

ORDER NO. ARP2519

SJ MAY 1992 Printed in Japan

COMPACT DISC PLAYER

PD-S601 HAVE THE FOLLOWING:

Туре	Power Requirement	Remarks
WEMXK	AC220 - 240V	
WBXK	AC220 - 240V	

- This manual is applicable to WEMXK and WBXK types.
- For WBXK type, refer to page 67.
- Ce manuel pour le service comprend les explications de réglage en français.
- Este manual de servicio trata del método ajuste escrito en español.

CONTENTS

1.	SAFETY INFORMATION	∙2
2.	EXPLODED VIEWS AND PARTS LIST	٠4
3.	PCB PARTS LIST1	11
4.	SCHEMATIC AND PCB CONNECTIONS	
	DIAGRAMS1	13
5.	ADJUSTMENTS	27
5.	REGLAGES	10
5.	AJUSTES5	53
6.	DISASSEMBLY ······	36
7.	FOR PD-S601/WBXK TYPE	57
8.	PANEL FACILITIES	38
9	SPECIFICATIONS	:0

PIONEER ELECTRONIC CORPORATION 4-1, Meguro 1-Chome, Meguro-ku, Tokyo 153, Japan PIONEER ELECTRONICS SERVICE INC. P.O. Box 1760, Long Beach, California 90801 U.S.A. PIONEER ELECTRONICS OF CANADA, INC. 300 Allstate Parkway Markham, Ontario L3R 0P2 Canada PIONEER ELECTRONIC [EUROPE] N.V. Haven 1087 Keetberglaan 1, 9120 Melsele, Belgium PIONEER ELECTRONICS AUSTRALIA PTY. LTD. 178-184 Boundary Road, Braeside, Victoria 3195, Australia TEL: [03] 580-9911 © PIONEER ELECTRONIC CORPORATION 1992

This service manual is intended for qualified service technicians; it is not meant for the casual do-it-yourselfer. Qualified technicians have the necessary test equipment and tools, and have been trained to properly and safely repair complex products such as those covered by this manual.

Improperly performed repairs can adversely affect the safety and reliability of the product and may void the warranty. If you are not qualified to perform the repair of this product properly and safely, you should not risk trying to do so and refer the repair to a qualified service technician.

WARNING

Lead in solder used in this product is listed by the California Health and Welfare agency as a known reproductive toxicant which may cause birth defects or other reproductive harm (California Health & Safety Code, Section 25249.5).

When servicing or handling circuit boards and other components which contain lead in solder, avoid unprotected skin contact with the solder. Also, when soldering do not inhale any smoke or fumes produced.

SAFETY INFORMATION

-(FOR USA MODEL ONLY)-

1. SAFETY PRECAUTIONS

The following check should be performed for the continued protection of the customer and service technician.

LEAKAGE CURRENT CHECK

Measure leakage current to a known earth ground (water pipe, conduit, etc.) by connecting a leakage current tester such as Simpson Model 229-2 or equivalent between the earth ground and all exposed metal parts of the appliance (input/output terminals, screwheads, metal overlays, control shaft, etc.). Plug the AC line cord of the appliance directly into a 120V AC 60Hz outlet and turn the AC power switch on. Any current measured must not exceed 0.5mA.

ANY MEASUREMENTS NOT WITHIN THE LIMITS OUTLINED ABOVE ARE INDICATIVE OF A PO-TENTIAL SHOCK HAZARD AND MUST BE COR-RECTED BEFORE RETURNING THE APPLIANCE TO THE CUSTOMER.

2. PRODUCT SAFETY NOTICE

Many electrical and mechanical parts in the appliance have special safety related characteristics. These are often not evident from visual inspection nor the protection afforded by them necessarily can be obtained by using replacement components rated for voltage, wattage, etc. Replacement parts which have these special safety characteristics are identified in this Service Manual.

Electrical components having such features are identified by marking with a A on the schematics and on the parts list in this Service Manual.

The use of a substitute replacement component which dose not have the same safety characteristics as the PIONEER recommended replacement one, shown in the parts list in this Service Manual, may create shock. fire, or other hazards.

Product Safety is continuously under review and new instructions are issued from time to time. For the latest information, always consult the current PIONEER Service Manual. A subscription to, or additional copies of, PIONEER Service Manual may be obtained at a nominal charge from PIONEER.

USYNLIG LASERSTRÄLING VED ÅBNING NÅR SIKKERHEDSAFBRYDERE ER UDE AF FUNKTION UNDGA UDSAETTELSE FOR STRÅLING.

OSYNLIG LASERSTRÄLNING NÄR DENNA DEL ÄR ÖPPNAD OCH SPÄRREN ÄR URKOPPLAD. BETRAKTA EJ STRÅLEN.

DEVICE INCLUDES LASER DIODE WHICH EMITS INVISIBLE INFRARED RADIATION WHICH IS DANGEROUS TO EYES. THERE IS A WARNING SIGN ACCORDING TO PICTURE 1 INSIDE THE DEVICE CLOSE TO THE LASER

LASER Picture 1 Warning sign for laser radiation

IMPORTANT THIS PIONEER APPARATUS CONTAINS LASER OF CLASS 1 SERVICING OPERATION OF THE APPARATUS SHOULD BE DONE BY A SPECIALLY INSTRUCTED PERSON

- LASER DIODE CHARACTERISTICS MAXIMUM OUTPUT POWER: 5 mw WAVELENGTH: 780-785 nm

LABEL CHECK

2. EXPLODED VIEWS, PACKING AND PARTS LIST

NOTES:

- Parts marked by "NSP" are generally unavailable because they are not in our Master Spare Parts List.
- The \triangle mark found on some component parts indicates the importance of the safety factor of the part. Therefore, when replacing, be sure to use parts of identical designation.
- Parts marked by "O" are not always kept in stock. Their delivery time may be longer than usual or they may be unavailable.

2.1 EXTERIOR

Parts List

Mark	No.	Description	Part No.	Mark	No.	Description	Part No
	1	Screw	IBZ30P080FCC	NSP	61	HP angle	PNB1370
	2	Screw	BBZ30P060FCC	0	62	RF board assembly	PWM1684
	3	Screw	IBZ30P150FCC	NSP	63	RF angle	PNB1401
	4		202001 1001 00	NSP	64	Motor VR board	PWZ2275
	5	Screw	BBZ30P080FCC	1101		assembly	1 11 25510
	6	Screw	IBZ30P060FCC				
	7	Screw	FBT40P080FZK				
	8	Bonnet	PYY1162				
	9	AC power cord	PDG1003				
7	10	Strain relief	CM-22B				
4	11	Power transformer	PTT1236				
	12	Insulator	PNW1912				
	13	Knob C	RAC1608				
	14	Tray name plate	PNW2135				
	15	Function panel assembly	PEA1220				
SP	16	MAIN board assembly	PWZ2274				
	17	Display window B	PAM1544				
	18	Cord holder	RNH-184				
	19	LED lens	PNW2019				
	20	Power button	PAC1540				
	21	20 key assembly	PAC1689				
	22	*****					
	23	Play button A	PAC1634				
	24	Screw	PPZ30P100FMC				
	25	32P F.F.C/30V	PDD1109				
	26	Tray lens	PNW1950				
	27	Screw	PDZ30P050FMC				
SP	51	Headphone board assembly	PWZ2276				
SP	52 53	Under base	PNA1864				
SP	54	PCB spacer	PNY-404				
SP	55	Rear base	PNA1728				
J.	00	veer nase	11101140				
SP	56	Switch board assembly	PWZ2281				
SP	57	PIONEER badge	PAM1407				
SP	58	Function board assembly	PWZ2280				
ISP	59	Function panel B	PNW2131				
	60	HP lens	PNW2157				

PD-S601 2.2 MECHANISM SECTION В

Parts List of Mechanism section

rarus	FIRE OF INTECTION ACCOUNT		1.0		
Mark	No. Description	Parts No.	Mar	k No	. Description
		DSK1003	NSP		Shaft holder
	1 Lever switch	PBA1027	NSF	102	Loading base
	2 Screw(steel)	PEB1186	NSP	103	Table bearing assembly
	3 Rubber belt	PNW1634	NSF		Servo mechanism
	4 Motor pulley	PNW1996	2100	-	assembly
	5 Drive gear	114441230	NSF	105	Cord with earth plate
		PNW2168	1101		
	6 Synchro lever	PNW1998	NSI	> 106	6 Motor base
	7 Gear pulley	PNW1999	NSI		7 Mechanism base
	8 SW head	PNW2000	1421	10	assembly
	9 Float base	PNW2001	NS	n 10	8 Mechanism chassis
	10 Left cam	111112001			9 Binder
		PNW2002	NS		0 Connector assembly
	11 Right cam	PBH1120	NS	P 11	O Collificator assessed
	12 Compression spring	PBH1121		- 11	1 Turn table (AL)
	13 Tention spring	PEB1014	NS	P 11	I Turn table (rib)
	14 Float(rubber)	PEB1181			
	15 Table rubber sheet	,			
		PNW2003			
	16 Tray	PNW2004			
	17 Table guide	PNW2005			
	18 Lock plate	PXM1010			
	19 DC motor(0.75W)	PEB1031	•		
	20 Rubber bush				
	21 Rubber bush	PEB1170			
	22 Screw	BMZ26P040FMC			
	23 Screw	BPZ26P060FMC			
	24 Screw	IPZ26P060FCU			
	25 Screw	IPZ20P080FMC			
		YE20S	-		
	26 Stop ring	PEA1165	- 1	• H	low to install the disc
	27 Turn table assembly	DSG1014	1		
	29 Push switch	PBH1009	- 1	1	Use nippers or other tool
	30 Spring	PBH1084	- 1	ت	marked @ in figure []. Th
	31 Spring		- 1		
	32 Plate spring	PBK1057	- 1	2	While supporting the spi
	33 Belt(square)	PEB1072	1		the stopper, put spacer or
	34 Screw	PLA1003	- 1		(angled so it doesn't touc
	35 Guide bar	PLA1071	- 1		the disc table on top (take
	36 Pulley	PNW1066	- 1		The disc table on top (take
	00 1 2,				Take off the spacer.
	37 Half nut	PNW1605			a :
	38 Motor pulley	PNW1634		1	Spindle motor 2
	39 Screw	PBZ30P080FMC			mounting position
	40 DC motor(1.7W)	PXM1013		l	1 6
	41 Screw	BPZ20P080FZK			Chassis
		JFZ20P025FMC		1	
	42 Screw	PBZ30P060FMC		1	5141
	43 Screw	PMZ20P030FMC	;	0	
	44 Screw	PEA1030		l	Spacer se
	45 Pick up assembly	PEA1156		1	position
	46 DC motor assembly (With oil)	I THEY TAN		S	Spi
	47 Semi-fixed VR(3.3K)	PCP1008		1	wo.
	48 Caution label	PRW1244		1	
	49 Disc table	PNW1067			
	20 2100 1				

How to install the disc table
1 Use nippers or other tool to cut the two sections marked (a) in figure [1]. Then remove the spacer.
While supporting the spindle motor shaft with the stopper, put spacer on top of the motor base (angled so it doesn't touch section (angled so it doesn't touch section (angled so it doesn't touch section (b), and stick the disc table on top (takes about 9kg pressure). Take off the spacer.
Spacer setting position Spacer Spacer Spacer Spacer Spacer Spacer Spacer Spacer Spa

2.3 PACKING

Parts List

Parts No.

