CPU 设计文档

一、 数据通路设计

1. 模块规格 datapath. v

1) 端口说明

表 1-1 端口说明

信号	方向	描述
PauseF	Ι	
PauseD	Ι	
ClearE	Ι	
Forward_RS_D_src[2:0]	Ι	
Forward_RS_D_src[2:0]	Ι	
Forward_RS_D_src[1:0]	Ι	
Forward_RS_D_src[1:0]	Ι	
Forward_RS_D_src	Ι	
Clk	Ι	时钟信号
Reset	Ι	复位信号
IRD_out[31:0]	О	传入冲突控制的指令信号

2) 功能定义

表 1-2 功能定义

	77 778-277
功能	描述
grf 写入	若 grf 需要写入数据,则输出写入的位置及写入的值。
dm 写入	若 dm 需要写入数据,则输出写入的位置及写入的值。

2. 取指

1) 模块规格 F_unit. v

表 2-1 端口说明

信号	方向	描述
NPC[31:0]	I	
PCsrc[1:0]	I	下一指令地址控制信号
Branch	I	是否跳转
Clk	Ι	时钟信号
Reset	I	复位信号

PauseF	I	暂停更新 PC
PauseD	I	暂停更新 D 级流水线寄存器
IRD[31:0]	О	当前指令
PC4D[31:0]	О	

2) 程序计数器 pc_F. v

表 2- 2 端口说明

信号	方向	描述
NPC[31:0]	Ι	下一指令地址/j型和分支
Clk	Ι	时钟信号
Reset	Ι	复位信号
En	Ι	使能信号
add4	Ι	Pc+4 的值
j_r	Ι	跳转寄存器的指令地址
Branch	Ι	分支指令控制信号
PCsrc	Ι	下一指令控制
PC[31:0]	0	当前指令地址

表 2- 3 功能定义

功能	描述
存储指令地址	输出当前指令地址。时钟上升沿到来,且使能端有效时保存下一指令地址
复位	复位信号有效时, PC 同步复位于 0x0000_3000

3) 指令存储器 im. v

表 2- 4 端口说明

信号	方向	描述
addr[11:2]	I	指令地址
instr[31:0]	O	指令

表 2-5 功能定义

功能	描述
存储指令	初始化时,加载指令码。容量为 32bit*1024
输出指令	输出地址信号对应的指令内容

3. 译码

1) 模块规格 D. v

表 3-1 端口说明

信号	方向	描述
IRD[31:0]	I	当前指令

PC4D[31:0]	I	下一指令地址
PC4W	I	用于写寄存器时输出指令的
		地址
Clk	I	时钟信号
Reset	I	复位信号
ClearE	I	清空 E 流水级寄存器
Forward_RS_D_src[2:0]	I	转发 MUX 控制信号
Forward_RT_D_src[2:0]	I	转发 MUX 控制信号
PC4_forw_E[31:0]	I	
PC4_forw_M[31:0]	I	
AO[31:0]	I	
W_RF_WD_OUT[31:0]	I	
W_RF_A3_OUT[31:0]	I	
Branch	0	是否跳转
PCsrc[1:0]	0	
NPC[31:0]	0	跳转至地址
RS_D_F[31:0]	0	D 级读寄存器值-jr
IRE[31:0]	0	
PC4E[31:0]	0	
RSE[31:0]	0	
RTE[31:0]	0	
EXTE[31:0]	0	
We	I	

2) 寄存器文件 rf_D. v

表 3- 2 端口说明

信号	方向	描述
A1[4:0]	Ι	第一操作数地址
A2[4:0]	Ι	第二操作数地址
A3[4:0]	Ι	第三操作数地址
WD[31:0]	Ι	待写入数据
En	Ι	写使能信号
Clk	Ι	时钟信号
Reset	Ι	复位信号
RD1[31:0]	0	第一操作数
RD2[31:0]	0	第二操作数

表 3- 3 功能定义

功能	描述
复位	复位信号有效时,全部寄存器同步复位为0

3) 扩展单元 ext_D. v

信号	方向	描述
EXTop[1:0]	I	扩展功能
In[15:0]	I	待扩展立即数
Out[31:0]	0	扩展结果

表 3-5 功能定义

功能	ExtOp[1:0]	描述
{16'b0, Imm}	00	无符号扩展
{{16{Imm[15]}}}, Imm}	01	有符号扩展
{Imm, 16'b0}	10	扩展至低位
32'b0	11	复位

