最小二乗分類(7章)

杉山将•本多淳也

sugi@k.u-tokyo.ac.jp, jhonda@k.u-tokyo.ac.jp http://www.ms.k.u-tokyo.ac.jp

パターン認識

- ■入力パターンをカテゴリに割り当てる 識別関数を構成する問題
 - 問題に合わせて人間が識別関数を設計
 - データから自動的に識別関数を学習

統計的パターン認識

■訓練標本:属するカテゴリが既知のパターン

$$\{(x_i, y_i)\}_{i=1}^n$$

$$x_i \in \mathbf{R}^d$$
$$y_i \in \{1, 2, \dots, c\}$$

- ■統計的パターン認識:訓練標本の統計的な 性質を利用して識別関数を学習する
- ■仮定:

$$(x_i, y_i) \stackrel{\text{i.i.d.}}{\sim} p(x, y)$$

i.i.d. (independent and identically distributed) 独立に同一の分布に従う

理想的なパターン分類法

■事後確率 p(y|x): 与えられたパターン x が クラス y に属する確率

■事後確率を最大にするカテゴリにパターンを 分類すれば、パターンの誤識別率が最小に なる.

$$f(x) = \arg\max_{y} p(y \mid x)$$

■実際には事後確率は未知なので、訓練標本から推定しなければならない.

識別モデルの学習 = 関数近似

訓練標本から真の関数にできるだけ近い関数を求める

パターン認識では $y \in \{1, 2, ..., c\}$ であるが、 上記の図は $y \in \mathbb{R}$ (回帰)に対応している.

■線形モデル:
$$f_{m{ heta}}(m{x}) = \sum_{j=1}^{o} heta_j \phi_j(m{x})$$

 $\{\phi_j(x)\}_{j=1}^b$:基底関数

■カーネルモデル:

ガウスカーネル

$$f_{m{ heta}}(m{x}) = \sum_{j=1}^n heta_j K(m{x},m{x}_j)$$

$$f_{oldsymbol{ heta}}(oldsymbol{x}) = \sum_{j=1}^n heta_j K(oldsymbol{x}, oldsymbol{x}_j) \ K(oldsymbol{x}, oldsymbol{c}) = \exp\left(-rac{\|oldsymbol{x} - oldsymbol{c}\|^2}{2h^2}
ight)$$

最小二乗回帰

■訓練出力との二乗誤差を最小にする:

$$\min_{\boldsymbol{\theta}} \sum_{i=1}^{n} \left(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i) - y_i \right)^2$$

ℓ2-拘束付き最小二乗回帰

■モデルを超球に限定することにより 過適合を回避

$$\min_{\boldsymbol{\theta}} \sum_{i=1}^{n} \left(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i) - y_i \right)^2 \text{ subject to } \|\boldsymbol{\theta}\|^2 \leq R$$

 $R \ge 0$

様々な損失と拘束の組み合わせ9

■線形モデル/カーネルモデルに対する学習法:

拘束条件損失関数		無し	ℓ₂-拘束	ℓ₁-拘束
			正則化	正則化&スパース
ℓ₂-損失 有效	边	解析解	解析解	二次計画
フーバー損失		二次計画	二次計画	二次計画
ℓ₁-損失 ロバ	スト	線形計画	二次計画	線形計画

■モデルや正則化パラメータは交差確認法で決定.

講義の流れ

- 1. 最小二乗回帰による分類
- 2. フィッシャー判別分析
- 3. 多クラスの分類問題
- 4. 0/1-損失とマージン

2クラスの分類問題

- ■ラベル付き訓練データ: $\{(\boldsymbol{x}_i, y_i)\}_{i=1}^n$
 - ullet 入力 $oldsymbol{x}$ はd次元の実ベクトル $oldsymbol{x} \in \mathbb{R}^d$
 - 出力 y は2値のクラスラベル $y \in \{+1, -1\}$

分離境界

■クラス間の分離境界を求めたい

2クラスの分類問題

■2クラス分類問題は2値関数の近似問題と等価:

■回帰学習法が分類にも使える!

