

This is the title of the thesis

Firstname Surname

A thesis presented for the degree of Doctor of Philosophy

Supervised by:
Professor Louis Fage
Captain J. Y. Cousteau

University College London, UK January 2015

ÖNSÖZ

Interdum et malesuada fames ac ante ipsum primis in faucibus. Aliquam congue fermentum ante, semper porta nisl consectetur ut. Duis ornare sit amet dui ac faucibus. Phasellus ullamcorper leo vitae arcu ultricies cursus. Duis tristique lacus eget metus bibendum, at dapibus ante malesuada. In dictum nulla nec porta varius. Fusce et elit eget sapien fringilla maximus in sit amet dui.

Mauris eget blandit nisi, faucibus imperdiet odio. Suspendisse blandit dolor sed tellus venenatis, venenatis fringilla turpis pretium. Donec pharetra arcu vitae euismod tincidunt. Morbi ut turpis volutpat, ultrices felis non, finibus justo. Proin convallis accumsan sem ac vulputate. Sed rhoncus ipsum eu urna placerat, sed rhoncus erat facilisis. Praesent vitae vestibulum dui. Proin interdum tellus ac velit varius, sed finibus turpis placerat.

TEZ BEYANNAMESİ

I, AUTHORNAME confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis.

İÇİNDEKİLER

		Sa	ıyf	a No
ÖNSÖZ	, (III
TEZ BE	YANNAMESİ	 . .		IV
İÇİNDE	KİLER	 . .		VI
ÖZET .		 		VII
SUMMA	ARY	 		VIII
ŞEKİLL	ER DİZİNİ	 		IX
TABLO	LAR DİZİNİ	 		X
KISALT	MALAR DİZİNİ	 		XI
1.	GENEL BİLGİLER	 		1
1.1.	Giriş	 		1
1.2.	Amaç ve Kapsam	 		2
1.3.	Çalışmanın Yöntemi	 		3
2.	YAPILAN ÇALIŞMALAR	 		5
2.1.	Biçim Gramerleri	 		5
2.1.1.	Analiz Aracı Olarak Kullanımı (Analiz Gramerleri)	 		6
2.1.2.	Tasarım Aracı Olarak Kullanımı (Özgün Gramerler)	 		7
2.1.3.	Analiz Sonucu Tasarım Aracı Olarak Kullanımı (Hibrid Gramerler)	 		8
2.1.4.	Split Grameri	 		9
2.1.5.	CGA Biçim Grameri	 . .		10
2.2.	Ortahisar'ın Genel Karakteri	 		11
2.2.1.	Konum	 . .		11
2.2.2.	Tarihi ve Karakteri	 . .		11
2.3.	Alan Çalışması	 . .		11
3.	BULGULAR VE İRDELEMELER	 		13
3.1.	Ortahisar'ın Mimari Dil Analizi ve Biçim Grameri	 		13
3.1.1.	Yapı Taban Alanı Analizi	 . .		13
3.1.2.	Yapı Kat Sayısı ve Yükseklikleri Analizi	 		14
3.1.3.	Cephe Analizi	 . .		18
3.1.4.	Cephe Çıkmaları Analizi (Cumba)	 		21
3 1 5	Cephe Elemanları Analizi			21

3.1.6.	Pencere Genişlikleri ve Yükseklikleri Analizi	22
3.1.7.	Çatı Formu ve Eğimi Analizi	24
3.1.8.	Form Analizi	25
3.1.9.	Biçim Grameri	26
3.2.	CGA Biçim Gramerinin Oluşturulması	26
4.	SONUÇLAR VE ÖNERİLER	28
5.	KAYNAKLAR	29
6.	EKLER	34
ÖZGECN	MİS	35

ÖZET

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nam et turpis gravida, lacinia ante sit amet, sollicitudin erat. Aliquam efficitur vehicula leo sed condimentum. Phasellus lobortis eros vitae rutrum egestas. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Donec at urna imperdiet, vulputate orci eu, sollicitudin leo. Donec nec dui sagittis, malesuada erat eget, vulputate tellus. Nam ullamcorper efficitur iaculis. Mauris eu vehicula nibh. In lectus turpis, tempor at felis a, egestas fermentum massa.

SUMMARY

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nam et turpis gravida, lacinia ante sit amet, sollicitudin erat. Aliquam efficitur vehicula leo sed condimentum. Phasellus lobortis eros vitae rutrum egestas. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Donec at urna imperdiet, vulputate orci eu, sollicitudin leo. Donec nec dui sagittis, malesuada erat eget, vulputate tellus. Nam ullamcorper efficitur iaculis. Mauris eu vehicula nibh. In lectus turpis, tempor at felis a, egestas fermentum massa.

ŞEKİLLER DİZİNİ

	Sayfa	No
Şekil 2.1.	Örnek biçim grameri kuralı (Stiny, 2006).	5
Şekil 2.2.	Basit bir Split Gramer kuralı ve üretim süreci (Sönmez, 2018)	9
Şekil 2.3.	Bir cephenin katman detay gösterimi (Sönmez, 2018)	10
Şekil 2.4.	Ortahisar bölgesi vaziyet planı. Plan üzerinde sadece tescilli yapılar	
	gösterilmiştir. Arka planı koyu renkli olan yapılar rölövelerine	
	ulaşılabilenleri ifade etmektedir. Ölçek 1/1500	12
Şekil 3.1.	Ortahisar evlerinin kat sayısına göre gruplandırılması	15
Şekil 3.2.	Ortahisar evlerinin cephe kurgusuna göre gruplandırılması. Sol tarafta	
	3 parçalı ve sağ tarafta 1 parçalı cephe düzenleri.	18
Şekil 3.3.	Ortahisar evlerinin kat sayısına göre kütle oluşumlarının analizi	25
Şekil 3.4.	Ortahisar evlerinin kütlesel biçim grameri dili	26
Şekil 3.5.	CityEngine üzerinde CGA kodu ile üreliten modeller	27

TABLOLAR DİZİNİ

	Sayfa	No
3.1.	Seçilmiş Ortahisar evlerinin oturum alanları, ortalama derinlik ve	
	ortalama genişlik değerleri tablosu.	14
3.2.	Kat yükseklikleri tablosu	16
3.3.	Kat sayısına göre gruplandırılmış kat oranları tablosu.	16
3.4.	Kat sayısına göre gruplandırılmış yapılarda katların bulunma yüzdeleri	
	tablosu.	17
3.5.	Ortahisar evlerinin cephe parçalarının genişlik oranları analizi tablosu.	19
3.6.	Sol ve sağ cephe parçalarındaki pencere sayılarının tablosu	19
3.7.	Orta cephe parçalarındaki pencere sayılarının tablosu. Tek parçalı	
	cepheye sahip evler bu tabloda gösterilmiştir	20
3.8.	Cumbaların derinlik ölçüleri tablosu.	21
3.9.	Pencere yüksekliklerinin genişliklerine göre oranları tablosu	22
3.10.	Kat yüksekliklerinin pencere yüksekliklerine göre oranları tablosu	22
3.11.	Pencere denizlik yüksekliklerinin tablosu.	23
3.12.	Ortahisar evlerinin çatı formu ve eğimi tablosu	24

KISALTMALAR DİZİNİ

API Application Programming Interface

JSON JavaScript Object Notation

1. GENEL BİLGİLER

1.1. Giriş

Yordamsal modelleme kural tabanlı otomatik veya yarı otomatik içerik üretmeye yönelik bir yöntem olup çeşitli alanlarda doku, bitki, arazi, nehir, bina, kent, yol ağları gibi modellerin oluşturulmasında kullanılmaktadır. İçerisinde L-sistemler (Lindenmayer sistemleri), fraktallar, biçim gramerleri ve üretken sistemler gibi birden fazla tekniği barındıran bir ana başlık niteliğindedir. 30 yıldan fazla bir süredir üzerine aktif araştırma yapılan konu, çok çeşitli varyasyonları üretebilme potansiyeli ve içerik üretiminde insan gücü etkileşimini azaltması ile mimarlık, oyun ve film endüstrisi sanal ortamlarında cazip bir yöntem olarak görülmektedir (Schinko, Krispel, Ullrich ve Fellner, 2015).

