Analysis of Conway - Piccirillo Knot with Turing State Machine

Lisa Piccirillo - Solving the Conway Knot

https://en.wikipedia.org/wiki/Lisa Piccirillo

Matt Parker - Stand-Up Maths

http://standupmaths.com/
Hypercube and Turing Machine Videos

Moritz Firsching - Unfolding of the Hypercube

https://unfolding.apperceptual.com/

Pascal Michel - Busy Beaver Game (Explanation)

https://webusers.imj-prg.fr/~pascal.michel/

The inspiration for this paper came from thinking about whether the same principle employed within the "Analysis of hypercube tree topology" could be applied to another scenario. Available at the below link.

https://github.com/Sandcrawler/hypercube

I thought about what else could be represented as a tree diagram, and thought knots are tree diagrams that are attached at both ends. We can break the end and halt it (as we do in the previous paper) and look to see what the pattern looks like.

To begin, I had to choose a knot. I had watched a documentary recently, with a section covering the Conway Knot and the solution that Lisa Picirillo gave for it. This seemed a good place to start.

This paper covers representing the Picirillo Knot as a sigma(11,5) state machine.

Version

Version	
v1	First draft
v2	Correction in combining the tracks in Figure 4.1, 5.1 and 6.3.
	Diagrams updated.
	Observation #8 added.

The Knots

We have two knots. One that had been presented as being unsolvable and one that is a solution to the apparently unsolvable.

Let us take a look at how we can map these onto a state machine.

Conway Knot

Consider the knot as having 11 intersections.

Figure 1.1

No state machine can be built to satisfy an 11-node tree.

Note: No state machine can be built for any prime number of node trees.

Figure 1.2

Picirillo Knot

Consider the knot as having 55 intersections.

Figure 2.1

There is a state machine matrix available at 55-node that is symmetrical across both X and Y planes.

Figure 2.2

This is the symmetrical state machine:

Figure 2.3

In the previous paper "Analysis of a hypercube tree topology" we rotate the state machine around every iteration of the machine to demonstrate that there are only 2 potentials to use and why one of them is viable. In this paper we will look at just the symmetrical tree and why the 55 intersections works rather than the 11. Suggest reading the previous paper to understand the rationalisation of the tree.

The following diagram shows the path that the state machine must follow to achieve every node and pass through each only once within a symmetrical manner.

Figure 2.4

Constructing a State Machine

One potential forward and inverse state machines of the Piccirillo Knot.

