MSDS 6372 Project 1

2/16/2020

Jonathon Roach
Sanjay Pillay
Fred Poon

Project Professor: Dr Jacob Turner

Citations

Spline Model

Polynomial Interpretation

Dataset

INTRODUCTION	2
DATA DESCRIPTION	2
EDA	2
OBJECTIVE 1	3
Problem Statement	3
Model Selection	3
Model 1 (Non Transformed)	4
Model 2 (Log Linear)	4
Model 3 (Log-Log)	5
Model 4 (Linear Model With Splines)	5
Model 5	6
Assumptions	6
Parameter Estimates/Coefficients	6
Conclusion	7
OBJECTIVE 2	7
Analysis	8
Ftest	8
Assumption	9
Contrast	9
Conclusion	10
APPENDIX	11
Data Set	11
Economic Categories	11
Residual Plots	12
Model 2	12
Model 3	12
Model 4	13
Summary Statistics	13
Feature selection	15
Backward	15
Parameter Estimates for regression	16
Two Way Anova Code	19
Regression Model Code	20

INTRODUCTION

Based on the data set published by The National Agricultural Statistics Service (NASS) we will gain insight using a few regression models on how agricultural land values are impacted in different regions across the United States and correlate any factors driving the land values. In addition will conduct a two way analysis to investigate changes in values in certain regions and how prices vary across types of land (Overall farmland, pasture, and cropland).

DATA DESCRIPTION

We are using a cleaned up version of this <u>dataset</u> hosted on kaggle which was extracted from NASS. The dataset has about 3500 observations.

Variable	Description
State	49 states in the US where agricultural land values were recorded.
LandCategory	Three factors of land category (Pasture, Farm Real Estate, Cropland).
Region	Ten economic categorical regions that US farmland is identified by (Mountain, Pacific, Cornbelt etc).
RegionState	Variable identifying the observation as either State or Region (More info in EDA section).
Year	The year of the observation.
Acre.Value	Estimated land value in US Dollars.

EDA

Upon initial inspection of the data, we immediately noticed idiosyncrasies in the way the data were organized. Namely, the "State" data element did not exclusively contain US states. For most states, there were exactly 63 observations of acreage prices for crop land, farm real estate, and pastures over a 20-year period (it's worth noting here that a small number of states in the Northeast had only 21 or 42 observations). In addition, each region had 63 observations and was also captured in the "State" data element. Because most of the variation in acreage pricing is captured by the region, our regression analysis focuses on predicting acreage by region (summary statistics), with some exceptions (see figures below).

For regions in which there is little variability in the acreage pricing over the 20-year period, there was no need to include information at the state level. For regions such as the **Northeast, Southeast, and the Pacific**, there were significant differences between acreage over time for each state. As a result, for modeling purposes, we created a new variable called "Region_New" that reported the state for 7 of the regions, but only reported the region for the remaining 4.

OBJECTIVE 1

Problem Statement

We will investigate the best possible model to predict land values in the region of **Northeast, Southeast, and the Pacific** using various regression models.

Model Selection

We will also analyse the optimal number of features to fit using forward/backward selection model/ With the dataset having a limited set of features we can see both forward and backward and lasso indicate using all three fields.

Model	ASE Three variables (LandCat, Region, Year)
Forwards	0.8286628 0.7423832 0.6714105
Backward	0.8286628 0.7423832 <mark>0.6714105</mark>

Regression Models

Before beginning the modeling process, training and test data sets were created with an 80/20 split for cross-validation. Given the figure in the EDA above, there are clearly differences in variation of acreage prices over time between land categories and regions. Therefore, the following model seemed appropriate:

Model 1 (Non Transformed)

Acre.Value ~ Year*LandCategory*Region_new

With an adjusted R-squared value of 0.9452 and an RMSE of 688.595 on the test set, this model's performance is not bad, but it is clear that we have violated some regression assumptions in the plot below.

The QQ-plot and the scatter plot indicate that log transformations may be needed. The following are the results of a log-linear model:

Model 2 (Log Linear)

log(Acre.Value) ~ Year*LandCategory*Region_new

This model yields and adjusted R-squared of 0.9633 and an RMSE of 759.2183 on the test set, and our <u>residual plots</u>, while still not perfect, look better than in the previous model.

The QQ-plot and histogram indicate that the transformation succeeded in making the data almost normal, but the scatter plot of fitted values vs. residuals shows that this model still violates the assumption of uniform variance in the residuals. The next logical step is to also take the log of the response variable.

