Hypothesis Testing

Chaklam Silpasuwanchai

Variance
One-way with 2 leve

One-way with 4 level Between-subjects Two-way

Analysis of variance for counterbalancing testing

Chi-square

Nonparametric

Normality check

Hypothesis Testing

Chaklam Silpasuwanchai

Asian Institute of Technology chaklam@ait.asia

January 2, 2020

Overview

Hypothesis Testing

Chaklam Silpasuwanchai

Analysis variance

> One-way with 2 leve One-way with 4 leve Between-subjects Two-way

Analysis of varianc for counterbalancir testing

Chi-square test

Nonparametrio

Normality check

- 1 Analysis of variance
 - One-way with 2 levels
 - One-way with 4 levels
 - Between-subjects
 - Two-way
 - Analysis of variance for counterbalancing testing
- 2 Chi-square test
- Non-parametric tests
- 4 Normality check

Sources

Hypothesis Testing

Chaklam Silpasuwanchai

Variance
One-way with 2 levels
One-way with 4 levels
Between-subjects

Between-subjects
Two-way
Analysis of variance
for counterbalancing
testing

Chi-square test

Nonparametri tests

Normality

- Mackenzie, Chapter 6, Hypothesis Testing, Human Computer Interaction: An Empirical Research Perspective, 1st ed. (2013)
- Yatani, Advanced Topics in Human-Computer Interaction, http://yatani.jp/teaching/doku.php?id=2016hci: start

Statistical Procedures

Hypothesis Testing

Chaklam Silpasuwanchai

Analysis of variance

One-way with 4 levels Between-subjects Two-way Analysis of variance for counterbalancing

Chi-square test

Nonparametric

Normality check

- Statistical tests comes in two forms: parametric and non-parametric test
- Parametric tests operate on data based on assumptions of a normal distribution or the t-distribution.
- Non-parametric tests can operate on any data.
- Parametric tests are superior to non-parametric tests, but require assumptions of distributions.

Measurement Scale	Defining Relations	Examples of Appropriate Statistics	Appropriate Statistical Tests
Nominal	Equivalence	Mode Frequency	
Ordinal	Equivalence Order	Median Percentile	tests
Interval	Equivalence Order Ratio of intervals	Mean Standard deviation	Parametric tests
Ratio	Equivalence Order Ratio of intervals Ratio of values	Geometric mean Coefficient of variation	Non-parametric tests

Figure: Source: Fg. 6.1 (Mackenzie): Measurement scales of data, properties of data, and appropriate statistical tests

Type of data

Hypothesis Testing

Chaklam Silpasuwanchai

Analysis of variance

One-way with 4 lev Between-subjects

Analysis of variance for counterbalancing testing

Chi-square test

Nonparametri tests

Normality check

- Nominal: techniques, gender, occupation
- Ordinal: likert-scale question; each interval is not equal
- Interval: tmperature; no exact zero
- Ratio: height/weight, speed, accuracy, time

Analysis of Variance

Hypothesis Testing

Chaklam Silpasuwanchai

Analysis of variance

One-way with 2 levels
One-way with 4 levels
Between-subjects
Two-way
Analysis of variance
for counterbalancing

Chi-square test

Nonparametri tests

Normality check

- ANOVA, or F-test, is the main statistical test for factorial experiment
- The main motivation to use statistical test is if we see a difference in mean, is that difference occur by chance or is significant?
- The way to achieve is to determine whether IV has a significant effect on IV is based on variances
- Some definition: Null hypothesis is an assumption of no difference - e.g., there is no difference in the mean time between keyboard and mouse.

Hypothesis Testing

Chaklam Silpasuwanchai

variance

One-way with 2 levels
One-way with 4 levels
Between-subjects
Two-way

Analysis of variance for counterbalancin testing

Chi-square test

Nonparametri tests

Normality

FIGURE 6.2

Difference in task completion time (in seconds) across two test conditions, Method A and Method B. Two hypothetical outcomes are shown: (a) The difference is statistically significant. (b) The difference is not statistically significant.

