## 情報セキュリティ

情報科学の世界II

2020年度

只木 進一 (理工学部)



## セキュリティインシデントは他 人事ではない

- 個人情報の漏えい
  - 民間企業の顧客情報の漏えい
  - 一公的機関からの個人情報漏えい
  - 特定個人情報:マイナンバー
- 信用してアクセスしたサービス
  - ●乗っ取られていて、不正プログラムを押し込まれる

## セキュリティインシデントは他 人事ではない

- →個人のPCやスマートフォーンからの情 報漏えい
  - ■自分の情報だけでなく、他人の情報
- ▶様々なサービスのID
  - ●乗っ取り、なりすまし
- ■自分のデバイスが、攻撃の足場に使わ れる



# 情報セキュリティ10大脅威(ICT threats)2020

| 順位 | 個人                                  | 組織                         |
|----|-------------------------------------|----------------------------|
| 1  | スマホ決済の不正利用                          | 標的型攻撃による情報流出               |
| 2  | フィッシングによる個人<br>情報等の詐取               | 内部不正による情報漏え<br>い           |
| 3  | クレジットカード情報の<br>不正利用                 | ビジネスメール詐欺によ<br>る金銭被害       |
| 4  | インターネットバンキン<br>グの不正利用               | サプライチェーンの弱点<br>を悪用した攻撃の高まり |
| 5  | メールやSMS等を使った脅<br>迫・詐欺の手口による金<br>銭要求 | ランサムウェアによる被<br>害           |



### 個人情報漏洩事案

- 2017/6/20 佐賀銀行
  - ─ 行員が窃盗。共犯者へ大口顧客情報(169人)を漏えい
- 2016 佐賀県教育委員会
  - ▶ 1万人の生徒の住所、氏名、電話番号、成績など
  - 県内の少年、高校生が関与
- 2015/5/28 日本年金機構
  - 一標的型攻撃
  - 150万件以上の個人情報漏えい



#### <u>2014/7/9 ベネッセ</u>

- 760万件の顧客情報を漏洩
- 子供と保護者の氏名、住所、生年月日な
- →システムを委託していた系列会社へ派遣 されていた社員が持ち出し



#### ▶ 2014/4/18 東京医科大学

- 脳神経外科手術 33例
- 氏名、性別、生年月日、検査データ
- →職員がUSBで持ち出し、紛失



- ■個人情報:生存している個人を特定する情報
  - ■氏名や住所は重要な要素だが、それだけではない
  - −個人の属性から特定できる場合がある
    - ▶職業、出身大学、電話番号などの組合わせ



#### **■**プライバシー

- −以下の三つの要件を満たす
  - ▶個人の私的生活の事実
  - −公知でないもの
  - −公開を望まない
- ■要するに、本人の属性に関する知られたくないもの

### プライバシーの例

- 図書館は利用者の秘密を守る
  - ─何を読んだか、借りたか
  - →図書館の自由に関する宣言
    - http://www.jla.or.jp/library/gudeline/tabid/232/D efault.aspx
- 一購買履歴
- 一病歴、投薬履歴
- 友人関係



- ─機密性: confidentiality
  - ▶秘密であること
  - →制限された人だけが利用できる
- ─完全性: integrity
  - ▶正式で正しいものであること
- 一可用性: availability
  - 必要なときに利用できること



- 三つの要素のバランスが重要
  - ▶情報システムとしてのバランス
    - ■システムの目的に合致しているか
  - ▶情報システムの運用の観点
    - システムとして運用できるのか
  - ▶費用と効用の評価
- ─ 公開情報にもセキュリティがある



### 情報セキュリティの対策

- →問題が発生しないための対策
  - →不正通信が起こらないように
  - ウィルスが入り込まないように
  - ■不正侵入が起こらないように
- →問題の発生を想定した対策
  - 不正通信の確認と遮断の方法
  - ▶重要情報の暗号化
  - ▶重要情報の分散



- →問題が発生した後の対策
  - 緊急退避
  - ▶連絡・通報・責任体制
  - →影響範囲の迅速な確認方法
  - ■適切な公表
- →問題の再発を防ぐ対策
  - ■原因の究明と対策
  - リスクとコストの再評価



- ネットワークの分離
  - ■重要情報を持つネットワークを切り離す
- Firewall
  - →送受信元、サービスで通信を制限
- IDP(Intrusion Detection System)
  - 侵入の兆候を検知して遮断

## ネットワークの構成例





- 一通信路
  - →ウィルス付メールの遮断
  - →不正なWebサイトへ誘導するメール遮断
  - 不正な活動の検知と遮断
- ▶ クライアント
  - ■ファイルのフィルタリング
  - 不正な活動の検知と遮断



─ Webでの重要情報送受信





https://www.cc.saga-u.ac.jp/#gsc.tab=0

ー無線通信の暗号化



- ユーザ名とパスワードによる認証
- 認証の3要素
  - ▶記憶:パスワード、秘密の言葉
  - ┣ 持ち物:ICカード、スマートフォン
  - ▶本人そのもの:指紋、虹彩、静脈
- 多要素認証
  - ▶複数の要素の組合せ
- 証跡管理



- 教育・研修
  - ▶情報セキュリティの重要性
  - →対策の必要性
- 一訓練
  - インシデント発生時の対応
- 体制整備



- ■重要情報をできるだけ送らない
  - →正しいサイトであることの確認:証明書
  - 一暗号化
  - ▶本当に必要なのか
- 不正サイトからの攻撃を防ぐ
  - 不要なサイトへアクセスしない
  - 見ただけでウィルスダウンロードの危険 性

## 個人としての安全対策: ウィルス・フィッシング対策

- ■ウィルス対策ソフトの導入
  - ▶ウィルスパターンの更新
  - 定期的な全体スキャン
- ▶危険なメール
  - ■知らない人からの「緊急」「重要」メール
  - ■送信元のアドレスがおかしい
  - リンク先のアドレスがおかしい

## 個人としての安全対策: パスワードの管理

- 重要なサービスのパスワードを他の サービスと共有しない
  - 大学のメールアドレスとパスワードの組 を外部サービスで使わない
- 他人に教えない
- ─危ないと思ったら変更する



- バックアップをする
  - CDTBD
  - →USB接続のポータブルHD
  - ▶ クラウドストレージ



- 総合情報基盤センターに相談する
- ▶チュータに相談する
- ●警察に相談する