

α-Laver Minimum Cost

Matching Problem of Preference Model

Institute of Software and Theoretical Computer Science

Jiandong Liu

Supervisors: Prof. Jiong Guo Ph.D Yinghui Wen

School of Computer Science and Technology August 2, 2020

SHANDONG UNIVERSITY

troductio

IIItioductic

Global Layer and α-Layer Minimum

Four Basic Evalua Criteria

Eighteen Extende

Evaluation Crite

Models

Contribution of th

Balance Cost on Globa

Eighteer Extende

sum-cost-5(M) or Global Layer

cx-Layer

max-cost-1(M) o

Conclusion

Outline

- Introduction Matching Problem Global Layer and α -Layer Minimum Cost Four Basic Evaluation Criteria Eighteen Extended Evaluation Criteria
- 2 Four Basic Models Contribution of this Semester Balance Cost on Global Layer
- 3 Eighteen Extended Models sum-cost-5(M) on Global Layer mul-cost-6(M) on α -Layer max-cost-1(M) on Global Layer
- 4 Conclusion

Outline

Introduction Matching Problem Global Layer and α -Layer Minimum Cost Four Basic Evaluation Criteria Eighteen Extended Evaluation Criteria

Matching Problem with Multi-Layer

Matching Problem

Global Layer and

α-Layer Minimum Cost

Criteria

Eighteen Extende

Evaluation Crite

Models

Contribution of

Balance Cost on Glob Layer

Extende

sum-cost-5(M) on

α-Layer

max-cost-1(M) Global Layer

Conclusion

 $Matching_1$ —— $Matching_2$ ——

- Matching
- Preference List
- Multi-Layer
- Cost- $rank_{u_1}^{(1)}(w_1)$

Global Layer and α -Layer Minimum Cost

ntroduction

Matching Problem Global Layer and

α-Layer Minimum Cost
Four Basic Evaluation

Criteria Evall

Eighteen Extende

Evaluation Crite

Four Basic

Contribution of th

Semester

Balance Cost on Globa Layer

Eighteen Extended Models

sum-cost-5(M) o Global Layer

mul-cost-6(M) α-Layer

nax-cost-1(M)

Conclusio

 Global Layer
 For the global layer cost, the goal is to find a matching M whose sum of cost in each layer is less than D.

• α -Layer In addition, in terms of the α -layer cost, the goal is to find a matching M whose sum of cost in certain α layers chosen from the total I layers is less than D.

Four Evaluation Criteria

Introduction

Matching Problem Global Layer and

Four Basic Evaluation

Eighteen Extend Evaluation Criter

Evaluation Cit

Four Basi

Contribution of

Semester

Balance Cost on Global Layer

Eighteen Extended

Extended Models

Global Layer

α-Layer

max-cost-1(M) (Global Laver

Conclusion

• $egal\text{-}cost(M) := \sum\limits_{\{u,w\} \in M} (rank_u(w) + rank_w(u))$

• $regret-cost(M) := \max_{i \in V(M)} rank_i(M(i))$

• equal-cost $(M) := \sum_{(u,w) \in M} |rank_u(w) - rank_w(u)|$

• $balance\text{-}cost(M) := max\{\sum\limits_{(u,w) \in M} rank_u(w), \sum\limits_{(u,w) \in M} rank_w(u)\}$

Introduction

Global Layer and α-Layer Minimum

Criteria

Eighteen Extended Evaluation Criteria

Four Basic

Contribution of t

Balance Cost on Glo

Eighteen Extended

sum-cost-5(M) o Global Laver

α-Layer

nax-cost-1(M) c ilobal Layer

Conclusion

Cumulative Extension

In order to make the research contents more meaningful, we adopt three extension methods to extend the original four evaluation criteria to eighteen listed below. Firstly, we use the cumulative extension method to acquire six evaluation criteria:

Table: Six Evaluation Criteria of Cumulative Extension

Criterion	Formula
sum-cost-1(M)	$\sum_{i \in V(M)} rank_i(M(i))$
sum-cost-2(M)	$\sum_{(u,w)\in M} (rank_u(w) * rank_w(u))$
sum-cost-3(M)	$\sum_{(u,w)\in M} rank_u(w) - rank_w(u) $
sum-cost-4(M)	$\sum_{(u,w)\in M} \max(rank_u(w), rank_w(u))$
sum-cost-5(M)	$\max_{(u,w)\in M} \operatorname{\it rank}_u(w) + \max_{(w,u)\in M} \operatorname{\it rank}_w(u)$
sum-cost- $6(M)$	$\prod_{(u,w)\in M} \mathit{rank}_u(w) + \prod_{(u,w)\in M} \mathit{rank}_w(u)$

miroductio

Global Layer and lpha-Layer Minimum Cost

Four Basic Evalu: Criteria

Eighteen Extended Evaluation Criteria

Four Basi

Models

Semester

Balance Cost on Glob Layer

Eighteen Extended

sum-cost-5(M) o

mul-cost-6(N α-Layer

max-cost-1(M) o

Conclusion

Cumulative Extension

Then, we employ the multiplicative extension method to obtain six evaluation criteria:

Table: Six Evaluation Criteria of Multiplicative Extension

Criterion	Formula
mul-cost-1(M)	$\prod_{i\in V(M)} {\it rank}_i(M(i))$
mul-cost-2(M)	$\prod_{(u,w)\in M} (\mathit{rank}_u(w) + \mathit{rank}_w(u))$
mul-cost-3(M)	$\prod_{(u,w)\in M} {\it rank}_u(w)-{\it rank}_w(u) $
mul-cost-4(M)	$\prod_{(u,w)\in M} \max(\mathit{rank}_u(w),\mathit{rank}_w(u))$
mul-cost-5(M)	$\max_{(u,w)\in M} rank_u(w) * \max_{(w,u)\in M} rank_w(u)$
mul-cost-6(M)	$\sum_{(u,w)\in M} \operatorname{rank}_u(w) * \sum_{(u,w)\in M} \operatorname{rank}_w(u)$

Matching Problem

Global Layer and α-Layer Minimum

Four Basic Evalu Criteria

Eighteen Extended Evaluation Criteria

Evaluation Crit

Four Bas

Contribution of

Balance Cost on Glob Laver

Eighteen Extended

sum-cost-5(M) on Global Laver

mul-cost-6(M)

max-cost-1(M)

Conclusion

Cumulative Extension

Finally, we utilize the maximum extension method to acquire six evaluation criteria:

Table: Six Evaluation Criteria of Maximum Extension

Criterion	Formula
max-cost-1(M)	$\max_{i \in V(M)} rank_i(M(i))$
max-cost-2(M)	$max_{(u,w)\in M}(\mathit{rank}_u(w) + \mathit{rank}_w(u))$
max-cost-3(M)	$max_{(u,w)\in M}(\mathit{rank}_u(w)*\mathit{rank}_w(u))$
max-cost-4(M)	$\max_{(u,w)\in M} \mathit{rank}_u(w)-\mathit{rank}_w(u) $
$max ext{-}cost ext{-}5(M)$	$\max\{\sum_{(u,w)\in M} rank_u(w), \sum_{(u,w)\in M} rank_w(u)\}$
\max -cost-6(M)	$\max\{\prod_{(u,w)\in M} rank_u(w), \prod_{(u,w)\in M} rank_w(u)\}$

Four Basic Models

Outline

- Four Basic Models Contribution of this Semester Balance Cost on Global Layer

IIIIIOductioi

α-Layer Minimum Cost

Four Basic Evalu Criteria

Eighteen Extende

Evaluation Criter

Models

Contribution of this

Semester

Balance Cost on Globa

Extended

sum-cost-5(M) o Global Laver

α-Layer
max-cost-1(M)

max-cost-1(M) o Global Layer

Conclusion

Contribution of this Semester

Through further research, we have achieved a breakthrough based on the results of the previous semester.

Table: Complexity Analysis of the Four Matching Models

	Old		New	
criterion	Global Layer	lpha-Layer	Global Layer	lpha-Layer
Egalitarian Cost	$O(n^3 \log n)$	NP-hard	$O(n^3)$	NP-hard
Regret Cost	$O(n^3)$	NP-hard	$O(n^2\sqrt{n})$	NP-hard
Equal Cost	$O(n^3 \log n)$	Studying	$O(n^3)$	NP-hard
Balance Cost	Studying	NP-hard	Dichotomy with 01-IP	NP-hard

α-Laver Minimum Cost

Balance Cost on Global Laver

Balance Cost on Global Layer

- $\max\{\sum_{(u,w)\in M} rank_u(w), \sum_{(u,w)\in M} rank_w(u)\}$
- Let $f(M) = \sum rank_u(w), h(M) = \sum rank_w(u)$ $(u,\overline{w}) \in M$ $(u,\overline{w})\in M$
- If we let $f(M) \le y$ to find the minimum value of h(M), it is obvious that as v increases, f(M) is increasing, while h(M) is decreasing shown as below.

