統計学

後期定期試験 (J4)

正 解

平成 26 年 2 月 10 日 (月) 14:25~15:25 実施

作成者:山下 哲(基礎学系 数学科)

- **問題1** 野球部に所属している K 君の打率は 2 割 7 分 (0.27) である. K 君が 100 回打席に入って, そのうち 30 回以上安打を打つ確率を求めよ. ただし, 打率は 1 回の打席で安打を打つ確率のこととする. (10 点)
 - [解] K 君が安打を打つ打席数を X とすると,X は二項分布 B (100, 0.27) に従うから,求める確率は,正規分布による近似により

$$P(X \ge 30) = P\left(Z \ge \frac{30 - 0.5 - 100 \times 0.27}{\sqrt{100 \times 0.27 \times 0.73}}\right) = P(Z \ge 0.563)$$
$$= 0.5 - P(Z \le 0.563) = 0.5 - \Phi(0.56) = 0.5 - 0.2123 = \boxed{0.2877}$$

- 問題 2 ある生命保険会社で K 市の死亡者数について調査したところ,K 市では 1 日平均 0.5 人が死亡している。K 市で 1 日に 2 人以上死亡する確率を求めよ。ただし,K 市の人口は非常に多く,1 日に死亡する人数はポアソン分布に従っている。 (10 点)
 - [解] K市で1日に死亡する人数をXとすると、Xはポアソン分布 $P_o(0.5)$ に従う. よって、求める確率は

$$P(X \ge 2) = 1 - P(X \le 1) = 1 - P(X = 0) - P(X = 1)$$
$$= 1 - 0.60653 - 0.30327 = \boxed{0.0902}$$

(1) 同時確率分布および X, Y の周辺分布を以下の表に記入せよ.

(5点)

[]]件_]	
P(X=1,Y=1)	
$=\frac{4}{10}\times\frac{3}{9}=$	
P(X=1,Y=2)	
$=\frac{4}{10}\times\frac{6}{9}=$	$\frac{4}{15}$

x y	1	2	P(X=x)
1	$\frac{2}{15}$	$\frac{4}{15}$	$\frac{2}{5}$
2	$\frac{4}{15}$	$\frac{1}{3}$	3 5
P(Y=y)	$\frac{2}{5}$	3 5	1

$$P(X = 2, Y = 1) = \frac{6}{10} \times \frac{4}{9} = \frac{4}{15}$$
 $P(X = 2, Y = 2) = \frac{6}{10} \times \frac{5}{9} = \frac{1}{3}$

(2) X, Y は互いに独立であるか調べよ.

(5点)

[解] (1)の計算結果より

$$P(X = 1, Y = 1) = \frac{2}{15} \neq \frac{2}{5} \times \frac{2}{5} = P(X = 1)P(X = 1)$$

が成り立つから、X,Yは $\boxed{$ 互いに独立でない $}$.

問題 4 平成 26 年度新入生に実施した数学実力テストの傾向を調べるため、5 枚の答案を無作為抽出した結果、次のデータが得られた。

この実力テストの母平均を μ 、母分散を σ^2 とするとき、次の各問いに答えよ. (計 20 点)

(1) μ の推定値を求めよ. (5点)

[解] μ の推定値は標本平均 \overline{X} の実現値 \overline{x} であるから

$$\overline{x} = \frac{50 + 85 + 65 + 60 + 90}{5} = \boxed{70}$$

[解]
$$\sigma^2$$
 の推定値は不偏分散 U^2 の実現値 u^2 だから
$$\overline{x^2} = \frac{50^2 + 85^2 + 65^2 + 60^2 + 90^2}{5} = 5130$$
$$s^2 = \overline{x^2} - \overline{x}^2 = 5130 - 70^2 = 230$$
$$\therefore u^2 = \frac{5}{4}s^2 = \frac{5}{4} \times 230 = \boxed{287.5}$$

(3) μの 95% 信頼区間を求めよ.

