Aula 09 Processo de Furação

Formas de obtenção de furos

Processo de usinagem onde movimento de corte é principal rotativo, e o movimento de avanço é na direção do eixo

Furadeira a arco egípicia de 1.000 A.C.

- → 1800 primeiras publicações sobre furação de metais
- → 1884 Morse Twist Drill and Machine Company
- → 1891 Primeiros testes de furação

Broca helicoidal

Processo de furação com brocas helicoidais

Simulação do processo de furação (www.deform.de)

Furação com brocas helicoidais

- Processo de maior importância 20 a 25% do total de aplicações dos processos de usinagem
- A broca helicoidal é a ferramenta mais fabricada e mais difundida para usinagem
- Existem aproximadamente 150 formas de afiações e uma série de perfis específicos
- Utilização em furos curtos ou profundos
- Utilização na furação em cheios ou com pré-furo

Particularidades do processo

 A velocidade de corte vai de um valor máximo na periferia da broca até o valor zero no seu centro

$$r \to 0 \Rightarrow v_c \to 0$$
; $r \to r \Rightarrow v_c \to v_c \max$

- Dificuldade no transporte dos cavacos para fora da região do corte
- Distribuição não adequada de calor na região do corte
- Desgaste acentuado nas quinas com canto vivo
- Atrito das guias nas paredes do furo

Fatores que contribuem para qualidade de furos com de brocas helicoidais

Cinemática do processo

Cinemática do processo Distrbuição entre rotação e avanço

Constituntes de brocas helicoidais

Broca helicoidal

 α = ângulo de incidência

 β = ângulo de cunha

 γ = ângulo de saída

 σ = ângulo de ponta

 Ψ = ângulo do gume transversal

 ε = ângulo de quina

 $r\epsilon$ = raio de quina

Geometria das brocas helicoidais

Geometria da cunha de corte

- O gume transversal é parte integrante do gume principal, e tem como função estrudar material na direção do gume principal
- Gume principal é o gume cortante e aponta no sentido de corte
- A forma e o ângulo de hélice da broca definem o ângulo de saída γ, que não é constante ao longo do gume principal
- γ tem valor máximo na quina da broca e diminui no sentido de centro da broca, tornando-se negativo na passagem para o gume transversal.

Geometria da cunha de corte

- γ (e consequentemente δ) são variados de acordo com as características do material a ser usinado
- Guia reduz atrito com as paredes e direciona a broca
- Haste: fixação na máquina
- Canal: retirada de cavaco
- Canal interno: alimentação do fluido lubri-refrigerante

Grupos principais de brocas helicoidais

Tipo	Aplicação	Representação
N	Materiais de peça normais Ex. aços δ entre 18 e 30°	8 A A A A A A A A A A A A A A A A A A A
Н	Materiais de peça duros Ex. Aços liga, ferro-fundido δ entre 18 e 30°	\$ \
W	Materiais de peça duros Ex. Alumínio, bronze δ entre 18 e 30°	8 A A A A A A A A A A A A A A A A A A A

Afiações de brocas helicoidais

Afiações de brocas helicoidais

Afiações de brocas helicoidais

Afiações especiais de brocas helicoidais

Afiações especiais de brocas helicoidais

- A: duplo tronco de cone com redução do gume transversal melhora a capacidade de centragem da broca, reduz a força de avanço (redução do gume transversal)
- B: duplo tronco de cone com redução do gume transversal e ângulo de saída corrigido - possibilidade de adaptar o ângulo de saída para aplicações específicas
- C: duplo tronco de cone com afiação em cruz sobre o gume transversal eliminando completamente o gume transversal - interessante particularmente para furações profundas
- D: duplo tronco de cone com redução de cone transversale quina chanfrada usinagem de ferro fundido cinzento
- E: ângulo de ponta de 180º com ponta de centragem furação centrada, furos circulares sem rebarbas, furação de chapas.
- F: Afiação com quatro faces: apesar não ser normalizada, é muito utilizada para brocas com diâmetro inferior a 1,5 mm ou em brocas de metal duro, uma vez que aqui a afiação com duplo tronco de cone é bastante difícil

Requisitos para materiais de brocas

- Tenacidade
- Resistência a compressão
- Resistência a abrasão
- Resistência térmica
- Resistência ao choque e a fadiga

