

4ª Lista de exercícios para a OBA (Nível 4) Questões

Fotometria & Estrelas

Material elaborado por Iago Mendes

1. Questão (1 ponto)

A nossa estrela – o Sol – possui 6 camadas, 3 internas e 3 externas. Observe a seguinte representação com números de 1 a 6 em cada camada solar:

1.1. Pergunta (0,6 ponto) (0,1 cada acerto)

Abaixo, os 6 nomes das camadas solares estão em ordem aleatória. Insira o número correspondente ao representado na imagem.

() Zona convectiva	() Núcleo
() Coroa	() Zona radiativa
() Fotosfera	() Cromosfera

1.2. Pergunta (0,1 ponto)

Quais as formas de transmissão de calor nas camadas 2 e 3, respectivamente?

() Condução e Radiação

(
(

-) Radiação e Convecção
- () Convecção e Condução
- () Convecção e Radiação

1.3. Pergunta (0,3 ponto)

Algo que ainda intriga vários cientistas é o fato de a camada 6 possuir uma maior temperatura do que as camadas 4 e 5. O fator responsável por essa peculiaridade mais aceito atualmente também causa irregularidades na atmosfera solar, como os ventos solares. Qual é esse fator?

- () Equilíbrio entre força gravitacional e a pressão de radiação
- () Escapamento de neutrinos originados pelas reações nucleares
- () Movimento do Sol ao redor do baricentro do Sistema Solar
- () Variação dos campos magnéticos solares

2. Questão (1 ponto)

A energia proveniente do Sol é originada por meio do ciclo p-p, o qual pode ser simplificado para a seguinte reação nuclear:

$$H_1^2 + H_1^3 \longrightarrow He_2^4 + n_0^1 + \gamma$$

em que H_1^2 (deutério) e H_1^3 (trítio) são isótopos do hidrogênio, He_2^4 é um átomo de hélio, n_0^1 é um nêutron, e γ representa a energia liberada.

As massas atômicas envolvidas nessa reação são dadas a seguir:

$$> m(H_1^2) \simeq 2,014 \ uma$$

$$> m(He_2^4) \simeq 4,003 \ uma$$

$$> m(H_1^3) \simeq 3,016 \ uma$$

$$> \, m(n_0^1) \simeq 1,009 \; uma$$

2.1. Pergunta (0,4 ponto)

Calcule a taxa de massa perdida (t), em porcentagem, usando a reação nuclear dada.

Dica: $t = \left| \frac{m' - m_0}{m_0} \right|$, em que m_0 e m' são as massas antes e depois da reação, respectivamente.

2.2. Pergunta (0,3 ponto)

Considerando que toda a massa do Sol seja composta por isótopos de hidrogênio e que o ciclo p-p é a única reação nuclear que ocorre até tais isótopos se esgotarem, qual será a massa convertida em energia, em kg?

Dados: $M_{Sol} \simeq 2 \cdot 10^{30} \ kg$

Resposta 2.2):																					
--------------	----	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

2.3. Pergunta (0,3 ponto)

Qual a quantidade de energia gerada pela massa calculada no item anterior? Dica: $E=mc^2$

3. Questão (1 ponto)

Na Astronomia, os conceitos de Luminosidade e Fluxo são frequentemente usados e, portanto, é importante saber diferenciá-los. Observe o esquema seguinte representando a emissão de energia do Sol:

Como você pode perceber, o "brilho" é reduzido à medida que a distância da fonte luminosa aumenta. Contudo, a energia emitida deve ser a mesma, visto que não se pode perder energia no universo.

Nesse contexto, precisamos fazer duas definições:

- 1. Luminosidade: é a quantidade de energia emitida a cada unidade de tempo (potência) e a sua unidade no S.I. é o watt $(W = \frac{J}{s})$
- 2. Fluxo: é a quantidade de potência recebida a cada unidade de área e a sua unidade no S.I. é watt por metro quadrado $\left(\frac{W}{m^2}\right)$

Dito isso, é possível analisar que os melhores termos para "brilho" e "energia emitida" seriam fluxo e luminosidade, respectivamente. Como já discutimos, a luminosidade deve se manter constante na superfície da esfera luminosa emitida e o fluxo é inversamente proporcional à distância da fonte luminosa. Para encontrarmos uma fórmula que descreva essas quantidades, basta inserirmos a área superficial dessa esfera $(A = 4\pi r^2)$:

$$F = \frac{L}{4\pi r^2}$$

em que F é o fluxo, L é a luminosidade, e r é a distância à fonte (raio da esfera luminosa).

