Logical Limit Laws for Layered Permutations and Related Structures

Matthew Kukla (Joint with Samuel Braunfeld)

University of Maryland, College Park

February 2022

Overview

- Introduction
- Convex linear orders
- Uniform interdefinability
- 4 Layered permutations
- Compositions

- Introduction
- Convex linear orders
- Uniform interdefinability
- 4 Layered permutations
- 6 Compositions

Introduction: zero-one laws

Definition

A class C of structures in some first-order language admits a zero-one law if, for any sentence φ , the probability that a randomly selected C-structure of size n satisfies φ converges asymptotically to zero or one as $n \to \infty$.

Introduction: zero-one laws

Definition

A class C of structures in some first-order language admits a zero-one law if, for any sentence φ , the probability that a randomly selected C-structure of size n satisfies φ converges asymptotically to zero or one as $n \to \infty$.

Classical example: finite graphs [Glebskii et. al]

Introduction: zero-one laws

Definition

A class C of structures in some first-order language admits a zero-one law if, for any sentence φ , the probability that a randomly selected C-structure of size n satisfies φ converges asymptotically to zero or one as $n \to \infty$.

- Classical example: finite graphs [Glebskii et. al]
- Convergence to zero or one is a rather strict requirement

Introduction: logical limit laws

Definition

A class C of structures in some first-order language admits a logical limit law if, for any sentence φ , the probability that a randomly selected C-structure of size n satisfies φ converges asymptotically (not necessarily to zero or one) as $n \to \infty$.

Introduction: logical limit laws

Definition

A class C of structures in some first-order language admits a logical limit law if, for any sentence φ , the probability that a randomly selected C-structure of size n satisfies φ converges asymptotically (not necessarily to zero or one) as $n \to \infty$.

- "Unlabeled limit law" class of unlabeled structures admits a limit law
- "Labeled limit law" class of labeled structures admits a limit law

Introduction: main results

Theorem

Convex linear orders and layered permutations admit both unlabeled and labeled limit laws. Compositions admit an unlabeled limit law.

- Introduction
- Convex linear orders
- Uniform interdefinability
- 4 Layered permutations
- 6 Compositions

Convex linear orders

Definition

Let \mathcal{L} be the language containing two binary relations: < and \mathcal{E} . A convex linear order is an \mathcal{L} -structure satisfying:

- < is a total order on points</p>
- E is an equivalence relation
- $x \in z, x < y < z \Rightarrow z \in x, y$

Sum operators

Definition

Let $\mathfrak C$ be a convex linear order. Define $\widehat{\mathfrak C}$ to be the convex linear order obtained by adding one additional point to the last class of $\mathfrak C$.

Sum operators

Definition

Let $\mathfrak C$ be a convex linear order. Define $\mathfrak C$ to be the convex linear order obtained by adding one additional point to the last class of $\mathfrak C$.

Definition

For convex linear orders $\mathfrak{C},\mathfrak{D},$ define $\mathfrak{C}\oplus\mathfrak{D}$ as the convex linear order placing $\mathfrak{D}<$ -after $\mathfrak{C}.$

Constructing convex linear orders

Lemma

Every finite convex linear order containing n points can be uniquely constructed by applying $\widehat{(-)}$ and/or $- \oplus \bullet$ to \bullet repeatedly.

Constructing convex linear orders

Lemma

Every finite convex linear order containing n points can be uniquely constructed by applying $\widehat{(-)}$ and/or $- \oplus \bullet$ to \bullet repeatedly.

Proof

Proceed by induction.

- Base case: n = 1 trivial
- When n=2, two possible cases: $\mathfrak{C} \simeq \bullet \oplus \bullet$ or $\mathfrak{C} \simeq \widehat{\bullet}$
- In general: last class of € contains one or more points.
 Apply ⊕ or (-) appropriately.

