Exercice. Déterminer les $\alpha\in\mathbb{R}$ tels que $\int_{\mathbb{R}_+}\sin(t)/t^{\alpha}\,\mathrm{d}t$ converge.

Éléments de réponse. Comme $f_{\alpha}: t\mapsto \sin(t)/t^{\alpha}$ est continue sur $]0,+\infty[$, les problèmes de convergence sont a priori en 0 et en $+\infty$.

En comparant avec une intégrale de Riemann, on montre que l'intégrale $\int_1^{+\infty} f_\alpha$ converge absolument pour $\alpha>1$, puis en faisant une IPP, on montre la convergence pour $\alpha\in]0,1[$. Cependant, l'intégrale $\int_1^{+\infty} f_\alpha$ diverge lorsque $\alpha\leq 0.$ En effet, on peut poser $u_n=\int_{n\pi}^{(n+1)\pi}\sin(t)/t^\alpha\,\mathrm{d}t.$