



## **Cansat 2013 PDR Outline**

Team #: 1300

**Team Frequency** 



#### **Presentation Outline**



- 1. About The Team
  - 1.1 Team Composition [5]
  - 1.2 Internal Organization [6]
  - 1.3 Acronyms [7]
- 2. System Overview Presenter: Syed Tabish Abbas
  - 2.1 Mission Summary [9]
  - 2.2 System Requirement [10-12]
  - 2.3 System Concept of Operations [13-18]
  - 2.4 Physical Layout of Cansat [20-25]
  - 2.5 System Level Cansat Configuration [26]
- 3. Sensor Systems Design Presenter: Rahul Gupta
  - 3.1 Sensor Subsystem Overview [28]
  - 3.2 Sensor Subsystem Requirements [29]
  - 3.3 GPS Sensor Selection [30]
  - 3.4 Non-GPS Altitude Sensor Selection [31-32]
  - 3.5 Air Temperature Selection [33]
  - 3.6 Impact Force Sensor [34-35]
  - 3.7 Xbee Selection [36]
- 4. Descent Control Design Presenter: Siddharth Singh
  - 4.1 Descent Control Overview [38]
  - 4.2 Descent Control Requirements [39]
  - 4.3 Descent Control Strategy [40]
  - 4.4 Material For Wing Selection [41]
  - 4.5 Descent Rate Estimates [42-43]
  - 4.6 Cansat Detachment Strategy [44]

Presenter: Syed Tabish Abbas Cansat 2013 PDR: Team 1300 (Frequency)



#### **Presentation Outline**



- 5. Mechanical Systems Design Presenter: Jaswanth Reddy
  - 5.1 Mechanical Systems Overview [46]
  - 5.2 Mechanical Systems Requirement [47]
  - 5.3 Egg Protection Mechanisms [48-49]
  - 5.4 Mechanical Layout of Components [50]
  - 5.5 Estimated Mass Budget [51]
- 6. Communication and Data Handling Subsystem Design Presenter: Gauresh Patil
  - 6.1 CDH Overview [53-54]
  - 6.2 CDH Requirements [55-57]
  - 6.3 Processor Selection [58]
  - 6.4 Memory Selection [59]
  - 6.5 Carrier Antenna Selection [60]
  - 6.6 Communication Configuration [61]
  - 6.7 Carrier Telemetry Format [62]
  - 6.8 Autonomous Termination of Transmissions [63]
  - 6.9 Locator Device Selection [64]
- 7. Electrical Power System Design Presenter: Shashank Wadhwa
  - 7.1 EPS Overview [66]
  - 7.2 EPS Requirements [67]
  - 7.3 Cansat Electrical Block Diagram [68]
  - 7.4 Power Control [69]
  - 7.5 Power Budget [70-71]
  - 7.6 Power Source Selection [72]
  - 7.7 Battery Voltage Measurement [73]
  - 7.8 EPS Testing Overview [74]

Presenter: Syed Tabish Abbas Cansat 2013 PDR: Team 1300 (Frequency)



#### **Presentation Outline**



- 8. Flight Software Design Presenter: Rakesh N R
  - 8.1 FSW Overview [76-77]
  - 8.2 FSW Requirements [78]
  - 8.3 Software Flow Diagram [79]
  - 8.4 Sensor Update [80]
- 9. Ground Control System Design Presenter: Rakesh N R
  - 9.1 GCS Overview [82]
  - 9.2 GCS Requirements [83]
  - 9.3 Antenna Selection [84]
- 10. Cansat Integration and Test Presenter: Syed Tabish Abbas
  - 10.1 Integration of Cansat Subsystem [86]
  - 10.2 Tests Performed [87-89]
  - 10.3 Tests to be Performed [90]
- 11. Mission Operation and Analysis Presenter: Siddharth Singh
  - 11.1 Overview of Mission Sequence of Events [92]
  - 11.2 Landing Coordinate Prediction [93]
  - 11.3 Cansat Location and Recover [94]
- 12. Management Presenter: Siddharth Singh
  - 12.1 Cansat Budget [96]
  - 12.3 Program Schedule [97-98]
  - 12.4 Mechanical Team Schedule [99-100]
- 14. Conclusions [101]



# **Team Organization**



| No. | Name              | Year of study      | Position                                      | Contact details                      |
|-----|-------------------|--------------------|-----------------------------------------------|--------------------------------------|
| 1   | Syed Tabish Abbas | 3 <sup>rd</sup> yr | Team Leader<br>Electronics Team lead          | syed.abbas@students.iiit.ac.in       |
| 2   | Rakesh N R        | 3 <sup>rd</sup> yr | Alternate Team Leader<br>Mechanical Team Lead | rakesh.r@students.iiit.ac.in         |
| 3   | Rahul Gupta       | 3 <sup>rd</sup> yr | Member, Electronics<br>Team                   | rahul.g@students.iiit.ac.in          |
| 4   | Siddharth Singh   | 3 <sup>rd</sup> yr | Member, Mechanical<br>Structure Team          | siddharth.singh@students.iiit.ac.in  |
| 5   | Gauresh Patil     | 3 <sup>rd</sup> yr | Member, Electronics<br>Team                   | gauresh.patil@students.iiit.ac.in    |
| 6   | Shashank Wadhwa   | 3 <sup>rd</sup> yr | Member, Mechanical<br>Structure Team          | wadhwa.lekhraj@students.iiit.ac.in   |
| 7   | Jaswanth Reddy    | 3 <sup>nd</sup> yr | Member, Mechanical<br>Structure Team          | jaswanth.gangula@students.iiit.ac.in |
| 8   | Akshat Khandelwal | 2 <sup>nd</sup> yr | Member, Electronics<br>Team                   | akshat.k@students.iiit.ac.in         |
| 9   | Priya Bansal      | 2 <sup>nd</sup> yr | Member, Mechanical<br>Structure Team          | priya.bansal@students.iiit.ac.in     |

Presenter: Syed Tabish Abbas Cansat 2013 PDR: Team 1300 (Frequency)



#### **Internal Organization**





Presenter: Syed Tabish Abbas

Cansat 2013 PDR: Team 1300 (Frequency)



#### **Acronyms**



➤ M Mission➤ S Sensor

**≻MS** Mechanical System

**▶DCS** Descent Control System

➤ CDH Command and Data Handling➤ EPS Electrical and Power system

**≻FSW** Flight Software

➤GCS Ground control station

❖A/D Analog or Digital

❖ADC Analog digital converter

❖CLK Clock

❖CPU Central processing unit

❖EEPROM Electrically Erasable Programmable Read-Only Memory

❖FCC Federal communications commission

❖g Acceleration due to gravity

❖GHz Giga hertz

❖GPS Global positioning system

❖Hz Hertz

❖ISM Industrial, scientific and medical

Kbps Kilobytes per second

❖Km Kilometer❖MHz Mega hertz

❖NiMH Nickel metal hydride❖RF Radio frequency

❖SPI Serial peripheral interface❖SRAM Static random access memory

❖USART Universal synchronous asynchronous receiver/transmitter

◆USD US Dollar◆INR Indian Rupees

Presenter: Syed Tabish Abbas

7



# **Systems Overview**

**Presenter: Syed Tabish Abbas** 



#### **Mission Summary**



#### Mission:

The mission of 2013 Cansat competition is Sensor Delivery System.

