Geometria 1: appunti

Davide Cossu

2018

Sommario

Una dispensa contenente gli appunti delle lezioni di Geometria 1, con anche esempi e dimostrazioni.

Indice

1	Mai	trici	3
_	1.1	Definizioni	3
	1.2	Operazioni	6
	1.2	Operazioni	U
2	Equ	nazioni e sistemi lineari	10
	2.1	Equazioni lineari	10
	2.2	Sistemi lineari	10
		2.2.1 Metodo di riduzione di Gauss	11
	2.3	Equazioni matriciali	13
3	Spazio vettoriale		
	3.1	Spazi particolari	14
	3.2	Proprietà formali	15
	3.3	Sottoinsiemi di spazi vettoriali	15
	0.0	3.3.1 Esempio fondamentale di sottospazio vettoriale	16
		3.3.2 Esempi di sottospazi vettoriali nello spazio delle matrici	16
	3.4	Combinazioni lineari	17
	0.1	3.4.1 Esempi di spazi finitamente generati	17
		3.4.2 Dipendenza lineare	17
	3.5	Base di uno spazio vettoriale	18
4	Fac	mni	18
4	Ese : 4.1	Matrici	18
	4.1		
	4.2	Equazioni e sistemi lineari	18 18
		1.2.1 Italiero di soluzioni di dii sistema	
		4.2.2 Uso del teorema di Rouché-Capelli	19

1 Matrici

1.1 Definizioni

Definizione 1.1: Matrice. Siano $m, n \in \mathbb{N}_0$. Una matrice di m righe e n colonne ad elementi reali è una tabella del tipo

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & 2,n \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{pmatrix}$$

con $a_{ij} \in \mathbb{R}$ e $1 \le i \le m$ e $1 \le j \le n$.

Definizione 1.2: Ordine. Si dice **ordine** di una matrice si intendono le sue dimensioni, in questo caso A è di ordine $m \times n$.

Dato che una matrice contiene elementi reali, l'insieme di queste matrici viene definito

$$\mathbb{R}^{m,n} \stackrel{\text{def}}{=} \{ \text{Matrici reali di ordine } m \times n \}$$

Spesso una matrice viene definita anche in maniera più stringata

$$A = (a_{ij}) \in \mathbb{R}^{m,n}$$

Definizione 1.3: Matrice quadrata. Una matrice si dice quadrata quando m = n.

Definizione 1.4: Matrice identità. La matrice identità (o matrice unità) si definisce

$$I \in \mathbb{R}^{m,n} \stackrel{\text{def}}{=} \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \vdots \\ \vdots & 0 & 1 & 0 \\ 0 & \cdots & 0 & 1 \end{pmatrix}$$

Ovvero quella matrice la cui diagonale principale è formata da 1 e tutto il resto da 0. Formalmente

$$a_{ij} = \begin{cases} 0, & \text{se } i \neq j \\ 1, & \text{se } i = j \end{cases}$$

Definizione 1.5: Diagonale principale. La diagonale principale di una matrice è quella descritta dagli elementi a_{ii} . Qui è colorata in blu.

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

Definizione 1.6: Matrice nulla. Per matrice nulla si intende

$$O \in \mathbb{R}^{m,n} \stackrel{\text{def}}{=} \begin{pmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{pmatrix}$$

Ovvero è la matrice tale che

$$\forall i, j \quad a_{ij} = 0$$

3

Definizione 1.7: Matrice riga. Per matrice riga si intende quella che ha m=1, ovvero

$$A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \end{pmatrix} \in \mathbb{R}^{1,n}$$

Definizione 1.8: Matrice colonna. Per matrice colonna si intende quella che ha n=1, ovvero

$$A = \begin{pmatrix} a_{11} \\ \vdots \\ a_{m1} \end{pmatrix} \in \mathbb{R}^{m,1}$$

Definizione 1.9: Matrice simmetrica. Sia $A \in \mathbb{R}^{n,n}$. A è simmetrica se $^{t}A = A$. Ovvero se

$$a_{ij} = a_{ji} \quad \forall i, j = 1, \dots, n$$

Definizione 1.10: Matrice antisimmetrica. Sia $A \in \mathbb{R}^{n,n}$. A è antisimmetrica se ${}^{t}A = -A$. Ovvero se

$$a_{ij} = -a_{ji} \quad \forall i, j = 1, \dots, n$$

Definizione 1.11: Matrice invertibile. Sia A una matrice quadrata. A è in vertibile o non singolare se

$$\exists X \in \mathbb{R}^{n,n} : AX = XA = I$$

Si noti che si indica $X = A^{-1}$.

Teorema 1.1: Unicità dell'inversa. Se $A \in \mathbb{R}^{n,n}$ è invertibile allora la matrice inversa è unica.

DIMOSTRAZIONE.

Sopponiamo per assurdo che $\exists X, X' \in \mathbb{R}^{n,n}$ con $X \neq X'$ tali che

$$AX' = X'A = AX = XA = I$$

Allora

$$X' = IX' = (XA)X' = X(AX') = XI = X$$

QED

Definizione 1.11.1: Proprietà della matrice inversa. La matrice inversa gode di alcune proprietà:

1.
$$(AB)^{-1} = B^{-1}A^{-1} \quad \forall A, B \in \mathbb{R}^{n,n}$$

DIMOSTRAZIONE.

Dobbiamo dimostrare $B^{-1}A^{-1}=(AB)^{-1}\iff AB(A^{-1}B^{-1})=(A^{-1}B^{-1})AB=I$ per la Definizione 1.11. Quindi

$$B^{-1}A^{-1}(AB) = B^{-1}(A^{-1}A)B = B^{-1}B = I$$

e

$$AB(A^{-1}B^{-1}) = A(BB^{-1})A^{-1} = AA^{-1} = I$$

QED

$$2. \ \left(A^{-1}\right)^{-1} \quad \forall A \in \mathbb{R}^{n,n}$$

DIMOSTRAZIONE.

Per Definizione 1.11

$$A^{-1}A = AA^{-1} = I$$

QED

Definizione 1.11.2: Calcolare la matrice inversa. Trovare l'inversa di una matrice $A \in \mathbb{R}^{n,n}$ significa risolvere AX = I. Definendo $X = (x_{ij})$, si può riscrivere come

$$\begin{pmatrix} a_{11} & \cdots & a_{1m} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nm} \end{pmatrix} \begin{pmatrix} x_{11} & \cdots & x_{1m} \\ \vdots & \ddots & \vdots \\ x_{n1} & \cdots & x_{nm} \end{pmatrix} = I$$

Si definisce $R_i \in \mathbb{R}^n$ la *i*-esima riga di X.

