Essential Python for DA

```
1 print("hello world")
    hello world

    OOP

1 class ATM:
2    pass
```

```
1 from random import randint
2
 3 class ATM:
      def init (self, account name, bank name, initial):
          self.account name = account name
 5
          self.bank name = bank name
6
          self.balance = initial
7
8
      ## string representation
9
      def str (self):
10
          return f"This is an account of {self.account name}, bank: {self.bank name}"
11
12
      ## method => function
13
      def check balance(self):
14
          print(f"Balance: {self.balance} THB")
15
16
      def deposit(self, money):
17
          self.balance += money
18
          print(f"Deposit successfully: your new balance: {self.balance} THB")
19
20
      def withdraw(self, money):
21
          self.balance -= money
22
          print(f"Withdraw successfully: your new balance: {self.balance} THB")
23
24
      def get_OTP(self):
25
          otp = randint(1000, 9999)
26
          print(f"Your OTP: {otp} This OTP will be available in the next 2 minutes.")
27
1 # create an instance from ATM class
2 acc1 = ATM("toy", "scb", 500)
1 # code is for human
2 print(acc1)
    This is an account of toy, bank: scb
```

```
1 acc1.check_balance()
   Balance: 500 THB
1 acc1.deposit(1000)
   Deposit successfully: your new balance: 1500 THB
1 acc1.withdraw(300)
   Withdraw successfully: your new balance: 1200 THB
1 acc1.get_OTP()
   Your OTP: 7204 This OTP will be available in the next 2 minutes.
1 ## OK
1
```

Try Except Block

```
1 try:
2   1/0
3 except ZeroDivisionError:
4   print("cannot divide by zero")
5 except NameError:
6   print("variable not defined")
7 else:
8   print("Done")
9 finally:
10   print("Complete!")
```

```
cannot divide by zero
    Complete!
 1 ## import csv
 2 import csv
 1 try:
 2
      file = open("fasdasdriends.csv")
      data = csv.reader(file)
 3
      for row in data:
 4
           print(row)
 5
      file.close()
 6
 7 except FileNotFoundError:
      print("File not found.")
     File not found.
 1 ## context manager
 2 result = []
 4 ## open and close file automatically
 5 try:
      with open("friends.csv", "r") as file:
          data = csv.reader(file)
 7
 8
          for row in data:
               result.append(row)
 9
10 except:
      print("file not found")
11
12 else:
      print("load data successfully!")
13
14 finally:
       print(result)
15
    load data successfully!
    [['id', 'name', 'age', 'city'], ['1', 'toy', '35', 'bangkok'], ['2', 'john', '32', 'london'], ['3', 'mary', '28', 'seou
```

```
1 try:
      df = pandas.read_csv("friends.csv")
 3 except:
      print("a little error.")
 1 ## write csv file using pandas
 2 df.to_csv("newCSVFile.csv")
 1 # write csv using csv module
 2 import csv
 4 col_names = ["food_id", "food", "price"]
 6 data = [
      [1, "pizza", 200],
 7
      [2, "french fried", 50],
      [3, "coke", 10]
10 ]
11
12 with open("food.csv", "w") as file:
      writer = csv.writer(file)
13
      writer.writerow(col_names)
14
      writer.writerows(data)
15
 1 !cat food.csv
     food_id,food,price
    1,pizza,200
     2, french fried, 50
     3, coke, 10
```

1 import pandas

```
1 ## json = dictionary in python
2
3 import json
5 with open("data.json") as file:
     result = json.load(file)
8 print(result)
   {'id': 1, 'name': 'toy', 'favorite_food': ['coke', 'pizza']}
1 result["favorite_food"].append("hamburger")
2 result
   {'id': 1, 'name': 'toy', 'favorite_food': ['coke', 'pizza', 'hamburger']}
1 result["name"] = "John Wick"
1 result["city"] = "New York"
1 result
   {'id': 1,
     'name': 'John Wick',
     'favorite_food': ['coke', 'pizza', 'hamburger'],
     'city': 'New York'}
1 from json import load, dump
2
3 ## with =??
4 with open("JohnWick.json", "w") as file:
     json.dump(result, file, indent=6)
5
     print("successfully dump a new json file.")
```

