Universidade Federal do Rio de Janeiro INSTITUTO DE COMPUTAÇÃO

Curso Ciência da Computação

Simulado Álgebra Linear Algorítmica

IMPORTANTE: Justifique todas as suas respostas.

- 1. Dadas as matrizes de rotação 2×2 , A e B por ângulos θ e ω , respectivamente.
 - a) Mostre que AB também é uma matriz de rotação.
 - b) Verifique que AB = BA.
 - c) A matriz A é inversível? Apresente A^{-1} .
 - d) Mostre que a matriz A tem colunas ortonormais, ou seja, o produto interno entre elas é zero.
- 2. Sejam $x = \begin{bmatrix} 5 \\ 5 \end{bmatrix}$ e $y = \begin{bmatrix} 1 \\ 7 \end{bmatrix}$ vetores tais que Ex = y sendo E uma reflexão/Espelhamento, encontre:
 - a) o vetor unitário diretor do espelho u e sua normal n, também unitária.
 - b) apresente a matriz E e verifique que $x = E^T y$.
 - c) mostre que $x = E^2x$. E diga a relação da inversa, transposta e a própria E.
 - d) apresente os autovalores e autovetores de E e relacione com os vetores u e n.
- 3. Mostre que a reflexão $E_1=2uu^T-I$ é a mesma que $E_2=I-2nn^T$, quado u é o espelho e n sua normal de uma mesma transformação.
- 4. Sejam A e B matrizes quadradas 2×2 e λ um número real. Prove as seguintes propriedades do determinante:
 - a) $\det(A^T) = \det(A)$;
 - (b) det(AB) = det(A) det(B);
 - (c) $\det(\lambda A) = \lambda^2 \det(A)$.