

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Sporton (Auden)

Certificate No: DAE4-1279 May12

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object DAE4 - SD 000 D04 BJ - SN: 1279

Calibration procedure(s) QA CAL-06.v24

Calibration procedure for the data acquisition electronics (DAE)

Calibration date: May 03, 2012

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Keithley Multimeter Type 2001	SN: 0810278	28-Sep-11 (No:11450)	Sep-12
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Calibrator Box V2.1	SE UWS 053 AA 1001	05-Jan-12 (in house check)	In house check: Jan-13

Name Function Signature
Calibrated by: Dominique Steffen Technician

Approved by: Fin Bomholt R&D Director

Issued: May 3, 2012

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: DAE4-1279_May12

Page 1 of 5

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Glossary

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-1279_May12 Page 2 of 5

DC Voltage Measurement

A/D - Converter Resolution nominal

Calibration Factors	X	Y	Z
High Range	405.179 ± 0.1% (k=2)	404.974 ± 0.1% (k=2)	404.316 ± 0.1% (k=2)
Low Range	3.98658 ± 0.7% (k=2)	3.98731 ± 0.7% (k=2)	3.99734 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	117.0 ° ± 1 °
---	---------------

Certificate No: DAE4-1279_May12

Appendix

1. DC Voltage Linearity

High Range	Reading (μV)	Difference (μV)	Error (%)
Channel X + Input	199991.33	-3.98	-0.00
Channel X + Input	20000.42	1.05	0.01
Channel X - Input	-20000.99	0.62	-0.00
Channel Y + Input	199992.57	-2.48	-0.00
Channel Y + Input	20000.37	1.13	0.01
Channel Y - Input	-20001.77	-0.06	0.00
Channel Z + Input	199995.61	0.39	0.00
Channel Z + Input	19999.27	0.00	0.00
Channel Z - Input	-20002.85	-1.22	0.01

Low Range	Reading (μV)	Difference (μV)	Error (%)
Channel X + Input	1999.48	-0.32	-0.02
Channel X + Input	200.41	0.23	0.11
Channel X - Input	-199.28	0.50	-0.25
Channel Y + Input	2000.24	0.55	0.03
Channel Y + Input	200.58	0.44	0.22
Channel Y - Input	-199.75	-0.01	0.00
Channel Z + Input	1998.83	-0.82	-0.04
Channel Z + Input	198.55	-1.51	-0.75
Channel Z - Input	-201.15	-1.30	0.65

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	17.08	15.93
	- 200	-15.69	-16.88
Channel Y	200	8.48	8.38
	- 200	-9.22	-9.58
Channel Z	200	-0.67	-0.84
	- 200	-0.62	-0.65

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (μV)	Channel Z (μV)
Channel X	200	-	3.17	-3.15
Channel Y	200	7.76	-	3.57
Channel Z	200	8.98	6.44	-

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15658	14778
Channel Y	16426	15731
Channel Z	15918	15544

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input $10M\Omega$

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	0.78	-0.61	2.27	0.58
Channel Y	0.16	-1.45	2.45	0.76
Channel Z	-0.63	-2.21	0.54	0.54

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)
Supply (+ Vcc)	+7.9
Supply (- Vcc)	-7.6

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S **Swiss Calibration Service**

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Sporton - TW (Auden)

Accreditation No.: SCS 108

Certificate No: DAE4-1338 Jun12

CALIBRATION CERTIFICATE

DAE4 - SD 000 D04 BJ - SN: 1338 Object

QA CAL-06.v24 Calibration procedure(s)

Calibration procedure for the data acquisition electronics (DAE)

June 12, 2012 Calibration date:

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Keithley Multimeter Type 2001	SN: 0810278	28-Sep-11 (No:11450)	Sep-12
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Calibrator Box V2.1	SE UWS 053 AA 1001	05-Jan-12 (in house check)	In house check: Jan-13

Function Name Signature Calibrated by:

Eric Hainfeld Technician

> Fin Bomholt R&D Director

> > Issued: June 12, 2012

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: DAE4-1338_Jun12

Approved by:

Page 1 of 5

Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-1338 Jun12 Page 2 of 5

DC Voltage Measurement

A/D - Converter Resolution nominal

Calibration Factors	×	Υ	Z
High Range	404.366 ± 0.1% (k=2)	404.310 ± 0.1% (k=2)	404.168 ± 0.1% (k=2)
Low Range	3.99870 ± 0.7% (k=2)	3.95735 ± 0.7% (k=2)	3.96903 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	293 ° ± 1 °
Connector Angle to be used in DASY system	293°±1°

