Statistics for Management and Economics

OPRE 6301 (Statistics and Data Analysis)
by
Ayşegül Toptal Bilhan

Chapter 14 (Analysis of Variance)

Analysis of Variance

- Analysis of Variance and Completely Randomized Design
- Multiple Comparison Procedures

OPRE 6301 2

Introduction

Determines whether differences exist between two or more population means.

OPRE 6301

Introduction (Cont'd)

Example: Three adhesives are being analyzed for their impact on the bonding strength of paper in a pulp and paper mill. The adhesives are each randomly applied to four batches. The data is shown in the below table. Is there a difference among the adhesives in terms of the mean bonding strength?

Adhesive Type	Bonding Strength (kg)						
Adhesive 1	10.2	11.8	9.6	12.4			
Adhesive 2	12.8	14.7	13.3	15.4			
Adhesive 3	7.2	9.8	8.7	9.2			

OPRE 6301

Introduction (Cont'd)

- -We conduct experiments to
 - support or refute a hypothesis/conjecture
 - discover new information about a product, process, service.
- -Different parameters effect the output. In mathematical terms, we have

$$\eta = f(x_1, x_2, \dots, x_n, \theta_1, \theta_2, \dots, \theta_k),$$

where

η: mean response,

 $x_1, x_2,...,x_n$: input variables under control,

 $\boldsymbol{\theta}_{\text{1}},\,\boldsymbol{\theta}_{\text{2}},\!...,\!\boldsymbol{\theta}_{\text{k}}\!\!:$ uncontrollable parameters.

OPRE 630

Introduction (Cont'd)

Concepts and Definitions:

Response variable: Output

Factor: Controllable parameter that effects the output

Levels : Alternative values of a factor considered in experimentation (Continuous or discrete)

OPRE 6301

Introduction (Cont'd)

Concepts and Definitions (Cont'd):

Treatment: Combination of factor levels

Experimental unit: Quantity of material to which a single treatment is applied

Sampling unit: Fraction of experimental unit chosen for analysis

Completely Randomized Design:

- Treatments are randomly assigned to the experimental units.
- Simplest and least restrictive design
- When all treatments are replicated equal number of times, the experiment is *balanced*; otherwise it is *unbalanced*.

OPRE 6301

Introduction (Cont'd)

OPRE 6301

Notation for the One-Way Analysis of Variance

TREATMENT

	1	2	 j		k
	x ₁₁	<i>x</i> ₁₂	 x_{1j}		x_{1k}
	x_{21}	x_{22}	 x_{2j}		x_{2k}
			•	٠	•
	x_{n_11}	$x_{n_2 2}$	$x_{n_j j}$		$x_{n_k k}$
Sample size	n_1	n_2	$\mathbf{n}_{\mathbf{j}}$	•	n_k
Sample mean	\bar{x}_1	\bar{x}_2	 $ar{x}_j$		\bar{x}_k

k: number of populations

- x_{ij} : i^{th} observation of the sample taken from the j^{th} population
- n_j : number of observations in the sample taken from the j^{th} population
- \bar{x}_j : mean of the sample taken from the j^{th} population

$$\bar{x}_j = \frac{\sum_{i=1}^{n_j} x_{ij}}{n_i}$$

 $\bar{\bar{x}}$: grand mean of all the observations

$$\bar{\bar{x}} = \frac{\sum_{j=1}^k \sum_{i=1}^{n_j} x_{ij}}{n}$$

$$n = n_1 + n_2 + \dots + n_k$$

Analysis of Variance

$$H_0$$
: $\mu_1 = \mu_2 = \mu_3 = \dots = \mu_k$

 H_a : At least one of the means is different

k = the number of populations we are comparing we call these population "treatments"

Note: A required condition is population variances are equal

OPRE 6301

9

Analysis of Variance (Cont'd)

Sampling Distribution of \overline{x} given H_0 is True

OPRE 6301

10

Analysis of Variance (Cont'd)

Sampling Distribution of \overline{x} given H_0 is False

OPRE 6301

11

Analysis of Variance (Cont'd)

Test for Difference Among the Treatment Means

$$H_0$$
: $\mu_1 = \mu_2 = \mu_3 = \cdots = \mu_k$

 H_a : At least one of the means is different

The test statistic is

$$F = \frac{MST}{MSE},$$

where MST: the mean squares for treatment & MSE: the mean square error

For a chosen level of significance $\boldsymbol{\alpha},\ \ \text{if}$

$$F>F_{\alpha,(k-1),(n-k)}$$

then the null hypothesis is rejected.

