FACTORS THAT CONTRIBUTE TO THE SUSCEPTIBILITY OF INFECTIOUS DISEASE

Group 5
Eddie Almonte
Mark Bishoff
Alanis Perez
Nishi Thapliyal

Which U.S. counties are the most susceptible to infectious disease outbreaks? What environmental, demographic, & healthcare factors contribute to their vulnerability?

Data Sources

Environmental Factors - Climate (Avg, min, max temps)

- Source: National Center for Environmental Data
 - o https://www.ncei.noaa.gov/access/monitoring/climate-at-a-glance/county/mapping

Demographic Factors - Population, Age

- Source: CENSUS 2020-2023
 - https://www.census.gov/data/tables/time-series/demo/popest/2020s-counties-detail.html

Healthcare Factors - COVID-19 Vaccination & Death Rates

- Source: U.S. Department of Health & Human Services, Data.gov
- Vaccination Rates: https://data.cdc.gov/Vaccinations/COVID-19-Vaccinations-in-the-United-States-County/8xkx-amqh/about_data
- Death Rates: https://catalog.data.gov/dataset/provisional-covid-19-death-counts-in-the-united-states-by-county

Data Preprocessing

COVID-19 Related Data

- Vaccination rates
 - Administered doses per 100K
- ☐ COVID-19 death rates (2020-2023)
 - ☐ COVID-19 related deaths per 100K

NON-COVID-19 Data

- ☐ U.S. Population
 - Seniors per 100k (65+)
 - ☐ Children per 100k (5 and Under)
- ☐ Temperature (°F)
 - Min yearly temperature
 - Max yearly temperature

Geographic Distribution of COVID-19 Impact

Comparison of All-Cause Deaths

Temperature Correlation (2020-2023)

Modeling Techniques

- Visualize the various datasets using Tableau
- ☐ Apply machine learning models to predict the COVID-19 death rate
 - Decision Tree Regression
 - Random Forests
 - Neural Networks
 - Linear Regression
 - K-Means Clustering

Setting up machine learning models

- ☐ Target ('y'): COVID-19 Death Count
- ☐ Features ('X'): Average Temperature, Vaccination Count, Population
- ☐ Scaled data
- Split data into training and testing datasets
- ☐ Apply relevant machine learning models
- ☐ Calculate success metrics: MSE, R², MAE, RMSE

KMeans Clustering

- Vaccination Count
 - Lower vaccination counts related to higher death count
- Average Temperature
 - Moderate to high temp vaguely associated with higher death rates
- Population Density
 - Smaller population size associated with higher death rates

Decision Tree Regression

- Decision tree regression is used for continuous target variables
- ☐ High Mean Squared Error: **1,778,541**
- → Negative R² value: -0.25689

Random Forest, Neural Networks, Linear Regression

- ☐ Random Forest
 - **MSE**: 1,920,068, **R**²: 0.1005
- Neural Networks
 - **MSE**: 15,221,333
- ☐ Linear Regression
 - **MSE**: 1,961,067, **R**²: -0.0004

- Poor performance by ML models
 - Large MSE values
 - ☐ Low/ negative R² values
- Room for improvement and/or different models

Future considerations to build a more accurate model

Environmental

- Flight path
- Heavy traffic flow
- Seasonal patterns

Demographics

- Gender
- Race / Ethnicity
- Poverty

Healthcare

- Vaccination rates
- Illness death counts
- Holistic medicine use
- Infrastructure