Amendments to the Claims

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

- 1-3. (Cancelled)
- 4. (Currently Amended) A compound according to claim 1 of [[the]]formula (I),

$$\mathbb{R}_{2}$$
 \mathbb{R}_{3}
 \mathbb{R}_{0}
 \mathbb{R}_{1}
 \mathbb{R}_{1}
 \mathbb{R}_{1}
 \mathbb{R}_{2}
 \mathbb{R}_{3}
 \mathbb{R}_{1}
 \mathbb{R}_{1}
 \mathbb{R}_{2}
 \mathbb{R}_{3}

wherein

n is 0 or 1;

A-B is -CH=CH- or -CH2-CH2-;

R₁ is C₁-C₁₂-alkyl, C₃-C₈-cycloalkyl or C₂-C₁₂-alkenyl;

R₂ is C_1 - C_{12} -alkyl, C_2 - C_{12} -alkenyl, C_2 - C_{12} -alkinyl; or C_1 - C_{12} -alkyl, C_2 - C_{12} -alkenyl or C_2 - C_{12} -alkinyl, which are substituted with one to five substituents selected from the group consisting of OH, halogen, CN, -N₃, -NO₂, C_3 - C_8 -cycloalkyl which is optionally substituted with one to three C_1 - C_6 -alkyl-groups, C_3 - C_8 -cycloalkenyl which is optionally substituted with one to three C_1 - C_6 -alkyl-groups, norbornylenyl-, C_3 - C_8 -halocycloalkyl, C_1 - C_{12} -alkoxy, C_1 - C_6 -alkoxy- C_1 - C_6 -alkoxy, C_3 - C_8 -cycloalkoxy, C_1 - C_{12} -haloalkoxy, C_1 - C_{12} -haloalkylthio, C_3 - C_8 -cycloalkylsulfinyl, C_3 - C_8 -cycloalkylsulfinyl, C_3 - C_8 -cycloalkylsulfinyl, C_3 - C_8 -halocycloalkylsulfinyl, C_3 - C_8 -halocycloalkylsulfinyl, C_1 - C_1 -haloalkylsulfonyl, C_3 - C_8 -halocycloalkylsulfonyl, C_3 - C_8 -cycloalkylsulfonyl, C_1 - C_1 -haloalkylsulfonyl, C_3 - C_8 -halocycloalkylsulfonyl, C_3 - C_8 -cycloalkylsulfonyl, C_1 - C_1 -haloalkylsulfonyl, C_3 - C_8 -halocycloalkylsulfonyl, C_3 - C_8 -cycloalkylsulfonyl, C_1 - C_1 -haloalkylsulfonyl, C_3 - C_8 -halocycloalkylsulfonyl, C_3 - C_8 -cycloalkylsulfonyl, C_1 - C_1 -haloalkylsulfonyl, C_3 - C_8 -halocycloalkylsulfonyl, C_3 - C_8 -cycloalkylsulfonyl, C_1 - C_1 -haloalkylsulfonyl, C_3 - C_8 -halocycloalkylsulfonyl, C_3 - C_8 -cycloalkylsulfonyl, C_1 - C_1 -haloalkylsulfonyl, C_3 - C_8 -halocycloalkylsulfonyl, C_3 - C_8 -cycloalkylsulfonyl, C_3 - $C_$

substituted with one to five substituents selected form the group consisting of OH, Halogen, CN, NO₂, C_1 - C_{12} -alkyl, C_3 - C_8 -Cycloalkyl, C_1 - C_{12} -Haloalkyl, C_1 - C_{12} -alkoxy, C_1 - C_{12} -Haloalkoxy, C_1 - C_{12} -alkylthio, C_1 - C_{12} -haloalkylthio, C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, C_2 - C_8 -alkenyl, C_2 - C_8 -alkinyl, C_1 - C_1 -alkyl)₃, -X-C(=Y)- C_1 - C_1 - C_1 - C_1 -alkyl)₃, -X-C(=Y)- C_1 - C_1 -

 $\begin{array}{c} R_2 \text{ is aryl, heterocyclyl } C_3\text{-}C_8\text{-}Cycloalkyl, } C_3\text{-}C_8\text{-}Cycloalkenyl; or aryl, heterocyclyl } C_3\text{-}C_8\text{-}Cycloalkyl or } C_3\text{-}C_8\text{-}Cycloalkenyl, which are optionally } - depending on the substitution possibilities on the ring - substituted with one to five substituents selected from the group consisting of OH, halogen, \\ \underline{CN, NO_2, C_1\text{-}C_{12}\text{-}alkyl, } C_3\text{-}C_8\text{-}cycloalkyl, } C_1\text{-}C_{12}\text{-}haloalkyl, } C_1\text{-}C_{12}\text{-}alkoxy, } C_1\text{-}C_{12}\text{-}haloalkyl, } C_1\text{-}C_1\text{-}alkoxy, } C_1\text{-}C_1\text{-}alkylthio, } C_1\text{-}C_1\text{-}alkoxy, } C_2\text{-}C_8\text{-}alkylthio, } C_1\text{-}C_1\text{-}alkoxy, } C_2\text{-}C_8\text{-}alkyl, } \text{-}alkylthio, } C_2\text{-}C_8\text{-}alkinyl, } \text{-}alkylthio, } C_2\text{-}C_8\text{-}alkinyl, } \text{-}aryloxy, }$

