Anàlisi vectorial Programació i bibliografia Problemes

Enginyeria de Telecomunicació

Departament de Matemàtica Aplicada IV

edició: setembre del 2002

(revisió: setembre 2003)

Sumari

Pı	rogramació	1
Bibliografia		3
Problemes: enunciats i respostes		5
1	Topologia de \mathbb{R}^n	5
2	Límits i continuïtat	9
3	Derivació	13
4	Aplicacions geomètriques de la derivació	21
5	Estudi local de funcions	27
6	Integració	33
7	Integrals de línia i de superfície	39
8	Teoremes integrals de l'anàlisi vectorial	45

Programació

- 1. Topologia de \mathbb{R}^n (3h)
 - Norma, distància i boles.
 - Conjunts oberts i tancats; interior, frontera, adherència.
 - Sucessions de punts de \mathbb{R}^n .
 - Conjunts compactes.

2. Límits i continuïtat (3h)

- Funcions de diverses variables. Funciones escalars i vectorials.
- Límit d'una funció en un punt.
- Límits direccionals. Límits infinits.
- Funcions contínues.
- Propietats de les funcions contínues respecte als conjunts compactes.
- Conjunts arc-connexos.

3. Derivació (7h)

- Derivades parcials, derivades direccionals.
- Diferencial d'una funció en un punt. Matriu jacobiana. Aproximació lineal d'una funció.
- Condicions suficients de diferenciabilitat.
- Propietats de les funcions diferenciables. Regla de la cadena.
- Derivades parcials d'ordre superior.
- Teorema de Schwarz.
- Teorema de la funció inversa. Canvis de coordenades.
- Teorema de la funció implícita.

4. Aplicacions geomètriques de la derivació (5h)

- Vector tangent d'un camí.
- Gradient d'una funció escalar.
- Corbes. Descripcions paramètrica i implícita.
- Recta tangent a una corba.
- Superfícies. Descripcions paramètrica i implícita.
- Pla tangent a una superfície.

5. Estudi local de funcions (5h)

- Fórmula de Taylor. Expressió del residu.
- Extrems locals de funcions, punts crítics.
- Matriu hessiana. Condició suficient d'extrem.
- Extrems condicionats locals. Multiplicadors de Lagrange.
- Extrems absoluts d'una funció sobre un conjunt compacte.

6. Integració (5h)

- Integral de Riemann de funcions definides sobre un rectangle.
- Conjunts de mesura nul·la.
- Integral de Riemann de funcions definides sobre conjunts mesurables Jordan.
- Teorema de Fubini.

- Teorema del canvi de variables.
- Funcions definides per integrals. Teorema de Leibniz.
- Integrals impròpies.

7. Integrals de línia i de superfície (5 h)

- Integral de línia d'una funció escalar. Llargada d'una corba.
- Orientació d'una corba. Integral de línia d'un camp vectorial.
- Camps conservatius. Potencials escalars.
- Integral de superfície d'una funció escalar. Àrea d'una superfície.
- Orientació d'una superfície. Integral de superfície d'un camp vectorial.

8. Teoremes integrals de l'anàlisi vectorial (6 h)

- Gradient, rotacional, divergència i laplacià. Relacions entre aquests operadors.
- Teorema de Green.
- Camps conservatius en el pla. Equacions diferencials exactes.
- Teorema de Stokes.
- Camps conservatius i potencial escalar.
- Conjunts simplement connexos. Lema de Poincaré.
- Teorema de la divergència de Gauss-Ostrogadskiĭ.
- Camps solenoïdals i potencial vectorial.

Bibliografia

Publicacions de l'assignatura

- Anàlisi vectorial. Programació i bibliografia. Problemes.
- Anàlisi vectorial. Pràctiques amb Maple.

Llibres de teoria

- J. DE Burgos, Cálculo infinitesimal de varias variables, McGraw-Hill, Madrid, 1995.
- J. E. MARSDEN, A. J. TROMBA, Cálculo Vectorial, 4a ed., Addison-Wesley, Mexico, 1998.

Llibres de problemes

- K. Pao, F. Soon, Cálculo vectorial: problemas resueltos, Addison-Wesley, Barcelona 1993.
- M. R. Spiegel, Cálculo superior, McGraw-Hill, Madrid, 1991.

Formularis i taules

- M. Abramowitz, I. A. Stegun, Handbook of mathematical functions with formulas, graphs and mathematical tables, Dover, New York, 1965.
- I. Bronshtein, K. Semendiaev, Manual de matemáticas para ingenieros y estudiantes, Mir, Moscou, 1982.
- M. R. Spiegel, J. Liu, L. Abellanas, Fórmulas y tablas de matemática aplicada, 2a ed., McGraw-Hill, Madrid, 2000.

Altres referències recomanades

- T. M. APOSTOL, Calculus, vols. I i II, Reverté, Barcelona, 1985.
- T. M. Apostol, Análisis matemático, 2a ed., Reverté, Barcelona, 1979.
- R. G. Bartle, Introducción al análisis matemático, Limusa, México, 1980.
- F. Bombal, L. Rodríguez, L. Vera, Problemas de análisis matemático. Tomo 1: cálculo diferencial, AC, Madrid, 1975.
- F. Granero, Ejercicios y problemas de cálculo, vols. I i II, Tebar–Flores, Madrid, 1991.
- J. E. Marsden, M. J. Hoffman, Análisis clásico elemental, 2a ed., Addison-Wesley, Wilmington, 1998.
- J. E. Marsden, A. Weinstein, Calculus III, Springer-Verlag, New York, 1985.
- S. Lang, Cálculo, Fondo Educativo Interamericano, Barcelona, 1973.
- J. M. Mazón Ruiz, Cálculo diferencial, teoría y problemas, McGraw-Hill, Aravaca, 1997.
- J. M. Ortega Aramburu, Introducció a l'anàlisi matemàtica, Publicacions de la UAB, Bellaterra, 1990.
- P. Pascual et al, Càlcul integral per a enginyers, Edicions UPC, Barcelona, 2002.
- P. Puig Adam, Cálculo integral, Gómez Puig, Madrid, 1979.
- M. Spivak, Cálculo en variedades, Reverté, Barcelona, 1970.
- W. R. Wade, An introduction to analysis, Prentice-Hall, 1995.

1 Topologia de \mathbb{R}^n

Problemes bàsics

- 1. Determineu el domini d'existència i el recorregut (imatge) de les funcions següents:
 - (a) $f(x,y) = (\cos(x^2 + y^2))^{1/2}$.
 - (b) $f(x, y) = \ln(y x)$.
 - (c) $f(x,y) = \arcsin(x/y)$.
 - (d) f(x,y) = 1 |x| |y|.
 - (e) $f(x,y) = \sqrt{\cos(2\pi x) 1}$
 - (f) $f(t) = \left(\cos\frac{1}{t}, \sin\frac{1}{t}\right)$.
- 2. Descriviu les corbes de nivell de les funcions següents:
 - (a) f(x,y) = x + 5y 7.
 - (b) $f(x,y) = 3x^2 + 2y^2$.
 - (c) f(x, y) = xy.
 - (d) $f(x,y) = (xy)^{1/2}$.
 - (e) $f(x,y) = y/x^{1/2}$
 - (f) f(x,y) = 1 |x| |y|.
- 3. Descriviu les superfícies de nivell de les funcions següents:
 - (a) f(x, y, z) = x + 2y + 3z.
 - (b) $f(x,y,z) = -x^2 y^2 z^2$
 - (c) $f(x, y, z) = x^2 + 2y^2 + 3z^2$.
 - (d) $f(x, y, z) = y^2 + z^2$.
 - (e) $f(x, y, z) = x^2 + y^2 z^2$.
 - (f) $f(x, y, z) = z/(x^2 + y^2)$.
 - (g) f(x, y, z) = 1 |x| |y| |z|.
- 4. Justifiqueu que els subconjunts del pla següents són oberts:
 - (a) $A = \{(x, y) \mid -1 < x < 1, -1 < y < 1\}.$
 - (b) $B = \{(x, y) \mid y < 10\}.$
 - (c) $C = \{(x, y) \mid x \neq 0, y \neq 0\}.$
 - (d) $D = \{(x, y) \mid 2 < x^2 + y^2 < 4\}.$
- 5. Obteniu l'interior, l'adherència, l'exterior, la frontera i el conjunt de punts d'acumulació dels conjunts següents:
 - (a) $A = \{(x, y) \in \mathbf{R}^2 \mid y = 2x\}.$
 - (b) $B = \{(x, y) \in \mathbf{R}^2 \mid -1 < x < 1, 0 < y < x^2\}.$
 - (c) $C = \{(x, y) \in \mathbf{R}^2 \mid xy \ge 0, x + y = n \text{ on } n \in \mathbf{Z}\}.$
 - (d) $D = \{(x, y) \in \mathbf{R}^2 \mid 0 < x, y < 1, x \in \mathbf{Q}\}.$
 - (e) $E = \{(x, y, z) \in \mathbf{R}^3 \mid x^2 + y^2 < 1\}.$
 - (f) $F = \{(x, y, z) \in \mathbf{R}^3 \mid z^2 \ge x^2 + y^2\}.$
- 6. Dels conjunts (dominis i recorreguts) obtinguts en el problema 1, digueu si són oberts, tancats, fitats o compactes.
- 7. Trobeu el límit (si existeix) de les successions de punts següents:
 - (a) $((n^2+1)^{1/n}, (\sin n)/n)$.
 - (b) $(n!)^{1/n^2}$, e^{-n}/n^2 , n/n!.
 - (c) $\left(\frac{1}{\log n}, \frac{n^{\log n}}{\sqrt{n}}\right)$.

6

Problemes addicionals

- 8. Descriviu precisament les corbes de nivell de la funció $f(x,y) = \begin{cases} 0 & \text{si } (x,y) = (0,0) \\ \frac{2xy}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \end{cases}$
- 9. Donada la funció $f(x,y) = x^2 y^2$, representeu gràficament les funcions següents: f(x,0), f(x,1), f(x,x), $f(x,x^2)$, i relacioneu aquestes gràfiques amb la de f.
- 10. Siguin A i B dos subconjunts de \mathbf{R}^n . Si A és obert, proveu que $A+B=\{z\mid z=x+y,\ x\in A,\ y\in B\}$ és obert.
- 11. Doneu un exemple d'una funció tal que el seu domini tingui un punt aïllat.
- 12. Considereu els conjunts $A_n = \{(x, y) \in \mathbf{R}^2 \mid nx^2y < 1\}$, amb $n \in \mathbf{N}^*$.
 - (a) Justifiqueu que cada A_n és obert.
 - (b) Calculeu la intersecció de tots els A_n i justifiqueu que no és un conjunt obert.
 - (c) Per què això no contradiu el fet que la intersecció de dos oberts és un obert?
- 13. De manera semblant, trobeu una col·lecció infinita de conjunts tancats del pla tals que la seva unió no sigui tancada.
- 14. Considereu les aplicacions $p_i : \mathbf{R}^2 \to \mathbf{R}$ següents:

$$p_1(x,y) = |x| + |y|$$
 $p_2(x,y) = (|x|^2 + |y|^2)^{1/2}$ $p_\infty(x,y) = \max(|x|,|y|)$

- (a) p_2 és la norma euclidiana. Demostreu que també són normes p_1 i p_∞ . S'anomenen la norma-1 i la norma del suprem, respectivament. Normalment p_i es representa per $\|\cdot\|_i$.
- (b) Dibuixeu les boles unitat $B_i = \{(x,y) \in \mathbb{R}^2 \mid ||(x,y)||_i < 1\}$ per a cada una de les tres normes.
- (c) Demostreu que $\|(x,y)\|_{\infty} \le \|(x,y)\|_2 \le \|(x,y)\|_1$, i que $\|(x,y)\|_1 \le \sqrt{2} \|(x,y)\|_2$, $\|(x,y)\|_2 \le \sqrt{2} \|(x,y)\|_{\infty}$. Relacioneu aquestes designaltats amb els dibuixos anteriors.
- (d) Proveu que $p_{1/2}(x,y)=(|x|^{1/2}+|y|^{1/2})^2$ no és una norma. (Podeu comprovar que no se satisfà la desigualtat triangular amb els punts (1/2,0) i (0,1/2).) Dibuixeu també la "bola" unitat $B_{1/2}$.
- 15. (a) Generalitzeu les definicions de les tres normes del problema anterior a \mathbb{R}^n , i proveu que se satisfan desigualtats similars:

$$\|\mathbf{x}\|_{\infty} \leq \|\mathbf{x}\|_{2}, \qquad \|\mathbf{x}\|_{2} \leq \sqrt{n} \|\mathbf{x}\|_{\infty}.$$

(b) En general, dues normes p i q en un espai vectorial es diuen equivalents si existeixen nombres estrictament positius M, N tals que, per a tot \mathbf{x} , $p(\mathbf{x}) \leq Mq(\mathbf{x})$ i $q(\mathbf{x}) \leq Np(\mathbf{x})$. Proveu que llavors els conceptes de successió convergent i de conjunt obert (i, de fet, molts d'altres) són els mateixos per a les dues normes.

Respostes

- 1. Dominis:
 - (a) $\left\{ (x,y) \in \mathbf{R}^2 \mid 0 \le x^2 + y^2 \le \frac{\pi}{2} \right\} \cup \left\{ (x,y) \in \mathbf{R}^2 \mid \left(\frac{4k-1}{2} \right) \pi \le x^2 + y^2 \le \left(\frac{4k+1}{2} \right) \pi, \text{ on } k \in \mathbf{N}^* \right\}$
 - (b) $\{(x,y) \in \mathbf{R}^2 \mid y > x\}$

(c)
$$\left\{ (x,y) \in \mathbf{R}^2 \mid y \neq 0, -1 \le \frac{x}{y} \le 1 \right\}$$

- (d) \mathbf{R}^2
- (e) $\mathbf{Z} \times \mathbf{R}$ (rectes verticals amb abscissa entera).
- (f) $\mathbf{R} \{0\}$.

Imatges:

(a) [0,1].

Problemes del tema 1

- (b) **R**.
- (c) $[-\pi/2, \pi/2]$.
- (d) $]-\infty,1].$
- (e) $\{0\}$.
- (f) La circumferència $x^2 + y^2 = 1$.
- 2. (a) k = x + 5y 7, on $k \in \mathbf{R}$ (rectes).
 - (b) $k = 3x^2 + 2y^2$, on $k \ge 0$ (el·lipses; si k = 0 és un un punt).
 - (c) k = xy, on $k \in \mathbf{R}$ (hipèrboles; si k = 0 és un parell de rectes).
 - (d) $k = (xy)^{1/2}$, on $k \ge 0$ (hipèrboles; si k = 0 és n parell de rectes).
 - (e) $k = y/x^{1/2}$, on $k \in \mathbf{R}$ (mitges paràboles; si k = 0 és la semirecta y = 0, x > 0).
 - (f) k = 1 |x| |y|, on $k \le 1$ (quadrats centrats a l'origen; si k = 1 és un punt).
- 3. (a) k = x + 2y + 3z, on $k \in \mathbf{R}$ (plans).
 - (b) $k = -x^2 y^2 z^2$, on $k \le 0$ (esferes; si k = 0 és un punt).
 - (c) $k = x^2 + 2y^2 + 3z^2$, on k > 0 (el·lipsoides; si k = 0 és un punt).
 - (d) $k = y^2 + z^2$, on $k \ge 0$ (cilindres; si k = 0 és la recta y = z = 0).
 - (e) $k = x^2 + y^2 z^2$, on $k \in \mathbf{R}$ (si k > 0 hiperboloide d'un full, si k = 0 con, si k < 0 hiperboloide de dos fulls).
 - (f) $z = k(x^2 + y^2)$ (paraboloides si $k \neq 0$, pla si k = 0; en ambdós casos, sense el (0, 0, 0)).
 - (g) k = 1 |x| |y| |z|, on $k \le 1$ (octàed res centrats a l'origen; si k = 1 és un punt).
- 5. En tots els casos, excepte el (c), tots els punts adherents són d'acumulació.
 - (a) $Int A = \emptyset$; $\bar{A} = A$; Fr A = A.
 - (b) IntB = B; $\bar{B} = \{(x, y) \in \mathbf{R}^2 \mid -1 \le x \le 1, 0 \le y \le x^2\}$.
 - (c) $\operatorname{Int} C = \emptyset$; $\overline{C} = \operatorname{Fr} C = C$. El punt (0,0) és aïllat.
 - (d) Int $D = \emptyset$; $\bar{D} = \text{Fr}D = [0, 1] \times [0, 1]$.
 - (e) IntE = E; $\bar{E} = \{(x, y, z) \in \mathbf{R}^3 \mid x^2 + y^2 \le 1\}$; Fr $E = \{(x, y, z) \in \mathbf{R}^3 \mid x^2 + y^2 = 1\}$.
 - (f) $\operatorname{Int} F = \{(x, y, z) \in \mathbf{R}^3 \mid z^2 > x^2 + y^2\}; \ \overline{F} = F; \ \operatorname{Fr} F = \{(x, y, z) \in \mathbf{R}^3 \mid z^2 = x^2 + y^2\}; \ \overline{F} = F; \ \operatorname{Fr} F = \{(x, y, z) \in \mathbf{R}^3 \mid z^2 = x^2 + y^2\}; \ \overline{F} = F; \ \operatorname{Fr} F = \{(x, y, z) \in \mathbf{R}^3 \mid z^2 = x^2 + y^2\}; \ \overline{F} = F; \ \operatorname{Fr} F = \{(x, y, z) \in \mathbf{R}^3 \mid z^2 = x^2 + y^2\}; \ \overline{F} = F; \ \operatorname{Fr} F = \{(x, y, z) \in \mathbf{R}^3 \mid z^2 = x^2 + y^2\}; \ \overline{F} = F; \ \operatorname{Fr} F = \{(x, y, z) \in \mathbf{R}^3 \mid z^2 = x^2 + y^2\}; \ \overline{F} = F; \ \operatorname{Fr} F = \{(x, y, z) \in \mathbf{R}^3 \mid z^2 = x^2 + y^2\}; \ \overline{F} = F; \ \operatorname{Fr} F = \{(x, y, z) \in \mathbf{R}^3 \mid z^2 = x^2 + y^2\}; \ \overline{F} = F; \ \operatorname{Fr} F = \{(x, y, z) \in \mathbf{R}^3 \mid z^2 = x^2 + y^2\}; \ \overline{F} = F; \ \operatorname{Fr} F = \{(x, y, z) \in \mathbf{R}^3 \mid z^2 = x^2 + y^2\}; \ \overline{F} = F; \ \operatorname{Fr} F = \{(x, y, z) \in \mathbf{R}^3 \mid z^2 = x^2 + y^2\}; \ \overline{F} = F; \ \operatorname{Fr} F = \{(x, y, z) \in \mathbf{R}^3 \mid z^2 = x^2 + y^2\}; \ \overline{F} = F; \ \operatorname{Fr} F = \{(x, y, z) \in \mathbf{R}^3 \mid z^2 = x^2 + y^2\}; \ \overline{F} = F; \ \operatorname{Fr} F = \{(x, y, z) \in \mathbf{R}^3 \mid z^2 = x^2 + y^2\}; \ \overline{F} = F; \ \operatorname{Fr} F = \{(x, y, z) \in \mathbf{R}^3 \mid z^2 = x^2 + y^2\}; \ \overline{F} = F; \ \operatorname{Fr} F = \{(x, y, z) \in \mathbf{R}^3 \mid z^2 = x^2 + y^2\}; \ \overline{F} = F; \ \operatorname{Fr} F = \{(x, y, z) \in \mathbf{R}^3 \mid z^2 = x^2 + y^2\}; \ \overline{F} = F; \ \operatorname{Fr} F = \{(x, y, z) \in \mathbf{R}^3 \mid z^2 = x^2 + y^2\}; \ \overline{F} = F; \ \operatorname{Fr} F = \{(x, y, z) \in \mathbf{R}^3 \mid z^2 = x^2 + y^2\}; \ \overline{F} = F; \ \operatorname{Fr} F = \{(x, y, z) \in \mathbf{R}^3 \mid z^2 = x^2 + y^2\}; \ \overline{F} = F; \ \operatorname{Fr} F = \{(x, y, z) \in \mathbf{R}^3 \mid z^2 = x^2 + y^2\}; \ \overline{F} = F; \ \operatorname{Fr} F = \{(x, y, z) \in \mathbf{R}^3 \mid z^2 = x^2 + y^2\}; \ \overline{F} = F; \ \operatorname{Fr} F = \{(x, y, z) \in \mathbf{R}^3 \mid z^2 = x^2 + y^2\}; \ \overline{F} = F; \ \operatorname{Fr} F = \{(x, y, z) \in \mathbf{R}^3 \mid z^2 = x^2 + y^2\}; \ \overline{F} = F; \ \operatorname{Fr} F = \{(x, y, z) \in \mathbf{R}^3 \mid z^2 = x^2 + y^2\}; \ \overline{F} = F; \ \operatorname{Fr} F = F; \$
- 7. (a) $(\sqrt[n]{n^2+1}, (\sin n)/n) \to (1,0)$.
 - (b) $(n!)^{1/n^2}$, e^{-n}/n^2 , n/n! $\rightarrow (1,0,0)$.
 - (c) La successió no és convergent (la segona component no convergeix).
- 8. Si r_m indica la recta de pendent m que passa per l'origen, de la qual excloem l'origen, la corba de nivell k (on $|k| \le 1$, $k \ne 0$) és $r_m \cup r_{1/m}$, amb $m = \operatorname{tg}\left(\frac{1}{2}\operatorname{arc}\sin k\right)$. La corba de nivell zero és els eixos coordenats, i les altres són buides.
- 11. Per exemple, $f(x) = \sqrt{x^2(x^2 1)}$. Fàcilment podeu obtenir una funció de dues variables amb la mateixa propietat.
- 12. (b) La intersecció és $\bigcap A_n = \{(x,y) \mid y \le 0\} \cup \{(x,y) \mid x = 0\}.$
 - (c) Perquè en aquest cas tenim infinits oberts.
- 14. (b) B_1 és un quadrat amb vèrtexs els punts (0,1), (1,0), (0,-1) i (-1,0). B_2 és un cercle de radi 1. B_{∞} és un quadrat amb vèrtexs els punts (1,1), (-1,1), (-1,-1) i (1,-1).

2 Límits i continuïtat

Problemes bàsics

1. Calculeu els límits següents:

(a)
$$\lim_{(x,y)\to(0,0)} \frac{2+3x+4y^2}{x+1}$$

(b) $\lim_{t\to 0} (\cosh t, \sinh t)$

(c)
$$\lim_{(x,y)\to(0,0)} \left(\frac{e^{x(y-1)-x-1}}{x^2+y^2}, \sin(x-y) \right)$$

(d)
$$\lim_{(x,y)\to(0,0)} \frac{x^4y^4}{\sqrt{x^2+y^2}}$$

(e)
$$\lim_{(x,y)\to(0,0)} \frac{x^5}{x^4+y^2}$$

(f)
$$\lim_{(x,y,z)\to(0,0,0)} \frac{x^3+z^5}{x^2+2y^2+4z^2}$$

(g)
$$\lim_{(x,y)\to(0,0)} \frac{3\sin xy}{xy}$$

(g)
$$\lim_{(x,y)\to(0,0)} \frac{3\sin xy}{xy}$$
 (h)
$$\lim_{(x,y,z)\to(0,0,0)} e^{-1/(x^2+y^2+z^2)}$$

2. Considereu la funció
$$f(x,y)=\left\{\begin{array}{ll} 0 & \text{si }(x,y)=(0,0)\\ \frac{xy}{x^2+y^2} & \text{si }(x,y)\neq(0,0) \end{array}\right.$$

- (a) Trobeu el límit de f(x, y) en (0, 0) respecte a les rectes y = mx.
- (b) Què se'n dedueix respecte al límit $\lim_{(x,y)\to(0,0)} f(x,y)$?

