Beispiel	Definition
Schwache aber nicht stark konvergente Folge, auch nicht schwach konvergente Folge	gleichmäßig konvex
DGL II B	DGL II B
DEFINITION	Definition
Steitigkeitbegriffe	Monotoniebegriffe
DGL II B	DGL II B
Browder-Minty Seien V ein reeller reflexiver separabler Banach-Raum und $A: V \to V^*$ monoton, radialstetig und koerzitiv. Dann ist A surjektiv. Die Lösungsmenge ist konvex und abgeschlossen. Ist A strikt monoton, so ist A bijektiv.	Zusammenhang der Stetigkeitsbegriffe I: • verstärkte Stetigkeit impliziert Kompaktheit (reflex). • Kompaktheit impliziert Stetigkeit. • Stetigkeit impliziert Demistetigkeit. • Demistetigkeit impliziert Hemistetigkeit (reflex). • Hemistetigkeit impliziert Radialstetigkeit.
LEMMA DGL II B	DGL II B
Seien die Voraussetzungen des Satzes von Browder-Minty erfüllt. Dann gilt 1. Ist A sogar stark monoton, so ist A ⁻¹ Lipschitz-stetig. 2. Ist A sogar stark monoton und Lipschitz-stetig, so ist A ⁻¹ stark monoton. DGL II B	Seien die Voraussetzungen des Satzes von Browder-Minty erfüllt. Dann gilt: Ist A sogar strikt monoton, so ist A^{-1} strikt monoton, beschränkt und demistetig.
Lemma	Definition
Korollar zum Fixpunktsatz von Brouwer	Pseudomonotonie
DGL II B	DGL II B

Ein Banach-Raum X heißt gleichmäßig~konvex wenn

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \|x - y\| \geqslant \varepsilon \implies \frac{\|x + y\|}{2} \leqslant 1 - \delta \ \forall \|x\|, \|y\| \leqslant 1.$$

Gleichmäßige Konvexität sagt aus, dass zwei Vektoren der Einheitskugel einander nahe sein müssen, wenn deren Mittelpunkt nahe am Rand liegt.

Alle L^p -Räume, die SOBOLEV-Räume $\mathcal{W}^{m,p}$ für $p \in (1,\infty)$ und alle Innenprodukt-Räume (Parallelogramgleichung) sind gleichmäßig konvex. Gleichmäßig konvexe Räume sind reflexiv (Satz von MILMAN-PETTIS).

- monoton: $\langle Av Aw, v w \rangle \ge 0 \ \forall v, w \in V$.
- strikt monoton: $\langle Av Aw, v w \rangle > 0 \ \forall v \neq w \in V$.
- stark monoton: $\langle Av Aw, v w \rangle \geqslant \mu |v w|^2, \, \mu > 0.$
- gleichmäßig monoton: $\rho: \mathbb{R}_0^+ \to \mathbb{R}_0^+$ strikt monoton wachsend, $\rho(0) = 0: \langle Av Aw, v w \rangle \geqslant \rho(|v w|).$
- d-monoton: $\alpha : \mathbb{R}_0^+ \to \mathbb{R}_0^+$ strikt monoton wachsend: $\langle Av Aw, v w \rangle \ge (\alpha(|v|) \alpha(|w|))(|v| |w|) \ \forall v, w \in V$.
- koerzitiv: $\gamma: \mathbb{R}_0^+ \to \mathbb{R}, \ \gamma(z) \xrightarrow{z \to \infty} \infty: \langle Av, v \rangle \geqslant \gamma(|v|)|v|.$

Die Identität $\ell_1 \to \ell_{\infty}$ ist verstärkt stetig (ℓ_1 hat die SCHUR-Eigenschaft) aber nicht kompakt, da das Bild der ℓ_1 -Einheitskugel die Einheitsvektoren enthält, welche keine konvergente Teilfolge besitzen.

1. Sei $(u_n)_{n\in\mathbb{N}} \subseteq V$ beschränkt. Dann existiert eine schwach

- 1. Sei $(u_n)_{n\in\mathbb{N}}\subset V$ beschränkt. Dann existiert eine schwach konvergente Teilfolge $(u_{n'})_{n'\in\mathbb{N}} \to u \in V$. Aufgrund der verstärkten Stetigkeit folgt $Au_{n'} \to Au$.
- verstärkten Stetigkeit folgt $Au_{n'} \to Au$. 4. Seien $u, v, w \in V$ und $(t_n)_{n \in \mathbb{N}} \subset [0, 1]$ konvergent gegen $t \in [0, 1]$. Dann folgt $u + t_n v \to u + tv$ und $A(u + t_n v) \to A(u + tv)$ in V^* , da V reflexiv ist, also $A(u + t_n v) \xrightarrow{*} A(u + tv)$ in V^* , und daher insbesondere $\langle A(u + t_n v), w \rangle \to \langle A(u + tv), w \rangle$. 2, 3, 5 sind klar.

 $\langle A^{-1}f - A^{-1}g, f - g \rangle = \langle Au - Av, u - v \rangle > 0.$ Sei $F \subset V^*$ beschränkt. $\gamma(\|u\|)\|u\| \leqslant \langle Au, u \rangle = \langle f, u \rangle \leqslant \|f\|_* \|u\| \leqslant M \|u\|$. Nun folgt $\gamma(\|u\|) = \gamma(\|A^{-1}f\|) \leqslant M$. Wäre $A^{-1}F$ nicht beschr, $\exists (f_n)_{n \in \mathbb{N}} \subset F : \|A^{-1}f_n\| \to \infty$, aber dann

 $\gamma(\|A^{-1}f-n\|) \to \infty).$ Sei $(f_n = Au_n)_{n \in \mathbb{N}} \subset V^*$ konvergent gegen f in V^* . $(u_n = A^{-1}f)_{n \in \mathbb{N}} \subset V$ ist beschränkt $(A^{-1}$ monoton, d.h. lok. beschr.). $\exists u_{n'} \subset V$ mit $u_{n'} \to u \in V$. $\langle f - Av, u - v \rangle = \lim_{n' \to \infty} \langle f - Av, u_{n'} - v \rangle = \lim_{n' \to \infty} \langle Au_{n'} - Av, u_{n'} - v \rangle \ge 0$. Minty's Trick: $Au_n = f$ und somit $u_{n'} = A^{-1}f_n \to A^{-1}f = u$.

Ein Operator $A: V \to V^*$ heißt pseudomonoton, wenn aus $u_n \to u$ in V und $\limsup_{n\to\infty} \langle Au_n, u_n - u \rangle \leq 0$ folgt, dass $\langle Au, u - w \rangle \leq \liminf_{n\to\infty} \langle Au_n, u_n - w \rangle$ für alle $w \in V$ gilt.

