

PE-2P&D-01852 Versão A

Padrão ATIVO

DETERMINAÇÃO DE LACTATO, ACETATO, FORMIATO, PROPIONATO E BUTIRATO EM SOLUÇÕES AQUOSAS POR CROMATOGRAFIA DE TROCA IÔNICA

Aprovado por Sandra Machado de Andrade/BRA/Petrobras (CENPES/PDIDMS/PPL/LABQ) em 6 de ago de 2020 | Gerido por CENPES/PDIDMS/PPL/LABQ

CADASTRO

<u>Tipo</u> <u>Instalação</u>

PE - Padrão de Execução Palavras-chave

<u>Nível</u>
<u>Escopo da Certificação/Sistema de Gestão</u>

Nível 2 - Área / Gerência Executiva Requisito

Sigla

P&D Macroprocesso

Abrangência desse Padrão Gerir Pesquisa, Desenvolvimento e Inovação

Processo
CENPES - Pesquisa e Desenvolvimento

Aprovador Realizar ensaios de química analítica

Responsável Padronização

CENPES/PDIDMS/PPL/LABQ

RH/DO/CLTG

Não

ANP

Outros Filtros

VALIDAÇÃO

Padrão entrou em validação em . Prazo para validação: dias (até)

Nome	Status	Data da Validação
------	--------	-------------------

1. OBJETIVO

Descrever o procedimento para determinação de ânions de ácidos orgânicos de cadeia curta (lactato, acetato, formiato, propionato e butirato) em água produzida, águas de processo e efluentes industriais por cromatografia de íons.

2. ABRANGÊNCIA

Este padrão se aplica ao Laboratório de Cromatografia de Íons da Gerência de Química do Cenpes.

3: BESERIÇÃO

3.1. Fundamentação teórica

A cromatografia compreende um grupo diversificado de métodos que permitem a separação de misturas complexas. Em todas as separações cromatográficas, a amostra é transportada por uma fase móvel (que pode ser um gás, um líquido ou um fluido supercrítico) através de uma fase estacionária imiscível e fixa, colocada em uma coluna ou superfície sólida.

A cromatografia de troca iônica (ou cromatografia iônica) é um tipo de cromatografia líquida de alta eficiência - HPLC (high performance liquid chromatography), ou seja, uma cromatografia em que a fase móvel é um líquido, a fase estacionária é feita com partículas de 3 a 10 mm e os equipamentos operam a altas pressões. A cromatografia iônica utiliza métodos de separação e determinação de íons com base em resinas trocadoras de íons (Skoog, 2002).

Os processos de troca iônica estão baseados em equilíbrios de troca entre íons em solução e íons de mesmo sinal na superfície de um sólido essencialmente insolúvel de alto peso molecular (Skoog, 2002). Ou seja, na cromatografia de troca iônica, a separação é baseada nas diferenças das afinidades de troca iônica dos analitos individuais (Eith et al, 2006).

3.1.1. Componentes de um sistema de cromatografia de íons.

Nota 1: Os sistemas de cromatografia de íons utilizam capilares em PEEK e todos os componentes são revestidos em PEEK.

Figura 1 - Esquema simplificado dos componentes do sistema de cromatografia de íons Eluente ou gerador de eluente: fase móvel do sistema analítico.

Bomba alternada (reciprocating pump) de capacidade de bombear 0,1 a 3 mL/min de eluente em pressão de cerca de 2000 psi (13 MPa). Após a bomba deve haver um absorvedor de pulsação ou então deve-se usar uma garrafa de eluente pressurizada para manter o fluxo uniforme, livre de pulsação, mesmo sob alta contra-pressão.

Válvula de 6 vias que ao girar permite a transferência da amostra da alça para o sistema em fluxo operando a alta pressão.

Alça (ou loop) de injeção conectado a uma válvula de 6 vias. Em geral as alças de amostragem mais usadas têm capacidade de 20, 25, 50 e 100 µL. A escolha depende da sensibilidade do analito ao detector e de sua concentração na amostra.

