Deep Learning for Natural Language Processing

Lecture 4 — Text classification 2: Deep neural networks

Dr. Ivan Habernal

May 2, 2023

Where we finished last time

Where we finished last time

Finding the best model's parameters

Log-linear multi-class classification

Representations

From multi-dimensional linear transformation to probabilities

Loss function for softmax

Stacking transformations and non-linearity

Our binary text classification function

Linear function through sigmoid — log-linear model

$$\hat{y} = \sigma(f(\boldsymbol{x})) = \frac{1}{1 + \exp(-(\boldsymbol{x} \cdot \boldsymbol{w} + b))}$$

Figure 1: Computational graph; green circles are trainable parameters, gray are inputs

Decision rule of log-linear model

Log-linear model
$$\hat{y} = \sigma(f(\boldsymbol{x})) = \frac{1}{1 + \exp(-(\boldsymbol{x} \cdot \boldsymbol{w} + b))}$$

- Prediction = 1 if $\hat{y} > 0.5$
- Prediction = 0 if $\hat{y} < 0.5$

Natural interpretation: Conditional probability of prediction = 1 given the input $oldsymbol{x}$

$$\sigma(f(\boldsymbol{x})) = \Pr(\text{prediction} = 1|\boldsymbol{x})$$

$$1 - \sigma(f(\boldsymbol{x})) = \Pr(\text{prediction} = 0|\boldsymbol{x})$$

Finding the best model's parameters

Where we finished last time

Finding the best model's parameters

Log-linear multi-class classification

Representations

From multi-dimensional linear transformation to probabilities

Loss function for softmax
Stacking transformations and non

The loss function

Loss function: Quantifies the loss suffered when predicting \hat{y} while the true label is y for a single example. In binary classification:

$$L(\hat{y}, y) : \mathbb{R}^2 \to \mathbb{R}$$

Given a labeled training set $(x_{1:n}, y_{1:n})$, a per-instance loss function L and a parameterized function $f(x; \Theta)$ we define the corpus-wide loss with respect to the parameters Θ as the average loss over all training examples

$$\mathcal{L}(\Theta) = \frac{1}{n} \sum_{i=1}^{n} L(f(\boldsymbol{x}_i; \Theta), y_i)$$

Training as optimization

$$\mathcal{L}(\Theta) = \frac{1}{n} \sum_{i=1}^{n} L(f(\boldsymbol{x}_i; \Theta), y_i)$$

The training examples are fixed, and the values of the parameters determine the loss

The goal of the training algorithm is to set the values of the parameters Θ , such that the value of $\mathcal L$ is minimized

$$\hat{\Theta} = \underset{\Theta}{\operatorname{argmin}} \mathcal{L}(\Theta) = \underset{\Theta}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} L(f(\boldsymbol{x}_i; \Theta), y_i)$$

Binary cross-entropy loss (logistic loss)

$$L_{\text{logistic}} = -y \log \hat{y} - (1-y) \log (1-\hat{y})$$

Partial derivative wrt. input \hat{y}

$$\frac{\mathrm{d}L_{\text{Logistic}}}{\mathrm{d}\hat{y}} = -\left(\frac{y}{\hat{y}} - \frac{1-y}{1-\hat{y}}\right) = -\frac{y-\hat{y}}{\hat{y}(1-\hat{y})}$$

Full computational graph

Figure 2: Computational graph; green circles are trainable parameters, gray are constant inputs

How can we minimize this function?

 Recall Lecture 2: (a) Gradient descent and (b) backpropagation

(Online) Stochastic Gradient Descent

- 1: function SGD($f(\boldsymbol{x};\Theta)$, $(\boldsymbol{x}_1,\ldots,\boldsymbol{x}_n)$, $(\boldsymbol{y}_1,\ldots,\boldsymbol{y}_n)$, L)
- 2: **while** stopping criteria not met **do**
- 3: Sample a training example $oldsymbol{x}_i, oldsymbol{y}_i$
- 4: Compute the loss $L(f(\boldsymbol{x}_i;\Theta),\boldsymbol{y}_i)$
- 5: $\hat{\boldsymbol{g}} \leftarrow \text{gradient of } L(f(\boldsymbol{x}_i; \Theta), \boldsymbol{y}_i) \text{ wrt. } \Theta$
- 6: $\Theta \leftarrow \Theta \eta_t \hat{\boldsymbol{g}}$
- 7: return ⊖

