PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-145313

(43) Date of publication of application: 25.05.2001

(51)Int.CI.

H02K 21/14 H02K 1/27 H02K 3/28 H02K 15/03

(21)Application number: 11-322592

(71)Applicant: MATSUSHITA ELECTRIC IND CO LTD

(22)Date of filing:

12.11.1999

(72)Inventor: SAWAZAKI HIRONOBU

ASANO YOSHINARI

(54) PERMANENT MAGNET MOTOR AND ITS MANUFACTURING METHOD

PROBLEM TO BE SOLVED: To suppress deformation of coils at the time of magnetization and in turn to improve magnetizing efficiency in a permanent magnet motor comprising 3P slots when the number of magnetic poles is P and having three-phase windings in the slots with the pitch of three slots.

SOLUTION: One-phase winding at the inside circumference where three-phase winding are wound with the pitch of three-slots is inserted into the outermost circumferential side, and the terminal of the winding is connected as a pole and the other two-phase terminals as another pole. A rotor 4 is assembled in a stator 1 and a magnetizing current is caused to flow for magnetization. Thus, not only deformation of the coil end can be suppressed but also the magnetizing efficiency can be improved.

1: ステック 邓小 0-5 5--ロータ位置決る用目印

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19) 日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号 生 1月9001 — 1/1531

(P2001-145313A) (43)公開日 平成13年5月25日(2001.5.25)

(51) Int. Cl. ⁷	識別記号	FΙ				7 -7:	テーマコード (参考	
HO2K 21/14		H02K 21/14		M	5H603			
1/27	501	1/27		501	A	5H621		
3/28		3/28			J	5H622		
15/03		15/03			G			
		審査請求	未請求	請求項の	数 4	OL	(全4	1頁)
(21) 出願番号	特願平11-322592	(71) 出願人	頭人 000005821					
		į	松下電器	産業株式会	社			
(22) 出願日	平成11年11月12日(1999.11.12)		大阪府門	真市大字門]真]	006番地		
		(72) 発明者	沢崎 博	信				
			大阪府門 産業株式	真市大字門 会社内	真〕	006番地	松下	電器
		(72) 発明者	浅野 能	成				
			大阪府門 産業株式	真市大字門 会社内]真]	006番地	松下	電器
		(74) 代理人	10009744	5				
			弁理士	岩橋 文雄	Ė	(外2名)		
						最	終頁に	こ続く

(54) 【発明の名称】永久磁石モータ及びその製造方法

(57) 【要約】

【課題】 磁極数がPの時、スロット数が3Pで、スロットには3スロットピッチで3相巻線が施されている永久磁石モータにおいて、着磁時のコイル変形を抑制し、さらには着磁率の向上を実現する。

【解決手段】 3スロットビッチで3相巻線が施されている内周側の1相の巻線を最外周側に挿入し、その巻線の端子を一方の極、それ以外の2相の端子を他方の極として接続し、永久磁石を有するロータ4をステータ1に組み込み、着磁電流を流し、着磁することでコイルエンド変形を抑制し、着磁率の向上も可能とした。

| ····ステータ | 2···スロット | 3···ステータ巻線 | 4···ロータ | 5···ロータ位置決め用目印

Best Available Copy

【特許請求の範囲】

ساره . .

【請求項1】 スロット部に巻線を有するステータと、 永久磁石を有するロータからなるモータにおいて、磁極 数がPの時、スロット数が3Pで、スロットには3スロ ットピッチで3相巻線が施されており、そのうちの1相 の巻線が、すべてステータの最外周側に挿入されている ことを特徴とする永久磁石モータ。

1

【請求項2】 請求項1記載の永久磁石モータにおい て、ステータ巻線のうち、最外周側に挿入された1相の 巻線の端子を一方の極、それ以外の2相の端子を他方の 10 極として接続し、永久磁石を有するロータをステータに 組み込み、着磁電流を流して着磁することを特徴とする 永久磁石モータの製造方法。

【請求項3】 請求項2記載の製造方法によって製造さ れる永久磁石モータであって、ステータの巻線位置にあ わせてロータ端面に位置決め用目印を設けたことを特徴 とする永久磁石モータ。

【請求項4】 請求項3記載の永久磁石モータであっ て、位置決め用目印をロータ端面の磁極中心に設けたこ とを特徴とする永久磁石モータ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、冷凍機や空調機の 圧縮機駆動用電動機等に使用される永久磁石モータとそ の製造方法に関する。

[0002]

【従来の技術】従来のこの種の永久磁石モータで4極1 2スロットの場合を図3に示す。図3において、スロッ ト12a-1から反時計方向に3スロット進んだスロッ ト12a-2に跨って巻線A3が、スロット12b-1 30 から反時計方向に3スロット進んだスロット12b-2 に跨って巻線B3が、スロット12c-1から反時計方 向に3スロット進んだスロット12c-2に跨って巻線 C3が施されている。これらの巻線A3、B3、C3は 互いに重なることなくスロット内奥側に挿入されてい る。また、それぞれの巻線に対して6スロット進んだス ロット(180度対称位置のスロット)から同様に、同 方向でA4、B4、C4と巻線が施され、各巻線は互い に重なることなくスロット内開口部側に挿入されてい る。このようにして挿入された巻線A3、A4、B3、 40 に跨って施される巻線をC1とする。また、それぞれの B4、C3、C4を図4に示すようにY結線してステー 夕を構成している。

【0003】そして、永久磁石を有するロータをこのス テータに組み込んで、3相巻線中A相の巻線の端子をプ ラス極、B、C相の端子をまとめてマイナス極にして着 磁電流を流して着磁する。

[0004]

【発明が解決しようとする課題】以上のような従来の永 久磁石モータにおいては、A相にはB、C相の2倍の着

されている巻線A4には極めて大きな着磁時応力が加わ るので、巻線A4はリード線側、半リード線側ともにコ イルエンドが変形し、フレーム等との絶縁距離が確保で きなくなったり、ロータに接触してしまったりといった 不都台が発生する。このような不都台を発生させないた めには着磁電流を制限する必要があり、その結果として 着磁率を十分に高くすることができないという問題点を 有していた。

【0005】本発明は、上記課題を解決するものであ る。

[0006]

【課題を解決するための手段】この課題を解決するため に本発明は、3スロットピッチで3相巻線が施されてい るうち、1相の巻線を全て最外周側に挿入する。本構成 により、着磁時のリード線側、反リード線側ともにコイ ルエンド変形を抑制し、着磁率を向上することも可能に なった。

[0007]

【発明の実施の形態】本発明の請求項1に記載の発明 20 は、スロット部に巻線を有するステータと、永久磁石を 有するロータからなるモータにおいて、磁極数がPの 時、スロット数が3Pで、スロットには3スロットピッ チで3相巻線が施されており、そのうちの1相の巻線 が、すべてステータの最外周側に挿入されているもので あり、リード線側、反リード線側ともにコイルエンド変 形が抑えられ、着磁率の向上も可能であるという作用が ある。

【0008】以下、本発明の実施の形態について図を用 いて説明する。

【0009】(実施の形態1)本発明の一実施の形態を 示すステータの平面図を図1に示す。図1において、渡 り線、リード線は省略する。また、スロットのうち巻線 に隠れた部分は破線で示す。 ステータ1のスロット2に 3スロットピッチで3相巻線3が施されている。あるス ロット2a-1から一方向に3スロット進んだスロット 2 a - 2 に跨って施される巻線をA1、2 a - 2 から同 方向に1スロット進んだスロット2b-1からさらに同 方向に3スロット進んだスロット2b-2に跨って施さ れる巻線をB1、同様にスロット2c-1から2c-2 巻線に対し6スロット進んだスロット(180°対称位 置のスロット)から同様に、同方向でA2、B2、C2 と巻線を施す。このとき、巻線A1及び巻線A2を第1 にスロットに挿入し、その後、他の巻線B1、B2、C 1、C2を挿入する。

【0010】さらに、挿入された巻線のコイルエンド は、内径にはみ出してはいけないので、通常外周側に倒 して成形する。この時、内周側コイルエンドは外周側コ イルエンドの上部 (軸方向外側) に成形され、しばり糸 磁電流が流れることになり、スロットの開口部側に配置 50 やワニスなどで固定される。このとき、挿入された巻線

をA1及びA2、B1及びB2、C1及びC2をたとえ ば2Y結線してステータを構成している。着磁するとき の結線は、図2に示すように、A1、A2をプラス極、 B1、B2、C1、C2をマイナス極に結線して行う。 また、ロータ4の位置決め用目印5はわかりやすいよう にコイルエンド形状が対称であり、特定しやすいロータ 端面の磁極中心に設けるとよい。そして着磁をする時に はその目印をA1相またはA2相の巻線中央部に合わせ る。A相-B、C相間に通電して着磁するとき、巻線に 力が働く。

3.45.65

5-4-6

【0011】この構造において、最も大きい電流の流れ るA相には最も大きい力が働くが、A相はB、C相の下 (軸方向内側) にあるため、2相分のコイルエンドを変 形させなければならない。従って、A相を内側に入れた 時の半分以下の応力となり、コイルエンド変形を抑える ことができる。

【0012】なお、本実施の形態では4極12スロット のモータについて示したが、極数は自由に選択でき、ま たB相、C相の順序は任意である。また、ステータコア 20 をティース部を含む内コアとヨーク部を含む外コアに分 割した場合にも適用可能である。すなわち、本願発明の

趣旨に応じて変形が可能であり、これらを発明の範囲か ら排除するものではない。

[0013]

【発明の効果】以上のように請求項1記載の発明によれ ば、スロット部に巻線を有するステータと、永久磁石を 有するロータからなるモータにおいて、磁極数がPの 時、スロット数が3Pで、スロットには3スロットビッ チで3相巻線が施されており、そのうちの1相の巻線 を、すべてステータの最外周側に挿入することにより、 は外周側に倒したコイルエンドが内周側に戻ろうとする 10 リード線側、反リード線側ともにコイルエンド変形が小 さくなり、着磁率の向上も可能という効果が得られる。 【図面の簡単な説明】

【図1】本発明の一実施の形態によるステータの平面図

【図2】本発明の一実施の形態による結線図

【図3】従来例のステータの平面図

【図4】従来例の結線図

【符号の説明】

1 ステータ

2 スロット

ステータ巻線

ロータ

ロータ位置決め用目印

フロントページの続き

F ターム(参考) 5H603 AA09 BB01 BB09 BB12 CA01 CA05 CB05 CB24 CC04 CC07 CC11 CD02 CD05 CD34 CE01 EE09 FA08

5H621 BB10 GA01 GA04 HH01 JK03 5H622 AA03 CA05 QB01 QB10