Amostrador automático responsável pela injeção da amostra no sistema e pela automatização da atividade de injeção.

Coluna analítica de troca aniônica capaz de reter e separar, com resolução de pico adequada todos os analitos de interesse dos demais ânions presentes na amostra.

É importante utilizar uma coluna de guarda (pré-coluna) de troca aniônica de mesma composição que a coluna analítica para proteção da mesma. Embora o sistema funcione sem a pré-coluna.

Forno Termostático para aquecimento da coluna analítica. É um acessório opcional, vai depender da metodologia analítica utilizada.

Supressor Eletrolítico autoregenerante com base no princípio de troca catiônica (de membrana ou de resina, a depender do fabricante do equipamento). O supressor ele deve manter o sinal de fundo baixo e estável para permitir uma linha de base adequada ao nível de sensibilidade exigido.

Detector que fará a medição da variação de algum parâmetro físico. O detector mais utilizado em cromatografia de íons é o detector de condutividade que é capaz de ler sinal de 0 a 1000 ms/cm em escala linear sob a vazão recomendada pelo fabricante da coluna. O detector deve ter controle sobre a estabilidade da temperatura.

Computador e software para controle dos componentes do sistema cromatográfico, aquisição e manipulação dos dados de forma a fornecer uma resposta como condutividade (ms/cm) em função do tempo de retenção(min), por exemplo. O software deve permitir integração dos picos cromatográficos de forma automática e manual e ainda fornecer dados quantitativos por comparação com uma curva analítica preparada a partir de padrões conhecidos.

7 7	N 4 1			
5.∠.	Mate	eriais	e rea	agentes

3.2.1. Materiais

- a) Micropipetas de volume variável de 10 a 100 uL, 100 a 1000 uL;
- b) Ponteiras de micropipetas;
- c) Tubos graduados tipo Falcon de 15mL e 50mL;
- d) Béckeres de 100mL;
- e) Espátulas;
- f) Balões volumétrico de 1L e 2L;
- g) Bastão de vidro;
- h) Pissete;
- i) Balança analítica;

Se houver necessidade de filtração da amostra, também serão necessários os seguintes materiais:

j) Seringa para preparação de amostra

k) Cartuchos de filtração adaptáveis à seringa para preparação da amostra.

Nota: A lavagem de todo material utilizado deve seguir as orientações do PE-2P&D-01717 – Limpeza de vidrarias e materiais utilizados no laboratório de cromatografia de íons.

3.2.2. Reagentes

- a) Água ultrapura tipo I;
- b) Solução Estoque de Lactato 1000 mg/L;
- c) Solução Estoque de Acetato 1000 mg/L;
- d) Solução Estoque de Propionato 1000 mg/L;
- e) Solução Estoque de Formiato 1000 mg/L;
- f) Solução Estoque de Butirato 1000 mg/L;

NOTA: É recomendável o uso de soluções padrão comerciais, certificadas e rastreáveis. Entretanto, na falta destas, as soluções podem ser preparadas conforme orientações a seguir:

Para Solução Estoque de Lactato 1000 mg/L: Pesar 64,20 mg de lactato de sódio (C₃H₅O₃Na) 98% e completar o volume para 50mL em um balão volumétrico.

Para Solução Estoque de Acetato 1000 mg/L: Pesar 70,87 mg de acetato de sódio (C2H3O2Na) 98%, e completar o volume para 50mL em um balão volumétrico.

Para Solução Estoque de Formiato 1000 mg/L: Pesar 51,40 mg de ácido fórmico (CH₂O₂) e completar o volume para 50mL em um balão volumétrico.

Para Solução Estoque de Propionato 1000 mg/L: Pesar 50,94 mg de ácido propiônico (C₃H₆O₂) 99,5% e completar o volume para 50mL em um balão volumétrico.

Para Solução Estoque de Butirato 1000 mg/L: Pesar 63,84 mg de butirato de sódio (C4H7O2Na) 99% e completar o volume para 50mL em um balão volumétrico.

g) Solução Eluente – KOH 2mmol/L- 40mmol/L

Neste método é utilizado o gerador de eluente fornecido pelo fabricante do equipamento.

