LEX3: Regexps are Trees

Lexical Analysis

CMPT 379: Compilers

Instructor: Anoop Sarkar

anoopsarkar.github.io/compilers-class

xkcd.com/208

Regular Expressions are Trees

Regular Expressions are ambiguous

Regexp operator precedence rules

- Grouping using parentheses ()
- 2. Unary operator *
- 3. Binary operator for concatenation
- 4. Binary operator for alternation

Q: Find the smallest set of strings that can find the above operator precedence rules for the regexp ac | bc.

Hint: Compare the matching on input strings between the original regexp ac | bc and the 5 unambiguous regexps.

Regular expressions are trees

Q: Provide the unambiguous bracketed tree for regexp ab* | c* using the precedence and associativity rules

Equivalence of Regular Expressions

Equivalence of Regexps (0(10)*1)|(01)* == (01)*?

(RS)T == R(ST)

- Commutative
- (R|S)|T == R|(S|T)
- (R|S) == (S|R)
- (R|S)T == (RT|ST) **Factor**
- R(S|T) == RS | RT
- R == R | R

Redundant

 $R|R == R\epsilon$

• $R^* == RR^* | \epsilon$

Closure

- R*R* == (R*)*
- $(R^*)^* == R^*$
- RR* == R*R

Reorder

- (RS)*R == R(SR)*
- $(R|S)^* == (R^*S^*)^*$
- (R*S*)* == (R*S)*R*
- (R*S)*R* == (R*|S*)*

debuggex.com

Equivalence of Regexps

$$(0(10)*1)|(01)* == (01)*?$$

Equivalence of Regexps

•
$$(0(10)*1)|(01)*$$
 $(RS)*R == R(SR)*$

- (01(01)*)|(01)*
- (01(01)*)|(01)* RS == (RS)

$$RS == (RS)$$

- ((01)(01)*)|(01)*
- $((01)(01)^*)(01)^* \sqrt{R} + == RR^*$

- (01)+|(01)*
- (01)+|(01)*

$$| R + | R^* == (RR^*) | R^* == R^*$$

(01)*