Language and Statistics II

Lecture 9: Log-linear models (learning)

Quick Review

Input/observable space \mathcal{X}

Output/label space \mathcal{Y}

Feature function: $f_j: \mathcal{X} \times \mathcal{Y} \to \mathbb{R} \quad (\forall j \in \{1, 2, ..., d\})$ Feature vector function: $\mathbf{f}: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}^d$

Weight vector:
$$oldsymbol{ heta} = egin{bmatrix} heta_1 \\ heta_2 \\ heta_2 \\ heta_d \end{bmatrix}$$

Score:
$$\boldsymbol{\theta}^{\top}\mathbf{f}(x,y) \quad (\forall x \in \mathcal{X}, \forall y \in \mathcal{Y})$$

Positive score:
$$\exp\left(\boldsymbol{\theta}^{\top}\mathbf{f}(x,y)\right) \quad (\forall x \in \mathcal{X}, \forall y \in \mathcal{Y})$$

Probability:
$$\exp\left(\boldsymbol{\theta}^{\top}\mathbf{f}(x,y)\right) / z(x,\boldsymbol{\theta}) \quad (\forall x \in \mathcal{X}, \forall y \in \mathcal{Y})$$

Maximum Likelihood Estimation

Given a model family, pick the parameters to maximize
 p(data | model)

- •Examples:
 - •Gaussian:

$$\hat{\mu} = \sum_{i=1}^{N} x_i / N$$

$$\hat{\sigma} = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \hat{\mu})^2}{N}}$$

$$\hat{p} = \frac{N_{\text{success}}}{N}$$

closed form solution

- •Bernoulli:
- •Multinomial:

$$\hat{p}(x) = \sum_{i=1}^{N} \delta(x_i, x) / N = N_x / N$$

Maximum Likelihood Estimation

Given a model family, pick the parameters to maximize
 p(data | model)

- •Examples:
 - •Gaussian:

$$\hat{\mu} = \sum_{i=1}^{N} x_i / N$$

$$\hat{\sigma} = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \hat{\mu})^2}{N}}$$

$$\hat{p} = \frac{N_{\text{success}}}{N}$$

closed form solution

- •Bernoulli:
- •Multinomial:

$$\hat{p}(x) = \sum_{i=1}^{N} \delta(x_i, x) / N = N_x / N$$

−n-gram model? HMM?

Data

Maximum Likelihood (Multinomial)

Using the Chain Rule

Pr(Color, Shape, Size) = Pr(Color) • Pr(Shape | Color) • Pr(Size | Color, Shape)

Add an Independence Assumption?

Pr(Color, Shape, Size) = Pr(Color) • Pr(Shape) • Pr(Size | Color, Shape)

Reverse Arrows?

Pr(Color, Shape, Size) = Pr(Size) • Pr(Shape | Size) • Pr(Color | Size)

Strong Independence?

large	0.375
small	0.625

4 df

This Is Hard!

- Different factorizations affect
 - Model size (e.g., number of parameters or df)
 - Complexity of inference
 - "Interpretability"
 - Goodness of fit to the data
 - Generalization
 - Smoothing methods
- •How would it change if we used log-linear models?
- Arguable: some major "innovations" in NLP involved really good choices about independence assumptions, directionality, and smoothing!

A Log-Linear Shape Model

Desideratum: after we pick features, picking the weights should be the computer's job!

Some Intuitions

- Simpler models are better
 - •(E.g., fewer degrees of freedom)
 - •Why?
- Want to fit the data
- Don't want to assume that an unobserved event has probability 0

Occam's Razor

One should not increase, beyond what is necessary, the number of entities required to explain anything.

Uniform Model

small	0.083	0.083	0.083
small	0.083	0.083	0.083
large	0.083	0.083	0.083
large	0.083	0.083	0.083

Constraint: Pr(small) = 0.625

small	0.104	0.104	0.104	0.625
small	0.104	0.104	0.104	0.023
large	0.063	0.063	0.063	,
large	0.063	0.063	0.063	

Where did the constraint come from?

