Author: Reyno Tilikaynen

Problem A: Multiples

Two points $(\mathbf{x}_1, \mathbf{y}_1)$ and $(\mathbf{x}_2, \mathbf{y}_2)$ are said to be integer multiples if there is an integer \mathbf{N} such that $(\mathbf{x}_1, \mathbf{y}_1) = (\mathbf{N}\mathbf{x}_2, \mathbf{N}\mathbf{y}_2)$ or $(\mathbf{N}\mathbf{x}_1, \mathbf{N}\mathbf{y}_1) = (\mathbf{x}_2, \mathbf{y}_2)$.

For example,

- (1, 2) and (2, 4) are integer multiples, since for N = 2, (2*1, 2*2) = (2, 4)
- (1, 2) and (-3, -6) are also integer multiples (N = -3)
- (1, 2) and (1, 3) are not integer multiples, since there is no $\bf N$ such that ($\bf N^*1$, $\bf N^*2$) = (1, 3) and vice versa.

Given two points, figure out if they are integer multiples of each other.

Input:

The first line of input provides the number of test cases, T ($1 \le T \le 100$). T test cases follow. Each test case consists of two lines. Each line contains two integers x, y, which represent a point (x, y).

Output:

For each test case, your program should output one line containing "YES" if the two points are integer multiples, or "NO" otherwise.

Sample Input:

4

1 2

-4 -8

3 7

9 21

26 2

13 1

0 7

1 7

Sample Output:

YES

YES

YES

NO

Explanation for Sample Input:

Looking at the first three test cases in order, we note that:

$$(-4*1, -4*2) = (-4, -8)$$

$$(3*3, 3*7) = (9, 21)$$

$$(26, 2) = (2*13, 2*1)$$