Problem 1.

 $^{147}\mathrm{Pm}$ is a pure beta emitter with a 2.6234 yr half life. By using radioactive seeds, a radioisotope can be evenly distributed in a tumor site. Assume a tumor site with a density of $1\,\mathrm{g/cm^3}$ and a mass of 11 g. If the plan is to deliver 25 Gy of dose to the entire prostate, calculate the activity of the $^{147}\mathrm{Pm}$ at the time of implantation into the prostate. Assume it has a biological half life similar to $^{131}\mathrm{I}$.

Problem 2.

 $1 \times 10^{-6}\,\mathrm{g}$ of $^{59}\mathrm{Co}$ is placed into the high flux reactor at ORNL. After 24 days of irradiation, what is the activity of $^{60}\mathrm{Co}$ in the sample? How many atoms of $^{59}\mathrm{Co}$ have been lost in that time period? Use a flux of 1×10^{15} thermal neutrons /cm²/s.

Problem 3.

What fluence of neutrons from a DT generator (d + $t \rightarrow$ n + 4 He) is required to deliver a KERMA of 1 Gy?

Problem 4. Anderson 10.11

The linear attenuation coefficient for 60 Co radiation in water is $6.5\,\mathrm{m}^{-1}$.

- (a) Calculate the dose at points at depths $0.01\,\mathrm{m},\,0.05\,\mathrm{m},\,0.1\,\mathrm{m},\,0.2\,\mathrm{m}$ along the central axis for F of $0.8\,\mathrm{m}$. Assume the maximum dose is $100\,\mathrm{rad}$. Ignore scatter.
- (b) Compare your calculations with the measured values in Appendix 11 for a 10×10 cm field. Calculate the dose attributable to scatter and the buildup factor at each depth.