Landskeppni í eðlisfræði 2021

Forkeppni

2. mars kl. 10-12

Leyfileg hjálpargögn: Reiknivél sem geymir ekki texta.

Verkefnið er í tveimur hlutum og er samtals 100 stig. Gætið þess að lesa leiðbeiningar vel.

Verkefnið hefur verið lesið vandlega yfir. Það er lagt fyrir nákvæmlega í þeirri mynd sem það er og er umsjónarmönnum óheimilt að gefa nánari skýringar. Ef einhverjir gallar reynast vera á verkefninu, koma þeir jafnt niður á öllum þátttakendum. Sjáir þú eitthvað athugavert við einstakar spurningar er þér frjálst að geta þess stuttlega á úrlausnarblöðunum.

Góður frágangur hefur jákvæð áhrif!

Nafn:		
Kennitala:		
Skóli:		
Hvenær lýkur þú stúdentsprófi? _		
Sími:		
Netfang:		
Heimilisfang í vetur:		

Tafla yfir þekkta fasta

Nafn	Tákn	Gildi
Hraði ljóss í tómarúmi	c	$3.00 \cdot 10^8 \text{m/s}$
Þyngdarhröðun við yfirborð jarðar	g	9.82m/s^2
Frumhleðslan	e	$1,602 \cdot 10^{-19} \mathrm{C}$
Massi rafeindar	m_e	$9.11 \cdot 10^{-31} \mathrm{kg}$
Gasfastinn	R	8,3145 J/(mol K)
Fasti Coulombs	k_e	$8,988 \cdot 10^9 \mathrm{N}\mathrm{m}^2/\mathrm{C}^2$
Rafsvörunarstuðull tómarúms	ϵ_0	$8.85 \cdot 10^{-12} \mathrm{C}^2 \mathrm{s}^2 / (\mathrm{m}^3 \mathrm{kg})$
Pyngdarfastinn	G	$6.67 \cdot 10^{-11} \mathrm{m}^3/(\mathrm{kg}\mathrm{s}^2)$
Geisli jarðarinnar	R_{\oplus}	$6.371 \cdot 10^6 \mathrm{m}$
Massi jarðarinnar	M_{\oplus}	$5.97 \cdot 10^{24} \mathrm{kg}$
Massi sólarinnar	M_{\odot}	$1,99 \cdot 10^{30} \mathrm{kg}$
Stjarnfræðieining	1 AU	$1,50 \cdot 10^{11} \mathrm{m}$

Fyrri hluti

Í þessum hluta eru 20 krossaspurningar sem gefa 70 stig í heildina. Hver spurning gefur 3,5 stig. Svaraðu spurningunum með því að setja greinilegan hring utan um einn og aðeins einn bókstaf. Aðeins eitt svar við hverri spurningu er rétt eða á best við.

Það er ekki dregið frá fyrir röng svör.

- 1. Á síðasta ári setti Letensenbet Gidey heimsmet í 5000 m hlaupi með því að hlaupa vegalengdina á 14 mínútum og 7 sekúndum. Hver var meðalhraði hennar í hlaupinu?
 - A. $3.1 \, \text{m/s}$
 - B. $4.4 \, \text{m/s}$
 - C. $5.9 \, \text{m/s}$
 - D. $6.7 \, \text{m/s}$
 - E. $11,1 \,\mathrm{m/s}$
- 2. Tesla Roadster kemst úr kyrrstöðu upp í $100\,\mathrm{km/klst}$ hraða á $1,90\,\mathrm{s}$. Hver er meðalhröðun bílsins á þessum tíma?
 - A. $1,90 \,\mathrm{m/s^2}$
 - B. $14.6 \,\mathrm{m/s^2}$
 - C. $19.0 \,\mathrm{m/s^2}$
 - D. $25.5 \,\mathrm{m/s^2}$
 - E. $48.6 \,\mathrm{m/s^2}$
- 3. Froskur stekkur lóðrétt með upphafshraða $7.0\,\mathrm{m/s}$. Hver er mesta hæð sem froskurinn nær í stökkinu?
 - A. 1,0 m
 - B. 1,5 m
 - $C. 2,0 \, m$
 - D. 2,5 m
 - E. 3,0 m
- 4. Jörmunrekur hjólar á hraðanum 7,0 m/s eftir láréttum vegi. Máfur situr á ljósastaur yfir veginum í 5,5 m hæð. Máfurinn ákveður að skíta á Jörmunrek. Til þess að auka hittni sína ákveður máfurinn að skíta með engum upphafshraða beint niður. Skíturinn lendir framan í andlitinu á Jörmunreki (hausinn hans er í 1,5 m hæð). Hversu langt frá ljósastaurnum var Jörmunrekur þegar máfurinn skeit?
 - A. $6.3 \, \text{m}$
 - B. 9,2 m
 - C. 12 m
 - D. 17 m
 - E. 25 m