(5点)

[解] 母分散が未知であり、標本の大きさ
$$n=5$$
 は小さいから、 μ の 95% 信頼区間は
$$70-t_4(0.05)\sqrt{\frac{287.5}{5}} \le \mu \le 70+t_4(0.05)\sqrt{\frac{287.5}{5}}$$

$$70-2.776\times\sqrt{57.5} \le \mu \le 70+2.776\times\sqrt{57.5}$$
 ∴ $48.95 \le \mu \le 91.05$

(4) 母分散 σ^2 の 95% 信頼区間を求めよ.

(5点)

(2) の計算結果より、標本分散 S^2 の実現値 $s^2=230$

よって、母分散 σ^2 の 95% 信頼区間は

$$\frac{5 \times 230}{\chi_4^2(0.025)} \le \sigma^2 \le \frac{5 \times 230}{\chi_4^2(0.975)}$$
$$\frac{1150}{11.14} \le \sigma^2 \le \frac{1150}{0.4844}$$
$$\boxed{103.23 \le \sigma^2 \le 2374.07}$$

 $103.23 \le \sigma^2 \le 2374.07$

- 問題5 あるメーカーのプリンタは A4 判用紙 1 枚の印刷時間が 10 秒を基準としている. このメーカーの A 工場がある期間に製造したものから 20 台無作為抽出して検査したところ, 1 枚当たりの印刷に平均 10.7 秒かかった. また, この 20 台の不偏分散は 1.23² 秒であった. この期間の A 工場全体について, 印刷時間の平均が基準より遅いといってよいか. 有意水準 5% で検定したい. このとき, 次の各問いに答えよ. (計 20 点)
 - (1) 仮説「この期間の A 工場全体について、印刷時間の平均が基準より遅い」について、帰無仮説 H_0 と対立仮説 H_1 を答えよ. (5 点)
 - [解] この期間の A 工場で製造されたプリンタの印刷時間の母平均を μ とすると

帰無仮説 $H_0: \mu = 10$

対立仮説 $H_1: \overline{\mu > 10}$

(2) 検定統計量をTとするとき,Tを \overline{X} と U^2 の式で表せ.

(5点)

[解]
$$T = \frac{\overline{X} - \mu}{\sqrt{\frac{U^2}{n}}}$$
 であるから $T = \boxed{\frac{\overline{X} - 10}{\sqrt{\frac{U^2}{20}}}}$

(3) 有意水準 5% で検定せよ.

(10点)

[解] 対立仮説 H_1 の型から右片側検定である. T は自由度 19 の t 分布に従うから、有意水準 5% の棄却域は

$$T > t_{19}(0.10)$$
 $T > 1.729$

20 台の標本データから, \overline{X} と U^2 の実現値は $\overline{x}=10.7,\,u^2=1.23^2$ だから,T の実現値 t は

$$t = \frac{10.7 - 10}{\sqrt{\frac{1.23^2}{20}}} = 2.545118$$

となり、棄却域に入る.

よって、この期間のA工場全体について、印刷時間の平均が基準より遅い

昨年収穫した同じ品種のみかんについて、A地方のものから6個、B地方のものから5個を無 問題6 作為抽出して大きさ(最大径)を調べたところ,次の結果を得た(単位はcm).

A 地方	7.4,	6.8,	7.6,	7.2,	6.7,	6.5
B 地方	6.9,	7.0,	6.7,	7.1,	6.3	

昨年の2地方のみかんの大きさについて、次の各問いに答えよ. ただし、みかんの大きさは正規 (計 20 点) 分布に従うものとする.

- (1) 昨年の2地方のみかんの大きさの母平均が等しいといえるか. 有意水準5%で検定せよ. (10点)
 - $[m{K}]$ 昨年の $m{A}$ 地方と $m{B}$ 地方のみかんの大きさをそれぞれ $m{X}_1,\,m{X}_2$ とし,その母平均をそれぞれ $m{\mu}_1,\,m{\mu}_2$ とすると

帰無仮説
$$H_0: \mu_1 = \mu_2$$
, 対立仮説 $H_1: \mu_1 + \mu_2$

検定統計量
$$Z=rac{\overline{X_1}-\overline{X_2}}{\sqrt{rac{U_1^2}{n_1}+rac{U_2^2}{n_2}}}$$
 だから

