Math 2D

Overview

- 10.1 Curves Defined by parametric Equations
- 10.2 Calculus with Parametric Curves
- 10.3 Polar Coordinates
- 12.1 Three-Dimensional Coordinate System
- 12.2 Vectors
- 12.3 The Dot Product
- 12.4 The Cross Product
- 12.5 Equations of Lines and Planes
- 12.6 Cylinders and Quadric Surfaces
- 13.1 Vector Functions and Space Curves
- 13.2 Derivatives and Integrals of Vector Functions
- 13.3 Arc length and Curvature
- 13.4 Motion in Space: Velocity and Acceleration
- 14.1 Functions of Several Variables
- 14.2 Limits and Continuity
- 14.3 Partial Derivatives
- 14.4 Tangent Planes and Linear Approximation
- 14.5 The Chain Rule
- 14.6 Directional Derivatives and the Gradient Vector
- 14.7 Maximum and Minimum Values
- 14.8 Lagrange Multipliers
- 15.1 Double Integrals over Rectangles
- 15.2 Double Integrals over General Region
- 15.3 Double Integrals in Polar Coordinates

Prerequisite Knowledge

Derivatives

- (fg)' = f'g + fg'
- $\bullet \ (\frac{f}{g})' = \frac{f'g fg'}{g^2}$
- $\tan x' = \sec^2 x$
- $\sec x' = \sec x \tan x$
- $\csc x' = -\csc x \cos x$

Trigonometry

- $\bullet \quad \sin^2 x + \cos^2 x = 1$
- $\bullet \quad 1 + \cot^2 x = \csc^2 x$
- $\bullet \ \tan^2 x + 1 = \sec^2 x$
- $\sin 2x = 2\sin x \cos x$

•
$$\cos 2x = \cos^2 x - \sin^2 x = 2\cos^2 x - 1 = 1 - \sin^2 x$$

Integration by parts

$$\int u \mathrm{d}v = uv - \int v \mathrm{d}u$$

Chapter 10.1

Concavity Test

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}$$

Chapter 10.2

$$rac{\mathrm{d}y}{\mathrm{d}x} = rac{rac{\mathrm{d}y}{\mathrm{d}t}}{rac{\mathrm{d}x}{\mathrm{d}t}}$$

$$rac{\mathrm{d}^2 y}{\mathrm{d}x^2} = rac{rac{\mathrm{d}}{\mathrm{d}t}(rac{\mathrm{d}y}{\mathrm{d}x})}{rac{\mathrm{d}x}{\mathrm{d}t}}$$

Cycloid

$$\left\{egin{aligned} x_p &= r(heta - \sin heta) \ y_p &= r(1 - \cos heta) \end{aligned}
ight.$$

Arc length

$$\int_a^b \sqrt{(\frac{\mathrm{d}x}{\mathrm{d}t})^2 + (\frac{\mathrm{d}y}{\mathrm{d}t})^2} \mathrm{d}t$$

Chapter 10.3

$$\left\{egin{aligned} x = r\cos heta\ y = r\sin heta \end{aligned}
ight.$$

$$\left\{egin{array}{l} x^2+y^2=r^2\ an heta=rac{y}{x} \end{array}
ight.$$

Symetric rules

- Unchanges when θ replaced by $-\theta$:
 - symetric about x axis
- Unchanged when r replaced by -r or θ replaced by $\theta + \pi$:
 - symetric about the pole(origin)
- Unchanged when θ replaced by $(\pi \theta)$:
 - o symetric about y axis

Tangents

$$rac{\mathrm{d}y}{\mathrm{d}x} = rac{rac{\mathrm{d}r}{\mathrm{d} heta}\sin heta + r\cos heta}{rac{\mathrm{d}r}{\mathrm{d} heta}\cos heta - r\sin heta}$$

Chapter 12.1-12.4

Right Hand Rule

Distance

$$P_1(x_1,y_1,z_1), P_2(x_2,y_2,z_2) \ P_1P_2 = l = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2 + (z_2-z_1)^2}$$

