: Brent J. Bos, Stephen J. Forbes and Roger L. Veldman **Applicants**

: 10/082,587 Serial No.

Page

In the Specification:

Please amend the specification as page 6, lines 12-32 through page 7, lines 1-4 as follows:

--Referring now to the drawings in greater detail, Figs. 1-7 illustrate a first embodiment 10 of an interior rearview mirror assembly of the present invention which incorporates a low level light emitting source adapted for centralized illumination of portions of a vehicle interior such as the instrumentation or controls in the instrument panel and/or console areas of a vehicle. Such console areas include floor consoles 121 (Fig. 2), shift lever consoles 125 (Figs. 2 and 10), instrument panel consoles 130 (Fig. 10), side door consoles 134 (Fig. 10), and, for light emitting sources mounted to direct light upwardly to the roof areas of the vehicle, header consoles 136 (Fig. 10) located such as in the headliner area and roof area such as above the front vehicle seats. The shift lever console 125 includes the gear shift or transmission selector lever including the PRND21 transmission selector indicator panel 126 and, optionally, small part/coin storage bins 127, cup holders 128, ashtrays 129, control switches 131, etc. Such shift lever consoles are typically located in the floor centerline of the vehicle. However, on some vehicles, they may be mounted elsewhere such as on or about the steering column or off the instrument panel/front facia. Rearview mirror assembly 10 includes a support 80 for securing the mirror assembly to the vehicle on a windshield mounted member as shown in Figs. 5 and 14, or a mirror support arm 154 having a breakaway header bracket 158 secured to the roof area of the vehicle above the windshield as shown in Figs. 12 and 13. As will be more fully explained hereinafter, rearview mirror assembly 10 includes a directed, low level, non-incandescent light emitting source 90, preferably positioned on or within the mirror case and on or within the mirror support. In addition to low level light emitting source 90, mirror case 12 may also optionally include one or more lamp assemblies 24, 26 which provide separately switched, general illumination of the vehicle interior for reading, passenger entry, or the like. As explained below, low level light emitting source 90 is controlled separately from the lamp assemblies 24, 26 by the vehicle ignition switch and/or by a rheostat/dimmer switch such as that typically incorporated with the headlight control switch for the vehicle.--

Applicants

: Brent J. Bos, Stephen J. Forbes and Roger L. Veldman

Serial No.

: 10/082,587

Page

: 3

Please amend page 11, lines 8-32 as follows:

-- As is best seen in Fig. 6, it is preferred that the light emitting source such as source 90 (such as an LED) be mounted within one end of a hollow, molded plastic, cylindrical adaptor 94 having one open end 96 within the mirror case through which the source is telescopically fitted and retained by friction or otherwise and a second opening 98 through the bottom wall of mirror case 12. Opening 98 may optionally be closed by a clear plastic lens 100 which is snap-fitted between mounting ribs 99. Lens 100 may be any of a Fresnel lens, or a binary optic, or a refractive optic, or a holographic optic. Opening 98 helps confine and direct the pattern of light emanating from light source 90. Light source 90 may be mounted in a light conduit, a portion of which may comprise cylindrical adaptor 94, which may be formed separate from, or integral with (such as by molding during the molding of the case, or bezel of the case itself), the mirror case, mounting arm or channel member. The inner walls of this light conduit may optionally be coated with a diffuse and/or specularly reflecting material 95 to provide a surface that enhances efficient illumination of interior vehicular locations. Also light directing means such as fiberoptic cables or bundles 96 may optionally be used in conjunction with light source 90 Fig. 7). In addition, the exterior surface of the lower end of adapter 94 includes spaced ridges 102a, 102b which receive the thickness of bottom wall 15 of mirror case 12 therebetween to stably support and position the adapter in the mirror case. The upper ridge 102a may include a tapered surface as does the upper end of adaptor 94 allowing the adapter to be pushed and snap-fitted into a circular opening in the bottom wall of the mirror case as shown in Fig. 6. Preferably, hollow adapter 94 is molded from any thermoplastic resinous plastic although thermoset, resinous plastics could also be used. Also, adapter 94 may be formed during the molding of the mirror case 12 itself and/or during molding of a subassembly of the mirror case, such as a bezel. Such molding may include insert injection molding whereby a diffuse and/or specularly reflecting surface or sleeve may be created across and along the inwardly facing surface of the inner walls of adapter 94.--