3. Sigui la funció
$$f(x,y)=\left\{\begin{array}{ll} 0 & \text{si }(x,y)=(0,0)\\ \frac{x^2y}{x^4+y^2} & \text{si }(x,y)\neq(0,0) \end{array}\right.$$

- (a) Trobeu el límit de f(x,y) en (0,0) respecte a les rectes y=mx i respecte a les paràboles
- (b) Què se'n dedueix respecte a $\lim_{(x,y)\to(0,0)} f(x,y)$?
- 4. Estudieu la continuïtat de les funcions següents:

(a)
$$f(x,y) = \begin{cases} 0 & \text{si } (x,y) = (0,0) \\ \frac{x^2y}{4x^2 + y^2} & \text{si } (x,y) \neq (0,0) \end{cases}$$

(b)
$$g(x,y) = \begin{cases} 0 & \text{si } (x,y) = (0,0) \\ x^2 y^2 \ln(x^2 + y^2) & \text{si } (x,y) \neq (0,0) \end{cases}$$

(c)
$$h(x, y, z) =\begin{cases} 1 & \text{si } (x, y, z) = (0, 0, 0) \\ \sin r(x, y, z) / r(x, y, z) & \text{si } (x, y, z) \neq (0, 0, 0), \text{ essent } r(x, y, z) = \sqrt{x^2 + y^2 + z^2} \end{cases}$$

- 5. En quins punts existeix el límit de la funció $f(x,y) = y^2 \sin \frac{1}{x^2}$?
- 6. Utilitzant funcions contínues apropiades, raoneu si són oberts els subconjunts de ${f R}^2$ o ${f R}^3$ següents:

(a)
$$A = \{(x, y) \mid \cos(x + y) + \sin(x - y) < 1\}.$$

(b)
$$B = \{(x, y) \mid xy \ln(x - y) > 5\}.$$

(c)
$$C = \{(x, y, z) \mid 1 < x + y^2 + z^3 < 3, \ xyz < 0\}.$$

(d)
$$D = \left\{ (x, y, z) \mid \left| \frac{x + y + z}{x^3 + y^3 + z^3} \right| < 1 \right\}.$$

(e)
$$E = \{(x, y) \mid \sqrt{x + y} < 1\}.$$

- 7. Anàlogament, raoneu si són tancats els subconjunts de ${\bf R}^2$ o ${\bf R}^3$ següents:
 - (a) $A = \{(x,y) \mid 2x 3y = 6, \ x^2 + y^3 \le 10\}.$
 - (b) $B = \{(x, y) \mid 2x^2 + 3y^2 \in \mathbf{N}\}.$
 - (c) $C = \{(x,y) \mid \frac{1}{x^2 + u^2} \in \mathbf{N}\}.$
 - (d) $D = \{(x, y, z) \mid x + 2y + 3z = 1, \ x^2y^2z \ge 7\}.$
- 8. Considereu $A \subset \mathbf{R}^3$, i $f: A \to \mathbf{R}$ contínua. En quins dels casos següents podem assegurar que f té un màxim? I que f(A) és un interval?
 - (a) $A = \{(x, y, z) \in \mathbf{R}^3 \mid x^2 + y^2 + z^2 > 1\}.$
 - (b) $A = \{(x, y, z) \in \mathbf{R}^3 \mid 1 \le x^2 + y^2 \le 4, \ 0 \le z \le 1\}.$
 - (c) $A = \{(x, y, z) \in \mathbf{R}^3 \mid x^2 y^2 \ge 1, -1 \le z \le 1\}.$
 - (d) $A = \{(x, y, z) \in \mathbf{R}^3 \mid x^2 + y^2 = 1, z \ge 0\}.$

Problemes addicionals

- 9. Es considera la funció $f(x,y) = \frac{x^{\alpha}y^{\beta}}{x^2 + y^2 + xy}$, on $\alpha, \beta \ge 0$. Estudieu per a quins valors de α i β existeix el límit de f(x,y) quan $(x,y) \to (0,0)$.
- 10. Estudieu la continuïtat de la funció $f: \mathbf{R}^2 \to \mathbf{R}$ definida per

$$f(x,y) = \begin{cases} 0 & \text{si } xy = 0\\ (x+y)\cos\frac{\pi}{x}\cos\frac{\pi}{y} & \text{altrament} \end{cases}$$

- 11. Estudieu els límits reiterats $\lim_{x\to 0} \lim_{y\to 0} f(x,y)$, $\lim_{y\to 0} \lim_{x\to 0} f(x,y)$, i el límit $\lim_{(x,y)\to(0,0)} f(x,y)$, per a les funcions definides en \mathbf{R}^2 següents:
 - (a) $f(x,y) = \frac{xy}{3x^2 + 2y^2}$ si $(x,y) \neq (0,0), f(0,0) = 0.$
 - (b) $f(x,y) = \frac{y^2}{x^2 + y^2}$ si $(x,y) \neq (0,0), f(0,0) = 0.$
 - (c) $f(x,y) = (x+y)\sin\frac{1}{x}\sin\frac{1}{y}$ si $xy \neq 0$, f(x,y) = 0 en cas contrari.
- 12. Considerem l'espai vectorial $\mathbf{M}_2(\mathbf{R})$ de les matrius 2×2 amb coeficients reals, que identifiquem amb \mathbf{R}^4 : $\begin{pmatrix} x & y \\ z & t \end{pmatrix} \longleftrightarrow (x, y, z, t)$.
 - (a) Proveu que les funcions traça $\operatorname{tr}: \mathbf{M}_2(\mathbf{R}) \to \mathbf{R}$ i determinant $\det: \mathbf{M}_2(\mathbf{R}) \to \mathbf{R}$ son contínues.
 - (b) Estudieu si són oberts o tancats dins $M_2(\mathbf{R})$ els conjunts de matrius següents:
 - i. Les matrius invertibles.
 - ii. Les matrius de determinant 1.
 - iii. Les matrius de traça nul·la.
 - (c) Generalitzeu les qüestions anteriors a les matrius $n \times n$, $\mathbf{M}_n(\mathbf{R}) \cong \mathbf{R}^{n^2}$.
- 13. Siguin $f: \mathbf{R}^m \to \mathbf{R}^n$ contínua, i $A \subset \mathbf{R}^m$. Proveu que $f(\overline{A}) \subset \overline{f(A)}$. (Podeu usar la caracterització de la continuïtat en termes de successions.)
- 14. Sigui $A \subset \mathbf{R}^n$ un subconjunt amb la propietat següent: tota funció contínua $f: A \to \mathbf{R}$ és fitada. Proveu que A és compacte.
 - (Si A no és compacte, llavors no és tancat o no és fitat; en ambdós casos podeu construir una funció contínua no fitada sobre A.)

Problemes del tema 2

15. Considereu les funcions $\mathbf{R} \to \mathbf{R}$ definides per f(x) = 0 per a tota x, i g(0) = 1, g(y) = 0 si $y \neq 0$. Comproveu que $\lim_{x\to 0} f(x) = 0$, $\lim_{y\to 0} g(y) = 0$, però $\lim_{x\to 0} (g\circ f)(x) = 1 \neq 0$. Quina hipòtesi falla i no permet dir que el límit de $g\circ f$ és el límit de g?

Respostes

- 1. (a) 2.
 - (b) (1,0).
 - (c) No té límit.
 - (d) 0.
 - (e) 0.
 - (f) 0.
 - (g) 3.
 - (h) 0.
- 2. (a) El límit segons la recta y = mx és $m/(1+m^2)$.
 - (b) No existeix.
- 3. (a) El límit segons la recta y=mx és 0. El límit segons la paràbola $y=\lambda x^2$ és $\lambda/(1+\lambda^2)$.
 - (b) No existeix.
- 4. Les tres són contínues arreu. Fora de l'origen no hi ha problema. A l'origen, f i g tenen límit 0, i h té límit 1. Per a f, tenim $|f(x,y)|=|y|\frac{x^2}{4x^2+y^2}\leq |y|/4$. Per a g, $|g(x,y)|\leq (x^2+y^2)(x^2+y^2)|\ln(x^2+y^2)|$, i $\lim_{z\to 0+}z\ln z=0$. Amb h passa quelcom semblant.
- 5. Té límit en tots els punts del pla excepte en aquells de la forma $(0, a), a \neq 0$.
- 6. Tots són oberts, llevat de E, que no és un obert de \mathbb{R}^2 .
- 7. Els subconjunts A, B, D són tancats. El subconjunt C no és tancat dins \mathbb{R}^2 .
- 8. Podem asegurar que hi ha màxim quan A és compacte (només el (b)), i que la imatge és un interval quan A és arc-connex (ho compleixen tots excepte el (c)).
- 9. $\alpha + \beta > 2$.
- 10. És contínua en tot punt de fora dels eixos, i en els punts $(0,0), \left(\frac{1}{k+\frac{1}{2}},0\right)$ i $\left(0,\frac{1}{k+\frac{1}{2}}\right)$ $(k\in\mathbf{Z})$.
- 11. (a) Els límits reiterats valen 0, $\lim_{(x,y)\to(0,0)} f(x,y)$ no existeix.
 - (b) Els límits reiterats valen 0 i 1, $\lim_{(x,y)\to(0,0)} f(x,y)$ no existeix.
 - (c) Els límits reiterats no es poden calcular, $\lim_{(x,y)\to(0,0)} f(x,y)$ val 0.
- 12. (a) Són funcions polinòmiques.
 - (b) El primer és obert, els altres dos són tancats.
- 15. g no és contínua en 0.

3 Derivació

Problemes bàsics

- 1. Calculeu les derivades parcials i la matriu jacobiana de les funcions següents en un punt arbitrari del seu domini:
 - (a) $c(t) = (\cos t, \sin t)$.
 - (b) $f(x,y) = (x^2 y, 3x + y^3, xy)$.
 - (c) $u(x,y) = \frac{x^2 + y^2}{x^2 y^2}$.
 - (d) $h(x, y, z) = (\sqrt{1 y^2 z^2}, \sqrt{1 z^2 x^2}, \sqrt{1 x^2 y^2}).$
 - (e) $v(x_1, ..., x_n) = \sum_{i=1}^n x_i + \sum_{i=1}^n x_i^2$.
- 2. Per a les funcions següents, estudieu la continuïtat, les derivades direccionals en el (0,0), i la diferenciabilitat en el (0,0).
 - (a) f(x,y) = 1 si x > 0 i $0 < y < x^2$, f(x,y) = 0 en cas contrari.
 - (b) $f(x,y) = x^{1/3}y^{1/3}$.
 - (c) $f(x,y) = \frac{x^2y}{x^2 + y^2}$ si $(x,y) \neq (0,0), f(0,0) = 0.$
- 3. Sigui $f(x,y) = (x+a)(y+a)\sqrt{x^2+y^2}$, on a és una constant. Discutiu, en funció de a:
 - (a) la continuïtat de f
 - (b) l'existència de les derivades parcials de f en (0,0)
 - (c) la diferenciabilitat de f en (0,0).
- 4. Obteniu l'aproximació lineal de $f(x,y)=(x\sin y,y\cos x)$ en els punts (0,0) i $(\pi/2,\pi)$.
- 5. Considereu la funció $f(x,y) = \log(x+y+1) + \int_0^x \cos t^2 dt$. Justifiqueu que és de classe C^1 , calculeu Df(0,0), i apliqueu-ho a calcular un valor aproximat de f(0.03,0.02).
- 6. Calculeu les derivades direccionals $D_u f(a)$ següents:
 - (a) $f(x,y) = x^2 3y^3 + 5xy$, a = (1,-1), u = (-4,3).
 - (b) f(x,y,z) = x + xy + xyz, a = (1,2,-1), u = (3,2,-2).
- 7. Proveu que la funció definida per $f(x,y)=(x^2+y^2)\sin\frac{1}{\sqrt{x^2+y^2}}$ si $(x,y)\neq(0,0), f(0,0)=0$, és diferenciable però no de classe C^1 .
- 8. Calculeu les derivades parcials D_1F , D_2F de les funcions compostes indicades.
 - (a) $F = f \circ g$, amb $f(x, y, z) = x^2y + y^2z xyz$, g(u, v) = (u + v, u v, u).
 - (b) $F = f \circ g$, amb $f(x, y) = \frac{x + y}{1 xy}$, $g(u, v) = (\operatorname{tg} u, \operatorname{tg} v)$.
- 9. Sigui $f: \mathbb{R}^3 \to \mathbb{R}^3$ diferenciable, i definim g(x, y, z) = f(3x y + 2z, x + y 2z, 2x + 5y z). Raoneu que g és diferenciable i calculeu la seva matriu jacobiana en el punt (1, 1, 3).
- 10. Sigui $f: \mathbf{R} \to \mathbf{R}$ diferenciable. Proveu que la funció $\varphi(x,y) = f(2x+3y)$, definida en \mathbf{R}^2 , satisfà l'equació en derivades parcials $3\frac{\partial \varphi}{\partial x} 2\frac{\partial \varphi}{\partial y} = 0$.
- 11. Sigui $f(x,y) = \begin{cases} \frac{xy^2}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$
 - (a) Trobeu-ne les derivades parcials a l'origen.

- (b) Sigui $\gamma(t) = (at, bt)$. Proveu que $f \circ \gamma$ és diferenciable a l'origen i que $(f \circ \gamma)'(0) = \frac{ab^2}{a^2 + b^2}$, però que aquest resultat no es pot obtenir aplicant la regla de la cadena. Per què?
- 12. Calculeu les derivades parcials segones de les funcions següents:

(a)
$$f(x,y) = \sin\left(x + \frac{1}{y}\right)$$
.

- (b) $g(x, y) = x^y$.
- (c) $h(x,y) = x \sin xy + y \cos xy$.
- (d) $k(x,y) = \sqrt{x^2 + y^2}$
- 13. Siguin $f, g: \mathbf{R} \to \mathbf{R}$ funcions dues vegades diferenciables, c > 0 una constant. Proveu que la funció $\varphi(x,t) = f(x-ct) + g(x+ct)$ satisfà l'equació de les ones, $\frac{1}{c^2} \frac{\partial^2 \varphi}{\partial t^2} \frac{\partial^2 \varphi}{\partial x^2} = 0$.
- 14. Considereu la funció $f(x,y)=\left\{ \begin{array}{ll} xy\frac{x^2-y^2}{x^2+y^2} & \text{si } (x,y)\neq (0,0)\\ 0 & \text{si } (x,y)=(0,0) \end{array} \right.$

Comproveu que és de classe C^1 , que les derivades parcials segones existeixen en tot punt, però que les derivades parcials creuades en (0,0) són diferents. La funció és de classe C^2 en \mathbf{R}^2 ? És de classe C^{∞} en $\mathbf{R}^2 - \{(0,0)\}$?

- 15. Considereu la funció $f(x,y) = xy\sqrt{x^2 + y^2}$. És una funció C^1, C^2, \dots ?
- 16. Sigui la funció $f(x,y) = \begin{cases} xy^2 \sin \frac{1}{y} & \text{si } y \neq 0 \\ 0 & \text{si } y = 0 \end{cases}$

Determineu el domini d'existència i de continuïtat de les funcions f, $D_i f$, $D_i D_j f$.

- 17. Considereu la funció $f: \mathbf{R}^2 \to \mathbf{R}^2$ donada per $f(x, y) = (e^x \cos y, e^x \sin y)$.
 - (a) Proveu que f admet una inversa local en cada punt del seu domini.
 - (b) Obteniu les imatges per f de les rectes x = constant i y = constant.
 - (c) Proveu que la imatge de f és $\mathbf{R}^2 \{(0,0)\}$, que $f: \mathbf{R} \times [0,2\pi[\to \mathbf{R}^2 \{(0,0)\}]$ és bijectiva, i que $f: \mathbf{R} \times [0,2\pi[\to \mathbf{R}^2 \{(0,0)\}])$ és un difeomorfisme. (Recordeu que l'aplicació $t \mapsto (\cos t, \sin t)$ és una bijecció entre $[0,2\pi[$ i la circumferència unitat.)
 - (d) Calculeu $Df^{-1}(0,1)$.
- 18. Considereu la funció $g(x, y, z) = (u, v, w) = (x + y + z^2, x y + z, 2x + y z).$
 - (a) Demostreu que, en un veïnat del punt (1, -1, 2), aquesta funció admet inversa local.
 - (b) Aplicant el teorema de la funció inversa, calculeu $Dg^{-1}(4,4,-1)$, explicant com s'ha d'interpretar aquest enunciat.
 - (c) Trobeu explícitament $g^{-1}(u, v, w)$, i utilitzeu-ho per a calcular directament $Dg^{-1}(4, 4, -1)$.
- 19. Per a cada valor de $\mu \in \mathbf{R}$ considerem la funció $f_{\mu}(x, y, z) = \left(x^2 y^2 z, y \cos x \frac{z}{2}, \mu x\right)$. Per a quins valors de μ es pot assegurar que f_{μ} té inversa local diferenciable en un veïnat de l'origen?
- 20. Sigui $f: V \to \mathbf{R}$ de classe C^2 , on $V \subset \mathbf{R}^2$ obert, una funció expressada en coordenades cartesianes. Sigui \bar{f} l'expressió de f en coordenades polars: $\bar{f} = f \circ c$, on $c(r, \phi) = (r \cos \phi, r \sin \phi)$.
 - (a) Obteniu les relacions entre les derivades parcials primeres en els dos sistemes de coordenades:

$$\frac{\partial \bar{f}}{\partial r}r = \frac{\partial f}{\partial x}x + \frac{\partial f}{\partial y}y \qquad \qquad \frac{\partial \bar{f}}{\partial \phi} = \frac{\partial f}{\partial y}x - \frac{\partial f}{\partial x}y$$

$$\frac{\partial f}{\partial x} = \frac{\partial \bar{f}}{\partial r}\cos\phi - \frac{\partial \bar{f}}{\partial \phi}\frac{\sin\phi}{r} \qquad \frac{\partial f}{\partial y} = \frac{\partial \bar{f}}{\partial r}\sin\phi + \frac{\partial \bar{f}}{\partial \phi}\frac{\cos\phi}{r}$$

Problemes del tema 3

(b) Anàlogament, expresseu les derivades parcials segones de f en termes de les derivades parcials de \bar{f} , i expresseu el laplacià de f, $\Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$, en coordenades polars:

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = \frac{\partial^2 \bar{f}}{\partial r^2} + \frac{1}{r^2} \frac{\partial^2 \bar{f}}{\partial \phi^2} + \frac{1}{r} \frac{\partial \bar{f}}{\partial r}.$$

- 21. Considereu el sistema $\begin{cases} x 2y z = 0 \\ x + yt = 0 \end{cases}$ del qual observeu que (x, y, z, t) = (1, 1, -1, -1) és solució.
 - (a) Pot aplicar-se el teorema de la funció implícita per a afirmar que, en un veïnat del punt donat, poden expressar-se z, t com a funcions de x, y?
 - (b) Calculeu $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}, \frac{\partial t}{\partial x}, \frac{\partial t}{\partial y}$ en el punt (1,1):
 - (c) En aquest exemple és possible trobar z, t en forma explícita en termes de x, y. Feu-ho i comproveu (b).
- 22. Considereu l'equació $z + \sin(z 1) x^2y^2 = 0$. Proveu que, en un veïnat del punt (1, 1, 1), defineix implícitament z com a funció z = Z(x, y), i calculeu les derivades parcials primeres i segones de Z en el punt (1, 1).

Problemes addicionals

- 23. Sigui $\mu: \mathbf{R} \times \mathbf{R} \to \mathbf{R}$ donada per $\mu(x,y) = xy$. Proveu que $\mathrm{D}\mu(a,b) \cdot (h,k) = ak + hb$ directament a partir de la condició de tangència.
- 24. Considereu la funció definida per $f(x,y) = \frac{x|y|}{\sqrt{x^2 + y^2}}$ si $(x,y) \neq (0,0), f(0,0) = 0$.
 - (a) És contínua?
 - (b) Calculeu-ne les derivades direccionals en (0,0).
 - (c) És f diferenciable en (0,0)?
- 25. Comproveu que la funció $f(x,y) = \begin{cases} xy^2/(x^2+y^4) & \text{si } (x,y) \neq (0,0) \\ 0 & \text{altrament} \end{cases}$ no és contínua en el punt (0,0), però hi existeixen totes les derivades direccionals. Calculeu-les.
- 26. Per a les funcions següents, estudieu l'existència i continuïtat de les derivades parcials, així com la diferenciabilitat:

(a)
$$f(x,y) = \frac{2xy}{x^2 + y^2}$$
 si $(x,y) \neq (0,0)$; $f(0,0) = 0$.

(b)
$$h(x,y) = \frac{xy}{\sqrt{x^2 + y^2}}$$
 si $(x,y) \neq (0,0)$; $h(0,0) = 0$.

(c)
$$u(x,y) = (x^2 + y^2) \sin \frac{\pi}{x+y}$$
 si $x + y \neq 0$; $u(x,y) = 0$ si $x + y = 0$.

- 27. Usant una funció adequada calculeu aproximadament $\sqrt{3 + e^{-0.1} \cos 0.05 + 5 \sin 0.05}$.
- 28. Calculeu les derivades direccionals $D_u f(a)$, on u és el normalitzat del vector v que indica la direcció, en els casos següents:

(a)
$$f(x,y) = \ln \frac{\sqrt{x^2 + y^2}}{|xy|}$$
, $a = (12, -5)$, $v = (7, -24)$.

(b)
$$f(x,y,z) = \frac{x^2 - yz}{x+y+z}$$
, $a = (1,-1,1)$, $v = (-3,5,1)$.

29. Considereu les funcions f(x, y, z) = xyz i g(t) = (2 + t, 1 - t, 1 + t). Calculeu $(f \circ g)'(0)$ de dues maneres diferents.

- 30. Donades $f(x,y) = (e^x, x+y)$ i $g(u,v) = (u-v,\cos uv, u-v)$, calculeu la diferencial de $g \circ f$ en (0,0) de dues formes diferents.
- 31. Trobeu les funcions de la forma f(x,y) = h(x)k(y) (es diu que f és de variables separades) tals que $\partial f/\partial x = \partial f/\partial y$.
- 32. Sigui $U \subset \mathbf{R}^n$ un obert "cònic", és a dir, que compleix la propietat següent: si $x \in U$, llavors $\lambda x \in U$, per a tota $\lambda > 0$. Una funció $f: U \to \mathbf{R}$ es diu homogènia de grau $p \in \mathbf{R}$ si, per a tot $\lambda > 0$ i tot $x \in U$, es compleix $f(\lambda x) = \lambda^p f(x)$. Proveu l'anomenat teorema d'Euler: una funció f de classe \mathbf{C}^1 és homogènia de grau p sii satisfà la igualtat $\mathbf{D}f(x) \cdot x = p f(x)$.

(Indicació: Per a la implicació directa, fixada x les funcions (de λ) $f(\lambda x)$ i $\lambda^p f(x)$ són idèntiques; derivant-les en $\lambda = 1$ obtenim la igualtat desitjada. Per a la implicació recíproca, fixada x proveu que la funció $g(\lambda) = f(\lambda x) - \lambda^p f(x)$ satisfà l'equació diferencial lineal $g' = \frac{p}{\lambda}g$ amb condició inicial g(1) = 0, i per tant és nulla.)

Comproveu aquest resultat per a les funcions següents:

(a)
$$f(x,y) = xy^2 - x^3 + 2x^2y$$
.

(b)
$$g(x, y, z) = \sqrt{x^3 + y^3 + z^3}$$

(c)
$$h(x,y) = \frac{x}{\sqrt{x^2 + y^2}}$$
.

(d)
$$k(x, y) = \sqrt{y/x}$$
.