Constraint: $Pr(small, \triangle) = 0.048$

0.048 0.024 0.144 0.144 small 0.625 small 0.024 0.144 0.144 0.063 0.063 0.063 large large 0.063 0.063 0.063

Constraint: Pr(large,) = 0.125

0.048 0.024 0.144 0.144 small 0.625 small 0.024 0.144 0.144 0.042 0.042 0.042 large large 0.083 0.083

0.125

"As Evenly As Possible" (given the constraints)

Shannon Entropy Review

- Measurement on a distribution
- •Value in $[0, \log |\mathcal{X}|]$
- High entropy → uniform
- Low entropy → determinism
- •Concave in p

Shannon Entropy Review

$$\max_{p} H(p) \equiv -\sum_{y} p(y) \log p(y) \equiv \mathbb{E}_{p(Y)}[-\log p(Y)]$$
such that
$$\sum_{y} p(y) = 1$$

$$\forall y, p(y) \ge 0$$

$$\forall j, \underbrace{\mathbb{E}_{p(Y)}[f_{j}(Y)]}_{y} = \underbrace{\alpha_{j}}_{\sum_{i=1}^{N}} f_{j}(y_{i})$$

Max Ent

Questions Worth Asking

- •Does a solution always exist?
- •What to do if it doesn't?
- •How to find the solution?

$$p^* = \arg\max_p H(p)$$

such that

$$\sum_{x \in \mathcal{X}} p(x) = 1,$$

$$(\forall x \in \mathcal{X}) \quad p(x) \ge 0$$

$$(\forall j \in \{1, 2, ..., d\}) \quad \sum_{x \in \mathcal{X}} p(x) f_j(x) = \frac{1}{N} \sum_{i=1}^{N} f_j(x_i)$$

$$p^* = \arg\max_{p \in \mathcal{P}} H(p)$$

 $\mathcal{P} = \{p : \text{all empirical constraints satisfied}\}$

$$p^* = \arg\max_{p \in \mathcal{P}} H(p)$$

 $\mathcal{P} = \{p : \text{all empirical constraints satisfied}\}$

 $Q = \{q : \text{log-linear models with features } \mathbf{f} \}$

Claim 1

If $\mathcal{P} \cap \mathcal{Q}$ is nonempty, it consists of only p^* , which is unique.

$$p^* = \arg\max_{p \in \mathcal{P}} H(p)$$

 $\mathcal{P} = \{p : \text{all empirical constraints satisfied}\}$

 $Q = \{q : \text{log-linear models with features } \mathbf{f} \}$

Claim 2

If $\mathcal{P} \cap \mathcal{Q}$ is nonempty, it consists of only \hat{q} , which is unique.

$$p^* = \arg\max_{p \in \mathcal{P}} H(p)$$

$$\mathcal{P} = \{p : \text{all empirical constraints satisfied}\}$$

 $Q = \{q : \text{log-linear models with features } \mathbf{f}\}$

$$\hat{q} = \arg\max_{q \in \mathcal{Q}} \prod_{i=1}^{N} q(x_i)$$

Result

Maximum entropy

(with empirical constraints on **f**)

Maximum likelihood

(over log-linear models on **f**)

The Magic of Lagrange Multipliers

Mathematical Magic

For details: see handout on course page.

- 1. Use Lagrangean multipliers (one per constraint).
- 2. Take the gradient, set equal to zero.
- 3. Algebra ...
- 4. Voilà! Maximum likelihood problem!

Additional Point

•If the constraints are empirical, then they are satisfiable (solution exists).

•So there is a unique solution to:

Max Ent = Log-linear MLE

Slightly More General View

•Instead of "maximize entropy," can describe this as "minimize divergence" to a **base** distribution p_0 (which happens so far to be uniform, but needn't have been).

$$D(p||p_0) = \sum_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{p_0(x)}$$

Everything goes through pretty much the same.

Training the Weights

- •Old answer: "iterative scaling"
 - Specialized method for this problem
 - Later versions: Generalized IS (Darroch and Ratliff, 1972) and Improved IS (Della Pietra, Della Pietra, and Lafferty, 1995)
- More recent answers:
 - •It's unconstrained, convex optimization!
 - •See Malouf (2002) for comparison.
 - •Or use stochastic gradient descent.
- •A newer answer:
 - Dualize the problem and optimize "p" instead, using exponentiated gradient.

Training Log-Linear Models

$$\mathcal{L}(\boldsymbol{\theta}) = \sum_{i=1}^{n} \boldsymbol{\theta}^{\top} \mathbf{f}(x_i, y_i) - \log z(x_i, \boldsymbol{\theta})$$

$$= \boldsymbol{\theta}^{\top} \sum_{i=1}^{n} \mathbf{f}(x_i, y_i) - \sum_{i=1}^{n} \log z(x_i, \boldsymbol{\theta})$$

$$\frac{\partial \mathcal{L}}{\partial \theta_j} = \sum_{i=1}^{n} f_j(x_i, y_i) - \sum_{i=1}^{n} \frac{\partial \log z(x_i, \boldsymbol{\theta})}{\partial \theta_j}$$

$$= \sum_{i=1}^{n} f_j(x_i, y_i) - \sum_{i=1}^{n} \mathbb{E}_{p(Y|x_i, \boldsymbol{\theta})}[f_j(x_i, Y)]$$

