GRAU DE MATEMÀTIQUES

Treball final de grau

Aspectos combinatorios del producto tensorial de conjuntos dendroidales

Autor: Roger Brascó Garcés

Director: Dr. Javier J. Gutiérrez

Realitzat a: Departament de Topología

Barcelona, 23 de enero de 2022

Resumen

²⁰¹⁰ Mathematics Subject Classification. 11G05, 11G10, 14G10

Agradecimientos

${\bf \acute{I}ndice}$

1.	Nociones previas				
	1.1.	Catego	orías	1	
		1.1.1.	Functores	1	
	1.2.	Opera	das	2	
		1.2.1.	Operadas coloreadas	į	
2.	Con	Conjuntos Simpliciales			
	2.1.	Compl	lejos simpliciales	4	
		2.1.1.	Morfismos simpliciales	4	
	2.2.	Conju	nto Delta	5	
		2.2.1.	Definición categórica del conjunto Delta	Ę	
	2.3.	Conju	nto simplicial	6	
		2.3.1.	Definición categórica del conjunto simplicial	6	
	2.4.	Realiz	ación geométrica	7	
3.	Con	Conjuntos Dendroidales			
	3.1.	$\acute{\rm Arbol}$	como operadas	7	
		3.1.1.	Caras	7	
		3.1.2.	Funciones degenerativas	7	
		3.1.3.	Identidades de morfismos	7	
		3.1.4.	Árboles no planares	7	
	3.2.	Conjunto Dendroidal			
	3.3. Producto tensorial de conjuntos dendroidales		cto tensorial de conjuntos dendroidales	7	
		3.3.1.	Producto tensorial Boardman Vogt	7	
		3.3.2.	Producto Producto tensorial de conjuntos dendroidales	7	
4.	Injertos de árboles			8	
	4.1.	Produ	cto tensorial de árboles lineales	8	
	4.2.	Producto tensorial de árboles			
		4.2.1.	Injertos de árboles resultantes	8	
	4.3.	Cálcul	o de árboles resultantes	8	
		4.3.1.	Conjunto de árboles resultantes	8	
		4.3.2.	Generarador de árboles en Python	8	
5.	Con	Conclusiones			

1. Nociones previas

1.1. Categorías

Definición 1.1. Categoría

Una categoría is una cuadrúpula $\mathcal{A} = (\mathcal{O}, \text{hom}, id, \circ)$ que consiste en:

- (1) Una clase \mathcal{O} que sus elementos serán llamados \mathcal{A} -objetos. Usaremos la notación $Ob(\mathcal{A})$ para simplificar.
- (2) Para cada pareja de objetos (A, B) de \mathcal{A} , tenemos un conjunto de hom(A, B), cuyos elementos serán llamados \mathcal{A} -morfismos de A a B; és decir, los morfismos $A \xrightarrow{f} B$ para todo $f \in \text{hom}(A, B)$.
- (3) Para cada objeto A de $\mathcal A$ definimos el morfismo $A \xrightarrow{id_A} A$ como la identidad A.
- (4) Sean $A \xrightarrow{f} B y B \xrightarrow{g} C$ dos morifismos de A, definimos la composición \circ como:

$$A \xrightarrow{f} B \\ \downarrow g \\ C$$

Composición que cumple con las siguientes condiciones:

- (a) Es asociativa: sean $A \xrightarrow{f} B$, $B \xrightarrow{g} C$ y $C \xrightarrow{h} D$ morifismos de \mathcal{A} , entonces se cumple $h \circ (g \circ f) = (h \circ g) \circ f$.
- (b) Respecta la identidad: para todo morfismo $A \xrightarrow{f} B$ de \mathcal{A} , se cumple $id_B \circ f = f$ y $f \circ id_A = f$.

Ejemplo 1.2. Categoría **Set** cuyos objetos son todos los conjuntos y los morfismos son las funciones totales.

