NASA TECHNICAL NOTE

NASA TN D-7826

(NASA-TN-D-7826) EFFECT OF TREATED LENGTH ON PERFORMANCE OF FULL SCALE TURBOFAN INLET NOISE SUPPRESSORS (NASA) 77 p HC \$4.75 CSCL 21E N75-11978

Unclas H1/07 03965

EFFECT OF TREATED LENGTH
ON PERFORMANCE OF FULL-SCALE
TURBOFAN INLET NOISE SUPPRESSORS

by James H. Dittmar and John F. Groeneweg Lewis Research Center Cleveland, Ohio 44135

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION . WASHINGTON, D. C. . DECEMBER 1974

1. Report No. NASA TN D-7826	2. Government Access	on Na.	3. Recipient's Catalog	No.
4. Title and Subtitle EFFECT OF TREATED LENG	TH ON PERFORM	JANCE OF	5. Report Date December 19	74
FULL-SCALE TURBOFAN INI		<u></u>	6. Performing Organiz	ation Code
7. Author(s) James H. Dittmar and John F.	Groeneweg		8. Performing Organiza E - 7999	ation Report No.
9. Performing Organization Name and Address			10. Work Unit No. 501-04	
Lewis Research Center		 	11. Contract or Grant	No
National Aeronautics and Space	Administration		TI. Contract of Grant	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Cleveland, Ohio 44135			13. Type of Report an	d Period Covered
12. Sponsoring Agency Name and Address			Technical No	
National Aeronautics and Space	Administration	 -	14. Sponsaring Agency	
Washington, D.C. 20546			14. Oponsoring rigidaly	5525
15. Supplementary Notes		l_		
		,		
				
16. Abstract				
Two inlet noise suppressors w				
attenuations were measured fo				
from the segment of liner clos	•			
was greater than the reduction	from either of th	e other segments.	The decibel atte	enuations
of the ringed liner segments w	ere linear with li	ner length as predic	cted by theory.	The acoustic
attenuation of the wall treatme	nt was consideral	oly greater than exp	ected from avai	lable theory,
which strongly suggests the po	ssibility of using	no-ring inlet suppr	essors when the	required
noise reduction is moderate.				
2000 Hz, and the two suppress		_	-	
A broad-band noise increase w				
increase is probably the cause		,	- ·	
noise by splitters could limit a			_	,
				•
17. Key Words (Suggested by Author(s))		18. Distribution Statement		
1	variation	Unclassified - 1		
Noise Noise		Category 01		
Suppressors		g		
Lappi oboot o				
19. Security Classif, (of this report)	20. Security Classif, (c	of this panel	21. No. of Pages	22. Price*
Inclassified	1	lassified	75	\$4.25

EFFECT OF TREATED LENGTH ON PERFORMANCE OF FULL-SCALE TURBOFAN INLET NOISE SUPPRESSORS

by James H. Dittmar and John F. Groeneweg

Lewis Research Center

SUMMARY

Two inlet noise suppressors containing wall treatment plus three treated rings were tested on a fan in an outdoor noise facility. Sound power attenuations were measured for three treated lengths of each suppressor. The noise reduction from the segment of liner closest to the fan, which contained a segment of wall treatment downstream of the splitter rings, was greater than the reduction from either of the other segments. The decibel attenuations of the ringed liner segments were linear with liner length as predicted by theory. The acoustic attenuation of the wall treatment was considerably greater than expected from available theory. This inordinate effectivness of the wall treatment strongly suggests the possibility of using no-ring inlet suppressors when the required noise reduction is moderate.

The decibel attenuations were higher than predicted above 2000 hertz, and the two suppressors behaved similarly despite the prediction of different behavior. The addition of taped inlet rings to the open configuration caused a shift in noise directivity, and the addition of a taped exhaust splitter caused a broad-band noise increase. This noise increase is probably the cause of an observed noise floor which indicated that self-generated noise by splitters could limit attainable suppressor noise reductions.

INTRODUCTION

The length of a turbofan engine inlet influences the engine performance and the engine nacelle installation. When inlet noise suppression is used, the length and associated weight of the sound absorbing material become significant considerations for the nacelle design. To increase the knowledge of inlet suppressor performance with length variation, the full-scale fan tests described in this report were conducted.

Two existing inlet noise suppressors were tested in an outdoor noise facility at Lewis (refs. 1 to 3). The suppressors were designed using the theory described in references 3 and 4. They were of a perforated-plate-over-honeycomb construction and included wall treatment as well as three treated splitter rings. The differences between the two suppressors were in the open area and hole size of their facing sheets. The attenuation characteristics of the suppressors were expected to differ primarily in level.

The suppressors were installed in a 1.4 pressure ratio, 1.83-meter (6-ft) diameter fan stage. Sound power level attenuation increments were measured for three treated lengths of each suppressor by selectively removing metal tape from the lined surfaces. The exhaust duct, including an aft splitter, was acoustically treated for these tests to minimize forward radiation of aft fan noise that could possibly mask the results of the inlet suppressor length variations.

Other tests were run to evaluate the amount of noise transmitted through the casing. In addition, the effects of the hard inlet splitters on fan noise were determined by comparing the noise radiated from the fully taped splitters with that noise radiated from a hard inlet without splitters. Radial acoustic probe data were also taken in the fan inlet duct at an axial location between the inlet rings and the rotor face. The radial variation of the noise level was measured with both the taped inlet and the soft (active) inlet configurations.

APPARATUS AND PROCEDURE

Fan and Test Facility

Figure 1 is a cutaway view of the 1.83-meter (6-ft) diameter fan assembly used in these tests. This single-stage fan (designated QF-3) had a large rotor-stator axial spacing of approximately 3.7 rotor chords and had no inlet guide vanes. An abbreviated description of the design characteristics of this fan is given in table I.

The tests were conducted in the full-scale fan outdoor test facility at Lewis. Figure 2(a) shows the test site, and figure 2(b) a plan view of the facility. The fan was driven by electric motors inside the building through a gear box and through the shaft shown entering the fan nacelle inlet. The area between the fan and the microphones is asphalt surfaced, and the face of the drive motor building is covered with 15.24-centimeter (6-in.) thick polyurethane ether open-cell foam.

Inlet Suppressors

As noted, two inlet noise suppressors were used in the liner length variation tests.

The inlet suppressors consist of a lined outer cowl and three, 2.54-centimeter (1-in.) thick splitter rings with acoustic lining on both sides of the rings (fig. 1). The suppressor dimensions and the materials used in the acoustic liners are shown in figure 3. As indicated in figure 3 the two suppressors (designated suppressor A and suppressor B) differed only with respect to facing sheet open area ratio and hole size. The intent in testing the two suppressors was to observe the different amount of noise the two suppressors would remove. Suppressor B was the same suppressor as reported previously in reference 3.

These liners were designed using the theory of references 3 and 4. When the splitter rings were in place, they represented roughly a 9-percent area blockage in the inlet duct. The distribution of flow areas in the four annuli from cowl to centerline were 43, 31, 19, and 7 percent of the total flow area.

The liners were constructed with a perforated aluminum sheet bonded to an aluminum honeycomb backing. Different honeycomb backing thicknesses were used on opposing walls of a passage to broaden the frequency range of the noise attenuation. Figure 4 is a cross section of a splitter ring with the two backing depths separated by a septum. An assembled inlet noise suppressor showing the nonradial support struts of 0.158-centimeter (1/16-in.) thick aluminum is shown in figure 5 (suppressor B). The fan drive shaft, which enters through the center of the suppressor, is not shown in this figure.

Exhaust Suppressor

A fully active exhaust suppressor was installed during the testing for inlet suppressor length variation to minimize forward-radiated aft fan noise that might otherwise have masked the results of the inlet tests. The exhaust suppressor dimensions and the materials used in the acoustic liners are shown in figure 6.

Instrumentation

Limited internal instrumentation was provided to permit aerodynamic measurements during the liner tests, primarily for the purpose of determining that the fan was on the proper operating point. A description of typical aerodynamic measurements is given in reference 1.

Acoustic data were obtained by 1.27-centimeter (0.5-in.) condenser microphones located in 10⁰ increments from 10⁰ to 160⁰ from the fan centerline as shown in figure 2(b). The microphones are level with the fan centerline, 5.79 meters (19 ft) above the ground on a 30.48-meter (100-ft) radius.

An acoustic probe was also used in the inlet for some of the tests. (Far field acoustic data were not taken with the probe installed.) A 0.635-centimeter (1/4-in.) microphone was inserted in the fan inlet (fig. 7). The probe was extended inward from the outside wall, and data were taken at six radial positions measured from the outside casing as indicated in figure 7. These locations were chosen to be approximately at the center of equal annular area elements.

Tests

The inlet suppressors were tested at three treated lengths by selectively removing metal tape from the lined surfaces. The length increments were chosen so that the shortest treated length in each passage was broken into equal parts (fig. 8). This was done to make the length of liner, with active walls facing each other, equal in each section for a given passage. As can also be seen in this figure, the first segment of the liner passage (closest to the fan) had additional lining material that extended downstream stream on the outer surface of each passage and was not opposed by a treated surface. The total treated area of each inlet was approximately 23.4 square meters (252 ft²), and the three sections, from the fan face forward, had 46, 27, and 27 percent of the total area.

A taped inlet configuration including taped splitter rings was tested as the base configuration for the suppressor length comparisons, and a hard inlet without splitter rings was tested to determine any effect of the taped splitter rings on the far field noise characteristics. The inlet suppressors were tested first with the tape removed from the first segment of the suppressor nearest the fan, then the first two segments and finally the full suppressor was made active. The exhaust suppressor was also run, along with a taped inlet suppressor, in a completely taped configuration to determine the effects of the hard exhaust splitter ring.

The suppressor length variation tests were run with 15.24-centimeter (6-in.) thick, polyurethane ether open-cell foam blanketing the outside cowl of the fan. The foam minimized the noise radiated through the cowling. Tests were run with and without this foam to evaluate the amount of casing radiation. A brief description of the configurations tested in found in table II.

Three sets of data were taken at each test condition to minimize short term fluctuations in the generated noise. The data taken at 60, 70, 80, and 90 percent of design speed were recorded on magnetic tape and both a one-third octave band analysis (50 to 20 000 Hz) and a constant band width, narrow-band analysis were performed. The one-third octave data were also corrected to standard day conditions (70 percent relative humidity; 15° C (59° F)) using the methods of reference 5.

RESULTS AND DISCUSSION

Acoustic Data

The one-third octave sound pressure level and sound power level values for each tested configuration are given in tables III to XIII along with a description of each run. These data are tabulated for each microphone at a 30.48-meter (100-ft) radius after the data were corrected to standard day conditions.

Inlet Treated Length Variations

As mentioned previously, the two inlet suppressors (A and B) were tested in three configurations: with the segment of lining material closest to the fan active, with the first two segments active, and with all segments active. (See fig. 8.) The inlet sound power levels were measured for these configurations and compared with the base configuration (a completely taped and thus inactive liner). This comparison allows the evaluation of the acoustic effect of the liner sections to be made independent of any effects of the presence of the inlet rings.

Sound Power Level Spectra

The power spectra obtained for the inlet hemisphere are shown in figure 9 for suppressors A and B at the 90 and 60 percent speeds. Four spectra are shown on each plot of figure 9, corresponding to the taped inlet, first segment active, first two segments active, and fully active suppressor configurations. All the plots show that successive inlet treatment increments produced reductions at the blade passage frequency. However, at frequencies less than 1000 hertz, at both 60 and 90 percent speed, reduction occurred with the activation of the first liner segment, but no appreciable reductions occurred when the second and third treatment increments were added. This indicates the possible existence of a noise floor at the lower frequencies.

Figure 10 shows plots of the inlet hemisphere sound power level attenuations for the three treatment lengths of suppressors A and B. Figures 10(a) and (c) are for 90 percent speed, and 10(b) and (d) are for 60 percent speed. These speeds roughly correspond to the speed of the fan in an engine at takeoff (90 percent) and landing conditions (60 percent). The one-third octave sound power integration was performed over the inlet hemisphere only to approximate the performance of each inlet suppressor.

The sound power attenuations for the 90-percent speed configurations (figs. 10(a) and (c)) show the peak attenuation around the 3150-hertz one-third octave band for all length configurations. The amount of attenuation is less on either side of this frequency, and approaches zero at both low and high frequencies. The peak attenuation is in the one-third octave band containing the blade passage frequency of the fan at the 90-percent speed point with all treated length configurations. The slight shift of the blade passage frequency in one-third octave bands is due to the variation of the set fan speed (to maintain constant corrected speed) with the temperature of the day on which a particular configuration was tested. The first segment of liner in these plots gave a larger power level reduction than did either of the other two length increments. These two length increments gave roughly equal power level reduction increments.

The 60-percent speed sound power level attenuations (figs. 10(b) and (d)) show the peak attenuation to be around the 2000-hertz one-third octave band. Again, the amount of attenuation is less on either side of the peak frequency and approaches zero at low and high frequencies. (The additional attenuation thus observed beyond 10 kHz, particularly in fig. 10(b), is probably the result of successive cavity resonance. This has been previously observed and reported in ref. 6.) The peak reduction is at the blade passage frequency of the fan at the 60-percent speed point. The first segment of the liner again yielded a larger acoustic power level reduction that the next two segments. Also, the power increments of the last two lengths were roughly equal.

At all speed points and with both liners, the peak attenuation was at the blade passage tone of the fan. In addition, the first segment of the liner yielded a larger acoustic power level reduction than the next two segments. An examination with respect to liner treated surface area shows that the reductions are roughly a linear function of this treated area.

Narrowband Spectra

To observe the character of the noise reductions and to examine the possibility of a noise floor, many narrow-band spectra were examined. Some examples of these spectra are shown in figure 11. These plots are a composite of the narrow band traces for the different suppressor length variations at the 40° microphone position and at 90 percent speed. The analysis ranges are 0 to 10 kilohertz with a 20-hertz bandwidth for figures 11(a) and (c), and 0 to 1 kilohertz with a 2-hertz bandwidth for figure 11(b). Below 1000 hertz on these plots, the last two segments of the liner section yielded no appreciable reduction in noise levels. It is likely that a noise floor existed in this fre-

quency range, possibly from the noise generated by the flow over the inlet rings and exhaust splitter. Other possibilities are an external noise floor from the fan jet exhaust or background noise in the test area.

Analysis

Attenuation spectra. - To compare the theory with the experimental data, a number of calculations were performed. These attenuation calculations, made using the theory of reference 3, were for the fully active lengths of suppressors A and B at both 60 and 90 percent speed. These calculations were made for an inlet flow duct Mach number of 0.23 for 60 percent speed and 0.35 for 90 per speed; the results are plotted in figure 12. The attenuation data for the two suppressors are also shown in these plots.

Beyond 2000 hertz the measured attenuations were greater than the predicted values. This behavior was also observed in the data obtained with suppressor B on a different fan (see ref. 3). The predicted curves appear to be peaking at a lower frequency than the measured data. But, if the curves were shifted in frequency to line up the peak attenuations, the curve shapes would more closely coincide. In general, however, the predicted attenuations would still be lower than the measured attenuations at frequencies higher than that at which the peak occurred.

As is also shown by figure 12, the experimental behaviors of suppressors A and B are quite similar in the fully active condition. This similarity was also true in the partly taped configurations. The predicted curves are significantly different for these two suppressors, and the equivalent experimental behavior of suppressors A and B was unexpected and remains unexplained in terms of the existing propagation and impedance models.

Variation with length. - As mentioned previously the first segment of liner gave a larger power level reduction than did either of the other two length increments. This is possibly because the first segment of liner contained additional suppressor material, particularly on the outside wall. This additional material is shown in figure 8 where it is observed that 61 centimeters (24 in.) of acoustic treatment exist on the outwide wall between the ringed segment and the fan face.

To assist in the delineation of the noise reductions of the wall treatment and of the ring sections, the inlet hemisphere power level reduction is plotted as a function of the fraction of ring length that is active. The inlet hemisphere sound power level at 90 percent speed is plotted here because it is representative of the inlet liner performance. These plots of sound power level reduction are shown in figure 13. The curves are for the one-third octave bands containing the blade passage tone, broad-band noise at 5000 hertz, and the first overtone of the blade passage tone. The plots indicate that the variation of the noise reduction with treated length inside the rings is almost linear. This linear variation of decibel noise reduction with treated length is expected from the theory.

If the linear variation of the decibel noise reduction with treated length is assumed to hold for the ringed part of the first segment of the liner, the curves can be extrapolated to the point where none of the ring surfaces were active. This should then reveal the effect of the initial 61 centimeters (24 in.) of treatment on the outer wall. This is done in figure 14 for the blade passage frequency of each suppressor. Here, it is seen that the intercept is 7 decibels for suppressor A and $5\frac{1}{2}$ decibels for suppressor B. The intercepts are assumed to be the attenuations provided by the 61-centimeter (24-in.) section of wall treatment.

The comparison of the experimentally measured attenuation with length and the maximum theoretical attenuation with length is now discussed. Using the theory of reference 3, it is possible to produce a theoretical maximum curve of $\Delta dB/(L/H)$ against HF/C as shown in figure 15. (In ref. 3 the curve is plotted for $\Delta dB/(L/D)$. where D is the duct diameter. As suggested in this reference, the $\Delta dB/(L/H)$ curve is plotted by taking 1/2 of the $\Delta dB/(L/D)$ value in order to represent the annular case,) Here, Δ dB is the sound power attenuation. L is the length of acoustic treatment, H is the annular duct height, f is the frequency, and C is the speed of sound. To spot the liner attenuations on this curve, it was necessary to establish these parameters for the test data. For both the ringed and wall treatment calculations the frequency was taken as the blade passage frequency at this 90-percent speed point. This was approximately 2800 hertz, and the speed of sound was 343.2 meters per second (1126 ft/sec). The height of the passage for the rings was taken as the height of the outside passage (20.1 cm (7.9 in.)). The height of the passage for the wall treatment is complicated by the presence of a changing-diameter centerbody. For this analysis the height of the passage was taken as the average of the maximum and minimum heights. (The use of either the maximum or minimum heights does not qualitatively effect the conclusion in this case.) The average height is multiplied by two because the centerbody is not acoustically treated, giving a calculational height of 1,202 meters (47,35 in.). This gives $Hf/C \cong 1.64$ for the ringed section and 9.94 for the wall treatment. The length of the liner rings is taken again from the outermost passage. This gives L/H = 4.3for the rings and L/H = 0.51 for the wall treatment. The noise reduction for the wall treatment is assumed to be the intercept of the curves (fig. 14) giving $\Delta dB/(H/H) = 13.8$ for the wall treatment in suppressor A, and $\Delta dB/(L/H) = 13.8$ for the wall treatment in

in suppressor B. With Δ dB = 8 7 and 10.5 for the ring section of suppressors A and B, respectively, this gives Δ dB/(L/H) = 2.01 for suppressor A and 2.44 for suppressor B.

When these points are plotted on the theoretical maximum curve they appear as in figure 15. The points for the ringed parts of the suppressors fall below the theoretical maximum. It should be recalled that the opposing walls of a passage in this liner are tuned at two significantly different frequencies. The theoretical maximum curves are calculated for both walls having the same tuned frequency and the optimum impedance at that frequency. This difference should be considered when comparing the experimental points for the ringed portions with the theoretical maximum. The experimental points may then be low for two reasons: (1) The two walls are not both tuned to the frequency where the maximum attenuation was observed. (2) The impedance of each wall at the frequency where it was tuned, may not have been optimum. The attenuations for the outside wall treatment are much greater than the existing theory indicates to be possible. (Even if the wall treatment were analyzed as a circular duct, it would only move the theoretical curve by a factor of 2, and the attenuation would still be considerably above the theoretical maximum attenuation curve.) This inordinate effectiveness of the cylindrical cowl treatment has been observed in other experiments (ref. 7) and is not explainable on the basis of plane wave duct propagation theory. This additional wall treatment attenuation beyond that predicted indicates a need to modify the duct propagation theories to correctly handle this case. Moreover, in a practical sense, it points to the possibility of using no-ring inlet configurations in cases where the noise reduction requirements are not extremely great.

The additional attenuation apparently provided by the outside wall treatment is a possible explanation of the difference between the measured and expected liner attenuations. The theoretical liner attenuation spectra, which have the outside wall treatment giving little effect, are in general lower than the measured attenuation (see fig. 12). The difference between the two attenuation spectra is at least partially explained by the inordinate amount of attenuation provided by the outside wall treatment.

Effects of Taped Rings and Splitters

Inlet rings. - Tests were run with inlet walls and rings taped and with a hard inlet having no rings to determine the effect of inlet splitter rings on the noise field of the fan. Figure 16(a) is a plot of the blade passage frequency tone as a function of angle for the two configurations at 90 percent speed. The addition of the taped inlet rings alters the fan directivity; blade passage tone levels are lower in the forward quadrant from 40° to about 90° and higher in the rear quadrant at angles greater than 100° . Also, the

inlet pattern is beamed more toward the fan axis when rings are present, where the blade passage tone levels are increased at angles less than 20° (fig. 16(a)). These same trends were observed at the other speeds. (For later comparisons where 90 percent is not available because of equipment failure, the 80-percent point is shown in fig. 16(b).)

Similar directivity effects were observed in the broad-band regions of the spectrum for frequencies above 600 hertz. An example of this is shown in figure 16(c), which is a plot of the one-third octave band centered at 800 hertz for the 80-percent speed case. Here again, inlet noise appears to have been directed toward the axis, and an increase in aft radiated noise was also observed.

The increase in aft noise with the addition of the inlet rings is possibly a convective shift due to the increased velocities in the inlet as a result of the area blockage or possibly a reflection effect of the rings. The increase of the front blade passage tone along the axis is probably just a beaming effect of the long straight rings. It is also possible that the inlet rings and struts have altered an existing inlet flow distortion (see ref. 8) and caused the change in directivity.

Exhaust splitter. - Tests were run with the taped inlet rings with a splitter added to the exhaust duct. This exhaust splitter, previously shown in figure 6, was taped. Blade passage tone levels with and without the taped exhaust splitter are compared at 80 percent speed in figure 17(a). (The 80-percent speed data are shown because a mechanical failure on one of the tests did not allow a 90-percent speed point.) As can be seen, the exhaust splitter had little effect on the blade passage tone, and the observed differences are probably representative of the small variations in repeatability of the measurements.

However, an increase in the broad-band noise was observed in a region centered around 800 hertz from about 315 to 2000 hertz. For example, the 80 percent speed, 800-hertz, one-third octave band data are shown in figure 17(b). As seen here, a sizeable noise increase occurred from about 60° to 140° when the taped exhaust splitter was added. An increase in noise with the addition of the exhaust splitter is also observed at 60 percent speed. (See fig. 17(c).) The increase in noise is observed here, but the overall sound pressure level is not as high as the 80-percent speed case. These results indicate a possible generation of noise by the exhaust splitter and its support struts at the higher flow Mach numbers in the exhaust than in the inlet. (The approximate design-point (100 percent) flow Mach numbers before rings or splitters were added are 0.39 in the inlet and 0.61 in the exhaust.)

To illustrate the spectral changes occurring with the addition of inlet and exhaust splitters, the inlet and exhaust sound power spectra are plotted in figure 18. Four spectra are shown on each plot. Three are for untreated cases, which include configurations (1) without splitters, (2) with inlet splitters only, and (3) with inlet splitters and an exhaust splitter. The fourth spectrum is for full inlet and exhaust treatment active.

Consider first the spectral effects of the addition of inlet rings. The blade passage frequency tone was reduced in the inlet hemisphere and increased in the exhaust hemisphere when the taped inlet rings were added (as was shown previously in figs. 16(a) and (b)). The broad-band levels were also increased in the exhaust hemisphere in the frequency range from 630 to 2000 hertz when the taped inlet rings were added, but the inlet hemisphere broad-band levels in this frequency range were not substantially changed with the addition of the inlet rings.

When the taped exhaust splitters were added to the configuration with the taped inlet rings, the blade passage tone level was not changed either in the inlet or the exhaust hemisphere. However, a large increase in the broad-band noise in the 315- to 2000-hertz range was observed both in the inlet hemisphere and the exhaust hemisphere. This increase in noise, as noted earlier, was probably caused by the generation of noise from the high Mach number flow over the taped exhaust splitters and support struts.

Figure 18 shows that sizable noise reductions were obtained with the fully active suppressor A configuration. However, the broad-band noise below 800 hertz has not been reduced in the inlet hemisphere (fig. 18(a)), and, in fact, the noise in the exhaust hemisphere (fig. 18(b)) from about 400 to 800 hertz is higher than that of the completely hard case without rings or splitters. Therefore, making the liner fully active has not removed all of the noise generated by the flow over the splitters. This internally generated noise by the flow over the splitters may be the broad-band noise floor that was observed previously in the suppressor length variation tests. The observation suggests that noise generated by flow over acoustic rings and splitters may present a floor or limit to the amount of noise reduction achievable by acoustic liners.

Radial Probe Data

Data were taken with a 0.635-centimeter (1/4-in.) microphone probe traversed radially at an axial location between the inlet rings and the rotor face as shown in figure 7 (53.5 cm (21.06 in.) upstream of the rotor). Traverse data were taken for two configurations: one with a taped inlet suppressor (cowl and rings) and the other with fully active cowl and rings (suppressor B). Narrow-band spectra for three radial locations are shown in figure 19 for the two configurations at 90 percent speed.

The 3.40-centimeter (1.34-in.) location (fig. 19(a)) is close to the rotor tip radius and exhibits some multiple-pure-tone activity in the taped version. When the liner was made active, the multiple pure tones at frequencies below 6 kilohertz were significantly reduced. This reduction is attributable to the short lined section on the outer casing between the probe and the fan face (fig. 7). There was approximately 38.89 centimeters (15.31 in.) of treated surface between the fan tip and the probe location.

Both broad-band noise and blade passage tone noise and its harmonics were increased at the internal location of the probe when the liner was made active. The increase in broad-band noise occurred at all of the radial positions as can be seen in figure 19. It is suspected that the increase in generated broad-band noise was the result of increased turbulence levels caused by the oscillating flow in the facing sheet orifices of the liner. This increased turbulence can cause broad-band noise when it interacts with the rotor blades. It is possible that the increased turbulence level was also the cause of the tone noise increase.

Figure 20 is a plot of the blade passage tone level for the various probe positions as determined from the narrow-band spectra analysis. The active inlet produced large increases in blade passage tone noise, relative to the taped inlet, near both the hub and the tip locations with a smaller increase near the center of the blade.

Noise Leakage from Casing

The liner length variation tests were run with 15.24-centimeter (6-in.) thick polyurethane open-cell foam blanketing the outer surface of the fan cowl. This was done to minimize noise radiation through the cowling to the far field. To judge the effectiveness of this foam, back-to-back tests were run on the same day under the same conditions with and without the foam. The tests were run with the fully treated exhaust and the fully active inlet suppressor A. The full duct treatment configuration was used to reduce as much as possible the noise radiating from the inlet and exhaust ducts so that the presence of any cowl radiated noise might be detected.

An example of the results is given in figures 21 and 22. Figure 21 shows the effect of the foam blanket on the variation of the 2500-hertz one-third octave band sound pressure level, which is indicative of the blade passage tone levels at 90 percent speed. (Actually, the blade passage tone is split between the 2500- and 3150-Hz bands.) Figure 22 compares total sound power level spectra with and without foam cowl treatment.

Some small noise increases were observed in the blade passage tone in the front 50° (fig. 21) and in the sound power level at the higher frequencies (fig. 22) when the foam was removed. However, those increases were in general less than 1 decibel and are within the scatter of the data. Therefore, on a one-third octave basis the foam has a negligible effect on the far field noise.

SUMMARY OF RESULTS

Two inlet noise suppressors, each containing three treated splitter rings, were

tested on a 1.4 pressure ratio full-scale fan. The suppressors were of a perforated sheet over honeycomb backing construction and differed in the open area and hole size of the perforated sheet. Sound power attenuations were measured for three treated lengths of each suppressor by successively removing metal tape from the lined surfaces. It was found that

- 1. The decibel attenuation resulting from the segment of liner closest to the fan was greater than the increment of decibel attenuation resulting from the activation of either the middle or forward liner segments. This phenomenon is, at least in part, a result of the fact that the first segment of liner contained additional suppressor material as wall treatment on the outside wall. The decibel attenuations of the ringed, lined segments (middle to forward sections) were linear with liner length, as expected from theory. The acoustic attenuation of the outside wall treatment, found by extrapolation, is much greater than expected from theory. This inordinate effectiveness of the cylindrical cowl treatment is not explainable on the basis of current plane wave duct propagation theory and indicates a need to modify these theories to correctly handle this case. Moreover, it points to the possibility using of no-ring inlet configurations in cases where the noise reduction requirements are moderate.
- 2. The decibel attenuations observed experimentally were higher than theory predicted for those frequencies above 2000 hertz. In all cases the suppressors had their peak attenuation at the blade passage frequency even though the theory predicted peak attenuations at different frequencies. In addition, the two suppressors behaved similarly in spite of different open areas and holes sizes for which the theory predicts different behavior.
- 3. A noise floor was observed at frequencies below 1000 hertz. Acoustic power was removed by the first segment of suppressor at these low frequencies, but the addition of the other two segments produced negligible further attenuation at these low frequencies.
- 4. For the tests performed with and without taped inlet splitter rings, the addition of the rings caused a shift in fan noise directivity. Exhaust noise levels were increased, and the inlet noise was directed more toward the fan axis. This effect occurred both for blade passage and broad-band frequencies with the greater effect on the blade passage tone.
- 5. The addition of a taped exhaust splitter did not affect the blade passage tone significantly, but the broad-band noise was increased in the 315- to 2000-hertz range. This noise generated by flow over the splitter and support struts is possibly the noise floor uncovered during the inlet suppressor length variations. This result indicates that self-generated noise by splitters and their supports could limit the amount of noise reduction obtainable by a suppressor.

- 6. Radial variations in sound pressure level were measured by an inlet probe at an axial location between the inlet splitters and the fan face. The probing was done with a fully taped and a fully active inlet suppressor. Multiple pure tone content near the cowl wall was reduced when the tape was removed, which also activated a short length of outer wall lining between the fan tip and the probe location. At the same time both blade passage tone and broad-band levels were increased at the probe station perhaps as a result of increased turbulence impinging on the rotor from the active splitter ring surfaces.
- 7. Far field measurements made with and without the 15.24-centimeter (6-in.) thick polyurethane foam blanketing the outside of the fan cowl with full inlet and exhaust treatment showed no appreciable difference in the one-third octave noise levels observed in the far field.

Lewis Research Center,

National Aeronautics and Space Administration, Cleveland, Ohio, August 8, 1974, 501-04.

REFERENCES

- Leonard, Bruce R.; Schmiedlin, Ralph F.; Stakolich, Edward G.; and Neumann, Harvey E.: Acoustic and Aerodynamic Performance of a 6-Foot-Diameter Fan for Turbofan Engines. I - Design of Facility and QF-1 Fan. NASA TN D-5877, 1970.
- Goldstein, Arthur W.; Lucas, James G.; and Balombin, Joseph R.: Acoustic and Aerodynamic Performance of a 6-Foot-Diameter Fan for Turbofan Engines. II -Performance of QF-1 Fan in Nacelle Without Acoustic Suppression. NASA TN D-6080, 1970.
- Rice, Edward J.; Feiler, Charles E.; and Acker, Loren W.: Acoustic and Aerodynamic Performance of a 6-Foot-Diameter Fan for Turbofan Engines. III Performance With Noise Suppressors. NASA TN D-6178, 1971.
- 4. Rice, Edward J.: Attenuation of Sound in Soft-Walled Circular Ducts. Aerodynamic Noise. H. S. Ribner, ed., Univ. Toronto Press, 1969, pp. 229-249.
- 5. Standard Values of Atmospheric Absorption as a Function of Temperature and Humidity for Use in Evaluating Aircraft Fly-Over Noise. Aerospace Recommended Practice 866, SAE, 1964.

- Groeneweg, John F.; Feiler, Charles E.; and Acker, Loren F.: Inlet Noise Suppressor Performance With a Turbojet Engine As the Noise Source. NASA TN D-6395, 1971.
- 7. Feiler, Charles E.; Groeneweg, John F.; Rice, Edward J.; Smith, Edward B.; and Tucker, Rodger H.: Aircraft Engine Noise Reduction Part III Fan Noise Suppression. NASA SP-311, 1972, pp. 63-102.
- 8. Povinelli, Frederick P.; Dittmar, James H.; and Woodward, Richard P.: Effects of Installation Caused Flow Distortion on Noise From a Fan Designed for Turbofan Engines. NASA TN D-7076, 1972.

