

Fair Comparison between Efficient Attentions

Jiuk Hong¹, Chaehyeon Lee¹, Soyoun Bang¹ and Heechul Jung¹ Department of Artificial Intelligence, Kyungpook National University

Motivation

- ✓ In ViT [5], decreasing the patch size and thus increasing the effective sequence length shows surprisingly robust improvements without introducing parameters.
 - A well-known concern with self-attention is the quadratic time and memory complexity.
 - The quadratic complexity can occur patch size scalability issues.

- ✓ There has been many studies related to **efficient attention** [9] that addresses this problem.
 - But there are few attempts to compare the works fairly because of different model configuration and training schemes.
- ✓ Then, how about using those works to reduce patch size while decreasing computations?

Experiment Setting

- ✓ We use the pyramid architecture from Pyramid Transformer [12].
 - Like CNN, it reduce spatial dimension and increase feature dimension.
 - While we conduct experiments using small size of patch, we cannot afford to handle computation with columnar architecture like ViT.
- ✓ For a fair comparison, we use same architectures and training schemes. Only the patch size and the type of attention change.
 - We compare several attentions, which have global token interaction and linear complexity.
 - For reference, we also evaluate Swin, which uses local token interaction, and columnar architecture with patch size of 14 and 16.
 - Below table shows efficient attention operation used in our paper and its corresponding complexity.

Model Architecture Equation		Complexity per Self-Attention	
Transformer (SA) [10]	$\operatorname{softmax}\left[rac{\mathbf{q}\mathbf{k}^T}{\sqrt{d_k}} ight]\mathbf{v}$	$O(N^2C)$	
Linformer (LA) [11]	$\operatorname{softmax}\left(\frac{\mathbf{q}[W_{proj}\mathbf{k}]^T}{\sqrt{d_k}}\right)W_{proj}\mathbf{v}.$	O(NCm)	
Efficient Attention (EA) [8]	$\operatorname{softmax}(q) \left[\operatorname{softmax}(\mathbf{k}^T) \mathbf{v}\right]$	$O(NC^2)$	
Performer (PA) [3]	$\frac{\psi(\mathbf{q}) \left[\psi(\mathbf{k})^T \mathbf{v} \right]}{\operatorname{diag}(\psi(\mathbf{q}) [\psi(\mathbf{k})^T \mathbb{I}_N])}$	O(NCr)	
Fastformer (AA) [15]	q + [k'*v]W	O(NC)	
XCiT (XCA) [1]	$\left[\operatorname{softmax}\left(\frac{\ \mathbf{q}\ _{2}^{T}\ \mathbf{k}\ _{2}}{\tau}\right)\mathbf{v}^{T}\right]^{T}$	$O(NC^2)$	
Swin Transformer (Swin) [6]	same as SA, but using window	$O(NCw^2)$	

Result on ImageNet-1K

Attention	(M. millions)	(C. siss)	notio	10p 1	
Attention	(M, millions)	(G, giga)	ratio	Acc. (%)	
]	Baseline			
SA-4 [10]	28.27	8.821	1	81.80	
SA-7 [10]	28.28	1.915	1	78.97	
Efficient Attentions					
LA-4 [11]	30.91	5.496	0.62	79.04(-2.76)	
LA-7 [11]	28.56	1.561	0.81	77.47(-1.5)	
EA-4 [8]	28.27	4.480	0.51	79.87(-1.93)	
EA-7 [8]	28.28	1.473	0.77	77.91(-1.06)	
PA-4 [3]	28.27	4.481	0.51	78.73(-3.07)	
PA-7 [3]	28.28	1.473	0.77	77.87(-1.1)	
AA-4 [15]	28.27	4.394	0.50	77.60(-3.93)	
AA-7 [15]	28.28	1.445	0.75	76.02(-2.95)	
XCA-4 [1]	28.27	4.480	0.51	78.67(-3.13)	
XCA-7 [1]	28.28	1.473	0.77	77.62(-1.35)	
References					
Swin-4 [6]	28.27	4.528	0.51	80.08(-1.72)	
Swin-7 [6]	28.28	1.500	0.78	78.72(-0.25)	
LPI-4 [1]	28.38	4.520	0.51	81.54(-0.26)	
LPI-7 [1]	28.39	1.486	0.78	79.7(+0.73)	
COL-14	22.00	6.117	0.69	81.30(-0.50)	
COL-16	22.00	4.589	0.52	80.97(-0.83)	

#params

FLOPs FLOPs Top 1

- Efficient attentions have lower performance, but much lower computation.
- ✓ Additional methods such as two convolution layer before attention (LPI) or shifted window attention (Swin) show comparable results with baseline.
- ✓ Pyramid architecture with small patches does not show superior performance compared to columnar architectures.

Limitation

- ✓ More experiments with columnar architecture are needed to show above results under additional model configurations.
- ✓ Attention with much smaller patches is ineffective due to its high computational cost.