

Mark Scheme (Results)

January 2022

Pearson Edexcel International A Level In Statistics S3 (WST03) Paper 01

Question Number		Scheme	Marks
1 (a)	$\overline{x} = 11.4$	2	B1
	$s^2 = \frac{131}{}$	$\frac{0.464 - 10 \times 11.42^2}{9}$	M1
	= 0.7		A1
			(3)
(b)	z value fo	or 95% CI is 1.96	B1
	'11.42'±	$1.96 \times \frac{0.8}{\sqrt{10}}$	M1
	(10.924	., 11.915) awrt (10.92, 11.92)	A1 A1
	,		(4)
(c)		$.92$ ", 0.8^2)	M1
	P(Y < 10.	5) = $P\left(Z < \frac{10.5 - "11.92"}{0.8}\right) [= P(Z < -1.775]$	M1
	= 0.03837	7 awrt 0.038	A1
			(3)
		Notes	Total 10
1(a)	B1	for 11.42 cao	
	M1	for use of $s^2 = \frac{\sum x^2 - n\overline{x}^2}{n-1}$	
	A1	for 0.7 cao	
(b)	B1	for writing or using 1.96 (or better from calculator 1.9599)	
	M1	For use of $\overline{x} \pm z$ value $\times \frac{\sigma}{\sqrt{n}}$ ft their z value, $1 < z < 2$ and their 11.42	
	A1	for awrt 10.9 or awrt 11.9	
	A1	for awrt 10.92 and awrt 11.92	
(c)	M1	for identifying the normal distribution with the upper confidence interval value as	s mean and 0.8
(0)	1411	as standard deviation (may be seen in standardisation)	17. 1 1
	M1	for standardising with 10.5, their mean (which must be in their confidence intervalumits) from part (b)) and standard deviation = 0.8	al (including
	A1	awrt 0.038 (tables = 0.0375)	

Question Number		Scheme	Marks		
2(a)	$H_0: \mu_{vec}$	$\mu_{ur7} = \mu_{year8} \qquad H_1: \mu_{year7} \neq \mu_{year8}$	B1		
	_	$\frac{38}{240} + \frac{42}{240}$	M1		
	$z = \frac{103}{S}$	<u>-101</u> SE	M1		
	$=(\pm)3$.464 $(2\sqrt{3})$ awrt (\pm) 3.46	A1		
	$Z_{critical} =$	2.5758	B1		
	In CR/Si	gnificant/Reject H ₀	M1		
		sufficient evidence to suggest that the regional education <u>officer</u> 's claim is not There is a difference between the <u>mean scores</u> of the two year groups.	A1		
(b)	CLT allo	ws us to use <u>sample means</u> (oe) being normally distributed	B1 (7)		
			(1)		
		Notes	Total 8		
(a)	B1	both hypotheses correct. Allow equivalent rearrangements. Must be in terms of μ			
(u)	If using e.g. $\mu_A = \mu_B A$ and B must be clearly identified with year groups				
	M1	for use of SE with 38 and 42 (may be implied by SE = awrt 0.577)			
	M1	for a correct standardisation expression using 103, 101 (in either order) and SE = aw or fit their stated SE or if not stated (i.e. only seen in standardisation) only allow $\sqrt{\frac{38^2}{240} + \frac{42^2}{240}}$ or $\sqrt{\frac{\sqrt{3}}{240}}$			
	A1	awrt 3.46 or awrt –3.46 allow <i>p</i> value of awrt 0.000266			
	B1	CV = 2.5758 or better (seen)			
	M1	a correct statement linking their test statistic and their CV – need not be contextual by allow contradicting non contextual comments.	out do not		
	A1	do not allow a ft conclusion here. a correct contextual statement (dependent on 2^{nd} M1) which must be consistent with statistics and CV and which also must reject H_0 . It must mention the officer or mean	n scores.		
(b)	B1	a correct explanation which must mention sample means oe (population means are n distributed is B0) ignore extraneous non-contradictory comments	ormally		

