Appendix 2

Gaussian (Normal) and χ^2 Distributions

A2.1 Gaussian probability distribution

Given a vector \mathbf{X} of random variables x_i for $i=1,\ldots,N$, with mean $\overline{\mathbf{X}}=E[\mathbf{X}]$, where $E[\cdot]$ represents the expected value, and $\Delta \mathbf{X}=\mathbf{X}-\overline{\mathbf{X}}$, the covariance matrix Σ is an $N\times N$ matrix given by

$$\mathbf{\Sigma} = E[\Delta \mathbf{X} \, \Delta \mathbf{X}^\mathsf{T}]$$

so that $\Sigma_{ij} = E[\Delta x_i \Delta x_j]$. The diagonal entries of the matrix Σ are the variances of the individual variables x_i , whereas the off-diagonal entries are the cross-covariance values.

The variables x_i are said to conform to a joint Gaussian distribution, if the probability distribution of X is of the form

$$P(\overline{\mathbf{X}} + \Delta \mathbf{X}) = (2\pi)^{-N/2} \det(\Sigma^{-1})^{1/2} \exp\left(-(\Delta \mathbf{X})^{\mathsf{T}} \Sigma^{-1} (\Delta \mathbf{X})/2\right)$$
(A2.1)

for some positive-semidefinite matrix Σ^{-1} . It may be verified that $\overline{\mathbf{X}}$ and Σ are the mean and covariance of the distribution. A Gaussian distribution is uniquely determined by its mean and covariance. The factor $(2\pi)^{-N/2} \det(\Sigma^{-1})^{1/2}$ is just the normalizing factor necessary to make the total integral of the distribution equal to 1.

In the special case where Σ is a scalar matrix $\Sigma = \sigma^2 I$ the Gaussian PDF takes a simple form

$$P(\mathbf{X}) = (\sqrt{2\pi}\sigma)^{-N} \exp\left(-\sum_{i=1}^{N} (x_i - \bar{x}_i)^2 / 2\sigma^2\right)$$

where $\mathbf{X} = (x_1, x_2, \dots, x_N)^\mathsf{T}$. This distribution is called an *isotropic Gaussian distribution*.

Mahalanobis distance. Note that in this case the value of the PDF at a point \mathbf{X} is simply a function of the Euclidean distance $\left(\sum_{i=1}^{N}(x_i-\bar{x}_i)^2\right)^{1/2}$ of the point \mathbf{X} from the mean $\overline{\mathbf{X}}=(\bar{x}_1,\ldots,\bar{x}_N)^\mathsf{T}$. By analogy with this one may define the *Mahalanobis distance* between two vectors \mathbf{X} and \mathbf{Y} to be

$$\|\mathbf{X} - \mathbf{Y}\|_{\Sigma} = \left((\mathbf{X} - \mathbf{Y})^\mathsf{T} \Sigma^{-1} (\mathbf{X} - \mathbf{Y}) \right)^{1/2} \ .$$

One verifies that for a positive-definite matrix Σ , this defines a metric on \mathbb{R}^N . Using this notation, the general form of the Gaussian PDF may be written as

$$P(\mathbf{X}) \approx \exp\left(-\|\mathbf{X} - \overline{\mathbf{X}}\|_{\Sigma}^2/2\right)$$

where the normalizing factor has been omitted. Thus, the value of the Gaussian PDF is a function of the Mahalanobis distance of the point X from the mean.

Change of coordinates. Since Σ is symmetric and positive-definite, it may be written as $\Sigma = U^T DU$, where U is an orthogonal matrix and $D = (\sigma_1^2, \sigma_2^2, \dots, \sigma_N^2)$ is diagonal. Writing $\mathbf{X}' = U\mathbf{X}$ and $\overline{\mathbf{X}}' = U\overline{\mathbf{X}}$, and substituting in (A2.1), leads to

$$\begin{aligned} \exp\left(-(\mathbf{X}-\overline{\mathbf{X}})^\mathsf{T} \boldsymbol{\Sigma}^{-1} (\mathbf{X}-\overline{\mathbf{X}})/2\right) &= \exp\left(-(\mathbf{X}'-\overline{\mathbf{X}}')^\mathsf{T} \mathbf{U} \boldsymbol{\Sigma}^{-1} \mathbf{U}^\mathsf{T} (\mathbf{X}'-\overline{\mathbf{X}}')/2\right) \\ &= \exp\left(-(\mathbf{X}'-\overline{\mathbf{X}}')^\mathsf{T} \mathbf{D}^{-1} (\mathbf{X}'-\overline{\mathbf{X}}')/2\right) \end{aligned}$$

Thus, the orthogonal change of coordinates from \mathbf{X} to $\mathbf{X}' = \mathbf{U}\mathbf{X}$ transforms a general Gaussian PDF into one with diagonal covariance matrix. A further scaling by σ_i in each coordinate direction may be applied to transform it to an isotropic Gaussian distribution. Equivalently stated, a change of coordinates may be applied to transform Mahalanobis distance to ordinary Euclidean distance.

A2.2 χ^2 distribution

The χ_n^2 distribution is the distribution of the sum of squares of n independent Gaussian random variables. As applied to a Gaussian random vector \mathbf{v} with non-singular covariance matrix Σ , the value of $(\mathbf{v} - \bar{\mathbf{v}})^\mathsf{T} \Sigma^{-1} (\mathbf{v} - \bar{\mathbf{v}})$ satisfies a χ_n^2 distribution, where n is the dimension of \mathbf{v} . If the covariance matrix Σ is singular, then we must replace Σ^{-1} with the pseudo-inverse Σ^+ . In this case

• If \mathbf{v} is a Gaussian random vector with mean $\bar{\mathbf{v}}$ and covariance matrix Σ , then the value of $(\mathbf{v} - \bar{\mathbf{v}})^\mathsf{T} \Sigma^+ (\mathbf{v} - \bar{\mathbf{v}})$ satisfies a χ^2_r distribution, where $r = \mathrm{rank} \Sigma$.

The cumulative chi-squared distribution is defined as $F_n(k^2) = \int_0^{k^2} \chi_n^2(\xi) d\xi$. This represents the probability that the value of the χ_n^2 random variable is less than k^2 . Graphs of the χ_n^2 distribution and inverse cumulative χ_n^2 distributions for $n=1,\ldots,4$ are shown in figure A2.1 A program for computing the cumulative chi-squared distribution $F_n(k^2)$ is given in [Press-88]. Since it is a monotonically increasing function, one may compute the inverse function by any simple technique such as subdivision, and values are tabulated in table A2.1 (compare with figure A2.1).

Fig. A2.1. The χ_n^2 distribution (left) and inverse cumulative χ_n^2 distribution F_n^{-1} (right) for $n=1,\ldots,4$. In both cases, graphs are for $n=1,\ldots,4$ bottom to top (at middle point of horizontal axis).

n	$\alpha = 0.95$	$\alpha = 0.99$
1 2 3 4	3.84 5.99 7.81 9.49	6.63 9.21 11.34 13.28

Table A2.1. Values of k^2 for which $F_n(k^2)$, the cumulative χ^2 distribution with n degrees of freedom, equals α , i.e. $k^2 = F_n^{-1}(\alpha)$, where α is the probability.