Si può svolgere il prodotto e ottenere

$$\begin{pmatrix} a_{11}x_{11} + \dots + a_{1n}x_{n1} & \dots & a_{1n}x_{1n} + \dots + a_{1n}x_{nn} \\ \vdots & \ddots & \vdots \\ a_{m1}x_{1n} + \dots + a_{mn}x_{n1} & \dots & \dots \end{pmatrix}$$

Si nota che $a_{11}x_{11} + \cdots + a_{1n}x_{n1}$ è il primo elemento della somma $a_{11}R_1 + \cdots + a_{1n}R_n$. Invece l'elemento $a_{1m}x_{1m} + \cdots + a_{1n}x_{nn}$ è l'n-esimo elemento della stessa somma. In questo modo possiamo definire

$$X = \begin{pmatrix} R_1 \\ \vdots \\ R_n \end{pmatrix}$$

Riportando alla forma di sistema

$$\begin{cases} a_{11}R_1 + \dots + a_{1n}R_n &= (1, 0, \dots, 0) \\ \vdots &= \vdots \\ a_{m1}R_1 + \dots + a_{mn}R_n &= (0, \dots, 1) \end{cases}$$

Andando a risolvere il sistema, si trova la matrice inversa.

Alternativamente si può usare un altro metodo che sfrutta la riduzione di Gauss-Jordan. Presa una matrice (A|B), si riduce fino ad ottenere (I|B') dove B' sarà A^{-1} .

Definizione 1.11.3: Gruppo lineare. Si definisce un gruppo lineare l'insieme

$$GL(n,\mathbb{R}) \stackrel{\mathrm{def}}{=} \{A \in \mathbb{R}^{n,n} \mid A \text{ è invertibile} \}$$

assieme al prodotto.

Definizione 1.12: Matrice diagonale. Sia $A \in \mathbb{R}^{n,n} = (a_{ij})$. Si dice diagonale se

$$\forall i, j = 1, \dots, n : i \neq j \quad a_{ij} = 0$$

Ovvero

$$\begin{pmatrix} a_{11} & 0 & 0 & 0 \\ 0 & a_{22} & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & a_{nn} \end{pmatrix}$$

Definizione 1.13: Matrice ridotta per righe. Una matrice si dice ridotta per righe se in ogni riga di non nulla esista un elemento non nullo sotto il quale sono tutti 0. Ad esempio

$$\begin{pmatrix}
1 & 2 & 3 & 1 \\
1 & 0 & 1 & 2 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

Definizione 1.13.1: Proprietà. Si ha che se AX = B, allora è equivalente a dire $\widetilde{A}X = \widetilde{B}$ dove le ultime matrici sono ridotte per righe.

Definizione 1.14: Rango di una matrice ridotta per righe. Il rango di una matrice ridotta per righe è il numero di righe non nulle. Si indica con rank A.

Definizione 1.15: Matree ridotta a scala. Una matrice $A \in \mathbb{R}^{m,n}$ è ridotta a scala se il primo termine non nullo di ogni riga viene dopo il primo termine non nullo della riga precedente.

$$\begin{pmatrix} a_{11} \neq 0 & \cdots & \cdots & a_{1m} \\ 0 & a_{22} \neq 0 & \cdots & a_{2m} \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \cdots & a_{nm} \end{pmatrix}$$

Il primo elemento non nullo è detto **pivot**.

Si noti che non necessariamente devono essere consecutivi, si può anche avere una matrice del tipo

$$\begin{pmatrix}
0 & 1 & 2 & 3 & 4 \\
0 & 0 & 5 & 6 & 7 \\
0 & 0 & 0 & 0 & 8
\end{pmatrix}$$

1.2 Operazioni

Definizione 1.16: Uguaglianza. Due matrici $A=(a_{ij})\in\mathbb{R}^{m,n}$ e $B=(b_{ij})\in\mathbb{R}^{p,q}$ si dicono uguali se

- 1. $A \in B$ appartengono allo stesso insieme $\mathbb{R}^{m,n}$, ovvero m=p e n=q
- 2. $a_{ij} = b_{ij}$, $\forall i : 1 \le i \le m$ $\forall j : 1 \le j \le n$

Definizione 1.17: Somma. La somma tra matrici è solo definita se le due matrici appartengono allo stesso insieme.

Siano $A=(a_{ij})\in\mathbb{R}^{m,n}$ e $B=(b_{ij})\in\mathbb{R}^{m,n}$ due matrici. La loro somma A+B è

$$A + B \stackrel{\text{def}}{=} (a_{ij} + b_{ij})$$

Si definisce quindi anche l'operatore somma nel seguente modo

$$+: \mathbb{R}^{m,n} \times \mathbb{R}^{m,n} \to \mathbb{R}^{m,n}$$

 $(A,B) \mapsto A+B$

Definizione 1.17.1: Proprietà della somma tra matrici. Per la somma tra matrici valgono le seguenti proprietà:

- 1. Commutativa: $A + B = B + A \quad \forall A, B \in \mathbb{R}^{m,n}$
- 2. Associativa: $A + (B + C) = (A + B) + C \quad \forall A, B, C \in \mathbb{R}^{m,n}$
- 3. Esistenza dell'elemento neutro: $O + A = A + O \quad \forall A \in \mathbb{R}^{m,n}$
- 4. Esistenza dell'opposto: $A + (-A) = 0 \quad \forall A \in \mathbb{R}^{m,n}$

Definizione 1.18: Prodotto tra matrice e scalare. Si definisce il prodotto tra $\lambda \in \mathbb{R}$ e $A = (a_{ij}) \in \mathbb{R}^{m,n}$ la matrice

$$\lambda A \stackrel{\text{def}}{=} (\lambda a_{ij})$$

Definizione 1.18.1: Proprietà del prodotto con uno scalare. Per il prodotto tra una matrice e uno scalare vigono le seguenti proprietà:

- 1. $\lambda(A+B) = \lambda A + \lambda B \quad \forall \lambda \in \mathbb{R}, \ \forall A, B \in \mathbb{R}^{m,n}$
- 2. $(\lambda + \mu)A = \lambda A + \mu A \quad \forall \lambda, \mu \in \mathbb{R}, \ \forall A \in \mathbb{R}^{m,n}$
- 3. $(\lambda \mu)A = \lambda(\mu A) \quad \forall \lambda, \mu \in \mathbb{R}, \ \forall A \in \mathbb{R}^{m,n}$
- 4. $1A = A \quad \forall A \in \mathbb{R}^{m,n}$

Definizione 1.19: Prodotto tra matrici. Il prodotto tra due matrici $A \in \mathbb{R}^{m,n}$ e $B \in \mathbb{R}^{p,q}$ è possibile solo se n = p. La matrice risultante avrà ordine $m \times q$. Formalmente si scrive che

$$C \stackrel{\text{def}}{=} A \cdot B = (c_{ij}) \in \mathbb{R}^{m,q}$$

con

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

Figura (1): Illustrazione grafica per la moltiplicazione tra matrici

Definizione 1.19.1: Proprietà del prodotto tra matrici. Per il prodotto tra matrici vigono alcune proprietà:

1. Associativa: $(AB)C = A(BC) \quad \forall A \in \mathbb{R}^{m,n}, B \in \mathbb{R}^{n,k}, C \in \mathbb{R}^{k,q}$

DIMOSTRAZIONE.

