LINES INDUCED BY BICHROMATIC POINT SETS

LOUIS THERAN

ABSTRACT. An important theorem of Beck says that any point set in the Euclidean plane is either "nearly general position" or "nearly collinear": there is a constant C > 0 such that, given n points in \mathbb{E}^2 with at most r of them collinear, the number of lines induced by the points is at least Cr(n-r).

Recent work of Gutkin-Rams on billiards orbits requires the following elaboration of Beck's Theorem to bichromatic point sets: there is a constant C > 0 such that, given n red points and n blue points in \mathbb{E}^2 with at most r of them collinear, the number of lines spanning at least one point of each color is at least Cr(2n - r).

1. Introduction

Let **p** be a set of *n* points in the Euclidean plane \mathbb{E}^2 and let $\mathcal{L}(\mathbf{p})$ be the set of lines induced by **p**. A line $\ell \in \mathcal{L}(\mathbf{p})$ is *k*-rich if it is incident on at least *k* points of **p**. A well-known theorem of Beck relates the size of $\mathcal{L}(\mathbf{p})$ and the maximum richness.

Theorem 1 (Beck's Induced Lines Theorem [1]). Let p be a set of n points in \mathbb{E}^2 , and let r be the maximum richness of any line in $\mathcal{L}(p)$. Then $|\mathcal{L}(p)| \gg r(n-r)$.

Here $f(n) \gg g(n)$ means that $f(n) \ge Cg(n)$, for an absolute constant C > 0.

In this note, we give an elaboration (using pretty much the same arguments) of Beck's Theorem to bichromatic point sets, which arises in relation to the work of Gutkin and Rams [2] on the dynamics of billiard orbits. Let \mathbf{p} be a set of n red points and let \mathbf{q} be a set of n blue points with all points distinct (for a total of 2n). We define $\mathbf{p} \cup \mathbf{q}$ to be the bichromatic point set (\mathbf{p}, \mathbf{q}) and define the set of bichromatic induced lines $\mathcal{B}(\mathbf{p}, \mathbf{q})$ to be the subset of $\mathcal{L}(\mathbf{p}, \mathbf{q})$ that is incident on at least one point of each color.

Theorem 2 (Beck-type theorem for bichromatic point sets). Let (\mathbf{p}, \mathbf{q}) be a bichromatic point set with n points in each color class (for a total of 2n). If the maximum richness of any line in $\mathcal{L}(\mathbf{p}, \mathbf{q})$ is r, then $|\mathcal{B}(\mathbf{p}, \mathbf{q})| \gg n(2n - r)$.

In the particular case where r = n, which is required by Gutkin and Rams, this shows that $|\mathcal{B}(\mathbf{p}, \mathbf{q})| \gg n^2$.

Beck's Theorem 1, and the present Theorem 2, may be deduced from the famous Szemeredi-Trotter Theorem on point-line incidences (Beck himself uses a weaker, but similar, statement as his key lemma). The following form is what we require in the sequel.

Theorem 3 (Szemeredi-Trotter Theorem [4]). Let **p** be a set of n points in \mathbb{E}^2 and let \mathcal{L} be a finite set of lines in \mathbb{E}^2 . Then the number r of k-rich lines in \mathcal{L} is $r \ll n^2/k^3 + n/k$.

Notations. We use $\mathbf{p} = (\mathbf{p}_i)_1^n$ and $\mathbf{q} = (\mathbf{q}_i)_1^n$ for point sets in \mathbb{E}^2 . The notation $f(n) \gg Cg(n)$ means there is an absolute constant C > 0 such that $f(n) \geq g(n)$ for all $n \in \mathbb{N}$.

2. Proofs

The proof of the main theorem follows a similar line to Beck's original proof. For a pair of points (\mathbf{p}_i , \mathbf{q}_i), we define the richness of the pair to be the richness of the line $\mathbf{p}_i \mathbf{q}_i$.

Lemma 4. Let (\mathbf{p}, \mathbf{q}) be a bichromatic point set in \mathbb{E}^2 . Then there is an absolute constant $K_1 > 0$ such that the number of bichromatic point pairs that are either at most $1/K_1$ -rich or at least K_1 n-rich is at least $n^2/2$.

Proof. There are exactly n^2 pairs of points $(\mathbf{p}_i, \mathbf{q}_j)$, and each of these induces a line in $\mathcal{B}(\mathbf{p}, \mathbf{q})$. Define the subset $\mathcal{B}_j(\mathbf{p}, \mathbf{q}) \subset \mathcal{B}(\mathbf{p}, \mathbf{q})$ to be the set of bichromatic lines with richness between 2^{j-1} and 2^j .

By the Szemeredi-Trotter Theorem with $k = 2^{j}$,

(1)
$$\left|\mathcal{B}_{j}(\mathbf{p},\mathbf{q})\right| \leq C(n^{2}/2^{3j} + n/2^{j})$$

The number of bichromatic pairs inducing any line $\ell \in \mathcal{B}_j(\mathbf{p}, \mathbf{q})$ is maximized when there are 2^j red points and 2^j blue ones on ℓ , for a total of 2^{2j} bichromatic pairs. Multiplying by the estimate of (1), the number of bichromatic pairs inducing lines in $\mathcal{B}_j(\mathbf{p}, \mathbf{q})$ is at most

(2)
$$C(n^2/2^j + n2^j)$$

for a large absolute constant *C* coming from the Szemeredi-Trotter Theorem.