- 33. Donada una funció $f: U \to \mathbf{R}$ ($U \subset \mathbf{R}^n$ obert) de classe \mathbf{C}^2 , es defineix el laplacià de f per $\Delta f = \frac{\partial^2 f}{\partial x_1^2} + \ldots + \frac{\partial^2 f}{\partial x_n^2}$. Direm que f és harmònica quan $\Delta f = 0$ (equació de Laplace). Mireu si són harmòniques les funcions:
 - (a) $f(x,y) = e^x(x\cos y y\sin y).$
 - (b) $q(x,y) = xy(x^2 y^2)$.
 - (c) h(x, y, z) = -1/r, amb $r = \sqrt{x^2 + y^2 + z^2}$.
- 34. Donades g i h funcions de classe C^2 , comproveu que la funció $f(x,y) = x g\left(\frac{-y}{x}\right) + y h\left(\frac{y}{x}\right)$ satisfà l'equació $x^2 f_{xx} + 2xy f_{xy} + y^2 f_{yy} = 0$.
- 35. Calculeu les derivades parcials segones a l'origen de la funció

$$f(x,y) = \begin{cases} 0 & \text{si } xy = 0\\ x^2 \arctan \operatorname{tg} \frac{y}{x} - y^2 \arctan \operatorname{tg} \frac{x}{y} & \text{si } xy \neq 0 \end{cases}$$

- 36. Estudieu en quins punts tenen inversa local diferenciable les funcions següents:
 - (a) $f(x,y) = (x^2y, x y^2)$.
 - (b) $q(x,y) = (e^x + e^y, e^{2x} + e^{2y}).$
 - (c) $h(x, y, z) = (x + \sqrt{y}, y + \sqrt{z}, z + \sqrt{x}).$
 - (d) $k(x, y, z) = (x + y + z, x^2 + y^2 + z^2, x^3 + y^3 + z^3).$
- 37. Donades les funcions $f(x,y) = \ln(1+xy)$ i $g(t) = (e^t, \cosh t)$:
 - (a) Determineu el domini i la imatge d'aquestes dues funcions. Estudieu també si són diferenciables amb continuïtat en el seu domini.
 - (b) Fent servir l'aproximació lineal, calculeu un valor aproximat de f(0.07, 1.05).
 - (c) Determineu si la funció $f \circ g$ és localment invertible al voltant de l'origen. En cas afirmatiu, calculeu, si existeix, la derivada de $(f \circ g)^{-1}$ en el punt imatge de l'origen per $f \circ g$.
 - (d) Trobeu els punts $(x, y) \in \text{Dom} f$ tals que el jacobià de $g \circ f$ en (x, y) és zero.

Problemes del tema 3 17

38. Considereu l'aplicació $\varphi: W = [0, \infty[\times]0, \infty[\to \mathbb{R}^2 \text{ definida per}]$

$$(x,y) = \varphi(u,v) := (u^{1/2}v^{-1/2}, u^{1/2}v^{1/2}).$$

- (a) Proveu que defineix un difeomorfisme de W en W. Doneu el seu invers, $(u,v) = \varphi^{-1}(x,y)$.
- (b) Donada una funció z = f(x, y), transformeu l'expressió $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial u}$ en termes de u, v.
- (c) Apliqueu-ho a trobar les funcions z(x,y) tals que $x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = 2$.
- 39. Considereu el sistema $\begin{cases} y^2-2z-u^2-v^2=0 \\ xy-u^3-v=0 \\ z-uv=0 \end{cases}$ del qual (x,y,z,u,v)=(3,3,2,2,1) és solució. z-uv=0 Proveu que, en un veïnat d'aquest punt, es poden aïllar (x,y,z) com a funcions de (u,v), i calculeu

la jacobiana d'aquestes en el punt (2,1).

- 40. Sigui $F: \mathbf{R}^3 \to \mathbf{R}$, de classe C^1 , tal que en tot punt $\frac{\partial F}{\partial x} \neq 0$, $\frac{\partial F}{\partial y} \neq 0$, $\frac{\partial F}{\partial z} \neq 0$.
 - (a) Raoneu que pot expressar-se $x=x(y,z),\ y=y(x,z),\ z=z(x,y),$ en un veïnat de qualsevol punt (x, y, z) tal que F(x, y, z) = 0.
 - (b) Proveu que, amb les notacions anteriors, $\frac{\partial y}{\partial x} \frac{\partial z}{\partial u} \frac{\partial x}{\partial z} = -1$.

Respostes

- 2. (a) La derivada direccional val 0 en qualsevol direcció, però com que la funció no és contínua en (0,0) no
 - (b) És contínua arreu, la derivada direccional només existeix en les direccions dels eixos (i val 0), i per tant no és diferenciable.
 - (c) És contínua arreu, la derivada direccional segons el vector (h,k) és $\frac{h^2k}{h^2+k^2}$, i per tant no és diferen-
- (a) És contínua per a tota a.
 - (b) Només existeixen si a = 0
 - (c) Només per a a=0.

$$4. \quad \left(\begin{array}{c} x \sin y \\ y \cos x \end{array} \right) = \left(\begin{array}{c} 0 \\ y \end{array} \right) + o \left(\|(x,y)\| \right), \\ \left(\begin{array}{c} x \sin y \\ y \cos x \end{array} \right) = \left(\begin{array}{c} -\pi (y-\pi)/2 \\ -\pi (x-\pi/2) \end{array} \right) + o \left(\|(x-\pi/2,y-\pi)\| \right).$$

- 5. Df(0,0) = (2,1). Valor approximat 0.08 (valor real: 0.07879016...)
- 6. (a) 0.
- 8. (a) $\frac{\partial F}{\partial u} = 3u^2 + v^2 2uv, \frac{\partial F}{\partial v} = -u^2 3v^2 + 2uv.$
 - (b) $\frac{\partial F}{\partial u} = \frac{\partial F}{\partial v} = \frac{1}{\cos^2(u+v)}$.
- 9. Observeu que $g=f\circ \varphi,$ amb φ lineal, per tant g és diferenciable.

$$Jg(1,1,3) = Jf(8,-4,4) \begin{pmatrix} 3 & -1 & 2 \\ 1 & 1 & -2 \\ 2 & 5 & -1 \end{pmatrix}.$$

- - (b) $(f \circ g)(t) = \frac{ab^2}{a^2 + b^2}t$. La regla de la cadena no es pot aplicar perquè f no és diferenciable en (0,0).
- 12. (a) $D_{xx}f = -\sin\left(x + \frac{1}{y}\right)$.

$$D_{xy}f = D_{yx}f = \frac{1}{y^2}\sin\left(x + \frac{1}{y}\right).$$

$$D_{yy}f = \frac{2}{y^3}\cos\left(x + \frac{1}{y}\right) - \frac{1}{y^4}\sin\left(x + \frac{1}{y}\right).$$

(b)
$$D_{xx}g = y(y-1)x^{y-2}$$
.
 $D_{xy}g = D_{yx}g = x^{y-1} + yx^{y-1}\log x$.
 $D_{yy}g = x^y\log^2 x$.

- (c) $D_{xx}h = y(2-y^2)\cos xy xy^2\sin xy$. $D_{xy}h = D_{yx}h = x(2-y^2)\cos xy y(x^2+2)\sin xy$. $D_{yy}h = -x^2y\cos xy x(x^2+2)\sin xy$.
- (d) $D_{xx}k = y^2(x^2 + y^2)^{-3/2}$ $D_{xy}k = D_{yx}k = -xy(x^2 + y^2)^{-3/2}.$ $D_{yy}k = x^2(x^2 + y^2)^{-3/2}.$
- 14. $D_2(D_1f)(0,0)=-1$, $D_1(D_2f)(0,0)=+1$. La funció no és de classe C^2 en \mathbf{R}^2 , ja que si ho fos tindria les derivades parcials creuades iguals. És de classe C^{∞} en $\mathbb{R}^2 - \{0\}$ perquè és una funció racional.
- 15. És C^2 però no C^3 .
- 16. f és contínua en \mathbb{R}^2 . Les derivades parcials primeres estan definides en \mathbb{R}^2 , $D_1 f$ és contínua arreu, i D_2f en tot punt excepte els (a,0), $a \neq 0$. Quant a les derivades parcials segones, tenim $D_1D_1f = 0$; $\mathbb{R}^2 \mid a \neq 0$, i contínua en aquest domini excepte en el punt (0,0).
- 17. (a) Observeu que f és C^{∞} , i $Jf(x,y) = e^{2x} \neq 0$ en tot punt.
 - (b) Són circumferències i semirectes, respectivament.

(d)
$$Df^{-1}(0,1) = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
.
18. (a) $g \text{ és } C^1$, i $\det Jg(1,-1,2) = 15 \neq 0$.

- - (b) L'equació g(x,y,z)=(4,4,-1) té dues solucions: (1,-1,2) i (1,-6,-3). Al voltant d'aquests dos punts g admet inversa local diferenciable, i g^{-1} denota qualsevol de les respectives inverses (però cal especificar quina). Per a la primera $Jg^{-1}(4,4,-1) = Jg(1,-1,2)^{-1} = \begin{pmatrix} 0 & 1/3 & 1/3 \\ 1/5 & -3/5 & 1/5 \\ 1/5 & 1/15 & -2/15 \end{pmatrix}$, i anàlogament per a la segona.
 - (c) Com en l'anterior cal especificar quina de les inverses considerem.

$$g^{-1}(u,v,w) = \left(\frac{1}{3}v + \frac{1}{3}w, -\frac{1}{2} \pm \frac{1}{2}\sqrt{1 + 4u + \frac{4}{3}v - \frac{8}{3}w} - \frac{2}{3}v + \frac{1}{3}w, -\frac{1}{2} \pm \frac{1}{2}\sqrt{1 + 4u + \frac{4}{3}v - \frac{8}{3}w}\right).$$

- 19. Per a tot $\mu \neq 0$.
- 21. (a) Sí.

(b)
$$\frac{\partial z}{\partial x} = 1$$
, $\frac{\partial z}{\partial y} = -2$, $\frac{\partial t}{\partial x} = -1$, $\frac{\partial z}{\partial y} = 1$, en el punt $(1,1)$.

- 22. $D_1Z(1,1) = D_2Z(1,1) = 1$, $D_1^2Z(1,1) = D_2^2Z(1,1) = 1$, $D_1D_2Z(1,1) = 2$
- 23. $\mu(a+h,b+k) = ab+ak+hb+hk = \mu(a,b)+D\mu(a,b)\cdot(h,k)+o(\|(h,k)\|)$
- - (b) La derivada direccional segons el vector (h, k) és $\frac{h|k|}{\sqrt{h^2 + k^2}}$
- 25. $D_{(a,b)}f(0,0)$ val b^2/a si $a \neq 0$, i 0 si a = 0.
- 26. (a) Les derivades parcials de f a l'origen són 0 pèro la funció no hi és diferenciable ja que no hi és contínua. A la resta dels punts sí que ho és i

$$\frac{\partial f}{\partial x} = \frac{2y(y^2 - x^2)}{(x^2 + y^2)^2}, \quad \frac{\partial f}{\partial y} = \frac{2x(x^2 - y^2)}{(x^2 + y^2)^2}.$$

(b) Les derivades parcials de h a l'origen són 0, pèro la funció no hi és diferenciable (encara que sí contínua) ja que no es compleix la condició de tangència. A la resta dels punts la funció és diferenciable, i tenim

$$\frac{\partial h}{\partial x} = \frac{y^3}{(x^2 + y^2)^{3/2}}, \quad \frac{\partial h}{\partial y} = \frac{x^3}{(x^2 + y^2)^{3/2}}.$$

(c) Sobre la recta x+y=0 les derivades parcials només existeixen a l'origen, i la funció hi és diferenciable.

Problemes del tema 3

27. Prenem, per exemple, $f(x,y) = \sqrt{3 + e^x \cos y + 5 \sin y}$, el punt (0,0), i el vector (-0.1,0.05). Llavors f(0,0) = 2, Df(0,0) = (0.25,1.25), i el valor aproximat és 2.0375 (valor real: 2.03803887...).

- 28. (a) -42347/253500 = -0'167...
 - (b) $-16/\sqrt{35}$.
- 29. $(f \circ g)'(0) = 1$.

30.
$$D(g \circ f)(0,0) = \begin{pmatrix} 0 & -1 \\ 0 & 0 \\ 0 & -1 \end{pmatrix}$$
.

- 31. $f(x,y) = Ae^{a(x+y)}$, on A i a són constants.
- 33. Són harmòniques les tres.

34.
$$f_{xx} = \frac{y^2}{x^3} g'' \left(-\frac{y}{x} \right) + \frac{2y^2}{x^3} h' \left(\frac{y}{x} \right) + \frac{y^3}{x^4} h'' \left(\frac{y}{x} \right).$$
$$f_{xy} = f_{yx} = -\frac{y}{x^2} g'' \left(-\frac{y}{x} \right) - \frac{2y}{x^2} h' \left(\frac{y}{x} \right) - \frac{y}{x^3} h'' \left(\frac{y}{x} \right).$$
$$f_{yy} = \frac{1}{x} g'' \left(-\frac{y}{x} \right) + \frac{2}{x} h' \left(\frac{y}{x} \right) + \frac{y}{x^2} h'' \left(\frac{y}{x} \right).$$

- 35. $D_1D_2f(0,0) = 1$, $D_2D_1f(0,0) = -1$, $D_1D_1f(0,0) = D_2D_2f(0,0) = 0$.
- 36. (a) On $x(x+4y^2) \neq 0$.
 - (b) On $x \neq y$.
 - (c) En tot punt.
 - (d) En els punts on les tres coordenades són diferents.

37. (a)
$$\operatorname{Dom} f = \{(x, y) \in \mathbf{R}^2 \mid xy > -1\}$$
. $\operatorname{Im} f = \mathbf{R}$.
$$\operatorname{Dom} g = \mathbf{R}. \operatorname{Im} g = \left\{ (x, y) \mid x > 0, y = \frac{x^2 + 1}{2x} \right\}.$$

- (b) Prenent per exemple el punt (0, 1), llavors un valor aproximat és 0.07.
- (c) Sí que hi és localment invertible; $D(f \circ g)^{-1}((f \circ g)(0)) = 2$.
- (d) En tot $(x, y) \in \text{Dom } f$.
- 38. (a) u = xy, v = y/x.
 - (b) $2u\frac{\partial z}{\partial u}$.
 - (c) S'obtenen les funcions $f(x,y) = \log(xy) + g\left(\frac{y}{x}\right)$, amb g una funció diferenciable arbitrària.

39.
$$\begin{pmatrix} 3 & -2/3 \\ 1 & 1 \\ 1 & 2 \end{pmatrix}$$
40. (b)
$$\frac{\partial z}{\partial y} = -\frac{\partial F/\partial y}{\partial F/\partial z}, \frac{\partial x}{\partial z} = -\frac{\partial F/\partial z}{\partial F/\partial x}, \frac{\partial y}{\partial x} = -\frac{\partial F/\partial x}{\partial F/\partial y}.$$

4 Aplicacions geomètriques de la derivació

Problemes bàsics

- 1. Calculeu els vectors tangents $\gamma'(t_o)$ indicats.
 - (a) Vector tangent de $\gamma(t) = (t^2, t^3)$ a $t_o = 1$.
 - (b) Vectors tangents de $\gamma(t) = (t \sin t, 1 \cos t)$, a $t_o = 0$ i a $t_o = \pi$.
 - (c) Vector tangent de $\gamma(t) = (e^t, e^{-t}, \cos t)$ a $t_o = 0$.
- 2. Sigui $\sigma: \mathbf{R} \to \mathbf{R}^2$ un camí diferenciable tal que $\sigma(0) = (0,0)$ i $\dot{\sigma}(0) = (1,0)$. Sigui $f: \mathbf{R}^2 \to \mathbf{R}^2$ donada per f(x,y) = (x+y+1,2x-y). Calculeu el vector tangent al camí $f \circ \sigma$ en l'instant 0.
- 3. Considereu $f(x,y)=(e^{x+y},e^{x-y})$ i sigui σ un camí diferenciable en \mathbf{R}^2 tal que $\sigma(0)=(0,0)$ i $\sigma'(0)=(1,1)$. Sigui γ el camí transformat de σ per f ($\gamma=f\circ\sigma$). Trobeu el vector tangent a γ en t=0.
- 4. Sigui $\sigma: I \to \mathbf{R}^n$ un camí diferenciable tal que $\|\sigma(t)\|$ és constant (és a dir, és dins una superfície esfèrica amb centre l'origen). Proveu que els vectors posició $\sigma(t)$ i velocitat $\sigma'(t)$ són ortogonals en cada instant. (Partiu de $\sigma(t) \cdot \sigma(t) = a^2$ (constant) i deriveu.) És cert el recíproc?
- 5. Calculeu el gradient de $f(x,y) = \sin \sqrt{x^2 + y^2}$, i representeu-lo gràficament en diversos punts.
- 6. Essent r(x) = ||x|| la norma euclidiana de $x \in \mathbf{R}^n$, calculeu el gradient de les funcions r i r^{α} $(\alpha \in \mathbf{R})$.
- 7. La temperatura d'un punt del pla ve donada per $T(x,y) = 10 + 6\cos x \cos y + 3\cos 2x + 4\cos 3y$. Trobeu la direcció de màxim increment de la temperatura, la de màxima disminució i la de no variació, en el punt $P = (\pi/3, \pi/3)$.
- 8. Siguin $f, g: \mathbf{R}^3 \to \mathbf{R}$ funcions diferenciables i $p \in \mathbf{R}^3$, tals que els gradients de f i g en p són ortogonals i que f(p) = 2 i g(p) = 3. Si les màximes derivades direccionals (segons un vector unitari) de f i g en p són, respectivament, f i f quina és la màxima derivada direccional del producte f f en f?
- 9. Trobeu l'equació del pla tangent a les superfícies definides per les funcions següents, en els punts que s'indiquen.
 - (a) $z = x^2 + 2y^2$, p = (1, 2, 9).
 - (b) z = xy, p = (3, -1, -3).
 - (c) $z = \sqrt{a^2 x^2 y^2}$, $p = (r \cos \phi, r \sin \phi, \sqrt{a^2 r^2})$ (0 < r < a).
- 10. En els enunciats següents, digueu si l'equació donada defineix una superfície regular, i obtingueu-ne l'equació del pla tangent en el punt indicat.
 - (a) $x^2 + y^2 z^2 = 18$, p = (3, 5, -4).
 - (b) $2y z^3 3xz = 0$, p = (1, 7, 2).
 - (c) $x^{2/3} + y^{2/3} + z^{2/3} = 6$, p = (-1, 8, 1).
- 11. En els enunciats següents, doneu els vectors tangents de la parametrització, estudieu si aquesta és regular, i calculeu el pla tangent de la superfície que defineix en el punt indicat.
 - (a) $g(u, v) = (u^2 v, u + v, uv), \quad p = g(1, 2).$
 - (b) $g(\phi, \theta) = (R\cos\phi\cos\theta, R\sin\phi\cos\theta, R\sin\theta), \quad p = g(\phi_o, \theta_o).$
 - (c) $g(r, \phi) = (r \cos \phi, r \sin \phi, r), \quad p = g(r_o, \pi/4).$
 - (d) $g(u, v) = (u \cosh v, u \sinh v, u^2), \quad p = g(1, 0).$
- 12. En els enunciats següents, digueu si l'equació donada defineix una corba regular en el pla, i obtingueu-ne l'equació de les rectes tangent i normal en el punt indicat.

- (a) $xy + 2\log x + 3\log y = 1$, punt (1, 1).
- (b) $x^3 yx^2 + y^2 xy = 0$, punt (2, 2).
- 13. En els enunciats següents, estudieu si la parametrització donada és regular, i calculeu la recta tangent de la corba que defineix en el punt indicat.
 - (a) $\gamma: [0, +\infty[\rightarrow \mathbb{R}^2, \gamma(t) = (t \cos 2\pi t, t \sin 2\pi t), \text{ punt } \gamma(1).$
 - (b) $\Gamma: [0, +\infty[\to \mathbb{R}^3, \Gamma(t) = (t, t \cos 2\pi t, t \sin 2\pi t), \text{ punt } \Gamma(2).$
 - (c) $\gamma: \mathbf{R} \to \mathbf{R}^3$, $\gamma(t) = (a \sin^2 t, a \sin t \cos t, a \cos t)$ (a > 0 constant), punt $\gamma(t_o)$. Proveu també que tots els seus plans normals passen per l'origen.
- 14. En els enunciats següents, digueu si el parell d'equacions donat defineix una corba regular en l'espai, i obtingueu-ne l'equació de la recta tangent en el punt indicat.

(a)
$$\begin{cases} x+y+z=3\\ x^2-y^2+2z^2=2 \end{cases}$$
 punt $p=(1,1,1)$.

(a)
$$\begin{cases} x+y+z=3\\ x^2-y^2+2z^2=2 \end{cases} \quad \text{punt } p=(1,1,1).$$
(b)
$$\begin{cases} x^2-y^2-z=0\\ y\cos x-\frac{z}{2}=0 \end{cases} \quad \text{punt } (0,0,0).$$
(c)
$$\begin{cases} x^2+y^2+(z-1)^2=1\\ (x-1)^2+y^2+z^2=1 \end{cases} \quad \text{punt } (0,0,0).$$

(c)
$$\begin{cases} x^2 + y^2 + (z-1)^2 = 1\\ (z-1)^2 + y^2 + z^2 = 1 \end{cases}$$
 punt $(0,0,0)$.

- 15. Sigui $C \subset \mathbf{R}^2$ la corba plana definida per $F(x,y) = x^2/4 y^2 + y^4 = 0$.
 - (a) Proveu que és una corba regular en tot punt excepte, potser, el (0,0).
 - (b) Considereu el camí $\gamma: \mathbf{R} \to \mathbf{R}^2$, $\gamma(t) = (\sin 2t, \sin t)$. Proveu que està contingut dins C.
 - (c) Calculeu els vectors tangents de γ a t=0 i a $t=\pi$, i representeu-los gràficament.
 - (d) Conclogueu que C no és una corba regular en el (0,0).
 - (e) Proveu que tanmateix $\gamma|_{[0,2\pi]}$ és una parametrització injectiva i regular de C. (Heu de comprovar tres coses: primer, $\gamma'(t) \neq 0$ sempre; segon, γ és injectiva sobre $]0, 2\pi[$; i tercer (més difícil), donat $(x, y) \in C$ cal trobar una $t \in [0, 2\pi[$ tal que $\gamma(t) = (x, y).)$
- 16. En cadascun dels apartats següents es donen dues expressions de corbes o superfícies en forma paramètrica, implícita o explícita. Esbrineu quina relació hi ha entre elles.

(a)
$$\gamma(t) = (1 + \cos 2t, \sin 2t),$$

 $G(x, y) = x^2 + y^2 - 2x = 0.$

(b)
$$\alpha(u) = (\sin^2 u, 2\cos u), u \in [0, \pi/2],$$

 $\beta(v) = (1 - v^2, 2v), v \in [0, 1].$

(c)
$$c(t) = (t, t^2),$$

 $F(x, y) = x^3 - yx^2 + y^2 - xy = 0.$

(d)
$$g(\rho, \phi) = (\rho \cos \phi, \rho \sin \phi, \rho),$$

 $F(x, y, z) = x^2 + y^2 - z^2 = 0.$

(e)
$$g(u, v) = (u \cosh v, u \sinh v, u^2),$$

 $z = f(x, y) = x^2 - y^2.$

17. Sigui C una corba continguda en el semiplà $H = \{(x, y, z) \in \mathbf{R}^3 \mid x > 0, y = 0\}$. S'anomena superfície de revolució el conjunt obtingut fent girar C al voltant de l'eix OZ. De manera més precisa, si denotem per $R_{\phi}: \mathbf{R}^3 \to \mathbf{R}^3$ la rotació d'eix OZ i angle ϕ , $R_{\phi}(x, y, z) =$ $(x\cos\phi - y\sin\phi, x\sin\phi + y\cos\phi, z)$, la superfície descrita és $S = \bigcup_{\phi \in [0,2\pi]} R_{\phi}(C)$. La corba C s'anomena generatriu de S, els conjunts $R_{\phi}(C)$ (amb $\phi \in [0, 2\pi]$) s'anomenen meridians,

i les circumferències $\bigcup_{\phi \in [0,2\pi]} R_{\phi}(p)$ (amb $p \in C$) parallels.

(a) Si C està descrita paramètricament per f(t) = (a(t), 0, c(t)), obtingueu una parametrització $g(\phi,t)$ de S.

Proveu que si f és regular també ho és g.

Problemes del tema 4 23

- (b) Si C està descrita implícitament per F(x,z)=0, obtingueu una descripció implícita G(x,y,z)=0 de S.
 - Proveu que si JF no s'anul·la en C, llavors JG no s'anul·la en S.
- (c) Doneu exemples de superfícies de revolució.
- (d) El tor és la superfície de revolució obtinguda fent girar una circumferència $(x-R)^2+z^2=r^2$ al voltant de l'eix OZ, essent R>r>0 dues constants. Obteniu-ne una descripció implícita i, a partir de la parametrització habitual de la circumferència mitjançant l'angle, una descripció paramètrica.
- (e) Calculeu la recta normal a una superfície de revolució S en un punt qualsevol (x_o, y_o, z_o) , tant si S està descrita segons l'apartat (a) com el (b).
- (f) Proveu que, en general, la recta normal passa per l'eix de revolució.

