# CS492: Probabilistic Programming Generative Modelling with Anglican

Hongseok Yang KAIST

### CS492: Probabilistic Programming

## Generative Modelling with Anglican

Hongseok Yang KAIST

I have limited experience in modelling. Better title: Further examples in Anglican.

### What is a model?

- I. A probability density or mass function.
- 2. A simulator or a sampler.

### What is a model?

- I. A probability density or mass function.
- 2. A simulator or a sampler.
  - Generative view.
  - Well-supported by prob. PLs like Anglican.
  - Express how a hypothesis arises and also how it generates observed data.

## Solving a problem via generative modelling

- I. Create a simulator (i.e. a generative model).
  - How do candidate solutions arise?
  - How do solutions generate observations?
- 2. Specify success criteria with conditioning.
- 3. Solve the problem by posterior inference.

### Learning outcome

- I. Can use generative modelling for solving a problem.
- 2. Can reproduce the solutions of 2D physics and program induction in Anglican.
- 3. Can write interesting probabilistic programs using the expressive power of Anglican.
- 4. Can explain Poisson, Gaussian distributions.

### 2D physics

### 2D physics



20 balls are falling from top-left.

[Q] How to move them to the bin?

### 2D physics



20 balls are falling from top-left.

[Q] How to move them to the bin?

[A] Put bumpers.

### How to solve this in Anglican?

I. Create a simulator.

2. Specify success criteria with conditioning.

I. Create a simulator.

2. Specify success criteria with conditioning.

- 1. Create a simulator.
  - Randomly place bumpers. Drop balls.
- 2. Specify success criteria with conditioning.

I. Create a simulator.

Randomly place bumpers. Drop balls.

2. Specify success criteria with conditioning.

- I. Create a simulator.
  - Randomly place bumpers. Drop balls.
- 2. Specify success criteria with conditioning.
  - High likelihood if many balls reach the bin.
- 3. Solve the problem by posterior inference.

- I. Create a simulator.
  - Randomly place bumpers. Drop balls.
- 2. Specify success criteria with conditioning.
  - High likelihood if many balls reach the bin.
- 3. Solve the problem by posterior inference.

## Clojure functions for 2D physics in bounce.clj

I. Create a world.

```
(def bumpers (list (list -3 6) (list 2 5))
(def start-w (create-world bumpers))
```

2. Simulate 20 balls in the world.

```
(def end-w (simulate-world start-w))
```

3. Count the number of balls in the bin.

```
(def num-balls (balls-in-box end-w))
```

These functions are defined in bounce.clj available at the course webpage.

## Clojure functions in Anglican programs

## Clojure functions in Anglican programs

Imports primitive Clojure fns.

