Chapitre 4: L'ensemble N

I Ce qui est admis ou supposé connu

- $\mathbb{N} = \{0,1,2,3,...\}$
- + et × constituent des l.c.i sur N avec les propriétés suivantes :
 - + et × sont associatives et commutatives.
 - × est distributive sur +
 - 0 est neutre pour +
 - 1 est neutre pour \times
- \(\le \text{constitue une relation d'ordre total sur N.} \)

Théorème:

Toute partie non vide de N admet un plus petit élément.

Théorème:

N n'a pas de maximum, mais toute partie non vide majorée de N admet un plus grand élément.

Démonstration:

Soit A une partie non vide majorée de N.

Soit B l'ensemble des majorants de A. $B \neq \emptyset$ car A est majorée. Donc B admet un plus petit élément, disons m. Montrons que $m \in A$.

Supposons que $m \notin A$. Comme m est un majorant de A, on a donc $\forall x \in A, x < m$

Cela impose que $m \ge 1$ (sinon on aurait $\forall x \in A, x < 0$, ce qui est impossible car $A \ne \emptyset$)

et que $\forall x \in A, x \le m-1$. Donc m-1 est un majorant de A. Or, m est le plus petit élément de B. On a donc une contradiction. Donc $m \in A$ et m majore A. Donc m est le plus grand élément de A.

(On utilise le fait que pour tout $x \in \mathbb{N}$, l'ensemble des $y \in \mathbb{N}$ tels que x < y admet un plus petit élément qui n'est autre que x+1).

- Les calculs dans N sont supposés connus.
- Pour l'arithmétique, voir plus tard.

II Principe de récurrence

Théorème:

Soit P une propriété définie sur N. Si on a :

- (1) P(0) (est vraie)
- (2) $\forall n \in \mathbb{N}, (P(n) \Rightarrow P(n+1))$ (est vrai)

Alors $\forall n \in \mathbb{N}, P(n)$ (est vraie).

Notions de base Page 1 sur 6

Démonstration:

Supposons (1) et (2).

Soit E l'ensemble des éléments de N tels que non(P(n)). Montrons que E est vide.

Supposons *E* non vide. Alors *E* admet un plus petit élément *m*.

 $m \neq 0$ car P(0) est vraie.

On introduit donc m-1. $m-1 \notin E$ car m en est le plus petit élément. Donc P(m-1) est vraie. Or, $P(m-1) \Rightarrow P(m)$. Donc P(m) est vraie. Donc $m \notin E$. On a donc une contradiction. Donc E est vide. Donc $\forall n \in \mathbb{N}, P(n)$.

Exemples:

- Montrons par récurrence que $\forall n \in \mathbb{N}, \underbrace{\sum_{k=1}^{n} k = \frac{n(n+1)}{2}}_{\mathbb{P}(n)}$
 - Déjà, on a bien P(0) car 0 = 0
 - Montrons que $\forall n \in \mathbb{N}, (P(n) \Rightarrow P(n+1))$

Soit $n \in \mathbb{N}$. Supposons P(n), montrons P(n+1)

$$\sum_{k=1}^{n+1} k = \sum_{k=1}^{n} k + n + 1 = \frac{n(n+1)}{2} + n + 1 = \frac{n+1}{2} \times (n+2) = \frac{(n+1)(n+2)}{2}$$

On a montré que si on a P(n), alors on a P(n+1). Or, on l'a fait pour n quelconque. Donc $\forall n \in \mathbb{N}, (P(n) \Rightarrow P(n+1))$

- On en déduit donc selon le principe de récurrence que $\forall n \in \mathbb{N}, P(n)$

(On peut remplacer ces trois dernières lignes par « ce qui achève la récurrence »)

- Montrons par récurrence que $\forall n \in \mathbb{N}, P(n)$, où P(n) signifie : « pour tout ensemble E de cardinal n, P(E) est de cardinal 2^n »
 - P(0) est vraie car \emptyset a une seule partie, à savoir \emptyset .

C'est-à-dire que $P(\emptyset)$ a un élément, \emptyset , ou encore $P(\emptyset) = {\emptyset}$, de cardinal 1.

