Analysis I Skript

Rene Brandel, Rudolf Biczok, Cedric Jeah, Corvin Paul und Arbnore Salihi

1. Dezember 2013

Inhaltsverzeichnis

1	Grui	ndlagen		7
	1.1	Menge	en	7
		1.1.1	Syntax	7
		1.1.2	Satz 1: "Naiver"Mengenbegriff nach Cantor	8
		1.1.3	Potenzmenge von M	8
		1.1.4	Satz 2: Funktionen	8
		1.1.5	Satz 3: Graph	8
		1.1.6	Funktionsraum	8
		1.1.7	Bild	8
		1.1.8	Urbild	9
		1.1.9	Eigenschaften von Funktionen	9
		1.1.10	Umkehrabbildung / Umkehrfunktion	9
			Komposition	9
		1.1.12	Identität	10
		1.1.13	Restriktion und Fortsetzung	10
	1.2	Indukt	tion	10
		1.2.1	Satz 4: Prinzip der vollständigen Induktion	11
		1.2.2	Satz 5: Beweis durch vollständige Induktion	11
		1.2.3	Notation: Aussagen	13
		1.2.4	Quantoren	14
	1.3	Wohlo		14
		1.3.1	Wohlordnungsprinzip für \mathbb{N}	14
		1.3.2	Satz 6	14
		1.3.3	Satz 7	15
		1.3.4	Satz 8	15
	1.4	Körpe	r- und Anordnungsaxiomen	15
		1.4.1	Satz 13	16
		1.4.2	Satz 14	17
		1.4.3	Absolutbetrag	18
		1.4.4	Signumfunktion / Vorzeichenfunktion	18
		1.4.5	Min- und Max-Funktion	18
		1.4.6	Folgerungen	18
		1.4.7		18
		1.4.8	Satz 16: Abstandsungleichung	19
	1.5	Obere		19
		151	Ohere und Untere Schranken	10

In halts verzeichn is

	1.5.2	Maximum und Minimum
	1.5.3	Definition 18: Supremum, Infimum
	1.5.4	Lemma 19
	1.5.5	Definition 20: Vollständigkeitsaxiom
	1.5.6	Die Menge $\bar{\mathbb{R}}$
	1.5.7	Intervalle
	1.5.8	Supremum und Infimum der leeren Menge
1.6	Definit	tion von $\mathbb N$ als Teilmenge von $\mathbb R$
	1.6.1	Definition von \mathbb{N} als Teilmenge von \mathbb{R}
	1.6.2	Definition 21
	1.6.3	Satz 21: Induktionsprinzip
	1.6.4	Satz 22
	1.6.5	Satz 23
1.7	Ganze	und rationale Zahlen
	1.7.1	Satz 24
	1.7.2	Korollar 26
1.8	Endlic	he und abzählbare Mengen
	1.8.1	Definition 27 (Cantor)
	1.8.2	Definition 28
	1.8.3	Satz 29
	1.8.4	Satz 31
	1.8.5	Korollar 32
	1.8.6	Satz 33
	1.8.7	Lemma 34 (Cantor)
	1.8.8	Korollar 36
1.9	Einfac	he Folgerung aus Induktion
	1.9.1	Satz 37 (Bernoulli)
	1.9.2	Definition 38
	1.9.3	Lemma 39
	1.9.4	Binomischer Lehrsatz
Folg	en und	Konvergenz 33
_		tion 1
		tion 2: Konvergenz:
	2.2.1	Satz 3
	2.2.2	Lemma 4
		Satz 5: Rechenregeln für Limes
		Satz 6
		Satz 7: Sandwich Theorem
2.3		gente Folge
	2.3.1	Definition 8
		Rechenregeln
2.4		one Folgen
	2.4.1	Definition 9
	1.7 1.8 1.9	1.5.3 1.5.4 1.5.5 1.5.6 1.5.7 1.5.8 1.6 Definit 1.6.1 1.6.2 1.6.3 1.6.4 1.6.5 1.7 Ganze 1.7.1 1.7.2 1.8 Endlic 1.8.1 1.8.2 1.8.3 1.8.4 1.8.5 1.8.6 1.8.7 1.8.8 1.9 Einfac 1.9.1 1.9.2 1.9.3 1.9.4 Folgen und 2.1 Definit 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 2.3 Diverg 2.3.1 2.3.2 2.4 Monot

		2.4.2	Satz 10 (Monotone Konvergenz)
		2.4.3	Korollar 11
		2.4.4	Korollar 12 (Rekursive Berechnung von \sqrt{a})
		2.4.5	Korollar 13
	2.5	Teilfol	gen und Häufungswerte
		2.5.1	Definition 14: (Teilfolgen, Umordnung)
		2.5.2	Lemma 15
		2.5.3	Definition 16 Häufungswert
		2.5.4	Satz 17 (Bolzano - Weierstraß für Folgen)
		2.5.5	Lemma 18
		2.5.6	Korollar 9: Balzano-Weierstraß für Folgen II 48
	2.6	Asym	ptotisches Verhalten von reellen Folgen (\limsup und \liminf) 40
		2.6.1	Asymptotisches Verhalten von reellen Folgen (lim sup und lim inf) 46
		2.6.2	Definition 20
		2.6.3	Satz 21
	2.7	Das C	auchy-Kriterium für Konvergenz
		2.7.1	Satz 23: Cauchy Kriterium
		2.7.2	Lemma 24
		2.7.3	Lemma 25: Jede Chauchyfolge ist beschränkt 5:
	2.8	Einsch	nub Komplexe Zahlen
		2.8.1	Summe:
		2.8.2	Produkt:
		2.8.3	Definition von Komplexe Zahlen
		2.8.4	Spezielle Komplexe Zahlen
		2.8.5	Komplex Konjugieren
		2.8.6	Komplexwertige Folge
		2.8.7	Satz
		2.8.8	Korollar
		2.8.9	Korollar
3	Reil		57
	3.1		tion und elementare Eigenschaften
		3.1.1	Definition 1
			Cauchy-Kriterium
		3.1.3	Satz 2: Cauchy-Kriterium für Konvergenz von Reihen
		3.1.4	Korollar 3
		3.1.5	Korollar 4: Die harmonische Reihe ist divergiert
		3.1.6	Satz 5
		3.1.7	Satz 6
	2.0	3.1.8	Korollar 7
	3.2		nierende Reihen
		3.2.1	Satz 8: Leibniz-Konvergenzkriterium
		3.2.2	Ultimative Version von Leibniz
		3.2.3	Ultimatium Leibniz

1.1 Mengen

Angaben von Mengen durch Aufzählungen $M = \{a, b, c\}$ oder $M = \{Kirche, Dorf\}$ bekannte Mengen:

- $\bullet~\emptyset$ leere Menge
- $\mathbb{N} = \{1, 2, 3, \ldots\}$ natürliche Zahlen
- $\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$ ganze Zahlen
- $\mathbb{Q} = \left\{ \frac{m}{n} | m \in \mathbb{Z}, n \in \mathbb{N} \right\}$ Rationale Zahlen

Achtung: $\{\emptyset\}$ hat ein Element (nämlich die leere Menge)!

1.1.1 Syntax

- $x \in M$ x ist Element von M
- $x \notin M$ x ist nicht Element von M
- $M \subset N$ M ist Teilmenge von N d.h. für alle $x \in M$ ist auch $x \in N$ Achtung: Bei $M \subset N$ ist auch M = N möglich Immer: $\emptyset \subset M$,in jeder Menge
- $\bullet \ \ M=N:M\subset N\wedge N\subset N$
- Vereinigungsmenge: $M \cup N := \{x | x \in M \land x \in N\}$
- Disjunktion: M und N sind disjunkt wenn $M \cup N = \emptyset$
- Schnittmenge: $M \cap N := \{x | x \in M \lor x \in N\}$
- Differenz: $M \setminus N := \{x | x \in M \land x \notin N\}$
- Produktmenge: $M \times N := \{(x,y) | x \in M, y \in N \}$ $M_1 \times M_2 \times \ldots \times M_n := \{\underbrace{(x_1,x_2,\ldots,x_n)}_{\text{n-Tupel}} : x_j \in M_j, j = 1,\ldots,n \}$

1.1.2 Satz 1: "Naiver" Mengenbegriff nach Cantor

"Unter einer 'Menge' verstehen wir jede Zusammenfassung M von bestimmten wohlunterschiedenen Objekten m unserer Anschauung oder unseres Denkens (welche die 'Elemente' von M genannt werden) zu einem Ganzen."

1.1.3 Potenzmenge von M

$$2^{M} = \mathcal{P}(M) := \{A | A \subset M\}$$

immer: $M \in \mathcal{P}(M), \emptyset \in \mathcal{P}(M)$
Beispiel $\mathcal{P}(\emptyset) = \{\emptyset\}$

1.1.4 Satz 2: Funktionen

Eine Funktion oder Abbildung $f: x \to y$ besteht aus einem Definitionsbereich X und einer Abbildungsvorschrift, die jedem $x \in X$ genau ein Element $y \in Y$ zuordnet.

Notation
$$y = f(x)$$
, erfordert auf $x \mapsto f(x)$

$$f: X \to Y$$

 $x \mapsto f(x)$

Beispiel

$$f: \mathbb{N} \to \mathbb{N}$$
$$x \mapsto f(x) = 2x$$

1.1.5 Satz 3: Graph

```
Sei f: X \to Y eine Funktion Graph(f) = G(f) = \{(x, f(x)) : x \in X\} G(f) \subset X \times Y Zwei Funktionen f_1: X \to Y, f_2: X \to Y sind gleich, wenn G(f_1) = G(f_2). D.h. falls f_1(x) = f_2(x) für alle x \in X.
```

1.1.6 Funktionsraum

$$Y^X = Abb(X, Y) = \text{Menge aller Funktionen } f: X \to Y$$

1.1.7 Bild

```
Wenn A \subset X: f(A) := \{y \in Y : \text{ Es gibt ein } x \in A : y = f(x)\} = \{f(x) : x \in A\} Bild von A (unter f)
```

1.1.8 Urbild

Wenn $B \subset Y$ $f^{-1}(B) := \{x \in X : f(x) \in B\}$ Urbild von B (unter f)

1.1.9 Eigenschaften von Funktionen

f(X) ist das Bild von f $f: X \to Y$ ist:

injektiv: falls aus $x_1, x_2 \in X$ und $f(x_1) = f(x_2) \implies x_1 = x_2$.

surjektiv: falls f(X) = Y.

bijektiv: falls surjektiv und injektiv zugleich.

1.1.10 Umkehrabbildung / Umkehrfunktion

Ist $f: X \to Y$ bijektiv, so existiert zu jedem $y \in Y$ genau ein $x \in X$ mit y = f(x). Die Inverse zu f ist die Funktion:

$$f^{-1}: Y \to X$$

 $y \mapsto \text{ Urbild von } Y \text{ unter } f$

Beispiel

$$f: \mathbb{N} \to \mathbb{N}$$
$$x \mapsto 2x$$

$$f^{-1}(\{3\}) = \emptyset$$

 \rightarrow ist nicht bijektiv

 $P: N \to \text{gerade natürliche Zahlen}$

$$f: P(\mathbb{N}) \to P(\mathbb{N})$$
$$x \mapsto 2x$$

 \to ist bijektiv $f^{-1}(y) = \frac{y}{2} \in \mathbb{N}, y = \text{gerade natürliche Zahl}.$

1.1.11 Komposition

Sei
$$f:X\to Y,g:W\to Z$$
 mit $f(X)\subset W$ $h:=g\circ f$ (g ist verknüpft mit f) $h(x):=(g\circ f)(x):=g(f(x))$

1.1.12 Identität

$$id_M: M \to M$$

 $x \mapsto x$

Sei: $f: M \to N$ bijektiv, dann gilt:

- 1. $f^{-1}: N \to M$ existiert
- 2. $f^{-1} \circ f = id_M$
- 3. $f \circ f^{-1} = id_N$

1.1.13 Restriktion und Fortsetzung

Seien $f: X \to Y$ und $g: X \to A$ Funktionen und $A \subset X$ $g = f|_A$ heißt Restriktion (oder Einschränkung) von f auf A:

$$g := f|_A : A \to Y$$
$$x \mapsto f(x)$$

 $f|_A := g$ heißt Fortsetzung von g auf X:

$$f|_A := g : X \to Y$$

 $x \mapsto g(x)$

Beispiel

$$g:[0,\infty)\to[0,\infty)$$

 $x\mapsto x^2$

$$f: (-\infty, \infty) \to [0, \infty)$$

 $x \mapsto x^2$

1.2 Induktion

Sei
$$\mathbb{N} = \{1, 2, 3, \ldots\}$$
 $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$

1.2.1 Satz 4: Prinzip der vollständigen Induktion

Eine Teilmenge $M \subset \mathbb{N}$ erfülle:

- a) (IA: Induktionsanfang) $1 \in M$.
- b) (IS: Induktionsschritt/Induktionsschritt) Falls $k \in M$ ist, demnach ist auch $k+1 \in M$

dann ist $M = \mathbb{N}$.

Beispiel Aussage: Für alle $n \in \mathbb{N}$

$$A(n) = 1 + 2 + \ldots + n = \frac{n(n+1)}{2}$$

 $M := \{ n \in \mathbb{N} : A(n) \text{ ist wahr } \} \subset \mathbb{N}$

Wissen: $1 \in M$, da A(1) wahr ist

Annahme:

$$k \in M \Longrightarrow A(k)$$
 ist wahr

$$A(k+1): 1+2+\ldots+k+(k+1) = \frac{(k+1)(k+2)}{2}$$

$$\underbrace{1+2+\ldots+k}_{\frac{k(k+1)}{2}} + (k+1) = \frac{k(k+1)}{2} + (k+1) = \frac{(k+1)(k+2)}{2}$$

 $\implies k+1 \in M$ falls $k \in M$ ist! also wegen Satz 4: $M = \mathbb{N}!$

1.2.2 Satz 5: Beweis durch vollständige Induktion

Für alle $n \in \mathbb{N}$ seien Aussagen A(n) gegeben.

Ferner sei:

- (IA) A(1) ist wahr.
- (IS) Unter der Annahme, dass für ein $k \in \mathbb{N}$ die Aussage A(k) wahr ist, ist dann auch A(k+1) wahr
- (IS) Aus A(n) wahr für n=k folgt A(n) wahr für n=k+1Dann ist A(n) wahr f+r alle $n \in \mathbb{N}$

Beweis

Setze man
$$M:=\{n\in\mathbb{N}:A(n) \text{ wahr }\}$$
 $M\subset\mathbb{N}$

1. Wegen (IA) $1 \in M$

2. Wegen (IS) sei $k \in M$, also A(k) wahr, also A(k+1) wahr, also $k+1 \in M$

Wegen Satz 4 fertig!

