x_{\rho}' & x_{\varphi}' \\ y_{\rho}' & y_{\varphi}' \end{pmatrix} = (f_x' \quad f_y') \begin{pmatrix} \cos(\varphi) & \sin(\varphi) \\ -\rho\sin(\varphi) & \rho\cos(\varphi) \end{pmatrix}$$

4.1.4 Exempel 2

Bestäm alla f(x, y) som uppfyller

$$xf_{xy}'' - yf_{yy}'' - f_y' = 0 (4.3)$$

Ledning: inför
$$\begin{cases} u = x \\ v = xy \end{cases}$$

Översätt ekvationen till u & v. Kedjeregeln

$$\begin{cases} f'_x = f'_u u'_x + f'_v v'_x = f'_u + y f'_v \\ f'_y = f'_u u'_y + f'_v v'_y = x f'_v \end{cases}$$

Operator skrivsätt

$$\begin{cases} \frac{\partial}{\partial x} = \frac{\partial}{\partial u} + y \frac{\partial}{\partial v} \\ \frac{\partial}{\partial y} = x \frac{\partial}{\partial v} \end{cases} \begin{cases} ()'_x = ()'_u + ()'_v \\ ()'_y = x ()'_v \end{cases}$$

$$f''_{yy} = (f'_y)'_y = (xf'_v)'_y = x(f'_v)'_y = x * x(f'_v)'_v = x^2 f''_{vv}$$
$$f''_{xy} = (f'_x)'_y = (f'_u + yf'_v)'_y = (f'_u)'_y + f'_v + y(f'_v)'_y = xf''_{uv} + f'_v + yxf''_{vv}$$

Sätt in i $(4.2) \Rightarrow$

$$\begin{split} x(xf_{uv}'' + f_v' + yxf_{vv}'') - y(x^2f_{vv}'') - xf_v' &= 0 \\ x^2f_{uv}'' + xf_v' + yx^2f_{vv}'' - yx^2f_{vv}'' - xf_v' &= 0 \\ \Rightarrow x^2f_{uv}'' &= 0, \quad \forall (x,y) \Rightarrow f_{uv}'' &= 0 \iff (f_u')_v' \\ \Rightarrow f_u' &= g(u) \text{ , godtycklig funktion } g(u) \\ \Rightarrow f &= G(u) + h(v) \text{ , godtycklig funktion } h(v) \end{split}$$

Svar: f(x,y) = G(x) + h(xy), g = G' g&h godtyckliga funktioner

5 Föreläsning V

5.1 Gradienter

5.1.1 Definition

Gradienten av f(x,y) är vektorn $\nabla f = \text{grad } f = (f'_x,f'_y)$ För g(x,y,z) är $\nabla g = (g'_x,g'_y,g'_z)$ och motsvarande för ≥ 4 variabler

<u>Hessianen</u> av f(x,y) resp g(x,y,z) är <u>matrisen</u>

$$Hf = \begin{pmatrix} f''_{xx} & f''_{yy} \\ f''_{yx} & f''_{yy} \end{pmatrix}$$

$$\text{resp } Hg = \begin{pmatrix} g''_{xx} & g''_{xy} & g''_{xz} \\ g''_{yx} & g''_{yy} & g''_{yz} \\ g''_{zx} & g''_{zy} & g''_{zz} \end{pmatrix}$$

symmetriska om $f, g \in \mathbb{C}^2$, mer om H i samband med max/min-problem. 6.2 on page 22

5.1.2 Hur tolkar man gradienter i 2D & 3D?

Kurvor i 2D

Tangenter och normaler (allmänt)

Tangentvektor $\bar{T} = (v_1, v_2)$

Normalvektor $\bar{T} = k(v_2, -v_1)$ ty ger

$$\bar{T} \bullet \bar{N} = v_1 k v_2 - v_2 k v_1 = 0 \Rightarrow \text{ortogonala}$$

Ekvivalent för tangentlinje i (x, y) är på tangenten \iff

$$\underbrace{(x-a,y-b)}_{\text{Parallell med } \bar{T}} \bullet \bar{N} = 0 \iff v_2x - v_1y = \underbrace{v_2a - v_1b}_{Konstant}$$

Parameter
form
$$\left\{ \begin{array}{l} x=a+tv_2 \\ y=b+tv_2 \end{array} \right. , \, t \in \mathbb{R} \text{ parameter}$$

Ekvation för normallinjen: (x, y) är på normalen \iff

$$\underbrace{(x-a,y-b)}_{\text{Parallell med }\bar{N}} \times (v_1,v_2) = 0 \iff v_1x+v_2y = \underbrace{v_1a+v_2b}_{Konstant}$$

Parameter form
$$\begin{cases} x = a + tv_1 \\ y = b - tv_2 \end{cases}, t \in \mathbb{R}$$

1. Kurvor på parameterform

 $\mathbf{E}\mathbf{x}$

$$\begin{cases} x = 1 - t \\ y = 2 + t \end{cases} \iff (x, y) = (1, 2) + t(-1, 1) \quad \text{[r\"{a}t linje]}$$

 $\mathbf{E}\mathbf{x}$

$$\bar{r}(t) = (x(t), y(t)) = (\cos t, \sin t)$$
 [enhetscirkeln]

Två punkter på kurvan $\bar{r}(t)$ & $\bar{r}(t + \Delta t)$

Låt
$$\Delta t \to 0 \Rightarrow \bar{T}(t) = r'(t) = \lim_{\Delta t \to 0} \frac{\bar{r}(t + \Delta t) - \bar{r}}{\Delta t} = \left(x'(t), y'(t)\right)$$

= ger tangentvektorn till kurvan, exempelvis har enhetscirkeln

$$\bar{T}(t) = \left(x'(t), y'(t)\right) = \left(-\sin t, \cos t\right)$$

2. Nivåkurvor f(x,y) = C

Om f(x,y) = C parametriseras med t som (x(t), y(t)) ger kedjeregeln

$$0 = \frac{d}{dt} \underbrace{f\left(x(t), y(t)\right)}^{\text{konstant} = C} = f'_x x'(t) + f'_y y'(t) = \underbrace{\left(f'_x, f'_y\right)}_{\nabla f} \bullet \underbrace{\left(x'(t), y'(t)\right)}_{\bar{T}}$$

 $\Rightarrow \nabla f$ är normalvektor till nivåkurvan

 $\mathbf{E}\mathbf{x}$

Enhetscirkeln
$$\left[f(x,y)=x^2+y^2=1\right]$$
 har $\nabla f=\left(2x,2y\right)=2\Big(x,y\Big)$

3. Grafer

y = h(x) kan föras på

- parameter form: t = x ger $\left(x, y\right) = \left(t, h(t)\right)$ $\Rightarrow \bar{T} = \left(x', y'\right) = \left(t, h(t)\right)$
- nivåkurveform: sätt f(x,y) = y h(x) = 0 $\Rightarrow \bar{N} = \nabla f = \left(f'_x, f'_y\right) = \left(-h'(x), 1\right)$

5.2 Nivåytor i 3D

$$g(x, y, z) = C$$

Med kedjeregeln visas på liknande sätt som för nivåkurvor att

$$\nabla g = \left(g_x', g_y', g_z'\right)$$
är \bar{N} till nivåytan

5.2.1 Exempel 1

Enhetssfären $g(x,y,z)=x^2+y^2+z^2=1$ har $\bar{N}=\nabla g=(2x,2y,2z)$ I punkten $P:\left(\frac{2}{3},\frac{1}{3},\frac{2}{3}\right)$ är $\bar{N}=\left(2*\frac{2}{3},2*\frac{1}{3},2*\frac{2}{3}\right)$ och tangentplanet i P är $\left(x-\frac{2}{3},y-\frac{1}{3},z-\frac{2}{3}\right)=\bar{N}=0 \iff 2x+y+2z=3$

En graf z=f(x,y) kan skrivas som nivåytan g(x,y,z)=f(x,y)-z=0 $\Rightarrow \bar{N}$ är $\nabla g=(g_x',g_y',g_z')=(f_x',f_y',-1)$

5.2.2 Exempel 2

$$z = f(x, y) = x^{2} + y^{2}$$
$$f'_{x} = 2x$$
$$f'_{y} = 2y$$

har i punkten (1, 2, 5)

$$\bar{N} = (f'_x(1,2), f'_y(1,2), -1) = (2,4,-1)$$

5.2.3 Definition

Riktningsderivatan av f(x,y) i punkten (a,b) och riktning $\bar{v}=(v_1,v_2)$ där $|\bar{v}|=\sqrt{v_1^2+v_2^2}=1$ är

$$f'_{\bar{v}}(a,b) = \lim_{t \to 0} \frac{f(a+tv_1, b+tv_2) - f(a,b)}{t}$$

Mäter hur f ändras i \bar{v} :s riktning

 $\left(|\bar{v}|>1$ behövs för att $f'_{\bar{v}}$ inte ska bero på \bar{v} :s längd $\right)$ Partiella derivator är specialfall t.ex. $\bar{v}=\bar{e_1}=(1,0)$ ger $f'_{\bar{v}}=f'_x$ Motsvarande gäller för ≥ 3 variabler

Föreläsning 5 Adnan Avdagic

5.2.4 Sats

f differentierbar
$$\Rightarrow f'_{\bar{v}} = \nabla f \bullet \bar{v}$$

5.2.5 Exempel 3

$$\bar{v} = (1,0) \Rightarrow f'_{\bar{v}} = (f'_x, f'_y) \bullet (1,0) = f'_x$$

5.2.6 Exempel 4

$$f(x,y,z) = xy^2z^3 \Rightarrow \nabla f = (f'_x, f'_y, f'_z) = (y^2z^3, 2xyz^3, 3xy^2z^2)$$

I punkten (a,b,c)=(2,-1,1)och i riktningen $\bar{v}=\frac{1}{\sqrt{5}}(1,0,2)$ från punkten är

$$f_{\bar{v}}'(2,-1,1) = \nabla f(a,b,c) \bullet \bar{v} = (1,-4,6) \bullet \frac{1}{\sqrt{5}} (1,0,2) = \frac{1*1 - 4*0 + 6*2}{\sqrt{5}} = \frac{13}{\sqrt{5}} =$$

5.2.7 Allmänt

$$f'_{\bar{v}} = \nabla f \bullet \bar{v} = |\nabla f| \underbrace{|\bar{v}|}_{=1} \cos \alpha$$

Maximal då $\alpha=0,$ dvs då \bar{v} väljs åt samma håll som $\nabla f\Rightarrow$

 ∇f pekar i den riktning f växer snabbast i

 $f_{\bar{v}}'=0$ då \bar{v} är en tangent till nivåkurvan/ytan

6 Föreläsning VI

6.1 Lokala max och min

6.1.1 Definition

f(x,y) har ett lokalt minimum i (a,b) om $f(x,y) \ge f(a,b) \forall (x,y)$ i någon omgivning u av (a,b). Om $f(x,y) \ge f(a,b)$ i $u \forall (x,y) = (a,b)$ har vi ett strängt lokalt minimum. Motsvarande för lokalt maximum och ≥ 3 variabler.