PNB1382

PNW1995 PXA1383 PXA1472

XDF - 503 PNB1211 PXA1474

PNW1604 PEC - 107 PDE1130 PNR1035

Parts	Parts List							
Mark	No.	Description	Part No.					
-	1							
	2	Operating instructions	PRF1054					
		(German/Italian/Dutch, Swedish/Spanish/Ports	(uguese)					
	3	Cord with plug	PDE1109					
	4	Operating instructions	PRE1154					
	~	(English/French)						
	5	Remote control unit	PWW1060					
	•							
	6	Battery lid	PZN1010					
	7	Styrol protector F	PHA1192					
	8	Styrol protector R	PHA1193					
	9	CD packing case	PHG1752					
	10	*****						
	11	Sheet	223-007					
NSP	101	Mangan battery (RO3, AAA)	VEM-022					

3. PCB PARTS LIST

NOTES:

- Parts marked by "NSP" are generally unavailable because they are not in our Master Spare Parts List.
- Parts marked by " " are not always kept in stock. Their delivery time may be longer than usual or they may be unavailable.
- The \triangle mark found on some component parts indicates the importance of the safety factor of the part. Therefore, when replacing, be sure to use parts of identical designation.
- When ordering resistors, first convert resistance values into code form as shown in the following examples.
- Ex.1 When there are 2 effective digits (any digit apart from 0), such as 560 ohm and 47k ohm (tolerance is shown by J=5%, and K=10%) 560 $\Omega \rightarrow 56 \times 10^{\circ} \rightarrow 561$ RD1/4PS $\boxed{5}$ $\boxed{6}$ $\boxed{1}$ J 47k $\Omega \rightarrow 47 \times 10^{\circ} \rightarrow 473$ RD1/4PS $\boxed{4}$ $\boxed{7}$ $\boxed{3}$ J 0.5 $\Omega \rightarrow 0$ RS RN2H $\boxed{0}$ $\boxed{8}$ $\boxed{5}$ K

Mark No.	Description	Part No.	Mark	No.	Description	Part No.
LIST OF A	SSEMBLIES			Q403, 404	TRANSISTOR	2SC3068
	BOARD ASSEMBLY	PWM1559		D405 TRA	NSISTOR	DTC124ES
		P¥Z2274			TRANSISTOR	DTA124ES
	BOARD ASSEMBLY			41021 100	1100.010101	
	R VR BOARD ASSEMBLY	PWZ2275		0452 454	TRANSISTOR	2SC3068
NSP └─HEAD	PHONE BOARD ASSEMBLY	PTZ2276		0155, 154	TRANSISTOR	DTC124ES
						11ES2
O RF BOAL	RD ASSEMBLY	PTM1684	Δ	D11-14 D		
0 12 2012			Δ	D52 DIOD		11ES2
⊙ SUB BO	ARD ASSEMBLY	PWX1211		D54 ZENN	ER DIODE	MTZJ18B
SOD BOX	TION BOARD ASSEMBLY	P#Z2280				
		P#22281		D218 DIO	DE	1SS254
NSP -SWIT	CH BOARD ASSEMBLY	P#22261		D351 D10	DE	1SS254
				D395-397	DIODE	1SS254
DE BOAD	D ASSEMBLY				DIODE	1SS254
NF BOAR	DAGGEMBEI					
SEMICONDU			COIL		FORMERS	VTU 1004
		CXA1471S			FERITE BEEDS	VTH1024
Q101 TF	RANSISTOR	2SA854S			AL INDUCTOR	LAU010K
	_			L395, 396	AXIAL INDUCTOR	LAU010K
CAPACITOR	S 12 ELECT, CAPACITOR	CEAS471M6R3	CAPA	CITORS		
	ERAMIC CAPACITOR	CCCCH200J50			MIC CAPACITOR	CKCYF103Z50
		CEASIOINIO			MIC CAPACITOR	CKCYF103250
	LECT. CAPACITOR	CEASIUMIU			MIC CAPACITOR	CKCYF103250
	ERAMIC CAPACITOR	CKCYF103Z50 CGCYX104K25			ERAMIC CAPACITOR	CKCYF103Z50
C120 C	ERAMIC CAPACITOR	CGCYXIU4K2S			LECT. CAPACITOR	CEAS472M16
RESISTORS						
P101-1	10 CARBONFILM RESISTOR	RD1/6PMCCCJ		C27, 28 1	LECT. CAPACITOR	CEAS471M6R3
VR102		RCP1046			T. CAPACITOR	CEAS102M16
VR102		RCP1044			T. CAPACITOR	CEAS101M35
VR103	VK.	ACF 1044			T. CAPACITOR	CEASO10M50
					ECT. CAPACITOR	CEAS101M10
OTHERS		****		CISI ELI	cci. CAPACTION	CENSIONNO
	CONNECTOR	52045-1610				CE16101H10
L101 F	ERITE BEEDS	VTH1024			ECT. CAPACITOR	CEASIOIM10
					RAMIC CAPACITOR	CKCYB182K50
MAIN BO	ARD ASSEMBLY				RAMIC CAPACITOR	CGCYX333K25
					RAMIC CAPACITOR	CGCYX103K25
SEMICONDU	JCTORS			C158, 15	9 CERAMIC CAPACITOR	CGCYX104K25
⚠ IC20 R	EGULATOR IC	M5298P				
	EGULATOR, IC	NJM2930-L05			ECT. CAPACITOR	CEAS4R7M50
	C PROTECTOR	ICP-N10			LM CAPACITOR	CFTXA104J50
	SERVO IC	CXA1372S		C162 EL	ECT. CAPACITOR	CEAS010M50
	202 POWER OP-AMP IC	LA6520		C163 CE	RAMIC CAPACITOR	CGCYX104K25
بر المعادل بي	200 . UTAN VI 1891 10				RAMIC CAPACITOR	CGCYX103K25
IC301	EFM DEMODULATION IC	CXD2500AQ				
IC351	MICROCOMPUTER IC	PD4394A			RAMIC CAPACITOR	CKCYF103250
	D/A CONVERTER IC	PD2026A		C168 CE	RAMIC CAPACITOR	CGCYX333K25
	OP-AMP IC	NJM5532DD			RAMIC CAPACITOR	CGCYX103K25
	OP-AMP IC	NJM5532DD			RAMIC CAPACITOR	CKCYB332K50
10400	At Varia 10	1100000000			2 CERAMIC CAPACITOR	CKCYB472K50
	TRANSISTOR	DTC124ES				
Q391 T	RANSISTOR	2SC1740S		CZ05 CE	RAMIC CAPACITOR	CKCYF103Z50

PD-S601

Mark No.	Description	Part No.	Mark	No.	Description	Part No
C210 CERA	NIC CAPACITOR	CGCYX103K2S		CN201 CO	NNECTOR	RKP-533
C211, 212 1	ELECT. CAPACITOR	CEAS101M25		CN202 CO	NNECTOR	VKN1053
	MIC CAPACITOR	CGCYX103K25		CN204 CO		VKN1052
	ELECT. CAPACITOR	CEAS330W16		4.201 00	in De l'un	VM-1032
				CN351 CO	NNECTOR	HLEM32S-1
C218 CERA	AIC CAPACITOR	CKCYB272K50		CN401 CO		52147-0310
C230 CERA	MIC CAPACITOR	CGCYX104K25		CN402 CD	NNECTOR	52147-0810
	NIC CAPACITOR	CGCYX104K25			TICAL OUTPUT JACK	TOTX178
	CAPACITOR	CEAS471M6R3		JA393 JA		PKN1005
	AIC CAPACITOR	CKCYF103Z50			W	. 12.1000
				JA401 4P	PIN JACK	PKB1016
C306 CERA	NIC CAPACITOR	CKCYB152KS0			AMIC RESONATOR	VSS1014
C307 CERA	IIC CAPACITOR	CGCYX473K25			L RES (OSC)	PSS1008
C308 CERA	MIC CAPACITOR MIC CAPACITOR	CGCYX103K25				. 501000
C309 ELECT	T. CAPACITOR	CEASR47M50	MOT	OR VE	R BOARD ASSE	MBLY
C321 AUDIO	FILM CAPACITOR	CFTXA104J50				
*****			CAPAC	CITORS		
C322 ELECT	. CAPACITOR	CEAS471M6R3			AMIC CAPACITOR	CKCYF103Z50
	. CAPACITOR	CEAS471M6R3		W10 CLI	marc on nerron	CAC11 103230
	IC CAPACITOR	CKCYF103Z50	RESIST	TOP		
CAO3 CEPAI	IC CAPACITOR	CCCCH120J50		YR501 VR		PC21010
	EIC CAPACITOR	CCCCH220J50		INOUL IN		PCS1010
CTOT CENTS	ere carnerion	CAACII220130	HEAD	PHO	NE BOARD ASS	EMBLY
C413-418	NUDIO FILM CAPACITOR	CFTXA104J50	1 I Impal		ייר המעונה עפי	
	IIC CAPACITOR	CKCYF103250	COLLE	TRANC	FORMERS	
	CERAMIC CAPACITOR	CCCCH390J50			AXIAL INDUCTOR	1.000.00
	LECT. CAPACITOR	CEAS101M25		F301-303	AXIAL INDUCTOR	LAU010K
	ELECT. CAPACITOR		CAPAC	MARC		
(433, 434)	CLECI. CAPACITOR	CEANP220M25				
C125-129 /	CERAMIC CAPACITOR	CCCCH390J50			CERAMIC CAPACITOR	CKCYF103Z50
	L STYRENE CAPACITOR	CQSA152J50	,	CSUS CERU	AMIC CAPACITOR	CKCYF473Z50
	LECT. CAPACITOR	CEAS4R7M50	RESIST	TORE		
	IIC CAPACITOR	CKCYF103Z50			CARBONFILM RESISTOR	001 (0045
CHOI CERMI	IIC CAPACITOR	CACIFIU3230		K501, 502	CARBONFILM RESISTOR	RD1/6PM[][].
ESISTORS			OTHER	26		
	FILM RESISTOR	RD1/6PMC C J		JASO1 JAG	TY.	PKN1001
	BONFILM RESISTOR	RD1/6PM		AUGUT JUN		LVMIOOI
	ARBONFILM RESISTOR	RD1/6PM	ELING	TION	BOARD ASSE	IRIV
	WIFILM RESISTOR	RD1/6PMC C J	10110	711014	BOARD ASSER	NDLI
P185 186 /	ARBONFILM RESISTOR	RD1/6PM	CEMIC	ONDUC	TORE	
1103, 100 (WILDING IEM RESISION	KD1/GFMJ		0701-710		1SS254
R201 CARRO	NFILM RESISTOR	RD1/6PMC C J		D101-110	DIODE	155254
	ARBONFILM RESISTOR	RD1/6PM	SWITC	HES		
	ARBONFILM RESISTOR	RD1/6PM			CHITCH	DCC100C
	NFILM RESISTOR			S701-738	SW: ICE	PSG1006
	NFILM RESISTOR	RD1/6PM[][][]J RD1/6PM[][][]J	0011.0	TDANC	FORMERS	
MAIO CARDO	MALLEN WESTSTON	WAT LOUNCE TO THE				1.410.40
D221_224 6	ADDONETTH DECICEOR	PD1 /004/27/27			AXIAL INDUCTOR	LAU010K
	ARBONFILM RESISTOR	RD1/6PM□□□J	ı	REMOTE SI	ENSUR	SBX1610-51
	ARBONFILM RESISTOR	RD1/6PM□□□J				
K3U1~312 C	ARBONFILM RESISTOR	RD1/6PMCCUJ	CAPAC			
K319 CARBO	NFILM RESISTOR	RDI/6PM□□□J	(C701-712	AXIAL CAPACITOR	CKPUYB181K50
R321 CARBO	NFILM RESISTOR	RD1/6PMCCCJ				
0000 000	ADDAMS IN PROFESSION		RESIST			
	ARBONFILM RESISTOR	RD1/6PMCCCJ	1	R701 CARI	BONFILM RESISTOR	RD1/6PM
	NFILM RESISTOR	RD1/6PM□□□J				
	ARBONFILM RESISTOR	RD1/6PM□□□J	OTHER			
	NFILM RESISTOR	RD1/6PM CC		CN701 COP		9603S-32F
R393-396 C	ARBONFILM RESISTOR	RD1/6PM CCJ	1	V701 FL 1	INDICATOR TUBE	PEL1065
B.60 0.0						
	NFILM RESISTOR	RD1/6PM	SWIT	CH B	OARD ASSEMB	LY
R405-410 C	ARBONFILM RESISTOR	RD1/6PMCCJ				
R427-430 C	ARBONFILM RESISTOR	RD1/6PM	SEMIC	ONDUC	TORS	
R435-456 C	ARBONFILM RESISTOR	RD1/6PMCCJ		0751 LED		PCX1019
R459-462 C	ARBONFILM RESISTOR	RD1/6PMCCJ				
			SWITC	HES		
R470, 471 C	ARBONFILM RESISTOR	RD1/6PMCCJ		5751 SWIT	TCH	PSG1006
R496-498 C	ARBONFILM RESISTOR	RD1/6PMI III				
VR151, 152		RCP1046	MECI	HANIS	M BOARD ASS	EMBLY
			SWILC	HES		
THERS TERMINAL		RKC-061	SWITC			DSC1016
THERS TERMINAL CN131 CONN	ECTOR	RKC-061 52147-1010		HES 5601		DSG1016

4. SCHEMATIC AND PCB CONNECTIONS DIAGRAMS

WAVEFORMS

Note: The encircled numbers denote measuring in the schematic diagram.

