O que é algoritmo?

- É uma sequência de passos computacionais que transformam uma entrada em uma saída com o objetivo de resolver um problema computacional.
- Conjunto de Regras e Procedimentos Lógicos perfeitamente definidos que levam à solução de um problema.

Problemas NP-completos

- Não se sabe se existem algoritmos eficientes para eles.
- Se existir a solução para um deles. Existe solução para todos eles.

Modelo Computacional Genérico - Arquitetura de Von Neumann

- 1 processador
- Memória RAM
- Operações sequenciais
- Todas as instituições têm mesmo custo

Análise de Algoritmo

- Analisar os recursos que um algoritmo necessitará (Tempo e Memória)
- Sempre é mais importante estudar o Pior Caso e às vezes o Caso Médio.

- Lower Bound ou Limitante Inferior (LB(P)): Complexidade Minima para resolver um problema (Big- Ω).
- **Upper Bound ou Limitante Superior (UB(P)):** Complexidade do melhor algoritmo para resolver o problema (Big-O).
- Um problema é computacionalmente resolvido se UB(P) pertence ao domínio de LB(P).

Insertion Sort

COMPLEXIDADE: N²

Divisão e Conquista:

- **Divisão:** É dividir o problema até que cheguemos em uma solução trivial (ex: Array de tamanho 1).

Array original 6 43 18 26 26 32 43 | 15 18 26 32

- Conquista: Solução do problema nestes arrays menores
- **Combinação (Opcional):** Reunião dos Arrays (agora resolvidos) para um único array novamente.

Merge Sort

Algoritmo de Ordenação por método de Divisão e Conquista

- COMPLEXIDADE: n log n

Notação Assintótica:

- CLASSE Θ (Big- Θ): $0 \le c_1.g(n) \le f(n) \le c_2.g(n)$

- CLASSE O (Big-O): $0 \le f(n) \le c.g(n)$

- CLASSE Ω (Big- Ω): $0 \le c.g(n) \le f(n)$

- CLASSE o (Big-o): $0 \le f(n) < c.g(n)$
- CLASSE ω (Big- Ω): $0 \le c.g(n) < f(n)$
- Analogia entre duas funções f e g e dois números a e b:
 - f(n) = O(g(n)) equivalente $a \le b$
 - $f(n) = \Omega(g(n))$ equivalente $a \ge b$
 - f(n) = Θ(g(n)) equivalente a = b
 - f(n) = o(g(n)) equivalente a < b</p>
 - $f(n) = \omega(g(n))$ equivalente a > b