This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-3306

(43)公開日 平成11年(1999)1月6日

(51) Int.Cl. ⁶		識別記号	FΙ		
G06F	13/00	3 5 5	G06F	13/00	355
	12/00	5 3 1		12/00	5 3 1 J
	15/16	370		15/16	370Z

審査請求 有 請求項の数12 OL (全 14 頁)

(21)出顯番号	特顯平9-154811	(71)出願人	000006013	
			三菱電機株式会社	
(22)出顧日	平成9年(1997)6月12日	東京都千代田区丸の内二丁目2番3号		
		(72)発明者	坂倉 隆史	
	•	·	東京都千代田区丸の内二丁目2番3号 三	
			菱電機株式会社内	
		(74)代理人	弁理士 宮田 金雄 (外2名)	
		,		
		ł		

(54) 【発明の名称】 エージェント方式

(57)【要約】

【課題】 プログラムとデータをともに送信し、送信先で実行するエージェント方式において、ミッションクリティカルなアプリケーションの実行を可能とするエージェントの再実行、取り消し手段を提供する。

【解決手段】 エージェントを処理する処理系に、エージェント自身やエージェントを実行したオペレーションログを格納するための不揮発記憶領域を設ける。

【特許請求の範囲】

【請求項1】 以下の要素を有するエージェント方式 (a) データと上記データを処理対象として処理する手 続きとを有するエージェントを生成して送信するユーザ 端末、(b) 上記ユーザ端末が送信する上記エージェン トを受信して受信したエージェントを実行し上記手続き に従って上記データを処理する処理系と、

上記エージェントが利用できる不揮発記憶領域とを備えたサーバ。

【請求項2】 上記処理系は、上記エージェントの実行 状態を示すオペレーションログを採取することを特徴と する請求項1に記載のエージェント方式。

【請求項3】 上記処理系は、受信したエージェントと 上記オペレーションログとの少なくともいずれかを上記 不揮発記憶領域に記憶することを特徴とする請求項2に 記載のエージェント方式。

【請求項4】 上記処理系は、上記オペレーションログを上記ユーザ端末に返送することを特徴とする請求項2 に記載のエージェント方式。

【請求項5】 上記処理系は、受信したエージェントと 上記オペレーションログの両方が上記不揮発記憶領域に 記憶されている場合に、上記不揮発記憶領域に記憶され た上記オペレーションログを参照して、上記不揮発記憶 領域に記憶されたエージェントを用いて、エージェント の再実行を行なうことを特徴とする請求項3に記載のエージェント方式。

【請求項6】 上記処理系は、上記オペレーションログが上記不揮発記憶領域に記憶されている場合に、上記不揮発記憶領域に記憶された上記オペレーションログを参照して上記ユーザ端末にエージェントの再発行を要求することにより、エージェントの再実行を行なうことを特徴とする請求項3に記載のエージェント方式。

【請求項7】 上記ユーザ端末は、上記返送されたオペレーションログを参照して、上記オペレーションログに対応するエージェントを再発行することにより、エージェントの再実行を行うことを特徴とする請求項4に記載のエージェント方式。

【請求項8】 上記ユーザ端末は、上記オペレーションログを参照して、上記エージェントを削除することを特徴とする請求項3に記載のエージェント方式。

【請求項9】 上記ユーザ端末は、先に発行したエージェントの追跡を行なう追跡用エージェントを発行し、上記追跡用エージェントは上記オペレーションログを参照してエージェントの追跡を行うことを特徴とする請求項2に記載のエージェント方式。

【請求項10】 上記追跡用エージェントは、先に発行されたエージェントの追跡を行うとともに、先に発行されたエージェントに対応して記録されたオペレーションログの消去を行なうことを特徴とする請求項9に記載のエージェント方式。

【請求項11】 ネットワークを介して接続可能な複数のサーバ上の複数の処理系を送信先としてエージェントを送信可能なユーザ端末と、上記複数の処理系の属性に関する情報を属性情報として保持する属性情報サーバとを備えたエージェント方式であって、上記エージェントは、上記属性情報サーバが保持する属性情報を参照して実行する処理系を選択することを特徴とするエージェント方式。

【請求項12】 データと上記データを処理対象として 処理する手続きとを有するエージェントを生成して送信 するユーザ端末と、

上記ユーザ端末が送信する上記エージェントを受信して、上記エージェントを実行し、上記手続きに従って上記データを処理するとともに、上記エージェントを実行したオペレーションログを上記ユーザ端末に返送する処理系を備えたサーバとからなるエージェント方式。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、多種多数の計算機が相互に接続された多様な通信環境において、手順、データを含むオブジェクトをエージェントとしてある計算機に送信し、オブジェクトを送信先の計算機で実行するエージェント方式に関する。

[0002]

【従来の技術】近年"エージェント"と呼ばれるソフトウェア技術が知られてきている。エージェント方式とは、プログラム(処理の手順、手続きともいう)とデータを持ったオブジェクト(エージェント、ネットワークエージェントともいう)をある計算機に送信し、実行するという処理形態をとるものである。本明細書において、エージェントとは、この処理方式、又は、オブジェクトを指すものとする。本明細書で述べるエージェントは、いわゆる一般的なエージェントでも、計算機内で常駐し、ある一定の目的を遂行する広義のソフトウェアエージェントでもない。

【0003】日本特許出願の特開平7-182174号(米国特許出願S/N 08/090521、出願日1993年7月8日の対応出願)「リモートプログラミングの実施方法」には、米国のジェネラルマジック社(General Magic, Inc.)が開発したテレスクリプト(Telescript、ジェネラルマジック社の商標)と呼ばれるエージェント記述用言語の仕様が詳細に記載されている。

