Data Mining and Machine Learning

Assignment Project Exam Help

https://eduassistpro.github.io/

Vector Re Add WeChat edu_assist pouments

Peter Jančovič

Objectives

To explain vector representation of documents

Assignment Project Exam Help
 een vector

representatiohttps://eduassistpro.github.io/

Add WeChat edu_assist_pro

Vector Notation for Documents

Suppose that we have a set of documents

$$D = \{d_1, d_2, \dots, d_N\}$$
Assignment Project Exam Help think of this

- Suppose that https://eduassistpro.github.igs in the whole corpusated weekledu_assist_pro
- Now suppose a document d in D contains M different terms: $\{t_{i(1)}, t_{i(2)}, \dots, t_{i(M)}\}$
- Finally, suppose term $t_{i(\mathbf{m})}$ occurs $f_{i(\mathbf{m})}$ times

Vector Notation

The vector representation vec(d) of d is the V dimensional vector: Assignment Project Exam Help

Notice that this is the <u>weighting</u> – i.e. the <u>term</u> <u>frequency</u> times the <u>inverse document frequency</u> $w_{i(1),d} = f_{i(1),d} \times IDF(i(1))$ from text IR

Uniqueness

- Is the mapping between documents and vectors oneto-one?
- In other Words:
 Assignment Project Exam Help
 - $-\operatorname{if} d_1, d_2$ https://eduassistpro.giththatio/ $\operatorname{vec}(d_1) = \operatorname{vec}(d_1)$ if and edu_assist_pro
- If λ is a scalar and $vec(d_1)$ 2 what does this tell you about d_1 and d_2 ?

Example

- d_1 = the cat sat on the cat's mat \rightarrow cat sat cat mat
- d_2 = the dog chased the cat \rightarrow dog chase cat Assignment Project Exam Help
- d_3 = the mo mouse stay home
- Vocabulary: https://eduassistpro.github.io/
 - cat, chase, das dhowe Chatt edu_assistapro
- To calculate the vector representations of these documents first calculate the TF-IDF weights

Example (continued)

	d1	d2	d3	Nd	IDF	w(t,d1)	w(t,d2)	w(t,d3)
cat	2	1		2	0.41	0.81	0.41	
chase	As	sig	nm	ent	Proj	ect Exa	m H elp	
dog				11			1.1	. ,
home		h	ttps	:://e	dua	ssistpro	o.github	1.1
mat	1	A	dd	Wε	Gha	t edu_a	assist_p	oro
mouse			1	1	1.1			1.1
sat	1			1	1.1	1.1		
stay			1	1	1.1			1.1

Example (continued)

$$vec(d_1) = \begin{bmatrix} 0.81 \\ Assignment Project Exam Help \\ 0 \\ 1.1 \\ 0 \\ 1.1 \\ 0 \end{bmatrix} \text{ https://eduassistpro.github.lb/} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1.1 \\ 0 \\ 1.1 \\ 0 \\ 1.1 \end{bmatrix}$$

Document length revisited

Recall that the length of a vector

is given by: https://eduassistpro.github.io/

$$||x|| = \sqrt{\frac{A_1 dd_2 \text{ WeChat edu_assist_pro}}{x_1^2 + x_2^2 + \dots + x_N}}$$

Document length

• In the case of a 'document vector'

$$vec(d) = (OAssOgnamentOP.rojOctvP.xatO.Help w_{i(M)d}, 0..., 0)$$

$$\|vec(d)\| = \sqrt{\frac{2}{\text{Add}}} \text{weduassistpro.github.io} / \|vec(d)\| = \sqrt{\frac{2}{\text{Add}}} \text{weduassistpro.github.io} = \|d\|$$

Document Similarity

- Suppose d is a document and q is a query
 - If d and q contain the same words in the same proportions, then vec(d) and vec(q) will point in the same direction
 - If d and q c https://eduassistpro.githueb(it)/and vec(q)
 will point in different direct
 Add WeChat edu_assist_pro
 - Intuitively, the greater the angle between vec(d) and vec(q) the less similar the document d is with the query q

Cosine similarity

Define the Cosine Similarity between document d and query q by:

 $CSim(q,d) = \cos\theta$ Project Exam Help

where θ is t https://eduassistpro.githublioec(d)

• Similarly, defined M • Colsined u_assisty pretween documents d_1 and d_2 by:

$$CSim(d_1,d_2) = \cos\theta$$

where θ is the <u>angle</u> between $vec(d_1)$ and $vec(d_2)$

Cosine Similarity & Similarity

• Let $u=(x_1,y_1)$ and $v=(x_2,y_2)$ be vectors in 2 dimensions, then

• In fact, this result holds for vectors in any *N* dimensional space

Cosine Similarity & Similarity

• Hence, if q is a query, d is a document, and θ is the angle between vec(q) and vec(d), then:

Assignment Project Exam Help

Cosine similarity

https://eduassistpro.github.io/

$$CSim(q,d) = \cos(\theta) = \frac{\text{Add WeChat_qedu_c(assist_pro})}{\|q\|\|d\|} \frac{d}{\|q\|}$$

$$= Sim(q,d)$$
Similarity

Summary

Vector space representation of documents

 Assignment Project Exam Help
 Cosine dista resentations of documents https://eduassistpro.github.io/

Add WeChat edu_assist_pro