EARTHQUAKE PREDICTION MODEL USING MACHINE LEARNING

COLLEGE CODE: 8106 NAME: SARAVANAN.K PHASE 1 -SUBMISSION

Abstract:

Earthquake prediction is a cruciat area of research in seismotogy and geophysics. In this project, we aim to develop a data-driven earthquake prediction model using Python and a Kaggte dataset containing historical earthquake data. The primary goal is to analyse patterns and build a machine learning model that can provide probabilistic earthquake predictions. Additionally, we will visualize earthquake occurrences on a world map to gain insights into their spatial distribution.

Modules:

Python libraries:

The following Python modules are needed to build an earthquake prediction model using the Kaggle earthquake dataset and visualize the results on a world map:

- 1. numpy for scientific computing
- 2. pandas for data manipulation and analysis
- 3. matplotlib for data visuaiizat\on2
- 4. folium for interactive map visualization
- 5. sCikit-learn for machine learning

IMPORTING PYTHON LIBRARIES:

import numpy as np import pandas as pd import matplotIib.pypIot as plt import folium from skIearn.model selection import train test split from skiearn.ensembIe import RandomForestRegressar

Metnods:

1. Data Acquisition and Preprocessing:

Download the Kaggle dataset and obtain the required day from it. Pre-process the dataset, inc(uding data cleaning, handling missing values, and converting data types.
Load the earthquake dataset

df = pd.read_csv('earthquake-database.csv')

2. Exploratory Data Analysis (EDA):

Perform statistical **analysis** to understand the distribution of earthquake magnitudes, depths, and locations. Visualize earthquake data with histograms, scatter plots, and time serias ptote.

3 Feature Engineering:

Extract relevant features from the dataset, such as earthquake location coordinates. time, magnitude, depth, and possibly external factors like geological data, weather, or tectonic plate information.

Prepare the data

#Remove outliers

df = df[(df['Magnitude'] > 5) & (df['Oepth'] > 0)s

the data from tha csv file where magnitude is greater than 5 and depth is greater than 0.

4. Data Splitting:

Split the dataset into training and teMing subsets to evaluate model performance.

Split the data into training and testing sets

```
X train, X_test, y train, y_test = train_test_sptit(df[['Latitude, 'Longitude']], df{'f•\agnitude'}, test_size=0.25)
```

5. f4ode\ Selection and Training:

Choose appropriate machine learning models for earthquake prediction (e.g., regression, classification, time aeries forecasting). Train and fine-tune the selected models using the training data.

Train tha maehine learning model

```
model = RandomForestRegressor()
model.fit(X_train, y_train)
```

WHY RANDOM FOREST REGRESSION MODEL:

A random forest regression model is easy to identify the struGtural safety status of buildings damaged by the earthquake is probabilistic. An earthquake's Latitude, longitude. magnitude, and depth may be predicted using the random forest algorithm.

A random forest with muftioutput technique is employed, with variables being each station's recorded value and geographic position.

B. Model Evaluation:

Evaluate the model's performance using appropriate metrics i.e., Mean Absolute Error.

Evaluate the model on the testing set

```
y red = model.predict(X test)
print('Model accuracy:', np.mean(y_pred == y test))
```

7. Visualization with World I-Iap:

Use library Folium to create a world map. Plot earthquake data on the world map using latitude and longitude information. Customize markers to represent earthquake attributes such as magnitude. depth, and date.

fi Visualize the resutta on a wortd map wortd_map = fotium.Map()
Fotium:

Folium makes it easy to visualize data that's been manipulated in python on an interactive leaflet map. It enables both the binding of data to a map for choropteth visualizations as passing as a HTML visualization as markers on the map.

B. Plotting the data.

```
# Plot the training data
for i in range(len(X_train)):
folium.CircIeMarker(
location= [X_train.iloC[i, 0], X_train.iIoc[i, 1j],
popup= str (X train.iloc[L 0]) + ', ' + str(X_train.iloc|i, 1]),
coIor='bIue',
fiII_coIor='bIue',
fiII_opacity=0.5
).add_to(worId_map)
# Plot the testing data
for i in range(Ien(X_test)):
foIium.CircIeMarker(
location= [X_test.iIoc[i, 0], X_test.hoc[i, 1]],
   popup= str (X_test.iIoc[i, 0]) + ',' + str(X_test.iloc[i, 1]),
coIor='red',
fiII_coIor='red',
fiII opacity=0.5
).add_to(worId_map)
world_map.save('earthquake rediction_map.html')
```

