4. Transition Path

Adv. Macro: Heterogenous Agent Models

Jeppe Druedahl, Raphaël Huleux

2025

• Last time: Stationary equilibrium (steady states)

- Last time: Stationary equilibrium (steady states)
- **Today:** Transition path (dynamic responses away from steady state)

- Last time: Stationary equilibrium (steady states)
- Today: Transition path (dynamic responses away from steady state)
- Model: Heterogeneous Agent Neo-Classical (HANC) model

- Last time: Stationary equilibrium (steady states)
- Today: Transition path (dynamic responses away from steady state)
- Model: Heterogeneous Agent Neo-Classical (HANC) model
- Code:
 - 1. Based on the **GEModelTools** package
 - 2. Example from GEModelToolsNotebooks/HANC

- Last time: Stationary equilibrium (steady states)
- Today: Transition path (dynamic responses away from steady state)
- Model: Heterogeneous Agent Neo-Classical (HANC) model
- Code:
 - 1. Based on the **GEModelTools** package
 - Example from GEModelToolsNotebooks/HANC

Literature:

- Auclert et. al. (2021), »Using the Sequence-Space Jacobian to Solve and Estimate Heterogeneous-Agent Models«
- 2. Documentation for GEModelTools
- 3. Kirkby (2017)

Outline

- 1. Introduction to transitions with the Ramsey model
- 2. Transition path in HA in partial equilibrium
- 3. Transition path in HA in general equilibrium: using sequence-space Jacobians
- 4. Fake news algorithm: computing SSJ fast
- 5. Exercises
- 6. First-order approximations of transition paths

Example I

- What do we mean by transition path?
- Permanent shock to labor supply (think increase in retirement age)
 in the macroeconomic model of the Ministry of Finance:

 Note: Permanent shock, so transition path between two different steady states

Example II

Temporary shock to public spending (i.e. fiscal stimulus during recessions)

Note: Temporary shock, so model returns to the same steady state

Ramsey: Summary

Simplified form:

$$u'(C_t^{hh}) = \beta(1 + F_K(K_t, 1) - \delta)u'(C_{t+1}^{hh})$$
$$K_t = (1 - \delta)K_{t-1} + F(K_{t-1}, 1) - C_t^{hh}$$

- Production function: $\Gamma_t K_t^{\alpha} L_t^{1-\alpha}$
- Utility function: $\frac{\left(C_t^{hh}\right)^{1-\sigma}}{1-\sigma}$
- Steady state:

$$egin{aligned} \mathcal{K}_{\mathsf{ss}} &= \left(\dfrac{\left(\dfrac{1}{eta} - 1 + \delta
ight)}{\Gamma_{\mathsf{ss}} lpha}
ight)^{\dfrac{1}{lpha - 1}} \ \mathcal{C}_{\mathsf{ss}}^{\mathit{hh}} &= (1 - \delta) \mathcal{K}_{\mathsf{ss}} + \Gamma_{\mathsf{ss}} \mathcal{K}_{\mathsf{ss}}^{lpha} - \mathcal{K}_{\mathsf{ss}} \end{aligned}$$

Ramsey: As an equation system

$$\begin{bmatrix} r_t^{K} - \alpha \Gamma_t K_{t-1}^{\alpha-1} L_t^{1-\alpha} \\ w_t - (1-\alpha) \Gamma_t K_{t-1}^{\alpha} L_t^{-\alpha} \\ r_t - (r_t^{K} - \delta) \\ A_t - K_t \\ A_t^{hh} - ((1+r_t) A_{t-1}^{hh} + w_t L_t^{hh} - C_t^{hh}) \\ C_t^{hh, -\sigma} - \beta (1+r_{t+1}) C_{t+1}^{hh, -\sigma} \\ A_t - A_t^{hh} \\ L_t - L_t^{hh} \\ \forall t \in \{0, 1, \dots\}, \text{ given } K_{-1} \end{bmatrix} = \mathbf{0}$$

Remember: Perfect foresight w.r.t aggregate variables **Unknowns**: $\{r_t^K, w_t, L_t, K_t, r_t, A_t, C_t^{hh}, A_t^{hh}\}$ for $\forall t \in \{0, 1, \dots\}$

Before solving the dynamic Ramsey model, consider a simpler example

- Before solving the dynamic Ramsey model, consider a simpler example
- Want to solve 1 eq. with 1 unknown (x is a scalar):

$$f(x)=0$$

- Before solving the dynamic Ramsey model, consider a simpler example
- Want to solve 1 eq. with 1 unknown (x is a scalar):

$$f(x)=0$$

 How to find x? First-order Taylor approximation around current guess xⁱ:

$$f(x) \approx f(x^{i}) + f'(x^{i})(x - x^{i})$$

- Before solving the dynamic Ramsey model, consider a simpler example
- Want to solve 1 eq. with 1 unknown (x is a scalar):

$$f(x)=0$$

 How to find x? First-order Taylor approximation around current guess xⁱ:

$$f(x) \approx f(x^{i}) + f'(x^{i})(x - x^{i})$$

• Set f(x) = 0 and solve for x to get:

$$x = x^{i} - \frac{f(x^{i})}{f'(x^{i})}$$

Newton's method: Given initial guess x₀ update guess for x from i to i + 1 as:

$$x^{i+1} = x^{i} - \frac{f(x^{i})}{f'(x^{i})}$$

• until $\left| f\left(x^{i}\right) \right| < \epsilon$

Newton's method: Given initial guess x_0 update guess for x from i to i+1 as:

$$x^{i+1} = x^i - \frac{f(x^i)}{f'(x^i)}$$

- until $|f(x^i)| < \epsilon$
- Can always get $f(x^i)$ by simply evaluating the function at current estimate. What about derivative $f'(x^i)$?

Newton's method: Given initial guess x₀ update guess for x from i
to i + 1 as:

$$x^{i+1} = x^{i} - \frac{f(x^{i})}{f'(x^{i})}$$

- until $|f(x^i)| < \epsilon$
- Can always get $f(x^i)$ by simply evaluating the function at current estimate. What about derivative $f'(x^i)$?
- Use numerical approximation:

$$f'(x^i) \approx \frac{f(x^i + h) - f(x^i)}{h}$$

For small h.

Newton's method: Given initial guess x₀ update guess for x from i to i + 1 as:

$$x^{i+1} = x^i - \frac{f(x^i)}{f'(x^i)}$$

- until $|f(x^i)| < \epsilon$
- Can always get $f(x^i)$ by simply evaluating the function at current estimate. What about derivative $f'(x^i)$?
- Use numerical approximation:

$$f'(x^i) \approx \frac{f(x^i + h) - f(x^i)}{h}$$

- For small h.
- How well does it work?
 - If f(x) is linear this update solves f(x) = 0 in 1 iteration
 - If f (x) is non-linear we typically need more iterations, but works well if initial guess is within basis of attraction

• Generalize to vector-valued, multivariate functions $[f_1(x_1,x_2), f_2(x_1,x_2)]' = \mathbf{f}(\mathbf{x})$ with $\mathbf{x} = (x_1,x_2)'$:

$$oldsymbol{x}^{i+1} = oldsymbol{x}^i - oldsymbol{J} \left(oldsymbol{x}^i
ight)^{-1} oldsymbol{f} \left(oldsymbol{x}^i
ight)$$

• Generalize to vector-valued, multivariate functions $[f_1(x_1,x_2),f_2(x_1,x_2)]'=\mathbf{f}(\mathbf{x})$ with $\mathbf{x}=(x_1,x_2)'$:

$$\mathbf{x}^{i+1} = \mathbf{x}^i - \mathbf{J} \left(\mathbf{x}^i \right)^{-1} \mathbf{f} \left(\mathbf{x}^i \right)$$

• Where $J(x^i)$ is the *Jacobian* of f(x) w.r.t x^i :

$$\boldsymbol{J}(\boldsymbol{x}_i) = \begin{bmatrix} \frac{\partial f_1}{\partial x_i^j} & \frac{\partial f_1}{\partial x_2^j} \\ \frac{\partial f_2}{\partial x_1^i} & \frac{\partial f_2}{\partial x_2^i} \end{bmatrix}$$

• Generalize to vector-valued, multivariate functions $[f_1(x_1,x_2),f_2(x_1,x_2)]'=\mathbf{f}(\mathbf{x})$ with $\mathbf{x}=(x_1,x_2)'$:

$$\mathbf{x}^{i+1} = \mathbf{x}^i - \mathbf{J} \left(\mathbf{x}^i \right)^{-1} \mathbf{f} \left(\mathbf{x}^i \right)$$

• Where $J(x^i)$ is the *Jacobian* of f(x) w.r.t x^i :

$$\boldsymbol{J}(\boldsymbol{x}_i) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1^i} & \frac{\partial f_1}{\partial x_2^i} \\ \frac{\partial f_2}{\partial x_1^i} & \frac{\partial f_2}{\partial x_2^i} \end{bmatrix}$$

• Can calculate this jacobian in the same way as f'(x) in previous example, but need to so for every element in x

• Generalize to vector-valued, multivariate functions $[f_1(x_1,x_2),f_2(x_1,x_2)]'=\mathbf{f}(\mathbf{x})$ with $\mathbf{x}=(x_1,x_2)'$:

$$\mathbf{x}^{i+1} = \mathbf{x}^i - \mathbf{J} \left(\mathbf{x}^i \right)^{-1} \mathbf{f} \left(\mathbf{x}^i \right)$$

• Where $J(x^i)$ is the *Jacobian* of f(x) w.r.t x^i :

$$\boldsymbol{J}(\boldsymbol{x}_i) = \begin{bmatrix} \frac{\partial f_1}{\partial x_i^j} & \frac{\partial f_1}{\partial x_2^j} \\ \frac{\partial f_2}{\partial x_1^i} & \frac{\partial f_2}{\partial x_2^i} \end{bmatrix}$$

- Can calculate this jacobian in the same way as f'(x) in previous example, but need to so for every element in x
- Go through code

• Newton's method updates Jacobian **J** in **every iteration**

- Newton's method updates Jacobian J in every iteration
- If J is expensive to calculate, this is a serious bottleneck

- Newton's method updates Jacobian J in every iteration
- If J is expensive to calculate, this is a serious bottleneck
- Broyden's method solves this issue by only calculating J around some initial point.