TABLE I. - QF-3 FAN DESIGN PARAMETERS

Pressure ra	tio	a	t 1	00	p	er	ce	nt	of	de	esi	gr	s	рe	ed						·			-		. 1.
Tip speed at	10	00	pe	rc	er	it 1	οf	de	si	gn	sį	ee	d,	11	1/s	sec	: (ft/	se	c)	-	•		3	37	(1107
Number of b	lac	tes	; -																							
Rotor																						٠				. 5
Stator																										. 11
Rotor tip sol	id:	ity																								1.3
Rotor diffusi	on	fa	ıct	or																						
Tip																										0.38
Midspan .																										0.44
Hub																										
Maximum																										

TABLE II. - CONFIGURATIONS TESTED

Config-		Description		Comments
uration	Inlet	Exhaust	Cowl	
28	Hard, no rings	Taped, no splitter	No foam	
31	Taped, with rings	Taped, no splitter	Foam	
32	Taped, with rings	Taped, with splitter		No 90 percent speed (mechanical failure)
33	Taped, with rings	Fully active, with splitter		Base case
34	First inlet section, active including rings			Suppressor B
35	First two inlet sec- tions active, in- cluding rings			Suppressor B
36	Fully active inlet, including rings			Suppressor B
38	First inlet section active including rings			Suppressor A
39	First two inlet sec- tions active, in- cluding rings			
40	Fully active inlet, including rings		•	
41	Fully active inlet, including rings		No foam	

TABLE III. - NOISE OF QF-3 CONFIGURATION 28 - HARD INLET WITHOUT RINGS, TAPED EXHAUST, NO SPLITTER

(a) 60 Percent speed; fan physical speed, 2104 rpm; fundamental blade passage frequency, 1858 hertz

FREQUENCY								ANGI	.E, DEG	;							A VERAGE SPL	POWER LEVEL
	16	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160	374	(PWL)
			:	1/3-00 T	AVE BA	ND SOL	ND PR	ESSURE	LEVEL	(SPL)	ON 30.	5-M ET	ER RADI	us				
50	68.8	65.4	66.8	65.8	67.3	66.9	67.8	68.8	69.1	68.9	69.6	72.9	65.6	73.3	74.4	76.0	70.2	117.6
63	71.3	71.5	66.5	66.5						67.6				73.1		76.2	70.0	117.4
80	71.5	71.0	66.8	67.0	65.5					69.1		73.2		75.8	77.3	79.2	71.7	119.1
100		69.1			66.8	68.0	67.3	69.5	71.0	71.8	72.8	75.0	75.5	77.3	79.0	79.2	73.2	120.6
125				70.5	70.2	70.3	71.7	70.8	72.8	74.2	74.8	76.6	76.2	77.0	78.0	77.2	74.1	121.5
160	73.0	71.5	72.0	70.8	70.8	71.3	72.3	72.5	72.7	73.0	74.2	75.1	74.8	74.8	75.5	75.0	73.3	120.7
200	73.5		72.5							70.7				74.4	75.0	74.2	72.4	119.8
250										71.3		74.2	74.7	74.7	75.0	74.0	72.3	119.7
315	76.3	74.8	73.3	72.0	71.1	71.0	71.1	71.1	71.3	71.5	72.3	73.9	73.6	74.5	74.3	72.7	72.6	120.0
400	77.8	75.8	74.1	73.3				70.4	71.3	71.6	72.9	74.5	74 - 1	74.8	74.1	72.0	73.1	120.5
500	77.3	76.0	74.8	74.6		71.3		70.5	71.8	72.0	73.3	73.9	74.G	74.8	73.6	71.2	73.2	120.6
630	77.6	77.3	76.3	75.9	73.6	71.9	71.8	71.1	71.8	72.6	73.9	74.3	75.1	75.9	73.4	70.6	74.0	121.4
800	80.5	79.0	78.5		75.8	74.2	73 - 2	73.2	73.5	74.8	75.8	76.2	77.2	78.0	74.3	72.4	76.0	123.4
1000		81.2									78.2	78.7	79.7	80.2	75.8	73.6	78.1	125.5
1250	82.9	82.6	82.4	81.9	79.7	77.1	75.4	75.6	77.2	78.9	80.7	81.5	82.6	82.6	77.6	74.6	80.2	127.6
1600	€8.3		89.1			83.1				83.6				86.8	81.1	79.0	85.6	133.0
2000	54.4		97.1			89.9				89.8			94.9	92.3	86.4	85.5	92.4	139.8
2500	85.2	87.1	87.7	87.9	84. 6	81.6	78.9	80.7	84.2	84.9	86.6	87.3	88.7	88.9	81.9	78.5	86.0	133.4
3150	86.9	88.7	89 . 2		86.9		80.9			87.4	88.9	89.8	89.9	85.5	83.4	79.8	67.9	135.3
4000	90.3		92.7			88.2		83.5	87.0	88.5	90+2	91.5	92.0	92.0	85.2	81.8	90.5	137.9
5000	88.4	87.9	89.4	89.6	87.6	85.6	81 .6	80.7	86.2	85.9	88.1	90.5	91.7	90.6	84.9	80.7	88.9	136.3
6300	87.4		87.6	88.3		83.4				83.3		88.9	90.6	88.4	83.4	78.9	87.8	135.2
8000	85.3		88.0				78.7		83.0	83.7	86.3	89.0	90.5	88.5	83.3	79.0	88.3	135.7
10000	£2.8	84.5	85.3	85.0	85.0	80.5	76 .6	75.5	80.5	81.1	83.6	85.8	86 . 6	85.3	81.0	75.5	86.4	133.8
12500	60.0	_	82.9							78.2			84-1		78.7	72.6	84.7	132.1
16000		77.2			76.2	72.7	67.0						78.2	77.0	74.0	68.2	81.4	128.8
20000	73.0	73.0	73.3	73.6	70.5	65.8	60.0	59.5	63.7	65.3	68.5	71.2	71.5	71.0	67. 5	61.6	78.4	125.8
OVERALL	\$\$.1	100.8	101.0	100.1	98.2	95.3	92 • 1	91.9	95.2	96.2	98.1	99.4	100.5	55.7	94.5	92.0	98.8	146.2
DISTANCE						SID	ELINE	PERCEI	VED NO	ISE LE	VELS							

DISTANCE SIDELINE PERCEIVED NOISE LEVELS

152.5 METERS 72.6 84.9 90.0 91.9 91.8 90.6 88.8 89.0 91.8 92.8 94.0 94.1 54.4 90.8 82.6 75.8

TABLE III. - Continued. NOISE OF QF-3 CONFIGURATION 28 - HARD INLET WITHOUT RINGS, TAPED EXHAUST, NO SPLITTER

(b) 70 Percent speed; fan physical speed, 2461 rpm; fundamental blade passage frequency, 2173 hertz

EBERMENTY										-			_	,				
FREQUENCY								ANG	LE, DEC	j							AVERAGE	POWER LEVEL
	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160	SPL	(PWL)
				1/3-001	TAVE RA	וחג חוא	ND PRE	391122	LEVEI	15 Di 3	ON 30	S-MET	EO DAD	tire.				
				1,2 00.		300	ALD THE	.33011	LLVLL	CSPEF	OK 30	•)-MEI	ER RAU	103				
50				71.8	71.8	72.6	72.4	73.6	73.8	73.8	74.1	77.0	75.3	76.1	79.9	81.7	75.2	122.6
63		72.0		70.3	71.2	70.2	71.0	71.2	71.5	71.5	73.3	75.9	75.7	75.2		82 - 2	74.8	122.2
68	75.7	73.0	77.3	72.2	72.5	70.B	70.5	71.0	72.2	75.3	75.3	78.1	79.0	81.5	83.5	84.2	77.2	124.6
100	72.0	70.8	71.5	71.1	76.1	70.1	71.5	73.3	75.0	76.0	78.1	79.7	80.8	62.8	84.1	85.2	78.2	125.6
1 2 5	73.9	72.9	75.1			74.3							81.1		84.1	83.7	78.9	126.3
160	76.4	76.9	76.5	75.2					77.4				75.5	80.9	82.2	80.7	78.2	125.6
200	76.4	75.7	74.9	73.9	73.7	74.0	74 . 7	74.2	74.4	74.7	75.7	77.3	78.7	75.7	80.7	79.6	76.4	123.8
250	77.7										77.9					79.1	77.4	124.8
315	77.4		76.5	75.7	75.2	74.9	75 . 2	75.4	76.5	76.5	77.2	78.5	79.C	75.7	80.0	77.4	77.1	124.5
					.,,,,	,		, , , , ,	,	,00,	1,42		,,,,,	,,,,,	50.0	1104	11.2	12403
400		77.2									77.4		79.2	79.9	79.2	76.8	77.0	124.4
500		78.9	77.9	77.1		75.3	74.6	75.3	76.1	76.4	77.3	78.2	78.8	79.3	78.3	75.7	77.2	124.6
630	80.5	79.6	78.8	78.1	76.5	76.0	75 . 0	75 - 1	76.3	76.6	77.5	78.2	79.3	60.1	78.0	75-4	77.6	125.0
800	82.3	81.5	80.3	80.5	78.3	77-3	76.6	76.3	77.1	78.1	78.6	79.7	80.6	81.5	78.0	75.7	79.0	126.4
1000	£4.6	83.0	82.3	82 C	80.5	78.5	77.5	77.5				81.5		82.8		76.5	80.7	128-1
1250	84.5	83.6	83.8	83.5	81.5	80.0	78.5	79 •0	8.08	81.6			84.8	84.5	79.6	77.2	82.4	129.8
1600	£5.4	85.5	85.6	85.9	83.8	81.8	80.1	80.4	83.2	84.2	86.0	86.6	£7.7	86.9	81.4	78-9	84.8	132.2
2000			97.6			95.0				92.0					88.6	85.3	94.4	141.8
2500	50.5	92.5	93.3			90.8	87.5	87.1			91.8		93 - 8		26.3	83.2	91.4	138.8
3150	60.5	89.0	00.0	00 5		0 5 0	24. 4											
4000			89.8	89.5 93.5		85 - 8		80.2	89.2	90.2	91.5	92.3	92.5	91.5	84.8	82.1	90-1	137.5
5000	90.8	90.5	92.3	92.8	93.0 90.7	89.8	87.0				94-0			93.9		84-3	93.4	140.8
2000	70.0	, 0.,	7203	72.0	90.1	07.0	81.0	86.3	90.8	90.5	92.5	95.1	56.0	93.5	88.3	84.4	92.9	140.3
6300	90.1	90.4	91.4	91.8	91.3	88.1	85 . 8	84.4	88.6	88.8	91.3	93.4	94.9	91.4	86.4	82.2	92.1	139.5
8000	87.5				90.3	87.1	84.1	84.1			91.1		93.9		86.5	_	92.2	139.6
10000	85.8	87.3	88.8	89.1	88.8	85.1	82.6	81.5	85.8	86.5	88.88	90.5	91.1	8.38	84.3	79.3	90.8	138.2
12500	82.8	84.1	86.1	85.8	85.6	82.6	79.7	78.2	83.3	83.6	86.4	85.0	88.8	86.3	82.3	77.L	89.6	137.0
16000	80.1	80.0	82.0	82.8	80.3	78.0	74.0	72.8	77.8	78.0	80.5	82.9	83.3			73.0	86.4	133.8
20000	75.9	75.4	76.8			71.8	67.1	66.6			75.1		76.9	75.6	71.9	66.0	83.3	130.7
OVERALL	100.4	101.7	102.7	102.5	101.5	99.8	97.2	96.4	99.2	99.9	101.8	103.0	104.1	102.4	97.8	95.5	102.2	149.6
DISTANCE						SID	ELI NE	PERCE!	VED NO	ISE LE	VELS							

152.5 METERS 73.2 85.5 91.2 94.1 95.1 95.1 93.7 93.2 96.0 96.4 97.6 97.4 96.8 93.6 85.6 77.8

TABLE III. - Continued. NOISE OF QF-3 CONFIGURATION 28 - HARD INLET WITHOUT RINGS, TAPED EXHAUST, NO SPLITTER

[Data adjusted to standard day of 15° C and 70 percent relative humidity. SPL referenced to 2×10⁻⁵ N/m²; PWL referenced to 10⁻¹³ W.]

(c) 80 Percent speed; fan physical speed, 2814 rpm; fundamental blade passage frequency, 2484 hertz

FREQUENCY								ANG	LE, DE	G .							AVERAGE SPL	POWER
	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160		(PWL)
				1/3-00	TAVE B	AND SO	UND PR	ESSURE	LEVEL	(SPL)	ON 30	.5-MET	ER RAD	ius			•	
50													78.2			86.8	80.7	128.1
63			74.0			73.8							79.3		85.7		79.1	126.5
80	14.9	75.4	74.2	73.4	73.7	73.7	74.5	75 •7	77.0	78.0	79.9	80.39	83.0	86.4	88.4	89.7	81.4	128.8
100	86.8	80.7	81.2	78.2	74.7	75.0	77.7	79.3	80.5	81.5	83.3	64.3	65.8	88.2	89.7	90.2	83.6	131.0
1 2 5	79.5	77.5	77.8	77.3	77.2	78.3	79.5	81.0	82.8	83.7	84.8	85.4	86.3	88.5	89.3	88.7	84.1	131.5
160	0.03	. 79 ∙5	80.5	72.7	78.7	80.2	8.08	81.7	82.8	82.8	83.7	84.7	84.3	86.7	87.0	85.9	83.1	130.5
200	79.7	79.4	79.4	78.4	78.5	78.5	79.2	79.7	80.0	80.2	80.7	82.1	£3.4	85.2	86.0	84.6	81.4	128.8
2 50	79.9	80.2	78.7	77.7						80.9		83.8				84.2	82.0	129.4
315	80.0	79.7	78 _• 4	78.9		79.2						83.3		85.2	85.4	82 - 8	81.8	129.2
400	81.7	79.7	79-2	78.7	78.2	78.2	78 - 6	78.9	70.0	80.9	81.9	82.8	83.6	84.7	84.2	81.6	81.3	128.7
500	83.9	81.8	80.6					79.1		81.1				84.3	83.4	80.5	81.5	128.9
630	83.7												83.3	84.2	82.7		81.6	129.0
800	84.7	84.0	83.2	83.2	01 7	81.2	90. 7	00.2	81.0	82.0	82.8	83.6	84.5	84.7	02.5	79.9	82.6	130.0
1000	87.2									83.4						80.3	84.L	131.5
1250	67.1								84.0			86.7		86.1	82.5		85.6	133.0
					•	,									22,5			
1600										86.2			89.2	86.8	83.3	80.9	86.5	133.9
2000	89.6		90.0										92.1			82.8	89.8	137.2
2500	56.5	98.6	100.6	102.3	103.5	102.8	99•6	96.6	96.3	96.3	97.8	98.4	100.3	98.3	91.0	89.4	99.9	147.3
3150	89.3	90.5	90.6	90.8	90.3	88.9	88.3	89.6	91.9	92.5	93.4	94.5	95.2	92.8	87.0	64.4	92.3	139.7
4000	89.9	90.9	91.9	91.4	91.2	89.9	89.0	90.5	93.4	94.0	95.2	96.7	97.2	93.0	88.0	85.6	94.0	141.4
5000	52.9	93.0	95.5	97.2	95.2	95.5	93.0	91.4	95.0	95.4	96.5	99.3	59.7	95.7	91.5	88.0	97-0	144.4
6300	89.6	90.1	90.9	91.6	90.9	88.5	88 - 1	88.8	91.8	92.5	94.5	96.4	57.0	92.5	88.8	84.5	94.1	141.5
8000	89.3	91.5	92.5					88.9		92.9			96.9	94.5	89.2	,	95.4	142.8
10000	86.8	88.6								90.4			94.1		87.3	82.8	93.7	141.1
12500	83.3	85.7	87.5	86.8	86.5	84.3	82 . 8	82.8	87.5	88.3	90.5	92.3	92.5	89.2	85.4	80.5	92.8	140.2
16000															82.0		89.8	137.2
20000	75.6	75.9	77.0	78.2	76.0	72.8	70.7	72.4	75.7	76.7	79.7	82.1	81.2	79.0	75.7	70.4	86.7	134-1
OVER AL L	101.8	102.7	104.2	105.2	105.5	104.7	102.2	100.9	102.9	103.3	104.7	106.3	107.G	104.6	101.2	99.5	105.4	152.8
DISTANCE						\$10	ELI NE	PERCE	IVED N	DISE L	EVELS							

152.5 METERS 75.1 87.3 93.9 98.3 100.9 101.6 100.2 99.1 100.1 100.3 101.1 101.1 100.9 97.0 89.0 81.9

TABLE III. - Concluded. NOISE OF QF-3 CONFIGURATION 28 - HARD INLET WITHOUT RINGS, TAPED EXHAUST, NO SPLITTER

(d) 90 Percent speed; fan physical speed, 3155 rpm; fundamental blade passage frequency, 2786 hertz

FREQUENCY								A NG I	LE, DEC	;							AVERAGE SPL	POWER LEVEL
	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160	SPL	(PWL)
				1/3-001	TAVE B	AND SOL	JND PRI	ESSURE	FEAET	(SPL1	QN 30.	.5-MET	ER RAD	IUS				
50	85.7	79.7	83.0	79.0	81.0	80.5	81.0	80.5	82.0	82.0	83.0	83.5	83.5	87.0	88.0	91.8	83.8	131.2
63		78.5	77.5			77.6				79.8	80.8	82.7		87.5	88.3		82.9	130.3
80	77.9	77.4	75.7	75.9	76, 7	76.6	76 • 4	77.4	78 - 4	80.4	82.6	85.0	86.9	90+2	91.4	94.1	84.9	132.3
100	86.1	84.9	81.1	81.4	81.2			82.1				88.8		92.4	94.1		87.7	135.1
125	82.5		81.6					83.6		87.0			90.1				87.7	135-1
160	83.4	84.1	83.9	82.7	82.4	83.2	84 - 1	84.9	86.1	86.9	86.9	88.5	€8.4	90.6	90.7	90.3	86.8	134.2
200	84.1	83.0	83.0	82.5	82.1				83.1				€7.€		90.3		85.3	132.7
2 50	82.6	82.9	82 . 4	81.6	81.4	80.9			83 - 6				89.1		90.2	88.5	85.9	133.3
315	86.2	84.0	82.2	82.3	82.7	83.3	82 - 5	83.3	85.0	85.3	86.3	87.4	88.7	89.7	88.7	86.9	85.8	133.2
400	84.2	83.2	82.8	82.5	82.5	82.2	81.7	82.3	83.7	84.5	85.8	87.4	88.2	85.3	87.8	85.5	85.3	132.7
500	£4.9	84.2	83.2	83.4	84.7	83.7	83.1	83.2	84.4	84.9	85.7	87.0	87.6	88.4	27.1	84.4	85.4	132-8
630	86.9	85.4	84.4	85.2	84.7	85.5	83 • 4	83.2	84.0	84.4	85.7	86.3	87.9	0.88	86.0	83.6	85.5	132-9
800	88.6	87.6	86.6	86.0	85.8	85.3	85 . 3	84.5	85.3	85.8	86.5	87.7	88.5	86.6	86.0	84.2	86.5	133.9
1000	50.3	90.0	90.2	89.9	90.9	90.0	88.7	86.9	86.7	87.4	87.5	88.9	89.5	89.3	86.1	84.9	88.9	136.3
1250	91.7	93.2	95.0	95.4	96.4	95.5	94 • 2	91.4	90.5	90.0	90.7	91.1	90.7	96.9	86.5	85.6	93.0	140-4
1600	51.3	92.1	93.6	95.6	95.6	94.8	93.8	90.8	91.3	91.0	92.0	92.4	91.8	90.3	27.5	85.9	92.9	140.3
2000	90.4	90.9	91.9	92.9	92.9	93.6	92.1	90.6	91.4	91.9	93.1	93.2	93.4	90.6	87.1	85.3	92.4	139.8
2500	57.1	98.7	100.4	100.2	100.1	100.7	99.4	97.2	97.4	97.4	98.2	99.7	99.9	95.6	91.9	90.8	99.1	146.5
31 50	96.1	97.4	99.1	99.1	99.3	99.6								96.8			58.9	146.3
4000	91.5	92.7	94.9	95.4	95.7								99.7		90.7		97.4	144.8
5000	93.9	93.7	95.2	96.5	95.0	94.5	94 • 2	93.9	97.2	97.4	99.5	101.2	100.7	96.4	93.2	90.0	98.3	145.7
6300	92.4												98.6		91.9		97-2	144-6
8000	91.3	92.6	93.6	93.0									99.0		91.5		97.9	145.3
10000	88.7	89.8	90 • 3	90.5	90.3	88.3	88.5	90.2	93.0	93.4	55.7	96.4	96.2	93.5	90.0	85.4	56.0	143.4
12500	85.4	87.3	88.0						90.3					90.9			95.0	142.4
16000	82.4								86.1					86.5			92.3	139.7
20000	78.3	78.3	79.3	80.1	77.7	75.8	75 • 0	77.2	80 • 5	81.8	84.4	86.1	84.8	82-1	78.8	73.9	90.6	138.0
OVERALL	104.3	105.0	106.3	106.6	106.6	106.4	105.5	104.4	105.9	106.2	107.8	109.2	108.9	106.5	104.3	103.5	107-9	155.3
DISTANCE						SIC	DELI NE	PERCE	IVED N	DISE LI	EVELS							

152.5 METERS 77.2 89.0 95.5 98.9 101.0 102.6 102.5 101.7 102.9 103.0 103.5 103.9 102.5 98.0 91.6 85.1

TABLE IV. - NOISE OF QF-3 CONFIGURATION 31 - TAPED INLET WITH RINGS, TAPED EXHAUST, NO SPLITTER

(a) 60 Percent speed; fan physical speed, 2116 rpm; fundamental blade passage frequency, 1869 hertz

FRECUENCY								ANGL	.E. DEC	•							AVERAGE	POWER LEVEL
	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160	SPL	(PWL)
				1/3-00 T	AVE BA	NO SOU	NO PRE	SSURE	LEVEL	(SPL)	ON 30.	5-METE	ER RAD	tus .				
5C	68+9	68.5	71.0	68+2	70.9	68-9	66.2	68.0	68.0	69.4	70-0				74.9	76.3	71.4	118.8
63	72.0	69.7	71-3		70.0	68-8		69-8	67.0	69.7			.70 • 2		74.7	76-1	71-4	118.8
80	13.5	70-2	72.0	68.0	70.7	69.4	67.7	70.5	67.7	71.0	70.7	75.9	73.0	75.9	76.7	77.9	72.5	119.9
100	69-1	69+8	71.8	67.8										77-1	78.3	78-9	73.3	120-7
125	12+3	70.7	73.5	70.8	71.7	70-2	68.2	71.0	72.0	73.2	74.3	75.8	75.5	77.0	78.7	.77=6	73.9	121-3
190	73-4	73-4	74+6	71.7	73.7	72.9	70.9	72.6	73-1	74-4	74.7	75.4	75.1	75-7	75.6	75-3	74-0	121 • 4
200	15-2	76.4	74%7	72.7											74.9	74.4	72.7	120 • 1
250	73.7	74.0	74-7	71.3		60.3								75.2	75.3	73.9	72.5	119.9
315	75-7	74-5	76-0	72+4	74.4	71.4	69.9	71.5	70-7	72-4	73.0	73.7	74.4	74-5	74.0	72.8	73.1	120.5
400	77.1	75 - 5	76 - L	72.3		70.5									74.3	71.8	73,4	120.8
500	77.3	76.6	71.0	74.0	75.6	71.0	69-8	71-5	71-1	73.0	74 • 1	74.5	75.6	75.5	74.0	71.2	74.0	121.4
630	78+7	77.2	78.2	75.4	76.5	72.4	70.5	71.5	72.0	74.0	75 - 2	75.5	76.9	77.4	75.0	70.9	75.1	122.5
800	81.0	80.7	80.3	78-0	78.5	74.0	72.5	7345	73-8	76-3	78.3	78-3	79-3	80.0	76.3	72-6	77.5	124.9
1000	83 - 7	82.0	81.9	80.4	80.0	76.0	74.0	75.2	75.4	79.3	80-8	81 • 1	82.6	82.9	78.3	74-7	79.9	127.3
1250	€4+2	84.0	83.3	82 • 0	81.5	77.5	74+8	76+8	78-2	81.8	83-2	83.5	85.7	85.0	81.0	76-1	82.1	129.5
1600	8+83	89.7	87-7		84.7		76.3	80.0	82.2	85.5	86-8	87.5	90.0	88+5	83.3	79.6	86+2	133.6
2000	55.7	98.2	95.2	90.2	41.B	90.U	85.0	86.5	89.3	92.3	93.2	94.7	97.5	94-2	89.2	85-6	93.5	140.9
2500	81.4	89.0	87.9	87.9	85 . 7	82 • 7	78.2	81.7	84.5	87.4	88+7	88.5	91.0	89+4	83.4	78+9	87+3	134.7
3150	85+1	89.9	89-1	89.4	86.8		79.6			89.6			91.9		84.6	79.8	89.0	136.4
4000	92.4		92.9		94.8		81.9			90-8					87.6	82.5	91.6	139.0
5000	89 • 8	90 • 6	89.5	84.5	88.3	84-1	79.3	81.8	85+3	87.8	89-3	91•1	94.3	90 • 8	87.5	80 • 2	89.9	137-3
6300				89.2		83+2				85.6					87-1		89.4	136.8
8000	87 • 5	88.5	88.9			83-2				85.5					85.0	78.5	89.3	136-7
10000	85.4	86.9	86.9	87.1	86.6	81.2	76.1	74.9	79.2	82.0	84.9	85.6	87.7	84.5	82-2	74.9	87•3	134.7
12500	82 - 8					77.4									77.7		85+3	132.7
16000	80.4	78.8				75.0			68+B		75.6		78.7		73 - 7		84 - 6	132.0
20000	80 • 7	76+4	84 • 6	77-1	85.0	74-4	73.7	66.6	52-8	67.3	70-3	72-2	74+2	70-6	68.7	60.7	86.4	133-8
OVERALL	100+6	102-1	100+8	100.9	98.7	95+2	90.7	92.4	95-2	98.3	99.9	100-9	103+0	100-5	96•5	92-1	100-1	147.5

DISTANCE

SIDELINE PERCEIVED NOISE LEVELS

152.5 METERS 73.8 86.0 89.2 92.6 91.8 90.6 87.2 89.5 92.2 95.0 95.9 95.9 96.7 92.2 84.8 76.0

TABLE IV. - Continued. NOISE OF QF-3 CONFIGURATION 31 - TAPED INLET WITH RINGS, TAPED EXHAUST, NO SPLITTER

(b) 70 Percent speed; fan physical speed, 2468 rpm; fundamental blade passage frequency, 2180 hertz

FREGUENCY								ANG	LE, DE	و							AVERAGE SPL	POWER LEVEL
	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160	• • •	(PHL)
			1	130-601	TAVE BA	ND SOU	ND PRE	SSURE	LEVEL	(SPL)	ON 30.	.5-MET	R RADI	us				
50	73.2	71.5	72.3	72.2	73.3	73.7	73.3	73.3	73.0	74.3	75.5	79.5	74.7	77.7	80.7	81.4	75.8	123.2
63	68.7	71.9	70.7	70-2	72.2	70.7	71.4	72.4	70.9	72.1	73.2	78.9	75.1	78.1	81.1	81.3	75 - 1	122.5
80			77.C	71.9	73.2	70 • 4	72.0	72.5	70-4	74.2	76.4	79-2	77-9	80.7	83.0	83-1	76.9	124.3
100	72.2	71.7	72.0	71.4	73.0	71.0	73.5	75.0	73.4	76.5	78.4	80.5	80.7	82-4	84.4	85+1	78+4	125-8
125	75.4	75.4	75.2	74.4	74.9	76.9	76.6	77.4	16.6	78-1	79.9	80.9	81-1	82+2	84.6	84.0	79.3	126.7
160	76.5	77.3	76.3	75-2	76.5	16.5	77.0	77.7	76-7	78.3	78+8	80.2	79.7	80+7	82.3	81.1	78.5	125-9
200	77-1	76.6	75.9	74.4	76.2	74.9	75.4	75+6	14.2	75+6	76.1	77.4	78.7	79.6	81-2	79.8	76.9	124.3
250	78.0	78.5	76.5	75.3	77.3	73.8	74.3	75.0	74.8	76.3	78.2	79.0	80.2	80+8	81.5	79.6	77.7	125 - 1
315	77.9	76.9	77.0	76.2	77.5	16.2	75.7	76.0	75.5	76.9	77.7	78.4	79.2	79.7	80 • 4	78-1	77.5	124.9
400	0.08	78.1	77.5	76.1	77.5	74.6	75.0	74+8	74.5	76.5	78.1	78 - 3	79.6	79-8	79.5	76.8	77.4	124.8
500	81.0	79.5	78.4	76.9	78 - 4	15.4	75.5	75.7	75.7	77.2	78.5	78-4	79.7	79.4	78.7	75.7	77.8	125-2
630	61.5	80.4	79.2	78.4	79+2	75.7	76.0	76•2	75 - 8	77.9	78.9	78.7	80.7	80•4	78 • 3	75.4	78-4	125-8
800	64-1	82.9	81.5	8C-4	80.9	77.4	77.4	77.0	76.9	79•7	81+1	81.4	82.9	82.9	79.4	76.3	80-4	127.8
1000	86 • 7	84.5	82.9	82.5	82.4	78.7	78.5	79.0	78 - 6	81+6	83.4	83.8	85.4	84.7	80 • 2	77-6	82.4	129.8
1250	86.5	86.0	84.2	83.5	83.2	80.2	79.8	80.3	81.3	84+2	86.0	86+0	87.8	86-5	81.2	78-1	84+3	131.7
1600	88.4	88.4	86.4	86.5	85.1	82+1	81.1	82.6	83.7	86.7	88-4	88-6	90.7	88•6	83 - 1	80.3	86+7	134+1
2000	56.7	99.5	46 • 4	98.0	94.5	93.4	89.9	91.0	91.2	95.5	96.9	96.2	98.9	95.4	89.9	87.6	95+6	143-0
2500	93.7	95.9	94-0	94.4	91.4	89.9	86.7	89.0	89.5	93.0	94.0	93.7	96.2	93.7	87-5	84.8	92.9	140.3
3150	91.5	92.2	90.3	90.7	89+2	86 • 2	85.0	87+8	89.7	93.0	93.3	94.0	95.0	92-3	86-3	82-6	91.8	139.2
4000	54.9	95.7	94.4	95.2	92.9	91.1	87.9	88.9	91.7	94.9	95.4	96-2	97.6	94.9	89 - 1	85.2	94.7	142-1
5000	93.5	94-1	42.B	93.5	91.8	89.0	86.3	1 v88	90 • 5	92.6	93.5	95+8	98.7	94+6	90 • 2	84-4	94.2	141+6
6300	92.3	92.5	91.5	93.0	91.5	88.2	85.7	85.1	88+0	90.7	93 • 2	94.5	97.5	91.9	88-9	82.3	93.4	140 • 8
8000	90 • 3	92.0	90-5	92 • 5	90.6	87.1	84-8	84.5	88.1	90.6	92 - 1	94.8	94.6	92•1	87.5	82.6	93 • 1	140.5
10006	88.9	90.6	89.0	90.9	89.8	85.4	83.6	81.7	85 • 2	87.6	89.4	91+2	91.9	88.0	84.7	79.4	91.6	139.0
12500	65.9	87.4	86.7	87.4	87.5	81.9	82.4	78+8	81.7	84+8	86-1	88.6	88.1	84-9	81.4	76.8	89.9	137.3
16000	81.4	82.8	84.7	82 - 7	85.7	17.1	81.0	75+7	76.0	79.0	81.5	82.5	84.5	80.4	77+6	72.2	87.9	135.3
20000	76 - 9	80.2	83.3	79.6	84.6	74 - 1	81.9	73.2	70.0	74+1	76.5	78.4	79.5	75•6	73 - 3	65.9	88-1	135.5
OVERALL	103-1	104.5	102.6	103.6	101.6	99+1	96.9	97.6	99•2	102•4	103.5	104-4	106.3	103-2	99.0	96.0	103.5	150+9

DISTANCE SIDELINE PERCEIVED NOISE LEVEL

152.5 MFTFKS 75.5 87.9 90.7 94.9 94.7 94.3 92.8 94.4 96.0 98.8 99.4 98.9 99.2 94.4 86.9 79.1

TABLE IV. - Continued. NOISE OF QF-3 CONFIGURATION 31 - TAPED INLET WITH RINGS, TAPED EXHAUST, NO SPLITTER

[Data adjusted to standard day of 15° C and 70 percent relative humidity. SPL referenced to 2×10⁻⁵ N/m²; PWL referenced to 10⁻¹³ W.]

