Changes from last revision

Date	User	Edits
12/13/2019	Mohsen Hassanpourghadi	Version 3.0
12/23/2019	Mohsen Hassanpourghadi	Specifications; Schematic and description of testbench; Design examples;

Block descriptions

Design name	VCO Based ADC in TSMC 65nm CMOS
The Top-level cell name	ADC_vcobased_v1.scs
Designer	Mohsen Hassanpourghadi
Organization	University of Southern California

Overview

This ADC receives analog input voltage and transforms it into the phase information. Then, quantizes the phase information.

Block Specifications and Compliance

Spec Name	Min	Max	Note
Sampling rate (MS/s)	1	10000	The sampling speed is chosen by the AMPSE tool
SFDR (dB)	40	70	Maximum for the 10 bit ADC can be used
BW (MHz)	1 KHz	500MHz	High bandwidth cannot achieve excellent ENOB
SNDR (dB)	30	60	-
Power Consumption (mW)	1	100	-
VDD (Volt)	1	1	1 Volt VDD

Block diagram

The block diagram representation of the design is as follows:

Figure 1: Architecture of VCO-based ADC with AMPSE

Signal list

		digital voltage)		
VDD	Ι	Supply	Core	Power Supply, 1.0 V
VSS	Ι	Ground	Core	Ground
IN1, IN2	Ι	Analog voltage	Core	Differential Analog Input
reset	I	Digital voltage	Core	Reset
Qij<0:9>	0	Analog voltage	Core	Outputs
op,op2,on,on2	Т	Analog voltage	Core	Test points

Design Hierarchy

The tabular description below corresponds to design hierarchy.

Category	Cell Name	Description	Figure
	VCO_analogin_cmlbuffer_v2	Top level	Figure. A1
ADC_vcobased_v4	VCO_Dtype2_65	Pseudo differential VCO	Figure. A2
	counter_verilogA	VerilogA counter	Code A3
	diff2sing_v1	Differential to single ended	Figure. A4
VCO_Dtype2_65	VCO_type2_65	VCO single output	Figure. A5
Testbench	test_VCO65_v4	Testbench for VCO based ADC	Figure. A6

Test Bench

Cell Name	Note
test_VCO65_v4	Transient simulation for 1. locking time evaluation; 2. SNDR; 3. SFDR; 4

Appendix

Figure. A1

Figure. A2

Code. A3:

```
// VerilogA for CAD_modules, counter_verilogA, veriloga
   `include "constants.vams"
   `include "disciplines.vams"
   `define SIZE 10

module counter_verilogA(out, clk);
    inout clk;
    electrical clk;
    output [`SIZE-1 :0] out;
    electrical [`SIZE-1 :0] out;
```

VCO-Based ADC in TSMC 65nm CMOS

```
parameter integer setval = 0 from [0:(1<<`SIZE)-1];</pre>
      parameter real vtrans_clk = 0.6;
      parameter real vtol = 0; // signal tolerance on the clk
      parameter real ttol = 0; // time tolerance on the clk
      parameter real vhigh = 1.2;
      parameter real vlow = 0;
      parameter real tdel = 30p;
      parameter real trise = 30p;
      parameter real tfall = 30p;
      parameter integer up = 0 from [0:1]; //0=increasing 1=decreasing
      parameter integer stepsize = 3;
      integer outval;
      analog begin
             @(initial_step("static","ac")) outval = setval;
             @(cross(V(clk)-vtrans_clk,1,vtol,ttol))
             outval = (outval +(+up- !up)*stepsize)%(1<<`SIZE);</pre>
             generate j (`SIZE-1 , 0) begin
                    V(out[j])
                                                      transition (!!(outval
&(1<<j))*vhigh+!(outval&(1<<j))*vlow,tdel,trise,tfall);
             end
      end
endmodule
```

Figure A.4:

Figure A.5:

Figure A.6:

AMPSE Modules descriptions

Module Name	Class name in Netlist_Database.py	Class name in AMPSE_Graph.py
VCO	VCOSpice	VCO
Input Buffer	INBUF2Spice	INBUF2

All the regression files are in /regfiles

VCO:

parameters	min	max	step	Description
wnnn(nm)	200	1200	10	Width of
fnnn	2	20	1	NMOS # of fingers of NMOS
wppp(nm)	200	1200	10	Width of PMOS
fppp	2	20	1	# of fingers of PMOS
METRICS	DESCRI	PTION		

7

VCO-Based ADC in TSMC 65nm CMOS

POWER	Power consumption (W)
VCM	Input Common mode (V)
VFS	Input full scale (V)
NOISE	Noise of the VCO (Hz ²)
FREQ[1:8]	Interpolated frequency at linspace(-vfs, +vfs,8)+vcm (Hz)

Input Buffer:

parameters	min	max	step	Description
multi	1	20	1	Buffer multiplier
fing_in	1	50	1	# of fingers of Input NMOS
$l_ttt\ (nm)$	60	400n	10	Length of tail NMOS
fing_ttt	1	50	1	# of Fingers of tail NMOS
VCM(V)	0.55	0.9	0.01	VCM of buffer
wppp	200n	1200n	10n	Width of PMOS in VCO
fppp	2	20	1	# of fingers of PMOS in VCO

METRICS	DESCRIPTION
POWER	Power consumption (W)
GAIN	Differential Gain of buffer (V/V)
BANDWIDTH	Buffers bandwidth (Hz)
OUTVCM	Output VCM (V)
AVCM	Common mode rejection ratio (dB)
KICKBACK	Kickback effect from the VCO (dB)
IRN	Input referred noise (uV ²)
OUT[1:4]	Interpolated output voltage at (-0.3, +0.3,4)+VCM

Figure 1-AMPSE Modular Linking Graph