 $\left(u_n \coloneqq \frac{\mathbb{1}_{(n,2n)}}{\sqrt{n}}\right)_{n \in \mathbb{N}} \subset L^2(\mathbb{R}) \text{ konvergiert nicht stark, da es keine Cauchy-Folge ist, betrachte } m \in 2\mathbb{N}, n \coloneqq \frac{3m}{2}, \text{ aber schwach gegen 0.}$ $\left(u_n(x) \coloneqq 2n(1-nx)\,\mathbb{1}_{\left[0,\frac{1}{n}\right]}\right)_{n \in \mathbb{N}} \subset L^1(0,1) \text{ konvergiert nicht mal schwach, da } \left\langle u_n, \mathbb{1} \right\rangle = 1 \text{ aber } \left\langle \varphi, u_n \right\rangle \to 0 \text{ für } \varphi \in \mathcal{C}_{\mathrm{c}}^{\infty}(0,1)$

- demistetiq: $v_n \to v$ in $V \implies Av_n \to Av$ in V^* .
- hemistetig: $[0,1] \ni t \mapsto \langle A(u+tv), w \rangle$ stetig $\forall u, v, w$.
- radialstetig: $[0,1] \ni t \mapsto \langle A(u+tv), v \rangle$ stetig $\forall u, v \in V$.
- verstärkt stetig: $u_n \to u$ in $V \implies Au_n \to Au$ in V^* .
- $schwach\text{-}schwach\text{-}stetig: v_n \rightarrow v \implies Av_n \rightarrow Av.$
- lokal beschränkt: um jeden Punkt $v \in V$ gibt es eine Umgebung, auf der A beschränkt ist.

Seien $u_1, u_2 \in V$ Lösungen $\theta \in [0, 1]$ und $u_\theta := \theta u_1 + (1 - \theta)u_2$. $\langle f - Av, u_\theta - v \rangle = \theta \langle Au_1 - Av, u_1 - v \rangle + (1 - \theta) \langle Au_2 - Av, u_2 - v \rangle \geqslant 0$, Für $v := u_\theta \pm \lambda w$, $\lambda \in (0, 1]$ gilt $\mp \mathsf{X} \langle f - A(u_\theta \pm \lambda w), w \rangle \geqslant 0$ und somit $\langle f - Au_\theta, w \rangle = 0$ für $\lambda \to 0$. (MINTY's Trick) Sei $(u_n)_{n \in \mathbb{N}} \subset V$ eine Folge von Lösungen $\to u \in V$. $\langle f - Av, u - v \rangle = \lim_{n \to \infty} \langle f - Av, u_n - v \rangle = \lim_{n \to \infty} \langle Au_n - Av, u_n - v \rangle \geqslant 0$, Minty. Satz von MAZUR. Angenommen, $u_1 \neq u_2$ sind zwei Lösungen von Au = f. Dann $0 < \langle Au_1 - Au_2, u_1 - u_2 \rangle = \langle f - f, u_1 - u_2 \rangle = 0$.

$$\begin{split} \|A^{-1}x - A^{-1}y\| &= \|u - v\| \leqslant \frac{\left\langle Au - Av, u - v \right\rangle}{\mu \|u - v\|} \overset{\text{CS}}{\leqslant} = \frac{1}{\mu} \|Au - Av\| \\ \left\langle A^{-1}x - A^{-1}y, x - y \right\rangle &= \left\langle Au - Av, u - v \right\rangle \overset{(\star)}{\geqslant} \mu \|u - v\|^2 \\ \overset{(\ddagger)}{\geqslant} \frac{\mu}{L} \|AA^{-1}x - AA^{-1}y\|^2 &= \frac{\mu}{L} \|x - y\|^2, \end{split}$$

Sei $h: \mathbb{R}^m \supset \overline{B}(0,R) \to \mathbb{R}^n$ stetig und erfülle $h(z) \bullet z \geqslant 0$ auf $\partial B(0,R)$, d.h. für alle $\|z\| = R$. Dann besitzt h eine Nullstelle. Die Abbildung $g: \overline{B}(0,R) \to \partial \overline{B}(0,R), \ z \mapsto -R\frac{h(z)}{\|h(z)\|}$ hat einen Fixpunkt: es existiert ein $z^* \in \overline{B}(0,R)$ mit $g(z^*) = z^*$. Dann gilt $\|z^*\| = R$ und

$$0 \le h(z^*) \bullet z^* = h(z^*)g(z^*) = -R \frac{h(z^*)^2}{\|h(z^*)\|} < 0,$$

was ein Widerspruch ist.

Äquivalente Charakterisierung	DEFINITION
Pseudomonotonie	Potential perator, Potential
DGL II B	DGL II B
Explizite Darstellung des Potenzials	$A:V\to V^* \text{ demistetig. TFAE: (I) } A \text{ ist Potenzial operator}$ (II) Für alle $x,y\in V$ und alle Wege von y nach x , d.h. alle $\gamma\in\mathcal{C}^1([0,1],V) \text{ mit } \gamma(0)=y \text{ und } \gamma(1)=x \text{ gilt}$ $\int_0^1 \langleA(tx),x\rangle - \langleA(ty),y\rangle\mathrm{d}t = \int_0^1 \langleA\gamma(t),\gamma'(t)\rangle\mathrm{d}t.$
$\Phi(v) = \Phi(0) + \int_0^1 \langle A(tv), v \rangle dt.$	(III) $\int_0^1 \langle A(tx), x \rangle - \langle A(ty), y \rangle dt = \int_0^1 \langle A(y+t(x-y)), x-y \rangle dt$. DGL II B
Existenz von Minimierern auf Kugeln I	Existenz von Minimierern auf Kugeln II
Seien $\Phi \colon V \to \mathbb{R}$ SFUS, V reflexiv, $K \subset V$ nichtleer, abgeschlossen , beschränkt und konvex. Dann existiert $v^* \in K$ mit $\Phi(v^*) = \min_{v \in K} \Phi(v)$. Die Menge der Minimierer ist schwach abgeschlossen.	Sei $\Phi:V\to\mathbb{R}$ SFUS, schwach koerzitives Funktional, $K\subset V$ nichtleer, abgeschlossen und konvex. Dann existiert ein Minimierer von Φ in K .
Φ konvex $\iff \Phi'$ monoton	Φ konvex \iff Φ' monoton
Sei A ein Potenzialoperator mit Potenzial Φ . TFAE: 1. Das Funktional Φ ist konvex. 2. Es gilt $\langle Av, v - w \rangle \geqslant \Phi(v) - \Phi(w)$ für alle $v, w \in V$. 3. Der Operator A ist monoton.	Zweiter Teil des Beweises (3) \implies (4), (1) \implies (4)
4. $\varphi: \mathbb{R} \to \mathbb{R}, \ t \mapsto \Phi(v+tw)$ konvex ("entlang Schnitte"). DGL II B	DGL II B
POTENTIAL EINES MONOTONEN OPERATORS IST SFUS	Minimierer sind Lösung der DGL
Jedes konvexe Gâteaux-differenzierbare $\Phi\colon V\to \mathbb{R} \text{ ist SFUS.}$	Seien $A: V \to V^*$ ein Potentialoperator mit Potential $\Phi: V \to \mathbb{R}$ und $f \in V^*$. Aus $\Phi(u) - \langle f, u \rangle = \min_{v \in V} \Phi(v) - \langle f, v \rangle$ folgt $Au = f$ in V^* .
DGL II B	Ist A monoton, gilt auch die Umkehrung.

