Métodos Numéricos TP2

6 de octubre de 2015

Years Later for Guillermo Vilas, He's Still Not the One

Integrante	LU	Correo electrónico
Martin Baigorria	575/14	martinbaigorria@gmail.com
Federico Beuter	827/13	federicobeuter@gmail.com
Mauro Cherubini	835/13	cheru.mf@gmail.com
Rodrigo Kapobel	695/12	$rok_35@live.com.ar$

Reservado para la cátedra

Instancia	Docente	Nota
Primera entrega		
Segunda entrega		

Resumen: TODO Keywords: TODO

${\bf \acute{I}ndice}$

1.	. Introduccion	3		
2.	2. PageRank			
	2.1. Modelado para páginas web	5		
	2.1.1. Propiedades			
	2.1.2. Existencia y Unicidad			
	2.2. Modelado para Tenis			
	2.2.1. Sistema de puntos y consideraciones			
	2.3. Representación del grafo			
	2.3.1. Dictionary of Keys (DOK)			
	2.3.2. Compressed Sparse Row (CSR)			
	2.3.3. Compressed Sparse Column (CSC)	9		
	2.3.4. Elección de estructura			
	2.4. Computo: Método de la Potencia			
	2.4.1. Correctitud			
	2.4.2. Complejidad			
3.	. Experimentación	11		
	3.1. PageRank	11		
	3.1.1. Complejidad	11		
	3.1.2. Casos Patologicos	11		
	3.2. páginas Web	11		
	3.2.1. Comparacion PageRank vs In-Deg (RODRI)	11		
	3.2.2. Manipulacion	13		
	3.3. Ranking ATP	13		
	3.3.1. Ranking ATP oficial vs. Ranking PageRank vs. Sort por diferencia de victorias/derrotas .	14		
	3.3.2. Eleccion del factor de 'teletransportacion' c (RODRI)	17		
	3.4. Metodo de la Potencia	17		
	3.4.1. Representacion de la Matriz de Transicion (RODRI/FEDE)			
	3.4.2. Evolucion de la norma entre iteraciones	17		
	3.4.3. Convergencia	17		
	3.4.4. Election del x_0	18		
4.	. Conclusiones	19		
5	. Apéndice A: Enunciado	20		
υ.	Apendice A. Dilunciado	20		
6.	. Apéndice B: Código	25		
	6.1. system.cpp			
	6.2. matrix.h			
	6.3. sparseMatrix.h	39		

1. Introduccion

El 25 de Mayo de 2015 el diario The New York Times publico un articulo titulado "Years Later for Guillermo Vilas, He's Still Not the One", donde se repasa el rendimiento del tenista argentino durante los años 1975/1976 y se discute el calculo del ranking de la ATP en ese momento. Aunque hoy en día Vilas es un ícono del tenis argentino, nunca logró estar en la cima del ranking de la ATP.

Figura 1: Guillermo Vilas after winning a tournament in Stockholm in 1975. A journalist has asserted that Vilas deserved to be ranked No. 1 during that year.

En 2016, un grupo de investigadores y periodistas deportivos argentinos decidieron analizar el ranking de la ATP en 1975 y 1977 para determinar si Vilas debió haber sido número 1. Dado que los rankings no se actualizaban constantemente en ese momento, los investigadores mostraron que de haberse actualizado de forma periódica, Vilas hubiese sido número 1 por durante 7 semanas entre 1975 y 1977.

Existen precedentes donde se actualizó un ranking de tenis de forma retroactiva. Este es el caso de la WTA, que determinó que Evonne Goolagong Cawley debió haber sido número 1 por dos semanas en 1976. Por esta razón el grupo de investigación argentino considera que revisar estos rankings no es un esfuerzo en vano. Cuando buscábamos los datos de la ATP entre 1975/1977, uno de los investigadores de este equipo que contactamos nos comento: "Es interesante tu decisión de indagar sobre el tema. Tal vez no estás al tanto del trabajo y lucha que estamos realizando contra la ATP, por el ranking de los 70 en el que perjudicaron a Vilas y muchísimos otros jugadores.".

En ese momento, el calculo del ranking de la ATP era bastante rudimentario: "It was a system based on an average of a player's results, and it often rewarded top players who played fewer tournaments. Vilas was a workhorse, which is how he managed not to reach No. 1 in the ATP rankings in 1977, when he won the French Open, the United States Open and 14 other tournaments." [5].

Los métodos para calcular rankings no solo son relevantes para definir las posiciones de equipos y jugadores en eventos deportivos, sino que aparecen constantemente en todo tipo de situaciones donde se debe imponer algún tipo de orden. Este es el caso por ejemplo de los concursos docentes, donde se ponderan los diferentes antecedentes para decidir cual es el candidato *idoneo* para el puesto.

Otro caso sumamente relevante en cuanto algoritmos de rankeo es el de los motores de búsqueda. Los motores de búsqueda deben encontrar alguna forma de ordenar de forma relevante los sitios web que están relacionados con una consulta. El caso icónico es el de Google con su algoritmo PageRank. Los buscadores antes de 1990 eran sumamente rudimentarios, utilizaban algoritmos de rankeo vulnerables en el sentido que podían ser manipulados y no se explotaba gran parte de la estructura de la web. Esta fue una de las razones por las cuales una consulta no siempre devolvía resultados relevantes. Este fue el caso por ejemplo de algunos buscadores en ese momento como Yahoo! Search o AltaVista.

Figura 2: Sitio Web de Altavista, ano 1999.

El clásico paper de Brin y Page, "The anatomy of large-scale hypertextual Web search engine." [3] explica brevemente el origen del motor de búsqueda de Google y del algoritmo PageRank. La idea es básicamente la siguiente, en primer lugar se implementa un crawler distribuido para poder solicitar y armar el grafo de la web. Las palabras de cada sitio son indexadas y guardadas en una base de datos. Al llegar una consulta al buscador, un programa busca la consulta en los indices de páginas. De esta forma llegamos a un conjunto de páginas que están relacionadas con la consulta. Luego, antes de devolverle al usuario los resultados, estas páginas son ordenadas utilizando el famoso algoritmo PageRank. Este algoritmo se basa en la idea de que para medir la relevancia de un sitio se puede usar como proxy la cantidad de sitios que tienen un link al mismo. Para evitar que un usuario malintencionado manipule los resultados del mismo, la relevancia otorgada por un sitio web que linkea a otro es proporcional a su propia relevancia e inversamente proporcional a la cantidad de links (o grado de salida) del mismo.

El presente trabajo práctico tendrá como objetivo implementar el algoritmo PageRank para luego utilizarlo para generar rankings de todo tipo, ya sea para ordenar la relevancia de páginas webs o generar rankings deportivos. PageRank es un algoritmo que basa su ranking en la idea abstracta del navegante aleatorio. Este problema en general se modela con Cadenas de Markov, y en ultima instancia consiste en encontrar el autovector de una matriz de transiciones, que es similar a una matriz de adyacencia en teoría de grafos. A priori esto puede sonar complicado, pero luego mostraremos que en realidad es bastante simple y elegante.

Debido a su relevancia, PageRank es un algoritmo que ha sido ampliamente estudiado en la literatura. Una muy buena introducción teórica se puede encontrar en el trabajo de Bryan y Leise [4]. Otros autores como Kamvar et al. [8] han buscado otros enfoques y métodos para poder acelerar este algoritmo. La idea es encontrar una forma eficiente de poder computar este modelo, calibrando sus diferentes parámetros de modelado y convergencia para lograr un orden relevante. Otros autores como Govan et al. han buscado modelar la matriz de transiciones para aplicar este algoritmo en eventos deportivos [7]. Es importante mencionar que en este caso la complejidad temporal de los algoritmos utilizados para calcular PageRank no tendra tanta relevancia dado que la cantidad de equipos es acotada. La forma de calibrar el modelo tambien ha sido amplicamente estudiada, en especial para el caso de las páginas web. Un estudio muy interesante es el Constantine et al. de Microsoft Research, donde utilizando los registros del toolbar de Internet Explorer y un modelo basado en la distribución Beta generalizan la matriz de transiciones para poder modelar un parámetro de teletransportación variable [6].

Una vez planteado el procedimiento para computar el PageRank, experimentaremos con la complejidad temporal de los métodos implementados y evaluaremos los diferentes parámetros a calibrar. Finalmente concluiremos si según el algoritmo PageRank y nuestro modelado Vilas efectivamente debió haber estado en la punta del ATP en periodo 1975/1977. En caso afirmativo, sin dudas nos comunicaremos con la ATP.

Figura 3: Guillermo Vilas apoya este TP.

2. PageRank

2.1. Modelado para páginas web

El algoritmo PageRank fue ideado en un principio para buscar una medida de relevancia con el objetivo de ordenar consultas sobre el grafo de la web. El mismo explota la estructura de este grafo, y como veremos mas adelante luego de explicar la idea general del algoritmo, se calcula buscando el autovector de norma unitaria que resuelve un sistema de la forma Px = x con $P \in \mathbb{R}^{n \times n}$, es decir, el autovector asociado al autovalor 1. A su vez, existen dos interpretaciones equivalentes de este modelo, que serán expuestas a continuación.

El problema se modela a partir de un grafo G(Web, Links) donde Web es el conjunto de sitios web y Links es la cantidad de conexiones entre sitios. Consideremos que toda página web $u \in Web$ esta representada por un vértice y la relación entre páginas por un link con una arista. Una representación posible del grafo es mediante matrices de adyacencia. Definimos la matriz de adyacencia o conectividad $W \in \{0,1\}^{n \times n}$ de forma tal que $w_{ij} = 1$ si la página j tiene un link a la página i y $w_{ij} = 0$ en caso contrario. Por lo tanto, la cantidad de páginas a las que la página u apunta $(d_{out}(u))$ se puede calcular como $n_j = \sum_{i=1}^n w_{ij}$.

2.1.1. Propiedades

Sea x_j el puntaje asignado a la página o vértice $j \in Web$ y sea otra página $u \in Web$. La idea es buscar una medida de relevancia que cumpla con las siguientes propiedades:

- La relevancia de todo sitio web es positiva.
- La relevancia de un sitio web debe aumentar a medida que mas sitios únicos lo apuntan.
- La relevancia derivada de otro sitio web debe depender de su propia relevancia. Es decir, es mas valioso que me linkee un sitio relevante que uno no relevante. En caso de no cumplirse esta propiedad, el ranking seria fácilmente manipulable al permitir que un usuario cree muchos sitios que linkeen a uno para darle relevancia.
- La relevancia de todos los sitios web debe sumar uno. De esta manera estamos ante una distribución de probabilidad de los sitios. Esto nos permite a su vez utilizar muchos teoremas estudiados en procesos estocásticos. Mas adelante veremos que al interpretar esto mediante Cadenas de Markov existe una interpretación directa: la relevancia se puede ver como la proporción del tiempo total que un usuario pasa en ese sitio.

Por lo tanto, estamos buscando una medida de relevancia tal que la importancia obtenida por la página u obtenida por el link de la página v sea proporcional a la relevancia de v e inversamente proporcional al grado de v. El aporte del link de v a u entonces es $x_u = x_v/n_v$. Luego, sea $L_k \subseteq Web$ el conjunto de páginas que tienen un link a la página k. Por lo tanto, la relevancia total de un sitio sera:

$$x_k = \sum_{j \in L_k} \frac{x_j}{n_j}, \quad k = 1, \dots, n.$$
 (1)

Notar que esta es de cierta manera una definición autoreferencial. La relevancia de un sitio u puede depender de la relevancia de un sitio v, y luego la de v puede depender de la de u. A priori calcular la relevancia de un sitio puede parecer sumamente complicado, pero luego veremos que al plantearlo como un sistema de ecuaciones esta dificultad per se ya no se presenta.

Definimos entonces una matriz de transición o adyacencia con pesos en las aristas $P \in \mathbb{R}^{n \times n}$ tal que $p_{ij} = 1/n_j$ si $w_{ij} = 1$ y $p_{ij} = 0$ en caso contrario. Luego, el modelo planteado en (1) para toda página web se puede expresar Px = x donde $x \in \mathbb{R}^n$. Notar que esto es equivalente a encontrar el autovector de autovalor 1 tal que $x_i > 0$ y $\sum_{i=1}^n x_i = 1$. Notar que si logramos probar que bajo ciertas condiciones nuestra matriz de transición tiene autovalor 1, el signo de todos los elementos de un autovector es el mismo y la dimension del autoespacio es 1 ya tenemos un ranking valido. Esto se debe a que cualquier autovector que cumple con estas propiedades puede ser reescalado a uno de norma unitaria con $x_i \geq 0$.

2.1.2. Existencia y Unicidad

Bryan y Leise [4] analiza y prueba las condiciones bajo las que podemos garantizar que:

- La matriz de transición tiene autovalor 1.
- La dimension del autoespacio asociado al autovalor 1 es 1. Es deseable que el ranking asociado a una matriz de transición sea único.
- El signo de todos los elementos del autovector asociado al autovalor 1 es el mismo.

Veamos bajo que condiciones nuestra matriz de transición cumple con estas propiedades:

Definición Una matriz cuadrada se llama estocástica por columnas si todos sus elementos son positivos y la suma de cada columna es igual a 1.

