1. (2pt) Consider applying logistic regression to the following dataset:

x_1	x_2	у
0	0	1
0	1	0
1	0	0
1	1	1

a) (1pt) If we use raw feature x_1 and x_2 , the model is

$$p(y=1|x,w) = \text{sigmoid}(w_0+w_1x_1+w_2x_2)$$

What is the minimum achievable training error (= $\frac{\# incorrect}{\# total}$) in this case? Give weights that achieve the minimum error.

b) (1pt) Next consider using an additional feature x_1x_2 in addition to the raw feature x_1 and x_2 . The model now is

$$p(y=1|x,w) = \text{sigmoid}(w_0+w_1x_1+w_2x_2+w_3x_1x_2)$$

What is the minimum achievable training error in this case? Give weights that achieve the minimum error.

- 2. (2pt) Consider the binary classification problem, in which each observation $x^{(l)}$ is known to belong to one of two classes, corresponding to r=0 and r=1. Suppose that the procedure for collecting training data is imperfect, so that training points are sometimes mislabelled. For every data point $x^{(l)}$, instead of having a value $r^{(l)} \in \{0,1\}$ for the class label, we have instead a value $\pi^{(l)}$ representing the probability that $r^{(l)} = 1$. Given a logistic regression model y=p(r=1|x,w), write down the loss function appropriate to such a data set.
- 3. (1pt) Consider the training set below, where "x" denotes positive examples (y=1) and "o" denotes negative examples (y=0). Suppose you train an SVM (which will predict 1 when $w_0+w_1x_1+w_2x_2 \ge 0$). What values might the SVM give for w_0 , w_1 , and w_2 ?

- (a) $w_0=3, w_1=1, w_2=0$
- (b) $w_0 = -3$, $w_1 = 1$, $w_2 = 0$
- (c) $w_0=3, w_1=0, w_2=1$
- (d) $w_0 = -3$, $w_1 = 0$, $w_2 = 1$

4. (1pt) You are given the following neural networks which take two binary valued inputs x_1 , $x_2 \in \{0, 1\}$ and the activation function is the threshold function(h(x) = 1 if x > 0; 0 otherwise). Which of the following logical functions does it compute?

- (a) OR
- (b) AND
- (c) NAND
- (d) None of the above.
- 5. (4pt) We have a function which takes a two-dimensional input $x = (x_1, x_2)$ and has two parameters $w = (w_1, w_2)$ given by $f(x, w) = \sigma(\sigma(x_1w_1)w_2 + x_2)$ where $\sigma(x) = 1/(1+e^{-x})$. We use backpropagation to estimate the right parameter values. We start by setting both the parameters to 0. Assume that we are given a training point $x_1 = 1$, $x_2 = 0$, y = 5 and minimize the MSE loss.
 - 1)(2pt) What is the value of $\partial f/\partial w_2$? Show the computation process.
 - 2) (2pt) If the learning rate is 0.5, what will be the value of w₂ after one update using backpropagation algorithm? Show the computation process