

Predicting House Prices Using Regression Models

An End-to-End Machine Learning Project with Real Estate Data.

Project Objective

Goal

Predict house prices from physical and locational features using regression.

Key Questions

- Which features impact price most?
- Which regression model offers top accuracy?
- Can regularization and polynomial transforms help?

Data Overview

Dataset: King County House Sales, Seattle

Source: IBM Developer Skills Network

Size: ~21,600 entries, 21 features

Target Variable: price

Features: sqft_living, bedrooms, bathrooms, lat, grade,

waterfront, etc.

Missing Values Handling

bedrooms and bathrooms missing values replaced with mean.

Data Exploration

Price Distribution

Skewed distribution indicates possible outliers.

Waterfront Effect

Boxplot reveals higher prices and more outliers for waterfront houses.

Feature Correlation

sqft_above shows a positive correlation with price.

Floors

Value counts analyzed for unique floor levels in dataset.

Model Building & Evaluation

Model	Features Used	R ² Score
Simple Linear Regression	sqft_living	~0.49
Multiple Linear Regression	11 selected features	~0.70
Pipeline (Polynomial + Scaler + Linear Regression)	11 features	~0.79
Ridge Regression (α=0.1)	11 features	~0.70
Polynomial Ridge Regression (2nd Order)	11 features	~0.84 🔽

HNEE LAARN: MACHINEG MODELS

Acdyclymtal 'Tidge "Regression" (2nd Order)

A lodlef score renarsh anaring appl lead bests in of R-I-square for tet in periduing models? and ilts lof perfort mans see poctject.

\$ Hepitcart

Feature Carrelation House Prices /ictume quare F lumber of edrooms Location Location Segante Meriers Degants Dicame 100 200 Nestard 200 Candes Crrent

Insights & Findings

Key Features

sqft_living, grade, and latitude strongly correlate with price.

Best Model

Polynomial Ridge Regression achieved highest R² score (~0.84).

Regularisation Benefits

Ridge reduces overfitting and improves generalization.

Pipeline Advantage

Simplifies feature scaling and model training steps.

Conclusion & Learnings

Model Comparison

Built multiple regression models and evaluated their performance.

Data Handling

Handled missing data and leveraged pipelines effectively.

Feature & Preprocessing

Importance of feature selection and preprocessing confirmed.

Future Work

Approach ready for scaling to other housing markets and platforms.

Project Files & Links

Code Notebook

Dataset Source

Access original dataset here: **KC House Data CSV**

Portfolio Page

