

Wahrscheinlichkeitstheorie

Wahrscheinlichkeitstheorie

- Teilgebiet der Mathematik, dass sich mit Wahrscheinlichkeiten und der Analyse zufälliger Prozesse beschäftigt
- Mathematische Abstraktion von nicht-deterministischen Ereignissen

Unterscheidung von Empirie und Theorie

- Bisher: reine Beschreibung von Lage, Streuung und Zusammenhang von Daten ohne Berücksichtigung ihrer Entstehung
- Jetzt: Interpretation der Daten als Realisationen von Zufallsvariablen und Beschreibung von deren Wahrscheinlichkeitsverteilungen
- Auf Basis dieser Wahrscheinlichkeitsverteilungen lassen sich dann Aussagen über nicht betrachtete oder zukünftige Daten machen

Beschreibung des Zufalls

Vergleich unterschiedlich großer Stichproben aus der gleichen Wahrscheinlichkeitsverteilung

Beispiel Normalverteilung: Gesetz der großen Zahlen

Elementare Begriffe

Zufallsexperiment Datenerhebungsprozess mit nicht vorhersagbarem Ausgang

Ergebnis ω Elementarer Ausgang eines Zufallsexperiments

Grundraum Ω Menge aller möglichen Ergebnisse

 $\Omega = \{\omega \mid \omega \text{ ist Ergebnis des Zufallsexperiments}\}\$

Ereignis A Menge von Ergebnissen, d.h. Teilmenge von Ω

Elementarereignis Einelementiges Ereignis

Beispiel

Zufallsexperiment Einfacher Würfelwurf

Ergebnisse $\omega_1 = 1, \ \omega_2 = 2, \ \omega_3 = 3, \ \omega_4 = 4, \ \omega_5 = 5, \ \omega_6 = 6$

Grundraum $\Omega = \{1, 2, 3, 4, 5, 6\}$

Ereignisse $A = \{2, 4, 6\}, B = \{1, 3, 5\}, C = \{1, 2, 3, 4, 5\}, D = \{3, 4, 5, 6\},$ $E = \{2, 3, 5\}, F = \{1, 2, 3, 4, 5, 6\} = \Omega$

Elementarereignisse {1}, {2}, {3}, {4}, {5}, {6}

Beispiele

Experiment	Grundraum Ω	Ergebnis ω
Roulette	{0,1,,36}	Zahlenfeld der Kugel
Würfeln: Warten auf 6	% ∪{∞}	Anzahl Würfe bis zur ersten 6
6 aus 49	$\{(\omega_1,,\omega_6) \mid 1 \le \omega_1 < < \omega_6 \le 49\}$	Geordnete Nummern der gezogenen Kugeln
Einzelne Serveranfrage	[t _{min} ,t _{max}]	Anfragezeitpunkt t
Mausaktivität	$\{\omega: [t_{min}, t_{max}] \rightarrow (1,,600)x(1,,800)x(0,1,2)\}$	Koordinaten und Clickzustand (nicht, links, rechts) des Mauszeigers zu jeder Zeit
Wartezeit bis zur nächsten Serveranfrage	[0,∞)	Zeit zwischen zwei Anfragen

Bezeichnungen

$$\omega \in A$$

Ergebnis ω ist im Ereignis A enthalten

Bezeichnungen: Beispiel Würfelwurf

$$2 \in \{2,4,6\}$$

Augenzahl 2 ist gerade Zahl

Bezeichnungen

Schnittereignis zweier Mengen

$$A \cap B = \{\omega \in \Omega \mid \omega \in A \text{ und } \omega \in B\}$$

Ergebnis ω ist in Ereignis A **und** Ereignis B enthalten

Bezeichnungen: Beispiel Würfelwurf

Schnittereignis zweier Mengen

$$4 \in \{2,4,6\} \cap \{4,5,6\}$$

Augenzahl 4 ist gerade Zahl und größer als 3

Bezeichnungen

Schnittereignis beliebig vieler Mengen

$$\bigcap_{i \in I} A_i = \{ \omega \in \Omega \mid \omega \in A_i \text{ für } i \in I \}$$

Ergebnis ω ist in allen Ereignissen A_i enthalten

Bezeichnungen: Beispiel Würfelwurf

Schnittereignis beliebig vieler Mengen

$$4 \in \{2,4,6\} \cap \{4,5,6\} \cap \{1,2,3,4\}$$

Augenzahl 4 ist gerade Zahl und größer als 3 und kleiner als 5

Bezeichnungen

Vereinigungsereignis zweier Mengen

$$A \cup B = \{\omega \in \Omega \mid \omega \in A \text{ und/oder} \omega \in B\}$$

Ergebnis ω ist in Ereignis A **und/oder** Ereignis B enthalten

Bezeichnungen: Beispiel Würfelwurf

Vereinigungsereignis zweier Mengen

$$2 \in \{2,4,6\} \cup \{4,5,6\}$$

Augenzahl 2 ist gerade Zahl

Bezeichnungen

Vereinigungsereignis beliebig vieler Mengen

$$\bigcup_{i \in I} A_i = \{ \omega \in \Omega \mid \omega \in A_i \text{ für mindestens ein } i \in I \}$$