import pandas as pd

import numpy aa np

import matplotlib.pyplot aa pit

Collecting folium

!pip ínstall folium

osiDg cached folium-0.l4.0-py2.py3-none-aOy.whl (102 kB) Collecting branca>=0,6.0 (from folium) Psing cached branca-0.6.0-py3-none-any.whl (24 kB) Requirement already satisfied: jinja2>=2.9 in c:\user6\sriOi\,conda\lib\site-packages (from folium) (3.1.2) Requirement already satisfied: numpy in c:\users\srini\.conda\lib\sitepackages (from folium) (1,24.3) Requirement already satisfied: requests in c:\users\srini\.conda\lib\sitepackages (from folium) (2.31.0) Requirement already satisfied: Markupsate -= 2.D in c:\users\srini\.conda\lib\sire-packages ([rom jinja2>=2.9- folium) (2.1.1) Requirement already satisfied: charset-normalizer(4,>=2 in c:\users\srini\,conda\lib\site-packages (from requests->folium) (2.0.4) Requirement already satisfied: idna<4,>=2.5 in c:\users\srini\.conda\lib\site-packages (from requests->folium) (3.4) Requirement already satisfied: urllib3<2,>=1.21.1 in c:\users\srini\.conda\lib\site-packages {from requests->fOlium) (1.26.16) Requirement already satisfied: certifi>=2017,4.17 im c:\users\sriDi\.conda\lib\site-packages (from requests->folium) (2023.7.22) Installing collected packages: braoca, folium

Successfully insea 12ed branea- 0 . 6 . 0 £olium - 0 . 14 . 0

import Iolium

from sklearn.ensemble import RandomForestRegressor

df pd.read_csv(r'/Dsers/srini/OneDrive/Documents/database.csv') print(df)

	Date	Time Latitud	de Longit	ude	Туј	oe Oeptfl \
0	0 1/ 02/ 1 965	13:44:18	19.2460	145.6160 Ear	t fl2jlu6Q e	
1	01/04/1965	11:29:49 1.86	30 127.35	20	Earthquake	e 80.00
2	01 / 05/ 196 s	18.05.5B	-a0.6790	-172.9780 Ea	arthquake	20.00
3	01 / 08/ 196 s	18.49:42	-59.0760	-22.5570 Ea	rthquake	15.00
4	01/09/196 s	Earth ₂ le ₅₀	11.9380	126.4270		15.0D
234 07	12/2 8/2 0 16	0B : 22 : 12	3 8. 3 917	- 118 . a 941	Earthquak	12.30
234 OB	12/2 8/2 0 16	09:13:47	38.3777	-118.8957	-	В.ВО
234 09	12/28/2 0 16	12:18:51		140.4262	Earthquak	10.00
23 41 0	12/29/2 0 16	22:30:19	-9. 02BE 3	118 . 6 62 9	е	79.00
234 11	12/3 0/2 0 16	2 0 : 08 : 28	y . 3973	141. 4 T 02	Earthquak	11,94
					е	
	Depth Erro	or Depth se	ismic Sta	ations Nagn	i Earlich Mhadr	itude Type. 🛝
0	Nal	1		NaN	€.0	MW
1	Nal	1		NaN	Earthquak	MW
2	Na			NaN	€ .2	М
3	N			NaN	B.8	W
4	Na	N		NaN	5.B	MW
	N					W
234 07	1.2			40.0	5 c	ML

23 4 0 8	2.0	33.0	5.5	ML
234 09	1.8	Na	5.9	MWW
234 1 0	1.8	N	6.3	MWW
2341 1	2.2	Na	N 5.5	MB
		N		
	Magnitude Seismic S	tations Azimu	ıtbal Gap Horizo	ntal Distance \
Ο	maN NaN NaN			
1	NaN NaN NaN			
2		NaN	NaN	NaN
3		san	NaN	NaN
4		NaN	NaN	NaN
234 OV		1.8 0	42.47	0,120
234 08		18.0	48 . 58	0.129
234 09		NaN	91. 0 0	0.992
23 41 0		NaN	2 6. 0 0	3 . 553
2 34 11		428.0	9?.00	0.681
	Horizontal Error Roo	t Mean Squar	e ID S	ource \
0	NaN NaN		ISCGEM860706	ISCGEM
1	NaN	Na S	CGEN860737 ISC	GEM
2	NaN	NaN	ISCGEM860762	
3	NaN	NaN	ISCGEM	
4	Ra 1'4	RAM	ISCGEM860856	
			ISCGEM	
23 4 07	Na	O.189B	15 CAGHE DV085570879100	NN
23 4 08	N	0.2187	ISQGF00570744	NN
2 34 0 9	₽\.	1.5200	DS10007N	US
23 410	₽.0	1,4300	AR	US
23411	4.5	0.9100	U\$1000077111 D	US
			0	
	Location Source Na	gnitude Sour	ce status	
Ο		M ISCGEM Au		
1	ISC€E	M ISCGEM Au	itomatic	
2		M ISCGEM Au		
3	ISCGEM	ISCOEM A	utomatic	
4	ISCGEM	ISCGEM A	utomatic	
234 07	NN		eviewed	
23 4 08	NN		Reviewe	
234 09	US	N c	•	
2341 0	US		@viewe	
23411	US	DS of		
		R	eviewe	
		_l		

d

(23412 rows x 21 columns)

df = df[(df['Magnitude') > 5) & (df['Depth') > 0))

print(df)

