Computer Organization & Architecture

3-2 Semiconductor Static RAM

Wang Guohua

School of Software Engineering

Contents of this lecture

- Static RAM Cell
- Organization of Static RAM Chips

RAM Technology

Static Technology

 In a static RAM, binary values are stored using traditional flipflop logic-gate configurations.

Dynamic Technology

 A dynamic RAM is made with cells that store data as charge on capacitors. The presence or absence of charge in a capacitor is interpreted as a binary 1 or 0.

Static RAM (SRAM) Cell (1)

Implementation of a SRAM cell

- Maintain State
 - The word line is at low level
- Assume that the cell is in state 1 if the logic value at point X is 1 and at point Y is 0.

SRAM Cell (2)

Read Operation

- The word line is at high level.
- Read "1": The signal on the bit line b
 is high and the signal on the bit line b'
 is low.
- Read "0": The signal on the bit line b is low and the signal on the bit line b' is high.
- Note: Sense/write circuits at the end
 of the bit lines monitor the state of b
 and b' and set the output accordingly.

SRAM Cell (3)

Write Operation

- The word line is at high level.
- Write "1": Place high level signal on bit line b and place low level signal on bit line b'.
- Write "0": Place low level signal on bit line b and place high level signal on bit line b'.
- Note: The required signals on the bit
 lines are generated by the
 Sense/Write circuit.

SRAM Cell (4)

CMOS Realization of a SRAM cell

x	V_x	T_1 T_2	V_f	f
0	low	on off	high	1
1	high	off on	low	0

SRAM Cell (5)

CMOS Realization of a SRAM cell

- The power supply voltage is 5V in older CMOS SRAMs or 3.3V in new low-voltage versions.
- If power is interrupted and then it is restored, the latch will settle
 into a stable state, but it will not necessarily be the same state
 the cell was in before the interruption.
- CMOS SRAMs' power consumption is very low.

SRAM Cell (6)

- Advantage and Disadvantage of SRAM
 - Advantage: Fast
 - Disadvantage: Low density, High cost

Organization of SRAM Chips (1)

Organization of 128 Bit Cells (16 × 8)

Internal Organization

 Word line: All cells of a row are connected to the word line. It is driven by the address decoder.

Organization of SRAM Chips (2)

Organization of 128 Bit Cells (16 × 8)

Internal Organization

 Bit lines: The cells in each column are connected to a Sense/Write circuit by two bit lines.

Organization of SRAM Chips (3)

Organization of 128 Bit Cells (16 × 8)

Internal Organization

- Sense/Write circuits
 - Read: They sense the
 information stored in the cells
 selected by a word line and
 transmit this information to
 the output data lines.
 - Write: They receive input information and store it in the cells of the selected word

Organization of SRAM Chips (4)

Organization of 128 Bit Cells (16 × 8)

- External Organization
 - Address lines (Input): $A_0 A_3$
 - Data lines (Input/Output): b₀ b₇
 - Control lines(Input)
 - R/W (Read/Write): Specify the required Read or Write operation.
 - CS (Chip Select): Select a given chip in a multi-chip memory system.
 - Power Supply line
 - Ground line
 - Total Connections = 4 + 8 + 2 + 1 + 1= 16

Organization of SRAM Chips (5)

Organization of 1024 Bit Cells (1K × 1)

Organization of SRAM Chips (6)

- Organization of 1024 Bit Cells (1K × 1)
 - External Organization
 - Address lines (Input): A₀ A₉
 - Data lines (Input/Output): b₀
 - Control lines(Input): R/W, CS
 - Power Supply line
 - Ground line
 - Total Connections = 10 + 1 + 2 + 1 + 1 = 15

Quiz (1)

Assume that the capacity of a kind of SRAM chip is $8K \times 16$, so the address lines and data lines of this chip are ____ respectively.

A. 8,16 B. 13,16 C. 13,4 D. 8,4

Assume that the capacity of a kind of SRAM chip is $32K \times 32$, so the sum of address lines and data lines of this chip is _____.

A. 47 B. 64

C. 46 D. 74

Quiz (2)

3. What are the advantage and disadvantage of SRAM?

Advantage: Fast

Disadvantage: Low density, High cost