

Considerion				0
Computorsond functione:		delle	Volento	tions de
mitado	Ø,	solutorione funcione pass		o.d.c. attese
Diserioni regula folsi		1 1 1 1 1		1
Newton Corde seconti		1 1 1 1 1	7	2 1 ≈ 1.6
gue :- Newton		24		1
			2 p	enve ordine n h scello innemente

Newton vs seconti I pôtes: Volutare l'Est: Touto quanto Valutare f. Allona 1 passo d' Newton costa quanto 2 passi d' secuti. Ossaviamo du pun secuti, si ha $\begin{array}{c|c} (K+2) & 1.6 \\ 1 \times & - 2 \times & C \times & - 2 \times \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$ $= \frac{2.6}{X^{(K)}} - \frac{2.56}{A} = \frac{2.56}{A}$ Seconti "2 passi alla volta" he ordine di Convengence 2.56, e quind è pri Veloce d' Neuton.

On regenemente på sofisticolo penta a Concludence du secenti à No "efférente" di Newton se: Esto f "> 44% Esto f" Cenni soi mitali sterativi ed un posso (one-step) Il mitodo di Meuton $\begin{array}{c} \chi(\mathbf{K}+1) = \chi(\mathbf{K}) - \frac{1}{2}(\chi(\mathbf{K})) \\ \chi(\mathbf{K}+1) = \chi(\mathbf{K}) - \frac{1}{2}(\chi(\mathbf{K})) \end{array}$ e un coso particolar d'mulaso illretivo ad un pesso": $\times^{(K+1)} = 9(\times^{(K)}), \quad k \geq 0$

in en s' itera" sempon la stesse formione 9. Per Newton: g(x) = x - f(x)Più pricisamile, e pettire de x⁽⁰⁾, deta une firmane 9, définiano per ricorrense le suce.ne Dinemo de la XXIII i definita

"Itenendo" la funcione g, du i

delta "funcione iteratrice".

\bigcirc_{SS}	ewoa	-{ou	:						
(1)	Sulc	Mi QI	uo d	n	X	(K)	-> <i>0</i>	<	
	2 6	7 5	ie a	imo	MUQ	J im	X		
	Pass	Q.Mo	ol	Lin	J,n	ρ	ia	Κ-> ·	+ %:
			X (K+	1) =	9(;	<(KI)			
		14				e	mtimit	ď	
		X				9	(4)		
Ne	de	doeic	amo	di	٧	U			
		(χ =	: 6	J (d		•		
					0	Н	. ((nust-	01.
									a219 0
hen	ζ ,	leadu		nler	Incla	ne s	\(\sigma \)	eguent	e l'quea

^	Let	t (o	Μ¢)	ĺ	3		m	to	Τ,		oll	6		No J	a l	
	K				(1)				(2	\				3)		
	0				2	-				2				3/	2 = 1	.5	
	1 2				18)			7	2)			17/12	= 1.	_	
	3				34C)				2			2	77 (08	- = 4	1.41421	15
	•				√ + ∝)			ll C	i'do i'odi'	(I		1	√ √2 =	1.414	12 13	
Lo		salt		d	. (1		\I	ondo					Jat			
di enc		i) tic			100		(3)		est il								
		OM		• (WIC.	<i></i>			(/		irm	(Cesu		9(1			
<u></u>	ΩМ	- N C	lin	245,	anj		Tec	n`c	hi	•	Q	ffr	M d	u'			
		+ 1									٠,						
cl	u	X	(K)	, t	•	~	ul	do	M	M` o	Q	(`	9	A	K	≽ O.	

Formaliano, s'e g: [a,b] -> IR.
$S_{1} = (x) \in (a,b] \forall x \in (a,b], direms du$
" a manda [a,b] in a stesso", e
serveremo $g([a,b]) \subset (a,b)$.
Si g manda (a,b) in si stess e
$x^{(0)} \in [a,b]$ la suce.me $1 \times (k+1) = 9(x^{(k)})$
e sur difinita.
TEOREMA (15 stema del pto fiss)
Se g: [a,b] -> R continua du
(mandi [a,b] in se stesso. All one] x
(m [a,b] t.c. g(x) = x.
Dimostressone si applichi il Tenema di
Bolaono a fixi=gixi-x.

