Higher Order Computability

John Longley & Dag Normann

April 1, 2022

Contents

1	The	ory of Computability Models	1
	1.1	Simulations Between Computability Models	1
		1.1.1 Simulations and Transformations	1
	1.2	Examples of Simulations and Transformations	4

1 Theory of Computability Models

1.1 Simulations Between Computability Models

1.1.1 Simulations and Transformations

Definition 1.1. Let \mathbf{C} and \mathbf{D} be lax computability models over type worlds T, U respectively. A **simulation** γ of \mathbf{C} in \mathbf{D} (written in $\gamma : \mathbf{C} \longrightarrow \mathbf{D}$) consist of

- a mapping $\sigma \mapsto \gamma \sigma : T \to U$
- for each $\sigma \in T$, a relation $\Vdash_{\sigma}^{\gamma} \subseteq \mathbf{D}(\gamma \sigma) \times \mathbf{C}(\sigma)$

satisfying the following

- 1. For all $a \in \mathbf{C}(\sigma)$ there exists $a' \in \mathbf{D}(\gamma \sigma)$ s.t. $a' \Vdash_{\sigma}^{\gamma} a$
- 2. Every operation $f \in \mathbf{C}[\sigma, \tau]$ is **tracked** by some $f' \in \mathbf{D}[\gamma \sigma, \gamma \tau]$, in the sense that whenever $f(a) \downarrow$ and $a' \Vdash_{\sigma}^{\gamma} a$, we have $f'(a) \Vdash_{\tau}^{\gamma} f(a)$

For any C we have the **identity** simulation $\mathrm{id}_{\mathbf{C}}:\mathbf{C}\longrightarrow\mathbf{C}$ given by $\mathrm{id}_{\mathbf{C}}\,\sigma=\sigma$ and $a'\Vdash^{\mathrm{id}_{\mathbf{C}}}_{\sigma}a$ iff a'=a

Given simulations $\gamma: \mathbf{C} \longrightarrow \mathbf{D}$ and $\delta: \mathbf{D} \longrightarrow \mathbf{E}$ we have the composite simulation $\delta \circ \gamma: \mathbf{C} \longrightarrow \gamma \mathbf{E}$ defined by $(\delta \circ \gamma)\sigma = \delta(\gamma\sigma)$ and $a' \Vdash_{\sigma}^{\delta \circ \gamma} a$ iff there exists $a'' \in \mathbf{D}(\gamma\sigma)$ with $a'' \Vdash_{\sigma}^{\gamma} a$ and $a' \Vdash_{\gamma\sigma}^{\delta} a''$.

Definition 1.2. Let C, D be lax computability models and suppose γ , δ : $C \longrightarrow D$ are simulations. We say γ is **transformable** to δ , and write $\gamma \leq \delta$, if for each $\sigma \in |C|$ there is an operation $t \in D[\gamma \sigma, \delta \sigma]$ s.t.

$$\forall a \in \mathbf{C}(\sigma), a' \in \mathbf{D}(\gamma \sigma).a' \Vdash_{\sigma}^{\gamma} a \Rightarrow t(a') \Vdash_{\sigma}^{\delta} a$$

We write $\gamma \sim \delta$ if both $\gamma \leq \delta$ and $\delta \leq \gamma$

Definition 1.3. Models C, D are **equivalent** $(C \simeq D)$ if there exist simulations $\gamma : C \longrightarrow D$ and $\delta : D \longrightarrow C$ s.t. $\delta \circ \gamma \sim id_C$ and $\gamma \circ \delta \sim id_D$

A model is **essentially untyped** if it is equivalent to a model over the singleton type world O

Exercise 1.1.1. Show that a model \mathbb{C} is essentially untyped iff it contains a **universal type**: that is, a datatype U s.t. for each $A \in |\mathbb{C}|$ there exists operations $e \in \mathbb{C}[A, U], r \in \mathbb{C}[U, A]$ with r(e(a)) = a for all $a \in A$

Proof. \Leftarrow : Let $O = \{U\}$. For each $f \in \mathbf{C}[A, B]$, \mathbf{D} contains $\overline{f} \in \mathbf{D}[U, U]$ s.t. $\overline{f}()$ Let

$$\mathbf{D}[U,U] = \{\overline{f}: e[A] \to e[B]: f \in \mathbf{C}[A,B]\}$$

where $\overline{f}(e(a)) = e(f(a))$

each
$$A \in |\mathbf{C}|$$
, let $\gamma(A) = U$ and define $a' \Vdash_A^{\gamma} a$ iff $a' = e(a)$

Definition 1.4. Suppose C, D are lax models with weak products and weak terminals (I, i), (J, j) respectively. A simulation $\gamma : C \longrightarrow D$ is **cartesian** if

