Building SVM and Gradient Boosting Models in scikit-learn

Janani Ravi CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

Support Vector Machines are a very popular ML technique for classification

SVMs can work on text as well as images

Often ML models can come together as an ensemble to build a stronger model

Gradient boosting uses decision trees to build a better regression model

SVM Classification

Data in One Dimension

Unidimensional data points can be represented using a line, such as a number line

Data in One Dimension

Unidimensional can also be separated, or classified, using a point

Data in Two Dimensions

Bidimensional data points can be represented using a plane, and classified using a line

Data in N Dimensions

N-dimensional data can be represented in a hypercube, and classified using a hyperplane

Support Vector Machines

SVM classifiers find the hyperplane that best separates points in a hypercube

Hard Margin Classification

Ideally, data is linearly separable - hard decision boundary

Hard Margin Classification

The nearest instances on either side of the boundary are called the support vectors

Hard Margin Classification

SVM finds the widest street between the nearest points on either side

Hard margin classifiers are sensitive to outliers...

...and require perfectly linear separability in data

Soft margin classifiers allow some violations of the decision boundary

Soft margin classifiers allow some violations of the decision boundary

Non-separable Data

Smart transformations resolve surprisingly many such cases

SVM classification can be extended to almost any data using something called the kernel trick

Nonlinear SVM

Original Data

Not linearly separable

Square of original data

Now linearly separable!

Setting Up the SVM Classification Problem

Classify review as positive or negative based on length of review, and time when posted

Actually, we need three dimensions to visualize decision boundary correctly

Actually, we need three dimensions to visualize decision boundary correctly

Actually, we need three dimensions to visualize decision boundary correctly

Actually, we need three dimensions to visualize decision boundary correctly

Decision plane separates points based on whether $W_1x_1 + W_2x_2 + b = < > 0$

Decision plane separates points based on whether $W_1x_1 + W_2x_2 + b = < > 0$

Decision plane separates points based on whether $W_1x_1 + W_2x_2 + b = < > 0$

If $W_1x_1 + W_2x_2 + b > 0$ y_{predicted} = Positive

If $W_1x_1 + W_2x_2 + b \le 0$ y_{predicted} = Negative

Classification Using the Decision Boundary

Find the "best" values of

 W_1 , W_2 , b

Such that

Classification Using the Decision Boundary

Such that

If
$$W_{1}x_{1} + W_{2}x_{2} + b \le 0$$

$$y_{predicted} = 0$$

If
$$W_1x_1 + W_2x_2 + b > 0$$

 $y_{predicted} = 1$

SVM finds the widest street between the nearest points on either side

The nearest instances on either side of the boundary are called the support vectors

But "best" must also avoid or minimize outliers (by penalizing them during the optimization)

But "best" must also avoid or minimize outliers (by penalizing them during the optimization)

Calculate the magnitude of the margin violation for each point on the wrong side of the boundary

Multiply this magnitude of margin violation by a penalty factor C

Penalize each outlier using hyperparameter C

Very large values of C ~ hard margin classification Very small values of C ~ soft margin classification

"best" ~ widest margin between support vectors

but...

...penalize each margin violator using hyperparameter C

$$f W_1x_1 + W_2x_2 + b \le C$$

$$y_{predicted} = O$$

$$|f W_1X_1 + W_2X_2 + b > 0$$

$$y_{predicted} = 1$$

Solving SVM Optimization

Don't need to know precise math Understand that "best" decision boundary

Fit widest possible margin

Solving SVM Optimization

Don't need to know precise math Understand that "best" decision boundary

- seeks to maximize width of street

Penalty = C x |Margin Violation|

Solving SVM Optimization

Don't need to know precise math Understand that "best" decision boundary

- seeks to maximize width of street
- seeks to minimize margin violations

Solving SVM Optimization

Don't need to know precise math Understand that "best" decision boundary

- seeks to maximize width of street
- seeks to minimize margin violations

These two objectives are in conflict with each other

Demo

Document classification with SVMs in scikit-learn

Demo

MNIST image classification with SVMs in scikit-learn

Each digit is in grayscale

Every image is standardized to be of size 28x28

= 784 pixels

Every pixel holds a single value for intensity

0	0	0	0	0	0
0.2	0.8	0	0.3	0.6	0
0.2	0.9	0	0.3	0.8	o
0.3	8.0	0.7	0.8	0.9	O
0	0	0	0.2	0.8	o
0	0	0	0.2	0.2	0

