UNIVERSIDAD DE EL SALVADOR EDUCACIÓN A DISTANCIA

SISTEMAS DIGITALES I SDU115

UNIDAD II

METODOS DE SIMPLIFICACION DE SISTEMAS DIGITALES COMBINACIONALES

SISTEMAS DIGITALES I SDU115

Ejemplos de simplificación

Objetivo

Simplificar funciones lógicas, siguiendo la metodología de Mapas K y el método Quine McCluskey. Reafirmando los conceptos y reglas establecidas, para la obtención de la expresión lógica mínima simplificada.

Ejemplo de 4 variables Mapas K

Ejemplo de 5 variables Mapas K

Ejemplo de 6 variables Mapas K

Ejemplo QM 1 variable

Ejemplo QM 4 Multivariables

Decodificador de 8421 a 7 segmentos

Nº	A ₃	A ₂	A ₁	Ao	а	b	c	d	е	f	g
0	0	0	0	0	1	1	1	1	1	1	0
1 2 3 4 5	0	0	0	1	0	1	1	0	0	0	0
2	0	0	1	0	1	1	0	1	1	0	1
3	0	0	1	1	1	1	1	1	0	0	1
4	0	1	0	0	0	1	1	0	0	1	1
5	0	1	0	1	1	0	1	1	0	1	1
6	0	1	1	0	1	0	1	1	1	1	1
7	0	1	1	1	1	1	1	0	0	0	0
8	0	0	0	0	1	1	1	1	1	1	1
9	1	0	0	1	1	1	1	0	0	1	1
10	1	0	1	0	X	X	X	X	X	X	X
11	1	0	1	1	X	X	X	X	X	X	X
12	1	1	0	0	X	X	X	X	X	X	X
13	1	1	0	1	X	X	X	X	X	X	X
14	1	1	1	0	X	X	X	X	X	X	X
15	1	1	1	1	X	X	X	X	X	X	X

Mapas K y Ecuaciones

$$g = A3 + A2\overline{A1} + \overline{A2}A1 + A1\overline{A0}$$

Diseñe un sistema digital que convierta 8421 a exceso 3, y viceversa.

Con las mismas cuatro entradas hará dos trabajos, si una variable de control "A" vale cero, convierte 8421 a exceso 3, y si vale 1 convierte exceso 3 en 8421.

	Α	В	С	D	Е	W	Х	Υ	Z
0	0	0	0	0	0	0	0	1	1
1	0	0	0	0	1	0	1	0	0
2	0	0	0	1	0	0	1	0	1
3	0	0	0	1	1	0	1	1	0
4	0	0	1	0	0	0	1	1	1
5	0	0	1	0	1	1	0	0	0
6	0	0	1	1	0	1	0	0	1
7	0	0	1	1	1	1	0	1	0
8	0	1	0	0	0	1	0	1	1
9	0	1	0	0	1	1	1	0	0
10	0	1	0	1	0	Х	Χ	Χ	X
11	0	1	0	1	1	X	Χ	Χ	X
12	0	1	1	0	0	X	Χ	Χ	Χ
13	0	1	1	0	1	X	Χ	Χ	X
14	0	1	1	1	0	X	Χ	Χ	Χ

A = 0, convierte 8421 a exceso 3, en la entrada nunca aparecerán las combinaciones del 10 al 15, (son las no validas para el 8421) por lo tanto en las salidas ponemos X, no importa.

	Α	В	С	D	E	W	X	Υ	Z	
16	1	0	0	0	0	Х	Χ	Χ	Χ	
17	1	0	0	0	1	X	Χ	Χ	X	
18	1	0	0	1	0	Х	Χ	Χ	Χ	
19	1	0	0	1	1	0	0	0	0	
20	1	0	1	0	0	0	0	0	1	
21	1	0	1	0	1	0	0	1	0	
22	1	0	1	1	0	0	0	1	1	
23	1	0	1	1	1	0	1	0	0	
24	1	1	0	0	0	0	1	0	1	
25	1	1	0	0	1	0	1	1	0	
26	1	1	0	1	0	0	1	1	1	
27	1	1	0	1	1	1	0	0	0	
28	1	1	1	0	0	1	0	0	1	
29	1	1	1	0	1	Х	Χ	Χ	Χ	
30	1	1	1	1	0	Х	Χ	Χ	Χ	
31	1	1	1	1	1	Х	Χ	Χ	Χ	

A = 1, convierte exceso 3 a 8421, en la entrada nunca aparecerán las combinaciones del 0 al 2, ni del 13 al 15, (son las no validas para el Exceso 3) por lo tanto en las salidas ponemos X, no importa.

Obtendré las ecuaciones para W y Z, X y Y se obtuvieron en la clase.

Variable W

W= Σ m(5,6,7,8,9,27,28) +d(10-15, 16-18,29-31)

	CD	E														
AB	00	0	00	1	01	1	01	0	11	0	11	1	10	1	10	0
00									1		1		1			
		0		1		3		2		6		7		5		4
01	1		1		X		Χ		X		Х		Χ		Χ	
		R		9	_	11		10		14		14		13		17
11					1				Х		Х		X		1	
		24		25		27		26		30		2		29		28
10	Х		X				Х									
		16		17		19		18		22		23		21		20

$$W = \bar{A}CE + \bar{A}CD + \bar{A}B + BC + BDE$$

 $Z=\Sigma m (0,2,4,6,8,20,22,24,26,28) +d(10-15,16-18,29-31)$

$$X = \overline{E}$$

Comparador de magnitud "X"

Diseñe Un comparador de 2 números de 3 Bits cada uno (K en ABC y L en DEF), tendrá tres salidas, X será 1 si K>L, Y será 1 si K=L y Z será 1 Si K<L.

