Белгородский Государственный Технологический Университет им. В.Г. Шухова Кафедра электротехники и автоматики

Преподаватель		
« <u> </u> »	200_	_года
Группа		
Студент		
Рабочее место № _		
13 перемычек		

ЛАБОРАТОРНАЯ РАБОТА № 5 (М 218)

Исследование режимов работы линии электропередачи переменного тока при изменении коэффициента мощности нагрузки. Резонанс токов.

Цель работы:

- 1. Изучение эксплуатационных характеристик линии электропередачи переменного тока;
- 2. Экспериментальное определение параметров нагрузки;
- 3. Исследование режимов работы ЛЭП при изменении коэффициента мощности нагрузки

Рис. 5.1

1. Определение параметров схемы замещения катушки L2

Таблица 5.1

Экспериментальные данные			Расчетные значения								
$U_{2H,} \ B$	I, A	P, Bm	S, BA	Z ₂ , Ом	$X_{L2,}$ Ом	L2, Γ _н	$R_{2\Sigma}$, $O_{\mathcal{M}}$	R_{L2} , $O_{\mathcal{M}}$	$cos\varphi_{2H}$	Ф2Н	C11 _{pe3} , мкФ

РАСЧЕТНЫЕ ФОРМУЛЫ

$$S = U_{2H}I, Z_2 = \frac{U_{2H}}{I}, \quad X_{L2} = \sqrt{Z_2^2 - R_{2\Sigma}^2}, \quad L2 = \frac{X_{L2}}{2\pi f}, \quad R_{2\Sigma} = R18 + R_{L2} = \frac{P}{I^2},$$

$$R_{L2} = R_{2\Sigma} - R18, \quad \cos \varphi_{2H} = \frac{R_{2\Sigma}}{Z_2}, \quad C11_{PE3} = \frac{X_{L2}}{2\pi f Z_2^2}, \quad R18 = 50Om.$$

2. Расчет параметров для опыта повышения соѕф до требуемого значения

Таблица 5.2

P, Bm			$cos \varphi_{2mp}$	$tg \varphi_{2H}$	$tg \varphi_{2mp}$	С11, мкФ
			0,95		_	

РАСЧЕТНАЯ ФОРМУЛА

$$C11 = \frac{P_2}{\omega U_{2H}^2} (tg_{2H} - tg_{2mp})$$
; $P_2 = P$, так как L1 и R17 шунтированы.

3. Построение графиков зависимости

$$\eta = f$$
 (C11); $I = f$ (C11); $P = f$ (C11); $\cos \varphi_2 = f$ (C11).

Результаты измерений

Таблица 5.3

C11, мкФ	4	8	12	16	20	24	28	32	36
P, Bm									
I, A									
U_{l} , B									

Результаты вычислений

Таблица 5.4

				1 000	лица Э. т
b_c					
$\frac{b_c}{\left(b_{\scriptscriptstyle L2}-b_{\scriptscriptstyle C}\right)^2}$					
Y					
$cos \varphi_2$					
$I^2 \cdot R_{1\Sigma}$					
P_2					
η					

РАСЧЕТНЫЕ ФОРМУЛЫ

$$\begin{split} g = & \frac{R_{2\Sigma}}{Z_2^2} \,, \qquad b_C = 2\pi f C 11 \,, \qquad b_{L2} = & \frac{X_{L2}}{Z_2^2} \,, \qquad Y = \sqrt{g^2 + \left(b_{L2} - b_C\right)^2} \,\,, \, \cos \varphi_2 = & \frac{g}{Y} \,, \\ R_{1\Sigma} = & R_{L1} + R 17 \,\,\text{(из ЛР №4)}, \qquad P_2 = P - P_1 = P - I^2 R_{1\Sigma} \,, \qquad \eta = & \frac{1}{1 + \frac{P_2 R_{1\Sigma}}{U_{2H}^2 \cos^2 \varphi_2}} \,. \end{split}$$

Параметры для расчета cos ϕ_2 и к.п.д.

Таблица 5.5

$R_{2\Sigma}$, $O_{\mathcal{M}}$	Z ₂ , Ом	д, См	g^2 , CM^2	b_{L2} , См

Вывод:

Порядок выполнения работы № 5 (М 218)

- 1. Убедиться, что все выключатели стенда выключены (находятся в нижнем положении).
- 2. Собрать схему рис. 5.1. (при этом С11 не подключать, а L1, R17 закоротить перемычкой).
- 3. Определить цену деления приборов. Ознакомиться с задействованными в опыте органами управления.
- 4. Доложить преподавателю о готовности к выполнению работы.
- 5. С разрешения преподавателя подать напряжение на стенд (нажать черную кнопку SB 1).
- 6. Убедиться, что тумблер ЛАТР TV 2 находится в положении $(0 \to 100 \text{ B})$, а оба переключателя в положении (0). Проверить, что SA 4 выключен (рычажок вниз). Подать напряжение на ЛАТР TV 2 (включить SA3).
- 7. Левым переключателем ЛАТР TV2 увеличивать напряжение, подаваемое на схему, до установления номинального напряжения на нагрузке L2, R18 $\underline{\text{U}}_{\text{2H}} = 110~\underline{\text{B}}$ (по прибору PV2). При необходимости подкорректировать величину напряжения правым переключателем ЛАТР TV 2. Снять показания приборов и записать в табл. 5.1.
- 8. Выключить SA 3.
- 9. Собрать полную схему рис. 5.1. Проверить, что SA 4 выключен.
- 10. С разрешения преподавателя включить SA3, перекл. «0 \rightarrow 100 В» перевести в положение «110 \rightarrow 260 В» и переключателями ЛАТР TV2 по прибору PV2 установить напряжение $U_{2H} = 110$ В.
- 11.Изменяя емкость C11, задавая значения, указанные в табл. 5.3, и поддерживая $U_{2H} = 110$ B, снять показания приборов и записать в табл. 5.3.
- 12.Выключить SA3. Нажать красную кнопку SB2. Органы управления установить в исходное положение.
- 13. Доложить преподавателю о выполнении измерений. Разобрать схему измерений и сдать рабочее место преподавателю.
- 14. Провести расчеты параметров схемы и результаты записать в табл. 5.1, 5.4 и табл. 5.5.
- 15. Рассчитать значение емкости С11, при которой в цепи наступит резонанс токов. Полученное значение записать в табл. 5.1. и сравнить с данными опыта.
- 16.Определить расчетным путем значение емкости конденсатора С11 для повышения коэффициента мощности нагрузки до значения соѕφ_{2тр}, заданного преподавателем. Полученный результат записать в табл. 5.2. и сравнить с данными табл. 5.4.
- 17. Построить зависимость $\eta = f(C11)$, I = f(C11), P = f(C11), $\cos \varphi_2 = f(C11)$.
- 18.Сделать выводы по работе.