Assignment - 2 (Quiz) - Results

Attempt 2 of 2

Written Dec 26, 2023 7:13 PM - Dec 26, 2023 7:20 PM

Attempt Score 0.8 / 2 - 40 %

Overall Grade (Highest Attempt) 1.6 / 2 - 80 %

Question 1

Consider a dataset in which a sample \mathbf{x} can belong to either the "survived" class (labeled as 1) or the "not survived" class (labeled as 0). Suppose there are 4 patients in the dataset in which the first two survived and the last two did not. Using a particular weight vector \mathbf{w} (bias trick applied), we get:

$$\sigma \left(\mathbf{w}^{\mathrm{T}}\mathbf{x}^{(1)}\right) = 0.1,$$

$$1 - \sigma \left(\mathbf{w}^{\mathrm{T}}\mathbf{x}^{(2)}\right) = 0.2,$$

$$\sigma \left(\mathbf{w}^{\mathrm{T}}\mathbf{x}^{(3)}\right) = 0.95,$$

$$1 - \sigma \left(\mathbf{w}^{\mathrm{T}}\mathbf{x}^{(4)}\right) = 0.15.$$

Without calculation, we can say that the loss is the highest for patient _____.

- \Rightarrow \bigcirc 3
- **x** 01
 - \bigcirc 2
 - \bigcirc 4

Question 2

Consider a dataset in which a sample has 2 output classes (survived/not survived) and 5 features:

(1) Heart rate (2) Blood pressure (3) Temperature (4) Age (5) Gender

The 3rd column of the weights matrix corresponds to what?

- ✓ Weights for the feature "Temperature"
 - Weights for the "survived" output class

Weights for the feature "Blood Pressure"
Weights for the "not survived" output class
Question 3
Suppose we have 10^4 samples corresponding to 10 output labels and that each sample is a 32 x 32 grayscale image. What will be the shape of the weights matrix used for calculating the sample's raw scores as $z = Wx + b$?
11 x 1024
1024 x 11
× ○ 1024 x 10
⇒ 10 x 1024
Question 4
Suppose we apply batch processing for a dataset with 1024 samples using a batch size 16. How many times will the weights be updated in one epoch?
8
√ 64
<u> </u>
<u>32</u>
Question 5
The sensitivity of the loss with respect to some weight parameter evaluated at its current value is -10. This means that decreasing this weight (by a tiny amount) would the loss.
○ Not change
★ Decrease
Increase
Negate
Done

Aniket Chakraborty MSC DS - Deep Learning Principles and Application - B1_JL22 - Manipal Academy of Higher Education (M...

11/5/24, 8:29 AM