X is O, NR₅ or a bond;

Y is O or S;

Z is O, S or NR₅

 R_4 is H, C_1 - C_{12} -alkyl which is optionally substituted with one to five substituents selected from the group consisting of halogen, hydroxy, C_1 - C_6 -alkoxy and CN; C_2 - C_8 -alkenyl, C_2 - C_8 -alkinyl, aryl, heterocyclyl, aryl- C_1 - C_1 -alkyl, heterocyclyl- C_1 - C_1 -alkyl, or aryl, heterocyclyl, aryl- C_1 - C_1 -alkyl, which are – depending on the substitution possibilities – optionally substituted in the ring with one to five substituents selected from the group consisting of halogen, C_1 - C_6 -haloalkyl and C_1 - C_6 -haloalkoxy;

 R_5 is H, C_1 - C_8 -alkyl, C_3 - C_8 -cycloalkyl, C_2 - C_8 -alkenyl, C_2 - C_8 -alkinyl, benzyl or -C(=O)- C_1 -C₁₂-alkyl;

 $\frac{R_6 \text{ is H, C}_1\text{--}C_{12}\text{-alkyl which is optionally substituted with halogen, C}_1\text{--}C_6\text{-alkoxy, CN, C}_2\text{--}C_8\text{-alkinyl, C}_2\text{--}C_8\text{-alkinyl, C}_1\text{--}C_{12}\text{-Haloalkenyl, -X-C(=Y)-R}_9, -X-C(=Y)\text{--}Z-R}_9, -SO_2\text{--}R}_9, \\ \frac{\text{aryl, heterocyclyl, aryl-C}_1\text{--}C_{12}\text{-alkyl, heterocyclyl-C}_1\text{--}C_{12}\text{-alkyl; or aryl, heterocyclyl, aryl-C}_1\text{--}C_{12}\text{-alkyl}}_1\text{-alkyl, which are - depending on the substitution possibilities - optionally substituted in the ring with one to five substituents selected from the group consisting of halogen, } \\ \frac{C_1\text{--}C_6\text{-alkoxy, C}_1\text{--}C_6\text{-haloalkyl or C}_1\text{--}C_6\text{-haloalkoxy; or }}{C_1\text{--}C_6\text{-haloalkyl or C}_1\text{--}C_6\text{-haloalkyl or C}_1\text{--}C_6\text{-haloalkoxy; or }}$

 R_4 and R_6 together are a three- to five membered alkylene bridge, wherein one of the methylene groups may be replaced by O, S or SO_2 ; and

R₉ is H, C_1 - C_{12} -alkyl which is optionally substituted with one to five substituents selected from the group consisting of halogen, hydroxy, C_1 - C_6 -alkoxy and CN; C_2 - C_8 -alkenyl, C_2 - C_8 -alkinyl, aryl, heterocyclyl, aryl- C_1 - C_1 2-alkyl, heterocyclyl- C_1 2-alkyl; or aryl, heterocyclyl, aryl- C_1 2-alkyl or

heterocyclyl- C_1 - C_{12} -alkyl, which are – depending on the substitution possibilities – optionally substituted in the ring with one to five substituents selected from the group consisting of halogen, C_1 - C_6 -alkoxy, C_1 - C_6 -haloalkyl and C_1 - C_6 -haloalkoxy;

and, where applicable, to E/Z isomers, mixtures of E/Z isomers and/or tautomers, in each case in free form or in salt form.

5. (Currently Amended) A compound according to claim 1 of [[the]]formula (I),

$$\begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

wherein

n is 0 or 1;

A-B is -CH=CH- or -CH₂-CH₂-;

 R_1 is C_1 - C_{12} -alkyl, C_3 - C_8 -cycloalkyl or C_2 - C_{12} -alkenyl;

 $\underline{C_1}$ - $\underline{C_1}$ -alkylthio, $\underline{C_1}$ - $\underline{C_1}$ -haloalkylthio, $\underline{C_1}$ - $\underline{C_6}$ -alkoxy- $\underline{C_1}$ - $\underline{C_6}$ -alkyl, $\underline{C_2}$ - $\underline{C_8}$ -alkenyl, $\underline{C_2}$ - $\underline{C_8}$ -alkinyl, $\underline{Si(C_1}$ - $\underline{C_{12}}$ -alkyl)₃, -X-C(=Y)-R₄, -X-C(=Y)-Z-R₄, aryl, aryloxy, heterocyclyl and heterocyclyloxy; or

