NTIN071 A&G: Cvičení 4 – Uzávěrové vlastnosti regulárních jazyků

Cíle výuky: Po absolvování student umí

- formálně popsat konstrukci automatu na základě jiných automatů
- rozhodnout, zda jsou regulární jazyky uzavřené na různé množinové a řetězcové operace, včetně složitějších, a toto tvrzení dokázat nebo vyvrátit

Příklady na cvičení

Příklad 1 (Uzavřenost na množinové a řetězcové operace). Pro danou dvojici DFA A, B sestrojte automat, který rozpoznává daný jazyk. (Sestrojený automat formálně popište.)

(a) $L(A) - L(B)$	A	a	b	В	a	b
(b) $L(A).L(B)$	$\rightarrow 0$				0	
	* 1			* 1		
(c) $L(A)^{+}$		4			2	
(d) $L(A)^*$		0			3	
(e) $L(A)^R$		2		* 4		
(e) $L(A)$	5	0	3		5	
				* 6	4	2

Příklad 2 (Mazání). Mějme nějaký regulární jazyk L nad abecedou $\Sigma = \{a, b\}$. Popište následující jazyky v množinovém zápisu. Rozhodněte, zda jsou (nutně) také regulární, dokažte nebo vyvratte. Jazyk sestávající ze všech slov vzniklých ze slov jazyka L...

- (a) \dots smazáním všech výskytů písmene a.
- (b) ... smazáním počátečního písmene a zapsáním tohoto písmene na konec slova.
- (c) ... smazáním nejdelší souvislé posloupnosti aček ze začátku slova.

K procvičení a k zamyšlení

Příklad 3 (Prefixy). Jsou regulární jazyky uzavřené na následující operace? Dokažte nebo vyvratte. (V následujícím je L regulární jazyk nad abecedou Σ .)

- (a) $\operatorname{init}(L) = \{ w \in \Sigma^* \mid \text{existuje } u \in \Sigma^* \text{ takové, že } wu \in L \}$
- (b) $\min(L) = \{ w \in L \mid \text{neexistuji } u \in L, v \in \Sigma^+ \text{ takové, že } w = uv \}$
- (c) $\max(L) = \{ w \in L \mid \text{neexistuje } u \in \Sigma^+ \text{ takové, že } wu \in L \}$

Příklad 4 (Posun). Pro daný regulární jazyk L nad abecedou Σ definujme jazyk L' následovně. Je jazyk L' nutně také regulární?

$$L' = \{uv \mid u, v \in \Sigma^*, vu \in L\}$$

Příklad 5 (Řez). Mějme dva regulární jazyky L, M a definujme jazyk K následovně. Je jazyk K nutně také regulární?

$$K = \{uw \mid u, w \in \Sigma^*, (\exists v \in M) \, uvw \in L\}$$

Příklad 6 (Záměna přijímajících a nepřijímajících stavů). Zaměníme-li u daného NFA přijímající a nepřijímající stavy, bude jazyk přijímaný výsledným automatem doplňkem jazyka přijímaného původním automatem? Zdůvodněte.

Příklad 7 (Iterace unárních jazyků). Ukažte, že pro libovolný jazyk L nad abecedou $\Sigma = \{a\}$ je jazyk L^* regulární.