গণিত (Mathematics - 2005)

$$1. \ i^2 = -1$$
 হলে $rac{i+i^{-1}}{i-i^{-1}}$ এর মান -

A. 0 B.
$$-2i$$
 C. $2i$ D. 2

 $2. \ (1,4)$ এবং (9,12) বিন্দুদ্বয়ের সংযোগকারী সরলরেখাকে 5:3 অনুপাতে অন্ত:স্থভাবে বিভক্তকারী বিন্দুর স্থানাংক -

A.
$$(6,-6)$$
 B. $(3,2)$ C. $(5,5)$ D. $(3,4)$

 $3. \ 2x = y^2 + 8y + 12$ পরাবৃত্তটির শীর্ষবিন্দুর স্থানাংক-

A.
$$(3, -4)$$
 B. $(5, 5)$ C. $(6, -6)$ D. $(-1, 1)$

 $4. \ y^2 = 4x$ এবং y = x দারা আবদ্ধ ক্ষেত্রের ক্ষেত্রফল –

A.
$$\frac{3}{8}$$
 unit² B. $\frac{8}{3}$ unit² C. 3 unit² D. 8 unit²

5. $\int_0^1 \frac{\cos^{-1} x dx}{\sqrt{1-x^2}}$ এর মান

A.
$$\frac{\pi^2}{8}$$
 B. $\frac{\pi}{2}$ C. $\frac{\pi^2}{4}$ D. $\frac{\pi^2}{16}$

 $6. \ \frac{(x-4)^2}{100} + \frac{(y-2)^2}{64} = 1$ উপবৃত্তের উৎকেন্দ্রিকতা –

A. 1 B.
$$\frac{3}{5}$$
 C. $\frac{5}{3}$ D. $\frac{4}{5}$

7. $egin{pmatrix} lpha+2 & 2 \ 8 & lpha-4 \end{pmatrix}$ ম্যাট্রিক্সটি ব্যতীক্রমী হবে যদি lpha এর মান

 $8. \ 3x-7y+2=0$ সরলরেখার উপর লম্ব এবং (1,2) বিন্দুগামী সরলরেখার সমীকরণ –

A.
$$3x + 7y - 13 = 0$$
 B. $7x + 3y - 13 = 0$ C. $7x + 3y + 13 = 0$ D. $7x - 3y - 13 = 0$

9. একটি বাক্সে ১০টি নীল ও ১৫টি লাল মার্বেল আছে। একজন বালক যেমন খুশি টেনে প্রতিবারে একটি করে পর পর দুটি মার্বেল উঠালে দুটিই একই রঙের মার্বেল হওয়ার সম্ভাবনা কত?

A.
$$\frac{1}{2}$$
 B. $\frac{4}{5}$ C. $\frac{3}{20}$ D. $\frac{7}{20}$

10. এককের জটিল ঘনমুল ω হলে $(1-\omega+\omega^2)(1+\omega-\omega^2)$ এর মান

11. কোন স্তম্ভের শীর্ষ হতে $19.5\,ms^{-1}$ বেগে খাড়া উপরের দিকে কোন কণা 5 সেকেন্ড পরে স্তম্ভের পাদদেশে পতিত হলে স্তম্ভের উচ্চতা হবে -

$$12. \int \frac{1}{\cos^2 x \sqrt{\tan x}} dx$$
 এর অনির্দিষ্ট যোগজ –

A.
$$\sqrt{\tan x} \ln(\cos^2 x)$$
 B. $\sin x \sqrt{\tan x}$ C. $2\sqrt{\tan x}$ D. $\frac{2}{3}(\tan x)^{\frac{3}{2}}$

13. যখন
$$x \to 0$$
 তখন লিমিট $\frac{\tan^{-1} x}{r}$ কত?

A. 1 B. 0 C.
$$\frac{1}{2}$$
 D. does not exist

$$14. \ f(x) = x^2 + 4$$
 এবং $g(x) = 2x - 1$ হলে $g(f(x))$ হয় –

A.
$$x^2 + 5$$
 B. $2x^2 + 7$ C. $2x^2 - 3$ D. $x^2 - 5$

$$15. \ x = -1 + i$$
 হলে $x^3 + 3x^2 + 4x + 7$ এর মান -

A.
$$6+i$$
 B. 8 C. 5 D. $9+2i$

$$16. \ x^2 - 2x + 3 = 0$$
 সমীকরণের মূলদ্বয় α, β হলে $\alpha + \beta, \alpha\beta$ মূল বিশিষ্ট সমীকরণিট হবে-

A.
$$x^2 - 5x + 6 = 0$$
 B. $3x^2 - 2x + 1 = 0$ C. $x^2 - 3x + 2 = 0$ D. $2x^2 - 3x + 1 = 0$

$$17. \sin(780^\circ)\cos(390^\circ) - \sin(330^\circ)\cos(-300^\circ)$$
 এর মান-

