Content

- Image file types
- Key terms for images
 - Pixels, pixel depth
- Main image formats
- Image files
 - Raster Formats: PNM, BMP, GIF, PNG, JPEG
 - Vector Formats: SVG
- (Video files)

- Also known as Bitmap format
 - Dot matrix data, namely a rectangular grid of **pixels**
 - Each pixel encodes "dot" information
 - Fixed resolution
 - Density \rightarrow DPI
 - Widely used for digital cameras, scanners, printing...
 - A lot of different file formats

Pixels

- Smallest *addressable* image element
 - Can be seen as a sample of the original image
- A pixel can contain different information
 - For greyscale images: luminance
 - Each pixel encodes "grey level"
 - Number of levels depends on **pixel depth**
 - Often 256 levels (0→black, 255→white), namely 8 bits
 - 2 levels for printing (monochrome, only 1 bit for pixel!)
 - Color
 - Again different levels → different number of colors
 - Also different formats

Indexed Colors

- Paletted images
 - Indexed colors
 - Also known as *color lookup table*

Credits: Emmanuel Agu

RGB family

• RGB

- Each pixel encodes Red, Green, Blue channels
- Different depths (24 bit considered as "true color")
- OpenCV uses BGR as default

RGBA

Alpha channel used as % for transparency

CMYK

- Cyan, Magenta, Yellow and black (Key)
- Subractive color model
 - Cyan + Magenta + Yellow = black
- Main usage: printed materials

- Y'UV and Y'C_bC_r
 - Trying to mymic human vision
 - Cones & Rods cells
 - Luminance has a bigger importance than **Chrominance**
 - Do not encode colors but colors difference...
 - Widely used for image/video compression

$$\begin{pmatrix} Y \\ U \\ V \end{pmatrix} = \begin{pmatrix} 0.299 & 0.587 & 0.114 \\ -0.147 & -0.289 & 0.436 \\ 0.615 & -0.515 & -0.100 \end{pmatrix} \cdot \begin{pmatrix} R \\ G \\ B \end{pmatrix} = \begin{pmatrix} 1.000 & 0.000 & 1.140 \\ 1.000 & -0.395 & -0.581 \\ 1.000 & 2.032 & 0.000 \end{pmatrix} \cdot \begin{pmatrix} Y \\ U \\ V \end{pmatrix}$$

$$Y = 0.299R + 0.587G + 0.114B, U = 0.492(B-Y), V = 0.877(R-Y)$$

$Y'C_bC_r$

- Standardized variant of YUV
- Used for digital videos and some image format

$$Y = w_R \cdot R + (1 - w_B - w_R) \cdot G + w_B \cdot B$$

$$C_b = \frac{0.5}{1 - w_B} \cdot (B - Y)$$

$$C_r = \frac{0.5}{1 - w_R} \cdot (R - Y)$$

$$R = Y + \frac{1 - w_R}{0.5} \cdot C_r$$

$$G = Y - \frac{w_B \cdot (1 - w_B) \cdot C_b - w_R \cdot (1 - w_R) \cdot C_r}{0.5 \cdot (1 - w_B - w_R)}$$

$$B = Y + \frac{1 - w_B}{0.5} \cdot C_b$$

GAMUT

• Subset of colors that can be represented

File Formats

- For raster images, usually:
 - Header:
 - Format
 - Size
 - Color
 - Compression
 - •
 - Bitmap
 - Pixel array(s)
- Every image standard features its own header/bitmap format

PNM also P?M

- Portable Bit/Grey/Pix Map Format
 - .pbm, .pgm, .ppm
- Uncompressed format
- Very easy to parse
 - In some cases an ASCII editor can be used
- Born in the UNIX Environment
- ASCII Header
 - Format, Size, Comments
 - Comments widely used to encode additional info
- RAW or ASCII bitmap
- Video extension PVM

PNM Header & Bitmap

• As memory bitmap

0	0	0	0	0	0	0	0
0	0	255	255	255	0	0	0
0	0	127	255	127	0	60	0
0	0	0	255	127	127	60	0
0	0	0	0	0	70	60	0
0	0	0	0	0	255	255	255

O	0	0	0	0	0	0	0
0	0	25 5	25 5	25 5	0	0	O
O	0	12 7	25 5	12 7	0	60	O
O	0	O	25 5	12 7	12 7	60	O
0	O	0	O	0	70	60	O
O	O	0	0	0	25 5	25 5	25 5

Info vs Size

- The more the information the bigger the memory required
- 4k images
 - $-3840 \times 2160 \rightarrow 24 \text{ bit color} \rightarrow 23 \text{ Mbytes}$
- Size affects:
 - Memory (this can not be an issue for us!)
 - Storage
 - Transmission

Compressed Raster Images

- Compression can be mandatory
- Two different policies
- Lossless
 - Original info is preserved
 - Better choice for machine vision
 - TIFF, BMP, PNG, GIF, JPEG
- Lossy
 - Some info is lost
 - JPEG