回帰学習による分類

■パラメータを正則化最小二乗回帰で学習

$$\widehat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \left[\frac{1}{2} \sum_{i=1}^{n} \left(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i) - y_i \right)^2 + \frac{\lambda}{2} \|\boldsymbol{\theta}\|^2 \right]$$

 $\lambda \ (\geq 0)$: 正則化パラメータ

■テストパターンの分類:

$$\widehat{y} = \operatorname{sign} \left(f_{\widehat{\boldsymbol{\theta}}}(\boldsymbol{x}) \right) = \begin{cases} +1 & (f_{\widehat{\boldsymbol{\theta}}}(\boldsymbol{x}) > 0) \\ 0 & (f_{\widehat{\boldsymbol{\theta}}}(\boldsymbol{x}) = 0) \\ -1 & (f_{\widehat{\boldsymbol{\theta}}}(\boldsymbol{x}) < 0) \end{cases}$$

実行例

■ガウスカーネルモデル

$$f_{oldsymbol{ heta}}(oldsymbol{x}) = \sum_{j=1}^n heta_j K(oldsymbol{x}, oldsymbol{x}_j)$$

$$K(\boldsymbol{x}, \boldsymbol{c}) = \exp\left(-\frac{\|\boldsymbol{x} - \boldsymbol{c}\|^2}{2h^2}\right)$$

に対して、正則化最小二乗回帰を用いた 分類アルゴリズムを実装する

実行例(続き)

```
clear all; rand('state',0); randn('state',0);
n=200; a=linspace(0,4*pi,n/2);
u=[a.*cos(a) (a+pi).*cos(a)]'+1*rand(n,1);
v=[a.*sin(a) (a+pi).*sin(a)]'+1*rand(n,1);
x=[u \ v]; y=[ones(1,n/2) -ones(1,n/2)]';
x2=sum(x.^2,2); hh=2*1^2; l=0.01;
k=exp(-(repmat(x2,1,n)+repmat(x2',n,1)-2*x*x')/hh);
t=(k^2+1*eye(n))*(k*y);
m=100; X=linspace(-15,15,m)'; X2=X.^2;
U=exp(-(repmat(u.^2,1,m)+repmat(X2',n,1)-2*u*X')/hh);
V = \exp(-(repmat(v.^2,1,m)+repmat(X2',n,1)-2*v*X')/hh);
figure(1); clf; hold on; axis([-15 15 -15 15]);
contourf(X,X,sign(V'*(U.*repmat(t,1,m))));
plot(x(y==1,1),x(y==1,2),'bo');
plot(x(y==-1,1),x(y==-1,2),'rx');
colormap([1 0.7 1; 0.7 1 1]);
```

実行例(続き)

■複雑な分離境界もうまく求められる

ガウスカーネル最小二乗分類による手書き数字認識

- ■16×16画素, 各画素の濃度は0から255
 - 訓練標本: 1と2の各500文字ずつ計1000文字
 - テスト標本: 1と2の各200文字ずつ計400文字

手書き数字データの読み込み

■以下からファイルをダウンロードする:

http://www.ms.k.u-tokyo.ac.jp/software/SML.zip

■次のようにして手書き数字のデータを読み込む.

load digit.mat

- ■そうすると、XとTという変数が読み込まれる.
 - X:訓練用の文字データ
 - T:テスト用の文字データ
- ■読み込まれた変数はwhosコマンドで確認できる.

> whos			
Name	Size	Bytes	Class
Т	256x200x10	4096000	double
X	256x500x10	10240000	double

手書き数字データの詳細

- ■XとTは3次元の超行列である. これは 引数を3つ取る行列のことであり, 3×3 行列ではない.
- ■一つの手書き文字データは256次元の ベクトルで表されている.
- ■これは16×16画素の 画像データを一列に 並べたベクトルであり、 それぞれの要素は -1から1までの実数を取る.