Model 3 (Log-Log)

log(Acre.Value) ~ log(Year)*LandCategory*Region_new

This model yields an adjusted R-squared of 0.9633 and an RMSE of 759.2183 on the test set. In both performance and adherence to model assumptions, this model is nearly identical to the previous one. See <u>residual diagnostics</u>

Due to the fact that log transformations couldn't help us satisfy model assumptions, it is reasonable to hypothesize that acreage prices over time are non-linear. We will therefore implement a model with a polynomial term, as well as a model fit with splines. The polynomial model is defined as follows:

Model 4 (Linear Model With Splines) Acre.Value ~ (Year + X)*LandCategory*Region_new

This model is fit using <u>splines</u>. The "X" variable is a product of two components: a binary (1/0) indicator that shows whether the year is past a change point (2007) and the number of years past the change point. The accuracy of this model is extremely high with an R-squared of 0.978 and an RMSE of 370.86. Despite this advantage in accuracy, the model does not adhere to the regression assumptions of normally distributed residuals with uniform variance.

Model 5

log(Acre.Value) ~ poly(Year,2)*LandCategory*Region_new

This model is arguably the best we've seen so far in terms of adherence to regression assumptions. With an adjusted R-squared of 0.9747 and an RMSE of 535.9538 on the test set, the accuracy is comparatively high as well.

Assumptions

After applying required transformations, Model 5 provided all the assumption validation as follows:

Normality: Residual plot/qq plot show normal distribution

Constant variance: Residual scatter plot of fitted values indicate constant variance

Independence: We assume observations were independent of each other

Parameter Estimates/Coefficients

The interpretation of the <u>coefficients</u> is not straightforward due to the fact that it is polynomial rather than linear, and our response variable is on a log scale rather than a non-transformed scale. At a high level, one can interpret the coefficient of, say, the "Year" variable as the growth rate of the rate of change (in other words, acceleration) of the log of acreage price. With all other variables held constant, or every unit change in years, the rate at which the polynomial function determining log acreage price decreases by 3.71.

For example in the three states of California, Colorado and Connecticut, we see for the same year in the state of California the direction and steepness of the median acre value function increases by $\beta^{0.811}$ or by 2.25 with respect to other states and has a statistically

significant p-value. (Source of Interpretation)

Conclusion

For purposes of prediction accuracy, the spline model looks to be the best. With that said, as stated above, **model** 5 (the polynomial model) meets all of the basic regression assumptions without sacrificing much accuracy. This is ultimately the model we have chosen as optimal. Due to the fact that the model is built on the interaction of year, land category, and region, the model has 408 terms (see appendix for table of terms with parameter estimates and confidence intervals). Furthermore, the interpretation of the coefficients is not straightforward due to the fact that it is polynomial rather than linear, and our response variable is on a log scale rather than a non-transformed scale. At a high level, one can interpret the coefficient of, say, the "Year" variable as the growth rate of the rate of change (in other words, acceleration) of the log of acreage price. With all other variables held constant, or every unit change in years, the rate at which the polynomial function determining log acreage price decreases by 3.71.

Model number	Formula	Statistics
Non Transformed (Model 1)	Acre.Value ~ Year*LandCategory*Region_new	$R^2 = 0.9452$ RMSE = 688.595
Log Linear (Model 2)	log(Acre.Value) ~ Year*LandCategory*Region_new	$R^2 = 0.9633$ RMSE = 759.2183
Log - Log (Model 3)	log(Acre.Value) ~ log(Year)*LandCategory*Region_new	$R^2 = 0.9633$ RMSE = 759.2183
Linear Model With Splines (Model 4)	Acre.Value ~ (Year + X)*LandCategory*Region_new	$R^2 = 0.978$ RMSE=370.86
Log- Polynomial (Model 5)	log(Acre.Value) ~ poly(Year,2)*LandCategory*Region_ne w	$R^2 = 0.9452$ RMSE=454.1732

OBJECTIVE 2

In our second objective, we ran a 2-way ANOVA on the data. For our categorical values, we chose to use region and land category. With our region category and the above analysis in objective 1, we know that the sample sizes are very different. This is

significant as we deep dive into particular regions in our analysis.

As we've seen in our analysis in Objective 1, the sample sizes in the different regions made it unclear on how to handle regions where it was more dense like the Northeast. In our ANOVA analysis, we'll continue using the same data, **but filtered on 3 regions:**Northeast, Pacific, and Southeast regions. Breaking out the Regions will help us provide an understanding in the significance of land category in its corresponding region.

