

Computational Physics (PHYS6350)

Lecture 5: Non-linear equations and root-finding: Part 2

- Roots of polynomials
- Systems of non-linear equations
- Function extrema

January 31, 2023

Instructor: Volodymyr Vovchenko (vvovchenko@uh.edu)

Course materials: https://github.com/vlvovch/PHYS6350-ComputationalPhysics

Roots of polynomials

References: Chapters 5.1, 9.5 of Numerical Recipes Third Edition by W.H. Press et al.

Roots of polynomials

So far we've dealt with polynomials with one real root, such as

$$x^3 - x - 1 = 0$$

Other polynomials (e.g. **Legendre polynomials**) have multiple real roots, and we need to calculate them all

Preliminaries: evaluating polynomials efficiently

A polynomial can typically be written as

$$P(x) = \sum_{j=0}^{n} a_j x^j$$

or, equivalently, as

$$P(x) = a_0 + x(a_1 + x(...))$$

which allows one to evaluate both the polynomial and its derivative efficiently

```
def Poly(x,a):
    ret = a[len(a) - 1]
    for j in range(len(a) - 2, -1, -1):
        ret = ret * x + a[j]
    return ret
```

```
# Evaluate the derivative of a polynomial
# with coefficients a at a point x

def dPoly(x,a):
    p = a[len(a) - 1]
    dp = 0.
    for j in range(len(a) - 2, -1, -1):
        dp = dp * x + p
        p = p * x + a[j]
    return dp
```

Preliminaries: multiplying and dividing a polynomial

Multiplication:

Multiply
$$P(x) = \sum_{j=0}^{n} a_j x^j$$
 by $(x - c)$ to get $\tilde{P}(x) = (x - c) P(x) = \sum_{j=0}^{n+1} \tilde{a}_j x^j$.

Easy to see that

$$\widetilde{a}_0 = -ca_0$$
, and $\widetilde{a}_j = a_{j-1} - c \ a_j$, $j = 1, \ldots, n+1$

Multiply polynomial by (x - c) def PolyMult(a,c): n = len(a) ret = a[:] ret.append(ret[-1]) for j in range(n-1,0,-1): ret[j] = ret[j-1] - c * ret[j] ret[0] = -c * ret[0] return ret

Division:

Inverting these relations defines the division of $\tilde{P}(x)$ by (x-c)

$$a_j = \tilde{a}_{j+1} + c \, a_{j+1}, \quad j = 0, \dots, n$$

Note that the division only makes sense with x=c is a root of $\tilde{P}(x)$

```
# Divide the polynomial by (x - c),
# assuming x = c is one of the roots
def PolyDiv(a,c):
    n = len(a) - 1
    ret = a[:]
    ret[-1] = 0.
    for j in range(n-1,-1,-1):
        ret[j] = a[j+1] + c * ret[j+1]
    ret.pop()
    return ret
```

Roots of Lagrange polynomials $P_n(x)$ play an important role e.g. for numerical integration using quadratures

Each $P_n(x)$ has n real roots in the interval x = -1...1

Consider

$$P_6(x) = \frac{1}{16} \left(231x^6 - 315x^4 + 105x^2 - 5 \right)$$

How to evaluate its six roots accurately?

Strategy 1: Bracket each root from visual analysis and use the bisection method for refinement