Definiamo
$$D = AB \in \mathbb{R}^{m,k} = (d_{ij}) = \sum_{l=1}^{n} a_{il} b_{li}$$
 e $E = BC \in \mathbb{R}^{n,q} = (e_{ij}) = \sum_{p=1}^{k} b_{ip} c_{pi}$. Allora svolgiamo i calcoli

$$(AB)C = DC = \sum_{f=1}^{q} d_{if}c_{fi} = \sum_{f=1}^{q} (a_{if}b_{fi})c_{fi}$$

е

$$A(BC) = AE = \sum_{f=1}^{n} a_{if} c_{fi} = \sum_{f=1}^{q} a_{if} (b_{if} c_{fi})$$

Dato che f va da 1 a q e che in $\mathbb R$ vale la proprietà associativa del prodotto, si può dire che

$$\sum_{f=1}^{q} (a_{if}b_{fi})c_{fi} = \sum_{f=1}^{q} a_{if}(b_{if}c_{fi})$$

QED

2. Distributiva del prodotto per la somma: $A(B+C) = AB + AC \quad \forall A \in \mathbb{R}^{m,n}, B, C \in \mathbb{R}^{n,p}$

DIMOSTRAZIONE.

Per definizione di somma

$$B + C = (b_{ij} + c_{ij})$$

Quindi

$$A(B+C) = A(b_{ij} + c_{ij})$$

e infine

$$A(b_{ij} + c_{ij}) = \sum_{f=1}^{p} a_{if}(b_{fi}c_{fi}) = \sum_{f=1}^{p} [a_{if}b_{fi} + a_{if}c_{fi}] = \sum_{f=1}^{p} a_{if}b_{fi} + \sum_{f=1}^{p} a_{if}c_{fi} = AB + AC$$

QED

3.
$$(\lambda A)B = \lambda(AB) = A(\lambda B) \quad \forall A \in \mathbb{R}^{m,n}, B \in \mathbb{R}^{n,p}$$

DIMOSTRAZIONE.

Per Definizione 1.18 si ha che

$$\lambda A = (\lambda a_{ij})$$

Si ha quindi

$$(\lambda A)B = \sum_{f=1}^{p} \lambda a_{if} b_{fi} = \sum_{f=1}^{p} a_{if} \lambda b_{fi} = \lambda \sum_{f=1}^{p} a_{if} b_{fi} = \lambda (AB)$$

QED

4. Solo per le matrici quadrate: $IA = A = AI \quad \forall A \in \mathbb{R}^{n,n}$

Si noti che per il prodotto $\exists A, B: AB = 0 \implies A = O \lor B = O$. Si noti anche che sempre per il prodotto, in generale $AB = AC \implies B = C$ con $A \ne O$.

Definizione 1.20: Trasposto di una matrice. Data $A \in \mathbb{R}^{m,n}$ si dice trasposta di A e si indica con ^{t}A la matrice che si ottiene invertendo righe con colonne. Formalmente

Se
$$A = (a_{ij}), {}^{t}A = (b_{ij}) \implies b_{ij} = a_{ji} \quad \forall i = 1, ..., m, j = 1, ..., n$$

Definizione 1.20.1: Proprietà del trasposto di una matrice. Il trasposto gode di alcune proprietà

1.
$${}^{\mathsf{t}}(A+B) = {}^{\mathsf{t}}A + {}^{\mathsf{t}}B \quad \forall A, B \in \mathbb{R}^{m,n}$$

2.
$${}^{t}(\lambda A) = \lambda {}^{t}A \quad \forall \lambda \in \mathbb{R}, A \in \mathbb{R}^{m,n}$$

- 3. ${}^{\mathsf{t}}(AB) = {}^{\mathsf{t}}B {}^{\mathsf{t}}A \quad \forall A, B \in \mathbb{R}^{m,n}$
- 4. Se $A \in GL(n,\mathbb{R})$ e A^{-1} è la sua inversa, allora anche ${}^{\mathrm{t}}A \in GL(n,\mathbb{R})$ e si ha $({}^{\mathrm{t}}A)^{-1} = {}^{\mathrm{t}}(A^{-1})$

DIMOSTRAZIONE.

Si deve dimostrare che

$${}^{t}(A^{-1}) {}^{t}A = {}^{t}(AA^{-1}) = {}^{t}I = I$$

 \mathbf{e}

$${}^{t}A^{t}(A^{-1}) = {}^{t}(A^{-1}A) = {}^{t}I = I$$

QED

Definizione 1.21: Traccia di una matrice quadrata. Sia $A \in \mathbb{R}^{n,n}$. Di definisce la sua traccia

$$\operatorname{tr}(A) \stackrel{\text{def}}{=} \sum_{i=1}^{n} a_{ii}$$

Definizione 1.21.1: Proprietà della traccia. La traccia gode di alcune proprietà:

1.
$$\operatorname{tr}(A+B) = \operatorname{tr}(A) + \operatorname{tr}(B) \quad \forall A, B \in \mathbb{R}^{n,n}$$

DIMOSTRAZIONE.

Per Definizione 1.17 si ha che

$$\operatorname{tr}(A+B) = \sum_{i=1}^{n} (a_{ii} + b_{ii}) = \sum_{i=1}^{n} a_{ii} + \sum_{i=1}^{n} b_{ii} = \operatorname{tr}(A) + \operatorname{tr}(B)$$

QED

2.
$$\operatorname{tr}(\lambda A) = \lambda \operatorname{tr}(A) \quad \forall \lambda \in \mathbb{R}, A \in \mathbb{R}^{n,n}$$

DIMOSTRAZIONE.

Per Definizione 1.18 si ha che

$$\operatorname{tr}(\lambda A) = \sum_{i=1}^{n} \lambda a_{ii} = \lambda \sum_{i=1}^{n} a_{ii} = \lambda \operatorname{tr}(A)$$

QED

3.
$$\operatorname{tr}(AB) = \operatorname{tr}(BA) \quad \forall A, B \in \mathbb{R}^{n,n}$$

DIMOSTRAZIONE.

Siano $A=(a_{ij})$ e $B=(b_{ij})\in\mathbb{R}^{n,n}$. Allora $AB=(c_{ij})$. Per la Definizione 1.19

$$c_{ii} = \sum_{k=1}^{n} a_{ik} b_{ki}$$

Per la Definizione 1.21

$$\operatorname{tr}(AB) = \sum_{i=1}^{n} c_{ii} = \sum_{i=1}^{n} \sum_{k=1}^{n} a_{ik} b_{ki} = \sum_{i,k=1}^{n} a_{ik} b_{ki}$$
 (1.1)

Sia $BA = (d_{ij})$, allora

$$d_{ii} = \sum_{k=1}^{n} b_{ik} a_{ki}$$

Per la Definizione 1.21

$$\operatorname{tr}(BA) = \sum_{i=1}^{n} d_{ii} = \sum_{i=1}^{n} \sum_{k=1}^{n} b_{ik} a_{ki} = \sum_{i,k=1}^{n} b_{ik} a_{ki}$$
 (1.2)

Dato che in \mathbb{R} il prodotto è commutativo e che sia i che k, sia in (1.1) e (1.2) variano da 1 a n, si può affermare che

$$\sum_{i,k=1}^{n} a_{ik} b_{ki} = \sum_{i,k}^{n} b_{ik} a_{ki}$$

QED

4. $\operatorname{tr}(^{t}A) = \operatorname{tr}(A) \quad \forall A \in \mathbb{R}^{n,n}$

DIMOSTRAZIONE.

