

HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY

刚

BST is important?

- Searching is one of the most important operations in computer science
- What data structure can we use for searching?
 - Sequence?
 - > Search tree?
 - Binary search tree?
 - Balanced binary search tree?

Difference?
Which one is better?

SYNOPSIS

- Preliminaries
- The BST Abstract Data Type
- Implementation via Balancing
- A Parametric Implementation
- Cost Specification
- Treaps
- Augmenting Trees
- Exercises

Binary Trees

- A rooted tree is a tree with a distinguished root node that can be used to access all other nodes
- A full binary tree is an ordered rooted tree in which every node has exactly two children
 - ➤ Left child / Left subtree
 - Right child / Right subtree

Binary Search Trees

- Binary trees with the "search" property
- For each node v with key k
 - > The key of the left child k,<k
 - \rightarrow The key of the right child $k_R > k$

Binary Search Trees

- A binary search tree (BST) over a totally ordered set
 S is a full binary tree that satisfies the following conditions.
 - ➤ 1. There is a one-to-one mapping k(v) from internal tree nodes to elements in S
 - > 2. for every u in the left subtree of v, k(u) < k(v)
 - 3. for every u in the right subtree of v, k(u) > k(v)

Can you write a binary search tree over the set {1, 4, 7, 9, 13, 17}?

刚

Binary Search Trees

SYNOPSIS

- Preliminaries
- The BST Abstract Data Type
- Implementation via Balancing
- A Parametric Implementation
- Cost Specification
- Treaps
- Augmenting Trees
- Exercises

剛

EMPTY, SINGLETON

- K&T
 - For a universe of totally ordered keys K, the BST ADT consists of a type T representing a power set of keys
- [T]
 - \triangleright for a tree T , [T] denotes the set of keys in the tree

empty

empty

singleton

singleton(k)

 \mathbb{T}

 $= T \text{ where } [\![T]\!] = \emptyset$

: $\mathbb{K} \to \mathbb{T}$

 $= T \text{ where } [\![T]\!] = \{k\}.$

FIND, INSERT, DELETE

find find(T,k)

insert insert(T, k)

deletedelete(T, k) $: \quad (\mathbb{T} \times \mathbb{K}) \to \mathbb{B}$

= true if and only if $k \in [T]$

 $: \quad (\mathbb{T} \times \mathbb{K}) \to \mathbb{T}$

 $= T' \text{ where } [\![T']\!] = [\![T]\!] \cup \{k\}$

 $: \quad (\mathbb{T} \times \mathbb{K}) \to \mathbb{T}$

 $= T' \text{ where } \llbracket T' \rrbracket = \llbracket T \rrbracket \setminus \{k\}.$

insert

HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOG

FIND, INSERT, DELETE

insert
$$\begin{pmatrix} 8 \\ 9 \\ 1 \end{pmatrix}$$
, $6 \end{pmatrix} = \begin{pmatrix} 5 \\ 9 \\ 1 \end{pmatrix}$

12-1 Insert

Design an algorithm for inserting a given key into a BST.

12-2 Delete

Design an algorithm for deleting a given key from a tree.

UNION, INTERSECTION, DIFF

union $union(T_1,T_2)$

intersection intersection (T_1, T_2)

difference $difference(T_1, T_2)$

 $: \quad (\mathbb{T} \times \mathbb{T}) \to \mathbb{T}$

 $= T \text{ where } [\![T]\!] = [\![T_1]\!] \cup [\![T_2]\!]$

 $: \quad (\mathbb{T} \times \mathbb{K}) \to \mathbb{T}$

 $= T \text{ where } [\![T]\!] = [\![T_1]\!] \cap [\![T_2]\!]$

 $: (\mathbb{T} \times \mathbb{K}) \to \mathbb{T}$

 $= T \text{ where } \llbracket T \rrbracket = \llbracket T_1 \rrbracket \setminus \llbracket T_2 \rrbracket$

SPLIT

split

$$: \quad \mathbb{T} \to \mathbb{K} \to (\mathbb{T} \times \mathbb{B} \times \mathbb{T})$$

$$split \begin{pmatrix} 8 \\ 9 \\ 1 \end{pmatrix}, 6 \Rightarrow \begin{pmatrix} 5 \\ 1 \end{pmatrix}, False, 7 \begin{pmatrix} 9 \\ 9 \end{pmatrix}$$

$$split \left(\begin{array}{c} 8 \\ \hline 5 \\ \hline 9 \\ \hline 1 \\ \hline 7 \\ \end{array} \right) \Rightarrow \left(\begin{array}{c} 1 \\ \hline \end{array} \right), True, \left(\begin{array}{c} 8 \\ \hline \hline 9 \\ \hline \end{array} \right)$$