6.1.2 Hur hittas lokala max & min?

Om z=f(x,y) har lokalt min i (a,b) & L parallell med x-axeln (y=b) =konstant på L) så har på L envaribelfunktionen g(x)=f(x,b) ett lokalt min i $x=a\Rightarrow g'(a)=0$ men $g'(a)=f'_x(a,b)$ (enligt def av derivator). Samma i y-led.

6.1.3 Sats

Om $f(x,y) \in C^1$ har ett lokalt max eller min i (a,b) så är

$$\left\{ \begin{array}{l} f_x'(a,b) = 0 \\ f_y'(a,b) = 0 \end{array} \right., \, \mathrm{dvs} \; \nabla f(a,b) = (0,0)$$

Motsvarande för ≥ 3 variabler

En punkt \bar{a} där $\nabla f(\bar{a}) = \bar{0}$ kallas <u>stationär</u>. Den kan vara lok max, min eller sadelpunkt.

6.2 Avgör om max, min eller sadelpunkt (\bar{a} stationär)?

Envarre: teckentabell eller tecken på f'(a)

Flervarre: tecken på $Hf(\bar{a})$, motiveras från Taylors formel Envariabel - maclaurin:

$$g(t) = g(0) + g'(0)t + t^{2}\frac{g''(0)}{2} + \dots + t^{(p)}\frac{g^{(p)}(0)}{p!} + \overbrace{\mathcal{R}_{p}}^{rest} \left(* \right)$$
 (6.1)

Givet f(x,y), sätt g(t)=f(a+th,b+tk), a,h,b,k konstanta Kedjeregeln:

$$g'(t) = f'_x * x'_t + f'_y * y'_t = f'_x * h + f'_y * k = \left(h\frac{\partial}{\partial x} + k\frac{\partial}{\partial y}\right) f = (h, k)\nabla f$$

$$\Rightarrow g''(t) = \left(h\frac{\partial}{\partial x} + k\frac{\partial}{\partial y}\right)^2 f = h^2 * f''_{xx} + 2hk * f''_{xy} + k^2 * f''_{yy} =$$

$$= (h, k)\underbrace{\left(f''_{xx} x + f''_{yy} x\right)}_{Hf} \left(h\right) \left[f''_{xy} = f''_{yx} \text{ om } f \in C^2\right]$$

$$g^{(p)}(t) = \left(h\frac{\partial}{\partial x} + k\frac{\partial}{\partial y}\right)^{(p)} f \tag{6.2}$$

 $t=0\Rightarrow (x,y)=(a,b)\&g(0)=f(a,b)$ $t=1\Rightarrow (a+h,b+k)\&g(1)=f(a+h,b+k)$ in i 6.1 \Rightarrow Taylors formel för $f(x,y)\in C^{p+1}$

$$f(a+h,b+k) = f(a,b) + (h,k) * \nabla f(a,b) + \frac{1}{2}(h,k)(Hf)(a,b) \begin{pmatrix} h \\ k \end{pmatrix} + \cdots + \frac{1}{p!} \left(h \frac{\partial}{\partial x} + k \frac{\partial}{\partial y} \right)^p * f(a,b) + \mathcal{R}_p , \text{ där man kan visa } \mathcal{R}_p = \mathcal{O}\left(\sqrt{h^2 + k^2}\right)^{p+1} \right)$$

För
$$p = 2$$
 och n variabler, $\bar{a} = (a_1, \dots, a_n), \bar{h} = (h_1, \dots, h_n) \implies h^{-1}$ kolonn) fås $f(\bar{a} + \bar{h}) = f(\bar{a}) + \bar{h} * \nabla f(\bar{a}) + \underbrace{\frac{1}{2}\bar{h}(Hf)(\bar{a})h^{-1}}_{Q(h)} + \mathcal{O}\left(|h^3|\right)$

 $Q(\bar{h})$ är en kvadratisk form (lin.alg). I 2 variabler, se (6.2), i 3 variabler:

$$Q(h,k,l) = h^2 f_{xx}'' + k^2 f_{yy}'' + l^2 f_{zz}'' + 2hk f_{xy}'' + 2hl f_{xz}'' + 2kl f_{yz}''$$

I stationär punkt $\bar{a}\Big(\nabla f(\bar{a}) = \bar{0}\Big)$

$$f(\bar{a}+\bar{h})=f(\bar{a})+\frac{1}{2}Q(\bar{h})+\mathcal{O}(|h^3|)\approx f(\bar{a})+\frac{1}{2}Q(\bar{h})\text{ om }|\bar{h}|\text{ liten}$$

 $\Rightarrow Q(\bar{h})$ avgör f:s utseende nära stationär punkt. Om t.ex. $Q(\bar{h})=0\,\forall\,\bar{h}\neq0$ är $f(\bar{a}+\bar{h})=f(\bar{a})\Rightarrow$ strängt lokalt min i \bar{a}

6.2.1 Fyra fall fås

1. Q positivt definit \Rightarrow strängt lokalt min

$$Q(\bar{h}) > 0 \quad \forall \bar{h} \neq 0$$

2. Q negativt definit \Rightarrow strängt lokalt max

$$Q(\bar{h}) < 0 \quad \forall \bar{h} \neq 0$$

3. Q indefinit \Rightarrow sadelpunkt

$$Q(\bar{h})>0,$$
 för vissa \bar{h} & $\,<0$ för andra

 $4.\,$ Q positivt semidefinit (motsv. neg semidefinit) Ingen slutsats om max, min eller sadelpunkt kan dras

$$Q(\bar{h}) \ge 0 \quad \forall \bar{h} \text{ men } \exists \bar{h} \ne 0 \text{ med } Q(\bar{h}) = 0$$

6.2.2 Två metoder för att avgöra Q:s karaktär:

1. Digonalisering. Spektralsatsen $\Rightarrow Hf = TDT^{-1}, T^{-1} = T^T$

$$D = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_n \end{pmatrix}, \lambda_j \text{ egenvärden till } Hf$$

$$Q = \bar{h} * (Hf) * \bar{h}^{-1} = \underbrace{\bar{h}T}_{\hat{h}} D \underbrace{T^T h^{-1}}_{\hat{h}^T} = \hat{\bar{h}} D \hat{h}^t = \lambda_1 \hat{h}_1^2 + \lambda_2 \hat{h}_2^2 + \ldots + \lambda_n \hat{h}_n^2$$

De fyra fallen

(a)
$$\lambda_i > 0, \quad \forall j \text{ pos.def}$$

(b)
$$\lambda_i < 0, \quad \forall j \text{ neg.def}$$

(c)
$$\exists \lambda_i > 0 \& \exists \lambda_k < 0 \text{ indef}$$

(d)
$$\lambda_j \geq 0, \quad \forall j \quad \exists \lambda_k = 0 \text{ pos.semidef}$$

Exempel

$$Q(h, k, l) = h^{2} + 2k^{2} + 2l^{2} + 2hk - 2hl + 2kl = \begin{pmatrix} h & k & l \end{pmatrix} \begin{pmatrix} 1 & 1 & -1 \\ 1 & 2 & 1 \\ -1 & 1 & 2 \end{pmatrix} \begin{pmatrix} h \\ k \\ l \end{pmatrix}$$

$$\det(Hf - \lambda I) = 0 \Rightarrow \cdots \Rightarrow \lambda_{1} = 3, \lambda_{2,3} = 1 \pm \sqrt{2}$$

$$\Rightarrow Q = \begin{pmatrix} \hat{h} & \hat{k} & \hat{l} \end{pmatrix} \begin{pmatrix} 3 \\ 1 + \sqrt{2} \\ 1 - \sqrt{2} \end{pmatrix} \begin{pmatrix} \hat{h} \\ \hat{k} \\ \hat{l} \end{pmatrix} = 3\hat{h}^{2} + (1 + \sqrt{2})\hat{k}^{2} + (1 - \sqrt{2})\hat{l}^{2}$$

 $\lambda_1>0$, $\lambda_2>0$, $\lambda_3<0\Rightarrow$ indefinit (egenvektorer behövs ej för att avgöra karaktär)

2. Kvadratkomplettering

$$(a+b+c)^2 = a^2 + b^2 + c^2 + 2ab + 2ac + 2bc$$

(6.3):

$$Q = h^{2} + 2hk - 2hl + 2k^{2} + 2l^{2} + 2kl =$$

$$= (h + k - l)^{2} + k^{2} + 4kl + l^{2} =$$

$$= +(h + k - l)^{2} + (k + 2l)^{2} - 3l^{2}$$

tecken +, +, -, samma som på λ_1 , λ_2 , $\lambda_3 \Rightarrow$ indefinit

De fyra fallen

- (a) Bara $+ \Rightarrow pos.def$
- (b) Bara $\Rightarrow \text{neg.def}$
- (c) $+ \& (\&/\text{eller } 0) \Rightarrow \text{indef}$
- (d) + & 0 (färre + än antalet variabler) \Rightarrow pos.semidef

6.2.3 Exempel

Hitta alla stationära punkter till $f(x,y) = x^3 + 6xy + 3y^2 - 9x$ och avgör om de är max, min eller sadelpunkter.

