The accuracy is:

- a. The number of correct significant digits in approximating some quantity.
- b. The number of digits with which a number is expressed.
- o. None of the above.

Given two random variables X and Y, Bayes Theorem implies that $p(y|x)=rac{p(x|y)p(y)}{p(x)}$ where:

- \bigcirc a. p(x|y) is called prior distribution on x.
- \bigcirc b. p(x|y) is called posterior distribution on y.
- \bigcirc c. p(x|y) is called likelihood on y.

Given two random variables X and Y, Bayes Theorem implies that $p(y|x)=rac{p(x|y)p(y)}{p(x)}$ where:

- \bigcirc a. p(y|x) is called prior distribution on x.
- \bigcirc b. p(y|x) is called likelihood on y.
- \bigcirc c. p(y|x) is called posterior distribution on y.

If $f:\mathbb{R}^2 o\mathbb{R}$, $f(x_1,x_2)=x_1e^{x_2}$, $g:\mathbb{R} o\mathbb{R}^2$, $g(t)=(e^t,t)$, then, if h(t)=f(g(t)):

- \bigcirc a. $h'(t)=te^t$.
- \bigcirc b. $h'(t)=2e^{2t}$.
- 0 c. $h'(t) = e^{2t}(t+1)$.

If $f:\mathbb{R}^2 o\mathbb{R}$, $f(x_1,x_2)=x_1^2+x_1x_2$, $g:\mathbb{R} o\mathbb{R}^2$, $g(t)=(\sin(t),\cos(t))$, then, if h(t)=f(g(t)):

- \bigcirc a. $h'(t) = \sin(2t) \sin^2(t)$.
- \circ b. $h'(t) = \sin(t) \sin^2(2t)$.
- \odot c. $h'(t) = \sin(t)\cos(t) \sin^2(t)$.

If $f:\mathbb{R}^2 o \mathbb{R}$, $f(x_1,x_2)=x_1^2+x_2^2$, $g:\mathbb{R}^2 o \mathbb{R}^2$, $g(x_1,x_2)=(x_2,x_1)$, then, if $h(x_1,x_2)=f(g(x_1,x_2))$:

- \bigcirc a. $\nabla h(x_1, x_2) = (2x_1, 2x_2)$.
- \bigcirc b. $\nabla h(x_1, x_2) = (2x_2, 2x_1)$.
- \bigcirc c. $\nabla h(x_1, x_2) = (1, 1)$.

If $f:\mathbb{R}^2 o\mathbb{R}$, $f(x_1,x_2)=x_1e^{x_2}$, $g:\mathbb{R} o\mathbb{R}^2$, $g(t)=(t,\log t)$, then, if h(t)=f(g(t)):

- \circ a. h'(t) = t + 1.
- 0 b. $h'(t) = t^2 + 1$.
- \bigcirc c. h'(t) = 2t.

If $f:\mathbb{R}^2 o\mathbb{R}$, $f(x_1,x_2)=x_1^2+x_1x_2$, $g:\mathbb{R} o\mathbb{R}^2$, $g(t)=(t^2,t)$, then, if h(t)=f(g(t)):

$$oldsymbol{0}$$
 a. $h'(t) = t(2t-1)^2 + t$.

$$oldsymbol{0}$$
 b. $h'(t) = 4t^2 + 2t + 1$.

$$oldsymbol{\circ}$$
 c. $h'(t) = t(2t+1)^2 - 2t^2$.

If $f:\mathbb{R}^2 o\mathbb{R}$, $f(x_1,x_2)=x_1^2+x_2^2$, $g:\mathbb{R}^2 o\mathbb{R}^2$, $g(x_1,x_2)=(x_1e^{x_2},x_2)$, then, if $h(x_1,x_2)=f(g(x_1,x_2))$:

- \bigcirc a. $\nabla h(x_1, x_2) = (2x_1e^{x_2}(e^{x_2} + x_1), 2e^{x_2}).$
- \bigcirc b. $\nabla h(x_1,x_2)=(2x_1e^{2x_2}(e^{x_1}+x_1),2x_2).$
- \bigcirc c. $\nabla h(x_1, x_2) = (2x_1e^{x_2}(e^{x_2} + x_1), 2x_2)$.

If $f:\mathbb{R}^2 o\mathbb{R}$, $f(x_1,x_2)=x_1x_2$, $g:\mathbb{R} o\mathbb{R}^2$, $g(t)=(t,t^2)$, then, if h(t)=f(g(t)):

- \bigcirc a. $h'(t)=3t^2$.
- \bigcirc b. $h'(t) = 3t^3$.
- \bigcirc c. $h'(t)=t^2$.

lf

$$A = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

then:

$$\bigcirc$$
 a. $K_2(A)=1$.

$$\bigcirc$$
 b. $K_2(A)=4$.

$$\bigcirc$$
 c. $K_2(A)=rac{1}{2}$.

$$A = egin{bmatrix} 2 & 0 & 0 & 0 \ 0 & 3 & 0 & 0 \ 0 & 0 & 2 & 0 \ 0 & 0 & 0 & 4 \end{bmatrix}$$

then:

- \bigcirc a. $K_2(A) = 4$.
- \bigcirc b. $K_2(A) = 2$.
- \circ c. $K_2(A) = \frac{4}{3}$.

If vector $v = (10^6, 0)^T$ is approximated by vector $\tilde{v} = (999996, 1)^T$, then in $||\cdot||_2$ the relative error between v and \tilde{v} is:

- \circ a. $\sqrt{17} \cdot 10^{-6}$.
- b. None of the above.
- \bigcirc c. $4 \cdot 10^{-6}$.

$$A = egin{bmatrix} 2 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 2 & 0 \ 0 & 0 & 0 & 4 \end{bmatrix}$$

then:

$$\bigcirc$$
 a. $K_2(A) = \frac{1}{2}$.

