3.3 最优回归设计

王正明 易泰河

系统工程学院 军事建模与仿真系

2019年12月20日

引言

思考

将一幅画固定在墙上,至少需要几颗钉子?如果给三颗钉子,应该如何钉?给四颗呢?

例

假设消耗的能量 y 与跑步距离 x 存在指数关系:

$$y = A \exp\{Bx\}, \qquad x \in [5\mathrm{km}, 10\mathrm{km}].$$

A 和 B 为待估计的参数. 设计试验以高效地得到 A 和 B, 并设计一次验证模型的跑步试验.

引言

思考

将一幅画固定在墙上,至少需要几颗钉子?如果给三颗钉子,应该如何钉?给四颗呢?

例

假设消耗的能量 y 与跑步距离 x 存在指数关系:

$$y = A \exp\{Bx\}, \qquad x \in [5\mathtt{km}, 10\mathtt{km}].$$

A 和 B 为待估计的参数. 设计试验以高效地得到 A 和 B, 并设计一次验证模型的跑步试验.

引言

例 (称重问题)

用一架精度为 σ 的天平称 4 个不同的物体, 称重方案:

序号	左侧				右侧		差异	
1	1	2	3	4	空		y_1	
2		1	2		3	4	y_2	
3		1	3		2	4	y_3	
4		1	4		2	3	y_4	

每一个物体的测量精度都能达到 $\sigma^2/4$. 能否找到一种精度更高的称重方案?

知识回顾

• 称 $\xi_n = \{x_1, x_2, \cdots x_n\}$ 为一个试验次数为 n 的精确设计, x_i 为它的支撑点或谱点. ξ_n 的矩阵表示

$$\boldsymbol{D}_{\xi_n} = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1p} \\ x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{np} \end{bmatrix}$$

- 离散设计: $\xi_k = \begin{pmatrix} x_1 & x_2 & \cdots & x_k \\ p_1 & p_2 & \cdots & p_k \end{pmatrix}$.
- 称试验区域 \mathcal{X} 上的概率分布 ξ 为设计, 给定试验次数 n 后 从 ξ 中抽取 n 个样本作为试验方案.

知识回顾

- 线性回归模型: $y = \mathbf{f}^{\mathrm{T}}(\mathbf{x})\boldsymbol{\beta} + \varepsilon$.
- 线性模型 $y \sim N(X\beta, \sigma^2 I)$ 的参数估计:

$$\begin{cases} \widehat{\boldsymbol{\beta}} = \left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X} \right)^{-1} \boldsymbol{X}^{\mathrm{T}} \boldsymbol{y}, \\ \widehat{\sigma}^{2} = \frac{1}{n-m} (\boldsymbol{y} - \boldsymbol{X} \hat{\boldsymbol{\beta}})^{\mathrm{T}} (\boldsymbol{y} - \boldsymbol{X} \hat{\boldsymbol{\beta}}). \end{cases}$$

- $\hat{\boldsymbol{\beta}} \sim N\left(\boldsymbol{\beta}, \sigma^2(\boldsymbol{X}^{\mathrm{T}}\boldsymbol{X})^{-1}\right)$, 它的方差矩阵为 $\sigma^2(\boldsymbol{X}^{\mathrm{T}}\boldsymbol{X})^{-1}$.
- 预测值 $\hat{y}(x) = f^{\Gamma}(x)\hat{\beta}$ 的方差为 $\sigma^2 f^{\Gamma}(x)(X^TX)^{-1}f(x)$.
- 矩阵 $X^TX = \sum_{i=1}^n f(x_i) f^T(x_i)$ 决定参数估计和预测的精度.

3.3 最优回归设计

- 3.3.1 设计的信息矩阵
- 3.3.2 优良性准则
- 3.3.3 等价性定理
- 3.3.4 D 最优设计的迭代求解

线性回归模型 $y = f(x)^{T}\beta + \varepsilon$, $\varepsilon \sim N(0, \sigma^{2})$ 中:

• 精确设计 $\xi_n = \{x_1, x_2, \cdots x_n\}$ 的信息矩阵定义为

$$\boldsymbol{M}(\xi_n) = rac{1}{n} \boldsymbol{X}^{\mathrm{T}} \boldsymbol{X} = rac{1}{n} \sum_{i=1}^n \boldsymbol{f}(\boldsymbol{x}_i) \boldsymbol{f}^{\mathrm{T}}(\boldsymbol{x}_i).$$

• 离散设计 $\xi_k = \begin{pmatrix} x_1 & x_2 & \cdots & x_k \\ p_1 & p_2 & \cdots & p_k \end{pmatrix}$ 的信息矩阵定

义为

$$extbf{ extit{M}}(oldsymbol{x}_k) = \sum_{i=1}^k p_i extbf{ extit{f}}(oldsymbol{x}_i) extbf{ extit{f}}^{ extsf{T}}(oldsymbol{x}_i).$$