Strategy 1: Bracket each root from visual analysis and use the bisection method for refinement

```
xroots = []
# Root 1
xleft = -1.
xright = -0.75
xroots.append(bisection method(fP6,xleft,xright))
print("Root 1 between", xleft, "and", xright, "is x =",xroots[-1])
xleft = -0.75
xright = -0.5
xroots.append(bisection method(fP6,xleft,xright))
print("Root 2 between", xleft, "and", xright, "is x =",xroots[-1])
xleft = -0.5
xright = 0.
xroots.append(bisection method(fP6,xleft,xright))
print("Root 3 between", xleft, "and", xright, "is x =",xroots[-1])
xleft = 0.
xright = 0.5
xroots.append(bisection method(fP6,xleft,xright))
print("Root 4 between", xleft, "and", xright, "is x =",xroots[-1])
xleft = 0.5
xright = 0.75
xroots.append(bisection method(fP6,xleft,xright))
print("Root 5 between", xleft, "and", xright, "is x =",xroots[-1])
xleft = 0.75
xright = 1.
xroots.append(bisection method(fP6,xleft,xright))
print("Root 6 between", xleft, "and", xright, "is x =",xroots[-1])
```


Strategy 1: Bracket each root from visual analysis and use the bisection method for refinement

```
xroots = []
# Root 1
xleft = -1.
xright = -0.75
xroots.append(bisection method(fP6,xleft,xright))
print("Root 1 between", xleft, "and", xright, "is x =",xroots[-1])
xleft = -0.75
xright = -0.5
xroots.append(bisection method(fP6,xleft,xright))
print("Root 2 between", xleft, "and", xright, "is x =",xroots[-1])
xleft = -0.5
xright = 0.
xroots.append(bisection method(fP6,xleft,xright))
print("Root 3 between", xleft, "and", xright, "is x =",xroots[-1])
xleft = 0.
xright = 0.5
xroots.append(bisection method(fP6,xleft,xright))
print("Root 4 between", xleft, "and", xright, "is x =",xroots[-1])
xleft = 0.5
xright = 0.75
xroots.append(bisection method(fP6,xleft,xright))
print("Root 5 between", xleft, "and", xright, "is x =",xroots[-1])
xleft = 0.75
xright = 1.
xroots.append(bisection method(fP6,xleft,xright))
print("Root 6 between", xleft, "and", xright, "is x =",xroots[-1])
```



```
Root 1 between -1.0 and -0.75 is x = -0.9324695142277051 Root 2 between -0.75 and -0.5 is x = -0.6612093864532653 Root 3 between -0.5 and 0.0 is x = -0.23861918607144617 Root 4 between 0.0 and 0.5 is x = 0.23861918607144617 Root 5 between 0.5 and 0.75 is x = 0.6612093864532653 Root 6 between 0.75 and 1.0 is x = 0.9324695142277051
```

Strategy 1 is fairly fail-safe but requires too much manual pre-processing

Strategy 2:

- Use e.g. Newton's method to find the first root x_1
- Divide the polynomial by $(x-x_1)$
- Apply Newton's method to the new polynomial to find x₂
- Divide the polynomial by $(x-x_2)$ and repeat the above steps until all roots are found

Optional optimization:

Refine the roots by applying Newton's method again to the original polynomial, using the tentative roots as initial guesses

This helps to mitigate round-off error accumulation inherent in polynomial division

Using strategy 2, initial guess $x_0 = -1$

```
def PolyRoots(
                         # The coefficients of the polynomial that we are solving
    a,
   x0 = -1.,
                         # The initial guess for the first root
   accuracy = 1.e-10,
                         # The desired accuracy of the solution
                         # Whether to polish the roots further with Newton's method
    polishing = True,
   max iterations = 100 # Maximum number of iterations in Newton's method
    ret = []
    n = len(a)
   apoly = a[:]
    current root = x0
    def f(x):
        return Poly(x,apoly)
    def df(x):
        return dPoly(x,apoly)
    print("Searching all the roots using deflation and the Newton's method")
    # Loop over all the roots
   for k in range(0,n-1,1):
        current_root = newton_method(f,df,current_root,accuracy,max_iterations)
       if (current_root == None):
            print("Failed to find the next root!")
            break
        ret.append(current root)
        print("Root ", k+1, "is x = ",current_root)
       # Deflate the polynomial
        apoly = PolyDiv(apoly, current root)
    return ret
```


Searching all the roots using deflation and Newton's method Root 1 is x = -0.932469514203152

