Introduction to visualization: marks and channels

CS424: Visualization & Visual Analytics

Fabio Miranda

https://fmiranda.me

Data to knowledge

data knowledge

Data to knowledge

Data to knowledge

Transform data into visual marks

What is data visualization?

"Data visualization is the graphical representation of information and data. By using visual elements like charts, graphs, and maps, data visualization tools provide an accessible way to see and understand trends, outliers, and patterns in data."

Tableau

Data visualization

Data visualization

insight

Communication

insight

Data visualization

data

Exploration / Analysis

insight

Example: Noise complaints during pandemic

date	unique_key	created_date	closed_date	agency	agency_name	complaint_type	descriptor	location_type	incident_zip .	landmark	date.1	hour_of_day	week	weekday	year	day_of_month	month	aligned_day_index	datetime
0 2017-01-01	35138317	2017-01-01T00:02:54.000	2017-01-01T00:46:54.000	NYPD	New York City Police Department	Noise - Residential	Loud Music/Party	Residential Building/House	11209.0	NaN	2017-01-01 00:02:54	0	52	6	2017	1	1	0.0	2017-01-01 00:02:54
1 2017-01-01	35139300	2017-01-01T00:03:41.000	2017-01-01T03:49:13.000	NYPD	New York City Police Department	Noise - Residential	Loud Music/Party	Residential Building/House	10040.0	NaN	2017-01-01 00:03:41	0	52	6	2017	1	1	0.0	2017-01-01 00:03:41
2 2017-01-01	35137537	2017-01-01T00:04:01.000	2017-01-01T00:44:40.000	NYPD	New York City Police Department	Noise - Residential	Banging/Pounding	Residential Building/House	11214.0	NaN	2017-01-01 00:04:01	0	52	6	2017	1	1	0.0	2017-01-01 00:04:01
3 2017-01-01	35138401	2017-01-01T00:06:04.000	2017-01-01T01:52:03.000	NYPD	New York City Police Department	Noise - Residential	Loud Music/Party	Residential Building/House	11691.0 .	NaN	2017-01-01 00:06:04	0	52	6	2017	1	1	0.0	2017-01-01 00:06:04
4 2017-01-01	35139201	2017-01-01T00:08:24.000	2017-01-01T06:43:42.000	NYPD	New York City Police Department	Noise - Residential	Loud Music/Party	Residential Building/House	10458.0	NaN	2017-01-01 00:08:24	0	52	6	2017	1	1	0.0	2017-01-01 00:08:24
5 2017-01-01	35140227	2017-01-01T00:09:08.000	2017-01-01T02:16:21.000	NYPD	New York City Police Department	Noise - Residential	Loud Television	Residential Building/House	11366.0	NaN	2017-01-01 00:09:08	0	52	6	2017	1	1	0.0	2017-01-01 00:09:08
6 2017-01-01	35138514	2017-01-01T00:09:22.000	2017-01-01T01:27:35.000	NYPD	New York City Police Department	Noise - Commercial	Loud Music/Party	Club/Bar /Restaurant	11217.0	NaN	2017-01-01 00:09:22	0	52	6	2017	1	1	0.0	2017-01-01 00:09:22
7 2017-01-01	35141927	2017-01-01T00:12:02.000	2017-01-01T00:59:53.000	NYPD	New York City Police Department	Noise - Residential	Loud Music/Party	Residential Building/House	11204.0	NaN	2017-01-01 00:12:02	0	52	6	2017	1	1	0.0	2017-01-01 00:12:02
8 2017-01-01	35138731	2017-01-01T00:12:36.000	2017-01-01T08:29:48.000	NYPD	New York City Police Department	Noise - Residential	Loud Music/Party	Residential Building/House	10457.0 .	NaN	2017-01-01 00:12:36	0	52	6	2017	1	1	0.0	2017-01-01 00:12:36
9 2017-01-01	35141039	2017-01-01T00:12:44.000	2017-01-01T00:45:47.000	NYPD	New York City Police Department	Noise - Residential	Loud Music/Party	Residential Building/House	10312.0	NaN	2017-01-01 00:12:44	0	52	6	2017	1	1	0.0	2017-01-01 00:12:44

Example: Noise complaints during pandemic

Why visualization?

