Support Vector Machines

Julia Kempe & David Rosenberg

CDS, NYU

February 19, 2019

The SVM as a Quadratic Program

The Margin

Definition

The margin (or functional margin) for predicted score \hat{y} and true class $y \in \{-1, 1\}$ is $y\hat{y}$.

- The margin often looks like yf(x), where f(x) is our score function.
- The margin is a measure of how correct we are.
- We want to maximize the margin.
- Most classification losses depend only on the margin.

(This is distinct from but related to geometric margin from lab.)

Hinge Loss

- SVM/Hinge loss: $\ell_{\mathsf{Hinge}} = \max\{1-m,0\} = (1-m)_+$
- Margin m = yf(x); "Positive part" $(x)_+ = x1(x \ge 0)$.

Hinge is a **convex**, **upper bound** on 0-1 loss. Not differentiable at m=1. We have a "margin error" when m<1.

Support Vector Machine

- Hypothesis space $\mathcal{F} = \{ f(x) = w^T x + b \mid w \in \mathbb{R}^d, b \in \mathbb{R} \}.$
- ℓ_2 regularization (Tikhonov style)
- Loss $\ell(m) = \max\{1-m, 0\} = (1-m)_+$
- The SVM prediction function is the solution to

$$\min_{w \in \mathbb{R}^{d}, b \in \mathbb{R}} \frac{1}{2} ||w||^{2} + \frac{c}{n} \sum_{i=1}^{n} \max (0, 1 - y_{i} [w^{T} x_{i} + b]).$$

SVM Optimization Problem (Tikhonov Version)

The SVM prediction function is the solution to

$$\min_{w \in \mathbb{R}^d, b \in \mathbb{R}} \frac{1}{2} ||w||^2 + \frac{c}{n} \sum_{i=1}^n \max (0, 1 - y_i [w^T x_i + b]).$$

- unconstrained optimization
- not differentiable because of the max (right at the border of a margin error)
- Can we reformulate into a differentiable problem?

SVM Optimization Problem

• The SVM optimization problem is equivalent to

minimize
$$\frac{1}{2}||w||^2 + \frac{c}{n}\sum_{i=1}^n \xi_i$$

subject to
$$\xi_i \geqslant \max(0, 1 - y_i [w^T x_i + b]).$$

Which is equivalent to

minimize
$$\frac{1}{2}||w||^2 + \frac{c}{n}\sum_{i=1}^n \xi_i$$
subject to
$$\xi_i \geqslant \left(1 - y_i \left[w^T x_i + b\right]\right) \text{ for } i = 1, \dots, n$$
$$\xi_i \geqslant 0 \text{ for } i = 1, \dots, n$$

SVM as a Quadratic Program

• The SVM optimization problem is equivalent to

minimize
$$\frac{1}{2}||w||^2 + \frac{c}{n}\sum_{i=1}^n \xi_i$$
subject to
$$-\xi_i \leqslant 0 \text{ for } i = 1, \dots, n$$
$$\left(1 - y_i \left[w^T x_i + b\right]\right) - \xi_i \leqslant 0 \text{ for } i = 1, \dots, n$$

- Differentiable objective function
- n+d+1 unknowns and 2n affine constraints.
- A quadratic program that can be solved by any off-the-shelf QP solver.
- Let's learn more by examining the dual.

The SVM Dual Problem

SVM Lagrange Multipliers

minimize
$$\frac{1}{2}||w||^2 + \frac{c}{n}\sum_{i=1}^n \xi_i$$
subject to
$$-\xi_i \leqslant 0 \text{ for } i = 1, \dots, n$$
$$\left(1 - y_i \left[w^T x_i + b\right]\right) - \xi_i \leqslant 0 \text{ for } i = 1, \dots, n$$

Lagrange Multiplier	Constraint
λ_i	$-\xi_i \leqslant 0$
α_i	$(1-y_i[w^Tx_i+b])-\xi_i\leqslant 0$

$$L(w, b, \xi, \alpha, \lambda) = \frac{1}{2} ||w||^2 + \frac{c}{n} \sum_{i=1}^{n} \xi_i + \sum_{i=1}^{n} \alpha_i \left(1 - y_i \left[w^T x_i + b \right] - \xi_i \right) + \sum_{i=1}^{n} \lambda_i \left(-\xi_i \right)$$

SVM Lagrangian

• The Lagrangian for this formulation is

$$L(w, b, \xi, \alpha, \lambda) = \frac{1}{2} ||w||^{2} + \frac{c}{n} \sum_{i=1}^{n} \xi_{i} + \sum_{i=1}^{n} \alpha_{i} \left(1 - y_{i} \left[w^{T} x_{i} + b\right] - \xi_{i}\right) - \sum_{i} \lambda_{i} \xi_{i}$$

$$= \frac{1}{2} w^{T} w + \sum_{i=1}^{n} \xi_{i} \left(\frac{c}{n} - \alpha_{i} - \lambda_{i}\right) + \sum_{i=1}^{n} \alpha_{i} \left(1 - y_{i} \left[w^{T} x_{i} + b\right]\right).$$

Primal and dual:

$$p^* = \inf_{w,\xi,b} \sup_{\alpha,\lambda \succeq 0} L(w,b,\xi,\alpha,\lambda)$$

$$\geqslant \sup_{\alpha,\lambda \succeq 0} \inf_{w,b,\xi} L(w,b,\xi,\alpha,\lambda) = d^*$$

• Do we have $p^* = d^*$?

