北京邮电大学 2017--2018 学年第一学期 计算机学院

"Operating Systems" Test (1)

	ClassNoName
	F ill in blanks (10 points 注:要求填入英文答案,中文答案扣 0.5 分)
	· •
1)	When a computer is powered on, the procedure of starting the computer by
	loading the OS kernel is known as <u>booting</u> the system.
2)	The operating systems that allow users to use computers in interactive manners
	are called the <u>time-sharing</u> operating systems.
3)	A software-generated interrupt caused either by an error or by specific requests
	from user programs that an operating-system service be performed is called a
	<u>trap</u> .
4)	For n concurrent processes that mutual exclusively use some resources, the code
	segmentations, in which the processes access the resources, are called <u>critical</u>
	sections.
5)	To protect the OS and all other programs and their data from any malfunctioning
	program, hardware protection is needed. Two separate modes of CPU operations,
	that is the <u>kernel/supervised/privileged/monitored</u> mode and the user mode,
	are provided.
6)	The data structure in kernel space used by OS to describe and manage processes
	is called PCB/process control block.
7)	The short-term/process scheduler selects one among the processes that are

ready to execute and allocates the CPU to it.

- 8) Real-time system are computers and/or software systems that react to external events in limited time intervals before the events become obsolete.
- 9) There are two common models of process communications, i.e. message-passing and <u>meomory-shared/sharing communications</u>.
- 10) The scheduling criteria include <u>CPU utilization</u>, throughput, turnaround time, waiting time, and response time.

二、 Choices (21 points)

- 1. 以下陈述中,正确的是 A.
- I. Android 是一种广泛应用于智能手机和平板电脑的操作系统:
- II. Unix 操作系统的一些发行版本可以支持大型主机和服务器:
- III. Windows 和 Linux 操作系统属于开源操作系统;
- IV. 在 Windows 操作系统中,通过任务管理器可以查看系统内并非执行的进程信息,如 CPU 占用率、进程内线程数目、内存占用情况等。
 - A. I. II and IV
- B. II and III
- C. III and IV
- D. II. III and IV
- 2. Among the following comments, only <u>B</u> are correct.
 - I. In a system, the state of a process can migrate from *waiting* to *running*.
 - II. PCB contains the process state, the program counter, CPU registers and user data.
 - III. In a system with the operating system supporting kernel-level threads, the thread is the basic unit for CPU scheduling, and the process is the basic unit for resource allocation.
 - IV. For several threads created by one process, they can share the files opened in the process.
 - A. I and II B. III and IV C. I and IV D.II and III
- 3. Which of the following is true about process's execution time, turnaround time,

waiting time and response time	
A. turnaround time = response time + execution time turnaround time = waiting time	
B. response time <= waiting time < turnaround time)
C. waiting time <= response time < turnaround time	
D. No of the above	
4. 下述 CPU 调度算法中,具有最小平均等待时间的调度算法是 <u>C</u> .	
A. 时间片轮转法 B. 先来先服务	
C. 最短作业优先 D. 基于优先级的抢占式调度	
F. 多级队列 E. 多级反馈队列	
5. When we power up or reset a PC computer, the booting procedure starts, and	1 the
CPU will sequentially executes several chunks of codes, including	
I. boot block on disk II. bootstrap in BIOS III. OS kernel	
IV. application programs V. system programs	
The correct order of code execution is	
A. I, II, III, IV, V B. I ,II, III, V, IV	
C. II, I, III, IV, V D. II ,I, III, V, IV	
(09: 2)	
5. 23. 单处理机系统中,可并行的是 <u>D</u> .	
I. 进程与进程 II. 处理机与设备 III.处理机与通道 IV. 设备与设备	
A. I, II, III B. I, II, IV C. I, III, IV D. II, III, IV	
7. 24. 下列进程调度算法中,综合考虑进程等待时间和执行时间的	的是
<u>D</u> .	
A. 时间片轮转法调度 B. 短进程优先调度	
C. 先来先服务调度 D. <mark>高响应比优先调度</mark> 响应比 = (等待时间 + 要求服务	

