# Prédire le décrochage ou la réussite scolaire des élèves

Soutenance de projet

Coërchon Colin & Coutrot Léos

Chargé de Projet : Kylliann De Santiago Responsable de l'UE : Mathilde Mougeot

**ENSIIE** 

18 décembre 2023

#### Sommaire

- Introduction
- Premières manipulations des données
- Modèles de régression
- Analyse des résultats
- Conclusion

Introduction

•0

- 2 Premières manipulations des données
- 3 Modèles de régression
- 4 Analyse des résultats
- Conclusion

Introduction

#### La réussite scolaire : enjeu politique et économique

- 8.2%: le taux d'abandon scolaire en 2019
- 168,8 milliards d'euros : dépense intérieure d'éducation en 2021
- Une année d'études coûte en moyenne 11 310 € par élève
- L'abandon scolaire est un enjeu européen

#### La réussite scolaire : enjeu politique et économique

- 8.2%: le taux d'abandon scolaire en 2019
- 168,8 milliards d'euros : dépense intérieure d'éducation en 2021
- Une année d'études coûte en moyenne 11 310 € par élève
- L'abandon scolaire est un enjeu européen

#### Problématique

Introduction

Identifier les facteurs clés influençant la réussite ou l'échec académique des étudiants, afin de minimiser l'échec dans l'enseignement supérieur.

- Premières manipulations des données
  - Découverte des données
  - Préparation des données
- 3 Modèles de régression
- 4 Analyse des résultats
- 5 Conclusion

### Notre jeu de données en quelques chiffres

- Jeu de données obtenues grâce à des élèves de l'Institut polytechnique de Portalegre (Portugal) entre 2009 et 2019
- 37 colonnes et 4424 observations
- Aucune donnée manquante
- De nombreuses variables catégorielles (étudiants étranger, boursier, niveau d'études des parents...)
- Une colonne indiquant si l'élève est resté inscrit, s'il a été diplômé ou s'il a abandonné

#### Variable cible



#### Transformation de la variable cible

- 1 s'il l'élève a été diplômé
- 0 sinon

- 1 Introduction
- 2 Premières manipulations des données
  - Découverte des données
  - Préparation des données
- 3 Modèles de régression
- 4 Analyse des résultats
- Conclusion



#### Découpe du jeu de données



**Problème** : Comment faire pour les catégories qui n'apparaissent qu'une seule fois ?

#### Découpe du jeu de données



**Problème** : Comment faire pour les catégories qui n'apparaissent qu'une seule fois ?

- Supprimer les observations appartenant à une catégorie "unique"
- Forcer toutes les autres catégories à apparaître au moins une fois dans chaque partie

- Introduction
- 2 Premières manipulations des données
- Modèles de régression
  - Choix de la régression logistique
  - Modèles simples
  - Modèles intermédiaires
  - Modèle avancé
- 4 Analyse des résultats
- Conclusion

Pour arriver à prédire du mieux possible notre variable cible Y, il est possible d'effectuer une **régression linéaire** dépendant des différentes variables de notre problème.

## Modèle de régression linéaire

$$Y = \beta_1 + \sum_{j=2}^{p+1} \beta_j X_j + \varepsilon$$

#### Avec:

- Y la valeur cible.
- $X = (X_1, ..., X^{p+1})$  les valeurs des différentes variables (avec p = 37 ici).
- Le "Data Set" :  $D_n = \{(x_i, y_i) | i \in [1, n], y_i \in \mathbb{R}, x_i \in \mathbb{R}^p\}$  (avec n = 4424 ici).
- $\bullet$   $\varepsilon$  correspond à l'erreur résiduelle.

