

Anaconda

Dokumen
Laporan
Homework
Clustering

1. EDA

tipe data, missing values, duplicated values dan range value

Data	columns (total 23	columns):	
#	Column	Non-Null Count	Dtype
0	member_no	62988 non-null	int64
1	ffp_date	62988 non-null	object
2	first_flight_date	62988 non-null	object
3	gender	62985 non-null	object
4	ffp_tier	62988 non-null	int64
5	work_city	60719 non-null	object
6	work_province	59740 non-null	object
7	work_country	62962 non-null	object
8	age	62568 non-null	float64
9	load_time	62988 non-null	object
10	flight_count	62988 non-null	int64
11	bp_sum	62988 non-null	int64
12	sum_yr_1	62437 non-null	float64
13	sum_yr_2	62850 non-null	float64
14	seg_km_sum	62988 non-null	int64
15	last_flight_date	62988 non-null	object
16	last_to_end	62988 non-null	int64
17	avg_interval	62988 non-null	float64
18	max_interval	62988 non-null	int64
19	exchange_count	62988 non-null	int64
20	avg_discount	62988 non-null	float64
21	points_sum	62988 non-null	int64
22	point_notflight	62988 non-null	int64

Tipe data sudah sesuai kecuali

yang berkaitan dengan tanggal

Ada missing values

```
member no
ffp date
first flight date
gender
ffp tier
work city
                     2269
                     3248
work province
work_country
age
load_time
flight_count
bp_sum
sum_yr_1
sum_yr_2
seg_km_sum
last_flight_date
last_to_end
avg_interval
max_interval
exchange count
avg_discount
points_sum
point_notflight
dtype: int64
```

```
df.duplicated().sum()
```

Tidak duplikasi data

Kolom-kolom yang memiliki missing values:

- Numerik: age, sum_yr_1, sum_yr_2
- Kategorikal: gender, work city, work province, work country
- Kolom numerik tersebut akan diimpute dengan median masing-masing sedangkan kolom kategorikal tersebut akan didrop.

Penampakan Outlier.

b. statistik kolom numerik dan kategorikal, bentuk distribusi kolom (numerik) dan jumlah unique value

Numerik

df.describe().T								
	count	mean	std	min	25%	50%	75%	max
member_no	60041.0	31505.292833	18191.245419	1.0	15736.000000	31528.00000	47269.000000	62988.0
ffp_tier	60041.0	4.081727	0.328371	4.0	4.000000	4.00000	4.000000	6.0
age	59652.0	42.174797	9.771595	6.0	35.000000	41.00000	48.000000	110.0
flight_count	60041.0	11.654220	13.756290	2.0	3.000000	7.00000	14.000000	210.0
bp_sum	60041.0	10034.104778	14010.728738	0.0	2432.000000	5457.00000	12133.000000	505308.0
sum_yr_1	59499.0	4974.437205	7059.121002	0.0	968.000000	2700.00000	6285.500000	239560.0
sum_yr_2	59907.0	5210.832374	7667.312231	0.0	755.000000	2676.00000	6531.000000	234188.0
seg_km_sum	60041.0	16772.027931	20335.635374	368.0	4713.000000	9878.00000	20893.000000	580717.0
last_to_end	60041.0	177.260855	184.117824	1.0	30.000000	109.00000	270.000000	731.0
avg_interval	60041.0	67.875748	77.374097	0.0	23.500000	44.87500	82.400000	728.0
max_interval	60041.0	166.267517	123.569936	0.0	79.000000	143.00000	228.000000	728.0
exchange_count	60041.0	0.299629	1.062595	0.0	0.000000	0.00000	0.000000	46.0
avg_discount	60041.0	0.695875	0.144030	0.0	0.605626	0.70339	0.794527	1.0
points_sum	60041.0	11561.295448	17908.780708	0.0	2684.000000	6070.00000	13570.000000	985572.0
point_notflight	60041.0	2.729718	7.402475	0.0	0.000000	0.00000	1.000000	140.0

Kategorikal

df.describe(exclude=np.number).T

	count	unique	top	freq
ffp_date	62988	3068	1/13/2011	184
first_flight_date	62988	3406	2/16/2013	96
gender	62985	2	Male	48134
work_city	60719	3234	guangzhou	9386
work_province	59740	1165	guangdong	17509
work_country	62962	118	CN	57748
load_time	62988	1	3/31/2014	62988
last_flight_date	62988	731	3/31/2014	959

b. statistik kolom numerik dan kategorikal, bentuk distribusi kolom (numerik) dan jumlah unique value

avg_discount

max_interval

exchange_count

Insight:

point_notflight

points_sum

Distribution of Average Discount

data yang avg_discount > 1 akan di-drop.

