VFH⁺: Vector Field Histogram Plus Enhanced Obstacle Avoidance Algorithm

John Liu

Advisor:

Professor Ying-Jeng Wu

Measurement Laboratory, National Yunlin University of Science & Technology
March 12, 2014

- Outline
- 2 Common Obstacle Avoidance Overview
 - Artificial Potential Field
 - Vector Field Histogram
 - Curvature Velocity Method
 - Dynamic Window Approaches
- Vector Field Histogram Plus
 - Introduction
 - Algorithm of Steering Direction
 - Algorithm of Speed
 - Conclusion

Artificial Potential Field

Artificial Potential Field creates a virtual force field which attracts the robot toward the target, and retracts it away from the obstacle.

Artificial Potential Field

- Advantages:
 - Global path planning
 - Efficient Calculation
 - Easily adapt to the data acquired by LiDAR
- Disadvantages:
 - Ignore the kinematic and dynamic constraints
 - Ignore robot's geometry

Vector Field Histogram (VFH)

VFH generates a polar histogram of the environment around the robot, identifies wide-enough spaces and calculates corresponding steering direction.

Vector Field Histogram (VFH)

A cost function G is then applied to every candidate directions, and the direction which generates the smallest value is then selected:

$$G = u_1 \cdot \alpha + u_2 \cdot \beta + u_3 \cdot \gamma$$

where

 $\alpha = \text{difference between target and candidate direction}$

 $\beta =$ difference between current direction and candidate direction

 $\gamma = \mbox{difference}$ between the previously selected direction and candidate di

 u_1 , u_2 and u_3 are weighting constants

Vector Field Histogram (VFH)

Advantages:

Outline

- Easily adapt to the data acquired by LiDAR
- Efficient Calculation
- Adjustable characteristic
- Disadvantages:
 - Ignore the kinematic and dynamic constraints
 - Ignore robot's geometry
 - Direction depends on free-spaces

CVM takes robot's kinematic constraints into account, assumes it only travels along circular trajectories with curvature $c=\omega/\nu$, where ω is the rotational velocity and ν is the translational velocity with limits.

The travelled distance d_v of each obstacle can be calculated, and selected by a cost function. For real-time implementation, There are some simplifications:

- Obstacles are circular shaped
- d_v between each c_{min} and c_{max} of an obstacle is divided onto few intervals with constant value

The final decision of new ω and ν is made by an object function, which resembles the cost function of previous method:

$$f(\omega, \nu) = u_1 \cdot speed(\nu) + u_2 \cdot dist(\omega, \nu) + u_3 \cdot head(\omega)$$

where

$$speed(\nu) = \nu/\nu_{max}$$

$$dist(\omega, \nu) = d_v/d_{max}$$

$$head(\omega) = 1 - |\theta_{target} - \omega \cdot T_c|/\pi$$

The velocities which generate the largest value will be chosen!

- Advantages:
 - Kinematic and dynamic constraints
 - Robot's geometry constraint
 - Adjustable characteristic
- Disadvantages:
 - Simplified circular obstacle
 - Velocity sensors are required

Dynamic Window Approach (DW)

DW also assumes the robot only travelled in circular path with rotational velocity ω and translational velocity ν . The sensed environment is then transformed into **velocity space**.

Dynamic Window Approach (DW)

In velocity space, a *dynamic window* is constructed according to its dynamic constraints and current velocities. Again, an object function is used to choose the optimized velocities.

Dynamic Window Approach (DW)

- Advantages:
 - Kinematic and dynamic constraints
 - Robot's geometry constraint
 - Adjustable characteristic
- Disadvantages:
 - Complexity
 - Velocity sensors are required

Vector Field Histogram Plus (VFH⁺) - Introduction

VFH⁺ algorithm is an enhanced version of original VFH which offers several improvements:

- Minematic constraints
- 2 Robot's geometry constraints
- Oirection no longer depends on spaces

VFH⁺ - Four-Stage Process

The VFH⁺ employs a four-stage data reduction process in order to compute the new direction of motion:

- Primary Polar Histogram
- Binary Polar Histogram
- Masked Polar Histogram
- Selection of Steering Direction

VFH⁺ - with Laser Range Finder

However, some modification is required in order to implement VFH⁺ with laser range finder, therefore the process become:

- Primary Polar Histogram
- Free Spaces

Outline

- Blocked Directions
- Selection of Steering Direction

1: Primary Polar Histogram

A polar histogram P_i of corresponding measured distance and angle d_i can be generated with following formula:

$$P_i = a + b \cdot d_i$$

2: Free Spaces - Hysteresis Filter

VFH⁺ uses two thresholds τ_{max} and τ_{min} instead of single threshold τ in VFH to overcome the oscillation motion in environments with several narrow opennings:

$$P_i' = \begin{cases} P_i & \text{if } P_i \ge \tau_{max} \\ 0 & \text{if } P_i \le \tau_{min} \\ P_{i-1} & \text{otherwise} \end{cases}$$

Vector Field Histogram Plus

2: Free Spaces - Boundary

Each valley of filtered polar histogram P'_i indicates safe directions for the robot, namely V_j .

The boundaries of each V_j are defined by two angle:

$$V_j = (\theta_i^r, \theta_i^l)$$

2: Free Spaces - Robot's Geometry

With geometry constraints, new boundaries $V_i' = (\theta_i^{r\prime}, \theta_i^{l\prime})$ of each V_i are calculated:

$$\theta_j^{r'} = \theta_j^r + \gamma^r$$

= $\theta_j^r + \arcsin(w_s/d^r)$

and

$$\theta_j^{l\prime} = \theta_j^l - \gamma^l$$

= $\theta_j^l - \arcsin(w_s/d^l)$

where d^r and d^l are corresponding measured distances.

2: Free Spaces - Overlapped

The V_j' with overlapped boundaries where $\theta_j^{r\prime} \geq \theta_j^{l\prime}$ are abandoned, since they are considered too narrow to pass through.

3: Blocked Directions

VFH⁺ also assumes circular trajectories of robot's motion. However, this assumpation only used to determine the limitation of steering angles φ_r and φ_l :

3. Blocked Directions - Detection Histogram

In order to calculate φ_r and φ_l , the detection histogram D_i is generated first:

$$D_i = |R\sin\theta_i| + \sqrt{R^2\sin^2\theta_i + w_s^2 + 2Rw_s}$$

3. Blocked Directions - Masked Histogram

The masked histogram $M_i = d_i - D_i$, which shows whether the steering angle is blocked by obstacles.

3. Blocked Directions - Determine φ_r and φ_l

 φ_r and φ_l can be efficiently found by following method:

- 1) Initially set $\varphi_r = -\pi$ and $\varphi_l = \pi$
- 2) For every $M_i < 0$:
 - a) If $\theta_i < 0$ and $\theta_i > \varphi_r$, set φ_r to θ_i
 - a) If $\theta_i > 0$ and $\theta_i < \varphi_l$, set φ_l to θ_i

4. Selection of Steering Direction - Candidate Directions

A set of candidate directions c_n are selected from θ_i which satisfied:

$$\theta_i \in (\varphi_r, \varphi_l) \cap (V_1' \cup V_2' \cup \dots \cup V_j')$$

4. Selection of Steering Direction - Cost Function

Like VFH, VFH⁺ also uses a cost function to select the preferred direction c_t :

$$G(c_n) = u_1 \cdot (|c_n - \varphi_t|) + u_2 \cdot (c_n) + u_3 \cdot (|c_n - c_{t-1}|)$$

and

$$c_t = min\left\{G(c_n)\right\}$$

where

 $\varphi_t = \mathsf{Target} \; \mathsf{direction}$

 $c_n = \mathsf{Candidate} \ \mathsf{direction}$

 $c_{t-1} = Previously selected directions$

Algorithm of Speed

Speed of the robot is controlled by the density function $D(d_i)$ of surrounding objects with certain threshold τ_{obj} :

$$D(d_i) = \frac{1}{N} \sum_{i=1}^{N} H_i$$

where

$$H_i = \begin{cases} 0 & \text{if } d_i \ge \tau_{obj} \\ 1 & \text{if } d_i < \tau_{obj} \end{cases}$$

With maximum speed ν_{max} and minimum speed ν_{min} :

$$\nu = (\nu_{max} - \nu_{min}) \cdot (1 - D(d_i)) + \nu_{min}$$

Conclusion

Compare to original VFH method, VFH⁺ eventually overcomes some defects:

- Overcome the primary problem of VFH where steering angle is determined by spaces
- Create smooth trajectory by hysteresis threshold
- Take robot's geometry and kinematic constraints into account

However, it still suffers from some problems:

- The geometry of the robot is assumed to be circular
- Leads the robot into dead end which can be avoided