Dans notre étude, la variable cible Y est une variable catégorielle, transformée en variable binaire. Il est donc nécessaire de passer par une régression logistique

## Modèle de régression logistique

Dans ce modèle, on part du principe que les observations  $y_i$  sont des réalisations de variables aléatoires  $Y_i$  indépendantes, de loi de Bernoulli de paramètre  $p_{\beta}(x_i)$  tel que :

$$\operatorname{logit} p_{\beta}(x_i) = \operatorname{ln}\left(\frac{p_{\beta}(x_i)}{1 - p_{\beta}(x_i)}\right) = \beta_1 x_{i,1} + \dots + \beta_p x_{i,p} = \beta^T x_i$$

Où la fonction de transfert est donnée par la fonction sigmoïde :

$$p_{\beta}(x_i) = \frac{e^{\beta^T x_i}}{1 + e^{\beta^T x_i}}$$

## Un exemple pertinent



- Introduction
- 2 Premières manipulations des données
- 3 Modèles de régression
  - Choix de la régression logistique
  - Modèles simples
  - Modèles intermédiaires
  - Modèle avancé
- 4 Analyse des résultats
- Conclusion

### Explication brève des modèles simples

L'idée maîtresse : mettre de côté les variables non-significatives pour notre régression logistique.

#### Réduction du nombre de variables p

On définit pour cela l'ensemble  $\mathcal{M} \subset [1, p]$  tel que :

$$\forall i \in [1, n], \quad \text{logit}(p_{\beta}(x_i)) = (X_i)_{\mathcal{M}}\beta$$
  
 $\implies \quad \text{logit}(P) = X\beta$ 

Avec :

$$\bullet \ X_{\mathcal{M}} = [x_{i,j_k}]_{i \in [1,n], j_k \in \mathcal{M}}$$

•  $\beta = [\beta_1, \beta_2, \dots, \beta_k]^T$  (on prend la transposée!)

## 3 algorithmes "gloutons" vus en cours

- "Forward selection": On commence avec aucune variable et ajoute la variable la plus significative à chaque étape.
- "Backward elimination": On commence avec toutes les variables et on élimine la moins significative à chaque étape.
- "Stepwise regression": On commence avec aucune variable, et on effectue une sorte d'entre d'eux des deux méthodes précédentes.

Ces méthodes de sélection de variables sont dites **incrémentales** car elles ajoutent ou retirent une variable à la fois et réévaluent le modèle à chaque étape.

- "Forward selection": On commence avec aucune variable et ajoute la variable la plus significative à chaque étape.
- "Backward elimination": On commence avec toutes les variables et on élimine la moins significative à chaque étape.
- "Stepwise regression": On commence avec aucune variable, et on effectue une sorte d'entre d'eux des deux méthodes précédentes.

Ces méthodes de sélection de variables sont dites **incrémentales** car elles ajoutent ou retirent une variable à la fois et réévaluent le modèle à chaque étape.

### Attention au temps de calcul!

Lorsque p est grand, elles peuvent être vraiment gourmandes en temps de calcul.

#### **Backward Forward Stepwise** 93 89 440 90 437 441 442 60 442 60 57 445 0.8546512 0.8517442 0.8585271

Table 1 – Matrices de confusion des 3 modèles simples

265.34 secondes

35.14 secondes

28.89 secondes

- 1 Introduction
- 2 Premières manipulations des données
- 3 Modèles de régression
  - Choix de la régression logistique
  - Modèles simples
  - Modèles intermédiaires
  - Modèle avancé
- Analyse des résultats
- Conclusion

### Explication brève des modèles de pénalisation

La régression Ridge  $(\ell_2)$  et la régression Lasso  $(\ell_1)$  sont des **méthodes de régression pénalisée** qui visent à résoudre ces problèmes d'une manière différente.

En quelque sorte, elles construisent un modèle en optimisant tous les coefficients simultanément avec la contrainte de la pénalité  $\lambda$ .

#### Explication brève des modèles de pénalisation

La régression Ridge  $(\ell_2)$  et la régression Lasso  $(\ell_1)$  sont des **méthodes de régression pénalisée** qui visent à résoudre ces problèmes d'une manière différente.

En quelque sorte, elles construisent un modèle en optimisant tous les coefficients simultanément avec la contrainte de la pénalité  $\lambda$ .

#### Deux méthodes de pénalisation

- La régression Ridge : Pénalisation en norme  $\ell_2$ .
- La régression Lasso : Pénalisation en norme  $\ell_1$ .

