Профессор **И.Н.Бекман**

ТОРИЙ

Курс лекций

Лекция 1. ОСНОВНЫЕ СВОЙСТВА ТОРИЯ

ВВЕДЕНИЕ

В этой лекции мы рассмотрим основные ядерные, физические и химические свойства тория. Более подробно с этими свойствами мы познакомимся в последующих лекциях.

Торий (Thorium), Th, - химический элемент III группы периодической системы, первый член группы актинидов; тяжёлый слаборадиоактивный металл; порядковый номер 90, атомный вес 232.038.

90 ТОРИЙ Th 232,038 (Rn) 6d²7s²

Элемент III группы таблицы элементов, принадлежащий к актинидам; тяжёлый слаборадиоактивный металл.

1. ИСТОРИЯ ОТКРЫТИЯ ТОРИЯ

Йенс Якоб Берцелиус — выдающийся химик первой половины XIX столетия. Человек энциклопедических знаний и превосходный аналитик, Берцелиус работал очень плодотворно и почти никогда не ошибался. В его лаборатории были определены атомные веса большинства известных тогда элементов (около 50), выделены в свободном состоянии церий и кальций, стронций и барий, кремний и цирконий, открыты селен и торий. Но при открытии тория

Берцелиус совершил ошибку.

В 1815, анализируя редкий минерал, найденный в округе Фалюн (Швеция), Берцелиус обнаружил в нем оксид нового как ему казалось элемента. Этот элемент был назван торием, в честь всемогущего древнескандинавского божества Тора. (По преданию Тор был коллегой Марса и Юпитера - одновременно богом, войны, грома и молнии.) Прошло десять лет, прежде чем Берцелиус обнаружил свою ошибку: вещество, которое он считал оксидом тория, на самом деле оказалось фосфатом уже известного иттрия. "Похоронив" торий, Берцелиус же его "воскресил". В 1828 известный минеролог, профессор Jens Esmark прислал ему чёрный минерал, найденный на острове

Lovon в Норвегии. (Теперь этот минерал называют торитом, $ThSiO_4$, класс сиенитов). Торит содержит до 77% оксида тория ThO_2 . Обнаружить столь явный компонент Берцелиусу не составило особого труда. Исследовав выделенную землю, Берцелиус убедился, что это оксид нового элемента, к которому и перешло название "торий".

Получить чистый металлический торий Берцелиусу не удалось. Правда, он восстановил калием фтористые соединения нового элемента и получил серый металлический порошок, сильно загрязненный примесями. Чистый препарат тория был получен лишь в 1882 году другим шведским химиком - первооткрывателем скандия Ларсом Фредериком Нильсоном. Нильсон

получил торий прокаливанием в железном цилиндре (автоклаве) смеси ThCl₄ и 2KCl с натрием.

Следующее важное событие в истории элемента № 90 произошло в 1898 году, когда независимо друг от друга и практически одновременно Мария Склодовская-Кюри и немецкий ученый Герберт Шмидт независимо друг от друга обнаружили, что торий радиоактивен. М.Кюри отметила тогда же, что активность чистого тория даже выше активности урана.

Рис. 2. Ларс Фредерик Нильсон (1840-1899)

В 1900 - 1903 Э. Резерфорд и Ф. Содди показали, как торий постоянно распадается на ряд радиоактивных элементов, что послужило основой для создания теории радиоактивного распада. Обнаружение в цепи распада ²³⁸U иония и доказательство его химической идентичности с торием, привело к открытию явления изотопии.

2. ЯДЕРНО-ФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ ТОРИЯ

2.1 Изотопы тория

Природные радиоактивные изотопы: 227 Th, 228 Th (1,37-100 %), 230 Th, 231 Th, 232 Th (~100%), 234 Th. Известно девять искусственных радиоактивных изотопов тория. 228 Th — α -, γ -излучатель. Средняя энергия α -излучения 226 Th, 227 Th, 228 Th, 229 Th, 230 Th, 232 Th равна соответственно 6,42; 5,95; 5,49; 4.95; 1,38- 10^{-2} ; 4,07 МэВ/(Бк-с).

Торий – природный радиоактивный элемент, родоначальник семейства тория. Известны 12 изотопов, однако природный торий практически состоит из одного изотопа 232 Th ($T_{1/2}$ =1,4*10 10 лет, α -распад) с незначительной примесью радиотория, 228 Th. Его удельная радиоактивность 0.109 микрокюри/г. Распад тория приводит к образованию радиоактивного газа – торона (радон-220), который с экологической точки зрения представляет определённую опасность. С 232 Th в

равновесии находится в небольших количествах (1,37·10⁸%) ²²⁸Th (RdTh, T=1,91 лет). Четыре изотопа тория образуются в процессах распада ²³⁸U (²³⁰Th (ионий, Io, T=75.380 лет) и ²³⁴Th (уранХ1, UX1, T=24.1 дня)) и ²³⁵U (²²⁷Th (радиоактиний, RdAc, T=18.72 дн. и ²³¹Th (уран Y, UY, T=1.063 дня).

Торий и продукты его распада испускают α - (90%) и β - (9%) частицы, а также γ -лучи (1%) довольно высокой энергии (до 2,6 MэB). Активность 4 г тория эквивалентна активности 1 мг 226 Ra.

Радиоактивный ряд нуклидов с массовым числом, представимым в виде 4n, называется рядом тория. Ряд начинается с встречающегося в природе 232 Th и завершается образованием стабильного 208 Pb (**Puc. 3**).

Рис. 3. Основные члены семейства природного тория.

Для практических применений, единственными изотопами, присутствующими в заметных количествах в очищенном тории - 228 Th и 230 Th, т.к. остальные имеют очень короткий период полураспада, и 228 Th распадается

после нескольких лет хранения. Искусственные изотопы тория большей частью короткоживущие; из них большой период полураспада имеет только 229 Th (T=7340 лет), принадлежащий к искусственному радиоактивному семейству нептуния.

Табл. 1. Радиоактивность природных семейств ($\Delta t = 10^9$ лет)

Ряд	Материнский изотоп	Период установления равновесия	А, Бк/кг (МИ)
4n	²³² Th	5х10 ³ лет	$4x10^{7}$
4n+1	²³⁷ Np	1х10 ⁶ лет	0
4n+2	^{238}U	$1x10^7$ лет	1.6×10^8
4n+3	^{235}U	5х10 ⁶ лет	$3.7x10^8$

Радиоактивные изотопы тория получают из монацитовых руд, используя чаще всего сернокислотный метод разложения. Многочисленные техногенные изотопы тория нарабатывают на ускорителях бомбардировкой мишени из свинца или висмута ускоренными многозарядными ионами или получают на атомных реакторах из лёгких изотопов урана, образовавшихся в результате разнообразных ядерных реакций.

Периоды полураспада "предков" меньше 10^5 лет, поэтому в природе они не сохранились. Однако, в атомном реакторе, при облучении урана тепловыми нейтронами, они образуются в

больших количествах. В настоящее время родоначальником ряда тория (4п семейства) считается ²⁵⁶Es, распадающийся по схеме:

Характерная особенность схемы распада тория – дочерние продукты не содержат долгоживущих радионуклидов. В ряду тория состояние равновесия между материнским изотопом и дочерними продуктами распада (сколько распалось материнского изотопа - столько же распалось дочерних изотопов) достигается за 30 лет, а, значит, спустя это время расчет

активности можно проводить по материнскому изотопу.

