Optimization Theory and Applications

Kun Zhu (zhukun@nuaa.edu.cn)

November 6, 2018

Introduction

We consider the optimization problem

minimize
$$f(\mathbf{x})$$

subject to $\mathbf{x} \in \Omega$

- $f: \mathbb{R}^n \to \mathbb{R}$ is the *objective function*
 - Cost function
 - Utility function
- x is an n-vector of independent decision variables:

$$\mathbf{x} = \{x_1, x_2, \dots, x_n\}^T \in \mathbb{R}^n$$

- The set $\Omega \subset \mathbb{R}^n$ is the **constraint set** or **feasible set**
- Question: What if $\Omega = \mathbb{R}^n$?

Introduction

- The optimization problem is a decision problem for finding the "best" ${\bf x}$ over all possible vectors in Ω
- The "best" x which results in the smallest value of the objective function is the minimizer
- Possible multiple minimizers
- Maximization problem

Types of Minimizers

- **Definition:** Suppose $f: \mathbb{R}^n \to \mathbb{R}$ is a real-valued function defined on some set $\Omega \subset \mathbb{R}^n$. A point \mathbf{x}^* is a **global minimizer** of f over Ω if $f(\mathbf{x}) \ge f(\mathbf{x}^*)$ for all $\mathbf{x} \in \Omega \setminus \{\mathbf{x}^*\}$
- A point $\mathbf{x}^* \in \Omega$ is a *local minimizer* of f over Ω if there exists $\varepsilon > 0$ such that $f(\mathbf{x}) \geq f(\mathbf{x}^*)$ for all $\mathbf{x} \in \Omega \backslash \{\mathbf{x}^*\}$ and $\|\mathbf{x} \mathbf{x}^*\| < \varepsilon$
- If we replace ≥ with >
 - Strict local minimizer
 - Strict global minimizer

Types of Minimizers

- An example for n=1
 - x₁: strict global minimizer
 - x₂: strict local minimizer
 - x₃: local (not strict) minimizer

Introduction

- If \mathbf{x}^* is a global minimizer of f over Ω , we write
 - $f(\mathbf{x}^*) = \min_{\mathbf{x} \in \Omega} f(\mathbf{x})$
 - $\mathbf{x}^* = \arg \min_{\mathbf{x} \in \Omega} f(\mathbf{x})$
- Example: $f(x) = (x+1)^2 + 3$
 - $\arg \min f(\mathbf{x}) = -1 \text{ for } \Omega = \mathbb{R}^n$
 - $\arg \min f(\mathbf{x}) = 0 \text{ for } \Omega = [0, \infty)$
- Strictly speaking, an optimization problem is solved only when a global minimizer is found
- Global minimizer vs local minimizer

Existence of Minimizers

• Theorem of Weierstrass: If f is continuous and Ω is closed and bounded, then a global minimizer exists

Conditions: Necessary and Sufficient

- We seek conditions that characterize minimizers
- Two types of conditions: necessary and sufficient
- Necessary condition: If x* is a minimizer, then x* satisfies this particular condition
- Sufficient condition: If x* satisfies this particular condition, then x* is a minimizer.

Conditions: Necessary and Sufficient

- A necessary condition limits the set of candidates for minimizers
- A sufficient condition guarantees that a point is a minimizer
- We consider conditions that are based on gradients and Hessians. These conditions apply to local minimizers

- Consider the totally unconstrained problem minimize $f(\mathbf{x})$ subject to $\mathbf{x} \in \mathbb{R}^n$
- Assume $f \in C^1$
- Theorem: If \mathbf{x}^* is a local minimizer, then $\nabla f(\mathbf{x}^*) = 0$
- For n = 1, this theorem should be very familiar ("slope=0")
- First order necessary condition (FONC)

- Consider the general set constrained problem minimize $f(\mathbf{x})$ subject to $\mathbf{x} \in \Omega$
- If \mathbf{x}^* is a local minimizer and an interior point of Ω , then $\nabla f(\mathbf{x}^*) = 0$
- · Need to consider the boundary case

Feasible Direction

- A minimizer could be an interior point or a boundary point
- For discussing the conditions for a boundary minimizer, we introduce the concept of feasible direction
- **Definition:** A vector $\mathbf{d} \in \mathbb{R}^n$, $\mathbf{d} \neq 0$, is a *feasible direction* at $\mathbf{x} \in \Omega$ if there exists $\alpha_0 > 0$ such that $\mathbf{x} + \alpha \mathbf{d} \in \Omega$ for all $\alpha \in [0, \alpha_0]$

