VOLUME ESTIMATION OF HIGH-DIMENSIONAL CONVEX BODIES

MCMC APPROACH

JONATHAN, SILVAN, MANUEL, EMANUEL

23. 05. 2020

Problem: Calculating the volume of a convex body is NP-hard.

Introduction

Problem: Calculating the volume of a convex body is NP-hard.

Solution: Use randomized approximation algorithm (MCMC).

Idea: Sample points randomly to estimate volume

Introduction

Idea: Sample points randomly to estimate volume

New problem: $rac{Vol({
m Unit\ ball})}{Vol({
m Unit\ cube})}=\ O(2^{-d})$, where d is the dimension

Consider the following convex body

Introduction

Solution: Subdivide the body into zones to keep ratio constant

Note: The smallest ball is fully contained and the biggest ball contains the body.

Introduction

Solution: Subdivide the body into zones to keep ratio constant

Each zone is the intersection of a ball with the body

Then sample in one zone and count how many points fall into the smaller zone

Introduction

Then sample in one zone and count how many points fall into the smaller zone

This gives us the ratio $\frac{\text{\#Total samples}}{\text{\#Samples in } \mathbf{Zone_i}} \approx \frac{Vol(\mathbf{Zone_{i+1}})}{Vol(\mathbf{Zone_i})}$

Introduction

Doing this for all zones we can calculate the volume of the body:

$$Vol(\mathrm{Body}) = \frac{Vol(\mathrm{Zone}_n)}{Vol(\mathrm{Zone}_{n-1})} \cdot \ldots \cdot \frac{Vol(\mathrm{Zone}_2)}{Vol(\mathrm{Zone}_1)} \cdot Vol(\mathrm{Zone}_1)$$

where $Vol(Zone_1)$ is just the volume of the innermost ball.

$$\begin{pmatrix} a_{0,0} & a_{0,1} \\ a_{1,0} & a_{1,1} \\ a_{2,0} & a_{2,1} \\ a_{3,0} & a_{3,1} \\ a_{4,0} & a_{4,1} \end{pmatrix} \cdot \begin{pmatrix} x_1 + t \\ x_2 \end{pmatrix} = \begin{pmatrix} b_0 \\ b_1 \\ b_2 \\ b_3 \\ b_4 \end{pmatrix}$$

solve for t_i for each constraint a_i

$$\min\{t_0, t_1, t_2\} \\ \max\{-t_3, -t_4\}$$

$$t_{i} = \frac{b_{i} - a_{i}^{\mathsf{T}} x^{1}}{a_{i}^{\mathsf{T}} d} = \frac{b_{i} - a_{i}^{\mathsf{T}} x^{1}}{a_{i,j}}$$
$$t'_{i} = \frac{b_{i} - a_{i}^{\mathsf{T}} x^{1} - a_{i,k} \cdot ||dx||}{a_{i,j}}$$

BENCHMARK: SETUP

■ Platform: Intel Haswell i7-4870HQ

■ Compiler: gcc version 9.3.0

■ Compilation flags: -march=native -mfma -ffast-math -O3

■ L1d cache: 128kB ■ L1i cache: 128kB

BENCHMARK: INTERSECT

BENCHMARK: INTERSECT

BENCHMARK: INTERSECT

■ So far, we considered dense constraint matrices

- So far, we considered dense constraint matrices
- Now assume each constraint contains only a few variables (still NP-hard)

- So far, we considered dense constraint matrices
- Now assume each constraint contains only a few variables (still NP-hard)

$$\begin{aligned} a_1 \cdot x_1 + a_4 \cdot x_4 &\leq b \\ a_0 \cdot x_0 + a_5 \cdot x_5 &\leq b \\ & \vdots \\ & \vdots \\ & \vdots \\ & a_0 \cdot x_1 + a_4 \cdot x_4 &\leq b \end{aligned}$$

- So far, we considered dense constraint matrices
- Now assume each constraint contains only a few variables (still NP-hard)

SPARSITY CSC

■ Sparse matrix format, column major.

SPARSITY JIT

- Run same matrix many times: kernel?
- Generate code at run time (just-in-time). No blendv, no cmp.

BENCHMARK: RUNTIME DENSITY

BENCHMARK: ROOFLINE DENSITY

BENCHMARK: RUNTIME LATENCY

END

Thank you very much!

BENCHMARK: DENSE UPDATE

