Making Analysis of Algorithms and Data Structures Make Sense

Catherine Leung School of ICT Seneca College

Contents

- Review of Big-O notation
- Growth Rates
- Counting operations
- Examples
- Resources

Algorithm and Data Structures

• Ways to store, retrieve, and manipulate data

Analysis

- Measure for resource usage
- Resources:
 - Anything consumed by your program is a resource
 - Top two are time and memory
 - But not only those two

Big-O

- A way to measure resource needs
- Based on amount of data
- Does NOT measure amount of resources needed to processes n pieces of data
- Does measure amount of resource increase to process n+1 pieces of data
- · All about growth rates!

Formally

- Let the function T(n) represent the amount of resources needed to process n pieces of data by a particular algorithm
- T(n) is O(f(n)) iff there exists two constants c and n_o such that T(n) <= c f(n) for all n > n_o
- · Yikes! How to explain that?

The f(n) inside the O()

• The function f(n) describes a curve

The c and n_o

- T(n) is O(f(n)) iff there exists two constants c and n_o such that T(n) <= c f(n) for all n > n_o
- If we can describe our resource need with a function T(n) we can give it a "rating", a best fit curve
- The c allows us to stretch the curve
- The n_o allows the statement to not have to be true for all $n,\, n>n_o$

Linear Search

More...

- Lots of DS and algs to choose from... please pick:
 - Stacks/Queues (implementation array vs. linked list)
 - Heaps and Heapsort
 - Binary search trees
 - Hash Tables

Resources

- Code/slides from this talk:
 - https://github.com/cathyatseneca/CEMC2015
- My data structures and algorithms notes:
 - https://www.gitbook.com/book/cathyatseneca/ data-structures-and-algorithms/details
- My animations:
 - http://cathyatseneca.github.io/DSAnim/ index.html