多元函数积分学

Didnelpsun

目录

1	二重积分						
	1.1	概念		1			
		1.1.1	几何背景	1			
		1.1.2	性质	1			
		1.1.3	对称性	2			
	1.2	计算		2			
		1.2.1	直角坐标系	2			
			1.2.1.1 X 区域	2			
			1.2.1.2	3			
			1.2.1.3 区域类型选择	3			
		1.2.2	极坐标系	3			
		1.2.3	极坐标系与直角坐标系选择	4			
		1.2.4	极直互化	4			
		1.2.5	积分次序	5			
		1.2.6	二重积分处理一元积分	5			
2	2 三重积分						
	2.1	概念		6			
		2.1.1	定义	6			
		2.1.2	性质	6			
		2.1.3	对称性	7			
			2.1.3.1 普通对称性	7			
			2.1.3.2 轮换对称性	7			

	2.2	计算		7
		2.2.1	基础方法	7
			2.2.1.1 直角坐标系	7
			2.2.1.1.1	8
			2.2.1.1.2	8
			2.2.1.2 柱面坐标系	8
			2.2.1.3 球面坐标系	9
			2.2.1.3.1 适用场合	9
			2.2.1.3.2 原理	9
			2.2.1.3.3 计算方法	10
			2.2.1.4 对称性	10
			2.2.1.4.1 普通对称性	10
			2.2.1.4.2 轮换对称性	11
			2.2.1.5 形心公式逆用	11
•	/-/	ᆔᆚᅩᄼᅛ	TO /\	
3		-型曲线		11
	3.1		Tref 12	11
		3.1.1	弧长	
		3.1.2	定义	
		3.1.3	性质	12
		3.1.4	对称性	12
	3.2		therete N.N.	12
		3.2.1		12
			3.2.1.1 平面	12
			3.2.1.2 空间	12
		3.2.2		13
			3.2.2.1 边界方程代入被积函数	13
			3.2.2.2 对称性	13
			3.2.2.3 形心公式逆用	13
4	第一	-型曲面	积分	13
	4.1			13
			定义	

		4.1.2	性质		13
		4.1.3	对称性.		13
	4.2	计算 .			13
		4.2.1	基础方法	<u> </u>	13
		4.2.2	技术方法	<u> </u>	14
			4.2.2.1	边界方程代入被积函数	14
			4.2.2.2	对称性	14
			4.2.2.3	形心公式逆用	14
5	多元	:积分应	用		14
•	5.1	几何量			14
	3.1	5.1.1	平面区域		14
		5.1.2	空间区域		14
		5.1.3	空间曲线		14
		5.1.4	空间曲面		14
	5.2	重心与	i形心		14
		5.2.1	平面薄片	L 	14
		5.2.2	空间物体	,	14
		5.2.3	空间曲线		15
		5.2.4	空间曲面		15
	5.3	转动惯	量		15
		5.3.1	平面薄片	L 1	15
		5.3.2	空间物体	*	15
		5.3.3	空间曲线		15
		5.3.4	空间曲面	Ī	15
	5.4	引力 .			15
		5.4.1	平面薄片	<u>.</u> 1	15
		5.4.2	空间物体	5	15
		5.4.3	空间曲线		15
		5.4.4	空间曲面	Ī	15
6	第二	.型曲线	积分		15
	6.1	概念.			15

		6.1.1	场的概念	15			
		6.1.2	变力沿曲线做功	16			
		6.1.3	定义	16			
		6.1.4	性质	16			
	6.2	计算 .		16			
		6.2.1	基础方法	16			
		6.2.2	格林公式	16			
7	第二型曲面积分						
	7.1	概念 .		17			
		7.1.1	向量场的通量	17			
		7.1.2	定义	17			
		7.1.3	性质	17			
	7.2	计算 .		17			
		7.2.1	基础方法	17			
		7.2.2	高斯公式	17			
8	穴间	给一刑。	曲线积分计算	18			

1 二重积分

1.1 概念

1.1.1 几何背景

二重积分的几何背景就是曲顶柱体的体积。定积分用极限的思想求出了二维平面的曲边梯形的面积,同样二重积分 $\iint_{\Omega} f(x,y) d\sigma$ 。

被积函数 f(x,y) 作为曲顶柱体在点 (x,y) 处柱体微元的高,用底面积 $d\sigma>0$ 乘上高 f(x,y) 就得到一个小柱体体积,再把所有 D 上的柱体相加起来就是整个曲顶柱体的体积。

1.1.2 性质

- 求区域面积: $\iint_D 1 \cdot d\sigma = \iint_D d\sigma = A$, 其中 A 为 D 的面积。
- 可积函数必有界: 当 f(x,y) 在有界闭区间 D 上可积时, f(x,y) 在 D 上 必有界。
- 积分线性性质: k_1,k_2 为常数,则 $\iint\limits_D [k_1f(x,y)\pm k_2g(x,y)]\,\mathrm{d}\sigma=k_1\iint\limits_D f(x,y)\,\mathrm{d}\sigma\pm k_2\iint\limits_D f(x,y)\,\mathrm{d}\sigma$ 。
- 积分可加性: 当 f(x,y) 在有界闭区间 D 上可积时,且 $D_1 \cup D_2 = D$, $D_1 \cap U_2 = \emptyset$,则 $\iint_D f(x,y) \, \mathrm{d}\sigma = \iint_{D_1} f(x,y) \, \mathrm{d}\sigma + \iint_{D_2} f(x,y) \, \mathrm{d}\sigma$ 。
- 积分保号性: 当 f(x,y),g(x,y)) 在有界闭区间 D 上可积时,若在 D 上有 $f(x,y) \leqslant g(x,y)$,则 $\iint\limits_D f(x,y)\,\mathrm{d}\sigma \leqslant \iint\limits_D g(x,y)\,\mathrm{d}\sigma$,特别 $\left|\iint\limits_D f(x,y)\,\mathrm{d}\sigma\right| \leqslant \iint\limits_D |f(x,y)|\,\mathrm{d}\sigma$ 。
- 二重积分估值定理: 设 M, m,分别为 f(x,y) 在有界闭区域 D 上的最大值和最小值,A 为 D 的面积,则有 $mA \leqslant \iint\limits_D f(x,y) \, \mathrm{d}\sigma \leqslant MA$ 。
- 二重积分中值定理: 设函数 f(x,y) 在有界闭区域 D 上连续,A 为 D 的面积,则在 D 上至少存在一点 (ξ,η) 使得 $\iint_D f(x,y) d\sigma = f(\xi,\eta) A$ 。