3.3. Parâmetros analíticos

Equipamento: Cromatógrafo DIONEX-2500

Pré-coluna: Dionex IonPac AG18 Guard Coluna: Dionex IonPac AS18, 4x250 mm

Fluxo: 1,0 mL/min

Eluente: KOH 2mmol/L- 40mmol/L (Gerador de eluentes)

Tempo de análise: 30 min

Programação do método no equipamento:

Pressure.LowerLimit = 200 [psi]

Pressure.UpperLimit = 3000 [psi]

%A.Equate = "100%A"

%B.Equate = "%B"

%C.Equate = "%C"

%D.Equate = "%D"

Pump_InjectValve.State LoadPosition

ECD.Data_Collection_Rate = 5.0 [Hz]

Temperature_Compensation = 1.7 [%/°C]

DS3_Temperature = 30 [°C]

Suppressor_Type = ASRS_4mm

; ECD.Carbonate = 0,0

; ECD.Bicarbonate = 0,0

; ECD.Hydroxide = 40,0

; ECD.Tetraborate = 0,0

; ECD.Other eluent = 0,0

; ECD.Recommended Current = 99

Suppressor_Current = 100 [mA]

Flow = 1.00 [ml/min]

%B = 0.0 [%]

%C = 0.0 [%]

%D = 0.0 [%]

Pump.Curve = 5

-2.300 Pump_Relay_1.Closed Duration=138.00

Concentration = 2.00 [mM]

EluentGenerator.Curve = 5

-0.100; this negative step is for command traffic.

0.000 ECD. Autozero

ECD_1.AcqOn

Pump_InjectValve.InjectPosition Duration=30.00

25.000 Concentration = 2.00 [mM]

EluentGenerator.Curve = 5

25.100 Concentration = 40.00 [mM]

EluentGenerator.Curve = 5

30.000 Concentration = 40.00 [mM]

EluentGenerator.Curve = 5

30.100 ECD_1.AcqOff

Concentration = 2.00 [mM]

EluentGenerator.Curve = 5

Wait Ready

End

3.4. Procedimentos

3.4.1. Preparação do equipamento

- a) Preencher o recipiente do equipamento com água ultrapura tipo I;
- b) Abrir o software que controla o equipamento, no caso do equipamento DIONEX, o software utilizado é o Chomeleon;
- c) Ligar a bomba para permitir que o eluente circule pelo sistema até que a pressão esteja estabilizada;
- d) Ligar a supressora e o detector;
- e) Ativar o programa de estabilização pelo software e deixar o sistema estabilizar de 30 à 60 min (durante o tempo de espera de estabilização é possível iniciar o item 3.4.2.);
- f) Verificar a linha de base e a condutividade de fundo no cromatograma. Se o sistema estiver estabilizado, a análise pode ser iniciada.

Nota: Antes da análise de uma amostra ou de um grupo de amostras, deve-se injetar água e um padrão para verificação das condições do equipamento e da curva de

calibração.

Nota: Os padrões e amostras são sempre analisados em duplicata.

Nota: A cada grupo de cinco amostras, é recomendável injetar um padrão de verificação para avaliar o funcionamento do sistema de diálise.

3.4.2. Preparação dos padrões/ Calibração

a) A partir das soluções estoque de 1000 mg/L, preparar uma solução mista de 100mg/L com todos os analitos de interesse conforme tabela:

Volume de solução a preparar (em mL):		10	
Analito	Concentração da solução estoque (mg/L)	Concentração desejada (mg/L)	Volume a pegar da solução estoque (uL)
Lactato	1000	100	1000
Acetato	1000	100	1000
Propionato	1000	100	1000
Formiato	1000	100	1000
Butirato	1000	100	1000

b) A partir da solução preparada no item anterior, preparar soluções de concentração conhecida nas faixas de 0,1 a 1,0 mg/L e de 1,0 a 10 mg/L, com 5 pontos em cada faixa.

