we have

$$||u - p_X(u)||^2 - ||u - v||^2 = (||u - p_X(u)|| - ||u - v||)(||u - p_X(u)|| + ||u - v||) \le 0,$$

and since Equation (†) holds for all λ such that $0 < \lambda \le 1$, if $||u - p_X(u)||^2 - ||u - v||^2 < 0$, then for $\lambda > 0$ small enough we have

$$\frac{1}{2\lambda} \left(\|u - p_X(u)\|^2 - \|u - v\|^2 \right) + \frac{\lambda}{2} \|z - p_X(u)\|^2 < 0,$$

and if $||u - p_X(u)||^2 - ||u - v||^2 = 0$, then the limit of $\frac{\lambda}{2}||z - p_X(u)||^2$ as $\lambda > 0$ goes to zero is zero, so in all cases, by (\dagger) , we have

$$\Re \langle u - p_X(u), z - p_X(u) \rangle \le 0.$$

Conversely, assume that $w \in X$ satisfies the condition

$$\Re \langle u - w, z - w \rangle \le 0$$

for all $z \in X$. For all $z \in X$, we have

$$||u - z||^2 = ||u - w||^2 + ||z - w||^2 - 2\Re \langle u - w, z - w \rangle \ge ||u - w||^2,$$

which implies that ||u-w|| = d(u,X) = d, and from (1), that $w = p_X(u)$.

(3) If X is a subspace of E and $w \in X$, when z ranges over X the vector z - w also ranges over the whole of X so Condition (*) is equivalent to

$$w \in X$$
 and $\Re \langle u - w, z \rangle \le 0$ for all $z \in X$. $(*_1)$

Since X is a subspace, if $z \in X$, then $-z \in X$, which implies that $(*_1)$ is equivalent to

$$w \in X$$
 and $\Re \langle u - w, z \rangle = 0$ for all $z \in X$. $(*2)$

Finally, since X is a subspace, if $z \in X$, then $iz \in X$, and this implies that

$$0 = \Re \langle u - w, iz \rangle = -i\Im \langle u - w, z \rangle,$$

so $\Im\langle u-w,z\rangle=0$, but since we also have $\Re\langle u-w,z\rangle=0$, we see that $(*_2)$ is equivalent to

$$w \in X$$
 and $\langle u - w, z \rangle = 0$ for all $z \in X$, $(**)$

as claimed. \Box

Definition 48.3. The vector $p_X(u)$ is called the *projection of* u *onto* X, and the map $p_X : E \to X$ is called the *projection of* E *onto* X.