Engineering Mathematics

 $\mathbf{F17/2054/2022}$ - ROBERT ODHIAMBO

November 5, 2023

Basic mathematical Concepts

Sets

Definition 1 A set is a well defined collection or group of objects.

These objects are also referred to as members of a set

- 1. Requirements of a set
 - (a) A set must be well defined, i.e, must not leave room for any ambiguity.
 - (b) The elements of a given set must be distinct, i.e, each element should appear only once.
 - (c) The order of representing elements of a set is immaterial, different arrangement of the same elements does not showany difference.
- 2. Specifying or naming of sets

By convention, sets are specified (named) using a capital letter. Further, the elements of a set are designated by either listing all the elements or by using a descriptive characteristic or pattern. The elements of a set are enclosed using curly brackets. We can represent them in three ways:

- Listing of all elements $A = \{0, 1, 2, 3, 4, 5, 6\}$
- Using a descriptive characteristic $A = \{A \text{ such that } X \text{ is a positive integer from 0 to 6 inclusive}\}$
- Using a pattern $A = \{1, 2, \dots, 6\}$

3. Set membership

This is expressed by using the symbol \in . Considering set A in which 3 is a member Expressed as $3 \in A$

4. Finite set

A set that consists of a limited or countable number of elements.

5. Subset

Any set S is a subset of set A if all elements in S are members of A and is denoted by \subset and is read as "S is a subset of A" A is said to be the superset of S denoted by \supset , $A \supset S$

6. Equality of Sets

If all elements in set D1 are in D2 and all the elements in D2 are textin D1 then they are equal D1 = D2 Can be denoted as $D1 \supset D2$ or $D2 \subset D1$, i.e, textthey are subsets or supersets of each other.

7. Universal Set

Set that contains all the elemnts under consideration, denoted U.

8. Null or empty set

Is a set with no elements and is denoted by $\{\}$ or \emptyset .

9. Complement of a set

Given U and $A \subset U$ then the complement of A, denoted by A' or A^c represents all elements in U that are not in A.

10. Seys are pictorially represented using Venn Diagrams

Circles: used to represent ordinary sets

Rectangle: Used to represent Universal set

- 11. Singleton Set
 Set with only one element
- 12. Disjoint sets

 Are two sets with no elements in common

Set Operations and Algebra

Definition 2 These are operations where sets are combined to obtain other sets of interest

Given two sets P and Q

They include:

1. Union of Sets, \cup Consists of elements in P or Q or both

PUQ

- 2. Intersection of sets, ∩
- Consists of elements in both P and Q(common elements)
- 3. **Set difference/Injunction**, \
 Consists of elements in P but not in Q
- 4. Symetric difference, Δ Consists of elements in P but not in Q and thos in Q but not in P

•

PΔQ

Laws of Set aAlgebra

1. Commutative Laws

The order in which sets are combined in union or intersection is irrelevant, i.e $P\cup Q=Q\cup P$ and $P\cap Q=Q\cap P$

2. Associative Laws

The selection of 3 or more sets for grouping in a union or intersection is immaterial, i.e $(P \cup Q) \cup R = P \cup (Q \cup R)$

3. Distributive Laws

For any 3 sets P, Q and R:

$$P \cup (Q \cap R) = (P \cap Q) \cap (P \cup R)$$

4. Impotent Laws

For a set Q

$$Q \cup Q = Q$$
 and $Q \cap Q = Q$

Other Laws:

- 5. $P \cup \emptyset = P$
- 6. $P \cap \emptyset = \emptyset$
- 7. $P \cup U = U$
- 8. $P \cap U = P$
- 9. $P \cup P' = U$
- 10. $P \cap P = \emptyset$
- 11. De Morgan's Laws

For any two sets Q and R

- i $(Q \cup R)' = Q' \cap R'$
- ii $(Q \cap R)' = Q' \cap R'$

Boolean Algebra

Can be used to describe the manipulation and processing of binary information It's two-valued and has applications in the design of modern computer systems. It is common to interprete the digital values 0 as false and 1 as true.

Definitions

- 1. Boolean Expression: Combining the variables and operation yields Boolean expressions.
- 2. Boolean Function: A Boolean function typically has one or more input values and yields a result, based on these input value, in the range 0, 1.
- 3. A Boolean operator can be completely described using a table that list inputs, all possible values for these inputs, and the resulting values of the operation.
- 4. A truth table shows the relationship, in tabular form, between the input values and the result of a specific Boolean operator or function on the input variables.