		Arra	1						
	0LA	0	0	0	0	ay Poi 0	0	ORA	
A0	OLC	_	0	0	0	0	H	ORC	A0
CO	ORB	0	0			0	0	OLB	CO
B0	OLD	_	0	0	0	0	 	ORD	BO
DO	ORE	0	0	Ļ	Ť	0	0	OLE	D0
EO	OLG	_	0	0	0	0	۲	ORG	EO
GO	ORF	0	0	Ľ	Ů	0	0	OLF	G0
FO	OLH	Ů	0	0	0	0	Ľ	ORH	FO
HO	ORI	0	0	Ů	_	0	0	OLI	H0
10	OLK	Ů	0	0	0	0	۳	ORK	10
КО	1RJ	1	0	٣	Ů	0	1	1IJ	KO
JO NO	1LA	<u> </u>	1	1	1	1	-	1RA	10
\vdash	\vdash	1	├	<u> </u>	_	_	<u> </u>	\leftarrow	\vdash
A1	1RB	1	1	<u> </u>	_	1	1	1LB	A1
B1	1LD	_	1	1	1	1	H	1RD	B1
D1	1RC	1	1	<u> </u>	_	1	1	1LC	D1
C1	1LE		1	1	1	1	<u> </u>	1RE	C1
E1	1RF	1	1	_	_	1	1	1LF	E1
F1	1LH		1	1	1	1	L	1RH	F1
H1	1RG	1	1			1	1	1LG	H1
G1	1U		1	1	1	1	<u> </u>	1RI	G1
11	2RJ	2	1	<u> </u>	<u> </u>	1	2	2∐ →)11
J1	1LA		2	2	2	2	ļ	2RA	J1
A2	2RK	2	2			2	2	2LK	A2
K1	2LB		2	2	2	2	<u> </u>	2RB	K1
B2	2RC	2	2			2	2	2LC	B2
C2	2LE		2	2	2	2	<u> </u>	2RE	C2
E2	2RD	2	2			2	2	2LD	E2
D2	2LF		2	2	2	2	L	2RF	D2
F2	2RH	2	2			2	2	2LH	F2
H2	2LG		2	2	2	2		2RG	H2
G2	2RI	2	2			2	2	2Ц	G2
12	3⊔		2	2	2	2		3RJ	12
J2	2RA	2	3			3	2	2LA	J2
A3	3LK		3	3	3	3		3RK	А3
(K2	3RB	3	3			3	3	3LB	K2
B3	3LC		3	3	3	3		3RC	B3
СЗ	3RE	3	3			3	3	3LE	C3
E3	3LD		3	3	3	3		3RD	E3
D3	3RF	3	3			3	3	3LF	D3
F3	3LG		3	3	3	3		3RG	F3
G3	3RI	3	3			3	3	3П	G3
13	3LH		3	3	3	3		3RH	13
НЗ	3RJ	3	3			3	3	311	НЗ
J3	4LK		4	3	3	4		4RK	13
КЗ	4RB	4	4			4	4	4LB	К3
B4	4LA		4	4	4	4		4RA	B4
A4	4RC	4	4			4	4	4LC	A4
C4	4LD		4	4	4	4		4RD	C4
D4	4RF	4	4			4	4	4LF	D4
F4	4LE		4	4	4	4		4RE	F4
E4	4RG	4	4			4	4	4LG	E4
G4	4LH		4	4	4	4		4RH	G4
H4	4RJ	4	4			4	4	411	H4
J4	411		4	4	4	4	H	4RI	J4
14	4RK	4	4	Ť	Ť	4	4	4LK	14
K4 (Z)	4KK 4LZ	\vdash	4	4	4	4	Ė	4RZ	K4 (Z)
(2)			<u> </u>	ل	ت.				(2)

Figure 3.1

Following the same logic as the previous paper this is the inverse of the above. We now have all 4 answers to the same state machine and we can follow the same pattern to merge them. Un-invert the inverted result and combine. The un-inverted result is shown on the right.

