JAPAN PATENT OFFICE (JP)
PATENT APPLICATION PUBLICATION
PATENT PUBLICATION OFFICIAL REPORT (A)
SHO61-141174

Int. Cl. 4 H 01 L 27/14, H 04 N 5/335

IDENTIFICATION NUMBER:

FROM S. E. L. CO. , LTD. 2F NO

IN-OFFICE SERIAL NUMBER: 7525-5F, 8420-5C

PUBLICATION: June 28, 1986

SUBSTANTIVE EXAMINATION: NOT REQUESTED THE NUMBER OF INVENTION: 1 (total 4 pages)

1. Title of the Invention: Solid state image pickup device Patent Application Sho 59-263366 Application December 13, 1984

2. Inventor(s)

Address: 3-3-5, Yamato, Suwa-shi

Suwa Seiko-sha

Name: Tetsuyoshi TAKESHITA

Address: 3-3-5, Yamato, Suwa-shi

Suwa Seiko-sha

Name: Hajime KURIHARA

Address: 3-3-5, Yamato, Suwa-shi

Suwa Seiko-sha

Name: Hideaki OKA

Address: 3-3-5, Yamato, Suwa-shi

Suwa Seiko-sha

Name: Kazumasa HASEGAWA

3. Applicant

Address: 2-4-1, nishi-shinjyuku, Shinjyuku-ku, Tokyo

Name: SEIKO EPSON CORPORATION

4. Attorney

Patent attorney: Tsutomu MOGAMI

5

10

20

SPECIFICATION

- 1. Title of the Invention Solid state image pickup device
- 2. Scope of Claim for Patent
- 1. A solid state image pickup device of a type of detecting an amount of stored/discharged charges by a light receptive element formed on an insulating substrate, characterized in that a capacitor is provided with an upper electrode in parallel with said light receptive element by oxidizing a portion of a lower electrode of the light receptive element.
- The solid state image pickup device according to claim 1 characterized in that an amorphous silicon is used as the light receptive element, chromium or aluminum is used as the lower electrode and an additional capacitance of an oxide film is formed simultaneously with phothoetching the amorphous silicon film.
- 3. Detailed Description of the Invention

"Field of the Invention in Industry"

The present invention relates to a solid state image pickup device utilizing solid state image pickup elements.

"Prior art"

Conventionally, CCD type or MOS type is practicable as a solid state image pickup element. In compared with an image pickup tube, the solid state image pickup element is proof against vibration and clash. The solid state image pickup element is characterized in very little power consumption to be used for a long span. Further, MOS type has bigger 25 numerical aperture and has no limit of the amount of transfer charge compared to CCD type, so that a lot of signal can be output. However, MOS type has a defect of occurring a great noise. Fig. 3 shows a drawing of typical MOS type circuit. Referring to the drawing, the cause of noise occurrence will be described. The noise is caused by horizontal MOS FET switch which opens or closes a circuit. It is most serious problem, which causes in the case that a wiring capacitance on vertical lines V_1 to V_n is large and electrode- substrate capacitance of transistors formed on V₁ to V_n is large, so that noise charge which remains on the lines is read out. There is no comparison between the amount of noise and the capacitance of

the receptive portion, so that the S/N ratio is considerably decreased. In addition to the above mentioned problem of noise, there is one more problem of smear for both CCD type and MOS type. One of reasons is due to occurrence charge caused by light, which is incident upon the other portion in addition to the receptive portion, is signal lines.

Therefore, elements in thin film form is formed by utilizing an insulator as a substrate, so that wiring capacitance is considerably reduced. Further, S/N ratio is increased by forming additional capacitor on the receptive element. For example, as the additional capacitor, a thin film 10 such as SiO₂ or Y₂O₃ is deposited in addition.

"Problem To Be Solved by The Invention"

However, in the above mentioned prior art, an additional thin film has to be formed in order to connect a receptive element with an additional capacitor. Therefore, process steps will increase to cause cost up. As a 15 result, noise will be caused because a thin film will not be formed uniformly.

Therefore, the present invention will solve the problem. An object of the present invention is to provide a solid state image pickup device having an additional capacitor with high evenness in parallel with the receptive element without increasing the process steps.

"Means To Solve The Problem"

The solid state image pickup device in the present invention is characterized in that the additional capacitor with high evenness can be easily formed in parallel with the receptive element by a method wherein a part of lower electrode of receptive element is oxidized by utilizing 25 receptive element portion as a mask to provide a capacitor between upper and lower electrodes.

In particular, the present invention is utilized an oxidation film formed by a method wherein receptive element is performed photoetching by the technique of dry etching using Freon gas comprising oxygen. Moreover, the present invention utilizes an amorphous silicon for the portion of receptive element and a polycrystalline silicon for the drive portion, respectively. Through these procedures, the solid state image pickup device having small amount of smear can be formed increasing sensitivity and saturated light quantity.

