TASK 1

Use a weather forecast website, and utilize the psychrometric chart and the formula we went through in the class to determine the absolute humidity, the wet-bulb temperature and the mass of water vapor in the air in Classroom A (Aula A) of Piacenza campus in the moment that you are solving this exercise (provide the inputs that you utilized)

II tempo oggi in Piacenza													
Mercoledì, 04 Dicembre 2019													
	05:00	07:00	10:00	14:00	18:00	19:00	21:00						
	M	*	M/K	M	M	*	*						
	LightCloud	PartlyCloud	Sun	Sun	LightCloud	PartlyCloud	PartlyCloud						
	LightCloud	PartiyCloud	Suii	Suii	LightCloud	PartiyCloud	railiyCiouu						
Temperatura effettiva	2°C	0°C	4°C	7°C	2°C	1°C	0°C						
Temperatura percepita	1°C	-3°C	3°C	5°C	0°C	-1°C	-2°C						
Precipitazioni	0 mm												
Umidità	83 %	93 %	79 %	66 %	88 %	89 %	93 %						
Pressione atmosferica	1027 hPa	1027 hPa	1027 hPa	1025 hPa	1025 hPa	1025 hPa	1025 hPa						
Intensità del vento	5 km/h	8 km/h	5 km/h	9 km/h	6 km/h	6 km/h	6 km/h						
Direzione del vento	\leftarrow	\leftarrow	^	\leftarrow	Ţ	✓	> *						
	E	E	NE	E	S	SW	SW						
Probabilità di nebbia	0 %	0 %	0 %	0 %	0 %	0 %	0 %						
Punto di rugiada	0°C	-1°C	1°C	1°C	0°C	0°C	-1°C						
Nuvole	13 %	59 %	12 %	9 %	17 %	70 %	91 %						
Nuvole basse	6 %	8 %	12 %	9 %	2 %	1 %	0 %						
Nuvole medie	0 %	0 %	0 %	0 %	0 %	0 %	0 %						
Nuvole alte	8 %	56 %	0 %	0 %	16 %	70 %	91 %						

According to the table

 $T = 4^{\circ}C$

 $\omega = 79\%$

P = 102.7kPa

Water saturation pressure at 4 degree C:

0.813 kPa

 $ClassroomA: 12m \times 6m \times 5m$

From the chart,

$$T_{wb} = 3^{\circ}\text{C}$$

$$\omega = 0.004$$

$$\omega = \frac{0.622P_{v}}{P_{a}} = \frac{0.622P_{v}}{P - P_{v}} = 0.004$$

introduce

$$P = 102.7kP_a$$

$$P_v = 0.656kP_a$$

For ideal gas

$$m = \frac{PV}{R_{sp} \cdot T}$$

$$R_{sp} = 0.4615$$

$$m_{v} = \frac{PV}{R_{sp} \cdot T} = \frac{0.656 \times (12 \times 6 \times 5)}{0.4615 \times (273 + 4)} = 1.847kg$$

$$m_{g} = \frac{m_{v}}{\phi} = \frac{1.847}{79\%} = 2.338kg$$

$$h_{a} = 1.005 \times 3 = 3.015kJ / kg_{dryair}$$

$$h_{v} = 2501.3 + 1.82 \times 3 = 2506.76kJ / kg_{water}$$

$$h = h_{a} + \omega h_{v} = 3.015 + 0.004 \times 2506.76 = 13.04kJ / kg_{dryAir}$$

TASK 2 Utilize the same methodology we went through in the class and determine the sensible and latent load corresponding to internal gains, the ventilation, and the infiltration in a house with a good construction quality and with the same geometry as that of the example which is located in Brindisi, Italy

Good quality construction $A_{ul} = 1.4cm^2/m^2$

$$\begin{split} \dot{Q}_{ig_{sensible}} &= 136 + 2.2 A_{cf} + 22 N_{oc} = 136 + 2.2 \times 200 + 22 \times 2 = 620 W \\ \dot{Q}_{ig_{latent}} &= 20 + 0.22 A_{cf} + 12 N_{oc} = 20 + 0.22 \times 200 + 12 \times 2 = 88 W \\ A_{es} &= 200 + 144 = 344 m^2 \\ A_{L} &= A_{es} \times A_{ul} = 344 \times 1.4 = 481.6 m^2 \end{split}$$

