เทคโนโลยีเซนเซอร์

เซนเซอร์ (Senser)

• ชุดอุปกรณ์ ระบบ หรือวงจร ที่ทำ หน้าที่ในการตรวจวัด เพื่อเพิ่มประสิทธิภาพการรับรู้ของมนุษย์ และตรวจจับ การเปลี่ยนแปลง คุณสมบัติ หรือ ลักษณะของสารเป้าหมายที่เป็นเป้าหมายในการวิเคราะห์ (Analytical Target) และแสดงผลในลักษณะของสัญญาณที่สามารถตรวจวัด ในเชิงปริมาณได้ ทั้งสัญญาณไฟฟ้า สัญญาณ กลศาสตร์ และสัญญาณเชิงแสง

หลักการทำงานเบื้องต้นของเซนเซอร์

• หลักในการทำงานเบื้องต้นของเซนเซอร์ คือ เป็นการตรวจจับสัญญาณแต่ละชนิด เช่น แสง สี การเปลี่ยนแปลงมวล อุณหภูมิ ที่เกิดขึ้นระหว่างเป้าหมายที่ต้องการวัดกับตัวทำปฏิกิริยาที่ จำเพาะ จากนั้นส่งผ่านเครื่องแปลงสัญญาณ (Transducer) ซึ่งทำหน้าที่เปลี่ยนสัญญาณที่เกิด ขึ้นมาเป็นสัญญาณไฟฟ้าที่ตรวจสอบได้ และถูกวิเคราะห์ พร้อมทั้งนำเสนอโดยระบบประมวล และแสดงผล (Detector and Display System)

ประเภทของอุปกรณ์เซนเซอร์แบ่งตามคุณสมบัติในการตรวจวัด

• เซนเซอร์ด้านกายภาพ (Physical Sensor) คือ เซนเซอร์ที่ใช้ ในการตรวจวัดคุณสมบัติทางกายภาพ ต่างๆ เช่น เซนเซอร์ในการจับภาพ เซนเซอร์วัดอุณหภูมิและความชื้น

Temperature and Humidity senser

CCD senser

ประเภทของอุปกรณ์เซนเซอร์แบ่งตามคุณสมบัติในการตรวจวัด

• เซนเซอร์ด้านเคมี (Chemical Sensor) คือ เซนเซอร์ที่ใช้ในการ ตรวจวัดสารเคมีต่างๆ โดยอาศัย ปฏิกิริยาจำเพาะทางเคมี และมีการแปลงเป็นข้อมูลหรือสัญญาณที่สามารถอ่านวิเคราะห์ได้ เช่น เซนเซอร์ ตรวจวัดสารเคมีปนเปื้อนในสิ่งแวดล้อม ดินและน้ำ

Gas sensor

PM 2.5 senser

pH senser

ประเภทของอุปกรณ์เซนเซอร์แบ่งตามคุณสมบัติในการตรวจวัด

• เซนเซอร์ทางชีวภาพ (Biosensor) คือ เซนเซอร์ที่อาศัยเทคนิคการนำสารชีวภาพ (Biological Recognition Material) มาเป็นตัวทำปฏิกิริยาจำเพาะกับสารเป้าหมาย เช่น เซนเซอร์ที่ใช้ในการตรวจวัด ระดับน้ำตาลในเลือด

การประยุกต์ใช้งานเซนเซอร์ในปัจจุบัน

ด้านอุตสาหกรรมยานยนต์

• ระบบยานยนต์อัจฉริยะ (SMART Cars) ภายในรถยนต์มีการติดตั้งเซนเซอร์เพื่อตรวจวัดค่าการทำงานต่างๆ ภายในเครื่องยนต์ เพื่อนำมาประมวลผลเพื่อให้รถยนต์สามารถทำงานได้อย่างเต็มประสิทธิภาพ นอกจากนี้ ยังมีระบบ Adaptive Cruise Control ที่ทำงานควบคุมความเร็วของรถให้เหมาะสมกับสภาพการจราจร ซึ่งจะถูกปรับอย่างอัตโนมัติด้วยเรดาร์ เลเซอร์ กล้องหน้ารถ (Radar-Based Adaptive Cruise Control System) เพื่อควบคุมการขับขึ่ให้เหมาะสม และปลอดภัยขึ้น

Automotive Radar Sensors

ด้านการเกษตรและอาหาร

• ระบบสมาร์ทฟาร์ม (Smart farm) พัฒนาด้วยด้วยเทคโนโลยีเกษตรแม่นยำสูง (Precision Agriculture) ซึ่ง สามารถทำโดยการติดตั้งเซนเซอร์จำนวนมาก เซนเซอร์ถูกนำมาใช้เพื่อเพิ่มผลผลิตทางการเกษตรทั้ง ทางด้านคุณภาพและปริมาณ และเพื่อจัดการทรัพยากรที่มีอยู่จำกัดให้เกิดประโยชน์สูงสุด รวมถึงการใช้ เทคโนโลยีเพื่อการวิเคราะห์ปัจจัยแวดล้อมที่ผลกระทบต่อผลผลิตที่เกิดขึ้น