手書き数字データの詳細

- ■値が-1のとき:画素は黒
- ■値が1のとき:画素は白
- ■X:0から9からまでの各数字が500文字ずつ
- ■T:0から9からまでの各数字が200文字ずつ
- ■例えば、23番目の訓練用の手書き数字5の データを変数xに取り出すときは

$$x=X(:,23,5);$$

とすればよい.

■手書き数字0のデータは、3番目の引数が10の場合に対応するので注意すること。

手書き数字データの表示

■取り出した手書き文字のデータの画像は、 以下のようにして表示することができる。

imagesc(reshape(x,[16 16])')
colormap(gray)

実行例(続き)

```
clear all; rand('state',0); randn('state',0);
load digit.mat
x=[X(:,:,1) \ X(:,:,2)]; \ y=[ones(500,1); -ones(500,1)];
n=length(y); x2=sum(x.^2,1); hh=2*10^2; l=1;
k = \exp(-(repmat(x2,n,1) + repmat(x2',1,n) - 2*x'*x)/hh);
t=(k^2+1*eye(n))*(k*y);
u=T(:,:,1); % Test patterns 1
v = \exp(-(repmat(x2,200,1) + repmat(sum(u.^2,1)',1,n) -
2*u'*x)/hh)*t;
C(1,1)=sum(sign(v)>=0); C(1,2)=sum(sign(v)<0);
u=T(:,:,2); % Test patterns 2
v = \exp(-(repmat(x2,200,1) + repmat(sum(u.^2,1)',1,n) -
2*u'*x)/hh)*t;
C(2,1)=sum(sign(v)>=0); C(2,2)=sum(sign(v)<0);
```

実験結果

■399/400=99. 75%の正解率

予測したカテゴリ

止
解
门十
σ
1
/)
テ
<u> </u>
IJ

	1	2
1	199	1
2	0	200

講義の流れ

- 1. 最小二乗回帰による分類
- 2. フィッシャー判別分析
- 3. 多クラスの分類問題
- 4. 0/1-損失とマージン

生成モデルに基づく分類

■クラス事後確率を最大にするように分類:

$$\underset{y}{\text{arg max}} p(y \mid x)$$

■ベイズの公式により、識別モデルを生成 モデルで表現し、分解:

$$p(y|x) = \frac{p(x|y)p(y)}{p(x)} \propto p(x,y) = p(x|y)p(y)$$

識別モデル 生成モデル 条件付き確率 事前確率

■対数をとると

$$\log p(y \mid x) = \log p(x \mid y) + \log p(y) + C$$

$$C = -\log p(x)$$
:定数

事前確率と条件付き確率の推定26

事前確率 p(y): クラス y に含まれる訓練標本の割合で推定

$$\hat{p}(y) = \frac{n_y}{n}$$

 n_y : クラスy に属する訓練標本数

条件付き確率 p(x|y): ガウスモデルを仮定し, 期待値と共分散行列を 最尤推定

$$q(x; \mu_y, \Sigma_y) = \frac{1}{(2\pi)^{d/2} \det(\Sigma_y)^{1/2}} \exp\left(-\frac{1}{2} (x - \mu_y)^T \Sigma_y^{-1} (x - \mu_y)\right)$$

最尤推定法

- 最尤推定法(maximum likelihood estimation): 手元にある訓練標本が最も生起しやすいようにパラメータ値を決める方法
 - "最も尤もらしいようにパラメータの値を決める"
- ■訓練標本 $\{x_i\}_{i=1}^n$ がモデル $q(x;\theta)$ から生起する確率:

$$p(x_1, x_2, ..., x_n) = \prod_{i=1}^n q(x_i; \theta)$$

■ 尤度(likelihood):これを θ の関数とみたもの

$$L(\theta) = \prod_{i=1}^{n} q(x_i; \theta)$$

最尤推定法(続き)

