

MICCAI 2U25

D4Recon: Dual-stage Deformation and Dual-scale Depth Guidance for Endoscopic Reconstruction

Hritam Basak Dept. of Computer Science, Stony Brook University, USA

Our Proposal and Contribution

- We propose a new <u>Dual-stage Deformation Modeling</u> to address multi-view inconsistency and dynamic tissue deformation via dual Score Distillation Sampling (SDS) loss.
- A novel <u>Dual-scale Hard and Soft Depth Guidance</u> framework is introduced for global geometric consistency and fine-grained structural details, respectively.
- We propose **Dynamic3DGS**, by extending 3DGS into a **dynamic**, per-frame representation that incrementally adapts to temporal variations, by robust modeling of deformable surgical scenes.
- Demonstrates state-of-the-art results on multiple dynamic and static endoscopic datasets.

Proposed Method

1. Gaussian Initialization and Deformation Modelling

2. Optimization

(B) Dual-scale Depth Guidance

Dataset Description

- <u>Dynamic Surgical Scene Datasets</u>: <u>StereoMIS</u> includes 11 surgical sequences recorded on in-vivo porcine subjects using the da Vinci Xi system, with challenges such as tissue deformation and tool occlusions. Following prior work, two segments (P2_1 and P2_2) are used. EndoNeRF consists of stereo-matched prostatectomy sequences that capture complex non-rigid deformations and tool-tissue interactions. We adopt 7:1 training-validation splits and utilize monocular depth
- Colonoscopy Datasets: Simulation sequences are Unity-rendered colonoscopy videos with depth and pose estimated via RNNSLAM. The In-Vivo dataset contains real colonoscopy recordings at 270×216 resolution, while Phantom is derived from the C3VD collection, featuring high-resolution colonoscopy sequences such as "cecum_t4_b," "desc_t4_a," and "transt_t1_a."

Experimental Results

(I) Comparison with SoTA

Table 1: Quantitative evaluation of D⁴Recon on EndoNeRF and StereoMIS datasets. The best & second-best performances are highlighted in red & blue.

Method	Category	- Cutting			EndoNeRF-Pulling			Access					The second secon	
		PSNR†	SSIM1	LPIPS	PSND	CCTA	Inne		verage	-	stereoM	IS	Av	erage
LerPlane-32K [28]	NeuralPlane	34 66	0.022	0.071	I DIVIE	SSLM	LPIPS,	FPS _↑	Time(s)	PSNR	SSIM	LPIPS!	FPS†	Time(s)
EndoSurf [31]	NeRF	34.98	0.953			0.010	0.071	100	240	24.12	0.814	0.327	STORES OF THE PERSON	The state of the state of
LGS [14]	4DGS	36.21	0.937	0.106	35.00	0.956	0.120	0.04	2.564	30.78	0.856	0.294	0.05	255
Endo-4DGS [10]	4DGS	36.56	0.955	0.088	35.89	0.930	0.089	188	122	24.47	0.831	0.301	190	2.564
EndoGaussian [15]	4DGS	38.29	0.962	0.032	37.85	0.959	0.043	100	240	33.85	0.894	0.165	100	145
urgicalGaussian [26]	3DGS	37.51	0.961	0.058	37.31	0.958	0.070	193	120	34.37	0.899	0.158	190	420
Deform3DGS [30]	3DGS	37.86	0.958	0.062	38.78	0.970	0.049	82	165	30.09	0.845	0.309	86	130
EH-SurGS [22]	3DGS	39.91	0.972	0.059	37.94	0.959	0.061	335	71	34.71	0.904	0.163	332	182
Ours			0.912	0.034	38.72	0.963	0.062	383	101	34.91	0.906	0.166	365	
Ours	Dynamic3DGS	40.13 0.978	0.029	39.98	0.986	0.049	336	122	25.00				120	
1- 0 0	-5 45 55 55	10000						990	1.2.2	35.03	0.910	0.155	335	120

Table 2: Quantitative evaluation of D⁴Recon on three static datasets.

Method	Category		Simulat		957 75	In-Viv	0	Phantom			
	Category	PSNR	† SSIM	† LPIPS ↓	PSNR	† SSIM	+ I DIDE	/ DOMD	- COMMON	PELIS	
NeRF [18]	NeRF	35.29	0.00			1 DOTAL	LFIPS	+ PSNR	SSIM	† LPIPS	
REIM-NeRF [20]	NeRF		0.92	0.14	18.93	0.67	0.43	32.10	0.81	0.39	
Nice-SLAM [34]	SLAM	32.22	0.82	0.33	18.94	0.65	0.45	31.66	0.78	0.22	
Endo-Depth [21]		35.61	0.84	0.31	20.37	0.77	0.32	28.08	0.88		
Endo2DTAM [9]	DepthCNN	38.88	0.93	0.13	23.51	0.79	0.25	30.18	0.86	0.29	
	SLAM+3DGS	35.62	0.85	0.22	23.19	0.76	0.28			0.26	
EndoGSLAM [23]		39.48	0.92	0.10	25.59	0.81	0.19	29.93	0.81	0.28	
GPancake [3]	RNNSLAM+3DGS	40.34	0.97	0.05	26.25	0.83		32.63	0.89	0.21	
Ours	DenamicaDGG	40 50			20.20	0.03	0.21	32.31	0.90	0.20	
	Dynamic3DGS	46.79	0.99	0.02	30.63	0.92	0.14	37.82	0.94	0.15	

(II) Ablation Experiments

Table 3: Ablation experiment of D⁴Recon on surgical reconstruction datasets. Mean values of cutting and pulling scenes are reported for EndoNeRF dataset.

Exp# D _{HDG}	D_{SDG}	$D_{\mathbf{Any}}$	L _{SDS-S}	LSDS-T I	LSDS	1	EndoNel	RF	StereoMIS			
							PSNR	SSIM 1	LPIPS	PSNR	† SSIM †	LPIPS
(a)	X	X	X	X	X	X	31.03	0.886	0.129	25.63	0.766	0.331
(b)	X	X	X	X	X	1	32.19	0.903	0.853	26.71	0.781	0.305
(c)	X	X	X	X	1	X	36.67	0.945	0.077	29.27	0.820	0.214
(d)	X	X	X	1	1	X	38.42	0.968	0.052	31.38	0.886	0.176
(e)	X	X	1	1	1	X	38.89	0.970	0.049	32.13	0.890	
(f)	X	1	X	1	1	X	39.69	0.973	0.045	33.91	0.902	0.171
(g)	1	1	X	1	1	X	40.06	0.982	0.039	35.03	0.910	0.168

(III) Qualitative Results

Reconstructed Depth Quality