#### **Objectives:**

- To carry the hen's egg intact for the entire duration from launch to landing.
- To control the descent of the Container and maintain its speed to less than 20 m/s.
- The Container should hold the Cansat till deployment and after the Container reaches 400m after deployment, it should deploy the Cansat containing the egg.
- To control the descent of the Cansat after its deployment from the Container at the descend speed of 20 + / - 1 m/s.
- To send the telemetry data to a central ground station.

#### **Optional Objective:**

To measure the force of impact of the Cansat with the ground and store the data onboard which can later be downloaded.

Presenter: Syed Tabish Abbas



# **System Requirements**



| ID     | Requirement                                                                           | Rationale                                                                     | Priority | Parent(s) | Children            | VM |   |   |   |
|--------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------|-----------|---------------------|----|---|---|---|
|        |                                                                                       |                                                                               |          |           |                     | Α  | ı | Т | D |
| SYS-01 | Total mass of the Entire system will be 700 +/- 10gms excluding the egg               | There is always a finite limit of the mass that can be put into space         | HIGH     |           | MS01<br>DCS02       |    | X | X |   |
| SYS-02 | Container will fit in a cylindrical envelope of 130mm diameter and 250 mm in length   | Payload structure dimensions are influenced by launch vehicle characteristics | HIGH     |           | MS02,03<br>DCS 04   |    | Х |   |   |
| SYS-03 | There will be no protrusions until Container deployment from rocket payload           | Payload structure dimensions are influenced by launch vehicle characteristics | HIGH     |           | DCS-<br>01,02,03    |    | X |   |   |
| SYS-04 | Container will descent with rate of less than 20m/s and Cansat at rate of 20 +/- 1m/s | So that does not<br>get drifted away<br>by wind safe<br>landing speed         | HIGH     |           | DCS-<br>01,02,03,04 | Х  |   | X | Х |

Presenter: Syed Tabish Abbas

Cansat 2013 PDR: Team 1300 (Frequency)



# **System Requirements**



| ID     | Requirement                                                                                 | Rationale                                                                               | Priority | Parent(s) | Children                 | VM |   | M |   |
|--------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------|-----------|--------------------------|----|---|---|---|
|        |                                                                                             |                                                                                         |          |           |                          | А  | I | Т | D |
| SYS-05 | GCS will have<br>external power<br>control with<br>confirmation from<br>Cansat power state  | To avoid Battery consumption when idle and to not to tamper the Cansat while operating. | LOW      |           |                          |    | Х |   | Х |
| SYS-06 | Total cost of the<br>Cansat will not<br>exceed \$1000                                       | Every well managed<br>systems has<br>constraint, to have<br>uniformity                  | MEDIUM   |           |                          |    | X |   |   |
| SYS-07 | During descent<br>Cansat will send its<br>position along with<br>house keeping<br>telemetry | To track the health of the Cansat                                                       | HIGH     |           | S01<br>MS05<br>CDH 01,02 |    |   | X | Х |

Presenter: Syed Tabish Abbas Cansat 2013 PDR: Team 1300 (Frequency)



# **System Requirements**



| ID     | Requirement                                                                                                                                         | Rationale                                                                                                                                     | Priority | Parent(s) | Children             | VM |   |   |   |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|----------------------|----|---|---|---|
|        |                                                                                                                                                     |                                                                                                                                               |          |           |                      | Α  | I | Т | D |
| SYS-08 | Cansat will stop transmitting telemeter upon landing and it will calculate the impact force with the ground as requirement of additional objective. | To measure the impact force on the Cansat so as to estimate the amount of maximum force that the Lander can sustain in order to save the egg. | LOW      |           | S01<br>MS05<br>CDH05 |    |   | X | X |
| SYS-09 | Container and<br>Cansat should be<br>recovered safely.                                                                                              | To avoid damage to cansat structure and components so that it functions properly after landing.                                               | HIGH     |           |                      |    |   |   | Х |
| SYS-10 | Team will provide all saved telemetered data transmitted by the Cansat.                                                                             | As a part of Post<br>Flight Review so<br>as to analyze the<br>telemetered data.                                                               | MEDIUM   |           | CDH06,07,08          |    |   |   | Х |

12 Presenter: Syed Tabish Abbas





Team developed Ground Control Station















Front section tips over and the container falls out of the payload section. The Container parachute inflates and slows it down.



**Ground Control** Station receives and visualizes Descent **Data Packets** 



16 Presenter: Syed Tabish Abbas Cansat 2013 PDR: Team 1300 (Frequency)







Ground Control
Station receives and
visualizes Descent
Data Packets



Presenter: Syed Tabish Abbas Cansat 2013 PDR: Team 1300 (Frequency)





Ground Control
Station receives and
visualizes Descent
Data Packets



Cansat will measure the ground impact force after landing.



Presenter: Syed Tabish Abbas

Cansat 2013 PDR: Team 1300 (Frequency)



# **Physical Layout**

Presenter: Rakesh N R



#### **Physical Layout**







### **Physical Layout**







## **Physical Layout**



#### **Design – Front View**



Presenter: Rakesh N R





# **Physical Layout**



#### **Design – Top View**





Wings Overlapping



## **Physical Layout**



#### **Design – Isometric View**







## **Physical Layout**







### **System Level Cansat Configuration** Trade & Selection

- 1. Choice of aluminum over steel: Aluminum was chosen over steel keeping in mind the mass constraints.
- 2. The container containing the egg is kept at the bottom of the **lander** and the electronics is in the middle as we want the center of mass to be as low as possible to improve the stability of the cansat.
- 3. Wings were earlier thought to be made of aluminum, but later to have higher strength, lower mass and accurate geometry, we are thinking of using plastic/fiber material.

26 Presenter: Rakesh N R



### **Sensor Subsystem Design**

**Presenter: Rahul Gupta** 



## **Sensor Subsystem Overview**







# **Sensor Subsystem Requirements**



| ID  | Requirement                        | Rationale                                                                                     | Parent         | Children | Priority |   | V | M |   |
|-----|------------------------------------|-----------------------------------------------------------------------------------------------|----------------|----------|----------|---|---|---|---|
|     | Requirement                        | Rationale                                                                                     | raiciit        | Ciliaren | THOTICY  | Α | I | T | D |
| S01 | Measurement of barometric altitude | It is a requirement for descent telemetry                                                     | SYS -<br>08,09 |          | HIGH     | X |   | x | x |
| S02 | Measurement of air temperature.    | It is a requirement for descent telemetry                                                     | SYS -<br>08,09 | -        | HIGH     |   |   | Х | х |
| S03 | Measurement of Battery Voltage.    | Requirement for Descent<br>Telemetry and Housekeeping<br>Data                                 | SYS-<br>08,09  | -        | HIGH     |   |   | Х |   |
| S04 | GPS Location data                  | Descent Telemetry and determination of Landing                                                | SYS-<br>08,09  | -        | HIGH     | X |   | X | х |
| S05 | Acceleration Sensor                | Various events such as ejecting, mapping of motion and operational objective of landing data. | SYS –<br>08,09 | -        | MEDIUM   | X |   | x | Х |
| S06 | Audio Beacon                       | It is required to retrieve the Cansat after it has landed.                                    |                | -        | MEDIUM   |   |   |   |   |