■尤度を最大にするようにパラメータの値を決定

$$\hat{\theta}_{ML} = \underset{\theta \in \Theta}{\operatorname{arg\,max}} \ L(\theta)$$

$$L(\theta) = \prod_{i=1}^{n} q(x_i; \theta)$$

対数をとった対数尤度を用いることもある:

$$\hat{\theta}_{ML} = \underset{\theta \in \Theta}{\operatorname{arg\,max}} \log L(\theta)$$

$$\log L(\theta) = \sum_{i=1}^{n} \log q(x_i; \theta)$$

数学演習

■ ガウスモデル
$$q(x; \mu, \Sigma) = \frac{1}{(2\pi)^{d/2} \det(\Sigma)^{1/2}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$$

の訓練標本 $\{x_i\}_{i=1}^n$ に対する最尤推定量は

$$\hat{\mu}_{ML} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\hat{\mu}_{ML} = \frac{1}{n} \sum_{i=1}^{n} x_i \qquad \hat{\Sigma}_{ML} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \hat{\mu}_{ML})(x_i - \hat{\mu}_{ML})^T$$

で与えられることを示せ:

■ ヒント: ベクトルや行列での微分の公式

$$\frac{\partial}{\partial \mu} \mu^T \Sigma \mu = 2\Sigma \mu \qquad \frac{\partial}{\partial \mu} \mu^T \Sigma x = \Sigma x$$

$$\frac{\partial}{\partial \mu} \mu^T \Sigma x = \Sigma x$$

$$\frac{\partial}{\partial \Sigma} x^T \Sigma^{-1} x = -\Sigma^{-1} x x^T \Sigma^{-1} \qquad \frac{\partial}{\partial \Sigma} \log \det(\Sigma) = \Sigma^{-1}$$

$$\frac{\partial}{\partial \Sigma} \log \det(\Sigma) = \Sigma^{-1}$$

解答例

対数尤度

$$\log L(\mu, \Sigma) = \sum_{i=1}^{n} \left(-\frac{d}{2} \log 2\pi - \frac{1}{2} \log \det(\Sigma) - \frac{1}{2} (x_i - \mu)^T \Sigma^{-1} (x_i - \mu) \right)$$

$$= -\frac{nd}{2} \log 2\pi - \frac{n}{2} \log \det(\Sigma) - \frac{1}{2} \sum_{i=1}^{n} (x_i - \mu)^T \Sigma^{-1} (x_i - \mu)$$

尤度方程式:

$$\frac{\partial}{\partial \mu} \log L(\mu, \Sigma) = -n\Sigma^{-1}\mu + \Sigma^{-1} \sum_{i=1}^{n} x_i = 0$$

$$\frac{\partial}{\partial \Sigma} \log L(\mu, \Sigma) = -\frac{n}{2} \Sigma^{-1} + \frac{1}{2} \sum_{i=1}^{n} \Sigma^{-1} (x_i - \mu)(x_i - \mu)^T \Sigma^{-1} = 0$$

これを解けば答えが得られる.

事前確率と条件付き確率の推定31

■クラス y の期待値ベクトルの最尤推定量:

$$\hat{\mu}_{y} = \frac{1}{n_{y}} \sum_{i:y_{i}=y} x_{i}$$
 $\sum_{i:y_{i}=y} : y_{i} = y$ を満たす i に関する和

■各クラスの分散共分散行列が等しいと仮定した ときの共通の分散共分散行列 Σ の最尤推定量は 次式で与えられる: $\Sigma_1 = \Sigma_2 = \Sigma$

$$\hat{\Sigma} = \frac{1}{n} \sum_{y=-1,+1} \sum_{i:y_i=y} (x_i - \hat{\mu}_y)^T (x_i - \hat{\mu}_y)$$

