Homework 3

Kensuke Suzuki

October 4, 2018

Problem 1

First define the function TobitLLF.m which gives the (negative of) log likelihood for given vector of β , **X** and **y**.

```
function LLF = TobitLLF(beta, X, y)
f = -exp(X*beta) + y .* (X*beta) - log(factorial(y));
%f = -exp(X*beta) + y .* (X*beta);
LLF = - sum(f);
end
```

Given the vector of \mathbf{X} and \mathbf{y} , we re-define anonymous function of β which we will minimize with respect to the vector of β .

In the first question, we use the Nelder-Mead method. Following the course material, we use the build-in optimizer fminsearch.

For the initial value, we use $\beta_0 = \left[\log \frac{\sum_i y_i}{n}, 0, 0, 0, 0, 0\right]^{\top}$. Optimization algorithm yields the MLE estimates:

$$\beta = \begin{bmatrix} 2.5339 \\ -0.0323 \\ 0.1157 \\ -0.3540 \\ 0.0798 \\ -0.4094 \end{bmatrix}$$

The figure below shows the function values along the iteration.

Problem 2

In this question, we use the build-in optimizer fminunc, where the default algorithm is quasi-Newton method. The algorithm found the local minimum as the size of the gradient is less than the tolerance. Estimated MLE estimates are:

$$\beta = \begin{bmatrix} 2.5339 \\ -0.0323 \\ 0.1157 \\ -0.3540 \\ 0.0798 \\ -0.4094 \end{bmatrix}$$

The estimates are same as in the question 1.

Problem 3

We now define the function returning the (negative of) sum of squared residuals, NlsRSS.

```
function RSS = NlsRSS(beta, X, y)
res = y - exp(X*beta);
RSS = - (res' * res);
end
```

Given vector of \vec{X} and \mathbf{y} , we define the anonymous function of β which we minimize. We use the same initial value for β . As we discussed in the last question, the estimates are greatly affected by the initial guess.

For this question, we use the built-in optimizer lsqnonlin. The results are:

$$\beta = \begin{bmatrix} 0.3755 \\ -0.0119 \\ 0.0856 \\ -0.0503 \\ 0.0187 \\ -0.0745 \end{bmatrix}$$

Problem 4

In this question, we employ the Nelder-Mead method using fminsearch. Initial value for β is same as before. Again, as we discussed below, the results are greatly affected by the initial values. The optimization yields:

$$\beta = \begin{bmatrix} 345.9665 \\ 1.2039 \\ -7.8108 \\ 1.8421 \\ -0.5917 \\ 0.9241 \end{bmatrix}$$

Problem 5

For each method, we minimizes the function value with different initial values for β and see how the results are affected by the initial values. For here, we change the initial values for β_0 from 1 to 5 (with step 0.2) and keep $\beta_i = 0$ for i = 1, ..., 5

MLE with Nelder-Mead (Figure 1)

Figure 1 shows the estimated coefficients with different initial values for β_0 . It is clear from the figure that the estimates vary substantially with different initial values. The response of estimates seems to be random to the initial values.

MLE with Quasi-Newton (Figure 2)

Figure 2 is the result with Quasi-Newton method. Unlike the Nelder-Mead method, the Quasi-Newton method yields fairly stable results. It implies that the results are not substantially affected by the initial values.

NLS with lsqnonlin (Figure 3)

Again the results are greatly affected by the initial values but the figure reveals (unlike the case in the Nelder-Mead presented below) linear relationship between the estimates and initial values.

Figure 1: MLE with Nelder-Mead

NLS with Nelder-Mead (Figure 4)

Finally, the figure 4 demonstrates the results for NLS with Nelder-Mead. The left y-axis is the coefficients for β_0 and the right y-axis is for the rest of the parameters. As in Figure 1, it reveals that the initial values matter in the Nelder-Mead method. We find (in particular for β_0) mostly random fluctuation in the results with different initial values.