Question Number		Scheme	Marks
3 (a)	$r = \frac{S}{\sqrt{S}}$	$\frac{S_{xy}}{S_{xx}S_{yy}} = \frac{15.1608}{\sqrt{6.90181 \times 45.304}}$	M1
	= 0.8573	awrt 0.857	A1
			(2)
(b)	0 2	$0, H_1: \rho > 0$	B1
		ralue 5% = 0.5494	B1
	Significa	nt evidence to suggest that there is a <u>positive correlation</u> between <u>MR</u> and <u>BMI</u>	B1 (2)
(c)	MR and l	BMI measurements are normally (or bivariate normal) distributed	B1 (3)
(c)	WIX allu	Divir measurements are normany (or bivariate norman) distributed	(1)
(d)	Ranks for	r MR: 9 10 6 7 8 4 5 1 2 3	B1
,	$\sum d^2 =$	1+9+9+1+4+1+16+9+9+1 [= 60]	M1
	$r_s = 1 -$	<u>6(60)</u> 10(99)	M1
	= 0.63	awrt (±) 0.636	A1
			(4)
(e)	$[H_0: \rho =$	$= 0 , H_1: \rho \neq 0]$	
		ralue 0.6485	B1
	There is i	insufficient evidence of a correlation between MR and DPA	B1
		N	(2)
		Notes	Total 12
(a)	M1	for use of $\frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}}$	
	A1	awrt 0.857	
(b)	B1	both hypotheses correct. Must be in terms of ρ . Must be attached to H_0 and H_1 D hypotheses in words on their own.	o not allow
	B1	critical value of 0.5494	
	B1	correct conclusion rejecting H_0 which must mention positive correlation, MR and must be consistent with their CV and their r , with their CV < 1 and their r < 1	BMI which
(c)	B1	correct assumption referring to MR and BMI needing to be normally distributed	
(d)	B1	attempt to rank MR (at least four correct) (may be implied by correct $\sum d^2$ or corr	ect answer)
		allow reverse ranks for MR: 2 1 5 4 3 7 6 10 9 8	
	M1	for finding the difference between each of the ranks and evaluating $\sum d^2$	
	1,11	(implied by $\sum d^2 = 60$ or for reverse ranks $\sum d^2 = 270$)	
	M1	using $1 - \frac{6\sum d^2}{10(99)}$ with their $\sum d^2$	
	A1	awrt (±) 0.636	
(e)	B1	critical value of 0.6485 (or -0.6485 if $r_s < 0$)	
\ /		correct conclusion which is not rejecting H ₀ , which must mention MR and DPA	
	B1	which must be consistent with their CV and their r_s , with their CV < 1 and their	$r_s \mid < 1$
	i	*	

Question Number			Scheme				Marks
4(a)	Non rando	om sampling/de	scription of non r	andom samplir	ng oe		B1
			the) population u				B1
	·	<u> </u>		•			(2)
(b)	·		most and group	-			B1
	H_1 : Subj	ject enjoyed the	most and group a	are not indepen	dent		
		Expected	Maths	Physics	Chemistry	Total	
		Group A	21.06	8.97	8.97	(39)	M1
		Group B	32.94	14.03	14.03	(61)	IVII
		Total	(54)	(23)	(23)	(100)	
	Ob	served	Expected		$\frac{-E)^2}{E}$	$\frac{O^2}{E}$	
		16	21.06		5745	12.15575	
		10	8.97		3272	11.14827	
		13	8.97		058	18.84058	dM1
		38	32.94		728	43.83728	
		13	14.03	0.075	5617	12.04562	
		10	14.03		7584	7.127584	
				5.155		105.155	
	$X^2 = X^2$	$\sum \frac{(O-E)^2}{E} c$	or $\sum \frac{O^2}{E} - 10$	0			dM1
	= 5.155					awrt 5.16 or awrt 5.15	5 A1
	v = (3 -	1)(2 - 1) = 2					B1
	$\chi_2^2(0.05)$	= 5.991					B1ft
			$\frac{1}{2}$ Do not reject $\frac{1}{2}$ Do not independent		ufficient evid	ence to suggest that	A1
							(8)
(c)(i)		e (as the test is s					B1
(ii)		e (as $v = 2$ still)					B1
(iii)				`		values are doubled.)	B1
(iv)						subject enjoyed and al value (10.31 >	B1
	,						(4)
				Notes			Total 14
(a)	B1		ecting participan			r a description of a nor ey leave the school . D	
	B1			g to selection fr	om different g	groups until quota is fil	led
(b)	B1		es correct. Must r		ect" and "grou	p" at least once.	
	M1		at $\frac{(\text{Row Total}) \times (\text{Grand})}{\text{Grand}}$	Column Total)	Can be implied	ed by at least one corre	ect E_i to 1 dp
	dM1		I st M1 for at least pt 2 sf accuracy	t 2 correct term	s for $\frac{(O-E)^2}{E}$	or $\frac{O^2}{E}$ or correct expres	sions with
		inch E_i Acce	pr 2 sr accuracy				

