PERTEMUAN 13 JARINGAN SYARAF TIRUAN

A. Tujuan Pembelajaran

Setelah menyelesaikan materi pada pertemuan ini, mahasiswa mampu memahami tentang jaringan syaraf tiruan. Sub materi pada pertemuan ini yaitu:

- 1. Jaringan Syaraf Tiruan
- 2. Jenis-jenis Algoritma pembelajaran dengan supervisi

B. Penjelasan materi

1. (JST)Jaringan Syaraf Tiruan

The father of Jaringan Syaraf Tiruan (JST) yaitu neurophysiologist waren Culloch dan Logician Walter Pits pada tahun 1943. Jaringan syaraf tiruan ini sudah dikembangkan jauh sebelum komputer digunakan. Jaringan syaraf tiruan terinspirasi dari sel syaraf biologi atau percabangan otak manusia. JST ini sering digunakan untuk menyelesaikan masalah yang berhubungan dengan pengenalan pola dan klasifikasi.

Jaringan syaraf tiruan sering juga disebut neural network. Jaringan ini berupa syaraf biologi layaknya otak dengan 10.000.000.000 sel syaraf. Dimana otak tersebut terdiri dari 2 input dan output. Input disebut dendrits. Output disebut axon. Dendrit dan axon ini kemudian dihubungkan dengan synapse. Syaraf mengirimkan signal berupa electro chemixal yang terdapat pada axon. Signal tersebut menembus synapse ke syaraf yang lain menggunakan batasan tertentu. Batasan inilah yang disebut dengan threshold atau dengan kata lain sebagai nilai ambang.

2. Jenis-jenis Algoritma pembelajaran dengan supervisi

Menurut buku kecerdasan buatan oleh Sutojo *et al* (2011), algoritma pembelajaran dengan supervisi terdiri dari 7 seperti terlihat pada Tabel 13.1.

Tabel 13.1 jenis Algoritma pembelajaran dengan supervisi

no	Nama algoritma supervisi
1	Hebb rule
2	perceptron
3	delta rule
4	backpropagation
5	heteroassociative memory
6	bidirectional associative memory (BAM)
7	learning vector quantization (LVQ)

Pada modul 13 ini hanya membahas tentang *algorithm of supervised with hebb* rule method.

a. Hebb Rule Method

Hebb rule mthod menggunakan bobot sebagai w dan bias secara iterative. Metode hebb rule ini merupaka metode pertama yang digunakan pada algoritma supervisi. Jaringan ini menggunakan input dan output dengan penambahan bias seperti terdapat pada Gambar 13.1

Gambar 13.1 Arsitektur Hebb Rule

Gambar 13.1 merupakan arsitektur jaringan *hebb rule*. Pada arsitektur ini terdiri dari X yang merupakan input, W yang merupakan bobot, net dan f net

merupakan lapisan tersembunyi serta y merupakan output. Algoritma pelatihan *Hebb rule* ini terlihat pada Tabel 13.2:

Tabel 13.2 tahapan Algoritma pelatihan hebb rule

no	Tahapan	aturan
1	Insialisasi bobot dan bias	W _i =0 ;dengani=1,2n; b =0
2	input- targer (S-t),	a. Set aktivitas unit input: x _i S _i ;(i =1,2.,n) b.
		Set aktivitasi unit output : Ytt; (j=1,2,,m)
3	Perbaikan bobot	$W_i(baru) = W_i(lama) + X_i * y_i$
		(<u>i</u> =1,2,,n; dam k = 1,2,,m)
4	perbaikan bias	b(baru) = b(lama) + y

Contoh 6.5

Kerjakan sebuah fungsi logikaa "OR" untuk mendapatkan sebuah jaringan hebb rule melalui masukan dan keluaran berikut:

- 1) masukan biner, keluaran biner
- 2) Masukanbiner dan keluaran bipolarr
- 3) Masukan bipolar dan keluaran bipolar

Jawab

1) masukan biner, keluaran biner

Tabel 13.3 Fungsi logika or

X ₁	X ₂	output
0	0	0
0	1	1
1	0	1
1	1	1

Gambar 13.2 Arsitektur Hebb Rule dengan logika OR

Algoritma pelatihan Hebb:

Inisialisasii bobotdan bias:w1=0,w2=0,b=0

Tabel 13.4 Data pertama dengan perubahan bobot terhadap bias

Data ke	-1 : x1 = 0	x2 = 0	y = 0 (target),	, Perubahan bobot bias 1
W1(baru) x1*y	=w1(Lama) +	W2(baru) x2*y	= w2(lama) +	(<u>baru</u>) = b(lama) = y = 0 + 0
	= 0 + 0*0 = 0		= 0 + 0.0 = 0	=0