Stationära punkter:
$$\begin{cases} f'_x &= 3x^2 + 6y - 9 = 0 \\ f'_y &= 6x + 6y = 0 \end{cases} [1]$$
 [2] $\Rightarrow y = -x$ in i [1] $\Rightarrow 3x^2 - 6x - 9 = 0 \Rightarrow \underbrace{x = 3}_{y = -3}$ eller $\underbrace{x = 1}_{y = 1}$

Två stationära punkter: $(3, -3) \& (-1, 1) \max/\min$?

$$f_{xx}'' = 6x \quad f_{xy}'' = 6 \quad f_{yy}'' = 6$$

$$I(3,-3): Q = \begin{pmatrix} h & k \end{pmatrix} \begin{pmatrix} 18 & 6 \\ 6 & 6 \end{pmatrix} \begin{pmatrix} h \\ k \end{pmatrix} \Rightarrow \cdots \Rightarrow \lambda_{1,2} = 12 \pm \sqrt{62} > 0 \Rightarrow \text{pos.def} \Rightarrow \text{lok.min}$$

$$I(-1,1): Q = \begin{pmatrix} h & k \end{pmatrix} \begin{pmatrix} -6 & 6 \\ 6 & 6 \end{pmatrix} \begin{pmatrix} h \\ k \end{pmatrix} \Rightarrow \lambda_1 = 6\sqrt{2} > 0 & \lambda_2 = -6\sqrt{2} < 0 \Rightarrow \text{indef} \Rightarrow \text{sadelpunkt}$$

Svar: (3, -3) är lokalt minimum & (-1, 1) är en sadelpunkt

7 Föreläsning VII

7.1 Kurvor & ytor i \mathbb{R}^3 på parameterform

Funktioner av typen $\mathbb{R} \to \mathbb{R}^m$ kallas <u>kurvor</u> i \mathbb{R}^m . För m=3 är $\bar{r}(t) = (x(t), y(t), z(t))$ en kurva i rummet, variabeln t kallas <u>parametern</u>

Tangentvektorn är $\bar{r}'(t) = \left(x'(t), y'(t), z'(t)\right)$ (som i 2D). Funktioner av typen $\mathbb{R}^2 \to \mathbb{R}^3$ beskriver <u>ytor i rummet</u> på parameterform $\bar{r}(s,t) = \left(x(s,t), y(s,t), z(s,t)\right)$, s,t parametrar

7.1.1 Exempel 1 [Plan på parameterform]

$$\bar{r}(s,t) = (1+s+t,2-s,3t) = \underbrace{(1,2,0)}_{\text{en punkt i planet}} + \underbrace{s(1,-1,0) + t(1,0,3)}_{\text{vektorer parallella med planet}}$$
(7.1)

 $\begin{array}{l} \frac{\partial \bar{r}}{\partial s} \text{ och } \frac{\partial \bar{r}}{\partial t} \text{ är tangentvektorer till ytan, och spänner upp tangentplanet vars} \\ \text{normal } \bar{N} = \frac{\partial \bar{r}}{\partial s} * \frac{\partial \bar{r}}{\partial t} \text{ För planet i (7.1) är } \frac{\partial \bar{r}}{\partial s} = (1,-1,0) & \& & \frac{\partial \bar{r}}{\partial t} = (1,0,3) \end{array}$

7.1.2 Exempel 2

Enhetssfären $x^2+y^2+z^2=1$ kan skrivas med rymdpolära vinklar $\theta \quad \& \quad \varphi$ som parametrar

$$\bar{r}(\theta,\varphi) = \Big(x(\theta,\varphi),y(\theta,\varphi),z(\theta,\varphi)\Big) = \Big(\sin\theta\cos\varphi,\sin\theta\sin\varphi,\cos\theta\Big)$$

Vi får

$$\bar{N} = \bar{r}'_{\theta} \times \bar{r}'_{\varphi} = \left(\cos\theta\cos\varphi, \cos\theta\sin\varphi, -\sin\theta\right) \times \left(-\sin\theta\sin\varphi, \sin\theta\cos\varphi, 0\right) = \left(-\sin^2\theta\cos\varphi, -\sin^2\theta\sin\varphi, -\cos\theta\sin\theta\right) = -\sin\theta\bar{r}(\theta, \varphi)$$

Funktionen $\mathbb{R}^n \to \mathbb{R}^m$

För $\bar{f}(\bar{x}) = (f_1(x_1, \dots, x_n), \dots, f_m(x_1, \dots, x_n))$ av typ $\mathbb{R}^n \to \mathbb{R}^m$ definieras <u>funktionalmatrisen</u> (Jacobi-matrisen)

$$\bar{f}'(\bar{x}) = \frac{\partial (f_1, \dots, f_m)}{\partial (x_1, \dots, x_n)} = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \dots & \frac{\partial f_1}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial f_m}{\partial x_1} & \dots & \frac{\partial f_m}{\partial x_n} \end{pmatrix}, \text{ m} \times \text{n matris}$$

7.2.1 Exempel 3

$$\bar{f}(\bar{x}) = \left(f_1(x_1, x_2), f_2(x_1, x_2)\right) = (x_1 + x_2, x_1 x_2) \Rightarrow \frac{\partial(f_1, f_2)}{\partial(x_1, x_2)} = \begin{pmatrix} 1 & 1 \\ x_2 & x_1 \end{pmatrix}$$
(7.2)

7.2.2 Exempel 4

Variabelbyte $(x,y) = (\rho \cos \varphi, \rho \sin \varphi)$ till polärakoordinater har matris

$$\frac{\partial(x,y)}{\partial(\rho,\varphi)} = \begin{pmatrix} x'_{\rho} & x'_{\varphi} \\ y'_{\rho} & y'_{\varphi} \end{pmatrix} = \begin{pmatrix} \cos\varphi & -\rho\sin\varphi \\ \sin\varphi & \rho\cos\varphi \end{pmatrix}$$
(7.3)

7.2.3Exempel 5

En linjär avbildning
$$\bar{f}(\bar{x})=$$

$$A \qquad \qquad \bar{x} \text{ har } \bar{f}'(\bar{x})=A$$

OBS! För
$$m=1$$
 $(\bar{f}=f)$ fås specialfallet $\bar{f}'(\bar{x})=(f'_{x_1},\cdots,f'_{x_n})=\nabla f$

Tidigare kedjeregeln för varje $f_j(\bar{g}(\bar{x}))$ i $\bar{f}(\bar{g}(\bar{x})) = (\bar{f} \bullet \bar{g})(\bar{x}) \Rightarrow$ den mest allmänna kedjeregeln kan skrivas

$$\underbrace{(\bar{f} \bullet \bar{g})'(\bar{x})}_{m \times n} = \underbrace{\bar{f}'\big(\bar{g}(\bar{x})\big)}_{m \times p} \underbrace{\bar{g}'(\bar{x})}_{p \times n} \text{ Matris multiplikation}$$

$$\bar{x} \in \mathbb{R}^n \quad \bar{g}(\bar{x}) \in \mathbb{R}^p \quad \bar{f}(\bar{g}(\bar{x})) \in \mathbb{R}^m$$

För $\underline{m} = \underline{n}$ har $\bar{f}(\bar{x} \mathbb{R}^n \to \mathbb{R}^n$ funktionaldeterminant (Jacobi-determinant)

$$\det(\bar{f})f'(\bar{x}) = \frac{\mathrm{d}(f_1, \dots, f_n)}{\mathrm{d}(x_1, \dots, x_n)} = \begin{vmatrix} \frac{\partial f_1}{\partial x_1} & \dots & \frac{\partial f_1}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial f_n}{\partial x_1} & \dots & \frac{\partial f_n}{\partial x_n} \end{vmatrix}$$

I (7.2) är
$$\frac{d(f_1, f_2)}{d(x_1, x_2)} = \begin{vmatrix} 1 & 1 \\ x_2 & x_1 \end{vmatrix} = x_1 - x_2 \text{ och i (7.3)}$$

$$\frac{d(x, y)}{d(\rho, \varphi)} = \rho \cos^2 \varphi + \rho \sin^2 \varphi = \rho$$

7.3 Linjärisering av $\bar{f}(\bar{x})$

Antag
$$m=n=2$$
och skriv $\bar{f}(x,y)=\begin{pmatrix} u(x,y)\\v(x,y) \end{pmatrix}$ som kolonn

Taylors formel för u & v kring punkten (a, b) ger

linjärisering av \bar{f} , gäller nära (a, b). Motsvarande gäller godtyckliga m, n

7.4 Area/volym-skalning

Figur 6: Arean innan skalning

Linjär avbildning $\bar{f}(\bar{x}) = A\bar{x}$

Figur 7: Arean efter skalning

3D: $|\det(A)| = \text{volym}$ av parallellepiped med A:s kolonner som kanter $|\det(A)|$ ger area/volym-skalning i 2D/3D

Godtycklig funktion \bar{f}

Figur 8: Arean innan skalning

Linjär avbildning, $\frac{\bar{f}}{A\bar{x} + \bar{C}}$ $\begin{bmatrix} r\ddot{o}d \end{bmatrix}$

Figur 9: Arean efter skalning (+ \bar{C} påverkar ej arean)

 Ω liten $\Rightarrow \bar{f} \approx A\bar{x} + \bar{C}$ i $\Omega \Rightarrow$ area av $\bar{f}(\Omega) \approx$ arean av $(A\bar{x} + \bar{C})(\Omega)$ Vi hade $A = \bar{f}'(a,b)$ funktionaldeterminanten i (a,b) $|\mathrm{det}(\bar{f}(\bar{a}))|$ ger
 lokal area/volym-skalning i 2D/3D nära \bar{a}

7.4.1 Exempel

Variabelbyte till polärakoordinater har $\frac{\mathrm{d}(x,y)}{\mathrm{d}(\rho,\varphi)}=\rho\geq 0$ (se 7.2.3 on page 27) Variabelbyte till rymdpolära koordinater i 3D ger

$$\frac{\mathrm{d}(x,y,z)}{\mathrm{d}(r,\theta,\varphi)} = \begin{vmatrix} x'_r & x'_\theta & x'_\varphi \\ y'_r & y'_\theta & y'_\varphi \\ z'_r & z'_\theta & z'_\varphi \end{vmatrix} = \dots = r^2 \sin \theta \ge 0 \text{ (ty } 0 \le \theta \le \pi)$$

7.4.2 Invers

 $\begin{array}{ll} \textbf{LinAlg} & \text{Om } \bar{u} = \bar{f}(\bar{x}) = A\bar{x} \text{ linjär av typ } \mathbb{R}^n \to \mathbb{R}^n \ (A \text{ en } n \times n \text{ matris, } \bar{u}, \bar{x} \\ \text{kolonner) och } \det(\bar{f}') = \det(A) \neq 0 \ \exists \text{ invers } \bar{x} = A^{-1}\bar{u} = \bar{f}^{-1}(\bar{u}) \text{ med} \\ \det(\bar{f}'^{-1}) = \det(A^{-1}) = \frac{1}{\det(A)} = \frac{1}{\det(\bar{f}')} \\ \end{array}$

För allmänna olinjära $\bar{f}(\bar{x})$ kan man bevisa inversa funktionssatsen

Bevis. $f \in C^1$ av typ $\mathbb{R}^n \to \mathbb{R}^n$ och $\det(f'(\bar{a})) \neq 0 \Rightarrow \exists$ omgivningar Ω_1, Ω_2 av \bar{a} respektive $\bar{f}(\bar{a})$ så att $\bar{f}: \Omega_1 \to \Omega_2$ är bijektiv och därmed inverterbar med invers \bar{f}^{-1} . Även $\bar{f}^{-1} \in C^1$ och $\det((\bar{f}^{-1})') = \frac{1}{\det(\bar{f}')}$

OBS!

