MANIPAL UNIVERSITY JAIPUR

School of Computing and Communication Engineering

DEPARTMENT OF COMPUTER AND COMMUNICATION ENGG.

Course Hand-out

Data Structures and Algorithms | CC2103 | 4 Credits | 3 | 0 4 Session: Aug 22 – Dec 22 | Faculty: Prashant Hemrajani | Class: III CCE

- A. Introduction: This course is offered by Computer and Communication Engg. Dept., targeting students who wish to pursue development and research in industries or higher studies in fields of Computer Science, IT, and Communication Engineering. This course will form the base of computer science and engineering and hence this course is introduced at this level to make the students understand various ways of organizing data and storing it into memory and use the type depending upon the application.
- **B.** Course Outcomes: At the end of the course, students will be able to:
- [CC 2103.1] explains basic concepts of various data structures
- **[CC 2103.2]** describe how arrays, linked lists, stacks, queues, trees, and graphs are represented in memory and their operations
- **[CC 2103.3]** select and/or apply appropriate data structures to solve problems and assess the trade-offs involved in the design choices and hence develop employability skills
- **[CC 2103.4]** describe and analyze various sorting algorithms like bubble, selection, insertion, merge sort, heap sort, and quick sort.

C. PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

- **[PO.1].** Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems
- **[PO.2]. Problem analysis**: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences
- **[PO.3].** Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations
- **[PO.4].** Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions
- **[PO.5].** Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations
- **[PO.6].** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice
- **[PO.7].** Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development
- **[PO.8]. Ethics**: Apply ethical principles and commit to professional ethics_and responsibilities and norms of the engineering practices

- **[PO.9]. Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings
- **[PO.10].** Communication: Communicate effectively_on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions
- **[PO.11]. Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments
- **[PO.12]. Life-long learning**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change
- **[PSO.1].** Imbibe the basic concepts and applications of computer-based Communication or networking, information sharing, signal processing, web-based systems, smart devices, and communication technology.
- **[PSO.2].** Investigate prominent areas in the field of Computer and Communication Engineering to provide feasible solutions.
- **[PSO.3].** Apply the contextual knowledge in the field of Computing and Communication to assess social, health, safety, and security issues relevant to the professional engineering practice.

D. Assessment Plan:

Criteria	Description	Maximum Marks							
	Sessional Exam I	20							
Internal Assessment	Sessional Exam II	20							
(Summative)	In class Quizzes, Assignments and	20							
	Online Certification Courses								
	(Coursera, etc), Activity								
	feedbacks (Accumulated)								
End Term Exam	End Term Exam	40							
(Summative)									
	Total	100							
Attendance	A minimum of 75% Attendance is								
(Formative)	student to be qualified for taking t	•							
	The allowance of 25% includes all types of leaves including medical								
	leaves.								
Makeup Assignments	Students who miss a class will have to report to the teacher about the								
(Formative)	absence. A makeup assignment on the topic taught on the day of								
	absence will be given which has to be submitted within a week from								
	the date of absence. No extensions will be given on this. The								
	attendance for that particular day of								
	that the student is not accounted for	<u>-</u>							
	limited to a maximum of 5 through								
Homework/ Home Assignment/	There are situations where a stud								
Activity Assignment	especially before a flipped classroo								
(Formative)	graded with marks. However, a stu	• • • • • •							
	perform these assignments with f								
	classroom participation by a stude	iii wiii be assessed and marks wiii							
	be awarded.								

E. SYLLABUS

Introduction: algorithm specification; Performance analysis: time and space complexity, asymptotic notation; C revision: pointer declaration and definition, memory allocation functions, array of

pointers, structures in C, arrays of structures, structures and functions; Recursion in C; Linked list: implementation, various types and operations; Stack: implementations using array and linked list, operations and its applications; Queue: implementations using array and linked list, operations and its applications; Tree: terminologies, different types, implementations of binary tree using array and linked structure, binary search tree, different operations (recursive, non-recursive), red-black tree, AVL trees, B-tree, 2-3 tree, tree applications; Graph: representations, BFS, DFS; Searching techniques and hashing; Sorting.

F. Text Book

Aaron M. Tenenbaum, Yedidyah Langsam, Moshe J. Augenstein, "Data Structures using C", Pearson Education, 2013.