1 # JSON

```
successfully dump a new json file.
```

< API

Application Programming Interface

1

Numpy & Pandas

numerical python pandas dataframe

```
1 import numpy as np
2 import pandas as pd
```

```
1 nums = [1, 20, 25, 30, 100] # vector c(1,20,25,30,100)
1 ## numpy array
2 arr_nums = np.array(nums)
1 np.sum(arr_nums)
   176
1 print(
     np.sum(arr_nums),
2
     np.mean(arr_nums),
3
     np.median(arr_nums),
4
5
     np.min(arr_nums),
     np.max(arr_nums),
6
     np.std(arr_nums)
7
8)
   176 35.2 25.0 1 100 33.85498486190771
1 arr_nums.std()
    33.85498486190771
1 ## vector in R
2 m1 = np.array([
3
     [1,2],
     [3,4]
5])
1 # element wise computation
2 # broadcasting
3 m1 + 100
```

```
array([[101, 102],
           [103, 104]])
 1 np.ones((3,3))
    array([[1., 1., 1.],
           [1., 1., 1.],
           [1., 1., 1.]
 1 np.zeros((2,2))
    array([[0., 0.],
           [0., 0.]])
 1 np.arange(1, 101, 10)
    array([ 1, 11, 21, 31, 41, 51, 61, 71, 81, 91])
 1 np.linspace(1, 101, 10)
    array([ 1. , 12.11111111, 23.22222222, 34.33333333,
            45.44444444, 56.5555556, 67.66666667, 78.7777778,
            89.88888889, 101.
1 # matrix dot notation
2 m1 = np.array([
 3
     [1,2],
      [3,4]
 5])
7 m2 = np.array([
      [5,5],
      [3,2]
10 ])
```

```
1 np.dot(m1, m2)
   array([[11, 9],
          [27, 23]])
1 m1.dot(m2)
   array([[11, 9],
          [27, 23]])
1 import pandas as pd
2
3 ## create dataframe from scratch
4 data = {
     "id": [1,2,3],
5
     "name": ["toy", "anna", "jessica"],
6
     "city": ["BKK", "JPN", "LON"]
7
8 }
1 df = pd.DataFrame(data)
1 df
       id
            name city
                        丽
    0 1
             toy BKK
                         ılı
    1 2
            anna JPN
    2 3 jessica LON
1 df["age"] = [35, 28, 29]
2 df
```

	id	name	city	age	\blacksquare
0	1	toy	BKK	35	ılı
1	2	anna	JPN	28	
2	3	jessica	LON	29	

1 df.drop("age", axis=1) # 1 is columns

```
1 # read csv file from pandas
2
3 df = pd.read_csv("store.csv")
4
5 df.head(2)
```

	Row ID	Order ID	Order Date	Ship Date	Ship Mode	Customer ID	Customer Name	Segment	Country	City	•••	Postal Code	Region	Product ID	C
0	1	CA- 2016- 152156	2016- 11-08	2016- 11-11	Second Class	CG- 12520	Claire Gute	Consumer	United States	Henderson		42420	South	FUR-BO- 10001798	ŀ
1	2	CA- 2016- 152156	2016- 11-08	2016- 11-11	Second Class	CG- 12520	Claire Gute	Consumer	United States	Henderson		42420	South	FUR-CH- 10000454	F

2 rows × 21 columns

1 df.shape # attribute

(9994, 21)

1 df.info() # method

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9994 entries, 0 to 9993
Data columns (total 21 columns):