Yordamsal modeller bir binanın, tasarım stilinin veya kültürel bir dönemintasarım ve yapım bilgilerini kodlamak için kullanılabilmektedirler. En önemli avantajlarından birisi tek bir yapının rekonstrüksiyonunu detaylı bir şekilde yapabilmesinin yanında, aynı tasarım ve yapım kurallarını paylaşan çok sayıda benzer modeller üretebilmesidir. Yordamsal modellerin üretiminde Lindenmayer sistemi, fraktal, split gramer, biçim grameri gibi birçok üretken sistem kullanılmaktadır. Binaların modellerinin oluşturulmasında özellikle yordamsal cephe üretimi kullanılmaktadır ve üretim iki boyutlu parsel hattının girdi olarak sisteme tanıtılması ile başlamaktadır.

Yordamsal modelleme tekniğinin bir diğer avantajı ise modellenen bina veya obje hakkında uzman bilgiye sahip olunmasını sağlamaktadır. Mimaride kullanılan yapı tiplerine ait sınıflandırma şemalarının ve tablolarının kod içine aktarımı gerekmektedir. Bu da günümüz kentlerinde o veya bu şekilde kaybettiğimiz geleneksel yapıların kurallarının elde edilip, kayıt altına alınmasını sağlamaktadır. Koruma anlamında sunduğu olanağın yanında geleneksel doku içinde tasarım yaparken temel olarak alınacak verileri de sağlamış olmaktadır. Kuşkusuz ki bu yöntem klasik yöntemlere göre geleneksel yapı karakteri üzerine daha fazla bilgi sunmaktadır. Bu anlamda gün geçtikçe sayıları azalan Trabzon geleneksel konutları örnek çalışma alanı olarak incelenecektir.

Yordamsal modeller semantik bir yapıya sahiptirler ve bu özellikleri ile simülasyon ve planlama için geleneksel modellere göre daha uygundurlar. Günümüz kentsel yenileme ve kentsel canlandırma projelerinde kullanımları da birçok varyasyona ve analiz olanağına

kısa sürede imkân sağlamaktadır. Aynı şekilde tekil birimler içinde çeşitli öneriler sunması bu önerilerin yeni tasarım yorumları için altlık oluşturmaktadır. Bu doğrultuda çalışmada **Trabzon geleneksel konutlarının CGA** (Computer Generated Architecture) **gramerlerinin oluşturulması ve parametrik olarak üretilmesi amaçlanmaktadır**.

Trabzon kent içinde bulunan geleneksel konutlar üzerinde yapılmış rölöve çalışmaları ve akademik çalışmalar proje için gerekli ana veriyi oluşturacaktır. Çalışmanın ilk bölümünde analiz-sentez yöntemi kullanılacak ve ikinci aşama için gerekli olan CGA biçim gramerleri hazırlanmış olacaktır. İkinci bölümde CGA biçim gramerleri üzerinden kodlama yapılacaktır. Bunun için mimarların aktif olarak kullandığı ve tanıdığı Rhinoceros programı üzerinde çalışan Grasshopper platform olarak seçilmiştir. Grasshopper için yazılmış birçok eklenti bulunmaktadır ve model üzerinde interaktif olarak analiz yapma olanağı sunmaktadır. Bunun yanında gelişmeye açık bir platform olması da tercih sebebidir. Bu kapsamda Grasshopper üzerinde C# programlama dili üzerinden geliştirilecek kodlar ile Trabzon evlerinin kurallarını içeren bir eklenti geliştirilecektir.

Çalışmanın konusu yordamsal modelleme çalışması ile geleneksel Trabzon konutlarının üç boyutlu modellerinin oluşturulması için gerekli kural gruplarının oluşturulmasıdır. Yordamsal modellemede kural grupları diye nitelenen ifade üç boyutlu modelleri oluşturan bilgisayar kodlarıdır. Kullanıcının modeli kendisinin oluşturduğu geleneksel modelleme yazılımlarından farklı olarak yordamsal modellemede bir yapının veya yapı türünün semantik tanımlamasının programlama dillerini kullanarak bilgisayara tanıtılması ile modeller üretilmektedir. Bu sadece teknik yönden değil kuramsal olarak da farklılıklar ortaya koymaktadır. Seçilen modelleme yöntemi sadece maliyet ve estetik çıktısını değil; bilginin nasıl seçildiği, işlendiği ve nelerin bilgi olarak değerlendirildiği gibi hususları da etkilemektedir (Saldaña, 2015a).

1.2. Amaç ve Kapsam

Önerilen çalışma yordamsal modelleme yöntemi kullanılarak geleneksel Trabzon konutlarının CGA gramerlerinin oluşturulmasını ve parametrik olarak üretilmesini amaçlamaktadır.

Hedefler;

1. Rhinoceros üzerinde çalışan Grasshopper için geleneksel Trabzon evlerini parametrik

olarak üretecek bir eklenti geliştirmek.

2. Tarihi dokuda yeni yapılacak binalar için geleneksel dokuya ait referans bilgi sağlamak. Üretilecek modellerin varyasyonlarını yeni tasarımlar için altlık olarak sunmak.

Proje kapsamında geleneksel Trabzon kent içi evlerinin yordamsal modelleme için kural gruplarının çıkarılması ve modellerinin üretilmesi yer almaktadır. Bu doğrultuda Grasshopper programı üzerinde çalışan C# programlama dili ile yazılmış modelleri üretecek bir eklenti geliştirmek ve üretilecek modellerde cepheleri çözümleyebilmeyi kapsamaktadır.

1.3. Çalışmanın Yöntemi

Araştırma da iki kademeli bir süreç işlenecektir;

1. Birinci Bölüm

Çalışmanın ilk bölümünde analiz-sentez yöntemi kullanılacak ve ikinci aşama için gerekli olan CGA (Computer Generated Architecture) biçim grameri verileri hazırlanmış olacaktır.

- Trabzon geleneksel evlerine ait verilerin toplanması: Çalışma için gerekli olan Trabzon geleneksel evlerine ait veriler akademik ve profesyonel çalışmalardan toplanacaktır. Temel Kaynaklar;
 - Trabzon Kültür ve Tabiat Varlıklarını Koruma Bölge Kurulu Müdürlüğü Arşivi
 - KTÜ Mimarlık Bölümü Doğu Karadeniz Arşivi
 - Trabzon geleneksel evleri üzerine yapılmış akademik çalışmalar
 - Trabzon geleneksel evleri üzerine rölöve çalışması yapmış ofis arşivleri
- 2. Analiz çalışması: Evlere ait veriler toplandıktan sonra aşağıda belirtilen özelliklere göre analizleri yapılacaktır.
 - Yapı taban alanı
 - Kat sayısı ve yüksekslikleri
 - · Cephe karakteri
 - · Cephe çıkmaları

- Pencere genişlikleri ve yükseklikleri
- Çatı formu ve eğimi
- Sentez çalışması: Çıkarılan veriler gruplar halinde tablolara dökülerek kural oluşturmak için gerekli sayısal özellikler organize edilecektir. Bu sayısal veriler eklenti oluştururken izlenecek veri akış şemasının oluşturulmasında kullanılacaktır.

2. İkinci Bölüm

İkinci bölümde CGA biçim gramerleri üzerinden kodlama yapılacaktır. Bunun için mimarların aktif olarak kullandığı ve tanıdığı Rhinoceros programı üzerinde çalışan Grasshopper platform olarak seçilmiştir. Grasshopper için yazılmış birçok eklenti bulunmaktadır ve model üzerinde interaktif olarak analiz yapma imkanı sunmaktadır. Bunun yanında gelişmeye açık bir platform olması da tercih sebebidir.

Scripting

Rhinoceros üzerinde veya Grasshopper üzerinde çalışacak eklenti için öncelikle veri akış şeması ve pseudocode hazırlanacaktır ve C# programlama dili kullanılarak Microsoft Visual Studio'da eklenti geliştirilecektir.

2. YAPILAN ÇALIŞMALAR

2.1. Biçim Gramerleri

Biçim gramerleri 1972 yılında *George Stiny* ve *James Gips* (1972) tarafından tanıtıldı. Tasarımları analiz etmeye ve üretmeye yarayan tasarım amaçlı ilk algoritmik sistem olan biçim gramerleri kurallarını direk biçimler üzerinden tanımlamaktadır. Kompütasyon teorisi ve görsel-mekansal düşünme yöntemi olarak iki farklı düzlemde açıklanmaktadır (Tepavcevic ve Stojakovic, 2012).

