Importing Dependencies

dataframe.head()

```
import numpy as np
import pandas as pd
{\tt import\ matplotlib.pyplot\ as\ plt}
import sklearn.datasets
from sklearn.model selection import train test split
Data collection and processing
breast_cancer_dataset = sklearn.datasets.load_breast_cancer()
print(breast_cancer_dataset)
→ {'data': array([[1.799e+01, 1.038e+01, 1.228e+02, ..., 2.654e-01, 4.601e-01,
            1.189e-01],
           [2.057e+01, 1.777e+01, 1.329e+02, ..., 1.860e-01, 2.750e-01,
            8.902e-02],
           [1.969e+01, 2.125e+01, 1.300e+02, ..., 2.430e-01, 3.613e-01,
            8.758e-02],
           [1.660e+01, 2.808e+01, 1.083e+02, ..., 1.418e-01, 2.218e-01,
            7.820e-02],
           [2.060e+01, 2.933e+01, 1.401e+02, ..., 2.650e-01, 4.087e-01,
            1.240e-01],
           [7.760e+00, 2.454e+01, 4.792e+01, ..., 0.000e+00, 2.871e-01,
            0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0,
           1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0,
           1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1,
           1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0,
           1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1,
           1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0,
           0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0,
           1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1,
           1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
           0,\ 0,\ 1,\ 1,\ 1,\ 1,\ 1,\ 0,\ 1,\ 0,\ 1,\ 1,\ 0,\ 1,\ 1,\ 0,\ 1,\ 1,
           1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1,
           1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0,
           0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0,
           0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0,
           1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1,
           1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0,
           1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1,
           1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0,
           1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1,
           1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1,
           1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1,
           1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
           1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1]), 'frame': None, 'target_names': array(['malignant', 'benign'], dtyr
            'mean smoothness', 'mean compactness', 'mean concavity', 'mean concave points', 'mean symmetry', 'mean fractal dimension',
            'radius error', 'texture error', 'perimeter error', 'area error',
           'smoothness error', 'compactness error', 'concavity error', 'concave points error', 'symmetry error',
            'fractal dimension error', 'worst radius', 'worst texture',
           'worst perimeter', 'worst area', 'worst smoothness', 'worst compactness', 'worst concavity', 'worst concave points',
           'worst symmetry', 'worst fractal dimension'], dtype='<U23'), 'filename': 'breast_cancer.csv', 'data_module': 'sklearn.dataset
     4
# creating a dataframe
dataframe = pd.DataFrame(breast_cancer_dataset.data,columns = breast_cancer_dataset.feature_names)
```


points	
001 0.14710	
869 0.07017	
974 0.12790	
414 0.10520	
980 0.10430	
.0	0869 0.07017 .1974 0.12790 .2414 0.10520

5 rows × 30 columns

 $\ensuremath{\text{\#}}$ addding target to the dataframe

0 ---->

dataframe['label'] = breast_cancer_dataset.target

dataframe.tail()

	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points	
564	21.56	22.39	142.00	1479.0	0.11100	0.11590	0.24390	0.13890	
565	20.13	28.25	131.20	1261.0	0.09780	0.10340	0.14400	0.09791	
566	16.60	28.08	108.30	858.1	0.08455	0.10230	0.09251	0.05302	
567	20.60	29.33	140.10	1265.0	0.11780	0.27700	0.35140	0.15200	
568	7.76	24.54	47.92	181.0	0.05263	0.04362	0.00000	0.00000	

5 rows × 31 columns

dataframe.shape #tells us the no. of columns and rows

→ (569, 31)

dataframe.info() # tells us about each column info. which type of column is that

<<rp>
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 569 entries, 0 to 568
Data columns (total 31 columns):