Ob.
$$K_2(A) = 4$$
.

$$\bigcirc$$
 c. $K_2(A) = 2$.

A random variable $X:\Omega o \mathcal T$ is continuous when:

- \bigcirc a. \mathcal{T} is countable.
- \bigcirc b. $\mathcal{T}=\mathbb{R}$.
- \odot c. Ω is continuous.

A random variable $X: \Omega \to \mathcal{T}$ is discrete when:

- \bigcirc a. $\mathcal{T} = \mathbb{R}$.
- \odot b. Ω is countable.
- c. T is countable.

$$A = \left[egin{matrix} 4 & 2 \ 1 & 3 \end{matrix}
ight]$$

Then:

- \bigcirc a. $x=(1,2)^T$ is an eigenvector of A.
- \bigcirc b. $x=(2,1)^T$ is an eigenvector of A.
- \bigcirc c. $x=(0,0)^T$ is an eigenvector of A.

$$A = egin{bmatrix} 4 & 2 \ 1 & 3 \end{bmatrix}$$

Then:

- igcup a. $\lambda=5$ is the eigenvalue associated with the eigenvector $x=(2,1)^T$.
- igcup b. $\lambda=2$ is the eigenvalue associated with the eigenvector $x=(2,1)^T$.
- \odot c. $\lambda=2$ is the eigenvalue associated with the eigenvector $x=(1,2)^T$.

$$A = egin{bmatrix} 4 & 0 & 0 \ 0 & 2 & 0 \ 0 & 0 & -1 \end{bmatrix}$$

Then:

- \bigcirc a. $x=(1,1,0)^T$ is an eigenvector of A.
- \bigcirc b. $x=(0,1,0)^T$ is an eigenvector of A.
- \bigcirc c. $x=(0,-1,1)^T$ is an eigenvector of A.

$$A = egin{bmatrix} 4 & 0 \ 0 & 2 \end{bmatrix}$$

Then:

- \bigcirc a. $x=(0,0)^T$ is an eigenvector of A.
- $\ \bigcirc$ b. $x=(1,0)^T$ is an eigenvector of A.
- \bigcirc c. $x=(1,1)^T$ is an eigenvector of A.

lf

$$A = egin{bmatrix} 2 & 0 \ 0 & 1 \end{bmatrix}$$

Then:

- igcup a. $\lambda=2$ is the eigenvalue associated with the eigenvector $x=(1,0)^T$.
- igcup b. $\lambda=2$ is the eigenvalue associated with the eigenvector $x=(0,1)^T$.
- \circ c. $\lambda=1$ is the eigenvalue associated with the eigenvector $x=(1,0)^T$.

If $A \in \mathbb{R}^{n \times n}$, $x \in \mathbb{R}^n$ and

$$Ax = \lambda x$$

For $\lambda \in \mathbb{R}$, then:

- \bigcirc a. For any $c \in \mathbb{R}$, $c \neq 0$, cx is an eigenvector of A.
- \bigcirc b. cx is an eigenvector of A if and only if c=1.
- c. None of the above.

$$A = egin{bmatrix} 2 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & -1 \end{bmatrix}$$

Then:

- \bigcirc a. $\lambda=2$ is the eigenvalue associated with the eigenvector $x=(0,1,0)^T$.
- \odot b. $\lambda=-1$ is the eigenvalue associated with the eigenvector $x=(0,0,1)^T$.
- \odot c. $\lambda=1$ is the eigenvalue associated with the eigenvector $x=(1,0,0)^T$.

In $\mathcal{F}(10,2,-2,2)$, if $x=\pi$, y=e, and z=fl(x)-fl(y), then:

- \circ a. $fl(z) = 0.43 \times 10^{1}$.
- Ob. $fl(z) = 0.44 \times 10^{1}$.
- \circ c. $fl(z) = 0.40 \times 10^{1}$.

In $\mathcal{F}(10,2,-2,2)$, if $x=\pi$, y=e, and z=fl(x)*fl(y), then:

- \circ a. $fl(z) = 0.84 \times 10^{1}$.
- \circ b. $fl(z) = 0.0837 imes 10^2$.
- \bigcirc c. $fl(z) = 0.837 \times 10^1$.

In $\mathcal{F}(10,6,-3,3)$, if x=192.403, y=0.635782, and z=fl(x)+fl(y), then:

- \circ a. $fl(z) = 0.193039 \times 10^3$.
- \circ b. $fl(z) = 0.193038 \times 10^3$.
- \circ c. $fl(z) = 0.193038782 \times 10^3$.

In $\mathcal{F}(10,2,-2,2)$, if $x=\pi$, y=e, and z=fl(x)+fl(y), then:

- \circ a. $fl(z) = 0.585 \times 10^{1}$.
- O b. $fl(z) = 0.58 \times 10^{1}$.
- \circ c. $fl(z) = 0.59 \times 10^{1}$.

If $f:\mathbb{R}^n o \mathbb{R}$, $f \in \mathcal{C}^1(\mathbb{R}^n)$, then x^* is a minimum point if and only if:

- igcirc a. $abla f(x^*) = 0$ and $abla^2 f(x^*)$ is positive semi-definite.
- \bigcirc b. $\nabla f(x^*) = 0$.
- \bigcirc c. $abla f(x^*) = 0$ and $abla^2 f(x^*)$ is positive definite.