Yazı ve sembollere bağlı bir kompütasyon süreci yerine direk olarak biçimi kullanması ve görsel olarak çalışan bir sistem olması diğer üretken sistemlerden temelde ayrışmasını sağlar (Knight, 2012). Kompütasyon sürecini tamamen görsel olarak üretim kuralları üzerinden gerçekleştirmeyi sağlayan biçim gramerleri bir başlangıç biçimi ve kural dizilerinden oluşmaktadır (Şekil 2.1). Biçimler iki boyutlu nokta, çizgi, düzlem olabileceği gibi üç boyutlu hacimler veya bunların kombinasyonları şeklinde de olabilirler. Biçimler ayrıca ek bilgi gösteren etiketlere ve bazı özelliklerinin büyüklüğünü (magnitude) gösteren ağırlıklara (weight) sahip olabilirler (Stiny, 1980a). Kurallar ise aralarındaki ok ile ayrılan bir çift biçimden oluşmaktadır. Kuralların sol kısmında başlangıç biçimi, sağ kısmında ise kural uygulandıktan sonra dönüşeceği biçim tanımlanmaktadır. Halihazırdaki biçimin herhangi bir parçası tanımlı kurallardan birinin sol kısmında belirtilmiş biçimsel şartı sağladığında sağ kısmında tanımlı biçim ile değiştirilerek biçim geliştirilir.

Şekil 2.1. Örnek biçim grameri kuralı (Stiny, 2006).

Biçim gramerleri görsel-mekansal düşünmeyi temsil eden bir biçimcilik olarakta tanımlanabilmektedir. Görsel tasarım gramerleri olarakta adlandırabileceğimiz biçim gramerleri dünyaya öğrenilen veya dayatılan ayrıştırma-tanımlamalar yerine belirli bir

zamanda pratik bir anlamı olan ayrıştırmalardan-tanımlamalardan bakabilme düşüncesidir (Özkar ve Stiny, 2009).

Tanıtımından sonra *Gips* (1975) doktora tezinde biçim gramerlerinin bilgisayar uygulamalarını geliştirdi, *Stiny* (1975) ise matematiksel temelleri üzerine yoğunlaştı. *Stiny* (1976) tezinin ardından yazdığı *Two exercises in formal composition* adlı makalede biçim gramerlerinin kullanımını iki örnek üzerinden açıkladı ve bu örnekler daha sonra yapılan çalışmalara temel oluşturdu. Bu örneklerden ilki biçim gramerlerinin üretken bir sistem olarak yeni tasarım dili veya tarzı oluşturmak için özgün hali ile nasıl kullanılabildiğini açıklarken ikinci örnek ise mevcut bir tasarım dilinin veya tarzının biçim gramerleri kullanılarak analizinin nasıl yapılabildiğini göstermektedir. Ayrıca hem analitik hem de sentetik kullanıldığı örneklere de rastlamak mümkündür (Knight, 1999).

2.1.1. Analiz Aracı Olarak Kullanımı (Analiz Gramerleri)

Biçim gramerlerinin ilk kez analiz aracı olarak kullanımı *Stiny* (1977) tarafından Çin buz ışını pencere tasarımları üzerine yaptığı çalışmada ortaya konuldu. Bu çalışma ayrıca biçim gramerlerinin parametrik tasarım ile entegre edilerek parametrik biçim gramerlerinin tanımlandığı çalışma oldu. Beş adet kuraldan oluşan gramer Çin buz ışını ızgaraların bir araya gelme düzenini açıklamayı, örnek ızgaralar oluşturmayı ve sayısız yeni ızgara düzenleri oluşturmayı başardı. Ertesi yıl *Stiny* ve *Mitchell* (1978) biçim gramerlerini *Pallodio* stili üzerinden test ederek ilk kez bir mimari üslubun analizinde kullandılar. "Palladio Grameri" kurallarını *Andrea Palladio* tarafından 1570 yılında yazılmış *Quattro Libri dell'Architettura*'da bulunan villa planı örneklerini inceleyerek tanımladılar. Parametrik biçim gramerlerini kullanarak villaların zemin kat planlarını önerdikleri sekiz aşamalı bir süreç ile oluşturdular.

Bu çalışmanın ardından gelen yirmi yıllık bir dönemde biçim gramerleri neredeyse tamamen bir analiz aracı olarak mimarların tarzını, yöresel mimariyi, sanat stillerini vb. açıklamada kullanıldı.

Bu çalışmalar arasında *Giuseppe Terragni*, *Frank Lloyd Wright*, *Glenn Murcutt*, *Christopher Wren* gibi mimarların tarzları analiz edildi (Buelinckx, 1993; Flemming, 1981; Hanson ve Radford, 1986; Koning ve Eizenberg, 1981).

Yöresel mimari analizlerine bakıldığında Japon çay odaları, Buffalo'nun bungalovları,

Queen Anne evleri, geleneksel Tayvan evleri, geleneksel Türk evleri, sıra evler, klasik Osmanlı dönemi camileri ve Mughul bahçelerinin peyzaj mimarisi çalışmaları bulunmaktadır (Aksoy, 2001; Chiou ve Krishnamurti, 1995; Çağdaş, 1996a, 1996b; Downing ve Flemming, 1981; Flemming, 1987; Knight, 1981a; Stiny ve Mitchell, 1980).

Sanat stillerinin analizini yapan çalışmalarda *Richard Diebenkorn*, *Georges Vantongerloo* ve *Fritz Glarner*'ın tabloları, *Hepplewhite* tarzı sandalyelerin arkalıklarının tasarımı, *Frank Lloyd Wright*'ın pencere tasarımları ve antik Yunan çömleklerinin süsleme tasarımları incelenmiştir (J. L. Kirsch ve Kirsch, 1986; Knight, 1980, 1986, 1989a; Rollo, 1995). *Wright*'ın mimari tarzı için hazırlanan gramer ilk üç boyutlu mimari gramer çalışması olması açısından önemlidir.

Sonraki dönem çalışmalarında Benros vd. üç ayrı tarz olan Pallodio villaları, Malagueira konutları ve Prairie konutlarını oluşturdukları tek gramer, Osmanlı camilerinin ontolojisini kullanan tipolojik tanımlama (description) gramerleri ve tipolojik tanımlama gramerleri için genel gösterim önerisi göze çarpmaktadır (Benrós, Hanna ve Duarte, 2014; Stouffs, 2016; Stouffs ve Tunçer, 2015).

2.1.2. Tasarım Aracı Olarak Kullanımı (Özgün Gramerler)

Biçim gramerlerinin analiz aracı olarak kullanımı yukarıdaki örneklere bakıldığında önemli ölçüde etkin olduğunu göstermektedir. Buna karşı başlangıçtan itibaren tamamen yeni tasarım dilleri oluşturma konusunda şaşırtıcı bir şekilde sınırlı sayıda örneğe rastlanmaktadır. Bu anlamda ilk çalışma *Stiny* ve *Gips* (1972) tarafından tablolar üzerine yapılan biçim gramerleri oldu. *Stiny* ve *Gips*'in tezleri ve beraber yazdıkları *Algorithmic Aesthetics* kitabı da yine aynı konu üzerinde biçim grameri formalizmini örnekliyordu (Knight, 1999).

Bu çalışmalar haricinde *Stiny*'nin (1976) iki boyutlu formal kompozisyonlar ve ilk üç boyutlu biçim grameri çalışması olan Froebel'in yapı blokları üzerine çalışmaları örnek oluşturmaktadır (Stiny, 1980b). Froebel yapı blokları üzerine olan çalışma özgün gramerleri kullanarak sıfırdan yeni bir tasarım dili oluşturmak için izlenecek işleyişi tanımlamaktadır. Yeni tasarım dilini oluşturmak için önerilen işleyişte biçim sözlüğü, mekansal ilişkiler, biçim kuralları, başlangıç biçimi ve biçim gramerlerinin aşamalı olarak oluşturulması gerekmektedir. Bu alanda mimarlık ve diğer dallarda çeşitli çalışmalar kısıtlı sayıda

gerçekleştirildi (Knight, 1989b, 1992, 1993, 1994).