Analysis

Ftest

In our Type III sum of squares table, our interaction term is significant. This defines an **non additive model** as we reject the null hypothesis (p-value <0.001). Because this is a subset of data from the larger dataset, we know there is interaction but to what extent can not be determined.

Source	DF	Type III SS	Mean Square	F Value	Pr > F
landcategory	2	347056043	173528021	20.07	<.0001
region	2	1848227438	924113719	106.90	<.0001
landcategory*region	4	241908553	60477138	7.00	<.0001

Assumption

The assumptions for 2-way ANOVA are independence, constant variance and normality. Under normality, the qq-plot is not linear, showing a possible violation. This is possibly due to the unequal standard deviations in our regions and (less of a possibility), the land categories. Also, the histogram looks normally distributed, but the tall center does show as a concern. We also see potential outliers which contribute to the right skew in our histogram.

Contrast

In our **contrast analysis**, comparing land category paired with region, The Pacific region and Pasture land category separated itself from the pack showing to be significantly different from the rest (p-value of < 0.0001 at 95% confidence interval). The below charts are results from running our analysis with tukey adjustment.

landcategory	region	acrevalue LSMEAN	LSMEAN Number
Cropland	Northeast	5891.70068	1
Cropland	Pacific	4169.76190	2
Cropland	Southeast	3122.28571	3
Farm Real Estate	Northeast	6189.40476	4
Farm Real Estate	Pacific	3055.00000	5
Farm Real Estate	Southeast	2952.19048	6
Pasture	Northeast	4724.20168	7
Pasture	Pacific	1168.96429	8
Pasture	Southeast	3001.52381	9

	Least Squares Means for Effect landcategory*region t for H0: LSMean(i)=LSMean(j) / Pr > t								
				Dependent	Variable: a	crevalue			
i/j	1	2	3	4	5	6	7	8	9
1		4.281874 0.0007	7.371653 <.0001	-0.97562 0.9880	7.053906 <.0001	7.824414 <.0001	3.220117 0.0356	11.74383 <.0001	7.693098 <.0001
2	-4.28187 0.0007		2.433724 0.2666	-5.45216 <.0001	2.457144 0.2544	2.828926 0.1082	-1.32325 0.9244	6.61432 <.0001	2.714305 0.1439
3	-7.37165 <.0001	-2.43372 0.2666		-8.9808 <.0001	0.156333 1.0000	0.419175 1.0000	-4.06919 0.0017	4.538381 0.0002	0.2976 1.0000
4	0.975621 0.9880	5.452161 <.0001	8.980805 <.0001		8.461535 <.0001	9.478859 <.0001	4.480314 0.0003	13.55301 <.0001	9.334407 <.0001
5	-7.05391 <.0001	-2.45714 0.2544	-0.15633 1.0000	-8.46154 <.0001		0.238869 1.0000	-3.9838 0.0023	4.157176 0.0012	0.124248 1.0000
6	-7.82441 <.0001	-2.82893 0.1082	-0.41918 1.0000	-9.47886 <.0001	-0.23887 1.0000		-4.50126 0.0003	4.143178 0.0012	-0.12157 1.0000
7	-3.22012 0.0356	1.323254 0.9244	4.069187 0.0017	-4.48031 0.0003	3.983802 0.0023	4.501263 0.0003		8.485111 <.0001	4.375947 0.0005
8	-11.7438 <.0001	-6.61432 <.0001	-4.53838 0.0002	-13.553 <.0001	-4.15718 0.0012	-4.14318 0.0012	-8.48511 <.0001		-4.2578 0.0008
9	-7.6931 <.0001	-2.7143 0.1439	-0.2976 1.0000	-9.33441 <.0001	-0.12425 1.0000	0.121575 1.0000	-4.37595 0.0005	4.2578 0.0008	

Conclusion

Our 2-way ANOVA analysis helped us understand the acre value and the correlation between land category and the three selected regions. We conclude land values are not significantly different in Southeast irrespective of the land type (p-value close to 1). While in pacific the value has a statistically significant difference (p-value .001 corp/pasture and .0012 pasture/realest)

APPENDIX

Data Set

https://www.kaggle.com/jmullan/agricultural-land-values-19972017 https://www.nass.usda.gov/Publications/Todays Reports/reports/land0818.pdf

Economic Categories

Economic Regions

Economic Regions:

York, Pennsylvania, Rhode Island, Vermont.

