Адаптивные электромеханические системы управления упругими манипуляционными роботами: точный и приближенный подходы

В. В. Путов, В. Н. Шелудько, А. В. Путов, Т. Т. Нгуен Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В.И. Ульянова (Ленина) vvputov@mail.ru

Аннотация. центральных ограничивающих точность производительность промышленных и специальных роботов, особенно, роботов, применяющихся в агрессивных средах и космосе, являются нелинейные взаимосвязанные упругие свойства звеньев степеней подвижности манипулятора, приводящие при попытке увеличить их быстродействие к слабозатухающим упругим колебаниям рабочих органов. При этом устранение причин таких явлений оказываются либо принципиально невозможным на пути упрочения конструкций роботов или применения в них новых материалов, либо приводят к неоправданным затратам. В докладе обсуждаются вопросы построения, исследования и сравнительного эффективности принудительного подавления колебаний механических конструкций роботов средствами адаптивных электромеханических систем управления звеньями манипуляционных роботов манипуляторов, разработанных в рамках как точных, так и приближенных методов.

Ключевые слова: упруго-жесткий многостепенной электромеханический объект; параметрическая и функциональная неопределенности; адаптивная система управления; наблюдатель состояния; исполнительные электроприводы; метод Ли-Слотине; метод мажорирующих функций; нелинейное взаимосвязанное движение жесткого скелета; принудительное подавление упругих колебаний; трехстепенной манипулятор; компьютерные исследования

I. Введение

Известными точными построения методами систем управления по беспоисковых адаптивных состоянию являются метод скоростного градиента [1], [2] и метод вычисленного момента [3], [4], а к приближенным методам относится метод мажорирующих функций [5], [6]. Однако применение точных методов допускает только неопределенности правых уровень описывающих объекты дифференциальных уравнений, когда они известны с точностью до постоянных или изменяющихся во времени неизвестных параметров, тогда как нелинейности правых частей считаются известными и должны полностью воспроизводиться при построении структур адаптивных законов и алгоритмов их настройки.

В отличие от указанных точных методов, для применения приближенного метода мажорирующих функций не требуется не только знание конкретных параметров объекта, но не требуется знание и описывающих его нелинейных функций, за исключением некоторых легко проверяемых оценочных мажорирующих соотношений. характерных для целых нелинейных объектов, в том числе, таких, нелинейные механические многостепенные электромеханические объекты.

II. МАТЕМАТИЧЕСКАЯ МОДЕЛЬ МАНИПУЛЯЦИОННОГО РОБОТА КАК УПРУГО-ЖЕСТКОГО МНОГОСТЕПЕННОГО НЕЛИНЕЙНОГО ЭЛЕКТРОМЕХАНИЧЕСКОГО ОБЪЕКТА

Пусть жесткий многостепенной нелинейный электромеханический объект («жесткий скелет») описывается системой, состоящей из дифференциальных уравнений второго порядка (п – число степеней подвижности электромеханического объекта), объединенных в векторно-матричное дифференциальное уравнение вида:

$$\mathbf{M}(\mathbf{q})\ddot{\mathbf{q}} + \mathbf{V}(\dot{\mathbf{q}}, \mathbf{q})\dot{\mathbf{q}} + \mathbf{G}(\mathbf{q}) = \mathbf{u}, \qquad (1)$$

где $\mathbf{q} = [q_1, ..., q_n]^{\mathrm{T}}, \quad \mathbf{q} \in \mathbb{R}^n$ – вектор обобщенных $\mathbf{u} = \begin{bmatrix} u_1, ..., u_n \end{bmatrix}^{\mathrm{T}},$ координат; $\mathbf{u} \in \mathbb{R}^n$ – вектор управляющих (моментов); M(q), $\mathbf{V}(\mathbf{q},\dot{\mathbf{q}})$ – функциональные $n \times n$ матрицы инершии центробежных И кориолисовых $\mathbf{G}(\mathbf{q})$ функциональная $n \times 1$ – матрица гравитационных сил.