【0004】日本特許出願の公開公報特開平7-182 174号を引用して、従来の技術を説明する。図16 は、従来技術によるコンピュータシステムの構造を示す 図である。図17は、リモートプログラミングを使用す る従来技術による方法のフローチャートである。図18 は、リモートプログラミングを具体化する従来技術によるネットワークを示す図である。 【0005】日本国特許特開平7-182174号(12ページ、カラム21、27~32行目)によれば、マスメモリ917A、例えば、磁気ディスクや磁気テープは、プログラム、データ又はCPU910によって直ちには必要とされないか若しくはメインメモリ917Bの大きさの制限のためにメインメモリ917B中に収容することのできないプログラム又はデータの一部分を記憶するために用いられる。

【0006】また、日本国特許特開平7-182174号(15ページ、カラム27、20~23行目)では、Wolfson等によって開示されたシステムを開示している。そのシステムは、「あるネットワーク内においてあるプロセスが1つのコンピュータシステムから別のコンピュータシステムに移行することのできるシステム(15ページ、カラム27、7~9行目)」であり、そのシステムにおいては、「~プロセスは、それぞれのプロセスが実行されているコンピュータシステムのマスメモリにデータを直接に記憶させたりこのマスメモリからデータを直接検索したりする(15ページ、カラム27、20~3行目)。」

【0007】また、図17に示すフローチャートは、リ モートプログラミングの具体例を示している。(中略) 具体例をリモートプログラミング環境において実現する には、クライアントプロセス9352(図18)は、ス テップ931 (図17) においては、このステップ93 1の詳細なフローチャートに示すインストラクションか ら構成されているプログラムを作成する。このステップ 931の詳細については、以下に説明する。処理は、ス テップ931からステップ932に進み、ステップ93 2において、プログラムは、矢印9358で示すよう に、ネットワーク9356を介しコンピュータ930B (図18)に転送される。処理は、ステップ932(図 17) からステップ933に進み、このステップ933 において、プログラムは、コンピュータ930Bによっ て実行される。この実行の中には、プログラムは、コン ピュータ930B上のプロセス9352A(図18)と なっている。そして、プロセス9352Aにおいて、プ ログラムのインストラクションは、ステップ931のフ ローチャートに従って実行される。ステップ931-B (図17)において、ファイル名のリストが作成され る。(中略)ステップ931-Gにおいて、サーバプロ セス9354 (図18) に適切なインストラクションを 送出することによってファイルが削除される。処理は、 ステップ931-G(図17)からステップ931-J を介して、ステップ931-Cに戻る。リスト中の全て のファイル名が処理されたならば、処理は、ステップ9 31-Cからステップ931-Kに進み、ここでプロセ ス9352Aが完了する。矢印9360(図18)に示 すように、プロセス9352Aとサーバプロセス935 4間の全ての相互作用は、ネットワーク9356を使用

することなく、全てコンピュータ930B中において起る。プログラムが成功のうちに終了した後、処理は、ステップ933からステップ934(図17)に移行し、このステップ934において、サーバプロセス9354(図18)は、矢印9362によって示すようにプログラムが成功のうちに終了したことをクライアントプロセス9352に報告する。このリモートプログラミングか使用していないことに注意されたい。第1回の使用は、矢印9358によって示すように、インストラクションスト又はプログラムをサーバプロセス9354によっていまりに、プログラムが成功のうちに終了したことの通知をサーバプロセス9354から受ける使用である(14ページ、カラム25~26)。

【0008】このように、従来の技術で、「プロセス は、それぞれのプロセスが実行されているコンピュータ システムのマスメモリにデータを直接に記憶させたり、 このマスメモリからデータを直接検索したりする」点が 述べられているが、「ここでのマスメモリへのデータの 記憶は、プロセスの処理対象となるデータの記憶を指し ている」ととるのが妥当であり、プロセス自身やプロセ スの実行に関連する管理情報を記憶することについては 述べられていない。また、リモートプログラミングプロ シージャにおいては、サーバプロセス9354は、プロ グラムが成功のうちに終了したことをクライアントプロ セス9352に報告する。この報告は、プログラムの終 了状態が正常か否かを報告することと解するのが妥当で あり、プログラムの実行状態をトレースし、逐一クライ アントに報告することは述べられていない。また、トレ ースした実行状態を記憶させることも述べられていな い。また、リモートプログラムの送出やリモートでのプ ログラム実行については述べられているが、リモートプ ログラムをサーバの補助記憶装置(マスメモリ)に記憶 することは述べられていない。

【0009】このように、従来のエージェント方式においては、ディスクにオブジェクト(エージェントの実行を納していなかったので、処理系はエージェントを再実行することはできなかった。また、従来のエージェントを実行した結果であるログデータを記憶していなかったので、ログデータを参照して、実行結果を問い合わせることはできなかった。また、エージェントが送信された経路を調べることもできなかった。また、実行中に中断されたエージェントの再実行を要求することもできなかった。また、ログデータを調べてデータベースのリカバリを行う再試行メソッドも持っていなかった。そのため、ミッションクリティカルな業務にエージェントを用いることはできなかった。

[0010]