Formas construtivas de brocas em função do material

Broca com soldada

Broca Integral

• Broca com incerto

Aço ferramenta

- Muito pouco empregado em aplicações industriais
- Brocas para hobby
- Brocas de baixo custo para aplicações simples
- Brocas para materiais de fácil usinagem, tais como alumínio, plásticos e madeira

Aço-rápido

- Largamente empregado na fabricação de brocas (fácil reprocessamento e bons requisitos técnicos)
- As ferramentas são temperadas, sofrem tratamento superficial (nitretação) e frequentemente são revestidas
- Ferramentas não integrais

Metal duro

- Homogeneidade, elevadas dureza, resistência à compressão e ao desgaste à quente
- As velocidades de corte podem ser até 3 vezes maiores que as utilizadas com ferramentas de aço rápido
- Qualidade do furo 3 classes IT melhores que os obtidos na usinagem com aço rápido
- Aplicação de ferramentas de metal duro exige máquinas com características de velocidade, potência, refrigeração e rigidez adequadas
- Brocas podem ser maciças (maior aceitação) ou com insertos intercambiáveis – com ou sem revestimento

Desgaste em Broca Helicoidais

- Desgaste de flanco (Vb) baixa qualidade, imprecisões e aumento do atrito
- Desgaste nas guias não gera aumento no momento
- Desgaste do gume transversal arredondamento e possível lascamento das zonas de transição
- Desgaste de cratera remoção de material por abrasão e difusão
- Gume postiço adesão do material da peça encruado na ferramenta
- Fratura fim catastrófico

Cinemática do processo

Exemplos de desgaste em brocas

(a) lascamento de gume (b) desgase abrasivo

Exemplo da volução de desgaste abrasivo em brocas helicoidais

Forças em brocas helicoidais

Forças em brocas helicoidais

- As forças podem também ser determinadas através de equações empíricas
- Essas dependem basicamente do diâmetro da broca, do avanço e do material da peça.
- Também contribuem as características do tipo de broca ou condições externas que exercem influência secundária sob a determinação destas constantes, como o ângulo de ponta, o ângulo de hélice, a qualidade da afiação da ferramenta e o fluido de corte empregado.

Forças em brocas helicoidais

- Força de corte (F_c) essa corresponde à parcela da força de corte (F_{ci}) que atua em cada um dos gumes cortantes e é decorrente da resistência ao corte do material usinado, tendo grande influência sobre o momento torçor que atua na furação
- Força de corte por gume $\Rightarrow F_c = K_c \frac{f d}{4}$

onde: $F_C = Força de corte [N]$

k_c = Força específica de corte [N/mm²]

f = Avanço [mm]

d = Diâmetro da broca [mm]

• Força de avanço (F_f)- é a resultante da soma das parcelas das reações ao avanço do gume de corte e do gume transversal. Como o gume transversal atua no sentido de extrudar material para os gumes principais, a parcela da respectiva força de avanço pode ser igual ou até mesmo maior que a força de avanço dos gumes principais de corte. É importante conhecê-la para se ter certeza que o eixo da máquina é capaz de suportar a operação

• Força de avanço (F_f)
$$\Rightarrow F_f = k_f \frac{f \, d \, sen \frac{\sigma}{2}}{2}$$

onde: $F_f = Força de avanço [N]$

k_f = Força específica de avanço [N/mm²]

f = Avanço [mm]

d = Diâmetro da broca [mm]

 σ = Ângulo de ponta da ferramenta [graus]

Força passiva (F_p) - atua em uma parcela do gume principal. As forças passivas atuantes nos gumes tendem a se anular mutuamente. É desprezível quando comparada com as forças de corte e de avanço. Contudo, para afiações assimétricas dos gumes ou mesmo em brocas não simétricas, tais como brocas canhão, BTA e Ejektor, essas são importantes.

