Chap 6. 정전용량

6.1 정전용량의 정의

- * Charge & Potential . $\rho \rightarrow \mathbf{E}$, $\mathbf{D} \rightarrow W, V$ $Q \Leftrightarrow V$
- $\begin{pmatrix}
 R \text{ (Resistance)} & C \text{ (Capacitance)} & L \text{ (Inductance)} \\
 R = \frac{V}{I}, & (V \propto I) & C = \frac{Q}{V}, & (Q \propto V) & L = \frac{\Phi}{I}, & (\Phi \propto I)
 \end{pmatrix}$

■ 정전용량 (Capacitance) C:

 $C = rac{Q}{V}$ $egin{pmatrix} ext{ 단위전압에 의하여 발생되는 전하량 , 전하에 의하여 생성되는 비율} \ ext{ 전압에 대한 전하량의 비례상수} \ \end{pmatrix}$

1 volt 의 전위차를 발생시키기 위해 필요한 전하량 、도체의 기하학적 구조와 재질 함수

단위:
$$C = \frac{Q}{V}$$
 $\left[\frac{Coulomb}{volt} \equiv Faraday, F\right]$

1F: 1 volt 를 위해 1C의 전하가 필요한 구조물 1mF, 1μF, 1 nF, 1pF, 1fF

$$C = \frac{Q}{V} = \frac{\oint_{S} \varepsilon \mathbf{E} \cdot d\mathbf{S}}{-\int \mathbf{E} \cdot d\mathbf{L}} \quad (\text{cf.} \quad R = \frac{V}{I} = \frac{-\int \mathbf{E} \cdot d\mathbf{L}}{\int_{S} \sigma \mathbf{E} \cdot d\mathbf{S}})$$

6.2 평행판 커패시터

$$\mathbf{D} \cdot \mathbf{n}_u \big|_{z=d} = \mathbf{D} \cdot (-\mathbf{a}_z) = -\rho_s \implies \mathbf{D} = \rho_s \, \mathbf{a}_z$$

$$\mathbf{E} = \frac{d}{\epsilon} \mathbf{a}_{z}$$

$$V_{0} = -\int_{\text{upper}}^{\text{lower}} \mathbf{E} \cdot d\mathbf{L} = -\int_{d}^{0} \frac{\rho_{S}}{\epsilon} dz = \frac{\rho_{S}}{\epsilon} d$$

$$Q = \rho_{S} S$$

$$C = \frac{Q}{V_{0}} = \frac{\epsilon S}{d}$$
Same result!

$$\left| \mathbf{D} \cdot \mathbf{n}_{\ell} \right|_{z=0} = \mathbf{D} \cdot \mathbf{a}_{z} = \rho_{s} \implies \mathbf{D} = \rho_{s} \, \mathbf{a}_{z}$$

■ 평행판 커패시터

$$V = -\int \mathbf{E} \cdot d\mathbf{L} = -\int_{0}^{d} (-\frac{\rho_{S}}{\varepsilon}) dz = \frac{\rho_{S}}{\varepsilon} d$$

$$V = \int \mathbf{E} \cdot d\mathbf{L} = -\int_{0}^{d} (-\frac{\rho_{S}}{\varepsilon}) dz = \frac{\rho_{S}}{\varepsilon} d$$

$$V = \int \mathbf{E} \cdot d\mathbf{L} = -\int_{0}^{d} (-\frac{\rho_{S}}{\varepsilon}) dz = \frac{\rho_{S}}{\varepsilon} d$$

$$V = \int \mathbf{E} \cdot d\mathbf{L} = -\int_{0}^{d} (-\frac{\rho_{S}}{\varepsilon}) dz = \frac{\rho_{S}}{\varepsilon} d$$

$$V = \int \mathbf{E} \cdot d\mathbf{L} = -\int_{0}^{d} (-\frac{\rho_{S}}{\varepsilon}) dz = \frac{\rho_{S}}{\varepsilon} d$$

$$V = \int \mathbf{E} \cdot d\mathbf{L} = -\int_{0}^{d} (-\frac{\rho_{S}}{\varepsilon}) dz = \frac{\rho_{S}}{\varepsilon} d$$

$$V = \int \mathbf{E} \cdot d\mathbf{L} = -\int_{0}^{d} (-\frac{\rho_{S}}{\varepsilon}) dz = \frac{\rho_{S}}{\varepsilon} d$$

$$V = \int \mathbf{E} \cdot d\mathbf{L} = -\int_{0}^{d} (-\frac{\rho_{S}}{\varepsilon}) dz = \frac{\rho_{S}}{\varepsilon} dz$$

$$V = \int \mathbf{E} \cdot d\mathbf{L} = -\int_{0}^{d} (-\frac{\rho_{S}}{\varepsilon}) dz = \frac{\rho_{S}}{\varepsilon} dz$$

$$V = \int \mathbf{E} \cdot d\mathbf{L} = -\int_{0}^{d} (-\frac{\rho_{S}}{\varepsilon}) dz = \frac{\rho_{S}}{\varepsilon} dz$$

$$\mathbf{E} = -\frac{\rho_{S}}{\varepsilon} \hat{a}_{z}, \quad \mathbf{D} = \rho_{S} \hat{a}_{z}, \quad D_{N} = \rho_{S}, \quad Q = \rho_{S} \cdot S$$

$$V = -\int \mathbf{E} \cdot d\mathbf{L} = -\int_0^d \left(-\frac{\rho_S}{\varepsilon}\right) dz = \frac{\rho_S}{\varepsilon} dz$$

$$\therefore V = \frac{\rho_S}{\varepsilon} d = \frac{\rho_S \cdot S}{\varepsilon S} d = \frac{Q}{\varepsilon S} d$$

$$V, Q, C$$

$$V, T, R$$

$$(cf. G = \sigma \frac{S}{d}, R = \frac{d}{\sigma S})$$

■ 정전계의 에너지 (Ex.) :
$$W_E = \int_{vol} rac{1}{2} \mathbf{D} \cdot \mathbf{E} dv$$

$$W_E = \frac{1}{2} \int_{\text{vol}} \epsilon E^2 \, dv = \frac{1}{2} \int_0^S \int_0^d \frac{\epsilon \rho_S^2}{\epsilon^2} dz \, dS = \frac{1}{2} \frac{\rho_S^2}{\epsilon} S d = \frac{1}{2} \frac{\epsilon S}{\epsilon} \frac{\rho_S^2 d^2}{\epsilon^2} = \frac{1}{2} C V^2$$

$$W_E = \frac{1}{2}C V_0^2 = \frac{1}{2}Q V_0 = \frac{1}{2}\frac{Q^2}{C}$$
 (Global)

$$=\frac{1}{2}\int \varepsilon \mathbf{E}^2 dv$$

(Local) Distribution.

