Χ

yashraj.devrat.aids.2020@vpkbiet.org >

NPTEL (https://swayam.gov.in/explorer?ncCode=NPTEL) » Data Base Management System (course)

Course outline

How does an NPTEL online course work? ()

Week 0 ()

Week 1 ()

- Lecture 1 :CourseOverview(unit?unit=18&lesson=19)
- Lecture 2 : Introduction to DBMS/1 (unit? unit=18&lesson=20)
- Lecture 3 :
 Introduction
 to DBMS/2
 (unit?
 unit=18&lesson=21)
- Lecture 4 :
 Introduction
 to Relational
 Model/1 (unit?
 unit=18&lesson=22)

Week 1: Assignment 1

The due date for submitting this assignment has passed.

Due on 2022-08-31, 23:59 IST.

Assignment submitted on 2022-08-31, 20:47 IST

1) 2 points

Consider the following table:

student				
student_roll	name	dept_code	dept_name	project_group
CS121	Rohit	D01	CSE	Image Processing
CS432	Sidra	D03	IT	Computer Architecture
CS432	Sidra	D03	IT	Ethical Hacking
CS133	Reeta	D02	ECE	Signal Processing
CS133	Reeta	D02	ECE	Image Processing
EE134	Rina	D04	EE	Image Processing

Identify the correct statement(s).

- a) The above table is an example of an instance of relation student.
- b) The above table is an example of a logical schema of relation student.
- c) The above table is an example of a physical schema of relation student.
- d) The above table is an example of an abstraction of relation student.

	a)
	b)
	- \

(c) (d)

No, the answer is incorrect.

Score: 0

Accepted Answers:

- Lecture 5 : Introduction to Relational Model/2 (unit? unit=18&lesson=23)
- Lecture material of Week 1 (unit? unit=18&lesson=24)
- Quiz: Week 1: Assignment1(assessment?name=109)
- Feedback
 Form (unit?
 unit=18&lesson=25)
- Assignment 1
 Solution (unit?
 unit=18&lesson=26)

Week 2 ()

Week 3 ()

Week 4 ()

Week 5 ()

Week 6 ()

Week 7 ()

Week 8 ()

DOWNLOAD VIDEOS ()

Text

Transcripts ()

Books ()

Live Interactive Session ()

Problem Solving Session () a)

2) 2 points

A relation R has 2 candidate keys with 1 and 2 attributes respectively. There are 40 super keys of R. What is the total number of attributes in R?

- a) 3
- b) 4
- c) 5
- d) 6
 - (a)
 - (b)
 - (c)
 - (b

No, the answer is incorrect.

Score: 0

Accepted Answers:

d)

3) 2 points

Consider the following instances:

(QB1		QB2	
Q	Ans		Q	Ans
1	X		1	X
2	у		1	у
3	у		2	у

Which of the following relational operations will produce the following tuple only?

- a) (QB1 ∪ QB2) × (QB2 ∪ QB1)
- b) $(QB1 QB2) \cap (QB2 QB1)$
- c) $(QB1 QB2) \times (QB2 QB1)$
- d) $(QB1 \cap QB2) (QB2 \cap QB1)$
- (a)
- (b)
- (c)
- (b (

No, the answer is incorrect.

Score: 0

	Bata Bass Walls	agomoni oyot	em Omit 3 - we	OK 1	
Accepted Answ	vers:				
4)					2 point
	lowing instance of Ce.	lestialRepo	ort(Celestial(biect. Repo	ortBy, ReportScore,
GroupLead).				,p	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Ī	CelestialObject	ReportBy	ReportScore	GroupLead	
	Pluto	Team 5	90	L. Kurtz	
	Jupiter Sirius A	Team 5 Team 1	88 96	L. Kurtz Samuel	
	Rigel	Team 8	96	Louie	
Which of the fol	llowing is a Secondar	I .	lestialReport	?	1
a) {ReportBy, F	ReportScore}.				
b) {ReportBy, 0	GroupLead}.				
c) {GroupLead,	CelestialObject}.				
d) {ReportScor					
a) (nopolososi	. o, 020up20uuj.				
✓ a)					
b)					
_ c)					
d)					
Partially Correc	+				
Score: 1	·t.				
Accepted Answ	ers:				
a)					
d)					
5)					2 point
Consider the fo	llowing relational sc	hema for a	university:		
• student(roll_no, name, do	ob)			
• dept(dep	tNo, dName, locat	tion)			
• project(proj_no, deptNo,	<u>roll_no</u> , p	Name)		
What is the typ relation?	be of the key(s) that	will be used	d to uniquely id	entify an ent	city of the project
a) Simple key					
b) Alternate l	Key				
c) Composite l	Key				
d) Compound ke	еу				

