Bài 9B:

MATLAB APP DESIGNER (tt)

Nhóm:

TT	Họ và tên	MSSV	Lóp	Ghi chú
1	Đỗ Minh Chương	21207126	21DTV_CLC3	

Bài 1

Cho mạch điện R, L, C mắc nối tiếp với tổng trở tương đương Z như sau

$$Z(j\omega) = R + j\omega L + 1/(j\omega C)$$

R, L, C được nhập vào từ giao diện

Vẽ giá trị độ lớn của tổng trở $|Z(j\omega)|$ theo tần số góc ω (ω có giá trị từ 0 đến

 2π) với các giá trị R, L, C.

Biết R (Ω) , L (H), C (μF)

Code:

% VeButton

```
function VeButtonPushed(app, event)

R = app.REditField.Value;

L = app.LEditField.Value;

C = app.CEditField.Value;

w = 0:pi/512:2*pi;

Z = abs(R + 1./(j*w*C*1e-6) + j*w*L);

plot(app.UIAxes, w, Z, 'r');

app.VeButton.BackgroundColor = [0,0,1];
end
```

end

Giao diện:

Kết quả:

Bài 2 Cho dòng điện I_{DS} của một MOSFET kênh N được cho như sau

Vùng	Điều kiện	Dòng I_D	
Ngưng dẫn	$V_{GS} \leq V_T$	$I_{DS}=0$	
(Cut-off)			
Tuyến tính	$V_{GS} > V_T, V_{DS}$	$I_{DS} = \mu_n C_{ox} \frac{W}{L} \left[(V_{GS} - V_T) V_{DS} - \frac{V_{DS}^2}{2} \right] (1 + \lambda V_{DS})$	
(Linear)	$\leq V_{GS} - V_T$	$I_{DS} = \mu_n C_{ox} \frac{1}{L} \left[(V_{GS} - V_T) V_{DS} - \frac{1}{2} \right] (1 + \lambda V_{DS})$	
Bào hòa	$V_{GS} > V_T, V_{DS}$	$I_{DS} = \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_T)^2 (1 + \lambda V_{DS})$	
(Saturation)	$> V_{GS} - V_T$		

Vẽ đặc tính của MOSFET với các thông số nhập từ giao diện

Tham số	Đơn vị	Giá trị thông thường
$\mu_n C_{ox}$	μA	200
	$\overline{V^2}$	
V_T	V	0.5-1.0
λ	V ⁻¹	0.005-0.05
W, L	μm	90-180

Cho V_{DS} có giá trị từ 0 đến 5 bước là 0.1.

Vẽ đặc tuyến của MOSFET trên cùng biểu đồ với V_{GS} lần lượt là $V_{GS1}=0.5, V_{GS2}=2, V_{GS3}=3.5, V_{GS4}=4.5$

Code:

```
for i = 1:size(VGS_colors, 1)
                Vgs = VGS_colors(i, 1);
                color = VGS_colors(i, 2);
                % Tính toán dòng Id cho giá trị VGS hiện tại
                Id = zeros(size(Vds));
                for j = 1:length(Vds)
                    if Vgs <= Vt</pre>
                        Id(j) = 0; % Ngưng dẫn
                    elseif Vds(j) <= (Vgs - Vt)</pre>
                        Id(j) = uc * W/L * ((Vgs - Vt) - Vds(j)) * Vds(j) * (1 +
lambda * Vds(j)); % Tuyến tính
                    else
                        Id(j) = 0.5 * uc * W/L * (Vgs - Vt)^2 * (1 + lambda *
Vds(j)); % Bão hòa
                    end
                    % Vẽ đồ thị trên app.UIAxes với màu sắc tương ứng
                    plot(app.UIAxes, Vds, Id, 'Color', color);
                    hold(app.UIAxes, 'on');
                end
                text(app.UIAxes, 0.5, 1000, 'VGS = 0.5', 'Color', 'r');
                text(app.UIAxes, 0.5, 900, 'VGS = 2', 'Color', 'g');
                text(app.UIAxes, 0.5, 800, 'VGS = 3.5', 'Color', 'b');
                text(app.UIAxes, 0.5, 700, 'VGS = 4.5', 'Color', 'm');
                title(app.UIAxes, 'Đặc tuyến MOSFET');
                xlabel(app.UIAxes, 'Điện áp nguồn-xả (Vds)');
                ylabel(app.UIAxes, 'Dong (Id)');
                grid(app.UIAxes, 'on');
            end
        end
```

Giao diện:

Kết quả chạy:

Bài 3: Thiết kế ứng dụng máy tạo dạng sóng có giao diện như sau

Code:

function DangsongKnobValueChanged(app, event)

```
ham = app.DangsongKnob.Value;
    A = app.BiendoVKnob.Value;
    f = app.TansoKnob.Value;
    t = app.tsKnob.Value;
    if strcmp(app.XSwitch.Value, 'kHz')
        f = f * 1000;
    end
    n = 0:1/10000:t;
    if strcmp(ham, 'Sine')
        y = A * sin(2 * pi * f * n);
    elseif strcmp(ham, 'Triangle')
        y = A * sawtooth(2 * pi * f * n, 0.5);
    elseif strcmp(ham, 'Square')
        y = A * square(2 * pi * f * n);
    elseif strcmp(ham, 'Ramp')
        y = A * (1 - sawtooth(2 * pi * f * n, 0.5));
    else
        y = 0;
    end
    plot(app.UIAxes, n, y);
end
```

Thiết kế:

Kết quả chạy:

Sine Square Triangle Hz kHz Ramp Sine • X 10 10 Bien do (V) Dang song Tan so Dạng sóng 0.5 Bien do -0.5 t (s) 1.5 3.5 0.5 2 2.5 3 0 1 Thoi gian

Báo Cáo Thực Hành Matlab – 2023

Triangle

Square