<u>6.3 정전용량의 예</u>

(1) 동축 케이블의 C (by ρ_s):

$$\mathbf{E}(\rho) = \frac{a\rho_s}{\epsilon\rho} \, \mathbf{a}_\rho \, \, \mathrm{V/m} \qquad (a < \rho < b) \qquad \mathbf{E} = 0 \, \mathrm{elsewhere}$$

$$V_0 = -\int_b^a \mathbf{E} \cdot d\mathbf{L} = -\int_b^a \frac{a\rho_s}{\epsilon\rho} \, \mathbf{a}_\rho \cdot \mathbf{a}_\rho \, d\rho = \frac{a\rho_s}{\epsilon} \ln\left(\frac{b}{a}\right)$$

$$C = \frac{Q}{V_0} = \frac{2\pi\epsilon}{\ln(b/a)} \text{ F/m}$$

$$\checkmark$$
 : 단위길이당 C $[rac{F}{m}]$

$$C=rac{Q}{V_0}=rac{2\pi\epsilon}{\ln(b/a)}$$
 F/m $ightarrow : 단위길이당 C \ [F/m]$ $ightarrow \left(\begin{array}{c} C lpha rac{1}{\lnrac{b}{a}}, & a\cong b:c \uparrow \end{array}
ight)$ $ightarrow \left(\begin{array}{c} C lpha rac{1}{\lnrac{b}{a}}, & a\cong b:c \uparrow \end{array}
ight)$

✓ <u>동축 케이블의 C (by ρ_L) :</u>

$$\mathbf{E} = \frac{\rho_L}{2\pi\varepsilon_0 r} \hat{a}_r$$

$$V = -\int \mathbf{E} \cdot d\mathbf{L} = -\int_{b}^{a} \frac{\rho_{L}}{2\pi\varepsilon_{0}} \ln \frac{b}{a}$$

$$Q = \rho_{L} \cdot L \quad \text{이므로} \quad \rho_{L} = \frac{Q}{L} \qquad \therefore V = \frac{Q}{2\pi\varepsilon_{0}} \ln \frac{b}{a}$$

$$\therefore C = \frac{Q}{V} = \frac{2\pi\varepsilon_0 L}{\ln(b/a)}$$
 : cf. 단위길이당 C [F/m]

(2) 동심 도체구의 C (shall):

Consider two concentric spherical conductors, having radii a and b. Equal and opposite charges, Q, are on the inner and outer conductors.

$$\mathbf{E} = E_r \mathbf{a}_r = \frac{Q}{4\pi\epsilon r^2} \mathbf{a}_r$$

$$-Q \qquad V_0 = -\int_b^a \mathbf{E} \cdot d\mathbf{L} = -\int_b^a \frac{Q}{4\pi\epsilon r^2} \mathbf{a}_r \cdot \mathbf{a}_r dr = \frac{Q}{4\pi\epsilon} \left(\frac{1}{a} - \frac{1}{b}\right)$$

$$C = \frac{Q}{V_0} = \frac{4\pi\epsilon}{(1/a) - (1/b)} \qquad b \to \infty \quad C \to 4\pi\epsilon a$$

(3) 단일 도체구의 C:

(i) (2) of
$$b \to \infty$$
: $C = 4\pi \varepsilon a$ [F]

(ii)
$$V = \frac{Q}{4\pi\varepsilon a}$$
 , $C = \frac{Q}{V} = 4\pi\varepsilon a$ [F]

$$\star c \propto a$$

$$(i)$$
 (2)에서 $b \to \infty$: $C = 4\pi\epsilon a$ $[F]$ * $C \propto a$ (ex) $a = 1$ cm 인 구슬: c=0.556[pF] $a = 64000$ km 인 지구 : c=0.35[mF]

(4) 유전체로 둘러싸인 구의 C:

$$D_r = \frac{a}{4\pi r^2}$$

$$E_r = \frac{Q}{4\pi\epsilon_1 r^2} \qquad (a < r < r_1)$$

$$= \frac{Q}{4\pi\epsilon_0 r^2} \qquad (r_1 < r)$$

$$D_r = \frac{a}{4\pi r^2}$$

$$V_a - V_\infty = -\int_{r_1}^a \frac{Q \, dr}{4\pi \epsilon_1 r^2} - \int_\infty^{r_1} \frac{Q \, dr}{4\pi \epsilon_0 r^2}$$

$$= \frac{Q}{4\pi \epsilon_1 r^2} \left[\frac{1}{\epsilon_1} \left(\frac{1}{a} - \frac{1}{r_1} \right) + \frac{1}{\epsilon_0 r_1} \right] = V_0$$

$$C = \frac{4\pi}{\frac{1}{\epsilon_1} \left(\frac{1}{a} - \frac{1}{r_1}\right) + \frac{1}{\epsilon_0 r_1}}$$

< 직렬연결 >

 $R = R_1 + R_2$

 $L = L_1 + L_2$

01110

 $C = C_1 // C_2$

< 병렬연결 >

- Limbo $R = R_1 // R_2$

 $C = C_1 + C_2$

(5) 평판 콘덴서의 C:

① 단일유전체

•
$$E = \frac{\rho_S}{\varepsilon}$$
 , $V = -\int \mathbf{E} \cdot d\mathbf{L} = \frac{\rho_S}{\varepsilon} d = \frac{Q}{\varepsilon S} d$ ($\Theta Q = \rho_S \cdot S$, $\rho_S = \frac{Q}{S}$)

•
$$E = \frac{\rho_S}{\varepsilon}$$
 • $V = -\int \mathbf{E} \cdot d\mathbf{L} = \frac{\rho_S}{\varepsilon} d = \frac{Q}{\varepsilon S} d$ ($\Theta Q = \rho_S \cdot S$, $\rho_S = \frac{Q}{S}$)

• $C = \frac{Q}{V} = \varepsilon \frac{S}{d}$ (or $D = \rho_S = \frac{Q}{S}$, $V = E \cdot d = \frac{\rho_S}{\varepsilon} d = \frac{Q}{\varepsilon S} d$: same result.

