ESC201T: Introduction to **Electronics**

Lecture 24: Power Supply (part-2)

B. Mazhari Dept. of EE, IIT Kanpur

Full wave Rectifier

Comparison of full and half Wave Rectifier

Diode Currents in Full wave Rectifier

Bridge Rectifier

Power supply using full wave Rectifier

Peak Inverse Voltage

$$PIV \cong v_O + 0.7$$

Reducing Ripple to a very small value is not easy!

$$V_r = 0.438V$$

Zener Diode

A diode specially designed to operate in reverse bias in 'breakdown' region

Zener diode: Important Characteristics

Voltage Reference Circuit

Power supply with regulator

Zener diode as Voltage Regulator

Voltage Reference Circuit

Design Problem: Determine R_i and zener diode specifications such that output voltage is +12V, load current can vary between 0 to 0.1A. The input voltage may vary between 18 to 15.5V.

Voltage Reference Equations

$$I_i = \frac{V_{PS} - V_Z}{R_i} = I_Z + I_L$$

$$I_{Z\max} = \frac{V_{PS\max} - V_{Z}}{R_{i}} - I_{L\min}$$

$$I_Z = \frac{V_{PS} - V_Z}{R_i} - I_L$$

$$I_{Z\min} = \frac{V_{PS\min} - V_{Z}}{R_{i}} - I_{L\max}$$

$$P_{Z \max} = V_Z I_{Z \max}$$

Check correctness of design by checking compliance with Zener diode ratings

Design Problem: Determine R_i and zener diode specifications such that output voltage is +12V, load current can vary between 0 to 0.1A. The input voltage may vary between 18 to 15.5V.

$$I_{i} = \frac{V_{PS} - V_{Z}}{R_{i}} = I_{Z} + I_{L}$$

$$I_{Z\max} = \frac{V_{PS\max} - V_{Z}}{R_{i}} - I_{L\min}$$

$$I_Z = \frac{V_{PS} - V_Z}{R_i} - I_L$$

$$I_{Z\min} = \frac{V_{PS\min} - V_{Z}}{R_{i}} - I_{L\max}$$

$$R_i = 40\Omega \Rightarrow I_{Zmax} = 0.15A; I_{Zmin} = -0.013A$$

$$R_i = 10\Omega \Rightarrow I_{Zmax} = 0.6A; I_{Zmin} = 0.25A$$

Design Problem: Determine R_i and zener diode specifications such that output voltage is +12V, load current can vary between 0 to 0.1A. The input voltage may vary between 18 to 15.5V.

$$I_{i} = \frac{V_{PS} - V_{Z}}{R_{i}} = I_{Z} + I_{L}$$

$$I_{Z\max} = \frac{V_{PS\max} - V_{Z}}{R_{i}} - I_{L\min}$$

$$I_Z = \frac{V_{PS} - V_Z}{R_i} - I_L$$

$$I_{Z\min} = \frac{V_{PS\min} - V_{Z}}{R_{i}} - I_{L\max}$$

$$\frac{I_{Z\max}}{I_{Z\min}} \cong 10$$

$$R_{i} = \frac{V_{PS \min} - 0.1V_{PS \max} - 0.9V_{Z}}{I_{L \max}}$$

$$P_{Z \max} = V_Z I_{Z \max}$$

Design Problem: Determine R_i and zener diode specifications such that output voltage is +12V, load current can vary between 0 to 0.1A. The input voltage may vary between 18 to 15.5V.

$$R_{i} = \frac{V_{PS \min} - 0.1V_{PS \max} - 0.9V_{Z}}{I_{L \max}} = 29\Omega$$

$$I_{Z\max} = \frac{V_{PS\max} - V_{Z}}{R_{i}} - I_{L\min} = 0.207A$$

$$I_{Z\min} = \frac{V_{PS\min} - V_{Z}}{R_{i}} - I_{L\max} = 0.0207$$

$$I_{Z\min} = \frac{V_{PS\min} - V_{Z}}{R_{i}} - I_{L\max} = 0.0207$$

$$P_{Z \max} = V_Z I_{Z \max} = 2.48W$$

Check the design through simulations

Design Problem-2: Determine R_i and zener diode specifications such that output voltage is +12V, load current can vary between 0 to 0.1A. The input voltage may vary between 15 to 12.915V.

$$R_{i} = \frac{V_{PS \min} - 0.1V_{PS \max} - 0.9V_{Z}}{I_{L \max}} = 6.1\Omega$$

$$I_{Z\max} = \frac{V_{PS\max} - V_{Z}}{R_{i}} - I_{L\min} = 0.488A$$

$$I_{Z\min} = \frac{V_{PS\min} - V_{Z}}{R_{i}} - I_{L\max} = 0.049$$

$$I_{Z \min} = \frac{V_{PS \min} - V_{Z}}{R_{i}} - I_{L \max} = 0.049$$

$$P_{Z\max} = V_Z I_{Z\max} = 5.85W$$