Tutorat mathématiques : TD4

Université François Rabelais

Département informatique de Blois

Algèbre

* *

Problème 1

Soit E l'ensemble des fonctions numériques continues sur [-1,1] telles que :

$$f(-1) + f(1) = 2f(0)$$

- 1. Montrer que pour les opérations usuelles, E est un espace vectoriel sur \mathbb{R} .
- 2. Montrer que l'ensemble G des fonctions de E, continues, telles que :

$$\int_{-1}^{1} f(t)dt = 0$$

est un sous-espace vectoriel de E.

Problème 2

Soit l'espace vectoriel \mathbb{R}^2 , on considère deux vecteurs $\overrightarrow{a}=(2,5), \overrightarrow{b}=(3,1).$

- 1. Montrer que \overrightarrow{a} et \overrightarrow{b} sont indépendants.
- 2. On pose $\overrightarrow{c}=(4,2)$. \overrightarrow{a} , \overrightarrow{b} , et \overrightarrow{c} sont-ils indépendants?

Problème 3

Dans l'espace vectoriel $\mathcal F$ des applications de $\mathbb R\to\mathbb R$ muni des opérations usuelles. On note E l'ensemble des éléments de $f\in E$ tel que :

$$f^{(3)} - 6f'' + 12f' - 8f = \theta$$

où θ désigne la fonctions constante nulle et f', f'' et $f^{(3)}$ les fonctions dérivées respectivement première, seconde et troisième de f.

- 1. Montrer que E est un sous-espace vectoriel de \mathcal{F} .
- 2. Vérifier que la fonction ϕ définie sur \mathbb{R} par $\phi(x) = e^{2x}$ est un élément de E.
- 3. À toute fonction de \mathcal{F} , on associe la fonction g définie par $g(x) = f(x)e^{-2x}$. Montrer que $f \in E$ si et seulement si g est trois fois dérivable et vérifie $g^{(3)} = \theta$.
- 4. En déduire la forme générale des éléments de E, une base de E et sa dimension.

Problème 4

Soit $n \in \mathbb{N}^*$. Montrer que la base $\mathcal{B} = (f_0, f_1, ..., f_n)$ où :

$$\forall x \in \mathbb{R}, \begin{cases} f_0(x) &= 1\\ f_1(x) &= x+1\\ f_2(x) &= (x+1)(x+2)\\ &\vdots\\ f_n(x) &= (x+1)(x+2)...(x+n) \end{cases}$$

est une base de l'espace vectoriel de $P \in \mathbb{R}_n[X]$, c'est-à-dire les polynômes de degré inférieur ou égal à n.

Problème 5

On dit que deux sous-espaces vectoriels E_1 et E_2 d'un espace vectoriel E sont supplémentaires, que l'on note $E_1 \oplus E_2 = E$, c'est à dire :

$$E_1 \oplus E_2 = E \Leftrightarrow E_1 \cap E_2 = \{0_E\}$$
 On définit les deux matrices $V = \left\{ \left(\begin{array}{cc} a & a+b \\ a-b & b \end{array} \right) \middle| a,b \in \mathbb{R} \right\}$, et $W = \left\{ \left(\begin{array}{cc} 2c & c-d \\ d & 2d \end{array} \right) \middle| c,d \in \mathbb{R} \right\}$. Montrer que V et W sont deux sous-espaces vectoriels supplémentaires de $\mathcal{M}_2(\mathbb{R})$.

Problème 6

Soit $\mathbb{R}[X]$ l'espace des polynômes muni des opérations usuelles.

Montrer que pour tout polynôme P du second degré et pour tout réel non nul m, la famille $\mathcal{F}_m = (P,Q,R)$ où

$$\forall X \in \mathbb{R}$$
 , $Q(X) = P(X+m)$, et $R(X) = (X-m)$

est une famille libre de $\mathbb{R}[X]$.

Problème 7

Soit $\mathcal{M}_3(\mathbb{R})$, l'espace vectoriel des matrices carrées réelles de dimension 3, et

$$A = \left(\begin{array}{rrr} 1 & 2 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{array}\right)$$

On note E l'ensemble des matrices de $\mathcal{M}_3(\mathbb{R})$ qui commutent avec A.

- 1. Montrer que E est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$.
- 2. Déterminer une base E.