Using strategy 2, initial guess $x_0 = -1$

```
def PolyRoots(
                         # The coefficients of the polynomial that we are solving
    a,
   x0 = -1.,
                         # The initial guess for the first root
   accuracy = 1.e-10,
                         # The desired accuracy of the solution
                         # Whether to polish the roots further with Newton's method
    polishing = True,
   max iterations = 100 # Maximum number of iterations in Newton's method
    ret = []
    n = len(a)
    apoly = a[:]
    current root = x0
    def f(x):
        return Poly(x,apoly)
    def df(x):
        return dPoly(x,apoly)
    print("Searching all the roots using deflation and the Newton's method")
    # Loop over all the roots
   for k in range(0,n-1,1):
        current_root = newton_method(f,df,current_root,accuracy,max_iterations)
       if (current root == None):
            print("Failed to find the next root!")
            break
        ret.append(current root)
        print("Root ", k+1, "is x = ",current_root)
       # Deflate the polynomial
        apoly = PolyDiv(apoly, current root)
    return ret
```


Searching all the roots using deflation and Newton's method Root 1 is x = -0.932469514203152Root 2 is x = -0.6612093864662645

Using strategy 2, initial guess $x_0 = -1$

```
def PolyRoots(
                         # The coefficients of the polynomial that we are solving
    a,
   x0 = -1.,
                         # The initial guess for the first root
   accuracy = 1.e-10,
                         # The desired accuracy of the solution
                         # Whether to polish the roots further with Newton's method
    polishing = True,
   max iterations = 100 # Maximum number of iterations in Newton's method
    ret = []
    n = len(a)
    apoly = a[:]
    current root = x0
    def f(x):
        return Poly(x,apoly)
    def df(x):
        return dPoly(x,apoly)
    print("Searching all the roots using deflation and the Newton's method")
    # Loop over all the roots
   for k in range(0,n-1,1):
        current_root = newton_method(f,df,current_root,accuracy,max_iterations)
       if (current root == None):
            print("Failed to find the next root!")
            break
        ret.append(current root)
        print("Root ", k+1, "is x = ",current_root)
       # Deflate the polynomial
        apoly = PolyDiv(apoly, current root)
    return ret
```


Searching all the roots using deflation and Newton's method Root 1 is x = -0.932469514203152Root 2 is x = -0.6612093864662645Root 3 is x = -0.23861918608319668

Using strategy 2, initial guess $x_0 = -1$

```
def PolyRoots(
                         # The coefficients of the polynomial that we are solving
    a,
   x0 = -1.,
                         # The initial guess for the first root
   accuracy = 1.e-10,
                         # The desired accuracy of the solution
                         # Whether to polish the roots further with Newton's method
    polishing = True,
   max iterations = 100 # Maximum number of iterations in Newton's method
    ret = []
    n = len(a)
    apoly = a[:]
    current root = x0
    def f(x):
        return Poly(x,apoly)
    def df(x):
        return dPoly(x,apoly)
    print("Searching all the roots using deflation and the Newton's method")
    # Loop over all the roots
   for k in range(0,n-1,1):
        current_root = newton_method(f,df,current_root,accuracy,max_iterations)
       if (current root == None):
            print("Failed to find the next root!")
            break
        ret.append(current root)
        print("Root ", k+1, "is x = ",current_root)
       # Deflate the polynomial
        apoly = PolyDiv(apoly, current root)
    return ret
```


Searching all the roots using deflation and Newton's method Root 1 is x = -0.932469514203152Root 2 is x = -0.6612093864662645Root 3 is x = -0.23861918608319668Root 4 is x = 0.23861918608319652

