HOMEWORK 11 – MATH 4341 DUE DATE: SUNDAY 12/03/2023

Problem 1. Given a path $f:[0,1] \to X$ with f(0) = p and f(1) = q. Let e_r be the constant path at $r \in X$, i.e. $e_r(x) = r$ for $x \in [0,1]$.

- (a) Find explicit formulas for $f \star e_q$ and $e_p \star f$.
- (b) Find an explicit formula for a path homotopy from f to $f \star e_q$.
- (c) Find an explicit formula for a path homotopy from f to $e_p \star f$.

Problem 2. Given a path $f:[0,1] \to X$ with f(0) = p and f(1) = q. Let $\overline{f}:[0,1] \to X$ be the reverse path of f, i.e. $\overline{f}(x) = f(1-x)$ for $x \in [0,1]$.

- (a) Find explicit formulas for $f \star \overline{f}$ and $\overline{f} \star f$.
- (b) Find an explicit formula for a path homotopy from e_p to $f \star \overline{f}$.
- (c) Find an explicit formula for a path homotopy from e_q to $\overline{f} \star f$.

Problem 3. Given paths $f, g, h : [0,1] \to X$ with f(1) = g(0) and g(1) = h(0).

- (a) Find explicit formulas for $(f \star g) \star h$ and $f \star (g \star h)$.
- (b) Find an explicit formula for a path homotopy from $(f \star g) \star h$ to $f \star (g \star h)$.

Problem 4. Let $h: X \to Y$ be a continuous function between two topological spaces. Given paths $f, g: [0,1] \to X$ with f(1) = g(0). Show that

$$h \circ (f \star g) = (h \circ f) \star (h \circ g).$$

Problem 5. Find an explicit formula for the map r(x) in the proof of Theorem 7.11 (Brouwer fixed point theorem for D^2) in the lecture notes.