Figure: Source: Fg. 6.2 (Mackenzie)

Hypothesis Testing

Chaklam Silpasuwanchai

Analysis variance

> One-way with 2 levels One-way with 4 levels Between-subjects

Two-way

Analysis of variance
for counterbalancin
testing

Chi-squar

Nonparametri

Normality

/- N					
(a)	Participant	Met	hod		
	Participant	Α	В		
	1	5.3	5.7		
	2	3.6	4.8		
	3	5.2	5.1		
	4	3.6	4.5		
	5	4.6	6.0		
	6	4.1	6.8		
	7	4.0	6.0		
	8	4.8	4.6		
	9	5.2	5.5		
	10	5.1	5.6		
	Mean	4.5	5.5		
	SD	0.68	0.72		

FIGURE 6.3

(a) Data for simulation in Figure 6.2a. (b) Bar chart with error bars showing ±1 standard deviation.

Figure: Source: Fg. 6.3 (Mackenzie)

Hypothesis Testing

Chaklam Silpasuwanchai

Analysis of variance

One-way with 2 levels
One-way with 4 levels
Between-subjects

Analysis of variance for counterbalancing testing

Chi-square

Nonparametri

Normality check

ANOVA Table for Task Completion Time (s)

	DF	Sum of Squares	Mean Square	F-Value	P-Value	Lambda	Pow er
Subject	9	5.080	.564				
Method	1	4.232	4.232	9.796	.0121	9.796	.804
Method * Subject	9	3.888	.432				

FIGURE 6.4

Analysis of variance table for data in Figure 6.3a.

Figure: Source: Fg. 6.4 (Mackenzie): P-value of 0.0121 means that there is less than 2% that the difference occurs by chance. By convention requires less than 0.05 to reject null hypothesis

The mean task completion time for Method A was 4.5 s. This was 20.1% less than the mean of 5.5 s observed for Method B. The difference was statistically significant ($F_{1.9} = 9.80$, p < .05).

FIGURE 6.5

Example of how to report the results of an analysis of variance in a research paper.

Figure: Source: Fg. 6.5 (Mackenzie): F-value is calculated = between-group variances / within-group variances = 4.232 / .432

Hypothesis Testing

Chaklam Silpasuwancha

Variance
One-way with 2 levels
One-way with 4 levels

Two-way

Analysis of variance for counterbalancing testing

Chi-square test

Nonparametric tests

Normality

Reporting format:

- Note that when we report the p value, p is cited as less than a more conservative threshold from the set .05, .01, .005, .001, .0005, .0001. Thus p is cited as p < .05 rather than p = .0121
- Must strictly follow the exact format for reporting use parentheses, uppercase for F, lowercase for p, italics for F and p, space on both sides of equal sign, space after comma, space on both sides of the less than sign, degrees of freedom are subscript, three/four significant digits for F statistics, does not require 0 in front of p-value.

Hypothesis Testing

Chaklam Silpasuwanchai

Analysis variance

> One-way with 2 levels One-way with 4 levels Between-subjects

Analysis of variance for counterbalancing

Chi-square test

Nonparametri

Normality

a)	Dorticinant	Met	hod
	Participant	Α	В
	1	2.4	6.9
	2	2.7	7.2
	3	3.4	2.6
	4	6.1	1.8
	5	6.4	7.8
	6	5.4	9.2
	7	7.9	4.4
	8	1.2	6.6
	9	3.0	4.8
	10	6.6	3.1
	Mean	4.5	5.5
	SD	2.23	2.45

FIGURE 6.6

(a) Data for simulation in Figure 6.2b. (b) Bar chart with error bars showing ±1 standard deviation.

