VXC8BK

例:本命令读取地址为 01 的仪表的测量值:

回答: =+123.5A」 回答表明:测量值为+123.5山,该值对应的第1报警点处于输出状态

命今: #01」

TC ASCII 协议

■ 1.1 关于命令集

数据格式:每个字节的格式为10位:1位起始位,8位数据位,无奇偶校验位,1位停止位。

命令构成:

『定界符』『地址』『内容』『常数』『数据』『校验核』『结束符』

定界符: 每个命令必须以定界符开始。有6种有效的定界符: #、\$、%、&、'和"

地 址: 紧跟着定界符后面的是两位指定目标仪表的地址。 用"AA"表示 内 容: 用于指定仪表通道或参数地址。 用"BB"表示 数: 用于指定命令常数。 用"DD"表示

数 据: 仅设置参数命令有数据内容。 用 "data" 表示 校验核: 可选择附上二字符的校验核。 用 "CC"表示

每个命令必须用回车符(」) 0DH 结束 结束符:

命令集:

读测量值 #AACC.↓

#AA0001CC. | #AA0003CC_ 读开关量输出状态 (报警输出) 'AABBCC_ 读仪表参数的表达符号(名称)

\$AABBCC... 读仪表参数值 %AABB(data)CC. □ 设置仪表参数值 输出模拟量 &AABBDDCC.↓ 输出开关量

▶ 上述命令中的 CC 表示可选择的二个字符的校验核。使用方法详见 校验核

➡ 回答定界符有2类:=、!、>

以#作定界符的命令,回答以=做定界符

以 '、\$、%作定界符的命令,回答以!做定界符

以 & 作定界符的命令,回答以 > 做定界符

◆ 在下列情况下仪表对命令不回答:

①. 未收到有效定界符或结束符

②. 仪表地址不符

③. 波特率不符 ④. 校验和不符

➡在下列情况下仪表回答?AA

②. 命令中的数据格式错 ①. 命令长度不符

③. 操作仪表硬件不支持的功能 ④. 读取或设置仪表未规定的参数

⑤. 当 cbd、cbf 参数为 off 时执行输出指令

■ 1.2 校验核

功 能:校验核帮助检测从计算机至仪表的命令错误和检测从仪表至计算机的回答错误。 校验核功能在命令和回答字符串外加2个字符,不影响传送速率。

 设置:是否使用校验核不需进行设置,仪表自动判断计算机发出的命令中是否含有校验核。 如果命令中含有校验核,则仪表回答时自动外加2个字符的校验核。 这意味着计算机可以有针对性地对网络中的某些仪表,或某些命令采用校验核。

式:校验核范围从00~FFH,用2位40H~4FH的ASC || 码表示, 在命令或回答的结束符(」) 前发送。如果计算机发出的命令中的校验核不正确、仪表将不回答。

算:命令的校验核等于所有命令 ASC || 码值的和,超过范围时保留余数。 回答的校验核等于所有回答 ASC || 码值的和再加上本仪表地址的 ASC || 码值,超过范围 时保留余数。

例:本例说明校验核的计算方法: 命令: #0102NF」

回答: =+123.5A@C」

命令字符串的校验核按如下计算:

校验核=23H+30H+31H+30H+32H=E6H

#, 0, 1, 0, 2 的 ASC || 码分别为 23H, 30H, 31H, 30H, 32H。这些 ASC || 码的和为 用二位 40~4FH的 ASC || 码表示为 4EH, 46H, 即 N、F。

回答字符串的校验核按如下计算(假设仪表地址 Ad=1):

校验核=3DH+2BH+31H+32H+33H+2EH+5H+41H+30H+31H=203H

=, +, 1, 2, 3, •, 5, A的 ASC II 码分别为 3DH, 2BH, 31H, 32H, 33H, 2EH, 35H, 41H。 这些 ASC || 码的和再加上仪表地址的 ASC || 码 30H, 31H 为 203H, 余数为 03H, 用二位 40~4FH 的 ASC II 码表示为 40H, 43H, 即@、C