Problemes addicionals

- 18. Siguin $c: I \to \mathbf{R}^n$ un camí de classe C^2 .
 - (a) Proveu que si c és contingut dins una recta, llavors c'(t) i c''(t) són linealment dependents per a cada t.
 - (Si c és dins la recta que passa per p amb vector director u, llavors $c(t) = p + \lambda(t)u$.) Proveu l'enunciat recíproc suposant que el vector c' no s'anul·la mai.
 - (b) Anàlogament, proveu que si c és contingut dins un pla, llavors c'(t), c''(t) i c'''(t) són linealment dependents per a cada t.
- Sigui h = h₁e₁ + h₂e₂ + h₃e₃ ≠ 0 un vector de l'espai ordinari R³. Anomenem pendent de h el nombre h₃/√h₁² + h₂² (±∞ si el vector és vertical).
 Si γ és un camí diferenciable tal que γ'(t) ≠ 0, anomenem pendent de γ el pendent del seu vector tangent.
 - (a) Sigui $f: U \to \mathbf{R}$ una funció diferenciable de dues variables, $p \in U$ un punt, i $\mathbf{u} = (u_1, u_2) \in \mathbf{R}^2$ un vector unitari. Proveu que el pendent del camí $\gamma(t) = (tu_1, tu_2, f(p+t\mathbf{u}))$ a l'instant t = 0 és $f'(p; \mathbf{u})$.
 - (b) Proveu que l'hèlix $\gamma(t) = (\cos \omega t, \sin \omega t, at)$ té pendent constant.
- 20. Sigui R(t) una matriu 3×3 ortogonal (o sigui, $R^{\top}R = I$), i suposem que R(0) = I.
 - (a) Proveu que el seu vector tangent A = R'(0) és una matriu antisimètrica.
 - (b) Comproveu-ho en el cas de $R(t)=\left(\begin{array}{ccc}\cos\omega t & -\sin\omega t & 0\\ \sin\omega t & \cos\omega t & 0\\ 0 & 0 & 1\end{array}\right)$
- 21. Sigui $A \in \mathbf{M}_n(\mathbf{R})$ una matriu simètrica, i $f: \mathbf{R}^n \to \mathbf{R}$ la forma quadràtica corresponent, $f(x) = \sum_{i,j} A_{ij} x_i x_j$. Calculeu el gradient de f.
- 22. Essent c > 0 una constant fixada, proveu que els plans tangents a la superfície xyz = c determinen amb els plans coordenats tetràedres de volum constant.
- 23. Suposeu que l'equació F(x, y, z) = 0 determina una funció y = f(x, z), la qual defineix una superfície de \mathbb{R}^3 que podem parametritzar amb les variables (x, z). Expresseu el producte vectorial fonamental d'aquesta parametrització en termes de F.
- 24. Determineu f(u) per tal que la superfície parametritzada r(u,v) = (f(u), v, p u v) tingui com a producte vectorial fonamental el vector (1,1,1). De quina superfície es tracta?
- 25. Sigui la funció $f(x,y) = 2ax + 2bxy + 4cy^2$ amb $a,b,c \in \mathbf{R}$. Determineu els valors dels coeficients a,b,c de manera que se satisfacin simultàniament les dues condicions següents:
 - (a) La gràfica de f en el punt (1,1,f(1,1)) té el pla tangent normal al vector (1,0,-1).
 - (b) La derivada direccional de f en (1,-1) és nulla en la direcció del vector (1,0).

26. Trobeu, sobre la superfície d'equació $z=a^2x^2+b^2y^2$, la corba de màxim pendent que passa per (1/a,1/b,2).

(Indicació: la projecció (x(t), y(t)) de la corba ha d'ésser tangent al gradient en cada punt.)

27. Considereu el camí $\gamma(t) = \begin{cases} (-e^{-1/t^2}, e^{-1/t^2}) & t < 0 \\ (0, 0) & t = 0 \\ (e^{-1/t^2}, e^{-1/t^2}) & t > 0 \end{cases}$

Proveu que és C^{∞} i injectiu, però que la seva imatge (dibuixeu-la!) no és una corba regular.

- 28. Considereu la funció $f: \mathbf{R}^2 \to \mathbf{R}^2$ donada per $f(x, y) = (e^x \cos y, e^x \sin y)$.
 - (a) Sigui $g: \mathbf{R}^2 \to \mathbf{R}$ una funció diferenciable. Si el pla tangent a la gràfica de g en el punt (1,0,1) té equació 2x + y z = 1, trobeu l'equació del pla tangent a la gràfica de $g \circ f$ en el punt (0,0,1).
 - (b) Siguin f_1, f_2 les funcions components de f. Proveu que les corbes de nivell $f_1(x, y) = 1$, $f_2(x, y) = 0$ es tallen formant un angle recte.
- 29. Considereu les corbes planes definides per les parametritzacions $\alpha(t) = (-t, t^2)$ i $\beta(t) = (t^2, t)$. Trobeu els punts en què es tallen, i amb quin angle ho fan.
- 30. Sigui a>0 una constant, i $C\subset \mathbf{R}^2$ la corba definida per $x^3+y^3=3axy$. Sigui $\gamma\colon \mathbf{R}-\{-1\}\to \mathbf{R}^2$ la corba parametritzada definida per $\gamma(t)=\left(\frac{3at}{1+t^3},\frac{3at^2}{1+t^3}\right)$.
 - (a) Estudieu si ${\cal C}$ és una corba regular del pla.
 - (b) Estudieu si γ és una corba parametritzada regular.
 - (c) Calculeu el vector tangent de γ a t=0.
 - (d) Calculeu $\lim_{t\to +\infty} \gamma(t)$, i demostreu que el pendent del vector tangent $\gamma'(t)$, quan $t\to +\infty$, tendeix a ∞ .
 - (e) Comproveu que γ pren valors dins C, i que de fet $\gamma: \mathbf{R} \{-1\} \to C$ és bijectiva. (Indicació: la inversa de γ és $\pi(x,y) = y/x$ si $(x,y) \neq (0,0), \pi(0,0) = 0$.)
 - (f) Combinant els resultats anteriors en un dibuix, justifiqueu que C no és una corba regular.
- 31. D'acord amb el problema 17, si la generatriu d'una superfície de revolució S al voltant de l'eix OZ és parametritzada per $\gamma(t)=(a(t),0,c(t)), S$ és parametritzada per $g(t,\phi)=(a(t)\cos\phi,a(t)\sin\phi,c(t)).$ Sigui $L\subset S$ una corba descrita, en l'espai de paràmetres, per $\phi=f(t)$. Trobeu l'angle α que formen, en un punt $g(t_o,\phi_o)$, la corba L i el meridià $\phi=\phi_o$.
- 32. Sigui $U \subset \mathbf{R}^n$ un obert. Un camp vectorial en U definit per una aplicació $\mathbf{f}: U \to \mathbf{R}^n$ es diu tangent a una corba, superfície, ..., $M \subset U$ si en cada punt $p \in M$ el vector $\mathbf{f}(p)$ és tangent a M en p. Estudieu si els camps vectorials de \mathbf{R}^3 definits per

$$\mathbf{f}(x, y, z) = (-y, x, 0)$$
 $\mathbf{g}(x, y, z) = (x, y, z)$ $\mathbf{h}(x, y, z) = (y, x, z)$

són tangents en algun punt a l'esfera $x^2 + y^2 + z^2 = 1$.

Respostes

- 1. (a) Vector (2,3) sobre el punt (1,1).
 - (b) Vector (0,0) sobre el punt (0,0); vector (2,0) sobre el punt $(\pi,2)$;
 - (c) Vector (1, -1, 0) sobre el punt (1, 1, 1).
- 2. Vector (1,2) sobre el punt (1,0).
- 3. Vector (2,0) sobre el punt (1,1).
- 6. Si $\mathbf{r}(x) = (x)$, grad $r = \mathbf{r}/r$ i grad $r^{\alpha} = \alpha r^{\alpha-2} \mathbf{r}$.
- 7. Màxim augment en la direcció indicada per (-3, -1), màxima disminució en la direcció oposada, i no variació en la direcció indicada per $\pm (1, -3)$.
- 8. 17.

Problemes del tema 4 25

- 9. (a) 2x + 8y z = 9.
 - (b) x 3y + z = 3.
 - (c) $xr\cos\phi + yr\sin\phi + z\sqrt{a^2 r^2} = a^2$.
- 10. (a) Regular en tot punt. Pla tangent 3x + 5y + 4z = 18.
 - (b) Regular en tot punt. Pla tangent 6x 2y + 15z = 22.
 - (c) Regular en tot punt, excepte en la intersecció amb els plans coordenats. Pla tangent -2x+y+2z=12.
- 11. (a) Parametrització regular excepte en (-1/2, -1/2). Pla tangent x + 4y 3z = 5.
 - (b) Parametrització regular excepte on $\cos \theta = 0$. Pla tangent $\cos \phi_o \cos \theta_o x + \sin \phi_o \cos \theta_o y + \sin \theta_o z = R$.
 - (c) Parametrització regular excepte on r=0. Pla tangent $x+y-\sqrt{2}z=0$.
 - (d) Parametrització regular excepte on u = 0. Pla tangent 2x z 1 = 0.
- 12. (a) Regular en tot punt. Recta tangent: $(1,1) + \lambda (-4,3)$. Recta normal: $(1,1) + \lambda (3,4)$.
 - (b) Regular en tot punt excepte potser (0,0) i (1,1). Recta tangent: $(2,2) + \lambda(1,1)$. Recta normal: $(2,2) + \lambda(1,-1)$
- 13. (a) Regular en tot punt. Recta tangent: $(1,0) + \lambda (1,2\pi)$.
 - (b) Regular en tot punt. Recta tangent: $(2,2,0) + \lambda(1,1,4\pi)$.
 - (c) Regular en tot punt. Recta tangent: $\gamma(t_o) + \lambda (\sin 2t_o, \cos 2t_o, -\sin t_o)$. Pla normal: $x \sin 2t_o + y \cos 2t_o - z \sin t_o = 0$. (Observeu que γ està sobre una esfera de centre l'origen.)
- 14. (a) Regular en tot punt. Recta tangent: $\frac{x-1}{-3} = \frac{y-1}{1} = \frac{z-1}{2}$.
 - (b) Regular en tot punt. Recta tangent: l'eix OX.
 - (c) Regular en tot punt. Recta tangent: l'eix OY.
- 15. (c) A t = 0: vector (2, 1) en el punt (0, 0). A $t = \pi$: vector (2, -1) en el punt (0, 0).
 - (d) Si fos una corba regular en (0,0) llavors l'espai dels vectors tangents a C en aquest punt tindria dimensió 1, però l'apartat anterior ens ha donat dos d'aquests vectors linealment independents.
 - (e) γ és C^{∞} , i $\gamma'(t) = (2\cos 2t, \cos t)$, mai nul.

Posant $\gamma(t_1) = \gamma(t_2)$ i mirant el segon component tenim $\sin t_1 = \sin t_2$; si s'anul·la cal $t_1 = \pi = t_2$, i si no el primer component queda $\cos t_1 = \cos t_2$, i només resta recordar que $c(t) = (\cos t, \sin t)$ és injectiva sobre $]0, 2\pi[$.

Finalment, observem que, si $\gamma(t)=(x,y)$, llavors $\gamma(t+\pi)=(x,-y)$, $\gamma(2\pi-t)=(-x,-y)$, i $\gamma(\pi-t)=(-x,y)$, de manera que és suficient estudiar els punts $(x,y)\in C$ pertanyents al primer quadrant. Donat un punt d'aquests, és clar que $(x,y)=\gamma(t)$ amb $t=\arcsin y$ (ja que $\gamma(t)$ és del primer quadrant obert només quan $0< t<\pi/2$). Tenint en compte que $x=2y\sqrt{1-y^2}$, es comprova fàcilment que $\gamma(\arcsin y)=(x,y)$.

Aquest problema mostra, doncs, que la imatge d'una parametrització injectiva i regular pot no ser una corba regular (en aquest cas, té la forma d'un 8, ja que $\lim_{t\to 0+} \gamma(t) = \lim_{t\to 2\pi^-} \gamma(t) = (0,0) = \gamma(\pi)$).

- 16. (a) Com que $G(x,y) = (x-1)^2 + y^2 1$, l'equació implícita és la d'una circumferència de centre (1,0) i radi 1, i això ho parametritza γ , injectivament sobre l'interval $[0,\pi[$ (per exemple).
 - (b) Les dues parametrizacions recorren (en sentit contrari) el mateix conjunt, ja que $\alpha(u) = \beta(\varphi(u))$, amb el canvi de variable $\phi: [0, \pi/2] \to [0, 1], \ v = \varphi(u) = \cos u$.
 - (c) F(c(t)) = 0, de manera que la parametrització corre dins el conjunt $F^{-1}(0)$. Aïllant y dins l'equació implícita obtenim $F(x,y) = (y-x)(y-x^2)$, de manera que és la unió d'una recta i una paràbola. És clar que la parametrització c(t) $(t \in \mathbf{R})$ recorre tota la paràbola.
 - (d) La parametrització recorre tot el con. Si prenem $\phi \in [0, 2\pi[$ (per exemple), llavors és injectiva, excepte que tots els punts amb $\rho = 0$ s'apliquen al (0, 0, 0).
 - (e) Com que $u^2 = (u \cosh v)^2 (u \sinh v)^2$, la parametrització corre dins del graf de f, que és un paraboloide hiperbòlic. Però d'aquest només cobreix la regió on z > 0 (quan $u \neq 0$) i el punt (0,0,0) = g(0,v).
- 17. (a) $g(\phi, t) = (a(t)\cos\phi, a(t)\sin\phi, c(t)).$
 - (b) $G(x, y, z) = F(\sqrt{x^2 + y^2}, z)$.
 - (c) El cilindre $x^2+y^2=a^2$, el con $p^2(x^2+y^2)=z^2$, l'el·lipsoide $\frac{x^2+y^2}{a^2}+\frac{z^2}{c^2}=1$, el paraboloide circular $z=\frac{x^2+y^2}{a}$, els hiperboloides $\frac{x^2+y^2}{a^2}-\frac{z^2}{c^2}=\pm 1$, ...
 - (d) $(\sqrt{x^2 + u^2} R)^2 + z^2 = r^2$, $(\theta, \phi) \mapsto ((R + r\cos\theta)\cos\phi, (R + r\cos\theta)\sin\phi, r\sin\theta)$.

- (e) Equacions en forma paramètrica: $\begin{pmatrix} x_o \\ y_o \\ z_o \end{pmatrix} + \lambda \, a(t_o) \begin{pmatrix} c'(t_o) \cos \phi_o \\ c'(t_o) \sin \phi_o \\ -a'(t_o) \end{pmatrix} \mathrm{i} \begin{pmatrix} x_o \\ y_o \\ z_o \end{pmatrix} + \lambda \frac{1}{\rho_o} \begin{pmatrix} x_o \, \mathrm{D}_1 F(\rho_o, z_o) \\ y_o \, \mathrm{D}_1 F(\rho_o, z_o) \\ \rho_o \, \mathrm{D}_2 F(\rho_o, z_o) \end{pmatrix},$ on $\rho_o = \sqrt{x_o^2 + y_o^2}$.
- (f) Es pot usar l'apartat anterior, però també es pot observar que la recta normal a S en (x_o, y_o, z_o) és també normal al paral·lel corresponent, al qual és normal el semiplà $R_{\phi}(H)$. Per tant, si la recta normal no és vertical, tallarà l'eix OZ.
- 18. (a) És clar que $c'(t), c''(t) \in \langle u \rangle$. Pel que fa al recíproc, d'acord amb la hipòtesi tenim que $c''(t) = \mu(t)c'(t)$. La funció μ és de classe C^0 , ja que, de fet, $\mu(t) = c''(t) \cdot c'(t)/c'(t) \cdot c'(t)$. Conegudes $c(0) = c_o$ i $c'(0) = v_o$, el camí c(t) és l'única solució d'una equació diferencial de segon ordre lineal amb condicions inicials $c(0) = c_o$ i $c'(0) = v_o$; concretament, $c(t) = c_o + \lambda(t)v_o$, on $\lambda(t) = \int_0^t \mathrm{d}s \, e^{\int_0^s \mathrm{d}u \, \mu(u)}$.
- 19. (b) $\gamma'(t) = (-\omega \sin \omega t, \omega \cos \omega t, a)$ té pendent a/ω .
- 20. (a) Derivant $R^{\top}(t) R(t) = I$ obtenim $R^{\top}(0) R(0) + R^{\top}(0) R'(0) = 0$, és a dir, $A^{\top} + A = 0$.

(b)
$$R'(0) = \begin{pmatrix} 0 & -\omega & 0 \\ \omega & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

- 21. grad f(x) = 2Ax.
- 22. El volum és 9c/2.
- 23. $-\frac{\operatorname{grad} F}{\partial F/\partial y}$
- 24. f(u) = u + C; la superfície és un pla.
- 25. a = 1/4, b = 1/4, c = -1/16.
- 26. Una parametrització de la corba és $t \to \left(\frac{1}{a}e^{a^2t}, \frac{1}{b}e^{b^2t}, e^{2a^2t} + e^{2b^2t}\right)$.
- 27. La imatge és y = |x|, -1 < x < 1,
- 28. (a) z = 1 + 2x + y.
- 29. Es tallen en (0,0) ortogonalment, i en (1,1) amb angle $\arccos(4/5)$.
- 30. (a) Sí, excepte potser en el punt (0,0).
 - (b) Sí.
 - (c) (3a, 0).
 - (d) $\lim_{t \to +\infty} \gamma(t) = (0,0).$
- 31. L és parametritzada per $\gamma(t)=(a(t)\cos f(t),a(t)\sin f(t),c(t))$, i el meridià per $\mu(t)=(a(t)\cos\phi_o,a(t)\sin\phi_o,c(t))$. Calculant-ne els vectors tangents podem obtenir $\cos\alpha$, o, millor, $\operatorname{tg}^2\alpha=\frac{a(t)^2}{a'(t)^2+c'(t)^2}f'(t)^2$.
- 32. **f** hi és tangent arreu, **g** no hi és tangent enlloc, i **h** hi és tangent sobre dues circumferències, les obtingudes tallant l'esfera amb els plans verticals $x y = \pm 1$.

5 Estudi local de funcions

Problemes bàsics

- 1. Per a cadascuna d'aquestes funcions, calculeu el polinomi de Taylor de grau ≤ 2 en el punt p indicat.
 - (a) $\frac{\sin x}{1+x+y}$, p=(0,0).
 - (b) $\sin xy^2$, p = (1,0).
 - (c) x^y , p = (1, 1).
 - (d) y^2/x^3 , p = (1, -1).
 - (e) $e^{\sin x/\cos y}$, p = (0,0).
- 2. Utilitzant els polinomis de Taylor de les funcions elementals, calculeu el polinomi de Taylor en l'origen, de grau ≤ 3 , per a les funcions següents:
 - (a) $\sin xy + \cos xy$
 - (b) $\log(2 + xy)$
 - (c) $e^{x+y^2+z^3}$
 - (d) 1/(1+x+y+z)
 - (e) $e^{x^2+\sin y}$
- 3. Estudieu els punts crítics de les funcions següents:
 - (a) $f(x,y) = e^{1-x^2-y^2}$.
 - (b) $f(x,y) = 3x^2 + 2xy + 2x + y^2 + y + 4$.
 - (c) $f(x,y) = x^4 + y^4 2y^2 + 4xy 2x^2$.
 - (d) $f(x, y, z) = x^2 yz \sin(xz)$.
 - (e) $f(x, y, z) = 3 \log x + 2 \log y + 5 \log z + \log(22 x y z)$.
 - (f) $f(x,y,z) = x^2z + y^2z + \frac{2}{3}z^3 4x 4y 10z + 1$.
 - (g) $f(x, y, z) = \cos 2x \sin y + z^2$.
- 4. Estudieu, en funció de k, el caràcter dels punts crítics de $f(x,y) = \frac{1}{2}(x^2 + y^2) + kxy$.
- 5. Considereu la funció $f(x,y) = (y-3x^2)(y-x^2)$.
 - (a) Proveu que l'origen n'és l'únic punt crític, i estudieu-ne el caràcter mitjançant la hessiana.
 - (b) Sigui $\varphi(t) = f(at,bt)$ la funció f avaluada al llarg d'una recta que passa per l'origen. Proveu que té un mínim a t=0, independentment de la recta triada.
 - (c) Proveu que f no té mínim en l'origen. (Veieu que f(0,0)=0 però que en tot veïnat de (0,0) f pren valors <0 i valors >0.)
- 6. Considereu la funció $f(x,y) = -y^4 e^{-x^2} + 2y^2 \sqrt{e^x + e^{-x^2}}$.
 - (a) Quin és el seu domini? Hi és de classe C^{∞} ?
 - (b) Proveu que el seu únic punt crític és el (0,0).
 - (c) Calculeu el polinomi de Taylor de f de grau ≤ 2 en (0,0). (Podeu utilitzar que $(1+z)^p=1+pz+p(p-1)z^2/2+\ldots$ i $e^z=1+z+z^2/2+\ldots$)
 - (d) Determineu el caràcter del punt crític de f.
 - (e) Proveu que f no té mínim absolut. (Podeu considerar f(0, y).)
- 7. Trobeu els extrems de les funcions f quan les variables estan sotmeses als lligams que s'indiquen:
 - (a) f(x,y) = x; $x^2 + 2y^2 = 3$.

- (b) $f(x,y) = x^2y$; xy = 1.
- (c) f(x, y, z) = x y + z; $x^2 + y^2 + z^2 = 2$.
- (d) f(x, y, z) = x + y + z; $x^2 y^2 = 1, 2x + z = 1$
- 8. Considereu la funció $f(x,y)=(x+1)^2+y^2$ i el subconjunt $C\subset \mathbf{R}^2$ definit per $x^3=y^2$. Obteniu el mínim de $f|_C$. Per què no es pot obtenir mitjançant el mètode dels multiplicadors de Lagrange?
- 9. Trobeu els extrems locals de les funcions y(x) definides, aplicant el teorema de la funció implícita, per les equacions següents:
 - (a) $x^3 + y^3 3xy = 0$.
 - (b) $x^2 + y^2 + kxy = 0$.
- 10. Trobeu els extrems absoluts de la funció $f(x,y)=2x^2+2y^2-x^4$ sobre la bola definida per $x^2+y^2\leq 3$.
- 11. Trobeu els extrems absoluts de la funció $f(x,y) = x^4 + 2x^2y x^3 + 3y^2$ definida sobre el conjunt $Q = \{(x,y) \in \mathbf{R}^2 \mid |x| \le 1, |y| \le 1\}.$
- 12. Trobeu els extrems absoluts de la funció $f(x,y,z)=x^2+y^2+z^2+x+y+z$ definida sobre el conjunt $A=\{(x,y,z)\in {\bf R}^3\mid x^2+y^2+z^2\leq 4,\ z\leq 1\}.$
- 13. Essent a, b, c > 0 constants, trobeu els extrems absoluts de $f(x, y, z) = \frac{x}{a} + \frac{y}{b} + \frac{z}{c}$ sobre la regió

$$H = \left\{ (x, y, z) \mid \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1, \ z \ge 0 \right\}.$$

- 14. Trobeu la mínima distància entre els punts de les corbes d'equacions x + y = 4 i $x^2 + 4y^2 = 4$.
- 15. Calculeu el màxim volum d'un paral·lelepípede de cares paral·leles als eixos, inscrit dins l'el·lipsoide d'equació $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.
- 16. Trobeu els vèrtexs i semieixos de l'el·lipse obtinguda intersecant l'el·lipsoide $\frac{1}{4}x^2 + y^2 + z^2 = 1$ amb el pla d'equació x + y + z = 0.

