	ChestMNIST	BloodMNIST	BreastMNIST	DermaMNIST	OctMNIST	OrganAMNIST
Run-1	0.94771	0.96229	0.45513	0.70075	0.80500	0.92654
Run-2	0.94797	0.95645	0.80769	0.72865	0.76700	0.91681
Run-3	0.94767	0.95265	0.67308	0.71970	0.77500	0.92682
Run-4	0.94794	0.95557	0.67949	0.74963	0.77500	0.93008
Run-5	0.94739	0.95645	0.81410	0.73367	0.76700	0.92418
Mean	0.94774	0.95668	0.68590	0.72648	0.77780	0.92489
Standard Deviation	0.00021	0.00313	0.13081	0.001613	0.01406	0.00445
	OrganCMNIST	OrganSMNIST	PathMNIST	PneumoniaMNIST	RetinaMNIST	TissueMNIST
Run-1	0.90628	0.78940	0.91421	0.84135	0.51000	0.70362
Run-2	0.90287	0.78339	0.84345	0.87019	0.51250	0.69860
Run-3	0.89959	0.77943	0.88217	0.85096	0.52500	0.69966
Run-4	0.90202	0.78283	0.90432	0.85897	0.52000	0.70341
Run-5	0.90567	0.77490	0.86769	0.82212	0.52570	0.70207
Mean	0.90348	0.78181	0.88257	0.84492	0.51484	0.699907
Standard Deviation	0.00276	0.00567	0.02616	0.01472	0.00665	0.00220

	ChestMNIST	BloodMNIST	BreastMNIST	DermaMNIST	OctMNIST	OrganAMNIST
Run-1	0.77304	0.99788	0.76044	0.88641	0.96913	0.99684
Run-2	0.77255	0.99758	0.83939	0.91156	0.95845	0.99546
Run-3	0.77240	0.99692	0.85589	0.88760	0.95960	0.99503
Run-4	0.77857	0.99703	0.85067	0.91853	0.96215	0.99606
Run-5	0.78028	0.99724	0.85589	0.90858	0.96245	0.99531
Mean	0.77353	0.99733	0.83246	0.902536	0.96235	0.99574
Standard Deviation	0.00336	0.00035	0.03651	0.013091	0.00227	0.00065
	OrganCMNIST	OrganSMNIST	PathMNIST	PneumoniaMNIST	RetinaMNIS'	TissueMNIST
Run-1	0.99222	0.97879	0.99158	0.95560	0.71513	0.93873
Run-2	0.99184	0.97504	0.98551	0.96472	0.71334	0.93755
Run-3	0.99201	0.99201	0.98603	0.95628	0.72290	0.93810
Run-4	0.99194	0.97640	0.99007	0.96397	0.72390	0.93838
Run-5	0.99235	0.97520	0.98505	0.95244	0.72472	0.93810
Mean	0.99215	0.98149	0.98745	0.95860	0.71980	0.93757
Standard Deviation	0.00028	0.00729	0.00271	0.00424	0.00439	0.00064

Conversion

Directions

Gender

Test metric

engine.test(datamodule=datamodule, model=model

NFO: LOCAL RANK: 0 - CUDA VISIBLE DEVICES: [

Age

Lung Segmentation

Table 1. Accuracy Metrics for MedMNIST-2D

	AdrenalMNIST	FractureMNIST	NoduleMNIST	OrganMNIST	SynapseMNIST	VesselMNIST
Run-1	0.84228	0.57083	0.84839	0.87839	0.73864	0.88743
Run-2	0.82550	0.56250	0.85161	0.88361	0.74716	0.47644
Run-3	0.66779	0.52917	0.85161	0.88033	0.73011	0.51571
Run-4	0.75168	0.63333	0.85161	0.87705	0.73864	0.41623
Run-5	0.67450	0.53333	0.84516	0.90492	0.75000	0.89791
Mean	0.75233	0.56582	0.86980	0.88466	0.74084	0.53874
Standard Deviation	0.0768	0.0373	0.0203	0.0133	0.0071	0.2336

