

Contents

1	Hints	
5	Wall-o-buttons	4
5.1	Hint 1	4
5.2	Hint 2	5
5.3	Solution	6

Hints

5	Wall-o-buttons	4
5.1	Hint 1	7
5.2	Hint 2	Ę
5.3	Solution	6

5. Wall-o-buttons

5.1 Hint 1

Think recursively. Say we order the buttons as follows:

1 2 3 ... n

Say that we press button 1.

1 2 3 ... n

Now, we can't press button 2, but we do have a choice when it comes to button 3. In fact, since buttons 1 and 2 are out of commission, it's as if we just have

3 4 5 ··· **n**

Reindexing... we have

What happens if we don't press button 1?

5.2 Hint 2 5

5.2 Hint 2

Is there a quick way to compute $a^b \pmod{M}$ in $\log(b)$ time?

Say I wanted to evaluate 3^{21} , and I don't want to just do $\underbrace{3 \cdot 3 \cdot 3 \cdot \ldots \cdot 3}_{21}$ (21 multiplications).

What if we tried first evaluating $\{3,3^2\}$ and using these numbers? We can then evaluate $3^{21} = \underbrace{3^2 \cdot 3^2 \cdot 3^2 \cdot \dots \cdot 3^2}_{10} \cdot 3$ for a total of **1+11** multiplications, 1 to get 3^2 and 11 to find 3^{21} .

This seems promising, let's go one step further.

```
\{3,3^2,3^4\} and we have 3^{21} = \left(3^4\right)^5 \ 3 \ (\mathbf{2} + \mathbf{6} \text{ multiplications}). \{3,3^2,3^4,3^8\} and we have 3^{21} = \left(3^8\right)^2 \cdot 3^4 \cdot 3 \ (\mathbf{3} + \mathbf{4} \text{ multiplications}).
```

This motivates a fast binary exponentiation algorithm. Perform $\log_2(b)$ multiplications to create the "basis" $\{a, a^2, \dots, a^{2^k}\}$, then we can evaluate $a^b = a^{2^b_1} \cdot a^{2^b_2} \dots a^{2^b_k}$. The most multiplications we'd ever have in this stage is if b is one less than a power of 2, and in that case we'd have the number of binary digits of b as the number of multiplications, which is $\sim O(\log_2(b))$.

So the entire thing runs in logarithmic time. This is relevant to the original problem at hand.

5.3 Solution

Look at Hint 1 and Hint 2 before proceeding.

So, in Hint 1, we saw that if we hit Button 1, it's equivalent to counting the number of ways of pressing n-2 buttons.

If we don't hit Button 1, then we have the freedom to hit Button 2 (or not). It's equivalent to counting the number of ways to press n-1 buttons.

If we define f(i) to be the number of ways to hit i buttons, then we have

$$f(i) = \underbrace{f(i-1)}_{\text{No hitting 1}} + \underbrace{f(i-2)}_{\text{Hitting 1}}$$

This is the recurrence! But what are our base cases? f(1) = 2 and f(2) = 3.

It turns out that $f(n) = F_{n+2}$, where F_n is the **Fibonacci** sequence. So it's just shifted over by 2.

So how can we use Hint 2 to find F_n fast, even if $n \sim 10^{18}$?

$$F_n = F_{n-1} + F_{n-2}$$
$$F_{n-1} = F_{n-1}$$

Turns out, we can express this as a matrix.

$$\underbrace{\begin{bmatrix} F_n \\ F_{n-1} \end{bmatrix}}_{\mathbf{F_n}} = \underbrace{\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} F_{n-1} \\ F_{n-2} \end{bmatrix}}_{\mathbf{F_{n-1}}}$$

$$\mathbf{F_n} = A\mathbf{F_{n-1}}$$

Let's repeat this.

$$\mathbf{F_n} = A\mathbf{F_{n-1}}$$

$$\mathbf{F_n} = A^2\mathbf{F_{n-2}}$$

$$\vdots$$

$$\mathbf{F_n} = A^n\mathbf{F_0}$$

We define $F_{-1} = 0$ for convenience. Anyway, that A^n thing should look familiar. In fact, it's pretty much the exact same thing as Hint 2. Whether it be a matrix or an integer, as long as it supports associativity for \times , the presence of an identity element (1), and closure $(\forall a, b \in S, a \times b \in S)$, we can use **binary exponentiation**.

(R) Remark

More formally, the set of elements must form a monoid for binary exponentiation to hold. (There are weaker characterisations, like power-associativity and magmas, but the monoid one is the most common).