Deterministic Tree Search

aka Deterministic Tree-based Planning aka "Search"

finding a path from start state to a goal state

Search Algorithm Properties

- Complete? Guaranteed to find a solution if one exists?
- Optimal? Guaranteed to find the least cost path?
- Time complexity?
- Space complexity?

Variables:

n	Number of states in the problem				
b	The average branching factor B				
	(the average number of successors)				
\boldsymbol{S}	Depth of the shallowest solution				
m	Max depth of the search tree				

Depth-First Search (DFS)

With cycle checking, DFS is complete.

Algorithm		Complete	Optimal	Time	Space
DFS	w/ Path Checking	Υ	N	$\mathrm{O}(b^{m+1})$	O(bm)

When is DFS optimal?

Breadth-First Search (BFS)

Algorithm		Complete	Optimal	Time	Space
DFS	w/ Path Checking	Y	N	$O(b^{m+1})$	O(bm)
BFS		Y	N*	$O(b^{s+1})$	$O(b^s)$

When is BFS optimal?

Comparisons

When will BFS outperform DFS?

When will DFS outperform BFS?

Iterative Deepening

Iterative deepening uses DFS as a subroutine:

- 1. Do a DFS which only searches for paths of length 1 or less.
- 2. If "1" failed, do a DFS which only searches paths of length 2 or less.
- 3. If "2" failed, do a DFS which only searches paths of length 3 or less.

....and so on.

Algorithm		Complete	Optimal	Time	Space
DFS	w/ Path Checking	Y	N	$O(b^{m+1})$	O(bm)
BFS		Y	N*	$O(b^{s+l})$	$O(b^s)$
ID		Y	N*	$O(b^{s+1})$	O(bs)

Costs on Actions

Notice that BFS finds the shortest path in terms of number of transitions. It does not find the least-cost path.

We will now cover an algorithm which does find the least-cost path.

Uniform Cost Search

Expand cheapest node first:

Fringe is a priority queue

Uniform Cost Search

Algorithm		Complete	Optimal	Time	Space
DFS	w/ Path Checking	Y	N	$O(b^{m+1})$	O(bm)
BFS		Υ	N	$O(b^{s+1})$	$O(b^s)$
UCS		Y*	Υ	$\mathrm{O}(b^{C^*\!/_{\! \mathrm{\epsilon}}})$	$\mathrm{O}(b^{C*/_{\mathrm{\epsilon}}})$

* UCS can fail if actions can get arbitrarily cheap

Uniform Cost Issues

- Remember: explores increasing cost contours
- The good: UCS is complete and optimal!
- The bad:
 - Explores options in every "direction"
 - No information about goal location
 - "blind" search

Recap: Search

Search problem:

- States (configurations of the world)
- Deterministic transitions: a function from states to lists of (next state, cost) pairs; drawn as a graph
- Start state and goal test

Search tree:

- Nodes: represent plans for reaching states
- Plans have costs (sum of action costs)

Search Algorithm:

- Systematically builds a search tree
- Chooses an ordering of the fringe (unexplored nodes)

- Approximate
 - Evaluation functions
 - Anytime algorithms
- Adversarial
 - Minimax search
 - Alpha-Beta pruning

Partial Game Search Tree for Tic-Tac-Toe

But... in general the search tree is too big to make it possible to reach the terminal states!

Examples:

- Checkers: ~10⁴⁰ nodes
- Chess: $\sim 10^{120}$ nodes

Evaluation Function of a State

- $e(s) = +\infty$ if s is a win for MAX
- $e(s) = -\infty$ if s is a win for MIN
- e(s) = a measure of how "favorable" is s for MAX
 - > 0 if s is considered favorable to MAX
 - < 0 otherwise

Example: Tic-Tac-Toe

e(s) = number of rows, columns, and diagonals open for MAX - number of rows, columns, and diagonals open for MIN

$$6-4 = 2$$

$$3-3 = 0$$

Evaluation Function for chess

e(s) = weighted sum of feature

$$e(s) \doteq \boldsymbol{\theta}^{\top} \boldsymbol{\phi} \doteq \theta_1 \phi_1 + \theta_2 \phi_2 + \dots + \theta_n \phi_n$$

- Features
 - # of white pawns # of black pawns
 - # of white bishops # of black bishops
 - # of white rooks # of black rooks
 - **-** ...
- Weights
 - 1 for pawns, 3 for bishops, 5 for rooks

Example

- Achieves "Perfect" play for deterministic, perfect-information games
- Idea: choose move leading to position with highest minimax value
 - best achievable payoff against best play

Example: a 2-ply game

Minimax (back of the envelope)

Does minimax work in practice?

In chess: we can do about $b^d = 10^6$ thus, if b=35, then d=4 but 4-ply lookahead is a hopeless chess player!

4-ply = human novice
8-ply = typical PC, human master
12-ply = Deep Blue, Kasparov

a-β Pruning

Properties of α-β Search

- Pruning does not affect final result
- Good move ordering improves effectiveness of pruning
- With "perfect ordering":
 - time complexity = $O(b^{d/2})$
 - doubles depth of search
 - can easily reach depth 8
 - play good chess!

- There are lots of different kinds of search
 - With different optimizations and guarantees
- All involve planning using your knowledge of the worlds dynamics to anticipate the consequences of your action, and then picking the best
- All search involves computing how good it is to be in each state
 - And benefits from a good initial estimate