Economics
of Human
Capital

Philipp Eisenhauer

Material available on

Economics of Human Capital

Static model of educational choice

Philipp Eisenhauer

Introduction

Figure: Motivation

American Research Review XX (October 2011): 2754-2781

Estimating Marginal Returns to Education®

By Pedro Carnedo, James J. Heckman, and Edward J. Vytlace.

Estimating marginal returns to policies is a central task of economic cost-benefit analysis. A comparison between marginal brentits and marginal costs determines the optimal site of a social programs. For example, to evaluate the optimality of a policy that promotes expansion in college attendance, analysis need to estimate the tentum to college of the marginal suders and occurace in to the marginal cost of the college.

This is a relatively simple task (i) if the effect of the peloy is the some for everyence (conditional or theoreted variables) or (ii) if the effect of the peloy wints across individuals given observed variables but agents either do not know their ideopcerals returns to the peloy; or if they know them, they do not act on them. In those cases, individuals do not choose their schooling based on their railized disloyration individual returns, and thus the marginal and average or post returns to schooling are the same?

Under these conditions, the mean marginal return to college can be estimated using conventional methods applied to the following Miner equation:

 $Y = \alpha + \beta S + \varepsilon$,

where Y is the log wage, S is a dummy variable indicating college attendance, β is the return to schooling (which may vary among persons), and e is a residual. The standard problem of selection bits as (S correlated with e) may be present, but this problem can be solved by a variety of conventional methods (instrumental variables IVV) repression discontinuity, and absence in models.

Control Supermort of Tomortos Natures Coding Leads, Control Street, Leads NYL STY, Nature Coding In Action Control Street Coding Leads of Control Street Street Street Street Coding Leads of Control Street Street Street Street Coding Leads of Lead

authors and not necessarily those of these handers.

† To view additional materials, visit the article page at http://www.naseub.org/addition.ph/blain 10.1255/has 101.6.2754.

*See Heckman and Vydacl (2007b).

Carneiro & al. (2011)

INTERNATIONAL

ECONOMIC REVIEW

May 2003 Vol. 44, No. 2

2001 LAWRENCE R. KLEIN LECTURE
ESTIMATING DISTRIBUTIONS OF TREATMENT EFFECTS
WITH AN APPLICATION TO THE RETURNS TO SCHOOLING
AND MEASTREMENT OF THE EFFECTS OF UNCERTAINTY

ON COLLEGE CHOICE*

By PEDRO CASNESSO, KARSTEN T. HANSEN, AND JAMES J. HECKMAN*

Department of Economics, University of Chicago, Kellogg School of Management, Northwestern University; Department of Economics, University of Chicago and The American Bar Foundation

This makes must factor models to dentify and estimates the distributions of constructional. We extend LEMEL frameworks to a dynamic transmiss efficiency constructional. We extend LEMEL frameworks to desire the construction of the construction of

Measure primared October 20th on the Bassaco 2001.

The Commission of Control (1997) and the Commission of Control (1997) and the Control

361

Carneiro & al. (2003)

Heckman (2008) defines three policy evaluation tasks:

- Evaluating the impact of historical interventions on outcomes including their impact in terms of wellbeing of the treated and the society at large.
- ➤ Forecasting the impact of historical interventions implemented in one environment in other environments, including their impact in terms of well-being.
- Forecasting the impacts of interventions never historically experienced to various environments, including their impact on well-being.

Econometrics of policy evaluation

- ▶ is important
- ▶ is complicated
- is multifaceted

Numerous applications

- ► labor economics
- development economics
- industrial economics
- health economics

Numerous effects

- conventional average effects
- policy-relevant average effects
- marginal effects
- distributional effects
- effects on distributions

Numerous estimation strategies

- instrumental variables
- ► (quasi-)experimental methods
- matching

Model

Generalized Roy model

$$Y_1 = \mu_1(X) + U_1$$

$$Y = DY_1 + (1 - D)Y_0$$

$$Y_0 = \mu_0(X) + U_0$$

Choice

$$D = I[S > 0]$$

$$S = \mu_D(X, Z) - V$$

- ▶ *S* is the overall surplus from treatment participation
- V captures the individual's unobservable dislike of treatment

Individual Heterogeneity

Individual-specific benefit of treatment

$$Y_1 - Y_0 = (\mu_1(X) - \mu_0(X)) + (U_1 - U_0)$$

Sources of Heterogeneity

- Difference in observables
- Difference in unobservables
 - Uncertainty
 - Private information

Figure: Distribution of benefits

Econometric problems

- ► **Evaluation problem**, we only observe an individual in either the treated or untreated state.
- ► **Selection problem**, individuals that select into treatment differ from those that do not.

