

Examen final

Département de génie électrique et de génie informatique GEL-3000 – Électronique des composants intégrés

Le 28 avril 2020

Toute documentation permise.

Durée de l'examen : toute la journée (9h00 – 16h00).

Veuillez signer et joindre la <u>déclaration d'intégrité relative aux travaux et aux</u> examens réalisés à distance.

1. (24 points) Questions à courts développements

Répondez aux questions suivantes :

- a) Pour une tension V_{SG} suffisante, dessinez la courbe du courant de drain I_D d'un MOSFET de type p en fonction de V_{DS} . Note: Dans un MOSFET de type p, le courant circule à partir de la source vers le drain.
- b) Expliquez ce qu'est la région active dans un MOSFET et dites comment on peut s'assurer que le transistor fonctionne dans cette région.
- c) Expliquez l'utilité et le fonctionnement du circuit montré à la Figure 1. Donnez un avantage de remplacer les transistors BJT par des MOSFET.
- d) Dessinez la caractéristique v_i - v_o du circuit de la Figure 1 et faites ressortir ses limites de tension de sortie maximum (v_{max}) et minimum (v_{min}).
- e) Expliquez l'utilité et le fonctionnement du circuit montré à la Figure 2. En particulier, à quoi sert le miroir de courant?
- f) Donnez les <u>tensions d'entrée en mode commun</u> maximum (v_{icm_max}) et minimum (v_{icm_min}) du circuit de la Figure 2 en fonction des V_{DD} , V_{SS} , V_{ov} et des tensions de seuil V_{tn} et $|V_{tp}|$ des transistors.
- g) Modifiez ce circuit afin d'augmenter son TRMC. Dessinez votre solution.
- h) Soit le miroir de courant montré à la Figure 3. Calculez le courant I_o si $I_{REF} = 25 \mu A$ et $(W/L)_2 = 4(W/L)_1$.

Figure 1.

Figure 2.

Figure 3.

2. (25 points) Analyse de circuits

Soit le circuit suivant :

Figure 4.

- a) Dessinez le demi circuit différentiel associé à ce circuit.
- b) À partir du demi circuit différentiel trouvé, dessinez le modèle petit signal du circuit.
- c) Donnez l'expression des paramètres suivants : résistance d'entrée (Z_{in}) , résistance de sortie (R_o) et gain (v_{od}/v_{id}) .
- d) Déterminez la plage d'entrée en mode commun ($V_{CMmin} < V_{CM} < V_{CMmax}$) et la plage de tension de sortie $v_{odmin} < v_{od} < v_{odmax}$ (considérez une chute de tension V_{SI} dans la source de courant idéale.
- e) Dessinez la version « à sortie unique » et charge active de ce circuit. Notes : le gain de votre circuit doit avoir la même expression analytique que la version à sortie différentielle montrée à la Figure 4.

3. (24 points) *Conception d'un amplificateur opérationnel à deux étages* Soit le circuit suivant :

Figure 5.

Notez que $V_{DD}=V_{SS}=1.8V$, $(W/L)_8=(W/L)_5$, $V_A^{'}=12V/\mu m$, $V_{tn}=|V_{tp}|=0.4V$, $\mu_n C_{ox}=200~\mu A/V^2$ et $\mu_p C_{ox}=55~\mu A/V^2$. Le paramètre V_{OV} est identique pour les transistors Q_1 à Q_5 et Q_8 . On utilise $C_C=2~pF$ et $L=1\mu m$ pour tous les transistors. Négligez l'effet de modulation de canal.

- a) Donnez la fonction de chaque transistor $(Q_1 \grave{a} Q_8)$.
- b) Calculez I_{REF} et g_{m1} afin d'obtenir un gain de 40 dB et une résistance de sortie de 75 k Ω pour <u>le premier étage de l'amplificateur</u>.
- c) Déterminez les ratios W/L des transistors Q₁ à Q₅ et Q₈.
- d) Calculez le gain en boucle ouverte total (v_o/v_i) et la résistance de sortie R_o de cet ampli-op.
- e) Changez la source de courant idéale I_{REF} par une résistance R. Faites en sorte que R produise le courant calculé en a).
- f) Que manque-t'il à cet ampli-op pour conduire des charges résistives? Faites un ajout à ce circuit pour lui permettre à de conduire des charges résistives.
- g) Calculez le *Slew rate* de cet amplificateur en μ V/s.
- h) Calculez la marge de phase de cet amplificateur.

4. (27 points) Conception d'un circuit à transistors

On vous demande de construire un circuit intégré CMOS répondant aux spécifications suivantes :

- L'impédance d'entrée du circuit doit être faible (de l'ordre de $< 1 \text{ k}\Omega$).
- Utilisez des sources de courant idéale pour polariser tous vos transistors.
- Le circuit doit fournir un gain dont l'expression analytique simplifiée s'approche de $v_o/v_i = (g_m r_0)^3$ lorsqu'on utilise des sources de courant idéales pour polariser les transistors.
- Le circuit doit pouvoir conduire des charges résistives.
- Le circuit doit comporter des transistors pmos et des transistors nmos.

Suggestion : utilisez un circuit comportant plusieurs blocs élémentaires en cascade.

Répondez aux questions suivantes :

- a) Dessinez votre solution de circuit avec source de polarisation idéale.
- b) Fournissez une analyse du gain du circuit.
- c) Fournissez une expression analytique pour l'impédance d'entrée du circuit.
- d) Fournissez une expression analytique pour l'impédance de sortie du circuit.

Bonne chance!

Aide mémoire

Courant de drain et paramètres petit signal du MOSFET

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_t)^2$$

$$r_o = \frac{1}{\lambda I_D} = \frac{V_A}{I_D}$$

$$g_{m} = \frac{2I_{D}}{V_{OV}},$$
 $g_{m} = \frac{1}{2}\mu_{n}C_{ox}\frac{W}{L}(V_{GS} - V_{t}),$ $g_{m} = \sqrt{2\mu_{n}C_{ox}(W/L)I_{D}}$

$$g_m = \sqrt{2\mu_n C_{ox}(W/L)I_D}$$

$$V_{GS} = V_{tn} + \sqrt{\frac{2I_D}{\mu_n C_{ox}(W/L)}}$$

Modèle petit signal de l'ampli-op à 2 étages

