

занятие 1.4 КЛАСТЕРИЗАЦИЯ

Артур Сапрыкин

ЦЕЛИ ЗАНЯТИЯ

В КОНЦЕ ЗАНЯТИЯ ВЫ НАУЧИТЕСЬ:

- производить кластеризацию данных
- выбирать **наиболее подходящий алгоритм** для задачи

О ЧЁМ ПОГОВОРИМ И ЧТО СДЕЛАЕМ

- 1. Задача кластеризации: постановка и примеры
- 2. Основные алгоритмы
- 3. Метрики качества кластеризации

1. ЗАДАЧА КЛАСТЕРИЗАЦИИ

типы задач

- *классификация
- * ранжирование
- * регрессия
- *кластеризация

ПРИМЕРЫ ЗАДАЧ КЛАСТЕРИЗАЦИИ

Пользовательская сегментация. Как выглядят типичные пользователи? (находим сектора, работаем с ними отдельно)

Логистика. Где расположить магазины, чтобы охватить большее кол-во покупателей?

Новости. О чём сейчас пишут СМИ? (Я.Новости кластеризуют новости и выдают их отдельными темами)

EDA. Есть 100млн обращений пользователей. О чём они пишут?

ДОПОЛНИТЕЛЬНЫЕ ПРИЛОЖЕНИЯ

Создание дополнительных фич. Можно дополнить имеющиеся данные метками принадлежности к одному из классов

Разметка данных. Если нет проставленных классов, но нужно сделать классификатор, то в создании разметки для обучающей выборки сильно поможет кластеризация

Поиск структуры данных как часть эксплоративного анализа

ПОСТАНОВКА ЗАДАЧИ

$$X^{n \times k} \Rightarrow y^{n \times 1}$$

$$\rho: X \times X \to [0, \infty)$$

Каждому объекту поставить в пару метку кластера так, чтобы близкие объекты лежали в одном кластере, а далёкие - в разных Это математически некорректная задача, в ней есть неоднозначности и нет правильного ответа

2. АЛГОРИТМЫ КЛАСТЕРИЗАЦИИ

АЛГОРИТМОВ - МНОГО. ЗАЧЕМ?

АЛГОРИТМОВ - МНОГО. ЗАЧЕМ?

Как и в других задачах:

разные алгоритмы справляются лучше с разными формами зависимостей

ТИПЫ КЛАСТЕРИЗАЦИИ

Жёсткая кластеризация (1объект - 1класс)

Мягкая (fuzzy) кластеризация (1объект - несколько (или 0) классов)

Иерархическая кластеризация (объект внутри кластера 2.1-> внутри кластера 2)

PREPROCESSING

PREPROCESSING

Все методы кластеризации основываются на метриках и потому крайне чувствительны к одному масштабу данных, поэтому

StandardScaler - must have

K-MEANS

АЛГОРИТМ

Задать начальные значения центроидов кластеров

Повторять, пока центроиды смещаются:

- * присвоить наблюдениям номер кластера с **ближайшим** к ним центром
- * передвинуть центроиды кластеров к среднему значению координат членов кластера

Update Cluster Assignments

ЦЕЛЬ

Минимизировать внутриклассовые отличия от центроида:

$$\sum_{i=0}^n \min_{\mu_j} (||x_i - \mu_j||)^2$$

Связанные с этим проблемы:

- * предположение о выпуклости и однородности кластеров
- * проклятие размерности

Update Cluster Assignments

ИТОГ

K-means clustering on the digits dataset (PCA-reduced data) Centroids are marked with white cross

Пространство
нарезается на лоскуты
из прямых
гиперплоскостей

ОГРАНИЧЕНИЯ

Алгоритм может выдавать контринтуитивные результаты:

- Если указано не то число кластеров
- 2. Кластеры не выпуклые и близко расположены
- 3. Разная дисперсия близких кластеров

КОЛИЧЕСТВО КЛАСТЕРОВ

Идея: перебирать от 1до N кластеров, засечь, с какого момента *качество* перестанет быстро улучшаться

(m.e. $k^* = argmin(\Delta J(Ck+1) / \Delta J(Ck))$)

Качество - сумма квадратов расстояний от точек до центроидов кластеров

НАЧАЛЬНОЕ ПРИБЛИЖЕНИЕ

Алгоритм очень зависит от начального приближения: метод сойдётся всегда, но к разным локальным минимумам. Какие точки выбрать?

