2D gravity inversion with isostatic constraint applied to passive rifted margins

B. Marcela S. Bastos* and Vanderlei C. Oliveira Jr*

* Observatório Nacional,

Department of Geophysics,

Rio de Janeiro, Brazil

(August 9, 2018)

GEO-XXXX

Running head: 2D gravity inversion for passive rifted margins

ABSTRACT

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

INTRODUCTION

Several methods have been proposed for using gravity and/or magnetic data to estimate the relief of basement under sedimentary basins and/or the Moho.

Here, we consider methods that represent the basement and/or Moho by interfaces separating layers with constant physical properties (density and/or magnetization).

In the case of basement, the interface separates a sedimentary package from the upper crust. In the case of Moho, these two layers are the lower crust and upper mantle.

These methods usually presume that an interface representing the basement or Moho oscillates around a known reference depth.

These methods can be divided into two groups.

The first group consists of methods estimating the geometry of a single interface separating two layers.

The list of methods forming this group is significantly large.

There are methods applied at local scale (to characterize a single sedimentary basin, for example)

(Bott, 1960; Tanner, 1967; Cordell and Henderson, 1968; Dyrelius and Vogel, 1972; Pedersen, 1977; Pilkington and Crossley, 1986a; Richardson and MacInnes, 1989; Barbosa et al., 1997, 1999b,a; Pilkington, 2006; Silva et al., 2010; Lima et al., 2011; Martins et al., 2011; Barnes and Barraud, 2012; Silva et al., 2014; Silva and Santos, 2017)

(Oldenburg, 1974; Granser, 1987; Reamer and Ferguson, 1989; Guspí, 1993).

at regional scale (to characterize a single sedimentary basin and/or the Moho under a

```
country or continent)
```

(Braitenberg et al., 1997; Braitenberg and Zadro, 1999)

Uses tesseroids (Uieda and Barbosa, 2017).

Uses the Vening Meinesz-Moritz approach (Bagherbandi and Eshagh, 2012)

(van der Meijde et al., 2013)

(Sampietro, 2015)

and global scale

(Sjöberg, 2009)

There are methods formulated in space and Fourier domains.

Methods in Fourier domain generally use Parker's formula (Parker, 1973) to compute the potential field produced by an interface.

Methods in space domain generally use an ensemble of vertically stacked prisms to compute the potential field produced by the interface. Some methods, however, use a polygonal prism or a polyhedral.

All these methods suffer from the inherent ambiguity (Roy, 1962; Skeels, 1947) in determining the true physical property distribution from a discrete set of observed potential-field data.

It is well known that, by using different combinations of reference depths and physical property values, it is possible to find different interfaces producing the same potential-field data.

To partially overcome this problem and obtain meaningful solutions, the interpreter must

commonly use priori information obtained from seismic data and/or boreholes in order to constrain the range of possible models.

The second group of methods is formed by those estimating multiple interfaces separating layers with constant physical properties.

(Pilkington and Crossley, 1986b; Gallardo et al., 2005; Camacho et al., 2011; Salem et al., 2014)

All these methods have been applied at local scale, to characterize a single sedimentary basin, for example.

The number of methods forming this group is significantly lower than that of the other one.

They suffer from a greater ambiguity if compared to those of the first group. Consequently, the methods forming the second group require more priori information to decrease the number of possible solutions.

Few methods using gravity data have imposed isostatic equilibrium to the estimated interface(s).

Most of them estimate a single interface representing the Moho (e.g., Bagherbandi and Eshagh, 2012; Sampietro, 2015; Sjöberg, 2009).

These methods are applied at regional and global scales.

Salem et al. (2014) presented one of the few methods that impose isostatic equilibrium to a set of two interfaces representing the basement and Moho geometries under a sedimentary basin, at local scale.

METHODOLOGY

Forward problem

Let \mathbf{d}^o be the observed data vector, whose *i*-th element d_i^o , $i=1,\ldots,N$, represent the observed gravity disturbance at the point (x_i, y_i, z_i) , on a profile located over a rifted passive margin. The coordinates are referred to a topocentric Cartesian system, with z axis pointing down, y-axis along the profile and x-axis perpendicular to the profile. We assume that the observed gravity disturbance is produced by an anomalous mass distribution defined as the difference between the actual mass distribution in the subsurface, which is schematically represented in Figure ??, and a reference mass distribution (Figure ??). In doing it, we implicitly assume that Figure ?? represents the outer layers of a global mass distribution producing the normal gravity field.

