LECTURE 27 – HIGH SPEED OP AMPS LECTURE ORGANIZATION

Outline

- Extending the GB of conventional op amps
- Cascade Amplifiers
 - Voltage amplifiers
 - Voltage amplifiers using current feedback
- Summary

CMOS Analog Circuit Design, 3rd Edition Reference

Pages 370-386

INCREASING THE GB OF OP AMPS

What is the Influence of GB on the Frequency Response?

The unity-gainbandwidth represents a limit in the trade-off between closed loop voltage gain and the closed-loop -3dB frequency.

Example of a gain of -10 voltage amplifier:

What defines the GB?

We know that

$$GB = \frac{g_m}{C}$$

where g_m is the transconductance that converts the input voltage to current and C is the capacitor that causes the dominant pole.

This relationship assumes that all higher-order poles are greater than GB.

What is the Limit of *GB*?

The following illustrates what happens when the next higher pole is not greater than *GB*:

For a two-stage op amp, the poles and zeros are:

1.) Dominant pole

$$p_1 = \frac{-g_{m1}}{A_{\nu}(0)C_C}$$

2.) Output pole

$$p_2 = \frac{-g_{m6}}{C_L}$$

3.) Mirror pole

$$p_3 = \frac{-g_{m3}}{C_{gs3} + C_{gs4}}$$

and

$$z_3 = 2p_3$$

4.) Nulling pole

$$p_4 = \frac{-1}{R_z C_I}$$

5.) Nulling zero

$$z_1 = \frac{-1}{R_z C_c - (C_c/g_{m6})}$$

Higher-Order Poles

For reasonable phase margin, the smallest higher-order pole should be 2-3 times larger than *GB* if all other higher-order poles are larger than 10*GB*.

If the higher-order poles are not greater than 10GB, then the distance from GB to the smallest non-dominant pole should be increased for reasonable phase margin.

Increasing the GB of a Two-Stage Op Amp

- 1.) Use the nulling zero to cancel the closest pole beyond the dominant pole.
- 2.) The maximum *GB* would be equal to the magnitude of the second closest pole beyond the dominant pole.
- 3.) Adjust the dominant pole so that $2.2GB \approx (second closest pole beyond the dominant pole)$

Illustration which assumes that p_2 is the next closest pole beyond the dominant pole:

CMOS Analog Circuit Design © P.E. Allen - 2016

Example 27-1 - Increasing the GB of the Op Amp Designed in Ex. 23-1

Use the two-stage op amp designed in Examples 23-1 and 23-2 and apply the above

approach to increase the gainbandwidth as much as possible. Use the capacitor values in the table shown along with $C_{ox} = 6 \text{fF/}\mu\text{m}^2$.

Solution

- 1.) First find the values of p_2 , p_3 , and p_4 .
 - a.) From Ex. 23-2, we see that $p_2 = -95 \times 10^6$ rads/sec.
 - b.) p_3 was found in Ex. 23-1 as $p_3 = -1.25 \times 10^9$ rads/sec. (also there is a zero at -2.5×10⁹ rads/sec.)

Type	P-Channel	N-Channel	Units
CGSO	220×10^{-12}	220×10^{-12}	F/m
CGDO	220×10^{-12}	220×10^{-12}	F/m
CGBO	700×10^{-12}	700×10^{-12}	F/m
CJ	560×10^{-6}	770×10^{-6}	F/m^2
CJSW	350×10^{-12}	380×10^{-12}	F/m
MJ	0.5	0.5	
MJSW	0.35	0.38	

(c.) To find p_4 , we must find C_I which is the output capacitance of the first stage of the op amp. C_I consists of the following capacitors,

$$C_I = C_{bd2} + C_{bd4} + C_{gs6} + C_{gd2} + C_{gd4}$$

For C_{bd2} the width is 1.5 μ m \Rightarrow L1+L2+L3=3 μ m \Rightarrow AS/AD=4.5 μ m² and PS/PD=9 μ m. For C_{bd4} the width is 15 μ m \Rightarrow L1+L2+L3=3 μ m \Rightarrow AS/AD=45 μ m² and PS/PD=36 μ m. From Table 3.2-1:

 $C_{bd2} = (4.5 \mu \text{m}^2)(770 \text{x} 10^{-6} \text{F/m}^2) + (9 \mu \text{m})(380 \text{x} 10^{-12} \text{F/m}) = 3.47 \text{fF} + 3.42 \text{fF} \approx 6.89 \text{fF}$ $C_{bd4} = (45 \mu \text{m}^2)(560 \text{x} 10^{-6} \text{F/m}^2) + (36 \mu \text{m})(350 \text{x} 10^{-12} \text{F/m}) = 25.2 \text{fF} + 12.6 \text{F} \approx 37.8 \text{fF}$ C_{gs6} in saturation is,

$$\begin{split} C_{gs6} = & CGDO \cdot W_6 + 0.67 (C_{ox}W_6L_6) = (220 \times 10^{-12})(85 \times 10^{-6}) + (0.67)(6 \times 10^{-15})(42.5) \\ &= 18.7 \text{fF} + 255 \text{fF} = 273.7 \text{fF} \\ C_{gd2} = 220 \times 10^{-12} \times 1.5 \mu\text{m} = 0.33 \text{fF} \text{ and } C_{gd4} = 220 \times 10^{-12} \times 15 \mu\text{m} = 3.3 \text{fF} \end{split}$$

Therefore, $C_I = 6.9 \text{fF} + 37.8 \text{fF} + 273.7 \text{fF} + 0.33 \text{fF} + 3.3 \text{fF} = 322 \text{fF}$. Although C_{bd2} and C_{bd4} will be reduced with a reverse bias, let us use these values to provide a margin. Thus let C_I be 322 fF.

In Ex. 23-2, R_z was 4.564k Ω which gives $p_4 = -0.680 \times 10^9$ rads/sec.

Therefore, the roots are:

When p_2 is cancelled, the next smaller pole is p_4 which will define the new GB. 2.) Using the nulling zero, z_1 , to cancel p_2 , gives p_4 as the next smallest pole. For 60° phase margin $GB = |p_4|/2.2$ if the next smallest pole is more than 10GB.

$$\therefore$$
 $GB = 0.680 \times 10^9 / 2.2 = 0.309 \times 10^9 \text{ rads/sec. or } 49.2 \text{MHz.}$

This value of GB is designed from the relationship that $GB = g_{m1}/C_c$. Assuming g_{m1} is constant, then $C_c = g_{m1}/GB = (94.25 \times 10^{-6})/(0.309 \times 10^9) = 307 \text{fF}$. It might be useful to increase g_{m1} in order to keep C_c above the surrounding parasitic capacitors ($C_{gd6} = 18.7 \text{fF}$). The success of this method assumes that there are no other roots with a magnitude smaller than 10GB.

The result of this example is to increase the GB from 5MHz to 49MHz.

Example 27-2 - Increasing the *GB* of the Folded Cascode

Use the folded-cascode op amp designed in Example 24-4 and apply the above approach to increase the gainbandwidth as much as possible. Assume that the drain/source areas are equal to 2µm times the width of the transistor and that all voltage dependent capacitors are at zero voltage.

Solution

The poles of the folded cascode op amp are:

$$p_A \approx \frac{-1}{R_A C_A}$$
 (the pole at the source of M6)

$$p_B \approx \frac{-1}{R_B C_B}$$
 (the pole at the source of M7)

$$p_6 \approx \frac{-g_{m10}}{C_6}$$
 (the pole at the drain of M6)

$$p_8 \approx \frac{-g_{m8}r_{ds8}g_{m10}}{C_8}$$
 (the pole at the source of M8)

$$p_9 \approx \frac{-g_{m9}}{C_9}$$
 (the pole at the source of M9)

$$p_6 \approx \frac{-g_{m10}}{C_6}$$
 (the pole at the drain of M6)
$$I_T = g_{m8} V_T r_{ds8} g_{m10}$$

$$P_8 \approx \frac{-g_{m8} r_{ds8} g_{m10}}{C_8}$$
 (the pole at the source of M8) $R_8 = \frac{V_T}{I_T} = \frac{1}{g_{m8} r_{ds8} g_{m10}}$

Let us evaluate each of these poles.

