Assignment -3

Build CNN Model for Classification Of Flowers

Assignment Date	30 September 2022
Student Name	ANNAPOORANI.M
Student Roll Number	211419205014
Maximum Marks	2 Marks

Question-1:

Download the dataset

Question-2:

Image Augmentation

Solution

from tensorflow.keras.preprocessing.image import ImageDataGenerator train_datagen=ImageDataGenerator(rescale=1./255,zoom_range=0.2,horizontal_flip=True,vertical_flip=True) test_datagen=ImageDataGenerator(rescale=1./255)

2)Image Augmentation	
[] from tensorflow.keras.preprocessing.image import ImageDataGenerator	
[] train_datagen=ImageDataGenerator(rescale=1./255,zoom_range=0.2,horizontal_flip=True,vertical_flip=True)	
[] test_datagen=ImageDataGenerator(rescale=1./255)	
Load Data	
[] x_train-train_datagen.flow_from_directory(r"/content/drive/MyDrive/Assignment 3/Flowers-Dataset/Training",target_size-Found 3293 images belonging to 5 classes.	-(64,64),class_mode='categorical',batch_size
[] x_test-test_datagen.flow_from_directory(r"/content/drive/MyDrive/Assignment 3/Flowers-Dataset/Testing",target_size=(64 Found 1317 images belonging to 5 classes.	4,64),class_mode='categorical',batch_size=24
[] x_train.class_indices	
{'daisy': 0, 'dandelion': 1, 'rose': 2, 'sunflower': 3, 'tulip': 4}	

Question-3:

Create model

Solution

from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense,Convolution2D,MaxPooling2D,Flatten model=Sequential()

3)Create Model	
[] from tensorflow.keras.models import Sequential	
[] from tensorflow.keras.layers import Dense,Convolution2D,MaxPooling2D,Flatten	
[] model=Sequential()	
	↑↓⊕目/♬盲:
Question-4:	
Add Layers (Convolution, MaxPooling, Flatten, Dense-(Hidden Layers), Output)	
Solution	
a)Convol ution	
Layer	
	estica II askullataises (4
model.add(Convolution2D(32,(3,3),kernel_initializer="random_uniform",activ 1),input_shape=(64,64,3)))	ation="relu",strides=(1
b) MaxPooling Layer model.add(MaxPooling2D(pool_size=(2,2)))	
c)Flatten Layer	
model.add(Flatten())	
d) Dense(Hidden layer) model.add(Dense(300,activation="relu")) model.add(Dense(300,activation="relu"))	
e)Output layer	
model.add(Dense(5,activation="softmax"))	
a)Convolution Layer	
a)convolution Layer [] model.add(Convolution2D(32,(3,3),kernel_initializer="random_uniform",activation="relu",strides=(1,1),input_shape=(64,64,3)))	
b)MaxPooling Layer	
[] model.add(MaxPooling2D(pool_size-(2,2)))	
c)Flatten	
[] model.add(Flatten())	
d)Dense(Hidden layer) [] model.add(Dense(300,activation="relu"))	
[] model.add(Dense(300,activation="relu"))	
d)Dense(Hidden layer)	, I
[] model.add(Dense(300,activation="relu"))	
[] model.add(Dense(300,activation="relu"))	
e)Output layer	
<pre>model.add(Dense(5,activation="softmax"))</pre>	

Question-5:

Compile The Model

Solution

model.compile(loss="categorical_crossentropy",metrics=['accuracy'],optimizer='adam')

```
5)Compile the model

[ ] model.compile(loss="categorical_crossentropy",metrics=['accuracy'],optimizer='adam')
```

Question-6:

Fit The Model

Solution

model.fit(x_train,epochs=5,steps_per_epoch=len(x_train),validation_data=x_test,validation_steps=len(x_test))

Question-7:

Save The Model

Solution

model.save("Flowers.h5")

```
7)Save the model

[ ] model.save("Flowers.h5")
```

Question-8:

Test The Model

Solution import

numpy as np

from tensorflow.keras.models import load_model from tensorflow.keras.preprocessing import image model=load_model("Flowers.h5")

img=image.load_img(r"/content/drive/MyDrive/Assignment
3/FlowersDataset/Testing/daisy/14333681205_a07c9f1752_m.jpg",target_siz
e=(64,64)) x=image.img_to_array(img) x=np.expand_dims(x,axis=0)
pred=model.predict(x) pred
index=['daisy','dandelion','rose','sunflower','tulip']
index[np.argmax(pred)]

8)T	est the model	
[]	<pre>import numpy as np from tensorflow.keras.models import load_model from tensorflow.keras.preprocessing import image</pre>	
[]	model=load_model("Flowers.h5")	
[]	img-image.load_img(r"/content/drive/MyDrive/Assignment 3/Flowers-Dataset/Testing/daisy/14333681205_a07c9f1752_m.jpg",target_size	:=(64,64))
[]	img	
[]	x=image.img_to_array(img)	
[]	x=np.expand_dims(x,axis=0)	
[]	x=image.img_to_array(img)	
[]	x=np.expand_dims(x,axis=0)	
[]	pred=model.predict(x)	
[]	pred	
	array([[1., 0., 0., 0., 0.]], dtype=float32)	
[]	<pre>index=['daisy','dandelion','rose','sunflower','tulip']</pre>	↑ ↓ ⊕ 目 ‡ 🖟 🛊 :
0	<pre>index[np.argmax(pred)]</pre>	
	'daisy'	