The anomalous mass distribution producing the observed data is approximated by an interpretation model (Figure ??) formed by N adjacent columns. For convenience, we presume that the observed data are regularly spaced, so that there is one observation at the centre of the top of each column forming the interpretation model. We also consider that the prisms in the edges of the extremities of the interpretation model extend to infinity along the y axis in order to prevent edge effects in the forward calculations. The i-th column is formed by four vertically adjacent layers, which in turn are composed of vertically adjacent prisms having infinite length along the x-axis. The first and shallowest layer represents the water layer, is formed by a single prism, has thickness t_i^w and a constant density contrast $\Delta \rho^w = \rho^w - \rho^r$, where ρ^w and ρ^r represents, respectively, the densities of water and the reference mass distribution (Figure ??) at the same point. The third layer represents the crust, it is also formed by a single prism, has thickness t_i^c and density contrast $\Delta \rho_i^c = \rho^c - \rho^r$,

with ρ^c being the crust density. For simplicity, we presume that the crust density ρ_i^c may be equal to ρ^{cc} , for $y_i \leq y_{COT}$, which represents continental crust, or equal to ρ^{oc} , for $y_i > y_{COT}$, which represents oceanic crust. The crust density depends on the position of the i-th column with respect to y_{COT} , which defines an abrupt Crust-Ocean Transition (COT). Consequently, the crust may have two possible density contrasts: $\Delta \rho_i^c = \rho^{cc} - \rho r$ or $\Delta \rho_i^c = \rho^{oc} - \rho^r$. The top of this layer defines the basement relief and its bottom the relief of the Moho. The fourth layer represents the mantle, it is divided into two parts, each one formed by a single prism having the same density ρ^m and, consequently, the same density contrast $\Delta \rho^m = \rho^m - \rho^r$. The shallowest portion of this layer has thickness t_i^m . Its top and bottom define, respectively, the depths of Moho and the planar isostatic compensation layer S_0 . The deepest portion of the fourth layer has thickness ΔS_0 , top at the surface S_0 and bottom at the planar surface $S_0 + \Delta S_0$, which defines the Moho in the reference mass distribution model (Figure ??). Finally, the second layer forming the t-th column of the interpretation model is defined by the interpreter, according to the geological environment to be studied and the a priori information availability. As a general rule, this layer can be defined by a set of Q vertically adjacent prisms, each one with thickness t_i^q , density ρ^q and density contrast $\Delta \rho^q = \rho^q - \rho^r$, $q = 1, \dots Q$.

Given the density contrasts, the COT position y_{COT} , the isostatic compensation surface S_0 , the thickness of the water layer and of the Q-1 prisms forming the shallowest portion of the second layer, it is possible to describe the interpretation model in terms of an $M \times 1$ parameter vector \mathbf{p} , M = 2N + 1, defined as follows:

$$\mathbf{p} = \begin{bmatrix} \mathbf{t}^Q \\ \mathbf{t}^m \\ \Delta S_0 \end{bmatrix} , \tag{1}$$

where \mathbf{t}^Q and \mathbf{t}^m are $N \times 1$ vectors whose *i*-th elements t_i^Q and t_i^m represent, respectively, the thickness of the prism forming the deepest portion of the second layer and the thickness of the prism forming the shallowest portion of the fourth layer of the interpretation model. In this case, the gravity disturbance produced by the interpretation model (the predicted gravity disturbance) at the position (x_i, y_i, z_i) can be written as the sum of the vertical component of the gravitational attraction exerted by the L prisms forming the interpretation model as follows:

$$d_i(\mathbf{p}) = k_g G \sum_{j=1}^L f_{ij}(\mathbf{p}) , \qquad (2)$$

where $f_{ij}(\mathbf{p})$ represents an integral over the volume of the j-th prism. Here, these volume integrals are computed with the expressions proposed by Nagy et al. (2000), by using the open-source Python package Fatiando a Terra (Uieda et al., 2013).

