Untitled

Винни-Пух

6/18/2017

Вариант 1

Вопрос 1

Выберите все верные утверждения про байесовский подход:

- 1. Неизвестные параметры трактуются как случайные величины
- 2. Для нахождения апостериорной распределения используется априорное распределение и функция правдоподобия
- 3. Байесовский подход позволяет получить только точечные, но не интервальные оценки параметров
- 4. В качестве точечной байесовской оценки неизвестного параметра можно использовать медиану апостериорного распределения.
- 5. В качестве точечной байесовской оценки неизвестного параметра можно использовать медиану априорного распределения.
- 6. Оценку максимального правдоподобия можно получить как максимум апостериорной плотности при постоянной априорной плотности.

Ответы: TTFTFT

Вопрос 2

Василий оценивает неизвестный параметр a>0 с помощью байесовского подхода. Априорная функция плотности параметра a пропорциональна $\exp(-2a)$. Функция правдоподобия пропорциональна $\exp(-a^2+2a)$. Апостериорная плотность при a>0 пропорциональна

- 1. $\exp(-a^2)$
- 2. $\exp(-a^2 + 2a) + \exp(-2a)$
- 3. $\exp(-a^2 + 2a) \exp(-2a)$
- 4. $\exp(-2a) \exp(-a^2 + 2a)$
- 5. $\exp(-a^2 4a)$

Ответ: TFFFF

Вариант 2

Вопрос 1

Выберите все верные утверждения про байесовский подход:

- 1. Неизвестные параметры трактуются как константы
- 2. Для нахождения апостериорной распределения используется априорное распределение и функция правдоподобия
- 3. Байесовский подход позволяет получить только интервальные, но не точечные оценки параметров

- 4. В качестве точечной байесовской оценки неизвестного параметра можно использовать среднее апостериорного распределения.
- 5. В качестве точечной байесовской оценки неизвестного параметра можно использовать среднее априорного распределения.
- 6. Оценку максимального правдоподобия можно получить как максимум априорной плотности при постоянной апостериорной плотности.

Ответы: FTFTFF

Вопрос 2

Василий оценивает неизвестный параметр a>0 с помощью байесовского подхода. Априорная функция плотности параметра a пропорциональна $\exp(-3a)$. Функция правдоподобия пропорциональна $\exp(-a^2+3a)$. Апостериорная плотность при a>0 пропорциональна

- 1. $\exp(-a^2)$
- 2. $\exp(-a^2 + 3a) + \exp(-3a)$
- 3. $\exp(-a^2 + 3a) \exp(-3a)$
- 4. $\exp(-3a) \exp(-a^2 + 3a)$
- 5. $\exp(-a^2 6a)$

Ответ: TFFFF