线性回归模型 $y = f(x)^{\mathrm{T}} \beta + \varepsilon$, $\varepsilon \sim N(0, \sigma^2)$ 中:

• 精确设计 $\xi_n = \{x_1, x_2, \cdots x_n\}$ 的信息矩阵定义为

$$\boldsymbol{M}(\xi_n) = rac{1}{n} \boldsymbol{X}^{\mathrm{T}} \boldsymbol{X} = rac{1}{n} \sum_{i=1}^n \boldsymbol{f}(\boldsymbol{x}_i) \boldsymbol{f}^{\mathrm{T}}(\boldsymbol{x}_i).$$

• 离散设计 $\xi_k=egin{pmatrix} m{x}_1 & m{x}_2 & \cdots & m{x}_k \\ p_1 & p_2 & \cdots & p_k \end{pmatrix}$ 的信息矩阵定义为

$$oldsymbol{M}(\xi_k) = \sum_{i=1}^k p_i oldsymbol{f}(oldsymbol{x}_i) oldsymbol{f}^{\mathrm{T}}(oldsymbol{x}_i).$$

定义(设计的信息矩阵)

线性回归模型 $y = \mathbf{f}(\mathbf{x})^{\mathrm{T}}\boldsymbol{\beta} + \varepsilon$, $\varepsilon \sim N(0, \sigma^2)$ 中, 称试验区域 \mathcal{X} 上的概率分布 ξ 为一个设计, 其信息矩阵定义为

$$M(\xi) := \int_{\mathcal{X}} f(x) f^{\mathrm{T}}(x) \mathrm{d}\xi,$$

称满足 $\det (\mathbf{M}(\xi)) \neq 0$ 的设计 ξ 为非奇异的.

• 一个好的设计应使 $M(\xi)$ 达到"最大".

定义(设计的信息矩阵)

线性回归模型 $y = \mathbf{f}(\mathbf{x})^{\mathrm{T}}\boldsymbol{\beta} + \varepsilon$, $\varepsilon \sim N(0, \sigma^2)$ 中, 称试验区域 \mathcal{X} 上的概率分布 ξ 为一个设计, 其信息矩阵定义为

$$m{M}(\xi) := \int_{\mathcal{X}} m{f}(m{x}) m{f}^{\! ext{T}}(m{x}) \mathrm{d}\xi,$$

称满足 $\det (\mathbf{M}(\xi)) \neq 0$ 的设计 ξ 为非奇异的.

• 一个好的设计应使 $M(\xi)$ 达到 "最大".

例 (一元一次线性回归)

设 $x \in [-1, 1]$, 求线性模型 $y = \beta_0 + \beta_1 x + \varepsilon$ 中精确设计 $\xi_n = \{x_1, x_2, \dots, x_n\}$ 和密度函数为 p(x) 的设计 ξ 的信息矩阵.

• 精确设计 $\xi_n=\{x_1,x_2,\cdots,x_n\}$ 的信息矩阵为

$$\begin{bmatrix} 1 & \frac{1}{n} \sum_{i=1}^{n} x_i \\ \frac{1}{n} \sum_{i=1}^{n} x_i & \frac{1}{n} \sum_{i=1}^{n} x_i^2 \end{bmatrix}.$$

• 密度函数为 p(x) 的设计 ξ 的信息矩阵为

$$\begin{bmatrix} 1 & \int_{-1}^{1} x p(x) dx \\ \int_{-1}^{1} x p(x) dx & \int_{-1}^{1} x^{2} p(x) dx \end{bmatrix}.$$

例 (一元一次线性回归)

设 $x \in [-1, 1]$, 求线性模型 $y = \beta_0 + \beta_1 x + \varepsilon$ 中精确设计 $\xi_n = \{x_1, x_2, \dots, x_n\}$ 和密度函数为 p(x) 的设计 ξ 的信息矩阵.

• 精确设计 $\xi_n = \{x_1, x_2, \cdots, x_n\}$ 的信息矩阵为

$$\begin{bmatrix} 1 & \frac{1}{n} \sum_{i=1}^{n} x_i \\ \frac{1}{n} \sum_{i=1}^{n} x_i & \frac{1}{n} \sum_{i=1}^{n} x_i^2 \end{bmatrix}.$$

• 密度函数为 p(x) 的设计 ξ 的信息矩阵为

$$\begin{bmatrix} 1 & \int_{-1}^{1} x p(x) dx \\ \int_{-1}^{1} x p(x) dx & \int_{-1}^{1} x^{2} p(x) dx \end{bmatrix}.$$

例 (二元一次线性回归)

设 $(x_1, x_2) \in [-1, 1]^2$, 讨论线性模型

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon$$

中精确设计 ξ_n 和密度函数为 $p(x_1, x_2)$ 的设计 ξ 的信息矩阵.