A partir de esta definición se puede probar la siguiente proposición:

Proposición 2.1 Toda matriz estocástica por columnas tiene a 1 como autovalor.

Esto significa que si no existen dangling nodes, es decir, vértices con $d_{out} = 0$, podemos garantizar que nuestra matriz de transición es estocástica por columnas.

Notar que bajo las condiciones actuales no podemos garantizar que si existe el autoespacio asociado al autovalor 1, el mismo tenga dimension 1. Intuitivamente, esto se debe a que el grafo de la web puede tener varias componentes conexas. ¿Como comparamos sitios web que no están relacionados? Justamente la relación, ya sea directa o indirecta mediante transitividad me da algún tipo de relación de orden. Al no tener una relación de orden entre dos sitios web bien definida, es razonable que existan múltiples autovectores, es decir, rankings. Esto se puede ver claramente en la página 4 del paper de Bryan y Leise [4].

Por lo tanto, la idea es básicamente buscar algún tipo de transformación relevante de la matriz de transición que me permita garantizar que no voy a tener **dangling nodes** y ademas que solo tenga una componente conexa, es decir, que el grafo resultante sea conexo. Definimos la siguiente matriz de transición, donde $v \in \mathbb{R}^{n \times n}$, con $v_i = 1/n$ y $d \in \{0,1\}^n$, $d_i = 1$ si $n_i = 0$ y $d_i = 0$ en caso contrario, como:

$$D = vd^t$$

$$P_1 = P + D.$$

De esta manera, en caso de tener una página web que es un dangling node, le asignamos un link con probabilidad o peso uniforme a todos los otros sitios web $u \in Web$. Una interpretación equivalente es tomar a la matriz de transiciones como la matriz que describe una Cadena de Markov, donde el link pesado representa la probabilidad de dirigirse de una página a la otra. Por lo tanto, esta transformación se puede interpretar como que que existe una probabilidad uniforme de ir de uno de estos sitios a cualquiera de la web. Luego el famoso navegante aleatorio simplemente recorre el grafo utilizando estas probabilidades.

Tambien podemos considerar la posibilidad de que el navegante aleatorio se dirija a una página web que no esta linkeada a la página a la que esta actualmente. Este fenómeno se conoce como teletransportación. Para incluirlo al modelo, tomemos un numero $c \in [0,1]$ y transformemos la matriz de transiciones de la siguiente manera, donde $\bar{1} \in \mathbb{R}^n$ es un vector tal que todos sus componentes valen 1:

$$E = v\bar{1}^t$$

$$P_2 = cP_1 + (1-c)E,$$

Notar que en caso de tener c = 1, estamos en la matriz de transición sin teletransportación. Por otro lado, si c = 0 estamos en el caso donde solo hay teletransportación y no importa la estructura del grafo de la web al momento de calcular el ranking.

Notar que la elección de este parámetro c no es trivial. En general, este parámetro se calcula haciendo análisis empíricos sobre los datos de navegadores y toolbars. Un trabajo interesante sobre este tema es el de Constantine et al. de Microsoft Research, donde utilizando los registros del toolbar de Internet Explorer y un modelo basado en la distribución Beta generalizan la matriz de transiciones para poder modelar un parámetro de teletransportación variable [6]. Para este trabajo, simplemente utilizaremos la elección original constante del trabajo de Page & Brin [3] y fijaremos $\alpha=0.85$.

Esta nueva matriz de transición, dado que es estocástica por columnas y no tiene dangling nodes, nos garantiza que la dimension del autoespacio generado por el autovector de autovalor 1 es unitaria. Solo nos falta mostrar que todo autovector tiene todos sus elementos del mismo signo. Es facil probar la siguiente proposicion:

Proposición 2.2 Si la matriz M es positiva y estocástica por columnas, entonces todo autovector en $V_1(M)$ tiene todos sus elementos positivos o negativos.

Por lo tanto, ya probamos la existencia del autovector de norma 1 asociado al autovalor 1 de la matriz de transición transformada. El siguiente lema nos garantiza su unicidad. Su respectiva demostración se encuentra nuevamente en la página 7 del paper de Bryan y Leise [4].

Lemma 2.3

Si M es positiva y estocástica por columnas, entonces $V_1(M)$ tiene dimension 1.

Proposición 2.4 Sea M una matriz real de n x n positiva y estocástica por columnas, y V el subespacio de \mathbb{R}^n que consiste de aquellos vectores v tales que la suma de sus componentes sea 0, entonces $Mv \in V$ y $||Mv||_1 \le \alpha ||v||_1$ donde $\alpha = \max_{1 \le j \le n} |1 - 2\min_{1 \le i \le n}| < 1$.

2.2. Modelado para Tenis

El modelo GeM es un método de rankeo basado en PageRank para rankear equipos en ligas deportivas planteado por Govan et al. en "Generalizing Google's PageRank to Rank National Football League Teams" [7]. Utilizaremos el mismo para analizar los rankings del ATP entre 1975 y 1977. A continuación explicaremos como los autores modelan la matriz de transiciones que utiliza el algoritmo. Antes de comenzar con las definiciones, vale aclarar que para mantener la consistencia de la notación utilizada en este paper trabajaremos sobre la transpuesta de la matriz que se usa en el paper de Govan et al.

Se representa una temporada como un grafo dirigido con n nodos. Cada nodo representa un participante o equipo y cada partido entre dos participantes representa una arista desde el perdedor al ganador igual a la diferencia de puntos obtenidos por cada participante en el partido.

La matriz A^t de adyacencias queda definida de la siguiente manera, donde cada w_{ij} representa la diferencia positiva del puntaje de cada participante en ese enfrentamiento.

$$A^{t} = \begin{cases} w_{ij} \text{ si el participante } j \text{ pierde con el participante } i \\ 0 \text{ en cualquier otro caso} \end{cases}$$
 (2)

En caso de que un equipo pierda mas de una vez en el mismo torneo, será la suma de las diferencias de cada partido entre i y j. Esta es la mayor generalización en cuanto a PageRank.

Luego se define la matriz H de la siguiente forma:

$$H = \begin{cases} w_{ij} / \sum_{k=1}^{n} A_{kj}^{t} \text{ si hay un link de } j \text{ a } k \\ 0 \text{ en cualquier otro caso} \end{cases}$$
 (3)

Finalmente definimos G a la matriz resultante de:

$$G = \alpha (A^t + au^t) + (1 - \alpha)ev^t \tag{4}$$

Donde $0 < \alpha < 1$, v es un vector de probabilidades, a es tal que a_i es 1 si la fila j de H es 0 y a_i es 0 en cualquier otro caso y u sea un vector de probabilidad de n x 1. e se define como un vector fila con todas sus entradas igual a 1. Luego, el vector que contendrá los puntajes de cada equipo será un π tal que: $G\pi = \pi$.

Cada entrada H_{ij} de H se puede interpretar como la probabilidad de que el participante j pierda contra el participante i. Para los participantes invictos un simple ajuste que se propone es elegir un vector u donde todas las entradas son 1/n. Esto significa cambiar la probabilidad de los invictos a que puedan perder contra cualquiera de los otros participantes (incluido si mismo) con probabilidad uniforme. El modelo básico utiliza α de la misma forma que en PageRank y v^t como vector de personalización del sistema. Una simple elección puede ser v = (1/n)e. Aunque v ofrece mucha mas flexibilidad. Podría usarse con el resultado estadistico de un ranking previo, aumentando así las probabilidades de que cierto participante gane el presente torneo. La elección del α determina la importancia de la matriz de personalización ev^t . A diferencia del caso de las paginas web, la elección de este parámetro puede ser difícil de medir empíricamente y en ultima instancia debe ser elegida por el organizador del torneo. En nuestro caso, decidimos elegir $\alpha = 0.85$.

2.2.1. Sistema de puntos y consideraciones

Para procesar los rankings, obtuvimos todos los partidos realizados entre 1975 y 1977 de todas las competencias a nivel internacional de tenis que sirven para clasificar al ATP ¹. (Australian Open, Indianapolis, Roma, Roland Garros, US Open, Wimbledon, Davis Cup, y muchos más) junto con los rankings de cada año. Uno a mitad de año y otro a finales de año.

Los datos están completos a nivel enfrentamientos y participantes, pero carecen de los puntajes que cada jugador obtuvo por cada partido ganado, por avanzar de ronda y/o ganar un torneo. Esta es una parte importante a aclarar del sistema de rankings de la ATP. Se obtienen puntos por cada partido ganado, ronda superada y torneo ganado, los cuales además varían por torneo en importancia, siendo los Grand Slam los de mayor jerarquía. Utiliza un sistema de defensa de puntos que fue variando con los años. En aquella época, la defensa se hacia por año. Es decir, los puntos realizados durante un año, se defienden al año siguiente.

Igualmente esto no supone una limitación grave para computar los rankings y comprobar si Guillermo Vilas fue realmente o no 1ro en al menos uno de esos años.

Existe una relación directa entre sumar puntos y ganar partidos, y es que naturalmente el que más puntos tiene, más partidos ganó.

Además, dada la naturaleza del comportamiento de page rank, no solo importa a cuantos contrincantes derrotó un participante dado, si no a quienes derrotó. Ésta es la primera consideración a tener en cuenta y una carta a favor que será utilizada por el algoritmo. Dado que no disponemos del sistema de puntuación real y no sabemos a priori cuantos partidos jugó exactamente cada participante, es esencial que además de la puntuación que definamos por cada partido, un jugador obtenga un extra por el rango del rival derrotado. Esto mismo se puede interpretar como que ese jugador ganó un partido importante, dado que los partidos importantes son los de instancias decisivas (cuartos, semifinales o una final), y generalmente, al que solo llegan los mejores jugadores.

Dadas estas consideraciones podemos definir un sistema de puntos con el que poder computar partidos. El mismo es muy sencillo. 3 puntos al ganador y 1 punto al perdedor.

Solo utilizaremos el ranking de fin de año, totalizando por los puntos acumulados en el mismo, obteniendo así 3 rankings por cada año.

Veremos luego en la experimentación, como este sistema resuelve el cálculo de los rankings de manera apropiada y explicaremos que es lo que sucede en cada año computado observando algunos detalles importantes y comparándolos con los rankings oficiales de la ATP para luego concluir si Vilas fue o no, nuevamente, 1ro entre 1975 y 1977.

2.3. Representación del grafo

Ya hemos demostrado las condiciones necesarias para poder obtener el autovector asociado al autovalor dominante de una matriz de Markov. Ahora debemos proceder a calcular el mismo. Para esto, tenemos que tener en cuenta las cualidades del sistema y el método de resolución del algoritmo. Recordemos que en general, el grafo que representa la web tenderá a ser disconexo y muy grande, es decir, que podrán existir dos o mas rankings diferentes. Por lo tanto la matriz de transiciones puede ser muy esparsa e inclusive puede suceder que una página no tenga links de salida, dando lugar a dangling nodes. Para solucionar estos inconvenientes, con lo visto anteriormente disponemos de dos soluciones. Para los dangling nodes, la solución consiste en sumar una columna con probabilidad 1/n a la columna de ceros, esto en si, se puede interpretar como la probalidad de navegación aleatoria que previamente describimos. Aunque con esto no solucionamos el problema de la esparsidad de la matriz en si y el de poder tener mas de un ranking diferente. Para esto último, se agregó la matriz de probabilidad de teletransportación.

Dada esta definición, la matriz de transiciones resultante no es esparsa. Para sistemas muy grandes, esto puede resultar contraproducente a la hora de obtener el autovector asociado, dado que la complejidad espacial y temporal aumenta considerablemente con la cantidad de información representada en la matriz. Sin embargo existe un resultado que podremos utilizar para mejorar la eficiencia del algoritmo en términos de complejidad temporal y espacial. El mismo se basa en la idea de Kamvar et al. [8, Algoritmo 1] para el calculo del autovector. Este resultado nos permite utilizar la matriz original de transiciones sin modificar en lo absoluto, pero si cambiando su representación, valiendonos de una buena estructura para almacenar las entradas de la misma.

Las cualidades de la matriz hacen que sea razonable intentar pensar en una forma de representar solo las entradas que no sean ceros, y dado que la matriz suele ser esparsa, la misma contendrá muchos ceros que podrían no ser representados. Para esto optamos por una entre las 3 siguientes estructuras de representación:

¹Los datos los obtuvimos de https://github.com/JeffSackmann/tennis_atp, un repositorio con todos los rankings historicos de la ATP. La veracidad de los mismos es discutible, pero fue lo mejor que conseguimos dado que los investigadores que contactamos no nos quisierorn proveer los datos: "Lamentablemente, toda esa información está hoy en pleno ida y vuelta legal con la ATP y no puedo bajo ningún concepto filtrarla."

2.3.1. Dictionary of Keys (DOK)

Consiste en un diccionario que mapea pares de fila-columa a la entrada. No se representan las entradas nulas. El formato es bueno para gradualmente construir una matriz esparsa en orden aleatorio, pero pobre para iterar sobre valores distintos de cero en orden lexicográfico. Uno construye típicamente una matriz en este formato y luego se convierte en otro formato más eficiente para su procesamiento.

