6 機器配置・放熱面の決定

6.1 仮定

- 1. 各空間内では同一温度とする
- 2. バルクヘッドは断熱材とする。
- 3. 構造重量は機器の10%とし、重心は面の中心とする。
- 4. 電気機械軽装重量は機器の7%とし、重心は面の中心とする。
- 5. 構造重量は機器の7%とし、重心は面の中心とする。
- 6. ヒドラジンスラスタは $\pm SUN$ 面中央に配置する。
- 7. 面、バルクヘッドの面圧は0として計算する
- 8. 座標系、空間の名前を下図のようにとる。

6.2 機器配置図·搭載機器表·重心、重量表

機器配置図, 搭載機器表、重心、重量表は以下のようにした。

図1 機器配置図 (水平方向)

図 2 機器配置図 (鉛直方向)

表 1 搭載機器表

	機器名	寸法 [cm]	重量 [kg]	消費	発熱	許容	搭載面要求
				電力	量	温度	
				[W]	[W]	$[{}^{\circ}C]$	
	uplink パラボラアンテナ						
	(S バンド)	ø70	5	0	0	10-40	+TAR 外
	uplink パラボラアンテナ						
	(Ka バンド)	ø150	23	0	0	10-40	+TAR 外
IZE HH	downlink パラボラアンテナ	20	0	0	0	10.40	. TAD #1
ミッション機器	(S バンド) downlink パラボラアンテナ	ø80	6	0	0	10-40	+TAR 外
	(Ka バンド)	ø160	26	0	0	10-40	+TAR 外
	アンテナタワー		70	0	0	-45-65	+TAR 外
	Kaバンド中継機	$138 \times 70 \times 20$	180	867	694	5-40	BH3/SP2
	Sバンド中継機	$70 \times 70 \times 70$	60	330	264	5-40	BH1/SP4
	アースセンサ	$12 \times 17 \times 13$	25	6	6	0-50	+TAR 外
	サンセンサ×2	$12\times43\times13$	4.5×2	6×2	6×2	0-50	± SUN 外
	IRU	$30 \times 38 \times 30$	22	10	10	0-40	-TAR/SP1
	AOCE	$20 \times 15 \times 7$	10	50	50	-5-40	-TAR/SP3
	リアクションホイール	$30 \times 30 \times 10$	24	60	60	0-45	-TAR/SP4
	TT&C ユニット	$80 \times 60 \times 20$	60	35	35	0-50	-TAR/SP1
バス機器	オンボード計算機	$40 \times 26 \times 12$	20	120	120	-5 40	-TAR/SP4
ハ人懐希	ヒドラジンスラスタ×2		10×2			9-40	±SUN 外
	太陽電池パドル×2		77×2				±PAD 外
	パドル駆動モータ ×2	$19 \times 20 \times 34$	13×2	10×2	10×2	0-40	$\pm PAD/SP2,4$
	バッテリ×2	$35 \times 25 \times 20$	25×2		117 ×	5-20	$\pm PAD/SP1,3$
					2		
	電源制御部 ×2	$20 \times 30 \times 20$	10×2	25×2	25×2	0-40	$\pm PAD/SP2,4$
タンク系	ヒドラジンタンク ×2	r=35(球)	16.92×2	0	0	9-40	バルクヘッド
ツマンボ	アポジタンク	r=58(球)	155.1	0	0	9-40	スラストチュース