Discussion:

Matlab Code

```
1 % ECON512 Homework 3
2 % Kensuke Suzuki
3 clear all
4 delete HW3log.txt
5 diary('HW3log.txt')
6 diary on
7
8 disp('ECON512 HOMEWORK3: Ken Suzuki')
9
10 disp(' ')
11
12 data = load('hw3.mat');
13 X = data.X;
14 y = data.y;
15 Parameters = {'beta0'; 'beta1'; 'beta2'; 'beta3';'beta4'; 'beta5'};
```


Figure 2: MLE with Quasi-Newton

Figure 3: NLS with Isqnonlin

Figure 4: NLS with Nelder-Mead

```
%bindcell = cellstr(bind);
  % Problem 1: Nelder Mead Simplex Method
17
  options = optimset('PlotFcns',@optimplotfval, 'Display','iter');
19
20
  TobitLLF_beta = @(beta) TobitLLF(beta, X, y);
21
  \%beta0 = [1,1,1,1,1,1]';
22
  beta0 = [\log(mean(y)), zeros(1,5)]';
23
24
25
  beta_p1 = fminsearch(TobitLLF_beta, beta0, options);
26
  saveas(gcf, 'q1.png')
  %beta_p1 = fminsearch(TobitLLF_beta, beta0);
28
29
  EstimatedCoeff = beta_p1;
30
  LLF= -TobitLLF(beta_p1,X,y)
31
  disp('-----')
  disp('Estimated Parameter Vector')
  Result_Q1 = table (Parameters, EstimatedCoeff)
35
  % Problem 2: Quasi-Newton Optimization Method
36
  clear beta
37
  beta_p2 = fminunc(TobitLLF_beta, beta0)
38
  EstimatedCoeff = beta_p2;
39
40
```

```
disp ( '-----')
  disp('Method: Quasi-Newton Optimization (fminunc)')
  disp('Estimated Parameter Vector')
  Result_Q2 = table(Parameters, EstimatedCoeff)
44
45
46
  %% Problem 3:
47
48
  NlsRSS_beta = @(beta) NlsRSS(beta, X, y);
49
50
  beta_p3_1 = lsqnonlin(NlsRSS_beta, beta0)
51
  beta_p3_2 = lsqnonlin(NlsRSS_beta_beta_p1)
52
53
  Coeff1 = beta_p3_1;
54
  Coeff2 = beta_p3_2;
55
56
  %% Problem 3: NLS with Isquonlin
57
  NlsRSS_beta = @(beta) NlsRSS(beta, X, y);
60
  beta_p3_1 = lsqnonlin(NlsRSS_beta, beta0)
61
  beta_p3_2 = lsqnonlin(NlsRSS_beta_beta_p1)
  Coeff1 = beta_p3_1;
  Coeff2 = beta_p3_2;
65
  disp('-----Problem 3-----')
  disp('NLS with lsqnonlin')
67
  disp('Estimated Parameter Vector')
68
  disp('Coeff1: [log(mean(y)), zeros(1,5)] as initial guess')
69
  disp('Coeff2: MLE estimator (question 1) as initial guess')
70
  Result_Q3 = table(Parameters, Coeff1, Coeff2)
71
72
73
  % Problem 4: NLS with Nelder-Mead
74
75
  beta_p4_1 = fminsearch(NlsRSS_beta, beta0)
76
  beta_p4_2 = fminsearch(NlsRSS_beta, beta_p1)
77
  Coeff1 = beta_p4_1;
78
  Coeff2 = beta_p4_2;
79
80
  disp('-------')
  disp ('NLS with Nelder-Mead')
  disp('Estimated Parameter Vector')
83
  disp('Coeff1: [log(mean(y)), zeros(1,5)] as initial guess')
  disp ('Coeff2: MLE estimator (question 1) as initial guess')
  Result_Q3 = table(Parameters, Coeff1, Coeff2)
86
  %% Problem 5
```

```
89
   intbeta0 = [1:0.1:5];
90
91
  % MLE with fminsearch
   MLE_fmins = zeros(6, size(intbeta0, 2));
   for i = 1: size(intbeta0, 2)
94
       beta0 = [intbeta0(1,i), zeros(1,5)]';
95
       beta = fminsearch(TobitLLF_beta, beta0);
96
       MLE_fmins(:, i) = beta;
97
   end
98
   result_MLE_fmins = [intbeta0; MLE_fmins];
99
100
   %MLE with quasi newton
101
   MLE_fminunc = zeros(6, size(intbeta0,2));
102
   for i = 1: size (intbeta 0, 2)
103
       beta0 = [intbeta0(1,i), zeros(1,5)]';
104
       beta = fminunc(TobitLLF_beta, beta0);
