The impact on academic productivity owing to the COVID-19 pandemic

Andrew R. Casey^{1,2}*, Ilya Mandel^{1,2}, Prasun K. Ray³

¹School of Physics & Astronomy, Monash University, Clayton 3800, Victoria, Australia

²Center of Excellence for Astrophysics in Three Dimensions (ASTRO-3D), Australia

³Department of Mathematics, Imperial College London, London, United Kingdom

⁴ 'Publish or perish' is an expression describing the pressure on academics to

consistently publish research to ensure a successful career in academia. With

a global pandemic that has changed the world, how has it changed academic

productivity? Here we show that academics are collectively posting just as

8 many publications as if there were no pandemic.

Peer-reviewed publications are the most common measure of productivity in academia.

The arXiv¹ (https://arxiv.org) is a distribution service for research publications before

12 they are printed in a journal (i.e., a pre-print). A pre-print on arXiv does not ensure

13 that the contents have passed peer-review, but most material on arXiv eventually goes

through peer-review because it is now standard in many research fields to post to arXiv

either during or after the peer-review process³. For this reason, the number of pre-prints

posted to arXiv approximates the number of peer-reviewed publications written at any

17 time.

2

3

Here we make quantitative comparisons on the number of pre-prints posted to arXiv

before and during the pandemic. While we investigate the impact that the COVID-19 pan-

demic has had on different fields of research, we highlight that we are unable to identify or

^{*} and rew. casey@monash.edu

differentiate between authors and communities whose productivity has been significantly harmed by the pandemic, and those who were largely unscathed. The COVID-19 pandemic has impacted the population in unequal ways^{4–6}. Generational inequality, career stage, personal circumstances, carer responsibilities, work environments, places of employment, and many other factors, all significantly contribute to the disproportionate and unequal impact the pandemic may have had on a scientist's capacity to conduct research. While this limited analysis does not address these issues, it is important to consider that while a community as a whole has not yet demonstrated a significant change in productivity, many researchers have faced significant challenges and suffered physically, mentally, emotionally, and professionally.

We retrieved metadata for 1,475,914 pre-prints posted on the arXiv between 1 April 2007 and 31 May 2021. The metadata includes the creation date, research field(s), title, author name(s), abstract, and other miscellaneous information². There is an increasing number of pre-prints posted to arXiv each year in nearly every field (Figure 1). These long-term trends are relatively predictable from year to year, allowing us to quantify any change in academic productivity due to the COVID-19 pandemic. We used the number of publications from January 2008 to December 2019 to predict the expected number of monthly pre-prints in 2020 in each field. We modelled the number of monthly pre-prints in each field using a Gaussian Process with a quasi-periodic kernel function^{7,8}, allowing us to accurately predict long-term trends and periodicity in given fields of research (Figure 1). In nearly all research fields the number of pre-prints posted since January 2020 agree excellently with the model predictions, indicating no collective impact (positive or negative) on academic productivity due to the COVID-19 pandemic.

Include a table with each field where we quantify the change?

Border closures and travel restrictions have forced many academic conferences to be held online-only, or to be cancelled. The immediate impact of cancelling a conference is readily apparent in pre-print counts in lattice physics (Figure 1; arXiv subject code hep-lat, see Methods for explanation), where most pre-prints are posted around December each year as conference proceedings from the International Symposium on Lattice Field Theory. In 2020 the conference was cancelled⁹ and no accompanying pre-prints exist. However, the impact on research from travel restrictions is likely to be much longer than what is represented by the drop in lattice physics pre-prints. Discussions at conferences or collaborative visits frequently spark new research ideas that might lead to a publication many months or years later.

