In [5]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

In [6]:

```
#reading dataset
df = pd.read_csv('Automobile price data _Raw_.csv')
```

In [7]:

df.head()

Out[7]:

	symboling	normalized- losses	make	fuel- type	aspiration	num- of- doors	body- style	drive- wheels	engine- location	wh b
0	3	?	alfa- romero	gas	std	two	convertible	rwd	front	1
1	3	?	alfa- romero	gas	std	two	convertible	rwd	front	ł
2	1	?	alfa- romero	gas	std	two	hatchback	rwd	front	!
3	2	164	audi	gas	std	four	sedan	fwd	front	!
4	2	164	audi	gas	std	four	sedan	4wd	front	!

5 rows × 26 columns

In [8]:

```
df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 205 entries, 0 to 204
Data columns (total 26 columns):
 # Column Non-Null Coun

#	Column	Non-Null Count	Dtype					
0	symboling	205 non-null	int64					
1	normalized-losses	205 non-null	object					
2	make	205 non-null	object					
3	fuel-type	205 non-null	object					
4	aspiration	205 non-null	object					
5	num-of-doors	205 non-null	object					
6	body-style	205 non-null	object					
7	drive-wheels	205 non-null	object					
8	engine-location	205 non-null	object					
9	wheel-base	205 non-null	float64					
10	length	205 non-null	float64					
11	width	205 non-null	float64					
12	height	205 non-null	float64					
13	curb-weight	205 non-null	int64					
14	engine-type	205 non-null	object					
15	num-of-cylinders	205 non-null	object					
16	engine-size	205 non-null	int64					
17	fuel-system	205 non-null	object					
18	bore	205 non-null	object					
19	stroke	205 non-null	object					
20	compression-ratio	205 non-null	float64					
21	horsepower	205 non-null	object					
22	peak-rpm	205 non-null	object					
23	city-mpg	205 non-null	int64					
24	highway-mpg	205 non-null	int64					
25	price	205 non-null	object					
dtypes: float64(5), int64(5), object(16)								

dtypes: float64(5), int64(5), object(16)

memory usage: 41.8+ KB

1.symboling

• +3 automobile is risky, -3 automobile is preety safe.

2.normalizes losses

• It is relative avg loss payment per insured vehical in a year.

3.price

• predict price using other variables in dataset

cleaning the data

In [9]:

```
#filling missing values with NaN
df = df.replace('?',np.nan)
```

price

not a categorical data

datatype is object, convert to float64

In [10]:

```
#predicting price is goal so drop rows with missing values
df = df.dropna(subset=['price'])
```

In [11]:

```
#converting from dtype object to float
df['price'] = df['price'].astype('float64')
df
```

Out[11]:

	symboling	normalized- losses	make	fuel- type	aspiration	num- of- doors	body- style	drive- wheels	engine- location
0	3	NaN	alfa- romero	gas	std	two	convertible	rwd	front
1	3	NaN	alfa- romero	gas	std	two	convertible	rwd	front
2	1	NaN	alfa- romero	gas	std	two	hatchback	rwd	front
3	2	164	audi	gas	std	four	sedan	fwd	front
4	2	164	audi	gas	std	four	sedan	4wd	front
200	-1	95	volvo	gas	std	four	sedan	rwd	front
201	-1	95	volvo	gas	turbo	four	sedan	rwd	front
202	-1	95	volvo	gas	std	four	sedan	rwd	front
203	-1	95	volvo	diesel	turbo	four	sedan	rwd	front
204	-1	95	volvo	gas	turbo	four	sedan	rwd	front

201 rows × 26 columns

