Supervised Learning: Find a mapping f from input features x to target outputs t using labelled training data (input-output pairs).

Unsupervised Learning: Find interesting patterns in the data, e.g., find clusters, where no target labels are given (only inputs are given).

Reinforcement Learning: Find a sequence of actions that produce a high reward signal in an environment.

Training Set: Used to learn the (parameters of) the mapping f from input features to the predicted output

Validation Set: Used to choose hyperparameters or model settings that are not provided by by the learning algorithm

Test Set: Used to estimate how well the model will generalize to new data and how well the model will perform when deployed

Training:

k-Nearest Neighbours: No training necessary; just store the data

Decision Trees: Greddy method: find the optimum split at each node, where "optimum" is determined by a loss, e.g., information gain

Linear Regression and Classification: Find weights w that minimize a cost function, e.g., mean square error or average cross entropy loss across the training set

Hypothesis (model, predictor) is a function f that maps input x to output prediction y

Voroni diagram partitions space into regions closest to each data

kNN: k too small may overfit (sensitive to noise), k too large would underfit (fail to capture regularities)

 $k < \sqrt{n}$, choose k with highest validation accu-

We use test data to estimate generalization er- If α too small, training is slow, if α large, di-

60% training, 20% validation and test

We normalize each dimension to zero mean and unit variance

Curse of dimensionality: data not dense in high dimensions, and hard to calculate distances. Most points are approximately equally distanced, squared Euclidean distance becomes dominated by the average behavior, making distances converge

Overfitting: High training accuracy, poor test accuracy; model too complex, small data set, noise in data; regularization, better hyperparameters better model

Underfitting: Low training and test accuracy; model too simple, bad hyperparameters, bad model; adjust hyperparameters, regularization, normalization

Decision Tree Output: Most common value for discrete classification, or mean value for re-

Use greedy heustic to construct decision tree based on (highest) information gain

More certain outcome has lower entropy, i.e. not uniformly distributed

Entropy characterizes uncertainty of random

Conditional Entrypy characterizes uncertainty of random variable given another random

Information Gain measures informativeness

Process: Pick a feature, compare all possible splits, choose the one with highest IG, repeat

We may minimize squared error instead: SE = $\sum_{i=1}^{N} (f(x^{(i)}) - t^{(i)})^2$

A model is a set of assumptions (restrictions) about the structure of f

The model or architecture restricts the hypoth-

Goal of Linear Regression: find w (weights) and b (bias) minimizing $\mathcal{E}(w,b) = \mathcal{E}(\mathbf{w})$

Let X be matrix with $N \times (D+1)$ shape with each $x^{(i)}$, then y = Xw Gradiant Descent is more general than matrix inversion for finding

Each GD update costs O(ND), $\mathbf{w} \leftarrow \mathbf{w} \alpha \nabla_{\mathbf{w}} \mathcal{E}(\mathbf{w}) = \mathbf{w} - \frac{\alpha}{N} \mathbf{X}^{T} (\mathbf{X} \mathbf{w} - \mathbf{t}), \text{ or } w_{i} \leftarrow$ $w_i - \alpha \frac{\partial \mathcal{E}}{\partial w_i}$, where initially $\alpha = 0.002, w_i =$

verges

We may generalize linear regression by mapping input feature to another space, by feature mapping (or basis expansion): $\psi(\mathbf{x}) : \mathbb{R}^D \to \mathbb{R}^d$. and treat \mathbb{R}^d as input space, e.g. polynomial $\psi(x) = (1, x, ..., x^M)^T$, then $y = \psi(x)^T \mathbf{w}$ Adjust the degree of polynomial to avoid underfitting or overfitting

regularizer or penalty is function that quali-

fies how much we prefer one hypothesis (penal- Accuracy: $\frac{1}{N} \sum_{i=1}^{N} \mathbb{I}[t^{(i)} = y^{(i)}]$ ize large weights)

Both polynomial degree M and λ are hyperparameters

 λ large cause underfit, λ small cause overfit We want each feature's values to be indicators or orderable

