

Appunti di Algoritmi e Strutture Dati

a.a. 2018/2019

Autori: Timoty Granziero Marco Siragna

Repository:

https://github.com/Marco305/ASD-Notes

Indice Indice

Indice

1	Intr	roduzione 1
	1.1	Problem Solving
	1.2	Analisi
2	Ord	linamento 3
	2.1	Problema dell'Ordinamento (Sorting)
	2.2	Insertion Sort
		2.2.1 Correttezza di Insertion Sort
		2.2.2 Complessità di Insertion Sort
	2.3	Divide et Impera
	2.4	Merge Sort
		2.4.1 Approfondimento sull'Induzione
		2.4.2 Complessità di Merge Sort
	2.5	Confronto tra Insertion Sort e Merge Sort
3	Cor	mplessità Asintotica 15
	3.1	Notazione Asintotica
		3.1.1 Limite Asintotico Superiore
		3.1.2 Limite Asintotico Inferiore
		3.1.3 Limite Asintotico Stretto
	3.2	Metodo del Limite
	3.3	Proprietà Generali
	3.4	Complessità di un Problema
		3.4.1 Esempio: limite inferiore per ordinamento basato su
		scambi di elementi contigui
	3.5	Soluzione di Ricorrenze
		3.5.1 Metodo di Sostituzione
		3.5.2 Master Theorem
4	Ord	linamento (cont.)
	4.1	` '
		4.1.1 Max Heap
		4.1.2 Code con Priorità
	4.2	Quicksort
	-	4.2.1 Correttezza di Quicksort
		4.2.2 Complessità di Quicksort
	4.3	Quicksort a Tre Partizioni
	4.4	Limite Inferiore
	4.5	Albero di Decisione 47

r 1·	т 1•
Indice	Indice
HH(H)(P	111(11()

	4.6	Counting Sort
		4.6.1 Proprietà di Stabilità
	4.7	Radix Sort
5	Tab	elle Hash 52
	5.1	Chaining
		5.1.1 Hashing Uniforme Semplice 54
		5.1.2 Funzioni Hash
		5.1.3 Hashing Universale
	5.2	Open Addressing
		5.2.1 Hashing Uniforme
		5.2.2 Funzioni di Hash
6	Alb	eri 62
U	6.1	Alberi Binari di Ricerca
	0.1	6.1.1 Visita Simmetrica
		6.1.2 Ricerca
		6.1.3 Successore
		6.1.4 Inserimento
		6.1.5 Eliminazione
	6.2	Red-Black Trees
	0	6.2.1 Complessità Algoritmi RB-Trees 70
		6.2.2 RB-Insert e RB-Delete
	6.3	Arricchimento di Strutture Dati
		6.3.1 Statistiche d'Ordine
		6.3.2 Teorema dell'Aumento degli RB-Trees 84
		6.3.3 Interval Trees
7	Pro	grammazione Dinamica 87
•	7.1	Critica al D&C
	7.2	Memoizzazione
	7.3	Problemi di Ottimizzazione
	7.4	Problemi su Stringhe
	7.5	Longest Common Subsequence (LCS)
	•••	7.5.1 Proprietà di Sottostruttura Ottima
		7.5.2 Ricorrenza sui Costi
	7.6	Longest Increasing Subsequence (LIS)
	. •	7.6.1 Proprietà di Sottostruttura Ottima
		7.6.2 Ricorrenza sui Costi
	7.7	Completamento a Palindromo (CP)
		7.7.1 Proprietà di Sottostruttura Ottima 106

Indice		Ir	ndice
	7.7.2	Ricorrenza sulle Lunghezze	. 107

1 Introduzione

1.1 Problem Solving

- 1. Formalizzazione del problema;
- 2. Sviluppo dell'algoritmo (focus del corso);
- 3. Implementazione in un programma (codice).

Algoritmo Sequenza di passi elementari che risolve il problema.

Input
$$\rightarrow$$
 Algoritmo \rightarrow Output

Dato un problema, ci sono tanti algoritmi per risolverlo.

e.g.¹ Ordinamento dei numeri di una Rubrica. L'idea è quella di trovare tutte le permutazioni di ogni numero.

```
30 numeri: complessità 30! \cong 2 \times 10^{32} ns \Rightarrow
3^{19}anni (con ns = \text{nanosecondi})
```

std::vector È un esempio nel C++ delle ragioni per cui si studia questa materia. Nella documentazione della STL, sono riportati i seguenti:

- \circ Random access: complessità O(1);
- \circ Insert: complessità O(1) ammortizzato.

Il random access è l'accesso a un elemento casuale del vector. O(1) implica che l'accesso avviene in tempo costante (pari a 1).

Per insert si intende l'inserimento di un nuovo elemento in coda. Avviene in tempo O(1) ammortizzato: questo perchè ogni N inserimenti, è necessario un resize del vector e una copia di tutti gli elementi nel nuovo vettore (questa procedura è nascosta al programmatore).

¹For the sake of example.

1.2 Analisi 1 Introduzione

1.2 Analisi

- Tempo di esecuzione;
- Spazio (memoria);
- o Correttezza;
- o Manutenibilità.

Approfondimento sul tempo di esecuzione T(n)

- o P Problems: complessità polinomiale. L'algoritmo è trattabile
- o *NP Complete*: problemi NP completi. **e.g**: Applicazione sugli algoritmi di sicurezza. Si basano sull'assunzione che per essere risolti debbano essere considerate tutte le soluzioni possibili.
- o NP Problems: problemi con complessità (ad esempio) esponenziale/fattoriale. Assolutamente non trattabili.

Figura 1: Complessità T(n).

2 Ordinamento

2.1 Problema dell'Ordinamento (Sorting)

Input: sequenza di numeri

$$a_0a_1\ldots a_n;$$

Output: permutazione

$$a'_0a'_1\ldots a'_n$$

tale che

$$a_0' \leq a_1' \leq \cdots \leq a_n'$$

Vedremo due algoritmi:

- o InsertionSort;
- o MergeSort.

2.2 Insertion Sort

Insertion Sort un algoritmo di sorting incrementale. Viene applicato naturalmente ad esempio quando si vogliono ordinare le carte nella propria mano in una partita a scala 40: si prende ogni carta a partire da sinistra, e la si posiziona in ordine crescente.

Astrazione Prendiamo ad esempio il seguente array:

Partiamo dal primo elemento: 5. È già ordinato con se stesso, quindi procediamo con il secondo elemento.

Confronto il numero 2 con l'elemento alla sua sinistra:

 $2 \geq 5$? No, quindi lo inverto con l'elemento alla sua sinistra, come segue

La key analizzata è 8.

 $8 \ge 5$? Sì, quindi è ordinato in modo corretto.

0	-	0	1	7	T.7
2	\perp G	8 1	4	(Key:

La key analizzata è 4.

 $4 \ge 8$? No, quindi lo sposto a sinistra invertendolo con 8.

 $4 \ge 5$? No, lo sposto a sinistra invertendolo con 5.

 $4 \ge 2$? Sì, quindi è nella posizione corretta.

2	4	5	8	7	Key:	7
---	---	---	---	---	------	---

Key analizzata 7.

 $7 \ge 8$? No, lo sposto a sinistra invertendolo con 8.

 $7 \geq 5?$ Sì, è nella posizione corretta.

Ottengo l'array ordinato:

2 4	5	7	8
-----	---	---	---

 $\bf Algorimo$ Passiamo ora all'implementazione dell'algoritmo, con uno pseudocodice similare a ${\tt Python}^1$

Input: A[1, ..., n], A.length.

È noto che:
$$A[i] \le key < A[i+1]$$

Pseudocodice Segue lo pseudocodice dell'InsertionSort.

Insertion-Sort(A)

```
1 n = A. length

2 for j = 2 to n // il primo elemento è già ordinato

3 key = A[j] // A[1...j-1] ordinato

4 i = j-1

5 while (i > 0) and (A[i] > key)

6 A[i+1] = A[i]

7 i = i-1

8 A[i+1] = key
```

Quando il while termina, ci sono due casi:

 i = 0: tutti gli elementi prima di j sono maggiori di key; key va al primo posto (1);

```
\circ (i > 0) and (A[i] \leq key): A[i+1] = key.
```

2.2.1 Correttezza di Insertion Sort

for A[1..j-1] è ordinato e contiene gli elementi in (1,j-1) iniziali.

while A[1..i]A[i+2..j] ordinato eA[i+2..j] > key.

In uscita abbiamo:

- \circ j = n+1;
- o A[1..n] ordinato, come da invariante: vale A[1..j-1] ordinato, e j vale n+1.

 $^{^{1}}$ **ATTENZIONE**: verranno usati array con indici che partono da 1.

2.2.2 Complessità di Insertion Sort

Assunzione Tutte le istruzioni richiedono un tempo <u>costante</u>. Rivediamo l'algoritmo:

```
INSERTION-SORT(A)

1  n = A. length

2  \mathbf{for} \ j = 2 \ \mathbf{to} \ n \ /\!\!/ \ il \ primo \ elemento \ e \ gi a ordinato

3  key = A[j] \ /\!\!/ \ A[1 ... j - 1] \ ordinato

4  i = j - 1

5  \mathbf{while} \ (i > 0) \ \mathbf{and} \ (A[i] > key)

6  A[i + 1] = A[i]

7  i = i - 1

8  A[i + 1] = key
```

Diamo il nome c_0 alla chiamata della procedura, InsertionSort(A); A ogni riga numerata, diamo il nome c_1, c_2, \dots, c_8 ¹.

Vediamo il **costo** di ogni istruzione:

$$c_0 \rightarrow 1$$
 $c_1 \rightarrow 1$
 $c_2 \rightarrow n$
 $c_3 \rightarrow (n-1)$
 $c_4 \rightarrow (n-1)$
 $c_5 \rightarrow \sum_{j=2}^n t_j + 1$
 $c_6, c_7 \rightarrow \sum_{j=2}^n t_j$
 $c_8 \rightarrow (n-1)$

$$T^{IS}(n) = c_0 + c_1 + c_2 n + (c_3 + c_4 + c_8)(n-1) + c_5 \sum_{j=2}^{n} (t_j + 1) + (c_6 + c_7) \sum_{j=2}^{n} t_j$$

 $^{1/(}c_1 \text{ corrisponde alla riga } 1, c_2 \text{ alla riga } 2 \text{ e così via}).$

2.2 Insertion Sort

2 Ordinamento

 t_j dipende, oltre che da n, dall'istanza dell'array che stiamo considerando. È chiaro che questo calcolo non da indicazioni precise sull'effettiva complessità dell'algoritmo.

Andiamo ad analizzare i 3 possibili casi:

- a) Caso migliore (2.2.2)
- \mathbf{b}) Caso peggiore (2.2.2)
- \mathbf{c}) Caso medio (2.2.2)

Caso migliore $\rightarrow A \text{ ordinato} \Rightarrow t_j = 0 \ \forall j$

La **complessità** diventa:

$$T_{min}^{IS}(n) = c_0 + c_1 + c_2 n + (c_3 + c_4 + c_5 + c_8)(n-1) = an + b \approx n$$

Ossia, si comporta come n. Il **caso migliore non** è interessante, visto che è improbabile si presenti.

Caso peggiore $\rightarrow A$ ordinato in senso inverso $\Rightarrow \forall j \ t_j = j-1$

La **complessità** diventa:

$$T_{max}^{IS}(n) = c_0 + c_1 + c_2 n + (c_3 + c_4 + c_8)(n-1) + c_5 \sum_{j=2}^{n} j + (c_6 + c_7) \sum_{j=2}^{n} (j-1)$$

Per valutare il costo di $\sum_{j=2}^n j$ e di $\sum_{j=2}^n (j-1),$ usiamo la **somma di Gauss**:

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \tag{1}$$

Otteniamo:

$$\sum_{j=2}^{n} j = \frac{n(n+1)}{2} - 1$$

$$\sum_{j=2}^{n} (j-1) = \sum_{i=1}^{n} n = \frac{(n-1)n}{2}$$

Per finire, ricalcoliamo $T_{max}^{IS}(n)$

$$T_{max}^{IS}(n) = a'n^2 + b'n + c' \approx n^2$$

Caso medio Il caso medio è difficile da calcolare, e in una considerevole parte dei casi, coincide con il caso peggiore.

Comunque, l'idea è la seguente:

$$\frac{\sum_{\text{perm. di input}} T^{IS}(p)}{n!} \approx n^2$$
 posso pensare che $t_j \cong \frac{j-1}{2}$

2.3 Divide et Impera

Un algoritmo di sorting divide et impera si può suddividere in 3 fasi:

divide divide il problema dato in sottoproblemi più piccoli;

impera risolve i sottoproblemi:

- o ricorsivamente;
- o la soluzione è nota (e.g. array con un elemento);

combina compone le soluzioni dei sottoproblemi in una soluzione del problema originale.

2.4 Merge Sort

Merge Sort¹ è un esempio di algoritmo **divide et impera**. Andiamo ad analizzarlo.

¹Si consiglia di dare uno sguardo all'algoritmo anche da altre fonti, poichè presentarlo graficamente in L^AT_FX, come è stato visto a lezione, non è facile.

Astrazione Consideriamo il seguente array A.

|--|

Lo divido a metà, ottenendo due parti separate.

5	2	4	7		1	2	3	6
---	---	---	---	--	---	---	---	---

Consideriamo il primo, ossia A[1..4] (A originale). Divido anche questo a metà.

$$\begin{bmatrix} 5 & 2 \end{bmatrix}$$
 $\begin{bmatrix} 4 & 7 \end{bmatrix}$

Divido nuovamente a metà, ottenendo:

5 e 2 sono due blocchi già ordinati. Scelgo il minore tra i due e lo metto in prima posizione, mentre l'altro in seconda posizione, ottenendo un blocco composto da 2 e 5.

Riprendo con il blocco composto da 4 e 7. Lo divido in due blocchi da un elemento. Faccio lo stesso procedimento fatto per 2 e 5: metto in prima posizione 4 e in seconda posizione 7. La situazione è la seguente:

So che i blocchi ottenuti contengono elementi ordinati. Con questa assunzione, posso ragionare nel seguente modo: considero il primo elemento dei due blocchi (2 e 4 in questo caso) e metto in prima posizione il minore tra i due. Ora considero il successivo elemento del blocco che è stato scelto e lo stesso elemento dell'altro blocco, e inserisco nell'array l'elemento minore. Continuo fino ad ottenere un blocco ordinato.

Faccio lo stesso procedimento con la parte di array originale A[5..8], ottenendo

A questo punto, i blocchi da 4 contengono elementi tra loro ordinati. Faccio lo stesso ragionamento usato per comporli, per ottenere l'array originale ordinato. Considero¹:

 $^{^1\}mathrm{Questo}$ procedimento è stato applicato anche ai passaggi precedenti; qui è spiegato più rigorosamente.

```
○ L[1..4] = A[1..4]: indice i = 1 per scorrerlo;
○ R[1..4] = A[5..8]: indice j = 1 per scorrerlo;
Valuto L[i] e R[j].
○ Se L[i] ≤ R[j], inserisco L[i] e incremento i.
○ Altrimenti, inserisco R[j] e incremento j.
○ Itero finchè entrambi gli indici non sono out of bounds.
```

Pseudocodice Segue lo pseudocodice del MergeSort.

```
Merge-Sort(A, p, r)
   if p < r
        q = \lfloor \frac{p+r}{2} \rfloor // arrotondato per difetto
2
3
        MERGE-SORT(A, p, q) // ordina A [p. .q]
4
        MERGE-SORT(A, q + 1, r) // ordina A[q+1..r]
        Merge(A, p, q, r) // "Merge" dei due sotto-array
5
Merge(A, p, q, r)
   n_1 = q - p + 1 // gli indici partono da 1
   n_2 = r - q
    // L sotto-array sx, R sotto-array dx
    for i = 1 to n_1
 4
         L[i] = A[p+i-1]
    for j = 1 to n_2
 6
         R[j] = A[q+j]
    L[n_1 + 1] = R[n_2 + 1] = \infty
    i = j = 1
    for k = p to r
9
         if L[i] \leq R[j]
10
11
              A[k] = L[i]
               i = i + 1
12
         else \# L[i] > R[j]
13
14
               A[k] = R[j]
15
              i = i + 1
```

Invarianti e Correttezza L e R contengono rispettivamente A[p..q] e A[q+1..r]. L'indice k scorre A. Il sotto-array A[p..k-1] è ordinato, e contiene L[1..i-1] e R[1..j-1].

$$A[p\mathinner{.\,.} k-1] \leq L[i\mathinner{.\,.} n1], R[j\mathinner{.\,.} n2]$$

$$\downarrow \downarrow$$

$$A[p\mathinner{.\,.} k-1] = A[p\mathinner{.\,.} r+1-1] \implies A[p\mathinner{.\,.} r] \text{ ordinato}$$

Dimostrazione per induzione su r-p

- \Rightarrow Se r-p==0 (oppure -1)abbiamo al più un elemento \implies array già ordinato.
- \Rightarrow Se r-p>0, vale

$$\#\text{elem}(A[p..q]), \#\text{elem}(A[q+1..r]) < \#\text{elem}(A[p..r])$$

Per ipotesi induttiva:

- MergeSort(A,p,q) ordina A[p..q];
- · MergeSort(A,q+1,r) ordina A[q+1..r]; Per correttezza di Merge(), dopo la sua chiamata ottengo A[p..r] ordinato.

2.4.1 Approfondimento sull'Induzione

Induzione ordinaria Proprietà P(n), e.g. P(n) = "Se n è pari, n+1 è dispari" oppure "tutti i grafi con n nodi . . . ".

