Treewidth of Line Graphs

Daniel J. Harvey [‡] David R. Wood [‡]

November 1, 2012

Abstract

We determine the exact treewidth of the line graph of the complete graph. More generally, we determine the exact treewidth of the line graph of a regular complete multipartite graph. For an arbitrary complete multipartite graph, we determine the treewidth of the line graph up to a lower order term.

1 Introduction

The treewidth tw(G) of a graph G is a graph invariant used to measure how "tree-like" G is. It is of particular importance in structural and algorithmic graph theory; see the surveys [2, 8]. tw(G) is the minimum width of a tree-decomposition of G, which is defined as follows:

Definition A tree-decomposition of a graph G is a pair $(T, \{A_x \subseteq V(G) : x \in V(T)\})$ such that:

- T is a tree.
- $\{A_x \subseteq V(G) : x \in V(T)\}$ is a collection of sets of vertices of G, each called a bag, indexed by the nodes of T.
- For all $v \in V(G)$, the nodes of T indexing the bags containing v induce a non-empty (connected) subtree of T.
- For all $vw \in E(G)$, there exists a bag of T containing both v and w.

[‡]Department of Mathematics and Statistics, The University of Melbourne, Melbourne, Australia (d.harvey@pgrad.unimelb.edu.au, woodd@unimelb.edu.au). D.W. is supported by a QEII Fellowship and a Discovery Project from the Australian Research Council. D.J.H. is supported by an Australian Postgraduate Award.

The width of a tree-decomposition is the maximum size of a bag of T, minus 1. This minus 1 is added to ensure that every tree has treewidth 1. Similarly, we can define pathwidth pw(G) to be the minimum width of a tree decomposition where the underlying tree is a path.

The line-graph L(G) of a graph G is the graph with V(L(G)) = E(G), such that two vertices of L(G) are adjacent when the corresponding edges of G are incident at a vertex.

In recent papers by Marx [6] and Grohe and Marx [5], the treewidth of the line graph of the complete graph is a critical example. In fact, Marx [6] shows that, in some sense, every graph of large treewidth contains the line graph of a large complete graph as a minor. Grohe and Marx [5] show that $\operatorname{tw}(L(K_n)) \geqslant \frac{\sqrt{2}-1}{4}n^2 + O(n)$. In this paper, we determine $\operatorname{tw}(L(K_n))$ exactly.

Theorem 1.

$$\operatorname{tw}(L(K_n)) = \begin{cases} (\frac{n-1}{2})(\frac{n-1}{2}) + n - 2 & , if n \text{ is odd} \\ (\frac{n-2}{2})(\frac{n}{2}) + n - 2 & , if n \text{ is even} \end{cases}$$

The complete multipartite graph $K_{n_1,n_2,...,n_k}$ is the graph with k colour classes, of order $n_1,...,n_k$ respectively, containing an edge between every pair of differently coloured vertices. We determine bounds on the treewidth of the line graph of the complete multipartite graph.

Theorem 2. If $k \ge 2$ and $n = |V(K_{n_1,\dots,n_k})|$, then

$$\frac{1}{2} \left(\sum_{1 \le i < j \le k} n_i n_j \right) - O(n) \le \operatorname{tw}(K_{n_1, \dots, n_k}) \le \frac{1}{2} \left(\sum_{1 \le i < j \le k} n_i n_j \right) + O(n)$$

Theorem 2 implies that when $n_1 = \cdots = n_k = c$, (that is, when our complete multipartite graph is regular) then $\frac{k^2c^2}{4} - O(n) \leq \operatorname{tw}(L(K_{c,\dots,c})) \leq \frac{k^2c^2}{4} + O(n)$. We improve this result, obtaining an exact answer for the treewidth of the line graph of a regular complete multipartite graph.

Theorem 3. If $n_1 = n_2 = \cdots = n_k = c$, then

$$\operatorname{tw}(L(K_{n_1,\dots,n_k})) = \begin{cases} \frac{c^2k^2}{4} - \frac{c^2k}{4} + \frac{ck}{2} - \frac{c}{2} + \frac{k}{4} - \frac{5}{4} & \text{, if } k \text{ odd, } c \text{ odd} \\ \frac{c^2k^2}{4} - \frac{c^2k}{4} + \frac{ck}{2} - \frac{c}{2} - 1 & \text{, if } c \text{ even} \\ \frac{c^2k^2}{4} - \frac{c^2k}{4} + \frac{ck}{2} - \frac{c}{2} + \frac{k}{4} - \frac{3}{2} & \text{, if } k \text{ even, } c \text{ odd} \end{cases}$$

In order to prove these results, we use the theory of *brambles* and the Treewidth Duality Theorem, which we present in Section 2. Section 3 presents a framework for proving results about the treewidth of general line graphs, which are of independent interest. Theorem 1 is proved in Section 4. Theorem 2 and Theorem 3 are proved in Section 5 and Section 6. Section 7 discusses the treewidth of the line graph of a general graph.

Finally, note the following conventions: if S is a subgraph of a graph G and $x \in V(G) - V(S)$, then let $S \cup \{x\}$ denote the subgraph of G with vertex set $V(S) \cup \{x\}$ and edge set $E(S) \cup \{x\}$ if $u \in V(S)$, let $S - \{u\}$ denote the subgraph with vertex set $E(S) - \{u\}$ and edge set $E(S) - \{u\}$.

2 Brambles and the Treewidth Duality Theorem

A bramble of a graph G is a collection \mathcal{B} of sets of vertices in G such that each pair of sets $X, Y \in \mathcal{B}$ touch, where X and Y touch when they either have at least one vertex in common, or there exists an edge in G with one end in X and the other in Y. The order of a bramble is the size of the smallest hitting set H, where a hitting set of a bramble \mathcal{B} is a set of vertices H such that $H \cap X \neq \emptyset$ for all $X \in \mathcal{B}$. For a given graph G, the bramble number $\operatorname{bn}(G)$ is the maximum order of a bramble of G. Brambles are important due to the following theorem of Seymour and Thomas [9]:

Theorem 4. (Treewidth Duality Theorem) For every graph G, bn(G) = tw(G) + 1.

In this paper we employ the following standard approach for determining the treewidth of a particular graph G. First we construct a bramble of large order, thus proving a lower bound on tw(G). Then to prove an upper bound, we construct a tree-decomposition of small width. A first step in constructing such a tree-decomposition is to place a minimum hitting set of the bramble in a single bag; when this bag is a bag of maximum size, we have an exact answer for tw(G).

3 Line-brambles and Line-tree-decompositions

Throughout this section, let G be an arbitrary graph. In order to construct a bramble of the line graph L(G), we define the following:

Definition A line-bramble \mathcal{B} of G is a collection of connected subgraphs of G satisfying the following properties:

- For all $X \in \mathcal{B}$, $|V(X)| \ge 2$.
- For all $X, Y \in \mathcal{B}$, $V(X) \cap V(Y) \neq \emptyset$.

Define a hitting set for a line-bramble \mathcal{B} to be a set of edges $H \subseteq E(G)$ that intersects each $X \in \mathcal{B}$. Then define the order of \mathcal{B} to be the size of the minimum hitting set H of \mathcal{B} .

Lemma 5. Given a line-bramble \mathcal{B} of G, there is a bramble \mathcal{B}' of L(G) of the same order.

Proof. Let $\mathcal{B}' = \{E(X)|X \in \mathcal{B}\}$. Recall X is connected. Now since |V(X)| > 2, X contains an edge. So E(X) is a non-empty connected subgraph of L(G). Consider E(X) and E(Y) in \mathcal{B}' . Thus $V(X) \cap V(Y) \neq \emptyset$. Let v be a vertex in $V(X) \cap V(Y)$. Then there exists some $xv \in E(X)$ and $vy \in E(Y)$, and so in L(G) there is an edge between the vertex xv and the vertex vy. Hence E(X) and E(Y) touch. Thus \mathcal{B}' is a bramble of E(G). All that remains is to ensure \mathcal{B} and \mathcal{B}' have the same order. If \mathcal{B} is a minimum hitting set for \mathcal{B} , then \mathcal{B} is a set of vertices in E(G) that intersects a vertex in each $E(X) \in \mathcal{B}'$. So \mathcal{B} is a hitting set for \mathcal{B}' of the same size. Conversely, if \mathcal{B}' is a minimum hitting set of \mathcal{B}' , then \mathcal{B}' is a set of edges in \mathcal{B} that contains an edge in each $E(X) \in \mathcal{B}'$. So $E(X) \in \mathcal{B}'$ is a hitting set for $E(X) \in \mathcal{B}'$ and $E(X) \in \mathcal{B}'$ are equal.

Hence, in order to determine a lower bound on the bramble number $\operatorname{bn}(L(G))$, it is sufficient to construct a line-bramble of G of large order. We will now define a particular line-bramble for any graph G with $|V(G)| \ge 3$.

Definition Fix a vertex $v \in V(G)$ of minimum degree. Then the *canonical line-bramble* of G is the set of connected subgraphs X of G such that either $|V(X)| > \frac{|V(G)|}{2}$, or $|V(X)| = \frac{|V(G)|}{2}$ and X contains v. Note that if |V(G)| is odd, then no elements of the second type occur.

Lemma 6. For every graph G with $|V(G)| \ge 3$, the canonical line-bramble \mathcal{B} is a line-bramble of G.

Proof. By definition, each element of \mathcal{B} is a connected subgraph. Since $|V(G)| \geq 3$, each element of \mathcal{B} contains at least two vertices. All that remains to show is that each pair of subgraphs X,Y in \mathcal{B} intersect in at least one vertex. If $|V(X)| = |V(Y)| = \frac{|V(G)|}{2}$, then X and Y intersect at v. Otherwise, without loss of generality, $|V(X)| > \frac{|V(G)|}{2}$ and $|V(Y)| \geq \frac{|V(G)|}{2}$. If $V(X) \cap V(Y) = \emptyset$, then $|V(X) \cup V(Y)| = |V(X)| + |V(Y)| > |V(G)|$, which is a contradiction.

