

Table des matières

1	Var	étés algébriques	7
	1.1	Nullstellensatz	7
	1.2	Espace projectif	9

TABLE DES MATIÈRES

Introduction

On est censés prouver Riemann-Roch.

TABLE DES MATIÈRES

Chapitre 1

Variétés algébriques

1.1 Nullstellensatz

Pas oublier de rechopper mon carnet. Y'a les preuves complètes.

Théoreme 1.1.1. Y'a une correspondance entre points fermés de $\mathbb{A}^n(k)$ et idéaux maximaux dans $Spm(k[T_1,\ldots,T_n])$.

Corollaire 1.1.2. Si A est une k-algèbre de t.f. et \mathfrak{m} un idéal maximal alors A/\mathfrak{m} est une extension finie de k.

Lemme 1.1.3. Si A est une k-algèbre de t.f. alors $\sqrt{I} = \bigcap_{\mathfrak{m} \in Spm(A), I \subset \mathfrak{m}} \mathfrak{m}$

Lemme 1.1.4. Si k est algébriquement clos, c'est un homéomorphisme (entre $\mathbb{A}^n(k)$ et $Spm(k[T_1, \ldots, T_n])$.

Démonstration. On prends le morphisme quotient, c'est l'évaluation et le noyau est de la forme $(T_i - t_i)_i$.

Théoreme 1.1.5 (Nullstellensatz). Si $k = \bar{k}$ alors $I(Z(J)) = \sqrt{J}$.

Démonstration. On a

$$I(Z(J)) = I(\bigcup_{x \in Z(J)} x)$$

$$= \bigcap_{x \in Z(J)} I(\{x\})$$

$$= \bigcap_{x \in Z(J)} \mathfrak{m}_x$$

$$= \bigcap_{\mathfrak{m} \in Spm(A), J \subset M} \mathfrak{m}$$

et la dernière est \sqrt{J} par le lemme. (omg, revoir la preuve dans Atiyaah) \square

Remarque 1 (!). L'endroit où on utilise le weak nullstellensatz on a besoin de k algébriquement clos. La dernière qui vient du lemme y'a pas besoin. Autrement dit, on peut utiliser Spm pour faire de la géométrie algébrique sur un corps non algébriquement clos.

Définition 1.1.6. $A(Z) = k[T_1, ..., T_n]/I(Z)$

Pour $f \in A(z)$ et \tilde{f} t.q $p(\tilde{f}) = f$ pour $p: k[T_1, \dots, T_n] \to A(Z)$. Pour $z \in k^n$ on peut toujours déf $f(z) := \tilde{f}(z)$. En particulier, on peut déf

Définition 1.1.7. $D(f) = \{s \in Z : f(z) \neq 0\} = D(\tilde{f}) \cap Z$. Avec $D(\tilde{f}) = \mathbb{A}^n(k) - Z(\tilde{f})$.

Remarque 2. Comme d'hab juste il définit pour des fonctions a priori par déf sur $\mathbb{A}^n(k)$.

Remarque 3 (C'est super chiant). Faut faire gaffe ducoup en fonction de la fonction que j'utilise ou de son lift pour les inclusions.

Corollaire 1.1.8. Si $f, g \in A(Z)$ et $Z \subset \mathbb{A}^n(k)$. On a

- Pour $J_1, J_2 \leq A(Z) : Z(J_1) \subset Z(J_2) \leftrightarrow J_2 \subset \sqrt{J_1}$.
- $\bullet \ D(f) \subset D(g) \leftrightarrow \exists h \in \mathbb{A}(Z) \ t.q. \ f^n = gh.$
- Les ouverts principaux forment une base de la topologie.

Démonstration. Pour le premier point si $Z(J_1) \subset Z(J_2)$ alors faut lift dans $k[T_1, \ldots, T_n]$ avant d'appliquer le nullstellensatz. Pour le deuxième, c'est clair. Pour le troisième, sur $\mathbb{A}^n(k)$ on prend $f \in I(Z)$, où $U = \mathbb{A}^n(k) - Z$, t.q $f(x) \neq 0$ (possible car $x \notin Z$.

Proposition 1.1.9. Soit Z un ensemble algébrique affine. Alors Z est irréductible ssi I(Z) est premier. Si $k = \bar{k}$, $I \leq K[T_1, \ldots, T_n]$ alors Z(J) est irréductible ssi \sqrt{J} est premier.

Démonstration. Avec les nouvelles notations c'est direct, avec les anciennes si Z(J) est irreductible $Z(f) \cup Z(g) = Z(J)$ implique $Z(J) \subset Z(f)$ ou $Z(J) \subset Z(g)$.

Lemme 1.1.10. Soit A un anneau noetherien, alors les idéaux radicaux sont des intersections finies d'idéaux premiers.

Démonstration. On regarde l'ensemble des idéaux qui sont pas des intersections d'idéaux premiers. Comme A est noethérien y'a un élement maximal I qui n'est pas premier. Soit $a,b \in A-I$ t.q. $ab \in I$. On considère $I_a\sqrt{I+aA}$ et $I_b = \sqrt{I+bA}$. Ils sont plus gros que I donc intersections d'idéaux premiers. En particulier on prouve facilement que $I = I_a \cap I_b$ (I est radical).

Proposition 1.1.11. Si $k = \bar{k}$, on a une décomposition unique des ensembles algébriques en variétés irréductibles non contenues les unes dans les autres.

Démonstration. $I(Z) = \bigcap_{i=1}^m \mathfrak{b}_i$. On retire les \mathfrak{b}_i contenus dans les autres. \square

1.2 Espace projectif

On considère $k[T_0, \ldots, T_n] = \bigoplus_{d>0} S_d$.

Lemme 1.2.1. Sur les corps infinis, $f \in S_d$ ssi $\lambda^d f(x_i, i) = f(\lambda x_i, i)$.

Définition 1.2.2. Un idéal est homogène ssi dès que $f = f_1 + \ldots + f_n \in I$ alors $f_i \in I$. C'est équivalent à être généré par des éléments homogènes, i.e. $I = \bigoplus S_d \cap I$.

Remarque 4. Comme en géo diff regarder ce qu'il se passe quand on regarde des polynômes homogènes dans \mathbb{A}^{n+1} et qu'on les pousse (homéo?).

Définition 1.2.3. Pour I un idéal homogène de $k[T_0, \ldots, T_n]$, on définit $Z_+(I) = \{P \in \mathscr{P}^n(k) : f(P) = 0 \ \forall f \in I \ \text{f homogène} \}$ où autrement on lift P et on prends f quelconque. Si k est infini et $Z \subset \mathscr{P}^n(k)$, on définit $I_+(Z) = I(\pi^{-1}(Z))$.

Théoreme 1.2.4 (Nullsellensatz projectif). On suppose $k = \bar{k}$ et J homogène. On a

- $Z_+(J) = \emptyset$ ssi $(T_0, \dots, T_n) \subset J$.
- Si $Z_+(J) \neq \emptyset$ alors $I_+(J_+(J)) = \sqrt{J}$.

Démonstration. Si $Z_+(J) = \emptyset$ on lift à $\mathbb{A}^{n+1} - 0$ pour voir que $Z(J) \subset \{0\} = (T_0, \dots, T_n)$. Sinon $I_+(Z_+(J)) = I(\pi^{-1}(Z_+(J))) = I(\pi^{-1}(Z_+(J)) \cup \{0\}) = \sqrt{J}$.