## Clojure functions in Anglican programs

Imports primitive Clojure fns.

```
(defquery physics0 []
```

```
(with-primitive-procedures
  [create-world simulate-world balls-in-box]
  (defquery physics0 []
```

```
(with-primitive-procedures
  [create-world simulate-world balls-in-box]
  (defquery physics0 []
    (let
      [n-bumpers 8
       f (fn [] (list
           (sample (uniform-continuous -5 14))
           (sample (uniform-continuous 0 10)))
       bs (repeatedly n-bumpers f)
                         )))
```

```
(with-primitive-procedures
  [create-world simulate-world balls-in-box]
  (defquery physics0 []
    (let
      [n-bumpers 8
       f (fn [] (list
           (sample (uniform-continuous -5 14))
           (sample (uniform-continuous 0 10)))
       bs (repeatedly n-bumpers f)
       w0 (create-world bs)
       w1 (simulate-world w0)
       num-balls (balls-in-box w1)]
                         )))
```

```
(with-primitive-procedures
  [create-world simulate-world balls-in-box]
  (defquery physics0 []
    (let
      [n-bumpers 8
       f (fn [] (list
           (sample (uniform-continuous -5 14))
           (sample (uniform-continuous 0 10)))
       bs (repeatedly n-bumpers f)
       w0 (create-world bs)
       w1 (simulate-world w0)
       num-balls (balls-in-box w1)]
      (list num-balls bs))))
```

```
(with-primitive-procedures
(def lazy-samples0
  doquery :importance physics0 []))
(def samples0
  (map :result (take-nth 10 (take 2000 (drop 1000 lazy-samples0))))
(def best-sample)
  (reduce (fn [acc x] (if (> (first x) (first acc)) x acc))
          samples())
best-sample0
#'bounce-worksheet/lazy-samples0
#'bounce-worksheet/samples0
#'bounce-worksheet/best-sample0
(2 ((5.039659490241706 2.4748229831103163) (1.6105279484809571
6.095328821668973) (-1.7327828746932634 2.1429922008512325)
(11.46787625011067 3.6077249028398284) (-1.1506281530451017
2.1718715228712937) (-1.752497599843685 5.686404684681266)
(0.3924210062883362 4.924024324154887) (13.669929061656298
3.9039578861003066)))
```

```
(with-primitive-procedures
(def lazy-samples0
   doquery :importance physics0 []))
(def samples0
  (map :result (take-nth 10 (take 2000 (drop 1000 lazy-samples0))))
(def best-sample)
  (reduce (fn [acc x] (if (> (first x) (first acc)) x acc))
          samples())
best-sample0
 #'bounce-worksheet/lazy-samples0
#'bounce-worksheet/samples0
lust two balls in the bin.
 (2 ((5.039659490241706 2.4748229831103163) (1.6105279484809571
 6.095328821668973) (-1.7327828746932634 2.1429922008512325)
 (11.46787625011067 3.6077249028398284) (-1.1506281530451017
 2.1718715228712937) (-1.752497599843685 5.686404684681266)
 (0.3924210062883362 4.924024324154887) (13.669929061656298
 3.9039578861003066)))
```



```
(with-primitive-procedures
  [create-world simulate-world balls-in-box]
  (defquery physics1 []
    (let
      [n-bumpers 8
       f (fn [] (list
           (sample (uniform-continuous -5 14))
           (sample (uniform-continuous 0 10)))
       bs (repeatedly n-bumpers f)
       w0 (create-world bs)
       w1 (simulate-world w0)
       num-balls (balls-in-box w1)]
      (list num-balls bs))))
```

[Q] More balls in the bin. Express this goal using observe.

$$f(x \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

- Probability distribution on a real x.
- Specified by density f. Also by  $\mu$  and  $\sigma$ .



$$f(x \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

- Probability distribution on a real x.
- Specified by density f. Also by  $\mu$  and  $\sigma$ .
- [Intuition I] x is in [ $\mu$ -2 $\sigma$ ,  $\mu$ +2 $\sigma$ ] usually.
- [Intuition 2] The chance of x being further from µ decays exponentially.



### Normal distribution

$$f(x \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$$p(x \mid y) = \frac{p(y \mid x) \times p(x)}{p(y)}$$