Inputs	Outputs	
x y	xy	
0 0	0	
0 1	0	
1 0	0	
1 1	1	

Figure 1: Truth table for AND

5. The AND operator is also known as a Boolean product. The Boolean expression xy is equivalent to the expression x * y and is read "x and y." The behavior of this operator is characterized by the truth table shown below

Inputs	Outputs	
x y	<i>x</i> + <i>y</i>	
0 0	0	
0 1	1	
1 0	1	
1 1	1	

Figure 2: Truth Table for OR

Inputs	Outputs	
X	\overline{X}	
0	1	
1	0	

Figure 3: Truth table for NOT

- 6. The OR operator is often referred to as a Boolean sum. The expression x+y is read "x or y". The truth table for OR is shown below
- 7. Both \bar{x} and x' are read as NOT x
- 8. The rule of precedence for Boolean operators give NOT top priority, followed by AND, and then OR

DeMorgan's law provides an easy way of finding the complement of a Boolean function. Boolean algebra is used in implementing digita computer circuits called **gates**.

Identity Name	AND Form	OR Form
Identity Law	1x = x	0+x=x
Null (or Dominance) Law	0x = 0	1+x = 1
Idempotent Law	XX = X	X+X=X
Inverse Law	$x\overline{x} = 0$	$x+\overline{x}=1$
Commutative Law	xy = yx	x+y=y+x
Associative Law	(xy)z = x(yz)	(x+y)+z=x+(y+z)
Distributive Law	x+yz=(x+y)(x+z)	x(y+z) = xy + xz
Absorption Law	x(x+y)=x	x+xy=x
DeMorgan's Law	$(\overline{xy})=\overline{x}+\overline{y}$	$(\overline{X+Y}) = \overline{X}\overline{Y}$
Double Complement Law	$\bar{x}=x$	

Figure 4: Basic Identities of Boolean Algebra $\,$

Cartesian Products and Relations

For two sets A and B, the Cartesian Product of A and B is

$$A \times B = \{(a, b); a \in A, b \in B\}$$

We say that the elements of $A \times B$ are ordered pairs

Definition 3: For sets A, B, any subset of $A \times B$ is called a binary relation from A to B. Any subset of $A \times A$ is called a **binary relation** on A.

A binary relation from A to B is a set \mathcal{R} of ordered pairs where the first element of each ordered pair comes from A and the second element comes from B. We use the notation $a\mathcal{R}b$ to denote that $(a,b) \in \mathcal{R}$ and a $\mathcal{R}b$ When $(a,b) \in \mathcal{R}$, a is said to be related to b by \mathcal{R} . Let $A = \{0,1,2\}$ and $B = \{a,b\}$ then $\mathcal{R} = \{(0,a),(0,b),(1,a),(2,b)\}$ is a relation from A to B. This means for instance that $0\mathcal{R}a$, $1\mathcal{R}a$, etc

The above relation can be represented graphically using arrows to represent ordered pairs:

Figure 5: Graph for the relation explained above

Relations on a set

Definition 4 A relation on a set A is a relation from A to A

Example 1 Let $A = \{1, 2, 3, 4\}$. Which ordered pairs in the relation $\Re = \{(a, b) : a \text{ divide } b\}$

Solution Since (a, b) is in \mathcal{R} if and only if a and b are positive integers not exceeding 4 such that a divides b,wesee that:

$$\mathcal{R} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}$$

Figure 6: Graph of the relation in example 1

On a set A with n elements, a relation on A is a subset of $A \times A$. Since $A \times A$ has n^2 elements, when A has n elements and a set with m elements has 2^m subsets, there are 2^{n^2} subsets of $A \times A$. Thus there are 2^{n^2} relations on a set with n elements.

Properties of Relations

Definition 5 A relation \mathbb{R} on a set A is said to be **reflexive** if for all $x \in A, (x, x) \in \mathbb{R}$.

Example 2 For $A = \{1, 2, 3, 4\}$

A relation $\mathcal{R} \subseteq A \times A$ will be reflexive if and only if $\mathcal{R} \supseteq \{(1,1),(2,2),(3,3),(4,4)\}$ Consequently $\mathcal{R} = \{(1,1),(2,2),(3,3)\}$ is not an reflexive relation on $A = \{(1,1),(2,2),(3,3)\}$ since $4 \in A$ but $(4,4) \notin \mathcal{R}$

 $\mathcal{R} = \{(x,y): x,y \in A, x \leq y\}$ is reflexive in $A = \{1,2,3,4\}$