Should you Mask 15% in Small Language Modelling?

Max Huppertz

Aaron Lingchi Chao

Katharina Strauss Soegaard

Timo Stephan Hermann Stoll

2 | Abstract

Thesis: What is the impact of masking rates on small pretrained language models?

Conclusion: Masking rate impacts the performance of small-scale language models

Interesting Insights:

- Convergence and training speed is affected by masking rate
- A masking rate of 40% showed the best performance in downstream tasks

3 | Introduction

Why small models?

Large models achieve remarkable results (GPT-4 etc.) in NLP

But this comes at the cost of:

- High carbon footprint
- Huge energy and water consumption

Aim towards smaller and more efficient models

4 | Introduction

Why masking rate?

- Problem: 15%, which is not universally optimal
- Larger models can benefit from higher masking rates

Masking rate affects:

- Performance on downstream tasks
- Sample efficiency
- Training time

5 | Introduction

Why German Language?

- Non-Projective Syntax syntactic structures are not drawable without crossing 2
 arcs
- Different Grammar and Longer Words

6 | Approach

Replication of RoBERTa model given in baseline
 Choice of German language datasets for training
 Pretrain Bert Mini with varying masking rates
 Evaluation on German benchmark datasets

7 | Methods

RoBERTa Model (Baseline):

- 12 Transformer Layers
- 768 neuron wide hidden layers
- 12 Attention heads

BERT Mini (Ours):

- 4 Transformer Layers
- 256 neuron wide hidden layers
- 4 Attention heads

8 | Methods

9 | Datasets

Training

Evaluation

GermEval18 Coarse/Fine

Wikipedia German Data 2022

GermEval14

Gnad10k

10 | Replication – GLUE

	QNLI	RTE	SST-2	MRPC	CoLA	STS-B
15%	90.8/ 90.9	64.3 / 67.3	92.4 / 93.3	85.5 / 77.0	57.8 / 59.2	86.7 / 87.7
40%	91.2 / 91.6	62.1 / 67.0	92.3 / 92.8	87.5 / 76.9	59.3 / 61.0	86.7 /88.2
80%	87.8 / 87.9	56.7 / 58.6	89.9 / 90.5	81.1 / 72.1	37.7 / 38.7	85.5 /86.3

Our replication results are highlighted in light red

11 | Results – Training Loss

12 | Results – Gnad10k

13 | Results – GermEval14

14 | Results – GermEval18 Coarse

15 | Results – GermEval18 Fine

16 | Results

	GermEval18 Coarse	GermEval18 Fine	GermEval14 (NER)	Gnad10k
Bert Mini 10%	0.7184 / <mark>0.7205</mark>	0.651 / 0.6404	0.6033 / 0.6579	0.8651
Bert Mini 15%	0.7206 / 0.7193	0.6621 / 0.6523	0.6273 / 0.6776	0.8667
Bert Mini 40%	0.7223 / 0.7204	0.6585 / 0.6486	0.6346 / 0.6845	0.8762
Bert Mini 80%	0.719 / 0.7184	0.6646 / 0.6537	0.6204 / 0.6735	0.87082
DistilBERT	0.7054 / 0.7055	0.7652 / 0.7668	0.8270 / 0.8423	0.8901

Reported F1 score and Precision score for the evaluation datasets. Accuracy is given for GNAD10k

17 | Discussion – Results

- Higher masking rate does not reduce performance significantly, 40% performs best overall
- Convergence during pre-training is affected by masking rate
- Replication of Paper results was achieved for small scale model
- Masking rate appears to be independent of model size
- Although German differs significantly from English the results are similar

18 | Discussion – Limitations

- Evaluation was only conducted on the Bert Mini model, larger models left unexplored
- Training was only done on the Wikipedia dataset, larger models use bigger datasets
- Fewer available downstream task datasets in German with benchmark results
- Might want to treat the masking rate as a hyperparameter instead of setting it at 15%

19 | Conclusion

- Masking rate influences model performance: this also holds for small scale models
- A higher masking rate leads to slightly faster training and convergence
- Paper results were reproduced for small-scale models
- Limitations arise from the model size and available training data

Should you Mask 15% in Small Language Modelling?

Max Huppertz

Aaron Lingchi Chao

Katharina Strauss Soegaard

Timo Stephan Hermann Stoll