Exploring Reachable States

Transition system: M = (S, I, r, A), where $I \subseteq S$, $r \subseteq S \times A \times S$

$$\overline{r} = \{(s, s') \mid \exists a \in A.(s, a, s') \in r\}$$

Similarly to post(X) previously, define:

$$G: 2^S \to 2^S$$
$$G(X) = I \cup \overline{r}[X]$$

What properties does function *G* have?

Exploring Reachable States

Transition system: M = (S, I, r, A), where $I \subseteq S$, $r \subseteq S \times A \times S$

$$\bar{r} = \{(s,s') \mid \exists a \in A.(s,a,s') \in r\}$$

Similarly to post(X) previously, define:

$$G: 2^S \to 2^S$$
$$G(X) = I \cup \overline{r}[X]$$

What properties does function *G* have? *G* is monotonic!

Exploring Reachable States

Transition system: M = (S, I, r, A), where $I \subseteq S$, $r \subseteq S \times A \times S$

$$\overline{r} = \{(s,s') \mid \exists a \in A.(s,a,s') \in r\}$$

Similarly to post(X) previously, define:

$$G: 2^S \to 2^S$$
$$G(X) = I \cup \overline{r}[X]$$

What properties does function G have? G is monotonic! Indeed. Say $S \subseteq S'$. Then $\overline{r}[S] \subseteq \overline{r}[S']$, so $I \cup \overline{r}[S] \subseteq I \cup \overline{r}[S']$. That is, $G(S) \subseteq G(S')$.

Define
$$G^0(X) = X$$
, $G^{n+1}(X) = G(G^n(X))$.

$$G(X) = I \cup \overline{r}[X]$$

$$G(\emptyset) =$$

$G(X) = I \cup \overline{r}[X]$

$$G(\emptyset) =$$

$$G(\emptyset) = I$$
 $G^2(\emptyset) = I$

$G(X) = I \cup \overline{r}[X]$

$$G(\emptyset) = I$$

$$G(\emptyset) = I$$
 $G^2(\emptyset) = I$

$$G^{2}(\emptyset) = I \cup \overline{r}[I]$$

$$G^3(\emptyset) = 707$$

 $G(X) = I \cup \overline{r}[X]$

$$G(\emptyset) = I$$
 $G^2(\emptyset) = I \cup \overline{r}[I]$

$$G^{2}(\emptyset) = I \cup \overline{r}[I]$$

$$G^{3}(\emptyset) = I \cup \overline{r}[I \cup \overline{r}[I]]$$

$$G(X) = I \cup \overline{r}[X]$$

$$G(\emptyset) = I$$
 $G^2(\emptyset) = I \cup \overline{r}[I]$

$$G^{2}(\emptyset) = I \cup \overline{r}[I]$$

$$G^{3}(\emptyset) = I \cup \overline{r}[I \cup \overline{r}[I]] = I \cup \overline{r}[I] \cup \overline{r}^{2}[I]$$

$$G^n(\emptyset) = igcup_{k=0}^{n-1} ar{r}^k[I]$$

All states reachable in less than
$$n$$
 steps!

What $G^n(\emptyset)$ is

$$G(X) = I \cup \overline{r}[X]$$

$$G(\emptyset) = I$$
 $G^2(\emptyset) = I \cup \overline{r}[I]$

$$G^{2}(\emptyset) = I \cup \overline{r}[I]$$

$$G^{3}(\emptyset) = I \cup \overline{r}[I \cup \overline{r}[I]] = I \cup \overline{r}[I] \cup \overline{r}^{2}[I]$$

. . .

$$G^n(\emptyset) = igcup_{k=0}^{n-1} ar{r}^k[I]$$

All states reachable in less than *n* steps!

Thus,

$$Reach(M) = \bigcup_{k>0} \bar{r}^k[I] = \bigcup_{n>0} G^n(\emptyset)$$

Consider the infinite sequence $G^i(\emptyset)$ for all i:

$$\emptyset$$
, $G(\emptyset)$, $G(G(\emptyset))$,..., $G^{n}(\emptyset)$,...,

Consider the infinite sequence $G^i(\emptyset)$ for all i:

$$\emptyset$$
, $G(\emptyset)$, $G(G(\emptyset))$,..., $G^{n}(\emptyset)$,...,

Note:
$$\emptyset \subseteq G(\emptyset)$$
 \longleftarrow because $\emptyset \subseteq Y$ for every Y

Consider the infinite sequence $G^i(\emptyset)$ for all i:

$$\emptyset$$
, $G(\emptyset)$, $G(G(\emptyset))$,..., $G^{n}(\emptyset)$,...,

Note:
$$\emptyset \subseteq G(\emptyset)$$
 \longleftarrow because $\emptyset \subseteq Y$ for every Y then: $G(\emptyset) \subseteq G(G(\emptyset))$ \longleftarrow because G is monotonic!

