Problem Set 6

Math 255: Analysis I

Due: Thursday, March 7th at 11:59pm EST

Problem 1. Let (X, d) be a metric space.

1. Prove that X is disconnected if and only if there exists a clopen (closed and open) set $\emptyset \neq Y \subseteq X$.

Proof. (\Longrightarrow) Assume X is disconnected.

- By the proposition in class, X is disconnect if and only if $X = A \cup B$ where A and B are non-empty disjoint open sets.
- Let A and B be the non-empty disjoint open sets that witness X being disconnected.
- Thus, we can write $A = X \setminus B = B^c$ and $B = X \setminus A = A^c$.
- Consider A, an open set. As its complement B is open, A is closed.
- Therefore, A is a clopen non-empty set in X.

(\iff) Assume there exists a clopen set $\emptyset \neq Y \subsetneq X$.

- Let A = Y and $B = X \setminus Y$. We will show that $X = A \cup B$ and $A \cap \overline{B} = \emptyset$ and $\overline{A} \cap B = \emptyset$.
- Both A and B are nonempty because $\emptyset \neq Y \subsetneq X$.
- By definition of set minus, we immediately have $X = A \cup B$.
- As B is the complement of Y, and Y is clopen, B is also clopen.
- As both A and B are closed, we have $\overline{A} = A$ and $\overline{B} = B$.
- As B is the complement of A, $A \cap B = \emptyset$.
- This implies that $\overline{A} \cap B = \emptyset$ and $A \cap \overline{B} = \emptyset$.
- Therefore, A and B are witnesses to X being disconnected.

Hence, we have shown that X is disconnected if and only if there exists a non-empty clopen set $Y \subsetneq X$.

2. Prove that if $E \subseteq X$ is connected then so is \overline{E} .

Proof.

- Assume in contradiction that \overline{E} is disconnected.
- Then there exists two sets A and B such that $\overline{E} = A \cup B$ and $A \cap \overline{B} = \emptyset$ and $\overline{A} \cap B = \emptyset$.
- Since $E \subseteq \overline{E}$, we have $E = E \cap (A \cup B)$
- This implies $E = (E \cap A) \cup (E \cap B)$. (Distributivity of \cap shown in Problem Set 1).
- Let us see if $(E \cap A)$ and $(E \cap B)$ can be a witness to E being disconnected, which would contradict our assumption.
- Consider $(E \cap A) \cap \overline{(E \cap B)}$.
- Notice that $\overline{E \cap B} \subseteq \overline{B}$. We are also given $A \cap \overline{B} = \emptyset$. This implies $A \cap \overline{(E \cap B)} = \emptyset$.
- By associativity, $(E \cap A) \cap \overline{(E \cap B)} = E \cap (A \cap \overline{(E \cap B)}) = E \cap \emptyset = \emptyset$.

- Symmetrically, we can show that $\overline{(E\cap A)}\cap (E\cap B)=\emptyset.$
- ullet Therefore, E is disconnected, which is a contradiction.
- 3. Give an example of a disconnected set $W\subseteq \mathbb{R}$ for which \overline{W} is connected.

Proof.

- $\mathbb{Q} \subseteq \mathbb{R}$ is disconnected by taking $A = \mathbb{Q} \cap (-\infty, \sqrt{2})$ and $B = \mathbb{Q} \cap (\sqrt{2}, \infty)$.
- $\overline{\mathbb{Q}} = \mathbb{R}$ by the density of \mathbb{Q} in \mathbb{R} and \mathbb{R} is connected.

Problem 2. Let (X, d) be a metric space.

1. Let $K_1, ..., K_N$ be a finite collection of compact sets in X. Prove that $\bigcup_{n=1}^N K_n$ is also compact.

Proof.

- Let $\{G_{\alpha}\}_{\alpha}$ be an open cover of $\bigcup_{n=1}^{N} K_n$.
- Notice that $\{G_{\alpha}\}_{\alpha}$ is also an open cover for each K_n .
- Since each K_n is compact, there exists a finite sub-cover $\{G_{n,1}, G_{n,2}, ..., G_{n,m_n}\}$ for each K_n , $1 \le n \le N$.
- This implies that $\{G_{n,j}: 1 \le n \le N, 1 \le j \le m_n\} \subseteq \{G_\alpha\}_\alpha$ is a finite sub-cover of $\bigcup_{n=1}^N K_n$.
- 2. Prove that any compact set $K \subseteq X$ has at most finitely many isolated points (i.e. points in K which are not limit points of K).