2.3.2. Compressed Sparse Row (CSR)

Pone las entradas no nulas de las filas de la matriz en posiciones de memoria contiguas. Suponiendo que tenemos una matriz dispersa no simétrica, creamos vectores: uno para los números de punto flotante (val), y los otros dos para enteros (col_ind, row_ptr) . El vector val almacena los valores de los elementos distintos de cero de la matriz, de izquierda a derecha y de arriba hacia abajo. El vector col_ind almacena los índices de columna de los elementos en el vector val. Es decir, si $val(k) = a_ij$ entonces $col_ind(k) = j$. El vector row_ptr almacena los lugares en el vector val que comienza y termina una fila, es decir, si $val(k) = a_ij$ entonces $row_ptr(i) \le k \le row_ptr(i+1)$. Por convención, se define $row_ptr(n+1) = nnz$, en donde nnz es el número de entradas no nulas en la matriz. Los ahorros de almacenamiento de este enfoque es significativo. En lugar de almacenar elementos n^2 , solamente necesitamos 2nnz+n lugares de almacenamiento.

Veamos con un ejemplo como seria la representacion:

```
\begin{pmatrix} 0 & 0 & 0 & 0 \\ 5 & 8 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 6 & 0 & 0 \end{pmatrix}
```

Es una matrix de 4x4 con 4 entradas no nulas. Luego:

```
val = [\ 5\ 8\ 3\ 6\ ]

row\_ptr = [\ 0\ 0\ 2\ 3\ 4\ ]

col\_ind = [\ 0\ 1\ 2\ 1\ ]
```

2.3.3. Compressed Sparse Column (CSC)

La idea es análoga a CSR, pero la compresión se hace por columnas es decir, si CSR comprime A, CSC comprime A^t

Sobre la matriz definida para CSR, con CSC obtenemos lo siguiente:

```
val = [5863]

col\_ptr = [01344]

row\_ind = [1123]
```

Todos los resultados anteriores permiten evitar representar valores nulos. El motivo de nuestra elección se debe a que CSR ofrece una buena representación de las filas de la matriz y es más eficiente a la hora de hacer operaciones del tipo A*x (matriz-vector) que es lo que nos interesa en el método de la potencia que realiza PageRank. CSC en cambio, es efectiva para el producto x*A (vector-matriz) dado que la misma ofrece una mejor representación de las columnas. En contra partida, tanto CSR como CSC, no permiten construcción incremental aleatoria, que si ofrece DOK, es decir, que cambios a la esparsidad de la matriz son costosos. En general están pensadas para ser estáticas, pero esto no es un inconveniente en nuestro caso, dado que no se realizaran cambios en la esparsidad de la matriz durante el proceso.

En el presente trabajo utilizaremos la idea de Kamvar et al. [8, Algoritmo 1] para el calculo del autovector valiendonos de nuestra estructura de representación elegida y compararemos los resultados con el algoritmo estandar para mostrar que al final de cuentas, si el sistema es muy grande y esparso, puede resultar muy beneficioso en términos de complejidad espacial y temporal.

2.3.4. Elección de estructura

De todas estas representaciones posibles, para este TP optamos por CSR. Aún así no haremos una elección sin una justificación apropiada del porque consideramos que es la mejor para nuestro trabajo, dado que como en toda estructura de datos, siempre existen pros y contras. Nos encargaremos en lo que sigue de exponer estos detalles para dejar en claro nuestro punto de vista.

2.4. Computo: Método de la Potencia

Habiendo definido la matriz de transiciones como la matriz P_2 de la sección anterior, debemos hallar el vector de relevancias x que define en x_j la relevancia de la j-esima pagina $\forall 0 \leq j \leq n$. Debido a la definición recursiva de este vector, x debe satisfacer que $P_2x = x$ o lo que es equivalente, que x sea un autovector asociado al autovalor 1 (i.e $x \in V_1(P_2)$). Para este tipo de problemas es que contamos con el método de la potencia, un algortimo iterativo que nos devuelve una aproximación lineal al x deseado.

2.4.1. Correctitud

La idea detras de este algoritmo consiste en generar a partir de un vector inicial x_0 , una secuencia $x_k = \frac{P_2 x_{k-1}}{||P_2 x_{k-1}||}$ que aproxime al autovector q (en nuestro caso el vector x de relevancias) asociado al autovalor 1. Siguiendo esta propuesta elegimos nuestro x_0 de manera que satifaga que todas sus componetes sean positivas y $||x_0||_1 = 1$, definiendolo además como $x_0 = q + v$, en donde q es el único vector unitario que satisface que $q \in V_1(P_2)$ y que posee todas sus componentes positivas; y v siendo un vector tal que la suma de sus componentes sea 0. De esta menera, dado que P_2 es una matriz positiva y estocástica por columnas, y x_0 un vector unitario con todas sus componentes también positivas, resulta que $P_2 x_0$ también es un vector unitario con todas sus componentes positivas. Esto nos facilita la secuencia de la siguiente forma $x_k = P_2 x_{k-1} = P_2^k x_0$, pues desde un principio $x_1 = P_2 x_0$ ($||P_2 x_0|| = 1$); luego $x_k = P_2^k x_0 = P_2^k q + P_2^k v = q + P_2^k v \implies P_2^k v = P_2^k x_0 - q$. Ahora bien, por la desigualdad de la proposición 2.4, $||P_2^k x_0 - q||_1 = ||P_2^k v||_1 \le \alpha^k ||v||_1$, haciendo tender $k \to \infty$, $\alpha \to 0$, de lo que se deduce que $P_2^k x_0 - q \to 0$ o equivalentemente $P_2^k x_0 \to q$, es decir al x buscado.

2.4.2. Complejidad

En cuanto a complejidad temporal es evidente que el costo del algoritmo radica en cuantas operaciones elementales nos conlleva calcular $P_2^k x$, en especial si se requiere realizar una gran cantidad de iteraciones. Recordando como la definimos, $P_2 = cP_1 + (1-c)E$ donde E es la matriz con todos sus elementos iguales a $\frac{1}{n}$ y P_1 es una matriz positiva y estocástica por columnas, de lo que podemos concluir que todos los elementos de P_2 son estrictamente positivos (si $c \in (0,1)$). Esta conclusión no es muy alentadora, pues sólo tener que hacer $P_2 x$ tiene una complejidad espacial y temporal de $\Theta(n^2)$. No obstante, sabiendo que $||x||_1 = 1$, resulta que $P_2 x = (cP_1 + (1-c)E)x = cP_1 x + (1-c)Ex = cP_1 x + (1-c)e$ en donde e ahora es un vector con todos sus elementos iguales a $\frac{1}{n}$, luego la atención se concentra en el costo de $P_1 x$. Esta última matriz ya no sólo no tiene todos sus elementos estrictamente positivos, sino que suele tratarse de una matriz esparsa, ahorrandonos varias multiplicaciones (las que corresponderian a los elementos iguales a cero) aventajando en velocidad a la anterior situación; a su ves podremos aprovechar la redundancia de ceros para utilizar alguna estructura más eficiente a la hora de almacenar la matriz de la actual iteración. En conclusión dandonos una complejidad temporal total de $\mathcal{O}(k*n^2)$, pero un caso promedio notablemente menor.

Cuadro 1: My caption

Nro. Web	PageRank	Por grado
1	0.164204	3
2	0.172456	2
3	0.237500	2
4	0.172456	2
5	0.098296	1
6	0.155089	2

3. Experimentación

3.1. PageRank

3.1.1. Complejidad

tiempo de computo en funcion de size del grafo, eje x, cantidad de sitios web, eje y, tiempo en ms a convergencia.

Figura 4: Tiempos de ejecución según cantidad de webs.

3.1.2. Casos Patologicos

Caso particular chiquito, página 3. Fijate el parrafo que arranca en A simple apprroach..... y despues This approach ignores that... La idea es armar el mismo grafo y mostrar el mismo ejemplo jaja

3.2. páginas Web

3.2.1. Comparacion PageRank vs In-Deg (RODRI)

Comparar solo los rankings, nada de complejidad. Podes mencionar que In-Deg usa un algoritmo $\mathcal{O}(n \times log(n))$, pero nada mas. Comparar top 10 con los dos y discutir diferenciias.

Cuadro 2: My caption

Nro. Web	PageRank	In-Deg
1	0.027024	1
2	0.056338	1
3	0.080408	2
4	0.046550	2
5	0.020816	0
6	0.034488	1
7	0.028279	1
8	0.044852	1
9	0.014608	2
10	0.014608	2
11	0.037580	1
12	0.052729	1
13	0.014608	0
14	0.014608	0
15	0.070940	1
16	0.046808	0
17	0.014608	0
18	0.028385	0
19	0.028279	1
20	0.074904	0
21	0.014608	1
22	0.014608	3
23	0.032418	2
24	0.014608	1
25	0.018747	1
26	0.014608	0
27	0.014608	0
28	0.014608	1
29	0.014608	1
30	0.095159	0

3.2.2. Manipulacion

página 5, ejercicio 1. La idea es que plantees un caso de un tipo que quiere manipular el ranking, mostra que aunque agregues miles de nuevas páginas apuntando no podes hacer demasiado, hacelo en funcion de la cantidad de páginas que agregas?

Se puede manipular entonces o no? Agarra, en el eje x pone cantidad de sitios web que apuntan solamente al sitio u que le quiero subir el ranking, y en el eje y el ranking de ese sitio. Fijate que aumenta, y fijate si podes hacer algun tipo de curva de nivel con c (cuanto mayor c, mas manipulable es la cosa). Citar el paper de Sergei y Brin, que dicen que hacen promedios de muchas cosas en la practica para evitar este problema. Usan muchos criterios promediados.

3.3. Ranking ATP

Empezemos con el apartado que seguro el lector más esperaba de todo el t.p..Vilas fue o no 1ro entre 1975 y 1977? Esta pregunta podemos contestarla. Pero previo a esto, necesitamos poner al lector al tanto de la situación. Empecemos viendo los rankings oficiales de la época.

En 1975, Vilas llegó a la primera final de un Grand Slam, el Roland Garros, en donde fue derrotado por el sueco Björn Borg y cuartos de final de Wimbledon.

Este es el top 10 para 1975 segun la ATP, donde Guillermo Vilas se hubica 2do:

173	Jimmy	Connors
127	Guiller mo	Vilas
34	Bjorn	Borg
19	Arthur	Ashe
225	Manuel	Orantes
210	Ken	Rosewall
144	Ilie	Na stase
180	John	Alexander
318	Roscoe	Tanner
309	Rod	Laver

En 1976 la ATP hubica a Vilas 6to dentro del top 10:

173	Jimmy	Connors
34	Bjorn	Borg
144	Ilie	Na stase
225	Manuel	Orantes
288	Raul	Ramirez
127	Guiller mo	Vilas
1	Adriano	Panatta
134	Harold	Solomon
87	Eddie	Dibbs
41	Brian	Gottfried

En 1977 Vilas se ubica segundo, por debajo de Connors. Recordemos que esto hasta el día de hoy sigue creando polémicas debido a los muy buenos resultados obtenidos por Vilas en aquel año comparados con los del estadounidense y que luego comentaremos. Veamos el top 10 oficial para este año:

173	Jimmy	Connors
127	Guiller mo	Vilas
34	Bjorn	Borg
371	Vitas	Gerulaitis
41	Brian	Gottfried
87	Eddie	Dibbs
225	Manuel	Orantes
288	Raul	Ramirez
144	Ilie	Na stase
81	Dick	Stockton

Todos los años tienen como lider indiscutido al estadounidense Jimmy Connors.

3.3.1. Ranking ATP oficial vs. Ranking PageRank vs. Sort por diferencia de victorias/derrotas

Introducimos aquí un algoritmo de rankeo con un criterio de ordenamiento basado en victorias/derrotas, que además, si hay empate define por diferencia de puntos, aunque para el caso de tenis y por como esta definido el sistema de puntos del mismo no tiene ninguna relevancia. Solo nos servirá para poder hacer un análisis cualitativo de las virtudes de pagerank sobre algoritmos más básicos y comparar estos resultados con el ranking oficial y poder obtener así alguna conclusión sobre los mótivos principales de la investigación.

Veamos que obtuvimos en cada año con este algoritmo, empezando por 1975:

id	PG	PF
19	96	18
225	90	20
127	86	18
173	79	11
144	88	22
34	82	17
288	70	28
180	65	23
318	64	24
155	60	21

Podemos ver que Vilas no aparece segundo, si no tercero. Connors fue desplazado al 4to lugar y en primer lugar aparece Arthur Ashe quien ocupaba el lugar que Connors ocupa ahora. Podemos ver varios cambios relacionados al top 10 oficial.

Todos ellos particularmente relacionados al hecho de que como se habia anticipado la cantidad de victorias sobre derrotas conformaria otro ranking diferente en el cual no importa exactamente que clase de victorias a conseguido o derrotas sufrido un determinado participante. Podemos ver que Vilas con más victorias sobre derrotas que Connors, se encontraba por debajo de él en el ranking oficial. Esto se debe al sistema de puntos manejados por el ATP donde se suma más puntaje cuanto mas avancemos en un torneo y cuantas más finales ganemos y por la jerarquía de ese torneo. Claramente no alcanza con ganar un solo torneo importante. Debemos tener continuidad y participación.

