Logica — 12-9-2019

Tutte le risposte devono essere adeguatamente giustificate

1. Per ognuna delle seguenti domande segnare TUTTE le risposte corrette:

- (a) Sia P la formula proposizionale $(A \lor (\neg A \to A)) \to \neg A$
 - \square P è soddisfacibile.
 - $\square \neg P$ è soddisfacibile.
 - \square P è vera se e solo se A è vera.
 - \Box Il valore di verità di P non dipende dal valore di verità di A.
- (b) Sia $L = \{R, f, c\}$, con R simbolo relazionale binario, f simbolo funzionale binario, c simbolo di costante. Sia

$$\varphi: \exists c(\forall y R(f(t,y),c) \land (R(c,c) \rightarrow f(c,c) = c))$$

- $\square \varphi$ è una *L*-formula.
- $\square \ (\mathbb{Z},<,-,7)$ è una L-struttura.
- $\square (\mathbb{Z}, <, -, 7) \models R(c, f(c, c)).$
- $\square (\mathbb{Z}, <, -, 7) \not\models \exists x \ R(x, f(x, c)).$

2. Stabilire se l'insieme di formule

$$\{A \land (A \rightarrow B), A \rightarrow B, \neg B\}$$

è soddisfacibile.

3. Sia $\mathcal{L} = \{D, M, P, S\}$ un linguaggio del prim'ordine, dove D, M, P sono simboli relazionali unari, S è simbolo relazionale binario. Si consideri la seguente interpretazione di \mathcal{L} :

- -D(x): x è un dentista;
- -M(x): $x \in mediocre;$
- -P(x): x è un paziente;
- -S(x,y): x spaventa y.

Si scrivano le seguenti frasi in formule del linguaggio \mathcal{L} :

- 1. I dentisti mediocri spaventano i loro pazienti.
- 2. Qualche paziente è spaventato da tutti i dentisti mediocri.

- 3. I dentisti che spaventano i loro pazienti sono mediocri.
- 4. Sia $\mathcal{L}=\{R,g\}$ un linguaggio del prim'ordine, dove R è simbolo relazionale binario e g è simbolo funzionale unario. Si considerino gli enunciati

$$\varphi: \forall x \exists y \ R(f(f(x)), f(y)), \qquad \psi: \exists x \forall y \ R(y, f(x))$$

Si definisca una \mathcal{L} -struttura

$$\mathcal{A} = (\mathbb{R}, R^{\mathcal{A}}, f^{\mathcal{A}})$$

tale che l'universo di $\mathcal A$ sia l'insieme $\mathbb R$ dei numeri reali e $\mathcal A$ soddisfi esattamente uno tra φ e ψ .

Svolgimento

- 1. Per ognuna delle seguenti domande segnare TUTTE le risposte corrette:
 - (a) Sia P la formula proposizionale $(A \lor (\neg A \to A)) \to \neg A$
 - \blacksquare P è soddisfacibile.
 - $\blacksquare \neg P$ è soddisfacibile.
 - \square P è vera se e solo se A è vera.
 - \Box Il valore di verità di P non dipende dal valore di verità di A.
 - (b) Sia $L = \{R, f, c\}$, con R simbolo relazionale binario, f simbolo funzionale binario, c simbolo di costante. Sia

$$\varphi: \exists c(\forall y R(f(t,y),c) \land (R(c,c) \rightarrow f(c,c) = c))$$

- $\square \varphi$ è una *L*-formula.
- \blacksquare ($\mathbb{Z}, <, -, 7$) è una *L*-struttura.
- $\square (\mathbb{Z}, <, -, 7) \models R(c, f(c, c)).$
- \blacksquare $(\mathbb{Z}, <, -, 7) \not\models \exists x \ R(x, f(x, c)).$
- **2.** Sia i un'interpretazione tale che

$$i(A \land (A \rightarrow B)) = i(A \rightarrow B) = i(\neg B) = 1$$

Si ha quindi anche che i(A) = 1. Da questo e da $i(A \to B) = 1$ segue i(B) = 1, ma da $i(\neg B) = 1$ segue i(B) = 0. Contraddizione.

Quindi l'insieme non è soddisfacibile.

- **3.** 1. $\forall x(D(x) \land M(x) \rightarrow \forall y(P(y) \rightarrow S(x,y)))$
 - 2. $\exists x (P(x) \land \forall y (D(y) \land M(y) \rightarrow S(y,x)))$
 - 3. $\forall x(D(x) \land \forall y(P(y) \rightarrow S(x,y)) \rightarrow M(x))$
- 4. (Si noti un refuso nel testo: il linguaggio è $\mathcal{L} = \{R, f\}$, dove f è simbolo funzionale unario.)

Se R^A è la relazioni d'uguaglianza e f^A è la funzione identità (cioè $f^A(a)=a$ per ogni $a\in\mathbb{R}$), allora:

- $-\mathcal{A} \models \varphi$, perché per ogni $a \in \mathbb{R}$ esiste $b \in \mathbb{R}$ tale che $f^{\mathcal{A}}(f^{\mathcal{A}}(a)) = f^{\mathcal{A}}(b)$: basta prendere b = a
- $-\mathcal{A} \not\models \psi$, perché non esiste alcun $a \in \mathbb{R}$ tale che per ogni $b \in \mathbb{R}$ si abbia $b = f^{\mathcal{A}}(a)$ (cioè b = a), in quanto \mathbb{R} ha più di un elemento