Predicting the Winning Football Team

Can we design a predictive model capable of accurately predicting if the home team will win a football match?

alt text

Steps

- 1. We will clean our dataset
- 2. Split it into training and testing data (12 features & 1 target (winning team (Home/Away/Draw))
- 3. Train 3 different classifiers on the data -Logistic Regression -Support Vector Machine -XGBoost
- 4. Use the best Classifer to predict who will win given an away team and a home team

History

Sports betting is a 500 billion dollar market (Sydney Herald)

Kaggle hosts a yearly competiton called March Madness

https://www.kaggle.com/c/march-machine-learning-mania-2017/kernels

Several Papers on this

https://arxiv.org/pdf/1511.05837.pdf

"It is possible to predict the winner of English county twenty twenty cricket games in almost two thirds of instances."

https://arxiv.org/pdf/1411.1243.pdf

"Something that becomes clear from the results is that Twitter contains enough information to be useful for predicting outcomes in the Premier League"

https://qz.com/233830/world-cup-germany-argentina-predictions-microsoft/

For the 2014 World Cup, Bing correctly predicted the outcomes for all of the 15 games in the knockout round.

So the right questions to ask are

-What model should we use? -What are the features (the aspects of a game) that matter the most to predicting a team win? Does being the home team give a team the advantage?

Dataset

- Football is played by 250 million players in over 200 countries (most popular sport globally)
- The English Premier League is the most popular domestic team in the world
- Retrived dataset from http://football-data.co.uk/data.php

- Football is a team sport, a cheering crowd helps morale
- Familarity with pitch and weather conditions helps
- No need to travel (less fatigue)

Acrononyms-

 $https://rstudio-pubs-static.s3.amazonaws.com/179121_70eb412bbe6c4a55837f2439e5ae6d4e.html$