Beispiel Summen und Produkte

Seien a_1, \ldots, a_n Zahlen

Definition: Teilsumme

$$S_k$$
 durch $S_1 := a_1$

für
$$k \in \mathbb{N} : S_{k+1} := S_k + a_{k+1}$$

Setze
$$a_1 + \ldots + a_n = \sum_{i=1}^n a_i := S_n$$

 \rightarrow Beispiel für eine rekursive Definition

Definition: Produkte

$$p_1 := a_1$$

$$p_{k+1} := p_k \cdot a_{k+1}$$

$$a_1 \cdot \ldots \cdot a_n = \prod_{j=1}^n a_j := p_n$$

$$a^n = \underbrace{a \cdot \dots \cdot}_{\text{n-mal}} := \prod_{j=1}^n a$$

Setzen:

$$\sum_{j=1}^{0} a_j := 0 \qquad \prod_{j=1}^{0} a_j := 1 \qquad a^0 = 1$$

Beispiel Geometrische Summe

Sei
$$a \neq 1, n \in \mathbb{N}_0$$

$$\Longrightarrow \sum_{j=0}^{n} a^{j} = \frac{a^{n+1} - 1}{a - 1}$$

Beweis 1: Induktion

(IA) hier
$$n = 0$$

$$\sum_{j=0}^{0} a^0 = 1 = \frac{a^1 - 1}{a - 1}$$

(IS) Wir nehmen an, dass für $k \in \mathbb{N}$ die Formel für n = k wahr ist.

$$\sum_{j=0}^{k} a^j = \frac{a^{k+1} - 1}{a - 1}$$

IS auf n=k+1

$$\sum_{j=0}^{k+1} a^j = \sum_{j=0}^{k} a^j + a^{k+1}$$

In duktions annahme

$$= \frac{a^{k+1} - 1}{a - 1} + a^{k+1} = \frac{a^{k+1} - 1 + (a - 1)a^{k+1}}{a - 1}$$
$$= \frac{a^{k+2} - 1}{a - 1}$$

Beweis 2: Ohne Induktion

$$S_n := \sum_{j=0}^n a^j$$

$$\implies a \cdot S_n = a \cdot \sum_{j=0}^n a^j = \sum_{j=0}^n a \cdot a^j = \sum_{j=0}^n a^{j+1} = \sum_{j=1}^{n+1} a^j$$

$$\implies a \cdot S_n - S_n = \sum_{j=1}^{n+1} a^j - \sum_{j=0}^{n+1} a^j = a^{n+1} - a^0 = a^{n+1} + 1$$

$$\implies (a-1)S_n = a^{n+1} + 1 \implies S_n = \frac{a^{n+1} + 1}{a-1}$$

1.2.3 Notation: Aussagen

Seien A, B, C, D mathematische Aussagen **Syntax**

• $\neg A$: nicht A

• $A \wedge B$: A und B

• $A \vee B$: A oder B

• $A \Longrightarrow B$: A impliziert B, aus A folgt B

 \bullet $A \iff$: A äquivalent zu B, A genau dann, wenn B

Beispiel

- $(A \Longleftrightarrow B) \Longleftrightarrow ((A \Longrightarrow B) \land (B \Longrightarrow A))$
- $(A \Longrightarrow B) \Longleftrightarrow (\neg B \Longrightarrow \neg A)$

1.2.4 Quantoren

Oft enthalten Aussagen eine freie Variable **Beispiel**

- A(x): x ist eine Primzahl
- $A(n): \sum_{j=1}^{n} j = \frac{n(n+1)}{2}$

Dann gehört eine Grundmenge U, sodass A(x) eine mathematische Aussage ist von $x \in U$ Syntax:

- $\bullet \ \exists \ \mathrm{es} \ \mathrm{gibt}$
- $\bullet \ \forall$ für alle
- $\exists x \in U : A(x) : \text{es gibt ein Element } x \in U, \text{ sodass } A(x) \text{ wahr ist.}$
- $\forall x \in U : A(x) : A(x)$ ist wahr für alle x.

 $\ll \ll HEAD$

1.3 Wohlordnungsprinzip für N

======

1.3.1 Wohlordnungsprinzip für N

»»»> 09287f5bd4118e672f50476379e3f7b015b96050 Wir wollen beweisen $\forall n \in \mathbb{N}: A(x)$ wahr ist **Negation:**

$$\neg(\forall n \in \mathbb{N} : A(x)) = \exists n \in \mathbb{N} : \neg A(x)$$

$$\neg(\exists n \in \mathbb{N} : \neg A(x)) = \forall n \in \mathbb{N} : \neg(\neg A(x)) = A(x)$$

Also: $G = \{n \in \mathbb{N} : \neg A(n)\}$ müssen zeigen, dass $G = \emptyset$

1.3.2 Satz 6

Sei $A \subset \mathbb{N}$, $A \neq \emptyset$, dann hat A ein kleinstes Element! D.h. $\exists n_0 \in A$ mit $\forall k \in A : k \geq n_0$

1.3.3 Satz 7

 $\sqrt{2}$ ist nicht rational.

Angenommen: $\sqrt{2}$ ist rational $\Longrightarrow \exists m \in \mathbb{Z}, n \in \mathbb{N}, \sqrt{2} = \frac{m}{n}$

 $G := \left\{ n \in \mathbb{N} : \exists m \in \mathbb{Z} : \sqrt{2} = \frac{m}{n} \right\} \subset \mathbb{N}$

Wollen: $G = \subset$

Angenommen: $G \neq \emptyset \Longrightarrow G$ hat ein kleinstes Element (Satz 6)

 $\sqrt{2} = \frac{m}{n_0}$: dann sist $m - n_0 = (\sqrt{2} - 1)n_0 \Longrightarrow 0 < m - n_0 < n_0$ also $m - n_0 \in \mathbb{N}$

 $\implies \sqrt{2} = \frac{m}{n_0} = \frac{m(m - n_0)}{n_0(m - n_0)} = \frac{m^2 - m \cdot n_0}{n_0(m - n_0)} = \frac{2n_0^2 - m \cdot n_0}{n_0(m - n_0)} = \frac{2n_0 - m}{m - n_0}$ Also hat G kein kleinstes Element $\implies G = \emptyset$

1.3.4 Satz 8

 $K \in \mathbb{N}$, damit $\sqrt{k} \subset \mathbb{N}$ oder irrational

Beweis

Negation: $\sqrt{k} \notin \mathbb{N}$ und \sqrt{k} ist rational

Annahme: $\sqrt{k} \in G \backslash \mathbb{N}$

$$G:=\left\{n\in\mathbb{N}:\exists m\in\mathbb{Z}:\sqrt{k}=\tfrac{m}{n}\right\}\subset\mathbb{N}$$

Wollen: $G = \emptyset!$

Angenommen
$$G \neq \emptyset$$
. Sei n_0 kleinstes Element in G

$$\sqrt{k} = \frac{m}{n_0} = \frac{m(m-n_0)}{n_0(m-n_0)} = \frac{m^2 - m \cdot n_0}{n_0(m-n_0)} = \frac{k \cdot n_0^2 - m \cdot n_0}{n_0(m-n_0)} = \frac{k \cdot n_0 - m}{m-n_0}$$

$$\implies k > 1$$

Für Widerspruch brauchen wir:

$$0 < m - n_0 < n_0$$

$$m - n_0 = \sqrt{k} \cdot n_0 - n_0 = (\sqrt{k} - 1)n_0 > 0, \sqrt{k} > 1$$

$$m - n_0 = (\sqrt{k} - 1)n_0 < n_0$$

D.h.
$$\sqrt{k} - 1 < 1 \Longrightarrow \sqrt{k} < 2 \Longrightarrow k < 4$$

$$k \leq 3 \Longrightarrow (Bullshit)$$

Versuchen mal
$$m-l\cdot n_0, l\in\mathbb{N}$$
 geeignet $\sqrt{k}=\frac{m}{n_0}=\frac{m(m-l\cdot n_0)}{n(m-l\cdot n_0)}=\frac{k\cdot n_0-l\cdot n_0}{n(m-l\cdot n_0)}, k\cdot n_0-l\in\mathbb{Z}$

Brauchen: $0 < m - l \cdot n_0 < n_0 \iff 0 < (\sqrt{k} - l)n_0 < n_0$

Brauchen: $0 < \sqrt{k} - l < 1$, wähle $l \in \mathbb{Z}$, sodass $l < \sqrt{k} < l + 1$

sollte möglich sein, falls $\sqrt{k} \notin \mathbb{N}$

1.4 Körper- und Anordnungsaxiomen

Beispiel 0 ist eindeutig! Sei 0' auch neutrales Element der Addition

$$\implies 0 = 0' = 0$$

 $0 = 0 + 0' = 0' + 0 = 0'$
 $0' + 0 = 0'$

Beispiel a + x = b hat eine eindeutige Lösung x = b + (-a) = b - a

Sei
$$a + x = b \Longrightarrow (-a) + (a + x) = (-a) + b$$

 $\Longrightarrow ((-a) + a) + x = b + (-a)$
 $\Longrightarrow 0 + x = b + (-a)$

Wenn x = b + (-a)

$$\implies a + x = a + (b + (-a)) = b + ((-a) + a)$$

= $b + (a + (-a))$
= $b + 0 = b$

In jedem Körper gilt:

$$\frac{a}{c} + \frac{b}{d} = \frac{ad + bc}{cd}$$

$$\frac{a}{c} \cdot \frac{b}{d} = \frac{ab}{cd}$$

$$\frac{\frac{a}{c}}{\frac{b}{d}} = \frac{ad}{bc}$$

1.4.1 Satz 13

Sei \mathbb{K} ein angeordneter Körper, $a, b, c, d, x, y \in \mathbb{K}$ Dann gilt:

1.
$$a > b \iff a - b > 0$$

$$2. \ a > b \land c > b \Longrightarrow a + c > b + a$$

3.
$$a > 0 \land x > y \Longrightarrow ax > ay$$

$$4. \ a > 0 \Longleftrightarrow -a < 0$$

5. Vorzeichenregeln:

a)
$$x > 0; y < 0 \Longrightarrow xy < 0$$

b)
$$a < 0; x > y \Longrightarrow ax < ay$$

Beweis

1. Sei
$$a > b \Longrightarrow a - b = a + (-b) > b + (-b) = 0$$

Sei $a - b > 0 \stackrel{(O4)}{\Longrightarrow} a = b + (a - b) > b$

2. Sei
$$a > b, c > d \stackrel{(O4)}{\Longrightarrow} a + c > b + d$$
 und $b + c > b + d \stackrel{(O1)}{\Longrightarrow} a + c > b + d$

3. Sei
$$a > 0, x > y \stackrel{\text{(1.)}}{\Longrightarrow} x - y > 0 \stackrel{\text{(05)}}{\Longrightarrow} a(x - y) > 0$$

$$\Longrightarrow ax - ay > 0 \Longrightarrow ax > ay$$

4. Aus
$$a > 0 \xrightarrow{O(4)} (-a) = (-a) + 0 < (-a) + a = 0$$

Aus $a < 0 \xrightarrow{O(4)} (-a) + a < 0 + a = a$

5. Folgt aus (4) und (O5)

 \implies fertig.

1.4.2 Satz 14

Sei $(\mathbb{K}, +, \cdot)$ ein angeordneter Körper \Longrightarrow

1.
$$a \neq 0 \Longrightarrow a^2 > 0$$
 insbesondere $1 > 0$

$$2. \ a>0 \Longrightarrow \frac{1}{a}>0$$

3.
$$a > b > 0 \Longrightarrow \frac{1}{a} < \frac{1}{b} \text{ und } \frac{a}{b} > 1$$

Beweis

1.
$$a^2 = a \cdot a$$

aus $a > 0 \xrightarrow{(O5)} a^2 = a \cdot a > 0$
aus $a < 0 \xrightarrow{(S15(5))} a \cdot a > 0$

2. Sei
$$a \neq 0 \Longrightarrow a \cdot \frac{1}{a} = 1 > 0 \stackrel{(S1(5))}{\Longrightarrow} a > 0 \land \frac{1}{a} > 0$$
 oder $a < 0 \land \frac{1}{a} > 0$

3. Sei
$$a > b > 0 \xrightarrow{(2)} \frac{1}{a} > 0$$
; $\frac{1}{b} > 0$; $a \cdot b > 0$; $a - b > 0$ (S13(1))
$$\implies \frac{1}{b} - \frac{1}{a} = \frac{1}{b}(a - b)\frac{1}{a} = (a - b)\frac{1}{b} \cdot \frac{1}{a} > 0$$

fertig

Vorliegende Definition: Die \mathbb{R} sind ein geordneter Körper (da fehlt noch was)

1.4.3 Absolutbetrag

$$|x| = \begin{cases} x, & \text{falls } x > 0\\ 0, & \text{falls } x = 0\\ -x, & \text{falls } x < 0 \end{cases}$$

1.4.4 Signumfunktion / Vorzeichenfunktion

$$sign(x) = \begin{cases} 1, & \text{falls } x > 0 \\ 0, & \text{falls } x = 0 \\ -1, & \text{falls } x < 0 \end{cases}$$

1.4.5 Min- und Max-Funktion

$$max(x,y) = \begin{cases} x, & \text{falls } x > y \\ y, & \text{falls } y \ge x \end{cases}$$
$$min(x,y) = \begin{cases} x, & \text{falls } x < y \\ y, & \text{falls } y \le x \end{cases}$$

1.4.6 Folgerungen

1.
$$\forall x \in \mathbb{R}; x = |x| sgn(x)$$

 $|-x| = |x|; x \le |x|$

2.
$$\forall x \neq 0 : |x| > 0$$

3.
$$\forall x, y \in \mathbb{R} : |x \cdot y| = |x| \cdot |y|$$

 $sgn(x \cdot y) = sgn(x) \cdot sgn(y)$

4.
$$\forall x \in \mathbb{R}, \forall e > 0$$

hat $|x - a| < e \iff a - e < x < a + e$
insbesondere $|x| < e \iff -e < x < e$

5. TODO: Stimmt das so?
$$|x| = max(x, -x)$$

Beweis: einfach

1.4.7 Satz 15: Dreiecksungleichung

$$\forall a, b \in \mathbb{R} : |a+b| \le |a| + |b|$$
$$||a| - |b|| \le |a-b|$$

Beweis

Falls
$$a + b \ge 0 \Longrightarrow |a + b| = a + b \le |a| + b \le |a| + |b|$$

Falls
$$a + b < 0 \Longrightarrow -(a + b) > 0 \Longrightarrow |a + b| = -(a + b)$$

= $(-a) + (-b) \le |-a| + (-b) \le |-a| + |-b| = |a| + |b|$
 $|a| = |(a - b) + b| \le |a - b| + |b| \Longrightarrow |a| - |b| \le |a - b|$

Vertausche a und b

$$|b| - |a| \le |b - a| = |-(a - b)| = |a - b| = -(|a| - |b|)$$

 $\implies ||a| - |b|| = max(|a| - |b|, -(|a| - |b|) \le |a - b|$

fertig

1.4.8 Satz 16: Abstandsungleichung

 $\forall a, b, c \in \mathbb{R} : d(a, c) \le d(a, b) + d(b, c)$ Beweis

$$d(a,c) = |a-c| = |(a-b) + (b-c)| \le |a-b| + |b-c|$$

= $d(a,b) + d(b,c)$

fertig

1.5 Obere und untere Schranken, Supremum und Infimum

1.5.1 Obere und Untere Schranken

Sei $A \subset \mathbb{K}$, \mathbb{K} ein geordneter Körper.

A heißt nach oben beschränkt falls $\exists \alpha \in \mathbb{K}, \forall a \in A : a \leq \alpha$.

Schreiben $A \leq \alpha$. α heißt obere Schranke von A.

A heißt nach unten beschränkt falls $\exists \beta \in \mathbb{K}, \forall a \in A : \beta \leq a$

Schreiben $\beta \leq A$. β heißt untere Schranke von A

1.5.2 Maximum und Minimum

A heißt maximales Element (oder Maximum) von A, falls α obere Schranke für A ist und $\alpha \in A$

Aheißt minimales Element (oder Minimum) von A
, falls β untere Schranke für Aist und
 $\beta \in A$

Beweis Falls Maximum existiert, dann ist es eindeutig. Genauso für das Minimum.

B. H.A

$$A = \{x \in \mathbb{R}, x > 0\}, \inf(A) = 0$$

A hat kein Minimum, da $0 \notin A$

$$B = \{x : x < 0\}, \sup(B) = 0$$

1.5.3 Definition 18: Supremum, Infimum

$$A\subset \mathbb{R}, A\neq \emptyset$$

 $\sup(A) = \sup A :=$ kleinste obere Schranke von A

 $\inf(A) = \inf A := \text{größte untere Schranke von } A$

1.5.4 Lemma 19

Sei α eine obere Schranke für $A \neq \emptyset$. Dann gilt

$$\alpha = \sup(A) \iff \forall \epsilon > 0 \exists a_{\epsilon} \in A : \alpha - \epsilon < a_{\epsilon} \pmod{\alpha - \epsilon} \leq a_{\epsilon}$$

Beweis

Sei $\alpha = \sup(A)$ und $\epsilon > 0 \Longrightarrow \alpha - \epsilon$ ist keine obere Schranke für A.