*1 50T - JUMP: After switching to the pause mode, press the manual search key.

*2 FOCUS-IN:Press the key without loading a disc.

1. RESISTORS:

Indicated in Ω , 1/4W, 1/6W, 1/8W, \pm 5% tolerance unless otherwise noted k; k Ω , M; M Ω , (F); \pm 1%, (G); \pm 2%, (K); \pm 10%,(M); \pm 20% tolerance.

2. CAPACITORS :

Indicated in capacity (μ F) /voltage (V) unless otherwise noted p; pF. Indication without voltage is 50V except electrolytic capacitor.

3. VOLTAGE CURRENT:

- : DC voltage (V) in play mode.
- +mA; DC current in play mode.
 - ; Value in () is DC current in stop mode.

4. OTHERS:

- → ; Signal route.
- 1 : Adjusting point

The \$\Delta\$ mark found on some component parts indicates the importance of the safety factor of the part. Therefore, when replacing, be sure to use parts of identical designation. \$\%\$ marked capacitors and resistors have parts numbers.

This is the basic schematic diagram, but the actual circuit may vary due to improvements in design.

5. SWITCHES (The underlined indicates the switch position)

\$738: 19

SWITCH BOARD ASSEMBLY S751: POWER ON - OFF

FUNCTION BOARD ASSEMBLY S701: 0/C S720: 6

		-, -	01201	•
S70	2:	STOP	S721:	7
\$70	3:	PAUSE	S722:	8
S70	4:	PLAY	S723:	9
\$70	5:	RND	S724:	44
S70	6:	PEAK	S725:	-
\$70	7:	HI - L	S726:	1
570	8:	TIME	S727:	
570	9:	PGM	S728:	15
S71	0:	CHECK	S729:	20
\$71	1:	CLEAR	S730:	> 20
571	2:	REPEAT	S731:	11
571	3:	EDIT	S732:	12
S71	4:	5	S733:	13
S71	5:	10	S734:	14
571	6:	1	S735 :	16
\$71	7:	2	\$736:	17
S71	8:	3	\$737:	18

S719: 4

IC20: M5298P

• IC BLOCK DIAGRAMS

IC301:CXD2500AQ

IC401: PD2026A

IC151 (CXA1372S)									
Pie	Volta	Pin	Volta						
Ho.		No.	Voits						
1	0	2 5	- 5. 0						
2	0	26	5. 0						
3	0	27	5. 0						
4	0	28	5. 0						
5	0	29	5. 0						
6	0	3 0	5. 0						
7	0	3 1	5. 0						
8	0	3 2	0						
9	0	3 3	5. 0						
10	0	3 4	0						
11	1. 0	3 5	0						
1 2	0	3 6	NC						
13	0. 2	3 7	2. 5						
14	0	38	2. 5						
15	0	3 9	5. 0						
16	5. 0	40	-1.5						
17	0	41	-1.7						
18	0	42	5. 0						
19	0	4 3	-0.7						
20	8.2 to 8.8	44	-1.6						
2 1	0	4 5	0						
2 2	-4. 0	4 6	0. 8						
2 3	1. 3	47	- 5. 0						
24	0	48	0						

1C401 (PD2026A)

Pia	Volts	Pia	Volts
No.	*****	No.	***
1	0	15	5. 0
2	0	16	0
3	5. 0	17	NC
4	5. 0	18	0
5	2. 4	19	2. 0
6	2. 6	20	5. 0
7	0	2 1	5. 0
8 -	0	2 2	5. 0
9	2. 6	2 3	5. 0
10	2. 4	2 4	5. 0
11	5. 0	2 5	2. 4
12	0	26	2. 4
13	2. 4	27	2. 4
1.4	2. 4	28	5. 0

1 C 3 O 1 (C X D 2 5 O O A O)

C301 (CXD2500AQ)									
fin	Volta	Pia	Volts	Pia	Volt.	Pin	Volts		
No.		He.		Xe.		No.	V 6 1 1 8		
1	5. 0	2 1	0	41	NC	6 1	NC		
2	NC	2 2	2. 5	4 2	5. 0	6 2	NC		
3	5. 0	23	5. 0	43	NC	63	NC		
4	2. 6	24	2. 5	44	NC	6 4	NC		
5	NC	2 5	NC	4 5	NC	6 5	0		
6	5. 0	26	0	4 6	4, 4	66	3.3 to 4.6		
7	NC	27	2. 5	47	0	67	5. 0		
8	, NC	28	NC	4 8	0	68	0		
9	0	29	0	4 9	1 10 6.3	6 9	2. 1 to 3. 8		
10	0	30	NC	50	NC	70	5. 0		
11	NC	3 1	1.3 to 2.2	51	NC	71	5. 0		
12	0	3 2	2. 5	5 2.	0	7 2	5. 0		
13	NC	3 3	5. 0	5 3	2. 5	73	5. 0		
14	NC	3 4	2. 5	5 4	NC	74	5. 0		
15	NC	3 5	NÇ	5 5	0	75	5. 0		
16	NC	3 6	NC	5 6	NC	76	0		
17	0	37	NC	5 7	NC	77	5. 0		
18	2. 5	3 8	NC	58	NC	78	5. 0		
19	2. 4	3 9	NC	5 9	0	79	5. 0		
20	2. 4	40	NC	60	NC	80	0		

IC351 (PD4394A)

Pin He,	Volts	Pia No.	Volts	Pia No.	Volts	Pia No.	Volt.
1	5. 0	17	-9. 1 to -9. 3	3 3	5. 0	49	5. 0
2	NC	18	-26.0	34	3.3 to 4.7	50	5. 0
3	-2410-24. 3	19	-5.0	3 5	5. 0	51	0
4	-2410-24, 3	20	1. 2	36	0	5 2	5. 0
5	-2410-24, 3	21	1. 1	37	5. 0	53	5. 0
. 6	-2410-24. 3	22	-9. 8 to-12. 8	38	5. 0	5 4	0
7	-2410-24. 3	23	1. 2 to 1. 8	39	0	5 5	5. 0
8	-2410-24. 3	24	8.6 to 1.1	40	0	5 6	2. 5
9	-2410-24. 3	2 5	0	41	NC	57	2. 5
10	-2410-24. 3	26	NC	4 2	NC	58	0
11	-24to-24, 3	27	8. 2 to 8. P	43	5. 0	59	0
12	5. 0	28	-2. 0 to -1. 3	44	5. 0	60	NC
13	5. 0	29	-14. 8to-17. 8	45	0	61	0
14	0	30	-11. Sto-17, 3	46	5. 0	6 2	0
15	NC	3 1	0	47	5. 0	63	0
16	-23.8	3 2	5. 0	48	2.1 to 3.6	6 4	0

IC101 (CXA1471S)

Pin	Volts	Pia	Volts
He.		No.	
1	NC	12	NC
2	2. 9	13	-0.9
3	-4. 7	1.4	-0.7
4	0	15	0
5	0	16	0
6	-5.0	17	0
7	0	18	0. 8
8	0	1 9	0
9	NC	20	5. 0
10	0	2 1	5. 0
11	NC	22	NC

P.C.B. pattern diagram indication	Corresponding part symbol	Part name	P.C.B. pattern diagram indication	Corresponding part symbol	Part name
	É .É	Transistor	C 3		
	98 6 2 9 . 98 2 9 .	Transistor	(_)		Ceramic capacitor
<u></u>	.	FET	\subset	○ ──	Mylar capacitor
oм			3()		Styrol capacitor
	- 	Diode	•		Electrolytic capacitor (Non polarized)
			₽		Electrolytic capacitor (No:seless)
at	· •	Zenner diode	\bigcirc	<u>~ ₹</u> ~	Electrolytic capacitor (Polarized)
←		Zeiner Glode	\Box		Electrolytic capacitor (Polarized)
- ¥+-	~`` €	LED		○ ── ├ ──	Power capacitor
	⊶⊢	Varactor	D		Semi-fixed resistor
<u> </u>	0,0	Tact switch			Resistor array
0					
_ ^	٠٩٩٠٠	Inductor	~	~ ₩~-•	Resistor
	0 00 -0	inductor			
0	٠٩٩٠٠	Coil	HOF	⊶ □⊢⊸	Resonator
		Transformer		·	Thermistor
		Filter			

- This P.C.B. connection diagram is viewed from the parts mounted side.

 The parts which have been mounted on the board can be replaced with above Table.

 The capacity terminal marked with _____ shows negative terminal. The diaget marked with O shows cathode side.

 The transistor terminal marked with _____ shows emitter.

21

D

)

n

.

5. ADJUSTMENTS

5.1 ADJUSTMENT METHODS

If a disc player is adjusted incorrectly or inadequately, it may malfunction or not work at all even though there is nothing at all wrong with the pickup or the circuitry. Adjust correctly following the adjustment procedure.

Adjustment items/verification items and order

Step	Item	Test point	Adjustment location
1	Focus offset adjustment	TP1, Pin 6 (FCS. ERR)	VR103 (FCS. OFS)
2	Grating adjustment	TP1, Pin 2 (TRK. ERR)	Grating adjustment slit
3	Tracking error balance adjustment	TP1, Pin 2(TRK. ERR)	VR102(TRK. BAL)
4	Pickup radial/tangential direction tilt adjustment	TP1, Pin 1 (RF)	Radial tilt adjustment screw, Tangential tilt adjustment screw
5	RF level adjustment	TP1, Pin I (RF)	VR1 (RF level)
6	Focus servo loop gain adjustment	TP1, Pin 5 (FCS, IN) TP1, Pin 6 (FCS, ERR)	VR152(FCS. GAN)
7	Tracking servo loop gain adjustment	TP1, Pin 3(TRK. IN) TP1, Pin 2(TRK. ERR)	VR151 (TRK. GAN)
8	Focus error signal verification	TP1, Pin 6(FCS, ERR)	

Abbreviation table

FCS. ERR: Focus Error
FCS. OFS: Focus Offset
TRK. ERR: Tracking Error
TRK. BAL: Tracking Balance
FCS. GAN: Focus Gain
TRK. GAN: Tracking Gain
FCS. IN: Focus In
TRK. IN: Tracking In

Measuring instruments and tools

- 1. Dual trace oscilloscope (10:1 probe)
- 2. Low-frequency oscillator
- 3. Test disc (YEDS-7)
- 4. 12-cm disc (with at least about 70 minutes recording)
- 5. Low-pass filter (39 k Ω + 0.001 μ F)
- 6. Resistor (100 k Ω)
- 7. Standard tools

■ Test point and adjustment variable resistor positions

Figure 1 Adjustment Locations

Notes

- 1. Use a 10:1 probe for the oscilloscope.
- All the knob positions (settings) for the oscilloscope in the adjustment procedures are for when a 10:1 probe is used.

Test mode

These models have a test mode so that the adjustments and checks required for service can be carried out easily. When these models are in test mode, the keys on the front panel work differently from normal. Adjustments and checks can be carried out by operating these keys with the correct procedure. For these models, all adjustments are carried out in test mode.

[Setting these models to test mode]

How to set this model into test mode.

- 1. Unplug the power cord from the AC socket.
- 2. Short the test mode jumper ...ires. (See Figure 1.)
- 3. Plug the power cord back into the AC socket.

When the test mode is set correctly, the display is different from what it usually is when the power is turned on. If the display is still the same as usual, test mode has not been set correctly, so repeat Steps 1-3.

