데이터 가공 및 시각화

- 1. 전처리
 - 결측값 처리: 단순대치, 평균 대치, 단순확률 대치 (Hot-deck, nearest neighbor), 다중 대 치, knnImputation, centralimputation
 - 클래스불균형: 업샘플링 (SMOTE, Boaderline SMOTE, Adasyn), 다운샘플링
 - 이상값 처리: 극단값 절단, 조정
 - 변수 변환, 스케일링: 수치형 변수 변환(로그변환, 제곱근변환, 지수변환, 제곱변환, Box-cox 변환, 표준화, 정규화), 범주형 변수 변환(범주형 변수 인코딩, 대규모 범주형 변수처리), 날짜 및 변수 변환, 피쳐스케일링
 - 원핫인코딩(더미변수), 컬럼 트랜스퍼, 구간분할, 이산화, 피쳐선택
- 1. 표본 추출: 단순랜덤 추출법, 계통추출법, 집락추출법, 층화추출법
- 1. 데이터 분할: 구축/검정/시험용, 홀드아웃방법, 교차확인방법 (10 fold 교차분석), 부트스트랩
- 1. 그래프 그리기:
 - 산점도, 막대그래프, 선그래프, 히트맵, 서브플롯, 트리맵, 도넛차트, 버블차트, 히스토그램, 체르노프 페이스, 스타차트, 다차원척도법, 평행좌표계
 - 도식화와 시각화

파이썬으로 표본 추출 (Sampling) 하기

단순랜덤추출법 (simple random sampling)

- 각 샘플에 번호를 부여하여 임의의 n개를 추출하는 방법으로 각 샘플은 선택될 확률이 동일하다.
- 추출한 element를 다시 집어 넣어 추출하면 복원 추출, 다시 집어넣지 않고 추출하면 비복원 추출이다.
- pandas의 DataFrame으로 만든 데이터프레임 객체인 df에 .sample() 함수를 써서 전체 데이터 중 일부 샘플을 랜덤으로 추출할 수 있다.
- df.sample(n=2, replace=False)의 식으로 사용하는데, n은 추출할 샘플의 개수이고 replace는 샘플을 복원해서 뽑을지 여부이다.
- replace=False로 파라미터를 설정하면, 샘플을 뽑을 때마다 뽑은 샘플을 복원하지 않고 연속적으로 샘플을 뽑는다.

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

```
In [3]:
    df = pd.read_csv('/Users/benny/Desktop/datascience/heart.csv')
    df_dummy = pd.get_dummies(df)
    X = df_dummy.drop('HeartDisease', axis=1)
    y = df_dummy['HeartDisease']
    from sklearn.model_selection import train_test_split
    X_train_clf, X_test_clf, y_train_clf, y_test_clf = train_test_split(X, y, strain_t(X_train_clf.shape, X_test_clf.shape)
```

(734, 20) (184, 20)

In [4]: X_train_sampling = X_train_clf.reset_index(drop=True)
 y_train_sampling = y_train_clf.reset_index(drop=True)

In [24]: # 샘플 2개를 추출

X train sampling.sample(n=2, replace=False) # replace=False 비복원추출

index Age RestingBP Cholesterol FastingBS MaxHR Oldpeak Sex_F Sex_M ChestF Out[24]: 2.0 0.0

2 rows × 21 columns

In [25]:

전체 데이터의 10%를 추출

X train sampling.sample(frac=0.1)

Out[25]:		index	Age	RestingBP	Cholesterol	FastingBS	MaxHR	Oldpeak	Sex_F	Sex_M	ChestF
	716	881	44	120	263	0	173	0.0	0	1	
	620	741	62	120	267	0	99	1.8	0	1	
	286	449	55	0	0	0	155	1.5	0	1	
	46	509	58	110	198	0	110	0.0	0	1	
	602	367	68	135	0	0	120	0.0	0	1	
	•••				•••	•••					
	206	473	60	141	316	1	122	1.7	0	1	
	468	905	67	152	212	0	150	0.8	0	1	
	336	812	54	110	214	0	158	1.6	1	0	
	375	543	70	170	192	0	129	3.0	0	1	
	339	284	42	140	358	0	170	0.0	0	1	

73 rows × 21 columns

In [26]:

또한 샘플링을 할 때 파라미터 weights에 특정 열의 값을 입력하면, 해당 열의 값이 크면 클수록 표본. # n과 frac은 둘 중 하나를 선택해서 파라미터로 입력해야 하지만 weights는 두 경우 다 적용 가능하다

X_train_sampling.sample(frac=0.1, weights='Cholesterol')

Out[26]: index Age RestingBP Cholesterol FastingBS MaxHR Oldpeak Sex_F Sex_M ChestF 0.0 4.4 4.0 1.9 1.0

	index	Age	RestingBP	Cholesterol	FastingBS	MaxHR	Oldpeak	Sex_F	Sex_M	ChestF
•••		•••				•••		•••		
16	24	40	130	215	0	138	0.0	0	1	
576	145	39	110	273	0	132	0.0	0	1	
708	186	58	130	251	0	110	0.0	0	1	
336	812	54	110	214	0	158	1.6	1	0	
450	225	50	145	264	0	150	0.0	0	1	

73 rows × 21 columns

In [27]:

일반적으로 한 행이 하나의 데이터 포인트라고 볼 수 있기 때문에 행 방향으로(axis=0) 데이터를 랜덤한 # 하지만 필요 시 열 방향(axis=1)으로도 데이터를 랜덤하게 추출할 수 있다. 그러면 여러가지 열들 중에

X_train_sampling.sample(n=2, axis=1)