Ergebnis ω ist in mindestens einem A_i enthalten

Bezeichnungen: Beispiel Würfelwurf

Vereinigungsereignis beliebig vieler Mengen

$$5 \in \{2,4,6\} \cup \{4,5,6\} \cup \{1,2,3,4\}$$

Augenzahl 5 ist größer als 3

Bezeichnungen

Teilereignis

$$A \subset B \text{ (bzw.} A \subseteq B)$$

Ereignis A ist in Ereignis B enthalten, aus Ereignis A folgt Ereignis B

Bezeichnungen: Beispiel Würfelwurf

Teilereignis

$$\{5,6\} \subset \{4,5,6\}$$

Augenzahl 5 ist größer als 4 und damit auch größer als 3

Bezeichnungen

Differenzereignis

$$B \setminus A = \{ \omega \in \Omega \mid \omega \in B \text{ und } \omega \notin A \}$$

Ergebnis ω ist in Ereignis B, aber nicht in Ereignis A enthalten

Bezeichnungen: Beispiel Würfelwurf

Differenzereignis

$$5 \in \{4,5,6\} \setminus \{2,4,6\}$$

Augenzahl 5 ist größer als 3, aber nicht gerade Zahl

Bezeichnungen

Komplementärereignis

$$A^{C} = \Omega \setminus A = \{\omega \in \Omega \mid \omega \notin A\}$$

Ergebnis ω ist in Ereignis A^{C} enthalten \Leftrightarrow Ergebnis ω ist nicht in Ereignis A enthalten Das Ereignis A^{C} heißt **Komplement** bzw. **Gegenereignis** von bzw. zu A

Bezeichnungen: Beispiel Würfelwurf

Komplementärereignis

$$5 \in \{2,4,6\}^{c}$$

Augenzahl 5 ist nicht gerade Zahl

Regeln

Differenzereignis und Komplementärereignis

$$B \setminus A = \{ \omega \in \Omega \mid \omega \in B \text{ und } \omega \notin A \} = B \cap A^{C} = B \setminus (A \cap B)$$

Ergebnis ω ist in Ereignis B, aber nicht in Ereignis A enthalten

Regeln

$$(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$$

Regeln

$$(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$$

Regeln

$$(A \cup B) \cap \boxed{C} = (A \cap C) \cup (B \cap C)$$

Regeln

$$(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$$

Regeln

$$(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$$

Regeln

$$(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$$

Regeln Distributivgesetz Ω $A \cup B$ ω_3 ω_6 ω_2 ω_7 ω_4 ω_5 $A \cap C$ ω_3 ω_1 ω_2 ω_7

 ω_5

 ω_4

Regeln

$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$$

Regeln: Beispiel Würfelwurf

$$(\{2,4,6\} \cap \{4,5,6\}) \cup \{1,2,3,4\} = (\{2,4,6\} \cup \{1,2,3,4\}) \cap (\{4,5,6\} \cup \{1,2,3,4\})$$

Regeln

$$(A \cap B)^{c} = A^{c} \cup B^{c}$$
, $(A \cup B)^{c} = A^{c} \cap B^{c}$

Regeln

$$(A \cap B)^{c} = A^{c} \cup B^{c}$$

Regeln

$$(A \cap B)^{c} = A^{c} \cup B^{c}$$

Regeln

$$(A \cap B)^{c} = A^{c} \cup B^{c}$$

Regeln

Regeln von de Morgan

$$(A \cap B)^{c} = A^{c} \cup B^{c}$$

Regeln

Regeln von de Morgan

$$(A \cap B)^{c} = A^{c} \cup B^{c}$$

Regeln Regeln von de Morgan $\Omega \setminus A \cap B$ ω_3 ω_1 ω_6 ω_7 ω_4 A^{C} ω_5 BC ω_3 ω_1 ω_7 ω_{4} ω_5

Regeln Regeln von de Morgan $(A \cup B)^{c} = A^{c} \cap B^{c}$ $\Omega \setminus A \cup B$ ω_3 ω_6 ω_7 ω_2 ω_{4} A^{C} ω_5 BC ω_1 ω_7

Regeln: Beispiel Würfelwurf

Regeln von de Morgan

Beispiel Mausaktivität

Ereignisbeispiele:

```
A \supset \{\omega_1, \omega_3, \omega_4\}
"Letzter Click auf LU"
```

B ⊃{**ω**₃, **ω**₄} "Mauszeiger immer in linker Hälfte"

C⊃{ω₂} "Nur einmal geclickt"

 $D \supset \{\omega_1, \omega_2\}$ "R wurde geclickt"

Zusammenfassung Bezeichnungen

Mathematische Schreibweise	Ausformulierte Schreibweise
$\omega \in A$	Ergebnis ω ist in Ereignis A enthalten
$A \cap B$	Schnittereignis: Menge aller Ergebnisse, die in A und B enthalten sind
A ∩ B = Ø	A und B sind disjunkt : es gibt kein Ergebnis, dass in A und B enthalten ist
$A \cup B$	Vereinigungsereignis: Menge aller Ergebnisse, die in A und/oder B enthalten sind
$A \subseteq B$	A ist Teilereignis von B: Alle in A enthaltenen Ergebnisse sind auch in B enthalten
B\A	Differenzereignis: Menge der Ergebnisse, die in B, aber nicht in A enthalten sind
$A^{C} = \Omega \setminus A$	Komplementärereignis: Menge aller Ergebnisse, die nicht in A enthalten sind

