MAISOI Assignment 1 (a). $\int e^{1+\chi_{-3}} (\chi_{-3} dx) = \int e^{(+\chi_{-3})} d(-\frac{7}{7}\chi_{-3})$ $|et U^{2} - \pm X^{2}| + |+X^{2}| = |-2u|$ 原式= Je1-2udu = -主e1-2u+C $\int \frac{x^3}{x^3} dx = -\frac{1}{2} e^{1+x^2} + C$ 1(b) IX" 11+x4 dx = J JI+X X"dx = J J+X 12 dx12 = 12/1/1+x4 dx4 let U= 1+x4 37 = 125 Jud(u-1) = 45 Ju (u-1) du = 4 5 n= (u-20+1) du = 4 5 n= -2 u= + 1 (c) John Tosk dx =2 Joinx Gox dx = -2 [Gs = H (- mx) dx = -2 Jos = x dosx let 4= Gxx 3di = -2 [u du = -2 (= 4) +6 = - \ 4 4 5 + C

:. Jan2x/05xdx = - 4 (65x) = +1

11d1. Ji x ex-1 dx = Ji ex-1 x dx let U= X2-1, Isti = 1 53 endu = 1 en 13 $\int_{1}^{2} x e^{x-1} dx = \pm (e^{3}-1)$ 11e). $\int_{1}^{5} \frac{\sin^{2}(\ln x)}{x} dx = \int_{1}^{5} \int_{1}^{3} \int_{1}^{3} (\ln x) \frac{1}{x} dx$ = J's sinthx) dhx let hx= u bri = 5655/h2 udu let sing = 1 sinches 12 cosudu 原式= Ilus 1-6220 du = \frac{1}{2} (\langle \langl = = [U /05 - Sinzu /05) $= \frac{1}{2} \left(\left| h5 - \frac{\sin 2h5}{2} \right| \right)$ Int Sin (Uns) (d). I sm'x dx = I sinbx sinx dx = - Sinbx dosx

	1(9. []9-16x2 dx = [][16(2-x2) dx
	= 45 [2-X-) dx
	et x= = 4 sin0
	$= 35650 d^{\frac{2}{4}} \sin \theta = 35650 d^{\frac{2}{4}} \cos \theta d\theta$ $= 45650 d\theta$
	= 4 Jasy do
	$ \frac{751}{1} = \frac{9}{4} \int \frac{1 + \cos 2\theta}{2} d\theta = \frac{9}{4} \left(\frac{0}{2} + \frac{1}{4} \sin^2 \theta \right) + C $ $ = \frac{9}{8} \arcsin \frac{4}{3} \times 4 + \frac{1}{2} + \frac{1}{4} \sin^2 \theta + C $
	$= \frac{9}{8} \arcsin \frac{4}{3} \times + \frac{\times \sqrt{9-16} \times^{2}}{2} + ($
	$\int \frac{1}{x^2 I - x^2} dx$
	let X= Sind. [x*] Trdx = [Jing Good dsing
	TEH = [THOGO COSO dO =] THOGO dO = I CSCO d
	$= - \omega t \theta + C = - \frac{1 - x^2}{x} + C$
	$2(a)$. $\int x e^{-3x} dx = \int -\frac{x}{3} de^{-3x} = -\frac{1}{3} \int x de^{-3x}$
1	$= -\frac{1}{3} (Xe^{-3X} - \int e^{-3X} dx)$
	$= -\frac{1}{2} \left(\chi_{e}^{-3\chi} - \left(-\frac{e^{-3\chi}}{24} \right) \right)$
7	$= -\frac{1}{3} x e^{-3x} - \frac{1}{9} e^{-3x} + C = C - \frac{3x+1}{9} e^{-3x}$
A	(. ')
77	