- 1. Säger inget om hur \bar{f}^{-1} hittas bara att en finns
- 2. Gäller bara små $\Omega_1,\,\Omega_2$ i allmänhet
- 3. Invers kan finnas kring \bar{a} även om $\det(\bar{f}'(\bar{a}))=0$ men är då ej C^1 (från envarren)

7.4.3 Exempel

$$\begin{split} \bar{f}(x,y) &= \begin{pmatrix} u(x,y) \\ v(x,y) \end{pmatrix} = \begin{pmatrix} xy \\ e^x + 2y \end{pmatrix} \in C^1 \text{ ej globalt inverterbar} \\ \exists \ \bar{a} \neq \bar{b} \ \text{med} \ \bar{f}(\bar{a}) = \bar{f}(\bar{b}) \end{split}$$

Kring t.ex.
$$(a,b)=(1,0)$$
 blir $\det(\bar{f}^{-1}(1,0))=\begin{vmatrix} 0 & 1 \\ e & 2 \end{vmatrix}=-e\neq 0 \Rightarrow$ \Rightarrow \exists invers $\bar{f}^{-1}(u,v)=\begin{pmatrix} x(u,v)\\ y(u,v) \end{pmatrix}$ lokalt kring $\bar{f}(1,0)$ men vi kan inte uttryckligen hitta $\begin{cases} x=\ldots\\ y=\ldots \end{cases}$

8 Föreläsning VIII

8.1 Implicita funktioner

Givet ett uttryck F(x,y) = C (en ekvation eller en nivåyta), under vilka krav kan y lösas ut som en funktion av ?

Betyder att till varje x måste det svara precis ett y

8.1.1 Exempel 1

$$F(x,y) = 3x - y = 1 \Rightarrow y = 3x - 1 = g(x)$$
, går bra $\forall x \in \mathbb{R}$ (8.1)

8.1.2 Exempel 2

$$F(x,y) = 3x - y = 0 \Rightarrow y^2 = x \Rightarrow y = \pm \sqrt{x}, x \ge 0$$
 (8.2)

två värden på y för varje x, inte en funktion

Figur 10: Grafisk visning av (8.2)

På t.ex M_1 är $y=\sqrt{x}=g(x)$ medan på t.ex M_2 är $y=-\sqrt{x}$ Går ej på M_3 , problem indikeras av att $\nabla F=\left(F'_x,F'_y\right)=\left(1,-2y\right)$ är parallell med x-axeln i $(0,0)\in M_3$ (kurvan vänder i x-led där) Alltså: $F'_y=0$ ger problem

Föreläsning 8 Adnan Avdagic

8.1.3 Exempel 3

$$F(x,y) = x - y^{3} = 0$$

$$\nabla F = (1, -3y^{2})$$
(8.3)

Här kan vi lösa ut

$$y = \sqrt[3]{x} = x^{\frac{1}{3}} = g(x) \quad \forall x \in \mathbb{R}$$

trots att

$$F_y' = -3^2 = 0$$

i origo (men kurvan vänder ej). Dock är

$$g'(x) = \frac{1}{3x^{\frac{2}{3}}}$$

ej definierad i origo så g(x) är ingen C^1 -funktion av x kring x=0 Man kan visa

8.2 Implicita funktionssatsen

ykan lösas ut som y=g(x) med $g\in C^1$ ur F(x,y)=C, där $F\in C^1$, lokalt kring (a,b) på kurvan om $F_g'(a,b)\neq 0$

Kommentarer

- Med <u>lokalt</u> menas på någon (eventuellt liten) mängd kring (a,b) på nivåkurvan. I (8.2) & (8.3) ger (a,b) = (0,0) problem, ingen g finns i (8.2) & $g \notin C^1$ i (8.3) men $F \in C^1$.
- $\bullet\,$ Motsvarande gäller att xkan lösas ut som x=h(y) om $F_x'(a,b)\neq 0$
- Med implicit menas att satsen bara säger att funktionen g finns, inte hur g beräknas

(men i (8.1):
$$g(x) = 3x - 1$$
, i (8.2) $g(x) = \sqrt{x}$ på M_1 , $g(x) = -\sqrt{x}$

på M_2 och i (8.3) $g(x) = \sqrt[3]{x}$, alla explicit skrivna

8.2.1 Exempel 4

$$F(x,y) = x^{3}y^{2} + y^{5}\sin x + y + 2x = 2 \quad , F \in C^{\infty}$$
(8.4)

 $F(1,0) = 2 \Rightarrow (a,b) = (1,0)$ på nivåkurvan

Vi klarar inte att lösa ut y explicit, y = g(x) = ??? liksom va fan femtegradare!!

$$F'_{y} = 2x^{3} + 5y^{4} \sin x + 1 \Rightarrow F'_{y}(1,0) = 1 \neq 0$$

från sats: y kan lösas ut implicit som y = g(x) där $g \in C^1$ lokalt kring (1,0) Trots att g(x) är okänd kan vi få ut g'(x) på två olika sätt

Alternativ 1 (kedjeregeln)

$$0 = \frac{d}{dx} \underbrace{F\left(x, g(x)\right)}_{=2} = \frac{\partial F}{\partial x} \underbrace{\frac{dx}{dx}}_{=1} + \frac{\partial F}{\partial y} \underbrace{\frac{dy}{dx}}_{g'(x)} = F'_x + F'_y g'(x) \Rightarrow$$

$$\Rightarrow g'(x) = -\frac{F'_x}{F'_y} = -\frac{3x^2y^2 + y^5\cos x + 2}{2x^3 + 5y^4\sin x + 1} \Rightarrow g'(x) = -\frac{2}{1} = -2$$

$$\nabla F = \left(F'_x, F'_y\right) = \left(2, 1\right)$$
(8.5)

Alternativ 2 (implicit derivering)

 $y=g(x)\Rightarrow x^3g(x)^2+g(x)^5\sin x+g(x)+2x=2=$ konstant $\forall x$ på intervall kring x=1 Derivera $g(x)\Rightarrow$

$$3x^{2}q(x)^{2} + 2x^{3}q(x)q'(x) + 5q(x)^{4}q'(x)\sin x + q(x)^{5}\cos x + q'(x) + 2 = 0$$
 (8.6)

Lös ut g'(x), ger samma som i (8.5) Även g''(x) kan beräknas genom implicit derivering av (8.6)

8.3 3 variabler, 1 funktion

Ur F(x,y,z)=C $\Big(F\in C^1$, nivåyta geometriskt $\Big)$ kan t.ex. z lösas ut som en C^1 -funktion av x&y, z=g(x,y), lokalt kring (a,b,c) på ytan om $F_z'(a,b,c)\neq 0$ $\Big(\nabla F$ ej parallell med xy-planet $\Big)$

Implicit derivering/kedjeregeln

$$0 = \frac{\partial}{\partial x} \underbrace{F(x, y, g(x, y))}_{=C} = F'_x * 1 + F'_y * 0 + F'_z g'_x \Rightarrow g'_x = -\frac{F'_x}{F'_z} \text{ pss } g'_y = -\frac{F'_y}{F'_z}$$

Motsvarande om x eller y ska lösas ut

8.3.1 Exempel 5

$$\begin{split} F(x,y,z) &= x^2z\cos y + e^{z+3y-x} = 2 \text{ , nivåyta } F \in C^1 \\ F(1,0,1) &= 1^2*1\cos 0 + e^{1+0-1} = 2 \Rightarrow (1,0,1) \text{ på ytan} \\ F_y' &= -x^2z\sin y + 3e^{z+3y-x} \Rightarrow F_y'(1,0,1) = 3 \neq 0 \end{split} \tag{8.7}$$

 $\Rightarrow y$ kan lösas ut som y=g(x,z) ur F(x,y,z)=2kring (1,0,1) på ytan $g\in C^1$ med g(1,1)=0

$$g'_x = -\frac{F'_x}{F'_y} = -\frac{2xz\cos y - e^{z+3y-x}}{-x^2z\sin y + 3e^{z+3y-x}} \stackrel{\mathrm{i}(1,0,1)}{=} -\frac{2-1}{3} = -\frac{1}{3}$$

$$g'_z = -\frac{F'_x}{F'_y} = -\frac{x^2\cos y + e^{z+3y-x}}{-x^2z\sin y + 3e^{z+3y-x}} \stackrel{\mathrm{i}(1,0,1)}{=} -\frac{2}{3}$$

8.4 3 variabler, 2 funktioner

Ekvationssystem
$$\left\{ \begin{array}{l} F(x,y,z) = C_1 \\ G(x,y,z) = C_2 \end{array} \right.$$

är geometriskt skärningen mellan två nivåytor, dvs en kurva γ . γ kan lokalt kring en punkt $P \in \gamma$ parametriseras med t.ex. $x: \bar{r}(t) = \bar{r}(x) = \left(x, h(x), j(x)\right)$ om tangenten $\bar{T} = \nabla F \times \nabla G$ har x-komponent

$$\begin{bmatrix} F_y' & F_z' \\ G_y' & G_z' \end{bmatrix} \neq 0$$

Algebraiskt tolkat kan då y=h(x) & z=j(x) lösas ut ur systemet som en funktion av x (lokalt kring P)

8.4.1 Exempel 6

$$\begin{cases} F(x, y, z) = x^4 + yz = 1 & F(-1, 0, 2) = 1 \\ G(x, y, z) = x^2 e^y z = 2 & G(-1, 0, 2) = 2 \end{cases} \Rightarrow$$

$$\Rightarrow P = (-1, 0, 2) \text{ på skärningskurvan } \gamma$$
(8.8)

$$\nabla F = (4x^3, z, y) \overset{P}{=} (-4, 2, 0) \quad \& \quad \nabla G = (2xe^y z, x^2e^y z, x^2e^y) \overset{P}{=} (-4, 2, 1)$$

 $\Rightarrow \bar{T} = \nabla F \times \nabla G = (2,4,0)$ är tangent till γ i P

x-komponent av \bar{T} är $2 \neq 0 \Rightarrow$ kring P (som har x=-1) kan både y & z lösas ut som C^1 funktioner y=h(x) & z=j(x) på γ .

