INFO724 - Projet de TP

Choix des problèmes. Un problème parmi les suivant sera attribué à chaque équipe. De la documentation décrivant une réduction polynomiale à partir d'un problème NP-complet vous sera fournie.

1. $P_1 =$ Hamiltonien non-orienté réduction à partir de $P_2 =$ Couverture par les sommets

Garey, Johnson, p.56 Cormen, Leiserson, Rivest, Stein, p.1004 Avro, chapitre 10.

2. $P_1 = \text{Hamiltonnien orient\'e}$ réduction à partir de $P_2 = 3\text{-SAT}$ wiki proofs Cours de Wing-Kai Hon, Lecture 22.

3. $P_1 =$ Min-Coupe-Circuits réduction à partir de $P_2 =$ Couverture par les sommets

Schaeffer TD4 + solution.

4. $P_1 = 3$ -Couleurs réduction à partir de $P_2 = 3$ -SAT

Avro, chapitre 10. Cormen, Leiserson, Rivest, Stein, p.946

Objectif. Implémenter trois programmes montrant la **NP**-Complétude du problème P_1 . Vous devez produire trois exécutables distincts :

- 1. Un *vérificateur*, c'est-à-dire un programme qui, étant donné une instance de P_1 et d'un certificat, vérifie que la réponse est "oui", en temps polynomial. Ceci montre que P_1 appartient à **NP**.
- 2. Un réducteur qui effectue une réduction polynomiale d'un problème P_2 admis comme étant **NP**-Difficile, vers votre problème P_1 . Ceci montre que P_1 est **NP**-difficile.
- 3. Un solver qui résout le problème P_1 en prenant tout le temps qu'il lui faudra...

Organisation.

- Ce TP est à réaliser en équipe de deux ou trois.
- Deux séances de 4h en salle machine y sont dédiées.
- Le TP est à rendre via la plateforme TPLab.

Dossier instances : ce dossier contient des exemples d'instance des problèmes P₁ et P₂. Au minimum, il doit contenir une instance vrai et une instance fausse pour chacun des deux problèmes. Ces instance doivent être dans des fichiers séparés et leurs noms doivent être représentatifs (ex : "3sat_vrai"). Ce dossier doit également contenir au moins un certificat pour une instance valide de P₁.

- Dossier src : dossier contenant les sources de vos programmes.
- Fichier Documentation.pdf: un document décrivant vos algorithmes (voir la section Documentation ci-dessous.
- Fichier Equipe : document texte contenant les noms et les adresses courriel de chacun des membres de l'équipe.
- Fichier README : document texte expliquant comment compiler et lancer vos trois programmes.
- Script test_TP.sh: ce script est disponible sur la page wiki du cours (http://lama.univ-savoie.fr/wiki). Vous devez obligatoirement configurer ce script de manière à ce que, après avoir compilé votre code en suivant les instruction du fichier README, il s'exécute avec succès.

Documentation En plus du guide de compilation (fichier README) vous devez rendre un document pdf ayant comme contenu :

- 1. une page titre,
- 2. une description du problème P_1 ,
- 3. une description du problème P_2 ,
- 4. une description du schéma d'encodage utilisé pour les instance de P_1 (rappel : un exemple n'est pas une description !),
- 5. une description du du schéma d'encodage utilisé pour les instance de P_2 ,
- 6. l'encodage du certificat,

- 7. une description du fonctionnement de votre vérificateur,
- 8. une description du fonctionnement de votre solver. Expliquez chacune des optimisation que vous y avez apportées. Si cet algorithme est polynomial, démontrez-le ;-). Sinon donnez un argument justifiant le fait qu'il n'est pas polynomial (par exemple en montrant que sa complexité temporelle est exponentielle).

Remarques:

- À priori, vous pouvez utiliser le langage de programmation de votre choix. Cela dit, je me réserve un droit de veto...venez m'en parler avant de commencer à coder!
- La date limite pour rendre le TP est fixée pour le _____
- Si vous souhaitez implémenter une réduction autre que celle proposée, c'est possible mais venez m'en parler avant!
- Le barème d'évaluation vous sera présenté lors des séances de TP, celuici est à titre indicatif et des pénalités supplémentaires seront appliquées à tout travail dont la qualité n'est pas convenable dans le cadre d'une formation de niveau Master. Voici quelques exemples de pénalités ayant été appliquées l'an dernier :
 - Code qui ne compile pas (pénalité sévère !!!).
 - Fichier manquant (README, Equipe, ...).
 - Guide de compilation imprécis ou incomplet.
 - Noms de fichiers inappropriés.
 - Présence de Warnings à la compilation.
 - Chemins vers de fichiers en dur dans le code.
 - Un seul exécutable alors que trois programmes sont demandés.
- Un générateur d'instances de 3SAT ainsi qu'une réduction de 3SAT vers CA sont disponibles sur la page wiki du cours. Ceux-ci peuvent être utilisés pour générer des instances afin de tester vos programmes.