Lake States:..... Michigan, Minnesota, Wisconsin.

Corn Belt:..... Illinois, Indiana, Iowa, Missouri, Ohio.

Northern Plains: Kansas, Nebraska, North Dakota, South Dakota.

Appalachian:..... Kentucky, North Carolina, Tennessee, Virginia, West Virginia.

Southeast: Alabama, Florida, Georgia, South Carolina.

Delta States: Arkansas, Louisiana, Mississippi.

Southern Plains: Oklahoma, Texas.

Mountain: Arizona, Colorado, Idaho, Montana, Nevada, New Mexico, Utah, Wyoming.

Pacific: California, Oregon, Washington.

Residual Plots

Model 2

Model 3

Model 4

Summary Statistics

	Region	LandCategory	N	Mean	Min	Max	IQR	SD	SE
1	Appalachian	Cropland	21	3043.33333333333	1730	3890	1350	764.64588754098	166.859412356821
2	Continental U.S.	Cropland	21	2551.42857142857	1270	4130	1760	1035.1921836755	225.897454310458
3	Corn Belt	Cropland	21	3918.09523809524	1760	7000	3420	1906.18629479812	415.963951647609
4	Delta States	Cropland	21	1717.71428571429	956	2760	1000	609.514654693154	133.007002015059
5	Lake States	Cropland	21	2822.38095238095	1130	4830	2070	1273.35346531081	277.868506724815
6	Mountain	Cropland	21	1399.90476190476	904	1780	550	318.922859757952	69.5946736044096
7	Northeast	Cropland	21	4368.57142857143	2590	5590	2120	1171.36367416053	255.612509674391
8	Northern Plains	Cropland	21	1484.95238095238	633	3130	1490	928.215625605951	202.553255503812
9	Pacific	Cropland	21	4657.61904761905	3030	6570	2160	1188.02737662861	259.248827670495
10	Southeast	Cropland	21	3148.09523809524	1610	4380	1570	952.988032703554	207.959037916719
11	Southern Plains	Cropland	21	1196.42857142857	641	1930	672	416.94670779712	90.9852309163304
12	Appalachian	Farm Real Estate	21	2980	1630	3800	1360	782.067771999333	170.661179227257
13	Continental U.S.	Farm Real Estate	21	1928.09523809524	926	3080	1310	756.388650414713	165.057535491948
14	Corn Belt	Farm Real Estate	21	3632.38095238095	1610	6370	3160	1761.64384812	384.422203883962
15	Delta States	Farm Real Estate	21	1957.14285714286	1070	2910	1050	606.590000388589	132.368790123048

		1							
16	Lake States	Farm Real Estate	21	2959.04761904762	1200	4890	2010	1242.14292560037	271.057808596076
1 7	Mountain	Farm Real Estate	21	777.761904761905	399	1130	510	271.364128941521	59.2165077033465
18	Northeast	Farm Real Estate	21	4025.71428571429	2240	5050	1920	1068.66538929906	233.201906621067
19	Northern Plains	Farm Real Estate	21	1135.33333333333	481	2340	1044	678.644040225311	148.092270679197
20	Pacific	Farm Real Estate	21	3377.61904761905	1730	5370	2030	1170.57210269981	255.439774620261
21	Southeast	Farm Real Estate	21	3021.90476190476	1630	3940	1530	861.86204840229	188.073717876818
22	Southern Plains	Farm Real Estate	21	1234.14285714286	557	2050	865	500.794197821249	109.282253290979
23	Appalachian	Pasture	21	2715.71428571429	1510	3620	1410	755.324906438093	164.825407525619
24	Continental U.S.	Pasture	21	903.428571428571	466	1350	533	319.801433928707	69.7863942063675
25	Corn Belt	Pasture	21	1648.80952380952	756	2440	1080	608.908254094787	132.874674555846
26	Delta States	Pasture	21	1737.04761904762	955	2480	990	553.34017350907	120.748725245967
27	Lake States	Pasture	21	1391	486	2080	951	563.114286801534	122.881611627576
28	Mountain	Pasture	21	443.666666666667	219	625	321	161.516356240888	35.2457584974915
29	Northeast	Pasture	21	2829.04761904762	1890	3480	1300	629.689643887406	137.409545592563
30	Northern Plains	Pasture	21	502.142857142857	206	1040	399	293.634855852347	64.0763787438489
31	Pacific	Pasture	21	1315.85714285714	729	1900	739	408.22497298846	89.0819923471866
32	Southeast	Pasture	21	3184.28571428571	1340	5040	2040	1240.30065479533	270.655792147756
33	Southern Plains	Pasture	21	1037.2380952381	484	1620	819	431.786741894874	94.2235918481724

