MATH-810 Mathematical Methods for Artificial Intelligence DFS & BFS

Dr. Yasir Ali

DBS&H, CEME
National University of Sciences and Technology
Islamabad, Pakistan.

September 24, 2025

Weighted Graph, Shortest Path & Negative Cycle

- $w: E \to \mathbf{R}$ is known as weight function
- ullet w to an edge is called weight of the edge
- A graph G = (V, E) in which each edge has a weight is called a weighted graph.
- Let $S = v_1, v_2, \ldots, v_k$ be a path in a weighted graph G then weight of S is given by

$$w(S) = \sum_{i=1}^{k-1} w(v_i, v_{i+1}).$$

• A shortest path from a vertex v to a vertex v' is defined as any v-v' path S with weight w(S)=d(v,v') where d(v,v') is given by

$$d(v,v') = \left\{ \begin{array}{ll} \min\{w(\widetilde{P}) \mid \widetilde{P} \text{ is a } v-v' \text{ path} \} & \text{if } v' \text{ is reachable from } v \\ +\infty & \text{otherwise.} \end{array} \right.$$

• A cycle C in a weighted graph with w(C) < 0 is called a negative cycle.

Dijkstra's Algorithm (Main Idea)

• The idea is to visit the nodes in order of their closeness to *source* vertex s.

The closest node to s, say x, must be adjacent to s and the next closest node, say y, must be either adjacent to s or x. The third closest node to s must be either adjacent to s or x or y, and so on.

Predecessor $\pi[v]$ & Shortest Path Estimate d[v]

We set the π attribute so that the chain of predecessors originating at a vertex v runs backwards along the shortest path form vertex s to v.

• Given a graph G(V, E), we maintain for each vertex $v \in V$ a $predecessor \pi[v]$ that is either a vertex or NIL

For each vertex $v \in V$, we maintain an attribute d[v], which is an upper bound on the weight of a shortest path from source s to vertex v.

• We call d[v] a Shortest Path Estimate

Initialize . . .

We initialize the Shortest Path Estimate and Predecessor by the following procedure:

INITIALIZE-SINGLE-SOURCE (G, s)

- for each vertex $v \in V$
- **do** $d[v] \leftarrow \infty$
- $\pi[v] \leftarrow \text{NIL}$
- d[s] = 0

After initialization, $\pi[v]=\mathtt{NIL},\, d[v]=0$ for v=s and $d[v]=\infty$ for all $v\in V-s$

Relaxation

• The process of relaxing an edge (u, v) consist of testing whether we can improve the shortest path to v found so far by going through u and, if so, update d[v] and $\pi[v]$.

A relaxation step may decrease the shortest path estimate d[v] and updates's v's predecessor field $\pi[v]$.

RELAX (u, v, w)

- **1** if d[v] > d[u] + w(u, v)
- 2 then $d[v] \leftarrow d[u] + w(u, v)$
- $\pi[v] \leftarrow u$

Relaxation

RELAX (u, v, w)

1 if
$$d[v] > d[u] + w(u, v)$$

2 then
$$d[v] \leftarrow d[u] + w(u, v)$$

$$\mathbf{3} \qquad \qquad \pi[v] \leftarrow u$$

(if new shortest path found) (set new value of shortest path) (add u to predecessor of v)

Relaxation of an edge (u, v).

(a) Because d[v] > d[u] + w(u, v) prior to relaxation, the value of d[v] decreases.

Relaxation

RELAX (u, v, w)

1 if
$$d[v] > d[u] + w(u, v)$$

2 then
$$d[v] \leftarrow d[u] + w(u, v)$$

$$\sigma[v] \leftarrow u$$

(if new shortest path found) (set new value of shortest path) (add u to predecessor of v)

Relaxation of an edge (u, v).

(a) Because d[v] > d[u] + w(u, v) prior to relaxation, the value of d[v] decreases.

(b) Here, $d[v] \le d[u] + w(u, v)$ before the relaxation step, so d[v] is unchanged by relaxation.

