Fundamentos de Algoritmos y Computabilidad

- * Gramáticas no restringidas
- * Clasificación de problemas
- * Decidibilidad

Tipo	Lenguajes	Tipo de máquina	Normas para la gramática
0	Recursivamente enumerables	Máquina de Turing	No restringida
1	Sensibles al contexto	Autómata lineal acotado	$\alpha \rightarrow \beta$, $ \alpha \leq \beta $
2	Independientes del contexto	Autómata de pila	<i>A</i> →γ
3	Regulares	Autómata finito	A→aB A→a

¿Cómo es la gramática de un lenguaje aceptado por una máquina de Turing?

Gramáticas no restringidas

Una gramática no restringida es una colección de 4 elementos $G=(\Sigma,N,S,P)$ donde:

- Σ es un alfabeto de terminales
- N es un alfabeto de no terminales
- S∈N es el símbolo inicial
- P es un conjunto de producciones de la forma $\alpha \rightarrow \beta$, donde $\alpha \in (N \cup \Sigma)^+$ y $\beta \in (N \cup \Sigma)^*$

Gramáticas no restringidas

S→aBSc|abc

 $A \rightarrow aBA \mid a$

B→bb | BaB

S→aBSc|aAbcA

aBa→aB | a

aAa→bb | A

El lado izquierdo puede tener varios símbolos

Gramáticas no restringidas

S→aBSc|abc

Ba→aB

Bb→bb

Gramáticas no restringidas

S→aBSc|abc

 $S \rightarrow \alpha B \underline{S} c$

Ba→aB

→ a<u>Ba</u>bcc

Bb→bb

→ aaBbcc

→ aabbcc

Gramáticas no restringidas

S→aBSc|abc

Ba→aB

Bb→bb

•
$$L(G)=\{a^nb^nc^n \mid n\geq 1\}$$

Tesis de Church-Turing

Todo algoritmo es Turing-computable

El problema del MCD

• El problema consiste en:

Calcular el Máximo Común Divisor entre dos números enteros positivos

El problema del MCD

```
r_0 \leftarrow a r_1 \leftarrow b

i \leftarrow 1

mientras r_i \neq 0 haga

r_{i+1} \leftarrow r_{i-1} \mod r_i

i \leftarrow i+1

mcd(a,b) = r_{i-1}
```

El problema del MCD

```
r_0 \leftarrow a r_1 \leftarrow b

i \leftarrow 1

mientras r_i \neq 0 haga

r_{i+1} \leftarrow r_{i-1} \mod r_i

i \leftarrow i+1

mcd(a,b) = r_{i-1}
```

Es posible diseñar un algoritmo que resuelva el **problema del MCD**

Este es un problema decidible o resoluble

El problema del MCD

Es posible diseñar una MT que resuelve el problema del MCD

Clasificación de problemas

Se tienen tres clases de problemas:

- Problemas decidibles o resolubles
- Problemas parcialmente decidibles
- Problemas no decidibles o irresolubles

- Aquellos para los que existe un algoritmo, es decir, una MT que se detiene tanto cuando se acepta la entrada como cuando no. Problemas decidibles o resolubles
- Aquellos problemas para los que existe una MT que se detiene cuando se acepta la entrada y corre indefinidamente para algunas entradas que no deben ser aceptadas. Problemas parcialmente decidibles
- Aquellos que solo se pueden resolver por una MT que cuando se debe aceptar la entrada, es posible que continúe ejecutándose indefinidamente. Problemas indecidibles o irresolubles

El problema de la parada de Lagarias, 1985

Dado el siguiente algoritmo:

```
Entrar X
Mientras X≠1 hacer:
si X es par, X=X/2
sino, X=3X+1
Parar
```

indicar si para cualquier X se detiene o no

El problema de la parada de Lagarias, 1985

Dado el siguiente algoritmo:

```
Entrar X
Mientras X≠1 hacer:
si X es par, X=X/2
sino, X=3X+1
Parar
```

Si el valor inicial de X es 7, tomaría los siguientes valores: 7,22,11,34,17,52,26,13,40,20,10,5,16,8,4,2,1

El problema de la parada de Lagarias, 1985

Dado el siguiente algoritmo:

```
Entrar X
Mientras X≠1 hacer:
si X es par, X=X/2
sino, X=3X+1
Parar
```

No hay manera de decidir, en general, si la ejecución se detiene o no

El problema de la parada

El problema de la parada

El problema de la parada es no decidible o no resoluble

El problema de la parada

El problema de la equivalencia

Dados dos programas A y B, calculan lo mismo?

