Математический анализ

1. Непрерывность функции одной переменной, свойства непрерывных функций

Функция f(x) называется **непрерывной** в точке x_0 , если выполняются следующие условия:

- Функция определена в точке х₀
- Существует предел функции при х→х₀
- Этот предел равен значению функции в точке x_0 , т.е. $\lim_{x \to x_0} f(x) = f(x_0)$

Формально непрерывность можно записать так:

$$\lim_{x \to x_0} f(x) = f(x_0)$$

Или через ε-δ определение:

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \ |x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \varepsilon$$

Свойства непрерывных функций:

- Если функции f(x) и g(x) непрерывны в точке x₀, то их сумма, разность, произведение и частное (если g(x₀)≠0) также непрерывны в этой точке.
- 2. Композиция непрерывных функций непрерывна.
- 3. **Теорема Вейерштрасса**: Функция, непрерывная на замкнутом ограниченном интервале [a,b], достигает своего наибольшего и наименьшего значения на этом интервале.
- 4. **Теорема о промежуточном значении**: Если функция f(x) непрерывна на [a,b] и f(a)≠f(b), то для любого числа C между f(a) и f(b) существует точка с∈[a,b], такая что f(c)=C.
- 5. Непрерывная функция переводит связное множество в связное множество.

Пример задачи:

Исследовать на непрерывность функцию $f(x) = \frac{x^2 - 4}{x - 2}$

Решение: Функция не определена при x = 2, т.к. знаменатель обращается в ноль. Проверим, существует ли предел функции при $x \to 2$.

$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = \lim_{x \to 2} \frac{(x - 2)(x + 2)}{x - 2} = \lim_{x \to 2} (x + 2) = 4$$

Функция имеет предел при $x \to 2$, но не определена в самой точке x = 2. Поэтому она не является непрерывной в этой точке. Это точка **устранимого разрыва**.

Функция непрерывна на множестве R{2}.

2. Функции нескольких переменных. Полный дифференциал и его геометрический смысл

Функция нескольких переменных $f(x_1, x_2, ..., x_n)$ отображает точки n-мерного пространства в действительные числа.

Частные производные

Частная производная функции по переменной x_i — это производная функции по одной переменной при фиксированных остальных переменных:

$$\frac{\partial f}{\partial x_i} = \lim_{h \to 0} \frac{f(x_1, ..., x_i + h, ..., x_n) - f(x_1, ..., x_i, ..., x_n)}{h}$$

Полный дифференциал

Полный дифференциал функции $f(x_1, x_2, ..., x_n)$ определяется как:

$$df = \frac{\partial f}{\partial x_1} dx_1 + \frac{\partial f}{\partial x_2} dx_2 + \dots + \frac{\partial f}{\partial x_n} dx_n$$

Геометрический смысл полного дифференциала

Для функции z = f(x,y) двух переменных полный дифференциал представляет приращение касательной плоскости к поверхности z = f(x,y) в точке $(x_0,y_0,f(x_0,y_0))$.

Уравнение касательной плоскости:

$$z - f(x_0, y_0) = \frac{\partial f}{\partial x}(x_0, y_0)(x - x_0) + \frac{\partial f}{\partial y}(x_0, y_0)(y - y_0)$$

Градиент

Градиент функции $f(x_1, x_2, ..., x_n)$ — это вектор, компонентами которого являются частные производные функции:

$$\nabla f = (\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, ..., \frac{\partial f}{\partial x_n})$$

Градиент указывает направление наибыстрейшего возрастания функции, а его модуль равен скорости роста функции в этом направлении.

Достаточные условия дифференцируемости

Функция $f(x_1, x_2, ..., x_n)$ дифференцируема в точке, если все её частные производные существуют и непрерывны в некоторой окрестности этой точки.

Пример задачи:

Найти полный дифференциал функции $f(x,y) = x^2 + 3xy - y^2$ в точке (1,2).

nS 13e9aulA **Решение:** Вычислим частные производные: $\frac{\partial f}{\partial x}=2x+3y$ $\frac{\partial f}{\partial y}=3x-2y$

В точке (1,2):
$$\frac{\partial f}{\partial x}(1,2)=2\cdot 1+3\cdot 2=2+6=8$$
 $\frac{\partial f}{\partial y}(1,2)=3\cdot 1-2\cdot 2=3-4=-1$

Полный дифференциал: df = 8 dx - 1 dy

3. Экстремум функций нескольких переменных; необходимые и достаточные условия

Точка x_0 называется точкой **локального максимума** (минимума) функции f(x), если существует окрестность $U(x_0)$ точки x_0 такая, что для всех $x ∈ U(x_0)$ выполняется $f(x) ≤ f(x_0)$ (или $f(x) \ge f(x_0)$).

