

EDUCACIÓN PROFESIONAL

Diplomado en Programación y Aplicaciones de Python

Aplicaciones en Ciencia de Datos e Inteligencia Artificial

Profesor:

Francisco Pérez Galarce

Evaluaciones

Evaluación escrita de conceptos		20%		
•	2 controles (contenido teórico e implementación)	10%	1 de 2	Hoy el segundo
•	Prueba final de finalización del curso	10%		
D	esarrollo de tareas de programación	80%		
	. 5			
•	2 actividades de implementación en clases	20%	1 de 2	Hoy la segunda
•		20% 40%	1 de 2 1 de 2	Hoy la segunda
	2 actividades de implementación en clases			Hoy la segunda

Fechas de evaluaciones

Fecha	Actividad/Evaluación		
29-10-24	Introducción al aprendizaje de máquina: exploración y procesamiento de datos con Python Actividad 1 (No evaluada)		
05-11-24	Aprendizaje supervisado con Python : regresiones Actividad 2 (Evaluada)		
12-11-24	Actividad 2 (Evaluada) Control 1		
19-11-24	Aprendizaje supervisado con Python naive Bayes y métricas de evaluación Mini Proyecto 1		
26-11-24	Aprendizaje supervisado con Python: decision tree, random forest Mini Proyecto 1		
03-12-24	Aprendizaje no supervisado con Python: k-means Actividad 4 (Evaluada) – Control 2		
10-12-24	Redes Neuronales I Mini Proyecto 2		
17-12-24	Redes Neuronales II Prueba Final / Portafolio en Github		

Introducción al aprendizaje de máquinas.

Procesamiento de Datos

Aprendizaje supervisado.

Aprendizaje no supervisado

Redes Neuronales

Hasta hoy!!

www.educacionprofesional.ing.uc.cl

APPRENDIZAJE NO SUPERVISADO

Aprendizaje no supervisado

Algoritmos que...

Aprenden desde los datos sin considerer una variable output.

Explorar la base de datos para encontrar patrones ocultos:

Grupos similares

Objetos anómalos

$$\mathcal{D} = \{ \widehat{x_1}, x_2, ..., x_{N-1}, x_N, \}$$

Ejemplos de aprendizaje no supervisado

Identificación de reglas de compras

Generación de música e imágenes artificiales

Clustering

Clustering:

El objetivo es en agrupar objetos con las mismas características.

No tenemos una etiqueta para los datos

Clustering

Segmentación de clientes

Optimización de despachos

Clasificación de documentos

Detección de fraudes

Dada una base de datos DB con N registros y M descriptores.

x ₁₁	 <i>x</i> _{1<i>M</i>}
<i>x</i> _{<i>N</i>1}	 x_{NM}

Dada una base de datos DB con N registros y M descriptores.

x ₁₁	 x_{1M}
x_{N1}	 x_{NM}

¿Cómo agrupamos los registros similares?

K-MEANS

K-MEANS

- 1 Se debe aplicar en dominios numéricos.
- 2 Genera como resultado conjuntos disjuntos de objetos.
- 3 El número de segmentos debe ser entregado como un *input*.
- 4 Algoritmo simple que ha sido utilizado por décadas.

K-MEANS: Centroides

K-MEANS

Input

Base de datos, número de segmentos/clases (K)

Output

Objetos pertenecientes a cada segmento.

Paso 1

- Elegir aleatoriamente K centroides.
- Ejecutar paso 1 y paso 2 mientras no se cumpla el criterio de detención.

Paso 2

 Asignar cada objeto de la base de datos a su centroide más cercano.

Paso 3

 Con las nuevas asignaciones recalcular centroides.

K-MEANS: ejemplo

https://ai.plainenglish.io/understanding-k-means-clustering-hands-on-visual-approach-c2dc46f0ed18

K-MEANS: Análisis de clusters

K-MEANS: Análisis de clusters

EVALUACIÓN DE CLUSTERS

www.educacionprofesional.ing.uc.cl

Davies-Bouldin index

DB index =
$$\frac{1}{n} \sum_{i=1}^{n} \max_{j \neq i} \frac{(\sigma_i + \sigma_j)}{d(c_i, c_j)}$$

n = Número de clusters

 $\sigma_i = \text{Distancia intra-} cluster \text{ del } cluster i$

 $d(c_i, c_j)$ = Distancia entre los centroides de los *clusters* i y j

Silhouette score (coherencia)

Distancia promedio más pequeña
del **objeto** *i* al resto de los
puntos en **otros** *clusters*.

Distancia promedio del objeto i al resto de los puntos del cluster.

Número que indica coherencia del objeto i dentro del cluster que fue asignado.

$$\{S(i) = \frac{b(i) - a(i)}{\max\{a(i), b(i)\}}$$

$$-1 \le S(i) \le 1$$

El valor del Silhouette Score puede variar de -1 a 1:

- Un valor de -1 indica que los puntos están asignados incorrectamente a los clusters y que están más cerca de los puntos de otros clusters.
- Un valor de 0 indica que los puntos están cerca del límite entre dos clusters. Un valor de 1 indica que los puntos están bien agrupados y lejos de los puntos de otros clusters.

El mejor valor del Silhouette Score cercano a 1 ©

www.educacionprofesional.ing.uc.cl

EDUCACIÓN PROFESIONAL

www.educacionprofesional.ing.uc.cl