Also
$$\exists a_{\epsilon} \in A : \alpha - \epsilon < a_{e} \checkmark$$

"←" Beweis durch Kontraposition.

N.B.:
$$(E \Longrightarrow F) \Longleftrightarrow (\neg F \Longrightarrow \neg E)$$

$$\neg(\alpha = \sup(A)) = \alpha > \sup(A)$$

$$\neg(\forall \epsilon > 0 \exists a_{\epsilon} \in A : \alpha - \epsilon < a_{\epsilon})$$

$$\exists \epsilon > 0 \ \forall a_{\epsilon} \in A : \alpha - \epsilon \ge a_{\epsilon}$$

Annahme: $\alpha > \sup(A)$

Wählen: $\epsilon := \alpha - \sup(A)$

Damit gilt: $\forall a \in A : a \leq \sup(A) = \alpha - \epsilon$

1.5.5 Definition 20: Vollständigkeitsaxiom

Die reellen Zahlen \mathbb{R} sind der angeordnete Körper in dem jede nicht leere Menge die nach oben beschränkt ist ein Supremum hat.

Oder: R ist der ordnungsvollständige Körper.

Beispiel

$$\sup(\{x \in \mathbb{R}, x < 0\}) = 0$$

 $\sup(\{x \in \mathbb{R}, x^2 < 2\})$ hat ein Suprenum (später: das Suprenum ist $\sqrt{2}$)

 $<\!\!<\!\!< \mathrm{HEAD}$

1.5.6 Die Menge $\bar{\mathbb{R}}$

======

Die Menge $\bar{\mathbb{R}}$

 $\verb|www> 09287f5bd4118e672f50476379e3f7b015b96050|$

Die Menge $\mathbb{R} := \mathbb{R} \cup \{\infty\} \cup \{-\infty\}$ erweitert die Zahlengerade

Es gilt: $-\infty < x < \infty \forall x \in \mathbb{R}$

Regeln:

- $\bullet \ \infty + x := \infty$
- $\bullet \ -\infty + x := -\infty$
- $\bullet \ \infty \cdot x := \infty, \quad x > 0$
- $\infty \cdot x := -\infty$, x < 0
- $\frac{x}{\infty} := 0 = \frac{x}{-\infty}$
- $\infty + \infty := \infty$
- $\bullet \ -\infty -\infty := -\infty$
- $\bullet \ \infty \cdot \infty := \infty$
- $\infty \cdot (-\infty) := -\infty$

Nicht definiert:

- $\bullet \infty \infty$
- $0 \cdot \infty$

1.5.7 Intervalle

- $a \le b$ $[a, b] := \{x \in \mathbb{R} : a \le x \le b\}$ abgeschlossenes Intervall
- $a \le b$ $(a,b) := \{x \in \mathbb{R} : a < x < b\}$ offenes Intervall
- $[a,b) := \{x \in \mathbb{R} : a \le x < b\}$ rechts halboffenes Intervall
- $(a,b] := \{x \in \mathbb{R} : a < x \le b\}$ links halboffenes Intervall

- $(-\infty, a] := \{x \in \mathbb{R} : x \le a\}$
- $\bullet \ (-\infty, a) := \{ x \in \mathbb{R} : x < a \}$
- $[a, \infty) := \{x \in \mathbb{R} : x \ge a\}$
- $(a,\infty) := \{x \in \mathbb{R} : x > a\}$

Beweis $\sup([a,b]) = \sup([a,b)) = b$, falls a < bWenn eine Menge A ein Maximum hat \Longrightarrow Supremum ist gleich dem Maximum

1.5.8 Supremum und Infimum der leeren Menge

Setzen:

$$\sup(\emptyset) := -\infty$$
$$\inf(\emptyset) := +\infty$$

 $\ll \ll HEAD$

1.6 Definition von $\mathbb N$ als Teilmenge von $\mathbb R$

1.6.1 Definition von $\mathbb N$ als Teilmenge von $\mathbb R$

>>> 09287f5bd4118e672f50476379e3f7b015b96050

1.6.2 Definition 21

Eine Menge $A \subset \mathbb{R}$ heißt induktiv falls:

- 1. $1 \in A$
- 2. Falls $k \in A$, dann ist $k + 1 \in A$

Beispiel

 $A = [1, \infty)$ ist induktiv.

 $A := \{1\} \cup [1+1,\infty)$ ist induktiv

 $\mathbb{N}:=$ kleinste induktive Teilmenge von \mathbb{R}

$$:= \bigcap_{A \text{ist induktiv}} A \qquad \qquad \text{A ist induktiv}$$

1.6.3 Satz 21: Induktionsprinzip

Ist $M \subset \mathbb{N}$, mit

- $1.\ 1\in M$
- 2. Aus $k \in M$ folgt $k+1 \in M$

$$\iff M = N$$

1.6.4 Satz 22

- 1) $\forall n \in \mathbb{N} : n \ge 1 \text{ oder } n \le 1+1 \text{ und } n=1 \text{ oder } n-1 \in \mathbb{N}$
- 2) $\forall n, m \in \mathbb{N} : n + m \in \mathbb{N} \text{ und } n \cdot m \in \mathbb{N}$
- 3) $\forall n, m \in \mathbb{N} n \ge m \implies n m \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}$
- 4) Sei $n \in \mathbb{N}$ Dann existiert kein $m \in \mathbb{N}$ mit n < m < n + 1
- 5) Sei $A \subset \mathbb{N} : A \neq \emptyset \implies A$ hat ein kleinstes Element

Beweis Sei $\tilde{A}=\{1\}\cup[2,\infty)$ ist induktiv $\implies \mathbb{N}\subset B \implies n=1$ oder $n\geq 2$

- a_1) $1 \in A : klar$
- a_2) $1+1 \in A : klar$
- $b) \text{ Sei } k \in A, k \neq 1 \implies 1 \leq k-1 \in \mathbb{N}$ $\text{folgt } 1+1 \leq (k-1)+1=k \in \mathbb{N}$ $\text{und } (k+1)-1=k \geq 1+1 \geq 1 \implies k+1 \in A$ $\implies A \subset \mathbb{N} \text{ ist induktiv } \implies A=\mathbb{N} \implies \underline{1})$

 $B:=\{n\in\mathbb{N}: \text{für } m\in\mathbb{N} \text{ mit } m\leq n \implies n-m\in\mathbb{N}_0\}$

- a) $1\in B,$ da $m\in \mathbb{N}$ und $m\leq 1\underbrace{\Longrightarrow}_{1)}m=1\implies n-m=1-1=0$
- b) Sei $k \in B$ und $m \in \mathbb{N}$ mit $m \le k+1$

Falls
$$m = 1 \implies (k+1) - 1 = k \in \mathbb{N} \implies k+1 \in B$$

Falls $1 < m \in \mathbb{N} \implies m - 1 \in \mathbb{N} \text{ (da } A = \mathbb{N})$

$$\implies \mathbb{N}_0 \ni k - (m-1) = (k+1) - m \implies k+1 \in B$$

- $\implies B \text{ ist induktiv } \implies B = \mathbb{N} \implies 3)$
- **2)** Gegeben: $m \in \mathbb{N} : C := \{n \in \mathbb{N} | n + m \in \mathbb{N}\}$

Zeige C ist induktiv!

Für $m \cdot n$ analog

4) Aus $n, m \in \mathbb{N}$ und n < m < n + 1

$$\implies 0 < \underbrace{m-n}_{\in \mathbb{N} \text{ nach 3)}} < 1 \ (\mbox{$\frac{\ell}{2}$ zu 1)}$$

- **5)** Sei $M \subset \mathbb{N}$, ohne ein kleinstes Element
 - \implies 1 ist kleinste Element von \mathbb{N} \implies 1 \notin M

$$D := \{n \in \mathbb{N} : n < M\} = \{n \in \mathbb{N} : \forall m \in M : n < m\}$$
 Wissen:

- **a)** $1 \in D$
- **b)** Sei $k \in D$ d.h. $k < m \forall m \in M$

$$\implies D$$
 ist induktiv $\implies D = \mathbb{N} \implies M \subset \mathbb{N} \setminus D = \mathbb{N} \setminus M = \emptyset$ (q.ed)

1.6.5 Satz 23

 \mathbb{R} ist Archimedisch angeordnet $\mathbb{N} \subset \mathbb{R}$ ist <u>nicht</u> nach oben beschränkt insbesondere $\forall a > 0, b \in \mathbb{R} \exists n \in \mathbb{N} : n \cdot a > b$

Beweis

Angenommen \mathbb{N} ist nach oben beschränkt $\Longrightarrow_{vollst.Axiom} a = Sup\mathbb{N} \in \mathbb{R}$

$$\implies \alpha-1$$
ist keine obere Schranke für $\mathbb N$

$$\implies \exists n \in \mathbb{N}, n > \alpha - 1 \iff \underbrace{n + 1}_{\in \mathbb{N}} > \alpha \not$$

Wähle
$$x = \frac{b}{a} \in \mathbb{R} \implies \exists n \in \mathbb{N} : n > x = \frac{b}{a} \underbrace{\Longrightarrow}_{a>0} n \cdot a > b \text{ (q.ed)}$$

1.7 Ganze und rationale Zahlen

$$\mathbb{Z} := \mathbb{N}_0 \cup (-\mathbb{N}), -\mathbb{N} := \{-n, n \in \mathbb{N}\}$$

$$\mathbb{Q} := \{\frac{m}{n} : m \in \mathbb{Z}, n \in \mathbb{N}\}$$

1.7.1 Satz 24

 $(\mathbb{Z}, +, \cdot)$ ist ein kommutativer Ring mit Eins, d.h. alle Körperaxiome sind erfüllt. Aber es gibt kein inverses Element der Multiplikation. $(\mathbb{Q}, +, \cdot)$ ist ein angeordneter Körper.

Notation

$$\mathbb{Z}_p := \{ m \in \mathbb{Z} : m \ge p \}$$
$$p \in \mathbb{Z} := p + \mathbb{N}_0$$

Alle

 $k \mapsto k + p - 1$ bildet \mathbb{N} bijektiv auf \mathbb{Z}_p ab.

- \Rightarrow Alle Eigenschaften von \mathbb{N} gelten auch für $\mathbb{Z}_p \forall p \in \mathbb{Z}$
- \Rightarrow Lemma 25: Jede nach unten bzw. oben beschränkte Teilmenge $\neq \emptyset$ von $\mathbb Z$ besitzt ein Minumum bzw. ein Maximum

1.7.2 Korollar 26

- 1) Seien $x, y \in \mathbb{R}, y \cdot x > 1$ $\implies m \in \mathbb{Z}, x < m < y$
- 2) (\mathbb{Q} ist dicht in \mathbb{R}) Seien $x, y \in \mathbb{R}, x < y \implies \exists r \in \mathbb{Q} : x < r < y$

Beweis

- 1) Sei y x > 1, $A := \{m \in \mathbb{Z} : m > y\} \neq \emptyset$ \implies Sei $n_0 = min(A)$ existiert $\in \mathbb{Z}$ $\implies n_0 \in A : n_0 \ge y \text{ und } n_0 - 1 < y$ $m := n_0 - 1 \in \mathbb{Z} \text{ und } m + 1 \ge y, n < y$ $\implies m > y - 1 > x \implies x < m < y$
- 2) Sei $x, y \in \mathbb{R} : x < y \iff a : -y x > 0$ S.23 $\implies \exists n \in \mathbb{N} : n \cdot a > 1 \iff n \cdot x - n \cdot y > 1$ $\implies \exists m \in \mathbb{Z} : n \cdot x < m < n \cdot y \iff x < \frac{m}{n} < y$

1.8 Endliche und abzählbare Mengen

1.8.1 Definition 27 (Cantor)

A, B Mengen heißen gleichmächtig (oder äquivalent) $A \sim B$, falls es eine Bijektion $f:A \to B$ gibt.

B heißt mächtiger als A, $|A| \leq |B|$, falls es eine Injektion $f: A \to B$ gibt.

Bemerkung

- 1) $A \sim B$ ist eine Äquivalenzrelation, d.h. reflexiv $(A \sim A)$, symmetrisch $(A \sim B) \implies B \sim A$ und transitiv $(A \sim B, B \sim C) \implies A \sim C$
- 2) $A \leq \mathbb{R} \iff \exists \text{ Surjektion } h: B \to B$

3) (Cantor) Bernsten-Schröder-Theorie $|A| \leq |B|$ und $|B| \leq |A| \iff A \sim B$

1.8.2 Definition 28

Sei
$$n \in \mathbb{N}_0[0] := \emptyset$$
 und rekursiv $[n+1] = [n] \cup [n+1]$ ($\implies ([n] := \{k \in \mathbb{N} : 1 \le k \le n\})$

Endlich

Eine Menge A heißt endlich, falls $\exists n \in \mathbb{N}_0 \text{ mit } A \sim [n]$, sage A hat n Elemente card(A) := n (Kardinalität)

 $card\emptyset = 0$ Eine Menge A ist unendlich, falls sie nicht endlich ist.

A heißt abzählbar (abzählbar unendlich), falls $A \sim \mathbb{N}$

A ist höchstens abzählbar, falls A endlich ist oder abzählbar ist, ansonsten heißt sie überabzählbar.

Bemerkung

- 1) A höchstens abzählbar $\iff \exists$ Surjektion $f: \mathbb{N} \to A$
- 2) Unendliche Mengen sind schwierig

$$G = \{n \in \mathbb{N} : \text{n ist gerade}\} = \{2 \cdot n : n \in \mathbb{N}\}$$

 $f : \mathbb{N} \to G, n \mapsto 2n \text{ ist bijektiv, d.h. } \mathbb{N} \sim G$

- 3) Hilberts Hotel
- 4) $[0,1] \sim [0,1)$

Beweis Konstruieren
$$f:[0,1] \to [0,1)$$

Für $x \in [0,1] \setminus (\bigcup_{n \in \mathbb{N}} \{\frac{1}{n}\}) : f(x) = x$
 $n \in \mathbb{N} : f(\frac{1}{n}) := \frac{1}{n+1}$ Rechne nach f ist bijektiv!