Необходимые условия экстремума:

Если функция $f(x_1, x_2, ..., x_n)$ имеет локальный экстремум в точке x_0 , то все частные производные первого порядка в этой точке равны нулю или не существуют:

$$\frac{\partial f}{\partial x_i}(x_0) = 0$$
 для всех $i = 1, 2, ..., n$

Точки, в которых выполняются необходимые условия экстремума, называются стационарными точками.

Достаточные условия экстремума для функции двух переменных:

Пусть функция f(x,y) имеет непрерывные частные производные второго порядка в некоторой окрестности стационарной точки (x_0, y_0) . Обозначим:

$$A = \frac{\partial^2 f}{\partial x^2}(x_0, y_0)$$

$$B = \frac{\partial^2 f}{\partial x \partial y}(x_0, y_0)$$

$$C = \frac{\partial^2 f}{\partial y^2}(x_0, y_0)$$

$$\Delta = AC - B^2$$

Тогда:

- 1. Если $\Delta > 0$ и A < 0, то в точке (x_0, y_0) функция имеет локальный максимум.
- 2. Если $\Delta > 0$ и A > 0, то в точке (x_0, y_0) функция имеет локальный минимум.
- 3. Если Δ < 0, то в точке (x_0,y_0) экстремума нет (седловая точка).
- 4. Если $\Delta = 0$, то требуется дополнительное исследование.

Для функций большего числа переменных:

Используется критерий Сильвестра на основе главных миноров матрицы Гессе:

$$H = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{pmatrix}$$

Пример задачи:

Исследовать на экстремум функцию $f(x, y) = x^2 + y^2 + 4xy - 6x - 10y$.

Решение: Найдем частные производные первого порядка и приравняем их к нулю: $\frac{\partial f}{\partial x} = 2x + 4y - 6 = 0$ $\frac{\partial f}{\partial y} = 2y + 4x - 10 = 0$

Решим систему уравнений: $2x + 4y = 6 \ 4x + 2y = 10$

Умножим первое уравнение на 2: $4x + 8y = 12 \ 4x + 2y = 10$

Вычтем второе уравнение из первого: 6y = 2 $y = \frac{1}{3}$

Подставим в первое уравнение: $2x + 4 \cdot \frac{1}{3} = 6$ $2x = 6 - \frac{4}{3} = \frac{18-4}{3} = \frac{14}{3}$ $x = \frac{7}{3}$

Получаем стационарную точку $(\frac{7}{3},\frac{1}{3}).$

Найдем частные производные второго порядка: $\frac{\partial^2 f}{\partial x^2} = 2 \frac{\partial^2 f}{\partial x \partial y} = 4 \frac{\partial^2 f}{\partial y^2} = 2$

Для точки
$$(\frac{7}{3},\frac{1}{3})$$
: $A=2$, $B=4$, $C=2$ $\Delta=AC-B^2=2\cdot 2-4^2=4-16=-12<0$

Поскольку $\Delta < 0$, в точке $(\frac{7}{3}, \frac{1}{3})$ экстремума нет, это седловая точка.

4. Числовые ряды, виды сходимости. Достаточные признаки сходимости. Свойства абсолютно сходящихся рядов

Числовой ряд — это выражение вида $\sum_{n=1}^{\infty} a_n = a_1 + a_2 + ... + a_n + ...$, где a_n — числа.

Основные понятия:

- Частичная сумма ряда: $S_n = a_1 + a_2 + ... + a_n$
- Ряд называется **сходящимся**, если последовательность его частичных сумм имеет конечный предел: $\lim_{n\to\infty} S_n = S$. Число S называется суммой ряда.
- Ряд называется **расходящимся**, если предел последовательности его частичных сумм не существует или бесконечен.

