

[傅里叶红椒]
[三角的牧町正文基底]
$\int_{0}^{2\pi} \cos nx dx = \int_{0}^{2\pi} \sin nx dx = 0$
$\int_{0}^{2\pi} \cos mx \cos nx dx = \int_{0}^{2\pi} \sin mx \sin nx dx = 0 Cm \neq n$
$\int_{-\infty}^{2\pi} \cos mx \sin nx dx = 0 (m \neq n \not x m = n)$
\Rightarrow
[周期函数內包数表示]
$f(x) = O_0 + \sum_{n=1}^{\infty} (G_n \cdot G_{S} + b_n \cdot S_{n} + b_$
通过左乘 左來 cosmx 長 积分 周期 長得
$On = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos nx dx$
园理乘 shmx E可得
$bn = \frac{1}{\pi} \int_{0}^{2\pi} f(x) \sin nx dx$
工上述水物収敛性 — Dirichlet 定理了
Suppose:
(I) fx)在(-IT T) 内除有限信息外有度义且单值
(2) f(x) 在(-II, II) 外是周期函数 周期均2/T.
13) f(x)和f(x)在(-17,17)内分段连续L即f(x)分段光滑了
则傅里叶尔牧收敛于
ao + 完 (an cosnx + bn s)nnx)=fix) (连续高)
η ₂₁ ναιι σουτά του στιτα σου στιτ
$a_0 + \sum_{n=1}^{\infty} [a_n a_0 s_n x + b_n s_n s_n x] = \frac{f(x-0) + f(x+0)}{2}$ (河断点)
校训:厚德、弘慈、祁赴、筠行 第 页

南京都堂大堂

⇒ [21为周期(推广)]

$$\int f(x+2L) = f(x)$$

$$\int f(x) = a_0 + \sum_{n=1}^{\infty} (a_n \cdot \omega) \frac{n\pi}{L} x + bn \cdot \sin \frac{n\pi}{L} x$$

$$\Rightarrow$$

$$\int_{\Omega_0} a_0 = \frac{1}{2L} \int_{L}^{L} f(t) ddt$$

$$f(x) = \int \frac{1}{2(\pi - X)} \frac{1}{(0 < x \leq 2\pi)} \implies \frac{S \ln(x)}{n} = \frac{S \ln h X}{n} = \frac{1}{2(\pi - X)}$$

$$f(x + 2\pi) = \int \frac{1}{(x + 2\pi)} \frac$$

[半幅傅里叶列数]

(正这式) ØW在 o<x<L 内分段光滑

$$Cn = \frac{2}{L} \int_{0}^{L} \phi(x) \sin \frac{h\pi x}{L} dx \qquad (n=1,2,3,...)$$

(为总式)