Observemos el ranking de 1976:

```
PG
           PP
 id
173
      86
            9
127
      83
            20
144
      73
            15
288
      91
            33
225
      76
            19
 87
      83
            28
 34
      57
            12
318
      71
            27
380
      75
            32
      70
134
            27
```

Vemos que Vilas avanzó del 6to lugar al 2do puesto que era ocupado por Bjorn Borg y que fue desplazado al 7mo. Si analizamos un poco los partidos veremos que Vilas fué derrotado por Bjorn Borg 3 veces (Winbledon, Dallas WCT, Sao Paulo WCT) mientras que Vilas nunca pudo derrotarlo. Contra Connors se enfrentó una vez y fue derrotado (US Open) al igual que Bjorn Borg, que se enfrentó en 3 ocaciones contra Connors y cayó en la misma cantidad...esto nuevamente es un indicador de que determinadas victorias son más importantes que otras.

Veamos que sucede en 1977:

Ok. Tomemoslo con calma. Vilas aparece primero..pero esto no es indicador absoluto de que la ATP cometió un error debido a la falta de información que provee. Aunque si nos da indicios de lo que realmente pasó.

La diferencia de partidos ganados sobre perdidos con respecto a cualquier otro competidor es bastante significativa. Podemos ver que Connors fué desplazado al 4to lugar. Segundo se ubica Brian Gottfried, que durante ese año tuvo un gran desempeño, entre los que se encuentra su victoria sobre Vilas en la final del Roland Garros.

Todos estos datos nos permiten dar una idea de hacia donde vamos..las posiciones parecen estar relacionadas con el desempeño del competidor durante ese año, es decir, cuantas finales disputó o que tan lejos avanzó en un torneo y a que rivales venció.

A priori..cantidad de victorias está relacionado con cantidad de puntos..pero esto no es una regla general y depende como mencionamos del sistema de puntajes. Para poder asemejar a la relevancia que la ATP le da a los torneos tenemos que utilizar un algoritmo que aproveche esa carácteristica lo mejor posible. Para esto haremos uso del modelo GeM y analizaremos sus resultados. Esperariamos que los mismos se parezcan al ranking oficial con ciertas variaciones, pero como minimo se mantengan los mismos en el top 10 que el ranking oficial.

Utilizaremos los siguientes parámetros para generar los 3 rankings:

```
c = 0.85 \ \delta = 0.00001
```

Además, como indicamos en el diseño del sistema, usaremos una matriz de personalización uniforme, dado que no nos interesa que influyan sobre los resultados ninguna información estadistica de un torneo anterior, por el simple hecho de que evaluamos a los jugadores desde cero cada año.

Avancemos sobre los resultados, comenzando con 1975:

```
puntaje
 id
     0,033172
 19
 34
     0,030089
225
     0,026483
144
     0,026254
127
     0,023572
173
     0,021918
180
     0,017379
318
     0,015914
309
     0.011614
210
     0,011055
```

Vemos que Vilas se ubica en el 4to puesto, Connors fué desplazado al 5to puesto y por arriba se ubican Ashe en primer puesto y Borg en segundo lugar.

Si analizamos los partidos vemos que Ashe se enfrentó en una sola oportunidad a Connors y logró derrotarlo, en lo que fué la final Wimbledon. Además se enfrento en 7 oportunidades a Borg y logró vencerlo en 4 (Wimbledon, Barcelona WCT, Dallas WCT, Munich WCT), siendo Wimbledon el más importante de los 7 enfrentamientos.

Borg obtuvo la final de Roland Garros frente a Vilas como máximo logro.

Mientras tanto Manuel Orantes hizo lo propio para obtener el 3er lugar contra Vilas derrotandolo en las 4 oportunidades que se encontraron y derrotando a Connors en su único enfrentamiento. No es una tarea fácil determinar todas estas congruencias pero con un simple vistazo a los partidos jugados y los torneos en los que se enfrentaron parece claro que el ranking es elocuente.

Veamos el ranking de 1976:

puntajeid173 0,033300 144 0,031773 288 0,029343 0,026328 0,025002 41 134 0,024189 127 0,024006 34 0,023806 225 0,020587 0,014804

No parace haber mucho que analizar con respecto al ranking oficial. Vilas se encuentra una posición mas abajo. Connors sigue siendo lider indiscutido y la otras posiciones relativas no han cambiado demasiado. Podriamos resaltar el caso particular de Borg que no tuvo malos resultados, destacando su final ganada contra Ilie Nastase en Wimbledon, una final perdida en el US Open contra Connors y Cuartos de final en un Roland Garros. Pero si miramos el mismo ranking pero por diferencia de ganados/perdidos veremos que Borg se encuentra casi en la misma posición debido a la poca cantidad de partidos ganados con respecto a los perdidos.

Concluyamos con el análisis de 1977:

puntaje127 0,037046 41 0,035463 34 0,029461 173 0,027319 0,024189 134 0,023230 0,021816 3710,017483 288 0,016667 225 0,016318

Por una diferencia significativa, Vilas desplaza del primero puesto a Connors para quedarse el con el trono. Pero hay una razón bastante justificada para que esto suceda. En 1977 Vilas conquistó 17 torneos (récord todavía vigente), se consagró en Roland Garros frente a Brian Gottfried por 6-0 6-3 6-0 y el US Open frente a Jimmy Connors por 2-6 6-3 7-6 6-0, fue finalista de Australia donde cayó frente a Roscoe Tanner por 3-6 3-6 3-6, logró una seguidilla de 50 partidos consecutivos sin conocer la derrota y, durante esos doce meses, ganó 145 de los 159 encuentros que jugó (91,1%). Jimmy Connors, en 1977 no obtuvo ningún torneo de Grand Slam y ganó ocho torneos, menos de la mitad de los logrados por Vilas. Parece lógico que Connors incluso este unos escalones más abajo en el ranking. Además el ranking por partidos ganados/perdidos para los primeros 4 es identico. Esto no puede hacer más que confirmar que Vilas fué primero indiscutido en 1977 por una amplia diferencia, sobre todo por el bajo rendimiento de Connors durante ese año.

Como comentamos al principio, la cantidad de partidos ganados y los rivales derrotados son factores importantes a la hora de generar el ranking con un metodo como GeM. Las condiciones usadas son muy similares a la forma de rankeo que utiliza la ATP, por este motivo podemos concluir que el ranking de la ATP de 1977 con seguridad tiene un error de computo. Si la ATP hubiese cambiado a un sistema como el GeM pero con un sistema de puntos más especializado y las condiciones fueran retroactivas, hoy el número 1 indiscutido de 1977 sería sin lugar a dudas el gran willy.

3.3.2. Eleccion del factor de 'teletransportacion' c (RODRI)

probar relevancia a medida que cambias ese valor = 0.85, creo que c.

Citar paper de google, que usan 0.85. Discutir que si c es uno, ignoras la estructura del grafo al hacer el ranking, todos rankean igual.

página 6.... This is the ultimately egalitarian case: the only... blah. La idea es jugar con c aca, como dije arriba. Es un buen exp, hay que pensar bien como graficarlo y que quede lindo, creo que es facil.

3.4. Metodo de la Potencia

3.4.1. Representacion de la Matriz de Transicion (RODRI/FEDE)

Este experimento lo pueden hacer directo o usando al PageRank. Si pueden, implementen todas las representaciones de matrices y luego comparen el tiempo de computo del producto N veces. Comparen la matriz normal vs el resto. Discutan que en páginas web la cantidad de vertices del grafo se va al carajo, pero para deportes es super acotada, asi que la eleccion de estructura no afecta tanto.

Aca podes argumentar que lo que domina al metodo de la potencia es la cantidad de productos, asi que no hace falta probar PageRank directo. Igual si queres metelo con pagerank de una, a fin de cuentas es lo mismo.

3.4.2. Evolucion de la norma entre iteraciones

Como va evolucionando la norma manhattan entre dos iteraciones sucesivas. Eje x, iteraciones, eje y, norma manhattan.

3.4.3. Convergencia

Aca tienen que calcular el vector posta, y luego tomar algun tipo de norma. En el eje x van a tener la cantidad de iteraciones, y en el eje y van a tener la norma de x^* - x_actual .

3.4.4. Election del x_0

Aca pongan que te conviene arrancar con una buena 'adivinanza' de la solucion, asi se acerca mas rapido. Muestren la cantidad de iteraciones a la convergencia (norma manhattan ¡epsilon) dependiendo de la distanciia de la solucion inicial a la solucion posta. Si arranco con la posta de una, converge de una. Si arranco con una sol asquerosa inicial, tarda mas iteraciones en cumplir nuestro epsilon.

Mostrar dos instancias, una donde arrarnco desde el valor inicial donde todos tienen 1/n y otra donde una tiene 1 y el resto 0, mostrar la cantidad de pasos y como evoluciona la norma.

4. Conclusiones

Una vez que ya este todo lo leo y escribo esto bien a los pedos, incluyendo la caratula.

5. Apéndice A: Enunciado

Ohhh solo tiran π -edras...

Contexto y motivación

A partir de la evolución de Internet durante la década de 1990, el desarrollo de motores de búsqueda se ha convertido en uno de los aspectos centrales para su efectiva utilización. Hoy en día, sitios como Yahoo, Google y Bing ofrecen distintas alternativas para realizar búsquedas complejas dentro de un red que contiene miles de millones de páginas web.

En sus comienzos, una de las características que distinguió a Google respecto de los motores de búsqueda de la época fue la calidad de los resultados obtenidos, mostrando al usuario páginas relevantes a la búsqueda realizada. El esquema general de los orígenes de este motor de búsqueda es brevemente explicado en Brin y Page [3], donde se mencionan aspectos técnicos que van desde la etapa de obtención de información de las páginas disponibles en la red, su almacenamiento e indexado y su posterior procesamiento, buscando ordenar cada página de acuerdo a su importancia relativa dentro de la red. El algoritmo utilizado para esta última etapa es denominado PageRank y es uno (no el único) de los criterios utilizados para ponderar la importancia de los resultados de una búsqueda. En este trabajo nos concentraremos en el estudio y desarrollo del algoritmo PageRank.

Por otro lado, las competencias deportivas, en todas sus variantes y disciplinas, requieren casi inevitablemente la comparación entre competidores mediante la confección de *Tablas de Posiciones y Rankings* en base a resultados obtenidos en un período de tiempo determinado. Estos ordenamientos de equipos están generalmente (aunque no siempre) basados en reglas relativamente claras y simples, como proporción de victorias sobre partidos jugados o el clásico sistema de puntajes por partidos ganados, empatados y perdidos. Sin embargo, estos métodos simples y conocidos por todos muchas veces no logran capturar la complejidad de la competencia y la comparación. Esto es particularmente evidente en ligas donde, por ejemplo, todos los equipos no juegan la misma cantidad de veces entre sí.

A modo de ejemplo, la NBA y NFL representan dos ligas con fixtures de temporadas regulares con estas características. Recientemente, el Torneo de Primera División de AFA se suma a este tipo de competencias, ya que la incorporación de la Fecha de Clásicos parece ser una interesante idea comercial, pero no tanto desde el punto de vista deportivo ya que cada equipo juega contra su clásico más veces que el resto. Como contraparte, éstos rankings son utilizados muchas veces como criterio de decisión, como por ejemplo para determinar la participación en alguna competencia de nivel internacional, con lo cual la confección de los mismos constituye un elemento sensible, afectando intereses deportivos y económicos de gran relevancia.

El problema, Parte I: PageRank y páginas web

El algoritmo PageRank se basa en la construcción del siguiente modelo. Supongamos que tenemos una red con n páginas web $Web = \{1, \ldots, n\}$ donde el objetivo es asignar a cada una de ellas un puntaje que determine la importancia relativa de la misma respecto de las demás. Para modelar las relaciones entre ellas, definimos la matriz de conectividad $W \in \{0,1\}^{n \times n}$ de forma tal que $w_{ij} = 1$ si la página j tiene un link a la página i, y $w_{ij} = 0$ en caso contrario. Además, ignoramos los autolinks, es decir, links de una página a sí misma, definiendo $w_{ii} = 0$. Tomando esta matriz, definimos el grado de la página j, n_j , como la cantidad de links salientes hacia otras páginas de la red, donde $n_j = \sum_{i=1}^n w_{ij}$. Además, notamos con x_j al puntaje asignado a la página $j \in Web$, que es lo que buscamos calcular.