- 5. Barn er mjög lítil mælieining fyrir flatarmál sem er notuð af kjarneðlisfræðingum til að lýsa líkunum á því að tvær öreindir lendi í árekstri. Eitt barn jafngildir $1,0\cdot 10^{-28}\,\mathrm{m}^2$. Rétthyrningslaga fótboltavöllur hefur lengd $105\,\mathrm{m}$ og breidd $68\,\mathrm{m}$. Hvað eru mörg barn í fótboltavelli?
 - A. $1.9 \cdot 10^{-31}$
 - B. $1.5 \cdot 10^{-30}$
 - C. $5.2 \cdot 10^{29}$
 - D. $1.1 \cdot 10^{30}$
 - E. $7.1 \cdot 10^{31}$
- 6. Vilbert er að draga kassa með massa 10 kg eftir núningslausum, láréttum fleti. Vilbert dregur kassann með krafti, $F=100\,\mathrm{N}$, yfir horni $\theta=60^\circ$ miðað við lárétt. Hver er hröðun kassans?
 - A. $5.0 \,\mathrm{m/s^2}$
 - B. $6.0 \,\mathrm{m/s^2}$
 - C. $7.0 \,\mathrm{m/s^2}$
 - D. $8.0 \,\mathrm{m/s^2}$
 - E. $9.0 \,\mathrm{m/s^2}$

7. Á tímanum t=0 er kúlu sleppt úr kyrrstöðu við enda hálfhringslaga brautar. Enginn núningur verkar á milli kúlunnar og brautarinnar. Hvert eftirfarandi grafa lýsir best stærð þverkraftsins P sem verkar á kúluna sem fall af tíma t á því tímabili sem það tekur kúluna að renna á milli enda brautarinnar.

- 8. Tveir gormar, gormur A og gormur B, eru báðir $10\,\mathrm{cm}$ langir óstrekktir. Gormur A hefur gormstuðul $k_A=240\,\mathrm{N/m}$ en gormur B hefur óþekktan gormstuðul k_B . Nú eru gormarnir festir með annan endann við sama hlut og með hinn endann við sinn hvorn vegg. Þegar kerfið er í jafnvægi hefur gormur A lengdina $13\,\mathrm{cm}$ og gormur B lengdina $19\,\mathrm{cm}$. Hvert er gildið á k_B ?
 - $A. 80 \, N/m$
 - $B. 130 \, N/m$
 - $C. 240 \, N/m$
 - $D. 510 \,\mathrm{N/m}$
 - $E. 720 \, N/m$
- 9. Vagn með massa 2,0 kg rennur eftir núningslausum, láréttum fleti með hraða 1,0 m/s. Skyndilega byrjar að hellidemba og það rignir lóðrétt inn í vagninn þannig að vatnið byrjar að safnast fyrir inni í farangursrými vagnsins. Hver verður hraði vagnsins eftir að 0,50 L af vatni hafa safnast fyrir í farangursrýminu?
 - A. $1.5 \, \text{m/s}$
 - B. $1.0 \, \text{m/s}$
 - C. $0.80 \, \text{m/s}$
 - D. $0.50 \, \text{m/s}$
 - E. $0.20 \, \text{m/s}$
- 10. Filip Dahl er að æfa sig fyrir listskautakeppni í Svíþjóð næstkomandi laugardag. Hann ætlar að framkvæma stökk þar sem hann fjórfaldar snúningshraðann sinn. Ef Filip hefur hverfitregðuna I_0 og hornhraðann ω_0 í upphafi, hver er þá hverfitregða hans í stökkinu?
 - A. $4I_0$
 - B. $2I_0$
 - C. $\frac{I_0}{2}$
 - D. $\frac{I_0}{4}$
 - E. $\frac{I_0}{8}$
- 11. Alexander Ovechkin skýtur hokkípökk af stað með upphafshraða 9,0 m/s þannig að hann rennur eftir láréttu hokkísvelli. Massi pökksins er 170 g og núningsstuðullinn milli pökksins og íssins er $\mu=0,05$. Hversu langt rennur pökkurinn áður en að hann stöðast?
 - A. 13 m
 - B. 55 m
 - C. 82 m
 - D. 1,5 km
 - E. 2,2 km

