分段平滑函數迴歸模型報告

一、模型應用與驗證

將前面建立的兩個模型整合為分段平滑函數模型 $h(\vec{x})$,定義如下:

$$h(\vec{x}) = \{ R(\vec{x}), & \text{if } C(\vec{x}) = 1, \\ -999, & \text{if } C(\vec{x}) = 0.$$

其中:

- $C(\vec{x})$: 分類模型,用來預測該格點是否為有效觀測值。
- R(x):回歸模型,用於預測有效格點的溫度值(℃)。

模型輸入為經度與緯度兩個特徵。

在所有格點上,我們同時輸出 C(x)、R(x) 與 h(x),以驗證分段規則是否正確執行。

(1) 驗證程式運作結果

Longitude	Latitude	C(x)	R(x)	h(x)
120.00	21.88	0	25.8	-999
120.03	21.88	0	25.7	-999
120.09	21.91	1	26.8	26.8
120.12	21.91	1	27.0	27.0
120.15	21.91	0	26.5	-999

結果驗證:

- 當 *C*(*x*) = 0→ 輸出固定為 -999
- 當 $C(x) = 1 \rightarrow$ 輸出即為回歸預測值 R(x)

因此模型在程式層面上正確實現分段定義。

(2) 統計結果

項目	數量	比例
有效預測 (C=1)	6,432	79.9%
無效預測 (C=0)	1,608	20.1%
總計	8,040	100%

此結果顯示分類模型能清楚區分有效與無效格點,組合函數 h(x)能依據分類輸出自動切換分段。

二、組合函數建立原理

(1) 概念

模型 h(x)結合兩個子模型:

- 分類模型 C(x): 決定輸出應屬哪一個分段。
- 回歸模型 R(x):給出有效格點的平滑連續溫度預測。

此設計能同時:

- 避免輸出無效值干擾(利用 C(x)=0 輸出 -999),
- 保持有效值的平滑性(R(x) 為連續回歸結果)

三、模型行為展示

- (1) 組合模型空間分布圖(h(x) 空間分布圖)
- 紅色區域:有效格點的溫度預測
- 深藍色區域:無效格點 (-999)
- 可明顯觀察到有效區域的溫度分布平滑連續,而無效區域被明確排除。

組合模型 h(x) 的空間分布

(2) 模型比較圖(分類模型 vs 組合模型對照圖)

- 1.左圖顯示分類模型 C(x) 的預測分區;
- 2.右圖顯示組合後的 h(x) 實際輸出。
- 3.可以看到 h(x) 只在 C(x)=1 的區域呈現平滑溫度分布,其他區域皆為

四、結論

- 1.成功建立一個分段平滑函數模型 h(x),整合分類與回歸兩個子模型。
- 2.模型在程式運作上完全符合定義:
 - C(x)=0→ 輸出 -999
 - C(x)=1 → 輸出 R(x)
- 3.視覺化結果顯示有效區域的溫度預測平滑連續,無效區域被正確排除。