2.1.3. Analiz Sonucu Tasarım Aracı Olarak Kullanımı (Hibrid Gramerler)

Özgün gramelerin tamamen baştan oluşturulması teori üzerinde olmaktadır (Knight, 1999). Uygulamada ise yeni tasarım dilleri eski ve güncel dillerin değiştirilmesi, geliştirilmesi veya birleştirmesi gibi işlemler ile oluşturulur. Knight (1981b) önerdiği mevcut tasarım dilleri üzerinden yeni tasarım dilleri üretme yönteminde ilk önce mevcut dil için bir gramer çıkartılarak analiz edilir, çıkarılan gramerin kuralları dönüştürülür ve dönüştürülen kurallar yeni bir gramerin ve dilin temeli haline gelir. Knight bu yöntemin bilinen dillerin tarihsel evrimini başarılı bir şekilde tanımlamak ve yeni tasarımlar geliştirmek için kullanabileceğini belirtmektedir. Bu nedenle bu yöntem hem analitik hem sentetiktir. Knight *Transformations in Design* adlı kitabında bu yöntemi kullanarak Frank Lloyd Wright'ın çalışmalarında, De Stijl resminde ve antik Yunan süsleme tasarımlarında stilistik değişimleri analiz etmek için uygulamaktadır (Knight, 1999). Flemming (1990) Knight'ın yöntemine benzer bir yöntemi bilgisayar üzerinde mimari kompozisyonları öğretebilmek için kullanmmıştır.

Bu gramer yapısının örneklerine baktığımızda Çolakoğlu (2001) 18. ve 19. yüzyılda Saraybosna'da Osmanlı tarzında tasarlanan geleneksel "Hayat" evlerinin gramerini oluşturarak tarihi bağlama uygun yeni formların üretimini sağladı. Duarte (Duarte, 2005) 1977 ve 1996 yılları arasında Siza tarafından Malagueira için tasarlanmış otuzbeş konut üzerinden Siza'nın da desteğini alarak oluşturduğu gramer ile Siza'nın tasarım mantığına yatkın çeşitli yeni tasarımlar üretebildi. Marakeş Medine'de *Zaouiat Lakhdar* bölgesi için geliştirilen yerel konut ve kentsel form üreten gramerler, *rabo-de-bacalhau* bina tipolojisindeki evlerin rehabilitasyonu için geliştirilen dönüşüm grameri hibrid gramerlere örnek oluşturmaktadır (Duarte ve Rocha, 2006; Duarte, Rocha ve Soares, 2007; Eloy ve Duarte, 2014).

2.1.4. Split Grameri

Wonka vd. (2003) mimari modelleri oluşturmak için özel bir set grameri¹olan parametrik split gramer yöntemini geliştirmişlerdir. Yazarlar yapıların yatayda ve düşeyde sürekliliğe sahip olan yapı elemanlarından oluştuğunu ve buna benzer bir etkiyi split grameri kontrol ederek elde edilebileceğini belirtmişlerdir. İsmini bölümleme işleminden alan ve iki üretim kuralı olan bu yöntem basit geometrilerden oluşan üç boyutlu bir kütlenin önce yüzeylere ve yapısal elemanlarına kadar bölümlenip ardından bölümlenen her biçim önceden tanımlanan geometri ve malzemeler ile yer değiştirmesine dayanmaktadır (Şekil 2.2). Bölümlenme işlemi sonlandırıcı tanımlı biçimlere ulaşana kadar devam etmektedir ve muhtemel düzeni önceden tanımlı-sabit olduğundan dolayı kararlıdır.

Set grameri üretim kurallarını görsel işlem yerine etiketli biçimler üzerinden işleyen, biçim gramerlerinin basitleştirilmiş halidir (Lienhard, 2017; Stiny, 1982). Etiketli bir biçim set gramerinin en küçük (atomik) öğesidir ve alt biçimler barındırmaz. Etiketler sembol olarak kullanılarak üretim kurallarının metinsel olarak yazımını ve bilgisayarda algoritma olarak işlenmesine olanak vermektedir. İdeal olarak, bir biçim grameri uygulaması: görsel bilgi işlemeyi desteklemeli, saklı şekillere (emergence) izin vermeli, önceden tanımlanmış parçalara dayanmamalı ve parametrik olmalıdır (Gips, 1999). Set gramerleri biçim gramerlerinin bilgisayar üzerinde işlenmesini kısıtlayan ilk üç özelliğini barındırmamaktadır. Literatürde biçim grameri uygulaması olarak adlandırılan bir çok yazılım ve yazılım denemesi aslında set gramerini temel alarak çalışmaktadır.

Şekil 2.2. Basit bir Split Gramer kuralı ve üretim süreci (Sönmez, 2018).

¹(Stiny, 1982)

Şekil 2.3. Bir cephenin katman detay gösterimi (Sönmez, 2018).

2.1.5. CGA Biçim Grameri

Split gramerler Müller vd. (2006) tarafından geliştirilerek CGA gramerleri olarak adlandırılmıştır. Geliştirilen bu yöntemde katı kütle modelleme sistemi ve farklı olarak tanımlanmış birçok modelleme kuralının yanında cephe üretimi zor olan karmaşık kütleler içinde eklentiler bulunmaktadır. CGA gramer yöntemi çokgen ile belirlenmiş bir parsel hattını yükseltip katlara bölünmüş bir hacim oluşturarak işleme başlamaktadır. Katların cepheleri biçim kuralları kullanılarak duvar, kapı, pencere gibi bölümlere bölünmektedir. Koşullu ya da tahmini kurallar, biçim parametreleri, rastgele numara üretimi bu yöntem içerisinde çeşitlilik oluşturmak için kullanılmaktadır. CGA bir biçim grameri olması ile beraber aynı zamanda bir programlama dilidir. Örnek bir CGA biçim kuralı aşağıdaki gibi yazılmaktadır.

```
başlangıçŞekli --> koşul1: sonuçŞekil0 ... sonuçŞekilM ... koşulN: ...
```

CGA gramerlerinin tanımlanmasının ardından yordamsal modellemenin kolaylaştırılması ve daha iyi kullanılabilmesi için devamlı gelişmeler gözlendi. Özellikle cephe modelleri oluşturmak için Müller vd. (2007) binaların cephe fotoğrafları üzerinden tekrar eden karoların tanımlanması ile gramer kurallarınının bilgisayar tarafından otomatik çıkarılması için bir yöntem geliştirdi. Lipp vd. (2008) CGA kurallarını kod yazarak oluşturmak yerine yaptıkları yazılım sayesinde üç boyutlu model üzerinden etkileşim ile kodları görsel olarak düzenlemeyi başardılar. Ancak bu gelişmelere rağmen birçok yordamsal modelleme projesi kod yazılarak gerçekleştirildi. Bunlardan bazıları;

- Reconstruction of Puuc Buildings (Müller, Vereenooghe, Wonka, Paap ve Van Gool, 2006)
- Reconstruction of Ancient Pompeii (Müller, Vereenooghe, Ulmer ve Van Gool, 2005)
- Rome Reborn 2.0: A Case Study of Virtual City Reconstruction Using Procedural Modeling Techniques (Dylla, Frischer, Müller, Ulmer ve Haegler, 2010)
- Urban Topography of Magnesia on the Maeander (Saldaña, 2015b).

2.2. Ortahisar'ın Genel Karakteri

Bu bölümde alan üzerine yapılan çalışmalar yer alacaktır. Kaynaklardan bölge ve konutlar hakkında bilgiler verilecektir. Ayrıca rölöveler ve fotoğraflarda bu bölümde yer alacaktır. Bu bölümde elde edilen bilgiler ile analizler yapılıp, gramer oluşturulmuştur.

