#### I. Définition

La récursivité est un outil très puissant en programmation. Lorsqu'elle est bien utilisée, elle rend la programmation plus facile. C'est avant tout une méthode de résolution de problème.

- On distingue plusieurs types de récursivité :
- ▶récursivité directe : lorsqu'un module fait appel à lui-même.
- ▶récursivité indirecte ou croisée : lorsqu'un module A fait appel à un module B qui appelle A.
- ➤récursivité circulaire : lorsqu'un module A fait appel à un module B, B fait appel à un module C qui appelle A.



# I. Définition

#### Illustration

| Cas 1 : récursivité directe | Cas 2 : récursivité indirecte                         |
|-----------------------------|-------------------------------------------------------|
| Procédure ProcRecursive     | Procédure A (paramètres)                              |
| (paramètres)                | Début                                                 |
| Début                       | •••                                                   |
|                             | B (valeurs)                                           |
| ProcRecursive (valeurs)     | {appel de la procédure B dans A}                      |
| <b></b>                     | •••                                                   |
| Fin proc                    | Fin proc                                              |
|                             | Procédure B (paramètres)<br>Début                     |
|                             | A (valeurs) {appel de la procédure A dans B} Fin proc |

#### I. Définition et Classifications

Concernant les méthodes, on peut trouver d'autres classifications de récursivité :

récursivité non terminale : Une méthode récursive est dite non terminale si le résultat de l'appel récursif est utilisé pour réaliser un traitement (en plus du retour du module).

récursivité terminale : Une méthode récursive est dite terminale si aucun traitement n'est effectué à la remontée d'un appel récursif (sauf le retour du module).

#### I. Définition et Classifications

**NB.** Un algorithme est dit récursif terminal s'il ne contient aucun traitement après un appel récursif.

Dénotée par n ! (se lit factorielle n), c'est le produit de nombres entiers positifs de 1 à n inclus.

# **Exemples:**

```
4! = 1*2*3*4,

5! = 1*2*3*4*5,

Noter que 4! peut s'écrire 4*3*2*1 = 4 * 3! et que 5! peut

s'écrire 5*4*3*2*1 = 5 * 4!
```

→ On peut conclure que : n! = 1 si ( n=1 ou n=0) n! = n\* (n-1)! si non

# A. Solution non terminale

```
int facto(int n)
{
    if (n == 1 || n == 0)
        return 1;
    else
        return n * facto(n-1);
}
```

# **Illustration**

Chaque cas est réduit à un cas plus simple. Le calcul de 4! se ramène à celui de 3!, le calcul de 3! se ramène au calcul de 2! ... jusqu'à arriver à 1! qui donne directement 1.

Après on fait un retour arrière. Le résultat d'une ligne i sert au calcul de la ligne i-1

# A. Solution non terminale

→ Illustration du mécanisme de fonctionnement:

Considérons le calcul de 4! par la fonction récursive définie ci-dessus :

```
facto(4) renvoie 4 * facto(3)
facto(3) renvoie 3 * facto(2)
facto(2) renvoie 2 * facto(1)
facto(1) renvoie 1 (arrêt de la récursivité)
facto(2) renvoie 2 * 1 = 2
facto(3) renvoie 3 * 2 = 6
facto(4) renvoie 4 * 6 = 24
```

### **B.** Solution terminale

```
int facto(int n, int resultat) {
       if (n == 1 | | n == 0)
              return resultat:
       else
              return facto(n-1, n*resultat);
Exemple: 4!:
      facto(4, 1) renvoie facto(3, 4)
      facto(3, 4) renvoie facto(2, 12)
      facto(2, 12) renvoie facto(1, 24)
      facto(1, 24) renvoie 24
```

#### III. Conseils d'écriture d'une fonction récursive

Ces conseils sont illustrés par l'exemple suivant :

Écrire une fonction récursive permettant de calculer la somme des chiffres d'un entier n positif

**Exemple**: n = 528, donc la somme des chiffres de n est 15

# 1. Observer le problème afin de :

- a) Paramétrer le problème : on détermine les éléments dont dépend la solution et qui caractérisent la taille du problème.
- b) Décrire la condition d'arrêt : quand peut-on trouver "facilement" la solution ? (une solution triviale) : Si on a le choix entre n = 528 et n = 8, il est certain qu'on choisit n = 8. La somme des chiffres de 8 est 8.
- → Conclusion: Si n a un seul chiffre, on arrête. La somme des chiffres est n lui-même.