Using strategy 2, initial guess $x_0 = -1$

```
def PolyRoots(
                         # The coefficients of the polynomial that we are solving
    a,
                         # The initial guess for the first root
    x0 = -1.
   accuracy = 1.e-10,
                         # The desired accuracy of the solution
                         # Whether to polish the roots further with Newton's method
    polishing = True,
   max iterations = 100 # Maximum number of iterations in Newton's method
    ret = []
    n = len(a)
    apoly = a[:]
    current root = x0
    def f(x):
        return Poly(x,apoly)
    def df(x):
        return dPoly(x,apoly)
    print("Searching all the roots using deflation and the Newton's method")
    # Loop over all the roots
   for k in range(0,n-1,1):
        current root = newton method(f,df,current root,accuracy,max iterations)
       if (current root == None):
            print("Failed to find the next root!")
            break
        ret.append(current root)
        print("Root ", k+1, "is x = ",current_root)
       # Deflate the polynomial
        apoly = PolyDiv(apoly, current root)
    return ret
```



```
Searching all the roots using deflation and Newton's method Root 1 is x = -0.932469514203152
Root 2 is x = -0.6612093864662645
Root 3 is x = -0.23861918608319668
Root 4 is x = 0.23861918608319652
Root 5 is x = 0.6612093864662646
```

Using strategy 2, initial guess $x_0 = -1$

```
def PolyRoots(
                         # The coefficients of the polynomial that we are solving
    a,
                         # The initial guess for the first root
    x0 = -1.
   accuracy = 1.e-10,
                         # The desired accuracy of the solution
                         # Whether to polish the roots further with Newton's method
    polishing = True,
   max iterations = 100 # Maximum number of iterations in Newton's method
    ret = []
    n = len(a)
    apoly = a[:]
    current_root = x0
    def f(x):
        return Poly(x,apoly)
    def df(x):
        return dPoly(x,apoly)
    print("Searching all the roots using deflation and the Newton's method")
    # Loop over all the roots
   for k in range(0,n-1,1):
        current root = newton method(f,df,current root,accuracy,max iterations)
       if (current root == None):
            print("Failed to find the next root!")
            break
        ret.append(current root)
        print("Root ", k+1, "is x = ",current_root)
       # Deflate the polynomial
        apoly = PolyDiv(apoly, current root)
    return ret
```



```
Searching all the roots using deflation and Newton's method Root 1 is x = -0.932469514203152
Root 2 is x = -0.6612093864662645
Root 3 is x = -0.23861918608319668
Root 4 is x = 0.23861918608319652
Root 5 is x = 0.6612093864662646
Root 6 is x = 0.9324695142031523
```

Using strategy 2, initial guess $x_0 = -1$

```
def PolyRoots(
                         # The coefficients of the polynomial that we are solving
    a,
   x0 = -1.,
                         # The initial guess for the first root
   accuracy = 1.e-10,
                         # The desired accuracy of the solution
                         # Whether to polish the roots further with Newton's method
    polishing = True,
   max iterations = 100 # Maximum number of iterations in Newton's method
    ret = []
    n = len(a)
    apoly = a[:]
    current root = x0
    def f(x):
        return Poly(x,apoly)
    def df(x):
        return dPoly(x,apoly)
    print("Searching all the roots using deflation and the Newton's method")
    # Loop over all the roots
   for k in range(0,n-1,1):
        current root = newton method(f,df,current root,accuracy,max iterations)
       if (current root == None):
            print("Failed to find the next root!")
            break
        ret.append(current root)
        print("Root ", k+1, "is x = ",current_root)
       # Deflate the polynomial
        apoly = PolyDiv(apoly, current root)
    return ret
```



```
Searching all the roots using deflation and Newton's method Root 1 is x = -0.932469514203152
Root 2 is x = -0.6612093864662645
Root 3 is x = -0.23861918608319668
Root 4 is x = 0.23861918608319652
Root 5 is x = 0.6612093864662646
Root 6 is x = 0.9324695142031523
```