Per Definizione 1.20 si ha che se A è una matrice diagonale, ${}^{t}A = A$. Dato che la traccia prende solo gli elementi sulla diagonale, farne il trasposto non modifica il risultato. QED

2 Equazioni e sistemi lineari

2.1 Equazioni lineari

Definizione 2.1: Equazione lineare. Un'equazione lineare nelle incognite x_1, x_2, \ldots, x_n è un'espressione del tipo

$$a_1 x_1 + a_2 x_2 + \dots + a_n x_n = b \tag{2.1}$$

dove $a, b \in \mathbb{R}, i = 1, \dots, n$.

 a_i sono detti coefficienti, b è detto termine noto.

Scritta in forma matriciale

$$\begin{pmatrix} a_1 & a_2 & a_3 & \cdots & a_n \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = b$$

Definizione 2.2: Soluzione dell'equazione lineare. Una soluzione dell'equazione lineare (2.1) è una n-upla di numeri reali $(\widetilde{x_1}, \widetilde{x_2}, \dots, \widetilde{x_n})$ che sostituiti nell'equazione, la verifica.

Definizione 2.3: Equazione lineare omogenea. L'equazione (2.1) si dice omogenea se b=0.

Definizione 2.3.1: Soluzione particolare. La n-upla $(0,0,\ldots,0)$ è soluzione dell'equazione omogenea.

Definizione 2.3.2: Soluzione particolare. Se $(\tilde{x_1}, \dots, \tilde{x_n})$ è soluzione, lo è anche $(t\tilde{x_1}, \dots, t\tilde{x_n})$.

2.2 Sistemi lineari

Definizione 2.4: Sistema lineare. Un sistema lineare di m equazioni e n incognite x_1, \ldots, x_n è un instieme di equazioni lineari del tipo

$$\begin{cases} a_{11}x_1 + \dots + a_{1m}x_n &= b_1 \\ \vdots &= \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n &= b_m \end{cases}$$

$$(2.2)$$

 a_{ij} si dicono coefficienti (con i = 1, ..., n, j = 1, ..., m). b_i si dicono termini noti.

Scritto in forma matriciale

$$AX = B$$

in cui

$$A = \begin{pmatrix} a_{11} & \cdots & a_{1m} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \in \mathbb{R}^{m,n} \quad \text{Matrice dei coefficienti}$$

$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^{n,1} \quad B = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix} \in \mathbb{R}^{m,1}$$

Definizione 2.5: Matrice completa. Si definisce matrice completa

$$(A|B) = \begin{pmatrix} a_{11} & \cdots & a_{1m} & b_1 \\ \vdots & \ddots & \vdots & \vdots \\ a_{m1} & \cdots & a_{mn} & b_m \end{pmatrix}$$

Ciascuna riga si indica con R_i .

Definizione 2.6: Sistema lineare omogeneo. Un sistema lineare è omogeneo se $b_j = 0 \ \forall j = 1, \dots, m$, ovvero

$$AX = O$$

Definizione 2.7: Soluzione del sistema lineare. Soluzione del sistema lineare (2.2) è una n-upla di numeri reali $(\widetilde{x_1}, \ldots, \widetilde{x_n})$ che sostituia nelle ingognite verifica tutte le equazioni.

Definizione 2.7.1: Soluzioni di un sistema omogeneo. Se un sistema lineare è omogeneo, allora $(0, \ldots, 0)$ è una sua soluzione. Si conclude quindi che un sistema lineare omogeneo è sempre compatibile.

Definizione 2.8: Sistema compatibile. Un sistema lineare si dice compatibile se ammette soluzioni, incompatibile altrimenti.

Definizione 2.9: Sistema equivalente. Un sistema si dice equivalente ad un altro se ammette le stesse soluzioni.

2.2.1 Metodo di riduzione di Gauss

Il metodo di riduzione di Gauss permette di semplificare un sistema lineare in uno equivalente.

Teorema 2.1: Operazioni elementari di riduzione per righe. Eseguendo un numero finito di volte le tre operazioni

- 1. Scambiare due equazioni
- 2. Moltiplicare per un numero reale diverso da 0
- 3. Sostituire ad un'equazione la somma di se stessa con un'altra equazione moltiplicata per un qualsiasi numero reale

si ottiene un sistema lineare equivalente.

DIMOSTRAZIONE.

Dimostrare 1 è ovvio, in quanto le equazioni non si modificano.

Il punto 2 invece deve essere dimostrato che se una n-upla è soluzione di un sistema, lo è anche dell'altro e viceversa. Si ha quindi

$$\begin{cases} a_{11}x_1 + \dots a_{1n}x_n &= b_1 \\ \vdots &= \vdots \\ a_{m1}x_1 + \dots a_{mn}x_m &= b_m \end{cases} \Longrightarrow \begin{cases} \lambda(a_{11}x_1 + \dots a_{1n}x_n) &= \lambda b_1 \\ \vdots &= \vdots \\ a_{m1}x_1 + \dots a_{mn}x_m &= b_m \end{cases}$$

Per Definizione 2.3.2 si ha che la seconda equazione ha le stesse soluzioni della prima.

$$\begin{cases} \lambda(a_{11}x_1 + \dots a_{1n}x_n) &= \lambda b_1 \\ \vdots &= \vdots \\ a_{m1}x_1 + \dots a_{mn}x_m &= b_m \end{cases} \Longrightarrow \begin{cases} a_{11}x_1 + \dots a_{1n}x_n &= b_1 \\ \vdots &= \vdots \\ a_{m1}x_1 + \dots a_{mn}x_m &= b_m \end{cases}$$

dividendo per $\lambda \neq 0$. Per Definizione 2.3.2 si ha che hanno le stesse soluzioni Per il punto 3 si procede analogamente al punto 2.

QED

Dal punto di vista matriciale, le trasformazioni si applicano nei seguenti modi

$$\begin{aligned} R_i &\leftrightarrow R_j \\ R_i &\leftrightarrow \lambda R_i \quad \lambda \neq 0 \\ R_i &\leftrightarrow R_i + \lambda R_j \quad \lambda \in \mathbb{R}, \ j \neq i \end{aligned}$$

Eseguire queste operazioni un numero finito di volte significa trasformare (A|B) in $(\widetilde{A}|\widetilde{B})$ in modo che ogni riga di \widetilde{A} non nulla esista un elemento non nullo sotto il quale sono tutti 0.

Definizione 2.10: Sistema ridotto. Un sistema lineare è ridotto se è ridotta A.

Teorema $\mathbf{2.2:}$ Teorema di Rouché-Capelli. Un sistema lineare di m equazioni e n incognite

$$AX = B$$

è compatibile se e solo se

$$rank(A) = rank(A|B)$$

In particolare si ha che se $\operatorname{rank}(A) = \operatorname{rank}(A|B) = n$ la soluzione è unica. Se invece $\operatorname{rank}(A) = \operatorname{rank}(B) = k < n$ ci sono infinite soluzioni che dipendono da n - k variabili. Quindi ci sono ∞^{n-k} soluzioni.

