SRM Institute of Science and Technology Faculty of Engineering and Technology

DEPARTMENT OF MATHEMATICS

21MAB204T-Probability & Queuing Theory - Assignment I

1. A random variable X has the following probability function

х	0	1	2	3	4	
p(x)	K	3 <i>K</i>	5 <i>K</i>	7 <i>K</i>	9 <i>K</i>	

a) Find the value of K b) Find P(x<3)

2. A random variable X has the following probability distribution

X	0	1	2	3	4	5	6	7	8
P(x)	a	3a	5a	7a	9a	11a	13a	15a	17a

Find the value of 'a', P(X < 5), $P(X \ge 3)$,

P(0 < X < 5) also the distribution function of X.

3. A random variable X has the following probability function

X	0	1	2	3	4	5	6	7
P(X)	0	k	2 <i>k</i>	2 <i>k</i>	3 <i>k</i>	k^2	$2k^2$	$7k^2 + k$

Find (i) the value of k (ii) $p(1.5 < X < 4.5 \mid X > 2)$ iii) the smallest value of λ such that $p(X \le \lambda) > \frac{1}{2}$

(iv) the distribution function of X.

4. If X has the probability density function $f(x) = ke^{-3x}$, x > 0 Find (i) k (ii) P(0.5 \leq X \leq 1) (iii) Mean of X.

5. A R.V has the PDF
$$f(x) = \begin{cases} kx & 0 \le x \le 2\\ 2k & 2 \le x \le 4\\ 6k - kx & 4 \le x \le 6\\ 0 & elsewhere \end{cases}$$
 find 'k' and cdf F(x)

- 6. The CDF of a random variable X is $F(X) = 1 (1 + x)e^{-x}$, x > 0. Find the pdf of X, P(1<X<3).
- 7. A continuous random variable has pdf $f(x) = kx^2e^{-x}$, x > 0. Find the mean and variance.
- 8. If the MGF of a continuous R.V X is given by $M_X(t) = \frac{3}{3-t}$. Find the first four moments of X.

 9. Find the MGF of ar.v X whose p.d.f. defined by $f(x) = \begin{cases} x, & \text{for } 0 \le x \le 1 \\ 2 x, & \text{for } 1 \le x \le 2 \end{cases}$ Hence find mean 0, otherwise and variance of X.

10. If the density function of a continuous random variable X is given by
$$f(x) = \begin{cases} ax, 0 \le x \le 1 \\ a, 1 \le x \le 2 \\ 3a - ax, 2 \le x \le 3 \end{cases}$$

Find the value of 'a' and CDF of X

- 11. If the pdf of X is $f_X(x) = 2x$, 0 < x < 1, then find the pdf of Y = 3x + 1.
- 12. A random variable x has probability function, $f(x) = \frac{1}{2^x}$, x = 1,2,3 Find MGF and the first four
- 13. Find the moment generating function for the distribution whose p.d.f is $f(x) = \lambda e^{-\lambda x}$, x > 0 and hence find its mean and variance.
- 14. A random variable X has density function $f(x) = \begin{cases} \frac{K}{1+x^2}, -\infty < x < \infty \end{cases}$. Determine K and the 0, Otherwise

distribution function. Evaluate the probability $P(x \ge 0)$.

- 15. A fair die is tossed 720 times. Use Chebyshev's inequality to find a lower bound for the probability of getting 100 to 140 sixes.
- 16. A random variable X has a mean $\mu = 12$ and variance $\sigma^2 = 9$ and an unknown probability distribution. Find $P(6 \le X \le 8)$.