Math 141 Calculus I

Sols

Exam #1 February 12, 2018

Instructor: .	Ann⊣	Clifton
---------------	------	---------

Name:	
-------	--

Do not turn this page until told to do so.

You will have a total of 1 hour and 15 minutes to complete the exam. When specified, you must show all work to receive full credit. NO CALCULATOR/PHONE ALLOWED. Draw a pumpkin on this page if you read this.

Cheating of any kind on the exam will not be tolerated and will result in a grade of 0%.

	1			_	
#	score	out of	#	score	out of
1		4	9		6
2		4	10		6
3		4	11		14
4		4	12		20
5		4	13		16
6		6			
7		6	EC		5
8		6	Total		100

Remember: This exam has no impact on your worth as a human being. You got this!!!

1. If $f(x) \leq g(x)$ for all x in some open interval containing c, except possibly at x = c itself, and the limits of f and g both exist as x approaches c, then $\lim_{x\to c} f(x) \leq \lim_{x\to c} g(x)$.

2. If the function f is continuous at x = c and g is a function of x, then f + g is continuous at x = c.

3. If f is continuous at c and g is continuous at f(c), then the composite $g \circ f$ is continuous at c.

4. If P(x) and Q(x) are polynomials, $Q(c) \neq 0$, then $\lim_{x\to c} \frac{P(x)}{Q(x)} = \frac{P(c)}{Q(c)}$.

5. If L and c are real numbers and $\lim_{x\to c} f(x) = L$, then $\lim_{x\to c} \sqrt[n]{f(x)} = \sqrt[n]{L} = L^{1/n}$, n a positive integer.

Multiple Choice. No work required. 6 points each. Choose the best answer. There is only one correct answer but you may choose up to *two*. If you choose two and one of the answers is correct, you will receive half the points.

6. Evaluate the given limit:

(A.
$$-1$$
) B. $\frac{-1}{2}$

C. 0 D.
$$\frac{\sqrt{3}}{2}$$

7. Find the limit:

A. 0 B.
$$\frac{-3}{7}$$
C. $\frac{4}{7}$ D. Does Not Exist

$$\lim_{x \to \frac{\pi}{2}} \cos\left(2x + \sin\left(\frac{3\pi}{2} + x\right)\right)$$

$$\cos\left(2\left(\frac{\pi}{2}\right) + \sin\left(\frac{3\pi}{2} + \frac{\pi}{2}\right)\right)$$

$$= \cos\left(\pi + \sin\left(2\pi\right)\right)$$

$$= \cos\left(\pi + \cos\left(\pi\right)\right)$$

$$= \cos\left(\pi\right) = -1$$

$$\lim_{y \to 4} \frac{y^2 - 4y}{y^2 - y - 12}$$

$$\frac{y\left(y - 4\right)}{\left(y - 4\right)} = \frac{y}{y + 3}$$

8. Find the limit:

$$\lim_{x \to -\infty} \left(\frac{x^2 + x - 1}{27x^2 - 3} \right)^{1/3}$$

A.
$$\frac{1}{27}$$

$$\left(\mathbf{B},\frac{1}{3}\right)$$

- D. Does Not Exist
- $\left(\lim_{\chi\to-\infty}\frac{\chi^2+\chi-1}{27\chi^2-3}\right)^{1/3}$

(/27) /3 = 3 /27

Use the graph below for questions 9 and 10.

9. Using the given graph, find $\lim_{x\to 0^+} f(x)$.

10. Using the given graph, list the points where f(x) is not continuous.

A.
$$x = -1, 0, 1, 2, 3$$
 B. $x = 0, 1, 2$

B.
$$x = 0, 1, 2$$

C.
$$x = 0, 2, 3$$

C.
$$x = 0, 2, 3$$
 D. $x = 0, 1, 2, 3$

Short Answer. You must show all work to receive full credit. If you need more space, use the provided scrap paper and write a note indicating where to find your work.

11. (14 points) Evaluate the following limit:

$$\lim_{x \to 16} \frac{4 - \sqrt{x}}{16x - x^{2}}$$

$$\frac{4 - \sqrt{$$

12. (18 points) Find the derivative, f'(x), using the limit definition, of the function $f(x) = x^2 + x$.

$$f'(x) = \lim_{h \to 0} \frac{(x+h)^2 + (x+h) - (x^2 + x)}{h}$$

$$= \lim_{h \to 0} \frac{x^2 + 2xh + h^2 + x + h - x^2 - x}{h}$$

$$= \lim_{h \to 0} \frac{2xh + h^2 + h}{h}$$

$$= \lim_{h \to 0} 2x + h + 1$$

$$= \lim_{h \to 0} 2x + h + 1$$

13. (18 points) Let
$$f(x) = \frac{x^2 - 4}{x - 1}$$
.

(a) Find $\lim_{x\to 1^+} f(x)$

$$\lim_{X\to 1^+} \frac{X^2-4}{Y-1} = \lim_{X\to 1^+} \frac{X^2-4}{Y-1} \to -3$$

$$\lim_{X\to 1^+} \frac{X^2-4}{Y-1} = \lim_{X\to 1^+} \frac{X^2-4}{Y-1} \to -3$$

$$\lim_{X\to 1^+} \frac{X^2-4}{Y-1} = \lim_{X\to 1^+} \frac{X^2-4}{Y-1} \to -3$$

$$\lim_{X\to 1^+} \frac{X^2-4}{Y-1} = \lim_{X\to 1^+} \frac{X^2-4}{Y-1} \to -3$$

(b) Find $\lim_{x\to 1^-} f(x)$

$$\lim_{X \to 1^{-}} \frac{X^{2}-4}{X-1} = \lim_{X \to 1^{-}} X^{2}-4 \longrightarrow -3$$

$$\lim_{X \to 1^{-}} X^{-1} = \lim_{X \to 1^{-}} X^{-1} \longrightarrow \text{small negative}$$

$$= \left[\frac{1}{2} \right]$$

(c) Find the oblique asymptote of the graph of f(x). That is, find $\lim_{x\to +\infty} f(x)$.

Extra Credit (5 points) No partial credit will be given for this problem.

For the given function f(x) and values of L, c, and $\epsilon > 0$ determine the largest value for $\delta > 0$ such that $0 < |x - c| < \delta \Rightarrow |f(x) - L| < \epsilon$.

$$f(x)=6x+4, \hspace{1cm} L=34, \hspace{1cm} c=5, \hspace{1cm} \epsilon=0.6$$

$$|6x+4-34| \ge 0.6$$

 $|6x-30| \ge 0.6$
 $|6(x-5)| \ge 0.6$
 $|x-5| \ge 0.1$
Let $8=0.1$.