Gradient descent methods:

- \square a. If α is suitable chosen, $f \in \mathcal{C}^1$, for any x_0 , always converges to a stationary point of f(x).
- b. If α is suitable chosen, $f \in C^1$, for any x_0 , always converges to a minimum of f(x).
- \bigcirc c. Always converges to a minimum of f(x).

Gradient descent methods solves the optimization problem

$$\min_{x} f(x)$$

By:

- igcirc a. Generating a sequence $\{x_k\}_k$ such that, given x_0 , computes $x_{k+1}=x_k-lpha
 abla f(x_k)$ for lpha>0 step-size.
- \bigcirc b. Generating a sequence $\{x_k\}_k$ such that, given x_0 , computes $x_{k+1}=x_k+lpha
 abla f(x_k)$ for lpha>0 step-size.
- \odot c. Generating a sequence $\{x_k\}_k$ such that, given x_0 , computes $x_{k+1}=x_k-lpha
 abla f(x_k)$ for lpha
 eq 0 step-size.

If $f:\mathbb{R}^2 o\mathbb{R}$, $f(x_1,x_2)=x_1^2+x_2^2$, then if the initial guess for a gradient descent iteration is $x^{(0)}=(1,1)^T$ and $\alpha>0$, then $|f(x^{(1)})|<|f(x^{(0)})|$ if:

- 0 a. $0 < \alpha < 1$.
- \bigcirc b. $\alpha > 0$.
- \bigcirc c. $\alpha > \frac{1}{2}$.

If $f:\mathbb{R}^2 \to \mathbb{R}$, $f(x_1,x_2)=e^{x_1}+x_2^2$, then if the initial guess for a gradient descent iteration is $x^{(0)}=(0,0)^T$ and $\alpha>0$, then $|f(x^{(1)})|<|f(x^{(0)})|$ if:

- \bigcirc a. $\alpha > \frac{1}{2}$.
- \bigcirc b. $\alpha > 0$.
- \circ c. $0 < \alpha < 1$.

If $f:\mathbb{R}^2\to\mathbb{R}$, $f(x_1,x_2)=x_1e^{x_2}$, then if the initial guess for a gradient descent iteration is $x^{(0)}=(1,1)^T$ and $\alpha=\frac{1}{2}$, then:

$$\bigcirc$$
 a. $x^{(1)}=(1-rac{e}{2},1-rac{e}{2})^T.$

$$\bigcirc$$
 b. $x^{(1)} = (1 + \frac{e}{2}, 1 + \frac{e}{2})^T$.

$$\bigcirc$$
 c. $x^{(1)}=(rac{1}{2}-rac{e}{2},rac{1}{2}-rac{e}{2})^T.$

If $f:\mathbb{R}^2 \to \mathbb{R}$, $f(x_1,x_2)=x_1e^{x_2}$, then if the initial guess for a gradient descent iteration is $x^{(0)}=(0,0)^T$ and $\alpha=1$, then:

- \bigcirc a. $x^{(1)} = (1,0)^T$.
- \bigcirc b. $x^{(1)} = (-1,0)^T$.
- \circ c. $x^{(1)} = (0,0)^T$.

If $f:\mathbb{R}^2 o\mathbb{R}$, $f(x_1,x_2)=x_1^2+x_2^2$, then if the initial guess for a gradient descent iteration is $x^{(0)}=(1,1)^T$ and lpha>0, then:

$$\bigcirc$$
 a. $x^{(1)} = (1-2lpha, 1-2lpha)^T$.

$$\circ$$
 b. $x^{(1)} = (1 - \alpha, 1 - \alpha)^T$.

$$\circ$$
 c. $x^{(1)} = (1 + 2\alpha, 1 + 2\alpha)^T$.

If $f:\mathbb{R}^2 o\mathbb{R}$, $f(x_1,x_2)=e^{x_1}+x_2^2$, then if the initial guess for a gradient descent iteration is $x^{(0)}=(0,0)^T$ and $\alpha>0$, then:

$$\bigcirc$$
 a. $x^{(1)} = (-\alpha, 0)^T$.

$$\bigcirc$$
 b. $x^{(1)} = (0,0)^T$.

$$\circ$$
 c. $x^{(1)} = (-\alpha, 2)^T$.

For Standard IEEE, double precision representation is:

- \bigcirc a. $\mathcal{F}(2,64,-1024,1023)$.
- b. None of the above.
- \bigcirc c. $\mathcal{F}(2,53,-1024,1023)$.

For Standard IEEE, single precision representation is:

- \bigcirc a. $\mathcal{F}(2,24,-128,127)$.
- Ob. None of the above.
- \bigcirc c. $\mathcal{F}(2, 32, -128, 127)$.

Given two independent random variables X and Y, then:

- \bigcirc a. p(x) = p(y)
- \bigcirc b. p(y) = p(y|x)
- \bigcirc c. p(x|y) = p(y)

Given two random variables X and Y, Bayes Theorem implies that:

- \bigcirc a. p(x) = p(y)p(y|x) / p(y|x).
- \bigcirc b. p(x) = p(x|y)p(y|x) / p(y).
- \bigcirc c. p(y) = p(y|x)p(x) / p(x|y).

If $f:\mathbb{R}^n o\mathbb{R}$, $f(x)=||Ax-b||_2^2$ for $A\in\mathbb{R}^{m imes n},b\in\mathbb{R}^m$, then:

$$\bigcirc$$
 a. $abla f(x) = 2A^T(Ax-b)$.

$$\bigcirc$$
 b. $\nabla f(x) = A^T(Ax - b)$.

$$\bigcirc$$
 c. $\nabla f(x) = A(A^Tx - b)$.

