Assignment 3 Writeup

Evan Borras

February 19, 2021

Policy Gradient Methods: Writeup

Best Arm Identification in Multiarmed Bandit

(a)

Prove:
$$\Pr\left(\exists a \in \mathcal{A} \ s.t. \ | \hat{r}_a - \bar{r}_a| > \sqrt{\frac{\log(2/\delta)}{2n_{des}}}\right) < A\delta$$

Define: $A_a = |\hat{r}_a - \bar{r}_a| > \sqrt{\frac{\log(2/\delta)}{2n_{des}}}$
 $\Pr\left(\exists a \in \mathcal{A} \ s.t. \ | \hat{r}_a - \bar{r}_a| > \sqrt{\frac{\log(2/\delta)}{2n_{des}}}\right) = \Pr\left(\exists a \in \mathcal{A} \ s.t. A_a\right) = \Pr\left(\bigcup_{a \in \mathcal{A}} A_a\right)$
 $\Pr\left(\bigcup_{a \in \mathcal{A}} A_a\right) = \sum_{a \in \mathcal{A}} \Pr\left(A_a\right) = \sum_{a \in \mathcal{A}} \Pr\left(|\hat{r}_a - \bar{r}_a| > \sqrt{\frac{\log(2/\delta)}{2n_{des}}}\right)$

Using Hoeffding's inequality: $\Pr\left(|\hat{x} - \bar{x}| > \sqrt{\frac{\log(2/\delta)}{2n}}\right) < \delta$
 $\sum_{a \in \mathcal{A}} \Pr\left(|\hat{r}_a - \bar{r}_a| > \sqrt{\frac{\log(2/\delta)}{2n_{des}}}\right) < \sum_{a \in \mathcal{A}} \delta = A\delta$

Therefore: $\Pr\left(\exists a \in \mathcal{A} \ s.t. \ |\hat{r}_a - \bar{r}_a| > \sqrt{\frac{\log(2/\delta)}{2n_{des}}}\right) < A\delta$

QED

(b)

Given a margin of error ϵ and a probability of failure δ' . What value of n_{des} assures: $\Pr(\bar{r}_{a^{\dagger}} \geq \bar{r}_{a^{\star}} - \epsilon) \geq 1 - \delta'$ (What value of n_{des} assures ϵ is a margin of error, and δ' is a probability for our margin of error). Where $a^{\dagger} = argmax_a(\hat{r}_a)$ and $a^{\star} = argmax_a(\bar{r}_a)$

Rewriting Prompt:

Given ϵ and δ' . What value of n_{des} assures: $\Pr\left(\bar{r}_{a^{\star}} - \bar{r}_{a^{\dagger}} \leq \epsilon\right) \geq 1 - \delta'$.

Rewriting Prompt Again:

Define: Event
$$O' = \left\{ \hat{r}_a | \bar{r}_{a^*} - \bar{r}_{a^{\dagger}} \le \epsilon \right\}$$

Given ϵ and δ' . What value of n_{des} assures: $\Pr(O') \geq 1 - \delta'$

Section 1

From part (a), bound:
$$\Pr\left(\exists a \in \mathcal{A} \ s.t. \ |\hat{r}_a - \bar{r}_a| > \sqrt{\frac{\log(2/\delta)}{2n_{des}}}\right) < A\delta$$
 is true.

taking the complement

bound:
$$\Pr\left(\forall a \in \mathcal{A}\left(|\hat{r}_a - \bar{r}_a| \le \sqrt{\frac{\log(2/\delta)}{2n_{des}}}\right)\right) \ge 1 - A\delta$$
 is true as well.

Define: Event
$$O = \left\{ \hat{r}_a | \forall a \in \mathcal{A} \left(|\hat{r}_a - \bar{r}_a| \le \sqrt{\frac{\log(2/\delta)}{2n_{des}}} \right) \right\}.$$

Therefore:

From part (a), bound: $Pr(O) \ge 1 - A\delta$ is true for our scenario.

Section 2

Assume Event
$$O$$
 has taken place, therefore $\forall a \in \mathcal{A}\left(|\hat{r}_a - \bar{r}_a| \leq \sqrt{\frac{\log(2/\delta)}{2n_{des}}}\right)$

Choosing $a = a^{\dagger} = argmax_a(\hat{r}_a)$, and $a = a^{\star} = argmax_a(\bar{r}_a)$ implies:

1)
$$|\hat{r}_{a^{\dagger}} - \bar{r}_{a^{\dagger}}| \le \sqrt{\frac{\log(2/\delta)}{2n_{des}}}$$
 and 2) $|\hat{r}_{a^{\star}} - \bar{r}_{a^{\star}}| \le \sqrt{\frac{\log(2/\delta)}{2n_{des}}}$

From the above we get:

1)
$$\hat{r}_{a^{\dagger}} - \bar{r}_{a^{\dagger}} \leq \sqrt{\frac{\log(2/\delta)}{2n_{des}}}$$
 and $\hat{r}_{a^{\dagger}} - \bar{r}_{a^{\dagger}} \geq -\sqrt{\frac{\log(2/\delta)}{2n_{des}}}$

2)
$$\hat{r}_{a^{\star}} - \bar{r}_{a^{\star}} \leq \sqrt{\frac{\log(2/\delta)}{2n_{des}}}$$
 and $\hat{r}_{a^{\star}} - \bar{r}_{a^{\star}} \geq -\sqrt{\frac{\log(2/\delta)}{2n_{des}}}$

Rewritting results:

1)
$$\bar{r}_{a^{\dagger}} \ge \hat{r}_{a^{\dagger}} - \sqrt{\frac{\log(2/\delta)}{2n_{des}}}$$
 and $\bar{r}_{a^{\dagger}} \le \hat{r}_{a^{\dagger}} + \sqrt{\frac{\log(2/\delta)}{2n_{des}}}$

2)
$$\bar{r}_{a^{\star}} \ge \hat{r}_{a^{\star}} - \sqrt{\frac{\log(2/\delta)}{2n_{des}}}$$
 and $\bar{r}_{a^{\star}} \le \hat{r}_{a^{\star}} + \sqrt{\frac{\log(2/\delta)}{2n_{des}}}$

By def: $\bar{r}_{a^{\star}} \geq \bar{r}_{a^{\dagger}}$ since $a^{\star} = argmax_a(\bar{r}_a) \implies \bar{r}_{a^{\star}} \geq \bar{r}_{a^{\dagger}} \geq \hat{r}_{a^{\dagger}} - \sqrt{\frac{\log(2/\delta)}{2n_{des}}}$

$$\implies 1) \ \bar{r}_{a^\star} \geq \hat{r}_{a^\dagger} - \sqrt{\frac{\log(2/\delta)}{2n_{des}}} \ \text{and} \ \bar{r}_{a^\dagger} \leq \hat{r}_{a^\dagger} + \sqrt{\frac{\log(2/\delta)}{2n_{des}}}$$

Subtracting the second inequality from the first yields:

a)
$$\bar{r}_{a^{\star}} - \bar{r}_{a^{\dagger}} \ge -2\sqrt{\frac{\log(2/\delta)}{2n_{des}}}$$
 under Event O

Also

By def:
$$\hat{r}_{a^{\dagger}} \geq \hat{r}_{a^{\star}}$$
 since $a^{\dagger} = argmax_{a}(\hat{r}_{a}) \implies \hat{r}_{a^{\star}} \leq \hat{r}_{a^{\dagger}} \leq \bar{r}_{a^{\dagger}} + \sqrt{\frac{\log(2/\delta)}{2n_{des}}}$

$$\implies 1) \ \bar{r}_{a^{\dagger}} \geq \hat{r}_{a^{\star}} - \sqrt{\frac{\log(2/\delta)}{2n_{des}}} \text{ and } \bar{r}_{a^{\dagger}} \leq \hat{r}_{a^{\dagger}} + \sqrt{\frac{\log(2/\delta)}{2n_{des}}}$$

$$2) \ \bar{r}_{a^{\star}} \geq \hat{r}_{a^{\star}} - \sqrt{\frac{\log(2/\delta)}{2n_{des}}} \text{ and } \bar{r}_{a^{\star}} \leq \hat{r}_{a^{\star}} + \sqrt{\frac{\log(2/\delta)}{2n_{des}}}$$

Subtracting the first inequality of 1) from the second inequality of 2) yields:

b)
$$\hat{r}_{a^{\star}} - \hat{r}_{a^{\dagger}} \leq 2\sqrt{\frac{\log(2/\delta)}{2n_{des}}}$$
 under Event O

Compressing a) and b) yields:

$$-2\sqrt{\frac{\log(2/\delta)}{2n_{des}}} \leq \hat{r}_{a^{\star}} - \hat{r}_{a^{\dagger}} \leq 2\sqrt{\frac{\log(2/\delta)}{2n_{des}}} \text{ under Event } O$$

$$|\hat{r}_{a^{\star}} - \hat{r}_{a^{\dagger}}| \leq 2\sqrt{\frac{\log(2/\delta)}{2n_{des}}} \text{ under Event } O$$

 $Section \ 3$

If we choose to lower bound ϵ by $2\sqrt{\frac{\log(2/\delta)}{2n_{des}}}$ then $2\sqrt{\frac{\log(2/\delta)}{2n_{des}}} \le \epsilon$

$$\implies \hat{r}_{a^\star} - \hat{r}_{a^\dagger} \leq 2\sqrt{\frac{\log(2/\delta)}{2n_{des}}} \leq \epsilon$$
under Event O

$$\implies \hat{r}_{a^*} - \hat{r}_{a^{\dagger}} \le \epsilon \text{ under Event } O$$

$$\implies$$
 Event O' under Event O

Asserting this constraint on ϵ implies Event O' occurs only when Event O occurs.

$$\implies \Pr(O') = \Pr(O) \ge 1 - A\delta$$

$$\implies \Pr(O') \ge 1 - A\delta$$

If we choose to constrain δ' to $\delta' = A\delta$ then

$$\Pr\left(O'\right) \geq 1 - \delta' \text{ when } \epsilon \geq 2\sqrt{\frac{\log(2/\delta)}{2n_{des}}}, \text{ and } \delta' = A\delta$$

Section 4

$$\delta = \frac{\delta'}{A} \implies \epsilon \ge 2\sqrt{\frac{\log(2A/\delta')}{2n_{des}}}$$
$$\epsilon^2 \ge \frac{2\log(2A/\delta')}{n_{des}}$$
$$n_{des} \ge \frac{2\log(2A/\delta')}{\epsilon^2}$$

Therefore:

Given a margin of error ϵ and a probability of failure δ' . $n_{des} \geq \frac{2 \log(2A/\delta')}{\epsilon^2}$ assures: $\Pr(\bar{r}_{a^{\dagger}} \geq \bar{r}_{a^{\star}} - \epsilon) \geq 1 - \delta'$. For $a^{\dagger} = argmax_a(\hat{r}_a)$, $a^{\star} = argmax_a(\bar{r}_a)$, and $A = |\mathcal{A}|$

QED