 Bayes's rule holds regardless of whether p is a probability mass or a prob. density.

```
(with-primitive-procedures
  [create-world simulate-world balls-in-box]
  (defquery physics1 []
    (let
      [n-bumpers 8
       f (fn [] (list
           (sample (uniform-continuous -5 14))
           (sample (uniform-continuous 0 10)))
       bs (repeatedly n-bumpers f)
       w0 (create-world bs)
       w1 (simulate-world w0)
       num-balls (balls-in-box w1)]
      (list num-balls bs))))
```

```
(with-primitive-procedures
  [create-world simulate-world balls-in-box]
  (defquery physics1 []
    (let
      [n-bumpers 8
       f (fn [] (list
           (sample (uniform-continuous -5 14))
           (sample (uniform-continuous 0 10)))
       bs (repeatedly n-bumpers f)
       w0 (create-world bs)
       w1 (simulate-world w0)
       num-balls (balls-in-box w1)]
      (observe (normal num-balls 1) 20)
      (list num-balls bs))))
```

```
(def lazy-samples1
  (doquery :lmh physics1 []))
(def samples1
  (map :result (take-nth 10 (take 2000 (drop 1000 lazy-samples1)))))
(def best-sample1
  (reduce (fn [acc x] (if (> (first x) (first acc)) x acc))
          samples1))
best-sample1
#'bounce-worksheet/lazy-samples1
#'bounce-worksheet/samples1
#'bounce-worksheet/best-sample1
(18 ((0.42846830943289227 4.955430158101355) (0.11399011311342733
7.047454084589595) (-1.6760284246021682 3.482088149196809)
(2.5215232534350247 2.5347454541889936) (12.119916165254827
7.446364186029621) (9.842132376151833 0.6555153748336084)
(0.383232923290564 0.8118697300596889) (5.731228040496732
5.245105763879869)))
```

```
MCMC algorithm (next lecture)
(def lazy-samples1
  (doquery :lmh physics1 []))
(def samples1
  (map :result (take-nth 10 (take 2000 (drop 1000 lazy-samples1)))))
(def best-sample1
  (reduce (fn [acc x] (if (> (first x) (first acc)) x acc))
         samples1))
best-sample1
#'bounce-worksheet/lazy-samples1
#'bounce-worksheet/samples1
#'bounce-worksheet/best-sample1
(18 ((0.42846830943289227 4.955430158101355) (0.11399011311342733
7.047454084589595) (-1.6760284246021682 3.482088149196809)
(2.5215232534350247 2.5347454541889936) (12.119916165254827
7.446364186029621) (9.842132376151833 0.6555153748336084)
(0.383232923290564 0.8118697300596889) (5.731228040496732
5.245105763879869)))
```

```
(def lazy-samples1
  (doquery :lmh physics1 []))
(def samples1
  (map :result (take-nth 10 (take 2000 (drop 1000 lazy-samples1)))))
(def best-sample1
  (reduce (fn [acc x] (if (> (first x) (first acc)) x acc))
          samples1))
best-sample1
#'bounce-worksheet/lazy-samples1
#'bounce-worksheet/samples1
18 balls in the bin. sample1
(18 ((0.42846830943289227 4.955430158101355) (0.11399011311342733
7.047454084589595) (-1.6760284246021682 3.482088149196809)
(2.5215232534350247 2.5347454541889936) (12.119916165254827
7.446364186029621) (9.842132376151833 0.6555153748336084)
(0.383232923290564 0.8118697300596889) (5.731228040496732
5.245105763879869)))
```



```
(with-primitive-procedures
  [create-world simulate-world balls-in-box]
  (defquery physics2 []
    (let
      [n-bumpers 8
       f (fn [] (list
           (sample (uniform-continuous -5 14))
           (sample (uniform-continuous 0 10)))
       bs (repeatedly n-bumpers f)
       w0 (create-world bs)
       w1 (simulate-world w0)
       num-balls (balls-in-box w1)]
      (observe (normal num-balls 1) 20)
      (list num-balls bs))))
```

```
(with-primitive-procedures
  [create-world simulate-world balls-in-box]
  (defquery physics2 []
    (let
      [n-bumpers • • •
       f (fn [] (list
           (sample (uniform-continuous -5 14))
           (sample (uniform-continuous 0 10)))
       bs (repeatedly n-bumpers f)
       w0 (create-world bs)
       w1 (simulate-world w0)
       num-balls (balls-in-box w1)]
      (observe (normal num-balls 1) 20)
      (list num-balls bs))))
```

### Poisson distribution

$$P(k \text{ events in interval}) = e^{-\lambda} \frac{\lambda^k}{k!}$$

- Distribution on non-negative integer k.
- Represents the k independent events happening in a fixed time interval.
- Mean  $\lambda$ . Peak at  $\lambda$  or  $\lambda$ -1.

