Formulário

Lei de Ohm:
$$I = \frac{E}{R}$$
 $E = IR$ $R = \frac{E}{I}$ **Potência**: $P = EI$ $P = I^2R$ $P = \frac{E^2}{R}$

Legendas

I = intensidade de corrente ampéres (A)	Kilo (K) $= 10^3 (1000)$
Q = carga em coulombs (C) ou 6.28×10^{18}	Mega (M) = 10^6 (1000000)
elétrons	Giga (G) $= 10^9 (1000000000)$
E = tensão ou ddp em volts (V),	Tera (T) = $10^{12} (1000000000000000000000000000000000000$
$R = resistência do condutor em ohms (\Omega)$	mili (m) = 10^{-3} (0.001)
P = potência (J/s ou Watts)	micro (μ) = 10^{-6} (0.000001)
	pico (p) = 10^{-9} (0.000000001)

Exercícios

- 1. O fio usado em um aquecedor elétrico tem uma resistência de 57 ohms. Calcular a tensão da fonte a que está ligado sabendo que solicita uma corrente de 2 A.
- 2. Que tensão deve ser aplicada a um aquecedor de 600 W, para que solicite uma corrente de 12 A? Determinar também sua resistência.
- 3. Um gerador de corrente contínua, com uma potência de 500 W, está fornecendo uma corrente de 10 A ao circuito externo. Determinar a tensão do gerador e a resistência do circuito externo. Desprezar a resistência interna do gerador.
- 4. A corrente solicitada por um motor de corrente contínua é 75 A. A tensão nos terminais do motor é 230 V. Qual é a potência de entrada do motor em kW?
- 5. Um gerador de corrente contínua apresenta os seguintes dados entre suas características: 150 kW e 275 V. Qual é sua corrente nominal?
- 6. Um dispositivo elétrico que trabalha com 250 V tem 8 ohms de resistência. Qual é a sua potência nominal?
- 7. Qual deve ser a dissipação mínima de um resistor de 20 K Ω , para que possa ser ligado a uma fonte de 500 V?
- 8. Num resistor lê-se o seguinte: "10 ohms 5 watts". Pode ser ligado a uma fonte de 20 V? Justifique a resposta.
- 9. Qual é a corrente na antena, quando um transmissor está entregando à mesma uma potência de 1 kW? A resistência da antena é de 20 ohms.
- 10. Qual a corrente máxima que pode passar por um resistor que apresenta as seguintes características: "5.000 ohms 200 watts"?
- 11. Numa lâmpada estão gravados os seguintes dizeres: 60 W 120 V. Determinar a resistência (a quente) do filamento da lâmpada, a intensidade da corrente que a percorre.
- 12. Um aparelho elétrico solicita 5 A de uma fonte de 100 V. Calcular a sua resistência e a potência do aparelho.

Respostas

1 -	R: 114 V	7 -	R: 12.5 W	
2 -	$R:50 V$ 4.1 Ω	8 -	R : Não	
3 -	$R:50 V \qquad 5 \Omega$	9 -	R:7A	
4 -	R: 17.25 KW	10 -	R: 0.2 A	
5 -	R: 545.4 A	11 -	$R:240~\Omega$	0.5 A
6 -	R: 7812.5 W	12 -	$R:20 \Omega$	500 W