- Our brains are wired in a visual way.
- Help analysts avoid problems.
- Better communicate findings.
- "Visualization gives you answer to questions you didn't know you had."
 Ben Schneiderman

Importance of visualization

Į.	4	E	3	(C	D		
X	У	X	У	X	У	X	У	
10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58	
8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76	
13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71	
9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84	
11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47	
14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04	
6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25	
4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50	
12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56	
7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91	
5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89	

Property	A	В	С	D	
Mean of x	9	9	9	9	
Mean of y	7.5	7.5	7.5	7.5	
Std of x	3.32	3.32	3.32	3.32	
Std of y	2.03	2.03	2.03	2.03	

Importance of visualization

Visualization design

- Creating a data visualization is easy; creating a good visualization is hard.
- Visualization design space is huge, it's important to make good choices in each stage.

Visualization design

Develop principles and techniques to build effective visualizations.

[Munzner, 2015]

Visualization design

- High-level framework for analyzing vis use:
 - What data user sees?
 - Why the user intends to use a vis tool?
 - How the user intends to use a vis tool?

[Munzner, 2015]

Principles of visualization

- Data
- Visual marks
- Visual channels
- Interaction

Dataset types

- Table: items and attributes
- Networks & trees: items (nodes), links, attributes
- Fields: grids, positions, attributes.
- Clusters, sets, lists: items.

Data types

- Items: individual, discrete entity record, data point, etc.
- Attributes: item property that can be measured, observed, logged.
- Links: relationship between entities.
- Position: spatial location.
- Grids: strategy for sampling continuous data.

Attribute types

- Categorical: attributes draw from a discrete set, but there may exist hierarchical structure.
 - Fruits, vegetables, furniture type, car type, ...
- Ordered: attributes with a natural ordering.
 - Ordinal: well-defined ordering, but we cannot do mathematical operations.
 - T-Shirt size (large, medium, small), ranks.
 - Quantitative: measurement of magnitude that supports comparison / mathematical operations.
 - Height, temperature, density, ...

Attribute types

- Ordered: different ordering directions.
 - Sequential: homogeneous range from minimum to maximum value.

 Diverging: can be deconstructed into two sequences pointing in opposite directions that meet at a common zero point.

Cyclic: values wrap around back to starting point.

Visual marks

- Represent items and links.
- Geometric primitives, can be classified according to their spatial dimensions: 0D (points), 1D (lines), 2D (areas), etc.

Visual channels

- Encode properties of a mark.
- Control appearance based on data attributes.

Visual marks & channels

 We can associate tabular data with visual marks and channels as follows:

Car	Horsepower	Year	Color
Car 1	60	2013	Silver
Car 2	86	2015	Green
Car 3	55	1999	Red
Car 4	50	1990	Blue

Channel and mark types

- Channel types:
 - Identify channels: what something is and where it is (circle, triangle, cross, etc.)
 - What? Where?
 - Magnitude channels: how much something there is (length, luminance, etc.)
 - How much?
- Mark types:
 - Item marks
 - Link marks: show relationship between items

Recap

Visual marks: geometric elements that depict items and links.

What something is and where it is

- Visual channels: control marks' appearance.
 - Magnitude for ordered data.
 - Identify for categorial data.

How much something there is

Building blocks for visual encoding.

Choice of marks and channels

 Expressiveness: visual encoding should express all of the information in the dataset.

 Effectiveness: importance of the attribute should match the salience of the channel. Important items are the most salient.

Expressiveness types and effectiveness ranks

Channels: Expressiveness Types and Effectiveness Ranks

Jock Mackinlay, 1986

Channel effectiveness

- Ranking determined by:
 - 1. Accuracy: how well can a viewer decode the information in the channel?
 - 2. Discriminability: how easily can differences between attribute levels be perceived?
 - 3. Separability: can channels be used independently?
 - 4. Popup: can a channel provide popout in the visualization?
 - 5. Grouping: can a channel show perceptual grouping?