"Data ke-2,x1 = 0,x2 = 1y = 1(target)"

Tabel 13.5 Data ke-2 dengan perubahan bobot terhadap bias

	Data ke-2 :	x1 = 0	x2 = 1	y = 1(target)	
W1(baru) x1*y	= w1(lama) + = 0 + 0*1 = 0	W2(baru) x2*y	= w2(lama) + = 0 + 1.1 = 1	B(baru)	= b(lama) + y = 0 + 1 = 1

"Data ke-3,x1 = 1,x2 = 0y = 1(target)"

Tabel 13.6 Data ke-3 dengan perubahan bobot terhadap bias

	Data ke-3: x1 = 1	1	x2 = 0	y = 1 (tar	get)
W1(baru) x1*y	= w1(lama) + = 0 + 1*1 = 1	W2(baru) x2*y	= w2(lama) + = 1 + 0.1 = 1	B(baru)	= b(lama) + y = 1 + 1 = 2

[&]quot;Data ke-4,x1=1,x2=1y=1(target)"

Tabel 13.7 Data ke-4 dengan perubahan bobot terhadap bias

	Data ke	-4: X1 = 1	X2 = 1	Y = 1	
W1(baru) x1*y	=w1(lama) + =1 +1*1 =2	W2(baru) x2*y	= w2(lama) + = 1 + 1.1 = 2	B(<u>baru</u>)	= b(lama) + y = 2 + 1 = 3

'Di sini diperoleh nilai bbobot dan biassebagai berikut : w1 = 2w2 = 2b = 3'

Tabel 13.8 Hasil perhitungsn f (net)

X ₁	X ₂	Net=∑x _i wi	$f(\text{net}) = \begin{cases} 0 \text{ jika net} < 0 \\ 1 \text{ jika net} \ge 0 \end{cases}$
0	0	0.2+0.2+3=3	1
0	1	0.2+1.2+3=5	1
1	0	1.2+0.2+3=5	1
1	1	1.2+1.2+3=7	1

Pada Tabel 13.8 bisa dilihat bahwa f(net) tidak sesuai dengan target.

2) Tabel 13.9 Input biner dan output bipolar menggunakan fungsi logika Or Tabel 13.9 Input biner dan output bipolar menggunakan fungsi logika Or

X ₁	X ₂	Target
0	0	-1
0	1	1
1	0	1
1	1	1

Alrgoritma pelatihan Hebb:

Tabel 13.10 Data ke-1 dengan perubahan bobot terhadap bias

Data ke-1 : x1 = 0	x2 = 0 y = -	1(target)
W1(baru) = w1(lama) +	W2(baru) = w2(lama	b(baru) = b(lama) + y
x1*y = 0 + 0.(-1)	w2*y = 0 + 0.(-1)	= 0 + (-1)0
= 0	= 0	≈-1

[&]quot;Data ke-2,x1 = 0,x2 = 1y = 1(target)"

[&]quot;Inisial bobotdan biass,w1=0,w2=0,b=0"

[&]quot;Data ke-1,x1 =0,x2 = 0y =-1(target)"

Tabel 13.11 Data ke-2 dengan perubahan bobot terhadap bias

Data ke-2 : x1 =	x2 = 1	y =	1 (target) data ke-2
W1(baru) = w1(lama) +	W2(baru)	=w2(lama) +	B(baru) = b(lama) + y
x1*y = 0 + 0.1	x2*y		= (-1) + 1
= 0	= 0 + 1.1		= 0

"Data ke-3,x1 = 1,x2 = 0y = 1(target)"

Tabel 13.12 Data ke-3 dengan perubahan bobot terhadap bias

Data ke-3 : x1 = 1		x2 = 0 y =		- 1 (target) Data ke-3	
W1(baru) x1*y	= w1(lama) + = 0 + 1.1 = 1	W2(baru) x2*y	= w2(lama) + = 1 + 0.1 = 1	B(baru)	= b(lama) + y = 0 + 1 = 1

"Data ke-4,x1 = 1,x2 = 1y = 1(target)"

Tabel 13.13 Data ke-4 dengan perubahan bobot terhadap bias

Data ke-4 : x1 = 1	x2 = 1	y :	= 1 (target) D	ata ke-4
w1(baru) = w1(lama) + x1*y = 1 + 1.1 = 2	W2(baru) x2*y = 1 + 1.1 = 2	= w2(lama) +	b(baru)	= b(lama) + y = 1+1 = 2

'Di sini dihasilkannilai bobot danbias sebagai berikut:w1=2,w2 = 2 danb 2'