Other repositories

- https://github.com/rsibi/epl-prediction-2017 (EPL prediction)
- https://github.com/adeshpande3/March-Madness-2017 (NCAA prediction)

```
Import Dependencies
#data preprocessing
import pandas as pd
#produces a prediction model in the form of an ensemble of weak
prediction models, typically decision tree
import xgboost as xgb
#the outcome (dependent variable) has only a limited number of
possible values.
#Logistic Regression is used when response variable is categorical in
nature.
from sklearn.linear model import LogisticRegression
#A random forest is a meta estimator that fits a number of decision
tree classifiers
#on various sub-samples of the dataset and use averaging to improve
the predictive
#accuracy and control over-fitting.
from sklearn.ensemble import RandomForestClassifier
#a discriminative classifier formally defined by a separating
hyperplane.
from sklearn.svm import SVC
#displayd data
from IPython.display import display
%matplotlib inline
# Read data and drop redundant column.
data = pd.read csv('final dataset.csv')
# Preview data.
display(data.head())
#Full Time Result (H=Home Win, D=Draw, A=Away Win)
#HTGD - Home team goal difference
#ATGD - away team goal difference
#HTP - Home team points
#ATP - Away team points
#DiffFormPts Diff in points
#DiffLP - Differnece in last years prediction
#Input - 12 other features (fouls, shots, goals, misses, corners, red
card, yellow cards)
#Output - Full Time Result (H=Home Win, D=Draw, A=Away Win)
         HTP
              ATP HM1 HM2 HM3 AM1 AM2 AM3 HTGD ATGD DiffFormPts
   FTR
DiffLP
    H 1.25
             1.00
                                         L 0.50 0.25
                                                               0.25
30
                     D
                             W
                                 D
-16.0
31 NH 0.75
             0.25
                                         L -0.50 -0.75
                                                               0.50
                     L
                         L
                             W
                                 D
                                     L
-2.0
32
    H 1.00
             1.00
                     L
                         D
                            W
                                 D
                                     W
                                         L 0.00 0.25
                                                               0.00
```

```
-3.0
33 NH 0.75 0.50
                    L L W D L D -0.25 -0.25
                                                      0.25
3.0
34 NH 1.00 1.50 D L W W
                                  W L 0.00 0.75
                                                             -0.50
3.0
Data Exploration
#what is the win rate for the home team?
# Total number of matches.
n matches = data.shape[0]
# Calculate number of features. -1 because we are saving one as the
target variable (win/lose/draw)
n features = data.shape[1] - 1
# Calculate matches won by home team.
n homewins = len(data[data.FTR == 'H'])
# Calculate win rate for home team.
win_rate = (float(n_homewins) / (n_matches)) * 100
# Print the results
print "Total number of matches: {}".format(n_matches)
print "Number of features: {}".format(n features)
print "Number of matches won by home team: {}".format(n_homewins)
print "Win rate of home team: {:.2f}%".format(win rate)
Total number of matches: 5600
Number of features: 12
Number of matches won by home team: 2603
Win rate of home team: 46.48%
# Visualising distribution of data
from pandas.tools.plotting import scatter matrix
#the scatter matrix is plotting each of the columns specified against
each other column.
#You would have observed that the diagonal graph is defined as a
histogram, which means that in the
#section of the plot matrix where the variable is against itself, a
histogram is plotted.
#Scatter plots show how much one variable is affected by another.
#The relationship between two variables is called their correlation
#negative vs positive correlation
#HTGD - Home team goal difference
#ATGD - away team goal difference
#HTP - Home team points
```

```
#ATP - Away team points
#DiffFormPts Diff in points
#DiffLP - Differnece in last years prediction
scatter matrix(data[['HTGD','ATGD','HTP','ATP','DiffFormPts','DiffLP']
], figsize=(10,10))
array([[<matplotlib.axes. subplots.AxesSubplot object at
0 \times 00000000003 A7BA90 >,
        <matplotlib.axes. subplots.AxesSubplot object at
0x000000000A28B908>,
        <matplotlib.axes. subplots.AxesSubplot object at
0x000000000A1481D0>,
        <matplotlib.axes. subplots.AxesSubplot object at
0 \times 00000000000A1E9BA8>,
        <matplotlib.axes. subplots.AxesSubplot object at
0 \times 000000000000003470 >
        <matplotlib.axes. subplots.AxesSubplot object at
0 \times 00000000000 AA29470>],
       [<matplotlib.axes. subplots.AxesSubplot object at
0x000000000AAE5DD8>,
        <matplotlib.axes. subplots.AxesSubplot object at
0x000000000AA38208>.
        <matplotlib.axes. subplots.AxesSubplot object at
0 \times 00000000000 ACE 4400>,
        <matplotlib.axes. subplots.AxesSubplot object at
0x000000000AD5EC88>,
        <matplotlib.axes. subplots.AxesSubplot object at
0x000000000AE9B5F8>,
        <matplotlib.axes._subplots.AxesSubplot object at
0 \times 0000000000 AF56F60 > ],
       [<matplotlib.axes. subplots.AxesSubplot object at
0x000000000AFF3EB8>,
        <matplotlib.axes. subplots.AxesSubplot object at
0x000000000B159860>,
        <matplotlib.axes. subplots.AxesSubplot object at
0x000000000B18DE80>,
        <matplotlib.axes. subplots.AxesSubplot object at
0x000000000B2CAE48>,
        <matplotlib.axes. subplots.AxesSubplot object at
0x000000000B3D5710>,
        <matplotlib.axes. subplots.AxesSubplot object at
0x000000000B4BA978>1,
       [<matplotlib.axes. subplots.AxesSubplot object at
0 \times 000000000008544240 >,
        <matplotlib.axes. subplots.AxesSubplot object at
0x000000000B625D68>,
        <matplotlib.axes._subplots.AxesSubplot object at
0 \times 00000000000B744860 >
        <matplotlib.axes. subplots.AxesSubplot object at
```

0x000000000B813128>,

<matplotlib.axes._subplots.AxesSubplot object at
0x000000000B8B5A20>,

[<matplotlib.axes._subplots.AxesSubplot object at 0x000000000BA4E320>,

<matplotlib.axes._subplots.AxesSubplot object at
0x000000000BC0D2E8>,

<matplotlib.axes._subplots.AxesSubplot object at
0x000000000BE9E128>],

[<matplotlib.axes._subplots.AxesSubplot object at 0x000000000BF989B0>,

<matplotlib.axes._subplots.AxesSubplot object at
0x0000000000C253898>,

<matplotlib.axes._subplots.AxesSubplot object at
0x000000000C2F8B00>,

<matplotlib.axes._subplots.AxesSubplot object at
0x000000000C4053C8>]], dtype=object)

