Calcul en virgule flottante

Cours ENPC - Pratique du calcul scientifique

Comment expliquer ce résultat ? Et celui-ci? 0.1 + 0.2 == 0.3 10^19 false -8446744073709551616 Alors que Alors que 1 + 2 == 3 10^18 true 100000000000000000000 10.0^19 1.0e19 Un indice 0.1 + 0.2

0.300000000000000004

Effet d'arrondi

round(1.4 + 1.4)

3.0

round(1.4) + round(1.4)

round(1.4)

- Dans le premier cas $1+\frac{1}{2}+\cdots+\frac{1}{999999}+\frac{1}{1000000}\Rightarrow$ on somme les gros d'abord Dans le second cas $\frac{1}{1000000}+\frac{1}{9999999}+\cdots+\frac{1}{2}+1\Rightarrow$ on somme les petits d'abord Quel calcul est le plus précis ?
- Si ε est la précision machine $1 + \varepsilon/2 \approx 1$ pour l'ordinateur mais $1 + \varepsilon > 1$ alors $(1 + \varepsilon/2) + \varepsilon/2 \approx 1 + \varepsilon/2 \approx 1$ tandis que $1 + (\varepsilon/2 + \varepsilon/2) = 1 + \varepsilon$

Définition de la décomposition en base β

Soit $x \in \mathbb{R}$ et $\beta \in \mathbb{N}^*$. On note

$$\pm (a_{-n}a_{-n+1} \dots a_{-1}a_0. a_1a_2 \dots)_{\beta}$$

la représentation de x en base β si

$$x = \pm \sum_{k=-n}^{+\infty} a_k \beta^{-k}, \quad a_k \in \{0, \dots, \beta - 1\}$$

- $\beta = 2 \rightarrow$ écriture **binaire**, $a_k \in \{0, 1\}$ est un **bit**
- $\beta = 10 \rightarrow$ écriture **décimale**, $a_k \in \{0, 1 ..., 9\}$ est un **chiffre** (**digit** en anglais)
- $\beta = 16 \rightarrow \text{écriture hexadécimale}, a_k \in \{0, 1, \dots, 9, A, B, \dots, F\}$

Exemples

$$(10)_{\beta} = 1 \times \beta^{1} + 0 \times \beta^{0} = \beta$$

$$(FF)_{16} = 15 \times 16^{1} + 15 \times 16^{0} = 15 \times 17 = 16^{2} - 1 = (255)_{10}$$

Représentation périodique

$$(a_0. a_1 a_2 \dots \overline{a_k \dots a_{k+p}})_{\beta} = (a_0. a_1 a_2 \dots a_k \dots a_{k+p} a_k \dots a_{k+p} a_k \dots a_{k+p} \dots)_{\beta}$$

Conversion binaire → décimal

Application simple de la définition $x = \pm \sum_{k=-n}^{+\infty} a_k 2^{-k}$

Exercice
$$(0.\overline{10})_2 = (0.1010101010...)_2$$
 en base 10

[Math Processing Error]

Arithmétique binaire

- Les réflexes appris au primaire fonctionnent $(1)_2 + (1)_2 = (10)_2$ (retenue)
- La multiplication par 2 est facile car $2 = (10)_2$

$$2 \times (a_{-n}a_{-n+1} \dots a_{-1}a_0. a_1a_2 \dots)_2 = (a_{-n}a_{-n+1} \dots a_{-1}a_0a_1. a_2 \dots)_2$$

Cas des nombres $0 \le x < 1$ soit $x = (0.b_1b_2 \dots b_k \dots)_2$

- $b_0 = 0$
- [Math Processing Error]
- $x \leftarrow 2x b_1$ et on recommence pour b_2 ...

Exercice : décomposer $(0.1)_{10}$, $(0.2)_{10}$ et $(0.3)_{10}$ en binaire

	X	i	b_i	$(0.2)_{10} = 2 \times (0.1)_{10} = (0.\overline{0011})_2$	X	i	b_i
	0.1	1	0	$(0.2)_{10} = 2 \times (0.1)_{10} = (0.0011)_2$	0.3	1	0
	0.2	2	0		0.6	2	1
	0.4	3	0		0.2	3	0
	0.8	4	1		0.4	4	0
	0.6	5	1		0.8	5	1
	0.2	6	0		0.6	6	1
	0.4	7	0		0.2	7	0
	0.8	8	1		0.4	8	0
	0.6	9	1		0.8	9	1
$(0.1)_{10}$	= (0	.000	011)	$(0.3)_{10}$	= (0, 0)	.010	0011)2

Exercices

- implémenter l'algorithme décimal \Rightarrow binaire en Julia pour des nombres $0 \le x < 1$
- établir l'algorithme décimal \rightarrow binaire pour des entiers $n \in \mathbb{N}$ et l'implémenter en Julia

Norme (IEEE-754, 2008)

Ensemble des réels à virgule flottante défini par

$$\mathbf{F}(p, E_{\min}, E_{\max}) = \left\{ (-1)^s 2^E(b_0, b_1 b_2 \dots b_{p-1})_2 \colon s \in \{0, 1\}, b_i \in \{0, 1\} \text{ and } E_{\min} \leqslant E \leqslant E_{\max} \right\}$$

où E est l'exposant et $(b_0, b_1b_2 \dots b_{p-1})_2$ la mantisse.