4) 指令自增单元 npc_D. v

表 3-6 端口说明

信号	方向	描述
PC4[31:0]	I	
I26[25:0]	I	指令的低 26 位
NPCsrc	I	控制信号
NPC[31:0]	0	

表 3- 7 功能定义

功能	NPCOp	描述
Branch	0	NPC = PC+4+{{14{I26[15]}}}, I26[15:0], 2'b00}
Jump	1	NPC = {PC[31:28], I26[25:0], 2'b00}

5) 比较单元 cmp_D. v

表 3-8 端口说明

信号	方向	描述
RD1[31:0]	Ι	第一个操作数
RD2[31:0]	Ι	第二个操作数
OPCode[5:0]	Ι	指令类型
Branch	О	是否跳转

4. 执行

1) 模块规格 E_unit. v

表 4-1 端口说明

信号	方向	描述
IRE[31:0]	I	

PC4E[31:0]	I	
RSE[31:0]	I	
RTE[31:0]	Ι	
EXTE[31:0]	Ι	
Clk	Ι	时钟信号
Reset	Ι	复位信号
IRM[31:0]	0	
PC4M[31:0]	0	
AOM[31:0]	0	
RTM[31:0]	0	
Forward_RS_E_src[2:0]	Ι	转发 MUX 控制信号
Forward_RT_E_src[2:0]	Ι	转发 MUX 控制信号
AO[31:0]	Ι	
PC4_forw_M[31:0]	Ι	
W_RF_WD_OUT[31:0]	Ι	

2) 计算单元 alu_E. v

表 4-2 端口说明

信号	方向	描述
SrcA[31:0]	Ι	A
SrcB[31:0]	Ι	В
ALUOp[2:0]	I	运算类型
Shift[4:0]	I	移位
ALUresult[31:0]	0	

表 4- 3 功能定义

功能	ALUOp[2:0]	描述
Nop	000	0
Add	001	A+B
Sub	010	A-B
And	011	A&B
Or	100	AB
Xor	101	A^B
Le	110	A <b< td=""></b<>
В	111	В

5. 访存

1) 模块规格 M. v

表 5-1 端口说明

信号	方向	描述
----	----	----

IRM[31:0]	I	
PC4M[31:0]	I	
AOM[31:0]	I	
RTM[31:0]	I	
Clk	I	时钟信号
Reset	I	复位信号
IRW[31:0]	0	
PC4W[31:0]	0	
AOW[31:0]	0	
DRW[31:0]	0	
Forward_RT_M_src[2:0]	I	转发 MUX 控制信号
W_RF_WD_OUT[31:0]	I	

2) 数据寄存器 dm. v

表 5-2 端口说明

信号	方向	描述
Addr[11:2]	I	数据地址
WD[31:0]	I	待写入数据
WE	I	写使能信号
Clk	I	时钟信号
Reset	I	复位信号
LStype	I	存取类型
Instr	I	存取指令地址
RD[31:0]	0	数据

表 5-3 功能定义

功能	描述
复位	复位信号有效时, dm 同步复位于 0x0000_0000

6. 写回

1) 模块规格 W_unit. v

表 6-1 端口说明

信号	方向	描述
IRW[31:0]	I	
PC4W[31:0]	I	
AOW[31:0]	I	
DRW[31:0]	I	
W_RF_A3_OUT[4:0]	0	写回寄存器编号
W_RF_WD_OUT[31:0]	0	写回数据
RegWrite	0	

二、控制器设计

1. 控制单元 ctrl. v

表 1-1 端口说明

信号	方向	描述
OPCode[31:26]	I	
FunctCode[5:0]	I	
NPCsrc	0	下一指令地址来源
PCsrc[1:0]	0	指令跳转方式
ExtOp@D[1:0]	0	立即数扩展方式
ALUSrc@E	0	ALU 第二操作数来源
ALUOp@E[2:0]	0	ALU 运算方式
MemWrite@M	0	数据存储器写使能信号
RegDst@W[1:0]	0	待回写寄存器地址来源
MemtoReg@W[1:0]	0	待回写数据来源
RegWrite@W	0	寄存器写使能信号
LStype	0	主存读写方式

