under Graduate Homework In Mathematics

Functional Analysis 6

王胤雅

201911010205

201911010205@mail.bnu.edu.cn

2023年10月14日

ROBEM I $\mathscr X$ is B^* space. Prove: $\mathscr X$ is B space $\iff \forall \{x_n\}_{n=1}^{\infty} \subset \mathscr X$, $\sum_{n=1}^{\infty} ||x_n|| < \infty \to \sum_{n=1}^{\infty} x_n$ exists in $\mathscr X$.

- SOUTION. 1. "\Rightarrow": Let $\{x_n\}_{n=1}^{\infty} \subset \mathscr{X}$, $\sum_{n=1}^{\infty} ||x_n|| < \infty$, then $\forall \varepsilon > 0$, $\exists N \text{ s.t. } \forall n > N$, $\forall k \in \mathbb{N}_+$, $||\sum_{i=1}^{n+k} x_i \sum_{i=1}^n x_i|| \le \sum_{i=1}^k ||x_{n+i}|| < \varepsilon$. So $\{\sum_{i=1}^n x_i\}_{n=1}^{\infty}$ is a Cauchy sequence. Since \mathscr{X} is B space, then $\exists x \in \mathscr{X}$ s.t. $\lim_{n \to \infty} \sum_{i=1}^n x_i = x \in \mathscr{X}$.
 - 2. " \Leftarrow ": Let $\{x_n\}_{n=1}^{\infty} \subset \mathscr{X}$ is a Cauchy sequence. We only need to prove that exist $\{x_{n_k}\}_{k=1}^{\infty} \subset \{x_n\}_{n=1}^{\infty}$ that converges. Let $k \in \mathbb{N}_+$, assuming $N_i, n_i, i=1, \cdots, k-1$ have defined, we'll define N_k, n_k . Since $\exists N_k \geq \max_{i=1, \cdots, k-1} N_i, \, \forall n, m \geq N_k, \, ||x_m x_n|| < \frac{1}{2^k}, \, \text{let } n_k = N_k + 1.$ Obviously, $n_k > n_i, i < k, \, \forall k \in \mathbb{N}_+, \, ||x_{n_{k+1}} x_{n_k}|| < \frac{1}{2^k}.$ So $\sum_{i=1}^{\infty} ||x_{n_{i+1}} x_{n_i}|| < \sum_{i=1}^{\infty} \frac{1}{2^i} < \infty$, so $\lim_{k \to \infty} x_{n_k} = \sum_{k=1}^{\infty} (x_{n_{k+1}} x_{n_k}) + x_{n_1} \in \mathscr{X}$. Thus, $x = \lim_{n \to \infty} x_n \in \mathscr{X}$.

ROBEM II $[a,b] \subset \mathbb{R}$, let $\mathbb{P}_n := \{ f \in \mathbb{R}^{[a,b]} : \exists g \in \mathbb{R}[x], \deg g \leq n, \forall t \in [a,b], f(t) = g(t) \}$. Prove: $\forall f \in C[a,b], \exists P_0 \in \mathbb{P}_n \text{ s.t.}$

$$\max_{a \le x \le b} |f(x) - P_0(x)| = \min_{P \in \mathbb{P}_n} \max_{a \le x \le b} |f(x) - P(x)|. \tag{1}$$

SOLTION. Since $(C[a,b], \|\cdot\|)$ is B space, where $\|f\| = \max_{t \in [a,b]} |f(t)|, \forall f \in C[a,b]$, and $\dim_{\mathbb{R}} \mathbb{P}_0 = n+1$, so by optimal approximation theorem $\forall f \in C[a,b], \exists P_0 \in \mathbb{P}_n$ s.t.

$$\max_{a \le x \le b} |f(x) - P_0(x)| = \min_{P \in \mathbb{P}_n} \max_{a \le x \le b} |f(x) - P(x)| \tag{2}$$

ROBEM III \mathscr{X} is B^* space, $\mathscr{X}_0 \subset \mathscr{X}$ is a subspace. Assume $\exists c \in (0,1)$, s.t.

$$\inf_{x \in \mathscr{X}_0} ||y - x|| \le c||y|| \quad (\forall y \in \mathscr{X}). \tag{3}$$

Proof: \mathscr{X}_0 is dense in \mathscr{X} .

SOLITION. Since $\forall y: \|y\| = 1$, $\rho(y, \mathscr{X}_0) := \inf_{x \in \mathscr{X}_0} \|y - x\| \le c \|y\| = c$, and $\mathscr{X}_0 \subset \overline{\mathscr{X}}_0$, so $\rho(y, \overline{\mathscr{X}}_0) := \inf_{x \in \overline{\mathscr{X}}_0} \|y - x\| \le \inf_{x \in \mathscr{X}_0} \|y - x\| = \rho(y, \mathscr{X}_0) \le c$. If $\overline{\mathscr{X}}_0 \subsetneq \mathscr{X}$, By Riesz theorem, $\forall \varepsilon > 0, \forall y \in \mathscr{X} \setminus \overline{\mathscr{X}}_0 : \|y\| = 1$, $\exists x \in \mathscr{X}_0$, s.t. $\|y - x\| > 1 - \varepsilon$, let $\varepsilon = \frac{1-c}{2}$, then $\exists x \in \mathscr{X}_0$, s.t. $\|y - x\| > 1 - \varepsilon = 1 - \frac{1-c}{2} > 1 - (1-c) = c$, contradiction!