MAT 3253 Lecture 6

Review

A vector function $\vec{f}(x,y) \in \mathbb{R}^2$ is called real differentiable, if $\exists 2x2$ matrix M s.t.

 $\lim_{(\Delta x, \Delta y)} \| \vec{f}(x_0 + \Delta x, y_0 + \Delta y) + (\vec{f}(x_0, y_0) + M \cdot [\Delta x]) \| = 0$ $|\int_{(0,0)} | (\Delta x^2 + \Delta y^2) | = 0$

 $\vec{f}'(x_0 + \Delta \epsilon, y_0 + \Delta \gamma) \doteq f(x_0, y_0) + M \cdot \begin{bmatrix} \Delta r \\ \Delta \gamma \end{bmatrix}$

necessary condition $\vec{f} = (u(x,y), v(x,y))$ u_x, u_y, v_x, v_y exists at (x_0, y_0)

* Sufficient andition

(D) u_x , u_y , v_x , v_y exists in a neighborhood of (x_0, y_0)

(2) ux, uy, vx, vy one continuous at (x0, y0)

Def A complex function f(z) = f(x+iy)is called <u>complex differentiable</u> at $Z_0 = x_0 + iy_0$ if $f(z_0 + \Delta z) = f(z_0) + f'(z_0) \cdot \Delta z$

or equivalently
$$\lim_{h\to 0} \frac{f(z_0 + h) - f(z_0)}{h}$$
 exists and we write this limit as $f'(z_0)$.

A necessary condition for complex differentiable at 20

Theorem Suppose f(z) is complex differentiable at z_0 in the domain of f(z).

f(xy) = u(x,y) + i v(x,y).

Then $u_x = v_y$ and $u_y = -v_x$.

(Cauchy-Riemann egn)

Proof DZ = Ox

• Z₀ Z₀ t∆x

lim <u>u(x0+0x, y0) + iv(x0+0x, y0) - u(x0, y0) - iv(x0, y0)</u> Dx

= 1 im U(x0+Dx, y0) - U(x0, y0) + 1 lin V(x0+Dx, y0) - U(x0, y0)

= $\frac{\partial x}{\partial u} (x_0, y_0) + i \frac{\partial x}{\partial v} (x_0, y_0)$.

 $\lim_{\Delta y \to 0} \frac{u(x_0, y_0 + \Delta y) + iv(x_0, y_0 + \Delta y) - iv(x_0, y_0)}{i\Delta y}$ $\uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad$ = lim | u(xo, yotay) - u(xoyo) + lim (i) (xo, yotay) - i v(xoyo) | Oy>0 (i) Dy $= -i \frac{\partial \lambda}{\partial n} (xo, \lambda^0) + \frac{\partial \lambda}{\partial n} (xo, \lambda^0)$... $U_X = V_Y$ and $u_Y = -V_X$ $f(x_0+\Delta x, \gamma \not\in \Delta \gamma) = f(x_0, \gamma_0) + \begin{bmatrix} u_x & u_y \\ v_x & v_\gamma \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta \gamma \end{bmatrix}$ is in the form [a -b] if f is complex differentiable A sufficient condition $f(z) = u(x_i y) + iv(x_i y)$ Theorem A complex function f is complex differentiable

(i) ux, uy, vx, vy exists in a neighborhood of Zo

2 Cauchy-Riemonn equations are satisfied at zo

3 ux, uy, vx, vy are Continuous functions at 30

Example
$$f(z) = az+b$$
 $a, b \in \mathbb{C}$
 $f'(z) = a$ for any $z \in \mathbb{C}$

Example
$$f(z) = \overline{z} = x - iy$$

$$u(x_{iy}) = x , \quad v(x_{iy}) = -y$$

$$u(x_{iy}) = x , \quad v(x_{iy}) = -y$$

.'. $f(z) = \overline{z}$ is not complex differentiable at any point z in C.

Method
$$|(x+i\gamma)^2| = x^2 - \gamma^2 + i \frac{2\gamma\gamma}{V(x_i\gamma)}$$

$$u_{x} = 2x$$

$$u_{y} = -2y$$

$$V_{x} = 2\gamma$$

3) All partial derivatives are continuous everywhere

...
$$f(z) = z^2$$
 is complex differentiable at all $z \in \mathbb{C}$

Method 2 by first principle

$$\lim_{h\to 0} \frac{f(z+h) - f(z)}{h}$$

$$\frac{(z+h)^2 - z^2}{h} = \frac{2zh + h^2}{h} = 2z + h$$

$$\lim_{h\to 0} 2z + h = 2z$$

Example
$$f(z) = |z|^2 = x^2 + y^2$$

$$u(x,y) = x^2 + y^2 \qquad v(x,y) = 0$$

$$u_x = 2x \qquad v_x = 0$$

$$u_y = 2y \qquad v_y = 0$$

$$2x = u_x = v_y = 0$$
) only solution is

$$2y = Uy = -Ux = 0$$
 $(x,y) = (0,0)$

- 1 Partial derivatives exists in a neighborhood of Z=0.
- (2) CR soutisfied on 2=0
- 3 Partial derivatives are continuous at z=0.'. $|z|^2$ is complex differentiable at z=0. $\chi^2 t_{\gamma}^2$ is real differentiable for all (κ_{γ}) .

Example
$$f(z) = \frac{1}{2}$$
 for $z \in C \setminus \{0\}$

By first principle

Suppre $z \neq 0$

$$\frac{1}{2+h} - \frac{1}{2} = \frac{1}{h} \left(\frac{z' - (z+h)}{(z+h) \cdot z} \right)$$

$$= \frac{-h}{h(z+h) \cdot z}$$

$$= \frac{-1}{2(z+h)}$$

$$\lim_{h \to 0} \left(\frac{-1}{2(z+h)} \right) = -\frac{1}{2^2}$$

$$f(z) = \frac{1}{2} \text{ is complex differentiable}$$

Def A function f is analytic at a point 20 if there is a reighborhood of 20 s.t.

f is complete differentiable out every point

2 in the neighborhood.

in a (803.

Def A function is entire if it is

complex differentiable of every point $z \in \mathbb{C}$. $f(z) = |z|^2 \quad \text{is not analytic} \quad \boxed{\frac{1}{2}} \quad \text{is not entire}$