EEE 587 Optimal Control

Siddharth Jain - 1226137070

Discrete Time System

$$x(k+1) = x(k) + u(k)$$

Determine the optimal control policy which minimizes the performance:

$$J = \sum_{k=1}^{2} [2|x(k) - 0.1k^{2}| + |u(k-1)|]$$

Feasible states and controls are defined as follows:

$$0.0 \le x(k) \le 0.4, k = 0.1,2$$

$$-0.2 \le u(k) \le 0.2, k = 0.1$$

Dynamic Programming Equation

$$C_{\alpha x_i h}^* = J_{\alpha x_i} + J_{x_i h}^*$$

Cost to Minimum cost move from to reach final state h from x_i

Finding the optimal policy

Back propagation – Second Stage First (last stage)

$$K = 2$$

Cost =
$$C_{1,2}$$
* (x(1), u(1)) = $J_{1,2}$ (x(1), u(1)) + J_{22} * = 2 |x(1) - 0.1 x 1²| + 2 |x(2) - 0.1 x 2²| + |u(1)| x(k) = 0, 0.1, 0.2, 0.3, 0.4 u(k) = -0.2, -0.1, 0, 0.1, 0.2

Current	Control	Next State	Cost	Minimum	Optimal Control
State				Cost	Applied
x(1)	u(1)	x(2) = x(1)	$C_{1,2}^*$ [x(1), u(1)] = 2 x(1) - 0.1 x 1 ² + 2 x(2) - 0.1	J*	u * x(1) at k = 1
		+ u(1)	x 2 ² + u(1)		
0	0	0	1	8.0	0.2
	0.1	0.1	0.9		
	0.2	0.2	0.8		

0.1	-0.1	0	0.9	0.4	0.2
	0	0.1	0.6		
	0.1	0.2	0.5		
	0.2	0.3	0.4		
0.2	-0.2	0	1.2	0.4	0.2
	-0.1	0.1	0.9		
	0	0.2	0.6		
	0.1	0.3	0.5		
	0.2	0.4	0.4		
0.3	-0.2	0.1	1.2	0.5	0.1
	-0.1	0.2	0.9		
	0	0.3	0.6		
	0.1	0.4	0.5		
0.4	-0.2	0.2	1.2	0.6	0
	-0.1	0.3	0.9		
	0	0.4	0.6		

First Stage Second

 $J_{12}^*(x(1))$ stored from previous stage

K = 1 Cost = $C_{0,2}$ * (x(0), u(0)) = $J_{0,1}$ (x(0), u(0)) + J_{12} * = |u(0)| + J_{12} *(x(1))

Current State	Control	Next State	Cost	Minimum Cost	Optimal Control Applied
x(0)	u(0)	x(1) = x(0) + u(0)	$C_{0,2}^* [x(0), u(0)] = J_{12}^* (x(1)) + u(0) $	J*	u * x(1) at k = 0
0	0	0	0.8	0.5	0.1
	0.1	0.1	0.5		
	0.2	0.2	0.6		
0.1	-0.1	0	0.9	0.4	0
	0	0.1	0.4		
	0.1	0.2	0.5		
	0.2	0.3	0.7		
0.2	-0.2	0	1	0.4	0
	-0.1	0.1	0.5		
	0	0.2	0.4		
	0.1	0.3	0.6		
	0.2	0.4	0.8		
0.3	-0.2	0.1	0.6	{0.5, 0.5}	{-0.1, 0}
	-0.1	0.2	0.5		
	0	0.3	0.5		
	0.1	0.4	0.7		
0.4	-0.2	0.2	0.6	{0.6, 0.6,	{-0.2, -0.1, 0}
	-0.1	0.3	0.6	0.6}	
	0	0.4	0.6		

Question 1

Determine the optimal control law $u^*(x(k), k)$

Ans.

Using the two tables above for the first and second stage, to find the optimal control law u^* we find the action with the least cost for each state x(k)

Question 2

Determine the optimal control sequence $\{u^*(0), u^*(1)\}$, if the initial state value is x(0) = 0.2

Ans.

Initial State Value is x(0) is 0.2

We refer to first stage table (k=0) where optimal control action is 0 for x(0) = 0.2

Therefore $u^*(0) = 0$

Next, referring to second stage table (k=1), optimal control action is 0.2 for x(1) = 0.2

Therefore $u^*(1) = 0.2$

Hence, Optimal Control Policy is $\{u^*(0), u^*(1)\} = \{0, 0.2\}$