フィッシャー判別分析

$$\log p(y \mid x) = \log p(x \mid y) + \log p(y) + C$$

■対数事後確率:

$$\log \hat{p}(y \mid x) = -\frac{1}{2}x^{T}\hat{\Sigma}^{-1}x + \hat{\mu}_{y}^{T}\hat{\Sigma}^{-1}x - \frac{1}{2}\hat{\mu}_{y}^{T}\hat{\Sigma}^{-1}\hat{\mu}_{y} - \frac{1}{2}\log\det(\hat{\Sigma}) + \log n_{y} + C'$$

$$= \hat{\mu}_{y}^{T} \hat{\Sigma}^{-1} x - \frac{1}{2} \hat{\mu}_{y}^{T} \hat{\Sigma}^{-1} \hat{\mu}_{y} + \log n_{y} + C''$$

■決定境界 $\hat{p}(y=+1|x)=\hat{p}(y=-1|x)$ は一次形式:

$$a^{T}x + b = 0$$
 $a = \hat{\Sigma}^{-1}(\hat{\mu}_{+1} - \hat{\mu}_{-1})$

$$b = -\frac{1}{2} (\hat{\mu}_{+1}^T \hat{\Sigma}^{-1} \hat{\mu}_{+1} - \hat{\mu}_{-1}^T \hat{\Sigma}^{-1} \hat{\mu}_{-1}) + \log(n_{+1}/n_{-1})$$

最小二乗分類と フィッシャー判別分析の関係

- ■設定:
 - •訓練標本入力の平均がゼロとする:

$$\frac{1}{n}\sum_{i=1}^n \boldsymbol{x}_i = \mathbf{0}$$

• 2値の出力値を次のように設定:

$$y \in \{+1, -1\}$$
 $y \in \left\{+\frac{n}{n_{+}}, -\frac{n}{n_{-}}\right\}$

 n_y :クラスyに属する訓練標本数

入力 x に関する線形モデルを使用:

$$f_{m{ heta}}(m{x}) = m{ heta}^ op m{x}$$

最小二乗分類と フィッシャー判別分析の関係

■前ページの設定のもと、最小二乗分類

$$\widehat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \frac{1}{2} \sum_{i=1}^{n} \left(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i) - y_i \right)^2$$

によって得られる識別境界の向きは

$$\widehat{oldsymbol{\Sigma}}^{-1}(\widehat{oldsymbol{\mu}}_{+}-\widehat{oldsymbol{\mu}}_{-})$$

■これはフィッシャー判別分析と同じ!

証明は 宿題

講義の流れ

- 1. 最小二乗回帰による分類
- 2. フィッシャー判別分析
- 3. 多クラスの分類問題
- 4. 0/1-損失とマージン

多クラスの分類問題

- ■3つ以上のクラスを扱う分類問題
 - 数字認識:10クラス
 - アルファベット認識: 26クラス
 - 漢字認識:数千クラス
- ■方法によっては、多クラス分類問題を直接解く のが困難なことがある(例:最小二乗法)
- ■多クラスの分類問題を複数の2クラス問題に 分解する
 - •一対他法,一対一法

一対他法

- ■「一つのクラス」と「残り」の2クラス問題に分解
- ■最大のスコアを与えるクラスに分類

一対一法

- ■「一つのクラス」と「他の一つのクラス」の 2クラス問題に分解
- ■投票による多数決で分類するクラスを決める

$$\operatorname{sign}\left(\widehat{f}_{y,y'}(\boldsymbol{x})\right) = \begin{cases} +1 & \text{クラス } y \text{ に一票} \\ 0 & \text{投票しない} \\ -1 & \text{クラス } y' \text{ に一票} \end{cases}$$

	クラス1	クラス2	クラス3	• • •	クラスc
クラス1		$\widehat{f}_{1,2}$	$\widehat{f}_{1,3}$	• • •	$\widehat{f}_{1,c}$
クラス2			$\widehat{f}_{2,3}$	• • •	$\widehat{f}_{2,c}$
クラス3				• • •	$\widehat{f}_{3,c}$
•					•
クラスc					