表 2 重心表

		機器	構造	計装	マー	面				3.6	M	3.6
面	機器名	重量 $[kg]$	重量 $[kg]$	重量 $[kg]$	ジン $[kg]$	重量 $[kg]$	$\begin{bmatrix} x \\ [cm] \end{bmatrix}$	[cm]	[cm]	M_x $[kg \cdot cm]$	M_y $[kg \cdot cm]$	M_z $[kg \cdot cm]$
	アンテナ類	130.00		9.10	$\frac{10.65}{10.65}$	$\frac{1}{32.74}$		0	200	0	0	2600
+TAR	アースセンサ	25.00		1.75	2.05	6.30	143	-150	157	3575	-3750	3912
	面	39.05					0	0	75	0	0	2930
	IRU	22.00	2.20	1.54	1.80	5.54	65	135	19	1421	2970	418.0
T'	T&C ユニット	60.0	6.00	4.20	4.91	15.11	95	53	10	5700	3180	600
-TAR	AOCE	10.00	1.00	0.70	0.82	2.52	-58	-92	3	-581	-920	35
	クションホイール	24.0	2.40	1.68	1.96	6.05	105	-45	5	2520	-1080	120
オ	ンボード計算機	20.00	2.00	1.40	1.64	5.04	80	-80	6	1608	-1600	120
	面	34.26					0	0	75	0	0	2569
	サンセンサ	4.50	0.45	0.32	0.37	1.13	77	166	75	344	747	338
+SUN EF	、 ラジンスラスタ	10.0	1.00	0.70	0.82	2.52	0	180	75	0	1800	750
	面	3.65					0.0	160	75	0	-584	274
	サンセンサ	4.50	0.45	0.32	0.37	1.13	-77	-166	75	-344	-747	338
-SUN EF	、 ラジンスラスタ	10.0	1.00	0.70	0.82	2.52	0	-180	75	0	-1800	750
	面	3.65					0	-160	75	0	-584	274
太	に陽電池パドル	77.0	7.70	5.39	6.30	19.40	-400	0	75	-30800	0	5775
パ	ドル駆動モータ	13.0	1.30	0.91	1.07	3.28	-151	10	75	-1957	130	975
+PAD	バッテリ	25.00	2.50	1.75	2.05	6.30	-148	-133	10	-3688	-3313	250
	電源制御部	10.0	1.00	0.70	0.82	2.52	-150	115	10	-1500	1150	100
	面	31.50					-160	0	75	-5038	0	23612
太	に陽電池パドル	77.0	7.70	5.39	6.30	19.40	400	0	75	30800	0	5775
パ	ドル駆動モータ	13.0	1.30	0.91	1.07	3.28	151	-10	75	1957	-130	975
-PAD	バッテリ	25.00	2.50	1.75	2.05	6.30	148	133	10	3688	3313	250
	電源制御部	10.0	1.00	0.70	0.82	2.52	-150	-115	10	1500	-1150	100
	面	31.50					-160	0	75	-5038	0	23612
BH1 S	バンド中継機	60.0	6.00	4.20	4.91	15.11	100	-10	45	6000	-600	2700
БПІ	面	15.11					80.00	0	75	1209	0	1134
ヒ	ドラジンタンク	16.92	1.69	1.19	1.39	4.26	0	110	75	0	1862	1269
BH2	ヒドラジン	169.24	Ŀ				0.0	110	75.0	0.0	18616	12693
BH2	面	15.11					80.00	0.0	75	0	341	320
Na Ka	a バンド中継機	180.0	18.00	12.6	14.74	45.34	-100	10	69	-18000	1800	12420
ВН3	面	45.34					-80	0	75	-3627	0	3401
ヒ	ドラジンタンク	16.92	1.69	1.19	1.39	4.26	0	-110	75	0	1862	1269
BH4	ヒドラジン	169.24	Ŀ				0	-110	75	0	-18616	12693
БП4	面	15.11					80	0	75	0	-341	320
	アポジタンク	155.1	15.5	10.9	12.7	39.1	0	0	75	0	0	11634
TT 過塩	素酸アンモニウム	1551.2	2				0	0	75	0	0	116340
11	面	39.08					0	0	75	0	0	2930

7 重心の位置

重心の値は以下の通りとなる.

$$x =$$
 (1)

$$y = \tag{2}$$

8 熱計算と放熱面の設計

Chapter3 より,PAD 面は季節によって放熱能力が大きくするので,PAD 面はプラスマイナス断熱材とする.また,+TAR 面には前の設計図よりたくさんの機器が取り付けられているので放熱面にはSUN 面と-TAR 面を用いる. さらにここでは空間温度は 20° 付近であり,各機器の許容温度内に収められるように設計することを考える.

8.1 空間 1

機器名 発熱量 許容温度 TT&C ユニット $0 \sim 50^{\circ} C$ 35Wサンセンサ 3W $0 \sim 50^{\circ} C$ バッテリ 113.925W $5 \sim 20^{\circ} \text{C}$ 10W $0 \sim 40^{\circ} \mathrm{C}$ IRU アンテナ類 $10 \sim 40^{\circ} C$ 0Wヒドラジンスラスタ 0W $9 \sim 40^{\circ} \text{C}$ ヒドラジンタンク $9 \sim 40^{\circ} C$ 0W太陽電池パドル 熱計算不要 0W合計発熱量 161.925W

表 3 空間 1

+SUN 面での放熱能力を考える. 春秋分の時に 20°C に保つとして、必要な放熱面積 S は

$$S = \frac{161.925}{248.5} = 0.652m^2 < +PAD 面の面積の半分$$
 (3)

放熱面積がこのとき, 夏至の温度は

$$(\epsilon \sigma T^4 - 79.34)S = Q \tag{4}$$

$$T = \left(\frac{\frac{161.925}{0.652} + 79.343}{0.8 \times 5.67 \times 10^{-8}}\right)^{\frac{1}{4}} = 291.54K \tag{5}$$

よって許容範囲温度範囲内である.