Experimental research projects often require specialised laboratories, or data to be col-55 lected over many years. The pandemic has forced many laboratories to close or operate with restricted access, which could lead to long-lasting delays in ongoing experiments or 57 immediate drops in publication rates in part due to difficulty in accessing completed (or nearly completed) experiment data. There is some evidence of this in pre-print numbers already, with 25% fewer pre-prints in high energy physics (hep-ex) in 2020 than expected by our model (observed 615; predicted 797 \pm 131). But declines are not ubiquitous across 61 experimental fields. The closest comparable field of phenomenology in high energy physics (hep-ph) showed no decline. And throughout 2020, experimental research in condensed 63 matter (cond-mat) saw a 2σ increase above our model predictions (observed 16,188; predicted 15,098 \pm 544). Segmenting condensed matter pre-prints by research topic shows that most of this increase (in cond-mat) was driven by a 30% increase in material science pre-prints (cond-mat.mtrl-sci), a sub-field of condensed matter that focusses on laboratory methods and techniques. Despite the COVID-19 pandemic restricting access to essential laboratory equipment, this shift to publish methods and experimental design work – which might otherwise be neglected due to ongoing laboratory work – produced 70 an immediate boost in condensed matter research. This is likely an effect with a limited lifespan: eventually, condensed matter (and other experimental) research will require laboratory access to continue publishing. 73

The field of quantitative biology (q-bio) research showed the largest increase in preprints in 2020 above what is expected by our model. There were 2,790 quantitative biology pre-prints in 2020, 50% above the previous year, representing a $+4.4\sigma$ deviation from our model predictions (predicted 1,944 \pm 191). This increase is explainable by an increase in COVID-19 related research, as there were 844 quantitative biology pre-prints in 2020 with

pandemic-related terms in their title or abstract (see Methods), and just 43 in the decade prior. Indeed, in April 2020 nearly 60% of the arXiv pre-prints in quantitative biology 80 were related to the pandemic (Figure 2). Pandemic-related pre-prints also appeared in other fields (computer science, physics, statistics, and quantitative finance, all peaking 82 around April 2020, but pandemic-related pre-prints constituted less than 10% of the pre-83 prints in these fields. As of mid-2021 the number of monthly pre-prints in quantitative biology has dropped to pre-pandemic levels, although approximately 20% of these preprints are related to the ongoing pandemic, representing a strong shift in ongoing research focus.

An increase in quantitative biology¹ research during a global pandemic is unsurprising. 88 However, the arXiv data shows that this increase in pre-prints was not driven by biology researchers posting twice as many pre-prints than usual. In 2020 there was a peak in the 90 number of new authors appearing for the first time in the quantitative biology literature (Figure 3) while the number of new authors in all other fields remained steady. The sudden 92 influx of new authors cannot be explained by large (>10) newly-formed collaborations working together to tackle the impending pandemic (Figure 4). The increase in preprints (and new authors) is driven by small (1-4) groups of authors, where many had never posted pre-prints to quantitative biology before.

Some of these new authors in quantitative biology have never before appeared in any 97 other arXiv fields, either. A close examination of these pre-prints reveals that many 98 are established biologists who have not used the arXiv before, and are now doing so 99 presumably to help ensure that their COVID-19 research is more widely available. This 100 represents a genuine increase in new researchers to the arXiv, and a boost to making quantitative biology research more widely accessible. Of those new authors in quantitative 102 biology who also appear in other arXiv fields, some of this will be due to name confusion 103 (see Methods): where two researchers in different fields share the same publishing name. However, a careful examination of pandemic-related pre-prints in quantitative biology that were posted in 2020 shows that many were indeed written by researchers from other 106

101

¹Quantitative biology is only a sub-field of biology, and most biology pre-prints are posted to bioRxiv (https://biorxiv.org).

fields (primarily physicists and mathematicians), who had never before posted about quantitative biology. These pre-prints tend to focus on modelling the COVID-19 outbreak using public data sets, rather than quantitative biology research that requires more expert domain knowledge.

