## JS ASYNC (Asincronismo en JavaScript)





### **OBJETIVOS**

- 1. Entender la lógica de los hilos de ejecución.
- 2. Comprender la Concurrencia y Paralelismo en la ejecución de procesos y su rendimiento.
- 3. Aprender como JavaScript se ejecuta con ayuda del Call Stack y el Callback queue.
- 4. Entender qué son los Callbacks.
- 5. Usar Callbacks.



### **ASINCRONISMO EN JS**

### Que es asincronismo?

Si hablamos de Asincronía hacemos referencia al suceso que NO tiene lugar en total correspondencia temporal con otro suceso.



### **ASINCRONISMO EN JS**

### Que es paralelismo?

Es la ejecución simultánea de múltiples tareas

### Que es concurrencia?

Es la capacidad de un sistema para manejar múltiples tareas de manera aparentemente simultánea



### Concurrency

### **Parallelism**



### Concurrencia y Paralelismo

- Paralelismo: Capacidad del CPU para ejecutar más de un proceso al mismo tiempo (ayudándose del número de núcleos).
- Concurrencia: Toma un único problema y mediante concurrencia llega a la solución más rápido (divide y venceras).



#### **ASINCRONISMO EN JS**

### **Bloqueante y No Bloqueante:**

Una tarea no devuelve el control hasta que se ha completado. Una tarea devuelve inmediatamente con independencia del resultado...
Si completo devuelve los datos, si no, un error



#### **ASINCRONISMO EN JS**

### Y sincronismo?

Las tareas se ejecutan de forma secuencial, se debe esperar a que se complete para continuar con la siguiente tarea.

### Entonces... En el asincronismo:

Las tareas pueden ser realizadas más tarde, lo que hace posible que una respuesta sea procesada en diferido.



El bucle de eventos es un patrón de diseño que espera y distribuye eventos o mensajes en un programa.



# **Event Loop / Bucle de eventos**

- JavaScript poseé un modelo de concurrencia basado en un "loop de eventos".
- Es el motor.
- Está al pendiente de que elementos se pasan a la cola o a la pila de ejecución.
- Es el encargado de entender el orden de ejecución.
- Nunca interrumpe otros programas
   en ejecución. por ejemplo, puede esperar el
   resultado de una consulta a base de datos y seguir
   procesando interacciones del usuario (clics)



# Hilos de Ejecución



3

# Concurrencia y Paralelismo

 Concurrencia: Cuando dos o más tareas progresan simultáneamente.

 Paralelismo: Cuando dos o más tareas se ejecutan, literalmente, a la vez, en el mismo instante de tiempo



## Hilos de ejecución







## **JAVASCRIPT ES:**

Asíncrono y no bloqueante, con un bucle de eventos implementado con un único hilo para sus interfaces de I/O.



### Síncrono y Asíncrono



**Síncrono:** Toda operación o tarea se ejecuta de forma secuencial y, por tanto debemos esperar para procesar el resultado..

**Asíncrono**: la finalización de la operación es notificada al programa principal. El procesado de la respuesta se hará en algún momento futuro.

## FORMAS DE MANEJAR EL ASINCRONISMO Callbacks, Promises, Async/await





```
function saludar(nombre) {
   alert('Hola ' + nombre);
}

function procesarEntradaUsuario(callback) {
   var nombre = prompt('Por favor ingresa tu nombre.');
   callback(nombre);
}

procesarEntradaUsuario(saludar);
```

## ¿Que es un Callback? (llamada de vuelta)

- Es una función que recibe como parámetro otra función y la ejecuta.
- La función "callback" por lo regular va a realizar algo con los resultados de la función que la está ejecutando.
- Es una forma de ejecutar código de forma "<u>asíncrona</u>" ya que una función va a llamar a otra.
- Cuando pasamos un callback solo pasamos la definición de la función y no la ejecutamos en el parámetro. Así, la función contenedora elige cuándo ejecutar el callback.



