

Government of Karnataka DEPARTMENT OF COLLEGIATE AND TECHNICAL EDUCATION

Programme	Mechanical Engineering Diploma	Semester	IV
Course Code	rse Code 20ME43P Type of Course		Programme Core
Course Name	Product Design and Development	Contact Hours	8 hours/week 104 hours/semester
Teaching Scheme	L:T:P :: 3:1:4	Credits	6
CIE Marks	60	SEE Marks	40

1. Rationale: Design department of industry is one of the major job areas for Diploma engineers. The fundamental knowledge of Strength of Materials, Engineering Materials, and Computer Aided Design and Drafting is essential to meet job requirement in this sector. To enable a student to work here, they should know how to design a simple machine element, usual procedures in development of product, fundamental knowledge in design of simple machine elements such as shafts, springs, couplings etc, codes, norms, standards and guidelines for selection of appropriate material. In addition to this, Diploma engineers are required to read and interpret the drawings. Therefore, it is essential that they have competency in preparing drawings of machine parts. This course aims at developing analytical abilities in the student to give solutions to simple engineering design problems using standard procedures. Hence this course has been introduced with the expectations that efforts will be made to provide appropriate learning experiences in the use of basic principles to the design solution for applied problems to develop the required skill and competencies.

2. Course Outcomes/Skill Sets: At the end of the Course, the student will be able to:

CO-01	Explain the key principles of product design considering Strength, Aesthetic and Ergonomic
CO-02	Design simple machine elements like shafts, springs, couplings and knuckle joints using standard data.
CO-03	Prepare CAD Part and Assembly drawings for couplings and knuckle joints based on designed parameter.
CO-04	Produce Component based on designed Parameters using 3- D Printing Techniques

3. Course Content

		CO PO*	Lecture (Knowledge)	Tutorial (Activity)	Practice (Skill)
Week	СО		3 hours/week	1 hour/week	4 hours/week (2hours/batch twice in a week)
1	01	01	Product Development and Design: 1.Explain Product Development-Stages of Product Development-Need and Feasibility study 2.Explain Development of design-Selection of Materials and Process 3.Explain Protype –launching of product –Product life cycle	Ref Table 1	Discuss case studies of Product development by using Video
2	01	01	General consideration in design: Based on Functional requirement Effect on environment Life, Reliability, Safety	Ref Table 1	Case study

_	1	ſ	THE NEW YORK WAS WAS	1	T.
			 Principles of Standardization Assembly Feasibility Maintenance-Cost- 		
			QuantityLegal issues and PatentsAesthetic and Ergonomic		
			 factors Choice of Materials Feasibility of 		
			Manufacturing Processes Aesthetic and Ergonomic		
3	01	01	 consideration in Design: Explain Aesthetic considerations- Basic types of product forms, Designing for appearance, shape, Design features, Materials, Finishes, proportions, Symmetry Contrast etc. Morgan's color code. Ergonomic considerations- Relation between man, machine and environmental factors. Design of displays and controls.	Ref Table 1	Case Study on Ergonomics and Aesthetic design principles.
4	02	03,04	Torsion of Shaft: 1. Assumptions in Shear stress in a shaft subjected to torsion – Strength and Rigidity (Solid and Hollow shaft) 2. Power Transmitted by Solid and Hollow shaft - ASME and BIS Code for power Transmission 3. Problems on Shafts subjected to only Shear based on Rigidity and Strength	Ref Table 1	1. Validate the Problems on Shafts for Strength and Rigidity using Ansys (One each on Strength and Rigidity)
5	02	03,04	1.Problems on Shafts subjected to only Shear based on Rigidity and Strength 2.Problems on Shaft subjected to only Bending 3. Problems on Shaft subjected to only Bending	Ref Table 1	1. Recap of CAD commands 2. Practice on Section of Solids-a) Prisms b) Pyramid
6	02	03,04	1 Problems on Shaft subjected to combined Shear and Bending. 2.Problems on Shaft subjected to combined Shear and Bending 3.Problems on Shaft subjected to combined Shear and Bending	Ref Table 1	1. Practice on Section of Solids- a)Cylinder b) Cone
7	02,03	03,04	Springs: 1. Classification of springs- Application of springs- Leaf springs –Application	Ref Table 1	Sections on Simple Machine Elements (CAD) a) Sectional front view, Front view with