Scalar

$$ec{v}=< a,b,c> |ec{v}|=\sqrt{a^2+b^2+c^2}$$

Unit Vector ($|ec{u}|=1$)

$$ec{m{u}} = rac{ec{m{v}}}{|ec{m{v}}|}$$

Dot product

$$ec{a}=< a_1, a_2, a_3>, ec{b}=< b_1, b_2, b_3> \ 1. \ ec{a}\cdot ec{b}= a_1 b_1 + a_2 b_2 + a_3 b_3 = |ec{a}| |ec{b}| \cos heta$$
 $2. \cos heta = rac{ec{a}\cdot ec{b}}{|ec{a}| |ec{b}|}$

2.
$$\cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}$$

Orthogonal=> perpendicular=> $\theta = \frac{\pi}{2}$

Projection

Scalar projection of $ec{b}$ onto $ec{a}$

$$Comp_{ec{a}}^{ec{b}} = rac{ec{a} \cdot ec{b}}{|ec{a}|}$$

Vector projection of $ec{b}$ onto $ec{a}$

$$extit{Proj}_{ec{a}}^{ec{b}} = rac{ec{a} \cdot ec{b}}{\leftert ec{a}
ightert^2} \cdot ec{a}$$

Cross Product

$$ec{a} = < a_1, a_2, a_3>, ec{b} = < b_1, b_2, b_3>$$

$$ec{a} \cdot ec{b} = egin{array}{c|ccc} i & j & k \ a_1 & a_2 & a_3 \ b_1 & b_2 & b_3 \ \end{pmatrix} = i egin{array}{c|ccc} a_2 & a_3 \ b_2 & b_3 \ \end{pmatrix} + j egin{array}{c|ccc} a_1 & a_3 \ b_1 & b_3 \ \end{pmatrix} + k egin{array}{c|ccc} a_1 & a_2 \ b_1 & b_2 \ \end{pmatrix} = < a_2b_3 - a_3b_2, a_3b_1 - a_1b_3, a_1b_2 - a_2b_1 > a_1b_2, a_1b_2 - a_2b_2, a_2b_2 - a$$

The vector $\vec{a} imes \vec{b}$ is orthogonal to both \vec{a} and $\vec{b} \ | \vec{a} imes \vec{b} | = | \vec{a} | \vec{b} | \sin heta$

Chapter 12.5

Line:

$$ec{r} = ec{r}_0 + t \cdot ec{v} < x, y, z> = < x_0, y_0, z_0 > + t \cdot < a, b, c > \left\{egin{array}{l} x = x_0 + at \ y = y_0 + bt \ z = z_0 + ct \end{array}
ight. rac{x - x_0}{a} = rac{y - y_0}{b} = rac{z - z_0}{c}$$

Skew Lines:

Neither intersect nor parallel

Plane

 $ec{n}$ =>Normal Vector A plane through $P(x_0,y_0,z_0)$ with $ec{n}=< a,b,c>$ is

$$a(x-x_0) + b(y-y_0) + c(z-z_0) = 0$$

Find Angles between two planes:

Find the angle between normal vectors

Find plane pass through $P_1 \ P_2$ and P_3

$$ec{n} = \overrightarrow{P_1P_2} imes \overrightarrow{P_2P_3}$$
 and with P_1

Distance from $P(x_1,y_1,z_1)$ to plane ax+by+cz=0

$$D = rac{|ax_1 + by_1 + cz_1 + d|}{\sqrt{a^2 + b^2 + c^2}}$$

Find the distance between two lines:

- 1. Find normal vector
- 2. Establish a plane
- 3. Use formula

Chapter 13.3

Arc Length in 3D

$$l = \int_a^b \sqrt{(rac{\mathrm{d}x}{\mathrm{d}t})^2 + (rac{\mathrm{d}y}{\mathrm{d}t})^2 + (rac{\mathrm{d}z}{\mathrm{d}t})} \mathrm{d}t$$

if we assume $\overrightarrow{r(t)} = < f(t), g(t), h(t) > = > \overrightarrow{r'(t)} = < f'(t), g'(t), h'(t) > = < f'(t), g'(t), h'(t), h'(t) > = < f'(t), g'(t), h'(t), h'(t) > = < f'(t), g'(t), h'(t), h'(t),$

$$l=\int_a^b |\overrightarrow{r'(t)}| \mathrm{d}t$$

Tangent Vector

$$\overrightarrow{T(t)} = rac{\overrightarrow{r'(t)}}{\overrightarrow{|r'(t)|}} \, |\overrightarrow{T(t)}| = 1$$

Normal Vector

$$\overrightarrow{N(t)} = rac{\overrightarrow{T'(t)}}{|\overrightarrow{T'(t)}|}$$

Binomal Vector

$$\overrightarrow{B(t)} = \overrightarrow{T(t)} imes \overrightarrow{N(t)}$$

Normal Plane

Normal plane: The normal plane consists of all lines that are orthogonal to the tangent vector.