Let H be a minimum hitting set of the canonical line-bramble \mathcal{B} . Consider the graph G-H. H is a set of edges, so V(G-H)=V(G). Then each component of G-H contains at most $\frac{|V(G)|}{2}$ vertices, otherwise some component of G-H contains an element of \mathcal{B} that does not contain an edge of H. Similarly, if a component contains $\frac{|V(G)|}{2}$ vertices, it cannot contain the vertex v. Thus, our hitting set H must be large enough to separate G into such components. Label the components of G-H as Q_1,\ldots,Q_p such that $|V(Q_1)|\geqslant |V(Q_2)|\geqslant\ldots\geqslant |V(Q_p)|$. The next lemma follows directly:

Lemma 7. For every graph G with $|V(G)| \ge 3$, a set $H \subseteq E(G)$ is a hitting set of the canonical line-bramble $\mathcal B$ if and only if every component of G-H has at most $\frac{|V(G)|}{2}$ vertices, and if $|V(Q_i)| = \frac{|V(G)|}{2}$ then $v \notin V(Q_i)$.

Note the similarity between this characterisation and the *bisection width* of a graph (see [4, 7], for example), which is the minimum number of edges between any $A, B \subset V(G)$ where $A \cap B = \emptyset$ and $|A| = \lfloor \frac{|V(G)|}{2} \rfloor$ and $|B| = \lceil \frac{|V(G)|}{2} \rceil$. (Later we show that most of our components have maximum or almost maximum allowable order.)

Also, we can assume H only contains edges with each end in distinct components—otherwise, remove any edge with both endpoints in the same component. By Lemma 7, what remains is still a hitting set, but it contains fewer edges.

In order to construct a tree-decomposition of L(G), we define the following:

Definition A line-tree-decomposition of G is a pair $(T, \{A_x \subseteq E(G) : x \in V(T)\})$ such that:

- T is a tree.
- $\{A_x \subseteq E(G) : x \in V(T)\}$ is a collection of sets of edges of G, each called a bag, indexed by the nodes of T.
- For all $uw \in E(G)$, the nodes of T indexing the bags containing uw induce a non-empty (connected) subtree of T.
- If two edges $uv, vw \in E(G)$ are incident at a vertex, then some bag A_x contains both uv and vw.

The width of this line-tree-decomposition is $\max\{|A_x|-1:x\in V(T)\}.$

Lemma 8. Given a line-tree-decomposition of G, there is a tree-decomposition of L(G) of the same width.

Proof. For each bag of $\{A_x \subseteq E(G) : x \in V(T)\}$, replace each edge $uw \in G$ with the equivalent vertex $uw \in L(G)$. Then this result follows directly from the defintion of a line graph and the defintion of a tree-decomposition.

Hence, in order to determine an upper bound on the treewidth tw(L(G)), it is sufficient to construct a line-tree-decomposition of G of small width.

4 Line Graph of the Complete Graph

We now prove Theorem 1. Let $G := K_n$. When $n \leq 2$, $\operatorname{tw}(L(G))$ is trivial, so we can assume $n \geq 3$. Let \mathcal{B} be the canonical line-bramble for K_n . Since K_n is regular, note that v is just an arbitrary vertex.

Let H be a minimum hitting set of \mathcal{B} . Recall we label the components of G-H as Q_1, \ldots, Q_p such that $|V(Q_1)| \ge |V(Q_2)| \ge \ldots \ge |V(Q_p)|$.

Consider a pair of components (Q_i, Q_j) where i < j. We call this a *good pair* if one of the following conditions hold:

- 1. n is odd and $|V(Q_i)| < \frac{n-1}{2}$,
- 2. n is even and $|V(Q_i)| < \frac{n}{2} 1$,
- 3. *n* is even, $|V(Q_i)| = \frac{n}{2} 1$, $V(Q_i) \neq \{v\}$, and $v \notin V(Q_i)$.

Lemma 9. Q_1, \ldots, Q_p does not contain a good pair.

Proof. Say (Q_i, Q_j) is a good pair. Let x be a vertex of Q_j , such that if (Q_i, Q_j) is of the third type, then $x \neq v$. Let H' be the set of edges obtained from H by removing the edges from x to Q_i and adding the edges from x to Q_j . Then the components for G - H' are $Q_1, \ldots, Q_{i-1}, Q_i \cup \{x\}, Q_{i+1}, \ldots, Q_{j-1}, Q_j - \{x\}, Q_{j+1}, \ldots Q_p$. To ensure H' is a hitting set, we only need to ensure that $V(Q_i) \cup \{x\}$ is sufficiently small, since all other components are the same as in H, or smaller. If (Q_i, Q_j) is of the first or second types, then $|V(Q_i) \cup \{x\}| = |V(Q_i)| + 1 \leqslant \frac{n-1}{2}$ or $\frac{n}{2} - 1$, depending on the parity of n. In either case, $|V(Q_i) \cup \{x\}| < \frac{n}{2}$. If (Q_i, Q_j) is of the third type, $|V(Q_i) \cup \{x\}| = \frac{n}{2}$, but it does not contain v. Thus, by Lemma 7, H' is a hitting set. However, $|H'| = |H| - |V(Q_i)| + |V(Q_j)| - 1 \leqslant |H| - 1$, which contradicts that H is a minimum hitting set.

Lemma 10. G-H has three components.

Proof. Recall by Lemma 7, we have an upper bound on the order of the components of G-H. Firstly, we show that G-H has at least three components. If G-H has only one component, clearly this component is too large. If G-H has two components and n is odd, then one of the components must have more than $\frac{n}{2}$ vertices. If G-H has two components and n is even, it is possible that both components have exactly $\frac{n}{2}$ vertices, however one of these components must contain v. Thus G-H has at least three components. Now, assume G-H has at least four components. We will show that it has a good pair, contradicting Lemma 9.

If n is odd, we have a good pair of the first type when any two components have less than $\frac{n-1}{2}$ vertices. Thus at least three components have order at least $\frac{n-1}{2}$. Then $|V(G)| \ge 3(\frac{n-1}{2})+1 > n$ when $n \ge 2$, which is a contradiction.

If n is even, we have the second type of good pair whenever two components have less than $\frac{n}{2}-1$ vertices. Similarly to the previous case, $|V(G)| \ge 3(\frac{n}{2}-1)+1 > n$, again a contradiction when n > 4. If n = 4 then each component is a single vertex. Take Q_i, Q_j to be two of these components, neither of which contain the vertex v. Then (Q_i, Q_j) is a good pair of the third

type. Hence G-H does not have more than three components, and as such it has exactly three components.

Lemma 11. If n is odd then $|V(Q_1)| = |V(Q_2)| = \frac{n-1}{2}$ and $|V(Q_3)| = 1$. If n is even then $|V(Q_1)| = \frac{n}{2}, |V(Q_2)| = \frac{n}{2} - 1$ and $|V(Q_3)| = 1$.

Proof. Lemma 10 shows that G-H has three components, and also, we recall that $|V(Q_1)| \ge |V(Q_2)| \ge |V(Q_3)|$. By Lemma 9, (Q_2,Q_3) is not a good pair. Hence $|V(Q_1)| \ge |V(Q_2)| \ge \frac{n-1}{2}$ when n is odd, and $|V(Q_1)| \ge |V(Q_2)| \ge \frac{n}{2} - 1$ when n is even, or else we have a good pair of the first or second types, respectively. By Lemma 7, when n is odd, $|V(Q_1)| = |V(Q_2)| = \frac{n-1}{2}$ and so $|V(Q_3)| = 1$. When n is even, however, $\frac{n}{2} - 1 \le |V(Q_1)|, |V(Q_2)| \le \frac{n}{2}$. Since Q_3 is not empty, it follows that $|V(Q_3)| = 1$ or 2. If $|V(Q_3)| = 1$, then $|V(Q_1)| = \frac{n}{2}, |V(Q_2)| = \frac{n}{2} - 1$ and $|V(Q_3)| = 1$, as required. Alternatively, $|V(Q_1)|, |V(Q_2)| = \frac{n}{2} - 1$. But then at least one of Q_1, Q_2 does not contain v, and $V(Q_3) \ne \{v\}$. Thus either (Q_1, Q_3) or (Q_2, Q_3) is a good pair of the third type, contradicting Lemma 9.

Lemma 12. $|H| \ge (\frac{n-1}{2})(\frac{n-1}{2}) + (n-1)$ when n is odd. $|H| \ge (\frac{n-2}{2})(\frac{n}{2}) + (n-1)$ when n is even.

Proof. From Lemma 11 we know the order of the components of G - H. H contains at least every edge between each pair of components, and since G is complete there is an edge for each pair of vertices. From this it is easy to calculate |H|.

Lemma 12 and the Treewidth Duality Theorem imply:

Corollary 13.

$$\operatorname{tw}(L(K_n)) = \operatorname{bn}(L(K_n)) - 1 \geqslant \begin{cases} (\frac{n-1}{2})(\frac{n-1}{2}) + (n-2) & \text{, if } n \text{ is odd} \\ (\frac{n-2}{2})(\frac{n}{2}) + (n-2) & \text{, if } n \text{ is even.} \end{cases}$$

Now, to obtain an upper bound on $\operatorname{tw}(L(G))$, we construct a line-tree-decomposition of G. First, label the vertices of G by $1, \ldots, n$. Let T be an n-node path, also labelled by $1, \ldots, n$. The bag A_i for the node labelled i, is defined such that $A_i = \{ij : j \in V(G)\} \cup \{uw : u < i < w\}$. Call these edges *initial edges* and *crossover edges*, respectively.

Lemma 14. $(T, \{A_1, \ldots, A_n\})$ is a line-tree-decomposition for G of width

$$\begin{cases} (\frac{n-1}{2})(\frac{n-1}{2}) + (n-2) & , if n is odd \\ (\frac{n-2}{2})(\frac{n}{2}) + (n-2) & , if n is even. \end{cases}$$

Proof. Each edge uw of G appears in A_u and A_w as initial edges. Similarly, all of the edges incident at the vertex u appear in A_u , and the same holds for w. Observe that uw is in A_i if and only if $u \leq i \leq w$. Thus the nodes indexing the bags containing uw form a connected subtree of T, as required.