Om γ skrivs $\bar{r}(x) = (x, h(x), j(x))$ är $\bar{r}'(x) = (1, h'(x), j'(x))$ vilket ger att

 $\bar{r}'(-1) = (1, h'(-1), j'(-1))$ är en tangentvektor till γ i $P \Rightarrow$ parallell med $(2, 4, 0) = 2(1, 2, 0) \Rightarrow h'(-1) = 2$ & j'(-1) = 0

OBS! z-komponent av $\bar{r} = 0 \Rightarrow z$ ingen bra parameter för γ kring P

9 Föreläsning IX

9.1 Dubbelintegraler

Skivformeln för volymen

Volymen av en tunn skiva ges av dV = A(x) dx, den hela volymen ges av

$$V = \int_{-a}^{b} dV$$

9.1.1 Exempel

Låt D vara mängden $\left\{\begin{array}{ll} 0 \leq x \leq 2 \\ 0 \leq y \leq x^2 \end{array} \right.$ D kan också skrivas $\left\{\begin{array}{ll} 0 \leq y \leq 4 \\ \sqrt{y} \leq x \leq 2 \end{array} \right.$

Figur 11: $D = \left\{ (x,y) \mid 0 \leq x \leq 2 \text{ , } 0 \leq y \leq x^2 \right\}$

Låt $f(x,y) = xy^2$ Vad blir volymen mellan ytan $z = xy^2$ och xy-planet ovanför D?

Figur 12: 2D representation av en skiva

$$A(x) = \int_{0}^{x^{2}} xy^{2} dy = x \int_{0}^{x^{2}} y^{2} dy = x \left[\frac{y^{3}}{3} \right]_{0}^{x^{2}} = x \frac{x^{6}}{3} = \frac{x^{7}}{3}$$

Volymen
$$V = \int_{0}^{2} A(x) dx = \int_{0}^{2} \frac{x^{7}}{3} dx = \left[\frac{x^{8}}{24}\right]_{0}^{2} = \frac{256}{24} = \frac{32}{3}$$

Vi skriver dubbelintegralen av xy över D

$$V = \int_{0}^{2} \left(\int_{0}^{x^{2}} xy^{2} dy \right) dx = \iint_{D} xy^{2} dx dy = \int_{0}^{4} \left(\int_{\sqrt{2}}^{2} xy^{2} dx \right) dy$$

9.1.2 Skiva i y-led

$$A(y) = \int_{\sqrt{y}}^{2} xy^{2} dx = y^{2} \int_{\sqrt{y}}^{2} x dx = y^{2} \left[\frac{x^{2}}{2} \right]_{\sqrt{2}}^{2} = y^{2} \left(2 - \frac{y}{2} \right) = 2y^{2} - \frac{y^{3}}{2}$$

$$V = \int_{0}^{4} A(y) \, dy = \int_{0}^{4} \left(2 - \frac{y}{2}\right) \, dy = \left[\frac{2y^{3}}{3} - \frac{y^{4}}{8}\right]_{0}^{4} = \frac{128}{3} - \frac{258}{8} = \frac{32}{3}$$

Samma svar såklart!

9.2 Översikt, definition av dubbelintegraler

Att integrera en variabel i taget kallas upprepade enkelintegraler

9.2.1 Steg 1

Figur 13: Visar på en yta med mindre ytor i

En trappfunktion ϕ på $\triangle_1, \ldots, \triangle_n$ är konstant på varje $\triangle_j: \phi(x,y) = C_j$ på \triangle_j . Då kan dubbelintegralen av ϕ över \triangle definieras som volymen (med tecken)

$$\iint_{\triangle} \phi(x,y) \, dx \, dy = I(\phi) = C_1 A(\triangle_1) + \ldots + C_n A(\triangle_n)$$

Adnan Avdagic

9.2.2 Steg 2

Om $\phi_1 \leq f \leq \phi_2$ på \triangle , ϕ_1 , ϕ_2 trappfunktioner, så kallas $I(\phi_1)$ en undersumma till f på \triangle och $I(\phi_2)$ en översumma. f kallas <u>integrerbar</u> över \triangle om $\forall \epsilon > 0 \, \exists$ sådana ϕ_1 , ϕ_2 med $I(\phi_2) - I(\phi_1) < \epsilon$. Man kan bevisa att då finns ett unikt tal k så att $I(\phi_1) \leq k \leq I(\phi_2) \forall$ sådana ϕ_1 , ϕ_2

k kallas dubbelintegralen av f över \triangle , skrivs

$$k = \iint\limits_{\triangle} f(x, y) \, \mathrm{d}x \, \mathrm{d}y$$

Kort sammanfattning:

Man visar att f kontinuerlig på $\triangle \Rightarrow f$ integrerbar över \triangle

9.2.3 Steg 3

Där en godtycklig mängd, $D \subset \triangle$

Sätt
$$f_D = \begin{cases} f & \text{på } D \\ 0 & \text{utanför } D \end{cases}$$
, normalt sett ej kontinuerlig på randen av D

fär integrerbar över D om f_D är integrerbar över \triangle och då definieras

$$\iint\limits_{D} f(x,y) \, \mathrm{d}x \, \mathrm{d}y = \iint\limits_{\triangle} f_{\mathrm{d}}(x,y) \, \mathrm{d}x \, \mathrm{d}y$$
 definierat i 9.2.2

Man visar att $\iint\limits_D f(x,y)\,\mathrm{d} x\,\mathrm{d} y\,\exists$ om Dbegränsad, fberor på D

 $\left(|f(x,y)| \leq M \text{ på } D\right)$ och f kontinuerlig utom möjligen på en <u>nollmängd</u>; en mängd N som $\forall \epsilon > 0$ kan täckas över med rektanglar med total area $< \epsilon$. T.ex. kan N vara en vanlig kurva (som D:s rand).

Vanliga räknelagar gäller, t.ex.

$$\iint\limits_{D} \left(f(x,y) + g(x,y) \right) \mathrm{d}x \, \mathrm{d}y = \iint\limits_{D} f(x,y) \, \mathrm{d}x \, \mathrm{d}y + \iint\limits_{D} g(x,y) \, \mathrm{d}x \, \mathrm{d}y$$

9.2.4 Exempel

Beräkna
$$I=\iint\limits_{D}x\sin xy\,\mathrm{d}x\,\mathrm{d}y\,\,\mathrm{d}\mathring{a}\,\,D: \begin{cases} 0\leq x\leq \frac{\pi}{2}\\ 0\leq y\leq 1 \end{cases}$$

Enklast att börja med att integrera över y

$$I = \int_{0}^{\frac{\pi}{2}} \left(\int_{y=0}^{y=1} x \sin xy \, dy \right) dx = \int_{0}^{\frac{\pi}{2}} \left[-\cos xy \right]_{y=0}^{y=1} dx =$$
$$= \int_{0}^{\frac{\pi}{2}} \left(-\cos x + 1 \right) dx = \left[-\sin x + x \right]_{0}^{\frac{\pi}{2}} = \frac{-1 + \frac{\pi}{2}}{\frac{\pi}{2}}$$

9.2.5 Exempel

Beräkna
$$I = \int\limits_0^1 \left(\int\limits_{x^2}^1 x e^{y^2} \,\mathrm{d}y \right) \,\mathrm{d}x$$

 $\int e^{y^2} dy = ???$ Enklare att börja med x

Figur 14: $D = \{(x, y) \mid 0 \le y \le 1, 0 \le x \le \sqrt{y}\}$

$$\Rightarrow I = \int_{0}^{1} \left(\int_{0}^{\sqrt{y}} x e^{y^{2}} dx \right) dy = \int_{0}^{1} e^{y^{2}} \left[\frac{x^{2}}{2} \right]_{0}^{\sqrt{2}} dy =$$

$$= \int_{0}^{1} e^{y^{2}} \frac{y}{2} dy = \frac{1}{2} \int_{0}^{1} y e^{y^{2}} dy = \frac{1}{4} \left[e^{y^{2}} \right]_{0}^{1} = \frac{e - 1}{\underline{4}}$$

9.3 Definition

<u>Arean</u> av en mängd D i xy-planet är $Arean(D) = \iint_D dx dy$

9.3.1 Exempel

$$D: \begin{cases} a \leq x \leq b \\ f(x) \leq y \leq g(x) \end{cases}, \text{ ger Area}(D) = \iint\limits_{D} \,\mathrm{d}x \,\mathrm{d}y = \\ = \int\limits_{a}^{b} \left(\int\limits_{f(x)}^{g(x)} \,\mathrm{d}y\right) \,\mathrm{d}x = \int\limits_{a}^{b} \left[y\right]_{f(x)}^{g(x)} \,\mathrm{d}x = \\ = \int\limits_{\underline{a}}^{b} \left(g(x) - f(x)\right) \,\mathrm{d}x \\ \xrightarrow{\text{bekant från envarre}}$$

Sida 40 9.3 Definition

10 Föreläsning X

10.1 Variabelbyte i dubbelintegraler - Sats

Om D i xy-planet avbildas bijektivt på E i uv-planet (till varje punkt $(x,y)\in D$ hör en punkt $(u,v)\in E$ och omvänt) med $\frac{\mathrm{d}(x,y)}{\mathrm{d}(u,v)}=\begin{vmatrix} x'_u & x'_v \\ y'_u & y'_v \end{vmatrix}\neq 0$ så är $\iint\limits_D f(x,y)\,\mathrm{d}x\,\mathrm{d}y=\iint\limits_E f\Big(x(u,v),y(u,v)\Big)|\frac{\mathrm{d}(x,y)}{\mathrm{d}(u,v)}|\,\mathrm{d}u\,\mathrm{d}v$