Essential Heterogeneity

Definition: Individuals select their treatment status based on gains unobservable by the econometrician. More formally,

$$Y_1 - Y_0 \not\perp\!\!\!\perp D | X = x.$$

⇒ consequences for the choice of the estimation strategy

Objects of interest

Useful Notation

$$P(X, Z) = \Pr(D = 1 \mid X, Z) = F_V(\mu_D(X, Z))$$

 $U_D = F_V(V)$

Figure: First-stage unobservable

Figure: Support

Figure: Distribution of benefits

Figure: Conditional expectation and essential heterogeneity

Conventional Average Treatment Effects

Conventional Average Treatment Effects

$$B^{ATE} = E[Y_1 - Y_0]$$

 $B^{TT} = E[Y_1 - Y_0 \mid D = 1]$
 $B^{TUT} = E[Y_1 - Y_0 \mid D = 0]$

⇒ correspond to *extreme* policy alternatives

Selection Problem

$$E[Y \mid D = 1] - E[Y \mid D = 0] = \underbrace{E[Y_1 - Y_0 \mid D = 1]}_{B^{TT}} + \underbrace{E[Y_0 \mid D = 1] - E[Y_0 \mid D = 0]}_{\text{Selection bias}}$$

$$\begin{split} E[Y \mid D = 1] - E[Y \mid D = 0] &= \underbrace{E[Y_1 - Y_0]}_{B^{ATE}} \\ &+ \underbrace{E[Y_1 - Y_0 \mid D = 1] - E[Y_1 - Y_0]}_{\text{Sorting on gains}} \\ &+ \underbrace{E[Y_0 \mid D = 1] - E[Y_0 \mid D = 0]}_{\text{Sorting on levels}} \end{split}$$

- bias depends on the parameter of interest
- selection bias as sorting on levels

Figure: Distribution of effects with essential heterogeneity

Figure: Distribution of effects without essential heterogeneity

Policy-Relevant Average Treatment Effects

Observed Outcomes

$$Y_B = D_B Y_1 + (1 - D_B) Y_0$$

 $Y_A = D_A Y_1 + (1 - D_A) Y_0$

Effect of Policy

$$B^{PRTE} = \frac{1}{E[D_A] - E[D_B]} (E[Y_A] - E[Y_B])$$

Marginal Benefit of Treatment

Marginal Benefit of Treatment

$$B^{MTE}(x, u_D) = E[Y_1 - Y_0 \mid X = x, U_D = u_D]$$

Intuition: Mean gross return to treatment for persons at quantile u_D of the first-stage unobservable V or a willingness to pay for individuals at the margin of indifference.

Figure: Margin of indifference

Figure: B^{MTE} and essential heterogeneity

Figure: Selection scenarios

Effects of treatment as weighted averages Parameter Δ_j , can be written as a weighted average of the $B^{MTE}(x, u_D)$.

$$\Delta_j(x) = \int_0^1 B^{MTE}(x, u_D) \omega^j(x, u_D) du_D,$$

where the weights $\omega^{j}(x,u_{D})$ are specific to parameter j and integrate to one.

Weights

$$\omega^{ATE}(x, u_D) = 1$$

$$\omega^{TT}(x, u_D) = \frac{1 - F_{P|X=X}(u_D)}{E[P \mid X = x]}$$

$$\omega^{TUT}(x, u_D) = \frac{F_{P|X=X}(u_D)}{E[1 - P \mid X = x]}$$

Figure: Effects of treatment as weighted averages

Local Average Treatment Effect

Local Average Treatment Effect

- ► Local Average Treatment Effect: Average effect for those induced to change treatment because of a change in the instrument.
 - ⇒ instrument-dependent parameter
- ▶ Marginal Treatment Effect: Average effect for those individuals with a given unobserved desire to receive treatment.
 - ⇒ deep economic parameter

$$B^{LATE} = \frac{E[Y \mid Z = z] - E[Y \mid Z = z']}{P(z) - P(z')}$$

$$B^{LATE}(x, u_D, u_{D'}) = \frac{1}{u_D - u_{D'}} \int_{u_D}^{u_{D'}} B^{MTE}(x, u) du,$$

Figure: Local average treatment effect

Distributions of Effects

Distributions of Effects

- marginal distribution of benefits
- joint distribution of potential outcomes
- joint distribution of benefits and surplus

Figure: Distribution of benefits

Figure: Distribution of potential outcomes

Figure: Distribution of benefits and surplus

Conclusion

Appendix

References

- Becker, G. S. (1964). *Human capital* (1st ed.). New York City, NY: Columbia University Press.
- Heckman, J. J. (2008). Schools, skills, and synapses. *Economic Inquiry*, 46, 289–324.