Memory Augmented Policy Optimization (MAPO) for Program Synthesis and Semantic Parsing

Chen Liang, Mohammad Norouzi, Jonathan Berant, Quoc Le, Ni Lao

Memory Augmented Policy Optimization

 MAPO incorporates a memory of promising samples an unbiased gradient estimate with low variance.

 Decompose the expected return objective into weighted sum of two expectations inside and outside the memory.

$$\mathcal{O}_{\mathrm{ER}}(\theta) = \pi_{\mathcal{B}} \underbrace{\mathbb{E}_{\mathbf{a} \sim \pi_{\theta}^{+}(\mathbf{a})} R(\mathbf{a})}_{\text{Expectation inside } \mathcal{B}} + \underbrace{(1 - \pi_{\mathcal{B}}) \underbrace{\mathbb{E}_{\mathbf{a} \sim \pi_{\theta}^{-}(\mathbf{a})} R(\mathbf{a})}_{\text{Expectation outside } \mathcal{B}}$$

$$\nabla_{\theta} \mathcal{O}_{ER}(\theta) = \pi_{\mathcal{B}} \mathbb{E}_{\mathbf{a} \sim \pi_{\theta}^{+}(\mathbf{a})} \nabla \log \pi_{\theta}(\mathbf{a}) R(\mathbf{a}) + (1 - \pi_{\mathcal{B}}) \mathbb{E}_{\mathbf{a} \sim \pi_{\theta}^{-}(\mathbf{a})} \nabla \log \pi_{\theta}(\mathbf{a}) R(\mathbf{a})$$

 ${\cal B}$ denotes the memory buffer. $\pi_{ heta}^+$ and $\pi_{ heta}^-$ denotes the renormalized probability.

Memory weight clipping

- Force the training to pay attention to the memory by clipping the weight.
- Trade off bias in the initial stage for faster training.

 $\pi_{\mathcal{B}}^c = \max(\pi_{\mathcal{B}}, \alpha)$

Systematic exploration

- Use a bloom filter to force the exploration to generate new programs
- Trade-off memory for more efficient exploration.

Distributed sampling

- \supset distribute the cost of computing $\pi_{\mathcal{B}}$ and sampling into the actors.
- Multiple actors each interacting with a shard of training set and send samples to a learner.

Experiments

	E.S.	Dev.	Test
Pasupat & Liang (2015)	-	37.0	37.1
Neelakantan et al. (2017)	1	34.1	34.2
Neelakantan et al. (2017)	15	37.5	37.7
Haug et al. (2017)	1	-	34.8
Haug et al. (2017)	15	-	38.7
Zhang et al. (2017)	-	40.4	43.7
MAPO	1	42.4 ± 0.5	43.2 ± 0.5
MAPO (ensembled)	10	-	46.6

Fully supervised		Dev.	Test
Zhong <i>et al.</i> (2017)	L	60.8	59.4
Wang et al. (2017)	isic	67.1	66.8
Xu et al. (2017)	2	69.8	68.0
Huang et al. (2018)	dn	68.3	68.0
Yu et al. (2018)	S	74.5	73.5
Sun et al. (2018)	Strong supervision	75.1	74.6
Dong & Lapata (2018)	St	79.0	78.5
Weakly supervised		Dev.	Test
MAPO	7	1.6 ± 0.6	71.8 ± 0.4
MAPO (ensemble of 5)	-		74.9

- First RL-based state-of-the-art approach on WikiTableQuestions.
- Competitive to state-of-the-art on WikiSQL, which uses strong supervision (the ground truth programs), while MAPO only uses weak supervision (the final answers).

- MAPO converges slower than iterative maximum likelihood, but reaches a better solution.
- REINFORCE doesn't make much progress (<10% accuracy).
- Spurious programs: right answer for the wrong reason

Rank	Nation	Gold	Silver	Bronze	Total
1	Nigeria	14	12	9	35
2	Algeria	9	4	4	17
3	Kenya	8	11	4	23
4	Ethiopia	2	4	7	13
5	Ghana	2	2	2	6
6	Ivory Coast	2	1	3	6
7	Egypt	2	1	0	3
8	Senegal	1	1	5	7

Which nation won the most silver medal?

Correct program:

(argmax rows "Silver") (hop v1 "Nation")

• Spurious programs:

(argmax rows "Gold") (argmax rows "Bronze") (hop v1 "Nation") (hop v1 "Nation")

• Comparison of MAPO, MML, IML with a simplified example

	Question 1		Question 2	
	correct	spurious	spurious	spurious
Iterative Maximum Likelihood (IML)	0.5	0.5	0.5	0.5
Maximum Marginal Likelihood (MML)	0.8	0.2	0.5	0.5
MAPO	0.6	0.15	0.1	0.1