Per dimostrare che P(n) vale per ogni n

- \circ P(0): caso base;
- \circ assumo vera $P(n) \to \text{dimostro } P(n+1)$, allora P(n) è vera per ogni n.

Induzione completa

- \circ [P(0)] (non necessaria, è un'istanza del passo successivo);
- o dimostro $P(m) \ \forall \ m < n \rightarrow \text{vale } P(n) \ \forall \ n.$

2.4.2 Complessità di Merge Sort

n = # elementi da ordinare¹

Merge(A, p, q, r)

inizializzazione: a'n + b';

ciclo: a'n + b';

Sommandoli, ottengo una complessità all'incirca di:

$$T^{merge}(n) = an + b$$

Nel dettaglio:

$$T^{MS}(n) = \begin{cases} c_0 & \text{se } n \leq 1\\ T^{MS}(n_1) + T^{MS}(n_2) + T^{merge}(n) & \text{altrimenti} \end{cases}$$

$$T^{MS}(n) = \begin{cases} c_0 & \text{se } n \le 1\\ T^{MS}(n_1) + T^{MS}(n_2) + an + b & \text{altrimenti} \end{cases}$$

con

¹Il simbolo # verrà usato per indicare la cardinalità di un insieme.

$$n_1 = \left\lfloor \frac{n}{2} \right\rfloor$$
$$n_2 = \left\lceil \frac{n}{2} \right\rceil$$

$$T^{MS}(n) = \begin{cases} c_0 & \text{se } n \le 1\\ T^{MS}(\lfloor \frac{n}{2} \rfloor) + T^{MS}(\lceil \frac{n}{2} \rceil) + an + b & \text{altrimenti} \end{cases}$$

Otteniamo c_0 ripetuto n volte all'ultimo livello dell'albero. L'altezza dell'albero è circa $\log_2 n$. Vediamo nel dettaglio la complessità nelle varie iterazioni.

$$i = 0$$
 $an + b$
 $i = 1$ $a(n_1 + n_2) + 2b \approx an + 2b$
 $i = 2$ $a(n_{11} + n_{12} + n_{21} + n_{22}) + 4b \approx an + 4b$
...
 $i = h$ $c_0 n$

Poniamo $n = 2^h$. Abbiamo

$$T^{MS}(n) = \sum_{i=0}^{h-1} (an + 2^{i}b) + c_{0}n$$

$$= anh + b \sum_{i=0}^{h-1} 2^{i} \qquad (h = \log_{2} n)$$

$$= an \log_{2} n + b2^{h} - b + c_{0}n \qquad (2^{h} = n)$$

$$= an \log_{2} n + (b + c_{0})n - b$$

$$T^{MS}(n) = an \log_{2} n + b''n + c'' \approx n \log_{2} n$$

2.5 Confronto tra Insertion Sort e Merge Sort

$$T^{IS}(n) = a'n^2 + b'n + c'$$

 $T^{MS}(n) = a''n \log_2 n + b''n + c''$

Posso calcolare il limite del rapporto:

$$\lim_{n\rightarrow +\infty} \frac{T^{MS}(n)}{T^{IS}(n)} = \lim_{n\rightarrow +\infty} \frac{a'' n \log_2 n + b'' n + c''}{a' n^2 + b' n + c'} = 0$$

Per definizione

$$\forall \ \varepsilon > 0 \ \exists \ n_0 : \forall \ n \geq n_0 \quad \frac{T^{MS}(n)}{T^{IS}(n)} < \varepsilon$$

$$\Downarrow$$

$$T^{MS}(n) < \varepsilon T^{IS}(n) = \frac{T^{IS}}{m} \qquad \text{(Ponendo, ad esempio, } \varepsilon = \frac{1}{m}\text{)}$$

Detto a parole, c'è un certo n oltre il quale, ad esempio, MergeSort su un Commodore 64 esegue più velocemente di un InsertionSort su una macchina moderna. Possiamo vedere una comparazione tra i due algoritmi nella seguente tabella.

n	$T^{IS}(n) = n^2$	$T^{MS}(n) = n \log n$
10	0.1ns	0.033 ns
1000	1ms	$10\mu s$
10^{6}	17 minuti	20ms
10^{9}	70 anni	30s

3 Complessità Asintotica

3.1 Notazione Asintotica

Il **tempo di esecuzione** è difficile da calcolare, come visto nella sezione 2.2.2. Il modo in cui è stato calcolato è pieno di dettagli "inutili".

Rivediamo le complessità di InsertionSort e MergeSort:

$$T^{IS} = an^2 + bn + c$$

$$T^{MS} = an \log_2 n + bn + c$$

A noi interessa calcolare T(n) per n "grande". Non consideriamo le costanti moltiplicative, che sono non fondamentali. Ecco una lista di possibili complessità ordinate in senso decrescente (le prime due categorie appartengono alla classe degli **NP problems**, ossia non trattabili):

- \circ 3^n
- \circ 2^n
- $\circ n^k$
- \circ n^2
- $\circ n \log n$
- \circ n
- $\circ \log n$
- 0 1

Prendiamo in esame due funzioni: f(n), g(n):

$$f,g:\mathbb{R}^+\to\mathbb{R}^+$$

- o f(n) è la funzione in esame della complessità del nostro problema P;
- o g(n) è la funzione che, moltiplicata per un'opportuna costante c_i , dopo un certo n, fa da limite superiore o inferiore per ogni punto di f(n).

3.1.1 Limite Asintotico Superiore

Data g(n), indichiamo con O(g(n)) il **limite asintotico superiore**, definito come segue:

$$O\big(g(n)\big) = \{f(n) : \exists \ c > 0 \quad \exists \ n_0 \in \mathbb{N} : \forall \ n \ge n_0 \quad (0 \le f(n) \le c \cdot g(n)\}\}$$

Figura 2: Rappresentazione del limite asintotico superiore per f(n)

Esempi

o
$$f_1(n) = 2n^2 + 5n + 3 = O(g(n^2))$$
? Sì. Deve valere $f_1(n) < cn^2$ $\exists c > 0, n \ge n_0$

Ipotizziamo c=3

$$2n^{2} + 5n + 3 \le 3n^{2}$$

$$n^{2} - 5n - 3 \ge 0$$

$$\frac{5 \pm \sqrt{2 \cdot 5 + 12}}{2} = \frac{5 \pm \sqrt{37}}{2} \cong 5.54$$

(Non considero la soluzione negativa, poiché siamo in \mathbb{R}^+)

Prendo c=3 e $n_0=6$. Vale dunque:

$$f_1(n) \le cn^2 \quad \forall \ n \ge n_0$$

$$f_1(n) = O(g(n^3)) ? Sì.$$

$$c = 3$$

$$n_0 = 6 \quad \forall \ n \ge n_0$$

$$f_1(n) \le cn^2 \le cn^3$$

∘
$$f_2(n) = 2 + \sin(n) = O(1)$$
 ? Sì.
 $-1 \le \sin(n) \le 1$

$$1 \le f_2(n) \le 3$$

Vale la seguente

$$\exists c > 0 \quad \exists n_0 : \forall n \ge n_0 \quad f_2(n) \le c \cdot 1$$

ok per $c = 3, n_0 = 0$

3.1.2 Limite Asintotico Inferiore

Data g(n), indichiamo con $\Omega(g(n))$ il **limite asintotico inferiore**, definito come segue:

$$\Omega\big(g(n)\big) = \{f(n): \exists \ c > 0 \quad \exists \ n_0 \in \mathbb{N}: \forall \ n \ge n_0 \quad c \cdot g(n) \le f(n)\}$$

Figura 3: Rappresentazione del limite asintotico inferiore per f(n)

Esempi

o
$$f_1(n) = 2n^2 + 5n + 3 = \Omega(g(n^2))$$
? Sì. Deve valere:

$$\exists c > 0 \quad \exists n_0 : \forall n \ge n_0 \quad cn^2 \le 2n + 5n + 3$$

Basta porre c = 1, $n_0 = 0$.

o
$$f_2(n) = 2 + \sin(n) = \Omega(1)$$
? Sì.
$$1 \le f_2(n) \le 3 \quad c = 1, \ n_0 = 0$$

3.1.3 Limite Asintotico Stretto

Data g(n), indichiamo con $\Theta(g(n))$ il **limite asintotico stretto**, definito come segue:

$$\Theta(g(n)) = \{ f(n) : \exists c_1, c_2 > 0 \quad \exists n_0 \in \mathbb{N} : \forall n \ge n_0$$

$$c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n) \}$$

Figura 4: Rappresentazione del limite asintotico stretto per f(n)

Esempi

$$f_{1}(n) = 2n^{2} + 5n + 3 = \Theta(n^{2}) \qquad f_{1}(n) \neq \Theta(n^{3})$$

$$c_{1} = 1 \quad c_{2} = 3 \quad n_{0} = 6 \qquad f_{1}(n) = O(n^{3})$$

$$f_{2}(n) = 2 + \sin(n) = \Theta(1) \qquad f_{1}(n) \neq \Omega(n^{3})$$

$$c_{1} = 1 \quad c_{2} = 3 \quad n_{0} = 0 \qquad \qquad \downarrow$$

$$\frac{f_{1}(n)}{n_{3}} \to 0$$

3.2 Metodo del Limite

Siano $f(n), g(n) > 0 \quad \forall n$

Se
$$\exists \lim_{n\to+\infty} \frac{f(n)}{g(n)}$$
, allora:

- 1. Se $\lim_{n\to+\infty} \frac{f(n)}{g(n)} = k > 0$ allora $f(n) = \Theta(g(n))$.
- 2. Se $\lim_{n\to+\infty} \frac{f(n)}{g(n)} = 0$ allora f(n) = O(g(n)) e $f(n) \neq \Omega(g(n))$.
- 3. Se $\lim_{n\to+\infty} \frac{f(n)}{g(n)} = \infty$ allora $f(n) = \Omega(g(n))$ e $f(n) \neq O(g(n))$.

Dimostrazione

- 1. Sia $\lim_{n \to +\infty} \frac{f(n)}{g(n)} = k > 0$ $\Rightarrow \forall \ \varepsilon > 0 \quad \exists \ n_0 : \forall \ n \ge n_0 \quad \left| \frac{f(n)}{g(n)} k \right| \le \varepsilon$ $\Rightarrow -\varepsilon \le \frac{f(n)}{g(n)} k \le \varepsilon$ $\Rightarrow k \varepsilon \le \frac{f(n)}{g(n)} \le k + \varepsilon$ $\Rightarrow (k \varepsilon)g(n) \le f(n) \le (k + \varepsilon)g(n) \quad \text{per } 0 < \varepsilon < k$ $\Rightarrow f(n) = \Theta(g(n))$
- 2. Sia $\lim_{n \to +\infty} \frac{f(n)}{g(n)} = 0$ $\Rightarrow \forall \ \varepsilon > 0 \quad \exists \ n_0 : \forall \ n \ge n_0 \quad \frac{f(n)}{g(n)} \le \varepsilon$ $\Rightarrow f(n) \le \varepsilon g(n)$ $\Rightarrow f(n) = O(g(n))$

Sia
$$f(n) = \Omega(g(n))$$

 $\Rightarrow \exists c > 0 \quad \exists n_0 \in \mathbb{N} : \forall n \ge n_0 \quad cg(n) \le f(n)$
 \Rightarrow Impossibile, infatti sia $\varepsilon = \frac{c}{2} > 0$
 $\Rightarrow \exists n_1 \in \mathbb{N} : \forall n \ge n_1 \quad f(n) \le \frac{c}{2}g(n) < cg(n)$
 \Rightarrow Contraddizione!

3. Si dimostra in modo analogo al punto (2)

3.3 Proprietà Generali

$$\circ f(n) = a_k n^k + a_{k-1} n^{k-1} + \dots + a_1 n + a_0 = \Theta(n^k)$$

$$\circ \ h \neq k \quad \Theta(n^h) \neq \Theta(n^k)$$

$$\circ \ a \neq b \quad \Theta(a^k) \neq \Theta(b^n)$$

$$\circ \ h \neq k \quad \Theta(a^{n+h}) = \Theta(a^{n+k})$$

$$\circ \ a \neq b \quad \Theta(\log_a n) = \Theta(\log_b n)$$

In generale

$$O(1) \subseteq O(\log n) \subseteq O(n) \subseteq O(n \log n) \subseteq O(n^2) \subseteq \dots$$

3.4 Complessità di un Problema

Dato un problema P $\{INPUT \rightarrow OUTPUT\}$, la **complessità** di P è la complessità dell'algoritmo più efficiente che risolve P.

Limite superiore per complessità di P Se A è un algoritmo per P con complessità O(f(n)), allora P è O(f(n)).

Limite inferiore per complessità di P Se ogni algoritmo che risolve P ha complessità $\Omega(f(n))$, allora P ha complessità $\Omega(f(n))$

$$\implies$$
 se P è $O(f(n))$ e $\Omega(f(n)) \implies$ P è $\Theta(f(n))$

3.4.1 Esempio: limite inferiore per ordinamento basato su scambi di elementi contigui

Def (inversione) Dato A[1..n], una **inversione** è una coppia (i, j) con $i, j \in [1, n]$ con i < j e A[i] > A[j].

Operazione disponibile: $A[k] \leftrightarrow A[k+1]$ (scambio tra gli elementi in posizione $k \in k+1$).

$$\#inv(A) =$$
 numero di inversioni di A

$$= \left| \ \{(i,j): 1 \leq i \leq j \leq n, \ A[i] > A[j] \} \ \right|$$

- 1. A è ordinato sse #inv(A) = 0;
- 2. A è ordinato in senso inverso sse

$$\sum_{j=2}^{n} j - 1 = \sum_{j=1}^{n-1} j = \frac{n(n-1)}{2}$$

Ossia, #inv(A) è massimizzato.

Vediamo cosa succede alle coppie (i, j) e a #inv(A) nel caso avvenga uno scambio $A[k] \leftrightarrow A[k+1]$.

o $i, j \neq k$ e $i, j \neq k+1 \implies (i, j)$ è inversione prima sse è inversione dopo:

$$\circ \ i = k, \ j = k+1$$

$$\implies \begin{cases} A[i] < A[j] & +1 \text{ inversione} \\ A[i] = A[j] & \#inv(A) \text{ non cambia} \\ A[i] > A[j] & -1 \text{ inversione} \end{cases}$$

- o i = k oppure i = k + 1, $j > k + 1 \implies (k, j)$ è inversione prima sse (k + 1, j) è inversione dopo;
- o j = k oppure j = k + 1, i < k, analogo al caso precedente.

Per concludere, possiamo dire che l'operazione A[k] \leftrightarrow A[k+1] riduce #inv(A) al massimo di 1.

 \implies qualunque algoritmo di ordinamento basato su scambi è $\Omega\Big(\frac{n(n-1)}{2}\Big) = \Omega(n^2)$

3.5 Soluzione di Ricorrenze

Abbiamo visto per MergeSort la complessità nel modo seguente:

Merge-Sort(A, p, r)

- 1 if p < r
- $2 q = \lfloor \frac{(p+r)}{2} \rfloor$
- 3 Merge-Sort(A, p, q)
- 4 Merge-Sort(A, q + 1, r)
- 5 Merge(A, p, q, r) // complessità an + b

$$T^{MS}(n) = \begin{cases} c_0 & \text{se } n \le 1\\ T^{MS}(\lfloor \frac{n}{2} \rfloor) + T^{MS}(\lceil \frac{n}{2} \rceil) + an + b & \text{se } n > 1 \end{cases}$$

È stato tuttavia un approccio non molto preciso. Ci sono due metodi per risolvere precisamente i problemi di ricorrenza:

- Metodo di sostituzione (3.5.1);
- \circ Master Theorem (3.5.2).

3.5.1 Metodo di Sostituzione

Dato una ricorrenza, si può provare a "indovinare" la soluzione e dimostrare che è corretta, oppure si può sviluppare l'albero delle ricorrenze:

- o radice: chiamata di cui vogliamo la complessità;
- o per ogni nodo:
 - \rightarrow costo della parte non ricorsiva;
 - $\rightarrow\,$ un figlio per ogni chiamata.

Esempio

$$T(n) = \begin{cases} 4 & \text{se } n = 1\\ 2T(\frac{n}{2}) + 6n & \text{se } n > 1 \end{cases}$$

In generale, si può benissimo trascurare il caso base per poter ottenere espressioni meno verbose, in questo caso otterremmo:

$$T(n) = 2T(\frac{n}{2}) + 6n$$

Costruendo l'albero delle ricorrenze si intuisce già la soluzione:

Per essere sicuri della soluzione, facciamo il procedimento per intero. Proviamo a "indovinare" la soluzione. Assomiglia a MergeSort, quindi ipotizziamo abbia una complessità con un andamento simile

$$T(n) = an \log n + bn + c$$

Facciamo la prova induttiva.

$$(n=1) \quad T(1) = 4$$

$$= a \cdot 1 \cdot \log 1 + b \cdot 1 + c \qquad (\log 1 = 0)$$

$$= b + c \qquad \text{ok se } b + c = 4$$

$$(n > 1) \quad T(n) = 2T\left(\frac{n}{2}\right) + 6n$$

Per ipotesi induttiva

$$T\left(\frac{n}{2}\right) = a\frac{n}{2} \cdot \log \frac{n}{2} + b\frac{n}{2} + c$$

Calcolo ora T(n)

$$T(n) = an \log_2 \frac{n}{2} + bn + 2c + 6n =$$

$$= an \log_2 n - an \log_2 2 + bn + 6n + 2c = (\log_2 2 = 1)$$

$$= an \log_2 n + n(b + 6 - a) + 2c =$$

$$= an \log_2 n + bn + c$$

$$b+6-a=b \Rightarrow a=6$$

$$2c=c \Rightarrow c=0$$

$$b+c=4 \Rightarrow b=4$$

$$T(n)=an\log n+bn+c$$

$$=6n\log n+4n$$

Esercizio (importante)

$$T(n) = 2T\left(\frac{n}{2}\right) + 6n$$
$$= 2T\left(\frac{n}{2}\right) + \Theta(n) = \Theta(n\log n)$$
vale $\exists c > 0 \ \exists n_0 : \forall n \ge n_0 \quad \Theta(n) \le cn$

Voglio dimostrare che

1.
$$T(n) = O(n \log n)$$

2.
$$T(n) = \Omega(n \log n)$$

1.
$$T(n) = O(n \log n)$$

significa che
$$\exists d > 0 \ \exists n_1 \in \mathbb{N} : T(n) \leq dn \log n \quad \forall n \geq n_1$$

Dimostro per induzione $T(n) \leq dn \log n \quad \forall n \geq n_1$.