#### III. Conseils d'écriture d'une fonction récursive

c) réduire le problème à un problème d'ordre inférieur pour que la condition d'arrêt soit atteinte un moment donné : somChif (528) =8+somChif(52)= 8 + (2 + somChif(5)) = 8 + (2 + 5)2. Écriture de la fonction : Fonction somChif(n: entier): entier Début Si(n < 10) alors {condition d'arrêt} somChif  $\leftarrow$  n; {réduction du problème } Sinon somChif  $\leftarrow$  n mod 10 + somChif (n div 10); FinSi Fin Fn

### III. Conseils d'écriture d'une fonction récursive

# 3. Traduction en C:



#### III. Conseils d'écriture d'une fonction récursive

# **Exercice:**

Illustrer les conseils précédents pour écrire une fonction récursive qui permet de calculer le produit de deux entiers positifs a et b sans utiliser l'opérateur de multiplication (\*).

### **Solution:**

- a) la solution de ce problème dépond des deux opérandes n1 et n2
- b) Si vous avez le choix entre :12 x 456, 12 x 0 , 12 x 1 Lesquels des trois calculs sont le plus simple ?

c) 
$$12 \times 9 = 12 + 12 + 12 + ... + 12$$
 (9 fois)  
=  $12 + (12 + 12 + ... + 12)$  (8 fois)  
=  $12 + 12 \times 8$   
etc...



# **Exercice 1: Récursivité simple**

Soit la suite numérique  $U_n$  suivante: Si n = 0 alors  $U_0$  = 4 sinon si n > 0 alors  $U_n$  =  $2*U_{n-1}$  + 9 Écrire une fonction C qui calcul le terme  $U_n$  pour tout n passé en argument.

#### Exercice 2: Récursivité croisée

Écrire deux fonctions C qui permettent de calculer les nèmes (n passé en argument) termes des suites entières U<sub>n</sub> et V<sub>n</sub> définies ci-dessous.

$$\left\{ \begin{array}{l} U_0 = 1 \\ U_n = V_{n-1} + 1 \end{array} \right. \qquad \left\{ \begin{array}{l} V_0 = 0 \\ V_n = 2^* U_{n-1} \end{array} \right.$$



# **Exercice 3: Récursivité simple**

Ecrire une méthode récursive qui retourne la somme des carrés des  $\boldsymbol{x}$  premiers entiers si  $\boldsymbol{x} >= 0$ ; -1 sinon.

$$sommeCarre(x) = \begin{cases} \sum_{i=1}^{x} i^2 & \text{si } x \ge 0 \\ -1 & \text{si } x < 0 \end{cases}$$

**Exemple**: on prend x = 4, le résultat retournera la valeur 30.





#### **Exercice 4: Récursivité terminale**

Ecrire une fonction récursive (basée sur l'algorithme d'Euclide) permettant de vérifier si a est un diviseur de b.



#### **Exercice 5:**

On désire implementer une fonction permettant de calculer le PGCD de deux nombres naturels non nul (a et b) en utilisant l'algorithme d'Euclide.

- 1) Proposer une version itérative
- 2) Proposer une version récursive non terminale
- 3) Proposer une version récursive terminale

$$PGCD (a,b) = \begin{cases} a & si a=b \\ PGCD (a-b,b) & si a>b \\ PGCD (a,b-a) & si b>a \end{cases}$$

#### **Exercice 6: Tours de Hanoi**

Le problème des tours de Hanoi est un grand classique de la récursivité car la solution itérative est relativement complexe. On dispose de 3 tours appelées A, B et C. La tour A contient n disques empilés par ordre de taille décroissante qu'on veut déplacer sur la tour B dans le même ordre en respectant les contraintes suivantes :

- On ne peut déplacer qu'un disque à la fois
- On ne peut empiler un disque que sur un disque plus grand ou sur une tour vide.

#### Illustration





# IV. Exercices d'application

#### 1) Observation

a) Ainsi, le paramétrage de la procédure déplacer sera le suivant :

**Procédure** déplacer(n : Entier ; A, B, C : Caractère)

b) Lorsque la tour A ne contient qu'un seul disque (n=1), la solution est évidente :

il s'agit de réaliser un transfert de la tour A vers B. Ce cas constitue donc la condition de sortie

- c) Ainsi, pour déplacer n (n>1) disques de A vers B en utilisant éventuellement C, il faut :
  - 1- déplacer (n-1) disques de A vers C en utilisant éventuellement B.
  - 2- réaliser un transfert du disque de A sur B
  - 3- déplacer (n-1) disques de C vers B en utilisant éventuellement A.