Lecture 7: Regression Part 2

Leap into the 21st century

ADDO AI

2018

Instructor: Dr. Syed Waqar ul Qounain Jaffry Assistant Professor PUCIT

Theory of Generalization

Agenda

- Prerequisite Self Check
- Generalization
- Recap of Overfitting
- Bias-Variance Decomposition
- Expectation
- Expectation Math
- Polynomial Curve fitting
- Expectation and Bias Variance Decomposition

- Variance, Bias, Noise
- Guess the best model?
- Bias-Variance tradeoff
- K-cross validation
- Data Splitting
- Hyperparameters Tuning
- Coefficient of Determination R^2
- Jupyter Notebook

Generalization

- Refers to model's ability to handle unseen data
- To best describe the unseen data
- In other words, model should not "Overfit"
- Overfitting can be expressed using another concept
 - Bias-variance tradeoff

Recap

- True function $y = f(x) + \epsilon$
- Our approximate function: $\hat{y} = \hat{w}_0 + \hat{w}_1 \cdot x$
- Error at data-tuple $(x_i, y_i) : e_i = actual predicted = y_i \hat{y}_i$
- Goal: $argmin_{w_0,w_1} \sum_{i=1}^n e_i^2 = argmin_{w_0,w_1} \sum_{i=1}^n (y_i \hat{y}_i)^2$

Recap

- Again, taking example from last lecture
- M refers to the no. of polynomial degree
- x-axis represents input/independent variables
- y-axis represents dependent/output variable
- The problem presented in the figure is called polynomial curve fitting

- So far, we've discussed linear regression
- If we are to model a non-linear relationship using regression
 - Kernel Trick
- Lets assume that underlying function is of sin i.e. $y = Sin(2\pi x) + \epsilon$
- ϵ is noise, so assume, noise follows normal distribution with zeromean and some standard deviation σ .

X	2πχ	Sin(2πx)	ϵ	у	
0	0	0	0.16	0.16	
0.1	0.63	0.59	0.11	0.7	
0.2	1.26	0.95	-0.06	0.89	
0.3	1.88	0.95	-0.11	0.84	
0.4	2. 51	0.59	-0.08	0.51	
0.5	3.14	0	-0.14	-0.14	
0.6	3.77	-0.59	0.04	-0.55	
0.7	4.4	-0.95	0.17	-0.78	
8.0	5.03	-0.95	-0.04	-0.99	
0.9	5.65	-0.59	0.04	-0.55	
1	6.28	0	0.12	0.12	

Regression function learnt so far:

```
\hat{y} = \hat{w}_0 + \hat{w}_1.x (Simple linear regression)

\hat{y} = \hat{w}_0 + \hat{w}_1.x + \hat{w}_2.x_2 + ... + \hat{w}_M.x_M (Multiple linear regression)
```

- In case of multiple linear regression, we have m-dimensional input data i.e. input features are M in total
- In current case of polynomial curve fitting:
 - Input is 1-Dimensional
 - Transform into Polynomial

Lets transform our function:

$$\hat{y} = \hat{w}_0 + \hat{w}_1 \cdot x + \hat{w}_2 \cdot x^2 + \hat{w}_3 \cdot x^3 + ... + \hat{w}_M \cdot x^M$$

- Here, we are using only x but has transformed existing model into a non-linear model
- Primary thing to note is that this function is:
 - Polynomial in terms of input variable
 - Linear in terms of parameters
- This function now has capability to model non-linear relationships using regression
- Varying value of M can result in various models

- This figure contains four models with varied M values
- As error used is still SSR, hence
 - $argmin_{\overrightarrow{w}} \sum_{i=1}^{n} (y_i \hat{y}_i)^2$
- Recall that previously:

•
$$\frac{\partial E}{\partial \hat{\mathbf{w}}_i} = -2 \sum_{n=1}^{N} (y_n - \hat{\mathbf{y}}_n) (x_n)$$

• It now becomes:

•
$$\frac{\partial E}{\partial \hat{\mathbf{w}}_i} = -2 \sum_{n=1}^{N} (y_n - \hat{\mathbf{y}}_n) (x_n)^i$$