Ometto il caso base, poiché non è molto interessante (mi basterebbe aumentare ulteriormente d per avere un valore accettabile).

$$T(n) \leq 2T\left(\frac{n}{2}\right) + cn \qquad \text{ip. induttiva } T\left(\frac{n}{2}\right) = d\frac{n}{2}\log\frac{n}{2}$$

$$\leq 2 \cdot \frac{n}{2}d\log\frac{n}{2} + cn \qquad \left(\log\frac{n}{2} = \log n - \log 2\right)$$

$$= dn\log n - dn\log 2 + cn$$

$$= dn\log n - n(d\log 2 - c) \leq dn\log n$$

$$\Rightarrow -n(d\log 2 - c) \leq 0$$

$$n(d\log 2 - c) \geq 0$$

$$d\log 2 - c \geq 0$$

$$d \geq \frac{c}{\log 2}$$

2. $T(n) = \Omega(n \log n)$ è analoga.

$$\exists \ \delta > 0 : \forall \ n > n_0 \Rightarrow T(n) > \delta n \log n$$

Ho l'ipotesi induttiva $T(\frac{n}{2}) \geq \delta \frac{n}{2} \log \frac{n}{2}$

$$T(n) \ge 2\delta \frac{n}{2} \log \frac{n}{2} + cn =$$

$$= \delta n \log n - \delta n \log 2 + cn =$$

$$= \delta n \log n + n(c - \delta \log 2) \ge \delta n \log n$$
Deve valere $c - \delta \log 2 \ge 0$

$$\Rightarrow 0 < \delta \le \frac{c}{\log 2}$$

Esercizio
$$T(n) = T(\frac{n}{3}) + T(\frac{2n}{3}) + \Theta(n)$$
 $(\Theta(n) \le c \cdot n)$

Ipotizzo un andamento simile a MergeSort: $\Theta(n \log n)$. Dimostro:

1.
$$T(n) = O(n \log n)$$

2.
$$T(n) = \Omega(n \log n)$$

1.
$$T(n) = O(n \log n)$$

$$\exists d > 0 : \forall n > n_0 \Rightarrow T(n) \leq dn \log n$$

Ometto il caso base. L'ipotesi induttiva è la seguente:

$$T(n) \le d\frac{n}{3}\log\frac{n}{3} + d\frac{2n}{3}\log\frac{2n}{3} + cn$$

Procedo con i calcoli ...

$$T(n) \le T\left(\frac{n}{3}\right) + T\left(\frac{2n}{3}\right) + cn$$

$$\le d\frac{n}{3}\log\frac{n}{3} + d\frac{2n}{3}\log\frac{2n}{3} + cn =$$

$$= d\frac{n}{3}\left(\log n - \log 3\right) + d\frac{2n}{3}\left(\log n - \log\frac{2}{3}\right) + cn =$$

$$= dn\log n - \frac{dn}{3}\left(\log 3 - 2\log\frac{2}{3}\right) + cn =$$

$$= dn\log n - \frac{dn}{3}\left(\log 3 - \log\frac{4}{9}\right) + cn =$$

$$= dn\log n - n\left(\frac{d}{3}\log\frac{27}{4} - c\right) \le dn\log n$$

$$\frac{d}{3}\log\frac{27}{4} - c \ge 0$$

$$\Rightarrow d \ge \frac{3c}{\log\frac{27}{4}} \qquad (\log\frac{27}{4} > 1 \text{ poiché } arg > 1)$$

2. $T(n) = \Omega(n \log n)$ è analoga

$$\exists \ \delta > 0 : \forall \ n > n_0 \Rightarrow T(n) \geq \delta n \log n$$

L'ipotesi induttiva è la seguente:

$$T(n) \ge \delta \frac{n}{3} \log \frac{n}{3} + \delta \frac{2n}{3} \log \frac{2n}{3} + cn$$

Calcoli ...

$$T(n) \ge T\left(\frac{n}{3}\right) + T\left(\frac{2n}{3}\right) + cn$$

$$\ge \delta \frac{n}{3} \log \frac{n}{3} + \delta \frac{2n}{3} \log \frac{2n}{3} + cn =$$

$$= \delta \frac{n}{3} \left(\log n - \log 3\right) + \delta \frac{2n}{3} \left(\log n - \log \frac{2}{3}\right) + cn =$$

$$= \delta n \log n + \frac{\delta n}{3} \left(-\log 3 + 2\log \frac{2}{3}\right) + cn =$$

$$= \delta n \log n + \frac{\delta n}{3} \left(-\log 3 + \log \frac{4}{9}\right) + cn =$$

$$= \delta n \log n + n\left(-\frac{\delta}{3}\log \frac{27}{4} + c\right) \ge \delta n \log n$$

$$-\frac{\delta}{3} \log \frac{27}{4} + c \ge 0$$

$$\Rightarrow 0 < \delta \le \frac{3c}{\log \frac{27}{4}}$$

3.5.2 Master Theorem

Dato un problema con size n, vogliamo dividerlo in a sottoproblemi con size $\frac{n}{b}$. Otteniamo la seguente ricorrenza (ricordiamo che il caso base è omesso per semplicità):

$$T(n) = a \cdot T\left(\frac{n}{b}\right) + f(n)$$

con $a \ge 1, b > 1$, allora possiamo confrontare

- \circ f(n);
- o $n^{\log_b a}$

Tre possibili casi:

1. Se $f(n) = O(n^{\log_b a - \varepsilon})$ per qualche $\varepsilon > 0$, allora

$$T(n) = \Theta(n^{\log_b a})$$

2. Se $f(n) = \Theta(n^{\log_b a})$ allora

$$T(n) = \Theta(n^{\log_b a} \cdot \log n)$$

3. Se $f(n) = \Omega(n^{\log_b a + \varepsilon})$ per qualche $\varepsilon > 0,$ e vale la **regolarità**

$$\exists \ 0 < k < 1 \ : \ a \cdot f(\frac{n}{b}) \le k \cdot f(n)$$

allora

$$T(n) = \Theta\big(f(n)\big)$$

Intuizione sul perchè $n^{\log_b a}$

$$T(n) = f(n) + af\left(\frac{n}{b}\right) + a^2 f\left(\frac{n}{b^2}\right) + \dots + a^{\log_b n} f\left(\frac{n}{b^{\log_b n}}\right) + c \cdot a^{\log_b n}$$

$$a^{\log_b n} = \left(b^{\log_b a}\right)^{\log_b n} = \left(b^{\log_b n}\right)^{\log_b a} = n^{\log_b a}$$
Nota bene: $af\left(\frac{n}{b}\right) \le k \cdot f(n)$ con $k < 1$

Vediamo ora i casi in cui sarà possibile finire, e le conclusioni legate ad essi.

A)
$$\lim_{n\to\infty}\frac{f(n)}{n^{\log_b a}}=l(>0)\neq\infty$$
 Caso $\mathbf{2}\Rightarrow T(n)=\Theta\big(n^{\log_b a}\cdot\log n\big)$

B)
$$\lim_{n \to \infty} \frac{f(n)}{n^{\log_b a}} = 0$$

Potrei essere nel Caso
$$\mathbf{1} \Rightarrow \text{se } \lim_{n \to \infty} \frac{f(n)}{n^{\log_b a - \varepsilon}} = l(\geq 0) \neq \infty \ (\varepsilon > 0)$$

$$\Rightarrow T(n) = \Theta(n^{\log_b a})$$

C)
$$\lim_{n\to\infty}\frac{f(n)}{n^{\log_b a}}=\infty\quad \&\ \exists\ \varepsilon>0: \lim_{n\to\infty}\frac{f(n)}{n^{\log_b a+\varepsilon}}=\infty$$

$$\&\ \mathbf{Regolarit\grave{a}}\Rightarrow \mathbf{Caso}\ \mathbf{3:}\quad T(n)=\Theta(f(n))$$

Esercizi

$$\bullet \ T^{MS} = 2T\left(\frac{n}{2}\right) + a'n + b'$$

Abbiamo (rispetto alla forma $T(n) = a \cdot T\left(\frac{n}{b}\right) + f(n))$

$$a = 2, b = 2$$

 $f(n) = a'n + b'$ $n^{\log_2 2} = n$

È chiaro che le due funzioni hanno lo stesso andamento (di ordine $\Theta(n)$):

$$a'n + b' = \Theta(n)$$
 Caso $2 \Rightarrow T(n) = \Theta\left(n^{\log_2 2} \log n\right) = \Theta(n \log n)$

•
$$T(n) = 5T\left(\frac{n}{2}\right) + 2n^2 + n\log n$$

Abbiamo (rispetto alla forma $T(n) = a \cdot T\big(\frac{n}{b}\big) + f(n))$

$$a = 5, \ b = 2$$

$$f(n) = n^2 + n \log n \qquad n^{\log_2 5} \quad (\log_2 5 > 2)$$

$$0 < \varepsilon < \log_2 5 - 2 \Rightarrow \lim_{n \to \infty} \frac{2n^2 + n \log n}{n^{\log_2 5 - \varepsilon}} = 0 \Rightarrow f(n) = O(n^{\log_2 5})$$

$$\mathbf{Caso} \ \mathbf{1} \Rightarrow T(n) = \Theta(n^{\log_2 5})$$

- $T(n) = 5T(\frac{n}{2}) + n^3$ per esercizio.
- $T(n) = 5T(\frac{n}{2}) + n^3 \log n$

Abbiamo

$$a = 5, b = 2$$

$$f(n) = n^3 \log n \qquad n^{\log_2 5} \quad (\log_2 5 < 3)$$

$$0 < \varepsilon < 3 - \log_2 5 \Rightarrow \lim_{n \to \infty} \frac{n^3 \log n}{n^{\log_2 5 + \varepsilon}} = \infty$$

Possibile caso 3. Regolarità?

$$af\left(\frac{n}{b}\right) \le kf(n) \quad \text{per } 0 < k < 1 \text{ opportuno}$$

$$5\left(\frac{n}{2}\right)^3 \log \frac{n}{2} = \frac{5}{8}n^3 \log \frac{n}{2} \le \frac{5}{8}n^3 \log n \le kn^3 \log n \quad \text{per } 0 < k \le \frac{5}{8} < 1$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow$$

$$\mathbf{Caso } \mathbf{3} : T(n) = \Theta(f(n)) = \Theta(n^3 \log n)$$

$$31 \text{ di } 108$$

•
$$T(n) = 27T(\frac{n}{3}) + n^3 \log n$$

$$f(n) = n^3 \log n \qquad n^{\log_3 27} \quad (\log_3 27 = 3)$$

$$\lim_{n \to \infty} \frac{n^3 \log n}{n^{3+\varepsilon}} = +\infty \quad \forall \ \varepsilon > 0, \ \text{non possiamo dimostrare 3}$$

$$\Rightarrow \text{Non siamo in } \mathbf{nessun} \ \text{caso del Master Theorem}.$$

Anche valutando la **regolarità**, ricadiamo in un assurdo. Dobbiamo dimostrare che $af\left(\frac{n}{b}\right) < kf(n)$ per qualche k > 0

$$27\left(\frac{n}{3}\right)^3 \log \frac{n}{3} = n^3(\log n - \log 3) \not\ll kn^3 \log n \text{ per nessun } k > 0$$

Infatti
$$\frac{(\log n - \log 3)n^3}{n^3 \log n} \to 1$$

(Posso usare il Metodo di Sostituzione)

$$T(n) = 27T\left(\frac{n}{3}\right) + n^3 \log n$$

Costruiamo l'albero delle ricorrenze:

- · radice: costo $n^3 \log n$;
- · ogni nodo ha 27 figli.
 - \diamond i 27 figli del primo livello hanno costo $(\frac{n}{3})^3\log\frac{n}{3};$
 - \diamond i 27² figli del secondo livello hanno costo $(\frac{n}{9})^3\log\frac{n}{9};$
 - \Diamond
 - \diamond le 27^n foglie terminali hanno costo O(1).

$$T(n) = \sum_{j=0}^{\log_3 n} n^3 \log \frac{n}{3^j} = n^3 \sum_{j=0}^{\log_3 n} (\log n - j \log 3) + cn =$$

$$= n^3 (\log n)^2 - n^3 \log 3 \sum_{j=0}^{\log_3 n} j + cn \qquad \left(\sum_{j=0}^{\log_3 n} j \cong (\log_3 n)^2\right)$$

$$T(n) = 27T\left(\frac{n}{3}\right) + n^3 \log n$$

$$T(n) = \Theta(n^3 (\log n)^2) \qquad \text{ipotesi ricavata}$$

Devo dimostrare che valgano le seguenti condizioni:

1.
$$T(n) = O(n^3(\log n)^2)$$

2.
$$T(n) = \Omega(n^3(\log n)^2)$$

 $< cn^3 (\log n)^2$

1.
$$T(n) = O(n^3(\log n)^2)$$

 $T(n) \le c \cdot n^3(n^3(\log n)^2)$ $c > 0$
 $T(n) = 27T(\frac{n}{3}) + n^3 \log n$
(ipotesi induttiva $T(\frac{n}{3}) \le c \cdot (\frac{n}{3})^3 (\log \frac{n}{3})^2$)
 $\le 27c(\frac{n}{3})^3 (\log \frac{n}{3})^2 + n^3 \log n =$
 $= \frac{2\pi c n^3}{2\pi} (\log n - \log 3)^2 + n^3 \log n =$
 $= cn^3 ((\log n)^2 - 2 \log 3 \log n + (\log 3)^2) + n^3 \log n =$
 $= cn^3 (\log n)^2 - n^3 (\log n(2c \log 3 - 1) - c(\log 3)^2)$

Per un n abbastanza grande, vale la disuguaglianza con un opportuno valore di c:

$$c > \frac{1}{2\log 3}$$

2.
$$T(n) = \Omega(n^3(\log n)^2)$$

 $\exists d > 0 : T(n) \ge dn^3(\log n)^2$
 $\ge 27(\frac{n}{3})^3 (\log \frac{n}{3})^2 + n^3 \log n$
 $= \dots = dn^3(\log n)^2 - n^3 (\log n(2d \log 3 - 1) - d(\log 3)^2)$
 $> dn^3(\log n)^2$

Per un n abbastanza grande, vale la disuguaglianza con un opportuno valore di d:

$$2d \log 3 - 1 < 0$$
 ok per $0 < d < \frac{1}{2 \log 3}$

4 Ordinamento (cont.)

Ordinamento Finora abbiamo visto due algoritmi di ordinamento, in cui avevamo le seguenti premesse:

IN: $a_1 \ldots a_n$;

OUT: permutazione $a'_1 \dots a'_n$ ordinata.

In particolare, abbiamo concluso che:

- InsertionSort: $O(n^2)$, basato su scambi;
- o MergeSort: $\Theta(n \log n)$, ma con un costo in termini di **memoria**.

Memoria

o InsertionSort:

input + 1 variabile \Rightarrow spazio **costante** $\Theta(1)$ (detto "in loco")

o MergeSort: spazio con costo lineare.

$$S_{MS}(n) = \max \left\{ S\left(\left\lfloor \frac{n}{2} \right\rfloor\right), \ S\left(\left\lceil \frac{n}{2} \right\rceil\right), \ \Theta(n) \right\}$$
$$= \Theta(n)$$

4.1 Heapsort

L'Heapsort¹ è un algoritmo di ordinamento basato su una struttura chiamata heap, che prende le caratteristiche positive di InsertionSort e MergeSort:

- \circ in "loco" (spazio $\Theta(1)$);
- \circ complessità $\Theta(n \log n)$.

Cos'è un heap? Un heap è una struttura dati basata sugli alberi che soddisfa la "proprietà di heap": se A è un genitore di B, allora la chiave di A è ordinata rispetto alla chiave di B conformemente alla relazione d'ordine applicata all'intero heap.

Seguono alcune definizioni.

 $^{^1\}mathrm{Anche}$ qui, si consiglia di dare un occhio ad altre fonti. In classe, sono stati viste molte rappresentazioni grafiche degli heap, e, come già detto, in IATEX non è per me facile rappresentarli.

4.1 Heapsort

Altezza: è la distanza dalla radice alla foglia più distante;

Albero completo: è un albero di altezza h con $\sum_{i=0}^{h} 2^i - 1$ nodi;

Albero quasi completo: è un albero completo a tutti i livelli eccetto l'ultimo, in cui possono mancare delle foglie e le foglie presenti sono addossate a sinistra.

Gli heap verranno rappresentati in array monodimensionali, nel modo descritto di seguito:

$$\forall i > 0$$

- ∘ A[i] è il nodo genitore;
- ∘ A[2i] è il figlio sx del nodo A[i];
- ∘ A[2i+1] è il figlio dx.