Preparing the Data

```
# Separate into feature set and target variable
#FTR = Full Time Result (H=Home Win, D=Draw, A=Away Win)
X_all = data.drop(['FTR'],1)
y_all = data['FTR']

# Standardising the data.
from sklearn.preprocessing import scale

#Center to the mean and component wise scale to unit variance.
cols = [['HTGD','ATGD','HTP','ATP','DiffLP']]
for col in cols:
    X_all[col] = scale(X_all[col])
```

```
#last 3 wins for both sides
X all.HM1 = X all.HM1.astype('str')
X all.HM2 = X all.HM2.astype('str')
X all.HM3 = X all.HM3.astype('str')
X all.AM1 = X all.AM1.astype('str')
X all.AM2 = X all.AM2.astype('str')
X all.AM3 = X all.AM3.astype('str')
#we want continous vars that are integers for our input data, so lets
remove any categorical vars
def preprocess features(X):
    ''' Preprocesses the football data and converts catagorical
variables into dummy variables. '''
    # Initialize new output DataFrame
    output = pd.DataFrame(index = X.index)
    # Investigate each feature column for the data
    for col, col data in X.iteritems():
        # If data type is categorical, convert to dummy variables
        if col data.dtype == object:
             col data = pd.get dummies(col data, prefix = col)
        # Collect the revised columns
        output = output.join(col data)
    return output
X all = preprocess features(X all)
print "Processed feature columns ({} total features):\
n{}".format(len(X all.columns), list(X all.columns))
Processed feature columns (24 total features):
['HTP', 'ATP', 'HM1_D', 'HM1_L', 'HM1_W', 'HM2_D', 'HM2_L', 'HM2_W', 'HM3_D', 'HM3_L', 'HM3_W', 'AM1_D', 'AM1_L', 'AM1_W', 'AM2_D', 'AM2_L', 'AM2_W', 'AM3_D', 'AM3_L', 'AM3_W', 'HTGD', 'ATGD',
'DiffFormPts', 'DiffLP']
# Show the feature information by printing the first five rows
print "\nFeature values:"
display(X all.head())
Feature values:
         HTP
                    ATP HM1 D HM1 L HM1 W HM2 D HM2 L HM2 W
HM3 D \
                                           0.0
                                                                  0.0
30 -0.043829 -0.611968
                            1.0
                                   0.0
                                                   1.0
                                                          0.0
0.0
31 -1.120644 -2.238746
                            0.0
                                   1.0 0.0
                                                  0.0
                                                          1.0
                                                                  0.0
```

```
0.0
32 -0.582236 -0.611968
                          0.0
                                       0.0
                                               1.0
                                                      0.0
                                                             0.0
                                 1.0
0.0
33 -1.120644 -1.696487
                          0.0
                                 1.0
                                        0.0
                                               0.0
                                                      1.0
                                                             0.0
0.0
34 -0.582236 0.472551
                          1.0
                                 0.0
                                        0.0
                                               0.0
                                                      1.0
                                                             0.0
0.0
                    AM2 D AM2 L AM2 W AM3 D AM3 L AM3 W
   HM3 L
             . . .
HTGD \
                       0.0
                              0.0
                                     1.0
                                            0.0
                                                   1.0
                                                          0.0
30
      0.0
0.753719
                      0.0
                             1.0
                                     0.0
                                            0.0
                                                   1.0
                                                          0.0 -
31
      0.0
             . . .
0.737082
32
      0.0
                      0.0
                              0.0
                                     1.0
                                            0.0
                                                   1.0
                                                          0.0
             . . .
0.008318
                                     0.0
                                                   0.0
                                                          0.0 -
33
      0.0
                      0.0
                             1.0
                                            1.0
0.364382
                       0.0
                              0.0
                                     1.0
                                            0.0
                                                   1.0
                                                          0.0
34
      0.0
0.008318
             DiffFormPts
        ATGD
                             DiffLP
30 0.355995
                     0.25 -1.989216
31 -1.138834
                     0.50 -0.248963
32 0.355995
                    0.00 -0.373267
33 -0.391419
                     0.25 0.372556
                    -0.50 0.372556
34 1.103409
[5 rows x 24 columns]
from sklearn.cross validation import train test split
# Shuffle and split the dataset into training and testing set.
X train, X test, y train, y test = train test split(X all, y all,
                                                    test size = 50,
                                                    random state = 2,
                                                    stratify = y all)
Training and Evaluating Models
#for measuring training time
from time import time
# F1 score (also F-score or F-measure) is a measure of a test's
#It considers both the precision p and the recall r of the test to
compute
#the score: p is the number of correct positive results divided by the
number of
#all positive results, and r is the number of correct positive results
```