Table 2. AUC Metrics for MedMNIST-2D

AdrenalMNIST	FractureMNIST	NoduleMNIST	OrganMNIST	SynapseMNIST	VesselMNIST
0.88577	0.73658	0.88910	0.99102	0.67110	0.76628
0.88083	0.76245	0.86287	0.99185	0.70649	0.81622
0.86222	0.72348	0.88955	0.99073	0.71624	0.78754
0.83286	0.77021	0.86935	0.99291	0.70551	0.81889
0.85102	0.72861	0.90898	0.99386	0.71763	0.83467
0.88254	0.744847	0.88385	0.99207	0.70399	0.78412
0.02182	0.02045	0.01725	0.00103	0.02131	0.02531
	0.88577 0.88083 0.86222 0.83286 0.85102 0.88254	0.88577 0.73658 0.88083 0.76245 0.86222 0.72348 0.83286 0.77021 0.85102 0.72861 0.88254 0.744847	0.88577 0.73658 0.88910 0.88083 0.76245 0.86287 0.86222 0.72348 0.88955 0.83286 0.77021 0.86935 0.85102 0.72861 0.90898 0.88254 0.744847 0.88385	0.88577 0.73658 0.88910 0.99102 0.88083 0.76245 0.86287 0.99185 0.86222 0.72348 0.88955 0.99073 0.83286 0.77021 0.86935 0.99291 0.85102 0.72861 0.9988 0.99386 0.88254 0.744847 0.88385 0.99207	0.88577 0.73658 0.88910 0.99102 0.67110 0.88083 0.76245 0.86287 0.99185 0.70649 0.86222 0.72348 0.88955 0.99073 0.71624 0.83286 0.77021 0.86935 0.99291 0.70551 0.85102 0.72861 0.9988 0.99386 0.71763 0.88254 0.744847 0.88385 0.99207 0.70399

Organ

Segmentation

Localization

Clustering of Image Directions

Code

Combined Model

Identify Unusual Flips

Clustering as per Direction

Table 3. Accuracy Metrics for MedMNIST-3D

Table 4. AUC Metrics for MedMNIST-3D

Poster 7: Integrating classification and segmentation for chest X-Rays

Classification

Dataset - ChestXRay-14

ChestXray-14 is a large-scale dataset containing over 112,000 frontal-view X-ray images labeled with 14 different thoracic diseases, such as pneumonia, emphysema, and cardiomegaly. It's widely used for developing automated chest disease classification models.

Model - ConvNeXt (convnext_base from PyTorch)

ConvNeXt is a modern convolutional neural network (CNN) architecture inspired by advancements in vision transformers. It retains the simplicity of CNNs while incorporating key ideas from transformer models, such as large kernel sizes and layer normalization, making it highly effective for image classification tasks.

SOTA Baseline (AUC) - 0.8429

AUC Score Achieved with Pretrained Weights - 0.7970

Segmentation

Dataset - ChestXDet

ChestXDet is a dataset designed for thoracic disease detection and localization, containing bounding boxes and I created segmentation masks for various abnormalities in chest X-ray images from the coordinates given. It's used to develop models that not only classify diseases but also segment and localize abnormalities with precision.

Model – UperNet (with Swin Backnone; from HuggingFace; Pretrained weights of swin backone trained for ImageNet are used)

UPerNet (Unified Perceptual Parsing Network), combined with a Swin Transformer backbone, is a powerful architecture for semantic segmentation. The Swin Transformer captures multi-scale hierarchical features, while UPerNet efficiently fuses them for pixellevel predictions.

After training of 60 epochs, it started overfitting between 20-25th epochs and the best testing IoU recorded was 0.42.

Jinal Vyas

IoU Loss

1e-4

Adam

# Combined Model	
<pre>class CombinedModel(nn.Module):</pre>	1
<pre>definit(self, num_classes):</pre>	1
<pre>super(CombinedModel, self)init</pre>	1
()	- [
self.segmentation_model =	
segmentation_model	F
self.classification_head =	
convnext_base(pretrained=True)	8
self.classification_head.classifier	
<pre>[2] = torch.nn.Linear(</pre>	
in_features=self.	
classification_head.classifier	
<pre>[2].in_features, out_features=</pre>	
num_classes)	
self.channel_converter = nn.Conv2d	
(2, 3, kernel_size=1)	
<pre>def forward(self, x):</pre>	
<pre>seg_outputs = self.</pre>	
segmentation_model(x)	
print('here')	
<pre>pooled_output = self.</pre>	
channel_converter(seg_outputs['	
logits'])	
<pre>class_logits = self.</pre>	

classification_head(

return seg_outputs, class_logits

pooled output)