•
$$E = \sum_{n=1}^{N} (y_n - \hat{y}_n)^2$$

•
$$E = \sum_{n=1}^{N} (y_i - (\hat{w}_0 + \hat{w}_1.x_n + \hat{w}_2.x_n^2 + \hat{w}_3.x_n^3 + ... + \hat{w}_M.x_n^M))^2$$

 $x_n^0 = 1$ for $\hat{\mathbf{w}}_0$, Hence, expression can be summarized as:

$$E = \sum_{n=1}^{N} (y_n - \sum_{j=0}^{M} \hat{w}_j x_n^j)^2$$

$$\frac{\partial E}{\partial \hat{w}_0} = \frac{\partial}{\partial \hat{w}_0} \sum_{n=1}^{N} (y_n - \sum_{j=0}^{M} \hat{w}_j x_n^j)^2$$

$$\frac{\partial E}{\partial \hat{w}_0} = -2 \sum_{n=1}^{N} (y_n - \sum_{j=0}^{M} \hat{w}_j x_n^j) \frac{\partial E}{\partial \hat{w}_0} (\sum_{j=0}^{M} \hat{w}_j x_n^j)$$

$$\frac{\partial E}{\partial \hat{w}_0} = -2 \sum_{n=1}^{N} (y_n - \sum_{j=0}^{M} \hat{w}_j x_n^j) * [\frac{\partial E}{\partial \hat{w}_0} (\hat{w}_0 * x_n^0) + \frac{\partial E}{\partial \hat{w}_0} (\hat{w}_1 * x_n^1)$$

$$+ \frac{\partial E}{\partial \hat{w}_0} (\hat{w}_2 * x_n^2) + \dots + \frac{\partial E}{\partial \hat{w}_0} (\hat{w}_i * x_n^i) + \dots + \frac{\partial E}{\partial \hat{w}_0} (\hat{w}_m * x_n^M)]$$

$$\frac{\partial E}{\partial \hat{w}_0} = -2 \sum_{n=1}^{N} (y_n - \sum_{j=0}^{M} \hat{w}_j x_n^j) * \left[\frac{\partial E}{\partial \hat{w}_0} (\hat{w}_0 * x_n^0) + 0 + \dots + \dots + 0 \right]$$

$$\frac{\partial E}{\partial \hat{w}_0} = -2 \sum_{n=1}^{N} (y_n - \sum_{j=0}^{M} \hat{w}_j x_n^j) * x_n^0$$

Hence, for any $\hat{\mathbf{w}}_i$

$$\frac{\partial E}{\partial \hat{\mathbf{w}}_i} = -2 \sum_{n=1}^{N} (y_n - \sum_{j=0}^{M} \hat{\mathbf{w}}_j x_n^j) * x_n^i$$

Equating gradient to zero yields:

$$\frac{\partial E}{\partial \hat{w}_{i}} = -2 \sum_{n=1}^{N} (y_{n} - \sum_{j=0}^{M} \hat{w}_{j} x_{n}^{j}) * x_{n}^{i} = 0$$

$$\frac{\partial E}{\partial \hat{w}_{i}} = \sum_{n=1}^{N} (y_{n} - \sum_{j=0}^{M} \hat{w}_{j} x_{n}^{j}) * x_{n}^{i} = 0$$

$$\frac{\partial E}{\partial \hat{w}_{i}} = \sum_{n=1}^{N} (y_{n} x_{n}^{i} - \sum_{j=0}^{M} \hat{w}_{j} x_{n}^{j} x_{n}^{i}) = 0$$

$$\frac{\partial E}{\partial \hat{w}_{i}} = \sum_{n=1}^{N} (y_{n} x_{n}^{i}) - \sum_{n=1}^{N} (\sum_{j=0}^{M} \hat{w}_{j} x_{n}^{j} x_{n}^{i}) = 0$$

$$\Rightarrow \sum_{n=1}^{N} (y_{n} x_{n}^{i}) = \sum_{n=1}^{N} (\sum_{j=0}^{M} \hat{w}_{j} x_{n}^{j} x_{n}^{i})$$

