Since h[n] is real and $H(\omega) = \overline{H(\omega)}$ (phase response zero), we get H(-w)=H(w) hrn] = 1 H(ein) ein du = 1 por ejun du $= \frac{1}{2\pi} \left(e^{j\omega n} \right)^{\omega c} \qquad (n \neq 0)$ 2j sin (wen) _ sin (wer)
2njn Th for n=0, $h[n] = \frac{1}{2\pi} \int_{-2\pi}^{\pi} 1 \cdot d\omega = \omega_c$ $= \frac{\sin(\omega c)}{\pi} \qquad n \neq 0$ $= \frac{\omega c}{\pi} \qquad n = 0$ (ii) We can write $H(\omega)$ as $1-H_{LP}(\omega)$ where Hip (w) is Allow DIFT of low pass filter in part (i). h[n] = Inv. DTFT(1) - Inv. DTFT (HLP(W)) by linearity/super-position

Date / /

$$(for n \neq 0) = \frac{1}{2n} \left(\frac{e^{j\omega n}}{jn} \right)^{\frac{1}{2}} = 0 \quad (As n \in \mathbb{Z})$$

$$\left(\begin{array}{cc} \text{for } n=0 \end{array}\right) = \frac{1}{2\pi} \int_{-\infty}^{\infty} 1 \cdot d\omega = 1$$

$$\frac{1 - \omega_c}{\pi}$$

(iii) Observe
$$H(\omega) = H_{LPF-wc_2}(\omega) - H_{LPF-wc_1}(\omega)$$

$$= \begin{cases} \frac{\sin(\omega_{c_2}n) - \sin(\omega_{c_1}n)}{\pi n} & n \neq 0 \\ \frac{\omega_{c_2} - \omega_{c_1}}{\pi} & n = 0 \end{cases}$$

LPF with cutoff was

	Date / /
	(iv) Observe $H(\omega) = 1 - H_{(iii)}(\omega)$ Ly $H(\omega)$ of part(iii)
	Ly H(w) of part(iii)
_	>> h[n] = Inv DTFT (1) - h(iii)[n]
-	$= \underbrace{\left\{\frac{S[n]}{Q} - \left(\frac{Sin(\omega C_2 n)}{\pi n} - \frac{Sin(\omega C_1 n)}{\pi n}\right) \right\}}_{n \neq 0}$
	$\frac{1 - \omega c_2 + \omega c_1}{\pi} n = 0$
_	or,
	$hsnj = \left(\frac{\sin(\omega c_1 n)}{\sin(\omega c_2 n)} - \frac{\sin(\omega c_2 n)}{\sin(\omega c_2 n)} + \frac{n}{2} \right)$
4	TIN
_	$\frac{1 - \omega c_2 + \omega c_3}{\pi} n = 0$
	Note: We have interchangeably used HIW)
	Note: We have interchangeably used HIW) and H(eiu) to represent frequency
	response.