El problema de la equivalencia

Dados dos programas A y B, calculan lo mismo?

El problema de la equivalencia es no decidible o no resoluble

Clasificación de problemas

Problemas decidibles o resolubles

Tratables

Duros o Intratables

Problemas no decidibles o no resolubles

No computables

Fuertemente no computables

Clasificación de problemas

Problemas decidibles o resolubles

Tratables

Duros o Intratables

Problemas no decidibles o no resolubles

No computables

Fuertemente no computables

El problema de la parada es no decidible no computable

El problema de la verificación

El problema de la verificación

El problema de la verificación es fuertemente no computable

Clasificación de problemas

Problemas decidibles o resolubles

Tratables

Duros o Intratables

Problemas no decidibles o no resolubles

No computables

Fuertemente no computables

El problema de la verificación es no decidible fuertemente no computable

Clasificación de problemas

Problemas decidibles o resolubles*

Tratables

Duros o Intratables

Problemas no decidibles o no resolubles

No computables

Fuertemente no computables

El problema de las torres de Hanoi

• El problema consiste en:

Mover los N anillos de la torre A a la torre B o C, usando la otra como ayuda, pero sin que haya un disco de mayor diámetro sobre otro de menor

El problema de las torres de Hanoi

El problema de las torres de Hanoi

La cota mínima de complejidad para este problema es 2^N

N	Operaciones
10	1.024
20	1.048.576
50	1.125.899.906.842.624

El problema de las torres de Hanoi

• Un computador capaz de hacer 1 millón de operaciones por segundo, tardaría 1 ms en resolver el juego con 10 anillos y casi 36 años si se colocan 50 anillos

Clasificación de problemas

Problemas decidibles o resolubles

Tratables

Duros o Intratables

Problemas no decidibles o irresolubles

No computables

Fuertemente no computables

Clasificación de problemas

Problemas decidibles o resolubles

Tratables

Duros o Intratables

Problemas no decidibles o irresolubles

No computables

Fuertemente no computables

El problema de las torres de Hanoi es decidible intratable

Clasificación de problemas

Problemas decidibles o resolubles

Tratables

Duros o Intratables

Problemas no decidibles o irresolubles

No computables

Fuertemente no computables

Clasifique el problema del MCD

Clasificación de problemas

Problemas decidibles o resolubles

Tratables

Duros o Intratables

Problemas no decidibles o irresolubles

No computables

Fuertemente no computables

El problema del MCD es decidible tratable

Clasificación de problemas

Problemas decidibles o resolubles

Problemas no decidibles o irresolubles

Clasificación de problemas

Problemas decidibles o resolubles

Tratables ← Problema del MCD

Duros o Intratables ← Problema de las torres de Hanoi

Problemas no decidibles o irresolubles

No computables

Fuertemente no computables

Problemas de la parada, de la teselación, de la serpiente

Problema de la verificación

Problemas resolubles

- Problemas P
- Problemas NP
- Problemas NP-completos

Problemas resolubles

- Problemas P
- Problemas NP
- Problemas NP-completos

Esta subclasificación de problemas reúne dos criterios, el determinismo de la máquina y el tiempo que toma alcanzar la solución

 Problemas P. Aquellos problemas que pueden ser resueltos por medio de una MT determinista en tiempo polinomial

- Máquina determinista que resuelve el problema
 f(a,b)=a-b en tiempo polinomial
- El problema f(a,b)=a-b es P

• Problemas NP. Aquellos problemas que sólo pueden ser resueltos por medio de una MT no determinista en tiempo polinomial (Non-deterministic Polynomial)