JOIN

The function join(T₁, T₂) takes two trees T₁ and T₂ such that all the keys in T₁ are less than the keys in T₂.

$$join \begin{pmatrix} 5 & 7 & 9 \\ 1 & 5 & 7 \end{pmatrix} \Rightarrow \begin{pmatrix} 5 & 9 \\ 1 & 7 & 9 \end{pmatrix}$$

SPLIT, JOIN

- The exact structure of the trees returned by split can differ from one implementation to another
 - ➤ the specification only requires that the resulting trees to be valid BST's and that they contain the keys less than k and greater than k, leaving their structure otherwise unspecified
- The exact structure of the tree returned by join can differ from one implementation to another
 - the specification only requires that the resulting tree is a valid BST and that it contains all the keys in the trees joined.

SYNOPSIS

- Preliminaries
- The BST Abstract Data Type
- Implementation via Balancing
- A Parametric Implementation
- Cost Specification
- Treaps
- Augmenting Trees
- Exercises

Search tree

- The main idea behind BST's is to organize the keys such that
 - → 1. a specific key can be searched by following a branch in the tree by doing key comparisons along the way
 - > Search 7 & 4

HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOG

Search tree

- The main idea behind BST's is to organize the keys such that
 - 2. a range of keys in a subtree can be operated on (e.g., moved) by performing constant work
 - ✓ each subtree in a binary tree contains the keys that all the keys within a specific range, e.g., all keys less than 8
 - ✓ Once we find a range of keys, we can operate on them as a group by handling the root

Balanced tree

- The find & search operations in the BST ADT depend on the paths that we have to walk in the tree
- A binary tree is defined to be perfectly balanced if it has the minimum possible height
 - > Both children are about the same height
 - Both subtrees are about the same size
- For a binary search tree over a set S, a perfectly balanced tree has height exactly log₂(|S| + 1)

BALANCED BST

greta <mark>umustas</mark> ten senten e		TLAITCLD	DJI	
计算机科学中的	 内树			
二叉树	二叉树	■ 二叉查找树	■ 笛卡尔树	Top tree
_XP1	T树			
自平衡二叉查找树	AA树	- AVL树	■ 红黑树	■ 伸展树
日「街一人旦找你」	■ 树堆	■ 节点大小平衡树		
	■ B树	■ B+树	■ B*树	■ Bx树
B树	■ UB树	- 2-3树	- 2-3-4树	• (a,b)-树
	 Dancing tree 	H树		
Trie	■ 前缀树	■ 后缀树	■ 基数树	
	四叉树	八叉树	• k-d树	• vp-树
空间划分树	• R树	■ R*树	■ R+树	×树
	■ M树	■ 线段树	■ 希尔伯特R树	■ 优先R树
非二叉树	 Exponential tree 	Fusion tree	区间树	PQ tree
11—人們	 Range tree 	 SPQR tree 	 Van Emde Boas tree 	
0.000.000.000	• 堆	■散列树	Finger tree	Metric tree
其他类型	 Cover tree 	BK-tree	 Doubly-chained tree 	iDistance

• 树状数组

Link-cut tree

BALANCED BST

- There are many balanced BST data structures
 - ➤ AVL trees are the earliest near-balance BST data structure (1962). It maintains the invariant that the two children of each node differ in height by at most one
 - Red-Black trees maintain the invariant that all leaves have a depth that is within a factor of 2 of each other.
 - The depth invariant is ensured by a scheme of coloring the nodes red and black
 - \triangleright Weight balanced (BB[α]) trees maintain the invariant that the left and right subtrees of a node of size n each have size at least αn for 0 <α≤1/2.
 - ✓ The BB stands for bounded balance, and adjusting gives a tradeoff between search and update costs

BALANCED BST

- There are many balanced BST data structures
 - Treaps associate a random priority with every key and maintain the invariant that the keys are stored in heap order with respect to their priorities (treaps is short for tree-heaps)
 - ✓ Treaps guarantee near balance with high-probability
 - Splay trees are an amortized data structure that does not guarantee near balance, but instead guarantees that for any sequence of m insert, find and delete operations each does O(log n) amortized work

SYNOPSIS

- Preliminaries
- The BST Abstract Data Type
- Implementation via Balancing
- A Parametric Implementation
- Cost Specification
- Treaps
- Augmenting Trees
- Exercises

