Introduction to computing

FOURTH WEEK

1.4 Representing Information as Bit Patterns

- Now that we know how to store single bits, we can consider how *information* can be encoded as *bit patterns*
- Different encoding systems exist for different types of information
 - numbers, text, images, sound, ...
- Encoding systems more and more standardized
 - American National Standards Institute (ANSI)
 - International Organization for Standardization (ISO)

1.4 Representing Text

- Each symbol represented by a unique bit pattern
- Text represented by long stream of patterns
- Today's standard coding system:
 - ASCII (American Standard Code for Information Interchange)
 - Bit patterns of length 7 (generally extended by 1 bit)
 - See ASCII-table in Appendix A.

01001000	01100101	01101100	01101100	01101111	00101110
Н	е	l l	1	О	•

ASCII

• ASCII stands for American Standard Code for **Information Interchange.** Computers can only understand numbers, so an ASCII code is the numerical representation of a character such as 'a' or '@' or an action of some sort. ASCII was developed a long time ago and now the non-printing characters are rarely used for their original purpose. ASCII character table in coming slides and this includes descriptions of the first 32 non-printing characters.

ASCII

• ASCII was actually designed for use with teletypes and so the descriptions are somewhat obscure. If someone says they want your CV however in ASCII format, all this means is they want 'plain' text with no formatting such as tabs, bold or underscoring - the raw format that any computer can understand. This is usually so they can easily import the file into their own applications without issues. Notepad.exe creates ASCII text, or in MS Word you can save a file as 'text only

Dec	Нх	Oct	Cha	r	Dec	Нх	Oct	Html	Chr	Dec	Нх	Oct	Html	Chr	Dec	Нх	Oct	Html CI	hr_
0	0	000	NUL	(null)	32	20	040	@#32;	Space	64	40	100	۵#6 4 ;	0	96	60	140	%#96;	*
1	1	001	SOH	(start of heading)	33	21	041	!	1	65	41	101	A	A	97	61	141	a	a
2	2	002	STX	(start of text)	34	22	042	@#3 4 ;	rr .	66	42	102	B	В	98	62	142	b	b
3	3	003	ETX	(end of text)	35	23	043	# ;	#	67	43	103	C	С	99	63	143	c	C
4	4	004	EOT	(end of transmission)	36	24	044	\$	ş	68			D					d	
5	5	005	ENQ	(enquiry)	37			a#37;		69			E					e	
6	6	006	ACK	(acknowledge)	38			&		70			%#70;					f	
7				(bell)	39			'		71			G			-		g	
8		010		(backspace)	40			a#40;		72			@#72;					a#104;	
9			TAB	(horizontal tab)	ı)		73			a#73;					i	
10	A	012	LF	(NL line feed, new line)	42			a#42;					a#74;					j	
11		013		(vertical tab)	43			a#43;			_		<u>475;</u>					a#107;	
12		014		(NP form feed, new page)	ı			,		76			a#76;					l	
13		015		(carriage return)	ı			a#45;		77	_		<u>@#77;</u>		1			m	
14		016		(shift out)	ı			%#46 ;		78			a#78;					n	
15		017		(shift in)				a#47;		79			<u>@</u> #79;		1			o	
				(data link escape)				a#48;		80			480;					@#112;	
				(device control 1)				a#49;					481;					q	
				(device control 2)				%#50;		ı			4#82;					r	
				(device control 3)				3		ı			4 #83 ;		1			@#115;	
				(device control 4)				4					۵#8 4 ;					t	
				(negative acknowledge)				a#53;		I			4#85;					a#117;	
				(synchronous idle)	I			a#54;					4#86;					v	
				(end of trans. block)				% #55;		I			4#87;		1			w	
				(cancel)	ı			8					4#88;					x	
		031		(end of medium)	57			a#57;					489;		1			@#121;	
				(substitute)	58			6#58;		90			Z		1			z	
			ESC	(escape)	59			%#59;					@#91;	-				@#123;	
		034		(file separator)	60			<					۵#92;					a#124;	
		035		(group separator)	61			=					۵#93;	_				a#125;	
		036		(record separator)	I			>					a#94;					~	
31	1F	037	បន	(unit separator)	63	3 F	077	4#63;	?	95	5F	137	_	-	127	7F	177		DEL

Source: www.LookupTables.com
Slide 0-6

Extended ASCII Codes

128	Ç	144	É	160	á	176	366 888	192	L	208	Т	224	α	240	≡
129	ü	145	æ	161	í	177		193	Τ	209	₹	225	В	241	±
130	é	146	Æ	162	ó	178		194	Т	210	Т	226	Γ	242	≥
131	â	147	ô	163	ú	179		195	F	211	L	227	π	243	≤
132	ä	148	ö	164	ñ	180	4	196	- (212	上	228	Σ	244	ſ
133	à	149	ò	165	Ñ	181	4	197	+	213	\FS	229	σ	245	J
134	å	150	û	166	3	182	1	198	F	214	F	230	μ	246	÷
135	ç	151	ù	167	۰	183	П	199	·F	215	#	231	τ	247	æ
136	ê	152	ÿ	168	ż	184	7	200	Ŀ	216	+	232	Φ	248	۰
137	ë	153	Ö	169		185	4	201	F	217	J	233	Θ	249	
138	è	154	Ü	170	\	186	97	202	<u>JL</u>	218	Γ	234	Ω	250	
139	ï	155	¢	171	1/2	187	ī	203	īF	219		235	8	251	$\sqrt{}$
140	î	156	£	172	1/4	188	1	204	F	220		236	60	252	n
141	ì	157	¥	173	į	189	Ш	205	=	221		237	ф	253	2
142	Ä	158	R	174	«	190	4	206	北 T	222		238	ε	254	
143	Å	159	f	175	»	191	٦	207	<u></u>	223		239	\wedge	255	

Source: www.LookupTables.com

1.4 Representing Numbers

- ASCII-encoding inefficient for numeric values
- What if symbolic representation require more than 256 Characters?
 - Natural Languages: Chinese Language
 - Unicode 16 bit Encoding System
- More efficient approach is to use *binary system*
 - uses digits 0 and 1, incl. factor 2 for all bit-positions
- Compare decimal system
 - uses digits 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9, incl. factor 10 for each decimal position

1.4 Obtaining the binary representation of 13

(As studied before)

1.4 Decoding the Binary Representation 100101

Another way to conversion:

•
$$1 \times 2^5 + 0 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 37$$

End of the Lecture

1.5 The Binary System: Addition

- Knowing how numeric values are encoded, we can consider how to do calculations
- Binary addition:

• Example:

$$\begin{array}{r}
0\ 0\ 1\ 1\ 1\ 0\ 1\ 0 \\
+\ 0\ 0\ 0\ 1\ 1\ 0\ 1\ 0\ 1
\end{array}$$
(58 + 27 = 85)

1.5 Fractions in the Binary System

• Radix point has same role as in decimal system

Fraction Decimal to Fraction Binary Conversion Convert .625 into Binary:

Fraction Decimal to Fraction Binary Conversion: Convert .625 into Binary:

- In fact, there is a simple, step-by-step method for computing the binary expansion on the right-hand side of the point. We will illustrate the method by converting the decimal value .625 to a binary representation..
- **Step 1**: Begin with the decimal fraction and multiply by 2. The whole number part of the result is the first binary digit to the right of the point.
- Because .625 x 2 = 1.25, the first binary digit to the right of the point is a 1.

So far, we have .625 = .1???...

Fraction Decimal to Fraction Binary Conversion: Convert .625 into Binary:

- **Step 2**: Next we disregard the whole number part of the previous result (the 1 in this case) and multiply by 2 once again. The whole number part of this new result is the *second* binary digit to the right of the point. We will continue this process until we get a zero as our decimal part or until we recognize an infinite repeating pattern.
- Because .25 x 2 = 0.50, the second binary digit to the right of the point is a 0.

So far, we have .625 = .10?? . . .

Fraction Decimal to Fraction Binary Conversion: Convert .625 into Binary:

- **Step 3**: Disregarding the whole number part of the previous result (this result was .50 so there actually is no whole number part to disregard in this case), we multiply by 2 once again. The whole number part of the result is now the next binary digit to the right of the point.
- Because .50 x 2 = 1.00, the third binary digit to the right of the point is a 1.
 - So now we have .625 = .101?? . . .
- **Step 4**: In fact, we do not need a Step 4. We are finished in Step 3, because we had 0 as the fractional part of our result there.
- Hence the representation of .625 = .101

1.6 Storing Integers: Two's Complement Notation

- In general: values of 32 bits
- Includes negative numbers
- Leftmost bit indicates the sign
 - sign bit
- Note:
 - Positive and negative numbers are identical from right to left up to & including first '1'; from there on are complements of one another

b. Using patterns of length four

Bit	Value
pattern	represented
0111	7
0110	6
0101	5
0100	4
0011	3
0010	2
0001	1
0000	0
1111	-1
1110	-2
1101	-3
1100	-4
1011	-5
1010	-6
1001	-7
1000	-8

1.6 Addition in two's complement notation

Problem in base ten	Pro tw		Answer in base ten			
3 + 2	→	$0011 \\ + 0010 \\ \hline 0101$	\rightarrow	5		
-3 +-2	→	$ \begin{array}{r} 1101 \\ + 1110 \\ \hline 1011 \end{array} $	\rightarrow	- 5		
7 <u>+ -5</u>	→	$0111 \\ + 1011 \\ \hline 0010$	\rightarrow	2		

- Note: no circuitry for subtraction needed!
- Note: overflow errors: 0101 + 0100 = 1001 (5 + 4 = -7)

End of the Lecture

Chapter 1: Problem 6

How many cells can be in a computer's main memory if each cell's address can be represented by 3 hexadecimal digits?

Three digits:

- 3 positions, each of which can be one of 16 values (from the range: 0, 1, ..., 9, A, B, C, D, E, F)
- smallest: $000 = 0 \times 16^2 + 0 \times 16^1 + 0 \times 16^0 = 0$
- largest: $FFF = 15 \times 16^2 + 15 \times 16^1 + 15 \times 16^0 = 4095$
- So, total number of unique addresses = $16^3 = 4096$

Chapter 1: Problem 23

Here's a message in ASCII. What does it say?

- Each block of 8 bits represents one character:
 - See ASCII table in Appendix A
 - Example: 01010111 = 'W'
 - Message says: 'What does it s1y?'
 - Note: 00110001 = '1', while 01100001 = 'a'...

Chapter 1: Problem 28

- **a.** Write the number 14 by representing the 1 and 4 in ASCII.
- **b.** Write the number 14 in binary representation.

- a. See ASCII Table in Appendix A:
 - -14 = 00110001 00110100
- b. In binary system each '1' represents a power of 2:
 - $-14 = 8 + 4 + 2 = 1 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 => binary:$

1.7 Storing Fractions: Floating-point Notation

- In contrast to integers, fractions require storage of the radix point
 - Floating-point notation

• Example: $1\ 110\ 1011\ =\ -10.11\ =\ -2.75$

1.7 Truncation Errors: Coding the value 2 5/8

1.7 Truncation Errors (cont'd)

- Significance of truncation errors reduced by using larger mantissa & exponent fields (32bits)
- Problem of non-terminating expansion (e.g. 1/3)
 - worse in binary than in decimal system (e.g. 1/10)
- Interesting:
 - $2 \frac{1}{2} + \frac{1}{8} + \frac{1}{8} = 2 \frac{1}{2}$
 - $1/8 + 1/8 + 2 \cdot 1/2 = 2 \cdot 3/4$
- When adding numbers, order may be important
 - rule: add smaller values first!

Real programmers code in binary.

Chapter 1: Conclusions

- Information stored as streams of bits
- Bit streams stored in main memory or on mass storage devices each with different degree of random access (and thus: speed)
- Meaning of bit streams application dependent
- Standardized representations exist for (a.o):
 - text, numeric values, images, sounds, ...
- For numeric values: overflow and truncation errors may make life difficult sometimes...

1st Presentations Week

Rules

- There will be three members in each group.
- Students will be marked on the basis of following two main categories:
 - Individual Student Marks
 - -Students in the group Marks
- Marked and Judged on Communication, Knowledge, Personal appearance, Group coordination and behavior checked on all above mentioned categories

Making Groups and Allocating Presentation

Members allocation to the Groups

- Starting from first student registration number will be allocated to the next two registration numbers. First Group- 1st chapter presentation.
- Similarly 15 groups will be formed and 15 Chapters will be allocated.
- Girls and Boys groups will be separated.

General Rules for Groups

- Every group will be given 8-10 minutes.
- 15 groups will present 15 chapters in the class.
- Each day 5 groups will represent according to their turn in sequence.
- Presentations dates:
 - -15th, 16th and 17th Nov. 2016

More Common Rules

- Every class is responsible of setting up the multimedia and everything.
- From Everything, I mean everything
 - Arrangements
 - Providing mark sheet to teacher with respect to sections
 - Behavior- Serious attitude
 - Coordination among class fellows
 - Helping each other for successful completion of their presentations.

End of the Lecture