#	Column	Non-Null Count	Dtype
0	Row ID	9994 non-null	int64
1	Order ID	9994 non-null	object
2	Order Date	9994 non-null	object
3	Ship Date	9994 non-null	object
4	Ship Mode	9994 non-null	object
5	Customer ID	9994 non-null	object
6	Customer Name	9994 non-null	object
7	Segment	9994 non-null	object
8	Country	9994 non-null	object
9	City	9994 non-null	object
10	State	9994 non-null	object
11	Postal Code	9994 non-null	int64

```
12 Region
                                        object
                        9994 non-null
                                        object
     13 Product ID
                        9994 non-null
     14 Category
                        9994 non-null
                                        object
     15 Sub-Category
                        9994 non-null
                                        object
     16 Product Name
                        9994 non-null
                                      object
                        9994 non-null
     17 Sales
                                        float64
     18 Quantity
                        9994 non-null
                                        int64
     19 Discount
                        9994 non-null
                                        float64
     20 Profit
                        9994 non-null
                                       float64
    dtypes: float64(3), int64(3), object(15)
    memory usage: 1.6+ MB
1 ## query() => filter rows with conditions
 2
 3 ## clean dataframe column names
 4
 5 col names = list(df.columns)
7 # list comprehension
8 clean_col_names = [name.lower().replace(" ", "_").replace("-", "_")
                     for name in col_names]
 9
10
11 print(clean_col_names)
    ['row_id', 'order_id', 'order_date', 'ship_date', 'ship_mode', 'customer_id', 'customer_name', 'segment', 'country', 'c
1 ## assign clean col names to dataframe
 2 df.columns = clean col names
 3
4 df.head()
```

е	ship_date	ship_mode	customer_id	customer_name	segment	country	city	• • •	postal_code	region	product_id
8	2016-11- 11	Second Class	CG-12520	Claire Gute	Consumer	United States	Henderson		42420	South	FUR-BO- 10001798
8	2016-11- 11	Second Class	CG-12520	Claire Gute	Consumer	United States	Henderson		42420	South	FUR-CH- 10000454
2	2016-06- 16	Second Class	DV-13045	Darrin Van Huff	Corporate	United States	Los Angeles		90036	West	OFF-LA- 10000240
1	2015-10- 18	Standard Class	SO-20335	Sean O'Donnell	Consumer	United States	Fort Lauderdale		33311	South	FUR-TA- 10000577
1	2015-10- 18	Standard Class	SO-20335	Sean O'Donnell	Consumer	United States	Fort Lauderdale		33311	South	OFF-ST- 10000760

```
1 ## data transformation (R dplyr)
2
3 df2 = df[ ["customer_id", "customer_name"] ].head(5)
1 df[ df["customer_name"] == "Claire Gute" ][["order_date", "customer_id", "customer_name"]]
```

```
\blacksquare
      order_date customer_id customer_name
 0
       2016-11-08
                      CG-12520
                                     Claire Gute
                                                  ıl.
       2016-11-08
                     CG-12520
                                     Claire Gute
 1
5491
       2017-01-26
                     CG-12520
                                     Claire Gute
6877
      2015-10-15
                     CG-12520
                                     Claire Gute
6878 2015-10-15
                      CG-12520
                                     Claire Gute
```

```
1 ## query
2 df.query(" city == 'Los Angeles' and category == 'Furniture' and sub_category == 'Tables' ")[["customer_name", "segment"
```

\blacksquare	city	segment	customer_name	
ılı	Los Angeles	Consumer	Brosina Hoffman	10
	Los Angeles	Consumer	Jas O'Carroll	282
	Los Angeles	Consumer	Olvera Toch	557
	Los Angeles	Corporate	Noel Staavos	1097
	Los Angeles	Home Office	Pauline Chand	1505

```
segment region
                           sales
                                                       profit
                             sum
                                                          sum
                                        mean count
                                                                    mean
                West 362880.7730 217.033955
0
                                             1672 57450.6040 34.360409
     Consumer
    Corporate
                                                   34437.4299 35.872323
1
                West 225855.2745 235.265911
                                               960
2 Home Office
                West 136721.7770 239.442692
                                              571 16530.4150 28.949939
  count
 1672
   960
   571
```

