Função do 1º Grau

Centro Universitário Senac

TADS

MTI

Função do 1º Grau

Função do 1º Grau

FUNÇÃO DO 1º GRAU

Uma aplicação f de R em R recebe o nome de função do 1º grau ou função afim quando a cada elemento $x \in \mathbb{R}$ associa o elemento $(ax + b) \in \mathbb{R}$, sendo a não-nulo e a e b reais.

$$f(x) = ax + b$$

Observe que o grau do binômio ax + b é igual a 1, por isso, toda função, cuja lei tem esta forma, é chamada de função do 1º grau ou função afim.

Utilizando o site GEOGEBRA construir estas cinco curvas em um único gráfico!

Vamos pensar?

Uma empresa de táxi E1 cobra R\$ 2,00 a "bandeirada", que é o valor inicial da corrida, e R\$ 2,00 por km rodado. Outra empresa E, fixa em R\$ 3,00 o km rodado e não cobra a bandeirada. As duas tarifas estão melhor representadas, graficamente, em:

Para a obtenção de uma função linear, chamamos a atenção para duas situações.

Em uma primeira situação, conhecemos de antemão o coeficiente angular da função, ou seja, a taxa de variação da função.

Em uma outra situação, temos uma tabela de valores (ou pontos) indicando a variação linear da função. Vamos explorar as duas situações por meio de exemplos.

Exemplo 6: Uma caixa d'água tem 2.000 litros, quando é aberto um ralo que a esvazia a uma razão de 25 litros por minuto. Considere que y representa a quantidade de água remanescente na caixa d'água no decorrer do tempo medido em x minutos a partir da abertura do ralo. Escreva a expressão que representa y em função de x, ou seja, y = f(x), e esboce seu gráfico cartesiano.

Para a obtenção de uma função linear, chamamos a atenção para duas situações.

Em uma primeira situação, conhecemos de antemão o coeficiente angular da função, ou seja, a taxa de variação da função.

Em uma outra situação, temos uma tabela de valores (ou pontos) indicando a variação linear da função. Vamos explorar as duas situações por meio de exemplos.

Exemplo 6: Uma caixa d'água ten 2.000 litros quando é aberto um ralo que a esvazia a uma razão de 25 litros por minuto. Considere que y representa a quantidade de água remanescente na caixa d'água no decorrer do tempo medido em x minutos a partir da abertura do ralo. Escreva a expressão que representa y em função de x, ou seja, y = f(x), e esboce seu gráfico cartesiano.

Para a obtenção de uma função linear, chamamos a atenção para duas situações.

Em uma primeira situação, conhecemos de antemão o coeficiente angular da função, ou seja, a taxa de variação da função.

Em uma outra situação, temos uma tabela de valores (ou pontos) indicando a variação linear da função. Vamos explorar as duas situações por meio de exemplos.

Exemplo 6: Uma caixa d'água ten 2.000 litros quando é aberto um ralo que a esvazia a uma razão de 25 litros por minuto. Considere que y representa a quantidade de água remanescente na caixa d'água no decorrer do tempo medido em x minutos a partir da abertura do ralo. Escreva a expressão que representa y em função de x, ou seja, y = f(x), e esboce seu gráfico cartesiano.

Solução: Calculando alguns valores de *y* para diferentes valores de *x*:

Para x = 1 minuto, temos y = 2.000 - 25.1 ou y = 1.975 litros.

Para x = 2 minutos, temos $y = 2.000 - 25 \cdot 2$ ou y = 1.950 litros.

Para x = 5 minutos, temos y = 2.000 - 25.5 ou y = 1.875 litros.

De modo geral, temos y = 2.000 - 25x.

Para a obtenção de uma função linear, chamamos a atenção para duas situações.

Em uma primeira situação, conhecemos de antemão o coeficiente angular da função, ou seja, a taxa de variação da função.

Em uma outra situação, temos uma tabela de valores (ou pontos) indicando a variação linear da função. Vamos explorar as duas situações por meio de exemplos.