Definición 1.3. Categoría opuesta

Para toda categoría $\mathcal{A}=(\mathcal{O}, \hom_{\mathcal{A}}, id, \circ)$ definimos la categoría opuesta como $\mathcal{A}^{\operatorname{op}}=(\mathcal{O}, \hom_{\mathcal{A}^{\operatorname{op}}}, id, \circ^{\operatorname{op}})$, donde $\hom_{\mathcal{A}^{\operatorname{op}}}(A, B) = \hom_{\mathcal{A}}(B, A)$ y $f \circ^{\operatorname{op}} g = g \circ f$. Podemos observar que \mathcal{A} y $\mathcal{A}^{\operatorname{op}}$ tienen los mismos objetos y los mismos morfismos pero cambiados de dirección.

1.1.1. Functores

Definición 1.4. Functor

Sean \mathcal{A} y \mathcal{B} dos categorías, definimos un functor F de \mathcal{A} a \mathcal{B} como una función que asigna cada objeto $A \in Ob(\mathcal{A})$ un objeto $F(A) \in Ob(\mathcal{B})$, y para cada morfismo de \mathcal{A} $A \xrightarrow{f} A'$ un morfismo de \mathcal{B} $F(A) \xrightarrow{F(f)} F(A')$.

$$F: \mathcal{A} \longrightarrow \mathcal{B}$$
$$A \longmapsto F(A)$$
$$f \longmapsto F(f)$$

De manera que:

- (1) F conserva la composición: $F(f \circ g) = F(f) \circ F(g)$, siempre y cuando $f \circ g$ esté bien definido.
- (2) F conserva los morfismos identidad: $F(id_A) = id_{F(A)}$, para cada $A \in Ob(A)$.

Definición 1.5. Tipos de functores

Sea $F: \mathcal{A} \longrightarrow \mathcal{B}$ un functor de las categorías \mathcal{A} y \mathcal{B} .

- (1) F es un functor covariante si preserva la dirección de los morfismos; es decir, el morfismo $f:A\longrightarrow A'$ de $\mathcal A$ es asignado al morfismo $F(f):F(A)\longrightarrow F(A')$ de $\mathcal B$.
- (2) F es un functor contravariante si invierte la dirección de los morfismos; es decir, el morfismo $f: A \longrightarrow A'$ de \mathcal{A} es asignado al morfismo $F(f): F(A') \longrightarrow F(A)$ de \mathcal{B} .
- (3) F es un functor fiel si para cada par de objetos $A, A' \in Ob(A)$ la función $F_{A,A'}$: $hom_{\mathcal{A}}(A, A') \longrightarrow hom_{\mathcal{B}}(F(A), F(A'))$ es inyectiva.

1.2. Operadas

Sea \mathcal{C} una categoría cocompleta, simétrica y monoidal, con producto tensorial \otimes y unidad I. Suponemos que \mathcal{C} es cerrada y la hom(X,Y) es la hom interna. Finalmente, denotamos el grupo simétrico de n letras como \sum_{n} .

Definición 1.6. Operada

Una operada P en \mathcal{C} consiste en objetos P(n) de \mathcal{C} para todo $n \geq 0$ y las siguientes afirmaciones:

- (1) Elemento unidad, definido por el morfismo $I \longrightarrow P(1)$.
- (2) Un producto composición definido por los morfismos

$$P(n) \otimes P(k_1) \otimes \cdots \otimes P(k_n) \longrightarrow P(k)$$

para todo n y k_1, \ldots, k_n tal que $k = \sum_{i=1}^n k_i$. El producto composición es equivariante y asociativo con la unidad.

(3) Acción permutación de variables definido por la acción de \sum_n por la de derecha en P(n) para cada n.

Definición 1.7. Morfismo de operadas

Sean P y Q dos operadas en C. Un morfismo de operadas $f: P \longrightarrow Q$ es definido por los morfismos $f_n: P(n) \longrightarrow Q(n)$ para cada n que sean compatibles con el producto composición, el elemento unidad y la acción del grupo simétrico.