0	0	0	0	0	0
0.2	0.8	0	0.3	0.6	0
0.2	0.9	o	0.3	0.8	0
0.3	0.8	0.7	0.8	0.9	0
0	0	0	0.2	0.8	0
0	0	0	0.2	0.2	0

0	0	0	0	0	0
0.2	0.8	0	0.3	0.6	0
0.2	0.9	0	0.3	0.8	0
0.3	0.8	0.7	8.0	0.9	0
0	0	0	0.2	0.8	0
0	0	0	0.2	0.2	0

0	O	0	O	0	0
0.2	0.8	0	0.3	0.6	0
0.2	0.9	0	0.3	0.8	0
0.3	0.8	0.7	0.8	0.9	0
0.3	0.8	0.7		0.9	0

Every image has an associated label

Decision Trees

Jockey or Basketball Player?

Jockeys

Tend to be light to meet horse carrying limits

Basketball Players

Tend to be tall, strong and heavy

Jockey or Basketball Player?

Intuitively know

- jockeys tend to be light...
- ...and not very tall
- basketball players tend to be tall
- ...and also quite heavy

Fit knowledge into rules

Each rule involves a threshold

Decision Tree

Order of decision variables matters

Rules and order found using ML

Decision Tree

"CART"

<u>Classification And</u> <u>Regression Tree</u>

Decision Tree

Decision Trees for Classification

Decision Trees for Classification

To solve

- Traverse tree to find right node
- Return most frequent label of all training data points in that node

Decision Trees for Regression

Weight > 150 lbs Basketball Basketball Height >6' Basketball Jockey

Decision Trees for Regression

To solve

- Traverse tree to find right node
- Return average number of years of all training data points in that node

Muggsy Bogues

Shortest player ever in the NBA
5'3" and 135 lbs
Our tree would classify him as Jockey
No threshold is perfect!

Tree Construction

CART optimizes tree construction

Minimizes "impurity" of each node

Impurity ~ misclassified data points

Impurity

Impurity

7 jockeys, 3 basketball players from actual data

Two ways to measure impurity

- Gini impurity
- Entropy

Yield similar trees

Tree Construction

Height <=6' Basketball Jockey

Gini Impurity

CART seeks to minimize Gini impurity at each node

Gini impurity is found from rule violations in training data

Height >6' Basketball Gi = 0.095

Gini Impurity

In training data:

100 samples with height > 6'

- 95 basketball players
- 5 jockeys

$$G_i = 1 - (95\%)^2 - (5\%)^2 = 0.095$$

Height >6' Basketball Jockey Gi = 0.0 Completely pure

Gini Impurity

In training data:

100 samples with height <= 6'

- O basketball players
- 100 jockeys

$$G_i = 1 - (0\%)^2 - (100\%)^2 = 0$$

Gini Impurity

Gini impurity at node
200 samples (sum of the leaf nodes)

- 95 basketball players
- 105 jockeys

$$G_i = 1 - (95/200)^2 - (105/200)^2$$

= 0.49875

Weight > 150 lbs Basketball Height >6' Basketball Jockey

Advantages of Decision Trees

"White Box" ML ~ leverage experts
Non-parametric

- Little hyperparameter tuning
- Little data prep

Weight > 150 lbs Basketball Height >6' =6' Basketball Jockey

Drawbacks of Decision Trees

Prone to overfitting

- Common risk with non-parametric

Unstable

- Small changes in data cause big changes in model

"If everyone in the room is thinking the same thing, then somebody isn't thinking."

General Patton

Weight > 150 lbs Basketball Height >6' =6'

Random Forests

Train many decision trees

- each on random sample of data

Combine their output

- averaging for regression
- mode for classification

Weight > 150 lbs Basketball Height >6' =6' Basketball Jockey

Random Forests

Extremely powerful technique

Example of ensemble learning

Individual trees should be as different as possible

"Build up your weaknesses until they become your strong points."