Proof.

- ullet Assume in contradiction that K has infinitely many isolated points. We will find an open cover of K such that cannot have a finite subcover.
- Let us call the infinite set of isolated points $I \subseteq K$.
- Because each $p \in I$ is an isolated point, there exists an $\epsilon_p > 0$ such that $N_{\epsilon_p}(p) \cap K = \{p\}$.
- Let $\{N_{\epsilon_p}(p)\}_{p\in I}$ be the collection of open sets centered at each isolated point.
- Let $\{G_{\alpha}\}_{\alpha}$ be an open cover of $K \setminus I$.
- We have that $\{N_{\epsilon_p}(p)\}_{p\in I}\cup \{G_\alpha\}_\alpha$ is an open cover of K.
- However, notice that it is impossible to find a finite subcover of $\{N_{\epsilon_p}(p)\}_{p\in I}\cup\{G_\alpha\}_\alpha$.
- This is because to cover each $p \in I \subseteq K$, the subcover must contain the corresponding $N_{\epsilon_p}(p)$ which there are infinitely many.
- Therefore, K is not compact, which is a contradiction.
- 3. Let $\{K_{\alpha}\}_{{\alpha}\in I}$ be any collection of compact sets. Prove that $\bigcap_{{\alpha}\in I}K_{\alpha}$ is also compact.

Proof.

- Let $B = \{B_{\beta}\}_{{\beta} \in J}$ be an open cover of $\bigcap_{{\alpha} \in I} K_{\alpha}$. We will show that B has a finite subcover.
- Let $K_1 \in \{K_\alpha\}_{\alpha \in I}$. Then K_1 is compact.
- Let C be an open cover of K_1 . Let $C_f = \{C_1, C_2, \dots C_n\}$ be a finite subcover of C.
- Notice that C_f is an open cover of $\bigcap_{\alpha \in I} K_\alpha$. This is because $\bigcap_{\alpha \in I} K_\alpha \subseteq K_1$ and C_f covers K_1 .
- We will construct a finite subcover of B from C_f . Consider $B_f = \{C_i \cap (\bigcup_{\beta \in J} B_\beta)\}_{1 \le i \le n}$.
- B_f must be finite as it is constructed from iterating over C_f , which has n elements.
- It is also a subcover of B as $C_f \cap B \subseteq B$. It must also cover $\bigcap_{\alpha \in I} K_\alpha$ because C_f covers K_1 and $K_1 \subseteq \bigcap_{\alpha \in I} K_\alpha$.
- Therefore, $\bigcap_{\alpha \in I} K_{\alpha}$ is compact.

Problem 3. Let (X, d_X) and (Y, d_Y) be two metric spaces. We define a metric on the product space $X \times Y$:

$$d_{X\times Y}((x_1,y_1),(x_2,y_2)) = d_X(x_1,x_2) + d_Y(y_1,y_2).$$

Similarly, if $(X_1, d_1), ..., (X_N, d_N)$ are N metric spaces we define a metric on the product $X_1 \times X_2 \times \cdots \times X_N$ as the sum of distances in each coordinate.

1. Verify that $d_{X\times Y}$ is indeed a metric on $X\times Y$. Conclude by induction that the construction of a metric on $X_1\times X_2\times \cdots \times X_N$ is indeed a metric.

Proof. Base Case: We will prove positivity, symmetry, and the triangle inequality for $d_{X\times Y}$. *Positivity:*

- Let $(x_1, y_1), (x_2, y_2) \in X \times Y$.
- Then $d_X(x_1, x_2) \ge 0$ and $d_Y(y_1, y_2) \ge 0$.
- Therefore, $d_X(x_1, x_2) + d_Y(y_1, y_2) \ge 0$.
- This implies $d_{X\times Y}((x_1,y_1),(x_2,y_2))\geq 0$.