1.8.3 Satz 29

- 1) $A \sim [n], A \sim [m] \implies n = m$ (d.h. Kardinalität ist eindeutig)
- 2) ist $A \in B, B$ endlich $\implies A$ endlich
- 3) A, B endlich und disjunkt $\implies card(A \cup B) = (cardA + cardB)$

Beweis

1)
$$\Longrightarrow$$
 $[n] \sim [m]$ durch Induktion \Longrightarrow $n=m$
Fall $n=1$ (CHECK!)
 $n \to n+1$: IA $\tilde{\phi}:[n] \to [m]$
bijektiv \Longrightarrow $n=m$

- 2) Sei $\phi: [n+1] \to [m+1]$ Bijektion: Durch Vertauschen von 2 Elementen kann man erreichen, dass $\phi(n+1) = m+1 \implies \phi|_{[n]}: [n] \to [n]$ bijektiv $\implies n = m \implies m+1 = m$ (WTF?) (q.ed)
- 3) Beweis der Induktion: einfach.
- 4) Sei $A \sim [n], b \sim [m] \implies B \sim m + [n] := \{k \in \mathbb{N} : n+1 \le k \ leq m + n\} \implies A \cup B \sim [n] \cup (m+[n]) = [n+m]$

Lemma 30

Jede endliche Teilmenge von $\mathbb R$ hat ein Minimum und ein Maximum

Beweis
$$A = \{a_1\}$$

Ist
$$A = \{a_1, a_{n+1}\}$$
 und $C := min\{a_1, a_n\} \implies minA = min(C, a_{n+1})$

1.8.4 Satz 31

- 1) Ist A < B, B höchstens abzählbar $\implies A$ höchstens abzählbar
- 2) Jede unendliche Menge besitzt eine abzählbare Teilmenge
- 3) A, B abzählbar $\implies A \times B$ abzählbar insbesondere $\mathbb{N} \times \mathbb{N}$ abzählbar
- 4) Sei $\{A_k\}$ eine höchstens abzählbare Menge von Menge A_3, A_2 höchstens abzählbar $\implies \bigcap_k A_k$ ist höchstens abzählbar

Beweis

- 1) O.B.d.A $B = \mathbb{N}$, also $A \subset \mathbb{N}$ $\implies A$ hat ein kleinstes Element a_1 $\implies A\{a_1\}$ hat ein kleinstes Element a_2 usw... ist $A_n = \emptyset \implies A$ ist endlich, ansonsten $A = \{a_1, a_2, a_3, \ldots\}$ Bijektion $f : \mathbb{N} \to A, n \mapsto a_n \implies A$ ist abzählbar
- 2) ist A unendlich \Longrightarrow wähle $a_1 \in A$ $a_2 \in A \setminus \{a_1\} =: A_1$ induktiv $a_{n+1} \in A_n := A_{n+1} \setminus \{a_n\}$ $\Longrightarrow \{a_1, a_2, \ldots\}$ abzählbar
- 3) Da $A\sim \mathbb{N}, B\sim \mathbb{N} \implies$ reicht zu zeigen $\mathbb{N}\times \mathbb{N}$ ist abzählbar, da $\mathbb{N}\times \mathbb{N}$ unendlich ist \implies zu zeigen $\mathbb{N}\times \mathbb{N}$
- 4) ist höchstens abzählbar

$$\phi(m,n) = 2^m \cdot 3^n$$

 $\phi: \mathbb{N} \times \mathbb{N} \implies \mathbb{N}$ ist injektiv

In der Tat: Sei $\phi(m,n) = \phi(p,q)$

d.h.
$$2^m \cdot 3^n = 2^p \cdot 3^q$$

o.B.d.A $p \ge m$
 $\implies 3^n = 2^{p-m} \cdot 3^q$
 $\implies p = m$
 $\implies n = q$

5) Schreiben
$$A_k = \{a_{kn} : \underbrace{1 \leq n \leq P_k}_{endlich}, P_k \in \mathbb{N} \text{ oder } \underbrace{1 \leq n \in \mathbb{N}}_{unendlich}\}$$

Falls A_k paarweise disjunkt sind. Dann erzeugt diese Nummerierung von A_k eine Injektion.

$$a_{kn}\mapsto (kn)$$
von $A=\bigcup_{k\in I}A_k\to \mathbb{N}\times \mathbb{N}\leftarrow \mathbf{abz\ddot{a}hlbar}$

sind $A_k, k \in I$ nicht paarweise disjunkt:

$$B_1 = A_1, B_2 = A_2 \backslash A_1,$$

$$B_{n+1} = A_{n+1} \setminus \{A_1 \cup A_2 \cup \ldots \cup A_n\}$$

 $\implies B_k$ sind paarweise disjunkt und höchstens abzählbar

 $\implies \bigcup_k A_k$ ist höchstens abzählbar

1.8.5 Korollar 32

G ist abzählbar

Beweis
$$\mathbb{G} = \{\frac{m}{n} : m \in \mathbb{Z}, n \in \mathbb{N}\}$$
 ,,C" $\{(m,n), m \in \mathbb{Z}, n \in \mathbb{N}\}$

Bemerkung

Es gibt eine explizite Abbildung von \mathbb{Q} mittels eines Baumes. Literatur: Neil Calkin, Herbert Will: Recounting the Rationals

1.8.6 Satz 33

A enthalte mindestens 2 Elemente $\implies A^{\mathbb{N}} = \{f : \mathbb{N} \to A\}$ überabzählbar

1.8.7 Lemma 34 (Cantor)

Sei A eine Menge \implies Es existiert <u>keine</u> surjektive Abbildung $f: A \to P(A) =======$

Bemerkung Es gibt eine explizite Abbildung von \mathbb{G} mittels eines Baumes. Literatur: Neil Calkin, Herbert Will: Recounting the Rationals

Satz 33

A enthalte mindestens 2 Elemente $\implies A^{\mathbb{N}} = \{f : \mathbb{N} \to A\}$ überabzählbar

Lemma 34 (Cantor)

Sei A eine Menge \implies Es existiert <u>keine</u> surjektive Abbildung $f: A \to P(A) \gg \gg >$ 09287f5bd4118e672f50476379e3f7b015b96050

Beweis Sei $f: A \to P(A)$

d.h.
$$\forall x \in A : 2(x) \subset A$$

$$B := \{ x \in A : x \notin f(x) \} \subset A$$

wäre f surjektiv

$$\implies \exists x \in A, f(x) = B$$

1. Fall:
$$x \in B = f(x) \implies x \notin f(x) \notin A$$

2. Fall:
$$x \notin B = f(x) \implies x \in B = f(x) \notin A$$

⇒ f ist nicht surjektiv!

1.8.8 Korollar 36

Sei
$$I := [a, b]$$
, oder $(a, b) \subset \mathbb{R}$

$$a < b \implies I$$
 ist überabzählbar

Beweis Skalieren
$$\implies$$
 o.B.d.A. $a = 0, b = 1$ zu $f \in \{0, 1\}^{\mathbb{N}}$

Dezimalbruchentwicklung:

$$x_f := \sum_{n=1}^{\infty} f(n) \cdot 10^{-n} \in [0, 1]$$

beachte: $f_1 + f_2 \implies xf_1 + xf_2$

1.9 Einfache Folgerung aus Induktion

1.9.1 Satz 37 (Bernoulli)

 $\forall x \in \mathbb{N}, x > -1 \mid (1+x)^n \geq 1 + nx$ und Ungleichung ist strikt (d.h. > gilt, falls $n \ge 2, x \ne 0$

Beweis IA $n = 0 \mid (1+x)^0 = 1 + 0x$

Im Ange. gilt:
$$(1+x)^k > 1+kx$$

Beweis IA
$$n = 0 \mid (1+x)^0 = 1+0x$$

Im Ange. gilt: $(1+x)^k \ge 1+kx$
 $implies(1+x)^{k+1} = (1+x)^k \cdot \underbrace{(1+x)}_{>0} \ge (1+kx)(1+x)$
 $= 1 + (k+1)x = 1 + (k+1)x + kx^2 \ge 1 + (k+1)x$

$$= 1 + (k+1)x = 1 + (k+1)x + kx^{2} \ge 1 + (k+1)x$$

1.9.2 Definition 38

$$0! = 1$$
 $n \in \mathbb{N}_0 | (n+1)! := n! (n+1)$ d.h. $n! = 1 \cdot 2 \cdot 3 \dots n)$ «««< HEAD $0 \le k \le n | \binom{n}{k} := \frac{k!}{k!(n-k)!}$ Binominialkoeffizient

1.9.3 Lemma 39

$$1 \leq k \leq n$$

$$\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$$

$$======0 \leq k \leq n |\binom{n}{k} := \frac{n!}{k!(n-k)!}$$
 Binominial
koeffizient

Lemma 39

$$1 \leq k \leq n$$

$$\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$$
***> 09287f5bd4118e672f50476379e3f7b015b96050 **Beweis**

$$\binom{n}{k-1} + \binom{n}{k} = \frac{(k-1)!}{(k-1)!(n-k-1)!} + \frac{k!}{k!(n-k)!}$$

$$= \frac{kn! + (n-1-k)n!}{k!(n+1-k)!} = \binom{n+1}{k}$$

1.9.4 Binomischer Lehrsatz

 $\forall a,b \in \mathbb{R} \text{ oder } a,b, \in \mathbb{K} \text{ (K\"{o}rper) } \forall n \in \mathbb{N}_0$

$$(a+b)^n = \sum_{l=0}^n \binom{n}{l} a^{n-l} b^l$$

= $a^n + \binom{n}{1} a^{n-1} b^1 + \binom{n}{2} a^{n-2} b^2 + \dots + \binom{n}{n-1} a b^{n-1} + b^n$

Beweis a = 0 klar, $a \neq 0, a + b)^n = a^n (1 + \frac{b}{a})^n$ \implies zu Zeigen:

$$(1+x)^n = \sum_{l=0}^n \binom{n}{l} x^l$$

a)
$$n = 0$$

$$(1+x)^0 = 1 = \sum_{l=0}^{0} {0 \choose l} x^l$$

b) Induktionsannahme für n = k gilt:

$$(1+x)^{k+1} = \sum_{l=0}^{k} {k \choose l} x^{l} + \underbrace{\sum_{l=0}^{k} {k \choose l} x^{l+1}}_{\sum_{l=1}^{k+1} {k \choose l-1} x^{l}}$$

$$\binom{k}{0} + \sum_{l=1}^{k} \binom{k}{l} x^{l} + \sum_{l=1}^{k} \binom{k}{l-1} x^{l} + x^{k+1}$$

$$1 + \sum_{l=1}^{k} \underbrace{\left(\binom{k}{l} + \binom{k}{l-1} \right)}_{=\binom{k+1}{l}} x^{l} + x^{l+1}$$

2 Folgen und Konvergenz

$$(a_1, a_2 \dots a_n) \ a_n$$
 Zahlen

2.1 Definition 1

Eine (reelle) Folge ist eine Funktion $f: \mathbb{N} \to \mathbb{R}, n \mapsto f(n) =: a_n$

Notation:

$$a_n = f(n), (a_n)_{n \in \mathbb{N}}, (a_n)_n$$

Bemerkung:

$$(a_n)_n$$
 ist nicht $\{a_1, a_2, \ldots\}$ z.B. $a_n = 1 \implies \{a_1, a_2, \ldots\} = \{1\}$

2.2 Definition 2: Konvergenz:

Sei $(a_n)_n$ eine Folge reellen Zahlen $(a_n)_n$ konvergiert gegen $L \in \mathbb{R}$ Genau dann, wenn: $\forall \epsilon > 0 \exists k_\epsilon \in \mathbb{N} : \forall n \geq k_\epsilon : |a_n - L| < \epsilon$ Schreiben

$$a_n \to L, n \to \infty$$
, oder $a_n \to L$

$$\lim_{n \to \infty} a_n = L, \lim a_n = L$$

 $(a_n)_n$ ist divergent, wenn sie nicht konvergiert.

Alternative Definitionen

$$(\forall \epsilon > 0 \exists k_{\epsilon} \in \mathbb{N} : \forall n \geq k_{\epsilon} : |a_{n} - L| < \epsilon)$$

$$\iff (\forall \epsilon > 0 \exists k_{\epsilon} \in \mathbb{N} : \forall n \geq k_{\epsilon} : |a_{n} - L| \leq \epsilon)$$

$$\iff \left(\forall l \in \mathbb{N} \exists k_{\epsilon} \in \mathbb{N} : \forall n \geq k_{\epsilon} : |a_{n} - L| < \frac{1}{l}\right)$$

$$\iff \left(\forall l \in \mathbb{N} \exists k_{\epsilon} \in \mathbb{N} : \forall n \geq k_{\epsilon} : |a_{n} - L| \leq \frac{1}{l}\right)$$

Beispiel

2 Folgen und Konvergenz

1. Konstante Folge $a_n = a$

$$\forall n \quad a_n \to a$$

Sei
$$\epsilon \geq 0$$

setze
$$k_{\epsilon} = 1 \implies |a_n - a| = |a - a| = 0 < \epsilon$$

$$\forall n > 1$$

2. $\lim_{n\to\infty}\frac{1}{x}=0$ Da $\mathbb{N}\subset\mathbb{R}$ unbeschränkt sind (Satz 1,23)

$$\implies$$
 Für $\epsilon > 0 \exists k_{\epsilon} \in \mathbb{N}, k_{\epsilon} > \frac{1}{\epsilon}$

$$\implies$$
 Für $n \ge k_{\epsilon} : \left| \frac{1}{n} - 0 \right| = \frac{1}{n} \le \frac{1}{k_{\epsilon}} < \epsilon$

3. $(a_n)_n$, $(a_n) = (-1)^n$ divergent.

Angenommen: Es konvergiert, $\implies \exists L \in \mathbb{R}$

$$\forall \epsilon > 0 : \exists k_{\epsilon} : |a_n - L| < \epsilon \quad \forall n \ge k_{\epsilon}$$

2 Fälle: $L \ge 0$ und L < 0.

Fall $L\geq 0$: nehme $\epsilon=\frac{1}{2}$ und $k_{\frac{1}{2}}\in\mathbb{N}: \forall n\geq k_{\frac{1}{2}}: |a_n-L|<\frac{1}{2}$

Ist *n* ungerade und $\geq k_{\frac{1}{2}}$

$$\implies \frac{1}{2} > |a_n - L| = |-1 - L| = 1 + L \ge 1 > \frac{1}{2}$$

Fall L < 0: nehmen $\epsilon = \frac{1}{2}, k_{\frac{1}{2}}: |a_n - L| < \frac{1}{2} \quad \forall n \ge k_{\frac{1}{2}}$

Ist n gerade

$$\implies \frac{1}{2} > |a_n - L| = |1 - L| = 1 - L > 1$$

Abbildung 2.1: Zeichnung zu 2.

- 4. $a > 0 \implies \lim_{n \to \infty} a^{\frac{1}{n}} = 1$ Siehe Übung
- 5. $\lim_{n\to\infty}n^{\frac{1}{n}}=1$ Siehe Übung

6. Sei
$$q \in \mathbb{R}, |q| < 1$$

$$\implies \lim_{n \to \infty} q^n = 0$$

$$\implies \frac{1}{|q|} > 1 \implies h := \frac{1}{|q|} - 1 > 0$$

Sei $\epsilon > 0$: Aus Bernoulli:

$$|q|^{-n} = (1+h)^n \ge 1 + n \cdot h > n \cdot h > \frac{1}{\epsilon}$$

für
$$n > \frac{1}{\epsilon \cdot h} =: k_{\epsilon}$$

$$\implies |q^n - 0| = |q^n| = |q|^n < \frac{1}{n \cdot h} < \epsilon$$

für alle $n > \frac{1}{\epsilon \cdot h}$

7.
$$\forall q \in \mathbb{R}, |q| < 1, p \in \mathbb{N}$$

$$\lim_{n\to\infty} n^p \cdot q^n = 0$$

Beweis O.B.d.A $a \neq 0$

$$h := \frac{1}{|q|} - 1$$

$$\implies |q|^{-n} = (1-h)^n = \sum_{k=0}^n \binom{n}{k} h^k$$

$$\mathrm{Sei}\left[n>2p\right] > {n \choose p+1}h^k$$

$$=\frac{n!}{(p+1)!(n-p-1)!}h^{p+1}$$

$$\underbrace{n \cdot (n-1) \cdot \ldots \cdot (n-p)}_{p+1 \text{ Faktoren}} \cdot \underbrace{h^{p+1}}_{(p+1)!}$$

$$p+1$$
 Faktor

$$> \left(\frac{n}{2}\right)^{p+1} \frac{h^{p+1}}{(p+1)!}$$

$$\implies |p|^n < \left(\frac{2}{h}\right)^{p+1} \frac{(p+1)!}{h^{p+1}}$$

$$\implies n^p |q|^h < \frac{2^{p+1}(p+1)!}{h^{p+1}} \cdot \frac{1}{n}$$

Sei $\epsilon > 0$ wähle $k_{\epsilon} \in \mathbb{N}$,

$$k_{\epsilon} > \max\left(2p, \tfrac{h^{p+1}}{2^{p+1}(p+1)!} \cdot \tfrac{1}{\epsilon}\right)$$

$$\implies |n^p \cdot q^n - 0| = n^p |q|^n < \epsilon \quad \forall n > k_{\epsilon}$$

Notation Sei $n \in \mathbb{N}$, A(n) Aussagen.