Ein Operator $A: V \to V^*$ heißt Potenzialoperator, wenn eine Gâteaux-differenzierbares Potential $\Phi: V \to \mathbb{R}$ existiert, sodass $D\Phi(u;v) = \lim_{h \to 0} \frac{\Phi(u+hv) - \Phi(u)}{h} = \langle Au, v \rangle$

Seien $A:V\to V^*$ beschränkt sowie V reell, reflexiv und separabel. Dann ist A genau dann pseudomonoton, wenn aus $u_n \rightharpoonup u$ in V und $\limsup_{n \to \infty} \langle Au_n, u_n - u \rangle \leqslant 0$ folgt, dass $Au_n \rightarrow Au \text{ und } \langle Au_n, u_n \rangle \rightarrow \langle Au, u \rangle \text{ gilt.}$

für alle $u, v \in V$ gilt. (I) \Longrightarrow (II): Sei $\Phi \colon V \to \mathbb{R}$ ein Potenzial von A. $\int_0^1 \langle A(tv), v \rangle - \langle A(tw), w \rangle dt = \Phi(x) - \Phi(y) = \Phi(\gamma(1)) - \Phi(\gamma(0))$

Für $v \in V$ gilt $= \int_0^1 (\Phi \circ u)(t) dt \stackrel{(K)}{=} \int_0^1 \Phi'(u(t))u'(t) dt$ (III) \implies (I): $\Phi(v) := \int_0^1 \langle A(tv), v \rangle dt$ definiert Potenzial von A:

 $\frac{\mathrm{d}}{\mathrm{d}t}\Phi(tv) = \lim_{h \to 0} \frac{\Phi(tv + hv) - \Phi(tv)}{h} = \langle \Phi'(tv), v \rangle = \langle A(tv), v \rangle.$ Da $t \mapsto \frac{d}{dt}\Phi(tv)$ aufgrund der Radialstetigkeit von A stetig ist, folgt mit dem Hauptsatz durch Integration über [0,1] $\Phi(v) - \Phi(0) = \int_0^1 \langle A(tv), v \rangle dt.$

 $\frac{\Phi(v+hw)-\Phi(v)}{h}=\int_0^1 \big\langle A(t(v+hw)),v+hw \big\rangle - \big\langle A(tv),v \big\rangle \mathrm{d}t =: (\star)$ Mit x := v + hw und y := v folgt nach Voraussetzung $\lim_{h\to 0} (\star) \stackrel{(\mathrm{L})}{=} \int_0^1 \lim_{h\to 0} \frac{\langle \, A(v+thw), \not hw \, \rangle}{\not h} \, \mathrm{d}t = \int_0^1 \langle \, Av, w \, \rangle \, \mathrm{d}t = \langle \, Av, w \, \rangle \, .$

Für t > s gilt

und somit

 $\Phi(v+t(w-v))$. Dann gilt

Sei $w \in K$. Aufgrund der schwachen Koerzivität von Φ existiert ein R > 0, sodass für alle $z \in V$ mit ||z|| > Rdie Ungleichung $\Phi(z) \geqslant \Phi(w)$ gilt. Wähle nun R gegebenenfalls noch größer, sodass $w \in K_R := K \cap \overline{B}_R(0)$ gilt.

Sei $(u_n)_{n\in\mathbb{N}} \subset K$ eine Folge mit $\Phi(u_n) \xrightarrow{n\to\infty}$ $\inf_{v \in K} \Phi(v) =: d$. Da K beschränkt ist, ist es $(u_n)_{n \in \mathbb{N}}$ auch. Aufgrund der Reflexivität von V existiert eine schwach konvergente Teilfolge $(u'_n)_{n'\in\mathbb{N}}$ mit $u'_n\to u\in$ V. Nach dem Satz von Mazur ist K sogar schwach abgeschlossen, also gilt $u \in K$. Es gilt $d \leq \Phi(u) \leq$ $\lim \inf_{n'\to\infty} \Phi(u_{n'}) = d$ und somit $\Phi(u) = d \in \mathbb{R}$.

Die Menge K_R ist nichtleer, abgeschlossen, konvex und beschränkt. Nach einem Lemma existiert ein $v^* \in K_R \subset K$ mit $\Phi(v^*) = \min_{v \in K_R} \Phi(v) \leqslant \Phi(w) \leqslant \Phi(z)$ für alle $z \in K \backslash K_R$. Also gilt $\Phi(v^*) \leq \inf_{z \in K \setminus K_R} \Phi(z)$ und $v^* \in K$. Anwendung (K-Bestapproximation): $K = \text{Unterraum}, \Phi := \|\cdot - v\|$.

 $\Phi(v) \leqslant \liminf_{n \to \infty} \Phi(v_n) = \min_{w \in K} \Phi(w) \leqslant \Phi(v)$ (3) \Longrightarrow (4): Mit der Kettenregel folgt $\varphi'(t) = \langle \Phi'(v + tw), w \rangle$. (Ableitung monoton \implies konvex) $\varphi(t) - \varphi(s) = \langle A(v + tw) - A(v + sw), w \rangle$ $= \frac{1}{t-s} \left\langle A(v+tw) - A(v+sw), (v+tw) - (v+sw) \right\rangle \geqslant 0.$ (4) \implies (1): Seien $v, w \in V, \theta \in [0,1]$ und $\varphi : \mathbb{R} \to \mathbb{R}, t \mapsto$

 $-\langle Av, w - v \rangle = -\lim_{h \to 0} \frac{1}{h} \left(\Phi \left(v + h(w - v) \right) - \Phi(v) \right)$ $\stackrel{(1)}{\geqslant} - \lim_{h \to 0} \frac{1}{h} \left((1 - h) \Phi(v) + h \Phi(w) - \Phi(v) \right)$ $= -\lim_{h \to 0} \frac{1}{h} \Phi(w) - \Phi(v) = \Phi(v) - \Phi(w).$ $\langle Av - Aw, v - w \rangle = \langle Av, v - w \rangle + \langle Aw, w - v \rangle$

 $\geq \Phi(v) - \Phi(w) + \Phi(w) - \Phi(v) = 0.$

 $\Phi(u) - \Phi(u_n) \leqslant \langle \Phi'(u), u - u_n \rangle$

Sei $(u_n)_{n\in\mathbb{N}}\subset V$ eine Folge mit Grenzwert $u\in V$. Nach dem vorherigen Lemma (Variationsungleichung) gilt für alle $n \in \mathbb{N}$

und somit

 $\Phi(u) \leq \liminf_{n \to \infty} \Phi(u_n) + \langle \Phi'(u), u - u_n \rangle$

 $= \liminf_{n \to \infty} \Phi(u_n) + \lim_{n \to \infty} \langle \Phi'(u), u - u_n \rangle = \liminf_{n \to \infty} \Phi(u_n).$

 $0 = \lim_{h \to 0} \frac{1}{h} \left(\Phi(u + hw) - \langle f, u + hw \rangle - (\Phi(u) - \langle f, u \rangle) \right)$ $\stackrel{\text{(L)}}{=} \lim_{h \to 0} \frac{\Phi(u + hw) - \Phi(u)}{h} - \langle f, w \rangle = \langle Au - f, w \rangle.$ (2): Ist A monoton und Au = f, so folgt nach einem Lemma $\langle f, u - v \rangle = \langle Au, u - v \rangle \geqslant \Phi(u) - \Phi(v) \quad \forall v \in V,$

(1): Für $w \in V$ gilt $\frac{1}{h}(\Phi_f(u+hw) - \Phi_f(u)) \stackrel{(\leqslant)}{\geqslant} 0$ für $h \stackrel{(<)}{>} 0$

 $\Rightarrow \Phi(u) - \langle f, u \rangle \leq \Phi(v) - \langle f, v \rangle.$

 $\Phi((1-\theta)v + \theta w) = \Phi(v + \theta(w - v)) = \varphi(\theta) = \varphi((1-\theta) \cdot 0 + \theta \cdot 1)$

 $\leq (1 - \theta)\varphi(0) + \theta\varphi(1) = (1 - \theta)\Phi(v) + \theta\Phi(w).$