$$\Rightarrow \sum_{n=1}^{N} (x_{n}^{i}) y_{n} = \sum_{j=0}^{N} (\sum_{n=1}^{N} \hat{w}_{j} x_{n}^{i+j})$$

$$\Rightarrow \sum_{n=1}^{N} (x_{n}^{i}) y_{n} = \sum_{j=0}^{M} \hat{w}_{j} (\sum_{n=1}^{N} x_{n}^{i+j})$$

$$\Rightarrow \sum_{n=1}^{N} (x_n^i) y_n = \sum_{j=0}^{M} (\sum_{n=1}^{N} x_n^{i+j}) \hat{w}_j$$
If $A_{ij} = \sum_{n=1}^{N} x_n^{i+j}$; $T_i = \sum_{n=1}^{N} (x_n^i) y_n$

$$\Rightarrow T_i = \sum_{j=0}^{M} A_{ij} \hat{w}_j$$

• Solution to these equations provide optimal value for $\hat{\mathbf{w}}_i$

$$T_i = \sum_{j=0}^M A_{ij} \, \hat{\mathbf{w}}_j$$

- This is similar to the system of equation form: B = AX
- Hence solving these systems of simultaneous equations provides optimal parameter values during training.

$$f(x) = Sin(2\pi x)$$

$$y = f(x) + \epsilon$$

$$\hat{y} = \sum_{i=0}^{M} \hat{w}_{i} x_{n}^{j}$$

- Solution system discussed just now can result in overfitting
- Overfitting can be avoided if training dataset is huge
- These figures show model performance with degree of 9 using variety of datasets.
- With increase in training data points, overfitting is greatly reduced.

Evaluation of Model Generalization

- There are various ways to evaluate the GOOD FIT of any model
- Some of these include
 - Bias-Variance Tradeoff
 - Error Graphs
 - Coefficient of Determination R^2
- We'll discuss each one by one

Bias-Variance Decomposition

- To understand the concept of overfitting:
 - Break down the error function
 - Error function studied so far can be broken down:
 - Reducible Error
 - Irreducible Error
 - Reducible error can be further broken down:
 - Bias Error
 - Variance Error

Bias-Variance Decomposition

Notation

- For an unseen data point x'
 - y' will represent the actual value
 - \hat{y}' will represent the predicted value

• Goal:

- To find the expected performance of our model
- In other words, expected error on unseen instances

- Expectation is also known as Expected Value.
- It can be defined as weighted average of a function
 - $E(x) = \sum_{i=1}^{n} x_i * p(x_i)$ $p(x_i)$ shows probability when $x = x_i$
- If weight is equally distributed among all
 - Expectation would be equal to standard mean or average.
- Hence, average or mean values are also expected values

- For example, when a six-sided unbiased die is rolled, then:
 - As it is unbiased die, probability of each number is equal
 - Hence $p(x_1) = p(x_2) = p(x_3) = p(x_4) = p(x_5) = p(x_6) = \frac{1}{6}$
- Hence, Expectation becomes:

$$E(x) = 1 * p(x_1) + 2 * p(x_2) + 3 * p(x_3) + 4 * p(x_4) + 5 * p(x_5) + 6 * p(x_6)$$

$$E(x) = 1 * \frac{1}{6} + 2 * \frac{1}{6} + 3 * \frac{1}{6} + 4 * \frac{1}{6} + 5 * \frac{1}{6} + 6 * \frac{1}{6}$$

$$E(x) = \frac{1}{6} * (1 + 2 + 3 + 4 + 5 + 6) = \frac{1}{6} * (21) = 3.5$$

- Assume an investor who likes to determine his rate of return on three investments. Assume the investments are proportioned according to following probability distributions: 25% in investment A, 25% in investment B, and 50% in investment C. The rate of return is 5% for investment A, 6% for investment B, and 2% for investment C.
- Find the expected rate of return.

- In this example, x = Rate of Return
- Probability of x is determined here by the proportions of investment performed.
- Hence Expected Rate of Return becomes:
 - $E(x) = Rate\ of\ return\ of\ investment\ A\ *prob(A)\ +$ $Rate\ of\ return\ of\ investment\ A\ *prob(B)\ +$ $Rate\ of\ return\ of\ investment\ A\ *prob(C)$
 - E(x) = 5 * 0.25 + 6 * 0.25 + 2 * 0.50 = 3.75
- Hence, Expected Rate of Return is 3.75%

Expectation Math

Let Z be a random variable with probability distribution P(Z)

Let $\overline{Z} = E[Z]$ be the average value of Z.

