Values =
$$\{0,1\}$$

Operations = $+$, \times

+	0	ı
0	0	
1	0.5	0

GF(5)
Value =
$$\{0,1,2,3,4\}$$

Operation = $+, X$

+1	0	1	. 2	3	4		×	o	1	2		ع لا
	0					-		0				
1	ı	2	3	4	٥		1	0	1	2	3	4
2	2	3	4	0	ī		2	0	2	4	ı	3
3	3	4	0	1	2		3	0	3	ls.	4	2
4	4	D	1	2	3		4	0	4	3	2	1

Additive Inverse

a	0	ţ	2	3	4
-a	0	4	3	2	١

Multiplicative Invelee

Values = {00,01,10,11}

Addition

Multiplication

11

00

11

01

10

+ 1	00	01	10	1)	\times \	00	10	10
and the second second	00				00	00	00	00
00				10	01	00	01	10
01	10	00	14	10	10	00	10	11
10	10	11	00	01	1.1	00	11	01
1.1	11	10	01	00	1 7	155		

Identity: 00

Identity: 01

Multiply
$$(x^{5}+x^{2}+x)$$
 and $(x^{7}+x^{4}+x^{3}+x^{2}+x)$
in $GF(2^{9})$ with the inequalible polynomial $(x^{9}+x^{4}+x^{3}+x+1)$
 $P1 \times P2 = x^{5}(x^{7}+x^{4}+x^{3}+x^{2}+x)+$
 $x^{2}(x^{7}+x^{4}+x^{3}+x^{2}+x)+$
 $x(x^{7}+x^{4}+x^{3}+x^{2}+x)+$
 $x(x^{7}+x^{4}+x^{3}+x^{2}+x)+$
 $x(x^{7}+x^{4}+x^{3}+x^{2}+x)+$
 $x^{2}+x^{9}+x^{9}+x^{9}+x^{7}+x^{$

Inverse of x^5 modulo $x^8 + x^4 + x^3 + x + 1$ in $GF(2^9)$

Step 1:

$$x^{3}$$
Quotient

$$x^{4} + x^{3} + x + 1$$

$$x^{4} + x^{3} + x + 1$$
Remainder

$$x^{4} + x^{3} + x + 1$$

$$x^{5}$$
Quotient

$$x^{4} + x^{3} + x + 1$$

$$x^{5}$$

$$x^{5} + x^{4} + x^{2} + x$$

$$x^{5} + x^{4} + x^{3} + x + 1$$

$$x^{5} + x^{4} + x^{5} + x + 1$$

$$x^{5} + x^{4} + x^{5} + x + 1$$

$$x^{5} + x^{4} + x^{5} + x + 1$$

$$x^{5} + x^{4} + x^{5} + x + 1$$

$$x^{5} + x^{4} + x^{5} + x + 1$$

$$x^{5} + x^{4} + x^{5} + x + 1$$

$$x^{5} + x^{4} + x^{5} + x + 1$$

$$x^{5} + x^{4} + x^{5} + x + 1$$

$$x^{5} + x^{4} + x^{5} + x + 1$$

$$x^{5} + x^{4} + x^{5} + x + 1$$

$$x^{5} + x^{4} + x^{5} + x + 1$$

$$x^{5} + x^{4} + x^{5} + x + 1$$

$$x^{5} + x^{4} + x^{5} + x + 1$$

$$x^{5} + x^{4} + x^{5} + x + 1$$

$$x^{5} + x^{4} + x^{5} + x + 1$$

$$x^{5} + x^{4} + x^{5} + x + 1$$

$$x^{5} + x^{4} + x^{5} + x + 1$$

$$x^{5} + x^{4} + x^{5} + x + 1$$

$$x^{5} + x^{4} + x^{5} + x + 1$$

$$x^{5} + x^{4} + x^{5} + x + 1$$

$$x^{5} + x^{4} + x^{5} + x + 1$$

$$x^{5} + x^{4} + x^{5} + x + 1$$

$$x^{5} + x^{4} + x^{5} + x + 1$$

$$x^{5} + x^{4} + x^{5} + x + 1$$

$$x^{5} + x^{4} + x^{5} + x + 1$$

$$x^{5} + x^{4} + x^{5} + x + 1$$

$$x^{5} + x^{4} + x^{5} + x + 1$$

$$x^{5} + x^{4} + x^{5} + x + 1$$

$$x^{5} + x^{4} + x^{5} + x + 1$$

$$x^{5} + x^{4} + x^{5} + x + 1$$

$$x^{5} + x^{4} + x^{5} + x + 1$$

$$x^{5} + x^{4} + x^{5} + x + 1$$

$$x^{5} + x^{4} + x^{5} + x + 1$$

$$x^{5} + x^{4} + x^{5} + x + 1$$

$$x^{5} + x^{4} + x^{5} + x + 1$$

$$x^{5} + x^{4} + x^{5} + x + 1$$

$$x^{5} + x^{4} + x^{5} + x + 1$$

$$x^{5} + x^{4} + x^{5} + x^{4} + x^{5} + x + 1$$

$$x^{5} + x^{4} + x^{5} + x^{4} + x^{5} + x + 1$$

$$x^{5} + x^{4} + x^{5} + x^{4} + x^{5} + x + 1$$

$$x^{5} + x^{4} + x^{5} + x^{4} + x^{5} + x + 1$$

$$x^{5} + x^{4} + x^{5} + x^{4} + x^{5} + x + 1$$

$$x^{5} + x^{5} + x^{$$

Multiplication using a computer:

Find
$$(\alpha \times (\alpha \times P_2))$$
 instead of $(\alpha^2 \times P_2)$

Multiply P_1 and P_2 in $GF(2^q)$ with the isaeducible polynomial $(\alpha^q + \alpha^q +$

Powers	Operation	New Result Re	duction
$x^{\circ} \times P^{2}$		$x^7 + x^4 + x^3 + x^2 + x$	No
X XP2	$\alpha \times (\alpha^7 + \alpha^4 + \alpha^3 + \alpha^2 + \alpha)$	x^5+x^2+x+1	Yes
$x^2 \times P2$	$\alpha \times (\alpha^5 + \alpha^2 + \alpha + 1)$	$\alpha^{6}+\alpha^{3}+\alpha^{2}+\infty$	No
$\alpha^3 \times P2$	$\alpha \times (\alpha^{6} + \alpha^{3} + \alpha^{2} + \alpha)$	$x^7 + x^4 + x^3 + x^2$	No
		x^5+x+1	Yes
X4 X P2	$\alpha \times (\alpha^7 + \alpha^4 + \alpha^3 + \alpha^2)$	$x^{l}+x^{2}+x$	No
x5×P2	$\alpha \times (\alpha^5 + \alpha + 1)$		

$$P_{1} \times P_{2} = \left(\frac{\alpha y + \alpha^{2} + \alpha y}{+ \alpha^{2} + \alpha^{2} + \alpha} \right) + \left(\frac{\alpha^{5} + \alpha^{2} + \alpha + 1}{+ \alpha^{5} + \alpha^{2} + \alpha + 1} \right)$$

$$= \frac{\alpha^{5} + \alpha^{3} + \alpha^{2} + \alpha + 1}{+ \alpha^{5} + \alpha^{5} + \alpha + 1}$$

$$\frac{x^{1} \times P_{2}^{2}}{x \times (\alpha^{7} + x^{4} + x^{3} + x^{2} + \alpha)}$$

$$= x^{8} + x^{5} + x^{4} + x^{3} + \alpha^{2}$$

$$x^{8} + x^{4} + x^{3} + \alpha + 1$$

$$x^{9} + x^{5} + x^{9} + x^{3} + \alpha^{2}$$

$$x^{9} + x^{4} + x^{3} + \alpha + 1$$

$$x^{5} + x^{2} + \alpha + 1$$

$$x^{1} \times P_{2}$$

$$x \times (\alpha^{7} + x^{4} + x^{3} + \alpha^{2})$$

$$= x^{9} + x^{5} + x^{4} + x^{3}$$

$$x^{1} \times P_{2}$$

$$x \times (\alpha^{7} + x^{4} + x^{3} + \alpha^{2})$$

$$= x^{9} + x^{5} + x^{4} + x^{3}$$

$$x^{1} \times P_{2}$$

$$x^{1} \times P_{2}$$

$$x^{2} \times P_{3}$$

$$x^{3} \times P_{4} \times P_{4} \times P_{4}$$

$$x^{3} \times P_{4} \times P_{5} \times P_{4} \times P_{5}$$

$$x^{3} \times P_{5} \times P_$$

- new result

$$P_{1} = x^{5} + x^{2} + x = 000100110 (8 \text{ bits})$$

$$P_{2} = x^{7} + x^{4} + x^{3} + x^{2} + x = 10011110 (8 \text{ bits})$$

$$modulus = x^{8} + x^{4} + x^{3} + x + 1$$

$$= 100011010 (9 \text{ bits})$$

Algorithm:

1. If MSB of previous result = 0, shift previous result one bit to the left.

2. If MSB of previous result = 1,

(a) Shift one bit to the left

(b) XOR with modulus without MSB

Powers	Shift - Left	XOR
$x^{0} \times P_{2}$		10011110 = P2
$x^{\prime} \times P_{z}$	00111100	00111100 @ 00011010
$\chi^2 \times P_2$	01001110	01001110
$\alpha^3 \times P_2$	10011100	10011100
X4 XP2	0011100	= 00100011 = 00100011
$x^5 \times P_2$	01000110	01000110

$$P_1 \times P_2 = (00100111) + (01001110) + (01000110) = 00101111$$