Johns Hopkins Engineering for Professionals 605.767 Applied Computer Graphics

Brian Russin

Module 4D Color Spaces

Color Spaces in Computer Graphics

- RGB
- Cyan, Magenta, Yellow
- YIQ
- Hue, Saturation, Value
- Hue, Lightness, Saturation
- CIELUV and TekHVC

RGB Model

- A triple in this space produces a specific color on a specific monitor
 - Red+green= orange (yellow)
 - Red+blue=magenta (purple)
 - Green+blue=cyan(blue-green)
- Monitors (not to mention other display devices)
 can differ from each other
 - RGB triple may produce a different color on one monitor than another
- Describes a 3 sample version of spectral space

Problems with RGB Color Space

- Perceptually non-linear
 - Equal distances in RGB space are not perceptually equal
 - Low RGB values produce small changes in response on most monitors
 - Gamma response curve
- RGB is a subset of perceptual color space
- Not a good color description system
 - Other spaces provide better color selection mechanisms
- Different RGB values produce different colors on different output devices

Cyan, Yellow, Magenta (CMY)

- Defined with 'subtractive' primary colors
 - Subtractive process
 - White light reflected from cyan ink leaves no red component
 - Magenta subtracts green, yellow subtracts blue
- Used for hard copy devices like plotters
 - CMYK (cyan-magenta-yellow-black)
- Cyan, magenta inks produce blue
- Cyan, yellow inks produce green
- Yellow, magenta inks produce red

$$\begin{bmatrix} \mathbf{C} \\ \mathbf{M} \\ \mathbf{Y} \end{bmatrix} = \begin{bmatrix} 1.0 \\ 1.0 \\ 1.0 \end{bmatrix} - \begin{bmatrix} \mathbf{R} \\ \mathbf{G} \\ \mathbf{B} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{R} \\ \mathbf{G} \\ \mathbf{B} \end{bmatrix} = \begin{bmatrix} 1.0 \\ 1.0 \\ 1.0 \end{bmatrix} - \begin{bmatrix} \mathbf{C} \\ \mathbf{M} \\ \mathbf{Y} \end{bmatrix}$$

YIQ

- Used in television broadcast
 - National Television System Committee (NTSC)
- Produces a single composite signal rather than separate RGB
- Y is the luminance term same as CIE Y
 - Black and white TV only needs the Y information
- Chromaticity incorporated into the I and Q part of the signal
 - I contains the orange cyan hue for flesh tone shading
 - Q contains green magenta hue
- Transformation based on NTSC standard RGB chromaticities
 - Larger proportions of red and green assigned to Y
 - Red and green contribute more to luminance than blue

$$\begin{bmatrix} Y \\ I \\ Q \end{bmatrix} = \begin{bmatrix} 0.299 & 0.587 & 0.114 \\ 0.596 & -0.275 & -0.321 \\ 0.212 & -0.528 & 0.311 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

$$\begin{bmatrix} R \\ G \\ B \end{bmatrix} = \begin{bmatrix} 1.0 & 0.956 & 0.620 \\ 1.0 & -0.272 & -0.647 \\ 1.0 & -1.108 & 1.705 \end{bmatrix} \begin{bmatrix} Y \\ I \\ Q \end{bmatrix}$$

Hue, Saturation, Value

- Hexagonal cone
 - Value (similar to brightness) in the vertical axis
 - Pure hue along outside of the hexagon
 - Saturation from hexagon edge (fully saturated) to center axis (fully desaturated or white-gray)
- Based on polar coordinates
 - Hue is specified in the range 0 to 360
 - Complementary colors are 180 degrees apart

Hue, Saturation, Value (cont.)

- Can assign hue names to numbers
 - Provide a color naming system
 - Similar to Munsell terms
 - Munsell developed a color classification system
 - Hue, chroma, value in a standard set of color plates
- Non-linear transformation of the RGB space
 - Another way of defining colors in the display device gamut
- Uses terms relating more to perceptual elements
 - Still many perceptual non-linearities
 - Perceptual changes in hue are non-linear in hue angle
- Easier to conceptualize than RGB
 - Better method than RGB for novice users to specify color
- Transformation from HSV to RGB (and the inverse) is provided in Hearn and Baker and Foley and van Dam
 - Not a single equation but a straightforward algorithm

