Teminar.

1) Spatii vectoriale euclidiene Endomorfisme simetrice

Fig. (E, $\angle i$, \Rightarrow) s.v.e.R, dim E = 2.

Fig. (E, $\angle i$, \Rightarrow) s.v.e.R, dim E = 2.

Fig. (α) = $\angle x$, $\alpha >$, (α) = $\angle f(\alpha)$, $\alpha >$, (α) = $\angle f(\alpha)$, $f(\alpha) >$, $\forall \alpha \in E$ (forme fundamentale), $f \in Lim(E)$ Fare wrate $\alpha = (\alpha + \alpha)$ $Q_3(\alpha) - T_R(A_{f}) Q_2(\alpha) + det(A_{f}) Q_1(\alpha) = 0$, $\forall \alpha \in E$,

under $A_{f} = [f]_{R,R}, \forall R$ reper ordenormat in E

Fix x = x fine (R^3, g_0) , u = (1,-1,0).

Fix x = x simetria ortogonala fata de (x = x) x = x proveetia ortogonala x = x for x = x determine x = x, x = x and x = x for x = x

2) Geometrie analitica enclidiana

(R³, (R³, 190), 9) sp. afin euclidian canonic

(R³, (R³, 190), 9) sp. afin euclidian canonic $\mathcal{R} = \{0; e_1, e_2, e_3\}$ reper cartezian ordinormat

(**) Ec. unei drepte afine

a) $\frac{\forall}{A} = \frac{\forall}{A}$ $\frac{\partial}{\partial A} = \frac{\partial}{\partial A}$ $\frac{\partial}{\partial A} = \frac{\partial}{\partial A}$ (**) $\frac{\partial}{\partial A} = \frac{\partial}{$

$$\frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{2}}{\sqrt{2}} = \frac{3}{\sqrt{2}} = \frac{3}{\sqrt{2}$$

$$\Delta: \frac{x_1 - a_1}{v_1} = \frac{x_2 - a_2}{v_2} = \frac{x_3 - a_3}{v_3} = t \quad (=) \quad x_i - a_i = t \quad v_i \quad f = 1,3$$

$$\frac{1}{A} = 2 \left\{ \overrightarrow{AB} \right\} >$$

$$\frac{\partial}{\partial x} : \frac{x_1 - a_1}{b_1 - a_1} = \frac{x_2 - a_2}{b_2 - a_2} = \frac{x_3 - a_3}{b_3 - a_3} \qquad \frac{\overrightarrow{OA}}{\overrightarrow{OB}} = \frac{3}{2} \overrightarrow{a_1} \overrightarrow{a_1} \overrightarrow{a_2}$$

$$\begin{array}{lll} \boxed{OBS}_{a)} \partial_{1} /\!\!/ \partial_{2} & \Longleftrightarrow \bigvee_{\partial_{1}} = \bigvee_{\partial_{2}} & \Longleftrightarrow \exists \, \mathcal{L} \in \mathbb{R} \text{ ai } v' = \mathcal{L} \vee \mathcal{L} \\ \downarrow_{0} \partial_{1} /\!\!/ \partial_{2} & \swarrow_{0} \partial_{1$$

$$\mathcal{D}_{1}: x_{j}-a_{i}=to_{i}$$

$$\mathcal{D}_{2}: x_{i}-b_{i}=t'v_{i}$$

$$\lambda = \frac{1}{3}$$

$$\mathcal{D}_1 \cap \mathcal{D}_2$$
: $t \circ i + \alpha i = t' \circ i' + b i'$, $i = 1/3$

$$\begin{pmatrix}
v_1 & -v_1 \\
v_2 & -v_2 \\
v_3 & -v_3
\end{pmatrix}
\begin{vmatrix}
b_1 - a_1 \\
b_2 - a_2 \\
b_3 - a_3
\end{vmatrix}$$

$$\Delta_{c} = \begin{vmatrix} v_{1} & -v_{1} & b_{1}-a_{1} \\ v_{2} & -v_{2} & b_{2}-a_{2} \\ v_{3} & -v_{3} & b_{3}-a_{3} \end{vmatrix}$$

** Ec. unui glan afin a) T (AET, V = < {u,v}>), {u,v}SLI JAM, METT. It, ser ac AM = tu+sv , OA = Zaiei, OM = Zxiei xi-ai = tui + svi , i=13 N = UXV = (A1, A2, A3) π : $A_1(x_1-a_1) + A_2(x_2-a_2) + A_3(x_3-a_3) = 0$ A1 x1 + A2 x2 + A3 x3 + A0 = 0 b) π (A,B,C $\in \pi$) $V_{\pi} = \angle \{\overrightarrow{AB},\overrightarrow{AC}\}$ $\pi: \quad x_i - a_i = t(b_i - a_i) + s(c_i - a_i) \qquad \overrightarrow{OA} = \overline{z_3} a_i e_i$ $= \overline{z_3} b_i e_i$ oc = Žaiei

 $\pi: x_{j} - a_{i} = t(b_{i} - a_{i}) + s(a_{i} - a_{i}) \quad \overrightarrow{OA} = \frac{3}{4}a_{i}a_{i}$ $\overrightarrow{OB} = \frac{3}{4}a_{i}$ $\overrightarrow{OB} = \frac{3}{4}a_{$

 $\begin{array}{lll} (+++) & \perp & \text{comuna} & \text{a 2 drepte nevoplanare} \\ \mathcal{D}_1: & \text{x}_i - \alpha_i = t \circ i \\ \mathcal{D}_2: & \text{x}_i - b_i = t' \circ i \\ \mathcal{P}_2: & \text{x}_i - b_i = t' \circ i \\ \mathcal{P}_3: & \text{x}_i - b_i = t' \circ i \\ \mathcal{P}_4: & \text{x}$

EX
$$(R^3, R^3, g_0), \varphi$$

 $A(3,-1,3), B(5,1,-1), M = (-3,5,-6)$
a) Sa se sorie ec dreplei \mathcal{D} ai $A \in \mathcal{D}$, $\forall_{\mathcal{D}} = \angle \{u\} > AB$

c) La se afte sunctele de intersectie ale drepter D

ou glancle de soordonate.

