Lectime 12 Oxthe Ocelepiral dorrains.

Lenung 10.4: Let $x \neq 0 \in O_{\xi}$. Then $(x) = \prod_{\substack{p \neq 0 \\ p \text{ in ideal}}} p^{V_{p}(x)}$

Prof.: $\times O_{K,(p)} = (p O_{K,(p)})^{(p)}$ by definition of $V_p(x)$. Lemma Jollans from property localization:

I= J(=) $IO_{K,0}$ = $JO_{K,0}$ V prime ideals PD1V Station: O_{F} D excepted domain, L/K finite Separable externion, $P \subseteq O_{L}$, $P \subseteq O_{K}$ non zero

pine deals. Ne mite PIp if pOL=?....?, P + 4P, ..., Pr) (e:>0).

Theorem 10 5: Let O_K be a Dedepind domain and L a finite separable extension of $K = Frac(O_K)$.

For p a non-zero prime ideal of O_K , we write $O_K = P_1^e$. Then the absolute values on L extending $| \cdot \cdot |_{P_1}$ (up to equivalence) are precisely $| \cdot \cdot |_{P_1}$, ..., $| \cdot \cdot |_{P_2}$.

i=1,..., v, we have $v_p(x) = e_i v_p(x)$. Hence, up to equivalence, $|\cdot|_p$, extends $|\cdot|_p$. Now suppose $|\cdot|$ is an abs. value on $|\cdot|_p$ extends $|\cdot|_p$. extending $|\cdot|_p$. Then $|\cdot|_p$ is bounded on $\mathbb Z$ and hence $|\cdot|_p$ is non-archimedeen.

Let $R = \{x \in L \mid |z| \leq 1\} \subseteq L$ be the valuation ring for L w.r.t. $|\cdot|$. Then $O_K \subseteq R$, and since R is integrally closed (Lemm 6.8), we have $O_L \subseteq R$. Set $P := \{x \in O_L \mid |x| < 1\}$.

= MR 1 OL wax. ideal in R.

=7 P aprine ideal in O_{C-} van-zero sine O = PThen $O_{L,(p)} = R$, sine $S \in O_L \setminus P = P \mid S \mid = 1$. But $O_{L,(p)}$ is a $D \lor R$, hence a maximal subring of $L = P O_{L,(p)} = R$.

3 Henre 11 is equiv. to 11p.

Since | | extends | | lp, $P \cap Q_K = P$ => $P_r^{e_1} \cdot P_r^{e_r} \subseteq P$ => $P = P_r^{e_r}$ some i,

Let Hammber field it o: K - Ik, C is a real of complex embedding, then x 1-> 16(x) lo defines

an abs. value on K (6x. Abed 2) denoted by 1.10 Corollary 10.6: Let K be a number field with ring of integers Ox. Then any absolute value on K is equivalent to either (i) 1.10 for some non-zero prime ideal of Ox. 3(ii) 1.10 for some o: K -> 1R, C

Prof: Case 1: 1.1 non-archimedeas

Then 1.1/Q is equivalent to

1.1p for some prime p by Ostronski's

theorem. Theorem 10.5 then implies 1.1

is equiv. to 1.1p for p a prime of Okalinding p.

4 Case 2: 1.1 arehinedeen: Ex shoot 2. D

3 Completions

Ox Decleterial dornous, L/K fruite separable
Let p a prime of Ox and P a prime of OL s.t.
P divides p. We write Kp and Lp for the
completions of K and L cv.r.l. the absolute values
defined by 1/p and 1/p respectively.

Lemma 10.7:

(i) The natural map L® Kp → Lp is surjective. (ii) [Lp: Kp] ≤ [L: K] Proof: Let $M := L K_{p} \subseteq L_{p}$. Then M is a finite extension of K_{p} and $[M: K_{p}] \subseteq [L: K]$. Moreover Thun 6.1 M is complete, and since $L \subseteq M \subseteq L_{p}$, we have $M = L_{p}$.

Lemma 10.8: (Chinese remainder theorem)

Let R be a ring. Let $I_1, ..., I_n \subseteq R$ be ideals st. $I_i + I_j = R$ $\forall i \neq j$. Then

(i) $\hat{I}_i I_i = \hat{I}_i I_i (= I \text{ say})$.

(ii) R/1 = 1 R/1.

Proof: Exemple Sheet 2

Theorem 10.9: The natural map $L\otimes_{K}K_{p} \xrightarrow{\longrightarrow} TT L_{p}$ is an i.so. Proof: Write $L=K(\alpha)$ and let $f(x) \in K[x]$ be the minimal polynomial of α . Then we have $f(x) = f_{r}(x) \dots f_{r}(x)$ in $K_{p}[x]$

D

where $f: (x) \in K_p [x]$ are distinct irreducible. (sepon) Since L = K[x]/f(x), we have

LOKED \cong $K_{\rho}[x]_{f(x)}$ $\stackrel{CRT}{=}$ $\stackrel{\Gamma}{=}$ $K_{\sigma}[xc]_{fi(x)}$ Set $L_i := K_{\sigma}[x]_{f_i(x)}$ a finite extension of K_{σ} . Then L_i contains both L and K_{σ} (use $K[xJ]_{f(x)} \hookrightarrow K_{\sigma}^{[x]}_{f_i(x)}$ injective sine morphisms of fields). Morever 1 is dense inside L_i . [Indeed since K's dense inside Kp, can approximate coefficients of an element of $K_p(x)_{f(x)}$ with an element of K[x]/f(x).

The theorem follows from the following three lains.

- (1) L:= Lp for some prime P of OL dividing p.
- (2) Each p appears at most once.
- (3) Each Pappears at least once. Post of claims:
- (1) Since [Li: Ko] < 00, there is a unique abs. value 1.1 on Li extending 1.1p. Theorem 10 S => 1.1 L equiv. to. 1.1p for some PIp. Since L is dense in L and Li is complete, we have Li = Lp.
- (2) Suppose $f:L_i \cong L_j$ is an isomorphism presenting L and K_p , then $f:K_p[x]_{f:C(x)} \xrightarrow{--} K_p[x]_{f:C(x)}$ takes x to x and hence f:C(x) = f:C(x) = 0.
- (3) By Lemma 10.7, there map Tp: LOKKp-Lp is surjective for any P/p. Since Lp is a field Tp factors through L; for some i, and hence Li=Lp by serjectivity of Tp (lema 10.7) to

Eg. K=Q, L=Q(i), f(x)=X²+1, Hensel=>1-1+Ds hence Q(S) splits in Q(i), i.e. SOL=P, P2.