Implementing the BST ADT with split and join

```
type \mathbb{T} = Leaf \mid Node \ of \ (\mathbb{T} \times \mathbb{K} \times \mathbb{T})

split \ (T,k) = \ldots \ (* \ as \ given \ *)

join \ (T_1,T_2) = \ldots \ (* \ as \ given \ *)

joinM \ (T_1,k,T_2) = join \ (T_1, \ join \ (singleton \ k, \ T_2))

empty = Leaf

singleton \ (k) = Node(Leaf,k,Leaf)
```

$$split \begin{pmatrix} 8 \\ 5 \\ 9 \end{pmatrix}, 6 \Rightarrow \begin{pmatrix} 5 \\ 1 \\ 7 \end{pmatrix} \Rightarrow \begin{pmatrix} 5 \\ 9 \\ 1 \end{pmatrix}, False, \begin{pmatrix} 8 \\ 9 \\ 1 \end{pmatrix} \Rightarrow \begin{pmatrix} 5 \\ 9 \\ 1 \end{pmatrix}$$

Implementing the BST ADT with split and join
 Find, insert, delete?

find
$$(T,k) = let (_,v,_) = split (T,k)$$
 in v end

insert
$$(T,k)=$$
 let $(L,_-,R)=$ split (T,k) in joinM (L,k,R) end

delete
$$(T,k) =$$
let $(L, R) =$ split (T,k) in join (L,R) end

$$split \left(\begin{array}{c} 8 \\ 5 \\ 9 \end{array} \right), \ 6 \right) \Rightarrow \left(\begin{array}{c} 5 \\ 1 \end{array} \right), \ False, \ 7 \\ \hline 9 \end{array} \right) \quad join \left(\begin{array}{c} 6 \\ 7 \\ 9 \end{array} \right) \Rightarrow \left(\begin{array}{c} 5 \\ 9 \end{array} \right)$$

Implementing the BST ADT with split and join

Implementing the BST ADT with split and join

> union?

```
union t_1 t_2 = 

\operatorname{case}\ (t_1,t_2) | (Leaf,_) => t_2 | (_, Leaf) => t_1 | (Node (l_1,k_1,r_1),_) => 

\operatorname{let}\ (l_2,_-,r_2) = split t_2 k_1 (l,r) = (union l_1 l_2) || (union r_1 r_2) 

\operatorname{in}\ \operatorname{joinM}\ l k_1 r end
```


Implementing the BST ADT with split and join

➤ Intersect?

```
intersect t_1 t_2 = case (t_1, t_2) | (Leaf,__) => Leaf | (_, Leaf) => Leaf | (Node (l_1, k_1, r_1),__) => let (l_2, b, r_2) = split t_2 k_1 (l, r) = (intersect l_1 l_2) || (intersect r_1 r_2) in if b then joinM l k_1 r else join l r end
```


Implementing the BST ADT with split and join

```
➤ Diff?
```

```
difference t_1 t_2 = case (t_1, t_2) | (Leaf,_) => Leaf | (_,Leaf) => t_1 | (Node (l_1,k_1,r_1),_) => let (l_2,b,r_2) = split t_2 k_1 | (l,r) = (difference l_1 l_2) || (difference r_1 r_2) in if b then join l r else joinM L k_1 r end
```


Exercise 12.13. Prove correct the functions intersection, difference, and union.

SYNOPSIS

- Preliminaries
- The BST Abstract Data Type
- Implementation via Balancing
- A Parametric Implementation
- Cost Specification
- Treaps
- Augmenting Trees
- Exercises

NOTICES

- These implementations all use balancing techniques to ensure that the depth of the BST remains O(log n)
- Our cost-specifications can be viewed as worst-case bounds
- variables n and m are defined as $n = max(|T_1|, |T_2|)$ and m = min(|T₁|, |T₂|)

	Balanced BST	
	Work	Span
empty	O(1)	O(1)
singletonv	O(1)	$O\left(1\right)$

COST SPECIFICATION

Split(T, k) & join(T₁, T₂)

		Work	Span
	${\tt split}\ t\ k$	$O\left(\lg t \right)$	$O\left(\lg t \right)$
	join $t_1 \ t_2$	$O\left(\lg\left(t_1 + t_2 \right)\right)$	$O\left(\lg\left(t_1 + t_2 \right)\right)$
1			

how?