Lemma:
$$E[(Z - \overline{Z})^2] = E[Z]^2 - \overline{Z}^2$$

Proof: $E[(Z - \overline{Z})^2] = E[(Z^2 - 2Z\overline{Z} + \overline{Z}^2)]$
 $E[(Z - \overline{Z})^2] = E[Z^2] - 2E[Z]\overline{Z} + \overline{Z}^2$ $E[\overline{Z}] = \overline{Z}$
 $E[(Z - \overline{Z})^2] = E[Z^2] - 2\overline{Z}\overline{Z} + \overline{Z}^2$
 $E[(Z - \overline{Z})^2] = E[Z^2] - 2\overline{Z}^2 + \overline{Z}^2$
 $E[(Z - \overline{Z})^2] = E[Z^2] - \overline{Z}^2$
 $\Rightarrow E[Z^2] = E[(Z - \overline{Z})^2] + \overline{Z}^2$

Expectation and Bias Variance Decomposition

- Error Function is:
 - $(y \hat{y})^2$ where $y = f(x) + \epsilon$ and $\hat{y} = \hat{f}(x)$
- Hence, expectation for a new data point x' and corresponding y' would become:
 - $E[(y' \hat{y}')^2]$ where $y' = f(x') + \epsilon$ and $\hat{y}' = \hat{f}(x')$
- For a given problem, there could be infinite training samples and distributions to which a data could belong
- Hence, assume, that training sample belongs to some Probability Distribution P
- Then, our goal is to find:
 - $E_P[(y'-\hat{y}')^2]$ # For simplicity, E_P would be written as E

Expectation and Bias Variance Decomposition

$$\begin{split} &E_{P}[(y'-\hat{y}')^{2}] = E[(y'-\hat{y}')^{2}] \\ &= E[(y'^{2}+\hat{y}'^{2}-2y'\hat{y}')] \\ &= E[y'^{2}] + E[\hat{y}'^{2}] - E[2y'\hat{y}'] \\ &\text{Using lemma we derived earlier: } E[\mathbf{Z}^{2}] = E[(\mathbf{Z}-\overline{\mathbf{Z}})^{2}] + \overline{\mathbf{Z}}^{2} \\ &= E[(y'-\overline{y}')^{2}] + \overline{y}'^{2} + E[(\hat{y}'-\hat{y}')^{2}] + \overline{\hat{y}}'^{2} - 2 E[y'] E[\hat{y}'] \\ &\text{As } y = f(x) + \epsilon, \text{ hence input dependent factor contributes towards mean:} \\ &= E[(y'-f(x'))^{2}] + f(x')^{2} + E[(\hat{y}'-\overline{\hat{y}}')^{2}] + \overline{\hat{y}}'^{2} - 2 E[y'] E[\hat{y}'] \\ &= E[(y'-f(x'))^{2}] + f(x')^{2} + E[(\hat{y}'-\overline{\hat{y}}')^{2}] + \overline{\hat{y}}'^{2} - 2 \overline{y}' E[\hat{y}'] \\ &= E[(y'-f(x'))^{2}] + f(x')^{2} + E[(\hat{y}'-\overline{\hat{y}}')^{2}] + \overline{\hat{y}}'^{2} - 2 f(x') \overline{\hat{y}}' \end{split}$$

Expectation and Bias Variance Decomposition

After rearranging the terms:

$$= E[(y' - f(x'))^{2}] + E[(\hat{y}' - \overline{\hat{y}'})^{2}] + f(x')^{2} + \overline{\hat{y}}'^{2} - 2f(x')\overline{\hat{y}}'$$

$$= E[(y' - f(x'))^{2}] + E[(\hat{y}' - \overline{\hat{y}}')^{2}] + (f(x') - \overline{\hat{y}}')^{2}$$

- $E(y' \hat{y}')^2 = E[\epsilon^2] + Variance(\hat{y}') + Bias(\overline{\hat{y}'})^2$
- If we assume irreducible noise to follow a normal Gaussian distribution with zero mean and standard deviation of σ :

$$E(y' - \hat{y}')^2 = \sigma^2 + Variance(\hat{y}') + Bias(\overline{\hat{y}'})^2$$

This equation is bias-variance decomposition of expected error.

