MAT 300 3-19 HW

ID: 1213399809

Name: Lucas Saldyt (lsaldyt@asu.edu)

Collaborators: \varnothing

Problem 1.	4.12	1
Problem 2.	5.1.12	2
Problem 3.	5.1.14	3
Problem 4.	5.1.15	4
Problem 5.	5.2.4	5

Problem 1. 4.12

Let A be a partially ordered set. Suppose $X \subseteq Y \subseteq A$.

- (a) Assuming that all the least upper bounds and greatest upper bounds exist, prove that $glb(Y) \leq glb(X) \leq lub(X) \leq lub(Y)$
- (b) Find two subsets X and Y of \mathcal{R} for which X is a proper subset of Y and glb(Y) = glb(X) and lub(X) = lub(Y).

Solution

Part (a)

Theorem 0.0.1. Since X is a subset of Y, its greatest and least values are, at most/least the greatest and least values of Y

Proof Consider the glb of X. Since X is a subset of Y, this glb necessarily exists in Y. However, since Y possibly has more elements than X, there could exist an arbitrary element in Y which makes a glb which is possibly smaller than the glb in X. However, no greater glb could exist, because it would not include X's glb. Consider the lub of X. Since X is a subset of Y, this lub necessarily exists in Y. However, since Y possibly has more elements than X, there could exist an arbitrary element in Y which makes a lub which is possibly greater than the lub in X. However, no smaller lub could exist, because it would not include X's lub. \blacksquare

Part (b)

Simply create an interval, Y, and a second interval, X, which is equal to Y, except that middle portions of the interval are missing. For instance, Let Y = [0.0, 1.0] and $X = [0.0, 0.5) \cup (0.5, 1.0]$.

Problem 2. 5.1.12

Give an example of a function $f: \mathcal{R} \to \mathcal{R}$ in which:

- (a) f is one-to-one but not onto.
- (b) f is onto but not one-to-one.
- (c) f is both one-to-one and onto.
- (d) f is neither one-to-one nor onto.

Solution

Part (a)

- (a) $f(x) = \sqrt{x}$
- (b) $f(x) = x^3$
- (c) $f(x) = x + \pi$
- (d) $f(x) = \sin(x)$

Problem 3. 5.1.14

For each function $f: \mathcal{R} \to \mathcal{R}$, either show that f is one-to-one or prove that it is not.

- (a) $f(x) = \frac{x}{2} + 6$
- (b) $f(x) = \sin(x)$
- (c) $f(x) = x^3 x$

Solution

Part (a)

This function is one-to-one. Any given y = f(x) is mapped to by x = 2y - 12. Suppose two values of x, call them a and b, mapped onto the same y. This would imply $y = \frac{a}{2} + 6$ and $y = \frac{b}{2} + 6$, which implies that a = b, and thus f is one-to-one, by contradiction.

Part (b)

This function is not one-to-one. For instance, 0 is mapped to by multiples of π , so, for instance, 0 and π map onto the same value, and the function is not one-to-one.

Part (c)

This function is not one-to-one. Consider y = 0. This is true both when x = 1, or x = 0, and so the function is not one-to-one.

Problem 4. 5.1.15

For each function $f: \mathcal{R} \to \mathcal{R}$, either show that f is onto or prove that it is not.

- (a) $f(x) = \frac{x}{2} + 6$
- (b) $f(x) = \sin(x)$
- (c) $f(x) = x^3 x$

Solution

Part (a)

This function is onto. x = 2y - 12 shows that any y in Y (where Y is the co-domain) is reachable by arbitrary x.

Part (b)

Consider y = 1.1. There is no x for which sin(x) = 1.1.

Part (c)

This function is onto. Since every odd-degree polynomial with real coefficients has at least one real root, this root is usable to reach a given y by arbitrary x.

Problem 5. 5.2.4

Suppose that $f: A \to B$ and $g: B \to C$ are functions. Give proofs/counterexamples.

- (a) If $g \circ f$ is one-to-one, must f be one-to-one?
- (b) If $g \circ f$ is one-to-one, must g be one-to-one?
- (c) If $g \circ f$ is onto, must f onto?
- (d) If $g \circ f$ is onto, must g onto?

Solution

Part (a)

If $g \circ f$ is one-to-one, f must be one-to-one. Suppose f is not one-to-one, i.e. there is some b in the codomain of f which is mapped to by two values, x and y. Then, g may map b to any other value, call it c. This implies that $f \circ g$ maps to c by both x and y, and thus $g \circ f$ is not one-to-one. By contradiction, f must be one-to-one.

Part (b)

If $g \circ f$ is one-to-one, g may be one-to-one, but does not have to be. Suppose g is not one-to-one, i.e. there is some b in the codomain of g which is mapped to by two values, x and y. If both x and y are in B, then there is a problem and $g \circ f$ is not one-to-one. If they are not, then everything is nominal. Thus, in some cases there is a contradiction, and it is implied that g must be one-to-one.

Part (c)

If $g \circ f$ is onto, f must be onto. Suppose f is not onto, i.e. there is some value b in the codomain which it cannot reach from some x. Since b is not reachable, g cannot use it to reach an arbitrary value $c \in C$, and thus $g \circ f$ would not be onto. By contradiction, f must be onto if $g \circ f$ is onto.

Part (d)

If $g \circ f$ is onto, g must be onto. Suppose g is not onto, i.e. there is some value c in the codomain which it cannot reach from some x. Since c is not reachable from g from any starting value, $g \circ f$ is not onto. By contradiction, g must be onto if $g \circ f$ is onto.