Symmetry:

- Let $(x_1, y_1), (x_2, y_2) \in X \times Y$.
- Then $d_X(x_1, x_2) = d_X(x_2, x_1)$ and $d_Y(y_1, y_2) = d_Y(y_2, y_1)$.
- Therefore, $d_X(x_1, x_2) + d_Y(y_1, y_2) = d_X(x_2, x_1) + d_Y(y_2, y_1)$.
- This implies $d_{X\times Y}((x_1,y_1),(x_2,y_2))=d_{X\times Y}((x_2,y_2),(x_1,y_1)).$

Triangle Inequality:

- Let $(x_1, y_1), (x_2, y_2), (x_3, y_3) \in X \times Y$.
- Then $d_X(x_1, x_3) \le d_X(x_1, x_2) + d_X(x_2, x_3)$ and $d_Y(y_1, y_3) \le d_Y(y_1, y_2) + d_Y(y_2, y_3)$.
- Therefore, $d_X(x_1, x_3) + d_Y(y_1, y_3) \le d_X(x_1, x_2) + d_X(x_2, x_3) + d_Y(y_1, y_2) + d_Y(y_2, y_3)$.
- This implies $d_{X\times Y}((x_1,y_1),(x_3,y_3)) \le d_{X\times Y}((x_1,y_1),(x_2,y_2)) + d_{X\times Y}((x_2,y_2),(x_3,y_3)).$

Therefore, $d_{X\times Y}$ is a metric on $X\times Y$.

Inductive Step: We assume that $d_{X_1 \times X_2 \times \cdots \times X_N}$ is a metric on $X_1 \times X_2 \times \cdots \times X_N$. We will prove that $d_{X_1 \times X_2 \times \cdots \times X_N \times X_{N+1}}$ is a metric on $X_1 \times X_2 \times \cdots \times X_N \times X_{N+1}$.

Positivity:

- Let $(x_1, x_2, ..., x_N, x_{N+1}), (y_1, y_2, ..., y_N, y_{N+1}) \in X_1 \times X_2 \times \cdots \times X_N \times X_{N+1}$.
- Then $d_{X_1 \times X_2 \times \cdots \times X_N}(x_1, x_2, ..., x_N, y_1, y_2, ..., y_N) \ge 0$ (inductive hypothesis).
- And $d_{X_{N+1}}(x_{N+1}, y_{N+1}) \ge 0$ $(d_{X_{N+1}}$ is a metric on X_{N+1}).
- Therefore, $d_{X_1 \times X_2 \times \cdots \times X_N}((x_1, x_2, ..., x_N), (y_1, y_2, ..., y_N)) + d_{X_{N+1}}(x_{N+1}, y_{N+1}) \ge 0.$
- This implies $d_{X_1 \times X_2 \times \cdots \times X_N \times X_{N+1}}((x_1, x_2, ..., x_N, x_{N+1}), (y_1, y_2, ..., y_N, y_{N+1})) \ge 0$.

Symmetry:

- Let $(x_1, x_2, ..., x_N, x_{N+1}), (y_1, y_2, ..., y_N, y_{N+1}) \in X_1 \times X_2 \times ... \times X_N \times X_{N+1}$.
- Then $d_{X_1 \times X_2 \times \cdots \times X_N}(x_1, x_2, ..., x_N, y_1, y_2, ..., y_N) = d_{X_1 \times X_2 \times \cdots \times X_N}(y_1, y_2, ..., y_N, x_1, x_2, ..., x_N)$ (inductive hypothesis).
- And $d_{X_{N+1}}(x_{N+1}, y_{N+1}) = d_{X_{N+1}}(y_{N+1}, x_{N+1})$ ($d_{X_{N+1}}$ is a metric on X_{N+1}).
- Therefore, $d_{X_1 \times X_2 \times \cdots \times X_N}((x_1, x_2, ..., x_N), (y_1, y_2, ..., y_N)) + d_{X_{N+1}}(x_{N+1}, y_{N+1})$ = $d_{X_1 \times X_2 \times \cdots \times X_N}((y_1, y_2, ..., y_N), (x_1, x_2, ..., x_N)) + d_{X_{N+1}}(y_{N+1}, x_{N+1}).$

• This implies $d_{X_1 \times X_2 \times \cdots \times X_N \times X_{N+1}}((x_1, x_2, ..., x_N, x_{N+1}), (y_1, y_2, ..., y_N, y_{N+1}))$ = $d_{X_1 \times X_2 \times \cdots \times X_N \times X_{N+1}}((y_1, y_2, ..., y_N, y_{N+1}), (x_1, x_2, ..., x_N, x_{N+1})).$