➡ 回答字符串中的 A 表示报警状态

■ 1.3 读测量值命令

说 明:本命令读回指定仪表的测量值和报警状态

命 令: #AA↓

#为定界符

AA(范围 00~99)表示指定仪表二位十进制地址

」(0DH)为结束符

回答: = (data)↓

=为定界符

data 为测量值及报警状态

测量值由"+"或"-"、"-小数点",4位工程量值、报警状态共8个字符组成

」(0DH)为结束符

□ 报警状态的表示

报警状态值的范围 40~4FH, 其低 4 位 D0~D3 分别表示关联到测量值输出的第 1 到第 4 报警点的状 态 (注★): 二进制 "1"表示处于报警状态 "0"表示处于非报警状态

■ 1.4 读模拟量输出值和开关量输入、输出状态命令

说 明:本命令读回指定仪表当前模拟量输出值、开关量输入状态或开关量输出状态。 当仪表无该功能时, 读回的数据为无效数据。

命 今: #AABBDD」

#为定界符

AA(范围 00~99)表示指定仪表二位十进制地址

BB = 00

DD(范围 01~03)指定读取内容

DD = 01 时,表示读取当前输出的模拟量值(变送输出)

DD = 03 时,表示读取当前开关量输出状态(报警输出)

」(0DH) 为结束符

● 回 答: = data ↓

=为定界符

① 当命今中 DD 为 01 时,表示本仪表的模拟量输出诵道,

"data"表示当前模拟量通道输出值。用百分数表示,范围为-6.3%~+106.3%, 由"+"或"一"、""小数点、4 位模拟量值共6 个字符组成

② 当命今中 DD 为 03 时.

"data"表示当前开关量输出状态。用 2 个 40~4FH 的字符表示,

第1个字符固定为"@", 无实际意义

第 2 个字符的低 4 位 D0~D3 分别表示第 1~4 点开关量状态,"1"表示有效。

」(0DH)为结束符

例:本命令读取地址为 01 的仪表当前模拟量输出值: 命令: #010001」 回答: =+053.2」

回答表明:输出值为+53.2%

例:本命令读取地址为01的仪表当前开关量输出状态:命令:#010003~

回答表明:第2报警点处于输出状态,其它报警点均未输出

■ 1.5 输出模拟量命令

说 明: 仅适用于具有模拟量输出功能的仪表,本命令将一个值送到指定的仪表。仪表收到数据, 将该数值转成模拟量输出。注意先通过设置参数命令将模拟量输出控制权转到计算机。

命 令: &AA(data)↓

&为定界符

AA (范围 00~99) 表示指定仪表二位十进制地址

data 为输出数值:由"+"或"-",4位数值共5个字符组成。数据格式为百分数, 保留小数后 1 位, 范围从-6.3%到+106.3%, 输出的绝对值由仪表决定。

」(0DH) 为结束符

● 回 答: >AA」

>为定界符

AA 为仪表二位十进制地址

」(0DH)为结束符

命令: &01+0500」

回答: >01」

本命令将 50%的值,送到地址为 01 的仪表。如果仪表的输出量程为 4-20mA,收到该值后将输 出 12mA(4mA+0.50×16mA=12mA)

回答表示输出完成

■ 1.6 输出开关量命令

说 明:仅适用于具有数字量输出功能的仪表,本命令置单一输出通道或置全部输出通道。 注意先诵讨设置参数命令将开关量输出控制权转到计算机。

令: &AABBDD↓

&为定界符

AA(范围 00~99)表示指定仪表二位十进制地址

BB 表示单一诵道或置全部诵道

DD 当置全部通道时,由 40~47H 2 位 ASCII 码表示输出值

当置单一通道时,DD 只能为 40H,40H(表示该通道 OFF)或 40H,41H(表示该通道 ON) 」(0DH)为结束符

● 回 答: >AA」

>为定界符

AA 为仪表二位十进制地址

」(0DH) 为结束符

例: 命今: &01@@@E」

回答: >01」

本命令为置地址为 01 的仪表全部报警输出通道(BB=00,即 40H "@",40H "@"), 输出数据为 40H"@", 45H"E"。通道 1 和通道 3 被置 ON, 其它通道被置 OFF 回答表示输出完成