	columns (cocal of columns	•	
#	Column	Non-Null Count	,
0	mean radius	569 non-null	float64
1	mean texture	569 non-null	float64
2	mean perimeter	569 non-null	float64
3	mean area	569 non-null	float64
4	mean smoothness	569 non-null	float64
5	mean compactness	569 non-null	float64
6	mean concavity	569 non-null	float64
7	mean concave points	569 non-null	float64
8	mean symmetry	569 non-null	float64
9	mean fractal dimension	569 non-null	float64
10	radius error	569 non-null	float64
11	texture error	569 non-null	float64
12	perimeter error	569 non-null	float64
13	area error	569 non-null	float64
14	smoothness error	569 non-null	float64
15	compactness error	569 non-null	float64
16	concavity error	569 non-null	float64
17	concave points error	569 non-null	float64
18	symmetry error	569 non-null	float64
19	fractal dimension error	569 non-null	float64
20	worst radius	569 non-null	float64
21	worst texture	569 non-null	float64
22	worst perimeter	569 non-null	float64
23	worst area	569 non-null	float64
24	worst smoothness	569 non-null	float64
25	worst compactness	569 non-null	float64
26	worst concavity	569 non-null	float64
27	worst concave points	569 non-null	float64
28	worst symmetry	569 non-null	float64
29	worst fractal dimension	569 non-null	float64
30	label	569 non-null	int64
	as: float64(30) int64(1)		

dtypes: float64(30), int64(1) memory usage: 137.9 KB

```
→ mean radius

                            0
   mean texture
                           0
   mean perimeter
   mean area
                           0
                           0
    mean smoothness
    mean compactness
                            0
    mean concavity
    mean concave points
    mean symmetry
    mean fractal dimension
    radius error
                            0
    texture error
   perimeter error
                            0
                            a
    area error
    smoothness error
                            0
    compactness error
                            0
    concavity error
                            0
    concave points error
    symmetry error
                            0
    fractal dimension error 0
    worst radius
                            0
   worst texture
                            0
    worst perimeter
                            0
   worst area
                            0
                          0
    worst smoothness
    worst compactness
                           0
    worst concave points $0$ worst symmetrv
    worst fractal dimension 0
    label
    dtype: int64
```

dataframe.describe() #tells us about the statistical measures of the data

	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	conca
count	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000	569.00
mean	14.127292	19.289649	91.969033	654.889104	0.096360	0.104341	0.08
std	3.524049	4.301036	24.298981	351.914129	0.014064	0.052813	0.07
min	6.981000	9.710000	43.790000	143.500000	0.052630	0.019380	0.00
25%	11.700000	16.170000	75.170000	420.300000	0.086370	0.064920	0.02
50%	13.370000	18.840000	86.240000	551.100000	0.095870	0.092630	0.06
75%	15.780000	21.800000	104.100000	782.700000	0.105300	0.130400	0.13
max	28.110000	39.280000	188.500000	2501.000000	0.163400	0.345400	0.42

8 rows × 31 columns

dataframe['label'].value_counts() # checking the distribution of target variable

label 1 357 0 212

Name: count, dtype: int64

1 ---> Benign 0 ---> Malignant

dataframe.groupby('label').mean() # groupby helps to show the mean values of the label values separetly

	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mear concavity
label							
0	17.462830	21.604906	115.365377	978.376415	0.102898	0.145188	0.160775
1	12.146524	17.914762	78.075406	462.790196	0.092478	0.080085	0.046058