$$split \begin{pmatrix} 8 \\ 5 \\ 9 \end{pmatrix}, 6 \Rightarrow \begin{pmatrix} 5 \\ 1 \\ 7 \end{pmatrix} \Rightarrow \begin{pmatrix} 5 \\ 9 \\ 1 \end{pmatrix}, False, \begin{pmatrix} 8 \\ 7 \\ 9 \end{pmatrix} \qquad join \begin{pmatrix} 5 \\ 7 \\ 9 \\ 1 \end{pmatrix} \Rightarrow \begin{pmatrix} 5 \\ 9 \\ 1 \end{pmatrix}$$

COST SPECIFICATION

find(T, k), insert(T, k), delete(T,k)

find
$$(T,k) = let(_,v,_) = split(T,k)$$
 in v end

insert
$$(T,k)=$$
 let $(L,\underline{\ },R)=$ split (T,k) in joinM (L,k,R) end

delete
$$(T,k)=$$
 let $(L,_,R)=$ split (T,k) in join (L,R) end

	Work	Span	
$\verb find t k$	$O\left(\lg t \right)$	$O\left(\lg t \right)$	
$\verb"insert"t\;k$	$O\left(\lg t \right)$	$O\left(\lg t \right)$	1
$\verb"delete"t\;k$	$O\left(\lg t \right)$	$O\left(\lg t \right)$	VERS

ERSITY OF SCHOOL AND TECHNOLOGY

COST SPECIFICATION

• union (T_1, T_2) , intersect (T_1, T_2) , diff (T_1, T_2)

how?

	Work	Span
intersect t_1t_2	$O\left(m \cdot \lg \frac{n+m}{m}\right)$	$O(\lg n)$
difference t_1t_2	$O\left(m \cdot \lg \frac{n+m}{m}\right)$	$O(\lg n)$
union $t_1 \ t_2$	$O\left(m \cdot \lg \frac{n+m}{m}\right)$	$O(\lg n)$

Concrete Implementations: Union

Recall union implement

```
union t_1 t_2 = 

\operatorname{case}\ (t_1,t_2) | (Leaf,_) => t_2 | (_, Leaf) => t_1 | (Node (l_1,k_1,r_1),_) => 

\operatorname{let}\ (l_2,_-,r_2) = split t_2 k_1 (l,r) = (union l_1 l_2) || (union r_1 r_2) 

\operatorname{in}\ \operatorname{joinM}\ l k_1 r end
```


Concrete Implementations: Union

- For T_1 with key k_1 and children L_1 and R_1 at the root, use k_1 to split T_2 into L_2 and R_2
- Recursively find $L_u = union(L_1, L_2)$ and $R_u = union(R_1, R_2)$
- Now join(L_u, k₁, R_u)


```
union t_1 t_2 = case (t_1, t_2) | (Leaf,_) => t_2 | (_, Leaf) => t_1 | (Node (l_1, k_1, r_1),_) => let (l_2, _-, r_2) = split t_2 k_1 (l, r) = (union l_1 l_2) || (union r_1 r_2) in joinM l k_1 r end
```

- split costs O(lg | T₂|)
- Two recursive calls to union
- join costs O(lg(|T₁|+|T₂|)

Analysis of Union - Assumptions

- To simplify the analysis, we will make the following assumptions
 - T₁ is perfectly balanced
 - \triangleright Each a key from T_1 splits T_2 , it splits exactly in half
 - \nearrow without loss of generality let $|T_1| \le |T_2|$
 - ightharpoonup Then, m = $|T_1|$, n= $|T_2|$

$$\begin{split} W_{\text{union}}(m,n) &\leq 2W_{\text{union}}(m/2,n/2) + W_{\text{split}}(n) + W_{\text{join}}(n+m) + O(1) \\ &\leq 2W_{\text{union}}(m/2,n/2) + O(\lg n) \;. \end{split}$$

- When |T₁| =1, case give us two empty subtrees L₁
 and R₁
- union(L₁,L₂) returns L₂, union(R₁,R₂) returns R₂ immediately!
- Joining these costs at most $O(\log(|T_1|+|T_2|)) = O(\log(1+|T_2|)$

$$\begin{split} W_{\text{union}}(1,n) &\leq 2W_{\text{union}}(0,n/2) + W_{\text{split}}(n) + W_{\text{join}}(n) + O(1) \\ &\leq O(\lg n) \;. \end{split}$$

Analysis of Union

• If we draw the recursion tree that shows the work associated with splitting T_2 and joining the results, we obtain the following

- How many leaves are there in this recursion tree?
- How deep is the tree?
- What is the size of T₂ at the leaves?

Analysis of Union

- How many leaves are there in this recursion tree?
 - T_2 has no impact
 - \triangleright We get $m=|T_1|$ leaves \frown Why?