1.2.1. Operadas coloreadas

Sea C un conjunto cuyos elementos los nombramos colores. Una operada C-coloreada P consiste en:

- (1) Para cada secuencia de colores $c_1, \ldots, c_n, c \in C$, tenemos un objeto $P(c_1, \ldots, c_n; c) \in \mathcal{C}$. Este objeto reperesenta el conjunto de operaciones cuyas entradas son los colores c_1, \ldots, c_n y las salidas son el color c.
- (2) Elemento unidad, definido por el morfismo $I \longrightarrow P(c; c)$ para todo $c \in C$.
- (3) Para cada tupla de n+1 colores $(c_1,\ldots,c_n;c)$ y n tuplas cualesquiera

$$(d_{1,1},\ldots,d_{1,k_1};c_1),\ldots,(d_{n,1},\ldots,d_{n,k_n};c_n)$$

definimos un producto composición asociativo mediante los morfismos

$$P(c_1,\ldots,c_n;c)\otimes P(d_{1,1},\ldots,d_{1,k_1};c_1)\otimes\cdots\otimes P(d_{n,1},\ldots,d_{n,k_n};c_n)$$

$$\longrightarrow P(d_{1,1},\ldots,d_{1,k_1},\ldots,d_{n,1},\ldots,d_{n,k_n};c)$$

(4) Acción permutación de variables definido por la acción del grupo simétrico. Sea $\sigma \in \sum_n$ una permutación, definimos el morfismo

$$\sigma^*: P(c_1, \ldots, c_n; c) \longrightarrow P(c_{\sigma(1)}, \ldots, c_{\sigma(n)}; c)$$

Definición 1.8. Morfismo de operadas coloreadas

Sean P y Q dos operadas C-coloreada y D-coloreada, respectivamente, en C. Un morfismo de P a Q de operadas coloreadas es formado por un morfismo de colores $f:C\longrightarrow D$ y los morfismos

$$\varphi_{c_1,\ldots,c_n;c}: P(c_1,\ldots,c_n;c) \longrightarrow Q(f(c_1),\ldots,f(c_n);c)$$

que sean compatibles con el producto composición, el elemento unidad y la acción del grupo simétrico.

Usaremos la notación $Oper(\mathcal{C})$ para referenciar a la categoría cuyos objetos son operadas coloreadas en \mathcal{C} y cuyos morfismos son morfismos de operadas coloreadas.

2. Conjuntos Simpliciales

2.1. Complejos simpliciales

Definición 2.1. N-simplex

Un n-simplex es un politopo de $n \ge 0$ dimensiones formando una envoltura convexa de n+1 vertices. Es decir, es un conjunto de puntos afines independientes en un espacio euclídeo de dimensión n.

Una cara m de un n-simplex es una envolutra convexa de $m \le n$ vertices.

Definición 2.2. Complejo simplicial

Sea $n \in \mathbb{N}^*$, un complejo simplicial X es un conjunto finito de m-simplex con $m \le n$ que cumplen las condiciones:

- (1) Si m-simplex $\in X \Rightarrow \forall m' \leq m, m'$ -simplex $\in X$.
- (2) Si dos simplices de X se cortan, entonces su intersección es una cara común.

Sea X^k un complejo simplicial formado por todos los k-simplex de X. Observamos que todo elemento de X^k es un subconjunto de X^0 con cardinal k+1, donde $X^0 = \{v_0, \ldots, v_n\}$. Generalmente, todo subconjunto de X^k de j+1 elementos es un elemento de X^j .

Sea X_k un conjunto formado por k-simplices.

Definición 2.3. N-simplex ordenado

Un *n*-simplex formado por los vértices $v_0, \ldots, v_n \in X^0$ es ordenado cuando cuando los vértices estan ordenados, en ese caso nombramos cada vértice por los números $0, \ldots, n$. Usaremos la notación $|\Delta^n| = [0, \ldots, n]$ para simplificar.

2.1.1. Morfismos simpliciales

Definición 2.4. Morfismo simplicial

Sea K y L complejos simpliciales. Sea un morfismo simplicial $F: K \longrightarrow L$ que envia los vertices de K a los vertices de L. Es decir, $\forall v \in K^0$, $v \longmapsto F(v) \in L^0$.

