Data Visualization

Usernames

goo.gl/PXjUVQ

Basics

1PM-3:50PM Fridays, LIS-126

Matthew Turk - <u>mjturk@illinois.edu</u>

Office Hours: Wednesday 2-4, LIS 222

TA Jarai Carter - <u>carter31@illinois.edu</u>

http://github.com/UIUC-iSchool-DataViz/

Timed Activity

Each of you has a notecard with a number.

On the back of that notecard:

- What are the most memorable movies you saw over the last year?
- Do you prefer cats or dogs?
- How would you quantify your experience in visualization?
- What would you guess the square footage of this building is?
- People per row in this class.

Break into groups based on your numbers, and visualize the results by whatever method you choose: by hand, by computer, or otherwise.

Affix to or inscribe upon your sheet of paper.

Row 1	11
Row 2	6
Row 3	11
Row 4	10
Row 5	8
Row 6	4
Row 7	5

First Survey

goo.gl/vNoeR8

Schedule

```
Week 1 (Sept 1): Introduction, syllabus, examples, and some basics
```

Week 2 (Sept 8): Operational palette, structured python, and files

Week 3 (Sept 15): Quantitative plots, plot components

Week 4 (Sept 22): Histograms and distributions

Week 5 (Sept 29): R and ggplot

Week 6 (Oct 6): Images: color, colormaps

Week 7 (Oct 13): Comparisons between datasets

Week 8 (Oct 20): Comparisons between different datasets

Week 9 (Oct 27): Network visualization

Week 10 (Nov 3): Principles of interactive visualization

Week 11 (Nov 10): Interactive visualization with Python

Week 12 (Nov 17): Scientific visualization

Week 13 (Dec 1): Advanced topics

Week 14 (Dec 8): Group presentations

Moved to 213 Greg Hall

Week 3 (Sept 15): Quantitative plots, plot components

Week 4 (Sept 22): Histograms and distributions

Overview - Themes

- What are the components of an effective visualization of quantitative data?
- 2. What tools and ecosystems are available for visualizing data?
- 3. What systems can be put in place to generate visualizations rapidly and with high-fidelity representation?

Overview - Goals

- Students will be able to communicate information and data through visual representation
- Students will be able to examine a visualization and understand how it can be improved upon
- Students will have facility with the commonplace tools used for visualization,
 and a deeper understanding of where those tools have shortcomings

Overview - Structure

1:00 PM

3:50 PM

Overview - Structure

Topic introduction and lecture Hands-on examples and discussion Wrap-up

Overview - Grading

70%: Weekly Assignments in prose or code form

30%: Final project

Overview - Assignments

- Weekly, assigned in class, collected following class
- Prose assignments: deconstruction or analysis of a visualization or a dataset.
- Coding assignments: Jupyter notebooks following step by step through collection and processing of data and the visualization of that data

Plagiarism

Plagiarism is about copying ideas.

Cite all code you utilize from elsewhere.

Our Tools

- Python, with some R and Javascript along the way
- Jupyter and Jupyter notebooks on a Jupyterhub, with nbgrader
- The occasional usage of a shell such as bash
- Once in a while some git, and GitHub
- Slack

lis590.ncsa.illinois.edu

Jupyter Instances

Jupyter Images

Personal Storage

- Store your notebooks on- and off-site
- Submissions will be via nbgrader
- Data will be available at /data/ and /home/\$USER/work/data-readonly/
- Previous lectures will be in data-readonly/fall2017
- You will have access to conda, etc, but I may rebuild images to add packages.

Assignment Flow

- 1. Instructor "releases" an assignment
- 2. Assignment appears in student "Assignments" tab
- 3. Students "fetch" assignment, which *copies* it to their work directory
- 4. Assignments will be notebooks, accessing shared read-only data
- 5. Upon completion, students "submit" assignment, which *copies* it to the instructor's inbox
- 6. Some cells may be "autograded" but feedback will be provided.
- 7. Once feedback is available, you will be notified.