Variance $E[(\hat{y} - \overline{\hat{y}})^2]$

- Describes how much \hat{y} varies from one training set S to another
- Describes how much a single model deviates from the average model over multiple datasets
- It is the average squared difference between any single data-set-dependent estimate of \hat{y} and average value of \hat{y} estimated over all datasets
- Variance captures the degree to which model's predictions vary between multiple iterations.

Bias
$$(f(x) - \overline{\hat{y}})^2$$

- Describes the average error of \hat{y} with respect to the actual function
- Assesses how a model approximates actual function
- It is based on behavior over multiple data sets, hence, difference between average model behavior is taken into account
- It describes how much the average estimator fit over datasets
- **bias** represents that how far a model's predictions are from correctness

Noise
$$E[(y-f(x))^2]$$

- Describes how much y varies from f(x)
- It captures irreducible error
- For the sake of simplicity:
 - it can be assumed zero
 - It can be modeled using Normal distribution

Guess the best model?

Which model has lowest bias?

Which model has highest Variance?

Bias-Variance tradeoff

- If model is too simple
 - High bias
- If model is too complex
 - High Variance
- Goal
 - To have low bias and low variance in model simultaneously
 - Bull's eye represents target function
 - Closer we are to red circle, better the model is

Bias-Variance tradeoff

Bias-Variance tradeoff in practice

- In real life, we don't have infinite amount of training sample populations
- How to compute bias and variance
 - Split the available data
 - Make multiple training and testing datasets
 - For each train-test data prepared: compute \hat{y}
 - Using these values, calculate bias and variance
- A common procedure normally used:
 - K-cross validation

K-cross validation

- A widely used validation technique
- Figure shows 5-cross validation
- Value of K affects the results
 - High Value of K: Low Bias, High Variance
 - Low value of K: High Bias, Low Variance

K-cross validation

- If 5-cross validation is to be performed on this dataset
 - Total data points 10
 - Then total no. of instances per fold will be 2.
- 1st fold contents:
 - Train: [0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9]
 - Test: [0,0.1]
- 2nd fold contents:
 - Train: [0,0.1,0.4,0.5,0.6,0.7,0.8,0.9]
 - Test: [0.2,0.3]

Х	2πx	$Sin(2\pi x)$	€	у
0	0	0	0.16	0.16
0.1	0.63	0.59	0.11	0.7
0.2	1.26	0.95	-0.06	0.89
0.3	1.88	0.95	-0.11	0.84
0.4	2.51	0.59	-0.08	0.51
0.5	3.14	0	-0.14	-0.14
0.6	3.77	-0.59	0.04	-0.55
0.7	4.4	-0.95	0.17	-0.78
0.8	5.03	-0.95	-0.04	-0.99
0.9	5.65	-0.59	0.04	-0.55

Data Splitting

- Cross validation is amongst a widely used method for data split
- Another widely used method of data splitting involves formation of two mutually exclusive datasets
 - One for training
 - Other for testing
- Other techniques
 - Bootstrapping
 - Subsampling
 - With replacement
 - Without replacement (etc.)
- If we are to train our model on training and evaluate on testing, then how to model hyper-parameters?

Recall the regularized Error-gradient function

$$\frac{\partial E}{\partial \hat{\mathbf{w}}_i} = -2\sum_{i=1}^{n} e_i * x_i + \lambda w_i$$

- Here λ is not a parameter of our predicted function, but it greatly affects the overall error
- Such parameters are known as hyperparameters
- Hyperparameters are set before the training begins
 - Their values are require while model training

- How to model hyperparameters:
 - Instead of having two splits, make three:
 - Training (to learn the model parameters)
 - Validation (to figure out the value of hyper-parameter)
 - Testing (to assess the model performance i.e. generalization)
- Usually train-test split of (80%, 20%) is used
 - For Validation: 10-20% records of training set are used