### Poisson distribution



```
(with-primitive-procedures
  [create-world simulate-world balls-in-box]
  (defquery physics2 []
    (let
      [n-bumpers (sample (poisson 6))
       f (fn [] (list
           (sample (uniform-continuous -5 14))
           (sample (uniform-continuous 0 10)))
       bs (repeatedly n-bumpers f)
       w0 (create-world bs)
       w1 (simulate-world w0)
       num-balls (balls-in-box w1)]
      (observe (normal num-balls 1) 20)
      (list num-balls bs))))
```

```
(with-primitive-procedures
  [create-world simulate-world balls-in-box]
  (defquery physics2 []
    (let
      [n-bumpers (sample (poisson 6))
       f (fn [] (list
           (sample (uniform-continuous -5 14))
           (sample (uniform-continuous 0 10)))
       bs (repeatedly n-bumpers f)
       w0 (create-world bs)
       w1 (simulate-world w0)
       num-balls (balls-in-box w1)]
      (observe (normal num-balls 1) 20)
      (list num-balls bs))))
```

```
(with-primitive-procedures
  [create-world simulate-world balls-in-box]
  (defquery physics2 []
    (let
      [n-bumpers (sample (poisson 6))
       f (fn [] (list
           (sample (uniform-continuous -5 14))
           (sample (uniform-continuous 0 10)))
       bs (repeatedly n-bumpers f)
       w0 (create-world bs)
       w1 (simulate-world w0)
       num-balls (balls-in-box w1)]
      (observe (normal n-bumpers 2) 0)
      (observe (normal num-balls 1) 20)
      (list num-balls bs))))
```

```
(def lazy-samples2
  (doquery :lmh physics2 []))
(def samples2
  (map :result (take-nth 10 (take 2000 (drop 1000 lazy-samples2)))))
(defn is-better [x v]
  (let [num-bumpers-less (< (count (second x)) (count (second y)))</pre>
        num-balls-more (> (first x) (first y))
        num-balls-equal (= (first x) (first y))
        x-above-threshold (> (first x) 15)
        y-above-threshold (> (first x) 15)]
    (or (and x-above-threshold num-bumpers-less)
         and num-balls-equal num-bumpers-less)
        num-balls-more)))
(def best-sample2
  (reduce (fn [acc x] (if (is-better x acc) x acc))
          samples2))
best-sample2
#'bounce-worksheet/lazy-samples2
#'bounce-worksheet/samples2
#'bounce-worksheet/is-better
#'bounce-worksheet/best-sample2
(18 ((3.3372725819978006 8.47981623123972) (6.810994664276837
1.2074164603701054) (11.516669110855627 2.9146326254312993)
(-3.905786355145122 6.597352342859228) (0.5808260753916357
0.6871272205893586)))
```

```
(def lazy-samples2
  (doquery :lmh physics2 []))
(def samples2
  (map :result (take-nth 10 (take 2000 (drop 1000 lazy-samples2)))))
(defn is-better [x y]
  (let [num-bumpers-less (< (count (second x)) (count (second y)))</pre>
        num-balls-more (> (first x) (first y))
        num-balls-equal (= (first x) (first y))
        x-above-threshold (> (first x) 15)
        y-above-threshold (> (first x) 15)]
    (or (and x-above-threshold num-bumpers-less)
         and num-balls-equal num-bumpers-less)
        num-balls-more)))
(def best-sample2
  (reduce (fn [acc x] (if (is-better x acc) x acc))
          samples2))
best-sample2
#'bounce-worksheet/lazy-samples2
#'bounce-worksheet/samples2
#'bounce-worksheet/is-better
                                     Five bumpers used.
#'bounce-worksheet/best-sample2
 (18 ((3.3372725819978006 8.47981623123972) (6.810994664276837
1.2074164603701054) (11.516669110855627 2.9146326254312993)
(-3.905786355145122 6.597352342859228) (0.5808260753916357
0.6871272205893586)))
```



## Baby program induction

## Baby program induction



[Q] Find a Clojure function that interpolates these data points.

Borrowed from Paige, van der Meent & Wood's tutorial at PPAML16 summer school

# Solve program induction via generative modelling

I. Create a simulator.

2. Specify success criteria with conditioning.

3. Solve the problem by posterior inference.

# Solve program induction via generative modelling

- I. Create a simulator.
  - Generate expressions using probabilistic grammar.
- 2. Specify success criteria with conditioning.
  - High likelihood if the evaluation of a sampled expression matches data well.
- 3. Solve the problem by posterior inference.

# Solve program induction via generative modelling

- 1. Create a simulator.
  - Generate expressions using probabilistic grammar.
- 2. Specify success criteria with conditioning.
  - High likelihood if the evaluation of a sampled expression matches data well.
- 3. Solve the problem by posterior inference.

```
Prog ::= (fn [x] Ex)

Ex ::= Num | x | BinEx

Num ::= -9 | -8 | ... | 9 | 10

BEx ::= (+ Ex Ex) | (- Ex Ex) | (* Ex Ex)
```

```
Prog ::= (fn [x] Ex)

Ex ::= Num | x | BinEx

Num ::= -9 | -8 | ... | 9 | 10

BEx ::= (+ Ex Ex) | (- Ex Ex) | (* Ex Ex)

4 Nonterminal symbols.
```

```
Prog ::= (fn [x] Ex)

Ex ::= Num | x | BinEx

Num ::= -9 | -8 | ... | 9 | 10

BEx ::= (+ Ex Ex) | (- Ex Ex) | (* Ex Ex)

4 Nonterminal symbols. Many terminal symbols.
```

```
Prog ::= (fn [x] Ex)
     Ex ::= Num | x | BinEx
  Num ::= -9 | -8 | ... | 9 | 10
   BEx ::= (+ Ex Ex) | (- Ex Ex) | (* Ex Ex)
4 Nonterminal symbols. Many terminal symbols.
```