### Ejemplo de casos de uso de Callbacks

```
function successCallback() {
// Do stuff before send
function successCallback() {
// Do stuff if success message received
function completeCallback()
// Do stuff upon completion
function errorCallback() {
// Do stuff if error received
```



### Ejemplo de Callback

```
/* Tenemos 2 funciones que devuelven un valor */
function soyCien() { return 100; }
function SoyDoscientos() { return 200; }
/* Esta función recibe como parametro 2 funciones y las ejecuta */
function sumaDosFunciones(functionOne, functionTwo) {
  const suma = functionOne() + functionTwo();
  return suma; // retornando un nuevo valor, en este caso su suma
/* Invocamos a sumaDosFunciones y le pasamos 2 funciones como parámetros */
console.log(sumaDosFunciones(soyCien, SoyDoscientos));
// Resultado → 300
```



### **Ejemplo setTimeout**

```
setTimeout(function() {
  console.log("He ejecutado la función");
}, 2000);
```

Le decimos a setTimeout() que ejecute la función callback que le hemos pasado por primer parámetro cuando transcurran 2000 milisegundos (es decir, 2 segundos, que le indicamos como segundo parámetro).



### Ventajas y desventajas de los callbacks

#### **Ventajas**

- Son faciles de usar.
- Pueden solucionar problemas de flujo de una aplicación
- Ayudan a manejar excepciones.
- Son útiles cuando quieres hacer consultas a una BD o servicio web

#### Desventajas

- A Veces el concepto es confuso
- Si se usa demasiado se puede caer en algo denominado "callback hell"
- El uso excesivo puede afectar el performance.
- Para programadores novatos no es muy fácil leer y entender qué hacen las funciones callback.



## **Event Loop de JavaScript**







El bucle de eventos es un patrón de diseño que espera y distribuye eventos o mensajes en un programa.



# **Event Loop / Bucle de eventos**

- JavaScript poseé un modelo de concurrencia basado en un "loop de eventos".
- Es el motor.
- Está al pendiente de que elementos se pasan a la cola o a la pila de ejecución.
- Es el encargado de entender el orden de ejecución.
- Nunca interrumpe otros programas
   en ejecución. por ejemplo, puede esperar el
   resultado de una consulta a base de datos y seguir
   procesando interacciones del usuario (clics)



### ¿Como funciona? - Flujo normal síncrono



**Terminal** 

1 3 2

Normalmente en JS un proceso va a la **Pila de Ejecución** y se ejecuta siguiendo el proceso LIFO (last-in-first-out)



### ilustrando la ejecución en el Call Stack





### ¿Como funciona? - Flujo asíncrono



#### Terminal

2 3 Resultado setTimeout Los procesos considerados asíncronos se van a la cola de ejecución, terminan su ejecución y tienen que esperar a que la pila esta vacia para poder regresar con el resultado y continuar su ejecución.

### Ejemplo #1: ¿Cuál es el resultado de este código?

```
console.log("---Todo en Pila de Ejecución---");
console.log(1);
console.log(2);
console.log(3);
```



### Ejemplo #2: ¿Cuál es el resultado de este código?

```
console.log("---El 2 y 3 van a la Cola de Ejecución---");
console.log(1);
// SetTimeout Espera N segundos para ejecutar un CALLBACK.
// Recibe 2 parametros: setTimeout(callback, milisegundos)
setTimeout(()⇒{ //Simular Ir a Base de Datos con un callback;
    return console.log(2)
},3000);
setTimeout(() \Rightarrow \{
    return console.log(3)
},2000);
console.log(4);
```



### Ejemplo #3: ¿Cuál es el resultado de este código?

```
console.log("---Simulación de Cuello de Botella---");
console.log(1);
setTimeout(()⇒{
   return console.log(2);
},2000);
for (let index = 0; index < 999999999; index++);
console.log(3);
```





#### **IMPORTANTE:**

Muchos de los procesos que involucran pedir información de forma externa suelen ser asíncronos.

Por ejemplo, **las consultas a bases de datos son por naturaleza asíncronas.**