

ML/DL 스터디 발표

2024/04/01 GDSC Server / General 이정재

YOLO?

Object Detection

이미지 내에 존재하는 물체를 찾고, 구분하는 기술

물체 영역의 위치를 Bounding Box로 표시

Box 내 존재하는 물체 : Label로 분류

YOLO: You Only Look Once

이미지를 한번만 보고 바로 물체를 검출하는 기술

빠른 속도로 Object Detection 수행

Figure 3: The Architecture. Our detection network has 24 convolutional layers followed by 2 fully connected layers. Alternating 1×1 convolutional layers reduce the features space from preceding layers. We pretrain the convolutional layers on the ImageNet classification task at half the resolution (224×224 input image) and then double the resolution for detection.

YOLO: You Only Look Once

- 이미지를 7x7 그리드로 나눠서 분석 각 그리드 셀 별로 2개의 Bounding Box 예측
- → 한 장 당 98개의 Bounding Box 예측
- → NMS(Non-Maximum Suppression) 통해 확률값이 높 은 예측결과 도출

Figure 3: The Architecture. Our detection network has 24 convolutional layers followed by 2 fully connected layers. Alternating 1×1 convolutional layers reduce the features space from preceding layers. We pretrain the convolutional layers on the ImageNet classification task at half the resolution (224×224 input image) and then double the resolution for detection.

GPU 설정


```
data.yaml X
 1 names:
2 - car
3 - free
4 nc: 2
5 roboflow:
    license: MIT
    project: real-time-parking-lot-vehicle-detection
    url: https://universe.roboflow.com/swastik-abhijit-r
    version: 1
    workspace: swastik-abhijit-patra-zlamm
11 test: ../test/images
12 train: ../train/images
13 val: ../valid/images
14
```

Epoch 1/20	GPU_mem 8.28G Class all	box_loss 1.919 Images 215	cls_loss 1.649 Instances 6275	dfl_loss 1.834 Box(P 0.493	Instances 55 R 0.407	Size 640: 100% 102/102 [01:06<00:00, 1.53it/s] mAP50 mAP50-95): 100% 7/7 [00:05<00:00, 1.25it/s] 0.368 0.158
Epoch 2/20	GPU_mem 8.19G Class all	box_loss 1.813 Images 215	cls_loss 1.364 Instances 6275	dfl_loss 1.762 Box(P 0.613	Instances 171 R 0.553	Size 640: 100% 102/102 [00:56<00:00, 1.80it/s] mAP50 mAP50-95): 100% 7/7 [00:04<00:00, 1.59it/s] 0.539 0.243
Epoch 3/20	GPU_mem 8.5G Class all	box_loss 1.795 Images 215	cls_loss 1.376 Instances 6275	dfl_loss 1.747 Box(P 0.676	74	Size 640: 100% 102/102 [00:56<00:00, 1.80it/s] mAP50 mAP50-95): 100% 7/7 [00:04<00:00, 1.51it/s] 0.682 0.316
Epoch 4/20	GPU_mem 9.33G Class all	box_loss 1.761 Images 215	1.314	dfl_loss 1.734 Box(P 0.694	Instances 25 R 0.695	Size 640: 100% 102/102 [00:56<00:00, 1.80it/s] mAP50 mAP50-95): 100% 7/7 [00:04<00:00, 1.51it/s] 0.678 0.316
Epoch 5/20	GPU_mem 9.87G Class all	box_loss 1.707 Images 215	cls_loss 1.262 Instances 6275	dfl_loss 1.688 Box(P 0.743	Instances 83 R 0.712	Size 640: 100% 102/102 [00:55<00:00, 1.83it/s] mAP50 mAP50-95): 100% 7/7 [00:04<00:00, 1.50it/s] 0.737 0.364
Epoch 6/20	GPU_mem 9.48G Class all	box_loss 1.671 Images 215	cls_loss 1.217 Instances 6275	dfl_loss 1.646 Box(P 0.751	Instances 122 R 0.784	Size 640: 100% 102/102 [00:56<00:00, 1.81it/s] mAP50 mAP50-95): 100% 7/7 [00:04<00:00, 1.56it/s] 0.76 0.37
Epoch 7/20	GPU_mem 9.77G Class all	box_loss 1.636 Images 215	1.177	dfl_loss 1.615 Box(P 0.765	Instances 160 R 0.768	Size 640: 100% 102/102 [00:55<00:00, 1.84it/s] mAP50 mAP50-95): 100% 7/7 [00:04<00:00, 1.56it/s] 0.763 0.374