- Newton's method updates Jacobian J in every iteration
- If J is expensive to calculate, this is a serious bottleneck
- Broyden's method solves this issue by only calculating J around some initial point.
- Then apply following (linear) update of $f'(x^{i+1})$ at every iteration i:

$$f'(x^{i+1}) = f'(x^i) + \frac{[f(x^{i+1}) - f(x^i)] - f'(x^i)(x^{i+1} - x^i)}{x^{i+1} - x^i}$$

- 1. Guess \mathbf{x}^0 and set i=0
- 2. Calculate the Jacobian around initial point ${m J}_0$
- 3. Calculate $\mathbf{f}^i = \mathbf{f}(\mathbf{x}^i)$.
- 4. Stop if $|\mathbf{f}^i|$ below tolerance ϵ
- 5. Calculate Jacobian by

$$\mathbf{J}^{i} = \begin{cases} \mathbf{J_{0}} & \text{if } i = 0\\ \mathbf{J}^{i-1} + \frac{(\mathbf{f}^{i} - \mathbf{f}^{i-1}) - \mathbf{J}^{i-1}(\mathbf{x}^{i} - \mathbf{x}^{i-1})}{|\mathbf{x}^{i} - \mathbf{x}^{i-1}|_{2}} (\mathbf{x}^{i} - \mathbf{x}^{i-1})^{i} & \text{if } i > 0 \end{cases}$$

- 6. Update guess by $\mathbf{x}^{i+1} = \mathbf{x}^i (\mathbf{J}^i)^{-1} \mathbf{f}^i$
- 7. Increment *i* and return to step 3
- Go through code

Back to Ramsey

$$\begin{bmatrix} r_t^K - \alpha \Gamma_t K_{t-1}^{\alpha-1} L_t^{1-\alpha} \\ w_t - (1-\alpha) \Gamma_t K_{t-1}^{\alpha} L_t^{-\alpha} \\ r_t - (r_t^K - \delta) \\ A_t - K_t \\ A_t^{hh} - ((1+r_t) A_{t-1}^{hh} + w_t L_t^{hh} - C_t^{hh}) \\ C_t^{hh,-\sigma} - \beta (1+r_{t+1}) C_{t+1}^{hh,-\sigma} \\ A_t - A_t^{hh} \\ L_t - L_t^{hh} \\ \forall t \in \{0,1,\dots\}, \text{ given } K_{-1} \end{bmatrix} = \mathbf{0}$$

2 issues:

Back to Ramsey

$$\begin{bmatrix} r_t^K - \alpha \Gamma_t K_{t-1}^{\alpha-1} L_t^{1-\alpha} \\ w_t - (1-\alpha) \Gamma_t K_{t-1}^{\alpha} L_t^{-\alpha} \\ r_t - (r_t^K - \delta) \\ A_t - K_t \\ A_t^{hh} - ((1+r_t) A_{t-1}^{hh} + w_t L_t^{hh} - C_t^{hh}) \\ C_t^{hh, -\sigma} - \beta (1+r_{t+1}) C_{t+1}^{hh, -\sigma} \\ A_t - A_t^{hh} \\ L_t - L_t^{hh} \\ \forall t \in \{0, 1, \dots\}, \text{ given } K_{-1} \end{bmatrix} = \mathbf{0}$$

- 2 issues:
 - Many unknowns (8 eqs per period)

Back to Ramsey

$$\begin{bmatrix} r_t^K - \alpha \Gamma_t K_{t-1}^{\alpha-1} L_t^{1-\alpha} \\ w_t - (1-\alpha) \Gamma_t K_{t-1}^{\alpha} L_t^{-\alpha} \\ r_t - (r_t^K - \delta) \\ A_t - K_t \\ A_t^{hh} - ((1+r_t) A_{t-1}^{hh} + w_t L_t^{hh} - C_t^{hh}) \\ C_t^{hh, -\sigma} - \beta (1+r_{t+1}) C_{t+1}^{hh, -\sigma} \\ A_t - A_t^{hh} \\ L_t - L_t^{hh} \\ \forall t \in \{0, 1, \dots\}, \text{ given } K_{-1} \end{bmatrix} = \mathbf{0}$$

2 issues:

- Many unknowns (8 eqs per period)
- In fact, infinitely many since time is infinite, $T o \infty$

Truncated Ramsey, reduced vector form

$$\begin{aligned} \boldsymbol{H}(\boldsymbol{K},\boldsymbol{L},\boldsymbol{\Gamma},K_{-1}) &= \begin{bmatrix} A_t - A_t^{hh} \\ L_t - L_t^{hh} \\ \forall t \in \{0,1,\dots,T-1\} \end{bmatrix} = \boldsymbol{0} \end{aligned}$$
 where $\boldsymbol{X} = (X_0,X_1,\dots,X_{T-1}), \ A_{-1}^{hh} = K_{-1} \ \text{and}$
$$r_t^K &= \alpha \Gamma_t (K_{t-1}/L_t)^{\alpha-1} \\ w_t &= (1-\alpha)\Gamma_t (K_{t-1}/L_t)^{\alpha}$$

$$A_t &= K_t \\ r_t &= r_t^K - \delta$$

$$C_t^{hh} &= (\beta(1+r_{t+1}))^{-\sigma} C_{t+1}^{hh} \ \text{(backwards)}$$

$$L_t^{hh} &= 1$$

$$A_t^{hh} &= (1+r_t)A_{t+1}^{hh} + w_t L_t^{hh} - C_t^{hh} \ \text{(forwards)}$$

Truncation: $T < \infty$ fine when $\Gamma_t = \Gamma_{ss}$ for all $t > \underline{t}$ with $\underline{t} \ll T$

Further reduced

$$\boldsymbol{H}(\boldsymbol{K},\boldsymbol{\Gamma},K_{-1}) = \begin{bmatrix} \boldsymbol{A} - \boldsymbol{A}^{hh} \end{bmatrix} = \boldsymbol{0}$$
 where $\boldsymbol{X} = (X_0,X_1,\ldots,X_{T-1}), \ A_{-1}^{hh} = K_{-1}$ and
$$L_t = L_t^{hh} = 1$$

$$r_t^K = \alpha \Gamma_t (K_{t-1}/L_t)^{\alpha-1}$$

$$w_t = (1-\alpha)\Gamma_t (K_{t-1}/L_t)^{\alpha}$$

$$A_t = K_t$$

$$r_t = r_t^K - \delta$$

$$C_t^{hh} = (\beta(1+r_{t+1}))^{-\sigma} \ C_{t+1}^{hh} \ (\text{backwards})$$

$$A_t^{hh} = (1+r_t)A_{t-1}^{hh} + w_t L_t^{hh} - C_t^{hh} \ (\text{forwards})$$
 for $\forall t \in \{0,1,\ldots,T-1\}$

Sequence space

- Note: We have now written the model in sequence space
 - Representing an entire timepath/sequence of variables as a function of timepath/sequence of other variables

Sequence space

- Note: We have now written the model in sequence space
 - Representing an entire timepath/sequence of variables as a function of timepath/sequence of other variables
- Example: Keynesian consumption function $C_t = a + bY_t$:

$$\begin{bmatrix} C_0 & C_1 & C_2 & \dots \end{bmatrix}' = a + b \begin{bmatrix} Y_0 & Y_1 & Y_2 & \dots \end{bmatrix}'$$

$$\Leftrightarrow \mathbf{C} = a + b\mathbf{Y}$$

$$\Leftrightarrow \mathbf{C} = f(\mathbf{Y})$$

Sequence space

- Note: We have now written the model in sequence space
 - Representing an entire timepath/sequence of variables as a function of timepath/sequence of other variables
- Example: Keynesian consumption function $C_t = a + bY_t$:

$$\begin{bmatrix} C_0 & C_1 & C_2 & \dots \end{bmatrix}' = a + b \begin{bmatrix} Y_0 & Y_1 & Y_2 & \dots \end{bmatrix}'$$

$$\Leftrightarrow \mathbf{C} = a + b\mathbf{Y}$$

$$\Leftrightarrow \mathbf{C} = f(\mathbf{Y})$$

 Powerfull since it also applies non-linear, forward-looking and backwards-looking eqs:

$$C_t = a + b_0 Y_t + b_1 \log Y_{t-4} + b_2 Y_{t+4}^2$$

 $\Leftrightarrow \mathbf{C} = g(\mathbf{Y})$

Sequence space

- Note: We have now written the model in sequence space
 - Representing an entire timepath/sequence of variables as a function of timepath/sequence of other variables
- Example: Keynesian consumption function $C_t = a + bY_t$:

$$\begin{bmatrix} C_0 & C_1 & C_2 & \dots \end{bmatrix}' = a + b \begin{bmatrix} Y_0 & Y_1 & Y_2 & \dots \end{bmatrix}'$$

$$\Leftrightarrow \mathbf{C} = a + b\mathbf{Y}$$

$$\Leftrightarrow \mathbf{C} = f(\mathbf{Y})$$

 Powerfull since it also applies non-linear, forward-looking and backwards-looking eqs:

$$C_t = a + b_0 Y_t + b_1 \log Y_{t-4} + b_2 Y_{t+4}^2$$

$$\Leftrightarrow \mathbf{C} = g(\mathbf{Y})$$

- As long as we have the sequence Y we can calculate C
 - Will leverage this later when working with the HA model

Solution in sequence space

- Truncation: T=200 (transition path should have converged to ss by then)
- **Jacobian:** Find H_K by numerical differentiation

$$m{H_K} = \left[egin{array}{ccc} rac{\partial (A_0 - A_0^{hh})}{\partial K_0} & rac{\partial (A_0 - A_0^{hh})}{\partial K_1} & \cdots \\ rac{\partial (A_1 - A_1^{hh})}{\partial K_0} & \ddots & \ddots \\ dots & \ddots & \ddots \end{array}
ight]$$

- Transition path: Given Γ and K_{-1} solve $H(K, \Gamma, K_{-1})$ with non-linear equation system solver (e.g. broyden)
- Two types of perfect foresight transitions:
 - Transitory: both the initial and terminal conditions are the steady-state values
 - 2. *Permanent:* the economy moves from one state to another state (the terminal state must be a stationary one)
- Notebook: Ramsey.ipynb

Example 1: permanent from low capital

Initially away from steady state: $K_{-1} = 0.75 K_{ss}$

Example 2: transitory following technology shock

Technology shock: $\Gamma_t = 0.01 \times \Gamma_{ss} \times 0.95^t$ (i.e AR(1) with $\rho = 0.95$) (exogenous, deterministic)

Terminology: MIT-shock

Transition path in PE

Household model in a transition

Recall the household block in the HANC model

$$\begin{aligned} v_0(z_{it}, a_{it-1}) &= \max_{\{c_{it}\}_{t=0}^{\infty}} \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t u(c_{it}) \\ \text{s.t.} \\ \ell_{it} &= z_{it} \\ a_{it} &= (1 + r_t) a_{it-1} + w_t \ell_{it} - c_{it} \\ \log z_{it+1} &= \rho_z \log z_{it} + \psi_{it+1}, \ \psi_{it} \sim \mathcal{N}(\mu_{\psi}, \sigma_{\psi}), \ \mathbb{E}[z_{it}] &= 1 \\ a_{it} &\geq 0 \end{aligned}$$

Until now, we assume that $r_t = r_{ss}$ and $w_t = w_{ss}$ for all t.