Slack

- Team is at lis590dv-fall2017.slack.com
 - #general: General announcements
 - #assignments: Help with assignments
 - #help: General help with Python, Javascript, visualization, etc.
 - #lectures: During lectures, post links, comments, questions here
- Use the @ sign appropriately: @[person], @here, @channel
- Conduct will be held to same standards as any educational venue.
- Web client, standalone client and mobile devices can access this team.
- At the end of the semester, the team will be discontinued.

GitHub

- Reminder: http://github.com/UIUC-iSchool-DataViz/fall2017/
- Lecture notes will be placed there, and available in your JupyterHub instances in data-readonly/fall2017/weekXX.
- Copy the notebooks to your directory before using them.
- If you have not already done so, fill out the form giving me your GitHub usernames.

This week:

- 1. Why do we visualize?
- 2. What types of data do we visualize?
- 3. How do we visualize?

Why?

https://commons.wikimedia.org/wiki/File:AcuityHumanEye.svg
By Vanessa Ezekowitz

Now, I need a volunteer!

Read these numbers.

2007-01-01	14233.2
2007-04-01	14422.3
2007-07-01	14569.7
2007-10-01	14685.3
2008-01-01	14668.4
2008-04-01	14813.0
2008-07-01	14843.0
2008-10-01	14549.9
2009-01-01	14383.9
2009-04-01	14340.4
2009-07-01	14384.1
2009-10-01	14566.5

282 records x (?? seconds / 12 records) = ?? seconds

Timeline of Incidents

```
2729
2714-2719 (Known)
2699
2613
2583
2562
2530
2501
2490
2470
2400
2322-2329 (Known)
```

Timeline of Incidents

Beware: free parameters!

capstyle = "butt"

Beware: free parameters!

capstyle = "projecting"

Beware: free parameters!

capstyle = "round"

What?

Visualization for self
Visualization for peers
Visualization for others

How?

"Visualizing data" is not a strict subset of "making an image."

We tell lies to visualize.

- Collection of the data
- Organization of that data
- Representation of that data

Transformation

Composition

Transformation

Composition

- Sensors read the current "fill" of the battery
 - Analog / digital conversion
 - Normalized with respect to expected "full"
- This is then scaled to a percentage
- The battery image is filled from left to right
- The image is then rasterized and displayed

- Some fixed maximum amount of damage
- Each time damage is taken, decrement
- Each time damage is reversed, increment
- Display number of hearts as appropriate

2 of 3 total "points"

Linear Scale 78.2%

Area Scale 77.6%

Chernoff Faces

Line of sight velocity profiles in turbulent molecular clouds

This is a snapshot from a three dimensional simulation of about 5,700 Solar masses of gas in a 10 pc periodic box. The gas began with fully developed turbulence at Mach 8; this is after 1.27 Myr of self-gravitating evolution. Click around the image to explore the line-of-sight velocity structure.

pick a column density image (current choice is darker)

total column density (log scale) $10^3 < n \text{ cm}^{-3} < 10^{4.5}$ (linear scale; approximates C¹⁸O)

toggle high density contours and sink particles $10^{4.5} < n \text{ cm}^{-3}$ (approximates N₂H⁺) sink particles

click the image to inspect a point

tracer: total C¹⁸O N₂H⁺

log N / cm⁻²: 22.26 22.18 0

N2H+

We tell lies to visualize, but we must be honest.

Our choices must be

- Deliberate
- Informed
- Motivated
- Justifiable

This week:

- 1. We visualize to change how we understand things.
- 2. We visualize data for ourselves, for our peers, and for others.
- 3. Visualization is a series of steps that we take to produce a different representation of data.

Assignment 1

- Identify three visualizations in pop culture
 - Movies / TV / Music videos
 - Everyday life
 - Advertisements
- Describe each one in detail
 - Where did the data come from?
 - Is the data quantitative, qualitative, categorical, etc?
 - How was the data processed before being displayed?
 - What method was used to display that data?
- Replicate the visualization with different, but similarly "shaped," data
 - By hand is acceptable
 - Computational methods should include source code