- How deep is the tree?
 - 7>1+log₂m / Why?

What is the size of T₂ at the leaves?

$$> n/2^{\log_2 m} = n/m$$

Total cost at the leaves = $O(m\log(n/m))$

剛

- We will now prove that the cost at the bottom level is indeed asymptotically the same as the total work.
 - > It is possible to prove that the tree is leaves-dominated by computing the ratio of the work at adjacent levels,

$$\frac{2^{i-1}k_1 \lg n/2^{i-1}}{2^i k_1 \lg n/2^i} = \frac{1}{2} \frac{\lg n - i + 1}{\lg n - i}$$

- **wher**e i ≤ logm < lg n
- This ratio is less than 1 for all levels except for the last level, where by taking i = lg n-1 we have

$$\frac{1}{2} \frac{\lg n - i + 1}{\lg n - i} \le \frac{1}{2} \frac{1}{\lg n - \log n + 1 + 1} \lg n - \lg n + 1 = \frac{1}{1}.$$

- Thus the total work is asymptotically dominated by the total work of the leaves, which is
 - O (mlg n/m)

剛

- Direct derivation
 - We can establish the same fact more precisely.
 - ➤ Let's start by writing the total cost across all levels, omitting for simplicity the constant factor k₁, and assuming that n = 2^a and m = 2^b

$$\sum_{i=0}^{b} 2^{i} \lg \frac{n}{2^{i}}.$$

Analysis of Union

We can rewrite this sum as

$$\sum_{i=0}^{b} 2^{i} \lg \frac{n}{2^{i}} = \lg n \sum_{i=0}^{b} 2^{i} - \sum_{i=0}^{b} i 2^{i}. = a \sum_{i=0}^{b} 2^{i} - \sum_{i=0}^{b} i 2^{i}$$

Let's now focus on the second term

$$\sum_{i=0}^{b} i \, 2^{i} = \sum_{i=0}^{b} \sum_{j=i}^{b} 2^{j} = \sum_{i=0}^{b} \left(\sum_{j=0}^{b} 2^{j} - \sum_{k=0}^{i-1} 2^{k} \right)$$

Analysis of Union

We will now substitute the close form for each inner summation and continue simplifying

$$\sum_{i=0}^{b} i \, 2^{i} = \sum_{j=i}^{b} \sum_{j=i}^{b} 2^{j} = \sum_{i=0}^{b} \left(\sum_{j=0}^{b} 2^{j} - \sum_{k=0}^{i-1} 2^{k} \right)$$

$$= \sum_{i=0}^{b} \left((2^{b+1} - 1) - (2^{i} - 1) \right).$$

$$= (b+1)(2^{b+1} - 1) - \sum_{i=0}^{b} (2^{i} - 1)$$

$$= (b+1)(2^{b+1} - 1) - (2^{b+1} - 1 - (b+1))$$

$$= (b+1)(2^{b+1} - 1) - (2^{b+1} - 1 - (b+1))$$

$$= b \, 2^{b+1} + 1.$$

Analysis of Union

 Let's now go back and plug this into our original work bound, i.e.,

$$\sum_{i=0}^{b} i \, 2^{i} = \sum_{i=0}^{b} \sum_{j=i}^{b} 2^{j} = \sum_{i=0}^{b} \left(\sum_{j=0}^{b} 2^{j} - \sum_{k=0}^{i-1} 2^{k} \right)$$

$$= a \sum_{i=0}^{b} 2^{i} - \sum_{i=0}^{b} i 2^{i}.$$

$$= a (2^{b+1} - 1) - (b 2^{b+1} + 1)$$

$$= a 2^{b+1} - a - b 2^{b+1} - 1$$

$$= 2m(a - b) - a - 1$$

$$= 2m(\lg n - \lg m) - a - 1$$

$$= 2m(\lg \frac{n}{m} - a - 1)$$

$$= O(m \lg \frac{n}{m}).$$

刚

- While the direct method may seem complicated, it is more robust than the brick method
 - It can be applied to analyze essentially any algorithm, whereas the Brick method requires establishing a geometric relationship between the cost terms at the levels of the tree.