$$\mathbf{M}(\xi_n) = \begin{bmatrix} 1 & \frac{1}{n} \sum_{i=1}^n x_{i1} & \frac{1}{n} \sum_{i=1}^n x_2 \\ \frac{1}{n} \sum_{i=1}^n x_{i1} & \frac{1}{n} \sum_{i=1}^n x_{i1}^2 & \frac{1}{n} \sum_{i=1}^n x_{i1} x_2 \\ \frac{1}{n} \sum_{i=1}^n x_{i2} & \frac{1}{n} \sum_{i=1}^n x_{i1} x_{i2} & \frac{1}{n} \sum_{i=1}^n x_{i2}^2 \end{bmatrix}$$

 $M(\varepsilon) =$

$$\begin{array}{cccc}
1 & \int x_1 p(x_1, x_2) dx_1 dx_2 & \int x_2 p(x_1, x_2) dx_1 dx_2 \\
\int x_1 p(x_1, x_2) dx_1 dx_2 & \int x_1^2 p(x_1, x_2) dx_1 dx_2 & \int x_1 x_2 p(x_1, x_2) dx_1 dx_2 \\
\int x_2 p(x_1, x_2) dx_1 dx_2 & \int x_1 x_2 p(x_1, x_2) dx_1 dx_2 & \int x_2^2 p(x_1, x_2) dx_1 dx_2
\end{array}$$

例 (二元一次线性回归)

设 $(x_1, x_2) \in [-1, 1]^2$, 讨论线性模型

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon$$

中精确设计 ξ_n 和密度函数为 $p(x_1, x_2)$ 的设计 ξ 的信息矩阵.

$$\mathbf{M}(\xi_n) = \begin{bmatrix} 1 & \frac{1}{n} \sum_{i=1}^n x_{i1} & \frac{1}{n} \sum_{i=1}^n x_2 \\ \frac{1}{n} \sum_{i=1}^n x_{i1} & \frac{1}{n} \sum_{i=1}^n x_{i1}^2 & \frac{1}{n} \sum_{i=1}^n x_{i1} x_{i2} \\ \frac{1}{n} \sum_{i=1}^n x_{i2} & \frac{1}{n} \sum_{i=1}^n x_{i1} x_{i2} & \frac{1}{n} \sum_{i=1}^n x_{i2}^2 \end{bmatrix}$$

•
$$M(\xi) =$$

$$\begin{bmatrix} 1 & \int x_1 p(x_1, x_2) dx_1 dx_2 & \int x_2 p(x_1, x_2) dx_1 dx_2 \\ \int x_1 p(x_1, x_2) dx_1 dx_2 & \int x_1^2 p(x_1, x_2) dx_1 dx_2 & \int x_1 x_2 p(x_1, x_2) dx_1 dx_2 \\ \int x_2 p(x_1, x_2) dx_1 dx_2 & \int x_1 x_2 p(x_1, x_2) dx_1 dx_2 & \int x_2^2 p(x_1, x_2) dx_1 dx_2 \end{bmatrix}$$

信息矩阵的性质

以 Ξ 表示所有设计组成的集合, Ξ_n 表示支撑点数为 n 的设计组成的集合, $\mathcal{M} = \{ \mathbf{M}(\xi) : \xi \in \Xi \}$:

- (1) 任意设计 ξ 的信息矩阵 $M(\xi)$ 都是非负定的;
- (2) E 是凸集, M 是一个闭凸集;
- (3) 如果 n < m, 则 $\det (\mathbf{M}(\xi)) = 0$ 对任意 $\xi \in \Xi_n$ 都成立;
- (4) 任给 $\xi \in \Xi$, 存在 $\tilde{\xi} \in \Xi_n$, $n \leq m(m+1)/2+1$, 使 得 $M(\xi) = M(\tilde{\xi})$.

3.3 最优回归设计

- 3.3.1 设计的信息矩阵
- 3.3.2 优良性准则
- 3.3.3 等价性定理
- 3.3.4 D 最优设计的迭代求解

定义 (最优设计)

设 $\Phi: \mathcal{M} \mapsto \mathbb{R}^+$ 满足 $M_1 \ge M_2 \Rightarrow \Phi(M_1) \le \Phi(M_2)$. 若存在设计 $\xi^* \in \Xi$ 使得

$$\Phi\left(\mathbf{M}(\xi^*)\right) = \inf\left\{\Phi\left(\mathbf{M}(\xi)\right) : \xi \in \Xi\right\},$$

则称 ξ^* 为 Φ 最优设计(Φ -optimal design).

- 一般不能保证 $\Phi(M_1) \leq \Phi(M_2) \Rightarrow M_1 \geq M_2$, 因此选择的最优性准则 Φ 应具有一定的统计意义.
- 为简单起见,记 $\Phi(\xi) = \Phi(M(\xi))$.