№ эле- мента	Эле- мент	о проводить	•	3 0 T 0		
90	Th	²³² Th 1.41·10 ¹⁰ лет	β	²²⁸ Th 1.91 года		
89	Ac	α β	²²⁸ Ac 6.13 часа	α		
88	Ra	²²⁸ Ra 5.75 года		²²⁴ Ra 3,66 дня		
8 7	Fr		²²⁴ Fr 2,7 мин			
86	Rn			²²⁰ Rn 55,6 ces		
85	At				²¹⁶ At 3·10 ⁻⁴ cesc	
84	Po			²¹⁶ Ро 0,145 сек		²¹⁶ Po 3·10 ⁻⁷ ces 45,1 ces
83	Bi				²¹⁶ Ві 60,5 мин 25 мин	
82	Pb			²¹² Рb 10.64 часа		208Pb
81	П		232771		²⁰⁸ T1 3.05 мин	

Рис. 4. Природное семейство ²³²Th, 4n

Рис. 5. Предшественники ториевого семейства

Табл. 2. Равновесное содержание радиотоксичных изотопов ториевого семейства (мг) на 1 тонну тория

Радиоактивное семейство	Изотоп	Период полураспада, Т	Содержание
4n	²³² Th	1.41x10 ¹⁰ лет	10^{9}
ториевое	²²⁶ Ra	5.75 лет	0.470
	²²⁸ Th	1.91 года	0.134
	²²⁴ Ra	3.66 сут	6.9x10 ⁻⁴

Скорость распада каждого члена семейства равна скорости распада исходного 232 Th (вековое равновесие). На каждый распад 232 Th все члены ряда испускают 7 α -частиц, 5 β -частиц, 7 γ -частиц.

На данный момент известны 30 изотопов тория и еще 3 возбуждённых изомерных состояний некоторых его нуклидов. Искусственные изотопы тория большей частью короткоживущие; из них большой период полураспада имеет только 229 Th (T=7340 лет), принадлежащий к искусственному семейству нептуния. У одного изотопа, 229-ого, есть ядерный изомер (метастабильное состояние) с удивительно низкой энергией возбуждения 7.6 эВ Только один из нуклидов тория (232 Th) обладает достаточно большим периодом полураспада по отношению к возрасту Земли, поэтому практически весь природный торий состоит только из этого нуклида. Некоторые из его изотопов могут определяться в природных образцах в следовых количествах, так как входят в радиоактивные ряды радия, актиния и тория: радиоактиний 227 Th; радиоторий 228 Th; ионий 230 Th; уран Y 231 Th, уран X1 234 Th.

Табл. 3. Радиоактивный ряд тория

Изотоп	Вид излуче- ния	Энергия, Мэв	Период полурас- пада	Продукт распада
Торий .(Th ²³²)	α	3,98	1,389×1010 лет	Мезоторий I
Мезоторий I (Ra ²²⁸)	. 3	0,053	6,7 лет	Мезоторий II
Мезоторий II (Ас ²²⁸)	β Υ	1,6 0,914	6,13 час	Радиоторий
Радиоторий (Th ²²⁸)	α γ	5,42 0,085	1.9 лет	Торий Х
Торий X (Ra ²²⁴)	a 7	5,681 0,226	3,64 дня	Торон
Торон (Rn ²²⁰)	α	6,278	54,5 сек	Торий А
Торий А (Po ²¹⁶)	α	6,774	0,158 сек	Горий В
Торий В (Pb ²¹²)	,3 Y	0,36 0,24	10,6 час	Горий С
Торий С (Bi ²¹²)	α γ	6,047 0,04		Торий С'
	β	2,25	60,5 мин	Торий С"
Торий С' (Po ²¹²)	α	8,776	3×10 ^{−7} сек	Свинец (Рb ²⁰⁸)
Торий С" (Tl ²⁰⁸)	β Υ	1,82 2,62	3,1 мин	Pb ²⁰⁸ (стабильный)

Табл. 4. Природные изотопы тория

Символ	М	Α	Z	Распростр.	T _{1/2}	Един.	Тип.Расп.	Энергия, МзВ	Вклад,%
Th	228.028715	228	90	0.0001%	1.919	Years	alpha	5.520	100.00%
Th	229.031755	229	90	0.0000%	7,300	Years	alpha	5.168	100.00%
Th	230.033127	230	90	0.0001%	75,400	Years	alpha	4.771	100.00%
Th	231.036298	231	90	0.0001%	25.2	Hours	beta -	0.389	100.00%
Th	232.038054	232	90	100.000%	1.4x10 ¹⁰	Years	alpha	4.081	100.00%
Th	234.036593	234	90	0.0001%	24.1	Days	beta -	0.270	100.00%

Наиболее стабильными изотопами являются 232 Th (период полураспада составляет 14,05 миллиардов лет), 230 Th (75 380 лет), 229 Th (7 340 лет), 228 Th (1,9116 года). Оставшиеся изотопы имеют периоды полураспада менее 30 дней (большинство из них имеют периоды полураспада менее 10 минут). Один из изотопов, 229 Th, имеет ядерный изомер с чрезвычайно низкой энергией возбуждения, составляющей 7,6 эВ.

Основные линии в γ -спектрах продуктов распада тория: ThC (212 Bi) **0,73 (0,19)**, **0,83 (0,19)**, 1,03 (0,06), 1,35 (0,05), 1,61 (0,07), 1,80 (0,07), 2,20 (0,03); ThC'' (208 Tl): 0,277 (0,10), **0,511 (0,25)**, **0,583 (0,80)**, 0,860 (0,15), **2,615 (1,0)**; MsTh (228 Ac): **0,057 (0,59)**, 0,097 (0,04), 0,127 (0,074), 0,184 (0,06); ThB (212 Pb): 0,115(0,02), 0,175 (0,01), **0,239 (0,80)**, 0,299(0,05)

Табл. 5. Количество радиоактивных веществ ряда тория, находящихся в радиоактивном равновесии (по весу)

Изотоп	Для Th=l
Торий (Th ²³²)	1,0
Мезоторий I (Ra ²²⁸)	4,81 · 10 ⁻¹⁰
Мезоторий II (Ас ²²⁸)	5,05·10 ⁻¹⁴
Радиоторий (Th ²²⁸)	1,37 · 10 ⁻¹⁰
Торий X (Ra ²²⁴)	$7,17 \cdot 10^{-13}$
Торон (Rn ²²⁰)	1,24 · 10 — 16
Торий A (Ро ²¹⁶)	3,61·10 ⁻¹⁹
Торий В (Pb ²¹²)	8,72 · 10 ⁻¹⁴
Торий C (Bi ²¹²)	$8,29 \cdot 10^{-15}$
Торий С' (Po ²¹²)	$4,51 \cdot 10^{-25}$
Торий С" (Tl ²⁰⁸)	$1,43 \cdot 10^{-16}$

В настоящее время рассматривается перспективы использования тория в ядерной энергетике. Схемы важнейших реакций, определяющих возможность использования тория в качестве сырья для получения вторичного ядерного горючего приведены на **Рис. 6** (обведены пунктиром). Здесь же показаны реакции, снижающие эффективность цикла воспроизводства (на рисунке справа), а также некоторые реакции, определяющие радиоактивность облучённого и регенерированного тория (на рисунке слева). Ряд радиоактивного распада, обусловливающую эту радиоактивность, представлен на **Рис. 7**.