- Montrons que $\forall n \in \mathbb{N}, (P(n) \Rightarrow P(n+1))$

Soit $n \in \mathbb{N}$. Supposons P(n). Soit E un ensemble de cardinal n+1.

Soit $a \in E$ (il en existe car card(E) > 0)

On note $A = E \setminus \{a\}$. Alors les parties de E se répartissent en deux catégories : celles qui n'ont pas a et celles qui l'ont.

Celles qui ne contiennent pas a, il y en a 2^n (ce sont les parties de A)

Celles qui contiennent pas a, il y en a autant (ce sont les parties de A auxquelles on ajoute a)

Il en résulte que $card(P(E)) = 2^n + 2^n = 2^{n+1}$

Ce qui achève la récurrence.

III Variantes de récurrence

Théorème :

Soit P une propriété définie sur N*. Si :

- (1) P(1)
- (2) $\forall n \in \mathbb{N}^*, (P(n) \Rightarrow P(n+1))$

Alors $\forall n \in \mathbb{N}^*, P(n)$.

Démonstration:

Soit P une propriété définie sur N*, supposons P(1) et que $\forall n \in \mathbb{N}^*, (P(n) \Rightarrow P(n+1))$

Soit Q la propriété définie sur \mathbb{N} par $\forall n \in \mathbb{N}, (\mathbb{Q}(n) \Leftrightarrow \mathbb{P}(n+1))$

Alors Q(0) est vraie, car P(1) est vraie.

Soit $n \in \mathbb{N}$, supposons Q(n). Alors P(n+1). Donc P(n+2). Donc Q(n+1)

Donc $\forall n \in \mathbb{N}, (Q(n) \Rightarrow Q(n+1))$

Donc, selon le principe de base de récurrence, $\forall n \in \mathbb{N}, Q(n)$

Donc $\forall n \in \mathbb{N}, P(n+1)$. Donc $\forall m \in \mathbb{N}^*, P(m)$

Théorème (récurrence double):

Soit P une propriété définie sur M. Si:

- (1) P(0) et P(1)
- (2) $\forall n \in \mathbb{N}, (P(n) \Rightarrow P(n+2))$

Alors $\forall n \in \mathbb{N}, P(n)$.

Démonstration:

On fait de la même façon que pour le théorème précédent avec Q définie par :

 $\forall n \in \mathbb{N}, (Q(n) \Leftrightarrow P(n) \text{ et } P(n+1))$

En prenant les hypothèses du théorème, on a :

Q(0) est vraie car P(0) et P(1) le sont

Soit $n \in \mathbb{N}$, supposons Q(n). Alors P(n) et P(n+1) donc P(n+2) et P(n+1)

Donc Q(n+1).

Donc $\forall n \in \mathbb{N}, (Q(n) \Rightarrow Q(n+1))$

Donc $\forall n \in \mathbb{N}, Q(n)$. Donc $\forall n \in \mathbb{N}, P(n)$

Théorème (récurrence forte):

Soit P une propriété définie sur M. Si :

- (1) P(0)
- (2) $\forall n \in \mathbb{N}, [\forall k \in [0, n], P(k)] \Rightarrow P(n+1)$ (les [,]] s'utilisent pour les entiers)

Alors $\forall n \in \mathbb{N}, P(n)$.

(C'est-à-dire que pour tout $n \in \mathbb{N}$, si la propriété est vraie jusqu'au rang n, alors elle est vraie au rang n+1)

Démonstration:

On définit cette fois-ci Q par :

 $\forall n \in \mathbb{N}, (\mathbb{Q}(n) \Leftrightarrow [\forall k \in [0, n], \mathbb{P}(k)])$

Alors Q(0) est vraie car P(0) l'est, donc $\forall k \in [0,0]$, P(k).