(c) 80 Percent speed; fan physical speed, 2821 rpm; fundamental blade passage frequency, 2491 hertz

FREQUENCY								ANG	LE. DE	6							AVERAGE SPL	POWER LEVEL
	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160	SPL	(PHL)
				1/3-00	TAVE H	AND SOL	JND PR	ESSURE	LEVEL	(SPL)	ON 30	•5-MET	ER RAD	IUS				
50	82 - 3	76.8	81.6	83.4	80-8	79.8	77.3	76.6	70.8	79+3	80+6	83.4	77-8	82-1	84.8	86+8	81.0	128•4
63	12.3	74.8	74.1	74.3	73.6	74.1	74.3	74.9	73.0	75.9	77 • 8	82.4	79.3	82.4	84.3	86.5	78.9	126.3
9.0	74 • 6	74.5	74.0	72.5	73 - 1	72.3	73•1	74.1	73-1	77.0	79.5	83.1	62+3	86.0	88• 1	88.9	81.0	128.4
100	81.0	78.5	80-4	76.9	74.2	74.7	76.2	78.2	78+0	81.2	83.4	84.9	85.0	87.7	89.2	89+7	83.1	130.5
125	78.8	78.0	77.8	77.1	77.5	77.5	78.5	80.3	80.0	83.1	84+6	85.1	86.0	87.3	89-1	88-7	83.5	130.9
160	80-5	80-5	8C-5	78+5	79+3	79.6	d0 - 5	81.1	80.0	83.1	83.6	84.1	84.8	86-1	86+8	85.7	82.8	130-2
206	80.7	80-0	80.3	76.8	79.5	79.0	78-7	79.2	77• s	79.8	81.0	82-0	83-7	84-5	85-3	84.7	81.2	128.6
250	80.5	62.0	80+0	78.4	78 • 7	77.4	77.5	78.7	78.0	81-2	83.0	83.9	85-0	85.9	86 - 4	83.9	82.9	129.4
315	80.5	80.7	79.7	79.2	19-7	79+2	79.5	8C.7	80•0	82.3	83.3	83.5	84.3	85-0	84.7	82.6	82.0	129+4
400	83.0	81.5	80-1	79.3	79.3	78.1	77.8	78.5	78-1	81.0	82-3	82.5	84.5	84.6	84+3	81.5	81.4	128 • 8
500	84.5	83.7	80-5	79.9						81.4						80.1	81.6	129.0
630	85.3	85.0	81.7	81.5	80+8					82.2					82.7	79.4	82.0	129.4
800	66.7	86.0	83.7	83.2	82-2	80-2	е-ан	80.8	80.7	83.7	84.5	84.2	85.8	85•7	82 . 8	79.7	83.4	130.8
1000	89.2							82.0		85.4			87.2			80.1	84.9	132.3
1250	88-9				_	83-1				87.3		88.1			83.1	80.3	86.5	133.9
1600	89.1	89.3	89.0	87.5	86.6	84.0	83.3	85.1	85.A	89.1	90.5	90-7	92.n	89.0	84.3	81.7	88+4	135 • 8
2000						87.4				92.0							91-5	138.9
2500			102.3					95.8					104-1		93.3	89.8	100.3	147.7
3150	93 - 1	93.8	93.3	92.6	91.3	88.4	88.4	91.0	92-0	95.0	96.2	96.0	97.4	94.2	88.8	84.9	94.1	141.5
4000	54 0									96.2			98-9			86.1	95.7	143-1
5000	96+6					93.0	91.8						102-5		94-0	88.4	98.5	145.9
6300	52.5	93.5	92.6	93.4	91.9	88.6	87.5	89.5	91.0	94.3	97.4	97.4	99.5	93.4	91.6	84.7	95.7	143.1
8000	92.8		93.5			90.3					96.9	98.4	98.1	94.8	91.1	85.6	96.6	144.0
10000	50.4			91.7	90.2	87.2	85.2	80.0	88+5				95.0			81.9	94.3	141.7
12500	89.3	91.0	89.9	90.4	88.4	85+2	82.8	H3_5	85.2	88.8	91.0	91.8	91.0	87.3	84.5	79.7	93•1	140-5
16000			84.2		83.7	76.7	76.0	78.5	80.4	83.5	86.6				81.5		90-1	137.5
20000			19-3	79.3	79.1	73.2	71.0	72.3	75.0	79.0	81.6	83.2	84.0	78.8	76-8		88-4	135.8
																4.		
OVERALL	105.1	106-0	105-9	106-1	104-7	101-8	99.9	101.4	102-5	105.1	107.2	107.4	109•4	105.4	102-2	99.4	106-4	153.8

DISTANCE

SIDELINE PERCEIVED NOISE LEVELS

152.5 METERS 78.0 90.0 95.5 98.9 99.6 98.6 97.4 99.1 100.0 102.2 103.9 102.4 103.8 98.0 90.5 82.1

TABLE IV. - Concluded. NOISE OF QF-3 CONFIGURATION 31 - TAPED INLET WITH RINGS, TAPED EXHAUST, NO SPLITTER

(d) 90 Percent speed; fan physical speed, 3173 rpm; fundamental blade passage frequency, 2802 hertz

FRECUENCY								ANGL	.E, DEC	ĵ,							AVERAGE SPL	POWER LEVEL
	10	20	30	4C	50	60	70	90	90	100	110	120	130	140	150	160	V	(PWL)
			1	./3-GC1	TAVE BA	NU SUL	NO PRE	SSURE	LEVEL	(SPL)	00 OC	.5-MET	R RADI	us				
50	82.2	79.9	81.9	80-9	81.4	80-2	80.9	81.9	79.1	82.9	82.6	84.2	83-2	86 • 6	89.1	91.0	83.7	131+1
63	76.0	78.8	77.6	76.8	78 - U	74.0	77.8	78.3	77.0	79.6	81.0	83.3	83.5	87.0	89.3	90.9	82.7	130-1
80	11.6	77.2	75.2	75 • 6	76.1	75.7	76.6	77.4	76+6	80.4	82.4	85.1	85•7	89.4	92.4	93+1	84 • 6	132.0
100	64.B	81.1	81+8	82 - 1	82+1	80.8	79.6	82.0	81.8	85.0	86.5	88.5	88-6	92.1	94.0	94.5	87.3	134.7
125	87 • 3	80.8	82.0	81.0	80.4	81.3	82-3	83.8	83.5	87.2	88.2	88.7	89.5	92.2	94.2	93.4	87.7	135.1
160	64.1	83.9	83.8	82.8	82.9	83 • 8	84.4	85-3	84.1	86.8	87-4	88.4	88-9	91.3	91.8	90.5	87.1	134.5
200	83.3	83.8	83+0	82-1	82.8	82.1	83-1	83.1	81.3	84+0	85.0	86+0	87.6	89.3	90 • 6	88.2	85.3	132.7
250	82.0	83.1	82.5	82.0	81.5	81.5	81.1	82.5	81.6	85.0	86.5	87.3	89.0	90.6	91.1	88.2	85.9	133.3
315	£6.0	84.1	82+3	82+3	63 - 1	82+5	83.1	84.0	83.1	85-8	86.6	87.0	88-3	90-1	90.0	86.8	85+9	133+3
400	84+2	83.1	82.7	83.2	82.6	82-1	82.4	82.9	82-1	85-2	86.2	86.7	88+2	89+2	88.7	85.6	85 4	132.8
500	65.4	84.2	82.9	82 • 9	82.7	81.7	82.4	83.5	82•7	85.4	86.↓	86 • 4		88.0	87.7	84.4	85.1	132.5
630	67-1	85.7	83.9	83.9	83-4	82.4	82.6	83.4	81.9	85+2	86 • 2	86+6	88-1	88•2	87.2	83.6	85-3	132.7
306	88.3	87.7	86 - 5	85.3	85.0	84+2	84.7	84-7	83 • 3	86+5				88-8	87.1	83.9	86.5	133+9
1000	90.0	88.9	88.2	86.9	86+0	85.4	85.3	86.0	85 • 1	88.3	88+5	89.6	90-3	88.6	86.5	83.5	87.7	135•1
1250	91 - 8	92.1	42 • 6	91.8	89.6	88+1	86.8	87.8	87+1	90.0	90.6	91.1	91-6	89.6	86.8	84+2	90.0	137.4
1600	51.8	93.2	94.2	91 • 8	91.7	89.2	87.2	89-2	88-3	91+3	93.0	92.7	93-8	90+3	87.5	84.7	91.4	138 • 8
2000		92.7					88.8						95-8	91.5		85.6	92.7	140 • 1
2500	48 - 8	100.3	99.6	99.5	98.0	95∙ 6	94.1	95•6	96.5	99.6	99.8	102-8	101.6	96.3	91.8	90.4	99.1	146-5
3150	46.7	100-5	100-0	99.7									102-5	98-5			99.9	147•3
4000		96.1	96 • 5	96-1							100-1			95.6			98.0	145 • 4
5000	90.0	96.6	96.3	95.5	96 • U	92.6	93.3	95•0	95.8	98.6	100.2	101-3	102-7	96-8	94.5	89.2	98.9	146-3
6300	94.3			94.7									102+1				98.5	145.9
8000	52.9			44.4		91.2							99•2		92+7		98.4	145.8
10006	90.2	91.7	91.2	92-2	90.0	68.7	88.3	89.8	91.6	94-5	96.8	97.0	97-3	93.0	91.2	84.5	96.6	144.0
12500		91.3					85.9						93+7		87+2		95 • 5	142.9
16000			86.1										90.6		84-1		92.9	140.3
20000	77.5	79.6	79.5	80+2	78.5	14.8	75.4	76•3	79•1	83.0	86.1	86.3	87.0	81.8	79.8	72.7	91.4	138+8
OVERALL	105.5	106.9	106.6	106+3	105.3	103+2	102.5	104-0	104-7	107-8	109-1	110.3	110.5	106-8	105•2	103+1	108.3	155.7

DISTANCE SIDELINE PERCEIVED NOISE LEVELS

152.5 METERS 78.3 90.4 95.4 98.4 99.7 99.2 99.3 101.2 101.8 104.9 105.1 105.7 104.3 98.8 92.8 84.8

TABLE V. - NOISE OF QF-3 CONFIGURATION 32 - TAPED INLET WITH RINGS, TAPED EXHAUST WITH SPLITTER

(a) 60 Percent speed; fan physical speed, 2116 rpm; fundamental blade passage frequency, 1869 hertz

FRELLENLY								ANG	LE, DE	G	. ,						AVERA GE	POWER
	10	- 20	.30	4 C	50	60	70	80	90.	100	110	120	130	140	150	160	SPL	LEVEL (PWL)
				1/3-001	AVE EA	ND SCL	JND PRE	ESSURE	LEVEL	(SPL)	ON 30	-5-METI	ER RAD	IUS				
#: -														•	_			
50 63				67.C													69-1	116.5
80			66.7	66•2 67•2	66.0	40 C	46.5	60.0	00.0	70 5	61.6	58.5	77.7	72.2	73.0		69•2	116.6
00	13.7	0110	00.0	21.2	66.4	40.43	4942	09.0	0013	10+5	07+7	1107	12.2	14+3	76.0	76.4	71.2	118.6
100	£9+8	69.6	67.8	67.3	68.1	67.6	67.6	68.3	70.6	71.5	72.8	73.6	74.8	76.6	77.5	77.2	72.4	119.8
125				70.6											77.5	76+3	73.6	121.0
160	72.5	72.9	73.5	71.5	71.5	72.0	71.7	73-0	73.4	73.9	74•2	74•0	74.5	74.7	74.9	73.9	73.4	120.8
200	15.6	76.0	79.3	73.1	79 - 6	71 - C	70-6	70-3	72.6	71.3	77.0	72.7	74 . 1	74.1	74 E	72.5	72.6	120+0
256				73.2	71.4	70.6	70.6	71.2	73.4	74.4	74.0	75.6	76.4	76.1	75.4	73.4	74.0	121.4
315	77.2		75.2		74.2	72.7	75.9	73.2	73.7	74.5	75.2	75.5	76.5	75.7	74.0	72.4	74.6	122.0
	,,,							,,,,,		,		1343	1003		. ,			12240
40C	76.7	76.9	25.5	74-2	73.4	71.7	71.9	72.6	74.4	76-1	76.9	77.2	78.4	77.4	75.2	72.5	75.6	123.0
500	79.1	78.2	76.7	76 • 2	75.7	73.6	73.6	74.6	76.1	77.2	78.1	78.4	79-1	78.4	75-2	71.8	76.8	124.2
630	75.6	79.3	78-1			14.3									76.3		78-1	125.5
800	81.7	81.3	80.3	75.5	77.8	25.5	75.7	76.2	77.7	8n.3	81.8	82-3	83-0	83-5	77.5	76.2	1.08	127.5
1000			82.6		80.3	77.2	76.8	77.7	79.7	82-4	83-2	87.8	85.3	85.5	79.9	76.7	82-1	129.5
1250	14-8		84.5		81.8	78.6	77∙€	78.8	81.5	84.5	85.8	86.0	86.6	87.0	82.1	78.2	83+9	131.3
															.,5=++		0343	
1600	£5.4	90.4	88.9	88.0	85.5	82.5	80.5	81.2	84.2	87.0	88.0	88.7	90.0	90.2	84.7	81.1	87.2	134.6
2000	55.5	97.3	90.3	55.3											89.8	86.4	93+1	140.5
250¢	16.0	89.8	. 89 • £	85±0	86.5	82.8	8C•6	82.6	86+0	88.3	89•1	89.5	90-1	89.8	83.3	80.0	87.9	135.3
3150	89.7	90.4	90.6	SC • 2	87.5	43.6	81.7	83.9	87.7	89.7	90.7	90-6	91.7	90•6	85.4	80.6	89•4	136.8
4000				94.0										92.5			91.8	139.2
5000	65.5		90.€	-					85.6			89.8			85.3	_	89.3	136.7
			,				1,711				•			, ,				
6300	89 = 0			89-5										88.6		78.7	89.1	136-5
6000	88 • 4			85-9											85 • 7	78.9	89-4	136 - 8
10000	15.7	86.4	86.4	87.0	85-2	81-1	75-5	75-4	80.7	82.9	85 • 5	85.3	87.5	84+5	82-4	74-7	87.2	134-6
12500	82-4	82.9	82.4	83 - 1	81-7	77+1	71.2	72-4	77.4	79.7	82 • 4	81-4	84.6	80-4	78 • 6	7.1.3	85.0	132.4
16000	71.8	79.1	79.0	78.5	77.4	72.0	66.C	66.6	70.1	75+5	77.1	77.0	78-0	75.3	74 . 2	65.9	82.1	129.5
50000	74.2	75-1	75.0	74.7	73 - 7	67.C	61-5	61-1	65.9	68.1	72 • 0	71.8	75-1	71 • 1	70 - 2	60.9		127.9
OVERALL	100-8	102-1	101.4	101-0	98.8	94.9	92+2	92•9	96+2	98+7	100+1	100.4	102-3	101-2	96 • 7	92•3	100.0	147.4

DISTANCE

SIDELINE PERCEIVED NOISE LEVELS . .

152.5 METERS 14.0 85.8 50.1 92.5 92.4 50.4 88.9 89.8 93.3 95.4 96.0 95.4 96.0 93.2 85.2 76.6

TABLE V. - Continued. NOISE OF QF-3 CONFIGURATION 32 - TAPED INLET WITH RINGS, TAPED EXHAUST WITH SPLITTER

(b) 70 Percent speed; fan physical speed, 2468 rpm; fundamental blade passage frequency, 2180 hertz

FRECLENCY								ANGL	.È. DEC	3							AVERAGE SPL	POWER LEVEL
	1 G	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160		(PWL)
			j	1/3-661	AVE PA	ND SCU	NO PRE	SSURE	LEVEL	(SPL)	ON 30	5-METE	ER RADI	US				
50	72-1	65.6	65+9	71.2	71-4	71.4	71.6	71.7	72+1	72.9	74.7	74.9	73.6	76.7	78 • 2	80-1	73.9	121.3
63	68.2	70.4	70-4	69.4	71 • 4	69.1	69-6	70.2	70.4	71.1	73.6	74.6	74.6	77+6			73•6	121.0
80	73.4	72.4	76.3	69.6	73.8	71.6	70-3	70.1	71.4	73.8	76.6	77.4	78•4	80.3	81-3	82.7	76•2	123.6
100	70.5	76.1	71.6	70.6	73.4	72.9	73-1	73+3	74-3	76.6	79.6	80 • 1	80.4	82 - 3	83.1		78-0	125.4
125		73.9												82.1			79.0	126-4
160	75.5	76.7	77.1	75.0	76.2	75.5	76.7	77.1	77.6	78-1	79.2	80.1	79.4	79•6	80 - 2	79.1	78•1	125.5
200	76+1	76.3	76.1	75.0	70.1	74.0	74.5	74.8	74+8	75.6	77-0	77.3	78.5	79.0	79.3	78-4	76.5	123.9
250	10.2	78.3	77.7	77.5	76.3	73.5	74.8	75.7	77-2	78.7	79.5	80.0	81.0	80 - 8	80 • 2	78.5	78•3	125.7
315	75.0	78.8	16.2	78.8	77.2	75.5	76.5	77.0	78.0	79.0	79.2	80.2	80 • 2	80 - 2	79 • 2	77.4	78•5	125.9
40 <i>€</i>	ĕ0 • 7	75.7	78.9	77.7	75.7	74.9	76-0	76.5	77.9	79.9	80.9	81.0	81-7	80.9	79.0	76.3	79.1	126.5
506			79.3		77.7						81.9	81.9	82.4	80.7	78.3	76 • 1	80.0	127.4
630	81 - 7		80±4		78 • 6	76+9	77.6	78-4	79 • 7	81.6	83.4	83.7	83-9	82.7	78 • 6	76.0	81.1	128.5
800	63.6	83.8	82.6	81-9	80 - 4	78+3	76.5	79.8	81.4	83-9	85 • 3	85.9	85.9	85.3	79-8	77.0	83+1	130.5
1000		85.4		83.9	82 - 3	79.9	80.6	82+1	83.7	85+7	86 • 7	86.5	88.0	87.3	81.9	79.2	84.9	132.3
125G	86.6	86.9	86.8	85.3	63.6	86.9	81.6	83.1	85.6	88-1	89.3	89.8	90•1	88.9	83 • 4	80.8	87.0	134•4
1600	66.9	84.8	88.9	67.8	85-6	62 - 8	82.4	84.1	87.4	89.6	90.9	91-1	92.4	91.1	84.6	82.2	88+8	136.2
2000	55.1	97.2	56.1	97.9	95.6	93.9	88.9	90.4	93.4	94.4	96.9	97.6	99.6	96.2	89.6	86.6	96.0	143.4
2500	54.7	94.2	94.7	54.6	52-2	89.9	86.6	88.7	91.9	92.9	94.7	95-2	97.2	94.6	88•2	84.8	93.6	141.0
3150	51.3	92.7	92.5	92.0	89.7	86.5	85.7	88.0	91.7	93.2	94.7	94.2	95.3	92.5	87.3	83.4	92.5	139.9
4000	54.6	96.1	96 · C	95.3	94.1	90.8	87.6	89+3	92.3	94-1	96.3			95.1		85-1	95+0	142.4
5000					92.4	88.7	85.7	87.2	90+6	92.4	94.7	95+3	97+2	93.9	89.2	84.7	94•0	141.4
€306	C 2 . 2	94.0	92.5	53.7	52.3	86.C	85.5	84-8	89.0	90.3	93.8	94.8	96.2	91.7	88.8	82+8	93.5	140.9
8000	50.4	92.4	91.6	92.8	90.5	86.9	82.5	84.8	88-9	89.9	92.9	93.8	95-4	91.9	88.6	82.7	93.3	140.7
10000	89.7	91.3	90.5	91.5	89.8	86.C	82.1	81.6	85.8	87-5	91-0	90.3	91.5	87.6	85.8	79.5	91+8	139.2
12500	860	87.2	87.0	67.C	85 • 8	82.0	77.6	78.8	82.0	84.8	87.7	87.0	88+5	84.3	82.5	76.4	89-6	137.0
16000	82.0	83.6	83.6	83.C	81.C	77.0	72.7	73.2	76.5	79.8	81.8	82.9	83.0	79.9	78.2	71.3	86.8	134.2
20000	11.3	79.0	75.0	78.7	76.5	72.0	67.4	67.6	71.5	73.9	76.7	77.6	78.7	75.3	72.7		84-7	132-1
EVERALL	103.9	104•1	104+1	103.9	102.1	99.2	96.3	97.7	100.8	102-3	104.5	104.8	106.5	103.6	99•2	95•7	103•8	151.2

DISTANCE SIDEL INE PERCEIVED NOISE LEVEL

152-5 METERS 77-0 86-8 52-4 95-2 55-4 54-6 52-5 94-4 97-6 98-9 100-4 99-7 99-9 95-1 86-8 78-7

TABLE V. - Concluded. NOISE OF QF-3 CONFIGURATION 32 - TAPED INLET WITH RINGS, TAPED EXHAUST WITH SPLITTER

[Data adjusted to standard day of 15° C and 70 percent relative humidity. SPL referenced to 2×10⁻⁵ N/m²; PWL referenced to 10⁻¹³ W.]

(c) 80 Percent speed; fan physical speed, 2815 rpm; fundamental blade passage frequency, 2486 hertz

		ζ-,		-	•			•	• ,			-	Ŭ	-				
FREGÚENCY			•					ANG	LE. DE	G							AVERAGE SPL	POWER LEVEL
	0 (.	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160		(PWL)
			i	1/3-60	TAVE E	AND SE	IND PRI	ESSURE	LEVEL	(SPL)	ON 30	.5-MET	ER RAD	tus				
50	62.0	3 6 3	นว. €	90.7	20.2	75•Q	74.7	70.7	74.7	77.4	78.0	70.2	77-0	81.2	83.5	85-1	79.7	127-1
63						72.3										85.3	77.7	125.1
8C						72 2											79.8	127-2
0.	1,741	1342	15.	,,,,	14.07	14-4		*				,	0243	V. 1 7. 1		•••		
100	75 - 1	77.2	78.5	74.6	73.2	73.4	75-2	77-7	78.9	80.9	82.6	83.4	85.1	87.1	88.2	88.4	82+3	129 • 7
125	77.1	71.2	76.0	76.5	76.2	76.7	77.7	79.5	81.5	82.5	83.5	84.7	85-2	86-7	88.2	87-1	82.8	130 • 2
160	75.9	79.9	3 - 0 8	79.2	78.2	78.5	79.5	81.0	81+9	82.0	82.7	84-7	83-7	85.5	85 • 4	84.4	82.3	129.7
200	8C • 1	60 - 4	76.6	60.1	77.C	77.6	מ.פל	76.4	70 - 9	79.8	80.6	81.0	87.0	84.3	84+8	82.8	80.9	128.3
250	80 • 4		80.3												85+6		82.4	129.8
315			80.6												84-4		82.6	130.0
3.3	-,					• , , , ,		0,101	0271	0001	0304	4	•					
40 C	£4.1	82 • 8	81.5			78.6											83.3	130-7
500	₹5+2	84 • 3	82+8	82.2	80.7	80.3	81.5	82.7	84.3	85.5	86.3	86.5	86.5	85.5	82.8	80.2	84.3	131.7
630	85.7	85.2	83.4	83.2	81.4	80 • 5	81.4	82.7	84.5	86.0	87-4	87-4	87.4	85.9	82-9	80.4	84.9	132 • 3
800	2.42	86.0	84.9	84.7	82.6	81.6	85.4	83.7	86.2	88.1	88.7	89.1	89-1	87.4	82.9	80.8	86.4	133.8
1000			86.5	-											83.9		66.3	135.7
1250			88.2										93.0			83+2	90-1	137.5
• • • • • • • • • • • • • • • • • • • •																,		
1600						85-4										84.9	91.4	138 8
≥000															88 • 2		93•6	141-0
2500	100+0	101.0	103-5	102.0	99.7	97 • 5	95.0	97.0	98 • 4	99•2	100.0	100.7	103.2	98.4	93.0	90-3	100-1	147-5
3150	69.5	94.5	64.1	53.7	51.1	88+9	89-1	92.3	94.6	96.3	97.5	97.5	98.3	95.1	90 • 1	86.5	95.3	142.7
400C	95.0	95.6	95.3	95.0	92.1	89.8	89.5	92.3	95.8	97.3	98.6	98.3	99.5	95.6	91 - 1	86.9	96.5	143.9
5000															92.3		98•5	145-9
		0.5			0.1 4		40.4	06.0	09.1	07.0	07 1	07.4	07.0	03.0	01.0	05 2	95.7	143 - 1
6300	53 • 7														91.0 92.0		97.1	144.5
500C																	94.9	142.3
10000	52-1	73-1	72.4	/A3•3	2103	87.5	06.0	0043	7011	71.0	74 4 0	7.780	7707	70.7	0 7 0 1	02.4	274,2	14643
12500	50.6	91.0	91.1	90.7	89.3	85.7	84.6	84.0	87+2	89.5	92.2	90.9	92-4	87.9	85-7		93.8	141 • 2
16000	£7.4	85 • 4	86+6	85.6	85.7	79.8	82.4	79+3	82.3	84.9	86.8	87-7	87-3	83.8	82 - 1	75.6	91.4	138 • 8
20000	84.9	81.6	8 7 = 1	82.3	83.1	75 • 6	80.7	75.6	78+6	79-3	82 • 6	83-1	83.9	79•7	77+0	71.0	90+7	138 • 1
CVFRALL	105.5	106+2	107-3	106.4	104-1	101.8	100.6	102-3	104.9	106-2	107-8	108-1	109-3	105-7	102-1	99•3	107.0	154+4

DISTANCE

SIDELINE PERCEIVED NOISE LEVELS

TABLE VI. - NOISE OF QF-3 CONFIGURATION 33 - TAPED INLET WITH RINGS, FULLY ACTIVE EXHAUST LINER

(a) 60 Percent speed; fan physical speed, 2138 rpm; fundamental blade passage frequency, 1888 hertz

ERECLENCY								ANGL	.E. DE	G							AVERA GE	POWER
	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160	SPL	(PWL)
				1/3-061	AVE BA	ND SOL	IND PRE	SSURE	FEAET	(SPL)	ON 30	5-METE	R RADI	us				
50	70.6	67.3	08.8	67.3	67•3	67.5	68-1	68.8	69.3	69.8	71.1	70.9	67.3	71.8	73.1	74.3	69.8	117.2
63	69.8	70.0	67.1	67.5	05.8	67.0	67.1	67.0	66.8	68.3	68 • 1	68.7	67.8	71.6	73.6	73+5	68.8	116.2
9.8	12.1	71.1	68.5	68.1	65+8	67.5	67.8	67.6	67.1	70.5	69.6	71+1	70+3	74.0	75.0	76.0	70.4	117.8
100	65.7	68.0		66.5	67.7		68.2				72.3		73.5	76.2	76.8	76.6	71.9	119.3
125	11.1	70.3		69.9	70.4	10.6	71.3	70.8	72.3	74.4	74.1	74.7	74.6	76.4	77.3	76.3	73.4	120.8
1 & 0	72.2	71.5	7C.8	72.3	72.7	72.2	72.5	72-2	73.3	73-8	73-5	73-9	14.2	74.5	74.8	73.6	73.2	120.6
200	8.61	75.8	71-7		72.0		70.3			72.0			73.2	73.7	73.3	72.4	72.L	119.5
250		74.8		7C • 8		69.7			71-7				76+8	76.3	74.5	72.0	73.3	120.7
315	76.0	74.6	73.7	71.8	73+2	72.0	71.8	72.2	73.0	75-3	74 • 7	75.8	76.5	75.8	73 • 8	71.7	74+1	121.5
400	78.4	76.5	14.4	72.9	74.7	71.7	71.2	71.9	74.4	75.5	75.7	76.3	78-0	77.0	74.0	71.4	74.9	122.3
500		78.0															75-8	123 • 2
630	19+6	79.3	77.5	76-1									80.0		74-0		76.9	124.3
нос	82.2	82 • C	80.2	76.8	78 • O	75.5	73.5	73.5	74.8	77.3	77.3	78.7	80+6	80.2	74.5	71.5	77.9	125.3
1000	84.7	63.3	81.7	81.3	74.5	76.7	74.3	74.5	74.7	77.0	76.5	77.6	79.8	80.0	75 o O	72.2	78.5	125.9
1250	€5.3	84.8	84.0	82.5	81.1	78. L	75.0	73.1	73.8	76.6	76.5	77.2	78.1	78.3	74.1	71.5	79•1	126.5
1606	89.5	89.9			86+0					77.0					74.5	73.2	82+8	130 • 2
2000	56.6	98.1		56.5	94.1		86.5			82 • 1			83.0	82.0	80.0	80.2	90+8	138.2
.2500	88.5	89.6	85 • 5	88.4	86+5	89.58	78.6	76.0	75.3	76.3	75.2	75.6	77.2	76.0	74.2	73.2	83•3	130.7
31.50		90.6		89.1	87 • 6					76.2				76.2		73+3	84-3	131.7
4000	93.4									77.9							88•2	135.6
5000	50 • 2	40.5	90 • 4	85.2	88.2	85+0	79.0	74.7	75.0	76+7	75+1	77.2	78.7	76.6	75 • 2	72.5	85+1	132.5
6300	89.9		89.4							77+3			82.3	80.5	76.1	_	85.3	132-7
eooc	86.7		89.6							80.8			85-8	83.5	79 • 2		86+9	134.3
10000	b6 • 3	87.3	86.9	86.1	85•9	83.6	75.4	76.1	81.0	82•2	83.7	83-5	85.0	82.3	78.7	72.9	86.6	134.0
12500	83.6	-		82.5	83.0					83+3			86.8	82.1	81.3	74.2	87.2	134.6
16000		79.8								79.0					75.9	69.4	84.2	131.6
20000	76.3	76 • 2	77.5	74.5	76+7	70.2	65.7	64.5	69+5	73.5	74.3	75.4	76.3	73 • 4	70 • 2	64.5	82+8	130.2
CVERALL	101-5	102.4	101.6	100.8	99.3	96.1	91.2	88.9	89.9	91.8	92•2	92.5	94.4	92.8	90•3	88.2	97-5	144.9

DISTANCE SIDELINE PERCEIVED NOISE LEVELS

152.5 METERS 74.6 86.2 50.3 52.7 53.1 51.2 88.2 65.9 85.4 87.0 85.5 85.3 85.6 82.7 77.2 71.4

TABLE VI. - Continued. NOISE OF QF-3 CONFIGURATION 33 - TAPED INLET WITH RINGS, FULLY ACTIVE EXHAUST LINER

[Data adjusted to standard day of 15° C and 70 percent relative humidity. SPL referenced to 2×10⁻⁵ N/m²; PWL referenced to 10⁻¹³ W.]

(b) 70 Percent speed; fan physical speed,	2402 rpm;	fundamental blade p	passage frequency,	2201 hertz
---	-----------	---------------------	--------------------	------------

FREGUENCY								ANG	e. Dec	3 							AVERAGE	POWER
	1 C	20	30	, 40	50	φū	70	é o	90	100	110	120	130	140	150	160	SPL	(PWL)
			:	1/3-00	TAVE B	ANO SEC	IND PRE	SSURE	LEVEL	(SPL)	ON 30	5-METE	R RADI	us				
50	13.2	69.7	71+7	71=0	70.5	72.0	71+4	72.4	72.9	74.7	74.5	76-1	71.4	77.0	78.9	80.1	74.3	121.7
6.3			70.0		69+9	70+0	70.2	70.0	70.4	72+5	73-0	75 - 1	72.4	77.7		79-7	73.5	120.9
80	75 • C	71.5	77-5	69.7	70+4	69•2	69+4	69.2	71.9	75.0	75-5	76-4	75+2	80.0	81.5	81.7	75•6	123.0
100	71.5	70.0	70.5	69.0	69.5	70-0	71.0	72.4	73.5	77.0	77.4	78.8	79.4	81.7	82.9	83+1	77+1	124.5
125	73.5	72.5	73.5	72.7	73+0	73.5	76.2	75.7	76.3	79.0	78.7	80+4	80.2	82.2	83.3	82 • 2	78 • 4	125 • 8
160	74.9	74.6	74 - 7	74.9	75 • 1	75-7	76.7	76.2	77-1	78.4	77.9	79.8	79.1	80.2	81 - 1	79.6	77.8	125.2
200	74.6	74.0	74.5	73.4	74.2	73.2	74.2	73.9	74.2	75.9	75.2	77.3	77.4	79.0	79.5	77.6	75.8	123.2
250	18.0	77.5	76.0	75.0	75.5	72.4	73.9	74.0	75.9	78.4	78 • 4	79.5	80.5	80.7	80.7	77.6	77.6	125.0
315	77.4	76.7	76.0	75.7	75.9	75.0	76.4	76.7	77.0	79.2	79.5	80-5	80.0	79.9	79 • 5		78-1	125.5
400	80.1	78.9	77.1	76+6	75.9	74+6	75.4	75.3	76-8	79.4	80 • 1	80+3	81.6	80-8	78.6	75.6	78.5	125.9
500		80.0	78.6	78.2	77.2	75.7	76.5	76.8	77.8	80.8	80 · 8	81.3	81.5	80.7	78.2	75.1	79.3	126.7
630	83.2	81 -4	81 • C	79.9	78+2	76 • 4	76.4	76.9	78.0	81.0	81+7	82.1	82.5	81-5	77.5	75.1	80•I	127.5
800	85.5	83.8	83.2	82.2	80.7	78+0	77.2	77.3	78.2	80.7	81.2	82.4	84.0	83-0	78-0	75.4	81 • 1	128.5
1000					82 • 0	78.9	78.5	77.7	78.2	81.4	81.2	81.5	83.4	83.4	78.2	75.6	81.8	129-2
1250						80.0											82•1	129+5
1600	89.4	89.1	88.9	£7.4	85.0	81-8	75.1	77.3	77.6	80.6	80-1	81.0	81.8	80.9	77.1	74.8	83.3	130.7
2000	98 • C	98.4	98.9	100.5	98.0	93-2	89.2	85.9	84.0	85.5	84.2	83.3	85.9	83.9	83.5	81.3	93 • 6	141.0
2500	55 - 8	96.3	96.5	98.1	95 - 7	91.0	86.8	83.8	82.0	83-3	82.0	81.9	63.7	81.8	81.5	79.4	91.4	138.8
3150	92.3	93.1	93.1	91.6	89.8	86.3	82.3	79.3	78.3	79.5	79.3	79.4	80-6	79.5	77.6	76.4	86.9	134.3
4000	45.3	96.4	96.8	95.6	94.3	90.9	86.6	82.6	80.4	81.6	80.4	80.5	82.6	81.8	79.9	78.2	90.8	138.2
500C			95.3								79.3				19.6		90.1	137.5
£300	93.3	93.5	94.0	93.4	92.0	89.5	84.6	80.3	79.0	80.3	81.7	82.9	84.5	82.2	78.5	76.1	89.5	136.9
8000					91 • 4						83-5				80.3		89.8	137.2
10000						88.0	81.9	79.1	80+5	81.5	83.5	82.8	84.3	81-4	78-6	74.0	89•4	136-8
12500	87.9	88.6	88.7	87.2	87.1	84.7	75.6	79.0	82.4	8543	86.8	85.5	87.8	83.1	81.6	74.9	89.9	137.3
16000			84.5			80.0											88+6	136.0
20000					78-1	75-0	70.8	71.3	75.2	78.6	80.0	80.3	80.5	77.7	74.5	68+6	87.1	134.5
OVERALL	104•3	104.8	105.1	105.2	103.3	99.7	95.7	93.0	92.9	95•1	95•3	95.7	97.0	95•7	94+3	92 • 4	101-0	148-4

DISTANCE

SIDELINE PERCEIVED NOISE LEVELS

152.5 METERS 76.6 67.5 \$3.0 96.7 96.8 94.4 91.9 89.8 89.0 90.7 89.6 88.8 89.0 85.8 81.4 74.4

TABLE VI. - Continued. NOISE OF QF-3 CONFIGURATION 33 - TAPED INLET WITH RINGS, FULLY ACTIVE EXHAUST LINER

[Data adjusted to standard day of 15° C and 70 percent relative humidity. SPL referenced to 2×10⁻⁵ N/m²; PWL referenced to 10⁻¹³ W.]