剛

- Removing the Assumptions
 - Of course, in reality, our keys in T₁ won't split subtrees of
 T₂ in half every time
- 1. keep the assumption that T₁ is perfectly balanced
 - > the shape of the recursion tree stays the same
 - ✓ Let us try to analyze the cost at level i
 - **✓ At this level, there are k = 2ⁱ nodes in the recursion tree**
 - \checkmark Say the sizes of T_2 at these nodes are $n_1, ..., n_k$, where $\sum_j n_j = n_j$

剛

- 1. keep the assumption that T₁ is perfectly balanced
 - > the total cost for this level is

$$c \cdot \sum_{j=1}^{k} \lg(n_j) \le c \cdot \sum_{j=1}^{k} \lg(n/k) = c \cdot 2^i \cdot \lg(n/2^i),$$

- >> used the fact that the logarithm function is concave
 - Thus, the tree remains leaf dominated and the same reasoning shows that the total work is O(mlg(n/m))

- 2. T₁ doesn't have to be perfectly balanced as we assumed
 - A similar reasoning can be used to show that T₁ only has to be approximately balanced.
 - > We will leave this case as an exercise

Analysis of Union

- Span
 - > the span of union is O(lg2 n)
 - but this can be improved to O(lg n) by changing the algorithm slightly
- In summary, union can be implemented in
 - >> O(mlg(n/m)) work and span O(lg n)

```
union t_1 t_2 =

case \ (t_1, t_2)

| (Leaf,_) => t_2

| (_, Leaf) => t_1

| (Node (l_1, k_1, r_1),_) =>

let \ (l_2, ..., r_2) = split \ t_2 \ k_1

(l, r) = (union l_1 \ l_2) || (union r_1 \ r_2)

in joinM l \ k_1 \ r \ end
```


how?

HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY

SYNOPSIS

- Preliminaries
- The BST Abstract Data Type
- Implementation via Balancing
- A Parametric Implementation
- Cost Specification
- Treaps
- Augmenting Trees
- Exercises

Quicksort And BSTs

- Write out the recursion tree for quicksort
 - > Assume distinct keys
- Annotate each node with the pivot picked at the stage
- You get a BST

Treaps

- A treap is a randomized BST that maintains balance in a probabilistic way
- Each element/key gets a unique random priority
- The nodes in the treap satisfy BST property
 - > Keys are stored in-order in the tree
- The associated priorities satisfy the (max) heap property

MThe Max-heap Property

- Priority at each node is greater than the priorities of the children
- Suppose we have S=(a,3),(b,9),(c,2),(e,6),(f,5)

treaps

 A treap is a binary search tree T over a set S along with a priority for each key given by

 $p: K \rightarrow Z$

 that in addition to satisfying the BST property on the keys S, satisfies the heap property on the priorities p(s), s∈S, i.e., for every node v:

 $p(k(v)) \ge p(k(L(v)))$ and $p(k(v)) \ge p(k(R(v)))$

where k(v) denotes the key of a node.

Let's Do An Example

Draw the treap for the following (key, priority) sequence

Exercise 12.17. Prove that if the priorities are unique, then there is exactly one tree structure that satisfies the Treap properties.

Implementing BST with Treaps

```
1 type \mathbb{T} = Leaf \mid Node \ of \ (\mathbb{T} \times \mathbb{K} \times \mathbb{Z} \times \mathbb{T})
2
3 let empty = Leaf
4
5 singleton(k) = Node(Leaf, k, randomInt(), Leaf)
```

- randomInt
 - > returns a (pseudo-)random number

Implementing split with Treaps

• Split (T, c)

Implementing split with Treaps

```
7 split(T,k) =
             case T
             | Leaf \Rightarrow (Leaf, False, Leaf)
10 | Leaf \rightarrow (Leaf, For R) | Node (L, k', p', R) =
                   case compare (k, k')
                   \mid LESS \Rightarrow
                         let (L', x, R') = split (L, k)
                         in (L', x, Node(R', k', p', R)) end
     14
                   \mid EQUAL \Rightarrow (L, True, R)
                     GREATER \Rightarrow
                         let (L', x, R') = split(R, k)
      17
      18
                         in (Node (L, k', p', L'), x, R') end
```

- T={(G,50),(C,35),(E,33),(H,29),(I,25),(B,24),(A,21),(L,16),(J,13),(K,9),(D,8)}
- split(t,l)

Implementing split with Treaps

• Split(T, f)

Implementing join with Treaps

Implementing join with Treaps

```
join(T_1,T_2) =
21
       case (T_1,T_2)
22
       (Leaf, \_) \Rightarrow T_2
23
      | (\_, Leaf) \Rightarrow T_1
24
       | (Node (L_1, k_1, p_1, R_1), Node (L_2, k_2, p_2, R_2)) \Rightarrow
25
             if (p_1 > p_2) then
26
                 Node (L_1, k_1, p_1, join (R_1, T_2))
27
28
              else
                 Node (join(T_1, L_2), k_2, p_2, R_2)
29
30
    end
```


Implementing join with Treaps

Join(T₁, T₂)

 Thinking: can we implement split and join just with BST?

