数理逻辑

— 思想与方法

李娜 编著南开大学

吴向军 2023年6月

目录

- 3. 命题逻辑
 - 3.1. 形式系统
 - 3.2. 命题语言
 - 3.3. 命题演算的公理系统
 - 3.4. 命题演算的自然推理系统
 - 3.5. FPC中的可证公式
 - 3.6. 命题语义学

2023.6 吴向军 2/58

定义(公理系统)

- 无需证明的命题(或公式)为公理;
- 从公理出发,用演绎规则推导出定理的演绎体系, 称为公理系统。

定义(公理系统)

- 无需证明的命题(或公式)为公理;
- 从公理出发,用演绎规则推导出定理的演绎体系, 称为公理系统。

皮亚诺公理

- 1. 0是白然数:
- 2、每一个确定的自然数a,都有一个确定的后继数a',a'也是自然数(一个数的后继数就是紧接在这个数后面的数,例如,0的后继数是1,1的后继数是2等等);
- 3、0不是任何自然数的后继数;
- 4、如果b、c的后继数都是自然数a,那么b=c;
- 5、任意关于自然数的命题,如果证明了它对自然数0是对的,又假定它对自然数n为真时,可以证明它对n'也真,那么,命题对所有自然数都真。 (这条公理也叫归纳公理,保证了数学归纳法的正确性)

定义(公理系统)

- 无需证明的命题(或公式)为公理;
- 从公理出发,用演绎规则推导出定理的演绎体系, 称为公理系统。

定义(公理系统)

- 无需证明的命题(或公式)为公理;
- 从公理出发,用演绎规则推导出定理的演绎体系, 称为公理系统。

欧几里得公理

- 1、任意两个点可以通过一条直线连接。
- 2、任意线段能无限延伸成一条直线。
- 3、给定任意线段,可以以其一个端点作为圆心,该线段作为半径作一个圆。
- 4、所有直角都全等。
- 5、若两条直线都与第三条直线相交,并且在同一边的内角之和小于两个直角,则这两条直线在 这一边必定相交。

定义(命题演算)

- 命题逻辑中的重言式(永真式)为公理;
- 用永真式来进行逻辑演算的系统, 称为命题演算(系统)。

2023.6 吴向军 4/58

- 符号: 系统在所用的各种字母;
- 公式(语句): 按一定规则用符号所形成的符号串;
- 公理: 系统推理的起点(或已知条件);
- 推理规则:演绎的根据,它规定把若干公式推理出 另一个公式。

用公理和推理规则推导出的公式, 称为形式系统的定理。

2023.6 吴向军 5/58

- 符号: 系统在所用的各种字母;
- 公式(语句): 按一定规则用符号所形成的符号串;
- 公理: 系统推理的起点(或已知条件);
- 推理规则: 演绎的根据, 它规定把若干公式推理出

2023.6 吴向军 5/58

目录

- 3. 命题逻辑
 - 3.1. 形式系统
 - 3.2. 命题语言
 - 3.3. 命题演算的公理系统
 - 3.4. 命题演算的自然推理系统
 - 3.5. FPC中的可证公式
 - 3.6. 命题语义学

2023.6 吴向军 6/58

命题语言的符号

- 命题常量: T, F
- 命题变量: p, q, r, ...
- 联结词: ¬, ∨, ∧, →(相当于运算符)
- 括号: (,), 改变联结次序(相当于改变运算次序)

$$L_0 = \{T, F, p, q, r, \ldots, (,), \neg, \lor, \land, \rightarrow \}$$

C/C++语言的类似描述:

- 常量: 0, 1, 3.14159, true, false, 'T', "World", ···
- 变量: i, j, x, y, ···
- 联结词: +, -, *, /, 各种保留字
- 括号: (,), {, }, [,], ...

2023.6 吴向军 7/58

- 命题常量和变量是公式: *T*, *F*, *p*, *q*, ...
- A是公式, (A)和¬A是命题公式;
- $A \cap B$ 是公式, $A \wedge B$, $A \vee B$, $A \to B \cap A \leftrightarrow B$ 都是公式。

通常称为合式公式Wff(符合组成规则的符号串)。

2023.6 吴向军 8/58

- 命题常量和变量是公式: *T*, *F*, *p*, *q*, ...
- A是公式, (A)和¬A是命题公式;
- $A \cap B$ 是公式, $A \wedge B$, $A \vee B$, $A \to B \cap A \leftrightarrow B$ 都是公式。

通常称为合式公式Wff(符合组成规则的符号串)。例如: p,q,r是命题公式。

- $p, q, r, (p), (q), (r), \cdots$
- $\bullet \ (p \land \neg q), (\neg q \lor r), ((p \lor q) \to (\neg q)), \ (p \leftrightarrow (q \land r)), \ \dots$

2023.6 吴向军 8/58

- 命题常量和变量是公式: T, F, p, q, ...
- A是公式, (A)和¬A是命题公式;
- $A \cap B$ 是公式, $A \wedge B$, $A \vee B$, $A \to B \cap A \leftrightarrow B$ 都是公式。

通常称为合式公式Wff(符合组成规则的符号串)。

$$L_0 = \{T, F, p, q, r, ..., (,), \neg, \lor, \land, \to\}$$

 $W_0 = \{w : w \neq L_0$ 的合式公式 \}

2023.6 吴向军 8/58

定义(公式的复杂度)

假设有公式 α , 用 $deg(\alpha)$ 表示其复杂度。 $deg(\alpha)$ 的递 归定义如下:

- 命题变元:
- 若 $\alpha = \neg \beta$, 则 $deg(\alpha) = 1 + deg(\beta)$;
- $\Psi: OP \in \{ \lor, \land, \rightarrow, \leftrightarrow \}$.

2023.6 吴向军 9 / 58

假设:
$$\alpha = \neg T \lor (p \land \neg q)$$
。 $deg(\alpha) = ?$

$$deg(\alpha) = 2 + deg(\neg T) + deg(p \land \neg q)$$

$$= 2 + 1 + deg(T) + 2 + deg(p) + deg(\neg q)$$

$$= 2 + 1 + 0 + 2 + 0 + 1 + deg(q)$$

$$= 2 + 1 + 0 + 2 + 0 + 1 + 0 = 6$$

2023.6 吴向军 10 / 58

引理

公式集S是 W_0 的充要条件是(" $S = W_0$ "的充要条件):

- 若 α 是原子公式,则 α ∈ S;
- 若 $\alpha, \beta \in S$,则¬ $\alpha \in S$,($\alpha \lor \beta$) $\in S$ 。

引理

公式集S是 W_0 的充要条件是(" $S = W_0$ "的充要条件):

- $\Xi \alpha, \beta \in S$, $\mathbb{N} \neg \alpha \in S$, $(\alpha \lor \beta) \in S$.

证明

 $I, S \subseteq W_0$

由 W_0 的形成规则可得。

引理

公式集S是 W_0 的充要条件是(" $S = W_0$ "的充要条件):

- 若 α 是原子公式,则 $\alpha \in S$;
- 若 α , $\beta \in S$, 则 $\neg \alpha \in S$, $(\alpha \lor \beta) \in S$ 。

证明

- I、S⊆W₀
 由W₀的形成规则可得。
- 2、 $W_0 \subseteq S$ 。任取公式 $\alpha \in W_0$,按公式复杂度 $deg(\alpha)$ 用强数学归纳法来证明。
- 2.1、 $deg(\alpha) = 0$, 即: α 是命题常量或命题变元。所以, $\alpha \in S$ 。

引理

公式集S是 W_0 的充要条件是(" $S = W_0$ "的充要条件):

- 若 α 是原子公式,则 $\alpha \in S$;

证明

2.2、假设: $deg(\alpha) < m$ 时, 结论成立。证明: $deg(\alpha) = m$ 时, 结论也成立。

引理

公式集S是 W_0 的充要条件是(" $S = W_0$ "的充要条件):

- 若 α 是原子公式,则 α ∈ S;

证明

- 2.2、假设: $deg(\alpha) < m$ 时, 结论成立。证明: $deg(\alpha) = m$ 时, 结 论也成立。
- $(a) \alpha = \neg \beta$ 。由公式复杂度的定义可得: $deg(\beta) = m 1 < m$ 。 由归纳假设可知: $\beta \in S$ 。由公式集S的形成规则可知: $\neg \beta \in S$, 即: $\alpha \in S_{\circ}$

2023.6 吴向军 11 / 58

引理

公式集S是 W_0 的充要条件是(" $S = W_0$ "的充要条件):