② 두 유전체의 직렬구조

$$\begin{split} D_{N1} &= D_{N2}, \quad \mathcal{E}_1 E_1 = \mathcal{E}_2 E_2 \qquad \therefore E_2 = \frac{\mathcal{E}_1}{\mathcal{E}_2} E_1 \\ V_0 &= E_1 d_1 + E_2 d_2 = E_1 d_1 + \frac{\mathcal{E}_1}{\mathcal{E}_2} E_1 d_2 = (d_1 + \frac{\mathcal{E}_1}{\mathcal{E}_2} d_2) E_1 \qquad E_1 = \frac{V_0}{d_1 + d_2 (\epsilon_1 / \epsilon_2)} \\ Q &= \rho_S S \quad \text{이므로} \quad \rho_{S1} = D_1 = \epsilon_1 E_1 = \frac{V_0}{\frac{d_1}{\epsilon_1} + \frac{d_2}{\epsilon_2}} = D_2) \end{split}$$

$$C = \frac{Q}{V_0} = \frac{\rho_S S}{V_0} = \frac{1}{\frac{d_1}{\epsilon_1 S} + \frac{d_2}{\epsilon_2 S}} = \frac{1}{\frac{1}{C_1} + \frac{1}{C_2}} \qquad \frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2}$$

③ 두 유전체의 병렬구조:

$$V_0 = E_1 d = E_2 d$$
 $E_1 = E_2 = \frac{V_0}{d}$ $D_1 = \varepsilon_1 E_1 = \rho_{S1}$ $D_2 = \varepsilon_2 E_2 = \rho_{S2}$

$$Q = \rho_{S1} \cdot S_1 + \rho_{S2} \cdot S_2 = \varepsilon_1 E_1 S_1 + \varepsilon_2 E_2 S_2 = \varepsilon_1 \frac{V_0}{d} S_1 + \varepsilon_2 \frac{V_0}{d} S_2 = (\varepsilon_1 \frac{S_1}{d} + \varepsilon_2 \frac{S_2}{d}) V_0$$

$$\therefore C = \frac{Q}{V_0} = \varepsilon_1 \frac{S_1}{d} + \varepsilon_2 \frac{S_2}{d} = C_1 + C_2$$
 * V는 동일하므로 $Q = Q_1 + Q_2$

• Condensor의 병렬연결:

$$R = R_1 + R_2 \qquad \qquad L = L_1 + L_2$$

$$L = L_1 + L_2$$

$$C = C_1 // C_2$$

$$\mathbf{C} = \mathbf{C}_1 / / \mathbf{C}_2$$

$$R = R_1 // R_2$$

$$L = L_1 // L_2$$

$$C = C_1 + C_2$$

6.4 평행도선의 정전용량

(-a,0,0)

$$V = \frac{\rho_L}{2\pi\epsilon} \ln \frac{R_0}{R}$$

$$V = \frac{\rho_L}{2\pi\epsilon} \ln \frac{R_0}{R} \qquad V = \frac{\rho_L}{2\pi\epsilon} \left(\ln \frac{R_{10}}{R_1} - \ln \frac{R_{20}}{R_2} \right) = \frac{\rho_L}{2\pi\epsilon} \ln \frac{R_{10}R_2}{R_{20}R_1}$$

Expressing R_1 and R_2 in terms of x and y,

$$R_2$$
 $P(x, y, 0)$
 R_1
 R_2
 R_1

$$P(x, y, 0) V = \frac{\rho_L}{2\pi\epsilon} \ln \sqrt{\frac{(x+a)^2 + y^2}{(x-a)^2 + y^2}} = \frac{\rho_L}{4\pi\epsilon} \ln \frac{(x+a)^2 + y^2}{(x-a)^2 + y^2} K_1 = \frac{(x+a)^2 + y^2}{(x-a)^2 + y^2}$$

$$K_1 = \frac{(x+a)^2 + y^2}{(x-a)^2 + y^2}$$

$$K_1 = e^{4\pi\epsilon V_1/\rho_L}$$

Equipotential surface on which
$$V = V_1$$
 $K_1 = e^{4\pi\epsilon V_1/\rho_L}$ $x^2 - 2ax\frac{K_1 + 1}{K_1 - 1} + y^2 + a^2 = 0$

Equation of a circle, displaced along the x axis by distance h, and having radius b

$$V = 0$$

$$V = V_0$$

$$A = V_$$

$$\left(x - a\frac{K_1 + 1}{K_1 - 1}\right)^2 + y^2 = \left(\frac{2a\sqrt{K_1}}{K_1 - 1}\right)^2 \qquad b = \frac{2a\sqrt{K_1}}{K_1 - 1} \qquad h = a\frac{K_1 + 1}{K_1 - 1}$$

$$bK_1 - 2h\sqrt{K_1} + b = 0$$
 $\sqrt{K_1} = \frac{h \pm \sqrt{h^2 - b^2}}{b}$ $a = \sqrt{h^2 - b^2}$

$$4\pi\epsilon V_0$$

equivalent line charge,
$$\rho_l$$
: $\rho_L = \frac{4\pi\epsilon\,V_0}{\ln K_1}$ $\sqrt{K_1} = e^{2\pi\epsilon\,V_0/\rho_L}$

Given h, b, and V_0 , find a, ρ_l , and K_1 . $C = \frac{\rho_L L}{V_0} = \frac{4\pi\epsilon L}{\ln K_1} = \frac{2\pi\epsilon L}{\ln \sqrt{K_1}}$

$$C = \frac{2\pi\epsilon L}{\ln[(h + \sqrt{h^2 - b^2})/b]} = \frac{2\pi\epsilon L}{\cosh^{-1}(h/b)}$$

$$C = \frac{2\pi\epsilon L}{\ln[(h + \sqrt{h^2 - b^2})/b]} = \frac{2\pi\epsilon L}{\cosh^{-1}(h/b)}$$

if
$$b \ll h$$
, then

$$\ln\left[\left(h + \sqrt{h^2 - b^2}\right)/b\right] \doteq \ln\left[(h + h)/b\right] \doteq \ln(2h/b)$$

$$C \doteq \frac{\pi \epsilon L}{\ln(2h/b)}$$

$$a = \sqrt{h^2 - b^2} = \sqrt{13^2 - 5^2} = 12$$
 mm

$$\sqrt{K_1} = \frac{h + \sqrt{h^2 - b^2}}{b} = \frac{13 + 12}{5} = 5$$

$$\rho_L = \frac{4\pi\epsilon V_0}{\ln K_1} = \frac{4\pi \times 8.854 \times 10^{-12} \times 100}{\ln 25} = 3.46 \text{ nC/m}$$

$$C = \frac{2\pi\epsilon}{\cosh^{-1}(h/b)} = \frac{2\pi \times 8.854 \times 10^{-12}}{\cosh^{-1}(13/5)} = 34.6 \text{ pF/m}$$

