Sec. 2.4 The Fundamental Theorem of Linear Programming

Recall: Standard LP: min $z = c^T x$, s.t. Ax = b, $x \ge 0$. (Assume full rank of A)

YanklA)=m

Theorem (FTLP) (1). feasible solution \rightarrow There is a **b**.f.s.

(2). finite optimal sol \rightarrow There is an optimal **b**.f.s. \rightarrow Key word babic. $[B \ D] \begin{bmatrix} x_B \\ x_D \end{bmatrix} = b$

Pf. Notation. Let $A = \begin{bmatrix} a_1 & \dots & a_n \end{bmatrix}_{m \times n}$ in n col vectors.

Show (1). Let x be a f.s. Ax = b, x > 0

$$a_1x_1 + a_2x_2 + \cdots + a_nx_n = b, \quad x \neq 0$$

Let p = # (positive comprnents of x) & n

Assume w.o.l.o.g., 1st p. components of x are >0. \Rightarrow $\chi_1>0$, \sim --, $\chi_p>0$, $\chi_{px1}=0$, \sim --, $\chi_n=0$

case! ai, ---, ap are linearly indep. pEn; pEm

claim: The such a is already basic.

$$p=m$$
, $\beta = [a_1 - a_p]$, $\chi_j = 0$, $j = pr | , --, n$ (nonbasic) $-$

p=m, $B=[a_1-a_p]$, $\chi_j=0$, j=p+1, --,n (nonbasic) $\chi_j=0$ p< m, $B=[a_1-a_p]$ all m-p wis j, $\chi_j=0$ j=n morbasic j=n as j=n as j=n as j=n and j=n a

Case 2. a₁,..., a_p are linearly dep.

Idea: Remove redundances --- > indep => case 1. Keep fensibility (Ypy=0, --- yn=0) $\rightarrow y_1 q_1 + \cdots + y_p a_p + 0 + \cdots + 0 = 0$ with at least one $y_{\bar{i}_0} > 0$. (*C+) if neassary) $x_1 a_1 + \cdots + x_p a_p + o + \cdots + o = b$)(-1) $\begin{array}{lll}
\chi & (\chi - \xi y_1) a_1 + \dots + (\chi_p - \xi y_p) a_p + 0 + \dots + 0 = b \\
\chi & (\chi - \xi y_1) a_1 + \dots + (\chi_p - \xi y_p) a_p + 0 + \dots + 0 = b
\end{array}$ $\begin{array}{lll}
\chi & (\chi - \xi y_1) a_1 + \dots + (\chi_p - \xi y_p) a_p + 0 + \dots + 0 = b
\end{array}$ $\begin{array}{lll}
\chi & (\chi - \xi y_1) a_1 + \dots + (\chi_p - \xi y_p) a_p + 0 + \dots + 0 = b
\end{array}$ $\begin{array}{lll}
\chi & (\chi - \xi y_1) a_1 + \dots + (\chi_p - \xi y_p) a_p + 0 + \dots + 0 = b
\end{array}$ $\begin{array}{lll}
\chi & (\chi - \xi y_1) a_1 + \dots + (\chi_p - \xi y_p) a_p + 0 + \dots + 0 = b
\end{array}$ $\begin{array}{lll}
\chi & (\chi - \xi y_1) a_1 + \dots + (\chi_p - \xi y_p) a_p + 0 + \dots + 0 = b
\end{array}$ $\begin{array}{lll}
\chi & (\chi - \xi y_1) a_1 + \dots + (\chi_p - \xi y_p) a_p + 0 + \dots + 0 = b
\end{array}$ $\begin{array}{lll}
\chi & (\chi - \xi y_1) a_1 + \dots + (\chi_p - \xi y_p) a_p + 0 + \dots + 0 = b$ $\begin{array}{lll}
\chi & (\chi - \xi y_1) a_1 + \dots + (\chi_p - \xi y_p) a_p + 0 + \dots + 0 = b
\end{array}$ $\begin{array}{lll}
\chi & (\chi - \xi y_1) a_1 + \dots + (\chi_p - \xi y_p) a_p + 0 + \dots + 0 = b$ $\begin{array}{lll}
\chi & (\chi - \xi y_1) a_1 + \dots + (\chi_p - \xi y_p) a_1 + \dots + 0 = b
\end{array}$ $\begin{array}{lll}
\chi & (\chi - \xi y_1) a_1 + \dots + (\chi_p - \xi y_p) a_1 + \dots + 0 = b$ $\begin{array}{lll}
\chi & (\chi - \xi y_1) a_1 + \dots + (\chi_p - \xi y_p) a_1 + \dots + 0 = b
\end{array}$ $\begin{array}{lll}
\chi & (\chi - \xi y_1) a_1 + \dots + (\chi_p - \xi y_p) a_1 + \dots + 0 = b
\end{array}$ $\begin{array}{lll}
\chi & (\chi - \xi y_1) a_1 + \dots + (\chi_p - \xi y_p) a_1 + \dots + 0 = b
\end{array}$ $\begin{array}{lll}
\chi & (\chi - \xi y_1) a_1 + \dots + (\chi_p - \xi y_p) a_1 + \dots + 0 = b
\end{array}$ $\begin{array}{lll}
\chi & (\chi - \xi y_1) a_1 + \dots + (\chi_p - \xi y_p) a_1 + \dots + 0 = b
\end{array}$ $\begin{array}{lll}
\chi & (\chi - \xi y_1) a_1 + \dots + (\chi_p - \xi y_p) a_1 + \dots + 0 = b
\end{array}$ $\begin{array}{lll}
\chi & (\chi - \xi y_1) a_1 + \dots + (\chi_p - \xi y_p) a_1 + \dots + 0 = b
\end{array}$ $\begin{array}{lll}
\chi & (\chi - \xi y_1) a_1 + \dots + (\chi_p - \xi y_p) a_1 + \dots + 0 = b$ $\chi & (\chi - \xi y_1) a_1 + \dots + (\chi_p - \xi y_p) a_2 + \dots + 0 = b$ $\chi & (\chi - \xi y_1) a_1 + \dots + (\chi_p - \xi y_p) a_2 + \dots + 0 = b$ $\chi & (\chi - \xi y_1) a_1 + \dots + (\chi_p - \xi y_p) a_2 + \dots + (\chi_p - \xi y_p) a$ $x_{j_0}-\epsilon y_{j_0}=0$. \Rightarrow # of zero components of x-sy $< \gamma$

Repeat this process until no redundancy => Apply case 1

(2). opt. sol. \Rightarrow opt. b.f.s --- almost the same proof.

Just need to where x-sy opt. $\leftarrow x$ opt. $c^{T}x - s c^{T}y$ $c^{T}x$ Show $c^{T}y$ 75 0.