		Δm	ay P oi	nter	Δm	ay P oi	nter	1							
	ORA	0	0	0	0	0	0	0LA)						
A0	ORC	0	0	H		0	0	OLC	A0		4	4			4
CO	OLB	╫	0	0	0	0	┢	ORB	ο		<u> </u>	4	4	4	4
B0	ORD	0	0	┢		0	0	0LD	B0		4	4	Ė	H	4
DO	OLE	╢	0	0	0	0	H	ORE	DO		<u> </u>	4	4	4	4
EO	ORG	0	0	H		0	0	0LG	EO		4	4	<u> </u>	<u> </u>	4
G0	OLF	 	0	0	0	0	 	ORF	G0		<u> </u>	4	4	4	4
FO	ORH	0	0	<u> </u>		0	0	OLH	FO		4	4	_	-	4
HO	OLI	 	0	0	0	0	H	ORI	но		<u> </u>	4	4	4	4
10	ORK	0	0	 		0	0	OLK	10		4	4	_	<u> </u>	4
К0	111	╢	0	1	1	0	 	1RJ	ко		<u> </u>	4	4	4	4
10	1RA	1	1	H	_	1	1	1LA	J0		_	4	<u> </u>	-	4
A1	1LB	 	1	1	1	1	H	1RB	A1		4	4	4	4	4
B1	1RD	1	1	H	_	1	1	1LD	B1		<u> </u>	Ь.	-	-	⊢
D1	1LC	╫	1	1	1	1	Ĥ	1RC	D1		3	4	_		4
C1	1RE	1	1	┢╧	_	1	1	1LE	C1		_	3	3	3	3
E1	1LF	╀	1	1	1	1	┢┷	1RF	E1		3	3	_	<u> </u>	3
F1	1RH	1	1	┝	1	1	1	1LH	F1		_	3	3	3	3
\vdash		╀	1	1	1	\vdash	┢	\vdash	├ ──		3	3	_	L	3
H1	1LG	 	1	┝	_	1	<u> </u>	1RG	H1		<u> </u>	3	3	3	3
G1 I1	1RI 2LJ	1	1	2	2	1	1	1LI 2RJ	G1 I1		3	3	_	<u> </u>	3
\vdash		<u> </u>	-	Ľ	_	-	H	\vdash	├ ──		<u> </u>	3	3	3	3
J1	2RA	2	2	<u> </u>	_	2	2	1LA	J1		3	3	<u> </u>	<u> </u>	3
A2	2LK	<u> </u>	2	2	2	2	<u> </u>	2RK	A2		<u> </u>	3	3	3	3
K1	2RB	2	2	<u> </u>	_	2	2	2LB	K1		3	3	<u> </u>	<u> </u>	3
B2	2LC	<u> </u>	2	2	2	2	ļ_	2RC	B2			3	2	2	3
C2	2RE	2	2	<u> </u>	_	2	2	2LE	C2		2	2	_	<u> </u>	2
E2	2LD	 	2	2	2	2	<u> </u>	2RD	E2		<u> </u>	2	2	2	2
D2	2RF	2	2	<u> </u>	_	2	2	2LF	D2		2	2	<u> </u>	<u> </u>	2
F2	2LH	<u> </u>	2	2	2	2	<u> </u>	2RH	F2		<u> </u>	2	2	2	2
H2	2RG	2	2	<u> </u>	_	2	2	2LG	H2		2	2	_	_	2
G2	211	<u> </u>	2	2	2	2	<u> </u>	2RI	G2		<u> </u>	2	2	2	2
12	3RJ	2	2	Ļ	_	2	2	311	12		2	2	_	_	2
J2	2LA	<u> </u>	3	2	2	3	<u> </u>	2RA	J2		<u> </u>	2	2	2	2
A3	3RK	3	3	<u> </u>	_	3	3	3LK	A3		2	2	<u> </u>	<u> </u>	2
K2	3LB	<u> </u>	3	3	3	3	Ļ	3RB	K2		<u> </u>	2	2	2	2
B3	3RC	3	3	3	_	3	3	3LC	B3		2	2	Ļ	_	2
C3	3LE	 	3	3	3	3	<u> </u>	3RE	(3		<u> </u>	1	2	2	1
E3	3RD	3	3	<u> </u>	_	3	3	3LD	E3		1	1	_	<u> </u>	1
D3	3LF	<u>_</u>	3	3	3	3	-	3RF	D3	! !	_	1	1	1	1
F3	3RG	3	3	<u> </u>	_	3	3	3LG	F3] 	1	1			1
G3	3LI	<u> </u>	3	3	3	3	<u> </u>	3RI	G3		<u> </u>	1	1	1	1
13	3RH	3	3	<u> </u>	_	3	3	3LH	13		1	1		_	1
H3	3LJ	<u> </u>	3	3	3	3	Ļ.	3RJ	H3	<u> </u>		1	1	1	1
13	4RK	3	4	<u> </u>	_	4	3	4LK	J3		1	1		<u> </u>	1
K3	4LB	 	4	4	4	4	<u> </u>	4RB	K3] 		1	1	1	1
B4	4RA	4	4	<u> </u>	_	4	4	4LA	B4		1	1	<u> </u>	<u> </u>	1
A4	4LC	<u> </u>	4	4	4	4	<u> </u>	4RC	A4] 		0	1	1	0
C4	4RD	4	4	Ļ.	_	4	4	4LD	C4] 	0	0	_	Ļ	0
D4	4LF	 	4	4	4	4	Ļ.	4RF	D4			0	0	0	0
F4	4RE	4	4	Ļ	_	4	4	4LE	F4] 	0	0			0
E4	4LG	<u> </u>	4	4	4	4	<u> </u>	4RG	E4		_	0	0	0	0
G4	4RH	4	4	<u> </u>		4	4	4LH	G4		0	0			0
H4	4U	<u> </u>	4	4	4	4	<u> </u>	4RJ	H4			0	0	0	0
J4	4RI	4	4	<u> </u>	_	4	4	4LI	J4		0	0	_	_	0
14	4LK	<u> </u>	4	4	4	4		4RK	14			0	0	0	0
K4 (Z)	4RZ	4	4	L		4	4	4LZ	K4 (Z)		0	0			0