Cleveland & McGill hierarchy:

Graphical Perception: Theory, Experimentation, and Application to the Development of Graphical Methods

WILLIAM S. CLEVELAND and ROBERT McGILL*

The subject of graphical methods for data analysis and largely unscientific. This is why Cox (1978) argued tation to test the theory. The theory deals with a small neither theory nor systematic body of experiment as a but important piece of the whole process of graphical guide" (p. 28-29). perception. The first part is an identification of a set of There is, of course, much good common sense about elementary perceptual tasks that are carried out when how to make a graph. There are many treatises on graph people extract quantitative information from graphs. The construction (e.g., Schmid and Schmid 1979), bad pracsecond part is an ordering of the tasks on the basis of tice has been uncovered (e.g., Tufte 1983), graphic de how accurately people perform them. Elements of the signers certainly have shown us how to make a graph theory are tested by experimentation in which subjects appealing to the eye (e.g., Marcus et al. 1980), statistirecord their judgments of the quantitative information on cians have thought intensely about graphical methods for graphs. The experiments validate these elements but also data analysis (e.g., Tukey 1977; Chambers et al. 1983), suggest that the set of elementary tasks should be ex- and cartographers have devoted great energy to the conpanded. The theory provides a guideline for graph con-struction of statistical maps (Bertin 1973; Robinson, Sale struction; Graphs should employ elementary tasks as high and Morrison 1978). The ANSI manual on time series in the ordering as possible. This principle is applied to a charts (American National Standards Institute 1979) provariety of graphs, including bar charts, divided bar charts, vides guidelines for making graphs, but the manual adpie charts, and statistical maps with shading. The con- mits, "This standard . . . sets forth the best current clusion is that radical surgery on these popular graphs is usage, and offers standards 'by general agreement' rather needed, and as replacements we offer alternative graph- than 'by scientific test'" (p. iii). ical forms-dot charts, dot charts with grouping, and In this article we approach the science of graphs framed-rectangle charts.

KEY WORDS: Computer graphics; Psychophysics.

1. INTRODUCTION

the American Statistical Association about the relative aspect of a graph for which one might want to develop a merits of bar charts and pie charts (Eells 1926; Croxton theory, but it is an important one. 1927; Croxton and Stryker 1927; von Huhn 1927). Today

The theory is testable; we use it to predict the relative graphs are a vital part of statistical data analysis and a performance of competing graphs, and then we run exbusiness, education, and the mass media.

*William S. Circetand and Robert McGill are statisticians at AZET likely that it will appear to most other people as well. In 1881 absencers to most other people as well. In 1881 absencers to most other people as well. In 1881 absencers to most other people as well. In 1881 absencers to most other people as well. In 1881 absencers to most other people as well. In 1881 absencers to most other people as well. In 1881 absencers to most other people as well. In 1882 absence a most other people as well as well as the people as well as wel JASA reviewers for important comments on an earlier version of this

for data presentation needs a scientific foundation. In this "There is a major need for a theory of graphical methods article we take a few steps in the direction of establishing (p. 5), and why Kruskal (1975) stated "in choosing, con such a foundation. Our approach is based on graphical structing, and comparing graphical methods we have little perception-the visual decoding of information encoded to go on but intuition, rule of thumb, and a kind of master on graphs-and it includes both theory and experimento-apprentice passing along of information. . . . there is

through human graphical perception. Our approach includes both theory and experimentation to test it.

The first part of the theory is a list of elementary per ceptual tasks that people perform in extracting quantitative information from graphs. In the second part we Nearly 200 years ago William Playfair (1786) began the hypothesize an ordering of the elementary tasks based serious use of graphs for looking at data. More than 50 on how accurately people perform them. We do not argue years ago a battle raged on the pages of the Journal of that this accuracy of quantitative extraction is the only

vital part of communication in science and technology, periments to check the actual performance. The experiments are of two types: In one, once the graphs are Still, graph design for data analysis and presentation is drawn, the evidence appears so strong that it is taken prima facie to have established the case. When a strong effect is perceived by the authors' eyes and brains, it

© Journal of the American Statistical Association September 1984, Volume 79, Number 38

Relative vs absolute judgment

Our perception is based on relative judgment, not absolute.