Now we determine the size of A_i . A_i contains n-1 initial edges and (i-1)(n-i) crossover edges. So $|A_i| = (n-1) + (i-1)(n-i)$. This is maximised when $i = \frac{n+1}{2}$ if n is odd, and when $i = \frac{n}{2}$ or $\frac{n+2}{2}$ if n is even. From this we can calculate the largest bag size, and hence the width of T.

By Lemma 14 and Lemma 8, we get the following Corollary:

Corollary 15.

$$\operatorname{tw}(L(K_n)) \leqslant \begin{cases} \left(\frac{n-1}{2}\right)\left(\frac{n-1}{2}\right) + (n-2) & , \text{ if } n \text{ is odd} \\ \left(\frac{n-2}{2}\right)\left(\frac{n}{2}\right) + (n-2) & , \text{ if } n \text{ is even.} \end{cases}$$

Corollary 13 and Corollary 15 imply Theorem 1.

5 Line-brambles of the Complete Multipartite Graph

We now extend the above result to the line graph L(G) of the complete multipartite graph $G := K_{n_1,\dots,n_k}$, where $k \ge 2$ and $n := |V(G)| = n_1 + \dots + n_k$. If n = k, then $G = K_n$ and Theorem 1 determines $\operatorname{tw}(G)$ exactly, so assume n > k. Let X_i be the i^{th} colour class of G, with order n_i . Call X_i odd or even depending on the parity of $|X_i|$. In a similar fashion to Section 4 we shall find a line-bramble and a line-tree-decomposition for G. In this section, we construct a line-bramble of G.

Let \mathcal{B} be the canonical line-bramble of G, and H the minimum hitting set of \mathcal{B} as defined in Section 3. Since v is a vertex of minimum degree in V(G), then v must be in the largest colour class. Recall the components of G-H are Q_1,\ldots,Q_p , and that we choose the labels such that $|V(Q_1)| \geq |V(Q_2)| \geq \ldots \geq |V(Q_p)|$. There may be multiple possible minimum hitting sets for our line-bramble, hence take H such that the following conditions hold, in order of preference:

- $|V(Q_1)|$ is maximised, then $|V(Q_2)|$ is maximised, ..., then $|V(Q_p)|$ is maximised.
- v is in the colour class of highest possible index.

Consider a pair of components (Q_i, Q_j) where i < j. We call this a *good pair* when for all $x \in Q_j$ there exists $y \in Q_i$ such that xy is an edge, and one of the following holds:

- 1. *n* is odd and $|V(Q_i)| < \frac{n-1}{2}$,
- 2. *n* is even and $|V(Q_i)| < \frac{n}{2} 1$,
- 3. n is even, $|V(Q_i)| = \frac{n}{2} 1$, $v \notin V(Q_i)$ and $V(Q_j) \cap X_s \neq \{v\}$ for all colour classes X_s .

Lemma 16. Q_1, \ldots, Q_p does not contain a good pair.

Proof. Assume (Q_i, Q_j) is a good pair. For each X_s that intersects Q_j , let x_s be some vertex of $Q_j \cap X_s$. If (Q_i, Q_j) is of the third type, choose each $x_s \neq v$. Let H_s be the set of edges created by taking H and removing the edges from x_s to Q_i , then adding the edges from x_s to Q_j . Thus we have removed $|V(Q_i)| - |V(Q_i) \cap X_s|$ edges and have added $|V(Q_i)| - |V(Q_i) \cap X_s|$.

Suppose that $|V(Q_j)| - |V(Q_j) \cap X_s| > |V(Q_i)| - |V(Q_i) \cap X_s|$ for each X_s that intersects Q_j . Then

$$\sum_{s:X_s\cap V(Q_j)\neq\emptyset}|V(Q_j)|-|V(Q_j)\cap X_s|>\sum_{s:X_s\cap V(Q_j)\neq\emptyset}|V(Q_i)|-|V(Q_i)\cap X_s|.$$

However, since we are cycling through all colour classes that intersect Q_j ,

$$\sum_{s:X_s\cap V(Q_j)\neq\emptyset}|V(Q_j)\cap X_s|=|V(Q_j)|.$$

If there are r such colour classes, then

$$(r-1)|V(Q_j)| > r|V(Q_i)| - \sum_{s:X_s \cap V(Q_j) \neq \emptyset} |V(Q_i) \cap X_s| \geqslant (r-1)|V(Q_i)|.$$

This implies $|V(Q_j)| > |V(Q_i)|$, which is a contradiction. Hence, for some s, $|V(Q_j)| - |V(Q_j) \cap X_s| \leq |V(Q_i)| - |V(Q_i) \cap X_s|$. Fix such an s.

A component of $G-H_s$ is either one of $Q_1,\ldots,Q_{i-1},Q_{i+1},\ldots,Q_{j-1},Q_{j+1},\ldots,Q_p$, or $Q_i\cup\{x_s\}$ (which is connected as x_s has a neighbour in Q_i), or strictly contained within Q_j . Since H is a hitting set, to prove H_s is a hitting set it suffices to show that $Q_i\cup\{x_s\}$ is sufficiently small, by Lemma 7. If (Q_i,Q_j) is of the first or second type, then $|V(Q_i)\cup\{x_s\}|=|V(Q_i)|+1\leqslant\frac{n-1}{2}$ or $\frac{n}{2}-1$, depending on the parity of n. In either case, $V(Q_i)\cup\{x_s\}$ is sufficiently small. If (Q_i,Q_j) is of the third type, $|V(Q_i)\cup\{x_s\}|=\frac{n}{2}$, but it does not contain v. Thus H_s is a hitting set. However, $|H_s|=|H|-(|V(Q_i)|-|V(Q_i)\cap X_s|)+(|V(Q_j)|-|V(Q_j)\cap X_s|)\leqslant |H|$. If $|H_s|<|H|$, then H_s is smaller than the minimum hitting set. If $|H_s|=|H|$, since $|V(Q_i)\cup\{x_s\}|>|V(Q_i)|$ and only components of higher index have become smaller, H_s contradicts our choice of minimum hitting set.

Lemma 17. G-H has at least three components.

Proof. By Lemma 7, we have an upper bound on the order of the components of G-H. If G-H has only one component, clearly this component is too large. If G-H has two components and n is odd, then one of the components must have more than $\frac{n}{2}$ vertices. If G-H has two components and n is even, it is possible that both components have exactly $\frac{n}{2}$ vertices, however one of these components must contain v. Thus G-H has at least three components.

If G is a star $K_{1,n-1}$, then $L(G) \cong K_{n-1}$ and $\operatorname{tw}(L(G)) = n-2$, which satisfies Theorem 2. Now assume that G is not a star. Say we have our collection of components Q_1, \ldots, Q_p where $p \geqslant 4$, such that Q_2, \ldots, Q_p are all singleton sets, contained within one colour class. Call this a rare configuration.

Lemma 18. If G is not the star $K_{1,n-1}$, then Q_1, \ldots, Q_p is not a rare configuration.

Proof. Assume G is a rare configuration, but G is not a star. Let X_s be the colour class of Q_2, \ldots, Q_p . Since $p \ge 3$, we may choose $j \in \{2, \ldots, p\}$ such that $V(Q_j) \ne \{v\}$.

Suppose that one of the following conditions hold:

- n is odd and $|V(Q_1)| < \frac{n-1}{2}$,
- n is even and $|V(Q_1)| < \frac{n}{2} 1$,
- n is even, $|V(Q_1)| = \frac{n}{2} 1$ and $v \notin V(Q_1)$.

 Q_1 must contain at least two vertices not in X_s since G is not a star. So for each $x \in V(Q_2) \cup \cdots \cup V(Q_p)$, there is some $y \in V(Q_1)$ such that $y \notin X_s$, so the edge xy exists. Then (Q_1, Q_j) is a good pair, which contradicts Lemma 16. Thus by Lemma 7,

$$|Q_1| = \begin{cases} \frac{n-1}{2} & \text{, if } n \text{ is odd} \\ \frac{n}{2} - 1 & \text{, if } n \text{ is even and } v \in V(Q_1) \\ \frac{n}{2} & \text{, if } n \text{ is even and } v \notin V(Q_1) \end{cases}$$

Since at least two vertices of Q_1 are not in X_s , we may choose $y \in (V(Q_1) - \{v\}) - X_s$. Say $y \in X_t$. We can assume that $v \in V(Q_1)$ or $v \in V(Q_p)$, since if $v \in V(Q_2) \cup \ldots V(Q_{p-1})$, then we can relabel the components Q_2, \ldots, Q_p to obtain a hitting set which is better with regards to the last condition. Thus let $z \in V(Q_2)$, and so $z \neq v$ since $p \geqslant 3$. Let H' be the set of edges created by taking H and removing the edges from y to $Q_3 \cup \cdots \cup Q_{p-1}$, adding the edges from y to Q_1 , and removing the edges from z to $Q_1 - \{y\}$. Then the components of G - H' are $Q_1 \cup \{z\} - \{y\}$, $\{y\} \cup Q_3 \cup \cdots \cup Q_{p-1}$, Q_p . $Q_1 \cup \{z\} - \{y\}$ is connected since $Q_1 - \{y\}$ contains a vertex not in X_s and $z \in X_s$. Similarly, $\{y\} \cup Q_3 \cup \cdots \cup Q_{p-1}$ is connected since $y \in X_t$ and all vertices of $Q_3 \cup \cdots \cup Q_{p-1}$ are in X_s . In order to obtain the desired

contradiction, it suffices to show that H' is a hitting set using Lemma 7, and that H' is a better choice of hitting set than H.

Since $|V(Q_1 \cup \{z\} - \{y\})| = |V(Q_1)|$ and $v \neq z$ and H is a hitting set, $Q_1 \cup \{z\} - \{y\}$ is sufficiently small. Similarly Q_p is sufficiently small. However, $|V(\{y\} \cup Q_3 \cup \cdots \cup Q_{p-1})| = p-2$. As $|V(Q_1)| + \cdots + |V(Q_p)| = n$, it follows that $p-2 = n - |V(Q_1| - 1)$. In order to show this is sufficiently small, we need to consider the parity of n. Also,

$$|H'| = |H| - (p-3) + (|V(Q_1)| - |V(Q_1) \cap X_t|) - (|V(Q_1)| - 1 - |V(Q_1) \cap X_s|).$$

Since $|V(Q_1) \cap X_t| \ge 1$ and $|V(Q_1) \cap X_s| \le |V(Q_1)| - 2$, we have $|H'| \le |H| - (p-1) + |V(Q_1)| = |H| + 2|V(Q_1)| - n$. This also depends on the parity of n. Now we consider these separate cases to check the order of $\{y\} \cup Q_3 \cup \cdots \cup Q_{p-1}$ and |H'|.