$$\phi(x) = D_0 + \sum_{n=1}^{\infty} p_n \cos \frac{n\pi x}{n}$$

$$D_0 = \frac{1}{L} \int_0^L \phi(x) dx$$

$$D_n = \frac{2}{L} \int_0^L \phi(x) \cos \frac{m\pi x}{L} dx (n-1,2.3,...)$$

$\int_{0}^{L} \sin \frac{n\pi x}{L} dx = L \cdot \frac{S_{mn}}{2}$ $\int_{0}^{L} \cos \frac{n\pi x}{L} dx = L \cdot \frac{S_{mn}}{2}$ $\int_{0}^{L} \cos \frac{n\pi x}{L} dx = L \cdot \frac{S_{mn}}{2}$ $\int_{0}^{L} \cos \frac{n\pi x}{L} dx = L \cdot \frac{S_{mn}}{2}$ $\int_{0}^{L} \cos \frac{n\pi x}{L} dx = L \cdot \frac{S_{mn}}{2}$ $\int_{0}^{L} \cos \frac{n\pi x}{L} dx = L \cdot \frac{S_{mn}}{2}$ $\int_{0}^{L} \cos \frac{n\pi x}{L} dx = L \cdot \frac{S_{mn}}{2}$ $\int_{0}^{L} \cos \frac{n\pi x}{L} dx = L \cdot \frac{S_{mn}}{2}$ $\int_{0}^{L} \cos \frac{n\pi x}{L} dx = L \cdot \frac{S_{mn}}{2}$ $\int_{0}^{L} \cos \frac{n\pi x}{L} dx = L \cdot \frac{S_{mn}}{2}$ $\int_{0}^{L} \cos \frac{n\pi x}{L} dx = L \cdot \frac{S_{mn}}{2}$ $\int_{0}^{L} \cos \frac{n\pi x}{L} dx = L \cdot \frac{S_{mn}}{2}$ $\int_{0}^{L} \cos \frac{n\pi x}{L} dx = L \cdot \frac{S_{mn}}{2}$ $\int_{0}^{L} \cos \frac{n\pi x}{L} dx = L \cdot \frac{S_{mn}}{2}$ $\int_{0}^{L} \cos \frac{n\pi x}{L} dx = L \cdot \frac{S_{mn}}{2}$ $\int_{0}^{L} \cos \frac{n\pi x}{L} dx = L \cdot \frac{S_{mn}}{2}$ $\int_{0}^{L} \cos \frac{n\pi x}{L} dx = L \cdot \frac{S_{mn}}{2}$ $\int_{0}^{L} \cos \frac{n\pi x}{L} dx = L \cdot \frac{S_{mn}}{2}$ $\int_{0}^{L} \cos \frac{n\pi x}{L} dx = L \cdot \frac{S_{mn}}{2}$ $\int_{0}^{L} \cos \frac{n\pi x}{L} dx = L \cdot \frac{S_{mn}}{2}$ $\int_{0}^{L} \cos \frac{n\pi x}{L} dx = L \cdot \frac{S_{mn}}{2}$ $\int_{0}^{L} \cos \frac{n\pi x}{L} dx = L \cdot \frac{S_{mn}}{2}$ $\int_{0}^{L} \cos \frac{n\pi x}{L} dx = L \cdot \frac{S_{mn}}{2}$ $\int_{0}^{L} \cos \frac{n\pi x}{L} dx = L \cdot \frac{S_{mn}}{2}$ $\int_{0}^{L} \cos \frac{n\pi x}{L} dx = L \cdot \frac{S_{mn}}{2}$ $\int_{0}^{L} \cos \frac{n\pi x}{L} dx = L \cdot \frac{S_{mn}}{2}$ $\int_{0}^{L} \cos \frac{n\pi x}{L} dx = L \cdot \frac{S_{mn}}{2}$ $\int_{0}^{L} \cos \frac{n\pi x}{L} dx = L \cdot \frac{S_{mn}}{2}$ $\int_{0}^{L} \cos \frac{n\pi x}{L} dx = L \cdot \frac{S_{mn}}{2}$ $\int_{0}^{L} \cos \frac{n\pi x}{L} dx = L \cdot \frac{S_{mn}}{2}$ $\int_{0}^{L} \cos \frac{n\pi x}{L} dx = L \cdot \frac{S_{mn}}{2}$ $\int_{0}^{L} \cos \frac{n\pi x}{L} dx = L \cdot \frac{S_{mn}}{2}$ $\int_{0}^{L} \cos \frac{n\pi x}{L} dx = L \cdot \frac{S_{mn}}{2}$ $\int_{0}^{L} \cos \frac{n\pi x}{L} dx = L \cdot \frac{S_{mn}}{2}$ $\int_{0}^{L} \cos \frac{n\pi x}{L} dx = L \cdot \frac{S_{mn}}{2}$ $\int_{0}^{L} \cos \frac{n\pi x}{L} dx = L \cdot \frac{S_{mn}}{2}$ $\int_{0}^{L} \cos \frac{n\pi x}{L} dx = L \cdot \frac{S_{mn}}{2}$ $\int_{0}^{L} \cos \frac{n\pi x}{L} dx = L \cdot \frac{S_{mn}}{2}$ $\int_{0}^{L} \cos \frac{n\pi x}{L} dx = L \cdot \frac{S_{mn}}{2}$ $\int_{0}^{L} \cos \frac{n\pi x}{L} dx = L \cdot \frac{S_{mn}}{2}$ $\int_{0}^{L} \cos \frac{n\pi x}{L} dx = L \cdot \frac{S_{mn}}{2}$ $\int_{0}^{L} \cos \frac{n\pi x}{L} dx = L \cdot \frac{S_{mn}}{2}$ $\int_{0}^{L} \cos \frac{n\pi x}{L} dx = L \cdot \frac{S_{mn}}{2}$ $\int_{0}^{L} \cos \frac{n\pi x}{L}$
「件簡傳里叶另一种表述」
$ \oint(X) = \sum_{n=0}^{\infty} C_n \cdot s_n \frac{(2nt1)\pi X}{2L} $ $ \oint(X) = \sum_{n=0}^{\infty} P_n \cdot \omega_n \frac{(2nt1)\pi X}{2L} $ $ C_n = \frac{1}{L} \int_0^L \phi(X) \cdot s_n \frac{(2nt1)\pi X}{2L} dX $ $ D_n = \frac{1}{L} \int_0^L \phi(X) \cdot s_n \frac{(2nt1)\pi X}{2L} dX $ $ [伊.对可称) $
$ \oint(X) = \sum_{n=0}^{\infty} C_n \cdot s_n \frac{(2nH)\pi X}{2L} $ $ \oint(X) = \sum_{n=0}^{\infty} P_n \cdot \omega_n \frac{(2nH)\pi X}{2L} $ $ C_n = \frac{1}{L} \int_0^L \phi(x) \cdot s_n \frac{(2nH)\pi X}{2L} dx $ $ D_n = \frac{1}{L} \int_0^L \phi(x) \cdot s_n \frac{(2nH)\pi X}{2L} dx $ $ [] \Phi $
$p(x) = \sum_{n=0}^{\infty} p_n \cdot \omega_n \frac{p_n(x)}{p_n(x)} \frac{p_n(x)}{p_n(x)$
$C_{n} = \frac{1}{L} \int_{0}^{L} dx \sin \frac{(2nH)\pi X}{2L} dx$ $D_{n} = \frac{1}{L} \int_{0}^{L} \phi(x) \cdot (nx) \frac{(2nH)\pi X}{2L} dx$ $L \neq \frac{1}{L} \prod_{n=1}^{L} \frac{1}{L} $
Dn = 亡ら Ø(X)-(ns (2mt) tt X dx
Dn = 亡ら Ø(X)-(ns (2mt) tt X dx
(绝对可称)
(绝对可称)
$\sim \int_{\infty}^{\infty} f(x) dx > \int_{\infty}^{\infty} f(x) dx = \overline{A} \overline{R} \overline{A}$
(另一才面满足)
$x \rightarrow \pm p$ 时, $f(x) \rightarrow 0$.
•
$\int f(x) = 0 + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi}{L} x + b_n \sin \frac{n\pi}{L} x \qquad \int f(x) = \int_0^{\infty} \left[A(w) \cos w x + B(w) \sin w x \right] dw$
$f(x+2L) = f(x)$ $L \to \infty$ $Q_0 \to Q \cdot \Delta W \to dW$

