$n^{\circ}1$ Forme développée

D Définition : Fonction du second degré

Une fonction f définie sur $\mathbb R$ est une **fonction polynôme du second degré** ou **fonction du second degré** si elle est de la forme $|f(x)=ax^2+bx+c|$ où a, b et c sont des réels tels que $a \neq 0$.

D Définition : Parabole

La représentation graphique ou courbe représentative d'une fonction du second degré est une **parabole**. L'équation de la parabole est : $y = ax^2 + bx + c$

∇ Vocabulaire

- L'expression algébrique $ax^2 + bx + c$ est appelée **trinôme du second degré**.
- L'écriture $f(x) = ax^2 + bx + c$ de la fonction f est la forme développée de f.

Déterminer si les fonctions suivantes sont des fonctions du second degré et donner le cas échéant les trois coefficients a, b et c:

$$\boxed{1} \quad f_1(x) = 6 - 3x^2 + 2x$$

$$\left[\begin{array}{c}2\end{array}\right] f_2(x)=4+7x$$

$$\boxed{3} \ f_3(x) = (6x - 7)^2$$

$$\boxed{4} \quad f_4(x) = (8+4x)^2$$

$$\boxed{6} \ \ f_6(x) = 4(2x-3)^2$$

Forme canonique

Théorème : Forme canonique

La forme canonique de la fonction du second degré f définie par $f(x) = ax^2 + bx + c$ est :

$$f(x) = a(x-\alpha)^2 + \beta$$
 avec $\alpha = -\frac{b}{2a}$ et $\beta = f(\alpha)$. Cette forme canonique est unique.

Donner la forme canonique des fonctions du second degré suivantes :

$$f_1(x) = 4x^2 + 5x + 9$$

1
$$f_1(x) = 4x^2 + 5x + 9$$
 2 $f_2(x) = -3x^2 - 7x + 9$

$$\boxed{3} \ f_3(x) = 7x - x^2 - 10$$

6
$$f_6(x) = 7 + \sqrt{140}x + 5x^2$$

$n^{\circ}3$ Forme canonique : parabole

P Propriété

La parabole C_f , courbe représentative de la fonction du second degré f de forme canonique $|f(x)=a(x-lpha)^2+eta$ a pour sommet S(lpha;eta)

Donner la forme canonique des fonctions du second degré suivantes :

Parabole C_{f_1}

Parabole C_{f_n}

Parabole C_{f_2}

 $n^{\circ}4$ Symétrie de la parabole

P Propriété : Symétrie de la parabole

La parabole C_f , courbe représentative de la fonction du second degré f de forme canonique $f(x) = a(x-lpha)^2 + eta$ est symétrique par rapport à la droite verticale d'équation x = lpha.

Tracer la courbe représentative des fonctions suivantes en traçant l'axe de symétrie :

$$f_1(x) = (x-8)^2 + 2$$

1
$$f_1(x) = (x-8)^2 + 2$$
 2 $f_2(x) = 2(x+1)^2 + 3$

$$\boxed{3} \ f_3(x) = -2(4+x)^2 - 3$$

$$\boxed{4} \ f_4(x) = (3x-3)^2$$

$$\boxed{5} \ f_5(x) = 6x^2 - 8x + 3$$

$$\boxed{6} \quad f_6(x) = (2x+5)(2x-5)$$

Sens de variation

Propriété : sens de variation avec a > 0

La fonction du second degré f de forme canonique $f(x) = a(x-lpha)^2 + eta$ avec a>0 est :

- *décroissante* pour $x \in]-\infty; \alpha]$
- *croissante* pour $x \in [\alpha; +\infty; [$

Propriété : sens de variation avec a < 0

La fonction du second degré f de forme canonique $f(x) = a(x-lpha)^2 + eta$ avec a < 0 est :

- *croissante* pour $x \in]-\infty; \alpha]$
- *décroissante* pour $x \in [\alpha; +\infty; [$

Construire le tableau de variations des fonctions du second degré suivantes :

$$egin{aligned} egin{aligned} f_1(x) = -2(x-3)^2 + 2 \end{aligned} egin{aligned} f_2(x) = 4(x+2)^2 + 6 \end{aligned}$$

$$f_2(x) = 4(x+2)^2 + 6$$

$$\boxed{3} \quad f_3(x) = (5x - 8)(2 - 6x)$$

$$\boxed{4} \ f_4(x) = (5x-3)^2$$

$$\boxed{5} \ \ f_5(x) = 9x^2 - 2x + 5$$

$$\boxed{6} \quad f_6(x) = (7x+8)(7x-8)$$

 $n^{\circ}6$ Equation du second degré

■ Définition : équation du second degré

Une équation du type $ax^2+bx+c=0$ avec a, b et c des nombres réels tels que a
eq 0 est appelée équation du second degré.

■ **Définition**: discriminant

 $\Delta = b^2 - 4ac$ est le **discriminant** du trinôme du second degré $ax^2 + bx + c$.