Inoltre, ogni array A sarà dinamico, e avrà:

- A.length potenziale spazio, capacità massima dell'array;
- A.heapsize celle effettive dell'array.

Vediamo alcune funzioni di utilità che verranno usate.

Left(i)

 $/\!\!/$ restituisce il figlio sx del nodo i

1 return 2*i

Right(i)

 $/\!\!/$ restituisce il figlio dx del nodo i

1 **return** 2 * i + 1

PARENT(i)

 $/\!\!/$ restituisce il genitore del nodo i

1 return |i/2|

4.1.1 Max Heap

Max Heap è uno heap che soddisfa la seguente proprietà:

$$\forall \mod A[i],$$
 $A[i] \geq \text{discendenti}$
 $\downarrow \downarrow$
 $A[i] \geq A[\mathbf{Left(i)}], \ A[\mathbf{Right(i)}]$

Equivalentemente

$$\forall \mod A[i],$$
 $A[i] \leq \text{antenati}$
 $\downarrow \downarrow$
 $A[i] \leq A[\mathbf{Parent(i)}]$

Osservazioni

- Uno heap con un solo elemento è un Max Heap.
- Dati due Max Heap T_1 e T_2 e un nodo N, possiamo "combinarli" in uno heap con N come radice, T_1 come **left** e T_2 come **right**.

Ecco ora una procedura che, dato un nodo i, trasforma in un Max Heap il sotto-albero eradicato in esso (con radice i).

```
Max-Heapify(A, i)
    l = \text{Left}(i)
    r = Right(i)
    if (l \le A.heapsize) and (A[l] > A[i])
 4
         max = l
 5
    else
 6
          max = i
    if (r \le A.heapsize) and (A[r] > A[max])
         max = r
 8
9
    if (max \neq i)
         A[i] \leftrightarrow A[max]
10
11
         Max-Heapify(A, max)
```

Correttezza di MaxHeapify

- Casi base: max = i, distunguo due casi:
 - · i è foglia (l, r > A.heapsize);
 - $A[i] \geq A[l], A[r];$
- Induzione: $max \neq i$, distinguo due casi:
 - $\cdot max = l, A[l] \ge A[i], A[r];$
 - $\cdot \ max = r, \ A[r] \ge A[i], A[l].$

Complessità O(h), con h altezza del sotto-albero radicato in i

$$n \ge (2^{(h-1)+1}) + 1 = 2^h$$
$$h \le \log_2 n$$
$$\Rightarrow O(h) \cong O(\log n)$$

Ora vogliamo scrivere una procedura che costruisce un **Max Heap** da un array qualunque.

Quali sono i nodi foglia?

 \circ Se $i \ge \lfloor \frac{n}{2} \rfloor + 1$

$$2i = 2\left(\frac{n}{2} + 1\right) \ge n + 2 - 1 = n + 1$$

 $\Rightarrow i \text{ foglia}$

 \circ Se $i \leq \lfloor \frac{n}{2} \rfloor$

$$2i = 2\lfloor \frac{n}{2} \rfloor \le n$$

 $\Rightarrow i \text{ non foglia}$

Build-Max-Heap(A)

- 1 A.heapsize = A.length
- 2 for i = |A.length/2| down to 1
- 3 Max-Heapify(A, i)

L'algoritmo esegue $\frac{n}{2}$ volte MaxHeapify (che ha complessità $O(\log n)$), ottenendo una complessità finale $O(n\log n)$, tuttavia questa stima è molto pessimistica.

Definiamo:

- $\circ h_T$ altezza del cammino più lungo dello heap;
- o $h_T 1$ di conseguenza è l'altezza dell'albero meno l'ultimo livello, che è generalmente incompleto.

$$n = \left(2^{(h_T - 1) + 1} - 1\right) + 1$$
$$= 2^{h_T}$$
$$h_T \le \log n$$
$$n > 2^{h_T}$$

$$\begin{split} T(n) &= \sum_{h=1}^{\lfloor \log n \rfloor} 2^{h_T - h} \cdot O(h) \\ &\qquad (2^{h_T - h} = \# \text{ chiamate a MaxHeapify al livello } h) \\ &= \sum_{h=1}^{\lfloor \log n \rfloor} \frac{2^{h_T}}{2^h} O(h) \qquad (2^{h_T} = n) \\ &= O\Big(\Big(\sum_{h=1}^{\lfloor \log n \rfloor} \frac{h}{2^h}\Big) n\Big) = O(n) \qquad \Big(\sum_{h=1}^{\lfloor \log n \rfloor} \frac{h}{2^h} \leq \sum_{h=1}^{\infty} \frac{h}{2^h} = \frac{\frac{1}{2}}{(1 - \frac{1}{2})^2} = 2\Big) \end{split}$$

Passiamo ora all'algoritmo di ordinamento Heapsort. La radice di un Max Heap contiene il valore massimo. Quindi, la prima operazione, e quella su cui si basa Heapsort, consiste nel mettere la radice in ultima posizione.

```
Es. A: 9\ 8\ 7\ 5\ 7\ 4\ 0\ 4\ 3\ 6\ 1\ 2 è un max heap. \Rightarrow 8\ 7\ 5\ 7\ 4\ 0\ 4\ 3\ 6\ 1\ 2\ 9 ignoro l'ultimo elemento, chiamo MaxHeapify sulla radice e itero.
```

Poi chiama MaxHeapify sul resto dell'array per renderlo un Max Heap, e itera il procedimento sul nuovo array.

HEAPSORT(A)

- 1 Build-Max-Heap(A) // O(n)
- 2 for i = A. length down to 2
- $3 A[1] \leftrightarrow A[i]$
- A. heap size = A. heap size 1
- 5 MAX-HEAPIFY $(A, 1) /\!\!/ O(\log n)$

Complessità $O(n \log n)$.

4.1.2 Code con Priorità

S insieme dinamico di oggetti.

x è l'indice, x. key è il corrispondente valore relativo a quell'indice. Voglio poter eseguire le seguenti operazioni:

- o Insert(S, x)
- \circ Max(S)
- ExtractMax(S)
- \circ IncreaseKey(S, x, δ)
- \circ ChangeKey(S, x, δ)
- o Delete(S, x)

Idea Uso un Max Heap (A).

```
Max(A)
```

- 1 **if** A.heapsize = 0
- 2 error
- 3 else return A[1]

La procedura Max(A) ha complessità costante $\Theta(1)$.

EXTRACT-Max(A)

- 1 max = A[1]
- $2 \quad A[1] = A[A.heapsize]$
- $3 \quad A. heapsize = A. heapsize 1$
- 4 Max-Heapify(A, 1) // ripristina le proprietà di MaxHeap
- 5 return max

La procedura ExtractMax(A) ha la stessa complessità di MaxHeapify: $O(\log n)$.

Per Insert, le cose diventano più delicate. L'idea è quella di inserire in coda ad A: in questo modo, l'unico elemento che potrebbe compromettere la proprietà di \mathbf{Max} \mathbf{Heap} è la cella di indice i (nel nostro caso, l'ultima). Deve valere la proprietà:

Per ogni
$$j \neq i$$

 $A[j] \leq \text{antenati}$

Non possiamo dire nulla su i. Va ristabilita la proprietà di **Max Heap**: per fare ciò usiamo la procedura MaxHeapifyUp.

```
\begin{array}{ll} \operatorname{Max-Heapify-Up}(A,i) \\ 1 & \text{if } (i>1) \text{ and } (A[i]>A[\operatorname{Parent}(i)]) \\ 2 & A[i] \leftrightarrow A[\operatorname{Parent}(i)] \\ 3 & \operatorname{Max-Heapify-Up}(A,\operatorname{Parent}(i)) \end{array}
```

Correttezza di MaxHeapifyUp

Casi base

(i = 1) ok, non faccio nulla;

 $(A[i] \leq A[Parent(i)])$ ok, la proprietà di Max Heap è mantenuta.

Induzione

(A[i] > A[Parent(i)]) scambio le due celle. I discendenti (sottoalberi) della nuova cella A[i] mantengono la proprietà di Max Heap.

Complessità $O(\log i)$, nel caso peggiore $O(\log n)$.

Ecco ora lo pseudocodice della funzione Insert.

INSERT(A, x)

- $1 \quad A.heap size = A.heap size + 1$
- $2 \quad A[A.heapsize] = x$
- 3 Max-Heapify-Up(A, A. heapsize)

Insert ha complessità $O(\log n)$, la stessa di MaxHeapifyUp.

INCREASE-KEY (A, i, δ)

// Precondizione: $\delta \geq 0$

- $1 \quad A[i] = A[i] + \delta$
- 2 Max-Heapify-Up(A, i)

IncreaseKey ha complessità $O(\log n)$.

```
CHANGE-KEY(A, i, \delta)

1 A[i] = A[i] + \delta

2 if \delta > 0
```

3 MAX-HEAPIFY-UP(A, i)

4 else // $\delta \leq 0$

5 Max-Heapify(A, i)

Change Key è come Increase Key, ma può utilizzare valori di δ qualsiasi, ed è corretto per la seguente proprietà:

```
Se per ogni j \neq i A[j] \geq discendenti \Rightarrow dopo MaxHeapify ho un MaxHeap
```

```
Delete-Key(A, i)

1 old = A[i]

2 A[i] = A[A.heapsize]

3 A.heapsize = A.heapsize - 1

4 if old \le A[i]

5 Max-Heapify-Up(A, i)

6 else

7 Max-Heapify(A, i)
```

DeleteKey ha complessità $O(\log n)$.

4.2 Quicksort

Il Quicksort è probabilmente l'algoritmo di ordinamento più utilizzato e nella pratica efficiente, nonostante abbia un caso pessimo di $O(n^2)$.

- \circ Caso pessimo $O(n^2)$;
- \circ Caso medio e migliore $O(n \log n)$;
- o costanti basse.

Si basa sul paradigma del divide et impera:

```
\circ Divide
```

```
→ Secglie un pivot x in A[p, r];

→ partiziona in A[p, q-1] \leq x e A[q+1, r] \geq x;
```

 \circ Impera

```
Ricorre su A[p, q-1] e A[q+1, r];
```

• Combina (Non fa nulla).

Pseudocodice Segue lo pseudocodice del Quicksort.

```
Quicksort(A, p, r)
1 if p < r
2
         q = PARTITION(A, p, r)
3
         QUICKSORT(A, p, q)
         Quicksort(A, q + 1, r)
4
Partition(A, p, r)
1 x = A[r] // pivot A[r]
2 \quad i = p - 1
   /\!\!/ A[p, i] \leq x
    /\!\!/ A[i+1, j-1] > x
  for j = p to r - 1
3
4
         if A[j] \leq x
5
              i = i + 1
              A[i] \leftrightarrow A[j]
6
7
   A[i+1] \leftrightarrow A[r]
  return i+1
```

4.2.1 Correttezza di Quicksort

Caso base array già ordinato, 0 o 1 elemento.

Induzione Abbiamo, dopo Partition

$$\leq A[q] \mid A[q] \mid \geq A[q]$$

Esempio Dato l'array A, scelgo come **pivot** x l'ultimo elemento.

i punta alla cella 0 (ossia nessuna cella)

j punta alla cella 1: 9

 $9 > 2? \text{ Si} \Rightarrow j++$

6 > 2? Sì \Rightarrow j++

0 > 2? No \Rightarrow i++, A[i] \leftrightarrow A[j], j++

i punta alla cella 1: 0

j punta alla cella 4: 8

8 > 2? Sì \Rightarrow j++

4 > 2? Sì \Rightarrow j++

Scambio A[i+1] con x, ottenendo

I primi due (i + 1) elementi sono ordinati:

Chiamo ricorsivamente Quicksort con q = i + 1.

i punta alla cella 0 (ossia nessuna cella)

j punta alla cella 1: 9

 $9 > 6? \text{ Si} \Rightarrow j++$

8 > 6? Sì \Rightarrow j++

4 > 6? No \Rightarrow i++, A[i] \leftrightarrow A[j], j++

4 | 8 | 9 | 6 | pivot: 2

i punta alla cella 1: 4

j punta alla cella 4: 6, quindi ho finito.

Scambio A[i+1] con \overline{x} , ottenendo

4 6 9 8

I primi due (i + 1) elementi sono ordinati:

4 6

Chiamo ricorsivamente QuicsSort con q = i + 1.

9 8 pivot: 8

i punta alla cella 0 (ossia nessuna cella)

j punta alla cella 1: 9

 $9 > 8? \text{ Si} \Rightarrow j++$

Ho finito, scambio A[i+1] con x, ottenendo

8 9

Guardando l'array completo ottengo il risultato atteso:

4.2.2 Complessità di Quicksort

Partition costa $\Theta(n)$

$$T^{QS} = \Theta(n) + T^{QS}(q-p) + T^{QS}(n - (q-p) - 1)$$

 $q - p < n$

Caso peggiore

$$T^{QS} = \Theta(n) + T^{QS}(n-1) = \Theta(n^2) \qquad (\Theta(n) = cn)$$

$$T(n)$$

$$cn$$

$$cn - 1$$

$$cn - 2$$

$$\dots$$

$$d$$

$$\sum_{j=1}^{n-1} c(n-j) + d = \sum_{k=1}^{n} ck + d =$$

$$= c \sum_{k=1}^{n} k + d \qquad \left(\frac{c(n+1)n}{2} + d = \Theta(n^2)\right)$$

$$T(n) = \Theta(n^2) \Rightarrow \begin{cases} = O(n^2) \\ = \Omega(n^2) \end{cases}$$

• $T(n) = O(n^2)$ $T(n) = O(n^2) \Rightarrow T(n) \le cn^2 \quad \forall n \ge n_0, c > 0$ $= T(n-1) + \Theta(n) \le dn$ $\le c(n-1) + dn$ $= cn^2 - 2cn + c + dn \le cn^2$ $2cn - dn - c \ge 0$ $n(2c - d) - c \ge 0 \quad \text{ok, } c > \frac{d}{2}$ $T(n) = O(n^2)$

• $T(n) = \Omega(n^2)$ analogo.

Caso migliore

$$T(n) = 2T\left(\frac{n}{2}\right) + \Theta(n) = \Theta(n\log n)$$

Caso medio Qualunque partizionamento proporzionale da complessità $\Theta(n \log n)$, come ad esempio

$$T(n) = T\left(\frac{n}{10}\right) + T\left(\frac{9n}{10}\right) + \Theta(n) = \Theta(n\log n)$$

Solo il caso in cui una delle due partizioni è costante, si ricade nel caso pessimo. Per ovviare al problema, si può utilizzare una versione di Partition che rende impossibile il partizionamento costante.

RANDOMIZED-PARTITION(A, p, r)

- $1 \quad q = \text{RANDOM}(p, r)$
- $2 \quad A[q] \leftrightarrow A[r]$
- 3 **return** Partition(A, p, r)

4.3 Quicksort a Tre Partizioni

Quicksort con RandomizedPartition funziona bene ed evita, quasi in ogni circostanza, di imbattersi nel caso pessimo, ad eccezione di un caso particolare: se in **input** viene dato un array con tutti gli elementi uguali, si ottiene il temuto caso pessimo $O(n^2)$.

Per ovviare al problema, è sufficiente partizionare Quicksort in tre partizioni invece di due. Dato un **pivot** x, partizioniamo A nel seguente modo:

$$|\langle x | = x | > x$$

Durante l'algoritmo, la disposizione sarà questa:

$$|\langle x| = x| > x$$

(La cella vuota è la regione ancora da esplorare).

```
Tripartition(A, p, r)
 1 \quad x = A[r]
 2
    i = p - 1
 3
    k = p
 4
    j = r
     while k < j
 5
 6
          if A[k] < x
 7
                i = i + 1
 8
                A[i] \leftrightarrow A[k]
 9
                k = k + 1
          else if A[k] > x
10
11
                j = j - 1
                A[j] \Leftrightarrow A[k]
12
13
          else
14
                k = k + 1
     /\!\!/ k = j
15
     A[j] \Leftrightarrow A[r]
    return (i+1,j) // restituisce una coppia di valori
Quicksort(A, p, r)
   if p < r
1
2
         q_1, q_2 = \text{Tripartition}(A, p, r)
         Quicksort(A, p, q_1 - 1)
3
         Quicksort(A, q_2 + 1, r)
```

4.4 Limite Inferiore

Input: $a_1 \dots a_n$

 ${\tt Output:}$ permutazione $a_1'\dots a_n'$ tale che

$$a_1' \le a_2' \le \dots \le a_n'$$

Confronti e assegnamenti Osservazioni:

- → Se "conto" solo alcune operazioni il limite inferiore vale in generale. Consideriamo solo l'operatore di confronto;
- \rightarrow Elementi tutti distinti $(a_i \neq a_j \text{ se } i \neq j)$, l'operatore di confronto == restituisce sempre FALSE.

4.5 Albero di Decisione

È una rappresentazione "astratta" delle possibili esecuzioni di un algoritmo di ordinamento su un input di dimensione fissata A[1...n].

 \rightarrow nodi interni:

$$i : j \Rightarrow \text{confronta } A[i] \leq A[j]$$

→ foglie (ogni foglia è una possibile permutazione)

Ecco un esempio di **Albero di Decisione** per l'array $A[a_1, a_2, a_3]$ con

$$a_1 = 1, a_2 = 2, a_3 = 3$$

Osservazioni

o Altezza dell'albero di decisione = limite inferiore per caso pessimo

per IS
$$n^2$$

per MS $n \log n$

o Ogni foglia ha una sola permutazione. Ogni permutazione compare (almeno) in una foglia.