Feature selection

Backward

Forward

Parameter Estimates for regression

Call:

lm(formula = log(Acre.Value) ~ poly(Year, 2) + LandCategory +
 Region_new, data = train)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) poly(Year, 2)1 poly(Year, 2)2 -2.92956 0.31571 -9.279 < 2e-16 *** LandCategoryPasture Region_newAppalachian Region_newArizona Region newCalifornia Region newColorado Region newConnecticut Region_newCorn Belt Region newDelaware 0.94059 0.06993 13.449 < 2e-16 *** Region newDelta States -0.09619 0.04937 -1.948 0.051496. Region newFlorida Region newGeorgia Region_newIdaho Region_newIllinois Region newIndiana Region newIowa Region newLake States -0.12209 0.10148 -1.203 0.229062 Region_newMaine Region_newMaryland

1.45281 0.09072 16.015 < 2e-16 ***

Region newMassachusetts

-0.07659 0.06305 -1.215 0.224590 Region_newMissouri Region_newMontana -1.24960 0.06183 -20.210 < 2e-16 *** Region newMountain -0.96745 0.06305 -15.344 < 2e-16 *** Region newNevada Region newNew Hampshire Region_newNew Jersey Region_newNew Mexico -1.35600 0.06305 -21.507 < 2e-16 *** Region newNew York Region_newNortheast Region newNorthern Plains -0.90860 0.04851 -18.730 < 2e-16 *** Region_newOhio Region_newOklahoma Region_newOregon Region newOther States Region newPacific Region newPennsylvania Region_newRhode Island Region_newSouth Carolina Region_newSoutheast