Soit $n \in \mathbb{N}$, supposons Q(n), alors $\forall k \in [0, n], P(k)$, donc P(n+1),

donc $\forall k \in [0, n+1], P(k)$, donc Q(n+1)

Donc $\forall n \in \mathbb{N}, (Q(n) \Rightarrow Q(n+1))$

Donc $\forall n \in \mathbb{N}, Q(n), \text{ donc } \forall n \in \mathbb{N}, P(n)$

Théorème (récurrence finie):

Soit m un entier naturel non nul

Soit P une propriété définie sur ||0, m||. Si :

(1) P(0)

(2)
$$\forall n \in [0, m-1], (P(n) \Rightarrow P(n+1))$$

Alors $\forall n \in [0, m] P(n)$.

Théorème (récurrence finie descendante) :

Soit *m* un entier naturel non nul

Soit P une propriété définie sur [0, m]. Si :

(3) P(m)

(4)
$$\forall n \in [1, m], (P(n) \Rightarrow P(n-1))$$

Alors $\forall n \in [0, m], P(n)$.

IV Un peu d'arithmétique

A) Division euclidienne dans N.

Théorème:

Soient $a, b \in \mathbb{N}$, $b \neq 0$.

Alors il existe un unique couple $(q,r) \in \mathbb{N} \times \mathbb{N}$ tel que :

$$\begin{cases} a = bq + r \\ 0 \le r < b \end{cases}$$

q est le quotient, r le reste dans la division euclidienne de a par b.

Démonstration:

• Unicité:

Supposons
$$\begin{cases} a = bq + r \text{ et } 0 \le r < b \\ a = bq' + r' \text{ et } 0 \le r' < b \end{cases}$$

Alors
$$bq - bq' = r' - r$$
; $b(q - q') = r' - r$

Or, -b < r' - r < b. Supposons par exemple $r' \ge r$ (sinon on inverse les rôles)

Ainsi, $0 \le r' - r < b$

Ainsi, q - q' = 0, car sinon $q - q' \ge 1$ et $b(q - q') \ge b$ soit $r' - r \ge b$.

Donc (q,r) = (q',r')

• Existence :

Soit $E = \{k \in \mathbb{N}, bk \le a\}$. Alors $E \subset \mathbb{N}$, E est non vide, car $0 \in E$ et est majoré par $a : k \le bk \le a$. Donc E admet un maximum, qu'on note g.

Alors, on a:

$$bq \le a < b(q+1)$$
 (car $q \in E$ et $q+1 \notin E$ puisque $q = \max(E)$

Donc
$$0 \le a - bq < b(q+1) - bq$$
, soit $0 \le a - bq < b$. On note $r = a - bq$

Alors:

$$\begin{cases} a = bq + r \\ 0 \le r < b \end{cases}$$

B) Numération en base quelconque

Théorème:

Soit $\beta \in \mathbb{N} \setminus \{0,1\}$

Soit $A \in \mathbb{N}$

Alors il existe une unique suite $(a_k)_{k\in\mathbb{N}}$ d'entiers de l'ensemble $[0, \beta-1]$ nulle à partir d'un certain rang telle que :

$$A = a_0 \times \beta^0 + a_1 \times \beta^1 + a_2 \times \beta^2 + ... + a_n \times \beta^n \text{ (n est tel que } \forall k > n, a_k = 0 \text{)}$$
qu'on note $\sum_{k=0}^{\infty} a_k \beta^k$ (somme faussement infinie)

On note alors $A = \overline{(a_n a_{n-1} ... a_1 a_0)}_B$

Démonstration:

Notons S_F l'ensemble des suites de $\{0,...\beta-1\}$ nulles à partir d'un certain rang.

Pour $a \in S_F$, les termes de la suite a sont notés $a_0, a_1, a_2 \dots$

Montrons par récurrence forte que $\forall A \in \mathbb{N}$, $(\exists! a \in S_F, A = \sum_{k \in \mathbb{N}} a_k \beta^k)$

- P(0) est vrai : si on prend, pour tout $k \in \mathbb{N}$, $a_k = 0$, on a bien $\sum_{k \in \mathbb{N}} a_k \beta^k = 0$, et si un des termes de a n'est pas nul, alors $\sum_{k \in \mathbb{N}} a_k \beta^k \neq 0$
- Soit $A \in \mathbb{N}^*$, supposons que $\forall B \in [0, A-1]$ P(B). Montrons qu'alors P(A). La division euclidienne de A par β donne :

$$\begin{cases} A = \beta Q + r \\ r \in \{0,1,\dots\beta-1\} \end{cases}$$

Alors $Q \in [0, A-1]$:

On a $\beta > 1$ et Q > 0. Donc $Q < \beta Q \le \beta Q + r = A$, donc Q < A.