Definición 2.5. Cara

Para todo $|\Delta^n|$ tenemos n+1 caras definidas por los morfismos $\delta_0, \ldots, \delta_n$

$$\delta_j: X_n \longrightarrow X_{n-1}$$

 $[0, \dots, n] \longmapsto [0, \dots, \hat{j}, \dots, n]$

Donde X_n y X_{n-1} son conjuntos de simplices ordenados de n y n-1 vértices, respectivamente. Observamos que $\forall i < j$, $\delta_i \delta_j = \delta_{j-1} \delta_i$.

Definición 2.6. Morifismo degenerativo

Para todo $|\Delta^n|$ tenemos n+1 morfismos degenerativos σ_0,\ldots,σ_n

$$\sigma_j: X_n \longrightarrow X_{n+1}$$

 $[0, \dots, n] \longmapsto [0, \dots, j, j, \dots, n]$

Donde X_n y X_{n+1} son conjuntos de simplices ordenados de n y n+1 vértices, respectivamente. Observamos que $\forall i \leq j, \ \sigma_i \sigma_j = \sigma_{j+1} \sigma_i$.

2.2. Conjunto Delta

Definición 2.7. Conjunto Delta

Definimos un conjunto Delta como una secuencia de conjuntos X_0, X_1, \ldots y para cada $n \geq 0$ las funciones $\delta_i : X_{n+1} \longrightarrow X_n$, $\forall 0 \leq i \leq n+1$, que cumplen $\delta_i \delta_j = \delta_{j-1} \delta_i$, $\forall i \leq j$. Formando el siguiente diagrama (Falta por hacer)

$$X_0 \longrightarrow X_1 \longrightarrow X_2 \dots$$

2.2.1. Definición categórica del conjunto Delta

Definición 2.8. $Categoría \hat{\Delta}$

Sea la categoría $\hat{\Delta}$ cuyos objetos son los conjuntos estrictamente ordenados finitos $[n] = \{0, \dots, n\}$ y los morfismos son las funciones, que mantienen el orden estrictamente, $f: [m] \longrightarrow [n], \ m \le n$. Podemos pensar que sea la inclusión de un m-simplex como cara de un n-simplex. Para todo $0 \le i \le n$ consideramos los morfismos:

$$d_i: [n] \longrightarrow [n+1]$$

 $\{0, \dots, n\} \longmapsto \{0, \dots, \hat{i}, \dots, n+1\}$

Definición 2.9. Categoría $\hat{\Delta}^{op}$

Sea la categoría $\hat{\Delta}^{op}$, la categoría opuesta de $\hat{\Delta}$, cuyos objetos son los conjuntos estrictamente ordenados finitos $[n] = \{0, \dots, n\}$ y los morfismos son las funciones, que mantienen el orden estrictamente, $f: [n] \longrightarrow [m], m \le n$. Podemos pensar que sea la extracción de la cara m-simplex de un n-simplex. Para todo $0 \le i \le n$ consideramos los morfismos:

$$\delta_i : [n] \longrightarrow [n-1]$$

 $\{0, \dots, n\} \longmapsto \{0, \dots, \hat{i}, \dots, n\}$

Definición 2.10. Conjunto Delta

Un conjunto Delta es un functor covariante $X : \hat{\Delta}^{op} \longrightarrow \mathbf{Set}$, equivalentemente es un functor contravariante $X : \hat{\Delta} \longrightarrow \mathbf{Set}$.

Faltan observaciones.

2.3. Conjunto simplicial

Definición 2.11. Conjunto simplicial

Definimos un conjunto simplicial como una secuencia de conjuntos X_0, X_1, \ldots y para cada $n \ge 0$ las funciones $\delta_i : X_n \longrightarrow X_{n-1}$ y $\sigma_i : X_n \longrightarrow X_{n+1}$, $\forall 0 \le i \le n$, que cumplen:

- (1) $\delta_i \delta_i = \delta_{i-1} \delta_i, i < j$
- (2) $\delta_i \sigma_j = \sigma_{j-1} \delta_i, i < j$
- (3) $\delta_i \sigma_i = \delta_j + 1 \sigma_i = id$
- (4) $\delta_i \sigma_i = \sigma_i \delta_{i-1}, i > j+1$
- (5) $\sigma_i \sigma_j = \sigma_{j+1} \sigma_i, i \leq j$