(c) 80 Percent speed; fan physical speed, 2845 rpm; fundamental blade passage frequency, 2513 hertz

FRECLENCY								ANGI	.E. DEC								AVERAGE SPL	POWER LEVEL
	10	20	30	40	50	63	70	80	90	100	110	120	130	140	150	160	37.6	(PWL)
			j	1/3-00	TAVE B	AND SOU	NO PRE	SSURE	LEVEL	(SPL)	6N 30.	5-MET	R RADI	us				
50	84.3	25.7	77.8	76.7	16.7	75.2	76.5	75.7	76.7	79.3	810	80.4	76.5	62.0	84.0	84.4	79.3	126.7
63						73.0											77.3	124.7
86						72.3								84.3		86.7	79+2	126.6
toc	80.0	76.0	78.4	74.5	73.0	74.7	75.0	77.0	79.0	81-2	81.9	83.8	84.0	87 • 2	88.5	88.1	82 - 2	129.6
125	-			75.9	77.4	77.0	78.5	79.5	81.0	83.2	83.0	85-1	84.7	87.7	88.0	86.9	82.9	130.3
160	77.9	76 • 2	76.0	77.5		79.2											82.2	129.6
20G	17.2	78.0	77.7	76.0	77.7	77.3	77.6	78.3	78.0	80-3	79.8	81.6	82.3	83.7	84.3		80-2	127.6
25C	79.2	79.2	77.8	77.2		76.3								85.3	85+3	82.4	81.6	129.0
315	#9 ∗6	79.1	78.9	78.4	79.1	78.6	75.4	80.6	81+2	83.4	82+9	84.3	84.6	84•6	84 - 1	81.3	82.0	129.4
40C	81.6	80 -6	80.5			77.6									83 • 6		82.1	129.5
50 C	63.7	შ3+0	81.7			18.5						84.6		84.3		79.0	82•7	130.1
630	€5.5	84•7	83 • 3	81.7	81.0	79•5	79.8	81•2	82.0	85•2	85+0	85•8	86.0	84.7	82 - 2	78.9	83.5	130.9
400				83.7	82.6								87.4				84.2	131.6
1000						81.8											85 • 0	132.4
1250	89.7	68•7	88+5	86.5	85.5	82 • 3	82.C	81-5	82.5	85.7	85-0	85.7	86.5	85•2	81.3	78.4	85•2	132.6
100C						83•3										77.9	85.6	133.0
2000						87.0									81.2	_	87.7	135•1
2500	101.5	103-0	104.0	103.5	101.8	100.3	96.2	93.5	90.5	90.3	89.7	89+4	90.7	88.8	89.0	87.7	98.3	145.7
315C	54.4	44.7	44.9	93.5	92.4	88.9	85-4	83.0	81.9	83.0	83.2	83.5	84.9	82.9	81.0	79.1	89.1	136.5
400C			45.7			89.7										78.6	90+1	137.5
500¢	58.3					95.4										81.9	94.8	142.2
£300	94.2	94-6	95-1	93.4	92.9	90.3	85.6	H2.6	81.6	82.6	84.0	85-1	85.5	82.5	79 • 7	77+1	90 • 4	137.8
HOGC	94.4	96.1	96.8	\$5+3	95 • 1	93.1	87.8	85.0	84+1	84.5	87.3	86.9	89.8	86 · L	83-1	79.4	93.3	140.7
10000	92.3	94.0	94.C	92.5	92.5	90.3	84.6	81.8	82.2	82•4	84+4	83.7	85+0	81.8	79•7	75-1	91 - 4	138.6
12500	50.6	92.1	91.5	5C+4	90.6	87.9	82-8	81.7	84.1	86.7	87.8	86.4	88 • 2	83.0		76.0	92-1	139.5
16000				85.5		82.5							87.4			75.3	91.3	138.7
20000	80.5	81.8	82.3	8C•6	80•2	78.1	74.1	76.3	79.7	82•6	84+2	84-0	83-8	8C+1	77.3	71.5	90+3	137.7
OVERALL	106.2	107-2	101-9	106.8	105.7	103.6	95.8	97.7	96+9	98•6	98.7	99•2	100-2	99-0	98 • 2	96.7	103.8	151.2
0.56745.65						F 10	CI TAIC	nence	EVEN AU	nice is	EVELC							

DISTANCE SIDELINE PERCEIVED NOISE LEVELS

152.5 METERS 78.7 91.0 97.0 95.4 100.3 59.9 57.5 90.0 94.6 95.4 94.6 94.0 93.6 90.2 86.3 79.5

TABLE VI. - Concluded. NOISE OF QF-3 CONFIGURATION 33 - TAPED INLET WITH RINGS, FULLY ACTIVE EXHAUST LINER

(d) 90 Percent speed; fan physical speed, 3203 rpm; fundamental blade passage frequency, 2829 hertz

FRECUENCY							-	ANGL	E. DE	G	., .						AVERAGE SPL	POWER LEVEL
) G	201	30	40	50	60	70	80	90	100	110	120	130	140	150	160	3. 2	(PWL)
			j	/3-00°	TAVE BA	AND SOL	IND PRE	SSUPE	LEVEL	(SPL)	ON 30	5-MET	R RADI	US				
5.0	67.5	77.4	79.9	78.7	79.9	79 • 2	79.6	80.7	81.4	84.6	82.6	83.5	79.4	86+2	88.2	89-3	83+0	130 • 4
63							77.2									89•2	81.8	129 • 2
60	77.9	77-0	75.9	76.4	76.2	76•7	76.7	77-2	78-5	81.5	82.4	84.6	84 • 5	88.9	90•7	91.4	83.7	131-1
100	86.4	82.9	81-2	75.7	78.7	78.9	80.4	81.9	82.9	85.0	85.4	87.8	87.9	91.7	93 • 2	92.9	86+6	134-0
125	81.2	79.1	75.2	8C.9	80.7	81.1	82.9	83.6	84-7	87-1	87.7	89.5	89.4	91.7	92.6	91-4	87•2	134.6
160	80.7	8C•4	81.9	82.7	82.9	83.4	84.2	84.7	85+5	87.2	86.9	88.3	88.5	90.2	90+7	89.4	86=6	134.0
200	80.5	0-18	81.2	81.9	81.9	51.4	82.0	82.0	82+9	84.5	84.4	86.1	86-9	88-2	89 - 2	86.9	84.6	132.0
250	81.4						81.6										85+9	133.3
315	. 86.2	83.4	82.4	81.9	83.2	82.9	83.5	84-2	85.0	87.4	86.7	88.3	88.7	89.0	88.7	85•4	86+1	133.5
400			82.6				82.6										85+9	133.3
500	85 - 1	84.0	83.3	82.8	82.3	82 • i	83.5	84.5	85 • 8	88.3			88.6				86+3	133.7
630	88.1	86-1	84.6	84.0	83+3	82 - 8	83.5	84.6	86-0	89-0	88.8	89.6	89.8	88.1	86.6	82-9	87.0	134.4
800	85-1	87.6	87.2	85.7	84.6	83.7	84.2	84.7	86+1	88.6	88.6	90.0	90.9	88.9	86 • 4	82.8	87.5	134.9
1000	91.8	89.6	გგ.3	87.7	86.7	85+1	84.9	85.3	86.9	89•4	88.8	90•2	91-3	88.6	86 • 1	82.5	88 • 2	135 • 6
1250	51.5	91 • 2	90.5	85.7	88.5	. 86 • 7	85.5	85.4	86.9	89.9	89.0	89.8	90-5	87.9	85•4	81.8	88.8	136+2
1600	92.3	92.1	92.3	90.8	89 • 4	87.3	85.3	84.9	86 - 9	89.8	88.6	89.5	89•9	86.4			88.9	136.3
20,00	54.6	93.5	93.3	97.2	90.7	87.8	85.8	85•5	86 • 7	89.0	89.0	89.1	89+8	86.3	84+2	81.4	`89•5	136.9
2500	100 • C	95.8	100.8	99.7	99•3	96+0	92.5	900	88+5	90+0	89.5	90.9	90.5	87.5	86•0	83.7	95 • 3	142.7
3150	101.5	101.6	102.8	101.8	101-9	98.4	94.6	92.1	89.4	90.9	89.8	91.0	91-4	88.9	86.9	85+2	97+5	144.9
4000	95.5	96+5	96.9	95.9	95.2	92 • 5	88.7	85.9	85+4	86.7	86+7	86+5	88-5	85+2	83+4	80-6	92=0	139.4
500C .	57.4	98+1	98.3	96.6	95-8	93.1	85.4	85.1	85•8	87-1	85-4	88.1	88.1	84+1	83 • 6	8D•2	93+1	140.5
€ 300	56.7	96+9	97 +6	55.5	95 • 7	93.9	85-2	85.7	85.6	86+2	86.9	88.5	87-8	84.9	82 . 7	79.5	93.3	140.7
9008							87.0						90.8		84+ L		93+9	141.3
10000	52.7	93.5	93.5	92.5	92 - 5	90+8	84.5	83.2	84+2	84.9	86 • 2	86+0	86.7	83.7	81.9	76.5	91+8	139 • 2
12500	¥				91-5	89.7	84.4	83.2	85 • 1	87.4			87.6			76.8	93•1	140.5
1600C	87.5	87.0	88+2	86.7	86.5	84.7	80-6	81.3	83.8	88.0	87.8	87-9	87.1	84.5	82.2	(5+9	92•4	139.8
20000	83.1	82.3	84+0	81.5	81.6	79.5	77.3.	79•3	82•6	85-3	85.4	85 • 5	84.9	81+3	18+8	13-0	92•1	139.5
OVERALL	167.6	107-6	108-3	107.0	106.8	104+2	100-8	99•4	99•7	101-9	101.•7	102.7	103•1	102.2	102• 0	100-5	105•1	152•5

DISTANCE

SIDELINE PERCEIVED NOISE LEVELS .

152.5 METERS 79.2 90.7 57.1 99.5 101.5 100.3 98.3 97.1 96.5 98.2 97.1 97.3 96.3 92.4 88.0 80.6

TABLE VII. - NOISE OF QF-3 CONFIGURATION 34 - SUPPRESSOR B, FIRST INLET SECTION ACTIVE, FULLY ACTIVE EXHAUST

(a) 60 Percent speed; fan physical speed, 2138 rpm; fundamental blade passage frequency, 1880 hertz

EKECLENCY								ANGL	.E. DEC	à							AVERA GE	POHER
	10	20	30	40	50	60	70	8C	90	100	110	120	130	140	150	160	SPL	(PML)
			1	/3-0CT	AVE BA	ND SCL	IND PRE	SSURE	LEVEL	(SPL)	GN 30.	5-METE	H RADI	บร				
5 G	72.1	68.4	68.9	65.9	67.2	68.7	67.2	68.7	72.7	74.9	73.9	87.7	71.2	74.6	76.9	79.6	78.0	125•4
63		68.9		67.7	65.4	67.2	66.7	67.7	71.5	73.4	72.4	84.7	70.9	74.5	75.7	79.1	75.6	123.0
86	72+1	70+1	67.9	68.5	65.6	68.4	68.4	68+6	70.7	73.9	72.6	85-1	74-4	76-2	77-2		76.3	123.7
100	11-1	68.3	67.3	67.4	66.8	69.9	67. <i>é</i>	69-6	72-1	74.1	73+8	82.3	76.4	77.3	78.3	78.6	75.2	122.6
125	12.0	70.2	70.9	76.7	70.5	71.2	71.0	71.7	74.0	75.4	75+2	82.4	77.2	77.5	79 0	78.7	76.0	123.4
160	12.7	71.3	71.8	70.5							73.8					75-6	74+6	122.0
200	13.7	75.4	71 • 7	72.0	71.2	71.9	70.9	71.4	72.0	71.7	71.9	78.5	74.4	74.0	74.7	74.9	73.5	120+9
250	73.9	73.4	72.9	70.6	09.9	70.1					74.7				75.2	77.3	74.5	121.9
315	7e - 1	73.6	74.1	71.6							74.7				74.2	76.8	74-3	121.7
406	77.8	74.8	74.1	71.9	71.3	71.4	71.6	72.6	73.3	74.8	76-3	78-1	77.8	76.3	74.8	76.5	75.0	122.4
500			74.8		72.0	72.0	71.8	72.7	74.3	75.8	76.8	77.8	77-8	76.8	74.5	75.0	75.3	122.7
630	18.0	76.2	75-2	73.7	72.2	72.2	71.5	73.0	74-5	76-2	77-8	78.5	79+8		74.3		76.0	123.4
800			77.4								77.6					71.6	76.6	124.0
1000			77.1	76+0	73.0	72.0	72.1	72.8	74.1	76.0	76.8	77.6	80.0	79.0	74.6	71.3	76.3	123.7
1250	ê(.9	79.2	78.2	76.7	74.6	72.5	71.4	71.5	73.0	75.5	76-4	77.4	78-2	77-5	73.2	69.3	75.9	123 • 3
1600		83.8		80.9	76+1	75.6	72.4	71.8	72.4	74-8	75.6	76.3	77 • 4	75.6	72.6	69+0	77.5	124.9
2000			89.4		84.4						77.0				76.9	73.8	83.1	130.5
2500	83.7	83.4	82.7	80-4	77.5	75.4	72.0	71.4	72.4	73.4	73.9	74•2	75.4	73.9	71.0	67.9	77+0	124-4
3150		84.7		81-2	78-3	75.7	72.2	70.2	71.2	73.3	73.8	74.7	75.8	74-3	72.0	68•2	77.9	125+3
4000			88 • 4		82 . 8	79.9	74.9	72-7	72.9	74.6	75.1	75.6	77.9				82+1	129•5
5000	£7.1	88.1	8¢.9	€5+2	81.7	79.9	74.6	70.9	72.6	74.4	74.2	75.9	78.9	75.7	73.7	69.0	81.4	128 • 8
€300			87.6			80.4	75.2	72-2	74.2	77.2	78.1	78.7	81-9	80-1	76.6	71+5	83.0	130.4
8000			88.3			81.3	75.5	74.2	78.7	80-7	82.5			81.7	79.0	71.8	85-2	132-6
10000	84.6	86.5	86.8	85.3	1.68	80.8	75-7	75.4	80 - 1	82.3	83.6	81.9	84,4	80.7	78.9	71.2	85•6	133.0
12500		83.2			80.6				79.7			83.5				71-1	86.5	133.9
16000			81.0							78.0		77.6			75+5	67.7	83.4	130.8
20000	75.5	74.2	81-1	72+7	73.5	67.0	73.3	64+2	68-5	73-8	73+6	74.4	75.1	72-4	69.9	63-0	82.8	130-2
OVERALL	57.1	97.7	97.2	95+3	92 • 6	90.7	87+2	86•6	88+8	91-0	91-9	95•1	94.0	91.8	90•3	89+3	94.7	142+1

DISTANCE SIDELINE PERCEIVED NOISE LEVELS

152.5 METERS 65.2 80.3 84.4 85.7 85.2 85.4 82.4 82.2 82.8 84.0 84.2 85.2 84.3 80.5 75.8 68.9

TABLE VII. - Continued. NOISE OF QF-3 CONFIGURATION 34 - SUPPRESSOR B, FIRST INLET SECTION ACTIVE, FULLY ACTIVE EXHAUST [Data adjusted to standard day of 15° C and 70 percent relative humidity. SPL referenced to 2×10⁻⁵ N/m²; PWL referenced to 10⁻¹³ W.]

(b) 70 Percent speed; fan physical spee	l. 2492 rpm:	fundamental blade	passage frequency.	2201 hertz
---	--------------	-------------------	--------------------	------------

FRELLENCY								ANGL	.E. DEC	G						٠	AVERAGE SPL	POWER LEVEL
	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160		(PWL)
			1	/3-0C1	AVE BA	ND SCU	IND PRE	SSURE	LEVEL	(SPL)	CN 30.	5-METE	R RADI	US				
5¢		71.2															77+4	124.8
63	71.40	71.1	69.6														76.4	123.8
80	15.5	73.6	75.7	70.4	71.2	73.1	74.1	72.7	73.9	76-2	75.2	79+1	77.4	80.2	81.9	86.9	77+5	124.9
166	14.2	71.4	70-4	7.0 . 0	70-0	72.4	73.4	74.0	75.7	78+0	78.5	80.5	79.9	81.7	83 • 4	87.3	78.6	126.0
125	75-1	74 - i														86.9	80.1	127.5
160	75.1	73.8	14.0	34.6	15.3	76.4	76.9	77•6	77.8	79+3	78.8	79.6	78.8	79.9	80 • 6	84+3	78.4	125.8
206	74 • 8	74 - 1	14-4	73.8	74.4	74.3	74.4	74-8	74.6	77-4	76.6	77-3	78-1	78.9	79.9	82.5	76.7	124-1
250	77.4	76.2	75.5	14.4	75.7	73.7	74.2	75.5	77.U	78.7	78.7	79.4	80.4	80.7	80.9	81.8	78.0	125.4
315	77 - 1	75.6	75.4	74.8	75.6	75.3	75.9	76.0	77.4	78.6	78.6	79.3	79.8	80.1	79 • 4	79+8	77+8	125.2
40C	79.7	77.2	76.2	74.9	74.7	74.7	75.4	76.7	77.9	79.5	80+0	80.5	81.0	80.4	79.5	78.6	78.5	125.9
500	80.7	77.9	77-1	76.1	75.4	75.4	75.7	76.9	77.9	79.9	80.4	80.4	81.4	80.2	78.9	76.4	78.7	126.1
630	80 · 7	78 - 4	77.6	76.2	75.6	75.2	75.7	77+1	78.2	80-2	81.2	81.7	82.6	81.4	78-4	75.3	79.3	126.7
вос	ti2 • 4	75.7	78.7	76.5	16.7	75.7	75.7	77+2	78.0	80.2	81.0	82.0	83•7	82.5	78 - 2	75.1	79+8	127.2
1000	£5.2	80.5	79.4	78 - 1	77 - 1	76.1	76.1	77-1	78.2	80 - 2	80.6	81-1	83.1	82.6	78 - 2	74.3	79-8	127.2
1250	€3•€	81.8	86 • Ì	76.4	77.3	75.6	75.4	76+3	77.4	60-1	80+8	81-4	81.8	81.3	77 - 3	73.2	79-5	126.9
1600	84.6	83.4	81.9	80.8	78.1	75.9	74.8	75 - 1	76.4	79.4	79.9	80-1	80.9	79-6	76-3	72.0	79.3	126.7
2000	91.3	93.3	8-44	88.0	85.6	83.6	80.1	78+4	78.3	79.8	80.3	80.4	82.8	81.6	78 • 4	75-8	84 . 6	132-0
2500	85.4	90.4	86-9	85.5	83.4	81.C	77.9	76.7	76.9	78-1	78.5	79.0	81.4	79.7	76.9	73.6	82+5	129.9
3150	F#+C	87.2	85.2	83.2	81.2	77.8	75.0	74-2	75.2	77.2	77.3	77-3	79.2	78.0	75-5	71.9	80.5	127.9
4000	52.0	91.3	89-8	88.2	85.5					77.5				79.5	77.5	73.6	84-4	131.8
5000	91 - 3	91.0	89.7	88.4	85.5	82.7	78.0	74.9	76.4	77.0	77.2	77.9	81.0	78.2	76.5	72.1	84.5	131.9
£3 00	5C+9	91.1	90.7	85.4	£7.6	84.1	79-1	76.9	77.3	79.4	80 • 8	81-1	1.68	81.4	78 • 8	74.2	86+2	133.6
8000	89.9	.40.9	90.0	88.7	87.2	83+4	77.9	77.0	79.4	81-4	82.9	84-0	86.4	82.7	80 - 7	74-1	87-1	134.5
10000	67.4	90.2	4C+1	88.7	87 • 6	83.9	78.3	77.4	79.9	81-5	82+9	81-3	83.4	80-1	18-8	71-6	87.6	135.0
12500	86.1	87.3	67-1	85.8	85.5	82.3	76.2	78.2	82.1	84.3	86.3	85.2	86.7	81.8	80.5	72.6	88+8	136.2
16000	83 - 3	82.9	43.8	81.7	82.2	77.7	74.5	75.0	78.3	82.0	83.0	82.7	83+3	81.2	79 • 7	70.9	87.5	134.9
20000		78.8								78.2				75.7	74 • 2	66-2	86.3	133.7
GVERALL	100.5	100.7	55.2	57.8	96+3	93.5	90.7	90.5	91.9	93.9	94-7	95-1	96.2	94.9	93.9	95.6	97-4	144.8

DISTANCE SIDELINE PERCEIVED NOISE LEVELS

TABLE VII. - Continued. NOISE OF QF-3 CONFIGURATION 34 - SUPPRESSOR B, FIRST INLET SECTION ACTIVE, FULLY ACTIVE EXHAUST

(c) 80 Percent speed; fan physical speed, 2848 rpm; fundamental blade passage frequency, 2515 hertz

FRECLENCY								ANGL	.E. DE	Ğ							AVERAGE SPL	POWER LEVEL
	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160	J, 2	(PHL)
•			;	1/3-00T	AVE BA	ND SOU	IND PRE	SSURE	LEVEL	(SPL)	ON 30.	5-METE	R RADI	us				
50	83.3	75.4	75.9	81.3	19.5	79.1	75.4	76.8	77.1	91.8	80.1	81+1	76.8	81.3	83.8	83.5	83.5	130-9
63	71.8	73.6	73.5							78.8		79.6	77.0	81.6	83.8	83.7	77.9	125.3
8.0	74 • 4	73 -4	72.9	71.5	72.1	72.9	72.9	74-1	75.3	72-6	79-1	81.6	80.9	84 •4	86.8	86.0	79+5	126.9
106	78.5	76.8	78.0	75.5	73.5	75.1	76.8	17-6	79.0	75.5	82+0	83.8	84.0	86.5	88.6	86.8	81.8	129.2
125	71.2	75.3	76.0	75.8	77.5	78.2	79.7	80.5	81.8	74.8	83.8	85.7	85-3	87.0	89.2	86.6	83.0	130-4
160	77.5	76.7	78 - C	77-7	79-1	79.8	80-1	81.0	41-5	74-8	82.6	83.6	83.0	84.6	85 • 6	82.5	81.5	128 • 9
200	71.3	77.3	77.5	76.0	78.0	78.3	77.8	78.0	78.5	75.5	80.0	81.6	83.0	83.8	84.5	80.5	80.0	127.4
250	78.6	78.1	77.8	76.6	17.5	77. á	77-8	78.6			83.0	84-1	84.6	85.1	85.1	81.3	81.3	128.7
315	79 • 1	77.5	77.8		18.5	79.1		80.5	81.6		82.5	83.6	84.0	84.3	84.0	79.7	81.3	128.7
400	60.7	78.2	78.1	77.6	77.9	78.4	75.1	79.9	81.6	78-1	83-9	84.4	85-1	64.4	83.7	78.6	81.7	129 • 1
500		79.9			78.6	79.2				79.1		84.9		84.1		78-1	82.1	129.5
630	83.6				78.4	79.2		80+9				85.6		84.2		77.3	82+5	129.9
			**-			• • • •	.,				0,302	03.0	0347	J			0243	16/0/
800	64.6	81.6	80.8	75.6	79.8	79.3	75.8	80.8	82+5	81.5	85.5	86.0	87.0	85.l	82.0	77.8	83-1	130-5
1000	£6.8	83.2	82 - 0	8C.7	79.8	79.8	80+3	81-2	83.0	42.5	84-8	85.7	87.3	85.3	81.5	77.4	83.4	130.8
1250	16.3	83.3	82 •4	81.1	80.3	79.6	80.1	8.08	82+8	83.3	85.4	85.8	85.8	84.6	80.9	76.3	83.3	130.7
1600	€ € • 3	84.5	83+3	81.8	80.6	79.1	78.8	79.8	82 • 6	84+0	84•8	85.0	85.6	82.8	79.8	75.4	83.0	130.4
2000	88.5	86.7	85.5	83.9	82.2	80.5	78-5	79.7	81-8	85+3	84.7	84.2	85.2	82.2	79.7	75.2	83.6	131.0
2500	54+1	93.6	94.0	92 • 1	89.8	86+5	83.0	83.1	63.3	86+0	84-3	85.5	87.8	84.5	81 • 6	79.0	88-3	135.7
. 3150	90.0	88-2	87.5	84.8	83.0	80.3	77.8	78.0	79.5	87.0	81.7	81.8	83.7	81.3	78a 7	74.7	83.9	131.3
4000	92.7	90.8	90.0	87.4	85.5			78.0		87-7		81.8	83.5		79.2		85.6	133.0
5600	94.3	94.0	94.2	52 • 8	90.7	8847	83.7	80.0				82-8	85.5	81-2	80 - 2	75-6	89+2	136-6
6300	52 • 0	91.3	91.7	85.3	88.0	85.3	80-2	78-5	803	89-3	83.2	83.4	84.9	81.9	79.2	75.6	67.8	135•2
8000	52.7									89.9		87-1	88-9	84.9	83.1		90.9	138.3
16000	50-6				89.2	86.9				89.7	83.6	82.7	83.9	80.4	79.1		89.6	137.0
12500	85=2	90.2	90.5	88.9	88.9	86.9	81.6	80.5	83.7	89.9	86.9	85.9	86.7	81.7	80.2	73.1	91.4	138+8
16000	63.8	83.8			a l	82.3	77.9	79.1		90.6	85.8		85.6	82.6	80.7	73.3	91.2	138.6
20000	78.3				78 . 6	75.8	73.8			90.7	82.8	83.0	82-3	78.4	76.2	69.5	92.0	139+4
				•	•	_									,			-
OVERALL	102.4	101-6	101-9	100-1	98+9	96.9	94.0	94.0	95•6	100•6	98-1	98+6	99•4	98.0	97.7	94.8	100.8	148+2

DISTANCE SIDELINE PERCEIVED NOISE LEVELS

57.5 METERS 73.6 83.8 89.3 90.9 91.5 90.8 89.3 89.9 91.1 94.1 92.2 92.1 92.1 88.0 83.1 74.6

TABLE VII. - Concluded. NOISE OF QF-3 CONFIGURATION 34 - SUPPRESSOR B, FIRST INLET SECTION ACTIVE, FULLY ACTIVE EXHAUST [Data adjusted to standard day of 15° C and 70 percent relative humidity. SPL referenced to 2×10⁻⁵ N/m²; PWL referenced to 10⁻¹³ W.]

(d) 90 Percent speed; fan physical speed, 3203 rpm; fundamental blade passage frequency, 2829 hertz

					-	=			- 1			•	Ū		,	•		
FREGUENCY				,				ANGL	.E, DE								AVERAGE SPL	POWER LEVEL
	10	20	36	40	50	60	70	80	90	100	110	120	130	140	150.	160		(PWL)
,		•	i	1/3-061	TAVE BA	IND SGL	IND PRE	SSURE	FEAEF	(SPL)	ON 30.	.5-MET	ER RAD	Ius				
50	83.1	77.1	81.9	78∙6	81.3	15.3	8C-1	81.3	81-1	81.6	82-6	83-8	79.8	85.6	87-8	88.0	82.6	130.0
63	70.2	76.5	77.2	76.2	77-0	77.2	77.3	78.0	78.3	79.8	80.8	82-8	81.2	86.0	88.5	89-1	81.8	129 • 2
. EC	78.8	75.8	75.6	74.8	75.3	75.8	76.1	77.1	78.8	80+8	82.8	85-1	85 - 1	89.0	91 - 8	91.2	84.0	131.4
. 100	85.3	80.8	80.8	78.3	78.4	75.4	80.8	82-1	83.3	84-6	86.1	87.9	88.6	91.4	93.3	91.6	86.5	133.9
125					80 8												87.5	134.9
160		75.5			82.6											87.3	85.9	133-3
100	2017		0.73	0100	-	0310		0.00	, 4303	2010	4004	V	0	0,-0	,,,,,	0113	0,50	100-0
200	80.5	80+2	81.0	81.4	81 - 7	82.5	82.0	82.7	82.7	83.0	84.2	85.7	87.4	88.7	89.7	85.7	84 • 6	132-0
250	81.0	80.2	81.0	8C-3	81-2	81.2	82.0	43.2	84.7	85.5	86 • 8	88.3	89+3	89.8	90+2	86+2	85.9	133.3
315	65 - 8	82.3	81.7	81+3	83.3	83.3	83.5	84.3	85.2	85.5	86+2	87.5	88.8	89.2	88.8	84.7	85-8	133-2
400	82.9	80.4	81.2	80.5	81.2	81.5	82.7	.83.7	45.1	86.2	87.2	88-1	88.7	88-6	88-2	83.6	85.7	133•1
500		81.4													87 • 2		86.0	133.4
630		83.0			82.1						89.0			88.0			86.6	134.0
				-,,-									7012		3212		555	
800	87.4	83+9	83•4	82 • 7	32+5	83.4	7.EB	85+2	86 • 4	87.4	88.9	89.9	91.0	88.5	86-4	81.8	87.0	134 • 4
100C	90.0	86 • 2	85.02	83.3	83+2								91.0	87.8	86-0	81.4	87.2	134.6
1250	85.3	86.0	85.6	84.45	83+8	83.3	84.1	85.1	87.0	88.3	89.0	89.1	90.0	87.6	85.3	80-3	87.1	134.5
1600	89.4	86.6	85.7	84.4	83.7	83.1	83.2	84.7	86.6	87.9	88.7	88.7	89.7	85.7	84-1	79.3	86.7	134.1
2000	50.7	88.0		85.5			82.7			87.5							86.9	134.3
2500	55.1				89∙6			84.9			88+6		90-1		83.6		89.1	136.5
3150	56.4	20.6.4	94.2	05.0	90.9	40 7	94 6	04.7	85.2	0/3	87.4	00.6	90.7	86.9	0/ 3	80.3	89.9	137•3
4000	93.4				87.4										82.4		87•2	134.6
5000					89 • 2					83.7			87.5	83.0		77-0	88.8	136.2
.5000	7347	7442	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,	0742	0012	02#2	0145	0.341	0341	0707	00.00	0,.5	03.00	01-7	7120	00.0	130.5
£300			93.1							85.0						77.6	89+4	136.8
8300			93+6							87.2			90.7			77-7	91.1	138.5
10000	91.3	91.3	91 • I	90.0	89+0	87.3	82.0	81.3	83.1	84.8	85.8	84.6	85.9	82.3	81 - 4	74-6	89.6	137-0
12500	90+3	91.1	91-1	96.1	89 • 6	88-3	82.6	82.1	84.2	86 • 4	87.8	86+4	86.7	82.1	80.9	73.7	91-7	139-1
16000					84-1										81.5		90.9	138.3
20000															77-8		90.7	138.1
OVERALL	104-4	102.9	102.6	101.0	100+1	99.0	96.9	97.7	99.0	100.3	101.4	101-9	102•9	101-8	102•1	99,•4	102•2	149.6

DISTANCE SIDELINE PERCEIVED NOISE LEVELS

BISTANCE

TABLE VIII. - NOISE OF QF-3 CONFIGURATION 35 - SUPPRESSOR B, FIRST TWO INLET SECTIONS ACTIVE, FULLY ACTIVE EXHAUST

[Data adjusted to standard day of 15° C and 70 percent relative humidity. SPL referenced to 2×10⁻⁵ N/m²; PWL referenced to 10⁻¹³ W.]