Signif. codes: 0 "*** 0.001 "** 0.01 "* 0.05 ". 0.1 " 1

Residual standard error: 0.3152 on 2717 degrees of freedom

Multiple R-squared: 0.8728, Adjusted R-squared: 0.8705

F-statistic: 388.4 on 48 and 2717 DF, p-value: < 2.2e-16

	2 5 8	07 5 %
(Intercept)	2.5 %	97.5 % -104.13728145
Region_newAppalachian	2.780906e-01	0.49552500
Region_newArizona	1.380097e-01	
Region_newCalifornia	6.979659e-01	0.91540035
		-0.67879861
Region_newColorado	-8.962330e-01 1.391389e+00	1.70034966
Region_newConnecticut	-3.299382e-01	-0.11250373
Region_newContinental U.S. Region_newCorn Belt	1.993144e-01	0.41674880
	8.477533e-01	
Region_newDelaware		1.09132005
Region_newDelta States	-1.972345e-01	-0.02533750
Region_newFlorida	6.654120e-01	0.88284641
Region_newGeorgia	3.299866e-01	0.54742100
Region_newIdaho	-2.992441e-01 3.672185e-01	-0.08180971
Region_newIllinois		0.58465293
Region_newIndiana	3.488025e-01	0.56623693
Region_newIowa	2.340215e-01	
Region_newKentucky	8.024012e-02	0.29767455
Region_newLake States	2.438522e-02	0.19628223
Region_newMaine	-2.942880e-01	0.01467234
Region_newMaryland	8.972300e-01	1.12139190
Region_newMassachusetts	1.325895e+00	1.63485555
Region_newMissouri	-1.831312e-01	0.03430321
Region_newMontana	-1.363730e+00	-1.14629606
Region_newMountain	-1.049666e+00	-0.83223143
Region_newNevada	-8.748404e-01	-0.64226650
Region_newNew Hampshire	3.913884e-01	0.70034869
Region_newNew Jersey	1.691798e+00	1.90923290
Region_newNew Mexico	-1.441141e+00	-1.22370647
Region_newNew York Region_newNorth Carolina	-3.527347e-01 4.875701e-01	-0.13530025
		0.70500449
Region_newNortheast	5.158387e-01	0.73327317
Region_newNorthern Plains	-9.756039e-01 3.707145e-01	-0.80717988
Region_newOhio		0.58814889 -0.64902024
Region_newOklahoma	-8.664547e-01	
Region_newOregon	-5.811268e-01	-0.36369241
Region_newOther States	9.748632e-01	1.21842511
Region_newPacific	2.090176e-01	0.42645200
Region_newPennsylvania Region_newRhode Island	4.920097e-01 1.536373e+00	
	3.647997e-02	1.84533289
Region_newSouth Carolina		0.25391440
Region_newSoutheast	3.231994e-01	0.54063388
Region_newSouthern Plains	-6.909319e-01	-0.47349749
Region_newTennessee	2.890351e-01	0.50646957
Region_newTexas	-6.473402e-01	-0.42990580
Region_newUtah	-4.084664e-01	-0.19103194
Region_newVermont	-7.878021e-03	0.30108232
18Region_newVirginia	4.694701e-01	0.68690457
Region_newWashington	-4.962496e-01	-0.27881519
Region_newWest Virginia	-8.684038e-02	0.13059405
Region_newWyoming	-1.414163e+00	-1.19672849

```
#Get DataSet
agri data <- read.csv("Combined Clean.csv")</pre>
#Summarize data
head(agri data)
summary(agri data)
#Visualize data
plot(agri data$Year,agri data$Acre.Value)
ggplot(data = agri data) + geom point(mapping=aes(x=agri data$Year,
y=agri data$Acre.Value, color=agri data$LandCategory)) +
facet wrap(~Region)
#Create model
model <- aov(Acre.Value~Region+Year, data=agri data)</pre>
#QQ Plot
gqnorm(model$residuals)
#Log Data
agri data$logAcre.Value <- log(agri data$Acre.Value)
#Summarize data
head(agri data)
summary(agri data)
#Create model with logged data
model2 <- aov(logAcre.Value~Region+Year, data=agri data)</pre>
#Plot / QQ Plot of model with logged values
plot(model2$fitted.values, model2$residuals,ylab="Residuals")
qqnorm(model2$residuals)
#2Way Anova on both models
anova(model)
anova (model2)
/** SAS **/
/** load the data **/
data agridata;
infile '/home/u41023123/6372 stats2/midterm
project/Combined Clean.csv' dlm=',' firstobs=2;
informat state $30.;
informat landcategory $30.;
informat region $30.;
informat regionvsstate $30.;
input state $ landcategory $ region $ regionvsstate $ year
```

```
acrevalue;
run;
/** log the data **/
data agridata;
set agridata;
logacrevalue = log(acrevalue);
logyear = log(year);
run;
/** plot the data **/
proc sgplot data=agridata;
vbox acrevalue / category=year group=landcategory;
run;
/** breaking out denser plots that may have skewed the data **/
data agridata;
set agridata;
if region = 'Northeast'
           | region = 'Pacific'
           | region = 'Mountain'
           | region = 'Southeast'
           | region = 'Corn Belt'
           | region = 'Appalachian'
           | region = 'Southern Plains'
           then newregion = state;
     else newregion = region;
run;
/** anova **/
proc glm data=agridata plots=(DIAGNOSTICS RESIDUALS);
class year landcategory newregion;
model logacrevalue = newregion year landcategory
newregion*year*landcategory;
/* lsmeans newregion year landcategory / pdiff tdiff adjust=bon; */
run;
```

Regression Model Code

```
'``{r}

library(ggplot2)

library(gridExtra)

library(broom)
```

```
library(MASS)
library(leaps)
theme_set(theme_bw())
dat <- read.csv('Combined Clean.csv')</pre>
head(dat)
```{r}
str(dat)
```{r}
unique(dat$Year)
```{r}
p1 <- ggplot(dat, aes(Year, Acre.Value)) +</pre>
 theme(axis.text.x = element text(angle = 90)) +
 geom point(alpha=0.1) +
 geom_smooth(method = "lm") +
```