Loss in line 4 is based on a **single training example** \rightarrow a rough estimate of the corpus loss \mathcal{L} we aim to minimize

The noise in the loss computation may result in inaccurate gradients

Minibatch Stochastic Gradient Descent

```
1: function MBSGD(f(x; \Theta), (x_1, \dots, x_n), (y_1, \dots, y_n), L)
            while stopping criteria not met do
                   Sample m examples \{(\boldsymbol{x}_1,\boldsymbol{y}_1),\dots(\boldsymbol{x}_m,\boldsymbol{y}_m)\}
3:
                   \hat{\boldsymbol{a}} \leftarrow 0
4:
                  for i = 1 to m do
5:
                          Compute the loss L(f(\mathbf{x}_i; \Theta), \mathbf{y}_i)
6:
                          \hat{\boldsymbol{g}} \leftarrow \hat{\boldsymbol{g}} + \text{gradient of } \frac{1}{m}L(f(\boldsymbol{x}_i;\Theta),\boldsymbol{y}_i) \text{ wrt. } \Theta
                  \Theta \leftarrow \Theta - \eta_t \hat{\boldsymbol{q}}
8:
            return ⊖
9.
```

Properties of Minibatch Stochastic Gradient Descent

The minibatch size can vary in size from m=1 to m=n Higher values provide better estimates of the corpus-wide gradients, while smaller values allow more updates and in turn faster convergence

Lines 6+7: May be easily parallelized

Log-linear multi-class classification

Where we finished last time Finding the best model's parameters

Log-linear multi-class classification

Representations

From multi-dimensional linear transformation to probabilities

Loss function for softmax
Stacking transformations and non-linearity

From binary to multi-class labels

So far we mapped our gold label $y \in \{0, 1\}$

What if we classify into distinct categorical classes?

- · Categorical: There is no 'ordering'
- Example: Classify the language of a document into 6 languages (En, Fr, De, It, Es, Other)

One-hot encoding of labels

$$En = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} \qquad Fr = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$De = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 & 0 \end{pmatrix} \qquad \dots$$

 $oldsymbol{y} \in \mathbb{R}^{d_{out}}$ where d_{out} is the number of classes

Possible solution: Six weight vectors and biases

Consider for each language $\ell \in \{En, Fr, De, It, Es, Other\}$

- Weight vector w^{ℓ} (e.g., w^{Fr})
- Bias b^{ℓ} (e.g., b^{Fr})

We can predict the language resulting in the highest score

$$\hat{y} = f(\boldsymbol{x}) = \operatorname*{argmax}_{\ell \in \{\mathsf{En},\mathsf{Fr},\mathsf{De},\mathsf{lt},\mathsf{Es},\mathsf{Other}\}} \boldsymbol{x} \cdot \boldsymbol{w}^\ell + b^\ell$$

But we can re-arrange the $w \in \mathbb{R}^{d_{in}}$ vectors into columns of a matrix $W \in \mathbb{R}^{d_{in} \times 6}$ and $b \in \mathbb{R}^{6}$, to get

$$f(\boldsymbol{x}) = \boldsymbol{x}\boldsymbol{W} + \boldsymbol{b}$$

Projecting input vector to output vector $f(x): \mathbb{R}^{d_{in}} \to \mathbb{R}^{d_{out}}$

Recall from lecture 3: High-dimensional linear functions

Function $f(\boldsymbol{x}): \mathbb{R}^{d_{in}} \to \mathbb{R}^{d_{out}}$

$$f(\boldsymbol{x}) = \boldsymbol{x}\boldsymbol{W} + \boldsymbol{b}$$

where $\boldsymbol{x} \in \mathbb{R}^{d_{in}}$ $\boldsymbol{W} \in \mathbb{R}^{d_{in} \times d_{out}}$ $\boldsymbol{b} \in \mathbb{R}^{d_{out}}$

The simplest neural network — a perceptron (simply a linear model)

• How to find the prediction \hat{y} ?

Prediction of multi-class classifier

Project the input $oldsymbol{x}$ to an output $oldsymbol{y}$

$$\hat{\boldsymbol{y}} = f(\boldsymbol{x}) = \boldsymbol{x}\boldsymbol{W} + \boldsymbol{b}$$

and pick the element of $\hat{\pmb{y}}$ with the highest value

$$\mathsf{prediction} = \hat{y} = \argmax_{i} \boldsymbol{\hat{y}}_{[i]}$$

Sanity check

What is \hat{y} ?