【発明が解決しようとする課題】従来の汎用機を中心に おくセントラライズドシステムやクライアント/サーバ 型システムとは異なり、エージェントはプログラムとデ ータを持ったオブジェクトをある計算機に送信し、実行 するという処理形態をとる。そのため、エージェント技 術によると、ユーザオペレーションは、同期的には処理 されない。同期的に処理されないため、もし、プログラ ム実行中に障害が発生しても、ユーザは、障害の発生や その障害の内容を知ることができない。エージェントを インターネットに接続されたサーバから参照用データを 集めるといった用途に用いる場合では、仮に、エージェ ントが消失しても、被害はユーザにとってそれほど深刻 ではないが、データベースにトランザクション処理を行 うようなエージェントプログラムで障害が発生すると、 ユーザにとっての被害は甚大である。逆に、このような 欠点があるため、エージェント技術は重要なトランザク ション処理を含むようなプログラムやサービスには、利 用されてこなかった。

【0011】この発明は、上記のような問題点を解決するためになされたものであり、エージェントが信頼性を必要とするミッションクリティカルな処理を行うことが可能なエージェント方式を実現することを目的としている。また、エージェントの実行状態を示すオペレーションログを採取し、採取したオペレーションログを用いて、中断されたエージェントの再実行や発行されたエージェントの取り消しが可能なエージェント方式を実現することを目的としている。

[0012]

【課題を解決するための手段】この発明に係るエージェント方式は、以下の要素を有することを特徴とする。

(a) データと上記データを処理対象として処理する手続きとを有するエージェントを生成して送信するユーザ端末、(b) 上記ユーザ端末が送信する上記エージェントを受信して受信したエージェントを実行し上記手続きに従って上記データを処理する処理系と、上記エージェントが利用できる不揮発記憶領域とを備えたサーバ。

【0013】上記処理系は、上記エージェントの実行状態を示すオペレーションログを採取することを特徴とする。

【0014】上記処理系は、受信したエージェントと上記オペレーションログとの少なくともいずれかを上記不揮発記憶領域に記憶することを特徴とする。

【0015】上記処理系は、上記オペレーションログを 上記ユーザ端末に返送することを特徴とする。

【0016】上記処理系は、受信したエージェントと上記オペレーションログの両方が上記不揮発記憶領域に記憶されている場合に、上記不揮発記憶領域に記憶された上記オペレーションログを参照して、上記不揮発記憶領域に記憶されたエージェントを用いて、エージェントの

再実行を行なうことを特徴とする。

【0017】上記処理系は、上記オペレーションログが上記不揮発記憶領域に記憶されている場合に、上記不揮発記憶領域に記憶された上記オペレーションログを参照して上記ユーザ端末にエージェントの再発行を要求することにより、エージェントの再実行を行なうことを特徴とする。

【0018】上記ユーザ端末は、上記返送されたオペレーションログを参照して、上記オペレーションログに対応するエージェントを再発行することにより、エージェントの再実行を行うことを特徴とする。

【0019】上記ユーザ端末は、上記オペレーションログを参照して、上記エージェントを削除することを特徴とする。

【0020】上記ユーザ端末は、先に発行したエージェントの追跡を行なう追跡用エージェントを発行し、上記追跡用エージェントは上記オペレーションログを参照してエージェントの追跡を行うことを特徴とする。

【0021】上記追跡用エージェントは、先に発行されたエージェントの追跡を行うとともに、先に発行されたエージェントに対応して記録されたオペレーションログの消去を行なうことを特徴とする。

【0022】この発明に係るエージェント方式は、ネットワークを介して接続可能な複数のサーバ上の複数の処理系を送信先としてエージェントを送信可能なユーザ端末と、上記複数の処理系の属性に関する情報を属性情報として保持する属性情報サーバとを備えたエージェント方式であって、上記エージェントは、上記属性情報サーバが保持する属性情報を参照して実行する処理系を選択することを特徴とする。

【0023】この発明に係るエージェント方式は、データと上記データを処理対象として処理する手続きとを有するエージェントを生成して送信するユーザ端末と、上記ユーザ端末が送信する上記エージェントを受信して、上記エージェントを実行し、上記手続きに従って上記データを処理するとともに、上記エージェントを実行したオペレーションログを上記ユーザ端末に返送する処理系を備えたサーバとからなることを特徴とする。

[0024]

【発明の実施の形態】

実施の形態1.本発明を適用した好適な実施の形態につき説明する。この実施の形態では、データベースを更新するトランザクション処理を行うエージェントの場合を説明するが、トランザクション処理を含まないエージェントに、この発明を適用しても構わない。本発明は、エージェントが処理系上で実行され、処理系はあるオペレーティングシステム上で、又はオペレーティングシステムとして実行されるシステムを想定している。処理系は、システムが提供すべき機能をエージェントに提供するが、その1つとして不揮発記憶領域を用意する。この

発明のエージェント方式の具体的な実現方法としては、 エージェントをオブジェクトとしてカプセル化し、計算 機から計算機へ、処理系から処理系への移動をサポート するメカニズムを想定している。実際の実現方法は、ど んな方法でも構わない。また、この発明を実施するに際 しては、エージェントの移動を実現する具体的な実現方 法はどんな方法でも構わない。この発明は、エージェン トの送受信を行う送受信手段の実現方法に依存するもの ではない。エージェントの移動に用いられる通信プロト コルの種類も問わない。また、この明細書では、1つの 計算機上に処理系が1つだけ存在する場合には、エージ ェントが1つの処理系から他の処理系へ移動するという 表現と、エージェントが1つの計算機から他の計算機へ 移動するという表現は、実質的には同じ動作を指すもの とする。また、所定の通信プロトコルで用いる書式の特 定フィールドに設定される値が、処理系をデスティネー ションとする移動と、計算機をデスティネーションとす る移動とで異なっても構わない。いずれもこの発明の実 施には影響を与えないものとする。

