ANALISIS SURVIVAL

KELOMPOK

- 1. A. Rofiqi Maulana (125090500111025)
- 2. A. Shohibuz Zakky (125090500111017)
- 3. Aprilia Rahma Aziz (125090500111033)
- 4. Erlisa Cantika H (125090500111001)
- 5. Mas'uliyah P (125090500111005)
- 6. Tririn Delita (125090500111023)
- 7. Umi Faida K (125090501111015)
- 8. Vika Ayu Asokawati (125090500111039)

JUDUL SKRIPSI

 Model Cox Proportional Hazard pada Kejadian Bersama oleh Bayu M Iskandar (FMIPA - Universitas Negeri Yogyakarta)

CONTAINING

- Pendahuluan
- Identifikasi Data
- Tujuan
- Pembahasan
- Kesimpulan

PENDAHULUAN

Dalam skripsi ini peneliti ingin membahas model *Cox Proportional Hazard* untuk memodelkan penyebab kecelakaan lalu lintas yang terjadi di Amerika Serikat dengan pendekatan metode *Breslow*.

IDENTIFIKASI DATA

- Variabel dependen
- Variabel Independen

VARIABEL DEPENDEN

waktu hidup pengemudi yang diukur dari bulan kecelakaan pertama kali (1 Januari 2010) sampai bulan terjadinya kecelakaan kedua (durasi).

STATUS KECELAKAN KEDUA

- (1=tersensor) pengemudi masih hidup dan mengalami penyensoran setelah kecelakaan kedua
- (2=tidak tersensor)
 pengemudi meninggal
 dunia

VARIABEL INDEPENDEN

(X1=AGE) Umur pengemudi

(X4=SABUK) Pemakaian sabuk pengaman

0 untuk memakai sabuk pengaman1 untuk tidak memakai sabuk pengaman

(X5=ALKOHOL) Pengaruh alkohol saat mengemudi

0 untuk tidak mengkonsumsi alkohol1 untuk mengkonsumsi alkohol

(X2=SEX) Jenis kelamin

- 1 untuk laki-laki
- 2 untuk perempuan

(X3=SIM Kepemilikan SIM

- 0 untuk memiliki SIM
- 1 untuk tidak memiliki SIM

TUJUAN

- 1. Mengetahui perbandingan dua kurva Survival di antara 2 grup atau lebih
- Untuk mengetahui pengaruh variabel independen terhapad lama waktu kecelakaan
- 3. Pemilihan model terbaik Cox proporsional Hazard
- 4. Menguji asumsi cox *Proportional Hazard*

PEMBAHASAN

- Kaplan Meier
- Pemilihan Model Terbaik
- Pemilihan Cox Proporsional Hazard

KAPLAN MEIER – JENIS KELAMIN

KURVA KAPLAN MEIER

UJI LOG RANK

Overall Comparisons

	Chi-Square	df	Sig.
Log Rank (Mantel-Cox)	,026	1	,872

Test of equality of survival distributions for the different levels of SEX.

H0 : Tidak Terdapat perbedaan kedua kurva survival

H1: Terdapat perbedaan kedua kurva survival

Berdasarkan **kurva kaplan meier** kedua kurva tidak terlalu berbeda (tidak konsisten berada di atas kurva lainnya).

Berdasarkan **uji log rank** $p(0.872) > \alpha (0.05)$, **terima H0**

Kesimpulan : tidak terdapat perbedaan antara lama waktu kejadian kecelakaan bagi laki-laki maupun perempuan

KAPLAN MEIER – KEPEMILIKAN SIM

KURVA KAPLAN MEIER

H0 : Tidak Terdapat perbedaan kedua kurva survival

H1: Terdapat perbedaan kedua kurva survival

Berdasarkan **kurva kaplan meier** kedua kurva berbeda (konsisten berada atas kurva lainnya).

UJI LOG RANK

Overall Comparisons

	Chi-Square	df	Sig.
Log Rank (Mantel-Cox)	6,526	1	,011

Test of equality of survival distributions for the different levels of SIM.

Berdasarkan **uji log rank** $p(0.011) < \alpha (0.05)$, **tolak H0**

Kesimpulan : terdapat perbedaan antara lama waktu kejadian kecelakaan bagi orang yang memiliki SIM dan tidak memiliki SIM

KAPLAN MEIER – PEMAKAIAN SABUK PENGAMAN

KURVA KAPLAN MEIER

H0 : Tidak Terdapat perbedaan kedua kurva survival

H1: Terdapat perbedaan kedua kurva survival

Berdasarkan **kurva kaplan meier** kedua kurva berbeda (konsisten berada atas kurva lainnya).

UJI LOG RANK

Overall Comparisons

	Chi-Square	df	Sig.
Log Rank (Mantel-Cox)	46,103	1	,000

Test of equality of survival distributions for the different levels of SABUK.

Berdasarkan **uji log rank** $p(0.000) < \alpha (0.05)$, **tolak H0**

Kesimpulan: terdapat perbedaan antara lama waktu kejadian kecelakaan bagi orang yang memakai sabuk pengaman dan tidak memakai sabuk pengaman

KAPLAN MEIER – KONSUMSI ALKOHOL

KURVA KAPLAN MEIER

H0 : Tidak Terdapat perbedaan kedua kurva survival

H1: Terdapat perbedaan kedua kurva survival

Berdasarkan **kurva kaplan meier** kedua kurva tidak terlalu berbeda (tidak selalu berada atas kurva lainnya)

UJI LOG RANK

Overall Comparisons

	Chi-Square	df	Sig.
Log Rank (Mantel-Cox)	4,072	1	,044

Test of equality of survival distributions for the different levels of ALKOHOL.