Inverse problem

Let $\mathbf{d}(\mathbf{p})$ be the predicted data vector, whose *i*-th element $d_i(\mathbf{p})$ is defined by Equation 2. Estimating the particular parameter vector $\mathbf{p} = \hat{\mathbf{p}}$ producing a predicted data vector $\mathbf{d}(\mathbf{p})$ as close as possible to the observed data vector \mathbf{d}^o can be formulated as the problem of minimizing the goal function

$$\Gamma(\mathbf{p}) = \Phi(\mathbf{p}) + \mu \sum_{k=0}^{3} \alpha_k \Psi_k(\mathbf{p}) , \qquad (3)$$

subject to all elements of $\hat{\mathbf{p}}$ be positive. In Equation 3, μ represents the regularizing parameter, $\Phi(\mathbf{p})$ represents the misfit function given by

$$\Phi(\mathbf{p}) = \frac{1}{N} \|\mathbf{d}^o - \mathbf{d}(\mathbf{p})\|_2^2, \qquad (4)$$

where $\|\cdot\|_2^2$ represents the squared Euclidean norm, α_k represent the weights assigned to the regularizing functions $\Psi_k(\mathbf{p})$, with define the constraints on the parameters to be estimated,

k = 0, 1, 2, 3.

Airy constraint

Consider that the interpretation model is in isostatic equilibrium according to the Airy model (Turcotte and Schubert, 2002; Hofmann-Wellenhof and Moritz, 2005; Lowrie, 2007). In this case, the pressure (or lithostatic stress) exerted by the model is constant on the isostatic compensation surface S_0 . The pressure per unit area exerted by the *i*-th column of the model on S_0 , divided by gravity, is given by:

$$t_i^w \rho^w + t_i^1 \rho_i^1 + \dots + t_i^Q \rho_i^Q + t_i^c \rho_i^c + t_i^m \rho^m = \sigma_0,$$
 (5)

where σ_0 is an arbitrary positive constant. Rearranging terms in Equation 5 and using the relation

$$S_0 = t_i^w + t_i^1 + \dots + t_i^Q + t_i^c + t_i^m,$$
 (6)

it is possible to show that:

$$(\rho_i^Q - \rho_i^c) t_i^Q + (\rho^m - \rho_i^c) t_i^m + (\rho^w - \rho_i^c) t_i^w + (\rho_i^1 - \rho_i^c) t_i^1 + \dots + (\rho_i^{Q-1} - \rho_i^c) t_i^{Q-1} + \rho_i^c S_0 = \sigma_0.$$
 (7)

In order to describe the pressure exerted by all columns forming the interpretation model on the surface S_0 , Equation 7 can be written, in matrix notation, as follows:

$$\mathbf{M}^{Q}\mathbf{t}^{Q} + \mathbf{M}^{m}\mathbf{t}^{m} + \mathbf{M}^{w}\mathbf{t}^{w} + \mathbf{M}^{1}\mathbf{t}^{1} + \dots + \mathbf{M}^{Q-1}\mathbf{t}^{Q-1} + \boldsymbol{\rho}^{c}S_{0} = \sigma_{0}\mathbf{1},$$
 (8)

where **1** is an $N \times 1$ vector with all elements equal to one, \mathbf{t}^{α} are $N \times 1$ vectors with i-th element defined by the thickness t_i^{α} of a prism forming the i-th column, $\alpha = w, 1, \ldots, Q - 1, Q, m$, and \mathbf{M}^Q , \mathbf{M}^m , \mathbf{M}^w , \mathbf{M}^1 , ..., \mathbf{M}^{Q-1} are $N \times N$ diagonal matrices with elements ii of main diagonal are given by density contrasts $(\rho_i^Q - \rho_i^c)$, $(\rho^m - \rho_i^c)$, $(\rho^w - \rho_i^c)$, $(\rho_i^1 - \rho_i^c)$ and ..., $(\rho_i^{Q-1} - \rho_i^c)$, respectively, and $\boldsymbol{\rho}^c$ is an $N \times 1$ vector containing the densities of the

prisms representing the crust. By applying the first-order Tikhonov regularization (Aster et al., 2005) to the constant vector $\sigma_0 \mathbf{1}$, we obtain the following expression:

$$\mathbf{R}\left(\mathbf{Cp} + \mathbf{Dt}\right) = \mathbf{0}\,,\tag{9}$$

where **0** is a vector with null elements and the remaining terms are given by:

$$\mathbf{C} = \begin{bmatrix} \mathbf{M}^Q & \mathbf{M}^m & \mathbf{0} \end{bmatrix}_{N \times M} , \tag{10}$$

$$\mathbf{D} = \begin{bmatrix} \mathbf{M}^w & \mathbf{M}^1 & \cdots & \mathbf{M}^{Q-1} & \boldsymbol{\rho}^c \end{bmatrix}_{N \times (QN+1)}, \tag{11}$$

$$\mathbf{t} = \begin{bmatrix} \mathbf{t}^w \\ \mathbf{t}^1 \\ \vdots \\ \mathbf{t}^{Q-1} \\ S_0 \end{bmatrix}_{(QN+1)\times 1}, \tag{12}$$

p is the parameter vector (Equation 1) and **R** is an $(N-1) \times N$ matrix, whose element ij is defined as follows:

$$[\mathbf{R}]_{ij} = \begin{cases} 1 & , & j = i \\ -1 & , & j = i+1 \\ 0 & , & \text{otherwise} \end{cases}$$
 (13)

Finally, from Equation 9, it is possible to define the regularizing function $\Psi_0(\mathbf{p})$ (Equation 3):

$$\Psi_0(\mathbf{p}) = \|\mathbf{R} \left(\mathbf{C} \mathbf{p} + \mathbf{D} \mathbf{t} \right) \|_2^2. \tag{14}$$

We call this function as $Airy\ constraint$. Notice that minimizing this function imposes smoothness on the pressure exerted by the interpretation model on the isostatic compensation surface S_0 .

Smoothness constraint

This constraint imposes smoothness on the adjacent thickness of the prisms forming the deepest portion of the second layer and the shallowest part of the fourth layer of the interpretation model by applying the first-order Tikhonov regularization (Aster et al., 2005) to the vectors \mathbf{t}^Q and \mathbf{t}^m (Equation 1). Mathematically, this constraint is represented by the regularizing function $\Psi_1(\mathbf{p})$ (Equation 3):

$$\Psi_1(\mathbf{p}) = \|\mathbf{S}\mathbf{p}\|_2^2 \,, \tag{15}$$

where **S** is an $(N-1) \times M$ matrix given by:

$$\mathbf{S} = \begin{bmatrix} \mathbf{R} & \mathbf{R} & \mathbf{0} \end{bmatrix} , \tag{16}$$

where \mathbf{R} is defined by Equation 13 and $\mathbf{0}$ is a vector with all elements equal to zero.

Equality constraint

Equality constraint on basement depths

Let **a** be a vector whose k-th element a_k , k = 1, ..., A, is the known basement depth at the horizontal coordinate y_k^A of the profile. These known basement depth values are used to define the regularizing function $\Psi_2(\mathbf{p})$ (Equation 3):

$$\Psi_2(\mathbf{p}) = \|\mathbf{A}\mathbf{p} - \mathbf{a}\|_2^2, \tag{17}$$

where **A** is an $A \times M$ matrix whose k-th line has one element equal to one and all the remaining elements equal to zero. The location of the single non-null element in the k-th line of **A** depends on the coordinate y_k^A of the known basement depth a_k . Let us consider, for example, an interpretation model formed by N = 10 columns. Consider also that the

basement depth at the coordinates $y_1^A = y_4$ and $y_2^A = y_9$ of the profile are equal to 25 and 35.7 km, respectively. In this case, A = 2, **a** is a 2×1 vector with elements $a_1 = 25$ and $a_2 = 35.7$ and **A** is a $2 \times M$ matrix (M = 2N + 1 = 21). The element 4 of the first line and the element 9 of the second line of **A** are equal to 1 and all its remaining elements are equal to zero.

Equality constraint on Moho depths

Let **b** be a vector whose k-th element b_k , k = 1, ..., B, is the difference between the isostatic compensation depth S_0 and the known Moho depth at the horizontal coordinate y_k^B of the profile. These differences, which must be positive, are used to define the regularizing function $\Psi_3(\mathbf{p})$ (Equation 3):

$$\Psi_3(\mathbf{p}) = \|\mathbf{B}\mathbf{p} - \mathbf{b}\|_2^2, \tag{18}$$

where **B** is a $B \times M$ matrix whose k-th line has one element equal to one and all the remaining elements equal to zero. This matrix is defined in the same way as matrix **A** (Equation 17).