Find the 50-volt equipotential surface

$$h = 13, b = 5, \therefore K_1 = 25; \therefore \rho_L = 3.46 \times 10^{-9} \text{ C/m}, \therefore a = 12$$

If $V_1 = 50, K_1 = 5, h = 18, b = 13.42, \rho_L$ unchanged

$$C = \frac{2\pi\varepsilon_0 L}{\ln 5} = 34.6 \text{ pF/m}$$

$K_1 = e^{4\pi\epsilon V_1/\rho_L} = e^{4\pi \times 8.854 \times 10^{-12} \times 50/3.46 \times 10^{-9}} = 5.00$

$$b = \frac{2a\sqrt{K_1}}{K_1 - 1} = \frac{2 \times 12\sqrt{5}}{5 - 1} = 13.42$$
 mm

$$h = a \frac{K_1 + 1}{K_1 - 1} = 12 \frac{5 + 1}{5 - 1} = 18 \text{ mm}$$

Scaling:

The same capacitance and charge densities would result as long as proportions are maintained in the dimensions; i.e., it doesn't matter whether the dimensions are given in micrometers, meters, or kilometers!

■ 평행도선의 정전용량

•
$$\mathbf{E}_{A} = \frac{\rho_{L}}{2\pi\varepsilon_{0}x}\hat{a}_{x}$$
 $\mathbf{E}_{B} = \frac{\rho_{L}}{2\pi\varepsilon_{0}(d-x)}\hat{a}_{x}$

$$\mathbf{E} = \mathbf{E}_A + \mathbf{E}_B = \frac{\rho_L}{2\pi\varepsilon_0} (\frac{1}{x} + \frac{1}{d-x}) \hat{a}_x \quad [V/m]$$

•
$$V_{AB} = -\int_{d-a}^{a} E dx = -\frac{\rho_L}{2\pi\varepsilon_0} \int_{d-a}^{a} (\frac{1}{x} + \frac{1}{d-x}) dx$$
$$= \frac{\rho_L}{2\pi\varepsilon_0} (\ln \frac{d-a}{a} - \ln \frac{a}{d-a})$$
$$= \frac{\rho_L}{\pi\varepsilon_0} \ln \frac{d-a}{a} \quad [V]$$

$$\therefore C = \frac{\rho_L}{V_{AB}} = \frac{\pi \varepsilon_0}{\ln \frac{d-a}{a}} \quad [F/m]$$

• If)
$$d \gg a$$
: $\ln \frac{d-a}{a} \cong \ln \frac{d}{a}$

$$\therefore C = \frac{\pi \varepsilon_0}{\ln(d/a)}$$

6. 5 2D에서 C추정을 위한 전계 그림 사용

Two Lines of \mathbf{D} are shown (sketched in red), and spacings between adjacent field lines and between adjacent equipotential surfaces are noted. All field lines *must* intersect equipotentials at 90° .

The volume between the two red field lines forms a "tube" of flux, of amount $\Delta\psi$. (This is the same as the charge on the conductor that is bounded by the tube.)

- 1. 도체는 등전위
- 2. E & D 는 등전위면과 수직
- 3. E & D 는 도체와 수직
- 4. $Q \rightarrow \psi$

$$E = \frac{1}{\epsilon} \frac{\Delta \Psi}{\Delta L_t}$$

$$E = \frac{\Delta V}{\Delta L_N}$$

$$\frac{1}{\epsilon} \frac{\Delta \Psi}{\Delta L_t} = \frac{\Delta V}{\Delta L_N}$$

$$\frac{\Delta L_t}{\Delta L_N} = \text{constant} = \frac{1}{\epsilon} \frac{\Delta \Psi}{\Delta V}$$

In other words, the sketch is done such that the ratio $\Delta L_t / \Delta L_N$ is fixed. The easiest way to do this is to make $\Delta L_t = \Delta L_N$ So draw the sketch such that *each grid segment is approximately square*

$$Q = N_Q \Delta Q = N_Q \Delta \Psi$$

$$V_0 = N_V \Delta V$$

$$C = \frac{N_Q \Delta Q}{N_V \Delta V}$$

$$C = \frac{N_Q}{N_V} \epsilon \frac{\Delta L_t}{\Delta L_N} = \epsilon \frac{N_Q}{N_V}$$

(Ex) Capacitance per unit length.

In this case, division of the range parallel to the conductors into an integral number of squares was not achieved. Instead, over one-eighth of the distance around the perimeter, we have 3.25 divisions.

Between conductors there are exactly four squares.

$$C = \epsilon \frac{N_Q}{N_V} = \epsilon_0 \frac{8 \times 3.25}{4} = \underline{57.6 \,\mathrm{pF/m}}$$

6. 6 프와송 및 라플라스 방정식

◆ 전기장 지배 방정식:

Gauss's law: $\nabla \cdot \mathbf{D} = \rho_{\nu}$ (Maxwell 1'st eq.)

Potential : $\mathbf{E} = -\nabla V$ Materal: $\mathbf{D} = \epsilon \mathbf{E}$

 $\nabla \cdot \mathbf{D} = \nabla \cdot (\epsilon \mathbf{E}) = -\nabla \cdot (\epsilon \nabla V) = \rho_{v}$

$$\nabla \cdot \nabla V = -\frac{\rho_{\nu}}{\epsilon}$$

$$\nabla V = \frac{\partial V}{\partial x} \mathbf{a}_x + \frac{\partial V}{\partial y} \mathbf{a}_y + \frac{\partial V}{\partial z} \mathbf{a}_z$$

$$\nabla \cdot \nabla V = \frac{\partial}{\partial x} \left(\frac{\partial V}{\partial x} \right) + \frac{\partial}{\partial y} \left(\frac{\partial V}{\partial y} \right) + \frac{\partial}{\partial z} \left(\frac{\partial V}{\partial z} \right) = \frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} \quad \text{(Laplacian operator)}$$