Motivation	Lemma
Young-Maße	Schwache Konvergenz und Mittelwerte
DGL II B	DGL II B
Beispiel	Beispiel
Konzentration der Masse (in 0) vs Oszillation	Young-Maß bei periodischer Oszillation
DGL II B	DGL II B
DEFINITION	Definition & Satz
Radon- und Wahrscheinlichkeitsmaß	C_0 und Riesz-Markov-Kakutani
DGL II B	DGL II B
Definition & Satz	Definition
$L^{\infty}_{w^*}(\Omega; M(\mathbb{R}))$, schwach*-messbar	Young-Maß
DGL II B	DGL II B
Satz	LEMMA
Hauptsatz über Young-Maße	Für den Erwartungswert eines Young-Maßes gilt $u(x) = \mathbb{E}[\nu_x]$
DGL II B	DGL II B

Sei $(u_n)_{n\in\mathbb{N}}\subset L^p(\Omega)$ beschränkt. Dann gilt $u_n\rightharpoonup u$ genau dann wenn die Mittelwerte stark konvergieren, d.h.

$$\frac{1}{|D|} \int_D u_n \, \mathrm{d}x \to \frac{1}{|D|} \int_D u \, \mathrm{d}x$$

für alle messbaren $D \subset \Omega$ gilt.

 $, \Longrightarrow$ ": Teste mit $v := \mathbb{1}_D$. $, \leftarrow$ ": Es gilt $\langle u_n - u, v \rangle \to 0$ für alle $v \in \text{span}(\{\mathbb{1}_D : D \subset \mathbb{1}_p \})$ Ω messbar), welcher dicht liegt.

Selbst in einem Hilbert-Raum gilt für eine schwach konvergente Folge $u_n \rightharpoonup u$ und eine nichtlineare Funktion f – auch wenn $f(u_n) \to v$ stark konvergiert – nicht v = f(u). Betrachte als Beispiel eine Orthonormalbasis u_n mit $u_n \rightarrow 0$ und $f := \| \cdot \|$. Dann gilt $f(u_n) = 1 \neq 0 = f(0)$.

Wir wollen also schwache Grenzwerte in einem gewissen Sinne verallgemeinern, um mehr über den Grenzwert b herauszufinden.

Haben $u_n \rightharpoonup u$, $Au_n \rightharpoonup b$, wir wollen Grenzwert identifizieren.

Für $u_n := n^{1/p} \mathbb{1}_{\left[0,\frac{1}{n}\right]} \subset L^p(\Omega)$ gilt $||u_n||_{0,p} = 1, u_n \to 0$ und

sogar $u_n \to 0$ fast überall, aber nicht $u_n \to 0$. $(\nu_x = \delta_{\{0\}} \text{ f.ü.})$

Für u(x) := h(x) - 2h(2x-1), wobei h die Heaviside funktion ist, definiere $u_n(x) := u(nx)$, wobei u 1-periodisch fortgesetzt

Wir wollen die Wahrscheinlichkeit messen, mit der ein Funk-

tionswert "im Grenzwert" angenommen wird. In diesem Fall ist das zugehörige Young-Maß, welches ein Wahrscheinlichkeitsmaß ist, dass diese Wahrscheinlichkeit modelliert, gegeben durch

 $\nu := \frac{\delta_{\{1\}} + \delta_{\{-1\}}}{2},$

wobei δ die Dirac-Funktion ist

Wir betrachten $C_0(\mathbb{R}) := \{ u \in C(\mathbb{R}) : u(x) \xrightarrow{|x| \to \infty} 0 \}$ mit der Supremumsnorm.

Dann gilt $\mathcal{M}(\mathbb{R}) \cong (\mathcal{C}_0(\mathbb{R}))^*$ via $\langle \mu, f \rangle_{\mathcal{M}(\mathbb{R}) \times \mathcal{C}_0(\mathbb{R})} := \int f \, \mathrm{d}\mu$.

Seien $\Omega \subset \mathbb{R}^d$ messbar und beschränkt, $(u_n : \Omega \to \mathbb{R})_{n \in \mathbb{N}}$ eine Folge messbarer Funktionen. Die Abbildung $\nu_{(\cdot)} \in$ $L_{w*}^{\infty}(\Omega;\mathcal{M}(\mathbb{R}))$ heißt von der Folge $(u_n)_{n\in\mathbb{N}}$ erzeugtes Young-

 $(f(\cdot, u_n))_n \rightharpoonup \overline{f}$ in $L^1(\Omega)$,

 $Ma\beta$, wenn $\nu_x \in \mathbb{P}(\mathbb{R})$ für alle $x \in \Omega$ gilt und für jede CA-

folgt, dass $\overline{f}(x) = \int_{\mathbb{R}} f(x,t) d\nu_x(t)$ fast überall gilt.

RATHEODORY-Funktion $f: \Omega \times \mathbb{R} \to \mathbb{R}$ aus

Sei $(u_n)_{n\in\mathbb{N}}\subset L^p(\Omega)$ für $p\in[1,\infty]$, sodass $u_n\rightharpoonup u$ für $p<\infty$ bzw $u_n \stackrel{*}{\rightharpoonup} u$ für $p = \infty$. Ist ν ein Young-Maß einer Teilfolge

von u_n so gilt $u(x) = \int_{\mathbb{R}} t d\mu_x(t)$ fast überall in Ω. Wegen $\sup_{n\in\mathbb{N}}\int_{\Omega}g(|u_n(x)|)\,\mathrm{d}x < \infty$ (konvergent \Longrightarrow in L^p beschr.) existiert eine Teilfolge $u_{n'}$ und ein zugehöriges Young-Maß. Ist ν nun ein beliebiges Young-Maß, so wählen wir die Caratheodory-Funktion f(x,t) := t. Dann gilt **(TODO:** $p = \infty$) $f(\cdot, u_{n'}) = u_{n'} \rightharpoonup u$ in $L^p(\Omega)$ und somit auch in $L^1(\Omega)$ (da Ω beschränkt ist). Nach dem Hauptsatz folgt $u(x) = \int_{\mathbb{R}} f(x, t) d\mu_x(t) = \int_{\mathbb{R}} t d\mu_x(t) = \mathbb{E}[\nu_x].$

Die Folge $u_n(x) := \sin(2\pi nx)$ ist beschränkt, sogar gleichmäßig: es gilt $||u_n||_{0,\infty} = 1$. (Die gleichmäßige Beschränktheit impliziert, dass es keinen Konzentrationseffekt geben kann.) Es gilt $u_n \to 0$ jedoch nicht $u_n \to 0$. Hier hat ν die Dichte $\frac{\arcsin(y)}{\pi} = \frac{1}{\pi\sqrt{1-t^2}}$ auf [-1,1], da wir "von der y-Achse auf die Funktion schauen". Also gilt für alle messbaren $A \subset [-1,1] \ \nu(A) = \frac{1}{\pi} \smallint_{A} \frac{1}{\sqrt{1-t^2}} \, \mathrm{d}t$

