Estimer l'effet des mutations sur la fitness d'une population de bactéries

Jérémy Andréoletti et Nathanaël Boutillon

Encadrantes : Marie Doumic et Lydia Robert

Objectifs

- Comprendre la dynamique d'apparition des mutations, chez E. coli
- Estimer la DFE = Distribution des Effets des mutations sur la Fitness

Modèle

On pose

$$W_t$$
 fitness (taux de croissance) au temps t $s_i = \frac{W_{t_{i-1}} - W_{t_i}}{W_{t_{i-1}}}$ effet t and t nombre de mutations avant le temps t

Énoncé du problème : estimer la loi des s_i (qui sont iid) sachant que l'on sait estimer la loi des W_t et N_t ($t \ge 0$), et sachant que

$$\frac{\mathcal{W}_t}{\mathcal{W}_0} = \prod_{i=1}^{N_t} (1 - s_i)$$

Plan

- Simulations
- Problème des moments
 - Fonction caractéristique
 - Calculs d'erreurs
- 3 EDP
 - Nouveau point de vue
 - Applications

Section 1

Simulations

Simulations : image

Simulations

Section 2

Problème des moments

Estimation des moments

• estimation des **premiers moments** de la loi des effets des mutations;

$$E_n(t) := \sum_{k=1}^n \binom{n}{k} (-1)^k \ln \left(\mathbb{E} \left[W_t^k \right] \right) = \left(\lambda \mathbb{E} \left[s^n \right] \right) t$$

J. Andréoletti, N. Boutillon Mutations 2020-2021 9/20

Estimation des moments

• estimation des **premiers moments** de la loi des effets des mutations;

$$E_n(t) := \sum_{k=1}^n \binom{n}{k} (-1)^k \ln \left(\mathbb{E} \left[W_t^k \right] \right) = (\lambda \mathbb{E} \left[s^n \right]) t$$

 \rightarrow On peut facilement estimer les moments.

J. Andréoletti, N. Boutillon

Méthode par la fonction caractéristique

À partir de tous les moments, on peut calculer la fonction caractéristique :

$$\varphi_X(\xi) := \mathbb{E}\left[e^{i\xi X}\right] = \sum_{k=0}^{+\infty} \frac{(i\xi)^k}{k!} \mathbb{E}\left[X^k\right]$$

Méthode par la fonction caractéristique

À partir de tous les moments, on peut calculer la fonction caractéristique :

$$\varphi_X(\xi) := \mathbb{E}\left[e^{i\xi X}\right] = \sum_{k=0}^{+\infty} \frac{(i\xi)^k}{k!} \mathbb{E}\left[X^k\right]$$

On peut alors en déduire la distribution de X, f:

$$f(x) = \frac{1}{2\pi} \int_{\mathbb{R}} \varphi_X(\xi) e^{-ix\xi} \, \mathrm{d}\xi$$

J. Andréoletti, N. Boutillon

Mutations

Méthode par la fonction caractéristique

A partir de tous les moments, on peut calculer la fonction caractéristique :

$$\varphi_X(\xi) := \mathbb{E}\left[e^{i\xi X}\right] = \sum_{k=0}^{+\infty} \frac{(i\xi)^k}{k!} \mathbb{E}\left[X^k\right]$$

On peut alors en déduire la distribution de X, f:

$$f(x) = \frac{1}{2\pi} \int_{\mathbb{R}} \varphi_X(\xi) e^{-ix\xi} \, \mathrm{d}\xi$$

Or on a seulement les N premiers moments empiriques m_k :

$$\hat{\varphi}_X(\xi) = \sum_{k=0}^N \frac{(i\xi)^k}{k!} m_k$$

$$\hat{f}(x) = \frac{1}{2\pi} \int_{|\xi| \leqslant A} \hat{\varphi}_X(\xi) e^{-ix\xi} \, d\xi$$

Espoir : $\varphi_X(\xi) \simeq \hat{\varphi}_X(\xi)$ donc $f(x) \simeq \hat{f}(x)$.

Calculs d'erreurs

Proposition

Pour tous paramètres A > 0, $k \ge 2$, $N \ge 1$ on a : $\forall x \in \mathbb{R}$

$$\left| \hat{f}(x) - f(x) \right| \leqslant \frac{\|f^{(k)}\|_1}{2\pi^2(k-1)A^{k-1}} + \frac{A^{N+1}}{\pi(N+1)!} \mathbb{E}\left[X^N(e^{AX-1}) \right] + \frac{\|\varepsilon(N)\|_{\infty}(e^A-1)}{\pi}$$

J. Andréoletti, N. Boutillon

Mutations

Calculs d'erreurs

Proposition

Pour tous paramètres A > 0, $k \ge 2$, $N \ge 1$ on a : $\forall x \in \mathbb{R}$

$$\left| \hat{f}(x) - f(x) \right| \leqslant \frac{\|f^{(k)}\|_1}{2\pi^2(k-1)A^{k-1}} + \frac{A^{N+1}}{\pi(N+1)!} \mathbb{E}\left[X^N(e^{AX-1}) \right] + \frac{\|\varepsilon(N)\|_{\infty}(e^A-1)}{\pi}$$

Proposition

Supposons que :

- l'on soit capable de calculer un nombre arbitrairement grand de moments de f avec une erreur bornée par ε ;
- $||f^{(2)}||_1 < +\infty$.