Виды сходимости:

- 1. Абсолютная сходимость: ряд $\sum |a_n|$ сходится
- 2. **Условная сходимость**: ряд $\sum a_n$ сходится, но ряд $\sum |a_n|$ расходится

Достаточные признаки сходимости:

1. **Необходимый признак сходимости**: если ряд $\sum a_n$ сходится, то $\lim_{n\to\infty}a_n=0$

2. Признак сравнения: если $0 \le a_n \le b_n$ и ряд $\sum b_n$ сходится, то ряд $\sum a_n$ тоже сходится

3. Признак Даламбера: если для ряда $\sum a_n$ с положительными членами

 $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=L, \text{ To:}$

∘ при L < 1 ряд сходится

• при L > 1 ряд расходится

• при L = 1 требуется дополнительное исследование

4. **Признак Коши**: если для ряда $\sum a_n$ с положительными членами $\lim_{n\to\infty} \sqrt[n]{a_n} = L$,

∘ при L < 1 ряд сходится

• при L > 1 ряд расходится

• при L = 1 требуется дополнительное исследование

5. **Интегральный признак Коши**: если f(x) — непрерывная, положительная, невозрастающая функция на $[1,\infty)$ и $a_n=f(n)$, то ряд $\sum a_n$ сходится тогда и только тогда, когда сходится интеграл $\int_1^\infty f(x)dx$

Свойства абсолютно сходящихся рядов:

- 1. Если ряд сходится абсолютно, то он сходится и обычным образом
- 2. Сумма и произведение абсолютно сходящихся рядов абсолютно сходятся
- Члены абсолютно сходящегося ряда можно переставлять в произвольном порядке, и сумма ряда не изменится

Пример задачи:

Исследовать сходимость ряда $\sum_{n=1}^{\infty} \, \frac{n}{3^n}$

Решение: Применим признак Даламбера: $a_n = \frac{n}{3^n} \ a_{n+1} = \frac{n+1}{3^{n+1}}$

$$\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \lim_{n\to\infty} \frac{n+1}{3^{n+1}} \cdot \frac{3^n}{n} = \lim_{n\to\infty} \frac{n+1}{3^n} = \lim_{n\to\infty} \frac{1}{3} \cdot \frac{n+1}{n} = \frac{1}{3} \cdot 1 = \frac{1}{3}$$

Так как $\frac{1}{3} < 1$, то по признаку Даламбера ряд абсолютно сходится.

5. Ряды функций. Равномерная сходимость. Признак Вейерштрасса. Свойства равномерно сходящихся рядов

Функциональный ряд — это выражение вида $\sum_{n=1}^{\infty} f_n(x) = f_1(x) + f_2(x) + ... + f_n(x) + ...$, где $f_n(x)$ — функции, определенные на некотором множестве D.

Основные понятия:

- Для каждого фиксированного х∈D получаем числовой ряд. Если этот числовой ряд сходится, то говорят, что функциональный ряд сходится в точке х.
- Область сходимости ряда множество всех точек, в которых ряд сходится.

• Сумма функционального ряда - функция S(x), значение которой в каждой точке x из области сходимости равно сумме соответствующего числового ряда: $S(x) = \sum_{n=1}^{\infty} f_n(x)$

Равномерная сходимость:

Функциональный ряд $\sum_{n=1}^{\infty} f_n(x)$ равномерно сходится на множестве D к функции S(x), если $\forall \varepsilon > 0$ $\exists N = N(\varepsilon)$: $\forall n > N \ \forall x \in D \ |S_n(x) - S(x)| < \varepsilon$ где $S_n(x) = \sum_{k=1}^n f_k(x)$ - частичная сумма ряда.

Другими словами, ряд сходится равномерно, если остаток ряда можно сделать сколь угодно малым одновременно для всех x из D, выбрав достаточно большой номер n.

Признак Вейерштрасса:

Если на множестве D существуют такие числа $M_n \geq 0$, что $|f_n(x)| \leq M_n$ для всех $x \in D$ и ряд $\sum_{n=1}^{\infty} M_n$ сходится, то функциональный ряд $\sum_{n=1}^{\infty} f_n(x)$ сходится абсолютно и равномерно на D.