1.) For p_A , the resistance R_A is approximately equal to g_{m6} and C_A is given as

$$C_A = C_{gs6} + C_{bd1} + C_{gd1} + C_{bd4} + C_{bs6} + C_{gd4}$$

From Ex. 24-4, $g_{m6} = 774.6 \mu S$ and capacitors giving C_A are found as,

$$C_{gs6} = (220 \times 10^{-12} \cdot 80 \times 10^{-6}) + (0.67)(80 \mu \text{m} \cdot 0.5 \mu \text{m} \cdot 6 \text{fF}/\mu \text{m}^2) = 177.6 \text{fF}$$

$$C_{bd1} = (770 \times 10^{-6})(16.5 \times 10^{-6} \cdot 2 \times 10^{-6}) + (380 \times 10^{-12})(37 \times 10^{-6}) = 39.5 \text{fF}$$

$$C_{gd1} = (220 \times 10^{-12} \cdot 16.5 \times 10^{-6}) = 3.6 \text{fF}$$

$$C_{bd4} = C_{bs6} = (560 \times 10^{-6})(80 \times 10^{-6} \cdot 2 \times 10^{-6}) + (350 \times 10^{-12})(2 \cdot 82 \times 10^{-6}) = 147 \text{fF}$$

and

$$C_{gd4} = (220 \times 10^{-12})(80 \times 10^{-6}) = 17.6 \text{fF}$$

Therefore,

$$C_A = 177.6 \text{fF} + 39.5 \text{fF} + 3.6 \text{fF} + 147 \text{fF} + 17.6 \text{fF} + 147 \text{fF} = 0.532 \text{pF}$$

Thus,

$$p_A = \frac{-774.6 \times 10^{-6}}{0.532 \times 10^{-12}} = -1.456 \times 10^9 \text{ rads/sec.}$$

2.) For the pole, p_B , the capacitance connected to this node is

$$C_B = C_{gd2} + C_{bd2} + C_{gs7} + C_{gd5} + C_{bd5} + C_{bs7}$$

The various capacitors above are found as

$$\begin{split} &C_{gd2} = (220 \times 10^{-12} \cdot 16.5 \times 10^{-6}) = 3.6 \mathrm{fF} \\ &C_{bd2} = (770 \times 10^{-6}) (16.5 \times 10^{-6} \cdot 2 \times 10^{-6}) + (380 \times 10^{-12}) (37 \times 10^{-6}) = 39.5 \mathrm{fF} \\ &C_{gs7} = (220 \times 10^{-12} \cdot 80 \times 10^{-6}) + (0.67) (80 \mu \mathrm{m} \cdot 0.5 \mu \mathrm{m} \cdot 6 \mathrm{fF} / \mu \mathrm{m}^2) = 177.6 \mathrm{fF} \\ &C_{gd5} = (220 \times 10^{-12}) (80 \times 10^{-6}) = 17.6 \mathrm{fF} \end{split}$$

and

$$C_{bd5} = C_{bs7} = (560 \times 10^{-6})(80 \times 10^{-6} \cdot 2 \times 10^{-6}) + (350 \times 10^{-12})(2 \cdot 82 \times 10^{-6}) = 147 \text{fF}$$

The value of C_B is the same as C_A and g_{m6} is assumed to be the same as g_{m7} giving $p_B = p_A = -1.456 \times 10^9$ rads/sec.

3.) For the pole, p_6 , the capacitance connected to this node is

$$C_6 = C_{bd6} + C_{gd6} + C_{gs10} + C_{gs11} + C_{bd8} + C_{gd8}$$

The various capacitors above are found as

$$\begin{split} &C_{bd6} = (560 \text{x}\, 10^{\text{-}6})(80 \text{x}\, 10^{\text{-}6} \cdot 2 \text{x}\, 10^{\text{-}6}) + (350 \text{x}\, 10^{\text{-}12})(2 \cdot 82 \text{x}\, 10^{\text{-}6}) = 147 \text{fF} \\ &C_{gs10} = C_{gs11} = (220 \text{x}\, 10^{\text{-}12} \cdot 10 \text{x}\, 10^{\text{-}6}) + (0.67)(10 \mu\text{m} \cdot 0.5 \mu\text{m} \cdot 6 \text{fF}/\mu\text{m}^2) = 22.2 \text{fF} \\ &C_{bd8} = (770 \text{x}\, 10^{\text{-}6})(10 \text{x}\, 10^{\text{-}6} \cdot 2 \text{x}\, 10^{\text{-}6}) + (380 \text{x}\, 10^{\text{-}12})(2 \cdot 12 \text{x}\, 10^{\text{-}6}) = 24.5 \text{fF} \\ &C_{gd8} = (220 \text{x}\, 10^{\text{-}12})(10 \text{x}\, 10^{\text{-}6}) = 2.2 \text{fF} \quad \text{and} \quad C_{gd6} = C_{gd5} = 17.6 \text{fF} \end{split}$$

