

- Open Addressing: 개방주소, 공개주소 방법
 - Purpose: Collision Resolve Method
 - Methods: Linear Probing, Quadratic Probing,
 Double Hashing
 - What's difference?
 - → **Efficiency**

Chain		vs	Open Addressing	
#Slot	ltem		Key	Value
0	[10, 20, 30]		0	10
1	-		1	20
2	-		2	30
3	-		3	-
4	44		4	44

no chaining; instead all items stored in table (see Fig. 1)

Figure 1: Open Addressing Table

- one item per slot $\implies m \ge n$
- hash function specifies order of slots to probe (try) for a key (for insert/search/delete), not just one slot; in math. notation:

We want to design a function h, with the property that for all $k \in U$:

$$h: \mathcal{U} \times \{0,1,\dots,m-1\} \to \{0,1,\dots,m-1\}$$
 universe of keys trial count slot in table

1 Slot for 1 Item

Slot(m) > # Item(n)

Function: Insert, Search, Remove

```
- Insert & Search
```

• Hash Function: Mod(10)

```
Rule: if (Slot != Occupied){
        insert
      }
    else {
        lookup next Slot
    }
```

Insert(11)

Insert(21)

Function: Insert, Search, Remove

```
Insert(k,v): Keep probing until an empty slot is found. Insert item into that slot.
                       for i in xrange(m):
                          if T[h(k, i)] is None: \sharp empty slot
                            T[h(k,i)] = (k,v) # store item
                            return
                       raise 'full'
Example: Insert k = 496
Search(k): As long as the slots you encounter by probing are occupied by keys \neq k,
keep probing until you either encounter k or find an empty slot—return success or
failure respectively.
                       for i in xrange(m):
                          \text{if} \quad T[h(k,i)] \text{ is None:} \qquad \qquad \sharp \text{ empty slot?} \\
                               return None # end of "chain"
                          \operatorname{elif}\ T[h(k,i)][\emptyset] == k \text{:}\qquad \quad \sharp \ \operatorname{matching} \ \operatorname{key}
                               return T[h(k,i)] # return item
                       return None
                                                            # exhausted table
```

Function: Insert, Search, Remove

Deleting Items?

- can't just find item and remove it from its slot (i.e. set T[h(k,i)] = None)
- example: delete(586) ⇒ search(496) fails
- replace item with special flag: "DeleteMe", which Insert treats as None but Search doesn't

Function: Insert, Search, Remove

Deleting Items?

- can't just find item and remove it from its slot (i.e. set T[h(k,i)] = None)
- example: delete(586) ⇒ search(496) fails
- replace item with special flag: "DeleteMe", which Insert treats as None but Search doesn't

Probing Strategy

- Linear Probing

Insert(31) Insert(41)

Cluster

Influence on Insert, Search

	#Slot
	0
11	1
22	2
33	3
21	4
55	5
31	6
41	7
	8
	9
	10

Problem Strategy
$$h_{1}(k) + i \cdot h_{2}(k) \mod m = h_{1}(k) + j \cdot h_{2}(k) \mod m \Rightarrow m \text{ divides } (i - j)$$

$$\downarrow k \mod (M) \Rightarrow o \sim m - 1 \Rightarrow k$$

$$i \neq J$$

$$h_{1}(k) + i h_{2}(k) \mod (M) = h_{1}(k) + j h_{2}(k) \mod (M)$$

$$\downarrow h_{1}(k) + i \cdot h_{2}(k) \mod (M) = h_{1}(k) + j \cdot h_{2}(k) \mod (M)$$

$$\downarrow h_{2}(k) + i \cdot h_{2}(k) \mod (M) = h_{1}(k) + j \cdot h_{2}(k) \mod (M)$$

$$\downarrow h_{2}(k) \mod (M) = j \cdot h_{2}(k) \mod (M)$$

$$\Rightarrow (i - J) \cdot h_{2}(k) \mod (M) = 0$$

$$\Rightarrow (i - J) \cdot h_{2}(k) = M \times IR$$

> 1丁をMの 当

Summary

- Complexity

Load Factor
$$\alpha = n/m \rightarrow (0 < \alpha < 1)$$
(item)/(Slot)

Successful Search ← Probing frequency

Cost (insert)
$$\leq 1/(1-\alpha)$$

α, smaller better(<0.5), if alpha is big, think of use Chaning

Strength & Weakness

Open Addressing vs. Chaining

Open Addressing: better cache performance (better memory usage, no pointers needed)

Chaining: less sensitive to hash functions (OA requires extra care to avoid clustering) and the load factor α (OA degrades past 70% or so and in any event cannot support values larger than 1)

Cryptographic Hasing

- Cryptographic Hashng:
 - Example: Password Storage

https://www.youtube.com/watch?v=YiRPt4vrSSw

Question?