Operations Research

Formative Assessment 1 (Part 1)

By Romand Lansangan

Item 1

1. The Primo Insurance Company is introducing two new product lines: special risk insurance and mortgages. The expected profit is 5 dollar per unit on special risk insurance and 2 dollar per unit on mortgages. Management wishes to establish sales quotas for the new product lines to maximize total expected profit. The work requirements are as follows:

Department	Work-Hours per Unit		
	Special Risk	Mortgage	Work-Hours Available
Underwriting	3	2	2400
Administration	0	1	800
Claims	2	0	1200

Linear Model

Decision Variables

 \boldsymbol{x} number of work-hours for special risk

y number of work-hours for mortgage.

Objective Function

Maximize P = 5x + 2y

Constraints

$$x, y \ge 0$$

$$3x + 2y \le 2400$$

$$y \le 800$$

$$2x \le 1200$$

Solution via Graphical Method

The shade region is the feasible region.

To input the objective function P=5x+2y

Solution:

$$(x,y) = (600,300)$$

Final P

$$P = 5x + 2y = 5(600) + 2(300) = $3900$$

Item 2

Model

Minimize $Z=40x_1+50x_2$

Constraints

$$2x_1+3x_2\geq 30$$

$$x_1+x_2\geq 12$$

$$2x_1+x_2\geq 20$$

Solution view Graphical Method

The shaded region is the feasible region.

To input the objective function $Z=40x_1+50x_2$

Solution:

$$(x_1, x_2) = (7.5, 5)$$

$$Z = 40x_1 + 50x_2 = 40(7.5) + 50(5) = 550$$

If objective function is $Z=40x_1+70x_2$

$$(x_1, x_2) = (15, 0)$$

$$Z = 40x_1 + 70x_2 = 40(15) + 50(0) = 600$$

Both the solution and the value of Z will change. The Z increases so this isn't ideal considering we are trying to minimize the Z.

If third constraint is $2x_1+x_2\geq 15$

$$(x_1,x_2)=(6,6)$$

$$Z = 40x_1 + 50x_2 = 40(6) + 50(6) = 540$$

So the Z will decrease compared to the original constraints, which is in fact ideal considering we are trying to minimize the Z.