Polinomios

UNIDAD 8

Guía de Actividades

Polinomios

Ejercicio 1. Hallen P+Q, P-Q, $P+2\cdot Q$, $P\cdot Q$, $(P+3x)\cdot Q^2$ indicando el grado, el término independiente y el coeficiente principal en casa caso:

- a) P(x) = 3x 2, $Q(x) = x^3$
- b) $P(x) = 2x^2 + 3x 1$, $Q(x) = -x^2 + 2$
- c) $P(x) = 2x^2 + x$, $Q(x) = -x^2 + 1$
- d) P(x) = x 1, Q(x) = -3x + 1

Ejercicio 2. Si $(2 + Q(x) \cdot x^3) \cdot P(x)$ tiene grado 13 y Q(x) es un polinomio de grado 6, ¿cuál es el grado de P(x)?

Ejercicio 3. Hallen $a, b, c \in \mathbb{R}$ tales que $x^2 + 4x + 1 = ax^2 + bx + c(x+1)(x+2)$.

Ejercicio 4. Consideren $P(x) = x^3 - (a+b)x^2 + 10bx - 3a \in \mathbb{R}[X]$. Sabiendo que P(3) = 0 y P(-2) = -11 determinen los valores de $a, b \in \mathbb{R}$.

Ejercicio 5. Encuentren los polinomios cociente y resto de la división P(x) por Q(x).

- a) $P(x) = -2x^4 + 10x^2 4x + 2$, Q(x) = x 2
- b) $P(x) = x^5 2x^2 + 3$, Q(x) = x 1
- c) $P(x) = x^5 x^3 + 2x^2 2x + 3$, $Q(x) = x^2 1$
- d) $P(x) = x^5 x^3 + x^2 + x + 1$, $Q(x) = x^2 2x + 1$
- e) $P(x) = x^4 2x^3 11x^2 + 30x 20$, $Q(x) = x^2 + 3x 2$
- f) $P(x) = x^6 + 5x^4 + 3x^2 2x$, $Q(x) = x^2 x + 3$
- g) $P(x) = x^5 + 2x^3 x 8$, $Q(x) = x^3 2x + 1$

Ejercicio 6. Utilicen el Teorema del resto para verificar si el polinomio Q(x) divide al polinomio P(x).

- a) $P(x) = x^3 5x 1$, Q(x) = x 3
- b) $P(x) = x^6 1$, Q(x) = x + 1
- c) $P(x) = x^4 2x^3 + x^2 + x 1$, Q(x) = x 1
- d) $P(x) = x^{10} 1024$, Q(x) = x + 2

Ejercicio 7. Determinen todas las raíces de P(x) en \mathbb{C} .

- a) $P(x) = 2x^3 x^2 + 2x 1$
- b) $P(x) = x^5 3x^3 4x$
- c) $P(x) = 3x^4 + 4x^3 11x^2 + 2x + 2$
- d) $P(x) = -4x^6 + 36x^4 4x^2 + 36$
- e) $P(x) = x^4 3x^2 4$
- f) $P(x) = x^4 + 2x^3 + 5x^2 + 8x + 4$, sabiendo que 2i es raíz.

Ejercicio 8. Encuentren las raíces complejas de $P(x) = x^4 + x^3 + 10x^2 + 9x + 9$ sabiendo que $\frac{-1 - \sqrt{3}i}{2}$ es raíz del polinomio.

Ejercicio 9. Determinen el orden de multiplicidad de z como raíz de P(x)

- a) $P(x) = (x^2 + 9) \cdot (x 3)^2 \cdot (x^3 27), z = 3$
- b) $P(x) = -2x^6 2x^4 + 2x^2 + 2$, z = -i
- c) $P(x) = 4x^4 + 22x^3 + 36x^2 + 8x 16, z = \frac{1}{2}$

d)
$$P(x) = 4x^4 + 22x^3 + 36x^2 + 8x - 16, z = -2$$

Ejercicio 10. Hallen el polinomio $P(x) \in \mathbb{C}[X]$ de grado minimo que verifique las siguientes condiciones:

- a) 3 y 1+i con raíces de P(x) y P(2)=4
- $b)\,$ 3 es raíz triple, i es raíz doble y P(1)=-64

Ejercicio 11. Factoricen en $\mathbb C$ a los polinomios del Ejercicio 7.

Ejercicio 12. Factoricen en \mathbb{Q} , \mathbb{R} y en \mathbb{C} el polinomio $P(x) = 2x^5 + 4x^4 - 15x^3 - 17x^2 + 25x - 15$ sabiendo que $-\sqrt{5}$ es raíz de P.

Ejercicio 13. Hallen el valor de $a \in \mathbb{R}$ de manera tal que x = 2 sea raíz múltiple del polinomio $P(x) = x^5 - ax^4 - 3ax^3 + 2ax^2 + 40x - 48$. Para el valor de a encontrado, averigüen la multiplicidad de la raiz x = 2 y factoricen al polinomio P en $\mathbb{Q}[x]$, $\mathbb{R}[x]$ y en $\mathbb{C}[x]$.

Ejercicio 14.

- a) Resolver $x^2 + \frac{2}{x} = 5$, con $x \in \mathbb{R}$.
- b) Resolver $5x^2 3x + \frac{6}{x} = 2$, con $x \in \mathbb{R}$.
- c) Resolver $5x^4 + 13x^2 = 8x^3 + 16x 6$, con $x \in \mathbb{R}$.