 $= \frac{1}{3} \left(\frac{1}{3} e^{\frac{3}{2}} + \frac{1}{3} \right) = \frac{1}{3} e^{\frac{3}{2}} + \frac{1}{4}$ $= \frac{1}{3} \left(\frac{1}{3} e^{\frac{3}{2}} + \frac{1}{3} \right) = \frac{1}{3} e^{\frac{3}{2}} + \frac{1}{4}$ $= \frac{1}{3} \left(\frac{1}{3} e^{\frac{3}{2}} + \frac{1}{3} \right) = \frac{1}{3} e^{\frac{3}{2}} + \frac{1}{4}$

 $2(Q \int X^{2} \sin X dX = - \int X^{2} d\cos X$ $= - \left(X^{2} \cos X - \int \cos X dX^{2} \right)$ $= \int \cos X dX^{2} - X^{2} \cos X = 2 \left(X \sin X - X^{2} \cos X \right)$ $= 2 \int X d\sin X - X^{2} \cos X = 2 \left(X \sin X - X^{2} \cos X \right) - X^{2} \cos X$ $= 2 \int X^{2} \sin X dX = 2 X \sin X + 2 \cos X - X^{2} \cos X + C$

 $2(d). \int X \sin^{3} X dx = \int \frac{x(1-632x)}{2} dx$ $= \pm \left(\int X dx - \int X \cos 2x dx \right) = \pm X^{2} + C - \pm \int X \cos 2x dx$ $= \pm \left(X \sin 2x + \frac{\cos 2x}{2} + C \right)$ $= \pm \left(X \sin 2x + \frac{\cos 2x}{2} + C \right)$ $= -\frac{1}{2} \left(X \sin 2x + \frac{\cos 2x}{2} + C \right)$ $= -\frac{1}{2} \left(X \sin 2x - \frac{1}{2} \cos 2x + C \right)$

 $\frac{\sum_{i=1}^{1} \frac{x}{x^{i}} |e^{-\frac{x}{x}}|^{2} + \sum_{i=1}^{1} \frac{x}{x^{i}} |e^{-\frac{x}{x}}|^{2}}{\sum_{i=1}^{1} \frac{x}{x^{i}} |e^{-\frac{x}{x}}|^{2} + \sum_{i=1}^{1} \frac{x}{x^{i}} |e^{-\frac{x}{x}}|^{2}}$ $= \frac{x}{x} |e^{-\frac{x}{x}}|^{2} + \sum_{i=1}^{1} \frac{x}{x^{i}} |e^{-\frac{x}{x}}|^{2}$ $= \frac{x}{x} |e^{-\frac{x}{x}}|^{2} + \sum_{i=1}^{1} \frac{x}{x^{i}} |e^{-\frac{x}{x}}|^{2}$

 $= \frac{-1}{e} - \frac{1}{e} - \frac{1}{e} + 2 = 2 - \frac{5}{e}$

	//
$2(f). \int \omega s^3 x dx = \int \omega s^3$	x cosx dx
= Jastxdsinx = J 1- Sinz	
let U= sinx, Tit = S	
= U- \frac{1}{3} U + C :	
	·
2.19). $\int e^{x} sh^{3}x dx = -\frac{1}{3} (e^{x})$	653x - 5 Cos3x dex)
= - = ex653x + = 5653x de	$x = -\frac{1}{3} e^{x} \cos 3x + a \int e^{x} dx$
:. $\int e^{x} \sinh x dx = -\frac{1}{3} e^{x} 653x$	+ = exsin3x - = exsih3x
$\frac{1}{9} \int e^{x} \sin 3x dx = \frac{e^{x}}{9}$	5143x - 3ex653x +C
$\int e^{x} \sin 3x dx = \frac{e^{x}}{2}$	5h3x - 3ex 6053x + C
	10
$2(h)$. $\sqrt{x+1}$ $x = 0$	ton9 = X
-: Stan x dx = 50d	1
50 dtan0 = 0 tano - 5tan	
Sodtano = Otano + Sasodass	
650 = 1 .: 5tan-1x	
Stan'x dx = x tan'x -	511 MT1) +C
	Α