Свойства равномерно сходящихся рядов:

- 1. **Непрерывность суммы**: Если функции $f_n(x)$ непрерывны на D и ряд $\sum_{n=1}^{\infty} f_n(x)$ равномерно сходится на D, то сумма ряда S(x) также непрерывна на D.
- 2. **Интегрирование**: Если функции $f_n(x)$ непрерывны на [a,b], и ряд $\sum_{n=1}^{\infty} f_n(x)$ равномерно сходится на [a,b], то $\int_a^b S(x) dx = \int_a^b \sum_{n=1}^{\infty} f_n(x) dx = \sum_{n=1}^{\infty} \int_a^b f_n(x) dx$
- 3. **Дифференцирование**: Если функции $f_n(x)$ имеют непрерывные производные на (a,b) и ряд $\sum_{n=1}^{\infty} f_n'(x)$ равномерно сходится на (a,b), а ряд $\sum_{n=1}^{\infty} f_n(x)$ сходится хотя бы в одной точке интервала (a,b), то ряд $\sum_{n=1}^{\infty} f_n(x)$ равномерно сходится на (a,b) и $\frac{d}{dx}S(x) = \frac{d}{dx}\sum_{n=1}^{\infty} f_n(x) = \sum_{n=1}^{\infty} f_n'(x)$

Пример задачи:

Исследовать на равномерную сходимость ряд $\sum_{n=1}^{\infty} \frac{x}{n^2+x^2}$ на множестве $D=[0,+\infty)$.

Решение: Применим признак Вейерштрасса. Для $x \in [0, +\infty)$ найдем максимум функции $f_n(x) = \frac{x}{n^2 + x^2}$:

$$f'_n(x) = \frac{n^2 + x^2 - x \cdot 2x}{(n^2 + x^2)^2} = \frac{n^2 - x^2}{(n^2 + x^2)^2}$$

Приравняем производную к нулю: $n^2 - x^2 = 0$ x = n

Проверим, что это точка максимума: $f_n''(x) = \frac{d}{dx} \left(\frac{n^2 - x^2}{(n^2 + x^2)^2} \right) = \frac{-2x(n^2 + x^2)^2 - (n^2 - x^2)2(n^2 + x^2)2x}{(n^2 + x^2)^4}$

При x = n: $f_n^{''}(n) < 0$, значит это точка максимума.

$$f_n(n) = \frac{n}{n^2 + n^2} = \frac{n}{2n^2} = \frac{1}{2n}$$

Таким образом, $|f_n(x)| \leq \frac{1}{2n}$ для всех $x \in [0, +\infty)$.

NKarmS

 m S 13e9aulA Рассмотрим ряд $\sum_{n=1}^{\infty} \frac{1}{2n} = \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n}$. Это гармонический ряд, умноженный на $\frac{1}{2}$, который расходится.

Поскольку мажорирующий ряд расходится, признак Вейерштрасса неприменим.

Необходимо проверить равномерную сходимость другими методами, например, с помощью критерия Коши равномерной сходимости. Но это выходит за рамки текущего анализа.

6. Степенные ряды. Свойства степенных рядов. Разложение элементарных функций

Степенной ряд — это функциональный ряд вида: $\sum_{n=0}^{\infty} a_n (x-x_0)^n = a_0 + a_1 (x-x_0) + a_2 (x-x_0)$ $a_2(x-x_0)^2+\dots$ где a_n- числа (коэффициенты ряда), x_0- фиксированное число (центр ряда).

Радиус и интервал сходимости:

Для степенного ряда существует число R ≥ 0 (радиус сходимости), такое что:

- Ряд абсолютно сходится при |x-x₀| < R
- Ряд расходится при |x-x₀| > R
- В точках $|x-x_0| = R$ требуется дополнительное исследование

Радиус сходимости можно найти по формуле: $R = \frac{1}{\limsup_{n \to \infty} \frac{\eta}{\sqrt{|a_n|}}} = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$ если предел существует.

Интервал сходимости: $(x_0 - R, x_0 + R)$

Свойства степенных рядов:

- 1. Степенной ряд сходится абсолютно и равномерно на любом отрезке $[x_0-r,x_0+r]$, где 0 < r < R.
- 2. Сумма степенного ряда S(x) является непрерывной функцией на интервале сходимости.
- 3. Степенной ряд можно почленно дифференцировать и интегрировать в пределах интервала сходимости.
 - \circ Дифференцирование: $S^{'}(x) = \sum_{n=1}^{\infty} n a_n (x-x_0)^{n-1}$
 - \circ Интегрирование: $\int S(x)dx = C + \sum_{n=0}^{\infty} \frac{a_n}{n+1} (x-x_0)^{n+1}$
- 4. Радиус сходимости ряда, полученного дифференцированием или интегрированием, равен радиусу сходимости исходного ряда.