G. REFERENCE BOOKS

- **R1.** Ellis Horowitz, Sartaj Sahni and Susan Anderson-Freed, "Fundamentals of Data Structures in C", University Press (India) Pvt. Ltd., 2014.
- **R2.** Alfred V. Aho, John E. Hopcroft and Jeffrey D. Ullman, "Data Structures and Algorithms", Pearson Education, 2012.
- **R3.** Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein, "Introduction to algorithms", PHI, Third Edition, 2009.
- **R4.** Seymour Lipschutz, "Data Structures with C (Schaum's Outline Series)", McGraw Hill Education Private Limited, 2011.
- **R5.** Mark Allen Weiss, "Data structures and Algorithm Analysis in C", Pearson, Second edition, 2014.

H. Lecture Plan:

Class Number	Topics	pics Session Outcome							
I.	Introduction to the subject, course plan, course outcomes and assessment plan.	To acquaint and clear teacher's expectations and understand student expectations	Delivery Lecture	Outcome NA	NA NA				
2.	Introduction to data structures, Algorithm Specifications, How to Write Algorithms	define data structure and list various data structures.	Lecture	CC2103.1	Class Quiz End Term				
3.	Performance Analysis- Time and Space Complexity, Asymptotic Analysis, Example, Functions in 'C', Example Programs on Functions	analyze the time complexity of simple algorithms.	Lecture	CC2103.1 CC2103.1	Class Quiz Home Assignments I Sessional End Term				
4.	Example Programs on Functions, Arrays: Introduction, Single Dimensional Arrays: Declaration, Initialization, Operations (Insertion and Deletion of Element)	define arrays and apply knowledge on single-dimensional arrays in writing programs.	Lecture	CC2103.1 CC2103.2	Class Quiz Home Assignments I Sessional End Term				
5.	Sorting Algorithms – Selection Sort, Bubble Sort and Insertion Sort	construct searching and sorting algorithms and write programs using single-dimensional arrays.	Lecture	CC2103.2	Class Quiz Home Assignments I Sessional End Term				
6.	Multidimensional Arrays, Two Dimensional Arrays: Declaration, Initialization, Addition of Two Matrices, Row Major and Column Major Representation	explain row major and column major memory allocation in 2-D arrays, Apply knowledge on two-dimensional arrays in writing programs	Lecture	CC2103.1 CC2103.2	Class Quiz Home Assignments I Sessional End Term				
7.	Example Programs on Two Dimensional Arrays, Row Major and Column Major Representation	apply knowledge on two-dimensional arrays in writing programs.	Lecture	CC2103.2 CC2103.3	Class Quiz Home Assignments I Sessional End Term				
8.	Pointers: Introduction, Example Programs on Pointers, Pointers and Arrays, Dynamic Memory Allocation	illustrate dynamic memory allocation using pointers in solving problems requiring a list of values.	Lecture	CC2103.1 CC2103.2	Class Quiz Home Assignments I Sessional End Term				
9.	Dynamic Memory Allocation: Dynamic Array creation, Dynamic structure creation.	apply knowledge on pointers in writing programs.	Lecture	CC2103.1 CC2103.2	Class Quiz Home Assignments I Sessional End Term				
10.	Problems solving by students on an array	analyze the applicability of array as an appropriate Data Structure to solve the problem and develop an	Tutorial	CC2103.3	Class Quiz Home Assignments I Sessional				

		algorithm/program to provide the solution to a given problem through it.			End Term	
11.	Problems solving by students on an array	structure mapping and model a given real-world problem into an array.	Tutorial	CC2103.3	Class Quiz Home Assignments I Sessional End Term	
12.	Linked List: Introduction, Basic Terminologies, Advantages over Arrays, Applications, Structures in 'C', Example Programs on Structures and pointer to Structure	describe linked list data structure, disadvantages of array-based storage, and the need for linked list data structure, develop structures in 'C' and deal it with pointers.	Lecture	CC2103.1 CC2103.2	Class Quiz Home Assignment I Sessional End Term	
13.	Passing Structures to Functions, Singly Linked List: Introduction, Operations	pass structures to functions, to explain self-referential structures and functions, and describe linked list storage structure and basic operations.	Lecture	CC2103.1 CC2103.2	Class Quiz Home Assignment I Sessional End Term	
14.	Singly Linked List: Operations (Continued)	Implement singly linked list storage structure and basic operations (insertion, deletion, and searching) defined over it.	Lecture	CC2103.1 CC2103.2	Class Quiz Home Assignment I Sessional End Term	
15.	Circular Linked List: Introduction, Operations	understand and implement circular linked list storage structure and basic operations (insertion, deletion, and searching) defined over it.	Lecture	CC2103.1 CC2103.2	Class Quiz Home Assignmen I Sessional End Term	
16.	Doubly Linked List: Introduction, Operations	understand and implement circular linked list storage structure and basic operations (insertion, deletion, and searching) defined over it.	Lecture	CC2103.1 CC2103.2	Class Quiz Home Assignmen I Sessional End Term	
17.	Some Example Programs on Linked List	implement linked list operations like reversing a linked list, finding the middle of the list, sorting a list, etc.	Lecture	CC2103.3	Class Quiz Home Assignmen I Sessional End Term	
18.	Problems solved by students on the linked list	analyze the applicability of a linked list as an appropriate Data Structure to solve the problem and develop an algorithm/program to provide the solution to a given problem through it.	Tutorial	CC2103.3	Class Quiz Home Assignmen I Sessional End Term	
19.	Problems solving by students on linked list	structuring, mapping, and modeling a given real-world problem into a linked list.	Tutorial	CC2103.3	Class Quiz Home Assignmen I Sessional End Term	
20.	Recursive Functions, Example Programs on Recursive Functions, Stack: About, Applications	explain the working philosophy of the stack and how the system stack stores local function calls.	Lecture/ Expert- Lecture	CC2103.1 CC2103.3	Class Quiz Home Assignmen II Sessional End Term	
21.	Stack: Operations, Implementation of Stack using Array and Linked List	develop a stack-based application and realize the stack functioning using arrays as well as a linked list and compare their implementations.	Lecture/ Expert- Lecture	CC2103.1 CC2103.2	Class Quiz Home Assignmen Il Sessional End Term	