8.2 空間 2

機器名 発熱量 許容温度 パドル駆動モータ $0 \sim 40^{\circ} \mathrm{C}$ 5W電源制御部 $0 \sim 40^{\circ} \mathrm{C}$ 12.5WKa バンド中継器 693.6W $5 \sim 40^{\circ} \text{C}$ アンテナ類 0W $10 \sim 40^{\circ} \mathrm{C}$ ヒドラジンスラスタ 0W $9 \sim 40^{\circ} \text{C}$ ヒドラジンタンク 0W $9 \sim 40^{\circ} \text{C}$

0W

 $711.1 \mathrm{W}$

表 4 空間 2

+SUN と-TAR 面を放熱面として面積を同一とすると春秋分の時の温度を 20°C として必要な放熱面積は

太陽電池パドル

合計発熱量

$$S = \frac{711.1}{248.5 \times 2} = 1.43 < 2.4 \tag{6}$$

この時の夏至の平衡温度は

$$(\epsilon \sigma T^4 \times 2 - 79.34 \times 2)S = Q \tag{7}$$

$$(\epsilon \sigma T^4 \times 2 - 79.34 \times 2)S = Q$$

$$T = \left(\frac{\frac{711.1}{1.43} + 79.343 \times 2}{0.8 \times 5.67 \times 10^{-8} \times 2}\right)^{\frac{1}{4}} = 291.6K$$
(8)

熱計算不要

となり許容温度範囲内である.

8.3 空間3

表 5 空間 3

機器名	発熱量	許容温度
サンセンサ	3W	$0 \sim 50^{\circ} \mathrm{C}$
バッテリ	113.925W	$0 \sim 40^{\circ} \mathrm{C}$
AOCE	50W	$-5 \sim 40^{\circ} \mathrm{C}$
アンテナ類	0W	$10 \sim 40^{\circ} \mathrm{C}$
ヒドラジンスラスタ	0W	9 ~ 40°C
ヒドラジンタンク	0W	9 ~ 40°C
太陽電池パドル	0W	熱計算不要
合計発熱量	166.925W	

放熱を-SUN 面として春秋分時に 20°C となる放熱面積は

$$S = \frac{166.925}{248.5} = 0.67 < 2.4 \tag{9}$$

この放熱面積で、夏至の時の温度を計算すると

$$(\epsilon \sigma T^4 - 79.34)S = Q \tag{10}$$

$$T = \left(\frac{\frac{166.925}{0.67} + 79.343}{0.8 \times 5.67 \times 10^{-8}}\right)^{\frac{1}{4}} = 291.7K \tag{11}$$

よって許容温度範囲内となる.

8.4 空間4

表 6 空間 4

機器名	発熱量	許容温度
パドル駆動モータ	5W	0 ~ 40°C
電源制御部	12.5W	$0 \sim 40^{\circ} \mathrm{C}$
Sバンド中継器	264W	$5 \sim 40^{\circ} \mathrm{C}$
リアクションホイール	60W	$0 \sim 45^{\circ} \mathrm{C}$
オンボード計算機	120W	-5 ∼ 40°C
ヒドラジンタンク	0W	9 ~ 40°C
アースセンサ	6W	$0 \sim 50^{\circ} \mathrm{C}$
アンテナ類	0W	10 ~ 40°C
ヒドラジンスラスタ	0W	9 ~ 40°C
ヒドラジンタンク	0W	9 ~ 40°C
太陽電池パドル	0W	熱計算不要
合計発熱量	467.5W	

放熱を-SUN 面と-TAR 面して春秋分時に 20°C となる放熱面積は

$$S = \frac{467.5}{248.5 \times 2} = 0.94 < 2.4 \tag{12}$$

この面積の時の夏至の時の温度は

$$(\epsilon \sigma T^4 \times 2 - 79.34 \times 2)S = Q \tag{13}$$

$$(\epsilon \sigma T^4 \times 2 - 79.34 \times 2)S = Q$$

$$T = \left(\frac{\frac{467.5}{0.94} + 79.343 \times 2}{0.8 \times 5.67 \times 10^{-8} \times 2}\right)^{\frac{1}{4}} = 291.6K$$
(13)

となり許容温度範囲内となる.

9 空間 $1 \sim 4$ の平衡温度

各空間の平均温度をまとめると以下の通り.

表 7 各空間の平衡温度

空間	春秋分	夏至
空間 1	20°C	18.35°C
空間 2	20°C	18.45°C
空間 3	20°C	18.55°C
空間 4	20°C	18.45°C