INFO 6205

Program structure and algorithm Spring 2021

Final Project Report

Introduction about this topic

COVID-19 is spreading to worldwide since 2020. It is causing the great harm of people, especially, the elderly and children. Comparing to elderly people, young people are less likely to get killed by corona virus. But they can still be infected and transmit the virus to others. With contact tracing, wearing masks and quarantining, a few countries have managed to control the spread of virus. Now that, vaccines have been developed and been used to stop the spread of virus.

Goal of our project

The main goal of our project is to simulate the spread of the COVID-19 virus and the spread of SARS-CoV-2, comparing the two viruses and then drawing our conclusion based on the observation. This project simulates the spreading of viruses by comparing the R factor and the K factor of COVID-19 and SARS. Our project also takes the population density, the usage and the effectiveness of masks, the prevalence of testing and contact tracing, the barriers of quarantine, and the vaccine into account, when we stimulate the spread of the COVID-19 and SARS.

Complete project details

We take the follow points into account:

- The R and K factors of the disease: We believe that R factor is the average number of people that a person with virus can infected. Thus, R is 3 for COVID-19 and 2 for SARS-CoV-2. The meaning of K factor is the percentage of population that caused others infected by viruses. Then, K is 0.1 for COVID-19 and 0.16 for SARS-CoV-2.
- The Population density: For our project, the total population of the city is 2000 plus 100 patients who carry viruses and enter the city. We set the safe distance between two people be 100 for both COVID-19 and SARS-CoV-2.
- The usage and the effectiveness of masks: Because not everyone wants to wear a mask, we set the usage rate of mask to be 0.2 for the entire population of the city. This means that before the spreading of the virus, people have already worn masks. We set the efficiency of the mask to be 0.9 for both COVID-19 and SARS.
- The prevalence of testing and contact tracing: Since not everyone wants to test or be able to afford the testing, we set the test rate for viruses be 0.2. We called those people, who are infected by viruses and tested positive, confirmed. Once, a person with viruses is tested positively, this person may or may not be contact tracing. If this person is contact

traced, this person shall not move in the city. Since people want the freedom, we set rate of contact tracing be 0.5.

- The barriers for quarantine: For our project, the hospital is the place to quarantine confirmed patients and the capacity of the hospital is 200 patients.
- The vaccine: Because vaccine is not enough for everyone, the availability of the vaccine is 0.1 for the entire population of the city. The injection of the vaccine is already happened at the beginning stage of the spreading of viruses. The efficiency of the vaccine is 0.7 for both COVID-19 and SARS.
- The death rate: In our project, the death rates are 0.02 and 0.11 for COVID-19 and SARS, respectfully.
- The cure: In our project, the cure rate for COVID-19 is 0.05. If a person is infected by corona virus, this person will need 30 days to self-cure and this person has 0.7 chance to self-cure. The cure rate for SARS is 0.89. If a person is infected by SARS virus, this person will need 30 days to self-cure and this person has 0.9 chance to self-cure.
- The recovered resistance: Once an infected person is cured, this person will have resistance to viruses. In our project, the recovered resistance is 0.9 for both COVID-19 and SARS.
- The sided effects: Even though, an infected person can be cure, some infected people cannot be cured, and the chance for an infected person to be cured is determined, when this person is infected. In our project, we called those people, who have sided effects and cannot be cured, destroyed. The chance for an infected person to be destroyed is 1 0.95 ^ N by days for COVID-19 and SARS.

Invariants

In a day, the program will do one action to people who are in different statuses.

Entropy Source

The entropy source is from two aspects, one is the random move of citizens, and another is the infection rate, which determines by vaccines, masks, social distance, testing, contact tracing, and virus itself.

The entropy is $h=lg(n!)-\Sigma(lg(m_i!))$, where n is the total population and m_i is the numbers of people in each status per day. For corona virus, the number of infected people $m_i = -2.1396x^2 + 92.494x - 0.646$, where x is days. At the recovery phase, the number of infected people $m_i = 0.1933x^2 - 29.118x + 1026.2$. For SARS, the number of infected people $m_i = -1.1538x^2 + 77.108x + 14.132$, where x is days. At the recovery phase, the number of infected people $m_i = 0.122x^2 - 20.442x + 818.16$.

