1. Wahrscheinlichkeit

• Author: Ruben Schenk

• Date: 02.03.2021

· Contact: ruben.schenk@inf.ethz.ch

1.1 Grundbegriffe

Definition: Der *Ereignisraum* $\Omega \neq \emptyset$ ist die Menge aller möglichen Ergebnisse eines betrachteten Zufallsexperiment. Die Elemente $\omega \in \Omega$ heissen *Elementarereignisse* des Experiments.

Definition: Die *Potenzmenge* von Ω , bezeichnet mit $\mathcal{P}(\Omega)$ oder 2^{Ω} , ist die Menge aller Teilmengen vom Ω . Ein *prinzipielles Ereignis* ist eine Teilmenge $A\subseteq \Omega$, also eine Kollektion von Elementarereignissen. Die Klasse aller (beobachtbaren) *Ereignisse* ist \mathcal{F} .

Generell sagen wir nun, dass das Ereignis A eintritt, falls das realisierte Elementarereignis ω in A liegt, d.h. $\omega \in A$.

Definition: Ein Wahrscheinlichkeitsmass ist eine Abbildung $P:\mathcal{F}\to [0,\ 1]$, welche die nachfolgenden Axiome erfüllt. Für $A\in\mathcal{F}$ nennen wir $P[A]\in [0,\ 1]$ die Wahrscheinlichkeit (kurz **WS**), dass A eintritt. Die geforderten Axiome sind:

- A0) $P[A] \geq 0$ für alle Ereignisse $A \in \mathcal{F}$
- **A1)** $P[\Omega] = 1$
- **A2)** $P\Big[igcup_{i=1}^\infty A_i\Big] = \sum_{i=1}^\infty P[A_i]$, sofern die $A_i \in \mathcal{F}$ paarweise disjunkt sind. Wir schreiben dies auch kürzer als $P\Big[\dot{\bigcup}_{i=1}^\infty A_i\Big] = \sum_{i=1}^\infty P[A_i]$ die Notation $\dot{\bigcup}$ steht dabei für eine Vereinigung von paarweise disjunkten Mengen.

Aus den obigen Axiomen lassen sich einige grundlegende Rechenregeln ableiten:

1.
$$P[A^c] = 1 - P[A]$$

2.
$$P[\emptyset] = 0$$

3. Für
$$A\subseteq B$$
 gilt $P[A]\leq P[B]$

4. Für beliebige (nicht unbdeingt disjunkte) A, B gilt die allgemeine Additionsregel

$$P[A \cup B] = P[A] + P[B] - P[A \cap B]$$

1.2 Diskrete Wahrscheinlichkeit

Ist $\Omega=\{\omega_1,\,\omega_2,\ldots,\,\omega_N\}$ endlich mit $|\Omega|=N$ und $\mathcal{F}=2^\Omega$, und sind $\omega_1,\,\omega_2,\ldots,\,\omega_N$ alle gleich wahrscheinlich, also $p_1=p_2=\cdots=p_N=\frac{1}{N}$, so heisst Ω ein Laplace-Raum und P die diskrete Gleichverteilung auf Ω . Für beliebige $A\subseteq\Omega$ ist dann

$$P[A] = \frac{\text{Anzahl der Elementarereignisse in } A}{\text{Anzahl der Elementarereignisse in } \Omega} = \frac{|A|}{|\Omega|}.$$

1.3 Bedingte Wahrscheinlichkeit

Definition: Seien A, B Ereignisse und P[A] > 0. Die *bedingte Wahrscheinlichkeit* von B unter der Bedingung. dass A eintritt (kurz: gegeben A) wird definiert durch

$$P[B|A] := \frac{P[B \cap A]}{P[A]}.$$

Direkt aus der Definition der bedingten Wahrscheinlichkeit erhält man die sogenannte Multiplikationsregel: Für beliebige Ereignisse $A,\ B$ ist

$$P[A \cap B] = P[B|A] \cdot P[A].$$

Satz 1.1 (Satz der totalen Wahrscheinlichkeit): Sei A_1, A_2, \ldots, A_n eine Zerlegung von Ω (in paarweise disjunkte Ereignisse). Für beliebige Ereignisse B gilt dann $P[B] = \sum_{i=1}^n P[B|A_i] \cdots P[A_i].$