定义 (最优设计)

设 $\Phi: \mathcal{M} \mapsto \mathbb{R}^+$ 满足 $M_1 \ge M_2 \Rightarrow \Phi(M_1) \le \Phi(M_2)$. 若存在设计 $\xi^* \in \Xi$ 使得

$$\Phi\left(\mathbf{M}(\xi^*)\right) = \inf\left\{\Phi\left(\mathbf{M}(\xi)\right) : \xi \in \Xi\right\},\,$$

则称 ξ^* 为 Φ 最优设计(Φ -optimal design).

- 一般不能保证 $\Phi(\mathbf{M}_1) \leq \Phi(\mathbf{M}_2) \Rightarrow \mathbf{M}_1 \geq \mathbf{M}_2$, 因此选择的最优性准则 Φ 应具有一定的统计意义.
- 为简单起见, 记 $\Phi(\xi) = \Phi(\mathbf{M}(\xi))$.

定义 (D 最优设计)

取 $\Phi_D(\xi) := \det (M^{-1}(\xi))$, 称相应的最优设计为D 最优设计(D-optimal design).

给定置信概率 lpha,最小二乘估计 $\hat{oldsymbol{eta}}$ 的置信椭球体

$$\left\{oldsymbol{eta} \in \mathbb{R}^m : (oldsymbol{eta} - \hat{oldsymbol{eta}})^{ ext{T}} oldsymbol{M}^{-1}(\xi) (oldsymbol{eta} - \hat{oldsymbol{eta}}) \leq c_lpha
ight\}$$

的体积 $V(\xi) \propto \left[\det\left(\boldsymbol{M}^{-1}(\xi)\right)\right]^{\frac{1}{2}}, \det\left(\boldsymbol{M}^{-1}(\xi)\right)$ 越小 $\hat{\boldsymbol{\beta}}$ 的精度越高

定义 (D 最优设计)

取 $\Phi_D(\xi) := \det (M^{-1}(\xi))$, 称相应的最优设计为D 最优设计(D-optimal design).

给定置信概率 α , 最小二乘估计 $\hat{\beta}$ 的置信椭球体

$$\left\{ \boldsymbol{\beta} \in \mathbb{R}^m : (\boldsymbol{\beta} - \hat{\boldsymbol{\beta}})^{\mathrm{T}} \boldsymbol{M}^{-1}(\xi) (\boldsymbol{\beta} - \hat{\boldsymbol{\beta}}) \leq c_{\alpha} \right\}$$

的体积 $V(\xi) \propto \left[\det \left(\mathbf{M}^{-1}(\xi)\right)\right]^{\frac{1}{2}}, \det \left(\mathbf{M}^{-1}(\xi)\right)$ 越小 $\hat{\boldsymbol{\beta}}$ 的精度越高.

例 (一元一次线性回归)

设 $x \in [-1, 1]$, 限制在精确设计中求线性模型 $y = \beta_0 + \beta_1 x + \varepsilon$ 的 D 最优设计.

• 信息矩阵

$$M(\xi_n) = \frac{1}{n} \begin{bmatrix} n & \sum_{i=1}^n x_i \\ \sum_{i=1}^n x_i & \sum_{i=1}^n x_i^2 \end{bmatrix}$$

的行列式为 $\frac{1}{n}\sum_{i=1}^{n}(x_i-\bar{x})^2$

- 若试验次数 n=2, 则 D 最优设计为 $\xi_2=\{-1,1\}$.
- 若试验次数 n = 3, 则 D 最优设计为 $\xi_3 = \{-1, -1, 1\}$ 或 $\{-1, 1, 1\}$

例 (一元一次线性回归)

设 $x \in [-1, 1]$, 限制在精确设计中求线性模型 $y = \beta_0 + \beta_1 x + \varepsilon$ 的 D 最优设计.

• 信息矩阵

$$\mathbf{M}(\xi_n) = \frac{1}{n} \begin{bmatrix} n & \sum_{i=1}^n x_i \\ \sum_{i=1}^n x_i & \sum_{i=1}^n x_i^2 \end{bmatrix}$$

的行列式为 $\frac{1}{n}\sum_{i=1}^{n}(x_i-\bar{x})^2$.

- 若试验次数 n=2, 则 D 最优设计为 $\xi_2=\{-1,1\}$.
- 若试验次数 n = 3, 则 D 最优设计为 $\xi_3 = \{-1, -1, 1\}$ 或 $\{-1, 1, 1\}$.

例 (称重问题)

用一架精度为 σ 的天平称 4 个不同的物体, 称重方案:

序号	左侧				右侧		差异	
1	1	2	3	4	空		y_1	
2		1	2		3	4	y_2	
3		1	3		2	4	y_3	
4		1	4		2	3	y_4	

每一个物体的测量精度都能达到 $\sigma^2/4$. 能否找到一种精度更高的称重方案?

