

The Main Idea: Each agent takes just half the responsibility. Construction of $ORCA^{\tau}_{A|B}$: see the demonstration. Selection of optimal velocity: the optimal velocity change for A is $\frac{1}{2}\Delta v$, for B is $-\frac{1}{2}\Delta v$.

Multiple Obstacle Case

S Contents

- Multi-Agent Path Finding (MAPF)
- Velocity Obstacle (VO)
- Flocking Model
- Trajectory Planning for Swarms
- **■** Formation

[1] Vásárhelyi, Gábor, et al. "Optimized flocking of autonomous drones in confined environments." Science Robotics 3.20 (2018): eaat3536.

The main idea: In order to fly like a flock of birds, each agent is controlled by three forces:

- Short-term: repulsive force \mathbf{v}^{rep} to neighbors and obstacles;
- Medium-term: velocity alignment force \mathbf{v}^{frict} that aligns the movement with neighbors;
- Long-term: attractive force to the goal \mathbf{v}^{flock} ;

The total force is the combination of above forces:

$$\mathbf{v}^{exe} = \mathbf{v}^{rep} + \mathbf{v}^{frict} + \mathbf{v}^{flock}.$$

Advantages: this strategy mimics the movements of natural animal community well.

Disadvantages: the performance is sensitive to parameter settings.

Candidate solutions: automatic parameter tuning using evolutionally strategies^[1].

S Contents

- Multi-Agent Path Finding (MAPF)
- Velocity Obstacle (VO)
- Flocking Model
- Trajectory Planning for Swarms
- **■** Formation

Centralized

Decentralized

Asynchronous

Search/Sampling Based

4. Trajectory Planning for Swarms

Hybrid A*, RRT*, etc.

Search/Sampling Based

4. Trajectory Planning for Swarms

Plan only once for each agent

Repeated planning

∴ generally used in ordered planning

The Basic Formulation

Optimization-based planning rooted in optimal control theory formulates trajectory planning as

$$\min_{\mathbf{x}} f(\mathbf{x})$$
s. t. $\mathcal{G}(\mathbf{x}) \leq \mathbf{0}$, $\mathcal{H}(\mathbf{x}) = \mathbf{0}$

where \mathbf{x} are trajectory parameters or actuator commands.

Standard reciprocal collision avoidance penalty: avoiding getting too close to each other at any timestamp. One of the basic formulations:

$$\begin{aligned} d_{i,j}(t) &= |p_i(t) - p_j(t)|, \\ \forall \ t \in [T_0, T_m], \mathcal{C} - d_{i,j}(t) \leq 0. \end{aligned}$$

 $p_i(t)$, $p_j(t)$: the positions of agent i and j at time t, respectively; C: the minimum allowed clearance between two agents.

The Basic Formulation

How to formulate this part?

Standard reciprocal collision avoidance penalty: avoiding getting too close to each other at any timestamp. One of the basic formulations:

$$d_{i,j}(t) = |p_i(t) - p_j(t)|,$$

$$\forall t \in [T_0, T_m], C - d_{i,j}(t) \le 0.$$

 $p_i(t)$, $p_j(t)$: the positions of agent i and j at time t, respectively; C: the minimum allowed clearance between two agents.

Reciprocal Avoidance Formulation

$$d_{i,j}(t) = |p_i(t) - p_j(t)|,$$

$$\forall t \in [T_0, T_m], C - d_{i,j}(t) \le 0.$$

It contains infinite number of constraints as it holds for every timestamp

- Less Safe
- Computationally Efficient (Simple)
- Less Conservative

- Safe
- Computationally Expensive (Complex)
- Conservative

More about Convex Representation

Avoidance constraints between convex polyhedrons are nonconvex.

: We convert these constraints into distances between vertexes and planes.

Find a plane \mathcal{P}_o on $\mathbb O$ with the closest distance to vertexes on $\mathbb E$

Optimize planes separating every two planes