Разложение элементарных функций в ряд Тейлора:

Функцию f(x), имеющую производные всех порядков в окрестности точки x_0 , можно представить в виде ряда Тейлора: $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$

Наиболее часто используемые разложения (в окрестности $x_0 = 0$, ряды Маклорена):

NKarmS

13e9aulA
1.
$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
, $R = \infty$

2.
$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}, R = \infty$$

3.
$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}, R = \infty$$

4.
$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots = \sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^n}{n}, R = 1$$

5.
$$(1+x)^m = 1 + mx + \frac{m(m-1)}{2!}x^2 + ... = \sum_{n=0}^{\infty} {m \choose n}x^n$$
, $R = 1$

Пример задачи:

Найти радиус сходимости и исследовать сходимость на границе интервала сходимости степенного ряда $\sum_{n=1}^{\infty} \frac{(-1)^n}{n \cdot 3^n} (x+2)^n$

Решение: Для определения радиуса сходимости используем формулу с отношением коэффициентов:

$$a_n = \frac{(-1)^n}{n \cdot 3^n} a_{n+1} = \frac{(-1)^{n+1}}{(n+1) \cdot 3^{n+1}}$$

$$R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n \to \infty} \frac{\frac{|(-1)^n|}{n \cdot 3^n}}{\frac{|(-1)^{n+1}|}{(n+1) \cdot 3^{n+1}}} = \lim_{n \to \infty} \frac{(n+1) \cdot 3^{n+1}}{n \cdot 3^n} = \lim_{n \to \infty} 3 \cdot \frac{n+1}{n} = 3 \cdot 1 = 3$$

Интервал сходимости: |x + 2| < 3 или -5 < x < 1

Проверим сходимость на границах: При x=-5 имеем |x+2|=|-5+2|=3, получаем ряд $\sum_{n=1}^{\infty} \frac{(-1)^n}{n \cdot 3^n} \cdot 3^n = \sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ Это знакочередующийся гармонический ряд, который сходится по признаку Лейбница.

При x=1 имеем |x+2|=|1+2|=3, получаем ряд $\sum_{n=1}^{\infty} \frac{(-1)^n}{n \cdot 3^n} \cdot 3^n = \sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ Это тот же знакочередующийся гармонический ряд, который сходится.

Таким образом, область сходимости ряда: $-5 \le x \le 1$.

7. Определенный интеграл, интегрируемость непрерывной функции. Определение кратного интеграла

Определенный интеграл

Определенный интеграл функции f(x) на отрезке [a,b] определяется как предел интегральных сумм: $\int_a^b f(x) dx = \lim_{n \to \infty} \sum_{i=1}^n f(\xi_i) \Delta x_i$ где $\Delta x_i = x_i - x_{i-1}$, $a = x_0 < x_1 < \dots < x_n = b$ — разбиение отрезка [a,b], $\xi_i \in [x_{i-1}, x_i]$.

Функция f(x) называется **интегрируемой** на отрезке [a,b], если этот предел существует.

Интегрируемость непрерывной функции

Теорема: Всякая непрерывная на отрезке [a,b] функция является интегрируемой на этом отрезке.

Более общий случай: **Теорема (Интегрируемость по Риману):** Функция f(x) интегрируема на отрезке [a,b] тогда и только тогда, когда она ограничена на этом отрезке и множество точек разрыва функции имеет меру нуль.

Свойства определенного интеграла:

- 1. Линейность: $\int_a^b (Af(x)+Bg(x))dx=A\int_a^b f(x)dx+B\int_a^b g(x)dx$
- 2. Аддитивность: $\int_a^c f(x)dx + \int_c^b f(x)dx = \int_a^b f(x)dx$ для любого $c \in [a,b]$
- 3. Интеграл от неотрицательной функции неотрицателен: если $f(x) \geq 0$ на [a,b], то $\int_a^b f(x) dx \geq 0$
- 4. Если $f(x) \leq g(x)$ на [a,b], то $\int_a^b f(x) dx \leq \int_a^b g(x) dx$
- $5. \left| \int_a^b f(x) dx \right| \le \int_a^b |f(x)| dx$

Кратный интеграл

Двойной интеграл функции f(x,y) по области D определяется как: $\iint_D f(x,y) dx dy = \lim_{n \to \infty} \sum_{i=1}^n f(\xi_i, \eta_i) \Delta S_i$ где область D разбивается на n малых частей с площадями ΔS_i , а точки (ξ_i, η_i) выбираются внутри этих частей.