Figure 12. Unprocessed Im- Figure 13. Image Processed Using Otsu

Figure 11. Snake Contours

Integrating Classification and Segmentation (Implementation Completed)

Architecture Swin Backbone

- Encoder: The Swin Transformer extracts features at multiple levels
- Segmentation Decoder (UPerNet Head): Combines these features for segmentation.
- · Add a classification head after the Swin backbone or UPerNet's encoder.

Modifications

- · Shared Encoder (Swin Transformer): Extracts multi-scale feature maps.
- Segmentation Head (UPerNet): Produces segmentation masks.
- · Classification Head: A fully connected layer or MLP applied to the global pooled features from the last Swin

Loss Functions

 Segmentation Loss: Use Dice Loss or IoU Loss

Learning

Loss

Image

Optimizer

1e-5

224x224

Adam

BCEWithLogitLoss

• Classification Loss: Use BCEWithLogitsLoss (multi-

Learning

Optimizer

IoU vs Epochs

Poster 7: Integrating classification and segmentation for chest X-Rays

Jinal Vyas

Classification

Dataset - ChestXRay-14

ChestXray-14 is a large-scale dataset containing over 112,000 frontal-view X-ray images labeled with 14 different thoracic diseases, such as pneumonia, emphysema, and cardiomegaly. It's widely used for developing automated chest disease classification models.

Model - ConvNeXt (convnext_base from PyTorch)

ConvNeXt is a modem convolutional neural network (CNN) architecture inspired by advancements in vision transformers. It retains the simplicity of CNNs while incorporating key ideas from transformer models, such as large kernel sizes and layer normalization, making it highly effective for image classification tasks.

SOTA Baseline (AUC) - 0.8429

AUC Score Achieved with Pretrained Weights - 0.7970

r t	Learning Rate	1e-5			
l k	Loss Function	BCEWithLogitLoss			
<	Batch Size	16			
า อ ร	Image Size	224x224			
y	Weight Decay	1e-4			
	Optimizer	Adam			

Segmentation

Dataset - ChestXDet

ChestXDet is a dataset designed for thoracic disease detection and localization, containing bounding boxes and I created segmentation masks for various abnormalities in chest X-ray images from the coordinates given. It's used to develop models that not only classify diseases but also segment and localize abnormalities with precision.

Model – UperNet (with Swin Backnone; from HuggingFace; Pretrained weights of swin bacbone trained for ImageNet are used)

UPerNet (Unified Perceptual Parsing Network), combined with a **Swin Transformer backbone**, is a powerful architecture for semantic segmentation. The Swin Transformer captures multi-scale hierarchical features, while UPerNet efficiently fuses them for pixel-level predictions.

After training of 60 epochs, it started overfitting between 20-25th epochs and the best testing IoU recorded was 0.42.

Learning Rate	1e-4
Loss Function	IoU Loss
Batch Size	8
Weight Decay	1e-4
Optimizer	Adam
Metrics	loU

Integrating Classification and Segmentation (Implementation Completed)

UPerNet Overview with Swin Backbone

- Encoder: The Swin
 Transformer extracts
 features at multiple levels.
- Segmentation Decoder (UPerNet Head):
 Combines these features
- Add a classification head after the Swin backbone or UPerNet's encoder.

for segmentation.

Architecture Modifications

- Shared Encoder (Swin Transformer): Extracts multi-scale feature maps.
- Segmentation Head (UPerNet): Produces segmentation masks.
- Classification Head: A fully connected layer or MLP applied to the global pooled features from the last Swin stage

Loss Functions

- Segmentation Loss: Use Dice Loss or IoU Loss
- Classification Loss: Use BCEWithLogitsLoss (multilabel)

AUC Values for Different Disease Classes

Classification Output AUC of 14 classes

Segmentation Output IoU vs Epochs