Now let $K_1 > 0$ be a small constant to be selected later. We sum (2) over j such that $1/K_1 \le j \le K_1 n$:

$$C\left(n^2 \sum_{1/K_1 \le j \le K_1 n} 2^{-j} + n \sum_{1/K_1 \le j \le K_1 n} 2^j\right) \le C\left(n^2 2^{-1/K_1} + n \cdot 2K_1 n\right)$$

Picking K_1 small enough (it depends on C) ensures that at most $n^2/2$ of the monochromatic pairs induce lines with richness between $1/K_1$ and K_1n .

The following lemma is a bichromatic variant of Beck's Two-Extremes Theorem.

Lemma 5. Let (p, q) be a bichromatic point set in \mathbb{E}^2 . Then either

- **A** The number of bichromatic lines $|\mathcal{B}(\mathbf{p}, \mathbf{q})| \gg n^2$.
- **B** There is a line $\ell \in \mathcal{B}(\mathbf{p}, \mathbf{q})$ incident on at least K_2n red points and K_2n blue points for an absolute constant $K_2 > 0$.

Proof. We partition the bichromatic pairs (\mathbf{p}_i , \mathbf{q}_j) into three sets: L is the set of pairs with richness less than $1/K_1$; M is the set of pairs with richness in the interval $[1/K_1, K_1n]$; H is the set of pairs with richness greater than K_1n .

By Lemma 4, $|L \cup H| \ge n^2/2$. There are now three cases:

Case I: (Alternative A) If $|L| \ge n^2/4$, then we are in alternative A, since quadratically many pairs can be covered only by quadratically many lines of constant richness.

Case II: (Alternative B) If we are not in Case I, then, $|H| \ge n^2/4$. In particular, since H is not empty, there are lines incident on at least one point of each color and at least $K_1 n$ points in total. If one of these lines is line incident to at least $\frac{K_1}{6}n$ points of each color, then we are in alternative B.

Case III: (Alternative A) If we are not in Case I or Case II, then every line induced by a bichromatic pair in H has at least $\frac{5}{6}K_1n$ red points incident on it or $\frac{5}{6}K_1n$ blue ones incident on it.

Since there are $|H| \ge n^2/4$ bichromatic point pairs incident on a very rich line, there must be at least n/4 different points of each color participating in some point pair in H.

Each line induced by a pair in H generates at least K_1n incidences, so the number of these lines is at most $\frac{1}{K_1}n$. But then if all the lines induced by H span at most $\frac{1}{6}K_1n$ blue points, the total number of blue incidences is less than n/4, which is a contradiction. We can make a similar argument for red points.

Thus there is a line ℓ_1 spanning at least $\frac{5}{6}K_1n$ blue points and a distinct line ℓ_2 spanning at least $\frac{5}{6}K_1n$ red points. From this configuration we get at least $(\frac{5}{6}K_1n - 1)^2$ distinct bichromatic lines, putting us again in alternative **A**.

Proof of Theorem **2**. If alternative **A** of Lemma **5** holds, then we are already done.

If we are in alternative **B**, then there must be a line ℓ of richness $r \ge 2K_2n$ incident to at least K_2n points of each color. Now pick any subset X of $K_2(2n-r)$ points not incident to ℓ . There are at least $\frac{1}{2}K_2^2n(2n-r)$ bichromatic point pairs determined by one point in X and one point incident to ℓ . Thus we get at least

$$\frac{1}{2}K_2^2n(2n-r) - \binom{K_2(2n-r)}{2} \ge \frac{1}{2}K_2^3n(2n-r)$$

bichromatic lines.

3. Conclusion

We proved an extension of Beck's Theorem [1] to bichromatic point sets using a fairly standard argument, completing the combinatorial step in Gutkin-Rams's recent paper on billiards.

This kind of bichromatic result can, due to the general nature of the proofs, be extended to any setting where a Szemeredi-Trotter-type result is available (see, e.g., [3] for many examples). Moreover, by "forgetting" colors and repeatedly squaring the constants, Theorem 2 holds for bichromatic lines in multi-chromatic point sets. It would, however, be interesting to know whether this is the correct order of growth for the constants in a multi-chromatic version of Theorem 2.

References

- [1] József Beck. On the lattice property of the plane and some problems of Dirac, Motzkin and Erdős in combinatorial geometry. *Combinatorica*, 3(3-4):281–297, 1983. ISSN 0209-9683. doi: 10.1007/BF02579184.
- [2] Eugene Gutkin and Michael Rams. Complexities for cartesian products of homogeneous Lagrangian systems, with applications to billiards. Preprint, 2010.
- [3] László A. Székely. Crossing numbers and hard Erdős problems in discrete geometry. *Combin. Probab. Comput.*, 6(3):353–358, 1997. ISSN 0963-5483. doi: 10.1017/S0963548397002976.
- [4] Endre Szemerédi and William T. Trotter, Jr. Extremal problems in discrete geometry. *Combinatorica*, 3(3-4):381–392, 1983. ISSN 0209-9683. doi: 10.1007/BF02579194.

DEPARTMENT OF MATHEMATICS, TEMPLE UNIVERSITY

E-mail address: theran@temple.edu

URL: http://math.temple.edu/~theran/