ด้านสุขภาพและการแพทย์

• ในด้านการแพทย์มีการนำเทคโนโลยีเซนเซอร์เข้ามาช่วยในการดูแลและติดตามอาการของผู้ป่วย เพื่อให้การ รักษามีประสิทธิภาพมากขึ้น เช่น เครื่องตรวจวัดน้ำตาลในเลือด สำหรับผู้ป่วยโรคเบาหวาน เครื่องตรวจวัด ความดันโลหิต อัตราการเต้นของหัวใจ ซึ่งส่วนใหญ่เป็นเซนเซอร์ที่ใช้ตรวจวัดสารเคมีต่างๆ โดยการใช้ชื่อ โมเลกุลที่มีความสามารถในการจดจำ เป็นตัวทำปฏิกิริยาในรูปแบบใดรูปแบบหนึ่ง ได้แก่ เอนไซม์ ดีเอ็นเอ แอนติบอดี้ และโปรตีน เป็นต้น และมีการแปลงสัญญาณเพื่อการวิเคราะห์ค่าต่างๆ

ด้านสิ่งแวดล้อมและที่อยู่อาศัย

• ระบบบ้านอัจฉริยะ (SMART Home) พัฒนาขึ้นเพื่อยกระดับคุณภาพชีวิตของประชากร ทั้งด้านสุขภาพ ความปลอดภัย รวมทั้งยังช่วยประหยัดพลังงาน การทำงานของบ้านอัจฉริยะ จะมีการควบคุมระบบปรับ อากาศ ระบบส่องสว่างและการควบคุมพลังงาน ระบบตรวจและติดตามสิ่งแวดล้อม การแจ้งเตือนภัย การ ควบคุมการปิดเปิดของประตูและหน้าต่าง

ที่มา : Toma, Tetsuya & Asada, Hideo & Ogi, Tetsuro & Koike, Yasuhiro. (2013). High-Speed Optical Home Network Using Graded Index Plastic Optical Fibers for a Smart House. ACSIJ Advances in Computer Science : an International Journal. 2.

• นอกจากนั้นยังมีการพัฒนาเซนเซอร์ที่ใช้ในการตรวจวิเคราะห์สภาพแวดล้อมต่างๆ ได้แก่ เซนเซอร์ที่ใช้ในการตรวจวัดคุณภาพน้ำ อากาศของเสียและขยะมูลฝอย การตรวจวัดระดับ ของเสียง แสง อุณหภูมิตามสถานที่ต่างๆ เป็นต้น

แนวโน้มการประยุกต์ใช้งานเซนเซอร์ในอนาคต

• การพัฒนาเซนเซอร์เป็นจุดเปลี่ยนสำคัญที่อยู่เบื้องหลังความสำเร็จของเทคโนโลยีต่างๆ โดยบริษัท Tractica ซึ่ง เป็นบริษัทศึกษาคาดการณ์อุตสาหกรรมของสหรัฐ คาดว่าระบบอัจฉริยะและปัญญาประดิษฐ์ (Artificial Intelligence (AI) and Smart System) จะกำหนดรูปแบบของทศวรรษหน้าที่จะมีผู้ประกอบการและตลาด ใหม่ๆ เกิดขึ้นทั่วโลก ซึ่งเทคโนโลยีที่จะมีบทบาทสำคัญในการพัฒนาอย่างต่อเนื่อง ซึ่งจะทำให้ความสามารถ ของการทำงานโดยอัตโนมัติสูงขึ้นกว่าในปัจจุบัน

- 1) Artificial Intelligence Machine Vision เป็นชุดประมวลผลภาพอัตโนมัติ ด้วยการรับข้อมูลจากระบบ เซนเซอร์ต่างๆ แล้วนำสัญญาณที่ได้แสดงออกทางจอภาพ เช่น ใช้ตรวจเช็คตำแหน่งของวัตถุ ตรวจสอบความ ผิดพลาดของชิ้นงาน เป็นต้น
- 2) Voice and Speech Recognition เป็นระบบการรับรู้และจดจำเสียงได้อย่างอัตโนมัติ โดยระบบจะนำ ข้อมูลที่ได้จากเซนเซอร์รับเสียงเข้าสู่ระบบการประมวลผลและแสดงผลเป็นอักษร เช่น การใช้โปรแกรมค้นหา ได้ด้วยการพูด เป็นต้น
- 3) Tactile Sensors เป็นเซนเซอร์รับสัมผัสที่จะทำการส่งข้อมูลที่ได้จากการรับรู้การสัมผัส เช่น ใช้ในอุปกรณ์ ตรวจวัดสภาวะทางสุขภาพ เป็นต้น
- 4) Gesture Control เป็นระบบสั่งงานด้วยการเคลื่อนไหว โดยใช้เซนเซอร์ตรวจจับการเคลื่อนไหวต่างๆ เช่น การสั่งให้อุปกรณ์เคลื่อนที่สามารถถ่ายรูปได้เองด้วยการจดจำการเคลื่อนไหวของร่างการที่จดจำไว้ในการติดตั้ง เป็นต้น

ทีมา: Frost & Sullivan, 2017.

