Problem F3301 Complicated Statement

You are given 5 integers a_1, a_2, a_3, a_4, a_5 . You are asked to check if none of the following statement is true:

- 1. At least one of the following statement is false:
 - (a) The bitwise AND of a_1 and a_2 is less than or equal to a_5 .
 - (b) The summation of a_3 and a_4 is more than a_5 .
- 2. All of the following statements are true:
 - (a) The bitwise OR of a_3 and a_4 is less than a_1
 - (b) The product of a_4 and a_5 is more than or equal to a_1 .

Input

The input consist of 5 space separated integer a_1, a_2, a_3, a_4, a_5 . Each of them is between 1 and 100 inclusive.

Output

Output "True" (without quote) if none of 2 given statements is true, otherwise output "False" (without quote).

Sample Input 1

1 2 3 4 5

Sample Output 1

True

Sample Input 2

5 4 3 2 1

Sample Output 2

False

Explanation of Sample Data

For sample 1:

- 1. The statement "At least one of the following statement is false:" is false because all the following are true.
 - (a) This statement is true because bitwise AND of a_1 and a_2 is 0, which is less than $a_5 = 5$.
 - (b) This statement is true because summation of a_3 and a_4 is 7, which is more than $a_5 = 5$.
- 2. The statement "All of the following statements are true:" is false because one of the following is false.
 - (a) This statement is false because bitwise OR of a_3 and a_4 is 7, which is more than $a_1 = 1$.
 - (b) This statement is true because product of a_4 and a_5 is 20, which is more than or equal to $a_1 = 1$.

Since none of statement 1 and 2 is true, the output should be "True".

For sample 2:

- 1. The statement "At least one of the following statement is false:" is true because one of the following is false.
 - (a) This statement is false because bitwise AND of a_1 and a_2 is 4, which is more than $a_5 = 1$.
 - (b) This statement is true because summation of a_3 and a_4 is 5, which is more than $a_5 = 1$.
- 2. The statement "All of the following statements are true:" is false because one of the following is false.
 - (a) This statement is true because bitwise OR of a_3 and a_4 is 3, which is less than $a_1 = 5$.
 - (b) This statement is false because product of a_4 and a_5 is 2, which is less than $a_1 = 5$.

Since statement 1 is true, the output should be "False".