ECO220 Lecture Notes

Tianyu Du

May 9, 2018

This work is licensed under a Creative Commons "Attribution-ShareAlike 3.0 Unported" license.

Contents

1		ture 1 May. 8 2018	
	1.1	Statistics	
		1.1.1 Example 1	
		1.1.2 Example 2	
2		ture 2 May. 9 2018 Inferential statistics	
		Data	
	2.3	Descriptive Statistics: Graphs	
	2.4	Descriptive Statistic: Numerical Measures	
		2.4.1 Measures of centre (location)	

1 Lecture 1 May. 8 2018

Content Chapter 1-4,

- Statistics
- Data
- Population
- Sample

1.1 Statistics

What is statistics Quantitive methods.

1.1.1 Example 1

Question This summer, 120 students enrolled in ECO220. Find out the number of courses that students are taking, the average number of courses they take, and the % of student taking 1 or 2 courses.

Population 120 students in ECO220. Noted as N = 120

Analyze:

- 1. Number of courses they take.
- 2. Average number of courses they take.
- 3. Percent of students taking 1 or 2 courses.

Data information collected from the whole *population* (all individuals). Use data to answer questions above.

number of courses	number of students	percent
1	40	0.33
2	30	0.25
3	30	0.25
4	15	0.14
5	5	0.03
Total	120	1.00

Parameters Parameters are fixed numbers. They can be calculated once we measure everyone in population.

Examples of parameters from population

• Average $\mu = 2.29$

1.1.2 Example 2

Question Find out the percentage of people in Ontario who are in favour of government policy.

Figure 1: Frequency

Population People in Ontario.

In favour of policy	# of people in Ontario	%
Very much in favour	*	*
In favour	*	*
neutral	*	*
not in favour	*	*
strongly against	*	*
Total	N = Population of Ontario	1.00

Sample Since N is too large to handle, we select a sample, which is a subset of population, denoted as n, and then analyze the sample.

In favour of policy	# of people in Ontario	%
Very much in favour		
In favour		
neutral		
not in favour		
strongly against		
Total	n = Size of sample	1.00

The above chart based on sample data to *estimate* the chart using population data.

Let p be the % of people in Ontario (population) who are "very in favour" or "in favour" Let \hat{p} be the % of people in sample who are "very in favour" or "in favour", can be calculated based on the sample data.

The parameter p has an unknown value. The value of \hat{p} can be calculated from sample data, \hat{p} is an **estimate** for p.

Note p is a fixed value, but \hat{p} will change from sample to sample. We call \hat{p} an **estimator** (or **sample statistic**). The value of sample statistic will change from sample to sample, we call \hat{p} a random value.

Parameters on population

- μ : Average
- p: Percentage

Sample Statistic on sample

- \overline{x} : Average
- \hat{p} : Percentage

Statistics

2 Lecture 2 May. 9 2018

What is statistics? **Population** with size denoted with N and **sample** with its size denoted as n. Analyze the population from data from sample.

2.1 Inferential statistics

Involves uncertainty, to deal with the uncertainty, we need **probability**

2.2 Data

Two types of data

- 1. Quantitive data
 - (a) Discrete
 - (b) Continuous
- 2. Qualitative(Categorical) data

Note Some categorical data might be sensitive (e.g. income, age), to handle this, we could **categorize** the answers to handle this while collecting data.

2.3 Descriptive Statistics: Graphs

Example 1 Incomes in Toronto.

Example 2 Market shares of computers.

Example 3 Home price in Toronto.

Example 4 Age and income

Note There is no unique (or, correct) way of drawing graphs. A good graph is a picture that tells the audience a true picture of a population or sample.

2.4 Descriptive Statistic: Numerical Measures

2.4.1 Measures of centre (location)

Mean also called average and expected value, let $x_1, x_2, \dots x_n$ be the measurements for the population of size N. The <u>population mean</u> is denoted by μ and defined as

$$\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$$

Let x_1, x_2, \ldots, x_n be measurements for the sample of size n, then the <u>sample mean</u> is denoted by \overline{x} and defined as

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Note μ is population mean, therefore a parameter. That's μ has a fixed value if all units in population is measured. \overline{x} is sample mean, and therefore a sample statistic (estimator) and \overline{x} does not have a fixed value. The values of \overline{x} change from sample to sample.

Note The mean is a good measure of centre, but it is sensitive to extreme values.

Median is the value in the middle when all data are sorted in order of magnitude.