表 1-2 R型指令功能定义

Funct	000000	001000	001001	100001	100011	101010
OpCode	000000	000000	000000	000000	000000	000000
	nop	jr	jalr	addu	subu	slt
NPCsrc@F	00	11	11	00	00	00
PCsrc@D[1:0]	X	X	X	X	X	X
ExtOp@D[1:0]	XX	XX	XX	XX	XX	XX
ALUSrc@E	X	0	0	0	0	0
ALUOp@E[2:0]	XXX	100	100	001	010	110
MemWrite@M	0	0	0	0	0	0
RegDst@W[1:0]	XX	XX	10	00	00	00
MemtoReg@W[1:0]	XX	XX	10	00	00	00
RegWrite@W	0	0	1	1	1	1

表 1-3 | 型指令功能定义

OpCode	000100	001001	001101	001111	100011	101011
	beq	addiu	ori	lui	lw	sw
NPCsrc@F	10	00	00	00	00	00
PCsrc@D[1:0]	0	X	X	X	X	X
ExtOp@D[1:0]	XX	01	00	10	01	01
ALUSrc@E	0	1	1	1	1	1
ALUOp@E[2:0]	010	001	100	111	001	001
MemWrite@M	0	0	0	0	0	1

RegDst@W[1:0]	XX	01	01	01	01	XX
MemtoReg@W[1:0]	XX	00	00	00	01	XX
RegWrite@W	0	1	1	1	1	0

表 1-4J型指令功能定义

OpCode	000010	000011
	j	jal
NPCsrc@F	01	01
PCsrc@D[1:0]	1	1
ExtOp@D[1:0]	xx	XX
ALUSrc@E	X	X
ALUOp@E[2:0]	xxx	xxx
MemWrite@M	0	0
RegDst@W[1:0]	xx	10
MemtoReg@W[1:0]	xx	10
RegWrite@W	0	1

2. 冲突单元 Hazard_unit. v

表 2-1 端口说明

信号	方向	描述
IRD[31:0]	I	D级流水线寄存器指令
Clk	I	时钟信号
Reset	I	复位信号
PauseF	0	
PauseD	0	
ClearE	0	
Forward_RS_D_src[2:0]	0	
Forward_RT_D_src[2:0]	0	
Forward_RS_E_src[2:0]	0	
Forward_RT_E_src[2:0]	0	
Forward_RT_M_src[2:0]	0	

3. AT 解码器

表 3- 1 端口说明

信号	方向	描述
Instr[31:0]	I	D级流水线寄存器指令
RS[4:0]	0	第一个读寄存器编号,如不
		需要则为0
RT[4:0]	0	第二个读寄存器编号,如不

		需要则为0
WR[4:0]	0	写寄存器编号,如不需要则
		为 0
Instype[3:0]	0	指令类型

4. 不确定写寄存器控制单元

信号	方向	描述
DJ_E	I	E 级流水线寄存器(D 信号)
DJ_M	0	M 级流水线寄存器(D 信号)
DJ_W	0	₩级流水线寄存器(D信号)
EJ_M		
EJ_W		
MJ_W		

