FJ conditions and Karush Kuhn Tucker (KKT) conditions:

- Consider the following nonlinear programming problem (P) of the form,
- Minimize f(x)
- subject to $g_i(\mathbf{x}) \leq \mathbf{0}$, for i = 1, ..., m, $\mathbf{x} \in \mathbb{R}^n$.
- All $f,g_i:\mathbb{R}^n\to\mathbb{R}$.
- f and the constraint functions g_i may not be linear functions.
- $S = Fea(P) = \{ \mathbf{x} \in \mathbb{R}^n : g_i(\mathbf{x}) \leq 0, \text{ for } i = 1, ..., m \}.$

• The set **D** of **feasible directions** at **x*** ∈ Fea(P) is given by,

 $\mathbf{D}_{\mathbf{x}^*} = \{\mathbf{d} \in \mathbb{R}^n : \exists \ c > 0 \text{ such that } g_i(\mathbf{x}^* + t\mathbf{d}) \leq 0, \text{ for all } i = 1, ..., m, \text{ and for all } 0 \leq t \leq c\}.$

- Let $I = \{i \in \{1, \dots, m\} : g_i(\mathbf{x}^*) = 0\}$.
- Let $I^* = \{1, \ldots, m\} \setminus I = \{i \in \{1, \ldots, m\} : g_i(\mathbf{x}^*) < 0\}.$
- For all $i \in I^*$, we assume that g_i is **continuous** at \mathbf{x}^* .
- For each $i \in I^*$ there exists $c_i > 0$ such that $g_i(\mathbf{x}^* + t\mathbf{d}) < 0$ for all $0 \le t \le c_i$,
- If $c = min_{i \in I^*}\{c_i\}$, then $g_i(\mathbf{x}^* + t\mathbf{d}) < 0$ for all $0 \le t \le c$ and for all $i \in I^*$.

- For $i \in I$, g_i 's are assumed to be **continuously** differentiable at \mathbf{x}^* .
- If **d** satisfies the condition, $\nabla g_i(\mathbf{x}^*)\mathbf{d} < 0$ for all $i \in I$, then for each $i \in I$ there exists an $a_i > 0$ such that $g_i(\mathbf{x}^* + t\mathbf{d}) < 0$ for all $0 \le t \le a_i$.
- If $a = min_{i \in I}\{a_i\} > 0$, we get that $g_i(\mathbf{x}^* + t\mathbf{d}) < 0$ for all $0 \le t \le a$ and for all $i \in I$.
- If for all $i \in I^*$, g_i 's are assumed to be **continuous** at \mathbf{x}^* and for all $i \in I$, g_i 's are assumed to be **continuously differentiable** at \mathbf{x}^* then

$$\mathbf{G}_0 \subseteq \mathbf{D}_{\mathbf{x}^*},$$
 where $\mathbf{G}_0 = \{\mathbf{d} \in \mathbb{R}^n : \nabla g_i(\mathbf{x}^*)\mathbf{d} < 0 \text{ for all } i \in I\}.$

- If \mathbf{x}^* is a local **minimum**, then $\mathbf{F}_0 \cap \mathbf{D}_{\mathbf{x}^*} = \phi$,where $\mathbf{D}_{\mathbf{x}^*}$ is the set of feasible directions at \mathbf{x}^* and $\mathbf{F}_0 = \{\mathbf{d} \in \mathbb{R}^n : \nabla f(\mathbf{x}^*)\mathbf{d} < 0\}$.
- Since $G_0 \subseteq D_{x^*}$ if x^* is a **local minimum** implies $F_0 \cap G_0 = \phi$.
- Theorem 7: (FJ necessary conditions) Let f: Rⁿ → R be a continuously differentiable function.
 Consider the problem P of minimizing f subject to the conditions g_i(x) ≤ 0, i = 1, ..., m, where g_i: Rⁿ → R for all i.
 Let S = Fea(P) = {x ∈ Rⁿ : g_i(x) < 0, i = 1, ..., m} and

Let $S = Fea(P) = \{ \mathbf{x} \in \mathbb{R}^n : g_i(\mathbf{x}) \le 0, i = 1, ..., m \}$ and $\mathbf{x}^* \in S$.