			2.Terminology of Helical spring- Materials and Specification of springs 3. Design of helical spring		Right half in Section, Front view with Left half in Section b) Sectional Top View c) Sectional Side View
8	02,03	03,04	Design of helical spring	Ref Table 1	Sections on Simple Machine Elements (CAD) a) Sectional front view, Front view with Right half in Section, Front view with Left half in Section b) Sectional Top View c) Sectional Side View
9	02,03	03,04	Coupling: Design of Muff coupling	Ref Table 1	Using CAD, prepare Part Models for Muff coupling based on designed parameter and assemble the same. Extract the Sectional views for the above machine element indicating Surface Texture and Bill of Materials
10	02,03	03,04	Design of Protected type Flange Coupling	Ref Table 1	Using CAD, prepare Part Models for Protected type Flange Coupling based on designed parameter and assemble the same. Extract Sectional views for the above machine element indicating Surface Texture and Bill of Materials
11	02,03,	03,04,07	Design of Knuckle Joint		Using CAD, prepare Part Models for Knuckle Joint based on designed parameter and assemble the same. Extract Sectional views for the above machine element indicating Surface Texture and Bill of Materials
12	04	03,04,07	3D Printing 1. Introduction, Process, Classifications, Advantages of		

	additive over conventional Manufacturing, Applications, Modelling for Additive Manufacturing 2. Additive Manufacturing Techniques, 3D Printing Materials and its forms, Post Processing Requirement and Techniques. 3. Product Quality, Inspection and Testing, Defects and their causes, Additive Manufacturing Application Domains	Study the latest technological changes in this course and present the impact of these changes on industry	Preparation of 3D Printer for printing – Modelling, Saving CAD file into STL file, Slicing, Material loading and printing parameter selection
13 04 03,04	1. Working of Fused Deposition Modelling (FDM) Machine- Single and Multi Nozzle printers, Machine Configuration- Cartesian, Delta, Polar and robotic arm configuration 3D printers 2. Common FDM materials- PLA, ABS, PA, TPU, PETG, PEEK and PEI,		Printing of Designed and Modelled component (flange coupling and knuckle joint) on any available 3D printing machine and carryout post processing of additively manufactured product (Inspection and defect analysis).
Total in hours	39	13	52

- *PO= Program Outcome as listed and defined in year 1 curriculum
- Course Co-Ordinator must prepare PO CO mapping with strength (Low/Medium/High) before course planning

Table 1: Suggestive Activities for Tutorials: (The List is only shared as an Example and not inclusive of all possible activities of the course. Student and Faculty are encouraged to choose activities that are relevant to the topic and on the availability of such resources at their institution)

Sl.No.	Suggestive Activities for Tutorials
01	Presentation on design of Bicycles for Indian children focusing on Aesthetic and Ergonomics by Explaining market analysis- user study – Problem identification – Product design and specification- Concept generation- Material and Manufacturing Processes- Final concept selection
	<u>www.sastechjournal.com</u> Presentation on types of suspension springs used in Automobile vehicles by explaining leaf-
02	spring, Coil spring, Torsion Spring, Air bags, Rubber Springs www.theengineerspost.com
03	Presentation on different types of Keys used in Transmission system and importance such as parallel key, Saddle key, Sunk Key, Gib headed key, Feather Key, Woorruff Key with Advantages and applications
04	Presentation on Antifriction Bearing by explaining rolling contact- journal ball bearing construction- Cylindrical bearing – Needle bearing – Foot step Bearing – Plumber Bearing

05	Presentation on Friction Clutches used in Automobiles by explaining parts- Single plate- Multi plate- Purpose –Application
06	The Role of Additive Manufacturing in the Era of Industry 4.0
07	Application of Additive Manufacturing in health care industry

4. CIE and SEE Assessment Methodologies

Sl. No	Assessment	Test Week	Duration In minutes	Max marks	Conversion			
1.	CIE-1 Written Test	5	80	30	A			
2.	CIE-2 Written Test	9	80	30	Average of three tests 30			
3	CIE-3 Written Test	13	80	30	30			
4.	CIE-4 Skill Test-Practice	6	180	100	Average of two skill test			
5	CIE-5 Skill Test-Practice	12	180	100	reduced to 20			
6	CIE-6 Portfolio continuous evaluation of Tutorial sessions through Rubrics	1-13		10	10			
		al CIE Marks	60					
	Semester End Examination	n (Practice)	180	100	40			
	Total Marks 100							

5. Format for CIE written Test

Course Name		Production Development	Design	and	Test	I/II/III	Sem	IV
Course Coo	de	20ME43P			Duration	80 Min	Marks	30
Note: Ansv	ver a	ny one full questic	n from each s	ection. Ea	ach full ques	stion carries 10 m	arks.	10
Section	Assessment Questions				Cognitive Levels(R/U/A)	Course Outcome	Marks	
•	1							
I	2							
II	3							
11	4							
111	5							
III	6							

Note for the Course coordinator: Each question may have one, two or three subdivisions. Optional questions in each section carry the same weightage of marks, Cognitive level and course outcomes.