検定統計量
$$Z = \frac{\overline{X_1} - \overline{X_2}}{\sqrt{\frac{U_1^2}{n_1} + \frac{U_2^2}{n_2}}}$$
 だから
$$\overline{x_1} = \frac{7.4 + 6.8 + 7.6 + 7.2 + 6.7 + 6.5}{6} = 7.03, \qquad \overline{x_1^2} = \frac{7.4^2 + 6.8^2 + 7.6^2 + 7.2^2 + 6.7^2 + 6.5^2}{6} = 49.62$$

$$\overline{x_2} = \frac{6.9 + 7.0 + 6.7 + 7.1 + 6.3}{5} = 6.8, \qquad \overline{x_2^2} = \frac{6.9^2 + 7.0^2 + 6.7^2 + 7.1^2 + 6.3^2}{5} = 46.32$$

$$u_1^2 = \frac{6}{5} \left(\overline{x_1^2} - \overline{x_1}^2\right) = \frac{6}{5} (49.62 - 7.03^2) = 0.1867, \qquad u_2^2 = \frac{5}{4} \left(\overline{x_2^2} - \overline{x_2}^2\right) = \frac{5}{4} (46.32 - 6.8^2) = 0.1$$

対立仮説 $\mathrm{H_1}$ の型から両側検定であるから,有意水準 5% の棄却域は Z < -1.960, Z > 1.960

標本データから、2の実現値 z は

$$z = \frac{7.03 - 6.8}{\sqrt{\frac{0.1867}{6} + \frac{0.1}{5}}} = 1.0320937$$

となり、棄却域に入らない。

よって、昨年2地方のみかんの大きさの母平均が等しいといえる

- (2) 昨年の2地方のみかんの大きさの母分散が等しいといえるか、有意水準5%で検定せよ、(10点)
 - 昨年の A 地方と B 地方のみかんの大きさの母分散をそれぞれを $\sigma_1^2,\,\sigma_2^2$ とすると [解]

帰無仮説
$$H_0: \sigma_1^2 = \sigma_2^2$$

対立仮説
$$H_1: \sigma_1^2 > \sigma_2^2$$

検定統計量 $F = \frac{U_1^2}{U_1^2}$ であるから,F は自由度 (5, 4) の F 分布に従う.

有意水準 5% の棄却域は $F \ge F_{5,4}(0.05) = 6.26$

(1) で求めた標本データから、F の実現値 f は

$$f = \frac{u_1^2}{u_2^2} = \frac{0.1867}{0.1} = 1.867$$

となり、棄却域に入らない.

よって、昨年の2地方のみかんの大きさの母分散が等しいといえる.

- 問題7 1ヶ月前の首相の支持率は32%であった。最近の調査では、全国から無作為抽出した有権者 500人のうち130人が首相を支持していた。首相の支持率に変化があったといえるか。有意水準 5%で検定せよ。 (10点)
 - [解] 首相の現在の支持率をpとすると

帰無仮説 $H_0: p = 0.32$

対立仮説 $H_1: p \neq 0.32$

検定統計量
$$\hat{P}$$
 を標準化した $Z=\frac{\hat{P}-p}{\sqrt{\frac{pq}{n}}}$ だから $Z=\frac{\hat{P}-0.32}{\sqrt{\frac{0.32\times0.68}{500}}}=\frac{\hat{P}-0.32}{0.021}$

対立仮説 H₁ の型から両側検定である.

Z は標準正規分布 N(0,1) に従うから,有意水準 5% の棄却域は $Z<-1.960,\ Z>1.960$

標本データから, \widehat{P} の実現値 $\widehat{p}=rac{130}{500}=0.26$ より,Zの実現値zは

$$z = \frac{0.26 - 0.32}{0.021} = -2.85714$$

となり、棄却域に入る.

よって, 首相の支持率に変化があったといえる.