Production rules tell us how to generate programs.

```
Prog ::= (fn [x] Ex)

Ex ::= Num | x | BinEx

Num ::= -9 | -8 | ... | 9 | 10

BEx ::= (+ Ex Ex) | (- Ex Ex) | (* Ex Ex)
```

```
Prog ::= (fn [x] Ex)

Ex ::= Num | x | BinEx

Num ::= -9 | -8 | ... | 9 | 10

BEx ::= (+ Ex Ex) | (- Ex Ex) | (* Ex Ex)
```

```
Prog ::= (fn [x] Ex)
```

```
Ex ::= Num | x | BinEx
```

```
Prog ::= (fn [x] Ex)

0.4   0.4   0.2

Ex ::= Num | x | BinEx

Num ::= -9 | -8 | ... | 9 | 10
```

$$BEx ::= (+ Ex Ex) | (- Ex Ex) | (* Ex Ex)$$

```
Prog ::= (fn [x] Ex)

0.4 \quad 0.4 \quad 0.2

Ex ::= Num | x | BinEx

0.05 \quad 0.05 \quad 0.05 \quad 0.05

Num ::= -9 | -8 | ... | 9 | 10

BEx ::= (+ Ex Ex) | (- Ex Ex) | (* Ex Ex)
```

```
Prog ::= (fn [x] Ex)

0.4 \quad 0.4 \quad 0.2

Ex ::= Num | x | BinEx

0.05 \quad 0.05 \quad 0.05 \quad 0.05

Num ::= -9 | -8 | ... | 9 | 10

BEx ::= (+ Ex Ex) | (- Ex Ex) | (* Ex Ex)
```

For each nonterminal, pick a rule probabilistically.

How to represent this prob. grammar in Clojure?

## Quoted expressions

- Data structure for Clojure programs.
- Roughly nested lists (and vectors) of symbols & constants.

```
(def e1 (list '* (list '+ '1 'x) '3))
(def e2 (list 'fn ['x] e1))
```

• Can be converted to a program via eval.

```
(eval e2 10), (eval e1 10)
```

## Quoted expressions

- Data structure for Clojure programs.
- Roughly nested lists (and vectors) of symbols & constants.

```
(def e1 (list '* (list '+ '1 'x) '3))
(def e2 (list 'fn ['x] e1))
```

• Can be converted to a program via eval.

```
(eval e2 10), (eval e1 10)
```

(defm gen-e []

Ex: (Num, x, BinEx) — (.4, .4, .2)

Num: (-9, ..., 10) — (.05, ..., .05)

BEx: (+, -, \*) — (.3, .3, .4)

(defm gen-e []

Anglican's defn.

Anglican functions defined outside of a query.

Ex: (Num, x, BinEx) — (.4, .4, .2)

Num: (-9, ..., 10) — (.05, ..., .05)

BEx: (+, -, \*) — (.3, .3, .4)

Ex: (Num, x, BinEx) — (.4, .4, .2)

Num: (-9, ..., 10) — (.05, ..., .05)

BEx: (+, -, \*) — (.3, .3, .4)

```
Ex: (Num, x, BinEx) — (.4, .4, .2)
Num: (-9, ..., 10) — (.05, ..., .05)
BEx: (+, -, *) — (.3, .3, .4)
```