[Release from test mode]

Here is the procedure for releasing the test mode:

- 1. Press the STOP key and stop all operations.
- 2. Unplug the power cord from the AC socket.

[Operations of the keys in test mode]

Code	Key name	Function in test mode	Explanation
	PGM	Focus servo close	The laser diode is lit up and the focus actuator is lowered, then raised slowly and the focus servo is closed at the point where the objective lens is focused on the disc. With the player in this state, if you lightly rotate the stopped disc by hand, you can hear the sound the focus servo. If you can hear this sound, the focus servo is operating correctly. If you press this key with no disc mounted, the laser diode lights up, the focus actuator is pulled down, then the actuator is raised and lowered twice and returned to its original position.
Δ	PLAY	Spindle servo ON	Starts the spindle motor in the clockwise direction and when the disc rotation reaches the prescribed speed (about 500 rpm at the inner periphery), sets the spindle servo in a closed loop. Be careful. Pressing this key when there is no disc mounted makes the spindle motor run at the maximum speed. If the focus servo does not go correctly into a closed loop or the laser light shines on the mirror section at the outermost periphery of the disc, the same symptom is occurred.
00	PAUSE	Tracking servo close/open	Pressing this key when the focus servo and spindle servo are operating correctly in closed loops puts the tracking servo into a closed loop, displays the track number being played back and the elapsed time on the front panel, and outputs the playback signal. If the elapsed time is not displayed or not counted correctly or the audio is not played back correctly, it may be that the laser is shining on the section with no sound recorded at the outer edge of the disc, that something is out of adjustment, or that there is some other problem. This key is a toggle key and open/close the tracking servo alternately. This key has no effect if no disc is mounted.

Code	Key name	Function in test mode	Explanation
₩	MANUAL SEARCH REV	Carriage reverse (inwards)	Moves the pickup position toward the inner diameter of the disc. When this key is pressed with the tracking servo in a closed loop, the tracking servo automatically goes into an open loop. Since the motor does not automatically stop at the mechanical end point in test mode, be careful with this operation.
> >	MANUAL SEARCH FWD	Carriage forward (outwards)	Moves the pickup position toward the outer diameter of the disc. When this key is pressed with the tracking servo in a closed loop, the tracking servo automatically goes into an open loop. Since the motor does not automatically stop at the mechanical end point in test mode, be careful with this operation.
	STOP	Stop	Switches off all the servos and initialized. The pickup remains where it was when this key was pressed.
<u> </u>	OPEN/CLOSE	Disc tray open/close	Open/close the disc tray. This key is a toggle key and open/close tray altenately. Pressing this key when the disc is turning stops the disc, then opens the tray. This key operation does not affect the position of the pickup.

[How to play back a disc in test mode]

In test mode, since the servos operate independently, playing back a disc requires that you operate the keys in the correct order to close the servos.

Here is the key operation sequence for playing back a disc in test mode.

Wait at least 2-3 seconds between each of these operations.

1. Focus Offset Adjustment

Objective	Sets the DC	Sets the DC offset for the focus error amp.			
Symptom when out of adjustment	The model does not focus in and the RF signal is dirty.				
Measurement instru- ment connections:	Connect the TP1, Pin 6 (F	oscilloscope to FCS. ERR)	● Player state	Test mode, stopped (just the Power switch on)	
	[5 mV/division 10 ms/division	Adjustment location	RF Board Assembly VR103 (FCS. OFS)	
		DC mode	Disc	None needed	

[Procedure]

Adjust VR103 (FCS. OFS) so that the DC voltage at TP1, Pin 6 (FCS. ERR) is -150±50 mV.

2. Grating Adjustment

Objective	To align the tracking error gen	eration laser beam spots to	the optimum angle on the track.
Symptom when out of adjustment	Play does not start, track searc	h is impossible, tracks are	skipped.
Measurement instru- ment connections	Connect the oscilloscope to TP1, Pin 2 (TRK. ERR)via a low pass filter.	Player state Adjustment location	Test mode, focus and spindle servos closed and tracking servo open Pickup grating adjustment slit
	(See Figure 2)	- 13,000110111	rickup graung adjustment sin
	[Settings] 50 mV/division 5 ms/division DC mode	● Disc	12-cm disc. (YEDS-7 can not be used.)

[Procedure]

- Move the pickup to the outer edge of the disc with the MANUAL SEARCH FWD ▷▷ or REV ▷▷ key.
- 2. Press the PROGRAM key, then the PLAY ▷ key in that order to close the focus servo then the spindle servo.
- Insert an ordinary screwdriver into the grating adjustment slit and adjust the grating to find the null point. For more details, see the next page.
- 4. If you slowly turn the screwdriver clockwise from the null point, the amplitude of the wave gradually increases, then if you continue turning the screwdriver, the amplitude of the wave becomes smaller again. Turn the screwdriver clockwise from the null point and set the grating to the first point where the wave amplitude reaches its maximum.

Reference: Figure 3 shows the relation between the angle of the tracking beam with the track and the waveform.

Not

- : The amplitude of the tracking error signal is about 3 Vp-p (when a 39 k Ω + 0.001 μ F low pass filter is used). If this amplitude is extremely small (2 Vp-p or less), the objective lens or the pickup malfunction may be the cause. If the difference between the amplitude of the error signal at the innermost edge and outermost edge of the disc is more than 10%, the grating is not adjusted to the optimum point, so adjust it again.
- 5. Return the pickup to more or less midway across the disc with the MANUAL SEARCH REV <I key, press the PAUSE III key and double check that the track number and elapsed time are displayed on the front panel. If they are not displayed at this time or the elapsed time changes irregularly, double check the null point and adjust the grating again.</p>

[How to find the null point]

When you insert the regular screwdriver into the slit for the grating adjustment and change the grating angle, the amplitude of the tracking error signal at TP1, Pin 2 changes. Within the range for the grating, there are five or six locations where the amplitude of the wave reaches a minimum. Of these five or six locations, there is only one at which the envelope of the waveform is smooth. This location is where the three laser beams divided by the grating are all right above the same track. (See Figure 3.)

This point is called the null point. When adjusting the grating, this null point is found and used as the reference position.

Figure 3

Null point waveform

Maximum amplitude waveform

Waveform other than the null point

3. Tracking Error Balance Adjustment

 Objective 	To correct	for the variation in t	he sensitivity of the tracki	ng photodiode.
Symptom when out of adjustment	Play does i	not start or track sear	ch is impossible.	
 Measurement instru- ment connections 	TP1, Pin 2	e oscilloscope to (TRK, ERR). This may be via a low	● Player state	Test mode, focus and spindle servos closed and tracking servo open
	pass filter. [Settings]	50 mV/division	Adjustment location	RF Board Assembly VR102 (TRK. BAL)
		5 ms/division DC mode	● Disc	YEDS-7

[Procedure]

- 1. Move the pickup to midway across the disc (R=35 mm) with the MANUAL SEARCH FWD ▷▷ or REV ▷▷ dey.
- 2. Press the PROGRAM key, then the PLAY > key in that order to close the focus servo then the spindle servo.
- 3. Line up the bright line (ground) at the center of the oscilloscope screen and put the oscilloscope into DC mode.
- Adjust VR102 (TRK. BAL) so that the positive amplitude and negative amplitude of the tracking error signal at TP1, Pin 2 (TRK. ERR) are the same (in other words, so that there is no DC component).

4. Pickup Radial/Tangential Tilt Adjustment

Objective	To adjust the angle of the pickup relative to the disc so that the laser beams are shone straight down into the disc for the best read out of the RF signals. Sound broken; some discs can be played but not others.					
Symptom when out of adjustment						
Measurement instru- ment connections	Connect th	e oscilloscope to (RF).	Player state	Test mode, play		
	[Settings]	20 mV/division 200 ns/division	● Adjustment location	Pickup radial tilt adjustment screw and tangential tilt adjustment screw		
		AC mode	• Disc	12-cm disc. (YEDS-7 can not be used.)		
				(1EDS=7 can not be used.)		

[Procedure]

- Press the MANUAL SEARCH FWD ▷▷ or REV ◄
 key so that the radial/tangential tilt screws can be adjusted.
 Press the PROGRAM key, the PLAY ▷ key, then the PAUSE II key in that order to close the focus servo then the spindle servo and put the player into play mode.
- First, adjust the radial tilt adjustment screw with a Phillips screwdriver so that the eye pattern (the diamond shape at the center of the RF signal) can be seen the most clearly.
- Next, adjust the tangential tilt adjustment screw with a Phillips screwdriver so that the eye pattern (the diamond shappe at the center of the RF signal) can be seen the most clearly (Figure 5).
- 4. Adjust the radial tilt adjustment screw and the tangential tilt adjustment screw again so that the eye pattern can be seen the most clearly. As necessary, adjust the two screws alternately so that the eye pattern can be seen the most clearly.
- 5. When the adjustment is completed, lock the radial and tangential adjustment screw.

Note: Radial and tangential mean the directions relative to the disc shown in Figure 4.

5. RF Level Adjustment

Objective	To optimiz	To optimize the playback RF signal amplitude			
Symptom when out of adjustment	No play or	no search			
Measurement instru- ment connections	Connect the oscilloscope to TP1, Pin 1 (RF).		Player state	Test mode, play	
	[Settings]	50 mV/division 10 ms/division	● Adjustment location	Pick up Assembly VR1 (laser power)	
		AC mode	● Disc	YEDS-7	

[Procedure]

- Move the pickup to midway across the disc (R=35 mm) with the MANUAL SEARCH FWD DD or REV dd key, then
 press the PROGRAM key, then the PLAY DD key in that order to close the respective servos and put the player into
 play mode.
- 2. Adjust VR1 (laser power) so that the RF signal amplitude is $1.2 \text{ Vp-p} \pm 0.1 \text{ V}$.

6. Focus Servo Loop Gain Adjustment

Objective	To optimize the focus servo loop gain.				
Symptom when out of adjustment					
Measurement instru- ment connections	See figure 6. [Settings]	Player state	Test mode, play		
	CH1 CH2 20 mV/division 5 mV/division	 Adjustment location 	Mother Board Assembly VR152 (FCS. GAN)		
	X-Y mode	Disc	YEDS-7		

[Procedure]

- 1. Set the AF generator output to 1.2 kHz and 1 Vp-p.
- Press the MANUAL SEARCH FWD ▷▷ or REV ◁◁ key to move the pickup to halfway across the disc (R=35 mm), then press the PROGRAM key, the PLAY ▷ key, then the PAUSE III key in that order to close the corresponding servos and put the player into play mode.
- 3. Adjust VR152 (FCS. GAN) so that the Lissajous waveform is symmetrical about the X axis and the Y axis.

Focus Gain Adjustment

Higher gain

Optimum gain

Lower gain

7. Tracking Servo Loop Gain Adjustment

Objective	To optimize the tracking servo loop gain.				
Symptom when out of adjustment	Playback does not start, during searches the actuator is noisy, or tracks are skipped.				
Measurement instru- ment connections	See Figure 7.	Player state	Test mode, play		
	CHI CH2	Adjustment location	Mother Board Assembly VR151 (TRK. GAN)		
	50 mV/division 20 mV/division X-Y mode	• Disc	YEDS-7		

[Procedure]

- 1. Set the AF generator output to 1.2 kHz and 2 Vp-p.
- 2. Press the MANUAL SEARCH FWD ▷▷ or REV ▷▷ to move the pickup to halfway across the disc (R=35 mm), then press the PROGRAM key, the PLAY ▷ key, then the PAUSE 🗊 key in that order to close the corresponding servos and put the player into play mode.
- 3. Adjust VR151 (TRK. GAN) so that the Lissajous waveform is symmetrical about the X axis and the Y axis.

Figure 7

Tracking Gain Adjustment

Higher gain

Lower gain

8. Focus Error Signal (Focus S Curve) Verification

Objective	judged from	To judge whether the pickup is ok or not by observing the focus error signal. The pickup is judged from the amplitude of the tracking error signal (as discussed in the section on adjusting the tracking error balance) and the waveform for the focus error signal.				
Symptom when out of adjustment						
Measurement instru- ment connections	Connect the oscilloscope to TPI, Pin 6 (FCS. ERR).		Player state	Test mode, stop		
	(Settings)	100 mV/division	Adjustment location	None		
		5 ms/division DC mode	• Disc	YEDS-7		

[Procedure]

- 1. Connect TP1 Pin 5 to ground.
- 2. Mount the disc.
- 3. While watching the oscilloscope screen, press the PROGRAM key and observe the waveform in Figure 8 for a moment. Verify that the amplitude is at least 2.5 Vp - p and that the positive and negative amplitude are about equal. Since the waveform is only output for a moment when the PROGRAM key is pressed, press this key over and over until you have checked the waveform.

[Judging the pickup]

Do not judge the pickup until all the adjustments have been made correctly. In the following cases, there may be something wrong with the pickup.

- 1. The tracking error signal amplitude is extremely small (less than 2 Vp-p).
- 2. The focus error signal amplitude is extremely small (less than 2.5 Vp-p).
- 3. The positive and negative amplitudes of the focus error signal are extremely asymmetrical (2:1 ratio or more).
- 4. The RF signal is too small (less than 0.8 Vp-p) and even if VR1 (laser power) is adjusted, the RF signal can not be brought up to the standard level.

5. REGLAGES

6.1 MÉTHODES DE RÉGLAGE

Si le lecteur CD est mal réglé, il risque de ne plus fonctionner normalement, voire ne plus fonctionner du tout, même si le capteur et la circuiterie en présentent aucune anomalie. Par conséquent, ajuster le lecteur correctement en suivant les démarches de réglage.

Points de réglage/Point et ordre de vérification

Etape	Point	Point d'essai	Emplacement du réglage
1	Réglage du décalage de la mise au point	TP1, Broche 6 (FCS. ERR)	VR103 (FCS. OFS)
2	Réglage du réseau de diffraction	TP1, Broche 2(TRK. ERR)	Fente de réglage du réseau de diffraction
3	Réglage d'équilibrage d'erreur d'alignement	TP1, Broche 2(TRK. ERR)	VR102(TRK. BAL)
4	Réglage d'inclinaison radiale/ tangentielle du capteur	TP1, Broche 1 (RF)	Vis de réglage d'inclinaison radiale, vis de réglage d'inclinaison tangentielle
5	Réglage du niveau RF	TP1, Broche 1 (RF)	VR1 (niveau RF)
6	Réglage de gain de bouncle asservie de la mise au point	TP1, Broche 5 (FCS. IN) TP1, Broche 6 (FCS. ERR)	VR152 (FCS. GAN)
7	Réglage de gain de boucle asservie de l'alignement	TPI, Broche 3(TRK. IN) TPI, Broche 2(TRK. ERR)	VRI5I (TRK. GAN)
8	Vérification du signal d'erreur de la mise au point	TP1, Broche 6 (FCS, ERR)	

● Tableau des abbréviations

FCS. ERR
FCS. OFS
Decalage de mise au point
FCS. GAN
FCS. IN
F

Intruments de mesure et outils

- 1. Oscilloscope cathodeique à deux faisceaux (sonde 10 : 1)
- 2. Oscillateur de basse fréquence
- 3. Disque d'essai (YEDS-7)
- 4. Disque de 12-cm (avec au moins 70 minutes d'enregistrement)
- 5. Filtre passe-bas (39 k Ω + 0,001 μ F)
- 6. Résistance (100 kΩ)
- 7. Outils conventionnels

Point d'essai et positions de réglage de la résistance variable

Figure 1 Emplacement des réglages

Remarques

- Utiliser une sonde 10:1 pour l'oscilloscope.
- Toutes les positions (réglages) des boutons de l'oscilloscope, dans les démarches de réglage, sont conçues pour l'usage d'une sonde 10:1.

● Mode d'essai

Ces modèles sont munis d'un mode d'essai, de façon que les réglages requis à la réparation puissent être effectués aisément. Quand ces modèles sont en mode d'essai, les touches du panneau avant ne fonctionnent pas comme à l'ordinaire. Les réglages et les vérifications peuvent s'effectuer par l'enclenchement de ces touches, à conditions de suivre les démarches requises. Dans le cas de ces modèles, tous les réglages sont réalisés en mode d'essai.

[Mise en mode d'essai]

Voici la menière de mettre le modèle en mode d'essai.

- 1.Débrancher le cordon d'alimentation de la prise secteur.
- 2. Court-circuiter les fils de liaison du mode d'essai. (Voir Figure 1.)
- 3. Rebrancher le cordon d'alimentation dans la prise secteur.

Quand le mode d'essai est correctement réglé, l'affichage est différent de celui qui apparaît généralement à la mise souns tension. Si l'affichage reste le même, le mode d'essai n'a pas été réglé correctement. Dans ce cas, répéter les étapes 1 à 3.

[Pour sortir du mode d'essai]

- Voici la procédure pour sortir du mode d'essai.

 1. Appuyer sur la touche STOP pour arrêter toutes les opérations.

 2. Débrancher le cordon d'alimentation de la prise secteur.

[Fonctionnement des touches en mode d'essai]

Code	Nom de la touche	Fonction en mode d'essal	Explications
	PGM	Fermeture du circuit asservi de la mise au point	La diode laser s'allume et l'actuateur de la mise au point s'abaisse, puis se reléve lentement et le circuit servo de la mise au point se ferme au point où la lentille de l'objectif se focalise sur le disque. Quand l'appareil est dans cet état, si l'on fait légèrement tourner à la main le disque arrêté, le bruit produit par le circuit servo de la mise au point sera audible. Si ce bruit est perçu, le circuit servo de la mise au point fonctionne correctement. Si cette touche est enclenchée et qu'aucun disque n'est installé, la diode laser s'allume, l'actuateur de la mise au point s'abaisse, se relève, puis s'abaisse une deuxième fois et enfin, revient à sa position de départ.
Δ	PLAY	Asservissement de rotation en service	Démarre le moteur de rotation dans le sens des aiguilles d'une montre, quand la rotation du disque atteint la vitesse prescrite (environ 500 tours/min à la circonférence interne) et place le circuit servo de rotation dans une boucle fermée. Attention. Si cette touche est enfoncée et qu'un disque n'est pas installé, le moteur de rotation va tourner à la vitesse maximum. Si le circuit servo de la mise au point ne passe pas comme prévu dans une boucle fermée ou que la diode laser brille dans le miroir à la périphérie externe du disque, le même symptôme se produit.
00	PAUSE	Ouverture/Fermeture du circuit servo de l'alignement	Le fait d'appuyer sur cette touche quand le circuit servo de la mise au point et de la rotation fonctionnent correctement en boucles fermées, place le circuit servo de l'alignement dans une boucle fermée, fait apparaître, sur le panneau avant, le numéro de la piste en coures de lecture et la durée écoulée, puis sort le signal de lecture. Si la durée écoulée n'est pas affichée ou n'est pas correctement calculée, ou si la reproduction sonore est anormale, il se peut que la diode laser s'active dans la section dépourvue de signaux enregistrés, au bord externe du disque, qu'un ajustement quelconque soit déréglé, ou qu'un autre problème se manifeste. Cette touche est de type à bascule, et ouvre/ferme alternativement le circuit servo de l'alignement. Cette touche est inopérante si un disque n'est pas installé.

Code	Nom de la touche	Founction en mode d'essal	Explications
⟨√√	MANUAL SEARCH REV	Inversion du chariot (vers l'intérieur)	Déplace le capteur vers la périphérie interne du disque. Quand cette touche est enclenchée et que le circuit servo de l'alignement travaille en boucle fermée, celui-ci change automatiquement dans une boucle ouverte. Comme le capteur ne s'arrête pas automatiquement au point de fin mécanique du mode d'essai, effectuer cette démarche avec précaution.
DD	MANUAL SEARCH FWD	Inversion du chariot (vers l'extérieur)	Déplacé le capteur vers la périphérie externe du disque. Quand cette touche est enclenchée et que le circuit servo de l'alignement travaille en boucle fermée, celui-ci change automatiquement dans une boucle ouverte. Comme le capteur ne s'arrête pas automatiquement au point de fin mécanique du mode d'essai, effectuer cette démarche avec précaution.
	STOP	Arrêt	Met tous les circuits servo hors service et les initialise. Le capteur reste lá où il était quand cette touche a été enclenchée.
Δ	OPEN/CLOSE	Ouverture/Fermeture du plateau á disque	Cette touche est de type à bascule et ouvre/ferme alternativement le plateau. Le fait d'enfoncer cette touche quand le plateau est ouvert le ferme et vice versa. Le fait d'appuyer sur cette touche quand le disque tourne arrête la rotation et ouvre le plateau. La fonction de cette touche n'a aucun effet sur la position du capteur.

[Lecture de disque en mode d'essai]

En mode d'essai, comme les circuits servo fonctionnent de manière indépendante, la lecture d'un disque exige que les touches soient enclenchées dans l'ordre prescrit, afin de fermer les circuits servo.

Voici l'ordre d'enclenchement des touches pour reproduire un disque en mode d'essai.

Ferme le circuit servo de l'alignement.

PGM II PLAY D

PAUSE [

Allume la diode laser, et ferme le circuit servo de la mise au point.

Démarre le moteur de rotation et ferme le circuit servo de la rotation.

Attendre 2 à 3 secondes entre chaque opération.

1. Réglage du dÉcalage de la Mise au Point

Objectif	Règle le décalage CC de l'amplificateur d'erreur de mise au point.					
 Symptôme quand dérégié 	Le lecteur ne procède plus à la mise au point et le signal RF n'est pas clair.					
Raccordement des instruments de mesure	Raccorder l'oscilloscope à TPI, broche 6 (FCS. ERR).		Etat du lecteur	Mode d'essai, arrêté (juste l'interrupteur d'alimentation commuté sur marche)		
10 ms/di		5 mV/division 10 ms/division mode CC	 Emplacement du réglage 	Assemblage de carte RF VR103(FCS. OFS)		
		Disque Aucun requis				

[Marche à suivre]

Ajuster VR103 (FCS. OFS) de façon que la tension à TP1 broche 6 (FCS. ERR) soit −150±50 mV.

2. Réglage du Réseau de Diffraction

Objectif	Pour aligner les points du rayon laser producteur d'erreur d'alignement sur l'angle optimum de la piste. La lecture ne commence pas, la recherche de piste est impossible, les pistes sont sautées.			
 Symptôme quand déréglé 				
◆ Raccordement des instruments de mesure	Raccorder l'oscilloscope à TP1, broche 2 (TRK. ERR) via un fittre passe-bas. (Voir Figure 2)		Etat du lecteur Emplacement du réglage	Mode d'essai, circuits servo de la mise au point et de la rotation fermés, circui servo de l'alignement ouvert. Fente de réglage du réseau de diffraction du capteur.
	[Réglages]	50 mV/division 5 ms/division mode CC	Disque	Dans de 12cm. (il est impossible d'employer le disque YEDS-7).

[Marche à suivre]

- 1. Déplacer le capteur à mi-chemin sur le disque (R=35 mm) par la touche MANUAL SEARCH FWD ▷ ou la touche REV ⊲ .
- Appuyer sur la touche PROGRAM, puis sur la touche PLAY >, dans cet ordre, pour fermer le circuit servo de la mise au point, puis celui de la rotation.
- Insérer un tournevis ordinaire dans le réseau de diffraction pour trouver le point zéro. Pour plus de détails, voir page suivante.
- 4. Si l'on tourne lentement le tournevis dans le sens des aiguilles d'une montre à partir du point zéro, l'amplitude de l'onde augmente graduellement et si l'on continue à tourner le tournevis, l'amplitude de l'onde diminue de nouveau. Tourner le tournevis dans le sens des aiguilles d'une montre à partir du point zéro et régler le réseau de diffraction au premier point où l'amplitude de l'onde atteint son maximum.

Référence: La Figure 3 illustre la relation entre l'angle du faisceau de l'alignement et la piste et la forme d'onde.

Remarque: L'amplitude du signal d'erreur d'alignement se situe aux environs de 3 Vc-c (quand un filtre passe-bas de $39 \, \mathrm{k} \, \Omega \pm 0.001 \, \mu \, \mathrm{F}$ est utilisé). Si cette amplitude est extrêmement petite (2 Vc-c ou moins), la lentille d'objectif ou du capteur resque de mal fonctionner. Si la différence entre l'amplitude du signal d'erreur au bord le plus intérieur et au bord le plus extérieur du disque est supérieure à 10%, ceci signifie que le réseau de diffraction n'est pas réglé à son point optimum. Dans ce cas, recommencer le réplage.

5. Replacer le capteur plus ou moins à mi-chemin sur le disque par la touche MANUAL SEARCH REV <<, appuyer sur la touche PAUSE № et vérifier que le numéro de piste et la durée écoulée sont affichés sur le panneau avant. Si ces paramètres 'apparaissent pas ce moment, ou que la durée écoulée change de manière irrégulière, vérifier le point zéro et recommencer le réglage du réseau de diffraction.

[Repérage du point zéro]

Quand le tournevis est introduit dans la fente de réglage du réseau de diffraction et que l'angle du réseau de diffraction est modifié, l'amplitude du signal d'erreur d'alignement à TPI, broche 2, change. Dans les limites de la plage du réseau de diffraction, il existe six emplacements où l'amplitude de l'onde atteint le minimum. Mais l'enveloppe de la forme d'onde n'est régulière qu'à un seul de ces emplacements. Ce point se situe à l'endroit où les trois rayons laser, divisés par le réseau de diffraction, se situent exactement sur la même piste (voir Figure 3).

Ce point s'appelle le point zéro. Lors du réglage du réseau de diffraction, ce point zéro est repéré et utilisé comme position de référnce.

Forme d'onde du

point zéro

Forme d'onde d'amplitude maximum

Forme d'onde autre que du point zéro

3. Réglage d'Équilibrage d'Erreur d'Alignement

Objectif Symptôme quand		Pour corriger la variation de sensibilité de la photodiode d'alignement. La lecture ne commence pas, la recherche de piste est impossible.				
déréglé						
Raccordement des instruments de mesure	Raccorder l'oscilloscope à TP1, broche 2 (TRK. ERR). Cette connexion peut être faite par l'intermédiaire d'un filtre passe-bas.		● Etat du lecteur	Mode d'essai, circuits servo de la mise au point et de la rotation fermés, circuit servo de l'alignement ouvert.		
	[Réglages]	50 mV/division 5 ms/division mode CC	 Emplacement du réglage 	Assemblage de carte RF VR102(TRK. BAL)		
			Disque	YEDS-7		

[Marche à suivre]

- 1. Déplacer le capteur à mi-chemin sur le disque (R=35 mm) par la touche MANUAL SEARCH FWD >> ou la touche REV <<.
- 2. Appuyer sur la touche PROGRAM, puis sur la touche PLAY D, dans cet ordre, pour fermeer le circuit servo de la mise au point, puis celui de la rotation.
- 3. Aligner la ligne lumineuse (masse) au centre de l'écran de l'oscilloscope et placer celui-ci en mode CC.
- 4. Ajuster VR102 (TRK BAL) de façon que l'amplitude positive et l'amplitude négative du signal d'erreur d'alignement à TP1, broche 2 (TRK. ERR) soient identiques (c'est-à-dire, qu'il n'y ait aucun composant CC).

S'il y a un composant CC

S'il n'y a pas de composant CC

49

4. Réglage d'Inclinaison Radiale/Tangentielle du Capteur

Objectif Symptôme quand déréglé	Pour régler l'angle du capteur par rapport au disque, de façon que les rayons laser frappent vericalement le disque et permettre ainsi la lecture optimum des signaux RF. Son interrompu ; certains disques peuvent être lus et pas d'autres.				
Raccordement des instruments de mesure	Raccorder l'broche i (RF) [Réglages]	oscilloscope à TF). 20 mV/division 200 ns/division mode CA	P1,	Etat du lecteur Emplacement du réglage Disque	Mode d'essai, lecture Vis de réglage d'inclinaison radiale. Vis de réglage d'inclinaison tangentielle. Disque de 12cm. (il est impossible d'employer le disque YEDS-7.)

[Marche à suivre]

- Dans le cas d'un lecteur multidisque, utiliser la touche MANUAL SEARCH FWD ▷▷ ou la touche REV ▷▷ de façon que les vis de réglage d'inclinaison radiale et tangentielle puissent être réglées Appuyer sur la touche PROGRAM, PLAY ▷ et PAUSE ⑥ dans cet ordre, afin de fermer le circuit servo de la mise au point, puis celui de la rotation et placer le lecteur en mode de lecture.
- D'abord, ajuster la vis d'inclinaison radiale à l'aide un tournevis Phillips, de façon que le motif en oeil (c'est-à-dire, le diamant au centre du signal RF) soit le plus clairement visible.
- 3. Ensuite, ajuster la vis d'inclinaison tangentielle à l'aide un tournevis Phillips, de façon que le motif en oeil (c'est-à-dire, le diamant au centre du signal RF) soit le plus clairement visible (Figure 5).
- 4. Ajuster de nouveau la vis d'inclinaison radiale et la vis d'inclinaison tangentielle de façon que le motif en oeil soit le plus clairement visible. Le cas échéant, régler les deux vis de façon que le motif en oeil soit le plus clairement visible.
- 5. Lorsque le réglage est terminé, bloquer les vis de réglage radiale et tangentielle.

Remarque: "Radiale" et "tangentielle" se rapportent aux sens par rapport au disque illustré à la Figure 4.

5. Réglage du Niveau RF (Niveau RF)

Objectif	Pour optimaliser l'amplitude du signal RF de lecture				
 Symptôme quand déréglé 	Pas de lecture ni de recherche				
Raccordement des instruments de	Raccorder l'oscilloscope à TP1, broche l (RF).		Etat du lecteur	Mode d'essai, lecture	
mesure	[[00]	50 mV/division 10 ms/division	Emplacement du réglage	Assemblage de tête de lecture VR1 (alimentation du laser)	
		mode CA	Disque	YEDS-7	

[Marche à suivre]

- Placer le capteur à mi-chemin sur le disque (R=35 mm) à l'aide de la touche MANUAL SEARCH FWD ▷▷ ou la touche REV <<
- Ensuite, appuyer sur la touche PROGRAM, puis sur la touche PLAY > , dans cet ordre, pour fermer les circuits servo respectifs et mettre le lecteur en mode de lecteur.
- 2. Ajuster VR1 (alimentation du laser) de façon que l'amplitude du signal RF atteigne 1,2 Vc-c±0,1 V.

6. Réglage de Gain de Boucle Asservie de la Mise au Point

Objectif Symptôme quand déréglé	Pour optimaliser le gain de la boucle d'asservissement de la mise au point. La lecture ne commence pas ou l'actuateur de la mise au point est parasité.				
Raccordement des instruments de mesure	[Réglages] GAN. 1 GAN. 2 20 mV/division 5mV/division		Etat du lecteur Emplacement du réglage Disque	Mode d'essai, lecture Assemblage de carte MOTHER VR152 (FCS. GAN) YEDS-7	

[Marche à suivre]

- 1. Régler la sortie du générateur AF sur 1,2 kHz et 1 Vc-c.
- Appuyer sur la touche MANUAL SEARCH FWD D> ou la touche REV <I pour placer le capteur à mi-chemin sur le disque (R=35 mm). Ensuite, appuyer sur la touche PROGRAM, la touche PLAY D, puis sur la touche PAUSE

 dans cet ordre, pour fermer les circuits servo respectifs et placer le lecteur en mode de lecture.
- Ajuster VR152 (FCS. GAN) de façon que la forme d'onde de Lissajous soit symétrique aux alentours de l'axe X et l'axe Y.

Réglage de gain de mise au point

Gain supérieur

Gain optimum

Gain inférieur

7. Réglage de Gain de Boucle Asservie de l'Alignement

Objectif	Pour optimaliser le gain de la boucle d'asservissement de l'alignement.				
 Symptôme quand déréglé 	La lecture ne commence pas, l'actuateur est parasité pendant la recherche, ou des pistes sont sautées.				
Raccordement des instruments de mesure	Voir Figure 7. [Réglages] GAN. 1 GAN. 2 50 mV/division mode X-Y		Etat du lecteur Emplacement du réglage Disque	Mode d'essai, lecture Assemblage de carte MOTHER VRI51 (TRK. GAN) YEDS-7	

[Marche à suivre]

- 1. Régler la sortie du générateur AF sur 1,2 kHz et 2 Vc-c.
- 3. Ajuster VR151 (TRK. GAN) de façon que la forme d'onde de Lissajous soit symétrique aux alentours de l'axe X et l'axe Y

Réglage de gain d'alignement

Gain supérieur

Gain optimum

Gain inférieur

8. Vérification du Signal d'Erreur de la Mise au Point

Objectif	Pour juger si le capteur est bon ou pas, en observant le signal d'erreur de la mise au point. L'état du capteur s'évalue à partir de l'amplitude du signal d'erreur d'alignement (comme décrit dans le paragraphe relatif à l'équilibrage d'erreur d'alignement), ainsi qu'à paritir de la forme d'onde du signal d'erreur de mise au point.				
 Symptôme quand déréglé 					
Raccordement des instruments de	Raccorder 1 broche 6 (FC	'oscilloscope à TPI, S. ERR).	Etat du lecteur	Mode de test, arrêt	
mesure	[Réglages]	100 mV/division 5 ms/division	Emplacement du réglage	Aucun	
	_	mode CC	Disque	YEDS-7	

[Marche à suivre]

- 1. Raccorder TP1, broche 5 à la masse.
- 2. Installer le disque.
- 3. Tout en regardant l'écran de l'oscilloscope, appuyer sur la touche PROGRAM et observer la forme d'onde de la Figure 8, pendant quelques instants. Vérifier que l'amplitude atteint au moins 2,5 Vc-c et que les amplitudes positive et négatives soient égales. Comme la forme ne sont que pour un moment, quand la touche PROGRAM est enclenchée, appuyer sur à plusieurs reprises sur cette touche, jusqu'à ce que la forme d'onde ait été vérifiée.

[Lvaluation du capteur]

Ne pas tenter d'évaluer l'état du capteur tant que tous les réglages ne sont pas corrects. Les cas suivants témoignent de l'anomalie du capteur.

- 1. L'amplitude du signal d'erreur d'alignement est extrêmement petite (inférieure à 2 Vc-c).
- 2. L'amplitude du signal d'erreur de mise au point est extrêmement petite (inférieure à 2,5 Vc-c).
- Les amplitudes positive et négative du signal d'erreur de mise au point sont extrêmement asymétriques (taux 2:1 ou plus).
- Le signal RF est trop petit (inférieur à 0,8 Vc-c) et même si VR1 (alimentation du laser) est ajustée, le signal RF ne peut être élevé au niveau standard.

5. AJUSTES

6.1 MÉTODOS DE AJUSTE

Si un reproductor de discos compactos se ajusta incorrecta o inadecuadamente, puede funcionar mal o no trabajar incluso aunque no exista ningún problema en el captor ni en los circuitos. Ajuste correctamente siguiendo el procedimiento de ajuste.