2.2.1. Konum

2.2.2. Tarihi ve Karakteri

2.3. Alan Çalışması

Alan rölöveleri iki arşivden derlenerek oluşturulmuştur. Trabzon Büyükşehir Belediyesi arşivlerinden Trabzon Büyükşehir Belediyesi ve Bimtaş A.Ş. tarafından 2012 yılında Ortahisar'da LIDAR teknolojisi kullanılarak yapılan çalışmadan bölgenin sokak silüetleri elde edilmiştir. Ayrıca Trabzon Rölöve ve Anıtlar Müdürlüğü arşivlerinden elde edilen veriler ile bir araya getirilerek 25 tescilli yapıya ait rölöveler derlenmiştir. Yapıların bir kısmının sokak silüetlerinden ön cepheleri elde edilebilmiş ve geri kalan cephelerinin rölövelerine ulaşılamamıştır. Bir kısmı ise tescilli olmasına rağmen geleneksel dokuyu yansıtmadığından dolayı çalışmaya katılmamıştır. Çalışma 15 adet yapıya ait rölöveler üzerinden elde edilen veriler ile yürütülmüştür.

12

Şekil 2.4. Ortahisar bölgesi vaziyet planı. Plan üzerinde sadece tescilli yapılar gösterilmiştir. Arka planı koyu renkli olan yapılar rölövelerine ulaşılabilenleri ifade etmektedir. Ölçek 1/1500.

3. BULGULAR VE İRDELEMELER

3.1. Ortahisar'ın Mimari Dil Analizi ve Biçim Grameri

Bu bölümde elde edilen rölöveler üzerinden yapılan analizler ve bunların CGA kodunun oluşturulmasındaki kullanımı anlatılmaktadır. CGA gramerinin oluşturulmasında sırasıyla;

- Taban alanları
- Kat sayıları ve yükseklikleri
- Cephe karakteri
- Cephe çıkmaları (cumbalar)
- Cephe elemanları
- Pencere oranlari
- Çatı formu

analiz edilerek incelenmiştir. Bu analizlere ek olarak yapıların kütlesel formları gruplanarak analiz edilmiştir. Ardından bu formları ve türevlerini oluşturabilecek biçim grameri kuralları tanımlanmıştır. Bu kurallar CGA gramerine entegre edilerek kaba kütle üretimi sağlanmaya çalışılmıştır.

Oluşturulan kütleler kat sayıları ve yükseklik oranlarına göre dilimlenerek katlar oluşturulmaktadır. Cephe karakteri analizi sonucunda ise oluşan katların panel parçalarına ayrılması sağlanmaktadır. Ardından cephe elemanları ve pencereler oranlarına göre panel içinde dilimlenerek yerleri belli edilmektedir.

3.1.1. Yapı Taban Alanı Analizi

Seçilen Ortahisar evlerinin taban alanları, derinlikleri, genişlikleri incelendiğinde

• En küçük yapı taban alanı : 50,38 m²

• En büyük yapı taban alanı: 315,67 m²

• En kısa kenar uzunluğu : 4,888 m

• En uzun kenar uzunluğu : 17,021 m

• Plan derinliğinin genişliğine oranının en küçük değeri 0,346 en büyük değeri 1,513

oldukları bulunmuştur. Bulunan değerler yazılıma girdi olarak verilen taban alanlarının seçimi için kullanılmaktadır. Bu kısıtlar dışında olan girdilerde model oluşumu gerçekleşmeyecektir. Alt sınırlar için model oluşumu gerçekleşmemekteyken, üst sınırlar için parsel kullanım analizi yapılarak parsel içinde taban alanı oluşumu yaptırılması fikri değerlendirilecektir.

Tablo 3.1. Seçilmiş Ortahisar evlerinin oturum alanları, ortalama derinlik ve ortalama genişlik değerleri tablosu.

Ada	Parsel	Ort. Derinlik	Ort. Genişlik	Der. / Gen.	Taban Alanı	Parsel Alanı
110	16	7,955 m	12,628 m	0,630	100,43 m ²	191,09 m ²
110	23	5,012 m	10,067 m	0,498	$50,38 \text{ m}^2$	$84,07 \text{ m}^2$
110	39	12,678 m	16,048 m	0,790	194,83 m ²	890,45 m ²
110	41	8,528 m	14,385 m	0,593	117,90 m ²	320,49 m ²
110	43	12,501 m	8,320 m	1,503	110,31 m ²	$124,59 \text{ m}^2$
110	44	10,284 m	8,165 m	1,259	$74,16 \text{ m}^2$	$45,80 \text{ m}^2$
110	131	6,670 m	13,247 m	0,503	$93,91 \text{ m}^2$	1.639,41 m ²
114	30	10,975 m	7,255 m	1,513	$100,23 \text{ m}^2$	131,28 m ²
118	1	9,208 m	14,904 m	0,618	$137,30 \text{ m}^2$	$177,17 \text{ m}^2$
127	28	8,473 m	9,799 m	0,865	$83,43 \text{ m}^2$	$205,86 \text{ m}^2$
128	7	8,473 m	10,102 m	0,839	$92,20 \text{ m}^2$	$180,38 \text{ m}^2$
128	10	4,888 m	14,111 m	0,346	$61,41 \text{ m}^2$	$102,06 \text{ m}^2$
129	26	16,493 m	15,992 m	1,031	$242,79 \text{ m}^2$	203,24 m ²
888	7	15,746 m	12,945 m	1,216	$199,34 \text{ m}^2$	$603,81 \text{ m}^2$
888	8	14,998 m	17,021 m	0,881	315,67 m ²	879,21 m ²

3.1.2. Yapı Kat Sayısı ve Yükseklikleri Analizi

Tablolar incelendiğinde katlarına göre %20'si iki katlı, %6,67'i çatı katı olan iki katlı, %26,66'sı üç katlı, %33,33'ü çatı katı olan üç katlı ve %13,33'u dört katlı olan yapılar bulunmaktadır. Yapılar bodrum, zemin, birinci, ikinci ve çatı katlarından oluşmaktadır.

Şekil 3.1. Ortahisar evlerinin kat sayısına göre gruplandırılması.

Tablo 3.4 incelendiğinde dört katlı yapılarda çatı katı oluşumu görülmemektedir. Üç katlı ve çatı katı bulunan yapıların %80'inde bodrum katı bulunurken %20'sinde bodrum kat yerine ikinci kat bulunmaktadır. Üç katlı yapıların yarısında bodrum kat bulunurken diğer yarısında bodrum kat yerine ikinci kat bulunmaktadır.

Tablo 3.3 incelendiğinde yapıların bodrum kat zemin kat yüksekliklerine göre daha kısa olduğu, birinci ve ikinci kat yüksekliklerinin ise yakın değerler aldığı görülmektedir. Çatı katı yükseklikleri yapıların 2/3'ünde zemin kata yakın değerler alırken geri kalanında zemin kattan daha kısa olarak bulunmaktadır.

Tablo 3.2. Kat yükseklikleri tablosu.

Ada	Parsel	Bodrum Kat	Zemin Kat	Birinci Kat	İkinci Kat	Çatı Katı
118	1	2,369 m	3,733 m	3,318 m	3,760 m	
128	10	2,441 m	4,046 m	3,247 m	3,239 m	
110	16	3,242 m	3,706 m	4,021 m		3,325 m
110	39	1,935 m	4,180 m	4,093 m		2,402 m
110	41	1,823 m	3,693 m	4,083 m		2,334 m
110	131		2,766 m	3,229 m	3,348 m	2,547 m
129	26	2,002 m	3,443 m	3,226 m		3,258 m
110	44	2,783 m	4,663 m	2,933 m	2,913 m	
114	30	2,946 m	3,524 m	3,252 m		
128	7	2,431 m	4,057 m	3,807 m		
888	8		4,227 m	4,065 m	4,595 m	
127	28		2,897 m	3,840 m		2,871 m
110	23	1,752 m	3,112 m	3,189 m		
110	43		4,305 m	4,147 m		
888	7		4,682 m	3,828 m		

Tablo 3.3. Kat sayısına göre gruplandırılmış kat oranları tablosu.