Ehrenfeucht-Fraïssé games

- Ehrenfeucht–Fraïssé game on two structures: back-and-forth game between players Spoiler and Duplicator in which corresponding points are marked on each structure
- In game of length k between $\mathfrak A$ and $\mathfrak B$, Duplicator has a winning strategy iff $\mathfrak A$ and $\mathfrak B$ agree on all sentences of quantifier depth at most k.
- Write $\mathfrak{A} \equiv_k \mathfrak{B}$ in this case

Equivalences

Lemma

Let $\mathfrak{M},\mathfrak{N},\mathfrak{M}',\mathfrak{N}'$ be convex linear orders such that $\mathfrak{M}\equiv_{\mathsf{K}}\mathfrak{N}$ and $\mathfrak{M}'\equiv_{\mathsf{K}}\mathfrak{N}'$. The following equivalences hold:

- $\bullet \ \mathfrak{M} \oplus \mathfrak{M}' \equiv_k \mathfrak{N} \oplus \mathfrak{N}'$
- $\bullet \ \widehat{\mathfrak{M}} \equiv_k \widehat{\mathfrak{N}}$

Equivalences

Lemma

For a convex linear order $\mathfrak M$ and $k \in \mathbb N$, there exists $\ell \in \mathbb N$ such that for all $s, t > \ell$,

$$\bigoplus_{s}\mathfrak{M}\equiv_{k}\bigoplus_{t}\mathfrak{M}$$

- Labeled limit laws: count all possible structures over $[n] := \{1, ..., n\}$ as $n \to \infty$
- Unlabeled: count all structures up to isomorphism

- Labeled limit laws: count all possible structures over $[n] := \{1, ..., n\}$ as $n \to \infty$
- Unlabeled: count all structures up to isomorphism
- Finite linearly ordered structures have no nontrivial automorphisms, hence, no distinction in this case

General idea:

- For first-order sentence φ (with quantifier rank k), associate a Markov chain M_{φ}
- States of M_{φ} are \equiv_k -classes
- Probability that randomly selected structure of size n satisfies φ is probability that M_{φ} is in a state that satisfies φ after n transitions

For an \equiv_k -class C, define

$$C\oplus \bullet := [\mathfrak{M}\oplus \bullet]_{\equiv_k}$$

and

$$\widehat{\pmb{C}}:=[\widehat{\mathfrak{M}}]_{\equiv_k}$$

For φ an \mathcal{L} -sentence (with quantifier depth k), construct a Markov chain M_{φ} as follows:

- Starting state: [●]_{=k}
- From any \equiv_k -class C, there are two possible transitions out: to $C \oplus \bullet$ or \widehat{C}
- Each transition probability is 1/2

Definition

A Markov chain M is *fully aperiodic* if there do not exist disjoint sets of M-states $P_0, P_1, \ldots, P_{d-1}$ for some d > 1 such that for every state in P_i , M transitions to a state in P_{i+1} with probability 1 (with P_{d-1} transitioning to P_0).

Lemma

Let M be a finite, fully aperiodic Markov chain with initial state S, and let $Pr^{n-1}(S,Q)$ denote the probability that M is in state Q after n-1 steps. For any Q, $\lim_{n\to\infty} Pr^{n-1}(S,Q)$ converges.

Theorem

 M_{φ} is fully aperiodic for any first-order sentence φ .

Proof

Suppose M_{φ} were not fully aperiodic.

- There would exist disjoint sets of M_{φ} -states (\equiv_k -classes) $P_0, P_1, \ldots, P_{d-1}$ for d > 1 where every state in P_i, M_{φ} transitions to a state in P_{i+1} with probability 1 (P_{d-1} transitioning to P_0).
- Thus, for any $Q \in P_0$, $Q \oplus i \bullet$ is in P_0 iff $d \mid i$.
- By equivalence lemmas, this is not possible

Theorem

Convex linear orders admit a logical limit law.

Proof

Fix a first-order sentence φ , and consider M_{φ} .