Cet ensemble est décomposé en

$$\mathbf{F}(p, E_{\min}, E_{\max}) = \left\{ (-1)^s 2^E (\mathbf{1}. \ b_1 b_2 \dots b_{p-1})_2 \colon \quad s \in \{0, 1\}, b_i \in \{0, 1\} \text{ et } E_{\min} \leqslant E \leqslant E_{\max} \right\} \quad \cup \quad \underbrace{\left\{ (-1)^s 2^{E_{\min}} (\mathbf{0}. \ b_1 b_2 \dots b_{p-1})_2 \colon s \in \{0, 1\}, b_i \in \{0, 1\} \right\}}_{\text{nombres dénormalisés}}$$

Encodage sur *n* bits avec $n = 1 + (p - 1) + n_E$

- 1 bit pour le signe (s = 0 pour + et s = 1 pour -)
- p-1 bits pour la mantisse
- *n_E* bits pour l'exposant
- Codage: $se_0 \dots e_{n_E-1}b_1 \dots b_{p-1}$ exposant mantisse

- On pose $E_{\text{max}} = 2^{n_E-1} 1$ et $E_{\text{min}} = -2^{n_E-1} + 2$ soit un nombre possible d'exposants de $E_{\text{max}} E_{\text{min}} + 1 = 2^{n_E} 2$
- Les n_E bits déterminent un entier $e := (e_0 \dots e_{n_E-1})_2$ tel que $0 \le e \le 2^{n_E} 1$
 - $e=0 \Rightarrow E=E_{\min}$ et (nombre dénormalisé) $x=(-1)^s 2^{E_{\min}} (0.b_1b_2 \dots b_{p-1})_2$ (y compris 0)
 - $1 \le e \le 2^{n_E} 2 \Rightarrow E = E_{\min} + e 1$ et (nombre normalisé) $x = (-1)^s 2^E (1.b_1 b_2 \dots b_{p-1})_2$

$$\bullet \ e = 2^{n_E} - 1 \Rightarrow \begin{cases} \text{Inf} & \text{si } s = 0 \text{ et } b_1 b_2 \dots b_{p-1} = 00 \dots 0 \\ -\text{Inf} & \text{si } s = 1 \text{ et } b_1 b_2 \dots b_{p-1} = 00 \dots 0 \\ \text{NaN} & \text{sinon} \end{cases}$$

• Ensemble des nombres représentables :

$$\mathbf{F}(p, E_{\min}, E_{\max}) = \left\{ (-1)^s 2^E (\mathbf{1}. \, b_1 b_2 \dots b_{p-1})_2 \colon \quad s \in \{0, 1\}, b_i \in \{0, 1\} \text{ et } E_{\min} \leqslant E \leqslant E_{\max} \right\}$$

$$\cup \quad \left\{ (-1)^s 2^{E_{\min}} (\mathbf{0}. \, b_1 b_2 \dots b_{p-1})_2 \colon s \in \{0, 1\}, b_i \in \{0, 1\} \right\}$$

Les plus grand et plus petit nombres positifs du premier ensemble sont $2^{E_{\min}}$ et $2^{E_{\max}}(2-2^{-(p-1)})$.

- On définit l'**epsilon machine** relatif à l'ensemble $\mathbf{F}(p, E_{\min}, E_{\max})$ par $\varepsilon_M = 2^{-(p-1)}$
- Approximation : si $|x| \in [2^{E_{\min}}, 2^{E_{\max}}(2 \varepsilon_M)]$, alors

$$\min_{\widehat{x} \in \mathbf{F}(p, E_{\min}, E_{\max})} \frac{|x - \widehat{x}|}{|x|} \le \frac{1}{2} 2^{-(p-1)} = \frac{\varepsilon_M}{2}$$

i.e. on peut toujours trouver un représentant de x dans $\mathbf{F}(p,E_{\min},E_{\max})$ à $\frac{\varepsilon_{M}}{2}$ près en relatif.