三、 测试程序

```
.text
# init
addiu $t0, $0, 10
addiu $t1, $0, 11
# cal_r
addu $s0, $t0, $t1
addu $s1, $s0, $t0 # r_e_rs
addu $s2, $s0, $s1 # r_e_rt, r_m_rs
addu $s3, $s0, $s1 # r m rt, r w rs
addu $s4, $s3, $s1 # r_w_rt
addiu $s0, $t0, 11
subu $s1, $s0, $t1 # i_e_rs
subu $s2, $s0, $t1 # i m rs
subu $s3, $s0, $t1 # i w rs
addiu $s0, $t1, 20
subu $s1, $t1, $s0 # i e rt
subu $s2, $t1, $s0 # i_m_rt
subu $s3, $t1, $s0 # i w rt
sw $s0, 0x00000000
sw $s1, 0x0000004
sw $s2, 0x0000008
sw $s3, 0x000000c
```

```
lw $s4, 0x00000000
slt $s5, $s4, $t0 # load e rs
slt $t6, $s4, $t0 # load m rs
slt $t7, $s4, $t0 # loadw rs
lw $s4, 0x00000004
slt $s5, $t0, $s4 # load_e_rt
slt $s6, $t0, $s4 # load m rt
slt $s7, $t0, $s4 # load_w_rt
jal mark1
   addu $s0, $t0, $ra # jal_e_rt
   addu $t2, $s1, $ra
mark1:
addu $s1, $t0, $ra # jal_m_rt
addu $s2, $t0, $ra # jal w rt
jal mark2
   addu $s0, $t1, $ra # jal e rs
   addu $t3, $s1, $ra
mark2:
addu $s1, $ra, $t1 # jal_m_rs
addu $s2, $ra, $t1 # jal_w_rs
jal mark3
   addu $s1, $t0, $ra # jalr m rt
   addu $s2, $t0, $ra # jalr w rt
   j mark5
   nop
mark3:
jalr $ra
addu $s0, $t0, $ra # jalr e rt
mark5:
jal mark4
   addu $s4, $t0, $ra # jalr_m_rs
   addu $s5, $t0, $ra # jalr w rs
mark4:
jalr $ra
addu $s3, $t0, $ra # jalr e rs
ori $s0, $0, 0
ori $s1, $0, 0
ori $s2, $0, 0
ori $s3, $0, 0
ori $s4, $0, 0
ori $s5, $0, 0
ori $s6, $0, 0
```

```
ori $s7, $0, 0
ori $t2, $0, 0
# cal i
addu $s0, $t0, $t1
addiu $s1, $s0, 1 # r e
addiu $s2, $s0, 2 # r_m
addiu $s3, $s0, 3 # r w
lui $s3, 5
addiu $s4, $s3, 4 # i_e
addiu $s5, $s3, 5 # i m
addiu $s6, $s3, 6 # i w
lw $s0, 0x0000000
ori $s1, $s0, 0x00000020 # load_e
ori $s2, $s0, 0x00000020 # load m
ori $s3, $s0, 0x00000020 # load_w
jal mark6
   sw $ra, 0x00000010 # jal e
   addiu $t2, $ra, 100
mark6:
sw $ra, 0x00000004 # jal m
sw $ra, 0x00000008 # jal w
jal mark7
nop
   addiu $s2, $s0, 2 # jalr_m
   addiu $s3, $s0, 3 # jalr w
   j mark8
   nop
mark7:
jalr $s0, $ra
addiu $s1, $s0, 1
mark8:
ori $s0, $0, 0
ori $s1, $0, 0
ori $s2, $0, 0
ori $s3, $0, 0
ori $s4, $0, 0
ori $s5, $0, 0
ori $s6, $0, 0
ori $s7, $0, 0
ori $t2, $0, 0
# b
addu $s0, $t0, $t1
```

```
addu $s1, $t0, $s0
beq $s0, $s1, mark9 # r m rs, r e rt
   nop
   ori $t3, $0, 1
mark9:
ori $s0, $0, 0
ori $s1, $0, 0
addu $s0, $t0, $t1
nop
addu $s1, $t0, $s0
beq $s1, $s0, mark10 # r_e_rs, r_w_rt
   nop
   ori $t3, $0, 1
mark10:
ori $s0, $0, 0
ori $s1, $0, 1
addu $s0, $t0, $t1
addu $s1, $t0, $t1
nop
beq $s0, $s1, mark11 # r_w_rs, r_m_rt
   nop
   ori $t3, $0, 1
mark11:
ori $s0, $0, 0
ori $s1, $0, 0
ori $s0, $0, 1
ori $s1, $0, 2
beq $s0, $s1, mark12 # i m rs, i e rt
   nop
   ori $t3, $0, 1
9@00003000: $ 8 <= 0000000a
11@00003004: $ 9 <= 0000000b
13@00003008: $16 <= 00000015
15@0000300c: $17 <= 0000001f
17@00003010: $18 <= 00000034
19@00003014: $19 <= 00000034
21@00003018: $20 <= 00000053
23@0000301c: $16 <= 00000015
25@00003020: $17 <= 0000000a
27@00003024: $18 <= 0000000a
29@00003028: $19 <= 0000000a
31@0000302c: $16 <= 0000001f
33@00003030: $17 <= ffffffec
```

```
35@00003034: $18 <= ffffffec
37@00003038: $19 <= ffffffec
37@0000303c: *00000000 <= 0000001f
39@00003040: *00000004 <= ffffffec
```

41@00003044: *00000008 <= ffffffec 43@00003048: *0000000c <= ffffffec

43@00003048: *0000000c <= ffffffec 47@0000304c: \$20 <= 0000001f 51@00003050: \$21 <= 00000000 53@00003054: \$14 <= 00000000 55@00003058: \$15 <= 00000000 57@0000305c: \$20 <= ffffffec

61@00003060: \$21 <= 00000001 63@00003064: \$22 <= 00000001 65@00003068: \$23 <= 00000001

67@0000306c: \$31 <= 00003074 69@00003070: \$16 <= 0000307e 71@00003078: \$17 <= 0000307e