- * Мультистарт: N наборов начальных приближений, выбор лучшего
- * Наиболее удалённые друг от друга точки:
 - * удалить аномалии (посчитать среднее расстояние до q ближайших соседей, отбросить δ% самых удалённых)
 - * взять 2 самые дальние друг от друга точки, они составят множество U
 - * k-2 раз добавлять в U по 1точке, расстояние которой до ближайшей из старых точек U будет максимально большим

УСКОРЕНИЕ. MINI BATCH KMEANS

Способ: каждый шаг брать не все точки, а лишь подмножества (batch), обновляя центроиды как среднее признаков объектов кластера как текущего, так и всех предыдущих шагов

Результат: рост скорости с мизерным падением качества

РАЗВИТИЕ. МЯГКИЙ ВАРИАНТ (ЕМ)

Более мягкий вариант KMeans: каждому объекту ставить в соответствие не 1кластер, а вектор близости к каждому кластеру

Повторять, пока центроиды смещаются:

- * оценить близость каждого объекта к каждому центроиду кластеров
- * присвоить объектам номер кластера с ближайшим к ним центром
- * передвинуть центроиды кластеров к **средневзвешенному** значению координат всех объектов, взвешивая по близости объекта к текущему центроиду кластера

РЕАЛИЗАЦИЯ B SKLEARN

sklearn.cluster.KMeans

- * n_clusters=8
- * init='k-means++'
- * n_init=10
- * max_iter=300
- * tol=0.0001
- * precompute_distances='auto'
- * verbose=0
- * random_state=None
- * copy_x=True
- * n_jobs=1
- * algorithm='auto'

Основные параметры

- * n_clusters количество кластеров для разбиения
- * init: 'k-means+', 'random', ndarray- начальное приближение
- * max_iter кол-во итераций
- * n_jobs кол-во процессоров (-1 max)

Основные характеристики

- * 11параметров
- * по умолчанию: 10 начальных умных запусков на 1 процессоре, кластеризация на 8 групп

Основные методы

* fit, fit_predict, fit_transform, transform, predict

HIERARCHICAL CLUSTERING

ИДЕЯ

АЛГОРИТМ

Все объекты - отдельные кластеры Повторять, пока > 1кластера:

* соединить 2 **ближайших** кластера

АЛГОРИТМЫ КЛАСТЕРИЗАЦИИ. HIERARCHICAL CLUSTERING

ПРИМЕР

Дендрограмма кластеризации цветков ириса.

Проведена иерархическая кластеризация, визуально отображаемая в виде дендрограммы.

На картинке цветом линии отмечены 3 кластера, а цветом надписи - настоящий вид цветка

Clustered Iris data set (the labels give the true flower species)

АЛГОРИТМЫ КЛАСТЕРИЗАЦИИ. HIERARCHICAL CLUSTERING

ПРИМЕР

Дендрограмма кластеризации цветков ириса.

Проведена иерархическая кластеризация, визуально отображаемая в виде дендрограммы.

На картинке цветом линии отмечены 3 кластера, а цветом надписи - настоящий вид цветка

РАССТОЯНИЕ МЕЖДУОБЪЕКТАМИ

РАССТОЯНИЕ МЕЖДУОБЪЕКТАМИ

Межкластерное расстояние основывается на расстоянии между объектами. Если с межкластерным расстоянием есть рекомендация брать Уорда, то выбор функции расстояния между объектами более зависит от данных. Слева представлен пример оригинальных данных 3 сигналов, с которыми не справляется косинусное и евклидово расстояние, однако справляется расстояние городских кварталов (I1)

* sklearn, clustering example

РАССТОЯНИЕ МЕЖДУКЛАСТЕРАМИ

- * Ближнего соседа
- * Дальнего соседа
- * Групповое среднее
- * Расстояние между центрами
- * Расстояние Уорда

РАССТОЯНИЕ МЕЖДУКЛАСТЕРАМИ

- * Ближнего соседа
- * Дальнего соседа
- * Групповое среднее
- * Расстояние между центрами
- * Расстояние Уорда