- 12. Í massalausu reipi er togkrafturinn alls staðar sá sami. Skoðum hins vegar reipi með massa sem hangir með annan endann festann. Punktar A, B og C eru merktir á þetta reipi (sjá mynd). Látum T_A , T_B og T_C vera stærðir togkraftsins í reipinu í punktum A, B og C (í þeirri röð). Hver eftirfarandi fullyrðinga er sönn?
 - A. $T_A = T_B = T_C$
 - B. $T_A > T_B > T_C$
 - C. $T_C > T_B > T_A$
 - D. $T_B > T_A = T_C$
 - E. $T_A = T_C > T_B$
- 13. Árið 1864 sýndi James Clerk Maxwell fram á að ljós væri rafsegulbylgja og að hraði ljóssins í tómarúmi væri gefinn með

$$c = \frac{1}{\sqrt{\varepsilon_0 \mu_0}},$$

þar sem $\varepsilon_0 = 8.85 \cdot 10^{-12} \, \mathrm{C^2 \, s^2/(m^3 \, kg)}$ er fasti sem nefnist rafsvörunarstuðull tómarúms og μ_0 er fasti sem nefnist segulsvörunarstuðull tómarúms. Hver er SIeiningin á μ_0 ?

- A. $(kg \cdot s)/m^4$
- B. $(C \cdot m)/(s^2 \cdot kg^2)$
- C. $(m^2 \cdot kg^2)/C$
- D. $(m \cdot kg)/C^2$
- E. $m^3/(C \cdot s^2)$

- 14. Í rafrásinni hér fyrir ofan sést spennugjafi með $2.0\,\mathrm{V}$ spennu og þrjú viðnám, $R_1=1\,\Omega,\ R_2=2\,\Omega$ og $R_3=3\,\Omega.$ Hver er straumurinn í rásinni?
 - A. 0,50 A
 - B. $0.33 \, \text{A}$
 - C. $0.87 \, \text{A}$
 - D. 1,0 A
 - E. 2,0 A

- 15. Rafeind og róteind er komið fyrir mitt á milli tveggja platna þar sem efri platan hefur stóra jákvæða hleðslu +Q og neðri platan hefur stóra neikvæða hleðslu -Q. Eindunum er síðan sleppt úr kyrrstöðu. Hvað gerist?
 - A. Báðar eindirnar haldast kyrrar.
 - B. Báðar eindirnar fara upp.
 - C. Báðar eindirnar fara niður.
 - D. Róteindin fer upp. Rafeindin fer niður.
 - E. Róteindin fer niður. Rafeindin fer upp.

- 16. Þrír massar A, B og C hafa massana m, m og 2m eins og sést á myndinni fyrir ofan þar sem fjarlægð milli A og B er r og fjarlægð milli B og C er 2r. Engir aðrir utanaðkomandi kraftar verka á kerfið. Í hvaða átt munu massarnir A, B og C ferðast um leið og þeim er sleppt úr kyrrstöðu?
 - A. Kyrr, Kyrr, Kyrr
 - B. Vinstri, Hægri, Hægri
 - C. Hægri, Kyrr, Vinstri
 - D. Hægri, Hægri, Vinstri
 - E. Hægri, Vinstri, Vinstri

- 17. Massi $m=0.84\,\mathrm{kg}$ er festur í gorm með gormstuðul $k=55\,\mathrm{N/m}$ sem hangir lóðrétt úr loftinu. Massanum er nú haldið í óstrekktri stöðu gormsins og sleppt úr kyrrstöðu. Hver verður mesta lenging gormsins?
 - A. 10 cm
 - B. 20 cm
 - C. 30 cm
 - D. 40 cm
 - E. 50 cm

18. Geirþrúður hefur fullkomnað uppskrift sína fyrir ísköldu og svalandi vatnsglasi. Til þess setur hún klaka sem kældur hefur verið til -10 °C út í vatn við 10 °C. Einn daginn getur Geirþrúður ekki klárað ísvatnið sitt og setur það í ísskápinn. Viku seinna, þegar hún er næst í skapi fyrir svalandi drykk, opnar hún ísskápinn og tekur eftir að í glasinu er ennþá bæði vatn og klaki. Hvert er hitastigið á vatninu?

$$A. -10$$
 °C

B.
$$-5$$
 °C

- 19. Tvær jafn stórar en misþungar stangir mynda eina samsetta stöng. Léttari stöngin hefur massa m og sú þyngri hefur massa 3m. Um hvaða ás, sem merktur er á myndina, er auðveldast að snúa samsettu stönginni?
 - A. Ás A
 - B. Ás B
 - C. Ás C
 - D. Ás D
 - E. Ás E

20. Tvær sjörnur með sama massa M eru á hringhreyfingu umhverfis massamiðju sína í fjarlægð d frá hvor annarri. Umferðartími stjarnanna umhverfis massamiðjuna er þá gefinn með

$$T = \left(\frac{2\pi^2 d^3}{GM}\right)^k$$

Þar sem G táknar þyngdarlögmálsfastann. Hvert er gildið á fastanum k?