(a) 60 Percent speed; fan physical speed, 2110 rpm; fundamental blade passage frequency, 1863 hertz

FRECLENCY								ANGL	E. DEG	;							AVERAGE SPL	POWER LEVEL
	10	20	30	40	50	60	70	80	90	100	116	120	130	140	150	160	J: L	(PWL)
			1	/3-001	AVE BA	NU SOU	ND PRE	SSURE	LEVEL	(SPL)	ON 30.	5-METE	R RADI	us				
50	68.I	66.5	67.7	67.2	67.5	66.5	07.3	67.3	70.0	68.2	69-5	69.4	70-7	70.7	73.0	73.2	69+2	116.6
6.3											68.3					73.4	69.4	116.8
6.0	73.0	68.8	68.6	67+1	66+3	70 - C	70+1	69.6	68.8	70.8	70.0	70.9	73.0	74.3	75.3	75.7	71-1	118.5
160	69.2	67.5	66.4	6t.5							72.5					76.9	72.2	119.6
125	71.0	69.5	69.0	68.9	69-5	70.4	76.7	70.9	7209	72.9	74.2	74.3	75.5	75.5	77.0	75.8	73.1	120.5
160	71.3	10.5	76.5	69.5		72 • 0	71.2	71.7	72.3	72.7	72.5	72.8	73.0	73-0		72•7	72.1	119.5
200		7> •0	70-7	71.5	71.9	70.7	65.4	70.0	71.4	70-2	71-4	71.3	72.7	73.5	74.0	72+1	71.7	119-1
250	73.2	72.5	71.2	65.0	69+5	69.0	68+8	70.0	71.7	73.0	74.0	74.2	74.8	75.2	74.3	71.9	72.4	119.8
315	15.4	73.4	72.1	70-1	70.9	70.9	71.1	71.6	72.6	73.1	73.9	73.8	74.4	74.2	73.2	71-1	72.7	120 • 1
46C	77.3	74.5	72.3	70.3	70.5	70.0	70.3	71.5	73.1	74-1	75.6	75.2	76.1	75-3	73 - 1	70-4	73.6	121.0
500	77.1	75.0	73.3	71.3	71.3	70.5	71.3	72-3	73.6	74-6	76.3	75.4	76.3	75.8	73.3		74.1	121.5
630				71.8		70-8	71-1	72.1	73.6	74.8	77.3	76.9	77-8	76.9	73.3	69+5	74•7	122-1
800	19.0	77.0	74.9	73.0	71.7	70-7	71.0	71.9	73.9	75.4	76.9	77.5	78.9	78.7	73-4	70-1	75.4	122+8
1000			75.0								76.0			78.7	73.4	70-1	75+0	122-4
1250											75-6			76.8	71.8	68•2	74.4	121.8
1600	F2_H	82.7	86.5	77.7	76.2	72.6	70-6	70.1	71.0	73-1	74.5	74.7	75.3	75.3	70+6	68.9	75.7	123.1
2000	8d • 1			83.3	83.6	78-8	75.8	73.0	73.5	74.5	75.3	75.2	77.0	77.5	73.5	73.4	81.0	128-4
2500	80.3		78.9								72-1					66.3	74.0	121.4
3150	83.1	82.3	81.1	77.9	76.1	72.4	68-8	68-1	69.6	70.8	72+1	73.0	73.3	73.1	69.9	67.3	75.5	122.9
4000	88.0		86+0								73.8				72.5		79.8	127-2
5000	86.8		83.7			15.8		68.7	74.3	72.0	72-8	74.5	76.0	76.2	72+0	67.9	78.9	126.3
6360	67.1	87.6	86 - 8	84.0	43.I	79.0	72.1	71.1	7.3 • 8	74.8	77.8	80.1	81.8	78.0	76.3	71-1	82.3	129.7
8000	6/.1	_	£7.4	85.5	84 - 1	80.3	73.6	73.7	79.2	79.8	81-5	82 - 8	84.8	82.3	77.6	72.3	84+8	132 • 2
10000	85.9		86+4	84.8							84 - 1				78-2		85.9	133+3
12500	83.6	63.6	63-6	82.4	82 • 3	79.4	73.5	74.9	81-0	83.1	85-1	84.1	86.1	83.4	80+6	72.6	87-0	134•4
16000		80.2			77.5	14.0	67.4	70-3	74.8	77-1	79.0	79-8	80-6	77.8	75.6	68.1	83.7	131•L
20000		75-1		73.2							74-2					62.6	81.3	128.7
OVERALE.	50.6	96.7	95.5	93.1	92+2	89.0	85.4	85.6	88• 7	89.7	91.6	91•6	93•1	91-6	89•0	86.2	93•9	141-3

SIDELINE PERCEIVED NOISE LEVELS

TABLE VIII. - Continued. NOISE OF QF-3 CONFIGURATION 35 - SUPPRESSOR B,

FIRST TWO INLET SECTIONS ACTIVE, FULLY ACTIVE EXHAUST

[Data adjusted to standard day of 15° C and 70 percent relative humidity. SPL referenced to 2×10⁻⁵ N/m²; PWL referenced to 10⁻¹³ W.]

(b) 70 Percent speed; fan physical speed, 2461 rpm; fundamental blade passage frequency, 2173 hertz

PRECLENCY								ANGL	. E, DE	,							AVERAGE	POWER
	10	20	36	40	50	υo	70	80	90	100	110	120	130	140	150	160	SPL	LEVEL (PWL)
•			1	/3-06T	AVE BA	NO SEU	NO PRE	SSURE	LEVEL	(SPL)	CN 30.	5-METE	R RADI	us .				
50	72.2	68.8	76.0	76.5	10+1	71.7	71.2	72.0	72.8	72.8	14-8	74.8	75.5	76.8	78.3	79.4	74.0	121.4
63		69+4	_	61.9	04.4					70.6				77-1	78.7	78.8	73.0	120.4
8.0	8 - E1	72.3	16.0	65.7	05.2	69-3	66.5	£9.3	71.3	73.5	75 • 2	75.9	78.3	80.2	81.0	82.6	75.6	123.0
100	71.5	69.5	10.0	6ē.7	69.0	73.0	71.0	72+5	74.5	75.7	77.8	78.6	80.5	81.7	82-3	82.9	77.1	124.5
125	72.8	71.5	1000		12.5									81.7	82.8	81.2	78.0	125.4
160	14.4	73.2	73.5	74.2	15.1	75.4	75+9	76.2	70+7	77.9	78.1	78.8	78.9	78.9	79.9	78.3	77•2	.124.6
200	13.9	73.3	73.1	75.1						74.3				78.4	79.3	77+2	75.3	122.7
25€	76.6	76.6	74.9	74.2						77.7				80-1	80 + 1	77.3	77+2	124.6
315	16.3	75.0	74.1	î 4 • 0	74+6	74 - 8	15.1	76.0	76.6	78.0	76+3	78.5	79.0	75.3	78.8	76-2	77.3	124.4
400	18.0	70 • G	14.1	73.5		73.5				76.3		79.9		79.7	78.2		77.5	124.9
500		11.2	75.0	14.7	74.4	14.2	74.5	76.0	77 • 5	78.9	79.9	80.1	80.0	79 • 2	77 • 7	74+1	77.8	125.2
630	79.7	77.6	75.7	74.9	73.9	74.6	74.9	76.2	77.6	79+6	80.9	81.5	81.4	80.4	77-2	74.0	78.5	125+9
806	81.8	79.4	76.8	75+6						79.1					77.1		79.0	126.4
1909		01-1		76.4						79.8		80.4	82-4	82.4	77.1	74.0	79.2	126.6
1250	17.2	8G • C	17.1	16.7	15.5	14.2	74.3	75.2	77.0	79+2	80 • 2	80.3	80.7	80.8	76.0	72•7	78.4	125.8
1000	82.5	81.5		76.0						70.2		79.3	79.9	79.2	74.5	71.6	77.9	125+3
2000	81.9					80.4					79.6	80 • 7	82.4	81.7	76.7	75.6	82.4	129.8
2500	64.7	85.4	83.5	81.2	75.5	76.5	74.4	74.0	75.2	76+4	77.9	78.3	79.7	78.7	74.4	72.4	79+2	126.6
3150		84.0	82 - 5	75.9		74.5	72.6	72.3		75.4					73.7		78 - 2	125.6
4600			6 J • 8	-	d2•2	10.3	74.7	73.2	15+3	76.5	77.2	78 - 1	79+7	79.0	75.0		82-1	129•5
500 c	89.0	88+4	86.1	84+5	01 • 9	78+1	74.7	72.2	75.0	75.5	76 - 4	77-3	79+2	78.5	74.5	71.3	81.7	129-1
£300	50.2				86.9					78.1		82-1		-	78-1		85.5	132.9
8000		90.0	89.3	8/-1						გე •5					78.6		86•2	133 • 6
40000	89.3	90.7	96.5	ស័ក្ខថ	d7•4	84.6	78 + ¢	77.0	an• a	81.5	82+8	82.4	83+7	80.6	77.6	72.4	87.8	135 • 2
12506	67.O	01.6	87.5	€6+2	85.7		78.4								80.9	73.3	89.4	136.8
16006	8 7		84.0	82.3	d2+I		73.0				83.3		84.9	81.5		72.0	88.0	135-4
20006	4H • O	78.9	78.5	71.6	76 • C	72.0	61.5	69.7	74.8	77.6	78.8	78.8	79.5	76.6	73 • 7	66.8	85•7	133.1
OVERALL	\$8.9	55•l	98+2	56.C	94+8	92.0	85.1	89•2	91.5	93.1	94.4	94.7	95•9	94.6	92•8	91.0	96•8	144-2

DISTANCE

SIDELINE PERCEIVED NOISE LEVELS

FIRST TWO INLET SECTIONS ACTIVE, FULLY ACTIVE EXHAUST

[Data adjusted to standard day of 15° C and 70 percent relative humidity. SPL referenced to 2×10⁻⁵ N/m²; PWL referenced to 10⁻¹³ W.]

(c) 80 Percent speed; fan physical speed, 2810 rpm; fundamental blade passage frequency, 2482 hertz

FRECUENCY								ANGL	E. DEC	3							AVERAGE SPL	POWER LEVEL
	10	20	30	40	50	60	30	80	90	100	110	120	130	140	150	160	J, L	(PWL)
			1	/3-00T	AVE BA	NO SEU	ND PRE	SSURE	LEVEL	(SPL)	CN 30.	5-METE	R RADI	us				
50	82.2	78.9	81-5	82 - C	79.5	77.5	79.0	77.0	78.2	77.4	79.0	77.1	79.5	81.0	82.5	84-4	79•7	127-1
6.3	72.3	72.9	72.6	72.6							76+8				83+3		77.6	125.0
មហ	74.4	73.1	72.9	72.1	72-1	73.8	74.1	75.3	70.6	76-6	78.9	78.3	82 • 8	84 • 3	86.8	87-1	79.8	127+2
100	7C . 4	77.4	27.9	75.9	74.2	75.4	76.0	77.4	79.0	80 - 2	82.0	79.5	85.2	87-2	87 • 7	87.9	81.9	129.3
125		74.2		76-2		77.7				82.5		81-4	85.7	87.0	87•9	86-9	82.6	130-0
160	16.5	76.1		77.7		80-1				82 • 2	82.6	80.8	83.4	84.9	85-1	83.1	81.8	129.2
200	14.7	77.0	77.2	77.7	77.7	78.5	78.5	79.9	80.5	79.2	80.0	79.1	82.9	83.5	84.4	81.8	80.3	127.7
250		78 • 6	76.9	76.4		77.1				81.7			84.6	85.1	85.1	82-1	81.3	128.7
315	•	78.3	77.4	77.6				80.6	81.4	_		80.7	83.6		83.9	81.0	81.2	128-6
213	1012																	
400	80.0	78 - 7	77.5	77.0	77.2	78.3	75.0	79.8	81.3	82.2	83.2	81.8	84.2	83 - 8	82 • 8	80•6	81.3	128.7
500	61.9	80.2	78.4	77.7	77-4	78.5	79.0	80-2	81.9	83.4	83.9	82+3	64.4	83-4	82 • 4	79.3	81-7	129•1
630	82.9	80.7	78.7	77.9	77.7	78.9	78.7	80.4	81.9	83.2	84.9	83.0	85•2	83.9	81.7	79.0	82.1	129.5
ясс	83.4	81.0	79.5	78.5	78.2	78.4	78-5	80.0	81.7	83.0	84-5	83.4	86.5	84-4	81.5	78+6	82+3	129.7
1000	85.9		80.9	75.2		78 - 6				83.7	-	83.5	86.2	84.7	81.1	78.3	82.6	130.0
1250	65.3	82.3	8C+3	75.3		78.3			82 - 0			83.9	84+8	84-2	80.3	77+2	82.5	129.9
17.50				• • • •				-										
1600	84.6	82.6	d0-9	79.9	78.7	77.4	77.9	78.7	81 • 2	83+2	83.9	83+3	84.7	B2.6		76.3	81.8	129 • 2
2060	89.4	85.6	83+6	81.4	79.4	78.9	77.5	74.6	80-9			83.7	84-1	82-2		76.0	82.5	129.9
250C	50.7	91.5	90.0	87.0	83.7	82.0	76.7	79.0	80 • 5	81.7	83.2	83.4	87.5	83.2	79.5	76.9	85.0	132.4
3150	67.6	8 • 6 8	83.8	81.5	80-1	77.3	75.8	76.1	78.3	79.5	80.8	82.6	82.8	80.3	77 • 6	74.2	81.3	128.7
400C	90.9		86.5	84.5	82.2	79.5	76.5	75.8	78.3	79.5	80.7	82.8	82.3	80-3	77.7	74.3	82.9	130-3
5000	92.0			86.1	86.6	83.7	75.7	76.5	79.0	79.7	80.4	83.0	83-6	81.5	77.7	75-1	85•4	132.8
							~	77.0	30.0	00.0	0 5 E	84.5	84.7	70 5	79.2	75•i	86.0	133+4
6300	5C - 8		89.8	87.5	86 • 8	83.5				80 • 0				84.2	_	77.2	89.1	136.5
9000		92 • 1		90.0						83.0	85.5 83.2	85.8	84.2	8C•7		73.9	88.8	136.2
10000	50.7	91.9	91-1	85.1	88+0	86-3	80-5	(0.0	81.0	01+3	83+4	03+0	04+2	80+1	1001		00+0	
12500	89.6	90.7	89.9	66-8	88.6	86+8	82.3	80.2	84.3	86.0	87.6	87.8	86+9	83.4		74.3	91+2	138.6
16000	83.6	85.6	85-1	83-8	83.4	81.6	71-1	78.9	82.6	84.6	86 - 1	8478	86.8	83-1	80 • 8	74+1	90+5	137+9
2000C	18.5		79.7		77.7	15+7	72.3	74-1	79.7	80.8	82.5	d7-6	81.9	79.0	76 • 4	69.6	90.0	137.4
OVERALL	101.1	100-8	99.6	97.9	96+8	95•2	93-0	93.3	95•3	96•3	97•6	97.9	99+1	97•9	97-1	95 • 7	99•5	146.8

DISTANCE SIDELINE PERCEIVED NOISE LEVELS

152.5 METERS 71.6 82.2 86.2 87.4 87.7 87.9 86.9 87.8 89.7 90.6 91.4 90.4 91.7 87.3 81.9 74.5

TABLE VIII. - Concluded. NOISE OF QF-3 CONFIGURATION 35 - SUPPRESSOR B,

FIRST TWO INLET SECTIONS ACTIVE, FULLY ACTIVE EXHAUST

Data adjusted to standard day of 15° C and 70 percent relative humidity. SPL referenced to 2×10⁻⁵ N/m²; PWL referenced to 10⁻¹³ W.]

(d) 90 Percent speed; fan physical speed, 3161 rpm; fundamental blade passage frequency, 2792 hertz

FREQUENCY			•					ANGL	E, DEG								AVERAGE SPL	POWER LEVEL
	10	2 G	30	40	50	60	70	80	90	100	110	120	130	140	150	160	, 51 €	(PWL)
			1	/3-CCT	AVE BA	ND SQU	ND PRE	SSURE	LEVEL	(SPL)	GN 30-	5-METE	R RADI	US				
56	81.5	79.5	83.3	86.6										85.5			82.6	130.0
63	14.7	77.4	16.7	75.4	16.5					78.9		79.1		85.9	88.2		81.5	128.9
9.0	76.8	76.3	75.1	74.5	75-0	75.5	75.8	76+3	78.0	80.1	82.5	83+2	87.6	89-1	91.3	92.5	84.2	131.6
100	£6.3	82.3	81.C	79.5	77.8	79.6						85+2		91+5	93.0		86.6	134.0
125	81.0	78.8	79.0	75+0	80.5	81.3	82.1	83.6	84 - 6	86.5		87.2		91.3	_		86.8	134.2
166	60.4	79+8	81+4	81.3	82.6	83.3	83-4	84-4	85.4	85+6	86+6	85.7	88.3	88+9	89.9	87.7	85.7	133 • 1
200	60 - 1	81.0	80-5	86.8	80.8	81.1	81.8	82.1	82-1	82-8	84-1	84.2	87.6	88.8	89.8	86.7	84.4	131.8
250	80 - 1	80.6	80.1	80-1	80.3	80.1	80.9	82.4	83.8	85.1	86.8	86+4	89-1	89.8	89.9	87+0	85 • 4	132.8
315	84.3	82.3	50. €	8 j • 4	82+3	82+6	0£.9	84-1	84.4	85.4	86.6	86+4	88.1	88.8	88.9	85.5	85.4	132.8
406	81.5	80.7	80.5	80.7	dQ.7	81.3	82.0	83.0	84.3	86.0	87.0	86.6	88.7	88.7	88.0	84-6	85.3	132.7
500	63.4		80.7	81.2	81.4	82-1				86.4	67.6	87.0	88-4	87.0	87 - 1	83.8	85+5	132.9
630	85.5	0.E8	81.7	81.4	81.0	81.9	82.5	83.9	85•7	87.2	88.7	88.0	89-2	87.9	86.0	83-1	86+0	.133+4
800	£6•3	83.6	d2 • 1	82.1	81.8	81.9	82.5	84.3	85•8	87-3	88.4	88-3	89.8	88-3	85.9	82.6	86.2	133.6
1000	89.2			82.5	82.7	82.8		84.3	86-5	88.2		88.3	90.0	87.7	85+3	82.4	86.6	134.0
1250	68.0	86.0	84.4	82.9	82.2	82.4	82.5	84.2	86.5	87.9	88.4	88.3	89+2	87.0	84 • 2	81.1	86.4	133.8
1600	87.3	85.4	8.86	82.3	81.4	81.6	82.1	83.9	86.3	87.4	87.9	88.0	88.6	85.4	83.1	80.0	85+8	133.2
2000	88.1		84+ i	82.9	81.9	81.6	81.9		85.7	86.4	88-1	87.5	88-1	65-2	82 • 4	79-3	85-6	133.0
250C	51.1	91-1	90.3	67.9	85.7	85.7	83-1	82-9	84+2	45.4	87.2	88.2	88.6	85•I	82 • 7	79.8	87.0	134.4
215C	51.2	50.9	89.9	67.5	85.6	85+6	82+6	82.1	83.4	84-4	86-4	877	88.6	85.9	83.4	79.5	86+9	134.3
4000	51.1			86.1		82.4			82.4	83.6	85 - 1	86.3	86 • 4	83+4	81 . 2	77.1	85-4	132-8
5000		91.5		86.1	85.8	84.3	81.4	79.4	82 • 3	82.6	83.8	85.7	84.9	83.4	79.8	76.5	86.5	133.9
6300	51.5	92.2	91.1	88.7	87.5	85.9	80.9	80.6	82.2	82.7	85.1	87+6	86+4	82.4	81.9	77.2	87+8	135.2
8300	51.6		91.7	89.7		80.4			85.4		88.5	89.3	89.5	85 + 5	82.7	78.3	89.9	137.3
10000	50.2		90.5	86.5		86.1		80.8	83 • 6	83.1	85+5	86+7	85.5	82.5	80.7	75.5	89•1	136+5
12500	50.3	91.8	91.0	90.2	89.3	88.0	84.2	82.4	85+6	86+6	88.0	88•7	86.8	83+6	81.6	75.3	92•1	139.5
16000	84 o Z		85.5	84.7	83.9	83.4	75.8	81.1		85.7	87.2	88.8	86.8	83.2	81.3	75.0	91.5	138.9
20000	78-6			19.8			76.4	78.6	82+5	83 • 5		87.7	83.2			71.8	91.4	138.8
GVFRALL	102.2	101.8	100+8	95.2	98-0	97.5	96.1	96.7	98.5	99•6	101-1	101-4	102.3	101-6	101-5	100-2	101-6	149.0

DISTANCE

SIDELINE PERCEIVED NOISE LEVELS

TABLE IX. - NOISE OF QF-3 CONFIGURATION 36 - SUPPRESSOR A, FULLY ACTIVE INLET, FULLY ACTIVE EXHAUST

Data adjusted to standard day of 15° C and 70 percent relative humidity. SPL referenced to 2×10⁻⁵ N/m²; PWL referenced to 10⁻¹³ W.]

(a) 60 Percent speed; fan physical speed, 2110 rpm; fundamental blade passage frequency, 1863 hertz

														_	• •			
FRECHENCY								ANG	LE, DE	G							AVERAGE SPL	POWER LEVEL
	0.1	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160	374	(PWL)
			1	/3-001	AVE BA	NU SCL	IND PRE	SSURE	LEVEL	(SPL)	CN 30	5-METE	R RADI	us				
۶C	£8.4	65.5	67.1	45.5	65-6	66.4	66.7	67.4	67.4	68-6	69.2	60.8	71.1	72.2	72.2	73.5	69.1	116.5
63	71.6	68.3	69.9	66.3	45.8	66.3	68.0	68-8	55-1	68-9	67.0	67.0	71.1	71-6	73.4	73-1	69.2	116.6
80			66.5	47.4	46.7	44.0	40.0	70.0	47 2	69-1	40 0	70.7	11.1	74.4	75 0	75.2	- · · -	
40	,,,,,	0741	0000	6146	£+C\$	00+0	0 30 3	10.0	0143	04.1	07.0	10.7	1343	14+0	73.8	13.3	70.9	118.3
100										71.8							72+1	119.5
125	70 • 8	69.5	69.0	65.6	o9•1	70.1	70.5	71.3	72.5	73+3	73.8	74.4	75.6	75.6	77.3	75.7	73.1	120-5
1.60	71.3	70.3	65.6	70.0	70.€	71.1	71.5	72.0	72.1	72.8	73-1	73 • 1	74-1	74•3	74.6	72.5	72.4	119.8
200	75.0	74.8	69.8	71.1	72.3	71.0	66.6	69.6	71.5	70-6	71-6	71-6	73.6	74.2	72.6	72.4	71.9	119.3
250			10.2	49.1	ö5-1	69-1	69.4	69.9	71.7	73.2	74-1	74.8	75.2	75.7	74-4	72-0	72.6	120.0
315			/1.2				71.1	71.4	72.4	73.2	74.1	74.2	75.1	74-7	72.6	71.3	72.8	120.0
	,,,,,										, , , ,	17.6	1,741	1442	1310	1643	7240	120+2
40 C	77.4	74.1	71.4	7(.4	7C-1	70.4	70.2	71.4	72.9	74.2	75.6	75.6	76.1	75.6	73.2	70.3	73+6	121-0
500	76.9	74.5	12.2	71.4	10.5	70.5	71-4	72.0	73.7	74.4	75.9	76.0	76.5	75.7	73.5	69.4	74.0	121.4
630	76.4	74.9	71 • 7	71.0						75.5							74.8	122.2
800	18.7	75.9	73.6	71.9	70.7	70.6	71.1	71.9	74.1	75.4	76.9	77.7	79.2	79-1	73.6	70.0	75+4	122.8
1000	78.5	75.4	13.1	70+9	70.5	70.3	70-8	71.4	73.6	75•4	76.1	76.2	78.6	79.1	73.3	70.0	74.9	122.3
125C	16.6	73.4	71.4	76.1	69.6	68.9	65+4	70.6	72.2	74•6	75.9	76+3	76.6	77.6	72.6	68.0	73.9	121-3
1600	76.0	77.4	75.7	73.0	71.7	60.7	40.4	45.6	71.1	73.1	76 1	74.2	75 4	76.1	70.0	47 0	73•5	120.9
2000										72.5								
2500		75.6															76-5	123.9
7900	7C+3	73.0	13.0	1440	00.5	01+1	03.6	00.4	04.1	70.4	12.1	12.0	13.1	12.9	00+1	04+8	71.3	118.7
3150	£C.5	80+2	17.5	74.2	72.2	69.2	66.3	66-8	69-0	70-4	72.0	72.3	73.5	73.0	69.0	65.8	73.4	120+8
4000	£6 • 1	85.7	83 - 7	80.9	77.2	73.2	65.7	68.7	71.1	71.7	73.1	73.5	76.1	76-1	72 • 6	69.0	78.1	125.5
5000	85.1	84.6	82.6	15.4	17.2	12.5	65.6	67.4	71.1	71.7	73.6	73.9	76.6		72.6		77+7	125-1
6300	64 1	86.0	85.5	82.5	81.3	74 6	70 5	70 2	72.0	74.4	74 5		82.0	70.2	3 7 6	70.4		
£000		87.5								82.9					74+5		81.2	128.6
10000	54.9			83.6	83.3												84+4	131.8
10000	5483	03+3	02.9	03.0	83 • 3	00+4	1301	1204	01.0	81.3	83.1	03.0	84.9	81 •6	78.6	71.9	85 + 5	132.9
12500	82+8	83.1	83.3	82.0						82-6							86+9	134.3
16000	78 • 3	74.7	79.5							77.1					75.4	68.5	83.6	131-0
20000	73.6	74.7	74.C	72.5	10.3	66.8	61 +0	63.3	69.7	71.7	73-0	74.2	75.5	72.3	69 • 7	62-4	80.7	128-1
OVERALL	54.5	94.8	93•8	91.3	90-2	87.5	84-4	85-1	86.7	90-0	91.3	91•7	93.3	91+8	89 o 2	85•9	93.3	140.7
SISTANCE						- 100		555655	· Common Acco									

DISTANCE SIDELINE PERCEIVED NOISE LEVELS

172.5 METERS 64.8 75.0 78.7 75.8 60.3 79.0 77.8 78.5 80.8 81.7 82.6 82.0 82.2 80.0 73.3 65.7

TABLE IX. - Continued. NOISE OF QF-3 CONFIGURATION 36 - SUPPRESSOR A, FULLY ACTIVE INLET, FULLY ACTIVE EXHAUST [Data adjusted to standard day of 15° C and 70 percent relative humidity. SPL referenced to 2×10⁻⁵ N/m²; PWL referenced to 10⁻¹³ W.]

~ `	 	assage frequency, 2173 hertz

FREGLENCY								ANGI	.E. DE	G							AVERAGE SPL	POWER LEVEL
	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160	376	(PWL)
			1	/3-00T	AVE EA	NU SCL	IND PRE	SSURE	LEVEL	(SPL)	ON 30	5-METE	R RADI	us				
5 C											75.7						74.5	121.9
6.3	60.6	70.3									73.8				78.5	79.5	73•7	121.1
8 C	75.3	73 - 1	76.5	70.0	71 • C	7C.E	69.3	71-1	74.5	76-8	76.3	76.5	79.0	0.08	82 • 1	81.7	76.4	123.8
100	71.8	70.3	70.2	69.5	65.8	70.5	71.5	73.7	78.3	80.5	79.8	78•6	81.2	82.0	83.0	82.1	78.3	125.7
125	72.8	71.0	72.4	72.6							81.0				83 • 1	81.0	79.4	126.8
160	14.1	73.5	74 - 0	73.8	74-8	75.5	76•C	77.0	78.0	79.8	79•8	78•7	80.0	80.3	89.0	78.5	78.0	125•4
200											76.7						76.2	123.6
250											80.0						78+2	125 • 6
315	75.8	74.8	14.8	14.5	74.5	74.8	75.3	77.0	78-5	78.5	79.1	78.9	79 - 1	79.5	79.0	75.7	77+5	124.9
40C	78.C	76.4	75.4	74.0	73.4	73.9	74.5	76.4	78.4	79.7	79.7	80.1	80-5	80-4	78 - 4	75.3	78-1	125.5
500	19.4	77.1	75+3	74+8	74.6	74.4	75.8	76.8	78.9	79.9	80-1	80+4	80.8	80-1	77.9	74.6	78.4	125.8
630	79.1	77.2	75.4	15-1	74+1	74.6	75.2	76.9	78 • 4	80+1	80• 9	81.0	81.6	80.9	77.4	74.0	78•7	126 • 1
aoc	81+1	78.6	76.3	75.1	74.1	74.6	75.3	76.6	76.3	79.5	81.1	81.7	82.6	82 -8	77.6	73.8	79•2	126+6
1000	67.8	80.3	17.5								80 • 5						79.2	126.6
125C	ĕÜ•1	71.4	75.8	14.4	73.6	73.4	74-1	75-3	77.4	79.3	80 • 1	80.4	81-1	81 • 4	76.3	72.2	78+2	125.6
1600	75.9	77.7	76.2	74.5	13.7	72.5	72.7	74.0	76.2	78.2	79.4	79.1	80.0	79.4	75.0	71.4	77•2	124.6
2006	84.7	83.7	51.0	75.8	70.0	70.0	73.5	74.3	76.3	77.5	79.5	79.6	82.1	81.3	75.5	72.7	79.2	126.6
2500	81.6	H0.6	77.9	76-4	73.8	72.9	71-1	72.3	74-4	75.6	77.4	77.9	79.3	78.3	73.8	70-2	76•7	124-1
3150			79.2								76.4						76.7	124-1
4000			84.9								76.6						80.3	127-7
500 C	E8 + 1	87.C	84.5	82=3	79.5	76.0	73.0	71-5	74.5	75+1	76.5	77-1	79-0	78.3	75.1	70.4	80-3	127-7
6300				65+5							79.3						84+3	131.7
£0.00											81.7						85•6	133.0
10000	£ £ • 7	90+2	89.4	67.5	86.1	83+5	17.C	76=8	81.0	80.7	82.4	82 • 5	83•6	80.5	77.5	72-4	87-1	134.5
12500	86.5										87-1						89.2	136-6
16000	82.3										83.9						87.9	135 • 3
20000	77.3	78.6	78 - 4	17.0	15.5	71.7	67.7	76-1	75.0	76.8	78.0	78.9	79-4	75.9	73 • 6	66•7	85 • 3	132 • 7
GVFRALI	57.7	97.8	56 - 4	94.5	53.3	90.9	86.5	89.5	92.3	93.5	94.6	94-8	96•1	94.8	93•0	90+6	96•3	143.7

DISTANCE SIDELINE PERCEIVED NOISE LEVEL

TABLE IX. - Continued. NOISE OF QF-3 CONFIGURATION 36 - SUPPRESSOR A, FULLY ACTIVE INLET, FULLY ACTIVE EXHAUST [Data adjusted to standard day of 15° C and 70 percent relative humidity. SPL referenced to 2×10⁻⁵ N/m²; PWL referenced to 10⁻¹³ W.]

