

Artificial intelligence (AI) for medicine and oncology: some concepts and applications

Julien VIBERT

MD Medical Oncology - PhD Bioinformatics

DITEP - Gustave Roussy

IFSBM Module 12
Gustave Roussy
20 January 2022

Outline of presentation

- Simple intro to Al
- Al in medicine
- Al in oncology

http://www.unehistoiredeplumes.fr/a-vol-doiseau/

- Al in cancer genomics and transcriptomics
- Use case: Al-based classification of cancers of unknown primary -> Later session
- Conclusions and perspectives

Outline of presentation

- Simple intro to Al
- Al in medicine
- Al in oncology

http://www.unehistoiredeplumes.fr/a-vol-doiseau/

- Al in cancer genomics and transcriptomics
- Use case: Al-based classification of cancers of unknown primary -> Later session
- Conclusions and perspectives

Don't hesitate to interrupt and ask questions!

Artificial intelligence (AI): some concepts

Definitions

ARTIFICIAL INTELLIGENCE

Programs with the ability to learn and reason like humans

MACHINE LEARNING

Algorithms with the ability to learn without being explicitly programmed

DEEP LEARNING

Subset of machine learning in which artificial neural networks adapt and learn from vast amounts of data

Supervised/unsupervised learning

Western Digital.

Regression or classification

Regression

What is the temperature going to be tomorrow?

Classification

Will it be Cold or Hot tomorrow?

Main types of machine learning

Algorithms are proliferating...

Machine Learning Algorithms

Machine learning vs deep learning

Machine Learning

Deep Learning

What algorithms are eating: « Big data »

Image sources: ajc1@ flickr; Zlir'a@wikimedia

E.g. **G**enome-**W**ide **A**ssociation **S**tudies (GWAS):

- ▶ p = $10^5 10^7$ Single Nucleotide Polymorphisms (SNPs)
- ► $n = 10^2 10^4$ samples.

Typical machine learning workflow

Typical machine learning workflow (2)

Typical scheme of deep learning

Al in medicine: what, why, how?

Al and medicine: articles are proliferating...

Potential applications in medicine (non-exhaustive list)

Fig. 2 | Examples of AI applications across the human lifespan. dx, diagnosis; IVF, in vitro fertilization K⁺, potassium blood level. Credit: Debbie Maizels/Springer Nature

Potential applications in medicine

Fig. 1 | Potential roles of Al-based technologies in healthcare. In the healthcare space, Al is poised to play major roles across a spectrum of application domains, including diagnostics, therapeutics, population health management, administration, and regulation. NIPT, noninvasive prenatal test. Credit: Debbie Maizels/Springer Nature

Pioneer applications: medical image analysis

blog/artificial-intelligence-in-medicine

Some AI tools are already used in clinical practice

Table 2 FDA AI approvals are accelerating				
Company	FDA Approval	Indication		
Apple	September 2018	Atrial fibrillation detection		
Aidoc	August 2018	CT brain bleed diagnosis		
iCAD	August 2018	Breast density via mammography		
Zebra Medical	July 2018	Coronary calcium scoring		
Bay Labs	June 2018	Echocardiogram EF determination		
Neural Analytics	May 2018	Device for paramedic stroke diagnosis		
IDx	April 2018	Diabetic retinopathy diagnosis		
Icometrix	April 2018	MRI brain interpretation		
Imagen	March 2018	X-ray wrist fracture diagnosis		
Viz.ai	February 2018	CT stroke diagnosis		
Arterys	February 2018	Liver and lung cancer (MRI, CT) diagnosis		
MaxQ-AI	January 2018	CT brain bleed diagnosis		
Alivecor	November 2017	Atrial fibrillation detection via Apple Watch		
Arterys	January 2017	MRI heart interpretation		

Topol, Nat Med 2019

Screening for diabetic retinopathy

Perspective: the « virtual medical coach »

Fig. 3 | The virtual medical coach model with multi-modal data inputs and algorithms to provide individualized guidance. A virtual medical coach that uses comprehensive input from an individual that is deep learned to provide recommendations for preserving the person's health. Credit: Debbie Maizels/Springer Nature

Al in oncology: some applications

Skin cancer classification

From: Dermatologist-level classification of skin cancer with deep neural networks

Esteva et al., Nature 2017

Breast cancer screening

International evaluation of an AI system for breast cancer screening, Scott Mayer McKinney, Marcin Sieniek, [...]Shravya Shetty, Nature volume 577, pages89–94(2020)