In generale, le foglie contengono <u>tutte</u> le permutazioni.

$$\# \text{ foglie} \geq \# \text{ permutazioni} = n! \qquad (\# \text{ foglie} \leq 2^h)$$

$$\begin{split} h &\geq \log_2 n! \\ &\geq \log_2 \left(n(n-1)(n-2) \dots \frac{n}{2} \right) \\ &\geq \log_2 \left(\frac{n}{2} \left(\frac{n}{2} - 1 \right) \left(\frac{n}{2} - 2 \right) \dots \frac{n}{2} \right) \\ &\geq \log_2 \left(\frac{n}{2} \right)^{\left(\frac{n}{2} \right)} = \frac{n}{2} \left(\log_2 n - \log_2 2 \right) = \frac{n}{2} (\log_2 n - 1) = \Theta(n \log n) \end{split}$$

Inoltre,

- o # operazioni $\geq h = \Omega(n \log n)$
- \circ Heapsort, MergeSort $O(n \log n)$
- \Rightarrow ordinamento (bastato su confronti) $\Theta(n \log n)$

4.6 Counting Sort

Esistono degli algoritmi di ordinamento che, in certe condizioni e per certi input, permettono di ordinare in tempo lineare $\Omega(n)$

Figura 5: Albero di decisione per l'array A[1,2,3]

Assumo

- interi;
- $-\inf[0,k]$

Input:
$$A[1..n]$$
 con $A[j] \in [0,k] \quad \forall \ 1 \le j \le n$;

Output: B[1..n] permutazione ordinata di A;

Supporto: C[0..k].

Counting-Sort(A, B, k)

$$1 \quad C[0 \dots k] \leftarrow 0$$

2 for
$$j = 1$$
 to $A.length$

$$/\!/ C[x] = \#$$
 elementi in A con valore x

3
$$C[A[j]] = C[A[j]] + 1$$

4 for
$$i = 1$$
 to k

//
$$C[x]=$$
elementi in A con valore $\leq x$

5
$$C[i] = C[i-1] + C[i]$$

6 for
$$j = A.length$$
 down to 1

$$7 B[C[A[j]]] = A[j]$$

8
$$C[A[j]] = C[A[j]] - 1$$

Complessità

$$C[0,k] \leftarrow 0 \qquad \qquad \Theta(k)$$
 for j=1...
$$\Theta(n)$$
 for i=1...
$$\Theta(k)$$
 for j=A.length...
$$\Theta(n)$$

Somma
$$\Theta(n+k)$$
 con $k = \Theta(1) \Rightarrow \Theta(n)$

Problema di memoria Il problema di CountingSort è la memoria. Infatti, al crescere di k, la memoria richiesta per allocare $\tt C$ cresce esponenzialmente.

Dimensione k	Memoria occupata da C[]
1 Byte = 8 bit	2^8 Bytes = 256 Bytes
2 Bytes = 16 bit	2^{16} Byte · 2Bytes = 256Megabytes
8 Bytes = 64 bit	2^{64} Byte · 8Bytes = 512Terabytes

4.6.1 Proprietà di Stabilità

Dato $A[1\mathinner{.\,.} n]$ in input, se $A[i] \le A[j]$ con $i \le j$, allora nell'output A[i] e A[j] sono nello stesso ordine relativo.

Algoritmi stabili:

- o MergeSort
- o InsertionSort

Algoritmi non stabili:

- o CountingSort
- o Quicksort
- o Heapsort

4.7 Radix Sort

Il Radix Sort è un algoritmo di ordinamento in tempo lineare O(n), come CountingSort, che risolve i problemi di memoria di quest'ultimo.

L'idea è quella di ordinare cifra per cifra, dalla cifra meno significativa alla più significativa con un algoritmo **stabile**.

(iniziale)	(terza cifra)	(seconda cifra)	(prima cifra)
329	720	720	329
457	355	329	355
657	436	436	436
839	457	839	457
436	657	355	657
720	329	457	720
355	839	657	839

Input: A[1..n] con A[i] di d cifre e base b, A[i] = $a_d a_{d-1} \dots a_1$.

Radix-Sort(A, d)

- 1 **for** j = 1 **to** d
- ordina A rispetto alla cifra $j \# A^{j}[i] = a_{j}a_{j-1} \dots a_{1}$ con Counting-Sort $\# A^{j-1}$ ordinato

Correttezza di Radix Sort

- Inizializzazione: ok;
- o **Mantenimento**: se A^{j-1} è ordinato e ordino rispetto alla j-esima cifra con un algoritmo stabile, allora A^j è ordinato.

$$i < i' \Rightarrow A^j[i] \leq A^j[i']$$

Siano
$$A^{j}[i] = a_{j}a_{j-1} \dots a_{1}$$

 $A^{j}[i'] = a'_{j}a'_{j-1} \dots a_{1}$

Posso distinguere due casi:

1.

$$a_j \neq a'_j \Rightarrow a_j < a'_j$$

 $\Rightarrow A^j[i] < A^j[i']$

2.

$$a_j = a'_j \Rightarrow A^j[i] \le A^j[i']$$
 (stabilità)
 $\Rightarrow A^j[i] = a_j A^j[i] \le$
 $\le A^j[i'] = a'_j A^{j-1}[i']$

Complessità

$$d$$
 volte CountingSort $\Theta(n+b) \Rightarrow \Theta(d(n+b)) = \Theta(n)$ con d cifre $= \Theta(1)$, base $b = \Theta(n)$

$$m$$
 bit, r bit per cifra, $\frac{m}{r}$ cifre, base 2^r
$$\Theta(\frac{m}{r}(m+2^r)) = r = \log_2 n$$

$$= \Theta(\frac{m}{\log n}(n+2^{\log n}))$$

$$= \Theta(\frac{m}{\log n}n) \qquad m = O(\log n)$$

$$= \Theta(n)$$

5 Tabelle Hash

$$U$$
 universo delle chiavi
$$U = \{0, 1, \dots, |U| - 1\}$$
 $T[0 ... |U| - 1]$ tabella hash

$$T[k]$$
 contiene
$$\begin{cases} \text{elemento } x \text{ con } x.key = k & \text{se c'è} \\ \text{NIL} & \text{altrimenti} \end{cases}$$

INSERT(T, x)

$$1 \quad T[x.key] = x \# \Theta(1)$$

DELETE(T, x)

1
$$T[x.key] = \text{NIL } \# \Theta(1)$$

SEARCH(k)

1 return $T[k] /\!\!/ \Theta(1)$

Problema e.g. consideriamo che la **key** sia di 8 caratteri (e 8 bit per rappresentare un carattere). Risulta molto costosa in termini di memoria la tabella hash.

$$2^8 \dots 2^8$$
$$(2^8)^8 = 2^{64} \cong 10^{19}$$

Idea

$$U = \{0, 1, \dots, |U| - 1\}$$
$$T[0 \dots m - 1] \qquad m << |U|$$

La "traduzione" per ottenere x.key da x cosa comporta?

$$h\colon U\to\{0,1,\dots,m-1\}$$
 funzione di hashing
$$n=\# \text{ elementi memorizzati nella tabella } T$$

$$m=\# \text{ celle}$$

Se n > m, esisteranno $x_1, x_2 : h(x_1.key) = h(x_2.key) \Rightarrow$ conflitto

Abbiamo due soluzioni:

- 1. Chaining (5.1);
- 2. Open Addressing (5.2).

5.1 Chaining

Il **Chaining** propone come soluzione quella di mettere sulla tabella liste dinamiche di elementi, invece che singoli elementi, in modo che in caso si incorra in una cella già occupata dopo un **hashing**, l'elemento venga inserito in coda (o in testa) alla lista.

Idea T[i] = lista elementi x tali che <math>h(x.key) = i

INSERT(T, x)

1 Inserisci x nella lista T[h(x.key)] # O(1)

DELETE(T, x)

1 Elimina x da T[h(x. key)] // O(1)

SEARCH(T, k)

1 Cerca in T[h(k)] un elemento x tale che x. key = k // O(n)

Search ha una complessità di O(n), e questo è inaccettabile.

n=# elementi inseriti m=dimensione di T $\alpha=\frac{n}{m}\quad\text{fattore di carico}$ α può essere <, = oppure > di 1

5.1.1 Hashing Uniforme Semplice

Ogni elemento di **input** è "mandato" da h con la stessa probabilità $\left(\frac{1}{m}\right)$ in una delle m celle.

Caso medio $\Theta(1+\alpha)$, 1 è l'accesso alla tabella.

Consideriamo $n_1, n_2, \ldots, n_{m-1}$ la lunghezza delle m liste. La lunghezza attesa di una lista è:

$$E[n_j] = \sum_{i=1}^n \frac{1}{m} \cdot 1 = \frac{n}{m} = \alpha$$

Ricerca di una chiave La chiave può essere:

- o Assente. Search(k), k non c'è.
 - · Calcolo h(k) \rightarrow ($\Theta(1)$);
 - · Accedo a T[h(k)] = $j \rightarrow (\Theta(1));$
 - · Scorro n_i elementi $(n_i = \alpha) \to (\Theta(\alpha))$.

Nel complesso, ho $\Theta(1+\alpha)$

- o Presente. Search(k), k presente.
 - \cdot h(k) e T[h(k)]

Se $x_1, x_2, \dots x_n$ sono gli elementi inseriti

Costo della ricerca di x_i :

$$1 + \# \text{ elementi} \quad x_j : j > 1, \ h(x_i.key) = h(x_j.key)$$

$$= 1 + \sum_{j=i+1}^{n} (prob \ h(x_i.key) = h(x_j.key))$$

$$= 1 + \sum_{j=i+1}^{n} \frac{1}{m} = 1 + \frac{n-i}{m}$$

$$\frac{1}{n} \sum_{i=1}^{n} \left(1 + \frac{n-i}{m} \right)$$

$$= \frac{1}{n} \left(n + \sum_{i=1}^{n} \frac{n-i}{m} \right) = \frac{1}{n} \left(n + \frac{1}{m} \sum_{z=0}^{n-1} z \right)$$

$$= 1 + \frac{1}{m \cdot n} \cdot \frac{n(n-1)}{2} = 1 + \frac{n}{2m} - \frac{1}{2m} \cdot \left(\frac{n}{n} \right) \quad \left(\alpha = \frac{n}{m} \right)$$

$$= 1 + \frac{\alpha}{2} - \frac{\alpha}{2n} = \Theta(1 + \frac{\alpha}{2}) = \Theta(1 + \alpha)$$

$$\alpha \text{ costante}$$

$$n = O(m)$$

$$n \le k \cdot m$$

$$\alpha = \frac{n}{m} \le k$$

$$\Rightarrow \Theta(1 + \alpha) = \Theta(1)$$

$$h: U \to \{0, 1, \dots, m-1\} \Rightarrow h(x) = 0$$

5.1.2 Funzioni Hash

Una **funzione hash** deve soddisfare la proprietà di **hashing uniforme**, ossia

"Ogni chiave ha la stesso probabilità $\frac{1}{m}$ di essere mandata in una qualsiasi delle m celle, indipendentemente dalle chiavi inserite precedentemente."

Consideriamo:

- o $k \in [0,1)$ ($0 \le k < 1$), k chiave, estratta in modo indipendente dalla distribuzione uniforme (<u>non realistica</u>).
- o Allora h(k) = |mk| soddisfa la proprietà di hashing uniforme.

L'ipotesi di hash uniforme semplice dipende dalle probabilità con cui vengono estratti gli elementi da inserire; probabilità che in genere non sono note. Le funzioni hash che descriveremo assumono che le chiavi siano degli interi non negativi.

Metodo della divisione

$$U = \{0, 1, \dots, |\cup| - 1\}$$
$$h(k) \in \{0, 1, \dots, m - 1\}$$
$$h(k) = k \mod m$$

 $\circ m = 2^p$ caso pessimo;

o $m = 2^p - 1$ caso non buono. 2^p cifre base.

La soluzione migliore è quella di scegliere chiavi lontane dalle potenze di 2, meglio ancora se numeri primi.

Metodo della moltiplicazione

$$k \in U$$

$$0 < A < 1 \text{ fissato}$$

$$h(k) = m(kA \bmod 1) \qquad \text{Miglior } A : \frac{\sqrt{5} - 1}{2}$$

$$m=2^p \quad w=\#$$
 bit parola
$$A=\frac{q}{2^w} \quad 0< q< 2$$

$$m(kA \bmod 1)$$

$$=m\left(k\frac{q}{2^w}\bmod 1\right) \qquad \qquad \text{(shift di w bit, prendo la parte decimale }$$

$$ka \bmod 1 \text{ e la moltiplico per } m=2^p\text{)}$$

5.1.3 Hashing Universale

Per avere una distribuzione più uniforme delle chiavi nelle liste e non dipendente dall'input, possiamo usare la **randomizzazione**.

Insieme H di funzioni di hash. Scelgo randomicamente $h \in H$. Sotto certe ipotesi ottengo per Search:

$$\Theta(1+\alpha)$$

Def (Hashing universale) $\forall k_1, k_2 \in U, k_1 \neq k_2$

$$|\{h \in H : h(k_1) = h(k_2)\}| \le \frac{|H|}{m}$$
$$prob(h(k_1) = h(k_2)) = \frac{|\{h \in H : h(k_1) = h(k_2)\}|}{|H|} \le \frac{1}{m}$$

Teorema Con il **chaining**, H è universale $\forall k \in U, j = h(k)$

Costo medio
$$\Theta(1+\alpha)$$
 $\begin{cases} k \text{ non è in } T \to E[n_j] \leq \alpha \\ k \text{ è in } T \to E[n_j] \leq 1+\alpha \end{cases}$

5.2 Open Addressing

h(k,i): k è la chiave, i è il tentativo.

Provo con h(k,0): se capito in una cella occupata, provo con h(k,1), poi h(k,2) e così via, fino a che non trovo una cella libera.

Per esplorare tutta la tabella:

$$h(k, 0), h(k, 1), \dots, h(k, m - 1) \quad \forall \ k \in U$$

che è una permutazione di

$$\{0, 1, \ldots, m-1\}$$

```
INSERT(T, x)
1
   i = 0
2
   repeat
3
        j = h(x.key, i)
4
        if (T[j] = NIL) or (T[j] = DELETED) // posizione libera
5
             T[j] = x
6
             return j
7
        i = i + 1
8
   until i = m
   error
SEARCH(T, k)
   i = 0
1
2
   repeat
3
        j = h(k, i)
        if T[j].key = k
4
5
             return j
6
        i = i + 1
   until (i = m) Ø4 (T[j] = NIL)
   return NOT FOUND
Delete(T, j)
1 T[j] = \text{DELETED}
```

L'Open Addressing risulta una soluzione inefficiente in caso avvengano molte cancellazioni.

5.2.1 Hashing Uniforme

Per ogni elemento di input, tutte (m!) le sequenze di ispezione sono equiprobabili.

5.2.2 Funzioni di Hash

1. Ispezione lineare. Sia h'(k) funzione di hash "ordinaria". Se ricado in una cella occupata, mi sposto su quella immediatamente successiva.

$$h(k,i) = (h'(k) + i) \bmod m$$

Caratteristiche:

- è semplice;
- \circ poche permutazioni (m dipende solo da h'(k));
- o causa addensamenti di celle occupate (addensamento primario).
- 2. Ispezione quadratica. Fisso h'(k).

$$h(k,i) = (h'(k) + c_1i + c_2i^2) \mod m, \qquad c_2 > 0$$

3. **Doppio Hash**. Fisso $h_1(k)$, $h_2(k)$

$$h(k,i) = (h_1(k) + i \cdot h_2(k)) \bmod m$$

Osservazioni:

- o I salti sono di dimensione $h_2(k)$ all'incrementare di i;
- \circ Ci sono m^2 sequenze di ispezione;
- \circ $h_2(k)$ e m primi tra loro (MCD=1);
- $h(k,0), h(k,1), \dots, h(k,m-1)$ è permutazione di $\{0,1,\dots,m-1\}$;
- $\circ i, i' < m \quad h(k, i) = h(k, i') \Rightarrow i = i' \quad \text{(iniettività)}$

$$h(k,i): \{0,\ldots,m-1\} \to \{0,\ldots,m-1\}$$

$iniettiva \Rightarrow biiettiva$

$$h(k, i) = h(k, i')$$

$$(h_1(k) + ih_2(k)) \mod m = (h_1(k) + i'h_2(k)) \mod m$$

$$((i - i')h_2(k)) \mod m = (ih_2(k) - i'h_2(k)) \mod m = 0$$

$$(i - i') \mod m = 0$$

$$i \ge i' \quad i - i' < m - 1$$

$$\Rightarrow i - i' = 0$$

$$\Rightarrow i = i'$$

Scelgo
$$m = 2^p$$
, $h_2(k) = 1 + 2h'(k)$, $h'(k)$ qualunque.
es. $h_2(k) = 1 + h'(k \mod m')$ con $m' < m, m$ primo

Costo Il costo della **Search** con **hashing uniforme** si può riassumere come segue.

$$0 \le \alpha = \frac{n}{m} \le 1$$

Ricerca di una chiave non presente

- (a) $\frac{1}{1-\alpha}$ se $\alpha < 1$
- (b) m se $\alpha = 1$

Probabilità di ispezionare la i-esima cella

	probabilità
i = 0	1
i = 1	prob. cella 0 occupata: $\frac{n}{m}$
i = 2	prob. cella 0 occupata: $\frac{n}{m}$ prob. cella 1 occupata: $\frac{n}{m} \cdot \frac{n-1}{m-1}$
i	$\frac{n}{m} \cdot \frac{n-1}{m-1} \dots \frac{n-i+1}{m-i+1} \le \alpha \cdot \alpha \dots \alpha = \alpha^i$

