Due: Tuesday, April 4

Homework Problems

- 1. Suppose that X_1, \dots, X_n be *i.i.d.* observations from a Uniform $(0, \theta)$ distribution.
 - (a) Show that $W_n = 2\overline{X}$ is a consistent estimator for θ .
 - (b) Show that $V_n = X_{(n)}$ is a consistent estimator for θ .
 - (c) Show that $\sqrt{n}(W_n \theta)$ converges in distribution. Identify the limiting distribution along with its parameters.
 - (d) Show that $n(\theta V_n)$ converges in distribution. Identify the limiting distribution along with its parameters.
 - (e) Compare the approximate variances of W_n and V_n . Which estimator becomes more efficient (has less variance) as n grows large?
- 2. Suppose that X_1, \dots, X_n be *i.i.d.* observations from a Bernoulli(p) distribution. Let $\hat{p} = \overline{X}$ be the MLE of p. We are interested in estimating $\tau(p) = p(1-p)$.
 - (a) When $p \neq \frac{1}{2}$, show that the MLE $\tau(\hat{p}) = \hat{p}(1-\hat{p})$ is asymptotically efficient using Definition 10.1.11, instead of using Theorem 10.1.12. In other words, show directly that the asymptotic variance of $\tau(\hat{p})$ (using Delta Method) equals the Cramer Rao Lower Bound for variance of unbiased estimators of $\tau(p)$.
 - (b) When $p = \frac{1}{2}$, use the second-order delta method in Theorem 5.5.26 to find the limiting distribution of $\tau(\hat{p})$.
- 3. The lognormal distribution is a popular choice for describing the distribution of the concentration X of an air pollutant. Suppose that the random variable

$$Y = \ln(X) \sim N(\mu, \sigma^2)$$

- so X has a $lognormal(\mu, \sigma^2)$ distribution where $-\infty < \mu < \infty, 0 < \sigma^2 < \infty$ are unknown. Suppose that X_1, \dots, X_n constitute a random sample from the lognormal distribution for X.
- (a) Let $G_n = \prod_{i=1}^n X_i^{1/n}$ define the sample Geometric Mean. Show that G_n is a consistent estimator of e^{μ} .

(b) Show that for some suitable $\tau(\mu, \sigma^2)$, $\nu(\mu, \sigma^2)$

$$\sqrt{n}\left(G_n - \tau(\mu, \sigma^2)\right) \stackrel{d}{\longrightarrow} \mathcal{N}\left(0, \nu(\mu, \sigma^2)\right).$$

Identify both $\tau(\mu, \sigma^2)$, and $\nu(\mu, \sigma^2)$.

Suppose that it is of interest to consider the maximum likelihood estimator $\hat{\xi}$ of $\xi = E(X)$, the true mean concentration of the pollutant X in the original scale.

- (c) Find the MLE $\hat{\xi}$ of the parameter ξ .
- (d) Find explicit expressions for $E(\hat{\xi})$ and $Var(\hat{\xi})$. Use the following hints if needed
 - (i) The sample mean and sample variance of Y follow known distributions.
 - (ii) The moment-generating function of $Z \sim N(\mu, \sigma^2)$ is $E[e^{tZ}] = e^{\mu t + \frac{1}{2}\sigma^2 t^2}$.
 - (iii) The moment-generating function of $Z \sim \chi_k^2$ is $\mathrm{E}[e^{tZ}] = (1-2t)^{-\frac{k}{2}}$.
- (e) Find the limiting expectation and variance $\lim_{n\to\infty} \mathrm{E}(\hat{\xi})$ and $\lim_{n\to\infty} \mathrm{Var}(\hat{\xi})$, and determine whether $\hat{\xi}$ is consistent or not. If needed, use the fact below as a hint.

$$\lim_{n \to \infty} \left(1 - \frac{c}{n} \right)^{n/c} = \frac{1}{e} , \qquad (c > 0)$$

.

Practice Problems

- (a) C&B Exercise 10.1
- (b) C&B Exercise 10.3
- (c) C&B Exercise 10.9
- (d) C&B Exercise 10.11
- (e) C&B Exercise 10.23