MAADSBML AutoML Report For OTICS ADVANCED ANALYTICS Generated On: 2024-07-14 19:08:22 (UTC)

Best Model(s) Report For admin_aesopowerdemand_csv

MODEL DESCRIPTION

Dependent Variable: AESO POWER DEMAND

Model Trained On: 2024/07/14 Training Start Time: 1906 Training End Time: 1908 Was Data Normalized: Yes Was Data Shuffled: Yes Deep Analysis: No Total Training Data Set: 961 Training Data Percentage: 75% Total Test Data Set: 319 Total # of Variables: 4 Adjusted for Seasonality: N Total Algorithms Run: 3600 Removed Outliers: N
Best Distribution FOR ACTUAL Y: VONMISES

Independent Variables: ['Calgary_Weather', 'Edmonton_Weather', 'FtMac_Weather']

PREDICTION VARIABLE STATS

Mean: 9287.695 STD: 484.573 Kurtosis: -1.018 Skewness: 0.578 Coef. of Variation: 0.052 Shapiro Test for Normality: 0.904 Jarque-Bera Goodness of Fit: 59.277 Anderson: 20.775 KStat: 235202.778 KStatvar: 90714640.361 Wilcox: 0.000

ACTUAL VARIABLE STATS

Mean: 9281.250 STD: 545.222 Kurtosis: -0.891 Skewness: 0.098 Coef. of Variation: 0.059 Shapiro Test for Normality: 0.981 Jarque-Bera Goodness of Fit: 20.836 Anderson: 2.876

KStat: 297763.223 KStatvar: 164138770.163 Wilcox: 0.000 Theil Slope: -0.302

961.0 9227.732 7611.0 577.371 8790.0 9225.0 9661.0 10510.0

Statistics Showing Comparison Between Prediction and Actuals

Mood(actuals,predictions): 3.750 Pearson(actuals, predictions): 0.868 Kendall Tau(actuals,predictions): 0.673 Ansari(actuals,predictions): 171756.000 Jaccard_distance(actuals,predictions): 1.000 Minkowski_distance(actuals,predictions): 131073.865 Euclidean_distance(actuals,predictions): 6646.536

IMPORTANT FILE PATHS FOR RAW AND OUTPUT DATA

Theil Slope: -0.520

NOTE: These are DOCKER CONTAINER Paths. You can view these files inside the container by using the command: docker exec -it {container id} bash If you have re-run the container, The Docker RUN Volume Mappings are :: (For example here is the docker run command (use multiple -v for multiple mappings):

DOCKER RUN COMMAND: docker run -d -p 5595:5595 -p 5495:5495 -p 10000:10000 -v {HOST MACHINE FOLDER}:{CONTAINER FOLDER}:z --env TRAININGPORT=5595 --env PREDICTIONPORT=5495 --env ABORTPORT=10000 --env COMPANYNAME=MYCOMPANY --env MAXRUNTIME=20 --env MAINHOST=127.0.0.1 maadsdocker/maads-batchautoml-otics

Docker Volume Mappings:

AESO POWER DEMAND

- 1. (HOST MACHINE FOLDER)/csvuploads:/maads/agentfilesdocker/dist/maadsweb/csvuploads:z
 2. (HOST MACHINE FOLDER)/pdfreports:/maads/agentfilesdocker/dist/maadsweb/pdfreports:z
 3. (HOST MACHINE FOLDER)/autofeatures:/maads/agentfilesdocker/dist/maadsweb/autofeatures:z

- 4. (HOST MACHINE FOLDER)/outliers:/maads/agentfilesdocker/dist/maadsweb/outliers:z 5. (HOST MACHINE FOLDER)/sqlloads:/maads/agentfilesdocker/dist/maadsweb/sqlloads:z
- 6. {HOST MACHINE FOLDER}/networktemp:/maads/agentfilesdocker/dist/maadsweb/networktemp:z
 7. {HOST MACHINE FOLDER}/networks:/maads/agentfilesdocker/networks:z
- 7. {HOST MACHINE FOLDER}/networks:/maads/agentfilesdocker/networks:z 8. {HOST MACHINE FOLDER}/exception:/maads/agentfilesdocker/dist/maadsweb/exception:z
- 9. {HOST MACHINE FOLDER}/staging:/maads/agentfilesdocker/dist/staging:z

Path for Training Dataset File: /maads/agentfilesdocker/dist/maadsweb/csvuploads/aesopowerdemand.csv

Path for PDF Report (i.e. this file): /maads/agentfilesdocker/dist/maadsweb/pdfreports/admin_aesopowerdemand_csv_no_seasons.pdf
Path for AutoFeature File: /maads/agentfilesdocker/dist/maadsweb/autofeatures/admin_aesopowerdemand_csv_.csv