Analysis of randomized treaps

- analyze the height of a treap assuming that the priorities are picked at random
- To do this we will relate treaps to quicksort

Algorithm 11.21. Treap Generating Quicksort

```
1 \ qsTree(S) =
   if |S| = 0 then Leaf
    else let
         val pivot = \text{the key } k \in S \text{ for which } p(k) \text{ is the largest}
         val S_1 = \langle s \in S \mid s < pivot \rangle
         val S_2 = \langle s \in S \mid s > pivot \rangle
         val (L,R) = (qsTree(S_1) || qsTree(S_2))
      in
         Node(L, pivot, R)
      end
```


Analysis of randomized treaps

- The tree generated by qsTree(S) is the treap for S, why? Can you prove?
- What does this tell us about the height of treaps?
 - the height of a treap is identical to the recursion depth of quicksort
 - if we pick the priorities at random, the recursion depth is O(log n) with high probability

Expected Max Depth of A Treap

- Expected depth of treap node is O(logn)
 - Find takes on the average O(logn) work and span
- What is the expected maximum depth of a treap?
 - > Why is this important?
 - Expected worst-case cost!
- But E[max;{A;}] ≠ max;{E[A;]}!
- It turns out this is almost the same problem as the expected span of the quicksort

SYNOPSIS

- Preliminaries
- The BST Abstract Data Type
- Implementation via Balancing
- A Parametric Implementation
- Cost Specification
- Treaps
- Augmenting Trees
- Exercises

Augmenting Balanced Trees

- We can add other additional values to help with other search operations
 - > Track key positions and certain subset sizes
- rank(T, k)
 - > How many elements in T are less than k or equal to k?
- select(T, i)
 - Returns the key with the rank i in T
- splitIdx(S, i)
 - Split S into two sets: first i keys and the remaining n-i keys

Augmenting Balanced Trees

- Let T = {1,2,3,4,5,6}
- rank(T, 4) = |{1,2,3,4}| = 4
- $rank(T, 4) = |\{1,2,3\}| = 3$

Which one is right?

- select(T, 4) =4 since rank(S, 4) =4
- select(T, 3) =4 since rank(S, 4) =3

Which one is right?

• splitIdx(T, 3) = $({1,2,3},{4,5,6})$

How to implement Rank (T, k)?

```
1 rank (T, k) =
2 case T
3 | Leaf \Rightarrow 0
4 | Node (L, k', R) \Rightarrow
5 case compare (k, k')
6 | LESS \Rightarrow rank (L, k)
7 | EQUAL \Rightarrow |L|
8 | GREATER \Rightarrow |L| + 1 + rank (R, k)
```


How to implement select (T, i)?

```
10 select (T,i) =
11 case (T)
12 | Leaf \Rightarrow raise exception OutOfRange
13 | Node (L,k,R) \Rightarrow
14 case compare (i,|L|) of
15 LESS \Rightarrow select (L,i)
16 EQUAL \Rightarrow k
17 GREATER \Rightarrow select (R,i-|L|-1)
```


- What is the work and span of these functions?
 - > Rank (T, k): W=? S=?
 - >> Select (T, i): W=? S=?
 - Both: W=O(n), S= O(log(n))

$$rank(S, k)$$
 : $\mathbb{S} \times \mathbb{U} \rightarrow int = |\{k' \in S \mid k' < k\}|$

$$select(S, i)$$
 : $\mathbb{S} \times int \rightarrow \mathbb{U} = k \text{ such that } |\{k' \in S \mid k' < k\}\}$

$$splitIdx(S,i)$$
 : $\mathbb{S} imes int o = (\{k \in S \mid k < select(S,i)\}, \{k \in S \mid k \geq select(S,i)\})$

- Can we compute size of subtrees more efficiently?
 - > At each node keep the size of the subtree
 - This allows size and the three other operations in O(d) work with d as the depth of the tree
 - Size can be computed on the fly by adding 1 to the sum of the subtree sizes!

Pairing nodes with reduced values

- Maintain at each node a "sum" based on an associative operator f
 - > Updated during insert/delete, merger, extract, etc
- Given $f: v \times v \rightarrow v$, and I_f
 - All operations on ordered tables are supported, and
 - $ightharpoonup reduce Val(A): T
 ightharpoonup v = reduce f I_f A$
 - We want to be able to do reduceVal in O(1) work (assuming f needs O(1) work)
 - > f is known beforehand!