Curva analítica 0,1 mg/L à 1,0 mg/L					
Volume de sol	ução a preparar (em mL):	10			
	Concentração da solução estoque (mg/L)	Concentração desejada (mg/L)	Volume a pegar da solução estoque (uL)		
Padrão-1	100	0,10	10		
Padrão-2	100	0,25	25		
Padrão-3	100	0,50	50		
Padrão-4	100	0,75	75		
Padrão-5	100	1,00	100		
		_			

Curva analítica 1,0 mg/L à 10 mg/L				
Volume de solu	ıção a preparar (em mL):	10		
	Concentração da	Concentração	Volume a pegar da	
	solução estoque (mg/L)	desejada (mg/L)	solução estoque (uL)	
Padrão-1	100	1,0	100	
Padrão-2	100	2,5	250	
Padrão-3	100	5,0	500	
Padrão-4	100	7,5	750	
Padrão-5	100	10,0	1000	

c) Injetar, utilizando alça de injeção de volume fixo, os padrões preparados no item anterior em, no mínimo, duplicata.

Nota: Se houver alguma dúvida sobre a ordem de eluição dos analitos, deve-se separar um padrão de concentração conhecida e realizar fortificações com adição de um tipo de analito de cada vez (spike), com o objetivo de realizar uma identificação qualitativa dos picos obtidos nos cromatogramas.

d) Montar a curva de calibração de acordo com o manual de instruções do software do equipamento.

Nota: Os tempos de retenção variam com as condições de operação e são influenciados pelas

concentrações dos outros íons presentes na amostra, com o tipo e tempo de vida da coluna, e também por fatores como temperatura, fluxo, concentração do eluente e força iônica da matriz da amostra. Por isso a adição, ou fortificação, da amostra com padrão (conforme nota do item c) é um recurso qualitativo de rotina em cromatografia de íons.

3.4.3. Preparação da amostra

A amostra deve estar em fase aquosa, sem material em suspensão e livre de hidrocarbonetos ou sulfetos, que podem danificar a coluna.

A amostra deve ser filtrada antes da injeção para eliminar materiais sólidos em suspensão.

Amostra com alto teor de cloreto e presença de desemulsificante pode, prejudicar a resolução dos picos dos analitos de interesse, quando estes estão em baixas concentrações. Nesse caso utilizar cartucho de extração em fase sólida com prata para retirar parte do cloreto e em seguida filtrar em filtro de 0,20mm.

Nota: evitar ao máximo o uso do cartucho de prata para gerar o mínimo de passivo ambiental.

Nota: recursos como a eliminação de matriz, diálise ou ultrafiltração em linha são passíveis de serem automatizados e podem ser usados para preparação da amostra.

3.4.4. Determinação

- a) Diluir cerca de 10 vezes a amostra com o objetivo de estimar a concentração do íon a ser determinado. Com base neste resultado, fazer diluição necessária para que a concentração do íon na amostra esteja na faixa linear da curva analítica de 0,1 a 10 mg/L.
- b) Injetar a amostra, utilizando o mesmo loop de injeção utilizado para a construção da curva analítica.
- c) Após a corrida cromatográfica, verificar as integrações automáticas realizadas pelo software, refazer as integrações manualmente, quando necessário, e quantificar os analitos utilizando a curva analítica adequada para a quantificação.
- d) A figura a seguir representa um cromatograma típico desta análise.

Figura 1 - Cromatograma típica da análise

3.5. Considerações relativas ao meio ambiente

Os resíduos e efluentes gerados devem ser gerenciados conforme o PE-2P&D-02576 – Plano de Gerenciamento de Resíduos do Cenpes

3.6. Considerações relativas a saúde e segurança

Na tabela a seguir, encontram-se relacionados os equipamentos de segurança e quando estes devem ser utilizados:

Material de Segurança	Quando utilizar
Luvas	Manuseio das amostras, padrões e produtos químicos
Máscara	Manuseio das amostras, padrões e produtos químicos
Óculos de segurança	Manuseio das amostras, padrões e produtos químicos

Ao armazenar os reagentes nos laboratórios observar os procedimentos do PE-2P&D-02471 – Segurança no Armazenamento e Movimentação de Produtos Químicos.