CONCLUSIONS

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis

in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

ACKNOWLEDGMENTS

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

REFERENCES

- Aster, R. C., B. Borchers, and C. H. Thurber, 2005, Parameter estimation and inverse problems (international geophysics): Academic Press.
- Bagherbandi, M., and M. Eshagh, 2012, Crustal thickness recovery using an isostatic model and goce data: Earth, Planets and Space, **64**, 1053–1057.
- Barbosa, V. C. F., J. ao B. C. Silva, and W. E. Medeiros, 1997, Gravity inversion of basement relief using approximate equality constraints on depths: Geophysics, **62**, 1745–1757.
- Barbosa, V. C. F., J. B. C. Silva, and W. E. Medeiros, 1999a, Gravity inversion of a discontinuous relief stabilized by weighted smoothness constraints on depth: GEOPHYSICS, 64, 1429–1437.
- ——, 1999b, Stable inversion of gravity anomalies of sedimentary basins with nonsmooth basement reliefs and arbitrary density contrast variations: GEOPHYSICS, **64**, 754–764.
- Barnes, G., and J. Barraud, 2012, Imaging geologic surfaces by inverting gravity gradient data with depth horizons: Geophysics, 77, G1–G11.
- Bott, M. H. P., 1960, The use of rapid digital computing methods for direct gravity interpretation of sedimentary basins: Geophysical Journal International, 3, 63–67.
- Braitenberg, C., F. Pettenati, and M. Zadro, 1997, Spectral and classical methods in the evaluation of moho undulations from gravity data: The ne italian alps and isostasy:

 Journal of Geodynamics, 23, 5 22.
- Braitenberg, C., and M. Zadro, 1999, Iterative 3d gravity inversion with integration of seismologic data: Bollettino di Geofisica Teorica ed Applicata, 40, 469–475.
- Camacho, A. G., J. Fernndez, and J. Gottsmann, 2011, A new gravity inversion method for multiple subhorizontal discontinuity interfaces and shallow basins: Journal of Geophysical Research: Solid Earth, 116.

- Chakravarthi, V., and N. Sundararajan, 2007, 3d gravity inversion of basement relief a depth-dependent density approach: GEOPHYSICS, 72, I23–I32.
- Cordell, L., and R. G. Henderson, 1968, Iterative threedimensional solution of gravity anomaly data using a digital computer: GEOPHYSICS, 33, 596–601.
- Dyrelius, D., and A. Vogel, 1972, Improvement of convergency in iterative gravity interpretation: Geophysical Journal of the Royal Astronomical Society, 27, 195–205.
- Gallardo, L. A., M. Péres-Flores, and E. Gómez-Treviño, 2005, Refinement of three-dimensional multilayer models of basins and crustal environments by inversion of gravity and magnetic data: Tectonophysics, 397, 37 54. (Integration of Geophysical and Geological Data and Numerical Models in Basins).
- Gallardo-Delgado, L. A., M. A. Pérez-Flores, and E. Gómez-Treviño, 2003, A versatile algorithm for joint 3d inversion of gravity and magnetic data: GEOPHYSICS, **68**, 949–959.
- Granser, H., 1987, Three-dimensional interpretation of gravity data from sedimentary basins using an exponential density-depth function: Geophysical Prospecting, **35**, 1030–1041.
- Guspí, F., 1993, Noniterative nonlinear gravity inversion: Geophysics, 58, 935–940.
- Hofmann-Wellenhof, B., and H. Moritz, 2005, Physical geodesy: Springer.
- Lima, W. A., C. M. Martins, J. B. Silva, and V. C. Barbosa, 2011, Total variation regularization for depth-to-basement estimate: Part 2 physicogeologic meaning and comparisons with previous inversion methods: Geophysics, **76**, I13–I20.
- Lowrie, W., 2007, Fundamentals of geophysics: Cambridge University Press. (A second edition of this classic textbook on fundamental principles of geophysics for geoscience undergraduates.).
- Martins, C. M., V. C. Barbosa, and J. B. Silva, 2010, Simultaneous 3d depth-to-basement