На основе анализа строения уравнений Лагранжа в явной форме вида (1) можно построить следующие детализированные дифференциальные уравнения движения степеней подвижности указанных объектов, записанные в нормальной форме относительно лагранжевого вектора состояния **q**, **q** [6, 7]:

$$\ddot{q}_i = a_i(\mathbf{q}, \dot{\mathbf{q}}, t) + b_i(\mathbf{q}, t)u_i(\mathbf{q}, \dot{\mathbf{q}}, t) + \sum_{i=1, i\neq i}^n [f_{ij}(\mathbf{q}, \dot{\mathbf{q}}, t) + s_{ij}(\mathbf{q}, \dot{\mathbf{q}}, t)], \tag{2}$$

где

$$a_{i}(\mathbf{q}, \dot{\mathbf{q}}, t) = a_{i1}(\mathbf{q}, t)q_{i} + a_{i2}(\mathbf{q}, t)\dot{q}_{i} + a_{i3}(\mathbf{q}, t)\dot{q}_{i}^{2};$$

$$f_{ij}(\mathbf{q}, \dot{\mathbf{q}}, t) = f_{ij_{i}}(\mathbf{q}, t)q_{j} + f_{ij_{2}}(\mathbf{q}, t)\dot{q}_{j} + f_{ij_{3}}(\mathbf{q}, t)\dot{q}_{i}\dot{q}_{j} + f_{ij_{4}}(\mathbf{q}, t)\dot{q}_{j}^{2};$$

$$s_{ij}(\mathbf{q}, \dot{\mathbf{q}}, t) = b_{ij}(\mathbf{q}, t)u_{j}(\mathbf{q}, \dot{\mathbf{q}}, t); i, j = \overline{1, m},$$
(3)

- глобально ограниченные скалярные нелинейные функции, непрерывно дифференцируемые по аргументам q_i и по времени t;

$$u_i(\mathbf{q}, \dot{\mathbf{q}}, I_{\Re i}, t) = u_i^{\mathrm{H}}(\mathbf{q}, \dot{\mathbf{q}}, I_{\Re i}) + u_i^{\mathrm{a}}(\mathbf{q}, \dot{\mathbf{q}}) + u_i^{\mathrm{0}}(t); \tag{4}$$

 $u_i^{\rm H}$ — неадаптивное (линейное) управление с постоянными настройками; $u_i^0(t)$ — программное управление; u_i^a — искомое адаптивное управление в i-ой степени подвижности $i=\overline{1,n}$; n — число степеней подвижности, I_{si} — токи электроприводов.

Дифференциальная система (2), (3), (4) исчерпывает математическое описание динамики класса жестких взаимосвязанных нелинейных электромеханических объектов со многими степенями подвижности, и каждое уравнение характеризуется:

- а) собственной нелинейной нестационарной динамикой (функции $a_i(\mathbf{q},\dot{\mathbf{q}},t),\ b_i(\mathbf{q},t)$);
- b) перекрестными нелинейными связями по обобщенным координатам и скоростям q_j, q_j (функции $f_{ij}(\mathbf{q},\dot{\mathbf{q}},t)$));
- с) перекрестными нелинейными связями по управлениям $u_i(\mathbf{q}, \dot{\mathbf{q}}, t)$ (функции $s_{ii}(\mathbf{q}, \dot{\mathbf{q}}, t)$).

Управления u_i ($\mathbf{q}, \dot{\mathbf{q}}, I_{gi}, t$) формируются исполнительными электроприводами постоянного или переменного тока, присоединенными к механизмам степеней подвижности многостепенного нелинейного механического объекта (1).

В условиях, когда механические трансмиссии и протяженные конструкции звеньев степеней подвижности многостепенного электромеханического объекта подвержены упругим деформациям, математическое описание жесткого объекта (1) или (2), (3) должно быть дополнено дифференциальными уравнениями, описывающими многорезонансные упругие деформации (колебания) трансмиссий и звеньев степеней подвижности объекта

В качестве переменных состояния, характеризующих динамику многомассовых упругих цепных подобъектов степеней подвижности, введем

$$\mathbf{\omega}_{yi} = \dot{\mathbf{q}}_{yi}$$
, или $\omega_{yik} = \dot{\mathbf{q}}_{yik}$, $k = \overline{1, n_{yi}}$; $i = \overline{1, n}$, (5)

- n_i -мерный вектор скоростей ω_{yik} перемещений \mathbf{q}_{yik} точечных масс m_{ik} , соединенных упругими связями p_{ik} , и введем n векторов вида:

$$\mathbf{m}_{yi}, \mathbf{m}_{yik} = p_{ik} (\mathbf{q}_{yik} - \mathbf{q}_{yik+1}), k = \overline{1, n_{yi} - 1};$$

$$i = \overline{1, n}; m_{yi0} = m_{yin_{yi}} = 0$$
(6)

 $-n_{yi}-1$ -мерный вектор восстанавливающих (упругих) сил (или упругих моментов) (не путать обозначения точечных масс m_{ik} с обозначениями упругих моментов m_{vik}).