Teorema 2.2.1: Teorema di Rouché-Capelli per un sistema lineare omogeneo. Un sistema lineare omogeneo di m equazioni e n incognite

$$AX = O$$

è sempre compatibile. Se

$$rank(A) = n$$

esiste un'unica soluzione che è quella nulla. Se

$$rank(A) = k < n$$

il sistema ammette ∞^{n-k} soluzioni.

Si noti che se AX = B ha un'unica soluzione e utilizzando il metodo di riduzione di Gauss-Jordan si può arrivare ad una matrice ridotta a scala del tipo

$$\begin{pmatrix} 1 & 0 & \cdots & 0 & \widetilde{b_1} \\ 0 & 1 & \cdots & \vdots & \vdots \\ \vdots & \cdots & \ddots & \vdots & \vdots \\ 0 & \cdots & \cdots & 1 & \widetilde{b_n} \end{pmatrix}$$

in cui si ha che A = I.

2.3 Equazioni matriciali

Definizione 2.11: Equazione matriciale. Un'equazione matriciale è un'equazione del tipo

$$AX = B$$

con $A \in \mathbb{R}^{m,n}$, $X \in \mathbb{R}^{n,p}$, $B \in \mathbb{R}^{m,p}$.

Definizione 2.11.1: Casi particolari. Se p = 1, si ha un sistema lineare.

Se AX = I, si ha che X è l'inversa di A.

Se si ha YC = D, si può ricondurre in modo che ${}^{\mathsf{t}}(YC) = {}^{\mathsf{t}}C \iff {}^{\mathsf{t}}C {}^{\mathsf{t}}Y = {}^{\mathsf{t}}D$.

Se ad esempio si pensa di scrivere X come matrice colonna di n-uple, del tipo

$$X = \begin{pmatrix} X_1 \\ \vdots \\ X_n \end{pmatrix}$$

e la stessa cosa per B

$$B = \begin{pmatrix} B_1 \\ \vdots \\ B_n \end{pmatrix}$$

si può scrivere l'equazione matriciale come sistema

$$AX = B \iff \begin{cases} a_{11}x_1 + \dots + a_{1m}x_1 &= B_1 \\ \vdots &\vdots \\ a_{n1}x_1 + \dots + a_{nm}x_n &= B_n \end{cases}$$
 (2.3)

Si può notare come (2.3) sia equivalente ad un sistema lineare di pn incognite x_{ij} .

3 Spazio vettoriale

Definizione 3.1: Spazio vettoriale. Un insieme V si definisce spazio vettoriale sul campo \mathbb{K} se sono definite su V due operazioni

1. Somma definita come

$$+: V \times V \to V$$

 $(\mathbf{x}, \mathbf{y}) \mapsto \mathbf{x} + \mathbf{y}$

rispetto alla quale (V, +) ha la struttura di gruppo commutativo. Ovvero

(a)
$$\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$$

(b)
$$(x + y) + z = x + (y + z)$$

- (c) $\exists \mathbf{o} \in V : \mathbf{x} + \mathbf{o} = \mathbf{x}$ e si definisce \mathbf{o} vettore nullo.
- (d) $\forall \mathbf{x} \in V \, \exists \mathbf{x} \in V : \mathbf{x} + (-\mathbf{x}) = \mathbf{o} \text{ e si definisce opposto.}$
- $2.\ \mathbf{Prodotto}$ definito per uno scalare

$$\mathbb{K} \times V \to V$$

 $(\lambda, \mathbf{x}) \mapsto \lambda \mathbf{x}$

e si ha che

- (a) $\lambda(\mathbf{x} + \mathbf{y}) = \lambda \mathbf{x} + \lambda \mathbf{y}$
- (b) $(\lambda + \mu)\mathbf{x} = \lambda\mathbf{x} + \mu\mathbf{x}$
- (c) $(\lambda \mu) \mathbf{x} = \lambda(\mu \mathbf{x})$
- (d) $1\mathbf{x} = \mathbf{x}$

Definizione 3.2: Eleementi dello spazio. Gli elementi di V sono detti vettori, quelli di $\mathbb K$ scalari.

Definizione 3.3: Campo. Un campo è un insieme i cui elementi sono detti numeri, che contiene 0 e 1 e ha due operazioni + e \cdot che verificano

1.
$$\alpha + \beta = \beta + \alpha$$

5.
$$\alpha\beta = \beta\alpha$$

2.
$$\alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma$$

6.
$$(\alpha\beta)\gamma = \alpha(\beta\gamma)$$

3.
$$\alpha + 0 = \alpha$$

7.
$$1\alpha = \alpha$$

4.
$$\alpha + (-\alpha) = 0$$

8.
$$\alpha \alpha^{-1} = 1 \text{ se } \alpha \neq 0$$

9.
$$(\alpha + \beta)\gamma = \alpha\gamma + \beta\gamma$$

3.1 Spazi particolari

In generale \mathbb{R}^n è uno spazio vettoriale, così come anche in generale \mathbb{K}^n . Infatti si ha che

$$(x_1,\ldots,x_2)+(y_1,\ldots,y_n)=(x_1+y_1,\ldots,x_n+y_n)$$

 \mathbf{e}

$$\lambda(x_1,\ldots,x_n)=(\lambda x_1,\ldots,\lambda x_n)$$

In generale anche $\mathbb{K}^{m,n}$ è uno spazio vettoriale (e quindi anche $\mathbb{R}^{m,n}$).

Il più piccolo spazio vettoriale è quello composto dal solo vettore nullo, ovvero $\{\mathbf{o}\}$. Un caso particolare è lo spazio dei polinomi reali in x, denotato come $\mathbb{R}[x]$ che è

$$\mathbb{R}[x] \stackrel{\text{def}}{=} \{a_0 + a_1 x + \dots + a_n x^n \mid n \in \mathbb{N}, a_i \in \mathbb{R}, i = 0, \dots, n\}$$

È anche interessante il caso in cui si consideri l'insieme

$$\mathscr{F} = \{ f : \mathbb{R} \to \mathbb{R} \text{ funzione } \}$$

in quanto anche questo è uno spazio vettoriale infatti

$$(f+g)(x) \stackrel{\text{def}}{=} f(x) + g(x)$$

е

$$(\lambda f)(x) \stackrel{\text{def}}{=} \lambda f(x)$$

3.2 Proprietà formali

In un campo vettoriale su $\mathbb K$ valgono le seguenti proprietà

1. Vettore nullo unico

DIMOSTRAZIONE.

Supponiamo per assurdo che esistano \mathbf{o} e \mathbf{o}' nulli in modo che $\mathbf{o} \neq \mathbf{o}'$. Allora si ha $\mathbf{o} = \mathbf{o} + \mathbf{o}'$ sfruttando il fatto che \mathbf{o}' è un vettore nullo. Analogamente si ha che $\mathbf{o}' = \mathbf{o}' + \mathbf{o}$. Da queste due relazioni si deduce che $\mathbf{o}' = \mathbf{o}$ che va contro l'ipotesi iniziale. QED

2. Opposto unico

DIMOSTRAZIONE.

