שתי הנחות יסוד:

- מהירות האור קבועה בכל מערכות הייחוס
- חוקי הפיזיקה נשמרים בכל המערכות האינרציאליות

מסקנות חשובות:

- איבוד הסימולטניות (מה שקורה "בו זמנית" במערכת אחת לא בהכרח קורה "בו זמנית" במערכת אחרת).
 - התקצרות האורך.
 - התארכות הזמן

במערכת המנוחה של החלקיק מקבלים את הזמן העצמי (שהוא הזמן הקצר ביותר) ואת האורך הארוך ביותר.

 $rac{L_{propper}}{t}$, $t=\gamma au$ במעבר לכל מערכת אחרת נקבל:

$$s^2 = c^2 t_{12}^2 - \overrightarrow{|x_{12}|^2}$$
נסיק שהאינטרוול

הוא גודל אינוואריאנטי- מבטיח ש**הסיבתיות** נשמרת בכל מערכת ייחוס. נכתוב את הטרנס' שמשמרת אותו,

זוהי טרנס' לורנץ:

$$\gamma = \frac{1}{\sqrt{1 - \beta^2}} , \quad -1 < \beta = \frac{v}{c} < 1$$

$$tanh(\zeta) = \beta, \quad cosh(\zeta) = \frac{1}{\sqrt{1 - tanh^2(\zeta)}} = \gamma,$$

מ 'O ל O (טרנס' הפוכה)
$x = \gamma(x' + \beta ct')$
y = y'
z = z'
$ct = \gamma(ct' + \beta x')$

 $-\beta$ נשים לב שהטרנס' ההופכית נתונה ע"י את חזרה מקבלים $\gamma \to 1, \beta \to 0, \ v \ll c$ בגבול בו $(x_0 = ct)$ טרנס' גלילאו. הצגה מטריצית:

$$\begin{pmatrix} x'_0 \\ x'_1 \\ x'_2 \\ x'_2 \end{pmatrix} = \begin{pmatrix} \gamma & -\gamma\beta & 0 & 0 \\ -\gamma\beta & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

במקרה בו התנועה בין המערכות אינה רק בציר X נוכל להשתמש בטרנס':

> זה וקטור, מכיל בתוכו רכיב מקביל וניצב. אם רוצים כל אחד בנפרד עדיף לורנץ רגיל

$$x' = x + \frac{(\gamma - 1)}{\beta^2} (\boldsymbol{\beta} \cdot \boldsymbol{x}) \boldsymbol{\beta} - \gamma \boldsymbol{\beta} x_0$$

 $x_0' = \gamma(x_0 - \beta \cdot x)$

גרף שמתאר את קווי

החיים של שני גופים במע' שונות. נזכור שגוף אחד תמיד במנוחה (קווים ישרים) ושלמיקום נקודות החיתוך יש חשיבות (רואים אם אין\יש סימולטניות)

כפות רגליו של

מרחב מינקובסקי והצגה גרפית של הטרנספורמציה

הצירים של מערכת **'O** נתונים ע"י:

$$x' = 0 = \gamma(x - \beta ct) \rightarrow x = \beta ct$$
$$ct' = 0 = \gamma(ct - \beta x) \rightarrow ct = \beta x$$

ואת הזוית בין הצירים נקבל ע"י:

$$\tan(\phi) = \frac{x}{ct} = \beta$$

🗦 × נשים לב שהצירים לא מכוילים אותו דבר $(x',ct')=(1,0)\rightarrow(x,ct)=(\gamma,\gamma\beta)$

אפקט דופלר קלאסי+יחסותי

התרחקות =הסטה לאדום=תדר נמוך. התקרבות= הסטה לכחול=תדר גבוהה. עבור תנועה של צופה מתקרב ומשדר מתקרב מקבלים תוצאות שונות

בצורה הקלאסית:

 $T' = t_2' - t_1' = \frac{T}{1+\beta}$ צופה מתקרב

 $T' = t_2' - t_1' = T(1 - \beta)$ מקור מתקרב: T(1+eta) צופה מתרחק: $\frac{T}{1-eta}$ מקור מתרחק:

אם מתחשבים בהתארכות הזמן, עבור התרחקות מקבלים

$$T' = \gamma T (1 + \beta) = \frac{T}{\gamma (1 - \beta)} = T \sqrt{\frac{1 + \beta}{1 - \beta}}$$
 שהסטת דופלר היא:

*הכפל בגמא-נזכור שנרצה להשוות שני זמנים עצמיים, ונבין אם זמן עצמי נמדד עבור מקור או צופה בכל אחד מהמקרים. $f' = \gamma f (1 - \beta cos\theta)$ במקרה הכללי נוכל לכתוב: כש-heta היא הזווית בין וקטור התפשטות הגל לוקטור המהירות:

"טהורה" התרחקות $\theta=0$

"טהורה $\theta=180$

Doppler Effect

פרדוקס התאומים:

איך ייתכן שהתאום שנוסע הוא גם צעיר יותר וגם מבוגר יותר ?מאחיו שנשאר

המערכת של האח שנוסע היא לא אינרציאלית (הוא מאיץ במהלך הסיבוב) ולכן האח שנוסע חוזר צעיר יותר.

פרדוקסים ודגשים:

פרדוקס החנייה/סופרמן נכנס לקיר:

אורך מפרץ החנייה	אורך המכונית	
?	'4 מ'	מע' המכונית
'6 מ'	?	מע' הרחוב

נשים לב **שהאורכים שנתונים לנו הם במערכת המנוחה** שלהם. כדי למצוא את האורך במערכת השנייה נשתמש

> $6 = \gamma x' \rightarrow x' = 3$ בהתקצרות לורנץ: במדידות ארוך תמיד נדרוש שזמני המדידה שווים.

פרדוקס החלליות:

של מפקד החללית O

חללית O יורה לעבר חללית O', האם תפגע בה? B -ו O אף חללית O' מול זנב חללית A: אמאורעות הלייזר יורה הם סימולטניים במערכת של החללית O. אר לא במערכת של חללית ב'.

איזר ד-15; המצב כפי שר

חיבור מהירויות והצגה היפרבולית

מבעצמה (0') אבעצמה יחסית u' יחסית במהירות נניח טיל נעה במהירות v יחסית לכדה"א (O), מה תהיה המהירות של . u -במערכת כדה"א(O)? נסמנה ב

תמיד נוכל להניח ששתיים ממערכות הצירים שלנו מקבילות ולפרק את המהירות הנותרת לרכיב מקביל וניצב:

$$u_{\perp} = \frac{u_{\perp}'}{\gamma_{\nu} \left(1 + \frac{v \cdot u'}{c^2}\right)} \qquad u_{\parallel} = \frac{u_{\parallel}' + v}{1 + \frac{v \cdot u'}{c^2}}$$

במקרה בו כל המהירויות מקבילות נוכל להשתמש פשוט בכלל $eta=eta_1\opluseta_2=rac{eta_1+eta_2}{eta_1eta_2+1}$ לפיו: בדומה לטרנס' גלילאי, ניתן לחסר מהירויות עם אותן נוסחאות,

ע"י החלפת סימן והחלפה בין האותיות המתאימות.

ארבע וקטורים

$$\left\| {{A^{(4)}}'} \right\|^2 \triangleq {A_0'}^2 - \left| {{A'}} \right|^2 = A_0^2 - \left| {{A}} \right|^2 \triangleq \left\| {{A^{(4)}}} \right\|^2$$
 מכפלה סקלרית מכפלה סקלרית $U_0 = \frac{{d{x_0}}}{{d\tau }} = \frac{{dx_0}}{{dt}} \frac{{dt}}{{d\tau }} = \gamma_u c$ מלבוא את מכפלה סקלרים $u = \frac{{dx_0}}{{d\tau }} = \frac{{dx_0}}{{dt}} \frac{{dt}}{{d\tau }} = \gamma_u c$ מלבוא את מיקום לפי הזמן $u = \frac{{dx}}{{d\tau }} = \frac{{dx}}{{dt}} \frac{{dt}}{{d\tau }} = \gamma_u u$ מרבו אוצה: $u = \left({\gamma _u^4} \, \frac{{dx_0}}{{c_1}} , \, {\gamma _u^2} a + {\gamma _u^4} \, \frac{{a \cdot u}}{{c_2^2}} u \right)$

מסת המנוחה m_0 -המסה במערכת העצמית של החלקיק $m = \gamma_u m_0$ המסה במערכת כלשהיא $E=mc^2$ נקבל: Cאם נכפול את רכיב האפס של הארבע-תנע ב $p^{(4)} = \left(\frac{E}{c}, m u\right) = \left(\frac{E}{c}, p\right)$ ונוכל לומר שהארבע תנע הוא:

$E_k = mc^2 - m_0c^2 = (\gamma - 1)m_0c^2$ אנרגיה קינטית:

$$E^2 = p^2c^2 + m_0^2c^4 \qquad m^2c^4 = m_0^2c^4 + p^2c^2$$

.כש m_0c^2 היא אנרגיית המנוחה

$$m_0 = \frac{\left\|p^{(*)}\right\|}{c}$$
 ולכן ולכן היא $m_0 c$ נוכל לומר ש:

במערכת מרכז המסה התנע הוא עדיין 0<mark>. מעבר למע' מרכז</mark>

 $\vec{\beta} = \frac{c}{r} \vec{P}$ המסה נעשה ע"י:

אנרגיית קשר

אנרגיית קשר חיובית: מכיוון שהאנרגיה של המערכת נשמרת, המסה של המערכת עם הקפיץ המכווץ גדולה יותר מאשר מסת שני הגופים. באופן כללי הגדלת אנרגיה (ביצוע עבודה) שקול להגדלת מסה. אנרגיית קשר שלילית: באטום המימן, מכיוון שיש משיכה בין האלקטרון לפרוטון, המסה של האטום קטנה מסכום המסות של האלקטרון והפרוטון- נפלט פוטון-אנרגיה לשדה הקרינה.

נשים לב ש $p=rac{E}{c}$ נשים לב שu=c עבור $u=rac{p}{\mathbf{y}_{u}\mathbf{m}_{0}}=rac{p}{E/c^{2}}$ נשים לב

$$p^{(4)} = \frac{1}{c}(E, E)$$
 : O פוטון הנע ימינה במערכת:

$$E' = \gamma(1-\beta)E = \sqrt{\frac{1-\beta}{1+\beta}} E$$
 : כ' ייראה במערכת 'O' ייראה

נזהה את הקשר כאפקט דופלר ונסיק שיש קשר בין האנרגיה E = hf :לתדר של הפוטון

לפוטון אחד אמנם אין מסה, אך לשני פוטונים יש מסה.

תהליכים פיזיקליים אפשריים:

- (איון) אינהלציה
- גם התהליך ההפוך אפשרי
- חלקיק בודד יכול להתאיין וליצור זוג פוטונים, אבל יש לשים לב לשימור של תכונות נוספות: מטען, תנ"ז
- לא ייתכן איון של חלקיק מסי בודד או מערכת חלקיקים מסיים לפוטון בודד

אפקט קומפטוו

זרם של פוטונים פוגע בשכבה דקה של חומר ומתפזר באורכי גל שונים עקב התנגשות עם אלקטרונים בחומר.

$$\Delta \lambda \triangleq \tilde{\lambda} - \lambda = \frac{h}{m_e c} (1 - \cos \theta) \triangleq \lambda_{c,e} (1 - \cos \theta)$$

 $E=m_ec^2$ הוא אורך גל של פוטון עם אנרגיה $\lambda_{c,e}$ ו

$$B'_{\alpha} = \frac{\partial x^{\beta}}{\partial x'^{\alpha}} B_{\beta}$$
 פורמליזם קו/קונטרה וריאנטי עובר טרנס':
$$A'^{\alpha} = \frac{\partial x'^{\alpha}}{\partial x^{\beta}} A^{\beta}$$
 וקטור קונטרה וריאנטי עובר כך:

$$g_{\alpha\beta} = g^{\alpha\beta} = \begin{pmatrix} 1 & 0 \\ -1 & 0 \\ 0 & -1 \end{pmatrix}$$
 בינקובסקי מוגדרת כ: בינאנטי יש

 $(A_0, A_1, A_2, A_3) = (A^0, -A^1, -A^2, -A^3)$ "שותף" קו-וריאנטי שמכפלה סקלרית ביניהם תיתן את הנורמה (ובמקרה של 4

 $ds^2 = A_0^2 - \vec{A}^2$ (וקטור המיקום את האינטרוול):

וקטור הנגזרות $\frac{\partial}{\partial x^0}$, $\frac{\partial}{\partial x^0}$, $\frac{\partial}{\partial x^1}$, $\frac{\partial}{\partial x^2}$, ניתן להגדיר נגזרת קונטרה על ידי הכפלה במטריקה.

וקטורים קונטרה-וריאנטים עוברים עם טרנס' לורנץ וקו-וריאנטים עם לורנץ ההפוכה.