Tabel 13.14Hasil f (net) input biner dan output bipolar melalui fungsi logika 'OR'

X ₁	X ₂	Net=∑x _i wi	$f(net) = \begin{cases} 0 \text{ jika net } < 0 \\ 1 \text{ jika net } \ge 0 \end{cases}$
0	0	0.2+0.2+2=2	1
0	1	0.2+1.2+2=4	1
1	0	1.2+0.2+2=4	1
1	1	1.2+1.2+2=6	1

3) Fungsilogika "OR" melalui input(bipolar) dan output(bipolar)

Tabel 13.15iinput biner dan output bipolar melalui fungsi logika 'OR'

X ₁	X ₂	Target
-1	-1	-1
-1	1	1
1	-1	1
1	1	1

Algoritma pelatihan Hebb:

"Inisialisasii bobotdan biass,w1=0,w2 = 0b 0"

"Data ke-1,x1 = -1,x2 =-1y =-1(target)"

Tabel 13.16 Data ke-1 dengan perubahan bobot terhadap bias

Data ke – 1: x1 = -1	x2 = -1 y= -	-1 (target) data ke-1	
W1(baru) = w1(lama) +	W2(baru) = w2(lam	aa) + B(<u>baru</u>)	=b(lama) + y
x1*y = 0 + (-1).(-1)	x2*y = 0 + (-1).(-1)		= 0 + (-1)
= 1	= 1		= -1

"Data ke-2,x1 =- 1,x2 = 1y = 1(target)"

Tabel 13.17 Data ke-2 dengan perubahan bobot terhadap bias

Data ke -2 : x1 = -1	x2 = 1	y = 1 (targ	jet)	
W1(baru) = w1(lama) + x1*y = 1 + (-1).1 = 0	W2(baru) x2*y = 1 + 1.1 = 2	=w2(lama) +	B(baru)	= b(lama) + y = (-1) + 1 = 0

"Data ke-3,x1 = 1,x2 = -1y = 1(target)"

Tabel 13.18 Data ke-3 dengan perubahan bobot terhadap bias

"Data ke-2,x1 = 1,x2 = 1y = 1(target)"

Tabel 13.19 Data ke-4 dengan perubahan bobot terhadap bias

Data ke - 4 : x1 = 1	x2 = 1	y =	1(target)	
W1(baru) = w1(lama) + x1°y = 1 + 1.1 = 2	W2(baru) x2*y = 1+ 1.1 = 2	=w2(lama) +	B(baru)	= b(lama) + y = 1+ 1 = 2

'Di sini dihasilkan bobott dan bias sebagai berikut: w1= 2w2 = 2 danb = 2'

Tabel 13.20 Hasil f (net) melalui input (bipolar) dan output (bipolar) dengan "OR"

X ₁	X ₂	Net=∑x _i wi	$f(net) = \begin{cases} -1 \text{ jika net } < 0 \\ 1 \text{ jika net } \ge 0 \end{cases}$
0	0	0.2+0.2+2=2	1
0	1	0.2+1.2+2=4	1
1	0	1.2+0.2+2=4	1
1	1	1.2+1.2+2=6	1

Melalui fungsi OR terlihat target tidak sesuai (sama) dengan f(net) sehingga bisa disimpulkan bahwa fungsi OR tidak dikenali oleh jaringan.

C. Soal Latihan/Tugas

Kerjakan sebuah fungsi logikaa "AND" untuk mendapatkan sebuah jaringan hebb rule melalui masukan dan keluaran berikut:

1. Masukan biner, keluaran biner

x_{I}	x2	у
1	1	1
1	0	0
0	1	0
0	0	0

2. Masukan biner dan keluaran bipolarr

X ₁	X ₂	OR
0	0	-1
0	1	-1
1	0	-1
1	1	1

3. Masukan bipolar dan keluaran bipolar

X ₁	X ₂	Target
-1	-1	-1
-1	1	1
1	-1	1
1	1	1

D. Referensi

Sudarsono A. 2016. Jaringan Syaraf Tiruan Untuk Memprediksi Laju Pertumbuhan Penduduk menggunakan metode Backpropagation (Studi Kasus di Kota Bengkulu). Jurnal Media Infotama Vol. 12 No. 1: 1858 – 2680.

Solikhun, Safii M, Trisno A. 2017. Jaringan Syaraf Tiruan untuk Memprediksi Tingkat Pemahaman Siswa terhadap Mata Pelajaran dengan Menggunakan Algoritma Backpropagation. Jurnal Sains Komputer & Informatika (J-SAKTI). Volume (1) No. 1: ISSN:2548-9771/EISSN: 2549-7200