【0025】図1は、本実施の形態のエージェント方式 が稼働するシステム構成を示す図である。エージェント は、サーバ上の処理系で実行される。104はエージェ ントが実行される処理系を持つサーバが接続されるネッ トワークである。例えば、インターネットで用いられる ようなIPプロトコルが通過するネットワークである。 101はエージェントを生成し送出するユーザ端末、1 02, 103, 105, 106はそれぞれ処理系が動作 するサーバシステム (処理系サーバ) である。エージェ ントは、ネットワーク104上をTCP/IP(Tra nsmissionControl Protocol /Internet Protocol)により移動す る。この実施の形態では、TCP/IPのプロトコルの 一種であるUDP(User Datagram Pr otocol)を用いるものとする。1021, 105 1,1061は処理系サーバに接続され、処理系で実行 されるエージェントから利用可能な不揮発記憶部であ る。これらの不揮発記憶部は、到着したエージェントを 格納可能である。また、エージェントを実行したときの 実行状態を記憶可能である。ユーザ端末101におい て、エージェントを送出するプログラムは、例えば、J AJA言語で作成されたJAVAアプレットであり、W WW (World Wide Web)サイトよりダウ ンロードされる。

【0026】ここで、システム動作の説明に先だって、この発明が適用された処理系の不揮発記憶メカニズムについて説明する。図2に、構成を示す。201は処理系202が動作するサーバシステム、203は処理系がエージェントへの不揮発記憶領域提供のために利用する不揮発記憶部(ディスク)である。本実施の形態において、当不揮発記憶領域提供メカニズムは、ごく単純な領

域管理を行っている。処理系が到着したエージェントを ディスクに格納する場合、また、ユーザ、つまり、エー ジェントからディスクへのデータの書き込み要求がある と、データ (エージェントの場合もある)は、単純にデ ィスク領域の後方に追加され、書き込みポインタが更新 される。最後方にある一定のサイズ以上の空き領域があ ると、不要領域の先頭にポインタを戻して、不要領域の 解放をする。ところで、処理系は、通常、ディスク書き 込みの際、システムの用意するディスク書き込み機能を 使用するが、この発明の不揮発記憶部は、RAWディス クインターフェースを通してアクセスする。RAWディ スクインターフェースとは、上位のファイルシステムを 介さずに、例えば、ドライバレベルでディスクに直接読 み書きを行うインターフェースである。上位のファイル システムを介在させると、ファイルに対する書き込みは 完了していても、ディスクへの書き込みが完了していな い場合が発生することがあり、そのときにサーバシステ ムがダウンしたりすると、ファイルに書いたデータとデ ィスクにかかれたはずのデータの不整合が発生して、デ ータの内容が保証されなくなる。そのため、この実施の 形態では、エージェントが利用するディスクに、RAW ディスクインターフェースを通してアクセスする。これ により、エージェントからこの不揮発記憶部への書き込 み要求は同期的に処理される。書き込みの正常終了報告 が処理系からあれば、確実に不揮発記憶部中に記録さ れ、正常終了報告がない場合、書き込み処理中にシステ ムに障害が発生したときは、書き込み前のデータ内容が 保証される。

【0027】図3は、ネットワークエージェントシステ ムにおいて使用されるエージェントの構成の一例を示す 図である。図3において、141がエージェントであ る。エージェント141は、エージェントを識別するエ ージェントのID1411とエージェントの種類141 2と端末のユーザを識別するユーザ I D 1 4 1 5 とユー ザID1415に対するパスワード1416とエージェ ント141がサーバシステムにおいて行う処理の手続き (手順ともいう)1419とサーバシステムにおける処 理の結果エージェントに添付されるプログラム、データ 1420を含んでいる。手続き1419は、各サーバシ ステムに備えられた手続き解読手段のいずれもが解読で きる中間言語形式で記述されている。エージェント14 1がデータベースを検索するための検索エージェントの 場合は、手続き1419に検索の対象となるデータベー スの名前や検索の条件などのデータベースを検索する手 続きが記述される。また、エージェント141が電子メ ールを受信するための電子メール受信エージェントの場 合は、手続き1419にメールを受信したいメールサー バの名前とメールを受信する端末で表示可能なメールの 種類の情報が記述される。

【0028】この発明のエージェントは、手続き中にエ

ージェントを管理するために用いられる情報を記憶する 領域を含んでいる。また、この発明では、処理系は、エ ージェントを実行した処理結果をログデータとして採取 する。ログデータもオブジェクト(ログオブジェクト) として扱われる。採取されたログデータは、ディスクが 利用可能であって、かつ、ログデータの記憶が要求され ていれば、ディスクに記憶される。また、ログデータの 記憶が要求されていて、ディスクが利用可能でなけれ ば、エージェントの管理者へ送信される。エージェント の管理者とは、エージェントを生成し、発行したユーザ である。エージェントの管理者への送信は、エージェン トを生成し、発行したユーザ端末へ送信することで行わ れる。一例として、ユーザ端末に送信する方法として、 ユーザ端末のポート番号を宛先として送信することがで きる。また、他の例として、エージェントを発行したユ ーザのユーザIDを宛先として、ログを送信しても構わ ない。実際の送受信のやり方は、実現する送受信手段に 依存する。この発明では、処理系が受信したエージェン トは、処理系に備えられたエージェントから利用可能な 不揮発記憶領域に記憶される。このエージェントの記憶 操作は、処理系に予め備えられたロジックによりエージ ェントの実行前に行う。或いは、エージェント自身の手 続き中に、処理系に到着したら、自分を登録するように 記述しておき、処理系がエージェントの手続きを実行す る中で、手続き中の記述に従って、エージェントを記憶 させる。ユーザは、実行したいサービスに応じて、ユー ザ端末101上でエージェントを生成する。ここで、ユ ーザは、エージェントに、あるデータベースの更新を2 件実行させたいものとする。そこで、エージェントの実 行を依頼する候補のサーバとして、図1に示すA,B, C, Dの4台を選択し、この4台の内のいずれかで実行 するように手続きに記述して送出する。この実施の形態 では、送出元のユーザ端末は、ユーザ端末のポートのア ドレス(ポートアドレス)で識別される。