(전기장 지배방정식)
$$\nabla^2 V = \frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} = -\frac{\rho_{\nu}}{\epsilon}$$
 Poisson's equation

$$\nabla^2 V = 0$$
 Laplace's equation: (if $\rho = 0$: $\nabla^2 V = 0$)

Laplace Operator . Laplacian : $\nabla^2 V = \nabla \cdot \nabla V$

직각좌표계: $\nabla^2 V = \frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} = 0$ (rectangular)

원통좌표계: $\nabla^2 V = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial V}{\partial \rho} \right) + \frac{1}{\rho^2} \left(\frac{\partial^2 V}{\partial \phi^2} \right) + \frac{\partial^2 V}{\partial z^2}$ (cylindrical)

구좌표계: $\nabla^2 V = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial V}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial V}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 V}{\partial \phi^2}$

$$\begin{pmatrix}
\rho \to \mathbf{E}, & \mathbf{D} \to V & \rho \to V \\
(\nabla \cdot \mathbf{D} = \rho) & (\mathbf{E} = -\nabla V) & \nabla^2 V = -\frac{\rho}{\varepsilon}
\end{pmatrix}$$

6. 7 라플라스 방정식의 예

> Potential Bar :

직각좌표계:

$$\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} = -\frac{\rho}{\varepsilon}$$
 1-D, $\rho = 0$:

$$\frac{\partial^2 V}{\partial x^2} = 0$$
, $\frac{dV^2}{dx^2} = 0$, $\frac{dV}{dx} = A$, $V = Ax + B$

B.C.:
$$V(x_1) = V_1$$
: $A = \frac{V_1 - V_2}{x_1 - x_2}, B = \frac{V_2 x_1 - V_1 x_2}{x_1 - x_2}$

$$\therefore V = \frac{1}{x_1 - x_2} (V_1(x - x_2) - V_2(x - x_1))$$

$$*$$
 V(0) = 0 , V(0) = V_0 일 경우 $A = \frac{V_0}{d}$, $B = 0$

$$\therefore V = \frac{V_0 x}{d}$$

(Ex 6.2) Parallel Plate Capacitor:

Boundary conditions:

1.
$$V = 0$$
 at $x = 0$

2.
$$V = V_0$$
 at $x = d$

• Potential:

Laplace's equation:
$$\frac{d^2V}{dx^2} = 0$$
 $\frac{dV}{dx} = A$ $V = Ax + B$

Boundary conditions: 1.
$$V = 0$$
 at $x = 0$ $0 = A(0) + B$ \Rightarrow $B = 0$ $V = \frac{V_0 x}{d}$ \Rightarrow $A = \frac{V_0}{d}$

Capacitance:

$$V = V_0 \frac{x}{d}$$
$$\mathbf{E} = -\nabla V = -\frac{V_0}{d} \mathbf{a}_x$$

$$\mathbf{D} = -\epsilon \frac{V_0}{d} \mathbf{a}_x \qquad \text{At the lower plate surface } (z = 0):$$

$$\mathbf{D}_{S} = \mathbf{D}\big|_{x=0} = -\epsilon \frac{V_{0}}{d} \mathbf{a}_{x} \quad \mathbf{n} = \mathbf{a}_{x}$$

$$\mathbf{D} \cdot \mathbf{n}\big|_{s} = \rho_{s} \qquad D_{N} = -\epsilon \frac{V_{0}}{d} = \rho_{S}$$

$$Q = \int_{S} \frac{-\epsilon V_0}{d} dS = -\epsilon \frac{V_0 S}{d}$$

$$C = \frac{|Q|}{V_0} = \frac{\epsilon S}{d}$$

(Ex 6.3) Coaxial Transmission Line:

Boundary conditions:

1.
$$V = 0$$
 at $\rho = b$

2.
$$V = V_0$$
 at $\rho = a$

• Potential:
$$\nabla^2 V = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 \frac{\partial V}{\partial r}) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta \frac{\partial V}{\partial \theta}) + \frac{1}{r^2 \sin^2 \phi} \frac{\partial^2 V}{\partial \phi^2}$$

$$\frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial V}{\partial \rho} \right) = 0 \qquad \qquad \rho \frac{dV}{d\rho} = A \qquad \qquad V = A \ln \rho + B$$

Boundary conditions:

Boundary Conditions.
$$0 = A \ln(a) + B \implies B = -A \ln(a)$$

2.
$$V = V_0$$
 at $\rho = a$ $V_0 = A \ln(a) - A \ln(b) = A \ln(a/b) \Rightarrow A = -\frac{V_0}{\ln(b/a)}$

$$V(\rho) = -\frac{V_0}{\ln(b/a)} \left[\ln(\rho) - \ln(b) \right] = V_0 \frac{\ln(b/\rho)}{\ln(b/a)}$$

• Capacitance:

$$\mathbf{E} = -
abla V = -rac{dV}{d
ho} \, \mathbf{a}_
ho = rac{V_0}{
ho} rac{1}{\ln(b/a)} \, \mathbf{a}_
ho$$

$$\rho_s = \mathbf{D} \cdot \mathbf{a}_{\rho} \Big|_{\rho=a} = \frac{\epsilon V_0}{a} \frac{1}{\ln(b/a)} \text{ C/m}^2$$

$$Q = \int_S \rho_s \, da = 2\pi a L \, \rho_s = \frac{2\pi \epsilon L V_0}{\ln(b/a)} \, \, \mathrm{C}$$

$$C = \frac{Q}{V_0} = \frac{2\pi\epsilon L}{\ln(b/a)} \text{ F}$$

(Ex 6.4) Angled Plate:

Boundary Conditions:

- V = 0 at $\phi = 0$
- $V = V_0$ at $\phi = \alpha$

(Ex 6.5)Concentric Sphere:

Boundary Conditions:

- V=0 at r=b
- $V = V_0$ at r = a

• Potential:

$$\nabla^2 V = \frac{1}{\rho^2} \frac{d^2 V}{d\phi^2} = 0 \quad (\rho > 0) \qquad \qquad \frac{dV}{d\phi} = A \qquad \quad V(\phi) = A\phi + B$$

Boundary Conditions:

- V = 0 at $\phi = 0$
- $0 = A(0) + B \quad \Rightarrow \quad B = 0$
- $V = V_0$ at $\phi = \alpha$ $V_0 = A\alpha \Rightarrow A = \frac{V_0}{\alpha}$

$$V(\phi) = V_0 \frac{\phi}{\alpha}$$

$$\mathbf{E} = -\nabla V = -\frac{1}{\rho} \frac{dV}{d\phi} \, \mathbf{a}_{\phi} = -\frac{V_0}{\alpha \rho} \, \mathbf{a}_{\phi}$$

