TD: III

1 Intégrales généralisées

Exercice 1 Montrer que l'intégrale de $f: t \mapsto e^{-t}$ est convergente sur $[0, +\infty[$ et que l'integrale $\int_0^{+\infty} e^{-t} dt = 1$

Exercice 2 Montrer que l'intégrale de $f: t \mapsto \frac{1}{1+t^2}$ est convergente sur $[0, +\infty[$ et que l'integrale $\int_0^{+\infty} \frac{1}{1+t^2} dt = \frac{\pi}{2}$

Exercice 3 Montrer que l'intégrale de $f: t \mapsto \frac{1}{t^2}$ est divergente sur]0, 1].

Exercice 4 Montrer que l'intégrale de $f: t \mapsto \sin(t)$ est divergente sur $[0, +\infty[$.

Exercice 5 Montrer que l'intégrale de $f: t \mapsto \frac{1}{\sqrt{1-t^2}}$ est convergente sur]-1, 1[et $\int_{-1}^1 \frac{1}{\sqrt{1-t^2}} dt = \pi$.

Exercice 6 Soit λ un nombre complexe. Étudier la nature de l'intégrale $\int_0^{+\infty} e^{\lambda x} dx$ en précisant sa valeur en cas de convergence.

Exercice 7 Soit $f \in \mathscr{C}^0(\mathbb{R}, \mathbb{R})$ telle que $\lim_{x \to +\infty} f(x) = l$, et $\lim_{x \to -\infty} f(x) = l'$

- 1. Existence et calcul $\int_{-\infty}^{+\infty} (f(t+1) f(t)) dt$
- 2. Calcul de $\int_{-\infty}^{+\infty} (\arctan(t+1) \arctan(t)) dt$

Exercice 8 Montrer que $I_n = \int_0^{+\infty} t^n e^{-t} dt$ est convergente et calculer sa valeur I_n pour tout $n \in \mathbb{N}$

Exercice 9 Montrer que l'intégrale $\int_0^1 \frac{\ln(t)}{(1+t)^2} dt$ converge et calculer sa valeur.

Exercice 10 Montrer que l'intégrale $\int_0^{+\infty} \frac{\arctan(t^2)}{t^2} dt$ converge et calculer sa valeur.

Exercice 11 Prouver la convergence et calculer $\int_0^{\frac{\pi}{2}} \ln(\sin t) dt$

Exercice 12 Étudier la nature de l'intégrale $\int_0^{+\infty} \frac{1}{t^n - 1} dt$

Exercice 13 Nature $\int_0^{+\infty} \frac{\sin t}{\cos t + \sqrt{t}} dt$

Exercice 14 Soit f une fonction continue sur $[0, +\infty]$ telle que la fonction $F: x \mapsto \int_1^x f(t) \, dt$ soit bornée. Étudier la convergence de $\int_1^{+\infty} \frac{f(t)}{t} \, dt$

Exercice 15 1. Montrer que si f est une fonction de classe \mathscr{C}^1 de [a, b] dans \mathbb{R} alors

$$\lim_{n \to +\infty} \int_a^b f(x) \sin(nx) \, dx = 0.$$

- 2. Montrer que l'application f définie sur $]0, \frac{\pi}{2}]$ par $f(x) = \frac{1}{x} \frac{1}{\sin x}$ se prolonge en une fonction de classe \mathscr{C}^1 sur $[0, \frac{\pi}{2}]$.
- 3. Calculer, pour tout $n \in \mathbb{N}$ $J_n = \int_0^{\frac{\pi}{2}} \frac{\sin((2n+1)x)}{\sin x} dx$
- 4. On pose $K_n = \int_0^{\frac{\pi}{2}} \frac{\sin((2n+1)x)}{x} dx$. Montrer que

$$\lim_{n\to+\infty} K_n = \int_0^{\frac{\pi}{2}} \frac{\sin x}{x} dx$$

5. Déduire de ce qui précède que

$$\int_0^{\frac{\pi}{2}} \frac{\sin x}{x} dx = \frac{\pi}{2}$$

Exercice 16 Étudier la nature des intégrales

$$\int_0^1 \frac{\sin t}{t} dt \qquad \int_1^{+\infty} \arctan(\frac{1}{t}) dt \qquad \int_1^{+\infty} \frac{1}{t} \left(e^{-1/t} - \cos(\frac{1}{t}) \right) dt$$