Figure: Source: Fg. 6.6 (Mackenzie)

Hypothesis Testing

One-way with 2 levels

ANOVA Table for	Task	k completion time (s)				
	DF	Sum of Squares	Mean Square			
Subject		37 372	4 152			

	DF	Sum of Squares	Mean Square	F-Value	P-Value	Lambda	Pow er
Subject	9	37.372	4.152				
Method	1	4.324	4.324	.626	.4491	.626	.107
Method * Subject	9	62.140	6.904				
FIGURE 6.7							

Analysis of variance for data in Figure 6.3b.

ANOMA Table for Tools Commission Times (a)

Figure: Source: Fg. 6.7 (Mackenzie). F = 4.324/6.904 = .626. Given p-value of .4491, there is around 45% that the difference occurs by chance.

> The mean task completion times were 4.5 s for Method A and 5.5 s for Method B. As there was substantial variation in the observations across participants, the difference was not statistically significant as revealed in an analysis of variances $(F_{1,0} = 0.626, ns).$

FIGURE 6.8

Reporting a non-significant ANOVA result.

Figure: Source: Fg. 6.8 (Mackenzie). It means that we have not enough evidence to reject null hypothesis, but it does not mean that null hypothesis is true either.

Effect Size

Hypothesis Testing

Chaklam Silpasuwanchai

variance
One-way with 2 levels

One-way with 4 levels Between-subjects Two-way Analysis of variance for counterbalancing

Chi-square test

Nonparametri tests

Normality

Statistical considerations:

- A t test is the same as an analysis of variance if only two levels
- Type 1 error: false positive (say difference when there isn't); Type II
 error: false negative (say no difference when there is)
- To fix Type I error, we check p value against our predefined significance level; this significance level is also called alpha (commonly .05 or less)
- To fix Type II error, we can report the **effect size** which measures how "strong" is the significance. SPSS reports **Partial Eta Squared** (η_p^2) .02 means that the factor X by itself accounted for only 2% of the overall (effect + error) variance. Usually around > 0.06 is considered moderate, while > 0.14 is large.
- Power analysis can be used prior to the experiment, to determine the sample size needed. You need effect size, significance level (.05) and power (.7). Note that this effect size could be eta-square, Cohen's d, or omega-squared depending on the tools you use.

Effect Size

Hypothesis Testing

Chaklam Silpasuwanchai

One-way with 2 levels

Between-subjects
Two-way
Analysis of variance
for counterbalancing
testing

Chi-square test

Nonparametri tests

Normality check

Statistical considerations:

- The most common metrics are eta squared and partial eta squared.
 The eta squared is a correlation ratio of SS-effect / SS-total, where
 SS-effect is sum of squares for the factor while SS-total is the total sum of square
- However, when you have many IVs, eta-squared becomes too small.
 To address this, we use partial eta-squared which is a ratio of SS-effect / (SS-effect+SS-error). Here SS-error means the sum of squre for the error term.
- For eta-squared, 0.01 is small, 0.06 is medium, and 0.14 is large
- For partial eta-squared, 0.01 (small), 0.09 (medium), and 0.25 (large)
- Normally, eta-squared is fine for HCI experiment with around 2 to 3 IVs

Hypothesis Testing

Chaklam Silpasuwanchai

Analysis of variance

One-way with 2 leve

Between-subjec

Analysis of variance for counterbalancing

Chi-square

Nonparametric

Normality

To al Considition							
Participant		Test Condition					
1 articipant	Α	В	С	D			
1	11	11	21	16			
2	18	11	22	15			
3	17	10	18	13			
4	19	15	21	20			
5	13	17	23	10			
6	10	15	15	20			
7	14	14	15	13			
8	13	14	19	18			
9	19	18	16	12			
10	10	17	21	18			
11	10	19	22	13			
12	16	14	18	20			
13	10	20	17	19			
14	10	13	21	18			
15	20	17	14	18			
16	18	17	17	14			
Mean	14.25	15.13	18.75	16.06			
SD	3.84	2.94	2.89	3.23			