OPRE 6301

12

Analysis of Variance (Cont'd)

Test for Difference Among the Treatment Means (Cont'd)

How do we find MST and MSE?

$$MST = \frac{SST}{k-1}$$
 and $MSE = \frac{SSE}{(n-k)}$

where SST: Sum of Squares for Treatments, SSE: Sum of Squares for Error

$$SST = \sum_{j=1}^{k} n_j (\bar{x}_j - \bar{\bar{x}})^2$$
 and $SSE = \sum_{j=1}^{k} \sum_{i=1}^{n_j} (x_{ij} - \bar{x}_j)^2$ $\left(or \quad SSE = \sum_{j=1}^{k} (n_j - 1) s_j^2 \right)$

OPRE 6301 13

Multiple Comparison Procedures

• Fisher's Least Significant Difference Method (LSD)

$$LSD = t_{\alpha/2,\nu} \sqrt{MSE\left(\frac{1}{n_i} + \frac{1}{n_j}\right)}$$

Here, v=n-k.

• We conclude that μ_i and μ_j differ if: $\left|\overline{x}_i - \overline{x}_j\right| > LSD$

OPRE 6301 14

Example (Cont'd)

Returning back to our earlier example, we are ready to answer the following question:

Is there a difference among the adhesives in terms of the mean bonding strength? Test at the 5% level of significance.

Adhesive Type	Во	Bonding Strength (kg)			Mean	
Adhesive 1	10.2	11.8	9.6	12.4	$\bar{x}_1 = 11.000$	
Adhesive 2	12.8	14.7	13.3	15.4	$\bar{x}_2 = 14.050$	
Adhesive 3	7.2	9.8	8.7	9.2	$\bar{x}_3 = 8.725$	
					$\bar{\bar{x}} = \frac{\sum_{j=1}^{3} \sum_{i=1}^{4} x_{ij}}{12} = \frac{135.1}{12} = 11.258$	

OPRE 6301

Example (Cont'd)

Returning back to our earlier example, we are ready to answer the following question:

Is there a difference among the adhesives in terms of the mean bonding strength? Test at the 5% level of significance.

Adhesive Type	Во	Bonding Strength (kg)			Mean
Adhesive 1	10.2	11.8	9.6	12.4	$\bar{x}_1 = 11.000$
Adhesive 2	12.8	14.7	13.3	15.4	$\bar{x}_2 = 14.050$
Adhesive 3	7.2	9.8	8.7	9.2	$\bar{x}_3 = 8.725$
					$\bar{\bar{x}} = \frac{\sum_{j=1}^{3} \sum_{i=1}^{4} x_{ij}}{12} = \frac{135.1}{12} = 11.258$

OPRE 6301

Example (Cont'd)

$$SST = \sum_{j=1}^{k} n_j \left(\bar{x}_j - \bar{\bar{x}}\right)^2 = 4(11 - 11.258)^2 + 4(14.05 - 11.258)^2 + 4(8.725 - 11.258)^2 = 57.11$$

$$SSE = \sum_{j=1}^{k} \sum_{i=1}^{n_j} (x_{ij} - \bar{x}_j)^2 = \sum_{j=1}^{3} \sum_{i=1}^{4} (x_{ij} - \bar{x}_j)^2$$

$$= \sum_{i=1}^{4} (x_{i1} - \bar{x}_1)^2 + \sum_{i=1}^{4} (x_{i2} - \bar{x}_2)^2 + \sum_{i=1}^{4} (x_{i3} - \bar{x}_3)^2$$

$$= (10.2 - 11)^2 + \dots + (12.4 - 11)^2 + (12.8 - 14.05)^2 + \dots + (9.2 - 8.725)^2$$

$$= 13.2775$$

OPRE 6301 17

Example (Cont'd)

$$MST = \frac{SST}{k-1} = \frac{57.11}{3-1} = 28.555$$

$$MSE = \frac{SSE}{(n-k)} = \frac{13.2775}{(12-3)} = 1.4753$$

The test statistic is:
$$F = \frac{MST}{MSE} = \frac{28.555}{1.4753} = 19.356$$

Our critical value is $F_{\alpha,(k-1),(n-k)} = F_{0.05,2,9} = 4.26$.

Since F=19.356> $F_{\alpha,(k-1),(n-k)} = F_{0.05,2,9} = 4.26$, we reject the null hypothesis.

OPRE 6301 18