ACH2011 - Cálculo I

Sistema de Informação - EACH

Lista 1: Definição axiomática dos números reais.

É um conjunto \mathbb{R} não vazio, junto com duas operações binárias internas adição $(+): \varphi(a,b) = a+b \in \mathbb{R}$, multiplicação $(\cdot): \psi(a,b) = ab \in \mathbb{R}$ e uma relação de ordem " \leq " (lê-se "menor ou igual") que satisfazem os seguintes axiomas.

Axiomas de adição

- A.1. Lei comutativa: para todo $a, b \in \mathbb{R}$, temos que a + b = b + a;
- A.2. Lei associativa: para todo $a, b, c \in \mathbb{R}$, temos que (a+b)+c=a+(b+c);
- A.3. Existência do elemento neutro aditivo: existe um valor único em \mathbb{R} , denotado por "0" (0, lê-se cero) tal que para todo $a \in \mathbb{R}$, temos que a + 0 = a = 0 + a;
- A.4. Existência do elemento simétrico aditivo: para todo $a \in \mathbb{R}$, existe um valor denotado por -a tal que a + (-a) = 0 = (-a) + a.

Axiomas da multiplicação

- M.1. Lei comutativa: para todo $a, b \in \mathbb{R}$, temos que ab = ba;
- M.2. Lei associativa: para todo $a, b, c \in \mathbb{R}$, temos que (ab)c = a(bc);
- M.3. Existência do elemento unidade: existe um valor em \mathbb{R} , denotado por "1" e diferente do 0 (1, lê-se um) tal que para todo $a \in \mathbb{R}$, temos que a1 = a = 1a;
- M.4. Existência do elemento inverso: para todo $a \in \mathbb{R}$, $a \neq 0$ existe um valor denotado por a^{-1} ou $\frac{1}{a}$ tal que $aa^{-1} = 1 = a^{-1}a$.

Axioma da lei distributiva em relação à adição

D.1. Para todo $a, b, c \in \mathbb{R}$, temos que a(b+c) = (ab) + (ac).

Axiomas de ordem

- O.1. Reflexiva: para todo $a \in \mathbb{R}$, temos $a \leq a$;
- O.2. Simétrica: se $a \le b$ e $b \le a$, então a = b;

- O.3. Transitiva: se $a \le b$ e $b \le c$, então $a \le c$;
- O.4. Lei de dicotomia: se $a, b \in \mathbb{R}$, então $a \leq b$ ou $b \leq a$;
- O.5. se $a \leq b$, então $a + c \leq b + c$ par todo $c \in \mathbb{R}$;
- O.6. se $a \le b$ e c > 0, então $ac \le bc$.

Axiomas do supremo

S.1. Todo conjunto S de números reais no vazio acotado superiormente, possui uma menor cota superior, chamado supremo de S.

Definição. Seja S um subconjunto de \mathbb{R} . Um elemento $a \in \mathbb{R}$ é dito majorante, limite superior ou cota superior de S se $x \leq a$ para todo $x \in S$. Um elemento $a \in \mathbb{R}$ é dito supremo de S, se for o menor dos majorantes. Por exemplo, o supremo de $(-\infty, 1)$ é 1. Os números racionais não satisfazem o axioma do supremo. Por exemplo, o conjunto

$$S = \{ p \in \mathbb{Q} \text{ tal que } p^2 \le 2 \}$$

é limitado superiormente por 2, porém não possui supremo em \mathbb{Q} : Se $q \in \mathbb{Q}$ satisfaz $x \leq q$ para todo $x \in S$, então $\sqrt{2} < q$. Podemos agora considerar outro número racional p tal que $\sqrt{2} . Temos que <math>p \in \mathbb{Q}$ é também uma cota superior de S e menor do que q.

Exercícios

- 1. Provar, usando somente os axiomas da definição dos números reais, as seguintes propriedades:
 - (a) O inverso multiplicativo é único.
 - (b) -(-x) = x para todo $x \in \mathbb{R}$.
 - (c) Se x + x = x, então x = 0.
 - (d) (-1)x = -x para todo $x \in \mathbb{R}$.
 - (e) (-x)y = -(xy) para todo $x, y \in \mathbb{R}$.
 - (f) Se 0 < a, então -a < 0.
 - (g) 0x = 0 para todo $x \in \mathbb{R}$.
 - (h) Se $x, y \in \mathbb{R}$ são números diferente de zero, então $xy \neq 0$.
 - (i) Se $x \in \mathbb{R}$ é diferente de zero, então $0 < x^2$. Dados dois números reais a, b falamos que a é menor do que b, e escrevemos a < b se $a \le b$ e $a \ne b$.
- 2. Usando somente os axiomas da definição dos números reais, provar a Propriedade Arquimediana: Dado x > 0 e $y \in \mathbb{R}$, existe um inteiro positivo n, tal que y < nx.

 Observação: o inteiro positivo n representa a soma n vezes do número 1.