統計学後期定期試験資料集

第2表 ポアソン分布表 (豆は切り上げて5になったことを示す)

$$P(X=k) = e^{-\lambda} \frac{\lambda^k}{k!}$$

	,		T	1					
k	λ	0.1	0.2	0.5	1.0	1.5	2.0	3.0	
	0	.90484	.81873	.60653	.36788	22212	1050	_	
	1	.09048	.16375	.30327	.36788	.22313	.13534	.04979	
1	2	.00452	.01637	.07582	.18394	.33470	.27067	14936	- 1
	3	.00015	.00109	.01264	Ť.	.25102	.27067	.22404	1
	4	.00000	.00005	.00158	.06131	.12551	-18045	. 22404	
	5		.00000	.00136	.01533	.04707	.09022	.16803	- 1
- 1	6		1.00000	.00016	.00307	.01412	.03609	. 10082	-
1	7		1	.00001	.00051	.00353	.01203	. 05041	
- 1				.00000	.00007	.00076	.00344	. 02160	
i i	8			1	.00001	.00014	.00086	.00810	
4	9			1	.00000	.00002	.00019	. 00270	
10			,			.00000	.00004	. 00270	
1	1					1		1	
1:	2						.00001	. 00022	
13	3	İ					.00000	. 00006	ļ
14	1		į					.00001	
					L			. 00000	-[
1	λ	4	_				Т	T	
k		- **	5	6	7	8	9	10	
C		-01832	.00674	00040			 		
1	- 1	.07326	.03369	.00248	.00091	.00034	.00012	.00005	
2	- 1	.14653	.03369	.01487	.00638	.00268	.00111	.00045	
3		.19537	i	.04462	.02234	.01073	.00500	.00227	-
4		.19537	.14037	.08924	.05213	.02863	.01499	.00757	
5	1	.15629	.17547	.13385	.09123	.05725	.03374	.01892	
	ļ	ĺ	.17547	.16062	.12772	.09160	.06073	.03783	
6		.10420	.14622	.16062	.14900	.12214	.09109	06306	
7		05954	.10445	13768	.14900	.13959	.11712	.06306	1
8		.02977	.06528	.10326	.13038	.13959	.13176	.09008	
9		.01323	.03627	.06884	.10140	.12408	.13176	.11260	
10	- 1	.00529	.01813	.04130	.07098	.09926	.11858	.12511	
11		.00192	.00824	.02253			·	.12511	
12		.00064	.00343	.01126	.04517	.07219	.09702	.11374	
13		.00020	.00132	į.	.02635	.04813	.07277	.09478	1
14		.00006	.00132	.00520	.01419	.02962	.05038	.07291	
15		.00002	.00016	.00223	.00709	.01692	.03238	.05208	1
1				.00089	.00331	.00903	.01943	.03472	
16		.00000	.00005	.00033	.00145	.00451	.01093	.02170	
17			.00001	.00012	.00060	.00212	.00579	.01276	
18	1	1	.00000	.00004	.00023	.00094	.00289	.00709	
19				.00001	.00009	.00040	.00137	1	
20		-	1	.00000	.00003	.00016	.00062	.00373	
21				1	00001	1		.00187	ļ
22	1			1	.00001	.00006	.00026	.00089	
23			1		.00000	.00002	.00011	.00040	
24			-			.00001	.00004	.00018	
25					ĺ	.00000	.00002	.00007	
26						·	.00001	.00003	
26 27							.00000	.00001	
				1				.00000	

第3表 正規分布表

$$N(0,1)$$

$$\Phi(x) = \int_0^x f(x) dx = \frac{1}{\sqrt{2\pi}} \int_0^x e^{-\frac{x^2}{2}} dx$$