Cansat 2013 PDR: Team 1300 (Team Frequency)

29



#### **GPS Trade & Selection**



| Manufacture<br>r | Model                         | Dimensions                  | Accuracy | Mass        | Power/voltage |
|------------------|-------------------------------|-----------------------------|----------|-------------|---------------|
| SIRF             | StarIII<br>GSC3f/LPx-<br>7989 | Length:27mm,<br>Width: 23mm | 5m       | <b>10</b> g | 75mw/3.3v     |
| Garmin           | OEM GPS 15H-<br>W             | Length:30mm,<br>Width: 30mm | 4m       | 15g         | 85mw/8-40v    |
| Global Sat       | EM-406                        | Length:30mm,<br>Width: 30mm | 3m       | 23g         | 70mw/4.5v     |



GSC3f/LPx-7989 sensor is selected because it has much more accuracy than other sensors, also it weighs less and uses less power which are other critical parameters for the selection of GPS sensor.



# Non-GPS Altitude Sensor Trade & Selection



| Manufact<br>urer | Model     | Accuracy  | Mass        | Current/volta ge | Dimensions       | A/D |
|------------------|-----------|-----------|-------------|------------------|------------------|-----|
| Freescale        | MPX6115a  | +-1.5%    | <b>25</b> g | 0.5ma/5v         | 16.6 * 7.2mm     | A   |
| Freescale        | MPXH6101A | +-1.72%   | 31g         | 97ma/10v         | 28.6 *<br>81.7mm | А   |
| Vaisala          | PTB210    | +-0.25hpa | 110g        | 55ma/6v          | 120mm *<br>30mm  | D   |



Presenter: Rahul Gupta

MPX6115a Non-GPS Altitude Sensor

MPX6115a Non-GPS Altitude Sensor is selected because it weighs less, consumes less power and is smaller than other two sensors in race.



# Non-GPS Altitude Sensor Trade & Selection



MPX6115a will act as lander pressure sensor.

Barometric pressure changes with respect to altitude and temperature

The relation between analog pressure and voltage in analog sensors is almost linear and is most of the times provided by the manufacturer

#### **Pressure from Voltage:**

$$P = 22.222 * V + 10.556 - (22.222*EF)$$



#### MPX6115a Pressure Sensor

#### **Height from Pressure:**

Presenter: Rahul Gupta

$$h(feet) = 1.4544 \times 10^5 \times \left(1 - \left(\frac{P(kPa)}{101.325kPa}\right)^{0.1902}\right)$$



#### **Air Temperature Trade & Selection**

| Product | Туре    | Operates in region | Accuracy              |
|---------|---------|--------------------|-----------------------|
| FM 75   | Digital | 0 – 100 degrees    | +-1degree Celsius     |
| LM 35   | Analog  | 0 – 100 degrees    | +- 0.5 degree Celsius |



Presenter: Rahul Gupta

- This temperature sensor is selected to fulfill the need of our mission because of it's more accuracy than FM75, low cost and easy availability.
- Other fact about using this sensor is that it is very simple to use it rather than using a digital temperature sensor which on other hand is expensive and not easily available.



# Lander Impact Force Sensor Trade & Selection



| Model      | Dimensions | Voltage/curre | Current      | Range | Accuracy | Sensitivity | A/D |
|------------|------------|---------------|--------------|-------|----------|-------------|-----|
|            |            | nt            | Power        |       |          | Due to temp |     |
|            |            | Normal mode   | saving       |       |          |             |     |
|            |            |               | mode         |       |          |             |     |
| Analog     | 15mm*25m   | 3.3V/145uA    | <b>0.1uA</b> | ±16g  | ±1%      | ±0.01%/° C  | D   |
| devices    | m          |               |              |       |          |             |     |
| ADXL345    |            |               |              |       |          |             |     |
| Free Scale | 25mm*25m   | 3.3V/500uA    | 3uA          | ± 6g  | ±5%      | ±0.03%/°    | Α   |
| Semi-      | m          |               |              |       |          | С           |     |
| conductors |            |               |              |       |          |             |     |
| MMA7260Q   |            |               |              |       |          |             |     |

The ADXL345 is digital, low weight, higher accuracy, better range and low power consumption.



# Lander Impact Force Sensor Trade & Selection



| Model    | Dimensions | Voltage/curre | Current | Range | Weight | Sensitivity  | A/D |
|----------|------------|---------------|---------|-------|--------|--------------|-----|
|          |            | nt            | Power   |       |        | Due to temp  |     |
|          |            | Normal mode   | saving  |       |        |              |     |
|          |            |               | mode    |       |        |              |     |
| Kistler  | 16mm*      | 24V/4mA       | 1uA     | +1kN  | 19g    | - 0.009%/° F | Α   |
| 9712B250 | 16mm*      |               |         |       |        |              |     |
|          | 13mm       |               |         |       |        |              |     |

Since we are worried that the cansat may rotate (due to winged structure), the accelerometer may not provide accurate results. Hence we are going for a physical sensor.

But due to requirement of extra space and very high voltage, decision has not yet been made. Decision will be taken once Accelerometer is purchased and tests are performed.





| Model             | Dimension | Voltage/curre | Indoor/ | Outdoor/   | Transmit | A/D |
|-------------------|-----------|---------------|---------|------------|----------|-----|
|                   | s         | nt            | Urbun   | RF-Line of | Power    |     |
|                   |           | Normal mode   | Range   | Sight      |          |     |
|                   |           |               |         | Range      |          |     |
| XBEE PRO®         | 33mm*24   | 3.3V/100mA    | 90 m    | 3200 m     | 63mW     | D   |
| 802.15.4(Series1) | mm        |               |         |            |          |     |
| XBee-PRO® ZB      | 21.99mm   | 3.3V/100mA    | 100m    | 3200m      | 60mW     | D   |
| SMT               | x 34mm    |               |         |            |          |     |
|                   |           |               |         |            |          |     |





# **Descent Control Design**

**Presenter: Siddharth Singh** 



#### **Descent Control Overview**



- The Descent control system will be achieved through the use of parachutes of appropriate size 22cm for Container and wings for Cansat and design keeping in mind the aerodynamics of the fall.
- Proper design and right choice of materials will be the backbone of the Descent Control System. Extreme care and precision needs to be involved in design taking care of all possibilities.
- Both Container and Cansat sections will have separate mechanisms to achieve the required constant descent speeds of 20(+/- 1)m/s.
- While the Cansat is in the payload section, the parachutes will be closed such as to occupy an allotted space.
- After deployment from the rocket airflow will cause the parachute of the carrier to inflate and the rate of descent will be controlled by the parachute.
- At the time of separation(at 400m), spring system will cause the wings of the Cansat to open.
- The spill hole at the top (1cm radius) will ensure continuous air flow through the parachute, thereby stabilizing it and ensuring descent at required speeds.