Same procedure for $P_9(x)$

Root 9 is x = 0.968160239507609

```
Searching all the roots using deflation and Newton's method
Root 1 is x = -0.9681602395076263
Root 2 is x = -0.8360311073266355
Root 3 is x = -0.6133714327005905
Root 4 is x = -0.3242534234038087
Root 5 is x = -2.9050086835705924e-16
Root 6 is x = 0.32425342340380925
Root 7 is x = 0.6133714327005846
Root 8 is x = 0.8360311073266581
```


Systems of non-linear equations

$$f_1(x_1, ..., x_N) = 0,$$

 $f_2(x_1, ..., x_N) = 0,$
...
 $f_N(x_1, ..., x_N) = 0$

Systems of non-linear equations

Sometimes we need to solve a system of non-linear equations, e.g.

$$f_1(x_1, ..., x_N) = 0,$$

 $f_2(x_1, ..., x_N) = 0,$
...
 $f_N(x_1, ..., x_N) = 0$

Denoting $\mathbf{f} = (f_1, \dots, f_N)$ and $\mathbf{x} = (x_1, \dots, x_N)$ this can be written in compact form as

$$\mathbf{f}(\mathbf{x}) = 0.$$

For example:

$$x + \exp(-x) - 2 - y = 0,$$

$$x^{3} - x - 3 - y = 0.$$

i.e.

$$f_1(x_1, x_2) = x_1 + \exp(-x_1) - 2 - x_2$$
$$f_2(x_1, x_2) = x_1^3 - x_1 - 3 - x_2$$

Recall the Taylor expansion of function f around the root x^* in one-dimensional case:

$$f(x^*) \approx f(x) + f'(x)(x^* - x)$$

The multi-dimensional version of this expansion reads

$$\mathbf{f}(\mathbf{x}^*) \approx \mathbf{f}(\mathbf{x}) + J(\mathbf{x})(\mathbf{x}^* - \mathbf{x})$$

Here $J(\mathbf{x})$ is the Jacobian, i.e. a $N \times N$ matrix of derivatives evaluated at \mathbf{x}

$$J_{ij}(\mathbf{x}) = \frac{\partial f_i}{\partial x_j} \ .$$

Given that $\mathbf{f}(\mathbf{x}^*) = 0$, we have

$$J(\mathbf{x})(\mathbf{x}^* - \mathbf{x}) \approx -\mathbf{f}(\mathbf{x}),$$

which is a system of linear equations for $x^* - x$. Solving this system yields

$$\mathbf{x}^* \approx \mathbf{x} - \mathbf{J}^{-1}(\mathbf{x}) \, \mathbf{f}(\mathbf{x}) \, .$$

Here $J^{-1}(\mathbf{x})$ is the inverse Jacobian matrix.

The multi-dimensional Newton's method is an iterative procedure

$$\mathbf{x}_{n+1} = \mathbf{x}_n - J^{-1}(\mathbf{x}_n) \mathbf{f}(\mathbf{x}_n)$$
.

Reduces to Newton's method in 1D
$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

```
def newton method multi(
   f,
   jacobian,
   χ0,
   accuracy=1e-8,
   max iterations=100):
   x = x0
    global last newton iterations
   last newton iterations = 0
    if newton_verbose:
        print("Iteration: ", last_newton_iterations)
        print("x = ", x0)
        print("f = ", f(x0))
        print("|f| = ", ftil(f(x0)))
   for i in range(max_iterations):
        last newton iterations += 1
       f val = f(x)
        jac = jacobian(x)
        jinv = np.linalg.inv(jac)
        delta = np.dot(jinv, -f_val)
        x = x + delta
        if np.linalg.norm(delta, ord=2) < accuracy:</pre>
            return x
    return x
```



```
Iteration: 12
x = [ 1.64998819 -0.15795963]
f = [ 0.00000000e+00 -6.66133815e-16]
|f| = 2.2186712959340957e-31
```

Introduce an objective function

$$\tilde{f}(\mathbf{x}) = \frac{\mathbf{f}(\mathbf{x}) \cdot \mathbf{f}(\mathbf{x})}{2}$$