105
       MLE_fminunc(:, i) = beta;
106
   end
107
   result_MLE_fminunc = [intbeta0; MLE_fminunc];
108
109
   %NLS with Isquonlin
110
   NLS_lsqnonlin = zeros(6, size(intbeta0,2));
111
   for i = 1: size (intbeta 0, 2)
112
       beta0 = [intbeta0(1,i), zeros(1,5)]';
113
       beta = lsqnonlin(NlsRSS_beta, beta0);
114
       NLS_{-}lsqnonlin(:,i)=beta;
115
   end
116
   result_NLS_lsqnonlin = [intbeta0; NLS_lsqnonlin];
117
118
   %NLS with Isquonlin
119
   NLS_fmins = zeros(6, size(intbeta0, 2));
120
   for i = 1: size (intbeta 0, 2)
121
       beta0 = [intbeta0(1,i), zeros(1,5)]';
122
       beta = fminsearch(NlsRSS_beta, beta0);
123
       NLS_fmins(:, i) = beta;
124
125
   result_NLS_fmins = [intbeta0; NLS_fmins];
126
127
   % MLE with fminsearch
128
   plot(intbeta0, result_MLE_fmins(2,:), ...
129
       intbeta0, result_MLE_fmins(3,:), ...
130
       intbeta0 , result_MLE_fmins(4,:), ...
131
       intbeta0, result_MLE_fmins(5,:), ...
132
       intbeta0 , result_MLE_fmins(6,:), ...
133
       intbeta0 , result_MLE_fmins(7,:))
134
   title ('Estimated Coefficients: MLE with Nelder-Mead')
135
   xlabel('Initial Guess of beta0')
```

```
ylabel('Estimated Coefficients')
   legend('beta0','beta1', 'beta3', 'beta5', 'beta5', 'beta6')
138
   saveas (gcf, 'MLENM.png')
139
140
  % MLE with Quasi Newton
141
   plot(intbeta0, result_MLE_fminunc(2,:), ...
142
       intbeta0, result_MLE_fminunc(3,:), ...
143
       intbeta0 , result_MLE_fminunc(4,:), ...
144
       intbeta0 , result_MLE_fminunc(5,:) , ...
145
       intbeta0, result_MLE_fminunc(6,:), ...
146
       intbeta0 , result_MLE_fminunc(7,:))
147
   title ('Estimated Coefficients: MLE with Quasi-Newton')
148
   xlabel('Initial Guess of beta0')
149
   vlabel('Estimated Coefficients')
150
   legend('beta0','beta1', 'beta3', 'beta5', 'beta5', 'beta6')
151
   saveas (gcf, 'MLEQN.png')
152
153
  % NLS with Isquonlin
154
   plot(intbeta0, result_NLS_lsqnonlin(2,:), ...
155
       intbeta0, result_NLS_lsqnonlin(3,:), ...
156
       intbeta0, result_NLS_lsqnonlin(4,:), ...
157
       intbeta0, result_NLS_lsqnonlin(5,:), ...
158
       intbeta0, result_NLS_lsqnonlin(6,:), ...
159
       intbeta0 , result_NLS_lsqnonlin(7,:))
160
   title ('Estimated Coefficients: NLS with Isquonlin')
161
   xlabel('Initial Guess of beta0')
162
   vlabel('Estimated Coefficients')
163
   legend('beta0','beta1', 'beta3', 'beta5', 'beta5', 'beta6')
164
   saveas(gcf, 'NLS_lsqnonlin.png')
165
166
  % NLS with fminsearch
167
   figure
168
   yyaxis left
   plot(intbeta0, result_NLS_fmins(2,:))
   xlabel('Initial Guess of beta0')
   ylabel('Estimated Coefficients')
172
   title ('Estimated Coefficients: NLS with Nelder-Mead')
173
   yyaxis right
174
   plot(intbeta0, result_NLS_fmins(3,:), ...
175
       intbeta0, result_NLS_fmins(4,:), ...
176
       intbeta0, result_NLS_fmins(5,:), ...
177
       intbeta0, result_NLS_fmins(6,:), ...
178
       intbeta0 , result_NLS_fmins(7,:))
179
   legend('beta0','beta1', 'beta3', 'beta5', 'beta5', 'beta6')
180
   saveas(gcf, 'NLS.NM.png')
181
182
   diary off
```