Household model in a transition

Recall the household block in the HANC model

$$\begin{aligned} v_0(z_{it}, a_{it-1}) &= \max_{\{c_{it}\}_{t=0}^{\infty}} \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t u(c_{it}) \\ \text{s.t.} \\ \ell_{it} &= z_{it} \\ a_{it} &= (1 + r_t) a_{it-1} + w_t \ell_{it} - c_{it} \\ \log z_{it+1} &= \rho_z \log z_{it} + \psi_{it+1}, \ \ \psi_{it} \sim \mathcal{N}(\mu_{\psi}, \sigma_{\psi}), \ \ \mathbb{E}[z_{it}] &= 1 \\ a_{it} &\geq 0 \end{aligned}$$

Until now, we assume that $r_t = r_{ss}$ and $w_t = w_{ss}$ for all t. What if they are time varying-instead?

Household model in a transition

Recall the household block in the HANC model

$$\begin{aligned} v_0(z_{it}, a_{it-1}) &= \max_{\{c_{it}\}_{t=0}^{\infty}} \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t u(c_{it}) \\ \text{s.t.} \\ \ell_{it} &= z_{it} \\ a_{it} &= (1 + r_t) a_{it-1} + w_t \ell_{it} - c_{it} \\ \log z_{it+1} &= \rho_z \log z_{it} + \psi_{it+1}, \ \ \psi_{it} \sim \mathcal{N}(\mu_{\psi}, \sigma_{\psi}), \ \ \mathbb{E}[z_{it}] &= 1 \\ a_{it} &\geq 0 \end{aligned}$$

Until now, we assume that $r_t = r_{ss}$ and $w_t = w_{ss}$ for all t. What if they are time varying-instead?

Perfect foresight, initial and terminal conditions,

Important assumptions:

- 1. **Perfect foresight:** from t=0, households know the future path of $\{r_t, w_t\}_{t=0}^{\infty}$
- 2. **Truncation:** the model converges to a stationary state after $t \geq T$, T large
- 3. **Initial conditions:** we compute the transition from a given distribution D_0 that we already know
- Terminal condition: we compute a transition towards some stationary state where we know the value function (or its derivative)

Our goal is to compute a sequence of impulse responses

$$A_t^{hh}(\{r_{\tau},w_{\tau}\}_{\tau=0}^T=\int a_t(a,z)dD_t(a,z)\quad \forall t\in(0,T)$$

Our goal is to compute a sequence of impulse responses

$$A_t^{hh}(\{r_\tau, w_\tau\}_{\tau=0}^T = \int a_t(a, z) dD_t(a, z) \quad \forall t \in (0, T)$$

We thus need to obtain a sequence of policy functions $a_t(a, z)$ and distributions D_t . (note the t subscript!)

Our goal is to compute a sequence of impulse responses

$$A_t^{hh}(\{r_\tau, w_\tau\}_{\tau=0}^T = \int a_t(a, z) dD_t(a, z) \quad \forall t \in (0, T)$$

We thus need to obtain a sequence of policy functions $a_t(a, z)$ and distributions D_t . (note the t subscript!)

We will proceed in two steps:

Our goal is to compute a sequence of impulse responses

$$A_t^{hh}(\{r_{\tau},w_{\tau}\}_{\tau=0}^T=\int a_t(a,z)dD_t(a,z)\quad \forall t\in(0,T)$$

We thus need to obtain a sequence of policy functions $a_t(a, z)$ and distributions D_t . (note the t subscript!)

We will proceed in two steps:

1. **Backward step**: using the terminal condition on the value function, and going back in time, obtain the policy functions $a_t(a,z)$ and $c_t(a,z)$

Our goal is to compute a sequence of impulse responses

$$A_t^{hh}(\{r_\tau, w_\tau\}_{\tau=0}^T = \int a_t(a, z) dD_t(a, z) \quad \forall t \in (0, T)$$

We thus need to obtain a sequence of policy functions $a_t(a, z)$ and distributions D_t . (note the t subscript!)

We will proceed in two steps:

- 1. **Backward step**: using the terminal condition on the value function, and going back in time, obtain the policy functions $a_t(a,z)$ and $c_t(a,z)$
- 2. Forward step: using the initial condition on the distribution, and going forward in time, simulate the distribution over time $D_t(a, z)$

To solve the household problem, we need three objects:

To solve the household problem, we need three objects:

1. An **exogenous path** of $\{r_t, w_t\}_{t=0}^T$

To solve the household problem, we need three objects:

- 1. An exogenous path of $\{r_t, w_t\}_{t=0}^T$
- 2. A **terminal condition** on the value function (or its derivative) $V_T^a(a,z)$

To solve the household problem, we need three objects:

- 1. An exogenous path of $\{r_t, w_t\}_{t=0}^T$
- 2. A **terminal condition** on the value function (or its derivative) $V_T^a(a,z)$
- 3. An **initial condition** on the distribution

To solve the household problem, we need three objects:

- 1. An exogenous path of $\{r_t, w_t\}_{t=0}^T$
- 2. A **terminal condition** on the value function (or its derivative) $V_T^a(a,z)$
- 3. An initial condition on the distribution

We then do a:

To solve the household problem, we need three objects:

- 1. An exogenous path of $\{r_t, w_t\}_{t=0}^T$
- 2. A **terminal condition** on the value function (or its derivative) $V_T^a(a,z)$
- 3. An initial condition on the distribution

We then do a:

1. Backward step, using $V_T^a(a,z)$ as a terminal condition, taking into account $\{r_t, w_t\}_{t=0}^T \to \text{this gives us } c_t(a,z)$ and $a_t(a,z)$

To solve the household problem, we need three objects:

- 1. An exogenous path of $\{r_t, w_t\}_{t=0}^T$
- 2. A **terminal condition** on the value function (or its derivative) $V_T^a(a,z)$
- 3. An **initial condition** on the distribution

We then do a:

- 1. Backward step, using $V_T^a(a,z)$ as a terminal condition, taking into account $\{r_t, w_t\}_{t=0}^T \to \text{this gives us } c_t(a,z)$ and $a_t(a,z)$
- 2. Forward step, using $D_0(a,z)$ as an initial condition, and $a_t(a,z)$ \rightarrow this gives us $D_t(a,z)$

To solve the household problem, we need three objects:

- 1. An exogenous path of $\{r_t, w_t\}_{t=0}^T$
- 2. A **terminal condition** on the value function (or its derivative) $V_T^a(a,z)$
- 3. An **initial condition** on the distribution

We then do a:

- 1. Backward step, using $V_T^a(a,z)$ as a terminal condition, taking into account $\{r_t, w_t\}_{t=0}^T \to \text{this gives us } c_t(a,z)$ and $a_t(a,z)$
- 2. Forward step, using $D_0(a,z)$ as an initial condition, and $a_t(a,z)$ \rightarrow this gives us $D_t(a,z)$

We can then obtain the aggregate values of the household as usual by computing $A_t = \int a_t(a, z) dD_t(a, z)$. This is the **impulse response**!

Let's code!

Transition path in GE

Equation system

The model can be written as an **equation system**

$$\begin{bmatrix} r_t^K - F_K(K_{t-1}, L_t) \\ w_t - F_L(K_{t-1}, L_t) \\ r_t - (r_t^K - \delta) \\ A_t - K_t \\ \mathbf{D}_t - \Pi_z \underline{\mathbf{D}}_t \\ \underline{\mathbf{D}}_{t+1} - \Lambda_t \mathbf{\mathbf{D}}_t \\ A_t^{hh} - A_t \\ L_t^{hh} - L_t \\ \forall t \in \{0, 1, \dots\}, \text{ given } \underline{\mathbf{D}}_0 \end{bmatrix} = \mathbf{0}$$

where $\{\Gamma_t\}_{t>0}$ is a given technology path and $\mathcal{K}_{-1}=\int a_{t-1}d\underline{ extbf{\emph{D}}}_0$

Remember: Policies and choice transitions depend on prices

- 1. Policy function: $x_t^* = x^* \left(\left\{ r_\tau, w_\tau \right\}_{\tau \geq t} \right)$ and $X_t^{hh} = \sum_i x_{it}^* D_{it} = \mathbf{x}_t^{*\prime} \mathbf{D}_t$
- 2. Choice transition: $\Lambda_t = \Lambda\left(\left\{r_{\tau}, w_{\tau}\right\}_{\tau \geq t}\right)$

Transition path - close to verbal definition

```
For a given \underline{\mathbf{D}}_0 and a path \{\Gamma_t\}
```

- 1. Quantities $\{K_t\}$ and $\{L_t\}$,
- 2. prices $\{r_t\}$ and $\{w_t\}$,
- 3. the distributions $\{D_t\}$ over β_i , z_t and a_{t-1}
- 4. and the policy functions $\{a_t^*\}$, $\{\ell_t^*\}$ and $\{c_t^*\}$

are such that in all periods

- 1. Firms maximize profits (prices)
- 2. Household maximize expected utility (policy functions)
- 3. $m{D}_t$ is implied by simulating the household problem forwards from $m{D}_0$
- 4. Mutual fund balance sheet is satisfied
- 5. The capital market clears
- 6. The labor market clears
- 7. The goods market clears