TIFF Tag(ged) Image File Format

- Adobe Developers Association,
 - TIFF (TM) Revision 6.0 Final, June 3, 1992
 - Compresso, senza perdita
 - Compressione:
 - Nessuna, ZIP, LZW ...
 - Profondità di colore variabile
 - Pagine multiple (Fax)

Windows BMP Format

- Device Independent Bitmap (DIB)
 - Typical extensions are .bmb or, less frequently, .dib
- File structure
 - BITMAPFILEHEADERbmfh;
 - type, size & layout (pixel ↔ lenght)
 - BITMAPINFOHEADER bmih;
 - size, compression and color format
 - RGBQUAD aColors[];
 - Color palette
 - Not present for 24 bit format (24-bit red-green-blue (RGB) for each pixel)
 - Colors are ordered on frequency basis (dithering)
 - BYTE aBitmapBits[];
 - Index or intensity of colors
 - Run-length encoded (RLE) compression

GIF – Graphic Interchange Format

- Used for web and small animations
- Based on a color palette
 - 8 bit
 - Maximum 256 colors on 16 M max
 - Transparency support
- Patented compression algorithm
 - Big issue

PNG

- PNG coped with patent issues
 - Portable Network Graphic
 - 24 bit depth (~16 millions of colors) + Alpha channel
- "Free" compression algorithm
- No animation support! → this explains why GIFs are still alive..
- 8 bytes initial header (magic number)
 - 89 50 4E 47 0D 0A 1A 0A (as ASCII first four are ".PNG")
- Other "headers" and data are following as chunks
 - 4 bytes chunk lenght
 - 4 bytes chunk type (IHDR header, PLTE optional palette, IDAT actual data, IEND end of file)
 - Chunk data
 - 4 bytes CRC

JPEG File Interchange Format (JFIF)

- JPEG: Joint Photographic Experts Group
- Born in the '80s
- JPEG is also a compression algorithm
- The idea was to have a platform independent (PC, Mac ...) file format
- Can use RGB, CMYK, YUV (maybe others)
- Magic number FF D8 FF

JPEG Compression

- Compression based on luminance and chrominance
- RGB o CMYK values are converted in Y'C_bC_r
 - Luminance + Chrominance
- Y and C_x are separately compressed
- For our eys luminance is more important than colors
 - If a lossy compression is used, Luminance is better preserved
- Compression
 - Image is subdivided in 8x8 pixels blocks
 - Discrete Cosine Transform (~Fourier) is applied to each block
 - Results are quantized
 - Based on assumption the our eye is more sensitive to low frequency changes
 - Basically this wipes our small details

JPEG pros and cons

- Different compression levels can be used depending on image usage
 - Up to $20 \rightarrow$ internet
 - Up to $5 \rightarrow$ printed matter
- Good results with images without abrupt changes, namely "low frequency" images
- Bad if sharp color changes
- Avoid, if possible, for machine vision

SVG: Scalable Vector Graphics

- Vector Graphics
- Described using a language!
 - Based on XML W3
- Different objects
 - Polylines, namely a combination of 1 or more straight and curve lines
 - This allows to obtain all shapes
 - Raster images
 - Text
 - ...

SVG: example


```
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!-- Created with Inkscape (http://www.inkscape.org/) -->
<sva
   xmlns:dc="http://purl.org/dc/elements/1.1/"
   xmlns:cc="http://creativecommons.org/ns#"
   xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
   xmlns:svg="http://www.w3.org/2000/svg"
   xmlns="http://www.w3.org/2000/svg"
   xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
   xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
   width="1052.3622"
   height="744.09448"
   id="svq2"
   version="1.1"
   inkscape:version="0.48.1 r9760"
   sodipodi:docname="Nuovo documento 1">
  <defs
     id="defs4" />
  <sodipodi:namedview</pre>
     id="base"
     pagecolor="#ffffff"
     bordercolor="#666666"
     borderopacity="1.0"
     inkscape:pageopacity="0.0"
inkscape:randomized="0"
       d="m 251.42858,175.52305 -61.11845,4.77394 -30.71632,53.05434 -
23.42693, -56.65186 -59.949534, -12.81827 46.639804, -39.78672 -6.33453, -
60.976461 52.25191,32.062318 56.03459,-24.867261 -14.34635,59.602324 z"
       transform="translate(0,308.2677)"
       inkscape:transform-center-x="1.8913327"
       inkscape:transform-center-v="6.9973399" />
  </q>
</svq>
```


Point Clouds

- Not images!
- Set of **data** points in the 3D space
- Free format
 - ASCII is often used
- We will use them sometime

Which format to use for Machine Vision?

- Not always possible to choose
 - Avoid lossy formats
 - Limited depth formats
 - Quick & dirt approach → maybe you will have to puchase additional storage
- Not always necessary to choose
 - OpenCV
 - GOLD

File format and memory

- For processing it is "necessary" to load images
- Bidimensional array seems the straightforward choice
 - But monodimensional structures are widely used
- Carefully consider pixel data
- We will investigate the OpenCV approaches