

CHIP

基于BERT与提升树模型的语义匹配方法

团 队: wzm

汇报人: 吴梓明

吴梓明 华南理工大学 研究生三年级

•	贵在联通——	"联创黔线"	杯大数据应用创新大赛		1st
•	蚂蚁金服风险	大脑: 支付风	险识别(内部赛)		1st
•	DigSci 科学数据挖掘大赛 2019				3 rd
•	同盾科技声纹识别建模大赛				4 th
•	第三届融360尹	第三届融360天机智能金融算法挑战赛 5			
•	智源&计算所-互联网虚假新闻检测挑战赛				7 th
•	美年健康AI大家	赛——双高疫	病风险预测		9 th
\					

任务描述

本次评测任务的主要目标是针对中文的疾病问答数据,进行病种间的迁移学习。具体而言,给定来自5个不同病种的问句对,要求判定两个句子语义是否相同或者相近。所有语料来自互联网上患者真实的问题,并经过了筛选和人工的意图匹配标注。

评价指标

本任务的评价指标包括准确率(Precision), 召回率(Recall)和F1值。最终排名以F1值为基准。

$$precision = \frac{TP}{TP + FP}$$

$$recall = \frac{TP}{TP + FN}$$

$$F1 = \frac{2*precision*recall}{precision+recall}$$

整体方案设计

数据扩增

BERT模型

^[2] Cui Y, Che W, Liu T, et al. Pre-Training with Whole Word Masking for Chinese BERT[J]. arXiv preprint arXiv:1906.08101, 2019.

树模型

主要特征

类别	特征	说明	
隐式表征	pool_nsp_x	经过bert之后的隐式表征	
	out_degree	出度	
图特征	in_degree	入度	
四有作	degree	出度+入度	
	pr	pagerank值	
	distance	编辑距离	
交互特征	ratio	莱文斯坦比	
火 五 和 但	jaro	jaro距离	
	jaro_winkler	Jaro-Winkler距离	

为什么有效

示例

	句子1	句子2
1	高血压症的患者又时而出现低血压是什么原因	以前是高血压现在又是低血压,是什么原因
2	请问我血糖查出来是15.4,我是不是有糖尿病。?	我的尿糖是2个加号,是不是糖尿病

- BERT模型学习出来的概率在0.45-0.55之间,不确定性非常大, 但是其实直观上的观察就能发现,编辑距离较小,两者极有可能相关。
- 同时,传统模型存在缺点,非常容易过拟合,对数据集依赖大,举例:假如训练集中大量label的句子对,都出现了"血糖"这个词语,那么很有可能学习出来的模型就会认为只要句子中含有"血糖",那么标签就极有可能为1,而偏离了我们需要考虑的语义特性,因此也不能仅使用树模型,同时在本方案中避免了使用类似tfidf等词频特征,就是为了避免模型出现上述的过拟合现象。

还有什么能做?

THANKS

团 队: wzm

汇报人: 吴梓明