Triangle Inequality:

- Let $(x_1, x_2, ..., x_N, x_{N+1}), (y_1, y_2, ..., y_N, y_{N+1}), (z_1, z_2, ..., z_N, z_{N+1}) \in X_1 \times X_2 \times \cdots \times X_N \times X_{N+1}$.
- Then $d_{X_1 \times X_2 \times \cdots \times X_N}((x_1, x_2, ..., x_N), (z_1, z_2, ..., z_N))$ $\leq d_{X_1 \times X_2 \times \cdots \times X_N}((x_1, x_2, ..., x_N), (y_1, y_2, ..., y_N)) + d_{X_1 \times X_2 \times \cdots \times X_N}((y_1, y_2, ..., y_N), (z_1, z_2, ..., z_N))$ (inductive hypothesis).
- And $d_{X_{N+1}}(x_{N+1}, z_{N+1}) \le d_{X_{N+1}}(x_{N+1}, y_{N+1}) + d_{X_{N+1}}(y_{N+1}, z_{N+1})$ ($d_{X_{N+1}}$ is a metric on X_{N+1}).
- Therefore, $d_{X_1 \times X_2 \times \cdots \times X_N}((x_1, x_2, ..., x_N), (z_1, z_2, ..., z_N)) + d_{X_{N+1}}(x_{N+1}, z_{N+1})$ $\leq d_{X_1 \times X_2 \times \cdots \times X_N}((x_1, x_2, ..., x_N), (y_1, y_2, ..., y_N)) + d_{X_1 \times X_2 \times \cdots \times X_N}((y_1, y_2, ..., y_N), (z_1, z_2, ..., z_N))$ $+d_{X_{N+1}}(x_{N+1}, y_{N+1}) + d_{X_{N+1}}(y_{N+1}, z_{N+1}).$
- This implies $d_{X_1 \times X_2 \times \cdots \times X_N \times X_{N+1}}((x_1, x_2, ..., x_N, x_{N+1}), (z_1, z_2, ..., z_N, z_{N+1}))$ $\leq d_{X_1 \times X_2 \times \cdots \times X_N \times X_{N+1}}((x_1, x_2, ..., x_N), (y_1, y_2, ..., y_N, y_{N+1}))$ $+d_{X_1 \times X_2 \times \cdots \times X_N \times X_{N+1}}((y_1, y_2, ..., y_N, y_{N+1}), (z_1, z_2, ..., z_N, z_{N+1})).$

Hence, $d_{X_1 \times X_2 \times \cdots \times X_N \times X_{N+1}}$ is a metric on $X_1 \times X_2 \times \cdots \times X_N \times X_{N+1}$. By induction, we have shown that the construction of a metric on $X_1 \times X_2 \times \cdots \times X_N$ is indeed a metric.

2. Assume $K_1 \subseteq X$ and $K_2 \subseteq Y$ are compact sets. Prove that $K_1 \times K_2 \subseteq X \times Y$ is compact. Conclude that a product of compact sets in $X_1 \times \cdots \times X_N$ is compact.

Proof. Base Case: We will prove that $K_1 \times K_2$ is compact.

- Let K_1 and K_2 be compact sets and $\{G_\alpha\}_{\alpha\in A}$ be an open cover of $K_1\times K_2$. We will show that it has a finite subcover.
- For each point $(a,b) \in K_1 \times K_2$, we can choose some α such that $(a,b) \in G_{\alpha}$.
- G_{α} is an open set in $X \times Y$. Hence, (a,b) is contained in some open box $U_{(a,b)} \times V_{(a,b)} \subseteq G_{\alpha}$ where $U_{(a,b)} \subseteq K_1$ and $V_{(a,b)} \subseteq K_2$ are open sets.
- Now, let's fix a and vary b. Then every point (a,b) is contained in an open box in the product $K_1 \times K_2$ and the box is itself the product of a subset of K_1 and a subset of K_2 .
- Therefore, the collection of sets $\{V_{(a,b)}\}_{b\in K_2}$ is an open cover for K_2 .
- Since K_2 is compact, we find a finite cover $\{V_{(a,b_j(a))}\}$ of K_2 containing finitely many open sets containing points $\{(a,b_j(a))\}$.
- Now, let $U_{\alpha} = \bigcap_{j} U_{(a,b_{j}(a))}$ where the intersection of finitely many open sets, and therefore open itself.
- Since K_1 is compact, we find a finite subcover $\{U_{\alpha_i}\}$ of K_1 .
- This implies that $\{U_{\alpha_i} \times V_{(a,b_i(a))}\}$ is a finite subcover of $K_1 \times K_2$.