Figure: Source: Fg. 6.9a (Mackenzie)

Hypothesis Testing

Chaklam Silpasuwanchai

Analysis of variance

One-way with 2 levels
One-way with 4 levels

Between-subjec

Two-way

Analysis of variance for counterbalancing

Chi-square

Non-

parametri tests

Normality

Figure: Source: Fg. 6.9b (Mackenzie)

ANOVA Table for Dependent Variable (units)

	DF	Sum of Squares	Mean Square	F-Value	P-Value	Lambda	Pow er
Subject	15	81.109	5.407				
Test Condition	3	182.172	60.724	4.954	.0047	14.862	.896
Test Condition * Subject	45	551.578	12.257				

Figure: Source: Fg. 6.9c (Mackenzie)

Hypothesis Testing

Chaklam Silpasuwanchai

variance
One-way with 2 leve

One-way with 4 levels

Between-s

Analysis of variance for counterbalancing testing

Chi-square test

Nonparametric tests

Normality check To determine exactly which condition is different with which condition, a posthoc analysis is required - the most common method is either a Tukey's test or pairwise comparison with the Bonferroni correction

Scheffe for Dependent Variable (units)

Effect: Test Condition Significance Level: 5 %

	Mean Diff.	Crit. Diff.	P-Value	
A, B	875	3.302	.9003	
A, C	-4.500	3.302	.0032	s
A, D	-1.813	3.302	.4822	
B, C	-3.625	3.302	.0256	s
B, D	938	3.302	.8806	
C, D	2.688	3.302	.1520	

Figure: Source: Fg. 6.11 (Mackenzie)

Example: Between-subjects designs

Hypothesis Testing

Chaklam Silpasuwanchai

Analysis variance

One-way with 2 level One-way with 4 level

Between-subjects

Analysis of variance for counterbalancing

Chi-square

test

parametri tests

Normality

To check whether handedness has a effect on task completion time.

Figure: Source: Fg. 6.12 (Mackenzie)

ANOVA Table for Task Completion Time (s)

	DF	Sum of Squares	Mean Square	F-V alue	P-Value	Lambda	Pow er	
Handedness	1	18.063	18.063	3.781	.0722	3.781	.429	
Residual	14	66.875	4.777					

Figure: Source: Fg. 6.13 (Mackenzie)

Two-way analysis of variance

Hypothesis Testing

Chaklam Silpasuwanchai

One-way with 2 leve

Two-way

Analysis of variance for counterbalancing testing

Chi-square test

Nonparametrio tests

Normality check

- Experiments with two IVs (factors) is called a two-way design
- Analysis of variance of two-way design tests main effects of each factor and interaction effect
- Interaction effect indicates an relationship between the IV which the relationship is shown in their effect on DV
- If experiment has two factors, three possibilities are possible: 2 factors are both within-subject, or both are between-subject, or one is within and another is between.

Interaction effects

Hypothesis Testing

Chaklam Silpasuwanchai

Analysis of

One-way with 2 leve

Two-way

Analysis of variance

for counterbalancir testing

test

Nonparametric tests

Normality

Figure: Source: Yatani's post-hoc tests

Example: 3 x 2 within-subjects design

Hypothesis Testing

Chaklam Silpasuwanchai

variance

One-way with 2 leve One-way with 4 leve Between-subjects

Two-way

Analysis of variance for counterbalancing testing

Chi-square

Nonparametri

Normality

Let's take both factors as within-subjects, the first factor is device with 3 levels - mouse, trackball, and stylus, and second factor is task with 2 levels - point-select and drag-select. We called this a 3×2 within-subjects design.