Consider the infinite sequence $G^i(\emptyset)$ for all i:

$$\emptyset$$
, $G(\emptyset)$, $G(G(\emptyset))$,..., $G^n(\emptyset)$,...,

Note:
$$\emptyset \subseteq G(\emptyset)$$
 \longleftarrow because $\emptyset \subseteq Y$ for every Y then: $G(\emptyset) \subseteq G(G(\emptyset))$ \longleftarrow because G is monotonic!

then: $G(G(\emptyset)) \subseteq G(G(G(\emptyset)))$ \leftarrow because G is monotonic!

Consider the infinite sequence $G^i(\emptyset)$ for all i:

$$\emptyset$$
, $G(\emptyset)$, $G(G(\emptyset))$,..., $G^{n}(\emptyset)$,...,

Note: $\emptyset \subseteq G(\emptyset)$ \longleftarrow because $\emptyset \subseteq Y$ for every Y then: $G(\emptyset) \subseteq G(G(\emptyset))$ \longleftarrow because G is monotonic! then: $G(G(\emptyset)) \subseteq G(G(G(\emptyset)))$ \longleftarrow because G is monotonic!

$$\emptyset \subseteq G(\emptyset) \subseteq G^2(\emptyset) \dots \subseteq G^n(\emptyset) \subseteq G^{n+1}(\emptyset) \subseteq \dots$$

Consider the infinite sequence $G^i(\emptyset)$ for all i:

$$\emptyset$$
, $G(\emptyset)$, $G(G(\emptyset))$,..., $G^n(\emptyset)$,...,

Note: $\emptyset \subseteq G(\emptyset)$ \longleftarrow because $\emptyset \subseteq Y$ for every Y then: $G(\emptyset) \subseteq G(G(\emptyset))$ \longleftarrow because G is monotonic! then: $G(G(\emptyset)) \subseteq G(G(G(\emptyset)))$ \longleftarrow because G is monotonic!

$$\emptyset \subseteq G(\emptyset) \subseteq G^2(\emptyset) \ldots \subseteq G^n(\emptyset) \subseteq G^{n+1}(\emptyset) \subseteq \ldots$$

Suppose that *S* is **finite**. What must happen?

Consider the infinite sequence $G^i(\emptyset)$ for all i:

$$\emptyset$$
, $G(\emptyset)$, $G(G(\emptyset))$,..., $G^{n}(\emptyset)$,...,

Note: $\emptyset \subseteq G(\emptyset)$ \longleftarrow because $\emptyset \subseteq Y$ for every Y then: $G(\emptyset) \subseteq G(G(\emptyset))$ \longleftarrow because G is monotonic! then: $G(G(\emptyset)) \subseteq G(G(G(\emptyset)))$ \longleftarrow because G is monotonic!

$$\emptyset \subseteq G(\emptyset) \subseteq G^2(\emptyset) \dots \subseteq G^n(\emptyset) \subseteq G^{n+1}(\emptyset) \subseteq \dots$$

Suppose that S is **finite**. What must happen? $G(G^n(\emptyset)) = G^n(\emptyset)$

Consider the infinite sequence $G^{i}(\emptyset)$ for all i:

$$\emptyset$$
, $G(\emptyset)$, $G(G(\emptyset))$,..., $G^n(\emptyset)$,...,

Note: $\emptyset \subseteq G(\emptyset)$ \longleftarrow because $\emptyset \subseteq Y$ for every Y then: $G(\emptyset) \subseteq G(G(\emptyset))$ \longleftarrow because G is monotonic! then: $G(G(\emptyset)) \subseteq G(G(G(\emptyset)))$ \longleftarrow because G is monotonic!

$$\emptyset \subseteq G(\emptyset) \subseteq G^2(\emptyset) \dots \subseteq G^n(\emptyset) \subseteq G^{n+1}(\emptyset) \subseteq \dots$$

