<u>التمرين (1)</u>

تتحرك سيارة على طريق مستقيم يعطى مخطط السرعة بدلالة الزمن

- 1) حدد مراحل وطبيعة الحركة في كل مرحلة .
 - 2) أحسب قيمة التسارع في كل مرحلة .
- 3) أوجد المعادلة الزمنية للحركة في المرحلة الأولى .

التمرين (2)

يجر حمزة صندوقا كتلته m=10kg على طريق مستقيم افقي (AC) مركز عطالته G بقوة \dot{f} ثابتة حاملها يصنع زاوية $\alpha=30^\circ$ مع المستوي الافقى . حيث الجزء (AB) أملس والجزء (BC) خشن. التمثيل البياني يمثل تغيرات سرعة G بدلالة الزمن G

- G أ- استنتج بيانيا طبيعة الحركة والتسارع لـ G لكل مرحلة.
 - . AC ب استنتج المسافة المقطوعة
- 2- أ- اكتب نص القانون الثاني لنيوتن. جد عبارة شدة قوة الجر \vec{F} ثم احسبها .
 - . جد عبارة شدة قوة الاحتكاك $ilde{f}$ ثم احسبها
 - د فسر لماذا يمكن للسرعة أن تصبح ثابتة في المرحلة الاخيرة .

التمرين(3)

ينزلق جسم (S) كتلته m=100g على طول مستوي مائل عن الافق بزاوية $\alpha=20^\circ$ وفق المحور m=100g , قمنا بالتصوير المتعاقب بكاميرا رقمية وعولج شريط الفيديو ببرمجية Avim'eca بجهاز الاعلام الآلى وتحصلنا على النتائج التالية:

t(s)	0	0.04	0.06	0.08	0.1	0.12
v(m/s)	v_0	0.16	0.20	0.24	0.28	0.32

. v = f(t): ارسم البيان

- 2- بالاعتماد على البيان:
- أ- بين طبيعة حركة الجسم (S) واستنتج القيمة التجريبية للتسارع a
 - \cdot t=0 في اللحظة v_0 في اللحظة السرعة ب
 - . $t_2 = 0.08s$ و $t_1 = 0.04s$ و بين
 - 3- بفرض أن الاحتكاكات مهملة:
- أ- بتطبيق القانون الثاني لنيوتن أوجد العبارة الحرفية للتسارع a_0 ثم احسب قيمته
 - ب- قارن بین a_0 و a_0 ماذا تستنج؟
 - 4- أوجد شدة القوة \vec{f} المنمذجة للاحتكاكات على طول المستوي.

التمرين(4)

متحرك كتلته m=800g ، ندفعه من اسف مستوي مائل أملس، يميل عن الأفق بز اوية lpha وبسرعة ابتدائية v_B يتحرك صعودا حتى

النقطة A حيث تنعدم سرعته، ليعود تحت تأثير ثقله فيمر بالنقطة B مرة أخرى. v=f(t) مخطط سرعة مركز عطالة الجسم بدلالة الزمن v=f(t)

. $g = 10 \, m/s^2$ تعطی

1) استنتج من البيان في الشكل:

 v_B السرعة الابتدائية (أ

ب) مسافة الصعود AB.

2) أ) اذكر نص القانون الثاني لنيوتن.

- ب) باستخدام القانون الثاني لنيوتن أوجد عبارة التسارع أثناء الصعود ثم استنتج طبيعة الحركة.
 - α احسب زاوية الميل
 - 3) بين أن الجسم يعود الى النقطة B بنفس السرعة التي دفع بها.
 - 4) يلاقي الجسم أثناء رجوعه بعد مروره بالنقطة B مستوي افقي B خشن فتتباطأ حركته ليتوقف عند النقطة C تبعد عن B مسافة B
 - أ) مثل القوى المؤثرة على الجسم خلال حركته على المقطع BD.
 - $(D \circ B)$ باستخدام مبدا انحفاظ الطاقة على الجملة (جسم) بين الموضعين $(D \circ B)$ احسب شدة قوة الاحتكاك.
 - BC احسب المدة الزمنية المستغرقة لقطع المسافة
- . BD اعد رسم مخطط السرعة الموضح في الشكل ثم مثل عليه ما تبقى من منحنى سرعة الجسم على المقطع . BD