Para utilização de Equipamentos de Proteção Individual, seguir as orientações apresentadas no padrão PE-2P&D-02589 – Gerenciamento de Equipamentos de Proteção Individual.

Para uso de Equipamentos de Proteção Respiratória, seguir as orientações apresentadas no PPR (Programa de Proteção Respiratória) do Cenpes.

3.7. Autoridade e responsabilidade

Atividade	Responsabilidade	Autoridade
Calibrar equipamento	Técnico do Laboratório	Técnico ou Responsável
		Técnico do Laboratório

Analisar a amostra	Técnico do Laboratório	Técnico ou Responsável
		Técnico do Laboratório
Liberar o resultado do ensaio	Técnico do Laboratório	Técnico ou Responsável
		Técnico do Laboratório

4. REGISTROS

Б	Quem Registra	Local de	Como Indexar	Tempo Mínimo de
Registro		Arquivamento		Retenção
Cromatograma	Técnico químico	Cd-room	Identificação	2 anos
			numérica da	
			amostra	
Resultado da	Técnico químico	SCAD	Cronológica	2 anos
análise				

5. DEFINIÇÕES

5.1. Definições

Autoridade - Atribuição de aprovar ou decidir

Responsabilidade - Atribuição de executar ou providenciar a execução

5.2. Siglas

Não se aplica

6. REFERÊNCIAS

ASTM D 1193-06 - Standard Specification for Reagent Water.

Eith, C.; Kolb, M.;Rumi, A.; Seubert, A.; Viehweger, K.H. Práticas em Cromatografia de íons - Uma Introdução. Monografia Metrohm. 2ª Edição.2006.

Skoog, D.A.; Holler, F.J.; Nieman, T.A. Princípios de Análise Instrumental. Bookman. 5ª Edição. 2002.

HISTORICO

Data	Ação
14/04/2020 11:46:32	Flavia Pinheiro da Costa/BRA/Petrobras - Criou o documento
05/08/2020 15:51:27	Ana Paula Oliveira Castro/BRA/Petrobras - Enviou para o Gestor: Sandra Machado de Andrade/BRA/Petrobras
06/08/2020 10:14:56	Sandra Machado de Andrade/BRA/Petrobras - Aprovou o documento e ele se tornou "Ativo".

SUMÁRIO DE REVISÕES

Revisã o	Data	Descrição
A	06/08/202	[23/10/2020 12:26:37] - O usuário SINPEP, Paulo Ricardo Meirelles de Freitas, executou a ação "Substituir Gestor e/ou Aprovador" a qual alterou o Gestor do padrão de CENPES/PDISO/QM para CENPES/PDIDMS/PPL/LABQ. 'entre Revisão do Padrão: 'entre Alteração do título; Atualização do objetivo; Alteração da descrição (inclusão da fundamentação teórica, alteração do esquema simplificado dos componentes do sistema, atualização dos reagentes e parâmetros analíticos, cálculo dos padrões, inclusão dos parâmetros analíticos, inclusão do cromatograma típica de análise)
0	28/03/201 7	[20/07/2017 16:00:35] - O usuário SINPEP, Michelle Bruna Santana Santos - PrestServ, executou a ação "Substituir Gestor e/ou Aprovador" a qual alterou o Aprovador do padrão de CENPES/PDISO/QM para CENPES/GTEC/GPPT.

ANÁLISE CRÍTICA

Data limite para análise

Data limite para análise
6 de mai de 2022
Análise crítica
Analise Critica
Responsável análise
Data da análise crítica

LISTA DE DISTRIBUIÇÃO

CENPES/GTEC/ITPI, CENPES/PDIDMS/PPL/LABQ

ÚLTIMA FOLHA DO PADRÃO