"Performance"

20

3.5

According to the above mentioned structure in the present invention, an oxidation film formed on lower electrode of a receptive element will be

an additional capacitor between lower electrode and upper electrode. As a result, the solid state image pickup element having small noise will be formed increasing saturated light quantity and S/N ratio.

"Example"

5

Fig. 1 shows a configuration drawing in accordance with the present example of the present invention. Any receptive element or switching element can be used for a semiconductor substrate. In the present invention, an amorphous silicon photodiode is used as a receptive element, and poly-silicon TFT is used as a switching element, respectively. Fig. 2 shows an equivalent circuit of Fig. 1. In Fig. 1, (a) shows a cross sectional view and (b) shows a plan view. Process steps will be described as follows. A non-doped polycrystalline silicon layer 102 is formed on an insulating substrate 101 such as quartz glass and after forming a gate insulating film by thermal oxidation, a second polycrystalline silicon 103 to be a gate 15 electrode is formed to be also a gate line. Subsequently, ion is implanted to provide a source and drain electrode. Then, after forming SiO₂ or the like as an interlayer insulating film 104, a contact hole is formed and a vertical line 105 is formed with a conductive material such as Al, upon which a polyimide resin or the like 106 is formed for leveling as an interlayer 20 insulating film. Usually, poly-silicon TFTs are formed by the above Significant process steps according to the present mentioned method. invention will be described as follows. After forming a contact hole on the interlayer insulating film, a conductive thin film 107 is formed by using such as Cr or Al as lower electrode of pixel. This conductive thin film 107 should be easily oxidized and the oxide film should be high resistivity and dense since it is oxidized after the formation of the receptive film 108 using the receptive film(a photo resist may be disposed thereon) as a mask in order to form an additional capacitor. As an oxidation method, it can be considered various kinds of method, however, in case that a receptive film 108 is etched by plasma using oxygen and Freon, an oxidation film 109 is formed as a necessary result, so that there is no need to add oxidation process. After oxidation by the method, oxide plasma treatment may be further conducted, or oxidation with thermal nitric acid or steam oxidation may be conducted. Table 1 shows a characteristic example of forming a lower electrode 107 by using oxidation of Cr and Al-Si and in accordance with the present example. Here, the receptive film thin 108 is an amorphous silicon (referred to a-Si, hereinafter) formed by GD plasma CVD,

and 110 may be any transparent conductive electrode (upper electrode), here, ITO.

Table 1

20

CONDITION	ELEMENT CAPACITY (pF/100 μ m ²)	INSULATION PROPERTY
(1) a-Si is etched by using CF ₄ +O ₂	0.2	good
(2) O ₂ plasma treatment in addition to (1)	0.5	best
(3) thermal nitrate treatment in addition to (1)	0.5	good
(4) using Al-Si as electrode with condition (2)	0.2	regular
(5) oxidation by steam using Al-Si as electrode	0.3	good

Note) An electrode used in conditions (1) to (3) is Cr.

In the table 1, an amount of the element capacity is calculated by adding capacitance of a-Si to additional capacitor of an oxidation film. The capacitance of a-Si is approximately $0.01 \text{pF}/100 \,\mu$ m². Regarding to the uniformity, the condition (3) is best of all. Under the condition (3), disp rsion of all elements is within a range of $\pm 1\%$, and under the other conditions, it is within a range of $\pm 2.5\%$. In any way, it is easier than the case of forming SiO₂ or dielectric thin film in additional process and probability of dispersion is small. (in case of SiO₂, the dispersion is within a range of $\pm 5\%$)

Referring to the equivalent circuit in Fig. 2, through the above mentioned process, the circuit is provided with an additional capacitor Ca in parallel with the receptive element Dil.

Moreover, metal is used as a lower electrode in the above mentioned example. Instead of using the metal, by using low resistance amorphous silicon which is doped impurities, an oxidation may be performed to form SiO_2 in order to use the SiO_2 as an additional capacitor.

"The effect of the Invention"

As mentioned above, according to the present invention, since the additional capacitor having a high uniformity can be formed extremely

5

easily and inexpensively without increasing the process steps by using the pattern of a thin film receptive element as a mask, it is possible to easily obtain excellent solid image pickup devices with low cost having a large S/N ratio and a large saturated light quantity.

4. Brief Explanation of The Drawings

Fig. 1 is example of a solid state image pickup device in the present invention wherein (a) is a cross sectional view and (b) is a plan view.

Fig. 2 is a equivalent circuit drawing of the example.

Fig. 3 is a usual circuit drawing of MOS type solid state image pickup 10 device.

101---substrate
103---gate electrode
105---vertical line
107---lower electrode
15 108---receptive thin film
109---oxidation film
110---upper electrode

Applicant Suwa seiko-sha Attorney Tsutomu Mogami