1.4 Unabhängigkeit von Ereignissen

Definition: Zwei Ereignisse A, B heissen stochastisch unabhängig, falls

$$P[A \cap B] = P[A] \cdot P[B].$$

Ist P[A]=0 oder P[B]=0, so sind A und B immer unabhängig. Für P[A]
eq 0 gilt

$$A, B \text{ unabhangig } \Leftrightarrow P[B|A] = P[B],$$

und symmetrisch gilt für $P[B] \neq 0$

$$A, B$$
 unabhängig $\Leftrightarrow P[A|B] = P[A].$

Definition: Die Ereignisse A_1, A_2, \ldots, A_n heissen stochastisch unabhängig, wenn für jede endliche Teilfamilie die Produktformel gilt, d.h. für $m \in \mathbb{N}$ und $\{k_1, \ldots, k_m\} \subseteq \{1, \ldots, n\}$ gilt immer

$$P\Big[igcap_{i=1}^m A_{k_i}\Big] = \prod_{i=1}^m PA_{k_i}.$$

2. Diskrete Zufallsvariablen und Verteilungen

2.1 Grundbegriffe

Definition: Eine *diskrete Zufallsvariable* (**ZV**) auf Ω ist eine Funktion $X:\Omega\to\mathbb{R}$. Mit Ω ist natürlich auch der Wertebreich $\mathcal{W}(X)=\{x_1,\,x_2,\dots\}$ endlich oder abzählbar. Die *Verteilungsfunktion* (**VF**) von X ist die Abbildung $F_X:\mathbb{R}\to[0,\,1]$, die definiert ist durch

$$t \rightarrow F_X(t) := P[X \le t] := P[\{\omega : X(\omega) \le t\}].$$

Die Gewichtsfunktion oder diskrete Dichte von X ist die Funktion $p_X:\mathcal{W}(X) \to [0,\ 1]$, die durch

$$p_X(x_k) := P[X=x_k] = P[\{\omega: X(\omega)=x_k\}]$$
 für $k=1,\,2,\ldots$

definiert ist.

2.2 Erwartungswerte

Definition: Sei X eine diskrete Zufallsvariable mit Gewichtsfunktion p_X . Dann definieren wir den *Erwartungswert* von X als

$$E[X] := \sum_{x_k \in \mathcal{W}(X)} x_k p_X(x_k),$$

sofern die Reihe absolut konvergiert. Ansonsten existiert der Erwartungswert nicht. Zudem gilt:

$$E[X] = \sum_{\omega_i \in \Omega} X(\omega_i) P[\{\omega_i\}] = \sum_{\omega_i \in \Omega} p_i X(\omega_i).$$

Satz 2.1: Sei X eine diskrete Zufallsvariable mit Gewichtsfunktion p_X . und sei Y=g(X) für eine Funktion $g:\mathbb{R}\to\mathbb{R}$. Dann ist

$$E[Y] = E[g(X)] = \sum_{x_k \in \mathcal{W}(X)} g(x_k) p_X(x_k),$$

sofern die Reihe absolut konvergiert.

Satz 2.2: Seien X und Y diskrete Zufallsvariablen, für die jeweils der Erwartungswert existiert. Dann gilt:

- 1. Monotonie: Ist $X \leq Y$, d.h. $X(\omega) \leq Y(\omega)$ für alle ω , so gilt auch $E[X] \leq E[Y]$.
- 2. Linearität: Für beliebige $a,\,b\in\mathbb{R}$ gilt E[aX+b]=aE[X]+b.
- 3. Falls X nur Werte in \mathbb{N}_0 annimmt, so gilt

$$E[X] = \sum_{i=1}^{\infty} P[X \geq j] = \sum_{l=0}^{\infty} P[X > l].$$

Definition: Sei X eine diskrete Zufallsvariable. Ist $E[X^2] < \infty$, so heisst

$$Var[X] := E[(X - E[X])^2]$$

die $\overline{\text{Varianz}}$ von X, und $\sqrt{\operatorname{Var}[X]}$ heisst die $\overline{\text{Standardabweichung}}$ von X. Manchmal schreibt man auch $\phi(X) = \operatorname{sd}(X) := \sqrt{\operatorname{Var}[X]}$.

Die Varianz beschreibt die durchschnittliche quadratische Abweichung der Zufallsvariablen X von ihrem Erwartungswert $m_X=E[X]$.