NA

Path for Outliers File: /maads/agentfilesdocker/dist/maadsweb/autoriers/admin_aesopowerdemand_csv_csv
Path for Outliers File: /maads/agentfilesdocker/dist/maadsweb/outliers/admin_aesopowerdemand_csv_csv
Path for Algo JSON File: /maads/agentfilesdocker/dist/maadsweb/exception/admin_aesopowerdemand_csv_trained_algo_no_seasons.json
Folder Path for MySQL Scripts: /maads/agentfilesdocker/dist/maadsweb/csvuploads/
Path for Detailed Prediction File: /maads/agentfilesdocker/dist/maadsweb/csvuploads/admin_aesopowerdemand_csv_prediction_details.csv
Path for Algorithm Zip File (i.e pickle files): /maads/agentfilesdocker/dist/maadsweb/networktemp/admin_aesopowerdemand_csv.zip

NA

Path for Algorithm Pickle Files:

I. /maads/agentfilesdocker/networks/Otics Advanced Analytics_ADMIN_AESOPOWERDEMAND_CSVALLSEASON_AG1_4_NuSVR_normal_961_ensemble_pkl
2. /maads/agentfilesdocker/networks/Otics Advanced Analytics_ADMIN_AESOPOWERDEMAND_CSVALLSEASON_AG1_4_NuSVR_normal_961_ensemble_scalerx_pkl
3. /maads/agentfilesdocker/networks/Otics Advanced Analytics_ADMIN_AESOPOWERDEMAND_CSVALLSEASON_AG1_4_NuSVR_normal_961_ensemble_scalery_pkl

DESCRIPTIVE STATISTICS T-Statistic Coefficients (alpha,beta) Count Mean Variables STD MIN 25% 50% 75% MAX Calgary Weather 9492.661, -40.134 961.0 5.862 -27.75 10.113 -35.442 -0.4 6.85 14.0 23.85 5.916 Edmonton Weather -38.8 9480.686. -37.077 961.0 -26.64 11.759 -2.25 7.16 16.1 25.75 9346.752, -32.447 961.0 2.367 -32.4 13.694 -7.65 23.85 FtMac_Weather 40.088 4.56 14.8

	BEST ALGORITHM FOUND FOR THIS DATASET (Note: This trained model will be used to predict AESO_POWER_DEMAND)							
Algorithm	Description	Model Results	MAPE Accuracy	Forecast Months	Season			
NuSVR	Nu Support Vector Regression.: Similar to NuSVC, for regression, uses a parameter nu to control the number of support vectors. However, unlike NuSVC, where nu replaces C, here nu replaces the parameter epsilon of epsilon-SVR.	NuSVR(C=6.505806560907237, degree=2, gamma='auto', nu=0.5261101286326152) R-square: 0.752 Mean Squared Error (MSE): 73627.401 Skewness: -0.287 Kurtosis: 2.935 Mean Square Model (MSM): 140911388.772 F-Statistic (F): 1913.844 Jarque-Bera (JB): 8.359 Explained Variance (EV): 0.752 Multicolinearity Test (Avg. VIF): 19.321 Heteroscedasticity Test (Avg P-Value): 0.000 (Based on White Test, there seems to be heteroscedasticity in the model) Autocorrelation (Durbin-Watson) Test: 0.675 (Based on DW Test - there seems to be autocorrelation in your model)	0.976	1 - 12	allseason			