Табл. 6. Радиоактивные свойства изотопов тория

Массовое число	Первод полурас- пада	Характер распада (энергия, Кэв)	Энергия 7-излуч е ния, Кэн	Способ образо- вания
235	<10 мин	β		Th ²³⁴ (n, γ)
234	24,10 суток	3 : 0.192, 0.104	90	Природный
23 3	23,3 мин	3 · 1,23	98; 172; 350; 448, 662	Th ²³² (n, γ) Th ²³² (d, p)
232	1.39×10 ¹⁰ лет	a:3,98	55	Природный
231	25,6±0,1 час	β: 0,302; 0,216; 0,094	9 энер гий	Природный Th ²³⁰ (n, γ) Th ²³² (n. 2n)
230	$8.1 imes 10^4$ лет	a: 4,68; 4,61 4,47; 4,43	68—255	Природный
229	7340±160 лет	a:5,02 (10%) 4.94 (20%) 4,85 (70%)	Мягкое	Распад U233
228	1,89 лет	z:5,420 (~75%) 5,335 (~25%)		Природный
227	18,6 суток	α: 6,030—5,651	50—300	Природный
226	30,9 мин	a: 6,30 (78%) 6,19 (22%)		Распад U280
22 5	8,0 ± 0,5 мин	электронный захват (10%) a (90%) 6,57		Распад U ²²⁹
224	~1 сек.	a:7,13		Распад U ²²⁸
223	~0,1 сек.	α:7,55		Рас па д U ²²⁷

Табл. 7. Основные члены ториевого семейства.

Нукл ид	Историче ское название (сокр.)	Историческое название (полное)	Вид распада	Период полураспада	Выде ляем ая энерг ия, МэВ	Прод укт расп ада
²⁵² Cf			α	2,645 года	6,1181	²⁴⁸ Cm
²⁴⁸ Cm			α	3,4×10 ⁵ лет	6,260	²⁴⁴ Pu
²⁴⁴ Pu			α	8×10 ⁷ лет	4,589	240 U
²⁴⁰ U			β-	14,1 ч	0,39	²⁴⁰ Np
²⁴⁰ Np			β-	1,032 ч	2,2	²⁴⁰ Pu
²⁴⁰ Pu			α	6561 год	5,1683	236∪
²³⁶ U			α	2,3×10 ⁷ лет	4,494	²³² Th
²³² Th	Th	Торий	α	1,405×10 ¹⁰ лет	4,081	²²⁸ Ra
²²⁸ Ra	MsTh ₁	Мезоторий 1	β-	5,75 лет	0,046	²²⁸ Ac
²²⁸ Ac	$MsTh_2$	Мезоторий 2	β-	6,15 ч	2,124	228Th
228 Th	RdTh	Радиоторий	α	1,9116 года	5,520	²²⁴ Ra
²²⁴ Ra	ThX	Торий Х	α	3,66 дня	5,789	²²⁰ Rn
²²⁰ Rn	Tn (ThEm)	Торон (эманация тория)	α	55,6 c	6,404	²¹⁶ Po
²¹⁶ Po	ThA	Торий А	α	0,145 c	6,906	²¹² Pb
212Pb	ThB	Торий В	β-	10,64 ч	0,570	²¹² Bi
²¹² Bi	ThC	Торий С	β ⁻ 64,06 % α 35,94 %	60,55 мин	2,252 6,208	²¹² Po ²⁰⁸ TI
²¹² Po	ThC'	Торий С'	α	299 нс	8,955	²⁰⁸ Pb
208 TI	ThC"	Торий С"	β-	3,053 мин	4,999	²⁰⁸ Pb
²⁰⁸ Pb	ThD	Торий D, ториевый свинец	стабильный			

Табл. 8. Некоторые изотопы тория

			Средняя излучения,		
Радио- нуклид	T1/2	Тип распада	характери- стическое, у- и анни- гиляционное излучение	β-излучение, конверсион- ные элек- троны и электроны Оже	Дочерний радионуклид (выход)
226Th 227Th 228Th 229Th 230Th 231Th 232Th 234Th	30,9 мин 18,718 сут 1,9131 года 7340 лет 7,7·10 ⁴ лет 25,52 ч 1,405·10 ¹⁰ лет 24,1 сут	α α α α β- α β-	8,75·10 ⁻³ 1,06·10 ⁻¹ 3,30·10 ⁻³ 9,54·10 ⁻² 1,55·10 ⁻³ 2,55·10 ⁻² 1,33·10 ⁻³ 9,34·10 ⁻³	2,11·10 ⁻² 4,57·10 ⁻² 2,05·10 ⁻² 1,14·10 ⁻¹ 1,46·10 ⁻² 1,63·10 ⁻¹ 1,52·10 ⁻² 5,92·10 ⁻²	222 Rа радиоакт, 223 Rа радиоакт. 224 Rа радиоакт. 225 Rа радиоакт. 226 Rа радиоакт. 231 Ра радиоакт. 234 m Ра радиоакт. 234 m Ра радиоакт. (0,998)

Табл. 9. Изотопы тория.

I au.i.	таол. э. изотоны тория.								
Символ	1) N(n) Энерги	(а.е.м.) ия возбуждения	Избыток массы (кэВ)	Период полураспада $(T_{1/2})$	Спин и чётность ядра	Распространённость изотопа в природе (%)		
209—-			(кэВ)						
²⁰⁹ Th	90		209,017720(110)	16 500(100)	7(5) мс	5/2 ⁻ #			
²¹⁰ Th	90		210,015075(27)	14 043(25)	17(11) мс	0^+			
²¹¹ Th	90		211,014930(80)	13 910(70)	48(20) мс	5/2 ⁻ #			
²¹² Th	90		212,012980(20)	12 091(18)	36(15) мс	0^+			
²¹³ Th	90		213,013010(80)	12 120(70)	140(25) мс	5/2 ⁻ #			
²¹⁴ Th	90		214,011500(18)	10 712(17)	100(25) мс	0^+			
²¹⁵ Th	90	125	215,011730(29)	10 927(27)	1,2(2) c	$(1/2^{-})$			
²¹⁶ Th	90	126	216,011062(14)	10 304(13)	26,8(3) мс	0^{+}			
$^{216}\text{Th}^{\text{m}}$		2	2 042(13)	12 346(16)	137(4) мкс	(8 ⁺)			
$^{216}\mathrm{Th}^{\mathrm{n}}$		2	2 637(20)	12 941(24)	615(55) нс	(11^{-})			
²¹⁷ Th	90	127	217,013114(22)	12 216(21)	240(5) мкс	$(9/2^{+})$			
²¹⁸ Th	90	128	218,013284(14)	12 374(13)	109(13) нс	0^+			
²¹⁹ Th	90	129	219,015540(50)	14 470(50)	1,05(3) мкс	9/2+#			
²²⁰ Th	90	130	220,015748(24)	14 669(22)	9,7(6) мкс	0^+			
²²¹ Th	90	131	221,018184(10)	16 938(9)	1,68(6) мс	$(7/2^{+})$			
²²² Th	90	132	222,018468(13)	17 203(12)	2,05(7) мс	0^+			
²²³ Th	90	133	223,020811(10)	19 386(9)	600(20) мс	$(5/2)^{+}$			
²²⁴ Th	90	134	224,021467(12)	19 996(11)	1,05(2) c	0^+			
²²⁵ Th	90	135	225,023951(5)	22 310(5)	8,72(4) мин	$(3/2)^{+}$			
²²⁶ Th	90	136	226,024903(5)	23 197(5)	30,57(10) мин	0^+			
²²⁷ Th	90	137	227,0277041(27)	25 806,2(25)	18,68(9) сут	1/2+			
²²⁸ Th	90	138	228,0287411(24)	26 772,2(22)	1,9116(16) года	0^+			
²²⁹ Th	90	139	229,031762(3)	29 586,5(28)	$7,34(16)\times10^3$ лет	5/2+			
$\overline{^{229}}$ Th ^m		(0,0076(5)	29 586,5(28)	70(50) ч	3/2+			
²³⁰ Th	90		230,0331338(19)	30 864,0(18)	$7,538(30) \times 10^4$ лет	0^{+}			
²³¹ Th	90		231,0363043(19)	33 817,3(18)	25,52(1) ч	5/2+			
²³² Th	90		232,0380553(21)	35 448,3(20)	$1,405(6) \times 10^{10}$ лет	0+	100		
²³³ Th	90		233,0415818(21)	38 733,2(20)	22,3(1) мин	1/2+	-		
			, (= -)	,- (-0)	y- (-)	· •			

```
<sup>234</sup>Th
                                                                                    0^{+}
          90
                144 234,043601(4)
                                           40 614(3)
                                                             24,10(3) сут
<sup>235</sup>Th
          90
                145 235,047510(50)
                                           44 260(50)
                                                             7,2(1) мин
                                                                                    1/2^{+}#
<sup>236</sup>Th
                                                                                    0^{+}
          90
                146 236,049870(210)# 46 450(200)#
                                                            37,5(2) мин
<sup>237</sup>Th
          90
                147 237,053890(390)# 50 200(360)# 4,8(5) мин
                                                                                    5/2+#
<sup>238</sup>Th
                                                                                    0^{+}
          90
                148 238,056500(300)# 52 630(280)# 9,4(20) мин
```