都老大學

→ (无限城单边傅里叶变换)
$f(x) = \int_{0}^{\infty} [A(w)(\rho s w x + B(w) s n w x] dx$
Anu) = In fit as with t
$B(w) = \frac{1}{\pi} \int_{-\infty}^{\infty} f(t) \cdot \sin wt dt.$
\Rightarrow
和当于正文分量
II. fit)为偶函数, B(W)=O
f(t)为奇函数、A(W) =O
$\int_{0}^{\infty} \frac{\cos(w\pi/2)}{1- w ^2} dw = \frac{\pi}{2}$

校训: 厚微、分散、书走、笃行

潮道都党大学

world stay	
[傅里叶变换]	
— 傳里叶形分 we[o,∞) —> 傳里叶变换	(WE(-10, DD)
_ (3人)	
fix)= IT was fit) (coswtoosrux + sinwt sinw	x) dt dw
$=\frac{1}{\pi}\int_{0}^{\infty}\int_{-\infty}^{\infty}f(t)\cos w(x-t)dtdw$	
= ITT [osw(x-t) dw] dt	
$=\frac{1}{2\pi}\int_{-\infty}^{\infty}\left[\int_{0}^{\infty}f(t)e^{iw(x-t)}dw+\int_{0}^{\infty}f(t)e^{-iw(x-t)}dw\right]$	-t) dw]dt
$(#) \int_{0}^{\infty} f(t) e^{-tw(x-t)} dw = \int_{-\infty}^{\infty} f(t) e^{-tw(x-t)} dw$	
= I for fine-int de eins dw	S. I.
$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left[\int_{\infty}^{\infty} f(t) e^{\lambda w(x-t)} dw \right] dt = \frac{1}{2\pi} \int_{\infty}^{\infty}$	In five int dt eins dw
$F(w) = \int_{-\infty}^{\infty} f(x) e^{-twx} dx$	
$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(w) e^{iwx} dw$	
$F(w) = F(f(x)) \longrightarrow F(w) \longrightarrow f(v)$	Fron= Job fronds
$f(x) = F^{-1} f(w) $ $f(x) = F^{-1} f(w) $ $f(x) = f(x) = f(x) $	fto) = \frac{1}{2\tau} Ftw)dw

