Introductory Econometrics Ch1 An Introduction

LIU Chenyuan

Spring 2024

Outline

Course Information

What is Econometrics?

The Structure of Economic Data

Instructors

► LIU Chenyuan (before the Midterm) Office: Lihua B629 Email:liuchy3@sem.tsinghua.edu.cn Office hours: Thursday 4 - 5 pm

► FENG Yingjie (after the Midterm) Office: Lihua B628 Email:fengyj@sem.tsinghua.edu.cn Office hours: Thursday 4 - 5 pm

Course Information

- ► Two parallel sessions:
 - 1. Monday morning at 9:50 12:15
 - 2. Monday evening at 19:20 21:45
- ► Feel free to go to any session.
- ▶ Prerequisite: undergraduate-level probability theory and mathematical statistics.
- ► Course Website: Web-Learning System on Info

Grading Policy

- 1. Lecture
- 2. Homework
 - ► Four assignments, 20%
 - ▶ Please contact TAs with any questions about the HW.
 - Office hours: Thursday before HW due date at 2 3 pm
 - Late submissions get partial scores (see syllabus)
- 3. Exam
 - ▶ Midterm exam: April 14, Sunday evening, 40%
 - ► Final exam: TBD, 40%

Teaching Assistants

In the order of HW grading:

- ► LIN Pengsheng, lps22@mails.tsinghua.edu.cn
- ► LIU Jiayue, jy-liu21@mails.tsinghua.edu.cn
- ► LOU Jing, louj21@mails.tsinghua.edu.cn
- ▶ PENG Lu, pengl.18@sem.tsinghua.edu.cn

Programming Exercises: Stata

We will have Stata sessions in the lecture.

Textbooks

Course Outline

- ► All you need to follow is the lecture notes.
- ► The textbook and references are recommended but not required.
- ▶ We will adjust the pace as the class goes on and will try to cover all topics listed.
- Once you finish this course, Introductory Econometrics II is highly recommended!

Outline

Course Information

What is Econometrics?

The Structure of Economic Data

What is Econometrics?

- ▶ Econometrics is an application of statistical methods to economic data in order to give empirical content to economic relationships.
- ▶ What do econometrics do?
 - ▶ Combine statistical techniques with economic theory
 - ▶ Estimating economic relationships
 - ► Testing economic theories
 - Evaluating and implementing government and business policy

Three Types of Econometrics Questions

There are three basic types of questions that economists are interested in:

- **▶** Descriptive
- Forecasting
- ► Causal (or structural)

Descriptive Questions

We are interested in describing the pattern in the economic data. Examples:

- ▶ How much do men and women earn in 2023 on average in China?
- ▶ Do interest rates and the stock market move together?
- ▶ Do institutional investors earn more than individual investors?
- ▶ What was the price level of consumer goods last quarter?

Descriptive Questions

Typically, if we have data, we would know the answers to these questions. There are two challenges:

1. Sampling

We typically do not observe the full population but rather a sample. We need to draw conclusions about the population based on the sample.

2. Summary statistics Some data are complicated, so we need to come up with a nice way to summarize them.

Example: iCPI

Internet-based consumer price index:

http://www.bdecon.com/

Forecasting Questions

We want to forecast something that has not yet happened.

- ▶ What will the GDP growth rate be next year?
- ► What will the Shanghai Stock Exchange Composite Index be tomorrow?
- ▶ How much revenue will my firm earn next month?
- ▶ What is the likelihood of another pandemic around the world in the next three years?
- ▶ What will my salary be when I graduate?

Forecasting Questions

- ▶ We never know the answers exactly until they happen.
- ➤ Sometimes, knowing what is likely to happen can be important.

There are two challenges:

- 1. Under-fitting: model does not explain the current data well
- 2. Over-fitting: model explains the current data too well

Under-fitting vs Over-fitting

Causal Questions (Structural Questions)

We are interested in understanding causal relations to guide our decisions: "What will happen if something else happens?"

Examples:

- ▶ If the central bank lowers interest rates today, what will happen to inflation tomorrow?
- ► If the government raises the cigarette tax by 1 pp, how many people will quit smoking?
- ► If I exercise one hour every day from now on, how many more years will I live?
- ► How much more money will you earn as a result of taking this course?

