$$Mem. (x, y)$$
 в \mathbb{R}

$$(x,y) = (y,x)$$

Но. (x, y) в комплексном множестве

$$(x,y) = (y,x)$$

Важно: линейность по первому аргументу - везде

$$(\lambda x, y) \stackrel{\mathbb{R}, C}{=} \lambda(x, y)$$

Ho:

$$(x, \lambda y) = \lambda(x, y) \ _{\mathrm{B}} \mathbb{R}$$

$$(x, \lambda y) = \overline{\lambda}(x, y) \in C$$

Def 1. Оператор \mathcal{A}^* называется сопряженным для $\mathcal{A}:V \to V,$ если

$$(\mathcal{A}x, y) = (x, \mathcal{A}^*y)$$

 $Def\ 2.\ \mathcal{A}^*$ сопряженный для \mathcal{A} , если $A^* = A^T$ в любой ортонормированном базисе

Nota. Def 1. \iff Def 2.

$$(\mathcal{A}X, y)$$
 на языке матриц $(AX, Y) = (AX)^T \cdot Y = X^T \cdot A^T \cdot Y$

$$(x, \mathcal{H}^* y) = X^T \cdot (A^* Y) = (X^T A^*) \cdot Y = X^T \cdot A^T \cdot Y \Longrightarrow A^* = A^T$$

Lab. Очевидно существование $\mathcal{A}^* \ \forall \mathcal{A}$ (определяется в ортонормированном базисе действием \mathcal{A}^T)

Доказать единственность \mathcal{A}^* рассмотреть от противного $(x, \mathcal{A}_1^* y) \neq (x, \mathcal{A}_2^* y)$

Свойства:

- 1) $I = I^* \quad \Box(Ix, y) = (x, y) = (x, Iy) \quad \Box$
- 2) $(\mathcal{A} + \mathcal{B})^* = \mathcal{A}^* + \mathcal{B}^*$
- 3) $(\lambda \mathcal{A})^* = \lambda \mathcal{A}^*$
- 4) $(\mathcal{A}^*)^* = \mathcal{A}$
- $(\mathcal{AB})^* = \mathcal{B}^* \mathcal{A}^*$ (св-во транспонирования матриц)

или
$$((\mathcal{AB})x, y) = (\mathcal{A}(\mathcal{B}x), y) = (\mathcal{B}x, \mathcal{A}^*y) = (x, \mathcal{B}^*\mathcal{A}^*y)$$

6) \mathcal{A}^* - линейный оператор $(\mathcal{A}x=x',\mathcal{A}y=y'\Longrightarrow\mathcal{A}(\lambda x+\mu y)=\lambda x'+\mu y')$

Можно использовать линейные свойства умножения матриц $A^*(\lambda X + \mu Y) = \lambda \mathcal{A}^* X + \mu \mathcal{A}^* Y$ 2* Самосопряженный оператор

 $Def. \ \mathcal{A}$ называется самосопряженным, если $\mathcal{A} = \mathcal{A}^*$

Следствие. $A^T = A \Longrightarrow$ матрица A симметричная

Свойства самосопряженных операторов:

1)
$$\mathcal{A} = \mathcal{A}^*$$
, $\lambda : \mathcal{A}x = \lambda x (x \neq 0)$. Тогда, $\lambda \in \mathbb{R}$

$$\Box(\mathcal{A}x,y) = (\lambda x,y) = \lambda(x,y) \quad (\underline{x},\mathcal{A}^*y) = (x,\mathcal{A}\underline{y}) = (x,\lambda y) \stackrel{\text{B }C}{=} \overline{\lambda}(x,y)$$

$$(\mathcal{A}x,y)=(x,\mathcal{A}y)\Longrightarrow \lambda(x,y)=\overline{\lambda}(x,y)\Longrightarrow \lambda=\overline{\lambda}\Longrightarrow \lambda\in\mathbb{R}$$

2) $\mathcal{A} = \mathcal{A}^*$, $\mathcal{A}x_1 = \lambda_1 x_1$, $\mathcal{A}x_2 = \lambda_2 x_2$ if $\lambda_1 \neq \lambda_2$

Тогда $x_1 \perp x_2$

 \square Хотим доказать, что $(x_1, x_2) = 0$, при том, что $x_{1,2} \neq 0$

$$\lambda_1(x_1, x_2) = (1x_1, x_2) = (\mathcal{A}x_1, x_2) = (x_1, \mathcal{A}x_2) = (x_1, \lambda_2 x_2) = (x_1, \lambda_2 x_2) = (x_1, x_2)\lambda_2$$

Так как $\lambda_1 \neq \lambda_2$, то $(\lambda_1 - \lambda_2)(x_1, x_2) = 0 \Longrightarrow (x_1, x_2) = 0$

 Th . Лемма. $\mathcal{A} = \mathcal{A}^*$, e - собственный вектор ($l_{\{e\}}$ - линейная оболочка e - инвариантное подпространство для \mathcal{A})

$$V_1 = \{x \in V \mid x \perp e\}$$

Тогда V_1 - инвариантное для ${\mathcal A}$

 \square Нужно доказать, что $\forall x \in V_1$ $\mathcal{A}x \in V_1$ и так как $x \in V_1 \mid x \perp e$, то покажем, что $\mathcal{A}x \perp e$ $(\mathcal{A}x,e)=(x,\mathcal{A}e)=(x,\lambda e)=\lambda(x,e)\stackrel{x\perp e}{=}0$ \square

 $Th.~\mathcal{A}=\mathcal{A}^*~(\mathcal{A}:V^n\to V^n),$ тогда $\exists e_1,\dots,e_n$ - набор собственных векторов \mathcal{A} и $\{e_i\}$ - ортонормированный базис

(другими словами: \mathcal{A} - диагонализируем)

Наводящие соображения.

$$Ex \ 1. \ A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I$$

 $Ix = x = 1 \cdot x, \quad \lambda_{1,2,3} = 1$

Здесь $U_{\lambda_{1,2,3}} = V^3$, $\{\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}\}$ - базис из собственных векторов, ортонормированный

$$Ex \ 2. \ A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \mathbf{O}$$

Ox = 0, $\lambda_{1,2,3} = 0$

И здесь $U_{\lambda_{1,2,3}} = V^3$, так как $0 \in U_{\lambda}$ и $\forall x \ Ox = 0 \in U_{\lambda}$

$$Ex$$
 3. Поворот \mathbb{R}^2 на $\frac{\pi}{4}$

$$T = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

$$\begin{vmatrix} \frac{1}{\sqrt{2}} - \lambda & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} - \lambda \end{vmatrix} = \left(\frac{1}{\sqrt{2}} - \lambda\right)^2 + \frac{1}{2} = 0$$
 - вещественных корней нет

 \square \square e_1 - какой-либо собственный вектор $\mathcal A$...