- 若 α 是原子公式,则 $\alpha \in S$;

证明

- 2.2、假设: $deg(\alpha) < m$ 时, 结论成立。证明: $deg(\alpha) = m$ 时, 结论也成立。
- (b) $\alpha = \beta \lor \gamma$ 。由公式复杂度的定义可得: $deg(\beta) < m$ 和 $deg(\gamma) < m$ 。由归纳假设可知: $\beta \in S$ 和 $\gamma \in S$ 。由公式集S的形成规则可知: $\beta \lor \gamma \in S$,即: $\alpha \in S$ 。

引理

公式集S是 W_0 的充要条件是(" $S = W_0$ "的充要条件):

- 若 α 是原子公式,则 $\alpha \in S$;

证明

2.2、假设: $deg(\alpha) < m$ 时,结论成立。证明: $deg(\alpha) = m$ 时,结论也成立。

所以, $\forall \alpha \in W_0$, 都有: $\alpha \in S$, 即: $W_0 \subseteq S$ 。

引理

公式集S是 W_0 的充要条件是(" $S = W_0$ "的充要条件):

- 若 α 是原子公式,则 $\alpha \in S$;

证明

2.2、假设: $deg(\alpha) < m$ 时, 结论成立。证明: $deg(\alpha) = m$ 时, 结论也成立。

所以, $\forall \alpha \in W_0$, 都有: $\alpha \in S$, 即: $W_0 \subseteq S$ 。 所以, $S = W_0$ 。

目录

- 3. 命题逻辑
 - 3.1. 形式系统
 - 3.2. 命题语言
 - 3.3. 命题演算的公理系统
 - 3.4. 命题演算的自然推理系统
 - 3.5. FPC中的可证公式
 - 3.6. 命题语义学

2023.6 吴向军 12/58

演绎基础

1、公理模式

- 重言律 $A_1: \alpha \vee \alpha \rightarrow \alpha$
- 析取引入律 A_2 : $\alpha \to \alpha \lor \beta$
- 析取交换律 A_3 : $\alpha \lor \beta \to \beta \lor \alpha$
- 析取附加律 A_4 : $(\beta \to \gamma) \to ((\alpha \lor \beta) \to (\alpha \lor \gamma))$

演绎基础

2、推理规则

$$(\alpha \to \beta) \land \alpha \stackrel{\text{\tiny \sharp}}{\Longrightarrow} \beta$$

假言推理规则(MP规则)。

2023.6 吴向军 14/58

命题演算

定义(证明)

假设公理集 $A = \{\alpha_1, \alpha_2, \dots, \alpha_k\}$,一个公式序列 β_1 , β_2, \dots, β_n 。若每个 β_s , $s \in \{1, 2, \dots, n\}$,都有:

- $\beta_s \in A$, $\check{\mathfrak{A}}$
- β_i 和 β_j 运用MP规则得到 β_s ,其中:i,j < s。 则称公式序列 $\beta_1,\beta_2,\ldots,\beta_n$ 为公式 β 的一个证明。

2023.6 吴向军 15/58

命题演算

定义(公式的证明)

假设公理集 $A = \{\alpha_1, \alpha_2, \dots, \alpha_k\}$ 和待证明的结论 β 。 若存在公式序列 $\beta_1, \beta_2, \dots, \beta_n (= \beta)$,则称公式序列 β_1 , β_2, \dots, β_n 为 β 的一个证明, β 是本系统的定理。 记为: $\vdash_0 \beta$,或 \vdash β 。

2023.6 吴向军 16/58

公式的演绎

定义(公式的演绎)

假设 Φ 是一个公式集, α 是一个公式。若存在一个有限公式序列: $\beta_1,\beta_2,\ldots,\beta_k$ (= α)。 β_i 是公理、或由前面两个公式用MP规则所得,则称公式 α 可由公式集 Φ 海绎(推导),记为: $\Phi \vdash \alpha$ 。

2023.6 吴向军 17/58

公式的演绎

PC系统的几个定理。

•
$$\vdash (\beta \to \gamma) \to ((\alpha \to \beta) \to (\alpha \to \gamma))$$
 三段论原则

- $\vdash \alpha \rightarrow \alpha$ 同一原则
- $\vdash \neg \alpha \lor \alpha$ 排中律
- ⊢ α ∨ ¬α 排中律
- . . .

2023.6 吴向军 18/58

证明:
$$\vdash (\beta \to \gamma) \to ((\alpha \to \beta) \to (\alpha \to \gamma))$$
。

 $A_1: \alpha \vee \alpha \to \alpha$

 $A_2:\alpha\to\alpha\vee\beta$

 $A_3:\alpha\vee\beta\to\beta\vee\alpha$

 $A_4: (\beta \to \gamma) \to ((\alpha \lor \beta) \to (\alpha \lor \gamma))$

证明:

$$(1) (\beta \to \gamma) \to ((\neg \alpha \lor \beta) \to (\neg \alpha \lor \gamma)) \qquad (A_4)$$

$$(2) (\beta \to \gamma) \to ((\alpha \to \beta) \to (\alpha \to \gamma)) \tag{(1)和→的定义)}$$

2023.6 吴向军 19/58

证明:
$$\vdash \alpha \rightarrow \alpha$$
。

$$A_1: \alpha \vee \alpha \to \alpha$$
$$A_2: \alpha \to \alpha \vee \beta$$

$$A_3:\alpha\vee\beta\to\beta\vee\alpha$$

$$A_4:(\beta \to \gamma) \to ((\alpha \lor \beta) \to (\alpha \lor \gamma))$$

证明:
$$\vdash \alpha \rightarrow \alpha$$
。

$$A_1: \alpha \vee \alpha \to \alpha$$
$$A_2: \alpha \to \alpha \vee \beta$$

 $A_3: \alpha \vee \beta \rightarrow \beta \vee \alpha$

 $A_4: (\beta \to \gamma) \to ((\alpha \lor \beta) \to (\alpha \lor \gamma))$

证明:

$$(1) ((\alpha \lor \alpha) \to \alpha) \to ((\alpha \to (\alpha \lor \alpha)) \to (\alpha \to \alpha))$$
 (定理1, $\alpha \lor \alpha \mapsto \beta$, $\alpha \mapsto \gamma$)

证明:
$$\vdash \alpha \rightarrow \alpha$$
。

$$A_1: \alpha \vee \alpha \to \alpha$$
$$A_2: \alpha \to \alpha \vee \beta$$

 $A_3: \alpha \vee \beta \rightarrow \beta \vee \alpha$

 $A_4: (\beta \to \gamma) \to ((\alpha \lor \beta) \to (\alpha \lor \gamma))$

证明:

$$(1) ((\alpha \lor \alpha) \to \alpha) \to ((\alpha \to (\alpha \lor \alpha)) \to (\alpha \to \alpha))$$
(定理1, $\alpha \lor \alpha \mapsto \beta$, $\alpha \mapsto \gamma$)
$$(2) (\alpha \lor \alpha) \to \alpha$$

$$(A_1)$$

证明:
$$\vdash \alpha \rightarrow \alpha$$
。

$$A_1: \alpha \vee \alpha \to \alpha$$
$$A_2: \alpha \to \alpha \vee \beta$$

 $A_3: \alpha \vee \beta \rightarrow \beta \vee \alpha$

 $A_4: (\beta \to \gamma) \to ((\alpha \lor \beta) \to (\alpha \lor \gamma))$

证明:

$$(1) ((\alpha \lor \alpha) \to \alpha) \to ((\alpha \to (\alpha \lor \alpha)) \to (\alpha \to \alpha))$$
 (定理1, $\alpha \lor \alpha \mapsto \beta$, $\alpha \mapsto \gamma$)

$$(2) (\alpha \vee \alpha) \to \alpha \tag{A_1}$$

(3)
$$(\alpha \to (\alpha \lor \alpha)) \to (\alpha \to \alpha)$$
 ((1), (2), MP)

定理证明的示例

证明:
$$\vdash \alpha \rightarrow \alpha$$
。

$$A_1: \alpha \vee \alpha \to \alpha$$
$$A_2: \alpha \to \alpha \vee \beta$$

 $A_3: \alpha \vee \beta \rightarrow \beta \vee \alpha$

 $A_4: (\beta \to \gamma) \to ((\alpha \lor \beta) \to (\alpha \lor \gamma))$

证明:

$$(1)\left((\alpha\vee\alpha)\to\alpha\right)\to\left((\alpha\to(\alpha\vee\alpha))\to(\alpha\to\alpha)\right)$$