Problemes addicionals

- 17. Fent servir una funció adient i el seu polinomi de Taylor de grau 2, calculeu aproximadament $0.97^{1.07}$.
- 18. Sigui $g: \mathbf{R}^2 \to \mathbf{R}$ una funció de classe \mathbf{C}^2 amb g(0,1) = 0, Jg(0,1) = (2-3) i $Hg(0,1) = \begin{pmatrix} 3/4 & 5/4 \\ 5/4 & 5/4 \end{pmatrix}$. Sigui $f: \mathbf{R} \to \mathbf{R}$ una funció de classe C^1 amb f(0) = 1 i f'(0) = -1/8. Calculeu el polinomi de Taylor de grau ≤ 2 , en el punt (0,1), de la funció

$$F(x,y) = \log(1 + x^2 + xy + y^2) + \int_0^{g(x,y)} f(t) dt.$$

- 19. L'equació $z+1+\sin z-(x+1)^2(y+1)^2=0$ defineix implícitament z=Z(x,y) en un veïnat del punt (0,0,0). Calculeu raonadament el polinomi de Taylor de grau ≤ 2 de Z en el (0,0) escrivint $Z(x,y)=c+ax+by+Ax^2+By^2+Cxy+o(\|(x,y)\|^2)$ i substituint-ho dins l'equació.
- 20. Si $f: U \to \mathbf{R}$ és una funció de classe \mathbf{C}^{k+1} , i $[a, a + \mathbf{u}] \subset U$, obteniu l'expressió del residu de la fórmula de Taylor $f(a + \mathbf{u}) = P_k(f, a; \mathbf{u}) + R_k(f, a; \mathbf{u})$ en forma integral. (Considereu la funció d'una variable $\varphi(t) = f(a + t\mathbf{u})$ i escriviu-ne la fórmula de Taylor amb el residu en forma integral.)
- 21. Estudieu els punts crítics de les funcions següents:

(a)
$$f(x,y) = x^5y + y^5x + xy$$
.

Problemes del tema 5 29

- (b) $f(x,y) = \sin x + \sin y + \cos(x+y)$, per a $(x,y) \in]0, 2\pi[\times]0, 2\pi[$.
- (c) f(x, y, z) = xy + yz + zx.
- (d) $f(x,y,z) = x^2 + y^2 + 2z^2 + xyz$.
- 22. Sigui $f: U \to \mathbf{R}$ una funció de classe \mathbf{C}^2 definida en un obert $U \subset \mathbf{R}^n$.
 - (a) Proveu que, si f té un mínim en un punt $p \in U$, llavors la hessiana Hf(p) és semidefinida positiva.
 - (Fixat \mathbf{u} , considereu la funció d'una variable $\varphi(t) = f(p+t\mathbf{u})$, i recordeu que $\varphi''(0) = f''(p;\mathbf{u})$.) Doneu un enunciat anàleg quan el punt és un màxim en lloc d'un mínim.
 - (b) L'enunciat recíproc és fals: doneu dos exemples de funcions $f: \mathbf{R}^2 \to \mathbf{R}$ per als quals (0,0) sigui un punt crític amb hessiana semidefinida positiva, però que en un cas el punt sigui mínim i en l'altre coll.
- 23. Siguin $A \subset \mathbf{R}^2$ un conjunt compacte, i $f: A \to \mathbf{R}$ una funció contínua, de classe \mathbf{C}^2 en l'interior \mathring{A} . Denotem per Δ el laplacià $(\Delta = \partial^2/\partial x^2 + \partial^2/\partial y^2)$.
 - (a) Si $\Delta f > 0$ en tot punt de \mathring{A} proveu que el màxim de f no s'assoleix en \mathring{A} , sinó en la frontera. (Si el màxim s'assoleix en un punt interior (x_o, y_o) , podeu utilitzar el problema anterior per a provar que $\Delta f(x_o, y_o) \leq 0$, fet que contradiu la hipòtesi.)
 - (b) Doneu un enunciat similar suposant que $\Delta f < 0$ en $\overset{\circ}{A}$. Canvia alguna cosa si treballem en \mathbf{R}^n en lloc de \mathbf{R}^2 ?
- 24. Trobeu els extrems de les funcions f quan les variables estan sotmeses als lligams que s'indiquen:
 - (a) $f(x,y) = x^2 + y^2$; $x^2 + y^2 = 1$.
 - (b) $f(x,y) = x^2 + y^2 + 1$; 2x + 3y = 0.
- 25. Identifiquem l'espai vectorial $\mathbf{M}_2(\mathbf{R})$ amb \mathbf{R}^4 , $\begin{pmatrix} x & y \\ z & t \end{pmatrix} \leftrightarrow (x,y,z,t)$. Dins $\mathbf{M}_2(\mathbf{R})$, sigui M el subconjunt format per les matrius amb determinant 1. Considerem $f: \mathbf{M}_2(\mathbf{R}) \to \mathbf{R}$, $f(A) = \operatorname{traça}(A)$, i sigui $f_o = f|_M$.
 - (a) Proveu que M és una hipersuperfície regular dins $\mathbf{M}_2(\mathbf{R})$.
 - (b) Trobeu els punts crítics de f_o utilitzant el mètode dels multiplicadors de Lagrange.
 - (c) Proveu que l'aplicació $g(x,y,z)=\begin{pmatrix} x&y\\z&\frac{1+yz}{x} \end{pmatrix}$ és una parametrització regular de M al voltant del punt $\begin{pmatrix} 1&0\\0&1 \end{pmatrix}$.
 - (d) Utilitzeu $\bar{f} = f \circ g$ per a estudiar el caràcter d'un dels punts crítics de f_o obtinguts en el segon apartat.
 - (e) És M compacte? És f_o fitada? (Podeu considerar $\begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix}$.)
- 26. Sigui $A \in \mathbf{M}_n(\mathbf{R})$ una matriu simètrica, $f: \mathbf{R}^n \to \mathbf{R}$ la forma quadràtica corresponent, $f(x) = \sum_{i,j} A_{ij} x^i x^j$, i S l'esfera unitat de \mathbf{R}^n , $S = \{x \in \mathbf{R}^n \mid x \cdot x = 1\}$.
 - (a) Proveu que $f|_S$ assoleix extrems absoluts.
 - (b) Proveu que, si x és un extrem de $f|_S$, llavors x és un vector propi de A. (Podeu usar que grad f(x) = 2Ax.)
 - (c) Si x és un vector propi de A unitari, quant val f(x)?
 - (d) Identifiqueu el subconjunt $f(S) \subset \mathbf{R}$.
- 27. Sigui $(a,b,c) \in \mathbf{R}^3$ un punt, i g(x,y,z) = Ax + By + Cz + D = 0 un pla. Considereu la funció $f(x,y,z) = \frac{1}{2} \left((x-a)^2 + (y-b)^2 + (z-c)^2 \right)$. Apliqueu el mètode dels multiplicadors de Lagrange per a trobar el valor mínim de f sobre el pla.

(Escriviu J $f = \lambda$ Jg. D'entrada, aquesta equació diu que el punt crític es troba en la recta per (a,b,c) amb vector director (A,B,C). Multiplicant les tres equacions per A,B i C, respectivament, podeu determinar λ . I elevant les tres equacions al quadrat podeu calcular f en el punt crític.)

Deduïu-ne que la distància entre el punt i el pla val $|Aa + Bb + Cc + D| / \sqrt{A^2 + B^2 + C^2}$.

- 28. Trobeu el màxim absolut de la funció $f(x, y, z) = x^2 + 2y^2 z$ amb la condició $x^2 + y^2 + z^2 = 1$.
- 29. Donada $f(x,y) = a^2x^2 + b^2y^2$, calculeu el màxim valor de f sobre l'el·lipse d'equació $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, on a > b.
- 30. Trobeu els extrems absoluts de $f(x, y, z) = x^2 + y^2 + z^2$ sobre el conjunt

$$\{(x, y, z) \in \mathbf{R}^3 \mid x, y, z \ge 0, \ x + y + z \le 1\}.$$

31. Trobeu els extrems absoluts de $f(x,y) = x^2 + y^2 - xy + y + x$ sobre el conjunt

$$\{(x,y) \in \mathbf{R}^2 \mid x+y \ge -3, \ x \le y, \ y \le 0\}.$$

32. Trobeu els extrems absoluts de $f(x,y) = x + 3xy - 2y^2$ sobre el conjunt

$$\{(x,y) \in \mathbf{R}^2 \mid |x| \le 1, |y| \le 1\}.$$

- 33. Considereu la funció $f(x,y)=(x^2+3y^2)e^{1-(x^2+y^2)}$.
 - (a) Determineu i classifiqueu els punts crítics de f.
 - (b) Determineu els extrems absoluts de f sobre el disc $\{(x,y) \in \mathbf{R}^2 \mid x^2 + y^2 \le 1\}$.
- 34. Considereu la funció $f: \mathbb{R}^2 \to \mathbb{R}$ definida per $f(x,y) = \sin(x+y) + \cos(x-y)$.
 - (a) Trobeu i classifiqueu tots els seus punts crítics.
 - (b) Calculeu els extrems absoluts de f en el quadrat $[\pi/2, \pi] \times [\pi/2, \pi]$.
- 35. Considereu el conjunt $T=\{(x,y)\in\mathbf{R}^2\mid x\geq 0,\ y\geq 0,\ 2x+y\leq 2\}$. Siguin $r_1,\ r_2,\ r_3$ les rectes segons els costats del triangle frontera de T. Considereu la funció $f\colon T\to\mathbf{R}$ que assigna a cada punt $p\in T$ la suma dels quadrats de las distàncies de p a r_1,r_2,r_3 . Justifiqueu que f té màxim i mínim absoluts i calculeu-los

(La distància entre el punt (a,b) i la recta Ax + By + C = 0 val $\frac{|Aa + Bb + C|}{\sqrt{A^2 + B^2}}$.)

- 36. Trobeu els punts de la corba $5x^2 + 6xy + 5y^2 = 16$ que estan a distància mínima i màxima de l'origen.
- 37. Dissenyeu un contenidor cilíndric que contingui 1 m³ de líquid fent servir la mínima quantitat de material.
- 38. Calculeu els punts crítics de la restricció de U(x,y,z)=mgz a l'esfera $x^2+y^2+z^2=R^2$, i estudieu-ne el caràcter. Interpreteu físicament el resultat.

Respostes

- 1. (a) $P_2(x,y) = x x^2 xy$.
 - (b) $P_2(u, v) = v^2$.
 - (c) $P_2(u, v) = 1 + u + uv$.
 - (d) $P_2(u, v) = 1 3u 2v + 6u^2 + 6uv + v^2$.
 - (e) $P_2(x,y) = 1 + x + x^2/2$.
- 2. (a) 1 + xy.
 - (b) $\log 2 + xy/2$.
 - (c) $1 + x + x^2/2 + y^2 + x^3/6 + xy^2 + z^3$.
 - (d) $1 (x + y + z) + (x + y + z)^2 (x + y + z)^3$.
 - (e) $1 + y + x^2 + y^2/2 + x^2y$.
- 3. (a) (0,0) és un màxim local.
 - (b) (-1/4, -1/4) és un mínim local.
 - (c) (0,0) és un coll (o punt de sella); $(\sqrt{2},-\sqrt{2}), (-\sqrt{2},\sqrt{2})$ són mínims locals.

Problemes del tema 5 31

- (d) (0,0,0) és un coll.
- (e) (6, 4, 10) és un màxim local.
- (f) (2,2,1) i (-2,-2,-1) són colls; (1,1,2) és un mínim i (-1,-1,-2) un màxim.
- (g) Els punts $\left(\frac{\pi}{2}k, \frac{\pi}{2} + \pi\ell, 0\right)$, amb $k, \ell \in \mathbf{Z}$, són colls quan $k + \ell$ és parell, i mínims quan $k + \ell$ és imparell. Els punts $\left(\frac{\pi}{4} + \frac{\pi}{2}k, \pi\ell, 0\right)$, amb $k, \ell \in \mathbf{Z}$, són colls.
- 4. Si $|k| \neq 1$, l'únic punt crític és (0,0), que és un mínim local quan |k| < 1 i un coll quan |k| > 1. Si k=1 els punts crítics són els de la recta x+y=0, i si k=-1 són els de la recta x-y=0; en ambdós casos són mínims locals.
- (b) $\varphi(t) = b^2 t^2 4a^2 b t^3 + 3a^4 t^4;$ $\varphi'(0) = 0; \varphi''(0) = 2b^2, \text{ que \'es} > 0 \text{ si } b \neq 0.$ Si $b = 0, \varphi(t) = 3a^4 t^4, \text{ tamb\'e m\'nim a } t = 0$
 - (c) Per als punts de les paràboles $y=x^2$, $y=3x^2$ la funció es nul·la, per als que estan entre ambdues paràboles la funció és negativa, i per als altres és positiva.
- 6. (c) $f(x,y) = -1 + x^2 + 2\sqrt{2}y^2 + o_2$.
 - (d) Mínim local.
- 7. (a) $(\sqrt{3},0)$, $(-\sqrt{3},0)$ són màxim i mínim respectivament.
 - (b) No té extrems.
 - (c) $\left(\sqrt{\frac{2}{3}}, -\sqrt{\frac{2}{3}}, \sqrt{\frac{2}{3}}\right), \left(-\sqrt{\frac{2}{3}}, \sqrt{\frac{2}{3}}, -\sqrt{\frac{2}{3}}\right)$ són màxim i mínim respectivament.
- 8. El mínim s'asoleix en el punt (0,0). No es pot obtenir pel mètode dels multiplicadors perquè C no és una corba regular en aquest punt.
- (a) y té un màxim local per a $x = \sqrt[3]{2}$
 - (b) y no té cap extrem local.
- 10. El valor mínim és -3, i s'assoleix en $(\sqrt{3}, 0)$ i $(-\sqrt{3}, 0)$; el valor màxim és 6, i s'assoleix en $(0, \sqrt{3}$ i $(0, -\sqrt{3})$.
- 11. El mínim és f(1,-1/3) = -1/3 i el màxim és f(-1,1) = 7.
- 12. El mínim és f(-1/2, -1/2, -1/2) = -3/4 i el màxim és $f(\sqrt{3/2}, \sqrt{3/2}, 1) = 5 + \sqrt{6}$.
- 13. Màxim en $\frac{1}{\sqrt{3}}(a,b,c)$, amb valor $\sqrt{3}$. Míxim en $-\frac{1}{\sqrt{2}}(a,b,0)$, amb valor $-\sqrt{2}$.
- 14. Si anomenem (x,y) els punts de la primera corba i (u,v) els punts de la segona, la funció a extremar és $(x-u)^2 + (y-v)^2$, amb les condicions donades per les equacions de les corbes.

La distància mínima és $\frac{4-\sqrt{5}}{\sqrt{2}}$, i s'assoleix entre els punts $(x,y)=\left(2+\frac{3}{2\sqrt{5}},2-\frac{3}{2\sqrt{5}}\right)$ i $(u,v)=\left(\frac{4}{\sqrt{5}},\frac{1}{\sqrt{5}}\right)$.

- 15. $\frac{8abc}{3\sqrt{3}}$
- 16. Vèrtexs: $\pm (0, 1/\sqrt{2}, -1/\sqrt{2})$ i $\pm (2/\sqrt{3}, -1/\sqrt{3}, -1/\sqrt{3})$. Semieixos: 1 i $\sqrt{2}$.
- 17. Podeu usar, per exemple, $f(x,y) = x^y$, al voltant de (1,1). S'obté 0'9679...
- 18. $P_2(x,y) = \ln 2 + \frac{5}{2}x 2(y-1) + \frac{1}{2}x^2 + 2x(y-1) + \frac{1}{16}(y-1)^2$.
- 19. $Z(x,y) = x + y + \frac{1}{2}(x^2 + y^2 + 4xy) + o(\|(x,y)\|^2)$. (Compareu amb el problema 22 del tema 3.)
- 20. $R_k(f, a; \mathbf{u}) = \int_0^1 \frac{(1-t)^k}{k!} f^{(k+1)}(a+t\mathbf{u}; \mathbf{u}) dt.$ 21. (a) (0,0) és un coll.
- - (b) $(\pi/2, \pi/2)$, $(3\pi/2, 3\pi/2)$, $(\pi/6, \pi/6)$, $(5\pi/6, 5\pi/6)$, $(3\pi/2, \pi/2)$, $(\pi/2, 3\pi/2)$ són coll, mínim, màxim, màxim, coll, coll, respectivament.
 - (c) (0,0,0) és un coll.
 - (d) (0,0,0) és un mínim; $(2\sqrt{2},-2\sqrt{2},2), (-2\sqrt{2},2\sqrt{2},2), (2\sqrt{2},2\sqrt{2},-2), (-2\sqrt{2},-2\sqrt{2},-2)$ són colls.
- 22. (a) Si el punt és un màxim llavors la hessiana és semidefinida negativa.
 - (b) Per exemple $f(x,y) = x^2 + y^4$ i $f(x,y) = x^2 y^4$.

- 23. (b) Si $\Delta f < 0$ en \mathring{A} llavors el mínim de f no s'assoleix en $\mathring{A}.$
- 24. (a) Tots els punts de $C = \{(x,y) \mid x^2 + y^2 = 1\}$ són extrems condicionats (de fet, f és constant sobre C).
 - (b) (0,0) és un mínim (de fet, ja ho és per a la funció f abans de sotmetre-la al lligam).
- 25. (a) La jacobiana de F(x, y, z, t) = xt yz només s'anulla en la matriu 0, que no és de M.
 - (b) Són $\pm I$, on I és la matriu unitat.
 - (c) De fet, g correspon a expressar M en forma explícita com a t = funci(x, y, z).
 - (d) Tenim $\bar{f}(1,0,0) = I$. En aquest punt la hessiana de \bar{f} és indefinida, i doncs és un coll. Anàlogament estudiaríem f al voltant del punt -I.
 - (e) No. No.
- 26. (d) L'interval $[\lambda, \mu]$, on λ i μ són el més petit i el més gran dels valors propis de A.
- 28. 17/8.
- 29. a^4 .
- 30. Assoleix el mínim en el punt (0,0,0) i val 0. Assoleix el màxim en els punts (1,0,0), (0,1,0), (0,0,1) i val 1.
- 31. El màxim s'assoleix en (-3,0) i el mínim en (-1,-1).
- 32. El màxim absolut s'assoleix en (1,3/4) i val 17/8. El mínim absolut s'assoleix en (-1,1) i val -6.
- 33. (a) f té un mínim local en (0,0). f té colls en els punts $(\pm 1,0)$. f té màxims locals en els punts $(0,\pm 1)$.
 - (b) El màxim absolut és 3 i s'obté en els punts $(0, \pm 1)$. El mínim absolut és 0 i s'obté en (0, 0).
- 34. (a) Són els punts de la família $\left\{ \left(\frac{\pi}{4}, \frac{\pi}{4} \right) + h \left(\frac{\pi}{2}, \frac{\pi}{2} \right) + k \left(\frac{\pi}{2}, -\frac{\pi}{2} \right) \mid h, k \in \mathbf{Z} \right\}$. Si h i k són parells la funció hi assoleix un màxim. Si h i k són imparells la funció hi assoleix un mínim. Si un és parell i l'altre imparell la funció hi té un coll.
 - (b) El màxim absolut és 1 i s'obté en $(\pi/2, \pi/2)$ i en (π, π) . El mínim absolut és -1 i s'obté en $(\pi, \pi/2)$ i en $(\pi/2, \pi)$.
- 35. En el punt (2/5, 1/5) s'assoleix el valor mínim, 2/5. En el punt (0, 2) s'assoleix el valor màxim, 4.
- 36. A distància mínima: (1,1) i (-1,-1). A distància màxima: (2,-2) i (-2,2).

37.
$$r = \frac{1}{(2\pi)^{1/3}}, \quad h = \frac{2}{(2\pi)^{1/3}}.$$

38. Els punts crítics són (0,0,-R) (mínim) i (0,0,R) (màxim). Són els punts d'equilibri (estable i inestable, respectivament) d'una partícula de massa m obligada a moure's sobre l'esfera i sotmesa a la força de la gravetat.

6 Integració

Problemes bàsics

- 1. Calculeu les integrals de les funcions següents sobre els rectangles indicats:
 - (a) $f(x,y) = y^2$; $|x| \le 1$, $|y| \le 2$.
 - (b) f(x,y) = x|y|; $0 \le x \le 2, -1 \le y \le 3$.
 - (c) $f(x, y, z) = x^2 + y^2 + z^2$; $-1 \le x, y, z \le 1$.
 - (d) $f(x, y, z) = xyz; 0 \le x, y, z \le 1.$
- 2. Calculeu les integrals de les funcions següents sobre les regions indicades:
 - (a) f(x,y) = x y; $\{(x,y) \mid x + y < 1, x > 0, y > 0\}$.
 - (b) $f(x,y) = x^2y^2$; $\{(x,y) \mid x \ge 0, |x| + |y| \le 1\}$.
 - (c) f(x,y) = 1; $\{(x,y) \mid x^2 \le y \le x\}$.
 - (d) f(x,y) = 1; $\{(x,y) \mid x+y \ge 1, \ x^2 + y^2 \le 1\}$.
 - (e) f(x, y, z) = z; $\{(x, y, z) \mid |x| \le 1, |y| \le 1, 0 \le z \le 2 x^2 y^2\}$.
 - (f) $f(x,y,z) = (1+x+y+z)^{-3}$; regió limitada pels tres plans coordenats i el pla x+y+z=1.
 - (g) $f(x,y,z) = xy^2z^3$; regió limitada per la superfície z = xy i els plans y = x, x = 1, z = 0.
- 3. Reexpresseu les integrals dobles següents canviant l'ordre d'integració:
 - (a) $\int_0^4 dx \int_{3x^2}^{12x} dy f(x, y)$.
 - (b) $\int_0^1 dy \int_{-\sqrt{1-y^2}}^{1-y} dx f(x,y).$
- 4. Si $A=\{(x,y,z)\mid x^2+y^2\leq z^2,\ 0\leq z\leq 3\}$ i f és contínua en A, rescriviu $\iint_A f(x,y,z)\,\mathrm{d}x\mathrm{d}y\mathrm{d}z$ integrant primer respecte a x, després respecte a y, i després respecte a z.
- 5. Considereu la funció definida en $D = [0, \pi/2] \times [0, \pi/2]$ per $f(x, y) = \begin{cases} 1 & \text{si } y < \sin x \\ 0 & \text{si } y = \sin x \\ 3 & \text{si } y > \sin x \end{cases}$

Quin és el conjunt de punts de discontinuïtat de f? És f integrable? Calculeu la integral $\iint_D dxdy f(x,y)$.

- 6. Calculeu $\iint_T (x+y) \, \mathrm{d}x \, \mathrm{d}y$, essent T la regió definida per $y \leq 2x+2, \, x+y+1 \geq 0, \, x^2+y \leq 5, \, x \leq 2$.
- 7. Sigui R el rectangle de vèrtexs (1,2), (1,5), (3,2) i (3,5). Sigui T l'aplicació lineal representada per la matriu $\begin{pmatrix} 2 & 1 \\ -1 & 3 \end{pmatrix}$. Obteniu l'àrea de T(R).
- 8. Sigui U el conjunt definit per $v^2+u^2<1,\ u>0,\ v>0,$ i considereu l'aplicació $\varphi(u,v)=(u^2-v^2,2uv).$ Calculeu la integral sobre $\varphi(U)$ de la funció $f(x,y)=\frac{1}{\sqrt{x^2+y^2}}.$
- 9. Calculeu les integrals $\int_A f$ indicades:
 - (a) $f(x,y) = xy^2$; $A = \{(x,y) \mid x^2 + y^2 < 1, x > 0, y > 0\}$.
 - (b) $f(x,y) = x^2 + y^2$; $A = \{(x,y) \mid x^2 + y^2 2ax \le 0\}$.
 - (c) $f(x,y) = x^2 + y^2$; $A = \{(x,y) \mid ax \le x^2 + y^2 \le a^2\}$.
 - (d) f(x, y, z) = 7yz; $A = \{(x, y, z) \mid y > 0, 0 < z < a, x^2 + y^2 < b^2\}$, amb a, b > 0 constants.
 - (e) $f(x,y,z)=z^2$; A la regió comuna a les esferes $x^2+y^2+z^2 \le R^2$ i $x^2+y^2+z^2 \le 2Rz$.
 - (f) f(x, y, z) = xyz; $A = \{(x, y, z) \in \mathbf{R}^3 \mid x^2 + y^2 + z^2 < 1, \ x > 0, \ y > 0, \ z > 0\}$.
 - (g) $f(x,y,z) = \sqrt{x^2 + y^2}$; $A = \{(x,y,z) \in \mathbf{R}^3 \mid x^2 + y^2 + z^2 < 1, \ x^2 + y^2 < z^2, \ z > 0\}$.