Wir sagen A(n) ist wahr für fast alle n, falls $\exists k \in \mathbb{N} : A(n)$ ist wahr $\forall n \geq k$

(Oder: A(n) ist wahr bis auf endlich viele n)

Beispiel $\lim a_n = L \iff \forall \epsilon > 0 : |a_n - L| < \epsilon$ für fast alle n

 $\iff \forall \epsilon > 0 \text{ sind fast alle } a_n \text{ in einer } \epsilon\text{-Umgebung von } L.$

2.2.1 Satz 3

1. Sei $(a_n)_n$ eine konvergente Folge, dann ist der Grenzwert eindeutig!

Beweis

Angenommen $a_n \to L$ und $a_n \to R, L \neq R$

2 Folgen und Konvergenz

Abbildung 2.2: Zeichnung zum Beweis

$$L < R \quad \epsilon := \frac{R-L}{2} > 0$$
Dann gilt: $\exists k_1 \in \mathbb{N} : |a_n - L| < \epsilon \quad \forall n \ge k_1$

$$\exists k_2 : |a_n - R| < \epsilon \quad \forall n \ge k_2$$

$$\implies n \ge \max(k_1, k_2) : a_n - L > \epsilon \text{ und } a_n - R < \epsilon$$

$$\implies a_n < L + \epsilon = L + \frac{R-L}{2} = \frac{R+L}{2}$$

$$= R - \epsilon < a_n \notin$$

2. Sei $(a_n)_n$ eine konvergente Folge, dann ist sie beschränkt, d.h. $\exists M \in [0,\infty): |a_n| \leq M \forall n \in \mathbb{N}$

Beweis

Sei
$$\epsilon = 1 \implies \exists k_1 \in \mathbb{N} : |a_n - L| < 1 \text{ und } n \ge k_1$$

 $\implies |a_n| = |a_n - L + L| \le |a_n - L| + |L| < |L| + 1$
 $\implies M := \max(|a_1|, |a_2|, \dots, |a_{k_1}|, |L| + 1)$
 $\implies |a_n| \le M \quad \forall n \in \mathbb{N}!$

2.2.2 Lemma 4

Sein
$$(a_n)_n, (b_n)_n$$
 Folgen $a_n \to L, a_n - b_n \to 0$ (WORT?!? $a_n - b_n$ ist eine Nullfolge) **Beweis**

Typisches $\frac{\epsilon}{2}$ Argument

Sei
$$\epsilon > 0 \implies$$
 existiert $k_1(\epsilon) : |a_n - L| < \frac{\epsilon}{2} \quad \forall n \ge k_1(\epsilon)$
und $k_2(\epsilon) : |a_n - b_n| < \frac{\epsilon}{2} \quad \forall n \ge k_2(\epsilon)$

Setze:
$$k(\epsilon) := max(k_1(\epsilon), k_2(\epsilon))$$

 $|b_n - L| = |b_n - a_n + a_n - L|$
 $\leq |b_n - a_n| + |a_n - L|$
 $< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$

Abbildung 2.3: Zeichnung zum Beweis

2.2.3 Satz 5: Rechenregeln für Limes

Sei $a_n \to a, b_n \to b, \lambda$ eine Zahl.

$$1. \lim(a_n + b_n) = a + b$$

$$\lim(\lambda \cdot a_n) = \lambda \cdot a$$

$$\lim(a_n \cdot b_n) = a \cdot b$$

und falls
$$b \neq 0 \implies b_1 \neq 0$$
 für fast alle n : $\lim \frac{a_n}{b_n} = \frac{a}{b}$

Beweis

 $\frac{\epsilon}{2}$ Angenommen.

Sei
$$\epsilon > 0$$
 $\exists k_1 : |a_n - a| < \frac{\epsilon}{2} \quad \forall n \ge k_1$
 $\exists k_2 : |b_n - b| < \frac{\epsilon}{2} \quad \forall n \ge k_2$

$$\implies$$
 für $n \ge k := \max(k_1, k_2)$ gilt

$$|(a_n + b_n) - (a + b)| = |a_n - a + b_n - b|$$

$$\leq |a_n - a| + |b_n - b| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

Produkt:
$$a_n \cdot b_n - a \cdot b = (a_n - a)b_n + a(b_n - b)$$

$$= |a_n \cdot b_n - a \cdot b| \le |a_n - a||b_1| + |a||b_n - b|$$

$$b_n \to b \implies |b_n|$$
 ist beschränkt

d.h.
$$\exists 0 < M < \infty : |b_1| \leq M \quad \forall n$$

Gegeben
$$\epsilon > 0$$
 Wähle $k_1 : |a_n - a| < \frac{\epsilon}{2M} \quad \forall n \ge k_1$
 $k_2 : |b_n - b| < \frac{\epsilon}{2(|a|+1)} \quad \forall n \ge k_2$

$$\implies \forall n > \max(k_1, k_2):$$

$$|a_n b_n - a \cdot b| \leq |a_n - a||b_n| + |a||b_n - b|$$

$$< \frac{\epsilon}{2M} M + |a| \frac{\epsilon}{2(|a|+1)} \leq \epsilon$$

Quotient
$$\frac{a_n}{b_n} = a_n \cdot \frac{1}{b_n}$$

d.h. reicht zu zeigen, dass
$$\frac{1}{b_n} \to \frac{1}{b}$$

$$b_n \neq 0$$
 für fast alle $n - b \neq 0$

2 Folgen und Konvergenz

$$\begin{split} \epsilon &= \frac{|b|}{2} \implies |b_n - b| < \frac{|b|}{2} \text{ für fast alle } n. \\ &\implies |b_n| = -|b + b_n - b| \ge |b| - |b_n - b| \\ &> -|b| - \frac{|b|}{2} = \frac{|b|}{2} > 0 \text{ für fast alle } n \\ &\implies b_n \ne 0 \text{ für fast alle } n. \\ |\frac{1}{b_n} - \frac{1}{b}| &= |\frac{b - b_n}{b \cdot b_n}| = \frac{1}{|b||b_n|} |b - b_n| &\stackrel{\text{für fast alle } n}{\le -|b|^2} |b_n - b| \\ \text{Da } b_n \to b \implies |b_n - b| < \frac{|b|^2}{2} \epsilon \text{ für fast alle } n \\ &\implies |\frac{1}{b_n} - \frac{1}{b}| \le \frac{2}{|n|^2} |b_n - b| < \epsilon \text{ für fast alle } n \end{split}$$

2. $\lim |a_n| = |a|$

Beweis Da
$$||a_n| - |a|| \le |a_n - a|$$
 ist er einfach

3. Aus $a_n \leq b_n$ für fast alle n folgt $a \leq b$

Insbesondere: $a_n \geq 0$ für fast alle n

$$\implies a \ge 0$$

Beweis

Kontraposition $a_n \to a, b_n \to b$

Sei a > b

Abbildung 2.4: Zeichnung zum Beweis

Sei
$$\epsilon = \frac{a-b}{2} > 0$$

$$\implies [a_n > a - \epsilon = a - \frac{a-b}{2} = \frac{a+b}{2}$$

$$= b + \frac{a+b}{2} = b + \epsilon > b_n]$$

für fast alle f^* cking n.

2.2.4 Satz 6

1. Ist $(a_n)_n$ eine Nullfolge, d.h. $a_n \to 0$ und $(c_n)_n$ beschränkt $\implies (a_n \cdot c_n)_n$ eine Nullfolge.

Beweis Es gelte $|c_n| \le C < \infty$

$$b_n := a_n c_n \implies |b_n| \le C|a_n|$$

d.h. 2) \implies 1)

2. Aus $a_n \to 0$, $|b_n| \le C|a_n|$ für fast alle n (C ist eine Konstante) $\implies b_n \to 0$

Beweis Sei $\epsilon > 0$ zu $\epsilon_1 := \frac{\epsilon}{C} \exists k_{\epsilon_1} : |a_n| < \epsilon_1 \forall n \ge k_{\epsilon_1}$ $\implies b_n \to 0$

2.2.5 Satz 7: Sandwich Theorem

Sei $(a_n)_n$, $(b_n)_n$ konvergente Funktionen mit $\lim a_n = \lim b_n = a$ und $(c_n)_n \cdot a_n \le c_n \le b_n$ für fast alle n $\implies (c_n)_n$ konvergiert und bei $c_n = a$

Beweis Sei $\epsilon > 0$ $\exists k_1 : a_n \le c_n \le b_n \quad \forall n \ge k_1$ $\exists k_2 : |a_n - a| < \epsilon \quad \forall n \ge k_2$ $\exists k_3 : |b_n - a| < \epsilon \quad \forall n \ge k_3$ $\Longrightarrow \forall n \ge \max(k_1, k_2, k_3)$ $a - \epsilon < a_n \le c_n \le b_n < a + \epsilon$

d.h. $|c_n - a| \le \epsilon$

Beispiel

• $\forall p \mathbb{N} : \lim_{n \to \infty} (n^p)^{\frac{1}{n}} = 1$

Beweis

- p = 1: Übung!
- $p = 2 : \lim_{n \to \infty} (n^2)^{\frac{1}{n}} = \lim_{n \to \infty} (n^{\frac{1}{n}} \cdot n^{\frac{1}{n}})$ = $\lim_{n \to \infty} n^{\frac{1}{n}} \cdot \lim_{n \to \infty} n^{\frac{1}{n}}$ $1 \cdot 1 = 1$
- $p \ge 2$ Induktionsbeweis

• $\lim \frac{a \cdot n + b}{c \cdot n + a} = \frac{a}{c}$ falls $c \neq 0$

Beweis $\frac{a \cdot n + b}{c \cdot n + a} = \frac{a + \frac{b}{n}}{c + \frac{d}{n}} \xrightarrow{\text{Quotientenregel}} \frac{a}{c}$

 $\lim_{n\to\infty} \frac{a\cdot n + d}{c\cdot n^2 + d\cdot n + f} \neq 0$

Beweis $\frac{a \cdot n + d}{c \cdot n^2 + d \cdot n + f} = \frac{1}{n} \cdot \frac{a + \frac{d}{n}}{c + \frac{d}{n} + \frac{f}{n^2}} \to 0$

2.3 Divergente Folge

2.3.1 Definition 8

Eine Folge $(a_n)_{n\in\mathbb{N}}$ heißt bestimmt divergent gegen ∞ (bzw. $-\infty$), in Zeichen, $\lim_{n\to\infty} = \infty, a_n \to \infty$ (bzw. $\lim_{n\to\infty} a_n = -\infty, a_n \to -\infty$) falls $\forall k > 0 \exists N = N(k) : a_n > k \forall n \geq N$ (bzw. $a_n < -k \forall n \geq N$) z.B. $a_n = n, a_n = n^2$

2.3.2 Rechenregeln

Die regeln von S4 gelten sofern die rechten Seiten Definiert sind. z.B. $a_n = n, b_n = n^2 \implies a_n + b_n \to \infty + \infty = \infty$, also $a_n - b_n \to \infty - \infty$ nicht definiert $n - n^2 = (\frac{1}{n} - 1)n^2 \le -\frac{1}{2}n^2, n \ge 2 \to \infty$ insb gilt:

- 1) $a_n \to \infty \implies \lambda a_n \to \infty$ für $\lambda > 0, \lambda a_n \to -\infty, \lambda < 0$
- 2) $a_n \to \infty \to \frac{1}{a_n} \to 0$ und falls $a_n > 0$ für fast alle n, dann gilt auch Umkehrung
- 3) $a_n \to \infty, b_n \to b \in \mathbb{R} \implies a_n + b_n \to \infty$
- 4) $a_n \to \infty, b_n \to b > 0 \text{ (oder } b_n \to \infty) \implies a_n \cdot b_n \to \infty$

Beweis

- 1) 3): Scharf hinschauen
- 4) $b_n \to b > 0 \implies b_n \ge \frac{1}{2}b$ für fast alle n, $\implies a_n \cdot b_n > \frac{1}{2}b \cdot a_n$ für fast alle n. zu k > 0, wähle $N(k) : a_n > \frac{2}{b}k \forall n \ge N(k)$ $\implies a_n \cdot b_n > \frac{b}{2} \cdot \frac{2}{b}k = k$ für fast alle n

2.4 Monotone Folgen

2.4.1 Definition 9

Eine Folge $(a_n)_n$ reeller Zahlen heißt

- 1) wachsend, falls $a_n \leq a_{n+1} \forall n \in \mathbb{N}$
- 2) fallend, falls $a_n \ge a_{n+1} \forall n \in \mathbb{N}$
- 3) monoton, falls sie wachsend oder fallend ist.

2.4.2 Satz 10 (Monotone Konvergenz)

Jede beschränkte monotone Folge ist konvergen! Insb:

- 1) $(a_n)_n$ wachsend (beschränkt) $\implies \lim_{n\to\infty} a_n = \sup_{n\in\mathbb{N}} a_n$
- 2) $(a_n)_n$ fallend (beschränkt) $\implies \lim_{n\to\infty} a_n = \inf_{n\in\mathbb{N}} a_n$

Beweis

- 1) Sei $a := \sup a_n = \sup \{a_n : n \in \mathbb{N}\} \in \mathbb{R}$ wegen Vollständigkeitsaxiom Sei a > 0. Nach Definition von Supremum $\exists k_{\epsilon} \in \mathbb{N}$ $\alpha - \epsilon < a_{k_{\epsilon}} \le a_{k-\epsilon+1} \le \dots \le a_n \le \alpha \forall n \le k_{\epsilon}$
- 2) Wende 1) auf $b_n = -a_n a_n$

2.4.3 Korollar 11

Sei $(b_n)_n$ Folge mit $\frac{|b_n+1|}{|b_n|} \to x$ für $0 \le x < 1 \implies \lim b_n = 0$ insb. $\lim q^n = 0, |q| < 1$ **Beweis** Z.z. $|b_n| \to 0$ d.h. O.B.d.A. $b_n > 0$. Da $\frac{b_{n+1}}{b_n} \to x$ für $0 \le x < 1$ Wähle $s = 1 - x > 0 \implies \exists N$ Wähle $s = 1 + x > 0 \implies \exists N$ $\frac{b_{n+1}}{b_n} < x + \epsilon = 1 \forall n \ge N$ $\frac{b_{n+1}}{b_n} < x + \epsilon = 1 \forall n \ge N$ $\frac{b_{n+1}}{b_n} < x + \epsilon = 1 \implies 0$ $\frac{b_n}{b_n} = 0$ Note that x = 0 is the seminor of th

Angenommen:

$$L > 0 \\ \Longrightarrow [x = \lim \frac{b_{n+1}}{b_n} \underbrace{=}_{\text{Quotientenmenge}} \frac{\lim b_{n+1}}{\lim b_n} = \underline{L} = 1] \not \text{d.h. } L = 0!$$

2.4.4 Korollar 12 (Rekursive Berechnung von \sqrt{a})

Sei $a>0, x_0>0$. Definiere $(x_n)_{n\in\mathbb{N}}, x_{n+1}:=\frac{1}{2}(x_n+\frac{a}{x_n})|n\in\mathbb{N}$. Dann konvergiert $x_n, \lim x_n=\sqrt{a}, x_n>0 \forall n=======$

Korollar 12 (Rekursive Berechnung von \sqrt{a}

Sei $a > 0, x_0 > 0$. Definiere $(x_n)_{n \in \mathbb{N}}, x_{n+1} := \frac{1}{2}(x_n + \frac{a}{x_n})|n \in \mathbb{N}$. Dann konvergiert $x_n, \lim x_n = \sqrt{a}, x_n > 0 \forall n \gg \gg 09287f5 \text{bd} 4118e672f50476379e3f7b015b96050}$ Beweis Per Induktion zeigt man $x_n > 0 \forall n$

2 Folgen und Konvergenz

Fakt 1:
$$x_n \ge \sqrt{a} \forall n > 1$$
, da $x_{n+1}^2 - a = \frac{1}{4} (x_n - \frac{a}{x_n})^2 - a$
 $= \frac{1}{4} (x_n^2 - 2a + \frac{a^2}{x_n^2} 4a)$
 $= \frac{1}{4} (x_n - \frac{a}{x_n})^2 \ge 0$