- Firstly:
 - Data will be divided in train and test splits
 - 80% records will be used for training
 - Train set: [0,0.1,0.2,0.3,0.4,0.5,0.6,0.7]
 - Remaining records will be used for testing
 - Test set: [0.8, 0.9]
- Then, training set split will be performed:
 - Train set: [0,0.1,0.2,0.3,0.4,0.5,0.6]
 - Validation set: [0.7]

Х	2πx	Sin(2πx)	ϵ	у
0	0	0	0.16	0.16
0.1	0.63	0.59	0.11	0.7
0.2	1.26	0.95	-0.06	0.89
0.3	1.88	0.95	-0.11	0.84
0.4	2.51	0.59	-0.08	0.51
0.5	3.14	0	-0.14	-0.14
0.6	3.77	-0.59	0.04	-0.55
0.7	4.4	-0.95	0.17	-0.78
0.8	5.03	-0.95	-0.04	-0.99
0.9	5.65	-0.59	0.04	-0.55

- Consider that the value of λ can reside between [0-1] with 0.25 interval
 - Then for $\lambda = 0.0$, model will be trained
 - When training is done; trained model will be validated using validation set
 - Model error will be logged
 - for $\lambda = 0.25$, model will be trained
 - for $\lambda = 0.50$, model will be trained
 - for $\lambda = 0.75$, model will be trained
 - for $\lambda = 1.0$, model will be trained
- As errors are logged against all λ values:
 - Value of λ that resulted in least error on Validation set will be selected

- Generalization Testing
 - Now, the dataset we reserved earlier for Testing will be used
 - Using best model against validation set
 - Testing error will be calculated
- Widely used Hyperparameters
 - Learning step size
 - Value of regularization Term (λ)
 - Number of layers in deep networks
 - Number of hidden layer neurons

Data Splitting and Hyperparameters (Summary)

- For each distinct value of a hyperparameter:
 - Model training is carried out
 - Trained model is evaluated on validation set
- The model's parameter setting as well as respective hyperparameter setting that results in least error are selected
- Using the optimal parameters and hyperparameter values, testing is performed

Error Graphs

- A widely used approach to see the model performance is to plot various errors
- It plots graph using training, testing and/or validation errors
- Training error is computed using trained model and training records.
 - These training records are already seen by the trained model during training
- Testing error is calculated using trained model and unseen data
- Validation error is calculated using trained model and validation dataset.
 - During model training, this dataset is not used, hence, it is also unseen data

Error Graphs

- Figure presents a sample plot using various errors
- Best refers to the point, where model's performance is relatively high
- Here Epoch refers to total number of times, complete dataset is exhausted.
- There are multiple ways to stop the training
 - One is to graphically view the error plots
 - Second is to use difference thresholds
 - Third is to hard-code the iterations manually

Coefficient of Determination \mathbb{R}^2

- In regression, the R² coefficient of determination is a statistical measure
- It measure how well the regression predictions approximate the real data points.
- An R² of 1 indicates that the regression predictions perfectly fit the data.
- It ranges from [0-1]
- Its formulation is:

$$R^2 = 1 - \frac{SSR}{SSTotal}$$

Coefficient of Determination \mathbb{R}^2

- Consider example from last lecture
- For linear regression:

•
$$SST = \sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} (TErr)^2$$
 where \bar{y} is mean of population

•
$$SSR = \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2 = \sum_{i=1}^{n} (RErr)^2$$

X	у	$\widehat{\mathcal{Y}}$	TErr	RErr	$TErr^2$	$RErr^2$
60	3.1	3.302	-0.62	-0.202	0.3844	0.040804
61	3.6	3 . 492	-0.12	0.108	0.0144	0.011664
62	3.8	3.682	0.08	0.118	0.0064	0.013924
63	4	3.872	0.28	0.128	0.0784	0.016384
65	4.1	4.252	0.38	-0.152	0.1444	0.023104
Mean	1(y) = 3.72		SST = 0.62	28	SSR = 0.10)588

Hence R^2 would become:

$$R^2 = 1 - \frac{0.10588}{0.628} = 0.831$$