Lemma 2.3: Sei X eine diskrete Zufallsvariable mit $E[X^2] < \infty$, und sei Y = aX + b. Dann gilt:

- 1. $Var[X] = E[X^2] E^2[X]$
- 2. $\operatorname{Var}[Y] = \operatorname{Var}[aX + b] = a^2 \operatorname{Var}[X]$

3. Wichtige diskrete Verteilungen

3.1 Diskrete Gleichverteilung

Die diskrete Gleichverteilung auf einer endlichen Menge $\mathcal{W}=\{x_1,\ldots,\,x_N\}$ gehört zu einer Zufallsvariable X mit Wertebereich \mathcal{W} und Gewichtsfunktion

$$p_X(x_k) = P[X=x_k] = rac{1}{N} ext{ fü r } k=1,\ldots,\,N.$$

Das typische ist hier also, dass alle individuellen Elementarereignisse mit der gleichen Wahrscheinlichkeit auftreten.

3.2 Unabhängige 0-1-Experimente

Um die nächsten vier Verteilungen zu beschreiben, betrachten wir eine Folge gleichartiger Experimente, die alle nur mit Erfolg oder Misserfolg enden können, und betrachten die Ereignisse

 $A_i = \{ \text{Erfolg beim } i\text{-ten Experiment.} \}$

Wir machen zwei Annahmen:

- 1. Die A_i sind unabhängig.
- 2. $P[A_i] = p$ für alle i.

Wir nennen dabei p den *Erfolgsparameter*. Mit $Y_i = I_{A_i}$ bezeichnen wir die *Indikatorfunktion* des Ereignisses A_i , also ist

$$Y_i(\omega) = egin{cases} 1, & ext{ fü r } \omega \in A_i \ 0, & ext{ fü r } \omega
otin A_i \end{cases}$$

und nimmt nur die Werte 0 und 1 an, mit $P[Y_i = 1] = P[A_i] = p$.

Wir codieren also die Folge der Ergebnisse als binäre Folge, indem wir 1 für Erfolg und 0 für Misserfolg schreiben. Unter den Annahmen (1) und (2) bilden die Zufallsvariablen Y_i eine Folge unabhängiger 0-1-Experimente mit Erfolgsparameter p.

3.3 Bernoulli-Verteilung

Machen wir ein einziges 0-1-Experiment und nennen wir das Ergebnis X, so hat X eine Bernoulli-Verteilung mit Parameter p. Es gilt also:

- Wertebereich $\mathcal{W}(X) = \{0, 1\}$
- Gewichtsfunktion $p_X(x) = p^x (1-p)^{1-x}$ für $x \in \{0, 1\} = \mathcal{W}(X)$
 - $p_X(1) = P[X = 1] = p$
 - $p_X(0) = P[X = 0] = 1 p$

Wir schreiben kurz $X \sim Be(p)$. Anders gesagt ist X die Anzahl der Erfolge bei einem einzelnen 0-1-Experiment mit Erfolgsparameter p, das kann also nur die Werte 0 oder 1 liefern.

Des weiteren gilt für eine Bernoulli-Verteilung:

- Erwartungswert E[X] = p
- Varianz $\operatorname{Var}[X] = E[X^2] E^2[X] = p(1-p)$

3.4 Binomialverteilung

Die ${\it Binomial verteilung}$ mit Parametern n und p beschreibt die ${\it Anzahl der Erfolge}$ bei n unabhängigen 0-1-Experimenten mit Erfolgsparameter p. In unserem allgemeinen Rahmen hat also die Zufallsvariable $X = \sum_{i=1}^n I_{A_i} = \sum_{i=1}^n Y_i$

eine solche Verteilung. Es gilt also:

- Wertebereich $\mathcal{W}(X) = \{0, 1, 2, \dots, n\}$
- Gewichtsfunktion $p_X(k) = P[X=k] = \binom{n}{k} p^k (1-p)^{n-k}$ für $k=0,\,1,\,2,\ldots,\,n$

Wir schreiben kurz $X \sim Bin(n,p)$. Im Spezialfall n=1 erhalten wir gerade die Bernoulli-Verteilung, d.h. Bin(1,p)=Be(p).

