

FIG. 2

FIG. 3A

FIG. 3B

FIG. 4

Smaller Component 5 of Subcomponent 8 of Component 2 Subdivided into X Even Smaller Components, $N_{\text{even smaller components}}(2,8,5) = X$, and so on.

Non-Allowable Regions Within Temporal Value Range Layout Viewed Separately

the was one of the time that the time

Will Hard

W. 1.1. W.

Non-Allowable Regions Within Temporal Value Range Layout Viewed Combined

FIGURE 6.

FIGURE 7a.

712

FIGURE 7b.

800

Combined Value Range/Discrete Value Layout Comprising Four Value Range Components Subdivided Into Nine Subcomponents Containing 27 Discrete Values Each

FIGURE 8.

FIG. 9

FIG. 10

FIG. 11

$f^{(0)}(x) = x^2 + x$ $\downarrow \downarrow$	$\alpha^{_{ m J}}$	$f^{(3)}(x) = x^2 + x + 3$ $\downarrow \qquad \alpha^{j}$									
V	1 2 4 3	1 2 4 3									
1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\beta^{1} \begin{array}{cccccccccccccccccccccccccccccccccccc$									
$eta^{i} rac{3}{4}$	0 0 0 0 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									
$f^{(1)}(x) = x^2 + x + \downarrow$	α^{J}	$f^{(4)}(x) = x^2 + x + 4$ $\downarrow \qquad \qquad \alpha^{j}$									
V	1 2 4 3	1 2 4 3									
1	0 0 1 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									
$eta^{i} rac{3}{4}$	1 0 0 1 0 0 0 0 0 1 0 0	$eta^{-1} egin{array}{cccccccccccccccccccccccccccccccccccc$									
$f^{(2)}(x) = x^2 + x + 1$ $\downarrow \downarrow$		$f^{(5)}(x) = x + 1 \qquad \alpha^{j}$									
V	1 2 4 3	1 2 4 3									
1	0 0 0 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									
β , $\frac{3}{4}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$eta^{ i} { eta^{ i} { eta^{ 0} 1 0 0 0 0 1 1 } \atop { 2 1 0 0 0 0 0 1 } }$									
2	0 0 1 0										

FIG. 12

FIG. 13

FIG. 14

in in in

1.5

10	34	53	73	100	123	134	169	197	214	229	267	301	311	332	368	384	410	432	461	469	
14	26	47	74	92	126	139	155	187	207	223	242	285	287	329	337	361	388	416	438	451	470
20	39	65	72	105	119	140	166	201	241	252	275	298	319	338	355	394	401	423	468		···
5	41	55	81	107	113	138	158	176	219	231	256	290	336	373	379	398	420	440	477		
2	40	67	106	131	147	171	186	209	262	264	303	308	345	363	376	403	425	450	463		-
7	35	44	78	101	121	133	173	190	220	247	274	305	318	331	381	404	426	454	474	ļ	
<u> </u>			70			172				244	278	304	322	342	352	382	402	424	460	466	
8	38	54		104	144		196	198	230												470
6	31	58	83	97	110	136	167	181	208	234	249	284	299	328	334	362	380	411	433	445	479
15	25	64	85	91	120	149	170	178	212	240	250	269	302	313	347	366	389	397	419	442	481
1	43	49	84	109	124	151	163	183	218	225	248	266	295	310	349	372	375	408	430	447	480
12	33	46	79	99	130	150	157_	184	203	222	257	271	289	315	348	357	386	400	422	448	475
4	51	82	115	145	175	182	200	227	243	272	307	316	343	354	378	413	435	446	478		
17	22	52	75	88	112	148	165	191	205	228	254	270	297	314	346	359	391	415	437	455	471
19	32	50	69	98	117	141	177	206	226	246	279	323	339	360	393	414	436	441	465		
18	36	59	87	102	118	135	154	188	204	235	259	265	286	309	333	358	392	409	431	452	483
13	42	45	77	108	116	153	164	180	213	221	261	276	296	320	351	367	387	412	434	444	473
16	27	56	93	125	143	168	193	199	232	260	268	300	312	341	353	390	405	427	457		
9	24	48	66	90	111	174	195	210	224	255	281	306	325	364	383	399	421	459	462		
3	29	61	76	95	122	132	159	194	202	237	258	283	291	327	330	356	377	417	439	458	472
21	30	63	80	96	114	142	156	189	215	239	251	282	288	326	340	369	395	407	429	453	476
11	28	62	86	94	127	146	161	192	217	238	245	277	293	321	344	371	385	456	482		
37	57	71	103	129	152	162	185	216	233	263	280	294	324	350	370	396	418	449	467		
0	23	60	68	89	128	137	160	179	211	236	253	273	292	317	335	365	374	406	428	443	464
10	25	57	68	108	122	146	172	191	199	227	269	294	317	351	356	385	402	437	457	478	

Figure 15

FIG. 16