MATH 4000/6000 - Homework #8

posted April 11, 2022; due April 18, 2022

Many who have never had occasion to learn what mathematics is confuse it with arithmetic, and consider it a dry and arid science. In reality, however, it is the science which demands the utmost imagination.

- Sofia Kovalevskaya

Assignments are expected to be neat and stapled. **Illegible work may not be marked**. Starred problems (*) are required for those in MATH 6000 and extra credit for those in MATH 4000.

In this assignment, "ring" always means "commutative ring."

- 1. Let R be a ring, and let I be an ideal of R. Prove that R/I is the zero ring if and only if I = R. (Remember that a ring is called "the zero ring" when its additive identity is the same as its multiplicative identity.)
- 2. In class we stated that isomorphism is an equivalence relation on the class of rings. Here you are asked to show part of this, namely that isomorphism is symmetric.

Specifically, suppose $\phi \colon R \to S$ is an isomorphism. Let $\psi \colon S \to R$ be the inverse function¹ of R. Prove that ψ is an isomorphism.

- 3. (a) Let R be a ring, not the zero ring. We call an ideal $I \subseteq R$ a **prime ideal** if
 - (i) $I \neq R$,
 - (ii) whenever a and b are elements of R for which $ab \in I$, either $a \in I$ or $b \in I$ (or both). Show that for every ideal I of R,

R/I is an integral domain \iff I is a prime ideal of R.

- (b) What are all of the prime ideals of \mathbb{Z} ? Justify your answer.
- 4. Exercise 4.2.1.
- 5. Exercise 4.2.6(b).
- 6. Let R be a ring.
 - (a) If I and J are ideals of R, we let $I + J = \{i + j : i \in I, j \in J\}$. Show that I + J is an ideal of R and that I + J contains both I and J.
 - (b) Let $a \in R$, and let I be an ideal of R. Suppose that $\langle a \rangle + I = R$, where + is addition of ideals as defined in part (a). Show that \overline{a} is a unit in R/I.
- 7. Use the Fundamental Homomorphism Theorem to establish the following ring isomorphisms.
 - (a) $R/\langle 0 \rangle \cong R$ for every ring R.
 - (b) $\mathbb{R}[x]/\langle x^2 + 6 \rangle \cong \mathbb{C}$. Hint: Consider the "evaluation at $i\sqrt{6}$ " homomorphism taking $f(x) \in \mathbb{R}[x]$ to $f(i\sqrt{6}) \in \mathbb{C}$.
 - (c) $\mathbb{Q}[x]/\langle x^2-1\rangle\cong\mathbb{Q}\times\mathbb{Q}$. Hint: Consider the homomorphism from $\mathbb{Q}[x]$ to $\mathbb{Q}\times\mathbb{Q}$ given by $f(x)\mapsto (f(1),f(-1))$.
- 8. (*) Let m and n be positive integers. Show that if $\mathbb{Z}_{mn} \cong \mathbb{Z}_m \times \mathbb{Z}_n$, then $\gcd(m,n) = 1$.

¹Remember that this means $\psi(\phi(r)) = r$ for all $r \in R$ and $\phi(\psi(s)) = s$ for all $s \in S$.