The normal vector of the normal plane is the tangent vector

$$ec{n}=ec{T}$$

Osculating plane

The plane that comes the closest to containing the part of the curve near point P.

The normal vector of the osculating plane is the binomal vecotr

$$\vec{n} = \vec{B}$$

Chapter 13.4

Velocity

$$\overset{
ightarrow}{v(t)}=\overset{
ightarrow}{r'(t)}$$

Speed

$$Speed = |\overrightarrow{v(t)}| = |\overrightarrow{r'(t)}|$$

Chapter 14.1

Level Curves / Contour Map

The level curves of a function f of two variables are the curve with equations f(x, y) = k, where k is a constant (in the range of f).

Functions of Three or more variables

Chapter 14.2

Limit of multi-var functions

Prove the limit does not exist

Pick two different paths and show that the height or the value if the function is different if we transverse along these different paths.

Tips

- Make sure the path you choose contains the point (a,b)
- It is highly recommended that one of the paths you choose is either by forcing x=0 and moving along y axis or forcing y=0 and moving along x axis.
- It is helpful to choose a path that makes the degree of the numerator and the denominator equal.

Continuity

Sometimes we can use the concept of continuity for proving that the limit exist.

- If we have a region (two dimensional region in xy-plane) that the function is defined in that region, the function is continuous in that region. In other words, a function is continuous at any point inside its domain.
- Polynomials are continuous everywhere.
- Rational functions are continuous everywhere except where the denominator is zero.

Chapter 14.3

Partial Derivative

To Find f_x

Regard y as a constant and differentiate f(x,y) with respect to x.

To Find f_y

Regard x as a constant and differentiate f(x,y) with respect to y.

Higher Derivatives

The notation f_{xy} means, first we take the derivative with respect to x, and then we take the derivative with respect to y.

$$f_{xy} = f_{yx}$$

Chapter 14.4

Tangent Plane

The tangent plane to the surface S at $P(x_0, y_0, z_0)$ is

$$z-z_0=f_x(x_0,y_0)(x-x_0)+f_y(x_0,y_0)(y-y_0)$$

Linear Approximation

$$f(x,y)=z\approx L(x,y)=f(a,b)+f_x(a,b)(x-a)+f_y(a,b)(y-b)$$

Theorem: If partial derivatives of f_x and f_y exist near (a,b) and are continuous at (a,b), then f is differentiable at (a,b)

Chapter 14.5

Case1: Theorem:

Suppose that z = f(x, y) is a differentiable function of x and y. Where x = g(t) and y = g(t) are both differentiable functions of t.

Then:

$$rac{\mathrm{d}z}{\mathrm{d}t} = rac{\partial z}{\partial x} \cdot rac{\mathrm{d}x}{\mathrm{d}t} + rac{\partial z}{\partial y} \cdot rac{\mathrm{d}y}{\mathrm{d}t}$$

Case2: Theorem:

$$z=f(x,y)$$
 such that $x=g(s,t)$ and $y=h(s,t)$

$$rac{\partial z}{\partial t} = rac{\partial z}{\partial x} \cdot rac{\partial x}{\partial t} + rac{\partial z}{\partial y} \cdot rac{\partial y}{\partial t}$$

$$\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial s}$$

Implicit Differentiation

Suppose that an equation of form F(x,y)=0 defines y implicitly as a differentiable function of x, that is, y=f(x) where F(x,y)=0 or F(x,f(x))=0

$$rac{\mathrm{d}y}{\mathrm{d}x} = -rac{F_x}{F_y}$$

Chapter 14.6

Directional derivative

Theorem:

if f is a differentiable function of x and y, then f has a directional derivative in the direction of any vector $\vec{u} = \langle a, b \rangle$ and:

$$D_u f(x,y) = f_x(x,y)a + f_y(x,y)b$$

Gradient Vector: $< f_x, f_y >$

$$D_u f(x,y) = \langle f_x(x,y), f_y(x,y) \rangle \cdot \langle a,b \rangle = \langle f_x, f_y \rangle \cdot \vec{u}$$