- Let $f: \mathbb{R}^n \to \mathbb{R}$ be a real-valued function
- Let d be a feasible direction at $x \in \Omega$
- The *directional derivative* of *f* in the direction d, denoted by ∂f/∂d, is the *real-valued function* defined by

$$\frac{\partial f}{\partial \mathbf{d}}(\mathbf{x}) = \lim_{\alpha \to 0} \frac{f(\mathbf{x} + \alpha \mathbf{d}) - f(\mathbf{x})}{\alpha}$$

• If $\|\mathbf{d}\| = 1$, $\partial f/\partial \mathbf{d}$ is the *rate of increase* of f at \mathbf{x} in the direction \mathbf{d}

• Suppose ${\bf x}$ and ${\bf d}$ are given, then $f({\bf x}+\alpha{\bf d})$ is **a function of** α

$$\phi(\alpha) = f(\mathbf{x} + \alpha d)$$

The directional derivative of f at x in the direction d is

$$\frac{\partial f}{\partial \mathbf{d}}(\mathbf{x}) = \lim_{\alpha \to 0} \frac{f(\mathbf{x} + \alpha \mathbf{d}) - f(\mathbf{x})}{\alpha} = \frac{d}{d\alpha} f(\mathbf{x} + \alpha \mathbf{d})|_{\alpha = 0}$$

By the chain rule

$$\frac{d}{d\alpha}f(\mathbf{x} + \alpha \mathbf{d})|_{\alpha = 0} = \nabla f(\mathbf{x})^T \mathbf{d} = \mathbf{d}^T \nabla f(\mathbf{x})$$

Hence

$$\frac{\partial f}{\partial \mathbf{d}}(\mathbf{x}) = \mathbf{d}^T \nabla f(\mathbf{x})$$

• When $\|\mathbf{d}\| = 1$, the rate of increase of f in direction \mathbf{d} can be represented by $\langle \nabla f(\mathbf{x}), \mathbf{d} \rangle$

• Example: Define $f(\mathbf{x}) = x_1x_2x_3$ and let $\mathbf{d} = [1/2, 1/2, 1/\sqrt{2}]^T$. Calculate the directional derivative of f in the direction \mathbf{d}

• Example: Define $f(\mathbf{x}) = x_1 x_2 x_3$ and let $\mathbf{d} = [1/2, 1/2, 1/\sqrt{2}]^T$. The directional derivative of f in the direction \mathbf{d} is

$$\frac{\partial f}{\partial \boldsymbol{d}}(\boldsymbol{x}) = \nabla f(\boldsymbol{x})^{\top} \boldsymbol{d} = [x_2 x_3, x_1 x_3, x_1 x_2] \begin{bmatrix} 1/2 \\ 1/2 \\ 1/\sqrt{2} \end{bmatrix} = \frac{x_2 x_3 + x_1 x_3 + \sqrt{2} x_1 x_2}{2}.$$

- Theorem: First-Order Necessary Condition (FONC). Let $f \in \mathcal{C}^1$ a real-valued function on $\Omega \subset \mathbb{R}^n$. If \mathbf{x}^* is a local minimizer of f over Ω , then for any feasible direction \mathbf{d} at \mathbf{x}^* , we have $\mathbf{d}^T \nabla f(\mathbf{x}^*) \geq 0$
 - Alternatively, the directional derivative $\frac{\partial f}{\partial \mathbf{d}}(\mathbf{x}^*) \geq 0$ for all feasible directions \mathbf{d}
 - The rate of increase of f at \mathbf{x}^* in any feasible direction $\mathbf{d} \in \Omega$ is nonnegative

Corollary: Interior Case (FONC). Let Ω be a subset of ℝⁿ and f ∈ C¹ a real-valued function on Ω. If x* is a local minimizer of f over Ω and x* is an interior point, then for any feasible direction d at x*, we have

$$\nabla f(\mathbf{x}^*) = 0$$

We can use FONC to find candidate optimal solutons

• Example 1:

minimize:
$$x_1^2 + 0.5x_2^2 + 3x_2 + 4.5$$

subject to: $x_1, x_2 \ge 0$

- Questions:
 - Is the first-order necessary condition (FONC) for a local minimizer satisfied at x = [1,3]^T?
 - Is the FONC for a local minimizer satisfied at $\mathbf{x} = [0, 3]^T$?
 - Is the FONC for a local minimizer satisfied at $\mathbf{x} = [1,0]^T$?
 - Is the FONC for a local minimizer satisfied at $\mathbf{x} = [0, 0]^T$?
- The plot of level sets of example 1