Dijkstra's Algorithm

Dijkstra's algorithm maintains a set S of those vertices for which the shortest path weights from the source s have already been determined. The algorithm repeated selects the vertices $u \in V \setminus S$ with shortest path estimates, and insert u into S, and relaxes all the edges leaving u In the following implementation, we maintain a priority queue Q that contains all the vertices in $V \setminus S$ keyed by their d values.

Dijkstra's Algorithm

```
DIJKSTRA (G, w, s)
       INITIALIZE-SINGLE-SOURCE (G, s)
                                                            (distance to source vertex is zero)
                                                            (set all other distances to infinity)
      S \leftarrow \emptyset
                                                            (S, the set of visited vertices is initially empty)
      Q \leftarrow V[G]
                                                            (Q, the queue initially contains all vertices)
       while Q \neq \emptyset
                                                            (while the queue is not empty)
         do u \leftarrow EXTRACT - MIN(Q)
 5
                                                            (select the element of Q with the min. distance)
 6
          S \leftarrow S \cup \{u\}
                                                            (add u to list of visited vertices)
           for each vertex v \in Adj[u]
              do RELAX(u, v, w)
                                                            (if new shortest path found)
```

(set new value of shortest path)

Graph with nonnegative edge weights:

S: {}

Step 1 – Start at the source node (let's say A) with distance 0 and all other nodes to infinity.

Step 5 - We mark the node H as visited.

A -> B -> C, Cost of AC is 8

A -> E -> F, Cost of AEF is 6, (Shortest Distance)

A -> E -> G, Cost of AEG is 7

A -> H -> G, Cost of AHG is 7

We have to find the minimum cost. So, we update the shortest distance (AEF, 6).

Step 6 - We mark the node F as visited.

A -> B -> C, Cost of AC is 8

A -> E -> F -> D, Cost of AEFD is 7, (Shortest Distance)

A -> E -> G, Cost of AEG is 7

A -> H -> G, Cost of AHG is 7

We have to find the minimum cost. So, we update the shortest distance (AEFD, 7).

Step 7 - We mark the node D as visited.

A -> B -> C, Cost of AC is 8

A -> E -> G, Cost of AEG is 7, (Shortest Distance)

A -> H -> G, Cost of AHG is 7

We have to find the minimum cost. So, we update the shortest distance (AEG, 7).

Step 8 - We mark the node G as visited.

A -> B -> C, Cost of AC is 8, (Shortest Distance)

We have to find the minimum cost. So, we update the shortest distance (ABC, 8).

Also, mark the node C as visited.

Binary Tree in AI? Decision Tree Example

- Each internal node asks a yes/no question.
- Leaves correspond to decisions or classifications.
- Binary trees like this form the basis of many AI algorithms

Binary Trees in AI? Learning with Information Gain

- Each node asks a binary question (Yes/No).
- Splits chosen by maximizing information gain:

$$IG(S, A) = H(S) - \sum_{v \in \{Yes, No\}} \frac{|S_v|}{|S|} H(S_v).$$

$$H(S) = -\sum_{c \in \{Buy, NotBuy\}} p(c) \log_2 p(c)$$

Recursive Growth of Decision Trees

Recursive Growth of Decision Trees

• This dataset is an artificial pedagogical toy dataset where features were not chosen to model real-world economics perfectly? just to demonstrate entropy/information gain.

Classic Dataset: "Buy Computer" (Mitchell, 1997)

Age	Income	Student	Credit Rating	Buys Computer
≤ 30	High	No	Fair	No
≤ 30	High	No	Excellent	No
≤ 30	Low	No	Fair	Yes
≤ 30	Low	Yes	Excellent	Yes
31-40	High	Yes	Fair	Yes
31-40	Low	Yes	Excellent	Yes
31-40	High	No	Fair	Yes
> 40	High	No	Excellent	No
> 40	Low	Yes	Fair	Yes
> 40	Low	No	Excellent	No

Summary: total examples |S| = 10, #Buy = 6, #NotBuy = 4.