```
facet grid(vars(LandCategory), vars(Region))
```{r}
p2 <- ggplot(dat[dat$Region == 'Southeast',], aes(Year, Acre.Value,</pre>
group=State, color=State)) +
  geom smooth(method = 'loess', se=F) +
  facet grid(vars(LandCategory), vars(Region)) +
  geom vline(xintercept = 2007)
grid.arrange(p1, p2)
```{r}
ggplot(dat[dat$Region == 'Pacific',], aes(Year, Acre.Value,
group=State, color=State)) +
 geom smooth(method = 'loess', se=F) +
 facet grid(vars(LandCategory), vars(Region)) +
 geom vline(xintercept = 2007)
```{r}
ggplot(dat[dat$Region == 'Southern Plains',], aes(Year, Acre.Value,
group=State, color=State)) +
```

```
geom point() +
 geom smooth(method = 'lm', se=F) +
  facet grid(vars(LandCategory), vars(Region))
```{r}
dat$Region new <- ifelse(dat$Region == 'Northeast' | dat$Region ==</pre>
'Pacific' | dat$Region == 'Mountain' | dat$Region == 'Southeast' |
dat$Region == 'Corn Belt' | dat$Region == 'Appalachian' |
dat$Region == 'Southern Plains',as.character(dat$State),
as.character(dat$Region))
dat$xbar <- ifelse(dat$Year >= 2007,1,0)
dat$diff <- dat$Year - 2007</pre>
dat$X <- dat$xbar*dat$diff</pre>
dat <- dat[!is.na(dat$Acre.Value),]</pre>
tail(dat)
```{r}
```

```
index <- sample(seq len(nrow(dat)), floor(.8*nrow(dat)))</pre>
train <- dat[index,]</pre>
test <- dat[-index,]</pre>
nrow(train) + nrow(test) == nrow(dat)
```{r}
mod <- lm(formula = Acre.Value ~ Year*LandCategory*Region , data =</pre>
train)
summary(mod)
```{r}
test$predictions mod <- predict(mod, newdata = test)</pre>
rmse mod <- sqrt(sum((test$Acre.Value - test$predictions mod)^2) /</pre>
nrow(test))
rmse mod
```

```
```{r}
mod2 <- lm(formula = Acre.Value ~ Year*LandCategory*Region new ,</pre>
data = train)
summary(mod2)
. . .
```{r, warning=FALSE, message=FALSE}
test$predictions mod2 <- predict(mod2, newdata = test)</pre>
rmse_mod2 <- sqrt(sum((test$Acre.Value - test$predictions_mod2)^2)</pre>
/ nrow(test))
rmse mod2
. . .
Residual diagnostics
```{r}
par(mfrow = c(1,3))
qqnorm(mod2$residuals)
```

```
qqline(mod2$residuals, col='red')
hist(mod2$residuals, col = 'blue', main = 'Histogram of Residuals',
xlab='residuals')
plot(mod2$fitted.values, mod2$residuals, type = 'p', xlab = 'Fitted
Values', ylab = 'Residuals')
Possibly need a log transform
```{r}
mod3 <- lm(formula = log(Acre.Value) ~ Year*LandCategory*Region new</pre>
, data = train)
summary(mod3)
. . .
```{r}
par(mfrow = c(1,3))
qqnorm(mod3$residuals)
qqline(mod3$residuals, col='red')
hist (mod3$residuals, col = 'blue', main = 'Histogram of Residuals',
xlab = 'Residuals')
plot(mod3$fitted.values, mod2$residuals, type = 'p', xlab = 'Fitted
Values', ylab = 'Residuals')
. . .
```

```
```{r, warning=FALSE, message=FALSE}
test$predictions mod3 <- predict(mod3, newdata = test)</pre>
rmse mod3 <- sqrt(sum((test$Acre.Value -</pre>
exp(test$predictions mod3))^2) / nrow(test))
rmse mod3
. . .
That helped a little bit. Let's try taking the log of year as well
```{r}
mod4 <- lm(formula = log(Acre.Value) ~</pre>
log(Year)*LandCategory*Region new , data = train)
summary (mod4)
. . .
```{r}
par(mfrow = c(1,3))
qqnorm(mod4$residuals)
qqline(mod4$residuals, col='red')
hist(mod4$residuals, col = 'blue', main = 'Histogram of Residuals',
```

```
xlab = 'Residuals')
plot(mod4$fitted.values, mod2$residuals, type = 'p', xlab = 'Fitted
Values', ylab = 'Residuals')
. . .
```{r}
test$predictions mod4 <- predict(mod4, newdata = test)</pre>
rmse mod4 <- sqrt(sum((test$Acre.Value -</pre>
exp(test$predictions mod3))^2) / nrow(test))
rmse mod4
. . .
```{r}
ggplot(test, aes(Region new, Acre.Value - predictions mod2)) +
  theme(axis.text.x = element text(angle = 90)) +
  geom boxplot()
. . .
```{r}
mod2 poly <- lm(formula = Acre.Value ~</pre>
poly(Year,2)*LandCategory*Region new , data = train)
```