【0029】また、この実施の形態では、処理系は、エ ージェントを実行した実行状態を保持するオペレーショ ンログを採取可能である。実際に、オペレーションログ を採取するかどうかは、処理系の属するサーバの備えて いる機能や処理能力にも依存する。また、エージェント の中に、オペレーションログをとるかどうかを示す情報 (ログ採取フラグ)を備え、このログ採取フラグの値に より処理系に判断させてもよい。エージェントを送出す る送出元 (ユーザ、エージェント管理者) のポートアド レスを、エージェントの手続き中に登録しなければ、エ ージェントからのオペレーションログの報告はない。エ ージェントからのオペレーションログの報告とは、処理 系で実行されたエージェントの実行状態を保持するオペ レーションログやその他のステート情報をユーザ端末に 返送することである。送出元のポートアドレスをエージ ェントの手続き中に登録しておけば、エージェントを生 成したユーザ、即ち、エージェント管理者は、オペレーションログを受信し、参照することができる。ユーザのエージェント送出機構、つまり、エージェント管理者がオペレーションログを受け取る実行例については後述する。

【0030】さて、ここでは、エージェント管理者への 報告用のポートアドレスを登録していないので、エージ ェントは、エージェント管理者へのオペレーションの報 告は行わず、オペレーションログはエージェントが実行 される処理系の不揮発記憶領域に書き込みが行われる。 【0031】処理系によって、その属性に違いがある。 エージェントは、処理系の属性の違いを処理系に問い合 わせることにより知ることができる。エージェントは、 処理系の属性を知り、また、処理系の属性データをエー ジェント内に蓄積することにより、エージェントが行う べき処理に合わせ、処理系を選択することができる。図 4に、手続き中に、実行を依頼するサーバ名のリスト (ITINERARY、巡回サーバ名リスト、単に、リ ストともいう)を記述したエージェントの図を示す。こ こでは、エージェントは、巡回サーバ名リストに記載さ れている順に移動するものとする。エージェントは、送 出されると、巡回サーバ名リストの先頭にあるサーバA へ行く。正確には、このリストは図示しないエージェン ト送出機構が観察し、リストの先頭に登録されているア ドレスに、該エージェントをサーバAにある処理系の通 信機能を利用して送出する。サーバAにエージェントが 到着し、処理系によってエージェントの処理を開始する ための処理開始メソッド"start"が実行される と、エージェントは、属性情報を参照することによりサ ーバAの属性を知る。エージェントは、参照したサーバ Aの属性をエージェント内に格納し、エージェントの実 行にふさわしいかを検討する。 図5、301 に示すのが サーバAの属性を示す属性情報(以降、サーバA属性情 報ともいう)の一例である。図6に、サーバB属性情 報、図7に、サーバC属性情報、図8に、サーバD属性 情報の一例を示す。属性情報には、処理系の情報やサー バである計算機自身の属性情報等がある。

【0032】このエージェントが実行すべきメソッドは、データベース更新処理を含んでいるので、エージェントは、DBアクセスのできないサーバAでは実行できないと判断する。エージェントは、メソッドを実行できるサーバを求めて、リストの次のエントリであるサーバBに移動する。

【0033】エージェントは、サーバBに移動する。サーバAの場合と同様に、サーバの属性が実行にふさわしいかどうかを検討する。今度は、図6に示す302のサーバBでの処理系の属性情報にDBアクセスがあることから、処理可能と判断する。また、サーバB属性情報の"不揮発記憶部あり"から実行に先立ち、エージェント自身をサーバBの不揮発記憶領域に登録する。不揮発記

憶領域への登録は、サーバの属性情報を参照して、"不 揮発記憶部あり"の場合に行う。また、エージェントを 管理する管理情報に、エージェントを登録するか否かを 示す不揮発記憶部格納要フラグを持たせておき、不揮発 記憶部格納要フラグが"1"、即ち、"登録する"で、 かつ、属性情報が"不揮発記憶部あり"の場合のみ格納 させるようにしてもよい。また、不揮発記憶部格納要フ ラグを更に分割し、エージェントを格納するか、オペレ ーションログを格納するかをアプリケーションの内容に より個別に指定させてもよい。登録時には、図9に示す 管理情報が、処理系により当該記憶領域の先頭部分に、 図10に示すように、登録される。410は製品の識別 番号であるマジック番号、412はエージェント機構の バージョン、401は不揮発記憶部格納要フラグ、40 2はオペレーションログの I Dであるログオブジェクト IDである。また、403はエージェントを再実行する 場合の再試行メソッドのアドレスとなる再試行メソッド オフセットである。また、414はエージェントに関連 して記憶されるデータの件数を示すデータプール数であ る。図10に示す管理情報の構成は、501に該エージ ェントシステムでエージェントのIDである一意のオブ ジェクト I D、502にオブジェクトタイプ、ステート 503には、オブジェクトが有効か無効か、或いは、保 存状態であるのかを示すステート情報が示される。ここ では、有効が示される場合を表している。504はオブ ジェクトの格納されるディスクオフセット位置 (ディス クアドレス)である。ここでは、エージェントが登録さ れるので、該オブジェクトは、実行オブジェクトとして 登録される。他のオブジェクトタイプとしては、ログ (ログオブジェクト)、データ等がある。510はオペ レーションログを登録するためのエリアである。