Valore atteso per # tentativi

$$1 + \alpha + \alpha^2 + \dots + \alpha^{i-1} + \dots + \alpha^{m-1}$$

- (a) $\alpha < 1 \Rightarrow \frac{1-\alpha^m}{1-\alpha} \le \frac{1}{1-\alpha}$
- (b) m

Ricerca di una chiave presente

- (a) $\frac{1}{\alpha} \log \left(\frac{1}{1-\alpha} \right) \quad \alpha < 1$
- (b) $1 + \log m \quad \alpha = 1$

Costo atteso per k_i :

$$\frac{1}{1-\alpha_{i-1}} = \frac{1}{1-\frac{i-1}{m}}$$

$$= \frac{m}{m-i+1}$$

$$\left(\alpha_{i-1} = \frac{i-1}{m} < 1\right)$$

Il costo atteso è la media per $i = 1, \ldots, n$

$$= \frac{1}{n} \sum_{i=1}^{n} \frac{m}{m-i+1} = \frac{m}{n} \sum_{i=1}^{n} \frac{1}{m-i+1}$$

$$\left(\frac{m}{n} = \frac{1}{\alpha}\right)$$

$$= \frac{1}{\alpha} \sum_{j=m-n+1}^{m} \frac{1}{j}$$

 \circ Se $\alpha < 1$

$$\leq \frac{1}{\alpha} \int_{n-m}^{m} \frac{1}{x} dx$$

$$= \frac{1}{\alpha} (\log m - \log(m-n)) = \frac{1}{\alpha} \left(\log \frac{m}{m-n}\right)$$

$$= \frac{1}{\alpha} \log \frac{1}{\frac{m-n}{m}}$$

$$= \frac{1}{\alpha} \log \left(\frac{1}{1 - \left(\frac{n}{m}\right)}\right) = \frac{1}{\alpha} \log \left(\frac{1}{1 - \alpha}\right)$$

 \circ Se $\alpha = 1$

$$\sum_{l=1}^{m} \frac{1}{l} = 1 + \sum_{l=2}^{m} \frac{1}{l} \le \int_{1}^{m} \frac{1}{x} dx$$
$$= 1 + (\log m - \log 1) = 1 + \log m$$

Confrontiamo le complessità dei due casi.

$$\begin{array}{c|cccc} \alpha & \frac{l}{1-\alpha} & \frac{1}{\alpha} \log \left(\frac{1}{1-\alpha}\right) \\ \hline \alpha = 0.3 & 1.43 & 1.19 \\ \alpha = 0.5 & 2.00 & 1.39 \\ \alpha = 0.7 & 3.33 & 1.72 \\ \alpha = 0.9 & 10 & 2.56 \\ \alpha = 0.99 & 100 & 4.65 \\ \hline \end{array}$$

6 Alberi

6.1 Alberi Binari di Ricerca

Definizione induttiva

- $\circ \varnothing$ è un albero;
- o Se r è un nodo, T_1 e T_2 alberi $\Rightarrow r(T_1, T_2)$ è un albero.

Ogni nodo x ha i seguenti campi:

- $\circ x.p$
- $\circ x.key$
- $\circ x.left$
- $\circ x.right$

Proprietà $\forall r$

- \rightarrow Per ogni nodo y in T_1 y.key $\leq x.key$;
- \rightarrow Per ogni nodo y in T_2 $y.key \ge x.key$.

Esempio Ecco un albero binario di ricerca d'esempio:

6.1.1 Visita Simmetrica

La visita simmetrica (ordine infisso) visita i nodi in ordine crescente.

In-Order(x)

- 1 if $x \neq NIL$
- 2 IN-Order(x.left)
- 3 Print(x) $/\!\!/ \Theta(1)$
- 4 IN-Order (x. right)

Complessità

$$T(n) = \begin{cases} c & n = 0\\ T(k) + T(n - k - 1) + d & n > 0, \ k < n \end{cases}$$

Stima di complessità: T(n) = (c+d)n + c.

Vediamo la dimostrazione (per induzione).

$$(n = 0) T(n) = c = (c + d) \cdot 0 + c$$

 $(n \to n+1)$ T(n) = T(k) + T(n-k) + d. Non basta l'induzione ordinaria, usiamo l'**induzione completa**.

(n > 0) Proprietà vera per n' < n

$$T(n) = T(k) + T(n - k - 1) + d$$

$$con T(k) = (c + d)k + c e T(n - k - 1) = (c + d)(c - k - 1) + c$$

$$= (c + d)(\cancel{k} + n - \cancel{k} - 1) + 2c + d$$

$$= n(c + d) - c - d + 2c + d$$

$$= n(c + d) + c - \cancel{\ell} + \cancel{\ell}$$

$$\cong \Theta(n)$$

6.1.2 Ricerca

Ricerca di una chiave k in un albero radicato nel nodo x.

- \circ Se $x \stackrel{.}{\circ}$ NIL \Rightarrow restituisce NIL;
- \circ Altrimenti se $x.key = k \Rightarrow$ restituisce x;
- Altrimenti, ricorre sul prossimo nodo.

```
SEARCH(x, k)

1 if (x = \text{NIL}) or (x.key = k)

2 return x

3 else if k < x.key

4 return SEARCH(x.left, k)

5 else

6 return SEARCH(x.right, k)
```

Complessità La complessità è l'altezza h dell'albero, ovvero O(h).

Vediamo una versione iterativa di Search.

```
SEARCH-IT(x, k)

1 while (x \neq \text{NIL}) or (x. key \neq k)

2 if k < x. key

3 x = x. left

4 else

5 x = x. right

6 return x
```

Procedura che restituisce il **minimo** di un albero:

```
\begin{aligned} & \text{Min}(T) \\ 1 \quad x = T. \, root \\ 2 \quad & \textbf{if} \ x = \text{NIL} \\ 3 \quad & \textbf{return} \ \text{NIL} \\ 4 \quad & \textbf{else} \\ 5 \quad & \textbf{while} \ x. \, left \neq \text{NIL} \\ 6 \quad & x = x. \, left \\ 7 \quad & \textbf{return} \ x \end{aligned}
```

Procedura che restituisce il massimo di un albero.

```
\begin{aligned} \text{Max}(T) \\ 1 \quad x &= T.root \\ 2 \quad \text{if } x &= \text{NIL} \\ 3 \quad & \text{return NIL} \\ 4 \quad & \text{else} \\ 5 \quad & \text{while } x.right \neq \text{NIL} \\ 6 \quad & x &= x.right \\ 7 \quad & \text{return } x \end{aligned}
```

Complessità O(h)

6.1.3 Successore

Si intende il nodo elencato dopo un nodo x passato come parametro in una visita simmetrica.

Se le chiavi fossero tutte distinte, allora il **successore** di x è il minimo tra i "nodi più grandi di x".

- \circ Se x ha un figlio destro, il **successore** è Min(x. right);
- $\circ\,$ Altrimenti, il successore è l'antenato più vicino di cui x è nel sottoalbero sinistro.

```
Successor(x)
   if x. right \neq NIL
2
        return Min(x.right)
3
   else
4
        y = x.p
5
        while (y \neq NIL) and (x = y. right)
6
             x = y
7
             y = y.p
8
        return y
```

Complessità O(h)

6.1.4 Inserimento

```
Insert(T, z)
    x = T.root
    y = NIL
    while x \neq NIL
4
         y = x
5
         if z.key < x.key
 6
              x = x. left
 7
         else
8
              x = x.right
9
    z.p = y
10
    if y = NIL
11
         T.root = z
12
    else
13
         if z.key < y.key
              y.left = z
14
15
         else
              y.right = z
16
```

Complessità O(h)

6.1.5 Eliminazione

Distingueremo 2 casi nell'algoritmo:

- (1) z ha al più un figlio;
- (2) z ha due figli.

Per fare ciò, usiamo una funzione ausiliaria Transplant, con complessità O(1).

```
Transplant(T, u, v)
1
   if u.p = NIL
2
        T.root = v
3
   else
4
        if u = u.p.left
5
              u.p.left = v
6
        else
              u.p.right = v
8
   if v \neq \text{NIL}
9
        v.p = u.p
```

```
Delete(T, z)
 1 if z.left = NIL
          \operatorname{Transplant}(T, z, z. right)
 2
 3
    else if z.right = NIL
 4
          Transplant(T, z, z. left)
 5
    else
          y = Min(z.right)
 6
 7
          if y.p \neq z
               Transplant(T, y, y. right)
 8
               y.right = z.right
 9
10
               y.right.p = y
11
          y.left = z.left
          y.left.p = y
12
          \mathsf{Transplant}(T,z,y)
13
```

Complessità O(h)

6.2 Red-Black Trees

I Red-Black Trees sono ABR i cui nodi hanno un campo colore x.color, che può essere:

- RED per il rosso;
- BLACK per il nero.

Accorgimento NIL sarà in realtà un nodo, T.nil, con T.nil.color = BLACK.

Caratteristiche RB-Tree è in realtà un ABR tale che:

- (1) Ogni nodo x ha $x.color \in \{RED, BLACK\};$
- (2) La radice root è BLACK;
- (3) Le foglie (T.nil) sono BLACK;
- (4) Se $x \in RED$, i figli sono BLACK;
- (5) Per ogni nodo x, ogni cammino da x a una qualsiasi delle foglie ha lo stesso numero di nodi BLACK (calcolato con bh(x)).

Figura 6: Esempio di un RB-tree.

È possibile notare che:

- In caso non ci fossero nodi rossi, avremo un albero perfettamente bilanciato;
- o In ogni cammino, il # di nodi BLACK è almeno la metà del # dei nodi RED

Osservazione Se T è un **RB-Tree** con n nodi interni $(\neq NIL)$ e h altezza, allora vale

$$h \le 2\log(n+1)$$

Dimostrazione Consideriamo

$$n_x > 2^{bh(x)} - 1$$

La dimostrazione è per induzione su h_x (altezza del sotto-albero radicato in x).

$$(h_x = 1)$$
 Allora ho solo $T.nil \Rightarrow n_x = 0 = 2^0 - 1$ $(2^0 \text{ con } 0 = bh(x))$

 $(h_x > 1)$ Consideriamo x radice. x ha due figli, x_1 e x_2 .

Sicuramente vale $h_1, h_2 < h$. Per ipotesi induttiva, valgono:

$$n_{x_1} \ge 2^{bh(x_1)} - 1$$
$$n_{x_2} \ge 2^{bh(x_2)} - 1$$

$$n_x = n_{x_1} + n_{x_2} + 1$$

$$\geq 2^{bh(x_1)} + 2^{bh(x_2)} - 1$$

$$\geq 2 \cdot 2^{bh(x)-1} - 1 = 2^{bh(x)} - 1$$
(valgono $bh(x_1) \geq bh(x) - 1$, $bh(x_2) \geq bh(x) - 1$)

Complessivamente

$$n = n_{root} \ge 2^{bh(root)} - 1$$

Essendo $bh(root) \ge \frac{h}{2}$, posso ottenere

$$n_{root} \ge 2^{bh(root)} - 1$$

$$2^{\frac{h}{2}} - 1$$

$$\Rightarrow 2^{\frac{h}{2}} \le n + 1$$

$$\frac{h}{2} \le \log_2(n+1) \Rightarrow h \le 2\log_2(n+1)$$

69 di 108

6.2.1 Complessità Algoritmi RB-Trees

Search, Succ, Min, Pred, Max hanno complessità $O(h) = O(\log n)$

6.2.2 RB-Insert e RB-Delete

A differenza di quelle citate precedentemente, che risultano semplici sia come complessità asintotica che come implementazione, bisogna porre particolare attenzione a queste due procedure: RB-Insert e RB-Delete.

Per ovviare a ciò, posso utilizzare le **rotazioni**. Consideriamo il seguente albero, in cui x e y sono nodi normali, mentre α , β e γ sono sotto-alberi (il colore dei nodi non ha importanza ai fini della procedura che andremo a vedere)¹:

Applichiamo Left(T,x), ottenendo:

Osservazione La visita simmetrica è identica per i due alberi:

$$\alpha \to x \to \beta \to y \to \gamma$$

 $^{^1\}mathrm{Di}$ conseguenza, applicandola a un $\mathbf{RB\text{-}Tree},$ gli assiomi di validità potrebbero venire violati.

 $\mathbf{RB\text{-}Insert}(\mathbf{T}, \mathbf{z})$ Voglio inserire z nell'albero T. L'idea è quella di porre z.color = RED poichè meno insidioso¹.

- \circ Se violo (2) $\Rightarrow z.color = BLACK;$
- \circ Se violo (4):
 - · Risolvo localmente;
 - · Sposto verso l'alto il problema.

Abbiamo due **macrocasi**. z.p è figlio sinistro, oppure destro. Noi analizzeremo solo il primo: **z.p figlio sinistro**².

Abbiamo due possibilità per y:

1. y.color = RED. Inverto il colore di z.p.p con quello dei figli, ottenendo:

In questo modo, risolviamo localmente e rimandiamo il problema in alto.

¹Andando a modificare il numero di nodi neri, cambia l'altezza nera, e la cosa è difficile da sistemare.

²I nodi non cerchiati sono RED, quelli cerchiati sono BLACK, quelli tratteggiati e puntinati possono essere sia RED che BLACK.

- 2. y.color = BLACK. Possiamo distinguere due sottocasi:
 - (2.1) z figlio destro.

Applico Left(T,z.p), ottenendo:

Mi riconduco al caso (2.2).

(2.2) z figlio sinistro.

Scambio i colori di z.p.p con z.p, ottenendo:

Applico $Right(T,z.p.p)^1$, ottenendo:

 $\operatorname{RB-Insert}(T,z)$

- 1 Insert(T, z)
- $2 \quad z. color = \text{Red}$
- 3 RB-Insert-Fixup(T, z)

¹Analoga di Left.

```
RB-Insert-Fixup(T, z)
    while z. p. color = RED
 2
         if z.p = z.p.p.left // Macrocaso z.p figlio sinistro
 3
               y = z. p. p. right
 4
               if y. color = RED // Caso 1
 5
                    z. p. p. color = RED
 6
                    z.p.color = BLACK
 7
                    y.color = BLACK
 8
                    z = z.p.p
 9
               else // Caso 2
10
                    if z = z. p. right // Caso (2.1)
11
                         Left(T, z, p)
                         z = z.left
12
                    /\!\!/ \text{ Caso } (2.2)
13
                    z.p.color = BLACK
14
                    z.p.p.color = RED
15
                    RIGHT(T, z. p. p)
16
         else
17
               ... // Macrocaso z.p figlio destro
18
    T.root.color = BLACK
```

Complessità $O(\log n) + \max 2 \text{ rotazioni}$

RB-Delete(T, z) Distinguiamo 2 casi:

- (1) z ha un figlio;
- (2) z ha due figli.

Ci comportiamo allo stesso modo della Delete(T,z) per un ABR, facendo però un'ulteriore accorgimento:

```
• se z.color = \text{RED} non ho problemi
• se z.color = \text{BLACK} violo (5):
```

- · Risolvo localmente;
- · Sposto verso l'alto il problema.

Dunque, in seguito alla Delete(T,z), il nodo x che ha preso il posto di z ne "assorbirà" il colore diventando doppiamente BLACK.

Abbiamo due **macrocasi**. x è figlio sinistro, oppure destro. Noi analizzeremo solo il primo: x figlio sinistro.

Abbiamo due possibilità per w:

1. w.color = RED

Scambio i colori di w con x.p, ottenendo:

Applico $\mathsf{Left}(\mathsf{T}, \mathsf{x}.\mathsf{p})$, ottenendo:

 ${\it Mi}$ riconduco al caso 2

2. w.color = black

Possiamo distinguere tre sottocasi:

(2.1) w.left.color = black e w.right.color = black

 \boldsymbol{x} cede un suo BLACK a $\boldsymbol{x}.\boldsymbol{p}$ e \boldsymbol{w} diventa per forza RED, ottenendo:

In questo modo, risolviamo localmente e rimandiamo il problema in alto.

(2.2) w.right.color = BLACK

Scambio i colori di w con w.left, ottenendo:

Applico Right(T,w), ottenendo:

Mi riconduco al caso (2.3)

(2.3) w.right.color = RED

Scambio i colori di x.p con w e w.right diventa BLACK, ottenendo:

Applico Left(T,x.p), ottenendo:

Ho risolto.

Complessità $O(\log n) + \max 3$ rotazioni

6.3 Arricchimento di Strutture Dati

Vedremo due esempi, uno per gli RB-Trees, e un altro per gli ABR.

- Statistiche d'ordine (6.3.1)
- o Interval Trees (6.3.3)

6.3.1 Statistiche d'Ordine

Struttura che parte da un RB-Tree. Aggiungo:

- Select(T,i) \equiv nodo x che occuperebbe la posizione i nei nodi ordinati per chiave (in una visita simmetrica);
- o Rank(T,x) \equiv posizione i (in una visita simmetrica) che occupa il nodo x.

Per implementare queste due procedure, ho bisogno di un nuovo campo dati. Aggiungo il campo

 $x.size = \#nodi radicati nel sottoalbero T_x$

Valgono

```
T.nil.size = 0

x.size = x.left.size + x.right.size + 1
```

Esempio In ogni nodo, tra le parentesi è riportato la size di quel nodo. Ricordiamo che i nodi nil (T.nil) hanno size = 0.

Vediamo un'implementazione non efficiente della procedura Size.

```
\begin{array}{ll} \operatorname{SIZE}(x) \\ 1 & \textbf{if} \ x = T. \, nil \\ 2 & x. \, size = 0 \\ 3 & \textbf{else} \\ 4 & l = \operatorname{SIZE}(x. \, left) \\ 5 & r = \operatorname{SIZE}(x. \, right) \\ 6 & x. \, size = l + r + 1 \\ 7 & \textbf{return} \ x. \, size \end{array}
```

Complessità La complessità è O(n), che come preannunciato, non è efficiente. Questo perchè le procedure Insert/Delete di un RB-Tree sono nel peggiore dei casi O(h).

Questa procedura, Select, restituisce il nodo di posizione i in T_x in una visita simmetrica.

```
Select(x, i)
   # Pre: x \neq T.nil, i: 1 \leq i \leq x.size
   r = x.left.size + 1
2
   if i = r
3
        \mathbf{return}\ x
4
  else if i < r
5
        return Select(x. left, i)
6
   else
        return Select(x.right, i-r)
7
Complessità O(h) = O(\log n)
   Rank restituisce la posizione i che occupa il nodo x.
Rank(x)
1 \quad r = x.left.size + 1
y = x
  while y \neq T.root // idea: r contiene la posizione di x in T_y
3
4
        if y.p.right = y
5
             r = r + y.p.left.size + 1
6
        y = y.p
   return r
Complessità O(h) = O(\log n)
```

Versione aggiornata di RB-Insert:

```
RB-Insert(T, z)
    // (1) versione aggiornata di Insert
    z.size = 1 \text{ } / \text{modifica } 1
    x = T.root
 3
    y = T.nil
 4
    while x \neq T. nil
 5
          x.size = x.size + 1 // modifica 2
 6
          y = x
 7
          if z.key < x.key
 8
               x = x.left
 9
          else
10
               x = x.right
11
    z.p = y
12
    if y = NIL
13
          T.root = z
14
    else if z.key < y.key
               y.left = z
15
16
          else
17
               y.right = z
    // (2) RB-Insert-Fixup
18 \quad z. \, color = \text{Red}
    RB-Insert-Fixup(T, z)
   Versione aggiornata di Left:
Left(T, x)
1 \quad x. right = y. left
2 \quad x.right.p = x
3 \quad y. \, left = x
4 \quad x.p = y
5 Transplant(T, x, y)
```

Versione aggiornata di Delete:

x. size = x. left. size + x. right. size + 1 // modifica 2

6 y.size = x.size # modifica 1

```
\begin{array}{l} \text{Delete}(T,z) \\ \qquad \# \text{ Identica a quella per gli RB-Trees} \\ \vdots \\ 1 \quad w = y.\, p \\ 2 \quad \textbf{while } w \neq \text{NIL} \\ 3 \qquad \qquad w.\, size = w.\, size - 1 \\ 4 \qquad \qquad w = w.\, p \end{array}
```

Versione aggiornata di RB-Delete:

```
RB-Delete(T, z)

1 Delete(T, z) \# O(\log n)

2 RB-Delete-Fixup(T, z) \# O(\log n)
```

6.3.2 Teorema dell'Aumento degli RB-Trees

Def. Sia x.field un campo che si calcola in tempo costante usando x, x.left, x.right (x.field = F(x, x.left, x.right)). Allora è possibile modificare RB-Insert e RB-Delete in modo che mantengano aggiornato il campo x.field con complessità asintotica $O(\log n)$.

6.3.3 Interval Trees

Gli Interval Trees sono alberi binari di ricerca con un campo x.int, che a sua volta presenta due campi:

```
o int.low, che è anche la chiave;
```

 \circ int.high.

E anche di un campo $x.max = \max$ estremo di intervallo per i nodi in T_x , ossia

$$x.max = max \begin{cases} x.left.max \\ x.right.max \\ x.int.high \end{cases}$$

L'idea è quella in cui ogni nodo rappresenti un intervallo.

Vogliamo implementare le seguenti procedure:

```
Insert(T,x)
Delete(T,x)
ISearch(T,i) con i = [low, high]:
```

- · x tale che $x.int \cap i \neq \emptyset$;
- · T.nil se un tale x non c'è.

Rotazioni Prendiamo il seguente albero di esempio.

Applico Left(T,x), ottenendo

Sistemo i massimi. Left costa ancora O(1)

- $\circ y.max = x.max$
- $\circ \ x.max = \max\{x.int.high, x.left.max, x.right.max\}$

Vediamo ISearch.

ISEARCH(x, i)

```
1 if (x = T.nil) or (x.int \cap i \neq \emptyset)

2 return x

3 else if (x.left \neq T.nil) and (x.left.max \geq i.low)

4 return ISEARCH(x.left,i)

5 else

6 return ISEARCH(x.right,i)
```

Correttezza

- $\circ\,$ Else if. Consideriamo in x.left un intervallo i'. Abbiamo 2 possibilità.
 - $(1) \ i \cap i' \neq \emptyset$
 - (2) $i \cap i' = \emptyset$, ovvero vale i.high < i'.low. Questo varrà per ogni nodo dei sotto-alberi, quindi è inutile ispezionare gli antenati di quel sotto-albero.
- $\circ \ \mathbf{Else}. \ \forall \ i' \ \mathrm{in} \ x.left \Rightarrow i' \cap i \neq \varnothing.$

Complessità $O(h) = O(\log n)$

Esercizio Vai a ??

7 Programmazione Dinamica

7.1 Critica al D&C

Il processo di soluzione non ha memoria, quindi le soluzioni di sottoistanze vanno ricalcolate.

Esempio Vediamo uno "spreco usando D&C: la sequenza di Fibonacci.

$$F(n) = \begin{cases} 1 & \text{se } n = 0, 1\\ F(n-1) + F(n-2) & \text{se } n \ge 2 \end{cases}$$

Rec-Fib(n)

- 1 **if** (n=0) **or** (n=1)
- 2 return 1
- 3 return Rec-Fib(n-1) + Rec-Fib(n-2)

Ad esempio, con n=5

Vengono ricalcolate F(3) e F(2).

Complessità

$$T(n) = \begin{cases} 0 & \text{se } n = 0, 1 & \text{(il "return" costa 0)} \\ T(n-1) + T(n-2) + 1 & \text{se } n \ge 2 & \text{(il "+" costa 1)} \end{cases}$$

$$T(n) \ge T(n-1) + T(n-2) + 1$$

$$\ge 2T(n-2) + 1$$

$$\ge 2(2T(n-2-2) + 1) + 1$$

$$= 2^2T(n-2-2) + 2 + 1$$

$$\ge 2^iT(n-2\cdot i) + \sum_{j=0}^{i-1} 2^j$$

$$i_0 \to i = \left\lfloor \frac{n}{2} \right\rfloor$$
 se n è pari:
$$2^{\frac{n}{2}}T(n-2\frac{n}{2}) = 2^{\frac{n}{2}}T(0)$$
 se n è dispari:
$$\left\lfloor \frac{n}{2} \right\rfloor = \frac{n-1}{2}$$

$$2^{\frac{n-1}{2}}T(n-2\frac{n-1}{2}) = 2^{\frac{n-1}{2}}T(1)$$

 $88~\mathrm{di}~108$

Otteniamo

$$T(n) \ge \sum_{j=0}^{\left\lfloor \frac{n}{2} \right\rfloor - 1} 2^j = \Theta(2^{\frac{n}{2}})$$

In verità,

$$T(n) = \Theta\left(\left(\frac{1+\sqrt{5}}{2}\right)^n\right)$$

Vediamo ora una versione iterativa:

```
IT-FIB(n)

1 if (n = 0) or (n = 1)

2 return 1

3 F[0] = 1

4 F[1] = 1

5 for i = 2 to n

6 F[i] = F[i-1] + F[i-2]

7 return F[n]
```

Complessità $\Theta(n)$

La programmazione dinamica salta la fase top-down.

7.2 Memoizzazione

È un ibrido tra il D&C e la programmazione dinamica che vuole mantenere la fase top-down pur cercando di ricordare le soluzioni ai sottoproblemi

Def Un algoritmo memoizzato è costituito da due subroutine distinte:

- 1) **routine di inizializzazione**: risolve direttamente i casi base e inizializza una struttura dati che contiene le soluzioni ai casi base e gli elementi per tutte le sottoistanze da calcolare, inizializzate ad un valore di default
- 2) routine ricorsiva: esegue il codice D&C preceduto da un test sulla struttura dati per verificare se la soluzione è già stata calcolata e memorizzata. Se sì, si ritorna, altrimenti la si calcola ricorsivamente e la si memorizza nella struttura.

Esempio Riprendiamo l'esempio di prima sulla sequenza di Fibonacci.

```
INIT-FIB(n)

1 if (n = 0) or (n = 1)

2 return 1

3 F[0] = 1

4 F[1] = 1

5 for i = 2 to n

6 F[i] = 0

7 return Rec-Fib(n)
```

Complessità $\Theta(n)$

```
Rec-Fib(i)

1 if F[i] = 0

2 F[i] = \text{Rec-Fib}(i-2) + \text{Rec-Fib}(i-1)

3 return F[i]
```

Ad esempio, con n=5

Questa volta, F(3) e F(2) non vengono ricalcolate. Abbiamo n foglie e n-1 nodi interni (n parte da 0).

7.3 Problemi di Ottimizzazione

I = insieme delle istanze

S =insieme delle soluzioni

$$\Pi \subseteq I \times S$$

 $\forall i \in I, \ S(i) = \{s \in S : (i, s) \in \Pi\} = \text{insieme delle soluzioni ammissibili}$ $c: S \to \mathbb{R} = \text{funzione di costo}$

Determinare, data $i \in I$, $s^* \in S(i) : c(s^*) = \min(/\max)\{c(s) : s \in S(i)\}$

Problema della raggiungibilità su un grafo orientato

$$\begin{split} I &= \{ \langle G = (V, E), \ u, \ v \rangle \ : \ V \subseteq \mathbb{N}, \ V \ \text{finito}, \ E \subseteq V \times V, \ u, v \in V \} \\ S &= \{ \langle v_1, v_2, \dots, v_k \rangle \ : \ k \geq 1, \ v_i \in \mathbb{N} \quad \forall \ 1 \leq i \leq k \} \cup \{ \varepsilon \} \qquad (\varepsilon = \text{cammino vuoto}) \\ \left(i = \langle G = (V, E), \ u, \ v \rangle, \ s \right) \in \Pi \iff \begin{cases} S = \varepsilon, \exists \ \text{un cammino tra} \ u \in v \ \text{in} \ G \\ S &= \langle v_1, v_2, \dots, v_k \rangle, \ v_1 = u, \ v_k = v, \\ (v_i, v_{i+1}) \in E \quad \forall \ 1 \leq i \leq k \end{cases} \\ c(\langle v_1, v_2, \dots, v_k \rangle) = k - 1 \\ c(\varepsilon) &= +\infty \end{split}$$

Caratteristiche Un problema di ottimizzazione, per essere risolto con la programmazione dinamica, deve avere le seguenti caratteristiche:

- o struttura ricorsiva;
- esistenza di sottoistanze ripetute;
- o spazio di sottoproblemi "piccolo".

Paradigma Generale

- 1. Caratterizza la struttura di una soluzione ottima s^* in funzione di soluzione ottime $s_1^*, s_2^*, \ldots, s_k^*$ di sottoistanze di taglia inferiore.
- 2. Determina una relazione di ricorrenza del tipo $c(s^*) = f(c(s_1^*), \dots, c(s_k^*))$.
- 3. Calcola $c(s^*)$ impostando il calcolo in maniera bottom-up (oppure memoizzando).
- 4. Mantiene informazioni strutturali aggiuntive che permettono di ricostruire s^* .

7.4 Problemi su Stringhe

Def Dato un alfabeto finito Σ , una **stringa**

$$X = \langle x_1, x_2, \dots, x_m \rangle, \quad x_i \in \Sigma \quad \forall \ 1 \le i \le m$$

è una concetazione finita di simboli in Σ .

m = |X| = lunghezza di X

 $\Sigma^*=$ insieme di tutte le stringhe di lunghezza finita costruibili su Σ $\varepsilon=$ stringa vuota

Data una stringa X, il **prefisso** di X è

$$X_i = \langle x_1, x_2, \dots, x_i \rangle, \quad 1 \le i \le m$$

Data una stringa X, il **suffisso** di X è

$$X^i = \langle x_i, x_{i+1}, \dots, x_m \rangle, \quad 1 \le i \le m$$

Per convenzione $X_0 = X^{m+1} = \varepsilon$

 $\mathbf{Def}\ \ \, \mathrm{Data}$ una stringa X,la **sottostringa** di X è

$$X_{i\dots j} = \langle x_i, x_{i+1}, \dots, x_j \rangle, \quad 1 \le i \le j \le m$$

Per convenzione $X_{i...j} = \varepsilon$ se i > j

possibili sottostringhe di una stringa con m caratteri:

$$\begin{pmatrix} m \\ 2 \end{pmatrix} + m + 1 = \frac{m(m+1)}{2} = \Theta(m^2)$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$i \neq j \qquad i = j \qquad \varepsilon$$

Lo spazio delle sottostringhe "non è troppo grande".

Def Data una stringa

$$X = \langle x_1, x_2, \dots, x_m \rangle \in \Sigma^*$$

е

$$Z = \langle z_1, z_2, \dots, z_k \rangle \in \Sigma^*$$

si dice che Z è sottosequenza di X se \exists una successione crescente di indici

$$1 \le i_1 \le i_2 \le \cdots \le i_k \le m : z_j = x_{ij} \quad \forall \ 1 \le j \le k$$

Esempio

$$\begin{split} X &= \langle a, b, c, b, b, d \rangle \\ Z_1 &= \langle a, b, c \rangle = X_{1...3} \\ Z_2 &= \langle a, c, b \rangle \qquad i_1 = 1, \quad i_2 = 3, \quad i_3 = 4 \text{ o 5} \\ Z_3 &= \langle b, b \rangle = X_{4...5} \qquad i_1 = 2, \quad i_2 = 5 \end{split}$$

#possibili sottosequenze di una stringa con m caratteri:

$$\sum_{k=0}^{m} \binom{m}{k} = 2^{m}$$

$$\uparrow$$
stringhe lunghe k
prese da un insieme
di m elementi

7.5 Longest Common Subsequence (LCS)

Date due stringhe X, Y determina Z tale che:

- 1) Z è sottosequenza di X e Y;
- 2) Z è la più lunga tra tutte le sottosequenze comuni.

Esempio

$$\begin{split} X &= \langle a,b,c,b,b,d \rangle \\ Y &= \langle a,d,c,c,b,d \rangle \\ Z &= \langle a,c,b,d \rangle \text{ è una LCS (in questo caso è l'unica)} \\ i_1 &= 1, \quad i_2 = 3, \quad i_3 = 4 \text{ o } 5, \quad i_4 = 6 \\ j_1 &= 1, \quad j_2 = 3 \text{ o } 4, \quad j_3 = 5, \quad j_4 = 6 \end{split}$$

Risolvo il problema:

$$|X| = m$$
$$|Y| = n$$

L'approccio "brute force" ha complessità $\Omega(2^m \cdot 2^n)$.

Devo cercare di individuare una proprietà di sottostruttura, cioè la LCS deve "nascondere" al suo interno LCS di qualche stringa più piccola di X e Y.

7.5.1 Proprietà di Sottostruttura Ottima

Dati i prefissi

$$X_i = \langle x_1, x_2, \dots, x_i \rangle$$

$$Y_i = \langle y_1, y_2, \dots, y_j \rangle$$
Sia $Z = \langle z_1, z_2, \dots, z_k \rangle = LCS(X_i, Y_j)$

- 0. caso base: o i=0 o j=0 $\Rightarrow Z=\varepsilon$
- 1. i, k > 0se $x_i = y_j$ allora
 - (a) $z_k = x_i (= y_j)$
 - (b) $Z_{k-1} = LCS(X_{i-1}, Y_{j-1})$
- 2. i, j > 0se $x_i \neq y_j$ allora Zè la stringa di lunghezza massima tra $LCS(X_i, Y_{j-1})$ e $LCS(X_{i-1}, Y_j)$

Dimostrazione

- 0. banale
- 1. $x_i = y_j$ $Z = LCS(X_i, Y_j) = \langle z_1, z_2, \dots, z_k \rangle = \langle x_{i_1}, x_{i_2}, \dots, x_{i_k} \rangle = \langle y_{j_1}, y_{j_2}, \dots, y_{j_k} \rangle$ $1 \le i_1 \le i_2 \le \dots \le i_k \le i, \qquad 1 \le j_1 \le j_2 \le \dots \le j_k \le j$
 - (a) Ragioniamo per assurdo

$$z_{k} = x_{i_{k}} = y_{j_{k}}$$

$$z_{k} \neq (x_{i} = y_{j})$$

$$\Rightarrow i_{k} < i, \quad j_{k} < j$$

$$Z' = \langle Z, x_{i} \rangle$$

$$1 \leq i_{1} \leq i_{2} \leq \dots \leq i_{k} \leq i_{k+1} = i, \qquad 1 \leq j_{1} \leq j_{2} \leq \dots \leq j_{k} \leq j_{k+1} = j$$

(b) Devo dimostrare che

$$Z_{k-1} = LCS(X_{i-1}, Y_{j-1})$$

$$Z_{k-1} = \langle x_{i_1}, x_{i_2}, \dots, x_{i_{k-1}} \rangle = \langle y_{j_1}, y_{j_2}, \dots, y_{j_{k,1}} \rangle$$

$$i_{k-1} \le i - 1 < i$$

$$Z_{k-1} = CS(X_{i-1}, Y_{j-1})$$

7.5 Longest Common Subsequence (LCS) 7 Programmazione Dinamica

Ora dimostro che

$$Z_{k-1} = LCS(X_{i-1}, Y_{j-1})$$

Suppongo per assurdo che

$$Z_{k-1} \neq LCS(X_{i-1}, Y_{j-1})$$

$$\Rightarrow \exists Z' \text{ con } |Z'| \geq k$$

$$\Rightarrow \text{creo } Z'' = \langle Z', x_i(=y_j) \rangle$$

$$\uparrow \qquad \uparrow$$

$$\geq k \quad 1 \Rightarrow \geq k+1$$

2. (come esercizio)

Il D&C "non funziona" perchè ci sono molti sottoproblemi ripetuti.

Esempio

$$X = \langle a, b, c, d, e \rangle$$
$$Y = \langle b, c, a, b, e \rangle$$

Trova LCS(X,Y)

Albero delle chiamate:

L'istanza (3,3) è ripetuta.

Complessità Strategia Ricorsiva (Modello di costo: confronto tra caratteri)

$$T(n,m) = \begin{cases} 0 & \text{se } n = 0 \text{ o } m = 0 \\ T(n-1,m) + T(n,m-1) + 1 & \text{se } n,m > 0 \end{cases}$$

Si dimostra che

$$T(n,m) = \Theta\left(\binom{m}{n}\right)$$
$$\binom{m}{2} \ge \binom{m}{2}^n$$

Caso m = 2n

$$\binom{m}{2}^n = 2^n$$

97 di 108

7.5.2 Ricorrenza sui Costi

La scrittura della ricorrenza sui costi è il secondo passo per costruire un algoritmo di programmazione dinamica.

Definisco

$$l(i,j) = |LCS(X_i, Y_j)|$$

$$l(i,j) = \begin{cases} 0 & \text{se } i = 0 \text{ o } j = 0 \\ l(i-1, j-1) + 1 & \text{se } i, j > 0 \text{ e } x_i = x_j \\ \max\{l(i, j-1), l(i-1, j)\} & \text{se } i, j > 0 \text{ e } x_i \neq x_j \end{cases}$$
(caso 1)

Alla fine ci interessa calcolare l(m, n).

Per calcolare l(i, j) mi possono servire tre valori:

$$L = \begin{bmatrix} (i-1, j-1) & (i-1, j) \\ & \nwarrow & \uparrow \\ (i, j-1) & \leftarrow & (i, j) \end{bmatrix}$$

Scansione "row-major": riempio la tabella per righe, da sinistra a destra.

Informazione addizionale per costruire la sequenza (vera e propria):

$$b(i,j) = \begin{cases} ' \nwarrow ' & \text{se } x_i = y_j \\ ' \leftarrow ' & \text{se } x_i \neq x_j \text{ e } max = LCS(i,j-1) \\ ' \uparrow ' & \text{se } x_i \neq y_j \text{ e } max = LCS(i-1,j) \end{cases}$$

Pseudocodice

```
LCS(X,Y)
 1 m = X.[length]
 2
    n = Y.length
    for i = 0 to m
 3
 4
          L[i,0] = 0
 5
    for j = 0 to n
 6
          L[0,j] = 0
 7
    for i = 1 to m
 8
          for j = 1 to n
 9
               if x_i = y_j
                     L[i,j] = L[i-1,j-1] + 1
B[i,j] = ' \nwarrow '
10
11
               else if L[i-1, j] \ge L[i, j-1]
12
13
                     L[i,j] = L[i-1,j]
                     B[i,j] = ' \uparrow '
14
15
               else
                     L[i,j] = L[i,j-1]
16
                     B[i,j] = ' \leftarrow '
17
18
    return (L[m,n],B)
```

Complessità

```
T(m,n) = \Theta(m \cdot n)
Caso m = n \Rightarrow T(m,n) = \Theta(n^2)
```

Procedura per stampare la LCS:

```
PRINT-LCS(B, X, i, j)
   if i = 0 or j = 0
1
2
         return \varepsilon
3
   if B[i,j] = ' \nwarrow '
4
         PRINT-LCS(B, X, i - 1, j - 1)
5
         PRINT(x_i)
6
   else if B[i,j] = ' \leftarrow '
         PRINT-LCS(B, X, i, j - 1)
7
8
   else \#B[i,j] = ' \uparrow '
         PRINT-LCS(B, X, i - 1, j)
9
```

Complessità $\Theta(m) = \Theta(|LCS|)$

Esercizio

$$X = \langle b, d, c, d \rangle$$
$$Y = \langle a, b, c, b, d \rangle$$

Restituisci LCS(X,Y) e |LCS(X,Y)|

$$LCS(X,Y) = \langle b, c, d \rangle$$
 $|LCS(X,Y)| = 3$

Pseudocodice Memoizzato

```
INIT-LCS(X, Y)
 1 m = X.length
   n = Y.length
 3
   if (m = 0) or (n = 0)
 4
         return 0
   for i = 0 to m
 5
 6
         L[i,0] = 0
 7
    for j = 0 to n
 8
         L[0,j] = 0
 9
    for i = 1 to m
         for i = 1 to n
10
11
              L[i, j] = -1
    return R-LCS(X, Y, m, n)
R\text{-LCS}(X, Y, i, j)
   if L[i, j] = -1
1
2
        if x_i = y_i
3
             L[i, j] = \text{R-LCS}(X, Y, i - 1, j - 1)
4
        else if R\text{-LCS}(X, Y, i-1, j) \ge R\text{-LCS}(X, Y, i, j-1)
5
             L[i,j] = L[i-1,j]
6
        else
7
             L[i,j] = L[i,j-1]
  return L[i,j]
```

Complessità $O(m \cdot n)$

Osservazione Se $x_i = y_j$ sempre, invoco R-LCS(X,Y,i-1,j-1) ma non invoco mai R-LCS(X,Y,i-1,j) o R-LCS(X,Y,i,j-1).

Ad esempio

$$X = \langle a, a, b, b, c \rangle$$
$$Y = \langle b, b, c \rangle$$

Albero delle chiamate:

$$(5,3)$$

$$\begin{vmatrix} c = c \\ (4,2) \\ b = b \\ (3,1) \\ b = b \\ (2,0) \end{vmatrix}$$

In generale, se Y è suffisso di $n \leq m$ caratteri di X, la complessità di R-LCS nel caso migliore è:

$$T_{R-LCS}(m,n) = n$$

Inoltre,

$$\Omega_{LCS}(m+n) \cong \Omega(n)$$
 $O_{LCS,R-LCS}(m \cdot n) \cong O(n^2)$

Spazio

$$S_{LCS}(m,n) = \Theta(m,n)$$

Tuttavia, posso migliorarlo a

$$\Theta(2n) = \Theta(n)$$

poichè mi bastano due righe della tabella in memoria ad ogni istante, quindi due vettori lunghi n.

Inoltre, se $m \ll n$, posso fare un'ulteriore ottimizzazione utilizzando la tecnica "column-major", cioè scansione per colonne, con due vettori lunghi m.

7.6 Longest Increasing Subsequence (LIS)

Def Dato un alfabeto Σ totalmente ordinato ($\forall a, b \in \Sigma \ a < b \text{ o } a = b \text{ o } a > b$) e dato $X = \langle x_1, x_2, \dots, x_n \rangle$, si dice che $Z = \langle z_1, z_2, \dots, z_k \rangle$ è sottosequenza crescente di X (Z = IS(X)).

Problema di ottimizzazione Determinare la più lunga sottosequenza crescente di X (Z=LIS(X))

Esempio

$$X = \langle 5, 2, 4, 3, 7, 8 \rangle$$

$$Z = LIS(X) = \langle 2, 3, 7, 8 \rangle$$

$$Z' = LIS(X) = \langle 2, 4, 7, 8 \rangle$$

Tentativo Data X, calcolo $LIS(X_i) \ \forall \ 0 \le i \le n$

$$Z = \langle z_1, z_2, \dots, z_k \rangle = LIS(X_i)$$

- \circ caso fortunato: $z_k < X_{i+1}$
- \circ caso sfortunato: $z_k \geq X_{i+1}$

Def $Z = \overline{LIS}(X_i)$ è la più lunga tra le $IS(X_i)$ con $Z = \langle z_1, z_2, \dots, z_k \rangle = \langle x_{i_1}, x_{i_2}, \dots, x_{i_k} \rangle$ con $i_k = i$.

Esempio

$$X = \langle 8, 2, 5, 1, 3 \rangle$$

$$LIS(X_4) = \langle 2, 5 \rangle$$

$$\overline{LIS}(X_4) = \langle 1 \rangle$$

In generale, LIS e \overline{LIS} sono problemi molto diversi.

Osservazione
$$|LIS(X)| = \max_{1 \le i \le n} \{ |\overline{LIS}(X_i)| \}$$

Dimostrazione

$$|LIS(X)| \leq \max_{1 \leq i \leq n} \{ |\overline{LIS}(X_i)| \}$$

$$Z = LIS(X) = \langle x_{i_1}, x_{i_2}, \dots, x_{i_k} \rangle$$

$$Z = \overline{LIS}(X_{i_k})$$

$$\Rightarrow |Z| \leq \max_{1 \leq i \leq n} \{ |\overline{LIS}(X_i)| \}$$

$$\circ |LIS(X)| \ge \max_{1 \le i \le n} \{ |\overline{LIS}(X_i)| \}$$

Si dimostra analogamente al punto precedente.

7.6.1 Proprietà di Sottostruttura Ottima

- 1. caso base: $\overline{LIS}(X_1) = \langle x_1 \rangle \ (= LIS(X_1))$
- 2. i > 1

(a)
$$\forall j : 1 \le j \le i \quad x_j \ge x_i$$

 $\overline{LIS}(X_i) = \langle x_i \rangle \ (= LIS(X_i))$

(b)
$$\exists \overline{j} : 1 \leq n\overline{j} \leq i, \quad x_{\overline{j}} < x_i$$

$$\left| \overline{LIS}(X_i) \right| \geq 2$$

$$\overline{LIS}(X_i) = \langle z_1, z_2, \dots, z_k \rangle = \langle Z_{k-1}, x_i \rangle \text{ con } Z_{k-1} : |Z_{k-1}| = \max_{1 \leq j < i} \{ \overline{LIS}(X_j) : x_j < x_i \}$$

Dimostrazione

- 1. banale
- 2. i > 1

(a)
$$\forall j < i \quad x_j < x_i$$

$$\langle x_i \rangle = IS(X_i)$$
 e chiaramente non può essere $|Z| > 1$

Suppongo per assurdo che

$$|Z| = |\overline{LIS}(X_i)| > 1$$

$$\Rightarrow Z = \langle z_1, z_2, \dots, z_k \rangle, \quad k > 1$$

$$Z = \langle x_{i_1}, x_{i_2}, \dots, x_{i_k} \rangle$$

$$i_k = i$$

$$\Rightarrow i_{k-1} < i_k = i$$

Assurdo perchè allora avrei

$$x_{i_{k-1}} \ge x_{i_k}$$

che contraddice l'ipotesi che Z è una sequenza crescente!

(b) Si dimostra analogamente al sottocaso precedente.

7.6.2 Ricorrenza sui Costi

Definisco

$$l(i) = |\overline{LIS}(X_i)|$$

$$l(i) = \begin{cases} 1 & \text{se } i = 1\\ 1 + \max_{1 \le j < i} \{l(j) : x_j < x_i\} & \text{se } i > 1 \end{cases}$$

Per costruire la sottosequenza

$$\overline{LIS}(X_i) = \begin{cases} \langle x_i \rangle & (1) \\ \langle \overline{LIS}(X_{\overline{j}}), x_i \rangle & \text{con } 1 \leq \overline{j} < i \end{cases}$$

l'informazione addizionale è:

(mantiene l'indice dell'ultimo carattere della LIS)

Pseudocodice bottom-up

```
LIS(X)
 1 L[1] = 1
    len = 1
 3
    end = 1
    prev[1] = 0
 4
    for i = 2 to n
 6
         L[i] = 1
 7
         prev[i] = 0
 8
         for j = 1 to i - 1
 9
              if x_j < x_i
10
                   if L[i] < 1 + L[j]
                         L[i] = 1 + L[j]
11
                         prev[i] = j
12
13
         if len < L[i]
14
              len = L[i]
15
              end = i
    return (len, prev, lenend)
```

7.6 Longest Increasing Subsequence (LIS) 7 Programmazione Dinamica

 $\begin{aligned} & \text{R-Print}(X, prev, i) \\ & 1 \quad \text{if} \ prev[i] \neq 0 \\ & 2 \quad & \text{R-Print}(X, prev, prev[i]) \\ & 3 \quad & \text{Print}(x_i) \end{aligned}$

Complessità
$$\sum_{i=2}^{n} \sum_{j=1}^{i-1} 1 = \sum_{i=2}^{n} (i-1) = \frac{n(n-1)}{2} = \Theta(n^2)$$

7.7 Completamento a Palindromo (CP)

Def Una stringa $Z = \langle z_1, z_2, \dots, z_m \rangle$ è **palindroma** se $z_{1+h} = z_{m-h} \quad \forall \ 0 \le h \le m-1$.

Problema Data $X = \langle x_1, x_2, \dots, x_n \rangle$, un **complemento palindromo** di X è una stringa $Z = CP(X) = \langle z_1, z_2, \dots, z_m \rangle$ con $m \geq n$ tale che:

- 1) Z è palindroma;
- 2) X è sottosequenza di Z

(cioè, Z è un palindromo che contiene X come sottosequenza).

Esempio

$$X = \langle a, c, b \rangle$$

$$Z = \langle a, c, b, b, c, a \rangle$$

$$Z' = \langle a, b, c, c, b, a \rangle$$

Osservazione $|X| = n \le |Z| \le 2n = 2|X|$

Problema di ottimizzazione Determinare Z = CP(X) di lunghezza minima

Spazio dei sottoproblemi: $X_{i...j}$ (cioè lo spazio delle sottostringhe di X). Determinare un algoritmo bottom-up quadratico nella lunghezza di X.

 $\forall i, j : 1 \leq i \leq j \leq n$, determinare il minimo $Z = CP(X_{i...j})$.

7.7.1 Proprietà di Sottostruttura Ottima

Casi base:

1.
$$i = j$$
 (1 carattere)

$$X = \langle x_i \rangle$$

$$CP(X_{i...j}) = X_{i...j}$$

$$|CP(X_{i...j})| = |X_{i...j}|$$

2.
$$j = i + 1$$
 (2 caratteri)

$$X_{i\dots j} = \langle x_i, x_{i+1} \rangle$$

(a)
$$x_i = X_{i+1}$$

 $CP(X_{i...i+1}) = X_{i...i+1}$
 $|CP(X_{i...i+1})| = 2$

(b)
$$x_i \neq x_{i+1}$$

Un possibile $CP(X_{i...i+1}) \ \ \ \ \langle x_i, x_{i+1}, x_i \rangle$
 $|CP(X_{i...i+1})| = 3$

Caso generale:

$$X_{i...j} = \langle x_i, x_{i+1}, ..., x_j \rangle$$
(a) $x_i = x_j$

$$Z = CP(X_{i...j})$$

$$z_1 = z_k = x_i \ (= x_j)$$

$$Z_{2...k-1} = CP(X_{i+1...j-1})$$

(b) $x_i \neq x_j$ Ci sono due possibili soluzioni: i. $z_1 = z_k = x_i$ e $Z_{2\dots k-1} = CP(X_{i+1\dots j})$ ii. $z_1 = z_k = x_j$ e $Z_{2\dots k-1} = CP(X_{i\dots i-1})$

Dimostrazione

(b).i. Suppongo per assurdo che

$$z_1=z_k\neq x_i$$
 $\Rightarrow X_{i...j}$ è sottosequenza di $Z_{2...k-1}$ che è palindroma e più corta di 2 rispetto a Z Assurdo perchè Z è la più corta!

(b).ii. Si dimostra analogamente al sottocaso precedente.

7.7.2 Ricorrenza sulle Lunghezze

Definisco

$$l(i,j) = |CP(X_{i...j})|$$

$$l(i,j) = \begin{cases} 1 & \text{se } i = j \\ 2 & \text{se } j = i+1 \text{ e } x_i = x_j \\ 3 & \text{se } j = i+1 \text{ e } x_i \neq x_j \\ 2 + l(i+1,j-1) & \text{se } j > i+1 \text{ e } x_i \neq x_j \\ 2 + \min\{l(i+1,j), l(i,j-1)\} & \text{se } j > i+1 \text{ e } x_i \neq x_j \end{cases}$$

Per calcolare l(i, j) mi possono servire tre valori:

$$L = \left[\begin{array}{c} (i, j-1) \leftarrow (i, j) \\ \swarrow \downarrow \\ (i+1, j-1) \quad (i+1, j) \end{array} \right]$$

Riempio la tabella per diagionali, dall'alto verso il basso e da sinistra verso destra.

```
SPC(X)
    n = X.length
    for i = 1 to n - 1
          L[i,j] = 1
          if x_i = x_{i+1}
               L[i, i+1] = 2
 5
 6
          else
               L[i, i+1] = 3
 7
    L[n,n] = 1
    for l=3 to n // scansione diagonale con l indice della diagionale
10
          for i = 1 to n - l + 1
11
               j = i + l - 1
               if x_i = x_j

L[i, j] = 2 + L[i + 1, j - 1]
12
13
14
                    L[i,j] = 2 + \min\{L[i+1,j], L[i,j-1]\}
15
    \mathbf{return}\ L[1,n]
```

Complessità

$$\sum_{i=1}^{n-1} 1 + \sum_{l=3}^{n} \sum_{i=1}^{n-l+1} 1 = \sum_{i=1}^{n-1} 1 + \sum_{l=3}^{n} (n-l+1) = \sum_{i=1}^{n-1} 1 + \sum_{i=2}^{n-1} (n-i) = \sum_{i=1}^{n-1} (n-i) = \sum_{i=1}^{n-1} j = \frac{n(n-1)}{2} = \Theta(n^2)$$