		·				·	<u>. </u>			
x	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.0000	.0040	.0080	.0120	.0160	.0199	.0239	.0279	.0319	.0359
0.1	.0398	.0438	.0478	.0517	.0557	.0596	.0636	.0675	.0714	.0333
0.2	.0793	.0832	.0871	.0910	.0948	.0987	.1026	.1064	.1103	.1141
0.3	.1179	.1217	.1255	.1293	.1331	.1368	.1406	.1443	.1480	.1517
0.4	.1554	.1591	.1628	.1664	.1700	.1736	.1772	.1808	.1844	.1879
										120,0
0.5	.1915	.1950	.1985	.2019	.2054	.2088	.2123	.2157	.2190	.2224
0.6	.2257	.2291	. 2324	.2357	.2389	.2422	.2454	.2486	.2517	.2549
0.7	.2580	.2611	.2642	.2673	.2704	.2734	.2764	.2794	.2823	.2852
0.8	.2881	.2910	.2939	.2967	.2995	.3023	.3051	.3078	.3106	.3133
0.9	.3159	.3186	.3212	.3238	.3264	.3289	.3315	.3340	.3365	.3389
	0.110									
1.0	3413	.3438	.3461	.3485	3508	.3531	.3554	.3577	.3599	.3621
1.1	.3643	.3665	.3686	.3708	.3729	.3749	.3770	.3790	.3810	.3830
1.2	.3849	.3869	.3888	.3907	.3925	.3944	.3962	.3980	.3997	.4015
1.3	.4032	.4049	.4066	.4082	.4099	.4115	.4131	.4147	.4162	.4177
1.4	.4192	.4207	.4222	.4236	.4251	.4265	.4279	.4292	.4306	.4319
1.5	.4332	.4345	4257	1000						
1.6	.4452	.4463	.4357	.4370	.4382	.4394	.4406	.4418	.4429	.4441
1.7	.4554	.4564	.4474	.4484	.4495	.4505	.4515	.4525	.4535	.4545
1.8	.4641	.4649	.4573	.4582	.4591	4599	.4608	.4616	.4625	.4633
1.9	.4713	.4719	4656	.4664	.4671	.4678	.4686	.4693	.4699	.4706
1.0	.4/13	.4/19	.4726	.4732	.4738	.4744	.4750	.4756	.4761	.4767
2.0	.4772	.4778	.4783	.4788	.4793	.4798	4802	4000	404.0	
2.1	.4821	.4826	.4830	.4834	.4838	.4842	.4803	.4808	.4812	.4817
2.2	.4861	.4864	.4868	.4871	.4875	.4878	.4846	.4850	.4854	.4857
2.3	.4893	4896	.4898	.4901	.4904	.4906		.4884	.4887	.4890
2.4	.4918	.4920	.4922	.4925	.4927	ļ	.4909	.4911	.4913	.4916
			71000		.4321	.4929	.4931	.4932	.4934	.4936
2.5	.4938	.4940	.4941	.4943	.4945	.4946	.4948	.4949	.4951	.4952
2.6	.49534	.49547	.49560	.49573	.49585	.49597	.49609	.49621	.49632	.49643
2.7	.49653	.49664	.49674	.49683	.49693	.49702	.49711	.49720	.49728	.49043
2.8	.49744	.49752	.49760	.49767	.49774	.49781	.49788	.49795	.49801	.49730
2.9	.49813	49819	.49825	.49831	.49836	.49841	.49846	.49851	.49856	.49807
								0001	• ******	•±300U
3.0	.49865	. 49869	.49874	.49878	.49882	.49886	.49889	.49893	.49897	.49900
 -			1							

