Departamento de Matemática	Universidade do Minho
Tópicos de Matemática	3º teste – 13 jan 2023
Lic. em Ciências de Computação - $1^{\underline{o}}$ ano	duração: duas horas
Nome	Número
GRUPO I. Em cada uma das questões seguintes, d assinalando a opção conveniente:	iga se é verdadeira (V) ou falsa (F) a proposição,
1. Para todo o conjunto A , existe uma relação binári é simétrica mas não é transitiva.	a definida em A que $\mathbf{V} \square \ \mathbf{F} \square$
2. Para qualquer relação de equivalência R em $A=\epsilon$ então, $(1,2)\in R$.	$\{1,2,3,4\}$, se $3\in [2]_R\cap [1]_R$, $V\Box \ F\Box$
3. O conjunto $\{\{1,2\},\{3,4\},5\}$ é uma partição de I	$B = \{1, 2, 3, 4, 5\}.$ $V \square F \square$
4. Para quaisquer dois conjuntos não vazios e disjunt relação de equivalência em $A \cup B$.	os A e B , $\omega_A \cup \omega_B$ é uma $V \square \ F \square$
5. A relação binária $\theta = \{(1,2),(3,1),(2,2)\}$ em $A = \{(1,2),(3,1),(2,2)\}$ em $A = \{(1,2),(3,1),(2,2)\}$	$=\{1,2,3,4\}$ é uma relação $\mathbf{V}\square\ \mathbf{F}\square$
6. A relação $R=\{(1,1),(2,2),(3,3),(1,2),(2,3)\}$ é em $A=\{1,2,3\}.$	é uma relação de ordem total V□ F□
7. Para qualquer c.p.o. (A, \leq) e qualquer subconjunt	to não vazio X de A , se X admite

GRUPO II. Considere o conjunto $A=\{1,2,3\}$. Dê exemplo, ou justifique que não existe, de:

8. Para quaisquer c.p.o.'s A e B e qualquer função isótona $f:A\to B$, se m é elemento

 $V \square F \square$

 $V \square F \square$

1. Uma relação binária θ em A que seja simétrica mas não transitiva;

elemento mínimo, então, $A \backslash X$ admite elemento máximo.

máximo de A então f(m) é elemento máximo de B.

2. Uma relação de equivalência \mathcal{R} em A com 6 elementos;

3. Uma relação de ordem parcial \leq em A tal que \leq = \leq_d ;

4. Uma relação de ordem parcial \leq em A tal que no c.p.o. A não existe $\inf \varnothing$ nem $\sup \varnothing$.

GRUPO III. Sejam A um conjunto e θ a relação binária definida em $A \times \mathcal{P}(A)$ por $(a,X) \ \theta \ (b,Y) \Leftrightarrow X \cup \{a\} = Y \cup \{b\} \qquad (a,b \in A,\ X,Y \subseteq A).$

1. Mostre que θ é uma relação de equivalência em $A \times \mathcal{P}(A)$.

2. Dado $a \in A$, determine as classes $[(a, \emptyset)]_{\theta}$ e $[(a, A)]_{\theta}$
--

3. Determine em que condições se tem
$$[(a,\emptyset)]_{\theta}\cap [(a,A)]_{\theta}\neq \emptyset$$
.

4. Para
$$A=\{1,2\}$$
, indique o conjunto quociente definido por $\theta.$

GRUPO IV. Considere o c.p.o. (A,\leq) definido pelo diagrama de Hasse apresentado. Indique, caso exista:

- 1. Maj $\{2, 4, 5, 7\}$;
- 2. $\inf\{2, 6\}$:
- 3. $\inf \emptyset \in \sup \emptyset$;

- 4. Um subconjunto X de A que não admita supremo;
- 5. Um subconjunto X de A com 3 elementos maximais e 3 elementos minimais;
- 6. um elemento x de A tal que $\{3,5,9,x\}$ seja um reticulado para a ordem parcial induzida pela ordem do c.p.o. A.