For all $i \in I^*$, g_i 's are **continuous** at \mathbf{x}^* and for all $i \in I$, g_i 's are **continuously differentiable** at \mathbf{x}^* . If \mathbf{x}^* is a **local minimum** of f over S there exists **non negative** constants, $u_0, u_i, i \in I$, **not** all zeros such that

$$u_0 \nabla f(\mathbf{x}^*) + \sum_{i \in I} u_i \nabla g_i(\mathbf{x}^*) = \mathbf{0}.$$
 (*)

- If all the g_i 's for i = 1, ..., m, are **continuously** differentiable at \mathbf{x}^* then the above condition reduces to
- $u_0 \nabla f(\mathbf{x}^*) + \sum_{i=1}^m u_i \nabla g_i(\mathbf{x}^*) = \mathbf{0}$ and $u_i g_i(\mathbf{x}^*) = \mathbf{0}$, for all i = 1, ..., m. (**)
- $\mathbf{x}^* \in S$ is called the **primal feasibility condition**,
- (*) together with nonnegativity of the u_i 's, is called the **dual** feasibility condition.
- $u_i g_i(\mathbf{x}^*) = 0$, for all i = 1, ..., m, is called the complementary slackness condition.
- The above conditions are called the FJ (Fritz John) conditions and the point (x*, u) (or x*) is called a Fritz John, or an FJ, point.
- \mathbf{x}^* is said to satisfy **KKT** condition if there exists non negative constants u_i , $i \in I$, such that $\nabla f(\mathbf{x}^*) + \sum_{i \in I} u_i \nabla g_i(\mathbf{x}^*) = \mathbf{0}$. (***)

- The above conditions given by (***) are called KKT (Karush, Kuhn, Tucker) conditions.
 Any (x*, u) (or x*) which satisfies the Karush Kuhn Tucker (KKT) conditions is called a KKT point.
- Theorem 8: (KKT necessary conditions) If in addition to the conditions assumed for f and g_i 's, as in the previous theorem, if $\nabla g_i(\mathbf{x}^*)$'s for $i \in I$ are LI and \mathbf{x}^* is a local minimum of f then there exists nonnegative constants u_i , $i \in I$, such that $\nabla f(\mathbf{x}^*) + \sum_{i \in I} u_i \nabla g_i(\mathbf{x}^*) = \mathbf{0}$. (****)
- Remark: Hence from Theorem 8 it is clear that if $(\mathbf{x}^*, \mathbf{u})$ (or \mathbf{x}^*) is an FJ point and if $\nabla g_i(\mathbf{x}^*)$'s for $i \in I$ are LI then $(\mathbf{x}^*, \mathbf{u})$ (or \mathbf{x}^*) is a KKT point.

- Remark: If x* is a Karush Kuhn Tucker (KKT) point then it is also an FJ point.
- Remark: KKT conditions says that under the assumptions of the above theorem, if \mathbf{x}^* is a **local minimum**, then $-\nabla f(\mathbf{x}^*)$ lies in the **cone generated** by the $\nabla g_i(\mathbf{x}^*)$'s, $i \in I$.
- Gordon's Theorem: Exactly one of the following two systems has a solution:

$$u \neq 0, u \geq 0, u^T A = 0$$
 (1) $Ay > 0$ (2)

- **Example 1:** $f(x_1, x_2) = (x_1 3)^2 + (x_2 2)^2$ subject to $x_1^2 + x_2^2 \le 5$. $x_1 + 2x_2 \le 4$. $-x_1 \le 0$ $-x_2 < 0$.
- f takes its minimum value at $[2, 1]^T$.
- $g_1(\mathbf{x}) = x_1^2 + x_2^2 5$, $g_2(\mathbf{x}) = x_1 + 2x_2 4$, $g_3(\mathbf{x}) = -x_1$ and $g_4(\mathbf{x}) = -x_2$.
- At $\mathbf{x}^* = [2, 1]^T$ the binding constraints are g_1 and g_2 .
- $\nabla g_1(\mathbf{x}^*) = [4,2], \ \nabla g_2(\mathbf{x}^*) = [1,2], \ \nabla f(\mathbf{x}^*) = [-2,-2].$ $\nabla g_1(\mathbf{x}^*) \ \text{and} \ \nabla g_2(\mathbf{x}^*) \ \text{are LI}.$
- Take $u_1 = \frac{2}{6}$, $u_2 = \frac{2}{3}$, then
- $\nabla f(\mathbf{x}^*) + \sum_{i=1}^2 u_i \nabla g_i(\mathbf{x}^*) = \mathbf{0}$. Hence $[2, 1]^T$ satisfies the KKT condition.