2 rows × 30 columns

```
X = dataframe.drop(columns='label',axis = 1)
Y = dataframe['label']
print(X)
print(Y)
                                             25.450
    564
                         0.05623 ...
                                                             26.40
                         0.05533 ...
     565
                                             23.690
                                                             38.25
                         0.05648 ...
                                             18.980
     566
                                                              34.12
                         0.07016 ...
                                             25.740
                                                              39.42
     567
                         0.05884 ...
                                              9.456
     568
                                                             30.37
          worst perimeter worst area worst smoothness worst compactness \
     0
                   184.60
                               2019.0
                                                0.16220
                                                                   0.66560
     1
                   158.80
                               1956.0
                                                0.12380
     2
                   152.50
                               1709.0
                                                0.14440
                                                                   0.42450
                                                0.20980
     3
                   98.87
                                567.7
                                                                   0.86630
     4
                   152.20
                               1575.0
                                                0.13740
                                                                   0.20500
                               2027.0
                                                                   0.21130
                   166.10
                                                0.14100
     564
                                                                   0.19220
     565
                   155.00
                               1731.0
                                                0.11660
                   126.70
                                                0.11390
     566
                               1124.0
                                                                   0.30940
                                                                   0.86810
     567
                   184.60
                               1821.0
                                                0.16500
     568
                    59.16
                                268.6
                                                0.08996
                                                                   0.06444
          worst concavity worst concave points worst symmetry \
     0
                   0.7119
                                         0.2654
                                                         0.2750
     1
                   0.2416
                                         0.1860
                   0.4504
                                         0.2430
                                                         0.3613
     3
                   0.6869
                                         0.2575
                                                         0.6638
     4
                   0.4000
                                         0.1625
                                                         0.2364
                                         0.2216
                                                         0.2060
                   0.4107
     564
     565
                   0.3215
                                         0.1628
                                                         0.2572
     566
                   0.3403
                                         0.1418
                                                         0.2218
     567
                   0.9387
                                         0.2650
                                                         0.4087
                   0.0000
                                         0.0000
                                                         0.2871
          worst fractal dimension
     0
                          0.08902
     1
                          0.08758
     2
                          0.17300
     3
     4
                          0.07678
                          0.07115
     564
     565
                          0.06637
                          0.07820
     567
                          0.12400
                          0.07039
     [569 rows x 30 columns]
     0
            a
     1
            0
     2
            0
     3
            0
     4
            0
     565
     567
            0
     568
     Name: label, Length: 569, dtype: int64
Splitting the data into training data and Testing data
X_train,X_test,Y_train,Y_test = train_test_split(X,Y,test_size = 0.2,random_state = 2)
print(X.shape,X_train.shape,X_test.shape)
→ (569, 30) (455, 30) (114, 30)
Standardize the data
from \ sklearn.preprocessing \ import \ StandardScaler
scaler = StandardScaler()
X_train_std = scaler.fit_transform(X_train)
```

X_test_std = scaler.transform(X_test)

```
print(X_train_std)
→ [[-0.01330339 1.7757658 -0.01491962 ... -0.13236958 -1.08014517
    -0.03527943]
    [-0.8448276 -0.6284278 -0.87702746 ... -1.11552632 -0.85773964
    -0.72098905]
    [ 1.44755936  0.71180168  1.47428816  ...  0.87583964  0.4967602
     0.46321706]
    [-0.46608541 -1.49375484 -0.53234924 ... -1.32388956 -1.02997851
    -0.75145272]
    [-0.50025764 -1.62161319 -0.527814 ... -0.0987626 0.35796577
    -0.43906159]
    [ \ 0.96060511 \ 1.21181916 \ 1.00427242 \ \dots \ 0.8956983 \ -1.23064515
     0.50697397]]
Building The Neural Network
                      <-- developed by google for creating deep learning models
#importing tensorflow and keras
import tensorflow as tf
tf.random.set_seed(3)
from tensorflow import keras
#setting up the layers of neural network
model = keras.Sequential([
  keras.layers.Flatten(input_shape=(30,)),
  keras.layers.Dense(20,activation='relu')
  keras.layers.Dense(2,activation='sigmoid')
])
#compiling the neural networks
model.compile(optimizer='adam',
        loss='sparse_categorical_crossentropy',
        metrics=['accuracy'])
#training the model
history = model.fit(X train std,Y train, validation split=0.1, epochs=10)

→ Epoch 1/10
   Epoch 2/10
   13/13 [=====
             Epoch 3/10
   13/13 [============] - 0s 6ms/step - loss: 0.2439 - accuracy: 0.9242 - val_loss: 0.1995 - val_accuracy: 0.9783
   Epoch 4/10
   13/13 [=====
           Enoch 5/10
   Epoch 6/10
   13/13 [=====
             Epoch 7/10
   13/13 [=====
                :===========] - 0s 4ms/step - loss: 0.1430 - accuracy: 0.9487 - val_loss: 0.1258 - val_accuracy: 0.9783
   Epoch 8/10
   13/13 [====
              Epoch 9/10
   13/13 [====
            Epoch 10/10
   Visulaizing accuracy and loss
plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['training data','validation data'],loc = 'lower right')
```



```
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['training data','validation data'],loc = 'upper right')
```