Its value is equal to zero (minimized) at the root

Broyden method

Broyden method is a multi-dimensional generalization of the secant method

Secant method:
$$x_{n+1}=x_n-rac{f(x_n)}{f'(x_n)}$$
 with $f'(x_n)\simeqrac{f(x_n)-f(x_{n-1})}{x_n-x_{n-1}}$

Broyden method: $\mathbf{x}_{n+1} = \mathbf{x}_n - J^{-1}(\mathbf{x}_n) \mathbf{f}(\mathbf{x}_n)$ with

The solution to $J(x_n)(x_n - x_{n-1}) \simeq f(x_n) - f(x_{n-1})$ is not unique

Broyden:
$$\mathbf{J}_n = \mathbf{J}_{n-1} + \frac{\Delta \mathbf{f}_n - \mathbf{J}_{n-1} \Delta \mathbf{x}_n}{\|\Delta \mathbf{x}_n\|^2} \Delta \mathbf{x}_n^{\mathrm{T}}$$
 with $\begin{aligned} \mathbf{f}_n &= \mathbf{f}(\mathbf{x}_n), \\ \Delta \mathbf{x}_n &= \mathbf{x}_n - \mathbf{x}_{n-1}, \\ \Delta \mathbf{f}_n &= \mathbf{f}_n - \mathbf{f}_{n-1}, \end{aligned}$

For J_0 one can take the identity matrix or full Jacobian calculated once

Broyden method (direct)

```
# Direct implementation of Broyden's method
# (using matrix inversion at each step)
def broyden method direct(
    f,
    χ0,
    accuracy=1e-8,
   max iterations=100):
    global last_broyden_iterations
   last broyden iterations = 0
   x = x0
   n = x0.shape[0]
    J = np.eye(n)
   for i in range(max iterations):
        last_broyden_iterations += 1
        f_val = f(x)
        Jinv = np.linalg.inv(J)
        delta = np.dot(Jinv, -f_val)
        x = x + delta
        if np.linalg.norm(delta, ord=2) < accuracy:</pre>
            return x
        f new = f(x)
        u = f new - f val
        v = delta
        J = J + np.outer(u - J.dot(v), v) / np.dot(v, v)
    return x
```



```
Iteration: 54
x = [ 1.64998819 -0.15795963]
f = [ 2.97817326e-14 -4.50097265e-10]
|f| = 1.0129377443026415e-19
```

Broyden method: avoid matrix inversion

$$\mathbf{J}_n = \mathbf{J}_{n-1} + rac{\Delta \mathbf{f}_n - \mathbf{J}_{n-1} \Delta \mathbf{x}_n}{\|\Delta \mathbf{x}_n\|^2} \Delta \mathbf{x}_n^{\mathrm{T}}$$

Sherman-Morrison formula:

$$\mathbf{J}_n^{-1} = \mathbf{J}_{n-1}^{-1} + rac{\Delta \mathbf{x}_n - \mathbf{J}_{n-1}^{-1} \Delta \mathbf{f}_n}{\Delta \mathbf{x}_n^{\mathrm{T}} \mathbf{J}_{n-1}^{-1} \Delta \mathbf{f}_n} \Delta \mathbf{x}_n^{\mathrm{T}} \mathbf{J}_{n-1}^{-1}$$

Update the inverse Jacobian directly!

