Ejercicios 1.

1.1. Ejercicio 1

Sea $A \subset \mathbb{R}$ un conjunto no vacío acotado superiormente. Entonces

$$-\inf\left(-A\right) = \sup\left(A\right)$$

Solución

Demostración. Por definición sabemos que $A \neq \emptyset$ y además existe un $M \in \mathbb{R}$ tal que $a \leq M$ para todo $a \in A$. Sabemos que por definición de **supremo** se cumple que $\sup (A) \leq M$. También sabemos que

$$\begin{array}{ll} a \leq M & \forall a \in A \\ (-1) \cdot a \geq (-1) \cdot M & \forall a \in A \\ -a > -M & \forall a \in A \end{array}$$

Recordemos la definición de -A

$$-A = \{-a : a \in A\}$$

De la definición de -A, sabemos que $-A \neq \varnothing$. Notemos que -M es una cota inferior del conjunto -Aconsecuentemente -A está cotado inferiormente. Sea β una cota superior de A entonces por definición de $\sup (A)$ tenemos que

$$\beta \ge \sup (A) \ge a \qquad \forall a \in A$$

$$(-1) \cdot \beta \le (-1) \cdot \sup (A) \le (-1) \cdot a \qquad \forall a \in A$$

$$-\beta \le -\sup (A) \le -a \qquad \forall a \in A$$

Lo anterior pasa para cualquier cota superior β y por ende para cualquier cota inferior $-\beta$. Así notemos que $-\sup(A)$ es una cota inferior de -A y además es la cota inferior más grande, es decir

$$\inf (-A) = -\sup (A)$$
$$-\inf (-A) = \sup (A)$$

1.2. Ejercicio 2

Suponga que f es creciente. Demuestre que

$$\int_{a}^{b} f^{-1} = bf^{-1}(b) - af^{-1}(a) - \int_{f^{-1}(a)}^{f^{-1}(b)} f$$

Solución

Del problema sabemos lo siguiente

- f es biyectiva en [a, b] ya que f^{-1} existe y es su inversa.
- Como f es creciente en [a, b] entonces f^{-1} también es creciente en [f(a), f(b)].
- ullet Como f es creciente en [a,b] entonces f es integrable [a,b].
- Como f^{-1} es creciente en [f(a), f(b)] entonces f^{-1} es integrable [f(a), f(b)].

Demostración. Sea $P = \{t_0, \dots, t_n\}$ una partición del intervalo [a, b] y sea $P' = \{f^{-1}(t_0), \dots, f^{-1}(t_n)\}$ una partición del intervalo $[f^{-1}(a), f^{-1}(b)]$. Mostraremos que

$$L(f^{-1}, P) + U(f, P') = bf^{-1}(b) - af^{-1}(a)$$

$$U(f^{-1}, P) + L(f, P') = bf^{-1}(b) - af^{-1}(a)$$

Seguiremos las siguientes definiciones

$$m_{i} = \inf \left(\left\{ f(x) \mid x \in [f^{-1}(t_{i-1}), f^{-1}(t_{i})] \right\} \right)$$

$$M_{i} = \sup \left(\left\{ f(x) \mid x \in [f^{-1}(t_{i-1}), f^{-1}(t_{i})] \right\} \right)$$

$$m'_{i} = \inf \left(\left\{ f^{-1}(x) \mid x \in [t_{i-1}, t_{i}] \right\} \right)$$

$$M'_{i} = \sup \left(\left\{ f^{-1}(x) \mid x \in [t_{i-1}, t_{i}] \right\} \right)$$

