CO542 - Neural Networks and Fuzzy Systems <u>Lab 02 - Fuzzy Logic</u> <u>E/15/077</u>

Scenario - Two Inputs One Output

Suppose you are assigned to design a fuzzy control system to determine the force needed to balance an inverted pendulum in a cart. Consider the inputs and output as given below. The angle (θ) between the platform and the pendulum and the angular velocity (ω) of this angle are chosen as the inputs of the system. The Force (F) to be applied on the platform to balance the pendulum is chosen as the corresponding output.

Figure 1: Inverted Pendulum in a cart

Input 1 : Angle (θ)

States of Input1: (NH, NL, Z, PL, PH)

Input 2 : Angular Velocity (ω)

States of Input2: (NH, NL, Z, PL, PH)

Output:

Force to be exerted to cart (F)

NH – Negative High (-2)

NL – Negative Low (-1)

Z - Zero(0)

PL – Positive Low (1)

PH – Positive High (2)

Figure 2: Membership for angle and angular velocity

Lab Tasks

- 1. Define all the fuzzy rules for the scenario.
 - angle

	NH	NL	Z	PL	PH
NH	NH	NH	NH	NL	Z
NL	NH	NH	NL	Z	PL
Z	NH	NL	Z	PL	PH
PL	NL	Z	PL	PH	PH
PH	Z	PL	PH	PH	PH

- 2. According to the figure 2, the corresponding rules can be listed below;
 - If angle is zero and velocity is zero then force is zero
 - If angle is zero and velocity is negative low then the force is negative low
 - If angle is positive low and velocity is zero then force is positive low
 - If angle is positive low and velocity is negative low then force is zero
- Calculating membership functions

Figure 03: Graphical calculations

$$\mu_{33} = 0.75 \times 0.4 = 0.3$$

$$\mu_{23} = 0.75 \times 0.6 = 0.45$$

$$\mu_{34} = 0.4 \times 0.25 = 0.1$$

$$\mu_{24} = 0.6 \times 0.25 = 0.15$$

- Using centroid defuzzification method

$$f(x) = \frac{\sum_{i=1}^{N} z^{i} \prod_{j=1}^{n} \mu_{ij}(x_{j})}{\sum_{i=1}^{N} \prod_{j=1}^{n} \mu_{ij}(x_{j})}$$

Force = (Z x
$$\mu_{33}$$
 + NL x μ_{23} + PL x μ_{34} + Z x μ_{24} / (μ_{33} + μ_{23} + μ_{34} + μ_{24}) = -0.35 N

3. Solving the same using Fuzzy Logic toolbox in MATLAB

Figure 04 : Fuzzy Logic Editor

Figure 05 :input membership function-velocity

Figure 06 :Input membership function-angle

Figure 07: Output membership function-force

Figure 08: Rule viewer

Figure 09 : Rule Base

Figure 10 : Fuzzy Logic Surface Viewer

```
>> fis = readfis('Inverted_Pendulum')
fis =
  struct with fields:
            name: 'Inverted_Pendulum'
            type: 'mamdani'
       andMethod: 'min'
        orMethod: 'max'
    defuzzMethod: 'centroid'
       impMethod: 'min'
       aggMethod: 'max'
           input: [1×2 struct]
          output: [1×1 struct]
            rule: [1×25 struct]
>> out = evalfis([65 -0.1],fis)
out =
    0.3570
>> surfview(fis)
```

Figure 11 :MATLAB Output

Thus matlab simulation also give same answer as 0.3570 N