Figure: Source: Fg. 6.14 (Mackenzie)

Example: 3 x 2 within-subjects design

Hypothesis Testing

Chaklam Silpasuwanchai

variance
One-way with 2 le

One-way with 4 level Between-subjects

Analysis of variance for counterbalancing testing

Chi-square

Nonparametric tests

Normality check Three effects were observed - the main effect of device and task, and the interaction effect between device and task

ANOVA Table for Task Completion Time (s)

	DF	Sum of Squares	Mean Square	F-Value	P-Value	Lambda	Pow er
Subject	11	134.778	12.253				
Device	2	121.028	60.514	5.865	.0091	11.731	.831
Device * Subject	22	226.972	10.317				
Task	1	.889	.889	.076	.7875	.076	.057
Task * Subject	11	128.111	11.646				
Device * Task	2	121.028	60.514	5.435	.0121	10.869	.798
Device * Task * Subject	22	244.972	11.135				

Figure: Source: Fg. 6.15 (Mackenzie)

Example: 3 x 2 within-subjects design

Hypothesis Testing

Chaklam Silpasuwanchai

Analysis of variance
One-way with 2 levi

Two-way Analysis of variance

for counterbalancing testing

Chi-square test

Nonparametrion tests

Normality

Reporting:

The grand mean for task completion time was 15.4 seconds. Device 3 was the fastest at 13.8 seconds, while device 1 was the slowest at 17.0 seconds. The main effect of device on task completion time was statistically significant ($F_{2,22} = 5.865$, p <.01). The task effect was modest, however. Task completion time was 15.6 seconds for task 1. Task 2 was slightly faster at 15.3 seconds; however, the difference was not statistically significant $(F_{1,11} = 0.076, \text{ ns})$. The results by device and task are shown in Figure x. There was a significant Device × Task interaction effect $(F_{2,22} = 5.435, p < .05)$, which was due solely to the difference between device 1 task 2 and device 3 task 2, as determined by a Scheffé post hoc analysis.

Figure: Source: Fg. 6.16 (Mackenzie)

Analysis of variance for counterbalancing testing

Hypothesis Testing

Chaklam Silpasuwanchai

Analysis of variance

One-way with 2 le

One-way with 4 levels Between-subjects Two-way Analysis of variance for counterbalancing

Chi-square

Nonparametrio tests

Normality

- Let's say we counterbalance a single factor with two levels (A and B). Group 1 (G1) does AB while Group 2 (G2) does BA.
- How can we confirm that the counterbalancing works? We can use analysis of variance to check
- We set a 2 x 2 mixed design with one within-subjects factor (method: A and B) and one between-subjects factor (groups: AB and BA)
- If the ANOVA shows that group effect is not significant, it means our counterbalancing works.
- If there is an interaction effect between method and group, it represents a phenomenon known as asymmetric skills transfer, meaning that it was different transitioning from A to B than from B to A

Chi-square test

Hypothesis Testing

Chaklam Silpasuwanchai

variance
One-way with 2 le

Between-subjects
Two-way
Analysis of variance
for counterbalancing
testing

Chi-square test

Nonparametri tests

Normality check

- Is a non-parametric tests that is common for working with counts/frequencies
- The test compares the observed values, against the expected values, which are developed under the assumption that there is no difference among groups.
- Is non-parametric because it does not work under any assumption of probability distribution

Example: Counts of usage

Hypothesis Testing

Chaklam Silpasuwanchai

Analysis of variance

One-way with 4 lev

Between-subjects Two-way

Analysis of variance for counterbalancing testing

Chi-square test

Nonparametrion tests

Normality check Consider how males and females scroll, either with mouse wheel (MW), clicking and dragging the scrollbar (CD), or keyboard (KB),

Figure: Source: Fg. 6.22 (Mackenzie)

Example: Counts of usage

Hypothesis Testing

Chaklam Silpasuwanchai

variance
One-way with 2 leve

One-way with 4 levels Between-subjects

Two-way Analysis of variance for counterbalancing testing

(-)