Inductive Step: We assume that $K_1 \times K_2 \times \cdots \times K_N$ is compact. We will prove that $K_1 \times K_2 \times \cdots \times K_N \times K_{N+1}$ is compact.

- Let $\{G_{\beta}\}_{{\beta}\in B}$ be an open cover of $K_1 \times \cdots \times K_N \times K_{N+1}$. We will show that it has a finite subcover.
- For any point $(x_1, \ldots, x_N, x_{N+1}) \in K_1 \times \cdots \times K_N \times K_{N+1}$, there exists an open set G_β containing this point. This G_β contains an open set of the form $U_1 \times \cdots \times U_N \times U_{N+1}$ where each U_i is open in K_i .

¹Actually, this holds in much greater generality — arbitrary products of compact sets are compact! (Tychonoff's Theorem)

- By the inductive hypothesis we know that $K_1 \times \cdots \times K_N$ is compact. We know that K_{N+1} is compact as well.
- By sequentially considering each K_i , we can construct a finite subcover for $K_1 \times \cdots \times K_N$, and separately, a finite subcover for K_{N+1} , similar to our base case.
- Combine these finite subcovers similar to our base case creates a finite subcover of $K_1 \times \cdots \times K_N \times K_{N+1}$.

Hence, by induction, we have shown that the product of compact sets in $X_1 \times \cdots \times X_N$ is compact.

3. Conclude that cells $[a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_N, b_N]$ are compact in \mathbb{R}^N equipped with the metric as defined above.

Proof.

- Assuming $a_i < b_i$ for all $1 \le i \le N$, we know by the proposition in class that each $[a_i, b_i]$ is compact in \mathbb{R} .
- Therefore, $[a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_N, b_N]$ is compact in \mathbb{R}^N equipped with the metric as defined above by this problem.

Problem 4. Let (X, d) be a metric space and let K_1 and K_2 be two compact sets in X. Assume the sets are disjoint, i.e. $K_1 \cap K_2 = \emptyset$.

1. Use the fact that

$$\forall p \in K_1, \ q \in K_2 \quad \exists r_{p,q} > 0 \quad \text{such that} \quad N_{r_{p,q}}(p) \cap N_{r_{p,q}}(q) = \emptyset,$$

to prove that there exists r > 0 satisfying that $\forall p \in K_1, q \in K_2 \quad d(p,q) > r$.

Proof.

- We first notice that the fact implies that $\forall p \in K_1, q \in K_2 \quad d(p,q) \geq r_{p,q}$. If this wasn't the case, then $N_{r_{p,q}}(p) \cap N_{r_{p,q}}(q) \neq \emptyset$.
- We will construct a universal r such that for all $\forall p \in K_1, q \in K_2$ d(p,q) > r. The idea will be to use the fact that K_1 and K_2 are compact to locate a minimum from its finite subcovers $r \leq r_{p,q}$.
- We will construct open covers for K_1 and K_2 . For each $p \in K_1$, consider $N_{r_{p,q}/2}(p)$. This is an open cover for K_1 because all neighborhoods are open and all $p \in K_1$ are covered. Similarly, for each $q \in K_2$, consider $N_{r_{p,q}/2}(q)$, which is an open cover for K_2 .
- Because K_1 and K_2 are compact, we have finite subcovers $\{N_{r_{p_i,q_i}/2}(p_i)\}_{i=1}^n$ and $\{N_{r_{p_i,q_i}/2}(q_i)\}_{j=1}^m$ for K_1 and K_2 respectively.
- Let $r = \min\{r_{p_i,q_j}/2 : 1 \le i \le n, 1 \le j \le m\}.$
- With r chosen as above, for any $p \in K_1$, $q \in K_2$, d(p,q) > r. This follows because if there were any $p \in K_1$, $q \in K_2$, $d(p,q) \le r$, their neighborhoods would overlap, contradicting our initial assumption that we can always find $r_{p,q}$ making their neighborhoods disjoint.

