Lemma 1: Of
$$\lambda$$
 is an eigenvalue of ω_{ab} , then $-\lambda$ is also an eigenvalue of ω_{ab} .

Characteristic egn:

$$\operatorname{det}\left(\omega - \lambda \eta\right) = 0$$

$$\Rightarrow \operatorname{det}\left[\left(\omega - \lambda \eta\right)^{T}\right] = 0$$

Lemme 2: If is an eigenvalue, elem i so also an eigenvalue.

det
$$(\omega - \lambda \eta) = 0$$

 $\Rightarrow \det \left[(\omega - \lambda \eta)^{+} \right] = 0$

$$\Rightarrow$$
 let $(w - \lambda^* \eta) = 0$

A.2.1. Types of eigenvalues: Of follows from these theorems of that the four four eigenvalues of we are of the following four basible types

I.
$$\lambda, -\lambda, \lambda^*, -\lambda^*$$
; $\lambda = a + ib$; $a \neq 0 \neq b$

2.
$$\lambda_1 = \lambda_1^*$$
, $-\lambda_1$, $\lambda_2 = \lambda_2^*$ $(\lambda_1 \text{ and } \lambda_2 \text{ real})$

3.
$$\lambda_1$$
, $-\lambda_1 = \lambda^*$, λ_2 , $-\lambda_2 = \lambda_2^*$ (λ_1 and λ_2 are fairly imaginary

4.
$$\lambda_1 = \lambda_1^{\dagger}$$
, $-\lambda_1$, λ_2 , $-\lambda_2 = \lambda_2^{\dagger}$ (λ_1 is real and λ_2 is fewely magina

In each case, the eigenvalues involve only two independent real numbers, whose knowledge is equivalent to smowing the live Casinir Theories Smoriants.

$$I_1 = w^{ab} w_{ab}$$
; $I_2 = \frac{1}{2} \epsilon^{abcd} w_{ab} w_{cd}$

Multiple roots rear over only in the following rire unchances;

O rese (2) and case (3), when $\lambda_1 = \lambda_2$ (or $-\lambda_2$). If $\lambda_1 \neq 0$, then λ_1 and $-\lambda_1$ are distinct roots, of $\lambda_1 = 0$, then 0 is a quadrafooles root; or

@ Case (2), (3) or (4), when one of the roots vanishes.

Lemma 3: Let va and na be eigenvectors of was with respective eigenvalues 2 and pe

wa reb = 2roa; wa b ub = pena

Then $v_a u^a = 0$ reviews $\lambda + \mu = 0$. On faithfular, if $\alpha \neq 0$, then v_a is a null water.

Proof: One has $u_a w^a_b v^b = \lambda u_a v^a$ $\Rightarrow -\mu u^a v_a = \lambda u_a v^a$ $\Rightarrow (\lambda + \mu) u_a v_a = 0$

 $w_b^a u^b = \mu u^a$ $\Rightarrow w_b^a u^b = (w_b^a u^b)^T = (\mu u^a)^T$

A.3. Type Ia

$$w_{ab} l^{b} = \lambda l_{a}$$

$$w_{ab} m^{b} = -\lambda m_{b}$$

$$w_{ab} l^{*b} = \lambda^{*} l^{*}_{a}$$

$$w_{ab} m^{*b} = -\lambda^{*} m^{*}_{b}$$

The only realor products that som he different from some are $l^a m_b^a$ and $l^{*a}q$ m^*_a . They ranged variable since the metric would then be degenerate. By soaling m_a if necessary one can assume $l^a m = 1$. One of their bas also $l^{*a}a$ $m^*_a = 1$. The metric is given by $l^a m^*_a = 1$. The metric is given by $l^a m^*_a = l_a m_b + l^*_a m^*_b + [a \longleftrightarrow b]$ $l^a m^*_b = l_a m_b - l^*_a m^*_b - [a \longleftrightarrow b]$ whenever $l^a m^*_b = l^*_a m^*_b - [a \longleftrightarrow b]$ whenever $l^a m^*_b = l^*_a m^*_b + l^*_a m^*_b$.

The tensur in given by

$$w^{ab} = \lambda \left(l_{a}m_{b} - l_{b}m_{a} \right) + \lambda^{*} \left(l_{a}^{\dagger} m_{b} - l_{b}^{\dagger} m_{a} \right)$$

$$W_b^a = \lambda l_a^a - \lambda m_b^b + \lambda^* l_a^{*a} l_a^* - \lambda^* m_a^*$$

@

Our goal is to achieve a some somewical expression

for was over the real numbers. Therefore we decompose the the vectors of and ma into their real and imaginary components $0 = u_0 + iv_0$; $m_0 = m_0 + iq_0$