多クラスの分類問題

- ■多クラス分類問題を直接解く
 - 方法によっては不可能なことがある
- ■一対他法により2クラス問題に分解
 - c個の2クラス問題を解くだけでよい
 - 1個の2クラス問題に全ての訓練標本が含まれる
 - 2クラスの訓練標本数がアンバランス
- ■一対一法により2クラス問題に分解
 - c(c+1)/2個の2クラス問題を解く必要がある
 - 1個の2クラス問題の訓練標本数は少ない
 - 投票の仕方に任意性がある
- ■どの方法が良いかは状況による

講義の流れ

- 1. 最小二乗回帰による分類
- 2. フィッシャー判別分析
- 3. 多クラスの分類問題
- 4. 0/1-損失とマージン

0/1-損失関数とマージン

■分類問題では、学習した関数の符号だけが必要

$$\widehat{y} = \operatorname{sign}\left(f_{\widehat{\boldsymbol{\theta}}}(\boldsymbol{x})\right)$$

■ℓ2-損失でなく, 0/1-損失の方が自然

$$J_{0/1}(\boldsymbol{\theta}) = \frac{1}{2} \sum_{i=1}^{n} \left(1 - \operatorname{sign}\left(m_i\right)\right)$$
 $m_i = f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)y_i$ マージン

- $\operatorname{sign}(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)) = \operatorname{sign}(y_i)$ $\operatorname{sign}(m_i) = 1$
- $\operatorname{sign}(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)) \neq \operatorname{sign}(y_i)$
- $= J_{0/1}(\theta)$ は誤分類標本数に相当.

0/1-損失関数とマージン

$$J_{0/1}(\boldsymbol{\theta}) = \frac{1}{2} \sum_{i=1}^{n} (1 - \text{sign}(m_i))$$

- ■0/1-損失は誤分類標本数に対応
 - マージンが正なら誤差O
 - マージンが負なら誤差1
- ■分類の損失としては理想的
 - しかし傾きを持たない 離散的な関数
- ■0/1-損失の最小化はNP困難
 - 現実的な時間では不可能

数学演習

■ℓ2-損失関数をマージンを用いて表せ

$$\frac{1}{2} \left(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i) - y_i \right)^2 \quad m_i = f_{\boldsymbol{\theta}}(\boldsymbol{x}_i) y_i$$

■ヒント: $y_i = \pm 1$ を用いる

解答例

$$\frac{1}{2} \left(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i) - y_i \right)^2 = \frac{1}{2} \left(y_i \left(\frac{f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)}{y_i} - 1 \right) \right)^2$$

$$= \frac{y_i^2}{2} \left(\frac{f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)}{y_i} - 1 \right)^2 \qquad y_i^2 = 1$$

$$= \frac{1}{2} \left(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i) y_i - 1 \right)^2 \quad 1/y_i = y_i$$

$$= \frac{1}{2} (1 - m_i)^2 \qquad m_i = f_{\boldsymbol{\theta}}(\boldsymbol{x}_i) y_i$$

ℓ2-損失とマージン

- ■ℓ2-損失関数は連続関数で扱いやすい
- ■負のマージンを正(+1)にしようとする
- ■正の大きいマージンを+1に減らそうとする

ℓ2-損失の問題点

■正の大きいマージンを+1に減らそうとすることにより、下記のデータを正しく分離できない

代理損失

- = 0/1-損失の代理として使う損失は、 単調非増加で m = 0 での傾きが 負のものがよい
 - 負のマージンを正にしようとする
 - 正のマージンは減らさない