38



# **Descent Control Requirements**



|       |                                                                                           |                                                                                   | _          | <b>_</b> | Priorit    |   | V | /M |   |
|-------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------|----------|------------|---|---|----|---|
| ID    | Requirement                                                                               | Rationale                                                                         | Parent     | Children | у          | Α | _ | Т  | D |
| DCS01 | Container chutes occupy their allotted space, whatever be the orientation of the payload. | to ensure a tangle<br>free separation,<br>and proper fitting<br>while in payload. | SYS - 04   |          | HIGH       |   |   |    |   |
| DCS02 | container chute size<br>such that descent<br>rate ~20m/s                                  | Competition requirement                                                           | SYS- 01,04 |          | HIGH       |   |   |    |   |
| DCS03 | Cansat descent rate ~20m/s                                                                | Competition requirement                                                           | SYS- 04    |          | HIGH       |   |   | X  |   |
| DCS04 | Materials used to be light and flexible.                                                  | To minimize mass and volume requirements.                                         | SYS- 02    |          | MEDI<br>UM |   |   |    |   |
| DCS05 | The descent control system shall not use any flammable or pyrotechnic device.             | Safety.                                                                           |            |          | MEDI<br>UM |   |   |    |   |



# Container Descent Control Strategy Trade and Selection



#### Strategy selection

| Strategy         | Pros                                                             | Cons                                                       |
|------------------|------------------------------------------------------------------|------------------------------------------------------------|
| Use of<br>Wings  | Orientation can be easily controlled using servo motors.         | Controlling drift will not be possible using the mechanism |
| Use of parachute | Easy to design and attain required speed, low space requirement. | Drift(can be countered by a spill hole, affects area)      |

#### Material selection for parachute design

- 1. Silk- thin, light and easy to fold but expensive and not as elastic as nylon
- 2. Rip stop Nylon cloth Due to property to block air , easy availability and good elasticity.

Strings to control shape: Nylon strings - High strength, easy to use and light.

40



# Material selection for Wing design



The Possible materials for the design of the wing are

- Aluminum
- Plastic/Fiber

Presenter: Siddharth Singh

The material selection is based on the fact that the materials should be light weight and have high enough tensile strength to support the weight of the Cansat.

We have chosen to use plastic wings keeping in mind the weight constraints of the Cansat as well as the torque requirements for wing rotation.



#### **Descent Rate Estimates**



The size of the parachutes is fixed by calculation from the following relation.

$$r = sqrt( (2 m g) / (\pi p C_d v^2) )$$

#### where,

Presenter: Siddharth Singh

 $\pi = 3.14159265359$ 

 $\rho = 1.146 \text{ kg/m}^3 \text{ (density of air at 35 °C)}$ 

 $C_d = 1.5$  (drag coefficient of the chute for a hemisphere chute)

v = Terminal velocity achieved (from mission required)

r = radius of the chute

g = acceleration due to gravity



#### **Descent Rate Estimates**



The area of the wing is calculated from the following relation.

$$A = (2 \text{ m g}) / (p C_d v^2)$$

#### where,

 $\pi = 3.14159265359$ 

 $\rho = 1.146 \text{ kg/m}^3 \text{ (density of air at 35 °C)}$ 

 $C_d = 2.32$  (AS MEASURED FROM EXPERIMENT)

v =terminal velocity achieved (from mission required)

A = area of the plate

Presenter: Siddharth Singh

g = acceleration due to gravity



# **Cansat detachment strategy**







# **Mechanical Subsystem Design**

**Presenter: Jaswanth Reddy** 



## **Mechanical Subsystem Overview**



- The major components of the cansat are the egg carrier, the carrier circuit, the wing system and the sensor arrangement.
- Top layer is the wing system. The position of the wings are controlled by a servo attached underneath the cansat top cap.
- After that there is space for PCB, sensor and batteries.
- Then comes the egg container. It has a small slit for connecting the impact force sensor.
- Impact force sensor is attached to the bottom of the cansat and provided with a metal sheet for larger area of impact measurement.
- The entire body skeleton is made of <u>aluminium</u>.
- Container and Cansat are interfaced using a motor-hook system.
   The servo controlling this lies to the top of cansat top cap.

Presenter: Jaswanth Reddy Cansat 2013 PDR: Team 1300 (Frequency) 46



# **Mechanical System Requirements**



| ID   | Requirement                                                                               | Rationale                                                                                                  | Parent    | Priority |  | VM |   |   |
|------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------|----------|--|----|---|---|
|      | •                                                                                         |                                                                                                            |           |          |  | ı  | Т | D |
| MS01 | Total mass of the Cansat will be 700+/-10gms excluding egg                                | Control system relies heavily on accurate mass estimation .                                                | SYS -01   | HIGH     |  | х  | х |   |
| MS02 | Cansat will fit in a cylindrical<br>envelope of 120mm<br>diameter and 210 mm in<br>length | Payload structure<br>dimensions are influenced<br>by launch vehicle<br>characteristics                     | SYS -02   | HIGH     |  | x  |   |   |
| MS03 | There will be no protrusions until Cansat deployment from rocket payload                  | Payload structure<br>dimensions are influenced<br>by launch vehicle<br>characteristics                     | SYS -02   | HIGH     |  | x  |   |   |
| MS04 | Cansat and egg placed inside should be recovered safely.                                  | Structure should be able to withstand vibration shocks and protect the egg from breaking.                  |           | HIGH     |  |    | X | x |
| MS05 | Placement of GPS Antenna ,<br>Transceiver Antenna                                         | Placement of Sensors and<br>Antennas have to be<br>appropriate for proper<br>Transmission and<br>Reception | SYS-08,09 | MEDIUM   |  |    | x | x |
| MS06 | Ensure smooth detachment of the container and the cansat at a height of 400m.             | The wing system shouldn't be harmed.                                                                       |           | HIGH     |  | x  | X |   |

47 Presenter: Jaswanth Reddy



## **Egg Protection Trade and Selection**



#### Egg is best protected in the following conditions -

•An *Aluminum container* is used for carrying the egg. The rationale of using aluminum is as follows:

| Material     | Density<br>(gms/cc) | Tensile<br>strength<br>(GPa) | Cost<br>per square<br>meter | Availability                |
|--------------|---------------------|------------------------------|-----------------------------|-----------------------------|
| Aluminum     | inum 2.7            |                              | 59.74 \$                    | Easily available            |
| Carbon Fiber | 1.75                | 3.5                          | 651\$                       | Facility not yet identified |
| Steel        | 7.9                 | 1.3                          | 52.31 \$                    | Difficult                   |

- •The container is stuffed with *polystyrene balls* with egg in the middle.
- Sponge and paper cushions were also considered but rejected based on test observations (Refer: Egg drop test In Integrated test section).
- •Polystyrene balls provide the required cushioning to protect the egg. Polystyrene balls are inexpensive, light weight and easily available

Presenter: Jaswanth Reddy Cansat 2013 PDR: Team 1300 (Frequency) 48



# **Egg Protection Trade and selection**





Images showing the egg container region of the structure



Image shows the egg surrounded by Polystyrene balls



Presenter: Jaswanth Reddy 49



## **Mechanical Layout of Components Trade & Selection**



- The Battery and the rest of the electronics have been placed on opposite sides to ensure that center of mass remains near the center of the structure for proper balance.
- The motor-hook arrangement is placed at the center of the CanSat cross-section for smooth release.

