LISTA 6

1. Se AB=0, as colunas de B estão em qual espaço fundamental de A? E as linhas de A estão em qual espaço fundamental de B? É possível que A e B sejam 3×3 e com posto 2?

$$AB \Rightarrow coluna j de AB = A \cdot column j de B$$

 $column ab de B \in N(A)$

$$AB = 0 \rightarrow B^{T}A^{T} = 0 \rightarrow B^{T}$$
 coluna j de A^{T}

: linhas de $A \in N(B^{T})$

Como o posto de A e B = 2, sabemos que N(A) tem dimensão = 1 e como todos os columos de B \in N(A), tem mos que N(A) = C(B). Porém 1550 FAZ QUE dim C(B) = 1, ou seja, NÃO É POSSÍVEL QUE AMBAS TENHAM POSTO 1.

2. Se
$$Ax = b$$
 e $A^Ty = 0$, temos $y^Tx = 0$ ou $y^Tb = 0$?

3. O sistema abaixo não tem solução:

$$\begin{cases} x + 2y + 2z = 5\\ 2x + 2y + 3z = 5\\ 3x + 4y + 5z = 9 \end{cases}$$

Ache números y_1, y_2, y_3 para multiplicar as equações acima para que elas somem 0 = 1. Em qual espaço fundamental o vetor y pertence? Verifique que $y^Tb = 1$. O caso acima é típico e conhecido como a Alternativa de Fredholm: ou Ax = b ou $A^Ty = 0$ com $y^Tb = 1$.

TEMOS
$$Ax = b \Rightarrow y^TAx = y^Tb \Rightarrow 0=1$$

LOGO $y^TA = 0 \Rightarrow y \in N(A^T)$

ACHANDO N(AT):

$$\vec{A}^{T} \Rightarrow \begin{bmatrix} 1 & 2 & 3 \\ 2 & 2 & 4 \\ 2 & 3 & 5 \end{bmatrix} \vec{L}_{2} - 2\vec{L}_{1} \begin{bmatrix} 1 & 2 & 3 \\ 0 - 2 - 2 \\ 0 - 1 - 1 \end{bmatrix} \vec{L}_{3} - \vec{L}_{2} \begin{bmatrix} 1 & 2 & 3 \\ 0 - 2 - 2 \\ 0 & 0 \end{bmatrix} \vec{L}_{1} + \vec{L}_{2} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{cases} -f \\ 1 \end{cases} \Rightarrow \propto \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix} = N(A^{T})$$

$$\propto \begin{bmatrix} -1 -1 \\ 1 \end{bmatrix} \begin{bmatrix} 5 \\ 9 \end{bmatrix} = 1 \qquad -5\alpha - 5\alpha + 9\alpha = 1$$

$$-(0\alpha + 9\alpha = 1)$$

$$-\alpha = 1$$

$$\alpha = -1$$

$$\therefore y = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$$

4. Mostre que se $A^TAx = 0$, então Ax = 0. O oposto é obviamente verdade e então temos $N(A^TA) = N(A)$.

$$N(A) \subseteq N(A^TA)$$

 $(\times \in N(A) \triangleq D \ A \times = O \Rightarrow A^TA \times = O :: N(A) \subseteq N(A^TA)$
 $N(A^TA) \subseteq N(A)$
 $(A^TA \times = O \Rightarrow A^TA \in QUADRADA :: SE A^TA FOR INVERSIVEL,$
 $(A^TA) = A^TA \times = O \Rightarrow X = O \Rightarrow N(A^TA) \subseteq N(A)$

$$N(A) = N(A^{T}A)$$

5. Seja A uma matriz 3×4 e B uma 4×5 tais que AB=0. Mostre que $C(B)\subset N(A)$. Além disso, mostre que posto(A) + posto $(B)\leq 4$.

A B = 0
$$\rightarrow$$
 Sabemos que dim $C(A) < 4$. Como 3×4 4×5 3×5 $C(B) \subseteq N(A)$, podemos dizer que a base de $N(A) = base$ de $C(B)$. Logo

dim
$$C(A)$$
+ dim $N(A) = 4$, porém dim $N(A) \le posto B$.
Logo, posto $A + posto B \le 4$

- 6. Sejam $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}$ vetores não-zeros de \mathbb{R}^2 .
- (a) Quais são as condições sobre esses vetores para que cada um possa ser, respectivamente, base dos espaços $C(A^T)$, N(A), C(A) e $N(A^T)$ para uma dada matriz A que seja 2×2 . Dica: cada espaço fundamental vai ter somente um desses vetores como base.

base
$$C(A) = \{C\}$$

Matriz A

base $N(A) = \{b\}$
 $Ax = C$

A= $\{c \propto c\}$

base $C(A^T) = \{a\}$
 $Ab = 0$
 Ab

(b) Qual seria uma matriz A possível?

$$C = \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \alpha^{T}$$

$$C = \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \alpha^{T}$$

$$A = \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$$

7. Ache S^\perp para os seguintes conjuntos:

(a)
$$S = \{0\}$$

(b) $S = span\{[1, 1, 1]\}$

$$A^{T} = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \end{bmatrix} \underbrace{\begin{bmatrix} 2 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}}_{\text{local}} \xrightarrow{\text{base } N(A^{T})} = \begin{bmatrix} -1 & -1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$$

(c) $S = span\{[1, 1, 1], [1, 1, -1]\}$

$$A = \begin{bmatrix}
1 & 1 & 1 \\
1 & 1 & -1 \\
2 & 2 & 2
\end{bmatrix}
\begin{bmatrix}
1 & 1 & 1 \\
0 & 0 & -2 \\
1 & 1 & -1 \\
2 & 2 & 2
\end{bmatrix}
\begin{bmatrix}
1 & 1 & 1 \\
0 & 0 & -2 \\
1 & 1 & -2 \\
0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
1 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 1 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{bmatrix}$$

BASE
$$N(PA) = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \rightarrow BASE N(A) = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$$

(d) $S = \{[1, 5, 1], [2, 2, 2]\}$. Note que S não é um subespaço, mas S^{\perp} é.

$$\begin{bmatrix} 1 & 5 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{L_2 - L_1} \begin{bmatrix} 1 & 5 & 1 \\ 0 & -4 & 0 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{L_1 + \frac{5}{4} L_2} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{\text{base } N(A^T) = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}}$$

8. Seja A uma matriz 4×3 formada pela primeiras 3 colunas da matriz identidade 4×4 . Projeta o vetor b = [1, 2, 3, 4] no espaço coluna de A. Ache a matriz de projeção P.

9. Se $P^2 = P$, mostre que $(I - P)^2 = I - P$. Para a matriz P do exercício anterior, em qual subespaço a matriz I - P projeta?

$$(I-P)^2 = (I-P)(I-P) = I-IP-PI+P^2$$

$$I-P-P+P$$

$$I-P]$$