The COVID-19 pandemic has had disparate impacts on research productivity in dif-111 ferent fields. Some fields show a drop in research outputs. Few show an increase, either 112 driven by pandemic-related research or by shifts away from experimental research to topics that do not require ongoing laboratory access. In this study we have only focussed 114 on quantity of publications as a measure for productivity, and not their quality. While 115 citations are the most commonly used measure of impact of academic publications, that 116 metric becomes a more biased statistic when many related pre-prints are all being posted 117 nearly at the same time. The relatively long timescales of academic research would sug-118 gest that the full impact on academic productivity due to the COVID-19 pandemic is yet to be seen. For those fields without a measurable drop in research outputs yet, it's 120 plausible that many of the pre-prints being posted are research projects that were well underway before the pandemic, with the full impact of academic research yet to be seen. 122

References

- 124 [1] Ginsparg. P., ArXiv at 20, Nature, **476**, 7359, doi:10.1038/476145a (2011).
- ¹²⁵ [2] Clement, C. B., Bierbaum, M., O'Keeffe, K. P., Alemi, A. A., On the Use of ArXiv as a Dataset, Preprint at https://arxiv.org/abs/1905.00075 (2019).
- [3] Lariviére, V., et al., arXiv E-prints and the journal of record: An analysis of roles and relationships, Journal of the Association for Information Science and Technology, 65, 6, doi:10.1002/asi.23044 (2014).
- [4] Ibn-Mohammed, T., et al., A critical analysis of the impacts of COVID-19 on the global
 economy and ecosystems and opportunities for circular economy strategies, Resources,
 Conservation and Recycling, 164, 105169, doi:1016/j.resconrec.2020.105169 (2021).

- 133 [5] Nicola, M., et al., The socio-economic implications of the coronavirus pan-134 demic (COVID-19): A review, *International Journal of Surgery*, **78**, 185–193, 135 doi:10.1016/j.ijsu.2020.04.018 (2020).
- ¹³⁶ [6] Yen-Hao Chu, I., Prima, A., Larson, H. J., Leesa, L. Social consequences of mass quarantine during epidemics: a systematic review with implications for the COVID
 ¹³⁸ 19 response, *Journal of Travel Medicine*, **27**, 7, doi:10.1093/jtm/taaa192 (2020).
- [7] Rasmussen, C. E., Williams, C. K. I., Gaussian Processes for Machine Learning, MIT
 Press, ISBN 026218253X (2016).
- [8] Ambikasaran, S., Foreman-Mackey, D., Greengard, L., Hogg, D. W., O'Neil, M., Fast
 Direct Methods for Gaussian Processes, Preprint at http://arxiv.org/abs/1403.6015
 (2014).
- [9] Helmholtz-Institut für Strahlen- und Kernphysik Indico Service (Indico). 2021. The
 38th International Symposium on Lattice Field Theory (Lattice 2020). [online] Available at: https://indico.hiskp.uni-bonn.de/event/1/ [Accessed 3 June 2021].

Figure 1: Since the COVID-19 pandemic began there has been no significant change in monthly arXiv pre-prints in most fields (black). The expected number of pre-prints from our model is shown in red, and the red region shows the uncertainty in that expectation. Each panel shows a primary field of research in arXiv. Blue is ARIMA model.

Figure 2: Pre-prints related to the COVID-19 pandemic peaked in quantitative biology in 2020, accounting for nearly 60% of quantitative biology pre-prints.

Shown are five other research fields with the highest number of pandemic-related pre-prints in 2020. Monthly pre-prints are shown on the left, and the percent of pandemic-related pre-prints in that research field is shown on the right.

Figure 3: The number of new authors appearing in arXiv pre-prints per month peaked in quantitative biology in 2020. Fields well-established before 2007 (e.g., astro-ph) show an apparent influx of 'new authors' at the time the data starts: these authors are already established academics. The slow change in new authors after 2012 approximates the net number of new authors joining the field.

Figure 4: The increase in quantitative biology pre-prints in 2020 cannot be attributed to large collaborations. The coloured regions represent the different author group sizes for quantitative biology pre-prints per month with time.

