

Figure 1

Fig. 1

Scheme 1. Modification of SBL mutants with Chiral Auxiliaries.

$$R = S$$

$$(R)-a R^1 = Me$$

$$(R)-b R^1 = H$$

$$(R)-b R^1 = H$$

$$(R)-b R^1 = H$$

$$(R)-a R^1 = Me$$

$$(R)-a R^1 = Me$$

$$(R)-a R^1 = H$$

$$R = S$$
 $N = S$
 $N =$

The corresponding (S) MTS ligands follow the same code scheme (i.e. (S)-a, (S)-b, (S)-d, (S)-e, (S)-f, (S)-g, (S)-h, (S)-i).

Fig. 2

Scheme 2. Synthesis of Mandelate-based Ligands

OR OR OR (iv) OR
$$R^1$$
 (vii) SSO₂CH₃

(R)-1a R = Me (R)-1a R = Mom (R)-1a R

Reagents: (i) Me_2SO_4 , NaOH, H_2O , 37%; (ii) MeOH, H^+ ; (ii) MOM-Cl, CH_2Cl_2 , Et_3N (90% 2 steps); (iv) For (R)-3: BH_3 , THF, 82%; For (R)-5: $LiBH_4$, THF, 97%; (v) $MeSO_2Cl$, CH_2Cl_2 , Et_3N ; For (R)-8: 100%; (vi) LiBr, acetone; For (R)-10: 84%; For (R)-11: 78% 2 steps; (vii) $NaSSO_2CH_3$, DMF; For (R)-12: 61%; (viii) TFA, H_2O , 82%.

Scheme 3. Synthesis of Oxazolidinone-based Ligands

Reagents: (i) KOH, DMSO, Br $(CH_2)_nBr$; (ii) NaSSo₂CH₃, DMF.

Fig. 4

Scheme 4. Synthesis of Indanol-based Ligands

H₂N OH
(ii)
$$(R)$$
-23
$$(R)$$
-24
$$(R)$$
-25 R = Br (R) -11 R = SSO₂CH₃

Reagents: (i) triphosgene, CH₂Cl₂, Et₃N, 100%; (ii) KOH, DMSO, Br(CH₂)₃Br; (iii) NaSSO₂CH₃, DMF.

Fig. 5

Fig. 6A

Fig. 6C

Fig. 7A

Fig. 7B

Fig. 8