Sei $\mathcal{M}(\mathbb{R})$ der Vektorraum (Für die Vektorraumstruktur (sonst können wir keine Norm definieren) benötigen wir eigentlich auch signierte Maß, da aber Wahrscheinlichkeitsmaße nichtnegativ sind, ignorieren wir dies.) der beschränkten RADON-Maße auf R, wobei ein beschränktes Maß μ RADON-Maß heißt, wenn für alle $A \in \mathcal{B}(\mathbb{R})$ gilt $\mu(A) = \sup{\{\mu(K) : K \subset A \text{ kompakt}\}}.$ $\|\mu\|_{\mathcal{M}(\mathbb{R})} := \int d|\mu| = \sup_{(A_k)_{k=1}^N} \sum_{k=0}^N |\mu|(A)$, wobei die A_k eine paarweise disjunkte Ausschöpfung von \mathbb{R} sind. Es gilt $\mathbb{P}(\mathbb{R}) \subset$ $\mathcal{M}(\mathbb{R})$, wobei $\mathbb{P}(\mathbb{R})$ die W-Maße auf \mathbb{R} bezeichnet, und $\mu \in$ $\mathbb{P}(\mathbb{R}) \iff \|\mu\|_{\mathcal{M}(\mathbb{R})} = 1 \text{ und } \mu \geqslant 0 \text{ gilt.}$

wobei wir ν schwach*-messbar nennen, wenn die Abbildung

$$x \mapsto \int f \, \mathrm{d}\nu_x = \int_{\mathbb{R}} f(y) \, \mathrm{d}\nu_x(y)$$

 $L_{w^*}^{\infty}(\Omega; M(\mathbb{R})) := \{u : \Omega \to \mathcal{M}(\mathbb{R}) : u \in L^{\infty} \text{ ist schwach*-mb.}\},$

für alle $f \in \mathcal{C}_0(\mathbb{R})$ messbar ist.

Es gilt $(L^1(\Omega; \mathcal{C}_0(\mathbb{R})))^* \cong L_{w^*}^{\infty}(\Omega; \mathcal{M}(\mathbb{R})).$

Seien Ω und $(u_n)_{n\in\mathbb{N}}$ wie oben. Existiert eine stetige monoton wachsende Funktion $g:[0,\infty)\to\mathbb{R}$ mit $g(t)\xrightarrow{t\to\infty}\infty$ und (Ist $(u_n)_{n\in\mathbb{N}}$ in L^p beschränkt, wähle $g(t) := t^p$.

$$\sup_{n\in\mathbb{N}}\int_{\Omega}g(|u_n(x)|)\,\mathrm{d}x<\infty,$$

dann hat $(u_n)_n$ eine Teilfolge $u_{n'}$, welche ein Young-Maß erzeugt.

Satz	Satz
Dunford-Pettis	De la Vallée Poussin
DGL II B	DGL II B
Satz	Satz
Sir Ball	Pedregal
DGL II B	DGL II B
Definition Maßwertige Lösung DGL II B	Lemma: Zusammenhang der Monotoniebegriffe I 1. Gleichmäßige Monotonie impliziert strikte Monotonie. 2. Starke Monotonie impliziert gleichmäßige Monotonie. 3. Starke Monotonie impliziert d-Monotonie. 4. Starke Monotonie impliziert Koerzivität. 5. d-Monotonie impliziert Monotonie. DGL II B
LEMMA: ZUSAMMENHANG DER MONOTONIEBEGRIFFE II	Lemma: Zusammenhang der Monotoniebegriffe III
Monotonie impliziert lokale Beschränktheit.	Auf reflexiven Räumen implizieren Monotonie und Radialstetigkeit Demistetigkeit.
DGL II B	DGL II B
Definition	Definition
Eigenschaft (M)	Gâteaux-Differenzierbarkeit
DGL II B	DGL II B

Eine beschränkte Folge $(u_n)_{n\in\mathbb{N}}\subset L^1(\Omega)$ hat genau dann ein schwach konvergente Teilfolge wenn eine monoton wachsende Funktion $\psi: [0, \infty) \to [0, \infty)$ existiert mit $\frac{\psi(z)}{z} \xrightarrow{z \to \infty} \infty$, und $\sup_{n \in \mathbb{N}} \int_{\mathbb{R}} \psi(|u_n|) dx < \infty$.

 $\int_{A} |u_n| \, \mathrm{d}\lambda < \varepsilon \, \, \forall A \subset \Omega \text{ messbar}, \, \, \lambda(A) < \delta \, \, \forall n \in \mathbb{N}.$ gilt. Dies ist äquivalent zu

bar sind, d.h. für alle $\varepsilon > 0$ existiert ein $\delta > 0$ sodass

Eine beschränkte Folge $(u_n)_{n\in\mathbb{N}}\subset L^1(\Omega)$ hat genau dann ein

schwach konvergente Teilfolge, wenn u_n gleichgradig integrier-

 $\forall \varepsilon > 0 \ \exists M > 0 : \int_{\{x:|u_n(x)|>M\}} |u_n| \, \mathrm{d}\lambda < \varepsilon \ \forall n \in \mathbb{N}.$

Sei $(u_n)_{n\in\mathbb{N}}\subset L^p(\Omega)$ für $p\in[1,\infty)$. Dann gilt $u_n\rightharpoonup u$ in $L^p(\Omega)$ genau dann wenn gilt:

1. $(u_n)_{n\in\mathbb{N}}$ konvergiert schwach in $L^1(\Omega)$.

2. Das von $(u_n)_{n\in\mathbb{N}}$ erzeugte Young-Maß hat die Form $\nu_x = \delta_{u(x)}$ für ein $u \in L^p(\Omega)$.

Es gilt fast überall

 $\nu_x(A) = \lim_{\varepsilon \searrow 0} \lim_{n \to \infty} \frac{|\{y \in B(x,\varepsilon) : u_n(y) \in A\}|}{|B(x,\varepsilon)|},$

Das Dupel $(u, \nu_{(\cdot)}) \in V \times L^{\infty}_{w^*}(\Omega; \mathcal{M}(\mathbb{R}))$ heißt maßwertige

wobei | · | Volumen beschreibt.

1. und 2. sind klar.

3. Mit $(\triangle \neq)^{-1}$ sieht man $\alpha = \mu$ id.

4. Wähle $\gamma(x) = \mu x - ||A(0)||_*$.

 $trick \colon \mbox{für beliebige} \ v \in V \ \mbox{gilt}$

5. Folgt direkt aus der Monotonie von α .

 $\begin{cases} -(a(x, u'(x)))' = 0 & \text{in } (a, b), \\ u(a) = u(b) = 0 \end{cases}$ wenn für alle $v \in \mathcal{W}_0^{1,p}(a,b)$ und fast alle $x \in (a,b)$

 $\int_{-b}^{b} \int_{-a} a(x,t) d\nu_{x}(t) v'(x) dx = 0 \quad \text{und} \quad \int_{b}^{b} t d\nu_{x}(t) = u'(x)$

gilt. (Ist $\nu_x = \delta_{u'(x)}$, so ist u eine schwache Lösung.)