Для вычисления двойного интеграла часто используют повторные интегралы: $\iint_D f(x,y) dx dy = \int_a^b \left(\int_{c(x)}^{d(x)} f(x,y) dy \right) dx$ где область D задана неравенствами $a \le x \le b$, $c(x) \le y \le d(x)$.

Аналогично определяются тройные и многомерные интегралы.

Пример задачи:

Вычислить двойной интеграл $\iint_D xy dx dy$, где D - прямоугольник [0,1] imes [0,2].

Решение: Используем повторный интеграл:

$$\iint_D xy dx dy = \int_0^1 \left(\int_0^2 xy dy \right) dx = \int_0^1 \left(\frac{xy^2}{2} \right) \Big|_{y=0}^{y=2} dx = \int_0^1 \left(\frac{x \cdot 4}{2} - \frac{x \cdot 0}{2} \right) dx = \int_0^1 2x dx = x^2 \Big|_0^1 = 1 - 0 = 1$$

8. Интеграл Коши. Ряды Тейлора и Лорана

Интеграл Коши

В теории функций комплексного переменного интеграл Коши для функции f(z), аналитической внутри и на простом замкнутом контуре C, имеет вид: $f(z_0)=\frac{1}{2\pi i}\oint_C \frac{f(z)}{z-z_0}dz$ где z_0 — точка внутри контура C.

Формула Коши для n-й производной: $f^{(n)}(z_0)=rac{n!}{2\pi i}\oint_Crac{f(z)}{(z-z_0)^{n+1}}dz$

Ряд Тейлора

Аналитическую функцию f(z) в окрестности точки z_0 можно представить в виде ряда Тейлора: $f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z-z_0)^n$

Используя формулу Коши для производных, получаем: $f(z) = \sum_{n=0}^{\infty} \left(\frac{1}{2\pi i} \oint_C \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta\right) (z - z_0)^n$

Ряд Тейлора сходится в круге $|z-z_0| < R$, где R — расстояние от точки z_0 до ближайшей особой точки функции f(z).

Ряд Лорана

Если функция f(z) аналитична в кольцевой области r < |z-z_0| < R, то её можно представить в виде ряда Лорана: $f(z) = \sum_{n=-\infty}^{\infty} a_n (z-z_0)^n = \sum_{n=0}^{\infty} a_n (z-z_0)^n + \sum_{n=1}^{\infty} a_{-n} (z-z_0)^{-n}$

Коэффициенты ряда Лорана определяются формулой: $a_n = \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z-z_0)^{n+1}} dz$ где С — любой замкнутый контур внутри кольца $r < |z-z_0| < R$, обходящий точку z_0 в положительном направлении.

Классификация особых точек:

- 1. **Устранимая особая точка:** Если $a_{-1} = a_{-2} = ... = 0$, т.е. в разложении Лорана отсутствуют отрицательные степени.
- 2. Полюс порядка m: Если $a_{-m} \neq 0$, но $a_{-(m+1)} = a_{-(m+2)} = ... = 0$, т.е. имеется конечное число отрицательных степеней.
- 3. **Существенно особая точка:** Если имеется бесконечное число членов с отрицательными степенями.

Пример задачи:

Разложить функцию $f(z) = \frac{1}{z(z-1)}$ в ряд Лорана в окрестности точки z=0.

Решение: Представим функцию в виде суммы простейших дробей: $f(z) = \frac{1}{z(z-1)} = \frac{A}{z} + \frac{B}{z-1}$

Приводя к общему знаменателю: $\frac{A(z-1)+Bz}{z(z-1)} = \frac{1}{z(z-1)}$

Отсюда: A(z-1) + Bz = 1 Подставим z = 0: -A = 1, откуда A = -1 Подставим z = 1: B = 1

Таким образом: $f(z) = \frac{-1}{z} + \frac{1}{z-1}$

Для разложения в ряд Лорана в окрестности z=0 первое слагаемое уже в нужной форме, а второе преобразуем: $\frac{1}{z-1}=-\frac{1}{1-z}=-\sum_{n=0}^{\infty}z^n=-1-z-z^2-z^3-...$ при |z|<1.