Position, length & angle

Channel effectiveness: discriminability

- Many channels can only support a limited number of discriminable (distinguishable) levels / bins.
 - Line width: up to 3 or 4
 - Color hues: up to 5 or 6

Channel effectiveness: separability

- Some encodings can be used independently of each other:
 - Vertical and horizontal position can be used independently.
 - Color (hue) and position can be used independently.
- Some encodings interfere with each other:
 - Width and height do not function well independently.
 - Two different values in the red and green channels does not work well.

Channel effectiveness: separability

Fully separable

Size
+ Hue (Color)

Some interference

Width
+ Height

Some/significant interference

Red

Major interference

[Munzner, 2015]

Channel effectiveness: popout

 Many channels support visual popout: one or few items stand out from others.

Channel effectiveness: popout

 Many channels support visual popout: one or few items stand out from others.

More difficult with multiple channels

Channel effectiveness: grouping

- Perceptual grouping can be achieved by:
 - Identity channel to represent items as groups.
 - Using link marks.
 - Enclosure.
 - Spatial proximity.

[Tierney, 2019]

Redundant encoding

Length, position, color

Visual marks & channels: example 1

Bar charts:

- Marks: lines
- Channels: vertical lengths and horizontal positions.
- Each bar is an item, with the quantitative attribute mapped to y spatial channel and categorical attribute mapped to x spatial channel.

Visual marks & channels: example 2

Scatterplots:

- Marks: points
- Channels: vertical and horizontal positions.
- Each point is an item, with the quantitative attributes mapped to x and y spatial channels.

Visual marks & channels: example 3

Scatterplots:

- Marks: points
- Channels: vertical and horizontal positions, color, size.
- Each point is an item, with the quantitative attributes mapped to x and y spatial channels, and color and size.

Car	HP	Price	Length	Style	Maker
Car 1	60	10000	130	Convertible	BMW
Car 2	86	12000	100	Hatchback	Audi
Car 3	55	11000	120	Wagon	Audi
Car 4	50	20000	80	Hatchback	Dodge

Marks: points

Channels: vertical and horizontal positions

Car	HP	Price	Length	Style	Maker
Car 1	60	10000	130	Convertible	BMW
Car 2	86	12000	100	Hatchback	Audi
Car 3	55	11000	120	Wagon	Audi
Car 4	50	20000	80	Hatchback	Dodge

Marks: points

Channels: vertical and horizontal positions

Car	HP	Price	Length	Style	Maker
Car 1	60	10000	130	Convertible	BMW
Car 2	86	12000	100	Hatchback	Audi
Car 3	55	11000	120	Wagon	Audi
Car 4	50	20000	80	Hatchback	Dodge

Marks: points

Channels: vertical and horizontal positions,

color

Car	HP	Price	Length	Style	Maker
Car 1	60	10000	130	Convertible	BMW
Car 2	86	12000	100	Hatchback	Audi
Car 3	55	11000	120	Wagon	Audi
Car 4	50	20000	80	Hatchback	Dodge

Marks: lines

Channels: vertical lengths and horizontal

positions

Car	HP	Price	Length	Style	Maker
Car 1	60	10000	130	Convertible	BMW
Car 2	86	12000	100	Hatchback	Audi
Car 3	55	11000	120	Wagon	Audi
Car 4	50	20000	80	Hatchback	Dodge

Marks: area (simple box)

Channels: vertical and horizontal

positions, color

Mr. Obama's budget proposal includes \$3.7 trillion in spending in 2013, and forecasts a \$901 billion deficit.

Circles are sized according to the proposed spending.

Color shows amount of cut or increase from 2012.

Derive

- Decide what is the right thing to visualize.
- Transformations to extract it from the original dataset.

 $trade\ balance = exports - imports$