Fakt 2: Für $n \ge 1$ ist $(x_n)_n$ fallend, da

$$x_n - x_{n+1} = x_n - \frac{1}{2}(x_n + \frac{a}{x_n}) = \frac{1}{2}(x_n - \frac{a}{x_n})$$

$$= \underbrace{\frac{1}{2x_n}}_{\geq 0} \underbrace{(x_n^2 - a)}_{\geq 0} \geq 0 \text{ wegen Fakt 1}$$

$$\implies \lim_{n \to \infty} x_n = x \text{ existient } \geq \sqrt{a}$$

$$\implies x = \lim_{n \to \infty} x_{n+1} = \frac{1}{2}\lim_{n \to \infty} (x_n + \frac{a}{x_n}) = \frac{1}{2}(x + \frac{a}{x})$$

$$\implies x^2 = a, \text{ da } x > 0 \implies x = \sqrt{a}$$

Beweis

$$f_n := x_n - \sqrt{a} \implies f_{n+1} = x_{n+1} - \sqrt{a} = \frac{1}{2}(x_n + \frac{a}{x_n}) - \sqrt{a}$$
$$= \frac{1}{2x_n}(x_n^2 - a) - \sqrt{a} = \frac{1}{2x_n}(x_n - \sqrt{a})^2 = \frac{f_n^2}{2x_n} \le \frac{1}{2\sqrt{a}}f_n^2$$

, $n \ge 1$ quadratische Konvergenz

2.4.5 Korollar 13

 $e:=\lim_{n\to\infty}(1+\frac{1}{n})^n$ existiert und $2+\frac{1}{3}< e\leq \frac{6^7}{2n}<2,78167$ Beweis

$$a_n = (1 + \frac{1}{n})^n \implies a_n \text{ ist wachsend da } n \ge 2$$

$$\frac{a_n}{a_{n-1}} = \frac{(1 + \frac{1}{n})^n}{(1 + \frac{1}{n-1})^{n-1}} = \frac{(\frac{n+1}{n})^n}{(\frac{n}{n-1})^{n-1}}$$

$$= \frac{n}{n-1} \cdot (\frac{(n+1)(n-1)}{n^2})^n = \frac{n}{n-1} (\frac{n^2 - 1}{n^2})^n$$

$$= \frac{n}{n-1} (1 - \frac{1}{n^2})^n \underset{\text{Bernoulli}}{\triangleright} \frac{n}{n-1} (1 - n \cdot \frac{1}{n^2}) = 1$$

Monotone Konvergenz $\implies a_n$ konvergiert, wenn es nach oben beschränkt ist.

$$a_n = (1 + \frac{1}{n})^n = \sum_{k=0}^n \binom{n}{k} (\frac{1}{n})^k = \sum_{k=0}^n \frac{n!}{k!(n-k)!} \cdot \frac{1}{n^k}$$

$$= \sum_{k=0}^{n} \frac{1}{k!} \prod_{l=0}^{k} \frac{n-l}{n} \le \sum_{k=0}^{n} \frac{1}{k!}$$

Induktion =: $k! \ge 2^k$ für $k \ge 4$

$$\implies n \ge k : a_n \le 1 + 1 + \frac{1}{2} + \frac{1}{2 \cdot 3} + \sum_{k=4}^{n} (\frac{1}{2})^k$$

$$= \frac{16}{6} + \frac{1}{2^4} \sum_{l=0}^{n-4} (\frac{1}{2})^l = \frac{16}{6} + \frac{1}{2^4} \underbrace{(\frac{1 - (\frac{1}{2})^{n-3}}{1 - \frac{1}{2}})}_{\le 2} \text{ (geometrische Summe)}$$

$$\le \frac{16}{6} + \frac{1}{8} = \frac{67}{24} \implies e \le \frac{67}{24}$$

$$e \ge a_n \forall n, n = 3$$

$$= (1 + \frac{1}{2})^k, e \ge a_3 = 2 + \frac{10}{27} > 2 + \frac{1}{3}$$

2.5 Teilfolgen und Häufungswerte

2.5.1 Definition 14: (Teilfolgen, Umordnung)

 $(a_n)_n$ Folge $a = (a_n)_n : \mathbb{N} \to \mathbb{R}$

 $\phi: \mathbb{N} \to \mathbb{N}$ bijektiv

 $\implies b := a \circ \phi, \text{ d.h. } b = (b_l)_{l \in \mathbb{N}}, b_l := a_{\phi(l)}$

b: Umordnung von $(a_n)_n$

Wir nennen $\sigma: \mathbb{N} \to \mathbb{N}$ eine Verdünnung falls σ strikt monoton steigend ist, d.h. $\sigma(n) < \sigma(n+1) \forall n$. Dann ist $(b_l)_l$ definiert durch $b_l := a_{\sigma(l)}$ eine Teilfolge von $(an)_n$

Bemerkung:

- 1) Für jede Verdünnung σ gilt $\sigma(n) \geq n \forall n \in \mathbb{N}$ (Warum?)
- 2) $(a_n)_n := (\frac{1}{n})_n$, $(\frac{1}{2n})_n$, $(\frac{1}{n^2})_n$ sind Teilfolgen von $(a_n)_n$ $\sigma(n) = 2n$, $b_{\sigma(l)} = a_{2l} = \frac{1}{2l}$ $\sigma(n) = n^2$, $b_n = a_{\sigma(n)} = a_n^2 = \frac{1}{n^2}$ $(\frac{1}{2}, 1, \frac{1}{4}, \frac{1}{3}, \dots$ ist eine Umordnung von $(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots)$

2.5.2 Lemma 15

Jede Umordnung und jede Teilmenge einer konvergenten Folge konvergiert mit demselben Grenzwert! Und dasselbe gilt, wenn man endlich viele Werte von a_n abändert.

Beweis Für Umordnung nachrechnen.

Sei
$$b_n = a_{\sigma(n)}$$
 Teilfolge von $(a_n)_n$
 $a_n \to L : \forall \epsilon > 0 : \exists k_{\epsilon} : |a_n - L| < \epsilon : \forall n \ge k_{\epsilon}$
Da $\sigma(n) \ge n \forall n \in \mathbb{N}$ gilt auch $\forall n \ge k_{\epsilon} \implies \sigma(n) \ge k_{\epsilon}$
 $|b_n - L| = |a_{\sigma(n)} - L| < \epsilon$

2.5.3 Definition 16 Häufungswert

Sei $(a_n)_n$ eine Folge, $a \in \mathbb{R}$ ist ein Häufungswert von $(a_n)_n$, falls $\forall \epsilon > 0$ gibt unendlich viele $n \in \mathbb{N}$ mit $|a_n - a| < \epsilon$

Beispiel

- 1. $a_n = \frac{1}{n}$ hat Häufungswert 0
- 2. $a_n = (-1)^n$ hat Häufungswert 1 und -1
- 3. $a_n = (-1)^n + \frac{1}{n}$ hat HW 1 und -1

 $H((a_n)_n) = \text{Menge der HW von } (a_n)_n = \{a \in \mathbb{R}, a \text{ ist HW von } (a_n)_n\}$

Bemerkung

1) Für eine beschränkte Folge $(a_n)_n$ gilt:

$$a_n \to a \Leftrightarrow H((a_n)_n) = \{a\}$$

2) $(n)_{n\in\mathbb{N}}$ hat keinen Häufungswert!

2.5.4 Satz 17 (Bolzano - Weierstraß für Folgen)

Jede beschränkte Folge hat mindestens einen HW

Beweis Sei $(a_n)_n$ beschränkt, z.B. $c \leq a_n \leq d \forall n$

 $G := \{x \in \mathbb{R} : a > x \text{ für höchstens endlich vielen}\}$

$$= \{x \in \mathbb{R} : a_n \le x \text{ für fast alle n} \}$$

Fakt 1) $G \neq \emptyset$, da $d \in G$

Fakt 2) G ist nach unten beschränkt, denn $x \notin G$, falls $x < c \implies \alpha := \inf G \in \mathbb{R}$

Behauptung

 $\alpha \in H((a_n)_n)$

Dann sei $\epsilon > 0 \implies$ nach Definition von Infimum

$$\alpha + \epsilon \in G \text{ und } \alpha - \epsilon \notin G$$

- \implies fast alle $a_n < \alpha + \epsilon$ und unendlich viele $a_n > \alpha \epsilon$
- \implies Es gibt unendlich viele $n: |a_n \alpha| < \epsilon \implies \alpha$ ist Häufungswert

2.5.5 Lemma 18

(**Erinnerung:** h Häufungswert von $(a_n)_n$ falls $\forall \epsilon > 0$. $a_n \in B_{\epsilon}(h) := (h - \epsilon, h + \epsilon)$ für unendlich viele $n \in \mathbb{N}$)

Sei $(a_n)_n$ Folge

 $h \in H((a_n)_n) \iff \exists$ Teilfolge von $(a_n)_n$ die gegen h konvergiert.

Beweis

$$, \longleftarrow$$
 ": ist $(a_{n_j})_j, n_j < n_{j+1} \quad \forall j$

Teilfolgen $(a_n)_n$ mit

$$\lim_{j \to \infty} a_{h_j} = h$$

dann sind für $\epsilon > 0$ fast alle $a_{n_i} \in B_{\epsilon}(h)$

$$\implies \exists$$
 unendlich viele $n: a_n \in B_{\epsilon}(h)$

$$\implies h$$
 ist Häufungswert $\sqrt{}$

$$, \Longrightarrow$$
 ": $h \in H((a_n)_n)$ d.h.

 $\forall \epsilon > 0 \exists$ unendlich viele $n : a_n \in B_{\epsilon}(h)$

Trick: Wähle
$$\epsilon = \frac{1}{l}, l \in \mathbb{N}$$

 $\forall l \in \mathbb{N} : \exists \text{ unendlich viele } n : a_n \in B_{\frac{1}{l}}(h)$

rekursive Definition der Teilfolge

$$n_1 := \text{ersten } n \in \mathbb{N} : a_n \in B_1(h)$$

:= $\min \{ n \in \mathbb{N} : a_n \in B_1(h) \}$

$$\begin{array}{ll} n_2 &:= \text{ ersten } n \in \mathbb{N}, n > n_1, a_n \in B_{\frac{1}{2}}(h) \\ &:= \min \left\{ n \in \mathbb{N}, n > n_1, a_n \in B_{\frac{1}{2}}(h) \right\} \end{array}$$

. . .

$$n_{j+1} := \min \left\{ n \in \mathbb{N}, n > n_j, a_n \in B_{\frac{1}{j+1}}(h) \right\}$$

nachrechnen: $n_l < n_{l+1}$ $\forall l$

$$a_{n_l} \in B_{\frac{1}{l}}(h) \implies \lim_{l \to \infty} a_{n_l} = h$$

 $(b_l)_l, b_l = a_{n_l}$ ist Teilfolge von $(a_n)_n$

2.5.6 Korollar 9: Balzano-Weierstraß für Folgen II

Jede beschränkte Folge hat eine konvergente Teilfolge! (Beweis S.17 + L.18). «««< HEAD

2.6 Asymptotisches Verhalten von reellen Folgen (\limsup und \liminf)

2.6.1 Asymptotisches Verhalten von reellen Folgen (lim sup und lim inf)

 $\verb|www> 09287f5bd4118e672f50476379e3f7b015b96050|$

Frage: Gibt es unter allen Häufungswerten einen größten bzw. kleinsten?

$$(a_n)_n$$
 beschränkt: $\sup_{n\in\mathbb{N}} a_n \in \mathbb{R}, \inf_{n\in\mathbb{N}} a_n \in \mathbb{R}$

$$\Longrightarrow H((a_n)_n) \subset \left[\inf_{n \in \mathbb{N}} a_n, \sup_{n \in \mathbb{N}} a_n\right]$$

Beispiel

$$a_1 := 10^{10^{10}}$$

$$a_2 := -10^{10^{10}}$$

$$a_n := 0 \quad n \ge 3$$

$$\left[-10^{10^{10}}, 10^{10^{10}}\right] \subset H((a_n)_n) = \{0\}$$

Eigentlich interessiert uns n groß!

$$b_l := \sup_{n \ge l} a_n$$

$$c_l := \inf_{n \ge l} a_n$$

1.
$$c_l \leq b_l \quad \forall l$$

und
$$b_{l+1} \leq b_l \forall$$
 fallend $c_{l+1} \geq c_l \forall$ wachsend

ist $(a_n)_n$ beschränkt $\implies (b_l)_l, (c_l)_l$ beschränkt

$$\overset{\text{monotone Konvergenz}}{\Longrightarrow} \lim_{l \to \infty} b_l \geq \lim_{l \to \infty} c_l$$

existieren!

2.
$$\forall \epsilon > 0 \forall l \in \mathbb{N} \text{ sind fast alle } \begin{cases} a_n < b_l + \epsilon \\ a_n > c_l - \epsilon \end{cases}$$

2.6.2 Definition 20

Sei $(a_n)_n$ reelle Folge

$$\limsup_{n \to \infty} a_n := \overline{\lim_{n \to \infty}} a_n := \underbrace{\lim_{l \to \infty} \left(\sup_{n \ge l} a_n\right)}_{= \lim_{l \to \infty} \left(\sup_{n \ge l} a_n\right)}$$

$$\lim_{n \to \infty} \inf a_n := \lim_{n \to \infty} a_n := \lim_{l \to \infty} \left(\inf_{n \ge l} a_n \right)$$

$$= \lim_{n \to \infty} c_l$$

Falls $(a_n)_n$ nach oben unbeschränkt ist:

$$\limsup_{n \to \infty} a_n := +\infty$$

Falls $(a_n)_n$ nach unten unbeschränkt ist:

$$\liminf_{n \to \infty} a_n := -\infty$$

Bemerkung Es gilt

$$\limsup_{n \to \infty} (-a_n) = -\liminf_{n \to \infty} (a_n)$$

$$\liminf_{n \to \infty} (-a_n) = -\limsup_{n \to \infty} (a_n)$$

$$\liminf_{n \to \infty} (a_n) \le \limsup_{n \to \infty} (a_n)$$

2.6.3 Satz 21

Sei $(a_n)_n$ beschränkte Folge

$$\Longrightarrow \limsup_{n \to \infty} (a_n)$$
 ist der größte Häufungswert von $(a_n)_n$

und

$$\Longrightarrow \liminf_{n\to\infty} (a_n)$$
 ist der kleinste Häufungswert von $(a_n)_n$

Beweis

Wegen den Bemerkung reicht es das Erste zu zeigen!

$$\alpha := \limsup_{n \to \infty} (a_n) = \sup(H((a_n)_n))$$

2 Folgen und Konvergenz

Schritt 1

 $\forall \epsilon > 0$, gibt es nur endlich viele n mit $a_n > \alpha + \epsilon$

$$\sup_{n \subset \mathbb{N}} a_n = \sup\{a_n : n \in \mathbb{N}\}\$$

Beweis

Sei
$$\epsilon > 0$$
, $b_l := \sup_{n \ge l} a_n$ ist fallend, $b_l \to \alpha$

$$\implies \exists l \in \mathbb{N} : b_l < \alpha + \epsilon$$

$$\iff \sup_{n \ge l} a_n < \alpha + \epsilon$$

 \iff Höchstens die ersten l-1 Glieder von $(a_n)_n$ sind $\geq \alpha + \epsilon$