- 10. Sigui $D \subset \mathbf{R}^2$ un conjunt mesurable Jordan, simètric respecte a l'eix OX (és a dir, si $(x, y) \in D$, també $(x, -y) \in D$).
 - (a) Raoneu que podeu escriure $D = D_1 \cup D_2$, on D_1 és dins el semiplà superior i $D_2 = \varphi(D_1)$, essent $\varphi(x,y) = (x,-y)$ la simetria respecte a l'eix OX. Són disjunts D_1 i D_2 ?
 - (b) Sigui $f: D \to \mathbf{R}$ integrable Riemann. Proveu que si f és parella respecte a y (és a dir, f(x, -y) = f(x, y)) llavors $\int_D f = 2 \int_{D_1} f$, i si f és imparella respecte a y (f(x, -y) = -f(x, y)) llavors $\int_D f = 0$.

(Apliqueu el teorema del canvi de variables amb φ per a calcular $\int_{D_2} f$.)

- 11. Calculeu les integrals $\iint_A f$ indicades. (Utilitzeu canvis de variables apropiats.)
 - (a) f(x,y) = 1; A el conjunt definit per $(x+y)^2 + (2x-y+1)^2 \le 1$.
 - (b) $f(x,y) = x^2 + y^2$; A la regió definida per les designaltats $\alpha \le x^2 y^2 \le \beta$, $\gamma \le xy \le \delta$, on $0 < \alpha < \beta$, $0 < \gamma < \delta$ són constants donades.
 - (c) $f(x,y) = e^{(x-y)/(x+y)}$; $A = \{(x,y) \in \mathbf{R}^2 \mid x > 0, y > 0, 1 < x + y < 2\}$.
- 12. Calculeu:
 - (a) L'àrea tancada per l'el·lipse de semieixos a, b.
 - (b) El volum tancat per l'el·lipsoide de semieixos a, b, c.
- 13. Sigui A la regió plana definida en coordenades polars per $\phi_1 < \phi < \phi_2, \ r < R(\phi)$, on R és una funció positiva.
 - (a) Proveu que la seva àrea es pot calcular amb la integral $\int_{\phi_1}^{\phi_2} d\phi \, \frac{1}{2} R(\phi)^2$.
 - (b) Calculeu l'àrea tancada per la cardioide: $r = a(1 + \cos \phi)$.
 - (c) Calculeu l'àrea tancada per la lemniscata: $r^2 = a^2 \cos 2\phi$.
- 14. Sigui A un sòlid de revolució obtingut fent girar la regió $B \subset \{(x, y, z) \mid x > 0, y = 0\}$ al voltant de l'eix OZ.
 - (a) Proveu que el seu volum es pot calcular amb la integral $2\pi \iint_B dxdz \, x$.
 - (b) Suposem que B és la regió simple descrita per $z_1 < z < z_2, \ f(z) < x < g(z)$. Proveu que el volum de revolució és $\pi \int_{z_1}^{z_2} \mathrm{d}z \ \left(g(z)^2 f(z)^2\right)$.
 - (c) Calculeu el volum d'un con circular recte de radi a i alçada h.
 - (d) Calculeu el volum tancat pel tor de generatriu $(x-a)^2+z^2=b^2$ (vegeu tema 4, problema 17).
- 15. Sigui D el recinte determinat per $x^2 + y^2 \le 8$, $y \ge 0$, $y \le 2$, i sigui $I = \iint_D y \, dx dy$.
 - (a) Expresseu I aplicant el teorema de Fubini, en els dos ordres possibles, en coordenades cartesianes.
 - (b) Expresseu I en coordenades polars.
 - (c) Calculeu el valor de I.
 - (d) Sense fer més càlculs, raoneu quins són els valors de les integrals

$$\iint_D x \, \mathrm{d}x \, \mathrm{d}y, \quad \iint_D (x+y) \, \mathrm{d}x \, \mathrm{d}y, \quad \iint_D xy \, \mathrm{d}x \, \mathrm{d}y.$$

- 16. Considereu la funció $f(x,y) = \int_y^x e^{xyt} dt$. Calculeu $\frac{\partial f}{\partial x}$ i $\frac{\partial f}{\partial y}$ usant la fórmula de Leibniz. Comproveu el resultat calculant primer la integral i derivant després.
- 17. Comproveu que la funció $\varphi(x) = \int_0^x f(\xi) \sin(x-\xi) d\xi$ satisfà l'equació diferencial $\varphi'' + \varphi = f$.
- 18. Calculeu les integrals impròpies $\int_A f$:

Problemes del tema 6 35

(a)
$$f(x,y) = xe^{-y}$$
; $A = \{(x,y) \mid 0 \le x < 1, y \ge 0\}$.

(b)
$$f(x,y) = \frac{1}{\sqrt{x^2 - y}}$$
; $A = \{(x,y) \mid -1 \le x \le 1, \ 0 \le y \le x^2\}$.

- 19. Calculeu la integral $J=\iint_{\mathbf{R}^2}e^{-(x^2+y^2)}\mathrm{d}x\mathrm{d}y$ i deduïu-ne el valor de $I=\int_{-\infty}^{+\infty}e^{-x^2}\mathrm{d}x$. (Useu coordenades polars.)
- 20. Si $r = \sqrt{x^2 + y^2 + z^2}$ i $B = \{(x, y, z) \in \mathbf{R}^3 \mid x^2 + y^2 + z^2 \le a^2\}$, determineu per a quins valors de $\alpha > 0$ existeix la integral impròpia $\iiint_B \frac{\mathrm{d}V}{r^\alpha}$ i calculeu-la. (Integreu fora d'una esfera de radi ε centrada en l'origen.)
- 21. Es consideren una esfera i un con circular tals que el centre de l'esfera està situat sobre l'eix del con i el vèrtex del con sobre la superfície de l'esfera. Determineu la semiobertura α del con per tal que els volums de les parts de l'esfera interior i exterior al con siguin iguals.
- 22. Considereu el paraboloide d'equació $z = a x^2 y^2$ i el pla $z = \lambda a$, on $0 < \lambda < 1$. Sigui $\mathcal{V}(A)$ el volum del paraboloide comprès entre el seu vèrtex i el pla, i $\mathcal{V}(B)$ el volum comprès entre el pla donat i el pla XY. Determineu λ per tal que se satisfaci que $\mathcal{V}(A) = k \mathcal{V}(B)$.

Problemes addicionals

23. Calculeu la integral de la funció següent sobre la regió definida per les desigualtats indicades:

$$f(x,y) = x^2 + y^2; \quad |x| \le |y| \le 2.$$

24. Calculeu l'àrea de les regions definides per les desigualtats indicades:

(a)
$$a \le \frac{y}{x} \le b$$
, $\alpha \le \frac{y}{x^2} \le \beta$, amb $0 < a < b$, $0 < \alpha < \beta$.

(b)
$$x^{2/3} + y^{2/3} \le a^{2/3}$$
 (astroide).

- 25. Expresseu en coordenades polars la integral $\iint_A f(x,y) dxdy$ sobre el domini limitat per les rectes y=x, y=-x i y=1.
- 26. Considereu el recinte $S = S_1 \cup S_2$, on S_1 és el recinte limitat per les rectes y = 0, y = x, x = 1, x = 2, i S_2 és el recinte limitat, en el primer quadrant, per les rectes y = x, y = 3x i les circumferències $x^2 + y^2 = 2$, $x^2 + y^2 = 8$. Calculeu $\iint_S (x^2 + y^2) dxdy$.
- 27. Invertiu l'ordre d'integració per a calcular $\int_1^2 \mathrm{d}x \int_{\sqrt{x}}^x \mathrm{d}y \sin\left(\frac{\pi x}{2y}\right) + \int_2^4 \mathrm{d}x \int_{\sqrt{x}}^2 \mathrm{d}y \sin\left(\frac{\pi x}{2y}\right).$
- 28. Calculeu les derivades totals o parcials de les funcions següents:

(a)
$$F(x) = \int_{x^2}^{x^3} \frac{\sin tx}{t} dt.$$

(b)
$$F(x,y) = \int_0^x \cos(ty) dt$$
.

(c)
$$F(x,y) = \int_{1}^{x} e^{y-t} dt$$
.

- 29. Calculeu la integral de la funció $f(x,y) = |\cos(x+y)|$ sobre el quadrat $[0,\pi] \times [0,\pi]$. (Apliqueu el teorema de Fubini.)
- 30. Considereu la funció $f:[0,1] \times [0,1] \to \mathbf{R}$ definida per $f(x,y) = \begin{cases} 1 & \text{si } x \in \mathbf{Q} \\ 2y & \text{si } x \notin \mathbf{Q} \end{cases}$. Estudieu l'existència de les integrals $\iint_{[0,1]\times[0,1]} f$, $\int_0^1 \mathrm{d}x \int_0^1 \mathrm{d}y f(x,y)$, $\int_0^1 \mathrm{d}y \int_0^1 \mathrm{d}x f(x,y)$.

- 31. Sigui $A \subset \mathbf{R}^3$ un conjunt mesurable Jordan, tal que les seccions horitzontals $A_c = A \cap \{z = c\}$ són mesurables Jordan (en els plans z = c).
 - (a) Suposem que $A \subset R \times [z_1, z_2]$, amb $R \subset \mathbf{R}^2$ un cert rectangle compacte. Proveu que $\operatorname{vol}(A) = \int_{z_1}^{z_2} \mathrm{d}z \, \operatorname{àrea}(A_z)$.

 (Usant el teorema de Fubini, $\int_A 1 = \int_{z_1}^{z_2} \mathrm{d}z \int_R \mathrm{d}x \mathrm{d}y \, \chi_A(x, y, z)$, on χ_A és la funció característica
 - (b) Proveu el principi de Cavalieri: si A i B tenen les seccions horitzontals amb mateixes àrees, llavors vol(A) = vol(B).
 - (c) Sense fer cap càlcul, proveu que el cilindre recte $\{(x,y,z) \mid x^2+y^2 \leq 1, \ 0 \leq z \leq h\}$ i el cilindre oblic $\{(x,y,z) \mid x^2+(y-z)^2 \leq 1, \ 0 \leq z \leq h\}$ tenen mateix volum.
- 32. Obteniu la probabilitat que l'equació $ax^2 + bx + c = 0$, els coeficients de la qual s'escullen a l'atzar en l'interval [0, 1], tingui arrels reals.
- 33. Considereu el sòlid pla (de densitat uniforme) limitat per la cardioide d'equació $r=a(1+\cos\phi)$ en coordenades polars. Calculeu-ne el centre de massa.
- 34. Considereu el sòlid pla de massa m limitat per la lemniscata d'equació $r^2=a^2\cos2\phi$ en coordenades polars. Calculeu-ne el moment d'inèrcia respecte a un eix perpendicular al pla i que passa per l'origen.
- 35. Un disc circular de radi R està carregat amb una densitat de càrrega $\sigma = br$. Calculeu el camp elèctric en un punt de l'eix del disc a distància d del pla del disc.
- 36. Demostreu que la força d'atracció gravitatòria d'una bola homogènia sobre un punt exterior a la bola és la mateixa que si es considera tota la massa concentrada en el centre de la bola.
- 37. Calculeu la força d'atracció gravitatòria que exerceix un tronc de con circular i homogeni sobre un punt situat en el vèrtex del con complet, expressant el resultat en funció de la densitat δ , l'angle de semiobertura del con, α , i l'alçada del tronc de con, h.

 (Situeu l'origen de coordenades en el vèrtex del con, i useu coordenades esfèriques.)
- 38. Un mètode per a calcular la integral de Gauss $I = \int_0^\infty e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$: considereu les funcions $f(x) = \left[\int_0^x e^{-t^2} dt\right]^2$ i $g(x) = \int_0^1 \frac{e^{-x^2(1+t^2)}}{1+t^2} dt$.
 - (a) Comproveu que f(x) + g(x) és constant i calculeu-ne el valor.
 - (b) Calculeu $\lim_{x\to\infty} g(x)$ i deduïu-ne el valor de la integral de Gauss.
- 39. Un mètode de càlcul de la integral de Dirichlet $I = \int_0^\infty \frac{\sin t}{t} dt$.
 - (a) Considereu la funció $F(\lambda) = \int_0^\infty e^{-\lambda t} \frac{\sin t}{t} dt$. Deriveu-la i obteniu que $\lim_{\lambda \to \infty} F(\lambda) = 0$.
 - (b) Comprove que $I = \lim_{\lambda \to 0} F(\lambda)$.

(Observaci'o La integral I és impròpia. Els resultats estudiats en aquest tema sobre continuïtat i derivaci\'o d'integrals depenendents de paràmetres no són sempre vàlids per a integrals impròpies, encara que sí que ho són en aquest cas.)

40. Considereu el recinte $A = \left\{ (x,y) \in \mathbf{R}^2 \mid x > 0, \ y > 0, \ \left(\frac{x}{a}\right)^p + \left(\frac{y}{b}\right)^q \le 1 \right\}$ i la funció $f(x,y) = x^{\alpha-1}y^{\beta-1}$ $(a,b,p,q,\alpha,\beta>0)$. Demostreu la fórmula de Dirichlet bidimensional:

$$\int_A f = \frac{a^{\alpha}b^{\beta}}{pq} \frac{\Gamma\left(\frac{\alpha}{p}\right)\Gamma\left(\frac{\beta}{q}\right)}{\Gamma\left(\frac{\alpha}{p} + \frac{\beta}{q} + 1\right)}.$$

(Feu el canvi $u=(x/a)^p$, $v=(y/b)^q$, apliqueu la definició de la funció B, i la seva expressió en termes de la funció Γ .)

(Observació Per a α o β menors que 1 la fórmula de Dirichlet calcula una integral impròpia.)

41. Calculeu l'àrea S_n del recinte limitat, en el primer quadrant, pels eixos coordenats i la corba $x^{2/n} + y^{2/n} = a^{2/n}$.

(Observaci'o Expresseu el resultat segons la paritat de n.)

Respostes

- 1. (a) 32/3.
 - (b) 10.
 - (c) 8.
 - (d) 1/8.
- 2. (a) 0.
 - (b) 1/90.
 - (c) 1/6.
 - (d) $\frac{\pi 2}{4}$.
 - (e) 176/45.
 - (f) $\log \sqrt{2} 5/16$.
 - (g) 1/364.
- 3. (a) $\int_0^{48} dy \int_{y/12}^{\sqrt{y/3}} dx f(x,y)$.

(b)
$$\int_{-1}^{0} dx \int_{0}^{\sqrt{1-x^2}} dy f(x,y) + \int_{0}^{1} dx \int_{0}^{1-x} dy f(x,y).$$

4.
$$\int_0^3 dz \int_{-z}^z dy \int_{-\sqrt{z^2 - y^2}}^{\sqrt{z^2 - y^2}} dx f(x, y, z).$$

- 5. El conjunt de punts de discontinuïtat és $\{(x, \sin x) \mid x \in [0, \pi/2]\}$. f és integrable, atès que aquest conjunt és de mesura nul·la. La integral val $\frac{3\pi^2}{4} - 2$.
- 6. 287/20.
- 7. 42.
- 8. π.
- 9. (a) 1/15.
 - (b) $\frac{3\pi a^4}{2}$.
 - (c) $\frac{13}{32}\pi a^4$.
 - (d) $\frac{7}{3}a^2b^3$.
 - (e) $\frac{59\pi R^5}{3 \cdot 5 \cdot 2^5}$
 - (f) 1/48.
- 10. (b) $\int_{D_2} f(x,y) \, \mathrm{d}x \mathrm{d}y = \int_{D_1} f(x,-y) \, \mathrm{d}x \mathrm{d}y = \pm \int_{D_1} f(x,y) \, \mathrm{d}x \mathrm{d}y$ segons la hipòtesi.
- 11. (a) $\pi/3$.
 - (b) $(\beta \alpha)(\delta \gamma)$.
- (c) $\frac{3}{2}$ sinh1. 12. (a) πab .
- - (b) $\frac{4}{3}\pi abc$.
- 13. (b) $3\pi a^2/2$.
 - (c) a^2 .
- 14. (c) $\frac{1}{3}\pi a^2 h$.
 - (d) $2\pi^2 ab^2$.

15. (a)
$$\int_{0}^{2} dy \, y \int_{-(8-y^{2})^{1/2}}^{(8-y^{2})^{1/2}} dx = \int_{-2}^{2} dx \int_{0}^{2} dy \, y + \int_{-\sqrt{8}}^{-2} dx \int_{0}^{(8-x^{2})^{1/2}} dy \, y + \int_{2}^{\sqrt{8}} dx \int_{0}^{(8-y^{2})^{1/2}} dy \, y.$$

(b)
$$2\left(\int_0^{\pi/4} d\theta \int_0^{\sqrt{8}} dr \, r^2 \sin\theta + \int_{\pi/4}^{\pi/2} d\theta \int_0^{2/\sin\theta} dr \, r^2 \sin\theta\right).$$

(c)
$$\frac{16}{3} (2\sqrt{2} - 1)$$
.

(d)
$$0, I, 0$$

16.
$$f(x,y) = \frac{e^{x^2y} - e^{xy^2}}{xy}$$
. $\frac{\partial f}{\partial x} = \int_y^x yte^{txy}dt + e^{x^2y}$. $\frac{\partial f}{\partial y} = \int_y^x xte^{txy}dt - e^{xy^2}$.

18. (a)
$$1/2$$

19.
$$J = \pi, I = \sqrt{\pi}$$

20.
$$I = \frac{4\pi}{3-\alpha} a^{3-\alpha}$$
, per a $\alpha < 3$.

21.
$$\alpha = \arccos \frac{1}{\sqrt[4]{2}}$$

$$22. \ \lambda = 1 - \sqrt{\frac{k}{1+k}}.$$

24. (a)
$$\frac{1}{6}(b^3 - a^3) \left(\frac{1}{\alpha^2} - \frac{1}{\beta^2}\right)$$
.

(b)
$$\frac{3}{8}\pi a^2$$
.

25.
$$\int_{\pi/4}^{3\pi/4} d\theta \int_0^{1/\sin\theta} dr \, r f(r\cos\theta, r\sin\theta).$$

26.
$$5 + 15(\operatorname{arc} \operatorname{tg} 3 - (\pi/4)) = 5 + 15 \operatorname{arc} \operatorname{tg} \frac{1}{2}$$
.

27.
$$4(\pi+2)/\pi^3$$
.

28. (a)
$$F'(x) = \frac{4\sin x^4 - 3\sin x^3}{x}$$

(b)
$$F(x,y) = \frac{\sin xy}{y}$$
; $\frac{\partial F}{\partial x} = \cos xy$, $\frac{\partial F}{\partial y} = \int_0^x -t \sin ty \, dt$.

(c)
$$F(x,y) = -e^{y-x} + e^{y-1}$$
; $\partial F/\partial x = e^{y-x}$, $\partial F/\partial y = \int_1^x e^{y-t} dt$.

29.
$$2\pi$$
.

30. Només existeix la segona, i val 1.

32.
$$\frac{5+6\ln 2}{36} \approx 25'4\%$$
.

33.
$$(x_{\rm cm}, y_{\rm cm}) = \left(\frac{5}{6}a, 0\right)$$
.

34.
$$\frac{\pi}{9}ma^2$$
.

35.
$$E_z = \frac{bd}{2\epsilon_0} \left(\ln \frac{R + (R^2 + d^2)^{1/2}}{d} - \frac{R}{(R^2 + d^2)^{1/2}} \right).$$

37. $F_z = mG 2\pi \delta h (1 - \cos \alpha)$, on m és la massa del punt.

38. (a)
$$f'(x) + g'(x) = 0$$
 i $f(0) + g(0) = \pi/4$ impliquen $f(x) + g(x) = \pi/4$.

(b)
$$\int_0^1 \frac{e^{-x^2(1+t^2)}}{1+t^2} dt \le \int_0^1 e^{-x^2} dt = e^{-x^2} \to 0 \text{ quan } x \to \infty.$$
 La integral de Gauss $\int_0^{+\infty} e^{-t^2} dt \text{ val } \frac{\sqrt{\pi}}{2}$.

39.
$$F'(\lambda) = \frac{-1}{1+\lambda^2}$$
, d'on $F(\lambda) = -\arctan tg \lambda + \pi/2$. A més, $\lim_{\lambda \to 0} F(\lambda) = \pi/2$, d'on $I = \pi/2$.

41.
$$S_n = \frac{1}{2^n} \frac{n!!}{(n-1)!!} a^2 \xi_n$$
, essent $\xi_n = \begin{cases} 1 & n \text{ parell} \\ \pi/2 & n \text{ imparell} \end{cases}$

7 Integrals de línia i de superfície

Problemes bàsics

- 1. Calculeu la llargada de les corbes següents:
 - (a) $c(t) = (a \cos t, a \sin t, bt), 0 < t < 4\pi$ (hèlix).
 - (b) $x = R(t \sin t), y = R(1 \cos t), 0 < t < 2\pi$ (cicloide).
 - (c) $\gamma(t) = (a\cos^3 t, a\sin^3 t), 0 \le t < 2\pi$ (astroide o hipocicloide de quatre puntes).
 - (d) $x^2/a^2 + y^2/b^2 = 1$ (el·lipse de semieixos a > b).
- 2. Obteniu les fórmules que permeten calcular la llargada d'una corba plana en els supòsits indicats:
 - (a) Corba en forma explícita $y = f(x), x_1 < x < x_2.$
 - (b) Corba en coordenades polars $r = f(\phi), \phi_1 < \phi < \phi_2$.
- 3. Calculeu la llargada de les corbes expressades en coordenades polars següents:
 - (a) $r = a(1 + \cos \phi)$, $0 < \phi < 2\pi$ (cardioide).
 - (b) $r = e^{-\phi}$, $0 < \phi < +\infty$ (espiral logarítmica).
- 4. Calculeu les integrals de línia següents:
 - (a) $\int_C \sqrt{a^2 y^2} \, dl$, on C és la corba $x^2 + y^2 = a^2$, y > 0.
 - (b) $\int_C x^2 dl$, on C és la de la intersecció de l'esfera $x^2 + y^2 + z^2 = 1$ i el pla x + y + z = 0.
- 5. Calculeu les integrals de línia $\int_C \mathbf{F} \cdot d\mathbf{l}$ indicades:
 - (a) $\int_{(R,0)}^{(-R,0)} x \, dy$ al llarg de la corba $x^2 + y^2 = R^2$, y > 0.
 - (b) $\int_{(-1,1)}^{(1,1)} (x^2 2xy) dx + (y^2 2xy) dy$, al llarg de la paràbola $y = x^2$.
 - (c) $\mathbf{F}(x,y)=(x+y,y-x)$; C és l'arc de l'el·lipse $x^2+y^2/4=1$ orientat des del punt (1,0) fins al (0,2).
 - (d) $\mathbf{F}(x,y)=(2x+y^2,3y-4x);$ C és la frontera de $R=\{(x,y)\mid y^2\leq x,\ y\geq x^2\}$ recorreguda en sentit positiu.
 - (e) $\int_{(1,0,0)}^{(2,1,2)} \mathbf{F} \cdot d\mathbf{l}$ al llarg del segment que uneix ambdós punts, on $\mathbf{F}(x,y,z) = \left(\frac{1}{x-y}, \frac{1}{y-x}, z\right)$.
 - (f) $\mathbf{F}(x, y, z) = (x + y, y + z, z + x)$; C és l'arc de la paràbola $x = z^2$, y = 0, des de (1, 0, -1) fins (1, 0, 1).
 - (g) $\mathbf{F}(x,y,z)=(x^3+y,y^2+z,x+y+z);$ C és la circumferència $x^2+y^2=3,$ z=0, orientada en el pla XY en sentit positiu.
 - (h) $\oint_C y dx + z dy + x dz$, on C és la corba intersecció de z = xy amb $x^2 + y^2 = 1$, orientada de manera que la seva projecció sobre el pla XY sigui positiva.
- 6. Calculeu l'àrea de les superfícies següents:
 - (a) Con $\frac{x^2 + y^2}{a^2} = \frac{z^2}{h^2}$, 0 < z < h.
 - (b) Esfera de radi a.
 - (c) Casquet esfèric d'alçada h en l'esfera de radi a.
- 7. Integreu les funcions següents sobre les superfícies indicades:
 - (a) $f(x,y,z) = (x^2 + y^2)z$, sobre l'hemisferi superior de l'esfera de radi a centrada en l'origen.