```
summary(mod2 poly)
```{r}
test$predictions mod2 poly <- predict(mod2 poly, newdata = test)</pre>
rmse mod2 poly <- sqrt(sum((test$Acre.Value -</pre>
test$predictions mod2 poly)^2) / nrow(test))
rmse mod2 poly
. . .
Residual diagnostics
```{r}
par(mfrow = c(1,3))
qqnorm(mod2 poly$residuals)
qqline(mod2 poly$residuals, col='red')
hist(mod2 poly$residuals, col = 'blue', main = 'Histogram of
Residuals')
plot(mod2 poly$fitted.values, mod2 poly$residuals, type = 'p',
xlab='Fitted Values', ylab='Residuals')
. . .
```

```
```{r}
mod3 poly <- lm(formula = log(Acre.Value) ~</pre>
poly(Year,2)*LandCategory*Region new , data = train)
summary(mod3 poly)
```{r}
test$predictions mod3 poly <- predict(mod3 poly, newdata = test)</pre>
rmse mod3 poly <- sqrt(sum((test$Acre.Value -</pre>
exp(test$predictions mod3 poly))^2) / nrow(test))
rmse_mod3 poly
Residual diagnostics
```{r}
par(mfrow = c(1,3))
qqnorm(mod3 poly$residuals)
qqline(mod3 poly$residuals, col='red')
hist(mod3 poly$residuals, col = 'blue', main = 'Histogram of
```

```
Residuals')
plot(mod3 poly$fitted.values, mod3 poly$residuals, type = 'p', xlab
= 'Fitted Values', ylab = 'Residuals')
```{r}
mod4 poly <- lm(formula = log(Acre.Value) ~</pre>
poly(log(Year),2)*LandCategory*Region new , data = train)
summary(mod4 poly)
```{r}
test$predictions mod4 poly <- predict(mod4 poly, newdata = test)</pre>
rmse mod4 poly <- sqrt(sum((test$Acre.Value -</pre>
exp(test$predictions mod4 poly))^2) / nrow(test))
rmse mod4 poly
Residual diagnostics
```{r}
```

```
par(mfrow = c(1,3))
qqnorm(mod4 poly$residuals)
qqline(mod4 poly$residuals, col='red')
hist(mod4 poly$residuals, col = 'blue')
plot(mod4 poly$fitted.values, mod4 poly$residuals, type = 'p')
```{r}
mod2 cub <- lm(formula = Acre.Value ~</pre>
poly(Year, 3) *LandCategory*Region new , data = train)
summary(mod2 cub)
. . .
```{r}
test$predictions mod2 cub <- predict(mod2 cub, newdata = test)</pre>
rmse mod2 cub <- sqrt(sum((test$Acre.Value -</pre>
test$predictions mod2 cub)^2) / nrow(test))
rmse mod2 cub
Residual diagnostics
```

```
```{r}
par(mfrow = c(1,3))
qqnorm(mod2 cub$residuals)
qqline(mod2 cub$residuals, col='red')
hist(mod2 cub$residuals, col = 'blue')
plot(mod2 cub$fitted.values, mod2 cub$residuals, type = 'p')
```{r}
mod2 spl <- lm(formula = Acre.Value ~ (Year +</pre>
X) *LandCategory*Region new , data = train)
spl smry <- broom::tidy(summary(mod2 spl))</pre>
spl confints <- broom::tidy(confint(mod2 spl))</pre>
names(spl confints) <- c("term", "2.5 perc", "97.5 perc")</pre>
summary df <- merge(spl smry, spl confints, by = 'term')</pre>
write.csv(summary_df, 'summarydf.csv')
summary(mod2 spl)
```{r, warning=FALSE, message=FALSE}
```

```
test$predictions mod2 spl <- predict(mod2 spl, newdata = test)</pre>
rmse mod2 spl <- sqrt(sum((test$Acre.Value -</pre>
test$predictions mod2 spl)^2) / nrow(test))
rmse mod2 spl
. . .
Residual diagnostics
```{r}
par(mfrow = c(1,3))
qqnorm(mod2 spl$residuals)
qqline(mod2 spl$residuals, col='red')
hist(mod2 spl$residuals, col = 'blue', main = 'Histogram of
Residuals', xlab = 'Residuals')
plot(mod2 spl$fitted.values, mod2$residuals, type = 'p', xlab =
'Fitted Values', ylab = 'Residuals')
. . .
```{r}
ggplot(test) +
```

```
geom_point(aes(Year, Acre.Value)) +
geom_line(aes(Year, predictions_mod2_spl)) +
facet_grid(vars(LandCategory), vars(Region))

...

'``{r}

ggplot(test,aes(Region_new, Acre.Value - predictions_mod2_spl)) +
theme(axis.text.x = element_text(angle = 90)) +
geom_boxplot()
```

