Entropie, Informationsgehalt und Informationsgewinn

Die Informationstheorie wurde von **Claude Shannon** entwickelt, um die Übertragung und Verarbeitung von Informationen zu analysieren und zu optimieren. Die Begriffe **Entropie**, **Informationsgehalt** und **Informationsgewinn** sind zentrale Konzepte in diesem Bereich. Sie helfen, Unsicherheit zu quantifizieren und Muster in Daten zu verstehen.

1. Informations gehalt I(x)

Der **Informationsgehalt** beschreibt, wie überraschend ein einzelnes Ereignis ist. Je unwahrscheinlicher ein Ereignis, desto mehr Information liefert es, wenn es eintritt.

Formel:

$$I(x) = -\log_2 P(x)$$

- P(x): Wahrscheinlichkeit des Ereignisses x.
- I(x): Informationsgehalt des Ereignisses.

Beispiel:

- Ereignis A: "Es regnet morgen." (P(A)=0.9) $I(A)=-\log_2(0.9)=0.15 o ext{Niedriger Informationsgehalt (es ist fast sicher)}.$
- Ereignis B: "Ein Meteorit schlägt ein." (P(B)=0.01) $I(B)=-\log_2(0.01)=6.64 \to \text{Hoher Informationsgehalt (sehr unwahrscheinlich und überraschend)}.$

Der Informationsgehalt misst die Überraschung eines einzelnen Ereignisses.

2. Entropie H(X)

Die Entropie misst die durchschnittliche Unsicherheit oder den durchschnittlichen Informationsgehalt eines Systems. Sie betrachtet alle möglichen Ereignisse und deren Wahrscheinlichkeiten.

Formel:

$$H(X) = -\sum_i P(x_i) \cdot \log_2 P(x_i)$$

- + $P(x_i)$: Wahrscheinlichkeit des i-ten möglichen Ereignisses.
- H(X): Entropie des Systems X.

Eigenschaften:

• **Hohe Entropie**: Alle Ereignisse sind etwa gleich wahrscheinlich, die Unsicherheit ist groß.

Beispiel: Ein fairer Münzwurf (P(Kopf)=0.5, P(Zahl)=0.5) hat maximale Entropie.

• **Niedrige Entropie**: Ein Ereignis dominiert, die Unsicherheit ist gering. Beispiel: Eine fast sichere Münze (P(Kopf)=0.99, P(Zahl)=0.01).

Beispiel:

- 1. Fairer Würfel ($P(1)=P(2)=...=P(6)=rac{1}{6}$): $H(X)=-\sum_{i=1}^6rac{1}{6}\log_2rac{1}{6}=2.58.$
- 2. Würfel, bei dem 1 sehr wahrscheinlich ist ($P(1)=0.9, P(2)=\ldots=P(6)=0.02$):

$$H(X) \approx 0.5$$
.

Entropie beschreibt die durchschnittliche Unsicherheit in einem System.

3. Informationsgewinn

Der **Informationsgewinn** misst die Reduktion der Entropie durch zusätzliche Informationen oder durch Aufteilung von Daten. Er wird häufig im maschinellen Lernen, insbesondere bei Entscheidungsbäumen, genutzt.

Formel:

Informationsgewinn = $H(S) - \sum_i \frac{|S_i|}{|S|} H(S_i)$

- + H(S): Entropie des gesamten Datensatzes vor der Aufteilung.
- $H(S_i)$: Entropie der Teilmengen nach der Aufteilung.
- $\frac{|S_i|}{|S|}$: Gewichtung der Teilmengen relativ zur Gesamtmenge.

Beispiel in Entscheidungsbäumen:

Ein Datensatz hat 100 Instanzen, davon 50 in Klasse A und 50 in Klasse B.

1. Entropie vor der Aufteilung:

$$H(S) = -\left(\frac{50}{100}\log_2\frac{50}{100} + \frac{50}{100}\log_2\frac{50}{100}\right) = 1.$$

2. Nach einer Aufteilung, bei der die Klassen getrennt werden, wird die Entropie reduziert. Der Informationsgewinn ist die Differenz.

Der Informationsgewinn zeigt, wie stark die Unsicherheit reduziert wird.