• On définit l'arrondi de x comme le \hat{x} vérifiant ce minimum et on note

fl:
$$\mathbb{R} \to \mathbf{F}(p, E_{\min}, E_{\max})$$
; $x \mapsto \text{fl}(x) = \underset{\widehat{x} \in \mathbf{F}(p, E_{\min}, E_{\max})}{\text{arg min}} \frac{|x - \widehat{x}|}{|x|}$

En cas d'égalité, le nombre avec le bit le moins significatif égal à 0 est retenu.

	Demi-précision	Simple précision	Double précision
p	11	24	53
n_E	5	8	11
$E_{ m min}$	-14	-126	-1022
$E_{ m max}$	15	127	1023
$arepsilon_M$	$2^{-10} = 0.000977$	$2^{-23} = 1.192092910^{-7}$	$2^{-52} = 2.22044604925031310^{-16}$
type Julia	Float16	Float32	Float64

Commandes Julia

- typeof(x) renvoie le type de x
- bitstring(x) renvoie " $se_0 \dots e_{n_E-1}b_1 \dots b_{p-1}$ " $\underbrace{exposant \quad mantisse}$
- exponent(x) renvoie l'exposant E de x sous le format Int 64

Algorithme

- Soit $x \in [2^{E_{\min}}, 2^{E_{\max}}(2 \varepsilon_M)]$ (quitte à travailler avec $-x \operatorname{si} x < 0$)
- $E = \lfloor \log_2(x) \rfloor \Rightarrow x = 2^E y \text{ avec } y \in [1, 2[$
- Décomposition de $y-1=(0.b_1b_2\dots b_{p-1})_2$
- $x = 2^E (1.b_1b_2 \dots b_{p-1})_2$

Définition des opérations élémentaires

• Opérations dans $\mathbf{F} = \mathbf{F}(p, E_{\min}, E_{\max})$

$$\forall \circ \in \{+, -, \times, /\}, \quad \hat{\circ} : \mathbf{F} \times \mathbf{F} \to \mathbf{F} ; (x, y) \mapsto \mathrm{fl}(x \circ y)$$

Extension à ℝ

$$\forall \circ \in \{+, -, \times, /\}, \quad \hat{\circ} : \mathbb{R} \times \mathbb{R} \to \mathbf{F} ; (x, y) \mapsto \text{fl}(\text{fl}(x) \circ \text{fl}(y))$$

• Remarque importante : ô n'est pas associative

$$(x + y) + z \neq x + (y + z)$$

```
Exercice: montrer que 0.1 + 0.2 \neq 0.3 dans Float16
Rappel: (0.1)_{10} = (0.0\overline{0011})_2, (0.2)_{10} = 2 \times (0.1)_{10} = (0.0\overline{0011})_2 et (0.3)_{10} = (0.01\overline{0011})_2
(0.1)_{10} = 2^{-4}(1.10011001100110011\dots)_2 \Rightarrow fl_{16}(0.1) = 2^{-4}(1.1001100110)_2
 x = Float16(0.1); exponent(x), bitstring(x)[7:end]
 (-4, "1001100110")
(0.2)_{10} = 2^{-3}(1.10011001100110011...)_2 \Rightarrow fl_{16}(0.2) = 2^{-3}(1.1001100110)_2
 x = Float16(0.2); exponent(x), bitstring(x)[7:end]
 (-3, "1001100110")
(0.3)_{10} = 2^{-2}(1.00110011001100110...)_2 \Rightarrow fl_{16}(0.3) = 2^{-2}(1.0011001101)_2
 x = Float16(0.3); exponent(x), bitstring(x)[7:end]
 (-2, "0011001101")
0.1 + 0.2 = 2^{-4} ((1.1001100110)_2 + (11.0011001100)_2)
                                                                                                          1.1001100110
                                                                                                   + 11.0011001100
(0.3)_{10} = 2^{-4}(100.1100110100)_2
                                                                                                       100.1100110010
                                                                                                       100.1100110100
```

- Les types principaux d'entiers sous Julia sont Int16, Int32, Int64 (Int64 par défaut)
- Un entier n est codé sous la forme de p bits : $b_{p-1}b_{p-2}\,\dots\,b_0$
- L'algorithme de correspondance sous Julia est le complément à deux

$$n = -b_{p-1}2^{p-1} + \sum_{i=0}^{p-2} b_i 2^i$$

- Les p-1 premiers bits b_0,\ldots,b_{p-2} , déterminent de manière unique un entier entre 0 et $N_{\max}=2^{p-1}-1$
- Le dernier bit b_{p-1} opère ou non une translation dans les négatifs de -2^{p-1} si bien que $N_{\min}=-2^{p-1}$

