Samlefil for alle data til prøveeksamen

Filen 1A.txt

Perioden P er 103.1 millioner år

Filen 1B/Oppgave1B_Figur_A.png

Figure 1: Figur fra filen 1B/Oppgave1B_Figur_A.png

$Filen~1B/Oppgave1B_Figur_B.png$

Figure 2: Figur fra filen 1B/Oppgave1B_Figur_B.png

$Filen \ 1B/Oppgave 1B_Figur_C.png$

Figure 3: Figur fra filen 1B/Oppgave1B_Figur_C.png

$Filen~1B/Oppgave1B_Figur_D.png$

Figure 4: Figur fra filen 1B/Oppgave1B_Figur_D.png

Filen 1B/Oppgave1B_Figur_E.png

Figure 5: Figur fra filen 1B/Oppgave1B_Figur_E.png

Filen 1D.txt

Stjerna A: Tilsynelatende visuell størrelseklasse m
-V = 11.06, tilsynelatende blå størrelseklass $m_B=12.60$

Stjerna B: Tilsynelatende visuell størrelseklasse m
_V = 5.26, tilsynelatende blå størrelseklass $m_B = 6.80$

Stjerna C: Tilsynelatende visuell størrelseklasse m $_{\text{-}}\mathrm{V}=11.06,$ tilsynelatende

blå størrelseklass m_B = 13.60

Stjerna D: Tilsynelatende visuell størrelseklasse m
_V = 5.26, tilsynelatende blå størrelseklass $m_B = 7.80$

Filen 1E.txt

For stjerne 1 sin bane om massesenteret er elliptisiteten e=0.36 og store halvakse a=68.45 AU.

For stjerne 2 sin bane om massesenteret er elliptisiteten e=0.36 og store halvakse a=67.22 AU.

Filen 1F.txt

Ved bølgelengden 529.52 nm finner du størst fluks

$Filen~1G/Oppgave1G_Figur_A.png$

Figure 6: Figur fra filen 1G/Oppgave1G_Figur_A.png

$Filen~1G/Oppgave1G_Figur_B.png$

Figure 7: Figur fra filen 1G/Oppgave1G_Figur_B.png

$Filen~1G/Oppgave1G_Figur_C.png$

Figure 8: Figur fra filen 1G/Oppgave1G_Figur_C.png

$Filen~1G/Oppgave1G_Figur_D.png$

Figure 9: Figur fra filen 1G/Oppgave1G_Figur_D.png

Filen 1G/Oppgave1G_Figur_E.png

Figur E 7.25 7.00 Tilsynelatende størrelsklasse m_V 6.75 6.50 6.25 6.00 5.75 5.50 20 ò 60 40 80 Observasjonstid (dager)

Figure 10: Figur fra filen 1G/Oppgave1G_Figur_E.png

Filen 1I.txt

Gass-sky A har masse på 22.60 solmasser, temperatur på 11.00 Kelvin og tetthet 8.24e-21 kg per kubikkmeter

Gass-sky B har masse på 21.00 solmasser, temperatur på 57.80 Kelvin og tetthet 2.40e-21 kg per kubikkmeter

Gass-sky C har masse på 19.80 solmasser, temperatur på 85.80 Kelvin og

tetthet 5.55e-21 kg per kubikkmeter

Gass-sky D har masse på 14.00 solmasser, temperatur på 42.40 Kelvin og tetthet 6.03e-21 kg per kubikkmeter

Gass-sky E har masse på 14.60 solmasser, temperatur på 65.50 Kelvin og tetthet 2.39e-21 kg per kubikkmeter

Filen 1J.txt

STJERNE A) stjerna har et degenerert heliumskall

STJERNE B) stjernas energi kommer fra frigjort gravitasjonsenergi

STJERNE C) stjernas energi kommer hovedsaklig fra hydrogenfusjon i sentrum

STJERNE D) stjernas energi kommer hovedsaklig fra hydrogenfusjon i skall

STJERNE E) stjernas energi kommer hovedsaklig fra fusjon av magnesium i sentrum

Filen 1L.txt

Stjerne A har spektralklasse G9 og visuell tilsynelatende størrelseklasse m $_{-}\mathrm{V}$ = 7.17

Stjerne B har spektralklasse F8 og visuell tilsynelatende størrelseklasse m_V = $8.52\,$

Stjerne C har spektralklasse F2 og visuell tilsynelatende størrelseklasse m_V = 9.58

Stjerne D har spektralklasse K7 og visuell tilsynelatende størrelseklasse m_V

= 2.01

Stjerne E har spektralklasse K2 og visuell tilsynelatende størrelseklasse m_V = 4.13

Filen 1P.txt

Alle gasspartiklene har fart 100 m/s i tilfeldige (uniformt fordelte) retninger.

$Filen~2A/Oppgave 2A_Figur 1.png$

3

2 ·

1 -

i

ź

3

10 9 8 y-posisjon (buesekunder) 7 6 5

5

x-posisjon (buesekunder)

9

10

Figur 1

Figure 11: Figur fra filen 2A/Oppgave2A_Figur1.png

$Filen~2A/Oppgave 2A_Figur 2.png$

Figure 12: Figur fra filen 2A/Oppgave2A_Figur2.png

$Filen\ 2B/Oppgave 2B_Figur\ 4.png$

Figure 13: Figur fra filen 2B/Oppgave2B_Figur 4.png

4.png

Filen 2B/Oppgave2B_Figur3.png

Figur 3 10 9 8 y-posisjon (buesekunder) 7 6 5 3 2 1 i ż ż 5 10 x-posisjon (buesekunder)

Figure 14: Figur fra filen 2B/Oppgave2B_Figur3.png

Filen 2C.txt

Avstand til solen er 0.11700000000000000677236 AU.

Tangensiell hastighet er 111815.28724435876938514 m/s.

Filen 2D.txt

Kometens avstand fra jorda i punkt 1 er r1=2.316 AU.

Kometens avstand fra jorda i punkt 2 er r2=6.550 AU.

Kometens tilsynelatende størrelseklasse i punkt 1 er m1=16.359.

Filen 3A.txt

Romskipets hastighet langs x-aksen er 0.9424 ganger lyshastigheten.

Tiden mellom utsendelse av strålene er 0.00084 sekunder målt i bakkesystemet.

Filen 3B.txt

Avstanden mellom de to romskipene ved første utsendelse er D=230.0 km.

Romskip2 sin hastighet langs x-aksen er 0.9949 ganger lyshastigheten.

Filen 3E.txt

Bølgelengden målt i romskipet som sender ut er 591.00 nm.

Filen 4A.txt

Stjernas masse er 6.27 solmasser.

Stjernas radius er 0.86 solradier.

Filen 4C.png

Figur 4C 2.4000 2.2000 2.0000 Sannsynlighetstetthet i 10⁻⁴ % 1.8000 1.6000 1.4000 1.2000 1.0000 0.8000 0.6000 0.4000 0.2000 0.0000 -200 200 -600 -400 400 600 Hastighet i x-retning (km/s)

Figure 15: Figur fra filen 4C.png

Filen 4D.txt

Kun hvis du ikke fikk til forrige oppgave, skal du bruke denne temperaturen her: 27.00 millioner K

Filen 4G.txt

Massen til det sorte hullet er 2.47 solmasser.

r-koordinaten til det innerste romskipet er
r $=7.48~\mathrm{km}.$

r-koordinaten til det innerste romskipet er
r $=13.30~\mathrm{km}.$