Supponiamo per assurdo che esistano $\mathbf{x_1} \neq \mathbf{x_2}$ oposti di \mathbf{x} . Allora possiamo scrivere $(\mathbf{x} + \mathbf{x_1}) + \mathbf{x_2} = \mathbf{o} + \mathbf{x_2} = \mathbf{x_2}$. Analogamente si ha che $(\mathbf{x} + \mathbf{x_1}) + \mathbf{x_2} = \mathbf{x} + (\mathbf{x_2} + \mathbf{x_1}) = (\mathbf{x} + \mathbf{x_2}) + \mathbf{x_1} = \mathbf{o} + \mathbf{x_1} = \mathbf{x_1}$. Si deduce quindi che $\mathbf{x_1} = \mathbf{x_2}$ ma per ipotesi questo non può essere. QED

3. Se per \mathbf{x} , \mathbf{y} , \mathbf{z} si ha $\mathbf{x} + \mathbf{y} = \mathbf{x} + \mathbf{z}$ allora $\mathbf{y} = \mathbf{z}$

DIMOSTRAZIONE.

La dimostrazione segue direttamente dalla seconda proprietà, infatti si può aggiungere $-\mathbf{x}$ ad entrambi i membri e ottenere $\mathbf{x} + \mathbf{y} - \mathbf{x} = \mathbf{x} + \mathbf{z} - \mathbf{x}$. Si ottiene $\mathbf{o} + \mathbf{y} = \mathbf{z} + \mathbf{o}$ e infine $\mathbf{y} = \mathbf{z}$.

4. Solo su \mathbb{R} vale che $\lambda \mathbf{x} = \mathbf{o}$ con $\lambda \in \mathbb{R}$ allora $\lambda = 0 \vee \mathbf{x} = \mathbf{o}$

DIMOSTRAZIONE.

Essendo una biimplicazione, bisogna dimostrare entrambi i versi. Dimostriamo \Leftarrow . Possiamo provare che $0\mathbf{xo}$ e $\lambda\mathbf{o} = \mathbf{o}$. Per il primo caso si può dire che $0\mathbf{x} = (0+0)\mathbf{x} = 0\mathbf{x} + 0\mathbf{x}$. Per il punto precedente, abbiamo che $o\mathbf{x} = o\mathbf{x} + o\mathbf{x}$ e semplificando si ottiene $\mathbf{o} = o\mathbf{x}$. Il secondo caso si dimostra analogamente $\lambda\mathbf{o} = \lambda(\mathbf{o} + \mathbf{o}) = \lambda\mathbf{o} + \lambda\mathbf{o}$. Per il punto precedente $\lambda\mathbf{o} = \mathbf{o}\lambda + \lambda\mathbf{o}$, semplificando $\mathbf{0} = \lambda\mathbf{o}$.

L'altro vers (\Rightarrow) dice che $\lambda \mathbf{x} = \mathbf{o}$. Se $\lambda = 0$ è immediato. Se $\lambda \neq 0$, sicuramente $\exists \lambda^{-1}$. Possiamo allora scrivere $\mathbf{o} = \lambda^{-1}\mathbf{o} = \lambda^{-1}(\lambda \mathbf{o} \mathbf{x}) = (\lambda^{-1}\lambda)\mathbf{x} = \mathbf{x}$. QED

5. (-1)x = -x

DIMOSTRAZIONE.

Si ha che
$$\mathbf{x} + (-1)\mathbf{x} = 1\mathbf{x} + (-1)\mathbf{x} = (1-1)\mathbf{x} = \mathbf{o}$$
. QED

3.3 Sottoinsiemi di spazi vettoriali

Definizione 3.4: Sottospazio vettoriale. Sia V uno spazio vettoriale su \mathbb{K} . Un sottoinsieme W di V è un sottospazio vettoriale di V se W è uno spazio vettoriale rispetto alle stesse operazioni di V, ovvero rispetto alla somma e al prodotto per scalari. Formalmente se vale

$$\forall \lambda, \mu \in \mathbb{K} \ \forall \mathbf{x}, \mathbf{y} \in W \quad \lambda \mathbf{x} + \mu \mathbf{y} \in W$$

Si noti che (W, +) è un sottgruppo di V rispetto alla somma. Si noti anche che il vettore nullo di V appartiene ad ogni sottospazio vettoriale W di V, infatti $\lambda \mathbf{x} \in W$ $\lambda = 0 \implies \lambda \mathbf{x} = \mathbf{o} \in W$.

Definizione 3.4.1: Sottospazi impropri. Ogni spazio vettoriale ha almeno due sottospazi vettoriali: se stesso e $\{o\}$.

Si noti anche che se W è un sottospazio vettoriale, $\mathbf{x} \in W \implies -\mathbf{x} \in W$.

3.3.1 Esempio fondamentale di sottospazio vettoriale

Si prenda l'insieme delle soluzioni di un sistema lineare omogeneo di m equazioni in n incognite. L'insieme è un sottospazio vettoriale di \mathbb{R}^n . In generale l'insieme di soluzioni di AX = B è un sottospazio vettoriale di \mathbb{R}^n se e solo se il sistema è omogeneo.

Definizione 3.5: Nullspace. Sia AX=O un sistema lineare omogeneo con $A\in\mathbb{R}^{m,n}$ e X=

$$\begin{pmatrix} X_1 \\ \vdots \\ X_n \end{pmatrix} \in \mathbb{R}^{n,1}$$
. Allora

$$N(A) \stackrel{\text{def}}{=} \left\{ X \in \mathbb{R}^{n,1} \mid AX = O \right\} \subseteq \mathbb{R}^n$$

si definisce nullspace di A che contiene l'insieme delle soluzioni.

Il nullspace è uno sottospazio vettoriale in quanto $\forall \lambda, \mu \in \mathbb{R} \ \forall X, Y \in N(A) \quad \lambda X + \mu Y \in N(A)$. Infatti si ha che $A(\lambda X + \mu Y) = O = \lambda AX + \mu(AY)$ in quanto sia X che Y sono soluzioni.

3.3.2 Esempi di sottospazi vettoriali nello spazio delle matrici

Definizione 3.6: Insieme delle matrici diagonali.

$$\mathscr{D}(\mathbb{R}^{n,n}) \stackrel{\text{def}}{=} \left\{ D = \begin{pmatrix} d_1 & \cdots & 0 \\ 0 & \ddots & \vdots \\ 0 & 0 & d_n \end{pmatrix} \in \mathbb{R}^{n,n} \mid d_i \in \mathbb{R}^{n,n} \right\}$$

È uno sottospazio vettoriale in quanto combinazioni lineari di matrici diagonali, sono ancora matrici diagonali.

Definizione 3.7: Insieme delle matrici triangolari superiori e inferiori.

$$\tau\left(\mathbb{R}^{n,n}\right) \stackrel{\text{def}}{=} \left\{ \begin{pmatrix} a_{11} & \cdots & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \cdots & \ddots & \vdots \\ 0 & \cdots & 0 & a_{nn} \end{pmatrix} \in \mathbb{R}^{n,n} \middle| a_{ij} \in \mathbb{R} \right\}$$

е

$$\tau\left(\mathbb{R}^{n,n}\right) \stackrel{\text{def}}{=} \left\{ \begin{pmatrix} a_{11} & 0 & \cdots & 0 \\ \vdots & a_{22} & 0 & \vdots \\ \vdots & \cdots & \ddots & \vdots \\ a_{n1} & \cdots & \cdots & a_{nn} \end{pmatrix} \in \mathbb{R}^{n,n} \middle| a_{ij} \in \mathbb{R} \right\}$$

sono sottospazi vettoriali di $\mathbb{R}^{n,n}$.