a)b)c)d)

No, the answer is incorrect. Score: 0
Accepted Answers:
d)
6) 2 points
Consider the following relational schema for a university:
• student(<u>roll_no</u> , name, dob)
• dept(deptNo, dName, location)
• project(<u>proj_no</u> , <u>deptNo</u> , <u>roll_no</u> , pName)
Identify the correct relational algebraic expression for the following query:
Find the names of students who have selected any project offered by the department "CSE".
a) $\Pi_{\text{name}}((\text{student} \bowtie \text{project}) \bowtie \Pi_{\text{deptNo}}(\sigma_{\text{dName}=``CSE"}(\text{dept})))$
b) $\Pi_{\text{name}}(\sigma_{\text{dName}}, CSE''(\text{dept} \bowtie \text{project}))$
c) $\Pi_{\text{name}}(\sigma_{\text{dName}}, CSE} (\text{student} \bowtie \text{dept}) \bowtie (\text{project}))$
d) $\Pi_{\text{name}}(\text{student} \bowtie (\sigma_{\text{dName}}=``CSE"(\text{project})))$
○ a)
□ b)
○ c)
(d)
No, the answer is incorrect.
Score: 0 Accepted Answers:
a)
7) 2 points

Consider the following tables:

R_1				
BOOK_TITLE	AUTHOR_NAME	TOTAL_SOLD_COPIES		
COMPUTER NETWORKS	FOROUZAN	15000		
DATA STRUCTURES	CORMEN	20000		
DATA STRUCTURES	ULLMAN	20000		
DBMS	KORTH	15000		
MACHINE LEARNING	MITCHELL	18000		

R_2				
BOOK_TITLE	AUTHOR_NAME	TOTAL_SOLD_COPIES		
COMPILER	ULLMAN	12000		
DATA STRUCTURES	CORMEN	20000		
DATA STRUCTURES	ULLMAN	20000		
NLP	MANNING	12000		
OPERATING SYSTEM	GALVIN	25000		

Identify the correct operation(s) which will produce the following output from the above ${\tt two}$ relations.

BOOK_TITLE	AUTHOR_NAME	TOTAL_SOLD_COPIES
COMPUTER NETWORKS	FOROUZAN	15000
COMPILER	ULLMAN	12000
DBMS	KORTH	15000
MACHINE LEARNING	MITCHELL	18000
NLP	MANNING	12000
OPERATING SYSTEM	GALVIN	25000

- a) $R_1 R_2$
- b) $R_2 R_1$
- c) $(R_1 \cup R_2) \cap (R_1 \cap R_2)$
- d) $(R_1 R_2) \cup (R_2 R_1)$
 - (a)
 - (b)
 - (c)
 - (d)

No, the answer is incorrect.

No, the a Score: 0

Accepted Answers:

d)

8) 2 points

Consider the following instance:

	BookDetails				
BOOK_ID	YEAR_PUB	BOOK_TITLE	AUTHOR_NAME	TOTAL_SOLD_COPIES	
1001	2010	DBMS	KORTH	15000	
1002	2010	OPERATING SYSTEM	GALVIN	25000	
1003	2020	COMPILER	ULLMAN	12000	
1004	1995	DATA STRUCTURES	CORMEN	20000	
1005	1995	DATA STRUCTURES	ULLMAN	20000	
1006	1990	COMPUTER NETWORKS	FOROUZAN	15000	
1007	2010	MACHINE LEARNING	MITCHELL	18000	

Identify the correct operation(s) which produces the following output from the above relation.