On souhaite ici minimiser la fonction  $\Phi$  donnée par :

$$\Phi(\beta) = \|Y - X\beta\|_2^2 + \lambda \|\beta\|_2^2 \qquad \qquad (\text{avec } \lambda \in \mathbb{R}_+^*)$$

$$\implies \Phi(\beta) = (Y - X\beta)^T (Y - X\beta) + \lambda \sum_{j=1}^p \beta_j^2 \text{ (avec } \lambda \in \mathbb{R}_+^*)$$

Il est donc important d'optimiser notre hyper-paramètre  $\lambda$ .

### Régression Ridge

On souhaite ici minimiser la fonction  $\Phi$  donnée par :

$$\Phi(\beta) = \|Y - X\beta\|_2^2 + \lambda \|\beta\|_2^2 \qquad (\text{avec } \lambda \in \mathbb{R}_+^*)$$

$$\implies \Phi(\beta) = (Y - X\beta)^T (Y - X\beta) + \lambda \sum_{j=1}^p \beta_j^2 \text{ (avec } \lambda \in \mathbb{R}_+^*)$$

Il est donc important d'optimiser notre hyper-paramètre  $\lambda$ .

- Validation croisée pour optimiser  $\lambda$ .
- Choisir le paramètre parmi les différentes possibilités :
  - $\triangleright$   $\lambda$  minimum (la valeur de  $\lambda$  qui donne le minimum d'erreur de validation croisée).
  - $\triangleright$   $\lambda$  **1se** (la valeur de régularisation lambda qui est à un d'écart-type du modèle, avec l'erreur de validation croisée la plus faible).

## Résultat graphique



#### Régression Lasso

On souhaite ici minimiser la fonction  $\Phi$  donnée par :

$$\begin{split} \Phi(\beta) &= \|Y - X\beta\|_2^2 + \lambda \, \|\beta\|_1 & \text{(avec } \lambda \in \mathbb{R}_+^*) \\ \Longrightarrow & \Phi(\beta) = (Y - X\beta)^T (Y - X\beta) + \lambda \sum_{i=1}^p |\beta_i| & \text{(avec } \lambda \in \mathbb{R}_+^*) \end{split}$$

Là aussi, il est important d'optimiser notre hyper-paramètre  $\lambda$ .

On souhaite ici minimiser la fonction  $\Phi$  donnée par :

$$\Phi(\beta) = \|Y - X\beta\|_{2}^{2} + \lambda \|\beta\|_{1} \qquad \text{(avec } \lambda \in \mathbb{R}_{+}^{*})$$

$$\implies \Phi(\beta) = (Y - X\beta)^{T} (Y - X\beta) + \lambda \sum_{i=1}^{p} |\beta_{i}| \quad \text{(avec } \lambda \in \mathbb{R}_{+}^{*})$$

Là aussi, il est important d'optimiser notre hyper-paramètre  $\lambda$ .

- Validation croisée pour optimiser  $\lambda$ .
- Choisir le paramètre parmi les différentes possibilités :
  - $\triangleright$   $\lambda$  minimum.
  - $ightharpoonup \lambda$  1se.

## Résultat graphique



#### Premiers résultats

| Ridge $\lambda_{min}$ | Ridge $\lambda_{1se}$ | Lasso $\lambda_{min}$ | Lasso $\lambda_{1se}$ |
|-----------------------|-----------------------|-----------------------|-----------------------|
| 404 114               | 403 115               | (418 100)             | (415 103)             |
| 46 468                | \ 46 468 <i>)</i>     | \ 54 460 <i>)</i>     | \ 46 468 <i>)</i>     |
| 0.8449612             | 0.8439922             | 0.85077519            | 0.8556202             |
| 0.20 secondes         |                       | 0.17 secondes         |                       |

Table 2 – Comparaison des modèles de régression Ridge et Lasso

- Introduction
- 2 Premières manipulations des données
- 3 Modèles de régression
  - Choix de la régression logistique
  - Modèles simples
  - Modèles intermédiaires
  - Modèle avancé
- 4 Analyse des résultats
- Conclusion