Пояснения к таблице. Распространённость изотопов приведена для большинства природных образцов. Для других источников значения могут сильно отличаться. Индексами 'm', 'n', 'p' (рядом с символом) обозначены возбужденные изомерные состояния нуклида. Значения, помеченные решёткой (#), получены не из одних лишь экспериментальных данных, а (хотя бы частично) оценены из систематических трендов у соседних нуклидов (с такими же соотношениями Z и N). Неуверенно определённые значения спина и/или его чётности заключены в скобки. Погрешность приводится в виде числа в скобках, выраженного в единицах последней значащей цифры, означает одно стандартное отклонение (за исключением распространённости и стандартной атомной массы изотопа по данным ИЮПАК, для которых используется более сложное определение погрешности). Примеры: 29770,6(5) означает 29770,6 \pm 0,5; \pm 21,48(15) означает \pm 2200,2(18) означает \pm 2200,2 \pm 1,8.

Табл. 10. Изотопы тория

1 аол. 1	U. Изотопь	ы тория	
Isotope	Half-life	Spin Parity	Decay Mode(s) or Abundance
210Th	9 ms	0+	%A ~ 100
²¹¹ Th	37 ms		%A=?, %EC=?
²¹² Th	30 ms	0+	%A=100, %EC+%B+ ~ 0.3
²¹³ Th	140 ms		%A < 100
²¹⁴ Th	100 ms	0+	%A=100
²¹⁵ Th	1.2 s	(1/2-)	%A=100
²¹⁶ Th	0.028 s	0+	%A=100, %EC+%B+ ~ 0.01 sys
216m1Th	180 us	(8+,11-)	
²¹⁷ Th	0.252 ms	(9/2+)	%A=100
²¹⁸ Th	109 ns	0+	%A=100
²¹⁹ Th	1.05 us		%A=100, %EC+%B+ ~ 1E-7
220Th	9.7 us	0+	%A=100, %EC=2E-7 sys
221Th	1.68 ms	(7/2+)	%A=100
222Th	2.8 ms	0+	%A=100
²²³ Th	0.60 s	(5/2)+	%A=100
²²⁴ Th	1.05 s	0+	%A=100
²²⁵ Th	8.72 m	(3/2)+	%A ~ 90, %EC ~ 10
226Th	30.57 m	0+	%A=100
227Th	18.72 d	(1/2+)	%A=100
228Th	1.9116 y	0+	%A=100, %20O=1.13E-11 22
²²⁹ Th	7340 y	5/2+	%A=100
²³⁰ Th	7.538e+4 y	0+	%A=100, %24NE=5.6E-11 10, %SF < 3.8E-12
²³¹ Th	25.52 h	5/2+	%B-=100, %A ~ 1E-8
²³² Th	1.405e10 y	0+	%Abundance=100, %A=100 , %SF<1.8E-9
²³³ Th	22.3 m	1/2+	%B-=100
²³⁴ Th	24.10 d	0+	%B-=100
²³⁵ Th	7.1 m	(1/2+)	%B-=100
²³⁶ Th	37.5 m	0+	%B-=100
237 Th	5.0 m		%B-=100

TD # 11	1 37		U	
Табл. П	 Характеристика 	OCHORHUX V-U3I	гучатепеи пя	гла тория
1 40011 11	e rapani opiio iiina	OCHODIIDIA 1150	i y iai coicii po	да гории.

Изотоп	Энергия 7-квантов, <i>Мэв</i>	Число ү-квантов на 1 распад	Изотоп	Энергия 7-квантов, <i>Мэв</i>	Число т-квантов на 1 распад
Актиний-228	0.184	0,06	Висмут-212	2,20	0,03
(мезоторий II)	0.127	0,074	(торий С)	1,80	0,07
(coordpan a)	0.097	0.04	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1,61	0,07
	0,078	Очень		1,35	0,05
	.,	мало		1.03	0,06
	0,057	0,59		0,83	0,19
	.,	,		0.73	0,19
Свинец-212	0.299	0,05			-,
(торий В)	0,250	Очень	Таллий-208	2,615	1.00
(Carpina and	. 7. 6.7.05.10.	мало	(торий С")	0.860	0,15
	0,239	0,80	,	0.583	0,80
	0,175	0,01		0,511	0,25
	0,115	0,02	y	0,277	0,10

Рис. 7. Цепочки α-распада облучённого тория после удаления продуктов деления: Z – порядковый номер, A – массовое число.

2.2 Важные изотопы тория

Остановимся несколько подробнее на ядерных свойствах трёх наиболее важных изотопов тория.

Торий-228 историческое название радиоторий (Radiothorium, обозначается символом RdTh или Rt) радиоактивный нуклид химического элемента тория с атомным номером 90 и массовым числом 228. Открыт в 1905 Отто Ганом. Принадлежит к радиоактивному

семейству тория-232 (так называемый ряд тория).

Торий-228 непосредственно образуется в результате β -распада нуклида ²²⁸ Ac (MsTh₂ – дочерний $MsTh_1$, т.е ²²⁸Ra; T=6.15 часа):

$${}^{228}_{89}Ac \rightarrow {}^{228}_{90}Th + e^{-} + \overline{\nu}_{e}$$
 (2)

Отделение ²²⁸Th от ²²⁸Ra проводят осаждением в виде гидроксида с носителем торием или цирконием. Освобождение от ²²⁸Ас происходит в результате его распада при хранении. Очистку от примеси осуществляют дробной разгонкой хлоридов в токе хлора при 500°. При этом менее летучий хлорид тория остаётся в остатке. ²²⁸Ra можно осадить в виде RaBr₂ с носителем BaBr₂ из 47%-го раствора HBr в метиловом спирте.