Index of 1 in the one-hot

For example, if $\hat{y}=3$, then the document is in German $\mathrm{De}=\begin{pmatrix}0&0&1&0&0\end{pmatrix}$

Log-linear multi-class

classification

Representations

Two representations of the input document

$$\hat{y} = xW + b$$

Vector x is a document representation

• Bag of words, for example ($d_{in} = |V|$ dimensions, sparse)

Vector $\hat{m{y}}$ is also a document representation

- More compact (only 6 dimensions)
- More specialized for the language prediction task

Matrix W as learned representation — columns

$$\hat{m{y}} = m{x}m{W} + m{b}$$
 $ightarrow$ two views of $m{W}$, as rows or as columns $oxed{f Bn}$ Fr De It Es Ot $oxed{f a}$ at $oldsymbol{f a}$ $oldsymbol{f e}$ $oldsymbol{f e}$

Each of the 6 columns (corresponding to a language) is a d_{in} -dimensional vector representation of this language in terms of its characteristic word unigram patterns (e.g., we can then cluster the 6 language vectors according to their similarity)

ZOO

Matrix W as learned representation — rows

Each of the d_{in} rows corresponds to a particular unigram, and provides a 6-dimensional vector representation of that unigram in terms of the languages it prompts

From bag-of-words to continuous bag-of-words

Recall from lecture 3 — Averaged bag of words

$$oldsymbol{x} = rac{1}{|D|} \sum_{i=1}^{|D|} oldsymbol{x}^{D_{[i]}}$$

 $D_{[i]}$ — word in doc D at position i, $oldsymbol{x}^{D_{[i]}}$ — one-hot vector

$$egin{aligned} \hat{m{y}} &= m{x}m{W} = \left(rac{1}{|D|}\sum_{i=1}^{|D|}m{x}^{D_{[i]}}
ight)m{W} = rac{1}{|D|}\sum_{i=1}^{|D|}\left(m{x}^{D_{[i]}}m{W}
ight) \ &= rac{1}{|D|}\sum_{i=1}^{|D|}m{W}^{D_{[i]}} \end{aligned}$$

(we ignore the bias b here)

From bag-of-words to continuous bag-of-words (CBOW)

Two equivalent views; ${m W}^{D_{[i]}}$ is the $D_{[i]}$ -th row of matrix ${m W}$

$$\hat{oldsymbol{y}} = rac{1}{|D|} \sum_{i=1}^{|D|} oldsymbol{W}^{D_{[i]}} \qquad \hat{oldsymbol{y}} = \left(rac{1}{|D|} \sum_{i=1}^{|D|} oldsymbol{x}^{D_{[i]}}
ight) oldsymbol{W}$$

The continuous-bag-of-words (CBOW) representation

- Either by summing word-representation vectors
- Or by multiplying a bag-of-words vector by a matrix in which each row corresponds to a dense word representation (also called embedding matrix)

Learned representations — central to deep learning

Representations are central to deep learning

One could argue that the main power of deep-learning is the ability to learn good representations

Log-linear multi-class classification

From multi-dimensional linear transformation to probabilities

Turning output vector into probabilities of classes

Recap: Categorical probability distribution

Categorical random variable X is defined over K categories, typically mapped to natural numbers $1, 2, \ldots, K$, for example En = 1, De = 2, ...

Each category parametrized with probability $\mathbf{p}_{\mathbf{r}}(\mathbf{r}, \mathbf{r})$

$$\Pr(X=k)=p_k$$

Must be valid probability distribution: $\sum_{i=1}^{K} \Pr(X=i) = 1$

How to turn an **unbounded** vector in \mathbb{R}^K into a categorical probability distribution?

The softmax function $\operatorname{softmax}(\boldsymbol{x}): \mathbb{R}^K \to \mathbb{R}^K$

Softmax

Applied element-wise, for each element $oldsymbol{x}_{[i]}$ we have

$$\operatorname{softmax}(oldsymbol{x}_{[i]}) = rac{\expig(oldsymbol{x}_{[i]}ig)}{\sum_{k=1}^K \expig(oldsymbol{x}_{[k]}ig)}$$

- Nominator: Non-linear bijection from $\mathbb R$ to $(0;\infty)$
- Denominator: Normalizing constant to ensure $\sum_{j=1}^K \operatorname{softmax}(\boldsymbol{x}_{[j]}) = 1$