Suppose that S is **finite**. What must happen? $G(G^n(\emptyset)) = G^n(\emptyset)$

we cannot get strictly bigger for infinitely many steps

Consider the infinite sequence $G^i(\emptyset)$ for all i:

$$\emptyset$$
, $G(\emptyset)$, $G(G(\emptyset))$,..., $G^n(\emptyset)$,...,

Note: $\emptyset \subseteq G(\emptyset)$ \longleftarrow because $\emptyset \subseteq Y$ for every Y then: $G(\emptyset) \subseteq G(G(\emptyset))$ \longleftarrow because G is monotonic! then: $G(G(\emptyset)) \subseteq G(G(G(\emptyset)))$ \longleftarrow because G is monotonic!

$$\emptyset \subseteq G(\emptyset) \subseteq G^2(\emptyset) \dots \subseteq G^n(\emptyset) \subseteq G^{n+1}(\emptyset) \subseteq \dots$$

Suppose that S is **finite**. What must happen? $G(G^n(\emptyset)) = G^n(\emptyset)$

- we cannot get strictly bigger for infinitely many steps
- ▶ once $G^{n+1}(\emptyset) = G^n(\emptyset)$ we get $G^{n+k}(\emptyset) = G^n(\emptyset)$, for all $k \ge 0$ (sequence becomes constant)

A Reachability Procedure

```
\begin{array}{l} \textbf{def} \ \mathsf{findXstar}(\mathsf{S},\mathsf{I},\mathsf{r},\mathsf{A}) = \\ \textbf{def} \ \mathsf{G}(\mathsf{X}) = \mathit{I} \cup \overline{\mathit{r}}[\mathit{X}] \\ \textbf{var} \ \mathsf{X} = \emptyset; \ \textbf{var} \ \mathsf{GX} = \mathsf{G}(\mathsf{X}) \\ \textbf{while} \ \mathsf{GX} \ != \mathsf{X} \ \textbf{do} \\ \mathsf{X} = \mathsf{GX}; \ \mathsf{GX} = \mathsf{G}(\mathsf{X}) \\ \textbf{end} \ \textbf{while} \\ \mathsf{X} \end{array}
```

What do we know about any set X^* where for some n, $X^* = G^n(\emptyset)$ and $G(X^*) = X^*$?

A Reachability Procedure

```
\begin{array}{l} \textbf{def } \mathsf{findXstar}(\mathsf{S},\mathsf{I},\mathsf{r},\mathsf{A}) = \\ \textbf{def } \mathsf{G}(\mathsf{X}) = \mathit{I} \cup \overline{\mathit{r}}[X] \\ \textbf{var } \mathsf{X} = \emptyset; \textbf{ var } \mathsf{G}\mathsf{X} = \mathsf{G}(\mathsf{X}) \\ \textbf{while } \mathsf{G}\mathsf{X} := \mathsf{X} \textbf{ do} \\ \mathsf{X} = \mathsf{G}\mathsf{X}; \mathsf{G}\mathsf{X} = \mathsf{G}(\mathsf{X}) \\ \textbf{end while} \\ \mathsf{X} \end{array}
```

What do we know about any set X^* where for some n, $X^* = G^n(\emptyset)$ and $G(X^*) = X^*$?

$$Reach(M) = \bigcup_{i \ge 0} G^i(\emptyset) = \underbrace{G^0(\emptyset) \cup \dots G^{n-1}(\emptyset)}_{\subseteq X^*} \cup \underbrace{G^n(\emptyset)}_{=X^*} \cup \underbrace{G^{n+1}(\emptyset) \cup \dots}_{=X^*} = X^*$$

Stops in step that exceeds the length of the longest trace of non-repeating states. (Need not terminate for infinite systems.)

Given a function on some set, $f: S \to S$, a value $x \in S$ is a fixed point iff f(x) = x.

Given a function on some set, $f: S \to S$, a value $x \in S$ is a fixed point iff f(x) = x.

Conclusion: reachable states are a fixed point of function $G(X) = I \cup \overline{r}[X]$.

Given a function on some set, $f: S \to S$, a value $x \in S$ is a fixed point iff f(x) = x.

Conclusion: reachable states are a fixed point of function $G(X) = I \cup \overline{r}[X]$.

How did we call a set of states X with the property $G(X) \subseteq X$?

