Mathematische Grundlagen KE1 Einsendeaufgaben

Alexander Seidmann

October 16, 2022

1.1
 1.1.1

Behauptung: $A \Rightarrow (B \Rightarrow C)$ und $(A \land B) \Rightarrow C$ sind logisch äquivalent.

A	В	С	$B \Rightarrow C$	$(A \Rightarrow (B \Rightarrow C))$
W	W	W	W	W
w	w	f	f	f
w	f	w	W	w
w	f	f	W	w
f	w	w	W	W
f	w	f	\mathbf{f}	W
f	f	w	W	w
f	f	f	W	w

A	В	С	$A \wedge B$	$(A \land B) \Rightarrow C$
w	W	W	W	W
w	w	f	w	f
w	f	w	f	w
w	f	f	f	W
f	w	w	f	w
f	w	f	f	w
f	f	w	f	w
f	f	f	f	w

 $A\Rightarrow (B\Rightarrow C)$ und $(A\wedge B)\Rightarrow C$ sind logisch äquivalent. \Box

1.1.2

Behauptung: $(A \Rightarrow B) \Rightarrow C$ und $((\neg A) \Rightarrow C) \land (B \Rightarrow C)$ sind logisch äquivalent.

A	В	С	$(\neg A) \Rightarrow C$	$B \Rightarrow C$	$((\neg A) \Rightarrow C) \land (B \Rightarrow C)$
W	W	w	w	w	W
w	w	f	w	f	f
w	f	w	w	w	w
w	f	f	w	w	w
f	w	w	w	w	w
f	w	f	f	f	f
f	f	w	w	w	w
f	f	f	f	w	f

A	В	С	$A \Rightarrow B$	$(A \Rightarrow B) \Rightarrow C$
W	w	W	W	W
w	w	f	w	f
w	f	w	f	w
w	f	f	f	W
f	w	w	w	W
f	w	f	w	f
f	f	w	w	W
f	f	f	w	f

 $(A\Rightarrow B)\Rightarrow C$ und $((\neg A)\Rightarrow C)\wedge (B\Rightarrow C)$ sind logisch äquivalent. \square

1.2

1.2.1

Behauptung: Es gilt $n^2 > n+1$ für alle $n \ge 2$. Induktionsanfang:

$$n = 2$$
$$2^2 > 2 + 1$$
$$4 > 3$$

Es gilt der Induktionsanfang.

Induktionsbehauptung:

$$(n+1)^2 > (n+1)+1$$

Beweis:

$$(n+1)^2 > n+1+(((n+1)+1)-(n+1))$$

 $(n+1)^2 > n+1+1$
 $(n+1)^2 > (n+1)+1$

Mit dem Prinzip der Vollständigen Induktion folgt für alle $n\in {\bf N}$ mit $n\geq 2$ gilt $n^2>n+1.$ \square

1.2.2

Behauptung: Es gilt $n^2 \ge 2n + 3$ für alle $n \ge 3$. Induktionsanfang:

$$n = 3$$
$$3^2 \ge 2 * 3 + 3$$
$$9 \ge 9$$

Es gilt der Induktionsanfang.

Induktionsschritt:

$$(n+1)^2 \ge 2(n+1) + 3$$

Beweis:

$$(n+1)^2 \ge 2n+3 + ((2(n+1)+3) - (2n+3))$$
$$(n+1)^2 \ge 2n+3+2$$
$$(n+1)^2 \ge 2n+2+3$$
$$(n+1)^2 \ge 2(n+1)+3$$

Mit dem Prinzip der Vollständigen Induktion folgt: für alle $n \in \mathbf{N}$ mit $n \geq 3$ gilt $n^2 \geq 2n+3$. \square

1.3

1.3.1

$$X = \begin{pmatrix} 2 & 2 & 2 \\ -1 & -1 & -1 \end{pmatrix}$$

1.3.2

$$AB = \begin{pmatrix} -1 & -8 & -10 \\ 1 & -2 & -5 \\ 9 & 22 & 15 \end{pmatrix}$$
$$BA = \begin{pmatrix} 15 & -21 \\ 10 & -3 \end{pmatrix}$$

1.4

1.4.1

$$f: N \to N$$

$$f(x) = \begin{cases} 1, \text{wenn } x \text{ ungerade} \\ \frac{x}{2}, \text{wenn } x \text{ gerade} \end{cases}$$

- (a) ist erfüllt, da $\frac{x}{2}$ alle Zahlen ${\bf N}$ abbildet.
- (b) ist erfüllt, da die Urbilder von f(1) alle ungeraden Zahlen in N sind.

1.4.2

$$g: N \to N$$
$$g(x) = 2x$$

- (a) ist erfüllt, da es für jedes Element g(x) genau ein Urbild $x \in \mathbf{N}$ gibt.
- (b) ist erfüllt, da Bild(g) alle geraden Zahlen in **N** sind, und dadurch **N** $\not Bild(g)$ alle ungeraden Zahlen sind, also eine unendlich große Menge.

1.5

Sei $A \in M_{mn}(\mathbf{K})$ eine Matrix, sodass $XA = 0 \in M_{mn}(\mathbf{K})$ für alle Matrizen $X \in M_{mm}(K)$ gilt. Beweisen Sie, dass A die Nullmatrix in $M_{mn}(K)$ ist. Annahme: A ist die Nullmatrix in $M_{mn}(K)$. Sei m = 2 und n = 3 und X somit eine Matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ und A eine Matrix $\begin{pmatrix} e & f & g \\ h & i & j \end{pmatrix}$.

Da XA die Nullmatrix in $M_{mn}(K)$ ist, muss

$$\begin{pmatrix} ae+bh=0 & af+bi=0 & ag+bj=0 \\ ce+dh=0 & cf+di=0 & cg+dj=0 \end{pmatrix}$$

gelten.

Sei nun $XA = (z_{ij})$, so muss sowohl der linke als auch der rechte Summand in Berechnung von z_{ij} immer 0 sein, oder die Summanden invers zueinander sein. Da es keine Zahlen $m, n \in K \setminus 0$ gibt, sodass für jede Zahlenkombination $x, y \in K \setminus 0$ mx + ny = 0 ist, muss A die Nullmatrix sein. \square