50 Presenter: Jaswanth Reddy



# **Estimated Mass Budget**



| Item                                                  | Weight (g) |
|-------------------------------------------------------|------------|
| Mass of Skeleton (Container)                          | 225        |
| Mass of Skeleton (Cansat)                             | 190        |
| Mass of Wings                                         | 30         |
| Mass of PCB (including microcontroller, temp. Sensor) | 30         |
| Servo Motor*2 + Antenna + Buzzer + Others             | 85         |
| Battery*2                                             | 105        |
| Parachute                                             | 20         |
| Egg Cushioning                                        | 20         |
| TOTAL                                                 | 705        |

Presenter: Jaswanth Reddy Cansat 2013 PDR: Team 1300 (Frequency)



# Communication and Data Handling Subsystem Design



#### **CDH Overview-1**

#### Cansat

- Processor: AtMega 128 (As Central Processing Unit of the Carrier; sensing, processing, transmitting, storing telemetry data)
- Memory: Atmel0736 (For storing telemetry data onboard for backup in case of communication failure)
- Radio Transceiver: XBee-PRO® ZB SMT Transceiver (For transmitting data to ground station once every 2 seconds)
- Antenna : A24-HASM-450 (2.1dBI)

Presenter: Gauresh Patil Cansat 2013 PDR: Team 1300 (Frequency) 53



#### **CDH Overview-2**

#### Ground Station

- Radio Transceiver: XBee-PRO® ZB SMT Transceiver (For receiving data from the carrier once every 2 seconds)
- Xbee USB Explorer
- Antenna : A24-HASM-450 (2.1dBI)
- Intel Core i3 Processor Laptop.



# **CDH Requirements-1 (Container)**



| ID    | Requirement                            | nt Rationale Parent                                           |                    | Priority |   | VM |   |   |
|-------|----------------------------------------|---------------------------------------------------------------|--------------------|----------|---|----|---|---|
|       |                                        |                                                               |                    | ,        | Α | I  | Т | D |
| CDH01 | Transmit GPS Data<br>Stream            | Descent Telemetry packet (transmitted every 2 seconds)        | SYS -08<br>CD-01   | HIGH     |   |    | х | x |
| CDH02 | Transmit Altitude in meters            | Descent Telemetry packet (transmitted every 2 seconds)        | SYS-08<br>CD-01    | HIGH     |   |    | х | х |
| CDH03 | Transmit Air<br>Temperature in Celsius | Descent Telemetry packet (transmitted every 2 seconds)        | SYS-08<br>CD-01    | HIGH     |   |    | x | х |
| CDH04 | Transmit Battery<br>Voltage in Volts   | Descent Telemetry packet (transmitted every 2 seconds)        | SYS-08<br>CD-01    | HIGH     | х |    | x | х |
| CDH05 | Terminate Telemetry                    | Terminate<br>Telemetry within 5<br>minutes of landing.        | SYS-08,09<br>CD-01 | HIGH     | х |    | х | х |
| CDH06 | Store Telemetry Data                   | For Post Processing<br>in case of<br>Communication<br>Failure | SYS-11             | LOW      |   |    |   |   |



# **CDH Requirements-2 (Cansat)**



| ID        | Requirement                                           | Rationale                                                      | Parent | Priority |   | VIV | 1 |   |
|-----------|-------------------------------------------------------|----------------------------------------------------------------|--------|----------|---|-----|---|---|
|           |                                                       |                                                                |        | _        | Α | I   | Т | D |
| CDH0<br>6 | Store/Transmit<br>Cansat Altitude<br>Measured         | Descent<br>Telemetry packet<br>(stored every 2<br>seconds)     | SYS-11 | HIGH     |   |     | X | х |
| CDH0<br>7 | Store/Transmit<br>Cansat Battery<br>Voltage           | Descent<br>Telemetry packet<br>(stored every 2<br>seconds)     | SYS-11 | HIGH     |   |     | х | х |
| CDH0<br>8 | Storing the Impact<br>Force                           | Impact Force<br>(Stored when<br>cansat hits the<br>ground)     | BONUS  | HIGH     |   |     |   |   |
| CDH0<br>9 | Send stored descent<br>telemetry to Ground<br>Control | For post-<br>processing<br>following<br>retrieval of<br>Lander | SYS-11 | HIGH     |   |     | х | Х |



# **CDH Requirements-3 (GROUND STATION)**



| ID        | Requirement                              | Rationale                                                    | Parent | Priority |   | VIV | 1 |   |
|-----------|------------------------------------------|--------------------------------------------------------------|--------|----------|---|-----|---|---|
|           |                                          |                                                              |        |          | Α | ı   | Т | D |
| CDH0<br>9 | Receive GPS Data<br>Stream               | Descent<br>Telemetry packet<br>Receive every 2S              | CD01   | HIGH     |   |     | х | х |
| CDH1<br>0 | Receive Altitude in meters               | Descent<br>Telemetry packet<br>(received every 2<br>seconds) | CD01   | HIGH     |   |     | х | х |
| CDH1<br>1 | Receive Air<br>Temperature in<br>Celsius | Descent Telemetry packet (received every 2 seconds)          | CD01   | HIGH     |   |     | х | х |
| CDH1<br>2 | Receive Battery<br>Voltage in Volts      | Descent Telemetry packet (received every 2 seconds)          | CD01   | HIGH     | Х |     | Х | х |
| CDH1<br>3 | Plot telemetry data<br>In real time      | Ret real time feel<br>for what is<br>happening.              | CD01   | HIGH     | Х |     | х | х |



#### **Processor: Trade & Selection**



#### Cansat: AtMega128

- Maximum Clock Frequency 16 MHz (external)
- Data Interfaces:
  - USART: 2 (One for Transceiver and

one for GPS)

- SPI: 1(For memory)
- ADC PORTS: 8 channels (one each for battery voltage, temperature sensor and pressure Sensor, impact force sensor)
- On chip Flash Memory: 128 Kb
- SRAM / EEPROM: 4 Kb
- Supply Voltage: 4.5V 5V



Presenter: Gauresh Patil Cansat 2013 PDR: Team 1300 (Frequency) 58



### **Memory: Trade & Selection**



- If 1 minutes of Descent Telemetry(carrier) sampled at 2 seconds
   60 \* (50 bytes) ~= 3 kB
- If Acceleration Data is calculated with 100 samples per second:
   3\*100\*10 bits ~= 0.4 kB
- Totally it adds up to around 4 kB.
- Atmel Memory chip
  - 8 MB, SPI Mode, Chip Select
     Available
  - Its cheap and readily available.



Presenter: Gauresh Patil Cansat 2013 PDR: Team 1300 (Frequency) 59



# Carrier Antenna **Trade & Selection**



- The Antenna had to be matching for the range of 2.4 GHz.
- Have preferably an MMCX connector against SMA, BNC or TNC.
- **High Decibel Gain**
- VWSR less than 2.0:1
- Half Wave Dipole and Omni Directional
- Antenna Chosen: A24-HASM-450 (2.1dBI)



# **Communications Configuration**

Transceiver programmed for API control Mode

The system in API mode set at fixed baud rate and channel transmits and receives through a 3 byte MAC address which can either be hard coded on the EEPROM or sent dynamically.

