STAT 333 Stochastic Processes 1

Fall 2021 Edition

Daniel Mao

Contents

1	Review of Elementary Probability	1
2	Conditional Distributions and Conditional Expectation	3

ii CONTENTS

Chapter 1

Review of Elementary Probability

Chapter 2

Conditional Distributions and Conditional Expectation

Example 2.1. Suppose that W, X, and Y are independent continuous random variables on $(0, +\infty)$. If $Z = X \mid (X < Y)$, then show that $(W, X) \mid (W < X < Y)$ and $(W, Z) \mid (W < Z)$ are identically distributed.

Proof. To show that the two random variables have the same distribution, it suffices to show that they have the same CDF.

Part 1.

Let us first consider the CDF G(w, x) of $(W, X) \mid (W < X < Y)$. For $w, x \ge 0$,

$$\begin{split} G(w,x) &= \mathbb{P}(W \leq w, X \leq x \mid W < X < Y) \\ &= \frac{\mathbb{P}(W \leq w, X \leq x, W < X < Y)}{\mathbb{P}(W < X < Y)} \\ &= \frac{\mathbb{P}(W \leq w, X \leq x, W < X, X < Y)}{\mathbb{P}(W < X, X < Y)}. \end{split}$$

Conditioning on the random variable X and noting that W, X, and Y are independent random variables, we get

$$\begin{split} \mathbb{P}(W \leq w, X \leq x, W < X, X < Y) &= \int_0^{+\infty} \mathbb{P}(W \leq w, X \leq x, W < X, X < Y \mid X = s) f_X(s) ds \\ &= \int_0^{+\infty} \mathbb{P}(W \leq w, s \leq x, W < s, s < Y \mid X = s) f_X(s) ds \\ &= \int_0^{+\infty} \mathbb{P}(W \leq w, s \leq x, W < s, s < Y) f_X(s) ds \\ &= \int_0^x \mathbb{P}(W \leq w, W < s, s < Y) f_X(s) ds \\ &= \int_0^x \mathbb{P}(W \leq \min\{w, s\}, s < Y) f_X(s) ds \\ &= \int_0^x \mathbb{P}(W \leq \min\{w, s\}) \mathbb{P}(s < Y) f_X(s) ds \end{split}$$

and

$$\mathbb{P}(W < X, X < Y) = \int_0^{+\infty} \mathbb{P}(W < X, X < Y \mid X = s) f_X(s) ds$$

$$= \int_0^{+\infty} \mathbb{P}(W < s, s < Y \mid X = s) f_X(s) ds$$

$$= \int_0^{+\infty} \mathbb{P}(W < s, s < Y) f_X(s) ds$$

$$= \int_0^{+\infty} \mathbb{P}(W < s) \mathbb{P}(s < Y) f_X(s) ds.$$

So

$$G(w,x) = \int_0^x \mathbb{P}(W \le \min\{w,s\}) \mathbb{P}(s < Y) f_X(s) ds \bigg/ \int_0^{+\infty} \mathbb{P}(W < s) \mathbb{P}(s < Y) f_X(s) ds.$$

Part 2.

To get the CDF of $(W, Z) \mid (W < Z)$ we first need the distribution of Z. The CDF of Z is calculated by:

$$\begin{split} \mathbb{P}(Z \leq z) &= \mathbb{P}(X \leq z \mid X < Y) \\ &= \frac{\mathbb{P}(X \leq z, X < Y)}{\mathbb{P}(X < Y)} \end{split}$$

$$\begin{split} &= \frac{1}{\mathbb{P}(X < Y)} \int_0^{+\infty} \mathbb{P}(X \le z, X < Y \mid X = s) f_X(s) ds \\ &= \frac{1}{\mathbb{P}(X < Y)} \int_0^{+\infty} \mathbb{P}(s \le z, s < Y \mid X = s) f_X(s) ds \\ &= \frac{1}{\mathbb{P}(X < Y)} \int_0^{+\infty} \mathbb{P}(s \le z, s < Y) f_X(s) ds \\ &= \frac{1}{\mathbb{P}(X < Y)} \int_0^z \mathbb{P}(s < Y) f_X(s) ds. \end{split}$$

and so the PDF of Z is given by

$$\begin{split} h_Z(z) &= \frac{d}{dz} \mathbb{P}(Z \le z) \\ &= \frac{d}{dz} \frac{1}{\mathbb{P}(X < Y)} \int_0^z \mathbb{P}(s < Y) f_X(s) ds \\ &= \frac{1}{\mathbb{P}(X < Y)} \frac{d}{dz} \int_0^z \mathbb{P}(s < Y) f_X(s) ds \\ &= \frac{1}{\mathbb{P}(X < Y)} \mathbb{P}(z < Y) f_X(z). \end{split}$$

Part 3.

Now the joint conditional CDF of $(W, Z) \mid (W < Z)$ is given by

$$H(w,z) = \mathbb{P}(W \leq w, Z \leq z \mid W < Z) = \frac{\mathbb{P}(W \leq w, Z \leq z, W < Z)}{\mathbb{P}(W < Z)}.$$