定义 (G 最优设计)

称 $d(\mathbf{x}, \xi) := \mathbf{f}^{\mathrm{T}}(\mathbf{x})\mathbf{M}^{-1}(\xi)\mathbf{f}(\mathbf{x})$ 为设计 ξ 的标准化方差,称

$$\Phi_G(\xi) := \sup \{d(\boldsymbol{x}, \xi) : \boldsymbol{x} \in \mathcal{X}\}$$

为G 最优准则,相应的最优设计称为G 最优设计。

点 $oldsymbol{x} \in \mathcal{X}$ 处的响应预测值 $\hat{y}(oldsymbol{x}) = oldsymbol{f}^{\mathrm{T}}(oldsymbol{x})\hat{oldsymbol{eta}}$ 的方差

$$\operatorname{Var}(\hat{y}(\boldsymbol{x})) = \frac{\sigma^2}{n} \boldsymbol{f}^{\Gamma}(\boldsymbol{x}) \boldsymbol{M}^{-1}(\xi) \boldsymbol{f}(\boldsymbol{x})$$

G 最优设计使得模型的最大预测方差达到最小.

定义 (G 最优设计)

称 $d(\mathbf{x}, \xi) := \mathbf{f}^{\mathrm{T}}(\mathbf{x})\mathbf{M}^{-1}(\xi)\mathbf{f}(\mathbf{x})$ 为设计 ξ 的标准化方差,称

$$\Phi_G(\xi) := \sup \{ d(\boldsymbol{x}, \xi) : \boldsymbol{x} \in \mathcal{X} \}$$

为G 最优准则,相应的最优设计称为G 最优设计。

点 $x \in \mathcal{X}$ 处的响应预测值 $\hat{y}(x) = f^{T}(x)\hat{\beta}$ 的方差

$$\operatorname{Var}(\hat{y}(\boldsymbol{x})) = \frac{\sigma^2}{n} \boldsymbol{f}^{\mathrm{T}}(\boldsymbol{x}) \boldsymbol{M}^{-1}(\xi) \boldsymbol{f}(\boldsymbol{x}).$$

G 最优设计使得模型的最大预测方差达到最小.

• 取向量 $c \in \mathbb{R}^m$, 称 $\Phi_C(\xi) := c^T M^{-1}(\xi) c$ 为 C 最优准则,它使得参数线性组合 $c^T \beta$ 的最优无偏估计的方差达到最小。

- 称 $\Phi_A(\xi) := \operatorname{tr}\{M^{-1}(\xi)\}$ 为 A 准则或 MV 准则,它使参数估计的方差之和最小。
- 记 $\lambda_{\min}(M(\xi))$ 为矩阵 $M(\xi)$ 的特征值的最小值, $\Phi_E(\xi) := \lambda_{\min}^{-1}(M(\xi))$ 为E 准则,该准则使置信 椭球体的最长轴最小。

- 取向量 $c \in \mathbb{R}^m$, 称 $\Phi_C(\xi) := c^T M^{-1}(\xi) c$ 为 C 最优准则,它使得参数线性组合 $c^T \beta$ 的最优无偏估计的方差达到最小。
- 称 $\Phi_A(\xi) := \operatorname{tr}\{M^{-1}(\xi)\}$ 为 A 准则或 MV 准则,它使参数估计的方差之和最小。
- 记 $\lambda_{\min}(M(\xi))$ 为矩阵 $M(\xi)$ 的特征值的最小值,
 称 $\Phi_E(\xi) := \lambda_{\min}^{-1}(M(\xi))$ 为E 准则,该准则使置信
 椭球体的最长轴最小。

- 取向量 $c \in \mathbb{R}^m$, 称 $\Phi_C(\xi) := c^T M^{-1}(\xi) c$ 为 C 最优准则,它使得参数线性组合 $c^T \beta$ 的最优无偏估计的方差达到最小。
- 称 $\Phi_A(\xi) := \operatorname{tr}\{M^{-1}(\xi)\}$ 为 A 准则或 MV 准则,它使参数估计的方差之和最小。
- 记 $\lambda_{\min}(\mathbf{M}(\xi))$ 为矩阵 $\mathbf{M}(\xi)$ 的特征值的最小值, 称 $\Phi_E(\xi) := \lambda_{\min}^{-1}(\mathbf{M}(\xi))$ 为 \mathbf{E} 准则,该准则使置信 椭球体的最长轴最小。

例 (一元一次线性回归)

 $x \in [-1,1]$, 讨论线性模型 $y = \beta_0 + \beta_1 x + \varepsilon$ 的只做两次试验的 $A \setminus G \setminus C$ 以及 E 最优设计.