Prediction of mesothelioma prognosis based on pathological slides

Courtiol et al., Nature Med 2019

Radiomics: « texture » analysis of radiological images

Al in hematology

				<u> </u>	
	Sample size	Application	Method	Results	
Kimura et al (2019) ²¹	3261 peripheral smears	Leucocyte classification; distinguishing aplastic anaemia and myelodysplastic syndrome	CNN, gradient boosting	Sensitivity vs specificity was 93-5% vs 96-0% for leucocyte detection, and 96-2% vs 100% for aplastic anaemia vs myelodysplastic syndrome differentiation	
Achi et al (2019) ²²	128 patients	Differentiating diffuse large B-cell lymphoma, small lymphocytic lymphoma, Burkitt lymphoma, and normal lymph nodes	CNN	95% accuracy per slide; 100% accuracy per patie	
Li (2019) ²³	41 patients	Detection of acute myeloid leukaemia bone marrow involvement via PET-CT	Manual feature engineering (PyRadiomics)	Sensitivity vs specificity was 87-5% vs 89-5% for bone marrow involvement; outperformed visua inspection of scans	
Milgrom et al (2019) ²⁴	251 patients	Predicting refractory Hodgkin lymphoma from PET-CT	CNN	AUROC of 0.95 for model vs 0.78 for tumour volume; 0.65 for standardised uptake value	
Moraes et al (2019) ^ਨ	283 patients	Differential diagnosis of chronic lymphocytic leukaemia and B cell lymphomas via flow cytometry	Decision tree	95% inclusion of correct diagnosis in differential diagnosis; 66% definitive diagnosis	
Ni et al (2016) ²⁶	51 patients	Detection of MRD in acute myeloid leukaemia via flow cytometry	Support vector machine	Similar performance with manual flow analysis (concordance=0-986)	
Fuse (2019) ⁷⁷	217 patients	Prediction of acute leukaemia relapse after allogeneic stem cell transplantation	Decision tree	0-75 AUROC for relapse after transplantation	
Goswami et al (2019) ²⁸	347 patients	Risk stratification for autologous stem cell transplantation in multiple myeloma	Decision tree	Significant risk-stratification and identification of high-risk features	
Nazha (2019) ²⁹	433 and 113 patients	Predicting resistance to hypomethylating agents in patients with myelodysplastic syndrome on the basis of NGS myeloid malignancy panel	Recommender algorithm	Improved stratification of patients by risk of resistance to a hypomethylating agent	
Gal et al (2019) ³⁰	493 patients	Response to induction therapy in paediatric acute myeloid leukaemia	K-nearest neighbours	0-84 AUROC for response to induction	
Candia (2015) ³¹	60 patients	Unsupervised analysis of microRNA expression signatures in acute myeloid leukaemia and acute lymphocytic leukaemia	Dimension reduction, network analysis	Identification of novel microRNA signatures in acute myeloid leukaemia and acute lymphocytic leukaemia	

Table: Representative artificial intelligence in malignant haematology publications

Al in cancer genomics and transcriptomics

DNA methylation-based classification of central nervous system tumours

Capper et al., Nature 2018

• Cf later session: prediction of primary tumor using transcriptomics

Drug development

Rifaioglu et al. Recent applications of deep learning and machine intelligence on in silico drug discovery: methods, tools and databases. Brief Bioinform. 2018 Jul 31. PMID: 30084866.

Drug discovery in details

Fig. 2 | Machine learning tools and their drug discovery applications. This figure gives an overview of the machine Vamathevan J,. Applications of machine learning in drug discovery and development. Nat Rev Drug Discov. 2019 Apr 11. doi: 10.1038/s41573-019-0024-5. [Epub ahead of print] Review. PubMed PMID: 30976107

Predictions

Rifaioglu et al. Recent applications of deep learning and machine intelligence on in silico drug discovery: methods, tools and databases. Brief Bioinform. 2018 Jul 31. PMID: 30084866.

Tasks with EHR

Fig. 7. EHR Information Extraction (IE) and example tasks.

Deep EHR: A Survey of Recent Advances in Deep Learning Techniques for Electronic Health Record (EHR) Analysis.

Benjamin Shickel, Patrick J. Tighe, Azra Bihorac, and Parisa Rashidi. arXiv:1706.03446v2

Some comments

- Al can potentially be used in every question in medicine that can be answered with data: prediction of diagnosis, prognosis, response to treatment...
- As soon as there are enough good data to train an algorithm
- Genomics and transcriptomics are well-suited to AI (high number of features, « big data »), especially with recent techniques (single-cell)
- But may suffer from low number of samples (« fat data »)

Conclusions and perspectives

- Al is essential to help the human brain in dealing with « big data »
- It has the potential to change practice in almost all areas of medicine
- However AI does not replace the doctor
- Algorithms have to be validated and show benefit in real life
- Interpretability issue

This subject is being updated every day...

Be careful not to skip steps before use in real life

From Al algorithm to changing medical practice

Acknowledgments

Dr Stéphane Champiat (DITEP) Dr Loïc Verlingue (Léon Bérard)

THANK YOU FOR YOUR ATTENTION!