校训: 厚供、外核、书走、笃行

<u>e.9</u>
$f(x) = \int_{-\infty}^{\infty} \frac{1}{1} \frac{1}{1} x < 0 \Rightarrow F(w) = 2 \frac{\sin \alpha w}{1}$
$\int \frac{1}{ x } dx = \frac{2}{ x } \int \frac{1}{ x } \frac{1}{ x } dx$
$\Rightarrow \int_{0}^{\infty} \frac{\sin aw}{dw} = sgn(a) \cdot \frac{\pi}{2}$
工性质工
$\mathcal{F}_{1}Gf_{1}+C_{2}f_{2}=C_{1}\mathcal{F}_{1}f_{1}+C_{2}\mathcal{F}_{1}f_{2}$
工. 微分定理工
$df(x) \Rightarrow df(x)$
$\frac{df(x)}{dx} \iff \partial w F(w) \qquad f^{(w)}(x) \iff (\partial w)^n F(u)$
111. 微分定理 11.
$\int_{x_0}^{x} f(x) dx \longleftrightarrow \frac{F(w)}{tw} (飛分% $
T. 位物序理
$f(x+\xi) \iff e^{tu\xi} F(w)$
72. 卷秋 庆义与定理
设函数f(x)和f(x)均定义在(-n, n)内,则其卷积定义:
$f_{1}(x) * f_{2}(x) = \int_{-\infty}^{\infty} f_{1}(\xi) f_{2}(x, \xi) d\xi$
J-p 1116/ 12/45

校训: 厚纸、外戴、书走、笃行

第

页

_(定理) f(w) *f(x) ←> F(w) F(w)
(性质)
f(x) * f(x) = f(x) * f(x)
对于偏处数f(-x) = f(x),满尽
$\int f(x) + \cos wx = F(w) \cos wx$
$\int f(x) \star \sin ux = F(u) \sin ux$
$- \int h(x) + \cos wx = zHtw) = zHtw$
$\int h(x) + s \ln u x = -iH(u) \cos u x$
[S政数] Dirac delta Function
$\Rightarrow \delta(x-x_0) = \int_{\infty}^{\infty} (x = x_0)$
$\bowtie (x = x_0)$
$\int_{-\infty}^{\infty} \delta(x-x_0) dx = 1$
O X6
$\int_{-\infty}^{\infty} f(x) \delta(x - x_0) dx = f(x_0)$
⇒物理含义: 量例:
原点 线 ® 度 m S(x - xo)
电荷线密度 q S(x-Xo)
<u> 冲量 </u>

校训:厚供、分赦、书赴、笃行

L8函数性质了
38(x-a) + f(x) = f(x-a)
$- \mathcal{S}(x) = 0$
$ \int_{-\infty}^{\infty} \delta(x-x_1) \delta(x-x_2) dx = \delta(x_1-x_2) $
(8) $f(x) = \int_{0}^{\infty} f(\xi) 18(3-x) d\xi$
(9)
$S(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-iwx} dw$
(ia)
$\int_{-\infty}^{\infty} e^{-iux} = \int_{\infty}^{\infty} e^{iux} dx \leq \delta(x) = \delta(-x)$
[S函数的辅助函数]
(2) S(x)是归一化分布政数 [S(x) dx =
⇒ 312 FB (X)
$\int_{0}^{\infty} F_{B}(x) dx = 1$
3 70 7
$\lim_{\beta \to \beta_0} F_{\beta}(x) = S(x)$
T P T

校训:厚微、弘教、祁廷、笃行

南京都堂大堂

[常见傅氏安长]	
$askx \longrightarrow \pi[8(w+k) + 8(w+k)]$	
$slnkx \rightarrow \tilde{\sigma}\pi [S(wtk) - S(w-k)]$	
$e^{-\alpha t } \longrightarrow 2\alpha/(\alpha^2 + w^2)$	
$S(x) \longrightarrow$	
$\longrightarrow 2\pi S(w)$	
ejwt -> 2118(w-wo)	

校训: 厚微、分散、书走、笃行