Epoch 8/20	GPU_mem 9.01G Class all	box_loss 1.596 Images 215	cls_loss 1.109 Instances 6275	dfl_loss 1.59 Box(P 0.765	Instances 54 R 0.77	Size 640: mAP50 0.784	100% 102/102 [00:56<00:00, 1.81it/s] mAP50-95): 100% 7/7 [00:04<00:00, 1.60it/s] 0.392
Epoch 9/20	GPU_mem 9.06G Class all	box_loss 1.567 Images 215	cls_loss 1.048 Instances 6275	dfl_loss 1.571 Box(P 0.779	Instances 130 R 0.797	Size 640: mAP50 0.803	100% 102/102 [00:55<00:00, 1.82it/s] mAP50-95): 100% 7/7 [00:04<00:00, 1.56it/s] 0.405
Epoch 10/20	GPU_mem 8.33G Class all	box_loss 1.532 Images 215	cls_loss 1.02 Instances 6275	dfl_loss 1.549 Box(P 0.802	Instances 47 R 0.806	Size 640: mAP50 0.823	100% 102/102 [00:55<00:00, 1.83it/s] mAP50-95): 100% 7/7 [00:04<00:00, 1.61it/s] 0.451
losing datalo Ibumentation			_limit=(3,	7)), MedianE	Blur (p=0.01	, blur_limit	=(3, 7)), ToGray(p=0.01), CLAHE(p=0.01, clip_l
Epoch 11/20	GPU_mem 7.72G Class all	box_loss 1.524 Images 215	cls_loss 0.9791 Instances 6275	dfl_loss 1.595 Box(P 0.801	Instances 18 R 0.824	Size 640: mAP50 0.839	100% 102/102 [01:01<00:00, 1.67it/s] mAP50-95): 100% 7/7 [00:03<00:00, 1.78it/s] 0.451
Epoch 12/20	GPU_mem 8.33G Class all	box_loss 1.493 Images 215	cls_loss 0.9478 Instances 6275	dfl_loss 1.588 Box(P 0.814	Instances 56 R 0.822	Size 640: mAP50 0.857	100% 102/102 [00:54<00:00, 1.88it/s] mAP50-95): 100% 7/7 [00:04<00:00, 1.64it/s] 0.461
Epoch 13/20	GPU_mem 8.82G Class all	box_loss 1.458 Images 215	cls_loss 0.8749 Instances 6275	dfl_loss 1.55 Box(P 0.819	Instances 33 R 0.84	Size 640: mAP50 0.864	100% 102/102 [00:53<00:00, 1.89it/s] mAP50-95): 100% 7/7 [00:04<00:00, 1.64it/s] 0.466