Lösung von

 $(u_n)_{n\in\mathbb{N}}\subset V\colon u_n\to u \text{ aber } \|Au_n\|_{\bigstar}\to\infty. \ \alpha_n\coloneqq 1+\|Au_n\|_{\bigstar}\|u_n-u\|\geqslant 1.$ $\frac{1}{\alpha_n}\left\langle Au_n,v\right\rangle\leqslant\frac{1}{\alpha_n}\left(\left\langle Au_n,v\right\rangle+\left\langle Au_n-A(u+v),u_n-(u+v)\right\rangle\right)$

 $=\frac{1}{\alpha_n}\left(\left\langle\,Au_n,u_n-u\,\right\rangle-\left\langle\,A(u+v),u_n-(u+v)\,\right\rangle\right)$

 $\leq \frac{1}{\alpha} (\|Au_n\|_{*}\|u_n - u\| + \|A(u+v)\|_{*}\|u_n - u - v\|)$ $\leq 1 + \frac{1}{\alpha} \|A(u+v)\|_{*} \|u_n - (u+v)\| \leq 1 + \frac{C}{\alpha_n} \|A(u+v)\|_{*}.$

Somit ist $\frac{1}{\alpha_n}\langle Au_n,v\rangle$ für alle $v\in V$ beschränkt. Nach BANACH-STEINHAUS $\exists M>0: \frac{1}{\alpha_n}\|Au_n\|_{\frac{\pi}{4}}\leqslant M$. Umstellen ergibt $\|Au_n\|_{\frac{\pi}{4}}\leqslant M(1+\|Au_n\|_{\frac{\pi}{4}}\|u_n-u\|)$ Da $u_n\to u$ gilt, $\exists N\in\mathbb{N}$, sodass $\|u_n-u\|\leqslant \frac{1}{2M}$ für alle n>N gilt. Dies ergibt jedoch $||Au_n||_* \leq M + \frac{1}{2} ||Au_n||_*$, also $||Au_n||_* \leq 2M$ für alle n > N, was einen Widerspruch darstellt.

Gilt $u_n \rightharpoonup u$ in V sowie $Au_n \rightharpoonup b$ in V^* und

 $\limsup_{n\to\infty} \langle Au_n, u_n \rangle \leqslant \langle b, u \rangle,$

dung. Existiert der Grenzwert

 $DF(x;y) := \lim_{h \to 0} \frac{F(x+hy) - F(x)}{h} = \frac{\mathrm{d}}{\mathrm{d}h} F(x+hy) \big|_{h=0},$

Seien X und Y normierte Räume und $F:X\to Y$ eine Abbil-

Sei $u_n \to u$. Wir zeigen $Au_n \rightharpoonup Au$ in V^* , d.h. $\langle Au_n - Au, v \rangle \to 0$ für alle $v \in V$, da wegen der Reflexivität von V schwach- und schwach*-Konvergenz

in V^* zusammenfallen. Da A linear und kompakt ist, ist er stetig und somit demistetig und somit lokalbeschränkt. Deswegen ist $(Au_n)_{n\in\mathbb{N}}\subset V^*$

beschränkt, also existiert wegen der Kompaktheit von A Teilfolge u_n' und ein $b \in V^*$, sodass $Au_{n'} \to b$ in V^* gilt. Wir zeigen nun b = Au mit Minty's

Daraus erhalten wir $\langle b, u-v \rangle \geqslant \langle Av, u-v \rangle \quad \forall v \in V$. Für t>0 und $w \in V$ setze v=u+tw. Dann gilt $-t\langle\,b,w\,\rangle\geqslant -t\langle\,A(u+tw),w\,\rangle$, also $\langle\,b,w\,\rangle\leqslant$ $\langle A(u+tw), w \rangle \xrightarrow[\text{radialst.}]{t \setminus 0} \langle Au, w \rangle \text{ Analog erhalten wir } \langle b, w \rangle \geqslant \langle Au, w \rangle \text{ für } t < 0 \text{ und somit } \langle b, w \rangle = \langle Au, w \rangle \text{ für alle } w \in V \text{ und somit } b = Au.$

 $= \left\langle \left. Av, u_{n'} - v \right. \right\rangle + \left\langle \left. Au_{n'}, v \right. \right\rangle \to \left\langle \left. Av, u - v \right. \right\rangle + \left\langle \left. b, v \right. \right\rangle.$

 $\langle \, b, u \, \rangle \leftarrow \langle \, Au_{n'}, u_{n'} \, \rangle \geqslant \langle \, Au_{n'}, u_{n'} \, \rangle - \langle \, Au_{n'} - Av, u_{n'} - v \, \rangle$

so folgt Au = b.

Pseudomonotone Operatoren besitzen die Eigenschaft (M).

so heißt er Gâteaux-Differential von F an der Stelle x in Richtung y. Ist die Abbildung $y \mapsto DF(x;y)$ linear und beschränkt, so heißt F Gâteaux-differenzierbar in x. Die Abbildung $F'(x) \in L(X,Y)$ definiert durch F'(x)y := DF(x;y)heißt Gâteaux-Ableitung von F in x. Wir betrachten oft $Y = \mathbb{R}$ und somit $F'(x) \in X^*$, $F'(x)y = \langle F'(x), y \rangle$.

Satz ohne Beweis	Korollar
Banach-Steinhaus	Jeder monotone Potenzialoperator ist demistetig
DGL II B	DGL II B
Lemma: Äq. Charakterisierung: Demistetigkeit	Beweis
Ein monotoner Operator $A \colon V \to V^*$ ist genau dann demistetig, wenn aus $\langle f - Aw, u - w \rangle \geqslant 0$ für alle $w \in V$ auch $Au = f$ folgt.	Browder-Minty für P-Operatoren I
DGL II B	DGL II B
Beweis	Beispiel
Browder-Minty für P-Operatoren II	Potenzial des p -Laplace
DGL II B	DGL II B
Beweis	Beweis
Satz von Brezis: Browder-Minty für Pseudomonotone Operatoren I	Browder-Minty für Pseudomonotone Operatoren II
DGL II B	DGL II B
Navier-Stokes-Gleichung	Navier-Stokes-Gleichung
Model and function spaces	Schwache Formulierung
DGL II B	DGL II B

$$\begin{split} & \text{F\"{u}r} \ t > 0, \, v \in V \ \text{und} \ \ddagger \coloneqq t \left< f, u - v \right> = \left< f, u - (u + t(v - u)) \right> \\ & \ddagger = \left< f, u - (u + t(v - u)) \right> \\ & \geqslant \left< A(u + t(v - u)), u - (u + t(v - u)) \right> \\ & = \left< A(u + t(v - u)), (u + t(v - u)) - (u + t(v - u) + v - u) \right> t \\ & \geqslant \left[\Phi(u + t(v - u)) - \Phi(u + t(v - u) + v - u) \right] \cdot t, \end{split}$$
 mit der Variationsungl. und äq. Charakterisierung. K\"{u}rzen. Φ "richtungsstetig" also $\left< f, u - v \right> \geqslant \lim_{t > 0} \Phi(u + t(v - u)) - H$

auch: Uniform Boundedness Principle. Seien X ein Banach-Raum, Y ein normierter Raum und $F \subset L(X,Y)$. $\sup_{T \in F} \|Tx\|_Y < \infty \ \forall x \in X \implies \sup_{T \in F} \|T\|_{L(X,Y)} < \infty.$

Jeder monotoner koerzitiver P-Operator $A: V \to V^*$ ist surjektiv.

 $\Phi(v + t(v - u)) = \Phi(u) - \Phi(v) \quad \forall v \in V.$ Dann zwei Lemma.

A ist radial stetig und hat A das Potenzial $\Phi(v):=\int_0^1 \langle A(tv),v\rangle \mathrm{d}t.$ Da A monoton ist, ist Φ konvex. Somit ist $\Phi_f(v):=\Phi(v)-\langle f,v\rangle$ SFUS, da Φ es bereits ist, und $\langle f,v\rangle$ sogar stetig ist. Es bleibt zu zeigen, dass Φ_f schwach koerzitiv ist. Dann existiert nämlich ein Minimierer $u\in V$ mit $\Phi_f(u)=\min_{v\in V}\Phi_f(v)$ und es folgt Au=f. " \Longrightarrow ": Minty's Trick, da Demi \Longrightarrow Radial.