	dM1	dependent on 2 nd M1 for applying $\sum \frac{(O-E)^2}{E}$ or $\sum \frac{O^2}{E} - 100$
	A1	awrt 5.16
	SC	If no expected frequencies shown, then an answer of awrt 5.16 scores M0M0M1A1
	B1	v = 2 may be implied by a correct critical value of 5.991
	B1ft	5.991 allow ft from their stated degrees of freedom (may see 3.841, 7.815, 9.488, 11.070)
	A1	dependent on 3 rd M1 and 3 rd B1. A correct contextualised conclusion which is not rejecting H _o Must mention subject and group. Contradictory statements score A0 e.g. "significant, do not reject H _o " If no hypotheses or hypotheses wrong way round do not award.
(c)(i)	B1	a correct statement
(ii)	B1	a correct statement
(iii)	B1	a correct statement which must state that the test statistic doubles
(iv)	B1	a correct statement with correct reasoning

Qu. No.		Scheme	Marks
5 (a)	Let $T = tc$	otal time taken	
	$T \sim N(41)$	$+81+57,5.2^{2}+4.2^{2}+6.6^{2}$ [So $T \sim N(179,88.24)$]	M1 A1
	P(T > 180	$0) = P\left(Z > \frac{180 - 179}{\sqrt{88.24}}\right)$	M1
	=1-0.54	438 = 0.4562 (calculator gives 0.4576) awrt 0.456 to 0.458	M1 A1
			(5)
(b)	Let $Y = d$ $Y \sim N(16.$	ifference between run and swim or Let $D = R - S - 20$,70.6) or $D \sim N(-4, 70.6)$	D1
	` `		B1
	P(Y > 20)	$P(D > 0) = P\left(Z > \frac{20 - 16}{\sqrt{70.6}}\right) \qquad \text{or} \qquad P(D > 0) = P\left(Z > \frac{0 - (-4)}{\sqrt{70.6}}\right)$	M1
	=1-0.6	844 = 0.3156 (calculator gives 0.3170) awrt $0.316/0.317$	M1 A1
			(4)
(c)	P(T > t)	$= 0.95 \Rightarrow P\left(Z > \frac{t - 179}{\sqrt{88.24}}\right) = 0.95 \Rightarrow \frac{t - 179}{\sqrt{88.24}} = -1.6449$	M1 B1
	t = 163.54	48 awrt 164	A1
(1)	T / W /1		(3)
(d)		he number of times greater than 3 hours in 6 attempts ,"0.456")	D16
	` '		B1ft
		$= 1 - P(X = 0) = 1 - 0.5438^{16} \qquad P(X \ge 1) = 1 - P(X = 0) = 1 - 0.5438^{16}$	M1
	= 0.9741.	(using the calculator value gives 0.9745) awrt 0.974/0.975	A1 (3)
(e)	eg The tir	mes for each event are not now likely to be independent	M1
		orrect / calculation is not valid	A1 (2)
		Notes	Total 17
(a)	M1	for setting up a normal distribution with a mean $41 + 81 + 57 = 179$. 0. 20
	A1	for a correct expression of variance implied by (variance =) 88.24 or for s.d. = aw	rt 9.39
	M1	for standardising with 180, their mean and their standard deviation	
	M1 A1	use of $1 - p$ with $0.5 awrt 0.456 to 0.458$	
(b)	B1	For $N(\pm 16, 70.6)$ or $N(\pm 4, 70.6)$ May be seen in a calculation	
(0)		for standardisation with ± 20 or 0, their mean and their s.d.(their var must be > 0)	
	M1	must be compatible e.g. – 20 with –16	
	M1	use of $1 - p$ with 0.5	
	A1	awrt 0.316/0.317	
(c)	M1	for standardising using their mean and standard deviation = z value $1 < z < 2$	
	B 1	for correct z value \pm 1.6449 or better. Must have compatible sign with standardisa	ation
	A1	awrt 164	
(d)	B1ft	for writing or using B(6,'0.4562') ft their answer to part (a) to 3sf	
	N/I-1	use of $P(X \ge 1) = 1 - P(X = 0) [= 1 - (1 - their(a))^6]$	
	M1	allow $P(X \ge 1) = P(X = 1) + P(X = 2) + + P(X = 6)$	
	A1	awrt 0.974/0.975	
(e)	M1	Reference to the events no longer being independent (he might get tired after each events now follow consecutively)/ calculation does not include time between even	
	1	Correct conclusion (Jane is correct) with corresponding reason	