Broyden method (Sherman-Morrison)

```
def broyden method(
    f,
    x0,
    accuracy=1e-8,
    max_iterations=100):
    global last_broyden_iterations
    last_broyden_iterations = 0
   x = x0
    n = x0.shape[0]
    Jinv = np.eye(n)
    for i in range(max_iterations):
        last_broyden_iterations += 1
        f_{val} = f(x)
        delta = -Jinv.dot(f val)
        x = x + delta
        if np.linalg.norm(delta, ord=2) < accuracy:</pre>
            return x
        f new = f(x)
        df = f new - f val
        dx = delta
        Jinv = Jinv + np.outer(dx - Jinv.dot(df), dx.T.dot(Jinv))
        / np.dot(dx.T, Jinv.dot(df))
    return x
```



```
Iteration: 54
x = [ 1.64998819 -0.15795963]
f = [ 2.8255176e-14 -3.8877096e-10]
|f| = 7.557143001803891e-20
```

Broyden method vs Newton-Raphson method

Broyden method converges somewhat slower (e.g. 54 vs 12 iterations in our example) but:

- Does not involve the calculation of Jacobian
- Does not involve matrix inversion

Broyden method vs Newton-Raphson method

Broyden method converges somewhat slower (e.g. 54 vs 12 iterations in our example) but:

- Does not involve the calculation of Jacobian
- Does not involve matrix inversion.

Possible refinement: improve the initial estimate for the Jacobian

Function minimization/maximization

References: Chapter 6.4 of Computational Physics by Mark Newman Chapter 10 of Numerical Recipes Third Edition by W.H. Press et al.

Function extrema

Often we are interested to find the minimum of a function (e.g. energy minimization)

Consider the minimum of $f(x)=\sin(x)$ on interval $0..2\pi$

Golden section search

- Bracket the minimum x_{min} in (a,b)
- Take $c = b (b-a)/\varphi$ and $d = a + (b-a)/\varphi$
- if f(c) < f(d), take b = d as new right endpoint
- Otherwise, take a = c as new left endpoint
- Repeat over the new interval (a,b) until the desired accuracy is reached

$$\varphi = \frac{1+\sqrt{5}}{2} = 1.618 \dots$$
 is the **golden ratio**

This value ensures that the interval decreases by factor φ no matter what

Golden section search

```
def gss(f, a, b, accuracy=1e-7):
    c = b - (b - a) / phi
    d = a + (b - a) / phi
    while abs(b - a) > accuracy:
        if f(c) < f(d):
            b = d
    else:
            a = c

        c = b - (b - a) / phi
        d = a + (b - a) / phi
    return (b + a) / 2</pre>
```


The minimum of sin(x) over the interval (0.0 , 6.283185307179586) is 4.712388990891052

To search for maximum of f(x) look for minimum of -f(x)

Newton method

The extremum of f(x) is the root of the derivative, f'(x) = 0

Simply apply Newton-Raphson method for finding the root of f'(x)

$$x_{n+1} = x_n - \frac{f'(x_n)}{f''(x_n)}$$

```
f''(x) > 0, \rightarrow minimum

f''(x) < 0, \rightarrow maximum

def newton_extremum(f, df, d2f, x0, accuracy=1e-7, max_iterations=100):
    xprev = xnew = x0
    for i in range(max_iterations):
        xnew = xprev - df(xprev) / d2f(xprev)

    if (abs(xnew-xprev) < accuracy):
        return xnew

    xprev = xnew
    return xnew
```

An extremum of sin(x) using Newton's method starting from x0 = 5.0 is (0.0 , 6.283185307179586) is 4.71238898038469

Gradient descent method

Replace, f''(x) by a descent factor $1/\gamma_n$

$$x_{n+1} = x_n - \gamma_n f'(x_n)$$

```
def gradient_descent(f, df, x0, gam = 0.01, accuracy=1e-7, max_iterations=100):
    xprev = x0
    for i in range(max_iterations):
        xnew = xprev - gam * df(xprev)

        if (abs(xnew-xprev) < accuracy):
            return xnew

        xprev2 = xprev
        xprev = xnew
    return xnew</pre>
```

Freedom in choosing γ_n

Can be generalized to multi-variable function $F(x_1, x_2,...)$

$$\mathbf{x}_{n+1} = \mathbf{x}_n - \gamma_n \nabla F(\mathbf{x}_n)$$