

Formale Grundlagen der Informatik

Reguläre Ausdrücke und Sprachen ε -NEA

Reguläre Ausdrücke in der Praxis

Suchmuster

- in Texteditoren und anderen Tools (z.B. in UNIX: grep)
- Suche nach allen Zeichenketten, die auf einen regulären Ausdruck passen
- Beispiele: FGI.* oder FGI + GdP

Tokenisierung

- von Interpretern, Compilern, bei der Analyse von Sprache benötigt
- Tokenisierung: Umwandlung von Character-Folgen in zugehörige Token
- Beispiele: Schlüsselwörter, Identifier, ...

```
while oder ('_'+[A-Z]+[a-z])('_'+[0-9]+[a-z]+[A-Z])^*
```


Reguläre Ausdrücke – Definition

Definition: Sei Σ ein Alphabet.

Reguläre Ausdrücke über Σ sind rekursiv wie folgt definiert:

- 1. \emptyset , ε , a sind reguläre Ausdrücke für alle $a \in \Sigma$
- 2. Wenn r und s reguläre Ausdrücke über Σ sind, dann auch (r+s), (rs) und r^*

```
Beispiele für \Sigma = \{0,1\}

0 1 (0+1) * (0+1) * (1 (0+1))

(0+1) * (1 (0+1))
```


Verzicht auf überflüssige Klammern

- 0+1 statt (0+1) und 10 statt (10)
- Legen Prioritäten fest: r^* vor (rs) vor (r+s)
- \rightarrow (0+1) * ist verschieden von 0+1*

Reguläre Ausdrücke - Interpretation

Jeder reguläre Ausdruck definiert eine formale Sprache: die Menge aller Wörter, die "auf den Ausdruck passen".

Intuitiv:

$$(r+s)$$
 steht für Vereinigung von Mengen matchender Wörter steht für Konkatenation der matchenden Wörter steht für beliebige häufige Wiederholung matchender Wörter

 Eigentlich werden Operationen auf die zugehörigen formalen Sprachen angewendet

Operationen auf Sprachen

- Seien L, L_1 und L_2 formale Sprachen.
- Dann sind $L_1 \cup L_2$, $L_1 \cap L_2$, $L_1 \setminus L_2$, \overline{L} ebenfalls formale Sprachen.
- Konkatenation:

$$L_1 \cdot L_2 = \{ uv \mid u \in L_1, v \in L_2 \}$$

- Beispiel: $\{a, aaa\} \cdot \{aa, b\} = \{aaa, aaaaa, ab, aaab\}$ = $\{a^3, a^5, ab, a^3b\}$
- $\succ L_1 \cdot L_2 \neq L_2 \cdot L_1$ (nicht kommutativ)

Operationen auf Sprachen

Potenzen

$$L^0 = \{ \mathcal{E} \}$$
 $L^n = L^{n-1} \cdot L$ für alle $n \geq 1$

- $\succ L^1 = L^0 \cdot L = \{\varepsilon\} \cdot L = L$
- Beispiel: $\{aa,b\}^2 = \{aaaa,aab,baa,bb\} = \{a^4,a^2b,ba^2,b^2\}$

$$\{aa,b\}^3 = \{aa,b\}^2 \cdot \{aa,b\}$$

$$= \{a^6,a^2ba^2,ba^4,b^2a^2,a^4b,a^2b^2,ba^2b,b^3\}$$

■ Kleene-Hülle

$$L^* = \bigcup_{i \geq 0} L^i$$

- positive Kleene-Hülle

$$L^+ = \bigcup_{i>0} L^i$$

- $\triangleright L^* = L^+ \cup \{\varepsilon\}$
- $ightharpoonup L^+ = L^* \setminus \{\varepsilon\}$ gilt <u>nur</u>, falls $\varepsilon \notin L$
- \triangleright definiert exakt Σ^* und Σ^+ für Alphabete Σ