## Explication visuelle derrière Elastic Net



## Régression "Elastic Net"

Mathématiquement, en reprenant l'idée d'une régression Ridge et Lasso, on souhaite ici minimiser la fonction  $\Phi$  donnée par :

$$\begin{split} \Phi(\beta) &= \|Y - X\beta\|_2^2 + \lambda \left(\frac{1 - \alpha}{2} \|\beta\|_2^2 + \alpha \|\beta\|_1\right) \\ &\quad (\text{avec } \lambda \in \mathbb{R}_+^*, \ \alpha \in [0, 1]) \\ \implies &\quad \Phi(\beta) = (Y - X\beta)^T (Y - X\beta) + \lambda \left(\frac{1 - \alpha}{2} \sum_{j=1}^p \beta_j^2 + \alpha \sum_{j=1}^p |\beta_j|\right) \end{split}$$

Mathématiquement, en reprenant l'idée d'une régression Ridge et Lasso, on souhaite ici minimiser la fonction  $\Phi$  donnée par :

$$\Phi(\beta) = \|Y - X\beta\|_{2}^{2} + \lambda \left(\frac{1 - \alpha}{2} \|\beta\|_{2}^{2} + \alpha \|\beta\|_{1}\right)$$

(avec 
$$\lambda \in \mathbb{R}_+^*, \ \alpha \in [0,1]$$
)

$$\Rightarrow \Phi(\beta) = (Y - X\beta)^{T} (Y - X\beta) + \lambda \left( \frac{1 - \alpha}{2} \sum_{j=1}^{p} \beta_{j}^{2} + \alpha \sum_{j=1}^{p} |\beta_{j}| \right)$$

 $\longrightarrow$  Nouvel hyper-paramètre :  $\alpha$ 

#### Optimisation du Paramètre $\alpha$ via la Validation Croisée

**Objectif** : Sélectionner la valeur d'alpha qui maximise la précision du modèle.

Pour cela, on a effectué **une validation croisée à** *K* **blocs** (*K-fold validation*). [cf.Annexe 1]

#### Avantages de la Validation Croisée

- Sélectionne la valeur d'alpha qui a donné l'erreur de validation croisée minimale.
- Aide à équilibrer le biais et la variance, évitant ainsi le surajustement.



Régression "Elastic Net" avec  $\alpha = 0.22$ 

| Elastic Net $\lambda_{\min}$ | Elastic Net $\lambda_{1se}$ |  |
|------------------------------|-----------------------------|--|
| (419 91)                     | √415 95                     |  |
| 52 470                       | 49 473                      |  |
| 0.8614341                    | 0.8604651                   |  |
| 0.35 secondes                |                             |  |

Table 3 – Résultats du modèle Elastic Net

- Introduction
- 2 Premières manipulations des données
- 3 Modèles de régression
- 4 Analyse des résultats
- 5 Conclusion

# Résultats principaux de nos modèles : modèles simples

| Forward                    | Backward                   | Stepwise                   |  |
|----------------------------|----------------------------|----------------------------|--|
| 0.8546512                  | 0.8517442                  | 0.8585271                  |  |
| 35.14 secondes             | 265.34 secondes            | 28.89 secondes             |  |
| 2nd.semapproved            | 2nd.semapproved            | 2nd.semapproved            |  |
| 1st.semapproved            | 1st.semapproved            | 1st.semapproved            |  |
| Tuition.fees.up.to.date    | Tuition.fees.up.to.date    | Tuition.fees.up.to.date    |  |
| Scholarship.holder         | Scholarship.holder         | Scholarship.holder         |  |
| 2nd.semenrolled            | 2nd.semenrolled            | 2nd.semenrolled            |  |
| Debtor                     | 2nd.semevaluations         | 2nd.semevaluations         |  |
| 2nd.semevaluations         | 2nd.semwithout.evaluations | 2nd.semwithout.evaluations |  |
| 2nd.semgrade               | Debtor                     | Debtor                     |  |
| 2nd.semwithout.evaluations | 1st.semenrolled            | 1st.semenrolled            |  |