【0034】自身の登録を済ませると、エージェントは 処理を開始するが、オペレーションを開始する前に、図 11、601にあるように、サーバB、"kailua@abc.opqrs.co.jp"という処理系に到 着して、処理を開始した旨をオペレーションログとして 登録する。その後、602から607まで各オペレーションの前にそれぞれのログを採取し、そのオペレーションを実行する。ここでは、データベーストランザクションが2回実行されており、それぞれ、例えば、update、delete、insert等のオペレーション、コミット開始、コミット終了で構成されている。オペレーションが終了すると、送出者であるユーザ端末にエージェントは戻る。

【0035】次に、サーバBに障害が発生した場合について説明する。同じ操作をユーザは行った。しかし、今回は、図12、701でサーバ到着を登録し、702登録後にサーバ更新操作を行なった後、703でコミット処理を行う旨を登録して、サーバBに障害が発生したとする。

【0036】サーバBのシステムアドミニストレータ(システム管理者)がサーバBをリブートすると、処理系も復旧する。処理系は、自身の復旧を終えると、不揮発記憶領域内に登録されているエージェントの再実行を図13の論理により行う。801でステートが有効であるオブジェクト全てをサーチする。有効なオブジェクトを発見したならば、802で処理系に登録されているオブジェクトを再びロードし、803で、図9に示したエージェントの管理テーブルをチェックする。ここで、図9の再試行メソッドボアミもはアクセスして再試行メソッドでestartで表実行する。

【0037】エージェントが再実行を始めると、402 にあるログオブジェクトIDがログオブジェクトへのポ インタとなり、このポインタからエージェント自身がシ ステム障害前に行ったオペレーションのログ(図12) を得る。これから第1のデータベース更新のコミットオ ペレーションの完了が不定であることを知り、第1の更 新のコミットから再試行する。再試行が正常終了する と、最終的に図11に示すログの実行結果と同等の結果 を得て、エージェントは、ユーザ端末へ帰還する。この ように、不揮発記憶領域にオペレーションログとエージ ェントオブジェクトを格納しておくので、オペレーショ ンログを参照してエージェントの再実行が可能である。 また、不揮発記憶領域にオペレーションログのみを格納 しておく場合には、オペレーションログを元にユーザに エージェントの再発行を要求することで、エージェント の再実行を行うことが可能である。ユーザは、再発行が 要求されたことにより、エージェントが正常に終了しな かったことを知り、再発行する。

【0038】次に、エージェントのオペレーションログ を格納しない場合について説明する。ユーザは、オペレ ーションログを受けるポート(UDPヘッダーにより指 定されるポートであり、IPアドレスを持つホストの内 部であて先と送信元を区別するための番号)を生成す る。その生成したポートのアドレスをエージェントに設 定することで、そのエージェントのオペレーションログ を受信することができる。いま、ここでポートアドレス を設定し、401の不揮発記憶部格納要フラグを"0" にセットし、エージェントの不揮発記憶部への格納を不 要とし、前述した場合と同様に、このエージェントを送 出する。エージェントは、前述した場合と同じ経路をた どり、サーバBの処理系で再び実行を開始し、前述の例 でオペレーションログを格納するタイミングで、格納し た場合と同じ内容のメッセージ(オペレーションログ) を管理者であるユーザ端末に送出する。

【0039】ここで、また、図12に示すような一連のメッセージを、メッセージ毎に管理者に送出したところでシステムに障害が発生したとする。子め設定してあ

る、一定の時間が経過しても、第1データベース更新のコミットメッセージが帰ってこないことから、正常に処理されていないと判断し、ユーザは、エージェント削除を削除メッセージを送出することによって行う。念のため説明すると、ユーザは、エージェントからのメッセージを受けとることによって、エージェントの現在のボートアドレスを知ることができる。そのエージェントの現在のポートアドレスに対して削除メッセージを送出することで、エージェント削除をエージェントが処理されていた処理系で実行できる。

【0040】ユーザは、受け取ったオペレーションログ から引き続いて実行すべき処理のリストを再作成し、そ の処理のリストを記述したエージェントを新たに生成す る。生成したエージェントは、先のエージェントの処理 を引き続いて行うので、先のエージェントと同じ巡回先 リストに沿って移動する。オペレーションログ受信ポー トアドレスは、サーバBだった。この時点で、まだサー バBは障害から復旧していないので、次にリストに登録 されているサーバCが移動先となる。サーバCに到着す ると、エージェントは、図7に示すサーバCの属性情報 をチェックする。サーバCは、"DBアクセスあり"な ので、エージェントはサーバC上の処理系でその実行を 開始し、後続処理を行なって帰還する。このように、オ ペレーションログをユーザ端末に送信することによって も、エージェントの再実行が可能である。この場合、エ ージェントの再実行は、サーバBでなく、サーバCで行 われるので、サーバBで処理系の再実行を行うと、二重 に処理することになってしまう。だが、ここでは、サー バBが再びブートアップしたとき、先に送られたエージ ェントステートは、削除されているので一切残っていな い。このように、削除することにより二重処理の発生を 防ぐことができる。また、オペレーションログは、ユー ザ端末に送出されており、不揮発記憶部には格納されて いないので、問題はない。