ML Algorithm Design: 1. Choose model; 2. Define loss function; 3. Choose regularizer; 4. Fit model by minimizing regularized cost, using optimization algorithm.

t=1 for positive example, t=0 or -1 for negative example

For Linear Binary Classification Model, let $z = \mathbf{w}^T x$, then y = 1 if z > 0, else y = 0, decision boundary being hyperplane z = 0Given small training set, go over each data point to find restrictions of w_i , if resion in weight space satisfying all constraints is non-empty, then this feasible region makes the problem (in)-festible and the training set linearly sep-

Use square error loss function would cause correctly classified points with high loss; use indicator loss function would cause gradiant be zero e.w.; use sigmoid plus square loss won't update much for very wrongly classified example, i.e. poor gradient signal

We use sigmoid to smooth the output of each choice of \mathbf{w} between 0 and 1, then use cross entropy loss function to penalize the model for

$$\mathbf{w} \leftarrow \mathbf{w} - \frac{\alpha}{N} \sum_{i=1}^{N} (y^{(i)} - t^{(i)}) \mathbf{x}^{(i)}$$
, same as linear regression

hypothesis space \mathcal{H} set of all possible h a model can represent, i.e. all linear functions for

Members of H with algorithm's preference determine inductive bias

Algorithm is **parametric** if \mathcal{H} is defined by a set of parameters (linear and logistic regression, neutral network: counter-example kNN)

Previously we used full batch gradient de**scent** of $\frac{\partial \mathcal{E}}{\partial w}$, we may estimate $\frac{\partial \mathcal{E}}{\partial w}$ using subset of data if N too large, via stochastic gradient descent: computing average of a small number of examples called mini-batch with a batch

inner loop is iteration (each mini-batch), outer is epoch (one update)

 $num_iter = num_epoch * N/batch_size$

Accuracy:
$$\frac{1}{N} \sum_{i=1}^{N} \mathbb{I}[t^{(i)} = y^{(i)}]$$

Error: 1 – Accuracy

Euclidean:

$$\left| \left| x^{(a)} - x^{(b)} \right| \right|_2 = \sqrt{\sum_{j=1}^d (x_j^{(a)} - x_j^{(b)})^2}$$

Cosine Similarity:

$$\frac{\operatorname{cosine}(x^{(a)}, x^{(b)}) = \frac{x^{(a)} \cdot x^{(b)}}{\left\|x^{(a)}\right\|_{2}\left\|x^{(b)}\right\|_{2}}}{\left\|x^{(a)}\right\|_{2}\left\|x^{(b)}\right\|_{2}}$$

Mean: $\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x^{(i)} = \mu$ Variance: $\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x^{(i)} - \bar{x})^2$ Standard Deviation: $\sigma = \sqrt{\sigma^2}$

Normalization: $\tilde{x}_{i}^{(i)} = \frac{x_{j}^{(i)} - \mu_{j}}{\sigma}$

$$\begin{split} H(X) &= -\mathbb{E}_{X \sim p}[\log_2 p(X)] \\ &= -\sum_{x \in X} p(x) \log_2 p(x) \\ H(X,Y) &= -\sum_{\substack{x \in X \\ y \in Y}} p(x,y) \log_2 p(x,y) \\ H(Y|x) &= -\sum_{\substack{y \in Y \\ y \in Y}} p(y|x) \log_2 p(y|x) \\ H(Y|X) &= \sum_{\substack{x \in X \\ y \in Y}} p(x)H(Y|x) \\ &= -\sum_{\substack{x \in X \\ y \in Y}} p(x,y) \log_2 p(y|x) \\ H(X,Y) &= H(Y,X) = H(X|Y) + H(Y) \end{split}$$

$$H \ge 0, H(Y|Y) = 0, H(Y|X) \le H(Y)$$
$$H(Y|X) = H(Y) \text{ if } X \text{ and } Y \text{ ind.}$$