Reguläre Ausdrücke – Interpretation formal

- **Definition:** Sei Σ ein Alphabet. Die **formalen Sprachen regulärer Ausdrücke** über Σ sind rekursiv wie folgt definiert:
- 1. $L(\emptyset) = \emptyset$, $L(\varepsilon) = \{\varepsilon\}$, $L(a) = \{a\}$ (für alle $a \in \Sigma$)
- 2. Sind r und s reguläre Ausdrücke über Σ , dann gilt

$$L(\mathbf{r} + \mathbf{s}) = L(r) \cup L(s)$$
$$L(\mathbf{r}\mathbf{s}) = L(r) \cdot L(s)$$
$$L(\mathbf{r}^*) = L(r)^*$$

Sprache eines regulären Ausdrucks (Bsp.)

$$r = (0+1)^* (1 (1+0))$$
 $L(0) = \{0\}, L(1) = \{1\} \rightarrow L(0+1) = \{0,1\}$
 $L((0+1)^*) = \{0,1\}^*$
 $L(1(0+1)) = \{1\} \cdot \{0,1\} = \{10,11\}$

 $= \{ w1x \mid w \in \{0,1\}^*, x \in \{0,1\} \}$

 $L(r) = \{0,1\}^* \cdot \{10,11\}$

Joiversita,

Recab: Reguläre Ausdrücke in der Praxis

- Suchmuster, Tokenisierung
 - \triangleright Erkennen von Zeichenketten, die auf einen Ausdruck r passen
 - \triangleright Erkennen von Zeichenketten aus L(r)
- Idee: Konstruktion eines DEA A_r aus r mit $L(A_r) = L(r)$
- Herausforderung: Teilausdrücke t mit *

benötigen z.B. nichtdeterministische Entscheidung, ob A_t durchlaufen oder umgangen wird

$$p \in \delta(q, \varepsilon)$$

entspricht "spontanem Zustandswechsel" von q nach p

Definition:

Ein nichtdeterministischer endlicher Automat mit ε -Übergängen (ε -NEA) ist ein NEA $A=(Q,\Sigma,\delta,q_0,F)$, dessen Überführungsfunktion zu $\delta: (Q\times(\Sigma\cup\{\varepsilon\}))\to \mathbf{2}^Q$ erweitert ist.

- $\hat{\delta}(q, \varepsilon)$ kann andere Zustände als q enthalten
 - \triangleright Welche Zustände sind von einem Zustand (nur) mit Hilfe von ε -Übergängen erreichbar?!
 - \triangleright ε -Hülle eines Zustands

ε -Hülle

• Sei $A=(Q,\Sigma,\delta,q_0,F)$ ein ε -NEA und $q\in Q$. Die ε -Hülle von q ist die Menge aller Zustände p, für die es Zustände r_0,r_1,\ldots,r_k gibt, $k\geq 0$, so dass

- 1. $r_0 = q$,
- 2. $r_k = p$,
- 3. $r_{i+1} \in \delta(r_i, \varepsilon)$ für alle $i, 0 \le i < k$.
- Sie wird mit $\varepsilon H(q)$ bezeichnet.
- Wegen der Option k=0 gilt für jeden Zustand q, dass $q \in \varepsilon H(q)$.

$$\varepsilon \mathsf{H}(q_0) = \{q_0, q_1, q_2\}$$

$$\varepsilon \mathsf{H}(q_1) = \{q_1, q_2\}$$

$$\varepsilon \mathsf{H}(q_2) = \{q_2\}$$

$$\delta(q_0, 0) = \{q_0\}$$

$$\delta(q_0, 1) = \emptyset$$

$$\delta(q_0, \varepsilon) = \{q_1\}$$

$$\delta(q_1, 0) = \emptyset$$

$$\delta(q_1, 1) = \{q_1\}$$

$$\delta(q_1, \varepsilon) = \{q_2\}$$

$$\delta(q_2, 0) = \{q_2\}$$

$$\delta(q_2, 1) = \emptyset$$

$$\delta(q_2, \varepsilon) = \emptyset$$

ε -NEA – Erweiterte Überführungsfunktion

- Sei $A=(Q,\Sigma,\delta,q_0,F)$ ein ε -NEA und $q\in Q,w\in \Sigma^*,a\in \Sigma$.
- 1. $\hat{\delta}(q, \varepsilon) = \varepsilon H(q)$
- 2. $\hat{\delta}(q, wa) = ?$

ε -NEA – Erweiterte Überführungsfunktion

- Sei $A=(Q,\Sigma,\delta,q_0,F)$ ein ε -NEA und $q\in Q,w\in \Sigma^*,a\in \Sigma$.
- 1. $\hat{\delta}(q, \varepsilon) = \varepsilon H(q)$
- 2. $\hat{\delta}(q, wa) = \bigcup_{r \in \hat{\delta}(q, w)} \bigcup_{p \in \delta(r, a)} \varepsilon H(p)$

$$\varepsilon H(q_0) = \{q_0, q_1, q_2\}$$
 $\varepsilon H(q_1) = \{q_1, q_2\}$
 $\varepsilon H(q_2) = \{q_2\}$

$$\hat{\delta}(q_0, \varepsilon) = \{q_0, q_1, \mathbf{q_2}\}$$

$$\begin{split} \hat{\delta}(q_0,0) \colon & \text{ben\"otigen } \delta(q_0,0) = \{\mathbf{q}_0\}, \, \delta(q_1,0) = \emptyset, \, \delta(q_2,0) = \{q_2\} \\ \hat{\delta}(q_0,0) &= \varepsilon \mathsf{H}(q_0) \cup \emptyset \cup \varepsilon \mathsf{H}(q_2) \\ &= \{q_0,q_1,q_2\} \end{split}$$

$$\begin{split} \hat{\delta}(q_0,01)\text{: ben\"otigen }\delta(q_0,1) &= \emptyset,\, \delta(q_1,1) = \{q_1\},\, \delta(q_2,1) = \emptyset\\ \hat{\delta}(q_0,01) &= \varepsilon \mathsf{H}(q_1) = \{q_1, \textcolor{red}{q_2}\} \end{split}$$

Sei $A=(Q,\Sigma,\delta,q_0,F)$ ein ε -NEA. Die von A akzeptierte Sprache ist die Menge $L(A)=\{w\in\Sigma^*\mid \hat{\delta}(q_0,w)\cap F\neq\emptyset\}$.

$$L(A) = L(0^*1^*0^*)$$

$$L(A) = \{0^k1^m0^n \mid k, m, n \ge 0\}$$

- lacktriangle Gegeben sei ein regulärer Ausdruck r über Σ .
- Konstruieren der rekursiven Definition folgend einen ε -NEA A mit L(A) = L(r), der genau einen akzeptierenden Zustand hat:

Vom regulären Ausdruck zum ε -NEA

• Falls r = (s + t):

Durch
Umbenennung
von Zuständen
erreicht man,
dass die
Zustandsmengen
der Automaten
für s und t
disjunkt sind.

Vom regulären Ausdruck zum ε -NEA

• Falls r = (st):

Durch
Umbenennung
von Zuständen
erreicht man,
dass die
Zustandsmengen
der Automaten
für s und t
disjunkt sind.

Vom regulären Ausdruck zum arepsilon-NEA

• Falls $r = s^*$:

Vom regulären Ausdruck zum ε -NEA

Satz 3.1: Zu jedem regulären Ausdruck r kann ein ε -NEA A konstruiert werden, so dass L(A) = L(r) gilt.

Beweis: Induktion über den strukturellen Aufbau des regulären Ausdrucks entsprechend der Konstruktion

- bisher: regulärer Ausdruck \longrightarrow ε -NEA
- nächste Vorlesung:
- 1. ε -NEA \longrightarrow NEA
 - → DEA
- 2. DEA → regulärer Ausdruck
- > Alle vier Mechanismen definieren die gleiche Sprachfamilie!