(定理1,
$$\alpha \lor \alpha \mapsto \beta$$
, $\alpha \mapsto \gamma$)

(2)
$$(\alpha \vee \alpha) \rightarrow \alpha$$

$$(A_1)$$

$$(3) (\alpha \to (\alpha \lor \alpha)) \to (\alpha \to \alpha)$$

$$(4) \alpha \to (\alpha \vee \alpha)$$

$$(A_2, \beta \mapsto \alpha)$$

2023.6 吴向军 20 / 58

定理证明的示例

证明:
$$\vdash \alpha \rightarrow \alpha$$
。

$$A_1: \alpha \vee \alpha \to \alpha$$
$$A_2: \alpha \to \alpha \vee \beta$$

 $A_3: \alpha \vee \beta \rightarrow \beta \vee \alpha$

 $A_4: (\beta \to \gamma) \to ((\alpha \lor \beta) \to (\alpha \lor \gamma))$

证明:

$$(1)\left((\alpha\vee\alpha)\to\alpha\right)\to\left((\alpha\to(\alpha\vee\alpha))\to(\alpha\to\alpha)\right)$$

(定理1,
$$\alpha \lor \alpha \mapsto \beta$$
, $\alpha \mapsto \gamma$)

(2)
$$(\alpha \vee \alpha) \rightarrow \alpha$$

$$(A_1)$$

$$(3) (\alpha \to (\alpha \lor \alpha)) \to (\alpha \to \alpha)$$

$$(4) \alpha \to (\alpha \vee \alpha)$$

$$(A_2, \beta \mapsto \alpha)$$

(5)
$$\alpha \rightarrow \alpha$$

2023.6 吴向军 20 / 58

目录

- 3. 命题逻辑
 - 3.1. 形式系统
 - 3.2. 命题语言
 - 3.3. 命题演算的公理系统
 - 3.4. 命题演算的自然推理系统
 - 3.5. FPC中的可证公式
 - 3.6. 命题语义学

2023.6 吴向军 21/58

自然推理系统

2023.6 吴向军 22 / 58

自然推理系统

下面介绍命题自然推理系统FPC。假设在公式集 $\Phi = \{\alpha_1, \alpha_2, \dots, \alpha_n\}$ 可推出出公式 α ,即: $\Phi \vdash \alpha$ 。下面的演绎定理成立:

$$\alpha_1, \alpha_2, \ldots, \alpha_n \vdash \alpha$$
 当且仅当 $\vdash (\alpha_1 \land \alpha_2 \land \ldots \land \alpha_n) \rightarrow \alpha$

自然推理系统不从公理出发,它从假设开始,用推理规则进行推理的演绎系统。该系统的公理集为"空"。

2023.6 吴向军 23/58

3. 印起

FPC的推理规则

推理规则:结构规则和逻辑联结词规则。

- 1、结构规则
- Hyp(Hypothesis 假设引入规则):按需要随时引入一个假设。

2023.6 吴向军 24/58

推理规则:结构规则和逻辑联结词规则。

- 1、结构规则
- Rep(Repeat 重复规则): 同一公式(包括假设)可重 复运用。

Rep

2023.6 吴向军 25 / 58

推理规则:结构规则和逻辑联结词规则。

- 1、结构规则
- Reit(Reiterate 重述规则): 同一公式(包括假设)可在随后的假设下重复运用。

2023.6 吴向军 26/58

2、逻辑联结词规则

(1) \rightarrow +: 在 α 的假设下可得到 β ,则 $\alpha \rightarrow \beta$;

```
\begin{vmatrix} \vdots \\ \beta \\ \alpha \rightarrow \beta \end{vmatrix}
```


2023.6 吴向军 27/58

- 2、逻辑联结词规则
- (1) \rightarrow +: 在 α 的假设下可得到 β ,则 $\alpha \rightarrow \beta$;
- (2) \rightarrow^- : 若 α 和 $\alpha \rightarrow \beta$, 则可得到 β ;

```
\begin{vmatrix}
\vdots \\
\alpha \\
\vdots \\
\beta
\end{vmatrix}

\begin{vmatrix}
\alpha \\
\beta
\end{vmatrix}

\begin{vmatrix}
\beta \\
\beta
\end{vmatrix}
```


2023.6 吴向军 27/58

- 2、逻辑联结词规则
- (3) \vee^+ : 从 α 可推出 $\alpha \vee \beta$, 或 $\beta \vee \alpha$;

2023.6 吴向军 28 / 58

- 2、逻辑联结词规则
- (3) \vee^+ : 从 α 可推出 $\alpha \vee \beta$, 或 $\beta \vee \alpha$;
- (4) \vee^- : 从 $\alpha \vee \beta$, $\alpha \to \gamma$, $\beta \to \gamma$ 可推出 γ ;

$$\begin{vmatrix}
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
\alpha \rightarrow \gamma \\
\beta \rightarrow \gamma \\
\alpha \vee \beta \\
\gamma$$

2023.6 吴向军 28 / 58

- 2、逻辑联结词规则
- (5) \wedge^+ : 从 α 和 β 可推出 $\alpha \wedge \beta$;

2023.6 吴向军 29 / 58

- 2、逻辑联结词规则
- (5) \wedge^+ : 从 α 和 β 可推出 $\alpha \wedge \beta$;
- (6) \wedge^- : 从 $\alpha \wedge \beta$ 可推出 α 和 β ;

2023.6 吴向军 29 / 58

2、逻辑联结词规则

(7)
$$\leftrightarrow^+$$
: 从 $\alpha \to \beta$ 和 $\beta \to \alpha$ 可推出 $\alpha \leftrightarrow \beta$;

$$\leftrightarrow^{+}:$$

$$\begin{vmatrix} \vdots \\ \alpha \rightarrow \beta \\ \beta \rightarrow \alpha \\ \alpha \leftrightarrow \beta \end{vmatrix}$$

2023.6 吴向军 30 / 58

- 2、逻辑联结词规则
- (7) \leftrightarrow^+ : 从 $\alpha \to \beta$ 和 $\beta \to \alpha$ 可推出 $\alpha \leftrightarrow \beta$;

2023.6 吴向军 30/58

- 2、逻辑联结词规则
- (9) ¬: 若在¬ α 假设下可得到 β 和¬ β ,则 α 。

2023.6 吴向军 31/58

在FPC中,证明: $\vdash \alpha \lor \alpha \to \alpha$ 。 证明

1
$$\alpha \vee \alpha$$
 Hyp

吴向军 2023.6 32 / 58

在FPC中,证明: $\vdash \alpha \lor \alpha \to \alpha$ 。 证明

$$\begin{array}{ccc} 1 & & \alpha \vee \alpha & & \text{Hyp} \\ 2 & & \alpha & & \text{Hyp} \end{array}$$

吴向军 2023.6 32 / 58

在FPC中,证明: $\vdash \alpha \lor \alpha \to \alpha$ 。 证明

$$\begin{array}{cccc}
1 & \alpha \vee \alpha & \text{Hyp} \\
2 & \alpha & \text{Hyp} \\
3 & \alpha & 2, \text{Rep}
\end{array}$$

在FPC中,证明: $\vdash \alpha \lor \alpha \to \alpha$ 。 证明

1	$\alpha \vee \alpha$	Нур
2	α	Hyp
3	α	2, Rep
4	$\alpha \rightarrow \alpha$	$2,3,\rightarrow^+$

FPC的证明示例

在FPC中,证明: $\vdash \alpha \lor \alpha \to \alpha$ 。 证明

1	$\alpha \vee \alpha$	Нур
2	α	Hyp
3	α	2, Rep
4	$\alpha \to \alpha$	$2,3, \rightarrow^+$
5	$\alpha \rightarrow \alpha$	4 Ren

FPC的证明示例

在FPC中,证明: $\vdash \alpha \lor \alpha \to \alpha$ 。 证明

1	$\alpha \vee \alpha$	Hyp
2	α	Нур
3	α	2, Rep
4	$\alpha \to \alpha$	$2,3, ightarrow^+$
5	$\alpha \to \alpha$	4, Rep
6	α	$4.5.1. \vee^{-}$