เซนเซอร์และแอคซูเอเตอร์

ความสัมพันธ์เซนเซอร์และแอคซูเอเตอร์

ตัวอย่าง : เซนเซอร์อุณหภูมิ - ความชื้น

สายสัญญาณต่างๆ		
อุณหภูมิและ	VDD	เชื่อมต่อกับเซ็นเซอร์
ความชื้น		AM2301 ผ่านสาย VDD
		(สายสีแดง)
	Data	สายข้อมูล (Data) ของ
		เซ็นเซอร์ AM2301 (สายสี
		เหลือง)
	GND	สายกราวด์ (GND) ของ
		เซ็นเซอร์ AM2301 (สายสี
		ดำ)

คุณสมบัติสำคัญ

โมเดล	AM2	303
ขนาดไฟเลี้ยง	3.3 – 5V. DC	
ช่วงการวัดสัญญาณ	ความชื้น 0-100% RH	อุณหภูมิ - 40 - 80 ° เซลเซียส
ความถูกต้อง	ความชื้น ± 3% (สูงสุด ± 5%)	อุณหภูมิ <± 1° เซลเซียส
ความละเอียด	ความชื้น 0.1%RH	อุณหภูมิ 0 .1° เซลเซียส
Repeatability	ความชื้น ± 1%RH	อุณหภูมิ ±0.2° เซลเซียส
ความชื้นสัมพัทธ์	ความชื้น ± 0.3 %RH	
ความเสถียรของอุปกรณ์ระยะ	ความชื้น ± 0.5 %RH /ปี	
ยาว		
ระยะเวลาการตรวจจับ	ค่าเฉลี่ย: 2 วินาที	
ความเข้ากันได้ของอุปกรณ์	สามารถเปลี่ยนได้ทันที	

ข้อควรระวัง

- 1. ไม่ควรให้เซ็นเซอร์โดนน้ำและอยู่ในที่อุณหภูมิสูงเกินที่กำหนด **(-**40 **-** 80 เซลเซียส)
- 2. ถ้าเกิดเหตุการณ์ในข้อ (1) ขั้นตอนที่ 1: นำเซ็นเซอร์ให้อยู่ในที่อุณหภูมิ 50 **-** 60 **o** เซลเซียส และความชื้นที่ 70%RH เป็นเวลา 5 ชั่วโมง
- 3. ควรหลีกเลี่ยงไม่ให้เซ็นเซอร์สัมผัสแสงแดดโดยตรง เนื่องจากแสงแดดทำให้ประสิทธิภาพ ในการทำงานของเซ็นเซอร์ลดลง

คุณสมบัติสำคัญของเซ็นเซอร์

• ตัวอย่างเซ็นเซอร์วัดอุณหภูมิและความชื้น

Model	AM2301
Power supply	3.3-5.5V DC
Output signal	Aosong 1-wire bus digital signal
Sensing element	Polymer humidity capacitor
Measuring range	humidity 0-100%RH; temperature -40~80Celsius
Accuracy	humidity +-3%RH(Max +-5%RH); temperature +-0.5Celsius
Resolution or sensitivity	humidity 0.1%RH; temperature 0.1Celsius
Repeatability	humidity +-1%RH; temperature +-0.3Celsius
Humidity hysteresis	+-0.5%RH
Long-term Stability	+-0.5%RH/year
Interchangeability	fully interchangeable

คุณสมบัติสำคัญของเซ็นเซอร์ (2)

- ช่วง (Rang) แสดงถึงค่าต่ำสุดและสูงสุดที่เซ็นเซอร์นั้นยอมรับ
- ความถูกต้อง (Accuracy) ความสามารถของเซ็นเซอร์ที่จะให้ค่าใกล้เคียงกับความเป็นจริง
- ความแม่นยำ (Precision) ระบุถึงความสามารถที่จะให้ค่าเอาท์พุตคงที่

คุณสมบัติสำคัญของเซ็นเซอร์ (3)

- ความละเอียด (Resolution) แสดงถึงค่าการเพิ่มขึ้นที่ต่ำที่สุดในช่วงของการวัด
- ความไว (Sensitivity) แสดงถึงค่าการเปลี่ยนแปลงของอินพุตที่จำเป็นเพื่อให้เกิดค่าเอาท์พุต

• ความสามารถผลิตค่าซ้ำ (Repeatablility) ระบุถึงความสามารถของเซ็นเซอร์ที่จะให้ค่าเดิมทุกครั้ง

คุณสมบัติสำคัญของเซ็นเซอร์ (4)

• ฮิสเตอร์รีซีส (Hysteresis) ผลการทำงานที่แตกต่างกันของเซ็นเซอร์ที่เกิดขึ้น จากการป้อนค่าอินพุต เดียวกัน ขึ้นกับค่าที่ป้อนนั้นเป็นการเพิ่มขึ้นหรือลดลง

เอกสารอ้างอิง

เทคโนโลยีเซนเซอร์ (Sensor Technology) [อินเทอร์เน็ต]. [อ้างถึง 15 กันยายน 2021]. Available at:
https://www.ops.go.th/main/index.php/knowledge-base/article-pr/1520-sensor