- Example 2: $f(x_1, x_2) = -x_1$. subject to $x_2 - (1 - x_1)^3 \le 0$ $-x_2 \le 0$
- $\mathbf{x}^* = [1, 0]^T$ is a local minimum.
- At [1,0]^T both the constraints are binding.
- $\nabla f(\mathbf{x}^*) = [-1, 0], \ \nabla g_1(\mathbf{x}^*) = [0, 1]$ and $\nabla g_2(\mathbf{x}^*) = [0, -1].$
- Take $u_0 = 0$, $u_1 = 1$, $u_2 = 1$, then $u_0 \nabla f(\mathbf{x}^*) + \sum_{i=1}^2 u_i \nabla g_i(\mathbf{x}^*) = \mathbf{0}$.
- Since $-\nabla f(\mathbf{x}^*)$ does not lie in the cone generated by the $\nabla g_i(\mathbf{x}^*)$'s, i = 1, 2, $[1, 0]^T$ is an **FJ point** but **not** a **KKT point**.
- So KKT condition is not a necessary condition for a local minimum, although FJ conditions are necessary conditions for a local minimum.

- Theorem 8: (KKT necessary conditions) If in addition to the conditions assumed for f and g_i 's, as in the previous theorem, if $G_0 \neq \phi$ and \mathbf{x}^* is a local minimum of f then there exists nonnegative constants u_i , $i \in I$, such that $\nabla f(\mathbf{x}^*) + \sum_{i \in I} u_i \nabla g_i(\mathbf{x}^*) = \mathbf{0}$. (**)
- **Example 2:** Minimize $-x_1$. subject to

$$-x_2 - x_1 \le 0$$

 $-x_2 \le 0$
 $-x_1 < 0$

- $\nabla g_i(\mathbf{x}^*)$'s, $i \in I$ are **LD** at $\mathbf{x}^* = [0, 0]^T$ but $G_0 \neq \phi$.
- **Remark:** If $\nabla g_i(\mathbf{x}^*)$'s, $i \in I$ are **LI** then $G_0 \neq \phi$ but the converse is **not** true.

• Theorem 9:(KKT sufficient conditions) Let $f: \mathbb{R}^n \to \mathbb{R}$ be **convex** and **continuously differentiable**. Consider the problem of **minimizing** f subject to the conditions $g_i(\mathbf{x}) \leq 0, i = 1, \ldots, m$, where $q_i: \mathbb{R}^n \to \mathbb{R}$ for all i. Let $S = \{ \mathbf{x} \in \mathbb{R}^n : g_i(\mathbf{x}) < 0, i = 1, \dots, m \}$ and $\mathbf{x}^* \in S$. For all $i \in I^*$, assume that g_i is **continuous** at \mathbf{x}^* and for all $i \in I$, g_i 's are assumed to be **continuously differentiable** at x*. Let all the g_i 's be **convex functions**, so that $S = \{ \mathbf{x} \in \mathbb{R}^n : g_i(\mathbf{x}) < 0, i = 1, 2, ..., m \}$ is **convex**. Then \mathbf{x}^* is a **global minimum** of f over S if there exists non negative constants, u_i , $i \in I$ such that $\nabla f(\mathbf{x}^*) + \sum_{i \in I} u_i \nabla g_i(\mathbf{x}^*) = \mathbf{0}.$

- **Example 1 revisited:** $f(x_1, x_2) = (x_1 3)^2 + (x_2 2)^2$ subject to $x_1^2 + x_2^2 \le 5$. $x_1 + 2x_2 \le 4$. $-x_1 \le 0$ $-x_2 \le 0$.
- Check that f, g_i for all i are convex functions.
- $\mathbf{x}^* = [2, 1]^T$ is a KKT point.
- $\mathbf{x}^* = [2, 1]^T$ is the global minimum of f.

- Example 3: $f(x) = -x^2$ for $x \le 0$ = x^2 for x > 0.
- For $x^* = 0$, $\nabla f(x^*) = 0$, hence $x^* = 0$ satisfies the **KKT** conditions but x^* not be a local minimum point.
- f is clearly not convex.
- Any x^* for which $\nabla f(x^*) = 0$ is a KKT point but x^* may not be a point of local minimum.
- $f(x_1, x_2) = x_1$ subject to $(x_1 - 1)^2 + (x_2 - 1)^2 \le 1$ $(x_1 - 1)^2 + (x_2 + 1)^2 \le 1$ $x^* = [1, 0]^T$ is the **global minimum** of f but not a KKT point.

- Exercise: The KKT conditions for the linear programming problem (LPP):
 Min c^Tx
 subject to, A_{m×n}x = b, x > 0 are given by:
- $\mathbf{c}^T \mathbf{y}^T A \mathbf{v}^T = \mathbf{0}$, or $\mathbf{c}^T \mathbf{y}^T A = \mathbf{v}^T$ and $v_i x_i = 0$ for all i = 1,, n. where $\mathbf{v} = [v_1, ..., v_n]^T$ is a non negative vector, and $\mathbf{y} = [y_1, ..., y_m]^T$ is unrestricted in sign.
- The above conditions are equivalent to the dual feasibility and the complementary slackness conditions for the above LPP.
- Conclusion: x* ∈ Fea(P) is optimal for (P) if and only if x* is a KKT point of (P).
- Exercise: What are the FJ points of the above problem?
- Exercise: What are the KKT conditions for the following linear programming problem
 Min c^Tx
 subject to, Ax > b, x > 0.