Donc P(Q): il existe une unique suite $(q_k)_{k \in \mathbb{N}} \in S_F$ telle que $Q = \sum_{k \in \mathbb{N}} q_k \beta^k$

$$\text{Donc } A = \left(\sum_{k \in \mathbb{N}} q_k \beta^{k+1}\right) + r = \sum_{k \in \mathbb{N}} a_k \beta^k \text{ avec } \begin{cases} a_0 = r \\ \forall k \ge 1, a_k = q_{k-1} \end{cases}$$

D'où l'existence de la suite.

Si une autre suite $(a'_k)_{k \in \mathbb{N}}$ convient, alors :

$$A = \sum_{k \in \mathbb{N}} a'_k \, \beta^k = \sum_{k \in \mathbb{N}^*} a'_k \, \beta^k + a'_0 = \beta \sum_{k \in \mathbb{N}^*} a'_k \, \beta^{k-1} + a'_0$$

Comme $a'_0 \in [0, \beta - 1]$, on a alors $a'_0 = r$ et $\sum_{k \in \mathbb{N}^*} a'_k \beta^{k-1} = Q$ (par unicité du

couple (Q,r))

Donc $a'_{0} = a_{0}$,

et $\forall k \in \mathbb{N}^*, a'_k = q_{k-1} = a_k$ par hypothèse de récurrence.

D'où l'unicité de la suite.

Cette démonstration donne un algorithme pour obtenir les chiffres.

Exemple:

Donner 2003 en base 3.

```
Division euclidienne de 2003 par 3 : 667 reste 2
Division euclidienne de 667 par 3 : 222 reste 1
Division euclidienne de
                                 222 par 3:
                                                   74 reste 0
Division euclidienne de
                                  74 par 3 :
                                                   24 reste 2
Division euclidienne de
                                  24 par 3 :
                                                     8 reste 0
                                    8 par 3:
                                                     2 reste 2
Division euclidienne de
Division euclidienne de
                                    2 par 3:
                                                     0 reste 2
Donc, en remontant:
    2 = \overline{2}_3 = 2 \times 3^0
    8 = 2 \times 3^1 + 2 \times 3^0
   74 = 2 \times 3^2 + 2 \times 3^1 + 0 \times 3^0
 222 = 2 \times 3^3 + 2 \times 3^2 + 0 \times 3^1 + 2 \times 3^0
 667 = 2 \times 3^4 + 2 \times 3^3 + 0 \times 3^2 + 2 \times 3^1 + 1 \times 3^0
2003 = 2 \times 3^5 + 2 \times 3^4 + 0 \times 3^3 + 2 \times 3^2 + 1 \times 3^1 + 2 \times 3^0
Donc 2003 = \overline{(2202012)}_3
2003 en base 2:
2003 = 1001 \times 2 + 1
1001 = 500 \times 2 + 1
 500 = 250 \times 2 + 0
 250 = 125 \times 2 + 0
  125 = 62 \times 2 + 1
   62 = 31 \times 2 + 0
   31 = 15 \times 2 + 1
   15 = 7 \times 2 + 1
    7 = 3 \times 2 + 1
     3 = 1 \times 2 + 1
     1 = 0 \times 2 + 1
Donc 2003 = \overline{(11111010011)}
2003 en base 12 : on utilise les symboles 0, 1, 2,..., A, B.
2003 = 166 \times 12 + 11
  166 = 13 \times 12 + 10
   13 = 1 \times 12 + 1
     1 = 0 \times 12 + 1
Donc 2003 = \overline{(11AB)}_{12}
```