【0041】前述した実施の形態では、エージェントとログの両方を格納する場合、及びエージェントを格納せず、ログのみを格納する場合について説明したが、エージェントのみを格納しても構わない。格納されているデータがエージェントであれ、オペレーションログであれ、格納されているデータに対する削除メッセージを発行すれば、同様の効果となる。

【0042】次に、オペレーションログを残す場合について説明する。さて、ユーザがエージェントを利用して行ったオペレーション、或いは、実行中のオペレーションを取り消したい場合、ステート情報を受信するボートアドレスをエージェント内に登録しないとき、即ち、オペレーションログをユーザ端末に送出せず処理系にそのオペレーションログを残す場合は、以下のように取り消しを行う。

【0043】取り消したいエージェントと同じ巡回サー

バリストを持った取り消し用エージェントを発行するこ とにより、取り消しを行う。取り消し用エージェントが 処理系に入ったならば、取り消したいエージェントのオ ブジェクトIDで不揮発記憶部内をサーチし、取り消し たいエージェントが保存したそのエージェント自身に関 する情報を取り消し用エージェント内に保存する。保存 するのは、後述する処理でその情報を使用するためであ る。サーチした情報のステート503に"有効"が設定 されていれば、先のエージェントは実行中であるので、 処理系が予め用意する所定のシグナルにより、実行中で ある先のエージェントを停止させ、停止後、先のエージ ェントを削除する。先のエージェントを削除した上で、 不揮発記憶領域内の先のエージェントが登録したエージ ェント自身、オペレーションログのステート503のフ ィールドに"無効"をセットし、取り消し用エージェン ト内に先ほど保存した先のエージェントのオペレーショ ンログを元に、オペレーションの訂正処理、即ち、デー タベースのロールバックを行う。

【0044】不揮発記憶領域内に保存されているステート503が"保存"であったなら、既に先のエージェントはその処理系での処理を終えて、次の目的地へ移動している。その場合には、保存されている先のエージェント自身及びそのオペレーションログを削除して、データベースのロールバック処理を行う。

【0045】以上のように、サーバ巡回リストとオペレーションログを用いてエージェントを追跡し、取り消し処理を終えた取り消し用エージェントは、ユーザの元に帰還する。

【0046】取り消したいエージェントがステート情報を受信するポートアドレスをエージェント内に登録してあった場合、即ち、エージェントがオペレーションログをユーザ端末に送出し、処理系にはそのオペレーションログを残さない場合は、ユーザがそのステート情報(オペレーションログ)を判断し、処理系に削除メッセージを送り、ロールバック処理エージェントを再発行することによってエージェントの取り消しを行う。

【0047】次に、エージェントが自分を実行してもらう処理系を選択する手順について説明する。エージェントは、自分を実行するために、必要な実行条件を手続き中に予め持っているものとする。まず、1つの方法について説明する。エージェントが処理系に到着すると、その処理系の属性情報を参照し、自分の実行条件と照合と、の処理系の属性情報を参照し、自分の実行条件と照合した結果、処理系の属性情報と自分の実行条件が一致していれば、その処理系で実行を開始してもらう。一致していなければ、エージェントは次の処理系の属性情報を同様にチェックし、実行可能な処理系にたどり着えて、移動を続ける。エージェントの移動については、前述したように、エージェントの管理者が、予め巡回先リストをエージェントの手続き中に記述しておき、巡回先

リストに従って、移動するやり方がある。移動する順番は、巡回先リストに記載した順番とする。又は順不同でもよい。或いは、手続き中に選択肢を用意して、移動実行時のエージェントと処理系に判断させてもよい。また、手続き中で細かく指定せずに、到着した処理系で実行可能でなかったとき、代替の処理系を教えてもらってもよい。また、ある処理系でエージェントの実行が完了したとき、その処理系から次に移動する処理系の候補を教えてもらい、その候補を移動先としてもよい。或いは、これらの移動方法の組み合わせでもよい。

【0048】次に、複数の処理系の属性情報を収集し て、最適な処理系を選択する場合について説明する。エ ージェントが属性情報を収集する処理系の数を、仮に5 とする。これは、一例であり、10でも20でも任意の 数とする。エージェントは、ネットワークを移動して、 到着した処理系の属性情報を得る。エージェントは、指 定された処理系の数になるまで、属性情報の収集を繰り 返す。属性情報を収集した処理系の数が指定数(ここで は、5)に達すると、エージェントは収集した各処理系 の属性情報と自分の実行条件に合うものを選ぶ。1つの 条件の一致した処理系が複数あるときは、2つ目の条件 で更に選ぶ。これを繰り返して、実行条件が一致する処 理系が複数あるときは、例えば、処理能力の高いものを 選択するというように、優先順位を設定しておいてもよ い。また、処理能力の高低でなく、移動のしやすさで処 理系を選択してもよい。その際、移動のしやすさが属性 情報から判断できるようになっていることはもちろんで ある。また、リストの記載順で処理系を選択してもよ い。また、デフォルトの優先順位を予め設定しておき、 実行条件で絞り込めない場合には、その優先順位を用い てもよい。