R₂ is aryl, heterocyclyl C₃-C₈-Cycloalkyl, C₃-C₈-Cycloalkenyl; or aryl, heterocyclyl C₃-C₈-Cycloalkyl or C₃-C₈-Cycloalkenyl, which are optionally – depending on the substitution possibilities on the ring – substituted with one to five substituents selected from the group consisting of OH, halogen, CN, NO₂, C_1 - C_{12} -alkyl, C_3 - C_8 -cycloalkyl, C_1 - C_{12} -haloalkyl, C_1 - C_{12} -alkoxy, C_1 - C_{12} -haloalkoxy, C_1-C_{12} -alkylthio, C_1-C_{12} -haloalkylthio, C_1-C_6 -alkoxy- C_1-C_6 -alkyl, dimethylamino- C_1-C_6 -alkoxy. C₂-C₈-alkenyl, C₂-C₈-alkinyl, methylendioxy, aryl, aryloxy, heterocyclyl and heterocyclyloxy; wherein-R₃ is C₁-C₈-alkyl which is substituted with one to five substituents selected from the group consisting of OH, halogen, CN, -N₃, -NO₂, C₃-C₈-cycloalkyl which is optionally substituted with one to three C₁-C₆-alkyl groups, norbornylenyl-, C₃-C₈-Cycloalkenyl which is optionally substituted with one to three methyl groups; C₃-C₈-halocycloalkyl, C₃-C₈-cycloalkoxy, C₁-C₁₂-haloalkoxy, C₁-C₁₂-alkylthio, aryl, heterocyclyl, arylthio or heterocyclyloxy; wherein the aryl, heterocyclyl, arylthio and heterocyclyloxy groups are optionally – depending on the substitution possibilities on the ring – substituted with one to five substituents selected form the group consisting of OH, Halogen, CN, NO_2 , C_1 - C_{12} -alkyl, C_3 - C_8 -cycloalkyl, C_1 - C_{12} -haloalkyl, C_1 - C_{12} -alkoxy, C_1 - C_{12} -haloalkoxy, C_1 - C_{12} alkylthio, C₁-C₁₂-haloalkylthio, C₁-C₆-alkoxy-C₁-C₆-alkyl, C₂-C₈-alkenyl, C₂-C₈-alkinyl, $Si(C_1-C_{12}-alkyl)_3$, -X-C(=Y)-R₄, -X-C(=Y)-Z-R₄, aryl, aryloxy, heterocyclyl and heterocyclyloxy[[.]]:

X is O, NR₅ or a bond;

Y is O or S;

Z is O, S or NR₅

 R_4 is H, C_1 - C_{12} -alkyl which is optionally substituted with one to five substituents selected from the group consisting of halogen, hydroxy, C_1 - C_6 -alkoxy and CN; C_2 - C_8 -alkenyl, C_2 - C_8 -alkinyl, aryl, heterocyclyl, aryl- C_1 - C_{12} -alkyl, heterocyclyl- C_1 - C_{12} -alkyl, or aryl, heterocyclyl, aryl- C_1 - C_{12} -alkyl, which are – depending on the substitution possibilities – optionally substituted in the ring with one to five substituents selected from the group consisting of halogen, C_1 - C_6 -haloalkyl and C_1 - C_6 -haloalkyl;

 R_5 is H, C_1 - C_8 -alkyl, C_3 - C_8 -cycloalkyl, C_2 - C_8 -alkenyl, C_2 - C_8 -alkinyl, benzyl or -C(=O)- C_1 - C_1 2-alkyl;

 R_6 is H, C_1 - C_{12} -alkyl which is optionally substituted with halogen, C_1 - C_6 -alkoxy, C_1 - C_8 -alkenyl, C_2 - C_8 -alkinyl, C_1 - C_{12} -Haloalkenyl, -X-C(=Y)- R_9 , -X-C(=Y)- R_9 , -X-C(=Y)- R_9 , -SO₂- R_9 , aryl, heterocyclyl, aryl- C_1 - C_{12} -alkyl, heterocyclyl- C_1 - C_{12} -alkyl, or aryl, heterocyclyl, aryl- C_1 - C_1 -alkyl, which are – depending on the substitution possibilities – optionally

substituted in the ring with one to five substituents selected from the group consisting of halogen, C_1-C_6 -haloalkyl or C_1-C_6 -haloalkoxy; or

R₄ and R₆ together are a three- to five membered alkylene bridge, wherein one of the methylene groups may be replaced by O, S or SO₂; and

 R_9 is H, C_1 - C_{12} -alkyl which is optionally substituted with one to five substituents selected from the group consisting of halogen, hydroxy, C_1 - C_6 -alkoxy and CN; C_2 - C_8 -alkenyl, C_2 - C_8 -alkinyl, aryl, heterocyclyl, aryl- C_1 - C_{12} -alkyl, heterocyclyl- C_1 - C_{12} -alkyl, or aryl, heterocyclyl, aryl- C_1 - C_{12} -alkyl, which are – depending on the substitution possibilities – optionally substituted in the ring with one to five substituents selected from the group consisting of halogen, C_1 - C_6 -haloalkyl and C_1 - C_6 -haloalkyl and C_1 - C_6 -haloalkoxy;

and, where applicable, to E/Z isomers, mixtures of E/Z isomers and/or tautomers, in each case in free form or in salt form.

- 6-7. (Cancelled)
- 8. (New) A compound according to claim 4 of the formula (I), wherein R₃ is C₇-C₈ alkyl.