Given a Start and end location for a point robot in a grid (workspace divided into cells) find a path that connects the start to the goal based. on some optimization of a metric.

6.8 Q1	5·8 Q 2	4·8 a3	3.8 Q4	34 as	3 a6	a7 ^{3.4} .
6.4 b1	5·4 62	4.4 63	3.4 64	2.4 65	b6	b7 ^{2.4.}
6 · 8 C1	5.8 C2	//c 3 /	Cef	(5)	CG	1:4 C7
7·2 d1	1.8 dz	7-2 G	d4	de	des	d=
6.8 -e1	5.8 C 2	1/23	1 gly	1/5	. 26	1.4. e7
6·4 £1	5.4 f 2	4.4. F3	3.4 f 4	24. f5	46 ²	f7 ^{2.4} .

- → Initialize
 all cells to
 very high cost
- → Obstacle cells

 to © or something

 higher than

 the cell costs
 - \rightarrow Make cost of $S \leftarrow 0$ (db=0).
- \rightarrow Find cost (Nbhos (S)) \rightarrow (6=1, 66 = d7=1. C7=67=1.4
- -> Choose the Nbhr with the least cost from db. (S). L C6
- \rightarrow Expand from C6 or find cost of (Nbhz (C6)) from SL) bb=2, b7=2.4.
- -> Choose the node amongst all expanded lopened nodes, the one with the minimum cust from S, which is e6

- -) Expand (e6) -> f6, f7, f5
- -) Cost(Nbhrs (eb)) -> fb=2, f7 = 2.4, 15=2.4
- -). Choose node with the least cost -, d7
- -) Expand (d7) -> No nodes to expand @d7
- -) Continue to expand till the goal node is reached or all nodes in the cell are expanded (Either of the two ways is fine)
 - -) Find path from G→S by the method of steepest descent:

QUESTIONS:

- -) Does the algorithm halt (Find a nath if one exists)?
- -> Is the path optimal in an eight connected sense from the S?

LIMITATIONS:

1

າ

3

•