Math 331: Homework 3

Liliana Kershner

1. We have that $c_n = b_n - a_n$. Since c_n has a limit, it is convergent and bounded. Since a_n is an increasing sequence $a_{n+1} \ge a_n$. Since b_n is decreasing, $b_n \ge b_{n+1}$. We need to know whether $b_n - a_n$ is an increasing or decreasing sequence. If $a_{n+1} \ge a_n$, this implies $-a_{n+1} \le -a_n$ and $-b_n \le -b_{n+1}$, which would mean $-a_n$ is a decreasing sequence and $-b_n$ is an increasing sequence. So c_n must also be a decreasing sequence. Take the limit of both sides as n tends to infinity: $\lim_{n\to\infty} c_n = \lim_{n\to\infty} (b_n - a_n)$.

$$\lim_{n \to \infty} c_n = \lim_{n \to \infty} (b_n - a_n)$$

$$\lim_{n \to \infty} c_n = \lim_{n \to \infty} (b_n) - \lim_{n \to \infty} (a_n)$$

$$0 = \lim_{n \to \infty} (b_n) - \lim_{n \to \infty} (a_n)$$

$$\lim_{n \to \infty} (a_n) = \lim_{n \to \infty} (b_n)$$

Therefore the sequences (a_n) and (b_n) converge and share the same limit.

2. If $f(x_n)$ is Cauchy, then it is convergent to some L.

Let us define two new sequences, x_n and y_n as two sequences which satisfy our problem requirements. Then we know that $f(x_n)$ converges to some L_x and $f(y_n)$ converges to some L_y . Define again a new sequence z_n where $z_{2n} = x_n$ and $z_{2n-1} = y_n$. The sequence $f(z_n)$ converges to some limit L_z .

Notice that x_n and y_n are subsequences of z_n . Therefore if z_n converges to L_z then x_n and y_n must also converge to L_z , and $L_z = L_x = L_y$.

Thus, the sequence $f(x_n)$ as well as all its subsequences have a limit at x_0 .

3. Assume to a contradiction that there are two limits which exist for the function f(x) as x goes to x_0 . Then we have three conditions:

$$x_n \neq x_0$$

$$x_n \to x_0$$

$$x_n \in D$$

where D is the domain of f(x). Then, f(x) has a limit L_1 as $x \to x_0$ if and only if $\forall \varepsilon > 0, \exists \delta > 0$ s.t. $|x - x_0| < \delta \implies |f(x) - L_1| < \varepsilon$. For the same conditions, f(x) also has a limit at L_2 . Let $\varepsilon > 0$. By the method in the lecture notes from 10/6, let $\varepsilon = \frac{|L_1 - L_2|}{2}$ and $\delta := \min\{\frac{|L_1 - L_2|}{2}, \frac{|L_1 - L_2|}{2}\}$. Knowing then that $|f(x) - L_1| < \frac{|L_1 - L_2|}{2}$ and $|f(x) - L_2| < \frac{|L_1 - L_2|}{2}$, we have

$$|f(x) - L_1| + |f(x) - L_2| < |L_1 - L_2|$$

$$-|L_1 - L_2| < 2f(x) - L_1 - L_2 < |L_1 - L_2|$$

$$-|L_1 - L_2| + L_1 + L_2 < 2f(x) < |L_1 - L_2| + L_1 + L_2$$

$$\frac{-|L_1 - L_2| + L_1 + L_2}{2} < f(x) < \frac{|L_1 - L_2| + L_1 + L_2}{2}$$

However, we know that $f(x) < \frac{|L_1 - L_2|}{2} - L_1$ and $f(x) < \frac{|L_1 - L_2|}{2} - L_2$ which presents a contradiction. 4. Let L be defined as the limit of f(x) and g(x) as $x \to x_0$ and let x_n be defined as a sequence such that $x_n \to x_0$, and $x_n \neq x_0$.

By the squeeze theorem which we covered in previous lectures, the limit of h(x) as $x \to x_0$ exists and is exactly equal to L.

- 5.a) Let the function g be a bounded function with domain $(0, \infty)$ and the limit of f(x) is 0. By limit arithmetic properties, regardless of the limit of g, call it L, we have $L \cdot 0$ for the limit of f(x)g(x), so the limit is 0.
- b) We first prove this forwards, that if g(x) has a limit at 0, then f(x) has a limit at ∞ . If g(x) has a limit at 0, then $\exists L \in \mathbb{R}$ s.t. $\forall \varepsilon > 0, \exists \delta > 0$ s.t. $\delta > |x| \implies |g(x) L| < \varepsilon$. Based on our knowledge that $g(x) = f(\frac{1}{x})$ this can be written as $|f(\frac{1}{x}) L| < \varepsilon$.

Take $M = \frac{1}{\delta}$. Then since $\delta > 0$, M > 0. By the reciprocal rule, we know that if $\delta > |x|$ then $\frac{1}{x} > \frac{1}{\delta}$ and x > M. Therefore the limit of f(x) exists at ∞ .

Proving it the oppsite way, take that f(x) has a limit at infinity. Therefore there exists an $L \in \mathbb{R}$ s.t. for any $\varepsilon > 0$, there is a real number M > 0 s.t if x > M, then $|f(x) - L| < \varepsilon$. Take $M = \frac{1}{\delta}$ again. Then $\delta > 0$ and $x > \frac{1}{\delta}$ and by the reciprocal rule, $\delta > \frac{1}{x}$. Since $g(x) = f(\frac{1}{x})$, we can then say that $|g(x) - L| = |f(\frac{1}{x}) - L| < \varepsilon$ so the limit of g(x) exists at 0.

- 6. a) We see that $\frac{1}{n} + \frac{1}{n+1} + \dots + \frac{1}{2n} > \frac{1}{2n} + \frac{1}{2n} + \dots + \frac{1}{2n}$, which can be written as $\frac{1}{n} + \frac{1}{n+1} + \dots + \frac{1}{2n} > \frac{1}{2n}(n) = \frac{1}{2}$. Therefore this is a bounded sequence. Since each denominator is growing faster than the numerators, this is a monotone, decreasing sequence. Therefore it will converge by BWT.
- b) Take $\lim_{n\to\infty}\frac{1+2+3+\ldots+n}{n^2}=\lim_{n\to\infty}\frac{\sum_{n=1}^{\infty}n}{n^2}.$

Divide the numerator and denominator by n^2 . We have $\lim_{n\to\infty} \frac{\sum_{n=1}^{\infty} \frac{n}{n^2}}{\frac{n^2}{n^2}}$ and $\lim_{n\to\infty} \frac{\sum_{n=1}^{\infty} \frac{1}{n}}{1} = \lim_{n\to\infty} \sum_{n=1}^{\infty} \frac{1}{n}$.

We know already from previous knowledge that this sequence converges to 0.

7. We have

$$\frac{\sqrt{1+x}-1}{x} \cdot \frac{\sqrt{1+x}+1}{\sqrt{1+x}+1} = \frac{(1+x)-1}{x(\sqrt{1+x}+1)}$$
$$= \frac{1}{\sqrt{1+x}+1}$$

Now we can take the limit since the denominator is non-zero. By quotient rule we have

$$\lim_{x \to 0} \frac{1}{\sqrt{1+x}+1} = \frac{\lim_{x \to 0} (1)}{\lim_{x \to 0} (\sqrt{1+x}+1)}$$
$$= \frac{1}{\sqrt{1}+1}$$
$$= \frac{1}{2}.$$

Therefore the limit at 0 is $\frac{1}{2}$.

8. We have

$$\lim_{x \to 1} \frac{f(x)(1 - f(x)^2)}{1 - f(x)}.$$

We first simplify so the denominator is defined.

$$\frac{f(x)(1-f(x)^2)}{1-f(x)} \cdot \frac{1+f(x)}{1+f(x)} = \frac{f(x)(1-f(x)^2)(1+f(x))}{1-f(x)^2}$$
$$= f(x)(1+f(x))$$

Apply the limit:

$$\lim_{x \to 1} f(x)(1 + f(x)) = 1(1+1)$$
$$= 2.$$

9. Let the limit of the function f(x) be equal to L. We know also that x_0 is an accumulation point of the domain of f(x) since $\lim_{x\to x_0} f(x) = L$. Then $\exists \varepsilon, N \in \mathbb{N}$ s.t. $n \ge N \implies |f(x) - L| < \varepsilon$. By the triangle inequality, ||f(x)| - |L|| < |f(x) - L|, so $||f(x)| - |L|| < \varepsilon$ and the limit exists at x_0 when we take the absolute value of f(x).

10.

- a) Since f(x) is a continuous function for $n \ge 0$, then we can directly plug the value of x_0 into the function for x. Therefore its limit is x_0^n . b) From the lecture on 10/4, we know that for $x_0 \ge 0$, $\lim_{x \to x_0} \sqrt{x} = \sqrt{x_0}$. Notice this would not be true for $x_0 < 0$.