BookDetails				
BOOK_ID	YEAR_PUB	BOOK_TITLE	AUTHOR_NAME	TOTAL_SOLD_COPIES
1002	2010	OPERATING SYSTEM	GALVIN	25000
1007	2010	MACHINE LEARNING	MITCHELL	18000

- $\mathrm{a)}\ \Pi_{\texttt{(YEAR_PUB=2010)}\ \lor\ (\texttt{TOTAL_SOLD_COPIES}>15000)}(\texttt{BookDetails})$
- b) $\Pi_{\text{(YEAR_PUB=2010)}} \wedge \text{(TOTAL_SOLD_COPIES} > 15000) \text{(BookDetails)}$
- c) $\sigma_{\text{(YEAR_PUB=2010)}} \vee \text{(TOTAL_SOLD_COPIES} > 15000) \text{(BookDetails)}$
- d) $\sigma_{ ext{(YEAR_PUB=2010)}}$ \wedge (TOTAL_SOLD_COPIES>15000) (BookDetails)
 - (a)
 - (b)
 - (c)
 - (d)

No, the answer is incorrect.

Score: 0

Accepted Answers:

d)

9) 2 points

Consider the following instance:

	BookDetails				
BOOK_ID	YEAR_PUB	BOOK_TITLE	AUTHOR_NAME	TOTAL_SOLD_COPIES	
1001	2010	DBMS	KORTH	15000	
1002	2010	OPERATING SYSTEM	GALVIN	25000	
1003	2020	COMPILER	ULLMAN	12000	
1004	1995	DATA STRUCTURES	CORMEN	20000	
1005	1995	DATA STRUCTURES	ULLMAN	20000	
1006	1990	COMPUTER NETWORKS	FOROUZAN	15000	
1007	2010	MACHINE LEARNING	MITCHELL	18000	

Identify the correct output(s) which will be produced by the following relational expression.

 $\Pi_{\texttt{BOOK_TITLE}}(\sigma_{\texttt{TOTAL_SOLD_COPIES}} \gt_{\texttt{18000}}(\texttt{BookDetails}))$

	BOOK_TITLE			
۵)	OPERATING SYSTEM			
a)	DATA STRUCTURES			
	DATA STRUCTURES			

BOOK_TITLE
OPERATING SYSTEM
DATA STRUCTURES

c)	BOOK_ID	YEAR_PUB	BOOK_TITLE	AUTHOR_NAME	TOTAL_SOLD_COPIES
	1002	2010	OPERATING SYSTEM	GALVIN	25000
	1004	1995	DATA STRUCTURES	CORMEN	20000
	1005	1995	DATA STRUCTURES	ULLMAN	20000

	BOOK_ID	YEAR_PUB	BOOK_TITLE	AUTHOR_NAME	TOTAL_SOLD_COPIES
d)	1002	2010	OPERATING SYSTEM	GALVIN	25000
	1004	1995	DATA STRUCTURES	CORMEN	20000

(a)

(b)

(c)

(d)

No, the answer is incorrect.

Score: 0

Accepted Answers:

b)

10) **2 points**

Which of the following can be a candidate key for the following instance?

BookDetails								
BOOK_ID	YEAR_PUB	BOOK_TITLE	AUTHOR_NAME	TOTAL_SOLD_COPIES				
1001	2010	DBMS	KORTH	15000				
1002	2010	OPERATING SYSTEM	GALVIN	25000				
1003	2020	COMPILER	ULLMAN	12000				
1004	1995	DATA STRUCTURES	CORMEN	20000				
1005	1995	DATA STRUCTURES	ULLMAN	20000				
1006	1990	COMPUTER NETWORKS	FOROUZAN	15000				
1007	2010	MACHINE LEARNING	MITCHELL	18000				

- a) {BOOK_ID, YEAR_PUB}
- b) {BOOK_ID, BOOK_TITLE}
- c) {BOOK_TITLE, AUTHOR_NAME}
- d) {BOOK_ID}
 - a)
 - ✓ b)

 - __ d)

No, the answer is incorrect.

Score: 0

Accepted Answers:

c)

d)