Exemplo 6: Uma caixa d'água ten 2.000 litros quando é aberto um ralo que a esvazia a uma razão de 25 litros por minuto. Considere que y representa a quantidade de água remanescente na caixa d'água no decorrer do tempo medido em x minutos a partir da abertura do ralo. Escreva a expressão que representa y em função de x, ou seja, y = f(x), e esboce seu gráfico cartesiano.

Solução: Calculando alguns valores de *y* para diferentes valores de *x*:

Para x = 1 minuto, temos $y = 2.000 - 25 \cdot 1$ ou y = 1.975 litros.

Para x = 2 minutos, temos $y = 2.000 - 25 \cdot 2$ ou y = 1.950 litros.

Para x = 5 minutos, temos y = 2.000 - 25.5 ou y = 1.875 litros.

De modo geral, temos y = 2.000 - 25x.

Para o esboço do gráfico, podemos usar quaisquer dois pares de valores apresentados como pontos por onde a reta passa.

Entretanto, para uma melhor visualização da situação prática, utilizamos os pontos em que a reta cruza os eixos ordenados.

Se x = 0, temos y = 2.000 (instante em que o ralo foi aberto) e, se y = 0, temos x = 80, que dá a raiz da função (primeiro instante em que a caixa ficou vazia).

Note que nesse exemplo foi dada a taxa de variação constante (-25 litros/minuto) de esvaziamento, o que caracterizou a função como linear. Observe que o termo independente de x (2.000) também foi dado. Trabalharemos a seguir um problema em que será necessário calcular tais valores.

Exemplo 7: Alguns valores pagos em uma viagem de táxi, em função da distância percorrida, estão representados na tabela a seguir.

Distância (x) (km)	4	8	12	20	40	120
Valor pago (y) (\$)	22,00	34,00	46,00	70,00	130,00	370,00

$$a = \frac{\Delta y}{\Delta x}$$

Exemplo 7: Alguns valores pagos em uma viagem de táxi, em função da distância percorrida, estão representados na tabela a seguir.

Distância (x) (km)	4	8	12	20	40	120
Valor pago (y) (\$)	22,00	34,00	46,00	70,00	130,00	370,00

Para obtermos o parâmetro \boldsymbol{b} , basta substituir, na expressão geral da função, m=3 e um valor de x, com o correspondente valor de y da tabela. Usando x=4 e y=22, obtemos:

$$22 = 3 \cdot 4 + b$$

$$b = 10$$

Assim, a expressão procurada é y = 3x + 10.

Para esboçarmos o gráfico da função, usaremos dois pontos da tabela e também o ponto em que a reta cruza o eixo y, que tem ordenada b = 10.

$$a = \frac{\Delta y}{\Delta x}$$

Exemplo:

Determine a função afim $f: \mathbb{R} \to \mathbb{R}$ definida f(x) = ax + b

sabendo que f(1)=2 e f(4)=6.

Exemplo:

Determine a função afim $f:\mathbb{R}\to\mathbb{R}$ definida f(x)=ax+b sabendo que f(1)=2 e f(4)=6 .

Solução: Iremos imitar o processo acima para determinar os valores de a e b através da

resolução do sistema. Logo
$$\begin{cases} f(1) = 2 \\ f(4) = 6 \end{cases} \Rightarrow \begin{cases} a.1 + b = 2 \\ a.4 + b = 6 \end{cases} \Rightarrow \begin{cases} a + b = 2 \\ 4a + b = 6 \end{cases}$$
 (I)

Fazendo, membro a membro (II) - (I), obteremos

$$4a+b-(a+b)=6-2 \Rightarrow 3a=4 \Rightarrow a=\frac{4}{3}$$
.

Substituindo o valor de a, por exemplo, na equação (I), teremos

$$a+b=2 \Rightarrow \frac{4}{3}+b=2 \Rightarrow b=2-\frac{4}{3} \Rightarrow b=\frac{6-4}{3} \Rightarrow b=\frac{2}{3}$$

Portanto, a função procurada é $f(x) = \frac{4}{3}x + \frac{2}{3}$.