Тогда дифференциальные уравнения движения неразветвленного многомассового упругого подобъекта, отнесенного к i-ой степени подвижности робота, будут следующими:

$$\dot{\omega}_{yi1} = \ddot{q}_{yi1} = \frac{1}{m_{i1}} \left[-m_{yi1} + b_i u_i(t) \right];$$

$$\dot{\omega}_{yik} = \ddot{q}_{yik} = \frac{1}{m_{ik}} \left(m_{yik-1} - m_{yik} \right); k = 2, ..., n_{yi}; i = 1, ..., n;$$

$$\dot{m}_{yik} = p_{ik} (\omega_{yik} - \omega_{yik+1}); k = 1, ..., n_{yi} - 1; i = 1, ..., n,$$
(7)

и имеют общий порядок, отнесенный i-ой степени подвижности, равный $2n_{vi}-1$.

Отметим, что управления $u_i = u_i(\mathbf{q}, \dot{\mathbf{q}}, \mathbf{q}_{,yi}, \dot{\mathbf{q}}_{,yi}, I_{si}, t), i = \overline{1,n}$, должны быть перенесены из уравнения (1) на входы упругих подобъектов, так как они формируют электромагнитные моменты исполнительных электроприводов, роторы которых присоединены или сами являются первыми массами (моментами инерции) m_{i1} упругих цепных подобъектов, а «входными воздействиями» «жесткого скелета», описываемого векторно-матричным уравнением (1) становятся упругие силы (моменты) m_{in_y} , $i=\overline{1,n}$.

Системы подчиненного управления электромагнитными моментами M_{si} электроприводов постоянного тока с постоянным возбуждением построим как трехконтурные при наличии датчиков тока (ДТ) I_{si} , скорости (ДС) ω_{yi1} и положения (ДП) \mathbf{q}_{yi1} первой массы m_{i1} , и уравнения i-ой подчиненной системы управления имеют следующий вид:

$$\begin{split} \dot{M}_{\mathfrak{A}i} &= L_{\mathfrak{A}i}^{-1} \Big[k_{mi} (k_{yi} u_{\mathsf{T}} - k_{ei} \omega_{yi1}) - R_{\mathfrak{A}i} M_{\mathfrak{A}i} \Big]; \\ u_{\mathsf{T}} &= \beta_{\mathsf{T}i} (u_{ci} - k_{\mathsf{T}i} k_{mi}^{-1} M_{\mathfrak{A}i}); \\ u_{ci} &= \beta_{ci} (u_{\mathsf{\Pi}i} - k_{ci} \omega_{yi1}); \\ u_{\mathsf{\Pi}i} &= \beta_{\mathsf{\Pi}i} (u_{i} - k_{\mathsf{\Pi}i} q_{yi1}); u_{i} = u_{i} (\mathbf{q}, \dot{\mathbf{q}}, \mathbf{q}_{yi}, \dot{\mathbf{q}}_{yi}, I_{\mathfrak{A}i}, t). \end{split}$$
(8)

Здесь M_{gi}, I_{gi} — электромагнитный момент и ток якоря электропривода; L_{gi}, R_{gi} — индуктивность и активное сопротивление якорной цепи; k_{ei}, k_{mi} — конструктивные коэффициенты; k_{yi} — коэффициент передачи усилителя мощности источника питания; $k_{Ti}, k_{Ci}, k_{\Pi i}$ — коэффициенты передачи датчиков обратных связей по переменным $I_{gi}, \omega_{yi1}, q_{yi1}; u_{Ti}, u_{Ci}, u_{\Pi i}$ — выходные напряжения контурных регуляторов тока (РТ), скорости (РС) и положения (РП); $\beta_{Ti}, \beta_{Ci}, \beta_{\Pi i}$ — передаточные функции контурных регуляторов; u_i — составное управление, являющееся функцией переменных состояния упруго-жесткого объекта или их оценок, вырабатываемых наблюдателями.