• Theorem 10: (FJ necessary conditions) Let $f : \mathbb{R}^n \to \mathbb{R}$ be a continuously differentiable function. Consider the problem **P** of minimizing f subject to the conditions

$$g_i(\mathbf{x}) \leq 0, i = 1, ..., m$$
, where $g_i : \mathbb{R}^n \to \mathbb{R}$ for all i , $h_j(\mathbf{x}) = 0, j = 1, ..., I$, where $h_j : \mathbb{R}^n \to \mathbb{R}$ for all j . Let $S = Fea(P)$ and $\mathbf{x}^* \in S$. For all $i \in I^*$, g_i 's are **continuous** at \mathbf{x}^* , for all $i \in I$, g_i 's are **continuously differentiable** at \mathbf{x}^* , and for all j , h_j 's are **continuously differentiable** at \mathbf{x}^* . Then if \mathbf{x}^* is a **local minimum** of f over S there exists $u_0, u_i, i \in I$, **non negative** constants, and v_j constants (**unrestricted in sign**), not all zeros, such that $u_0 \nabla f(\mathbf{x}^*) + \sum_{i \in I} u_i \nabla g_i(\mathbf{x}^*) + \sum_{j=1}^{I} v_j \nabla h_j(\mathbf{x}^*) = \mathbf{0}$. (*)

- Example 5: Minimize $x_1 + x_2$ subject to $x_2 x_1 = 0$.
- Check that no point of the above problem satisfies the FJ conditions (as in Theorem 10).
- **Example 6:** Minimize $(x_1 1)^2 + x_2$ subject to $x_2 x_1 = 1$ $x_1 + x_2 \le 2$.
- Check that $\mathbf{x}^* = \begin{bmatrix} \frac{1}{2}, \frac{3}{2} \end{bmatrix}^T$ is a **KKT** point with u = 0, v = -1 (as in Theorem 10).

• Theorem 11: (KKT necessary conditions) Let $f: \mathbb{R}^n \to \mathbb{R}$ be a continuously differentiable function. Consider the problem **P** of minimizing f subject to the conditions

conditions
$$g_i(\mathbf{x}) \leq 0, i = 1, ..., m$$
, where $g_i : \mathbb{R}^n \to \mathbb{R}$ for all i , $h_j(\mathbf{x}) = 0, j = 1, ..., I$, where $h_j : \mathbb{R}^n \to \mathbb{R}$ for all j . Let $S = Fea(P)$ and $\mathbf{x}^* \in S$. For all $i \in I^*$, g_i 's are continuous at \mathbf{x}^* , for all $i \in I$, g_i 's are continuously differentiable at \mathbf{x}^* , and for all j , h_j 's are continuously differentiable at \mathbf{x}^* . Let $\nabla g_i(\mathbf{x}^*)$'s, $\nabla h_j(\mathbf{x}^*)$ for $i \in I, j \in \{1, ..., I\}$ be LI. Then if \mathbf{x}^* is a local minimum of f over S there exists $u_i, i \in I$, non negative constants, and v_j constants (unrestricted in sign) such that $\nabla f(\mathbf{x}^*) + \sum_{i \in I} u_i \nabla g_i(\mathbf{x}^*) + \sum_{j = 1}^{I} v_j \nabla h_j(\mathbf{x}^*) = \mathbf{0}$. (*)

- **Example 7:** Minimize $f(x_1, x_2) = x_1^3 x_1 + x_2$, subject to $(x_1 1)^2 + 2x_2 \le 1$, $x_1 x_2 = 0$.
- Check that at $\mathbf{x}^* = [0, 0]^T$, the first constraint is binding.
- But $\nabla g_1(\mathbf{x}^*) = 2[-1, 1]^T$, and $\nabla h_1(\mathbf{x}^*) = [1, -1]^T$.
- Since $\{\nabla g_1(\mathbf{x}^*)\}$, $\nabla h_1(\mathbf{x}^*)$ is **LD**, Theorem 11 is not applicable.
- Check that [0,0]^T satisfies the KKT conditions as given in
 (3), immediately after Theorem 7.
- Since f, g_1 , g_2 , g_3 is convex, where $g_2(x_1, x_2) = x_1 x_2$ and $g_3(x_1, x_2) = -x_1 + x_2$,
- $[0,0]^T$ is the global minimum of f in the given feasible region.