Alors on a:

$$\|f - \hat{f}\|_{\infty} = O\left(\left|\frac{1}{\pi \ln(\varepsilon)}\right|\right)$$
 quand $\varepsilon \to 0$

J. Andréoletti, N. Boutillon

Mutations

Section 3

EDP

Un autre point de vue : une EDP

On a

$$\ln W_t = \sum_{i=1}^{N_t} \ln(1-s_i)$$

Soient:

- $u(t,\cdot) \in C^{\infty}(\mathbb{R})$: « densité de ln W_t » ie: $u(t,x) dx = \text{proportion de cellules telles que ln } W_t = x$
- $f \in C^{\infty}(\mathbb{R})$: densité de la loi de $\ln(1-S)$;
- λ : taux de mutation ;
- μ : proportion de mutations létales.

Explication des termes

Donc (*):

$$\partial_t u(t,x) = \lambda \left(\int_{\mathbb{R}} f(x-y)u(t,y) dy - u(t,x) \int_{\mathbb{R}} f(y) dy \right) - \lambda \mu u(t,x)$$

Traduction:

- $\partial_t u$: changement de densité de fitness entre t et t + dt :
- $\int f(x-y)u(t,y)dy$: arrivées sur la fitness x;
- $-u(t,x) \int f(y) dy$: départs de la fitness x;
- $-\lambda \mu u(t,x)$: morts.

Conservation de la masse :

$$\int_{\mathbb{R}} u(t,x) dx = N(t) = e^{-\lambda \mu t} N(0)$$

Solution explicite

On applique la transformée de Fourier sur :

$$\partial_t u(t,x) = \lambda \left(\int_{\mathbb{R}} f(x-y) u(t,y) \, \mathrm{d}y - u(t,x) \int_{\mathbb{R}} f(y) \, \mathrm{d}y \right) - \lambda \mu u(t,x)$$

donc

$$\partial_t \mathcal{F} u_t(\xi) = \lambda \mathcal{F} f(\xi) \mathcal{F} u_t(\xi) - \lambda \mathcal{F} u_t(\xi)$$

d'où:

Proposition

Pour tout $x \in \mathbb{R}$:

$$f(x) = \mathcal{F}^{-1} \left(\frac{\partial_t \left(\mathcal{F} u_t(\xi) \right)}{\lambda \mathcal{F} u_t(\xi)} + 1 \right)$$

Solution explicite

On applique la transformée de Fourier sur :

$$\partial_t u(t,x) = \lambda \left(\int_{\mathbb{R}} f(x-y) u(t,y) \, \mathrm{d}y - u(t,x) \int_{\mathbb{R}} f(y) \, \mathrm{d}y \right) - \lambda \mu u(t,x)$$

donc

$$\partial_t \mathcal{F} u_t(\xi) = \lambda \mathcal{F} f(\xi) \mathcal{F} u_t(\xi) - \lambda \mathcal{F} u_t(\xi)$$

d'où:

Proposition

Pour tout $x \in \mathbb{R}$:

$$f(x) = \mathcal{F}^{-1} \left(\frac{\partial_t \left(\mathcal{F} u_t(\xi) \right)}{\lambda \mathcal{F} u_t(\xi)} + 1 \right)$$

Le terme de droite est indépendant du temps : $\partial_t(\mathcal{F}u_t(\xi)) = c_{\xi}\mathcal{F}u_t(\xi)$.

- fonctionne bien pour les petits ξ ;
- fonctionne très mal pour les grands ξ (\rightarrow overfitting?).

 \rightarrow mettre les images de R_2 en fonction de ξ pour voir la précision

Simulation avec grand nombre de canaux I

- * droites magnifiques
- * stabilité pour ξ_{max} petit
- * non-stabilité pour ξ_{max} grand

Conclusion et perspectives

• ça ne marche pas

Références

Merci pour votre attention!

- Robert et al., Mutation dynamics and fitness effects followed in single cells, Science 359, 1283–1286, 16 March 2018
- Doumic, Escobedo, *Time asymptotics for a critical case in fragmentation and growth-fragmentation equations*, submitted 2015
- Beal et al., The Division of Amyloid Fibrils: Systematic Comparison of Fibril Fragmentation Stability by Linking Theory with Experiments, iScience, 25 September 2020