Reduce size of equation system

- In the equation system above we have many unknowns and many equations
- Makes finding the solution with Broyden's method since Jacobian is large
 - With truncation T and N equations/unknowns J has size $(T \times N, T \times N,)$
 - ⇒ Expensive to calculate

Reduce size of equation system

- In the equation system above we have many unknowns and many equations
- Makes finding the solution with Broyden's method since Jacobian is large
 - With truncation T and N equations/unknowns J has size $(T \times N, T \times N,)$
 - ⇒ Expensive to calculate
- We can typically exploit model structure to reduce size of system
 - Did this earlier for Ramsey
 - Now more formally

Truncated, reduced vector form

$$\begin{aligned} \boldsymbol{H}(\boldsymbol{K},\boldsymbol{L},\boldsymbol{\Gamma},\underline{\boldsymbol{D}}_{\!0}) &= \begin{bmatrix} A_t^{hh} - A_t \\ L_t^{hh} - L_t \\ \forall t \in \{0,1,\ldots,T-1\} \end{bmatrix} = \boldsymbol{0} \end{aligned}$$
 where $\boldsymbol{X} = (X_0,X_1,\ldots,X_{T-1}), \ K_{-1} = \int a_{t-1}d\underline{\boldsymbol{D}}_{\!0}$ and
$$r_t^K = \alpha \Gamma_t (K_{t-1}/L_t)^{\alpha-1}$$

$$w_t = (1-\alpha)\Gamma_t (K_{t-1}/L_t)^{\alpha}$$

$$r_t = r_t^K - \delta$$

$$A_t = K_t$$

$$\boldsymbol{D}_t = \Pi_z'\underline{\boldsymbol{D}}_t$$

$$\underline{\boldsymbol{D}}_{t+1} = \Lambda_t'\boldsymbol{D}_t$$

$$A_t^{hh} = \boldsymbol{a}_t^{*'}\boldsymbol{D}_t$$

$$L_t^{hh} = \ell_t^{*'}\boldsymbol{D}_t$$

$$\forall t \in \{0,1,\ldots,T-1\}$$

Truncation: $T < \infty$ fine when $\Gamma_t = \Gamma_{ss}$ for all $t > \underline{t}$ with $\underline{t} \ll T$

DAG - Directed Acyclic Graph

- Orange square: Shocks (exogenous)
- Blue square: Unknowns (endogenous)
- Green circles: Blocks (with variables and targets inside)

 This DAG implies: Exo. input + guess ⇒ Firm block ⇒ Mutual fund ⇒HHs ⇒ Residuals

Further reduction

$$\begin{aligned} \boldsymbol{H}(\boldsymbol{K},\boldsymbol{\Gamma},\underline{\boldsymbol{D}}_0) &= \begin{bmatrix} A_t^{hh}(\boldsymbol{w}(\boldsymbol{K}),\boldsymbol{r}(\boldsymbol{K})) - K_t \\ \forall t \in \{0,1,\ldots,T-1\} \end{bmatrix} = \boldsymbol{0} \end{aligned}$$
 where $\boldsymbol{X} = (X_0,X_1,\ldots,X_{T-1}), \ K_{-1} = \int a_{t-1}d\underline{\boldsymbol{D}}_0$ and
$$\begin{aligned} L_t &= 1 \\ r_t^K &= \alpha \Gamma_t (K_{t-1}/L_t)^{\alpha-1} \\ w_t &= (1-\alpha)\Gamma_t (K_{t-1}/L_t)^{\alpha} \end{aligned}$$

$$A_t &= K_t \\ r_t &= r_t^K - \delta$$

$$\boldsymbol{D}_t &= \Pi_z'\underline{\boldsymbol{D}}_t \\ \underline{\boldsymbol{D}}_{t+1} &= \Lambda_t'\boldsymbol{D}_t \\ A_t^{hh} &= a_t^{*\prime}\boldsymbol{D}_t \end{aligned}$$

$$\Delta_t^{hh} &= a_t^{*\prime}\boldsymbol{D}_t$$

$$\forall t \in \{0,1,\ldots,T-1\}$$

Truncation: $T < \infty$ fine when $\Gamma_t = \Gamma_{ss}$ for all $t > \underline{t}$ with $\underline{t} \ll T$

Solve with Broyden

- As with standard Ramsey model from before we have:
 - Equation system with T equations (H)
 - And *T* unknowns (*K*)
- If we can calculate the jacobian of H w.r.t K we can solve with Broyden's method as before

How to compute Jacobian?

- How do we compute the Jacobian of the residuals **H** w.r.t unknowns **K**?
 - Before: Compute Jacobian of entire model using num. diff
 - Now: Use DAG structure + chain rule

How to compute Jacobian?

- How do we compute the Jacobian of the residuals H w.r.t unknowns K?
 - Before: Compute Jacobian of entire model using num. diff
 - Now: Use DAG structure + chain rule
- Example. Represent model in block form:

$$oldsymbol{w}, oldsymbol{r}^K = Firm(oldsymbol{K}), \quad oldsymbol{A}, oldsymbol{r} = MutFund(oldsymbol{K}, oldsymbol{r}^K)$$
 $oldsymbol{A}^{hh} = hh(oldsymbol{r}, oldsymbol{w}), \quad oldsymbol{A} - oldsymbol{A}^{hh} = oldsymbol{H}(oldsymbol{A}, oldsymbol{A}^{hh})$

- How do we compute the Jacobian of the residuals H w.r.t unknowns K?
 - Before: Compute Jacobian of entire model using num. diff
 - Now: Use DAG structure + chain rule
- Example. Represent model in block form:

$$oldsymbol{w}, oldsymbol{r}^K = Firm\left(oldsymbol{K}\right), \quad oldsymbol{A}, oldsymbol{r} = MutFund\left(oldsymbol{K}, oldsymbol{r}^K\right)$$
 $oldsymbol{A}^{hh} = hh\left(oldsymbol{r}, oldsymbol{w}\right), \quad oldsymbol{A} - oldsymbol{A}^{hh} = oldsymbol{H}\left(oldsymbol{A}, oldsymbol{A}^{hh}\right)$

 Collapsing the previous equations, we write the asset-market clearing condition as

$$\boldsymbol{H} = \boldsymbol{A}^{hh}(\boldsymbol{w}(\boldsymbol{K}), \boldsymbol{r}(\boldsymbol{K})) - \boldsymbol{K}$$

Let $\mathcal{J}^{y,x}$ be Jacobian of y w.r.t x. Then:

$$oldsymbol{H}_{oldsymbol{K}} = \mathcal{J}^{A^{hh},r}\mathcal{J}^{r,K} + \mathcal{J}^{A^{hh},w}\mathcal{J}^{w,K} - oldsymbol{I}$$

Let $\mathcal{J}^{y,x}$ be Jacobian of y w.r.t x. Then:

$$\mathbf{H}_{\mathbf{K}} = \mathcal{J}^{\mathbf{A}^{hh},r} \mathcal{J}^{r,K} + \mathcal{J}^{\mathbf{A}^{hh},w} \mathcal{J}^{w,K} - \mathbf{I}$$

where

$$\mathcal{J}^{A^{hh},r} = \begin{bmatrix} \frac{\partial A_0^{hh}}{\partial dr_0} & \frac{\partial A_0^{hh}}{\partial dr_0} & \cdots & \frac{\partial A_0^{hh}}{\partial dr_T} \\ \frac{\partial A_1^{hh}}{\partial dr_0} & \frac{\partial A_1^{hh}}{\partial dr_1} & \cdots & \frac{\partial A_1^{hh}}{\partial dr_T} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial A_T^{hh}}{\partial dr_0} & \frac{\partial A_T^{hh}}{\partial dr_1} & \cdots & \frac{\partial A_T^{hh}}{\partial dr_T} \end{bmatrix}$$

Let $\mathcal{J}^{y,x}$ be Jacobian of y w.r.t x. Then:

$$oldsymbol{H}_{oldsymbol{K}} = \mathcal{J}^{A^{hh},r}\mathcal{J}^{r,K} + \mathcal{J}^{A^{hh},w}\mathcal{J}^{w,K} - oldsymbol{I}$$

where

$$\mathcal{J}^{A^{hh},r} = \begin{bmatrix} \frac{\partial A_0^{hh}}{\partial dr_0} & \frac{\partial A_0^{hh}}{\partial dr_0} & \cdots & \frac{\partial A_0^{hh}}{\partial dr_T} \\ \frac{\partial A_1^{hh}}{\partial dr_0} & \frac{\partial A_1^{hh}}{\partial dr_1} & \cdots & \frac{\partial A_1^{hh}}{\partial dr_T} \\ \vdots & \ddots & \ddots & \vdots \\ \frac{\partial A_T^{hh}}{\partial dr_0} & \frac{\partial A_T^{hh}}{\partial dr_1} & \cdots & \frac{\partial A_T^{hh}}{\partial dr_T} \end{bmatrix}$$

Interpretation: row t of column s gives us the savings change at t in response to a shock on r at s.

Let $\mathcal{J}^{y,x}$ be Jacobian of y w.r.t x. Then:

$$oldsymbol{H}_{oldsymbol{K}} = \mathcal{J}^{A^{hh},r}\mathcal{J}^{r,K} + \mathcal{J}^{A^{hh},w}\mathcal{J}^{w,K} - oldsymbol{I}$$

where

$$\mathcal{J}^{A^{hh},r} = \begin{bmatrix} \frac{\partial A_0^{hh}}{\partial dr_0} & \frac{\partial A_0^{hh}}{\partial dr_0} & \cdots & \frac{\partial A_0^{hh}}{\partial dr_T} \\ \frac{\partial A_1^{hh}}{\partial dr_0} & \frac{\partial A_1^{hh}}{\partial dr_1} & \cdots & \frac{\partial A_1^{hh}}{\partial dr_T} \\ \vdots & \ddots & \ddots & \vdots \\ \frac{\partial A_1^{hh}}{\partial dr_0} & \frac{\partial A_1^{hh}}{\partial dr_1} & \cdots & \frac{\partial A_T^{hh}}{\partial dr_T} \end{bmatrix}$$

Interpretation: row t of column s gives us the savings change at t in response to a shock on r at s. Not just a computational tool, also a lot of economic intuition behind it!