### [Q] Complete this Anglican program.

[Q] Complete this Anglican program.

```
Ex: (Num, x, BinEx) — (.4, .4, .2)
Num: (-9, ..., 10) — (.05, ..., .05)
BEx: (+, -, *) — (.3, .3, .4)
```

```
Ex: (Num, x, BinEx) — (.4, .4, .2)
Num: (-9, ..., 10) — (.05, ..., .05)
BEx: (+, -, *) — (.3, .3, .4)
```

```
(defm gen-e []
  (let [t (sample
            (discrete (list 0.4 0.4 0.2)))]
    (cond
      (= t 0) (sample (uniform-discrete -9 11))
      (= t 1) 'x
      (= t 2) (list (sample (categorical
                          \{ '+ 0.3, '- 0.3, '* 0.4 \} ) )
                     (gen-e) (gen-e))))
(defquery grammar []
  (let [prog
    prog))
```

```
(defm gen-e []
  (let [t (sample
            (discrete (list 0.4 0.4 0.2)))]
    (cond
      (= t 0) (sample (uniform-discrete -9 11))
      (= t 1) 'x
      (= t 2) (list (sample (categorical
                         \{ '+ 0.3, '- 0.3, '* 0.4 \} ) )
                     (gen-e) (gen-e))))
(defquery grammar []
  (let [prog (list 'fn ['x] (gen-e))]
    prog))
```

```
Ex: (Num, x, BinEx) — (.4, .4, .2)
Num: (-9, ..., 10) — (.05, ..., .05)
BEx: (+, -, *) — (.3, .3, .4)
```

# Solve program induction via generative modelling

- I. Create a simulator.
  - Generate expressions using probabilistic grammar.
- 2. Specify success criteria with conditioning.
  - High likelihood if the evaluation of a sampled expression matches data well.
- 3. Solve the problem by posterior inference.

```
(defm gen-e [] . . . .)
  (defquery grammar []
    (let [prog (list 'fn ['x] (gen-e))]
      prog))
```

```
(defm gen-e [] . . . .)
  (defquery grammar [ints outs]
    (let [prog (list 'fn ['x] (gen-e))]
```

prog))

```
(defm gen-e [] . . . .)
(defn evaluate [f-code v] ((eval f-code) v))
(with-primitive-procedures [evaluate]
  (defquery grammar [ints outs]
      (let [prog (list 'fn ['x] (gen-e))]
```

prog)))

```
(defm gen-e [] . . . .)
(defn evaluate [f-code v] ((eval f-code) v))
(with-primitive-procedures [evaluate]
  (defquery grammar [ints outs]
    (let [prog (list 'fn ['x] (gen-e))
          f (fn [in out]
              (observe
                out))]
      (map f ins outs)
      prog)))
```

[Q] Complete this.

```
(defm gen-e [] . . . .)
(defn evaluate [f-code v] ((eval f-code) v))
(with-primitive-procedures [evaluate]
  (defquery grammar [ints outs]
    (let [prog (list 'fn ['x] (gen-e))
          f (fn [in out]
              (observe
                (normal (evaluate prog in) 1)
                out))]
      (map f ins outs)
      prog)))
```

[Q] Complete this.

# Solve program induction via generative modelling

- I. Create a simulator.
  - Generate expressions using probabilistic grammar.
- 2. Specify success criteria with conditioning.
  - High likelihood if the evaluation of a sampled expression matches data well.
- 3. Solve the problem by posterior inference.

#### Result with data set I



#### Result with data set 2

```
((fn [x] (* x (+ (* 2 x) -1)))
(fn [x] (* x (+ x 1)))
 (fn [x] (* x (+ x (+ 2 0))))
 (fn [x] (* (+ (- x 1) (+ x (- x x))) x))
 (fn [x] (* x (+ 2 (* x 1)))))
      30 -
      25 -
      20 -
      15 -
      10 -
      5 -
      0 -
      -5 -
     -10 -
     -15 -
     -20 -
     -25 -
     -30 +
                                                              10
                   -10
        -15
                                                                         15
```

#### Result with data set 3

```
((fn [x] (* x (- (+ 4 x) (* 6 1))))
 (fn [x] 5)
 (fn [x] (+ 3 x))
 (fn [x] (+ 4 (- x 0)))
 (fn [x] (+ 4 x)))
      30 -
      25 -
      20 -
      15 -
      10 -
       5 -
       0 -
      -5 -
     -10 -
     -15 -
     -20 -
     -25 -
     -30 -
                    -10
        -15
                                -5
                                           0
                                                                 10
```

### Summary

- The generative approach suggests to specify a process for generating hypothesis & data.
- This process clarifies hidden assumptions.
- Goes well with probabilistic programming.
- Prob. PLs let us use powerful programming constructs (eval, etc) in modelling.

#### Information

- I will put gorilla worksheets for 2d physics and program induction in the webpage.
- To try the 2d physics example, you will have to put bounce.clj in the src directory.