Obliczenia inżynierskie w środowisku MATLAB Pojęcie wektora stanu i elementarne symulacje ruchu

Paweł Wachel

- 1. W obrębie prowadzonych obecnie symulacji posłużymy się (póki co nieformalnym) pojęciem wektora stanu. Powiemy mianowicie, że dla danego układu dynamicznego wektor stanu to najmniejszy możliwy zbiór wielkości w pełni opisujący stan rozważanego obiektu.
- 2. W tym kontekście rozważymy układ czterech obiektów A, B, C, D rozmieszczonych w czterech kolejnych kątach kwadratu (por. rys. poniżej).

3. Rozważymy eksperyment, w którym w ustalonej chwili czasu, t=0, każdy z obiektów zaczyna poruszać się ze stałą prędkością w taki sposób, że: A zawsze kieruje się w stronę B, B zawsze kieruje się w stronę C, C zawsze kieruje się w stronę D oraz D zawsze kieruje się w stronę A.

Zadania do wykonania:

- 1. Skonstruować model symulacyjny eksperymentu przedstawionego w punktach 2 i 3. Przyjąć model z czasem dyskretnym (tj. założyć, że w równoodległych chwilach czasu każdy z obiektów wykonuje krok w przestrzeni o a priori przyjętej długości ε)
- 2. Wykreślić trajektorie ruchu obiektów oraz przedyskutować uzyskane rezultaty dla różnych wartości kroku ε .
- 3. Niech t oznacza pewną chwilę w horyzoncie czasowym eksperymentu. Jakie wielkości w pełni charakteryzują całkowity stan układu (tj. co należy "wiedzieć", aby opisać aktualny stan badanego zjawiska)? Przedyskutować potencjalne możliwości.
- 4. Wprowadzić losowe zaburzenie do układu. Niech δ_x^A i δ_y^A będą dwoma zmiennymi losowymi z rozkładu normalnego o wariancji $\sigma^2 = 0.01$ (w MATLABie: d_A_x = randn(1,1)*0.1). W każym kroku do nowo wyznaczonych współrzędnych x_A , y_A położenia punktu A dodać odpowiednio δ_x^A i δ_y^A (analogicznie dla obiektów B, C i D). Zaobserwować perturbacje trajektorii punktów i przedyskutować konsekwencje wystąpienia zakłóceń dla różnych wartości σ^2 .