Formando el siguiente diagrama (Falta por hacer)

2.3.1. Definición categórica del conjunto simplicial

Definición 2.12. Categoría Δ

Sea la categoría Δ cuyos objetos son los conjuntos ordenados finitos $[n] = \{0, \dots, n\}$ y los morfismos son las funciones, que mantienen solamente el orden, $f : [m] \longrightarrow [n]$. Para todo $0 \le i \le n$ consideramos los morfismos:

$$d_i: [n] \longrightarrow [n+1]$$

$$\{0, \dots, n\} \longmapsto \{0, \dots, \hat{i}, \dots, n+1\}$$

$$s_i: [n+1] \longrightarrow [n]$$

 $\{0,\ldots,n+1\} \longmapsto \{0,\ldots,i,i,\ldots,n\}$

Definición 2.13. Categoría $\hat{\Delta}^{op}$

Sea la categoría Δ^{op} , la categoría opuesta de Δ , cuyos objetos son los conjuntos ordenados finitos $[n] = \{0, \dots, n\}$ y los morfismos son las funciones, que mantienen solamente el orden, $f:[m] \longrightarrow [n]$. Para todo $0 \le i \le n$ consideramos los morfismos:

$$\delta_i : [n] \longrightarrow [n-1]$$

$$\{0, \dots, n\} \longmapsto \{0, \dots, \hat{i}, \dots, n\}$$

$$\sigma_i: [n] \longrightarrow [n+1]$$

 $\{0, \dots, n\} \longmapsto \{0, \dots, i, i, \dots, n\}$

Definición 2.14. Conjunto simplicial

Un conjunto simplicial es un functor covariante $X:\Delta^{op}\longrightarrow \mathbf{Set}$, equivalentemente es un functor contravariante $X:\Delta\longrightarrow \mathbf{Set}$. Usaremos la notación $\Delta[n]=\Delta(_,[n])$.

$$\begin{array}{c} \Delta[n]:\Delta^{op} \longrightarrow \mathbf{Set} \\ [m] \longmapsto \Delta([m],[n]) \end{array}$$

Faltan observaciones.

$$X_0 \longrightarrow X_1 \longrightarrow X_2 \dots$$

2.4. Realización geométrica

Definición 2.15. Realización geométrica

Sea X un conjunto simplicial. Dotamos cada X_n con la topología discreta y sea $|\Delta^n|$ el n-simplex dotado de su topología estandard. Definimos la realización geométrica como

$$|X| = \prod_{n=0}^{\infty} X_n \times |\Delta^n| / \sim$$

Donde \sim es la relación de equivalencia generada por las relaciones:

(1)
$$(x, d_i(p)) \sim (\delta_i(x), p), x \in X_{n+1} y p \in |\Delta^n|$$

(2)
$$(x, s_i(p)) \sim (\sigma_i(x), p), x \in X_{n-1} y p \in |\Delta^n|$$

Ejemplo 2.16. $\Delta[2] = \Delta(-, [2])$

Falta por escribir

3. Conjuntos Dendroidales

3.1. Árbol como operadas

- 3.1.1. Caras
- 3.1.2. Funciones degenerativas
- 3.1.3. Identidades de morfismos
- 3.1.4. Árboles no planares
- 3.2. Conjunto Dendroidal
- 3.3. Producto tensorial de conjuntos dendroidales
- 3.3.1. Producto tensorial Boardman Vogt
- 3.3.2. Producto Producto tensorial de conjuntos dendroidales

4. Injertos de árboles

- 4.1. Producto tensorial de árboles lineales
- 4.2. Producto tensorial de árboles
- 4.2.1. Injertos de árboles resultantes
- 4.3. Cálculo de árboles resultantes
- 4.3.1. Conjunto de árboles resultantes
- 4.3.2. Generarador de árboles en Python