							E	BRINDIS	I, Italy						WMO#:	163200	
	Lat	40.65N	Long:	17.95E	Elev:	10	StdP:	101.2		Time Zone:	1.00 (EU	W)	Period:	86-10	WBAN:	99999	
I	Annual He	ating and h	lumidificat	on Design C	onditions												
Г				Humidification DP/MCDB and HR					Coldest month WS/MCDB MCW					/PCWD			
- 1	Coldest Heating DB —		99.6%			99%	0.4%			1	%	to 99.	6% DB				
l	Month	99.6%	99%	DP	HR	MCDB	DP	HR	MCDB	WS	MCDB	WS	MCDB	MCWS	PCWD		
	(a)	(b)	(c)	(d)	(0)	(f)	(9)	(h)	(1)	(1)	(k)	(1)	(m)	(n)	(0)		
)	2	2.9	4.1	-5.1	2.5	7.2	-3.0	3.0	7.4	13.4	10.2	12.4	10.6	3.4	250		(
I	Annual Co	oling, Dehi	umidificatio	on, and Enth	alpy Design	Condition:	•										
Г	Hottest	Hottest			Cooling (DB/MCWB	WB			Evaporation WB/MCDB					PCWD		
- 1	Month 0.		0.4% 1%		2%					% 29							
ı	MONTO	DB Range	DB	MCWB	DB	MCWB	DB	MCWB	WB	MCDB	WB	MCDB	WB	MCDB	MCWS	PCWD	
	(0)	(b)	(c)	(d)	(0)	(1)	(9)	(h)	(1)	(i)	(k)	(1)	(m)	(n)	(0)	(P)	
	8	7.1	32.8	23.6	31.1	24.3	29.9	24.3	27.2	29.7	26.3	29.0	25.6	28.3	4.2	180	(
٢		Dehumidification DP/MCDB and HR							Enthalpy/MCDB							Hours	
-[0.4%			1%			2%		0.4%			1%		%	8 to 4 &	
[DP	HR	MCDB	DP	HR	MCDB	DP	HR	MCDB	Enth	MCDB	Enth	MCDB	Enth	MCDB	12.8/20.6	
	(0)	(b)	(c)	(d)	(0)	(1)	(9)	(h)	(1)	(1)	(k)	(1)	(m)	(n)	(0)	(P)	
	26.3	21.8	29.2	25.4	20.7	28.5	24.7	19.7	27.9	86.0	30.1	82.2	29.1	78.5	28.3	1236	(3
I	Extreme A	nnual Desi	gn Conditie	ons													
Γ	5.4		1440	Extreme	Extreme Extreme Annual DB					n-Year Return Period Values of Extreme DB							
- [Extreme Annual WS		Max Mean Standard devi		feviation	n=5 years n=10 ye			years				years				
[1%	2.5%	5%	WB	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
	(0)	(b)	(c)	(d)	(0)	(f)	(9)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)	(P)	
)	11.3	9.9	8.7	31.4	0.4	37.3	1.4	3.0	-0.6	39.4	-1.4	41.1	-2.2	42.8	-3.2	44.9	(4

$$\begin{split} IDF_{heating} &= 0.065 \frac{L}{s \cdot cm^2} \\ IDF_{heating} &= 0.032 \frac{L}{s \cdot cm^2} \\ \dot{V}_{\text{inf iltration}_{heating}} &= A_l \times IDF = 481.6 \times 0.065 = 31.304 \frac{L}{s} \\ \dot{V}_{\text{inf iltration}_{cooling}} &= A_l \times IDF = 481.6 \times 0.032 = 15.411 \frac{L}{s} \\ \dot{V}_{ventilation} &= 0.05 A_{cf} + 3.5 (N_{br} + 1) = 0.05 \times 200 + 3.5 \times 2 = 17 \frac{l}{s} \\ \dot{V}_{\text{inf}-ventilation}_{heating} &= 31.304 + 17 = 48.30 \frac{L}{s} \\ \dot{V}_{\text{inf}-ventilation}_{cooling} &= 15.411 + 17 = 32.41 \frac{L}{s} \\ \dot{Q}_{\text{inf}-ventilation}_{heating}_{sensible} &= C_{sensible} \dot{V} \Delta T_{heating} = 1.23 \times 48.30 \times 15.9 = 944.60W \\ \dot{Q}_{\text{inf}-ventilation}_{heating}_{sensible} &= C_{latent} \dot{V} \Delta \omega_{heating} = 3010 \times 48.30 \times 0.0065 = 944.99W \\ \dot{Q}_{\text{inf}-ventilation}_{cooling}_{sensible} &= C_{sensible} \dot{V} \Delta T_{cooling} = 1.23 \times 32.41 \times 7.1 = 283.04W \end{split}$$

 $\dot{Q}_{\text{inf-ventilation}_{cooling_{latent}}} = C_{latent} \dot{V} \Delta \omega_{cooling} = 3010 \times 32.41 \times 0.0039 = 380.46W$