Practical Session 1: Assembly

July 29, 2016

1 Getting started

Start by downloading and running Jasmin-1.5.8.jar. Some documentation on the interface, as well as the language accepted by Jasmin (a relatively large subset of the x86 instruction set) can be found online at: http://wwwi10.lrr.in.tum.de/~jasmin/documentation.html.

2 Using data

This section will introduce how to manipulate, store and read data in assembly.

2.1 Registers and Memory

In assembly, you have access to the CPU registers as well as the memory. The ${\sf MOV}$ instruction can be used to move data around.

Start by storing some numbers in the different registers. For instance:

- 1. Store the integer 4 in the 32-bit **EAX** register
- 2. Store the integer 10 in the 32-bit **EBX** register
- 3. Store the integer 5 in the 16-bit CX register
- 4. Store the integer 2 in the 8-bit **DL** register

Observe how each 16-bit register (e.g. **AX**) can be extended to a 32-bit register (**EAX**) or divided in two 8-bit registers for the high-order bits (**AH**) and low-order bits (**AL**).

You can use 32-bit registers as memory address pointers using brackets: $[\mathsf{EAX}].$

Try to store the integer 25 in the memory address contained in **EAX** (i.e. 0x4).

2.2 The stack

The x86 instruction set provides facilities to use the stack. In Jasmin the stack is located at the end of the memory.

Try to **PUSH** some data on the stack and **POP** it into the **CX** register.

3 Performing computations

Write instructions to perform the following:

- 1. Add 4 to **EBX**.
- 2. Subtract the content of **EBX** from the integer located at the memory address stored in **EAX** (e.g. 0x4)
- 3. Multiply **EBX** by 8.
- 4. Divide CX by 7. The quotient must be stored in ECX and the remainder in EDX. EAX must be unchanged at the end of the operation (*hints*: use the stack to restore EAX and use an 8 bit register for the divider).

4 Control Flow

A simple if condition in x86 works in two steps:

- 1. First, compare two items between them.
- 2. Second, jump to a location in the code based on the result of the comparison.

Look up the **CMP** instruction as well as the conditional jump instructions (**JE**, **JNE**, **JZ**, ...) in the documentation of Jasmin or any x86 documentation of your choice.

Start by storing some example data we will use :

MOV [0xC], -35

Write a condition checking that the integer in address OxC is negative. If it is, multiply it by three. Otherwise, do nothing (hint: jump to a label to skip the multiplication if the number is positive.)

Writing a loop in assembly is not fundamentally different. To loop, you will simply jump to a label located before the conditional check.

MOV BX, 0x20 MOV CX, 0x70

Write a loop to generate a sequence of incrementing numbers starting from 0, in every address from the address in **EBX** up to the address in **ECX** (use 32-bit words). **EAX** and **EBX** must be unchanged after the operation.

5 AbsMean

We will now combine elements of the previous sections to write a small program that actually performs some computations.

Write a program that computes the mean of the absolute values of an array in memory. We assume the memory contains :

at 0x0: n, a 32-bit integer: the length of the array.

from 0x4: the array of n 32-bit signed integers.

The following instruction will write appropriate data in the memory of Jasmin, for an array of ten elements :

You can also directly edit the table in the right panel of the interface of Jasmin to manually change the example values.