III. Адаптивное управление мангипуляционным роботом как жестким многостепенным нелинейным механическим объектом, построенное методом вычисленного момента (точный подход)

Уравнение (1) жесткого робота как объекта управления может быть записано в виде, линейном относительно некоторого вектора подходящим образом подобранных массоинерционных параметров объекта, принимаемых неизвестными, но постоянными [3], [4]:

$$\mathbf{Y}(\mathbf{q}, \dot{\mathbf{q}}, \ddot{\mathbf{q}})\mathbf{a} = \mathbf{u},\tag{9}$$

где а- т-мерный вектор постоянных неизвестных массоинерционных параметров объекта; $\mathbf{Y}(\mathbf{q}, \dot{\mathbf{q}}, \ddot{\mathbf{q}}) - n \times m$ функциональная матрица, зависящая от векторов ${\bf q}, \dot{{\bf q}}, \ddot{{\bf q}}$ и регрессором. Следуя [3], [4], введем называемая следующие обозначения: \mathbf{q}_d вектор заданных траекторий движения объекта; $\tilde{\mathbf{q}} = \mathbf{q} - \mathbf{q}_d$ – вектор ошибки слежения; $\dot{\mathbf{q}}_r = \dot{\mathbf{q}}_d - \Lambda \tilde{\mathbf{q}}$ — вектор эталонных скоростей (Λ симметричная положительно определенная положительная матрица); $\mathbf{s} = \dot{\mathbf{q}} - \dot{\mathbf{q}}_r = \tilde{\mathbf{q}} + \Lambda \tilde{\mathbf{q}}$ – линейная комбинация ошибок по обобщенным скоростям и обобщенным положениям; $\hat{\bf a}$ – вектор оценки вектора $\bf a$; $\tilde{\mathbf{a}} = \hat{\mathbf{a}} - \mathbf{a}$ – векторная ошибка оценки вектора неизвестных $\widehat{\mathbf{M}}(\mathbf{q})$, $\hat{\mathbf{V}}(\mathbf{q},\dot{\mathbf{q}}), \quad \hat{\mathbf{G}}(\mathbf{q})$ параметров; получающиеся из матриц M(q), $V(q,\dot{q})$, G(q), путем замены оценки $\hat{\mathbf{a}}$ вместо \mathbf{a} .

В силу определения регрессора, из (9) следует тождество вида

$$\widehat{\mathbf{M}}(\mathbf{q})\ddot{\mathbf{q}}_r + \widehat{\mathbf{V}}(\mathbf{q}, \dot{\mathbf{q}})\dot{\mathbf{q}}_r + \widehat{\mathbf{G}}(\mathbf{q}) = \mathbf{Y}(\mathbf{q}, \dot{\mathbf{q}}, \dot{\mathbf{q}}_r, \ddot{\mathbf{q}}_r)\widehat{\mathbf{a}}. (10)$$

Используя введенные выше обозначения, адаптивный закон управления объекта по методу вычисленного момента будет иметь следующий вид:

$$\mathbf{u_a} = \mathbf{Y}(\mathbf{q}, \dot{\mathbf{q}}, \dot{\mathbf{q}}_r, \ddot{\mathbf{q}}_r)\hat{\mathbf{a}} - \mathbf{K}_d \mathbf{s}, \tag{11}$$

а регуляризованный алгоритм параметрической настройки будет выражаться векторным дифференциальным уравнением вида

$$\dot{\hat{\mathbf{a}}} = -\mathbf{\Gamma} \mathbf{Y}^{\mathbf{T}} (\mathbf{q}, \dot{\mathbf{q}}, \dot{\mathbf{q}}_r, \ddot{\mathbf{q}}_r) \mathbf{s} - \mathbf{\Lambda} \hat{\mathbf{a}}, \tag{12}$$

где \mathbf{K}_d , $\mathbf{\Gamma}$, $\mathbf{\Lambda}$ – симметричные постоянные, положительно определенные матрицы, в частности, диагональные.

IV. Адаптивное управление мангипуляционным роботом как жестким многостепенным нелинейным механическим объектом, построенное методом мажорирующих функций (приближенный подход)

Взаимосвязанная адаптивная система управления «жестким скелетом» многостепенного электромеханического объекта, в общем случае, должна состоять из совокупности локальных и развязывающих адаптивных систем управления.