We also need to know how to compute the partial derivative of $\operatorname{softmax}(\boldsymbol{x}_{[i]})$ wrt. each argument $\boldsymbol{x}_{[k]}$: $\frac{\partial \operatorname{softmax}(\boldsymbol{x}_{[i]})}{\partial \boldsymbol{x}_{[k]}}$

Softmax can be smoothed with a 'temperature' T

softmax(
$$\mathbf{x}_{[i]}; T$$
) = $\frac{\exp\left(\frac{\mathbf{x}_{[i]}}{T}\right)}{\sum_{k=1}^{K} \exp\left(\frac{\mathbf{x}_{[k]}}{T}\right)}$

Example: Softmax of x = (3, 0, 1) at different T

 $\textbf{High temperature} \rightarrow \textbf{uniform distribution}$

Low temperature \rightarrow 'spiky' distribution, all mass on the largest element

Figure: K. P. Murphy (2012). Machine Learning: A Probabilistic Perspective. Cambridge, Massachusetts: The MIT Press, p. 103

Loss function for softmax

Loss function for softmax

Where we finished last time
Finding the best model's parameters
Log-linear multi-class classification
Representations
From multi-dimensional linear transformation to probabilities

26 | Dr. Ivan Habernal

Categorical cross-entropy loss (aka. negative log likelihood)

Vector representing the gold-standard categorical distribution over the classes/labels $1, \ldots, K$:

$$oldsymbol{y} = (oldsymbol{y}_{[1]}, oldsymbol{y}_{[2]}, \ldots, oldsymbol{y}_{[K]})$$

Output from softmax:

$$\hat{oldsymbol{y}} = (\hat{oldsymbol{y}}_{[1]}, \hat{oldsymbol{y}}_{[2]}, \dots, \hat{oldsymbol{y}}_{[K]})$$

which is in fact $\hat{\pmb{y}}_{[i]} = \Pr(y = i | \pmb{x})$

Cross entropy loss

$$L_{ ext{cross-entropy}}(oldsymbol{\hat{y}},oldsymbol{y}) = -\sum_{k=1}^K oldsymbol{y}_{[k]} \log ig(oldsymbol{\hat{y}}_{[k]} ig)$$

Background: K-L divergence (lso known as *relative entropy*)

Let Y and \hat{Y} be categorical random variables over same categories, with probability distributions P(Y) and $Q(\hat{Y})$

$$\mathbb{D}(P(Y)||Q(\hat{Y})) = \mathbb{E}_{P(Y)} \left[\log \frac{P(Y)}{Q(\hat{Y})} \right]$$

$$= \mathbb{E}_{P(Y)} \left[\log P(Y) - \log Q(\hat{Y}) \right]$$

$$= \mathbb{E}_{P(Y)} \left[\log P(Y) \right] - \mathbb{E}_{P(Y)} \left[\log Q(\hat{Y}) \right]$$

$$= -\mathbb{E}_{P(Y)} \left[\log \frac{1}{P(Y)} \right] - \mathbb{E}_{P(Y)} \left[\log Q(\hat{Y}) \right]$$

$$= -\mathbb{H}_{P}(Y) - \mathbb{E}_{P(Y)} \left[\log Q(\hat{Y}) \right]$$

Stacking transformations and non-linearity

Where we finished last time Finding the best model's parameters Log-linear multi-class classification

Representations

From multi-dimensional linear transformation to probabilities

Loss function for softmax

Stacking transformations and non-linearity

Stacking linear layers on top of each other — still linear!

Figure 3: Computational graph; green circles are trainable parameters, gray are constant inputs

Adding non-linear function $g: \mathbb{R}^{d_1} \to \mathbb{R}^{d_1}$

$$f(x) = g\left(xW^1 + b^1\right)W^2 + b^2$$

Figure 4: Computational graph; green circles are trainable parameters, gray are constant inputs

Non-linear function g: Rectified linear unit (ReLU) activation

$$ReLU(z) = \begin{cases} 0 & \text{if } z < 0 \\ z & \text{if } z \ge 0 \end{cases}$$
or
$$ReLU(z) = \max(0, x)$$

Figure 5: ReLU function

Recap

Take aways

- Binary classification as a linear function of words and a sigmoid
- Binary cross-entropy (logistic) loss
- Training as minimizing the loss using minibatch SGD and backpropagation
- · Stacking layers and non-linear functions: MLP
- ReLU as a go-to activation function in NLP

License and credits

Licensed under Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

Credits

Ivan Habernal

Content from ACL Anthology papers licensed under CC-BY https://www.aclweb.org/anthology