Please check the examination det Candidate surname			Other names
Pearson Edexcel nternational Advanced Level	Centre	e Number	Candidate Number
Thursday 7 Ja	anu	ary	2021
Morning (Time: 1 hour 30 minut	-ac)	Paper P	eference WMA14/01
- J (.03)	rapern	elerence WIVIA 14/01
Mathematics		гареги	elerence WIVIA 1 4/0 1

Candidates may use any calculator permitted by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 10 questions in this question paper. The total mark for this paper is 75.
- The marks for each question are shown in brackets
- use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

Turn over ▶

1. (a) Find the first 4 terms, in ascending powers of x, of the binomial expansion of

$$\left(\frac{1}{4} - 5x\right)^{\frac{1}{2}} \qquad |x| < \frac{1}{20}$$

giving each coefficient in its simplest form.

(5)

By substituting $x = \frac{1}{100}$ into the answer for (a),

(b) find an approximation for $\sqrt{5}$

Give your answer in the form $\frac{a}{b}$ where a and b are integers to be found.

(2)

Question 1 continued		blank
		Q 1
		~ 1
	(Total 7 marks)	

(3)

(2)

2.

Figure 1

Figure 1 shows a sketch of parallelogram ABCD.

Given that
$$\overrightarrow{AB} = 6\mathbf{i} - 2\mathbf{j} + 3\mathbf{k}$$
 and $\overrightarrow{BC} = 2\mathbf{i} + 5\mathbf{j} + 8\mathbf{k}$

(a) find the size of angle ABC, giving your answer in degrees, to 2 decimal places.

(b) Find the area of parallelogram ABCD, giving your answer to one decimal place.

Question 2 continued	blank
	Q2
(Total 5 marks)	
(10tal 5 marks)	$\overline{}$

Leave blank

. Prove by contradiction that there is no greatest odd integer.	(2)

Question 3 continued	blank
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	Q3
(Total 2 marks	s)

4. The curve C is defined by the parametric equations

$$x = \frac{1}{t} + 2$$
 $y = \frac{1 - 2t}{3 + t}$ $t > 0$

(a) Show that the equation of C can be written in the form y = g(x) where g is the function

$$g(x) = \frac{ax+b}{cx+d} \qquad x > k$$

where a, b, c, d and k are integers to be found.

(5)

(0) 1101100, 01 011101 180, 211110 11111 11111 180	(b)	Hence,	or	otherwise,	state	the	range	of	g.
--	-----	--------	----	------------	-------	-----	-------	----	----

(2)

Question 4 continued		blan
		Q4
	(Total 7 marks)	

5. In this question you should show all stages of your working. Solutions relying on calculator technology are not acceptable.

Using the substitution $u = 3 + \sqrt{2x - 1}$ find the exact value of

$$\int_{1}^{13} \frac{4}{3 + \sqrt{2x - 1}} \, \mathrm{d}x$$

giving your answer in the form $p + q \ln 2$, where p and q are integers to be found.

1	0)	
	\mathbf{A}	
•	\mathbf{v}	,

	blank
Question 5 continued	
	Q5
(Total 8 marks)	

A curve has equation

$$4y^2 + 3x = 6ye^{-2x}$$

(a) Find $\frac{dy}{dx}$ in terms of x and y.

(5)

The curve crosses the y-axis at the origin and at the point P.

(b) Find the equation of the normal to the curve at P, writing your answer in the form y = mx + c where m and c are constants to be found.

4)

(4

Question 6 continued		blan
		Q6
	(Total 9 marks)	

Figure 2

(a) Find
$$\int e^{2x} \sin x \, dx$$

(5)

Figure 2 shows a sketch of part of the curve with equation

$$y = e^{2x} \sin x \qquad x \geqslant 0$$

The finite region *R* is bounded by the curve and the *x*-axis and is shown shaded in Figure 2.

(b) Show that the exact area of *R* is $\frac{e^{2\pi} + 1}{5}$

(Solutions relying on calculator technology are not acceptable.)

(2)

	L
uestion 7 continued	"

Leave blank

Question 7 continued		

Question 7 continued		Lea bla
	Q	7
	(Total 7 marks)	

8. With respect to a fixed origin O, the lines l_1 and l_2 are given by the equations

$$l_1: \mathbf{r} = \begin{pmatrix} -1\\5\\4 \end{pmatrix} + \lambda \begin{pmatrix} 2\\-1\\5 \end{pmatrix} \qquad l_2: \mathbf{r} = \begin{pmatrix} 2\\-2\\-5 \end{pmatrix} + \mu \begin{pmatrix} 4\\-3\\b \end{pmatrix}$$

where λ and μ are scalar parameters and b is a constant.

Prove that for all values of $b \neq 7$, the lines l_1 and l_2 are skew.

(6)

Question 8 continued	Leave
	Q8
(Total 6 marks)	

(7)

(3)

Figure 3 shows a sketch of part of the curve with parametric equations

$$x = \tan \theta$$
 $y = 2\sin 2\theta$ $\theta \geqslant 0$

The finite region, shown shaded in Figure 3, is bounded by the curve, the x-axis and the line with equation $x = \sqrt{3}$

The region is rotated through 2π radians about the x-axis to form a solid of revolution.

(a) Show that the exact volume of this solid of revolution is given by

$$\int_0^k p(1-\cos 2\theta) \, \mathrm{d}\theta$$

where p and k are constants to be found.

(b) Hence find, by algebraic integration, the exact volume of this solid of revolution.

Question 9 continued

Leave blank

Question 9 continued

Question 9 continued	Leave
	Q9
(Total 10 marks)	

10. (a) Write
$$\frac{1}{(H-5)(H+3)}$$
 in partial fraction form.

(3)

The depth of water in a storage tank is being monitored.

The depth of water in the tank, H metres, is modelled by the differential equation

$$\frac{\mathrm{d}H}{\mathrm{d}t} = -\frac{(H-5)(H+3)}{40}$$

where t is the time, in days, from when monitoring began.

Given that the initial depth of water in the tank was 13 m,

(b) solve the differential equation to show that

$$H = \frac{10 + 3e^{-0.2t}}{2 - e^{-0.2t}} \tag{7}$$

(c) Hence find the time taken for the depth of water in the tank to fall to 8 m.

(Solutions relying entirely on calculator technology are not acceptable.)

(3)

According to the model, the depth of water in the tank will eventually fall to k metres.

(d) State the value of the constant k.

1	1	
•	1	,
•		,

uestion 10 continued	

Leave blank

Question 10 continued	

		L b
uestion 10 continued		
	_	
	_	

	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
(Total 14 mar	Q1
TOTAL FOR PAPER IS 75 MAR	