Given a function on some set, $f: S \to S$, a value $x \in S$ is a fixed point iff f(x) = x.

Conclusion: reachable states are a fixed point of function $G(X) = I \cup \overline{r}[X]$.

How did we call a set of states X with the property $G(X) \subseteq X$?

$$I \cup \overline{r}[X] \subseteq X$$

Given a function on some set, $f: S \to S$, a value $x \in S$ is a fixed point iff f(x) = x.

Conclusion: reachable states are a fixed point of function $G(X) = I \cup \overline{r}[X]$.

How did we call a set of states X with the property $G(X) \subseteq X$?

$$I \cup \overline{r}[X] \subseteq X$$

Equivalent to:

Given a function on some set, $f: S \to S$, a value $x \in S$ is a fixed point iff f(x) = x.

Conclusion: reachable states are a fixed point of function $G(X) = I \cup \overline{r}[X]$.

How did we call a set of states X with the property $G(X) \subseteq X$?

$$I \cup \overline{r}[X] \subseteq X$$

Equivalent to:

- 1. *I*⊆*X*
- 2. $\overline{r}[X] \subseteq X$, that is, if $s \in X$ and $(s, s') \in \overline{r}$, then $s' \in X$

Inductive invariants are precisely sets X for which $G(X) \subseteq X$ (called postfix points)

How to implement X and G(X)?

```
\begin{array}{l} \textbf{def} \; \mathsf{findXstar}(\mathsf{S,I,r,A}) = \\ \textbf{def} \; \mathsf{G}(\mathsf{X}) = I \cup \overline{r}[X] \\ \textbf{var} \; \mathsf{X} = \emptyset; \; \textbf{var} \; \mathsf{GX} = \mathsf{G}(\mathsf{X}) \\ \textbf{while} \; \mathsf{GX} \; != \mathsf{X} \; \textbf{do} \\ \mathsf{X} = \mathsf{GX}; \; \mathsf{GX} = \mathsf{G}(\mathsf{X}) \\ \textbf{end} \; \textbf{while} \\ \mathsf{X} \end{array}
```

We can use:

explicit-state model checking: sets of states, e.g. hash tables

 symbolic model checking: formulas and their normal forms, such as BDDs (binary decision diagrams)

Symbolic Algorithm

Instead of a set $X_1 \subseteq S$, we use a formula X that is true precisely for states in X_1

```
 \begin{array}{l} \textbf{var} \ X = \mathsf{False}; \ \textbf{var} \ \mathsf{GX} = \mathsf{G}(\mathsf{X}) \\ \textbf{while} \ \mathsf{SAT}(\mathit{GX} \land \neg \mathit{X}) \ \textbf{do} \\ \mathsf{X} = \mathsf{GX}; \ \mathsf{GX} = \mathsf{G}(\mathsf{X}) \\ \textbf{end while} \\ \mathsf{X} \\ \end{array}
```

- Empty set is formula False.
- ▶ Checking $GX \neq X$ can be replaced by checking $\neg(GX \subseteq X)$
 - the other inclusion always holds
 - ▶ If GX and X are formulas with free variables, $\neg(GX \subseteq X)$ becomes satisfiability of $GX \land \neg X$
- ► Why not check GX != X?

Symbolic Algorithm

Instead of a set $X_1 \subseteq S$, we use a formula X that is true precisely for states in X_1 var X = False; var GX = G(X)

```
while SAT(GX \land \neg X) do
X = GX; GX = G(X)
end while
X
```

- Empty set is formula False.
- ▶ Checking $GX \neq X$ can be replaced by checking $\neg(GX \subseteq X)$
 - the other inclusion always holds
 - ▶ If GX and X are formulas with free variables, $\neg(GX \subseteq X)$ becomes satisfiability of $GX \land \neg X$
- ▶ Why not check GX != X? Without further assumptions, there are infinitely many equivalent formulas, loop would not need to terminate even in a finite-state system

Symbolic Algorithm

Instead of a set $X_1 \subseteq S$, we use a formula X that is true precisely for states in X_1

```
var X = \text{False}; var GX = G(X)
while SAT(GX \land \neg X) do
X = GX; GX = G(X)
end while
X
```

- Empty set is formula False.
- ▶ Checking $GX \neq X$ can be replaced by checking $\neg(GX \subseteq X)$
 - the other inclusion always holds
 - ▶ If GX and X are formulas with free variables, $\neg(GX \subseteq X)$ becomes satisfiability of $GX \land \neg X$
- ▶ Why not check GX != X? Without further assumptions, there are infinitely many equivalent formulas, loop would not need to terminate even in a finite-state system
- ▶ It remains to implement G(X) on formulas.