Máquina no determinista

$$(q_2,a)=\{(q_3,b,L),(q_4,a,R)\}$$

 $(q_4,b)=\{(q_4,b,L),(q_5,B,R)\}$

Autómata no determinista

L= $\{w \in \{a,b\}^* \mid w \text{ tiene la misma cantidad de a's que b's e inician y terminan en a}$

Un problema es NP-completo si:

- Una solución al problema puede ser verificada rápidamente (en tiempo polinomial)
- Si se pudiera resolver el problema en tiempo polinomial, lo mismo ocurriría con los otros problemas NP-completos

Un problema es NP-completo si:

- Una solución al problema puede ser verificada rápidamente (en tiempo polinomial)
- Si se pudiera resolver el problema en tiempo polinomial, lo mismo ocurriría con los otros problemas NP-completos

Dado un problema NP-completo, se puede verificar una solución en tiempo polinomial, pero no se ha podido encontrar una solución rápida para el problema

Problemas NP-completos

Algunos de los más famosos son:

- Problema de satisfacibilidad booleana (SAT)
- Problema del agente viajero
- Problema del ciclo hamiltoniano
- Problema de la mochila (knapsack)

Stephen Cook

• Recibió el Premio Turing en 1982 por su descubrimiento:

"Por su avance en nuestra comprensión de la complejidad computacional de un modo significativo y profundo. Su artículo pionero, *The Complexity of Theorem Proving Procedures*, 1971, sentó los cimientos de la teoría de NP-completitud."

(1939 -)

Teorema de Cook

• El Teorema de Cook establece lo siguiente:

El Problema de satisfactibilidad booleana (SAT) es NP-completo

• El problema de satisfactibilidad booleana (SAT)

Dada una expresión booleana saber si tiene asociada una asignación de valores de verdad que hacen que la expresión sea verdadera

• El problema de satisfactibilidad booleana (SAT)

Dada una expresión booleana saber si tiene asociada una asignación de valores de verdad que hacen que la expresión sea verdadera

$$(p \wedge \neg q) \rightarrow \neg s$$

· El problema de satisfactibilidad booleana (SAT)

Dada una expresión booleana saber si tiene asociada una asignación de valores de verdad que hacen que la expresión sea verdadera

$$(p \wedge \neg q) \rightarrow \neg s$$

¿Es {p=True, q=False, s=False} una solución?

• El problema de satisfactibilidad booleana (SAT)

Dada una expresión booleana saber si tiene asociada una asignación de valores de verdad que hacen que la expresión sea verdadera

$$(p \wedge \neg q) \rightarrow \neg s$$

La asignación {p=True, q=False, s=False} hace que la expresión sea verdadera

• El problema de satisfactibilidad booleana (SAT)

Dada una expresión booleana saber si tiene asociada una asignación de valores de verdad que hacen que la expresión sea verdadera

$$((p \land \neg q) \lor \neg s) \rightarrow (\neg p \land s)$$

¿Existe una asignación de valores de verdad que hacen la expresión verdadera?

· El problema de satisfactibilidad booleana (SAT)

Dada una expresión booleana saber si tiene asociada una asignación de valores de verdad que hacen que la expresión sea verdadera

$$((p \land \neg q) \lor \neg s) \rightarrow (\neg p \land s)$$

¿Existe una asignación de valores de verdad que hacen la expresión verdadera?

Dado un problema NP-completo, se puede verificar una solución en tiempo polinomial, pero no se ha podido encontrar una solución rápida para el problema

• El problema de satisfactibilidad booleana (SAT)

Dada una expresión booleana saber si tiene asociada una asignación de valores de verdad que hacen que la expresión sea verdadera

$$((p \land \neg q) \lor \neg s) \rightarrow (\neg p \land s)$$

¿Existe una asignación de valores de verdad que hacen la expresión verdadera?

No existe una mejor forma que evaluar todas las posibles asignaciones de valores de verdad. **Orden exponencial**

Problemas NP-completos

Algunos de los más famosos son:

- Problema de satisfacibilidad booleana (SAT)
- Problema del agente viajero
- · Problema del ciclo hamiltoniano
- Problema de la mochila (knapsack)