- (b) f(x, y, z) = z, sobre $z = 1 x^2 y^2$, z > 0.
- (c) f(x, y, z) = x, sobre el cilindre definit per $x^2 + y^2 = a^2$, amb 0 < z < 1.
- (d) f(x,y,z)=1, sobre la superfície de ${\bf R}^3$ parametritzada per g(u,v)=(u-v,u+v,uv), $u^2+v^2<1.$
- 8. Calculeu l'àrea de les superfícies següents:
 - (a) La porció de l'esfera $x^2 + y^2 + z^2 = a^2$ interior al cilindre $x^2 + y^2 = ay$, essent a > 0.
 - (b) El tros de l'esfera $x^2 + y^2 + z^2 2az = 0$ (on $a \ge 0$) contingut dins el paraboloide $2z = x^2 + y^2$.
 - (c) El fragment del con d'equació $x^2 + y^2 = z^2$ limitat pels plans z = 0 i y + 2z = 1.
- 9. Sigui S una superfície de revolució obtinguda fent girar la generatriu $C \subset \{(x,y,z) \mid x>0, \ y=0\}$ al voltant de l'eix OZ.
 - (a) Si x = a(t), z = c(t) $(t_1 < t < t_2)$ és una parametrització injectiva i regular de C, proveu que l'àrea de S és $2\pi \int_{t_1}^{t_2} \mathrm{d}t \, a(t) \sqrt{a'(t)^2 + c'(t)^2}$.
 - (b) Apliqueu-ho a calcular l'àrea del tor de generatriu $(x-R)^2+z^2=r^2$.
- 10. Calculeu les integrals de superfície $\int_{S} \mathbf{F} \cdot d\mathbf{S}$ indicades:
 - (a) $\mathbf{F}(x,y,z) = (y,-x,1)$, sobre la superfície definida per $g(t,\theta) = (t\cos\theta,t\sin\theta,\theta)$, amb 0 < t < 1 i $0 < \theta < 2\pi$.
 - (b) $\mathbf{F}(x,y,z) = (x+y+z,y+z,z)$, a través de la frontera del cub $0 \le x,y,z \le 2$, orientada vers l'exterior.
 - (c) $\mathbf{F}(x,y,z) = (x+y,y-x,z)$, a través de la superfície $S = \{(x,y,z) \mid z=4-x^2-y^2, \ z \geq 0\}$, orientada amb la normal cap amunt.
 - (d) $\mathbf{F}(x,y,z) = (x^3,x^2y,x^2z)$, a través de la frontera del conjunt definit per $x^2+y^2 \le a^2$, $0 \le z \le b$, orientada cap a l'exterior.
 - (e) $\mathbf{F}(x,y,z)=(0,0,z^2)$, a través de la superfície cònica $(z-1)^2=x^2+y^2,\,0\leq z\leq 1$, tancada amb el pla z=0, orientada cap a l'exterior
 - (f) $\mathbf{F}(x,y,z)=(x,y,1/3)$, a través de la superfície $S=\{(x,y,z)\mid x^2+y^2+z^2=1,\ z>0\}$, orientada amb la normal cap amunt.
 - (g) $\mathbf{F}(x,y,z) = (x,y,z)$, a través de la superfície $\frac{x^2}{4} + \frac{y^2}{9} + z^2 = 1$, z > 0, orientada amb la normal en sentit radial positiu.
 - (h) $\mathbf{F}(x,y,z)=(x,0,0)$, sobre la part de l'esfera unitat continguda dins el con $x^2+y^2=z^2,\,z\geq 0$, orientada amb la normal cap amunt.
 - (i) $\mathbf{F}(x,y,z)=(x,y^2,z)$, sobre la frontera de la regió tancada pel pla x+y+z=1 i els plans coordenats, orientada vers l'exterior.
 - (j) $\mathbf{F}(x,y,z) = x\mathbf{i} + z\mathbf{j} + y\mathbf{k}$, a través de la frontera de $V = \{(x,y,z) \mid x^2 + y^2 \le R^2, \ z \ge 0, \ x \ge z\}$, orientada cap a l'exterior.
 - (k) $\mathbf{F}(x,y,z)=(x+e^y,z-y,x+y+z)$, a través de la superfície formada per $x^2+y^2+z^2=10z$ $(0 \le z \le 2)$ i $x^2+y^2=(z-6)^2$ $(2 \le z \le 6)$, orientada cap a l'exterior.
- 11. La imatge M de la parametrització $\sigma \colon [0,2\pi] \times]-1,1[\to \mathbf{R}^3$

$$\sigma(\phi,v) = \left((R + v \sin(\phi/2)) \cos \phi, (R + v \sin(\phi/2)) \sin \phi, v \cos(\phi/2) \right),$$

on R > 1 és una constant, és una banda de Möbius (sense vora).

- (a) Justifiqueu que σ és injectiva, excepte que $\sigma(0, v) = \sigma(2\pi, -v)$.
- (b) Calculeu els vectors tangents \mathbf{T}_{ϕ} , \mathbf{T}_{v} deduïts de la parametrització.
- (c) Calculeu el producte vectorial d'aquests vectors sobre un punt qualsevol de l'équador' de la banda, $\mathbf{T}_{\phi} \times \mathbf{T}_{v}(\phi, 0)$, i el corresponent vector normal $\mathbf{n}(\phi, 0)$.
- (d) Vegeu que M no és orientable tot comparant $\mathbf{n}(0,0)$ i $\mathbf{n}(2\pi,0)$.
- (e) Té sentit calcular el flux d'un camp vectorial a través de M? Podríem integrar la funció constant igual a 1 sobre M a fi de calcular-ne l'àrea?

Problemes del tema 7 41

Problemes addicionals

- 12. Calculeu les integrals de línia següents:
 - (a) $\oint_C (x^2 + y^2) dl$, on C és la circumferència de centre (0,0) i radi R.
 - (b) $\int_C (xy+z^2) dl$, on C és l'arc d'hèlix $x=\cos t$, $y=\sin t$, z=t comprès entre (1,0,0) i $(-1,0,\pi)$.
- 13. Calculeu les integrals de línia dels camps vectorials donats al llarg de les corbes orientades indicades:
 - (a) $\mathbf{F}(x,y,z) = (2xy,3z,5zy)$ al llarg de la corba parametritzada $\gamma(t) = (t+1,t^3-1,t^2)$ des de (0,-2,1) fins (2,0,1).
 - (b) $\mathbf{F}(x, y, z) = (x, y, xz y)$, sobre el segment que va des de (0, 0, 0) fins (1, 2, 4).
 - (c) $\mathbf{F}(x,y) = \left(\frac{x+y}{x^2+y^2}, \frac{y-x}{x^2+y^2}\right)$, al llarg de la circumferència $x^2+y^2=a^2$ recorreguda positivament.
 - (d) $\mathbf{F}(x,y,z)=(3xy,-y^2,e^z)$, al llarg de la corba d'equacions $z=0,\,y=2x^2,$ des de (0,0,0) fins (1,2,0).
 - (e) $\oint_C y dx + z dy + x dz$, on C és la circumferència de radi 2 centrada en (1/3, 1/3, 1/3) i situada en el pla x + y + z = 1, recorreguda en el sentit de les busques del rellotge vista des de l'origen.
 - (f) $\int_{(2,1,\pi/2)}^{(2,1,\pi)} \sin^2 z dx + x \sin 2z dz$, al llarg de la recta que uneix ambdós punts.
- 14. Proveu que la integral de línia $\int_C \frac{\mathrm{d}x}{yz} + \frac{\mathrm{d}y}{xz} + \frac{\mathrm{d}z}{xy}$ al llarg de qualsevol corba situada sobre un octant d'una esfera centrada a l'origen i de radi arbitrari val zero.
- 15. Una tanca circular, centrada a l'origen i de radi 1, té alçada h(x,y) = |x| + |y|. Calculeu-ne l'àrea.
- 16. Considereu el sòlid pla (de densitat uniforme) $S = \{(x, y, z) \mid x + y + z = 1, x \ge 0, y \ge 0, z \ge 0\}$. Calculeu-ne el centre de massa.
- 17. Calculeu el centre de massa de la regió de l'esfera $x^2 + y^2 + z^2 = r^2$ compresa entre els plans z = a i z = b, amb $|a|, |b| \le r$.
- 18. Calculeu el flux dels camps vectorials següents a través de les superfícies orientades indicades:
 - (a) $\mathbf{F}(x, y, z) = (x^2, y^2, z^2)$, sobre la superfície definida per g(t, u) = (t + u, t u, t), amb 0 < t < 2 i 1 < u < 3.
 - (b) $\mathbf{F}(x,y,z) = \frac{1}{\sqrt{x^2+y^2}}(y,-y,1)$ sobre el paraboloide $z=1-x^2-y^2,\,0< z<1,$ orientat amb la normal cap amunt.
 - (c) $\mathbf{F}(x,y,z) = \frac{1}{\sqrt{x^2 + y^2}}(y,-y,1)$ sobre la meitat inferior de l'esfera de radio 1 centrada a l'origen i orientada amb la normal cap avall.
 - (d) $\mathbf{F}(x,y,z)=y\mathbf{i}+z\mathbf{j}+x\mathbf{k}$, a través de la superfície de la piràmide limitada pels plans x=0, $y=0,\,z=0,\,x+y+z=a$.
 - (e) $\mathbf{F}(x, y, z) = (4xz, -y^2, yz)$, a través de la frontera del cub $0 \le x, y, z \le 1$.
 - (f) $\mathbf{F}(x,y,z) = (x-y,x-y,5z^3)$, a través de la superfície esfèrica $x^2+y^2+z^2=1$, orientada cap a fora.
 - (g) $\mathbf{F}(x,y,z) = (y,-y^2z,yz^2-x^2)$, a través de la superfície $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$, z > 0, orientada cap a fora.
 - (h) $\mathbf{F}(x,y,z) = (z-y,x-z,z-x)$, a través de la superfície $x^2+y^2+z^2=9,\,1< z<2$, orientada en sentit radial positiu.

- (i) $\mathbf{F}(x,y,z)=(x+z,z-y,1)$, a través de la porció de superfície cònica $\frac{x^2}{2}+\frac{y^2}{3}=z^2$, compresa entre els plans z=0 i z=1, orientada en direcció z positiva.
- 19. Siguin $\mathbf{F} = (2, -3, 1)$, i S un cercle de radi a, situat en un pla P. Doneu l'equació dels plans P per als quals el flux de ${\bf F}$ a través de S es màxim.

Respostes

- 1. (a) $4\pi\sqrt{a^2+b^2}$.
 - (b) 8R.
 - (c) 6a.
 - (d) $4a \int_0^{\pi/2} dt \sqrt{1 k^2 \cos^2 t}$, amb $k = \sqrt{a^2 b^2}/a$ (excentricitat).
- 2. (a) $\int_{x_1}^{x_2} dx \sqrt{1 + f'(x)^2}$.
 - (b) $\int_{\phi_1}^{\phi_2} d\phi \sqrt{f(\phi)^2 + f'(\phi)^2}$.
- 3. (a) 8a.
 - (b) $\sqrt{2}$.
- 4. (a) $2a^2$.
 - (b) $2\pi/3$.
- 5. (a) $R^2\pi/2$.
 - (b) -14/15.
 - (c) $3/2 \pi$.
 - (d) -49/30.
 - (e) 2.
 - (f) 2/3.
 - (g) -3π .
 - (h) $-\pi$.
- 6. (a) $\pi a \sqrt{a^2 + h^2}$.
 - (b) $4\pi a^2$.
 - (c) $2\pi ah$.
- 7. (a) $\frac{\pi a^5}{2}$.
 - (b) $\pi \left(\frac{5\sqrt{5}}{12} \frac{11}{60} \right)$.
- (d) $\frac{\pi}{3}(6\sqrt{6} 8)$. 8. (a) $(-4 + 2\pi)a^2$.
- - (b) $4\pi a^2$, si $a \le 1$; $4\pi a$, si a > 1.
 - (c) $2\pi\sqrt{6}/9$.
- 9. (b) $4\pi^2 rR$.
- 10. (a) 2π .
 - (b) 24.
 - (c) 24π .
 - (d) $5\pi a^4 b/4$.
 - (e) $\pi/6$.
 - (f) $5\pi/3$.
 - (g) 12π .
 - (h) $\frac{8-5\sqrt{2}}{12}\pi$.
 - (i) 5/12.
 - (j) $2R^3/3$.

- (k) $116\pi/3$.
- 11. (c) $\mathbf{n}(\phi, 0) = \begin{pmatrix} \cos \phi \cos \frac{\phi}{2} \\ \sin \phi \cos \frac{\phi}{2} \\ -\sin \frac{\phi}{2} \end{pmatrix}$
 - (e) No. Sí.
- 12. (a) $2\pi R^3$.
 - (b) $\sqrt{2}\pi^3/3$.
- 13. (a) 114/35.
 - (b) 23/6.
 - (c) -2π .
 - (d) -7/6.
 - (e) $-12\pi/\sqrt{3}$.
 - (f) -2.
- 14. Observeu que $\mathbf{F}(x,y,z) = \frac{1}{xyz}(x,y,z)$ és ortogonal a l'esfera.
- 16. $(x_{\rm cm}, y_{\rm cm}, z_{\rm cm}) = (1/3, 1/3, 1/3).$
- 17. $(x_{\rm cm}, y_{\rm cm}, z_{\rm cm}) = \left(0, 0, \frac{a+b}{2}\right)$. 18. (a) 104/3.
- - (b) $4\pi/3$.
 - (c) $-\frac{\pi(\pi+8)}{4}$.
 - (d) 0.
 - (e) 3/2.
 - (f) 4π .
 - (g) $-\pi a^3 b/4$.
 - (h) $14\pi/3$.
 - (i) $\sqrt{6}\pi$.
- 19. 2x 3y + z = C.

8 Teoremes integrals de l'anàlisi vectorial

Problemes bàsics

- 1. Designem per \mathbf{r} el camp radial de \mathbf{R}^n , i per r la seva norma euclidiana, que és un camp escalar \mathbf{C}^{∞} en $\mathbf{R}^n \{0\}$. Obteniu les relacions següents:
 - (a) grad $r = \mathbf{r}/r$.

(b) grad
$$h(r) = \frac{h'(r)}{r} \mathbf{r}$$
, on $h:]0, +\infty[\to \mathbf{R}$ és \mathbf{C}^1 .

- (c) grad $r^{\alpha} = \alpha r^{\alpha 2} \mathbf{r}$.
- (d) div $\mathbf{r} = n$.
- (e) $\operatorname{div}(h(r)\mathbf{r}) = nh(r) + rh'(r)$. Quan val 0? I quan val h(r)?
- (f) $\operatorname{div}(r^{\alpha}\mathbf{r}) = (n+\alpha)r^{\alpha}$.
- (g) $\Delta h(r) = h''(r) + (n-1)h'(r)/r$.
- (h) $\Delta r^{\alpha} = \alpha (n + \alpha 2) r^{\alpha 2}$.
- (i) En dimensió n = 3, calculeu $rot(h(r)\mathbf{r})$.
- (j) Doneu un camp vectorial en $\mathbb{R}^3 \{0\}$ amb rotacional i divergència nuls.
- 2. Calculeu el rotacional dels camps $\mathbf{a} \times \mathbf{r}$, $(\mathbf{a} \cdot \mathbf{r})\mathbf{b}$, on \mathbf{a} , \mathbf{b} són vectors constants.
- 3. Calculeu la circulació dels camps vectorials següents al llarg de les corbes orientades indicades, utilitzant el teorema de Stokes:
 - (a) $\mathbf{F} = (x^2y^3, 1, z)$, C, circumferència $x^2 + y^2 = R^2$, z = 0, recorreguda en el sentit positiu.
 - (b) $\mathbf{F}(x,y,z) = (y,-2z,x)$, C, el·lipse intersecció del cilindre $x^2 + y^2 = R^2$ i el pla x = z, recorreguda de manera que la seva projecció sobre el pla XY sigui positiva.
 - (c) $\mathbf{F}(x,y,z) = (ye^{xy}, xe^{xy}, xyz)$, C, corba reunió de les tres corbes obtingudes tallant el con $x^2 + y^2 = (z-1)^2$ amb els plans x = 0, y = 0 i z = 0 i dins el primer octant; recorreguda de manera que, des de l'origen, es vegi en el sentit de les busques del rellotge.
 - (d) $\mathbf{F} = (y-z, z-x, x-y)$, C, corba tancada intersecció de l'esfera $x^2 + y^2 + z^2 = 1$ i el pla x+y+z=1, recorreguda en el sentit $(1,0,0) \to (0,1,0) \to (0,0,1)$.
 - (e) $\mathbf{F}=(yz,-x,2y),$ C, el triangle de vèrtexs (1,0,0), (0,1,0) i (0,0,1), orientat en aquest sentit.
 - (f) $\mathbf{F} = (y, z, x)$, C, la interseció de z = xy amb $x^2 + y^2 = 1$, recorreguda de forma que la seva projecció sobre el pla XY sigui positiva.
- 4. Verifiqueu el teorema de Stokes per a la superfície helicoïdal definida per la parametrització $\mathbf{r}(u,v) = (u\cos v, u\sin v, v), \ (u,v) \in [0,1] \times [0,\pi/2], \ i$ el camp vectorial donat per $\mathbf{F}(x,y,z) = (xz,yx,zy).$
- 5. Calculeu el flux del rotacional del camp vectorial $\mathbf{F} = (y, zx, yzx)$ a través de la superfície $x^2 + y^2 + z^2 = 1, z \ge 0$, orientada amb la normal "cap amunt".
- 6. Calculeu els fluxos dels camps vectorials següents a través de les superfícies orientades donades, utilizant el teorema de Gauss:
 - (a) $\mathbf{F}(x, y, z) = (xy, y^2, z^2),$ S, la vora del cub 0 < x < 1, 0 < y < 1, 0 < z < 1.
 - (b) $\mathbf{f}(x, y, z) = (x^2y, xy^2, xyz)$, S, la vora de la regió $V = \{(x, y, z) \mid x^2 + y^2 + z < a^2, x > 0, y > 0, z > 0\}$, on a > 0 és una constant.

- (c) $\mathbf{f}(x,y,z) = (x^2,y^2,z^2)$, S, la vora de la regió $V = \left\{ (x,y,z) \mid \frac{x^2}{a^2} + \frac{y^2}{a^2} \le \frac{z^2}{b^2}, \ 0 \le z \le b \right\}$, on a,b>0 són dues constants
- (d) $\mathbf{p}(x,y,z)=x\mathbf{i}-(2x+y)\mathbf{j}+z\mathbf{k}$ S, l'hemisferi $x^2+y^2+z^2=1,\,z>0$, orientat segons la normal exterior de l'esfera.
- 7. Siguin a,b,c>0 constants. Considereu les funcions $\varphi(x,y,z)=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}$ i $g(x,y,z)=\frac{x}{a}+\frac{y}{b}+\frac{z}{c}$. Aplicant el teorema de Gauss, calculeu el flux del camp grad φ a través de la superfície $S=\{(x,y,z)\mid g(x,y,z)=1,x>0,y>0,z>0\}$ orientada amb la normal "cap avall".
- 8. Un camp escalar f(x,y,z) satisfà $\|\nabla f\|^2 = 4f$, $\nabla \cdot (f\nabla f) = 10f$. Calculeu $\iint_S \frac{\partial f}{\partial \mathbf{n}} dS$ essent S l'esfera unitat centrada a l'origen i $\frac{\partial f}{\partial \mathbf{n}}$ la derivada direccional de f segons el vector normal unitari exterior a S.
- 9. Determineu h(x, y, z) a fi que el camp $\mathbf{f} = (h, 2x 3zy^2, -y^3 + 2xz)$ sigui conservatiu. Obteniu-ne aleshores un potencial.
- 10. Sigui **f** un camp vectorial de la forma $\mathbf{f} = \phi(r)\mathbf{r}$.
 - (a) Demostreu que **f** és conservatiu.
 - (b) Determineu $\phi(r)$ per tal que el flux de \mathbf{f} a través de qualsevol superfície tancada que no contingui l'origen sigui nul.
 - (c) En aquest darrer cas, calculeu la circulació de ${\bf f}$ entre els punts (1,0,0) i $(0,1,\pi/2)$ mitjançant la funció potencial.
- 11. Comproveu que la integral de línia $\int_{(0,0,0)}^{(1,1,1)} (3x^2 + yz) dx + (3y^2 + xz) dy + (3z^2 + xy) dz$ no depèn del camí, i calculeu-la.
- 12. Donada la relació $\nabla \times \mathbf{F} = (xy^2 + xz^2, yx^2 + yz^2, -x^2z y^2z az^3)$, determineu a.
- 13. Sigui el camp vectorial $\mathbf{g}(x, y, z) = (-x, -y, 2z)$.
 - (a) Existeix algun camp \mathbf{q} tal que rot $\mathbf{q} = \mathbf{g}$? En cas afirmatiu, determineu-ne algun.
 - (b) Calculeu $\iint_S \mathbf{g} \cdot dS$, essent S la semiesfera $S = \{(x, y, z) \mid (x-a)^2 + (y-b)^2 + (z-c)^2 = R^2, z > c\}$ orientada en la direcció radial. (Useu el resultat anterior.)
- 14. Calculeu les integrals de línia següents, aplicant el teorema de Green:
 - (a) $\oint x^2 y dx xy^2 dy$ sobre la circumferència $x^2 + y^2 = R^2$ (orientada positivament).
 - (b) $\oint_C \frac{(x+2y)\mathrm{d}x + y\mathrm{d}y}{(x+y)^2}$, on C és la circumferència centrada en (2,0) i de radi 1.
 - (c) $\oint_C -2xye^{-x^2} dx + (e^{-x^2} + 3x)dy$, essent C la corba $x^2 + y^2 2x 4y = 0$.
 - (d) $\oint_C y^2 dx + x dy$, al llarg del quadrat de vèrtexs (0,0), (2,0), (2,2) i (0,2).
 - (e) $\oint_C (x^3 3y) dx + (x + \sin y) dy$, on C és el triangle de vèrtexs (0,0), (1,0) i (0,2).
 - (f) $\int_C -x^2y dx + xy^2 dy$, essent C la corba definida per $x^2 + y^2 = 1$, y > 0, orientada des de (1,0) fins a (-1,0).
 - (g) $\oint_{C_1} \mathbf{f} \cdot d\mathbf{r} \oint_{C_2} \mathbf{f} \cdot d\mathbf{r}$, essent $\mathbf{f} = (e^x \cos y y, -e^x \sin y)$, C_1 la corba $x^2 + y^2 = 4$ i C_2 la corba $x^2 2x + y^2 = 0$, ambdues orientades positivament.

Problemes del tema 8 47

- 15. Sigui $C \subset \mathbb{R}^2$ una corba de Jordan i R la regió que tanca.
 - (a) Com ha de ser $\mathbf{f} = (P, Q)$ per tal que $\oint_C \mathbf{f} \cdot d\mathbf{l}$ sigui l'àrea de R?
 - (b) Comproveu que $\mathbf{f} = \frac{1}{2}(-y, x)$ ho satisfà.
 - (c) Apliqueu-ho a calcular l'àrea tancada per l'el·lipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$
- 16. Comproveu que les integrals de línia següents són independents del camí, i calculeu-les.
 - (a) $\int_C \mathbf{f} \cdot d\mathbf{l}$, amb $\mathbf{f} = (e^{y^2} \cos x, 2ye^{y^2} \sin x)$, i $C = \{(x, y) \mid y = \sin x\}$ des de (0, 0) fins $(\pi, 0)$.
 - (b) $\int_C \frac{x dx + y dy}{\sqrt{x^2 + y^2}}$, on C és el quart d'el·lipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ situat en el primer quadrant, i orientat des de (a, 0) fins (0, b).
- 17. Sigui el camp vectorial $\mathbf{f}(x,y) = \left(\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2}\right)$.
 - (a) Calculeu la integral de ${\bf f}$ al llarg de la circumferència $x^2+y^2=r^2,$ orientada positivament.
 - (b) Sigui C una corba tancada simple que no deixa l'origen en el seu interior. Proveu que $\oint_C \mathbf{f} \cdot d\mathbf{l} = 0$.
 - (c) Sigui C una corba tancada simple (orientada positivament) que conté l'origen en el seu interior. Proveu que el valor de $\oint_C \mathbf{f} \cdot d\mathbf{l}$ és independent de la corba considerada. Quin és aquest valor?
 - (d) Verifiqueu que el camp vectorial \mathbf{f} compleix $\frac{\partial f_1}{\partial y} = \frac{\partial f_2}{\partial x}$. Admet funció potencial en el seu domini de definició? Per què?
 - (e) Sigui $U =]0,1[\times]0,1[$. Comproveu que la integral $\int_{\partial U} \mathbf{f} \cdot d\mathbf{l}$ no es pot calcular mitjançant la fórmula de Green. Per què?
- 18. Siguin $D = \{(x,y) \mid x^2 + y^2 < 16, (x+2)^2 + y^2 > 1, (x-1)^2 + y^2 > 1\}$, $\mathbf{f} = (f_1, f_2)$ un camp vectorial de classe \mathbf{C}^1 amb domini D, i $C \subset D$ una corba tancada simple, orientada positivament. Quants valors diferents pot valdre $\oint_C \mathbf{f} \cdot d\mathbf{r}$ (segons l'elecció de C) en els casos següents?
 - (a) Si \mathbf{f} és el gradient d'un camp escalar en D.
 - (b) Si $\frac{\partial f_1}{\partial y} = \frac{\partial f_2}{\partial x}$.