例题: 设 $I_1=\iint\limits_{D}\cos\sqrt{x^2+y^2}\,\mathrm{d}\sigma$, $I_2=\iint\limits_{D}\cos(x^2+y^2)\,\mathrm{d}\sigma$, $I_3=\iint\limits_{D}\cos(x^2+y^2)^2\,\mathrm{d}\sigma$, 其中 $D=\{(x,y)|x^2+y^2\leqslant 1\}$, 则 ()。

 $A.I_3 > I_2 > I_1$ $B.I_1 > I_2 > I_3$ $C.I_2 > I_1 > I_3$ $D.I_3 > I_1 > I_2$ 解: 令 $x^2 + y^2 = t$, $0 < t \le 1$ 。所以 $1 \ge \sqrt{t} \ge t \ge t^2 \ge 0$ 。 又 $\cos x$ 单调减,所以 A。

1.1.3 对称性

普通对称性定义: 设 D 关于 y 轴对称, $I=\iint\limits_D f(x,y)\,\mathrm{d}\sigma$,将 D 分为对称 的两部分 D_1D_2 ,即 $I=\left\{ egin{array}{ll} 2\iint\limits_{D_1} f(x,y)\,\mathrm{d}\sigma, & f(x,y)=f(-x,y) \\ 0, & f(x,y)=-f(-x,y) \end{array} \right.$ 。关于 x 轴对称也同理。

轮换对称性定义: xy 对调后区域 D 不变或关于 y=x 对称, $\iint_D f(x,y) \, \mathrm{d}x \, \mathrm{d}y$ $=\iint_D f(y,x) \, \mathrm{d}y \, \mathrm{d}x$ 。 类似积分值与积分变量无关。 同理对于一元函数积分的不变性: $\int_a^b f(x) \, \mathrm{d}x = \int_a^b f(y) \, \mathrm{d}y$ 。

例题: 设区域 $D=\{(x,y)|x^2+y^2\leqslant 1, x\geqslant 0, y\geqslant 0\}$, f(x) 在 D 上的正值连续函数,a,b 为常数,求 $I=\iint\limits_{D}\frac{a\sqrt{f(x)}+b\sqrt{f(y)}}{\sqrt{f(x)}+\sqrt{f(y)}}\mathrm{d}\sigma$ 。

解:由于被积函数是抽象的,所以无法直接计算。但是由于 D 是圆,xy 对调后 D 保持不败你,所以 D 关于 y=x 对称,根据轮换对称性:

1.2 计算

1.2.1 直角坐标系

后积先定限,先内画条线,先交写下限,后交写上限。

二重积分要将其变为累次积分,由一个区域的积分变为分别对 xy 的积分,要将 f(x,y) 拆开,重要的就是求上下限。

1.2.1.1 X 区域

 $\sigma = \{(x,y) | a \leqslant x \leqslant b, \psi(x) \leqslant y \leqslant \phi(x) \}.$ 也称为上下型区域。

$$\iint\limits_D f(x,y) \, \mathrm{d}\sigma = \int_a^b \mathrm{d}x \int_{\psi(x)}^{\phi(x)} f(x,y) \, \mathrm{d}y \, .$$

二重积分 X 型即求底部为如图的图形的面包状物体体积。求体积的做法就是已知截面面积求体积。其中横截面的一边在底面 $\phi(x)-\psi(x)$,高为函数 f(x,y),则横截面面积 $S(x)=\int_{\psi(x)}^{\phi(x)}f(x,y)\,\mathrm{d}y$,得到了横截面之后再对 x 轴的所有横截面进行积分: $V=\int_a^b S(x)\,\mathrm{d}x$ 就得到体积。

1.2.1.2 Y 区域

$$\sigma \ = \ \{(x,y)|c \ \leqslant \ x \ \leqslant \ d, \psi(y) \ \leqslant \ x \ \leqslant \ \phi(y)\}_{\,\circ}$$

也称为左右型区域。

$$\iint\limits_D f(x,y) \,\mathrm{d}\sigma = \int_c^d \mathrm{d}y \int_{\psi(y)}^{\phi(y)} f(x,y) \,\mathrm{d}x \,.$$

1.2.1.3 区域类型选择

若上下是两条曲线,那么就是 X 型,若左右是两条曲线,那么就是 Y 型。若同一个方向的函数有两种不同的表达式,则从另一个方向将 D 按照函数分段割开求积分。

1.2.2 极坐标系

按积分区域与极点位置关系的不同,将二重积分计算分为三种情况:

根据 θ 按角度切割区间,然后从极点开始按 dr 切割,变成一个个类似矩形的图形。图形一边为切割半径的改变量 dr,另一条边为圆弧,等于半径乘改变角度 $rd\theta$,所以最后 $d\sigma = rdrd\theta$ 。

基本上都是先积 r 后积 θ 。

从射线刚开始接触区域 D 的射线记为 $\theta=\alpha$,要离开区域 D 的射线记为 $\theta=\beta$,中间移动的射线为 $\theta=\theta$ 。 $\theta=\alpha$ 与 $\theta=\beta$ 与 D 相交于两点,两点 内靠近极点的 D 的边为**内曲线**,远离极点的边为**外曲线**。 $\theta=\theta$ 与内曲线交于 $r=r_1(\theta)$,与外曲线交于 $r=r_2(\theta)$ 。

1. 极点
$$O$$
 在区域 D 外部:
$$\iint_D f(x,y) d\sigma = \int_{\alpha}^{\beta} d\theta \int_{r_1(\theta)}^{r_2(\theta)} f(r\cos\theta, r\sin\theta) r dr.$$