Qu. No.		Scheme	Marks
6(a)		$(3.5) = P\left(Z < \frac{303.5 - 310}{4}\right) \text{or} P(S > 315.5) = P\left(Z > \frac{315.5 - 310}{4}\right)$	M1
		or 0.084565 awrt 0.052 or awrt 0.084/0.085	A1
		2 or $b = 8.5$ awrt 5.2 or awrt 8.4/8.5	A1
		00 – 10.6 – 16.3 – 19.6 – 18.4 – 13.6 – 7.8 – '5.2'	M1
	Both $a = 1$	5.2 and $b = 8.5$ awrt 5.2/5.3 and awrt 8.4/8.5	A1 (5)
(b)	model.	ormal distribution N(310, 16) is a suitable model/The data are consistent with the ormal distribution N(310, 16) is not a suitable model/The data are not consistent with l.	B1
	$X^2 = X$	$\sum \frac{(O-E)^2}{E} = \frac{\left(5 - 5.2'\right)^2}{5.2'} + \frac{\left(4 - 8.5'\right)^2}{8.5'} + 9.71$	M1 M1
	= 12.10	awrt 12.0 to 12.1	A1
	$\nu = 7$		B1
	$\chi_7^2(0.05)$	= 14.067	B1ft
		e CR/not significant/Do not reject H ₀] There is not sufficient evidence to suggest that 6)] is not a suitable model/The model is suitable/The data are consistent with the	A1
			(7)
(c)		= 5 / two parameters estimated so additional degrees of freedom subtracted	M1
	Thomafone	the critical value is reduced/now 11.070	A1
	Therefore	the critical value is reduced/now 11.0/0	
	Therefore		(2)
(a)	M1	Notes For standardising with 303.5 or 315.5, 310 and 4	
(a)		Notes	(2)
(a)	M1	Notes for standardising with 303.5 or 315.5, 310 and 4	(2)
(a)	M1 A1	Notes for standardising with 303.5 or 315.5, 310 and 4 awrt 0.052 or awrt 0.084/0.085	(2)
(a)	M1 A1 A1	Notes for standardising with 303.5 or 315.5, 310 and 4 awrt 0.052 or awrt 0.084/0.085 either correct value	(2)
(a) (b)	M1 A1 A1 M1	Notes for standardising with 303.5 or 315.5, 310 and 4 awrt 0.052 or awrt 0.084/0.085 either correct value a complete method to find the second missing value both correct values	(2) Total 14
	M1 A1 A1 A1 A1	For standardising with 303.5 or 315.5, 310 and 4 awrt 0.052 or awrt 0.084/0.085 either correct value a complete method to find the second missing value both correct values both hypotheses correct. If mentioning normal, must mention N(310, 16) at least one for either $\frac{(5-'5.2')^2}{'5.2'}$ or $\frac{(4-'8.5')^2}{'8.5'}$	(2) Total 14
	M1 A1 A1 M1 A1 B1	For standardising with 303.5 or 315.5, 310 and 4 awrt 0.052 or awrt 0.084/0.085 either correct value a complete method to find the second missing value both correct values both hypotheses correct. If mentioning normal, must mention N(310, 16) at least one for either $\frac{\left(5 - '5.2'\right)^2}{'5.2'}$ or $\frac{\left(4 - '8.5'\right)^2}{'8.5'}$ for a complete method to find $\sum \frac{\left(O - E\right)^2}{E}$ e.g. 9.71 + 2 additional terms	(2) Total 14
	M1 A1 A1 M1 A1 B1 M1	For standardising with 303.5 or 315.5, 310 and 4 awrt 0.052 or awrt 0.084/0.085 either correct value a complete method to find the second missing value both correct values both hypotheses correct. If mentioning normal, must mention N(310, 16) at least one for either $\frac{\left(5 - '5.2'\right)^2}{'5.2'}$ or $\frac{\left(4 - '8.5'\right)^2}{'8.5'}$ for a complete method to find $\sum \frac{\left(O - E\right)^2}{E}$ e.g. 9.71 + 2 additional terms this mark is independent of the 1st M1	(2) Total 14
	M1 A1 A1 M1 A1 B1 M1 A1	For standardising with 303.5 or 315.5, 310 and 4 awrt 0.052 or awrt 0.084/0.085 either correct value a complete method to find the second missing value both correct values both hypotheses correct. If mentioning normal, must mention N(310, 16) at least one for either $\frac{\left(5 - '5.2'\right)^2}{'5.2'}$ or $\frac{\left(4 - '8.5'\right)^2}{'8.5'}$ for a complete method to find $\sum \frac{\left(O - E\right)^2}{E}$ e.g. 9.71 + 2 additional terms this mark is independent of the 1st M1 allow awrt 12.0 to 12.1	(2) Total 14