 Example 2: Two base stations transmitting with equal power. We are interested in finding the position of the mobile that maximizes the signal-to-interference ratio

The signal-to-interference ratio is

$$f(x) = \frac{1 + (2 - x)^2}{1 + x^2}$$

and we have

$$f'(x) = \frac{-2(2-x)(1+x^2) - 2x(1+(2-x)^2)}{(1+x^2)^2}$$
$$= \frac{4(x^2 - 2x - 1)}{(1+x^2)^2}.$$

• By the FONC, at the optimal position x^* , we have $f'(x^*) = 0$. Accordingly, we have $x^* = 1 - \sqrt{2}$ or $x^* = 1 + \sqrt{2}$

• Theorem: Second-Order Necessary Conditions (SONC). Let $\Omega \subset \mathbb{R}^n$, $f \in \mathcal{C}^2$ a function on Ω , \mathbf{x}^* a local minimizer of f over Ω , and \mathbf{d} a feasible direction at \mathbf{x}^* . If $\mathbf{d}^T \nabla f(\mathbf{x}^*) = 0$ then

$$\mathbf{d}^T F(\mathbf{x}^*) \mathbf{d} \ge 0,$$

where F is the Hessain of f

Question: Why do we need the SONC?

• Corollary: Interior Case. Let \mathbf{x}^* be an interior point of $\Omega \subset \mathbb{R}^n$. If \mathbf{x}^* is a local minimizer of f over Ω , then

$$\nabla f(\mathbf{x}^*) = 0,$$

and $F(\mathbf{x}^*)$ is positive semidefinite $F(\mathbf{x}^*) \geq 0$; that is, for all $\mathbf{d} \in \mathbb{R}^n$,

$$\mathbf{d}^T F(\mathbf{x}^*) \mathbf{d} \ge 0$$

Summary: Second Order Necessary Condition

- Interior case: $F(\mathbf{x}^*) \geq 0$
- General case: If $\mathbf{d}^T \nabla f(\mathbf{x}^*) = 0$ for a feasible direction \mathbf{d} , then $\mathbf{d}^T F(\mathbf{x}^*) \mathbf{d} \geq 0$
- Note: the above conditions are necessary conditions and not sufficient conditions

• Example: Consider a function $f(x) = x^3$. We have f'(0) = 0 and f''(0) = 0, the point x = 0 satisfies both the FONC and SONC. However, x = 0 is not a minimizer

• Example: Consider a function $f(x) = x_1^2 - x_2^2$. The FONC requires that $\nabla f(\mathbf{x}) = [2x_1, -2x_2]^T = 0$. Thus $\mathbf{x} = [0, 0]^T$ satisfies the FONC. The Hessian matrix of f is

$$\boldsymbol{F}(\boldsymbol{x}) = \begin{bmatrix} 2 & 0 \\ 0 & -2 \end{bmatrix}$$

- The Hessian matrix is indefinite
 - For some $\mathbf{d_1}$, we have $\mathbf{d_1}^T F \mathbf{d_1} > 0$, (e.g., $\mathbf{d_1} = [1, 0]^T$)
 - For some $\mathbf{d_2}$, we have $\mathbf{d_2}^T F \mathbf{d_2} < 0$, (e.g., $\mathbf{d_2} = [0, 1]^T$).
 - Thus $\mathbf{x} = [0, 0]^T$ does not satisfy the SONC, and is not a minimizer

• Theorem: Second-Order Sufficient Condition (SOSC), Interior Case. Let $\Omega \subset \mathcal{C}^2$ be defined on a region in which \mathbf{x}^* is an interior point. Suppose that

1.
$$\nabla f(\mathbf{x}^*) = 0$$

2.
$$F(\mathbf{x}^*) > 0$$

Then, \mathbf{x}^* is a strict local minimizer of f

• Example: Let $f(\mathbf{x}) = x_1^2 + x_2^2$. We have $\nabla f(\mathbf{x}) = [2x_1, 2x_2]^T = 0$ if and only if $\mathbf{x} = [0, 0]^T$. For all $\mathbf{x} \in \mathbb{R}^2$, we have

$$\boldsymbol{F}(\boldsymbol{x}) = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} > 0$$

• The point $\mathbf{x} = [0, 0]$ satisfies the FONC, SONC, Aand SOSC. It is a strict local minimizer

