Deep Learning for Sensing: Emotion Recognition

Why Deep Learning?

- Availability of bigger and better-quality datasets (e.g., ImageNet)
- Better compute available; i.e., faster and cheaper GPUs
- Better algorithms (e.g., model architecture, optimizer, and training procedure) and tools (e.g., Keras)
- Availability of pretrained models that have taken months to train but can be quickly reused

Model Zoo

Table 2-1. Architectural details of select pretrained ImageNet models

Model	Size	Top-1 accuracy	Top-5 accuracy	Parameters	Depth
VGG16	528 MB	0.713	0.901	138,357,544	23
VGG19	549 MB	0.713	0.9	143,667,240	26
ResNet-50	98 MB	0.749	0.921	25,636,712	50
ResNet-101	171 MB	0.764	0.928	44,707,176	101
ResNet-152	232 MB	0.766	0.931	60,419,944	152
InceptionV3	92 MB	0.779	0.937	23,851,784	159
InceptionResNetV2	215 MB	0.803	0.953	55,873,736	572
NASNetMobile	23 MB	0.744	0.919	5,326,716	8
NASNetLarge	343 MB	0.825	0.96	88,949,818	
MobileNet	16 MB	0.704	0.895	4,253,864	88
MobileNetV2	14 MB	0.713	0.901	3,538,984	88

Learning Melodica From Scratch? Effort = 3 months

Already Play Piano?
Fine-tune Skills
Effort = 3 days

Transfer Learning

- Training a deep learning model from scratch on a multimillion-image database requires weeks of training time and lots of GPU computational energy, making it a difficult task
- The model zoo (https://keras.io/applications/) in Keras is a collection of various architectures trained using the Keras framework on the ImageNet dataset
- Possible to perform transfer learning that simply modifies existing models by training our own classifier in minutes

Feature Extraction vs. Classification

Generic -> Task specific layers (left to right)

Figure 3-3. (a) Lower-level activations, followed by (b) midlevel activations and (c) upper-layer activations (image source: Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations, Lee et al., ICML 2009)

Transfer Learning

- Neural networks are commonly used for task adaptation; that's why it's called "fine-tuning"
- But other classifiers could be also used such as decision trees, gradient boost, and SVM

When to use Transfer Learning

Task Similarity

		High similarity (task & datasets)	(task & datasets)
Training Dataset	Large amount of training data	Fine tune all layers	Train from scratch, or fine tune all layers
size	Small amount of training data	Fine tune last few layers	Tough luck! Train on a smaller network with heavy data augmentation or somehow get more data

Emotion Recognition w/ K-EmoCon Dataset

Signals

- Empatica E4
 - BVP PPG raw data
 - Blood Volume Pulse (BVP) is the primary output from the PPG sensor
 - EDA GSR data (stin)
 - Skin temperature data
- Polar H10
 - ECG heart rate data

https://support.empatica.com/hc/enus/articles/360029719792-E4-data-BVP-expected-signal

Ground Truth

Arousal – scale (1-5) neutral = 3

Valence – scale (1-5) neutral = 3

Ground Truth — Binary Label

• Low vs. High

Low: 1, 2, 3
High: 4, 5

Skewed Labels

Signals - Preparation

- Different sampling rates for each sensor type
 - BVP/PPG: 64Hz \
 - ECG: 1Hz 1
 - EDA: 4Hz
 - Skin Temperature: 4Hz
- Problem: can't feed these four items together to the deep learning model
 - Solution setting a uniform sampling rate of 4 Hz
 - BVP => down sampling (to 4 Hz) via Rolling Mean
 - ECG => up sampling (to 4 Hz) via Linear Interporation

Rolling average as low pass filtering

BVP Example (64Hz)

- How to feed into a neural network?
 - Sample at 1 second keep 5 seconds

(3) 2-D array (5sec, 64Hz)

LSTM - BVP Example (64Hz)

LSTM - BVP Example (64Hz)

 What will happen if we increase the time period? (from 5 seconds to 20 seconds or even 1 minute?)

Sensor Fusion w/ Deep Learning

- Example scenario: Activity Recognition
 - 3D Accelerometer = 3 streams (X, Y, Z)
 - 14 bit resolution per sample; sampling rate: 100 Hz
 - 3D Gyroscope = 3 streams (X, Y, Z)
 - 16 bit resolution per sample; sampling rate: 100 Hz
 - 1D Pressure = 1 stream
 - 16 bit resolution per sample; sampling rate: 100 Hz

Sensor Fusion w/ Deep Learning

CNN-based sensor fusion techniques for multimodal human activity recognition, ISWC 2017

Layer	conv1	conv2	FC	Soft-max	
Parameters	W^1, b^1	W^2, b^2	W^{fc}, b^{fc}	W^{sm}, b^{sm}	
EF	704	4,096	1,016,064	1,799	
SB-LF	768	12,288	3,047,680		
CB-LF	896	28,672	7,110,912	1,777	
SF-HF	128	4,096	7,110,912		

Table 2. Overview of number of parameters per layer in different sensor fusion techniques, exemplary shown for the optimal two layered CNN architecture with $n_f=32$ in both convolutional layers (denoted as conv1 and conv2) and $n_n=256$ in the fully connected layer (FC).

Fusion tech	hnique	EF	SB-LF	CB-LF	SF-HF
2L-CNN	mean	0.74	0.76	0.81	0.86
	std	0.013	0.043	0.045	0.034
3L-CNN	mean	0.74	0.81	0.81	0.85
	std	0.016	0.052	0.05	0.029

Table 3. Average F_1 -scores achieved on PAMAP2 for different sensor fusion models (EF, SB-LF, CB-LF and SF-HF) with two and three layered CNNs using zNorm+BN normalization.

Validation

Generalized model: LOSO

Result= mean
$$\pm$$
 SD

mean= $\frac{1}{21} \sum_{i=1}^{21} Performance_i$

SD = $\sqrt{\frac{1}{21} \sum_{i=1}^{21} (Performance_i - mean)^2}$