Strong Duality by Slater's constraint qualification

The SVM optimization problem:

minimize
$$\frac{1}{2}||w||^2 + \frac{c}{n}\sum_{i=1}^n \xi_i$$
subject to
$$-\xi_i \leqslant 0 \text{ for } i = 1, \dots, n$$

$$\left(1 - y_i \left[w^T x_i + b\right]\right) - \xi_i \leqslant 0 \text{ for } i = 1, \dots, n$$

- Convex problem + affine constraints ⇒ strong duality iff problem is feasible
- Constraints are satisfied by w = b = 0 and $\xi_i = 1$ for i = 1, ..., n,
 - so we have strong duality \Longrightarrow

$$p^* = \inf_{w, \xi, b} \sup_{\alpha, \lambda \succeq 0} L(w, b, \xi, \alpha, \lambda)$$

=
$$\sup_{\alpha, \lambda \succeq 0} \inf_{w, b, \xi} L(w, b, \xi, \alpha, \lambda) = d^*$$

SVM Dual Function

• Lagrange dual is the inf over primal variables of the Lagrangian:

$$g(\alpha, \lambda) = \inf_{w, b, \xi} L(w, b, \xi, \alpha, \lambda)$$

$$= \inf_{w, b, \xi} \left[\frac{1}{2} w^{T} w + \sum_{i=1}^{n} \xi_{i} \left(\frac{c}{n} - \alpha_{i} - \lambda_{i} \right) + \sum_{i=1}^{n} \alpha_{i} \left(1 - y_{i} \left[w^{T} x_{i} + b \right] \right) \right]$$

- Taking inf of convex and differentiable function of w, b, ξ .
 - Quadratic in w and linear in ξ and b.
- Thus optimal point iff $\partial_w L = 0$ $\partial_b L = 0$ $\partial_{\xi} L = 0$
- Note: $g(\alpha, \lambda) = -\infty$ when $\frac{c}{n} \alpha_i \lambda_i \neq 0$. (send $\xi_i \to \pm \infty$). This inf is NOT an optimum because it is never attained.

SVM Dual Function: First Order Conditions

Lagrange dual function is the inf over primal variables of L:

$$g(\alpha, \lambda) = \inf_{w, b, \xi} L(w, b, \xi, \alpha, \lambda)$$

$$= \inf_{w, b, \xi} \left[\frac{1}{2} w^{T} w + \sum_{i=1}^{n} \xi_{i} \left(\frac{c}{n} - \alpha_{i} - \lambda_{i} \right) + \sum_{i=1}^{n} \alpha_{i} \left(1 - y_{i} \left[w^{T} x_{i} + b \right] \right) \right]$$

$$\partial_{w} L = 0 \iff w - \sum_{i=1}^{n} \alpha_{i} y_{i} x_{i} = 0 \iff w = \sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}$$

$$\partial_{b} L = 0 \iff -\sum_{i=1}^{n} \alpha_{i} y_{i} = 0 \iff \sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$

$$\partial_{\xi_{i}} L = 0 \iff \frac{c}{n} - \alpha_{i} - \lambda_{i} = 0 \iff \alpha_{i} + \lambda_{i} = \frac{c}{n}$$

SVM Dual Function

- Substituting these conditions back into L, the second term disappears.
- First and third terms become

$$\frac{1}{2}w^Tw = \frac{1}{2}\sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j x_i^T x_j$$

$$\sum_{i=1}^n \alpha_i (1 - y_i \left[w^T x_i + b \right]) = \sum_{i=1}^n \alpha_i - \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j x_j^T x_i - b \sum_{i=1}^n \alpha_i y_i.$$

Putting it together, the dual function is

$$g(\alpha, \lambda) = \begin{cases} \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j x_j^T x_i & \sum_{i=1}^{n} \alpha_i y_i = 0 \\ -\infty & \text{otherwise.} \end{cases}$$

SVM Dual Problem

The dual function is

$$g(\alpha, \lambda) = \begin{cases} \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j x_j^T x_i & \sum_{i=1}^{n} \alpha_i y_i = 0 \\ -\infty & \text{otherwise.} \end{cases}$$

• The dual problem is $\sup_{\alpha,\lambda \succ 0} g(\alpha,\lambda)$:

$$\sup_{\alpha,\lambda} \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{j}^{T} x_{i}$$
s.t.
$$\sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$

$$\alpha_{i} + \lambda_{i} = \frac{c}{n} \quad \alpha_{i}, \lambda_{i} \geqslant 0, \ i = 1, \dots, n$$