<matplotlib.legend.Legend at 0x7e647cd696c0>

Accuracy of the model on test data

print(X_test_std[0])

```
loss,accuracy = model.evaluate(X_test_std,Y_test)
print(accuracy)
  0.9385964870452881
Build a Predictive System
print(X_test_std.shape)
```

```
→ (114, 30)
    \hbox{ $[-0.04462793 \ -1.41612656 \ -0.05903514 \ -0.16234067 \ \ 2.0202457 \ \ -0.11323672 } 
    0.18500609 \quad 0.47102419 \quad 0.63336386 \quad 0.26335737 \quad 0.53209124 \quad 2.62763999
```

Y_pred = model.predict(X_test_std)

```
→ 4/4 [=======] - 0s 3ms/step
print(Y_pred.shape)
print(Y_pred[0])
→ (114, 2)
     [0.159299 0.7513883]
print(Y_pred)
     [2.45191544e-01 9.08973157e-01]
     [4.52882946e-02 9.10310149e-01]
     [5.23319244e-01 2.35378742e-02]
     [2.72058219e-01 9.28914607e-01]
     [3.88937235e-01 6.48908556e-01]
     [9.18239117e-01 1.03692420e-01]
      [1.91242203e-01 9.52847540e-01]
     [7.85486937e-01 1.70325059e-02]
     [8.13573420e-01 3.63627560e-02]
     [5.92141449e-01 7.87646413e-01]
     [9.18471038e-01 2.10727402e-03]
     [7.23274410e-01 2.61995681e-02]
     [6.21686816e-01 6.15288019e-01]
     [3.23766828e-01 3.61053884e-01]
     [5.83733022e-01 2.14822069e-01]
     [8.32518280e-01 9.67573840e-03]
     [1.45588398e-01 9.13623810e-01]
     [6.71616495e-01 1.39173612e-01]
     [1.55286267e-01 9.58647609e-01]
      [6.04783535e-01 1.22176632e-01]
     [1.49034157e-01 8.74401391e-01]
     [1.88912660e-01 9.74478543e-01]
     [3.64527762e-01 6.12152040e-01]
     [5.74265659e-01 2.73325294e-01]
     [8.67894590e-01 1.88622549e-02]
     [6.34752631e-01 2.47963086e-01]
     [8.27198744e-01 1.38601158e-02]
     [2.65208453e-01 8.45021904e-01]
      [2.10084021e-01 8.06344211e-01]
     [5.08449018e-01 5.54542243e-01]
      [1.23695612e-01 9.59269643e-01]
     [1.93218455e-01 8.48353505e-01]
     [4.20540303e-01 8.25776041e-01]
     [9.34040010e-01 1.68232583e-02]
     [2.28489354e-01 9.43438649e-01]
     [3.82782042e-01 9.00061727e-01]
     [2.22888008e-01 9.55945611e-01]
     [8.23915243e-01 1.10778555e-01]
     [5.57724357e-01 8.70296955e-02]
      [2.65221149e-01 8.42225730e-01]
     [8.54155481e-01 4.83367452e-03]
      [8.51505458e-01 3.37263122e-02]
     [1.77255452e-01 8.36346805e-01]
     [1.63465813e-01 9.61011887e-01]
     [1.61149725e-01 9.88198698e-01]
     [5.53071678e-01 1.82995602e-01]
     [9.66395378e-01 2.51073536e-04]
     [9.50252712e-01 6.19956874e-04]
     [2.16956675e-01 8.82590592e-01]
     [1.43900380e-01 9.60179210e-01]
     [1.02038063e-01 9.81731057e-01]
     [2.09759340e-01 9.51954126e-01]
     [1.52745489e-02 9.71510172e-01]
     [2.43146315e-01 6.91956639e-01]
     [9.25043941e-01 4.57590539e-03]
     [7.31664360e-01 2.48165708e-03]
     [6.49302602e-01 5.24360240e-01]
     [8.16598535e-01 4.29233164e-02]]
model.predict gives me the probability of each class datapoint
#converting probability to label
Y_pred_label = [np.argmax(i) for i in Y_pred]