La importancia de una página puede ser modelada de diferentes formas. Un link de la página $u \in Web$ a la página $v \in Web$ puede ser visto como que v es una página importante. Sin embargo, no queremos que una página obtenga mayor importancia simplemente porque es apuntada desde muchas páginas. Una forma de limitar esto es ponderar los links utilizando la importancia de la página de origen. En otras palabras, pocos links de páginas importantes pueden valer más que muchos links de páginas poco importantes. En particular, consideramos que la importancia de la página v obtenida mediante el link de la página v es proporcional a la importancia de la página v e inversamente proporcional al grado de v. Si la página v contiene v0 links, uno de los cuales apunta a la página v0, entonces el aporte de ese link a la página v1 será v2, v3 luego, sea v4 luego, sea v5 luego, sea v6 luego, sea v6 luego que tienen un link a la página v7 luego, sea v8 luego que tienen un link a la página v8 luego que página pedimos que

$$x_k = \sum_{j \in L_k} \frac{x_j}{n_j}, \quad k = 1, \dots, n.$$
 (1)

Definimos $P \in \mathbb{R}^{n \times n}$ tal que $p_{ij} = 1/n_j$ si $w_{ij} = 1$, y $p_{ij} = 0$ en caso contrario. Luego, el modelo planteado en (1) es equivalente a encontrar un $x \in \mathbb{R}^n$ tal que Px = x, es decir, encontrar (suponiendo que existe) un autovector asociado al autovalor 1 de una matriz cuadrada, tal que $x_i \ge 0$ y $\sum_{i=1}^n x_i = 1$. En Bryan y Leise [4] y Kamvar et al. [8, Sección 1] se analizan ciertas condiciones que debe cumplir la red de páginas para garantizar la existencia de este autovector.

Una interpretación equivalente para el problema es considerar al navegante aleatorio. Éste empieza en una página cualquiera del conjunto, y luego en cada página j que visita sigue navegando a través de sus links, eligiendo el mismo con probabilidad $1/n_j$. Una situación particular se da cuando la página no tiene links salientes. En ese caso, consideramos que el navegante aleatorio pasa a cualquiera de las página de la red con probabilidad 1/n. Para representar esta situación, definimos $v \in \mathbb{R}^{n \times n}$, con $v_i = 1/n$ y $d \in \{0,1\}^n$ donde $d_i = 1$ si $n_i = 0$, y $d_i = 0$ en caso contrario. La nueva matriz de transición es

$$D = vd^t$$

$$P_1 = P + D.$$

Además, consideraremos el caso de que el navegante aleatorio, dado que se encuentra en la página j, decida visitar una página cualquiera del conjunto, independientemente de si esta se encuentra o no referenciada por j (fenómeno conocido como teletransportación). Para ello, consideramos que esta decisión se toma con una probabilidad $c \geq 0$, y podemos incluirlo al modelo de la siguiente forma:

$$E = v\overline{1}^t$$

$$P_2 = cP_1 + (1-c)E,$$

donde $\bar{1} \in \mathbb{R}^n$ es un vector tal que todas sus componentes valen 1. La matriz resultante P_2 corresponde a un enriquecimiento del modelo formulado en (1). Probabilísticamente, la componente x_j del vector solución (normalizado) del sistema $P_2x = x$ representa la proporción del tiempo que, en el largo plazo, el navegante aleatorio pasa en la página $j \in Web$. Denotaremos con π al vector solución de la ecuación $P_2x = x$, que es comúnmente denominado estado estacionario.

En particular, P_2 corresponde a una matriz estocástica por columnas que cumple las hipótesis planteadas en Bryan y Leise [4] y Kamvar et al. [8], tal que P_2 tiene un autovector asociado al autovalor 1, los demás autovalores de la matriz cumplen $1 = \lambda_1 > |\lambda_2| \ge \cdots \ge |\lambda_n|$ y, además, la dimensión del autoespacio asociado al autovalor λ_1 es 1. Luego, π puede ser calculada de forma estándar utilizando el método de la potencia.

Una vez calculado el ranking, se retorna al usuario las t páginas con mayor puntaje.

El problema, Parte II: PageRank y ligas deportivas

Existen en la literatura distintos enfoques para abordar el problema de determinar el ranking de equipos de una competencia en base a los resultados de un conjunto de partidos. En Govan et al. [7] se hace una breve reseña de dos ellos, y los autores proponen un nuevo método basado en el algoritmo PageRank que denominan GeM². Conceptualmente, el método GeM representa la temporada como un red (grafo) donde las páginas web representan a los equipos, y existe un link (que tiene un valor, llamado peso, asociado) entre dos equipos que los relaciona modelando los resultados de los posibles enfrentamientos entre ellos. En base a este modelo, Govan et al. [7] proponen calcular el ranking de la misma forma que en el caso de las páginas web.

En su versión básica, que es la que consideraremos en el presente trabajo, el método GeM (ver, e.g., [7, Sección GeM Ranking Method]) es el siguiente³:

- 1. La temporada se representa mediante un grafo donde cada equipo representa un nodo y existe un link de i a j si el equipo i perdió al menos una vez con el equipo j.
- 2. Se define la matriz $A^t \in \mathbb{R}^{n \times n}$

$$A_{ji}^t = \left\{ \begin{array}{ll} w_{ji} & \text{si el equipo } i \text{ perdió con el equipo } j, \\ 0 & \text{en caso contrario,} \end{array} \right.$$

donde w_{ji} es la diferencia absoluta en el marcador. En caso de que i pierda más de una vez con j, w_{ji} representa la suma acumulada de diferencias. Notar que A^t es una generalización de la matriz de conectividad W definida en la sección anterior.

3. Definir la matriz $H_{ii}^t \in \mathbb{R}^{n \times n}$ como

$$H_{ji}^t = \left\{ \begin{array}{ll} A_{ji}^t / \sum_{k=1}^n A_{ki}^t & \text{si hay un link } i \neq j, \\ 0 & \text{en caso contrario.} \end{array} \right.$$

 $^{^2\}mathrm{Aunque}$ no se especifica, asumimos que el nombre se debe a las iniciales de los autores.

³Notar que en artículo, Govan et al. [7] lo definen sobre la traspuesta. La definición y las cuentas son equivalentes, simplemente se modifica para mantener la consistencia a lo largo del enunciado.

- 4. Tomar $P = H^t$, y aplicar el método PageRank como fue definido previamente, siendo π la solución a la ecuación $P_2x = x$. Notar que los páginas sin links salientes, en este contexto se corresponden con aquellos equipos que se encuentran invictos.
- 5. Utilizar los puntajes obtenidos en π para ordenar los equipos.

En función del contexto planteado previamente, el método GeM define una estructura que relaciona equipos dependiendo de los resultados parciales y obtener un ranking utilizando solamente esta información.

Enunciado

El objetivo del trabajo es experimentar en el contexto planteado utilizando el algoritmo PageRank con las variantes propuestas. A su vez, se busca comparar los resultados obtenidos cualitativa y cuantitativamente con los algoritmos tradicionales utilizados en cada uno de los contextos planteados. Los métodos a implementar (como mínimo) en ambos contexto planteados por el trabajo son los siguientes:

- 1. Búsqueda de páginas web: PageRank e IN-DEG, éste último consiste en definir el ranking de las páginas utilizando solamente la cantidad de ejes entrantes a cada una de ellas, ordenándolos en forma decreciente.
- 2. Rankings en competencias deportivas: GeM y al menos un método estándar propuesto por el grupo (ordenar por victorias/derrotas, puntaje por ganado/empatado/perdido, etc.) en función del deporte(s) considerado(s).

El contexto considerado en 1., en la búsqueda de páginas web, representa un desafío no sólo desde el modelado, si no también desde el punto de vista computacional considerando la dimensión de la información y los datos a procesar. Luego, dentro de nuestras posibilidades, consideramos un entorno que simule el contexto real de aplicación donde se abordan instancias de gran escala (es decir, n, el número total de páginas, es grande). Para el desarrollo de PageRank, se pide entonces considerar el trabajo de Bryan y Leise [4] donde se explica la intución y algunos detalles técnicos respecto a PageRank. Además, en Kamvar et al. [8] se propone una mejora del mismo. Si bien esta mejora queda fuera de los alcances del trabajo, en la Sección 1 se presenta una buena formulación del algoritmo. En base a su definición, P_2 no es una matriz esparsa. Sin embargo, en Kamvar et al. [8, Algoritmo 1] se propone una forma alternativa para computar $x^{(k+1)} = P_2 x^{(k)}$. Este resultado debe ser utilizado para mejorar el almacenamiento de los datos.

En la práctica, el grafo que representa la red de páginas suele ser esparso, es decir, una página posee relativamente pocos links de salida comparada con el número total de páginas. A su vez, dado que n tiende a ser un número muy grande, es importante tener en cuenta este hecho a la hora de definir las estructuras de datos a utilizar. Luego, desde el punto de vista de implementación se pide utilizar alguna de las siguientes estructuras de datos para la representación de las matrices esparsas: Dictionary of Keys (dok), Compressed Sparse Row (CSR) o Compressed Sparse Column (CSC). Se deberá incluir una justificación respecto a la elección que consdiere el contexto de aplicación. Además, para PageRank se debe implementar el método de la potencia para calcular el autovector principal. Esta implementación debe ser realizada íntegramente en C++.

En función de la experimentación, se deberá realizar un estudio particular para cada algoritmo (tanto en términos de comportamiento del mismo, como una evaluación de los resultados obtenidos) y luego se procederá a comparar cualitativamente los rankings generados. La experimentación deberá incluir como mínimo los siguientes experimentos:

- 1. Estudiar la convergencia de PageRank, analizando la evolución de la norma Manhattan (norma L_1) entre dos iteraciones sucesivas. Comparar los resultados obtenidos para al menos dos instancias de tamaño mediano-grande, variando el valor de c.
- 2. Estudiar el tiempo de cómputo requerido por PageRank.
- 3. Para cada algoritmo, proponer ejemplos de tamaño pequeño que ilustren el comportamiento esperado (puede ser utilizando las herramientas provistas por la cátedra o bien generadas por el grupo).

Puntos opcionales:

- 1. Demostrar que los pasos del Algoritmo 1 propuesto en Kamvar et al. [8] son correctos y computan P_2x .
- 2. Establecer una relación con la proporción entre $\lambda_1 = 1$ y $|\lambda_2|$ para la convergencia de PageRank.

El segundo contexto de aplicación no presenta mayores desafíos desde la perspectiva computacional, ya que en el peor de los casos una liga no suele tener mas que unas pocas decenas de equipos. Más aún, es de esperar que en general la matriz que se obtiene no sea esparsa, ya que probablemente un equipo juegue contra un número significativo de contrincantes. Sin embargo, la popularidad y sensibilidad del problema planteado requieren de un estudio detallado y pormenorizado de la calidad de los resultados obtenidos. El objetivo en este segundo caso de estudio es puramente experimental.

En función de la implementación, aún cuando no represente la mejor opción, es posible reutilizar y adaptar el desarrollo realizado para páginas web. También es posible realizar una nueva implementación desde cero, simplificando la operatoria y las estructuras, en C++, MATLAB o PYTHON.

La experimentación debe ser realizada con cuidado, analizando (y, eventualmente, modificando) el modelo de GeM:

- 1. Considerar al menos un conjunto de datos reales, con los resultados de cada fecha para alguna liga de alguún deporte.
- 2. Notar que el método GeM asume que no se producen empates entre los equipos (o que si se producen, son poco frecuentes). En caso de considerar un deporte donde el empate se da con cierta frecuencia no despreciable (por ejemplo, fútbol), es fundamental aclarar como se refleja esto en el modelo y analizar su eventual impacto.
- 3. Realizar experimentos variando el parámetro c, indicando como impacta en los resultados. Analizar la evolución del ranking de los equipos a través del tiempo, evaluando también la evolución de los rankings e identificar características/hechos particulares que puedan ser determinantes para el modelo, si es que existe alguno.
- 4. Comparar los resultados obtenidos con los reales de la liga utilizando el sistema estándar para la misma.

Puntos opcionales:

1. Proponer (al menos) dos formas alternativas de modelar el empate entre equipos en GeM.

Parámetros y formato de archivos

El programa deberá tomar por línea de comandos dos parámetros. El primero de ellos contendrá la información del experimento, incluyendo el método a ejecutar (alg, 0 para PageRank, 1 para el método alternativo), la probabilidad de teletransportación c, el tipo de instancia (0 páginas web, 1 deportes), el path al archivo/directorio conteniendo la definición de la red (que debe ser relativa al ejecutable, o el path absoluto al archivo) y el valor de tolerancia utilizado en el criterio de parada del método de la potencia.

El siguiente ejemplo muestra un caso donde se pide ejecutar PageRank, con una probabilidad de teletransportación de 0.85, sobre la red descripta en test1.txt (que se encuentra en el directorio tests/), correspondiente a una instancia de ranking aplicado a deportes y con una tolerancia de corte de 0,0001.

0 0.85 1 tests/red-1.txt 0.0001

Para la definición del grafo que representa la red, se consideran dos bases de datos de instancias con sus correspondientes formatos. La primera de ellas es el conjunto provisto en SNAP [2] (el tipo de instancia es 0), con redes de tamaño grande obtenidos a partir de datos reales. Además, se consideran las instancias que se forman a partir de resultados de partidos entre equipos, para algún deporte elegido por el grupo.