Chi-square test

Nonparametri tests

Normality check To determine the effect, the chi-square test is used. The test statistics is written as χ^2 using the lowercase Greek letter *chi*. Each expected value is the row total multiplied by the column total, divided by the grand total. For example, Male-MW expected value is $(56 \times 49)/101 = 27.2$. Each chi square is simply the square of (observed - expected) / expected. For example, Male-NW chi square is $(28.0 - 27.2)^2/27.2 = 0.025$

(b)

(a)								
Expected Number of Users								
Condor	Scr	olling M	lethod	Total				
Gender	MW	CD	KB	iotai				
Male	27.2	13.3	15.5	56.0				
Female	21.8	10.7	12.5	45.0				
Total	49.0	24.0	28.0	101				

Chi Squares							
Gender	Scr	Total					
Gender	MW	CD	KB	Total			
Male	0.025	0.215	0.411	0.651			
Female	0.032	0.268	0.511	0.811			
Total	0.057	1.462					

Figure: Source: Fg. 6.23 (Mackenzie)

Example: Counts of usage

Hypothesis Testing

Chaklam Silpasuwanchai

Analysis of variance
One-way with 2 leve

One-way with 4 levels Between-subjects Two-way Analysis of variance for counterbalancing

Chi-square test

Nonparametri tests

Normality

Similar to F-statistic, we need to determine the critical value. Given alpha of .05, and the degrees of freedom of (r-1)(c-1)=2, we got the critical value as 5.99. Since the observed value (1.462) is not larger than 5.99, there are no significant differences. (Note that if there is a difference, a similar posthoc test can be subsequently performed to determine the differences between methods)

Significance	Degrees of Freedom							
Threshold (a)	1	2	3	4	5	6	7	8
.1	2.71	4.61	6.25	7.78	9.24	10.65	12.02	13.36
.05	3.84	5.99	7.82	9.49	11.07	12.59	14.07	15.51
.01	6.64	9.21	11.35	13.28	15.09	16.81	18.48	20.09
.001	10.83	13.82	16.27	18.47	20.52	22.46	24.32	26.13

Figure: Source: Fg. 6.24 (Mackenzie)

Non-parametric tests for ordinal data

Hypothesis Testing

Chaklam Silpasuwanchai

Analysis of variance One-way with 2 levels One-way with 4 levels Between-subjects

Two-way
Analysis of variance
for counterbalancing
testing

Chi-square test

Nonparametric tests

Normality check

- Non-parametric tests make no assumptions for probability distribution thus are applicable to a wider range of data than parametric tests
- Downsides of non-parametric tests are loss of information
 while parametric tests works on interval or ratio data, non-parametric tests deal with ordinal data (ranks)
- Non-parametric tests ignore any property of the scale of data except ordinality
- For example, 49, 81, 82 are transformed to 1, 2, 3
- In HCI, non-parametric tests are often used for questionnaires data (e.g., using Likert scale) since they are ordinal data. Though non-parametric tests are limited to single factor analysis.

Non-parametric tests for ordinal data

Hypothesis Testing

Chaklam Silpasuwanchai

variance
One-way with 2 lev

One-way with 4 levels Between-subjects Two-way Analysis of variance

Analysis of variance for counterbalancing testing

test

Nonparametric tests

Normality check Four most common non-parametric procedures that work based on the number of conditions and design (Note that conditions here refer to levels of a single factor. Also note that since Kruskal-Wallis aand Friedman operate or 3 or more conditions, a statistically significant outcome is usually followed with a post hoc pairwise comparisons)

Decian	Conditions			
Design	2	3 or more		
Between-subjects (independent samples)	Mann-Whitney U	Kruskal-Wallis		
Within-subjects (correlated samples)	Wilcoxon Signed-Rank	Friedman		

Figure: Source: Fg. 6.29 (Mackenzie)

Example: Mann-Whitney U

Hypothesis Testing

Chaklam Silpasuwanchai

Analysis o variance

One-way with 4 level Between-subjects

Analysis of variance for counterbalancing

Chi-square

Nonparametric tests

Normality check

10 Mac users and 10 PC users are interviewed about their political views on a 10-point linear scale (1 = very left, 2 = very right). Turns out PC users are a little more "right-leaning"!