(c) 80 Percent speed; fan physical speed, 2810 rpm; fundamental blade passage frequency, 2482 hertz

FRECLENCY								ANGI	LE, DEC	G .							AVERAGE	POWER
	1 C	5.0	30	40	50	£0	70	80	90	100	110	120	1 30	140	150	160	SPL	LEVĒL (P₩L)
			1	/3-061	TAVE BA	NO SCL	JNO PRE	SSURE	LEVEL	(SPL)	EN 30	5-METE	R RADI	US				
50	75.4	78.7	75.2	78.9	16.6	7405	17.4	74.9	77.7	77。2	79.4	81.0	80.6	81.4	83.9	83.8	79.3	126.7
6.3			12.7								76.9			82.1		83.8	77.4	124.8
80	74.2	73.8	12.3	72.2		71.0						79.3			86.7		79.8	127.2
100			77.8			74.3					82.3	82.2	85.4	87.3	88-4	88-0	82.2	129.6
125										82.0	83.7			87.0	88.0	86.4	82.7	130 - 1
160	16 • 6	76.6	77.4	17.6	77.5	78∘€	75.8	8C.4	81•4	82.3	82.6	83.2	83-8	85•3	65 • 6	83.0	81.8	129.2
200	16.5										80.0	80.5	82.7	84.0	85.0	82.1	80.0	127.4
250										81.4		82.7		85.1	85 • 4	82.1	81 • 2	128.6
315	78• 6	77.8	77.4	77.1	18-1	77.5	79-3	79.8	80.9	81.8	82+6	82.7	83.9	84.6	83.9	80.8	81.3	128.7
40 C	80.2	77.8	77.2	76.5	76.7				81.0	82.2	83.5	83+8	84.7	84.2	83+3	79.9	81.5	128.9
500	81.7	80.0		77.9		78-2				83.0	83.9		84.7	84.0	82.7	78.8	82.0	129.4
630	82 • 6	79.9	78 - 2	77.7	77.4	78°2	76.6	8C-1	81.7	83.2	84.7	85.0	85.1	84.2	81.9	78-1	82=2	129.6
008		86.0	76.7	77.9		78.0						85.3	86.4	85.2	81.7	77.9	82.5	129.9
1000		81.8	75.9	8 8		77.9					84.1		86.4	85.3	81.3	77.7	82 . 8	130 . 2
1250	8463	80.5	79.1	70.0	77.5	77.6	78.8	80.0	82.0	84.0	84+8	85°9	85•1	84.6	80 • 6	76.7	82.6	130.0
3006		79.7		77.2						83-2		85.1	84+8	82.8	79+3	75.7	81.7	129+1
2000	84.8		75.3			76.3						84.8		82.2		75.1	81.4	128 + 8
250¢	£5•4	85.9	85.2	80.9	18.2	77.1	76°2	77.2	79.7	80.9	83.1	84.3	86.4	84-1	79 • 6	76.1	82.5	129.9
3150			86.9								81.1					73.5	80-L	127.5
4000			84.5								80.7		82+2	80.7	77.5	73.7	81+6	129.0
5000	89#9	89.7	87.7	85.5	82 • 5	79.2	77.C	75.0	78.5	79+5	80.9	33.1	83+5	82.9	79+0	74.0	83.8	131.2
6300	85.4	90-1	88.5	65.7	84=6				78.9		81.4	84-1	85-1	79.7	77.4	74.0	84.9	132.3
8000	40 • 6			EB . 4	86.3		78.5			83.3	84 • 8	86.9	88.7	84 • 4	81.9	76.4	88.1	135.5
10000	85.5	90.9	85.9	87.7	86 • 6	84.1	79.0	78.0	81.3	81.3	82.5	85.3	84.0	80.9	78 • 9	73 • 5	87.8	135.2
12500		90.0		67.8			81.2			85.8	88.0			83-1		74.0	91.1	138.5
16000			84.9		83.1						86.6		86.8	82.8	80.8	73.8	90.6	138.0
20000	18.2	79.3	75.5	76.4	77.2	74.2	72.4	74.4	79.5	81.5	81.8	86.8	82.3	79.0	77+0	69•7	89.6	137.0
GVERALL	99+3	99.3	56.1	56.1	95÷0	93.1	91.9	92.5	94.9	96•2	97.6	99•1	99.2	98.2	97.4	95.4	99.0	146 - 4
DISTANCE						s to	ELINE	DERCEI	VEO NO	NISE LE	VELC							

DISTANCE SIDELINE PERCEIVED NOISE LEVELS

152.5 METERS 68.7 78.8 t3.1 83.9 84.6 84.9 85.3 86.6 85.2 90.3 91.3 91.6 91.3 87.8 82.1 73.9

TABLE IX. - Concluded. NOISE OF QF-3 CONFIGURATION 36 - SUPPRESSOR A, FULLY ACTIVE INLET, FULLY ACTIVE EXHAUST [Data adjusted to standard day of 15° C and 70 percent relative humidity. SPL referenced to 2×10⁻⁵ N/m²; PWL referenced to 10⁻¹³ W.]

(d) 90 Percent speed; fan physical speed, 3161 rpm; fundamental blade passage frequency, 2792 hertz

				-	,			,	,			р.		o que	,	- HOLLE		
FRECHENCY		•						ANGL	.Ė. DEC	Ĝ				,			AVERAGE SPL	POWER LEVEL
	10	20	30	4 C	50	04	70	80	90	100	110	120	130	140	150	160		(PWL)
			1	/3-CC1	TAVE BA	NO SEL	IND PRE	SSURE	LEVEL	(SPL)	ON 30	• 5-MET	ER RAD	IUS 🧸				٠.,
50	81.9	16.9	81.3	78.6	70.4	78.1	76.1	80-3	90.2	91 9	82 A	93 6	02 0	05 0	07 (88.3		120 0
63	25.2	76.9	76.7	75-5	75.6	76.7	76.6	77.6	77.9	70_2	80.4	82.0	03.4	97.1	81+4 09. £	8843	82+6 82+0	130•0 129•4
80	76.6	75.9	/5.1	74.6	74.6	75.1	75-3	76-1	79.4	90 - 1	82.3	04 0	07 7	00.1	00+0	00+0		
., .	,,,,,		1341		, , ,		,,,,,	7041	10+4	30.1	02.0	0440	01.5	90+1	91+3	92.63	84+4	131.8
100	£5.6	80.8	80.5		78.8				83.1			87.2	89.6	92.1	93 • 1	93.2	86.8	134.2
125	80 . 6	78.3	78+3	78∙3	80.9	81.6	81.8	83.6	85 • 1	86.3	87.4	88.7	89.9	92.1	93.3	91.1	87.2	134.6
160	80 • 1	80.1	81.3	81.4	82.5	83.3	8 - E 8		84.8						90-5		86+0	133 • 4
200	&C • 3	06.3	30 a	00.3	60. 0	01.0	0.1.2	01 5	uo d	00 -		a		,				
250 250		•			80.8						83•7					86.7	84.4	131 • 8
315		80.1			79.9				84.1							87.0	85.7	133 • 1
31.2	84 3	82.1	81 - C	80.8	82.0	82.0	82.6	83.6	84+6	86.0	86.5	87.4	88.1	85.5	89.0	85.5	85.6	133.0
40G	81.4	79.9	80+3	Ec.38	80 - 3	81-4	81-5	83.1	J4+8	86.4	87.4	88.2	88.9	89-1	88 - 1	84.6	85.7	133 • 1
500	82.4	81.0	8C-5	81.0	81.0	82.2	83.2	83.7	85.7	86.5				88.0			85.7	133.1
6 3 G		82.4				82.1			86.2	87.4	88 • 4					82.5	86.2	133.6
800				01.4		<i>c.</i> • •	0.5	0.4	(1) (2) To	a - a								
1000		82.9												88.6			86 . 4	133 - 8
		84.6			81.8			84.5									86.7	134 • 1
. 1250	6142	83.7	82.9	81.7	81.5	81.4	83.0	84.4	86.7	88.0	88-5	89.0	89.2	87.4	84•9	81.1	86.4	133 • 8
160C	£5.2	82.7	81.6	60.6	80.7	81.1	82+2	83.6	86•i	87.6	88.1	88.3	88.7	85.9	83.7	80.1	85.7	133 • 1
2000	85.3	82.8	81.1	8C.3	79.9	80.5	81.1	1.68	65.1	86.8	88.3	88.0	88.6	85-4	82 • 8	79.2	85.4	132 8
2500	£ 7 • 7		85+6					81.9								78.8	85.7	133.1
3150	67.6	88.2	66.4	94.7	93.1	40.7	76.3	80.9	uo t	3 40	06 /	a → e	00 (05.0	02.3	70.0	25.	
4000		86.9				70 6	70.0	79.5	03+1	07+4	0.0	01.7				78•3	85-3	132.7
5000		90.1			67 4	4717	75.0		81.5							76.8	84.2	131.6
3000	73 * 2	9041	01.43	05.02	63 • C	. 60.1	18.5	18.5	91+5	82.5	84.0	84.5	85.0	83.0	80-5	76-0	85.0	132.4
€300	50 - 2	90 • 5									84.3	86.5	86-4	82.2	80.0	76.5	86.4	133.8
6000	40 • 1	91.3	90.3	8.73	86 • 1	84.1	80.1	8.08	85.0	85.6	87.1	89-1	89+8	85 • 6	82-6	78-1	89.0	136.4
10000	65 • 4	90-3	85.2	€7.2	86 - 2	44.4	86.3	79.9	83.1	83.4	84.2	84+8	85.6	82.6	80 - 6	75.5	88.1	135.5
12500	50.7	91.1	91.3	85.7	HG . 1	96.9	83.2	81.9	85-0	85.P	88.1	97.3	97 4	83.8	82.0	7542	91.7	120 1
16000	£3.5		85+8					81.0						83.2			=	139-1
20000		75.7			78.1						01.03	0101	0103				91.2	138.6
20,000	1000	1201		4707	1001	* * * 1	16.2	1147	04.4	0303	0203	0400	0303	80.4	1004	1108	90•4	137.8
NVERALL	100•8	100.2	55.2	57.6	96.9	96+2	95.6	96.5	98.5	99•8	100.8	101.7	102.5	102-1	101.8	100-1	101.2	148.6
CECTANCE							C. 756	DEOCE	COMPS ALCO									

DISTANCE SIDELINE PERCEIVED NOISE LEVELS

TABLE X. - NOISE OF QF-3 CONFIGURATION 38 - SUPPRESSOR A, FIRST INLET SECTION ACTIVE, FULLY ACTIVE EXHAUST

[Data adjusted to standard day of 15° C and 70 percent relative humidity. SPL referenced to 2×10⁻⁵ N/m²; PWL referenced to 10⁻¹³ W.]

(a) 60 Percent speed; fan physical speed, 2108 rpm; fundamental blade passage frequency, 1862 hertz

FREGUENCY								ANGL	E. DEC	à							AVERAGE SPL	POWER LEVEL
	10	20	30	40	50	63	70	ยว	90	100	110	120	130	140	150	160	J1 L	(PWL)
			1	/3-0CT	TAE BV	ND SEU	ND PRE	SSURE	LEVEL	(SPL)	ON 30.	5-METE	R RADI	US				
5 C	c8.5	65.7	67.6	65.8	60.2	65.7	66.5	67.2	67.8	68+2	68.3	69.9	70.2	71.8	72.8	73.4	68.8	116.2
63	71.9	68.9		61.1	65.6	07.9	69.1	76.4	67+2	68.6	68.2	69.2	69.9	71 • 2	73.6	73.6	69.4	116-8
60	13.2	69.1	66.¢	67.4	65.4	67.9	69.1	70.2	67.9	70.1	70 - 1	71.0	73.2	74.2	75•9	75.3	70.9	118.3
106	65.3	68+C	67.0	6.0	68.C						72.7		75.3		77.3		72.3	119.7
125	11.4	70.2	69.2	70.1	69.7						74.1			75.7		76.0	73.2	120.6
160	11.7	71-1	26.4	70.4	71 - 1	71+1	71-7	71.6	72.1	72.4	73.4	73.3	73.6	73.4	74.1	72.3	72-3	119.7
206	15.0	15.1	71.4	71.9		70.9					71.4	71.8		73.8	73.9		72.0	119.4
٥٥٦	33.8	73.1	12+1	71.4							74.9			75•4	74 • 6		73 • 2	120-6
715	16 • 7	75 - 2	13.4	12-4	12.2	71.2	71.2	72.0	72.9	73.7	74.4	74.8	74.7	74.7	73.7	70.9	73 • 4	120.8
400	78 a 8	76.8	8 . E \	72-7	73+2	70.8	70+7							76.8	74 - 2		74.5	121.9
500	77.2	76.7	74.5	74.2	13.2	/1.C	71.7	72.5	73.1	75.0	76.0	76.6	76.2	76 • 2	73.5	70-2	74•6	122.0
630	16.0	77 •C	75 • 4	74.5	13.5	71.5	71.2	72 • 9	74-0	75.5	76.9	77.5	77.5	77.4	73.5	69•8	75.3	122.7
800	79.6	18 +4	16.7	75.7	74.2						77.1			79.2	73.7	70.6	76 • 1	123.5
1000	14.5	78.4	17.0	15.7	74.6								78.2		73.9	70+1	75-6	123.0
1250	19.0	78 -6	77-1	75.5	74.1	71.5	7€•€	7C.8	72.5	74+3	75.6	76.2	76.6	77.3	72.8	68•7	75.0	122.4
1606	£3.4	82.0	81.2	15.5	19.2	76.0	71.7	7G+9	72.0	73.5	15 • 2	74.6	75.7	75.7	72.4		76.7	124-1
2000	29.5	89.4	67.4	86.4	d6 • 2	83.0	76.5	74.4	14.5	75.2	76 • 2	76-1	78.4	79 • 2	75.0	73.3	82.4	129.8
2500	F3.0	83.5	d1.7	75.7	17.7	14.2	70.5	70.2	71.0	71-5	73-0	72.8	73.9	73.5	70.0	67.6	76.3	123•7
3150	F5.0	65.1	84.0	81.5		76.0							74+3			68.9	78-0	125 • 4
4000	84.2	89.0	88.4	86.5	43.4								76.5	76.5	74.0	71.6	82•I	129.5
5000	87.7	81.4	8¢ +4	t = 1	63.1	15.3	74.7	70-9	73 - 1	73.1	74.6	74.1	76+8	76-4	73 • 6	69.5	81+3	128-7
6360	68.2	89-1	ರಿಕ-ಚಿ	£ £ • 6	€5•5	82 • 6	75-1	73-1	75 - 1	75.5	76.8	79.8	82.1	78+1		72 • 1	84.0	131.4
2008	67.6	39.4	85.1	87.4	86 • 1	83+3					81 * 3			82•3		73+1	86.0	133.4
10030	£7.1	49+1	85 • 2	£ 1 • B	88-4	86.C	76. t	77.6	82.8	82.1	8.68	84.0	85.1	81.9	79.0	73.3	88.0	135•4
12500	64.8	85.5	გ5∙5	84.3	84+6	82 • 1	76.0	75.8	82.6	83+6	85.8	85.0		83.8		73.6	88 • 2	135-6
16700	78.7	80.2	79.3	77.1							80.0				76.3		84-1	131.5
20000	74.0	74.8	74.3	72.7	71.1	06.7	61.4	64.7	70.9	73.0	73.7	74.1	75.6	72-8	70 • 8	63.4	81.2	128+6
CVERALL	57.7	ક્ષ∗l	57.3	55.8	95•0	92•1	87-1	86.5	89•6	90.3	91.8	92-1	93•5	91.9	89.7	86+6	95•2	142.6
DISTANCE						\$ 10	ELINE	PERCE	VED NO	ise L	EVELS							

192.5 METERS 65.3 79.6 63.3 65.3 66.7 85.2 61.7 81.0 82.2 82.8 83.4 82.8 82.9 80.8 74.5 67.2

TABLE X. - Continued. NOISE OF QF-3 CONFIGURATION 38 - SUPPRESSOR A, FIRST INLET SECTION ACTIVE, FULLY ACTIVE EXHAUST [Data adjusted to standard day of 15° C and 70 percent relative humidity. SPL referenced to 2×10⁻⁵ N/m²; PWL referenced to 10⁻¹³ W.]

(b) 70 Percent speed; fan physical speed, 2459 rpm; fundamental blade passage frequency, 2172 hertz

FREGUENCY								ANGI	.ë, DE(3							AVERAGE SPL	POWER LEVEL
	10	20	30	4C	50	60	70	εc	90	100	110	120	1.30	140	150	160	37 L	(PHL)
			1	/3-001	TAVE BA	AND SCI	JND PRE	SSURE	LEVEL	(SPL)	ON 30	5-METE	R RADI	เบร				
5 C	73.4	70.2	71.6	70.2	70+6	70.9	72.4	71+4	71.6	72.9	74-1	76.3	75.7	76.2	78-6	79.1	74.0	121.4
6.3	68.1	70+4	69+4	66.3	69-1	69.1	65.5	70.3	70.1	71.1	73.1	74.4	75.6	77-1	78.8	79.3	73.3	120-7
80	72.6	73+1	76.4	65.4	11.6	65.4	65.3	7G • 3	71.4	73.3	74.9	76.8	78.3	79-8	81.6	82.0	75•7	123.1
100		69.3		69.4	69.9	69.5	71.4	72.3	74-1	76-1	78.1	79.5	80.6		82.9	82 • 6	77.4	124.8
125		72 - 2			73.2	74-1	75.7	76.6	77.4	77.9	78.9	80.5	80.9	81.7	82 • 2	81.6	78.3	125.7
160	13.8	13.5	74.5	74.3	74.5	75-8	76-2	76.3	76.7	77.3	78-3	79.2	78-8	79•5	80.2	78-2	77-3	124.7
200	73.6	73.9	74.1	72.7	73-1	72+9	72.9	73.1	73.2	74+1	75.2	76+8	78.4	78.7	79-6	77.1	75.4	122.8
250		76.5		73.48	75.0	72-8	74.0	74.5	76.5	77.0	78-5	79+7	80.5	80+1	79 • 8	77.5	77-3	124.7
315	76+3	75.7	74.5	74.5	74.8	75.0	75-5	76.3	77.0	77.2	76.7	78-9	79•3	79+3	78•8	76-1	77-2	124+6
400	79.3	77.1	15.4	74.6	74.1	74.1	74.1	75.9	76.9	78.6	79.6	80.0	80.6	79•9	78 • 4	75.6	77.8	125•2
500	79.9	77.9	76.0	75.4	75 • C	74.5	75.5	76.4	77.9	78.9	79.9	80.3	80.4	79.7		74.9	78.1	125.5
63G	&C • 2	78.5	16.7	76.2	75.4	74.7	75.2	76.2	77.9	79.4	80.9	81.1			77-2		78+6	126-0
800	81.9	74.6	77.9	76.6	75+9	75.3	75.6	76.3	78 - 1	79.3	81.1	81.9	82-6	82 - 1	77 • 4	74.5	79.3	126.7
1000	£3.2	80.4	78 • 2	77.1	76.6	75.4	75.9	76.2	78 • 1	79.7	80.2			82.2	77.4	74.0	79.2	126.6
1250	£1.6	79.9	78+6	76.6	76.1	75 - 1	74-€	75.1	77.3	79.3	80-6	80.7	80.8	81•4	76 • 4	73.0	78-7	126 • 1
1600		81.3		78.7	77-3	75.2	74.0	74.2	76.3	78.3	79.7	79.4	80.0	79.5	75-2	72.1	78.3	125.7
2000	89.4	91.3	88.6		85+3	81.6	76.6	78+1,	77•4	79.3	79.9	80.5	83.6	82.6	78 • 4		83-8	131.2
2500	86.6	87+8	85+8	84.1	82.3	78+3	75.8	75.3	76.1	76.9	78+1	78.4	80.1	79.6	75 • 6	72.7	80.9	128.3
315C		86.8		82.3	80.7	77.8	74.2	73.3	74.8	76.0	76.5	77.1	78-7	77.0	73 - 8	71.6	80.0	127.4
4000	91.6	51.8	90∙3	ರಕ•5	85.3	82.5	78-1	75-3	76.4	76-8	77.6	78 - 2	80 • 6	79+6	76 - 4	74.0	84.5	131.9
500C	5C - 1	90-1	85 a C	87.3	85.5	81.8	78:2	74.5	76 • 1	76.2	77.3	77-0	80-0	78.8	76 • 3	72-1	83-8	131.2
€300	50.5	92.3	42.3	85.6	90.3	86.4	75.8	77+1	77.6	78.3	79.9	81.6	84.1	79.4	76.9	74.6	87.3	134.7
800C	50.0	91.9	41.4	85.4	88+5						82.1		86.4	82.8	79 - 1		87.7	135.1
10000	£5.2	90+5	90+3	8.38	88+2			78.0		81.3			84 • 3	80.9	78 • 1		88.1	135.5
12500		88+8	89.0	88.C	88.0	85.7	81.2	79.7	84.0	85.7	87.4	86.9	87.7	84 - 2	81.2	74.1	90•6	138.0
16000	62.2	83.9	63.4	81.9	81.7	78.€	74.0	76.4	79.9	82 • 4	84.4	85.0	85.7	81.9		· · · · -	88.5	135.9
20000	11.7			77.C	75.6	7.1 + 5	68.2	70.6	76.0	78.2	78.6	79+3	80.2	77-0	73.9		85+9	133.3
OVERALL	\$5.7	100+5	95+6	57.8	97 . ℃	94+2	90.6	90.0	92.0	93•2	94.6	94.9	96-3	94.9	93•1	91•1	97•7	145•1
DISTANCE						\$ 10	EI INC	neores	MED ALT	10E 1E	WELL							

DISTANCE

SIDELINE PERCEIVED NOISE LEVELS

TABLE X. - Continued. NOISE OF QF-3 CONFIGURATION 38 - SUPPRESSOR A, FIRST INLET SECTION ACTIVE, FULLY ACTIVE EXHAUST

[Data adjusted to standard day of 15° C and 70 percent relative humidity. SPL referenced to 2×10⁻⁵ N/m²; PWL referenced to 10⁻¹³ W.]

(c) 80 Percent speed; fan physical speed, 2815 rpm; fundamental blade passage frequency, 2486 hertz

ERFELENCY								ANGL	.E. DEG	ì							AVERAGE	POWER
	1 C	20	30	4C	50	60	10	80	CP	100	110	120	130	140	150	160	SPL	LEVEL (PWL)
			1	1/3-667	AVE BA	ND SEU	ND PRE	SSUFE	LEVEL	(SPL)	QN 30+	5-METE	R RADI	us				
5 C	EC • 4	14.8	17.6	77.3	79.1	18.3	76.4	76.1	78.3	78.4	79.8	79•7	81.1	81.6	83.3	83.8	79.5	126.9
63	12.1	74.3		72.5	12.4						77.9		80.8	82.6	84.3	84.2	78•3	125+7
80	14 • t	74 • 4	73 • 1	72.6	72•€	72.5	72.5	73.4	76.1	77.3	80 • 1	81.0	83.4	85 • 1	87.4	87.0	80+4	127.8
100	19.4	78.9	7€•€	76.4	13.6	75+4	76.3	77.8	80.1	81.6	82.9	83.9	86.1	87.3	88. 5	88.3	82.9	130.3
125	77.3	14.5	76.4	15.8							84.4	85.0	85.9	86.8	88.3	86.7	83.2	130.6
160	77.4	76.8	78 - 1	78.3	78•£	79∗€	80.2	80.9	82.7	83+1	83.4	83.5	84.2	84.9	85.7	83.3	82+3	129.7
200	77+3	77.6	11.5	76.C		17.6						81.4	83.3	84.5	84 • 8	82.4	80.6	128.0
250		79.4				77.4							84.7	85.2	85+4		81.9	129.3
315	79.3	78.6	18+3	71.6	78+8	79+1	75.8	80+3	82+3	82.8	82.8	83.2	84.0	84.5	84.3	81.5	81.8	129•2
40 C	81 - 4	79.5	78.7	77.5	71.7					82+7		84.1	84.5	84 • 5	83.5	80-1	81.9	129.3
200	62.6	81.6	75.9	78.7	78.4	78.7	79.7	80•4	82 • 4	83.4	84+1	84.5	84.6	83.9	82.7	79.3	82.3	129•7
630	63.3	äl∙É	15.5	15.3	78.€	78+9	79.4	80•6	82∙ 4	ĕ3∙ 6	84.8	85 • 4	85.6	84.3	82 • 4	78•3	82.7	130-1
900	£3.7	81.6	80.2	75.4	78.5	78.7	79.4	80.6		83.7		85.7	86.4	84-9	82.1	78.5	82.9	130.3
1000	£5.6	87.8	81.3	75.4	15=6	79.1	75.6	80.8	82 • 8	84.3	84.4	85.4	86.4	85+3	81.4	77.8	83+1	130.5
1250	65+0	82.5	81.3	79.8	79.3	79•C	79∙∃	80.3	82.5	84.5	85.0	85.1	85.5	84.8	8 • 08	76.5	83.0	130.4
1600	F4 - B	83.0	81.8	8C.E	79.5	78∙8	78.3	79.5	81.8	83+6	84.5	84 • 1	85 • 1	83-1	80.0	76-4	82.4	129.8
2000	88.2	85.9	84.0	82.5	81.2	79.4	78.4	79.4	81.4	82.4	84.2	83.8	84.4	82.5	79 • 4	75.8	82.7	130-1
2500	52.2	53.4	54.5	91.7	8745	86+2	82.4	82.0	82.5	83.4	83.5	85.3	86.7	84•4	80 • 7	78•3	88.0	135.4
3150	ba•€	88.7	87.3	84.2	83.0	80.4	77.2	77.4	79.2	80-1	81.4	82-2	83.4	81.1		75+0	82•9	130.3
400C	51.3	90.5	8•26	87.1	84.5	82+6	78.4	77.4	79.6	80 • 1	81.3	61-4	82.9	81-4	78.4	75-2	84.6	132.0
5000	53 • 4	94 + 1	93.8	51.4	90.1	67.4	83.3	78-8	8 - 0 6	80.8	81.9	82-1	83.8	82.7	80 • 3	75•4	88 • 2	135.6
€300	51•¢	92.8	92.3	90.3	89.5	87.3					82.3		85.3	80+4	78 • 4	75+6	87.9	135+3
8000	92 + 8	44.4	94.3		42.3					83+8		87+3	89+3	85.3	82 - 1		91 • 2	138.6
10000	51 • ž	92.4	92.2	90.5	90+0	88.7	81.5	79.8	82.2	82.0	83.3	83.6	84.9	81.2	79.1	74•2	89.8	137 • 2
12506	50 • 1	91.0	9C • 8	90.1	90.0	89.C	83.7	81.8				67.6	87.7	84.0	81.7	74.7	92+1	139.5
16000	64.0	85.8	80.2	84 - 2	84.8	83.3					87.2		87.9	83.5	81.2		91.2	138.6
20000	78.5	80.0	8C.5	79.3	18.7	76.3	73.6	75+8	80.5	82.0	82.3	82-8	83.0	80.0	77.7	70.1	89+3	136.7
EVERALL	101.7	102.3	107 • 1	10¢•1	99.4	97.7	94•C	93•8	95.9	96•9	98.1	98•6	99.6	98.4	97.8	95•7	100.5	147.9
DISTANCE						\$ 10	ELINE	PERCEI	VED NO	ISE LE	VELS							

152.5 METERS 72.4 83.7 89.6 50.5 51.4 50.6 68.9 89.3 90.8 91.6 91.8 91.9 91.6 88.1 82.7 75.0

TABLE X. - Concluded. NOISE OF QF-3 CONFIGURATION 38 - SUPPRESSOR A, FIRST INLET SECTION ACTIVE, FULLY ACTIVE EXHAUST [Data adjusted to standard day of 15° C and 70 percent relative humidity. SPL referenced to 2×10⁻⁵ N/m²; PWL referenced to 10⁻¹³ W.]

(d) 90 Percent speed; fan physical speed, 3158 rpm; fundamental blade passage frequency, 2789 hertz

FRELUENCY								ANGL	E, DE	G			•				AVERAGE SPL	POWER LEVEL
	1.0	20	30	40	Þΰ	60	70	80	90	100	110	120	130	140	150	160	J. L	(PWL)
			Į	/3-0CT	AVE BA	ND SCO	IND PRE	SSURE	LEVEL	(SPL)	GN 30	.5-MET	ER RAD	IUS				•
50				76.4													82+6	130.0
63				75.5													82.1	129.5
80	17 - L	7€ •5	74 • 7	14.8	75+C	75+8	15.8	77.0	18.7	80+3	82.2	84+6	87.5	89.5	91.5	91-4	84.2	131.6
100	£6.7		82.0			78.5				84.2					93.4		86.9	134.3
125	b0 • 4			75.0						86-4					93 • 2		87.3	134.7
1,60	8C • 2	8C •2	81 - 2	81•C.	82•2	83•2	84 C	85-9	85-2	86•3	86•5	87.9	88.5	89.7	90.7	87.9	86+2	133.6
206	€0.3				81 • C		81.7				83.7			88.8		86.9	84.5	131.9
250	61 - 4		81.4	8C-1	80.2					85•4		88.3					85 • 8	133.2
315	84+8	82.0	ឥ≟∗ឥ	81.4	82+5	82.9	83.4	83.9	84.6	85•8	86•4	87.5	88•4	89•4	88 • 8	85•0	85•7	133.1
400	62.2	81.7	81.0	81 • 2	ol•C	81.5	82.3	83+3	84 • 8	86+2	87+3	87.9	88.7	85.2	88.0	84.4	85•7	133.1
500	83 - 1	82.1	61.5	81.3	81.5	82.5	83.5	84.1	86 • 0	86.8	87 - 8	88.1	88.6	88.3	87.1	83.5	85.9	133.3
630	₹6.2	84.4	82.5	82.4C	82+4	82 • 2	82.4	84+5	86+2	87.2	88.9	89•1	89•4	87.9	86.4	82.6	86•4	133-8
нос	86.2	83.8	82.7	82.3	82 + C	82 • 2	83.5	84.5	d6 • 0	87.3	88.5	89 • 4	90.2	88.0	86.0	82-4	86+5	133-9
1000	88.2	84.5	84.6	82.4	82.2	83 • C	34.C	84.5	86.7	88.7	88.4	89.1	90 • 2	88.0	85 • 5	81.9	86.8	134+2
1250	0.88	85.8	84.3	83 • 1	82+8	82 • 6	84-C	84.0	86+6	88.3	88+6	89-1	89.3	87 • 1	84.6	80.7	86-7	134•1
1600	£7.2	85.6	83.5	83.4	82 - 1	82 - 1	82.7	84.4	ძ6 - ბ	88.1	88.2	88.5	88.7	86.1	83.7	80-1	86-2	133-6
200C	88.0	87.5	85.7	84.0	82.7	82 • C	82.0	84.1	86.3	87.1	88.5	87.6	88.8	85.6	83 • 3	79.4	86+2	133.6
250C	53.2	54.0	93.2	92·5	89.4	87.7	84.3	84.5	85 • 5	80.0	87.8	88+6	88.5	85•5	82.8	79.9	88.9	136.3
3150	52.8	93.6	92.6	52.1	89.1	87.1	83.6	82.9	84.1	85.1	86.1	87.5	88.8	85.8	82.8	79.3	88.5	135.9
4000	51.8	91.5	90.2	86.5	86.7	84.3	82.3	81.5	83.2	84.0	85.3	85.3	86.6	84.1	81.7	77.2	86+6	134.0
5000	94.1	94.3	92+1	90-1	89+C	86.3	84-1	81.1	83.1	83.3	84.9	84.6	85.8	83.4	81.6	76.5	88.1	135-5
£ 100	52.5	43.7	93 • I	90.8	90+9			82+4			85+1		87-3	82.8	80.8	77.0	89.3	136.7
8000	52.7	94.4	93.6	92 - 1	90.5	89 - 1	84.1	82.9	86+3	86+4	88.3	89.4	90.4	86.3	83.5	78-8	91.3	138.7
10000	50 ± 8	92.2	91.6	£9.0	89+1	87.8	82.7	81.7	83.9	83.7	84.9	85+1	86-1	83.4	81 • 3	75+8	89.8	137.2
12500	89.6	90.3	90•6	85.5	89.3	88.0	84+5	82.9	do. i	87.0	89.0	88.0	87.8	84.3	82 - 8	75.6	92-1	139:5
16000	£4 • 8	87.0	#6±6	85.3		84.5				86.3		88.5	88.3			75.4	92.3	139.7
20000	79.4	8C.8	81.4	80.0	79∙€	78.0	78-0	79.9	83.3	84.8	84•5	84.5	84•3	81.2	79 • 4	72.5	91.3	138.7
OVERALL	102.9	103.2	102.3	101.0	99.9	98.6	97•C	97+3	99•0	10Ŭ•1	101.2	101.9	102.7	101.9	101.9	99•9	102.3	149.7

GISTANCE

SIDELINE PERCEIVED NOISE LEVELS

52.5 METFHS 74.1 F5.2 ES.7 52.1 52.5 52.7 51.5 92.7 94.2 94.9 95.7 55.6 94.9 91.0 86.3 78.4

TABLE XI. - NOISE OF QF-3 CONFIGURATION 39 - SUPPRESSOR A, FIRST TWO INLET SECTIONS ACTIVE, FULLY ACTIVE EXHAUST

[Data adjusted to standard day of 15° C and 70 percent relative humidity. SPL referenced to 2×10⁻⁵ N/m²; PWL referenced to 10⁻¹³ W.]