Therefore, $C_6 = 147 \text{fF} + 17.6 \text{fF} + 22.2 \text{fF} + 22.2 \text{fF} + 2.2 \text{fF} + 17.6 \text{fF} = 0.229 \text{pF}$

From Ex. 24-4, $g_{m10} = 600 \times 10^{-6}$. Therefore, p_6 , can be expressed as

$$-p_6 = \frac{600 \times 10^{-6}}{0.229 \times 10^{-12}} = 2.62 \times 10^9 \text{ rads/sec.}$$

These capacitors are given as,

$$C_{bs8} = C_{bd10} = (770 \times 10^{-6})(10 \times 10^{-6} \cdot 2 \times 10^{-6}) + (380 \times 10^{-12})(2 \cdot 12 \times 10^{-6}) = 24.5 \text{fF}$$

$$C_{gs8} = (220 \times 10^{-12} \cdot 10 \times 10^{-6}) + (0.67)(10 \mu \text{m} \cdot 0.5 \mu \text{m} \cdot 6 \text{fF} / \mu \text{m}^2) = 22.2 \text{fF}$$

and

$$C_{gd10} = (220 \times 10^{-12})(10 \times 10^{-6}) = 2.2 \text{fF}$$

The capacitance C_8 is equal to

$$C_8 = 24.5 \text{fF} + 2.2 \text{fF} + 22.2 \text{fF} + 24.5 \text{fF} = 73.4 \text{FF}$$

Using the values of Ex. 24-4 of 600μ S, the pole p_8 is found as,

$$-p_8 = g_m 8 r_{ds} 8 g_{m10} / C_8 = -600 \mu \text{S} \cdot 600 \mu \text{S} \cdot / 4.5 \mu \text{S} \cdot 73.4 \text{fF} = -1090 \text{x} \cdot 10^9 \text{ rads/sec.}$$

5.) The capacitance for the pole at p_9 is identical with C_8 . Therefore, since g_{m9} is $600\mu\text{S}$, the pole p_9 is $-p_9 = 8.17 \times 10^9 \text{ rads/sec}$.

The poles are summarized below:

$$p_A = -1.456 \times 10^9 \text{ rads/sec}$$
 $p_B = -1.456 \times 10^9 \text{ rads/sec}$ $p_6 = -2.62 \times 10^9 \text{ rads/sec}$ $p_8 = -1090 \times 10^9 \text{ rads/sec}$ $p_9 = -8.17 \times 10^9 \text{ rads/sec}$

The smallest of these poles is p_A or p_B . Since p_6 is not much larger than p_A or p_B , we will find the new GB by dividing p_A or p_B by 4 (which is a guess rather than 2.2) to get 364×10^6 rads/sec. Thus the new GB will be $364/2\pi$ or 58MHz.

Checking our guess gives a phase margin of,

$$PM = 90^{\circ} - 2 tan^{-1} (0.364/1.456) - tan^{-1} (0.364/2.62) = 54^{\circ}$$
 which is okay

The magnitude of the dominant pole is given as

$$p_{dominant} = GB/A_{Vd}(0) = 364 \times 10^{6}/3,678 = 99,000 \text{ rads/sec.}$$

The value of load capacitor that will give this pole is

$$C_L = (p_{\text{dominant}} \cdot R_{out})^{-1} = (99 \times 10^3 \cdot 7.44 \text{M}\Omega)^{-1} = 1.36 \text{pF}$$

Therefore, the new GB = 58 MHz compared with the old GB = 10 MHz.

Elimination of Higher-Order Poles

Principle - minimize the number of nodes in the amplifier.

The minimum circuitry for a cascode op amp is shown below:

If the source-drain area between M1 and M2 and M3 and M4 can be minimized, the non-dominant poles will be quite large.

CMOS Analog Circuit Design © P.E. Allen - 2016

Dynamically Biased, Push-Pull, Cascode Op Amp

Push-pull, cascode amplifier: M1-M2 and M3-M4 Bias circuitry: M5-M6- C_2 and M7-M8- C_1

Operation:

Equivalent circuit during the f₁ clock period 120523-07

Equivalent circuit during the f₂ clock period.

Dynamically Biased, Push-Pull, Cascode Op Amp - Continued

This circuit will operate on both clock phases[†].

Performance (1.5µm CMOS):

- 1.6mW dissipation
- $GB \approx 130 \text{MHz} (C_L = 2.2 \text{pF})$
- Settling time of 10ns (C_L =10pF)

This amplifier was used with a 28.6MHz clock to realize a 5th-order switched capacitor filter having a cutoff frequency of 3.5MHz.

CMOS Analog Circuit Design

[†] S. Masuda, et. al., "CMOS Sampled Differential Push-Pull Cascode Op Amp," *Proc. of 1984 International Symposium on Circuits and Systems*, Montreal, Canada, May 1984, pp. 1211-12-14.

CASCADED AMPLIFIERS USING VOLTAGE AMPLIFIERS

Bandwidth of Cascaded Amplifiers

Cascading of low-gain, wide-bandwidth amplifiers:

Overall gain is A_o^n

-3dB frequency is,

$$\omega_{-3dB} = \omega_1 \sqrt{2^{1/n}-1}$$

If $A_0 = 10$, $\omega_1 = 300 \pi x 10^6$ rads/sec. and n = 3, then

Overall gain is 60dB and $\omega_{-3dB} = 0.51 \omega_1 = 480 \times 10^6 \text{ rads/sec.} \rightarrow 76.5 \text{ MHz}$

Voltage Amplifier Suitable for Cascading

Voltage Gain:

$$\frac{V_{out}}{V_{in}} = \frac{g_{m1}}{g_{m3}} = \sqrt{\frac{K_n'(W_1/L_1)(I_3 + I_5)}{K_p'(W_3/L_3)I_3}}$$

$$\omega_{-3dB} \approx \frac{g_{m3}}{C_{gs1}}$$

Ex. 27-3 - Design of a Voltage Amplifier for Cascading

Design the previous voltage amplifier for a gain of $A_o = 10$ and a power dissipation of no more than 1mW. The design should permit A_o to be well defined. What is the ω_{-3dB} for this amplifier and what would be the ω_{-3dB} for a cascade of three identical amplifiers?

Solution

To enhance the accuracy of the gain, we replace M3 and M4 with NMOS transistors to avoid the variation of the transconductance parameter. This assumes a *p*-well technology to avoid bulk effects. The gain of 10 requires,

$$\frac{W_1}{L_1}(I_3 + I_5) = 100 \frac{W_3}{L_3} I_3$$

If $V_{DD} = 2.5$ V, then $2(I_3+I_5) \cdot 2.5$ V = 1000μ W.

Therefore, $I_3+I_5=200\mu A$. Let $I_3=20\mu A$ and $W_1/L_1=10W_3/L_3$.

Choose $W_1/L_1 = 5\mu\text{m}/0.5\mu\text{m}$ which gives $W_3/L_3 = 0.5\mu\text{m}/0.5\mu\text{m}$. M5 and M6 are designed to give $I_5 = 180\mu\text{A}$ and M7 is designed to give $I_7 = 400\mu\text{A}$.

The dominant pole is g_{m3}/C_{out} .

Ex. 27-3 – Continued

$$C_{out} = C_{gs3} + C_{bs3} + C_{bd1} + C_{bd5} + C_{gd1} + C_{gd5} + C_{gs1}$$
(next stage) $\approx C_{gs3} + C_{gs1}$
Using $C_{ox} = 60.6 \times 10^{-4} \text{ F/m}^2$, we get,

$$C_{out} \approx (2.5+2.5) \times 10^{-12} \text{ m}^2 \text{x } 60.6 \times 10^{-4} \text{ F/m}^2 = 30.3 \text{fF} \rightarrow C_{out} \approx 30 \text{fF}$$

 $g_{m3} = \sqrt{2 \cdot 120 \cdot 1 \cdot 20} \text{ } \mu\text{S} = 69.3 \mu\text{S}$

∴ Dominant pole
$$\approx 69.3 \mu \text{S}/30 \text{fF} = 23.1 \times 10^8 \text{ rads/sec.}$$
 $\rightarrow f_{-3 \text{dB}} = 368 \text{MHz}$

The bandwidth of three identical cascaded amplifiers giving a low-frequency gain of 60dB would have a f-3dB of

$$f_{-3\text{dB}}(\text{Overall}) = f_{-3\text{dB}} \sqrt{2^{1/3} - 1} = 368 \text{ MHz } (0.5098) = 187 \text{ MHz}.$$

$$P_{diss} = 3$$
mW

CASCADED AMPLIFIERS USING CURRENT FEEDBACK AMPLIFIERS

Advantages of Using Current Feedback

Why current feedback?

- Higher *GB*
- Less voltage swing ⇒ more dynamic range

What is a current amplifier?