al

Epoch 14/20	GPU_mem 9.04G Class	box_loss 1.458 Images	cls_loss 0.8482 Instances	dfl_loss 1.548 Box(P	Instances 41 R	mAP50	↑ ↓ ⇔ 🗏 ‡ 🗓 100% 102/102 [0∪.ɔɔ<∪∪.∪∪, 1.oɔ1l/s] mAP50-95): 100% 7/7 [00:04<00:00, 1.73it/s]
Epoch 15/20	all GPU_mem 8.32G Class all	box_loss 1.394 Images 215	6275 cls_loss 0.8104 Instances 6275	0.837 dfl_loss 1.503 Box(P 0.842	0.847 Instances 23 R 0.859	0.877 Size 640: mAP50 0.894	0.482 100% 102/102 [00:53<00:00, 1.89it/s] mAP50-95): 100% 7/7 [00:03<00:00, 1.82it/s] 0.52
Epoch 16/20	GPU_mem 8.31G Class all	box_loss 1.358 Images 215	cls_loss 0.7596 Instances 6275	dfl_loss 1.471 Box(P 0.85	Instances 66 R 0.871	Size 640: mAP50 0.904	100% 102/102 [00:54<00:00, 1.88it/s] mAP50-95): 100% 7/7 [00:03<00:00, 1.81it/s] 0.526
Epoch 17/20	GPU_mem 9.01G Class all	box_loss 1.312 Images 215	cls_loss 0.7293 Instances 6275	dfl_loss 1.451 Box(P 0.855	Instances 60 R 0.872	Size 640: mAP50 0.898	100% 102/102 [00:54<00:00, 1.88it/s] mAP50-95): 100% 7/7 [00:03<00:00, 1.84it/s] 0.537
Epoch 18/20	GPU_mem 9G Class all	box_loss 1.279 Images 215	cls_loss 0.6949 Instances 6275	dfl_loss 1.422 Box(P 0.864	Instances 47 R 0.876	Size 640: mAP50 0.895	100% 102/102 [00:54<00:00, 1.89it/s] mAP50-95): 100% 7/7 [00:04<00:00, 1.56it/s] 0.529
Epoch 19/20	GPU_mem 8.77G Class all	box_loss 1.23 Images 215	cls_loss 0.6562 Instances 6275	dfl_loss 1.39 Box(P 0.877	Instances 45 R 0.882	mAP50	100% 102/102 [00:54<00:00, 1.89it/s] mAP50-95): 100% 7/7 [00:03<00:00, 1.76it/s] 0.579
Epoch 20/20	GPU_mem 8.1G Class all	box_loss 1.188 Images 215	cls_loss 0.6348 Instances 6275	dfl_loss 1.362 Box(P 0.873	Instances 18 R 0.894	Size 640: mAP50 0.926	100% 102/102 [00:54<00:00, 1.89it/s] mAP50-95): 100% 7/7 [00:03<00:00, 1.83it/s] 0.58

학습 모델 결과

20 epochs completed in 0.350 hours.

```
Optimizer stripped from runs/detect/train/weights/last.pt, 52.0MB
Optimizer stripped from runs/detect/train/weights/best.pt, 52.0MB
Validating runs/detect/train/weights/best.pt...
Ultralytics YOLOv8.0.196 🚀 Python-3.10.12 torch-2.2.1+cu121 CUDA:0 (Tesla T4, 15102MiB)
Model summary (fused): 218 layers, 25840918 parameters, 0 gradients, 78.7 GFLOPs
                                                 Box(P R
                                                                       mAP50 mAP50-95): 100% 7/7 [00:21<00:00, 3.14s/it]
                 Class
                           Images Instances
                   all
                             215
                                        6275
                                                 0.873
                                                            0.894
                                                                       0.925
                                                                                   0.58
                                                 0.934
                                                            0.919 0.965
                             215
                                        3680
                                                                                   0.613
                  car
                             215
                                        2595
                                                 0.812
                                                             0.869
                                                                       0.886
                                                                                   0.547
                  free
Speed: 1.0ms preprocess, 11.2ms inference, 0.1ms loss, 4.2ms postprocess per image
Results saved to runs/detect/train
                                                                                                           60.0
   Learn more at <a href="https://docs.ultralytics.com/modes/train">https://docs.ultralytics.com/modes/train</a>
                                                                                                           mAP
```

이상

학습 모델 추론

학습 모델 추론

학습 모델 추론

감사합니다!