				Bodrum K.	Birinci K. /	İkinci K./	Çatı K. /
	Ada	Parsel	Zemin Kat	/ Zemin K.	Zemin K.	Zemin K.	Zemin K.
4							
	118	1	3,733 m	0,635	0,889	1,007	
	128	10	4,046 m	0,603	0,802	0,801	
3,5							
	110	16	3,706 m	0,875	1,085		0,897
	110	39	4,180 m	0,463	0,979		0,575
	110	41	3,693 m	0,494	1,106		0,632
	110	131	2,766 m		1,167	1,210	0,921
	129	26	3,443 m	0,581	0,937		0,946
3							

				Bodrum K.	Birinci K. /	İkinci K./	Çatı K. /
	Ada	Parsel	Zemin Kat	/ Zemin K.	Zemin K.	Zemin K.	Zemin K.
	110	44	4,663 m		0,629	0,625	
	114	30	3,524 m	0,836	0,923		
	128	7	4,057 m	0,599	0,938		
	888	8	4,227 m		0,962	1,087	
2,5							
	127	28	2,897 m		1,325		0,991
2							
	110	23	3,112 m	0,563	1,025		
	110	43	4,305 m		0,963		
	888	7	4,682 m		0,818		

Tablo 3.4. Kat sayısına göre gruplandırılmış yapılarda katların bulunma yüzdeleri tablosu.

Kat Sayısı	Bodrum Kat	Zemin Kat	Birinci Kat	İkinci Kat	Çatı Katı
4	100	100	100	100	0
3,5	80	100	100	20	100
3	50	100	100	50	0
2,5	0	100	100	0	100
2	33	100	100	0	0

3.1.3. Cephe Analizi

Şekil 3.2. Ortahisar evlerinin cephe kurgusuna göre gruplandırılması. Sol tarafta 3 parçalı ve sağ tarafta 1 parçalı cephe düzenleri.

Yapılar cephelerine göre gruplandığında 100 m² üzerinde olanlar üç parçalı cepheye, 100 m² altında olan yapıların 75%'i üç parçalı ve geri kalanı tek parçalı cepheye sahiptirler. Üç parçalı cephelerde kenar parçalarının genişlikleri bir kaç santimetre farklarla birbirlerinden farklılaşmaktadır. Bu cephe parçalarının orta cephe parçasına göre oranı yapılarda 0,9 ile 1,165 arasında değişmektedir.

Tablo 3.5. Ortahisar evlerinin cephe parçalarının genişlik oranları analizi tablosu.

	Ada	Parsel	Bay Sol	Bay Orta	Bay Sağ	Sol / Orta	Sağ / Orta
3 Bay							
	118	1	5,180 m	4,480 m	5,220 m	1,156	1,165
	128	10	4,580 m	4,740 m	4,600 m	0,966	0,970
	110	16	4,280 m	4,710 m	4,420 m	0,909	0,938
	110	39	5,230 m	4,960 m	5,320 m	1,054	1,073
	110	41	5,360 m	3,750 m	5,320 m	1,429	1,419
	110	131	4,470 m	4,090 m	4,680 m	1,093	1,144
	129	26	5,020 m	5,340 m	4,960 m	0,940	0,929
	888	8	6,420 m	6,160 m	6,480 m	1,042	1,052
	127	28	3,370 m	3,110 m	3,260 m	1,084	1,048
	110	23	3,470 m	2,990 m	3,600 m	1,161	1,204
	110	43	3,960 m	3,960 m	3,960 m	1,000	1,000
	888	7	5,220 m	3,550 m	4,660 m	1,470	1,313
1 Bay							
	110	44	7,160 m				
	114	30	8,850 m				
	128	7	9,930 m				

Tablo 3.6. Sol ve sağ cephe parçalarındaki pencere sayılarının tablosu.

	Ada	Parsel	Zemin Kat	Birinci Kat	İkinci Kat	Çatı Katı
3 Bay						
	118	1	2	3	3	
	128	10	1	1	1	
	110	16	2	2		3

Ada	Parsel	Zemin Kat	Birinci Kat	İkinci Kat	Çatı Katı
110	39	2	2		2
110	41	2	2		2
110	131	3	3	3	2
129	26	2	2		3
888	8	3	3	3	
127	28	2	1		1
110	23	1	1		
110	43	1	2		
888	7	1	3		

Tablo 3.7. Orta cephe parçalarındaki pencere sayılarının tablosu. Tek parçalı cepheye sahip evler bu tabloda gösterilmiştir.

	Ada	Parsel	Zemin Kat	Birinci Kat	İkinci Kat	Çatı Katı
3 Bay						
	118	1	Giriş	3	3	
	128	10	Giriş	1	1	
	110	16	2	2		3
	110	39	Giriş	Kapalı balkon		2
	110	41	Giriş	2		2
	110	131	Giriş	2	2	2
	129	26	3	3		3
	888	8	Giriş	2	2	
	127	28	Giriş	2		2
	110	23	Giriş	1		
	110	43	1	2		
	888	7	Giriş	2		
1 Bay						
	110	44	2	5	5	
	114	30	6	6		
	128	7	4	4		

3.1.4. Cephe Çıkmaları Analizi (Cumba)

Genel olarak yapıların %43,75'inde cumba bulunmaktadır. Üç parçalı cephe karakteri gösteren yapılarda cumbası olan orta parça genişliği en az 2,99 metredir. Çatı katı cumbaları bir alt katında bulunan cumbanın derinlik ve genişlik uzunluklarını almaktadırlar. Ayrıca bodrum katı olan yapılarda giriş sahanlığı birinci katta bulunan cumba mesafesi kadar dışarı çıkmaktadır. 110 ada 131 parsel ve 118 ada 1 parselde bulunan yapıların ikinci katları arka cepheleri harici diğer cephelerde dışarı çıkma yapmaktadır. Bu yapıların ikinci katlarında bulunan cumbalar bir alt kat cumbaya göre hem derinlik hemde genişlik olarak ikinci kattaki çıkma mesafesi kadar büyümektedir.

Tablo 3.8. Cumbaların derinlik ölçüleri tablosu.

Ada	Parsel	Zemin Kat	Birinci Kat	İkinci Kat	Çatı Katı
118	1		1,900 m	2,300 m	
128	10		1,460 m	1,460 m	
110	16				
110	39	1,840 m	1,840 m		
110	41		1,780 m		1,780 m
110	131		3,220 m	3,450 m	3,450 m
129	26				
110	44				
114	30				
128	7				
888	8				
127	28		1,210 m		1,210 m
110	23		1,250 m		
110	43				
888	7				

3.1.5. Cephe Elemanları Analizi

Yapılarda bulunan kornişlerin ve köşe taşlarının ebatlarının analizleri eklenecektir.

3.1.6. Pencere Genişlikleri ve Yükseklikleri Analizi

Yapıların %81,25 inde cephe parçalarında iki veya daha fazla pencere bulunurken geri kalanında tek pencere bulunmaktadır. Cephe parçalarında iki veya daha fazla pencere bulunan yapılarda pencere yüksekliğinin genişliğine oranı 1,493 ile 1,881 arasında değişmektedir. Cephe parçasında tek pencere bulunan yapılarda bu oran 0,854 ile 1,050 arasındadır. Pencere yüksekliklerinin zemin kat yüksekliğine göre oranlarına bakıldığında ise 1,439 - 2,378 değer aralığı bulunmaktadır. 110 ada 44 parseldeki yapının zemin katı diğer yapılara göre farklılık gösterdiğinden bu değer aralığı dışında tutulmuştur.

Tablo 3.9. Pencere yüksekliklerinin genişliklerine göre oranları tablosu.

Ada	Parsel	Zemin Kat	Birinci Kat	İkinci Kat	Çatı Katı
118	1	1,881	1,579	1,579	
128	10	0,854	0,854	0,827	
110	16	1,520	1,667		1,722
110	39	1,605	1,618		1,076
110	41	1,772	1,805		1,341
110	131	1,811	1,755	1,755	1,600
129	26	1,595	1,595		1,595
110	44		1,842	1,861	
114	30	1,705	1,705		
128	7	1,493	1,585		
888	8	1,736	1,836	1,860	
127	28	1,050	1,792		0,653
110	23	0,991	1,031		
110	43		1,860		
888	7	1,550	1,827		

Tablo 3.10. Kat yüksekliklerinin pencere yüksekliklerine göre oranları tablosu.

Ada	Parsel	Zemin Kat	Birinci Kat	İkinci Kat	Çatı Katı
118	1	1,645	1,550	1,757	
128	10	2,152	1,727	1,780	

23

Ada	Parsel	Zemin Kat	Birinci Kat	İkinci Kat	Çatı Katı
110	16	1,626	1,608		1,630
110	39	1,659	1,611		1,953
110	41	1,694	1,839		1,415
110	131	1,608	1,673	1,735	1,675
129	26	1,439	1,348		1,362
110	44	2,970	1,577	1,549	
114	30	1,602	1,478		
128	7	1,861	1,511		
888	8	1,691	1,715	1,795	
127	28	1,123	1,607		1,806
110	23	1,454	1,490		
110	43	1,538	1,700		
888	7	2,378	1,903		

Tablo 3.11. Pencere denizlik yüksekliklerinin tablosu.