命今: &01@B@A」

回答: >01」

本命令为置地址为 01 的仪表报警输出通道 2 为 1,其它通道不受影响

回答表示输出完成

说 明:本命令读会指定仪表的指定参数的符号。

● 命 令: 'AABB.」

'为定界符

AA(范围 00~99)表示指定仪表二位十进制地址

BB (范围 01~7EH) 表示参数的二位十六进制地址, 详见 《智能调节仪 C8 系列

使用

说明》中的参数一览表。

」(0DH) 为结束符

● 回 答:!AA.J

! 为定界符

(data)为参数的表示符号, 共 4 个字符组成

」(0DH)为结束符

■ 1.8 读参数命令

说明:本命今读回指定仪表的指定参数的值

命 今: \$AABB」

\$为定界符

AA(范围00~99)表示指定仪表二位十进制地址

BB (范围 01~7EH) 表示参数的二位十六进制地址,详见 《智能调节仪 C8 系列

使用

说明》中的参数一览表 。

」(0DH) 为结束符

● 回 答:!(data) ↓

! 为定界符

data 为参数值

参数值由"+"或"-"、".小数点",6位参数数值共8个字符组成

」(0DH)为结束符

▶仪表订货时没有选配的功能,其相应参数不开放,读未开放的参数时将回答 ?AA.」

例:本命令读取地址为 01 的仪表的报警点 1 的报警设定值参数,参数地址为 03H

命令: \$0103」 回答: !+100.0」

回答表明: 该参数值为+100.0

■ 1.9 设置参数命令

说明:本命令用于设置仪表参数

设置参数时,必须先将密码参数 $\mathbf{o}\mathbf{F}$ (oA) 设置为对应参数组正确的密码值。设置工作完成后,应将密码设置为 0。

● 命 令: %AABB(data).」

%为定界符

AA(范围 00~99)表示指定仪表二位十进制地址

BB (范围 01~7EH)表示参数的二位十六进制地址,详见 《智能调节仪 C8 系列

使用

说明》中的参数一览表。

data 为参数值,由"+"或"-",6 位参数值,共 7 个字符组成。不含小数点。 不改变原参数的小数点位置,省略了小数点。例如 0.137,1.37。13.7,137 均表示为+0137

」(0DH)为结束符

● 回 答:!AA.J

!为定界符

AA 为仪表二位十进制地址

」(0DH)为结束符

□ 参数写入次数限制

★ 特别说明写参数最多可重复写 10 万次,编程时要特别注意!不要频繁写入!

例:本例第 1 个命令将地址为 01 的仪表密码设置为 1111,为命令 2,命令 3 做准备

第 2 个命令将仪表的数字滤波时间常数(地址为 29H),设为 20

第3个命令将密码恢复为0

命令: %0101+1111」 回答: ! 01」 命令: %0129+0020」 回答: ! 01」 命令: %0101+0000」 回答: ! 01」

2. Modbus-RTU 协议

■ 2.1 RTU 传输模式

● 数据格式:每个字节的格式为:1 位起始位,8 位数据位,1 位奇偶校验位,1~2 位停止位。

● Modbus 报文 RTU 帧:

起始	地址	功能码	数据	CRC 校验	结束
≥3.5 字符	8 位	8 位	N×8位	16 位	≥3.5 字符

■ 2.2 命令集

本仪表支持的 Modbus 命令集如下:

命令名称	Modbus 命令类型	功能码 (16 进制)	起始地址 (16 进制)
读取测量值	读输入寄存器	04H	0000H
读取开关量输出状态	读线圈	01H	
读取模拟量输出状态	读多个保持寄存器	03H	4402H
读取仪表参数值	读多个保持寄存器	03H	详见 《智能调节仪 C8 系
修改仪表参数值	写多个保持寄存器	10H	列 使用说明》中的参数一 <u>览表</u> 所述的地址×2
设置模拟量输出	写多个保持寄存器	10H	4402H
输出单个开关量	写单个线圈	05H	
输出多个开关量	写多个线圈	0FH	

功能码为 03H、04H、10H 时,Modbus 通讯的数据格式为 32 位浮点数(IEEE-754)功能码为 05H 时,写入 FF00 表示使能线圈

■ 2.3 命令实例:读测量值、读报警状态

发送

AA	04	BBBB	0002	cccc
通讯地址	功能码	对应起始地址	寄存器个数	CRC 校验值

BBBB: 0000 / 0002 / 0004 / 0006 / 0008

● 应答:

AA	04	04	Data	cccc	
通讯地址	功能码	测量值字节数	测量值	CRC 校验值	

注意上述内容都是以十六进制表达的

例: 读地址为 01 的仪表的测量值

命令: 01 04 <u>0000 0002</u> 71CB 应答: 01 04 04 42F6CCCD 5A9B

应答表示该仪表测量值为 42F6CCCDH, 即 123.4

■ 2.4 命令实例: 读开关量输出状态

● 发送:

AA	01	BBBB	DDDD	cccc
通讯地址	功能码	开关量起始地址	开关量点数	CRC 校验值

BBBB: 0000~0003

DDDD: 0001~0004

● 应答:

r:				
AA	01	01	Data	cccc
通讯地址	功能码	开关量字节数	输出开关量状态	CRC 校验值

注意上述内容都是以十六进制表达的

例: 读地址为 01 的仪表的全部 4 点开关量输出状态

命令: 01 01 <u>0000</u> <u>0004</u> 3DC9

应答: 01 01 01 <u>03</u> 1189

应答表示该仪表的开关量输出状态为 03,二进制表示为 0011

高位在前,即表示第 3,4 点报警状态为 off(二进制 0),第 1,2 点报警状态为 on(二进制 1)

■ 2.5 命令实例:读取参数值

● 发送:

AA	03	BBBB	0002	cccc
通讯地址	功能码	参数起始地址	寄存器个数	CRC 校验值

● BBBB: 《智能调节仪 C8 系列 使用说明》中的参数一览表 中所述的地址×2

● 应答:

	AA	03	04	Data	CCCC	
	通讯地址	功能码	参数值字节数	参数组	CRC 校验值	
24	- 至 1. 注由负期目刊	上一进出主法的				

例: 读地址为 01 的仪表的量程上限参数值

命令: 01 03 <u>0046</u> <u>0002</u> 25DE

应答: 01 03 04 43FA0000 CF86

应答表示该仪表的量程上限参数值为 43FA0000, 即 500(包含了小数点,结合小数点位置参数,

表示 500.0 的实际显示值)

■ 2.6 命令实例:设置参数值

● 发送:

AA	10	BBBB	0002	04	Data	CCCC
通讯地址	功能码	参数 起始地址	要修改的 寄存器个数	参数字节数	写入的 参数值	CRC 校验值

BBBB: 《智能调节仪 C8 系列 使用说明》中的参数一览表 中所述的地址×2

DDDD

J.	应合:								
	AA	10	BBBB	0002	CCCC				
	通讯地址	功能码	参数	要修改的	CRC 校验值				

▶ 设置参数时,应先将密码设定值设为 1111 (十进制)

例: 地址为 01 的仪表,设置参数前,先设置的密码为 1111

命令: 01 10 <u>0002</u> <u>0002</u> 04 <u>448AE000</u> 0EAC

应答: 01 10 <u>0002 0002</u> E008 然后设置其量程上限参数值为 123.4

命令: 01 10 <u>0046 0002</u> 04 <u>42F6CCCD</u> 176A

应答: 01 10 <u>0046 0002</u> A01D

应答表示设置成功

□ 参数写入次数限制

★ 特别说明写参数最多可重复写 10 万次,编程时要特别注意!不要频繁写入!

3. 附录

附录①:资料下载

网址: www.xsyb.com.cn

检索字: VXC8

包括产品相关资料及测试软件

(随时更正,查阅时请以最新版本为准)