电子科技大学 2020 -2021 学年第 1 学期 期末考试 A 卷

考试科目: __信号与系统__考试形式: ___页纸开卷__考试日期: __2021__年_1__月__15__日

本试卷由 七 部分构成, 共 7 页。考试时长: 120 分钟

成绩构成比例: 平时成绩 50 %, 期末成绩 50 %

题号	_	 =	四	五.	六	七	合计
得分							

Attention: Try to answer the following questions <u>in English</u>. All answers must be derived or explained, not just simply written down.

一、计算题(12分)

Let $x_1[n] = \sin[\pi n/2]$, $x_2[n] = \cos[2n]$, $x_3[n] = x_1[n+1] \cdot u[n]$, $x_4[n] = x_1[n+1] \cdot \delta[n+2]$.

- (a) Find the periodic signal(s) from $x_1[n], x_2[n], x_3[n]$ and $x_4[n]$. Determine the fundamental period(s).
- (b) Determine and sketch $x_3[n]$ and $x_4[n]$.
- (c) Determine and sketch the even and odd parts of $x_3[n]$.

Consider the cascade of two LTI systems with the unit impulse responses $h_1[n]$ and $h_2[n]$ as shown in Figure 1, where $h_1[n] = \cos[2n]$ and $h_2[n] = a^n u[n]$, |a| < 1. For the given input $x[n] = \delta[n] - a^2 \delta[n-2]$, determine the output y[n].

Figure 1.

三、计算题(16分)

x(t) is a band-limited signate ω_s for each of the (a) $x\left(\frac{1}{2}t-1\right)$ (b) $x(t)+x^*(-t)$ (c) $3x^2(t)$ (d) $x(t)\cos(\omega_M t)$ x(t) is a band-limited signal satisfying $X(j\omega) = 0$, $|\omega| > \omega_{\rm M}$. Determine the Nyquist rate ω_s for each of the following signals:

得 分	四、计算题(12分)

Let $X(j\omega)$ denote the Fourier transform of the input signal x(t) of system S and $Y(j\omega)$ denote the Fourier transform of the output signal y(t) of system S, as shown in Figure 2. Construct the system S with three components. Two of them are filters with $h_1(t) = \frac{2\sin 3\pi t}{\pi t}$ and $h_2(t) = \frac{2\sin 9\pi t}{\pi t}$. The third component is a modulator shown in Figure 3. Note that you can specify ω_c to fulfill the function of system S.

Figure 2 Figure 3

得 分

五、 计算题(16分)

Assume x_1 $t=t \Big[u$ t+1 -u t-1 $\Big]$ and x_2 $t=\sum_{k=-\infty}^{+\infty} x_1$ t-4k. If x_2 t is input into an LTI system with impulse response h $t=\frac{\sin t \cos 2t}{\pi t}$, determine the system response.

得 分	六、计算题(16分)

The block-diagram of a causal continuous-time LTI system whose unit impulse response h(t) has the initial value $h(0^+)=3$, is given in Figure 4, where K is an unknown constant.

- (a) Determine the system function H(s) and its ROC, is the system stable?
- **(b) Determine** h(t).
- (c) Determine the output y(t) when the input x(t) = 1.

座位吊

考场教室

任课教师

- For a discrete-time LTI system, the output is $y_1[n] = -\frac{2}{3}(-2)^n u[-n-1] + \frac{1}{3}u[n]$ when the input is $x_1[n] = u[n] + Lu[n-1]$, where L is an unknown constant. The output becomes $y_2[n] = \frac{2}{3}(-1)^{n+1}$, when the input is $x_2[n] = \cos[\pi n]$.
- (a) Determine the system function H(z) and its ROC.
- (b) Is the system stable and/or causal?
- (c) Determine the unit impulse response h[n].