在FPC中,证明: $\vdash \alpha \lor \alpha \to \alpha$ 。 证明

1	$\alpha \vee \alpha$	Hyp
2	α	Hyp
3	α	2, Rep
4	$\alpha \to \alpha$	$2,3,\rightarrow^+$
5	$\alpha \to \alpha$	4, Rep
6	lpha	$4,5,1,\vee^-$
7	$\alpha \vee \alpha \rightarrow \alpha$	$1, 6, \rightarrow^+$

在FPC中,证明: $\vdash \alpha \lor \beta \to \beta \lor \alpha$ 。 证明

1
$$\alpha \vee \beta$$

Hyp

吴向军 2023.6 33 / 58

在FPC中,证明: $\vdash \alpha \lor \beta \to \beta \lor \alpha$ 。 证明

$$\begin{array}{ccc} 1 & & \alpha \vee \beta & & \text{Hyp} \\ 2 & & \alpha & & \text{Hyp} \end{array}$$

FPC的证明示例

在FPC中,证明: $\vdash \alpha \lor \beta \to \beta \lor \alpha$ 。 证明

$$\begin{array}{ccc} 1 & \alpha \vee \beta & \text{Hyp} \\ 2 & \alpha & \text{Hyp} \\ 3 & \beta \vee \alpha & 2, \vee^+ \end{array}$$

在FPC中,证明: $\vdash \alpha \lor \beta \to \beta \lor \alpha$ 。 证明

1
$$\alpha \lor \beta$$
 Hyp
2 α Hyp
3 $\beta \lor \alpha$ 2, \lor^+
4 $\alpha \to \beta \lor \alpha$ 2, 3, \to^+

在FPC中,证明: $\vdash \alpha \lor \beta \to \beta \lor \alpha$ 。 证明

$$\begin{array}{ccccc} 1 & & \alpha \vee \beta & & \text{Hyp} \\ 2 & & \alpha & & \text{Hyp} \\ 3 & & \beta \vee \alpha & & 2, \vee^+ \\ 4 & & \alpha \rightarrow \beta \vee \alpha & & 2, 3, \rightarrow^+ \\ 5 & & \beta & & \text{Hyp} \end{array}$$

在FPC中,证明: $\vdash \alpha \lor \beta \to \beta \lor \alpha$ 。 证明

1	$\alpha \vee \beta$	Hyp
2	α	Hyp
3	$\beta \vee \alpha$	$2, \vee^+$
4	$\alpha \to \beta \vee \alpha$	$2,3,\rightarrow^+$
5	eta	Hyp
6	$\beta \vee \alpha$	$5, \vee^{+}$

在FPC中,证明: $\vdash \alpha \lor \beta \to \beta \lor \alpha$ 。 证明

1	$\alpha \vee \beta$	Нур
2	α	Hyp
3	$\beta \vee \alpha$	$2,\vee^+$
4	$\alpha \to \beta \vee \alpha$	$2,3,\rightarrow^+$
5	eta	Hyp
6	$\beta \vee \alpha$	<i>5</i> , ∨ ⁺
7	$\beta \to \beta \vee \alpha$	5. 6. \to^+

在FPC中,证明: $\vdash \alpha \lor \beta \to \beta \lor \alpha$ 。 证明

1	$\alpha \vee \beta$	Hyp
2	α	Hyp
3	$\beta \vee \alpha$	$2, \vee^+$
4	$\alpha \to \beta \vee \alpha$	$2,3,\rightarrow^+$
5	eta	Hyp
6	$\beta \vee \alpha$	$5, \vee^{+}$
7	$\beta \to \beta \vee \alpha$	$5, 6, \rightarrow^+$
8	$\beta \vee \alpha$	$4, 7, \vee^-$

在FPC中,证明: $\vdash \alpha \lor \beta \to \beta \lor \alpha$ 。 证明

1	$\alpha \vee \beta$	Hyp
2	α	Hyp
3	$\beta \vee \alpha$	$2, \vee^+$
4	$\alpha \to \beta \vee \alpha$	$2,3, \rightarrow^+$
5	eta	Hyp
6	$\beta \vee \alpha$	$5, \vee^+$
7	$\beta \to \beta \vee \alpha$	$5, 6, \rightarrow^+$
8	$\beta \vee \alpha$	$4,7,\vee^-$
9	$\alpha \vee \beta \to \beta \vee \alpha$	$1, 8, \rightarrow^+$

在FPC中,证明:
$$\vdash (\beta \to \gamma) \to (\alpha \lor \beta \to \alpha \lor \gamma)$$
。 证明

1
$$\beta \rightarrow \gamma$$

Нур

2023.6 吴向军 34/58

在FPC中,证明: $\vdash (\beta \to \gamma) \to (\alpha \lor \beta \to \alpha \lor \gamma)$ 。 证明

$$\begin{array}{ccc}
1 & \beta \to \gamma \\
2 & \alpha \lor \beta
\end{array}$$

2023.6 吴向军 34/58

在FPC中,证明: $\vdash (\beta \to \gamma) \to (\alpha \lor \beta \to \alpha \lor \gamma)$ 。 证明

1	$\beta o \gamma$	Нур
2	$\alpha \vee \beta$	Нур
3	α	Нур

2023.6 吴向军 34/58

在FPC中,证明: $\vdash (\beta \to \gamma) \to (\alpha \lor \beta \to \alpha \lor \gamma)$ 。 证明

1	$\beta \to \gamma$	Нур
2	$\alpha \vee \beta$	Нур
3	α	Нур
4	$\alpha \vee \gamma$	$3,\vee^+$

在FPC中,证明: $\vdash (\beta \to \gamma) \to (\alpha \lor \beta \to \alpha \lor \gamma)$ 。 证明

1	$\beta o \gamma$	Нур
2	$\alpha \vee \beta$	Нур
3	lpha	Нур
4	$\alpha \lor \gamma$	$3,\vee^+$
5	$\alpha \to \alpha \vee \gamma$	$3,4,\rightarrow^+$

在FPC中,证明: $\vdash (\beta \to \gamma) \to (\alpha \lor \beta \to \alpha \lor \gamma)$ 。 证明

1	$eta ightarrow \gamma$	Нур
2	$\alpha \vee \beta$	Нур
3	α	Нур
4	$\alpha \vee \gamma$	$3,\vee^+$
5	$\alpha \to \alpha \vee \gamma$	3, 4, -
6	β	Нур

在FPC中,证明: $\vdash (\beta \to \gamma) \to (\alpha \lor \beta \to \alpha \lor \gamma)$ 。 证明

1	$\beta o \gamma$	Нур
2	$\alpha \vee \beta$	Нур
3	α	Нур
4	$\alpha \vee \gamma$	$3, \vee^+$
5	$\alpha \to \alpha \vee \gamma$	$3,4,\rightarrow^+$
6	eta	Нур
7	$eta ightarrow \gamma$	1, Reit

在FPC中,证明: $\vdash (\beta \to \gamma) \to (\alpha \lor \beta \to \alpha \lor \gamma)$ 。 证明

1	$\beta \to \gamma$
2	$\alpha \lor \beta$
3	lpha
4	$\alpha \lor \gamma$
5	$\alpha \to \alpha \vee \gamma$
6	β
7	$eta ightarrow \gamma$
8	γ

Hyp
Hyp
3,
$$\vee^+$$

3, 4, \to^+
Hyp
1, Reit
6, 7, \to^-

Hyp Hyp $3, \lor^+$ $3, 4, \rightarrow^+$ Hyp 1, Reit $6, 7, \rightarrow^ 8, \lor^+$

FPC的证明示例

在FPC中,证明: $\vdash (\beta \to \gamma) \to (\alpha \lor \beta \to \alpha \lor \gamma)$ 。 证明

1	$eta ightarrow \gamma$
2	$\alpha \lor \beta$
3	lpha
4	$\alpha \lor \gamma$
5	$\alpha \to \alpha \vee \gamma$
6	eta
7	$eta ightarrow \gamma$
8	γ
9	$\alpha \lor \gamma$

Hyp Hyp $3, \vee^{+}$ $3, 4, \rightarrow^{+}$ Hyp 1, Reit $6, 7, \rightarrow^{-}$ $8, \vee^{+}$ $6, 9, \rightarrow^{+}$

FPC的证明示例

在FPC中,证明: $\vdash (\beta \to \gamma) \to (\alpha \lor \beta \to \alpha \lor \gamma)$ 。 证明

1	$eta ightarrow \gamma$
2	$\alpha \lor \beta$
3	lpha
4	$\alpha \lor \gamma$
5	$\alpha \to \alpha \vee \gamma$
6	eta
7	$eta ightarrow \gamma$
8	γ
9	$\alpha \lor \gamma$
10	$\beta \to \alpha \vee \gamma$