(10: 5)
8. 23. 下列选项中,操作系统提供给应用程序的接口是 <u>A</u> .
A. 系统调用 B. 中断 C. 库函数 D. 原语??
9. 24. 下列选项中,导致创建新进程的操作是
I. 用户成功登陆 II。设备分配 III. 启动程序执行
A. 仅 I, II B. 仅 II, III C. 仅 I, III D. 仅 I, II, III
10. 25. 设与某资源相关联的信号量初值为 3, 当前值为 1。若 M 表示该资源的
可用个数,N 表示等待资源的进程数,则 M, N 分别是 B .
A. 0,1 B. 1, 0 C. 1, 2 D. 2, 0
(11: 3)
11. 23. 下列选项中, <mark>满足短任务优先且不会发生饥饿现象</mark> 的调度算法是
B .
A. 先来先服务 B. <mark>高响应比优先</mark>
C. 时间片轮转法 D. 非抢占式短任务优先
12. 24. 下列选项中,在 <mark>用户态</mark> 执行的是
A. <mark>命令解释程序</mark> B. 缺页处理程序
C. 进程调度程序 D. 时钟中断处理程序
13. 25. 在支持多线程的系统中,进程 P 创建的若干个线程不能共享的是
<u>D</u> .
C. 进程 P 的全局变量 D. 进程 P 中 <mark>某线程的栈指针</mark>
(12: 4)
14. 28. 若 1 一个用户进程通过 read 系统调用读取一个磁盘文件中的数据,则关

若文件的数据不在内存中,则进程进入睡眠模式的目的是等待内存对磁盘上文件的映射,因为磁盘的读取比较慢,所以事进入睡眠模式。 read是系统调用,所以cpu从用户态切换到核心态。 open系统调用应该包含文件的名称,read只是包含输入流。
read()和write()系统调用非常相似。它们都需要三个参数:一个文件描述符rd,一个内存区的地址buf(该缓冲区包含接受的数据或者要传送的数据的存放位置),以及一个数count(指定应该传送多少字节)。两个系统调用都返回所成功传送的字节数,或者发送一个错误条件的信号并返回-1
于此过程的叙述中,正确的是 <u>A</u> .
I. 若该文件不在内存,则该进程进入睡眠等待状态
II. 请求 read 系统调用会导致 CPU 从用户态切换到核心态
III. Read 系统调用的参数应包含 <mark>文件的<u>名称</u></mark>
A. 仅 I、II B. 仅 I、III C. 仅 II、III D. I、II、III
15. 30. 若某单处理器多进程系统中有多个就绪态进程,则下列关于处理机(CPU)
调度的叙述中错误的是 <u>C</u> .
A. 在进程结束时能进行处理机调度
B. 创建新进程后能进行处理机调度
C. 在进程处于临界区时不能进行处理机调度
D. 在系统调用完成并返回用户态时能进行处理机调度
16. 31. 下列关于进程和线程的叙述中,正确的是A
A. 不管系统是否支持线程,进程都是系统资源分配的基本单位
B. 线程是资源分配的基本单位,进程是调度的基本单位
C. 系统级线程和用户级线程的切换都需要内核的支持
D. 同一进程中的各个线程拥有各自不一的地址空间
(13:)
17. 28. 下列选项中,能导致用户进程从用户态切换到内核态的操作是
<u> </u>
I. 整数除零 II. sin()函数调用 III. read 系统调用
A. 仅 I、II B. 仅 I、III C. 仅 II、III D. I、II、III
18. 29. 计算机开机后,操作系统最终被加载到B
A. BIOS B. ROM C. EPROM D. RAM
(14: 3)

- 19. 23. 下列调度中,不可能导致饥饿现象的是 A A. 时间片轮转 B. 静态优先级调度 C. 非抢占式作业优先 D. 抢占式短作业优先 20. 25. 下列指令中,不能在用户态下执行的是 A A. trap B. 跳转 C. 后栈指令 D. 关中断 (15:1) 21. 25. 下列选项中会导致进程从执行态变为就绪态的事件是 D .
- - A. 执行 P(或 wait)操作B. 申请内存失败
 - C. 启动 I/O 设备
- D. 被高优先级进程抢占

三、 简答(10 points)

1. (5 points) 设系统缓冲区和用户工作区均采用单缓冲区,从外设读入 1 个数据 块到系统缓冲区的时间为100,从系统缓冲区读入1个数据块到用户工作区的时 间为 5, 对用户工作区中的 1 个数据进行分析的时间为 90 (如下图所示),进 程从外设读入并分析 2 个数据块的最短时间是多少,为什么?