(a) 60 Percent speed; fan physical speed, 2155 rpm; fundamental blade passage frequency, 1903 hertz

		(a) 0	o rerce	ent spec	u; lan	pnysica	n speed	1, 2155	rpm; f	undame	ntal bla	ide pass	sage fre	quency	, 1903 I	iertz		
FREQUENCY								A NG	LE, DE	G							AVERAGE	POWER
	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160	SPL	LÉVEL (PWL)
			:	1/3-001	TAVE BA	AND SO	UND PR	ESSURE	LEVEL	(SPL)	ON 30.	.5-MET	ER RAD	IUS				
50	70.0	67.5	69.2	67.5	48.4	40 4	70.4	70.7	(0.0		70 5	30.4						
63	68 9	67.5	68.0	67.5 67.4	67.7	68.2	70.0	69 6	47 5	47 /	10.5	12.6	11-4	13.2	75.4	75.1	71.0	118.4
80	71.7	70.9	69.2	70.7	69.4	68.5	70.4	68.7	68.7	69.0	70.9	73.1	73.5	74.7	74.7	75.2 76.7	70.0	117.4
														1441	10.2	10.1	71.7	119.1
100	69.4	67.9	68.4	66.6	68.4	68.9	69.7	69.9	69.9	71.2	73.1	74.8	75.6	76.4	78.6	77.6	72.9	120.3
125	70.2	70.0	68.7	69.2	69.7	71.3	70.8	71.3	72.3	72.8	74.5	75.3	75.7			77.4	73.6	121.0
160	71.4	70.7	71.2	70.6	71.1	71.6	71.6	72.2	72.7	73.4	73.6	75.0	73.9		75.9	74.8	73.1	120.5
200	74.3	76.3	71.6	72 . 6	71.6	70.6	72 A	70 A	71 4	71 2	71.1	77.3	• • •		 .			_
250				70.3	69.9	69.1	43 1	70 1	71 2	72 4	74.0	13+2	12.40	73.4		73.7	72.3	119.7
315	76.1	74.5	73.3	71.1	71.8	71 6	7) 5	70 5	72.0	7/ 1	74.5	77.4	15.3			73.5	72.9	120.3
			,,,,,	,,,,,	1140	1107	11.00	12.00	13.0	74.1	74.8	15.4	75.0	74.6	74.6	73.2	73.6	121.0
400	76.9	75.0	73.2	71.7	71.0	70.5	70.5	71.4	72.5	74.0	75.4	75.6	76.0	75.7	74.5	71 0	72 0	101 0
500	77.5	75.8	74.3	73.5	72.3	71.8	71.7	72.5	73.5	75.5	76.2	76.6	76.3		73.7		73.8	121.2
630	77.4	76.6	74.9	73.3	72.6	71.4	71.3	72.4	73.9	75.6	77.4	77.7	77.8	77.6	74.1	71.0	74.6 75.3	122.0 122.7
800	79 4	70 1	74 0	74. 4												. • • •		
1000	70 0	77.0	75.7	74.4	72.9	71.8	11.3	72.4	73.9	75.3	76.8	78.5	78.9			70.6	75.9	123.3
1250		74 3	75.3	73.8	71.0	(1.3	71.5	72.2	73.7	75.3	77.0	76.9	78.3	79.3	74.0	70.9	75.5	122.9
12.70	1146	10 - F	(3+3	73.1	71.1	70.6	70.1	70.9	72.6	75.1	76.2	76.2	76.6	77.4	73.1	69.L	74.5	121.9
1600	80.9	80.4	78.8	77.3	74.9	72.9	70.4	70.4	71.4	73.6	75.1	74.7	75.6	75.8	71.8	68.7	75.1	122.5
2000	87.8	90.0	86 - 1	84.6	82.3	78.5	74 6	73.6	73.6	75.0	76.0	75.7	78.1	79 0	76 1	72 0	81.0	
2500	79.1	79.9	78.7	76.2	73.9	71.4	69 . 1	68.2	69.6	71.1	72.4	72.0		73.4	68.7	65.8	73.7	128.4 121.1
3150	82.1	82.3	81 - 1	78.8													7	
4000			86.8		01 0	73.1	73.0	58.2	69.	71.1	71.9	72.2	73.1	72.7	69.3		75.5	122.9
5000	86.3			82.8	01.0	74 0	73 40	10.0	71.4	72.8	73.6						80.6	128.0
,000		00.3	53.0	02 • 0	DU. 1	76.9	14.3	07.2	11.3	12.3	73.8	73.2	75.7	76.0	72.7	67.8	79.6	127.0
6300	87.3	88.4	87.4	85.4	84.5	80.7	73.9	71.5	72.9	74.1	76.1	77.9	80_4	77.2	73. Q	70.2	82.7	130-1
8000	86.3	88.3	87.8	86.5	84.8	81.5	74.4	73.7	78.1	78.2	79.7	81.5	83.3	80.8	76.7		84.6	132.0
10000	86.7	87.7	88.0	87.2	86.9	85.6	78.3	75.8	79.6	79.6	81.1		82.6	79.9		70.9	86.5	133.9
12500	85.1	85.2	85. 6	84.5	95.1	02 7	75 0	73.0	20. 2									
16000	75.9	77.2	76.5	74.2	74.0	70 4	44 2	(3.7 (7.1	17.5	91.1	83.1	82.8	84.1	81.6	79.2	71.5	86.8	134.2
20000	70.4	71.4	70.9	74.2 68.6	67 1	1044 47 F	56.7	01.1	66.3	14.0	77.40						81.1	128.5
	,	* • • •	10.7	0020	31.1	02.0	33 • 1	00.2	60.3	68.8	70.2	70.6	71.7	69.9	66.4	59.7	77.4	124.8
OVER ALL	56.3	97.1	96.0	94.5	93.3	90.9	85.3	85.7	87.8	89.0	90.5	91.0	92.1	91.2	89.3	87.0	93.7	141.1
DISTANCE										ISÈ LE								
153 C MCTCO																		

152.5 METERS 67.7 79.2 81.9 83.7 83.9 82.6 80.3 80.2 81.3 82.5 83.1 82.5 82.4 80.5 74.5 67.3

TABLE XI. - Continued. NOISE OF QF-3 CONFIGURATION 39 - SUPPRESSOR A,

FIRST TWO INLET SECTIONS ACTIVE, FULLY ACTIVE EXHAUST

Data adjusted to standard day of 15° C and 70 percent relative humidity. SPL referenced to 2×10⁻⁵ N/m²; PWL referenced to 10⁻¹³ W.]

(b) 70 Percent speed; fan physical speed, 2513 rpm; fundamental blade passage frequency, 2219 hertz

FREQUENCY										_		_		- •	,			
FREWDENLI									LE, DE								A VERAGE SPL	POWER LEVEL
	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160		(PWL)
			1	/3-0C1	AVE BA	AND SOL	UND PRI	ESSURE	LEVEL	(SPL)	ON 30.	5-MET	R RADI	IUS ·		•		
50	77.7	75.7	74.2	74.7	73.7	76.0	73.9	73.7	74.7	76.0	76.2	78.1	77.5	78.2	80.5	61.1	76.5	123.9
63	75.5	74.3	73.8	73.8	72.0	73.5	72.0	71.5	72 - 2	73.7	75.0	76.9	77.2	78-3		80.7	75.4	122.8
80	77.5	75.2	77.8	72.5	73.2	72.5	73.2	71.8	72.7	75.3		77.9	79.2		82.3	82.2	76.9	124.3
100	75.5	73.9	73.4	71.9	71.2	72.7	73 . 4	73.2	74.9	76.7	77.9	79.6	81.0	82.0	83.9	83.4	78.0	125.4
125	75.2	75.0	75.2	74.2	74.0	75.0	75.9	76.7	76 - 7		79.4		81.7	82.4		83.1	79.1	126.5
160	76.6	75.4	75.9	75.6	75.7	76.6	77.1	77.2	77.2	78.4	79.1	80.1	79.9	86.9	81.6	80.4	78.4	125.8
200	76.2	76.0	75.3	74.3	74.0	74.8	74.5	74.7	74.5	75.3	76.5	77.2	77.8	79.5	79.8	78.4	76.3	123.7
2 5 0	78.5	77.8	76.2	75.7	76.B	73.8	74.2	74.7	75.8	77.2	78.8	79.9	80.5	80.8		78.0	77.8	125.2
315	77.9	77.2	76 . 2	75.5	76.0	75.4	75.0	76.7	77.5	78.0	79.0		80.0	80.2		77.1	78.0	125.4
400	80.0	79.1	77.3	75.9	75.6	74.9	74.4	75.9	76.8	77.9	79.1	80.4	60.6	80.4	78.9	76.2	78.1	125.5
500	80.7	79.9	78.0	76.5	76.2	75.9	75 .7	76.9		79.4				80.2		75.4	78.8	126.2
630	81.5	79.5	78.2	77.0	76.5	75.2	75.5	76.2	77.9	79.7	81.4	81.8	81.4	80.9	77.9		79.1	126.5
800	81.4	79.4	78.4	77.4	76.4	75.4	75.2	76.5	77.7	79.5	81.0	82.1	82.7	82.2	77.9	74.6	79.4	126.8
1000	85.4	80.9	78.9	76.9	76.4	76.3	75.3	76.9	77.8	79.8	80.9		82.3		77.8		79.6	127.0
1250	80.7	79.2	77.5	76.2	75.2	74.8	74.2	75.2	77.0	79.5		80.8	81.2	81.5	76.8	73.1	78.6	126.0
1600	85.6	80.8	79.1	77.6	76.6	75.0	73.8	74.4	76.6	78.9	79.9	79.5	80.6	79.8	75.4	72.3	78.5	125.9
2000	89.3	87.3	85.5	84.3	81.7	79.5	75.7	75.7	77.2	78.3	79.8				76.0		81.4	128.8
2500	85.0	86.7	84.7	83.7	80.7				75.4			78.6	80.0	79.5			80.2	127.6
3150	85.1	84.6	83.1	80.7	78.4	75.9	72.1	72.1	74.2	75.2	76.6	77.2	78.2	76.9	73.4	70.3	78.5	125.9
4000	89.2	89.4	88.1	85.2	82.6	79.9	74.7	73.0	74.9	76.2	77.0	77.8	79.5	78.4			82.2	129.6
5000	89.1	89.6	88.3	86.0	83.5	80.6	75 • 1	73.0	74.8	75.8	77.0	77.1	79.1	78.4	75.6	71.6	82 • 8	130.2
6300	89.8	90.8	90.4	88.0	87.8	84.6	77.4	75.5	75.6	76.8	78.5	80.3	£2.3	76.0	75.3	72.4	85.5	132.9
8000		90.7	90.2	88.5	87.0	84.6	77.3	75.5	78.7	79.2		83.3	85.0	81.6	78.0		86.6	134.0
10000	87.8	88.9	8.88	87.1	86.2	84.6	77.3	75.7	78.9	78.6	80 • 4	80.4	81.6	79.0	75.6	70.5	86.3	133.7
12500	87.5	87.9	88.2	87.5	87.5		80.2	77.2	81.6	82.8	84.5	83.7	84.5	81.3	78.7	72.0	89.1	136.5
16000		81.1	80.8	79.0	79.4	77.0	73.5	72.5	76.7	79.5	81.7	81.4	81.8	79.0	75.6		85 .4	132.8
20000	74.6	75.8	75.0	73.5	71.7	68.8	63.4	66.6	71.9	73.8	75.1	75.2	75.8	73.3	70.1		82.0	129.4
OVERALL	99.0	99.0	98.2	96.5	95.4	93.7	89.7	89.4	91.1	92.5	93.8	94.5	95.3	94.6	93.3	91.7	96.3	143.7
DISTANCE						SID	ELINE	PERCEI	VED NO	DISE LE	V EL S							

CISTANCE SIDELINÉ PERCEIVED NOISE LEVELS

TABLE XI. - Continued. NOISE OF QF-3 CONFIGURATION 39 - SUPPRESSOR A,

FIRST TWO INLET SECTIONS ACTIVE, FULLY ACTIVE EXHAUST

[Data adjusted to standard day of 15° C and 70 percent relative humidity. SPL referenced to 2×10^{-5} N/m²; PWL referenced to 10^{-13} W.]

(c) 80 Percent speed; fan physical speed, 2870 rpm; fundamental blade passage frequency, 2535 hertz

FREQUENCY								A NG L	.E, DEC	;							A VE RAGE SPL	POWER LEVEL
	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160	SPL	(PWL)
			1	/ 3-00 T	AVE BA	ND SOU	NO PRE	SSURE	LEVEL	(SPL)	ON 30.	5-METE	R RADI	u\$				
50	83.3	77.7	81.8	82.2			78.3			78.0	81.7				84.8		81.7	129.1
63	72.8	75.6	74.5	74.5	75.0 73.6	74.J 73.3	74.3 72.6	74.5 74.1		75.8 76.3	77.0 78.0	79.2 80.2	80.5 82.8	82.3 84.8	84.3 86.6	85.0 86.7	78.4 79.8	125.B 127.2
80	76.3	75.1	73.8	73.0	(3.0	13.3	12.0	14.1	13.1	10.0	10.0	0002	0240	04.0	00.0	00.1	2,00	12182
100		77.5	73.8	75.3	74.2	75.3		77.5	79.3	80.3	82.0	83.8	85.3	86.7	88.5	88.0	82.3	129.7
125	-	75.4		76.3	76.4	78.1	77.8			82.4	82.8	85.0	85.4	87.1	88.6	87.3	82.9	130.3
160	70.2	77.0	78.4	77.9	78.9	80.0	80.2	81.0	81.5	82.5	83.0	84.3	84.C	85.5	86.5	84.6	82 . 4	129.8
200	77.6	78.0	77.5	78.0	77.8	78.1	78.5	78.8	78.6	79.5	80.3	61.6	82.6	84.3	84.8	83.0	80.5	127.9
250	78.8	78.8	77.8	77.3	77.5	77.3	77.0	78.3	79.8	81.0	82.5	83.6	84.3	85.5	85.8	82.9	81.5	128,9
315	79.5	79.0	78.3	78.0	79.0	79.3	79.8	80.2	81.5	82.2	82.7	83.9	84.3	84.5	84.3	81.5	81.8	129.2
400	81.1	79.8	79.5	78.3	77.8	78.3	78.5	79.3	80.8	82.1	82.6	83.9	84.6	84.8	83.5	80.7	81.7	129.1
500	83.3		79.9	79.1		79.1	79.6			83.1	84.1	84.5	84.4	84.1	82.4	79.6	82.3	129.7
630	83.5		79.9	79.4		79.2				83.9	85.0	85.5	85.4	84.4	82.0	79.1	82.7	130.1
			70.7	70.4	70.0	70.3	70 0	00.3	01.7	02 /	84.4	85.8	86.7	£5.5	82.0	78.9	82.9	130.3
800	83.4	81.2	79.7	79.4	79.0		79•2 79•4			83.4	84.6	85.3	86.4	85.6	81.6	78.6	83.0	130.4
1000	85.6		80 . 6	79.4	78.7	79.1		80.2 79.5	82.4 82.1	84.3	84.8	84.9	85.3	85.3	81.1	77.2	82.7	130.1
1250	83.6	81.3	80 • 3	79.0	78.6	78.5	79.0	14.0	02.41	04.5	04.0	04.7	65.5	00.3	01.1	1142	02.41	13001
1600	83.7	81.4	80.4	79.2	78.2				81.7			84.5	85.2	83.7	80.1	76.3	82.2	129.6
2000	84.0	82.7	91 . 4	80.1	78.7	77.7		78.2		82.4	83.9		84.4	82.9	79.2	76.1	81.7	129.1
2500	89.9	90.4	89.6	89.9	87.4	84.6	80.4	1.08	80.9	81.9	83.3	84.7	87.1	84.8	80.4	77.2	85.8	133.2
3150	86.5	85.4	84.4	82.C	80.5	78.2	75 . 7	76.2	78.2	79.7	80.7	61.6	83.0	80.9	78.0	74.1	81.3	128.7
4000	89.9	88.2	87.2	85.1	82.8	80.1	76.4	75.7	77.7	79.2	80.6	81.0	82.4	80.6	77.9	73.8	82.8	130.2
5000	91.4	91.6	91.3	90.3	88.4	85.4	81 - 4	77.4	78.9	79.6	80.9	81.0	83.3	81.7	79.2	74.5	86.4	133.8
6300	89.8	91.0	90.1	88.0	87.6	84.6	78.1	76.8	78.0	79.0	80.6	82.1	83.5	79.1	77.0	73.9	85.8	133.2
8000	91.1		92.8	91.1	90.4	88.4	81.6	79.4	81.1	82.3	83.9	86.3	1.88	83.9	80.6	76.1	89.5	136.9
10000	89.0	89.8	90.2	88.0	87.7	86.0	78.9	77.4	79.3	79.5	81.0	81.2	82.5	79.5	77.5	72.0	87.4	134.8
12500	87.9	88.6	88.7	88.0	88.5	87.2	83.8	79.0	81.6	83.7	85.5	84.4	84.5	81.5	79.8	72.3	89.7	137.1
16000	81.6	83.1	83.1	81.4	82.4	80.4		76.1			84.3	84.3	84.3	8C.5	78.4	71.3	88.1	135.5
20000	75.8		77.1	75.8	74.9	72.9	63 -4	71.2	75.7		78.8	79.0	79.3	76.2	74.0	66.7	85.4	132.8
OVERALL	100.1	100.1	59. 8	98.5	97.8	96.1	92.8	93.0	94.6	96.0	97.1	97.9	98.8	98-2	97.6	95.9	98.8	146.2
DISTANCE						510	ELINE	PERCEI	LVED NO	oise Le	EV EL S							

157.5 METERS 70.9 81.5 86.2 89.1 89.7 89.3 87.5 88.1 89.6 90.7 91.4 91.5 91.6 88.2 82.5 74.8

TABLE XI. - Concluded. NOISE OF QF-3 CONFIGURATION 39 - SUPPRESSOR A,

FIRST TWO INLET SECTIONS ACTIVE, FULLY ACTIVE EXHAUST

Data adjusted to standard day of 15° C and 70 percent relative humidity. SPL referenced to 2×10⁻⁵ N/m²; PWL referenced to 10⁻¹³ W.

(d) 90 Percent speed; fan physical speed, 3228 rpm; fundamental blade passage frequency, 2851 hertz

FREQUENCY								ANG	E, DEC	;							A VERAGE SPL	POWER LEVEL
	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160	3FL	(PWL)
			1	/3-00 T	AVE BA	NO SOU	NO PRE	SSURE	LEVEL	(SPL)	ON 30	.5-MET	ER RAD	tus				
50	84.2	79.2	82.1	80. t	82.9	81.9	80.9	81.4	83.7	82.2	81.7	87.3	84.1	86.4	88_1	88.5	83.5	130.9
63			77.6		77.9								84.1	86.8		88.8	82.1	129.5
08	78 • 2	77.2	75.2										86.9	89.0		91.2	84.1	131.5
100	84.6	81.3	79.6	79.6	78.9	79.6	79.4	80.9	82.6	84.4	86.1	87.7	89.4	92.4	93.3	92.8	86.8	134.2
125	80.4	79.2	78.7	79.9	80.2			83.7		86.7	87.4	89.2	90.4	92.1	93.4	91.3	87.4	134.8
160	80.0	80.4	81 + 5	81.5	83.0	83.9	83.9	84.9	85.5	86.5	87.0	88.L	88.9	90.0	90.9	88.4	86.5	133.9
200	80.7	80.7	81.1	81.2							84.7			86.7		66.8	84.7	132.1
250			80.7			80.7							89.6				85.9	133.3
315	86.1	83.3	82 . 1	82.3	83.5	83.1	83.8	84.1	84.8	86.6	87.1	87.9	8.83	89.3	89.0	86.0	86.1	133.5
400	_	_	81 . 7			82.2		83.6					88.7				85.9	133.3
500			81.7			82.5		85.U			88.2		88.7				86+2	133.6
6 3 0	85.2	83.5	82.5	82 • 2	82.3	82.7	83.3	85.0	85.8	88.0	89.3	89.6	89.5	88.2	86.5	83.4	86.7	134.1
800			82 - 2	82.0		82.4						90.0			86.4		86.7	134.1
1000	•		83.3	82.2	82.3	83.0		85.0		88.7			90.3			82 • 7	87-1	134.5
12 50	£7 . 9	85.1	83.1	82.4	82.4	82.4	83.7	85.1	87.2	88.6	89.2	89.3	89.6	87.2	85.L	81.5	86.9	134.3
1600			82.6		81.6	81.8		84-1				88.7		86.1			86.2	133.6
2000			83.5			81.3						87.9				79.7	86+0	133.4
2500	89.8	89.5	88.3	86.7	85.3	83.7	81.8	83.3	84.7	85.7	87.8	88.6	88.7	85.5	82.8	79.2	86.6	134.0
3150	52.7	92.4	91.7	90.2	88.7	86.2	83.4	83.2	84.4	85.0	86.7	89.2	89.9	86.9	83.4	80.6	88.3	135.7
4000		89.3		86.8	84.6			80.7						83.7	81.1	77.0	85.4	132.8
5000	92 • 1	91.8	89.8	88.0	86.8	84.3	82.1	80.0	82.1	82.6	84.6	83.9	85.0	83.0	81.0	75.9	86.4	133.8
6300	_		91.7			86.9			81.9			85.2				76.3	88.2	135.6
8000			92.1					81.6			87.0					77.4	89.8	137.2
10000	89.1	90.3	90.0	88.1	87.2	85.2	81.0	79.7	81.8	81.8	83.5	83.7	84.4	82.0	79.8	74.2	88.0	135.4
12500			88.2										85.0		79.9		89+8	137.2
16000			84.7										84.7				89.5	136.9
20000	76.6	77.9	78 . l	77.1	76.2	74.4	73.7	75.6	78.8	80.3	81-1	80.6	80.4	77.3	75.4	68.6	87.4	134.8
OVER ALL	101.8	101.5	100.5	99.4	98. 7	97.5	95 . 4	97.1	98.6	99.8	101-1	101.8	102-5	102.0	101.9	100.0	101.2	148.6
DISTANCE						ern	CERMIC	DEOCE	THEN M	17 C E L	21/61 0							

DISTANCE SIDELINE PERCEIVED NOISE LEVELS

TABLE XII. - NOISE OF QF-3 CONFIGURATION 40 - SUPPRESSOR A, FULLY ACTIVE INLET, FULLY ACTIVE EXHAUST

[Data adjusted to standard day of 15° C and 70 percent relative humidity. SPL referenced to 2×10⁻⁵ N/m²; PWL referenced to 10⁻¹³ W.]

(a) 60 Percent speed; fan physical speed, 2148 rpm; fundamental blade passage frequency, 1897 hertz

							_					•	0	1	,			
FREQUENCY								A NG	LE• D€(•							A VERAGE SPL	POWER LEVEL
	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160	J. C	(PWL)
			1	/3-00 1	TAVE BA	AND SOL	JND PRI	ESSURE	LEVEL	(SPL)	DN 30.	5-METE	R RADI	us.				
50	69.1	67.3	69.1	67.0	66.8	67.1	67.3	67.8	68.3	68.5	69.0	70.7	70 6	71 0	72 6	2, 7	40.4	114 0
63	68.6	68.6	67.8	67,4	66.4	66.4	65 - 9	66.3	66.4	66.0	67.6	40 2	70 4	71.6	73.5	79.0	69.4	116.8
80		71.1		70.1	69.3	67.8	68.4	67 0	68 6	68.3	40.0	71 7	70.0				68.8	116.2
			0,10	, 0	0 7.3	0140	99.4	01.9	00 • 0	00.0	04.4	71.2	12.9	73.9	15.6	76.5	71.u	118.4
100	69.4	68.9		68.8	68.9	68.8	68.8	69.4	70.6	71.3	72.4	73.2	74.9	76.3	77.4	76.7	72.4	119.8
125	71.3	70.6	69.9	70.1	70.3	70.4	71.3	71.3	72.3			75.0		75.9			73.3	120.7
160	71-8	72.4	71.8	71.6	72.3	71.3	71.8	72.3	72.9	73.6	73.4	74.0	73.9	74.3	74.8	73.7	73.0	120.4
											, 50 ,	, , , ,	7347	17-3	74.0	1341	13.0	120.4
200		75.8		73.3	72.4	70.9	70.6	70.9	71.8	71.1	71.1	72.3	72.6	73.4	73.8	71.5	72.1	119.5
2 5 0		74.7		70.8	70.0	70.2	70.0	71.7	72.3	72.8				75.0			73.0	120.4
315	75.3	74.5	73.3	71.3	72.0	72.5	72.1	73.1	73.3		74.1	75.1		74.3			73.5	120.9
													. , ,		14.0	11 . 2	13.5	120.9
400		75.5	73.2	72.2	71.7	71.2	71.7	71.8	73.2	74.0	75.3	75.4	16.5	75.5	74.0	71.2	74.0	121.4
500	77.4	75.7	74.0	73.5	72.4	71.9	72.4	73.0	74.4	75.0	76.2	76.4		75.4		70.4	74.6	122.0
530	77.6	76.5	74.3	73.3	72.3	71.5	71.5	72.8	74.3	75-6			78.0	76.8		70.3	75.2	122.6
												,,,,	.0.0	76.80	1360	10.3	17.2	122.0
608		78.0	75 • 8		72.6	71.5	71.5	72.3	74.1	75.3	77.1	77.7	79.5	78.8	73.8	70.2	75.8	123.2
1003	80.0	76.5	74.1	72.3	71.5	71.1	71.3	72.0	73.6				78.3	78.5	74.0		75.1	122.5
1250	76.8	74.3	72 • 6	71.3	70.3	69.8	69.9	71.1	72.6	74 -6	75.8	76.2	76.9	77.3	_	68.8	74.1	
							• .			- , ••	12.0		10.5	1113	12.0	40.0	14.1	121.5
1600	78.8	78.0	76.7	75.2	72.7	70.8	69.3	69.B	71.0	73.3	74.5	74.3	75.3	74.7	71.0	68 1	73.8	121.2
2000	82.6	84.9	82.7	80.4	78.4	74.4	71.7	71.1	72.1	73.1	74.1			76.7			77.4	124.8
2500	76.5	76.3	74.3	73. 3	70.6	68.0		66.8		70.3		71.6	73.0	72.1	68.1			
								00.00	0,00		,,,,,	11.0	13.0	12.1	00.1	65.2	71.6	119.0
3150		80.7		76.6	74.2	70.6	65.9	67.4	69.5	70.7	71.5	71.8	73.2	71.9	68.7	66.1	74.0	121.4
4000		87.4		83.4	80.2	76.5	7l.0	69.9	71.4	72.4	72.7			75.4			79.4	126.8
5000	85.8	86.0	83.8	81.7	79.7	75.7	71.2	69.5	71.3	72.3	73.5	73.3	76.0	75.7	73.0	68.3	78.9	126.3
																	,,,,	
6300	87.6		87 • 3	85.L	84.7	80.2	73.6	72.3	74.2	74.7	76.5	79.0	81.0	77.5	74.6	71.1	82.9	130.3
COOR	87.0	89.2		86.7	85.2	82.1	74.6	74.6	79.1	79.2	80.2		84.5		77.7		85.2	132.6
10000	87.5	89.3	89.5	89.2	88.9	87.7	79.1	78.0	0.18		82.2	82.7	84.2	80.5	77.9		88.2	135.6
															, , ,		55.6	132.0
12500		87.5		87.5	87 . 8	87.0	78.5	76.7	82.0	83.0	85.2	84.7	85.8	82.8	80.5	73.4	89.3	136.7
16000		79.4				74.6		70.5	74.7	77.4	79.6	80.0		78.4			83.8	131.2
20000	72.4	73.7	73.I	71.9	69.6	65.6	59.9	64.2	69.7	71.4	72.7	73.4	74.4		69.0	62.4	80.0	127.4
0.000															-	=	0010	16 18 T
OVER ALL	56.1	97.0	95.9	94.8	94.1	92.3	86 • 5	86.3	88.88	89.6	91.1	91.6	93.C	91.2	89.1	86.4	94.8	142.2
DISTANCE																		
2131 W40 C						210	ELINE	PEKCE [VED NO	ISE LE	v ELS							

152.5 METERS 65.0 76.4 79.9 82.3 82.6 81.4 79.0 79.4 81.1 81.9 82.3 82.3 82.0 79.4 73.2 66.3

TABLE XII. - Continued. NOISE OF QF-3 CONFIGURATION 40 - SUPPRESSOR A, FULLY ACTIVE INLET, FULLY ACTIVE EXHAUST [Data adjusted to standard day of 15° C and 70 percent relative humidity. SPL referenced to 2×10^{-5} N/m²; PWL referenced to 10^{-13} W.]

(b) 70 Percent speed; fan physical speed, 2504 rpm; fundamental blade passage frequency, 2211 i

FREQUENCY								ANGL	E, DEC	÷							A VERAGE	POWER
	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160	SPL	LEVEL (PWL)
			1	/3-901	AVE BA	ND SOL	IND PRE	SSURE	LEVEL	(SPL)	ON 30.	5-METE	RRADI	US				
50	72.8	70.7	71.5	72.2	71.7	73.3	71.3	73.5	72.8	73.7	74.2	76.6	76.0	77.2	78.8	79.9	74.7	122-1
63		70.5	70.0	69.9	69.5	69.7	69.9	70.2	70.5	70.7	72.5	75.0		77.0		79.9	73.5	120.9
80	76.1	72.3	78.1	69.1	71.5					73.0	74.6	76.2	78.0	79.8	81.1	82.2	75.7	123.1
100	71.7	70.7	70.5	69.3	69.7	70.2	70.5	72.7	74.5	75.3	77.0	78.8	80.2	81.7	83.5	83.0	77.2	124.6
125		72.7	74.0			74.5				78.5		80.3	81.2	82.2	83.5	82.4	78.7	126.1
160	75.1	74.2	75.1	74.6	75.7	76 . 1	76 - 1	76.7	77.1	77.7	77.9	79.2	79.6	79.1	80.9	79.4	77.6	125.0
200		74.2		73.4						74.6		76.5	77.9	78.6	79.2	77.4	75.6	123.0
2 50			74.7	74.2							78.7	79.3	80.2	79.7		77.6	77.2	124.6
315	77.0	75.7	75.0	75.0	75.2	75.4	75 . 7	76.9	77.0	78.0	78.7	75.8	79.9	75.4	79.2	76.3	77.6	125.0
400	78.5	77.3	75.8	75.0	74.0	74.5	74.3	75.2	77.2	78.2	79.3	80.3	80.7	86.0	78.7	75.5	77.8	125.2
500	80.1	78.0	76.5	75.3		75.3				79.1		80.9	80.5	79.8	78.0	74.9	78.4	125.8
630	81.2	78.4	76.7	75.5	75.0	74.9	75 . 5	76.4	78.4	79.7	80.9	81.5	81.4	80.7	77.5	74.3	78.8	126.2
800	81.2	78.7	77.4	75.7	75.4	75.2	75 .4	76.5	78 - 2	79.9	81.0	82.0	82.9	82.0	77.5	74.3	79.3	126.7
1000		79.2			75.5					79.9	80.5	81.1	22.7	82.4	77.5	74.1	79.3	126.7
1250	80.0	77.5	76.0	74.5	74.2	74.2	74.3	75.7	77.3	79.5	80.2	81.1	81.0	81.3	76.5	72.9	78.4	125.8
1600		78.9	77.4			73.9						75.7	80.4	75.4	75.1	71.8	77.7	125.1
2000	84.4		80.7			75.7						80.0	82.1	80.7	75.4	72.5	79.1	126.5
2500	81.9	81.2	78.9	78.0	75.2	74.4	71.5	73.3	74.7	75.9	77.4	78.3	80.4	75.0	74.0	70.6	77.4	124.8
3150	82.8	82.2	80.5	77.5	75.7	73.5	70.5	71.6	74.1	75.1	76.1	76.6	78.1	76.3	73.0	69.6	76.9	124.3
4000	88.6	87.8	86 . 1	83.3					74.4	75.9	76.4	77.9	79.4	78.3	74.8	71.7	81.0	128.4
5000	89.1	88.1	86.5	84.3	82.6	80.0	75 . ù	72.6	75.0	75.5	76.6	77.3	79.3	78.3	75.8	71.6	81.8	129.2
6300	90.5	91.0	90.4	87.7	87.2	83.9	75.8	75.2	76.7	77.2	79.2	81.5	83.0	78.4	76.0	73.1	85.5	132.9
0008	89.7	91.1	90.8	88.3	86.9	84.3	77.3	75.8	79.8	80.0	81.5	84.3	85.8	82.0	79.0	74.2	87.0	134.4
10000	88.6	90.0	90.3	88.6	88.2	86.8	79.9	77.2	80.5	80.0	81.0	82 - 1	83.3	75.4	77.3	72.2	87.9	135.3
12500	89.9	90.9	90.9	90.2	90.7			79.8		84.7		86.3	86.5	82.9	81.4	73.7	91.8	139.2
16000	82.6		83.6	81.7							83.9	84.5	84.8	80.9	78.8	71.7	88.1	135.5
20000	77-1	77.8	77.8	76.0	74.6	72.2	65 • 9	70.0	75.6	76.7	77.6	78.8	79.1	75.6	73.0	66.4	85.0	132.4
OVERALL	98.7	98.7	98.2	96.4	95.9	94.5	90.0	89.6	91.8	92.8	94.0	95.0	\$5.9	94.4	93.2	91.2	97.3	144.7
DISTANCE				•		SID	ELINE	PERCEI	VED NO	DISE LE	V EL S							

152.5 METERS 67.5 77.0 81.8 83.4 84.4 84.4 82.3 83.0 85.2 86.0 86.7 86.8 86.8 83.6 77.3 69.8

TABLE XII. - Continued. NOISE OF QF-3 CONFIGURATION 40 - SUPPRESSOR A, FULLY ACTIVE INLET, FULLY ACTIVE EXHAUST Data adjusted to standard day of 15° C and 70 percent relative humidity. SPL referenced to 2×10⁻⁵ N/m²; PWL referenced to 10⁻¹³ W.]