2. Is the same statement true for any two closed sets? That is, if F_1 and F_2 are closed in X with $F_1 \cap F_2 = \emptyset$, then there exists r > 0 for which d(p,q) > r for all $p \in F_1$ and $q \in F_2$?

Proof. We will show that the statement is not true for any two closed sets by providing a counterexample.

- Let F_1 and F_2 be two closed sets in \mathbb{R}^2 with the standard metric.
- Let $F_1 = \{(x, 1/x) \in \mathbb{R}^2 : x > 0\}, F_2 = \{(x, 0) \in \mathbb{R}^2 : x \in \mathbb{R}\}.$
- Notice that F_1 and F_2 are both closed.
- Notice that $F_1 \cap F_2 = \emptyset$. This is clear because for any point in F_1 , the y-coordinate is 1/x, which is always positive for x > 0. Meanwhile, the y-coordinate for any point in F_2 is always 0. Hence, there are no points in common.
- We will show that for any r > 0, there exists $p \in F_1$ and $q \in F_2$ such that $d(p,q) \le r$. Pick p = (2/r, r/2) in F_1 and q = (2/r, 0) in F_2 . The distance between p and q is given by $d(p,q) = \sqrt{((2/r) (2/r))^2 + (r/2 0)^2} = \sqrt{0 + (r/2)^2} = r/2 < r$, demonstrating that there cannot be a uniform r > 0 such that d(p,q) > r for all $p \in F_1$ and $q \in F_2$.

Problem 5. Let (X,d) be a metric space and let $\{K_n\}_{n\in\mathbb{N}}$ be a countable collection of non-empty compact sets satisfying $K_1\supseteq K_2\supseteq K_3\supseteq ...^2$.

1. Prove that $\bigcap_{n\in\mathbb{N}} K_n \neq \emptyset$.

Proof.

- Consider $G_n = K_n^c$ for each $n \in \mathbb{N}$. Notice that G_n is open, as it is the complement of a compact set which is necessarily closed.
- Assume in contradiction that $\bigcap_{n\in\mathbb{N}} K_n = \emptyset$. This implies that $\bigcup_{n\in\mathbb{N}} G_n = X$. In particular, this implies that $\{G_n\}_{n\in\mathbb{N}}$ is an open cover for X.
- Since K_1 is compact, there exists a finite subcover $\{G_{n_1}, G_{n_2}, ..., G_{n_m}\}$ for K_1 .
- Define $k = \max\{n_1, n_2, ..., n_m\} + 1$. Then $K_k \subseteq K_1$ because $\{K_n\}_{n \in \mathbb{N}}$ is a nested sequence.
- This implies that $\{G_{n_1}, G_{n_2}, ..., G_{n_m}\}$ is an open cover for K_k .
- However, because G_n is the complement of K_n , K_k must be disjoint from the cover formed by $\{G_{n_1}, G_{n_2}, ..., G_{n_m}\}$. This is a contradiction, as K_k cannot be both disjoint from the cover but also covered by the cover.
- Therefore, $\bigcap_{n\in\mathbb{N}} K_n \neq \emptyset$.

2. Is the same statement true for a nested sequence of closed sets? That is, is it true that given a sequence $\{F_n\}_{n\in\mathbb{N}}$ of non-empty closed sets satisfying $F_1\supseteq F_2\supseteq F_3\supseteq ...$ has $\bigcap_{n\in\mathbb{N}}F_n\neq\emptyset$?

Proof. We will show that the statement is not true for a nested sequence of closed sets by providing a counterexample.

- Consider the nested sequence of closed sets $\{F_n\}_{n\in\mathbb{N}}$ where $F_n=[n,\infty)$ for each $n\in\mathbb{N}$.
- However, $\bigcap_{n\in\mathbb{N}} F_n = \emptyset$. This is because there is no real number that is in every set F_n . For any real number $x\in\mathbb{R}$, we can always find an n>x such that the real number is not in F_n .

Good luck!

 $^{^{2}}$ A sequence of sets satisfying this condition is called a *nested* sequence.

³Hint: Consider the complements $G_n = K_n^c$. This result is called Cantor's lemma and we've encountered a special case of it as part of the proof of uncountability of (0,1) in \mathbb{R} .