РАССТОЯНИЕ МЕЖДУКЛАСТЕРАМИ

- * Ближнего соседа
- * Дальнего соседа
- * Групповое среднее
- * Расстояние между центрами
- * Расстояние Уорда

$$R^{\mu}(W,S) = \max_{w,s} \rho(w,s)$$

РАССТОЯНИЕ МЕЖДУ КЛАСТЕРАМИ

- * Ближнего соседа
- * Дальнего соседа
- * Групповое среднее
- * Расстояние между центрами
- * Расстояние Уорда

$$R^{\Gamma}(W,S) = \frac{1}{|W| * |S|} \sum_{w} \sum_{s} \rho(w,s)$$

РАССТОЯНИЕ МЕЖДУ КЛАСТЕРАМИ

- * Ближнего соседа
- * Дальнего соседа
- * Групповое среднее
- * Расстояние между центрами
- * Расстояние Уорда

$$R^{II}(W,S) = \rho^2(\sum_{w} \frac{w}{|W|}, \sum_{s} \frac{s}{|S|})$$

РАССТОЯНИЕ МЕЖДУ КЛАСТЕРАМИ

- * Ближнего соседа
- * Дальнего соседа
- * Групповое среднее
- * Расстояние между центрами
- * Расстояние Уорда

$$R^{y}(W,S) = \frac{|W| * |S|}{|W| + |S|} \rho^{2} \left(\sum_{w} \frac{w}{|W|}, \sum_{s} \frac{s}{|S|}\right)$$

СВОЙСТА РАССТОЯНИЙ

Расстояние **монотонно, если** при каждом слиянии расстояние между кластерами растёт: R₂<=R₃<=R₄...

Расстояние между центрами - не монотонно. Остальные - да

Расстояние растягивающее, если при каждом слиянии увеличение расстояний между кластерами растёт:

$$R_3 - R_2 <= R_4 - R_3 <= R_5 - R_4...$$

Расстояние дальнего соседа и Уорда-растягивающие

РЕКОМЕНДУЕМОЕ РАССТОЯНИЕ

Расстояние Уорда (Ward)

Оно:

- * монотонное
- * растягивающее
- * работает с центрами кластеров

РЕАЛИЗАЦИЯ B SKLEARN

AgglomerativeClustering

- * n_clusters=2
- * affinity='euclidean'
- * memory=Memory(cachedir=None)
- * connectivity=None
- * compute_full_tree='auto'
- * linkage='ward'
- * pooling_func=<function mean>

Основные параметры

- * n_clusters количество кластеров для разбиения
- * linkage: «ward», «complete», «average»
- * connectivity априорные знания о структуре данных, подробнее на следующем слайде

Основные методы

* fit, fit_predict

РЕАЛИЗАЦИЯ В SKLEARN. CONNECTIVITY

DBSCAN

ИДЕЯ Density-Based Spatial Clustering of Applications with Noise

Рассматриваем объекты как ядра, вокруг которых собираются другие объекты

Если не собираются - это выброс

Если ядра связаны - то они и достижимые из них объекты образуют кластер

ИДЕЯ Density-Based Spatial Clustering of Applications with Noise

Все точки делятся на 3 типа:

- * ядра (в ерs-окрестности >= N точек)
- * достижимые из ядра (в ерs-окрестности < N точек, > 0 ядер)
- * выбросы (остальные)

Ядра и достижимые из них точки образуют кластеры Выбросы не принадлежат ни одному кластеру

РЕАЛИЗАЦИЯ B SKLEARN

DBSCAN

- * eps=0.5
- * min_samples=5
- * metric='euclidean'
- * algorithm='auto'
- * leaf_size=30
- * p=None
- * n_jobs=1

Основные параметры

- * eps размерокрестности
- * min_samples кол-во точек в окрестности ядра
- * n_jobs кол-во процессоров для расчёта (-1 max)

Основные методы

* fit, fit_predict

ДОСТОИНСТВА ИНЕДОСТАТКИ

Достоинства:

- * не нужно указывать кол-во кластеров
- * произвольная форма данных
- * обнаруживает выбросы

Недостатки:

- * сложность выбора комбинации eps+N
- * плохо работает с кластерами разной плотности

AFFINITY PROPAGATION

ИДЕЯ

Объекты обмениваются двумя видами сообщений:

- * насколько объект 1 готов быть экземпляром объекта 2
- * насколько объект 2 готов предоставить право быть объекту 1 своим экземпляром

Итог:

К объектов - представителей кластеров

АЛГОРИТМ

Установить:

$$r(i,i) = 0, a(i,i) = 0$$

Повторять, пока экземпляры меняются:

$$egin{aligned} r(i,k) \leftarrow s(i,k) - \max_{k'
eq k} \left\{ a(i,k') + s(i,k')
ight\} \ & a(i,k) \leftarrow \min \left(0, r(k,k) + \sum_{i'
eq \{i,k\}} \max(0,r(i',k))
ight) ext{ for } i
eq k \ & a(k,k) \leftarrow \sum_{i'
eq k} \max(0,r(i',k)). \end{aligned}$$

Итог:

экземпляры с r(i,i)+a(i,i) > 0

РЕАЛИЗАЦИЯ B SKLEARN

Affinity Propogation

- * damping=0.5
- * max_iter=200
- * convergence_iter=15
- * copy=True
- * preference=None
- * affinity='euclidean'
- * verbose=False

Основные параметры

- * preference априорные знания о возможности быть экземпляром
- * damping скорость затухания [0.5-1]
- * convergence_iter условие останова, сколько должно пройти итераций без изменений

Основные методы

* fit, fit_predict

QUIZ

АЛГОРИТМЫ КЛАСТЕРИЗАЦИИ. QUIZ

K-MeansAglomerativeDBSCANAffinity Propogation

КАКОЙ АЛГОРИТМ ВЫБРАТЬ?

Method name K-Means	Parameters number of clusters	Scalability Very large n_samples, medium n_clusters with MiniBatch code	Usecase General-purpose, even cluster size, flat geometry, not too many clusters	Geometry (metric used) Distances between points
Affinity propagation	damping, sample preference	Not scalable with n_samples	Many clusters, uneven cluster size, non-flat geometry	Graph distance (e.g. nearest-neighbor graph)
Agglomerative clustering	number of clusters, linkage type, distance	Large n_samples and n_clusters	Many clusters, possibly connectivity constraints, non Euclidean distances	Any pairwise distance
DBSCAN	neighborhood size	Very large n_samples, medium n_clusters	Non-flat geometry, uneven cluster sizes	Distances between nearest points

3. МЕТРИКИ КАЧЕСТВА КЛАСТЕРИЗАЦИИ

МЕТРИКИ КАЧЕСТВА

^{*} sklearn, metrics guide

^{*} sklearn, metrics descriptions

ARI: ADJUSTED RANDINDEX

Дано:

y_pred - вектор меток кластеризации y_true - реальные кластеры

[0, 0, 0, 1, 1, 1]

[2, 2, 2, 7, 7, 7]

 $ARI \in [-1, 1];$

1- точное соответствие

0 - случайное разбиение кластеров

ARI(y_pred, y_true) = 1

Метрике не важны названия кластеров

СИЛУЭТ

нет знания правильных кластеров.

Оценим, насколько сильно **один объект** сидит внутри своего кластера и далеко от ближайшего соседнего:

$$s = \frac{b - a}{max(a, b)}$$

а - среднее расстояние до объектов внутрикластера b - среднее расстояние до объектов ближайшего кластера

$$s = mean(s)$$

среднее значение по всем объектам - силуэт

СРАВНЕНИЕ МЕТРИК

ЧТО МЫ СЕГОДНЯ УЗНАЛИ

- 1. Кластеризация позволяет находить структуру в незамеченных данных, что может послужить дополнительными признаками обучения или являться самодостаточной целью
- 2. В задаче кластеризации **нет правильного решения**. Метрики качества служат лишь слабым приближением для создания новых алгоритмов или нахождениям критерия останова
- 3. Разные алгоритмы кластеризации принципиально **работают по-разному**, для конкретного набора данных необходимо выбирать наиболее подходящий

ПОЛЕЗНЫЕ МАТЕРИАЛЫ

- 1. Документация sklearn по кластеризации
- 2 <u>Метрики sklearn для задач кластеризации</u>
- 3. <u>Open Data Science, habrahabr: Обучение без</u> <u>учителя: РСА икластеризация</u>
- 4 <u>Книжка: Introduction to ML with Python</u>

Спасибо за внимание!

Артур Сапрыкин