Certificate No: DAE4-1338_Jun12

Appendix

1. DC Voltage Linearity

High Range	Reading (μV)	Difference (μV)	Error (%)
Channel X + Input	200001.31	3.63	0.00
Channel X + Input	20003.03	1.95	0.01
Channel X - Input	-19999.40	0.63	-0.00
Channel Y + Input	200001.67	3.96	0.00
Channel Y + Input	19999.92	-0.95	-0.00
Channel Y - Input	-20002.00	-1.71	0.01
Channel Z + Input	199999.59	2.13	0.00
Channel Z + Input	19998.38	-2.33	-0.01
Channel Z - Input	-20000.67	-0.23	0.00

Low Range	Reading (μV)	Difference (μV)	Error (%)
Channel X + Input	2002.42	1.05	0.05
Channel X + Input	201.78	-0.10	-0.05
Channel X - Input	-198.09	-0.02	0.01
Channel Y + Input	2002.29	1.07	0.05
Channel Y + Input	201.72	-0.00	-0.00
Channel Y - Input	-198.35	-0.09	0.05
Channel Z + Input	2002.89	1.58	0.08
Channel Z + Input	200.81	-0.86	-0.43
Channel Z - Input	-199.74	-1.50	0.76

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	-3.02	-4.63
	- 200	5.76	3.48
Channel Y	200	-14.73	-14.79
	- 200	13.33	13.35
Channel Z	200	22.85	22.46
	- 200	-26.37	-25.59

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (μV)	Channel Z (μV)
Channel X	200	-	3.62	-2.93
Channel Y	200	8.50		4.83
Channel Z	200	9.97	5.98	4

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16034	14839
Channel Y	15828	15515
Channel Z	15288	15751

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input 10MΩ

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	0.33	-0.86	1.85	0.54
Channel Y	-0.48	-2.47	1.00	0.54
Channel Z	-1.66	-3.08	-0.24	0.50

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

Sporton TW (Auden)

Accreditation No.: SCS 108

Certificate No: DAE4-778 Nov11

CALL	DD	ATI	ON	CERT	IEIC/	TE
CAL		AII	OIA	CENI	ILICA	VIL.

Object

DAE4 - SD 000 D04 BJ - SN: 778

Calibration procedure(s)

QA CAL-06.v23

Calibration procedure for the data acquisition electronics (DAE)

Calibration date:

November 22, 2011

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Keithley Multimeter Type 2001	SN: 0810278	28-Sep-11 (No:11450)	Sep-12
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Calibrator Box V1.1	SE UMS 006 AB 1004	08-Jun-11 (in house check)	In house check: Jun-12

Calibrated by:

Name

Function Technician Signatur

Approved by:

Fin Bomholt

Andrea Guntli

R&D Director

Issued: November 22, 2011

Well

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

S Schweizerlscher Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Glossary

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: 1LSB =

 $6.1\mu V$,

full range = -100...+300 mV

Low Range: 1LSB = 61nV,

full range = -1.....+3mV

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Υ	Z
High Range	404.671 ± 0.1% (k=2)	403.479 ± 0.1% (k=2)	405.024 ± 0.1% (k=2)
Low Range	3.98632 ± 0.7% (k=2)	3.96395 ± 0.7% (k=2)	3.99938 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	257.0 ° ± 1 °
The state of the s	257.0 1

Appendix

1. DC Voltage Linearity

High Range		Reading (μV)	Difference (μV)	Error (%)
Channel X + Ir	put	199991.7	-1.00	-0.00
Channel X + Ir	put	20001.30	1.60	0.01
Channel X - In	put	-19998.01	1.99	-0.01
Channel Y + Ir	put	200001.3	-0.45	-0.00
Channel Y + Ir	put	20000.22	0.62	0.00
Channel Y - In	put	-20000.61	-0.71	0.00
Channel Z + In	put	200008.0	-2.29	-0.00
Channel Z + In	put	19997.83	-1.67	-0.01
Channel Z - In	put	-20000.26	-0.46	0.00

Low Range	Reading (μV)	Difference (μV)	Error (%)
Channel X + Input	1999.8	-0.23	-0.01
Channel X + Input	199.97	-0.13	-0.06
Channel X - Input	-200.40	-0.50	0.25
Channel Y + Input	1999.4	-0.51	-0.03
Channel Y + Input	199.85	-0.15	-0.08
Channel Y - Input	-200.70	-0.70	0.35
Channel Z + Input	1999.7	-0.03	-0.00
Channel Z + Input	198.34	-1.76	-0.88
Channel Z - Input	-201.22	-1.22	0.61