,	
3(a). $\int e^{2x} \sin(2e^x + 1) dx = \int e^{2x} \frac{d(s(e^x + 1))}{2e^x} = -\frac{1}{2} \int e^x d(s) ds$	(4,
=-=(excos(2ex+1)- [cs(2ex+1)ex]x)	
= $-\frac{1}{2}e^{x}Gs(2e^{x}+1) + \frac{1}{2}\int Gs(2e^{x}+1)e^{x}dx$	
=- = ex 6s (2ex+1)+ = 51 dsin(2ex+1)	_
: Sexsin(2ex+1) = - = ex cos (2ex+1) + 4 sin (2ex+1)+(
	_
3(b). So sin(24x) dx let U=24x	
5' 5h(2/x) dx = = 5 6 u sinu du = - £ 50 udosu= - £ (ucsub-	Jose V
= $-\frac{1}{2}uGsu _{0}^{2} + \frac{1}{2}J_{0}Gsudu = -\frac{1}{2}(2Gs2-0) + \frac{1}{2}Sin 2$	
$\int_{0}^{1} Sih(2\sqrt{x}) dx = \frac{1}{2} Sih^{2} - Cos2$	
3(9. Jo 1/h(1+ x3) dx let U= 1+ x3	
73 = 35 hu (u-1) du = 5 hudu-1)3	
= $ u(u-1)^3 ^2 - \int_1^2 (u-1)^3 dhu$	
=	
$= h2 - (\frac{5}{3} - 6 + 6 - h2 - \frac{1}{3} + \frac{3}{2} - 3)$ $= 2 h2 - \frac{7}{3} + \frac{3}{2} = 2 h2 - \frac{5}{6} = \frac{12 h2 - 5}{6}$	
= 21/12 3 , T = 71/12 P = P	
	1

3(d). Jos (lnx) dx let lnx=u Josu de = eu cosu - Seu dosu = eu cosut Jeu sinhadu = eucou + (sinu deu = eucosu + eusmu - Jeudsinu = e" (nosutsinu) - Seucsudu = scaudeu = Josudeu = = = eu (Shu+ Gosu) $\int \cos(hx) dx = \frac{\pi}{2} \left(\sinh(hx) + \cos(hx) \right) + C$ 3(e). [shex) h tinx) dx I h (sinx) sin (24) dx = [/ (sinx) dos 2x = -= 1/(smx) 6051x + ± 5051x d/n(smx) =- = / (shx) 652x + = 1 [612x 65x dx =- = 1 (Jux) 652x + = 5 Jinx - 2 Sinx d Sinx : Jsih(2x) h(sihx) dx = - = h(sihx)652x + = ln(sinx) - = sin2x + C $= \ln \left(\sinh X \right) \left(\sinh X \right)^2 - \frac{\left(\sinh X \right)^2}{2} + C$ 3(f) [(x+1)|n(x+3) dx ===[|n(x+3)|d(x+1)2 = = (x+1)2/n(x+3) - = [(x+1)26/(x+3) 1 = 1 (X+1) = 1 (X+1) + 1 [(X+1) 3] X13 = 1 (x+1)3/1(x+3) - 1 5 (x+3)2-6x-12+4 d(x+3) = 1 (X+1), P(X+3) - 1 2 (X+3) + 23 - 4 g(X+3) = = (x+1)3/n(x+3)-==(x+3)2-2/n(x+3)+2(x+3)+L = 2(x-1)(x+3)h(x+3)-x+2x +L