Aus der Linearität des Erwartungswerts und der Summenformel für Varianz folgt für $X \sim Bin(n,p)$ sofort:

- Erwartungswert $E[X] = \sum_{i=1}^{n} E[Y_i] = np$
- Varianz $\operatorname{Var}[X] = \sum_{i=1}^n \operatorname{Var}[Y_i] = np(1-p)$

3.5 Geometrische Verteilung

Betrachten wir nun eine unendliche Folge von unabhängigen 0-1-Experimenten mit Erfolgsparameter p. Sei X die Wartezeit auf den ersten Erfolg, also

$$X = \inf\{i \in \mathbb{N} : A_i \text{ tritt ein}\} = \inf\{i \in \mathbb{N} : Y_i = 1\},$$

d.h. X ist die Nummer des ersten erfolgreichen Experiments. Dann hat X eine geometrische Verteilung mit Parameter p. Es gilt:

- Wertebereich $\mathcal{W}(X) = \mathbb{N}$
- Gewichtsfunktion $p_X(k) = P[X=k] = p(1-p)^{k-1}$ für $k=1,\,2,\,3,\ldots$

Wir schreiben kurz $X \sim Geom(p)$.

Des weiteren gilt:

- Erwartungswert $E[X] = \frac{1}{p}$
- Varianz $\operatorname{Var}[X] = \frac{1-p}{p^2}$

3.6 Negativbinomiale Verteilung

Betrachten wir eine unendliche Folge von unabhängigen 0-1-Experimenten mit Erfolgsparameter p, so können wir für $r \in \mathbb{N}$ auch die Wartezeit auf den r-ten Erfolg betrachten. Dann lässt sich X schreiben als $X = \inf \Big\{ k \in \mathbb{N} : \sum_{i=1}^k I_{A_i} = r \Big\} = \inf \Big\{ k \in \mathbb{N} : \sum_{i=1}^k ' k Y_i = r \Big\}.$

Dann hat X eine negativbinomiale Verteilung mit Parametern r und p und es gilt:

- Wertebereich $\mathcal{W}(X) = \{r, r+1, r+2, \dots\}$
- Gewichtsfunktion $p_X(k)=P[X=k]=inom{k-1}{r-1}p^r(1-p)^{k-r}$ für $k=r,\,r+1,\,r+2,\ldots$

Wir schreiben kurz $X \sim NB(r,p)$. Des weiteren gilt:

- Erwartungswert $E[X] = \sum_{i=1}^r R[X_i] = \frac{r}{p}$
- Varianz $\operatorname{Var}[X] = \sum_{i=1}^r \operatorname{Var}[X_i] = \frac{r(1-p)}{n^2}$

3.7 Hypergeometrische Verteilung

In einer Urne seien n Gegenstände, davon r vom Typ 1 und n-r vom Typ 2. Man zieht ohne Zurücklegen m der Gegenstände. Die Zufallsvariable X beschreibe nun die Anzahl der Gegenstände vom Typ 1 in dieser Stichprobe vom Umfang m. Dann hat X eine $\begin{center} hypergeometrische Verteilung \end{center}$ mit Parametern $n\in\mathbb{N}$ und $m,r\in\{1,\,2,\ldots,\,n\}$. Es gilt:

• Wertebereich $\mathcal{W}(X) = \{0, 1, \dots, \min(m, r)\}$

Gewichtsfunktion

$$p_X(k) = rac{inom{r}{k}inom{n-r}{m-k}}{inom{n}{m}} ext{ fü r } k \in \mathcal{W}(k).$$

3.8 Poisson-Verteilung

Die Poisson-Verteilung mit Parameter $\lambda \in (0, \infty)$ ist eine Verteilung auf der Menge \mathbb{N}_0 mit Gewichtsfunktion

$$p_X(k)=e^{-\lambda}rac{\lambda^k}{k!}$$
 für $k=0,\,1,\,2,\dots$

Ist eine Zufallsvariable X Poisson-verteilt mit Parameter λ , so schreiben wir dafür kurz $X \sim \mathcal{P}(\lambda)$.

Sei X_n für jedes n eine Zufallsvariable mit $X_n\sim Bin(n,p_n)$ und $np_n=\lambda$. Lassen wir $n\to\infty$ gehen, so geht $p_n\to 0$, und X_n beschreibt die Anzahl Erfolge bei sehr vielen Versuchen mit sehr kleiner Erfolgswahrscheinlichkeit, also bei seltenen Ereignissen. Es gilt:

•
$$\lim_{n\to\infty} P[X_n=k] = P[X=k]$$

In diesem Sinn ist die Poisson-Verteilung ein Grenzwert von Binomialverteilungen bei geeigneter Skalierung der Parameter. Für eine Poisson-verteilte Zufallsvariable $X \sim \mathcal{P}(\lambda)$ gilt:

- Erwartungswert $E[X] = \lambda$
- Varianz $\operatorname{Var}[X] = \lambda$