例 (一元多项式回归)

一元线性回归模型 $y = \beta_0 + \beta_1 x + \cdots + \beta_d x^d + \varepsilon$ 的 D-最优设计的支撑点是方程

$$(1-x^2)\frac{\mathrm{d}P_d(x)}{\mathrm{d}x} = 0$$

的根,即由两个端点 -1 和 1,以及 d 阶 Legender 多项式的导数的根组成,一共 d+1 个点. Legender 多项式定义如下:

$$\begin{cases}
P_0(x) = 1, & P_1(x) = x, \\
(d+1)P_{d+1}(x) = (2d+1)xP_d(x) - dP_{d-1}(x).
\end{cases}$$

例 (一元多项式回归 Cont.)

当 $d=1,2,\cdots,6$ 时,一元线性回归模型

$$y = \beta_0 + \beta_1 x + \dots + \beta_d x^d + \varepsilon$$

的 D-最优设计的支撑点:

\overline{d}	x_1	x_2	x_3	x_4	x_5	x_6	$\overline{x_7}$
1	-1						1
2	-1			0			1
3	-1		-0.4472		0.4472		1
4	-1		-0.6547	0	0.6547		1
5	-1	-0.7651	-0.2852		0.2852	0.7651	1
6	-1	-0.8302	-0.4688	0	0.4688	0.8302	1

例 (多元一次线性回归模型)

考虑 p 个因子的一阶线性回归模型

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p + \varepsilon.$$

(Heiligers, 1992) 和 (Chen, 2003) 指出, 如果试验区域 \mathcal{X} 为 \mathbb{R}^p 中的凸集, 则多元线性回归模型的离散或精确 D 最优设计的设计点都在 \mathcal{X} 的顶点上.

由于超球体和超立方体都是凸集,因此这两种试验区域的 D 最优设计点都在其顶点上. 构造离散或精确 D 最优设计时,只需在全体顶点的集合中搜索即可.

例 (多元一次线性回归模型 cont.)

当试验区域为超球体 $\mathcal{X}=\left\{ oldsymbol{x}\in\mathbb{R}^p:\sum_{i=1}^px_i^2\leq 1\right\}$ 时,设超球体内 嵌正多面体的顶点个数为 n,并记为 $oldsymbol{x}_1,\cdots,oldsymbol{x}_n$. 记

$$U_n = \left\{ \begin{array}{cccc} \boldsymbol{x}_1 & \boldsymbol{x}_2 & \cdots & \boldsymbol{x}_n \\ \frac{1}{n} & \frac{1}{n} & \cdots & \frac{1}{n} \end{array} \right\}.$$

- 则当 n > p 时, 不管是否存在截距项 β_0 , U_n 都是多元一次 线性回归模型的 D 最优设计.
- 由于超球体内嵌正多面体有无穷个, 而且顶点个数只要大于 *p* 即可, 因此多元线性模型的离散 *D* 最优设计不唯一.

2019年12月20日

例 (多元一次线性回归模型 cont.)

当试验区域为超立方体 $\mathcal{X}=\{m{x}\in\mathbb{R}^p:|x_i|\leq 1,i=1,2,\cdots,p\}$ 时,设 $S=\{m{v}_1,m{v}_2,\cdots,m{v}_s:m{v}_i\in\mathbb{R}^p,i=1,2,\cdots,s\}$ 表示超立方体的全体顶点.则

● 离散 D 最优设计为

$$\xi_{n,S} = \left\{ egin{matrix} oldsymbol{v}_1 & oldsymbol{v}_2 & \cdots & oldsymbol{v}_s \ rac{1}{s} & rac{1}{s} & \cdots & rac{1}{s} \ \end{array}
ight\}.$$

 \bullet 试验次数为 n 的精确 D 最优设计为

$$\xi_{n,S} = \left\{ \begin{matrix} \boldsymbol{v}_1 & \boldsymbol{v}_2 & \cdots & \boldsymbol{v}_s \\ \frac{n_1}{n} & \frac{n_1}{n} & \cdots & \frac{n_s}{n} \end{matrix} \right\}, \quad \max_{i,j} |n_i - n_j| \le 1, \sum_{i=1}^s n_i = n.$$

例 (多元二次线性回归)

考虑包含 p 个因子的二阶线性回归模型

$$y = \beta_0 + \sum_{i=1}^p \beta_j x_j + \sum_{1 \le i \le j \le p} \beta_{ij} x_i x_j + \varepsilon.$$

当试验区域为超球体时, 截距项会影响 D 最优设计.

- 当截距项不为 0 时, D 最优设计为: 中心点权重为
 1/[(p+1)(p+2)], 其余权重均匀分布在超球体的球面上;
- 当截距项为 0 时, D 最优设计为超球体球面上的均匀分布, 不包括中心点.

思考

将一幅画固定在墙上,至少需要几颗钉子?如果给三颗钉子,应该如何钉?给四颗呢?