A. 200 B. 295 C.300 D. 390

答案:

读入并分析 2 个数据块的最短时间是 C. 300。

以磁盘读操作为例(读入2个block),读入并处理第1个数据块的流程为: Step1. 从外设磁盘将1个block 读入内存中的系统缓冲区(磁盘—>磁盘控制器输入缓冲区—>内存中的系统缓冲区),100ms;

Step2. 从系统缓冲区将 block 读入用户缓冲区,5ms;

Step3. 在用户缓冲区中,对 block 进行处理,90ms。

系统缓冲区、用户缓冲区只能容纳 1 个 block,前一个 block 离开缓冲区后后一个 block 才能进入缓冲区。只有当第 1 个 block 从系统缓冲区进入用户缓冲区后,缓冲区内无数据,后一个 block 才能开始从外设读入系统缓冲区。

处理 2 个 block 所需时间: (100+5) + (100+5+90) = 300ms

- 2. (5 points) 在标准的 Reader-Writer 同步互斥问题中,采用:
- 1) 内核空间中的写互斥二元信号量 wrt;
- 2) 用户空间中的读者计数变量 readcount:
- 3) 内核空间中控制对 readcount 进行互斥访问的二元互斥信号量 mutex
 - ,实现读者-写者、写者-写者间对共享数据的互斥访问。

是否可以将 readcount 和 mutex 整合为 1 个定义在内核空间中、同时具有计数 和 同 步 / 互 斥 双 重 功 能 的 多 元 计 数 信 号 量 (counting semaphore) readcount_semaphore,从而只采用 2 个信号量

- 1) 二元信号量 wrt
- 2) 多元计数信号量 readcount semaphore,

实现 Reader-Writer 同步互斥问题,为什么? (3+2 points)

答案:

- (2 points)不能用 readcount semaphore 替代 readcount 和 mutex。
- (3 points)因为在原方案中,用户空间中的 readcount 具有计数功能,reader 进程根据其业务逻辑,需要执行判断 readcount=1。

内核空间的多元信号量 readcount_semaphore 虽然也具有计数功能,但 reader 进程无法对信号量 readcount_semaphore 执行判断 readcountt_semaphore=1。

四、(30 points)在 1 个在双 CPU 系统中(不支持超线程 HT), 3 个并发进程的执行序列(CPU burst, I/O burst)如下:

 P_1 : computing, 80ms \rightarrow I/O operation, 100ms \rightarrow computing, 40ms

 P_2 : computing, 180ms \rightarrow I/O operation, 70ms \rightarrow computing, 20ms

 P_3 : computing, 130ms \rightarrow I/O operation, 50ms \rightarrow computing, 50ms

假设:在这3个进程中, P_1 、 P_2 的 I/O 操作均为打印机输出操作,且只有1台打印机; P_3 的 I/O 操作为磁盘访问操作;3个进程的 CPU burst 可以任意分配到2个 CPU 上执行。

若不考虑调度和切换时间,合理地安排这 3 个进程的执行步骤,使得系统总吞吐量(throughput)最大。

要求:

- 1. 利用甘特图描述这 3 个进程在 2 个 CPU 上执行轨迹:
- 2. 计算系统最大吞吐量和 3 个进程的平均周转时间

答案:

关键点:

- 1) P_1 、 P_2 的 I/O 操作使用同一台打印机,必须串行执行; P_1 的 I/O 操作与 P_1 、 P_2 的 I/O 操作可并行执行;
- 2) 2个 CPU,3个并发进程。其中的2个进程可在2个 CPU 上并行执行,另1 个进程只能等待。

吞吐率 = 3 个进程/310ms

平均周转时间=(220+270+310)/3 ms=800/3 ms =266.67 ms

五、(29 points)考虑扩展的生产者-消费者问题。假设有限缓冲区容量为 M,存在四类并发进程: 生产者进程{Producer},消费者进程{consumer},后续进程{ P_3 }和{ P_4 },每类进程均有多个。