Ada	Parsel	Zemin Kat	Birinci Kat	İkinci Kat	Çatı Katı
118	1	0,497 m	0,751 m	0,741 m	
128	10	1,101 m	0,677 m	0,698 m	
110	16	0,603 m	0,847 m		0,688 m
110	39	0,635 m	0,656 m		1,016 m
110	41	0,550 m	0,868 m		0,550 m
110	131	0,698 m	0,700 m	0,635 m	0,677 m
129	26	0,529 m	0,402 m	0,402 m	0,402 m
110	44	0,656 m	0,592 m	0,508 m	
114	30	0,529 m	0,614 m		
128	7	0,741 m	0,614 m		
888	8	1,037 m	0,847 m	0,847 m	
127	28	0,254 m	0,677 m		0,804 m
110	23	0,614 m	0,614 m		
110	43	0,571 m	0,783 m		

Ada	Parsel	Zemin Kat	Birinci Kat	İkinci Kat	Çatı Katı
888	7	1,757 m	0,804 m		

3.1.7. Çatı Formu ve Eğimi Analizi

Ortahisar evlerinin çatı eğimleri 17° ile 34° arasında değişmektedir. Çatı katı olmayan yapılar %77.7'si kırma çatıya %11,1'i beşik çatı ve geri kalanı kırma ve beşik melez bir çatıya sahiptir. Çatı katı olan yapılarda alt kat çatısı eşit oranlarda kırma, beşik ve melez çatıya sahiptir. Çatı katı olan yapıların çatı katı %16,6'sı kırma, %66,6 beşik ve %16,6'sı melez çatıya sahiptir. CityEngine üzerinde CGA kodu ile melez çatı oluşturulması mümkün olmamaktadır.

Tablo 3.12. Ortahisar evlerinin çatı formu ve eğimi tablosu.

Ada	Parsel	Çatı Eğimi	Alt Kat	Çatı Kat
118	1	20°	Kırma	
128	10	20°	Beşik	
110	16	23°	Beşik+Kırma	Kırma
110	39	18°	Kırma	Beşik
110	41	18°	Beşik	Beşik + Kırma
110	131	18°	Kırma	Beşik
129	26	19°	Beşik+Kırma	Beşik
110	44	18°	Kırma	
114	30	17°	Kırma	
128	7	20°	Kırma	
888	8	18°	Kırma	
127	28	34°	Beşik	Beşik
110	23	28°	Kırma	
110	43	30°	Beşik+Kırma	
888	7	18°	Kırma	

3.1.8. Form Analizi

Şekil 3.3. Ortahisar evlerinin kat sayısına göre kütle oluşumlarının analizi.

3.1.9. Biçim Grameri

Şekil 3.4. Ortahisar evlerinin kütlesel biçim grameri dili.

3.2. CGA Biçim Gramerinin Oluşturulması

CGA gramer kodu CityEngine yazılımında yazılmaya başlanmıştır ve büyük oranda tamamlanmıştır.

Şekil 3.5. CityEngine üzerinde CGA kodu ile üreliten modeller.

4. SONUÇLAR VE ÖNERİLER

5. KAYNAKLAR

- Aksoy, Z. V. (2001). *Klasik Osmanli Dönemi Sinan Camilerinin Biçim Grameri Açisindan İrdelenmesi*. (Master's thesis). https://polen.itu.edu.tr/handle/11527/10415 adresinden erişildi.
- Benrós, D., Hanna, S. ve Duarte, J. P. (2014). A Generic Shape Grammar for the Palladian Villa, Malagueira House, and Prairie House. *Design Computing and Cognition '12* içinde (ss. 321–340). Dordrecht: Springer Netherlands. doi:10.1007/978-94-017-9112-0_18
- Buelinckx, H. (1993). Wren's language of City church designs: a formal generative classification. *Environment and Planning B: Planning and Design*, 20(6), 645–676. doi:10.1068/b200645
- Chiou, S.-C. ve Krishnamurti, R. (1995). The grammar of Taiwanese traditional vernacular dwellings. *Environment and Planning B: Planning and Design*, 22(6), 689–720. doi:10.1068/b220689
- Çağdaş, G. (1996a). A Shape Grammar: The Language of Traditional Turkish Houses, 23(4), 443–464. doi:10.1068/b230443
- Çağdaş, G. (1996b). A shape grammar model for designing row-houses. *Design Studies*, *17*(1), 35–51. doi:10.1016/0142-694X(95)00005-C
- Çolakoğlu, M. B. (2001). *Design by grammar : algorithmic design in an architectural context*. (PhD thesis). http://dspace.mit.edu/handle/1721.1/8372 adresinden erişildi.
- Downing, F. ve Flemming, U. (1981). The Bungalows of Buffalo. *Environment and Planning B: Planning and Design*, 8(3), 269–293. doi:10.1068/b080269
- Duarte, J. P. (2005). Towards the Mass Customization of Housing: The Grammar of Siza's Houses at Malagueira: *Environment and Planning B: Planning and Design*, 32(3), 347–380. doi:10.1068/b31124
- Duarte, J. P. ve Rocha, J. M. (2006). A Grammar for the Patio Houses of the Medina of Marrakech Towards a Tool for Housing Design in Islamic Contexts. *Communicating Space(s)* [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 860-866. http://papers.cumincad.org/cgi-bin/works/Show?2006_860 adresinden erişildi.
 - Duarte, J. P., Rocha, J. M. ve Soares, G. D. (2007). Unveiling the structure

of the Marrakech Medina: A shape grammar and an interpreter for generating urban form. *Artificial Intelligence for Engineering Design, Analysis and Manufacturing: AIEDAM* içinde (ss. 317–349). Instituto Superior Tecnico, Instituto de Engenharia de Estruturas, Territorio e Construcao, Lisbon, Portugal; Cambridge University Press. doi:10.1017/S0890060407000315

Dylla, K., Frischer, B., Müller, P., Ulmer, A. ve Haegler, S. (2010). Rome Reborn 2.0: A Case Study of Virtual City Reconstruction Using Procedural Modeling Techniques. *Computer Applications and Quantitative Methods in Archaeology* içinde (ss. 1–5). Williamsburg, Virginia, United States of America: Oxford: Archaeopress. https://publikationen.uni-tuebingen.de/xmlui/handle/10900/61447 adresinden erişildi.

Eloy, S. ve Duarte, J. P. (2014). Inferring a shape grammar: Translating designer's knowledge. *Artificial Intelligence for Engineering Design, Analysis and Manufacturing*, 28(2), 153–168. doi:10.1017/S0890060414000067

Flemming, U. (1981). The secret of the Casa Giuliani Frigerio. *Environment and Planning B: Planning and Design*, 8(1), 87–96. doi:10.1068/b080087

Flemming, U. (1987). More Than the Sum of Parts: The Grammar of Queen Anne Houses. *Environment and Planning B: Planning and Design*, 14(3), 323–350. doi:10.1068/b140323

Flemming, U. (1990). Syntactic Structures in Architecture. M. McCullough, W. J. Mitchell ve P. Purcell (Ed.), *The Electronic Design Studio* içinde (ss. 31–47). Cambridge, Mass. https://cumincad.architexturez.net/system/files/pdf/a672.content.pdf adresinden erisildi.

Gips, J. (1975). *Shape Grammars and their Uses*. Basel: Birkhäuser Basel. doi:10.1007/978-3-0348-5753-6

Gips, J. (1999). Computer implementation of shape grammars. *NSF/MIT workshop on shape computation* içinde (s. 56). Massachusetts Institute of Technology Cambridge, MA. http://www.shapegrammar.org/implement.pdf adresinden erişildi.

Hanson, N. L. R. ve Radford, A. D. (1986). *On Modelling the Work of the Architect Glenn Murcutt*. http://cumincad.scix.net/cgi-bin/works/Show?0ebf adresinden erişildi.

