ÁLGEBRA DE BOOLE

√ Compuerta NOT

Tabla Lógica

Circuito Lógico

Identificador 74LS04

✓ Compuerta AND

Tabla Lógica

Circuito Lógico

A	В	A · B
0	0	0
0	1	0
1	0	0
1	1	1

Identificador 74L508

√ Compuerta OR

Tabla Lógica

Circuito Lógico

A	В	A + B
0	0	0
0	1	1
1	0	1
1	1	1

Identificador 74L532

✓ Compuerta XOR

Tabla Lógica

Circuito Lógico

Α	В	$A \oplus B$
0	0	0
0	1	1
1	0	1
1	1	0

Identificador 74LS86

✓ Compuerta NAND

Tabla Lógica

Circuito Lógico

A	В	$\overline{\mathbf{A} \cdot \mathbf{B}}$
0	0	1
0	1	1
1	0	1
1	1	0

Identificador 74L500

✓ Compuerta NOR

Tabla Lógica

Circuito Lógico

Α	В	$\overline{A + B}$
0	0	1
0	1	0
1	0	0
1	1	0

Identificador 74LS02

Univ. Alexander M. Bautista Mamani

Axiomas

A1 Conmutatividad

$$a + b = b + a$$
 $a \cdot b = b \cdot a$

A2 Asociatividad

$$(a+b)+c=a+(b+c)$$
$$(a \cdot b) \cdot c=a \cdot (b \cdot c)$$

A3 Distributividad

$$a + (b \cdot c) = (a + b) \cdot (a + c)$$
$$a \cdot (b + c) = (a \cdot b) + (a \cdot c)$$

A4 Identidad

$$a + 0 = a$$
 $a \cdot 1 = a$

A5 Inverso

$$a + \overline{a} = 1 \qquad \qquad a \cdot \overline{a} = 0$$

Teoremas

T1 Idempotencia

$$a + a = a$$
 $a \cdot a = a$

T2 Absorción

$$a + (a \cdot b) = a$$
 $a \cdot (a + b) = a$
 $a + 1 = 1$ $a \cdot 0 = 0$

T3 Ley D' Morgan

$$\overline{a+b} = \overline{a} \cdot \overline{b}$$
 $\overline{a \cdot b} = \overline{a} + \overline{b}$

T4 Doble Complemento

$$\bar{\bar{a}} = a$$

Otros Teoremas

T5
$$a \oplus b = \bar{a}b + a\bar{b}$$

 $a \oplus b = (\bar{a} + \bar{b}) \cdot (a + b)$

T6
$$\overline{a \oplus b} = \overline{a}\overline{b} + ab$$

 $\overline{a \oplus b} = (\overline{a} + b) \cdot (a + \overline{b})$

77
$$a + (\bar{a} \cdot b) = a + b$$

 $a \cdot (\bar{a} + b) = a + b$

Formas Canónicas de una función Booleana

Forma Canónica \(\Sigma \) MINTÉRMINO

Suma de Productos

$$f(A,B,C) = \underbrace{ABC}_{7} + \underbrace{\bar{A}B\bar{C}}_{2} + \underbrace{A\bar{B}C}_{5}$$

$$f(A,B,C) = \sum \min(2,5,7)$$

Nota: A=1 , $\bar{A}=0$

Forma Canónica ∏ MAXTÉRMINO

Producto de Sumas

$$f(A,B,C) = \underbrace{(A+B+C)}_{0} + \underbrace{(\bar{A}+B+\bar{C})}_{5}$$

$$f(A,B,C) = \prod \max(0,5)$$

Nota: A = 0 , $\bar{A} = 1$

Mapas de Karnaugh (Mapas-K)

 La simplificación por este método consiste en el agrupamiento de 1's o de 0's.

1's, si la función es un MINTÉRMINO O's, si la función es un MAXTÉRMINO

- Se debe buscar grupos de 1's o de 0's múltiplos de la potencia de 2, es decir, que sean grupos 2ⁿ donde n >= 0.
- Cuanto mayor sea el grupo mayor la simplificación.

Mapas-k de TRES VARIABLES f(A, B, C)

	ĒĈ	ĒС	ВС	BC
Ā	0	1	3	2
Α	4	5	7	6

Mapas-k de CUATRO VARIABLES f(A, B, C, D)

	ĒŪ	ĒD	CD	CŪ
$\bar{A}\bar{B}$	0	1	3	2
ĀΒ	4	5	7	6
АВ	12	13	15	14
ΑĒ	8	9	11	10