- For each state S in M_{φ} , either each structure in S satisfies φ or no structures in S satisfy φ .
- Let S_{φ} denote the set of states in M_{φ} for which all structures in that state satisfy φ .
- (-) and -⊕ are well-defined on ≡_k-classes, hence, moving n 1 steps in M_φ is equivalent to starting with any structure in the current state, applying (-) or -⊕ n 1 times, and taking the ≡_k-class.

Proof (continued)

- The probability that after n steps, M_{φ} is in a state of S_{φ} equals probability that uniformly randomly selected structure of size n satisfies φ
- Suffices to show that $\lim_{n\to\infty} \sum_{Q\in S_{\varphi}} Pr^{n-1}(\bullet,Q)$ converges, which follows from Markov chain lemma

- Introduction
- Convex linear orders
- Uniform interdefinability
- 4 Layered permutations
- 6 Compositions

Transfer lemmas

Fix languages \mathcal{L}_0 , \mathcal{L}_1 and classes \mathcal{C}_0 , \mathcal{C}_1 of \mathcal{L}_0 , \mathcal{L}_1 structures respectively.

Lemma

Let f be a map from the set of \mathcal{L}_0 -structures to the set of \mathcal{L}_1 -structures, and g a map from the set of \mathcal{L}_0 -sentences to the set of \mathcal{L}_1 -sentences such that, for any C_0 -structure \mathfrak{M} and \mathcal{L}_0 -sentence φ :

- ② f is a bijection between C_0 and C_1 structures of size n
- **1** The class C_1 admits a logical limit law

Then, C_0 admits a logical limit law as well.

Uniform interdefinability

Definition

Classes C_0 and C_1 of structures (over a common domain of [n]) are said to be *uniformly interdefinable* if there exists a map $f_l: C_0 \to C_1$ (bijective on structures), along with formulae $\varphi_{R_{0,i'}}\varphi_{R_{1,i}}$ for each relation $R_{0,i}$ in \mathcal{L}_0 and $R_{1,i}$ in \mathcal{L}_1 such that, for each \mathfrak{M}_0 in C_0 and \mathfrak{M}_1 in C_1 :

- $\mathfrak{M}_0 \models R_{0,i}(\bar{x}) \iff f_I(\mathfrak{M}_0) \models \varphi_{R_{0,i}}(\bar{x})$
- $\bullet \ \mathfrak{M}_1 \models R_{1,i}(\bar{x}) \iff f_1^{-1}(\mathfrak{M}_1) \models \varphi_{R_{1,i}}(\bar{x})$

Theorem

Let C_0 , C_1 be uniformly interdefinable classes of \mathcal{L}_0 , \mathcal{L}_1 structures. If C_1 admits a logical limit law, C_0 admits one as well.

Proof

Take the transfer maps f, g to be:

- $f = f_I$
- g is the map sends an \mathcal{L}_0 -sentence to the \mathcal{L}_1 -sentence with each ocurrence of $R_{0,i}$ replaced with $\varphi_{R_{0,i}}$

- Introduction
- Convex linear orders
- Uniform interdefinability
- 4 Layered permutations
- 6 Compositions

- Permutations can be viewed as structures in the language $\mathcal{L} = \{<_1, <_2\}$ with two linear orders. The order $<_1$ gives the unpermuted order of the points (before applying the permutation) and $<_2$ describes the points in permuted order.
- Blocks are maximal subsets which are monotone
 <1/<2-intervals
- A layered permutation is composed of increasing blocks, each of which contains a decreasing permutation

Lemma

Layered permutations and ordered equivalence relations are uniformly interdefinable.

Proof

Define f_l to be the map taking blocks of a layered permutation to classes of a convex linear order, and points in an order-preserving manner. The relations $<_1$ and $<_2$ are rewritten as:

- φ_{\leq_1} : $a <_1 b \rightsquigarrow a < b$
- φ_{\leq_2} : $a \leq_2 b \rightsquigarrow (a E b \land b < a) \lor (\neg(a E b) \land a < b)$

Theorem

Layered permutations admit a logical limit law.