Также торий-228 образуется при β^+ -распаде нуклида протактиния ²²⁸Ра и α -распаде нуклида урана ²³²U:

$${}^{228}_{91}Pa \rightarrow {}^{228}_{90} + e^+ + \nu_e, \tag{3}$$

$${}^{232}_{92}U \rightarrow {}^{228}_{90}Th + {}^{4}_{2}He \tag{4}$$

 $^{228}_{91}Pa \rightarrow ^{228}_{90} + e^+ + \nu_e, \tag{3}$ $^{232}_{92}U \rightarrow ^{228}_{90}Th + ^4_2He \tag{4}$ Сам 228 Th α -радиоактивен, в результате распада образуется нуклид 224 Ra (выделяемая энергия 5520,08 кэВ):

$${}^{228}_{90}Th \rightarrow {}^{224}_{88}Ra + {}^{4}_{2}He \tag{5}$$

энергия испускаемых α-частиц 5423,15 кэВ (в 72,2% случаев) и 5340,36 кэВ (в 27,2% случаев). Для этого нуклида существует также чрезвычайно низкая вероятность кластерного распада (с испусканием ядра 20 О и образованием ядра свинца-208; вероятность события $1,13(22)\times10^{-11}\%$):

$${}^{228}_{90}Th \rightarrow {}^{208}_{82}Pb + {}^{20}_{8}O \tag{6}$$

Табл. 12. Свойства тория-238

Общие сведения

Название, символ Торий-228, ²²⁸Th Альтернативные названия радиото́рий, RdTh

 Нейтронов
 138

 Протонов
 90

Свойства нуклида

Атомная масса 228,0287411а. е. м.

 Избыток массы
 26 772,2 кэВ

 Удельная энергия связи (на нуклон)
 7 645,074 кэВ

 Период полураспада
 1,9116 года

Продукты распада 224 Ra

228Ac (B-)

Родительские изотопы 228Pa (β*)

232U (a)

Спин и чётность ядра 0*

 Канал распада
 Энергия распада

 α-распад
 5,52008 МэВ

Торий-230, историческое название **ио́ний** (*Ionium*, обозначается символом **Jo**) - радиоактивный нуклид химического элемента тория с атомным номером 90 и массовым числом 230. Открыт в 1907 американским радиохимиком Бертрамом Болтвудом.

Принадлежит к радиоактивному семейству урана-238 (так называемый ряд радия).

Табл. 13. Свойства тория-230

Общие сведения

Название, символ Торий-230, ²³⁰Th

Альтернативные названия ио́ний, lo Нейтронов 140 Протонов 90

Свойства нуклида

Атомная масса 230,0331338 а. е. м.

 Избыток массы
 30 864,0 кэВ

 Удельная энергия связи (на нуклон)
 7 630,990 кэВ

 Период полураспада
 75 380 пет .

Продукты распада 226 Ra

²³⁰Ac (β⁻)

Родительские изотопы 230 Ра $^{(\beta^+)}$ 234 U $^{(\alpha)}$

Спин и чётность ядра 0*

 Канал распада
 Энергия распада

 α-распад
 4,7700(15) МэВ

Торий-230 непосредственно образуется в результате следующих распадов:

 β —-распад нуклида ²³⁰ Ac (период полураспада составляет 122 с):

$${}^{230}_{89}Ac \rightarrow {}^{230}_{90}Th + e^- + \overline{\nu}_e \tag{7}$$

 β +-распад нуклида протактиния ²³⁰Ра (период полураспада составляет 17,4 суток):

$${}^{230}_{91}Pa \rightarrow {}^{230}_{90}Th + e^+ + v_e \tag{8}$$

 α -распад нуклида урана $^{234}{
m U}$ (период полураспада составляет 2,455×10 5 лет):

$${}^{234}_{92}U \rightarrow {}^{230}_{90}Th + {}^{4}_{2}He \tag{9}$$

Сам 230 Th также α -радиоактивен, в результате распада образуется нуклид 226 Ra (выделяемая энергия 4770 кэВ):

$$^{230}_{90}Th \rightarrow ^{226}_{88}Ra + ^{4}_{2}He \tag{10}$$

энергия испускаемых α -частиц 4687,0 кэВ (в 76,3% случаев) и 4620,5 кэВ (в 23,4% случаев). Для этого нуклида существует также чрезвычайно низкая вероятность кластерного распада (с испусканием ядра 24 Ne и образованием ядра ртути-206; вероятность события $5,6\times10^{-11}(10)\%$). Спонтанное деление нуклида разрешено законами сохранения, но экспериментально не обнаружено (вероятность менее $5\times10^{-11}\%$).

²³⁰Th — изотоп тория в ряду распада урана может быть выделен из урановых руд с носителем церием в виде оксалата. Оксалат церия смешивают с раствором, содержащим карбонат и гидрокарбонат натрия, при этом большая часть иония переходит в раствор, а церий остаётся в осадке. Ионий вместе с ²³¹Pa извлекают из урановой руды после отделения радиевой фракции и извлечения основной массы урана экстракцией азотнокислых растворов ТБФ, который не извлекает протактиний торий. Протактиний и торий экстрагируется алкилфосфорными кислотами. После промывания экстракта его переводят в раствор карбоната аммония, очищают раствор осаждением сульфидов, разрушают карбонат подкислением и выделяют из раствора гидроксида иония и протактиния. Фтористоводородной кислотой делят протактиний и ионий. Последний переходит в осадок в виде фторида, а протактиний остаётся в растворе.

Торий-232 - природный радиоактивный нуклид химического элемента тория с атомным номером 90 и массовым числом 232. Изотопная распространённость ²³²Th составляет практически 100%. Является наиболее долгоживущим изотопом тория (²³²Th α-радиоактивен с периодом полураспада 1,405×10¹⁰ лет, что в три раза превышает возраст Земли). Родоначальник радиоактивного семейства тория. Этот радиоактивный ряд заканчивается образованием стабильного нуклида ²⁰⁸Pb. Остальная часть ряда короткоживущая; наибольший период полураспада в 5,75 лет у ²²⁸Ra и 1,91 лет у ²²⁸Th, а у всех остальных периоды полураспада составляют менее 5 дней. Активность одного грамма этого нуклида составляет 4070 Бк. В процессе распада 1000 тонн тория выделяют 22000 кал в час, то есть мощность тепловыделения составляет около 25 ватт. Вместе с другими природными изотопами тория, ²³²Th появляется в ничтожных количествах в результате распада изотопов урана.

Табл. 14. Свойства тория-232.

Общие сведения

 Название, символ
 Торий-232, ²³²Th

 Альтернативные названия
 То́рий, Th

 Нейтронов
 142

 Протонов
 90

Свойства нуклида

Атомная масса 232,0380553 а. е. м.

Избыток массы 35 448,3 кэВ Удельная энергия связи (на нуклон) 7 615,026 кэВ

Изотопная распространённость 100 %

Период полураспада 1,405(6)×10¹⁰

Продукты распада 228 Ra

232Ac (β⁻) Родительские изотопы 232Pa (β⁺) 236U (α)

0+

Спин и чётность ядра 0*

Канал распада Энергия распада

α-распад 4,0816 МэВ

SF

Торий-232 образуется в результате следующих распадов:

 β —-распад нуклида ²³² Ac (период полураспада составляет 119 с):

$$^{232}_{89}Ac \rightarrow ^{232}_{90}Th + e^{-} + \overline{\nu}_{e}$$
 (11)

К-захват, осуществляемый нуклидом ²³²Ра (период полураспада составляет 1,31 дня):

$$^{232}_{91}Pa + e^{-} \rightarrow ^{232}_{90}Th + \overline{\nu}_{e};$$
 (12)

 α -распад нуклида ²³⁶U (период полураспада составляет 2,342×10⁷ лет):

$${}^{236}_{92}U \rightarrow {}^{232}_{90}Th + {}^{4}_{2}He \tag{13}$$

Распад тория-232 происходит по следующим направлениям: α -распад в 228 Ra (вероятность 100%, энергия распада 4081,6 кэВ:

$${}^{232}_{90}Th \rightarrow {}^{228}_{88}Ra + {}^{4}_{2}He; \tag{14}$$

энергия испускаемых α -частиц 3947,2 кэВ (в 21,7% случаев) и 4012,3 кэВ (в 78,2% случаев). Спонтанное деление (вероятность 11×10^{-10} %);