第4表 カイ二乗分布表

 $P(X \ge \chi_n^2(\alpha)) = \alpha$

	,															_					O	İ			χń(u)			
.001	10.83	16.27	18.47	20.52	22.46	24.32	26.13	27.88	29.59	31.26	32.91	34.53	36.12	37.70	39.25	40.79	42.31	43.82	45.32	46.80	48.27	49.73	51.18	52.62	54.05	55.48	56.89	58.30	59.70
.01	6.635	11.34	13.28	15.09	16.81	18.48	20.09	21.67	23.21	24.72	26.22	27.69	29.14	30.58	32,00	33.41	34.81	36.19	37.57	38.93	40.29		42.98	31	45.64				
.02	5.412	9.837	11.67	13.39	15.03	16.62	18.17	19.68	21.16	22.62	24.05				29.63	31.00	32.35			36.34	37.66	38.97	40.27	41.57	42.86	44.14 4		46.69 4	47.96
.025	5.024	9.348	11.14	12.83	14.45	16.01		19.02	20.48	21.92	23.34	24.74	26.12		28.85	30.19	31.53		34.17	35.48	36.78 3	38.08	39.36 4	40.65 4	41.92 4	43.19 4	44.46 4	45.72 4	46.98 4
.05	3.841	7.815	9.488	11.07	12.59	14.07	15.51	16.92	18.31	19.68	21.03	22.36	23.68	25.00	26.30	27.59	28.87		31.41	32.67			36.42	37.65	38.89	40.11	41.34	42.56	43.77
.10	2.706	6.251	7.779	9.236	10.65	12.02	13.36	14.68	15.99	17.28	18.55	19.81	21.06	22.31	23.54	24.77	25.99			29.62	30.81	32.01	33.20	34.38	35.56	36.74	37.92 4	39.09	40.26
.20	1.642	4.642	5,989	7.289	8.558	9.803	11.03	12.24	13.44	14.63	15.81	16.99	18.15	19.31	20.47	21.62	22.76	23.90		26.17	27.30		29.55	30.68	31.80	32.91	34.03	35.14	36.25
.30	1.074	3.665	4.878	6.064	7.231	8.383	9.524	10.66	11.78	12.90	14.01	15.12	16.22	17.32	18.42	19.51	20.60	21.69	22.78	23.86	24.94	20.92	27.10	28.17	29.25	30.32	31.39	32.46	33.53
.50	.455	2.366	3.357	4.351	5.348	6.346	7.344	8.343	9.342	10.341	11.340	12.340	13.339	14.339	15.338	16.338	17.338	18.338	19.337	20.337	21.337	22.337	23.337	24.337	25.336	26.336	27.336	28.336	29.336
02.	.148	1.424	2.195	3.000	3.828	4.671	5.527	6.393	7.267	8.148	9.034	9.926	10.82	11.72	12.62	13.53		15.35		17.18	18.10	19.02		20.87		22.72 2		24.58 2	25.51 2
.80	.0642	1.005	1.649	2.343	3.070	3.822	4.594	5.380	6.179	686.9	7.807	8.634	~	10.31	11.15	12.00	12.86	13.72	14.58	15.45	16.31	17.19	18.06	18.94 2	19.82	20.70 2			23.36 2
06.	.0158	.584	1.064	1.610	2.204	2.833	3.490	4.168	4.865	5.578	6.304	7.042		8.547	9.312	10.09	10.87	11.65	12.44	13.24	14.04		15.66	16.47	17.29	18.11 2		-	20.60
.95	.00393	.352	.711	1.145	1.635	2.167	2.733	3.325	3.940	4.575	5.226	5.892	6.571	7.261	7.962	8.672	9.390	10.12	10.85	11.59	12.34	13.09	13.85	14.61		16.15		.71	18.49
.975	.03982	.216	.484	.831	1.237	1.690	2.180	2.700	3.247	3.816	4.404	5.009	5.629	6.262	6.908	7.564	8.231		9.591	10.28	10.98			13.12			_	16.05 1	16.79
86.	.03628	.185	.429	.752	1.134	1.564	2.032	2.532	3.059	3.609	4.178	4.765	5.365	5.985	6.614	7.255	7.906	8.567	9.237	10			_	12.70				15.57	
66.	.03157	.115	.297	.554	.872	1.239	1.646	2.088	2.558	3.053	3.571	4.106	4.660	5.229	5.812	6.408	7.015	7.633	8.260		~	_		11.52				14.26	
d u	7 7	ຕ	4	2	9	~	∞	6	10	11	12	13	14	15	16	17	18	19	20	21		23				_		29	