Zusammenfassung Regeln

Mathematische Schreibweise	Ausformulierte Schreibweise	
$(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$ $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$	Distributivgesetze: Die Schnittmenge einer zwei Mengen A und B vereinigenden Menge mit einer weiteren Menge C ist gleich der Vereinigung der beiden aus C und jeweils einer der beiden Mengen A und B gebildeten Schnittmengen. Die Vereinigung der Schnittmenge zweier Mengen A und B mit einer weiteren Menge C ist gleich der Schnittmenge der beiden aus C und jeweils einer der beiden Mengen A und B gebildeten Vereinigungen	
$(A \cap B)^{C} = A^{C} \cup B^{C}$ $(A \cup B)^{C} = A^{C} \cap B^{C}$	Regeln von de Morgan: Das Komplementärereignis der Schnittmenge zweier Mengen ist gleich der Vereinigung der Komplementärereignisse der zwei Mengen. Das Komplementärereignis der Vereinigung zweier Mengen ist gleich der Schnittmenge der Komplementärereignisse der zwei Mengen	

Zuletzt: Interpretation von Daten als Realisationen von Zufallsvariablen. Mengentheoretische Grundlagen zur Ordnung von Ergebnissen und Ereignissen

Ergebnis und Ereignis $\omega \in A$	Teilereignis A⊆B	Vereinigungsereignis A∪B
Schnittereignis A∩B	Differenzereignis B\A	Distributivgesetze $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$ $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$
Disjunkte Ereignisse $A \cap B = \emptyset$	Komplementärereignis $A^{C} = \Omega \setminus A$	Regeln von de Morgan $(A \cap B)^{C} = A^{C} \cup B^{C}$ $(A \cup B)^{C} = A^{C} \cap B^{C}$

Jetzt: Zuordnung von Wahrscheinlichkeiten zu Ergebnissen und Ereignissen

Kolmogorov-Axiome, Wahrscheinlichkeitsmaß

Seien Ω ein Grundraum und $\mathcal A$ die Menge aller Ereignisse über Ω . Dann heißt die Abbildung

$$P: \mathcal{A} \rightarrow [0,1]$$
 , $A \rightarrow P(A)$,

ein Wahrscheinlichkeitsmaß, falls sie folgende Eigenschaften (Kolmogorov-Axiome) besitzt:

- 1. $0 \le P(A) \le 1$ für jedes Ereignis $A \in \mathcal{A}$
- 2. $P(\Omega) = 1$
- 3. $P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)$ für alle paarweise disjunkten Ereignisse $A_i \in \mathcal{A}$

Der Wert P(A) für ein Ereignis A heißt **Wahrscheinlichkeit** von A. Das Tripel (Ω , \mathcal{A} , P) heißt **Wahrscheinlichkeitsraum**.

Kolmogorov-Axiome, Wahrscheinlichkeitsmaß: Beispiel Würfelwurf

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

$$\mathcal{A} = \{\emptyset, \{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{6\}, \\ \{1,2\}, \{1,3\}, \{1,4\}, \{1,5\}, \{1,6\}, \{2,3\}, \{2,4\}, \{2,5\}, \{2,6\}, \{3,4\}, \{3,5\}, \{3,6\}, \{4,5\}, \{4,6\}, \{5,6\}, \\ \{1,2,3\}, \{1,2,4\}, \{1,2,5\}, \{1,2,6\}, \{1,3,4\}, \{1,3,5\}, \{1,3,6\}, \{1,4,5\}, \{1,4,6\}, \{1,5,6\}, \{2,3,4\}, \{2,3,5\}, \{2,3,6\}, \{2,4,5\}, \\ \{2,4,6\}, \{2,5,6\}, \{3,4,5\}, \{3,4,6\}, \{4,5,6\}, \\ \{1,2,3,4\}, \{1,2,3,5\}, \{1,2,3,6\}, \{1,2,4,5\}, \{1,2,4,6\}, \{1,2,5,6\}, \{1,2,5,6\}, \{1,3,4,5\}, \{1,3,4,6\}, \{1,3,5,6\}, \\ \{2,3,4,5\}, \{2,3,4,6\}, \{2,4,5,6\}, \{3,4,5,6\}, \{1,3,4,5,6\}, \{2,3,4,5,6\}, \\ \{1,2,3,4,5,6\} \}$$

$$P({1}) = P({2}) = P({3}) = P({4}) = P({5}) = P({6}) = 1/6$$

- 1. $0 \le P(A) \le 6/6 = 1$ für alle $A \in \mathcal{A}$
- 2. $P(\Omega) = 1$

3.
$$P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)$$
 für alle paarw. disj. Ereignisse $A_i \in \mathcal{A}$,

insb. für
$$A_i = \{i\}, i = 1,...,6, A_i = \emptyset, i > 6$$
: $P\left(\bigcup_{i=1}^{\infty} \{i\}\right) = P\left(\bigcup_{i=1}^{6} \{i\}\right) = P(\Omega) = \sum_{i=1}^{6} P(i) = 6/6 = 1$

Kolmogorov-Axiome, Wahrscheinlichkeitsmaß:

Beispiel Mausaktivität, interpolierte x-Position des Mauszeigers zu stetiger Zeit t

$$\Omega = [1,800]$$

$$\mathcal{A} = \begin{cases}
\emptyset, \{(a,b)|a \in \Omega, b \in \Omega, a \le b\}, \{\bigcup_{c=1}^{2} (a_{c},b_{c})|a_{c} \in \Omega, b_{c} \in \Omega, a_{c} \le b_{c}\}, \dots, \\
\{\bigcup_{c=1}^{\infty} (a_{c},b_{c})|a_{c} \in \Omega, b_{c} \in \Omega, a_{c} \le b_{c}\}, \{[a,b)|\dots\}, \dots, \{(a,b]|\dots\}, \{[a,b]|\dots\}, \dots\}
\end{cases}$$

$$P([a,b]) = (b-a)/799, a \le b$$

- 1. $0 \le P(A) \le 799/799 = 1$ für alle $A \in \mathcal{A}$
- 2. $P(\Omega) = 1$
- 3. $P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)$ für alle paarw. disj. Ereignisse $A_i \in \mathcal{A}$,

z.B. für
$$A_1 = 1$$
, $A_2 = (1,400)$, $A_3 = 400$, $A_4 = (400,800)$, $A_5 = 800$, $A_i = \emptyset$, $i > 5$:

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) = P\left(1 \cup (1,400) \cup 400 \cup (400,800) \cup 800\right) = P(\Omega) = \sum_{i=1}^{5} P(i) = \frac{0+399+0+400+0}{799} = 1$$

Eigenschaften von Wahrscheinlichkeitsmaßen

$$P:\mathcal{A} \to [0,1], A \mapsto P(A)$$

- 1. $0 \le P(A) \le 1$ für jedes Ereignis $A \in \mathcal{A}$
- 2. $P(\Omega) = 1$
- 3. $P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)$ für alle paarweise disjunkten Ereignisse $A_i \in \mathcal{A}$

(i)
$$A \cap B = \emptyset \implies P(A \cup B) = P(A) + P(B)$$

Beweis

Setze $A_1=A$, $A_2=B$, $A_i=\emptyset$, für i>2

$$\boxed{P(A \cup B)} = P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i) = P(A_1) + \sum_{i=2}^{\infty} P(A_i)$$

$$= P(A_1) + P\left(\bigcup_{i=2}^{\infty} A_i\right) = \boxed{P(A) + P(B)}$$

Eigenschaften von Wahrscheinlichkeitsmaßen

$$P:\mathcal{A} \to [0,1], A \mapsto P(A)$$

- 1. $0 \le P(A) \le 1$ für jedes Ereignis $A \in \mathcal{A}$
- 2. $P(\Omega) = 1$
- 3. $P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)$ für alle paarweise disjunkten Ereignisse $A_i \in \mathcal{A}$

(ii)
$$A \subseteq B \Rightarrow P(B \setminus A) = P(B) - P(A)$$

$$\mathsf{P}(\mathsf{B}) \,=\, \mathsf{P}\big((\mathsf{B} \backslash \mathsf{A}) \cup \mathsf{A}\big) \,=\, \mathsf{P}(\mathsf{B} \backslash \mathsf{A}) + \mathsf{P}(\mathsf{A}) \,\,\Rightarrow\, \boxed{\mathsf{P}(\mathsf{B} \backslash \mathsf{A}) \,=\, \mathsf{P}(\mathsf{B}) - \mathsf{P}(\mathsf{A})}$$

Eigenschaften von Wahrscheinlichkeitsmaßen

$$P:\mathcal{A} \to [0,1], A \mapsto P(A)$$

- 1. $0 \le P(A) \le 1$ für jedes Ereignis $A \in \mathcal{A}$
- 2. $P(\Omega) = 1$
- 3. $P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)$ für alle paarweise disjunkten Ereignisse $A_i \in \mathcal{A}$

(iii)
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$A \cup B = [A \setminus (A \cap B)] \cup [B \setminus (A \cap B)] \cup [A \cap B]$$

Eigenschaften von Wahrscheinlichkeitsmaßen

$$P:\mathcal{A} \to [0,1], A \mapsto P(A)$$

- 1. $0 \le P(A) \le 1$ für jedes Ereignis $A \in \mathcal{A}$
- 2. $P(\Omega) = 1$
- 3. $P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)$ für alle paarweise disjunkten Ereignisse $A_i \in \mathcal{A}$

(iii)
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$A \cup B = [A \setminus (A \cap B)] \cup [B \setminus (A \cap B)] \cup [A \cap B]$$

$$\Rightarrow P([A \cup B]) = P([A \setminus (A \cap B)] \cup [B \setminus (A \cap B)] \cup [A \cap B])$$

$$= P([A \setminus (A \cap B)]) + P([B \setminus (A \cap B)]) + P(A \cap B)$$

$$= P(A) - P(A \cap B) + P(B) - P(A \cap B) + P(A \cap B) = P(A) + P(B) - P(A \cap B)$$
(ii)