• Potential:

$$\nabla^2 V = \frac{1}{r^2} \frac{d}{dr} \left(r^2 \frac{dV}{dr} \right) = 0 \qquad \qquad \frac{d}{dr} \left(r^2 \frac{dV}{dr} \right) = 0 \qquad \qquad \frac{dV}{dr} = \frac{A}{r^2} \qquad \qquad V(r) = -\frac{A}{r} + B$$

Boundary Conditions:

Boundary Conditions:
$$0 = -\frac{A}{b} + B \Rightarrow B = \frac{A}{b}$$

1. $V = 0$ at $r = b$ $0 = -\frac{A}{b} + B \Rightarrow B = \frac{A}{b}$
2. $V = V_0$ at $r = a$ $V_0 = -\frac{A}{a} + \frac{A}{b} \Rightarrow A = \frac{V_0}{(1/b) - (1/a)}$

• Capacitance:

$$\mathbf{E} = -\nabla V = \frac{dV}{dr} \,\mathbf{a}_r = \frac{V_0}{r^2[(1/a) - (1/b)]} \,\mathbf{a}_r \quad \text{V/m}$$

$$\rho_s = \mathbf{D} \cdot \mathbf{a}_r \Big|_{r=a} = \frac{\epsilon V_0}{a^2 [(1/a) - (1/b)]} \quad C/m^2$$

$$C = \frac{Q}{V_0} = \frac{4\pi \epsilon}{[(1/a) - (1/b)]}$$

$$Q = \int_{S} \rho_{s} da = 4\pi a^{2} \rho_{s} = \frac{4\pi \epsilon V_{0}}{[(1/a) - (1/b)]} \quad C$$

$$C = \frac{Q}{V_0} = \frac{4\pi\epsilon}{[(1/a) - (1/b)]}$$
 F

(Ex 6.6) θ – Dependent Potential Field :

Boundary Conditions:

1.
$$V = 0$$
 at $\theta = \pi/2$

2.
$$V = V_0$$
 at $\theta = \alpha$

• Potential:

$$\frac{1}{r^2 \sin \theta} \frac{d}{d\theta} \left(\sin \theta \frac{dV}{d\theta} \right) = 0 \qquad \checkmark \quad r \text{ and } \theta \text{ cannot be zero} : \quad \sin \theta \frac{dV}{d\theta} = A$$

$$V = \int \frac{A d\theta}{\sin \theta} + B = A \ln \left(\tan \frac{\theta}{2} \right) + B$$

Boundary Conditions:

1.
$$V = 0$$
 at $\theta = \pi/2$

2.
$$V = V_0$$
 at $\theta = \alpha$

$$0 = A \ln \tan \left(\frac{\pi}{4}\right) + B = B \quad \Rightarrow \quad B = 0$$

$$V_0 = A \ln \tan \left(\frac{\alpha}{2}\right) \quad \Rightarrow \quad A = \frac{V_0}{\ln \tan(\alpha/2)}$$

Boundary Conditions:
1.
$$V = 0$$
 at $\theta = \pi/2$ $0 = A \ln \tan \left(\frac{\pi}{4}\right) + B = B \Rightarrow B = 0$
2. $V = V_0$ at $\theta = \alpha$ $V_0 = A \ln \tan \left(\frac{\alpha}{2}\right) \Rightarrow A = \frac{V_0}{\ln \tan(\alpha/2)}$ $V(\theta) = V_0 \frac{\ln \tan(\theta/2)}{\ln \tan(\alpha/2)}$

Capacitance:

$$\mathbf{E} = -\nabla V = \frac{-1}{r} \frac{\partial V}{\partial \theta} \mathbf{a}_{\theta} = -\frac{V_0}{r \sin \theta \ln \left(\tan \frac{\alpha}{2}\right)} \mathbf{a}_{\theta}$$

$$\rho_s = \mathbf{D} \cdot \mathbf{a}_{\theta} \Big|_{\theta = \alpha} = \frac{-\epsilon V_0}{r \sin \alpha \ln \left[\tan(\alpha/2) \right]}$$

$$Q = \int_0^{2\pi} \int_{r_1}^{r_2} \frac{-\epsilon V_0}{r \sin \alpha \ln \left[\tan(\alpha/2) \right]} \, r \sin \alpha \, dr \, d\phi = \frac{-2\pi \epsilon V_0 (r_2 - r_1)}{\ln \left[\tan(\alpha/2) \right]}$$

$$C = \frac{Q}{V_0} = \frac{-2\pi\epsilon(r_2 - r_1)}{\ln\left[\tan(\alpha/2)\right]}$$

This is an approximate result because we have neglected the fringing fields that will occur at the cone edges. Fringing fields will be more important for smaller α .

✓ Note that the capacitance is in fact positive (as it should be). Do you see why?

<u>SUM</u>

(1) 단일 도체구 :

$$V = \frac{Q}{4\pi \epsilon a}$$

$$C = 4\pi\varepsilon a$$
 [F]

(2) 유전체 구:

$$D_r = \frac{a}{4\pi r^2}$$

$$V_0 = \frac{Q}{4\pi} \left[\frac{1}{\epsilon_1} \left(\frac{1}{a} - \frac{1}{r_1} \right) + \frac{1}{\epsilon_0 r_1} \right]$$

$$C = \frac{4\pi}{\frac{1}{\epsilon_1} \left(\frac{1}{a} - \frac{1}{r_1}\right) + \frac{1}{\epsilon_0 r_1}}$$

(3) 동심 도체구의 C (shall) :

$$\mathbf{E} = E_r \mathbf{a}_r = \frac{Q}{4\pi\epsilon r^2} \, \mathbf{a}_r$$

$$V_0 = \frac{Q}{4\pi\epsilon} \left(\frac{1}{a} - \frac{1}{b} \right)$$

$$C = \frac{Q}{V_0} = \frac{4\pi\epsilon}{(1/a) - (1/b)}$$

(4) 평행도선의 정전용량

$$V = \frac{\rho_L}{2\pi\epsilon} \ln \frac{R_0}{R}$$

$$C \doteq \frac{\pi \epsilon L}{\ln(2h/b)}$$

(5) Parallel Plate Capacitor:

$$\mathbf{E} = \frac{\rho_S}{\epsilon} \mathbf{a}_z$$

$$V_0 = \frac{\rho_S}{\epsilon} d$$

$$C = \frac{Q}{V_0} = \frac{\epsilon S}{d}$$

(6) Angled Plate:

$$\mathbf{E} = -\frac{V_0}{\alpha \rho} \, \mathbf{a}_{\phi}$$

$$V(\phi) = V_0 \frac{\phi}{\alpha}$$

<u>(7) 동축 케이블 :</u>

$$\mathbf{E} = \frac{\rho_L}{2\pi\varepsilon_0 r} \hat{a}_r$$

$$\therefore V = \frac{\rho_{L_{i}}}{2\pi\varepsilon_{0}} \ln \frac{b}{a}$$

$$\therefore C = \frac{Q}{V} = \frac{2\pi\varepsilon_0 L}{\ln(b/a)}$$

Lab. of Applied Electro Magnetics

6.8 P-N 접합의 정전용량

$$C_{j0} = \sqrt{rac{\epsilon_{si}q}{2} rac{N_A N_D}{N_A + N_D} rac{1}{V_0}} = rac{C_{j0}}{\sqrt{1 - rac{V_R}{V_0}}}, \qquad rac{\pi \epsilon V_0}{2
ho_{v0} a^2}$$

$$p_{n,f} = \frac{p_{p,f}}{\exp\frac{V_0 - V_F}{V_T}}.$$

$$\Delta n_p \approx \frac{N_D}{\exp{\frac{V_0}{V_T}}} (\exp{\frac{V_F}{V_T}} - 1).$$

$$\begin{cases} \frac{d\varepsilon(x)}{dx} = \frac{q}{\epsilon} Nd & (0 < x < x_{no}) \\ \frac{d\varepsilon(x)}{dx} = -\frac{q}{\epsilon} Na & (-x_{po} < x < 0) \end{cases}$$

$$\frac{d^2V(x)}{dx^2} = -\frac{\rho(x)}{\epsilon} = -\frac{d\varepsilon(x)}{dx}$$

V(x) : x 대한 전위 [V] $\rho(x)$: x 대한 전하밀도 [C/cm]

€ : 유전율 [F/cm]

ε(x) : x 대한 전계강도 [V/cm]

$$V_0 = \frac{kT}{q} \ln \frac{N_A N_D}{n_i^2}.$$

$$I_{tot} = I_S(\exp\frac{V_F}{V_T} - 1),$$

Numerical Simulation:

$$\therefore \nabla^2 V = -\frac{\rho}{\varepsilon}$$

- 🍾 실험적 사상법 (Mapping Method)
- 반복 계산법 (Iteration Mehod) Laplacian : Mean Value Theorem
- 수치해석적 방법

$$V_0 = rac{\displaystyle\sum_i l_i V_i}{\displaystyle\sum_i l_i}$$

Infinitesimal gap

V = 0

ed ElectroMagnetics	43.8 18.8 6.2	53.2	43.8	Gap			Line symm		
	18.8	25.0	18.8		48.2	66.2 66.2 66.0 66.0 66.0 66.0 66.0 66.0	73.8 73.0 72.8 72.9 73.0	75.0 74.6 74.7 74.8 74.8 74.9	73.8 73.0 72.8 72.9 73.0
	6.2	9.4	6.2		48.2 26.6		73.0	74.9	73.0
					48.2 26.6 26.6 26.8 26.9	42.8 42.9 43.0 43.0 43.0 43.0 43.1	51.0 50.8 50.9 51.0 51.1 51.1 51.2	52.6 53.2 53.4 53.4 53.5 53.6	51.0 50.8 50.9 51.0 51.1 51.2 1 51.2
	***************************************	V = 0	**********		26.9	43.1	51.2	53.6	51.2
<u> </u>		V = 100			15.4 16.2 16.4	27.9 28.2	34.8 34.8 34.9 34.9 34.9 35.0	36.8 37.0 37.0 37.1 37.1	34.8 34.8 34.9 34.9 34.9 35.0
				V = 0	16.4 10.1 10.4 10.3	28.2 18.7 18.4	35.0 23.4	37.2 25.0	35.0 23.4
	43.0 42.6	52.8 52.5	43.0 42.6		10.3	18.4	23.4	25.0	23.4
	42.8 42.8	52.6 52.6	42.8 42.8		6.4		15.2 15.1	16.3 16.3 16.2	15.2 15.2 15.1
= 0	18.6 18.6 18.7 18.7	24.8 24.8 25.0 25.0	18.6 18.6 18.7 18.7		6.5	7.1	15.1	16.2 9.8 9.7	91
	7.0 7.1 7.1 7.1	9.7 9.8 9.8 9.8	7.0 7.1 7.1 7.1		3.8	7.0 3.3 3.2	9.0	9.7	9.0
	/.1	5.0	/.1		1.8	3.2	4.2	4.5	4.2
200000000		V = 0				Pusan Nat <i>Lab. of Ap</i>	V=0	.,	4

실험적 사상법 (축차법) 과 FEM 의 비교

실험적 사상법(축차법), 4번 계산 후

FEM

- - ① 수식을 이용 → Bessel 함수, Legendre함수, Fourier급수, 변수분리법 ② computer 이용 → FDM , FEM , BEM , MMM

연습문제 6.13 사각도체 전위

실험적 사상법

A1 = 8.0770A2 = 14.7535A3 = 18.6088A4 = 19.8217A5 = 17.5545A6 = 32.3280A7 = 39.8602A8 = 42.0692A9 = 29.8131A10 = 57.1440A11 = 66.4347A12 = 68.7346A13 = 44.5539A14 = 48.4026A15 = 49.0563A16 = 47.8226A17 = 42.2342A18 = 21.1143A19 = 42.2231A20 = 47.7780A21 = 48.8890

F.E.M

A1 = 8.21A2 = 14.5A3 = 18.2A4 = 19.88A5 = 18.52A6 = 31.32A7 = 40.01A8 = 41.063A9 = 28.99A10 = 58.05A11 = 66.22A12 = 68.46A13 = 44.58A14 = 47.7A15 = 48.56A16 = 47.44A17 = 42.058A18 = 21.054A19 = 42.111A20 = 47.521A21 = 48.687

(7th, Edition) 연습문제 7.30, 삼각구조의 전위

(7th, Edition) 연습문제 7.34, 각형구조의 전위

$$V_0 = \frac{V_1}{\left(1 + \frac{h_1}{h_3}\right)\!\left(1 + \frac{h_1h_3}{h_4h_2}\right)} + \frac{V_2}{\left(1 + \frac{h_2}{h_4}\right)\!\left(1 + \frac{h_2h_4}{h_1h_3}\right)} + \frac{V_3}{\left(1 + \frac{h_3}{h_1}\right)\!\left(1 + \frac{h_3h_1}{h_2h_4}\right)} + \frac{V_4}{\left(1 + \frac{h_4}{h_2}\right)\!\left(1 + \frac{h_4h_2}{h_3h_1}\right)}$$

실험적 사상법에 의한 해석

F.E.M. 해석

(7th, Edition) 연습문제 7.35, 침:평판 구조의 전위

Lab. of Applied ElectroMagnetics

본문 그림 6.8

< Ex > 코로나 방전 (Corona Discharge)

(a 가 ionize corona discharge

「+ corona : 평탄균일

- corona : 불균일, 솔가지모양, Tree구조, 소음발생

■ 정전 침전기, 매연흡착용

• 1820년 독일 1906년 Berkley 대학 F. Cottrol 제작주 (올리버트위스트) □ F. Cottrol 제작중

■ 포항제철

도선 반지름: $r_1 = 1mm$

관의 반지름: $r_2 = 200mm$

공기항복전압 : $3 \times 10^6 [V/m] = 3$ 만[V/m] : $V = E_r \cdot r \cdot \ln \frac{r_2}{r}$: 내 도체표면 $r = r_1 = 1mm$, $E_r = 3 \times 10^6 [V/m]$

 $\rightarrow V = 15.9kV$, 만 5000 volt 이상에서 발생함

우전체:
$$\mathbf{J} = \sigma \mathbf{E}_{\sigma}$$
 $\mathbf{E}_{\varepsilon} = -$

$$R = \frac{V_{\sigma}}{I} = \frac{-\int \mathbf{E} \cdot d\mathbf{L}}{\sigma \oint \mathbf{E}_{\sigma} \cdot d\mathbf{S}}$$

$$I \quad \sigma \oint \mathbf{E}_{\sigma} \cdot d\mathbf{S}$$

$$C = \frac{Q}{V_{c}} = \frac{\varepsilon \oint_{S} \mathbf{E}_{\varepsilon} \cdot d\mathbf{S}}{-\int \mathbf{E} \cdot d\mathbf{L}}$$

•
$$\begin{pmatrix} R = \frac{V_{\sigma}}{I} = \frac{-\int \mathbf{E} \cdot d\mathbf{L}}{\sigma \oint \mathbf{E}_{\sigma} \cdot d\mathbf{S}} & (\Theta I = \int \mathbf{J} \cdot d\mathbf{S} = \sigma \int \mathbf{E}_{\sigma} \cdot d\mathbf{S}) \\ C = \frac{Q}{V_{\sigma}} = \frac{\varepsilon \oint_{S} \mathbf{E}_{\varepsilon} \cdot d\mathbf{S}}{-\int \mathbf{E} \cdot d\mathbf{L}} & (\Theta Q = \int \mathbf{D} \cdot d\mathbf{S} = \varepsilon \int \mathbf{E}_{\varepsilon} \cdot d\mathbf{S}) \end{pmatrix}$$

$$\Rightarrow R \cdot C = \frac{\varepsilon}{\sigma} \begin{pmatrix} C = \frac{\varepsilon}{\sigma} \cdot \frac{1}{R} \\ R = \frac{\varepsilon}{\sigma} \cdot \frac{1}{C} \end{pmatrix}$$

$$R \cdot C = \frac{\varepsilon}{\sigma} \begin{cases} C = \frac{\varepsilon}{\sigma} \cdot \frac{\varepsilon}{R} \\ R = \frac{\varepsilon}{\sigma} \cdot \frac{1}{C} \end{cases}$$

< EX > 동심 도체구

$$C = 4\pi\varepsilon \cdot \frac{ab}{b-a}$$

$$R = \frac{1}{4\pi\sigma} \cdot \frac{b-a}{ab}$$

$$RC = \frac{\varepsilon}{\sigma}$$

$$C = \frac{\varepsilon}{\sigma} \cdot \frac{1}{R}$$

(a)
$$E = \frac{Q}{4\pi\varepsilon r^2} a_r$$
, $V = \frac{Q}{4\pi\varepsilon r}$

(b)
$$V_{ab} = -\int_{a}^{b} E \cdot dr = \frac{Q}{4\pi\varepsilon} \int_{a}^{b} -\frac{dr}{r^2} = \frac{Q}{4\pi\varepsilon} \left(\frac{1}{a} - \frac{1}{b} \right) = \frac{Q}{4\pi\varepsilon} \cdot \frac{b-a}{ab}$$

(c)
$$C = \frac{Q}{V} = \frac{Q}{\underbrace{Q}_{A-a}} \cdot \frac{b-a}{b} = 4\pi\varepsilon \cdot \frac{ab}{b-a}$$

(d)
$$I_{ab} = \int J \cdot ds = \int \sigma E \cdot ds = \frac{\sigma Q}{4\pi \varepsilon r^2} \cdot 4\pi r^2 = \frac{\sigma Q}{\varepsilon}$$

(e)
$$R_{ab} = \frac{V}{I} = \frac{-\int_{a}^{b} E \cdot dL}{\int_{S} \sigma E \cdot dS} = \frac{\frac{Q}{4\pi\varepsilon} \cdot \frac{b-a}{ab}}{\frac{\sigma Q}{\varepsilon}} = \frac{1}{4\pi\sigma} \cdot \frac{b-a}{ab}$$

(f)
$$R \cdot C = \left(\frac{1}{4\pi r} \cdot \frac{b-a}{ab}\right) \cdot \left(4\pi \varepsilon \cdot \frac{ab}{b-a}\right) = \frac{\varepsilon}{\sigma}$$

Electric Force:
$$\overline{W} = \frac{1}{2}CV^2$$
, $F = \frac{\partial \overline{W}}{\partial x}$ $\underline{V} = Constant$

(*a*) *C*

(b) F:

< EX >
ho : 밀도, m : 질량 = 밀도 imes 부피 = $ho \cdot \overline{Vol}$, F = ma = mG

(a) *C*

- (b) F
- (c) h:

