Machine Learning III Introduction à scikit-learn

Nicolas Bourgeois

Télécharger

Data and Cheatsheets:

ouralou.fr/Resources/epita/C3.zip

Exercice

Exercice

Importez les données de data1.csv et testez une régression linéaire entre la longueur et l'épaisseur des pétales.

Exercice

Même question, cette fois entre la longueur des cépales et la largeur des pétales. Comparez les scores des deux régressions.

Exercice

Dans les deux cas, représentez les données et la droite de régression.

Résultat attendu (1)

Résultat attendu (2)

Solution (parties 1 et 2)

```
import pandas as pd
from sklearn.linear model import LinearRegression
iris = pd.read csv('./C3/data1.csv')
X = iris.PetalWidth.values.reshape(-1,1)
Y = iris.PetalLength
Ir = LinearRegression()
Ir. fit(X,Y)
print(lr.coef )
##question 2
print(|r.score(X,Y))
Y = iris.SepalLength
Ir.fit(X,Y)
print(|r.score(X,Y))
#attention ce score est trompeur
```

Solution (partie 3)

```
import pandas as pd
import numpy as np
from sklearn.linear model import LinearRegression
from matplotlib import pyplot as plt
iris = pd.read csv('./C3/data1.csv')
X = iris.PetalWidth.values.reshape(-1,1)
Y = iris.PetalLength
Ir = LinearRegression()
Ir.fit(X,Y)
plt.scatter(X,Y,c="orange")
plt.xlabel("Epaisseur des Petales")
plt_ylabel("Longueur_des_Petales")
test = np.arange(0,2.5,0.01).reshape(-1,1)
plt.plot(test, lr.predict(test))
plt.show()
```

Exercice

Exercice

Importez les données de data2.csv, gardez uniquement les champs adm, dip et mil et entraînez une ACP dessus.

Exercice

Comparez graphiquement les représentations des données utilisant deux axes standards (via une scatter matrix) et celles utilisant les axes de l'ACP.

Résultat attendu (1)

Résultat attendu (2)

Solution (partie 1)

```
import pandas as pd
from sklearn.decomposition import PCA
df = pd.read_csv('./C3/data2.csv',sep=";")
data = df[['adm','dip','mil']].dropna()
acp = PCA()
acp.fit_transform(data)
print(acp.explained_variance_)
print(acp.components_)
```

Solution (partie 2)

```
import pandas as pd
from pandas.plotting import scatter_matrix
from matplotlib import pyplot as plt
df = pd.read_csv('./C3/data2.csv',sep=";")
data = df[['adm','dip','mil']]
scatter_matrix(data,alpha=0.6,diagonal='hist')
plt.show()
```

Solution (partie 3)

```
import pandas as pd
from sklearn.decomposition import PCA
from matplotlib import pyplot as plt
df = pd.read csv('./C3/data2.csv',sep=";")
data = df[['adm', 'dip', 'mil']]. dropna()
acp = PCA()
rot = acp.fit transform(data)
plt.scatter(rot[:,0],rot[:,1],alpha=0.6)
cf = acp.components
plt.xlabel("{0:.2}adm+{1:.2}dip+{2:.2}mil".format(
    cf[0][0], cf[0][1], cf[0][2]))
plt.ylabel("{0:.2}adm+{1:.2}dip+{2:.2}mil".format(
    cf[1][0], cf[1][1], cf[1][2]))
plt.show()
```