Double-click (or enter) to edit

1

Load data from SQL

```
1 import sqlite3
2 import pandas as pd
3
4 ## create connection
5 con = sqlite3.connect("chinook.db")

1 custs = pd.read_sql("select * from customers where country='USA'", con)
2
3 custs
```

1	17	Jack	Smith	Microsoft Corporation	1 Microsoft Way	Redmond	WA	USA	98052-8300	(425) 882- 8080	(425) 882- 8081	ja
2	18	Michelle	Brooks	None	627 Broadway	New York	NY	USA	10012-2612	+1 (212) 221- 3546	+1 (212) 221- 4679	
3	19	Tim	Goyer	Apple Inc.	1 Infinite Loop	Cupertino	CA	USA	95014	+1 (408) 996- 1010	+1 (408) 996- 1011	1
4	20	Dan	Miller	None	541 Del Medio Avenue	Mountain View	CA	USA	94040-111	+1 (650) 644- 3358	None	1
5	21	Kathy	Chase	None	801 W 4th Street	Reno	NV	USA	89503	+1 (775) 223- 7665	None	1
6	22	Heather	Leacock	None	120 S Orange Ave	Orlando	FL	USA	32801	+1 (407) 999- 7788	None	1
7	23	John	Gordon	None	69 Salem Street	Boston	MA	USA	2113	+1 (617) 522- 1333	None	joh
8	24	Frank	Ralston	None	162 E Superior Street	Chicago	IL	USA	60611	+1 (312) 332- 3232	None	
9	25	Victor	Stevens	None	319 N. Frances Street	Madison	WI	USA	53703	+1 (608) 257- 0597	None	

10	26	Richard	Cunningham	None	2211 W Berry Street	Fort Worth	TX	USA	76110	+1 (817) 924- 7272	None	ricu
11	27	Patrick	Gray	None	1033 N Park Ave	Tucson	AZ	USA	85719	+1 (520) 622- 4200	None	1
12	28	Julia	Barnett	None	302 S 700 E	Salt Lake City	UT	USA	84102	+1 (801) 531- 7272	None	

1 con.close()

→ Sklearn Foundation

Model: linear regression

- 1 from sklearn.linear_model import LinearRegression
- 2 from sklearn.model_selection import train_test_split
- 3 from sklearn.ensemble import RandomForestRegressor
- 4 from sklearn.tree import DecisionTreeRegressor
- 5 import pandas as pd

```
1 ## read csv data from github: mtcars
2
3 url = "https://gist.githubusercontent.com/seankross/a412dfbd88b3db70b74b/raw/5f23f993cd87c283ce766e7ac6b329ee7cc2e1d1/mt
4
5 mtcars = pd.read_csv(url)
6
7 mtcars.head(2)
```

```
        model
        mpg
        cyl
        disp
        hp
        drat
        wt
        qsec
        vs
        am
        gear
        carb

        0
        Mazda RX4
        21.0
        6
        160.0
        110
        3.9
        2.620
        16.46
        0
        1
        4
        4

        1
        Mazda RX4 Wag
        21.0
        6
        160.0
        110
        3.9
        2.875
        17.02
        0
        1
        4
        4
```

```
1 # ML Workflow
 2 ## 4 steps: split > train > score > evaluate
 3
 4 y = mtcars["mpg"]
 5 X = mtcars[["hp", "wt", "am"]]
 7 ## 1. split data
 8 X_train, X_test, y_train, y_test = train_test_split(
      X, y, test_size=0.20, random_state=19
10)
11
12 ## 2. train model
13 model = DecisionTreeRegressor()
14 model.fit(X train, y train) ## model fitting
15
16 ## 3. score
17 train error = model.score(X train. v train)
```