代理損失

■機械学習では、様々な代理損失が用いられる

講義の流れ

- 1. 最小二乗回帰による分類
- 2. フィッシャー判別分析
- 3. 多クラスの分類問題
- 4. 0/1-損失とマージン

まとめ

- ■最小二乗回帰によって分類問題が解ける
- ■入力に関する線形モデルに対しては、 フィッシャー判別分析と同等
- ■多クラスの場合は、一対他か一対一により 複数の2クラス問題に分解
- ■ℓ2-損失は0/1-損失の代理としてはあまり 良い近似ではない

次回の予告

■サポートベクトル分類(8章)

宿題1

■以下の設定のもと、最小二乗分類に

$$\widehat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \frac{1}{2} \sum_{i=1}^{n} \left(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i) - y_i \right)^2$$

よって得られる識別境界の向きは、フィッシャー

判別分析と同じ $\widehat{oldsymbol{\Sigma}}^{-1}(\widehat{oldsymbol{\mu}}_+ - \widehat{oldsymbol{\mu}}_-)$ であることを示せ :

• 訓練標本入力の平均はゼロ:

$$\frac{1}{n}\sum_{i=1}^n \boldsymbol{x}_i = \mathbf{0}$$

宿題1(続き)

• 2値の出力値を次のように設定:

$$y \in \{+1, -1\}$$

$$y \in \left\{ +\frac{n}{n_{+}}, -\frac{n}{n_{-}} \right\}$$

 n_y :クラスyに属する訓練標本数

入力 x に関する線形モデルを使用:

$$f_{m{ heta}}(m{x}) = m{ heta}^ op m{x}$$

Lント: $\widehat{oldsymbol{ heta}} = (oldsymbol{X}^ op oldsymbol{X})^{-1} oldsymbol{X}^ op oldsymbol{y}$

$$\widehat{oldsymbol{\Sigma}} = rac{1}{n} \sum_{i=1}^n oldsymbol{x}_i oldsymbol{x}_i^ op = rac{1}{n} oldsymbol{X}^ op oldsymbol{X} \quad \widehat{oldsymbol{\mu}}_y = rac{1}{n_y} \sum_{i: y_i = y} oldsymbol{x}_i$$

$$oldsymbol{X} = (oldsymbol{x}_1, \dots, oldsymbol{x}_n)^{ op}$$

$$\widehat{\boldsymbol{\mu}}_y = rac{1}{n_y} \sum_{i:y_i=y} \boldsymbol{x}_i$$

$$\boldsymbol{y} = (y_1, \dots, y_n)^{\top}$$

宿題2

- ■訓練標本:0~9まで各500文字ずつ計5000文字
- ■テスト標本:各200文字ずつ計2000文字
- ■ガウスカーネルに対する最小二乗回帰により、 パターン認識を行え

宿題2(続き)

OctaveやMATLAB以外の言語を使う学生は、

http://www.ms.k.u-tokyo.ac.jp/software/digit.zipから入手できるcsv形式の手書き数字データを用いる

- このzipファイルには、digit_train0.csv, digit_test0.csvなど、訓練用とテスト用の各数字 データが格納された20個のファイルが含まれている
- 各ファイルの各行には、数字画像に対応する256個の数値がコンマで区切られて並んでいる
 - -1,-1,-1,-0.99995,-0.99593... <一 1文字目
 - -1,-0.99998,-0.99923,-0.98674,... <一 2文字目

宿題2(続き)

■実行例:1908/2000=95.4%の正解率

予測したカテゴリ

	1	2	3	4	5	6	7	8	9	0
1	199	1	0	0	0	0	0	0	0	0
2	0	191	0	6	0	0	2	1	0	0
3	0	0	189	0	5	0	2	4	0	0
4	1	0	0	185	0	4	0	1	9	0
5	0	1	4	2	187	0	0	0	4	2
6	0	2	0	1	1	195	0	0	0	1
7	1	1	0	4	0	0	188	0	6	0
8	1	1	6	1	3	0	0	185	2	1
9	1	0	0	1	0	0	3	2	193	0
0	0	1	0	0	0	3	0	0	0	196

正解のカテゴリ