- If we have individuals Jacobians, easy to compute $oldsymbol{H}_{oldsymbol{\mathcal{K}}}$
 - Also very efficient just matrix mulitiplication

- If we have individuals Jacobians, easy to compute $oldsymbol{H}_{oldsymbol{\mathcal{K}}}$
 - Also very efficient just matrix mulitiplication
- How to get individual Jacobians?
 - Some are easy: For $\mathcal{J}^{w,K}$, $\mathcal{J}^{r,K}$ we just have to diff. $r_t^K = \alpha \Gamma_t (K_{t-1}/L_t)^{\alpha-1}$, $w_t = (1-\alpha)\Gamma_t (K_{t-1}/L_t)^{\alpha}$
 - Cheap, and can often be vectorized

- If we have individuals Jacobians, easy to compute H_K
 - Also very efficient just matrix mulitiplication
- How to get individual Jacobians?
 - Some are easy: For $\mathcal{J}^{w,K}$, $\mathcal{J}^{r,K}$ we just have to diff. $r_t^K = \alpha \Gamma_t (K_{t-1}/L_t)^{\alpha-1}$, $w_t = (1-\alpha)\Gamma_t (K_{t-1}/L_t)^{\alpha}$
 - Cheap, and can often be vectorized
 - What about HH Jacobians $\mathcal{J}^{A_{hh},r}, \mathcal{J}^{A_{hh},w}$?
 - Need to compute T impulse reponse!

Bottleneck: How do we find the Jacobian?

- Naive approach: For each input i into HH block $i \in \{r, w\}$
 - For each $s \in \{0, 1, ..., T-1\}$
 - 1. Shock input i in period s by small amount Δ
 - 2. Solve household problem backwards along transition path
 - 3. Simulate households forward along transition path
 - 4. Calculate column s, row t of jacobian as $\frac{\partial \mathcal{J}_t^{A_{hh},i}}{\partial i_s} = \frac{A_t^{hh} A_{ss}^{hh}}{\Delta}$ for all t

Bottleneck: We need T^2 solution steps and simulation steps for each input $\{r, w\}$!

Bottleneck: How do we find the Jacobian?

- Naive approach: For each input i into HH block $i \in \{r, w\}$
 - For each $s \in \{0, 1, ..., T-1\}$
 - 1. Shock input i in period s by small amount Δ
 - 2. Solve household problem backwards along transition path
 - 3. Simulate households forward along transition path
 - 4. Calculate column s, row t of jacobian as $\frac{\partial \mathcal{J}_t^{Ahh,i}}{\partial i_s} = \frac{A_t^{hh} A_{ss}^{hh}}{\Delta}$ for all t

Bottleneck: We need T^2 solution steps and simulation steps for each input $\{r, w\}$!

Solution: Fake news algorithm - only need T steps! (later today)

Summary

- Conditional on being able to compute HH jacobian efficiently we can compute transition path through following steps:
 - 1. Compute stationary state of model
 - 2. Formulate transition path as DAG
 - Reduce number of unknowns and residual equations
 - Not essential, but often good idea
 - 3. Compute Jacobian of residuals \boldsymbol{H} w.r.t unknowns \boldsymbol{K}
 - 4. Formulate shock (i.e. TFP increases by 1% for 4 years)
 - 5. Use Broyden's method to solve for transition path

Let's code!

Assumptons and interpretation

Underlying assumption: No aggregate uncertainty

Assumptons and interpretation

- Underlying assumption: No aggregate uncertainty
- »Shock«, Γ: A fully unexpected non-recurrent event ≡ MIT shock
 - Unexpected before occuring at time 0
 - From time 0 and onwards agents have perfect foresight w.r.t transition dynamics

Assumptons and interpretation

- Underlying assumption: No aggregate uncertainty
- »Shock«, Γ: A fully unexpected non-recurrent event = MIT shock
 - Unexpected before occuring at time 0
 - From time 0 and onwards agents have perfect foresight w.r.t transition dynamics
- Transition path, K: Non-linear perfect foresight response to
 - 1. Initial distribution, $\underline{\boldsymbol{D}}_0 \neq \boldsymbol{D}_{ss}$ or $K_0 \neq K_{ss}$ (convergence to steady state)
 - 2. Shock, $\Gamma_t \neq \Gamma_{ss}$ for some t (i.e. impulse-response)

Fake News Algorithm

Household block:

$$\boldsymbol{Y}^{hh} = hh(\boldsymbol{X}^{hh})$$

• i.e. $\boldsymbol{Y}^{hh} = C^{hh}, A^{hh}$ and $\boldsymbol{X}^{hh} = w, r$

Household block:

$$\boldsymbol{Y}^{hh} = hh(\boldsymbol{X}^{hh})$$

- i.e. $\mathbf{Y}^{hh} = C^{hh}, A^{hh}$ and $\mathbf{X}^{hh} = w, r$
- Goal: Fast computation of

$$\mathcal{J}^{hh,} = \frac{dhh(\boldsymbol{X}_{ss}^{hh})}{d\boldsymbol{X}^{hh}}$$

Household block:

$$m{Y}^{hh} = hh(m{X}^{hh})$$

- i.e. $\boldsymbol{Y}^{hh} = C^{hh}, A^{hh}$ and $\boldsymbol{X}^{hh} = w, r$
- Goal: Fast computation of

$$\mathcal{J}^{hh,} = \frac{dhh(\boldsymbol{X}_{ss}^{hh})}{d\boldsymbol{X}^{hh}}$$

- Naive approach:
 - Shock at time s = 0, solve + simulate HH block for T periods
 - Repeat until s = T 1
 - Requires T² solution and simulation steps

Household block:

$$m{Y}^{hh} = hh(m{X}^{hh})$$

- i.e. $\mathbf{Y}^{hh} = C^{hh}, A^{hh}$ and $\mathbf{X}^{hh} = w, r$
- Goal: Fast computation of

$$\mathcal{J}^{hh,} = \frac{dhh(\boldsymbol{X}_{ss}^{hh})}{d\boldsymbol{X}^{hh}}$$

- Naive approach:
 - Shock at time s=0, solve + simulate HH block for ${\cal T}$ periods
 - Repeat until s = T 1
 - Requires T² solution and simulation steps
- Next slides: Sketch of much faster approach

Initial step

- Note that aggregate is (matrix) product of individual policy function \boldsymbol{y}_t and distribution \boldsymbol{D}_t .
- Linearize (first-order Taylor) around ss:

$$m{Y}^{hh} = (m{y}_t') \, m{D}_t$$

$$\Rightarrow rac{d \, m{Y}^{hh}}{d \, m{X}^{hh}} = \left(rac{d \, m{y}_t}{d \, m{X}^{hh}}'
ight) \, m{D}_{ss} + (m{y}_{ss}') \, rac{d \, m{D}_t}{d \, m{X}^{hh}}$$

What can we say about policy function term dy_t?

■ The heart of the fake news algorithm is a central insight that allow us to compute $d\mathbf{y}_t/d\mathbf{X}^{hh}$ efficiently

- The heart of the fake news algorithm is a central insight that allow us to compute $d\mathbf{y}_t/d\mathbf{X}^{hh}$ efficiently
- Let y_t^s be policy function at time t following a shock in period s.
 Then:

$$m{y}_t^s = egin{cases} m{y}_{ss} & t > s \ m{y}_{t+j}^{s+j} & t \leq s \end{cases}$$

- The heart of the fake news algorithm is a central insight that allow us to compute $d\mathbf{y}_t/d\mathbf{X}^{hh}$ efficiently
- Let y_t^s be policy function at time t following a shock in period s.
 Then:

$$\mathbf{y}_{t}^{s} = \begin{cases} \mathbf{y}_{ss} & t > s \\ \mathbf{y}_{t+j}^{s+j} & t \leq s \end{cases}$$

- Verbally: The response of the policy function y at time t to a shock at s is the as the response at time t + j to a shock at s + j
 - Policy function does not depend on the absolut time of shock only the relative distance between »today« and the shock, s - t.

- The heart of the fake news algorithm is a central insight that allow us to compute $d\mathbf{y}_t/d\mathbf{X}^{hh}$ efficiently
- Let y_t^s be policy function at time t following a shock in period s.
 Then:

$$\mathbf{y}_{t}^{s} = \begin{cases} \mathbf{y}_{ss} & t > s \\ \mathbf{y}_{t+j}^{s+j} & t \leq s \end{cases}$$

- Verbally: The response of the policy function y at time t to a shock at s is the as the response at time t + j to a shock at s + j
 - Policy function does not depend on the absolut time of shock only the relative distance between stoday and the shock, s-t.
- Implication: We need to only do a single backwards iteration to a shock at s = T 1.
 - Can then construct change in policy function dy_t^s/dX^{hh} for different s by shifting policy function around

Numerical illustration

Graphically. Response of c_t to income shock at s = 3, 5

Let's code!

- Can we use same logic for aggreregate Jacobian, $\mathcal{J}_{t,s} = \mathcal{J}_{t-1,s-1}$?
 - No the above is true for policy function, but not distribution
 - Distribution is backwards looking $(\boldsymbol{D}_t^s = (\boldsymbol{\Lambda}_t^s \Pi_{ss})' \boldsymbol{D}_{t-1}^s)$ so number of periods t since announcement matters

- Can we use same logic for aggreregate Jacobian, $\mathcal{J}_{t,s} = \mathcal{J}_{t-1,s-1}$?
 - No the above is true for policy function, but not distribution
 - Distribution is backwards looking $(\boldsymbol{D}_t^s = (\boldsymbol{\Lambda}_t^s \Pi_{ss})' \boldsymbol{D}_{t-1}^s)$ so number of periods t since announcement matters
- Can write aggregate Jacobian as:

$$\mathcal{J}_{t,s} = \begin{cases} \mathcal{F}_{t,s} & \text{for } t = 0, s = 0 \\ \mathcal{J}_{t-1,s-1} + \mathcal{F}_{t,s} & \text{for } t, s > 0 \end{cases}$$

- Can we use same logic for aggreregate Jacobian, $\mathcal{J}_{t,s} = \mathcal{J}_{t-1,s-1}$?
 - No the above is true for policy function, but not distribution
 - Distribution is backwards looking $(\boldsymbol{D}_t^s = (\boldsymbol{\Lambda}_t^s \Pi_{ss})' \boldsymbol{D}_{t-1}^s)$ so number of periods t since announcement matters
- Can write aggregate Jacobian as:

$$\mathcal{J}_{t,s} = \begin{cases} \mathcal{F}_{t,s} & \text{for } t = 0, s = 0 \\ \mathcal{J}_{t-1,s-1} + \mathcal{F}_{t,s} & \text{for } t, s > 0 \end{cases}$$

• where $\mathcal{F}_{t,s}$ is the **fake news** matrix.