Maximizing the directional derivative

Theorem:

If f is a differentiable function of two or three variables, the Maximum value of directional derivative is $|\nabla f|$ and it occurs when \vec{u} has the same direction as the gradient vector

Tangent planes to surfaces

An arbitrary point on the surface, the gradient vector at that point is perpendicular to any tangent vector to any curve C on S that passes through P.

Tangent Plane:

$$F_x(x_0,y_0,z_0)(x-x_0)+F_y(x_0,y_0,z_0)(y-y_0)+F_z(x_0,y_0,z_0)(z-z_0)=0$$

Normal Line:

$$rac{x-x_0}{F_x(x_0,y_0,z_0)} = rac{y-y_0}{F_y(x_0,y_0,z_0)} = rac{z-z_0}{F_z(x_0,y_0,z_0)}$$

Chapter 14.7

First Derivative Test

if f has a local Max or Min at (a,b), and the first partial derivatives of f exist there, then $f_x(a,b)=0$ and $f_y(a,b)=0$

Second Derivative Test

$$D = egin{bmatrix} f_{xx} & f_{xy} \ f_{yx} & f_{yy} \end{bmatrix} = f_{xx} \cdot f_{yy} - (f_{xy})^2$$

- (a) If D>0 and $f_{xx}(a,b)>0$, then f(a,b) is a local Minimum
- (b) If D>0 and $f_{xx}(a,b) < 0$, then f(a,b) is a local Maximum
- (c) If D<0, then f(a, b) is a saddle Point.
- (d) If D=0, then f(a,b) could be a local Maximum or a local Minimum or a saddle point

Chapter 14.8

The method of Lagrange Multipliers

To find the maximum and minimum values of f(x,y,z) subject to constraint g(x,y,z)=k

$$\left\{egin{aligned}
abla f(x,y,z) &= \lambda
abla g(x,y,z) \ g(x,y,z) &= k \end{aligned}
ight.$$

Two Constraints

$$abla f(x,y,z) = \lambda
abla g(x,y,z) + \mu
abla h(x,y,z)$$

Chapter 15.1

Double Integral & Fubini's Theorem

$$\iint_R f(x,y) \mathrm{d}A = \int_a^b \int_c^d f(x,y) \mathrm{d}y \mathrm{d}x$$

$$\iint_R f(x,y) \mathrm{d}A = \int_c^d \int_a^b f(x,y) \mathrm{d}x \mathrm{d}y$$

Special Case

$$\iint_R f(x,y) \mathrm{d}A = \iint_R g(x) h(y) \mathrm{d}A = \int_a^b g(x) \mathrm{d}x \int_c^d h(y) \mathrm{d}y$$

Average value

$$f_{average} = rac{1}{A(R)} \iint f(x,y) \mathrm{d}A$$

Chapter 15.2

Type I

$$\iint_D f(x,y) \mathrm{d}A = \int_a^b \int_{g_1(x)}^{g_2(x)} f(x,y) \mathrm{d}y \mathrm{d}x$$

Type II

$$\iint_D f(x,y) \mathrm{d}A = \int_c^d \int_{h_1(y)}^{h_2(y)} f(x,y) \mathrm{d}x \mathrm{d}y$$

Chapter 15.3

Change to polar coordinates in a double integral

$$\iint f(x,y) \mathrm{d}A = \int_{lpha}^{eta} \int_{a}^{b} f(r\cos heta,r\sin heta) r \mathrm{d}r \mathrm{d} heta$$

More Complicated Regions in polar Coordinates

if f is continuous on polar region of the form $D = \{(r, \theta) | \alpha < \theta < \beta, h_1(\theta) < r < h_2(\theta) \}$ Then

$$\iint_D f(x,y) \mathrm{d}A = \int_lpha^eta \int_{h_1(heta)}^{h_2(heta)} f(r\cos heta,r\sin heta) r \mathrm{d}r \mathrm{d} heta$$