If $f: \mathbb{R}^n \to \mathbb{R}$, $f(x) = ||Ax - b||_2^2$ for $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, then the solution of $\nabla f(x) = 0$ is:

- \bigcirc a. $A^TAx = b$
- \bigcirc b. $A^TAx = A^Tx$
- \bigcirc c. Ax = b.

The machine precision ϵ can be defined as:

Select one:

- \bigcirc a. The smallest number ϵ such that $fl(1+\epsilon)=1$.
- \bigcirc b. The smallest number ϵ such that $fl(1+\epsilon)>1$.
- Oc. None of the above.

Given two random variables X and Y such that $p(x)=\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x}$ and $p(y|x)=ce^{-|y-ax|}$, then the MAP reads:

$$\bigcirc \ \text{a.} \ x^* = \arg\min_x |y-ax| + \tfrac{1}{2}x^2.$$

$$\bigcirc$$
 b. $x^* = \arg\min_x |y - ax|$.

$$\bigcirc$$
 c. $x^* = \arg\min_x \frac{1}{2}(y - ax)^2$.

Given two random variables X and Y such that $p(x)=ce^{-|x|}$ and $p(y|x)=rac{1}{\sqrt{2\pi}}e^{-rac{1}{2}(y-ax)^2}$, then the MAP reads:

- ${\mathbb Q}$ a. $x^* = \arg\min_x \frac{1}{2} (y ax)^2 + |x|$.
- \bigcirc b. $x^*=rg\min_xrac{1}{2}(y-ax)^2+rac{1}{2}x^2$.
- $x^* = \arg\min_{x = \frac{1}{2}} (y ax)^2.$

Given two random variables X and Y such that $p(x)=\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$ and $p(y|x)=\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}(y-ax)^2}$, then the MAP reads:

$$\circ$$
 a. $x^* = \arg\min_{x} \frac{1}{2} (y - ax)^2 + \frac{1}{2} x^2$.

O b.
$$x^* = \arg\min_{x \to 2} \frac{1}{2} (y - ax)^2 + x^2$$
.

$$x^* = \arg\min_{x} \frac{1}{2} (y - ax)^2$$
.

$$A = \left[egin{array}{ccc} 2 & 1 & -2 \ -1 & 0 & 1 \ -1 & 2 & 1 \end{array}
ight]$$

Then:

- a. A is orthogonal.
- b. None of the above.
- c. A is symmetric and definite positive.

$$A = egin{bmatrix} 2 & 0 \ 0 & 1 \end{bmatrix}$$

Then:

- \bigcirc a. A is symmetric and positive definite.
- \bigcirc b. A is non-symmetric and not positive definite.
- \bigcirc c. A is symmetric but not positive definite.

$$A = \left[egin{array}{cccc} rac{2}{3} & rac{1}{3} & rac{2}{3} \ -rac{2}{3} & rac{2}{3} & rac{1}{3} \ rac{1}{3} & rac{2}{3} & -rac{2}{3} \end{array}
ight]$$

Then:

- \bigcirc a. A is symmetric and definite positive.
- \bigcirc b. A is symmetric but not definite positive.
- \bigcirc c. A is orthogonal.

$$A = \left[egin{array}{ccc} 2 & 2 & -1 \ 2 & 0 & 2 \ -1 & 2 & 3 \end{array}
ight]$$

Then:

- \bigcirc a. A is symmetric but not definite positive.
- b. A is symmetric and definite positive.
- \bigcirc c. A is orthogonal.

$$A = \left[egin{array}{cc} -1 & 1 \ 0 & 3 \end{array}
ight]$$

Then:

- \bigcirc a. A is symmetric but not positive definite.
- \bigcirc b. A is symmetric and positive definite.
- \odot c. A is non-symmetric and not positive definite.

$$A = \left[egin{matrix} 9 & 6 \ 6 & 5 \end{matrix}
ight]$$

Then:

- a. A is symmetric but not positive definite.
- b. A is non-symmetric and not positive definite.
- c. A is symmetric and positive definite.

lf

$$A = \left[egin{array}{cc} -1 & 0 \ 0 & 3 \end{array}
ight]$$

Then:

- \bigcirc a. A is symmetric and positive definite.
- b. A is symmetric but not positive definite.
- \bigcirc c. A is non-symmetric and not positive definite.

$$A = \left[egin{array}{cccc} 2 & 1 & 2 \ -2 & 2 & 1 \ 1 & 2 & -2 \end{array}
ight]$$

Then:

- \bigcirc a. A is not orthogonal.
- \bigcirc b. A is orthogonal.
- \bigcirc c. A is symmetric but not definite positive.

$$A = \left[egin{array}{cccc} 1 & 0 & 3 \ 1 & 1 & 0 \ -1 & 1 & 2 \end{array}
ight]$$

Then:

- \bigcirc a. rank(A)=2.
- \bigcirc b. rank(A) = 1.
- \bigcirc c. rank(A)=3.

$$A = egin{bmatrix} 0 & 6 & 8 \ 2 & 4 & 0 \ 1 & 0 & 8 \end{bmatrix}$$

Then:

- \bigcirc a. rank(A) = 3.
- \bigcirc b. rank(A) = 2.
- \bigcirc c. rank(A) = 1.

$$A = egin{bmatrix} 1 & 0 & 1 \ 0 & 1 & 0 \ 1 & 1 & 1 \end{bmatrix}$$

Then:

- \bigcirc a. rank(A) = 2.
- \bigcirc b. rank(A) = 1.
- \bigcirc c. rank(A)=3.

$$A = egin{bmatrix} 2 & 0 & 0 & 0 \ 0 & 3 & 0 & 0 \ 0 & 0 & 2 & 0 \ 0 & 0 & 0 & 0 \end{bmatrix}$$

then:

- \bigcirc a. rank(A) = 3.
- \bigcirc b. rank(A) = 4.
- \bigcirc c. rank(A) = 2.

$$A = \left[egin{array}{cccc} 1 & -1 & 1 \ 2 & -2 & 2 \ -1 & 1 & -1 \end{array}
ight]$$

Then:

- \bigcirc a. rank(A) = 3.
- \bigcirc b. rank(A) = 1.
- \bigcirc c. rank(A) = 2.

lf

$$A = egin{bmatrix} 0 & 2 & -1 \ 1 & 1 & 0 \ 1 & 3 & -1 \end{bmatrix}$$

Then:

- \bigcirc a. rank(A) = 2.
- \bigcirc b. rank(A) = 3.
- \bigcirc c. rank(A) = 1.

$$A = egin{bmatrix} 2 & 0 & 0 & 0 \ 0 & 3 & 0 & 0 \ 0 & 0 & 2 & 0 \ 0 & 0 & 0 & 4 \end{bmatrix}$$

then:

- \bigcirc a. rank(A) = 4.
- \bigcirc b. rank(A) = 2.
- \bigcirc c. rank(A) = 3.

$$A = egin{bmatrix} 1 & 0 & 1 \ 0 & 1 & 0 \ 2 & 1 & 2 \end{bmatrix}$$

Then:

- \bigcirc a. rank(A) = 1.
- \bigcirc b. rank(A)=3.
- \bigcirc c. rank(A) = 2.

Given two random variables X and Y such that $p(x)=\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x}$ and $p(y|x)=ce^{-|y-ax|}$, then the MLE reads:

- \bigcirc a. $x^* = \operatorname{arg\,min}_x |y ax| + x^2$.
- \bigcirc b. $x^* = rg \min_x rac{1}{2} (y-ax)^2$.
- \bigcirc c. $x^* = \arg\min_x |y ax|$.

Given two random variables X and Y such that $p(x)=ce^{-|x|}$ and $p(y|x)=\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}(y-ax)^2}$, then the MLE reads:

- \bigcirc a. $x^* = \arg\min_x \frac{1}{2} (y ax)^2 + |x|$.
- Ob. $x^* = \arg\min_x \frac{1}{2} (y ax)^2 + \frac{1}{2} x^2$.
- \odot c. $x^* = \operatorname{arg\,min}_x \frac{1}{2} (y ax)^2$.

Given two random variables X and Y such that $p(x)=\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x}$ and $p(y|x)=ce^{-|y-ax|}$, then the MLE reads:

- \circ a. $x^* = \arg\min_x |y ax| + x^2$.
- $\quad \ \ \, \text{b.} \ \ \, x^* = \arg\min_x |y-ax|.$
- \circ c. $x^* = \arg\min_{x} \frac{1}{2} (y ax)^2$.

Given two random variables X and Y such that $p(x)=\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$ and $p(y|x)=\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}(y-ax)^2}$, then the MLE reads:

$$\bigcirc$$
 a. $x^*=rg\min_x rac{1}{2}(y-ax)^2+rac{1}{2}x^2.$

$$\bigcirc$$
 b. $x^* = rg \min_x rac{1}{2} (y-ax)^2 + x^2$.

$$\bigcirc$$
 c. $x^* = rg \min_x rac{1}{2} (y-ax)^2$.

then:

- \bigcirc a. The 2-norm of A is $||A||_2 = 1$.
- \bigcirc b. The 2-norm of A is $||A||_2 = 0$.
- \odot c. The 2-norm of A is $||A||_2 = 3$.

$$A = egin{bmatrix} 2 & 0 & 0 & 0 \ 0 & 3 & 0 & 0 \ 0 & 0 & 2 & 0 \ 0 & 0 & 0 & 4 \end{bmatrix}$$

then:

- \bigcirc a. The 2-norm of A is $||A||_2 = 2$.
- \bigcirc b. The 2-norm of A is $||A||_2 = 4$.
- \odot c. The 2-norm of A is $||A||_2 = 2$.

$$A = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 3 & 0 & 0 \ 0 & 0 & 2 & 0 \ 0 & 0 & 0 & 0 \end{bmatrix}$$

then:

- \bigcirc a. The 2-norm of A is $||A||_2=3$.
- \bigcirc b. The 2-norm of A is $\left|\left|A\right|\right|_2=0$.
- \odot c. The 2-norm of A is $||A||_2 = 3$.

If A is an n imes n matrix, then

Scegli un'alternativa:

$$\bigcirc$$
 a. $||A||_1=\sqrt{\sum_{i=1}^n\sum_{j=1}^na_{i,j}^2}.$

$$\bigcirc$$
 b. $||A||_1 =
ho(A^TA)$.

oc. None of the above.

If A is an n imes n matrix, then

- a. None of the above.
- \bigcirc b. $\left|\left|A\right|\right|_2=
 ho(A^TA).$
- \bigcirc C. $||A||_2 = \sqrt{\sum_{i=1}^n \sum_{j=1}^n a_{i,j}^2}$.

If A is an n imes n matrix, then

$$\bigcirc$$
 a. $||A||_F = \sqrt{\sum_{i=1}^n \sum_{j=1}^n a_{i,j}^2}$.