第5表 t 分布表

 $P(|T| \ge t_n(\alpha)) = \alpha$

P	0.50	0.25	0.10	0.05	0.025	0.02	0.01	0.005
1	1.000	2.414	6.314	12.706	25.452	31.821	63.657	127.32
2	0.816	1.604	2.920	4.303	6.205	6.965	9.925	14.089
. 3	0.765	1.423	2.353	3.182	4.177	4.541	5.841	7.453
4	0.741	1.344	2.132	2.776	3.495	3.747	4.604	5.598
5	0.727	1.301	2.015	2.571	3.163	3.365	4.032	4.773
6	0.718	1.273	1.943	2.447	2.969	3.143	3.707	4.317
7	0.711	1.254	1.895	2.365	2.841	2.998	3.499	4.029
8	0.706	1.240	1.860	2.306	2.752	2.896	3.355	3.833
9	0.703	1.230	1.833	2.262	2.685	2.821	3.250	3.690
10	0.700	1.221	1.812	2.228	2.634	2.764	3.169	3.581
ļ								
11	0.697	1.215	1.796	2.201	2.593	2.718	3.106	3.497
12	0.695	1.209	1.782	2.179	2.560	2.681	3.055	3.428
13	0.694	1.204	1.771	2.160	2.533	2.650	3.012	3.373
14	0.692	1.200	1.761	2.145	2.510	2.624	2.977	3.326
15	0.691	1.197	1.753	2.131	2.490	2.602	2.947	3.286
						_	•	
16	0.690	1.194	1.746	2.120	2.473	2.583	2.921	3.252
17	0.689	1.191	1.740	2.110	2.458	2.567	2.898	3.223
18	0.688	1.189	1.734	2.101	2.445	2.552	2.878	3.197
19	0.688	1.187	1.729	2.093	2.433	2.539	2.861	3.174
20	0.687	1.185	1.725	2.086	2.423	2.528	2.845	3.153
	0.000					0		
21	0.686	1.183	1.721	2.080	2.414	2.518	2.831	3.135
22	0.686	1.182	1.717	2.074	2.406	2.508	2.819	3.119
23	0.685	1.180	1.714	2.069	2.398	2.500	2.807	3.104
24 25	0.685	1.179	1.711	2.064 2.060	2.391 2.385	2.492 2.485	2.797 2.787	3.091 3.078
26	0.684	1.177	1.706	2.056	2.379	2.479	2.779	3.067
27	0.684	1.176	1.703	2.052	2.373	2.473	2.771	3.057
28	0.683	1.175	1.701	2.048	2.369	2.467	2.763	3.047
29	0.683	1.174	1.699	2.045	2.364	2.467	2.756	3.038
30	0.683	1.173	1.697	2.042	2.360	2.457	2.750	3.030
40	0.681	1.167	1.684	2.021	2.329	2.423	2.704	2.971
60	0.679	1.162	1.671	2.000	2.299	2.390	2.660	2.915
120	0.677	1.156	1.658	1.980	2.270	2.358	2.617	2.860
∞	0.674	1.150	1.645	1.960	2.241	2.326	2.576	2.807
	<u> </u>					L		