Veamos $L(f^{-1}, P) + U(f, P') = bf^{-1}(b) - af^{-1}(a)$

$$L(f^{-1}, P) = \sum_{i=1}^{n} m'_{i}(t_{i} - t_{i-1})$$

Como f^{-1} también es creciente tenemos que $m_i'=f^{-1}\left(t_{i-1}\right)$. consecuentemente

$$L(f^{-1}, P) = \sum_{i=1}^{n} m'_{i}(t_{i} - t_{i-1})$$
$$= \sum_{i=1}^{n} f^{-1}(t_{i-1})(t_{i} - t_{i-1})$$

$$U(f, P') = \sum_{i=1}^{n} M_i(f^{-1}(t_i) - f^{-1}(t_{i-1}))$$

Como f es creciente entonces tenemos que $M_i = f\left(f^{-1}\left(t_i\right)\right) = t_i$

$$U(f, P') = \sum_{i=1}^{n} M_i(f^{-1}(t_i) - f^{-1}(t_{i-1}))$$
$$= \sum_{i=1}^{n} t_i(f^{-1}(t_i) - f^{-1}(t_{i-1}))$$

$$L(f^{-1}, P) + U(f, P') = \sum_{i=1}^{n} f^{-1}(t_{i-1})(t_{i} - t_{i-1}) + \sum_{i=1}^{n} t_{i}(f^{-1}(t_{i}) - f^{-1}(t_{i-1}))$$

$$= (f^{-1}(t_{0})t_{1} - f^{-1}(t_{0})t_{0}) + (f^{-1}(t_{1})t_{2} - f^{-1}(t_{1})t_{1}) + \dots + (f^{-1}(t_{n-1})t_{n} - f^{-1}(t_{n-1})t_{n-1})$$

$$+ (f^{-1}(t_{1})t_{1} - f^{-1}(t_{0})t_{1}) + (f^{-1}(t_{2})t_{2} - f^{-1}(t_{1})t_{2}) + \dots + (f^{-1}(t_{n})t_{n} - f^{-1}(t_{n-1})t_{n})$$

$$= (f^{-1}(t_{0})t_{1} - f^{-1}(t_{0})t_{1}) + (f^{-1}(t_{1})t_{1} - f^{-1}(t_{1})t_{1}) + (f^{-1}(t_{1})t_{2} - f^{-1}(t_{1})t_{2})$$

$$+ (f^{-1}(t_{2})t_{2} - f^{-1}(t_{2})t_{2}) + \dots + (f^{-1}(t_{n-1})t_{n} - f^{-1}(t_{n-1})t_{n})$$

$$+ (f^{-1}(t_{n-1})t_{n-1} - f^{-1}(t_{n-1})t_{n-1}) + (f^{-1}(t_{n})t_{n} - f^{-1}(t_{0})t_{0})$$

$$= 0 + 0 + 0 + 0 + \dots + 0 + 0 + (f^{-1}(t_{n})t_{n} - f^{-1}(t_{0})t_{0})$$

$$= f^{-1}(t_{n})t_{n} - f^{-1}(t_{0})t_{0}$$

Recordando que $t_0 = a$ y $t_n = b$ entonces

$$f^{-1}(b)b - f^{-1}(a)a = bf^{-1}(b) - af^{-1}(a)$$

Así

$$L(f^{-1}, P) + U(f, P') = bf^{-1}(b) - af^{-1}(a)$$

Veamos $U(f^{-1}, P) + L(f, P') = bf^{-1}(b) - af^{-1}(a)$

$$U(f^{-1}, P) = \sum_{i=1}^{n} M'_{i}(t_{i} - t_{i-1})$$

Como f^{-1} también es creciente tenemos que $M_i' = f^{-1}\left(t_i\right)$. consecuentemente

$$U(f^{-1}, P) = \sum_{i=1}^{n} M'_{i}(t_{i} - t_{i-1})$$
$$= \sum_{i=1}^{n} f^{-1}(t_{i}) (t_{i} - t_{i-1})$$

$$L(f, P') = \sum_{i=1}^{n} m_i (f^{-1}(t_i) - f^{-1}(t_{i-1}))$$

Como f es creciente entonces tenemos que $m_i = f\left(f^{-1}\left(t_{i-1}\right)\right) = t_{i-1}$

$$L(f, P') = \sum_{i=1}^{n} m_i (f^{-1}(t_i) - f^{-1}(t_{i-1}))$$
$$= \sum_{i=1}^{n} t_{i-1} (f^{-1}(t_i) - f^{-1}(t_{i-1}))$$

