CSE 321a: Computer Organization (I) Third Year, Computer & Systems Engineering

Assignment #3

Due date: Thursday, December 21st, 2017

- 1. Consider an instruction set architecture with the following characteristics: ...
 - (a) Translate the following C-language snippet to the assembly language of this instruction set

```
MOV R1, #2

FOR: BRN R1, OUT /* BRN R1, @7 */
    ASL x(R1), #3
    DEC R1
    BR FOR /* BR @-10 */

OUT:
```

(b) Fill up the following table with the rest of the machine program ...

Address (Hexadecimal)	Contents (Hexadecimal)
5B	A4
5C	04
5D	02
5E	D4
5F	07
60	07
61	BA
62	E4
63	03
64	F5
65	01
66	EF
67	8A

(c) Show, using the table below, the execution trace of the machine program (from part 2)

Instruction	PC	R1	Memory Locations					
Instruction	PC	KI	2E	2F	30			
Initially	5B	C5	0F	85	03			
A40402	5E	02	0F	85	03			
D40707		02	0F	85	03			
BAE403		02	0F	85				
F501			0F	85	18			
EF8A		01	0F	85	18			
D40707		01	0F	85	18			
BAE403		01	0F		18			
F501			0F	A8	18			
EF8A		00	0F	A8	18			
D40707		00	0F	A8	18			
BAE403		00		A8	18			
F501		81	78	A8	18			
EF8A		81	78	A8	18			
D40707	68	81	78	A8	18			

- 2. A CPU implements a stack-based (i.e., zero-address) instruction set ..
 - (a) NEGATE

$$t_1 \text{: MAR} \leftarrow [SP]$$

 t_2 : MBR \leftarrow Memory

 $t_3 : MBR \leftarrow \text{- [MBR]}$

 t_4 : Memory \leftarrow [MBR]

(b) **EXCHANGE** /* *Hint*: Assume CPU has special-purpose registers for holding temporary data */

```
t_1: MAR \leftarrow [SP]
```

 t_2 : MBR \leftarrow Memory

 t_3 : Temp \leftarrow [MBR], MAR \leftarrow [SP] + 1

 t_4 : MBR \leftarrow Memory, MAR \leftarrow [SP]

 t_5 : Memory \leftarrow [MBR]

 t_6 : MBR \leftarrow [Temp], MAR \leftarrow [SP] + 1

 t_7 : Memory \leftarrow [MBR]

(c) PUSH 100(R1) +

$$t_1$$
: MAR \leftarrow [IR Address] + [R1], SP \leftarrow [SP] – 1

$$t_2$$
: MBR \leftarrow Memory, R1 \leftarrow [R1] + 1, MAR \leftarrow [SP]

 t_3 : Memory \leftarrow [MBR]

3. A pipelined processor has the following features: ...

(a) Draw a timing diagram to show instr. pipelining during the first 3 iterations of the loop.

Suppose the three instructions located after "JNZ" in memory are: I₁, I₂, and I₃ respectively.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
INC	FI	DI	FO	EI											
JNZ		FI	DI		FO	EI									
I ₁			FI		DI	FO									
I ₂					FI	DI									
I ₃						FI									
INC							FI	DI	FO	EI					
JNZ								FI	DI		FO	EI			
INC									FI		DI	FO	EI		
JNZ											FI	DI		FO	EI
	Iteration #1 (6 Cycles)					Iteration #2 (6 Cycles)					Iteration #3 (3 Cycles)				

(b) How many clock cycles are needed to execute this program?

Number of clock cycles = 6 + 6 + 98 * 3 = 306 cycles