Локальные адаптивные системы управления степенями подвижности «жесткого скелета» электромеханического объекта (2), (3). Они состоят из следующих совокупностей:

а) локальных эталонных моделей

$$\ddot{x}_{Mi} = -a_{Mi}x_{Mi} - r_{Mi}\dot{x}_{Mi} + b_{Mi}u_i^0(t); a_{Mi}, r_{Mi}, b_{Mi} > 0 \text{ (const)}, i = \overline{1, n};$$

(13)

б) локальных адаптивных законов

$$u_{\text{JOK},i}^{a}(q_{i},\dot{q}_{i}) = k_{i1}(t)q_{i} + k_{i2}(t)\dot{q}_{i} + k_{i3}(t)\dot{q}_{i}^{2} + k_{i4}(t)u_{i}^{0}(t), i = \overline{1,n};$$
(14)

в) алгоритмов настройки параметров локальных адаптивных законов

$$\begin{vmatrix}
\dot{k}_{i1}(t) = -\gamma_{i1}d_{i}q_{i} - \alpha_{i1}k_{i1}(t); \dot{k}_{i2}(t) = -\gamma_{i2}d_{i}\dot{q}_{i} - \alpha_{i2}k_{i2}(t); \\
\dot{k}_{i3}(t) = -\gamma_{i3}d_{i}\dot{q}_{i}^{2} - \alpha_{i3}k_{i3}(t); \dot{k}_{i4}(t) = -\gamma_{i4}d_{i}u_{i}^{0}(t) - \alpha_{i4}k_{i4}(t); \\
\dot{d}_{i} = b_{Mi}[p_{i1}(q_{i} - q_{Mi}) + p_{i2}(\dot{q}_{i} - \dot{q}_{Mi})], i = \overline{1, n};
\end{vmatrix}$$
(15)

где γ_{i^*} , α_{i^*} (*=1, 4); d_i , p_{i1} , p_{i2} ; $i=\overline{1,n}$ — постоянные строго положительные коэффициенты усилений алгоритмов настройки (15).

Локальные адаптивные законы (14) и алгоритмы настройки параметров (15) построены по методу мажорирующих функций и в качестве мажорирующих функций выбраны известные функции роста \dot{q}_i , содержащиеся в уравнениях собственной динамики степеней подвижности (получаемых приравниванием к

нулю функций перекрестных связей $f_{ij}=0, S_{ij}=0$ в уравнениях (2), (3)) (в члене $a_{i3}(\mathbf{q},t)\dot{q}_i^2$).

Развязывающие адаптивные системы управления степенями подвижности «жесткого скелета» многостепенного электромеханического объекта (2), (3) состоят из совокупностей эталонных моделей (13) и развязывающих адаптивных законов

$$u_{\text{pa3B.}i}^{\text{a}}(q_{j}, \dot{q}_{j}) = \sum_{j=1, j\neq i}^{n} [k_{ij5}(t)q_{j} + k_{ij6}(t)\dot{q}_{j} + k_{ij6}(t)\dot{q}_{j} + k_{ij7}(t)\dot{q}_{j}^{2} + k_{ij8}(t)\dot{q}_{i}\dot{q}_{j} + k_{ij9}(t)u_{j}^{0}(t)]; \ i, \ j = \overline{1, n},$$

$$(16)$$

с алгоритмами настройки параметров, выражаемыми уравнениями

$$\begin{aligned} \dot{k}_{ij5}(t) &= -\gamma_{ij5} d_i q_j - \alpha_{ij5} k_{ij5}(t); \\ \dot{k}_{ij6}(t) &= -\gamma_{ij6} d_i \dot{q}_j - \alpha_{ij6} k_{ij6}(t); \\ \dot{k}_{ij7}(t) &= -\gamma_{ij7} d_i \dot{q}_j^2 - \alpha_{ij7} k_{ij7}(t); \\ \dot{k}_{ij8}(t) &= -\gamma_{ij8} d_i \dot{q}_i \dot{q}_j - \alpha_{ij8} k_{ij8}(t); \\ \dot{k}_{ij9}(t) &= -\gamma_{ij9} d_i u_j^0(t) - \alpha_{ij9} k_{ij9}(t), i, j = \overline{1, n}; \end{aligned}$$
 (17)

где d_i как в выражении (15); γ_{ij^*} , α_{ij^*} , $*=\overline{5,9}$ — строго положительные постоянные коэффициенты усиления алгоритмов, i, $j=\overline{1,n}$.