Definizione 3.8: Insieme delle matrici simmetriche.

$$\mathscr{S}(\mathbb{R}^{n,n}) \stackrel{\text{def}}{=} \{ A \in \mathbb{R}^{n,n} \mid {}^{t}A = A \}$$

è uno sottospazio vettoriale di $\mathbb{R}^{n,n}$.

Definizione 3.9: Insieme delle matrici antisimmetriche.

$$\mathscr{S}\left(\mathbb{R}^{n,n}\right) \stackrel{\text{def}}{=} \left\{ A \in \mathbb{R}^{n,n} \mid {}^{\mathsf{t}}A = -A \right\}$$

è un sottospazio vettoriale di $\mathbb{R}^{n,n}.$

Definizione 3.10: Insieme delle matrici ortogonali reali.

$$\mathscr{O}(n,\mathbb{R}) \stackrel{\mathrm{def}}{=} \{ A \in \mathbb{R}^{n,n} \mid A^{t}A = I = {}^{t}AA \}$$

non è uno sottospazio vettoriale di $\mathbb{R}^{n,n}$ in quanto $O \notin O(n,\mathbb{R})$.

3.4 Combinazioni lineari

Definizione 3.11: Combinazione lineare. Dati l vettori $\mathbf{v_1}, \dots, \mathbf{v_l}$ di uno spazio vettoriale V su \mathbb{K} , si dice che un vettore \mathbf{x} è una combinazione lineare dei vettori $\mathbf{v_1}, \dots, \mathbf{v_l}$ se esistono $x_1, \dots, x_l \in \mathbb{K}$ tali che $\mathbf{x} = x_1\mathbf{v_1} + \dots + x_l\mathbf{v_l}$. x_i si dice coefficiente.

Definizione 3.12: Insieme delle combinazioni lineari. Fissando i vettori $\mathbf{v_1}, \dots, \mathbf{v_2}$, si definisce

 $\mathscr{L}(\mathbf{v_1},\ldots,\mathbf{v_l}) \stackrel{\text{def}}{=} \{x_1\mathbf{v_1} + \cdots + x_l\mathbf{v_l} \mid x_i \in \mathbb{K}, i = 1,\ldots,l\}$

Definizione 3.13: Sistema di generatori di $\mathcal{L}(\mathbf{v_1}, \dots, \mathbf{v_l})$. Il sistema di generatori è l'insieme $\{x_1\mathbf{v_1}, \dots, x_l\mathbf{v_l}\}$.

Teorema 3.1: Sottospazio delle combinazioni lineari. $\mathcal{L}(\mathbf{v_1}, \dots, \mathbf{v_l})$ è un sottospazio vettoriale di V ed è il più piccolo sottospazio vettoriale di V a contenere i vettori $\mathbf{v_1}, \dots, \mathbf{v_l}$.

Definizione 3.14: Sistema di generatori di un sottospazio. Siano $\mathbf{v_1}, \dots, \mathbf{v_l}$ vettori di V. Si dice che un sottospazio vettoriale W di V ha come sistema di generatori $\{\mathbf{v_1}, \dots, \mathbf{v_l}\}$ se $W = \mathcal{L}(\mathbf{v_1}, \dots, \mathbf{v_l})$.

Teorema 3.2: Modifiche ai generatori. Detto $W = \mathcal{L}(\mathbf{v_1}, \dots, \mathbf{v_l})$, si possono aggiungere o sostituire più generatori di W con loro combinazioni lineari.

Come conseguenza di questo teorema si ha che $W = \mathcal{L}(\mathbf{v_1}, \dots, \mathbf{v_l})$ ha infiniti sistemi generatori.

Definizione 3.15: Spazi finitiamente generati. Uno spazio vettoriale V si dice finitamente generato se esistono l vettori $\mathbf{v_1}, \dots, \mathbf{v_l}$ di V tali che $V = \mathcal{L}(\mathbf{v_1}, \dots, \mathbf{v_l})$.

Definizione 3.16: Sottospazi finitiamente generati. Un sottospazio vettoriale W si dice finitamente generato se esistono l vettori $\mathbf{v_1}, \dots, \mathbf{v_l}$ di W tali che $W = \mathcal{L}(\mathbf{v_1}, \dots, \mathbf{v_l})$.

3.4.1 Esempi di spazi finitamente generati

 \mathbb{R}^n è finitamente generato, in quanto possiamo definire $\mathbf{e_1} = (1, 0, \dots, 0)$, $\mathbf{e_i} = (0, \dots, 1, \dots, 0)$ dove l'1 è all'*i*-esimo posto e $\mathbf{e_n} = (0, \dots, 1)$. In questo modo una qualsiasi *n*-upla la si può scrivere come $(x_1, \dots, x_n) = x_1 \mathbf{e_1} + \dots + x_n \mathbf{e_n}$.

Analogamente anche $\mathbb{R}^{m,n}$ è finitamente generato, creando delle matrici nello stesso modo.

3.4.2 Dipendenza lineare

Definizione 3.17: Vettori linearmente indipendenti. Dati l vettori $\mathbf{v_1}, \dots, \mathbf{v_l}$ di V su \mathbb{K} , si dicono linearmente indipendenti se l'unica loro combinazioni lineare uguale a \mathbf{o} è quella che ha coefficienti tutti nulli.

Definizione 3.17.1: Insieme libero. L'insieme di vettori linearmente indipendenti è un insieme libero.

Definizione 3.18: Vettori linearmente dipendenti. Dati l vettori $\mathbf{v_1}, \dots, \mathbf{v_l}$ di V su \mathbb{K} , si dicono linearmente dipendenti se esiste almeno una combinazione lineare uguale a \mathbf{o} a coefficienti non tutti nulli.

Teorema 3.3: Dipendenza lineare e combinazioni lineari. Dati l vettori $\mathbf{v_1}, \dots, \mathbf{v_l}$ di V su \mathbb{K} essi sono linearmente dipendenti se e solo se uno è combinazione lineare degli altri.

DIMOSTRAZIONE.