Requirements:

$$i_O = A_i(i_1 - i_2)$$

$$R_{i1} = R_{i2} = 0\Omega$$

$$R_O = \infty$$

Ideal source and load requirements:

$$R_{source} = \infty$$

$$R_{Load} = 0\Omega$$

Bandwidth Advantage of a Current Feedback Amplifier

Consider the inverting voltage amplifier shown using a current amplifier with negative current feedback:

The output current, i_o , of the current amplifier can be written as

$$i_o = A_i(s)(i_1-i_2) = -A_i(s)(i_{in}+i_o)$$

The closed-loop current gain, i_o/i_{in} , can be found as

$$\frac{i_O}{i_{in}} = \frac{-A_i(s)}{1 + A_i(s)}$$

However, $v_{out} = i_0 R_2$ and $v_{in} = i_{in} R_1$. Solving for the voltage gain, v_{out}/v_{in} gives

$$\frac{v_{out}}{v_{in}} = \frac{i_0 R_2}{i_{in} R_1} = \left(\frac{-R_2}{R_1}\right) \left(\frac{A_i(s)}{1 + A_i(s)}\right)$$

If
$$A_i(s) = \frac{A_O}{(s/\omega_A) + 1}$$
, then

$$\frac{v_{OUt}}{v_{in}} = \left(\frac{-R_2}{R_1}\right) \left(\frac{A_O}{1+A_O}\right) \left(\frac{\omega_A(1+A_O)}{s + \omega_A(1+A_O)}\right) \quad \Rightarrow A_V(0) = \frac{-R_2A_O}{R_1(1+A_O)} \text{ and } \quad \boxed{\omega_{-3dB} = \omega_A(1+A_O)}$$

Bandwidth Advantage of a Current Feedback Amplifier - Continued

The unity-gainbandwidth is,

$$GB = |A_{v}(0)| \omega_{-3dB} = \frac{R_{2}A_{o}}{R_{1}(1+A_{o})} \cdot \omega_{A}(1+A_{o}) = \frac{R_{2}}{R_{1}}A_{o} \cdot \omega_{A} = \frac{R_{2}}{R_{1}}GB_{i}$$

where GB_i is the unity-gainbandwidth of the current amplifier.

Note that if GB_i is constant, then increasing R_2/R_1 (the voltage gain) increases GB. Illustration:

Note that $GB_2 > GB_1 > GB_i$

The above illustration assumes that the GB of the voltage amplifier realizing the voltage buffer is greater than the GB achieved from the above method.

Current Feedback Amplifier

In a current mirror implementation of the current amplifier, it is difficult to make the input resistance sufficiently small compared to R_1 .

This problem can be solved using a transconductance input stage shown in the following block diagram:

$$\frac{V_{out}}{V_{in}} = \frac{-G_M R_F A_i}{1 + A_i}$$

Differential Implementation of the Current Feedback Amplifier

$$I_{in} = \frac{g_{m1}}{1 + 0.5g_{m1}R_{in}} \left(\frac{V_{in}^+ - V_{in}^-}{2}\right), I_{in} = (1+n)I, \text{ and } V_{out} = \frac{n(2R_F)}{1+n}I_{in}$$

$$\therefore \frac{V_{out}}{V_{in}} \approx \frac{2nR_F}{(1+n)R_{in}}$$

A 20dB Voltage Amplifier using a Current Amplifier

The following circuit is a programmable voltage amplifier with up to 20dB gain:

 R_1 and the current mirrors are used for gain variation while R_2 is fixed.

CMOS Analog Circuit Design © P.E. Allen - 2016

Frequency Response of a 60dB PGA

Includes output buffer:

CMOS Analog Circuit Design © P.E. Allen - 2016

SUMMARY

- Increasing the GB of an op amp requires that the magnitude of all non-dominant poles are much greater than GB from the origin of the complex frequency plane
- The practical limit of GB for an op amp is approximately 5-10 times less than the magnitude of the smallest non-dominant pole ($\approx 100 \text{MHz}$)
- To achieve high values of *GB* it is necessary to eliminate the non-dominant poles (which come from parasitics) or increase the magnitude of the non-dominant poles
- The best way to achieve high-bandwidth amplifiers is to cascade high-bandwidth voltage amplifiers
- If the gain of the high-bandwidth voltage amplifiers is well defined, then it is not necessary to use negative feedback around the amplifier
- Amplifiers with well-defined gains are achievable with a -3dB bandwidth of 100MHz