Кластерный распад с образованием нуклидов 24 Ne и 26 Ne (вероятность распада менее $2.78\times10^{-10}\%$):

$$^{232}_{90}Th \rightarrow ^{208}_{80}Hg + ^{24}_{10}Ne;$$
 (15)

$$^{232}_{90}Th \rightarrow ^{206}_{80}Hg + ^{26}_{10}Ne;$$
 (16)

Двойной β^- -распад (с чрезвычайно малой вероятностью, энергия распада 837,6(22) кэВ)

$${}^{232}_{90}Th \rightarrow {}^{232}_{92}U + 2e + 2\overline{\nu}_{e} \tag{17}$$

 232 Th подвергается ядерному делению под действием быстрых нейтронов и может использоваться в качестве воспроизводящего материала для получения 233 U. Сечение захвата тепловых нейтронов изотопом 232 Th 7,31 барн/атом.

²³²Th является ядерным топливным сырьём, которое при поглощении нейтронов превращается в ²³³U, который в свою очередь является основой уран-ториевого топливного цикла. Превращение происходит по следующей цепочке:

$${}_{0}^{1}\mathbf{n} + {}_{90}^{232}\mathbf{Th} \to {}_{90}^{233}\mathbf{Th} \xrightarrow{\beta^{-}} {}_{1,243}^{1,243} \xrightarrow{MeV} {}_{91}^{233}\mathbf{Pa} \xrightarrow{\beta^{-}} {}_{0,5701}^{0,5701} \xrightarrow{MeV} {}_{92}^{233}\mathbf{U}.$$
(18)

 232 Th как сырьевой материал для получения делящихся ядер 233 U пока не нашёл применения по ряду причин: 1) Торий не образует богатых месторождений, и технология его извлечения из руд сложнее; 2) наряду с 233 U образуется 232 U, который, распадаясь, даёт у-активные ядра (212 Bi, 208 Tl), усложняющие производство ТВЭЛов:

$$\begin{array}{c}
232 \text{Th}(\mathbf{n}, 2\mathbf{n})^{231} \text{Th} \xrightarrow{\beta^{-}} \\
& \begin{array}{c}
233 \text{U} \\
(\mathbf{n}, \gamma)
\end{array}$$

$$\xrightarrow{231} \mathbf{pa}(\mathbf{n}, \gamma)^{232} \mathbf{pa} \xrightarrow{\beta^{-}} 232 \text{U} \xrightarrow{\alpha} 228 \text{Th} \xrightarrow{\alpha} \\
& \begin{array}{c}
234 \text{Ra} \xrightarrow{\alpha} 220 \text{Rn} \xrightarrow{\alpha} 216 \mathbf{po} \xrightarrow{\alpha} 212 \mathbf{pb} \xrightarrow{\beta^{-}} \\
& \begin{array}{c}
\beta^{-} & 212 \mathbf{po} \\
& \begin{array}{c}
208 \mathbf{pb}
\end{array}$$

$$\begin{array}{c}
208 \mathbf{pb}
\end{array}$$

Сечение захвата тепловых нейтронов изотопом ²³²Th равно 7,31 барн/атом.

 234 **Th** (UX₁). Этот изотоп тория накапливается во всех соединениях урана в результате α -распада 238U в соответствии со своим периодом полураспада, равным 24,1 дня. Из раствора азотнокислого уранила UX₁ отделяется экстракцией урана диэтиловым эфиром или ТБФ. Отделение от урана проводят также осаждением UX1 на гидроксиде железа или осаждением добавленного в качестве носителя церия щавелевой кислотой. Вместе с 234 Th выделяется 231 Th (UY) – продукт α -распада 235 U.

3. ФИЗИЧЕСКИЕ И ХИМИЧЕСКИЕ СВОЙСТВА ТОРИЯ

Торий — серебристо-белый блестящий металл, пластичный, легко подвергающийся механической обработке (легко деформируется на холоду), стойкий к окислению в чистом виде, но обычно медленно тускнеющий до темного цвета с течением времени. Образцы металлического тория с содержанием оксида тория 1,5-2% очень устойчивы к окислению и

долгое время не тускнеют. До 1400° устойчива кубическая гранецентрированная решетка, a=0,5086 нм (25°), выше этой температуры кубическая объемно- центрированная, a=0,41 нм (1450°). Атомный диаметр тория в α -форме 0,359 нм, в β -форме 0,411 нм. Ионные радиусы Th^{3+} 0,108 нм, Th^{4+} 0,099 нм.

Основные свойства тория: рентгенографическая плотность: 11.724 г/см^3 (25°); температура плавления: 1750° ; температура кипения: 4200° . Энтальпия плавления 19.2, а энтальпия испарения 513.7 кДж/моль, атомная теплоёмкость 6.53 кал/г-ат.град (25°), теплопроводность $0.090 (20^\circ) \text{ кал/см.сек.град}$, удельное электросопротивление $15*10^{-6} \text{ ом.см}$ (25°). Работа выхода электронов 3.51 эВ. Энергии ионизации $M \to M^+, M^+ \to M^{2+}, M^{2+} \to M^{3+}, M^{3+} \to M^{4+}$ составляют 587, 1110, 1978 и 2780 кДж/моль, соответственно. При температуре 1.3-1.4 K торий становится сверхпроводником.

Торий медленно разрушается холодной водой, но в горячей воде скорость коррозии тория и сплавов на его основе в сотни раз выше, чем у алюминия Порошок металлического тория пирофорен (его хранят под слоем керосина). При обыкновенной температуре, как и при 100° -120°, торий постоянен на воздухе, но при более сильном нагревании воспламеняется и горит ярко белым светом, превращаясь в снежно-белый диоксид. Чистый торий - мягкий, очень гибкий и ковкий, с ним можно работать непосредственно (холодный прокат, горячая штамповка и т.п.), однако его протяжка затруднительна из-за низкого предела прочности на разрыв. Содержание оксида изменяет механические свойства тория; даже чистые образцы тория обычно содержат несколько десятых процента оксида тория. При сильном нагреве он взаимодействует с водородом, галогенами, серой, азотом, кремнием, алюминием и рядом других элементов. Растворимость в тории водорода возрастает с понижением температуры. Торий плохо растворяется в основных кислотах, за исключением соляной. Он растворим в концентрированных растворах НС1 (6-12 моль/л) и НОО3 (8-16 моль/л) в присутствии иона фтора. Легко растворим в в царской водке. Не реагирует с едкими щелочами. Торий способен проявлять степени окисления +4, +3 и +2, из которых наиболее устойчивой является +4. Она же является единственной степенью окисления тория в растворе. Степени окисления +3 и +2 торий имеет в галогенидах $Th\Gamma_3$ и $Th\Gamma_2$ (где Γ = Br, I), полученных при действии очень сильных восстановителей только в твердой фазе.

Торий по внешнему виду и температуре плавления напоминает платину, по удельному весу и твердости - свинец. В химическом отношении у тория мало сходства с актинием (хотя его и относят к актинидам), но много сходства с церием и другими элементам второй подгруппы IV группы. Лишь по структуре электронной оболочки атома - он равноправный член семейства актинидов. Электронная конфигурация атома тория $6d^27s^2$ или $5f6d7s^2$. энергия ионизации (эв): $Th^0 \to Th^+ \to Th^{2+} \to Th^{3+} \to Th^{4+}$ соответственно равны 6.95; 11.5; 20.0 и 28.7.