Firstly, say n is odd. In this case $|Q_1| = \frac{n}{2}$, so then $|V(\{y\} \cup Q_3 \cup \cdots \cup Q_{p-1})| = p-2 = n-\frac{n-1}{2}-1=\frac{n-1}{2}$, and so $\{y\} \cup Q_3 \cup \cdots \cup Q_{p-1}$ is sufficiently small, and H' is a minimum hitting set. Also, $|H'| \leq |H| + 2(\frac{n-1}{2}) - n < |H|$, so H' is a better choice of minimum hitting set. Secondly, say n is even and $v \in V(Q_1)$. Then $|Q_1| = \frac{n}{2} - 1$, implying $p-2 = \frac{n}{2}$, and $|H'| \leq |H| - 2$. So again, H' is a better choice of minimum hitting set. Finally, say n is even and $v \notin V(Q_1)$. Then $|Q_1| = \frac{n}{2}$ and $v \in V(Q_p)$. Then $p-2 = \frac{n}{2} - 1$, and $|H'| \leq |H| + 2(\frac{n}{2}) - n = |H|$. However, note that the order of the second largest component of G - H' is $p-2 = \frac{n}{2} - 1$, whereas for G - H the order of the second largest component is 1. For G to be a rare configuration, $n \geq 5$, since $|V(Q_1)| \geq 2$ and $p \geq 4$, implying $\frac{n}{2} - 1 > 1$. Thus H' is a better choice of minimum hitting set.

Thus, in either case, if G is not a star, but is a rare configuration, we find a contradiction to our minimum hitting set.

Lemma 19. If G is not a star, then G - H has three components.

Proof. G-H has at least three components, by Lemma 17. Assume for the sake of a contradiction that G-H has greater than three components. Since $p \ge 4$, if all components but Q_1 are singleton sets in the one colour class, then we have a rare configuration. By Lemma 18, this cannot occur. Thus either Q_2 is not a singleton set, or Q_2, \ldots, Q_p are not all in one colour class. Consider a pair (Q_i, Q_j) , where $i \in \{1, 2\}$ and i < j and if $|V(Q_i)| = 1$ then Q_j and Q_i are not in the same colour class. We can find such a pair for i = 1 and for i = 2 since this is not a rare configuration. In either case, for all $x \in V(Q_j)$ there exists a $y \in V(Q_i)$ such that xy is an edge, since there is always some $y \in V(Q_i)$ of a different colour class to x. Since (Q_i, Q_j) is not a good pair by Lemma 16, we know $|V(Q_i)|$ is too large. In particular, if n is odd, $|V(Q_1)| = |V(Q_2)| = \frac{n-1}{2}$. However, since each component must contain a vertex and $p \ge 4$, the sum of the orders of the components is at least $2(\frac{n-1}{2}) + 2 > n$, which is a contradiction. If n is even and v is in neither Q_1 nor Q_2 , then $|V(Q_1)| = |V(Q_2)| = \frac{n}{2}$, which again means the sum of the orders of the components is too large. Finally, if n is even and without loss of generality $v \in V(Q_2)$, then $|V(Q_1)| = \frac{n}{2}$ and $|V(Q_2)| = \frac{n}{2} - 1$, which

still gives a contradiction on the orders of the components. Hence G-H has exactly three components.

Lemma 20. Say G is not a star. If n is odd, then $|V(Q_1)| = |V(Q_2)| = \frac{n-1}{2}$ and $|V(Q_3)| = 1$. If n is even, then $|V(Q_1)| = \frac{n}{2}$, $|V(Q_2)| = \frac{n}{2} - 1$ and $|V(Q_3)| = 1$.

Proof. Lemma 19 shows that G-H has three components. Recall that $|V(Q_1)|\geqslant |V(Q_2)|\geqslant |V(Q_3)|$. If $|V(Q_1)|=1$, then n=3, and since $\frac{n-1}{2}=1$, then our statement holds in this case. Thus we can assume $n\geqslant 4$ and $|V(Q_1)|\geqslant 2$. Hence (Q_1,Q_j) is a good pair for j>1 unless Q_1 is too large. If n is odd, then $|V(Q_1)|=\frac{n-1}{2}$. If $|V(Q_2)|=1$, $\frac{n-1}{2}+1+1=n$, implying n=3. So $|V(Q_2)|\geqslant 2$, and (Q_2,Q_3) is a good pair unless $|V(Q_2)|=\frac{n-1}{2}$, in which case $|V(Q_3)|=1$.

If n is even and $v \in V(Q_1)$, then $|V(Q_1)| = \frac{n}{2} - 1$. Again, if $|V(Q_2)| = 1$ then $\frac{n}{2} - 1 + 1 + 1 = n$, implying n = 2. So $|V(Q_2)| \geqslant 2$, and (Q_2, Q_3) is a good pair unless $|V(Q_2)| = \frac{n}{2}$, implying $|V(Q_3)| = 1$. (Note here we'd need to relabel the components so they are in decending order of size.) Finally, if n is even and $v \notin V(Q_1)$, then $|V(Q_1)| = \frac{n}{2}$. If $|V(Q_2)| = 1$, then $\frac{n}{2} + 1 + 1 = n$, implying n = 4. However, then $|V(Q_3)| = 1$ and our statement holds. If $n \geqslant 5$, then $|V(Q_2)| \geqslant \frac{n}{2} - 1$ else (Q_2, Q_3) is a good pair. Since we must have three components, $|V(Q_2)| = \frac{n}{2} - 1$ and $|V(Q_3)| = 1$. Either way, our components have the desired size.

Lemma 21. Say G is not a star. If $v \notin Q_3$, then the vertex in Q_3 is in a different colour class to v.

Proof. By Lemma 20, $|V(Q_3)| = 1$. Let x be the vertex in Q_3 . Assume for the sake of contradiction that x, v are in colour class X_s . If n is odd then $v \in V(Q_1)$ or $V(Q_2)$, but these components have the same order, by Lemma 20. If n is even, $v \in V(Q_2)$, since otherwise v is in a component of order $\frac{n}{2}$, again by Lemma 20. So without loss of generality, $v \in V(Q_2)$. Define the hitting set H' as follows: from H, add the edges from v to Q_2 , and then remove the edges from v to v0. Since v1 is components of v1 is connected. The orders of the components have not changed, and v1 has not been placed into a component of order v1, so this is a hitting set by Lemma 7. $|H'| = |H| + (|V(Q_2)| - |V(Q_2) \cap X_s|) - (|V(Q_2)| - (|V(Q_2) \cap X_s|)) = |H|$. Since v1 is now in a component of higher index, v2 contradicts our choice of minimum hitting set.

Now consider the structure of the colour classes X_1, \ldots, X_k inside our three components. For the following section, we assume that G is not a star, so we have only three components by Lemma 19.

Definition Let $X_i^* := X_i \cap (V(Q_1) \cup V(Q_2))$, and say X_i^* is *even* or *odd* depending on the parity of its order.

Definition • A colour class X_i is called *equal* if $|V(Q_1) \cap X_i| = |V(Q_2) \cap X_i|$.

- A colour class X_i is Q_1 -skew if $|V(Q_1) \cap X_i| \ge |V(Q_2) \cap X_i| + 1$. When $|V(Q_1) \cap X_i| = |V(Q_2) \cap X_i| + 1$, we say X_i is just- Q_1 -skew.
- A colour class X_i is Q_2 -skew if $|V(Q_1) \cap X_i| + 1 \leq |V(Q_2) \cap X_i|$. When $|V(Q_1) \cap X_i| + 1 = |V(Q_2) \cap X_i|$, we say X_i is just- Q_2 -skew.
- (X_i, X_j) is called a *skew pair* if X_i is Q_1 -skew and X_j is Q_2 -skew.

For simplicity, if X_i is Q_1 -skew or Q_2 -skew, then we say X_i is skew. Similarly if X_i is just- Q_1 -skew or just- Q_2 -skew, then we say X_i is skew.

We say G is an exception if n is even, and there is a colour class X_s such that $|V(Q_1) \cap X_s| = |V(Q_1)| - 1$ and $|V(Q_2) \cap X_s| = |V(Q_2)| - 1$.

Lemma 22. Say $n \ge 5$ and G is not a star or an exception. If (X_i, X_j) is a skew pair, then both X_i and X_j are just-skew.

Proof. Since no colour class can be both Q_1 -skew and Q_2 -skew, $i \neq j$. Since $n \geq 5$, by Lemma 20, both Q_1 and Q_2 contain at least two vertices, and thus intersect at least two colour classes.

First, we show that both X_i^* and X_j^* contain a vertex other than v. If $X_i^* = \emptyset$, then X_i is not skew. So now assume $X_i^* \neq \emptyset$. Similarly, $X_j^* \neq \emptyset$. If $X_i^* = \{v\}$, then by Lemma 21, $X_i \cap V(Q_3) = \emptyset$, and so $X_i = \{v\}$. But since v is in the largest colour class, every colour class has order one, and as such k = n. We have assumed this is not the case, since the complete graph case was solved in Section 4. Thus both X_i^* and X_j^* contain a vertex other than v, and since X_i is Q_1 -skew and X_j is Q_2 -skew, there are vertices $x \in (V(Q_1) \cap X_i) - \{v\}$ and $y \in (V(Q_2) \cap X_j) - \{v\}$. Then define the hitting set H' as follows: remove the edges from x to Q_2 from H, add the edges from x to Q_1 , remove the edges from y to $Q_1 - \{x\}$, and add the edges from y to $Q_2 \cup \{x\}$. Now G - H' has components $(Q_1 - \{x\}) \cup \{y\}, (Q_2 - \{y\}) \cup \{x\}$ and Q_3 , assuming that $(Q_1 - \{x\}) \cup \{y\}$ and $(Q_2 - \{y\}) \cup \{x\}$ are in fact connected (which we now prove).

