Copy of Exam 4 - Results

Exit Preview

Attempt 1 of 3

Written Feb 28, 2024 10:18 AM - Feb 28, 2024 10:18 AM

Attempt Score 0 / 19 - 0 %

Question 1 0 / 1 point

How does xylem sap flow from root to leaves in a 100 m tall tree?

turgor pressure in the roots pushes water up
sugar is actively transported into ever-higher cells and the water follows by osmosis
The edges of the soil-to-leaf column of water creep up the walls of tubes, which pulls the column of water up
ontractile cells in the root contract and pump the water up
the stretched surface of the soil-to-leaf column of water pulls the column up

Question 2 0 / 1 point

What is one reason the aerobic pathway for ATP synthesis is not well designed for a muscle cell that rapidly consumes ATP to drive ion pumps and cross-bridge cycle over a short duration

ATP cannot be transported across the mitochondrial n	nembranes
the aerobic path requires glucosethe diffusion time from the mitochondrial matrix to the long	e cytoplasm is
 ATP is completly hydrolyzed in the mitochondria glycolysis only transfers a small fraction of the total characters glucose to ATP 	nemical energy in
Question 3	0 / 1 point
Xylem vessels are a part of	
ortical tissue	
endodermal tissue	
epidermal tissue	
ground tissue	
vascular tissue	
Question 4	0 / 1 point
A muscle fiber is	

a cell	
a bundle of muscle cells	
the dense connective tissue within a muscle	
a myofilament	
an organelle composed of thick and thin filaments	
Question 5	0 / 1 point
In a relaxed muscle, which of the following is TRUE?	
myosin heads have hydrolyzed ATP and are in the high en	ergy position
Na+/K+ pumps are turned off	
Ca++ is bound to troponin	
myosin binding sites on actin are exposed	
sarcomeres are at their maximum length	

Question 6 0 / 1 point

The transport of a fluid, including all substances in suspension or dissolved in the fluid, due to a pressure gradient is

pressure potentialosmosisbulk flowwater potentialturgor pressure

In the transverse sections of fish illustrated above, the stuff colored red is more interior. What is a consequence of this?

- the vessels are better protected and less likely to be injured
- the fish is able to generate higher accelerations
- a stiffer hydrostatic skeleton to transfer power to the muscle
- the fish is able to maintain body temperature well above that of the surrounding water
- the viscera (stomach, intestines, liver) are better protected and less likely to be injured

In the image above, why does the % of maximum tension increase as we move along the x-axis from 3.65 μ to 2.25 μ

- more myofibrils are stimulated
 each myosin head is generating more force
 the rate of muscle stimulation is increasing, so there is more Ca++ in the cytoplasm
 there is increased overlap between thin filaments and the section of thick filaments containing myosin heads
- more fibers are stimulated

Question 9 0 / 1 point

In muscle contraction (using the image above),

The structure labeled X splits at V, with everything to the sliding to the left, and everything on the right of V sliding	
the width of Y lengthens	
The width of X shortens	
the width of X lengthens	
the Z on each side of W is pulled toward V	
Question 10	0 / 1 point
Elite sprinters have locomotory muscles that generate more processed to elite distance runners. All of these contibute to power EXCEPT	
hypertrophied fibers	
higher rate of crossbridge cycling	
more myofibrils per cross-sectional area	
higher concentration of glycolytic enzymes	
myosin heads that pull on thin filaments with more force	
Question 11	0 / 1 point

Myosin hydrolyzes ATP. The energy of this reaction is used to

bind Ca++ to troponin	
create the Na+ gradient	
create the Ca++ gradient	
propogate the action potential down the t-tubule	
pivot the myosin head into the position where it can be	oind to actin
Question 12	0 / 1 point
[K+] in a root epidermal cell is 275 mMol. [K+] in the soil is cell membrane is permeable to K+. Which of the following	·
there is not enough information to choose any of the	other answers
K+ will diffuse into the cell slowly	
K+ will diffuse into the cell rapidly	
K+ will diffuse out of the cell rapidly	
K+ will diffuse out the cell slowly	
2a.tia.a. 42	0 / 4

Question 13 0 / 1 point

Plants typically use what kind of pump to create a large, negative membrane potential?

o proton pump	
Chloride pump	
calcium pump	
osodium-potassium pump	
bicarbonate pump	
Question 14	0 / 1 point
myofilaments are located	
in the plasma membrane	
in the mitochondria	
in the cytoplasm	
in the extracellular matrix	
in the lumen of the sarcoplasmic reticulum	
	0/4

Question 15 0 / 1 point

Muscle that is working at a high rate consumes O2 at a high rate. What is the "rate of doing work" called?

	velocity	
	force	
	power	
	mechanical energy	
	kinetic energy	
C	Question 16	0 / 1 point
	troponin	
	binds Ca++, which pivots the myosin head to its high energy binds Ca++ and moves tropomyosin, which allows myosin actin	
has exposed binding sites for myosin when Ca++ is bound to actin		
	binds ATP, binds Ca++ and moves tropomyosin, which allo bind to actin	ws myosin to
	binds Na+ and moves actin, which allows myosin to bind to tropomyosin	0

Question 17 0 / 1 point

If a plant cell immersed in distilled water has

$$\Psi_S = -7 ext{ MPa}$$
 $\Psi = 0 ext{ MPa}$

what is the cell's

Ψ_P
7 MPa
O MPa
-7 MPa
There is not enough informtion to choose any of the other answers
Question 18 0 / 1 point
Which of the following statements about the anaerobic pathway for ATP synthesis is TRUE?
the pathway uses fatty acids as the initial substrate
the pathway is very active in Type I muscle fibers
the pathway produces more ATP than the aerobic pathway
the pathway occurs when no O2 is present in the cell

Question 19 0 / 1 point

In order for transpiration to work, air spaces in the leaf must be open to the external environment to allow water vapor to to escape. The guard cells that regulate this create an opening by

the pathway occurs in the cytoplasm

- protons are pumped out of the cell creating a large, negative membrane potential. The hyperpolarization moves K+ out of electrochemical equilibrium and K+ diffuses into the cell. The increased solute potential in the cell results in water diffusing into the cell, which increases turgor pressure and bends the cell, creating a large proton gradient that
- protons are pumped out of the cell creating a large proton gradient that is used to transport sugar into the cell by secondary active transport. The increased solute potential in the cell results in water diffusing into the cell, which increases turgor pressure and bends the cell, creating an opening
- protons are pumped into the cell The increased solute potential in the cell results in water diffusing into the cell, which increases turgor pressure and bends the cell, creating an opening
- protons are pumped into the cell, which depolarizes the plasma membrane. The depolarization opens voltage-gated Ca++ channels. Ca++ diffuses into the cell and binds to and activates motor proteins that pull on the guard cell membrane, bending it into a shape that creates and opening.
- protons are pumped out of the cell creating a large, negative membrane potential. The hyperpolarization moves K+ out of electrochemical equilibrium and K+ diffuses out of the cell. The decreased solute potential in the cell results in water diffusing out of the cell, which makes the guard cell flaccid, which creates an opening

Done