En el caso de la base de SNAP, los archivos contiene primero cuatro líneas con información sobre la instancia (entre ellas, n y la cantidad total de links, m) y luego m líneas con los pares i, j indicando que i apunta a j. A modo de ejemplo, a continuación se muestra el archivo de entrada correspondiente a la red propuesta en Bryan y Leise [4, Figura 1]:

```
# Directed graph (each unordered pair of nodes is saved once):
# Example shown in Bryan and Leise.
# Nodes: 4 Edges: 8
#
 FromNodeId
                 ToNodeId
1
    2
1
    3
    4
1
2
    3
2
    4
3
    1
4
    1
4
    3
```

Para el caso de rankings en ligas deportivas, el archivo contiene primero una línea con información sobre la cantidad de equipos (n), y la cantidad de partidos totales a considerar (k). Luego, siguen k líneas donde cada una de ellas representa un partido y contiene la siguiente información: número de fecha (es un dato opcional al problema, pero que puede ayudar a la hora de experimentar), equipo i, goles equipo i, equipo j, goles equipo j. A continuación se muestra el archivo de entrada con la información del ejemplo utilizado en Govan et al. [7]:

```
6 10
1 1 16 4 13
1 2 38 5 17
1 2 28 6 23
1 3 34 1 21
1 3 23 4 10
1 4 31 1 6
1 5 33 6 25
1 5 38 4 23
1 6 27 2 6
1 6 20 5 12
```

Es importante destacar que, en este último caso, los equipos son identificados mediante un número. Opcionalmente podrá considerarse un archivo que contenga, para cada equipo, cuál es el código con el que se lo identifica.

Una vez ejecutado el algoritmo, el programa deberá generar un archivo de salida que contenga una línea por cada página (n líneas en total), acompañada del puntaje obtenido por el algoritmo PageRank/IN-DEG/método alternativo.

Para generar instancias de páginas web, es posible utilizar el código Python provisto por la cátedra. La utilización del mismo se encuentra descripta en el archivo README. Es importante mencionar que, para que el mismo funcione, es necesario tener acceso a Internet. En caso de encontrar un bug en el mismo, por favor contactar a los docentes de la materia a través de la lista. Desde ya, el código puede ser modificado por los respectivos grupos agregando todas aquellas funcionalidades que consideren necesarias.

Para instancias correspondientes a resultados entre equipos, la cátedra provee un conjunto de archivos con los resultados del Torneo de Primera División del Fútbol Argentino hasta la Fecha 23. Es importante aclarar que los dos partidos suspendidos, River - Defensa y Justicia y Racing - Godoy Cruz han sido arbitrariamente completados con un resultado inventado, para simplificar la instancia. En función de datos reales, una alternativa es considerar el repositorio DataHub [1], que contiene información estadística y resultados para distintas ligas y deportes de todo el mundo.

Fechas de entrega

- Formato Electrónico: Martes 6 de Octubre de 2015, hasta las 23:59 hs, enviando el trabajo (informe + código) a la dirección metnum.lab@gmail.com. El subject del email debe comenzar con el texto [TP2] seguido de la lista de apellidos de los integrantes del grupo.
- Formato físico: Miércoles 7 de Octubre de 2015, a las 18 hs. en la clase práctica.

Importante: El horario es estricto. Los correos recibidos después de la hora indicada serán considerados re-entrega.

6. Apéndice B: Código

6.1. system.cpp

```
1 #include <iostream>
2 #include <math.h>
3 #include <fstream>
4 #include <sstream>
5 #include <stdio.h>
6 #include <string.h>
7 #include <time.h>
8 #include <new>
9 #include <regex>
10 #include <iterator>
11
   #include "sparseMatrix.h"
12
13
   using namespace std;
14
15
   struct dataNode {
        //dataNode(int n) : node(n), edgesCount(0) {} // no lo pude compilar con listas
16
           de inicializacion...
17
18
        int node;
        int edgesCount;
19
20
   };
21
22
   struct matchesStats {
23
        // \text{matchesStats(int t)}: team(t), matchesWin(0), matchesDefeat(0), pointsScored(0)
            , pointsReceived(0)  {}
24
25
        int team;
26
        int matchesWin;
27
        int matchesDefeat;
28
        int pointsScored;
29
        int pointsReceived;
30
   };
31
32
   //webs / sports
   Matrix<double> pageRank(Matrix<double>& M, double c, double d, vector<int>&
33
       nodesCount);
   Matrix < double > enhancement Page Rank (Matrix < double > & M, double c, double d, vector < int
34
       >& nodesCount);
35
36
   void in_deg(vector<dataNode>& nodesCount);
37
38
39
40
   void basic_sort(vector<matchesStats>& stats);
41
   //out data
42
43
   void saveResultPageRank(FILE * pFile, Matrix<double>& data);
   \begin{tabular}{ll} void & saveResultInDeg(FILE * pFile , vector < dataNode > \& data); \\ \end{tabular}
44
45
   void saveResultBasicSort(FILE * pFile, vector<matchesStats>& data);
46
47
   //utils
   double uniform_rand(double a, double b);
48
49
50
   int main(int argc, char** argv) {
51
```

```
52
         if (argc < 3) {
53
             printf("Usage %: parametros.in salida.out \n", argv[0]);
54
             return 0;
55
         }
56
57
         ifstream inputFile(argv[1]);
58
59
         if (!inputFile.good()) {
60
             printf("can't open input file.\n");
61
             return 0;
62
         }
63
64
        FILE * outputFile = NULL;
65
66
         outputFile = fopen(argv[2], "w");
67
         if (outputFile == NULL) {
68
             printf("can't open output file.\n");
69
             return 0;
70
         }
71
72
         int alg = 0;
73
         double c = 0;
74
         int inst = 0;
75
         double e = 0;
76
         char testFileName[100];
77
78
         string line;
79
         getline(inputFile, line);
80
81
         sscanf(line.c_str(),"%1 %1 %6 %1 % %1f", &alg, &c, &inst, testFileName, &e);
82
83
         ifstream testFile(testFileName);
         getline(testFile, line);
84
85
86
         if (inst == 0)
87
             int nodes = 0;
88
             int edges = 0;
89
             sscanf(line.c_str(),"% %", &nodes, &edges);
90
91
             cout << "nodes: " << nodes << " edges: " << edges << endl;</pre>
92
93
             if (alg = 0){
94
                Matrix < double > M(nodes, nodes);
95
96
                vector<int> nodesCount(nodes);
97
98
                for (int i = 0; i < nodes; i++) {
99
                      nodesCount[i] = 0;
100
101
102
                int i = 0;
103
                while (i < edges) {
104
                      int node\_from = 0;
105
                     int node_to = 0;
106
107
                      getline(testFile, line);
108
                      sscanf(line.c_str(),"%1 %1", &node_from, &node_to);
                      //cout << "node_from: " << node_from << " node_to: " << node_to <<
109
                         endl;
```

```
110
111
                       nodesCount[node\_from -1] += 1;
112
                       M(\text{node\_to}-1, \text{node\_from}-1) = 1;
113
                       i++;
                 }
114
115
                 Matrix < double > res = pageRank(M, c, e, nodesCount);
116
                    Matrix<double> res = enhancementPageRank(M, c, e, nodesCount);
117
118
119
                  cout << "page rank result: \n" << endl;</pre>
120
                  res.printMatrix();
121
                  saveResultPageRank(outputFile, res);
122
123
              } else {
124
                  // group algorithm webs
125
                  vector<dataNode> nodesCount(nodes);
126
127
                  for (int i = 0; i < nodes; i++){
128
                       dataNode nod;
129
                       nod.node = i+1;
130
                       nod.edgesCount = 0;
131
                       nodesCount[i] = nod;
                 }
132
133
                  int i = 0;
134
135
                  while (i < edges) {
136
                       int node\_from = 0;
137
                       int node_to = 0;
138
139
                       getline(testFile, line);
                       sscanf(line.c_str(), "% %", &node_from, &node_to);
140
                       //cout << "node_from: " << node_from << " node_to: " << node_to <<
141
                           endl;
142
143
                       dataNode nod = nodesCount[node\_from -1];
144
                       nod.edgesCount += 1;
145
146
                       nodesCount[node\_from -1] = nod;
147
148
149
                       i++;
150
151
152
                 in_deg(nodesCount);
153
                 saveResultInDeg(outputFile, nodesCount);
154
155
156
         } else {
157
              int teams = 0;
158
              int matches = 0;
159
              \operatorname{sscanf}(\operatorname{line.c_str}(), "% %", \& \operatorname{teams}, \& \operatorname{matches});
160
              cout << "teams: " << teams << " matches: " << matches << endl;</pre>
161
162
163
              int day = 0;
164
              int local = 0;
              int visitor = 0;
165
              int local_score = 0;
166
167
              int visitor\_score = 0;
```

```
168
169
             if (alg = 0){
170
                 // page rank sports
171
                Matrix < double > M(teams, teams);
172
                vector<int> totalAbs(teams);
173
174
                for (int i = 0; i < teams; i++) {
175
176
                      totalAbs[i] = 0;
177
178
179
                int i = 0;
180
                while (i < matches) {
181
                      getline(testFile, line);
182
                      sscanf(line.c_str(),"%1 %1 %1 %1", &day, &local, &local_score, &
                         visitor, &visitor_score);
183
184
                      int abs_score = abs(local_score-visitor_score);
                      if (local_score > visitor_score) {
185
                          M(local -1, visitor -1) += abs\_score;
186
                          totalAbs[visitor -1] += abs\_score;
187
188
                      }else if(visitor_score > local_score) {
                          M(visitor -1, local -1) += abs\_score;
189
190
                          totalAbs[local-1] += abs\_score;
                      }
191
192
193
                      i++;
194
195
196
                Matrix < double > res = pageRank(M, c, e, totalAbs);
197
                cout << "gem result: \n" << endl;
198
199
                res.printMatrix();
200
201
                saveResultPageRank(outputFile, res);
202
             } else {
                 // group algorithm sports
203
204
                 vector<matchesStats> stats(teams);
205
206
                 for (int i = 0; i < teams; i++)
207
                      matchesStats teamStats;
208
                      teamStats.team = i+1;
209
                      teamStats.matchesWin = 0;
210
                      teamStats.matchesDefeat = 0;
211
                      teamStats.pointsScored = 0;
212
                      teamStats.pointsReceived = 0;
213
                      stats[i] = teamStats;
214
                 }
215
216
                 int i = 0;
217
                 while (i < matches) {
218
                      getline(testFile, line);
219
                      sscanf(line.c_str(),"%1 %1 %1 %1", &day, &local, &local_score, &
                         visitor , &visitor_score);
220
221
                      matchesStats localStats = stats[local - 1];
222
                      matchesStats \ visitorStats = stats[visitor - 1];
223
224
                      if (local_score > visitor_score) {
```

```
225
                          localStats.matchesWin += 1;
226
                          visitorStats.matchesDefeat += 1;
227
                      }else if(visitor_score > local_score) {
228
                          localStats.matchesDefeat += 1;
229
                          visitorStats.matchesWin += 1;
230
                      }
231
232
                      localStats.pointsScored += local_score;
233
                      localStats.pointsReceived += visitor_score;
234
                      visitorStats.pointsScored += visitor_score;
235
                      visitorStats.pointsReceived += local_score;
236
237
                      stats[local-1] = localStats;
238
                      stats[visitor-1] = visitorStats;
239
240
                      i++;
241
                  }
242
243
                  basic_sort(stats);
244
245
                  saveResultBasicSort(outputFile, stats);
246
             }
         }
247
248
249
         testFile.close();
250
251
         inputFile.close();
252
         if (outputFile != NULL) fclose(outputFile);
253
254
255
         //M. printMatrix();
256
257
         //Depending on input data, create a matrix with the input file and call rank with
             matrix a values
258
259
         return 0;
260
    }
261
262
    Matrix<double> pageRank(Matrix<double>& M, double c, double d, vector<int>&
        nodesCount) {
263
         \operatorname{srand}(45);
264
265
         int n = M. rows();
266
         double dbl_n = M.rows();
267
268
         int j = 0;
269
         while (j < n)
270
             int i = 0;
             while (i < n)
271
                  if(M(i, j) != 0){
272
                      M(i, j) = M(i, j) / (double) nodes Count[j];
273
274
                 else if(nodesCount[j] = 0){
275
                     M(i, j) = 1/dbl_n; // dangling node / undefeated team
276
                  }
277
                  i++;
278
279
             j++;
280
281
```

```
282
         Matrix < double > v(n, 1/dbl_n);
283
         Matrix < double > E(n, n, (1 - c)*1/dbl_n); // PRE: rows = columns
284
285
         //Salvo que sea c = 1 no tiene sentido usar Sparse Matrix
286
287
         Matrix < double > A = M*c + E;
288
289
         Matrix < double > x(n, 1, 1/dbl_n);
290
         // \text{for (int } i = 0; i < M. rows(); i++) {
291
292
                x(i) = uniform\_rand(0, 1);
293
294
295
         Matrix < double > last_x(n);
296
         double delta = 0;
297
298
         do {
299
300
              last_x = x;
              x = A*x;
301
302
              delta = x.L1(last_x);
         \} while (delta > d);
303
304
305
         printf("delta is %\r\n", delta);
306
307
         return x;
308
    }
309
310
    Matrix < double > enhancement Page Rank (Matrix < double > & M, double c, double d, vector < int
        >& nodesCount) {
311
         \operatorname{srand}(45);
312
313
         int n = M. rows();
314
         double dbl_n = M.rows();
315
316
         int j = 0;
         while (j < n)
317
318
              int i = 0;
319
              while (i < n)
320
                   if(M(i, j) != 0)
                       M(i, j) = M(i, j) / (double) nodes Count[j];
321
322
                   }
323
                   i++;
324
325
              j++;
326
         }
327
328
         SparseMatrix < double > A(M);
329
330
         SparseMatrix < double > x(n, 1/dbl_n);
331
         // \text{for (int } i = 0; i < M. rows(); i++) {
332
333
                x(i) = uniform\_rand(0, 1);
334
         //}
335
336
         SparseMatrix < double > last_x(n);
337
338
         SparseMatrix < double > v(n, 1/dbl_n);
339
```

```
340
         double delta = 0;
341
342
         do {
             last_x = x;
343
344
345
             x = A*x;
346
             x = x*c;
347
348
             double w = last_x.norm1() - x.norm1();
349
350
             x = x + v*w;
351
             delta = x.L1(last_x);
352
353
         while (delta > d);
354
         printf("delta is %\r\n", delta); //Deberia devolverse.
355
356
357
         return x.descompress();
358
    }
359
    void in_deg(vector<dataNode>& nodesCount) {
360
         sort (nodesCount.begin (), nodesCount.end (), [] (dataNode a, dataNode b) {
361
362
             return b.edgesCount < a.edgesCount;</pre>
363
         });
364
         cout << "IN-DEG result \n" << endl;</pre>
365
         for (dataNode a : nodesCount) {
366
             cout << "node: " << a.node << " points: " << a.edgesCount << "\n";</pre>
367
368
         }
369
    }
370
371
    void basic_sort(vector<matchesStats>& stats) {
372
         sort(stats.begin(), stats.end(), [](matchesStats a, matchesStats b) {
373
              if (a.matchesWin - a.matchesDefeat != b.matchesWin - b.matchesDefeat) {
374
                  return b.matchesWin - b.matchesDefeat < a.matchesWin - a.matchesDefeat;
375
376
                  return b. points Scored - b. points Received < a. points Scored - a.
                      pointsReceived;
377
             }
378
         });
379
         cout << "basic sort result \n" << endl;</pre>
380
381
         for (matchesStats a : stats) {
             \texttt{cout} << \texttt{"team} \colon \texttt{"} << \texttt{a.team}
382
             << " matches win: " << a.matchesWin << " matches defeat: " << a.matchesDefeat</pre>
383
             << " points scored: " << a.pointsScored << " points received: " << a.</pre>
384
                 pointsReceived <<"\n";
         }
385
386
    }
387
    void saveResultPageRank(FILE * pFile , Matrix<double>& data) {
388
         int n = data.rows();
389
390
         int i = 0;
391
392
         while (i < n)
393
              fprintf(pFile, "% \r\n", data(i));
394
             i++;
395
         }
396
    }
```

```
397
                      void saveResultInDeg(FILE * pFile, vector<dataNode>& data) {
398
399
                                             for (dataNode a : data){
                                                                   fprintf(pFile, "% %\r\n", a.node, a.edgesCount);
400
                                             }
401
402
                      }
403
                      \begin{tabular}{ll} \bf void & saveResultBasicSort(FILE * pFile , vector < matchesStats > \& data) & \{ \end{tabular} \label{table} \begin{tabular}{ll} \bf void & saveResultBasicSort(FILE * pFile , vector < matchesStats > \& data) & \{ \end{tabular} \end{tabular} \begin{tabular}{ll} \bf void & saveResultBasicSort(FILE * pFile , vector < matchesStats > \& data) & \{ \end{tabular} \end{tabular} \begin{tabular}{ll} \bf void & saveResultBasicSort(FILE * pFile , vector < matchesStats > \& data) & \{ \end{tabular} \begin{tabular}{ll} \bf void & saveResultBasicSort(FILE * pFile , vector < matchesStats > \& data) & \{ \end{tabular} \begin{tabular}{ll} \bf void & saveResultBasicSort(FILE * pFile , vector < matchesStats > \& data) & \{ \end{tabular} \begin{tabular}{ll} \bf void & saveResultBasicSort(FILE * pFile , vector < matchesStats > \& data) & \{ \end{tabular} \begin{tabular}{ll} \bf void & saveResultBasicSort(FILE * pFile , vector < matchesStats > \& data) & \{ \end{tabular} \begin{tabular}{ll} \bf void & saveResultBasicSort(FILE * pFile , vector < matchesStats > \& data) & \{ \end{tabular} \begin{tabular}{ll} \bf void & saveResultBasicSort(FILE * pFile , vector < matchesStats > \& data) & \{ \end{tabular} \begin{tabular}{ll} \bf void & saveResultBasicSort(FILE * pFile , vector < matchesStats > \& data) & \{ \end{tabular} \begin{tabular}{ll} \bf void & saveResultBasicSort(FILE * pFile , vector < matchesStats > \& data) & \{ \end{tabular} \begin{tabular}{ll} \bf void & saveResultBasicSort(FILE * pFile , vector < matchesStats > \& data) & \{ \end{tabular} \begin{tabular}{ll} \bf void & saveResultBasicSort(FILE * pFile , vector < matchesStats > \& data) & \{ \end{tabular} \begin{tabular}{ll} \bf void & saveResultBasicSort(FILE * pFile , vector < matchesStats > \& data) & \{ \end{tabular} \begin{tabular}{ll} \bf void & saveResultBasicSort(FILE * pFile , vector < matchesStats > \& data) & \{ \end{tabular} \begin{tabular}{ll} \bf void & saveResultBasicSort(FILE * pFile , vector < matchesStats > \& data) & \{ \end{tabular} \begin{tabular}{ll} \bf void & saveResultBasicSort(FILE * pFile , 
404
                                            405
406
                                                                                    .pointsScored , a.pointsReceived);
407
                                            }
                       }
408
409
410
                      double uniform_rand(double a, double b) {
                                            return ((b-a)*((double)rand()/RANDMAX))+a;
411
412
```