Problemes addicionals

- 19. Comproveu les propietats següents, on F i G són camps vectorials \mathbb{C}^2 en \mathbb{R}^3 :
 - (a) $\operatorname{div}(F \times G) = G \cdot \operatorname{rot} F F \cdot \operatorname{rot} G$.
 - (b) $\operatorname{rot}(\operatorname{rot} F) = \operatorname{grad}(\operatorname{div} F) \Delta F$.
- 20. Si f i g són camps escalars \mathbb{C}^2 en \mathbb{R}^3 , què val div(grad $f \times \operatorname{grad} g$)?
- 21. Un fluid gira al voltant de l'eix OZ amb velocitat angular $\omega(t, x, y, z)$.
 - (a) Proveu que el seu camp de velocitats és de la forma $\mathbf{v}(t,x,y,z) = \omega(-y,x,0)$, i calculeu-ne el rotacional.
 - (b) En el cas que ω només depengui de la distància a l'eix OZ, ρ , esbrineu quan \mathbf{v} és irrotacional.
- 22. Calculeu la circulació dels camps vectorials següents al llarg de les corbes indicades, utilitzant el teorema de Stokes:
 - (a) $\mathbf{F}(x,y,z) = (3xz + yz, 3xz 3zy, 2xy)$, C, corba tancada obtinguda intersecant el pla 2x + 2y z = 2 amb la frontera del cub $Q = \{(x,y,z) \in \mathbf{R}^3 \mid 0 \le x \le 1, 0 \le y \le 1, 0 \le z \le 1\}$, recorreguda en el sentit que va de (1,0,0) a (0,1,0).

- (b) $\mathbf{f} = (x+y,y+z,z+x)$, C, el·lipse intersecció del cilindre $x^2+y^2=3$ amb el pla 2x+2y+z=0, recorreguda de manera que la seva projecció al pla XY es recorri positivament.
- (c) $\mathbf{f} = (y, z, x)$, C, corba intersecció de les dues superfícies x + y = 2, $x^2 + y^2 + z^2 = 2(x + y)$, recorreguda de manera que, vista des de l'origen, el sentit és el de les busques del rellotge.
- (d) $\mathbf{F} = (x y + z, y z + x, z x + y)$, corba intersecció de $x^2 + y^2 + z^2 = 1$ amb 2x + 2y + z = 0, orientada de manera que la seva projecció sobre el pla XY sigui recorreguda en sentit positiu.
- 23. Siguin $\mathbf{F} = (ye^{xy}, xe^{xy} + a(x-z), -ax)$ i C la corba intersecció de x+y+z=1 amb $x^2+y^2=1$. Calculeu a per tal que la circulació de \mathbf{F} al llarg de C valgui π .
- 24. Obteniu $\iint_S \operatorname{rot} \mathbf{F} \cdot \mathbf{n} \, \mathrm{d}S$, essent $\mathbf{F} = (x-z, x^3+yz, -3xy^2)$ i S la superfície $z=2-\sqrt{x^2+y^2}$, 0 < z < 2 orientada amb la normal "cap amunt".
- 25. Siguin **F** un camp amb rotacional (1,2,3) i C la intersecció de $x^2 + y^2 = 1$ amb x + y + z = 1 recorreguda de manera que, en projectar sobre el pla XY, doni sentit positiu. Determineu $\int_C \mathbf{F} \cdot d\mathbf{l}$.
- 26. Sigui \mathbf{f} un camp vectorial de classe \mathbf{C}^1 normal a una superfície regular S. Proveu que rot \mathbf{f} és tangent a S. (Apliqueu el teorema de Stokes.)
- 27. Calculeu els fluxos dels camps vectorials a través de les superfícies orientades donades, utilizant el teorema de Gauss:
 - (a) $\mathbf{F}(x, y, z) = (yz, xz, xy),$ S, la vora del cub |x| < 1, |y| < 1, |z| < 1.
 - (b) $\mathbf{F}(x, y, z) = (x^2, y^2, z^2)$, S, la mateixa.
 - (c) $\mathbf{F}(x, y, z) = (x y, y z, x y),$ S, la mateixa.
- 28. Calculeu $\iint_S (\operatorname{rot} \mathbf{F}) \cdot dS$, on \mathbf{F} és el camp vectorial $\mathbf{F}(x,y,z) = (-y,x^2,z^3)$ i S és la superfície que limita la regió $x^2 + y^2 + z^2 \le 1$, $1/2 \le z \le 1$.
- 29. Siguin $\mathbf{F}=(ye,x\cos z,x\cos y-b)$ i S la superfície $x^2+y^2+z^2-2az=1,\ z>0,$ on a>0. Determineu b per tal que el flux radial positiu a través de S sigui π , independentment de a.
- 30. Donat el camp vectorial $\mathbf{F} = (y+z^2-x, z^2+y-x, a\sqrt{2}z/3)$ i les superfícies S_1 : $(z-2)^2 = x^2+y^2$, 0 < z < 2, S_2 : $x^2+y^2 < 4$, z=0, trobeu el valor de a per tal que els fluxos "cap amunt" de \mathbf{F} a través d'ambdues superfícies coincideixin.
- 31. Proveu que el flux d'un camp constant a través d'una superfície tancada S és nul. Proveu també que si \mathbf{a} és un vector fixat, llavors $\iint_S \cos(\mathbf{n}, \mathbf{a}) \, \mathrm{d}S = 0$.
- 32. Sigui U una regió de ${\bf R}^3$ que no contingui l'origen, i sigui S la vora de U. Expresseu $\iint_S r^{\alpha} {\bf r} \cdot {\rm d} {\bf S}$ com una integral en la regió U. Què s'obté si $\alpha=0$?
- 33. De la mateixa manera que en el pla dues semirectes que parteixen d'un punt defineixen un angle, en l'espai podem definir $angle\ s\`olid$ com una regió Ω formada per semirectes que parteixen d'un origen O. La mesura d'aquest angle és l'àrea de la superfície obtinguda tallant Ω amb l'esfera S de centre O i radi 1.
 - (a) Vist des de l'origen, quant val l'angle sòlid de tot l'espai? I el d'un octant?
 - (b) Sigui M una superfície regular que no conté O i tal que cada semirecta amb origen O talla M com a molt en un sol punt. Sigui $\Omega(M)$ el conjunt d'aquestes semirectes que tallen M; s'anomena $angle\ s\`olid$ de vèrtex O subtendit per M.

Proveu que la seva mesura es pot calcular amb la integral de superfície $\int_{M} \frac{\mathbf{r}}{r^3} \cdot d\mathbf{S}$.

(Sigui M_a la projecció de M sobre l'esfera de centre O i radi a, amb a prou petit, i sigui U la regió "cònica" compresa entre M_a i M. Utilitzeu el teorema de Gauss en U per a provar que la integral

Problemes del tema 8 49

de superfície anterior coincideix amb $\frac{1}{a^2} \int_{M_a} dS$, i noteu que aquesta quantitat no depèn del radi a triat.)

- (c) Calculeu la mesura de l'angle sòlid, amb vèrtex a l'origen, subtendit per la superfície esfèrica $x^2+y^2+z^2=a^2,\,z>a\cos\alpha.$
- 34. Suposem que els camps escalars f i g satisfan $\nabla^2 g = 0$, $g\nabla^2 f = x + y$, $\nabla \cdot (g\nabla f) = x + y + z$. Calculeu la integral de superfície $\iint_S f \frac{\partial g}{\partial \mathbf{n}} \mathrm{d}S$, essent S l'el·lipsoide d'equació $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$, i $\frac{\partial g}{\partial \mathbf{n}}$ la derivada direccional segons la normal exterior a S.
- 35. Sigui V una regió de l'espai, i S la seva vora.
 - (a) Aplicant el teorema de la Gauss a $\iint_S \phi \nabla \phi \cdot \, \mathrm{d}\mathbf{S}$ obteniu l'expressió:

$$\iiint_V \|\nabla \phi\|^2 \, dV = -\iiint_V \phi \nabla^2 \phi \, dV + \iint_S \phi \frac{\partial \phi}{\partial \mathbf{n}} \, dS$$

essent $\frac{\partial}{\partial \mathbf{n}}$ la derivada segons la normal exterior a S.

(b) Demostreu que si ϕ_1 i ϕ_2 són dues solucions del problema

$$\nabla^2 \phi = h \text{ en } V, \quad \frac{\partial \phi}{\partial \mathbf{n}} = g \text{ en } S,$$

cal $\phi_1 - \phi_2 = \text{const.}$ (Considereu $\psi = \phi_1 - \phi_2$.)

- (c) Demostreu que un camp vectorial f definit en una regió V queda determinat pel seu rotacional i la seva divergència en V, i el seu component normal en S = ∂V.
 (Considereu g = f₁ − f₂ amb f₁ i f₂ dos camps amb mateixa divergència i rotacional en V, i mateix component normal en S.)
- 36. Demostreu que el problema de Neuman per a l'equació del potencial, $\Delta u = f$ en Ω , $\frac{\partial u}{\partial \mathbf{n}} = g$ en $\Gamma = \partial \Omega$, no pot tenir solució si $\int_{\Omega} f dV \neq \int_{\Gamma} g dS$. (Apliqueu el teorema de Gauss a $\int_{\Gamma} \nabla u \cdot \mathbf{n} dS$, essent u solució del problema.)
- 37. Es consideren coordenades esfèriques (r, θ, ϕ) $(r^2 = x^2 + y^2 + z^2, z = r \cos \theta)$. Sigui u una solució del problema $\nabla^2 u = u$ si r < 1, i $\frac{\partial u}{\partial r} = \sin \theta$ si r = 1. Obteniu $\iint_{r \le 1} u \, dV$.
- 38. Siguin u i v camps escalars \mathbf{C}^1 en un obert D, i $C\subset D$ una corba tancada orientada. Obteniu $\oint_C (u\nabla v + v\nabla u)\cdot d\mathbf{r}$.
- 39. Sigui ϕ una funció de classe C^1 en un obert simplement connex D, i \mathbf{f} un camp vectorial conservatiu de classe C^1 en D. Proveu que el camp vectorial $\phi \mathbf{f}$ és conservatiu sii grad ϕ i \mathbf{f} són en cada punt proporcionals.
- 40. Comproveu que els camps vectorials següents són conservatius, i calculeu-ne potencials escalars.
 - (a) ${\bf f} = {\bf r}/r$.
 - (b) $\mathbf{f} = \frac{\mathbf{r}}{r^2}$.
 - (c) $\mathbf{f} = r^{\alpha} \mathbf{r}$, $(\alpha \neq -2)$.
 - (d) $\mathbf{f}(x, y, z) = (2xy + z^3, x^2, 3xz^2)$.

- (e) $\mathbf{f}(x, y, z) = (y^2 z, 2xyz, xy^2 1).$
- 41. Trobeu P(x, y, z) per tal que rot(P, (x z)y, 0) = (y, z, x).
- 42. Demostreu que el camp vectorial $\mathbf{f}(x, y, z) = (y z)\mathbf{i} + (z x)\mathbf{j} + (x y)\mathbf{k}$ és solenoïdal, i obteniu un camp vectorial \mathbf{g} tal que $\mathbf{f} = \operatorname{rot} \mathbf{g}$.
- 43. Calculeu les integrals de línia següents, aplicant el teorema de Green:
 - (a) $\oint_C (y^2 \cos x 2e^y) dx + (2y \sin x 2xe^y) dy$, on C és la corba d'equació $x^2 + y^2 = \pi$ (orientada positivament).
 - (b) $\oint_C (2xe^{x^2-y^2}-4y)dx (2ye^{x^2-y^2}-4x)dy$, on C és la circumferència $2x^2+2y^2-3x+5y=0$.
 - (c) $\oint \mathbf{f} \cdot d\mathbf{l}$, on $\mathbf{f} = (y \cos x \cos y, -x + \sin x \sin y)$, al llarg de la circumferència $x^2 + y^2 2x + 2y = 0$.
 - (d) $\oint \mathbf{f} \cdot d\mathbf{l}$, on $\mathbf{f} = (xy + x^2y, \frac{1}{2}x^2 + e^y \sin y)$, al llarg de la circumferència $x^2 + y^2 = 1$.
 - (e) $\int_C (x^2+y^2) dx + x(1+2y) dy$, essent C la corba orientada definida per la parametrització $x=a(t-\sin t), \ y=a(1-\cos t), \ 0< t< 2\pi$ (cicloide).
- 44. Considereu el camp vectorial $\mathbf{f}(x,y) = \left(\sqrt{x^2 + y^2}, y\left(xy + \log(x + \sqrt{x^2 + y^2})\right)\right)$.
 - (a) Raoneu si s'hi pot aplicar el teorema de Green en el rectangle $R=\{(x,y)\mid 1\leq x\leq 4,\, 0\leq y\leq 2\}.$
 - (b) Calculeu la circulació de ${\bf f}$ al llarg de la vora de R.
- 45. Determineu l'àrea del domini comprès entre l'eix OX i l'arc de cicloide definit per $x = R(t \sin t)$, $y = R(1 \cos t)$, amb $0 \le t \le 2\pi$.
- 46. Sigui $U \subset \mathbf{R}^2$ un obert del pla, i \mathbf{F} un camp vectorial de classe \mathbf{C}^1 en U. Sigui $D \subset U$ una regió amb vora $\partial D = C$. Proveu el teorema de la divergència en el pla:

$$\int_{C} \mathbf{F} \cdot \mathbf{n} \, \mathrm{d}r = \iint_{D} \mathrm{div} \, \mathbf{F} \, \mathrm{d}x \mathrm{d}y$$

- on \mathbf{n} és el vector unitari normal exterior a D.
- (Si $\mathbf{F} = (P, Q)$, considereu el camp vectorial $\mathbf{G} = (-Q, P)$, i apliqueu-hi el teorema de Green.)
- (El primer membre s'anomena flux de \mathbf{F} a través de C.)
- 47. Siguin f(x,y) un camp escalar de classe C^2 en un obert $U \subset \mathbf{R}^2$, $R \subset U$ una regió, i $C = \partial R$ la vora de R, amb normal exterior unitària \mathbf{n} .
 - (a) Aplicant el teorema de la divergència, proveu la fórmula:

$$\iint_{R} \left(\frac{\partial^{2} f}{\partial x^{2}} + \frac{\partial^{2} f}{\partial y^{2}} \right) dx dy = \int_{C} \frac{\partial f}{\partial \mathbf{n}} dl,$$

- on $\frac{\partial f}{\partial \mathbf{n}}$ és la derivada direccional de f en la direcció de la normal.
- (b) Calculeu $\oint_C \frac{\partial u}{\partial \mathbf{n}} dl$, on $u = x^2 + 3y^2$ i **n** és la normal exterior unitària a la corba $x^2 + y^2 = 4$, directament i com a aplicació de l'apartat anterior.
- 48. Estudieu si els camps vectorials següents admeten funció potencial. En cas afirmatiu, calculeu-la.
 - (a) $\mathbf{f}(x,y) = (xy,1)$.
 - (b) $\mathbf{f}(x, y) = (y, x)$.
 - (c) $\mathbf{f}(x,y) = (x^2 3xy, x^2 x^3 + y).$
 - (d) $\mathbf{f}(x,y) = (e^{x-y}(1+x+y), e^{x-y}(1-x-y)).$

Problemes del tema 8 51

(e)
$$\mathbf{f}(x,y) = \left(\frac{2x}{y+x^2}, \frac{1}{y+x^2}\right)$$
.

49. Comproveu que les integrals de línia següents són independents del camí, i calculeu-les.

(a)
$$\int_C x dx + y dy$$
, al llarg de la corba $y = \varphi(x)$ des de $x = 0$ fins $x = 2\pi$.

(b)
$$\int_{(x_1,y_1)}^{(x_2,y_2)} \varphi(x) dx + \psi(y) dy$$
.

(c)
$$\int_{(1.0)}^{(2.2)} \frac{4x(y^2+1)dx - 4x^2ydy}{(x^2+y^2+1)^2}.$$

50. Siguin P i Q funcions $\mathbf{R}^2 \to \mathbf{R}$ de clase \mathbf{C}^1 , tals que $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$. Definim

$$f(x,y) = \int_0^1 (xP(tx,ty) + yQ(tx,ty)) dt$$

- (a) Proveu que f és potencial del camp $\mathbf{F} = (P, Q)$.
- (b) Apliqueu-ho a les funcions P = x + 2y, $Q = 2x + y^3$.
- 51. Obteniu els valors de b per als quals les equacions diferencials següents són exactes, i resoleu-les.
 - (a) $(bx^2y + y^3)dx + (x^3 + bxy^2)dy = 0.$
 - (b) (3x 5y + 7)dx + (bx 6y + 10)dy = 0.
- 52. Per a les equacions diferencials següents, obteniu un factor integrant μ del tipus indicat i useu-lo per a resoldre-les.
 - (a) $y^2 dx + (1 + xy) dy = 0$; $\mu(xy)$.
 - (b) $(3xy 2y^2)dx + (2x^2 3xy)dy = 0$; $\mu(xy)$.
 - (c) $(x^2y^3 y)dx + (x^3y^2 + x)dy = 0$; $\mu(xy)$.
 - (d) $(3x^2y + 3xy^2)dx + (x^3 + x^2y)dy = 0; \mu\left(\frac{y}{x}\right).$
 - (e) y(1+xy)dx xdy = 0; $\mu = \phi(y)$.
 - (f) $(y^4 2y^2)dx + (3xy^3 4xy + y)dy = 0; \mu = \phi(xy^2).$
 - (g) $(xy^2 x^3 + x)dy + (x^2y y^3 + y)dx = 0$; $\mu = \phi(xy)$.
 - (h) $y dx + x(x^2y 1) dy = 0$; $\mu = \frac{1}{x^2}\phi(y/x)$.
 - (i) $(y^2 xy)dx + x^2dy = 0$; $\mu(x, y) = \phi(xy^2)$.
- 53. Quina condició han de complir P i Q per tal que l'equació Pdx+Qdy=0 admeti un factor integrant funció de ax+by?

Respostes

- 1. (e) $h(r) = C/r^n$, $h(r) = C/r^{n-1}$.
 - (i) 0.
 - (j) $F = r/r^3$.
- 2. $2\mathbf{a}, \mathbf{a} \times \mathbf{b}$.
- 3. (a) $-\pi R^6/8$.
 - (b) $-3\pi R^2$.
 - (c) 0.
 - (d) $-4\pi/\sqrt{3}$.
 - (e) 1/2.
 - (f) $-\pi$.
- 4. La circulació de ${\bf f}$ al llarg de la vora orientada en un sentit val $4/3-\pi/8$.

- 5. $-\pi$.
- 6. (a) 5/2.
 - (b) $5a^6/24$.
 - (c) $\pi a^2 b^2 / 2$.
 - (d) $2\pi/3$.
- 7. $-\frac{1}{3}abc\left(\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}\right)$.
- 8. 8π .
- 9. $h = 2y + z^2 + g(x)$. Un potencial és $\phi = 2xy + xz^2 y^3z + \int g(x) dx$.
- 10. (b) $\phi(r) = k/r^3$.
 - (c) $k \frac{k}{\sqrt{1 + (\pi/2)^2}}$.
- 11. 4.
- 12. a = 2/3.
- 13. (a) Sí, per exemple (0, 2zx, yx).
 - (b) $2\pi cR^2$.
- 14. (a) $-\pi R^4/2$.
 - (b) 0.
 - (c) 15π .
 - (d) -4.
 - (e) 4.
 - (f) $\pi/4$.
 - (g) 3π .
- 15. (a) Cal $\frac{\partial Q}{\partial x} \frac{\partial P}{\partial y} = 1$.
- 16. (a) 0.
 - (b) b a.
- 17. (a) 2π .
 - (c) 2π .
 - (d) No.
 - (e) La integral de línia dóna $\pi/2$, mentre que $\int_U \dots$ val 0. La raó és que \bar{U} inclou el punt (0,0), que no és del domini del camp vectorial.
- 18. Un i quatre, respectivament.
- 20. 0.
- 21. (a) Utilitzem que $\dot{\mathbf{r}} = \boldsymbol{\omega} \times \mathbf{r}$, amb $\boldsymbol{\omega} = (0, 0, \omega)$. $\mathbf{v} = \left(-x\frac{\partial \omega}{\partial z}, -y\frac{\partial \omega}{\partial z}, 2\omega + x\frac{\partial \omega}{\partial x} + y\frac{\partial \omega}{\partial y}\right)$.
 - (b) $\omega = A/\rho^2$.
- 22. (a) 3/2.
 - (b) -15π .
 - (c) $-2\sqrt{2}\pi$.
 - (d) $10\pi/3$.
- 23. a = 1/3.
- 24. 12π .
- 25. 6π .
- 27. (a) 0
 - (b) 0.
 - (c) 16.
- 28. 0.

- 29. -1.
- 30. 0.
- 32. $(3+\alpha) \iint_T r^{\alpha} dV$.
- 33. (a) 4π ; $\pi/2$.
 - (c) $2\pi(1-\cos\alpha)$.
- 34. 0.
- 38. 0.
- 40. (a) r + k.
 - (b) $\log r + k$.
 - (c) $\frac{r^{\alpha+2}}{\alpha+2} + k.$
 - (d) $x^2y + xz^3 + k$.
 - (e) $z(xy^2 1) + k$.
- 41. $\frac{1}{2}(-2xy+y^2+z^2)+\varphi(x)$.
- 42. $\mathbf{g}(x, y, z) = (x^2/2 xy yz + z^2/2)\mathbf{j} + (x^2/2 xz)\mathbf{k}$.
- 43. (a) 0.
 - (b) 17π .
 - (c) -4π .
 - (d) $-\pi/4$.
- - (b) 8.
- 45. $3\pi R^2$.
- 47. (b) 32π .
- 48. (a) No.
 - (b) Sí, xy + C.
 - (c) No.
 - (d) Sí, $e^{x-y}(x+y) + C$.
- (e) Sí, $\log |x^2 + y| + C$. 49. (a) $2\pi^2 + \frac{1}{2}(\varphi^2(2\pi) \varphi^2(0))$.
 - (b) $\int_{x_1}^{x_2} \varphi(x) dx + \int_{y_1}^{y_2} \psi(y) dy$.
 - (c) -1/9.
- 50. (b) $f(x,y) = \frac{1}{2}x^2 + \frac{1}{4}y^4 + 2xy$. 51. (a) b = 3; $x^3y + xy^3 = C$.
- - (b) b = -5; $\frac{3}{2}x^2 5xy 3y^2 + 7x + 10y = C$.
- 52. (a) $\mu = e^{xy}$; $ye^{xy} = C$.
 - (b) $\mu = xy$; $x^3y^2 x^2y^3 = C$.
 - (c) $\mu = \frac{1}{xy}$; $\ln \frac{y}{x} + \frac{x^2y^2}{2} = C$. (d) $\mu = \frac{x}{x+y}$; $x^3y = C$.

 - (e) $\mu(x,y) = 1/y^2$; $x^2 + 2x/y = C$.
 - (f) $\mu(x,y) = 1 + xy^2$; $xy^2(y^2 2)(xy^2 + 2) + y^2 = C$.
 - (g) $\mu(x,y) = \frac{1}{x^2y^2}$; $x^2 + y^2 Cxy 1 = 0$.
 - (h) $\mu(x,y) = y/x^3$; $2y^3 3(y^2/x^2) = C$.
 - (i) $\mu(x,y) = \frac{1}{xy^2}$; $\ln|x| \frac{x}{y} = C$.
- 53. $\frac{Q_x P_y}{bP aQ} = f(ax + by).$