Correlation vs Causation

- ▶ Correlation: how two random variables move together
- ➤ The difference between causation and correlation is a key concept in econometrics.
- ► Suppose we observe that two variables, X and Y are correlated.
- ▶ What does this suggest?

Case 1: $X \to Y$ or $Y \to X$

- ightharpoonup Money supply \rightarrow inflation
- ightharpoonup Increase in minimum wage \rightarrow increase in wages
- ightharpoonup Retirement \rightarrow decline in income

Case 2: $X \to Y$ and $Y \to X$

Does police reduce crime?¹

¹S.D. Levitt, "Using Electoral Cycles in Police Hiring to Estimate the Effect of Police on Crime," *American Economic Review*, 87(3), (June 1997), pp. 270-90.

Case 3: $Z \to X$ and $Z \to Y$

Drowning Deaths and Ice Cream Consumption by Month in Spain (2018)

Statista (2020) 23

Correlation vs Causation

- ▶ The difference between causation and correlation is a key concept in econometrics.
- ► We would like to
 - ▶ identify causal effects
 - **estimate** their magnitude.
- ▶ It is generally agreed that this is very difficult to do; having an economic model is often essential in establishing the causal interpretation.

Causal Questions

- In natural sciences, we can answer them by running experiments.
- ► Economists sometimes do experiments.

Figure: 2019 Nobel Prize: "experimental approach to alleviating global poverty"

Challenges of Running Experiments

Challenges of Running Experiments

Sometimes...

- ► Experiments are impossible
- ► Experiments are expensive
- Experiments are morally repugnant

Experimental vs Observational Data

- Experimental data: collected in controlled experiments
- ▶ Observational data: researcher is a passive collector of the data
 - ► Also called nonexperimental data or retrospective data
- ► Econometrics focuses on causal problems inherent in collecting and analyzing observational economic data.

Econometrics and Observational Data

- ▶ In this course, we mainly focus on causal problems.
- ▶ We generally will never know the answer to these questions without running an experiment.
- ► Econometrics rarely "solves" causal problems. However, it is very useful for helping us understand them.

Summary of Three Types of Analysis

- ► Descriptive: if we had data, we would know the answer.
- ► Forecasting: if we wait long enough and have data, we will know the answer.
- ► Causal: unless we can run the perfect experiment, we will never know the answer for sure.

Outline

Course Information

What is Econometrics?

The Structure of Economic Data

The Structure of A Dataset²

Imagine a two-dimensional table

- Each column represents a variable
- ► Each row represents an **observation**
- ► Each cell represents a value

 $^{^2{\}rm Grolemund}$ Garrett and Wickham Hadley. Ch
12 Tidy data, R for Data Science

Cross-Sectional Data

- ► Each observation is uniquely determined by an **unit**
- ▶ A cross-sectional data set consists of a sample of units taken at a given point in time.
- ▶ A unit could be an individual, a household, a firm, a city, a province, a country, etc.

ID	Province	GDP
1	Jiangxi	\overline{x}
2	Hebei	y
3	Shandong	z

▶ We typically assume the sample is drawn from the underlying population randomly.

Time Series Data

- ► Each observation is uniquely determined by **time**
- ▶ A time series data set consists of observations on a variable or several variables over time.

ID	Year	GDP	avg income
1	2015	x	a
2	2016	y	b
3	2017	z	x

- ➤ Time is an important dimension in a time series data set.
- ▶ Typically, observations across time are correlated.

Pooled Cross Sections and Panel Data

- Pooled cross-sections include cross-sectional data in multiple years.
- ► A panel (longitudinal) data set consists of a time series for each cross-sectional member in the data set.
- ▶ Panel data: the same units over time; pooled cross sections: different units, different times.
- ► Each observation is uniquely determined by the unit and the time.

ID	Year	Province	GDP
1	2015	Jiangxi	\overline{x}
2	2016	Jiangxi	y
3	2017	Jiangxi	z
4	2015	Hebei	s
5	2016	Hebei	t
6	2017	Hebei	u

Recap

- ► Three types of analyses
 - Descriptive
 - ► Forecasting
 - Causal
- ► Three types of data structure
 - ► Cross-sectional
 - ► Time series
 - ▶ Pooled cross section and panel

(DEEK)