Хотя торий относится к семейству актинидов, по некоторым свойствам он близок также ко второй подгруппе IV группы периодической системы — Ti, Zr, Hf. Сходство тория с редкоземельными элементами связано с близостью величин их ионных радиусов, которые для всех этих элементов находятся в пределах 0.99 - 1.22 А. В соединениях ионного или ковалентного типа торий почти исключительно четырехвалентен. При образовании полуметаллической связи (например, в сульфидах, карбидах и др.) наблюдаются иногда значительные отклонения от нормальной валентности. Торий примерно так же отрицателен, как Mg. Химические свойства тория определяются большими размерами его атома и ионов, высоким зарядом 4-валентного иона и небольшой суммой ионизационных потенциалов. Ион Th⁴⁺ отличается сильной склонностью к гидролизу и образованию комплексных соединений. При нагревании тория в атмосфере водорода при 400–600 °C образуется гидрид ThH₂ Темно-серые кристаллы, быстро разлагающиеся при действии влаги воздуха с образованием диоксида.

Табл.15. Свойства тория

Свойства атома

Имя, символ, номер Торий / Thorium (Th), 90

Атомная масса 232,0381 а. е. м. (г/моль)

(молярная масса)

Электронная конфигурация [Rn] 6d2 7s2

Радиус атома 180 пм

Химические свойства

Ковалентный радиус 165 пм Радиус иона (+4e) 102 пм

Электроотрицательность 1,3 (шкала Полинга)

Степени окисления 4

Энергия ионизации

(первый электрон) 670,4 (6,95) кДж/моль (эВ)

Термодинамические свойства простого вещества

Плотность (при н. у.) 11,78 г/см³ Температура плавления 2028 К Температура кипения 5060 К

 Теплота плавления
 16,11 кДж/моль

 Теплота испарения
 513,7 кДж/моль

 Молярная теплоёмкость
 26,23 Дж/(К·моль)

 Молярный объём
 19,8 см³/моль

Кристаллическая решётка простого вещества

Структура решётки кубическая

гранецентрированая

 Параметры решётки
 5,080 Å

 Температура Дебая
 100,00 K

Прочие характеристики

Теплопроводность (300 K) (54,0) Вт/(м·К)

 ThO_2 — основной оксид тория (структура флюорита) получается при сжигании тория на воздухе. Диоксид ThO_2 образуется при сгорании металла на воздухе, при прокаливании гидроксида, а также некоторых солей — нитрата, карбоната. Это исключительно высокоплавкое соединение — $T_{\rm п.n.}$ =3350°, $T_{\rm кип.}$ =4400°; реагирует с оксидами металлов при 600–800°, образуя двойные оксиды (тораты), например, K_2ThO_3 , $BaThO_3$, $ThTi_2O_6$. ThO_2 устойчив к действию кислот и восстановителей. Прокаленная ThO_2 почти не растворяется в растворах кислот и щелочей; процесс растворения в азотной кислоте резко ускоряется при добавлении незначительных количеств ионов фтора. Оксид тория является тугоплавкой субстанцией — $T_{\rm п.n}$ = 3300° - самая высокая из всех оксидов и выше большинства других материалов, за несколькими исключениями. Это свойство используется в производстве огнеупоров - в керамических деталях, огнеупорных литьевых формах и тиглях. Но, выдерживая высочайшие температуры, оксид тория частично растворяется во многих жидких металлах и загрязняет их. Самое широкое применение оксида было в производстве газокалильных сеток для газовых фонарей.

Недавно удалением тория лазерным излучением в присутствии кислорода получен моноксид тория ThO.

При взаимодействии растворов солей тория со щелочами или аммиаком выделяется осадок гидрооксида Th(OH)₄, причем осаждение начинается при pH 3,5-3,6, в то время как гидрооксиды 3-валентных редкоземельных элементов осаждаются при pH 7 - 8, что используется в технике для грубого разделения тория и редких земель. Th(OH)₄ не растворим в воде, и не является амфотерным. Гидрооксид тория отличается основным характером – растворяется в разбавленных кислотах и не растворяется в щелочах; легко растворим в растворах некоторых солей, например, карбонатов щелочных металлов, оксалатов аммония и др. с образованием комплексных

соединений. Аморфное вещество; устойчиво при 260–450°, выше 470° теряет воду и превращается в ThO_2 .

Монокарбид ThC получают взаимодействием металлического тория со стехиометрическим количеством углерода, его т. пл. 2625° . Дикарбид ThC₂ - взаимодействием металлического тория с избытком углерода или восстановлением ThO₂ углеродом при 1500° . Его $T_{\text{пл}}$ = 2655° , $T_{\text{кип}}$ = 5000° , на воздухе окисляется при 600–700 до ThO₂. ThC₂ - кристаллическая масса, приготовленная из ThO₂, не поддается действию концентрированных кислот, но легко растворяется в разведенных и разлагается водою, выделяя смесь метана, этилена, ацетилена и водорода.

Тетрагалогениды $Th\Gamma_4$ (Γ = F, Cl, Br, I) получают при нагревании металлического тория или ThO_2 при 300–400° с соответствующим галогенидами или галогенводородами. Тетрафторид ThF_4 имеет $T_{\rm пл}$ =1100°, $T_{\rm кип}$ =1650°, растворим в воде, образует кристаллогидраты. Тетрахлорид $ThCl_4$ имеет $T_{\rm пл}$ =770°, $T_{\rm кип}$ =921°, растворим в воде, низших спиртах, эфирах, ацетоне, бензоле. Образует гидраты с 2, 4, 7 и 12 молекулами воды. Тетрабромид $ThBr_4$ имеет $T_{\rm пл}$ =679°, т. кип. 857°, образует гидраты с 7, 8, 10 и 12 молекулами воды, а также сольваты с аммиаком и аминами. Тетраиодид ThI_4 имеет $T_{\rm пл}$ =566°, $T_{\rm кип}$ =837°, хорошо растворим в воде с образованием гидратов, при нагревании и действии света разлагается с выделением I_2 .

Фтористый торий, ThF_4 получается при действии плавиковой кислоты на $Th(OH)_4$ в виде тяжелого белого порошка - по выпаривании раствора; как нерастворимый в воде, он может быть получен и из растворов солей тория действием, например, фтористого аммония - осаждается студенистый гидрат ThF_4 ' 4H_2O . Фтороторат калия, тяжелый порошок - K_2ThF_6 . 4H_2O - образуется при кипячении крепкого раствора HKF_2 с $Th(OH)_4$; из раствора хлористого тория KF осаждает другую двойную соль - $K_2Th_2F_{10}H_2O$. Растворимый *хлористый торий*, $ThCl_4$, может быть получен при нагревании в атмосфере хлора смеси ThO_2 с углем; довольно трудно возгоняется выше, чем при 440° в виде белых, блестящих пластин и при 1057 - 1102° , на воздухе расплывается. При растворении $Th(OH)_4$ в соляной кислоте получается $ThCl_4$ в виде раствора и может быть выделен выпариванием; получается волокнистая кристаллическая масса гидрата, который при дальнейшем нагревании подвергается, до некоторой степени, гидролизу.