课堂小结

- 设计的信息矩阵:
- 最优设计的概念;
- 最优设计的字母序准则: A 准则、C 准则、D 准则、G 准则。

3.3 最优回归设计

- 3.3.1 设计的信息矩阵
- 3.3.2 优良性准则
- 3.3.3 等价性定理
- 3.3.4 D 最优设计的迭代求解

设函数 $f: \mathbb{R}^p \mapsto \mathbb{R}$. f(x) 在点 $x \in \mathbb{R}^p$ 处沿着方向 $h \in \mathbb{R}^p$ 的方向 导数的定义为

$$\frac{\partial \mathit{f}(\boldsymbol{x})}{\partial \boldsymbol{h}} = \lim_{\alpha \to 0^+} \frac{1}{\alpha} \left[\mathit{f}(\boldsymbol{x} + \alpha \boldsymbol{h}) - \mathit{f}(\boldsymbol{x}) \right].$$

二元函数 $f(x_1, x_2)$ 沿着方向 $h = (\cos \alpha, \sin \alpha)$ 的方向导数为

$$\frac{\partial f(x_1, x_2)}{\partial \mathbf{h}} = \frac{\partial f(x_1, x_2)}{\partial x_1} \cos \alpha + \frac{\partial f(x_1, x_2)}{\partial x_2} \sin \alpha.$$

函数极值点与方向导数的关系

- x^* 为 f 的极小值点, 当且仅当 $\frac{\partial f(x^*)}{\partial h} \geq 0$ 对任意 $h \in \mathbb{R}^p$ 都成立:
- x^* 为 f 的极大值点, 当且仅当 $\frac{\partial f(x^*)}{\partial h} \leq 0$ 对任意 $h \in \mathbb{R}^p$ 都成立.

假定 Φ : Ξ → R⁺ 为凸函数, 即

$$\Phi\left(\alpha\xi + (1-\alpha)\eta\right) \le \alpha\Phi(\xi) + (1-\alpha)\Phi(\eta),$$

● 要求 Φ 一阶可微. 称

$$F_{\varPhi}(\xi,\eta) = \lim_{\alpha \to 0^{+}} \frac{1}{\alpha} \left[\varPhi \left((1-\alpha)\xi + \alpha \eta \right) - \varPhi(\xi) \right].$$

为 $\Phi(\cdot)$ 在 ξ 处沿 η 方向的 F-导数.

• ξ^* 是 Φ 的最小值, 当且仅当 $F_{\Phi}(\xi^*, \eta) \geq 0$ 对任意 设计 η 成立!

若 Φ 在 ξ 处可微, 则

$$F_{\Phi}\left(\xi,\sum w_i\eta_i\right)=\sum w_iF_{\Phi}(\xi,\eta_i),$$

其中 $\sum w_i = 1$.

• 以 δ_x 表示在点 x 处权重为 1 的设计, w(x) 表示设计 η 在点 x 处的权重则

$$F_{\Phi}(\xi,\eta) = \sum_{\boldsymbol{x}} w(\boldsymbol{x}) F_{\Phi}(\xi,\delta_{\boldsymbol{x}}).$$

• $\pi \phi(\mathbf{x}, \xi) := F_{\Phi}(\xi, \delta_{\mathbf{x}})$ 为敏感性函数.

定理 (等价性定理)

如果 Φ 为凸函数, 且在 Ξ 中的所有点处可微, 则下列命题等价:

- (1) ξ* 是 Φ-最优设计;
- (2) 对任意 $x \in \mathcal{X}$, 都有 $\phi(x, \xi^*) \geq 0$;
- (3) $\phi(\mathbf{x}, \xi^*)$ 在 ξ^* 的所有支撑点上都取最小值, 且最 小值为 0.
 - 应用到具体准则时,需要验证其凸性和可微性,并 给出敏感性函数。

定理 (D 最优设计的等价性定理)

对于 D 最优设计而言, $-\log \det[\mathbf{M}(\xi)]$ 作为 Ξ 上的函数是一个 凹函数, $\phi_D(\mathbf{x}, \xi) = m - d(\mathbf{x}, \xi)$, 且以下三个结论等价:

- (1) ξ^* 是 D 最优设计, 即 $\det(\mathbf{M}(\xi^*)) = \max_{\xi} \det(\mathbf{M}(\xi))$;
- (2) ξ^* 是 G 最优设计, 即 $\max_{\boldsymbol{x}} d(\boldsymbol{x}, \xi^*) = \min_{\xi} \max_{\boldsymbol{x}} d(\boldsymbol{x}, \xi)$;
- (3) ξ^* 满足 $\max_{\boldsymbol{x}} d(\boldsymbol{x}, \xi^*) = m$, 且 $d(\boldsymbol{x}, \xi^*)$ 在 ξ^* 的任一支撑点 达到最大.