Fixed baud rate of 57600 bps , channel 0 in Receive mode for query wait

Transmit when asked for a query, through UDR buffer

Presenter: Gauresh Patil Cansat 2013 PDR: Team 1300 (Frequency) 61



## **Carrier Telemetry Format**



| Characters | Definition                                   |
|------------|----------------------------------------------|
| CC.        | State                                        |
| hhmmss     | Data time tag in hours , minutes and seconds |
| Hhmmss     | Mission Time                                 |
| N          | Start of latitude data                       |
| AA.aaaa    | Cansat latitude                              |
| W          | Start of longitude data                      |
| BB.bbbb    | Cansat Longitude                             |
| hh.hh      | Cansat GPS altitude                          |
| Ab         | Number of satellites tracked in decimal      |
| VV.        | Pressure Sensor Sampled Data                 |
| tt.        | Air temperature (1 degree resolution)        |
| VV.        | Battery voltage                              |

| States     |
|------------|
| BOOT       |
| TEST_MODE  |
| LAUNCH_PAD |
| ASCENT     |
| PARA       |
| CANSAT     |
| IMPACT     |
| BUZZER     |

- Data sent every 2 seconds with baud rate of 57600 bps.
- Data Format: Data Format will be finalized in CDR

Presenter: Gauresh Patil Cansat 2013 PDR: Team 1300 (Frequency) 62



# **Autonomous Termination of Transmissions**



### To terminate telemetry:

- This will be done via a check in the loop which compares the altitude from GPS data to altitude from several previous data packets, accelerometer output and impact force sensor. If the altitude remains same for a certain amount of time and accelerometer gives a very high value and impact force sensor records impact, we conclude that the cansat has landed and that its time to stop sending the telemetry.
- The GCS will recognize the end of telemetry by the special custom occurrence of special character.



#### **Locator Device Selection**



- We are going to use a buzzer to locate the cansat after impact.
- The buzzer selected is pro-Signal ABI-001-RC.
- It is Rated at greater than 80dB at 10cm distance.
- Power consumed is 84mW.





# **Electrical Power Subsystem Design**

**Presenter: Shashank Wadhwa** 



#### **EPS Overview**

# Design Considerations

• All the power and electrical requirements are met.

### Voltage Regulation

 Level-shifting and voltage regulations for using two different voltage regulators each corresponding to 5v and 3.3v.

# Power Monitoring

Presenter: Shashank Wadhwa

Done by additional hardware



# **EPS Requirements For Cansat System**



| <u>ID</u> | <u>Requirement</u>                   | <u>Rationale</u>                                                                                                                                                                          | <u>Parent</u> | <u>Priority</u> | VI<br>A | <u>√I</u><br>I | Т | D |  |
|-----------|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------|---------|----------------|---|---|--|
| EP01      | Voltage<br>Requirement (5V,<br>3.3V) | <ul> <li>5V required for<br/>MicroController,<br/>Temperature Sensor<br/>and Servo.</li> <li>3.3V for Memory,<br/>Pressure sensor,<br/>Accelerometer,<br/>Transceiver and GPS.</li> </ul> | EP02          | MEDIUM          |         |                | х | х |  |
| EP02      | Battery<br>Requirement (9V)          | To be able to provide adequate power for the whole period of flight.                                                                                                                      |               | MEDIUM          |         | х              |   |   |  |



# **Cansat Electrical Block Diagram**





External Power Switch will be present to control the power flow in the system. Battery Voltage will be read using microcontroller-ADC.



# Power Control without disassembling the Cansat



Idle Mode: In this mode, the processor would disable the CPU



Also there will be an external switch to enable battery.



# **Power Budget**

| <u>Device</u>         | Average Power consumption (mWatts) | <u>Voltage</u> | Average<br>Current | <u>Usage</u>      |
|-----------------------|------------------------------------|----------------|--------------------|-------------------|
| GPS                   | 75 mW                              | 3.3V           | 23 mA              | 3 hrs             |
| Pressure Sensor       | 1.65 mW                            | 3.3V           | 0.5mA              | 3 hrs             |
| Temperature<br>Sensor | 75 mW                              | 3.3V           | 23mA               | 3 hrs             |
| XBEE-Pro ZB SMT       | 376 mW                             | 3.3V           | 100mA              | 3 hrs             |
| Microcontroller       | 110 mW                             | 5V             | 28mA               | 3 hrs             |
| Flash memory          | 16.5 mW                            | 3.3V           | 5mA                | 3 hrs             |
| Buck Convertor 5v     |                                    |                | 92% eff            |                   |
| Buck converter 3.3v   |                                    |                | 90% eff            |                   |
| Voltage divider H     |                                    |                | Negligible         |                   |
| Servo Motor           | 2*1W                               | 5v             |                    | (Descent<br>time) |
| Buzzer                | 63 mW                              | 9 V            | 7mA                | 1 hr              |



## **Total Power Budget**



Total Power used by main components is 718.15 mWh.

Voltage conversion of 90% efficiency in 3.3v and 92% in 5v for Buck Convertors.

Life of each Battery: 2.15 hours (approx)



# Power Source Trade & Selection



| <u>Name</u>     | <u>Voltage/Power</u> | <u>Type</u> | <u>Mass</u> |
|-----------------|----------------------|-------------|-------------|
| 6F22 Heavy duty | 9v / 500mah          | Alkaline    | 45g         |
| UBP 001         | 3.7v/1800mah         | Lithium Ion | 41g         |
| Dura Cell       | 9.6v/ 170mah         | Ni Mh       | <b>47</b> g |

We are using Dura Cell as it is most easily available and highly efficient for the purposes required.



Presenter: Shashank Wadhwa

## Battery Voltage Measurement Trade & Selection





Battery Voltage is measured by giving a high impedance voltage divider with outsourcing and then interfaced to the ADC port.



## **EPS Testing Overviews**

Power Regulation

 Testing of Buck Converter based Regulators 1 week post PDR

Lab Power Testing

1 week prior to CDR

On Field Power Testing

Presenter: Shashank Wadhwa

Post CDR



## Flight Software Design

Presenter: Rakesh N R



#### **FSW Overview**

• The FSW will work in a Microcontroller(Atmega128). Its basic structure will be as follows:





#### **FSW Overview**



- The FSW will collect data from all the sensors and store it onto the onboard memory. It will also transmit the collected data via XBEE.
- It will also initialize the Electromechanical Mechanism used to release the Cansat from the container at the height of 400 meters.
- The FSW for the Cansat will collect data from the altitude sensor and the impact sensor and store it onto the onboard memory so as to be analyzed later.
- Complete FSW will be developed in C with an AVR GCC environment. All C programs are compiled and dumped as HEX codes in ATMEL microcontrollers which forms the embedded platform of our Cansat. We have chosen this platform because we are familiar with it as it is a part of our curriculum.