If $(Q_1 - \{x\}) \cup \{y\}$ is not connected, then it intersects only one colour class, which must be X_j as $y \in X_j$. Since $x \in X_i$, it follows that $|V(Q_1) \cap X_j| = |V(Q_1)| - 1$. Since X_j is Q_2 -skew,

$$|V(Q_1)| = |V(Q_1) \cap X_j| + 1 \le |V(Q_2) \cap X_j| \le |V(Q_2)|.$$

Since $|V(Q_1)| \ge |V(Q_2)|$, we have $|V(Q_1)| = |V(Q_2)|$, and each inequality in the above equation is an equality. In particular, $|V(Q_2) \cap X_j| = |V(Q_2)|$, and thus $V(Q_2) \subseteq X_j$. But Q_2 intersects at least two colour classes, which is a contradiction. Thus $(Q_1 - \{x\}) \cup \{y\}$ is a connected component of G - H'.

If $(Q_2 - \{y\}) \cup \{x\}$ is not connected, then it intersects only one colour class, which must be X_i as $x \in X_i$. Since $y \in X_j$, it follows that $|V(Q_2) \cap X_i| = |V(Q_2)| - 1$. Since X_i is Q_1 -skew,

$$|V(Q_1)| \ge |V(Q_1) \cap X_i| \ge |V(Q_2) \cap X_i| + 1 = |V(Q_2)|.$$

By Lemma 20, either $|V(Q_1)| = |V(Q_2)|$ (when n is odd) or $|V(Q_1)| = |V(Q_2)| + 1$ (when n is even). If $|V(Q_1) \cap X_i| = |V(Q_1)|$, then $V(Q_1) \subseteq X_i$, contradicting our result that Q_1 intersects at least two colour classes. Otherwise $|V(Q_1) \cap X_i| = |V(Q_1)| - 1$, which can only happen when n is even. In this case, since $|V(Q_1) \cap X_i| = |V(Q_1)| - 1$ and $|V(Q_2) \cap X_i| = |V(Q_2)| - 1$, G is an exception. This contradiction shows that $(Q_2 - \{y\}) \cup \{x\}$ is a connected component of G - H'.

Thus G - H' has components $(Q_1 - \{x\}) \cup \{y\}, (Q_2 - \{y\}) \cup \{x\}$ and Q_3 . Hence the orders of the components have not changed. As the vertex v has not changed components, H' is a legitimate hitting set. But since H is the minimum hitting set, $|H'| \ge |H|$. Hence

$$|H'| = |H| - (|V(Q_2)| - |V(Q_2) \cap X_i|) + (|V(Q_1)| - |V(Q_1) \cap X_i|)$$
$$- (|V(Q_1)| - 1 - |V(Q_1) \cap X_j|) + (|V(Q_2)| + 1 - |V(Q_2) \cap X_j|)$$
$$\geqslant |H|.$$

Which implies

$$|V(Q_2) \cap X_i| + |V(Q_1) \cap X_j| \ge |V(Q_1) \cap X_i| + |V(Q_2) \cap X_j| - 2.$$

Since X_i is Q_1 -skew and X_i is Q_2 -skew,

$$|V(Q_1) \cap X_i| + |V(Q_2) \cap X_i| - 2 \ge |V(Q_2) \cap X_i| + |V(Q_1) \cap X_i| \ge |V(Q_1) \cap X_i| + |V(Q_2) \cap X_i| - 2$$

This only holds if every inequality is actually an equality. That is, X_i is just- Q_1 -skew and X_j is just- Q_2 -skew.

Lemma 23. If G is not a star and X_i is skew, the X_i is just-skew.

Proof. Suppose G is not an exception and $n \ge 5$. If there exists a Q_1 -skew colour class X_s and a Q_2 -skew colour class X_t , then either (X_s, X_i) or (X_i, X_t) is a skew pair, and by Lemma 22, X_i is just-skew, as required.

Alternatively, either no colour class is Q_1 -skew or no colour class is Q_2 -skew. Suppose, for the sake of contradiction, there is a skew colour class X_j that is not just-skew. In the first case, for all ℓ , $|V(Q_1) \cap X_{\ell}| \leq |V(Q_2) \cap X_{\ell}|$, and $|V(Q_1) \cap X_j| + 2 \leq |V(Q_2) \cap X_j|$. Thus

$$|V(Q_1)| + 2 = (\sum_{1 \le \ell \le k, \ell \ne j} |V(Q_1) \cap X_\ell|) + |V(Q_1) \cap X_j| + 2 \le (\sum_{1 \le \ell \le k, \ell \ne j} |V(Q_2) \cap X_\ell|) + |V(Q_2) \cap X_j| = |V(Q_2)|.$$

This contradicts $|V(Q_1)| \ge |V(Q_2)|$. Similarly, in the second case, $|V(Q_1)| \ge |V(Q_2)| + 2$, which contradicts Lemma 20. Thus if $n \ge 5$ and G is not an exception, then our statement holds.

Consider the case when G is an exception. Then $|V(Q_1) \cap X_s| = |V(Q_1)| - 1$ and $|V(Q_2) \cap X_s| = |V(Q_2)| - 1$. Since n is even, by Lemma 20, $|V(Q_1)| = |V(Q_2)| + 1$, so X_s is just-skew. There are exactly two other vertices of $Q_1 \cup Q_2$, one in each component, which we label x and y respectively. If x and y are in the same colour class, then that colour class is equal. Otherwise, x and y are in different colour classes, each of which intersects $Q_1 \cup Q_2$ in one vertex. Such a colour class is just-skew, as required.

Finally, consider the case $n \leq 4$. Then $|V(Q_1) \cup V(Q_2)| \leq 3$. Thus either $|V(Q_1)| = |V(Q_2)| = 1$, or $|V(Q_1)| = 2$ and $|V(Q_2)| = 1$. If X_i is not just-skew, then X_i contains at least two vertices in some component. Thus, the only possibility to consider is when $|V(Q_1) \cap X_i| = 2$. But then Q_1 is not connected, since both vertices are in the same colour class, which is a contradiction.

Thus
$$X_i$$
 is just-skew.

From Lemma 23 and Lemma 20, we get the following results about $|Q_1 \cap X_i|$ and $|Q_2 \cap X_i|$:

Corollary 24. Say some colour class X_i does not intersect Q_3 . Then:

- if X_i is equal, then $|Q_1 \cap X_i| = |Q_2 \cap X_i| = \frac{n_i}{2}$
- if X_i is Q_1 -skew, then $|Q_1 \cap X_i| = \frac{n_i+1}{2}$ and $|Q_2 \cap X_i| = \frac{n_i-1}{2}$
- if X_i is Q_2 -skew, then $|Q_1 \cap X_i| = \frac{n_i 1}{2}$ and $|Q_2 \cap X_i| = \frac{n_i + 1}{2}$

Corollary 25. Say some colour class X_i does intersect Q_3 . Then $|V(Q_3) \cap X_i| = 1$ and:

- if X_i is equal, then $|Q_1 \cap X_i| = |Q_2 \cap X_i| = \frac{n_i 1}{2}$
- if X_i is Q_1 -skew, then $|Q_1 \cap X_i| = \frac{n_i}{2}$ and $|Q_2 \cap X_i| = \frac{n_i-2}{2}$
- if X_i is Q_2 -skew, then $|Q_1 \cap X_i| = \frac{n_i-2}{2}$ and $|Q_2 \cap X_i| = \frac{n_i}{2}$

Lemma 26. Say G is not the star. If n is odd, then there is an equal number of Q_1 -skew and Q_2 -skew colour classes. If n is even, then there is one more Q_1 -skew colour class than there are Q_2 -skew colour classes.

Proof. Say there are a Q_1 -skew colour classes and b Q_2 -skew colour classes. By Lemma 23, if X_i is Q_1 -skew, then $|V(Q_1) \cap X_i| = |V(Q_2) \cap X_i| + 1$, and if X_i is Q_2 -skew, then $|V(Q_1) \cap X_i| = |V(Q_2) \cap X_i| - 1$. Thus

$$|V(Q_1)| = \sum_{1 \leqslant i \leqslant k} |V(Q_1) \cap X_i| = (\sum_{1 \leqslant i \leqslant k} |V(Q_2) \cap X_i|) + a - b = |V(Q_2)| + a - b.$$

If *n* is odd, then by Lemma 20, $|V(Q_1)| = |V(Q_2)|$, so a = b, as required. When *n* is even, $|V(Q_1)| = |V(Q_2)| + 1$, so a = b + 1.

From Lemma 19, Lemma 20, Corollary 24 and Corollary 25, we get the following result that summarises this section:

Theorem 27. Let G be a complete multipartite graph $K_{n_1,...,n_k}$ with n vertices, such that $k \ge 2$, n > k and G is not a star. Let H be a minimum hitting set of the canonical linebramble of G, as defined at the beginning of this section. Let $Q_1, ..., Q_p$ be the components of G - H. Then p = 3. If n is odd, then $|V(Q_1)| = |V(Q_2)| = \frac{n-1}{2}$ and $|V(Q_3)| = 1$, and if n is even, then $|V(Q_1)| = \frac{n}{2}$, $|V(Q_2)| = \frac{n}{2} - 1$ and $|V(Q_3)| = 1$. For a colour class X_i ,

$$\frac{n_i - 2}{2} \le |V(Q_1) \cap X_i|, |V(Q_2) \cap X_i| \le \frac{n_i + 1}{2}.$$

Theorem 28. Let G be a complete regular multipartite graph $K_{c,...,c}$ with n vertices and k colour classes, such that $k \ge 2$ and n > k. Let H be a minimum hitting set of the canonical line-bramble of G, as defined at the beginning of this section. Let Q_1, \ldots, Q_p be the components of G - H. Then p = 3. If n is odd, then $|V(Q_1)| = |V(Q_2)| = \frac{n-1}{2}$ and $|V(Q_3)| = 1$ and

- for one colour class X_i , we have $|V(Q_1) \cap X_i| = |V(Q_2) \cap X_i| = \frac{c-1}{2}$ and $|V(Q_3) \cap X_i| = 1$,
- for $\frac{k-1}{2}$ other colour classes X_i , we have $|V(Q_1) \cap X_i| = \frac{c+1}{2}$ and $|V(Q_2) \cap X_i| = \frac{c-1}{2}$,
- for the remaining $\frac{k-1}{2}$ colour classes X_i , we have $|V(Q_1) \cap X_i| = \frac{c-1}{2}$ and $|V(Q_2) \cap X_i| = \frac{c+1}{2}$.

If n is even, then $|V(Q_1)| = \frac{n}{2}$, $|V(Q_2)| = \frac{n}{2} - 1$ and $|V(Q_3)| = 1$. If n is even and c is odd, then

- for one colour class X_i , we have $|V(Q_1) \cap X_i| = |V(Q_2) \cap X_i| = \frac{c-1}{2}$ and $|V(Q_3) \cap X_i| = 1$,
- for $\frac{k}{2}$ other colour classes X_i , we have $|V(Q_1) \cap X_i| = \frac{c+1}{2}$ and $|V(Q_2) \cap X_i| = \frac{c-1}{2}$,
- for the remaining $\frac{k}{2}-1$ colour classes X_i , we have $|V(Q_1)\cap X_i|=\frac{c-1}{2}$ and $|V(Q_2)\cap X_i|=\frac{c+1}{2}$.

Alternatively, if n is even and c is even, then

- for one colour class X_i , we have $|V(Q_1) \cap X_i| = \frac{c}{2}$, $|V(Q_2) \cap X_i| = \frac{c}{2} 1$ and $|V(Q_3) \cap X_i| = 1$,
- for the other k-1 colour classes X_i , we have $|V(Q_1) \cap X_i| = |V(Q_1) \cap X_i| = \frac{c}{2}$.

Proof. Since G is regular and $n > k \ge 2$, G is not a star. The statements about the number and order of the components of G-H all follow from Lemma 19 and Lemma 20. Since n = ck, when n is odd, c is odd and k is odd. When n is even, at least one of c and k are even. Then from Corollary 24, Corollary 25 and Lemma 26, the rest of the theorem follows.

6 Line-tree-decompositions of the Complete Multipartite Graph

We reuse the following notation from the previous section: G is a complete multipartite graph K_{n_1,\ldots,n_k} , that is not an independent set, complete graph or a star. (Recall we have already proven Theorem 2 for such graphs.) H is our specific minimum hitting set for the canonical line-bramble of G. Q_1, Q_2 and Q_3 are the three components of G - H. X_1, \ldots, X_k are the colour classes of G such that $|X_i| = n_i$.

From the results of the previous section, it is possible to determine the order of our minimum hitting set H. However, first we find a tree-decomposition of L(G) with width expressed in terms of H, as this will make things easier.

Now we define a line-tree-decomposition of G, which gives a tree-decomposition for L(G) by Lemma 8. The underlying tree T will be a path. Since T is a path, it makes sense to refer to a bag *left* or *right* of another bag, depending on the relative positions of the corresponding nodes in T. If a bag is to the right of another bag and the nodes which index them are adjacent in T, then we say it is *directly right*. Similarly define *directly left*. For a vertex u of G, let $\deg_i(u)$ be the number of edges in G incident to u with the other endpoint in the component Q_i .

First, label the vertices of Q_1 by $x_1, \ldots, x_{|V(Q_1)|}$ in some order, which we will specify later. Similarly, label the vertices of Q_2 by $y_1, \ldots, y_{|V(Q_2)|}$, again in an order we will later specify. Finally, by Theorem 27, Q_3 contains a single vertex, which we label z.

Then define the following bags:

- $\gamma := H = \{uw \in E(G) : u, w \text{ are in different components of } G H\},$
- for $1 \le i \le |V(Q_1)|$, $\alpha_i := \{x_\ell u, x_j w \in E(G) : u \in V(Q_1), w \in V(G) V(Q_1), 1 \le \ell \le i, i \le j \le |V(Q_1)|\},$
- for $1 \le i \le |V(Q_2)|$, $\beta_i := \{ y_\ell u, y_j w \in E(G) : u \in V(Q_2), w \in V(G) V(Q_2), 1 \le \ell \le i, i \le j \le |V(Q_2)| \}.$

Each bag is indexed by a node of T. Left-to-right, the nodes of T index the bags in the following order: $\beta_{|V(Q_2)|}, \ldots, \beta_1, \gamma, \alpha_1, \ldots, \alpha_{|V(Q_1)|}$. Let \mathcal{X} denote the collection of bags. We claim this defines a line-tree-decomposition (T, \mathcal{X}) for G, independent of our ordering of Q_1 and Q_2 .

Lemma 29. (T, \mathcal{X}) is a line-tree-decomposition of G.

Proof. Consider $uw \in E(G)$. We require that the nodes indexing the bags containing uw induce a non-empty connected subpath of T. Firstly, assume that u and w are in different

components of G-H. If $u=x_i$ and $w=y_j$, then $uw \in \beta_j, \ldots, \beta_1, \gamma, \alpha_1, \ldots, \alpha_i$, meaning uw is in precisely this sequence of bags. If $u=x_i$ and w=z, then $uw \in \gamma, \alpha_1, \ldots, \alpha_i$. If $u=y_j$ and w=z, then $uw \in \beta_j, \ldots, \beta_1, \gamma$.

Alternatively, u and w are in the same component of G-H, which is either Q_1 or Q_2 , since by Theorem 27, $|V(Q_3)| = 1$. If $u, w \in V(Q_1)$, then let $u = x_i$ be the vertex of smaller label. Then $uw \in \alpha_i, \ldots, \alpha_{|V(Q_1)|}$. If $u, w \in V(Q_2)$, then similarly let $u = y_i$ be the vertex of smaller label. Then $uw \in \beta_{|V(Q_2)|}, \ldots, \beta_i$. This shows that the nodes indexing the bags containing uw induce a non-empty connected subpath of T.

All that remains is to show that if two edges are incident at a vertex, then there is a bag of \mathcal{X} containing both of them. Now if the shared vertex of the two edges is $x_i \in V(Q_1)$, then by inspection both edges are in α_i . If the shared vertex is $y_j \in V(Q_2)$, then both edges are in β_i . Finally, if the shared vertex is z, then both edges are in γ .

Now we determine the width of (T, \mathcal{X}) , which is one less than the order of the largest bag. To do so, we use a specific labelling of $Q_1 \cup Q_2$. We do this in two different ways, depending on whether G is regular.

In our first ordering, label the vertices $x_1, \ldots, x_{|V(Q_1)|}$ in order of non-decreasing size of the colour class containing x_i , and do the same for $y_1, \ldots, y_{|V(Q_2)|}$.

Lemma 30.
$$|\alpha_i| \leq |\alpha_1| + O(n)$$
, for all $1 \leq i \leq |V(Q_1)|$.

Proof. We will show that $|\alpha_i| \leq |\alpha_{i-1}| + 2$ for all i. This implies that $|\alpha_i| \leq |\alpha_1| + 2(i-1)$. Since $i \leq |V(Q_1)|$ and $|V(Q_1)| \leq \frac{n}{2}$ by Lemma 7, this is sufficient.

$$\begin{aligned} \alpha_i = & \{ x_{\ell} u, x_j w \in E(G) : u \in V(Q_1), w \in V(G) - V(Q_1), 1 \leqslant \ell \leqslant i, i \leqslant j \leqslant |V(Q_1)| \} \\ = & \{ x_{\ell} u \in E(G) : u \in V(Q_1), 1 \leqslant \ell \leqslant i \} \cup \{ x_j w \in E(G) : w \in V(G) - V(Q_1), i \leqslant j \leqslant |V(Q_1)| \}. \end{aligned}$$

This is a disjoint union. Let X_s, X_t be the colour classes such that $x_{i-1} \in X_s$ and $x_i \in X_t$, and note that it is possible s = t. Then

$$\begin{aligned} |\alpha_{i}| - |\alpha_{i-1}| &= |\{x_{\ell}u \in E(G) : u \in V(Q_{1}), 1 \leqslant \ell \leqslant i\}| \\ &- |\{x_{\ell}u \in E(G) : u \in V(Q_{1}), 1 \leqslant \ell \leqslant i - 1\}| \\ &+ |\{x_{j}w \in E(G) : w \in V(G) - V(Q_{1}), i \leqslant j \leqslant |V(Q_{1})|\}| \\ &- |\{x_{j}w \in E(G) : w \in V(G) - V(Q_{1}), i - 1 \leqslant j \leqslant |V(Q_{1})|\}| \\ &\leqslant \deg_{1}(x_{i}) - |\{x_{i-1}w \in E(G) : w \in V(G) - V(Q_{1})\}| \\ &= \deg_{1}(x_{i}) - (\deg_{G}(x_{i-1}) - \deg_{1}(x_{i-1})) \\ &= \deg_{1}(x_{i}) - (n - n_{s} - \deg_{1}(x_{i-1})) \\ &= |V(Q_{1})| - |V(Q_{1} \cap X_{t})| - (n - n_{s} - |V(Q_{1})| + |V(Q_{1} \cap X_{s})|) \\ &= 2|V(Q_{1})| + n_{s} - |V(Q_{1} \cap X_{t})| - n - |V(Q_{1} \cap X_{s})|. \end{aligned}$$

Assume for the sake of contradiction that $|\alpha_i| - |\alpha_{i-1}| > 2$. Then:

$$2|V(Q_1)| + n_s > n + |V(Q_1) \cap X_s| + |V(Q_1) \cap X_t| + 2.$$

By the ordering of the vertices in Q_1 , $n_t \ge n_s$. Then by Theorem 27,

$$|V(Q_1) \cap X_s| + |V(Q_1) \cap X_t| \geqslant \frac{n_s - 2}{2} + \frac{n_t - 2}{2} \geqslant n_s - 2.$$

Hence $2|V(Q_1)| + n_s > n + n_s - 2 + 2$; that is, $2|V(Q_1)| > n$. But $|V(Q_1)| > \frac{n}{2}$ contradicts Lemma 7.

By symmetry we have:

Lemma 31. $|\beta_i| \leq |\beta_1| + O(n)$, for all $1 \leq i \leq |V(Q_2)|$.

Lemma 32. The maximum bag size of (T, \mathcal{X}) , using our first ordering, is at most |H| + O(n).

Proof. By Lemma 30 and Lemma 31, the maximum size of a bag right of γ is at most $|\alpha_1| + O(n)$, and left of γ it is $|\beta_1| + O(n)$. By inspection, the edges in $\alpha_1 - \gamma$ are all adjacent to x_1 . Hence there are at most n of them. Thus $|\alpha_1| \leq |\gamma| + n$. Similarly $|\beta_1| \leq |\gamma| + n$. Since $\gamma = H$, this is sufficient.

Given this, we now determine |H|.

Lemma 33.
$$|H| = \frac{1}{2} \left(\sum_{1 \le i < j \le k} n_i n_j \right) + O(n)$$

Proof. |H| equals the number of edges between Q_1 and Q_2 , plus the number of edges between Q_3 and $Q_1 \cup Q_2$. First we count the edges between Q_1 and Q_2 . Since, by Theorem 27, $\frac{n_i}{2} - 1 \leq |V(Q_1) \cap X_i|, |V(Q_2) \cap X_i| \leq \frac{n_i+1}{2}$, this is

$$\begin{split} \sum_{i \neq j} |V(Q_1) \cap X_i| |V(Q_2) \cap X_j| \geqslant & \sum_{i \neq j} \left(\frac{n_i}{2} - 1\right) \left(\frac{n_j}{2} - 1\right) \\ = & \frac{1}{4} \left(\sum_{i \neq j} n_i n_j\right) - O(n) \\ = & \frac{1}{2} \left(\sum_{1 \leqslant i < j \leqslant k} n_i n_j\right) - O(n). \end{split}$$

Similarly, we can show that $\sum_{i\neq j} |V(Q_1) \cap X_i| |V(Q_2) \cap X_j| \leq \frac{1}{2} \left(\sum_{1 \leq i < j \leq k} n_i n_j \right) + O(n)$. The edges between Q_3 and $Q_1 \cup Q_2$ are simply the edges incident to z, of which there are at most n-1. The result follows.

Recall that $\operatorname{tw}(L(G)) = \operatorname{bn}(L(G)) - 1 \ge |H| - 1$ by Lemma 5 and the Treewidth Duality Theorem. Also, by Lemma 8 and Lemma 32, $\operatorname{tw}(L(G)) \le |H| + O(n)$. Together, these results establish the remaining cases of Theorem 2.

When G is regular, that is, $n_1 = \cdots = n_k$, we can get a more accurate bound on the treewidth. Define $c := n_1$ to be the size of each colour class. We need a different ordering of the vertices $x_1, \ldots, x_{|Q_1|}$ and $y_1, \ldots, y_{|Q_2|}$ to obtain our result. In order to do this, we recall the notion of a skew colour class, as defined in Section 5, and the associated results. First consider a colour class X_i that does not intersect Q_3 . If X_i is equal, then say every vertex of X_i is Type 1. If X_i is Q_1 -skew, then each vertex in $Q_1 \cap X_i$ is Type 1 and each vertex in $Q_2 \cap X_i$ is Type 2. If X_i is Q_2 -skew, then each vertex in $Q_1 \cap X_i$ is Type 2 and each vertex in $Q_2 \cap X_i$ is Type 1. Finally, each vertex in the remaining colour class (that does intersect Q_3) is Type 3. Thus each vertex of V(G) - z is either Type 1, 2 or 3. Label the vertices of Q_1 in order $x_1, \ldots, x_{|V(Q_1)|}$ by first labelling Type 1 vertices, then Type 2 vertices, and finally Type 3 vertices. Do the same for $y_1, \ldots, y_{|V(Q_2)|}$.

Lemma 34. If $k \ge 3$, then Q_1 contains at least two Type 1 vertices, and Q_2 contains at least one Type 1 vertex. If k = 2 and $c \ge 3$, then Q_1 contains at least two Type 1 vertices, and Q_2 contains at least one Type 1 or Type 2 vertex.

Proof. If X_i is a colour class that does not intersect Q_3 , then it intersects both of Q_1 and Q_2 —if not, then by Lemma 23, $|X_i|=1$ and G is the complete graph. Since we are trying to find Type 1 and Type 2 vertices, from now on we only consider colour classes that do not intersect Q_3 . If $k \geq 5$, then there are at least four colour classes that do not intersect Q_3 . From Theorem 28, there are either at least two Q_1 -skew and Q_2 -skew colour classes, or at least four equal colour classes. Even if each such colour class intersects each of Q_1 and Q_2 only once, there are still enough colour classes of the correct skew to get all our required Type 1 vertices. Similar, if k=4 and c is odd, then there are two Q_1 -skew colour classes and one Q_2 -skew colour class, and if k=4 and c is even, there are three equal colour classes. This is again sufficient.

If k=3, then by Theorem 28 again, there are enough Q_2 -skew or equal colour classes to ensure that Q_2 has at least one Type 1 vertex. However, if n is odd, there is only one Q_1 -skew colour class. In this case, c is odd, and so $c \ge 3$. Thus that colour class contains at least two vertices in Q_1 . Thus Q_1 has two Type 1 vertices.

Now assume k=2 and $c \ge 3$. If c is odd, there is one Q_1 -skew colour class, again by Theorem 28. This colour class contains at least two vertices in Q_1 and one in Q_2 , which satisfies our requirement, now that Q_2 only requires a Type 2 vertex. If c is even, then there is one equal colour class. $c \ge 3$, so as it is even, $c \ge 4$ and each component contains two vertices from this colour class. This is sufficient.

The following lemma strengthens Lemma 30 for the case when G is regular.

Lemma 35. If $k \ge 3$ or $c \ge 3$, then $|\alpha_1| \ge |\alpha_2| \ge \ldots \ge |\alpha_{|V(Q_1)|}|$.

Proof. We will show that $|\alpha_i| \leq |\alpha_{i-1}|$ for all i. We can write α_i as the disjoint union

$$\alpha_i = \{ x_{\ell} u \in E(G) : u \in V(Q_1), 1 \leqslant \ell \leqslant i \} \cup \{ x_i w \in E(G) : w \in V(G) - V(Q_1), i \leqslant j \leqslant |V(Q_1)| \}.$$

Let X_s, X_t be the colour classes such that $x_{i-1} \in X_s$ and $x_i \in X_t$, and note that it is possible that s = t. Define $r := |\{x_i x_f \in E(G) : f < i\}|$. Then

$$\begin{split} |\alpha_i| - |\alpha_{i-1}| &= |\{x_\ell u \in E(G) : u \in V(Q_1), 1 \leqslant \ell \leqslant i\}| \\ &- |\{x_\ell u \in E(G) : u \in V(Q_1), 1 \leqslant \ell \leqslant i-1\}| \\ &+ |\{x_j w \in E(G) : w \in V(G) - V(Q_1), i \leqslant j \leqslant |V(Q_1)|\}| \\ &- |\{x_j w \in E(G) : w \in V(G) - V(Q_1), i-1 \leqslant j \leqslant |V(Q_1)|\}| \\ &= \deg_1(x_i) - r - |\{x_{i-1} w \in E(G)|w \in V(G) - V(Q_1)\}| \\ &= \deg_1(x_i) - r - (\deg_G(x_{i-1}) - \deg_1(x_{i-1})) \\ &= \deg_1(x_i) - r - (n - n_s - \deg_1(x_{i-1})) \\ &= |V(Q_1)| - |V(Q_1 \cap X_t)| - r - (n - n_s - |V(Q_1)| + |V(Q_1 \cap X_s)|) \\ &= 2|V(Q_1)| + n_s - r - |V(Q_1 \cap X_t)| - n - |V(Q_1 \cap X_s)|. \end{split}$$

Assume for the sake of contradiction that $|\alpha_i| - |\alpha_{i-1}| > 0$. Then:

$$2|V(Q_1)| + n_s > n + r + |V(Q_1) \cap X_s| + |V(Q_1) \cap X_t|.$$

There are two cases to consider. First, say that both x_{i-1} and x_i are Type 1. So X_s and X_t are both equal or Q_1 -skew, and neither intersects Q_3 . Since G is regular, $n_t = n_s$. Then by Corollary 24, $|V(Q_1) \cap X_s| + |V(Q_1) \cap X_t| \ge \frac{n_s}{2} + \frac{n_t}{2} = n_s$. Hence $2|V(Q_1)| + n_s > n + n_s + r \ge n + n_s$, so $2|V(Q_1)| > n$, which contradicts Lemma 7.

Alternatively, since we ordered our vertices by non-decreasing type, we can assume x_i does not have Type 1. However, by Lemma 34, Q_1 has at least two Type 1 vertices, x_a and x_b . Note if two vertices of Q_1 are in the same colour class, they have the same type, so we know that x_a and x_b are in a different colour class to x_i . Also, a, b < i, thus $r \ge 2$. Since $n_t = n_s$, by Theorem 27, $|V(Q_1) \cap X_s| + |V(Q_1) \cap X_t| \ge \frac{n_s - 2}{2} + \frac{n_t - 2}{2} = n_s - 2$. Hence $2|V(Q_1)| + n_s > n + n_s - 2 + r \ge n + n_s$, so $2|V(Q_1)| > n$, which again contradicts Lemma 7. \square

We must also consider the equivalent argument for bags to the left of γ , as we did in the general case. However, here the arguments are not quite the same.

Lemma 36. If
$$k \ge 3$$
 or $c \ge 3$, then $|\beta_1| \ge |\beta_2| \ge \ldots \ge |\beta_{|V(Q_2)|}|$.

Proof. We will show that $|\beta_i| \leq |\beta_{i-1}|$ for all i. We can write β_i as the disjoint union $\beta_i = \{y_\ell u \in E(G) : u \in V(Q_2), 1 \leq \ell \leq i\} \cup \{y_i w \in E(G) : w \in V(G) - V(Q_2), i \leq j \leq |V(Q_2)|\}.$

Let X_s, X_t be the colour classes such that $y_{i-1} \in X_s$ and $y_i \in X_t$, and note that it is possible that s = t. Define $r := |\{y_i y_f \in E(G) : f < i\}|$. Then

$$\begin{split} |\beta_{i}| - |\beta_{i-1}| = & |\{y_{\ell}u \in E(G) : u \in V(Q_{2}), 1 \leqslant \ell \leqslant i\}| \\ - |\{y_{\ell}u \in E(G) : u \in V(Q_{2}), 1 \leqslant \ell \leqslant i-1\}| \\ + |\{y_{j}w \in E(G) : w \in V(G) - V(Q_{2}), i \leqslant j \leqslant |V(Q_{2})|\}| \\ - |\{y_{j}w \in E(G) : w \in V(G) - V(Q_{2}), i-1 \leqslant j \leqslant |V(Q_{2})|\}| \\ = & \deg_{2}(y_{i}) - r - |\{y_{i-1}w \in E(G)|w \in V(G) - V(Q_{2})\}| \\ = & \deg_{2}(y_{i}) - r - (\deg_{G}(y_{i-1}) - \deg_{2}(y_{i-1})) \\ = & \deg_{2}(y_{i}) - r - (n - n_{s} - \deg_{2}(y_{i-1})) \\ = & |V(Q_{2})| - |V(Q_{2} \cap X_{t})| - r - (n - n_{s} - |V(Q_{2})| + |V(Q_{2} \cap X_{s})|) \\ = & 2|V(Q_{2})| + n_{s} - r - |V(Q_{2} \cap X_{t})| - n - |V(Q_{2} \cap X_{s})|. \end{split}$$

Assume for the sake of contradiction that $|\beta_i| - |\beta_{i-1}| > 0$. Then:

$$2|V(Q_2)| + n_s > n + r + |V(Q_2) \cap X_s| + |V(Q_2) \cap X_t|.$$

There are two cases to consider. First, say that neither of y_i and y_{i-1} have Type 3. So neither X_s nor X_t intersects Q_3 . G is regular, so $n_t = n_s$. By Corollary 24, $|V(Q_2) \cap X_s| + |V(Q_2) \cap X_t| \ge \frac{n_s-1}{2} + \frac{n_t-1}{2} = n_s - 1$. Hence $2|V(Q_2)| + n_s > n + r + n_s - 1 \ge n + n_s - 1$, and so $2|V(Q_2)| > n - 1$. However, Theorem 28 states that $|V(Q_2)| \le \frac{n-1}{2}$, so this is a contradiction.

Alternatively, y_i has Type 3. By Lemma 34, Q_2 contains at least one non-Type 3 vertex; this will be of a different colour class to y_i and have a lower numbered index. Hence $r \ge 1$. By Theorem 27, $|V(Q_2) \cap X_s| + |V(Q_2) \cap X_t| \ge \frac{n_s - 2}{2} + \frac{n_t - 2}{2} = n_s - 2$, and hence $2|V(Q_2)| + n_s > n + r + n_s - 2 \ge n + n_s - 1$. Again, this contradictions Theorem 28.

Lemma 37. If $k \ge 3$ or $c \ge 3$, then $|\alpha_1| \le |\gamma|$ and $|\beta_1| \le |\gamma|$.

Proof. By inspection, $\alpha_1 = \{x_1u, uw \in E(G) : u \in V(Q_1), w \in V(G) - V(Q_1)\}$. Thus the edges of the form x_1u are the only edges in α_1 not in γ , and the edges between Q_2 and Q_3 (all of which are adjacent to z) are the only edges in γ not in α_1 . Thus $|\alpha_1| + \deg_2(z) - \deg_1(x_1) = |\gamma|$. Suppose for the sake of contradiction that $|\alpha_1| > |\gamma|$. Say $x_1 \in X_s$ and $z \in X_t$. By Lemma 34, x_1 has Type 1, so $s \neq t$. Substituting $\deg_2(z) = |V(Q_2)| - |V(Q_2) \cap X_t|$ and $\deg_1(x_1) = |V(Q_1)| - |V(Q_1) \cap X_s|$ gives

$$|V(Q_1)| - |V(Q_2)| > |V(Q_1) \cap X_s| - |V(Q_2) \cap X_t|.$$

By Theorem 28, $|V(Q_1)| - |V(Q_2)| \le 1$. Similarly, since X_t intersects Q_3 , $|V(Q_2) \cap X_t| = \frac{c-1}{2}$ if c is odd, and $|V(Q_2) \cap X_t| = \frac{c-2}{2}$ if c is even. Since $X_s \cap Q_3 = \emptyset$ and x_1 has Type 1, $|V(Q_1) \cap X_s| \ge \frac{c}{2}$. Hence $|V(Q_1) \cap X_s| - |V(Q_2) \cap X_t| \ge \frac{1}{2}$ if c is odd, or 1 if c is even. However,

this value is an integer, so $|V(Q_1) \cap X_s| - |V(Q_2) \cap X_t| \ge 1$, implying $|V(Q_1)| - |V(Q_2)| > 1$, which is a contradiction of Theorem 28.

Now we consider $\beta_1 = \{y_1u, uw \in E(G) : u \in V(Q_2), w \in V(G) - V(Q_2)\}$. Suppose for the sake of contradiction that $|\beta_1| > |\gamma|$. Let $y_1 \in X_s$ and $z \in X_t$. By Lemma 34, x_1 has Type 1 or Type 2, so $s \neq t$. Performing substitutions as we did in the α_1 case gives

$$|V(Q_2)| - |V(Q_1)| > |V(Q_2) \cap X_s| - |V(Q_1) \cap X_t|.$$

Since X_s does not intersect Q_3 and X_t does, by Theorem 28, $|V(Q_2) \cap X_s| \geqslant \frac{c-1}{2}$ and $|V(Q_1) \cap X_t| = \frac{c-1}{2}$ or $\frac{c}{2}$. Thus $|V(Q_2) \cap X_s| - |V(Q_1) \cap X_t| \geqslant 0$ or $-\frac{1}{2}$, but since it is an integer, $|V(Q_2) \cap X_s| - |V(Q_1) \cap X_t| \geqslant 0$, implying $|V(Q_2)| - |V(Q_1)| > 0$, which contradicts Theorem 28.

By Lemmas 35, 36 and 37, γ is the largest bag. Recall $\gamma = H$. Hence we get the following result.

If $k \geqslant 3$ or $c \geqslant 3$, then

$$tw(L(G)) = |H| - 1.$$

We now accurately determine |H| when G is regular.

We can determine |H| by calculating the number of edges between Q_1 and Q_2 , and the number of edges adjacent to $z \in Q_3$. Theorem 28 gives us all we require. It follows that:

$$|H| = \begin{cases} \frac{c^2 k^2}{4} - \frac{c^2 k}{4} + \frac{ck}{2} - \frac{c}{2} + \frac{k}{4} - \frac{1}{4} & \text{, if } ck \text{ odd} \\ \frac{c^2 k^2}{4} - \frac{c^2 k}{4} + \frac{ck}{2} - \frac{c}{2} & \text{, if } c \text{ even} \\ \frac{c^2 k^2}{4} - \frac{c^2 k}{4} + \frac{ck}{2} - \frac{c}{2} + \frac{k}{4} - \frac{1}{2} & \text{, if } k \text{ even, } c \text{ odd} \end{cases}$$

This gives the exact answer for the treewidth of the line graph of the (n-c)-regular complete k-partite graph, when $k \ge 3$ or $c \ge 3$. The only remaining case is when k = 2 and c = 2, which is a 4-cycle. $\operatorname{tw}(K_{2,2}) = 2$, which satisfies our result by inspection. This proves Theorem 3.

7 Extensions of Results

First, note that since the underlying tree in our tree-decompositions are in fact paths, all our results also hold for pathwidth.

There is some hope in obtaining results for general line graphs. The concepts of line-brambles and line-tree-decompositions described in Section 3 work for an arbitrary graph G. Călinescu et al. [3] and Atserias [1] independently proved the following upper bound on tw(L(G)):

Lemma 38. Let $\Delta(G)$ be the maximum degree of a graph G. Then

$$\operatorname{tw}(L(G)) \leqslant (\operatorname{tw}(G) + 1)(\Delta(G)) - 1.$$

Proof. Take an optimal tree decomposition of G. Then replace every vertex in a given bag with every edge incident to that vertex. This is a line-tree-decomposition of G, and as such a tree-decomposition of L(G). The width of this tree-decomposition is at most $(\operatorname{tw}(G) + 1)(\Delta(G)) - 1$.

The following conjecture would imply that Lemma 38 is tight for graphs with maximum degree close to minimum degree:

Conjecture 39. For every graph G with minimum degree $\delta(G)$,

$$\operatorname{tw}(L(G)) \geqslant c \operatorname{tw}(G) \delta(G)$$

for some constant c > 0.

References

- [1] A. Atserias, On digraph coloring problems and treewidth duality, European J. Combin. 29 (2008), no. 4, 796–820.
- [2] H. Bodlaender, A partial k-arboretum of graphs with bounded treewidth, Theoret. Comput. Sci. **209** (1998), no. 1-2, 1-45.
- [3] G. Călinescu, C. Fernandes, and B. Reed, Multicuts in unweighted graphs and digraphs with bounded degree and bounded tree-width, J. Algorithms 48 (2003), no. 2, 333–359.
- [4] J. Díaz, M. Serna, and N. Wormald, Bounds on the bisection width for random d-regular graphs, Theoret. Comput. Sci. **382** (2007), no. 2, 120–130.
- [5] M. Grohe and D. Marx, On tree width, bramble size, and expansion, J. Combinat. Theory, Series B 99 (2009), no. 1, 218–228.
- [6] D. Marx, Can you beat treewidth?, Theory Comput. 6 (2010), 85–112.
- [7] B. Monien and R. Preis, Upper bounds on the bisection width of 3- and 4-regular graphs, J. Discrete Algorithms 4 (2006), no. 3, 475–498.
- [8] B. Reed, Tree width and tangles: a new connectivity measure and some applications, Surveys in combinatorics, London Math. Soc. Lecture Note Ser., vol. 241, Cambridge Univ. Press, 1997, pp. 87–162.
- [9] P. Seymour and R. Thomas, *Graph searching and a min-max theorem for tree-width*, J. Combinat. Theory, Series B **58** (1993), no. 1, 22–33.