

Chapter 4 고급 출력 장치 제어

수동부저 소리 재생

[!NOTE] 이 문서는 **수동 부저(Passive Buzzer)**를 사용하여 특정 음계를 재생하는 실습에 대해 설명합니다.

1. 실습 목표

tone() 함수를 이용하여 수동 부저로 '도레미파솔라시도' 음계를 연주하는 프로그램을 작성합니다.

수동 부저 회로 구성 예시

준비물

- 아두이노 우노
- 브레드보드
- 수동 부저 (Passive Buzzer)
- 점퍼 와이어

2. 수동 부저 vs 능동 부저

- **능동 부저 (Active Buzzer)**: 전원만 연결하면 내장된 회로에 의해 정해진 단일음이 발생합니다. (digitalWrite()로 제어)
- **수동 부저 (Passive Buzzer)**: 특정 주파수의 신호를 주어야 소리가 발생하며, 주파수를 바꾸어 다양한 음을 만들 수 있습니다. (tone() 함수로 제어)

3. 회로 구성

- 1. 수동 부저의 양국(+) 핀 (또는 긴 다리)을 아두이노 디지털 8번 핀에 연결합니다.
- 2. 수동 부저의 **음극(-)** 핀 (또는 짧은 다리)을 아두이노 **GND**에 연결합니다.

4. 코드 작성

각 음계에 해당하는 주파수 값을 배열에 저장하고, tone() 함수를 이용해 순서대로 재생합니다.

	NOTE FREQUENCY CHART HEROIC AUDIO											
	Octave 0	Octave 1	Octave 2	Octave 3	Octave 4	Octave 5	Octave 6	Octave 7	Octave 8	Octave 9	Octave 10	
С	16.35	32.70	65.41	130.81	261.63	523.25	1046.50	2093.00	4186.01	8372.02	16744.04	
C#	17.32	34.65	69.30	138.59	277.18	554.37	1108.73	2217.46	4434.92	8869.84	17739.69	
D	18.35	36.71	73.42	146.83	293.66	587.33	1174.66	2349.32	4698.64	9397.27	18794.55	
D#	19.45	38.89	77.78	155.56	311.13	622.25	1244.51	2489.02	4978.03	9956.06	19912.13	
E	20.60	41.20	82.41	164.81	329.63	659.26	1318.51	2637.02	5274.04	10548.08		
F	21.83	43.65	87.31	174.61	349.23	698.46	1396.91	2793.83	5587.65	11175.30		
F#	23.12	46.25	92.50	185.00	369.99	739.99	1479.98	2959.96	5919.91	11839.82		
G	24.50	49.00	98.00	196.00	392.00	783.99	1567.98	3135.96	6271.93	12543.86		
G#	25.96	51.91	103.83	207.65	415.30	830.61	1661.22	3322.44	6644.88	13289.75		
Α	27.50	55.00	110.00	220.00	440.00	880.00	1760.00	3520.00	7040.00	14080.00		
A#	29.14	58.27	116.54	233.08	466.16	932.33	1864.66	3729.31	7458.62	14917.24		
В	30.87	61.74	123.47	246.94	493.88	987.77	1975.53	3951.07	7902.13	15804.26		

```
int buzzerPin = 8;
// 음계별 주파수 (4옥타브 기준)
// 도, 레, 미, 파, 솔, 라, 시, 도
int scale[] = {262, 294, 330, 349, 392, 440, 494, 523};
void setup() {
 pinMode(buzzerPin, OUTPUT);
}
void loop() {
 // '도'부터 순서대로 음계 연주
 for (int i = 0; i < 8; i++) {
  // tone(핀 번호, 주파수, 지속시간(ms));
  tone(buzzerPin, scale[i], 500);
   delay(500); // 다음 음과의 간격
 }
 // 2초간 휴식 후 반복
 delay(2000);
}
```

tone() 함수 사용법

- tone(pin, frequency): 지정된 pin에서 frequency(Hz)의 소리를 계속 재생합니다.
- tone(pin, frequency, duration): 지정된 pin에서 frequency(Hz)의 소리를 duration(ms)만큼 재생합니다.
- noTone(pin): 지정된 pin의 소리 재생을 중지합니다.

동작 설명

- 1. scale 배열에 '도'부터 높은 '도'까지 8개의 음계에 해당하는 주파수 값을 저장합니다.
- 2. for 반복문을 사용하여 배열의 첫 번째 값부터 마지막 값까지 순차적으로 접근합니다.
- 3. tone() 함수가 호출되어 buzzerPin(8번 핀)에서 해당 주파수(scale[i])의 소리를 0.5초(500ms)간 재생합니다.
- 4. 0.5초의 딜레이 후 다음 음을 연주하며, 모든 음계 연주가 끝나면 2초 쉬고 다시 반복합니다.