3.1. Pergunta (0,5 ponto)

A distância entre a Terra e o Sol é 1 $UA\approx 1,5\cdot 10^{11}~m$. Sabendo disso e que $L_{Sol}\simeq 3,8\cdot 10^{26}~W$, determine o fluxo solar que recebemos.

3.2. Pergunta (0,5 ponto)

O fluxo da estrela Sirius – alfa da constelação Cão Maior – recebido na Terra é $F_{Sirius} \simeq 1, 2 \cdot 10^{-7} \frac{W}{m^2}$ e a sua luminosidade é $L_{Sirius} \simeq 9, 7 \cdot 10^{27}$. Se a Terra estivesse a uma mesma distância do Sol e de Sirius, qual estrela possuiria o maior fluxo?

() Sol

() Sirius

() As duas estrelas teriam o mesmo fluxo

() Impossível de determinar com as informações passadas

4. Questão (1 ponto)

A luminosidade das estrelas depende tanto em seu tamanho quanto em sua temperatura. Nesse sentido, podemos usar a Lei de Stefan-Boltzmann para mostrar matematicamente essa relação:

$$L = 4\pi R^2 \sigma T^4$$

em que L é a luminosidade, R é o raio, T é a temperatura, e σ é a constante de Stefan-Boltzmann $\left(\sigma\simeq 5,67\cdot 10^{-8}\ \frac{W}{m^2K^4}\right)$.

Mais importante do que memorizar essa equação, é preciso entender que a luminosidade é diretamente proporcional ao raio ao quadrado e à temperatura elevada à quarta pontência. Matematicamente, temos:

$$L \propto R^2 T^4$$

Além disso, podemos determinar a cor de uma estrela a partir de sua temperatura (e vice-versa). Para tanto, precisamos utilizar a Lei de Wien:

$$\lambda T = b$$

em que λ é o comprimento de onda em que a maior quantidade de energia é emitida pela estrela, T é a sua temperatura, e b é a constante de Wien $(b \simeq 2, 90 \cdot 10^{-3} \ mK)$.

4.1. Pergunta (0,1 ponto)

Se o raio de uma estrela for reduzido pela metade $\left(R' = \frac{R_0}{2}\right)$ e sua temperatura for multiplicada por 2 $\left(T' = 2T_0\right)$, o que acontecerá com a luminosidade?

$$(\quad) L' = L_0$$

- $() L' = 2L_0$
- () $L' = \frac{L_0}{2}$
- $(\)\ L' = 4L_0$
- $(\quad) L' = \frac{L_0}{4}$

4.2. Pergunta (0,4 ponto)

O raio do Sol é $R_{Sol}\approx 7\cdot 10^8~m$ e sua temperatura é $T_{Sol}\approx 6.000~K$. Sabendo que essas mesmas características da estrela Sírius são $R_S\approx 1\cdot 10^9~m$ e $T_S\approx 10.000~K$, encontre a razão $\frac{L_S}{L_{Sol}}$.

4.3. Pergunta (0,5 ponto)

Usando as temperaturas T_{Sol} e T_S e com a ajuda da tabela seguinte, marque com os números 1 (para o Sol) e 2 (para Sirius) os intervalos de cores mais próximos ao pico de emissão das estrelas.

Espaço para cálculos:

() Violeta – Azul

() Ciano – Verde

() Amarelo – Vermelho

5. Questão (1 ponto)

Exoplanetas podem ser encontrados de 5 formas, mas a maneira mais eficaz até o momento é o *Método de Trânsito*. De maneira simplificada, esse método consiste em detectar a

diminuição da luminosidade de uma estrela causada pela passagem do exoplaneta. Para entender melhor como isso acontece, observe o esquema seguinte:

5.1. Pergunta (0,5 ponto)

Um problema do *Método de Trânsito* é que a sua eficácia depende da órbita do planeta visualizada. Nesse sentido, marque o(s) exoplaneta(s) abaixo que poderiam ser descobertos por meio desse método.

5.2. Pergunta (0,5 ponto)

Sabendo que R_e e R_p são respectivamente os raios da estrela e do exoplaneta, qual a razão das luminosidades L_2 (medida em t_2) e L_1 (medida em t_1)?

Dica: neste caso, podemos considerar que a luminosidade é proporcional à área da seção transversal.

Espaço para cálculos:

$$\left(\quad\right) \ \frac{L_2}{L_1} = \left(\frac{R_p}{R_e}\right)^2$$

$$(\) \frac{L_2}{L_1} = \frac{R_e^2 - R_p^2}{R_e^2}$$

$$\left(\quad\right) \ \frac{L_2}{L_1} = \left(\frac{R_e}{R_p}\right)^2$$

()
$$\frac{L_2}{L_1} = \frac{R_p^2 - R_e^2}{R_p^2}$$

Bons estudos!

