

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

9549324731

FURTHER MATHEMATICS

9231/12

Paper 1 Further Pure Mathematics 1

May/June 2021

2 hours

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 16 pages. Any blank pages are indicated.

BLANK PAGE

	 •••••					 		
	 · • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••		• • • • • • • • • • • • • • • • • • • •	 	•••••	
•••••	 					 •••••		
	 				•••••	 •••••		
	 	• • • • • • • • • • • • • • • • • • • •		•••••	• • • • • • • • • • • • • • • • • • • •	 ••••••		
	 	• • • • • • • • • • • • • • • • • • • •		•••••	• • • • • • • • • • • • • • • • • • • •	 •••••	•••••	
	 					 •••••		
	 •					 •••••		
	 · • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••		• • • • • • • • • • • • • • • • • • • •	 	•••••	
	 					 •••••	•••••	
	 			•••••		 ••••••	•••••	
•••••	 	• • • • • • • • • • • • • • • • • • • •				 		
	 	•••••	•••••		•••••	 	•••••	

•••••			 	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••		• • • • • • • • • • • • • • • • • • • •	•••••	•••••	••••
•••••			 	•••••	•••••		•••••					• • • •
			 									•••
			 									•••
•••••	,		 					•••••				
• • • • • • • • • • • • • • • • • • • •			 	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••		• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••
•••••		• • • • • • • • • • • • • • • • • • • •	 		•••••							•••
•••••			 •••••		•••••			•••••		•••••	•••••	•••
		•••••	 									
			 									•••
•••••			 •	•••••			••••••	•••••		••••••	•••••	•••
•••••			 •	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••		• • • • • • • • • • • • • • • • • • • •	••••••	•••••	•••
			 								•••••	•••
•••••			 								•••••	•••

A	1	Sh	ΩW	th	at
١L	,,	OII	UW.	un	aı

(c)

$\frac{1-r-r^2}{r} = \frac{r+1}{r} = \frac{r}{r}$	
$\frac{1-r-r^2}{(r^2+2r+2)(r^2+1)} = \frac{r+1}{(r+1)^2+1} - \frac{r}{r^2+1}$	
and hence use the method of differences to find $\sum_{r=1}^{n} \frac{1-r-r^2}{\left(r^2+2r+2\right)\left(r^2+1\right)}.$	[5]
	•••••
Deduce the value of $\sum_{r=1}^{\infty} \frac{1-r-r^2}{\left(r^2+2r+2\right)\left(r^2+1\right)}.$	[1]

J	Find a quartic equation whose roots are α^3 , β^3 , γ^3 , δ^3 and state the value of $\alpha^3 + \beta^3 + \gamma$

Find the value of $\alpha^4 + \beta^4 + \gamma^4 + \delta^4$.	Find the value of $\frac{1}{\alpha^3} + \frac{1}{\beta^3} + \frac{1}{\gamma^3} + \frac{1}{\delta^3}$.	
	Find the value of $\alpha^4 + \beta^4 + \gamma^4 + \delta^4$.	
	Find the value of $\alpha^4 + \beta^4 + \gamma^4 + \delta^4$.	
	Find the value of $\alpha^4 + \beta^4 + \gamma^4 + \delta^4$.	
	Find the value of $\alpha^4 + \beta^4 + \gamma^4 + \delta^4$.	
	Find the value of $\alpha^4 + \beta^4 + \gamma^4 + \delta^4$.	

` ′	Find \mathbf{M} in terms of d .	
(b)	The unit square in the x - y plane is transformed by \mathbf{M} onto a parallelogram of area	$\frac{1}{2}d^2$ units ² .
(b)	The unit square in the <i>x-y</i> plane is transformed by M onto a parallelogram of area. Show that $d = 2$.	$\frac{1}{2}d^2$ units ² .
(b)		$\frac{1}{2}d^2$ units ² .
(b)		$\frac{1}{2}d^2$ units ² .
(b)		$\frac{1}{2}d^2$ units ² .
(b)		$\frac{1}{2}d^2$ units ² .
(b)		$\frac{1}{2}d^2$ units ² .
(b)		

The	e matrix N is such that $\mathbf{MN} = \begin{pmatrix} 1 & 1 \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$.	
	Find N.	[3]
(d)	Find the equations of the invariant lines represented by MN .	s, through the origin, of the transformation in the x - y plane [5]

The	e curve C has polar equation $r = a \cot(\frac{1}{3}\pi - \theta)$, where a is a positive constant and $0 \le \theta \le \frac{1}{6}\pi$.	
	given that the greatest distance of a point on C from the pole is $2\sqrt{3}$.	
(a)	Sketch C and show that $a = 2$.	[3]
()	Find the exact value of the area of the region bounded by C , the initial line and the half $\theta = \frac{1}{6}\pi$.	
		[4]
	· · · · · · · · · · · · · · · · · · ·	

(c)	Show that C has Cartesian equation $2(x+y\sqrt{3}) = (x\sqrt{3}-y)\sqrt{x^2+y^2}$. [3]

_	T 4 4 1	•,•	
0	Let t be	a positive	constant.

The line l_1 passes through the point with position vector $t\mathbf{i} + \mathbf{j}$ and is parallel to the vector $-2\mathbf{i} - \mathbf{j}$. The line l_2 passes through the point with position vector $\mathbf{j} + t\mathbf{k}$ and is parallel to the vector $-2\mathbf{j} + \mathbf{k}$.

It is given that the shortest distance between the lines l_1 and l_2 is $\sqrt{21}$.

(a)	Find the value of <i>t</i> .	[5]
	e plane Π_1 contains l_1 and is parallel to l_2 .	
(b)	Write down an equation of Π_1 , giving your answer in the form $\mathbf{r} = \mathbf{a} + \lambda \mathbf{b} + \mu \mathbf{c}$.	[1]
		•••••

The plane Π_2 has Cartesian equation 5x - 6y + 7z = 0. (c) Find the acute angle between l_2 and Π_2 . [3] (d) Find the acute angle between Π_1 and Π_2 . [3]

a)	Find the equations of the asymptotes of <i>C</i> .	
		•••••
		•••••
b)	Find the coordinates of the stationary points on <i>C</i> .	
b)	Find the coordinates of the stationary points on C .	
b)	Find the coordinates of the stationary points on C .	
b)	Find the coordinates of the stationary points on <i>C</i> .	
b)	Find the coordinates of the stationary points on <i>C</i> .	
b)	Find the coordinates of the stationary points on <i>C</i> .	
b)		
b)		
b)		
b)		
b)		
b)		
b)		
b)		
b)		

	_
-1	_
_	-

(c)	Sketch C, stating the coordinates of an	ny intersections with the axes.	[3]
(-)	sheren e, staring the coordinates of a	if intersections with the axes.	L۷

(d) Sketch the curve with equation $y = \left| \frac{x^2 + x + 9}{x + 1} \right|$ and find the set of values of x for which

 $2|x^2 + x + 9| > 13|x + 1|.$ [5]

Additional Page

must be	clearly showr	1.			(s), the question	
		•••••				
	••••••	•••••	••••••	 		
		•••••		 		
••••••				 		•••••
	•••••			 		

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.