```
In [12]:
```

```
df.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 201 entries, 0 to 204
Data columns (total 26 columns):
    Column
                       Non-Null Count Dtype
    -----
 0
    symboling
                       201 non-null
                                       int64
 1
    normalized-losses 164 non-null
                                       object
 2
    make
                       201 non-null
                                       object
 3
    fuel-type
                       201 non-null
                                       object
 4
    aspiration
                       201 non-null
                                       object
 5
    num-of-doors
                      199 non-null
                                       object
 6
    body-style
                       201 non-null
                                       object
 7
    drive-wheels
                       201 non-null
                                       object
                                       object
    engine-location
                       201 non-null
 9
    wheel-base
                       201 non-null
                                       float64
 10 length
                       201 non-null
                                       float64
 11 width
                                       float64
                       201 non-null
                                       float64
 12 height
                       201 non-null
 13 curb-weight
                       201 non-null
                                       int64
 14 engine-type
                       201 non-null
                                       object
 15 num-of-cylinders 201 non-null
                                       object
                       201 non-null
                                       int64
 16 engine-size
 17 fuel-system
                       201 non-null
                                       object
 18 bore
                       197 non-null
                                       object
 19 stroke
                       197 non-null
                                       object
 20
    compression-ratio 201 non-null
                                       float64
                       199 non-null
                                       object
 21 horsepower
 22 peak-rpm
                       199 non-null
                                       object
                                       int64
 23 city-mpg
                       201 non-null
 24 highway-mpg
                       201 non-null
                                       int64
 25 price
                       201 non-null
                                       float64
dtypes: float64(6), int64(5), object(15)
memory usage: 42.4+ KB
```

subtrating it from 201(price), we can get number of non-null values

symboling

False

```
In [13]:
#unique values in symboling
df['symboling'].unique()

Out[13]:
array([ 3,  1,  2,  0, -1, -2], dtype=int64)

In [14]:
df['symboling'].isnull().any()

Out[14]:
```

no null values.

datatype is int,no changes required here

Normalized Iosses

```
In [15]:
```

```
df['normalized-losses'].value_counts()
Out[15]:
161
       11
91
         8
150
         7
104
         6
         6
128
         6
134
         5
85
         5
102
         5
94
         5
65
         5
95
74
         5
103
         5
168
         5
122
         4
148
         4
106
         4
93
         4
118
         4
115
         3
137
         3
         3
83
125
         3
         3
101
154
         3
         2
145
119
         2
         2
188
         2
153
164
         2
         2
158
         2
89
         2
81
108
         2
         2
194
         2
110
         2
113
129
         2
         2
192
         2
197
         2
87
78
         1
186
         1
231
         1
256
         1
90
         1
142
         1
77
         1
121
         1
107
         1
98
         1
```

Name: normalized-losses, dtype: int64

```
In [16]:
```

```
#check for null values
df['normalized-losses'].isnull().any()
Out[16]:
True
```

In [17]:

```
#convertinf to float as deimal data can also be considered
df['normalized-losses'] = df['normalized-losses'].astype('float64')
```

In [18]:

```
#filling null values by mean because it is not categorical data
mean_n1 = df['normalized-losses'].mean()
mean_n1
df['normalized-losses'] = df['normalized-losses'].fillna(mean_n1)
```

no. of doors

```
In [19]:
```

```
df['num-of-doors'].unique()
Out[19]:
array(['two', 'four', nan], dtype=object)

In [20]:

#convert to no. by replace
df['num-of-doors'] = df['num-of-doors'].replace(['two', 'four'], [2,4])

#count how many times occuring
df['num-of-doors'].value_counts()
Out[20]:
4.0 113
2.0 86
```

In [21]:

```
#find if null values present
df['num-of-doors'].isnull().any()
```

Out[21]:

True

Name: num-of-doors, dtype: int64

```
In [22]:
#4 is mode (frequent no. in the col).so filling rest null values with four + categoric
al data
df['num-of-doors'] = df['num-of-doors'].fillna(4)
df['num-of-doors'].unique()
Out[22]:
array([2., 4.])
In [23]:
#its floating data,have to convert it to integer types :)
df['num-of-doors'] = df['num-of-doors'].astype('int64')
wheel base, length, width, height
this is no categorical data.
float type, which is good.
null values to be filled with median
In [24]:
#check null values for wheel base
df['wheel-base'].isnull().any()
Out[24]:
False
In [25]:
#check null values for wheel length
df['length'].isnull().any()
Out[25]:
False
In [26]:
#check null values for wheel width
df['width'].isnull().any()
Out[26]:
False
In [27]:
#check null values for wheel height
df['height'].isnull().any()
```

Out[27]:

False

no null values found, no changes required

curb-weight

not a categorical data

its dtype is int64, to be converted to float64

if null values found, replace with mean

```
In [28]:
```

```
#check for null values
df['curb-weight'].isnull().any()
```

Out[28]:

False

In [29]:

```
#convert to float64
df['curb-weight'] = df['curb-weight'].astype('float64')
```

No. of cylinders

dtype=object)

categorical data

dtype = object to be converted to int64

if null values found, they replaced by mode

In [30]:

```
#checking for unique values
df['num-of-cylinders'].unique()
Out[30]:
```

array(['four', 'six', 'five', 'three', 'twelve', 'two', 'eight'],

```
In [31]:
```

```
#find values for each unique value
df['num-of-cylinders'].value_counts()
Out[31]:
four
          157
six
           24
five
           10
            4
two
eight
            4
three
            1
twelve
            1
Name: num-of-cylinders, dtype: int64
In [32]:
#replace words with nos
df['num-of-cylinders'] = df['num-of-cylinders'].replace(['four', 'six', 'five', 'three'
, 'twelve', 'two', 'eight'],[4,6,5,3,12,2,8])
In [33]:
#check null values
df['num-of-cylinders'].isnull().any()
Out[33]:
False
In [34]:
#check dataype and values.impt convert to int
df['num-of-cylinders'].unique()
Out[34]:
array([ 4, 6, 5, 3, 12, 2, 8], dtype=int64)
engine size
not categorical data.
dtype is int64,convert to float64 to get decimal value prediction also
if null values fnd, replace with mean
In [35]:
df['engine-size'].unique()
```

```
In [36]:
```

```
#int64 indicates absence of null values, then too, i will again check for time pass
df['engine-size'].isnull().any()
```

Out[36]:

False

In [37]:

```
#converting datatype into float
df['engine-size'] = df['engine-size'].astype('float64')
```

bore and stroke

not categorical data

shd be converted to float for decimal value.if,

if,null values ,then,filled by mean

```
In [38]:
```

```
#check for null values
df['bore'].isnull().any()
```

Out[38]:

True

In [39]:

```
#check unique values
df['bore'].unique()
```

Out[39]:

```
array(['3.47', '2.68', '3.19', '3.13', '3.5', '3.31', '3.62', '2.91', '3.03', '2.97', '3.34', '3.6', '2.92', '3.15', '3.43', '3.63', '3.54', '3.08', nan, '3.39', '3.76', '3.58', '3.46', '3.8', '3.78', '3.17', '3.35', '3.59', '2.99', '3.33', '3.7', '3.61', '3.94', '3.74', '2.54', '3.05', '3.27', '3.24', '3.01'], dtype=object)
```

In [40]:

```
#convert to float
df['bore'] = df['bore'].astype('float64')
```

In [41]:

```
#check for null values
df['stroke'].isnull().any()
```

Out[41]:

True

```
In [42]:
#check unique values
df['stroke'].unique()
Out[42]:
array(['2.68', '3.47', '3.4', '2.8', '3.19', '3.39', '3.03', '3.11', '3.23', '3.46', '3.9', '3.41', '3.07', '3.58', '4.17', '2.76',
       '3.15', nan, '3.16', '3.64', '3.1', '3.35', '3.12', '3.86', '3.29',
       '3.27', '3.52', '2.19', '3.21', '2.9', '2.07', '2.36', '2.64',
       '3.08', '3.5', '3.54', '2.87'], dtype=object)
In [43]:
#convert to float
df['stroke'] = df['stroke'].astype('float64')
In [44]:
#replace null values with mean
mean_b = df['bore'].mean()
mean_s = df['stroke'].mean()
df['bore'] = df['bore'].fillna(mean_b)
df['stroke'] = df['stroke'].fillna(mean s)
compression ratio
check for- not categorical data
float64 present,good
no null values present
In [45]:
df['compression-ratio'].unique()
Out[45]:
array([ 9. , 10. , 8. , 8.5 , 8.3 , 8.8 , 9.5 , 9.6 , 9.41,
        9.4 , 7.6 , 7. , 9.2 , 10.1 , 9.1 , 8.1 , 11.5 , 8.6 ,
       22.7 , 22. , 21.5 , 7.5 , 21.9 , 7.8 , 8.4 , 21. , 8.7 ,
        9.31, 9.3, 7.7, 22.5, 23. ])
```

