Cross correlation of cosmic shear from CSST with CMB lensing from AliCPT

Wang Zheng-Yi

Supervisor: Prof. Hu Bin CO: Yao Ji, Liu Xiangkun ,Liu Dezi,Fan Zuhui

Department of Astronomy, Being Normal University
Institute for Frontier in Astronomy and Astrophysics, Beijing Normal University

2023/03/17

 $\varepsilon = \frac{\varepsilon_s + \mathbf{g}}{1 + \mathbf{g}^* \varepsilon_s} \approx \varepsilon_s + \gamma$

Cross-correlation?

$$\begin{split} \tilde{\Theta}(\boldsymbol{\theta}) &= \frac{\Delta T}{\bar{T}_{\text{CMB}}} = \Theta(\boldsymbol{\theta} + \mathbf{d}(\boldsymbol{\theta})) \\ &= \Theta(\boldsymbol{\theta}) + \nabla^i \psi \nabla_i \Theta(\boldsymbol{\theta}) + \mathcal{O}(\psi^2) \end{split}$$

Cross-correaltion

- Galaxy shape survey (CSST)

 → cosmic shear
- CMB experiment (AliCPT-1)
 → CMB lensing reconstruction
- The signals are correlated but noises are not.

$$C_{\ell}^{XY} = \int_{0}^{z_{*}} \frac{cdz}{H(z)} \frac{q^{X}(z)q^{Y}(z)}{\chi^{2}} P_{\delta}(k = \frac{\ell + 1/2}{\chi}, z)$$

Map realisation

Maps of signal:

$$M_1(\boldsymbol{\ell}) = \zeta_1(\boldsymbol{\ell}) \boldsymbol{s_{11}}$$

.

$$M_i(\ell) = \zeta_1(\ell) s_{1i} + \dots + \zeta_i(\ell) s_{ii}$$

:

$$M_n(\ell) = \zeta_1(\ell) s_{1n} + \dots + \zeta_n(\ell) s_{nn}$$

$$\langle M_i M_j \rangle = \sum_{k=1}^{i} s_{ki} s_{kj} = C_{ij} \ (1 \le i \le j)$$

$$\langle \zeta_i(\boldsymbol{\ell})\zeta_j(\boldsymbol{\ell})\rangle = \delta_{ij}$$

 s_{ij} recursion formulism

$$s_{ij} = rac{C_{ij} - \sum\limits_{k=1}^{i-1} s_{ki} s_{kj}}{\left(C_{ii} - \sum\limits_{k=1}^{i-1} s_{ki}^2
ight)^{1/2}}$$

 $M_i(\ell)$ s are convergence in harmonic space, we can obtain shear by:

$$\gamma(\boldsymbol{\ell}) = \left(\frac{\ell_1^2 - \ell_2^2 + 2i\ell_1\ell_2}{|\boldsymbol{\ell}|^2}\right) M(\boldsymbol{\ell})$$

Maps of noise:

$$M_N(\boldsymbol{\ell}) = \hat{\zeta}(\boldsymbol{\ell}) \sqrt{N(\ell)}$$

CMB lensing

Galaxy samples and cosmic shear

$$\varepsilon = \varepsilon_s + \gamma^G + \gamma^I$$

 $\sigma_{\varepsilon} = 0.3$ (Miao et al. 2022) $\bar{n}_g = 20 \ \mathrm{arcmin}^{-2}$

n(z) obtained from the COSMOS 2015 catalog (Cao et al. 2018)

photo-z error

Photo-z error for maps:

$$\hat{\gamma}_a(p) = \sum_i w_{i \to a}(p) (\gamma_i(p) + \varepsilon_{si}(p)) \bigg/ \sum_i w_{i \to a}(p)$$

$$p \text{ denotes pixel index, and } w_{i \to a} \sim M\{N_{\text{bins}}, [P_{i \to a}]\}$$

where

$$p(z^{P}|z) = \frac{1}{\sqrt{2\pi}\sigma_{z}(1+z)} \exp\left[-\frac{(z-z^{P}-\Delta_{z}^{i})^{2}}{2(\sigma_{z}(1+z))^{2}}\right]$$

$$\sigma_{z} = 0.05, \ \Delta_{z} = 0.005$$

$$P_{i \to a} = \int_{z^{P}}^{z_{a,\text{max}}^{P}} dz^{P} p(z^{P}|z_{i})$$

$$P_{i \to a} = \int_{z_{a,\text{min}}}^{z_{a,\text{max}}} dz^P p(z^P | z_i)$$

cosmic shear maps

8/12

pseudo- C_ℓ and Covariance matrix

Cosmological constraint

Parameters	Fiducial value	Prior
Ω_m	0.314	(0.05, 0.7)
h	0.67	fixed
Ω_b	0.049	fixed
σ_8	0.811	(0.3, 1.3)
n_s	0.96	fixed
$A_{ m IA}$	1.0	(-5, 5)
Δ_z^1	0.005	fixed
Δ_z^2	0.005	fixed
Δ_z^3	0.005	fixed
Δ_z^4	0.005	fixed
σ_z	0.05	fixed

Likelihood

$$-2\log \mathcal{L}(\hat{D}_{\nu}^{XY}|\boldsymbol{\theta}) = \chi^{2} = \sum_{\nu\nu'} \left(\hat{D}_{\nu}^{XY} - D_{\nu}^{XY}(\boldsymbol{\theta})\right)^{T} \tilde{\mathbb{C}}_{\nu\nu'}^{-1} \left(\hat{D}_{\nu'}^{XY} - D_{\nu'}^{XY}(\boldsymbol{\theta})\right)$$
$$S_{8} = \sigma_{8} \left(\frac{\Omega_{m}}{0.3}\right)^{\alpha}$$

We use the PCA(principal component analysis) method to fit α

Table: The fiducial values are adopted from Planck-2018 (Aghanim et al. 2020b) and COSMOS 2015 (Cao et al. 2018).

Constraint results

Where

	Data	Model
Π	N04 $+\sigma_z$	G
Ш	$N04+\sigma_z+IA$	$G{+}I$
Ш	N048 $+\sigma_z$	
IV	N048+ σ_z +IA	

Summarize

- A pipeline of the cross-correlation between cosmic shear tomography from the Chinese Survey Space Telescope (CSST), and CMB lensing from Ali CMB Polarization Telescope (AliCPT-1) in Tibet.
- The total cross-correlation: $SNR \approx 15$ (AliCPT-1 "4 modules*yr") and $SNR \approx 22$ (AliCPT-1 "48 modules*yr")
- The exclusion of intrinsic alignment: $\sim 0.5\sigma$ increment in σ_8 but without changing the S_8 value.
- For AliCPT-1 first and second stages, the cross-correlation of CSST cosmic shear with CMB lensing gives: $\sigma_8=0.817\pm0.026$, $S_8=0.840\pm0.022$ and $\sigma_8=0.814\pm0.017$, $S_8=0.833\pm0.011$, respectively.

THANKS!