#the number of positive results that should have been returned. The F1

divided by

```
score can be
#interpreted as a weighted average of the precision and recall, where
an F1 score
#reaches its best value at 1 and worst at 0.
from sklearn.metrics import fl score
def train classifier(clf, X train, y train):
    ''' Fits a classifier to the training data. '''
    # Start the clock, train the classifier, then stop the clock
    start = time()
    clf.fit(X train, y train)
    end = time()
    # Print the results
    print "Trained model in {:.4f} seconds".format(end - start)
def predict labels(clf, features, target):
    ''' Makes predictions using a fit classifier based on F1 score.
    # Start the clock, make predictions, then stop the clock
    start = time()
    y pred = clf.predict(features)
    end = time()
    # Print and return results
    print "Made predictions in {:.4f} seconds.".format(end - start)
    return f1 score(target, y pred, pos label='H'), sum(target ==
y pred) / float(len(y pred))
def train predict(clf, X train, y train, X test, y test):
    ''' Train and predict using a classifer based on F1 score. '''
    # Indicate the classifier and the training set size
    print "Training a {} using a training set size of
{}...".format(clf. class . name , len(X train))
    # Train the classifier
    train classifier(clf, X train, y train)
    # Print the results of prediction for both training and testing
    f1, acc = predict_labels(clf, X_train, y_train)
    print fl, acc
    print "F1 score and accuracy score for training set: {:.4f} ,
{:.4f}.".format(f1 , acc)
```

```
f1, acc = predict_labels(clf, X_test, y_test)
  print "F1 score and accuracy score for test set: {:.4f} ,
{:.4f}.".format(f1 , acc)
```

Logistic Regression

What is 'Logistic Regression'?

- Logistic regression in a nutshell:
 - Logistic regression is used for prediction of the probability of occurrence of an event by fitting data to a logistic curve.
 - Logistic regression makes use of several predictor variables that may be either numerical or categorical.
 - For example, the probability that a person has a heart attack within a specified time period might be predicted from knowledge of the person's age, sex and body mass index.
 - Logistic regression is used extensively in the medical and social sciences as well as marketing applications such as prediction of a customer's propensity to purchase a product or cease a subscription.

Support Vector Machine (SVM):

Margin

- Basic idea:
- The SVM tries to find a classifier which maximizes the margin between pos. and neg. data points.
- Up to now: consider linear classifiers

$$\mathbf{w}^{\mathrm{T}}\mathbf{x} + b = 0$$

$$\underset{\mathbf{w},b}{\arg\min} \frac{1}{2} \|\mathbf{w}\|^2$$

under the constraints

$$t_n(\mathbf{w}^{\mathrm{T}}\mathbf{x}_n + b) \ge 1 \quad \forall n$$

 $t_n(\mathbf{w}^{\rm T}\mathbf{x}_n+b)\geq 1 \quad \forall n$ based on training data points \mathbf{x}_n and target values $t_n\in\{-1,1\}$.

XGBoost

Like the computer game X Input: age, gender, occupation, ...