Schritt 2

 $\forall \epsilon > 0$, gibt es unendlich viele n mit $a_n > \alpha - \epsilon$

Beweis

Da
$$b_l := \sup_{n \ge l} a_n$$
 fallend

$$\implies b_1 \ge b_{l+1} \ge b_{l+2} \ge \ldots \ge b_{l+k} \stackrel{k \to \infty}{\to} \alpha$$

$$\implies b_l \ge \alpha \quad \forall l$$

Sei $\epsilon > 0$, $l \in \mathbb{N}$. Aus Definition von Supremum folgt

$$\exists n = n_l \ge l : a_{n_l} > b_l - \epsilon \ge b_{l+1} - \epsilon \ge \dots \ge b_{l+k} - \epsilon \stackrel{k \to \infty}{\to} \alpha - \epsilon$$

$$\implies \exists n = n_l \ge l : a_{n_l} > \alpha - \epsilon$$

 $\implies \exists$ unendlich viele $n: a_n > \alpha - \epsilon!$

Bemerkung

1. Also gilt

$$H((a_n)_n) \subset [\liminf_{n \to \infty} (a_n), \limsup_{n \to \infty} (a_n)]$$
 und $(a_n)_n$ konvergent

$$\iff \liminf_{n \to \infty} (a_n) \ge \limsup_{n \to \infty} (a_n)$$

und in diesem Fall gilt

$$\lim_{n \to \infty} (a_n) = \liminf_{n \to \infty} (a_n) = \limsup_{n \to \infty} (a_n)$$

insbesondere $(c_n)_n$ Nullfolge

$$\iff \limsup_{n \to \infty} |c_n| = 0$$

2. Für 2 Folgen $(c_n)_n$, $(d_n)_n$ gilt

$$\limsup_{n \to \infty} (c_n + d_n) \le \limsup_{n \to \infty} (c_n) + \limsup_{n \to \infty} (d_n)$$

$$\liminf_{n \to \infty} (c_n + d_n) \ge \liminf_{n \to \infty} (c_n) + \liminf_{n \to \infty} (d_n)$$

Beispiel
$$c_n = (-1)^n, d_n = -(-1)^n$$

2.7 Das Cauchy-Kriterium für Konvergenz

Bemerkung Falls $(a_n)_n$ konvergiert:

$$\implies \forall \epsilon > 0 \exists N_{\epsilon} : |a_n - a_m| < \epsilon \quad \forall n, m \ge N_{\epsilon}$$

$$(\iff \forall \epsilon > 0 \exists N_{\epsilon} : |a_n - a_m| \le \epsilon \quad \forall n, m \ge N_{\epsilon})$$

Deswegen aus $a_n \to L \quad \forall \epsilon > 0 \exists N_\epsilon : |a_n - L| < \frac{\epsilon}{2} \forall n \ge N_\epsilon$

$$\implies |a_n - a_m| \le |a_n - L| + |L - a_m| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon \quad \forall n, m \ge N_{\epsilon}$$

Definition Eine Folge $(a_n)_n$ heißt Cauchy (oder Cauchyfolge) falls gilt:

$$\forall \epsilon > 0 \exists N_{\epsilon} : |a_n - a_m| < \epsilon \quad \forall n, m \geq N_{\epsilon}$$

Bemerkung Eine Folge $(a_n)_n$ ist Cauchy

$$\iff \lim \sup_{n,m \to \infty} |a_n - a_m| = 0$$

wobei
$$\limsup_{n,m\to\infty} (b_{n,m}) := \lim_{l\to\infty} (\sup_{n,m\geq l} (b_{n,m}))$$

Scharfes Hinsehen

2.7.1 Satz 23: Cauchy Kriterium

Eine Folge $(a_n)_n$ konvergiert \iff $(a_n)_n$ ist eine Cauchyfolge **Vorbereitung:**

2.7.2 Lemma 24

Eine Cauchyfolge $(a_n)_n$ konvergiert

$$\iff (a_n)_n hateine konvergente Teilfolge$$

 $(\iff H((a_n)_n) \neq \emptyset)$

Beweis

$$", \Longrightarrow ": \text{klar}$$

$$", \leftrightharpoons ": \text{Sei } (a_{n_l})_l \text{ konvergente Teilfolge von } (a_n)_n$$

$$\text{d.h.: } n_l < n_{l+1} \quad \forall l \in \mathbb{N}, n \in \mathbb{N}$$

$$L := \lim_{n \to \infty} a_{n_l}$$

Sei $\epsilon > 0$ Da $(a_n)_n$ Cauchyfolge ist

$$\implies \exists N_{\epsilon} : |a_n - a_m| < \epsilon \quad \forall n, m \le N_{\epsilon}$$

$$\implies \forall n \geq N_{\epsilon} : \text{ W\"{a}hle } m = n_{l} \geq l, l \geq N_{\epsilon}$$

$$\implies \boxed{|a_{n} - a_{n_{l}}|} < \epsilon \quad \forall l \geq N_{\epsilon}$$

$$\begin{aligned} |a_n - L| &= \lim_{l \to \infty} |a_n - a_{n_l}| \\ &\leq \limsup_{l \to \infty} \underbrace{|a_n - a_{n_l}|}_{<\epsilon} \\ &\stackrel{\forall l \geq N_\epsilon}{n \geq N_\epsilon} \\ &\leq \epsilon \quad \forall n \geq N_\epsilon \end{aligned}$$

d.h.
$$a_n \to L!$$

oder etwas anders

$$|a_n - L| \le |a_n - a_{n_l}| + |a_{n_l} - L|$$

$$\implies |a_n - L| = \limsup_{l \to \infty} |a_n - L|$$

$$\leq \limsup_{l \to \infty} (|a_n - a_{n_l}| + |a_{n_l} - L|)$$

$$\leq \limsup_{l \to \infty} \underbrace{|a_n - a_{n_l}|}_{<\epsilon} + \underbrace{\lim\sup_{l \to \infty} |a_{n_l} - L|}_{=0}$$

$$\leq \epsilon \quad \forall n \geq N_{\epsilon}$$

2.7.3 Lemma 25: Jede Chauchyfolge ist beschränkt

Beweis

Sei
$$\epsilon = 1, \exists N : |a_n - a_m| < 1 \quad \forall n, m \ge N$$

$$\implies \forall n \ge N : |a_n - a_N| < 1$$

$$\implies \forall n \ge N : |a_n| \le |a_n - a_N| + |a_N|$$

$$\le 1 + |a_N|$$

$$M := \max(|a_1|, |a_2|, \dots, |a_N|, 1 + |a_N|)$$

$$\implies \forall n \in \mathbb{N} : |a_n| \le M$$

Beweis von S.23

$$,,\Longrightarrow ``:$$

"
$$\Leftarrow$$
 ":Sei $(a_n)_n$ Cauchy
" $\stackrel{L.25}{\Leftarrow}$ ": $(a_n)_n$ ist beschränkt
" $\stackrel{Kor.19}{\Leftarrow}$ ": $(a_n)_n$ hat eine konvergente Teilfolge
 $\Rightarrow (a_n)_n$ ist Konvergent

2.8 Einschub Komplexe Zahlen

Wiederholen $x^2 + 1 = 0$ hat keine Lösung in \mathbb{R} da $\forall x \in \mathbb{R} : x^2 \ge 0$ Möchten Zahl $i, \quad i^2 = -1$! (imaginäre Zahl)

2 Folgen und Konvergenz

Informel Schreiben
$$z = a + ib$$
 $a, b \in \mathbb{R}$ $x, y \in \mathbb{R}$

Man nennt x den Realteil von z=x+iyMan nennt y den Imaginärteil von z=x+iyreelle Zahl $z=x=x+i\cdot 0$

Wollen rechnen: D.h. alle Körperaxiome sollen gelten.

- Was ist "+" (Plus, addieren)?
- Was ist "·" (Mal, multiplizieren)?

2.8.1 Summe:

$$z_1 = a_1 + ib_1, z_2 = a_2 + ib_2$$

$$\implies z_1 + z_2 := (a_1 + ib_1) + (a_2 + ib_2)$$

$$(a_1 + ib_1) + (a_2 + ib_2) = (a_1 + a_2) + i(b_1 + b_2)$$

2.8.2 Produkt:

$$z_1 \cdot z_2 = (a_1 + ib_1) \cdot (a_2 \cdot ib_2)$$

$$= a_1(a_2 + ib_2) + ib_2(a_1)$$

$$a_1a_2 + ia_1b_2 + ia_2b_1 + \underbrace{(ib_1)(ib_2)}_{-b_1 \cdot b_2}$$

$$= a_1a_2 - b_1b_2 + i(a_1b_2 + a_2b_1)$$

2.8.3 Definition von Komplexe Zahlen

$$\mathbb{C}:=\mathbb{R}\times\mathbb{R}=\mathbb{R}^2=\{\binom{x}{y}:x,y\in\mathbb{R}\}$$
Mit den binären Operationen:

• "+"
$$\mathbb{C} \times \mathbb{C} \to \mathbb{C}$$

 $z_1 = {a_1 \choose b_1} \ z_2 = {a_2 \choose b_2}$
 $(z_1, z_2) \mapsto z_1 + z_2 {a_1 + a_2 \choose b_1 + b_2}$

• "·"
$$\mathbb{C} \times \mathbb{C} \to \mathbb{C}$$

 $(z_1, z_2) \mapsto z_1 \cdot z_2 = \begin{pmatrix} a_1 a_2 - b_1 b_2 \\ a_1 b_2 + a_2 b_1 \end{pmatrix}$

$$\implies (\mathbb{C}, +, \cdot)$$
 ist ein Körper!

2.8.4 Spezielle Komplexe Zahlen

$$z = \binom{a}{b}a, b \in \mathbb{R}$$

Beispiel

$$\begin{array}{l} b=0,z=\binom{a}{0}\\ z_1=\binom{a_1}{0},z_2=\binom{a_2}{0}\\ \Longrightarrow z_1+z_2=\binom{a_1+a_2}{0}\\ z_1\cdot z_2=\binom{a_1\cdot a_2}{0} \text{ Verhalten sich wie }\mathbb{R}\\ \Longrightarrow \text{ K\"{o}nnen }\mathbb{R} \text{ als Teilmenge von }\mathbb{C} \text{ auffassen }\\ \mathbb{R} \text{ wird identifiziert mit } \{\binom{a}{0},a\in\mathbb{R}\} \end{array}$$

Notation

$$z = \binom{a}{b} = a \cdot \binom{1}{0} + b \cdot \binom{0}{1}$$
$$\binom{0}{1} \cdot \binom{0}{1} = \binom{-1}{0} \simeq -1 \text{ als reelle Zahl}$$

Definition

$$i = \binom{0}{1}, i^2 = -1$$

Bild

Definition: Betrag(Länge)

$$z \in \mathbb{C} : |z| := \sqrt{a^2 + b^2}, \ z = a + ib$$

2.8.5 Komplex Konjugieren

$$\begin{split} z &= a+ib, \ \overline{z} = a-ib \\ \text{Es gilt: } |z|^Z &= z \cdot \overline{z} = \overline{z} \cdot z \text{ nachrechnen} \\ 0 &\neq z = a+ib \\ \Longrightarrow \text{ was ist } \frac{1}{z} = \frac{1}{a+ib} \\ \frac{1}{z} \cdot \overline{z}_z &= \frac{\overline{z}}{z \cdot \overline{z}} = \frac{\overline{z}}{|z|^z} = \frac{a-ib}{a^2+b^2} = \frac{a}{a^2+b^2} - i \cdot \frac{b}{a^2+b^2} \end{split}$$

Definition: Abstand

$$z_1, z_2 \in \mathbb{C}$$

 $d(z_1, z_2) := |z_1 - z_2| = \sqrt{(a_1 - a_2)^2 + (b_1 - b_2)^2}$
 $z_1 = a_1 + ib_1, z_2 = a_2 + ib_2$

Beispiel

$$\begin{array}{l} z = 2 + 3i \\ \frac{1}{z} = \frac{1}{2 + 3i} = \frac{2 - 3i}{(2 + 3i)(2 - 3i)} = \frac{2 - 3i}{2^2 + 3^2} = \frac{2}{13} - i\frac{3}{13} \end{array}$$

Polarkoordinaten

$$z = a + ib$$

$$= |z| \left(\frac{a}{|z|} + i \frac{b}{|z|}\right)$$

$$= |z| \left(\cos \psi + \sin \psi\right)$$

2.8.6 Komplexwertige Folge

Eine Folge ist eine Funktion f $f: \mathbb{N} \to \mathbb{C}, n \mapsto f(n)$

Notation

$$z_n = f(n), z(n)_n, z(n)_{n \in \mathbb{N}}$$

Konvergenz

 $(z_n)_n$ konvergiert in $\mathbb C$ gegen Grenzwert L: $\forall \epsilon > 0 \exists k_\epsilon : |z_k - L| < \epsilon \forall n \geq k_\epsilon$ Alle anderen Definitionen, Häufungswert, Cauchyfolge etc analog! Folge $(z_n)_n$ ist beschränkt, falls $\exists 0 \leq M < \infty : |z_n| \leq M \forall n$

2.8.7 Satz

Eine Folge $(a_n)_n$ konvergiert genau dann, wenn $(Re(z_n))_n, (Im(z_n))_n$ konvergieren wobei: $Re(z) := \frac{1}{2}(z+\overline{z}), Im(z) = \frac{1}{z_i}(z-\overline{z})$ $z = a + ib, \overline{z} = a - ib, z + \overline{z} = a + ib + a - ib = 2a = 2Re(z)$ $z - \overline{z} = 2ib = 2Im(z)$

Beweis

- " \Longrightarrow " $z_n = x_n + iy_n$, L = a + ib haben $L := \lim z_n$ existiert $\forall \epsilon > 0 : \exists k_\epsilon : |z_n L| < \epsilon \forall n \ge k_\epsilon$ $|x_n Re(L)| = |x_n a| = \sqrt{(x_n a)^2} \le \sqrt{(x_n a)^2 + (y_n b)^2} = |z_n L| < \epsilon \forall n \ge k_\epsilon$ $\Longrightarrow x_n \to Re(L)$ genauso: $|y_n Im(L)| = |y_n b| \le \sqrt{(x_n a)^2 + (y_n b)^2} = |z_n L|$ (Check!)
- ,, \Leftarrow " Wissen: $x_n \to a$, $y_n \to b$ $\forall \epsilon > 0$: $\exists k_{\epsilon}^1 : |x_n - a| < \frac{\epsilon}{\sqrt{2}} \forall n \ge k_{\epsilon}^1$ $\forall \epsilon > 0$: $\exists k_{\epsilon}^2 : |y_n - b| < \frac{\epsilon}{\sqrt{2}} \forall n \ge k_{\epsilon}^2$ $\implies k_{\epsilon} := \max(k_2^1, k_2^2) \implies \forall n \ge k_{\epsilon}, i = a + ib$ $|z_n - L| = \sqrt{(x_n - a)^2 + (y_n - b)^2} < \sqrt{\frac{\epsilon^2}{2} + \frac{\epsilon^2}{2}} = \epsilon$ $\lim z_n = L$

Definition

Wir nennen Teilmenge $A \subset \mathbb{C}$ offen, falls $\forall z \in A : \exists \epsilon > 0 : B_{\epsilon}(z) \in A, B_{\epsilon}(L) := \{z \in \mathbb{C} : |z - L| < \epsilon\}$

A ist abgeschlossen, falls $A^{\mathbb{C}} = \mathbb{C} A$ offen ist.

2.8.8 Korollar

Eine Folge $(z_n)_n$ in \mathbb{C} konvergiert $\Leftrightarrow (z_n)_n$ ist Cauchy! **Beweis** $(z_n)_n$ ist Cauchy $\Leftrightarrow (Re(z_n))_n$ und $(Im(z_n))_n$ sind Cauchy $\Leftrightarrow (Re(z_n))_n$ und $(Im(z_n))_n$ konvergieren $\Leftrightarrow (z_n)_n$ konvergiert

2.8.9 Korollar

Jede beschränkte Folge $(z_n)_n$ in $\mathbb C$ hat mindestens eine konvergente Teilfolge! **Beweis** $(z_n)_n$ beschränkt $\Leftrightarrow \underbrace{(Re(z_n))_n}, \underbrace{(Im(z_n))_n}$ sind beschränkte reelle Teilfolgen

 \implies \exists Teilfolge $(x_{n_j})_j$ von $(x_n)_n$ die konvergiert. d.h. $x_{n_j} \rightarrow a$

 $\implies (x_{n_{j_l}})_l, (y_{n_{j_l}})_l$ beide konvergernt!