A. 0 B.
$$-1$$
 C. 1 D. $\frac{1}{2}$

$$\begin{vmatrix} x+y & x & y \\ x & x+z & z \\ y & z & y+z \end{vmatrix}$$
 নির্ণায়কটির মান-
A. $4xyz$ B. x^2yz C. xy^2z D. xyz^2

19. যদি $A=\begin{pmatrix} 2 & 0 \\ 0 & -3 \end{pmatrix}$, $B=\begin{pmatrix} 3 & 0 \\ 5 & 1 \end{pmatrix}$ হয় তবে AB সমান-

A.
$$4xyz$$
 B. x^2yz C. xy^2z D. xyz^2

$$19.$$
 যদি $A=egin{pmatrix} 2&0\0&-3 \end{pmatrix},\, B=egin{pmatrix} 3&0\5&1 \end{pmatrix}$ হয় তবে AB সমান-

A.
$$\begin{pmatrix} 6 & 0 \\ -15 & -3 \end{pmatrix}$$
 B. $\begin{pmatrix} 3 & -1 \\ 2 & -5 \end{pmatrix}$ C. $\begin{pmatrix} 1 & 0 \\ -2 & 15 \end{pmatrix}$ D. $\begin{pmatrix} 1 & -2 \\ 0 & 5 \end{pmatrix}$

 $20.\,$ 6 জন ছাত্র এবং 5 জন ছাত্রী থেকে 5 জনের একটি কমিটি গঠন করতে হবে যাতে অন্তত একজন ছাত্র ও একজন ছাত্রী অর্ন্তভুক্ত থাকে । কতপ্রকারে এই কমিটি গঠন করা যেতে পারে?

$$21. \ (x,y), \ (2,3)$$
 এবং $(5,1)$ একই সরলরেখায় অবস্থিত হলে

A.
$$4x - 3y - 17 = 0$$
 B. $4x + 3y - 17 = 0$ C. $3x + 4y + 17 = 0$ D. $3x + 4y - 17 = 0$

 $22.\,\,30$ থেকে 40 পর্যন্ত সংখ্যা হতে যে কোন একটিকে ইচ্ছামত নিলে সেই সংখ্যাটি মৌলিক অথবা 5 এর গুণিতক হওয়ার সম্ভাবনা

A.
$$\frac{1}{2}$$
 B. $\frac{5}{11}$ C. $\frac{6}{11}$ D. $\frac{3}{5}$

23. প্রতিবার প্রথম ও শেষে U রেখে CALCULUS শব্দটির অক্ষরগুলোকে কতভাবে সাজানো যাবে?

A. 180 B. 280 C. 90 D. 360

24. দশমিক সংখ্যা 69 কে দ্বিমিকে প্রকাশ করলে হয় –

A. 1011001 B. 1100101 C. 1000101 D. 1010101

 $25. x^2 + y^2 - 5x = 0, x^2 + y^2 + 3x = 0$ বুত্তদয়ের কেন্দ্রের দুরত্ব –

A. 4 units B. 1 unit C. $\sqrt{34}$ units D. 2 units

 $26. \cot x - \tan x = 2$ সমীকরনের সাধারণ সমাধান-

A. $\frac{n\pi}{4}$ B. $\frac{n\pi}{2}$ C. $\frac{(4n+1)\pi}{8}$ D. $\frac{(4n+1)\pi}{2}$

 $27. \ (-9,9)$ ও (5,5) বিন্দুদ্বয়ের সংযোজক সরলখাকে ব্যাস ধরে অঙ্কিত বৃত্তের সমীকরণ-

A. $x^2 + y^2 + 4x + 14y = 0$ B. $x^2 + y^2 + 4x - 14y = 0$ C. $x^2 + y^2 - 4x + 14y = 0$ D. $x^2 + y^2 - 4x - 14y = 0$

 $28.\,$ a এর যে মানের জন্য y=ax(1-x) বক্ররেখার মুলবিন্দুতে স্পর্শকটি অক্ষের সাথে 60° কোণ উৎপন্ন করে-

A. $\sqrt{3}$ B. $\frac{1}{\sqrt{3}}$ C. $\frac{\sqrt{3}}{2}$ D. 1

 $29.\ 5x-2y+4=0$ এবং 4x-5y+5=0 সররেখার ছেদবিন্দু এবং মুলবিন্দু দিয়ে গমানকারী রেখার সমীকরণ-

A. 2x - 3y = 0 B. 3x - 2y = 0 C. 2x - 7y = 0 D. 9x + 2y = 0

30. বাস্তবসংখ্যায় $|3x-2|\leq 1$ অসমতাটির সমাধান – A. $\frac{1}{3}\leq x$ or $x\leq 1$ B. $x\leq 2$ or $\frac{1}{2}\leq x$ C. $x\geq 1$ D. $x\leq 3$ or $x\geq 1$