EECS 16B CSM

Bryan Ngo

Principal Component Analysis

Signals

EECS 16B CSM

Bryan Ngo

UC Berkeley

2020-11-15

EECS 16B CSM

Bryan Ngo

Principal Component Analysis

Signals

Principal Component Analysis

Motivation

EECS 16B CSM

Bryan Ngo

Principal Component Analysis

- used for statistical analysis
- clustering
- correlation

How to PCA

EECS 16B CSM

Principal Component Analysis

Given $A \in \mathbb{R}^{n \times m}$, n measurements with m samples,

- II find $\overline{n_i}$ to center A around mean
- $oldsymbol{2}$ find covariance matrix $oldsymbol{C} = rac{1}{m} \left[oldsymbol{\widetilde{A}}
 ight]^{\! op} \! oldsymbol{\widetilde{A}}$
- 3 plot any two eigenvectors/principal components v_1, v_2 against centered points
- 4 data is scaled by σ_1, σ_2
- 5 more stretched along vector \implies larger correlation

Visualization

EECS 16B CSM

Bryan Ng

Principal Component Analysis

EECS 16B CSM

Bryan Ngo

Principal Component Analysis

Signals

Sampling

EECS 16B CSM

Bryan Ng

Principal Component Analysis

- continuous → discrete
- \blacksquare measuring an analog signal at a frequency ω
- band limiting
 - lacktriangledown if $\omega>2\omega_{max}$, signal perfectly recovered (Nyquist frequency)

Signals

 \blacksquare discrete \rightarrow continuous

- we want to pass through every sampling point, not approximate it
- composed of a weighted sum of basis functions

Given basis function

$$\Phi_i(x) = \begin{cases} 1 & x = i \\ 0 & \text{elsewhere} \end{cases} \tag{1}$$

$$y(x) = \sum_{i=1}^{n} y_i \Phi_i(x) \tag{2}$$

Interpolation Zero-Hold

EECS 16B CSM

Bryan Ng

Principal Component Analysis

Interpolation

Linear

EECS 16B CSM

Bryan Ng

Principal Component Analysis

Interpolation

Polynomial

EECS 16B CSM

Bryan Ng

Principal Component Analysis

Interpolation Sinc

EECS 16B CSM

Bryan Ngo

Principal Component Analysis