Construire le tableau de variations des fonctions du second degré suivantes :

$$f_1(x) = -2(x-3)^2 + 2$$

$$\boxed{3} \ f_3(x) = (5x-8)(2-6x)$$

$$\boxed{4} \ \ f_1(x) = -2(x-3)^2 + 2$$

$$\boxed{5} \ f_2(x) = 4(x+2)^2 + 6$$

$$\boxed{6} \quad f_3(x) = (5x - 8)(2 - 6x)$$

Racines d'une équation du 2nd degré $n^{\circ}7$

Vocabulaire : racines

Les solutions de l'équation $ax^2 + bx + c = 0$ sont appelées **racines** ou **zéros**.

Construire le tableau de variations des fonctions du second degré suivantes :

$$\boxed{1} \ f_1(x) = -2(x-3)^2 + 2$$

$$\boxed{2} \ f_2(x) = 4(x+2)^2 + 6$$

3
$$f_3(x) = (5x-8)(2-6x)$$

$$\boxed{5} \quad f_2(x) = 4(x+2)^2 + 6$$

$$f_3(x) = (5x-8)(2-6x)$$

$n^{\circ}8$ Racines d'une équation du 2^{nd} degré et discrimimant

■ Théorème : racines guand $\Delta > 0$

Lorsque le discriminant $\Delta = b^2 - 4ac$ est **positif** :

L'équation $ax^2+bx+c=0$ possède $\frac{2\ racines}{2a}$ x_1 et x_2 avec $x_1=\frac{-b-\sqrt{\Delta}}{2a}$ et $x_2=\frac{-b+\sqrt{\Delta}}{2a}$

■ Théorème : racines quand $\Delta = 0$

Lorsque le discriminant $\Delta=b^2-4ac$ est **nul**, l'équation $ax^2+bx+c=0$ possède <u>1 racine</u> x_0 avec

$$x_0=rac{-b}{2a}$$

■ Théorème : racines quand $\Delta < 0$

Lorsque le discriminant $\Delta=b^2-4ac$ est **négatif**, $ax^2+bx+c=0$ ne possède pas de <u>racine réelle</u>

Construire le tableau de variations des fonctions du second degré suivantes :

$$\boxed{1} \quad f_1(x) = -2(x-3)^2 + 2$$

$$\boxed{2 \quad f_2(x) = 4(x+2)^2 + 6}$$

$$\boxed{3} \quad f_3(x) = (5x - 8)(2 - 6x)$$

$$\boxed{5} \ f_2(x) = 4(x+2)^2 + 6$$

$$\boxed{6} \quad f_3(x) = (5x - 8)(2 - 6x)$$

n°9 Racines et parabole

■ Théorème

La courbe représentative C_f de la fonction $f(x) = ax^2 + bx + c$:

ullet Lorsque le discriminant $\Delta=b^2-4ac$ est **positif**, C_f coupe l'axe des abscisses en deux points

$$\left(x_1=rac{-b-\sqrt{\Delta}}{2a}\,;0
ight)$$
 et $\left(x_2=rac{-b+\sqrt{\Delta}}{2a}\,;0
ight)$

ullet Lorsque le discriminant $\Delta=b^2-4ac$ est **égal à 0**, C_f coupe l'axe des abscisses en un seul point

$$\left(x_0=rac{-b}{2a}\,;0
ight)$$
 qui est le sommet de la parabole.

ullet Lorsque le discriminant $\Delta=b^2-4ac$ est **négatif**, C_f ne coupe pas l'axe des abscisses.

Construire le tableau de variations des fonctions du second degré suivantes :

$$\boxed{1} \ \ f_1(x) = -2(x-3)^2 + 2$$

$$\boxed{3} \quad f_3(x) = (5x - 8)(2 - 6x)$$

$$\boxed{4} \ f_1(x) = -2(x-3)^2 + 2$$

$$\boxed{5} \ f_2(x) = 4(x+2)^2 + 6$$

$$\boxed{6} \quad f_3(x) = (5x - 8)(2 - 6x)$$

n°10 Forme factorisée

■ Théorème

Soit la forme développée de la fonction $f(x) = ax^2 + bx + c \; (a
eq 0)$:

ullet Lorsque le discriminant $\Delta=b^2-4ac$ est **positif**, $\overline{f(x)=a(x-x_1)(x-x_2)}$

avec
$$x_1=rac{-b-\sqrt{\Delta}}{2a}$$
 et $x_2=rac{-b+\sqrt{\Delta}}{2a}$

- ullet Lorsque le discriminant $\Delta=b^2-4ac$ est lpha gal à 0, $\overline{f(x)=a(x-x_0)^2}$ avec $x_0=rac{-b}{2a}$
- ullet Lorsque le discriminant $\Delta=b^2-4ac$ est **négatif**, f ne possède pas de forme factorisée dans ${\mathbb R}$

Construire le tableau de variations des fonctions du second degré suivantes :

$$\boxed{1} \quad f_1(x) = -2(x-3)^2 + 2$$

$$f_1(x) = -2(x-3)^2 + 2$$

$$\boxed{5} \quad f_2(x) = 4(x+2)^2 + 6$$

$$\boxed{6} \quad f_3(x) = (5x - 8)(2 - 6x)$$

$n^{\circ}11$ Inéquation du second degré

■ Définition et propriétés

Soient a, b et c des nombres réels tels que $a \neq 0$ et f la fonction du second degré définie par $f(x) = ax^2 + bx + c$ de courbe représentative \mathcal{C}_f .