Symbolic G

$$GX_1 = I \cup \overline{r}[X_1]$$

$$s \in GX_1 \iff s \in I \lor s \in r[X_1]$$

$$s \in GX_1 \iff s \in I \lor \exists s_0. \ s_0 \in X_1 \land \exists a.(s_0, a, s) \in r$$

We use formulas X, GX over Boolean variables \bar{s} . Relation R has variables \bar{s} , \bar{a} , \bar{s}' , formula Init stands for the set I. Let R' denote $\exists \bar{a}.R[\bar{s}:=\bar{s}_0,\bar{s}':=\bar{s}]$ We define:

$$G(X) = Init \lor \exists \bar{s}_0.(X[\bar{s} := \bar{s}_0] \land R')$$

If we want to keep formulas to be quantifier-free, we need to eliminate $\exists \bar{s}_0$ at every step (exponential blowup, substitute all truth values):

$$eliminate((x_1; \bar{x}), F) = eliminate(\bar{x}, F[x_1 := 0] \lor F[x_1 := 1])$$

 $eliminate((), F) = F$

```
\begin{array}{l} \textbf{def } \mathsf{G}(\mathsf{X}) = \mathit{Init} \ \lor \ \mathit{eliminate}(\overline{s}_0, \ X[\overline{s}:=\overline{s}_0] \land R') \\ \textbf{var } \mathsf{X} = \mathsf{False}; \ \textbf{var } \mathsf{GX} = \mathsf{G}(\mathsf{X}) \\ \textbf{while } \mathsf{SAT}(\mathit{GX} \land \neg \mathsf{X}) \ \textbf{do} \\ \mathsf{X} = \mathsf{GX}; \ \mathsf{GX} = \mathsf{G}(\mathsf{X}) \\ \textbf{end while} \\ \mathsf{X} \end{array}
```

```
def G(X) = Init \lor eliminate(\bar{s}_0, X[\bar{s} := \bar{s}_0] \land R')

var X = False; var GX = G(X)

while SAT(GX \land \neg X) do

X = GX; GX = G(X)

end while

X
```

Does this algorithm terminate for all finite-state systems?

```
\begin{array}{l} \textbf{def } \mathsf{G}(\mathsf{X}) = \mathit{Init} \ \lor \ \mathit{eliminate}(\bar{s}_0, \ X[\bar{s} := \bar{s}_0] \land R') \\ \textbf{var } \mathsf{X} = \mathsf{False}; \ \textbf{var } \mathsf{GX} = \mathsf{G}(\mathsf{X}) \\ \textbf{while } \mathsf{SAT}(\mathit{GX} \land \neg X) \ \textbf{do} \\ \mathsf{X} = \mathsf{GX}; \ \mathsf{GX} = \mathsf{G}(\mathsf{X}) \\ \textbf{end while} \\ \mathsf{X} \end{array}
```

Does this algorithm terminate for all finite-state systems? Yes.

but formulas can blow up enormously in every step

```
\begin{array}{l} \textbf{def } \mathsf{G}(\mathsf{X}) = \mathit{Init} \ \lor \ \mathit{eliminate}(\bar{\mathsf{s}}_0, \ X[\bar{\mathsf{s}} := \bar{\mathsf{s}}_0] \land R') \\ \textbf{var } \mathsf{X} = \mathsf{False}; \ \textbf{var } \mathsf{GX} = \mathsf{G}(\mathsf{X}) \\ \textbf{while } \mathsf{SAT}(\mathit{GX} \land \neg X) \ \textbf{do} \\ \mathsf{X} = \mathsf{GX}; \ \mathsf{GX} = \mathsf{G}(\mathsf{X}) \\ \textbf{end while} \\ \mathsf{X} \end{array}
```

Does this algorithm terminate for all finite-state systems? Yes.

but formulas can blow up enormously in every step

To keep formulas smaller, we can try to simplify and normalize formulas at every step.

Disjunctive normal form \rightarrow similar to explicit-state model checking.

A popular alternative normal form: BDDs (binary decision diagrams)