Instruction Set Architecture (ISA)

Instruction Set

Instruction	Type	Operation	Binary Encoding
ADD	RRR	regA = regB + regC	0000 regA regB regC
		F = 0/1 means unsigned/ signed addition	
SUB	RRR	regA = regB - regC	0001 regA regB regC
		F = 0/1 means unsigned/ signed subtraction	
OR	RRR	regA = regB OR regC	0010 regA regB regC
AND	RRR	regA = regB AND regC	0011 regA regB regC
LI	RI	load IM into regA	0100 regA IM
		F = 0/1 means 8bit immediate value gets put into	
		the upper/ lower 16bit of regA with 0x00 filling the	
		remaining bits	
SW	RRS	store word of regC into address of regB	0101 regB regC
LW	RRL	load word at address of regB into regA	0110 regA regB
BEQ	RRS	branch to address of regB if regC == CMP-bit	0110 regB regC
		F-Bit and 2 unused bits (bit 8 + 1 + 0) are used to	
		decide if equal	
		using one of the CMP_BITs from CMP command	
В	I	branch to immediate address	0111 IM
SLR	RRR	regA = regB >> regC	1000 regA regB regC
SLL	RRR	regA = regB << regC	1001 regA regB regC
CMP	RRR	compare regB == regC and write to regA	1010 regA regB regC
		sets one of the following bits in regA based on	
		comparison of regB and regC for further evaluation	
		with BEQ:	
		- CMP_BIT_EQ (bit 14 MSB)	
		- CMP_BIT_BGC (bit 13 MSB)	
		- CMP_BIT_BLC (bit 12 MSB)	
		- CMP_BIT_BZ (bit 11 MSB)	
		- CMP_BIT_CZ (bit 10 MSB)	
NOP	-	No operation	-
HALT	-	Halt execution	-

Table 1: ISA Instructions

Instruction Format Details

Bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	4 bit			3 bit			1 bit	3 bit			3 bit			2 bit		
RRR	opcode			reg A			F		regB			reg C			unused	
	4 bit				3 bit		1 bit		3 bit			5 bit				
RRL	L opcode				reg A		F		reg B			unused				
	4 bit				3 bit		1 bit		3 bit			3 bit			2 bit	
RRS	opcode			unused			F		reg B			reg C			unused	
		4	bit			3 bit		1 bit		8 bit						
RI		ope	code			reg A		F		immediate (0 to $0xFF$)						
	4 bit					3 bit		1 bit				8 bit				
Ι [opc	ode			unused		F		immediate (0 to $0xFF$)						

Schaltbild

Figure 1: Schaltbild