Mac Users	PC Users
2	4
3	6
2	5
4	4
9	8
2	3
5	4
3	2
4	4
3	5

Figure: Source: Fg. 6.30 (Mackenzie)

Example: Mann-Whitney U

Hypothesis Testing

Chaklam Silpasuwanchai

Analysis of variance
One-way with 2 levels
One-way with 4 levels
Between-subjects

Two-way
Analysis of variance
for counterbalancing
testing

Chi-square test

Nonparametric tests

Normality check

- Here, the data are potentially interval-scale but the intervals between successive codes are not equal, as the difference between 1 and 2 and 3 and 4 may not be equal (unlike temperature). Since the data is at least ordinal, non-parametric tests are appropriate. Given 2 levels and between subject designs, Mann-Whitney U is suitable
- Here we found that p = .1418, thus we conclude that no differences were found.

(a)							
Mann-Whitney U for Response							
Grouping Vari	Grouping Variable: Category for Response						
U	31.000						
U Prime	69.000						
Z-Value	-1.436						
P-Value	.1509						
Tied Z-Value	-1.469						
Tied P-Value	.1418						
# Ties	4						

Figure: Source: Fg. 6.31 (Mackenzie)

Example: Wilcoxon Signed-Rank

Hypothesis Testing

Chaklam Silpasuwanchai

Analysis of variance

One-way with 4 le Between-subjects

Analysis of variance for counterbalancing

Chi-square test

Nonparametric tests

Normality check 10 users rated the design of two media players on a 10-point linear scale (1 = not cool, 10 = really cool). Which test should we use?

Mac Users	PC Users
2	4
3	6
2	5
4	4
9	8
2	3
5	4
3	2
4	4
3	5

Figure: Source: Fg. 6.32 (Mackenzie)

Example: Wilcoxon Signed-Rank

Hypothesis Testing

Chaklam Silpasuwanchai

Analysis of variance

One-way with 2 lev One-way with 4 lev Between-subjects

Between-subjects Two-way

Analysis of variance for counterbalancing testing

Chi-square test

Nonparametric tests

Normality check The Wilcoxon Signed-Rank test found that p = .0242, thus we conclude that no differences were found.

(a)

Wilcoxon Signed Rank Test for MPA, MPB

#0 Differences	2
# Ties	2
Z-Value	-2.240
P-Value	.0251
Tied Z-Value	-2.254
Tied P-Value	.0242

Figure: Source: Fg. 6.33 (Mackenzie)

Example: Kruskal-Wallis

Hypothesis Testing

Chaklam Silpasuwancha

Analysis of variance

One-way with 4 level Between-subjects Two-way

Analysis of variance for counterbalancing testing

Chi-square test

Nonparametric tests

Normality check

Is it significant?

A20-29	A30-39	A40-49
A20-29	A30-39	A40-49
9	7	4
9	3	5
4	5	5
9	3	2
6	2	2
3	1	1
8	4	2
9	7	2

Figure: Source: Fg. 6-34

(Mackenzie).

(a)

Kruskal-Wallis Test for Acceptability Grouping Variable: Category for Preference

DF 2
Groups 3
Ties 7
H 9.421
P-Value .0090
Tied P-Value .0082

Figure: Source: Fg. 6-35

(Mackenzie).

Example: Kruskal-Wallis

Hypothesis Testing

pasuwanchai

Variance

One-way with 4 levels
Between-subjects
Two-way

Two-way

Analysis of variance
for counterbalancing
testing

Chi-square test

Nonparametric tests

Normality check Since there are three conditions, we can further run post-hoc tests to find out the differences in pair. Here, we found the difference between group 1 and 3.