print(Y_pred_label)
```

```
#predictive system
input\_data = (17.99, 10.38, 122.8, 1001, 0.1184, 0.2776, 0.3001, 0.1471, 0.2419, 0.07871, 1.095, 0.9053, 8.589, 153.4, 0.006399, 0.04904, 0.05373, 0.0158, 0.006399, 0.04904, 0.05373, 0.0158, 0.04904, 0.05373, 0.0158, 0.04904, 0.05373, 0.0158, 0.04904, 0.05373, 0.0158, 0.04904, 0.05373, 0.0158, 0.04904, 0.05373, 0.0158, 0.04904, 0.05373, 0.0158, 0.04904, 0.05373, 0.0158, 0.04904, 0.05373, 0.0158, 0.04904, 0.05373, 0.0158, 0.04904, 0.05373, 0.0158, 0.04904, 0.05373, 0.0158, 0.04904, 0.05373, 0.0158, 0.04904, 0.05373, 0.0158, 0.04904, 0.05373, 0.0158, 0.04904, 0.05373, 0.0158, 0.04904, 0.05373, 0.0158, 0.04904, 0.05373, 0.0158, 0.04904, 0.05373, 0.0158, 0.04904, 0.05373, 0.0158, 0.04904, 0.05373, 0.0158, 0.04904, 0.05373, 0.0158, 0.04904, 0.05373, 0.0158, 0.04904, 0.05373, 0.0158, 0.04904, 0.05373, 0.0158, 0.04904, 0.05373, 0.0158, 0.04904, 0.05373, 0.0158, 0.04904, 0.05373, 0.0158, 0.04904, 0.05373, 0.0158, 0.04904, 0.05373, 0.04904, 0.05373, 0.04904, 0.05373, 0.04904, 0.05373, 0.04904, 0.05373, 0.04904, 0.05373, 0.04904, 0.05373, 0.04904, 0.05373, 0.04904, 0.05373, 0.04904, 0.05373, 0.04904, 0.05373, 0.04904, 0.05373, 0.04904, 0.05373, 0.04904, 0.05373, 0.04904, 0.05373, 0.04904, 0.05373, 0.04904, 0.05373, 0.04904, 0.05373, 0.04904, 0.05373, 0.04904, 0.05373, 0.04904, 0.05373, 0.04904, 0.05373, 0.04904, 0.05373, 0.04904, 0.05373, 0.04904, 0.05373, 0.04904, 0.05373, 0.04904, 0.05374, 0.04904, 0.05374, 0.04904, 0.05374, 0.04904, 0.05374, 0.04904, 0.05374, 0.04904, 0.05374, 0.04904, 0.05374, 0.04904, 0.05374, 0.04904, 0.05374, 0.04904, 0.05374, 0.04904, 0.05374, 0.04904, 0.05374, 0.04904, 0.05374, 0.05374, 0.05374, 0.05374, 0.05374, 0.05374, 0.05374, 0.05374, 0.05374, 0.05374, 0.05374, 0.05374, 0.05374, 0.05374, 0.05374, 0.05374, 0.05374, 0.05374, 0.05374, 0.05374, 0.05374, 0.05374, 0.05374, 0.05374, 0.05374, 0.05374, 0.05374, 0.05374, 0.05374, 0.05374, 0.05374, 0.05374, 0.05374, 0.05374, 0.05374, 0.05374, 0.05374, 0.053744, 0.05374, 0.05374, 0.05374, 0.05374, 0.05374, 0.05374, 0.05374, 0.05374, 0.05374, 0.05374,
#change the input data to numpy array
input_data_as_numpy_array = np.asarray(input_data)
#reshape the numpy array as we are predicting for one data point
input_data_reshaped = input_data_as_numpy_array.reshape(1,-1)
#standardize the data
std_data = scaler.transform(input_data_reshaped)
prediction = model.predict(std_data)
print(prediction)
prediction_label = [np.argmax(prediction)]
print(prediction_label)
if(prediction_label[0] == 0):
     print('The tumor is Malignant')
else:
      print('The tumor is Benign')
 → 1/1 [=======] - 0s 32ms/step
                [[8.1881064e-01 3.9951672e-04]]
                The tumor is Malignant
                /usr/local/lib/python3.10/dist-packages/sklearn/base.py:439: UserWarning: X does not have valid feature names, but StandardScaler wa
                    warnings.warn(
```