- Can we use same logic for aggreregate Jacobian, $\mathcal{J}_{t,s} = \mathcal{J}_{t-1,s-1}$?
 - No the above is true for *policy* function, but not **distribution**
 - Distribution is backwards looking $(\boldsymbol{D}_t^s = (\boldsymbol{\Lambda}_t^s \Pi_{ss})' \boldsymbol{D}_{t-1}^s)$ so number of periods t since announcement matters
- Can write aggregate Jacobian as:

$$\mathcal{J}_{t,s} = \begin{cases} \mathcal{F}_{t,s} & \text{for } t = 0, s = 0 \\ \mathcal{J}_{t-1,s-1} + \mathcal{F}_{t,s} & \text{for } t, s > 0 \end{cases}$$

- where $\mathcal{F}_{t,s}$ is the **fake news** matrix.
- Element (t, s) in matrix \mathcal{F} for t > 0 is

$$\mathcal{F}_{t,s} = (\mathbf{y}_{ss})' \left(\mathbf{\Lambda}_{ss}'\right)^t \frac{d\mathbf{D}_1^s}{d\mathbf{X}^{hh}}$$

- Can we use same logic for aggreregate Jacobian, $\mathcal{J}_{t,s} = \mathcal{J}_{t-1,s-1}$?
 - No the above is true for policy function, but not distribution
 - Distribution is backwards looking $(\boldsymbol{D}_t^s = (\boldsymbol{\Lambda}_t^s \Pi_{ss})' \boldsymbol{D}_{t-1}^s)$ so number of periods t since announcement matters
- Can write aggregate Jacobian as:

$$\mathcal{J}_{t,s} = egin{cases} \mathcal{F}_{t,s} & ext{for } t=0, s=0 \ \mathcal{J}_{t-1,s-1} + \mathcal{F}_{t,s} & ext{for } t, s>0 \end{cases}$$

- where $\mathcal{F}_{t,s}$ is the **fake news** matrix.
- Element (t, s) in matrix \mathcal{F} for t > 0 is

$$\mathcal{F}_{t,s} = (\mathbf{y}_{ss})' \left(\mathbf{\Lambda}_{ss}'\right)^t \frac{d\mathbf{D}_1^s}{d\mathbf{X}^{hh}}$$

- Why »fake news«? $\mathcal{F}_{t,s}$ captures effect of announcing a date-s shock at time 0, and retracting the annountment at date 1
 - Policy variables revert to steady state after period 1, but distribution changes since dy₀ ≠ 0

Fake News Matrix

Can show that the fake news matrix can be computed as:

$$\mathcal{F}_{t,s} \equiv egin{cases} \left(rac{doldsymbol{y}_{s}^{s}}{doldsymbol{X}^{hh}}
ight)'oldsymbol{D}_{ss} & t=0 \ \left(oldsymbol{y}_{ss}
ight)'\left(oldsymbol{\Lambda}_{ss}'
ight)^{t}rac{doldsymbol{D}_{1}^{s}}{doldsymbol{X}^{hh}} & t>0 \end{cases}$$

Fake News Matrix

Can show that the fake news matrix can be computed as:

$$\mathcal{F}_{t,s} \equiv egin{cases} \left(rac{doldsymbol{y}_{0}^{s}}{doldsymbol{X}^{hh}}
ight)'oldsymbol{D}_{ss} & t=0 \ \left(oldsymbol{y}_{ss}
ight)'\left(oldsymbol{\Lambda}_{ss}'
ight)^{t}rac{doldsymbol{D}_{1}^{s}}{doldsymbol{X}^{hh}} & t>0 \end{cases}$$

- t = 0 element: Easy to compute when we have $d\mathbf{y}_0^s/d\mathbf{X}^{hh}$
 - Can get this from a single backwards run (T periods) due to logic from before

Fake News Matrix

Can show that the fake news matrix can be computed as:

$$\mathcal{F}_{t,s} \equiv egin{cases} \left(rac{doldsymbol{y}_{s}^{s}}{doldsymbol{X}^{hh}}
ight)'oldsymbol{D}_{ss} & t=0 \ \left(oldsymbol{y}_{ss}
ight)'\left(oldsymbol{\Lambda}_{ss}'
ight)^{t}rac{doldsymbol{D}_{s}^{s}}{doldsymbol{X}^{hh}} & t>0 \end{cases}$$

- t=0 element: Easy to compute when we have $d\mathbf{y}_0^s/d\mathbf{X}^{hh}$
 - Can get this from a single backwards run (T periods) due to logic from before
- t>0 elements: Only involves basic matrix multiplication once we have $d{\it D}_1^s/d{\it X}^{hh}$
 - Since we have derivatives of policy function for all $t, s \ d\mathbf{y}_t^s/d\mathbf{X}^{hh}$ can get $d\mathbf{D}_1^s/d\mathbf{X}^{hh}$ easily
 - Note: Not too expensive since histogram method for distribution is fast and efficient

Fake news algorithm - summary

- Auclert et. al (2021) introduce an efficient algorithm to compute aggregate jacobians for models with heterogeneous agents
 - Can compute the linearized response of aggregate consumption, savings w.r.t aggregate variables such as wages, interest rates fast

Fake news algorithm - summary

- Auclert et. al (2021) introduce an efficient algorithm to compute aggregate jacobians for models with heterogeneous agents
 - Can compute the linearized response of aggregate consumption, savings w.r.t aggregate variables such as wages, interest rates fast
- Central insight: Exploit structure of dynamic programming problems + histogram method

Fake news algorithm - summary

- Auclert et. al (2021) introduce an efficient algorithm to compute aggregate jacobians for models with heterogeneous agents
 - Can compute the linearized response of aggregate consumption, savings w.r.t aggregate variables such as wages, interest rates fast
- Central insight: Exploit structure of dynamic programming problems + histogram method
- Why did we need this?
 - Allows us to compute Jacobian of aggregate model by »chaining« together individual jacobians along DAG
 - Can then use Quasi-Newton methods to solve dynamic GE model!

Fake news algorithm - summary

- Auclert et. al (2021) introduce an efficient algorithm to compute aggregate jacobians for models with heterogeneous agents
 - Can compute the linearized response of aggregate consumption, savings w.r.t aggregate variables such as wages, interest rates fast
- Central insight: Exploit structure of dynamic programming problems + histogram method
- Why did we need this?
 - Allows us to compute Jacobian of aggregate model by »chaining« together individual jacobians along DAG
 - Can then use Quasi-Newton methods to solve dynamic GE model!
- GEModeltools does all of this »under the hood« when you compute HH Jacobians
 - You just tell GEModeltools the inputs and outputs of the household block
 - Entire algorithm is automated

Exercises

Exercises: HANCGovModel

Same model. Your choice of τ_{ss} . New questions:

- 1. Define the transition path.
- 2. Plot the DAG
- 3. What do the Jacobians look like?
- 4. Find the transition path for $G_t = G_{ss} + 0.01G_{ss}0.95^t$
- 5. What explains household savings behavior?
- 6. What happens to consumption inequality?

Summary

Summary and next week

- Today:
 - 1. The concept of a transition path
 - 2. Details of the GEModelTools package
- Homework: Work on completing the model extension exercise
- **Next week:** Linear transitions + begin working on Assignment 1

Linear transitions and aggregate

uncertainty

■ Unknowns: **U**

Unknowns: U

■ Shock: **Z**

Unknowns: U

■ Shock: **Z**

Additional variables: X

Unknowns: U

■ Shock: **Z**

Additional variables: X

Target equation system:

$$H(\boldsymbol{U},\boldsymbol{Z})=0$$

- Unknowns: U
- Shock: **Z**
- Additional variables: X
- Target equation system:

$$H(\boldsymbol{U},\boldsymbol{Z})=0$$

- In deterministic, perfect foresigh model (MIT shocks), solve $H(\boldsymbol{U},\boldsymbol{Z})=0$ by
 - 1. Calculating the Jacobian of H w.r.t \boldsymbol{U} around s.s.
 - 2. Use Newton's method to find non-linear transition given \boldsymbol{Z}
 - \Rightarrow But we have abstracted from real aggregate uncertainty

• In business cycle model common to have aggregate uncertainty

- In business cycle model common to have aggregate uncertainty
- I.e. underlying shocks (TFP, demand etc) x follow stochastic process with dist, f, $x_t \sim f$

- In business cycle model common to have aggregate uncertainty
- I.e. underlying shocks (TFP, demand etc) x follow stochastic process with dist, f, $x_t \sim f$
- This implies that all variables which are functions of x are also random.
 - If TFP is random ⇒ wages, interest rates, labor demand etc. are random until observed

- In business cycle model common to have aggregate uncertainty
- I.e. underlying shocks (TFP, demand etc) x follow stochastic process with dist, f, $x_t \sim f$
- This implies that all variables which are functions of x are also random.
 - If TFP is random ⇒ wages, interest rates, labor demand etc. are random until observed
- Implies that we need to compute expectation in Euler, NKPC and other forward looking equations:

$$u'\left(C_{t}\right) = \beta \mathbb{E}_{t}\left[R_{t+1}\left(x_{t+1}\right)u'\left(C_{t}\left(x_{t+1}\right)\right)\right]$$

- In business cycle model common to have aggregate uncertainty
- I.e. underlying shocks (TFP, demand etc) x follow stochastic process with dist, f, $x_t \sim f$
- This implies that all variables which are functions of x are also random.
 - If TFP is random ⇒ wages, interest rates, labor demand etc. are random until observed
- Implies that we need to compute expectation in Euler, NKPC and other forward looking equations:

$$u'\left(C_{t}\right) = \beta \mathbb{E}_{t}\left[R_{t+1}\left(x_{t+1}\right)u'\left(C_{t}\left(x_{t+1}\right)\right)\right]$$

