Graphics programming Exercise 10

Henrique Debarba Knud Henriksen

IT University of Copenhagen

Important

- If you didn't do it last week, you must run the following command to update the submodules:
 - git submodule foreach git pull origin master

Exercise 10

- Learning objectives
 - Implement reflection and refraction effects
 - Implement normal mapping effect

Exercise 10 - Additional resources

LearnOpenGL

- https://learnopengl.com/Advanced-OpenGL/Cubemaps
- https://learnopengl.com/Advanced-Lighting/Normal-Mapping

Other tutorials

- https://developer.download.nvidia.com/CgTutorial/cg_tutorial_chapter07.html
- https://developer.download.nvidia.com/CgTutorial/cg_tutorial_chapter08.html
- https://docs.cryengine.com/display/SDKDOC4/Tangent+Space+Normal+Mapping

Exercise 10.1

- Reflection
 - In the fragment shader, **reflect** the eye to fragment position incident vector;
 - Sample the skybox texture using the reflected vec3.

Exercise 10.2

- Refraction
 - Using Snell's law and the refractive index of different materials;
 - In the fragment shader, **refract** the eye to fragment position incident vector;
 - Sample the skybox texture using the refracted vec3.

Exercise 10.3

- Reflection
 - In the fragment shader, **reflect** the eye to fragment position incident vector;
 - Sample the skybox texture using the reflected vec3.

Exercise 10.4 part 1

- Normal mapping
 - In the vertex shader:
 - Build a **TBN matrix** that transforms from world space to tangent space;
 - Transform vectors and positions used for light calculation from world space to tangent space;
 - In the fragment shader
 - Sample the normal map texture and use it for light calculation;

Exercise 10.4 part 2

- Normal mapping
 - Environment mapping reflection will break since sampling direction is defined in world coordinates:
 - Send the inverse TBN matrix to the fragment shader;
 - Transform the normal from tangent to world space and use it for reflection mapping.

New light caster

- Point source
 - Model with position and color

- Directional light
 - Distant source = infinite distance away (parallel rays)
 - No attenuation