• Ítemes de ajuste/verificación y orden

Paso	Ítem	Punto de prueba	Lugar de ajuste
1	Ajuste del descentramiento de enfoque	TP1, Patilla 6 (FCS. ERR)	VR103 (FCS. OFS)
2	Ajuste de retícula	TPI, Patilla 2 (TRK. ERR)	Ranura de ajuste-de retícula
3	Ajuste del equilibrio de ajuste de seguimiento	TP1, Patilla 2(TRK. ERR)	VR102 (TRK. BAL)
4	A juste de la inclinación en sentido radial / tangencial del captor	TP1, Patilla 1 (RF)	Tornillo de ajuste de la inclinación radial. Tornillo de ajuste de la inclinación tangencial
5	Ajuste del nivel de RF	TP1, Patilla 1 (RF)	VR1 (Nivel de RF)
6	Ajuste de la ganancia del bucle del servo de enfoque	TP1, Patilla 5 (FCS. IN) TP1, Patilla 6 (FCS. ERR)	VR152(FCS. GAN)
7	Ajuste de la ganancia del bucle del servo de seguimiento	TP1, Patilia 3 (TRK. IN) TP1, Patilia 2 (TRK. ERR)	VR151 (TRK. GAN)
8	Verificación de la señal de error de enfoque	TP1, Patilia 6 (FCS. ERR)	

● Tabla de abreviaturas

FCS. ERR :Error de enfoque
FCS. OFS :Descentramiento de enfoque
TRK. BAL :Equilibrio de seguimiento
FCS. GAN :Ganacia de enfoque
TRK. GAN :Ganacia de seguimiento
FCS. IN :Entrada de seguimiento

Instrumentos y herramientas de medición

- 1. Osciloscopio de doble traza (Sonda de 10:1)
- 2. Oscilador de baja frecuencia
- 3. Disco de prueba (YEDS 7)
- 4. Disco de 12cm (con 70minutos de grabación por lo menos
- 5. Filtro de paso bajo (39 k Ω + 0,001 μ F)
- 6. Resistor (100 kΩ)
- 7. Herramientas estándar

Ubicación de los puntos de prueba y los resistores variables de ajuste

Figura 1 Lugares de ajuste

Notas

- 1. Emplee una sonda de 10:1 para el osciloscopio.
- Todas las posiciones de los mandos (ajustes) para el osciloscopio de los procedimientos de ajuste son para cuando se emplee la sonda de 10:1.

Modo de prueba

Estos modelos poseen un modo de prueba que permite realizar fácilmente los ajustes y las comprobaciones requeridos para el servicio. Cuando estos modelos estén en el modo de prueba, las teclas del panel frontal trabajarán de forma diferente a la normal. Los ajustes y las comprobaciones podrán realizarse accionando estas teclas de acuerdo con el procedimiento correcto. Para estos modelos, todos los ajustes se realizarán en el modo de prueba.

[Puesta de estos modelos en el modo de prueba]

- A continuación se indica cómo poner estos modelos en el modo de prueba.
- 1. Desenchufe el cable de alimentación de la toma de CA.
- 2. Cortocicuite los hilos de puenteado de modo de prueba. (Consulte la figura 1.)
- 3. Enchufe el cable de alimentación de la toma de CA.

Cuando haya ajustado correctamente el modo de prueba, la visualización será diferente a la obtenida normalmente al conectar la alimentación. Si la visualización sigue siento la normal, el modo de prueba no se habrá ajustado normalmente, por lo que tendrá que repetir los pasos I a 3.

[Desactivación del modo de prueba]

A continuación se indica el procedimiento para desactivar el modo de prueba.

- 1. Presione la tecla STOP y cese todas las operaciones.
- 2. Desenchufe el cable de alimentación de la toma de CA.

[Operaciones de teclas en el modo de prueba]

Código	Nombre de la tecla	Función en el modo de prueba	Explicación
	PGM	Cierre del servo de enfoque	El diodo láser se encenderá y el actuador de enfoque descenderá, después se elevará lentamente, y el servo de enfoque se cerrará en el punto en el que el objetivo se enfoque sobre el disco. Con el reproductor en este estado, si gira ligeramente con la mano el disco parado, podrá ofr el sonido del servo de enfoque. Si puede oír este sonido, el servo de enfoque estará funcionando correctamente. Si presiona esta tecla sin disco montado, el diodo láser se encenderá, el actuador de enfoque se vera empujado hacia abajo, y después se levantará y descenderá á dos veces, y volverá a su posición original.
Δ	PLAY	Activación del servo del eje	Pondrá en marcha el motor del eje haciéndolo girar hacia la derecha y después la rotación del disco alcanzará la velocidad prescrita (unas 500 rpm en la periferia interior), y pondrá el servo del eje en un bucle cerrado. Tenga cuidado. Si presiona esta tecla cuando no haya disco montado, el motor del eje girará a la velocidad máxima. Si el servo de enfoque no pasa correctamente a un bucle cerrado, o si el haz lasérico incide en la sección del espejo en el la periferia del disco, ocurrirá el mismo síntoma.
00	PAUSE	Apertura/cierre del servo de seguimiento	Si presiona esta tecla cuando el servo de enfoque y el servo del eje están funcionando correctamente en bucles cerrados, el servo de seguimiento se pondrá en bucle cerrado, en el panel frontal se visualizarán el número de canción que esté reproduciéndose y el tiempo transcurrido, y se producirá la salida de la señal de reproducción. Si el tiempo transcurrido no se visualiza o no se cuenta correctamente, o si el sonido no se reproduce correctamente, es posible que el rayo lasérico esté incidiendo en la sección sin sonido grabado en el borde exterior del disco, o que exista algún otro problema. Esta tecla es basculante de acción alternativa, y abre/cierra el servo de seguimiento alternativamente. Esta tecla no funcionará cuando no haya disco montado.

Código	Nombre de la tecla	Función en el modo de prueba	Explicación
₩	MANUAL SEARCH REV	Retroceso del carro (hacia adentro)	Moverá la posición del captor hacia el diámetro interior del disco. Si presiona esta tecla con el servo de seguimiento en bucle cerrado, dicho bucle pasará automáticamente a bucle abierto. Como el captor no se para automáticamente en el punto final mecánico en el modo de prueba, tenga cuidado cuando realice esta operación.
DD	MANUAL SEARCH FWD	Avance del carro (hacia afuera)	Moverá la posición del captor hacia la periferia del disco. Si presiona esta tecla con el servo de seguimiento en bucle cerrado, dicho bucle pasará automáticamente a bucle abierto. Como el captor no se para automáticamente en el punto final mecánico en el modo de prueba, tenga cuidado cuando realice esta operación.
	STOP	Parada	Desactivará todos los servos e inicializará la unidad. El captor permanecerá donde estaba cuando se presionó esta tecla.
<u> </u>	OPEN/CLOSE	Apertura/cierre de la bandeja del disco	Abrirá/cerrará la bandeja del disco. Esta tecla es baseulante de acción alternativa y abre/cierra la bandeja alternativamente Si presiona esta tecla cuando el disco esté girando, lo parará, y abrira la bandeja. Esta operación de la tecla no afectará posición del captor.

[Cómo reproducir un disco en el modo de prueba]

En el modo de prueba, como los servos funcionan independientemente, la reproducción de un disco requiere el que usted emplee las teclas en el orden correcto para cerrar los servos.

A continuación se indica la secuencia de operación de teclas para reproducir un disco en el modo de prueba.

PAUSE 10 Hará que se encienda el diodo láser, y cerrará el servo de enfoque.

Phay D

Pondrá en marcha el motor del eje y hará que se cierre el servo del eje.

Cerrará el servo de seguimiento.

Espere de 2 a 3 segundos por lo menos entre cada una de estas operaciones.

1. Ajuste del Descentramiento del Enfoque

Objetivo	Ajuste de la tensión de CC para el amplificador de error de enfoque.				
Sintomas en caso de desajuste	El reproductor no enfoca y la señal de RF contiene perturbaciones.				
Conexión de los instrumentos de medición	Conecte el osciloscopio a TPI, patilla 6 (FCS. ERR)		Estado del reproductor	Mode de prueba, parado (con el interruptor de alimentación en ON)	
	[Ajustes]	5 mV/división 10 ms/división modo de CC	● Lugar de ajuste	Conjunto del panel RF VR103 (FCS. OFS)	
	,		● Disco	No es necesario	

[Procedimiento]

Ajuste VR103 (FCS. OFS) de forma que la tensión de CC de TP1, patilla 6 (FCS. ERR) sea de -150±50 mV.

2. Aluste de Retícula

Objetivo	Alineación de los puntos del haz lasárico de gereración de error de seguimiento al ángulo óptimo en la pista.				
Sintomas en caso de desajuste	La reproducción no se inicia, la búsqueda de canciones es imposible, las pistas se saltan.				
 Conexión de los instrumentos de medición 	Conecte el osciloscopio a TPI, patilla2 (TRK. ERR)a través de un filtro de paso bajo.		Estado del reproductor	Modo de prueba, servos de enfoque y del eje cerrados, y servo de seguimiento abierto.	
	(Consulte la figura 2)	 Lugar de ajuste 	Ranura de ajuste de retícula del captor		
	[Ajustes]	50 mV/división 5 ms/división modo de CC	• Disco	Disco de 12 cm. (El disco YEDS-7 no podrá emplearse.)	

[Procedimiento]

- Mueva el captor hasta el la mitad del disco (R=35mm) con la tecla MANUAL SEARCH FWD DD o la tecla REV
- 2. Presione la tecla PROGRAM, y después la tecla PLAY >, por este orden, a fin de cerrar el servo de enfoque y después el servo del eje.
- 3. Inserte un destornillador normal en la ranura de ajuste de la retícula y ajuste la retícula hasta encontrar el punto nulo. Para más detalles, consulte la página siguiente.
- 4. Si gira lentamente el destornillador hacia la derecha desde el punto nulo, la amplitud de la onda aumentará gradualmente. Después, si continúa girando el destornillador, la amplitud de la onda se volverá otra vez más pequeña. Gire el distornillador hacia la derecha desde el punto nulo y ajuste la retícula al primer punto en el que la amplitud de la onda alcance su valor máximo.

Referencia: En la figura 3 se muestra la relación entre el ángulo del haz de seguimiento con la pista y la forma de

Nota

- : La amplitud de la señal de error de seguimiento será de aproximadamente 3 Vp-p (cuando se emplee un filtro de paso bajo de 39 k Ω , 0,001 μ F). Si la amplitud está extremadamente pequeña (2 Vp-p 6 menos), es posible que el objetivo o en el captador esté funcionando mal. Si la diferencia entre la amplitud de la señal de error en el borde interior y exterior del disco es superior al 10%, la retícula no estará ajustada al punto óptimo, por lo que tendrá que volver a ajustaria.
- 5. Devueiva el captor hasta la mitad más o menos del disco con la tecla MANUAL SEARCH REV ⊲⊲, presione la tecla PAUSE 🗓 , y vuelva a comprobar si en el panel frontal se visualizan el número de canción y el tiempo transcurrido. Si no se visualizan esta vez, o si el tiempo transcurrido cambia irregularmente, vuelva a comprobar el punto nulo y ajuste otra vez la retícula.

[Cómo encontrar el punto nulo]

Cuando inserte el destornillador normal en la ranura para el ajuste de la retícula y cambie el ángulo de la misma. La amplitud de la señal de error de seguimiento de TP1, patilla 2, cambiará. Dentro del margen para la retícula existen cinco o seis lugares en los que la amplitud alcanza el valor mínimo. De estos cinco o seis lugares, solamente hay uno en el que la envolvente de la forma de onda es uniforme. Este lugar es donde los tres haces laséricos divididos por la retícula se encuentran exactamente sobre la misma pista. (Consulte la figura 3.)

Este punto se denomina punto nulo. Cuando ajuste la retícula, este punto se encontrará y empleará como posición de referencia.

Figura 3

Forma de onda del punto nulo

Forma de onda de amplitud máxima

Forma de onda que no es el punto nulo

3. Ajuste del Equilibrio de Error de Seguimiento

Objetivo	Corrección de la variación de la sensibilidad del fotodiodo de seguimiento.				
Síntomas en caso de desajuste	La reproducción no se inicia o la búsqueda de canciones es imposible.				
Conexión de los instrumentos de medición	2 (TRK. E	osciloscopio a TP1, patilla RR). Esta conexión puede a través de un filtro de	Estado del reproductor	Modo de prueba, servos de enfoque y del eje cerrados, y servo de seguimiento abierto	
	[Ajustes] 50 mV/división 5 ms/división modo de CC		Lugar de ajuste Disco	Conjunto del panel RF VR102 (TRK. BAL) YEDS-7	

[Procedimiento]

- 1. Mueva el captor hasta la mitad del disco (R=35 mm) con la tecla MANUAL SEARCH FWD ▷▷ o la tecla REV ⊲⊲.
- Presione la tecla PROGRAM, y después la tecla PLAY ▷ , por este orden, a fin de cerrar el servo de enfoque y después el servo del eie.
- 3. Haga coincidir la línea brillante (masa) del centro de la pantalla del osciloscopio y ponga éste en el modo de CC.
- Ajuste VR102 (TRK. BAL) de forma que la amplitud positiva y la negativa de la señal de error de seguimiento de TP1 patilla 2 (TRK. ERR) sean iguales (en otras palabras, de forma que no haya componente de CC).