$$\begin{split} U\left(f^{-1},P\right) + L\left(f,P'\right) &= \sum_{i=1}^{n} f^{-1}\left(t_{i}\right)\left(t_{i} - t_{i-1}\right) + \sum_{i=1}^{n} t_{i-1}(f^{-1}\left(t_{i}\right) - f^{-1}\left(t_{i-1}\right)\right) \\ &= \left(f^{-1}\left(t_{1}\right)t_{1} - f^{-1}\left(t_{1}\right)t_{0}\right) + \left(f^{-1}\left(t_{2}\right)t_{2} - f^{-1}\left(t_{2}\right)t_{1}\right) + \ldots + \left(f^{-1}\left(t_{n}\right)t_{n} - f^{-1}\left(t_{n}\right)t_{n-1}\right) \\ &+ + \left(f^{-1}\left(t_{1}\right)t_{1} - f^{-1}\left(t_{0}\right)t_{1}\right) + \left(f^{-1}\left(t_{2}\right)t_{2} - f^{-1}\left(t_{1}\right)t_{2}\right) + \ldots + \left(f^{-1}\left(t_{n}\right)t_{n} - f^{-1}\left(t_{n-1}\right)t_{n}\right) \\ &= \left(f^{-1}\left(t_{0}\right)t_{1} - f^{-1}\left(t_{0}\right)t_{1}\right) + \left(f^{-1}\left(t_{1}\right)t_{1} - f^{-1}\left(t_{1}\right)t_{1}\right) + \left(f^{-1}\left(t_{1}\right)t_{2} - f^{-1}\left(t_{1}\right)t_{2}\right) \\ &+ \left(f^{-1}\left(t_{2}\right)t_{2} - f^{-1}\left(t_{2}\right)t_{2}\right) + \ldots + \left(f^{-1}\left(t_{n-1}\right)t_{n} - f^{-1}\left(t_{n-1}\right)t_{n}\right) \\ &+ \left(f^{-1}\left(t_{n-1}\right)t_{n-1} - f^{-1}\left(t_{n-1}\right)t_{n-1}\right) + \left(f^{-1}\left(t_{n}\right)t_{n} - f^{-1}\left(t_{0}\right)t_{0}\right) \\ &= 0 + 0 + 0 + 0 + \ldots + 0 + 0 + \left(f^{-1}\left(t_{n}\right)t_{n} - f^{-1}\left(t_{0}\right)t_{0}\right) \\ &= f^{-1}\left(t_{n}\right)t_{n} - f^{-1}\left(t_{0}\right)t_{0} \end{split}$$

Recordando que $t_0 = a$ y $t_n = b$ entonces

$$f^{-1}(b)b - f^{-1}(a)a = bf^{-1}(b) - af^{-1}(a)$$

 $U(f^{-1}, P) + L(f, P') = bf^{-1}(b) - af^{-1}(a)$

Así

$$L(f^{-1}, P) + U(f, P') = bf^{-1}(b) - af^{-1}(a)$$

$$U(f^{-1}, P) + L(f, P') = bf^{-1}(b) - af^{-1}(a)$$

$$\Rightarrow$$

$$L(f^{-1}, P) = bf^{-1}(b) - af^{-1}(a) - U(f, P')$$

$$U(f^{-1}, P) = bf^{-1}(b) - af^{-1}(a) - L(f, P')$$

Como f^{-1} es integrable entonces

$$\begin{split} \int_{a}^{b} f &= \sup \left(L\left(f^{-1}, P\right) \right) \\ &= \sup \left(bf^{-1}\left(b\right) - af^{-1}\left(a\right) - U\left(f, P'\right) \right) \\ &= bf^{-1}\left(b\right) - af^{-1}\left(a\right) + \sup \left(-U\left(f, P'\right) \right) \\ &= bf^{-1}\left(b\right) - af^{-1}\left(a\right) - \inf \left(U\left(f, P'\right) \right) \\ &= bf^{-1}\left(b\right) - af^{-1}\left(a\right) - \int_{f^{-1}\left(a\right)}^{f^{-1}\left(b\right)} f \end{split}$$