5. Conclusiones

Referencias

- [1] Batut, C.; Belabas, K.; Bernardi, D.; Cohen, H.; Olivier, M.: User's guide to *PARI-GP*, pari.math.u-bordeaux.fr/pub/pari/manuals/2.3.3/users.pdf, 2000.
- [2] Chen, J. R.; Wang, T. Z.: On the Goldbach problem, Acta Math. Sinica, 32(5):702-718, 1989.
- [3] Deshouillers, J. M.: Sur la constante de Šnirel'man, Séminaire Delange-Pisot-Poitou, 17e année: (1975/76), Théorie des nombres: Fac. 2, Exp. No. G16, pág. 6, Secrétariat Math., Paris, 1977.
- [4] Deshouillers, J. M.; Effinger, G.; te Riele, H.; Zinoviev, D.: A complete Vinogradov 3-primes theorem under the Riemann hypothesis, *Electron. Res. Announc. Amer. Math. Soc.*, 3:99-104, 1997.
- [5] Dickson, L. E.: History of the theory of numbers. Vol. I: Divisibility and primality, Chelsea Publishing Co., New York, 1966.
- [6] Hardy, G. H.; Littlewood, J. E.: Some problems of 'Partitio numerorum'; III: On the expression of a number as a sum of primes, *Acta Math.*, 44(1):1-70, 1923.
- [7] Hardy, G. H.; Ramanujan, S.: Asymptotic formulae in combinatory analysis, *Proc. Lond. Math. Soc.*, 17:75-115, 1918.
- [8] Hardy, G. H.; Wright, E. M.: An introduction to the theory of numbers, 5a edición, Oxford University Press, 1979.
- [9] Helfgott, H. A.: Minor arcs for Goldbach's problem, arXiv:1205.5252v4 [math.NT], diciembre de 2013.
- [10] Helfgott, H. A.: Major arcs for Goldbach's problem, arXiv:1305.2897v4 [math.NT], abril de 2014.
- [11] Helfgott, H. A.: The ternary Goldbach conjecture is true, arXiv:1312.7748v2 [math.NT], enero de 2014.
- [12] Helfgott, H. A.; Platt, D.: Numerical verification of the ternary Goldbach conjecture up to 8,875 · 10³⁰, arXiv:1305.3062v2 [math.NT], abril de 2014.
- [13] Klimov, N. I.; Pil'tjaĭ, G. Z.; Šeptickaja, T. A.: An estimate of the absolute constant in the Goldbach-Šnirel'man problem, *Studies in number theory*, *No.* 4, págs. 35-51, Izdat. Saratov. Univ., Saratov, 1972.
- [14] Liu, M. C.; Wang, T.: On the Vinogradov bound in the three primes Goldbach conjecture, *Acta Arith.*, 105(2):133-175, 2002.
- [15] Oliveira e Silva, T.; Herzog, S.; Pardi, S.: Empirical verification of the even Goldbach conjecture and computation of prime gaps up to $4 \cdot 10^{18}$, *Math. Comp.*, 83:2033-2060, 2014.
- [16] Ramaré, O.: On Šnirel'man's constant, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 22(4):645-706, 1995.

- [17] Riesel, H.; Vaughan, R. C.: On sums of primes, Ark. Mat., 21(1):46-74, 1983.
- [18] Rosser, J. B.; Schoenfeld, L.: Approximate formulas for some functions of prime numbers, *Illinois J. Math.*, 6:64-94, 1962.
- [19] Schnirelmann, L.: Über additive Eigenschaften von Zahlen, Math. Ann., 107(1):649-690, 1933.
- [20] Tao, T.: Every odd number greater than 1 is the sum of at most five primes, *Math. Comp.*, 83:997-1038, 2014.
- [21] Travesa, A.: Aritmètica, Colecció UB, No. 25, Barcelona, 1998.
- [22] Vaughan, R. C.: On the estimation of Schnirelman's constant, J. Reine Angew. Math., 290:93-108, 1977.
- [23] Vaughan, R. C.: *The Hardy-Littlewood method*, Cambridge Tracts in Mathematics, No. 125, 2a edición, Cambridge University Press, 1997.
- [24] Vinogradov, I. M.: Sur le théorème de Waring, C. R. Acad. Sci. URSS, 393-400, 1928.
- [25] Vinogradov, I. M.: Representation of an odd number as a sum of three primes, *Dokl. Akad. Nauk. SSSR*, 15:291-294, 1937.