CSC 446, HW#7, Kefu Zhu

Tuning of --iterations

To tune the optimal number of iterations, I first pick the _-cluster_num to be 3 and try training the model with different number of iterations (_-iterations)

Iteration = 10

Note: We can clearly see the log likelihood has not converged yet. So we add the iterations number to 50 in the next experiment

Iteration = 50

Note: We see the log likelihood is converging roughly after 20 iterations. But to be same, we train the model again using 100 iterations to see the trend

Iteration = 100

Note: From the graph above, it is reasonable to say that the model is converged after 100 iterations

Tuning of --cluster_num

After knowing that 100 iterations is enough to have the model converge under the assumption that K=3, where K denotes the number of clusters, I then tried different values for $--cluster_num$ to see how many clusters is suitable for our dataset

$$K = 3$$

K = 10

Note:

From the 3 experiments above, using K = 3, 5, 10, we can clearly see when K = 5, the model has the best performance.

- Although model with $\kappa = 3$ is not overfitting, it does not achieve better performance compared to model with $\kappa = 5$
- model with K = 5 has highest log likelihood among the three
- model with K = 10 is clearly overfitting on the training dataset, resulting in the decline of log likelihood in the dev dataset

Conclusion

Based on the experiments above, model with 100 iterations and 5 number of clusters has the best performance among the others