第6表 F分布表

	•	,					
8	254. 19.5 8.53 5.63 4.36	3.67 3.23 2.93 2.71 2.71	2.40 2.30 2.21 2.13 2.07	2.01 1.96 1.92 1.88 1.84	1.81 1.78 1.76 1.73 1.73	1.69 1.67 1.65 1.64 1.62	1.51 1.39 1.25 1.00
120	53. 19.5 8.55 5.66 4.40	3.70 3.27 2.97 2.75 2.75	2.45 2.34 2.25 2.18 2.11	2.06 2.01 1.97 1.93 1.90	1.87 1.84 1.81 1.79	1.73 1.73 1.71 1.70 1.68	1.58 1.47 1.35 1.22
09	52. 19.5 8.57 6.69 4.43	3.74 3.30 3.01 2.79 2.62	2.49 2.38 2.30 2.22 2.16	2.11 2.06 2.02 1.98 1.95	1.92 1.89 1.86 1.84 1.82	1.80	1.64 1.53 1.43 1.32
40	51. 19.5 8.59 5.72 4.46	3.77 3.34 3.04 2.83 2.66	2.53 2.43 2.34 2.27 2.20	2.15 2.10 2.06 2.03 1.99	1	1.84 1.82 1.82 1.81 1.79	1.69 1.59 1.50 1.39
30	250. 2 19.5 8.62 5.75 4.50	3.81 3.38 3.08 2.86 2.70	2.57 2.47 2.38 2.31 2.25	2.19 2.15 2.07 2.04	2.01 1.98 1.96 1.94 1.92	1.90 1.88 1.87 1.85 1.85	1.74 1.65 1.55 1.46
24	249. 19.5 8.64 5.77 4.53		2.61 2.51 2.42 2.35 2.29	2.24 2.19 2.15 2.11 2.08	2.05 2.03 2.00 1.98	1.95 1.93 1.91 1.90 1.89	1.79 1.70 1.61 1.52
80	248. 2 19.4 8.66 5.80 4.56	3.87 3.44 3.15 2.94 2.77	2.65 2.54 2.46 2.39 2.33	2.28 2.23 2.19 2.16 2.16	2.10 2.07 2.05 2.03 2.03	1.99 1.97 1.96 1.94 1.93	1.84 1.75 1.66 1.57
15	246. 19.4 19.4 8.70 5.86 4.62	3.94 3.51 3.22 3.01 2.84	2.72 2.62 2.53 2.46 2.40	2.35 2.31 2.27 2.23 2.23	2.18 2.15 2.13 2.11 2.09	2.07 2.06 2.03 2.03 2.01	1.92 1.84 1.75 1.67
12	244. 19.4 8.74 5.91 4.68	4.00 3.57 3.28 3.07 2.91	2.79 2.69 2.60 2.53 2.48	2.42 2.38 2.34 2.31 2.28	2.25 2.23 2.20 2.18 2.16	2.15 2.13 2.12 2.10 2.09	2.00 1.92 1.83 1.75
10	242. 19.4 8.79 5.96 4.74	4.06 3.64 3.35 3.14 2.98	2.85 2.75 2.67 2.60 2.54	2.49 2.45 2.41 2.38 2.35	2.32 2.30 2.27 2.25 2.25	2.22 2.20 2.19 2.19 2.18	2.08 1.99 1.91 1.83
6	241	0.88 8.89.89	2.90 2.80 2.71 2.65 2.65	2.54 2.49 2.46 2.42 2.39	2.37 2.34 2.32 2.30 2.28	2.27 2.25 2.24 2.24 2.22 2.21	2.12 2.04 1.96 1.88
8	239. 19.4 8.85 6.04 4.82	15 73 73 70 70	2.95 2.85 2.77 2.70 2.64	2.59 2.55 2.51 2.48 2.48	2.42 2.40 2.37 2.36 2.34	2.32 2.31 2.29 2.28 2.28	2.18 2.10 2.02 1.94
7	237. 19.4 8.89 6.09 4.88	I	3.01 2.91 2.83 2.76 2.71	2.66 2.61 2.58 2.54 2.51	2.49 2.44 2.42 2.42 2.40	2.39 2.37 2.36 2.35 2.35	2.25 2.17 2.09 2.01
9	234. 19.3 8.94 6.16 4.95		3.09 3.00 2.92 2.85 2.79	2.74 2.70 2.66 2.63 2.63	2.57 2.55 2.53 2.53 2.51	2.47 2.46 2.45 2.43 2.43	2.34 2.25 2.18 2.10
ى	1 8 51 0 0 1	4.39 3.69 3.48 3.33	3.20 3.11 3.03 2.96 2.96	2.85 2.81 2.77 2.74 2.74	2.68 2.66 2.64 2.62 2.60	2.59 2.57 2.56 2.55 2.55	2.45 2.37 2.29 2.21
4	25. 19.2 9.12 6.39 6.39	4.12 3.84 3.63 3.48	3.26 3.26 3.18 3.11 3.06	3.01 2.96 2.93 2.93 2.87	2.84 2.82 2.80 2.80 2.78 2.76	2.74 2.73 2.71 2.70 2.69	2.61 2.53 2.45 2.37
ო	116. 19.2 9.28 6.59 6.59	4.76 4.35 4.07 3.86 3.71	3.59 3.49 3.41 3.34 3.29	3.24 3.20 3.16 3.13 3.10	3.07 3.05 3.03 3.03 3.01 2.99	2.98 2.96 2.95 2.93 2.93	2.84 2.76 2.68 2.60
67	200. 19.0 9.55 6.94	5.14 4.74 4.46 4.26 4.26	3.98 3.89 3.81 3.74 3.68	3.63 3.59 3.55 3.49	3.47 3.44 3.42 3.40 3.39	3.37 3.35 3.34 3.33	3.23 3.15 3.07 3.00
-	5,17,5	5.99 5.59 5.32 5.12 6.4	4.84 4.75 4.67 4.60 4.50	4.49 4.41 4.41 4.38	4.32 4.28 4.28 4.26 4.24	4.23 4.21 4.20 4.18 4.17	4.08 3.92 3.84
w	110044		11 12 13 14 15	16 17 18 20	21 22 23 24 25	26 27 28 29 30	40 60 120 8