10.1.1 Bevisidé

Approximera trappfunktionen ϕ

För att integralens värde inte ska ändras måste vi multiplicera med

$$\frac{1}{\left|\frac{\mathrm{d}(u,v)}{\mathrm{d}(x,y)}\right|} = \frac{1}{\left|\begin{matrix} u_x' & u_y' \\ v_x' & v_y' \end{matrix}\right|} = \left|\begin{matrix} x_u' & x_v' \\ y_u' & y_v' \end{matrix}\right| = \frac{\mathrm{d}(x,y)}{\mathrm{d}(u,v)}$$

Jämför med envarre: $dx = \frac{dx}{dt} dt$

Belopp på determinant i flervarre för att vi alltid sätter gränser från undre till övre värde

10.1.2 Exempel

$$I = \iint_{D} \frac{\mathrm{d}x \,\mathrm{d}y}{5 + x^2 + y^2} \,, \ D = \left\{ (x, y) \,|\, x^2 + y^2 \le 3 \,, \ x \le 0 \,, \ y \ge 0 \right\}$$

Byt till polära koordinater: $\left\{ \begin{array}{l} x=\rho\cos\varphi\\ y=\rho\sin\varphi \end{array} \right. \Rightarrow D \; {\rm \"{o}verg \mathring{a}r} \; {\rm i} \; E$

$$E: \begin{cases} 0 \le \rho \le \sqrt{3} \\ \frac{\pi}{2} \le \varphi \le \pi \end{cases} \quad \frac{\mathrm{d}x \, \mathrm{d}y}{\mathrm{d}\rho \, \mathrm{d}\varphi} = \text{se 7.2.3 on page 27} = \rho$$

$$\Rightarrow I = \iint_{E} \frac{1}{5+\rho^{2}} \left| \frac{\mathrm{d}x \, \mathrm{d}y}{\mathrm{d}\rho \, \mathrm{d}\varphi} \right| \, \mathrm{d}\rho \, \mathrm{d}\varphi = \int_{\frac{\pi}{2}}^{\pi} \left(\int_{0}^{\sqrt{3}} \frac{\rho}{5+\rho^{2}} \, \mathrm{d}\rho \right) \, \mathrm{d}\varphi =$$

$$= \int_{\frac{\pi}{2}}^{\pi} \left[\frac{1}{2} \ln 5 + \rho^{2} \right]_{0}^{\sqrt{3}} \, \mathrm{d}\varphi = \int_{\frac{\pi}{2}}^{\pi} \left(\frac{1}{2} \ln 8 - \frac{1}{2} \ln 5 \right) \, \mathrm{d}\varphi =$$

$$= \frac{1}{2} \ln \frac{8}{5} \int_{\frac{\pi}{2}}^{\pi} \mathrm{d}\varphi = \frac{1}{2} \ln \frac{8}{5} \left[\rho \right]_{\frac{\pi}{2}}^{\pi} = \frac{\pi}{4} \ln \frac{8}{5}$$

10.1.3 På en elipsskiva

$$\left(\frac{x - x_o}{a}\right)^2 + \left(\frac{y - y_o}{b}\right)^2 \le 1$$

Figur 15: Funktion i xy-planet

$$\text{Variabelbytet } \begin{cases} u = \frac{x - x_o}{a} \\ v = \frac{y - y_o}{b} \end{cases}, \text{ ger } u^2 + y^2 \leq 1 \text{ och } \frac{\mathrm{d}(x,y)}{\mathrm{d}(u,v)} = \frac{1}{\begin{pmatrix} u'_x & u'_y \\ v'_x & v'_y \end{pmatrix}} = \frac{1}{\begin{pmatrix} \frac{1}{a} & 0 \\ 0 & \frac{1}{b} \end{pmatrix}} = \frac{1}{\frac{1}{ab}} = ab$$

Figur 16: Avbildat i uv-planet

 $\mathrm{d} x\,\mathrm{d} y$ byts mot $ab\,\mathrm{d} u\,\mathrm{d} v,$ sedan kan u,v bytas mot polära $\frac{\mathrm{d} (u,v)}{\mathrm{d} (\rho,\varphi)}=\rho$

10.2 Trippelintegraler

$$\iiint\limits_{D} f(x,y,z) \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z$$

definieras också med över- och undersummor. Ingen rent geometrisk tolkning i 3D ty behövs 4 axlar för x, y, z och f. Fysikaliska tolkningar är att om f(x, y, z) är en densitet/täthet (mass-,laddnigs-,...) så ger integralen det totala värdet på storheten (massa,laddning,...).

Volymen av D definieras som

$$\iiint\limits_{D} \,\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z \text{ (som area i 2D, se } 9.3 \text{ on page } 40)$$

Trippelintegraler och multipelintegraler

$$\int \cdots \int f(x_1, \dots, x_n) \, \mathrm{d}x_1, \dots, \, \mathrm{d}x_n \,, \, n \ge 4$$

kan beräknas med upprepade enkelintegraler

10.2.1 Exempel

Beräkna
$$I = \iiint_D z \, dx \, dy \, dz \, d\mathring{a} \, D$$
 ges av
$$\begin{cases} 0 \le x \le 1 \\ x \le y \le 1 \\ 0 \le z \le (y - x)^2 \end{cases}$$

$$I = \int_0^1 \left(\int_x^1 \left(\int_0^{(y - x)^2} z \, dz \right) \, dy \right) \, dx = \int_0^1 \left(\int_x^1 \left[\frac{z^2}{2} \right]_0^{(y - x)^2} \, dy \right) \, dx = \int_0^1 \left(\left[\frac{(y - x)^5}{10} \right]_x^1 \right) \, dx = \int_0^1 \left(\frac{(1 - x)^5}{10} - \frac{(x - x)^5}{10} \right) \, dx = \int_0^1 \left(\frac{(1 - x)^5}{10} - \frac{(x - x)^5}{10} \right) \, dx = \int_0^1 \left(\frac{(1 - x)^6}{60} \right)_0^1 = 0 - \left(-\frac{1}{60} \right) = \frac{1}{60}$$

10.3 Integrationsordningar

Det finns 6 olika integrationsordningar, ovan 10.2.1 on the preceding page tog vi $z \to y \to x$.

Med z först har vi kvar projektionen D_{xy} av D

$$z \to y \to x \text{ ger } \begin{cases} 0 \le x \le 1 \\ x \le y \le 1 \end{cases} D_{xy}$$

$$0 \le z \le (y - x)^2$$
(10.1)

$$z \to x \to y \text{ ger } \begin{cases} 0 \le y \le 1 \\ 0 \le x \le y \end{cases} D_{xy}$$

$$0 \le z \le (y - x)^2$$
(10.2)

Med y först har vi kvar projektionen D_{xz} av D $\begin{cases}
z = (y - x)^2 \Rightarrow \sqrt{z} = \pm (y - x) \Rightarrow y = x + \sqrt{z} \\
z = (1 - x)^2 \Rightarrow x = 1 - \sqrt{z}
\end{cases}$

$$y \to z \to x \text{ ger } \begin{cases} 0 \le x \le 1 \\ x \le z \le (1-x)^2 \end{cases} D_{xz}$$
 (10.3)

$$y \to x \to z \text{ ger } \begin{cases} 0 \le z \le 1 \\ 0 \le x \le 1 - \sqrt{z} \end{cases} D_{xz}$$
 (10.4)

Med x först har vi kvar projektionen \mathcal{D}_{yz} av \mathcal{D}

$$x \to z \to y \text{ ger}$$

$$\begin{cases}
0 \le y \le 1 \\
x \le z \le y^2
\end{cases} D_{yz}$$

$$0 \le x \le y - \sqrt{z}$$

$$(10.5)$$

$$x \to y \to z \text{ ger } \begin{cases} 0 \le z \le 1 \\ \sqrt{z} \le y \le 1 \end{cases} D_{yz}$$
 (10.6)

Figur 17: D_{xy}

Figur 18: D_{xz}

Figur 19: D_{yz}

Test av (10.5)

$$I = \int_{0}^{1} \int_{0}^{y^{2}} \int_{0}^{y-\sqrt{z}} z \, dx \, dz \, dy = \int_{0}^{1} \int_{0}^{y^{2}} z \left[x\right]_{0}^{y-\sqrt{z}} \, dz \, dy = \int_{0}^{1} \int_{0}^{y^{2}} z (y - \sqrt{z}) \, dz \, dy = \int_{0}^{1} \left[\frac{z^{2}y}{2} - \frac{2z^{\frac{5}{2}}}{5}\right]_{0}^{y^{2}} \, dy = \int_{0}^{1} \left(\frac{y^{2}}{2} - \frac{2y^{5}}{5} - \frac{0^{2}y}{2} - \frac{2 * 0^{\frac{5}{2}}}{5}\right) \, dy = \int_{0}^{1} \frac{y^{5}}{10} \, dy = \left[\frac{y^{6}}{60}\right] = \frac{1}{\underline{60}}$$

Man kan också tänka att D skivas upp. T.ex. för <u>fixt</u> y har vi skivan i figur 18 on the previous page

$$\operatorname{Ger} I = \int_{0}^{1} \left(\iint_{\hat{D}_{xz}} dx \, dz \right) dy$$

$$\hat{D}_{xz} : \begin{cases} 0 \le x \le y \\ 0 \le z \le (y - x)^{2} \end{cases} \quad \operatorname{ger} (10.2)$$

$$\hat{D}_{xz} : \begin{cases} 0 \le z \le y^{2} \\ 0 \le x \le y - \sqrt{z} \end{cases} \quad \operatorname{ger} (10.5)$$

11 Föreläsning XI

11.1 Cylinderkoordinater ρ , φ och z

i 3D är $x,\!y$ bytt mot polära koordinater men z behålls $\frac{d(x,y,z)}{d(\rho,\varphi,z)}=\rho\,\geq\,0$

11.1.1 Exempel

Beräkna volymen $V = \iiint\limits_K \,\mathrm{d} x\,\mathrm{d} y\,\mathrm{d} z$ av K som begränsas av konen

$$z=\sqrt{x^2+y^2}$$
och halvsfären $x^2+y^2+z^2=2\,,\,z\geq 0$

$$K$$
ges av $\sqrt{x^2+y^2} \leq z \leq \sqrt{2-x^2-y^2} \; (x,y) \in D$, en cirkel med radie = 1