22.	Expression Notations: Polish Notation, Reverse Polish Notation, Infix Notation, Evaluation of Expression written in Polish Notation	explain various forms of mathematical notations to express an expression and their evaluation	Lecture	CC2103.3	Class Quiz Home Assignments II Sessional End Term
23.	Evaluation of Expression written in Reverse Polish Notation Evaluation of Expression written in Infix Notation	evaluate the postfix(infix) expression using stacks	Lecture	CC2103.3	Class Quiz Home Assignments II Sessional End Term
24.	Conversion of Expression from one Notation to Another	explain how to realize a mathematical expression using stacks and to convert an infix expression to postfix notation using stack.	Lecture	CC2103.3	Class Quiz Home Assignments II Sessional End Term
25.	Conversion of Expression from one Notation to Another	convert an infix expression to prefix notation using stack	Lecture	CC2103.3	Class Quiz Home Assignments II Sessional End Term
26.	Problems solving by students on stack applications	develop recursive code, to handle the problem using stacks, to analyze the applicability of stack with respect to a given problem	Tutorial	CC2103.3	Class Quiz Home Assignments II Sessional End Term
27.	Linear Queue: Introduction, Applications, Operations, Implementation using Array and Linked List	explain Queue Data structure, its application in the real world and its operations enqueue and dequeue, to implement queue data structure using array and linked list.	Lecture	CC2103.1 CC2103.2	Class Quiz Home Assignments II Sessional End Term
28.	Circular Queue: About, Applications, Operations, Implementation using Array and Linked List	explain Circular Queue Data structure, its application in the real world, and its operations enqueue and dequeue	Lecture	CC2103.1 CC2103.2	Class Quiz Home Assignments II Sessional End Term
29.	Priority Queue and Deques: About, Applications, Operations, Implementation using Array and Linked List	explain Priority Queue Data structure and Deques, its application in the real world and its operations enqueue and dequeue.	Lecture	CC2103.1 CC2103.2	Class Quiz Home Assignments II Sessional End Term
30.	Problems solving by students on queue applications	analyze the applicability of queue as an appropriate Data Structure to solve the problem, to develop an algorithm/program to provide the solution to a given problem through it.	Tutorial	CC2103.3	Class Quiz Home Assignments II Sessional End Term
31.	Trees: Introduction, Basic Terminology, Types of Trees, Binary Search Tree: Creation,: Searching an Element, Insertion of Node	describe binary tree (BT), tree- terminology, types of BT, creation of Binary Search Tree, search operations	Lecture	CC2103.1 CC2103.2	Class Quiz Home Assignments II Sessional End Term
32.	Binary Search Tree: Deletion of Node, Determining Height	describe about the deletion of a node in BST and computing height	Lecture	CC2103.2	Class Quiz Home Assignments II Sessional End Term