Figure 3.2 and 3.3

Combining the Matrix

We take the result of the first and then the X and Y flip of the second to un-invert it. We then combine the matrix.

Forward + Un-Inverted = Resultant Matrix

Figure 4.1

Figure 5.1

Observations

There are a range of similar observations to make with the pattern produced by this tree represented as a state machine as in the previous paper.

Here we will limit the observations to the application of the knot topology to the state machine rather than the array shifts and the oscillation of array shifting. It is none the less interesting to observe the comparison.

Observation #1

Conway Knot

This has prime number of intersections, 11, and cannot be represented as a symmetrical state machine (ie; there are not enough nodes to fill a matrix of instructions without adding an imaginary point). Where in previous paper we stated that a sigma(3,3) state machine could be used and an imaginary added optionally, here we must add one to achieve a halting result.

Observation #2

Picirillo Knot

The Picirillo Knot appears to have morphed into a symmetrical number, in that 55 can be represented as a symmetrical state machine through the 2 and F symbol and state axis (X and Y axis). This has the result of enabling a state machine to be developed for it that is perfectly symmetrical.

Observation #3

Knots of prime number joined at the ends are all subject to this same issue. No prime numbered knot can be represented as an X and Y symmetrical state machine.

Observation #4

Prime numbered knots may be able to be built into non-halting state machines.

An 11-node tree could be built into a state machine of sigma(6,2) where it loops around 1-11 never going to halt at node 12.

Observation #5

Choosing what to do at point of halt in machines with many symbols can cause different numbers at what would be the stitching row (see previous paper). In this paper we assume the last iteration is the same symbol as the previous, but it is possible the halting instruction could write a 0,1,2, 3, or 4 before halting altering the values and thus creating a different set of potential results when being reprocessed by the same set of state machine instructions.

It is assumed using symbol 4 in the halt, as if the pattern were to be built into a larger state machine the de facto trajectory of the numbering would, I suspect, be followed incrementally for this knot and state machine.

Observation #6

Based on observation #6. It may be possible at the point of stitching if writing different values on the halt to stitch different shapes together. State machines having an altered value substituted at the stich point would then work with different valued arrays being processed off the end of the stitch.

For example:

Last instruction set in machine: Read value, write value, follow to next instruction which is HALT and so stop immediately.

0, 1, 2, 3, 4 can be written as the final value just before the halt.

Last 4 instructions alternative:

Figure 6.1

The inverse:

Figure 6.2

Combined result would end up as:

Note the 0 in the central pointer track at the last instruction.

This could result in being 0, 2, 4, 6, 8 depending on the last instruction write and would result in a stich going in different potential directions of array values.

Figure 6.3

Observation #7

If the first 3 instructions were L L L instead of L R L it would yield a different pattern when combing the matrix. Answers with these different shifts at the start where the matrix is 0 would give adjacently running tracks, thus there are seemingly many answers to this particular state machine.

The tracks can be shifted apart by how far the 0 filling of the array will allow at the start.

Observation #8

It would be possible to do Left all through 0, Right all through 1, Left all through 2, Right all through 3 and Left through 4.

This would create a helix like shape.