" \hookleftarrow ": Sei $(u_n)_n \to u$. Monoton \Longrightarrow lok. beschr. Somit $(Au_n)_n$ beschr, d.h. $Au_{n'} \to f \in V^*$.

 $\langle f-Aw,u-w\rangle=\lim_{n\to\infty}\langle\,Au_n-Aw,u_n-w\,\rangle\geqslant 0$ und somit Au=f. TFP.

Betrachte $V := \mathcal{W}_0^{1,p}(\Omega)$ für p > 1 und $A : V \to V^*$, $\langle Au, v \rangle = \int_{\Omega} |\nabla u|^{p-2} \nabla u \cdot \nabla v \, dx$. Für alle $u, v \in V$ $\langle \Phi'(u), v \rangle = \lim_{h \to 0} \frac{1}{h} \left(\Phi(u + hv) - \Phi(u) \right)$ $= \lim_{h \to 0} \frac{1}{hp} \int_{\Omega} |\nabla (u + hv)|^p - |\nabla u|^p \, dx$ $= \lim_{h \to 0} \frac{1}{hp} \int_{\Omega} \int_{0}^{1} \frac{d}{ds} \left(|\nabla (u + shv)|^p \right) \, ds \, dx \qquad (FTOC)$ $= \lim_{h \to 0} \frac{1}{hp} \int_{\Omega} \int_{0}^{1} p \mathcal{K} |\nabla (u + shv)|^{p-2} \nabla (u + shv) \nabla v \, ds \, dx$ $\stackrel{(L)}{\in \mathbb{F}} \int_{0}^{1} \int_{\Omega} |\nabla (u)|^{p-2} \nabla u \nabla v \, dx \, ds = \langle Au, v \rangle.$

$$\begin{split} \Phi_f(v) &= \int_0^1 \left\langle A(tv), v \right\rangle \mathrm{d}t - \left\langle f, v \right\rangle \\ &= \int_0^1 \left\langle A(tv) - A(0), tv - 0 \right\rangle \frac{1}{t} \, \mathrm{d}t - \left\langle f - A(0), v - 0 \right\rangle \\ &\stackrel{(\star)}{\geqslant} \int_{\frac{1}{2}}^1 \left\langle A(tv) - A(0), v \right\rangle \mathrm{d}t - \left\langle f - A(0), v \right\rangle \\ &\geqslant \frac{1}{2} \left\langle A \left(\frac{v}{2} \right) - A(0), v \right\rangle - \left\langle f - A(0), v \right\rangle \\ &= \left\langle A \left(\frac{v}{2} \right), \frac{1}{2} v \right\rangle + \left\langle \frac{1}{2} A(0) - f, v \right\rangle \\ &\geqslant \gamma \left(\left\| \frac{v}{2} \right\| \right) \left\| \frac{v}{2} \right\| - \left\| \frac{1}{2} A(0) - f \right\|_{*} \|v\| \xrightarrow{\|v\| \to \infty} \infty, \end{split}$$

 (\star) : $t \mapsto \langle A(tv), v \rangle$ ist monoton, weil A monoton. Für $v \in V$

Es gilt $\langle Au^{(m')}, v^{(k)} \rangle \stackrel{(\star)}{=} \langle f, v^{(k)} \rangle \ \forall v^{(k)} \in V_k, \ k \leq m'.$ Mit $m' \to \infty$ folgt $\langle a, v^{(k)} \rangle = \langle f, v^{(k)} \rangle \ \forall v^{(k)} \in \bigcup_{j=1}^{\infty} V_j \subset V,$ welcher dicht liegt. Thus $\limsup_{m' \to \infty} \langle Au^{(m')}, u^{(m')} - u \rangle \stackrel{(\star)}{=} \limsup_{m' \to \infty} \left(\langle f, u^{(m')} \rangle - \langle Au^{(m')}, u \rangle \right) = 0.$ Für $w \in V$ gilt aufgrund der Pseudomontonie von A

 $\langle Au, u - w \rangle \leqslant \liminf_{m' \to \infty} \langle Au^{(m')}, u^{(m')}, w \rangle$ $= \liminf_{m' \to \infty} \left(\langle f, u^{(m')} \rangle - \langle Au^{(m')}, w \rangle \right) = \langle f, u - w \rangle.$

ratoren sind surjektiv. Wir suchen die Lösung $u^{(m)} \in V_m := \operatorname{span}((\varphi_k)_{k=1}^n)$ des endlich-dimensionalen Ersatzproblems $\langle Au^{(m)}, v^{(m)} \rangle = \langle f, v^{(m)} \rangle$ für alle $v^{(m)} \in V_m$. A ist demistetig und das Ersatzproblem ist für demistetige koerzitive Operatoren lösbar. Mit

Pseudomonotone, lokal beschränkte, koerzitive Ope-

 $\langle f, v^{(m)} \rangle$ für alle $v^{(m)} \in V_m$. A ist demistetig und das Ersatzproblem ist für demistetige koerzitive Operatoren lösbar. Mit der Beschränktheit von $(u^{(m)})_m \subset V$ und $(Au^{(m)})_m \subset V^*$ existiert eine Teilfolge $(u^{(m')})$ sowie $u \in V$ und $a \in V^*$ mit $u^{(m')} \to u$ in V und $Au^{(m')} \to a$ in V^* .

Zu $f \in V^*$ finde ein $u \in V$, sodass $a(u, v) + b(u, u, v) = \langle f, v \rangle$,

wobei

 $a(v,w) := \nu \int_{\Omega} (\nabla v) \cdot (\nabla w) \, \mathrm{d}x = \nu \sum_{i,j=1}^{d} \int_{\Omega} \frac{\partial}{\partial x_{j}} v_{i} \cdot \frac{\partial}{\partial x_{j}} w_{i}$

 $b(u,v,w) := \langle (u \cdot \nabla)v, w \rangle_{L^2(\Omega)^d} = \sum_{i,j=1}^d \int_{\Omega} \frac{\partial}{\partial x_i} v_i \cdot \partial x$

Sei $\Omega \subset \mathbb{R}^d$ ein beschränktes LIPSCHITZ-Gebiet. $V = \{v \in H_0^1(\Omega)^d : \nabla \cdot u = 0\},$ $H = \{v \in L^2(\Omega)^d : \nabla \cdot v = 0, \gamma_n v = 0\},$ wobei $\nabla v = 0$ für $v \in L^2$ bedeutet, dass $\int_{\Omega} v \cdot (\nabla \varphi) \, \mathrm{d}x = 0$ für alle $\varphi \in \mathcal{C}_0^\infty(\Omega)$ gilt. Für glattes v ist $\gamma_n v := (v \cdot n)|_{\partial\Omega}$, wobei n den $\ddot{a}u\beta eren$ Normalenvektor bezeichnet. Damit ist $V \subset H_0^1(\Omega)^d$ ein abge-

schlossener Unterraum.