Hue, Saturation, Lightness

- Modification of the HSV hexcone
 - Value now called lightness
 - Still corresponds to 'brightness'
 - L extends upwards to form a double hexcone
- White and black are single points
 - L = 0.0 is black
 - L = 1.0 is white
- Pure (fully saturated) hues lie at L = 0.5
 - Disadvantage when using the model as a software interface for color selection
- Conversion to RGB (and inverse) is provided online
 - https://www.rapidtables.com/convert/color/hsl-to-rgb.html

Sample Interactive Color Selection

Microsoft Windows 98 control panel

CIELUV

- 1976 CIE modified the xyY color space to produce a more perceptually uniform color space
 - Based on color matching experiments
 - Can be described in a cylindrical coordinate system
- Defines chromaticity (u',v') as a transformation of x,y
 - u' = 2x / (6y x + 1.5)
 - v' = 4.5 y / (6y x + 1.5)
 - Y remains unchanged (still corresponds to luminance)
- 1976 CIELUV (L*u*v*) system transforms this space so that black-white axis lies at 0,0 to 0,100
 - $L^* = 116 (Y/Y_w)1/3 -16$
 - $u^* = 13L^* (u' v'_w)$
 - $v^* = 13L^* (v' v'_w)$
 - Where u_w, v_w, and Y_w are coordinates of a reference white

1976 CIE Chromaticity Diagram

CIELUV (cont.)

- CIELUV L* is known as the psychometric lightness
 - Closer relation to perceived brightness / lightness
- Can define HSL in terms of CIELUV
 - Hue (0-360 degrees) = atan (v*/u*)
 - Value = L* (ranges from 0-100)
 - Saturation = $(u^{*2} + v^{*2})^{1/2}$ (called the CIELUV 1976 **uv chroma**)
- Tektronix HVC system uses CIELUV as as the basis for a color selection interface
 - Combines advantages of HSL as an interface with the perceptual benefits of CIELUV as a color space
 - An "electronic" version of the Munsell color system
 - Patented
 - https://patents.google.com/patent/US1617024A/en

Hue, Value, Chroma

Tektronix HVC User Input

Mapping Colors from One Gamut to Another

- Two CRTs with different phosphors have different color gamuts
 - To map from one to another, map each into XYZ

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} X_r & X_g & X_b \\ Y_r & Y_g & Y_b \\ Z_r & Z_g & Z_b \end{bmatrix} \begin{bmatrix} R_m \\ G_m \\ B_m \end{bmatrix}$$

- Terms of the matrix are the weights applied to monitor's RGB to find X, Y,
 Z
- With M₁ and M₂ as matrices that convert each monitor into XYZ:
 - M₂-1M₁ converts from the RGB of monitor 1 into the RGB of monitor 2

Deriving the Color Mapping Matrices

- Derived based on display device
 - For accuracy requires precise measurement and calibration of the display device
 - Use device phosphor coordinates
 - Assumes equal RGB voltages (1,1,1) produce the desired white
 - Known as color temperature
 - Usually desirable to be near D_{65} (x=0.313, y = 0.329, z = 0.358)
 - See Watt: Section 15.5.2

Assuming calibration to D₆₅ reference white and phosphor chromaticities of red (0.620, 0.330), green (0.210, 0.685), and blue (0.150, 0.063):

$$\mathbf{M} = \begin{bmatrix} 0.584 & 0.188 & 0.179 \\ 0.311 & 0.614 & 0.075 \\ 0.047 & 0.103 & 0.939 \end{bmatrix} \qquad \mathbf{M}^{-1} = \begin{bmatrix} 2.043 & -0.568 & -0.344 \\ -1.035 & 1.939 & 0.042 \\ 0.011 & -0.184 & 1.078 \end{bmatrix}$$

Note: Haines and Moller present different matrices on page 278 (p. 215 3rd Edition) See http://www.brucelindbloom.com/index.html?Eqn_XYZ_to_RGB.html for more examples based on RGB "Working Space"

Color Clipping

- Color clipping is necessary if color transformation produces colors outside the display device gamut
 - When converting a color from one device space to another
 - Common when converting from CRT to a printer/plotter
 - Chromaticity outside the gamut (negative RGB values)
 - Chromaticity inside the gamut but intensity unattainable (RGB > 1 or max)
- Simple clamping of values to range [0,1] works but:
 - Multiple input colors map to same color
 - Bad approach when color differences need to be presented
- Other approaches produce a shift in hue, saturation, or value (brightness)
 - Watt describes a couple approaches
 - Foley and van Dam reference a method by Hall