	ž.
39). \[\text{X' \(\frac{14-x^2}{2} \) \dx \[\text{let } \text{X = 25in } \text{0} \]	'
12-11 = 5451420. 2000 dx = 8551420 050 dx	2
= 16 5 Th= 2003 0 do = 451-03-20 do = 25 Tin= 20 d20	
$= \pm \int (1-0.540) d40 = \pm (40-5.140) + (=20-\pm5.140+6)$	
$\theta = \arcsin \frac{x}{\Sigma}$	
: SXJFX'dx=2arcsin= - I sin(4arcsin=)+C	
3(h). [x3 sin (4+x1) dx = 55m(4+x2) x3 = 4 - 5m(4+x2)	TX4
= 4 X4 SM(4+X2) = 4 J X4 of Sh (4+X2) =	
= + 54(4-1x2) - 1 JGH(X4) + x6-	
= 4 X45m(4+X2) = + x605(x+X1) + 7= 5 x6 dos(x+X	2)
= 4 1 JMC(11) - 12 1 000 1	
3(h). [x351h (4+ x2) dx = - I 5x2 d Gs(4+x2)	
= - = (x (4+x,) x2 + =] Cos (4+x2) dx2	
= $-\frac{1}{x^{2}}\cos(4+x^{2}) + \frac{1}{x^{2}}\cos(4+x^{2}) + \frac{1}{x^{2}}\cos(4+x^{2}) + C$	E
$= -\frac{\chi_1}{\chi_2} \cos(4+\chi_1) + \frac{1}{2} \sin(4+\chi_1) + 1$	
	4

___/___

4.	Easy to see for = 1/1+x2 is an even function
	so the andition $=$ $=$ $=$ $\int_0^1 \sqrt{1+x^2} dx \leq \sqrt{2}$
	when 7 ∈ (0.1) ≤ [1+x² ≤ 1]
	5. 1 dx = 5. JHX-dx = 5. 12 dx
	: [\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
5	$\int_{a}^{b} x f(x) dx = \int_{a}^{b} x df(x)$
	$\int_{a}^{b} x f(x) dx = \int_{a}^{b} x df(x)$ $= \chi f(x) \Big _{x=a}^{x=b} - \int_{a}^{b} f(x) dx$
	= b - a - D = b - a
	so the value of saxfix dx is b-a
6	$\int_{0}^{9} \chi^{3} f(\chi^{2}) d\chi = \int_{0}^{9} \chi^{3} f(\chi^{2}) \frac{1}{2x} d\chi^{2}$
	= $\pm \int_0^a x^2 f(x^2) dx^2$ let $u=x^2$. Since a 70
14	4 = 7 20, nt(n) qn = 7 20, x tan qx
1 1	-, 20 x3 f(x,) qx = = = 10,x fro qx
	To $\int_{0}^{\infty} x^{2} f(x^{2}) dx - \int_{0}^{\infty} x^{2} f(x) dx = 0$
	Je Je W Low D De W Lad OV

7. (a). easy to see $f(x) = \omega s^n x$ is even $I_n = \frac{n!}{n!} I_{n-1} \implies \int_0^{\frac{n}{2}} \omega s^n x dx = \frac{n!}{n!} \int_0^{\frac{n}{2}} (6s^{n-2}) x dx$
In = 1 In => [] (05" x dx = 1] [] (05" x
[[[[] [] [] [] [] [] [] [] [
= (85 m/x 5:0x / = - [0 = C x / (05 m/x
= (05" x 5" h) x / 5" + (1-1) 5" 5" x 6" x 6x" x dx - 05" x 5" x 5" x / 5" + (1-1) 5" (1-65" x) 65" x dx
2 00 x x x x x x x x x x x x x x x x x x
- US" x Thx /5 + (1-1) Jo" (1-65 k) 65 x dx
= (0-0) + (1-1) 50 65 65 65 X dx - (M) \$ 65 X dx
:. $(n-1+1) \int_{0}^{2\pi} (a_{5}^{n} x) dx = (h-1) \int_{0}^{2\pi} (a_{5}^{n} x) dx$
$\int_{0}^{2} Gs^{2} dx = \frac{4-1}{h} \int_{0}^{2} Gs^{n-1} dx$
PP In= ht In-1
RI TU U TIST
·
$I(b)$ $I_5 = \frac{4}{5}I_3 = \frac{4}{5} \times \frac{2}{3}I_1 = \frac{8}{15}I_1$
$\frac{161}{15 = \frac{4}{5}1_3 = \frac{4}{5} \times \frac{2}{3}I_1 = \frac{8}{15}I_1}{I_1 = 2 \int_0^{\frac{2}{5}} \cos x dx}$
$= 2 \sin x / \frac{\pi}{2} = 1$
i. Is= 2x 1/5 = 116

____/____