Замечание. Развязывающие адаптивные законы (16) и алгоритмы настройки их параметров (17) построены по методу мажорирующих функций. В качестве мажорирующих функций приняты известные функции роста \dot{q}_i, \dot{q}_j , содержащихся в функциях перекрестных нелинейных связей (в членах $f_{ij_3}({\bf q},t)\dot{q}_i\dot{q}_j$ и $f_{ij_4}({\bf q},t)\dot{q}_j^2$ уравнений (2), (3)).

Взаимосвязанная адаптивная система управления «жестким скелетом» многостепенного электромеханического объекта (2), (3) состоит из совокупностей эталонных моделей (13) и объединения совокупностей локальных (14) и развязывающих (16) адаптивных законов с алгоритмами настройки (15) и (17).

V. АДАПТИВНОЕ УПРАВЛЕНИЕ МНОГОМАССОВЫМИ УПРУГИМИ ПОДОБЪЕКТАМИ

Адаптивное управление многомассовыми упругими подобъектами (7) также построено приближенным методом мажорирующих функций и состоит из n (по числу степеней подвижности) идентификаторов состояния (в силу неполной измеримости упругих подобъектов), n эталонных моделей и n адаптивных законов с алгоритмами параметрической настройки, подробности построения которых можно найти в [5].

VI. РАСЧЕТ И ИССЛЕДОВАНИЕ ПОСТРОЕННЫХ ТОЧНЫХ И ПРИБЛИЖЕННЫХ АДАПТИВНЫХ СИСТЕМ УПРАВЛЕНИЯ ТРЕХСТЕПЕННЫМ МАНИПУЛЯТОРОМ РОБОТА МОТОМАN

В докладе приведен пример расчета матриц точной математической модели векторно-матричного уравнения (1), вектора массоинерционных параметров **а** и матрицырегрессора в уравнениях (11), (12).

Показаны результаты компьютерных исследований эффективности различных сочетаний построенных точных и приближенных адаптивных электромеханических систем управления динамикой трехстепенного манипулятора с двухмассовыми упругими подобъектами степеней подвижности (рис. 1), проиллюстрированные графиками переходных процессов. Проведен сравнительный анализ эффективности точных и приближенных адаптивных электромеханических систем, подытоженный выводами [7, 8, 9].

Fig. 1. Внешний вид робота Motoman (RRR)

REFERENCES

- [1] Андриевский Б.Р., Стоцкий А.А., Фрадков А.Л. Алгоритмы скоростного градиента в задачах управления и адаптации. Обзор // Автоматика и телемеханика. 1988. № 12. С. 3–39.
- [2] Фрадков А.Л. Адаптивное управление в сложных системах: беспоисковые методы. М.: Наука, 1990. 296 с.
- [3] Slotine J.-J. E., Li W. On the adaptive control of robot manipulators // Int. J. of Robotics Research. 1987. Vol. 6, № 3. P. 49–58.
- [4] Slotine J.-J. E., LiW. Adaptive Manipulator Control: A Case Study // IEEE trans actions on automatic control 1988.Vol. 33, № 11.
- [5] Путов В.В. Прямые и непрямые беспоисковые адаптивные системы с мажорирующими функциями и их приложения к управлению нелинейными механическими объектами с упругими деформациями// Мехатроника, автоматизация и управление № 10. 2007. С. 4–11
- [6] Путов В.В., Лебедев В.В., Путов А.В. Адаптивные системы управления многостепенными жесткими нелинейными механическими объектами, построенные по их упрощенным моделям с мажорирующими функциями // Изв. СПбГЭТУ «ЛЭТИ». 2013. № 10. С. 49–55.
- [7] Путов В.В., Нгуен Т.Т., Шелудько В.Н. Адаптивное управление жестким и взаимосвязанным нелинейным механическим объектом // Известия СПбГЭТУ «ЛЭТИ», СПб.: 2017. Вып. 6. с. 19-25
- [8] Путов В.В., Шелудько В.Н., Русяева Т.Л, Нгуен Т.Т. Адаптивное управление упруго-жестким многостепенным нелинейным электромеханическим объектом// Известия СПбГЭТУ «ЛЭТИ». СПб.: 2018. Вып. 3. (в печати)
- [9] Nguen T.T., Putov V.V, Putov A.V, Sheludko V.N Adaptive control of multigrade nonlinear mechanical objects / Proceedings of 2017 20th IEEE International Conference on Soft Computing and Measurements, SCM 2017. 7970509, c. 103-106.