## **FSW (Cansat) Requirements**



| ID    | Requirement                                                          | Rationale                                                                              | Parent               | Priority | VM |   |   |   |
|-------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------|----------|----|---|---|---|
|       |                                                                      |                                                                                        |                      |          | Α  | 1 | Т | D |
| FSC01 | Collection of Sensor<br>data in processor and<br>formation of packet | Reception of data values from sensors and analysis in firmware to produce data packets | CD01                 | HIGH     | x  |   | х | х |
| FSC02 | Data packet to be sent to RF Transceiver via USART.                  | Packet sent for<br>Transmission to<br>Relay                                            | CD01                 | HIGH     |    |   | х | х |
| FSC03 | Packets sent also<br>stored as Data<br>backup.                       | Packet also sent<br>to memory for<br>Data-packet<br>backup.                            | CD01<br>CD04<br>CD06 | LOW      |    |   |   | х |
| FSC04 | Control the Release<br>mechanism of the<br>lander                    | So that the lander can be released at height of 400 meters                             | CD03                 | LOW      | х  |   | х | х |



#### **Software (Cansat) flow diagram(High Level)**







#### **Sensors**



#### Pressure Sensor:

Presenter: Rakesh N R

- » Interfaced via ADC
- » sampled at 10kHz
- Battery Voltage Sensor:
  - » Interfaced via ADC
  - » sampled at 10kHz.
- Accelerometer X,Y and Z:
  - » Interfaced via ADC (3 ADC ports)
  - » sampled at 100Hz.
- **Memory**: Memory chip is interfaced via SPI





## **Ground Control System Design**

Presenter: Rakesh N R

## **GCS Overview**



Presenter: Rakesh N R





GCS uses the data received to populate various tables and plot graphs. The software clearly indicates the phases of flight, i.e. pre-launch, moving upwards, deployment, coming down, landed etc..



## **GCS** Requirements



|       |                                                                                |                                                                                                |            | Paren     | Childr         | VM |   | T D  X  X  X |   |
|-------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------|-----------|----------------|----|---|--------------|---|
| ID    | Requirement                                                                    | Rationale                                                                                      | Priority   | t         | en             | Α  | ı | Т            | D |
| GCS01 | Antenna placement: Antenna must point upward, towards the Cansat               | For better signal reception.                                                                   | Mediu<br>m | None      | GCS02<br>GCS03 |    |   | X            |   |
| GCS02 | Computational requirements: Data is received at 0.5 Hz.                        | Computational speed is not a big issue. (Assuming GCS laptop has a reasonably fast processor)  | Low        | GCS0<br>1 | None           |    |   | X            |   |
| GCS03 | Power Requirement: Should be able to receive and display data for about 3 hrs. | GCS has to be ready always for the communication. Not a big issue as ample power is available. | Mediu<br>m | GCS0<br>1 | GCS05          |    |   | X            |   |
| GCS04 | Analysis Software requirements : Should support Java, C/C++.                   | To be able to run analysis software.                                                           | High       | None      | None           |    | Х | Х            |   |
| GCS05 | Mission operations :<br>Includes the detection of<br>various phases by the GCS | To be able to distinguish between various states of flight.                                    | Mediu<br>m | GCS0<br>3 | None           |    |   | Х            |   |



#### **GCS Antenna Trade & Selection**



| <u>Name</u>     | <u>Range</u> | <u>Gain</u> | Radiation<br>Direction | Mass        |
|-----------------|--------------|-------------|------------------------|-------------|
| Antenova B58124 | 1 Km         | 1.8dB       | Omni                   | 2g          |
| A24-HASM-450    | 3.2 Km       | 2.1dB       | Omni                   | <b>25</b> g |

The first one is small easy to accommodate and light weight, but lacks in providing the required range hence communication fails, which is an extremely important objective of the Cansat mission. Thus we select the one which gives us the required range.



## **Cansat Integration and Test**

**Presenter: Syed Tabish Abbas** 



### **Integration of Cansat subsystems**

- > Integration of Container and Cansat
  - We used a servo motor to control a hook that holds the Container and the Cansat.
- > Integrations in Container
  - EPS, DC
    - There will be a servo motor for the hook release of Cansat.
- > Integrations in Cansat
  - EPS, SS, CDHS and SS
    - There will be two stacks of PCB's one on top of each other.
    - There will be two batteries. One of the batteries is going to serve as a backup in case the other one fails.



#### **Tests Performed**

## > Sensor Testing

- The sensor will be tested after procurement .
  The sensors selected so far are :-
  - GPS sensor(SIRF GSC3f/LPX7989)
  - Temperature Sensor (LM35)
  - Pressure Sensor (MPX6115A)
  - Accelerometer (MMA7260Q)



Presenter: Syed Tabish Abbas

#### **Tests Performed**

## Mechanical Testing

- Egg drop tests to decide the cushioning material.
- Test conditions include free fall and windy conditions.

| Trial | Outer case         | Inner filling                 | Drop<br>Height<br>(feets) | Velocity at Ground<br>Level (metres/second)<br>V = √(2gh) | <u>Results</u> |
|-------|--------------------|-------------------------------|---------------------------|-----------------------------------------------------------|----------------|
| 1     | Aluminum container | Sponge<br>+ Paper Cushion     | 40                        | 15.5                                                      | FAIL           |
| 2     | Aluminum container | Sponge<br>+ thermacol balls   | 20                        | 11                                                        | PASS           |
| 3     | Aluminum container | Sponge<br>+ polystyrene balls | 40                        | 15.5                                                      | Pass           |
| 4     | Aluminum container | Sponge + polystyrene balls    | 60                        | 19                                                        | Pass           |



#### **Tests Performed**

## Descent Control Testing

- The test was performed using a prototype of the proposed Cansat control system using Simple wings made from cardboard.
- The test shows that the prototype achieves Terminal Velocity after some distance.







#### **Tests to be Performed**



- 1) Communication Testing
- 2) Flight Software Testing
- 3) Detachment Testing during Flight
- 4) Cansat Position Estimation Testing
- 5) Final Structure Testing
- 6) Electronics Testing



## **Mission Operations & Analysis**

**Presenter: Siddharth Singh** 



## Overview of Mission Sequence of Events



#### **Preliminary launch-day sequence of events**

- –Arrive at the Launch site well in-time
- –Locate a workspace for the team
- Layout the team's equipment and put up the team's banner
- Collect the launch time schedule
- Assemble the Cansat and carrier for final check
- –Setup GCS

Presenter: Siddharth Singh

- Verify communication between Cansat and GCS
- Collect and place the Egg in its container
- Proceed to place the Cansat in the payload section of the rocket
- –Post Launch run all the GCS operations
- On successful landing of Cansat, proceed for recovery
- Pack up and leave the Launch site



## Cansat Landing Coordinate Prediction



- DCS will keep track of GPS readings during descent.
- The sensor data will be taken after each 2 seconds. This timing is done by the onboard controller.
- After detachment the co-ordinates of Cansat will be predicted on the basis of GPS readings at the carrier.
- After some Readings Trajectory of the Cansat can be estimated.
- The DCS will be enabled as soon as Cansat will come out of Rocket.
- It keeps track of height using Altitude Sensor.
- At 400 Meter height Cansat and Container detach with DCS on Container tracking coordinates of Cansat.
- Further Trajectory can be estimated by extrapolation.