Entropy? overall set S

Entropy (binary labels)

For binary label set S with class probabilities p_1, p_2 ,

$$H(S) = -\sum_{i} p_i \log_2 p_i.$$

Compute for dataset:
$$p(Buy) = \frac{6}{10} = 0.6$$
, $p(Not) = \frac{4}{10} = 0.4$.

$$\begin{split} H(S) &= - \left(0.6 \log_2 0.6 + 0.4 \log_2 0.4 \right) \\ &= - \left(0.6 \times \left(-0.736965594 \right) \right. + \left. 0.4 \times \left(-1.321928094 \right) \right) \\ &= 0.44217935649972373 \right. + \left. 0.5287712379549449 \right. \\ &= 0.9709505944546686. \end{split}$$

Information Gain? formula & Student split

Information Gain (IG)

For attribute A that partitions S into subsets S_v :

$$IG(S,A) = H(S) - \sum_{v} \frac{|S_v|}{|S|} H(S_v).$$

 $A = Student: values = v \in \{Yes, No\}.$

- v = Yes: 4 examples, all 4 are $\mathbf{Buy} \Rightarrow p(\mathrm{Buy}) = 1, p(\mathrm{Not}) = 0$ so $H(S_{\mathrm{Yes}}) = 0$.
- v = No: 6 examples, #Buy = 2, $\#\text{Not} = 4 \Rightarrow p(\text{Buy}) = \frac{2}{6} = 0.333333$, $p(\text{Not}) = \frac{4}{6} = 0.666666$.

$$H(S_{\text{No}}) = -\left(\frac{2}{6}\log_2\frac{2}{6} + \frac{4}{6}\log_2\frac{4}{6}\right) = -\left(0.33 \times (-1.58) + 0.67 \times (-0.58)\right)$$
$$= 0.5283208335737187 + 0.389974 = 0.9182958340544896.$$

Information Gain? formula & Student split

Weighted entropy after splitting on Student:

$$\frac{4}{10} \cdot 0 + \frac{6}{10} \cdot 0.9182958340544896 = 0.5509775004326937.$$

Therefore

$$IG(S, \mathrm{Student}) = H(S) - 0.5509775004326937 = 0.9709 - 0.5509 = 0.4199$$

 $IG({\rm Student}) \approx 0.420$ - The largest gain among attributes.

Information Gain? Age

Split by Age values: ≤ 30 (4 examples), 31-40 (3 examples), > 40 (3 examples).

Counts and entropies:

• Age \leq 30: 4 examples, 2 Buy / 2 Not $\Rightarrow p = 0.5, 0.5$ so

$$H(S_1) = -(0.5\log_2 0.5 + 0.5\log_2 0.5) = 1.0000000000.$$

- Age 31-40: 3 examples, 3 Buy / 0 Not $\Rightarrow H(S_2) = 0$.
- Age > 40: 3 examples, 1 Buy / 2 Not

$$\Rightarrow H(S_3) = -\left(\frac{1}{3}\log_2\frac{1}{3} + \frac{2}{3}\log_2\frac{2}{3}\right) = 0.9182958340544896.$$

Weighted entropy:

$$\frac{4}{10} \cdot 1.0 + \frac{3}{10} \cdot 0 + \frac{3}{10} \cdot 0.92 = 0.4 + 0 + 0.28 = 0.68.$$

Information gain:

$$IG(S, Age) = 0.97 - 0.68 = 0.29.$$

$$IG(Age) \approx 0.2955$$
.

Information Gain? Income

Income (High / Low): each has 5 examples.

- High: 5 examples, 2 Buy / 3 Not $\Rightarrow H(\text{High}) = 0.9709505944546686$.
- Low: 5 examples, 4 Buy / 1 Not $\Rightarrow H(\text{Low}) = 0.7219280948873623.$
- Weighted entropy = $0.5 \cdot 0.97095 + 0.5 \cdot 0.721928 = 0.8464393446710154$.
- IG(S, Income) = 0.9709505944546686 0.8464393446710154 = 0.12451124978365313.

