

译者:BeyondVincent(破船)

时间:2013.4.25

版本: 2.0

关于破船

程序猿砌墙于云南昆明!

长期扎根移动软件开发!

爱跑步爱打篮球爱运动!

命中无大富大贵之面相!

愿健康与平淡相随一生!

你可以发邮件与破船取得联系: BeyondVincent@gmail.com

还可以关注破船的微博: 腾讯微博和新浪微博。

这里是破船的个人博客,欢迎光临:破船之家

关于 Windows 8 开发 31 日翻译

Windows 8 开发 31 日是由 Jeff Blankenburg 和 Clark Sell 原创的。

官方站点: http://31daysofwindows8.com/

涉及到两个版本:

XAML/C# (由 Jeff Blankenburg 撰写)

HTML5/JS (由 Clark Sell 撰写)

其中涉及到的资源和相关代码请到这里下载:

https://github.com/csell5/31DaysOfWindows8

在这里,由于破船对 HTML5/JS 不熟悉,所以只翻译 XAML/C#相关主题。 建议大家前往看原创内容,如果看不明白,再来这里看我翻译的相关内容。 如果翻译不正确的地方,可以通过上面的联系方式告诉破船。

破船祝你阅读愉快!

目录

关于破船 2		
关于Window	ws 8 开发 31 日翻译	3
目录 4		
第 24 日光传感器 5		
1.0.	介绍	.5
1.1.	光传感器的使用	.5
1.2.	总结	.8

第24日光传感器

1.0. 介绍

今天,今天,我将介绍 Windows8 设备中可能存在的另外一个传感器:光传感器。通过光传感器,我们可以获知用户设备周围的光亮度,进而调整程序的对比度,亮度以及其它相关值,以利于我们的程序可以在高亮度和低亮度情况下,也能够有很好的用户体验。

1.1. 光传感器的使用

光传感器的使用与昨天介绍的罗盘类似。

- ■初始化光传感器
- ■如果光传感器可用,创建一个 Reading Changed eventhandler
- ■在 eventhandler 中,从传感器中获取数据并显示到屏幕上

下面是完整的 MainPage.xaml.cs 文件:

using System;

using Windows.Devices.Sensors;

using Windows.UI.Core;

using Windows.UI.Xaml;

using Windows.UI.Xaml.Controls;

using Windows.UI.Xaml.Navigation;

```
namespace Day24_LightSensor
publicsealedpartialclassMainPage: Page
public MainPage()
this.InitializeComponent();
LightSensor sensor;
protectedoverridevoid OnNavigatedTo(NavigationEventArgs e)
              sensor = LightSensor.GetDefault();
if (sensor != null)
                   sensor.ReadingChanged += sensor_ReadingChanged;
                   Data. Visibility = Visibility. Visible;
else
                   NoSensorMessage. Visibility = Visibility. Visible;
asyncvoid sensor_ReadingChanged(LightSensor sender, LightSensorReadingChangedEventArgs args)
await Dispatcher.RunAsync(CoreDispatcherPriority.Normal, () =>
                   Lux.Text = args.Reading.IlluminanceInLux.ToString();
                   TimeStamp.Text = args.Reading.Timestamp.ToString();
              });
         }
```

在获取数据的方法上没有惊奇的地方,不过在不同的机器上,相同的环境中,获得的数据是极有可能不相同的。例如,在房间里面,我的Qualcomm ARM 设备获得的是 59lux,但是我的 Samsung tablet 则是 42lux,而我的 Surface RT 设备在同样的环境中是 115lux。

出现上面这样情况主要取决于每个设备的光传感器的精确度和质量,不过总

的来说,它们获得的值相差不会太远。下面是在不同环境下的光照度值(来自 Wikipedia article on Lux)

Examples		
Illuminance	Surfaces illuminated by:	
10 ⁻⁴ lux	Moonless, overcast night sky (starlight)[2]	
0.002 lux	Moonless clear night sky with airglow ^[2]	
0.27-1.0 lux	Full moon on a clear night ^{[2][3][4]}	
3.4 lux	Dark limit of civil twilight under a clear sky ^[5]	
50 lux	Family living room lights (Australia, 1998)[6]	
80 lux	Office building hallway/toilet lighting ^{[7][8]}	
100 lux	Very dark overcast day[2]	
320-500 lux	Office lighting ^{[9][10][11]}	
400 lux	Sunrise or sunset on a clear day.	
1,000 lux	Overcast day;[2] typical TV studio lighting	
10,000–25,000 lux	Full daylight (not direct sun)[2]	
32,000-130,000 lux	Direct sunlight	

如上所示,即使是 100lux 也是一个很暗的值。如果在我的办公室里面,值接近 175。通过上表,你应该创建一个适当的光亮度范围。

例如,如果你识别出当前用户是在光照不足的环境中,你可能需要显示暗背景和白色文字,这样才利于在光线不足的环境中阅读。在明亮的房间里面,应该切换为白色背景和黑色文字。

现在,你已经知道了如何从光传感器中识别出两种不同的环境,并将其使用到程序中。

1.2. 总结

今天,我介绍了光传感器,以及如何使用光传感器来修改用户界面,使程序更加易读。

点击下图,下载本文示例代码:

明天,我将介绍更强健的一个传感器:加速度计。我们可以使用其数据判断出用户设备的旋转。到时候见!

感谢你的阅读!

如果对这篇文章有什么想法,可以与破船联系,破船的 联系方式在文章开头。

破船

31 Days of Windows 8