73@0000307c: \$18 <= 0000307e 75@00003080: \$31 <= 00003088

77@00003084: \$16 <= 00003093 79@0000308c: \$17 <= 00003093 81@00003090: \$18 <= 00003093

83@00003094: \$31 <= 0000309c 85@00003098: \$17 <= 000030a6

87@000030a8: \$31 <= 000030b0 89@000030ac: \$16 <= 000030ba 91@0000309c: \$18 <= 000030ba

97@0000309c: \$18 <= 000030ba 97@000030b0: \$31 <= 000030b8 99@000030b4: \$20 <= 000030c2 101@000030bc: \$31 <= 000030c4

103@000030c0: \$19 <= 000030ce 105@000030b8: \$21 <= 000030ce 107@000030bc: \$31 <= 000030c4

109@000030c0: \$19 <= 000030ce 111@000030c4: \$16 <= 00000000

113@000030c8: \$17 <= 00000000

115@000030cc: \$18 <= 00000000 117@000030d0: \$19 <= 00000000

119@000030d4: \$20 <= 00000000

121@000030d8: \$21 <= 00000000 123@000030dc: \$22 <= 00000000

125@000030e0: \$23 <= 00000000 127@000030e4: \$10 <= 00000000

129@000030e8: \$16 <= 00000015

131@000030ec: \$17 <= 00000016 133@000030f0: \$18 <= 00000017 135@000030f4: \$19 <= 00000018 137@000030f8: \$19 <= 00050000 139@000030fc: \$20 <= 00050004 141@00003100: \$21 <= 00050005 143@00003104: \$22 <= 00050006 145@00003108: \$16 <= 0000001f 149@0000310c: \$17 <= 0000003f 151@00003110: \$18 <= 0000003f 153@00003114: \$19 <= 0000003f 155@00003118: \$31 <= 00003120 155@0000311c: *00000010 <= 00003120 157@00003124: *00000004 <= 00003120 159@00003128: *00000008 <= 00003120 163@0000312c: \$31 <= 00003134 167@00003144: \$31 <= 0000314c 169@00003148: \$17 <= 0000314d 171@00003134: \$18 <= 0000314e 173@00003138: \$19 <= 0000314f 179@0000314c: \$16 <= 00000000 181@00003150: \$17 <= 00000000 183@00003154: \$18 <= 00000000 185@00003158: \$19 <= 00000000 187@0000315c: \$20 <= 00000000 189@00003160: \$21 <= 00000000 191@00003164: \$22 <= 00000000 193@00003168: \$23 <= 00000000 195@0000316c: \$10 <= 00000000

思考题

	测试类型	뎉	cal_r	cal_i	b	load	store	jr	jalr
前序	冲突	冲突寄	测试	测试	测试	测试	测试	测试	测试
类型	阶段	存器	序列	序列	序列	序列	序列	序列	序列
cal_r	Е	rs							
cal_r	Е	rt							
cal_r	М	rs							
cal_r	М	rt							
cal_r	W	rs							
cal_r	W	rt							
cal_i	Е	rs							
cal_i	Е	rt							
cal_i	М	rs							

cal_i	М	rt				
cal_i	W	rs				
cal_i	W	rt				
load	Е	rs				
load	Ш	rt				
load	Μ	rs				
load	Μ	rt				
load	W	rs				
load	W	rt				
jal	Е	rs				
jal	Е	rt				
jal	М	rs				
jal	М	rt				
jal	W	rs				
jal	W	rt				
jalr	Ш	rs				
jalr	Е	rt				
jalr	М	rs				
jalr	М	rt				
jalr	W	rs				

除了部分不需要读第二个寄存器的指令以外,上表中每格基本都代表一种冲突。比如第一行第一格表示 cal_r 指令在 D 级时,若 E 级有 cal_r 指令,且后者 rd 值与前者 rs 值相等则会引发冲突。流水线多条指令冲突转发优先级的问题还没有测试全面。

	D		E					M
type	register	Tuse	cal_i	cal_r	load	jalr	jal	load
			1/rt	1/rd	2/rt	0/rd	0/\$31	1/rt
cal_i	rs	1			stall			
cal_r	rs/rt	1			stall			
beq	rs/rt	0	stall	stall	stall			stall
load	rs	1			stall			
store	rs	1			stall			
store	rt	2						
jr	rs	0	stall	stall	stall			stall
jalr	rs	0	stall	stall	stall			stall