(iii)
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

(iv)
$$P\left(\bigcup_{n=1}^{N}A_{n}\right) = \sum_{m=1}^{N}(-1)^{m+1}\sum_{1\leq n_{1}<...< n_{m}\leq N}P(A_{n_{1}}\cap...\cap A_{n_{m}})$$
 Poincaré-Sylvesterformel

$$N = 2: P(A_1 \cup A_2) = (-1)^{1+1} \cdot P(A_1) + (-1)^{1+1} \cdot P(A_2) + (-1)^{2+1} \cdot P(A_1 \cap A_2)$$

$$= P(A_1) + P(A_2) - P(A_1 \cap A_2)$$

(iii)
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

(iv)
$$P\left(\bigcup_{n=1}^{N}A_{n}\right) = \sum_{m=1}^{N}(-1)^{m+1}\sum_{1\leq n_{1}<...< n_{m}\leq N}P(A_{n_{1}}\cap...\cap A_{n_{m}})$$
 Poincaré-Sylvesterformel

$$N = 3: P(A_1 \cup A_2 \cup A_3) = (-1)^{1+1} \cdot P(A_1) + (-1)^{1+1} \cdot P(A_2) + (-1)^{1+1} \cdot P(A_3) + (-1)^{2+1} \cdot P(A_1 \cap A_2) + (-1)^{2+1} \cdot P(A_1 \cap A_3) + (-1)^{2+1} \cdot P(A_2 \cap A_3) + (-1)^{3+1} \cdot P(A_1 \cap A_2 \cap A_3)$$

$$= P(A_1) + P(A_2) + P(A_3) - P(A_1 \cap A_2) - P(A_1 \cap A_3) - P(A_2 \cap A_3) + P(A_1 \cap A_2 \cap A_3)$$

(iii)
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

(iv)
$$P\left(\bigcup_{n=1}^{N}A_{n}\right) = \sum_{m=1}^{N}(-1)^{m+1}\sum_{1\leq n_{1}<...< n_{m}\leq N}P(A_{n_{1}}\cap...\cap A_{n_{m}})$$
 Poincaré-Sylvesterformel

$$\begin{array}{ll} N = 3: & P(A_1 \cup A_2 \cup A_3) = \\ \hline P(A_1) + P(A_2) + P(A_3) - P(A_1 \cap A_2) - P(A_1 \cap A_3) - P(A_2 \cap A_3) + P(A_1 \cap A_2 \cap A_3) \end{array}$$

Eigenschaften von Wahrscheinlichkeitsmaßen

$$P:\mathcal{A} \to [0,1], A \mapsto P(A)$$

- 1. $0 \le P(A) \le 1$ für jedes Ereignis $A \in \mathcal{A}$
- 2. $P(\Omega) = 1$
- 3. $P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)$ für alle paarweise disjunkten Ereignisse $A_i \in \mathcal{A}$

$$(\lor) P(A^{C}) = 1 - P(A)$$

$$P(A^{C}) = P(\Omega \setminus A) = P(\Omega) - P(A) = 1 - P(A)$$

Eigenschaften von Wahrscheinlichkeitsmaßen

$$P:\mathcal{A} \to [0,1], A \mapsto P(A)$$

- 1. $0 \le P(A) \le 1$ für jedes Ereignis $A \in \mathcal{A}$
- 2. $P(\Omega) = 1$
- 3. $P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)$ für alle paarweise disjunkten Ereignisse $A_i \in \mathcal{A}$

(vi)
$$P(\emptyset) = 0$$

$$P(\varnothing) = P(\Omega^{c}) = 1 - P(\Omega) = 0$$

Eigenschaften von Wahrscheinlichkeitsmaßen

$$P:\mathcal{A} \to [0,1], A \mapsto P(A)$$

- 1. $0 \le P(A) \le 1$ für jedes Ereignis $A \in \mathcal{A}$
- 2. $P(\Omega) = 1$
- 3. $P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)$ für alle paarweise disjunkten Ereignisse $A_i \in \mathcal{A}$

(vii)
$$A \subseteq B \Rightarrow P(A) \le P(B)$$

$$A \subseteq B \Rightarrow P(B \setminus A) = P(B) - P(A)$$

$$\Rightarrow P(B) - P(B) - \underbrace{P(B \setminus A)}_{>0} \leq P(B)$$

Diskreter Wahrscheinlichkeitsraum

Seien $\Omega = \{\omega_1, \omega_2, ...\}$ ein **endlicher** oder **abzählbar unendlicher** Grundraum und P ein Wahrscheinlichkeitsmaß auf Ω . Dann heißt (Ω, \mathcal{A}, P) **diskreter** Wahrscheinlichkeitsraum.

Für beliebiges Ereignis A∈ A gilt dann nach (i)

$$P(A) = P\left(\bigcup_{i:\omega_i \in A} \{\omega_i\}\right) = \sum_{i:\omega_i \in A} P(\{\omega_i\})$$

Laplace-Raum

Treten die Elemente von endlichem $\Omega = \{\omega_1, ... \omega_{|\Omega|}\}$ aus einem diskreten Wahrscheinlichkeitsraum (Ω, \mathcal{A}, P) alle mit der selben Wahrscheinlichkeit auf, d.h. gilt $P(\{\omega_i\})=1/|\Omega|$ für $i=1,..., |\Omega|$, so wird (Ω, \mathcal{A}, P) auch **Laplace-Raum** genannt und die Wahrscheinlichkeit für ein Ereignis $A \in \mathcal{A}$ kann durch $P(A)=|A|/|\Omega|$ angegeben werden.

Eigenschaften von Wahrscheinlichkeitsmaßen, Diskreter Wahrscheinlichkeitsraum: Beispiel Bearbeitungen von Softwareaufgaben

Bearbei- tung	Bear- beiter(in)	Aufgabe	Version
e_1	Kai	Export	1.1
e_2	Kai	Verknüpfung	1.2
e ₃	Miriam	Export	1.1
e ₄	Tina	Verknüpfung	1.2
e ₅	Oliver	Export	2.0
e ₆	Tina	Export	1.2
e ₇	Tina	Verknüpfung	1.2
e ₈	Miriam	Export	1.2
e ₉	Miriam	Export	1.2
e ₁₀	Oliver	Abfrage	1.1
e ₁₁	Oliver	Verknüpfung	2.0
e ₁₂	Oliver	Abfrage	2.0

Zufällige Auswahl einer Bearbeitung \rightarrow Ergebnis $\omega \in \{e_1,...,e_{12}\} = \Omega$ Elementarwahrscheinlichkeiten $P(\{e_i\}) = 1/12, i = 1,...,12$

Ereignisse

1. Bearbeiter männlich

$$A_1 = \{e_1, e_2, e_5, e_{10}, e_{11}, e_{12}\}$$

2. Gestellte Aufgabe Export

$$A_2 = \{e_1, e_3, e_5, e_6, e_8, e_9\}$$

3. Verwendete Version 2.0

$$A_3 = \{e_5, e_{11}, e_{12}\}$$

(i)
$$A \cap B = \emptyset \Rightarrow P(A \cup B) = P(A) + P(B)$$

(iv)
$$P\left(\bigcup_{n=1}^{N}A_{n}\right) = \sum_{m=1}^{N}(-1)^{m+1}\sum_{1\leq n_{1}<...< n_{m}\leq N}P(A_{n_{1}}\cap...\cap A_{n_{m}})$$

(ii)
$$A \subseteq B \Rightarrow P(B \setminus A) = P(B) - P(A)$$

(v)
$$P(A^{c}) = 1 - P(A)$$

(iii)
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

(vi)
$$P(\varnothing) = 0$$

(vii)
$$A \subseteq B \Rightarrow P(A) \leq P(B)$$

$$\omega \in \{e_1, ..., e_{12}\} = \Omega$$

$$P({e_i}) = 1/12, i = 1,...,12$$

$$A_1 = \{e_1, e_2, e_5, e_{10}, e_{11}, e_{12}\}$$

$$A_2 = \{e_1, e_3, e_5, e_6, e_8, e_9\}$$

$$A_3 = \{e_5, e_{11}, e_{12}\}$$

(i)
$$A \cap B = \emptyset \Rightarrow P(A \cup B) = P(A) + P(B)$$

(iv)
$$P\left(\bigcup_{n=1}^{N}A_{n}\right) = \sum_{m=1}^{N}(-1)^{m+1}\sum_{1\leq n_{1}<...< n_{m}\leq N}P(A_{n_{1}}\cap...\cap A_{n_{m}})$$

(ii)
$$A \subseteq B \Rightarrow P(B \setminus A) = P(B)-P(A)$$

(v)
$$P(A^{c}) = 1 - P(A)$$

(iii)
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

(vi)
$$P(\emptyset) = 0$$

(vii)
$$A \subseteq B \Rightarrow P(A) \leq P(B)$$

$$\omega \in \{e_1,...,e_{12}\} = \Omega$$

$$P(\{e_i\}) = 1/12, i = 1,...,12$$

$$A_1 = \{e_1, e_2, e_5, e_{10}, e_{11}, e_{12}\}$$

$$A_2 = \{e_1, e_3, e_5, e_6, e_8, e_9\}$$

$$A_3 = \{e_5, e_{11}, e_{12}\}$$

$$\begin{split} \textbf{P(A_1)} &= P(\{e_1\} \cup \{e_2\} \cup \{e_5\} \cup \{e_{10}\} \cup \{e_{11}\} \cup \{e_{12}\}) \\ &= P(\left[(\{e_1\} \cup \{e_2\}) \cup (\{e_5\} \cup \{e_{10}\})\right] \cup \left[\{e_{11}\} \cup \{e_{12}\}\right]) \\ &= P(\{e_1\}) + P(\{e_2\}) + P(\{e_5\}) + P(\{e_{10}\}) + P(\{e_{11}\}) + P(\{e_{12}\}) = 6/12 = \textbf{1/2} \end{split}$$

$$\begin{aligned} \textbf{P(A_2)} &= P(\{e_1\} \cup \{e_3\} \cup \{e_5\} \cup \{e_6\} \cup \{e_8\} \cup \{e_9\}) \\ &= P(\left[(\{e_1\} \cup \{e_3\}) \cup (\{e_5\} \cup \{e_6\})\right] \cup \left[\{e_8\} \cup \{e_9\}\right]) \\ &= P(\{e_1\}) + P(\{e_3\}) + P(\{e_5\}) + P(\{e_6\}) + P(\{e_8\}) + P(\{e_9\}) = 6/12 = \textbf{1/2} \end{aligned}$$

$$\begin{aligned} \textbf{P(A_3)} &= P(\{e_5\} \cup \{e_{11}\} \cup \{e_{12}\} = P(\left[\{e_5\} \cup \{e_{11}\}\right] \cup \{e_{12}\}) \\ &= P(\{e_5\}) + P(\{e_{11}\}) + P(\{e_{12}\}) = 3/12 = \textbf{1/4} \end{aligned}$$

Eigenschaften von Wahrscheinlichkeitsmaßen

(i)
$$A \cap B = \emptyset \Rightarrow P(A \cup B) = P(A) + P(B)$$

(iv)
$$P\left(\bigcup_{n=1}^{N}A_{n}\right) = \sum_{m=1}^{N}(-1)^{m+1}\sum_{1\leq n_{1}<...< n_{m}\leq N}P(A_{n_{1}}\cap...\cap A_{n_{m}})$$

