Show and tell with PETSc and Firedrake

Examples from my book. I wrote a book called *PETSc for Partial Differential Equations* which was published by SIAM Press in 2021. The C and Python codes for the book's examples are at github.com/bueler/p4pdes. In this demonstration I'll show examples from Chapters 5, 11, and 14.

What is PETSc? The *Portable, Extensible Toolkit for Scientific computing* is an open and free C library of numerical software, especially linear algebra, mesh management, and ODE IVP solvers, from Argonne National Laboratory. Starting in about 1990, PETSc coevolved with MPI (= *Message Passing Interface*), also from Argonne, as the fundamental infrastructure for doing science and engineering simulations and computations on supercomputers, the largest of which have more than a million processors (cores). MPI and PETSc are essential "software stack" for most large-scale *parallel* computations.

Documentation and download is at petsc.org.

Example 1. Chapter 5 solves a pair of *coupled diffusion-reaction equations* on $(x, y) \in (0, 2.5) \times (0, 2.5)$ and t > 0:

$$u_t = D_u \nabla^2 u - uv^2 + \phi(1 - u)$$

$$v_t = D_v \nabla^2 v + uv^2 - (\phi + \kappa)v$$

where D_u, D_v, ϕ, κ are constants and u(t, x, y), v(t, x, y) are chemical concentrations. This is a model for pattern generation, for instance as an explanation of how animal skins can end up spotted.

The C code pattern.c calls the PETSc library for time-stepping, parallel grid management, and parallel, iterative solvers for linear systems. The spatial derivatives are approximated with a 9-point-stencil centered finite difference scheme for ∇^2 , which generates an MOL system. Default time-stepping (ts_) is by an adaptive method which is implicit for the stiff diffusion part and explicit for the non-stiff, nonlinear reaction terms. Other methods can be chosen at run-time, for instance by -ts_type beuler, and so on.

Here is how to build it, and run it in parallel (4 cores) on a 96×96 spatial grid:

```
$ cd c/ch5/ && make pattern
$ mpiexec -n 4 ./pattern -da_refine 5 -ts_max_time 5000 -ts_monitor \
    -ts monitor solution draw
```

Example 2. The advect .c code in Chapter 11 takes a finite volume approach, to generate the MOL ODE system, for solving a scalar *advection equation* in 2D, on $(x, y) \in (-1, 1) \times (-1, 1)$, with periodic boundary conditions, for t > 0:

$$u_t + \nabla \cdot (\mathbf{a}u) = 0$$

The velocity field in this example is rotational: $\mathbf{a}(x,y) = \langle y, -x \rangle$. Here is an example run (4 cores, 160×160 spatial grid):

```
$ cd c/ch11/ && make advect
$ mpiexec -n 4 ./advect -da_refine 5 -adv_problem rotation \
    -ts_max_time 6.283185 -ts_monitor -ts_monitor_solution draw
```

A surface plot of the initial condition u(x,y,0) would look like a cone and a square tower. The spatial derivatives are approximated with finite differences and a flux-limited higher-order upwind scheme. The time-stepping is by a 3rd-order adaptive Runge-Kutta method, quite suitable for such hyperbolic problems if the fluxes are discretized appropriately. The time-dependent solution rotates the initial picture. We see that numerical diffusion causes the sharp edges to smooth out.

Example 3. The last example is the Python code in Chapter 14 which solves a Stokes problem for a steady flow of a 2D viscous, incompressible fluid with velocity \mathbf{u} , pressure p, and viscosity μ . The equations are

$$-\nabla \cdot (2\mu \, D\mathbf{u}) + \nabla p = \mathbf{0},$$
$$\nabla \cdot \mathbf{u} = 0.$$

The boundary value problem has zero velocity $\mathbf{u} = 0$ on the bottom and sides of the unit square, but along the top we impose right-ward motion; this is called a *lid-driven cavity*.

Firedrake (firedrakeproject.org) is a Python finite element library which allows us to express a PDE problem directly, independent of a choice of particular (spatial) discretization.

```
V = VectorFunctionSpace(mesh, 'CG', degree=2)
W = FunctionSpace(mesh, 'CG', degree=1)
Z = V * W
up = Function(Z)
u,p = split(up)
v,q = TestFunctions(Z)
Du = 0.5 * (grad(u) + grad(u).T)
Dv = 0.5 * (grad(v) + grad(v).T)
F = (2.0 * args.mu * inner(Du,Dv) - p * div(v) - div(u) * q) * dx
FIXME
```