				Algorithms	
Num	Algorithm	Model Accuracy	Details	Season	Description
1	NuSVR	0.6361	R-square: 0.752 MAPE: 0.976 Explained Variance (EV): 0.752 MSE: 73627.401 MSM: 140911388.772 Skewness: -0.287 Kurtosis: 2.935 F: 1913.844 DW: 0.675 JB: 8.359	allseason	NU SUPPORT VECTOR REGRESSION.: Similar to NuSVC, for regression, uses a parameter nu to control the number of support vectors. However, unlike NuSVC, where nu replaces C, here nu replaces the parameter epsilon of epsilon-SVR.
2	GradientBoostingRegressor	0.6294	R-square: 0.795 MAPE: 0.979 Explained Variance (EV): 0.795 MSE: 61000.757 MSM: 149843531.417 Skewness: -0.547 Kurtosis: 4.006 F: 2456.421 DW: 0.794 JB: 55.167	allseason	GRADIENT BOOSTING FOR REGRESSION.: GB builds an additive model in a forward stage-wise fashion; it allows for the optimization of arbitrary differentiable loss functions. In each stage a regression tree is fit on the negative gradient of the given loss function.
3	ADABoostRegressor	0.6131	R-square: 0.817 MAPE: 0.980 Explained Variance (EV): 0.818 MSE: 54311.215 MSM: 157972351.262 Skewness: 0.008 Kurtosis: 3.242 F: 2908.651 DW: 0.796 JB: 1.474	allseason	ADABOOST REGRESSOR: Ada boost
4	DecisionTreeRegressor	0.5903	R-square: 0.776 MAPE: 0.978 Explained Variance (EV): 0.778 MSE: 66456.668 MSM: 160260997.485 Skewness: 0.088 Kurtosis: 3.229 F: 2411.511 DW: 0.889 JB: 2.078	allseason	DECISION TREE REGRESSOR: Decision Tree Regressor
5	SVR	0.5805	R-square: 0.721 MAPE: 0.975 Explained Variance (EV): 0.721 MSE: 83078.197 MSM: 128397808.071 Skewness: -0.213 Kurtosis: 2.854 F: 1545.505 DW: 0.562 JB: 5.067	allseason	EPSILON-SUPPORT VECTOR REGRESSION.: The method of Support Vector Classification can be extended to solve regression problems. This method is called Support Vector Regression.
			R-square: 0.475 MAPE: 0.967 Explained Variance (EV): 0.476 MSE: 156207.674		RANSAC (RANDOM SAMPLE CONSENSUS) ALGORITHM.: RANSAC is an

6	RANSACRegressor	0.4099	MSM: 143190338.147 Skewness: 0.347 Kurtosis: 3.479 F: 916.666 DW: 0.443 JB: 17.749	allseason	iterative algorithm for the robust estimation of parameters from a subset of inliers from the complete data set. More information can be found in the general documentation of linear models.
7	RidgeRegression	0.4010	R-square: 0.519 MAPE: 0.968 Explained Variance (EV): 0.522 MSE: 143053.078 MSM: 113686430.804 Skewness: 0.557 Kurtosis: 3.302 F: 794.715 DW: 0.388 JB: 33.332	allseason	RIDGE REGRESSION: Linear least squares with 12 regularization.
8	LinearSVR	0.3912	R-square: 0.495 MAPE: 0.968 Explained Variance (EV): 0.497 MSE: 150194.718 MSM: 138031505.864 Skewness: 0.69 Kurtosis: 3.674 F: 919.017 DW: 0.383 JB: 58.94	allseason	LINEAR SUPPORT VECTOR REGRESSION.: Similar to SVR with parameter kernel='linear', but implemented in terms of liblinear rather than libsvm, so it has more flexibility in the choice of penalties and loss functions and should scale better to large numbers of samples.
9	HuberRegressor	0.3880	R-square: 0.496 MAPE: 0.968 Explained Variance (EV): 0.497 MSE: 149934.611 MSM: 137389321.102 Skewness: 0.666 Kurtosis: 3.655 F: 916.328 DW: 0.383 JB: 55.054	allseason	HUBER REGRESSOR: Linear regression model that is robust to outliers.
10	ARDRegression	0.3789	R-square: 0.519 MAPE: 0.968 Explained Variance (EV): 0.522 MSE: 142932.979 MSM: 114290035.125 Skewness: 0.555 Kurtosis: 3.298 F: 799.606 DW: 0.391 JB: 33.007	allseason	BAYESIAN ARD: Fit the weights of a regression model, using an ARD prior. The weights of the regression model are assumed to be in Gaussian distributions. Also estimate the parameters lambda (precisions of the distributions of the weights) and alpha (precision of the distribution of the noise). The estimation is done by an iterative procedures (Evidence Maximization)

Bins			[-1.62e+01, -1.09e+01]	[-1.09e+01, -5.68e+00]	[-5.68e+00,	[-4.45e- 01, 4.79e+00]
Count	16	55	81	96	133	205
Share	1.0%	4.0%	6.0%	8.0%	10.0%	16.0%
Total Rows	1280	1280	1280	1280	1280	1280
Min	-2.60e+01	-2.60e+01	-2.60e+01	-2.60e+01	-2.60e+01	-2.60e+01
Max		2.50e+01	2.50e+01	2.50e+01	2.50e+01	2.50e+01
Number of Bins	6	6	6	6	6	6