6.2. matrix.h

```
/*
1
2
    * File:
               matrix.h
3
    * Author: Federico
4
5
    * Created on August 16, 2015, 9:54 PM
6
7
8
   #ifndef MATRIX.H
9
   #define MATRIX_H
10
   #include <algorithm>
11
   #include <math.h>
12
13 #include <vector>
14 #include <stdio.h>
15
16
   using namespace std;
17
18
   // La matriz respeta la notacion de la catedra, es decir, el primer subindice
19
   // es la fila y el segundo es la columna
20
21
   template < class T>
   class Matrix {
22
23
        public:
24
            Matrix();
25
            Matrix(int rows); // Columnas impllicitas (col = 1)
26
            Matrix(int rows, int col);
27
            Matrix (int rows, int col, const T& init);
28
            Matrix (const Matrix < T>& other);
29
            ~ Matrix ();
30
31
            Matrix<T>& operator=(const Matrix<T>& other);
            Matrix<T> operator *(const Matrix<T>& other);
32
33
            Matrix<T>& operator*=(const Matrix<T>& other);
34
            Matrix<T> operator+(const Matrix<T>& other);
35
            Matrix<T>& operator+=(const Matrix<T>& other);
36
            Matrix<T> operator -(const Matrix<T>& other);
37
            Matrix<T>& operator -= (const Matrix<T>& other);
38
            Matrix<T> operator*(const T& scalar);
39
40
            Matrix<T> operator/(const T& scalar);
41
42
            T& operator()(int a, int b);
43
            const T& operator()(const int a, const int b) const;
44
            T& operator()(int a);
45
            const T& operator()(const int a) const;
46
            //PRE are vectors
47
            double L1(const Matrix<T>& other);
48
49
            double norm1();
50
51
            int rows();
52
            int columns();
53
54
            int rows() const;
55
            int columns() const;
56
57
            void printMatrix();
```

```
58
59
         private:
60
             vector<vector<T>> _values;
61
             int _rows;
62
             int _columns;
63
64
    };
65
66
    template < class T>
67
    Matrix<T>::Matrix()
         : _{\text{values}}(1), _{\text{rows}}(1), _{\text{columns}}(1)
68
69
    {
70
         _values [0]. resize (1);
71
    }
72
    template < class T>
73
74
    Matrix<T>::Matrix(int rows)
75
         : _values(rows), _rows(rows), _columns(1)
76
77
         for (int i = 0; i < rows; i++) {
78
              _values[i].resize(1);
79
         }
80
    }
81
82
    template < class T>
83
    Matrix<T>::Matrix(int rows, int col)
84
         : _values(rows), _rows(rows), _columns(col)
85
    {
86
         for (int i = 0; i < rows; i++) {
87
             _values[i].resize(col);
         }
88
89
    }
90
91
    template < class T>
    Matrix<T>::Matrix(int rows, int col, const T& init)
92
93
         : _values(rows), _rows(rows), _columns(col)
94
    {
95
         for (int i = 0; i < rows; i++) {
96
              _values[i].resize(col, init);
97
         }
98
    }
99
100
    template < class T>
101
    Matrix<T>:: Matrix (const Matrix<T>& other)
102
         : _values(other._values), _rows(other._rows), _columns(other._columns)
103
    {}
104
105
    template < class T>
106
    Matrix<T>::~Matrix() {}
107
108
    template < class T>
    Matrix<T>& Matrix<T>::operator=(const Matrix<T>& other) {
109
110
       if (\& other = this)
111
         return *this;
112
113
       int new_rows = other._rows;
114
       int new_columns = other._columns;
115
116
       _{rows} = new_{rows};
```

```
117
       _columns = new_columns;
118
119
       _values.resize(new_rows);
120
       for (int i = 0; i < new\_columns; i++) {
121
           _values[i].resize(new_columns);
122
123
124
       for (int i = 0; i < \text{new\_rows}; i++) {
125
         for (int j = 0; j < \text{new\_columns}; j++) {
126
           _{\text{values}}[i][j] = other(i, j);
127
       }
128
129
130
      return *this;
131
    }
132
133
    template < class T>
134
    Matrix<T> Matrix<T>::operator*(const Matrix<T>& other) {
         // ASUME QUE LAS DIMENSIONES DAN
135
136
         Matrix<T> result (_rows, other._columns);
137
138
         int innerDim = _columns; // Tambien podria ser other._rows
139
140
         for (int i = 0; i < result.rows; i++) {
             for(int j = 0; j < result.\_columns; j++) {
141
142
                  result(i,j) = 0;
                  for (int k = 0; k < innerDim; k++) {
143
144
                      result(i,j) += values[i][k] * other(k,j);
145
                  }
146
             }
147
         }
148
149
         return result;
150
    }
151
152
    template < class T>
    Matrix<T>& Matrix<T>::operator*=(const Matrix<T>& other) {
153
         Matrix < T > result = (*this) * other;
154
155
         (*this) = result;
156
         return (*this);
157
    }
158
    template < class T>
159
    Matrix<T> Matrix<T>::operator+(const Matrix<T>& other) {
160
161
         // ASUME QUE LAS DIMENSIONES DAN
162
         Matrix<T> result (_rows, other._columns);
163
164
         for (int i = 0; i < result._rows; i++) {
165
             for (int j = 0; j < result.\_columns; j++) {
166
                  result(i,j) = \_values[i][j] + other(i,j);
167
168
169
170
         return result;
171
    }
172
173
    template < class T>
    Matrix<T>& Matrix<T>::operator+=(const Matrix<T>& other) {
174
175
         Matrix < T > result = (*this) + other;
```

```
176
         (*this) = result;
177
         return (*this);
178
    }
179
180
    template < class T>
    Matrix<T> Matrix<T>::operator -(const Matrix<T>& other) {
181
         // ASUME QUE LAS DIMENSIONES DAN
182
183
         Matrix<T> result (_rows, other._columns);
184
         for (int i = 0; i < result.rows; i++) {
185
             for (int j = 0; j < result.\_columns; j++) {
186
                  result(i,j) = \_values[i][j] - other(i,j);
187
188
189
         }
190
191
         return result;
192
    }
193
194
    template < class T>
    Matrix<T>& Matrix<T>::operator -= (const Matrix<T>& other) {
195
196
         Matrix < T > result = (*this) - other;
197
         (*this) = result;
198
         return (*this);
199
    }
200
201
    template < class T>
    Matrix<T> Matrix<T>::operator*(const T& scalar) {
202
203
         Matrix<T> result (_rows , _columns);
204
205
         for (int i = 0; i < result.rows; i++) {
206
             for (int j = 0; j < result.\_columns; j++) {
207
                  result(i,j) = _values[i][j] * scalar;
208
             }
209
         }
210
211
         return result;
212
    }
213
214
    template < class T>
215
    Matrix<T> Matrix<T>::operator/(const T& scalar) {
216
         Matrix<T> result (_rows , _columns);
217
218
         for (int i = 0; i < result.rows; i++) {
219
             for (int j = 0; j < result.\_columns; j++) {
220
                  result(i,j) = _values[i][j] / scalar;
             }
221
222
         }
223
224
         return result;
225
    }
226
227
    template < class T>
    T& Matrix<T>::operator ()(int a, int b) {
228
229
         return _values[a][b];
230
    }
231
232
    template < class T>
    const T& Matrix<T>::operator ()(const int a, const int b) const {
233
234
         return _values[a][b];
```

```
235
    }
236
237
    template < class T>
    T& Matrix<T>::operator ()(int a) {
238
239
         return _values[a][0];
240
    }
241
242
    template < class T>
243
    const T& Matrix<T>::operator ()(const int a) const {
244
         return _values[a][0];
245
    }
246
247
    template < class T>
248
    double Matrix<T>::L1(const Matrix<T>& other) {
         Matrix<T> vectorSubs = *this - other;
249
250
251
         double res = 0;
252
         for (int i = 0; i < rows(); i++){
253
             res = res + abs(vectorSubs(i));
254
255
256
         return res;
257
    }
258
259
    template < class T>
260
    double Matrix<T>::norm1() {
261
         double res = 0;
262
         for (int i = 0; i < rows(); i++){
263
             res = res + abs(values[i][0]);
264
265
266
         return res;
267
    }
268
269
270
    template < class T>
271
    int Matrix<T>::rows() {
272
         return _rows;
273
    }
274
275
    template < class T>
276
    int Matrix<T>::columns() {
277
         return _columns;
278
    }
279
    template < class T>
280
281
    int Matrix<T>::rows() const{
282
         return _rows;
283
    }
284
285
    template < class T>
    int Matrix<T>::columns() const{
286
287
         return _columns;
288
    }
289
290
    template < class T>
291
    void Matrix<T>::printMatrix() {
292
         for (int i = 0; i < rows; i++) {;
293
              for (int j = 0; j < columns; j++) {
```