(ii)
$$A \subseteq B \Rightarrow P(B \setminus A) = P(B) - P(A)$$

(v)
$$P(A^{c}) = 1 - P(A)$$

(iii)
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

(vi)
$$P(\emptyset) = 0$$

$$(vii) A \subseteq B \Rightarrow P(A) \leq P(B)$$

$$\omega \in \{e_1,...,e_{12}\} = \Omega$$

$$P(\{e_i\}) = 1/12, i = 1,...,12$$

$$A_1 = \{e_1, e_2, e_5, e_{10}, e_{11}, e_{12}\}$$

$$A_2 = \{e_1, e_3, e_5, e_6, e_8, e_9\}$$

$$A_3 = \{e_5, e_{11}, e_{12}\}$$

$$P(A_1) = 1/2$$

$$P(A_2) = 1/2$$

 $P(A_3) = 1/4$

Wahrscheinlichkeit für eine Bearbeitung, die von einem Mann mit einer anderen Version als 2.0 durchgeführt wurde

$$\begin{aligned} \mathsf{A}_3 &= \{\mathsf{e}_{_5}, \mathsf{e}_{_{11}}, \mathsf{e}_{_{12}}\} \subset \{\mathsf{e}_{_1}, \mathsf{e}_{_2}, \mathsf{e}_{_5}, \mathsf{e}_{_{10}}, \mathsf{e}_{_{11}}, \mathsf{e}_{_{12}}\} = \mathsf{A}_1 \\ & \Rightarrow \quad (\mathsf{iii}) \; \mathsf{P}(\mathsf{A}_{_1} \setminus \mathsf{A}_{_3}) = \mathsf{P}(\mathsf{A}_{_1}) - \mathsf{P}(\mathsf{A}_{_3}) \; = \; 1/2 \text{-} 1/4 \; = \; \mathbf{1} \; / \; \mathbf{4} \\ & \Rightarrow \quad (\mathsf{vii}) \; \; 1/4 = \mathsf{P}(\mathsf{A}_{_3}) \leq \mathsf{P}(\mathsf{A}_{_1}) = 1/2 \end{aligned}$$

Eigenschaften von Wahrscheinlichkeitsmaßen

(i)
$$A \cap B = \emptyset \Rightarrow P(A \cup B) = P(A) + P(B)$$

(iv)
$$P\left(\bigcup_{n=1}^{N}A_{n}\right) = \sum_{m=1}^{N}(-1)^{m+1}\sum_{1\leq n_{1}<...< n_{m}\leq N}P(A_{n_{1}}\cap...\cap A_{n_{m}})$$

(ii)
$$A \subseteq B \Rightarrow P(B \setminus A) = P(B) - P(A)$$

(v)
$$P(A^{c}) = 1 - P(A)$$

(iii)
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

(vi)
$$P(\emptyset) = 0$$

(vii)
$$A \subset B \Rightarrow P(A) \leq P(B)$$

$$\omega \in \{e_1, ..., e_{12}\} = \Omega$$

$$P({e_i}) = 1/12, i = 1,...,12$$

$$A_1 = \{e_1, e_2, e_5, e_{10}, e_{11}, e_{12}\}$$

$$A_2 = \{e_1, e_3, e_5, e_6, e_8, e_9\}$$

$$A_3 = \{e_5, e_{11}, e_{12}\}$$

$$P(A_1) = 1/2$$

$$P(A_2) = 1/2$$

$$P(A_3) = 1/4$$

Wahrscheinlichkeit für eine Bearbeitung, die Aufgabe Export hatte und/oder von einem Mann durchgeführt wurde

$$\begin{aligned} \textbf{P(A}_1 & \cup \textbf{A}_2 \textbf{)} &= \textbf{P(A}_1 \textbf{)} + \textbf{P(A}_2 \textbf{)} - \textbf{P(A}_1 \cap \textbf{A}_2 \textbf{)} \\ &= 1/2 + 1/2 - \textbf{P(\{e}_1, e_2, e_5, e_{10}, e_{11}, e_{12}\} \cap \{e_1, e_3, e_5, e_6, e_8, e_9\} \textbf{)} \\ &= 1 - \textbf{P(\{e}_1, e_5\} \textbf{)} = 1 - \textbf{P(\{e}_1\} \cup \{e_5\} \textbf{)} \\ &= 1 - (\textbf{P(\{e}_1\} \textbf{)} + \textbf{P(\{e}_5\} \textbf{)}) = 1 - 2/12 = 10/12 = 5 \textbf{/} 6 \end{aligned}$$

Eigenschaften von Wahrscheinlichkeitsmaßen

(i)
$$A \cap B = \emptyset \Rightarrow P(A \cup B) = P(A) + P(B)$$

(iv)
$$P\left(\bigcup_{n=1}^{N}A_{n}\right) = \sum_{m=1}^{N}(-1)^{m+1}\sum_{1\leq n_{1}<...< n_{m}\leq N}P(A_{n_{1}}\cap...\cap A_{n_{m}})$$

