Oversigt

- UDP
- Reliable Data Transfer
 - Go-Back-N
 - Selective Repeat
- TCP
 - Flow control
 - Congestion control
- Eksamensopgaver

Transport layer

- Kommunikation mellem processer
- Afsender opdeler beskeder I mindre segmenter
- Modtager gendanner beskeder af segmenterne
- To primære protokoller: UDP og TCP

UDP

- 2 services:
 - process-to-process data delivery
 - error checking
- Unreliable data transfer:
 - ingen garanti for rækkefølge
 - eller om det overhovedet når frem

UDP

- UDP segment struktur
- Length: header + message
- Checksum: error detection

UDP Checksum

Word 1: 0110011001100000

Word 2: 01010101010101

1011101110110101

Word 3: 1000111100001100

0100101011000010

checksum = 1011010100111101

- Reliable data transfer:
 - garanteret ankomst (ved at gensende)
 - og i korrekt rækkefølge

- Grundlæggende protokol: Stop and wait
 - send pakke, vent på ACK eller timeout
 - Ikke specielt effektivt
 - vil gerne kunne sende flere pakker afsted inden der skal ventes

- Go-Back-N:
 - max of N unacknowledged packets
 - Sender ACK for sidst korrekt modtaget
 - Smider out-of-order pakker væk

- Selective-Repeat:
 - Window size som i GBN
 - Buffer out-of-order pakker
 - ACK for modtagne pakker

TCP

- Reliable data transfer:
 - garanteret ankomst
 - og i korrekt rækkefølge
- TCP control:
 - sikrer at links, routere og buffere ikke oversvømmes med data

TCP

- Sequence number: nummeret af den første byte i segment (i den samlede data stream)
- ACK number: sequence num of next expected byte
- Kan være buffered eller ej (i praksis buffered)
- Fast retransmit
 - 3 duplicate ACKs

3-way handshake

 Connection oriented

TCP Control

- TCP begrænser, hvor meget data vi sender afsted i forhold til:
 - Flow Control
 - Congestion Control

TCP Flow Control

- Sende for meget data i forhold til, hvor hurtigt modtageren bearbejder det
 - Overflow i modtagerens buffer
- Derfor receive window i headeren
 - hvor meget plads er der tilbage i bufferen
 - angives i TCP headeren
 - Udregnes: Buf_size (last_b_received last_b_read)

- Nu ikke receive buffer hos modtageren
- Men overflow af selve netværket:
 - sender mere data end hvad routers / links kan håndtere
- End-to-end congestion control
 - antagelser ud fra tabte pakker

- Congestion window, cwnd (hvor mange pakker sender vi per RTT), styret af Loss events:
 - opdages af timeout eller 3 dup ACKs
- 3 states:
 - slow start
 - congestion avoidance
 - fast recovery

- Slow start:
 - cwnd = 1 segment per RTT
 - For hver ACK, cwnd += 1 (exponential growth)
- Ved timeout loss:
 - set threshhold til cwnd/2
 - slow start igen, cwnd = 1
- Ved 3 dup ACKs, (ikke lige så drastisk, mange efterfølgende pakker er kommet frem):
 - set threshhold til cwnd/2
 - cwnd = (cwnd / 2) + 3
 - fast retransmit → fast recovery
- Når cwnd overstiger threshold → congestion control

- Congestion avoidance:
 - congestion kan være lige om hjørnet!
 - mere konservativ: cwnd += 1, hver RTT
- Ved loss events, samme som i slow start:
- Ved timeout loss:
 - set threshhold til cwnd/2
 - slow start igen, cwnd = 1
- Ved 3 dup ACKs, (ikke lige så drastisk, mange efterfølgende pakker er kommet frem):
 - set threshhold til cwnd/2
 - cwnd = (cwnd / 2) + 3
 - fast retransmit → fast recovery

- Fast recovery:
 - cwnd += 1, for hver duplicate ACK af pakke der fik TCP til at gå i fast recovery mode
- Ack for missing segment → Congestion avoidance
 - cwnd = threshold
- Timeout → Slow start
 - threshhold = cwnd / 2
 - cwnd = 1

- Congestion control algoritmen sikrer at TCP forbindelser deler et fælles link fair
- Forklaring i bogen afsnit 3.7.1

UPD vs TCP

- Kanon, hvorfor så overhovedet bruge UDP?
 - Ingen regulering af transmission rate
 - Mindre overhead
 - Multimedie applicationer, hvor enkelte tabte pakker ikke har den store betydning
 - Så bruges stadig selvom TCP dominerer

Opgaver

- Eksamenssæt
- Opgaverne fra øvelsesgangen om TCP er også gode
- Video på Absalon

References

- All figures from:
- KR: James F. Kurose, Keith W. Ross: Computer Networking: A Top-Down Approach International Edition, 7th and global edition