Due to the independence of W with X and Y, we get the numerator is:

$$\begin{split} \mathbb{P}(W \leq w, Z \leq z, W < Z) &= \int_0^{+\infty} \mathbb{P}(W \leq w, Z \leq z, W < Z \mid Z = s) h_Z(s) ds \\ &= \int_0^{+\infty} \mathbb{P}(W \leq w, s \leq z, W < s \mid Z = s) h_Z(s) ds \\ &= \int_0^{+\infty} \mathbb{P}(W \leq w, s \leq z, W < s) h_Z(s) ds \\ &= \int_0^z \mathbb{P}(W \leq w, W < s) h_Z(s) ds \\ &= \int_0^z \mathbb{P}(W \leq \min\{w, s\}) \frac{1}{\mathbb{P}(X < Y)} \mathbb{P}(s < Y) f_X(s) ds \\ &= \frac{1}{\mathbb{P}(X < Y)} \int_0^z \mathbb{P}(W \leq \min\{w, s\}) \mathbb{P}(s < Y) f_X(s) ds \end{split}$$

and the denominator is:

$$\mathbb{P}(W < Z) = \int_0^{+\infty} \mathbb{P}(W < Z \mid Z = s) f_Z(s) ds$$

$$= \int_0^{+\infty} \mathbb{P}(W < s \mid Z = s) f_Z(s) ds$$

$$= \int_0^{+\infty} \mathbb{P}(W < s) f_Z(s) ds$$

$$= \int_0^{+\infty} \mathbb{P}(W < s) \frac{1}{\mathbb{P}(X < Y)} \mathbb{P}(s < Y) f_X(s) ds$$

$$= \frac{1}{\mathbb{P}(X < Y)} \int_0^{+\infty} \mathbb{P}(W < s) \mathbb{P}(s < Y) f_X(s) ds.$$

So

$$H(w,z) = \int_0^z \mathbb{P}(W \le \min\{w,s\}) \mathbb{P}(s < Y) f_X(s) ds \bigg/ \int_0^{+\infty} \mathbb{P}(W < s) \mathbb{P}(s < Y) f_X(s) ds.$$

Part 4.

Notice G(w, x) and H(w, z) are identical. This implies that $(W, X) \mid (W < X < Y) \sim (W, Z) \mid (W < Z)$.

Example 2.2. Consider an experiment in which independent trials, each having success probability $p \in (0,1)$, are performed until k consecutive successes are achieved where $k \in \mathbb{Z}^+$. Determine the expected number of trials needed to achieve k consecutive successes.

Proof. Let N_k represent the number of trials needed to get k consecutive successes. We wish to determine $\mathbb{E}[N_k]$. For k = 1, note that $N_1 \sim \text{GEO}(p)$. So $\mathbb{E}[N_k] = \frac{1}{p}$. For arbitrary $k \geq 2$, let us consider conditioning on the outcome of the first trial, represented by W, such that

$$W = \begin{cases} 0, & \text{if the first trial is a failure} \\ 1, & \text{if the first trail is a success.} \end{cases}$$

Thus,

$$\begin{split} \mathbb{E}[N_k] &= \mathbb{E}[\mathbb{E}[N_k \mid W]] \\ &= P(W = 0)\mathbb{E}[N_k \mid W = 0] + P(W = 1)\mathbb{E}[N_k \mid W = 1] \\ &= (1 - p)\mathbb{E}[N_k \mid W = 0] + p\mathbb{E}[N_k \mid W = 1]. \end{split}$$

Now, it is clear $N_k \mid W = 0 \sim 1 + N_k$. But unfortunately, we do not have a nice corresponding result for $N_k \mid W = 1$. It does not hold true that $N_k \mid W = 1 \sim 1 + N_{k-1}$.

Idea: Let's try: $\mathbb{E}[N_k] = \mathbb{E}[\mathbb{E}[N_k \mid N_{k-1}]]$. Define a random variable $Y \mid N_{k-1} = n$ as

$$Y \mid N_{k-1} = n := \begin{cases} 0, & \text{if the } (n+1)^{\text{th}} \text{ trial is a failure} \\ 1, & \text{if the } (n+1)^{\text{th}} \text{ trail is a success.} \end{cases}$$

By independence of the trials, we have $P(Y = 0 \mid N_{k-1} = n) = 1 - p$ and $P(Y = 1 \mid N_{k-1} = n) = p$. As a result, we get

$$\begin{split} \mathbb{E}[N_k] &= \mathbb{E}[\mathbb{E}[N_k \mid N_{k-1}]] \\ &= \sum_y \mathbb{E}[N_k \mid N_{k-1} = n, Y = y] P(Y = y \mid N_{k-1} = n) \\ &= (1-p) \cdot \mathbb{E}[N_k \mid N_{k-1} = n, Y = 0] + p \cdot \mathbb{E}[N_k \mid N_{k-1} = n, Y = 1]. \end{split}$$

Note that $(N_k | N_{k-1} = n, Y = 0) \sim n + 1 + N_k$ and $(N_k | N_{k-1} = n, Y = 1) = n + 1$. Therefore,

$$\mathbb{E}[N_k \mid N_{k-1} = n] = (1 - p)(n + 1 + \mathbb{E}[N_k]) + p(n+1)$$
$$= n + 1 + (1 - p)\mathbb{E}[N_k].$$

So $\mathbb{E}[N_k \mid N_{k-1}] = N_{k-1} + 1 + (1-p)\mathbb{E}[E_k]$. Now, we have

$$\mathbb{E}[N_k] = \mathbb{E}[N_{k-1} + 1 + (1-p)\mathbb{E}[N_k]]$$

= $\mathbb{E}[N_{k-1}] + 1 + (1-p)\mathbb{E}[N_k].$

So
$$\mathbb{E}[N_K] = \frac{1}{p}\mathbb{E}[N_{k-1}] + \frac{1}{p}$$
. So $\mathbb{E}[N_k] = \frac{1}{p}\frac{1 - \frac{1}{p^k}}{1 - \frac{1}{p}} = \frac{p^{-k} - 1}{1 - p}$, for any $k \in \mathbb{N}$.