 Momento torçor (Mt)- resultado das forças atuantes nos gumes principais da ferramenta são responsáveis pelo momento torçor, contribuindo entre 70 e 90% do valor do mesmo

$$M_t = K_c \frac{f d^2}{8.000} = F_c \frac{D}{2000}$$

Onde: M_t = Momento torçor [N.mm];

F_c = Força de corte [N];

k_c = Força específica de corte [N/mm²]

f = Avanço [mm]

d = Diâmetro da broca [mm]

 Potência de corte (Pc)- é resultante do produto entre o momento torçor e a velocidade angular da ferramenta

$$P_c = \frac{M_t n}{9,549}$$

ou

$$P_c = \frac{M_t n}{7.025}$$

Potência de corte (Pc)

Tomando

D = diâmetro da broca

r = distância do ponto de atuação

- para fução de acabamento $r=0.38\frac{D}{2}$
- para furação com furo guia (pré-furo) $r=0.51\frac{D}{2}$
- para furação em cheio $r = \frac{(D+d)}{4}$

Pode-se estimar a força de corte com base no Mt por:

$$F_c = \frac{2000 M_t}{d}$$

Critério de fim de vida em furação

Definição: perda do controle sobre os cavacos ou iminência de uma quebra rápida

Fatores considerados

- Textura superficial
- Exatidão dimensional e geométrica
- Estado da ferramenta
- Formação do cavaco
- Vida restante da ferramenta

Critério de fim de vida em furação

Critérios de fim de vida utilizados na prática

- Tempo de máquina
- Tempo efetivo de corte
- Volume de metal removido
- Número de peças usinadas
- Velocidade de corte equivalente
- Comprimento usinado equivalente
- Velocidade de corte relativa

Fatores que influenciam a qualidade e precisão do furo

- Erros geométricos
- Erros dimensionais
- Posicionamento
- Circularidade
- Forma
- Presença de rebarbas
- Processo
- Peça
- Ferramenta
- Máquina
- Parâmetros
- Rigidez.

Fatores que influenciam a qualidade e precisão do furo

- Máquinas onde são utilizadas buchas precisão da broca em relação ao diâmetro e circularidade, não é tão crítica
- Máquinas de comando numérico / máquinas de precisão a precisão da broca é crítica
- Brocas padrão podem necessitar de uma nova retificação para operações de precisão
- Retificação inadequada, desbalanceamento das forças, deflexão na broca, erros nos furos

Precisão média de furos produzidos com brocas helicoidais

Diâmetro do furo		3 - 6		6 -19		19 - 38	
condição	Erro [mm]	tamanho	posição	tamanho	posição	tamanho	posição
Sem furo de centro e sem bucha		0,08	0,18	0,15	0,20	0,20	0,23
Com furo de centro e sem bucha		0,08	0,10	0,08	0,10	0,10	0,13
Com bucha		0,05	0,05	0,08	0,05	0,10	0,08

Erros comuns na geometria do furo

- Erros de forma: diâmetro não uniforme
- Rebarba: rebarba na entrada ou saída do furo
- Erros de posicionamento: deslocamento do centro do furo
- Erros de circularidade: seção circular distorcida
- Erros de dimensão: diâmetro resultante diferente da broca

Variações do p**rocesso de furação Rebaixamento**

Rebaixamento

- A usinagem não é feita em material maciço
- Rebaixamento de alargamento de um furo cilíndrico
- Rebaixamento plano, de uma superfície cônica ou de uma superfície perfilada
- Rebaixamento combinado de uma superfície cilíndrica e uma superfície de topo

Rebaixamento

- Automação uso de ferramentas com função específica
- Rebarbação e produção de chanfros rebaixadores com ângulos de ponta
- Rebaixamento lateral e de topo rebaixadores com guias
- Rebaixamento de alargamento rebaixador de três gumes helicoidal

Ferramentas de rebaixamento

Rebaixador com ponta ou escareador

Rebaixador com guia

Rebaixador escalonado

Tipos de Furadeiras

Tipos de Furadeiras

Constituintes de uma furadeiras

Brocas com haste cônica

- Diretamente no eixo da máquina (D haste = D eixo, cone morse são iguais)
- Luvas ou soquetes adaptadores (D haste ≠ D eixo, cones morses diferentes)
- Retirada da ferramenta introdução de barras em ranhuras especiais (efeito de alavanca)

Brocas com haste cilindricas

Mandril

- Os de três castanhas são os mais utilizados
- Aperto manual ou com chave

Brocas com haste cilindricas

Pinças

- Podem fixar a ferramenta na haste ou na parte cortante
- Adaptabilidade do comprimento da ferramenta à cada operação
- Possibilidade do uso de ferramentas quebradas

Exemplos de pinças

Brocas com variações na haste retas, tais como:

• ferramentas com haste aplainada (chanfrada),

• quadrada,

roscas,

entalhes

 Chanfros ou planos na haste da ferramenta e ranhuras nas luvas para guiar a ferramenta

• Uma luva diferente é necessária para cada tamanho de ferramenta

 Luvas retas são empregadas para fixar ferramentas de grandes diâmetros em tornos revólver

Processo de Furação Profunda

Furação profunda

Histórico

Aplicações iniciais ⇒ Equipamentos bélicos

Aplicações atuais

- Indústria de autopeças
- Aplicações nucleares
- Indústria de motores
- Setor agrícola
- Equipamentos médicos

Furação profunda

Relações profundidade/diâmetro (L/D)

- Relações I/D > 20 até 150: com freqüência I/D<20 já é considerado furação profunda
- 3< L/D <5: uso de brocas helicoidais convencionais com furação contínua
- L/D >5: uso de brocas helicoidais convencionais, com furação em ciclos
- L/D >>5: processos específicos, empregando brocas de canais retos, brocas canhão, brocas de gume único, brocas BTA e *Ejektor*.

Generalidades do processo de furação profunda

Com brocas helicoidais especiais - interrupção frequente do processo para retirada de cavacos

Ciclos de furação

Generalidades do processo de furação profunda

- Ferramentas especiais assimetria na posição dos gumes
- Fluido de corte alimentação interna transporte de cavacos
- Cunha em metal duro altas velocidades de corte
- A furação profunda é aplicada com vantagem nas seguintes operações:
- Usinagem de materiais com alta porcentagem de elementos de liga

Generalidades do processo de furação profunda

- Usinagem de materiais com resistência à tração acima de 1200 N/mm²
- Remoção de elevado volume de material na unidade de tempo
- Exigências elevadas de tolerância de qualidade superficial e geométrica do furo.

Requisitos para a furação profunda

Máquinas-ferramentas:

- maior rigidez e estabilidade dinâmica
- dispositivos de fixação que permitem maior rigidez na ferramenta

Fluido:

alta pressão para extração de cavaco e refrigeração do gume

Brocas:

• brocas específicas para grandes relações L/D.

Processos de furação profunda

- Furação com brocas helicoidais
- Furação com brocas de canal reto
- Furação com broca canhão ou de gume único
- Furação pelo processo BTA
- Furação pelo processo Ejektor

Ferramentas utilizadas na furação profunda

Fatores limitantes nos processos de furação profunda

- Usinabilidade do material da peça
- Estabilidade da ferramenta e da máquina
- Precisão da máquina-ferramenta
- Composição do fluido de corte
- Material da ferramenta

Broca de canais retos

Broca de canais retos

Características

- Alta resistência a torção
- Furos com relação L/D > 7
- Furação profunda de AlSi, GG e GGG

Constituintes das brocas de canais retos

Princípio de funcionamento da furação com brocas de canais retos

Broca canhão (gume único)

Caracterísitcas

- Auto-guiada
- Alimentação de fluido a alta pressão pela haste
- Transporte de cavaco pela ranhura V
- Necessidade de bucha guia

Broca canhão (gume único)

Aplicações da broca canhão

- Furação em cheio
- Furação escalonada
- Trepanação
- Alargamento
- Furação profunda de materiais com dureza até 50 HRC

Constituintes das brocas canhão

Princípio de funcionamento da furação com brocas canhão

Furação com broca BTA

Características

- Alternativa para brocas convencionais, melhorando qualidade superficial e reduzindo esforços
- Requer dispositivo complexo para alimentação do fluido

Furação com broca BTA

Princípio de funcionamento da broca BTA

- Inversão das características da broca de gume único:
- Fluido de corte alimentado pela área anelar
- Fluido e cavaco retornam pelo orifício na broca

Princípio de funcionamento da furação com broca BTA

Furação com broca EJEKTOR

Características

- Furação profunda em máquinas-ferramentas simples
- Alimentação de fluido por haste tubular duplo concêntrica
- Peculiaridades do processo ejektor
- Tubeiras especiais: depressão para expulsão de fluido e sucção de cavaco
- Divisão do gume: redução do atrito, dos esforços laterais, do calor desenvolvido e do desgaste das guias.

Constituintes das brocas EJEKTOR

Princípio de funcionamento da furação com broca EJEKTOR

Processos de Usinagem