Skärningen av konen & sfären:

$$\sqrt{x^2 + y^2} = \sqrt{2 - x^2 - y^2} \Rightarrow x^2 + y^2 = 2 - x^2 - y^2 \Rightarrow x^2 + y^2 = 1 \Rightarrow \text{ radie } = 1$$

I cylindriska koordinater ges K av: $\begin{cases} &0\leq\rho\leq1\\ &0\leq\varphi\leq2\pi\\ &\rho\leq z\leq\sqrt{2-\rho^2} \end{cases}$

$$\Rightarrow V = \iiint_{K} dx dy dz = \int_{0}^{2\pi} \int_{0}^{1} \int_{\rho}^{\sqrt{2-\rho^{2}}} \left| \frac{d(x, y, z)}{d(\rho, \varphi, z)} \right| dz d\rho d\varphi = \int_{0}^{2\pi} \int_{0}^{1} \rho \left[z \right]_{\rho}^{\sqrt{2-\rho^{2}}} d\rho d\varphi = \int_{0}^{2\pi} \int_{0}^{1} \left(\rho \sqrt{2-\rho^{2}} - \rho^{2} \right) d\rho d\varphi = \int_{0}^{2\pi} \left[-\frac{1}{3} (2-\rho)^{\frac{3}{2}} - \frac{1}{3} \rho^{3} \right]_{0}^{1} d\varphi = \int_{0}^{2\pi} \left(-\frac{1}{3} (2-1)^{\frac{3}{2}} - \frac{1}{3} 1^{3} + \frac{1}{3} (2-0)^{\frac{3}{2}} + \frac{1}{3} 0^{3} \right) d\varphi = \int_{0}^{2\pi} \left(-\frac{1}{3} (2-1)^{\frac{3}{2}} - \frac{1}{3} 1^{3} + \frac{1}{3} (2-0)^{\frac{3}{2}} + \frac{1}{3} 0^{3} \right) d\varphi = \int_{0}^{2\pi} \left(-\frac{1}{3} (2-1)^{\frac{3}{2}} - \frac{1}{3} 1^{3} + \frac{1}{3} (2-1)^{\frac{3}{2}} + \frac{1}{3} 0^{3} \right) d\varphi = \int_{0}^{2\pi} \left(-\frac{1}{3} (2-1)^{\frac{3}{2}} - \frac{1}{3} (2-1)^{\frac{3}{2}} + \frac{1}{3} (2-1)^{\frac{3}{2}} \right) d\varphi = \int_{0}^{2\pi} \left(-\frac{1}{3} (2-1)^{\frac{3}{2}} - \frac{1}{3} (2-1)^{\frac{3}{2}} + \frac{1}{3} (2-1)^{\frac{3}{2}} \right) d\varphi = \int_{0}^{2\pi} \left(-\frac{1}{3} (2-1)^{\frac{3}{2}} - \frac{1}{3} (2-1)^{\frac{3}{2}} \right) d\varphi = \int_{0}^{2\pi} \left(-\frac{1}{3} (2-1)^{\frac{3}{2}} - \frac{1}{3} (2-1)^{\frac{3}{2}} \right) d\varphi = \int_{0}^{2\pi} \left(-\frac{1}{3} (2-1)^{\frac{3}{2}} - \frac{1}{3} (2-1)^{\frac{3}{2}} \right) d\varphi = \int_{0}^{2\pi} \left(-\frac{1}{3} (2-1)^{\frac{3}{2}} - \frac{1}{3} (2-1)^{\frac{3}{2}} \right) d\varphi = \int_{0}^{2\pi} \left(-\frac{1}{3} (2-1)^{\frac{3}{2}} - \frac{1}{3} (2-1)^{\frac{3}{2}} \right) d\varphi = \int_{0}^{2\pi} \left(-\frac{1}{3} (2-1)^{\frac{3}{2}} - \frac{1}{3} (2-1)^{\frac{3}{2}} \right) d\varphi = \int_{0}^{2\pi} \left(-\frac{1}{3} (2-1)^{\frac{3}{2}} - \frac{1}{3} (2-1)^{\frac{3}{2}} \right) d\varphi = \int_{0}^{2\pi} \left(-\frac{1}{3} (2-1)^{\frac{3}{2}} - \frac{1}{3} (2-1)^{\frac{3}{2}} \right) d\varphi = \int_{0}^{2\pi} \left(-\frac{1}{3} (2-1)^{\frac{3}{2}} - \frac{1}{3} (2-1)^{\frac{3}{2}} \right) d\varphi = \int_{0}^{2\pi} \left(-\frac{1}{3} (2-1)^{\frac{3}{2}} - \frac{1}{3} (2-1)^{\frac{3}{2}} \right) d\varphi = \int_{0}^{2\pi} \left(-\frac{1}{3} (2-1)^{\frac{3}{2}} - \frac{1}{3} (2-1)^{\frac{3}{2}} \right) d\varphi = \int_{0}^{2\pi} \left(-\frac{1}{3} (2-1)^{\frac{3}{2}} - \frac{1}{3} (2-1)^{\frac{3}{2}} \right) d\varphi = \int_{0}^{2\pi} \left(-\frac{1}{3} (2-1)^{\frac{3}{2}} - \frac{1}{3} (2-1)^{\frac{3}{2}} \right) d\varphi = \int_{0}^{2\pi} \left(-\frac{1}{3} (2-1)^{\frac{3}{2}} - \frac{1}{3} (2-1)^{\frac{3}{2}} \right) d\varphi = \int_{0}^{2\pi} \left(-\frac{1}{3} (2-1)^{\frac{3}{2}} - \frac{1}{3} (2-1)^{\frac{3}{2}} \right) d\varphi = \int_{0}^{2\pi} \left(-\frac{1}{3} (2-1)^{\frac{3}{2}} \right) d\varphi = \int_{0}^{2\pi} \left(-\frac{1}{3} (2-1)^{\frac{3}{2}} - \frac{1}{3} (2-1)^{\frac{3}{2}} \right) d\varphi = \int_{0}^{2\pi} \left(-\frac{1}{3} (2-1$$

Om vi istället tar konstanta gränser på z och variabla på ρ måste vi dela upp integralen i två bitar

$$\text{Konen:} \left\{ \begin{array}{ll} 0 \leq z \leq 1 \\ 0 \leq \rho \leq z \quad \text{och Sfären:} \left\{ \begin{array}{ll} 1 \leq z \leq \sqrt{2} \\ 0 \leq \rho \leq \sqrt{2-z^2} \\ 0 \leq \varphi \leq 2\pi \end{array} \right. \right.$$

$$\Rightarrow V = \int_{0}^{2\pi} \int_{0}^{1} \int_{0}^{z} \rho \, d\rho \, dz \, d\varphi + \int_{0}^{2\pi} \int_{1}^{\sqrt{2}} \int_{0}^{\sqrt{2-z^{2}}} \rho \, d\rho \, dz \, d\varphi =$$

$$= \int_{0}^{2\pi} \int_{0}^{1} \left[\frac{\rho^{2}}{2} \right]_{0}^{z} \, dz \, d\varphi + \int_{0}^{2\pi} \int_{1}^{\sqrt{2}} \left[\frac{\rho^{2}}{2} \right]_{0}^{\sqrt{2-z^{2}}} \, dz \, d\varphi =$$

$$= \int_{0}^{2\pi} \int_{0}^{1} \frac{z^{2}}{2} \, dz \, d\varphi + \int_{0}^{2\pi} \int_{1}^{\sqrt{2}} \frac{2 - z^{2}}{2} \, dz \, d\varphi =$$

$$= \int_{0}^{2\pi} \underbrace{\left[\frac{z^{3}}{6} \right]_{0}^{1}}_{=\frac{1}{6}} \, d\varphi + \int_{0}^{2\pi} \underbrace{\left[z - \frac{z^{3}}{6} \right]_{1}^{\sqrt{2}}}_{=\sqrt{2} - \frac{2\sqrt{2}}{6} - 1 + \frac{1}{6}} \, d\varphi =$$

$$= \left(\frac{4\sqrt{2}}{6} - \frac{4}{6} \right) \int_{0}^{2\pi} d\varphi = \underbrace{\frac{4\pi}{3} (\sqrt{2} - 1)}_{=\frac{2\pi}{3} - \frac{2\pi}{3}}$$

11.1.2 Exempel

Härled volymen av ett klot

Rymdpolära koordinater
$$\begin{cases} & 0 \leq r \leq R \\ & 0 \leq \theta \leq \pi \\ & 0 \leq \varphi \leq 2\pi \end{cases}, \, R \text{ \"{ar} radien}$$

$$\frac{d(x,y,z)}{d(r,\theta,\varphi)} = \text{ 7.4.1 on page 30} = r^2 \sin \theta$$

$$V = \iiint\limits_K \mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z = \int\limits_0^{2\pi} \int\limits_0^\pi \int\limits_0^R |\frac{d(x,y,z)}{d(r,\theta,\varphi)}|\,\mathrm{d}r\,\mathrm{d}\theta\,\mathrm{d}\varphi =$$

$$= \int\limits_0^{2\pi} \int\limits_0^\pi \left[\frac{r^3}{3}\right]_0^R \sin\theta\,\mathrm{d}\theta\,\mathrm{d}\varphi = \frac{R^3}{3} \int\limits_0^{2\pi} \underbrace{\left[-\cos\theta\right]}_0 0_{-(-1)-(-1)}^\pi \,\mathrm{d}\varphi =$$

$$\frac{2R^3}{3} \left[\varphi\right]_0^{2\pi} = \underbrace{\frac{4\pi R^3}{3}}_{\underline{3}}$$

Tyngdpunkt/masscentrum

Envarre 2 (Forsling-Neymark 7.5):

Tyngdpunkten (x_T, y_T, z_T) hos en 3-dimensionell kropp K med massdensitet $\rho(x, y, z)$ [kg/m³] ges av

$$x_T = \frac{1}{m} \iiint_K x \rho(x, y, z) \, dx \, dy \, dz$$
$$y_T = \frac{1}{m} \iiint_K y \rho(x, y, z) \, dx \, dy \, dz$$
$$z_T = \frac{1}{m} \iiint_K z \rho(x, y, z) \, dx \, dy \, dz$$

där $m = \iiint \rho(x, y, z) dx dy dz$ är kroppens totala massa

OBS att $\rho(x, y, z)$ får variera över K

I F-N skrivs dx dy dz som dV

Om
$$\rho(x, y, z)$$
 är konstant blir $x_T = \frac{\iiint_K x \, dV}{\iiint_K dV} = \frac{\iiint_K x \, dV}{V}$ pss. för y och z