Essendo un se e solo se, si devono dimostrare entrambe le implicazioni. Dimostrando \Rightarrow , si può dire per ipotesi che i vettori sono linearmente indipendenti, e quindi

$$\exists x_1 \mathbf{v_1} + \dots + x_l \mathbf{v_l} = \mathbf{o} \quad \text{con} \quad x_1 \neq 0$$

Isolando $\mathbf{v_1}$ si dimostra

$$\mathbf{v_1} = -\frac{x_2}{x_1}\mathbf{v_1} - \dots - \frac{x_l}{x_1}\mathbf{v_l}$$

L'altra implicazione (⇐) si dimostra anlogamente. Per ipotesi se

$$\mathbf{v_i} = \lambda_1 \mathbf{v_1} + \dots + \lambda_{i-1} \mathbf{v_{i-1}} + \lambda_{i+1} \mathbf{v_{i+1}} + \dots + \lambda_l \mathbf{v_l}$$

allora

$$\mathbf{o} = \lambda_1 \mathbf{v_1} + \dots + \lambda_{i-1} \mathbf{v_i} - 1 - \mathbf{v_i} + \lambda_{i+1} \mathbf{v_i} + 1 + \dots + \lambda_l \mathbf{v_l}$$

QED

3.5 Base di uno spazio vettoriale

Definizione 3.19: Base. Un insieme finito e ordinato di V denotato con $\mathscr{B}(\mathbf{v_1}, \dots, \mathbf{v_n})$ è detto base di V se è insieme libero e un sistema di generatori.

Definizione 3.19.1: Basi canoniche o standard. In \mathbb{R}^n ,

$$\mathscr{B}((1,0,\ldots,0),(0,1,0,\ldots,0),\ldots,(0,\ldots,0,1))$$

è detto base canonica o standard.

In $\mathbb{R}^{m,n}$ la base canonica o standard è

$$\mathscr{B}\left(\begin{pmatrix}1&0&\cdots\\0&0&\cdots\\\vdots&\vdots&\cdots\end{pmatrix},\ldots,\begin{pmatrix}0&\cdots&0\\\vdots&1&\vdots\\0&\cdots&0\end{pmatrix}\right)$$

Ovvero sono le matrici che al posto di indici ij è 1, ovunque è 0.

Su $\mathbb{R}_n[x]$ (ovvero l'insieem dei polinomi reali in x con grado minore o uguale a n) una base canonica o standard è $(1, x, x^2, \dots, x^n)$.

4 Esempi

Qui verranno riportati alcuni esempi di teoremi, proprietà o semplici esercizi che mostrano un'applicazione pratica della teoria.

4.1 Matrici

4.2 Equazioni e sistemi lineari

4.2.1 Numero di soluzioni di un sistema

Esempio 1 Si discuta il numero di soluzioni del seguente sistema

$$\begin{cases} x_1 + x_2 - x_3 = 1 \\ 2x_1 + 2x_2 + x_3 = 0 \\ x_1 + x_2 + 2x_3 = -1 \end{cases}$$

Si scrive subito la matrice completa associata

$$(A|B) = \begin{pmatrix} 1 & 1 & -1 & 1 \\ 2 & 2 & 1 & 0 \\ 1 & 1 & 2 & -1 \end{pmatrix}$$

Ora dobbiamo cercare di ridurla per righe in modo da oter determinare il numero di soluzioni.

$$(A|B) \xrightarrow{R_2 \to R_2 - 2R_1} \begin{pmatrix} 1 & 1 & -1 & 1 \\ 0 & 0 & 3 & -2 \\ 0 & 0 & 3 & -2 \end{pmatrix} \xrightarrow{R_3 \to R_3 - R_2} \begin{pmatrix} 1 & 1 & -1 & 1 \\ 0 & 0 & 3 & -2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

A questo punto abbiamo ridotto per righe questa matrice. Possiamo tornare al sistema

$$\begin{cases} x_1 + x_2 - x_3 = 1\\ 3x_3 = -2 \end{cases}$$

Questo sistema è in due equazioni ma tre incognite, questo significa che se due sono fissate, una è libera di modificarsi. Ovvero ci sono ∞^1 soluzioni.

4.2.2 Uso del teorema di Rouché-Capelli

Esempio 1 Discutere al variare di $h, k \in \mathbb{R}$ il sistema

$$\begin{cases} kx + y + z = 1\\ x + ky + z = 1\\ x + y + kz = h \end{cases}$$

Si può riscrivere il sistema in forma matriciale con la matrice completa

$$(A|B) = \begin{pmatrix} k & 1 & 1 & 1 \\ 1 & k & 1 & 1 \\ 1 & 1 & k & h \end{pmatrix}$$

Possiamo ora cercare di ridurre la matrice

$$\begin{pmatrix} k & 1 & 1 & 1 \\ 1 & k & 1 & 1 \\ 1 & 1 & k & h \end{pmatrix} \xrightarrow{R_1 \leftrightarrow R_2} \begin{pmatrix} 1 & k & 1 & 1 \\ k & 1 & 1 & 1 \\ 1 & 1 & k & h \end{pmatrix} \xrightarrow{R_2 \to R_2 - kR_1} \begin{pmatrix} 1 & k & 1 & 1 \\ 0 & 1 - k & 1 - k & 1 - k \\ 0 & 1 - k & 1 - k & h - 1 \end{pmatrix}$$

A questo punto si distinguono due casi, se 1 - k = 0 o $1 - k \neq 0$. Se $1 - k = 0 \implies k = 1$, sostituendo

$$\begin{pmatrix}
1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & h-1
\end{pmatrix}$$

Per questa matrice ridotta per righe si ha rank(A) = 1. Per il Teorema 2.2 si distinguono gli ultimi due casi per h. Se h = 1, allora il sistema è compatibile con ∞^2 soluzioni. Altrimenti non ci sono soluzioni in quanto rank $(A|B) = 2 \neq \text{rank}(A)$.

Se $1-k \neq 0 \implies k \neq 1$ i può dividere la seconda e terza riga per $\frac{1}{1-k}$ ottenendo

$$\begin{pmatrix} 1 & k & 1 & 1 \\ 0 & 1+k & 1 & 1 \\ 0 & 1 & -1 & \frac{h-1}{1-k} \end{pmatrix}$$

Andando a sommare R_3 con R_2 , si ha

$$\begin{pmatrix} 1 & k & 1 & 1 \\ 0 & 1+k & 1 & 1 \\ 0 & 2+k & 0 & \frac{h-1}{1-k}+1 \end{pmatrix}$$

A questo punto abbiamo due casi: k=-2 e non. Immediatamente si vede che $k\neq -2$, si ha che rank(A|B)=3 rank(A) e quindi la soluzione è unica per il teorema Teorema 2.2. Se invece k=-2 si può riscrivere

$$\begin{pmatrix} 1 & -2 & 1 & 1 \\ 0 & -1 & 1 & 1 \\ 0 & 0 & 0 & \frac{h+2}{3} \end{pmatrix}$$

Si distinguono due casi a seconda di h. Se h=-2 o meno. Si vede immediatamente che se $h\neq -2$ si ha che $\mathrm{rank}(A|B)=3\neq 2$ e quindi non ci sono soluzioni per il Teorema 2.2. Se invece h=-2 si ha che $\mathrm{rank}(A)=\mathrm{rank}(A|B)=2$ e quindi ci sono ∞^1 soluzioni. Riassumendo

$$\begin{cases} k = 1, \begin{cases} h = 1 \implies \infty^2 \\ h \neq 1 \implies 0 \end{cases} \\ k \neq 1, \begin{cases} k = -2 \implies \begin{cases} h = -2 \implies \infty^1 \\ h = 2 \implies 0 \end{cases} \\ k \neq -2 \implies 1 \end{cases}$$

Note