2. 极点
$$O$$
 在区域 D 边上:
$$\iint_D f(x,y) d\sigma = \int_{\alpha}^{\beta} d\theta \int_0^{r(\theta)} f(r\cos\theta, r\sin\theta) r dr.$$

3. 极点
$$O$$
 在区域 D 内部:
$$\iint\limits_D f(x,y)\,\mathrm{d}\sigma = \int_0^{2\pi}\mathrm{d}\theta \int_0^{r(\theta)} f(r\cos\theta,r\sin\theta)r\,\mathrm{d}r.$$

1.2.3 极坐标系与直角坐标系选择

若给出一个二重积分:

- 1. 被积函数是否为 $f(x^2+y^2)$ 、 $f\left(\frac{y}{x}\right)$ 、 $f\left(\frac{x}{y}\right)$ 等形式。
- 2. 积分区域是否为圆或圆的一部分。
- 3. 如果上面两种都有,则优先使用极坐标系,否则优先考虑直角坐标系。

1.2.4 极直互化

对于极坐标系转换到直角坐标系: $x = r \cos \theta$, $y = r \sin \theta$ 。

例题: 设区域
$$D = \{(x,y)|x^2 + y^2 \leqslant R^2\}$$
, 计算 $\iint\limits_{D} \left(\frac{x^2}{a^2} + \frac{y^2}{b^2}\right) dx dy$ 。

解: 互换积分变量:
$$I = \iint\limits_{D} \left(\frac{x^2}{a^2} + \frac{y^2}{b^2}\right) \mathrm{d}x \mathrm{d}y = \iint\limits_{D} \left(\frac{y^2}{a^2} + \frac{x^2}{b^2}\right) \mathrm{d}x \mathrm{d}y$$
。

根据公式三转换为极坐标系: $I = \frac{1}{2} \left(\frac{1}{a^2} + \frac{1}{b^2} \right) \int_0^{2\pi} d\theta \int_0^R r^2 r dr$ 。

$$\mathbb{P}\ I = \left(\frac{1}{a^2} + \frac{1}{b^2}\right) \frac{\pi R^4}{4} \,.$$

例题: 计算
$$I = \int_0^1 dx \int_{1-x}^{\sqrt{1-x^2}} \frac{x+y}{x^2+y^2} dy$$
。

解:根据上限 $\sqrt{1-x^2}$ 和 1-x 所围成的图形 D 为第一象限的圆减去三角形。

所以转换为极坐标系时,对于 $\theta \in \left(0, \frac{\pi}{2}\right)$,对于 r 在 $(1-x, \sqrt{1-x^2})$ 。

下限 x+y=1,即 $r\cos\theta+r\sin\theta=1$,解出 $r=\frac{1}{\cos\theta+\sin\theta}$,上限是一个圆,所以为 1。

$$= \int_0^{\frac{\pi}{2}} \mathrm{d}\theta \int_{\frac{1}{\cos\theta + \sin\theta}}^1 \cos\theta + \sin\theta \, \mathrm{d}r = \int_0^{\frac{\pi}{2}} \cos\theta + \sin\theta - 1 \, \mathrm{d}\theta = 2 - \frac{\pi}{2} \, \mathrm{d}\theta$$

1.2.5 积分次序

积分次序即区域类型选择的问题,目的是为了简化计算,使得积分的函数更 简单。

从另一方面,也很可能是积分函数无法按此次序进行积分,所以需要更换积

存在许多有原函数但求不出初等函数形式的原函数。如 $\frac{\sin x}{x}$ 、 $\frac{\cos x}{x}$ 、 $\frac{\tan x}{x}$ 、 $\frac{e^x}{x}$, $\sin x^2$, $\cos x^2$, $\tan x^2$, e^{ax^2+bx+c} , $\frac{1}{\ln x}$ $\stackrel{\text{\em 4.5}}{\rightleftharpoons}$.

例题: 计算
$$\int_1^2 \mathrm{d}x \int_{\sqrt{x}}^x \sin \frac{\pi x}{2y} \mathrm{d}y + \int_2^4 \mathrm{d}x \int_{\sqrt{x}}^2 \sin \frac{\pi x}{2y} \mathrm{d}y$$
。

解: 首先可以看出积分函数都是一样的,只是积分区域不同所以分开了,可 见该函数的积分区域较复杂。

积分函数为 $\sin \frac{\pi x}{2y}$, 若对 y 进行积分,则可以类比求 $\int \sin \frac{1}{x} dx$, 这个是积 分积不出来的。所以必须更换积分顺序。先积 x。

首先根据被积函数上下限得到积分区域: \sqrt{x} 、x、2 围成的类三角形 $d\sigma$ 。

$$I = \iint\limits_{D} \sin\frac{\pi x}{2y} d\sigma = \int_{1}^{2} dy \int_{y}^{y^{2}} \sin\frac{\pi x}{2y} dx = \int_{1}^{2} \frac{2y}{\pi} \left(-\cos\frac{\pi y}{2} + \cos\frac{\pi}{2}\right) dy = \frac{4}{\pi^{3}} (2+\pi).$$

1.2.6 二重积分处理一元积分

在面对有中间变量的一元积分时,可以使用二重积分。

例题: 设 $f(x) = \int_{x}^{1} \sin(\pi u^{2}) du$, 求 $\int_{0}^{1} f(x) dx$ 。(可以使用分部积分法)

解:
$$\int_0^1 f(x) dx = \int_0^1 dx \int_x^1 \sin(\pi u^2) du$$
。又 $\sin(\pi u^2)$ 无法对 x 积分。

换做对 y 积分, $d\sigma$ 为 x = 0、x = 1、u = x 围成的三角形。交换积分次序:

$$\int_0^1 \mathrm{d}y \int_0^u \sin(\pi u^2) \, \mathrm{d}x = \int_0^1 \sin(\pi u^2) u \, \mathrm{d}u = \frac{1}{2\pi} \int_0^1 \sin(\pi u^2) \, \mathrm{d}(\pi u^2) = -\frac{1}{2\pi}$$

$$\cos \pi u^2|_0^1 = -\frac{1}{2\pi}(-1-1) = \frac{1}{\pi}.$$

例题: 利用广义二重积分求 $\int_{0}^{+\infty} e^{-x^2} dx$ 。

解:根据积分值与积分变量无关的性质:

$$I^2 = (\int_0^{+\infty} e^{-x^2} \, \mathrm{d}x)^2 = \int_0^{+\infty} e^{-x^2} \, \mathrm{d}x \cdot \int_0^{+\infty} e^{-y^2} \, \mathrm{d}y = \int_0^{+\infty} \int_0^{+\infty} e^{-x^2 - y^2} \, \mathrm{d}x \mathrm{d}y$$
 $\mathrm{d}\sigma$ 是第一象限,可以看作一个广义的圆,半径无限大,转换为极坐标系。