33.	Binary Search Tree: Traversal (In-order, Pre- order and Post- order)	explain different traversal in BST	Lecture	CC2103.2	Class Quiz Home Assignments II Sessional End Term
34.	AVL Tree: Introduction, Applications Creation, Searching an Element, Insertion of Node	describe drawbacks of BST, Use of AVL tree, how to insert a value in AVL and then required rotations (LL, RR, LR and RL)	Lecture	CC2103.1 CC2103.2	Class Quiz Home Assignments End Term
35.	AVL Tree: Deletion of Node	describe how to delete a node from AVL tree and then required rotations	Lecture	CC2103.2	Class Quiz Home Assignments End Term
36.	2-3 Tree	Applications AVL tree	Lecture	CC2103.1 CC2103.2	Class Quiz Home Assignments End Term
37.	Red black Tree	Describe the definition and its operations	Lecture	CC2103.1 CC2103.2	Class Quiz Home Assignments End Term
38.	Heaps: Insertion of Node, Binary Heap: Creation, Insertion of Element, Deletion of Element	describe what is heap, types, creations of max and min heaps, heap sort, use of heap in priority queue implementation	Lecture	CC2103.1 CC2103.2	Class Quiz Home Assignments End Term
39.	Problems solving by students on tree and its use	construct BST and AVL tree from given sequence of values	Tutorial	CC2103.3	Class Quiz Home Assignments End Term
40.	Problems solving by students on tree and its use	construct heap from given sequence of values and implement priority queue	Tutorial	CC2103.3	Class Quiz Home Assignments End Term
41.	Graphs: Introduction, Basic Terminology, Applications, Representation of Graphs: Adjacency Matrix Representation	describe representation of graph in term of adjacency matrix with their complexity	Lecture	CC2103.1 CC2103.2	Class Quiz Home Assignments End Term
42.	Representation of Graphs: Adjacency List Representation	describe representation of graph in term of adjacency list with their complexity	Lecture	CC2103.1 CC2103.2	Class Quiz Home Assignments End Term
43.	Graph Traversal: Breadth First Traversal, Depth First Traversal	conceptualize on the various methods of graph traversal and understand the concept of Queue and Stack data structure	Lecture	CC2103.2	Class Quiz Home Assignments End Term
44.	Minimum Spanning Tree, Prims Algorithm, Kruskal's Algorithm	understand the application of graph such as TSP problem	Lecture	CC2103.2	Class Quiz Home Assignments End Term
45.	Shortest Path Algorithms: Dijkstra's Algorithm, Floyd's Algorithm	understand the application of graph such as computer networking(Routing System)	Lecture	CC2103.2	Class Quiz Home Assignments End Term
46.	Problems solving by students on graph algorithms	find shortest path using Dijkstra's Algorithm and Floyd's Algorithm for a given graph	Tutorial	CC2103.3	Class Quiz Home Assignments End Term
47.	Problems solving by students on graph algorithms	find MST using Prims Algorithm and Kruskal's Algorithm for a given graph	Tutorial	CC2103.3	Class Quiz

					Home Assignments End Term
48.	Sorting: Introduction, Bubble Sort, Insertion Sort	describe the concept of sorting with various sorting algorithm	Lecture	CC2103.1	Class Quiz Home Assignments End Term
49.	Sorting (Continued): Radix Sort, Heap Sort	describe the concept of priority queue with the help of heap sort	Lecture	CC2103.1 CC2103.4	Class Quiz Home Assignments End Term
50.	Hashing: Introduction, Applications, Hash Functions	describe different hashing techniques/functions	Lecture	CC2103.1 CC2103.2 CC2103.4	Class Quiz Home Assignments End Term
51.	Hash Collisions, Collision Resolution: Open Addressing, Chaining	describe different collision resolving techniques with examples	Lecture	CC2103.1 CC2103.2	Class Quiz Home Assignments End Term
52.	Problems solving by students on soring and its application	develop program for searching and sorting	Tutorial	CC2103.3	Home Assignments End Term

H. Course Articulation Matrix: (Mapping of COs with POs & PSOs)

СО	STATEMENT		CORRELATION WITH PROGRAM OUTCOMES (POs)									CORRELATION WITH PROGRAM SPECIFIC OUTCOMES (PSOs)				
	PO I	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO II	PO 12	PSO I	PSO 2	PSO 3	
[CC2103.1]	explain basic concepts of various data structures	3	2										2	3		
[CC2103.2]	describe how arrays, linked lists, stacks, queues, trees and graphs are represented in memory and their operations		I	2									2		2	2
[CC2103.3]	Select and/or apply appropriate data structures to solve problems and assess the trade-offs involved in the design choices and hence develop employability skills		I	2									2		2	2
[CC2103.4]	describe and analyze various sorting algorithms like bubble, selection, insertion, merge sort, heap sort and quick sort		I	2									2	2		I

I-Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation