Representations of a concrete category as objects in the functor category

Tibor Grün July 15, 2020

Contents

1	Introduction	1
2	A short overview of the tools used	1
3	The categories Quiv, Cats, FinSets, k-Mat, CatReps and the Functor Category 3.1 The category Quiv	1 1
4	Limits and colimits 4.1 Monomorphisms and epimorphisms	4 4 4
5	Functors and natural transformations 5.1 Functors map one category to another	4 4 5
6	Adjunctions 6.1 Universal objects	5 5
7	Yoneda's Lemma: Completion and cocompletion of a category 7.1 Embedding categories	5
8	Functors and natural transformations 8.1 Functors act on objects and morphisms of a category	5 5 5 5 5
9	Relations of the Algebroid 9.1 Relations of endomorphisms	6
10	Category	6
11	K-linear Category (Algebroid)	7
12	Additive Category	8
13	Abelian Category	8
14	The Category of Categories	8
15	The Categories of Functors	8
16	The Representation of a Category	8
17	Representation	8
18	Algorithms	8

1 Introduction

Quiv
$$\rightarrow$$
 CatClosure \leftarrow_{II} Cats \rightarrow k-Algebroid \leftarrow_{II} k - Cats \rightarrow AdditiveClosure \leftarrow_{II} k - Cats

2 A short overview of the tools used

GAP, QPA / QPA2, Catreps, CAP, homalg_project

3 The categories Quiv, Cats, FinSets, k-Mat, CatReps and the Functor Category

In this section, we first want to define the category **Quiv** and how it is the prototype for the category **Cats**. We want to restrict ourselves to finite concrete categories, which brings us to the category **FinSets**. Our goal is to represent concrete categories, for this we need the source and target categories of our representations. The source category is **k-Algebroids** which we compute algorithmically from a concrete category. The target category of our category representations is **k-Mat**. The category where our category representations lie in is **CatReps** for which we show that it's a subcategory of the **Functor Category**.

3.1 The category Quiv

In order to describe the category **Quiv** of quivers, we first have to define what a category is and for this we need the definition of a quiver. Lateron we will revisit this definition as we can define quivers as the objects in the quiver category **Quiv**.

Definition 3.1.1. (Quiver)

A <u>directed graph</u> or <u>quiver</u> q consists of a class of <u>objects</u> (or <u>vertices</u>) q_0 = Obj q and a class of <u>morphisms</u> (or <u>arrows</u>) q_1 = Mor q together with two defining maps

$$s, t: q_1 \longrightarrow q_0$$

s called source and t called target.

In the next definition we are giving a new characterization for q_1 by looking at all arrows between two fixed objects.

Definition 3.1.2. (Hom-set of a (locally) small quiver)

- (1) Given two objects $M, N \in q_0$ we write $\operatorname{Hom}_q(M, N)$ or q(M, N) for the fiber $(s, t)^{-1}(\{(M, N)\})$ of the product map $(s, t) : q_1 \longrightarrow q_0 \times q_0$ over the pair $(M, N) \in q_0 \times q_0$. This is the class of all morphisms with source = M and target = N. We indicate this by writing $\varphi : M \longrightarrow N$ or $M \stackrel{\varphi}{\longrightarrow} N$. Hence q_1 is the disjoint union $\bigcup_{M,N \in q_0}^{\bullet} \operatorname{Hom}_q(M,N) = q_1$. As usual we define $\operatorname{End}_q(M) := \operatorname{Hom}_q(M,M)$.
- (2) If the class $\operatorname{Hom}_q(M,N)$ is a <u>set</u> for all pairs (M,N) then we call the quiver <u>locally small</u>. We therefore talk about <u>Hom-sets</u>. If additionally, q_0 is a set, then the quiver is called <u>small</u>.

Example 3.1.3. (Quiver with 2 objects and 3 morphisms)

$$\begin{array}{ccc}
1 & \xrightarrow{b} & 2 \\
 & & \downarrow 5 \\
 & & & \downarrow 5
\end{array}$$

The objects of this quiver q are $q_0 = \{1,2\}$, and the morphisms are $q_1 = \{a,b,c\}$ with s(a) = 1 = t(a), s(c) = 2 = t(c) and s(b) = 1, t(b) = 2. Thus $\operatorname{End}_q(1) = \{a\}$, $\operatorname{End}_q(2) = \{c\}$ and $\operatorname{Hom}_q(1,2) = \{b\}$ whereas $\operatorname{Hom}_q(2,1) = \emptyset$.

In QPA this quiver is encoded as q(2)[a:1->1,b:1->2,c:2->2] where the first (2) in parentheses stands for the total number of objects.

1

Definition 3.1.4. (Composable arrows; path in a quiver)

Since we already have the source and target maps, we say two arrows $a, b \in q_1$ are <u>composable</u> if t(a) = s(b) or t(b) = s(a). In this case we can write a sequence of composable arrows $p = a_1 a_2 \cdots a_n$ where $t(a_i) = s(a_{i+1})$ for $i = 1, \ldots, n-1$. We call this sequence a <u>path</u> from $s(a_1)$ to $t(a_n)$ and the integer $n \in \mathbb{Z}_{\geq 0}$ the <u>length</u> l(p) of the path p. Although it's not an arrow, we can define the source and target of a path $p = a_1 \cdots a_n$ as $s(p) := s(a_1)$ and $t(p) := t(a_n)$. A path $p = a_1 \cdots a_n$ with $s(a_1) = t(a_n)$, i.e. s(p) = t(p), is called <u>cyclic</u>.

For an endomorphism $a \in \operatorname{End}_q(M)$ we write a^n for $aa \cdots a$ (n times). In the case of n = 0 an empty path whose source and target are the vertex $i \in q_0$ is called the <u>trivial path at i</u> and is denoted e_i . Note that the composition of paths $e_i e_i$ has length zero starting at i therefore $e_i^2 = e_i$.

Lemma 3.1.5. Let Q be a quiver. If there is a path of length at least $|Q_0|$, then there are cyclic paths, and thus infinitely many paths.[2]

Proof. Assume that there exists a path of length greater or equal to $|Q_0|$. Then there exists a path of length $n = |Q_0|$, say $\alpha_1 \cdots \alpha_n$. Consider the vertices $x_i = s(\alpha_i)$ for $1 \le i \le n$ and $x_{n+1} = t(\alpha_n)$. Then these are n+1 vertices, thus there has to exist i < j with $x_i = x_j$. Let $\omega = \alpha_i \cdots \alpha_{j-1}$, this is a path with source and target $x_i = x_j$, thus a cyclic path. But then ω^m is a path for any natural number m. The path ω has length $j-i \ge 1$, thus ω^m has length m(j-i). This shows that these paths are pairwise different.

Example 3.1.6. (A quiver with no cycles)

The longest path $1 \rightarrow 2 \rightarrow 3 \rightarrow 4$ has length 3. If after the object 4 another arrow would go to either 1,2,3 or 4 itself, we would have a cyclic path and thus infinitely many paths.

Definition 3.1.7. (Category)

A <u>category</u> C is a quiver with two further maps:

(id) The <u>identity map</u> $1_{()}$ mapping every object $X \in C_0$ to its <u>identity morphism</u> 1_X :

$$\mathcal{C}_0 \xrightarrow{1} \mathcal{C}_1$$

(μ) And for any two <u>composable</u> morphisms φ and $\psi \in C_1$, i.e. with $t(\varphi) = s(\psi)$, the <u>composition map</u> μ , which maps $\varphi, \psi \in C_1 \times C_1$ to $\mu(\varphi, \psi) \in C_1$ which we also write as $\varphi \psi$.

$$C_1 \times C_1 \stackrel{\mu}{\longrightarrow} C_1$$

The defining properties for 1 and μ are:

(1)
$$s(1_M) = M = t(1_M)$$
, i.e. $1_M \in \operatorname{End}_{\mathcal{C}} \forall M \in \mathcal{C}$.

(2)
$$s(\varphi \psi) = s(\varphi)$$
 and $t(\varphi \psi) = t(\psi)$ for all composable morphisms $\varphi, \psi \in \mathcal{C}$.

$$\mu : \operatorname{Hom}_{\mathcal{C}}(M, L) \times \operatorname{Hom}_{\mathcal{C}}(L, N) \longrightarrow \operatorname{Hom}_{\mathcal{C}}(M, N)$$

(3)
$$(\varphi \psi) \rho = \varphi(\psi \rho)$$
 [associativity of composition]

(4) $1_{s(\varphi)}\varphi = \varphi = \varphi 1_{t(\varphi)}$ [unit property] The identity is a left and right <u>unit</u> of the composition.

The concept of a functor is central in category theory. It is how the objects and morphisms of two categories relate to one another. The following

Definition 3.1.8. (Functor) In the category **Cat** which has categories as objects, <u>functors</u> are the morphisms between these objects. Let $\mathcal{C}, \mathcal{D} \in \text{Obj} \mathbf{Cat}$ be categories. A <u>functor</u> $F: \mathcal{C} \longrightarrow \mathcal{D}$ between \mathcal{C} and \mathcal{D} consists of the following data:

- (1) For every object $c \in C_0$ there is an object $Fc \in D$.
- (2) For every morphism $f \in \mathcal{C}_1$, i.e. $c \xrightarrow{f} c'$ there is a morphism $Ff \in \mathcal{D}_1$ with $Fc \xrightarrow{Ff} Fc'$, i.e. s(Ff) = Fs(f) and t(Ff) = Ft(f)

Functors are compatible with the identity map and the composition map:

- (3) For every object $c \in C_0$ we have $1_c \in C_1$ and for the functor F we demand that $F1_c = 1_{Fc} \in D_1$.
- (4) For every pair of morphisms $f,g \in C_1$ with t(f) = s(g) we have $fg \in C_1$ and we demand that Fg Fg = F gf.

With the definition of a category and the category of functors finished, we can come back and use them to define the category of quivers **Quiv**.

Definition 3.1.9. (The category **Quiv**)[3] Let the <u>Kronecker category</u> \mathcal{K} be the category with two objects, 0 and 1, and two non-identity morphisms, s and t $1 \xrightarrow{s} 0$. Let **FinSets** be the category of finite sets with morphisms being maps between those sets. The <u>category of quivers</u> **Quiv** is the category of functors from \mathcal{K} to **FinSets**. For a quiver $q \in \text{Obj}$ **Quiv** we write q_x for the image of $x \in \{0,1\}$ under q. The images under q of the morphisms s and t are again denoted by s and t.

As we have seen, every category is a quiver, but in general, to become a category, a quiver is lacking identity morphisms and the composition of morphisms. To be more precise, there is a <u>functor</u> U from the <u>category of categories</u> CAT to the <u>category of quivers</u> Quiv, called the <u>underlying quiver</u> or <u>forgetful functor</u>.

$$CAT \longrightarrow Quiv$$

mapping every object $M \in C_0$ to the same objects in q_0 , mapping every arrow $\varphi \in C_1$ to an arrow $a \in q_1$, respecting source and target, but forgetting the special role of the identity morphisms and of the composition morphisms.

Example 3.1.10. (Underlying quiver)

In the category on the left, associativity of composition guaranteed that $(\varphi\psi)\rho = \varphi(\psi\rho)$, so those two arrows were already the same, so they are mapped to the same arrow $f = U((\varphi\psi)\rho) = U(\varphi(\psi\rho))$ in the quiver on the right. We didn't have to draw both arrows for f, but since they are equal, there is still only one arrow in the hom-set $\text{Hom}_g(1,4) = \{f,f\} = \{f\}$.

All the other identities are not preserved under the forgetful functor, e.g. d doesn't know what it has to do with a and b apart from s(d) = s(a) and t(d) = t(b). Especially the former identity arrows are now just endomorphisms with no defining property.

The paths g^2f , gf and fj^3 are all different, while in the category, they all simplify to $1_A1_A(\varphi\psi)\rho = 1_A(\varphi\psi)\rho = (\varphi\psi)\rho 1_D1_D1_D = (\varphi\psi)\rho$ due to the unit property and associativity.

Definition 3.1.11. (Ab-category) An <u>Ab-category</u> is a category in which all homomorphism sets are abelian groups, and composition distributes over addition.

In other words, A category \mathcal{C} is an <u>Ab-category</u> if for every pair of objects $M, N \in \mathcal{C}_0$, $(\operatorname{Hom}_{\mathcal{C}}(M, N), +)$ is an abelian group (with the neutral element called <u>zero morphism</u>), and for all morphisms $\gamma, \delta \in \operatorname{Hom}_{\mathcal{C}}(M, N), \alpha, \beta \in \operatorname{Hom}_{\mathcal{C}}(N, L)$

$$(\gamma + \delta)\alpha = \gamma\alpha + \delta\alpha$$
 and $\gamma(\alpha + \beta) = \gamma\alpha + \gamma\beta$.

Note that every hom-set has its own unique zero morphism. E.g. in Mat_Q the 2-by-3 zero-matrix $0 \in Hom(2,3)$ is different from the 4-by-4 zero-matrix $0 \in Hom(4,4)$.

Definition 3.1.12. (Initial object, terminal object, zero object)

Example 3.1.13.

Definition 3.1.14. (Kernel of a morphism

Definition 3.1.15. (Abelian category)

Definition 3.1.16. (k-linear category)

Quiver -; CAT: U: forget 1, forget composition search U^{-1}

Beispiel für Adjunktion

Path Algebra:

4 Limits and colimits

- 4.1 Monomorphisms and epimorphisms
- 4.2 Kernel and cokernel; image and coimage
- 4.3 Direct sum and direct product

5 Functors and natural transformations

5.1 Functors map one category to another

Example 5.1.1. (Identity Functor) bla

Example 5.1.2. (Forgetful functor) bla

Definition 5.1.3. (full functor; faithful functor)

5.2 Natural transformations are morphisms between functors

- 6 Adjunctions
- 6.1 Universal objects
- 6.2 Forgetting the forgetful functor: Free constructions
- 7 Yoneda's Lemma: Completion and cocompletion of a category
- 7.1 Embedding categories

Lemma 7.1.1. (Yoneda's Lemma)

Proof.

8 Functors and natural transformations

- 8.1 Functors act on objects and morphisms of a category
- 8.2 Natural transformations are morphisms between functors
- 8.3 Representations are Functors into a matrix category
- 8.4 Finite concrete categories

Yonedas Einbettungs-Lemma: Fehlende Limiten bzw. Kolimiten exitieren nach der Einbettung.

Einbettung in Kategorien, die mehr Limiten haben als die Zielkategorie.

"(Ko-)Vervollständigung" der Kategorie (Completion / Cocompletion)

Quiver = unvollständige Struktur einer Kategorie Erzeugendensystem einer Kategorie.

K-linearer Abschluss einer Kategorie

Pfadalgebra = Kategorien-Algebra path algebra = 1 Object, welches eine Algebra ist. Dabei verliert man wieder die Informationen über die mehreren Objekte.

So wie Menge ein Erz-system eines Monoid.

9 Relations of the Algebroid

9.1 Relations of endomorphisms

Lemma 9.1.1 (σ -Lemma). For each endomorphism f in a finite concrete category C there exist $m, n \in \mathbb{N}$ such that $f^{(m+n)} = f^m$.

Beschreibung der Algorithmen

WeakDirectSumDecomposition i– Tiefensuche. Objekte (Funktoren) in indecomposable Functors.

10 Category

Definition 10.0.1. (Quiver)

A <u>quiver</u> A consists of a class of <u>objects</u> (or vertices) A_0 = ObjA and a class of <u>morphisms</u> (or arrows) A_1 = MorA together with two defining maps

$$s, t: A_1 \longrightarrow A_0$$

s called <u>source</u> and t called <u>target</u>. 1

We write $\operatorname{Hom}_A(M, N)$ (sometimes also A(M, N)) for the fiber $(s, t)^{-1}(\{(M, N)\})$ of the product map $(s, t) : A_1 \to A_0 \times A_0$ over the pair $(M, N) \in A_0 \times A_0$.

This is the class of all morphisms with source = M and target = N.

For a morphism $\varphi \in \text{Hom}_A(M, N)$ we write

$$\varphi: M \longrightarrow N \text{ or } M \stackrel{\varphi}{\longrightarrow} N$$

Clearly A_1 is the disjoint union $\bigcup_{M,N\in A_0}^{\bullet} \operatorname{Hom}_A(M,N) = A_1$. As usual we define $\operatorname{End}_A(M) := \operatorname{Hom}_A(M,M)$.

Definition 10.0.2. (Category)

A <u>category</u> A is a quiver with two further defining maps

$$A_0 \xrightarrow{1} A_1 \leftarrow_{\mu} A_1 \times_{s,A_0,t} A_1$$

Example 10.0.3. (Representation of a concrete category)

nine

 $F(a)\eta_1=\eta_1G(a)F(b)\eta_2=\eta_1G(b)$

11 K-linear Category (Algebroid)

Group: Category with one object.

Groupoid: A small category in which every morphism is an isomorphism.

Algebroid

Embedding Of Sum Of Images

What is an Algebroid? Bialgebroid?

- 12 Additive Category
- 13 Abelian Category
- 14 The Category of Categories
- 15 The Categories of Functors
- 16 The Representation of a Category

17 Representation

Grundidee von FunctorCategory Standard-Monoidale Struktur von der Zielkategorie z.B. TensorUnit(C)

18 Algorithms

```
60
        AddInverse (C,
          function (alpha)
61
            return Inverse ( Underlying Cell ( alpha ) ) / CapCategory ( alpha );
62
63
64
       c := ConcreteCategory( L );
65
66
       C!. ConcreteCategoryRecord := c;
67
68
        objects := List( c.objects, FinSet );
69
70
        SetSetOfObjects( C, List( objects , o -> o / C ) );
71
72
        SetSetOfGeneratingMorphisms(C, List(c.generators, g -> ConvertToMapOfFinSets(object)
73
74
        Finalize (C);
75
76
        return C;
77
78
   end);
79
80
   ##
81
   InstallMethod (Algebroid,
            "for a homalg ring and a finite category",
83
            [ IsHomalgRing and IsCommutative, IsFiniteConcreteCategory ],
84
85
     function (k, C)
86
87
        local objects, gmorphisms, q, kq, relEndo, A, F, vertices, rel,
              func, st, s, t, homST, list, p, pos;
88
89
        objects := SetOfObjects( C );
90
       gmorphisms := SetOfGeneratingMorphisms( C );
91
       q := RightQuiverFromConcreteCategory( C );
92
       kq := PathAlgebra( k, q );
93
       relEndo := RelationsOfEndomorphisms( k, C );
94
       A := Algebroid ( kq, relEndo );
95
       kq := UnderlyingQuiverAlgebra( A );
96
       F:= CapFunctor(A, objects, gmorphisms, C);
97
```

```
98
        vertices := List( SetOfObjects(A), UnderlyingVertex );
99
100
        rel := [];
101
        func :=
102
           function (p, l)
103
             return ForAny( 1, p1->
104
                             IsCongruentForMorphisms(
105
                                      ApplyToQuiverAlgebraElement(F, p),
106
                                      ApplyToQuiverAlgebraElement( F, p1 ) )
107
                             );
108
        end;
109
110
        for st in Cartesian (vertices, vertices) do
111
             s := st[1];
112
             t := st[2];
113
             if s = t then
114
                 continue:
115
             fi;
116
            homST := BasisPathsBetweenVertices( kq, s, t );
117
            homST := List( homST, p -> PathAsAlgebraElement( kq, p ) );
118
119
             list := [];
120
121
122
             for p in homST do
                 pos := PositionProperty( list, l->func(p,l) );
123
                 if IsInt(pos) then
124
                     Add( list[pos], p );
125
                 else
126
                     Add( list , [p] );
127
                 fi:
128
             od;
129
             list := List( list, l-> List( l, p -> p!.representative ) );
130
             Append( rel, list );
131
        od;
132
133
        rel := Filtered ( rel , l -> Length(l)>1 );
134
        rel := List( rel, l -> List( l\{[2 ... Length(l)]\}, p -> l[1]-p));
135
        rel := Flat( rel );
136
        rel := Concatenation( relEndo, rel );
137
138
        kq := PathAlgebra( kq ) / rel;
139
140
        kq := PathAlgebra( kq ) / GroebnerBasis( IdealOfQuotient( kq ) );
141
```

We want the endomorphism relations so that the path algebra is finite-dimensional and we get a finite Gröbner basis.

Proof that algorithm is correct Proof that it terminates.

Wir haben BasisOfExternalHom benutzt um Decompose in CAP umzusetzen um EmbeddingOf-SubRepresentation umzusetzen um WeakDirectSumDecomposition umzusetzen.

Notes

¹Some authors use maps t,h for tail and head instead of source and target, defining the arrows to go from the tail to the head. This use of t as the starting point instead of the end target as in our definition can lead to some confusion.

Algorithm 1: RightQuiverFromConcreteCategory

```
Input: a finite concrete category C with n objects

Output: the right quiver q(n)

1 let Obj be the set of objects of C;

2 let n := Length(Obj);

3 let gMor be the set of generating morphisms of C;

4 let A be the empty set and let i := 1;

5 foreach morphism mor in gMor do

6 | let A_{i,1} be the position of Source(mor) in Obj;

7 | let A_{i,2} be the position of Range(mor) in Obj;

8 | let i := i + 1;

9 end

10 let q be the right quiver with vertices \{1, \ldots, n\} and arrows A.

11 return q;
```

Algorithm 2: RelationsOfEndomorphisms

end

25 return relsEndo;

23 | 6 24 end

```
Output: the endomorphism relations of the category C
1 let q := RightQuiverFromConcreteCategory(C);
_{2} let kq be the path algebra generated by k and q;
3 let gMor be the set of generating morphisms of C;
_{4} let A := Arrows(q);
5 let relsEndo be the empty set;
6 foreach i = 1, ..., Length(gMor) do
      let mor := gMor_i if mor is not an endomorphism then
         continue;
8
      end
      let m := 0 and let powers be the empty set;
10
      let foundEqual be false;
11
      while mor^m \notin powers do
12
         let n := 1;
13
         while ¬foundEqual do
14
             if mor^{(m+n)} = mor^m then
15
                 Add the relation kq.(A_i)^{(m+n)} - kq.(A_i)^m to relsEndo;
16
                foundEqual := true;
17
             end
18
             n := n+1;
19
          end
20
          Add mor^m to powers;
21
         m := m+1;
```

Input: a commutative ring *k* and a finite concrete category *C*

References

- $\hbox{[1] $https://web.northeastern.edu/martsinkovsky/p/Parnu2019/slides-facchini.pdf}$
- [2] https://www.math.uni-bielefeld.de/ sek/kau/leit4.pdf
- [3] Jan Geuenich. https://hss.ulb.uni-bonn.de/2017/4681/4681.pdf