【0049】次に、図14、図15を用いて属性情報サ ーバについて説明する。図14は、エージェントを処理 可能な複数の処理系の属性情報を、エージェントに提供 する属性情報サーバを示す図である。図において、属性 情報サーバ1106は、不揮発記憶部に属性情報111 6を記憶しておき、その属性情報1116をエージェン トに参照させる。属性情報1116の一例を、図15に 示す。属性情報1116の内容は、前述した図5~図8 に示したサーバA〜サーバDの属性情報と同一である。 だが、それらの属性情報を1つのサーバ上に集めて属性 情報サーバとし、属性情報サーバ(この例では、サーバ A)が要求に応じて、他のサーバの属性情報も一度に提 供できることが属性情報サーバの特徴である。属性情報 サーバのサービスを受けることで、エージェントは、実 行に最適なサーバを短時間で、ネットワークに負荷をか けずに選択できる。

[0050]

【発明の効果】本発明によるエージェント方式を用いる

ことにより、エージェントに依頼する処理を確実に、実行又は削除することができるので、従来、処理が不確実であったエージェント方式によっても、ミッションクリティカルな処理を実行することができる。

【0051】この発明によれば、エージェントの実行状態を示すオペレーションログを残すので、実行状態を知ることができる。

【0052】また、この発明によれば、処理系に、受信したエージェントの記録を残すことができる。

【0053】また、この発明によれば、ユーザ端末側で、発行したエージェントのオペレーションログを受け取るので、実行状態を知ることができる。

【0054】また、この発明によれば、正常終了しなかったエージェントの再実行を、処理系側だけで行なえる。

【0055】また、この発明によれば、処理系側で、正常終了しなかったエージェントの再実行を起動できる。 【0056】また、この発明によれば、ユーザ端末主導で、エージェントを再発行することにより、エージェントの再実行を行える。

【0057】また、この発明によれば、エージェントを削除し、二重処理を防ぐことができる。

【0058】また、この発明によれば、エージェントの 追跡を行うので、発行したエージェントを管理できる。 【0059】また、この発明によれば、不要なログを残 すことが無くなる。

【0060】この発明によれば、エージェントをより適した処理系で実行するようエージェント自身が選択できる。

【0061】この発明によれば、ユーザ端末は、自身が発行したエージェントの実行状態を知ることができる。 【図面の簡単な説明】

【図1】 本発明を適用したシステム構成例を示す図。

【図2】 本発明の不揮発記憶部の構成例を示す図。

【図3】 本発明で用いるエージェントの構成例を示す図。

【図4】 本発明で用いるエージェントの構成例を示す図。

【図5】 本発明の処理系属性の例を示す図。

【図6】 本発明の処理系属性の例を示す図。

【図7】 本発明の処理系属性の例を示す図。

【図8】 本発明の処理系属性の例を示す図。

【図9】 エージェントオブジェクト管理情報例を示す図。

【図10】 本発明の不揮発記憶部への管理情報の記憶例を示す図。

【図11】 本発明のオペレーションログ例を示す図。

【図12】 本発明のオペレーションログ例を示す図。

【図13】 本発明の処理系におけるエージェント再実 行論理例を示す流れ図。 【図14】 本発明の属性情報サーバを示す図。

【図15】 本発明の属性情報サーバの属性情報の一例を示す図。

【図16】 従来技術によるコンピュータシステムの構造を示す図。

【図17】 従来技術によるリモートプログラミングを 使用する方法の流れ図。

【図18】 従来技術によるリモートプログラミングを

【図1】

具体化するネットワークを示す図。

【符号の説明】

202 処理系、203 不揮発記憶部、301~30 3 処理系属性例、401 不揮発記憶部格納要フラ グ、402 ログオブジェクトID、403 再試行メ ソッドオフセット、501 オブジェクトID、502 オブジェクトタイプ、503 ステート、504 ディスクオフセット位置。

【図2】

【図3】

【図4】

【図5】 【図6】 / 301 302 不揮発記憶部あり 不揮発記憶部あり DBアクセスなし DBアクセスあり 処理能力大 処理能力小 サーバA属性情報 サーバB属性情報 【図7】 【図8】 **/ 301** 不揮発記憶部あり 不揮発記憶部なし DBアクセスあり DBアクセスあり 処理能力大 処理能力大 サーバC属性情報 サーバD属性情報 【図9】 【図10】 503:ステート 410 **/** 501 ر 502 ر マジック番号 パージョン オプジェクトID オブジェクトタイプ オフセット 401 不揮発記憶部格納要 402 ログオブジェクトID , 414 データプール数

, 403

再試行メソッドオフセット

【図11】

ľ	図	1	2	1
۱	\sim	1	_	4

		_
601 got into "latilua@abc.opgra.co.jp"	97:1:30:18:55:10	π
602 Tri started	97:1:30:18:55:11	70
603 - Tri commit started	97:1:30:18:55:21	70
604 Trl committed	97:1:30:18:55:33	
605 Tr2 started	97:1:30:18:55:33	
606 Tr2 commit started	97:1:30:18:55:44	
607 Tr2 committed	97:1:30:18:55:51	
608 got out from "kaikus@abc.opqrs.co.jp"	97:1:30:18:55:51	

【図13】

【図14】

【図15】

,1110

属性情報					
サーバ織別子	不揮発記憶部	DBアクセス	処理能力		
A	あり	なし	大		
В	あり	あり	ψ.		
С	あり	あり	大		
D	なし	あり	大		

【図16】

【図17】

【図18】