Exemples									
$1 = -0 \times 2^{p-1} + \sum_{i=1}^{p-2} 0 \times 2^i + 1 \times 2^0$	bitstring(1)								
$\sum_{i=1}^{n} 0 \times 2 + 1 \times 2$	"00000000000000000000000000000000000000								
$-1 = -2^{p-1} + 2^{p-1} - 1 = -1 \times 2^{p-1} + \sum_{i=0}^{p-2} 1 \times 2^{i}$	bitstring(·1)								
$1 = 2 + 2 + 1 = 1 \times 2 + 2 = 0 \times 2$	"11111111111111111111111111111111111111								
Pas de Inf ou NaN mais comportement cyclique $N_{\rm max}+1=2^{p-1} \to N_{\rm min}$ e	of $N_{\min} - 1 = -2^{p-1} - 1 \to N_{\max}$	2^63	-2^63-1						
niin c	Think I I I I I I I I I I I I I I I I I I I	-9223372036854775808	9223372036854775807						
$2(N_{\text{max}} + 1) = 2^p \rightarrow N_{\text{min}} + N_{\text{max}} + 1 = 0$	2^64								

Présentation de l'algorithme de sommation de Kahan

function KAHANSUM(X)

 $\Sigma = 0$. // somme, on veut calculer $\sum_{n_i=1} x_i$

c = 0. // variable de compensation

for i = 1 to LENGTH(x) do

y = x[i] - c// incrément compensé de l'erreur précédente

 $\Sigma' = \Sigma + y // \Sigma + y \Rightarrow \exists \text{ erreur pour } |y| \ll |\Sigma|$

 $\delta \Sigma = \Sigma' - \Sigma$ // évalue la part de y correctement intégrée

 $c = \delta \Sigma - y$ // évalue la petite part de y non intégrée

 $\Sigma = \Sigma'$ // met à jour la somme

end for

return Σ // retourne la somme

end function

Exercice

- 1. Implémenter une fonction "naïve" MySum faisant la somme des composantes d'un vecteur X
- 2. Implémenter l'algorithme KahanSum
- 3. Choisir un type T, un entier n et construire le vecteur $X=[one(T), eps(T)/2, \ldots, eps(T)/2]$ où eps(T)/2 est répété n-1 fois
- 4. Comparer les sommes obtenues en utilisant les fonctions MySum, sum et KahanSum sur X ainsi que sur view(X, n:-1:1)
- 5. Construire un vecteur aléatoire Y=rand (T, n) ainsi qu'une version ordonnée \tilde{Y} =sort (Y)
- 6. Comparer les sommes obtenues sur Y et \tilde{Y} avec les différents algorithmes. On pourra notamment se servir de la bibliothèque Xsum. j1 comme référence.

► Code

```
n = 10_{000_{00}}; T = Float64; \epsilon = eps(T)
 X = fill(\epsilon/2, n-1); pushfirst!(X,one(T));
1 + ((n - 1) * \epsilon) / 2 = 1.00000001110223
MvSum(X) = 1.0
MySum(view(X, n:-1:1)) = 1.000000001110223
sum(X) = 1.0000000011102188
sum(view(X, n:-1:1)) = 1.0000000011102228
KahanSum(X) = 1.000000001110223
KahanSum(view(X, n:-1:1)) = 1.000000001110223
 using Xsum
 Y = rand(T,n); Y = sort(Y)
 \Sigma^{ref} = xsum(Y);
xsum(\tilde{Y}) - \Sigma^{ref} = 0.0
MvSum(Y) - \Sigma^{ref} = 2.0023435354232788e-7
MySum(\tilde{Y}) - \Sigma^{ref} = 4.069879651069641e-7
sum(Y) - \Sigma^{ref} = 0.0
sum(\tilde{Y}) - \Sigma^{ref} = 0.0
KahanSum(Y) - \Sigma^{ref} = 0.0
KahanSum(\tilde{Y}) - \Sigma^{ref} = 0.0
```

Exercice

On pose $f(x) = \exp x$, $x_0 = 1$ et $d(\delta) = \frac{f(x_0 + \delta) - f(x_0)}{\delta}$.

Tracer l'erreur commise entre $d(\delta)$ et $f'(x_0)=\exp x_0$ en fonction de $\delta\in[10^{-17},10^0]$ sur un graphe log-log en repérant les droites verticales d'équations $\delta=\varepsilon_M$ et $\delta=\sqrt{\varepsilon_M}$.

Exercice

Tester avec d'autres fonctions en utilisant la bibliothèque Zygote . jl pour la différentiation automatique.

► Code

► Code

IEEE-754, 2008. IEEE Std 754 (Revision of IEEE Std 754-1985), IEEE Standard for Floating-Point Arithmetic (American {{National Standard}} No. 754-2008). The Institute of Electrical and Electronics Engineers, Inc, 345 East 47th Street, New York, NY 10017, USA.