_			г	_	_	п	
- ()	11	+		-)	-/	- 1	=
- 0	u	L	-L	\angle	/	л	

	FastingBS	index
0	0	14
1	0	550
2	0	620
3	0	93
4	1	347
•••		
729	0	879
730	0	910
731	1	826
732	0	169
733	0	656

734 rows × 2 columns

계통추출법 (systematic sampling)

- 단순랜덤추출법의 변형된 방식으로서 일단, 번호를 부여한 샘플을 나열한다.
- 총 N(30)개의 모집단에서 n(5)개의 샘플을 추출하기 위해서 N/n으로 구간을 나눈다.
- 이 경우 각 구간에 들어있는 샘플의 수는 K(6)가 된다.
- K(6)개의 샘플이 들어 있는 첫 구간에서 임의로 샘플을 하나 선택하고, K(6)개씩 띄어서 각 구간에서 하나씩 샘플을 추출하는 방법이다.

In [17]:

```
      def sys_sampling(data, n): # 모집단 데이터프레임과 거기서 추출할 샘플 개수 입력 N = len(data) # 모집단 관측치 수

      K = N//n # 구간 내 샘플 수

      index = data[:K].sample(1).index # 첫 구간에서 임의로 선택한 샘플 1개의 인덱스

      intoin = index-0 # 샘플 간 간격

      # index개씩 띄어서 각 구간에서 하나씩 샘플을 추출
```

```
sys_df = pd.DataFrame()
while len(sys_df) < n:
    sys_df = sys_df.append(data.loc[index, :])
    index += K
return(sys_df)</pre>
```

In [29]:

sys_sampling(X_train_sampling, 10)

_		$\Gamma \sim \ell$	¬ T	
() :	17	1 70	.) =	
U	u L	L Z :	9]:	

:		index	Age	RestingBP	Cholesterol	FastingBS	MaxHR	Oldpeak	Sex_F	Sex_M	ChestF
	4	347	48	115	0	1	128	0.0	0	1	
	77	554	53	155	175	1	160	0.3	0	1	
	150	485	63	139	217	1	128	1.2	0	1	
	223	586	53	124	243	0	122	2.0	0	1	
	296	46	37	120	223	0	168	0.0	0	1	
	369	29	51	125	188	0	145	0.0	0	1	
	442	678	60	150	240	0	171	0.9	1	0	
	515	267	34	98	220	0	150	0.0	0	1	
	588	68	52	160	246	0	82	4.0	0	1	
	661	324	46	100	0	1	133	-2.6	0	1	

10 rows × 21 columns

층화추출법 (stratified random sampling)

- 이질적인 원소들로 구성된 모집단에서 각 계층을 고루 대표할 수 있도록 표본을 추출하는 방법이다.
- 유사한 원소끼리 몇개의 층(stratum)으로 나누어 각 층에서 랜덤 추출하는 방법이다.
- 비례층화추출법과 불비례층화추출법이 있다. 층 내 요소들은 유사하지만, 층과 층의 요소들은 상이하다.
- Scikit Learn의 StratifiedShuffleSplit : 각 층의 비율을 고려해 무작위로 train/test set을 분할하는 인덱스를 반환한다. 비례층화추출법에 해당한다.
- 여기서 파라미터들을 살펴보면 n_splits는 데이터를 섞는(shuffling) 횟수이다.
- test_size는 train set와 test set의 분할 비율을 의미한다.
- 파라미터를 test_size로 해도 되고 train_size로 해도 되는데 둘 중 하나만 적으면 된다.
- 원본 데이터셋의 각 층의 비율과, 층화추출법을 통해 샘플링 된 후 분할된 train/test set의 데이터 층의 비율이 동일한 것을 확인할 수 있다.

```
In [23]:
```

```
from sklearn.model_selection import StratifiedShuffleSplit
# n_splits: 다시 섞기 및 분할 반복 횟수
sss = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=1993)

for train_index, test_index in sss.split(X_train_sampling, y_train_sampling):
    X_train, X_test = X_train_sampling.loc[train_index], X_train_sampling.loc
    y_train, y_test = y_train_sampling.loc[train_index], y_train_sampling.loc
```

```
In [24]: | print(y_train_sampling.value_counts()/len(y_train_sampling))
          print(y train.value counts()/len(y train))
          print(y test.value counts()/len(y test))
              0.553134
         Λ
              0.446866
         Name: HeartDisease, dtype: float64
              0.553663
              0.446337
         Name: HeartDisease, dtype: float64
              0.55102
              0.44898
         Name: HeartDisease, dtype: float64
In [22]:
          from sklearn.model selection import train test split
          X train2, X test2, y train2, y test2 = train test split(X train sampling, y t
                                                                  test size=0.5, shuffle
          print(y_train_sampling.value_counts()/len(y_train_sampling))
          print(y_train2.value_counts()/len(y_train2))
          print(y test2.value counts()/len(y test2))
              0.553134
              0.446866
         Name: HeartDisease, dtype: float64
              0.553134
              0.446866
         Name: HeartDisease, dtype: float64
              0.553134
              0.446866
         Name: HeartDisease, dtype: float64
```

집락추출법 (cluster random sampling)

- 군집을 구분하고 군집별로 단순랜덤 추출법을 수행한 후, 모든 자료를 활용하거나 샘플링하는 방법이다.
- 지역표본추출과 다단계표본추출이 이에 해당한다.
- 이 경우, 군집 내 요소들은 상이하지만, 군집과 군집은 비교적 유사한 특성을 띈다.
- 위의 층화추출법에서 사용한 함수들을 사용해서 층 대신 집락 데이터를 적용하면 된다.