Cycles de vie classiques (2)

Projet AE: 1^{er} avis

Projet AE: 1er avis estudiantin

Cycle classique	Nombre de votes	Justifications
Cascade	1	Cahier des charges et conception non rejouable
Prototyping	0	
Modèle en Y	1	Technologie connue de suite Avis prof: importance de l'architecture
Modèle en V	1	Test prévus
Spirale	1	Contact avec le client; livrables réguliers Avis prof : 2 validations par le client (les 2 démos)

Cycles de vie classiques (suite)

Jusqu'à présent, théoriquement

• On insiste sur la découpe en activités qui se suivent séquentiellement :

t0	t1	t2	t3	t4	t5
			Codage et	Tests de	Tests de
Spécifications	Analyse formelle	Conception	tests unitaires	vérification	validation

Points de synchronisation : attente qu'une étape soit terminée.

2 points de contact avec le client

Gestion des retards

- (exemple) Que se passe-t-il si la conception prend du retard?
- Livraison en semaine 7, plutôt qu'en semaine 6?

Toutes les étapes suivantes reculent d'une semaine ;

Ou, si possible, un développeur vient renforcer l'équipe pour récupérer le retard de l'étape précédente dans celle-ci.

Que font les programmeurs pendant la semaine 6?

Pratiquement

Toujours 2 points de contact avec le client

Mais à l'intérieur de ces points, « élasticité » et peu de réels points d'attente

ORGA entreprises 9 03-05-20

Pratiquement

Un pas plus loin...

Parties de produit vérifiées plus tôt + feedback (testeurs -utilisateurs)

ORGA entreprises

Travail en parallèle possible

11

vers ...

les modèles à incréments

Processus Unifié (Unified Process)

Unifié: pourquoi?

- Années 90, une 50aine de méthodes orientées Objet
- Pas de consensus → recherches d'un langage commun :
 - UML
- UML = ensemble d'outils normalisés ; MAIS besoin d'une méthode
- Processus Unifié (PU Unified Process UP) :
 - Méthode
 - Couverture complète du SDLC pour les développements orientés Objet
 - Lien avec UML

PU méthode

- •PU est piloté par les cas d'utilisation
- •PU est centré sur l'architecture logicielle
- •PU est à base de composants
- •PU est une méthode de développement de logiciels itérative et incrémentale

PU piloté par les cas d'utilisation

PU centré sur l'architecture

- Architecte dessine une image complète d'un bâtiment avant le début de la construction.
- Image complète du système avant son implémentation.

PU itératif et incrémental

• L'idée de base :

- Développer un système au travers de cycles répétés (itération) et en petites avancées (incrément).
- Chaque itération peut reprendre plusieurs activités (activités qui vont des spécifications jusqu'à la vérification (/validation)).
- Chaque incrément va ajouter de nouvelles fonctionnalités; c'est une construction morceau par morceau.
- Avantage majeur :
 - On peut tirer avantage de ce que l'on a appris durant l'itération précédente.
 - On réduit les risques.

PU réduit les risques

- Prendre en charge les risques importants très tôt dans le processus de développement.
- Définir une architecture qui guidera le développement logiciel.
- Fournir une infrastructure préfabriquée (framework) pour prendre en compte non seulement les exigences de base mais aussi les changements futurs.
- Développer progressivement le système, de façon incrémentale.

http://lgl.isnetne.ch/methodologie-2005/chap_06/chapitre6.pdf 03.2014

PU: 4 phases

- La création (inception) : la vision du projet est encore approximative. On y élaborera surtout les cas d'utilisation.
- L'élaboration : la vision y est plus élaborée. Le noyau du projet sera implémenté, les risques élevés résolus. La plupart des besoins seront identifiés.
- La construction : implémentation des éléments de risque et complexité plus faibles. Préparation du déploiement.
- La transition : B-tests et déploiement.

Phase 1: création

- Développer la vision du projet
- Définir la portée du projet
- Réduire les risques majeurs
- S'assurer de la viabilité commerciale
- 1 seule phase pas d'itération

- Comprendre les besoins du client
- Spécifier
- Analyser
- Concevoir
- Développer

Phase 2: élaboration

- Développer l'architecture de référence
- Avoir compris l'essentiel des besoins
- Réduire les risques élevés (risques de moindre gravité qu'en phase de création)
- Peut avoir plusieurs itérations

- Comprendre les besoins du client
- Spécifier
- Analyser
- Concevoir
- Développer
- Tests

Phase 3: construction

- Développer le système
- Réduire les risques
- Vérifier l'utilisabilité du produit
- Peut avoir plusieurs itérations

- Comprendre les besoins du client
- Spécifier
- Analyser
- Concevoir
- Développer
- Tests

Phase 4: transition

 S'assurer que le produit est livrable

- Déployer
- Former les utilisateurs
- Mettre en production
- Peut avoir plusieurs itérations

- Comprendre les besoins du client
- Spécifier
- Analyser
- Concevoir
- Développer
- Tests
- Déployer, livrer...

PU: cycle de vie

Temps

cascade Spécifications - analyse - conception - implémentation - test

Exercices

Projet AE

Y a-t-il un cycle de vie appelé « classique » qui décrive ce que vous avez fait en PAE ?

- Cascade
- Prototyping
- Y
- V
- Spirale
- SVYpirale
- PU ?

Livrable	Quand
1. Rapport d'analyse initiale	S 3
2. Implémentation architecture : revue du code en séance	S6
3. Revue du code en séance	S 9
4. Démo d'avancement en séance	S9
5. Livrable supprimé	\$10
6. Code de tout le projet + Rapport + Démo	S12

Livrable	Quand
1. Rapport d'analyse initiale	S3
2. Implémentation architecture : revue du code en séance	S6
3. Revue du code en séance	S9
4. Démo d'avancement en séance	S9
5. Livrable supprimé	\$10
6. Code de tout le projet + Rapport + Démo	S12

Dessinez le cycle de vie employé, à votre avis, dans le cadre du cours de Projet AE.

Plaçons les 4 phases du PU dans le cadre du cours de Projet AE.

Modèle à incréments : suppression des points de synchronisation et des attentes entre étapes