Linxin Liu (NUID: 001565720) Tianqi Zhang (NUID: 001056916) Gan Li (NUID: 001063585) Implement-charts, algorithm.

Output

			61	103	86
			62	95	76
			63	89	74
			64	79	69
			65	74	65
			66	69	62
			67	60	61
Day	COVID-19	SARS	68	55	58
0	100	100	69	48	52
1	190	174	70	41	51
2	270	232	71	34	47
3	321	289	72	29	43
4	389	364	73	27	40
5		430	74	21	40
6		477	75	21	38
7		562	76	20	38
8		616	77	19	35
9		679	78	17	33
10		739	79	16	32
11		800	80	14	30
12		825	81	12	32
13		836	82	11	33
14		828	83	8	32
15		826	84	6	28
16	944	803	85	5	27
17	955	795	86	3	27
18		784	87	2	24
19	992	768	88	2	23
20		746	89	2	24
21	1000	727	90	2	22
22		699	91	2	19
23		692	92	2	17
24		663	93	2	14
25		639	94	2	- 11
26		597	95	1	10
27	959	586	96	0	9
28		568	97	0	9
29		537	98	0	9
30		518	99	0	
31		494	100	0	8
32		474	101	0	8
33		448	102	0	8
34		412	103	0	
35		385	104	0	8
36		359	105	0	8
37		342	106	0	(
38		318	107	0	(
39		302	108	0	(
40		280	109	0	Ę
41		263	110	0	
42		258	111	0	
43		251	112	0	
44		232	113	0	- 1
45		228	114	0	1
46		213	115	0	1
47		199	116	0	(
48		186	117	0	(
49		176	118	0	(
50		171	119	0	(
51		160	120	0	(
52		147	121	0	(
53		141	122	0	(
54		139	123	0	(
55		129	124	0	(
56		114	125	0	(
57		109	126	0	(
58		100	127	0	(
59	122	98	128	0	(
60	110	91	129	0	(

SARS COVID-19 screenshots COVID-19

SARS

Mathematical analysis

For COVID-19, we could see that the number of infected people grows by $y = -2.1396x^2 + 92.494x - 0.646$, where x is days, when the number of infected people is growing positively. The peaking point for the spreading of COVID-19 is at the 22^{nd} day. In the recovery phase, the number of infected people grows by $y = 0.1933x^2 - 29.118x + 1026.2$, where x is days. For SARS, the number of infected people grows by $y = -1.1538x^2 + 77.108x + 14.132$, where x is days. The peaking point for SARS is also at 20^{th} day. In the recovery phase, the number of infected people grows by $y = 0.122x^2 - 20.442x + 818.16$, where x is days.

To stimulate the spreading of viruses, we traverse the person pool to simulate different people's actions every day. The time complexity for this step is O(n). However, for each normal and recovered person, we need an extra traverse for the person pool to simulate the infections. So, the total time complexity is between O(n) and O(N^2), which determines by how many normal and recovered people in the person pool.

```
PersonAction.confirmedPersonAction( person1: this);
PersonAction.symptomaticPersonAction( person1: this);
PersonAction.shadowPersonAction( person1: this);
PersonAction.normalAndRecoveredPersonAction( person1: this);
```

```
/**

* @author Ethan Zhang

* @description normal and recovered peoples' action

* @createTime 13/04/2021

* @param person1 person with state of normal or recovered

*/

public static void normalAndRecoveredPersonAction(Person person1) {

    // check if there is an infection on this person

    List<Person> people = PersonPool.getInstance().personList;

    for (Person person2 : people) {

        if (infect(person1, person2)) {

            break;
        }

    }

    // normal and recovered person may move randomly in the city

    randomMove(person1);
}
```

Conclusion

After stimulating the spreading of COVID-19 and SARS, we can conclude that SARS can spread to more people than COVID-19 does. However, humans can control the spread of these two viruses by taking right actions. All infected people can stop the spread of virus by wearing a mask, stop contacting others physically and quarantining in one place. By wearing masks and the injection of the vaccine, the spreading of the viruses among healthy people can be slowly. To control the spreading of the COVID-19, we need people from the city to inject vaccine, wear masks, and we need people from outside the city do not enter the city.

Unit test MathUtilTest

PersonActionTest

PersonPoolTest