1. for each $\sigma, \tau \in |\mathbf{C}|$ there exists $t \in \mathbf{D}[\gamma \sigma \bowtie \gamma \tau, \gamma(\sigma \bowtie \tau)]$ s.t.

$$\begin{split} \pi_{\gamma\sigma}(d) \Vdash_{\sigma}^{\gamma} a \wedge \pi_{\gamma\tau}(d) \Vdash_{\tau}^{\gamma} b \Rightarrow \\ \exists c \in \mathbf{C}(\sigma \bowtie \tau).\pi_{\sigma}(c) = a \wedge \pi_{\tau}(c) = b \wedge t(d) \Vdash_{\sigma \bowtie \tau}^{\gamma} c \end{split}$$

2. there exists $u \in \mathbf{D}[J, \gamma I]$ s.t. $u(j) \Vdash_I^{\gamma} i$

Definition 1.5. Let **A** and **B** be lax relative TPCAs over the type worlds T, U respectively. An **applicative simulation** $\gamma : \mathbf{A} \longrightarrow \mathbf{B}$ consists of

- a mapping $\sigma \mapsto \gamma \sigma : \mathsf{T} \to \mathsf{U}$
- for each $\sigma \in \mathsf{T}$, a relation $\Vdash_{\sigma}^{\gamma} \subseteq \mathbf{B}^{\circ}(\gamma \sigma) \times \mathbf{A}^{\circ}(\sigma)$

satisfying the following

- 1. For all $a \in \mathbf{A}^{\circ}(\sigma)$ there exists $b \in \mathbf{B}^{\circ}(\gamma \sigma)$ with $b \Vdash_{\sigma}^{\gamma} a$
- 2. For all $a \in \mathbf{A}^{\sharp}(\sigma)$ there exists $b \in \mathbf{B}^{\sharp}(\gamma \sigma)$ with $b \Vdash_{\sigma}^{\gamma} a$
- 3. 'Application in **A** is effective in **B**': that is, for each $\sigma, \tau \in T$, there exists some $r \in \mathbf{B}^\sharp(\gamma(\sigma \to \tau) \to \gamma\sigma \to \gamma\tau)$, called a **realizer for** γ **at** σ, τ , s.t. for all $f \in \mathbf{A}^\circ(\sigma \to \tau)$, $f' \in \mathbf{B}^\circ(\gamma(\sigma \to \tau))$, $a \in \mathbf{A}^\circ(\sigma)$ and $a' \in \mathbf{B}^\circ(\gamma\sigma)$ we have

$$f' \Vdash_{\sigma \to \tau} f \wedge a' \Vdash_{\sigma} a \wedge f \cdot a \downarrow \Rightarrow r \cdot f' \cdot a' \Vdash_{\tau} f \cdot a$$

Theorem 1.6. Suppose C and D are (lax) weakly cartesian closed models, and suppose A and B are the corresponding (lax) relative TPCAs with pairing via the correspondence of Theorem $\ref{Theorem}$. Then cartesian simulations $C \longrightarrow D$ correspond precisely to applicative simulations $A \longrightarrow B$

Proof. Suppose first that $\gamma : \mathbf{C} \longrightarrow \mathbf{D}$ is a cartesian simulation

- 1. Definition
- 2. Suppose $a \in \mathbf{A}^\sharp(\sigma)$ where $\mathbf{A}^\circ(\sigma) = A$. Then we may find $g \in \mathbf{C}[I,A]$ with g(i) = a, where (I,i) is a weak terminal in \mathbf{C} . Take $g' \in \mathbf{D}[\gamma I, \gamma A]$ tracking g, and compose it with $u \in \mathbf{D}[J, \gamma I]$, we obtain $g'' \in \mathbf{D}[J, \gamma A]$. Then $g''(j) \in \mathbf{B}^\sharp(\gamma \sigma)$, and it is easy to see that $g''(j) \Vdash_\sigma^\gamma a$
- 3. Let σ, τ be any types; then by the definition of weakly cartesian closedness, we have $app_{\sigma\tau} \in \mathbf{C}[(\sigma \to \tau) \times \sigma, \tau]$ tracked by some $app'_{\sigma\tau} \in \mathbf{D}[\gamma((\sigma \to \tau) \times \sigma), \gamma\tau]$. By definition of cartesian simulation, we have $t \in \mathbf{D}[\gamma(\sigma \to \tau) \times \gamma\sigma, \gamma((\sigma \to \tau) \times \sigma)]$, we have an operation $\mathbf{D}[\gamma(\sigma \to \tau) \times \gamma\sigma, \gamma\tau]$, and hence an operation $\mathbf{D}[\gamma(\sigma \to \tau), \gamma\sigma \to \gamma\tau]$, and then an operation $\mathbf{D}[J, \gamma(\sigma \to \tau) \to \gamma\sigma \to \gamma\tau]$, and hence realizer $r \in \mathbf{B}^\sharp(\gamma(\sigma \to \tau) \to \gamma\sigma \to \gamma\tau)$ with the required properties: for all $f \in \mathbf{A}^\circ(\sigma \to \tau)$, $f' \in \mathbf{B}^\circ(\gamma(\sigma \to \tau))$, $a \in \mathbf{A}^\circ(\sigma)$, $a' \in \mathbf{B}^\circ(\gamma\sigma)$, and $f' \Vdash_{\sigma \to \tau} f$, $a' \Vdash_{\sigma} a$, $f \cdot a \downarrow$, we have $t(f', a') \Vdash_{(\sigma \to \tau) \times \sigma} (f, a)$. Then $app'_{\sigma\tau}(t(f', a')) \Vdash_{\tau}^\gamma app_{\sigma\tau}(f, a)$