Figure: Source: Fg. 6.36 (Mackenzie)

Example: Friedman Test

Hypothesis Testing

Chaklam Silpasuwanchai

Analysis of

One-way with 2 le One-way with 4 le Between-subjects

Analysis of variance for counterbalancin testing

Chi-square test

Nonparametric tests

Normality check

So, what's the conclusion?

Participant	Α	В	С	D
1	66	80	67	73
2	79	64	61	66
3	67	58	61	67
4	71	73	54	75
5	72	66	59	78
6	68	67	57	69
7	71	68	59	64
8	74	69	69	66

DF 3 # Groups 4 # Ties 2 Chi Square 8.475 P-Value .0372

8.692

.0337

Friedman Test for 4 Variables

Chi Square corrected for ties

Tied P-Value

Figure: Source: Fg. 6-(37-39) (Mackenzie).

Normality check

Hypothesis Testing

Chaklam Silpasuwanchai

variance

One-way with 4 levels
Between-subjects
Two-way
Analysis of variance

Analysis of variance for counterbalancing testing

Chi-square test

Nonparametric tests

Normality check

• First easy way is to use **histogram** to check skewness

Normality check

Hypothesis Testing

Chaklam Silpasuwanchai

Analysis of

One-way with 2 lev One-way with 4 lev

Between-subjects

Analysis of variance for counterbalancing testing

Chi-square

Nonparametric

Normality check

 Another way is to use Q-Q plot. It plots your data against an ideal normal distribution. If the data points align approximately well with the line, it is normal.

Normality check

Hypothesis Testing

Chaklam Silpasuwanchai

variance

One-way with 2 levels One-way with 4 levels Between-subjects Two-way

Analysis of variance for counterbalancing testing

Chi-square

Nonparametri tests

Normality check

- Another more mathematical way is statistical test which measures
 the difference of observed data against a known normal distribution.
 Two common tests for normality is Shapiro Wilk and
 Kolmogorov-Smirnov test
- Shapiro-Wilk is more appropriate for small sample sizes (< 50)
- Both of this test can be easily done in SPSS
- For example, the null hypothesis of Shapiro-Wilk is that samples are taken from a normal distribution. Here, the p-value is larger than .05, thus is safe to say it's normal. The null hypothesis is same for Kolmogorov-Smirnov

Tests of Normality

	Course	Kolmogorov-Smirnov ^a			8	Bhapiro-Wilk	
		Statistic df Sig.		Statistic	df	Sig.	
Time	Beginner	.177	10	.200*	.964	10	.827
	Intermediate	.166	10	.200*	.969	10	.882
	Advanced	.151	10	.200*	.965	10	.837

a. Lilliefors Significance Correction

^{*.} This is a lower bound of the true significance.

Homogeneity of variances

Hypothesis Testing

Chaklam Silpasuwanchai

Variance

One-way with 2 levels One-way with 4 levels Between-subjects Two-way

Analysis of variance for counterbalancing testing

Chi-square test

Nonparametrion tests

Normality check

- The basic idea is that the variance in each group should be similar enough, if not, anova does not make sense
- Tests that can be use is Levene's test and Bartlett's test (p-value over 0.05 means that the variances are equal)
- In a repeated measures experiment, Sphericity test is used instead p-value over .05 means that sphericity has not been violated.

Readings For Next Week

Hypothesis Testing

Chaklam Silpasuwanchai

Analysis o

One-way with 2 level One-way with 4 level Between-subjects Two-way

Two-way

Analysis of variance for counterbalancing testing

Chi-square test

Nonparametri tests

Normality check

 Mackenzie, Chapter 3, Interaction Elements, Human Computer Interaction: An Empirical Research Perspective, 1st ed. (2013)

Hypothesis Testing

Chaklam Silpasuwanchai

Analysis of

One-way with 2 level

Between-subjec

Two-way

Analysis of variance for counterbalancing testing

Chi-square

Nonparametri

Normality check

Questions