Space Time Crop And Attend: Improving Cross-Modal Video Representation Learning

Mandela Patrick*, Yuki Asano*, Po-Yao Huang*, Ishan Misra, Florian Metze, Alexander Hauptmann, Joao Henriques, Andrea Vedaldi

ICCV 2021

* equal contribution

Noise contrastive learning

Key idea: discriminate augmentations from other images. (NPID, MoCo, CMC, SimCLR)

[Wu et al., CVPR 2018; He et al., CVPR 2020; Tian et al., ECCV 2020; Chen et al., ICML 2020]

Multi-Modal Noise Contrastive Learning

Key idea: discriminate cross-modal pairs. (GDT, AVID, MMV)

$$f(x) = f(x)$$

$$\neq f(x)$$

Problems with Multi-Modal Video Contrastive Learning Formulation

Within modal spatial invariance are not learned.

High-level temporal information is discarded.

Contribution 1: Feature-Crop Augmentation

Comparing differently cropped versions of an images improves self-supervised learning (SwAV)

Expensive for video: extra temporal dimension, additional modalities, larger networks

Feature-Crop: get large number of crops for within-modality noise contrastive comparison.

Contribution 2: Transformer for Late Temporal Attention Modelling

 Most video networks (X3D, C3D, R3D, S3D, R(2+1)-D) use spatio-temporal average pooling to get fixed length feature vector representation.

•
$$\Phi(\tilde{v}) = (\mathcal{P}_t \circ \mathcal{P}_s \circ \Psi)(\tilde{v})$$

 We hypothesise that pooling in time is naive, and propose to use a transformer for temporal pooling.

•
$$\Phi(\tilde{v}) = (\mathcal{P}_{tsf} \circ \mathcal{P}_s \circ \Psi)(\tilde{v})$$

Proposed Approach: StiCA

Our proposed approach, StiCA (Space-Time Crop and Attend), combines these two contributions to improve cross-modal video representation learning.

Analysis

Feature Cropping Improves Video Representation Learning

Cropping Strategy

Transformer works well for late temporal modeling

Gains are complementary

Approach

Comparison to State-of-the-Art

SOTA finetuning video-action recognition results: HDMB-51

SOTA finetuning video-action recognition results: UCF-101

