Quiz-01-statistical learning_v2

March 19, 2022

1 Quiz 01 - Statistical Learning

In this assessment we would using the College data set which can be found in the file College.csv on the book website. It contains a number of variables for 777 different universities and colleges in the US.

The variables are * Private: Public/Private indicator * Apps: Number of applications received * Accept: Number of applicants accepted * Enroll: Number of new students enrolled * Top10perc: New students from top 10 % of high school class * Top25perc: New students from top 25 % of high school class * F.Undergrad: Number of full-time undergraduates * P.Undergrad: Number of part-time undergraduates * Outstate: Out-of-state tuition * Room.Board: Room and board costs * Books: Estimated book costs * Personal: Estimated personal spending * PhD: Percent of faculty with Ph.D.'s * Terminal: Percent of faculty with terminal degree * S.F.Ratio: Student/faculty ratio * perc.alumni: Percent of alumni who donate * Expend: Instructional expenditure per student * Grad.Rate: Graduation rate

(a) Use the read.csv() function to read the data into R. Call the loaded data college. Make sure that you have the directory set to the correct location for the data

```
[24]: # your code here
college = read.csv('College.csv')
head(college)
attach(college)
```

		X	Private	Apps	Accept	Enroll	Top10perc	Top25
		<fct></fct>	<fct $>$	<int></int>	$\langle \text{int} \rangle$	<int $>$	<int></int>	<int></int>
A data.frame: 6×19	1	Abilene Christian University	Yes	1660	1232	721	23	52
	2	Adelphi University	Yes	2186	1924	512	16	29
	3	Adrian College	Yes	1428	1097	336	22	50
	4	Agnes Scott College	Yes	417	349	137	60	89
	5	Alaska Pacific University	Yes	193	146	55	16	44
	6	Albertson College	Yes	587	479	158	38	62

The following objects are masked from college (pos = 3):

Accept, Apps, Books, Enroll, Expend, F.Undergrad, Grad.Rate, Outstate, P.Undergrad, perc.alumni, Personal, PhD, Private, Room.Board, S.F.Ratio, Terminal, Top1Operc, Top25perc, X

```
[25]: # hidden test case
```

(b) Use the dim() function to produce the dimensions of the data set.

```
[26]: #dims = ?
# your code here
dims = dim(college)
dims
```

1. 777 2. 19

[27]: #hidden tests

(c) Use the pairs() function to produce a scatterplot matrix of the first ten columns or variables of the data. Recall that you can reference the first ten columns of a matrix A using A[,1:10]

```
[]: #pairs = ?
# your code here
pairs(college[,1:10])
```


[]: #hidden test cases

(d) Use the plot() function to produce side-by-side boxplots of Outstate versus Private

[]: # your code here

(e) Create a new qualitative variable, called Elite, by binning the Top10perc variable. Divide universities into two groups based on whether or not the proportion of students coming from the top 10% of their high school classes exceeds 50 %.

Elite should contain Yes or No based on the above condition

```
[]: #Elite = ?
# your code here
```