169 Methods

Long-term modelling of monthly pre-print counts

We use monthly pre-print counts per primary research field from January 2007 until
December 2019 to make predictions for the number of pre-prints expected per month
from January 2020 onwards. We use a Gaussian process with a quasi-periodic kernel
covariance function to model long-term trends and seasonal periodicity^{7,8}. We fix the
periodicity hyper-parameter to one year, and optimise all other hyper-parameters. The
predictions of the expectation and variance in the number of monthly pre-print counts are
conditioned on the optimized hyper-parameters. We fit this model to monthly pre-print
counts for every primary research field.

We also considered an ARIMA model. The results were very similar. The largest difference between predictions is in quant-ph. Conclusions remained the same. Happy to use either, although I think a Gaussian process (which here is similar enough to a Poisson process) is a closer approximation to the data generating process.

Segmenting by research field

Pre-prints posted to the arXiv can be listed in a single field of research, or cross-listed in 184 multiple fields. A field is annotated by primary. SEC where the primary field of research has the prefix, and the sub-field of research is represented by a short capitalised suffix. 186 For example, one pre-print may have a primary field of research as stellar astrophysics (astro-ph.SA) and be cross-listed in machine learning (stat.ML). These field(s) of re-188 search are supplied by the corresponding author. It is a subjective decision whether to 189 include more than one field of research, or what those fields of research would be. For 190 this reason, throughout this work when we segment by research field we take the primary parent research field provided and ignore any cross-listed fields of research. When we seg-192 ment pre-prints by sub-field, we similarly take the primary sub-field provided and ignore any cross-listings. 194

5 Uniquely identifying authors

The arXiv metadata available to us does not include institutional affiliations, or identifiers that would uniquely identify an author. For these reasons, we have taken steps to 197 minimise the effects of name confusion. There are two primary ways that name confusion 198 could impact our inferences. In the first scenario, two people with the same name are 199 amalgamated and treated as a single author that is on average twice as productive (or 200 more, for very common names) as other authors. In the second scenario, an author will 201 sometimes publish as 'A. B. Smith', and other times publish as 'A. Smith'. A careful 202 exploration of the data shows that this is a very frequent scenario, and if left uncorrected, 203 would appear as many 'unique' authors with half as many publications on average. 204

We have taken a simple approach to address name confusion. We first define a unique author by family name and the initial of the first given name ('Family-name, I.'), such that we intentionally group together authors that may share the same initial of their second given name. While our approach to name confusion is grossly simple, it is unlikely that these choices have any substantial impact on our inferences. Any common name is likely to appear in the literature early in the data set, and will not impact the conclusions we draw about how publishing changed in 2020.

212 Pre-prints related to the COVID-19 pandemic

We identified a pre-print as being related to the COVID-19 pandemic if the title or abstract contained any of the following four (case-insensitive) terms: 'pandemic', 'COVID', 'SARS-CoV-2', or 'lockdown'. Before 2020, these terms rarely appear in the title or abstract of any pre-print on arXiv (Figure 2).

Data availability

The entire dataset used in this article is from arXiv. The dataset is curated by Cornell University and hosted by Kaggle (https://www.kaggle.com/Cornell-University/arxiv). We accessed this dataset on 01 June 2020.

221 Code availability

- 222 The software developed to retrieve and analyse the data for this projectis available online
- 223 (https://github.com/andycasey/arxiv-covid).

224 Acknowledgements

- We thank Peter Skands (Monash University) and Ross Young (University of Adelaide)
- 226 for comments on publication trends in high energy physics.

227 Author contributions

- 228 All authors contributed to the discussions and have read and iterated upon the text of
- the final manuscript.

230 Competing interests

The authors declare no competing interests.

232 Materials & Correspondence

- 233 Correspondence and requests for materials should be addressed to the corresponding au-
- thor Andrew Casey (andrew.casey@monash.edu).

Additional information

- 236 Supplementary Information is available for this paper.
- 237 Correspondence and requests for materials should be addressed to A. R. C.
- Reprints and permissions information is available at www.nature.com/reprints