- 1. Let $(F, \oplus, \otimes, 0_F, 1_F)$ be a field.
 - (a) Prove that if $a, b \in F$ such that $a \otimes b = 0_F$, then either $a = 0_F$ or $b = 0_F$.
 - (b) Prove that if $a, b, c \in F$ such that $c \neq 0_F$ and $a \otimes c = b \otimes c$, then a = b.
 - (c) Prove that if $a, b, c \in F$ such that $a \oplus c = b \oplus c$, then a = b.
- 2. Let $(F, \oplus, \otimes, 0_F, 1_F)$ be a field and let $S \subseteq F$ be a *finite non-empty* subset of F closed under addition and multiplication, that is, such that

$$\forall s, t \in S : s \oplus t \in S \text{ and } s \otimes t \in S.$$

- (a) Prove that for all $s, t \in S$ there is $u \in S$ such that $t \oplus u = s$. Hint: use the pigeon-hole principle: if A is a finite set and $f : A \to A$ is an injective function, then f is surjective.
- (b) For $a \in F$, let $\bigoplus^n a = a \oplus a \oplus \cdots \oplus a$ (n times). Prove there is an $s \in S$ and and $n \ge 1$ such that $\bigoplus^n a = 0_F$.
- (c) Prove that $(S, \oplus, \otimes, 0_F, 1_F)$ is a field. Notice that we are not assuming that $0_F, 1_F \in S$, so this is something you need prove as well.
- 3. Consider \mathbb{C}^2 as a vector space over \mathbb{C} in the usual way. Which of the following subsets of \mathbb{C}^2 are subspaces?
 - (a) $U_1 = \{(2a + 3b, 4a c) \mid a, b, c \in \mathbb{C}\}.$
 - (b) $U_2 = \{(a-1, a-b) \mid a, b \in \mathbb{C}\}.$
 - (c) $U_3 = \{(2a-1, 4a-2) \mid a \in \mathbb{R}\}.$
 - (d) $U_4 = \{(2a-1, 4a-2) \mid a \in \mathbb{C}\}.$
- 4. Consider $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ with their usual field structure.
 - (a) Prove or disprove the following statements.
 - i. $\mathbb Q$ with usual addition and scalar multiplication given by the multiplication in $\mathbb R$ is an $\mathbb R$ -vector space.
 - ii. $\mathbb R$ with the usual addition and scalar multiplication given by the product in $\mathbb C$ is a $\mathbb C$ -vector space.
 - iii. \mathbb{C} is a \mathbb{Q} -vector space (with the usual additive structure and scalar multiplication given by the product in \mathbb{C}).
 - iv. \mathbb{R} is an \mathbb{R} -vector space (with the usual additive structure and scalar multiplication given by the product in \mathbb{R}).
 - (b) Fill in the blanks and prove the following statement. Let E, F be fields such that E extstyle F. Then extstyle is an extstyle-vector space. In particular, F is an F-vector space.