El mapa para X.

$$X = C\overline{D}\overline{E}\overline{F} + BC\overline{D}\overline{F} + B\overline{D}\overline{E} + A\overline{D} + AB\overline{E} + ABC\overline{F} + AC\overline{E}\overline{F}$$

Comparador de magnitud "Y"

Puede verse que ningún cuadro es adyacente a otro por lo tanto $Y=\Sigma m(0,9,18,27,36,45,54,63)$

	DE	F														
ABC	00	0	00	1	01	1	01	0	11	0	11	1	10	1	10	0
000	1															
		0		_1		3		_2		6		7		5		4
001			1													
		8		9		11		10		14		15		13		12
011					1											
011		24		25		27		26		30		31		29		28
010							1									
010		16		17		19		18		22		23		21		20
110									1							
110		48		49		51		50		54		55		53		52
111											1					
TTT		56		57		59		58		62		63		61		60
101													1			
101		40		41		43		42		46		47		45		44
100															1	
100		32		33		35		34		38		39		37		36

Comparador de magnitud "Z"

$$Z = \bar{A}\bar{B}\bar{C}F + \bar{A}\bar{C}EF + \bar{A}\bar{B}E + \bar{A}D + \bar{B}DE + \bar{C}DEF + \bar{B}\bar{C}DF$$

Generador del bit de paridad par para el 8421

	Α	В	С	D	W
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	1
3	0	0	1	1	0
4	0	1	0	0	1
5	0	1	0	1	0
6	0	1	1	0	0
7	0	1	1	1	1
8	1	0	0	0	1
9	1	0	0	1	0
10	1	0	1	0	Х
11	1	0	1	1	X
12	1	1	0	0	Х
13	1	1	0	1	X
14	1	1	1	0	Х
15	1	1	1	1	Χ

En QM las X se toman como 1, y no se incluyen en la tabla de implicación.

$$W = \Sigma m(1,2,4,7,8) + d(10 - 15)$$

1	*	(2,10) (-8)	*	(8,10,12,14) (-2, -4) *
2	٧	(4,12) (-8)	*	(10,11,14,15) (-1,-4)*
4	٧	(8,10) (-2)	٧	
8	٧	(8,12) (-4)	٧	
		(10,11) (-1)	٧	
10	٧	(10,14) (-4)	٧	
12	٧	(12,13) (-1)	٧	
7	٧	(12,14) (-2)	٧	
11	٧	(7,15) (-8)	*	
13	٧	(11,15) (-4)	٧	
14	٧	(13,15) (-2)	٧	
15	٧	(14,15) (-1)	٧	

Tabla de implicación

	1	2	4	7	8
(8,10,12,14) (-2, -4) *					٧
(10,11,14,15) (-1,-4)*					
(7,15) (-8)				٧	
(2,10) (-8)		٧			
(4,12) (-8)			٧		
(1)	٧				

$$X = (8,10,12,14) + (7,15) + (2,10) + (4,12) + (1)$$

$$X = A\overline{D} + BCD + \overline{B}C\overline{D} + B\overline{C}\overline{D} + ABC\overline{D}$$

QM Multivariable

Se tiene las siguientes Ecuaciones:

$$X = \sum (4, 5, 6, 15) + d(8, 11), Y = \sum (0, 2, 3, 4, 5) + d(8, 11)$$

	Α	В	С	D	Х	Υ
0)	0	0	0	0	0	1
1)	0	0	0	1	0	0
2)	0	0	1	0	0	1
3)	0	0	1	1	0	1
4)	0	1	0	0	1	1
5)	0	1	0	1	1	1
6)	0	1	1	0	1	0
7)	0	1	1	1	0	0
8)	1	0	0	0	Х	Х
9)	1	0	0	1	0	0
10)	1	0	1	0	0	0
11)	1	0	1	1	Х	Х
12)	1	1	0	0	0	0
13)	1	1	0	1	0	0
14)	1	1	1	0	0	0
15)	1	1	1	1	1	0

0	У	0	ΥV	(0,2) Y (-2) *
2	У	2	ΥV	(0,4) Y (-4) *
3	У	4	XY V	(0,8) Y (-8) *
4	ху	8	XY *	(2,3) Y (-1) *
5	ху	3	Y √	(4,5) XY (-1) *
6	Х	5	XY √	(4,6) X (-2) *
8	ху	6	Х √	(3,11) Y (-8) *
11	ху	11	XY *	(11,15) X (-4) *
15	Х	15	Х √	

Tabla de implicación

			X				Υ			
	4	5	6	15	0	2	3	4	5	
(0,2) Y (-2) *					V	V				
(0,4) Y (-4) *					٧			٧		
(0,8) Y (-8) *					٧					
(2,3) Y (-1) *					(V	V			
(4,5) XY (-1) *	٧	٧						٧	٧	
(4,6) X (-2) *	V		V							
(3,11) Y (-8) *							٧			
(11,15) X (-4) *				٧						
(8) XY *										
(11) XY *										
		٧	٧	٧					٧	

$$X=(4,5)+(4,6)+(11,15) = \bar{A}B\bar{C} + \bar{A}BD + ACD$$

$$Y=(0,2)+(2,3)+(4,5) = \bar{A}\bar{B}\bar{D} + \bar{A}\bar{B}C + \bar{A}B\bar{C}$$

HASTA LA PROXIMA