Kunyi Zhang

(86) 139-1900-5209 | kunyizhang@zju.edu.cn | https://zhangkunyi.github.io/

Room 303, Institute of Cyber-system and Control, Zhejiang University, Hangzhou, China.

Education			
Zhejiang University		Hangzhou, China	
Ph.D.	Electronic Information (Tutor: <u>Fei Gao</u>)	2020.02 - 2023.09	
M.Eng.	Control Science and Engineering (Tutor: Chao Xu)	2017.09 - 2020.02	
East China University of Science and Technology		Shanghai, China	
B.Eng.	Mechanical Engineering	2012.09 - 2016.07	
B.Sc.	Applied Mathematics	2013.03 - 2016.07	
Dublicati			

- Kunyi Zhang, Chenxing Jiang, Sheng Yang, Teng Ma, Shaojie Shen, Chao Xu, Fei Gao, WING: Wheel-Inertial-Neural Odometry with Ground Manifold Constraints. Submitted to IEEE International Conference on Robotics and Automation (ICRA), 2023. [Paper | Video]
- Kunyi Zhang, Chenxing Jiang, Jinghang Li, Sheng Yang, Teng Ma, Chao Xu, Fei Gao, DIDO: Deep Inertial Quadrotor Dynamical Odometry. Published by IEEE Robotics and Automation Letters (RA-L), 2022. [Paper | Video | Code]
- Kunyi Zhang, Tiankai Yang, Ziming Ding, Sheng Yang, Teng Ma, Mingyang Li, Chao Xu, Fei Gao, The Visual-Inertial- Dynamical Multirotor Dataset. Published by International Conference on Robotics and Automation (ICRA), 2022. [Paper | Video | Code]
- Ziming Ding, Tiankai Yang, Kunyi Zhang, Chao Xu, Fei Gao, VID-Fusion: Robust Visual-Inertial-Dynamics Odometry for Accurate External Force Estimation. Published by International Conference on Robotics and Automation (ICRA), 2021. [Paper | Video | Code]

Internship				
Alibaba DAMO Academy	Hangzhou, China			
Localization and mapping group Auto	onomous Driving Lab	2022.01 - 2022.11		
Projects				
• Visual inertial odometry based on quadr	otor dynamics Leader	2020.04 - 2021.09		
• State grid UAV long range power inspec	ction solution Member	2018.10 - 2020.06		
 International aerial robotics competition 	Member	2017.07 - 2018.08		
 Fast target recognition and tracking tech 	nology for UAV Member	2021.03 - 2021.06		
Awards				

- First Prize in the 2017 International Aerial Robot Competition;
- First Prize & Champion in the 2018 International Aerial Robot Competition;
- Second Prize in the 2018 "Huawei Cup" Graduate Mathematical Modeling Competition;
- Scholarship for the 2017-2018 academic year.

Skills

- Familiar with common Robotics development tools and environments such as C/C++, Python, ROS, Git, Linux, MATLAB, Python, and Mathematica;
- Familiar with MSF, MSCKF, VINS-MONO, ORB-SLAM, LIO-SAM, and other SLAM frameworks;
- Familiar with basic classical control theory, numerical optimization method, and optimization theory;
- Familiar with CAD, Pro-E, and other computer-aided design software;
- Capable of reading and translating literature independently and writing professional English.