Straight Lines and Pair of Straight Lines

EE24BTECH11041 - Mohit

I. A -FILL IN THE BLANKS

- 1) The area enclosed within the curve |x| + |y| = 1(1981-2 Marks)
- 2) $y = 10^x$ is the reflection of $y = \log x$ in the line whose equation is ... (1982-2 Marks)
- 3) The set of lines ax + by + c = 0, where 3a + 2b + c = 04c = 0 concurrent at the point ... Marks)
- 4) Given the points A(0, 4) and B(0, -4), the equation of the locus of the point p(x, y), such that |AP - BP| = 6 is ... (1983-1 Marks)
- 5) If a, b and c are in A.P, then the straight line ax+by+c=0 will always pass through a fixed point whose coordinate are ...(1984-2 Marks)
- 6) The orthocentre of the triangle formed by the lines x + y = 1, 2x + 3y = 6 and 4x - y + 4 = 0lies in the quadrant number ... (1985-2)Marks)
- 7) Let the algebric sum of the perpendicular distances from the points (2,0), (0,2) and (1,1)to a variable straight line be zero; then the line passes through a fixed point whose coordinates are ... (1991-2 Marks)
- 8) the vertices of a triangle are A(-1, -7), B(5, 1)and C(1, 10). The equation of the bisector of the angle $\angle ABC$ is ... (1993-2 marks)

II. B-True/False

- 1) The straight line 5x + 4y = 0 passes through the point of intersection of the straight lines x + 2y - 10 = 0 and 2x + y + 5 = 0. Marks)
- 2) The lines 2x + 3y + 19 = 0 and 9x + 6y 17 =0 cut the coordinates axes in concylic points. (1988-1 Marks)

III. C-MCOs with One Correct Answer

- 1) The points (-a, -b), (0, 0), (a, b) and (a^2, ab) (1979)are:
 - a) collinear
 - b) Vertices of a parallelogram
 - c) Vertices of a rectangle

- d) None of these
- 2) The points of the (4, 1) undergoes the following three transformations successively. (1980)
 - a) Reflection about the line y = x.
 - b) Translation through a distances of x-axis.
 - c) Rotation through an $\frac{\pi}{4}$ about the origin in the counter clockwise direction.

Then the final position of the point is given by the coordinates.

a)
$$\left(\frac{1}{\sqrt{2}}, \frac{7}{\sqrt{2}}\right)$$
 c) $\left(-\frac{1}{\sqrt{2}}, \frac{7}{\sqrt{2}}\right)$ b) $(-\sqrt{2}, 7\sqrt{2})$ d) $(\sqrt{2}, 7\sqrt{2})$

c)
$$\left(-\frac{1}{\sqrt{2}}, \frac{7}{\sqrt{2}}\right)$$

1

b)
$$(-\sqrt{2}, 7\sqrt{2})$$

d)
$$(\sqrt{2}, 7\sqrt{2})$$

- 3) The straight lines x + y = 0.3x + y 4 = 0.x + y = 0.3x + y 4 = 0.0003y - 4 = 0 from a triangle which is (1983-1) Marks)
 - a) isosceles
- c) right angled
- b) equilateral
- d) none of these
- 4) If p = (1,0), Q = (-1,0) and R = (2,0) are three given points, then locus of the points S satisfying the relation

$$SQ^2 + SR^2 = 2SP^2$$
 is (1988-2 Marks)

- a) a straight lines parallel to x-axis
- b) a circle passing through the origin
- c) a circle with the centre at the origin
- d) a straight line parallel to y-axis
- 5) Line L has intercepts a and b on the coordinate axes. When the axes are rotated through a given angle, keeping the origin fixed, the same line L has intercept p and q, then (1990-2 Marks)

a)
$$a^2 + b^2 = p^2 + q^2$$
 c) $a^2 + p^2 = b^2 + q^2$
b) $\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{p^2} + \frac{1}{q^2}$ d) $\frac{1}{a^2} + \frac{1}{p^2} = \frac{1}{b^2} + \frac{1}{q^2}$

c)
$$a^2 + p^2 = b^2 + q^2$$

b)
$$\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{p^2} + \frac{1}{q^2}$$

d)
$$\frac{1}{a^2} + \frac{1}{p^2} = \frac{1}{b^2} + \frac{1}{q^2}$$