Corrigé du CC1

Exercice 1.

	x	-3		-2		0		1
a)				4				4
	f(x)		7		V		7	
		0				0		

b) f étant strictement décroissante sur [-1,0], pour tout $x \in]-1,0]$, $f(0) \leq f(x) < f(-1)$, c'est-à-dire $0 \leq f(x) < 2$.

f étant strictement croissante sur [0, 1/2], pour tout $x \in [0, 1/2]$, $f(0) \le f(x) < f(1/2)$, ce qui donne $0 \le f(x) < f(1/2)$, avec f(1/2) < 2.

Finalement, $0 \le f(x) < 2$ pour tout $x \in]-1, 1/2[$.

- c) On voit sur le dessin que f(0) = 0, f(1) = 4 et f(-1) = 2:
- f(0) = 0 donne d = 0;
- f(1) = 4 donne 1 + b + c + d = 4, d'où b + c = 3 d = 3;
- f(-1) = 2 donne -1 + b c + d = 2, d'où b c = 3 d = 3.

Finalement, de b+c=3 et b-c=3 on tire b=3 et c=0: $f(x)=x^3+3x^2$.

On pourrait aussi voir sur le graphe que f'(0) = 0, ce qui donne directement c = 0.

Exercice 2. a) D est l'ensemble des nombres réels x tels que $(x^2-1)x\neq 0$. On a

$$(x^2 - 1)x \neq 0 \iff x^2 \neq 1 \text{ et } x \neq 0 \iff x \neq 1 \text{ et } x \neq -1 \text{ et } x \neq 0.$$

 $D = \mathbb{R} \setminus \{-1, 0, 1\}.$

b) Les solutions de l'équation $x^2+2x-3=0$ sont 1 et -3. On a $x^2+2x-3=(x-1)(x+3)$. D'autre part $x^2-1=(x-1)(x+1)$. Donc

$$F(x) = \frac{(x-1)(x+3)}{(x-1)(x+1)x} = \frac{x+3}{(x+1)x}$$

c) i) $F(x) = \frac{x^2(1+\frac{2}{x}-\frac{3}{x^2})}{x^3(1-\frac{1}{x^2})} = \frac{(1+\frac{2}{x}-\frac{3}{x^2})}{x(1-\frac{1}{x^2})}$. Lorsque x tend vers $+\infty$, $1+\frac{2}{x}-\frac{3}{x^2}$ tend vers

1 et $x(1-\frac{1}{x^2})$ tend vers $+\infty$. On a donc $\lim_{x\to +\infty} F(x)=0$.

ii) En utilisant la simplification de b), on trouve

$$\lim_{x \to 1} F(x) = \lim_{x \to 1} \frac{x+3}{(x+1)x} = \frac{4}{2} = 2.$$

Exercice 3. a) $D_g = \mathbb{R}^*$; g est dérivable en tout point de \mathbb{R}^* , et $g'(x) = 6x^2 + \frac{1}{x^2}$.

b) $D_u = \mathbb{R} \setminus \{-\frac{1}{2}\}$; u est dérivable en tout point de D_u et

$$u'(x) = \frac{3x^2(2x+1) - 2x^3}{(2x+1)^2} = \frac{4x^3 + 3x^2}{(2x+1)^2}.$$

c) Pour tout réel x, $x^4 + 3 \ge 3 > 0$. La fonction racine carrée étant définie sur \mathbb{R}_+ et dérivable sur \mathbb{R}_+^* , on a $D_v = \mathbb{R}$ et v est dérivable en tout point de \mathbb{R} ;

$$v'(x) = \frac{4x^3}{2\sqrt{x^4 + 3}} = \frac{2x^3}{\sqrt{x^4 + 3}}.$$

Exercice 4. On reconnaît la définition du nombre dérivé de la fonction cos en $\pi/4$:

$$\lim_{h \to 0} \frac{\cos(\frac{\pi}{4} + h) - \cos(\frac{\pi}{4})}{h} = \cos'(\frac{\pi}{4}) = -\sin(\frac{\pi}{4}) = -\frac{1}{\sqrt{2}}.$$

Exercice 5. a) On a:

$$\forall t \in \mathbb{R}, \ f(-t) = \arccos(\cos(-2t))$$

= $\arccos(\cos(2t))$ car la fonction cos est paire
= $f(t)$

Donc f est paire.

$$\forall t \in \mathbb{R}, \ f(t+\pi) = \arccos(\cos(2t+2\pi))$$
 = $\arccos(\cos(2t))$ car la fonction cos est 2π -périodique = $f(t)$

Donc f est périodique de période π .

b) D'après la définition de la fonction arccos comme bijection réciproque de $\cos_{[0,\pi]}:[0,\pi]\to [-1,1]$, on a $\forall \theta \in [0,\pi]$, $\arccos(\cos\theta)=\theta$. Si $t\in [0,\pi/2]$, $2t\in [0,\pi]$ donc f(t)=2t.