Information Gain? Credit

Credit Rating (Fair / Excellent):

- Fair: 4 examples, 3 Buy / 1 Not $\Rightarrow H(\text{Fair}) = 0.8112781244591328$.
- Excellent: 6 examples, 3 Buy / 3 Not $\Rightarrow H(\text{Excellent}) = 1.0$.
- Weighted entropy = $0.4 \cdot 0.8112781244591328 + 0.6 \cdot 1.0 = 0.9245112497836532$.
- IG(S, Credit) = 0.9709505944546686 0.9245112497836532 = 0.0464393446710154.

Best root split: Student with $IG \approx 0.420$

Tree after first split: Student

Explanation: Student=Yes subset is pure (4/4 Buy) so we make a leaf 'Buy'. For Student=No (6 examples, 2 Buy / 4 Not) we must split further? see next slides.

Recursive split: analyze Student = No subset

Subset statistics

Student = No, this subset has 6 examples: #Buy = 2, #Not = 4. Entropy:

$$H(S_{\text{No}}) = -\left(\frac{2}{6}\log_2\frac{2}{6} + \frac{4}{6}\log_2\frac{4}{6}\right) = 0.9182958340544896.$$

Candidate splits over: Age, Income, Credit. We compute IG inside this subset.

Age (within Student=No):

- Age \leq 30: 3 examples (1 Buy, 2 Not) \Rightarrow H = 0.9182958340544896.
- Age 31-40: 1 example (1 Buy) $\Rightarrow H = 0$.
- Age > 40: 2 examples (0 Buy, 2 Not) $\Rightarrow H = 0$.
- Weighted entropy = $\frac{3}{6} \cdot 0.9183 + \frac{1}{6} \cdot 0 + \frac{2}{6} \cdot 0 = 0.4591479170272448$.
- $IG_{No}(Age) = 0.9182958340544896 0.4591479170272448 = 0.4591479170272448$.

Recursive split: analyze Student = No subset

Income (within Student=No):

- High: 4 examples (1 Buy, 3 Not) $\Rightarrow H = 0.8112781244591328$.
- Low: 2 examples (1 Buy, 1 Not) $\Rightarrow H = 1.0$.
- Weighted entropy $= \frac{4}{6} \cdot 0.8112781244591328 + \frac{2}{6} \cdot 1.0 = 0.8741854163060885.$
- $IG_{No}(Income) = 0.9182958340544896 0.8741854163060885 = 0.044110417748401076.$

Recursive split: analyze Student = No subset

Credit (within Student=No):

- Fair: 3 examples (2 Buy, 1 Not) $\Rightarrow H = 0.9182958340544896$.
- Excellent: 3 examples (0 Buy, 3 Not) $\Rightarrow H = 0$.
- Weighted entropy $= \frac{3}{6} \cdot 0.9182958340544896 + \frac{3}{6} \cdot 0 = 0.4591479170272448.$
- $IG_{No}(Credit) = 0.9182958340544896 0.4591479170272448 = 0.4591479170272448$.

Best splits on Student=No: Age and Credit tie with $IG \approx 0.45915$.

Continue recursion: Student=No, choose Age

Continue recursion: Student=No, choose Age

Notes on final small splits:

- For Student=No and Age ≤ 30 (3 examples): splitting by **Income** yields
- (i) Income = High \Rightarrow 2 examples (both NotBuy) \Rightarrow leaf **Not Buy**.
- (ii) Income = Low \Rightarrow 1 example (Buy) \Rightarrow leaf **Buy**.
- \bullet Age 31–40 was pure (Buy) in this subset; Age >40 gave NotBuy.

Final decision tree (summary)

Final decision tree (summary)

Summary:

- Numeric entropy & IG calculations explain & justify every split.
- Student had the highest IG at the root (0.420 bits) and became a pure leaf for Student=Yes.
- Recursion and local IG checks (Age / Credit) led to the rest of the tree; local splits produced pure or near-pure leaves.