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	-5.27	-6.26
	- 200	6.27	5.45
Channel Y	200	-2.21	-2.25
	- 200	0.37	0.46
Channel Z	200	-10.25	-9.82
	- 200	8.33	8.38

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (μV)	Channel Z (μV)
Channel X	200	<u>-</u>	1.88	-0.74
Channel Y	200	1.69	-	3.02
Channel Z	200	1.90	-0.74	

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16051	16391
Channel Y	16165	15017
Channel Z	16443	16309

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input 10MΩ

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	-0.85	-2.62	-0.17	0.35
Channel Y	-1.00	-2.25	0.68	0.55
Channel Z	-0.85	-1.78	0.23	0.41

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)
Supply (+ Vcc)	+7.9
Supply (- Vcc)	-7.6

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Amphenol (Auden)

Accreditation No.: SCS 108

Certificate No: DAE3-495_Apr12

CALIBRATION CERTIFIC	AIL	-
----------------------	-----	---

Object DAE3 - SD 000 D03 AD - SN: 495

Calibration procedure(s) QA CAL-06.v24

Calibration procedure for the data acquisition electronics (DAE)

Calibration date: April 23, 2012

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Keithley Multimeter Type 2001	SN: 0810278	28-Sep-11 (No:11450)	Sep-12
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Calibrator Box V2.1	CE LIME DES AA 1001	05-Jan-12 (in house check)	In house check: Jan-13

Name Function Signature
Calibrated by: Eric Hainfeld Technician

Approved by: Fin Bomholt R&D Director

Issued: April 23, 2012

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Glossary

DAE

data acquisition electronics

Connector angle

information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

DC Voltage Measurement

A/D - Converter Resolution nominal

Calibration Factors	X	Υ	Z
High Range	404.352 ± 0.1% (k=2)	405.327 ± 0.1% (k=2)	405.654 ± 0.1% (k=2)
Low Range	3.95463 ± 0.7% (k=2)	3.99214 ± 0.7% (k=2)	3.96716 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	147.5 ° ± 1 °
---	---------------

Appendix

1. DC Voltage Linearity

High Range	Reading (μV)	Difference (μV)	Error (%)
Channel X + Input	199997.08	-0.41	-0.00
Channel X + Input	20003.46	2.34	0.01
Channel X - Input	-19997.49	2.47	-0.01
Channel Y + Input	199999.33	2.06	0.00
Channel Y + Input	20001.56	0.65	0.00
Channel Y - Input	-19999.50	0.75	-0.00
Channel Z + Input	199996.88	-0.61	-0.00
Channel Z + Input	20002.89	1.96	0.01
Channel Z - Input	-19998.27	1.91	-0.01

Low Range	Reading (μV)	Difference (μV)	Error (%)
Channel X + Input	2003.09	1.65	0.08
Channel X + Input	202.47	0.71	0.35
Channel X - Input	-197.92	0.18	-0.09
Channel Y + Input	2001.21	0.06	0.00
Channel Y + Input	201.12	-0.45	-0.22
Channel Y - Input	-199.11	-0.70	0.35
Channel Z + Input	2002.44	1.11	0.06
Channel Z + Input	200.50	-1.13	-0.56
Channel Z - Input	-198.21	-0.02	0.01

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	3.65	2.03
	- 200	-1.07	-2.24
Channel Y	200	-0.86	-1.37
	- 200	0.62	0.64
Channel Z	200	1.94	1.92
	- 200	-2.48	-2.59

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (μV)	Channel Z (μV)
Channel X	200	-	-2.83	-1.94
Channel Y	200	4.87	1	-5.00
Channel Z	200	14.63	-0.87	-

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15807	16448
Channel Y	15754	16462
Channel Z	15889	15649

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10MO

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (μV)
Channel X	-0.14	-1.77	1.06	0.51
Channel Y	0.58	-1.02	2.16	0.57
Channel Z	-0.65	-2.31	1.22	0.68

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)		
Supply (+ Vcc)	+7.9		
Supply (- Vcc)	-7.6		

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)	
Supply (+ Vcc)	+0.01	+6	+14	
Supply (- Vcc)	-0.01	-8	-9	

S

C

S

Accreditation No.: SCS 108

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

Sporton-TW (Auden)