在FPC中,证明: $\vdash (\beta \to \gamma) \to (\alpha \lor \beta \to \alpha \lor \gamma)$ 。 证明

1	$eta ightarrow \gamma$
2	$\alpha \vee \beta$
3	α
4	$\alpha \lor \gamma$
5	$\alpha \to \alpha \vee \gamma$
6	eta
7	$eta ightarrow \gamma$
8	γ
9	$\alpha \lor \gamma$
10	$\beta \to \alpha \vee \gamma$
11	$\alpha \lor \gamma$

Hyp
Hyp
Hyp

$$3, \lor^{+}$$

 $3, 4, \to^{+}$
Hyp
 $1, \text{Reit}$
 $6, 7, \to^{-}$
 $8, \lor^{+}$
 $6, 9, \to^{+}$
 $2, 5, 10, \lor^{-}$

在FPC中,证明: $\vdash (\beta \to \gamma) \to (\alpha \lor \beta \to \alpha \lor \gamma)$ 。 证明

1	$eta ightarrow \gamma$	Нур
2	$\alpha \lor \beta$	Нур
3	lpha	Нур
4	$\alpha \lor \gamma$	$3,\vee^+$
5	$\alpha \to \alpha \vee \gamma$	$3,4,\rightarrow^+$
6	eta	Нур
7	$eta ightarrow \gamma$	1, Reit
8	γ	$6,7,\rightarrow^-$
9	$\alpha \vee \gamma$	$8, \vee^+$
10	$\beta \to \alpha \vee \gamma$	$6, 9, \rightarrow^+$
11	$\alpha \vee \gamma$	$2, 5, 10, \vee^-$
12	$\alpha \vee \beta \rightarrow \alpha \vee \gamma$	$2, 11, \rightarrow^+$

在FPC中,证明: $\vdash (\beta \to \gamma) \to (\alpha \lor \beta \to \alpha \lor \gamma)$ 。 证明

```
\beta \to \gamma
                                                                       Hyp
             \alpha \vee \beta
                                                                       Hyp
 3
                                                                       Hyp
                     \alpha
                                                                       3. \vee^{+}
                     \alpha \vee \gamma
 5
                                                                       3, 4, \to^+
                  \alpha \to \alpha \vee \gamma
 6
                    β
                                                                       Hyp
 7
                   \beta \to \gamma
                                                                       1. Reit
 8
                                                                       6, 7, \to^{-}
 9
                                                                       8. \vee^{+}
                    \alpha \vee \gamma
10
                 \beta \to \alpha \vee \gamma
                                                                       6, 9, \to^+
11
                                                                      2, 5, 10, \vee^-
                 \alpha \vee \gamma
12
                                                      2,11,\rightarrow^+
                 \alpha \vee \beta \rightarrow \alpha \vee \gamma
13 (\beta \to \gamma) \to (\alpha \lor \beta \to \alpha \lor \gamma) 1, 12, \to^+
```


目录

- 3. 命题逻辑
 - 3.1. 形式系统
 - 3.2. 命题语言
 - 3.3. 命题演算的公理系统
 - 3.4. 命题演算的自然推理系统
 - 3.5. FPC中的可证公式
 - 3.6. 命题语义学

2023.6 吴向军 35/58

证明:
$$\vdash (\alpha \to \beta) \to ((\beta \to \gamma) \to (\alpha \to \gamma))$$
。
证明
$$1 \qquad \alpha \to \beta$$

Hyp

证明:
$$\vdash (\alpha \to \beta) \to ((\beta \to \gamma) \to (\alpha \to \gamma))$$
。
证明

$$\begin{array}{ccc} 1 & & \alpha \rightarrow \beta \\ 2 & & \beta \rightarrow \gamma \end{array}$$

Нур Нур

证明:
$$\vdash (\alpha \to \beta) \to ((\beta \to \gamma) \to (\alpha \to \gamma))$$
。
证明

$$\begin{array}{ccc}
1 & & \alpha \to \beta \\
2 & & \beta \to \gamma \\
3 & & \alpha
\end{array}$$

Нур Нур Нур

Hyp

Hyp

Hyp

1, Reit

可证公式

证明:
$$\vdash (\alpha \to \beta) \to ((\beta \to \gamma) \to (\alpha \to \gamma))$$
。
证明

$$\begin{array}{ccc} 1 & & \alpha \rightarrow \beta \\ 2 & & \beta \rightarrow \gamma \\ 3 & & \alpha \\ 4 & & \alpha \rightarrow \beta \end{array}$$

Hyp

Hyp

Hyp

1, Reit

可证公式

证明:
$$\vdash (\alpha \to \beta) \to ((\beta \to \gamma) \to (\alpha \to \gamma))$$
。
证明

$$\begin{array}{lll} 1 & & \alpha \rightarrow \beta \\ 2 & & \beta \rightarrow \gamma \\ 3 & & \alpha \\ 4 & & \alpha \rightarrow \beta \\ 5 & & \beta \end{array}$$

Hyp Hyp Hyp 1, Reit

2,Reit

可证公式

证明:
$$\vdash (\alpha \to \beta) \to ((\beta \to \gamma) \to (\alpha \to \gamma))$$
。
证明

1	$\alpha \to \beta$	
2	$\beta o \gamma$	
3	α	
4	$\alpha \to \beta$	
5	eta	
6	$\beta \to \gamma$	

证明:
$$\vdash (\alpha \to \beta) \to ((\beta \to \gamma) \to (\alpha \to \gamma))$$
。
证明

$$\begin{array}{cccc}
1 & \alpha \to \beta \\
2 & \beta \to \gamma \\
3 & \alpha \\
4 & \alpha \to \beta \\
5 & \beta \\
6 & \beta \to \gamma \\
7 & \gamma
\end{array}$$

Hyp
Hyp
1, Reit
$$\rightarrow$$
⁻
2,Reit
5, 6, \rightarrow ⁻

证明:
$$\vdash (\alpha \to \beta) \to ((\beta \to \gamma) \to (\alpha \to \gamma))$$
。
证明

$$\begin{array}{cccc}
1 & \alpha \to \beta \\
2 & \beta \to \gamma \\
3 & \alpha \\
4 & \alpha \to \beta \\
5 & \beta \\
6 & \beta \to \gamma \\
7 & \gamma \\
8 & \alpha \to \gamma
\end{array}$$

Hyp
Hyp
1, Reit
$$\rightarrow$$
 2, Reit
5, 6, \rightarrow 3, 7, \rightarrow +

证明:
$$\vdash (\alpha \to \beta) \to ((\beta \to \gamma) \to (\alpha \to \gamma))$$
。
证明

证明:
$$\vdash (\alpha \to \beta) \to ((\beta \to \gamma) \to (\alpha \to \gamma))$$
。
证明

证明: $\vdash \neg \alpha \lor \alpha$ 。 证明

1
$$\neg(\neg \alpha \lor \alpha)$$
 Hyp

证明:
$$\vdash \neg \alpha \lor \alpha$$
。
证明

$$\begin{array}{ccc} 1 & \neg(\neg\alpha\vee\alpha) & & \mathrm{Hyp} \\ 2 & \neg\alpha & & \mathrm{Hyp} \end{array}$$

证明:
$$\vdash \neg \alpha \lor \alpha$$
。
证明

$$\begin{array}{ccc}
1 & \neg(\neg\alpha\vee\alpha) & \text{Hyp} \\
2 & \neg\alpha & \text{Hyp} \\
3 & \neg\alpha\vee\alpha & 2,\vee^+
\end{array}$$

证明:
$$\vdash \neg \alpha \lor \alpha$$
。
证明

$$\begin{array}{cccc} 1 & \neg(\neg\alpha\vee\alpha) & \text{Hyp} \\ 2 & \neg\alpha & \text{Hyp} \\ 3 & \neg\alpha\vee\alpha & 2,\vee^+ \\ 4 & \neg(\neg\alpha\vee\alpha) & 1, \text{Reit} \end{array}$$

证明:
$$\vdash \neg \alpha \lor \alpha$$
。
证明

$$\begin{array}{cccc} 1 & \neg(\neg\alpha\vee\alpha) & \text{Hyp} \\ 2 & \neg\alpha & \text{Hyp} \\ 3 & \neg\alpha\vee\alpha & 2,\vee^+ \\ 4 & \neg(\neg\alpha\vee\alpha) & 1, \text{Reit} \\ 5 & \alpha & 2,3,4,\neg \end{array}$$

证明:
$$\vdash \neg \alpha \lor \alpha$$
。
证明

$$\begin{array}{cccc}
1 & \neg(\neg\alpha\vee\alpha) & \text{Hyp} \\
2 & \neg\alpha & \text{Hyp} \\
3 & \neg\alpha\vee\alpha & 2,\vee^+ \\
4 & \neg(\neg\alpha\vee\alpha) & 1, \text{Reit} \\
5 & \alpha & 2,3,4,\neg \\
6 & \neg\alpha\vee\alpha & 5,\vee^+
\end{array}$$

证明:
$$\vdash \neg \alpha \lor \alpha$$
。
证明

$$\begin{array}{ccccc} 1 & \neg(\neg\alpha\vee\alpha) & \text{Hyp} \\ 2 & \neg\alpha & \text{Hyp} \\ 3 & \neg\alpha\vee\alpha & 2,\vee^+ \\ 4 & \neg(\neg\alpha\vee\alpha) & 1, \text{Reit} \\ 5 & \alpha & 2,3,4,\neg\\ 6 & \neg\alpha\vee\alpha & 5,\vee^+ \\ 7 & \neg(\neg\alpha\vee\alpha) & 1, \text{Reit} \end{array}$$

证明:
$$\vdash \neg \alpha \lor \alpha$$
。
证明

$$\begin{array}{ccccc} 1 & \neg(\neg\alpha\vee\alpha) & \text{Hyp} \\ 2 & \neg\alpha & \text{Hyp} \\ 3 & \neg\alpha\vee\alpha & 2,\vee^+ \\ 4 & \neg(\neg\alpha\vee\alpha) & 1, \text{Reit} \\ 5 & \alpha & 2,3,4,\neg\\ 6 & \neg\alpha\vee\alpha & 5,\vee^+ \\ 7 & \neg(\neg\alpha\vee\alpha) & 1, \text{Reit} \\ 8 & \neg\alpha\vee\alpha & 1,6,7,\neg \end{array}$$

证明:
$$\vdash \alpha \rightarrow \neg \neg \alpha$$
。

证明

 α

Нур

证明:
$$\vdash \alpha \rightarrow \neg \neg \alpha$$
。
证明

$$\begin{array}{ccc} 1 & \alpha & \text{Hyp} \\ 2 & \neg \neg \neg \alpha & \text{Hyp} \end{array}$$

证明:
$$\vdash \alpha \rightarrow \neg \neg \alpha$$
。
证明

1	α	Нур
2	$\neg\neg\neg\alpha$	Нур
3	$\neg \neg \alpha$	Нур

证明:
$$\vdash \alpha \rightarrow \neg \neg \alpha$$
。
证明

1	α	Нур
2	$\neg\neg\neg\alpha$	Hyp
3	$\neg \neg \alpha$	Hyp
4	$\neg\neg\neg\alpha$	2, Reit

证明:
$$\vdash \alpha \rightarrow \neg \neg \alpha$$
。
证明

1	α	Hyp
2	$\neg\neg\neg\alpha$	Hyp
3	$\neg \neg \alpha$	Hyp
4	$\neg\neg\neg\alpha$	2, Reit
5	$\neg \neg \alpha$	3, Rep

证明:
$$\vdash \alpha \rightarrow \neg \neg \alpha$$
。
证明

1	α	Нур
2	$\neg\neg\neg\alpha$	Нур
3	$\neg \neg \alpha$	Нур
4	$\neg\neg\neg\alpha$	2, Reit
5	$\neg \neg \alpha$	3, Rep
6	$\neg \alpha$	$3, 4, 5, \neg$

证明: $\vdash \alpha \rightarrow \neg \neg \alpha$ 。 证明

1	α	Hyp
2	$\neg\neg\neg\alpha$	Hyp
3	$\neg \neg \alpha$	Hyp
4	$\neg\neg\neg\alpha$	2, Reit
5	$\neg \neg \alpha$	3, Rep
6	$\neg \alpha$	$3, 4, 5, \neg$
7	α	1, Reit

可证公式

证明: $\vdash \alpha \rightarrow \neg \neg \alpha$ 。 证明

1	α	Hyp
2	$\neg\neg\neg\alpha$	Нур
3	$\neg \neg \alpha$	Hyp
4	$\neg\neg\neg\alpha$	2, Reit
5	$\neg \neg \alpha$	3, Rep
6	$\neg \alpha$	$3, 4, 5, \neg$
7	α	1, Reit
8	$\neg \neg \alpha$	$2, 6, 7, \neg$

2023.6 吴向军 38/58

可证公式

证明:
$$\vdash \alpha \rightarrow \neg \neg \alpha$$
。
证明

1	α	Hyp
2	$\neg\neg\neg\alpha$	Hyp
3	$\neg \neg \alpha$	Hyp
4	$\neg\neg\neg\alpha$	2, Reit
5	$\neg \neg \alpha$	3, Rep
6	$\neg \alpha$	$3,4,5,\neg$
7	lpha	1, Reit
8	$\neg \neg \alpha$	$2,6,7,\lnot$
9	$\alpha \to \neg \neg \alpha$	$1,8,\rightarrow^+$

2023.6 吴向军 38/58

目录

- 3. 命题逻辑
 - 3.1. 形式系统
 - 3.2. 命题语言
 - 3.3. 命题演算的公理系统
 - 3.4. 命题演算的自然推理系统
 - 3.5. FPC中的可证公式
 - 3.6. 命题语义学

2023.6 吴向军 39/58

在前面,我们是把自然语言的句子符号化,现在是研究命题公式是否具有某种物理含义或直观含义。

在前面,我们是把自然语言的句子符号化,现在是研究命题公式是否具有某种物理含义或直观含义。

例:
$$(p \to q) \land p \to q_\circ$$

在前面,我们是把自然语言的句子符号化,现在是研究命题公式是否具有某种物理含义或直观含义。

例: $\underline{(p \to q)} \land p \to q$ 。 该公式可解释为下面的句子:

• p: 天下雨, q: 地面潮湿。 若天下雨, 则地面潮湿。天下雨了, 所以, 地面潮湿。

在前面,我们是把自然语言的句子符号化,现在是研究命题公式是否具有某种物理含义或直观含义。

例: $\underline{(p \to q)} \land p \to q$ 。 该公式可解释为下面的句子:

- p: 有钱, q: 鬼推磨。 有钱能使鬼推磨。我有钱, 所以, 我能使鬼推磨。
- 000

在前面,我们是把自然语言的句子符号化,现在是研究命题公式是否具有某种物理含义或直观含义。

例:
$$(p \to q) \land p \to q_\circ$$

命题语义学就是对命题逻辑中所使用的符号给出某 种解释(真值赋值),从而使命题公式有一个真值。

假设: $A = \{0,1\}$, 其中, $0 \mapsto \mathbb{G}$, $1 \mapsto \mathbb{A}$

●一元联结词¬

$$\neg: A \to A$$
 $\neg(x) = 1 - x, \ \forall x \in A$

2023.6 吴向军 41/58

假设: $A = \{0,1\}$, 其中, $0 \mapsto \mathbb{G}$, $1 \mapsto \mathbb{A}$

• 二元联结词 >

$$\vee: A \times A \to A \qquad \vee(x, y) = \max(x, y), \ \forall x, y \in A$$

x	у	$\vee(x,y)$
1	1	1
1	0	1
0	1	1
0	0	0

2023.6 吴向军 41/58

对其它二元联结词 $(\land, \rightarrow, \leftrightarrow)$ 也给出类似的函数定义。

假设: 用符号'*'代表上面任何一个二元联结词*:

$$*: A \times A \rightarrow A$$

每个二元联结词的运算规则定义如下:

v	у		x * y	
X		\wedge	\rightarrow	\leftrightarrow
1	1	1	1	1
1	0	0	0	0
0	1	0	1	0
0	0	0	1	1

2023.6 吴向军 42/58

定义(真值赋值)

真值赋值 σ 是对每个公式 α 指派一个真值的映射 $\sigma(\alpha)$, 即: $\sigma: W \to \{0,1\}$, 且满足以下条件:

- 对命题常量 $T \sim F$: $\sigma(T) = 1, \sigma(F) = 0$;
- 对每个命题变项 $p: \sigma(p) \in \{0,1\};$
- 对每个否定公式 $\neg \beta$: $\sigma(\neg \beta) = 1 \sigma(\beta)$;
- 对析取式 $\alpha \vee \beta : \sigma(\alpha \vee \beta) = \max(\sigma(\alpha), \sigma(\beta))$ 。

2023.6 吴向军 43/58

由真值赋值的定义可知:

$$\begin{split} \sigma(\neg\beta) &= \neg \sigma(\beta) = 1 - \sigma(\beta) \\ \sigma(\alpha \lor \beta) &= \sigma(\alpha) \lor \sigma(\beta) & \sigma(\alpha \land \beta) = \sigma(\alpha) \land \sigma(\beta) \\ \sigma(\alpha \to \beta) &= \sigma(\alpha) \to \sigma(\beta) & \sigma(\alpha \leftrightarrow \beta) = \sigma(\alpha) \leftrightarrow \sigma(\beta) \end{split}$$

由真值赋值的定义可得下面真值表。

х	y	x * y			
		V	\wedge	\rightarrow	\leftrightarrow
1	1	1	1	1	1
1	0	1	0	0	0
0	1	1	0	1	0
0	0	0	0	1	1

2023.6 吴向军 44/58

由真值赋值的定义可知:在真值赋值 σ 下,可计 算 W_0 中每个公式 α 的真值, 其中有:

$$\sigma(\neg \alpha) = 1 \qquad \text{当且仅当} \qquad \sigma(\alpha) = 0$$

$$\sigma(\alpha \lor \beta) = 0 \qquad \text{当且仅当} \qquad \sigma(\alpha) = \sigma(\beta) = 0$$

$$\sigma(\alpha \land \beta) = 1 \qquad \text{当且仅当} \qquad \sigma(\alpha) = \sigma(\beta) = 1$$

$$\sigma(\alpha \to \beta) = 0 \qquad \text{当且仅当} \qquad \sigma(\alpha) = 1, \ \sigma(\beta) = 0$$

$$\sigma(\alpha \leftrightarrow \beta) = 1 \qquad \text{当且仅当} \qquad \sigma(\alpha) = \sigma(\beta)$$

吴向军 45 / 58

例: 命题公式 $\alpha:p\vee q\to q\vee p$, σ 是任意一个真值赋值。则 $\sigma(\alpha)=1$ 。

解: 假设 $\sigma(\alpha) \neq 1$, 即: $\sigma(\alpha) = 0$ 。则,

$$\sigma(p \lor q \to q \lor p) = 0$$

$$\sigma(p \lor q) = 1 \tag{1}$$

$$\sigma(q \vee p) = 0 \tag{2}$$

由式(2)可知: $\sigma(q) = \sigma(p) = 0$ 。

由真值赋值 σ 的定义可得: $\sigma(p \lor q) = 0$ 。 因此,它与式(1)矛

盾。所以, $\sigma(\alpha) = 1$ 。

2023.6 吴向军 46/58

定义(真值赋值满足公式集)

 Φ 是一个公式集, σ 是一个真值赋值。 若 $\sigma(\phi_i)=1, \ \forall \phi_i \in \Phi$,则称真值赋值 σ 满足 Φ ,记为: $\sigma \models \Phi$ 。

特别地, $\Phi = \{\phi\}$, 称真值赋值 σ 满足 ϕ , 记为: $\sigma \models \phi$ 。

定义(重言式)

 α 是一个命题公式。若对任意真值赋值 σ ,都有: $\sigma \models \alpha$,即: $\sigma(\alpha) = 1$,则称命题公式 α 为重言式。

2023.6 吴向军 47/58

定义(重言后承)

 Φ 是一个命题公式集, α 是一个命题公式。对任意真值赋值 σ , 若 $\sigma \models \Phi$, 都有: $\sigma \models \alpha$, 则称命题公式 α 是公式集 Φ 的重言后承, 记为: $\Phi \models \alpha$ 。

2023.6 吴向军 48/58

由此可得:

- $\exists \alpha \in \Phi$, $\mathbb{M}\Phi \models \alpha$;
- α 是重言式,当且仅当, $\emptyset \models \alpha$,当且仅当, $\models \alpha$;
- 若 $\models \alpha$,则 $\Phi \models \alpha$,即:重言式是任意公式集 Φ 的重言后承。

2023.6 吴向军 49/58

证明: $\alpha \models \alpha \lor \beta$, $\neg \alpha \models \alpha \to \beta$ 。

证明: 仟取一个真值赋值 σ 。

$$(1)$$
 若 $\sigma(\alpha) = 1$,则

$$\sigma(\alpha \vee \beta) = \max(\sigma(\alpha), \sigma(\beta)) = \max(1, \sigma(\beta)) = 1$$

2023.6 吴向军 50 / 58

证明: $\alpha \models \alpha \lor \beta$, $\neg \alpha \models \alpha \to \beta$ 。

证明: 任取一个真值赋值 σ 。

$$(1)$$
 若 $\sigma(\alpha) = 1$,则

$$\sigma(\alpha \vee \beta) = \max(\sigma(\alpha), \sigma(\beta)) = \max(1, \sigma(\beta)) = 1$$

$$(2) 若 \sigma(\neg \alpha) = 1, 则$$

$$\sigma(\neg \alpha) = 1 \Longrightarrow 1 - \sigma(\alpha) = 1$$

 $\Longrightarrow \sigma(\alpha) = 0$

2023.6 吴向军 50/58

证明: $\alpha \models \alpha \lor \beta$, $\neg \alpha \models \alpha \to \beta$ 。

证明: 任取一个真值赋值 σ 。

(1) 若 $\sigma(\alpha) = 1$,则

$$\sigma(\alpha \vee \beta) = \max(\sigma(\alpha), \sigma(\beta)) = \max(1, \sigma(\beta)) = 1$$

(2) 若 $\sigma(\neg \alpha) = 1$,则

$$\sigma(\neg \alpha) = 1 \Longrightarrow 1 - \sigma(\alpha) = 1$$

 $\Longrightarrow \sigma(\alpha) = 0$

所以,有:

$$\sigma(\alpha \to \beta) = \sigma(\alpha) \to \sigma(\beta) = 0 \to \sigma(\beta) = 1$$

2023.6 吴向军 50/58

证明: 任取一个真值赋值 σ , 使得: $\sigma \models \Phi$ 。

由已知条件可知: $\sigma(\alpha) = 1$ 和 $\sigma(\alpha \to \beta) = 1$ 。

$$\sigma(\alpha \to \beta) = 1 \Longrightarrow \sigma(\alpha) \to \sigma(\beta) = 1$$
$$\Longrightarrow 1 \to \sigma(\beta) = 1 \qquad (\because \sigma(\alpha) = 1)$$
$$\Longrightarrow \sigma(\beta) = 1$$

所以,有: $\sigma(\beta) = 1$ 。

故, 当 $\sigma \models \Phi$ 时, 有: $\sigma(\beta) = 1$, 即: $\Phi \models \beta$ 。

2023.6 吴向军 51/58

定义(重言等值)

 α 和 β 是命题公式。若 α 和 β 互为重言后承,即:对任意真值赋值 σ ,都有 $\sigma(\alpha) = \sigma(\beta)$,则称命题公式 α 和 β 是重言等值。

 α 和 β 互为重言后承, $\alpha \models \beta$ 和 $\beta \models \alpha$ 。

2023.6 吴向军 52/58

证明: $\{\alpha_1, \alpha_2, \dots, \alpha_n\} \models \alpha$,当且仅当, $\models \alpha_1 \rightarrow \alpha_2 \rightarrow \dots \rightarrow \alpha_n \rightarrow \alpha$ 。证明

只需证:
$$\bowtie \alpha_1 \to \alpha_2 \to \cdots \to \alpha_n \to \alpha$$
,当且仅当,

$$\{\alpha_1,\alpha_2,\cdots,\alpha_n\} \nvDash \alpha_\circ$$

$$\not\vDash \alpha_1 \to \alpha_2 \to \cdots \to \alpha_n \to \alpha$$

$$\iff \sigma(\alpha_1 \to \alpha_2 \to \cdots \to \alpha_n \to \alpha) = 0$$

证明: $\{\alpha_1, \alpha_2, \cdots, \alpha_n\} \models \alpha$,当且仅当, $\models \alpha_1 \rightarrow \alpha_2 \rightarrow \cdots \rightarrow \alpha_n \rightarrow \alpha_0$ 证明

只需证:
$$\bowtie \alpha_1 \to \alpha_2 \to \cdots \to \alpha_n \to \alpha$$
,当且仅当,

$$\{\alpha_1,\alpha_2,\cdots,\alpha_n\} \nvDash \alpha_{\circ}$$

$$\not\models \alpha_1 \to \alpha_2 \to \cdots \to \alpha_n \to \alpha$$

$$\Longleftrightarrow \sigma(\alpha_1 \to \alpha_2 \to \cdots \to \alpha_n \to \alpha) = 0$$

$$\Longleftrightarrow \sigma(\alpha_1) = 1, \ \sigma(\alpha_2 \to \cdots \to \alpha_n \to \alpha) = 0$$

证明: $\{\alpha_1, \alpha_2, \cdots, \alpha_n\} \models \alpha$,当且仅当, $\models \alpha_1 \rightarrow \alpha_2 \rightarrow \cdots \rightarrow \alpha_n \rightarrow \alpha_0$ 证明

只需证:
$$\not\models \alpha_1 \to \alpha_2 \to \cdots \to \alpha_n \to \alpha$$
, 当且仅当, $\{\alpha_1, \alpha_2, \cdots, \alpha_n\} \not\models \alpha_0$

$$\not\models \alpha_1 \to \alpha_2 \to \cdots \to \alpha_n \to \alpha$$

$$\Longleftrightarrow \sigma(\alpha_1 \to \alpha_2 \to \cdots \to \alpha_n \to \alpha) = 0$$

$$\Longleftrightarrow \sigma(\alpha_1) = 1, \ \sigma(\alpha_2 \to \cdots \to \alpha_n \to \alpha) = 0$$

$$\Longleftrightarrow \sigma(\alpha_1) = \sigma(\alpha_2) = 1, \ \sigma(\alpha_3 \to \cdots \to \alpha_n \to \alpha) = 0$$

证明: $\{\alpha_1, \alpha_2, \cdots, \alpha_n\} \models \alpha$,当且仅当, $\models \alpha_1 \rightarrow \alpha_2 \rightarrow \cdots \rightarrow \alpha_n \rightarrow \alpha_0$ 证明

只需证:
$$ot$$
 $\alpha_1 \to \alpha_2 \to \cdots \to \alpha_n \to \alpha,$ 当且仅当,

$$\{\alpha_1,\alpha_2,\cdots,\alpha_n\} \nvDash \alpha_\circ$$

证明: $\{\alpha_1, \alpha_2, \cdots, \alpha_n\} \models \alpha$,当且仅当, $\models \alpha_1 \rightarrow \alpha_2 \rightarrow \cdots \rightarrow \alpha_n \rightarrow \alpha_0$ 证明

$$\{\alpha_1,\alpha_2,\cdots,\alpha_n\} \nvDash \alpha_{\circ}$$

$$\not\models \alpha_1 \to \alpha_2 \to \cdots \to \alpha_n \to \alpha$$

$$\Longleftrightarrow \sigma(\alpha_1 \to \alpha_2 \to \cdots \to \alpha_n \to \alpha) = 0$$

$$\Longleftrightarrow \sigma(\alpha_1) = 1, \ \sigma(\alpha_2 \to \cdots \to \alpha_n \to \alpha) = 0$$

$$\Longleftrightarrow \sigma(\alpha_1) = \sigma(\alpha_2) = 1, \ \sigma(\alpha_3 \to \cdots \to \alpha_n \to \alpha) = 0$$

$$\Longleftrightarrow \cdots$$

$$\Longleftrightarrow \sigma(\alpha_1) = \sigma(\alpha_2) = \sigma(\alpha_3) = \cdots = \sigma(\alpha_n) = 1, \ \sigma(\alpha) = 0$$

$$\Longleftrightarrow \{\alpha_1, \alpha_2, \cdots, \alpha_n\} \not\models \alpha$$

任取一个真值赋值 σ 。

证明: $\Phi, \alpha \models \beta$, 当且仅当, $\Phi \models \alpha \rightarrow \beta$ 。 证明

证明: $\Phi, \alpha \models \beta$, 当且仅当, $\Phi \models \alpha \rightarrow \beta$ 。 证明

任取一个真值赋值 σ 。

$$(1)\ \Phi,\alpha \models \beta$$

由真值赋值定义可知: $\sigma \models \Phi$, $\sigma(\alpha) = 1$ 和 $\sigma(\beta) = 1$ 。

$$\sigma(\alpha \to \beta) = \sigma(\alpha) \to \sigma(\beta) = 1 \to 1 = 1$$

所以,有: $\Phi \models \alpha \rightarrow \beta$ 。

证明: $\Phi, \alpha \models \beta$, 当且仅当, $\Phi \models \alpha \rightarrow \beta$ 。 证明

任取一个真值赋值 σ 。

(2)
$$\Phi \models \alpha \rightarrow \beta$$
 由真值赋值定义可知: $\sigma \models \Phi$, $\sigma(\alpha \rightarrow \beta) = 1$ 。

证明: $\Phi, \alpha \models \beta$, 当且仅当, $\Phi \models \alpha \rightarrow \beta$ 。 证明

任取一个真值赋值 σ 。

$$(2) \Phi \models \alpha \to \beta$$

由真值赋值定义可知: $\sigma \models \Phi$, $\sigma(\alpha \rightarrow \beta) = 1$ 。

假设:
$$\sigma(\alpha) = 1$$
。

$$\sigma(\alpha \to \beta) = 1 \Longrightarrow \sigma(\alpha) \to \sigma(\beta) = 1$$

$$\Longrightarrow 1 \to \sigma(\beta) = 1 \qquad (\because \sigma(\alpha) = 1)$$

$$\Longrightarrow \sigma(\beta) = 1$$

证明: $\Phi, \alpha \models \beta$, 当且仅当, $\Phi \models \alpha \rightarrow \beta$ 。 证明

任取一个真值赋值 σ 。

(2)
$$\Phi \models \alpha \rightarrow \beta$$

由真值赋值定义可知: $\sigma \models \Phi$, $\sigma(\alpha \rightarrow \beta) = 1$ 。

假设:
$$\sigma(\alpha) = 1$$
。

$$\begin{split} \sigma(\alpha \to \beta) &= 1 \Longrightarrow \sigma(\alpha) \to \sigma(\beta) = 1 \\ &\Longrightarrow 1 \to \sigma(\beta) = 1 \\ &\Longrightarrow \sigma(\beta) = 1 \end{split} \qquad (\because \sigma(\alpha) = 1)$$

由
$$\sigma \models \Phi \pi \sigma(\alpha) = 1$$
可得: $\sigma(\beta) = 1$, 即: $\Phi, \alpha \models \beta$ 。

证明:对任意命题公式 α 和 β 。

- $\{\alpha, \alpha \to \beta\} \models \beta_{\circ}$
- α 和 β 重言等值,当且仅当, $(\alpha \leftrightarrow \beta)$ 是重言式。

2023.6 吴向军 55/58

下面描述系统的二个重要概念:可靠性和完备性。

- 如果一个系统可证的公式都是重言式,则该系统是可靠的。也就是说,若 α ,则 α 。
- 若公式是重言式都是可证明的,则该系统是**完全** 的(完备的)。也就是说,若 $\models \alpha$,则 $\vdash \alpha$ 。

2023.6 吴向军 56/58

若系统是可靠的和完全的,则"推理是否正确"是可 判定的。

- 正确推理所得到的蕴涵式在系统中都是可证公式;
- 若蕴涵式在系统中不可证,则推理一定不正确。

2023.6 吴向军 57/58

系统是协调的含义:不存在公式 α ,使得:

$$\vdash \alpha, \neg \alpha$$

2023.6 吴向军 58/58

系统是协调的含义:不存在公式 α ,使得:

$$\vdash \alpha, \neg \alpha$$

 $\alpha \models \beta \pi \alpha \vdash \beta$ 中关系 $\models \pi \vdash n$ 的差异:

• |=是语义的,表示公式 α 和 β 之间的真假关系,与演绎系统中的公理和推理规则无关;

2023.6 吴向军 58/58

系统是协调的含义:不存在公式 α ,使得:

 $\vdash \alpha, \neg \alpha$

 $\alpha \models \beta \pi \alpha \vdash \beta$ 中关系 $\models \pi \vdash n$ 的差异:

- |=是语义的,表示公式 α 和 β 之间的真假关系,与演绎系统中的公理和推理规则无关;
- ►是语法的,表示利用演绎系统中的公理和推理规则,由α能推导出β,与公式赋值及其真假无关。

2023.6 吴向军 58/58