ARCHITECTURE DAY07

大型架构及配置技术

NSD ARCHITECTURE DAY07

ľ	大	容

上午	09:00 ~ 09:30	作业讲解和回顾
	09:30 ~ 10:20	常用组件
	10:30 ~ 11:20	· Kafka集群
	11:30 ~ 12:00	
下午	14:00 ~ 14:50	Hadoop高可用
	15:00 ~ 15:50	
	16:10 ~ 17:10	
	17:20 ~ 18:00	总结和答疑

2019/1/21 P

Zookeeper

Zookeeper是什么

- Zookeeper是什么
 - Zookeeper是一个开源的分布式应用程序协调服务
- Zookeeper能做什么
 - 7ookeeper是田实保证数据在集群间的事务—致性

知识讲解

Zookeeper是什么(续1)

PPT

- Zookeeper应用场景
 - 集群分布式锁
 - 集群统一命名服务
 - 分布式协调服务

知识

公讲解

Tedu.cn 达内教育

角色与特性

- Zookeeper角色与特性
 - Leader:接受所有Follower的提案请求并统一协调发起 提案的投票,负责与所有的Follower进行内部数据交换
 - Follower:直接为客户端服务并参与提案的投票,同时与Leader进行数据交换
 - Observer:直接为客户端服务但并不参与提案的投票, 同时也与Leader进行数据交换

知识讲解

2019/1/21 PF

角色与选举

知识讲解

- Zookeeper角色与选举
 - 服务在启动的时候是没有角色的(LOOKING)
 - 角色是通过选举产生的
 - 选举产生一个Leader,剩下的是Follower
- · 选举Leader原则
 - 集群中超过半数机器投票选择Leader
 - 假如集群中拥有n台服务器,那么Leader必须得到n/2+1台服务器的投票

角色与选举(续1)

- Zookeeper角色与选举
 - 如果Leader死亡,<u>重新选</u>举Leader
 - __ 切里死亡的机哭数量达到——坐 则佳群挂指

Zookeeper原理与设计(续2)

Step I: Client sends write request to its local server

Client

Server

Leader
Which retransmits to all Servers in the cluster to vote

Step 3: Leader collects votes, and informs all

Zookeeper原理与设计(续3)

- 续上页
 - ZooKeeper在上述协议中实际扮演了两个职能。一方面从 客户端接受连接与操作请求,另一方面对操作结果进行投票。 这两个职能在Zookeeper集群扩展的时候彼此制约
 - 从Zab协议对写请求的处理过程中可以发现,增加Follower的数量,则增加了协议投票过程的压力。因为Leader节点必须等待集群中过半Server响应投票,是节点的增加使得部分计算机运行较慢,从而拖慢整个投票过程的可能性也随之提高,随着集群变大,写操作也会随之下降

知识

讲解

知

识

分讲解