SUITES ET SÉRIES DE FONCTIONS

Étudier la convergence simple et la convergence uniforme des suites de fonctions suivantes :

a.
$$f_n(x) = \frac{nx}{1 + n^2 x^2} \text{ sur } \mathbf{R}$$
 b. $f_n(x) = xe^{-nx} \text{ sur } \mathbf{R}^+$

b.
$$f_n(x) = xe^{-nx}$$
 sur \mathbf{R}^+

$$\mathbf{c.} \quad f_n(x) = \sin x \mathrm{e}^{-nx} \quad \text{sur } \mathbf{R}^+$$

d.
$$f_n(x) = \frac{\sin(nx)}{m\sqrt{x}} \text{ sur } \mathbf{R}^{+*}$$

e.
$$f_n(x) = (1 + \frac{x}{n})^n \text{ sur } \mathbf{R}^+$$

d.
$$f_n(x) = \frac{\sin(nx)}{n\sqrt{x}} \text{ sur } \mathbf{R}^{+*}$$
 e. $f_n(x) = (1 + \frac{x}{n})^n \text{ sur } \mathbf{R}^{+}$ **f.** $f_n(x) = \sin\frac{n+1}{n}x \text{ sur } \mathbf{R}, \text{ sur } [a,b]$.

- 2. a. Parmi les propriétés suivantes, y en-a-t-il qui passent à la limite simple ?
 - i. la croissance;
 - ii. la monotonie:
 - iii. la convexité ;
 - iv. la périodicité;
- **b.** Soit (f_n) une suite de fonctions de **R** dans **R** convergeant uniformément vers f. Quelle hypothèse raisonnable doit-on faire sur une fonction numérique g pour que la suite $(g \circ f_n)$ converge simplement ? uniformément ?
- c. Soit une suite de fonctions uniformément continues sur une partie A d'un espace vectoriel normé E, convergeant uniformément sur A vers une fonction f. f est-elle uniformément continue ?
- (d). Soit (f_n) une suite de fonctions k-lipschitziennes, convergeant simplement sur [a,b] vers une fonction f. Prouver que f est k-lipschitzienne, et que la convergence est uniforme.
- 3. On définit une suite de polynômes sur [0,1] par :

$$P_0 = 0$$
; $P_{n+1}(x) = P_n(x) + \frac{x - P_n(x)^2}{2}$.

- **a.** Prouver que pour tout entier n et pour tout x de [0,1], on a $0 \le P_n(x) \le \sqrt{x}$.
- **b.** En déduire la convergence simple de la suite (P_n) vers une limite que l'on précisera.
- c. Prouver que cette convergence est uniforme.
- (4). Théorème de Dini : Soit K un compact d'un espace vectoriel normé E, et (f_n) une suite croissante de fonctions numériques continues sur K, convergeant simplement vers une fonction continue f. Le théorème de Dini affirme que cette convergence est uniforme.
 - **a.** Prouver qu'une intersection décroissante de fermés non vides inclus dans K est non vide.
- **b.** On fixe $\varepsilon > 0$, et on pose $K_n = \{x \in K \mid f_n(x) \le f(x) \varepsilon\}$. Prouver que la suite (K_n) est une suite décroissante de fermés, d'intersection vide.
 - c. Conclure.
- On définit par récurrence sur $I = [-\frac{1}{2}, \frac{1}{2}]$ une suite de fonctions en posant $f_0 = 0$ et pour $n \ge 0$,

$$f_{n+1}(x) = \frac{x^3}{3} + \int_0^x f_n^2(t) dt$$
.

- **a.** Prouver que $|f_n(x)| \le 5/6$ pour tout x de I.
- **b.** Prouver que pour tout $n \ge 1$, on a $||f_{n+1} f_n||_{\infty} \le 5/6 ||f_n f_{n-1}||_{\infty}$
- **c.** Qu'en déduire concernant la série de fonctions $\sum (f_{n+1} f_n)$? Prouver que la suite (f_n) converge uniformément sur I. Soit f sa limite.
- **d.** Prouver que f est une solution sur I de l'équation différentielle $y' = x^2 + y^2$ satisfaisant à f(0) = 0.

6. On pose, quand cela a un sens, $f(x) = \sum_{n=1}^{+\infty} e^{-n^2 x}$.

Étudier la fonction f (définition, régularité de la somme, limite aux bornes).

- 7. Soit *r* un réel élément de [0,1] fixé.
 - a. Prouver la convergence de la série de fonctions (de θ) $\sum r^n \sin n\theta$, et calculer sa somme.
 - **b.** Prouver de même la convergence de la série $\sum r^n \frac{\cos n\theta}{n}$. Calculer la somme de cette série.
 - **c.** Calculer l'intégrale $\int_{0}^{2\pi} \ln(1 2r\cos\theta + r^2) d\theta$.
 - **d.** Prouver que pour |r| > 1, l'intégrale envisagée à la question **c.** a un sens, et la calculer.
- **8.** Prouver que l'on définit une fonction sur **R** en posant :

$$f(x) = \sum_{n=0}^{+\infty} \left(\arctan(n+x) - \arctan n\right).$$

Montrer que f est de classe C^1 sur **R**, donner une relation liant f(x+1) et f(x), et déterminer la limite de f en $+\infty$.

- **9.** On pose, quand c'est possible, $f(x) = \sum_{n=1}^{+\infty} \frac{1}{n^2 + x^2}$.
- **a.** Déterminer le domaine de définition de f, prouver que f est continue, qu'elle décroît sur \mathbf{R}^+ , et déterminer sa limite en $+\infty$.
 - **b.** Donner, par comparaison avec une intégrale, un encadrement de f(x). En déduire un équivalent de f en $+\infty$.
- (10). Pour x > 0, on pose $\psi(x) = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n^x}$.
 - **a.** Donner une relation reliant $\psi(x)$ et $\zeta(x)$ pour x > 1.
 - **b.** Prouver que ψ est continue sur \mathbf{R}^{+*} .
 - **c.** Prouver que ψ est de classe C^1 sur \mathbf{R}^{+*} (attention !). Retrouver l'équivalent de ζ au voisinage de 1.

On pose désormais, pour x élément de]1,2] et n > 0, $u_n(x) = \frac{1}{n^x} - \int_{-\pi}^{n+1} \frac{dt}{t^x}$.

- c. Prouver que la série $\sum u_n$ converge normalement sur]1,2] et exprimer sa somme à l'aide de la fonction ζ .
- **d.** Déterminer la limite en 1 de la fonction u_n et en déduire $\lim_{x\to 1+} \left(\zeta(x) \frac{1}{x-1}\right)$.
- e. Déterminer la somme de la série $\sum (-1)^n \frac{\ln n}{n}$.
- **11.** a. Prouver, pour tout réel x de]-1,1[, l'égalité : $\sum_{n=1}^{+\infty} \frac{x^n}{1+x^n} = \sum_{p=1}^{+\infty} (-1)^{p-1} \frac{x^p}{1-x^p}$ (indication : je suis trop gentil!).
 - **b.** En déduire la valeur de $\lim_{x\to 1^-} (1-x) \sum_{n=1}^{+\infty} \frac{x^n}{1+x^n}$.
 - c. Retrouver la valeur de la limite précédente par comparaison de $\sum_{n=1}^{+\infty} \frac{x^n}{1+x^n}$ avec une intégrale.