```
In [46]:
```

```
df['compression-ratio'].isnull().any()
```

Out[46]:

False

horse power and peak-rpm

· not categorical data

convert to float64

null values to be replaced with mean col

```
In [47]:
```

```
#null val for horse power
df['horsepower'].isnull().any()
Out[47]:
```

True

```
In [48]:
```

```
#null val for peakrmp
df['peak-rpm'].isnull().any()
```

Out[48]:

True

```
In [49]:
```

```
#convert to float for hp
df['horsepower'] = df['horsepower'].astype('float64')
```

In [50]:

```
#convert to float
df['peak-rpm'] = df['peak-rpm'].astype('float64')
```

In [51]:

```
#fill null for the hp with mean
mean_h = df['horsepower'].mean()
df['horsepower'] = df['horsepower'].fillna(mean h)
```

In [52]:

```
#fill null for the peak with mean
mean_p = df['peak-rpm'].mean()
df['peak-rpm'] = df['peak-rpm'].fillna(mean_p)
```

city mpg and highway mpg

- · not categorical
- convert from int to float for decimal value prediction also
- · no null values

```
In [53]:

df['city-mpg'].isnull().any()

Out[53]:

False

In [54]:

df['highway-mpg'].isnull().any()

Out[54]:

False

In [55]:

df['city-mpg'] = df['city-mpg'].astype('float64')

In [56]:

df['highway-mpg'] = df['highway-mpg'].astype('float64')
```

In [57]:

df.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 201 entries, 0 to 204
Data columns (total 26 columns):

#	Column	Non-Null Count	Dtype
0	symboling	201 non-null	int64
1	normalized-losses	201 non-null	float64
2	make	201 non-null	object
3	fuel-type	201 non-null	object
4	aspiration	201 non-null	object
5	num-of-doors	201 non-null	int64
6	body-style	201 non-null	object
7	drive-wheels	201 non-null	object
8	engine-location	201 non-null	object
9	wheel-base	201 non-null	float64
10	length	201 non-null	float64
11	width	201 non-null	float64
12	height	201 non-null	float64
13	curb-weight	201 non-null	float64
14	engine-type	201 non-null	object
15	num-of-cylinders	201 non-null	int64
16	engine-size	201 non-null	float64
17	fuel-system	201 non-null	object
18	bore	201 non-null	float64
19	stroke	201 non-null	float64
20	compression-ratio	201 non-null	float64
21	horsepower	201 non-null	float64
22	peak-rpm	201 non-null	float64
23	city-mpg	201 non-null	float64
24	highway-mpg	201 non-null	float64
25	price	201 non-null	float64
	6.		

dtypes: float64(15), int64(3), object(8)

memory usage: 42.4+ KB

In [58]:

df

Out[58]:

	symboling	normalized- losses	make	fuel- type	aspiration	num- of- doors	body- style	drive- wheels	engine- location
0	3	122.0	alfa- romero	gas	std	2	convertible	rwd	front
1	3	122.0	alfa- romero	gas	std	2	convertible	rwd	front
2	1	122.0	alfa- romero	gas	std	2	hatchback	rwd	front
3	2	164.0	audi	gas	std	4	sedan	fwd	front
4	2	164.0	audi	gas	std	4	sedan	4wd	front
200	-1	95.0	volvo	gas	std	4	sedan	rwd	front
201	-1	95.0	volvo	gas	turbo	4	sedan	rwd	front
202	-1	95.0	volvo	gas	std	4	sedan	rwd	front
203	-1	95.0	volvo	diesel	turbo	4	sedan	rwd	front
204	-1	95.0	volvo	gas	turbo	4	sedan	rwd	front

201 rows × 26 columns

In []:

df.to_csv('x_automobile.csv',index=False)