En tunn skiva
$$D$$
 kan modelleras 2-dimensionellt och har tyngdpunkt
$$(x_T,y_T) = \left(\frac{1}{m}\iint_D x\rho(x,y)\,\mathrm{d}x\,\mathrm{d}y\,,\,\frac{1}{m}\iint_D y\rho(x,y)\,\mathrm{d}x\,\mathrm{d}y\right)\,\mathrm{där}\,\rho(x,y)\,$$
är

ytdensiteten [kg/m²] och $m=\iint \rho(x,y)\,\mathrm{d} x\,\mathrm{d} y$ är den totala massan

11.2.1 Exempel

Beräkna
$$t_p$$
 på en halvcirkelskiva med konstant $\rho(x,y)=k$
$$\begin{cases} x_T=0 & \text{(symmetri)} \quad -a \leq x \leq a \\ y_T=??? & 0 \leq y \leq a \end{cases}$$
 massa $m=\iint_D k \,\mathrm{d}x \,\mathrm{d}y=k \iint_D dx \,\mathrm{d}y=k*area(D)=k\frac{\pi a^2}{2}$
$$\Rightarrow y_T=\frac{1}{m}\iint_D y \,\mathrm{d}x \,\mathrm{d}y=\frac{2}{k\pi a^2}k \iint_D y \,\mathrm{d}x \,\mathrm{d}y=$$

$$= \left/\begin{array}{c} \text{polära koordinater } r \,,\, \varphi \, (\rho \, \text{upptagen}) \\ 0 \leq r \leq a \,,\, 0 \leq \varphi \leq \pi \, \frac{d(x,y)}{d(r,\varphi)} \end{array}\right/=$$

$$= \frac{2}{\pi a^2}\int_0^\pi \int_0^a r \sin\varphi r \,\mathrm{d}r \,\mathrm{d}\varphi = \frac{2}{\pi a^2}\int_0^\pi \left[\frac{r^3}{3}\right]_0^a \sin\varphi \,\mathrm{d}\varphi = \frac{2}{\pi a^2}\frac{a^3}{3}\left[-\cos\varphi\right]_0^\pi = \frac{4a^3}{\pi a^2 3} = \frac{4a}{3\pi}$$

11.2.2 Exempel

 $\underline{\mathrm{3D}}$ Bestäm t_p för en fylld kon

$$\begin{cases} x_T = 0 & \text{(symmetri)} \\ \sqrt{x^2 + y^2} \le z \le 1 & \text{om} & a/ & \rho = 1 \\ y_T = 0 & \text{(symmetri)} & b/ & \rho = 1 + x^2 + y^2 + z^2 \end{cases}$$

K i cylinderkoordinater (r, φ, z)

$$(1) \begin{cases} 0 \le z \le 1 \\ 0 \le r \le \sqrt{x^2 + y^2} \\ 0 \le \varphi \le 2\pi \end{cases} \quad \text{eller } (2) \begin{cases} 0 \le r \le 1 \\ r \le z \le 1 \\ 0 \le \varphi \le 2\pi \end{cases}$$

Vi kommer att använda oss av (1) i detta exempel

a/

$$m = \int_{0}^{2\pi} \int_{0}^{1} \int_{0}^{z} r \, dr \, dz \, d\varphi = \int_{0}^{2\pi} \int_{0}^{1} \underbrace{\left[\frac{r^{2}}{2}\right]_{0}^{z}}_{\frac{z^{2}}{2}} \, dz \, d\varphi = \int_{0}^{2\pi} \left[\frac{z^{3}}{6}\right]_{0}^{1} \, d\varphi = \frac{1}{6} \left[\varphi\right]_{0}^{2\pi} = \frac{\pi}{3}$$

$$z_T = \frac{1}{m} \int_0^{2\pi} \int_0^1 \int_0^z z \, dr \, dz \, d\varphi = \frac{3}{\pi} \int_0^{2\pi} \int_0^1 z \underbrace{\left[\frac{r^2}{2}\right]_0^z}_{\underline{z},\underline{3}} dz \, d\varphi = \frac{3}{\pi} \int_0^{2\pi} \left[\frac{z^4}{8}\right]_0^1 d\varphi = \frac{3}{\pi} * \frac{1}{8} * 2\pi = \underbrace{\frac{3}{4}}_{\underline{4}} = \underbrace{\frac{3}{4}}_{\underline{4}}$$

b/

$$\rho(x,y,z) = 1 + x^2 + y^2 + z^2 = 1 + r^2 + z^2$$
i cylindriska koordinater

$$\Rightarrow m = \int_{0}^{2\pi} \int_{0}^{1} \int_{0}^{z} (1+r^{2}+z^{2})r \,dr \,dz \,d\varphi = \int_{0}^{2\pi} \int_{0}^{1} \left[\frac{r^{2}}{2} + \frac{r^{4}}{4} + \frac{z^{2}r^{2}}{2}\right]_{0}^{z} \,dz \,d\varphi =$$

$$= \int_{0}^{2\pi} \int_{0}^{1} \left(\frac{z^{2}}{2} + \frac{3z^{4}}{4}\right) \,dz \,d\varphi = \int_{0}^{2\pi} \left[\frac{z^{3}}{6} + \frac{3z^{5}}{20}\right]_{0}^{1} \,d\varphi = \left(\frac{1}{6} * \frac{3}{20}\right) 2\pi = \frac{19\pi}{30}$$

$$\Rightarrow z = \frac{1}{m} \iiint_K z(1+r^2+z^2)r \, dr \, dz \, d\varphi = \frac{30}{19\pi} \int_0^{2\pi} \int_0^1 z \left[\frac{r^2}{2} + \frac{r^4}{4} + \frac{z^2 r^2}{2} \right]_0^2 \, dz \, d\varphi =$$

$$= \frac{3+}{19\pi} \int_0^{2\pi} \int_0^1 \left(\frac{z^3}{2} + \frac{3z^5}{4} \right) \, dz \, d\varphi = \frac{30}{19\pi} \int_0^{2\pi} \left[\frac{z^4}{8} + \frac{3z^6}{24} \right]_0^1 \, d\varphi = \frac{30}{19\pi} * \frac{1}{4} * 2\pi =$$

$$= \frac{15}{\underline{19}} > \frac{3}{4} \text{ rimligt}$$

12 Föreläsning XII

12.1 Generaliserade multipelintegraler

Envarre Def t.ex. $\int_a^\infty f(x) dx$ skrivs om som ett gränsvärde $\lim_{b\to\infty} \int_a^b f(x) dx$ om gränsvärdet \exists

Flervarre Def Hur definierar man $I = \iint_D f(x,y) dx dy$ om D är obegränsad eller om f(x,y) är obegränsad i D??

12.1.1 Exempel

Vad blir

$$I = \iint_{\mathbb{R}^2} \frac{\mathrm{d}x \,\mathrm{d}y}{(1 + x^2 + y^2)^2} ?? \tag{12.1}$$

 \mathbb{R}^2 är en obegränsad mängd

1. Om $f(x,y) \ge 0$ i D (eller om $f(x,y) \le 0$ i hela D)

Ta mängder $D_1 \subset D_2 \subset D_3 \subset ... \subset D_n \subset ...$ så att $D_n \to D$ (uttömmande följd) och så att D_n är en begränsad mängd och f är begränsad på varje D_n

$$\Rightarrow I_n = \iint_{D_n} f(x, y) dx dy$$
 är inte generaliserad

12.1.2 Exempel

$$D: \begin{cases} 0 \leq x \leq 1 \\ 0 \leq y \leq 1 \end{cases} \quad \text{men } f \text{ \"{a}r obegr\"{a}nsad \'{i} origo}$$

Allmänt är $I_1 \leq I_2 \leq I_3 \leq \ldots \leq I_n \leq \ldots$ eftersom $f \geq 0$
iD

12.1.3 Definition

$$I = \iint_D f(x, y) dx dy = \lim_{n \to \infty} I_n$$
 om gränsvärde \exists

Den generella integralen I är då konvergent, annars divergent

Man kan bevisa att:

- (a) Gränsvärde är oberoende av <u>hur</u> den uttömmande följden $D_1\subset D_2\subset ...$ väljs (annars dålig definition)
- (b) I kan beräknas med upprepade eventuellt generaliserade enkelintegraler
- (c) Variabelbyten är tillåtna på vanligt sätt

12.1.4 I exempel (12.1) ovan

$$I = \iint_{\mathbb{R}^2} \frac{\mathrm{d}x \,\mathrm{d}y}{(1 + x^2 + y^2)^2} \; , \; \frac{1}{(1 + x^2 + y^2)^2} > 0 \; \forall \, x, y \, \in \, \mathbb{R}^2$$

 \Rightarrow kan räkna på med alla kända metoder

Med
$$D_n: x^2+y^2 \le n^2$$
 och polära koordinater
$$\begin{cases} 0 & \le \rho \le n \\ 0 & \le \varphi \le 2\pi \end{cases}$$
 får vi
$$I_n = \iint\limits_{D_n} \frac{\mathrm{d} x\,\mathrm{d} y}{(1+x^2+y^2)^2} = \int$$

Appendix $Adnan\ Avdagic$

13 Appendix

Figurer

1	Graf i 2D
2	Graf för polära koordinater
3	Exempel på rotationssymmetri
4	Rymdpolära koordinater 6
5	Grafisk visning av hur f ändras i x- & y-riktningen 8
6	Arean innan skalning
7	Arean efter skalning
8	Arean innan skalning
9	Arean efter skalning ($+\bar{C}$ påverkar ej arean)
10	Grafisk visning av (8.2)
11	$D = \{(x, y) \mid 0 \le x \le 2, \ 0 \le y \le x^2\} \dots \dots$
12	2D representation av en skiva
13	Visar på en yta med mindre ytor i
14	$D = \{(x,y) \mid 0 \le y \le 1, \ 0 \le x \le \sqrt{y}\} \dots 39$
15	Funktion i <i>xy</i> -planet
16	Avbildat i <i>uv</i> -planet
17	D_{xy}
18	D_{xz}
19	D_{uz}

Tabeller