(ii)
$$A \subseteq B \Rightarrow P(B \setminus A) = P(B) - P(A)$$

(v)
$$P(A^{c}) = 1 - P(A)$$

(iii)
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

(vi)
$$P(\varnothing) = 0$$

(vii)
$$A \subset B \Rightarrow P(A) \leq P(B)$$

$$\omega \in \{e_1,...,e_{12}\} = \Omega$$

$$P(\{e_i\}) = 1/12, i = 1,...,12$$

$$A_1 = \{e_1, e_2, e_5, e_{10}, e_{11}, e_{12}\}$$

$$A_2 = \{e_1, e_3, e_5, e_6, e_8, e_9\}$$

$$A_3 = \{e_5, e_{11}, e_{12}\}$$

$$P(A_1) = 1/2$$

 $P(A_2) = 1/2$

 $P(A_3) = 1/4$

W'keit für eine Bearbeitung, die Aufgabe Export hatte und/oder von einem Mann und /oder mit Version 2.0 durchgeführt wurde

$$\begin{split} \textbf{P(A}_1 \cup \textbf{A}_2 \cup \textbf{A}_3) &= P(\textbf{A}_1) + P(\textbf{A}_2) + P(\textbf{A}_3) \\ &- P(\textbf{A}_1 \cap \textbf{A}_2) - P(\textbf{A}_1 \cap \textbf{A}_3) - P(\textbf{A}_2 \cap \textbf{A}_3) + P(\textbf{A}_1 \cap \textbf{A}_2 \cap \textbf{A}_3) \\ &= 1/2 + 1/2 + 1/4 - P(\{\textbf{e}_1, \textbf{e}_5\}) - P(\{\textbf{e}_5, \textbf{e}_{11}, \textbf{e}_{12}\}) - P(\{\textbf{e}_5\}) + P(\{\textbf{e}_5\}) \\ &= 15/12 - 2/12 - 3/12 - 1/12 + 1/12 = 10/12 = \textbf{5 / 6} \end{split}$$

Eigenschaften von Wahrscheinlichkeitsmaßen

(i)
$$A \cap B = \emptyset \Rightarrow P(A \cup B) = P(A) + P(B)$$

(iv)
$$P\left(\bigcup_{n=1}^{N}A_{n}\right) = \sum_{m=1}^{N}(-1)^{m+1}\sum_{1\leq n_{1}<...< n_{m}\leq N}P(A_{n_{1}}\cap...\cap A_{n_{m}})$$

(ii)
$$A \subseteq B \Rightarrow P(B \setminus A) = P(B) - P(A)$$

(v)
$$P(A^{C}) = 1 - P(A)$$

(iii)
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

(vi)
$$P(\emptyset) = 0$$

(vii)
$$A \subseteq B \Rightarrow P(A) \leq P(B)$$

$$\omega \in \{e_1, ..., e_{12}\} = \Omega$$

$$P(\{e_i\}) = 1/12, i = 1, ..., 12$$

$$A_1 = \{e_1, e_2, e_5, e_{10}, e_{11}, e_{12}\}$$

$$A_2 = \{e_1, e_3, e_5, e_6, e_8, e_9\}$$

$$P(A_1) = 1/2$$

$$A_3 = \{e_5, e_{11}, e_{12}\}$$

$$P(A_2) = 1/2$$

$$P(A_3) = 1/4$$

W'keit für eine Bearbeitung, die weder Aufgabe Export hatte noch

Mit (v):
$$P([A_1 \cup A_2 \cup A_3]^c) = 1 - P(A_1 \cup A_2 \cup A_3) = 1 - 5/6 = 1/6$$

Mit de Morgan:
$$P([A_1 \cup A_2 \cup A_3]^c) = P(A_1^c \cap A_2^c \cap A_3^c)$$

$$= P(\{e_{3}, e_{4}, e_{6}, e_{7}, e_{8}, e_{9}\} \cap \{e_{2}, e_{4}, e_{7}, e_{10}, e_{11}, e_{12}\} \cap$$

$$\{e_1, e_2, e_3, e_4, e_6, e_7, e_8, e_9, e_{10}\}) = P(\{e_4, e_7\}) = 2/12 = 1 / 6$$

Eigenschaften von Wahrscheinlichkeitsmaßen

(i)
$$A \cap B = \emptyset \Rightarrow P(A \cup B) = P(A) + P(B)$$

(iv)
$$P\left(\bigcup_{n=1}^{N}A_{n}\right) = \sum_{m=1}^{N}(-1)^{m+1}\sum_{1\leq n_{1}<...< n_{m}\leq N}P(A_{n_{1}}\cap...\cap A_{n_{m}})$$

(ii)
$$A \subseteq B \Rightarrow P(B \setminus A) = P(B) - P(A)$$

(v)
$$P(A^{c}) = 1 - P(A)$$

(iii)
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

(vi)
$$P(\emptyset) = 0$$

(vii)
$$A \subseteq B \Rightarrow P(A) \leq P(B)$$

$$\omega \in \{e_1, \dots, e_{12}\} = \Omega$$

$$P({e_i}) = 1/12, i = 1,...,12$$

$$A_1 = \{e_1, e_2, e_5, e_{10}, e_{11}, e_{12}\}$$

$$A_2 = \{e_1, e_3, e_5, e_6, e_8, e_9\}$$

$$A_3 = \{e_5, e_{11}, e_{12}\}$$

$$P(A_1) = 1/2$$

$$P(A_2) = 1/2$$

$$P(A_3) = 1/4$$

W'keit für eine Bearbeitung, die mit Version 2.0 von einer Frau durchgeführt wurde

$$P(A_1^c \cap A_3) = P(\{e_3, e_4, e_6, e_7, e_8, e_9\} \cap \{e_5, e_{11}, e_{12}\}) = P(\emptyset) = 0$$