Ex La se serie ec druptei Dai
$$A(2_1-5_13) \in D$$

si $D \mid D'$, unde D' : $\begin{cases} 2X_1 - X_2 + 3X_3 + 1 = 0 \\ 5X_1 + 4X_2 - X_3 + 1 = 0 \end{cases}$

Ex The flanul
$$\pi: X_1+X_2+X_3=1$$
 | M(1,2,-1) si dreapta $\vartheta: \frac{X_1-1}{2}=\frac{X_2-1}{-1}=\frac{X_3}{3}$

a) Ja se serie ec dreptei D'ai MED'si D'IT

b)
$$-11 -$$
 planului π' aî $M \in \pi'$ si $\pi' \perp D$
c) $-11 -$ planului π'' aî $M \in \pi''$ si $D \subset \pi''$.

$$\underbrace{Ex}_{2} \cdot \text{Fie dreyfele}$$

$$\mathcal{D}_{1}: \begin{cases} x_{1} + x_{3} = 0 \\ x_{2} - x_{3} - 1 = 0 \end{cases}, \mathcal{D}_{2}: \begin{cases} x_{2} = 0 \\ x_{3} = 0 \end{cases}$$

a) La de arate ca D11 D2 sunt necoplanare

b) La se afte ec 1 comune a driptelor Du Dz

c) La se determine dist (D1,D2)

Ex. Fre dreptele: $\partial_1: \frac{x_1-1}{1} = \frac{x_2-2}{-1} = \frac{x_3+2}{2}$

 $\mathcal{D}_{2}: \begin{cases} 2X_{1}-X_{3}-1=0\\ 2X_{2}+X_{3}+3=0 \end{cases}$

a) Sa æ arate ca D1,D2 roglanare b) Sa se sorie ec. slanulei det de D1,D2

c) far a after dist (D1, D2)

 $\pm x$. Fre θ_1 : $\frac{x_1-1}{2} = \frac{x_2-1}{3} = \frac{x_3}{3}$

Ty: 4+12+19-1=0

 $\pi_2: X_1-X_2+X_3=0$, M(1/2,1)

a) La se det ec. dreplei 2 = TINT2

b) $\neq (\mathcal{D}_1, \mathcal{D}_2)$ ($\mathcal{D}_1, \mathcal{D}_2$ drepte orientale)

c) ξ (T_1, T_2) (T_1, T_2 flane orientale)
d) La se afle roord. simetricului lui 19 față de T_1

A(11310) B(3,-2,1) $C(\alpha_{1}1,-3)$ A(7,-2,3)

d = ? ai $A_1B_1C_1A = gunete roglanare.$

Ex Fie dryfele

 $\mathcal{Q}_1: \frac{x_1-1}{-1} = \frac{x_2+2}{4} = \frac{x_3}{1}, \quad \mathcal{Q}_2: \frac{x_1}{3} = \frac{x_2}{1} = \frac{x_3-1}{2}$

a) sa se vrate ea D1, D2 = hecoplanare

6) Aflati ec 1 romune a dreptelor D1/D2.

EX . Fee $\mathcal{D}_1: \frac{4-1}{2} = \frac{x_2+1}{3} - \frac{x_3}{1}, \mathcal{D}_2: \frac{x_4-2}{4} = \frac{x_2}{6} - \frac{x_{3+1}}{3}$ a) $\lambda = ?$ ai $\mathcal{D}_1 / \mathcal{D}_2$. Aflati ec. flamului π det. de $\mathcal{D}_1, \mathcal{D}_2$ b) Calculate dist $(M_1\pi)$, M(0, 5, 1)

Ex Fig. 2 :
$$\begin{cases} x_1 + 3x_2 + x_3 - 1 = 0 \\ 2x_1 + x_2 + 2x_3 - 3 = 0 \end{cases}$$
, $P(2,3,1)$

a) dist (P,D)

6) projectia lui P ge D

EX . A (-11011), IT: X1+ X2-X3+2=0

a) dist (A,T)

b) pr A = A'. Aflati coord. lui A'

 $EX = M(1/11), \quad D: \begin{cases} x_1 - x_2 + x_3 + 1 = 0 \\ x_1 - 2x_3 - 1 = 0 \end{cases}$

 $\pi: \alpha_1 + 2\alpha_2 + 3\alpha_3 - 1 = 0$

a) sa de serie le glanului T, ai TT, 3M, TT, // TT D, ai D, 3M, D///D

c) Ludiati poz relativa a lui Defata de II

 $\frac{6x}{11}$: $x_1 - x_2 + 2x_3 + 2 = 0$, A(0,1,3)

 $A : \begin{cases} 2x_1 + x_2 - x_3 + 1 = 0 \\ x_1 + x_2 + x_3 + 4 = 0 \end{cases}$

a) Ec. fl. care there gruint by contine Db) -11 — contine D hi este D be Tcontine D hi este D unde D: $X_1-1 = X_2-2 = \frac{X_3+2}{-1}$.