Exercício:

O gráfico representa a função y = f(x) = ax + b

$$a = \frac{\Delta y}{\Delta x}$$

- a) Calcule a e b.
- b) Determine as coordenadas dos pontos x e y, em que a reta corta os eixos coordenados.

Problema 1!

A dona de casa Fernanda está procurando um novo plano de saúde, pois seu antigo plano acabou ficando mais caro e fora da sua realidade. Ela costuma ir ao médico, em média, umas quatro vezes ao mês para se consultar. Fez algumas pesquisas e encontrou dois planos satisfatórios. Agora ela precisa decidir qual o novo plano de saúde que deve contratar: Plano A ou Plano B. Tais planos estão sujeitos as seguintes condições:

- Plano A: Cobra um valor fixo de R\$ 230,00 e mais parcelas R\$ 10,00 por consulta.
- Plano B: Cobra um valor fixo de R\$ 215,00 e mais parcelas R\$ 20,00 por consulta.

Dessa forma, qual o plano se tornaria mais econômico para Fernanda?

Solução! Seja x = número de consultas y = f(x) = valor pago

Tabela 2: Estimativa de valores para os planos de saúde A e B

х	f(x) = 230 + 10x	g(x) = 215 + 20x
1	f(1) = 230 + 10.1 = 230 + 10 = 240	g(1) = 215 + 20.1 = 215 + 20 = 235
2	f(2) = 230 + 10.2 = 230 + 20 = 250	g(2) = 215 + 20.2 = 215 + 40 = 255
3	f(3) = 230 + 10.3 = 230 + 30 = 260	g(3) = 215 + 20.3 = 215 + 60 = 275
4	f(4) = 230 + 10.4 = 230 + 40 = 270	g(4) = 215 + 20.4 = 215 + 80 = 295
5	f(5) = 230 + 10.5 = 230 + 50 = 280	g(5) = 215 + 20.5 = 215 + 100 = 315
6	f(6) = 230 + 10.6 = 230 + 60 = 290	g(6) = 215 + 20.6 = 215 + 120 = 335

Fonte: DEaD | IFCE

Como Fernanda costuma fazer em média umas quatro consultas ao mês observamos, da Tabela 2, que o Plano A será mais vantajoso para ela.

Exercício

O preço a pagar por uma corrida de táxi depende da distância percorrida. A tarifa **P** é composta por duas partes: uma parte fixa, denominada bandeirada e uma parte variável que depende do número **d** de quilômetros rodados. Suponha que a bandeirada esteja custando R\$ 6,00 e o quilômetro rodado, R\$ 1,20.

- a) Expresse o preço P em função da distância d percorrida.
- b) Quanto se pagará por uma corrida em que o táxi rodou 10 km?
- c) Sabendo que a corrida custou R\$ 20,00, calcule a distância percorrida pelo táxi.

Estudo de caso

O diretor de uma construtora precisa tomar uma decisão em relação à aquisição de um novo gerador para a sua empresa. Analisando os geradores disponíveis no mercado, após cotação de preços, ele organizou em uma tabela as informações mais importantes dos geradores produzidos pela empresa líder de mercado.

Tipo de gerador	Preço (\$)	Custo operacional (\$ por hora)	
A gasolina	50.000,00	10,00	
A diesel	70.000,00	8,00	

Com base nesses dados, para a tomada de decisão sobre qual gerador deverá ser adquirido, primeiro o diretor pretende analisar os seguintes questionamentos:

Quais os custos totais (aquisição e operação) dos dois tipos de geradores em função do número de horas de utilização? Quais as taxas de variação dos custos dos dois modelos de geradores? Caso o índice de operação médio mensal do gerador seja de 60 horas, qual a melhor alternativa de aquisição? Em que situação de uso os custos totais para os dois geradores se igualam? Qual é a

representação gráfica comparativa do custo total dos dois modelos de gerador?

Qual é a melhor opção de compra dos geradores?

Essas questões poderão ser respondidas com o auxílio dos tópicos a serem estudados neste capítulo!