6.3. sparseMatrix.h

```
/*
1
2
    * File:
              SparseMatrix.h
3
    * Author: Rodrigo Kapobel
4
5
    * Created on August 21, 2015, 23:05 PM
6
7
8
  #ifndef SparseMatrix_H
9
   #define SparseMatrix_H
10
11 #include <algorithm>
12 #include <math.h>
13 #include <vector>
14 #include <stdio.h>
   #include <cmath>
15
   #include "matrix.h"
16
17
18
  using namespace std;
19
20
   //CSR implementation for sparse matrix. For more information check the next link:
       https://en.wikipedia.org/wiki/Sparse_matrix#Compressed_row_Storage_.28CRS_or_CSR
21
22
   template < class T>
23
   class SparseMatrix {
24
   public:
25
       SparseMatrix();
       SparseMatrix(int rows); // column vector with 0's
26
27
       SparseMatrix(int rows, T value);
       SparseMatrix(vector<T>& values, vector<int>& iValues, vector<int>& jValues, int
28
           columns); // PRE: jValues::size == values::size & values of iValues[0..iValues
           :: size -2] are indices of values & iValue[iValues::size -1] = values::size
29
       SparseMatrix(const SparseMatrix < T>& other); // compress matrix
30
       SparseMatrix(const Matrix<T>& other);
31
       ~SparseMatrix();
32
33
       SparseMatrix<T>& operator=(const SparseMatrix<T>& other);
34
       SparseMatrix<T> operator*(const SparseMatrix<T>& other); // performs a matrix-
           vector multiplication
35
       SparseMatrix<T>& operator*=(const SparseMatrix<T>& other); // performs a matrix-
           vector multiplication
36
       SparseMatrix<T> operator+(const SparseMatrix<T>& other); // performs a vector-
37
       SparseMatrix<T>& operator+=(const SparseMatrix<T>& other); // performs a vector-
           vector sum
38
       SparseMatrix<T> operator - (const SparseMatrix<T>& other); // performs a vector-
           vector subs
       SparseMatrix <T>& operator -= (const SparseMatrix <T>& other); // performs a vector-
39
           vector subs
40
41
       SparseMatrix<T> operator*(const T& scalar);
42
       SparseMatrix<T> operator/(const T& scalar);
43
44
       T& operator()(int a, int b);
45
       const T& operator()(const int a, const int b) const;
46
       T& operator()(int a);
47
       const T& operator()(const int a) const;
```

```
48
49
         Matrix<T> descompress();
50
         //PRE are vectors
         double L1(const SparseMatrix<T>& other);
51
52
         double norm1();
53
54
         int rows();
55
         int columns();
56
         int rows() const;
57
         int columns() const;
         void printSparseMatrix();
58
59
60
    private:
61
         vector<T> _values;
62
         vector < int > _iValues;
         vector < int > _j Values;
63
64
65
         int _columns;
66
    };
67
    template < class T>
68
69
    SparseMatrix<T>::SparseMatrix()
70
    : _{\text{values}}(1), _{\text{i}}\text{Values}(1), _{\text{j}}\text{Values}(1), _{\text{columns}}(1)
    {}
71
72
73
    template < class T>
74
    SparseMatrix <T>::SparseMatrix (int rows)
75
       _values(rows), _iValues(1), _jValues(rows), _columns(1)
76
    {
77
         for (int i = 0; i \le rows; i++){
78
              _{i}Values.resize(i+1, i);
79
         }
80
    }
81
    template < class T>
82
83
    SparseMatrix <T >:: SparseMatrix (int rows, T value)
84
    : _values(rows), _iValues(1), _jValues(rows), _columns(1)
85
    {
86
         for (int i = 0; i \le rows; i++){
87
              _iValues.resize(i+1, i);
88
             if(i < rows)
                  _values[i] = value;
89
90
             }
         }
91
92
    }
93
94
    template < class T>
    SparseMatrix<T>::SparseMatrix(vector<T>& values, vector<int>& iValues, vector<int>&
        jValues, int columns)
    : _values(values), _iValues(iValues), _jValues(jValues), _columns(columns)
96
97
    {}
98
99
    template < class T>
    SparseMatrix<T>::SparseMatrix(const SparseMatrix<T>& other)
100
101
    : _values(other._jValues), _iValues(other._iValues), _jValues(other._jValues),
        _columns(other._columns)
102
    {}
103
104
    template < class T>
```

```
SparseMatrix<T>::SparseMatrix(const Matrix<T>& other)
105
      _values(0), _iValues(0), _jValues(0), _columns(other.columns())
106
107
108
         int new_rows = other.rows();
109
         int new_columns = other.columns();
110
111
         for (int i = 0; i < new\_rows; i++) {
             _iValues.resize(_iValues.size()+1, _values.size());
112
             for (int j = 0; j < new\_columns; j++) {
113
114
                  if (other(i, j) != 0) {
                      _{\text{values.resize}}(_{\text{values.size}}()+1, \text{ other}(i, j));
115
                      _{j}Values.resize(_{j}Values.size()+1, _{j});
116
117
                  }
118
             }
119
120
         _iValues.resize(_iValues.size()+1, _values.size());
121
    }
122
123
    template < class T>
    SparseMatrix<T>::~SparseMatrix() {}
124
125
126
    template < class T>
    SparseMatrix<T>& SparseMatrix<T>::operator=(const SparseMatrix<T>& other) {
127
128
         if (\& other == this)
129
             return *this;
130
131
         _values = other._values;
132
         _iValues = other._iValues;
         _jValues = other._jValues;
133
134
         _columns = other.columns();
135
136
         return *this;
137
    }
138
    template < class T>
139
140
    SparseMatrix<T> SparseMatrix<T>::operator*(const SparseMatrix<T>& other) {
141
         // ASUME QUE LAS DIMENSIONES DAN
142
         SparseMatrix<T> result (rows());
143
144
         for (int i = 0; i < rows(); i++) {
145
             for (int j = iValues[i]; j < iValues[i+1]; j++) {
                  result(i) += _values[j]*other(_jValues[j]);
146
147
             }
         }
148
149
150
         return result;
151
    }
152
153
    template < class T>
154
    SparseMatrix<T>& SparseMatrix<T>::operator*=(const SparseMatrix<T>& other) {
155
         SparseMatrix < T > result = (*this) * other;
156
         (*this) = result;
157
         return (*this);
158
    }
159
160
    template < class T>
    SparseMatrix<T> SparseMatrix<T>::operator+(const SparseMatrix<T>& other) {
161
162
         SparseMatrix<T> result (rows());
163
```

```
164
         for (int i = 0; i < rows(); i++) {
165
             result(i) = _values[i] + other(i);
166
167
168
         return result;
169
170
171
    template < class T>
172
    SparseMatrix<T>& SparseMatrix<T>::operator+=(const SparseMatrix<T>& other) {
         SparseMatrix < T > result = (*this) + other;
173
174
         (*this) = result;
         return (*this);
175
176
    }
177
178
    template < class T>
    SparseMatrix<T> SparseMatrix<T>::operator -(const SparseMatrix<T>& other) {
179
         SparseMatrix <T> result (rows());
180
181
182
         for (int i = 0; i < rows(); i++) {
             result(i) = _values[i] - other(i);
183
184
185
186
         return result;
187
    }
188
189
    template < class T>
    SparseMatrix<T>& SparseMatrix<T>::operator -= (const SparseMatrix<T>& other) {
190
191
         SparseMatrix < T > result = (*this) - other;
         (*this) = result;
192
193
         return (*this);
194
    }
195
196
    template < class T>
    SparseMatrix<T> SparseMatrix<T>::operator*(const T& scalar) {
197
198
199
         vector <T> resValues (_values.size());
200
201
         for (int i = 0; i < values.size(); i++) {
202
            resValues[i] = _values[i] * scalar;
203
204
         SparseMatrix <T> result (resValues, _iValues, _jValues, _columns);
205
206
207
         return result;
208
    }
209
210
    template < class T>
    SparseMatrix<T> SparseMatrix<T>::operator/(const T& scalar) {
211
212
         vector <T> resValues (_values.size());
213
         for (int i = 0; i < values.size(); i++) {
214
215
            resValues[i] = _values[i] / scalar;
216
         }
217
         SparseMatrix <T> result (resValues, _iValues, _jValues, _columns);
218
219
220
         return result;
221
    }
222
```

```
template < class T>
223
224
    T& SparseMatrix<T>::operator ()(int a) {
225
         return _values[a];
226
    }
227
228
    template < class T>
229
    const T& SparseMatrix<T>::operator ()(const int a) const {
230
         return _values[a];
231
    }
232
233
    template < class T>
234
    Matrix<T> SparseMatrix<T>:::descompress() {
         Matrix < T > result(rows(), \_columns, 0);
235
236
         for (int i = 0; i < rows(); i++) {
237
             for (int j = iValues[i]; j < iValues[i+1]; j++) {
238
                  result(i, _jValues[j]) = _values[j];
239
             }
240
         }
241
242
         return result;
243
    }
244
    template < class T>
245
246
    double SparseMatrix<T>::L1(const SparseMatrix<T>& other) {
247
         SparseMatrix<T> vectorSubs = *this - other;
248
         double res = 0;
         for (int i = 0; i < rows(); i++){
249
250
             res = res + abs(vectorSubs(i));
251
252
253
         return res;
254
    }
255
    template < class T>
256
257
    double SparseMatrix<T>::norm1() {
258
         double res = 0;
         for (int i = 0; i < rows(); i++){
259
260
             res = res + abs(\_values[i]);
261
262
263
         return res;
264
    }
265
266
    template < class T>
    int SparseMatrix<T>::rows() {
267
268
         return _iValues.size() -1;
269
    }
270
271
    template < class T>
272
    int SparseMatrix<T>::columns() {
273
         return _columns;
274
    }
275
276
    template < class T>
277
    int SparseMatrix<T>::rows() const{
278
         return _iValues.size() -1;
279
    }
280
281
    template < class T>
```

```
int SparseMatrix<T>::columns() const{
282
283
        return _columns;
284
    }
285
286
    template < class T>
    void SparseMatrix<T>:::printSparseMatrix() {
287
288
        Matrix<T> descompressedMatrix = descompress();
289
        descompressedMatrix.printMatrix();
    }
290
291
292 #endif /* SparseMatrix_H */
```

Referencias

- [1] Datahub. http://datahub.io.
- [2] Stanford large network dataset collection. http://snap.stanford.edu/data/#web.
- [3] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual Web search engine. *Computer Networks and ISDN Systems*, 30(1-7):107–117, April 1998.
- [4] Kurt Bryan and Tanya Leise. The linear algebra behind google. SIAM Review, 48(3):569–581, 2006.
- [5] Christopher Clarey. Years later for guillermo vilas, he's still not the one. The New York Times.
- [6] Paul G. Constantine, Abraham Flaxman, David F. Gleich, and Asela Gunawardana. Tracking the random surfer: Empirically measured teleportation parameters in pagerank. In WWW. Association for Computing Machinery, Inc., April 2010.
- [7] Angela Y. Govan, Carl D. Meyer, and Rusell Albright. Generalizing google's pagerank to rank national football league teams. In *Proceedings of SAS Global Forum 2008*, 2008.
- [8] Sepandar D. Kamvar, Taher H. Haveliwala, Christopher D. Manning, and Gene H. Golub. Extrapolation methods for accelerating pagerank computations. In *Proceedings of the 12th international conference on World Wide Web*, WWW '03, pages 261–270, New York, NY, USA, 2003. ACM.

Figura 5: Caso de estudio