VICTORIA UNIVERSITY OF WELLINGTON Te Whare Wānanga o te Ūpoko o te Ika a Māui

School of Mathematics and Statistics Te Kura Mātai Tatauranga

PO Box 600 Wellington New Zealand

Tel: +64 4 463 5341 Fax: +64 4 463 5045 Internet: sms-office@vuw.ac.nz

Graph Algorithms with Hostile Partners

Matthew Askes

Supervisor: Rod Downey

Submitted in partial fulfilment of the requirements for Bachelor of Science with Honours in Mathematics.

Abstract

A short description of the project goes here.

Contents

1	Introduction			
2	Dominating sets	3		
	2.1 min size dominating set	3		

Figures

Chapter 1

Introduction

Chapter 2

Dominating sets

We begin by listing some definitions.

Definition. The Dominating set, D, of a graph G = (E, V) is any subset of V such that every vertex in V is adjacent to at least one vertex in D.

Definition. The Dominating number, $\gamma(G)$, of a graph G = (E, V) is the size of the smallest dominating set of G.

Definition. Independent set, max independent set, indepence number $\alpha(G)$

2.1 min size dominating set

Lemma 2.1. *Let G be a graph and X be a subset of the vertices of G*.

The minimum size of a dominating set is greater than or equal to the size of the maximum independent set.

Recall that $\chi(G)$ is the chromatic number of the graph G.

Proof. Let *X* be a minimum dominating set in the graph *G*.

Theorem 2.2 (Willis 2011 Theorem 3.1). For any graph G = (V, E) [1]

$$\alpha \le \frac{|V|}{\chi(G)}$$

Theorem 2.3. Let G be a graph, such that the number of vertices in G, n, is ≥ 4 . Then for any G,

$$\gamma_g(G) \ge \left\lceil \frac{n}{2} \right\rceil$$

Proof. asd □

Bibliography

[1] WILLIS, W. Bounds for the independence number of a graph.