- A. 4
- B. 2
- C. 1
- D. $\frac{1}{2}$
- E. $\frac{1}{4}$

Seinni hluti

Skrifleg dæmi (30 stig)

Í þessum hluta eru tvær stærri spurningar sem gefa 15 stig hver. Sýndu útreikninga í öllum liðum. Gefin eru stig fyrir útreikninga þótt lokasvar sé ekki rétt. Athugaðu að hægt er að fá stig fyrir seinni liði dæmanna þótt fyrri liðir hafi ekki verið reiknaðir.

Dæmi 1: Gormur (15 stig)

Kubbur með massa $m_1=1.0\,\mathrm{kg}$ hvílir á núningslausu borði. Kubburinn er festur í loftið við gorm með gormstuðul $k=170\,\mathrm{N/m}$ sem hefur óstrekkta lengd $\ell=0.50\,\mathrm{m}$. Kubburinn er festur með massalausum böndum annars vegar við vegg vinstra meginn og hinsvegar hægra meginn við kubb með massa $m_2=2.0\,\mathrm{kg}$ yfir núningslausa, massalausa trissu. Nú klippum við á bandið sem tengir m_1 við vegginn. Þá færist m_1 til hægri vegna þyngdar kubbsins m_2 . Það þýðir að það strekkist á gorminum um vegalengd x og gormurinn hefur þá heildarlengd $\ell+x$. Þá myndar gormurinn horn θ miðað við lárétt.

(a) (4 stig) Skrifið niður kraftajöfnur fyrir kubbana þegar gormurinn er búinn að strekkjast um x og myndar horn θ miðað við lárétt eins og á seinni myndinni hér að ofan. Ákvarðið hröðun kerfisins, a, þegar gormurinn hefur strekkst um x, einungis sem fall af m_1, m_2, k, x, θ og þyngdarhröðun jarðar, g.

(b)	(5 stig) Á einhverjum tímapunkti mun lóðrétti þáttur gormkraftsins vera nægilega mikill til þess að m_1 losni frá borðinu. Notið rúmfræðileg tengsl hornsins θ og strekkingarinnar x ásamt kraftajöfnunum til þess að ákvarða tölulegt gildi á x í þeim punkti þar sem að kubburinn losnar.
(c)	(6 stig) Notið orkuvarðveislu til þess að ákvarða hraða kubbsins m_1 þegar hann losnar frá yfirborðinu.

Dæmi 2: Kastöxi (15 stig)

Í þessu dæmi ætlum við að skoða hvernig kastöxi hegðar sér þegar henni er kastað. Hugsum okkur að við sleppum öxinni þannig að hún myndi horn θ_0 miðað við lóðrétt eins og sjá má á myndinni hér fyrir neðan. Massamiðja axarinnar fær þá línulegan upphafshraða v_0 og stöngin snýst um massamiðjuna sína með föstum hornhraða ω þar sem að heildarkraftvægi axarinnar er núll (hunsum loftmótstöðu). Látum d vera fjarlægðina að skotmarkinu og gerum ráð fyrir að öxin endi í sömu hæð og henni var kastað úr. Til að byrja með skulum við líta á hreyfingu kastaxarinnar eins og hún væri punktmassi sem er staddur í massamiðju axarinnar.

(a) (3 stig) Ákvarðið tímann, T, sem líður frá því að öxinni er kastað úr hæð h og þar til hún lendir í sömu hæð, h, á skotmarkinu. Gefið svarið ykkar einungis sem fall af v_0 , θ_0 og þyngdarhröðun jarðar, g.

(b) (2 stig) Ákvarðið fjarlægðina d einungis sem fall af v_0, θ_0 og þyngdarhröðun jarðar, g.

(c)	(7 stig) Við viljum að kastöxin snúist heilan hring og lendi í skotmarkinu í lóðréttri stöðu. Þegar öxinni er kastað þá er upphafshornið θ_0 lítið þ.e. $\theta_0 \approx 0$ svo nálgunin $\sin(\theta_0) \approx \theta_0$ gildir. Ákvarðið hornið θ_0 einungis sem fall af v_0, ω og þyngarhröðun jarðar, g .
(a)	(3 stig) Katrín Tanja ætlar að kasta öxi. Hún er nautsterk og getur kastað öxinni með hraðanum $v_0=15\mathrm{m/s}$
(u)	og hornhraðanum $\omega = 26 \mathrm{rad/s}$. Hversu langt frá skotmarkinu þarf Katrín að standa þannig að öxin snúist heilan hring í loftinu og hæfi skotmarkið í lóðréttri stöðu?