

•		
•		
$ \overline{::\rightarrow res:}$		
✓		
•		
←		
←		
\leftarrow		

$:::\rightarrow res:$	
V	
V	
V	
V	
\leftarrow	
\leftarrow	
\leftarrow	
$\wedge \vee$	
\leftarrow	
$\wedge \vee$	
/ \ V	
\leftarrow	
$\rightarrow res$:	
/ ^ /	
$\neq \land \leq$	
\leq	
<u>-</u>	

 $\overline{par:\rightarrow res:}$

*

 $\neq \vee \wedge \vee$

 $\leftarrow \wedge$

 $\leftarrow \wedge$

 $\leftarrow \wedge$

 $\leftarrow \wedge$

 $\geq \land \geq$

 $\binom{n}{2}$

 $\binom{n-1}{2}$

 $\binom{n-i-1}{2}$

 $\binom{n}{2}\binom{n}{2}\binom{n-1}{2}$

 $_{ij}\forall\leftarrow$

 $Cantidad de arqueologos: 4 \\ Cantidad de canibales: 2$

Velocidad de arqueologos: 10101010

Velocidad de canibales: 1010

Velocidad decruce total: 90

 $Cantidad de arqueologos: 5\\ Cantidad de canibales: 0$

Velocidad de arqueologos: 15105220

Velocidad de canibales:

Velocidad decruce total:56

 $_{i}\neq _{j}\forall \leftarrow$

Cantidaddearqueologos: 3 Cantidaddecanibales: 2 Velocidaddearqueologos: 246 Velocidaddecanibales: 135 *

Cantidaddearqueologos :4 Cantidaddecanibales :2

Velocidad de arqueologos: 36912

Velocidad de canibales: 12

Velocidad de crucetotal: 33

Cantidaddearqueologos :2 Cantidaddecanibales :3 Velocidaddearqueologos :36 Velocidaddecanibales :125

Velocidad de cruce total:

$$1 \le N + M \le 6$$

n	t	t/n

n	t	t/n

 $10^{15} \\sumaParcial3^03^iP \\sumaParcialsumasParcialesi + 1sumaParcial3^{i-1} \\PequilibrioActual \\sumasParcialesequilibrioActualequilibrioActualsumasParcialesequilibrioActualarrayDarrayI \\equilibrioActualsumasParciales \\arrayDarrayI$

 $\overline{LongLong: \rightarrow S: T: array I: array D:}$

 \sqrt{P} $\leftarrow 3^i$

 $\begin{array}{c} \sqrt{P} \\ \sqrt{P} \\ \leftarrow \\ + 2^{i-1} \end{array}$

 $\frac{size}{2}$ $lg(\sqrt{P})$

≥ ^

← U

 $\leftarrow \\ \leftarrow \\ \leftarrow \frac{middle}{2}$

 $\leftarrow \frac{size}{2}$

 \sqrt{P}

 $:\rightarrow S:T:arrayI:arrayD:$ $\overline{\sqrt{P}}$ $3^0 3^i P \sqrt{P}$ $\begin{array}{l}
 i = 0 \Rightarrow \\
 3^{i} \ge P \ge 3^{i-1}i > 0i \le \sqrt{P} \\
 P \ge 3^{i-1} \Rightarrow \sqrt{P} \ge \sqrt{3^{i-1}} \\
 \sqrt{3^{i-1}} \ge i \Rightarrow 3^{i-1} \ge i^{2}i = 13^{1-1} \ge 1i > 13^{i-1}i^{2}
\end{array}$ $\sum_{i=1}^{i} 3^{i} \ge P$ \sqrt{P} \sqrt{P} $sumasParciales\sqrt{P}^{i-1}i^{-1}\sqrt{P}$ $\sqrt{P}sumasParcialesequilibrioActualequilibrioActualsumasParcialesequilibrioActualarrayDarrayI$ equilibrio Actual sum as Parciales $equilibrioActual\sqrt{P}$ $arrayDarrayI\#\#\#{\leq}\sqrt{P}$ $\sqrt{P}\sqrt{P}\sqrt{P}$ $\sqrt{P}\sqrt{P}\sqrt{P}\sqrt{P}\sqrt{P}$ equilibrio Actual $\sum_{i=0}^{n} (3^i)$

$$[0, \sum_{i=0}^{1} (3^{i})] = [0, 4]$$

•

[0, 1]

 $i=n\in \mathbb{N}n+1$

$$[0, \sum_{i=0}^{n} (3^i)]$$

$$[0, \sum_{i=0}^{n+1} (3^i)]$$

$$[0, \sum_{i=0}^{n+1} (3^i)] = [0, \sum_{i=0}^{n} (3^i)] + 3^{n+1}$$

 $\sum_{i=0}^{n} (3^i)$

$$3^{n+1} = 3 * 3^n.$$

$$3^n < \sum_{i=0}^n (3^i) 3^n 3^n$$

$$x \in \mathbb{N}x \leq \sum_{i=0}^{n+1} (3^i)$$

 $\forall n \in \mathbb{N}$

$$\begin{array}{l} x maxima potencia de 3en [0, \sum_{i=0}^{n+1} (3^i)] 3^{n+1} \\ x \sum_{i=0}^{n} (3^i) < 3^{n+1} \sum_{i=0}^{n} (3^i) < x \end{array}$$

$$x3^{n+1} \sum_{i=0}^{n} (3^i)$$

$$x < \sum_{i=0}^{n+1} (3^i) = x < \sum_{i=0}^{n} (3^i) + 3^{n+1} = x - 3^{n+1} < \sum_{i=0}^{n} (3^i)$$

$$\sum_{i=1}^{n} 3_i = P$$

$$P3^i + R \leftarrow$$

P

$$PMOD2 = 1$$

P

$$PMOD2 = 0$$

 $P3^i \leq \leq$

 $3^{30}P$

Mejor caso Algoritmo 2

n	t	\sqrt{P})	t/\sqrt{P})
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			
21			
22			
23			
24			
25			
26			
27			
28			
29			
30			

$$\sum_{i=1}^{n} 3_i = P$$

$$\sum_{i=1}^{20} 3_i = 5230176601$$

Peor Caso Algoritmo 2

Valor de entrada P

Peor caso ejercicio 2 sobre complejidad

Valor de entrada P

n	t	\sqrt{P})	t/\sqrt{P}
	-	•	, , , ,

urrentIdx:			
- -			
$n^2.log(n)$			

$\overline{currentIdx:res:}$	
\leftarrow	
\leftarrow	
\leftarrow	
\leftarrow	
\leftarrow	
\leftarrow	
\leftarrow	
$\overline{nlog(n)}$	