Date Time Latitude Loogitude Type Depth \

- U DI/02/1965 13:44:18 19.2460 145.6160 Earthquake 131.60
- 01/04/1965 II: 29 : 49 | . 863D 127 . 3520 Earthquake 80.00
- 2 01/05/1965 GB : 05 : 58 -2Q . 579D 173.3720 Earthquake Z0.00
- 3 0 / 0 8 /1 9 d 5 18:49- 42 -59.0750 -22. 5510 Earthquake 15.00
- 4 D1/09/1965 12 : 3Z 50 11 . 938 0 126. 4270 Earthquake 15.00

23407	12/29/2016	OB: 22:12	28.3917 38.	-118.8941	Earthquake	12.30
2 3 4 DR	12 / 2 8 /2 0 6 12	D9:13 '47	3777 36.	-118. 8957	Earthquake	8.80
23409	/ 2 B / 2 01 6 12	12:*8:51	9179 -9.	140. 4262	Earthquake	10.00
2 3 41 D	/2 9 / 2 0 6 12 /	22:30:19	0283 37 .	118.6639	Earthquak	79.00
2 3 4 11	3 D / 2 O I 6	2D:08:28	2973	141. 4103	е	11.94

Earthquak

Depth Error Depth Seismic Stations MagnitudeeMagnitude Type

O	NaN	NaN	6.0	MW
1	NaN	NaN	5.8	MW
2	NaN	NaN	6.2	MW

3	NaN	NaN	5.8	MW
4	NaN	NaN	5.8	MW
234 07	1.2	40.0	5.6	ML
23 4 08	2.0	33.0	5.5	ML
2 34 0 9	1.8	NaN	8.9	Mww
2 34 10	1.8	NaN	6.3	Mww
23 411	2.2	NaN	5.5	MB

Magnitude Seismic Stations Azimuthal Gap Horizontal Distance \

NaN NaN NaN	NaN	NaN	N-N
3	NaN	l NaN	NaN NaN
4	NaN NaN		NaN
234 07	8.0	42.47	0.120
23 4	18.0	48.58	0.129
08 23	NaN	9i.00	0.992
4309 10	NaN	26.00	3.5 b3
23411	428.0	97.00	0.68i

Borizootal Error Root Mean Square LD Source \

- Ra 1'4 RAM ISCGEM860706 ISCGEM 0
- 1 NaN NaN ISCGFMB60737 ISCGEN
 - NaN NaN ISCGEMB6O762 ISCGEM
- NaN NaN ISCGEMB60856 ISCGEM 3
- NaN NaN ISCGEMB60890 ISCGEM

234 07	Na	0.1898	NN00570710	NN
234 OB	N	0.Zi87	NN00570744	NN
234 09	₽ . 8	1.5200	DSI0007NAF	US
23 41 0	8.0	1.4300	DSI0007NL	DS
234 11	4.5	0.9i00	0	oS
			oSl0007mT	

Location Source Magnitude source Status

	Education Source Magnitude Source Seatus
0	ISCGEM ISCGEM Automatic
1	ISCGEM ISCGEM Automatic
2	ISCGEM ISCGEM Automatic
3	ISCGEM ISCGEM Automatic
4	ISCGEN ISCGEM Automatic

Z3408	NN	NN	Rev ie we d
23409	US	US	Reviewe
23410	US	US	d
22411	US	US	Reviewe
			d
[23239 rows		Reviewe	
			d

X train, X test, y train, y test = train test split(df[[' atitude', 'Longitude']], df['Magnitude'], test size=0.25)

model = RandomFOrestRegressor() model.fitlX_train, y train)

RandomForestRegressor()

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the

o 6

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

Random Forest Regressor

 $RandomForestRegressor(\)$

ypred = model.predict(X test)
print('Model accuracy: ', np.mean(ypred == y test))

Model accuracy: 0.0D0172ll70395869l9lZ

world_map = folium.Map()

print(world_map)

<folium.folium.Map Object at 0x0000026DBB0A4850>

```
for i in raoge(len(X traio)) :
folium.CircleMarkerl
location= (X train.iloc[i, D), X train.iloc[i, 1)),
                       popup= str (X_train.iloc[i, 0)) + ', ' + str(X train.iloc(i, lj),
color='biue',
fill color='blue',
fill_opacity=D.5
    ).add to(world map)
for i in range(len(X test)) :
    folium.CircleMarker(
    location= (X test.iloc(i, 0), X_test.iloc(i, 1)),
                 popup= str (X_test.iloc[i, 0)) + ', ' + str(X test.iloc(i, 1)),
        color='red',
                color='red',
        fill
        fill_opacity=D.5
    ).add to(world map)
world map.save('earthquake_prediction map.html')
```