Pairing nodes with reduced values

f is +

f is max

HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY

Implementation

```
(* type of the reduced value, as specified. *)
type rv = ...
(* associative reducer function, as specified. *)
f(x: rv, y: val, z: rv): rv = ...
(* identity for the reducer function, as specified. *)
id<sub>f</sub> : rv = ...

type treap =
   Leaf
   Node of (Treap × key × priority × (val × r) × Treap)
```


明

Implementation

 The only difference in the implementation of split and join functions is the use of mkNode instead of Node

```
rvOf t= case t | Leaf => id_f | Node (_, _, _, _(_, w), _) => w  

mkNode (l, k, p, v, r) = Node (l, k, p, (v, f \text{ (rvOf } l, v, \text{rvOf } r)), r)
```


193

Implementation

The only difference is the use of mkNode instead of

```
Node
```

```
split t k =
  case t
    Leaf => (Leaf, false, Leaf)
  | Node (l, k', p', (v', w'), r) =
        case compare (k, k')
          LESS =>
              let (l', x, r') = \text{split } l \ k
              in (l', x, mkNode (r', k', p', v', r)) end
          EQUAL \Rightarrow (l, true, r)
           GREATER =>
              let (l', x, r') = \text{split } r \ k
              in (mkNode (l, k', p', v', l'), x, r') end
```


Implementation

明

Implementation

The only difference is the use of mkNode instead of Node

```
join t_1 t_2 = case (t_1, t_2) of (\text{Leaf, }\_) \Rightarrow t_2 \mid (\_, Leaf) \Rightarrow t_1 \mid (\text{Node } (l_1, k_1, p_1, (v_1, w_1), r_1), Node (l_2, k_2, p_2, (v_2, w_2), r_2)) \Rightarrow if p_1 > p_2 then mkNode (l_1, k_1, p_1, v_1, \text{join } r_1 \ t_2) else mkNode (\text{join } t_1 \ l_2, k_2, v_2, r_2)
```


Example Application – Sales Data

- Sales information are kept by the time stamp in an ordered table
 - **(2/3/2013-12: 30, \$120)**
- Find the total sales between t₁ and t₂
- f is +
- reduceVal (getRange(T, t₁, t₂)) takes O(logn) work

Example Application – Stock Data

- Stock prices information are kept by the time stamp in an ordered table
 - > (2/3/2013-12: 30, \$120/share)
- Find the maximum price between t₁ and t₂
- f is max
- reduceVal (getRange(T, t₁, t₂)) takes O(logn) work

Example Application – Interval Trees

- An interval is a region on the real number line starting at x_i and ending at x_r
- an interval table supports the following operations on intervals:

```
insert(A,I) : \mathbb{T} \times (real \times real) \rightarrow \mathbb{T}
```

delete(A, I) : $\mathbb{T} \times (real \times real) \rightarrow \mathbb{T}$

count(A, x) : $\mathbb{T} \times real \rightarrow int$

insert interval I into table A delete interval I from table A return the number of intervals crossing x in A

How to implement?

Interval Trees

- Organize intervals as a BST based on lowerboundary as key
- Use the max upper boundary in the subtree as additional information

Counting Intervals

How about the Work and Span?

```
datatype intTree = Leaf | Node of (intTree × intTree
                                               \times real \times real \times real
 3
     fun overlap(x, low, high) =
          if (x \ge low \& x \le high) then 1 else 0
 5
     fun countInt(T,x) =
 6
       case T of
          Leaf \Rightarrow 0
        | Node(L, R, low, high, max) \Rightarrow
             if (x > max) then 0
10
             else countInt(L, x)+
11
                  overlap(x, low, high) +
                  if (x > low) then countInt(R, x) else 0
12
```

Exercises

12-3 Minimum height

Prove that the minimum possible height of a binary search tree with n keys is $\lceil \log_2(n+1) \rceil$.

12-4 Finding Ranges

Given a BST T and two keys $k_1 \le k_2$ return a BST T' that contains all the keys in T that fall in the range $[k_1, k_2]$.

12-5 Tree rotations

In a BST T where the root v has two children, let u and w be the left and right child of v respectively. You are asked to reorganize T. For each reorganization design a constant work and span algorithm.

- **Left rotation.** Make w the root of the tree.
- Right rotation. Make u the root of the tree.

Exercises

12-6 Size as reduced value

Show that size information can be computed as a reduced value. What is the function to reduce over?

12-7 Implementing splitRank

Implement the splitRank function.

12-8 Implementing select

Implement the select function using splitRank.