Information Gain:

$$IG(Y|X) = H(Y) - H(Y|X)$$

Linear Model:

$$y = f(x) = \sum_{j=1}^{D} w_j x_j + b = \tilde{\mathbf{w}}^T \tilde{\mathbf{x}}$$
 where $\tilde{\mathbf{w}}_1 = b, \tilde{\mathbf{w}}_i = w_{i-1}, \tilde{\mathbf{x}}_1 = 1, \tilde{\mathbf{x}}_i = x_{i-1}$ Squared error loss function:

$$\mathcal{L}(y,t) = \tfrac{1}{2}(y-t)^2$$

$$y - t$$
 is called residual

Cost (average loss) function:

$$\mathcal{E}(w, b) = \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}(y^{(i)}, t^{(i)})$$

$$= \frac{1}{2N} (\mathbf{y} - \mathbf{t})^{T} (\mathbf{y} - \mathbf{t})$$

$$= \frac{1}{2N} ||\mathbf{X} \mathbf{w} - \mathbf{t}||_{2}^{2}$$

$$\frac{\partial \mathcal{E}}{\partial w} = \frac{1}{N} \sum_{j=1}^{N} (y^{(i)} - t^{(i)}) x^{(i)}$$

$$\frac{\partial \mathcal{E}}{\partial b} = \frac{1}{N} \sum_{j=1}^{N} (y^{(i)} - t^{(i)})$$

$$\frac{\partial \mathcal{L}}{\partial w} = (y - t) x_{j}$$

$$\begin{split} \nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}) &= (y - t)\mathbf{x} \\ \nabla_{\mathbf{w}} \mathcal{E}(\mathbf{w}) &= \frac{1}{N} \sum_{i=1}^{N} (y^{(i)} - t^{(i)})\mathbf{x}^{(i)} \\ &= \frac{1}{N} \mathbf{X}^{T} (\mathbf{X} \mathbf{w} - \mathbf{t}) \\ \nabla_{\mathbf{w}} \mathcal{E}(\mathbf{w}) &= 0 \colon \mathbf{w} = (\mathbf{X}^{T} \mathbf{X})^{-1} \mathbf{X}^{T} \mathbf{t} \end{split}$$

$$\mathcal{R}(\mathbf{w}) = \frac{1}{2} ||\mathbf{w}||_2^2 = \frac{1}{2} \sum_{j=1}^{D} w_j^2$$

$$\mathcal{E}_{reg}(\mathbf{w}) = \mathcal{E}(\mathbf{w}) + \lambda \mathcal{R}(\mathbf{w})$$

Logistic / Sigmoid function:

$$y = \sigma(z) = \frac{1}{1 + e^{-z}}$$

 $y = \sigma(z) = \frac{1}{1 + e^{-z}}$ Both sigmoid and square loss:

$$\frac{\partial \mathcal{L}}{\partial w_j} = (y - t)y(1 - y)x_j$$

Cross Entropy Loss:

$$\mathcal{L}_{\text{CE}}(y, t)$$

$$= \begin{cases} -\log(y) & \text{if } t = 1 \\ -\log(1 - y) & \text{if } t = 0 \end{cases}$$

$$= -t \log(y) - (1-t) \log(1-y)$$

$$\frac{\partial \mathcal{L}_{\text{CE}}}{\partial w_j} = (y-t) x_j$$

3rd column cont.. batch size too large = expensive, too small = noisy

center and normalize to avoid ravines

Graph of kNN: Draw tangent line at each midpoint, connect regions with same class

Graph of Decision Tree: Draw axis-aligned lines to split regions

IG of Decision Tree: First calculate the entropy H(Y) with probability (percentages) of each class, similarly for H(Y|right), H(Y|left), then IG =H(Y) - p(right)H(Y|right) - p(left)H(Y|left)Shape: # of rows × # of columns

Linear Regression: Square error loss function, with average loss cost function

Logistic Regression: Sigmoid function, with cross entropy loss function

Decision Tree: Greedy method, with information gain loss function

kNN: No training, with Euclidean distance for lower dimension D

 $x_{i}^{(i)}$ represents the *j*-th feature of the *i*-th training example