

NOV 07, 2022

IN DEVELOPMENT

Vector Linearization

This protocol is published without a DOI.

Felipe FE Edaes¹

¹Harvard

Felipe FE Edaes

COMMENTS 0

ABSTRACT

Protocol for the linearization of a previously obtained vector.

PROTOCOL CITATION

Felipe FE Edaes 2022. Vector Linearization . protocols.io https://protocols.io/view/vector-linearization-civ8ue9w

LICENSE

This is an open access protocol distributed under the terms of the **Creative Commons** Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

CREATED

Nov 06, 2022

LAST MODIFIED

Nov 07, 2022

PROTOCOL INTEGER ID

72352

GUIDELINES

Add phosphatase to remove phosphate, which remains from the end of linear vectors, thus preventing cells from relinearizing the vectors.

Equipment

1

Equipment	
NanoDrop™ One UV-Vis Spectrophotometer	NAME
spectrophotometer	TYPE
Thermo Scientific	BRAND
ND-ONE-W	SKU
https://www.thermofisher.com/order/catalog/product/ND-ONE-W	LINK
Sample Volume (Metric): Minimum 1µL; Spectral Bandwidth: ≤1.8 nm (FWHM at Hg 254 nm); System Requirements: Windows™ 8.1 and 10, 64 bit; Voltage: 12 V (DC); Wavelength Range: 190–850 nm	SPECIFICATIONS

Measure DNA Concentration of the Plasmid

- 2 Use \perp 1.0 μ L to \perp 1.5 μ L of the elution buffer (used to elute the DNA) as blank.
- 3 Measure blank once to confirm the accuracy.
- 4 To measure DNA sample, add Δ 1-1.5 μL (equivalent to blank)

Calculate the amount of Plasmid to be used

- 5 If \underline{A} 1 μg is \underline{A} 1000 ng, this value should be divided by the amount of DNA measured.

3h

3h

Vector Linearization

- 6 Δ 3 μg Plasmid DNA
- 7 Δ 1 μL Enzyme A
- 8 Δ 1 μL Enzyme B
- 9 <u>A</u> 2 µL 10X Buffer
- 10 Remaining H20 \perp 20 μ L (up to)
- 11 Incubate the reaction for § 03:00:00 at § 37 °C , then place it § On ice .
- 11.1 Place it § On ice and add Δ 0.5 μ L **phosphatase** to the linearized vector.

