并行计算实验

汤善江 副教授 天津大学智能与计算学部

tashj@tju.edu.cn

http://cic.tju.edu.cn/faculty/tangshanjiang/

实验环境介绍

- ■操作系统
 - CentOS 7.6
- ■编译环境
 - GCC 4.8.5
 - gcc,g++,gfortran等
 - Intel 19.1.0.166
 - icc, icpc, ifort等
 - Intel MPI 5.0.2.044
 - Mpicc,mpicxx等等(基于GCC)
 - Mpiicc,mpiicpc等等(基于Intel)
 - 作业管理系统
 - Torque 4.2.10

使用方式

- 通过远程登录方式连接集群
 - 不支持图形界面
 - Xshell
 - SSH Secure Shell Client
 - Putty
- 文件传输客户端软件
 - XFTP
 - Secure File Transfer Client
 - WinSCP

使用流程 (演示)

- 登录集群
- 编写程序
- 编译程序
- ·编写PBS脚本
- 提交作业
- 查看运行状态
- 查看结果

登录集群

Host Name: 211.81.50.36

• Password: 学号

• Port: 9022

文件传输

文件传输

常用Linux命令

- · IS 列出当前目录下文件
 - 如: ls -al
- · mkdir 创建目录(文件夹)
 - · 如: mkdir data
- · Cd 切换工作目录
- · pwd 查看当前目录
- · rm 删除文件或目录
- · passwd 修改登陆密码
- · exit 退出登陆

一般流程

- · 先在本机(可以是Windows)编写好串行程序代码test.cpp, 能够正确运行
- ·通过文件传输界面,将文件传到集群上,最好在data目录下。
- · 能过命令行界面切换到相应目录,上一步的data
 - cd data
- 编译程序
 - icc -o test test.cpp
- ·执行test程序
 - ./test

编译命令

- 示例(多线程与多线程):
 - · 编译pthread多线程程序test.c(C程序)生成test
 - icc -pthread -o test test.c
 - · 编译pthread多线程程序test.cpp(C++程序)生成test
 - icpc -pthread -o test test.cpp
 - · 编译openmp多线程程序test.c(C程序)生成test
 - icc -openmp -o test test.c
 - · 编译openmp多线程程序test.cpp(C++程序)生成test
 - icpc -openmp -o test test.cpp
 - · 编译MPI多进程程序mpi.c(C程序)生成mpi
 - mpiicc -o mpi mpi.c
 - · 编译MPI多进程程序mpi.cpp(C++程序)生成mpi
 - mpiicpc -o mpi mpi.cpp

- · PBS脚本示例(串行或多线程程序)
 - #!/bin/bash
 - #PBS -N test
 - #PBS -q qstudent
 - #PBS -I nodes=1:ppn=1
 - #PBS -j oe
 - cd \$PBS_O_WORKDIR
 - date +%s.%N # 输出程序开始时间
 - · ./test # 如果程序需要参数,可直接写上
 - date +%s.%N#輸出程序结束时间

- · PBS脚本示例 (MPI并行)
 - #!/bin/bash
 - #PBS -N test
 - #PBS -q qstudent
 - #PBS -I nodes=2:ppn=4
 - #PBS -j oe
 - cd \$PBS_O_WORKDIR
 - procs=\$(cat \$PBS_NODEFILE | wc -I)
 - date +%s.%N # 输出程序开始时间
 - mpirun -np \$procs -machinefile \$PBS_NODEFILE ./test #如果程序需要参数,可添加
 - date +%s.%N#輸出程序结束时间

- · PBS脚本的编写
 - 第一行:#!/bin/bash
 - #PBS -N 作业名字(test)
 - #PBS -q 使用队列(qstudent)
 - #PBS -I 申请资源(nodes=1:ppn=8)
 - #PBS –j oe
 - cd \$PBS_O_WORKDIR
 - procs=\$(cat \$PBS_NODEFILE | wc -I)
 - 运行程序
 - mpirun -np \$procs -machinefile \$PBS_NODEFILE ./test
 - 不要使用后台执行方式(包含&字符)

- 提交作业
 - qsub test.pbs
- 查看作业
 - qstat -R
 - qstat -f jobid
- 删除作业
 - qdel jobid

演示

```
TT01@node63:~> cd data/
TT01@node63:~/data> ls
test.pbs test.pbs~
TT01@node63:~/data> qsub test.pbs
35.node63
TT01@node63:~/data> qstat
Job id
                                   User
                     Name
                                                 Time Use S Queue
35.node63
                                                        0 R gstudent
                     test
                             TT01
TT01@node63:~/data> qstat -R
node63:
                                              Req'd Req'd Elap
Job ID
                 Username Queue NDS TSK Memory Time S Time
 FAST PFS
           TT01 qstudent 1 4 -- 01:00 R
35.node63
TT01@node63:~/data> qdel 35
```

查看结果

- 作业结果文件
 - (name).o(id)
- 上例的结果为:
 - test.o35
- · 可以PBS脚本的最后一行加上重定向
 - ./test >& run.log

多线程代码示例

```
使用命令行参数的程序
#include <stdio>
#include <stdlib>
using namespace std;
int main(int argc, char *argv[]) {
   if (argc != 1) {
      printf("error\n");
   int threadnum=atoi(argv[1]);
   return 0;
直接运行的方法: ./test 8
PBS脚本可以用变量: ./test $procs
```