Proof

Layered permutations are uniformly interdefinable with convex linear orders. Because convex linear orders admit a logical limit law, layered permutations admit one as well.

- Introduction
- Convex linear orders
- Uniform interdefinability
- 4 Layered permutations
- 6 Compositions

Fractured orders

- Let $\mathcal{L}_0 = \{E, <\}$ be the language of convex linear orders
- Define $\mathcal{L}_1 = \{E, \prec_1, \prec_2\}$
- Fractured orders take a convex linear order < and break it into two parts: <1 between E-classes, and <2 within E-classes.

Fractured orders

Definition

A *fractured order* is an \mathcal{L}_1 -structure satisfying:

- \bigcirc $<_1$, $<_2$ are partial orders
- 2 E is an equivalence relation
- Oistinct points a, b are ≺₁-comparable iff they are not E-related
- Oistinct points a, b are <₂-comparable iff they are E-related</p>

We denote the class of all finite fractured orders by \mathcal{F} .

Fractured orders

Theorem

Fractured orders and convex linear orders are uniformly interdefinable.

Proof

Define $f_l: \mathcal{F} \to \mathcal{C}_0$ such that:

- $\mathfrak{M}_1 \models a E b \iff f_l(\mathfrak{M}_1) \models a E b$
- $\mathfrak{M}_1 \models a \prec_1 b \iff f_l(\mathfrak{M}_1) \models \neg a E b \land a < b$
- $\mathfrak{M}_1 \models a \prec_2 b \iff f_l(\mathfrak{M}_1) \models a E b \land a < b$

This map satisfies the requirements for uniform interdefinability.

Reducts and limit laws

Lemma

Let \mathcal{L} be a language and $\mathcal{L}' \subset \mathcal{L}$. Given a class \mathcal{C} of \mathcal{L} -structures which admits a logical limit law, any class \mathcal{C}' of \mathcal{L}' -structures which expand uniquely to \mathcal{C} -structures also admits a logical limit law.

Reducts and limit laws

Lemma

Let \mathcal{L} be a language and $\mathcal{L}' \subset \mathcal{L}$. Given a class C of \mathcal{L} -structures which admits a logical limit law, any class C' of \mathcal{L}' -structures which expand uniquely to C-structures also admits a logical limit law.

Proof

Construct the transfer maps *f* and *g* from earlier:

- f is taken to be the map sending a structure in C' to its unique expansion in C
- This expansion is unique, hence f is bijective on structures of size n for all n
- g is given by the identity map on formulas

Compositions

- Compositions are structures in the reduct $\mathcal{L}_2 \subset \mathcal{L}_1$ given by $\mathcal{L}_2 = \{E, \prec_1\}$
- Order defined on equivalence classes, but not on points within each class

Compositions

Lemma

Every composition expands uniquely to a fractured order, up to isomorphism.

Proof

There is a unique way to linearly order each E-class individually. Because ordering these classes determines $<_2$, there is a unique way to define $<_2$ on any composition, expanding it to a fractured order.

Compositions

Theorem

The class of compositions admit an unlabeled logical limit law.

Proof

The language of compositions is a reduct of the language of fractured orders, and every composition expands uniquely to a fractured order. The class of fractured orders admits a logical limit law, therefore, by the previous lemma, compositions admit a limit law as well.

References

S. Braunfeld, M. Kukla.

Logical Limit Laws for Layered Permutations and Related Structures.

Enumerative Combinatorics and Applications **2:4** (2021).

Yu. V. Glebskii, D.I. Kogan, M.I. Liogon'kil, V.A. Talanov. Range and degree of realizability of formulas in the restricted predicate calculus.

Cybernetics, 5(2):142–154 (1969).

Cybernetics, **3(2)**.142–134 (190)

John Foy, Alan R. Woods.

Probabilities of sentences about two linear orderings.

Feasible Mathematics: 181-193 (1990).