Certificate No: ET3-1787_May12

CALIBRATION CERTIFICATE

Object ET3DV6 - SN:1787

Calibration procedure(s) QA CAL-01.v8, QA CAL-23.v4, QA CAL-25.v4

Calibration procedure for dosimetric E-field probes

Calibration date: May 29, 2012

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	29-Mar-12 (No. 217-01508)	Apr-13
Power sensor E4412A	MY41498087	29-Mar-12 (No. 217-01508)	Apr-13
Reference 3 dB Attenuator	SN: S5054 (3c)	27-Mar-12 (No. 217-01531)	Apr-13
Reference 20 dB Attenuator	SN: S5086 (20b)	27-Mar-12 (No. 217-01529)	Apr-13
Reference 30 dB Attenuator	SN: S5129 (30b)	27-Mar-12 (No. 217-01532)	Apr-13
Reference Probe ES3DV2	SN: 3013	29-Dec-11 (No. ES3-3013_Dec11)	Dec-12
DAE4	SN: 660	10-Jan-12 (No. DAE4-660_Jan12)	Jan-13
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-11)	In house check: Apr-13
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-11)	In house check: Oct-12

Calibrated by:

Name
Function
Signature
Laboratory Technician

Approved by:

Katja Pokovic
Technical Manager

Issued: May 29, 2012

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space

ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C modulation dependent linearization parameters

Polarization φ φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of
 power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the
 maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ET3-1787_May12 Page 2 of 11

ET3DV6 - SN:1787 May 29, 2012

Probe ET3DV6

SN:1787

Manufactured: May 28, 2003 Calibrated: May 29, 2012

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

ET3DV6-SN:1787 May 29, 2012

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1787

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	1.61	1.67	2.16	± 10.1 %
DCP (mV) ^B	99.8	99.1	93.9	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dB	C dB	VR mV	Unc ^E (k=2)
0	CW	0.00	X	0.00	0.00	1.00	134.2	±1.9 %
			Y	0.00	0.00	1.00	141.3	
			Z	0.00	0.00	1.00	158.6	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

B Numerical linearization parameter: uncertainty not required.

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

ET3DV6- SN:1787 May 29, 2012

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1787

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	41.9	0.89	6.46	6.46	6.46	0.28	2.84	± 12.0 %
835	41.5	0.90	6.12	6.12	6.12	0.31	3.00	± 12.0 %
900	41.5	0.97	5.91	5.91	5.91	0.33	3.00	± 12.0 %
1450	40.5	1.20	5.40	5.40	5.40	0.47	2.74	± 12.0 %
1750	40.1	1.37	5.27	5.27	5.27	0.70	2.21	± 12.0 %
1900	40.0	1.40	5.06	5.06	5.06	0.69	2.29	± 12.0 %
2000	40.0	1.40	4.96	4.96	4.96	0.80	2.04	± 12.0 %
2150	39.7	1.53	4.78	4.78	4.78	0.80	1.98	± 12.0 %
2450	39.2	1.80	4.31	4.31	4.31	0.80	1.66	± 12.0 %

^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

ET3DV6-SN:1787 May 29, 2012

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1787

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	55.5	0.96	6.20	6.20	6.20	0.30	2.70	± 12.0 %
835	55.2	0.97	6.08	6.08	6.08	0.32	3.00	± 12.0 %
900	55.0	1.05	6.01	6.01	6.01	0.43	2.28	± 12.0 %
1450	54.0	1.30	5.18	5.18	5.18	0.59	2.30	± 12.0 %
1750	53.4	1.49	4.81	4.81	4.81	0.80	2.47	± 12.0 %
1900	53.3	1.52	4.58	4.58	4.58	0.80	2.47	± 12.0 %
2000	53.3	1.52	4.65	4.65	4.65	0.80	2.44	± 12.0 %
2150	53.1	1.66	4.50	4.50	4.50	0.80	2.17	± 12.0 %
2450	52.7	1.95	4.04	4.04	4.04	0.67	1.35	± 12.0 %

^c Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

ET3DV6-SN:1787 May 29, 2012

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

ET3DV6- SN:1787 May 29, 2012

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

f=600 MHz,TEM

f=1800 MHz,R22

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

ET3DV6- SN:1787 May 29, 2012

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz

ET3DV6- SN:1787 May 29, 2012

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1787

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	167
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	6.8 mm
Probe Tip to Sensor X Calibration Point	2.7 mm
Probe Tip to Sensor Y Calibration Point	2.7 mm
Probe Tip to Sensor Z Calibration Point	2.7 mm
Recommended Measurement Distance from Surface	4 mm