- 4 类进程的工作流程为:
- 1. 生产者讲程每次向空缓冲区单元写入1个数据项:
- 2. 消费者进程每次从满缓冲单元取出1个数据项。

如果此时缓冲区中的数据项总数大于 0 且为 3 的倍数,则通知 1 个第三类进程 P_3 开始工作;如果缓冲区中的数据项总数大于 0 且为 5 的倍数,则通知 1 个第四类进程 P_4 开始工作;

- 3. 第三类进程 P₃ 收到来自消费者进程的通知信息后,开始工作;
- 4. 第四类进程 P4 收到来自消费者进程的通知信息后, 开始工作;

在生产者、消费者访问缓冲区时,允许1个生产者、1个消费者同时进入临界段中访问缓冲区,但不允许多个生产者、多个消费者同时进入缓冲区访问。

用信号量 wait、signal 机制实现 1) 生产者-消费者之间互斥地访问缓冲区, 2)消费者进程与第三类、第四类进程间的同步。

要求:

- 1) 定义正确的信号量和变量,给出其初值,并解释其含义和作用;
- 2) 描述四类进程的工作流程

答案:

Semaphore empty=M, full=0;

/*empty: buffer 中空缓冲单元数目; full: buffer 中满缓冲单元数目

Binary semaphore mutex1=1, mutex2=1, sync1=0, sync2=0;

/* mutex1: 生产者之间互斥,保证每次只有1个生产者进入缓冲区;

mutex2: 消费者之间互斥, 保证每次只有 1 个消费者进入缓冲区;

mutex: 用于生产者、消费者对变量 DataItemNumber 进行加 1

、减1操作的互斥。

sync1: 消费者与 P₃ 间的同步信号,通知 P₃ 开始工作;

sync2: 消费者与 P4 间的同步信号,通知 P4 开始工作;

int DataItemNumber=0

/*用于统计缓冲区中数据项数目,用于消费者判断"数据项总数大于 0 且为 3 的倍数"、"数据项总数大于 0 且为 5 的倍数"。

评分:

- 1. 信号量定义、赋初值、说明部分占9分;
- 2. 二元信号量定义无 binary, 扣 1 分;
- 3. 没有说明各个信号量的含义,扣1-3分;
- 4. 信号量没有赋初值,扣 1-3分;
- 5. 缺少信号量, 酌情扣分;
- 6.4 类进程的业务流程共 20 分=6+8+3+3 分。 每类进程应正确描述其业务流程,酌情给分;
- 7. 为防止死锁,生产者的流程中,需要先执行 wait(empty),再执行 wait(mutex1);消费者流程中,需要先执行 wait(full),再执行 wait(mutex2)。如果顺序不对,扣 1 分。

生产者: (6分)

```
生产数据项;
    wait(empty);
    wait(mutex1);
    放入数据项;
    wait(mutex);
    DataItemNumber++:
                      /*缺少对 DataItemNumber 的互斥操作, 扣 1 分;
    signal(mutex);
                     /*也可以先对 mutex1、后对 full 执行 signal 操作
    signal(full);
    signal(mutex1)
消费者: (8分)
    wait(full);
    wait(mutex2);
    取出数据项;
    wait(mutex);
    DataItemNumber--;
       (DataItemNumber>0) and (DataItemNumber mod3=0)
                          /*通知 P3 开始工作
       then signal(sync1);
 if (DataItemNumber>0) and (DataItemNumber mod5=0)
       then signal(sync2);
                          /*通知 P4 开始工作
                  /*缺少对 DataItemNumber 的操作, 扣 1 分;
    signal(mutex);
                  /*缺少与 P_3、P_4开始工作间的同步,扣 1 分
                       /* 也可以先对 mutex2、后对 empty 执行 signal 操作
    signal(empty);
```

signal(mutex2)

```
进程 P<sub>3</sub>: (3 分)
wait(sync1);
工作;
signal(sync1)
进程 P<sub>4</sub>: (3 分)
wait(sync2);
工作;
```

signal(sync2)