Table 4 – Comparaison des modèles simples de régression

## Résultats principaux de nos modèles : modèles intermédiaires

| Ridge $\lambda$ min     | Ridge $\lambda$ 1se     | Lasso $\lambda$ min     | Lasso $\lambda$ 1se     |
|-------------------------|-------------------------|-------------------------|-------------------------|
| 0.8449612               | 0.8439922               | 0.85077519              | 0.8556202               |
| 0.20 secondes           |                         | 0.17 se                 | condes                  |
| Tuition.fees.up.to.date | Tuition.fees.up.to.date | Tuition.fees.up.to.date | Tuition.fees.up.to.date |
| Scholarship.holder      | Scholarship.holder      | International           | 2nd.semapproved.        |
| Debtor                  | Debtor                  | Debtor                  | Scholarship.holder      |
| International           | International           | 2nd.semapproved.        | Debtor                  |
| 2nd.semapproved.        | Gender                  | Scholarship.holder      | 2nd.semenrolled.        |
| Gender                  | 2nd.semapproved.        | 2nd.semenrolled.        | 1st.semapproved.        |
| 1st.semapproved.        | 1st.semapproved.        | 1st.semapproved.        | Gender                  |
| 2nd.semevaluations.     | 2nd.semevaluations.     | Gender                  | International           |
| 2nd.semenrolled.        | 2nd.semgrade.           | 1st.semenrolled.        | 1st.semcredited.        |

Table 5 – Comparaison des modèles de régression Ridge et Lasso

000000

## Résultats principaux de nos modèles : modèles simples

| Elastic Net $\lambda_{min}$ | Elastic Net $\lambda_{1\text{se}}$ |  |  |  |
|-----------------------------|------------------------------------|--|--|--|
| 0.8614341                   | 0.8604651                          |  |  |  |
| 0.35 secondes               |                                    |  |  |  |
| Tuition.fees.up.to.date     | Tuition.fees.up.to.date            |  |  |  |
| International               | International                      |  |  |  |
| Debtor                      | Debtor                             |  |  |  |
| Scholarship.holder          | Scholarship.holder                 |  |  |  |
| 2nd.semapproved.            | 2nd.semapproved.                   |  |  |  |
| 1st.semapproved.            | 1st.semapproved.                   |  |  |  |
| Gender                      | Gender                             |  |  |  |
| 2nd.semenrolled.            | 2nd.semenrolled.                   |  |  |  |
| 2nd.semwithout.evaluations. | 2nd.semwithout.evaluations.        |  |  |  |

Table 6 – Analyse du modèle Elastic Net

### Les variables "évidentes"

Certains variables ressortent de tous les modèles.

- Tuition.fees.up.to.date
- Debtor
- 2nd.sem..approved
- 1st.sem..approved

### Les variables "évidentes"

Certains variables ressortent de tous les modèles.

- Tuition.fees.up.to.date
- Debtor
- 2nd.sem..approved
- 1st.sem..approved

## Des variables plus surprenantes

Certains variables sont significatives, mais cela dépend clairement des modèles.

- Scholarship.holder
- International
- Gender

### Les cours importants

Certains cours semblent également sortir un peu du lot dans notre étude. La corrélation entre la réussite dans ces cours et la réussite globale de l'année pour les élèves est forte pour ces cours par exemple :

- Le cours de "Service Social" (et également le cours de soutien le soir).
- Le cours d'éducation de base.
- Le cours d'agronomie.
- Le cours de conception d'animation et multimédia.

- 1 Introduction
- Premières manipulations des données
- 3 Modèles de régression
- 4 Analyse des résultats
- Conclusion

## Les points forts et les points faibles de nos modèles

## Les points forts de nos modèles

- Une grande variété de modèles
- Des résultats cohérents, avec des variables significatives plutôt logiques.
- Des précisions très satisfaisantes.

# Quelles perspectives?

- Supprimer des variables trop "évidentes" pour continuer de chercher des nouveaux modèles intéressants.
- Une analyse en composantes principales (ACP) pourrait nous donner de nouvelles informations pertinentes.

#### Annexe 1

# Processus d'Optimisation K-fold

- Diviser le jeu de données en plusieurs sous-ensembles (par exemple, en k sous-ensembles).
- Pour chaque valeur d'alpha :
  - ► Former le modèle sur k-1 sous-ensembles.
  - Évaluer sa performance sur le sous-ensemble restant.
  - ► Calculer l'erreur moyenne sur les k itérations.
- Sélectionner la valeur d'alpha qui minimise l'erreur de validation croisée.

#### Annexe 2