 $\mathcal{V} := \{ v \in \mathcal{C}_0^{\infty} : \nabla \cdot v = 0 \}, \quad V := \overline{\mathcal{V}}^{\| \cdot \|_{H^1(\Omega)}}, \quad H := \overline{\mathcal{V}}^{\| \cdot \|_{L^2(\Omega)}}.$

Navier-Stokes-Gleichung	Navier-Stokes-Gleichung
Eigenschaften von b	Eigenschaften von A
DGL II B	DGL II B
Navier-Stokes-Gleichung	Navier-Stokes-Gleichung
Beweis der Existenz einer Lösung I	Beweis der Existenz einer Lösung II
DGL II B	DGL II B
Aussagen	LEMMA
Eigenschaften pseudomonotoner Operatoren	Pseudomonotonie, lokale Beschränktheit ⇒ Demistetigkeit
DGL II B	DGL II B
Lemma	Prüfungsfrage
Auf reflexiven Räumen implizieren Monotonie und Radialstetigkeit die Demistetigkeit des Operators A	Lax-Milgram mit Galerkin-Scheman beweisen
DGL II B	DGL II B
Lemma	
Pseudomonotone Operatoren besitzen die Eigenschaft (M)	
DGL II B	

Der Operator $a: V \times V \to \mathbb{R}$ ist wohldefiniert, linear, beschränkt, stark positiv und symmetrisch. Nach dem Satz von Lax-Milgram besitzt das stationäre imkompressible Navier-Stokes-Problem $(b(\cdot,\cdot,\cdot))$ wird vernachlässigt) genau ein "Geschwindigkeitslösung". Der Stokes-Operator $A: V \to V^*$ mit $\langle Av, w \rangle := a(v, w)$ existiert und ist ebenfalls linear, beschränkt, stark positiv und symmetrisch.

 $b: V \times V \times V \to \mathbb{R}$ ist wohldefiniert, beschränkt und bezüglich des zweiten und dritten Arguments schiefsymmetrisch, wobei $||v|| := ||v||_V := ||\nabla v||_{L^2(\Omega)^{d \times d}} = \left(\sum_{i = 1}^d \int_{\Omega} \left| \frac{\partial}{\partial x_i} v_j \right|^2 \mathrm{d}x \right)^{\frac{1}{2}},$ und b(u, v, w) = -b(u, w, v) für alle $u, v, w \in V$.

(1) Sei $(v_n)_{n\in\mathbb{N}}\subset V$ eine Folge mit $v_n\rightharpoonup v$ in V. Wir zeigen

 $Bv_n = B(v_n, v_n) \to Bv = B(v, v)$ in V^* . Betrachte für $w \in V$

 $= |b(v_n, v_n - v, w) + b(v_n - v, v, w)|$

 $\leq |b(v_n, v_n - v, w)| + |b(v_n - v, v, w)|$

 $\leq (c_1 + c_2) \|v_n\|_L^4 \|w\| \|v_n - v\|_{L^4}.$

Wir wenden Satz über verstärkt stetige Lösung an.

 $|\langle B(v_n, v_n) - B(v, v), w \rangle| = |b(v_n, v_n, w) - b(v, v, w)|$

 $b \colon L^{\alpha}(\Omega)^d \times W^{1,\beta}(\Omega)^d \times L^{\gamma}(\Omega)^d \to \mathbb{R} \text{ mit } \alpha,\beta,\gamma > 1 \text{ und}$

 $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$ ist multilinear und beschränkt.

Somit gilt

$$||Bv_n - Bv||_{V^*} = \sup_{w \in V \setminus \{0\}} \frac{|\langle Bv_n - Bv, w \rangle|}{||w||}$$

$$\leq (c_1 + c_2)(||v_n||_{L^4} + ||v||_{L^4})||v_n - v||_{L^4}$$

$$= \tilde{c}(||v_n|| + ||v||)||v_n - v||_{L^4}$$

für ein $\tilde{c} > 0$. Aus $V \stackrel{c}{\hookrightarrow} L^4$ folgt $||v_n - v||_{L^4} \to 0$. Letztlich ist $||v_n||$ beschränkt und somit folgt $||Bv_n - Bv||_{V^*} \to 0$. $(2) \langle Av + Bv, v \rangle = a(v, v) + b(v, v, v) = \nu ||v||_V^2.$

Sei $u_n \rightarrow u$ in V. Da A lokal beschränkt ist, ist

 $(Au_n)_{n\in\mathbb{N}}$ beschränkt. Somit existiert ein $b\in V^*$ und ei-

ne Teilfolge $(u_{n'})_{n'\in\mathbb{N}}$, sodass $Au_{n'} \rightarrow b$ gilt. Es folgt $\limsup_{n'\to\infty} \langle Au_{n'}, u_{n'} \rangle = \langle b, u \rangle$ und mit der Pseudomono-

tonie von A, welche die Eigenschaft (M) impliziert, Au = b.

Teilfolgenprinzip anwenden.

Seien V separabel, reflexiv, $A: V \to V^*$.

für $c_1, c_2 > 0$.

- 1. Monotonie und Radialstetigkeit ⇒ Pseudomonotonie.
- 2. Verstärkte Stetigkeit impliziert Pseudomonotonie $u_n \rightarrow$ u, dann $\liminf_{n\to\infty} \langle Au_n, u_n - w \rangle = \langle Au, u - w \rangle$.
- 3. Summen pseudomonotoner Op. sind pseudomonoton.

Lineare, beschränkte stark positive Operatoren $A: V \to V^*$ sind surjektiv.

 $Au_n, v \rangle \to 0$ für alle $v \in V$ zu zeigen. Da A monoton ist, ist er lokal beschränkt und somit existiert eine schwach konvergente Teilfolge $(u_{n'})_{n'\in\mathbb{N}}$ und $u_{n'}\to b\in V^*$. Es folgt $\langle b, u \rangle \leftarrow \langle Au_{n'}, u_{n'} \rangle \geqslant \langle Au_{n'}, u_{n'} \rangle - \langle Au_{n'} - Av, u_{n'} - v \rangle$ $\geqslant \langle Av, u-v \rangle + \langle b, v \rangle$

Sei $u_n \rightarrow u$. Aufgrund der Reflexivität genügt es, $\langle Au -$

Mit Minty's Trick folgt Au = b.

Mit Minty's Trick folgt Av = b.

 $v_n \rightharpoonup v \text{ in } V, Av_n \rightharpoonup 0 \text{ und } \limsup_{n \to \infty} Av_n, v_n \rangle \leqslant \langle b, v \rangle.$ $\langle b, v \rangle \geqslant \limsup_{n \to \infty} Av_n, v_n \rangle = \limsup_{n \in \mathbb{N}} \langle Av_n, v_n - v \rangle + \langle Av_n, v \rangle$ $= \limsup_{n \in \mathbb{N}} \langle Av_n, v_n - v \rangle + \langle b, v \rangle,$ d.h. $\langle\, Av_n, v_n - v\,\rangle \leqslant 0.$ Aufgrund der Pseudomonotonie folgt $\langle Av, v - w \rangle \leq \liminf_{n \to \infty} \langle Av_n, v_n - w \rangle = \liminf_{n \to \infty} \langle Av_n, v_n \rangle - \langle b, w \rangle$ $\leqslant \limsup \left\langle \, A v_n, v_n \, \right\rangle - \left\langle \, b, w \, \right\rangle = \left\langle \, b, v - w \, \right\rangle.$

Sei $(V_h)_h$ ein Galerkin-Schema in V. Das diskrete Ersatzproblem ist: find $u_h \in V_h$ sodass $\langle Au_h - f, v_h \rangle = 0$ für alle $v_h \in V_h$ gilt. A-priori-Abschätzung: $\mu \|u_h\|^2 \leqslant \langle Au_h, u_h \rangle =$ $\langle f, u_h \rangle \leqslant ||f||_* ||u_h||$. Da A linear und beschränkt ist, ist es schwach-schwach-stetig und somit folgt $Au_h \rightarrow Au$. Wende Teilfolgenprinzip an.