Une inéquation du second degré est du type :

- $ullet ax^2 + bx + c < 0 o$ les abscisses x des points de \mathcal{C}_f strictement en **dessous** de l'axe des abscisses.
- $ullet ax^2 + bx + c > 0 o$ les abscisses x des points de \mathcal{C}_f strictement au **dessus** de l'axe des abscisses.
- $ullet \ ax^2 + bx + c \leqslant 0 o$ les abscisses x des points de \mathcal{C}_f en dessous de l'axe des abscisses.
- $ullet ax^2 + bx + c \geqslant 0 o$ les abscisses x des points de \mathcal{C}_f au **dessus** de l'axe des abscisses.

Construire le tableau de variations des fonctions du second degré suivantes :

$$\boxed{1} \quad f_1(x) = -2(x-3)^2 + 2$$

$$\boxed{2} \ f_2(x) = 4(x+2)^2 + 6$$

$$\boxed{3} \quad f_3(x) = (5x - 8)(2 - 6x)$$

$$egin{aligned} egin{aligned} f_1(x) = -2(x-3)^2 + 2 \end{aligned} \qquad egin{aligned} egin{aligned} f_2(x) = 4(x+2)^2 + 6 \end{aligned}$$

$$\left[egin{array}{c} 6 \end{array}
ight] \ f_3(x) = (5x-8)(2-6x)$$

$n^{\circ}12$ Signe d'un trinôme

■ Propriétés

On considère le trinôme $ax^2 + bx + c$ associé à la fonction $f(x) = ax^2 + bx + c$ et de discriminant $\Delta = b^2 - 4ac$. x_1 , x_2 et x_0 sont les racines de l'équation $ax^2 + bx + c = 0$ lorsque $\Delta > 0$ et $\Delta = 0$.

- ullet Quand a>0 et $\Delta>0$ alors $f(x)\geqslant 0$ sur $]-\infty;x_1]\cup [x_2;+\infty[$ et $f(x)\leqslant 0$ sur $[x_1;x_2]$
- ullet Quand a<0 et $\Delta>0$ alors $f(x)\leqslant 0$ sur $]-\infty;x_1]\cup [x_2;+\infty[$ et $f(x)\geqslant 0$ sur $[x_1;x_2]$
- ullet Quand a>0 et $\Delta=0$ alors $f(x)\geqslant 0$ sur $\mathbb R$ et $f(x_0)=0$
- ullet Quand a<0 et $\Delta=0$ alors $f(x)\leqslant 0$ sur $\mathbb R$ et $f(x_0)=0$
- ullet Quand a>0 et $\Delta<0$ alors f(x)>0 sur $\mathbb R$ et f(x)
 eq 0 pour $x\in\mathbb R$
- ullet Quand a<0 et $\Delta<0$ alors f(x)<0 sur $\mathbb R$ et f(x)
 eq 0 pour $x\in\mathbb R$

Construire le tableau de variations des fonctions du second degré suivantes :

$$\boxed{1} \ \ f_1(x) = -2(x-3)^2 + 2$$

$$\boxed{2} \ f_2(x) = 4(x+2)^2 + 6$$

$$f_3(x) = (5x-8)(2-6x)$$

$$f_1(x) = -2(x-3)^2 + 2$$

$$\boxed{5} \quad f_2(x) = 4(x+2)^2 + 6$$

$$\boxed{6} \quad f_3(x) = (5x - 8)(2 - 6x)$$

$n^{\circ}13$ Inéquation $f(x) \geqslant g(x)$

Soient 2 fonctions f et g définies par $f(x)=x^2-6x+2$ et $g(x)=-2x^2-3x+8$ de courbes représentatives \mathcal{C}_f et \mathcal{C}_q .

1 Etudier le signe de f(x) - g(x)

- 2 Résoudre $f(x) \geqslant g(x)$
- Etudier la position de \mathcal{C}_f par rapport à \mathcal{C}_g .

$n^{\circ}14$ Histoire de pont

Un pont est soutenu par un arc parabolique d'une portée de **200** m et d'une hauteur de **80** m. Le pont et l'arc se coupent à 40 m de la rive. Quelle est la hauteur du pont ?

$n^{\circ}15$ Algorithme: forme canonique

Soit une fonction du second degré $f(x) = ax^2 + bx + c$ de forme canonique $f(x) = a(x - \alpha)^2 + \beta$. Ecrire un algorithme en **javascript** qui détermine les réels α et β de la forme canonique d'une fonction du second degré.

n°16 Dans un jardin

À l'intérieur d'un jardin carré dont la longueur du côté est **10** mètres, un jardinier souhaite installer, le long du bord, une allée en graviers de largeur constante. Comment faire en sorte que l'aire de l'allée soit égale à celle du carré intérieur ?

Ecrire un algorithme en **javascript** qui détermine les solutions de l'équation du second degré $ax^2+bx+c=0$