4. Ajuste de la Inclinación en Sentido Radial / Tangencial del Captor

Objetivo		Ajustar el ángulo del captor en relación con el disco de forma que los haces laséricos incidan perpendicularmente sobre el mismo a fin de poder leer con la mayor exactitud las señales de RF.				
Síntomas en caso de desajuste	Sonido quebrado, algunos discos pueden reproducirse pero otros no.					
Conexión de los instrumentos de medición	Conecte el osciloscopio a TP1, patilla 1 (RF).		Estado del reproductor	Modo de prueba, reproducción		
	[Ajustes] 20 mV/división 200 ns/división modo de CA		● Lugar de ajuste	Tornillo de ajuste de la inclinación radial y tornillo de ajuste de la inclinación tangencial		
		Disco Disco de 12cm. (El disco YEDS-7 no podrá emplearse.)				

[Procedimiento]

- Para un tipo de reproducción múltiple de disco compacto, emplee la tecla MANUAL SEARCH FWD ▷▷ o la tecla
 REV ⊲⊲ a fin de mover el captor hasta la mitad del disco (R=35 mm)
 Presione la tecla PROGRAM, la tecla PLAY ▷ , y después la tecla PAUSE ๗ , por este orden, a fin de cerrar el
 servo de enfoque, dispués el servo del eje, y por último para poner el reproductor en el modo de reproducción.
- 2. En primer lugar, gire el tornillo de ajuste de inclinación radial con un destornillador Phillips hasta que el patrón ocular (la forma de diamante del centro de la señal de RF) pueda verse con la mayor claridad.
- A continuación, gire el tornillo de ajuste de inclinación radial con un destornillador Phillips hasta que el patrón ocular (la forma de diamante del centro de la señal de RF) pueda verse con la mayor claridad (Figura 5).
- 4. Vuelva a girar el tornillo de ajuste de inclinación radial y el tornillo de inclinación tangencial hasta que el patrón ocular pueda verse con la mayor claridad. Si es necesario, ajuste alternativamente los dos tornillos hasta que el patrón ocular pueda verse con la mayor claridad.
- 5. Cuando se completa el ajuste, fije los tornillos para el ajuste radial y tangencial.

Nota: Radial y tangencial significan las direcciones en relación con el disco mostrado en la figura 4.

5. Ajuste del Nivel de RF

Objetivo Síntomas en caso de desajuste	Optimización de la amplitud de la señal de RF de reproducción. La reproducción no se inicia o la búsqueda de canciones es imposible.				
Conexión de los instrumentos de medición	Conecte el osciloscopio a TPI, patilla I (RF). [Ajustes] 50 mV/división 10 ms/división modo de CA	Estado del reproductor Lugar de ajuste Disco	Modo de prueba, reproducción Conjunto del fonocaptor VR1 (potencia de láser) YEDS-7		

[Procedimiento]

- Mueva el captor hasta la mitad del disco (R=35 mm) con la tecla MANUAL SEARCH FWD ▷▷ o la tecla REV ▷▷, presione la tecla PROGRAM, después la tecla PLAY ▷ , por este orden a fir. de cerrar los servos respectivos, y ponga el reproductor en el mode de reproducción.
- 2. Ajuste VRI (potencia de láser) de forma que la amplitud de la señal de RF sea de 1,2 Vp-p ±0,1 V.

6. Ajuste de la Ganancia del Bucle del Servo de Enfoque

Objetivo Síntomas en caso de desaiuste	Optimización de la ganancia del bucle del servo de enfoque. La reproducción no se inicia o el actuador de enfoque produce ruido.					
Conexión de los	Consulte la fugura 6 • Estado del Modo de prueba reproducción					
instrumentos de	Consulte la fugura 6.		reproductor	Modo de prueba, reproducción		
medición	[Ajustes] CH1	CH2	• Lugar de ajuste	Conjunto del tablero MADRE VR152 (FCS. GAN)		
	20 mV/división 5mV/división modo X−Y VR152 (FCS. GAN) VR152 (FCS. GAN) YEDS-7					

[Procedimiento]

- 1. Ajuste la salida del generador de AF a 1,2 kHz y 1 Vp-p.
- Presione la tecla MANUAL SEARCH FWD DD o la tecla REV < para mover el captor hasta la mitad del disco (R=35 mm), y después presione la tecla PROGRAM, la tecla PLAY D, y después la tecla PAUSE 00, por este orden, a fin de cerrar los servos correspondientes y poner el reproductor en el modo de reproducción.
- 3. Ajuste VR152(FCS. GAN) hasta que la forma de onda de Lissajous sea simétrica alrededor del eje X y el eje Y.

Ajuste de la ganancia de enfoque

Ganancia superio

Ganancia óptima

Ganancia inferior

7. Ajuste de la Ganancia del Bucle del Servo de Seguimiento

Objetivo Sintomas en caso de desajuste	Optimización de la ganancia del bucle del servo de seguimiento. La reproducción no se inicia, el actuador de enfoque produce ruido, o se saltan pistas.					
Conexión de los instrumentos de medición	Consulte la figura 7. [Ajustes] CH1 CH2 50 mV/división modo X - Y	Estado del reproductor Lugar de ajuste Disco	Modo de prueba, reproducción Conjunto del tablero MADRE VR151(TRK. GAN) YEDS-7			

[Procedimiento]

- 1. Ajuste la salida del generador de AF a 1,2 kHz y 2 Vp-p.
- Presione la tecla MANUAL SEARCH FWD DD o la tecla REV d☐ para mover el captor hasta la mitad del disco (R=35 mm), y después presione la tecla PROGRAM, la tecla PLAY D, y la tecla PAUSE III, por este orden, a fin de cerrar los servos respectivos y poner el reproductor en el modo de reproducción.
- 3. Ajuste VR151 (TRK. GAN) hasta que la forma de onda de Lissajous sea simétrica alrededor del eje X y el eje Y.

Ajuste de la ganancia de seguimiento

Ganancia superior

Ganancia óptima

8. Verificación de la Señal de Error de Enfoque (Curva S de Enfoque)

Objetivo	Juzgar si el captor est'a bien o no observando la señal de error de enfoque. El captor se juzga por la amplitud de la señal de error de seguimiento (como se ha indicado en la sección sobre el ajuste del equilibrio de error de seguimiento) y la forma de onda de la señal de error de enfoque.			
Síntomas en caso de desajuste				×
Conexión de los instrumentos de	Conecte el 6 (FCS. El	osciloscopio a TP1, patilla RR).	Estado del reproductor	Modo de prueba, parada
medición	medición [Ajustes] 100 mV/división ■ Lugar de ajuste		Ninguno	
		5 ms/división modo de CC	Disco	YEDS-7

[Precedimiento]

- 1. Conecte TP1, patilla 5, a masa.
- 2. Coloque el disco.
- 3. Contemplando la pantalla del osciloscopio, presione la tecla PROGRAM y observe durante un momento la forma de onda de la figura 8. Verifique si la amplitud es de 2,5 Vp-p por lo menos y si la amplitud de las partes positiva y negativa son iguales. Como la forma de onda solamente sale durante un momento cuando se presiona la tecla PROGRAM, presione una y otra vez esta tecla hasta que logre comprobar la forma de onda.

[Juicio sobre el captor]

No juzgue el captor hasta haber finalizado correctamente todos los ajustes. En los casos siguiented es posible que haya algo erróneo en el captor.

- 1. La amplitud de la señal de error de seguimiento es extremadamente pequeña (menos de 2 Vp-p).
- 2. La amplitud de la señal de error de enfoque es extremadamente pequeña (menos de 2,5 Vp-p).
- Las amplitudes de las partes positiva y negativa de la señal de error de enfoque son extremadamente asimétricas (relación de 2:1 o superior).
- 4. La señal de RF es demasiado pequeña (menos de 0,8 Vp-p) y aunque se ajuste VR1 (potencia de láser), la señal de RF no puede aumentarse hasta el nivel estándar.

DISASSEMBLY

6.1 REMOVE THE TRAY PANEL AND THE TRAY LENS

Hold the tray name plate with your hands as the figure shown right, and grasp the tray with your thumbs and then lift the tray panel up while pulling it toward you with the other fingers. (Figs. 1 and 2)

6.2 INSTALL THE TRAY PANEL AND THE **TRAY LENS**

Align the tray panel with the grooves located at both edges of the tray while holding the tray lens with you fingers, and then press it down till it stops. (Fig. 3)

Hold the tray panel and the tray as shown in Fig. 4 and slide them down till you hear a click sound while pressing strongly with your thumbs. (Figs. 4 and 5)

Fig. 5

7. FOR PD-S601/WBXK TYPE

- Parts marked by "NSP" are generally unavailable because they are not in our Master Spare Parts List.
- The A mark found on some component parts indicates the importance of the safety factor of the part. Therefore, when replacing, be sure to use parts of identical designation.
- Parts marked by " " are not always kept in stock. Their delivery time may be longer than usual or they may be unavailable.

PD-S601/WBXK and PD-S601/WEMXK have the same construction except for the following:

Mark	Symbol & Description	Part No.		
		PD-S801/WEMXK	PD-S601/WBXK	Remarks
Δ	AC power cord	PDG1003	PDG1647	
_	Operating instructions (German/Italian/Dutch/	PRF1054	•••••	
NSP	Swedish/Spanish/Portuguese) Rear base	PNA1728	PNA1749	

8. PANEL FACILITIES

- POWER STANDBY/ON switch and STANDBY indicator
- Remote sensor Receives the signal from the remote control unit.
- 3 Disc tray
- **4** RANDOM PLAY button
- **⑤ HI-LITE SCAN button**
- **6 PEAK SEARCH button**
- **TIME button**
- **® PROGRAM button**
- CHECK button
- (10) CLEAR button
- 1 Track number/Digit buttons
- 12 REPEAT button
- ③ Program edit button (EDIT) button (•COMPU/••AUTO)
- (4) OPEN/CLOSE button (▲)
- (5) Manual search buttons (◄◄/▶►)
- 16 Stop button (■)
- Pause button (II)
- ® Play button (►)
- 19 Track search buttons (144/>>>)
- @ Headphones jack (PHONES)
- (2) Headphones line/volume control (PHONES/ LINE LEVEL)

9. SPECIFICATIONS

1. General Type Compact disc digital audio system Power requirements AC 220 - 240 V. 50/60 Hz Power consumption 16 W Operating temperature +5°C - +35°C +41°F - +95°F Weight 4.0 kg (8 lb, 13 oz)

2. Audio section Frequency response 2 Hz - 20 kHz S/N ratio 106 dB or more (EIAJ) Dynamic range 96 dB or more (EIAJ) Harmonic distortion 0.0028% or less (EIAJ) Output voltage 2.0 V Wow and flutter Limit of measurement (±0.001 % W.PEAK) or less (EIAJ)

.420(W) X 276(D) X 110(H) mm

2-channel (stereo)

3. Output terminal

Channels ...

External dimensions ...

Audio line output jacks (VARIABLE)
Audio line output jacks (FIXED)
Optical digital output jacks
CD-DECK SYNCHRO jack
Headphone jack (with motor drive volume control)

4. Functions

Basic operation buttons

. PLAY, PAUSE, STOP

Search function

- Direct play
- Track search
- Manual search

Hi-Lite scan

Programming

- Maximum 24 steps
- Pause
- Program check/correction
- Program clear (single track or all tracks)

Repeat functions

- 1 track repeat
- All tracks repeat
- Program play repeat
- Random play repeat

Random play (repeat also available)

Switching display

Time consumed, remaining time (track/disc), and total time

Timer start

Peak search

Compu/Auto program editing Selects the tracks within the specified time.

5. Accessories

	Remote control unit
•	Size AAA/R03/dry batteries
٠	Output cable
	Operating instructions

NOTE:

Specifications and design subject to possible modification without notice, due to improvements.