	M1 A1 A1 M1 A1 B1 M1 A1 B1 B1	For standardising with 303.5 or 315.5, 310 and 4 awrt 0.052 or awrt 0.084/0.085 either correct value a complete method to find the second missing value both correct values both hypotheses correct. If mentioning normal, must mention N(310, 16) at least one for either $\frac{\left(5 - 15.2\right)^2}{15.2}$ or $\frac{\left(4 - 18.5\right)^2}{18.5}$ for a complete method to find $\sum \frac{\left(O - E\right)^2}{E}$ e.g. 9.71 + 2 additional terms this mark is independent of the 1st M1 allow awrt 12.0 to 12.1 $v = 7$ This mark can be implied by a correct critical value of 14.067	(2) Total 14
	M1 A1 A1 M1 A1 B1 M1 A1	For standardising with 303.5 or 315.5, 310 and 4 awrt 0.052 or awrt 0.084/0.085 either correct value a complete method to find the second missing value both correct values both hypotheses correct. If mentioning normal, must mention N(310, 16) at least one for either $\frac{\left(5 - '5.2'\right)^2}{'5.2'}$ or $\frac{\left(4 - '8.5'\right)^2}{'8.5'}$ for a complete method to find $\sum \frac{\left(O - E\right)^2}{E}$ e.g. 9.71 + 2 additional terms this mark is independent of the 1st M1 allow awrt 12.0 to 12.1 $v = 7$ This mark can be implied by a correct critical value of 14.067 14.067 (may see 5.991, 7.815, 9.488, 11.070, 12.592)	(2) Total 14
	M1 A1 A1 M1 A1 B1 M1 A1 B1 B1	For standardising with 303.5 or 315.5, 310 and 4 awrt 0.052 or awrt 0.084/0.085 either correct value a complete method to find the second missing value both correct values both hypotheses correct. If mentioning normal, must mention N(310, 16) at least one for either $\frac{\left(5 - '5.2'\right)^2}{'5.2'}$ or $\frac{\left(4 - '8.5'\right)^2}{'8.5'}$ for a complete method to find $\sum \frac{\left(O - E\right)^2}{E}$ e.g. 9.71 + 2 additional terms this mark is independent of the 1st M1 allow awrt 12.0 to 12.1 $v = 7$ This mark can be implied by a correct critical value of 14.067 14.067 (may see 5.991, 7.815, 9.488, 11.070, 12.592) dependent on 2 nd M1 a correct conclusion which states that the model is suitable and must be consistent with their X^2 value and their χ^2 critical value.	(2) Total 14
(b)	M1 A1 A1 A1 B1 M1 A1 B1 A1 A1 A1 A1 A1	For standardising with 303.5 or 315.5, 310 and 4 awrt 0.052 or awrt 0.084/0.085 either correct value a complete method to find the second missing value both correct values both hypotheses correct. If mentioning normal, must mention N(310, 16) at least one for either $\frac{\left(5 - {}^{\dagger}5.2^{\dagger}\right)^2}{{}^{\dagger}5.2^{\dagger}}$ or $\frac{\left(4 - {}^{\dagger}8.5^{\dagger}\right)^2}{{}^{\dagger}8.5^{\dagger}}$ for a complete method to find $\sum \frac{\left(O - E\right)^2}{E}$ e.g. 9.71 + 2 additional terms this mark is independent of the 1st M1 allow awrt 12.0 to 12.1 $v = 7$ This mark can be implied by a correct critical value of 14.067 14.067 (may see 5.991, 7.815, 9.488, 11.070, 12.592) dependent on 2nd M1 a correct conclusion which states that the model is suitable and must be consistent with their X^2 value and their χ^2 critical value. If no hypotheses or hypotheses wrong way round do not award.	Total 14
	M1 A1 A1 A1 B1 M1 A1 B1 B1 B1 B1	For standardising with 303.5 or 315.5, 310 and 4 awrt 0.052 or awrt 0.084/0.085 either correct value a complete method to find the second missing value both correct values both hypotheses correct. If mentioning normal, must mention N(310, 16) at least one for either $\frac{\left(5 - '5.2'\right)^2}{'5.2'}$ or $\frac{\left(4 - '8.5'\right)^2}{'8.5'}$ for a complete method to find $\sum \frac{\left(O - E\right)^2}{E}$ e.g. 9.71 + 2 additional terms this mark is independent of the 1st M1 allow awrt 12.0 to 12.1 $v = 7$ This mark can be implied by a correct critical value of 14.067 14.067 (may see 5.991, 7.815, 9.488, 11.070, 12.592) dependent on 2 nd M1 a correct conclusion which states that the model is suitable and must be consistent with their X^2 value and their χ^2 critical value.	(2) Total 14