- Remember: So far in the course we have generally assumed perfect foresight w.r.t aggregate variables (w, r) so no expectation
 - Implies that aggregate shocks are not random process, but rather MIT shocks

- In business cycle model common to have aggregate uncertainty
- I.e. underlying shocks (TFP, demand etc) x follow stochastic process with dist, f, $x_t \sim f$
- This implies that all variables which are functions of x are also random.
 - If TFP is random ⇒ wages, interest rates, labor demand etc. are random until observed
- Implies that we need to compute expectation in Euler, NKPC and other forward looking equations:

$$u'(C_t) = \beta \mathbb{E}_t [R_{t+1}(x_{t+1}) u'(C_t(x_{t+1}))]$$

- Remember: So far in the course we have generally assumed perfect foresight w.r.t aggregate variables (w, r) so no expectation
 - Implies that aggregate shocks are not random process, but rather MIT shocks
 - Interpretation of MIT shocks generally hard to reconcile with business cycles

 To see how the stochastic model and deterministic model are related consider the Euler with random x:

$$u'(C_t) = R\beta \mathbb{E}_t \left[u'(C_t(x_{t+1})) \right]$$

 To see how the stochastic model and deterministic model are related consider the Euler with random x:

$$u'(C_t) = R\beta \mathbb{E}_t \left[u'(C_t(x_{t+1})) \right]$$

• First-order Taylor approx. around deterministic ss (use $R\beta = 1$):

$$du'(C_t) \approx u''(C_{ss}) \cdot C'(x_{ss}) \cdot d\mathbb{E}_t x_{t+1}$$

 To see how the stochastic model and deterministic model are related consider the Euler with random x:

$$u'(C_t) = R\beta \mathbb{E}_t \left[u'(C_t(x_{t+1})) \right]$$

• First-order Taylor approx. around deterministic ss (use $R\beta = 1$):

$$du'\left(C_{t}\right) \approx u''\left(C_{ss}\right) \cdot C'\left(x_{ss}\right) \cdot d\mathbb{E}_{t}x_{t+1}$$

• Assume $x_t = \rho^x x_{t-1} + \epsilon_t^x$ with $\mathbb{E}\epsilon_t^x = 0$. Period 0 solution in deterministic/perfect foresight model:

$$du'(C_0) \approx u''(C_{ss}) \cdot C'(x_{ss}) \cdot \rho^x d\epsilon_0^x$$

 To see how the stochastic model and deterministic model are related consider the Euler with random x:

$$u'(C_t) = R\beta \mathbb{E}_t \left[u'(C_t(x_{t+1})) \right]$$

• First-order Taylor approx. around deterministic ss (use $R\beta = 1$):

$$du'\left(C_{t}\right) \approx u''\left(C_{ss}\right) \cdot C'\left(x_{ss}\right) \cdot d\mathbb{E}_{t}x_{t+1}$$

• Assume $x_t = \rho^x x_{t-1} + \epsilon_t^x$ with $\mathbb{E}\epsilon_t^x = 0$. Period 0 solution in deterministic/perfect foresight model:

$$du'(C_0) \approx u''(C_{ss}) \cdot C'(x_{ss}) \cdot \rho^x d\epsilon_0^x$$

Stochastic model we use:

$$d\mathbb{E}_0 x_1 = d\mathbb{E}_0 \left(\rho^{\mathsf{x}} x_0 + \epsilon_1^{\mathsf{x}} \right)$$

= $\rho^{\mathsf{x}} d\mathbb{E}_0 x_0 = \rho^{\mathsf{x}} d\epsilon_0^{\mathsf{x}} = dx_1$

 To see how the stochastic model and deterministic model are related consider the Euler with random x:

$$u'(C_t) = R\beta \mathbb{E}_t \left[u'(C_t(x_{t+1})) \right]$$

• First-order Taylor approx. around deterministic ss (use $R\beta = 1$):

$$du'(C_t) \approx u''(C_{ss}) \cdot C'(x_{ss}) \cdot d\mathbb{E}_t x_{t+1}$$

• Assume $x_t = \rho^x x_{t-1} + \epsilon_t^x$ with $\mathbb{E}\epsilon_t^x = 0$. Period 0 solution in deterministic/perfect foresight model:

$$du'(C_0) \approx u''(C_{ss}) \cdot C'(x_{ss}) \cdot \rho^x d\epsilon_0^x$$

Stochastic model we use:

$$d\mathbb{E}_0 x_1 = d\mathbb{E}_0 \left(\rho^{\mathsf{x}} x_0 + \epsilon_1^{\mathsf{x}} \right)$$
$$= \rho^{\mathsf{x}} d\mathbb{E}_0 x_0 = \rho^{\mathsf{x}} d\epsilon_0^{\mathsf{x}} = dx_1$$

 Same result! Aggregate uncertainty does not matter to first-order when linearizing w.r.t aggregate shock

 Insight: The IRF from an MIT shock is equivalent to the IRF in a model with aggregate risk, which is linearized in the aggregate variables (Boppart et. al., 2018)

- Insight: The IRF from an MIT shock is equivalent to the IRF in a model with aggregate risk, which is linearized in the aggregate variables (Boppart et. al., 2018)
- What about high order?

- Insight: The IRF from an MIT shock is equivalent to the IRF in a model with aggregate risk, which is linearized in the aggregate variables (Boppart et. al., 2018)
- What about high order?
- Approximate Euler to second order:

$$du'(C_{t}) \approx u''(C_{ss}) \cdot C'(x_{ss}) \cdot d\mathbb{E}_{t} x_{t+1} + \frac{1}{2} u'''(C_{ss}) C''(x_{ss}) \cdot \mathbb{E}_{t} (x_{t+1} - x_{ss})^{2}$$
$$u''(C_{ss}) \cdot C'(x_{ss}) \cdot d\mathbb{E}_{t} x_{t+1} + \frac{1}{2} u'''(C_{ss}) C''(x_{ss}) \cdot \sigma_{x,t}^{2}$$

- Insight: The IRF from an MIT shock is equivalent to the IRF in a model with aggregate risk, which is linearized in the aggregate variables (Boppart et. al., 2018)
- What about high order?
- Approximate Euler to second order:

$$du'(C_{t}) \approx u''(C_{ss}) \cdot C'(x_{ss}) \cdot d\mathbb{E}_{t} x_{t+1} + \frac{1}{2} u'''(C_{ss}) C''(x_{ss}) \cdot \mathbb{E}_{t} (x_{t+1} - x_{ss})^{2}$$
$$u''(C_{ss}) \cdot C'(x_{ss}) \cdot d\mathbb{E}_{t} x_{t+1} + \frac{1}{2} u'''(C_{ss}) C''(x_{ss}) \cdot \sigma_{x,t}^{2}$$

- In deterministic model $\sigma_{x,t}^2 = 0$ not true in stochastic model!
 - Models deviate once we go beyond 1st order approximation (linearization)

- Insight: The IRF from an MIT shock is equivalent to the IRF in a model with aggregate risk, which is linearized in the aggregate variables (Boppart et. al., 2018)
- What about high order?
- Approximate Euler to second order:

$$\begin{split} \textit{du'}\left(\textit{C}_{t}\right) \approx &\textit{u''}\left(\textit{C}_{ss}\right) \cdot \textit{C'}\left(\textit{x}_{ss}\right) \cdot \textit{d}\mathbb{E}_{t}\textit{x}_{t+1} + \frac{1}{2}\textit{u'''}\left(\textit{C}_{ss}\right) \textit{C''}\left(\textit{x}_{ss}\right) \cdot \mathbb{E}_{t}\left(\textit{x}_{t+1} - \textit{x}_{ss}\right)^{2} \\ &\textit{u''}\left(\textit{C}_{ss}\right) \cdot \textit{C'}\left(\textit{x}_{ss}\right) \cdot \textit{d}\mathbb{E}_{t}\textit{x}_{t+1} + \frac{1}{2}\textit{u'''}\left(\textit{C}_{ss}\right) \textit{C''}\left(\textit{x}_{ss}\right) \cdot \sigma_{\textit{x},t}^{2} \end{split}$$

- In deterministic model $\sigma_{x,t}^2 = 0$ not true in stochastic model!
 - Models deviate once we go beyond 1st order approximation (linearization)
- Still extremely usefull though we may solve deterministic models to first-order and interpret as models with aggregate uncertainty
 - How do we linearize models numerically?

Linearized IRFs

Solve for IRfs for unknowns using first-order approximation

$$H(\boldsymbol{U}, \boldsymbol{Z}) = 0 \Rightarrow H_U d\boldsymbol{U} + H_{\boldsymbol{Z}} d\boldsymbol{Z} = 0 \Leftrightarrow d\boldsymbol{U} = \underbrace{-H_U^{-1} H_z}_{=G_U} d\boldsymbol{Z}$$

- We can find H_U and H_Z as before using fake-news
- Limitations:
 - Imprecise for large shocks
 - Imprecise in models with aggregate non-linearities
 - No real aggregate uncertainty (precautionary savings w.r.t. aggregate shocks, etc)

- **Shocks:** Write the shocks as an $MA(\infty)$ with coefficients $d\mathbf{Z}_s$ for $s \in \{0, 1, ...\}$ driven by the innovation ϵ_t .
 - EX: If shock **Z** follows an AR(1) then $d\mathbf{Z}_s = \rho^{s-t} \epsilon_{t-s}$

- **Shocks:** Write the shocks as an $MA(\infty)$ with coefficients $d\mathbf{Z}_s$ for $s \in \{0, 1, ...\}$ driven by the innovation ϵ_t .
 - EX: If shock **Z** follows an AR(1) then $d\mathbf{Z}_s = \rho^{s-t} \epsilon_{t-s}$
- Linearized simulation:

- **Shocks:** Write the shocks as an $MA(\infty)$ with coefficients $d\mathbf{Z}_s$ for $s \in \{0, 1, ...\}$ driven by the innovation ϵ_t .
 - EX: If shock **Z** follows an AR(1) then $d\mathbf{Z}_s = \rho^{s-t} \epsilon_{t-s}$
- Linearized simulation:
 - 1. Draw time series of innovations, $ilde{\epsilon}_t$