此外, 所有 D 最优设计有相同的信息矩阵, D 最优设计的线性组合还是 D 最优设计.

3.3 最优回归设计

- 3.3.1 设计的信息矩阵
- 3.3.2 优良性准则
- 3.3.3 等价性定理
- 3.3.4 D 最优设计的迭代求解

- 最优设计一般不存在解析表达式, 只能数值求解.
- 在等价性定理的基础上, 前苏联统计学家 Fedorov 给出了一个构造 D 最优设计的迭代算法.
- (Kernighan and Lin, 1970) 提出构造精确 D-最优设计 KL 算法.

Federov 迭代算法

Step 1 构造非奇异的初始设计
$$\xi_0 = \begin{pmatrix} \pmb{x}_1 & \pmb{x}_2 & \cdots & \pmb{x}_n \\ p_1 & p_2 & \cdots & p_n \end{pmatrix}$$
.

Step 2 对 $k=0,1,\cdots$, 求

$$\begin{cases} \boldsymbol{x}_{n+k+1} = \arg \max_{\boldsymbol{x} \in \mathcal{X}} d(\boldsymbol{x}, \xi_k), \\ \alpha_k = \arg \max_{\alpha \in [0,1]} \det \boldsymbol{M}(\xi_{k+1}(\alpha)). \end{cases}$$

这里
$$\xi_{k+1}(\alpha) = (1-\alpha)\xi_k + \alpha \delta_{x_{n+k+1}}$$
. 可以证明

$$\alpha_k = \frac{d(\mathbf{x}_{n+k+1}, \xi_k) - m}{[d(\mathbf{x}_{n+k+1}, \xi_k) - 1]m}.$$

• 当 $k \to \infty$ 时,序列 ε_k 收敛到 D 最优设计。

Federov 迭代算法

Step 1 构造非奇异的初始设计
$$\xi_0 = \begin{pmatrix} \pmb{x}_1 & \pmb{x}_2 & \cdots & \pmb{x}_n \\ p_1 & p_2 & \cdots & p_n \end{pmatrix}$$
.

Step 2 对 $k=0,1,\cdots$, 求

$$\begin{cases} \boldsymbol{x}_{n+k+1} = \arg \max_{\boldsymbol{x} \in \mathcal{X}} d(\boldsymbol{x}, \xi_k), \\ \alpha_k = \arg \max_{\alpha \in [0,1]} \det \boldsymbol{M}(\xi_{k+1}(\alpha)). \end{cases}$$

这里
$$\xi_{k+1}(\alpha) = (1-\alpha)\xi_k + \alpha \delta_{x_{n+k+1}}$$
. 可以证明

$$\alpha_k = \frac{d(\boldsymbol{x}_{n+k+1}, \xi_k) - m}{[d(\boldsymbol{x}_{n+k+1}, \xi_k) - 1]m}.$$

• 当 $k \to \infty$ 时, 序列 ξ_k 收敛到 D 最优设计.

构造精确设计的 KL 算法

- (1) 产生试验次数为 n_0 的确定性设计 ξ_0 .
 - 由部分希望试验的点和部分随机抽取的点组成.

构造精确设计的 KL 算法

- (1) 产生试验次数为 n_0 的确定性设计 ξ_0 .
- (2) 添加设计点 $(n_0 < n)$ 或删除设计点 $(n_0 > n)$, 得到试验次数为 n 的初始设计 η_0 .
 - 前进法: 添加使设计 ξ_i 的标准化方差达到最大的点,

$$d(\boldsymbol{x}_l, \xi_i) = \max_{\boldsymbol{x} \in \mathcal{X}} d(\boldsymbol{x}, \xi_i).$$

当 $M(\xi_i)$ 不可逆时, 以 $M(\xi_i) + \varepsilon I$ 来代替, 其中 $10^{-6} < \varepsilon < 10^{-4}$.

• 后退法: 删除使设计 ξ_i 的标准化方差达到最小的点,

$$d(\boldsymbol{x}_k, \xi_{i-1} \setminus \boldsymbol{x}_k) = \min_{\boldsymbol{x} \in \xi_{i-1}} d(\boldsymbol{x}, \xi_{i-1} \setminus \{\boldsymbol{x}\}).$$

构造精确设计的 KL 算法

- (1) 产生试验次数为 n_0 的确定性设计 ξ_0 .
- (2) 添加设计点 $(n_0 < n)$ 或删除设计点 $(n_0 > n)$, 得 到试验次数为 n 的初始设计 η_0 .
- (3) 对初始设计 η_0 的点进行替换, 直至收敛.
 - 替换的目的是使得信息矩阵的行列式增大,由标准化 方差的变动来实现.

总结

- 线性模型的信息矩阵;
- ② 最优设计的思想与概念;
- ③ 最优设计的常用准则;
- 等价性定理;
- 线性模型最优设计的求解算法.