Piaget Dive

Elkind, 1961; Gelman, 1972

12 September, 2025

Presentation

Outline

Overview of Elkind, 1961

Overview of Gelman, 1972

Bridging Themes

- Replicate Piaget's conservation task
 - "Sausage" experiment
 - Two clay balls of same size & shape
 - Changed 1 into sausage shape
 - Asked children to predict if they would be the same
 - Claimed that mass, weight, volume conservation followed stages and occurred in that order
- Elkind—same procedure as Piaget EXCEPT:
 - Used cross-sectional sample of 175 children (grades K-6; ages 5-12) from school in MA
 - Had structured questions that were the same for each child

Piaget's findings

- Mass conserved @ 7-8 yrs
- Weight conserved @ 9-10 yrs
- Volume conserved @ 11-12 yrs

Elkind's findings

TABLE 1 PER CENT^a OF CONSERVATION RESPONSES FOR MASS, WEIGHT, AND VOLUME AT SUCCESSIVE AGE LEVELS (N = 25 at each Age Level) Type of Age level 5 10 11 quantity Mass 19 51 92 94 52 73 Weight 21 89 Volume 19 a Of 75 possible responses.

Why?

- The children's patterns of explanation/thought processes changed based on age
 - Romancing: "my uncle said so"
 - Perceptual: "it's longer, thinner vs. thicker, wider"
 - Specific: "you didn't add or take away"
 - General: "no matter the shape, it doesn't change the amount"
- Piagetian term: logical multiplication=ability to find the point of intersection between two things that are different

TABLE 2

Per Cent for Each of Four Types of Explanation Given at Successive Age Levels

(N = 25 at each Age Level)

Type of	Age level						
explanation	5	6	7	8	9	10	11
Romancinga	4	3	7	7	0	1	0
Perceptuala	85	64	53	57	36	32	33
Specific ^b	11	33	40	36	60	51	49
General ^b	0	0	0	0	4	16	18

a Explanation of non-conservation.

b Explanation of conservation.

Introduction

- Piaget's conservation tasks suggest young children fail to conserve number
 - Alternative view: failure may stem from language, attention, or estimation problems, not logical incapacity
 - Approach: Use "magic show" to test number invariance without relying on verbal questions/estimation
- Invariance Rules
 - o Relevant operations: addition, subtraction (change number).
 - Irrelevant operations: displacement, rearrangement (do not change number)
 - Use these rules to correctly classify which transformations affect number

Experiments

Gelman, 1972

Experiment 1: Subtraction vs. Displacement

- 96 children (ages 3–6)
- Subtraction → strong surprise, search, "missing mouse"
- Displacement → little/no surprise, explained as movement
 - Children recognized reversibility

Experiment 2: Addition vs. Displacement

- 32 children (ages 3-4.5)
 - Addition → surprise, doubt, "extra mouse"
 - Displacement → still winner, no surprise
 - Explanations used addition/subtraction logic
 - Children recognized reversibility

Control: Standard Conservation Task

- Classic Piaget rows of 3 chips
 - 3-year-olds: almost always judged unequal
- 4-year-olds: often failed too
 - Correct answers rare, explanations not logical
 - Shows conservation failure even for small numbers

Experiments

Gelman, 1972

Redundant Cue or ange SCHEMATIC ILLUSTRATION OF PHASE II & III DISPLAYS Transformation Direction Locus of Ch Phase II Phase III Group Previous Previous Winner Loser Label Winner Loser Group 000 0 0 0 0 0 0 from middle Group LSM 000 0 0 0 0 0 0 LENGTH Group DISPLACEMENT 000 00 000 0 0 lengthen → Group LOL 000 0 0 0 00 Group from end TRACTION 000 0 00 0 0 0 from Group DSM 000 0 0 0 0 0 DENSITY DISPLACEMENT → Group DDS 000 0 0 0 000 0 length Group 000 0 0 0 0 0 0 DDL

Logic of Design

Fig. 1.—Schematic presentation of the eight Phase II—Phase III display conditions used in experiment 1.

Discussion

- Findings:
 - Very young children can:
 - Treat small numbers as invariant under displacement
 - Correctly classify addition/subtraction as relevant operations.
 - Suggest reversibility (e.g., adding undoes subtraction).
- Contradiction with Piaget:
 - Conservation failure ≠ absence of logical capacity
 - Likely due to language confusion, attentional shifts, or estimation demands
- Implication:
 - Children possess logic system for small-number invariance before reaching "concrete operations"

Gelman, 1972

Bridging Themes

Cross cutting theme=building on Piaget's conservation tasks

Elkind, 1961:

- True replication of Piaget
- Used verbal learning and recall
- Focused on explanations and reasoning

Gelman, 1972:

- Challenged Piaget's methods and findings
- Used reinforcement and took out verbal recall
- Focused on logic rules
 "built-in" to the task

"Sausage" Experiment Activity

- Get into groups of 3-4
- Shape your clay into two equal/identical balls
- Roll one ball into a "sausage" shape and keep the other the same
- As a group:
 - Reflect on what kinds of explanations children of different ages might give
 - Romancing: "my uncle said so"
 - Perceptual: "it's longer, thinner vs. thicker, wider"
 - Specific: "you didn't add or take away"
 - General: "no matter the shape, it doesn't change the amount"
 - Discuss the rules/logic needed to understand the task