

MARVELOUS MLOPS

Log & load objects with MLflow

Log

Log a parameter mlf: under the current run

mlflow.log_param("learning_rate", 0.01)

log_params

log_param

Logs multiple params under the current run log_metric

Log a metric under the current run

mlflow.log_metric("mse", 2500.00)

log_metrics

Logs multiple metrics under the current run mlflow.log_metrics({"mse": 2500.00, "rmse": 50.00})

log_artifact

Log a local file as an artifact of the current run

mlflow.log_artifact("features.txt")

log_artifacts

Log contents of a local folder as artifacts of the current run

mlflow.log_artifacts("demo",
artifact path="demo")

log_dict

Log a JSON/YAMLserializable object as an artifact

mlflow.log_dict({"k": "v"}, "data.json")

log_text

Log text as an artifact mlflow.log_text("text1", "file1.txt")

log_figure

Log a figure as an artifact

import matplotlib.pyplot as plt

fig, ax = plt.subplots()
ax.plot([0, 1], [2, 3])
mlflow.log figure(fig, "figure.png")

log_image

Log an image as an artifact

from PIL import Image

image = Image.new("RGB", (100, 100))
log_image(image, "image.png")

Load

run_id = '5f871c4f04e04dc295f5c77'
mlflow.get_run(run_id=f'{run_id}').
 to_dictionary()['data']['params']

run_id = '5f871c4f04e04dc295f5c77'
mlflow.get_run(run_id=f'{run_id}').
 to_dictionary()['data']['metrics]

N/A

mlflow.artifacts.load_dict(
 'runs:/5f871c4f04e04dc295f5c77/data.json')

mlflow.artifacts.load_text(
 'runs:/5f871c4f04e04dc295f5c77/file1.txt')

mlflow.artifacts.load_image(
 'runs:/5f871c4f04e04dc295f5c77/figure.png')

mlflow.artifacts.load_image(
 'runs:/5f871c4f04e04dc295f5c77/image.png')

MLflow: log & load a custom model with pyfunc model flavor

1. Define the custom model class CustomlrisModel & the wrapper

```
from sklearn.datasets import load_iris
     from sklearn.linear_model import LogisticRegression
     import mlflow
     import numpy as np
     class CustomIrisModel:
         def __init__(self, params):
 9
             self.flower_classes = ["setosa", "versicolor", "virginica"]
             self.model = LogisticRegression(**params)
10
11
12
         def train(self, X, y):
13
             self.model.fit(X, y)
14
             return self
15
16
         def predict(self, model_input):
             predictions = self.model.predict(model_input)
17
18
             return np.array([self.flower_classes[x] for x in predictions])
19
20
21
     class CustomPredict(mlflow.pyfunc.PythonModel):
22
         def __init__(self, model):
23
             self.model = model Custom model
24
         def predict(self, context, model_input: dict):
25
26
             return self.model.predict(model_input)
```

2. Log the wrapped model

```
with mlflow.start_run(run_name="iris") as run:

X, y = load_iris(return_X_y=True, as_frame=True)

classifier = CustomIrisModel(params={"C": 1.0, "random_state": 42}).train(X, y)

wrapped_model = CustomPredict(classifier)

mlflow.pyfunc.log_model("model", python_model=wrapped_model)
```

3. Load the original custom model (CustomIrisModel)

1 mlflow.pyfunc.load_model("runs:/70801eb17462c5b8d0e00/model").unwrap_python_model().model

```
<__main__.CustomIrisModel at 0x7fd275cedf60>
```


MLflow parent & child runs

It is possible to create child experiment runs under the parent run by providing nested=True argument

```
import mlflow
with mlflow.start_run(run_name="top_level_run") as run:

for i in range(1,5):
    with mlflow.start_run(run_name=f"subrun_{str(i)}", nested=True) as subrun1:
    mlflow.log_param("subrun_number", f"{str(i)}")
    mlflow.log_metric("m1", 5.1+i)
    mlflow.log_metric("m2", 5.1*i)
    mlflow.log_metric("m3", 5.1/i)
```


You can find all child runs by filtering on parent run id

1 mlflow.search_runs(search_all_experiments=True, filter_string='tags.mlflow.parentRunId="25b884a1be3e425bbb08764e6b243d11"')

_	run_id	experiment_id	status	artifact_uri	start_time	end_time	metrics.m1	metrics.m3
0	12abff8b993d46ab9334798363f4e518	2536120347857321	FINISHED	dbfs:/databricks/mlflow-tracking/2536120347857	2023-09-10 11:04:21.554000+00:00	2023-09-10 11:04:22.253000+00:00	9.1	1.275
1	dd19190cb29c415ca2276234364a86e9	2536120347857321	FINISHED	dbfs:/databricks/mlflow-tracking/2536120347857	2023-09-10 11:04:20.718000+00:00	2023-09-10 11:04:21.386000+00:00	8.1	1.700
2	3eacfe76ab144de9a1e677d34e717b04	2536120347857321	FINISHED	dbfs:/databricks/mlflow-tracking/2536120347857	2023-09-10 11:04:19.884000+00:00	2023-09-10 11:04:20.572000+00:00	7.1	2.550
3	7b4a74d4780d4e9cbdb1a010752a1498	2536120347857321	FINISHED	dbfs:/databricks/mlflow-tracking/2536120347857	2023-09-10 11:04:19.040000+00:00	2023-09-10 11:04:19.728000+00:00	6.1	5.100

Searching MLflow experiment runs

Logical operators: AND

Comparators for numeric attributes: =, !=, <, <=, >, >=

Comparators for string attributes and tags:

- · =, !=
- LIKE: Case-sensitive pattern match
- · ILIKE: Case-insensitive pattern match

```
mport mlflow
mlflow.search_runs(
   search_all_experiments=True, # or: experiment_ids=[] | or: experiment_names=[]
    run_view_type=3, # ACTIVE_ONLY= 1, DELETED_ONLY= 2, ALL= 3
   # can be ordered by start_time, status, metrics, params, tags; ordering ASC or DESC
   order_by=["start_time DESC",
             "tags.mlflow.databricks.notebookID ASC"],
   # can be filtered by: status, start_time, artifact_uri, runId, run_name, metrics, params, tags
                                                  Timestamp is accepted in unix format
```

```
from datetime import datetime
stime = "2022-09-25 01:04:12"
# unix_timestamp
datetime.strptime(stime, '%Y-%m-%d %H:%M:%S').timestamp()
```

Transforming date & time to unix format

Search MLflow model by run id

Option 1

To get a model version by Databricks run id:

- · Search through model versions
- Retrieve their MLFlow run id
- Retrieve Databricks run id associated with MLFlow run id

Limitation: only possible to search for task run id!

Option 2

To get a model version by Databricks run id:

- Pass run id and job id as python parameters {{job_id}} and {{run_id}}
- When registering a model, pass tags including run_id and job_id
- · Search model by tag

Possible to pass task run id & parent run id as a tag

```
model_version = client.search_model_versions(
    f"name='demo-model' and tag.dbr_run_id = '902422'")[0].version
```


Retrieve Databricks run & job id in your Python code

demo.py

```
def get_arguments():
    parser = argparse.ArgumentParser(description='reads default arguments')
    parser.add_argument('--run_id', metavar='run_id', type=str, help='Databricks run id')
    parser.add_argument('--job_id', metavar='job_id', type=str, help='Databricks job id')
    args = parser.parse_args()
    return args.run_id, args.job_id

run_id, job_id = get_arguments()
```

dbx_deployment.yml

```
build:
  python: "pip"
environments:
  default:
    workflows:
      - name: "demo_workflow"
        job_clusters:
          - job_cluster_key: "demo_cluster"
            new_cluster:
              spark_version: "12.2.x-cpu-ml-scala2.12"
              num_workers: 1
              node_type_id: "Standard_D4s_v5"
        tasks:
          - task_key: "demo_task"
            job_cluster_key: "demo_cluster"
            spark_python_task:
              python_file: "file://demo.py"
              parameters: ["--run_id", "{{parent_run_id}}", "--job_id", "{{job_id}}"
```


MLflow experiment tracking and model registry are two different things!

When the experiment run has started, you can log a model in 2 ways:

- → mlflow.log_artifact
- → mlflow.<model_flavor>.log_model

After that, you can find your model artifact under the experiment run.

It is in mlflow experiment tracking now, but NOT(!) in the registry yet.

When the model is logged as log_artifact, you can not register it!
When you use log_model instead, you can!

The model registry helps you with:

- → Managing model lifecycle.
- → Falling back to the previous model version when necessary.

Transitioning a Databricks MLflow model to stage

Suppose you have a registered model (in this example not even trained). Default stage of this model is "None".

```
import mlflow
from sklearn.linear_model import LogisticRegression

with mlflow.start_run(run_name="demo-run") as run:
    model = LogisticRegression()
    mlflow.sklearn.log_model(model, artifact_path="model")

mlflow.register_model(model_uri=f"runs:/5f871c4f04e04dc295f5c77/model", name='demo-model')
```

There are 3 ways how to transition model to another stage (Staging | Production | Archived)

1. Using MLflow client

```
from mlflow import MlflowClient
client = MlflowClient()
client.transition_model_version_stage(name="demo-model", version="1", stage="Production")
```

2. Using Databricks API:

/api/2.0/mlflow/databricks/model-versions/transition-stage

3. Using Databricks API: request transition & approve transition

Databricks MLflow webhooks

Supported webhook events

- MODEL VERSION CREATED
- MODEL_VERSION_TRANSITIONED_STAGE
- TRANSITION REQUEST CREATED
- COMMENT_CREATED
- REGISTERED_MODEL_CREATED
- MODEL VERSION TAG SET
- · MODEL VERSION TRANSITIONED TO STAGING
- MODEL_VERSION_TRANSITIONED_TO_PRODUCTION
- MODEL_VERSION_TRANSITIONED_TO_ARCHIVED
- TRANSITION_REQUEST_TO_STAGING_CREATED
- TRANSITION_REQUEST_TO_PRODUCTION_CREATED
- TRANSITION_REQUEST_TO_ARCHIVED_CREATED

```
from databricks_registry_webhooks import RegistryWebhooksClient, JobSpec, HttpUrlSpec
access_token = '<INSERT YOUR ACCESS TOKEN HERE>'
model_name = '<INSERT YOUR REGISTERED MODEL NAME HERE>'
job_id = '<INSERT ID OF PRE-DEFINED JOB>'
slack_url = '<INSERT YOUR SLACK INCOMING WEBHOOK URL HERE>'
# Define http webhook
http_url_spec = HttpUrlSpec(url=slack_url, secret="secret_string")
http_webhook = RegistryWebhooksClient().create_webhook(
    events=["TRANSITION_REQUEST_TO_PRODUCTION_CREATED"],
   http_url_spec=http_url_spec,
   model_name=model_name)
# Define job webhook
job_spec = JobSpec(job_id=job_id, access_token=access_token)
job_webhook = RegistryWebhooksClient().create_webhook(
   events=["MODEL_VERSION_TRANSITIONED_TO_PRODUCTION"],
    job_spec=job_spec,
   model_name=model_name)
```


Check out our article:

https://marvelousmlops.substack.com/p/find-your-way-to-mlflow-without-confusion