Knute Rockne

Many machine learning models come together to work on the training data

Many weak learners

Model 1:

$$y = A_1 + B_1 x + e_1$$

Model 2:

$$e_1 = A_2 + B_2x + e_2$$

Model 3:

$$e_2 = A_3 + B_3x + e_3$$

$$y = A_1 + A_2 + A_3 + (B_1 + B_2 + B_3) x + e_3$$

$$e_1 = A_2 + B_2x + e_2$$

Model 3:

$$e_2 = A_3 + B_3x + e_3$$

$$y = A_1 + A_2 + A_3 + (B_1 + B_2 + B_3) x + e_3$$

Model 1:

$$y = A_1 + B_1 x + e_1$$

Model 2:

$$e_1 = A_2 + B_2x + e_2$$

"Strong learner" when combined

Model 3:

$$e_2 = A_3 + B_3x + e_3$$

$$y = A_1 + A_2 + A_3 + (B_1 + B_2 + B_3) x + e_3$$

Model 1:

$$y = A_1 + B_1x + e_1$$

Residuals from Model 1

Model 2:

$$e_1 = A_2 + B_2x + e_2$$

Model 3:

$$e_2 = A_3 + B_3x + e_3$$

$$y = A_1 + A_2 + A_3 + (B_1 + B_2 + B_3) x + e_3$$

Model 1:

$$y = A_1 + B_1 x + e_1$$

Residuals from Model 1

Model 2:

$$e_1 = A_2 + B_2x + e_2$$

What Model 1 fails to learn'

Model 3:

$$e_2 = A_3 + B_3x + e_3$$

$$y = A_1 + A_2 + A_3 + (B_1 + B_2 + B_3) x + e_3$$

$$y = A_1 + A_2 + A_3 + (B_1 + B_2 + B_3) x + e_3$$

Model 1:

$$y = A_1 + B_1 x + e_1$$

Focuses on what previous model failed to learn

Model 2:

$$e_1 = A_2 + B_2x + e_2$$

Model 3:

$$e_2 = A_3 + B_3x + e_3$$

$$y = A_1 + A_2 + A_3 + (B_1 + B_2 + B_3) x + e_3$$

Model 1:

$$y = A_1 + B_1 x + e_1$$

Model 2:

$$e_1 = A_2 + B_2x + e_2$$
 Model 2

Residuals from Model 2

Model 3:

$$e_2 = A_3 + B_3x + e_3$$

$$y = A_1 + A_2 + A_3 + (B_1 + B_2 + B_3) x + e_3$$

Model 1:

$$y = A_1 + B_1 x + e_1$$

Model 2:

$$e_1 = A_2 + B_2x + e_2$$

Residuals from Model 2

Model 3:

$$e_2 = A_3 + B_3x + e_3$$

What Model 2 fails to learn'

$$y = A_1 + A_2 + A_3 + (B_1 + B_2 + B_3) x + e_3$$

Model 1:

$$y = A_1 + B_1 x + e_1$$

Model 2:

Focuses on what previous model failed to learn

$$e_1 = A_2 + B_2x + e_2$$

Model 3:

$$e_2 = A_3 + B_3x + e_3$$

$$y = A_1 + A_2 + A_3 + (B_1 + B_2 + B_3) x + e_3$$

Model 1:

$$y = A_1 + B_1 x + e_1$$

Model 2:

$$e_1 = A_2 + B_2x + e_2$$

Model 3:

$$e_2 = A_3 + B_3x + e_3$$

These residuals are now unlearnt

$$y = A_1 + A_2 + A_3 + (B_1 + B_2 + B_3) x + e_3$$

Model 1:

$$y = A_1 + B_1 x + e_1$$

Model 2:

$$e_1 = A_2 + B_2x + e_2$$

Model 3:

$$e_2 = A_3 + B_3x + e_3$$
 unlearnt

Only these residuals are now unlearnt

$$y = A_1 + A_2 + A_3 + (B_1 + B_2 + B_3) x + e_3$$

Model 1:

$$y = A_1 + B_1 x + e_1$$

Model 2:

$$e_1 = A_2 + B_2x + e_2$$

Model 3:

$$e_2 = A_3 + B_3x + e_3$$

$$y = A_1 + A_2 + A_3 + (B_1 + B_2 + B_3) x + e_3$$

$$e_1 = A_2 + B_2x + e_2$$

Model 3:

$$e_2 = A_3 + B_3x + e_3$$

$$y = A_1 + A_2 + A_3 + (B_1 + B_2 + B_3) x + e_3$$

$$y = A_1 + A_2 + A_3 + (B_1 + B_2 + B_3) x + e_3$$

Model 1:

$$y = A_1 + B_1 x + e_1$$

In practice:
100-200 weak
learners, each
learning from
previous mistakes

Model 2:

$$e_1 = A_2 + B_2x + e_2$$

Model 3:

$$e_2 = A_3 + B_3x + e_3$$

$$y = A_1 + A_2 + A_3 + (B_1 + B_2 + B_3) x + e_3$$

Model 1:

$$y = A_1 + B_1 x + e_1$$

Model 2:

$$e_1 = A_2 + B_2x + e_2$$

"Strong learner" when combined

Model 3:

$$e_2 = A_3 + B_3x + e_3$$

$$y = A_1 + A_2 + A_3 + (B_1 + B_2 + B_3) x + e_3$$

Model 1:

$$y = A_1 + B_1 x + e_1$$

Model 2:

$$e_1 = A_2 + B_2x + e_2$$

"Strong learner" when combined

Model 3:

$$e_2 = A_3 + B_3x + e_3$$

Combined Model:

y = Sum of outputs of weak learners

Gradient Boosting will not work if the weak learners use MSE regression

Regression using Decision Trees work well

Regression Line: y = A + Bx

X

MSE Regression

MSE regression will not improve with Gradient Boosting

Residuals are uncorrelated with

- X variables
- predicted Y

Math just does not work out

Decision Trees work great though

Non-parametric ML technique

Hyperparameter: how many levels?

Works beautifully with Gradient Boosting

Decision Tree

Weight > 150 lbs Basketball Height >6' =6'

Number of Weak Learners

Gradient Boosting works best with a large number of weak learners

Large ~ several hundred

Early learners learn the most

Later learners learn from mistakes of early learners

Weight > 150 lbs Basketball Height >6' =6' Basketball Jockey

Ensemble Learning

Gradient boosting is a form of Ensemble Learning

Ensemble ~ "together" in French

Aggregate many models together

Standard regularization technique

Reduces overfitting and variance error

Shrinkage Factor

Shrinkage Factor

Weight > 150 lbs Basketball Height >6' =6' Basketball Jockey

Shrinkage Factor

Scale output of each model by a constant factor

High shrinkage factor scales down importance of each learner

Slows down learning

Reduces overfitting

Weight > 150 lbs Basketball >6' =6' Basketball Jockey

Shrinkage Factor

More learners ~ shrink a lot Few learners ~ shrink a little Typical values ~ 0.1, 1

Weight > 150 lbs Basketball Height >6' Basketball Jockey

Shrinkage Factor

Naive Gradient Boosting

- ShrinkageFactor = 1

Gradient Boosting with Shrinkage

- ShrinkageFactor < 1

GradientBoostingRegressor(max_depth=4, n_estimators=200, learning rate=0.1)

Gradient Boosted Regression Tree

scikit-learn has a high-level estimator object for this algorithm

Weight > 150 lbs Basketball >6' Basketball Height <=6' Basketball Jockey

Grid Search in Scikit

Hyperparameter tuning is important
Best accomplished using Grid Search
Fancy name for nested for loops
Very convenient

Other Hyperparameters

subsample

- Train each tree on subset of training data selected at random
- By default, each tree trained on all training data

warm_start

- Preserve old trees to make learning faster during training

loss

Loss function for decision trees

GradientBoostingRegressor(max_depth=4, n_estimators=200, learning rate=0.1)

Gradient Boosted Regression Tree

Scikit-Learn has a high-level estimator object for this algorithm

GradientBoostingRegressor(max_depth=4, n_estimators=200, learning rate=0.1)

How Many Weak Learners?

Each weak learner is a decision tree

GradientBoostingRegressor(max_depth=4, n_estimators=200, learning rate=0.1)

How Many Weak Levels?

The maximum depth of each individual decision tree

GradientBoostingRegressor(max_depth=4, n_estimators=200, learning rate=0.1)

How much weight for each weak learner?

Here each of 200 weak learner models is assigned the weight of 0.1

Jockey or Basketball Player?

Jockeys

Tend to be light to meet horse carrying limits

Basketball Players

Tend to be tall, strong and heavy

Fit knowledge into rules

Each rule involves a threshold

Decision Tree

Demo

Regression using Gradient Boosting in scikit-learn

Summary

Support Vector Machines are a very popular ML technique for classification

SVMs can work on text as well as images

Often ML models can come together as an ensemble to build a stronger model

Gradient boosting uses decision trees to build a better regression model