Лабораторная работа №2

АВЛ-деревья

Основные понятия

Структура сбалансированного дерева была предложена Адельсоном-Вельским и Ландисом в 1962 году. Даётся следующее определение сбалансированности дерева.

Дерево является сбалансированным тогда и только тогда, когда для каждого узла высота его двух поддеревьев различается не более чем на 1. Для контроля сбалансированности узлов в структуру каждого узла введён критерий сбалансированности $balance = h_R - h_L$, где h_L и h_R — высота левого и правого поддеревьев узла. Узел сбалансирован, если значение balance равно – 1,0 или ± 1 . Операции вставки и удаления элементов могут привести к изменению высот поддеревьев в узлах, лежащих на пути к вставленному или удалённому элементу. После вставки или удаления элемента выполняется восходящая проверка и корректировка критериев сбалансированности всех узлов, лежащих на пути операции. Если в результате корректировки критерия значение balance в узле становится равным -2 или +2, то выполняется балансировка разбалансированного узла. Балансировка заключается в выполнении поворота узла для выравнивания высот поддеревьев. В AVL-дереве используются четыре вида поворотов в зависимости конфигурации поддеревьев узла с нарушенным сбалансированности.

В каждом случае достаточно просто доказать то, что операция приводит к нужному результату и что полная высота уменьшается не более чем на 1 и не может увеличиться. Также можно заметить, что большое левое вращение — это композиция правого малого вращения и левого малого вращения. Из-за условия сбалансированности высота дерева O(log(N)), где N — количество вершин, поэтому добавление элемента требует O(log(N)) операций.

Включение нового элемента в AVL - дерево

Рассмотрим операцию включения в сбалансированное дерево нового узла. Пусть дан узел A с левым и правым поддеревьями L и R. Предположим, что новый узел включается в L, вызывая увеличение его высоты на 1.

Возможны три случая после включения:

- 1. Если $h_L = h_R$ до включения, то L и R становятся неравной высоты, но критерий сбалансированности не нарушен.
- 2. Если $h_L < h_R$ до включения, то L и R становятся равной высоты и сбалансированность даже улучшается.
- 3. Если $h_L > h_R$ до включения, то критерий сбалансированности нарушается, и дерево нужно перестраивать.

Процесс включения узла в сбалансированное дерево состоит из трех этапов:

- 1. Поиск места включения узла в каком-либо листе.
- 2. Включение нового узла и определение нового показателя сбалансированности в месте включения.
- 3. Обратный проход по пути включения и проверка сбалансированности у каждого узла на этом пути.

Удаление элемента из AVL - дерева

При удалении узлов из AVL — дерева операция балансировки в основном остается такой же, что и при включении и заключается в однократном или двукратном повороте. При этом булевская переменная h, возвращаемая операцией удаления означает уменьшение высоты поддерева. При восходящем пересчете критерия сбалансированности выполняется балансировка тех узлов, у которых критерий стал равным +2 или -2. Балансировка выполняется с помощью тех же L-, R-, R-, R-, R- поворотов.

Удаление элементов также имеет стоимость $O(\log_2 n)$. Но если включение может вызвать один поворот, удаление может потребовать повороты в каждом узле пути поиска при обратном ходе рекурсии. Но эмпирические проверки показали, что если при включении выполняется один поворот на каждые два включения, то при удалении один поворот приходится на 5 удалений.

Задание к лабораторной работе

В данной лабораторной работе необходимо:

- 1. Написать программу, которая демонстрирует работу с АВЛ-деревьями.
- 2. Реализовать функции:
 - создания дерева;
 - добавления элемента;
 - удаления элемента;
 - уничтожения дерева;
 - проверки дерева на пустоту;
 - вывода элементов двоичного дерева на экран одним из обходов.

При необходимости должна выполняться балансировка дерева.

3. Выполнить индивидуальное задание в соответствии со своим вариантом.

Варианты заданий:

Вариант	Задание
1	Определить глубину дерева, представляемую как наибольшая длина пути от
	корня к листьям.
2	Определить ширину дерева, представляемую как:
	1 + Ширина левого поддерева + Ширина правого поддерева.
3	Определить самый левый лист дерева.
4	Определить самый правый лист дерева.
5	Определить глубину правого поддерева дерева.
6	Определить глубину левого поддерева дерева.
7	Определить ширину левого поддерева дерева.
8	Определить ширину правого поддерева дерева.
9	Определить лист, который находится дальше всего от корня.