Unique value kategorikal:

df.describe(exclude=np.number).T

count	unique	top	freq
62988	3068	1/13/2011	184
62988	3406	2/16/2013	96
62985	2	Male	48134
60719	3234	guangzhou	9386
59740	1165	guangdong	17509
62962	118	CN	57748
62988	1	3/31/2014	62988
62988	731	3/31/2014	959
	62988 62985 62985 60719 59740 62962 62988	62988 3068 62988 3406 62985 2 60719 3234 59740 1165 62962 118 62988 1	62988 3068 1/13/2011 62988 3406 2/16/2013 62985 2 Male 60719 3234 guangzhou 59740 1165 guangdong 62962 118 CN 62988 1 3/31/2014

Feature Correlation

- Karena mayoritas kolom numerik memiliki distribusi right-skewed dan terdapat outlier, maka spearman's correlation lebih tepat digunakan dibandingkan pearson's correlation.
- Banyak multicollinear features sehingga dimensionality reduction bisa diterapkan
- Feature-feature dibawah ini dapat didrop karena memiliki tidak memiliki korelasi yang tinggi antar feature.
 - member_no
 - age
 - last_to_end
 - max interval
 - avg_interval
 - avg_discount

2. Feature Selection

Berdasarkan paper mengenai Airline Customer Value Analysis (source), indikator yang tepat digunakan untuk membuat airline customers cluster adalah

- Length of customer's membership (L)
- Consumption interval (R)
- Consumption frequency (F)
- Total flight miles (M)
- Mean value of cabin discount coefficient (C)

Kelima indikator tersebut merupakan modifikasi model RFM yang sudah common digunakan untuk memahami customers melalui data.

Berdasarkan indikator-indikator tersebut maka feature yang dipilih sebagai berikut

- ffp_date
- load_time
- flight_count, first_flight_date, last_flight_date
- last_to_end
- avg_discount
- seg_km_sum

```
data_for_clustering.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 60041 entries, 0 to 62987
Data columns (total 8 columns):
    Column
    load time
                      60041 non-null datetime64[ns]
    ffp date
                      60041 non-null datetime64[ns]
    last_to_end
                       60041 non-null int64
    flight_count
                      60041 non-null int64
    first flight date 60041 non-null datetime64[ns]
    last_flight_date
                      60041 non-null datetime64[ns]
    seg km sum
                       60041 non-null int64
    avg discount
                       60041 non-null float64
dtypes: datetime64[ns](4), float64(1), int64(3)
memory usage: 4.1 MB
```


Feature Engineering

Feature yang sudah dipilih belum bisa digunakan untuk membangun model clustering. Berikut ini feature engineering yang dilakukan:

- Feature Consumption Frequency (F) diperoleh berdasarkan jumlah penerbangan per tahun mengunakan feature flight_count, last_flight_date dan first_flight_date.
- Length of customer's membership (L) diperoleh dengan mengunakan feature load_time dan ffp_date.
- Untuk feature R = last_to_end, M = seg_km_sum, C = avg_discount akan disesuaikan nama kolomnya berdasarkan indikator yang sudah disebutkan di feature selection.
- Setelah feature engineering, drop feature yang tidak akang digunakan kembali, dan handling outlier, dilakukan standarisasi pada dataset sehingga siap untuk modeling.
- Beberapa feature dengan tipe kategori diubah menjadi tipe format tanggal atau datetime.

Length of customer's membership (L) = load_time - ffp_date

3. Modeling

Dengan menggunakan Elbow method maka jumlah cluster yang digunakan sebanyak 4 cluster.

Clustering K-Means

Clustering K-Means dengan 4 cluster.

