

Machine Learning Stochastic Gradient Descent

Dr. Mehran Safayani

safayani@iut.ac.ir

safayani.iut.ac.ir

https://www.aparat.com/mehran.safayani

https://github.com/safayani/machine_learning_course

Department of Electrical and computer engineering, Isfahan university of technology, Isfahan, Iran

Stochastic Gradient Descent

$$L(\theta) = \frac{1}{m} \sum_{i=1}^{m} \underline{L_i}(\theta) \quad \text{(cost function)} \qquad L_i = (\hat{y}_i - y_i)^2$$

 $L_i(\theta)$ = cost of ith training sample

SGD:

$$\theta^{t+1} = \theta^t - \alpha \nabla L_i(\theta^t)$$

$$\mathsf{E}[\nabla L_i(\theta)] = \nabla \mathsf{L}(\theta)$$

Mini_Batch SGD

$$L = \frac{1}{|B|} \sum_{i \in B} L_i(\theta^t) \qquad (B: 2)$$

$$\theta^{t+1} = \theta^t - \alpha g \qquad g = \frac{dL}{d\theta}$$

- یک مجموعه تصادفی به اندازه |B| از داده های آموزشی انتخاب می کنیم.
 - امکان موازی سازی با Mini_Batch SGD بیشتر از SGD است.
 - O(|B|.n) : حجم محاسبات

GD

Repeat{ $d\theta = 0$ for i = 1 to m: $compute \ d\theta^i$ $d\theta \ += d\theta^i$ $\theta = \theta - \alpha \frac{1}{m} \ d\theta$

} until convergence

mini_batch SGD

$$T = \frac{m}{B}$$
; B = batch_size

Repeat{ for j= 1 to T:
$$d\theta = 0$$

for i = 1 to B:
compute
$$d\theta^{i}$$

 $d\theta += d\theta^{i}$

$$\theta = \theta - \alpha \frac{1}{B} d\theta$$
}until convergence

SGD

```
Repeat{  \begin{subarray}{ll} for i = 1 to m: \\ compute $d\theta^i$ \\ $\theta = \theta - \alpha \ d\theta^i$ \\ \end{subarray}  until convergence
```

Comparison

Comparison

SGD

Mini-batch SGD

Batch GD

سريع بودن تكرار

استفاده از افزوندگی یا همبستگی در داده ها

موازی سازی نامناسب

تابع خطا خیلی نویزی است

كند بودن الكوريم

سرعت الكوريتم كاهش مى يابد.

خیلی نویزی

یک مصالحه بین روش SGD و Batch GD تابع خطا خیلی نرم کاهش می یابد موازی سازی مناسب

طولانی بودن هر تکرار ماتریس های خیلی بزرگ گیرکردن در نقاط زین اسبی کند بدلیل عدم استفاده مناسب از افزونگی یا همبستگی در داده ها

 $m \le 2000$: Batch

Mini Batch: 64, 128, 256, 512

$$\begin{cases} x^1 \ , x^2 \ , \dots \ , x^{1000} \end{cases} \quad , \qquad x^1 = x^2 = \dots = x^{1000} \\ \frac{1}{1000} \sum_{i=1}^{1000} L(\hat{y}_i, y_i) = \frac{1}{1000} * 1000 L(\hat{y}_i, y_i)$$
 SGD:
$$x^1 \\ x^2 \\ x^1 \\ x^2 \\ x^1 \\ x^2 \\ x^3 \\ x^3 \\ x^3 \\ x^4 \\ x^2 \\ x^3 \\ x^4 \\ x^4 \\ x^2 \\ x^3 \\ x^4 \\$$

Saddle Points

به کمک SGD میتوان از نقطه زین اسبی فرار کرد

Subgradient Method

این روش برای توابعی که در برخی نقاط مشتق پذیر نیستند بکار می رود.

$$\mathcal{L}(\mathbf{u}) \geq \mathcal{L}(\mathbf{w}) + \nabla \mathcal{L}(\mathbf{w})^{\top} (\mathbf{u} - \mathbf{w}) \quad \forall \mathbf{u}, \mathbf{w}$$
 ذير داريم:

برای توابع محدب مشتق پذیر داریم:

بدین معنی که تابع همیشه بزرگتر از تخمین خطی اش است

Subgradient Method

Subgradient:

A vector $\mathbf{g} \in \mathbb{R}^D$ such that

$$\mathcal{L}(\mathbf{u}) \ge \mathcal{L}(\mathbf{w}) + \mathbf{g}^{\mathsf{T}}(\mathbf{u} - \mathbf{w}) \quad \forall \mathbf{u}$$

is called a subgradient to the function \mathcal{L} at \mathbf{w} .

است.
$$g = \Delta L(w)$$
 است $L(w)$ است.

Subgradient Descent:

$$\mathbf{w}^{(t+1)} := \mathbf{w}^{(t)} - \gamma \, \mathbf{g}$$

Subgradient Method

$$|x| \longrightarrow g = \begin{cases} 1 & x > 0 \\ [-1, 1] & x = 0 \\ -1 & x < 0 \end{cases}$$

$$g(x_i) = [g_3, g_2]$$