Berdasarkan **uji log rank** $p(0.044) < \alpha (0.05)$, **tolak H0**

Kesimpulan: terdapat perbedaan antara lama waktu kejadian kecelakaan bagi orang yang mengkonsumsi alkohol dengan yang tidak menggunakan alkohol

PEMILIHAN MODEL TERBAIK

Pemilihan model cox proporsoional hazard secara simultan menggunakan forward Wald

Omnibus Tests of Model Coefficients^d

-2 Log		Overall (score)			Change From Previous Step			Change From Previous Block		
Step	Likelihood	Chi-square	df	Sig.	Chi-square	df	Sig.	Chi-square	df	Sig.
1 a	1915.973	43.653	1	.000	44.864	1	.000	44.864	1	.000
2 ^b	1903.968	55.539	2	.000	12.004	1	.001	56.868	2	.000
3°	1897.849	62.641	3	.000	6.120	1	.013	62.988	3	.000

- a. Variable(s) Entered at Step Number 1: SABUK
- b. Variable(s) Entered at Step Number 2: SIM
- c. Variable(s) Entered at Step Number 3: AGE
- d. Beginning Block Number 1. Method = Forward Stepwise (Wald)

Pemilihan model terbaik dapat menggunakan signifikansi variabel (Uji Wald) maupun kriteria nilai -2 Log Likelihood yang terkecil

Nilai -2 Log Likelihood yang terkecil terletak pada langkah ketiga.

Kesimpulan: model terbaik adalah model tahap ketiga dengan memasukkan variabel penggunaan sabuk pengaman, kepemilikan SIM dan variabel umur.

Berdasarkan 3 tahap tersebut, diperoleh Sig (0.000) < α (0.05)

Kesimpulan : ketiga langkah tersebut berpengaruh signifikan secara simultan terhadap lama waktu meninggal seseorang karena kecelakan berikutnya.

Berikut merupakan pengujian secara parsial pada setiap tahap :

Variables in the Equation

		В	SE	Wald	df	Sig.	Exp(B)
Step 1	SABUK	1.017	.161	40.092	1	.000	2.765
Step 2	SIM	549	.164	11.213	1	.001	.577
	SABUK	1.085	.162	45.019	1	.000	2.959
Step 3	AGE	.012	.005	6.431	1	.011	1.012
	SIM	517	.165	9.837	1	.002	.596
	SABUK	1.134	.163	48.507	1	.000	3.108

Pengujian signifikansi variabel dapat diketahui menggunakan statistik uji Wald.

Berdasarkan Uji Wald, diperoleh Sig (0.000) < α (0.05)

Kesimpulan : kesemua variabel secara signifkan mempengaruhi lama waktu meninggal seseorang karena kecelakan berikutnya.

variabel yang paling mempengaruhi lama waktu sampai terjadinya kecelakan berikutnya adalah penggunaan sabuk pengaman diikuti dengan kepemilikan SIM dan umur pengemudi.

MODEL COX PROPORSIONAL HAZARD

Koefisien model cox proposional hazard berdarkan pemilihan model terbaik

Variables in the Equation

						Exp(B)	95.0% CI for Exp(B)		
	В	SE	Wald	df	Sig.		Lower	Upper	
AGE	.012	.005	6.431	1	.011	1.012	1.003	1.021	
SIM	.517	.165	9.837	1	.002	1.678	1.214	2.318	
SABUK	-1.134	.163	48.507	1	.000	.322	.234	.443	

$$h(t,X) = h_0(t) \exp(\beta_1 AGE + \beta_2 SIM + \beta_3 SABUK)$$

$$h(t,X) = h_0(t) \exp(0.012 AGE + 0.517 SIM - 1.134 SABUK)$$

Interpretasi:

- Lama waktu kecelakaan berikutnya seseorang yang memiliki SIM 1.678 kali orang yang tidak memiliki SIM.
- Lama waktu kecelakaan berikutnya seseorang yang menggunakan sabuk pengaman 1/0.322 = 3.106 kali orang yang tidak memakai sabuk pengaman.

EVALUASI ASUMSI MODEL COX PROPORSIONAL HAZARD

SECARA GRAFIS

Berdasarkan kurva Log Minus Log Survival bagi variabel SIM dan SABUK dapat disimpulkan bahwa kedua kurva tersebut parallel. Jadi asumsi PH terpenuhi.

GOODNESS OF FIT

Melihat Korelasi antara Schoenfld residual dengan rank waktu kegagalan

Correlations

		Rank of DURASI	Partial residual for AGE	Partial residual for SIM	Partial residual for SABUK
Rank of DURASI	Pearson Correlation	1	,080,	-,058	-,067
	Sig. (2-tailed)		,272	,428	,358
	N	398	192	192	192
Partial residual for AGE	Pearson Correlation	,080,	1	,098	,217**
	Sig. (2-tailed)	,272		,178	,002
	N	192	192	192	192
Partial residual for SIM	Pearson Correlation	-,058	,098	1	,071
	Sig. (2-tailed)	,428	,178		,327
	N	192	192	192	192
Partial residual for	Pearson Correlation	-,067	,217**	,071	1
SABUK	Sig. (2-tailed)	,358	,002	,327	
	N	192	192	192	192

^{**.} Correlation is significant at the 0.01 level (2-tailed).

Berdasarkan korelasi pearson, didapatkan nilai sig. $> \alpha$ (0.05) Kesimpulan : tidak terdapat korelasi antara antara Schoenfld residual dengan rank waktu kegagalan. Jadi **asumsi PH** terpenuhi

TERIMA KASIH.