D:	[-2.24e+01,	[-1.79e+01,	[-1.34e+01,	[-8.91e+00,	[-4.42e+00,	[7.50e-02,
Bins	-1.79e+01]	-1.34e+01]	-8.91e+00]	-4.42e+00]	7.50e-02]	4.57e+00]
Count	20	18	15	21	40	59
Share	6.0%	6.0%	5.0%	7.0%	13.0%	18.0%
Total Rows	319	319	319	319	319	319
Min	-2.20e+01	-2.20e+01	-2.20e+01	-2.20e+01	-2.20e+01	-2.20e+01
Max	2.20e+01	2.20e+01	2.20e+01	2.20e+01	2.20e+01	2.20e+01
Number of Bins	6	6	6	6	6	6

Number of Bins

50				•		
40 -						
30			_			
20						١.
10						
	-30	-20	-10 Bins		ò	10
Bins					[-1.18e+01, -6.15e+00]	
Count	8	14	21	25	16	48
Share	3.0%	4.0%	7.0%	8.0%	5.0%	15.0%
Total Rows	319	319	319	319	319	319
Min	-3.40e+01	-3.40e+01	-3.40e+01	-3.40e+01	-3.40e+01	-3.40e+01
Max Number	2.10e+01	2.10e+01	2.10e+01	2.10e+01	2.10e+01	2.10e+01

MODEL EXPLANATION

- The x-axis represents the model's output values of AESO_POWER_DEMAND

 The plot is centered on the x-axis at explainer.expected value.

 All values are relative to the model's expected value like a linear model's effects are relative to the intercept.

 The y-axis lists the model's features. By default, the features are ordered by descending importance.

 The importance is calculated over the observations plotted. This is usually different than the importance ordering for the entire dataset.

 In addition to feature importance ordering, the decision plot also supports hierarchical cluster feature ordering and user-defined feature ordering.

 Each elementaries are districtly in progressively the coloned like as aloned in the coloned like as a loned like as a
- Each observation's prediction is represented by a colored line.
 At the top of the plot, each line strikes the x-axis at its corresponding observation's predicted value. This value determines the color of the line on a
- Moving from the bottom of the plot to the top, SHAP values for each feature are added to the model's base value.
 This shows how each feature contributes to the overall prediction.
 At the bottom of the plot, the observations converge at explainer.expected_value.
 The points in the graph are the values of the feature in the training dataset.

FEATURE SELECTION					
RFE Variable (Most important to Least Important)					
Calgary_Weather	0.234				
Edmonton_Weather	0.232				
FtMac_Weather	0.227				
Best Variable(s) From Genetic Algorithm					
Calgary_Weather					
FtMac_Weather					
Excluded Variable(s)					
Edmonton_Weather					
PCA for Best Variable(s)	Value				
AESO_Power_Demand_pca_1	0.542				
AESO_Power_Demand_pca_2	0.836				
AESO_Power_Demand_pca_3	-0.081				
Calgary_Weather_pca_1	-0.590				
Calgary_Weather_pca_2	0.448				
Calgary_Weather_pca_3	0.672				
FtMac_Weather_pca_1	-0.599				
FtMac_Weather_pca_2	0.316				
FtMac_Weather_pca_3	-0.736				
PCA Explained Variance	Value				
PCA1	0.863				
PCA2	0.114				
PCA3	0.023				

- Feature selection shows which variables were more influential than other variables

 It uses two core algorithms: Recursive Feature Elimination (RFE) and Genetic Algorithm to determine influence

 It also performs PCA (principal component analysis) analysis to determine the influence of the best variables in the model

 These results should be used in conjunction with other information as well as theory to establish relevance and confidence in the chosen model formulation

CORRELATED FEATURES				
Feature(s)	Feature(s)	Correlation >= 0.100		
O Calgary_Weather	FtMac_Weather	0.929		
1 Edmonton_Weather	FtMac_Weather	0.964		
2 Calgary_Weather	Edmonton_Weather	0.970		
3 Calgary_Weather	Calgary_Weather	NaN		

SUGGESTED CORRELATED FEATURES TO DELETE					
	2 Feature(s) to Delete	e Correlation			
	Calgary_Weather	0.929			
	1 Edmonton_Weather	0.964			

END OF REPORT

MAADSBML Python Library: https://pypi.org/project/maadsbml/
MAADSBML Docker Container For Windows: https://hub.docker.com/r/maadsdocker/maads-batch-automl-otics
MAADSBML Docker Container For MAC: https://hub.docker.com/r/maadsdocker/maads-batch-automl-otics-arm64
MAADSBML Sample Code and Setup: https://github.com/smaurice101/raspberrypi/tree/main/maadsbml

MAADSBML
Developed and Maintained by: Otics Advanced Analytics, Inc.
Toronto, Ontario, Canada
https://www.otics.ca
Email: support@otics.ca