# 10. AI 代理人與機器學習理論基礎

< PART III Python 機器學習實務 >

# OUTLINE

- 資料分析流程
- Raw Data (原始資料) 前置處理 NumPy, Pandas
- 資料視覺化 Matplotlib
- 特徵工程 (Feature Engineering)
- 機器學習 Training & Testing Pipeline Scikit-Learn
- Al Agent & Learning Agent

資料前置處理 (Data Pre-processing) ☞ 需要"領域知識"



#### 原始資料 Raw Data



傳統資料分析 vs. Big Data 資料分析

2

#### 傳統資料分析流程: R / Python / Scala

資料視覺化 (Data Visualization)



特徵向量擷取

(Feature Vector's Extraction)



#### 資料分析方法:

- 機率模型
- 統計模型
- · 資料探勘 (Data Mining)

3 4

機器學習訓練與測試流程

(Machine Learning Pipeline for Training & Testing)

Big Data 資料分析流程: PySpark, SparkR, Spark/Scala

# Data Analytics Project Life Cycle (5 stages)









Data Acquisition (數據擷取)

- · Sampling Rate (取樣速率)
- · Quantization (數據量化)

Analog Signal (類比訊號)



A/D C



Digital Signal (數位訊號)





# Data Pre-processing (資料前置處理) 需要領域知識

#### **Data Tables**

| Time           | GPS | Velocity | Pitching |     |
|----------------|-----|----------|----------|-----|
| t <sub>1</sub> | ••• |          |          |     |
| t <sub>2</sub> |     |          |          | ••• |
| t <sub>3</sub> |     |          | •••      | ••• |
|                | ••• | •••      |          | ••• |
|                |     |          |          |     |



# Data Pre-processing:產線需建立 Data Tables



# [需要用到的 Python 技術] NumPy & Pandas

#### [One Example]: biopsy data

| ID  | area | shape | texture |  |
|-----|------|-------|---------|--|
| id1 | •••  | •••   | •••     |  |
| id2 | •••  |       | •••     |  |
| id3 | •••  |       | •••     |  |
|     |      | •••   |         |  |
|     |      |       |         |  |

#### [Another Example]: AAPL 股票

| Date           | Open | High | Low | Closed |  |
|----------------|------|------|-----|--------|--|
| d <sub>1</sub> | •••  | •••  |     |        |  |
| d <sub>2</sub> |      |      |     |        |  |
| d <sub>3</sub> |      |      |     |        |  |
| •••            | •••  |      | ••• |        |  |
|                |      |      |     |        |  |
|                | •••  | •••  | ••• |        |  |
|                |      |      |     |        |  |



## Data Visualization:從 Data Tables 繪圖

# [需要用到的 Python 技術]: Matplotlib





# Feature Engineering: 決定 Feature Variables





# Feature Engineering: 決定 Feature Variables



=> Machine Learning Training & Testing Pipeline



### **Machine Learning Training & Testing Pipeline**



11



#### **Machine Learning Training & Testing Pipeline**

## [需要用到的 Python 技術]: Scikit-Learn

Q: 為什麼 Feature Dataset, xi 要拆解成 75% (or 80%): 25% (or 20%)?

可不可以拆解成其他比例呢? 例如:60%:40%

Q:如何決定該選擇 Normalization 或 Standardization?

Q:如何在Training階段選擇Algorithms?

Q:如何在Training階段,進行Evaluation (評估)? [labeled data]

Q:如果 Training Model 在 Testing 階段,預測結果表現"很好"或"不好",該如何處理呢?

Risk Analysis: Test Result => Baseline => Strategy
Risk Management => Execution

# **Al Agent**



# Al Agent for Industry 4.0 Solutions



# 一般的學習型代理人 Exploitation vs. Exploration

#### 4 個概念上的元件:

- 學習元件 負責做出改進
- 執行元件 負責選擇外部動作 (相 當於先前提過的代理人
- 批評者 評價代理人做得如何之後,學習元件利用來自批評者的回饋來決定應該如何修改執行元件, 使得在未來能夠做得更好
- 問題產生器 負責提出探索活動, 收集新資訊及經驗



#### 一般的學習型代理人

#### REFERENCE

Jake VanderPlas, "*Python Data Science Handbook*", 2016, O'Reily.

https://jakevdp.github.io/PythonDataScienceHandbook/

#### **Code from Github:**

https://github.com/jakevdp/PythonDataScienceHandbook