종합설계 최종발표

팀 스티키스티칭

2013112206 이어진

2014112553 김태윤

2014112576 서강인

발표 순서

1. 프로젝트 소개

1. 개발과정

2. 시연

프로젝트 소개

실시간 비디오 스티칭 기술 개발

어안카메라 영상의 실시간 스티칭을 통한 관측 시스템 구성

개발 목표

역 플랫폼 등 광범위한 지역 관측 체계

다수의 어안 카메라 영상 스티칭

실시간으로 단일화면 내에서 관측 가능

왜곡 보정 및 스티칭 과정 단 축

기본 설계

기대효과

• 넓은 FOV의 어안 카메라 활용으로 기존 일반 카메라 감시체계보다 경제성 증대

• Stitching을 통해 단일화면으로 광범위 관측이 가능해짐으로써 분할 화면을 통한 관측 보다 근로자의 피로도 감소 및 근로효율 증가

어안과 일반의 차이

기대효과

• 넓은 FOV의 어안 카메라 활용으로 기존 일반 카메라 감시체계보다 경제성 증대

• Stitching을 통해 단일화면으로 광범위 관측이 가능해짐으로써 분할 화면을 통한 관측 보다 근로자의 피로도 감소 및 근로효율 증가

개발 과정

개발 과정

개발 과정

개발 과정

하지만

개발 과정

• 360VR을 위한 프로그램이어서 우리가 원하는 떨어진 카메라의 영상을 가지고는 불가능했다.

개발 과정

• Stitcher::Status status = s.stitch(images, panorama);

개발 과정

2. Searching problem from test

■ 기존 자체테스트에 비해 특징점이 검출되기 어려 운 환경에서의 영상

- 다수의 false 매칭 포함
 - ->라이브러리 함수 실행불가

개발 과정

2. Idea for solving problem

a. Calibration 방식 변경

- 2. Idea for solving problem
 - b. 수동 특징점 매칭 등 설계 변경

개발 과정

3. New project on Python

- 첫 프레임 내 GUI를 통해 특징점 수동으로 매칭 : FourPointSelect 클래스 구현
- 매칭된 특징점 페어간의 Homography 산출 및 transform : TransformImage 클래스 구현
- Transform된 이미지간의 결합 : ImageCuttingandPaste 클래스 구현
- 프레임 추출 및 동영상 재생성, main함수 : SuperMain 클래스 구현

결과 및 시연

3. New project on Python

감사합니다