 $d\sigma$ 是第一象限,可以看作 $_{\pi}$ 个广义的圆,半径无限大,转换为极坐标系。

$$= \int_0^{\frac{\pi}{2}} d\theta \int_0^{+\infty} e^{-r^2} r \, dr = \int_0^{\frac{\pi}{2}} \frac{1}{2} \, d\theta = \frac{\pi}{2} \cdot : I = \frac{\sqrt{\pi}}{2} \cdot$$

2 三重积分

2.1 概念

三重积分的被积函数 f(x,y,z) 定义在三维空间 Ω 上,是四维空间图形体积,非常抽象。

所以利用质量描述,设一质量非均匀的物体,体积密度为 f(x,y,z),则三重积分就是以此为点密度的空间物体的质量。

2.1.1 定义

定义:设三元函数 z=f(x,y,z) 定义在有界闭区域 Ω 上将区域 Ω 任意分成 n 个子域 Δv_i $(i=1,2,3,\cdots,n)$ 并以 Δv_i 表示第 i 个子域的体积。在 Δv_i 上任取一点 $(\alpha_i,\beta_i,\gamma_i)$ 作和 $\sum\limits_{i=1}^n\alpha_i\beta_i\gamma_i\Delta v_i$ 。如果当各个子域的直径中的最大值 λ 趋于零时,此和式的极限存在,则称此极限为函数 f(x,y,z) 在区域 Ω 上的三重积分,记为 $\iint\limits_{\Omega} f(x,y,z)\,\mathrm{d}v$,即 $\iint\limits_{\Omega} f(x,y,z)\,\mathrm{d}v=\lim_{\lambda\to 0} \sum\limits_{i=1}^n f(x_i,y_i,z_i)\Delta y_i$,其中 $\mathrm{d}v$ 叫做体积元素。

其中 \iiint 称为三重积分号,f(x,y,z) 为被积函数, $f(x,y,z)\mathrm{d}v$ 称为被积表达式, $\mathrm{d}v$ 称为体积元,x、y、z 为积分变量, Ω 为积分区域, $\sum f(\alpha_i,\beta_i,\gamma_i)\Delta v_i$ 为积分和。

2.1.2 性质

假设 Ω 为空间有界闭区域。

- 空间区域体积: $\iint_{\Omega} 1 \, dv = \iint_{\Omega} dv = V$, 其中 V 为 Ω 的体积。
- 可积函数必有界: 设 f(x,y,z) 在 Ω 上可积,则在 Ω 上必有界。
- 积分线性: 设 k_1,k_2 为常数,则 $\iint\limits_{\Omega} [k_1f(x,y,z)\pm k_2g(x,y,z)]\mathrm{d}v=k_1$ $\iint\limits_{\Omega} f(x,y,z)\,\mathrm{d}v\pm k_2\iint\limits_{\Omega} g(x,y,z)\,\mathrm{d}v$ 。
- 积分可加性: 设 f(x,y,z) 在 Ω 上可积,且 $\Omega_1 \cup \Omega_2 = \Omega$, $\Omega_1 \cap \Omega_2 = \emptyset$,则 $\iint\limits_{\Omega} f(x,y,z) \, \mathrm{d}v = \iint\limits_{\Omega_1} f(x,y,z) \, \mathrm{d}v + \iint\limits_{\Omega_2} f(x,y,z) \, \mathrm{d}v \, .$

- 积分保号性: 设 f(x,y,z), g(x,y,z) 在 Ω 上可积, 且在 Ω 上 $f(x,y,z) \leq g(x,y,z)$, 则有 $\iint_{\Omega} f(x,y,z) \, \mathrm{d}v \leq \iint_{\Omega} g(x,y,z) \, \mathrm{d}v$ 。且利用不等式性质: $|\iint_{\Omega} f(x,y,z) \, \mathrm{d}v| \leq \iiint_{\Omega} |f(x,y,z)| \, \mathrm{d}v$ 。
- 三重积分估值定理: 设 M, m 分别为 f(x, y, z) 在 Ω 上的最大值和最小值, V 为 Ω 的体积,则 $mV \leqslant \iiint\limits_{\Omega} f(x, y, z) \, \mathrm{d}v \leqslant MV$ 。
- 三种积分中值定理: 设 f(x,y,z) 在 Ω 上连续,V 为 Ω 的体积,则 Ω 上至 少存在一点 (ξ,η,ζ) 使得 $\iint\limits_{\Omega} f(x,y,z)\,\mathrm{d}v=f(\xi,\eta,\zeta)V$ 。

2.1.3 对称性

分析方法与二重积分完全一样。

2.1.3.1 普通对称性

假设 Ω 关于 yOz 面对称,则 $\iint_{\Omega} f(x,y,z)\,\mathrm{d}v=$ $\left\{ \begin{array}{l} 2\iint\limits_{\Omega_1} f(x,y,z)\,\mathrm{d}v, \quad f(x,y,z)=f(-x,y,z)\\ 0, \qquad \qquad f(x,y,z)=-f(-x,y,z) \end{array} \right.$,其中 Ω_1 为 Ω 在 yOz 面前面的部分。

2.1.3.2 轮换对称性

若把 x 与 y 对调后, Ω 不变,则 $\iint_{\Omega} f(x,y,z) \, \mathrm{d}v = \iint_{\Omega} f(y,x,z) \, \mathrm{d}v$,这就是**轮换对称性**。其他情况类似。