XGBoost explained in 2 pics (2/2)

Gradient boosting on CART

- · One more tree = loss mean decreases = more data explained
- · Each tree captures some parts of the model
- · Original data points in tree 1 are replaced by the loss points for tree 2 and 3

```
# Initialize the three models (XGBoost is initialized later)
clf A = LogisticRegression(random state = 42)
clf B = SVC(random state = 912, kernel='rbf')
#Boosting refers to this general problem of producing a very accurate
prediction rule
#by combining rough and moderately inaccurate rules-of-thumb
clf C = xgb.XGBClassifier(seed = 82)
train_predict(clf_A, X_train, y_train, X_test, y_test)
print
train predict(clf B, X train, y train, X test, y test)
print
train predict(clf C, X train, y train, X test, y test)
print ''
Training a LogisticRegression using a training set size of 5550. . .
Trained model in 0.2450 seconds
Made predictions in 0.0380 seconds.
0.621561035256 0.665405405405
F1 score and accuracy score for training set: 0.6216 , 0.6654.
Made predictions in 0.0000 seconds.
F1 score and accuracy score for test set: 0.6957 , 0.7200.
Training a SVC using a training set size of 5550. . .
Trained model in 2.5040 seconds
Made predictions in 1.2430 seconds.
0.620453572957 0.68036036036
F1 score and accuracy score for training set: 0.6205, 0.6804.
Made predictions in 0.0250 seconds.
F1 score and accuracy score for test set: 0.6818, 0.7200.
```

```
Training a XGBClassifier using a training set size of 5550. . . Trained model in 0.4470 seconds
Made predictions in 0.0160 seconds.
0.652147113211 0.69495495455
F1 score and accuracy score for training set: 0.6521 , 0.6950.
Made predictions in 0.0020 seconds.
F1 score and accuracy score for test set: 0.7451 , 0.7400.
```

Clearly XGBoost seems like the best model as it has the highest F1 score and accuracy score on the test set.

Tuning the parameters of XGBoost.

GBDT Hyper Parameter Tuning

Hyper Parameter	Tuning Approach	Range	Note
# of Trees	Fixed value	100-1000	Depending on datasize
Learning Rate	Fixed => Fine Tune	[2 - 10] / # of Trees	Depending on # trees
Row Sampling	Grid Search	[.5, .75, 1.0]	
Column Sampling	Grid Search	[.4, .6, .8, 1.0]	
Min Leaf Weight	Fixed => Fine Tune	3/(% of rare events)	Rule of thumb
Max Tree Depth	Grid Search	[4, 6, 8, 10]	
Min Split Gain	Fixed	0	Keep it 0

Best GBDT implementation today: https://github.com/tqchen/xgboost by **Tianqi Chen** (U of Washington)


```
# TODO: Import 'GridSearchCV' and 'make_scorer'
from sklearn.grid_search import GridSearchCV
from sklearn.metrics import make_scorer
```

TODO: Initialize the classifier

```
clf = xqb.XGBClassifier(seed=2)
# TODO: Make an fl scoring function using 'make scorer'
f1 scorer = make scorer(f1 score,pos label='H')
# TODO: Perform grid search on the classifier using the f1_scorer as
the scoring method
grid obj = GridSearchCV(clf,
                        scoring=f1 scorer,
                        param_grid=parameters,
                        cv=5)
# TODO: Fit the grid search object to the training data and find the
optimal parameters
grid_obj = grid_obj.fit(X_train,y_train)
# Get the estimator
clf = grid obj.best estimator
print clf
# Report the final F1 score for training and testing after parameter
f1, acc = predict labels(clf, X train, y train)
print "F1 score and accuracy score for training set: {:.4f} ,
{:.4f}.".format(f1 , acc)
f1, acc = predict_labels(clf, X_test, y_test)
print "F1 score and accuracy score for test set: {:.4f} ,
{:.4f}.".format(f1 , acc)
XGBClassifier(base score=0.5, colsample bylevel=1,
colsample bytree=0.8,
       gamma=0.4, learning rate=0.1, max delta step=0, max depth=3,
       min_child_weight=3, missing=None, n_estimators=40, nthread=-1,
       objective='binary:logistic', reg_alpha=1e-05, reg_lambda=1,
       scale pos weight=1, seed=2, silent=True, subsample=0.8)
Made predictions in 0.0150 seconds.
F1 score and accuracy score for training set: 0.6365 , 0.6827.
Made predictions in 0.0000 seconds.
F1 score and accuracy score for test set: 0.7826 , 0.8000.
#prediction
```

Possible Improvements?

-Adding Sentiment from Twitter, News Articles -More features from other data sources (how much did others bet, player specific health stats)