KMeans(n_clusters=4, random_state=0)

add the cluster number to the data
data_without_outliers['cluster'] = k_means.labels_
data_without_outliers.sample(5)

	L	R	F	М	c	cluster
28185	80.428756	35	0.907435	8627	0.638320	0
40789	82.794308	221	0.338815	3111	0.819855	0
9303	35.516130	23	5.350232	17106	0.881437	3
38157	47.475308	302	1.820750	4152	0.742577	1
8565	24.772583	96	5.533977	21587	0.731138	3

data_without_outliers['cluster'].unique()

array([3, 0, 1, 2], dtype=int32)

Evaluasi Cluster

Dengan PCA, kita dapat melihat hasil visualisasi clustering

```
# reduce the dimension to visualize each cluster
from sklearn.decomposition import PCA

pca = PCA(n_components=2, random_state=0)
pca.fit(X_scaled)
pcs = pca.transform(X_scaled)

data_for_visualization = pd.DataFrame(
    pcs,
    columns=['pc_1', 'pc_2']
)

# append to data without outliers
for col in ['pc_1', 'pc_2']:
    data_without_outliers[col] = data_for_visualization[col].copy()

data_without_outliers.sample(3)
```

	L	R	F	М	C	cluster	pc_1	pc_2
48112	61.307214	387	0.701041	977	1.000000	1	-1.942179	0.757024
23984	19.055833	117	5.498274	11731	0.584590	2	0.690070	0.703543
39605	31.507834	93	1.576586	3687	0.753686	2	-0.490918	0.428652

Hasil Cluster PCA

Berikut hasil clustering PCA.

4. Interpretasi Cluster

Interpretasi cluster yang dihasilkan secara bisnis dan berikan rekomendasi yang sesuai dengan cluster yang dihasilkan Berdasarkan hasil analisis dan modeling, diperoleh beberapa poin penting sebagai berikut.

- 1. Feature-feature yang berpengaruh dalam segmentasi pelanggan di bidang airline ada lima yaitu
 - jarak penerbangan (km)
 - jarak waktu penerbangan terakhir ke pesanan penerbangan terkini (bulan)
 - o rata-rata diskon (persentase)
 - durasi pelanggan menjadi member (month)
 - o rata-rata jumlah penerbangan per tahun
- 2. Berdasarkan hasil modeling, karakteristik setiap cluster dapat dilihat berdasarkan tabel dibawah ini. Pada kolom C (rata-rata diskon) terlihat bahwa diskon yang diperoleh pelanggan tidak terlalu mempengaruhi segmentasi pelanggan karena nilai mean dan median tiap cluster tidak berbeda jauh.

isplay(data_wi	thout_o	utliers.	groupby('clust	er').agg	(['mean',	'median']).rour	id(2))				
	L		R		F		М		C		pc_1		pc_2	
	mean	median	mean	median	mean	median	mean	median	mean	median	mean	median	mean	median
luster														
0	80.70	80.43	86.41	66.0	2.28	1.90	16742.50	14812.0	0.71	0.71	-0.49	-0.57	-1.30	-1.19
1	52.04	48.03	423.74	418.0	2.90	1.70	5888.18	4660.0	0.73	0.74	-1.27	-1.34	1.07	1.04
2	32.64	31.02	113.20	98.0	3.64	3.26	8193.56	7187.5	0.66	0.66	0.01	0.01	0.41	0.39
3	29.31	24.94	104.02	61.0	10.59	9.99	22041.94	21288.0	0.71	0.71	1.88	1.74	0.23	0.19

Deskripsi Masing-Masing Cluster

Berikut ini penjelasan setiap cluster.

- Cluster 0 merupakan customer yang telah menjadi member cukup lama dengan rata-rata 81 bulan dan jumlah penerbengan per tahun cenderung rendah dengan rata-rata 2 kali per tahun tetapi rata-rata jarak tempuh yang cenderung tinggi sekitar 16 ribu km.
- Cluster 1 merupakan customer baru dengan durasi rata-rata menjadi member hanya 30 bulan. Namun, customer ini sering melakukan penerbangan dengan rata-rata 11 penerbangan per tahun dan rata-rata jarak tempuh yang jauh sekitar 22 ribu km.
- Cluster 2 merupakan customer dengan durasi member, frekuensi terbang, dan jarak terbang yang sedang namun memiliki jarak waktu penerbangan akhir ke pesanan penerbangan terkini rendah.
- Cluster 3 merupakan customer dengan durasi member, frekuensi terbang, dan jarak terbang yang sedang namun memiliki jarak waktu penerbangan akhir ke pesanan penerbangan terkini paling tinggi.

Rekomendasi Strategi Bisnis

Membuat program membership yang berjenjang berdasarkan jumlah penerbangan per tahun dan jarak tempuh penerbangan. Apabila jenjang semakin tinggi maka perusahaan airline tersebut akan memberikan benefit yang semakin tinggi juga misalnya seperti mendapat voucher diskon untuk membeli makanan di pesawat.