Maximum Mutual Information (Or, the speech people had the same idea!)

$$I(X;Y) = \mathbb{E}_{p(X,Y)} \left[\log \frac{p(X,Y)}{p(X) \cdot p(Y)} \right]$$
Assume empirical dist. $\approx \mathbb{E}_{\tilde{p}(X,Y)} \left[\log \frac{p(X,Y)}{p(X) \cdot p(Y)} \right]$

$$= \mathbb{E}_{\tilde{p}(X,Y)} \left[\log \frac{p(Y \mid X)}{p(Y)} \right]$$

Assume p(Y) is uniform. $\approx \mathbb{E}_{\tilde{p}(X,Y)} \log p(Y \mid X)$

$$= \frac{1}{N} \sum_{i=1}^{N} \log p(y_i \mid x_i)$$

Also Related: Conditional Estimation

- •Even if the model doesn't take the form $p(y \mid x)$, it's possible to nonetheless **optimize** $p(y \mid x)$.
 - Computationally tricky
 - •Why do this? (Very important idea here!)
- •Of course, when the model does not define p(x, y) (because it's inherently a **conditional model**) we can't optimize "joint likelihood" p(x, y)!
 - •If you really want to do this, redefine X and Y.

Avoiding Overfitting

Example

- •Suppose we're building a conditional model over the next character given the previous one (bigram character model)
- •Two of our features:

$$f_{342}(c, c') = [c = q \text{ and } c' = u]$$

 $f_{343}(c, c') = [c = q \text{ and } c' = v]$

- •In training, q is always followed by u
- This happens 52 times
- To maximize likelihood: p(u | q) should go to 1, and p(v | q) should go to 0
- •Is this what we really want?
- •Consider the classic bigram model, which estimates $p(\mathbf{u} \mid \mathbf{q}) = 52/52$ and $p(\mathbf{v} \mid \mathbf{q}) = 0/52$

The Infinity Problem

The Infinity Problem

Log-likelihood

$$\mathbb{E}[f_1] = 1$$

$$\mathbb{E}[f_2] = 0$$

Overfitting in "Max Ent"

- •We're still doing MLE!
- Our models have the potential to be very expressive (more features)
 - More expressive power leads to greater potential for overfitting.
- Avoiding overfitting: regularization and feature selection

Regularization

- •Idea borrowed from neural networks: penalize "extreme" models.
- •L₂ regularization for log-linear models:

$$\arg \max_{\boldsymbol{\theta}} \left(\sum_{i=1}^{N} \boldsymbol{\theta}^{\top} \mathbf{f}(x_i, y_i) - \log z(x_i, \boldsymbol{\theta}) \right) - c \sum_{j=1}^{d} \theta_j^2$$

•Can also do L₁:
$$-c\sum_{j=1}^{a}|\theta_{j}|$$

L₂ Regularization

A Probabilistic Interpretation

•Maximum likelihood est.: $\max_{\text{model}} p(\text{data} \mid \text{model})$

•Maximum a posteriori est.: $\max_{\text{model}} p(\text{data} \mid \text{model}) \cdot p(\text{model})$

 $\equiv \max_{\text{model}} \log p(\text{data} \mid \text{model}) + \log p(\text{model})$

•So L₂ regularization is equivalent to MAP with a zero-mean Gaussian *prior* on each parameter. See Chen & Rosenfeld.

More on Regularization

- Goodman (2003): Laplacian prior corresponds to L₁ regularization. There's also an exponential prior.
- •Related: Kazama & Tsuji'i (2003) and Khudanpur (2005): "relaxed" constraints.
- Added bonus for L₁ regularization: sparsity
- •As you strengthen the prior, more of the global optimum's coordinates go to zero.

This shows the additive component resulting from a single parameter.

Sparsity

On Feature Selection

- "Sparse" priors give you a kind of automatic feature selection
 - Drawback: have to start with all of them thrown in
- •Ratnaparkhi (1996): count cutoff include a feature iff it's observed 5+ times in the training data
- •Della Pietra et al. (1997): greedy algorithm

Della Pietra, Della Pietra, and Lafferty (1997): Feature Induction

- 1. Start with no active features (maximum entropy!).
- 2. Consider candidates:
 - "Atomic" features
 - Conjoined features (1 active AND 1 atomic)
- 3. Pick the candidate g with the greatest gain
 - •Gain = upper bound on improvement to likelihood, for any value of g's weight, assuming other weights are fixed.
 - Closed-form solution for gain if features are binary!
- 4.Add g to the model.
- 5.Retrain.
- 6.Go to 2.