Итоговое разложение: $f(z) = \frac{-1}{z} - 1 - z - z^2 - z^3 - \dots = \frac{-1}{z} - \sum_{n=0}^{\infty} z^n$

Это разложение справедливо в кольце 0 < |z| < 1.

9. Линейные непрерывные функционалы. Линейные операторы

Линейные функционалы

Линейный функционал — это отображение f из линейного пространства X в поле скаляров K (обычно R или C), удовлетворяющее условию линейности: $f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$ для всех векторов x, y из X и всех скаляров α , β из K.

Линейный функционал называется **непрерывным** в точке x_0 , если для любого $\varepsilon > 0$ существует такое $\delta > 0$, что из $||x - x_0|| < \delta$ следует $|f(x) - f(x_0)| < \varepsilon$.

Для линейного функционала непрерывность в какой-либо точке эквивалентна непрерывности во всех точках пространства.

Теорема (необходимое и достаточное условие непрерывности): Линейный функционал f непрерывен тогда и только тогда, когда он ограничен, т.е. существует такая константа M > 0, что |f(x)| ≤ M||x|| для всех x из X.

Норма линейного функционала определяется как: $||f|| = \sup_{||x||=1} |f(x)| = \sup_{x=0} \frac{|f(x)|}{||x||}$

Линейные операторы

Линейный оператор — это отображение A из линейного пространства X в линейное пространство Y, удовлетворяющее условию линейности: $A(\alpha x + \beta y) = \alpha A(x) + \beta A(y)$ для всех векторов x, y из X и всех скаляров α , β .

Линейный оператор называется **непрерывным** в точке x_0 , если для любого $\epsilon > 0$ существует такое $\delta > 0$, что из $||x - x_0|| < \delta$ следует $||A(x) - A(x_0)|| < \epsilon$.

Для линейного оператора непрерывность в какой-либо точке эквивалентна непрерывности во всех точках пространства.

Теорема (необходимое и достаточное условие непрерывности): Линейный оператор А непрерывен тогда и только тогда, когда он ограничен, т.е. существует такая константа M > 0, что $||A(x)|| \le M||x||$ для всех x из X.

Норма линейного оператора определяется как: $||A|| = \sup_{||x||=1} ||A(x)|| = \sup_{x=0} \frac{||A(x)||}{||x||}$

Сопряженный оператор

Пусть А: $X \to Y$ — линейный оператор между гильбертовыми пространствами. Сопряженный оператор А*: $Y \to X$ определяется соотношением: $(Ax, y)_Y = (x, A^*y)_X$ для всех x из X и y из Y.

Самосопряженный оператор

Линейный оператор А: $X \to X$ в гильбертовом пространстве называется самосопряженным (или эрмитовым), если $A = A^*$, т.е. (Ax, y) = (x, Ay) для всех x, y из X.

Пример задачи:

Проверить, является ли линейный функционал $f(x) = x_1 + 2x_2 - 3x_3$ на пространстве R^3 со стандартной евклидовой нормой непрерывным, и найти его норму.

Решение: Покажем, что функционал ограничен:
$$|f(x)| = |x_1 + 2x_2 - 3x_3| \le |x_1| + 2|x_2| + 3|x_3| \le \sqrt{x_1^2 + x_2^2 + x_3^2} + 2\sqrt{x_1^2 + x_2^2 + x_3^2} + 3\sqrt{x_1^2 + x_2^2 + x_3^2} = 6||x||$$

Таким образом, $|f(x)| \le 6||x||$, следовательно, функционал ограничен и, значит, непрерывен.

Найдем точную норму функционала: $||f|| = \sup_{||x||=1} |f(x)| = \sup_{||x||=1} |x_1 + 2x_2 - 3x_3|$

По неравенству Коши-Буняковского:
$$|x_1+2x_2-3x_3| \leq \sqrt{x_1^2+x_2^2+x_3^2} \cdot \sqrt{1^2+2^2+(-3)^2} = ||x|| \cdot \sqrt{14} = \sqrt{14}$$

Причем равенство достигается, когда вектор х пропорционален вектору (1, 2, -3), т.е. при $x = \frac{1}{\sqrt{14}}(1,2,-3)$: $f(x) = \frac{1}{\sqrt{14}}(1+4+9) = \frac{14}{\sqrt{14}} = \sqrt{14}$

Следовательно, $||f|| = \sqrt{14} \approx 3.74$.