EXHIBIT K

Abstract #12044

A priori filtering of post-operative circulating tumor DNA predicts recurrence in post- metastasectomy colorectal cancer patients without knowledge of tumor genotype

THE UNIVERSITY OF TEXAS MDAnderson Sancer Center

Michael J. Overman¹, Ariel Jaimovich², Drew Kennedy², Michelle Tan², Danielle Gavino², Stefanie Mortimer², Darya Chudova², AmirAli Talasaz², Justin Odegaard², Scott Kopetz¹ The University of Texas MD Anderson Cancer Center, Houston, TX, USA; 2Guardant Health, Inc., Redwood City, CA, USA

Introduction

- ctDNA in post-operative colorectal cancer (CRC) patients correlates with molecular residual disease and may be useful for prognostication and to guide adjuvant therapy decision
- We previously demonstrated that post-operative ctDNA is strongly associated with disease recurrence in patients with metastatic CRC undergoing curative intent surgery (p=0.004).3
- Initial studies employed clinically impractical assays indexed to individual patient specific tumor tissue-derived mutations or were confounded by non-tumor-associated somatic alterations, including variants related to clonal hematopoiesis1
- We previously demonstrated that using a highly sensitive CRC next-generation sequencing (NGS) panel, the detection of post-operative ctDNA does not require foreknowledge of known
- We developed a variant classifier to expand on this ctDNA only approach and to further differentiate tumor-derived alterations from non-tumor derived alterations with the goal of increasing specificity of ctDNA detection in post-operative CRC patients.

Methods

- CRC patients planned for hepatic metastasectomy were prospectively enrolled in an IRB approved trial (LAB10-0982).
- Pre-operative and post-operative plasma was sequenced to high depth using a 23-gene NGS panel with 96% theoretical sensitivity for CRC.3
- 51 metastatic colorectal cancer patients with both pre and post ctDNA results were recruited at a single institution (Tables 1,2). Tumor tissue was sequenced using this panel or local testing.
- ctDNA profiles from 4000 CRC pts (Guardant Health, Redwood City, CA) were used to train a variant classifier to exclude non-tumor derived alterations.
- The variant classifier was designed to identify cfDNA mutations that originate from the tumor, differentiating them from non-tumor derive

Table 1: Cohort demographics		
Number of unique patients	51	
Median age at diagnosis (range)	55 years (33-76)	
Gender	60.8% Male 39.2% Female	
Histological Grade	98% Moderately Differentiated 2% Poorly Differentiated	
Primary site	21.6% Right-sided 78.4% Left-sided	
Presentation	15.7% Metachronous 84.3% Synchronous	

Table 2: Cohort clinical features		
Neoadjuvant chemotherapy	80.4%	
Median number of resected tumors	2	
Lymph node positive primary	66.7%	
KRAS mutation positive	43%	
Median time surgery to post- operative sample (range)	18 days (13-123 days)	
Median follow-up (range)	42.7 months (4.4 - 59.4 months)	
Recurrence	72.5% (37 patients)	
Median Time to Recurrence (range)	7.8 months (1.2 – 34.5 months)	

Performance Metric	No Filter
Sensitivity (pre-operative)	84.3% (43 / 51)
Sensitivity for recurrence	86.1% (31 / 36)
Specificity for recurrence	60% (9 / 15)
Recurrence Positive Predictive Value (PPV)	77.5% (31 / 40)
Recurrence Negative Predictive Value (NPV)	54% (6 / 11)

Variant Allele Frequency distribution

Results

Performance Metric	Tissue Filtering
Sensitivity (pre-operative)	80.5% (33 / 41)
Sensitivity for recurrence	45.2% (14 / 31)
Specificity for recurrence	100% (10 / 10)
Recurrence PPV	100% (14 / 14)
Recurrence NPV	37% (10 / 27)

Classifier Filtering

Performance Metric	Classifier Filtering
Sensitivity (pre-operative)	82% (42 / 51)
Sensitivity for recurrence	50% (18 / 36)
Specificity for recurrence	100% (15 / 15)
Recurrence PPV	100% (18 / 18)
Recurrence NPV	45% (15 / 33)

Survival (months)

Conclusions

- · Recurrence prediction using post-operative somatic variant detection alone is fraught by a high clinical false
- · Many non-tumor derived mutations occur at low variant allele frequencies. However, relying solely on an allele frequency threshold to differentiate between tumor derived and non-tumor derived mutations would exclude many clinically relevant mutations.
- Filtering using tumor tissue is effective but may be clinically impractical due to added complexity and cost.
- · Filtering using a novel variant classifier, without foreknowledge of tumor genotype eliminated false positives while maintaining clinically acceptable sensitivity.
- · A priori variant classification may enable clinically feasible ctDNA diagnostics for adjuvant decision making in early-stage disease.

References

- Tie J., et al. (2016). Circulating tumor DNA analysis detects minimal residual disease and predicts
- Dish) F. et al. (2008). Circulation mutant DNA to assess tumor dynamics. Nat Mod 14/9).