Presenter: Siddharth Singh





#### **Cansat Location and Recover**



### Cansat Recovery

- The co-ordinates of Cansat will be estimated by FSW that will help us to find the exact location of Cansat on the ground. This is a heuristic approach based upon GPS data as follows we store the position of Cansat before separation of container and Cansat in the memory at every 2 sec interval. This will depict the trajectory of the Cansat as it falls. This can be extrapolated taking into consideration local wind effect as altitude decreases to predict the trajectory and final position of Cansat.
- The Cansat will have a shiny body after detachment from the container which will help in easy detection of the Cansat. There would also be a Buzzer that would keep on sounding for one hour thus helping in easy tracking of the Cansat.



## **Management**

Presenter : Siddharth Singh



## **Cansat Budget – Hardware**



| Component                                | Qua<br>ntity | Unit<br>Price<br>(in<br>USD) | Cost<br>(in USD) |
|------------------------------------------|--------------|------------------------------|------------------|
| Atmega128<br>microcontroller             | 1            | 6.8                          | 6.8              |
| Temperature<br>Sensor                    | 1            | 16                           | 16               |
| Accelerometer                            | 1            | 7                            | 7                |
| Battery                                  | 2            | 22                           | 44               |
| Servo Motor                              | 2            | 5                            | 10(mini)         |
| Circuit<br>Fabrication                   | 2            | 10                           | 20               |
| GPS Equipment                            | 1            | 108                          | 108              |
| Electronics<br>system                    |              |                              | 71.3             |
| Xbee Explorer<br>Dongle                  | 1            | 25                           | 25               |
| Structure<br>material and<br>Fabrication |              | 200                          | 200              |
| Rip-Stop Nylon                           | 3            | 18                           | 54               |
| Miscellaneous                            |              | 20                           | 20               |
| Margin                                   | 15%          | 41.3                         | 66.1             |
| Total                                    |              |                              | 646.5            |

#### **Cost Distribution**





## **Program Schedule**



| Electronics Team                                      |                               |         |                            |         |                                                         |  |  |  |
|-------------------------------------------------------|-------------------------------|---------|----------------------------|---------|---------------------------------------------------------|--|--|--|
| Task                                                  | Scheduled Dates<br>(dd/mm/yy) |         | Actual Dates<br>(dd/mm/yy) |         | Reasons for not completing                              |  |  |  |
| 1. Recognition of Tasks                               | 1/1/13                        | 4/1/13  | 1/1/13                     | 7/1/13  |                                                         |  |  |  |
| 2. Allocation and Division of Tasks                   | 5/1/13                        | 10/1/13 | 8/1/13                     | 14/1/13 |                                                         |  |  |  |
| 3. Identification of Systems and System Architecture  | 11/1/13                       | 15/1/13 | 14/1/13                    | 17/1/13 |                                                         |  |  |  |
| 4. Testing of Available components from previous year | 15/1/13                       | 27/1/13 | 17/1/13                    | 18/1/13 |                                                         |  |  |  |
| 5. PDR Report and Presentation                        | 27/1/13                       | 31/1/13 | 27/1/13                    | 5/2/13  | Mid-sem exams and R&D showcase organized in our college |  |  |  |
| 6. Hardware Procurement Begins                        | 10/2/13                       | 17/2/13 |                            |         |                                                         |  |  |  |
| 7. Basic System Integration                           | 17/2/13                       | 15/3/13 |                            |         |                                                         |  |  |  |
| 8. Work on Image Sensing and Orientation              | 15/3/13                       | 25/3/13 |                            |         |                                                         |  |  |  |



## **Program Schedule(contd.)**



| Electronics Team                          |                 |         |       |         |                            |  |  |
|-------------------------------------------|-----------------|---------|-------|---------|----------------------------|--|--|
| Task                                      | Scheduled Dates |         | Actua | l Dates | Reasons for not completing |  |  |
| 9. CDR PPT and PDF                        | 25/3/13         | 29/3/13 |       |         |                            |  |  |
| 10. Accelerometer Interfacing             | 1/4/13          | 10/4/13 |       |         |                            |  |  |
| 11. Flight Software Development           | 11/4/13         | 25/4/13 |       |         |                            |  |  |
| 12. Testing of Prototype                  | 25/4/13         | 5/5/13  |       |         |                            |  |  |
| 13. Fabrication of Final PCB              | 6/5/13          | 15/5/13 |       |         |                            |  |  |
| 14. Field Testing of Hardware with System | 16/5/13         | 5/6/13  |       |         |                            |  |  |
| 15. Flight Operations Preparation         | 6/6/13          | 11/6/13 |       |         |                            |  |  |



### **Mechanical Team Schedule**



| Mechanical and Descent Control Team |          |          |         |         |         |  |  |  |
|-------------------------------------|----------|----------|---------|---------|---------|--|--|--|
| Task                                | Schedule | ed Dates | Actua   | l Dates | Reasons |  |  |  |
| 1. Recognition of Tasks             | 1/1/13   | 15/1/13  | 1/1/13  | 15/1/13 |         |  |  |  |
| 2. Descent Mechanism Design         | 16/1/13  | 20/1/13  | 16/1/13 | 24/1/13 |         |  |  |  |
| 3. Egg Landing Test on Materials    | 20/1/13  | 25/1/13  | 23/1/13 | 25/1/13 |         |  |  |  |
| 4. Mechanical Structure Design      | 25/1/13  | 27/1/13  | 25/1/13 | 27/1/13 |         |  |  |  |
| 5. PDR report and presentation      | 27/1/13  | 31/1/13  | 27/1/13 | 3/1/13  |         |  |  |  |



## **Mechanical Team Schedule(contd.)**



| Mechanical and Descent Control Team                    |                 |         |              |  |         |  |  |  |
|--------------------------------------------------------|-----------------|---------|--------------|--|---------|--|--|--|
| Task                                                   | Scheduled Dates |         | Actual Dates |  | Reasons |  |  |  |
| 6. Descent Control Hardware                            | 1/2/13          | 15/2/13 |              |  |         |  |  |  |
| 7. Designing Descent Control                           | 16/2/13         | 25/2/13 |              |  |         |  |  |  |
| 8. Integrating Descent Control with Egg<br>Canopy      | 25/2/13         | 5/3/13  |              |  |         |  |  |  |
| 9. Testing of Structure for operation                  | 5/3/13          | 15/3/13 |              |  |         |  |  |  |
| 10. Make necessary changes in descent or Egg mechanism | 15/3/13         | 15/4/13 |              |  |         |  |  |  |
| 11. Testing with Changes                               | 15/4/13         | 1/5/13  |              |  |         |  |  |  |
| 12. Fabrication of Final Structure                     | 1/5/13          | 10/5/13 |              |  |         |  |  |  |
| 13. Testing with integrated Hardware                   | 10/5/13         | 25/5/13 |              |  |         |  |  |  |



#### **Conclusions**

#### Accomplishments:

- Detachment mechanism finalized.
- Physical structure layout finalized.
- Sensors and components are decided.
- Descent mechanism decided.
- Preliminary Testing of Descent mechanism done.
- Sensors tested.

#### Yet to be done :

Presenter: Siddharth Singh

- PCB design is yet to be finalized.
- Physical structure needs to be prepared.
- FSW code has to be written.
- GCS code has to be written.

We are ready for the next stage which is - Implementation of the subsystems according to the conclusions we've reached upon.



# THANK YOU