在使用轮换对称性的时候需要根据题目进行轮换,特别是根据所要求的被积函数 f(x),若 f(x) 中存在某些变量,则要将没有出现的变量换去。

2.2 计算

基本思想还是三重积分化为一重积分。

2.2.1 基础方法

2.2.1.1 直角坐标系

即 dv = dx dy dz, 微元是一个长方体。

2.2.1.1.1 先一后二法

先 z 后 xy, 也称为投影穿线法。先做定积分后做二重积分。相当于对底面构造垂直于底面的线,将这个面上所有的线的体积积分起来就得到这个总体积,所以先一后二法要求底面是固定的微元。

适用场合: Ω 有下曲面 $z=z_1(x,y)$ 、上曲面 $z=z_2(x,y)$,无侧面或侧面为柱面。

如二重积分:后积先定限,限内画条线,先交写下限,后交写上限。

$$\iiint\limits_{\Omega} f(x, y, z) \, \mathrm{d}v = \iint\limits_{D_{xy}} \, \mathrm{d}\sigma \int_{z_1(x, y)}^{z_2(x, y)} f(x, y, z) \, \mathrm{d}z \, .$$

例题: 计算三重积分 $I=\iiint_{\Omega}\frac{\mathrm{d}x\mathrm{d}y\mathrm{d}z}{(1+x+y+z)^3}$, 其中 Ω 是由平面 x=0,y=0,z=0 及 x+y+z=1 所围成的四面体。

解:根据图形,已知是一个四面体,所以下底面是一个 1×1 的等腰直角三角形 D_{xy} ,上曲面为一个等边三角形 z=-1-x-y,有两个侧柱面。

角形
$$D_{xy}$$
, 上曲面为一个等边三角形 $z=-1-x-y$, 有两个侧柱面。 则先将 I 消去 z , 再计算 xy : $I=\iint_{D_{xy}}\mathrm{d}\sigma\int_{0}^{1-x-y}\frac{1}{(1+x+y+z)^{3}}\mathrm{d}z$
$$=\iint_{D_{xy}}\mathrm{d}\sigma\left(-\frac{1}{2}\frac{1}{(1+x+y+z)^{2}}\Big|_{z=0}^{z=1-x-y}\right)=\iint_{D_{xy}}\frac{1}{2}\left(\frac{1}{(1+x+y)^{2}}-\frac{1}{4}\right)\mathrm{d}\sigma$$

$$=\frac{1}{2}\int_{0}^{1}\mathrm{d}x\int_{0}^{1-x}\left(\frac{1}{(1+x+y)^{2}}-\frac{1}{4}\right)\mathrm{d}y=\frac{1}{2}\int_{0}^{1}\left(-\frac{1}{4}x+\frac{1}{1+x}-\frac{1}{4}\right)\mathrm{d}x$$

$$=\left(-\frac{1}{8}x^{2}+\ln(1+x)-\frac{1}{4}x\right)\Big|_{0}^{1}=\frac{1}{2}\left(\ln2-\frac{5}{8}\right).$$

2.2.1.1.2 先二后一法

先 *xy* 后 *z*,也称为定限截面法。先做二重积分后做定积分。相当于对体积进行平行于地面的切割为圆柱体,将所有在这个高上的圆柱体积分起来就得到这个总面积,所以先二后一要求高是固定的微元。

适用场合: Ω 是旋转体,上面和下面都是平面,中间为曲面,旋转曲面方程为 $\Sigma: z=z(x,y)$ 。

后积先定限,限内截个面限。

$$\iiint\limits_{\Omega} f(x,y,z) \, \mathrm{d}v = \int\limits_{a}^{b} \mathrm{d}z \iint\limits_{D_{z}} f(x,y,z) \, \mathrm{d}\sigma \, .$$

2.2.1.2 柱面坐标系

若二重积分部分 $\iint\limits_{D_{xy}}\mathrm{d}\sigma$ 适用于极坐标系 (即与圆相关),使用极坐标系表示,令 $x=r\cos\theta$, $y=r\sin\theta$, 便有 $\iint\limits_{\Omega}f(x,y,z)\,\mathrm{d}x\mathrm{d}y\mathrm{d}z=\iint\limits_{\Omega}f(r\cos\theta,r\sin\theta,z)r$ $\mathrm{d}r\mathrm{d}\theta\mathrm{d}z$ 。这就是柱面坐标系下三重积分的计算。

适用场合:被积函数含有 $x^2 + y^2$,积分区域为圆或部分圆。

即一个定积分加上一个极坐标系下的二重积分。

例题: 计算 $\iint_{\Omega} (x^2 + y^2) \, \mathrm{d}v$,其中 Ω 是 $\left\{ \begin{array}{l} y^2 = 2z \\ x = 0 \end{array} \right.$ 绕 z 轴旋转一周形成的曲面与平面 z = 8 所围成的区域。

解: 已知平面曲线绕 z 轴旋转, 首先求这个旋转曲面。

首先令 $P_1(x_1,y_1,z_1)$ 在该曲线上,即得到两个方程: $y_1^2=2z_1$, $x_1=0$ 。

取在旋转轴 z 轴上一点 $P_0(0,0,0)$,对于纬圆上任一点 P(x,y,z),其中 $|P_0P_1|=|PP_0|, \ \mathbb{P} \ x_1^2+y_1^2+z_1^2=x^2+y^2+z^2\,.$

且向量 $\overrightarrow{PP_1}$ 垂直于旋转轴 z 轴,所以 $(x_1-x,y_1-y,z_1-z)\bot(0,0,1)$, $z_1-z=0$, $z_1=z$ 。

代入方程所以 $x_1^2+y_1^2=x^2+y^2$,再代入 $y_1^2=2z$, $x_1=0$,得到 $2z=x^2+y^2$ 。旋转曲面为 $z=\frac{x^2+y^2}{2}$ 。且于 z=8 所得到一个旋转体。

因为选择体上下都是平面,侧面是曲面,所以使用先二后一法。其中 D: $x^2+y^2\leqslant 2z$ 。

$$I = \int_0^8 dz \iint_D (x^2 + y^2) d\sigma = \int_0^8 dz \int_0^{2\pi} d\theta \int_0^{\sqrt{2z}} r^2 r dr = \frac{1024}{3} \pi.$$

2.2.1.3 球面坐标系

2.2.1.3.1 适用场合

被积函数含有 $x^2 + y^2 + z^2$ 或 $x^2 + y^2$,积分区域为球或球的部分,锥或锥的部分。

2.2.1.3.2 原理

利用三族面对 Ω 进行切割:

- 1. 首先用 $r=r_0$ 从原点开始向外做球体进行切割,求半径为 r_0 ,增量为 $\mathrm{d}r$ 。 $r_0\in[0,+\infty)$ 。
- 2. 然后用 $\phi = \phi_0$ 从 z 轴为中心,原点为定点,做半项角为 ϕ_0 的圆锥面进行切割,增量为 $\mathrm{d}\phi$ 。 $\phi_0 \in [0,\pi]$ 。

3. 最后用 $\theta = \theta_0$ 以 z 为轴做半平面,与 xOz 夹角为 θ_0 ,增量为 $d\theta \circ \theta \in [0, 2\pi]$ 。

首先在极坐标系中, 弧长等于弧度乘半径, 所以微元的由 ϕ 确定的一边为 $rd\phi$, 对于 θ 确定的一边,首先需要根据勾股定理得到弧长 $r\sin\phi$, 然后乘 $d\theta$ 得 到微元边长 $r \sin \phi d\theta$,最后乘上 dr,从而得到微元就是三边相乘: $r d\phi r \sin \phi d\theta dr$ 。

对 xyz, 由 ϕ 推出的一个直角三角形的斜边为 r, 半顶角为 ϕ , 所以 z 轴的 直角边为 $z = r\cos\phi$,又 $x^2 + y^2 + z^2 = r^2$,所以 $x^2 + y^2 = r^2 - z^2 = r^2\sin^2\phi$, 又 xOy 夹角为 θ , 所以 $x = r \sin \phi \cos \theta$, $y = r \sin \phi \sin \theta$.

2.2.1.3.3 计算方法

 $\iiint\limits_{\Omega} f(x,y,z) \,\mathrm{d}x \mathrm{d}y \mathrm{d}z = \iiint\limits_{\Omega} f(r\sin\phi\cos\theta,r\sin\phi\sin\theta,r\cos\phi) r^2 \sin\phi \,\mathrm{d}\theta \mathrm{d}\phi \mathrm{d}r$ 令 $x = r\cos\theta\sin\phi$ 、 $y = r\sin\theta\sin\phi$ 、 $z = r\cos\phi$,判断 xOy 面的与正方向 夹角 ϕ , xOz 面的与正方向夹角 θ 。

例题: 计算三重积分 $\iint\limits_{\Omega}(x^2+y^2)\,\mathrm{d}v$,其中 Ω 是半球面 $x^2+y^2+z^2=a^2$ $(u \ge 0)$ 与 xOz 面所围成的区域。

解:根据图形是一个右半球,所以 θ 是 x 正轴到负轴一共 π , ϕ 到正轴到负 轴一共 π , r 从原点到最外面一共a。 $f(x) = x^2 + y^2 = r^2 \sin^2 \phi$ 。

$$:I = \int_0^{\pi} d\theta \int_0^{\pi} d\phi \int_0^a (r^2 \sin^2 \phi) r^2 \sin \phi dr$$

2.2.1.4 对称性

2.2.1.4.1 普通对称性

例题: 计算 $\iint_{\Omega} e^{|z|} dv$,其中 $\Omega: x^2 + y^2 + z^2 \leq 1$ 。 解: 已知 Ω 为一个半径为 1 的球体。且球体球心在原点,利用普通对称性 代入: $f(x,y,z) dv = e^{|z|} dv = dm = f(x,y,-z) dv = e^{|z|} dv = dm$, 所以对于 f(x,y,z), 在球体上下积分相同。

由于截面是一个圆,所以令 z=z,代入方程得到面积: $D: x^2+y^2 \le 1-z^2$ 。 所以这个圆的半径的平方就是 $r^2 = 1 - z^2$, 面积为 $\pi r^2 = \pi (1 - z^2)$ 。

$$= 2 \int_0^1 dz \iint_D e^z d\sigma = 2 \int_0^1 e^z \cdot \pi (1 - z^2) dz = 2\pi .$$

2.2.1.4.2 轮换对称性

2.2.1.5 形心公式逆用

由
$$\overline{x} = \frac{\iint\limits_{\Omega} x \, \mathrm{d}v}{\iint\limits_{\Omega} \mathrm{d}v}$$
 推出 $\iint\limits_{\Omega} x \, \mathrm{d}v = \overline{x} \cdot V$,其中 V 是 Ω 的体积。

3 第一型曲线积分

是由定积分推广而来。即对弧长曲线积分。

3.1 概念

用于计算密度不均匀的不规则形状细线质量。

3.1.1 弧长

L 是在 xOy 上的曲线段,f(x,y) 在 L 上有界,将 L 分割为多个线段 $\Delta S_1, \Delta S_2, \cdots, \Delta S_n$,假如取该线段某点 $\forall (\xi_i, \eta_i) \in \Delta S_i$,则该线段的质量可以 近似为 $\Delta m_i \approx \rho(\xi_i, \eta_i) \Delta S_i$,所以整体线的质量 $m \approx \sum_{i=1}^n \rho(\xi_i, \eta_i) \Delta S_i$ 。 $\lambda = \max\{\Delta S_1, \cdots, \Delta S_n\}$,若极限 $m = \lim_{\delta \to 0} \sum_{i=1}^n \rho(\xi_i, \eta_i) \Delta S_i$ 存在,称该极限为 f(x,y) 在 L 上对弧长的曲线积分 $\int_I f(x,y) \, \mathrm{d}S$ 。

3.1.2 定义

•
$$L: y = g(x) \ (a \leqslant x \leqslant b)$$
, $\int_L f(x,y) \, \mathrm{d}S = \int_a^b f[x,g(x)] \sqrt{1 + g'^2(x)} \mathrm{d}x$

$$\begin{array}{l} \bullet \quad L: \left\{ \begin{array}{l} x = \phi(t) \\ y = \psi(t) \end{array} \right. (\alpha \leqslant t \leqslant \beta), \quad \int_L f(x,y) \, \mathrm{d}S = \int_\alpha^\beta f[\phi(t), \psi(t)] \\ \sqrt{\phi'^2(t) + \psi'^2(t)} \mathrm{d}t \, \cdot \end{array} \right.$$

3.1.3 性质

- $\int_L 1 \, \mathrm{d}S = l \, \circ$
- $\int_L f(x,y) \, \mathrm{d}S = \int_{L_1} f(x,y) \, \mathrm{d}S + \int_{L_2} f(x,y) \, \mathrm{d}S \, .$
- $\int_L (k_1 f(x,y)) \mathrm{d}S \pm \int_L (k_2 f(x,y)) \mathrm{d}S = k_1 \int_L f(x,y) \, \mathrm{d}S \pm k_2 \int_L f(x,y) \mathrm{d}S$ \circ

3.1.4 对称性

- L 关于 y 轴对称,右边部分为 L_1 ,若 f(-x,y) = -f(x,y),则 $\int_L f(x,y) \, \mathrm{d}S = 0$, 若 f(-x,y) = f(x,y),则 $\int_L f(x,y) \, \mathrm{d}S = 2 \int_{L_1} f(x,y) \, \mathrm{d}S$ 。
- L 关于 x 轴对称,上边部分为 L_1 ,若 f(x,-y) = -f(x,y),则 $\int_L f(x,y) \, \mathrm{d}S = 0$, 若 f(x,-y) = f(x,y),则 $\int_L f(x,y) \, \mathrm{d}S = 2 \int_{L_1} f(x,y) \, \mathrm{d}S$ 。
- L 关于 y = x 对称,则 $\int_L f(x,y) dS = \int_L f(x,y) dS$ 。

3.2 计算

3.2.1 基础方法

即化为定积分。一投(投影)二代(代入关系方程)三计算($\mathrm{d}s$ 转换为 $\mathrm{d}x$ 等)。

3.2.1.1 平面

例题: 计算 $\int_{\Gamma} |y| \, \mathrm{d}s$,其中 Γ 为球面 $x^2 + y^2 + z^2 = 2$ 与平面 x = y 的交线。解:根据普通对称性,对于 |y| 而言,其他象限的函数值都与第一象限区域的函数相等。令第一象限区域为 Γ_1 :

3.2.1.2 空间

- 3.2.2 技术方法
- 3.2.2.1 边界方程代入被积函数
- 3.2.2.2 对称性
- 3.2.2.3 形心公式逆用

4 第一型曲面积分

dS 为面微分。

- 4.1 概念
- 4.1.1 定义
- 4.1.2 性质
- 4.1.3 对称性
- 4.2 计算

还是一投二代三计算。

4.2.1 基础方法

即化为二重积分。

例题:设曲面 $\Sigma: |x| + |y| + |z| = 1$,求 $\underset{\Sigma}{\bigoplus}(x + |y|) dS$ 。

解: 曲面 Σ 是一个正八面体。又普通对称性得 $\iint_{\Sigma} x \, \mathrm{d}S = 0$ 。

令第一卦限为 Σ_1 ,所以根据普通对称性 $\iint_{\Sigma} |y| \, \mathrm{d}S = 8 \iint_{\Sigma_1} y \, \mathrm{d}S$

因为 x + y + z = 1 和 $dS = \sqrt{1 + z_x'^2 + z_y'^2} dxdy$ 交换 xy 保持不变。

根据轮换对称性 $\iint\limits_{\Sigma_1} y \, \mathrm{d}S = \iint\limits_{\Sigma_1} x \, \mathrm{d}S$ 。

且对于 x+y+z=1 和用 xz 替换 y (把微元曲面投到不同的坐标轴平面):

 $\mathrm{d}S = \sqrt{1 + y_x'^2 + y_z'^2} \,\mathrm{d}x\mathrm{d}z$ 交换 xz 保持不变。

根据轮换对称性 $\iint\limits_{\Sigma_1} y \, \mathrm{d}S = \iint\limits_{\Sigma_1} x \, \mathrm{d}S = \iint\limits_{\Sigma_1} z \, \mathrm{d}S$ 。

$$3 \iint_{\Sigma_1} y \, \mathrm{d}S = \frac{8}{3} \iint_{\Sigma_1} (x + y + z) \, \mathrm{d}S = \frac{8}{3} \iint_{\Sigma_1} \mathrm{d}S = \frac{8}{3} S_{\Sigma_1} = \frac{8}{3} \frac{\sqrt{3}}{2} = \frac{4}{3} \sqrt{3}$$

- 4.2.2 技术方法
- 4.2.2.1 边界方程代入被积函数
- 4.2.2.2 对称性
- 4.2.2.3 形心公式逆用

5 多元积分应用

包括二重积分、三重积分、一型曲线积分、一型曲面积分四个部分。

- 5.1 几何量
- 5.1.1 平面区域
- 5.1.2 空间区域
- 5.1.3 空间曲线
- 5.1.4 空间曲面

是考试的重点。

5.2 重心与形心

当密度 ρ 为一个固定常数时重心就是形心。

- 5.2.1 平面薄片
- 5.2.2 空间物体

是考试的重点。

例题: 设空间物体 $\Omega=\{(x,y,z)|x^2+y^2\leqslant z\leqslant 1\}$,求 Ω 的形心的竖坐标 \overline{z} 。

- 5.2.3 空间曲线
- 5.2.4 空间曲面

5.3 转动惯量

可能会考到。

- 5.3.1 平面薄片
- 5.3.2 空间物体
- 5.3.3 空间曲线
- 5.3.4 空间曲面

5.4 引力

考的可能性很小。

- 5.4.1 平面薄片
- 5.4.2 空间物体
- 5.4.3 空间曲线
- 5.4.4 空间曲面

6 第二型曲线积分

第二型与第一型的差别就是第二型具有物理意义是有向的,而第一型具有 几何意义是无向的。即对坐标曲线积分。

6.1 概念

6.1.1 场的概念

定义: 就是空间区域 Ω 上的一种对应法则。

数量场就是对应数量没有方向。向量场就是有数量也有方向。

6.1.2 变力沿曲线做功

对于双理想状态,对一个物体沿直线且均匀力道,则其功为 $\vec{F} \cdot \overrightarrow{AB}$ (\vec{F} 为力向量, \overrightarrow{AB} 为物体移动向量)。

而对于双不理想状态,对一个物体沿曲线且变动力道做功,则无法得出结论。

令曲线为 L,对 L 进行切分为微元 $\forall \overrightarrow{\mathrm{dS}} \in L$,则 $\overrightarrow{\mathrm{dS}} = \{\mathrm{d}x,\mathrm{d}y\}$ 。设变力 $\vec{F}(x,y) = \{P(x,y),Q(x,y)\}$,则功的微元为 $\mathrm{d}\omega = \vec{F}\cdot\overrightarrow{\mathrm{dS}} = P(x,y)\mathrm{d}x + Q(x,y)\mathrm{d}y$,所以对整体功进行积分 $\omega = \int_L \mathrm{d}\omega = \int_L P(x,y)\mathrm{d}x + Q(x,y)\mathrm{d}y$ 。

令曲线为 L,对 L 进行切分为微元 $\forall \overrightarrow{\mathrm{dS}} \in L$,则 $\overrightarrow{\mathrm{dS}} = \{\mathrm{d}x,\mathrm{d}y,\mathrm{d}z\}$ 。 设变力 $\vec{F}(x,y,z) = \{P(x,y,z),Q(x,y,z),R(x,y,z)\}$,则功的微元为 $\mathrm{d}\omega = \vec{F}\cdot \overrightarrow{\mathrm{dS}} = P(x,y,z)\mathrm{d}x + Q(x,y,z)\mathrm{d}y + R(x,y,z)\mathrm{d}z$,所以对整体功进行积分 $\omega = \int_L \mathrm{d}\omega = \int_L P(x,y,z)\mathrm{d}x + Q(x,y,z)\mathrm{d}y + R(x,y,z)\mathrm{d}z$ 。

6.1.3 定义

对于二维,对坐标的曲线积分为 $\int_L P(x,y)\mathrm{d}x + Q(x,y)\mathrm{d}y$,其中 $\int_L P(x,y)\,\mathrm{d}x$ 为 P(x,y) 在有向曲线段 L 上对坐标 x 求积分, $\int_L Q(x,y)\,\mathrm{d}y$ 为 Q(x,y) 在有向曲线段 L 上对坐标 y 求积分。

对于三维,对坐标的曲线积分为 $\int_L P(x,y,z)\mathrm{d}x + Q(x,y,z)\mathrm{d}y + R(x,y,z)\mathrm{d}z$,同理如二维的定义。

6.1.4 性质

- $\int_{L^{-}} P(x,y) \, \mathrm{d}x + Q(x,y) \, \mathrm{d}y = \int_{L} P(x,y) \, \mathrm{d}x + Q(x,y) \, \mathrm{d}y$
- $\int_L P(x,y) \, \mathrm{d}x + Q(x,y) \, \mathrm{d}y = \int_L (P(x,y) \cos \alpha + Q(x,y) \cos \beta) \mathrm{d}S$ 。 (利用方向余弦将第二类曲线积分化成第一类曲线积分)

6.2 计算

6.2.1 基础方法

即化为定积分。

6.2.2 格林公式

是考试的重点,基本上都会考到。非常重要。

例题: 计算曲线积分 $\oint_L \frac{x \mathrm{d}y - y \mathrm{d}x}{4^x 2 + y^2}$,其中 L 是以点 (1,0) 为圆心, $R \geqslant 1$ 为 半径的圆,取逆时针方向。

解:由于是逆时针在 L 上,所以是正向: $=\oint\limits_{L^+}\left(\frac{-y}{4x^2+y^2}\mathrm{d}x+\frac{x}{4x^2+y^2}\mathrm{d}y\right)$ 。 又对于 L 所围成的圆面 D,因为 $4x^2+y^2\neq 0$,所以 (0,0) 应该被挖去。

因为逆时针的方向下挖去这个点做的运动顺时针是负方向的,所以令其为 C^- 。

又因为格林公式
$$\oint_{L^++C^-} P \, \mathrm{d}x + Q \, \mathrm{d}y = \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \mathrm{d}\sigma = \iint_D \left(\frac{4x^2 + y^2 - 3x^2}{(4x^2 + y^2)^2} - \frac{-(4x^2 + y^2) + 2y^2}{(4x^2 + y^2)^2} \right) \mathrm{d}\sigma = 0$$
。 旋度为 0 。
$$= \oint_{L^++C^-} \oint_{C^-} = 0 - \oint_{C^-} \oint_{C^+} \otimes \mathbb{R} \ C : 4x^2 + y^2 = \delta^2, \ \delta \ \text{为一个足够小的常数}, \quad (\text{分母取 } \delta^2)$$

$$= \oint_{C^+} \left(\frac{-y}{4x^2 + y^2} \mathrm{d}x + \frac{x}{4x^2 + y^2} \mathrm{d}y \right) = \oint_{C^+} \left(\frac{-y}{\delta^2} \mathrm{d}x + \frac{x}{\delta^2} \mathrm{d}y \right)$$

$$= \frac{1}{\delta^2} \oint_{C^+} -y \, \mathrm{d}x + x \, \mathrm{d}y, \text{利用格林公式}, C^+ \text{所成区域为} D' : \frac{1}{\delta^2} \oint_{D'} (1 - (-1)) \, \mathrm{d}\sigma = \frac{2}{\delta^2} D' = \frac{2}{\delta^2} \pi^{\delta} \delta = \pi$$
。

7 第二型曲面积分

- 7.1 概念
- 7.1.1 向量场的通量
- 7.1.2 定义
- 7.1.3 性质
- 7.2 计算
- 7.2.1 基础方法

即化为二重积分。

7.2.2 高斯公式

是考试的重点,基本上都会考到。非常重要。

8 空间第二型曲线积分计算

是第二型曲线积分的应用。使用的是斯托克斯公式。