Balance Cost on Global Layer

ntroduction

Matching Problem

Global Layer and α-Layer Minimum C

Four Basic Evaluat Criteria

Eighteen Extende

Evaluation Criter

Four Basic

Contribution of thi Semester

Balance Cost on Global Laver

Eightee

Extended Models

sum-cost-5(M) o Global Layer

α-Layer

max-cost-1(M) o Global Layer

Conclusio

$$\int \min z = \sum_{i=1}^{n} \sum_{j=1}^{n} rank_{w_j}(u_i) * x_{ij}$$

s.t.
$$\sum_{i=1}^{n} x_{ij} = 1, i = 1, 2, ..., n$$

$$\sum_{i=1}^{n} x_{ij} = 1, \ j = 1, 2, ..., n$$

$$\sum_{i=1}^{n} \sum_{j=1}^{n} rank_{u_i}(w_j) * x_{ij} \leq y$$

$$x_{i,j} \in [0,1]$$
, integer, $i,j = 1,2,...,n$

- 01 IP
- cutting-plane method
- branch and bound method
- Approximate method
- Parameter complexity

Eighteen Extended Models

Outline

- 3 Eighteen Extended Models sum-cost-5(M) on Global Layer mul-cost-6(M) on α -Layer max-cost-1(M) on Global Layer

Matching Problem

Global Layer and α-Layer Minimum Cost

Four Basic Evalu: Criteria

Eighteen Extende Evaluation Criteri

Evaluation Criter

Four Basic

Contribution of th Semester

Balance Cost on Glob

Layer

Extended Models

sum-cost-5(M) on Global Layer

mul-cost-6(M) α-Layer

max-cost-1(M) Global Laver

Conclusion

sum-cost-5(M) on Global Layer

- $\max_{(u,w)\in M} rank_u(w) + \max_{(w,u)\in M} rank_w(u) \iff f(M) + h(M)$
- If we let $f(M) \le y_1$ to find the minimum value of h(M), it is obvious dichotomy is helpful.
- Let $f(M) \le y_1$ and $h(M) \le y_2$, enumerate y_1 , divide y_2
- Remove all edges (i,j) where $rank_{u_i}(w_j) > y_1$ or $rank_{w_j}(u_i) > y_2$

miroductic

Matching Problem

α-Layer Minimum Cost

Criteria

Eighteen Extend Evaluation Crite

Evaluation Crit

Models

Semester

Balance Cost on Glob Layer

Eighteen Extended

sum-cost-5(M) on Global Layer

mul-cost-6(N α-Layer

max-cost-1(M) Global Layer

Conclusion

sum-cost-5(M) on Global Layer

$$a_{ij} = (rank_{u_i}^k(w_j) \le y_1 \&\& rank_{w_j}^k(u_i) \le y_2)$$

mul-cost-6(M) on α -Layer

CV-Layer Minimum Cost

mul-cost-6(M) on

 α -Laver

- 1-IN-3SAT
- INSTANCE A collection of clauses $C_1, ..., C_m, m > 1$; each C_i is a disjunction of exactly three literals.
- QUESTION Is there a truth assignment to the variables occuring so that exactly one literal is true in each C_i ?
- Example

$$X = \{x_1, ..., x_5\}, C = \{C_1, C_2, C_3\}$$

$$C_1 = \{\overline{x_1}, \overline{x_2}, x_3\}, C_2 = \{\overline{x_1}, x_4, x_5\}, C_3 = \{\overline{x_2}, x_4, x_5\}$$

mul-cost-6(M) on α -Layer

Introduction

or i i i

α-Layer Minimum Cost

Criteria

Evaluation Crite

Four Basic

Models

Semester

Balance Cost on Globa Layer

Extended

sum-cost-5(M) or

mul-cost-6(M) on

α-Layer max-cost-1(M)

Conclusio

introductio

Matching Problem

 α -Layer Minimum Cost

Four Basic Evals Criteria

Eighteen Extend

Evaluation Crite

Models

Semester

Balance Cost on Glob Laver

Eighteen Extended

Models

Global Layer

α-Layer

max-cost-1(M) on Global Layer

Conclusion

max-cost-1(M) on Global Layer

$$a_{ij} = (rank_{u_i}^k \big(w_j \big) \leq y \, \&\& \, rank_{w_j}^k (u_i) \leq y)$$

α-Laver Minimum Cost

Conclusion

Outline

- Pour Basic Models
- Conclusion

IIIIIOductioi

Global Layer and α -Layer Minimum Cost

Four Basic Evalua Criteria

Eighteen Extend

Evaluation Crite

Four Basic

Contribution of t

Balance Cost on Glo

Layer

Extended

sum-cost-5(M) o

α-Layer

ax-cost-1(M)

Conclusion

Summary of the Basic Four Matching Model

According to the four models described above, we could summarize our analysis of time complexity on the four basic evaluation criteria.

Table: Complexity Analysis of the Four Basic Matching Models

Criterion	Global Layer	lpha-Layer
Egalitarian Cost	$O(n^3)$	NP-hard
Regret Cost	$O(n^2\sqrt{n})$	NP-hard
Equal Cost	$O(n^3)$	NP-hard
Balance Cost	Dichotomy with 01-IP	NP-hard

Introduction

Global Layer and α -Layer Minimum Cost

Four Basic Evalu Criteria

Eighteen Extende

Evaluation Crite

Models

Contribution of the Semester

Balance Cost on Glob Layer

Extended

sum-cost-5(M) or Global Layer

max-cost-1(M)

Global Layer

Conclusion

Summary of the Cumulative Extension Model

According to the six models extended by cumulative method described above, we could summarize our analysis of time complexity on the cumulative extension models.

Table: Complexity Analysis of the Six Matching Models through Cumulative Extension

Criterion	Global Layer	lpha-Layer
sum-cost-1(M)	$O(n^3)$	NP-hard
sum-cost-2(M)	$O(n^3)$	NP-hard
sum-cost-3(M)	$O(n^3)$	NP-hard
sum-cost-4 (M)	$O(n^3)$	NP-hard
sum-cost-5(M)	$O(n^3 \log(n) \sqrt{n})$	$NP ext{-}hard$
sum-cost- $6(M)$	Enumerate with 01-IP	NP-hard

....

α-Layer Minimum Cost

our Basic Evaluat riteria

Eighteen Extend Evaluation Crite

Evaluation Crite

Models

Contribution of the

Balance Cost on Glob Layer

Eighteen Extended Models

sum-cost-5(M) o Global Layer

α-Layer max-cost-1(M

max-cost-1(M) o Global Layer

Conclusion

Summary of the Multiplicative Extension Model

For the six models extended by multiplicative method described above, we could summarize our analysis of time complexity on the multiplicative extension models.

Table: Complexity Analysis of the Six Matching Models through Multiplicative Extension

Criterion	Global Layer	lpha-Layer
mul-cost-1(M)	$O(n^3)$	NP-hard
mul-cost-2(M)	$O(n^3)$	NP-hard
mul-cost-3(M)	$O(n^3)$	NP-hard
mul-cost-4(M)	$O(n^3)$	NP-hard
mul-cost-5(M)	$O(n^3 \log(n) \sqrt{n})$	NP-hard
mul-cost-6(M)	Enumerate with 01-IP	NP-hard

α-Laver Minimum Cost

Conclusion

Summary of the Maximum Extension Model

In terms of the six models extended by maximum method described above, we could summarize our analysis of time complexity on the maximum extension models.

Table: Complexity Analysis of the Six Matching Models through Maximum Extension

Criterion	Global Layer	lpha-Layer
max-cost-1(M)	$O(n^2 \log(n) \sqrt{n})$	NP-hard
max-cost-2(M)	$O(n^2 \log(n) \sqrt{n})$	NP-hard
max-cost-3(M)	$O(n^2 \log(n) \sqrt{n})$	NP-hard
max-cost-4(M)	$O(n^2 \log(n) \sqrt{n})$	NP-hard
max-cost-5(M)	Dichotomy with 01-IP	NP-hard
max-cost-6(M)	Dichotomy with 01-IP	NP-hard

Q & A session

ntroduction

Matching Problem

α-Layer Minimum Cost

Four Basic Eva

Eighteen Extended

Four Basi

Contribution of this

Semester

Balance Cost on Global Laver

Eighteer

Madala

sum-cost-5(M) or Global Laver

mul-cost-6(M) α -Layer

max-cost-1(M)

Conclusion

Q & A

Matching Problem

α-Layer Minimum Cost

Four Basic Eva

Eighteen Extended Evaluation Criteria

Evaluation Criteria

Four Basi

Contribution of this

Balance Cost on Global

Eighteen

Extende

sum-cost-5(M) or Global Laver

mul-cost-6(M)

max-cost-1(M)

Conclusion

Thank you!