Conversely, suppose $\gamma: \mathbf{A} \longrightarrow \mathbf{B}$ is an applicative simulation. To see that γ is a simulation $\mathbf{C} \longrightarrow \mathbf{D}$, it suffices to show that every operation in \mathbf{C} is tracked by one in \mathbf{D} . But given $f \in \mathbf{C}[\sigma, \tau]$, we may find a corresponding element $a \in \mathbf{A}^\sharp(\sigma \to \tau)$, whence some $a' \in \mathbf{B}^\sharp(\gamma(\sigma \to \tau))$ with $a' \Vdash_{\sigma \to \tau}^\gamma a$; by

using a realizer $r \in \mathbf{B}^{\sharp}$ for γ at σ, τ , we have an element $a'' \in \mathbf{B}^{\sharp}(\gamma \sigma \to \gamma \tau)$ and so a corresponding operation $f' \in \mathbf{D}[\gamma \sigma, \gamma \tau]$.

It remains to show that γ is cartesian. For any types σ,τ , we have by assumption an element $pair_{\sigma\tau} \in \mathbf{A}^\sharp(\sigma \to \tau \to \sigma \times \tau)$, yielding some $p \in \mathbf{C}[\sigma,\tau \to \sigma \times \tau]$. Since γ is a simulation, this is tracked by some $p' \in \mathbf{D}[\gamma\sigma,\gamma(\tau \to \sigma \times \tau)]$. From the weak product structure in \mathbf{D} we may thence obtain an operation

$$p'' \in \mathbf{D}[\gamma \sigma \times \gamma \tau, \gamma(\tau \to \sigma \times \tau) \times \gamma \tau]$$

and together with a realizer for γ at τ and $\sigma \times \tau$, this yields an operation $t \in \mathbf{D}[\gamma \sigma \times \gamma \tau, \gamma(\sigma \times \tau)]$ with the required properties.

$$i \in \mathbf{A}^\sharp(I)$$
, hence there is $b \in \mathbf{B}^\sharp(\gamma I)$ with $b \Vdash_I^\gamma i$. But $b = u(j)$ for some $u \in \mathbf{D}[J,\gamma I]$

The notion of a transformation between simulations carries across immediately to the relative TPCA setting: an applicative simulation $\gamma: \mathbf{A} \longrightarrow \mathbf{B}$ is transformable to δ if for each type σ there exists $t \in \mathbf{B}^\sharp(\gamma\sigma \to \delta\sigma)$ s.t. $a' \Vdash_\sigma^\gamma a$ implies $t \cdot a' \Vdash_\sigma^\delta a$

1.2 Examples of Simulations and Transformations

Example 1.1. Suppose ${\bf C}$ is any (lax) computability model with weak products, and consider the following variation on the 'product completion' construction described in the proof of Theorem $\ref{thm:construction}$. Let ${\bf C}^{\times}$ be the computability model whose datatypes are sets $A_0 \times \cdots \times A_{m-1}$ where $A_i \in |{\bf C}|$, and whose operations $f \in {\bf C}^{\times}[A_0 \times \cdots \times A_{m-1}, B_0 \times \cdots \times B_{n-1}]$ are those partial functions represented by some operation in ${\bf C}[A_0 \bowtie \cdots \bowtie A_{m-1}, B_0 \bowtie \cdots \bowtie B_{n-1}]$. Clearly the inclusion ${\bf C} \hookrightarrow {\bf C}^{\times}$ and ${\bf C}^{\times} \to {\bf C}$ sending $A_0 \times \ldots A_{m-1}$ to $A_0 \bowtie \cdots \bowtie A_{m-1}$ are simulations. Moreover, they constitute an equivalence ${\bf C} \simeq {\bf C}^{\times}$. This shows that every strict (lax) computability model with weak products is equivalent to one with standard products