Kirsch, J. L. ve Kirsch, R. A. (1986). The structure of paintings: formal grammar and design. *Environment and Planning B: Planning and Design*, 13(2), 163–176. doi:10.1068/b130163

Knight, T. W. (1980). The generation of Hepplewhite-style chair-back designs.

- Environment and Planning B: Planning and Design, 7(2), 227–238. doi:10.1068/b070227
- Knight, T. W. (1981a). The forty-one steps. *Environment and Planning B: Planning and Design*, 8(1), 97–114. doi:10.1068/b080097
- Knight, T. W. (1981b). Languages of designs: from known to new. *Environment and Planning B: Planning and Design*, 8(2), 213–238. doi:10.1068/b080213
- Knight, T. W. (1986). Transformations of the meander motif on Greek geometric pottery. *Design Computing*, *1*, 29–67.
- Knight, T. W. (1989a). Transformations of De StijlArt: The Paintings of Georges Vantongerloo and Fritz Glarner. *Environment and Planning B: Planning and Design*, *16*(1), 51–98. doi:10.1068/b160051
- Knight, T. W. (1989b). Color grammars: designing with lines and colors. *Environment and Planning B: Planning and Design*, *16*(4), 417–449. doi:10.1068/b160417
- Knight, T. W. (1992). Designing with grammars. *CAAD futures* içinde (ss. 19–34). https://cumincad.architexturez.net/system/files/pdf/2559.content.pdf adresinden erişildi.
- Knight, T. W. (1993). Color Grammars: The Representation of Form and Color in Designs. *Leonardo*, 26(2), 117. doi:10.2307/1575896
- Knight, T. W. (1994). Shape grammars and color grammars in design. *Environment and Planning B: Planning and Design*, 21(6), 705–735. doi:10.1068/b210705
- Knight, T. W. (1999). Applications in architectural design and education and practice. *Report for the NSF/MIT Workshop on Shape Computation, Cambridge, Mass., 25-26 April 1999.* http://papers.cumincad.org/cgi-bin/works/Show?fb37 adresinden erişildi.
- Knight, T. W. (2012). Slow Computing. N. Gu ve X. Wang (Ed.), *Computational Design Methods and Technologies* içinde. IGI Global. https://books.google.com/books/about/Computational_Design_Methods_and_Technol.html?id=4-meBQAAQBAJ adresinden erişildi.
- Koning, H. ve Eizenberg, J. (1981). The language of the prairie: Frank Lloyd Wright's prairie houses. *Environment and Planning B: Planning and Design*, 8(3), 295–323. doi:10.1068/b080295
- Lienhard, S. (2017). *Visualization, Adaptation, and Transformation of Procedural Grammars*. (PhD thesis). https://infoscience.epfl.ch/record/226467 adresinden erişildi.
- Lipp, M., Wonka, P. ve Wimmer, M. (2008). Interactive visual editing of grammars for procedural architecture. *ACM Transactions on Graphics*, *27*(3), 1. doi:10.1145/1360612.1360701

Müller, P., Vereenooghe, T., Ulmer, A. ve Van Gool, L. (2005). Automatic reconstruction of Roman housing architecture. *Recording, Modeling and Visualization of Cultural Heritage* içinde (ss. 287–298).

Müller, P., Vereenooghe, T., Wonka, P., Paap, I. ve Van Gool, L. (2006). Procedural 3D Reconstruction of Puuc Buildings in Xkipché. *Proceedings of the 7th International Conference on Virtual Reality, Archaeology and Intelligent Cultural Heritage* içinde (ss. 139–146). Aire-la-Ville, Switzerland, Switzerland: Eurographics Association. doi:10.2312/VAST/VAST06/139-146

Müller, P., Wonka, P., Haegler, S., Ulmer, A. ve Van Gool, L. (2006). Procedural modeling of buildings. *ACM Transactions on Graphics*, 25(3), 614–623. doi:10.1145/1141911.1141931

Müller, P., Zeng, G., Wonka, P. ve Van Gool, L. (2007). Image-based procedural modeling of facades. *ACM Transactions on Graphics*, 26(99), 85–10. doi:10.1145/1239451.1239536

Özkar, M. ve Stiny, G. (2009). Shape grammars. *ACM SIGGRAPH 2009 Courses* içinde (ss. 1–176). New York, New York, USA: ACM Press. doi:10.1145/1667239.1667261

Rollo, J. (1995). Triangle and T-square: the windows of Frank Lloyd Wright. *Environment and Planning B: Planning and Design*, 22(1), 75–92. doi:10.1068/b220075

Saldaña, M. (2015a). An Integrated Approach to the Procedural Modeling of Ancient Cities and Buildings, *30*(suppl 1), 148–163. doi:10.1093/llc/fqv013

Saldaña, M. (2015b). Cave and City: A Procedural Reconstruction of the Urban Topography of Magnesia on the Maeander. (Yayımlanmamış phd thesis). University of California Los Angeles; University of California Los Angeles.

Schinko, C., Krispel, U., Ullrich, T. ve Fellner, D. (2015). BUILT BY ALGORITHMS STATE OF THE ART REPORT ON PROCEDURAL MODELING. *ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences*, *XL-5/W4*, 469–479. doi:10.5194/isprsarchives-XL-5-W4-469-2015

Sönmez, N. O. (2018). A review of the use of examples for automating architectural design tasks. *Computer-Aided Design*, *96*, 13–30. doi:10.1016/j.cad.2017.10.005

Stiny, G. (1975). *Pictorial and Formal Aspects of Shape and Shape Grammars*. Basel: Birkhäuser Basel. doi:10.1007/978-3-0348-6879-2

Stiny, G. (1976). Two exercises in formal composition. *Environment and Planning B: Planning and Design*, *3*(2), 187–210. doi:10.1068/b030187

Stiny, G. (1977). Ice-Ray: A Note on the Generation of Chinese Lattice Designs. *Environment and Planning B: Planning and Design*, 4(1), 89–98. doi:10.1068/b040089

- Stiny, G. (1980a). Introduction to Shape and Shape Grammars. *Environment and Planning B: Planning and Design*, 7(3), 343–351. doi:10.1068/b070343
- Stiny, G. (1980b). Kindergarten grammars: designing with Froebel's building gifts. *Environment and Planning B: Planning and Design*, 7(4), 409–462. doi:10.1068/b070409
- Stiny, G. (1982). Spatial Relations and Grammars. *Environment and Planning B: Planning and Design*, *9*(1), 113–114. doi:10.1068/b090113
 - Stiny, G. (2006). Shape. Talking about Seeing and Doing. The MIT Press.
- Stiny, G. ve Gips, J. (1972). Shape Grammars and the Generative Specification of Painting and Sculpture. C. V. Freiman (Ed.), *International Federation for Information Processing* içinde (ss. 1460–1465). Amsterdam. https://www.researchgate.net/profile/James_Gips/publication/221329330_'Shape_Grammars_and_the_Generative_Specification_of_Painting_and_Sculpture'/links/569f87db08aee4d26ad264e4.pdf adresinden erişildi.
- Stiny, G. ve Mitchell, W. J. (1978). The Palladian grammar. *Environment and Planning B: Planning and Design*, *5*(1), 5–18. doi:10.1068/b050005
- Stiny, G. ve Mitchell, W. J. (1980). The grammar of paradise: on the generation of Mughul gardens. *Environment and Planning B: Planning and Design*, 7(2), 209–226. doi:10.1068/b070209
- Stouffs, R. (2016). Description grammars: A general notation: *Environment and Planning B: Urban Analytics and City Science*, 45(1), 106–123. doi:10.1177/0265813516667300
- Stouffs, R. ve Tunçer, B. (2015). Typological Descriptions as Generative Guides for Historical Architecture. *Nexus Network Journal*, *17*(3), 785–805. doi:10.1007/s00004-015-0260-x
- Tepavcevic, B. ve Stojakovic, V. (2012). Shape grammar in contemporary architectural theory and design. *Facta universitatis series: Architecture and Civil Engineering*, *10*(2), 169–178. doi:10.2298/FUACE1202169T
- Wonka, P., Wimmer, M., Sillion, F. ve Ribarsky, W. (2003). Instant architecture. *ACM Transactions on Graphics*, 22(3), 669–677. doi:10.1145/882262.882324

6. EKLER

ÖZGEÇMİŞ