苏州	N大学	《线性	性代数》	》课程	试卷库	尾(第一	十三卷) 共。	4 页
学院			专业			成绩			
年级			学号_		姓	:名		_日期_	
			Ξ	四	五.	六	七	八	九
得分一、	 选择是	顷. (岳 語	题 3 分,	共计 15	<u>分</u>)				
•					$-5a_{21}$	$ 3a_{21} $			
1、已知	$\begin{vmatrix} a_{21} & a_{22} \end{vmatrix}$	$ a_{23} =$	3,则 <i>a</i>	a_{12} $2a_{32}$	$-5a_{22}$ 3	$ a_{22} =$		[]
	$\begin{vmatrix} a_{31} & a_{31} \end{vmatrix}$	a_{33}	a	a_{13} $2a_{33}$	$-5a_{23}$ 3	$3a_{23}$			
					(D)				
					ラ矩阵 B				
(A)	A = B	(F	B) A与1	B有相同	目的特征多	多坝式			
(C) $r(A) = r(B)$ (D) n 阶矩阵 $A = B$ 有相同的特征值且 n 个特征值各不相同									
3、设 A 为 $m \times n$ 阶矩阵, C 是 n 阶非奇异阵, $B = AC$,若 $r(A) = r$, $r(B) = r_1$,则									
								[]
(A) r	> <i>r</i> ₁	(B) r <	$< r_1$	(C) r=	$= r_1$ (D)) r与r	的关系的	衣 <i>C</i> 而定	•
4、设向	量组 α_1 ,	α_2, α_3	线性无关	き,则 下	「列向量组	组线性相	l关的是	[]
(A) a	$\alpha_1 + \alpha_2, \alpha_3$	$\alpha_2 + \alpha_3$	$\alpha_3 + \alpha_1$	(B)	$\alpha_1, \alpha_1 +$	α_2 , α_1 +	$\alpha_2 + \alpha_3$		
(C) α	$\alpha_1 - \alpha_2$, α_2	$\alpha_2 - \alpha_3$, α_3	$\alpha_3 - \alpha_1$	(D)	$\alpha_1 + \alpha_2$	$2\alpha_2 + \alpha_2$	$\alpha_3, 3\alpha_3 + \alpha_3$	$lpha_{_1}$	
5、设线	性方程组	$4 \le Ax = b$	有n个表	 夫知量,	m个方程	星,且 r(A)=r,	则 []
					r=n				
(C) <i>m</i> 二、填空					r < n	寸,方程:	组有无穷	多解	
					$=\alpha^T\beta$,	则 $r(A)$	=	o	
2、设α	$\alpha_1, \alpha_2, \cdots$	$, \alpha_n$ 是 n	维列向量	畫, A =	$(\alpha_1, \alpha_2, \cdots)$	$\cdots, \alpha_n)$,	则 α_1 , α_2	$\alpha_2, \cdots, \alpha_n$	线性无
关的3	充要条件	-是 A		o					

- 3、若 $\begin{vmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 0 & 0 & x & 3 \\ 0 & 0 & 4 & 5 \end{vmatrix} = 0$,则 x =_______。
- 4、设3阶方阵A的三个特征值为1, 2, 3, 则 A^* 的三个特征值为
- 5、设三阶方阵 A 满足 $|A| = \frac{1}{2}$,且 $B = (2A^2)^{-1} 2(A^{-1})^2$,则 $|B| = _____$ 。
- 三、 $(10\, \%)$ 计算行列式 $\begin{vmatrix} a_1 & 0 & 0 & b_1 \\ 0 & a_2 & b_2 & 0 \\ 0 & b_3 & a_3 & 0 \\ b_4 & 0 & 0 & a_4 \end{vmatrix}$

- 四、(10分)设方阵 A 满足 $A^2 + A 8E = 0$,
 - (1) 证明: A-2E可逆;
 - (2) 设矩阵 X 与 A 满足关系式 $AX + 2(A + 3E)^{-1}A = 2X + 2E$, 求 X

五、(10分) 读
$$\begin{cases} x_1 + & x_2 + & x_3 + & x_4 + & x_5 & = 1 \\ 3x_1 + & 2x_2 + & x_3 + & x_4 - & 3x_5 & = a \\ & x_2 + & 2x_3 + & 2x_4 + & 6x_5 & = 3 \\ 5x_1 + & 4x_2 + & 3x_3 + & 3x_4 - & x_5 & = b \end{cases}$$

讨论当*a*,*b* 为何值时,方程组有解,当方程组有解时,用其导出组的基础解系表示方程组的全部解。

六、(10分) 向量组 $A: \alpha_1 = (1, 0, 1, 0, 1), \alpha_2 = (0, 1, 1, 0, 1),$

$$\alpha_3 = (1, 1, 0, 0, 1), \alpha_4 = (-3, -2, 3, 0, -1),$$

求:(1) A的秩及一个极大无关组;

(3) 将 A 的每一个向量用极大无关组线性表示。

七、(10 分) 设
$$A = \begin{pmatrix} a & 1 & 1 & 2 \\ 2 & a+1 & 2a & 3a+1 \\ 1 & 1 & 1 & 2 \end{pmatrix}$$
, 存在 3 阶非零方阵 $B \notin BA = 0$, 求 a

八、
$$(10 分)$$
 设 $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{pmatrix}$, 求 (1) 特征值和特征向量;

(2) 正交矩阵Q, 使 Q^TAQ 为对角阵。

九、(10 分) 设A为正交矩阵,证明:A的伴随阵 A^* 也是正交矩阵。