- Ob. None of the above.
- $||A||_F = \rho(A^T A).$

If $A \in \mathbb{R}^{m imes n}$, $||A||_p = 0$, then:

- \bigcirc a. A=0.
- \bigcirc b. rank(A) = 0.
- \odot c. A can be both equal or not equal to 0.

A matrix $A \in \mathbb{R}^{n \times n}$ is orthogonal if:

$$\bigcirc \ \, {\rm a.} \ \ \, A^{-1}A = I = AA^{-1}.$$

$$\bigcirc \ \, \mathrm{b.} \quad A^TA = I = AA^T.$$

$$\bigcirc$$
 c. $A=A^T$.

If $X:\Omega \to \mathcal T$ is a continuous random variable, then a function $p:\mathcal T\to \mathbb R_+$ can be the PDF of X if:

- \bigcirc a. $\int_{\mathcal{T}} p(x) dx = 1$.
- \bigcirc b. $\int_{\Omega}p(x)dx=1$.
- \bigcirc c. $\int_{\mathcal{T}} p(x) dx < \infty$.

For a random variable $X:\Omega o \mathcal T$ with $\mathbb E[X]=0$, it holds:

- \bigcirc a. $Var(X) = \mathbb{E}[X]$.
- ${\mathbb O}$ b. $Var(X)={\mathbb E}[X^2].$
- \bigcirc c. Var(X)=0.

If $X:\Omega \to \mathcal{T}$ is a discrete random variable, then a function $f_X:\mathcal{T} \to [0,1]$ can be the PDF of X if:

- \bigcirc a. $\sum_{i\in\Omega}f_X(i)=1$.
- \bigcirc b. $\int_{\Omega}f_{X}(x)dx=1.$
- \bigcirc c. $\sum_{i\in\mathcal{T}}f_X(i)=1$.

Given a discrete random variable $X:\Omega o\mathcal T$, with $\mathcal T=\{1,2,\dots,6\}$, and $f_X=\{\frac16,\frac16,\dots,\frac16\}$, then:

- \bigcirc a. $\mathbb{E}[X] = 21$.
- \odot b. $\mathbb{E}[X] = 3.5$.
- \bigcirc c. $\mathbb{E}[X] = \frac{1}{6}$.

Given a continuous random variable $X:\Omega \to \mathcal{T}$, with $\mathcal{T}=[0,1]$, and $p(x)=3x^2$ its PDF, then:

- ${\mathbb O}$ a. ${\mathbb E}[X]=2$.
- \odot b. $\mathbb{E}[X] = 3$.
- \bigcirc c. $\mathbb{E}[X] = \frac{3}{4}$.

Given a continuous random variable $X:\Omega o \mathcal T$, with $\mathcal T=[0,1]$, and p(x)=2x its PDF, then:

- \bigcirc a. $\mathbb{E}[X] = \frac{2}{3}$.
- \bigcirc b. $\mathbb{E}[X] = 2$.
- \odot c. $\mathbb{E}[X] = 1$.

If $X:\Omega o\mathcal{T}$ is a continuous random variable with PDG $p:\mathcal{T} o\mathbb{R}_+$, then:

$$\bigcirc$$
 a. $\mathbb{E}[X] = \int_{\mathcal{T}} p(x) dx$.

$$\odot$$
 b. $\mathbb{E}[X] = \int_{\Omega} x p(x) dx$.

$${\mathbb C}$$
 c. ${\mathbb E}[X]=\int_{\mathcal T} x p(x) dx$.

If $X:\Omega o \mathcal T$ is a continuous random variable, its Probability Density Function (PDF) $p_X(x)$ is defined to be:

$$\bigcirc$$
 a. $P(X=x)=p_X(x)$.

$$\bigcirc$$
 b. $P(X=x)=\int x p_X(x) dx$.

$$\bigcirc$$
 c. $P(X \in A) = \int_A p_X(x) dx$.

If $X:\Omega\to\mathcal{T}$ is a continuous random variable, its Probability Density Function (PDF) $p_X(x)$ is:

- \bigcirc a. A function $p_X: \mathcal{T} \to \mathbb{R}_+$.
- \bigcirc b. A function $p_X: \mathcal{T} \to [0,1]$.
- \bigcirc c. A function $p_X : \Omega \to [0, 1]$.

If $X:\Omega o \mathcal T$ is a discrete random variable, its Probability Mass Function (PMF) f_x is:

Select one:

- igcirc a. A function $f_X:\mathcal{T} o [0,1].$
- ${}$ b. A function $f_X:\Omega o [0,1].$
- ${\mathbb C}$ c. A function $f_X:{\mathcal T} o{\mathbb R}$.

Given two discrete random variable $X_1:\Omega o\mathcal{T}$, $X_2:\Omega o\mathcal{T}$ with $\mathcal{T}=\{1,2,3\}$, and $f_{X_1}=\{\frac{1}{3},\frac{1}{3},\frac{1}{3}\}$, $f_{X_2}=\{\frac{1}{2},\frac{1}{6},\frac{1}{3}\}$ their PMF, then:

- \odot a. $\mathbb{E}[X_1] < \mathbb{E}[X_2]$.
- \bigcirc b. $\mathbb{E}[X_1] = \mathbb{E}[X_2]$.
- \odot c. $\mathbb{E}[X_1] > \mathbb{E}[X_2]$.

If $X:\Omega \to \mathcal{T}$ is a discrete random variable, its Probability Mass Function (PMF) f_x is:

- \bigcirc a. $f_X(x) = \int P(x) dx$.
- \bigcirc b. $f_X(x)=P(X\in x)$.
- \bigcirc c. $f_X(x) = P(X = x)$.

