

TOPIC OUTLINE

Phasor Diagram

Series R-L Circuit

Series R-C Circuit

Series R-L-C Circuit

Power Factor

PHASOR DIAGRAM

PHASOR DIAGRAM

Phasor diagram is a graphical representation of magnitude and phase relationship between sinusoidal quantities.

Phasor Diagram

IMPEDANCE

The <u>impedance</u> (*Z*) represents the <u>total opposition</u> offered by circuit elements (including resistance and reactance) to the flow of alternating current (AC).

<u>Formula</u>

$$Z = R + j(X_L - X_C)$$

Phasor Diagram

INDUCTIVE REACTANCE

The <u>inductive reactance</u> (X_L) represents the opposition offered by the <u>inductor</u> to the flow of alternating current (AC).

<u>Formula</u>

$$X_L = 2\pi f L$$

where:

f = frequency (Hz)

L = inductance (H)

Phasor Diagram

CAPACITIVE REACTANCE

Phasor Diagram

The <u>capacitive reactance</u> (X_C) represents the opposition offered by the <u>capacitor</u> to the flow of alternating current (AC).

Formula

$$X_C = \frac{1}{2\pi fC}$$

where:

$$f = \text{frequency } (Hz)$$

C = capacitance(F)

Circuit Diagram

<u>Formula</u>

$$Z = R + jX_L$$

Impedance Phasor Diagram

Circuit Diagram

<u>Formula</u>

$$v_o = v_R + jv_L$$

Voltage Phasor Diagram

TOTAL INDUCTANCE

Series network

In a series circuit, the <u>total inductance</u> (L_o) is the <u>sum</u> of all individual inductances.

<u>Formula</u>

$$L_o = L_1 + L_2 + L_3 + \cdots L_n$$

EXERCISE

A **240** V, **60** Hz source is connected to a coil of wire that has a resistance of **7**. **5** Ω and an inductance of **47**. **7** mH.

Solution

Determine the following:

- a. Equivalent impedance (Z)
- b. Total current (i_0)
- c. Voltage across the resistor (v_R)
- d. Voltage across the inductor (v_L)

Circuit Diagram

<u>Formula</u>

$$Z = R + jX_C$$

Impedance Phasor Diagram

Circuit Diagram

<u>Formula</u>

$$v_o = v_R + j v_C$$

Voltage Phasor Diagram

TOTAL CAPACITANCE

In a series circuit, the <u>total capacitance</u> (C_0) is analogous to total resistance in parallel circuit.

Formula

$$\frac{1}{C_o} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \cdots + \frac{1}{C_n}$$

Series network

EXERCISE

A **125** V, **25** Hz source is connected to a series circuit consisting of a **30** Ω and a **159** μF capacitor.

Solution

Determine the following:

- a. Equivalent impedance (Z)
- b. Total current (i_0)
- c. Voltage across the resistor (v_R)
- d. Voltage across the capacitor (v_c)

Circuit Diagram

<u>Formula</u>

$$Z = R + j(X_L - X_C)$$

Impedance Phasor Diagram

Circuit Diagram

<u>Formula</u>

$$Z = R + j(X_L - X_C)$$

Impedance Phasor Diagram

Circuit Diagram

<u>Formula</u>

$$\boldsymbol{v}_o = \boldsymbol{v}_R + \boldsymbol{j}(\boldsymbol{v}_L - \boldsymbol{v}_C)$$

Voltage Phasor Diagram

Circuit Diagram

<u>Formula</u>

$$\boldsymbol{v}_o = \boldsymbol{v}_R + \boldsymbol{j}(\boldsymbol{v}_L - \boldsymbol{v}_C)$$

Voltage Phasor Diagram

EXERCISE

A series circuit consisting an $80~\Omega$ resistor, a 0.3~H inductor, and a $50~\mu F$ capacitor is connected to a 120~V, 60~Hz source.

Solution

Determine the following:

- a. Equivalent impedance (Z)
- b. Total current (i_0)
- c. Voltage drop across the resistor (v_R)
- d. Voltage drop across the capacitor (v_c)
- e. Voltage drop across the inductor (v_L)

POWER FACTOR

POWER FACTOR

<u>Power Triangle</u>

The <u>power factor</u> ($\cos \theta$) represents the ratio of true power to apparent power.

<u>Formula</u>

$$\cos \theta = \frac{P}{S}$$

TRUE POWER

<u>Power Triangle</u>

The <u>true power</u> (*P*) is the <u>actual power</u> consumed by resistive components of a circuit.

<u>Formula</u>

$$P = vi \cos \theta$$

unit: Watt (W)

REACTIVE POWER

Power Triangle

The <u>reactive power</u> (*Q*) is the power consumed by <u>inductive</u> or <u>capacitive</u> components of a circuit.

<u>Formula</u>

$$Q = vi \sin \theta$$

unit: Volt-Ampere Reactive (VAR)

APPARENT POWER

Power Triangle

The <u>apparent power</u> (*S*) is the vector sum of true power and reactive power, representing the <u>total</u> <u>power</u> supplied by the source.

Formula

$$S = P + jQ$$

$$S = vi$$

unit: Volt-Ampere (VA)

EXERCISE

A series circuit consisting an $80~\Omega$ resistor, a 0.3~H inductor, and a $50~\mu F$ capacitor is connected to a 120~V, 60~Hz source.

Solution

Determine the following:

- a. Power factor ($\cos \theta$)
- b. True power (**P**)
- c. Reactive power (\boldsymbol{Q})
- d. Apparent power (S)

LABORATORY

