ENCR 2910 MIDTERM 1 SOLUTIONS

$$i_1 = \frac{60 - v_2}{2}$$
 $i_2 = \frac{v_2}{3}$

$$6\left(\frac{60-v_2}{2}\right)=\frac{v_2}{3}$$

$$R_{A} = S + 20 + \frac{(5)(20)}{10} = 35 \text{ A}$$

$$R_{B} = 10 + 20 + \frac{(10)(20)}{5} = 70 \text{ A}$$

$$R_{A} = S + 10 + \frac{(5)(10)}{20} = 17.5 \text{ A}$$

3) REDRAN AS

a)
$$\sqrt{s_{0}} = \frac{R_{2}}{R_{1} + R_{2}} \sqrt{s_{0}}$$

$$3 = \frac{R_{2}}{42 + R_{2}} \sqrt{s_{0}}$$

$$R_{2} = \sqrt{8} \sqrt{s_{0}}$$

c)
$$\frac{R_2||R_2|}{R_1+(R_2||R_2|)} = \frac{3}{10}$$
 $\frac{R_2||R_2|}{R_1} = \frac{3}{10}$
 $\frac{R_2||R_2|}{R_1} = \frac{3}{10}$

$$\frac{7}{R_{L}} = \frac{(V_{OA})^{2}}{R_{L}} = \frac{9}{9} = \boxed{1}$$

$$\vec{S}) \quad \vec{\Theta} : \frac{24 - v_S}{R_1} = \frac{v_S}{R_5} + \frac{v_S - v_4}{R_6} + \frac{v_S - (v_4 + v_3)}{R_2}$$

(3):
$$\frac{V_3 - (V_4 + V_3)}{R_2} = \frac{V_3}{R_3} + 1.3$$

G	0	RZ	$-\frac{1}{R_L} + \frac{1}{R_c}$	$\frac{1}{R_1} + \frac{1}{R_5} + \frac{1}{R_6} + \frac{1}{R_6}$	0	24 R,
0	0	-1 - 1 R2 - R3	- <u>1</u> R	Rz	0	1.3
0	0	RS	-1-Ry-R6	I R.	0	0
1	0	0	0	1	0	24
0	0	0	-1	1	-1	0
0	-1	- 1	0	0	1	10]