- **Shocks:** Write the shocks as an $MA(\infty)$ with coefficients $d\mathbf{Z}_s$ for $s \in \{0, 1, \dots\}$ driven by the innovation ϵ_t .
 - EX: If shock **Z** follows an AR(1) then $d\mathbf{Z}_s = \rho^{s-t} \epsilon_{t-s}$
- Linearized simulation:
 - 1. Draw time series of innovations, $\tilde{\epsilon}_t$
 - 2. Calculate the time series of shocks as $d\tilde{Z}_t = \sum_{s=0}^{T-1} dZ_s \tilde{\epsilon}_{t-s}$ Note: $dZ_s \tilde{\epsilon}_{t-s} =$ effect of shock s periods ago today

We can also simulate the economy following a sequence of shocks:

- **Shocks:** Write the shocks as an $MA(\infty)$ with coefficients $d\mathbf{Z}_s$ for $s \in \{0, 1, ...\}$ driven by the innovation ϵ_t .
 - EX: If shock **Z** follows an AR(1) then $d\mathbf{Z}_s = \rho^{s-t} \epsilon_{t-s}$
- Linearized simulation:
 - 1. Draw time series of innovations, $\tilde{\epsilon}_t$
 - 2. Calculate the time series of shocks as $d\tilde{Z}_t = \sum_{s=0}^{T-1} dZ_s \tilde{\epsilon}_{t-s}$ Note: $dZ_s \tilde{\epsilon}_{t-s} =$ effect of shock s periods ago today
 - 3. Calculate the time series of other aggregate variables as

$$d\tilde{\boldsymbol{X}}_t = \sum_{s=0}^{T-1} d\boldsymbol{X}_s \tilde{\boldsymbol{\epsilon}}_{t-s}$$

where dX_s is the IRF to a *unit-shock* after s periods (just needs jacobian of X w.r.t shocks Z)

Simulating a time-series using the linearized solution

We can also simulate the economy following a sequence of shocks:

- **Shocks:** Write the shocks as an $MA(\infty)$ with coefficients $d\mathbf{Z}_s$ for $s \in \{0, 1, ...\}$ driven by the innovation ϵ_t .
 - EX: If shock **Z** follows an AR(1) then $d\mathbf{Z}_s = \rho^{s-t} \epsilon_{t-s}$
- Linearized simulation:
 - 1. Draw time series of innovations, $\tilde{\epsilon}_t$
 - 2. Calculate the time series of shocks as $d\tilde{Z}_t = \sum_{s=0}^{T-1} dZ_s \tilde{\epsilon}_{t-s}$ Note: $dZ_s \tilde{\epsilon}_{t-s} =$ effect of shock s periods ago today
 - 3. Calculate the time series of other aggregate variables as

$$d\tilde{\boldsymbol{X}}_t = \sum_{s=0}^{T-1} d\boldsymbol{X}_s \tilde{\boldsymbol{\epsilon}}_{t-s}$$

where dX_s is the IRF to a *unit-shock* after s periods (just needs jacobian of X w.r.t shocks Z)

• Intuition: Sum of first order effects from all previous shocks

Calculating moments - variance

- Implications of prior slide:
 - Very easy to calculate business cycle moments

Calculating moments - variance

- Implications of prior slide:
 - Very easy to calculate business cycle moments
- Steps (variance of C) (1 shock):
 - 1. Formulate shock to e.g. public spending, $\{dG_t\}_{t=0}^T = d\mathbf{G}$ (could be an AR(1))
 - 2. Linearize and solve model to get IRF of $\{dC_t\}_{t=0}^T = d\mathbf{C}$ w.r.t $\{dG_t\}$
 - 3. Calculate variance $var(dC_t) = \sum_{s=0}^{T-1} (dC_s)^2$

Calculating moments - variance

- Implications of prior slide:
 - Very easy to calculate business cycle moments
- Steps (variance of C) (1 shock):
 - 1. Formulate shock to e.g. public spending, $\left\{dG_t\right\}_{t=0}^T=d\textbf{\textit{G}}$ (could be an AR(1))
 - 2. Linearize and solve model to get IRF of $\{dC_t\}_{t=0}^T = d\mathbf{C}$ w.r.t $\{dG_t\}$
 - 3. Calculate variance $var(dC_t) = \sum_{s=0}^{T-1} (dC_s)^2$
- Same principle with more shocks

Calculating moments - covariance

Covariances:

$$\operatorname{cov}(dC_t, dY_{t+k}) = \sum_{i \in \mathcal{Z}} \sigma_i^2 \sum_{s=0}^{T-1-k} dC_s^i dY_{s+k}^i$$

Calculating moments - covariance

Covariances:

$$cov(dC_t, dY_{t+k}) = \sum_{i \in \mathcal{Z}} \sigma_i^2 \sum_{s=0}^{T-1-k} dC_s^i dY_{s+k}^i$$

Covariance decomposition:

$$\frac{\text{contribution from one shock}}{\text{contributions from all shocks}} = \frac{\sigma_j^2 \sum_{s=0}^{T-1-k} dC_s^j dY_{s+k}^j}{\sum_{i \in \mathcal{Z}} \sigma_i^2 \sum_{s=0}^{T-1-k} dC_s^i dY_{s+k}^i}$$

Solving HA model with aggregate risk (advanced)

- To solve models with aggregate risk we need to write them in state-space form instead of sequence-space
 - Think of HA household problem that is always in state-space form
 - Endogenous variables c_t , a_t as function of current states a_{t-1} , z_t

Solving HA model with aggregate risk (advanced)

- To solve models with aggregate risk we need to write them in state-space form instead of sequence-space
 - Think of HA household problem that is always in state-space form
 - Endogenous variables c_t , a_t as function of current states a_{t-1} , z_t
- Aggregate stochastic variables: Z follow some known process with innovations ε. State space form: RHS is what is known today

$$\left[egin{array}{c} oldsymbol{U}_t \ oldsymbol{Z}_t \end{array}
ight] = \mathcal{M}\left(\left[egin{array}{c} oldsymbol{U}_{t-1} \ oldsymbol{Z}_{t-1} \end{array}
ight], oldsymbol{\epsilon}_t
ight)$$

 \neq perfect foresight wrt. future agg. variables in sequence-space

Solving HA model with aggregate risk (advanced)

- To solve models with aggregate risk we need to write them in state-space form instead of sequence-space
 - Think of HA household problem that is always in state-space form
 - Endogenous variables c_t , a_t as function of current states a_{t-1} , z_t
- Aggregate stochastic variables: Z follow some known process with innovations ε. State space form: RHS is what is known today

$$\left[egin{array}{c} oldsymbol{U}_t \ oldsymbol{Z}_t \end{array}
ight] = \mathcal{M}\left(\left[egin{array}{c} oldsymbol{U}_{t-1} \ oldsymbol{Z}_{t-1} \end{array}
ight], oldsymbol{\epsilon}_t
ight)$$

 \neq perfect foresight wrt. future agg. variables in sequence-space

 In standard NK model: no backward looking eqs. so number of state variables = Number of shocks

Example: Krussel-Smith

- What if we add heterogeneous agents? Canonical example: The Krussel-Smith model (1998)
 - HANC with aggregate uncertainty (TFP shocks)

Example: Krussel-Smith

- What if we add heterogeneous agents? Canonical example: The Krussel-Smith model (1998)
 - HANC with aggregate uncertainty (TFP shocks)
- Recursive formulation of household problem:

$$\begin{split} v(\boldsymbol{D}_t, \Gamma_t, z_{it}, a_{it-1}) &= \max_{a_{it}, c_{it}} u(c_{it}) + \beta \mathbb{E}_t \left[v(\boldsymbol{D}_{t+1}, \Gamma_{t+1}, z_{it+1}, a_{it}) \right] \\ \text{s.t.} \\ K_{t-1} &= \int a_{it-1} d\boldsymbol{D}_t \\ r_t &= \alpha \Gamma_t K_{t-1}^{\alpha-1} - \delta \\ w_t &= (1-\alpha) \Gamma_t K_{t-1}^{\alpha} \\ a_{it} + c_{it} &= (1+r_t) a_{it-1} + w_t z_{it} \\ \log z_{it+1} &= \rho_z \log z_{it} + \psi_{it+1}, \ \ \psi_{it} \sim \mathcal{N}(\mu_{\psi}, \sigma_{\psi}), \ \ \mathbb{E}[z_{it}] = 1 \\ a_{it} &> 0. \end{split}$$

Example: Krussel-Smith

- What if we add heterogeneous agents? Canonical example: The Krussel-Smith model (1998)
 - HANC with aggregate uncertainty (TFP shocks)
- Recursive formulation of household problem:

$$\begin{split} v(\boldsymbol{D}_t, \Gamma_t, z_{it}, a_{it-1}) &= \max_{a_{it}, c_{it}} u(c_{it}) + \beta \mathbb{E}_t \left[v(\boldsymbol{D}_{t+1}, \Gamma_{t+1}, z_{it+1}, a_{it}) \right] \\ \text{s.t.} \\ K_{t-1} &= \int a_{it-1} d\boldsymbol{D}_t \\ r_t &= \alpha \Gamma_t K_{t-1}^{\alpha-1} - \delta \\ w_t &= (1-\alpha) \Gamma_t K_{t-1}^{\alpha} \\ a_{it} + c_{it} &= (1+r_t) a_{it-1} + w_t z_{it} \\ \log z_{it+1} &= \rho_z \log z_{it} + \psi_{it+1}, \ \ \psi_{it} \sim \mathcal{N}(\mu_{\psi}, \sigma_{\psi}), \ \ \mathbb{E}[z_{it}] = 1 \\ a_{it} &\geq 0, \end{split}$$

• D_t is a state variable \Rightarrow Massive state space

Comparisons

- State-space approach with linearization: Ahn et al. (2018);
 Bayer and Luetticke (2020); Bhandari et al. (2023); Bilal (2023)
 Con:
 - 1. Harder to implement
 - 2. Valuable to be able to interpret Jacobians

Pro:

- 1. Easier path to 2nd and higher order approximations
- Global solution: The distribution of households is a state variable for each household ⇒ explosion in complexity
 - 1. Original: Krusell and Smith (1997, 1998); Algan et al. (2014);
 - Deep learning: Fernández-Villaverde et al. (2021); Maliar et al. (2021); Han et al. (2021); Kase et al. (2022); Azinovic et al. (2022); Gu et al. (2023); Chen et al. (2023)
- Discrete aggregate risk: Lin and Peruffo (2023)