5. (a) For CIE Skill Test -4

SL.	СО	Particulars/Dimension	Marks
No.			
		One Question on Design of Shaft Subjected to Strength and Rigidity	60
1	02	 Fixing the Diameter of Shaft after design30 Marks 	
		 Validate the Designed parameters of Shaft for Strength and 	
		Twisting using Ansys- 30 Marks	
2	03	One question on Section of Solids (Prism/Pyramid/Cone/Cylinder)	30
		 Placing the Section plane and drawing the section – 20 Marks 	
		 Extracting the True shape of the Section – 10 Marks 	
3	01,02,03	Portfolio evaluation based on the average of all Practice Sessions (1-6	10
		Weeks)	
Total	Marks		100

Duration: 240 Min

5. (b)For CIE Skill Test-5

SL. No.	СО	Particulars/Dimension	Marks
1	03,04	One Question on Design and Assembly drawing of Simple Machine parts like Muff Coupling/Flange Coupling/ Knuckle Joint • Design of Simple Machine part by using Data Hand Book35 Marks • Preparation of Part Models for the Designed values by using CAD Software 35 Marks • Assembly of Part Models using CAD software With Bill of Materials20 Marks	90
2	03,04	Portfolio evaluation based on the average of all Practice Sessions (7-12 Weeks)	10
Tota	l Marks		100

Duration: 240 Min

6. Rubrics for Assessment of Activity (Qualitative Assessment)

Sl.	Dimension	Beginner	Intermediate	Good	Advanced	Expert	Students
No.						5502	Score
		2	4	6	8	10	
1		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	8
2		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	6
3		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	2
4		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	2
	Average Marks= (8+6+2+2)/4=4.5					5	

Note: Dimension and Descriptor shall be defined by the respective course coordinator as per the activities

7. Reference:

Sl. No.	Description			
1	A Text book of Machine Design R.S. Khurmi & J.K.Gupta S. Chand publication			
2	Machine design S G Kulkarni McGraw Hill Education Publications			
3	Introduction to Machine design V B Bhandari McGraw Hill Education Publications			
4	Design Of Machine Elements Vol I, Vol II J.B.K. Das , P.L.Srinivas Murthy Sapna Publication			
5	Machine Component Design William Orthwein Jaico publication			
6	Design Data Hand Book for Mechanical Engineers K Mahadevan & K Balaveera Reddy CBS publications			
7	Khanna Editorial, "3D Printing and Design", Khanna Publishing House, Delhi.			
8	J.D. Majumdar and I. Manna, "Laser-Assisted Fabrication of Materials", Springer Series in Material Science, 2013			
9	D.T. Pham and S.S. Dimov, "Rapid manufacturing: The technologies and applications of rapid prototyping and rapid tooling", London-New York, Springer, 2001			
10	Lan Gibson, David W. Rosen and Brent Stucker, "Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing", Springer, 2010			
11	Andreas Gebhardt, "Understanding Additive Manufacturing: Rapid Prototyping, Rapid Tooling, Rapid Manufacturing", Hanser Publisher, 2011.			
12	CK Chua, Kah Fai Leong, "3D Printing and Rapid Prototyping- Principles and Applications", World Scientific, 2017			

13	L. Lu, J. Fuh and Y.S. Wong, "Laser-Induced Materials and Processes for Rapid							
13	Prototyping", Kulwer Academic Press, 2001							
14	Zhiqiang Fan And Frank Liou, "Numerical Modelling of the Additive							
	Manufacturing (AM) Processes of Titanium Alloy", InTech, 2012							

8. LIST SOFTWARES/WEBSITES

1. http://nptel.ac.in/courses/Webcourse-contents/IIT%20Kharagpur/Machine%20design1/left home.html

2 http://nptel.ac.in/courses/Webcoursecontents/IIT%20Kharagpur/Machine%20design1/left mod4. html

9. SEE Scheme of Evaluation

SL.	CO	Particulars/Dimension	Marks
No.			
1	02,03	One Question on Design and Assembly of Simple Machine parts like Muff coupling/Flange Coupling/ Knuckle Joint • Design of Simple Machine part by using Data Hand Book35 Marks • Preparation of Part Models for the Designed valves By using CAD Software —25 Marks • Assembly of Part Models By using CAD Software With Bill of Materials20 Marks	80
2	01,02,0 3,04	Viva voce	20
	Total Marks		

10. Equipment/software list with Specification for a batch of 20 students

Sl. No.	Particulars	Specification	Quantity
01	Latest version of CAD software		20 user
02	Desk top computer	Latest configuration	20 no's
03	Laser printer		02 no's
04	3-D Printing Machine		01 no

Duration: 180 Min