If $X:\Omega o\mathcal{T}$ is a discrete random variable with PMG $f_X:\mathcal{T} o[0,1]$, then:

Scegli un'alternativa:

$$\odot$$
 a. $\mathbb{E}[X] = \sum_{i \in \mathcal{T}} i$.

igtherightarrow b. $\mathbb{E}[X] = \sum_{i \in \mathcal{T}} i f_X(i)$.

Vai a...

Given a discrete random variable $X:\Omega\to\mathcal{T}$, with $\mathcal{T}=\{1,2,3\}$, and $f_X=\{\frac{1}{2},\frac{1}{6},\frac{1}{3}\}$ its PMF, then:

- \bigcirc a. $\mathbb{E}[X] = 6$.
- \odot b. $\mathbb{E}[X]=2$.
- \bigcirc c. $\mathbb{E}[X] = \frac{11}{6}$.

Given a discrete random variable $X:\Omega o\mathcal T$, with $\mathcal T=\{1,2,3\}$, and $f_X=\{\frac16,\frac13,\frac12\}$ its PMF, then:

- \bigcirc a. $\mathbb{E}[X] = 6$.
- \odot b. $\mathbb{E}[X]=2$.
- \bigcirc c. $\mathbb{E}[X] = \frac{13}{6}$.

Given two discrete random variable $X_1:\Omega\to\mathcal{T}$, $X_2:\Omega\to\mathcal{T}$ with $\mathcal{T}=\{1,2,3\}$, and $f_{X_1}=\{\frac{1}{3},\frac{1}{3},\frac{1}{3}\}$, $f_{X_2}=\{\frac{1}{2},\frac{1}{6},\frac{1}{3}\}$ their PMF, then:

- \odot a. $\mathbb{E}[X_1] < \mathbb{E}[X_2]$.
- ${\mathbb O}$ b. ${\mathbb E}[X_1] = {\mathbb E}[X_2].$
- \odot c. $\mathbb{E}[X_1] > \mathbb{E}[X_2]$.

Given two discrete random variable $X_1:\Omega\to\mathcal{T}$, $X_2:\Omega\to\mathcal{T}$ with $\mathcal{T}=\{1,2,3\}$, and $f_{X_1}=\{\frac12,\frac16,\frac13\}$, $f_{X_2}=\{\frac16,\frac13,\frac12\}$ their PMF, then:

- ${\mathbb C}$ a. ${\mathbb E}[X_1] > {\mathbb E}[X_2]$.
- \odot b. $\mathbb{E}[X_1] = \mathbb{E}[X_2]$.
- \odot c. $\mathbb{E}[X_1] < \mathbb{E}[X_2]$.

The precision is:

- a. None of the above.
- \bigcirc b. The number of digits with which a number is expressed.
- o. The number of correct significant digits in approximating some quantity.

A random variable X is:

- \bigcirc a. A function $X:\Omega o \mathcal{T}$.
- b. A variable that returns random elements with known probability.
- c. A set that contains the possible outcomes of the experiment.

If Ω is the sample space, ${\mathcal A}$ is the event space and ${\mathcal T}$ is a subset of ${\mathbb R}$, a random variable X is:

- \bigcirc a. A function $X:\Omega \to \mathcal{A}$.
- \bigcirc b. A function $X: \mathcal{A} \rightarrow \mathcal{T}$.
- \bigcirc c. A function $X:\Omega
 ightarrow \mathcal{T}$.

In normalized scientific notation and base $\beta=10$, if x=2.71, then:

- \odot a. The mantissa of x is 0.271 and the exponential part is 10^1 .
- \odot b. The mantissa of x is 2.71 and the exponential part is 10^0 .
- oc. None of the above.

If $A=U\Sigma V^T$ is the SVD decomposition of $A\in\mathbb{R}^{m imes n}$, then a dyade $A_i=u_iv_i^T$ of A is:

- a. None of the above.
- \bigcirc b. A vector of length mn that express some properties of A.
- \bigcirc c. A rank-1 matrix of dimension $m \times n$.

If $A = U \Sigma V^T$ is the SVD decomposition of an m imes n matrix A, then:

Scegli un'alternativa:

$$\bigcirc$$
 a. $A^TA = V^T\Sigma^2V$.

$$\bigcirc$$
 b. $A^TA = U\Sigma^2U^T$.

 \bigcirc c. $A^TA=V\Sigma^2V^T$.

If $A = U\Sigma V^T$ is the SVD decomposition of an $m \times n$ matrix A, then:

- \bigcirc a. The rows of V^T are eigenvectors of AA^T .
- \bigcirc b. The columns of U are eigenvectors of AA^T .
- o. None of the above

If $A = U \Sigma V^T$ is the SVD decomposition of an m imes n matrix A, then:

- \odot a. The rows of V^T are eigenvectors of A^TA .
- b. None of the above
- \odot c. The columns of U are eigenvectors of A^TA .

Given a matrix $A \in \mathbb{R}^{m \times n}$, m > n , with r = rank(A) , then:

- a. None of the above.
- \odot b. It is always possible to write A as $U\Sigma V^T$, where $\Sigma\in\mathbb{R}^{m\times n}$ is diagonal, $U\in\mathbb{R}^{m\times m}$, $V\in\mathbb{R}^{n\times n}$ are orthogonals.
- \odot c. It is possible to write A as $U\Sigma V^T$, where $\Sigma\in\mathbb{R}^{m\times n}$ is diagonal, $U\in\mathbb{R}^{m\times m}$, $V\in\mathbb{R}^{n\times n}$ are orthogonals if and only if rank(A)=n.