- and density-contrast estimates using gravity data and depth control at few points: GEO-PHYSICS, **75**, I21–I28.
- Martins, C. M., W. A. Lima, V. C. Barbosa, and J. B. Silva, 2011, Total variation regularization for depth-to-basement estimate: Part 1 mathematical details and applications: Geophysics, **76**, I1–I12.
- Nagy, D., G. Papp, and J. Benedek, 2000, The gravitational potential and its derivatives for the prism: Journal of Geodesy, **74**, 311–326.
- Oldenburg, D. W., 1974, The inversion and interpretation of gravity anomalies: Geophysics, **39**, 526–536.
- Parker, R. L., 1973, The rapid calculation of potential anomalies: Geophysical Journal of the Royal Astronomical Society, **31**, 447–455.
- Pedersen, L. B., 1977, Interpretation of potential field data a generalized inverse approach: Geophysical Prospecting, 25, 199–230.
- Pilkington, M., 2006, Joint inversion of gravity and magnetic data for two-layer models: GEOPHYSICS, 71, L35–L42.
- Pilkington, M., and D. J. Crossley, 1986a, Determination of crustal interface topography from potential fields: GEOPHYSICS, **51**, 1277–1284.
- ——, 1986b, Inversion of aeromagnetic data for multilayered crustal models: GEO-PHYSICS, **51**, 2250–2254.
- Reamer, S. K., and J. F. Ferguson, 1989, Regularized two dimensional fourier gravity inversion method with application to the silent canyon caldera, nevada: Geophysics, 54, 486–496.
- Richardson, R. M., and S. C. MacInnes, 1989, The inversion of gravity data into three-dimensional polyhedral models: Journal of Geophysical Research: Solid Earth, 94, 7555—

7562.

- Roy, A., 1962, Ambiguity in geophysical interpretation: Geophysics, 27, 90–99.
- Salem, A., C. Green, M. Stewart, and D. D. Lerma, 2014, Inversion of gravity data with isostatic constraints: GEOPHYSICS, 79, A45–A50.
- Sampietro, D., 2015, Geological units and moho depth determination in the western balkans exploiting goce data: Geophysical Journal International, **202**, 1054–1063.
- Santos, D. F., J. B. C. Silva, C. M. Martins, R. D. C. S. dos Santos, L. C. Ramos, and A. C. M. de Araújo, 2015, Efficient gravity inversion of discontinuous basement relief: GEOPHYSICS, 80, G95–G106.
- Silva, J. B., D. C. Costa, and V. C. Barbosa, 2006, Gravity inversion of basement relief and estimation of density contrast variation with depth: GEOPHYSICS, 71, J51–J58.
- Silva, J. B., A. S. Oliveira, and V. C. Barbosa, 2010, Gravity inversion of 2d basement relief using entropic regularization: Geophysics, **75**, I29–I35.
- Silva, J. B. C., and D. F. Santos, 2017, Efficient gravity inversion of basement relief using a versatile modeling algorithm: GEOPHYSICS, 82, G23–G34.
- Silva, J. B. C., D. F. Santos, and K. P. Gomes, 2014, Fast gravity inversion of basement relief: Geophysics, **79**, G79–G91.
- Sjöberg, L. E., 2009, Solving vening meinesz-moritz inverse problem in isostasy: Geophysical Journal International, 179, 1527–1536.
- Skeels, D. C., 1947, Ambiguity in gravity interpretation: Geophysics, 12, 43–56.
- Tanner, J. G., 1967, An automated method of gravity interpretation: Geophysical Journal of the Royal Astronomical Society, **13**, 339–347.
- Turcotte, D. L., and G. Schubert, 2002, Geodynamics, 2. ed. ed.: Cambridge Univ. Press.
- Uieda, L., and V. C. Barbosa, 2017, Fast nonlinear gravity inversion in spherical coordinates

with application to the south american moho: Geophysical Journal International, **208**, 162–176.

Uieda, L., V. C. Oliveira Jr., and V. C. F. Barbosa, 2013, Modeling the earth with fatiando a terra: Proceedings of the 12th Python in Science Conference, 96 – 103.

van der Meijde, M., J. Julià, and M. Assumpção, 2013, Gravity derived moho for south america: Tectonophysics, **609**, 456 – 467. (Moho: 100 years after Andrija Mohorovicic).