Сульфат тория, $Th(SO_4)_2$, получается при растворении ThO_2 в горячей концентрированной серной кислоте; избыток ее удаляют, испаряя при 500° . Сульфат легко растворим в воде при 0° (в 5 весовых частях), но уже при 20° такой раствор мутится, выделяет гидрат более бедный водой, $Th(SO_4)_2$ 9 H_2O , чем гидраты, существующие в растворе при 0° ; при 43° получается еще менее богатый водой гидрат $Th(SO_4)_2$.4 H_2O . Двойная соль $K_4Th(SO_4)_4$.2 H_2O легко растворима в воде и не растворима в растворе K_2SO_4 . Нитрат тория - большие пластинки - $Th(NO_3)_4$ 12 H_2O , легко растворим, расплывается на воздухе. При действии углекислого газа на разболтанный в воде $Th(OH)_4$ получается основной карбонат тория ($ThO_2)_2CO_2$; из растворов солей тория карбонаты щелочных металлов осаждают карбонат тория, растворимый в избытке реактива; известна двойная соль $Na_6Th(CO_3)_5$ 12 H_2O .

Торий является восстановителем: в ряду напряжений он занимает положение между алюминием и магнием.

Ион Th⁴⁺ обладает большим зарядом, относительно малым радиусом и большим числом свободных электронных уровней, ДЛЯ образования донорно-акцепторных Это электронодонорными лигандами. объясняет склонность пидот образованию многочисленных интерметаллических (с натрием, медью, ртутью, цинком, алюминием и другими металлами) и комплексных соединений с неорганическими и органическими лигандами.

Из растворимых соединений тория представляют интерес его комплексные соединения с анионами различных кислот, например хлоридами, нитратами, карбонатами, оксалатами, Цитратами и др. При этом с анионами $C1^-$, $C1O^-_3$, и BrO^-_3 торий образует только катионные комплексы состава $[ThA]^{4-n}$, где n=1,2,3. В присутствии, всех других лигандов торий, в зависимости от условий, может находиться в форме как катионных, так и анионных комплексов. Характерным свойством тория является также его способность образовывать внутрикомплексные соединения с такими реагентами, как TTA, 8-оксихинолином, ацетилацетоном, комплексонами и др. При участии ионов щелочных металлов соединения тория легко образуют двойные соли

 $K_2[Th(NO_3)_6]$, $Na_2[Th(SO_4)_3]$, а также смешанные оксиды K_2ThO_3 . В водных растворах ионы тория образуют гидроксо-ионы $[Th(OH)_3]^+$, $[Th_2(OH)_2]^{6+}$, $[Th_4(OH)_{12}]^{4+}$.

Для тория в степени окисления +4 характерны координационные числа 6, 8 и реже 10 и 12. Комплексные соединения тория с более низкими координационными числами, например ThCl₄, как правило, в растворах сольватированы или гидратированы. В слабокислых растворах Th(+4) заметно гидролизуется с образованием как моноядерных $Th(OH)_{4-n}$ (где n=1 - 3), так и полиядерных продуктов состава $Th_2(OH)_6^{+2}$, $Th[(OH)_3Th]_{n(n+4)}^{+}$, и др.

Монооксид тория ThO, видимо, существует. Его кристаллическая решетка, аналогична решетке хлористого натрия. Под действием перекиси водорода образуется перекись тория, которой раньше приписывали формулу Th_2O_7 . Начинает выпадать в осадок уже при pH=3,5, в то время как гидроокиси трехвалентных редких земель получают лишь при pH=7...8. Это свойство используют для грубого разделения редкоземельных элементов и тория.

Известно довольно много галогенидов тория: три хлорида, три бромида, три иодида и фторид (валентности тория в этих соединениях: 4+, 3+ и 2+). Хлориды и фторид бесцветны, бромиды и иодиды желтого цвета. Безводный тетрахлорид очень гигроскопичен. Для практики наиболее важны фторид ThF_4 и иодид ThI_4 . Первый используют для получения тория электролизом и для растворения его в азотной кислоте: чистый торий в чистой HNO_3 не растворяется, необходима добавка фторида. Тетраиодид используют для получения тория высокой чистоты, поскольку при температуре выше 90° это соединение способно к термической диссоциации:

$$ThI_4 \rightarrow Th + 2I_2$$
. (20)

При нагревании тория в атмосфере водорода до $400...600^{\circ}$ образуется его гидрид ThH_2 . Если, не меняя условий, начать снижать температуру, то при $250...320^{\circ}$ происходит дальнейшее насыщение тория водородом и образуется гидрид состава Th_4H_{15} . Иногда гидриды тория применяют для получения высокочистого тория.

Нитрат тория известен в виде кристаллогидратов с 1, 2, 3, 4, 5, 6 и 12 молекулами воды; есть указания на существование безводной соли. Товарный нитрат представляет собой соль состава $Th(NO_3)_4$: 5,5 H_2O , хорошо растворим в воде и в кислородосодержащих органических растворителях — спиртах, кетонах, эфирах. Это обстоятельство используется в технике для извлечения нитрата тория из водных растворов несмешивающимися с водой органическими растворителями, при содержании в водной фазе так называемых высаливателей — нитратов некоторых металлов первых трёх групп периодической системы. В связи со значительным различием коэффициента распределения нитратов тория и редкоземельных элементов между водной и органической фазами обеспечивается эффективное разделение тория и редких земель.

Фосфаты тория известны в виде средней $Th_3(PO_4)_4$ '4 H_2O и кислой $Th(HPO_4)_2$ ' H_2O солей, выделяющихся из водных солей тория при добавлении соответственно H_3PO_4 и Na_2HPO_4 . Фосфаты нерастворимы в воде, но растворяются в кислотах. Гипофосфат $ThP_2O_5.nH_2O$, выделяется в виде аморфного осадка при взаимодействии раствора нитрата тория с гипофосфатом натрия.

Торий, как и некоторые другие редкоземельные элементы, выделяют из галогенидов или оксида методом металлотермии (кальцийтермии):

$$ThF_A + 2Ca \rightarrow Th + 2CaF_2$$
 (21)

В связи с предполагаемым использованием тория в качестве топлива атомных энергетических реакторов, изучалось последствия воздействия тонизирующей радиации на металлический торий. В реакторном топливе фактически процесс деления всегда происходит в сплаве тория с ураном, если даже исходный материал представлял собой чистый торий. для ускорения процесса создания радиационных повреждений за счёт осколков деления реакторные эксперименты обычно проводятся на сплавах тория с ураном, содержащих до 5% ²³⁵U. Такое количество урана либо входит в твёрдый раствор, либо столь мелко диспергировано в матрице тория, что с трудом поддаётся обнаружению с помощью микроскопа.

Металлический торий обладает кубической гранецентрированной решёткой и поэтому в нём не могут возникать столь же анизотропные изменения размеров, как в орторомбическом α -уране. Изменения, возникающие в тории под действием нейтронов, относительно невелики и

сводятся главным образом к увеличению объёма за счёт накопления продуктов деления. Облучение сплавов тория с ураном в течение трёх лет реакторным излучением при 100° привело

к изменению размеров и плотности образцов (Рис. 8). Все незначительны и не зависят от исходной концентрации урана, способа изготовления и предшествующей обработки. По сравнению с ураном чистый торий и уранториевые сплавы с большим содержанием тория обладают исключительно высокой стабильностью. Так, для образцов, облучённых до высоких степеней выгорания урана, изменения плотности невелики и примерно в 4-5 раз меньше изменений плотности урана или богатых ураном сплавов. Увеличение твёрдости тория также незначительно и при выгорании 2-4% составляет 15-25 единиц по Роквеллу. Прочность при тория при растяжении несколько увеличивается. Уменьшение теплопроводности при облучении не превосходит 5-8%.

Рис. 8. Изменение размеров и плотности пластин из тория и уран-ториевого сплава в результате воздействия реакторного излучения.