(c) 80 Percent speed; fan physical speed, 2859 rpm; fundamental blade passage frequency, 2525 hertz

FREQUENCY				-	•		, ,	A NG I	. E, DE(3		-	-	- ,			A VERAGE SPL	POWER LEVEL
	10	20	30	40	53	60	70	80	90	100	113	120	130	140	150	160	3FE	(PWL)
			1	/ 3-00 T	AVE BA	ND SOU	NO PRE	SSURE	LEVEL	(SPL)	ON 30.	5-METE	R RADI	us				
50	81.8	76.1	80.6	80.9	80.6	79.9	79.8	80.3	80.6	79.6	80.8	60.0	ec.4	81.4	84.4	84.2	80.8	128.2
63	72.6	74.8	74 . 4	73.4	73.6	74.3	73.4	74.6	75.4	75.3	76.4	78.0	80.3	81.4	83.6	84.6	77.8	125.2
80	74.7	74.4	73.9	72.2	73.5	72.7	72.5	73.5	75.4	76.5	78.4	80.3	82.5	84.4	86.5	87.4	79.8	127.2
100	80.6	79.7	80.6	77.9	73.7	75.2	75.6	77.9	79.9	81.1	82.4	63.0	85.4	87.1	88.2	88.3	82.5	129.9
1.25		75.8	75 • 5	76.1			79.0		81.1			84.7	86.3	86.8	88.5	86.8	83.0	130.4
1 60	77.9	77.4	78 . 4	77.9	79.6	79.6	79.9	81.2	81.6	82.2	82.7	84.0	84.1	84,9	86.1	84.3	82.2	129.6
200	77.5	77.5	77.8	78.8	78.3	78.3	78.8	79.0	79.3	79.5	80.6	81.2	82 . 6	84.0	84.6	82.2	80.5	127.9
7 50	78.8	79.0	77.B	77.0				78.5	80 • 2	81.3	82.3	83.9	84.8	85.3	85.3	82 • 7	81.6	129.0
315	79.6	79.8	78.8	78.5	79-1	79.3	79 . 8	80.5	81.3	82.5	82.8	84.0	64.0	84.1	84.0	81.7	81.8	129.2
400	80.3	78.9	78.6	77.6	78.3	77.9	78.6	79.8	81.1	82.4	83.4	84.3	84.6	84.3	83.4	80.3	81.8	129.2
500	82.2	80.5	79.2	78.7	78.5		79.7	B0.7	82.4		84.0	84.5	84.7	84.0	82.7	79.2	82.3	129.7
630	83+2	80.7	79.0	78.9	78.4	78.7	79.5	80.5	82.2	83.9	84.7	85.5	85.4	84.0	82.2	78.4	82.6	130.0
800	83.3	80.8	79.4	78. 8	78.4	78.8	79 . 4	80.8	82.1	83.4	84.8	86.3	86.3	84.9	81.9	78.6	82.9	130.3
1000	85.7	82.4	80.4	79.0	79.2	79.0	79.9	80.9	83.0	84.4	84.7	85.6	86.5	85.4	81.9	78.2	83.2	130.6
1250	83.9	80.6	79.9	78.1	78.2	78.4	79.1	80.4	82.9	84.2	85.2	85.5	85.1	84.6	80.6	77.0	82.8	130.2
1600	82.6	80.1	79.0	77.8	77.3	77.5	78.0	79.6	82.3	83.8	84.1	84.6	84.8	83.1	79.8	76.0	82.0	129.4
2000	82.8	80.4	78.9	77.6	76.8	76.8	75 . 6	79.1	81.4	82.6	83.8	83.5	84.3	82.1	79.3	75.5	81.4	128.8
2500	85.6	84.1	82.7	80.9	80.2	78.1	75 • 9	78.7	80 • 6	81.2	82.9	84.8	86.9	83 . L	78.7	75.1	82.5	129.9
31 50	84.9	83.8	82.1	79.1	77.8	76.6	74.9	76.8	78 . 8	80.3	80.8	81.9	82.7	80.3	77.1	74.C	80.5	127.9
4000	88.9	87.9	85.8	84.58	80.6	78.4	75.8	76.6		79.6		81.4	82.4	80.3	77.4	74.0	82.1	129.5
5000	51.2	90.3	89 • 2	86.5	85.0	81.9	79.2	76.5	79.3	79.7	80.8	81.3	83.5	£1.5	79.3	74.6	84.6	132.0
6300	90.0	90.8	90.7	87.2	86.3					79.7		83.3		79.3	77.3	74+1	85.7	133.1
0000	91.5	93.0	92 • 5	90.0	89. Ü					82.8			88.5	84.3	–	77.1	89.2	136.6
10000	90.1	91.2	91 . 4	88.8	88.0	86 4	80.0	78.7	81.2	80.9	81.8	82.4	83.7	80.2	78.4	73.4	88.4	135.8
12500	89.9	90.8		90.5	90.8	89.7		81.8		85.7		86.7	86.3	82.1		74.2	92.0	139.4
16000	83.9		85.7	83.9	84.7	82 • 8		79.7		84.7			86.4	82.3		73.4	90.5	137.9
20000	77.7	79.0	79.7	78.2	77.2	74.9	71.9	74.8	79.4	80.5	81.1	81.4	81.5	78.0	75.8	68.8	87.9	135.3
OVER ALL	5 9.5	99.9	99.6	97.5	97.0	95.6	93 • 0	93.6	95.5	96.5	97.5	98.4	99.1	97.9	97.4	95.8	99.3	146.7
DISTANCE						SID	ELI NE	PERCE	IVED N	DISE LE	EV EL S							

152.5 METERS 68.9 78.4 83.0 84.7 86.3 86.4 86.1 87.8 89.9 90.6 91.3 91.6 91.5 87.3 81.9 74.0

TABLE XII. - Concluded. NOISE OF QF-3 CONFIGURATION 40 - SUPPRESSOR A, FULLY ACTIVE INLET, FULLY ACTIVE EXHAUST [Data adjusted to standard day of 15° C and 70 percent relative humidity. SPL referenced to 2×10⁻⁵ N/m²; PWL referenced to 10⁻¹³ W.]

(d) 90 Percent speed; fan physical speed, 3213 rpm; fundamental blade passage frequency, 2838 hertz

FREQUENCY								A NG L	.E. 080	;						•	AVERAGE	PONER
	10	20	30	40	-50	60	70	8.0	90	100	110	120	130	140	150	160	SPL	LE VEL (PWL)
			1	/3-00 T	AVE BA	, ND \$DU	ND PRE	SSURE	LEVEL	(SPL)	ON 30.	5-MET (ER RAD	IUS				
50	83.4	78.7	81.4	79.1	80.9	79.2				81.7	81.6	83.2	84.7	85.1	87.9	88.9	82.9	130.3
6.3		77.7	76 • 8	76.2	76.5	76.5	77.5		78.7	79.2		81.6	83.3	86.0	88.2	89.6	81.8	129.2
80	77.4	76.7	75.2	74.9	75.4	75.9	75.9	76.7	77.7	79.9	81.6	84.6	87.1	66.4	91.6	91.9	84.0	131.4
100	85.2	81.0	80.0	78.5		79.5		81.4	81.7	84.0	85.9	87.6	89.9	91.0	93.4	93.1	86.6	134.0
125	81.2	77.7		79.2	80.7		81.7		85.1	86.4	87.1	8.88	90.4	91.1	93.4	90.9	87.1	134.5
1 60	80.4	79.6	81.2	81 • 6	82.6	83.9	83.9	84.4	85.6	86.2	86.6	88.3	88.4	85.2	90.7	87.6	86 • 2	133.6
200	80.0	81.0	0.19	81.5	81.5	81.8		82.3	83.0		83.6			88.6	89.8	86.7	84.5	131.9
250		81.7		80.6	80.4	80.6		82.2		85.4	86.2				90.1		85.8	133.2
315	85.8	82.9	82.1	81.8	82.9	83.6	83.4	84.1	85 . l	85.8	86.3	87.5	88.6	84.88	88.4	86.0	85.8	133.2
400	82.0	81.4	81.7	81.5	81.Z	82.0	82.4	83.2	85.0	86.4	87.0	88.1	88.7	88.7	88.0	84.4	85.7	133.1
500	83.2	81.7	81.3	81.7	81.5	82.8	83.3	84.5	86.0	87.2	87.5	88.4	88.3	87.7	87.2	83.6	85.9	133.3
6 3 0	85.6	83.3	81 . 8	81.3	81.6	81.8	82 • 9	84.4	86.3	87.3	88.8	89.2	89.4	87.8	86.4	82.6	86.3	133.7
800	86.3	83.3	81.9	81.9	81.9	82.1	83.3	84.4	86.3	87.1	88.8	89.9	90.3	88.1	86.3	82.5	86.6	134.0
1000	89.3	85.3	83.3	82 • O	82.2	82.7	83.7	84.5	87.0	88.0	88.3	89.9	90.7	88.0	85.5	82.2	86.9	134.3
1250	88.0	84.2	83.0	82.0	81.5	82.2	83.4	84.7	87.2	88.5	88.9	89.3	89.5	87.0	84.7	81.1	86.7	134.1
1600	85.6	82.7	81.4	81.1	80.7	81.4	82.2	84.1	86.4	87.4	88.1	88.7	88.7	85.7	83.7	80.0	85.8	133.2
2000	85.3	82.5	81.1	80.5	79.8	80.8	81.1	83.8	86.0	87.0	88.5	88.1	88.6	85.5	83.5	79.4	85.6	133.0
2500	87.4	85.4	83.9	82.9	81.2	81.2	80.4	82.7	84.4	85.6	87.1	88.8	88.4	84.7	82.4	78.5	85.4	132.8
3150		87.9	87.0	85.0	82.9	82.4	80.0		83.5						82.7		86.0	133.4
4000	89.4	87.2		83.9	82.2		79.2					85.3			81.2	76.6	84.5	131.9
5000	91.6	89.8	87.8	85.8	84.5	82.5	80.0	79.1	81.8	82.3	84.0	83.9	85.1	83.0	81.1	75.7	85.2	132.6
6300	50.9	91.3	90.3	87.9	87.4	84.9		80.4	82.3			85.6			80.1	76.4	87.0	134.4
8000		92.3	91.7	89.5	88.2	86 - 2		81.3	85.4	85.2	86.7	88.7		85.2	82.7	77.6	89.6	137.0
10000	89.5	90.5	90 . l	88.3	87.1	85.6	80 . 7	80.1	83.0	82.7	83.9	84.5	85.4	82.3	8.08	74.8	88.4	135.8
12500	88.9	89.7	89.9	89.1	89.1	87.6	83.0	81.9	85.0	85.4		86.6	86.2		81.2	74.3	91.1	138.5
16000		86.5		85.0	85.9		83.0				87.0		8.33			73.8	91.2	138.6
20000	78.0	79.5	80.0	79.2	78.5	77.0	75.6	77.7	81.8	81.7	82.3	82.5	82.5	78.8	76. B	70.4	89.3	136.7
OVERALL	101.2	100.3	99.6	98.1	97.7	97.0	95.8	96.8	98.8	99.7	100.7	101.8	102.6	101.4	101.9	100.1	101.2	148.6
DISTANCE						SID	ELINE	PERCEI	(VED NO	ISE LE	EV EL S							

52.5 METERS 71.5 80.7 85.4 87.4 88.6 89.8 89.7 91.6 93.7 94.6 95.2 95.7 95.3 90.7 86.2 78.3

TABLE XIII. - NOISE OF QF-3 CONFIGURATION 41 - SUPPRESSOR A, FULLY ACTIVE INLET, FULLY ACTIVE EXHAUST, NO FOAM

[Data adjusted to standard day of 15° C and 70 percent relative humidity. SPL referenced to 2×10⁻⁵ N/m²; PWL referenced to 10⁻¹³ W.]

(a) 60 Percent speed; fan physical speed, 2138 rpm; fundamental blade passage frequency, 1888 hertz

		1, -					•	•	• /			-	Ū					
FREQUENCY								ANGL	. E, 080	j							AVËRAGE SPL	PO'nER L∈VEL
	10	20	30	40	50	6J	70	89	90	100	110	12C	130	140	150	160		(PWL)
			1	/ 3-00 T	AVE BA	ND SOL	NO PRE	SSUPE	LEVEL	(SPL)	CN 30.	5-METE	R RACI	US				
50	66.0	66.7	67.2	66-9	66.7	66.7	66 - 9	68.4	67.2	68.7	£8.7	69.9	70.5	72.4	73.2	73.7	69.2	116.6
63										67.5				71.7			69.0	116.4
80		7C.9			67.4					68.5			73.2	74.4	75.9		70.9	118.3
100	69.4	67.9	67.7	69.2	65.2	68.7	68.1	68.9	69.7	71.1	72.1	74.3	75.7	76.7	77.1	76.5	72.5	119.9
125	71.1	70.3	70.4	7ú.1	69.6	70.3	70.6	71.1	72.1	73.6	74.1	75.2	75.8	75.8	76.6	76.3	73.3	120.7
140	73.1	72.2	72 • 7	71.7	71.6	72.4	71.9	71.9	73.1	73.1	73.4	74.2	74.1	74.2	74.2	73.3	73.0	120.4
230	72.8	76.3	72.5							70.8							72.4	115.8
250										72.6				74.9	74.1	72.4	72.8	120.2
315	75.4	73.9	73.7	72.9	72.7	72.6	72.6	72.4	72.6	73.2	74.1	74.3	74.9	74.2	73.6	71.5	73.4	120.8
400	77.5	75.9	73.7	72.7	72.2	71.4	71.2	71.7	73.J	73.9	75.5	75.5	76.4	75.2	73.7	70.6	74.0	121.4
500	77.7	75.8	74.3	74.0	72.8	72.3	72.3	72.8	74.2	75.2	75.7	76.4	76.2	75.3	73.5	70.6	74.6	122-0
630	77.7	76.2	75.2	74.2	73.2	72.J	71.5	72.5	74.ú	75.2	76.7	77.1	77.7	76.7	73.5	70.1	75.1	122.5
800			76 - 4							75.3				78.8	73.8	70.5	75.9	123.3
1000	75.6									74.8		76.6		78.8	74.C	70.7	75.2	122.6
1250	76.8	74.4	73.6	71.9	7C.8	70-4	70.1	70 <u>.</u> 4	72 • 1	74.1	75.6	16.2	76.6	7£.9	72.9	69.C	74.0	121.4
1600		78.4	76.8							72.8							73.9	121.3
2000	83.2	86.1	82.4	79.7	78.1	74.2	71.9	72.6	73.1	73.1	74.7	75.3	77.1	76.7	72.9	71.6	77.6	125.0
2500	76.6	75.9	74.7	72.5	70.9	68.6	66.4	67.1	69.2	70.4	72.1	72.0	72.9	72.2	68.4	65.5	71.7	119.1
3150	£6.9	86.7	79.0	76.5	74.2	70.5	67.3	67.7	69.3	70.8	71.5	72.3	72.3	72.3	69.0	66.4	74.1	121.5
4000	86.5	87.0	85.3	83.0	80.2	75.8	71.2	69.6	71.1	72.1	73.1	73.6	76.C	75.6	72.8	70.1	79.4	126.8
5000	86.2	85.7	84.0	81.7	75.8	76.2	72.3	69.7	71.7	72.3	73.5	73.6	76.2	75.5	73.3	6 8 • 8	79.0	126.4
6300		88.7		85.4						74.7				77.2			83.1	130.5
8000										79.4				81.4			85.5	132.9
10000	88.3	85.8	89.9	89.1	85.1	88.3	80 • O	78.8	81.8	81.3	82.6	83.3	84.4	ec.9	78.6	73.4	88.6	136.0
12500		88.5			88.3					83.5				83.0	81.7		89.7	137.1
16000			79 - 1							77.4				76.5	76.9		84.0	131.4
20000	73.2	74.0	73.5	71.8	65.8	65.5	60.8	64 • Ú	69.9	71.3	72.8	73.8	74.8	71.8	69.8	63.1	80.3	127.7
OVERALL	56.7	97.2	56.4	95.0	54.4	92.5	86 • 9	86.4	89.0	39,8	91.1	91.9	93.1	91.3	89.4	86.6	95.0	142.4
CISTANCE						SID	SLINE	PERCEI	VED NO	DIS÷ LE	VELS							

CISTANCE SIDELINE PERCEIVED NOISE LEVELS

152.5 METERS 65.3 76.8 8C.4 82.2 82.7 81.3 75.2 79.8 81.3 81.7 82.5 82.2 82.3 79.5 73.5 66.4

TABLE XIII. - Continued. NOISE OF QF-3 CONFIGURATION 41 - SUPPRESSOR A,

FULLY ACTIVE INLET, FULLY ACTIVE EXHAUST, NO FOAM

[Data adjusted to standard day of 15° C and 70 percent relative humidity. SPL referenced to 2×10^{-5} N/m²; PWL referenced to 10^{-13} W.]

(b) 70 Percent speed; fan physical speed, 2490 rpm; fundamental blade passage frequency, 2199 hertz

FREQUENCY	ANGLE, DEG														A VERAGE	POWER		
	10	20	30	4 C	5:3	60	70	8 C	90	100	110	. 120	130	140	150	160	SPL	LEVEL (PWL)
	1/3-OCTAVE BAND SCUND PRESSURE LEVEL (SPL) ON 30.5-METER RACIUS																	
50	71.7	68.9	70.6	70.7	76.4	71.4	71 . 1	71.4	72.1	72.7	73.7	14.5	75.9	76.7	78.1	75.8	73.8	121.2
63									69.9		72.2						73.1	120.5
80	74.9	73.1	78.1	69.3	71.6	69.8	68.3	69.3	71.3		74.1				81.6		75.6	123.0
150	70.5	65.7	70.7	69.8	65.8	70.7	71.2	72.5	74.0	75.8	77.7	78.9	£0.3	81.2	83.5	82.7	77.2	124.6
125	74.1	73.4	75 • 1	73.9	73.9	77.1	77.9	76.7	76.6	77.9	79.4	80.0	80.9	81.6	83.2	82.1	78.7	126-1
160	75.6	74.9	75.4	74.9	75.6	75 - 1	76 . 6	77-1	77.1	77.4	77.1	78.8	78.€	75.4	79.4	78.8	77.3	124.7
200	75.5	75.5	74.6	74.0							74.8		77.6	78.3	79.6	77.8	75.6	123.0
2 50	77.6	76.9	75 • 1	74.9	75.3	73.1	73 - 8	74.3	76.3	77.4	77.9	79.4	79.8	79.8	80 . l	77.7	77.2	124.6
315	77.2	76.7	75.5	75.8	75.7	76.0	76.5	76.7	76.7	77.2	77.8	78.9	79.2	79.2	78.5	76.2	77.3	124.7
400	78.9	77.5	76.2	75.0	75.2	75.0	75.0	75.9	76.7	78.0	78.7	75.6	80.0	79.5	78.2	75.4	77.6	125.0
500		78.3	76.9								79.6		79.8	79.3	77.6	74.8	78.2	125.6
63J	80.1	77.9	76.9	75.9	75.7	76.2	75.6	76.4	77.7	78.7	80.2	80.8	80.5	75.7	77.7	73.8	78.4	125.8
800	81.7	79.3	77.3	76.2	76.2	75.3	75.5	76.5	77.7	79.3	80.5	81.4	82.3	£1.5	77.7	74-2	79.0	126.4
1000	63.6	79.4	77.4	76.4	76.0	75.7	76 • 0	76.2	78.0	79.0	79.9	80.5	82.4	82.2	77.4	74.3	79.0	126.4
1250	75.4	77.2	75.9	74.6	74.4	74.4	74 • 2	75.1	76.7	78.6	80 - 1	80.7	8C.7	81.2	76.6	72.6	78.1	125.5
1603	80.L	78.0	77.1														77.2	124.6
2000	85.3	83.6	82.4	BC.8	76.9	75.8	73.6	74.3	76.6	77.8	78.8	79.4	82.6	80.9	75.8	73.2	79.4	126.8
2500	82.3	80.8	80.0	78.5	75.1	73.6	71.6	72.8	74.0	75.5	77.5	77.7	8C.3	75.3	74 - 1	71.0	77.4	124.8
3150	e 2 . 4										75.6						76.8	124.2
4000	88.9	88.2	86.9								76.9	77.5	79.5	7 E . 7	74.9	72.1	81.3	128.7
5000	8.88	0.88	86.7	84.3	82.7	79.2	75.0	72.3	74.6	75.3	76.5	76.8	79.2	78.6	76.0	71.6	81.7	129-1
6300	90.1	5 C. 8	90.4		87.4						78.8				75.9		85.5	132.9
8000	£9.8	90.6	90.4	88.4	86.8				79.5			83.8	85.9	82.1	78.6	74.1	86.9	134.3
10000	8.83	89.5	90.1	88.3	£7.8	86.9	79 • 2	78.2	80.2	80.2	81.7	82.2	83.5	8C.1	77.5	72.6	87.8	135.2
12500			91.3						83.5			86.0			81.2		92.3	139.7
16000											84.1						88.1	135.5
20000	77.3	77.8	77.6	75. 8	74.4	72.0	67.2	69.9	75.0	76.6	77.2	78.3	79.€	76.3	73.4	66.5	84.9	132.3
CVERALL	\$8.8	98.7	58.3	96.6	96.2	95.C	90.2	89,•7	91.5	92.6	53.9	94.6	\$5.8	94.3	\$3.0	91.1	57.4	144.8
							C											

CISTANCE SIDELINE PERCEIVED NOISE LEVELS

FULLY ACTIVE INLET, FULLY ACTIVE EXHAUST, NO FOAM

Data adjusted to standard day of 15° C and 70 percent relative humidity. SPL referenced to 2×10⁻⁵ N/m²; PWL referenced to 10⁻¹³ W.

(c) 80 Percent speed; fan physical speed, 2848 rpm; fundamental blade passage frequency, 2515 hertz

FREQUENCY	ANGLE. DEG														AVERAGE	POWER		
	10	20	30	4 C	50	60	70	вs	90	100	110	120	13C	140	150	160	SPL	LEVEL {PWL}
	1/3-OCTAVE BAND SOUND PRESSURE LEVEL (SPL) ON 30.5-METER RACIUS																	
50	82.2	76.4	78.4	8C.6	76.7	78.9	83.4	78.7	80.2	79.2	81.6	79.5	81.4	81.1	83.9	84.3	80.4	127.8
63	71.3	73.6	72.1	72.8	72.9	73.1	72.6	73.6	75 . l	75.3	76.1	78.0	9.09	1.13	83.9	84.3	77.6	125.0
80	74.1	73.1	72.6	71.5	71.7	71.9	72.1	73.1	74.9	76.4	78.2	91.2	82.9	84.6	86.1	87.1	79.7	127.1
100			81.8	76.1						80.5		83.7		86.6	88.3	-	82.3	129.7
125			77.0		77.1					82.3		84.6			88.6		82.8	130.2
160	78.4	78.4	79.7	78.7	75.9	80.4	79.7	80.4	81.6	81.6	83.2	83.7	83.4	84.9	85.4	82.6	82.0	129.4
200	75.3	79.1	78.8								79.6			83.6	84.6	82.4	80.3	127.7
250		79.7	-								82.5				-		81.4	128.8
315	8C.7	80.0	78 • 8	78.8	75.8	79.7	79.7	80.5	81.2	81.5	82.2	83.6	€4.C	83.8	83.8	81.0	81.6	129.0
400	E0.8	75.8	79.9	78.4						82.1			84.1	84.3	83.3	86.2	81.6	129.0
50J	82.7		79.5	79.2							83.4			83.2		79.3	82.1	129.5
630	83.3	81.3	79.6	75.5	78.8	79.1	8J.U	80.6	82.1	83.3	84.5	85.4	85.1	82.6	82.1	78.2	82.5	129.9
008	83.1		79.9		79.1						84.6					78.3	82.7	130.1
1000	£5.3	82.L	8J • 5		79. L						84.3			85.1			83.0	130.4
1250	83.€	80.5	79 . €	79.€	75. C	79.J	79.3	80.5	82.3	84.1	85.1	85.6	85.3	84.5	80.8	76.8	82.8	130.2
1600	E2.7	80.0	79.0	78.8	78.0	77.7	77.7	79.5	81.5	83.3	84.2	84.3	84.7	82.7	79.5	76.2	81.8	129.2
2000	83.9	80.9	79.3	78.8							83.6				79.1	76.0	81.4	128.8
2500	85.7	84.7	93.7	83.7	81.3	79.2	75.8	78.8	80 • B	81.3	£3.0	84.9	£7.2	8.63	79.7	76.2	83.0	130.4
3150	85.0	83.5	81.5	79.7	78.2					80.0			82.7		77.2		80.4	127.8
4000	88,9		85.7	83 • 4						79.5		81.0	82.4		77.7	_	82.0	129.4
5000	51.3	90.3	90.3	86.5	86.8	83.3	79.5	76.8	79.3	79.5	81.1	81.6	83 . 6	82.3	80.0	75.2	85.4	132.8
6300				87.7						79.9			€4.6		77.7		85.7	133.1
8000	1.6	92.9									84.8			84.1		77.2	89.4	136.8
10003	50.4	51.4	90.5	89.2	88.1	86.7	80.0	79.0	81.5	81.0	82.0	83.2	84.Ç	8C.4	78.9	73.9	86.5	135.9
12500	9C.5		91.3								£7.3				81.7		92.3	139.7
16000		85.3									86.7		87.4	82.5			50.B	138.2
20000	78.1	75.2	79.2	78.8	77.0	75.4	72 • 9	75.4	79.5	80.9	81.4	61.9	82.3	76.7	76.9	69.9	88.3	135.7
CVERALL	100.1	100.0	99.4	98.2	57.3	96.0	93.2	93.4	95.3	96.3	97.5	98.4	55.2	57.8	57.4	95.4	59.5	146.9
PISTANCE						c I n	L TNE	00071	WED AD	3152 16	USIC							

CISTAMOE SIDELINE PERCEIVED ADISE LEVELS

152.5 METERS 69.2 78.7 83.4 86.0 87.2 87.0 86.1 87.7 89.8 90.5 91.2 91.6 91.6 87.5 82.1 74.1

'TABLE XIII. - Concluded. NOISE OF QF-3 CONFIGURATION 41 - SUPPRESSOR A,

FULLY ACTIVE INLET, FULLY ACTIVE EXHAUST, NO FOAM

[Data adjusted to standard day of 15° C and 70 percent relative humidity. SPL referenced to 2×10⁻⁵ N/m²; PWL referenced to 10⁻¹³ W.]

(d) 90 Percent speed; fan physical speed, 3204 rpm; fundamental blade passage frequency, 2830 hertz

FREQUENCY	ANGLE, DEG														A VERAGE SPL	POWEK LEVEL		
	10	20	3.0	4 C	50	60	70	80	90	100	110	120	130	140	150	160	26.0	(PWL)
1/3-CCTAVE BAND SOUND PRESSURE LEVEL (SPL) CN 30.5-METER RACIUS																		
5ù	E 2 . 9	78.6	81.4	78.7	78.4	79.2	79.6	80.2	80.1	81.9	81.6	83.0	84.4	£5.2	88.4	89.0	82.7	130.1
63	75.5	77.5	76.7	76.2	76.7	76.8	76.8	78.0	78.0	78.8	80.5	81.9	84.C		87.8		81.6	129.0
80	76.9	75.7	75 ∙ 0	74.9	75.9	75.7	75 • 7	77.3	77.9	79.9	82.4		86.5		91.9	91.7	84.1	131.5
601	£5.2	75.8	79.8	80.3	ec.3	79.5	79.3	81.5	83.3	84.3	86.2	88.3	89.7	91.7	93.5	93.1	86.9	134.3
125	81.8	86.2	8 • 08	80.2	5 . ټ8			83.7					89.8		93.5		87.4	134.8
160	82.5	82.9	E3.C	82.4	83.0			85.2		85.5			₫8.5	98.9		87.9	86.4	133.8
200	82.4	83.2	82.2	21.5	62.0	82 . C	82.2	82.2	82.7	82.9	83.7	85.8	£7.5	88.9	89.9	86.6	£4.8	132.2
250	82.5	82.7	82.4	80.9				82.9									85.9	133.3
315	€€.3				84.3		83.8	84.4		85.6			88.4		88.8	85.8	85.9	133.3
400	63.0	82.0	82.2	82.3	83.5	ئ ـ 83	92.7	83.7	85.2	86.3	٤7.3	6.83	88.7	68.5	67.7	84.7	85.9	133.3
500	84.2	83.2			83.4	83.0	84.2			86.9					87.2		86.1	133.5
6 30	86.0	84.2	82.8	8.28	82.5	82.9	83.5		86 . 2								86.5	133.9
uó.s	86.4	83.6	82.8	82.4	82.9	A2.5	93.6	84.8	86.3	87.4	88.8	90.0	60.3	66.1	86.6	83.0	ńs o	134.2
1000		85.2				83.6		85.1					90.4		85.9		86.8	
1250	67.5		83.7	82.5		83.3		85.0		88.5							87.0 86.8	134.4
		-	-								2041	0,11	0,74,1	0740	0,7.0	00.7	80.0	134.2
1600		83.1		82.1	82.3			84.3				€€.4	89.0	85.8	84.1	80.2	86.1	133.5
2000			81.5		81 - 0	81.2	81.5	84.0	85.7	87.2	88.4	87.8	88.9	85.5	83.5	79.4	85.7	133.1
2503	£7.7	85.9	85 • 6	84.1	82.2	81.4	81 • 1	83.1	84.6	85.6	£7.6	85.0	88.7	84.9	62.4	79.3	85.8	133.2
3150	89.9			86.4	83.5	82.7	81.0	82.3	83.5	84.5	86.2	89.0		€€.G			86.4	133.8
4000		88.3		85.1		81.3		80.6		83-6	84.8	85.2	86.8	63.6	81.4	77.2	84.9	132.3
5000	51.9	90.6	88.4	86.5	85.1	82.9	80.6	79.7	82.1	82.9	84.2	84.2	85.2	83.1	81.2	76.5	85.7	133+1
6300			90.7		88.2	85.3	80.8	81.2	82.5	82.7	84.5		£6.7	82.2	80.3	76.9	87.5	134.9
9000			91.5		88.4	86.2		82.4			87.7	89.2	89.9	85.6	83.2	78.2	90. Ü	137.4
10000	SU.3	90.9	90.6	88.5	87.6	86.1	81.4	81.0	83.2	83.4	84.5	85.1	€5.€	82.6	81.3	75.6	88.9	136.3
12500			90.3		89.8	88.3	84 • 2	82.9	85.8	87.0	88.6	87.7	£7.4	63.6	82.6	75.5	92.0	139.4
16000	85 . 6	87.1	87.J	85.4	86.4	85 . C	80.9	82.3	84.4	86.5	87.9	88.1	87.3	83.2	82.1	75.5	92.1	139.5
20000	79.0	80.3	80.7	75.7	79.2	78.3	77.0	78.8	82.8	83.5	84.0	8.68	83.5		78.8	72.1	90.6	138.0
CVERALL	161.6	100.9	100.2	58.E	58.4	57.5	96.4	97.2	98.9	100.0	101.1	102.0	102.€	101.7	102.0	100.1	101.7	149.1
DISTANCE						ero	CL TAUC	anne i	UEO + 0									

DISTANCE SIDELINE PERCLIVED NOISE LEVELS

Figure 1. - Cutaway view of fan and suppressor assembly.

(a) Photograph of test site.

Figure 2. - Full-scale fan test facility.

Figure 3. - Inlet suppressors. Perforated plate sheet: thickness, 0.51 millimeter (0.020 in.); material, aluminum. Honeycomb cell size, 0.95 centimeter (3/8 in.) hexagon.

Figure 4. - Splitter cross section showing the two treatment depths.

Figure 5. - Inlet suppressor B.

Figure 6. - Exhaust suppressor. Perforated plate sheet: thickness, 0.51 millimeter (0.02 in.); material, aluminum. Honeycomb cell size, 0.95-centimeter (3/8-in.) hexagons.

Figure 7. - Inlet microphone probe.

Figure 8. - Suppressor length variation. (Not to scale.)

Figure 9. - Inlet hemisphere sound power level spectra for suppressor A.

Figure 10. - Variation of inlet hemisphere sound power level attenuation spectra with treated length.

Figure 11. - Narrow band spectra. Microphone location, 40°; radius, 30.5 meters (100 ft); 90 percent speed.

Figure 12. - Comparison of inlet hemisphere sound power level attenuation with theory.

Figure 13. - Variation of inlet hemisphere sound power level reduction with fraction of ring treatment length active.

Figure 14. - Extrapolation of blade passage frequency attenuation from ring section of liner to obtain attenuation attributed to outside wall treatment.

Figure 15. - Comparisons of sound power attenuations per passage length over height ratio with theoretical maximums.

Figure 16. - Effect of taped inlet rings on directivity of noise. One-third octave band data; no exhaust splitter; radius, 30.5 meters (100 ft).

Figure 17. - Effect of taped exhaust splitter on noise. Taped inlet with taped rings; taped exhaust; one-third octave band data; radius, 30.5 meters (100 ft).

Figure 18. ~ Effect of splitter rings on sound power level spectra at 80 percent speed.

Figure 19. - Narrow-band spectra from radial acoustic probe. Suppressor B; 90 percent speed.

Figure 20. - Radial variation of blade passage tone at 90 percent speed; narrow band data.

Figure 21. - Effect of foam on outside of fan cowl on noise at 90 percent speed. Frequency, 2500 hertz; radius, 30.5 meters (100 ft); one-third octave band data for suppressor A.

Figure 22. - Effect of foam cowl treatment on total power spectra at 90 percent speed for suppressor A.

74