 \implies Teilfolge $z_{n_{j_l}} = x_{n_{j_l}} + iy_{n_{j_l}}$ konvergiert

3 Reihen

3.1 Definition und elementare Eigenschaften

3.1.1 Definition 1

Sei $(a_n)_{n\geq p}$ eine komplexe Folge. Das Symbol

$$\sum_{n=p}^{\infty} a_n$$

ist definiert durch die Folge zugehöriger Partialsummen

$$(S_n)_{n \ge p}$$
 $S_n := \sum_{j=p}^n a_j = a_p + a_{p+1} + \dots + a_n$

Wir nennen diese Reihe $\sum_{n=p}^{\infty} a_n$ konvergent, wenn die Folge der Partialsummen konvergiert und in diesem Fall schreiben wir auch:

$$\sum_{n=p}^{\infty} a_n := \lim_{n \to \infty} S_n = \lim_{n \to \infty} \sum_{j=p}^{n} a_j$$

und nenne dieses die Summe (oder den Wert) der Reihe

Achtung

Damit hat das Symbol $\sum_{n=p}^{\infty} a_n$ zwei Bedeutungen:

- 1. Symbol für die Folge der Partialsummen
- 2. Symbol für den Grenzwert $\lim S_n$ falls diese existiert

Beispiel

• Beispiel einer simplen Teleskopreihe

Die Reihe
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$
 konvergiert

$$S_n = \sum_{j=1}^n \frac{1}{j(j+1)}, \quad \frac{1}{j(j+1)} = \frac{1}{j} - \frac{1}{j+1}$$

3 Reihen

$$= \sum_{j=1}^{n} \left(\frac{1}{j} - \frac{1}{j+1} \right) = \left(\frac{1}{1} - \frac{1}{2} \right) + \left(\frac{1}{2} - \frac{1}{3} \right) + \dots \left(\frac{1}{n} - \frac{1}{n+1} \right)$$

$$= 1 - \frac{1}{n+1} \text{ Teleskopreihe!}$$

$$\implies \lim_{n \to \infty} S_n = \lim_{n \to \infty} \left(1 - \frac{1}{n+1} \right) = 1$$

$$\sum_{j=1}^{n} \left(\frac{1}{j} - \frac{1}{n+1} \right) = \sum_{j=1}^{n} \frac{1}{j} - \sum_{j=1}^{n} \frac{1}{j+1}$$

$$= \frac{1}{1} - \frac{1}{n+1} = 1 - \frac{1}{n+1}$$

• Geometrische Reihe

$$\sum_{n=0}^{\infty} x^n \quad \text{konvergiert für } |x| < 1$$
 divergiert für $|x| \ge 1$

Beweis

$$S_n = \sum_{j=0}^n x^j = \frac{1 - x^{n+1}}{1 - x} \text{ geometrische Summe } x \neq 1$$

$$\text{Falls } |x| < 1 \implies \lim_{n \to \infty} x^{n+1} = 0$$

$$\implies \lim_{n \to \infty} S_n = \lim_{n \to \infty} \frac{1 - x^{n+1}}{1 - x} = \frac{1}{1 - x}$$

Zur Erinnerung:

$$xS_n = x \sum_{j=0}^n x^j = \sum_{j=0}^n x^{j+1} = \sum_{j=1}^{n+1} x^j$$

$$\implies S_n - xS_n = \sum_{j=0}^n x^j - \sum_{j=1}^{n+1} x^j = 1 - x^{n+1}$$

3.1.2 Cauchy-Kriterium

Eine Folge $(S_n)_n$ konvergiert $\iff \forall \epsilon > 0 \exists k_\epsilon : |S_m - S_n| < \epsilon \quad \forall n, m \geq k_\epsilon$

m = n + l

$$\implies S_m - S_n = S_{n+l} - S_n = \sum_{j=p}^{n+l} a_j - \sum_{j=p}^n a_j = \sum_{j=n+1}^{n+l} a_j$$

3.1.3 Satz 2: Cauchy-Kriterium für Konvergenz von Reihen

Eine Reihe
$$\sum_{n=p}^{\infty} a_n$$
 konvergiert

$$\iff \forall \epsilon > 0 \exists k_{\epsilon} : \forall l \in \mathbb{N}, n \ge k_{\epsilon} : \left| \sum_{j=p}^{n+1} a_j \right| < \epsilon$$

Beweis

$$\sum_{n=p}^{\infty}a_n$$
konvergiert \iff die Folge $(a_n)_{n\geq p}$ der Partialsummen konvergiert

$$\overset{\text{Cauchy-Krit}}{\Longleftrightarrow} \forall \epsilon > 0 \exists k_{\epsilon} : |S_m - S_n| < \epsilon \quad \forall n, m \ge k_{\epsilon}$$

O.B.d.A
$$m > n$$
 d.h. $m = n + l, l \in \mathbb{N}$

da
$$S_m - S_n = S_{n+l} - S_n = \sum_{j=n+1}^{n+l} a_j$$
 sind wir Fertig

3.1.4 Korollar 3

Wenn
$$\sum_{n=p}^{\infty} a_n$$
 konvergiert, dann ist $(a_n)_{n \geq p}$ eine Nullfolge

d.h.
$$\lim_{n\to\infty} a_n = 0$$

Bemerkung Umkehrung gilt NICHT!

z.B. die harmonische Reihe
$$\sum_{n=1}^{\infty} \frac{1}{n}$$
 divergiert

Beweis

Wende "
$$\implies$$
 " Richtung auf $l=1$ an

3 Reihen

$$\sum_{n=p}^{\infty} a_n \text{ konvergiert } \implies \forall \epsilon > 0 \exists k_\epsilon : \underbrace{\left|\sum_{j=n+1}^{n+1}\right|}_{|a_{n+1}} < \epsilon$$
d.h. $a_{n+1} \to 0$
d.h. $a_n \to 0$

Beweis (Anderer Beweis)

$$S_n = \sum_{j=0}^n a_j, \quad n \ge p$$

$$\lim_{n \to \infty} S_n = L$$

$$a_n = S_n - S_{n-1}$$

$$\implies \lim_{n \to \infty} a_n = \lim_{n \to \infty} (S_n - S_{n-1})$$

$$= \lim_{n \to \infty} S_n - \lim_{n \to \infty} S_{n-1}$$

$$= L - L = 0$$

3.1.5 Korollar 4: Die harmonische Reihe ist divergiert

$$\sum_{n=1}^{\infty} \frac{1}{n}$$
 divergiert

Beweis

Wen sie konvergent wäre, dann gilt Satz 2 $a_n = \frac{1}{n}$

$$S_n = \sum_{j=1}^n a_j = \sum_{j=1}^n \frac{1}{j}$$

l = n

$$S_{n+l} - S_n = \sum_{j=n+1}^{n+n} \frac{1}{j} = \sum_{j=n+1}^{2n} \frac{1}{j} = \frac{1}{n+1} + \frac{1}{n+2} + \frac{1}{n+3} + \dots + \frac{1}{2n} \ge n * \frac{1}{2n} = \frac{1}{2}$$

d.h. Satz 2 ist verletzt \implies keine Konvergenz

3.1.6 Satz 5

1. (Verschiebung des Summantenanfangs)

Sei
$$(a_n)_{n\geq p}$$
 eine Folge, $b_j=a_{p+k}, j\in\mathbb{N}_0$

Die Reihe $\sum_{n=p}^{\infty} a_n$, $\sum_{j=0}^{\infty} b_j$ und $\sum_{n=q}^{\infty} a_n$. Für p < q, haben dasselbe Konvergenzverhalten (d.h. sind gleichzeitig konvergent oder bestimmt divergent oder divergent) und im Falle der Konvergenz gilt:

$$\sum_{j=0}^{\infty} a_{p+j} = \sum_{n=p}^{\infty} a_n = a_p + a_{p+1} + \dots + a_{q-1} + \sum_{n=q}^{\infty} a_n$$

Beweis

Sei
$$S_n = a_p + a_{p+1} + \ldots + a_n$$

 $t_n = a_q + a_{q+1} + \ldots + a_n, n > p$
 $U_n = b_0 + b_1 + \ldots + b_n$
 $A = a_p + \ldots + a_{q-1}$
 $\implies S_n = A + t_n, n \ge q$
 $\implies (S_n)_{n \ge p}$ konvergiert $(t_n)_{n \ge q}$ konvergiert und $\lim_{n \to \infty} S_n = A + \lim_{n \to \infty} t_n$

Beweis

Wegen 1) reicht es Reihen der Form
$$\sum_{n=1}^{\infty}a_n$$
 zu betrachten

2. Das Konvergenzverhalten einer Reihe ändert sich nicht, wenn wir endliche Terme weglassen oder Hinzufügen.

Beweis

3. Sei $(g(k))_{k=1}^q$ die endliche $(q < \infty)$ oder unendliche $(q = \infty)$ Indexfolge mit $1 \le g(1) < g(2) < \ldots < g(k) < g(k+1)$

$$g(k) \in \mathbb{N}$$
 und $a_j = 0$, wegen $j \neq g(k) \quad \forall k \in \mathbb{N}$

(d.h.
$$a_i \neq 0 \iff \exists k \in \mathbb{N} : j = g(k)$$
)

Dann haben die beiden Reihen $\sum_{n=1}^{\infty} a_n$ und $\sum_{k=1}^{\infty} a_{g(k)}$ dasselbe Konvergenzverhalten.

(D.h. in einer Reihe kann man Nullen beliebig weglassen oder hinzufügen)

Beweis

Sei
$$S_n = \sum_{l=1}^n q_l, t_n = \sum_{j=1}^n a_{g(j)}$$

ist $q < \infty \implies S_n = t_n \forall n \ge g(q)$
ist $q = \infty$ dann ist $S_n = t_n$ für $S_n = t_n$ für $S_n = t_n$ für $S_n = t_n$ konvergiert und $t_n = t_n$ t_n

3.1.7 Satz 6

Sind
$$\sum_{n=1}^{\infty} a_n, \sum_{n=1}^{\infty} b_n$$
 konvergiert, so ist $\forall \lambda, \mu \in \mathbb{C}$

$$\sum_{n=1}^{\infty} (\lambda a_n + \mu b_n)$$
 konvergiert und $\sum_{n=1}^{\infty} (\lambda a_n + \mu b_n) = \lambda \sum_{n=1}^{\infty} a_n + \mu \sum_{n=1}^{\infty} b_n$

Beweis

$$S_n = \sum_{l=1}^n a_l \to s$$

$$t_n = \sum_{l=1}^n b_l \to t$$

$$\implies \sum_{l=1}^n (\lambda a_l + \mu b_l) = \lambda S_n + \mu t_n \to \lambda s + \mu t$$

3.1.8 Korollar 7

Aus der Konvergenz von
$$\sum_{n=1}^{\infty} a_n$$
, $\sum_{n=1}^{\infty} a_{n+1}$ folgt die Konvergenz $\sum_{n=1}^{\infty} a_n$ und $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} a_{2n} + \sum_{n=0}^{\infty} a_{2n+1}$

Beweis

Man fülle die Teilreihen $\sum_{n=1}^{\infty} a_{2n}$ und $\sum_{n=0}^{\infty} a_{n+1}$

mit Nullen auf (vergleich Satz 5 3)) und wende die Additionsregel Satz 6 an

Warnung: Umkehrung gilt NICHT! (Bsp später)

3.2 Alternierende Reihen

Sei $(b_n)_n$ eine Nullfolge, $b_n > 0$. Dann wird

$$\sum_{n=1}^{\infty} (-1)^{n-1} b_n$$

Eine alternierende Reihe genannt!

$$S_n = \sum_{j=1}^{\infty} (-1)^{j-1} b_j = b_1 - b_2 + b_3 - b_4 + \dots + (-1)^{n-1} b_n$$

z.B.:
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n}$$

3.2.1 Satz 8: Leibniz-Konvergenzkriterium

Sei $(b_n)_n$ eine fallende Nullfolge d.h. $b_n \to 0$ und $b_n \ge b_{n_1} \quad \forall n \in \mathbb{N}$ dann konvergiert die alternierende Reihe

$$\sum_{n=1}^{\infty} (-1)^{n-1} b_n = b_1 - b_2 + b_3 - b_4 + \dots$$

Beweis

Aus
$$b_n \ge b_{n+1} \to 0$$

$$\implies b_n \ge 0 \quad \forall n$$

$$S_{2k} := \sum_{n=1}^{2k} (-1)^{n-1} b_n = \underbrace{(b_1 - b_2)}_{\geq 0} + \underbrace{(b_3 - b_4)}_{\geq 0} + \dots + \underbrace{(b_{2k-1} - b_{2k})}_{\geq 0}$$

$$S_{2k+1} := \sum_{n=1}^{2k+1} (-1)^{n-1} b_n = b_1 - \underbrace{(b_2 - b_3)}_{\geq 0} - \underbrace{(b_4 - b_5)}_{\geq 0} - \dots - \underbrace{(b_{2k} - b_{2k+1})}_{\geq 0}$$

 $\implies S_{2k}$ ist wachsend, S_{2k+1} ist fallend

d.h.
$$S_{2k} \le S_{2(k+1)} = S_{2k+2}, S_{2k+1} \ge S_{2(k+1)+1} = S_{2k+3}$$

und $0 \le S_{2k} \le S_{2k+1} \le b_1$

Monotone

Konvergenz

$$\Rightarrow$$
 $\lim_{k\to\infty} S_{2k}, \lim_{k\to\infty} S_{2k+1}$ existieren

Außerdem gilt: $|S_{2k+1} - S_{2k}| = b_{2k+1} \to 0$

Somit ist
$$\lim_{n\to\infty} S_{2k+1} = \lim_{n\to\infty} S_{2k} = s$$

$$\implies \lim_{n \to \infty} (-1)^{n-1} b_n = s$$

3.2.2 Ultimative Version von Leibniz

Frage $\sum_n = 0^\infty a_n \cdot b_n b_n > b_n + 1 \to 0$ wann konvergiert das? Antwort: Oszillationen in den a_n helfen!

z.B.
$$a_n = (-1)^{n+1} \implies a_1 = 1a_2 = -1...$$

$$A_n = \sum_j = n^n a_j = 1 - 1 + 1 - 1 + 1 - 1 \dots = 1 wennngerade, 0 ansonten$$

 A_n ist eine beschränkte Folge

3.2.3 Ultimatium Leibniz

Sei $(a_n)_n \in \mathbb{C}(b_n)_n \in \mathbb{R}$ mit $b_n > b_n + 1 \lim_{n \to \infty} b_n = 0$ und $\sup |\sum_{j=1}^n a_j| < \infty \implies \sum_{n=1}^\infty a_n b_n konvergiert$

Beweis Zu zeigen $\forall \epsilon > 0 \exists k_{\epsilon} : \forall l \in \mathbb{N}, n \geq k_{\epsilon} :$

$$|\sum_{j=n+1}^{n+l} a_j b_j| < \epsilon$$

Setzen
$$A_n := \sum_{j=1}^n a_j, A_0 = 0$$

 $\Rightarrow a_j = A_j - A_{j-1}$
 $\Rightarrow \sum_{j=n+1}^{n+l} a_j b_j = \sum_{j=n+1}^{n+l} (A_j - A_{j+1}) b_j$
 $= \sum_{j=n+1}^{n+l} A_j b_j - \sum_{j=n+1}^{n+l} A_{j-1} b_j$
 $= \sum_{j=n+1}^{n+l} A_j b_{j-1}$
 $= A_{n+1} b_{n+1} = A_n b_{n+1} + \sum_{j=n+1}^{n+l-1} A_j (b_j - b_{j-1})$
 $\Rightarrow |\sum_{j=n+1}^{n+l} a_j b_j| \le |A_{n+1}| b_{n+l} + |A_n| b_{n+1} + \sum_{j=n+1}^{n+l-1} |a_j| |b_j - b_{j+1}|$
 $M := sign(Ai) < \infty \le M(b_{n+l} + b_{n+1}) + M \sum_{j=n+1}^{n+l+11} (b_j - b_{j+1}) \text{ da } b_j > b_{j+1}$
 $\Rightarrow |\sum_{j=n+1}^{n+l} a_j b_j| \le M(b_{n+l} + b_{n+1}) + M(b_{n+l} - b_{n+l})$
 $= 2M(b+1) \to 0$
unabhängig von !!