If $A=U\Sigma V^T$ is the SVD decomposition of an m imes n matrix A, then:

- \bigcirc a. $AA^T=U^T\Sigma^2U$.
- \bigcirc b. $AA^T=U\Sigma^2U^T$.
- $\bigcirc \ \, \mathsf{c}, \quad AA^T = U\Sigma U^T.$

If $A=U\Sigma V^T$ is the SVD decomposition of an m imes n matrix A, then:

- igcirc a. The elements of the diagonal matrix Σ are the singular values of A, in decreasing order.
- \odot b. The elements of the diagonal matrix Σ are the eigenvalues of A, in decreasing order.
- o. None of the above.

If $A=U\Sigma V^T$ is the SVD decomposition of an m imes n matrix A, then:

- \bigcirc a. The singular values σ_i of A are $\sigma_i = \sqrt{\lambda_i(A^TA)}$ where $\lambda_i(A^TA)$ are the eigenvalues of A^TA .
- b. None of the above
- \odot c. The singular values σ_i of A are $\sigma_i = \lambda_i(A^TA)$ where $\lambda_i(A^TA)$ are the eigenvalues of A^TA .

If $A=U\Sigma V^T$ is the SVD decomposition of $A\in\mathbb{R}^{m imes n}$, then the rank k approximation of A is:

- igcirc a. $\hat{A}(k) = \sum_{i=1}^n \sigma_i A_i$, where $A_i = u_i v_i^T$ is a dyade.
- igcirc b. $\hat{A}(k) = \sum_{i=1}^k A_i$, where $A_i = u_i \, v_i^T$ is a dyade.
- igcup c. $\hat{A}(k) = \sum_{i=1}^k \sigma_i A_i$, where $A_i = u_i v_i^T$ is a dyade.

If $A = U \Sigma V^T$ is the SVD decomposition of an m imes n matrix A, then:

- \odot a. The elements on the diagonal of Σ are strictly positive.
- b. None of the above.
- \odot c. The elements of the diagonal matrix Σ are non-negative.

If $A=U\Sigma V^T$ is the SVD decomposition of $A\in\mathbb{R}^{m imes n}$, then its rank k approximation of $\hat{A}(k)$ satisfies:

Select one:

- \bigcirc a. $\hat{A}(k) = rg \min_{rk(B)=k} ||A-B||_2$.
- \bigcirc b. $\hat{A}(k) = rg \min_{rk(B)=k} ||A-B||_F$.
- \bigcirc c. $\hat{A}(k)=\sigma_{k+1}$.

If $A \in \mathbb{R}^{m \times n}$, then:

- \bigcirc a. A^TA is symmetric but not necessarly positive definite.
- \bigcirc b. A^TA is always symmetric and positive definite.
- \odot c. It depends on A.

For a random variable $X:\Omega\to\mathcal{T}$, its variance is defined as:

- \bigcirc a. $Var(X) = \mathbb{E}[X \mathbb{E}[X]].$
- \bigcirc b. $Var(X) = \mathbb{E}[(X \mathbb{E}[X])^2].$
- \bigcirc c. $Var(X) = \mathbb{E}[X^2 \mathbb{E}[X]^2]$.

For a random variable $X:\Omega \to \mathcal{T}$, it holds:

- igcirc a. $Var(X)=\mathbb{E}[X^2]-\mathbb{E}[X]^2$.
- \odot b. $Var(X) = \mathbb{E}[X^2] + \mathbb{E}[X]^2$.
- ${\mathbb C}$ c. $Var(X)={\mathbb E}[X]^2-{\mathbb E}[X^2]$.

For a random variable $X:\Omega o\mathcal{T}$ with $\mathbb{E}[X]=0$, it holds:

- \bigcirc a. $Var(X)=\mathbb{E}[X^2].$
- b. Var(X) = 0.
- \bigcirc c. $Var(X) = \mathbb{E}[X]$.

If vector $v=(10^6,0)^T$ is approximated by vector $\tilde{v}=(999996,1)^T$, then in $||\cdot||_1$ the relative error between v and \tilde{v} is:

- \bigcirc a. $4 \cdot 10^{-6}$.
- b. None of the above.
- \circ c. $5 \cdot 10^{-6}$.

If vector $v=(10^6,0)^T$ is approximated by vector $\tilde{v}=(999996,1)^T$, then in $||\cdot||_2$ the relative error between v and \tilde{v} is:

- \bigcirc a. $\sqrt{17} \cdot 10^{-6}$.
- O b. $4 \cdot 10^{-6}$.
- c. None of the above.

If vector $v=(1,0)^T$ is approximated by vector $\tilde{v}=(1.1,0.1)^T$, then in $||\cdot||_1$ the relative error between v and \tilde{v} is:

- a. 0.1.
- O b. 0.2.
- o. None of the above.

If vector $v=(10^6,1)^T$ is approximated by vector $\tilde{v}=(999996,1)^T$, then in $||\cdot||_\infty$ the relative error between v and \tilde{v} is:

- O a. 4.
- \circ b. $4 \cdot 10^{-6}$.
- c. None of the above.

Given $x=(1,-1)^T$ and $y=(2,1)^T$, then:

- a. None of the above.
- \bigcirc b. $x \perp y$.
- \bigcirc c. $x \parallel y$.

Given $x = (1, -1)^T$ and $y = (1, 1)^T$, then:

- \bigcirc a. $x \perp y$.
- b. None of the above.
- \bigcirc c. $x \parallel y$.