Modern Plant Breeding - "Advanced" Level Power of an experiment

Prof. Laurent Gentzbittel, Prof. Cécile Ben

Skolkovo Institute of Science and Technology

Moscow, Oct. 2023

Syllabus

Power or 'how NOT to spend your budget for useless results'

Power or 'how NOT to spend your budget for useless results'

Power or 'how NOT to spend your budget for useless results'

Quantification of a molecule

Quantification of a molecule

C.B., L.G. (Skoltech)

Quantification of a molecule

Quantification of a molecule

Disease and molecule: Summarize

- ullet If the mean concentration in Healthy persons (called μ_0) is 25
- ullet If the mean concentration in Diseased persons (called μ_1) is 20
- if the standard error of measures (σ) is 6, then :
 - at the risk level defined by the scientist of $\alpha=5\%$, the critical value to decide a person is sick is 21.88
 - in that case, the proportion of **false positive** person (lower than critical value BUT Healthy) is thus $\alpha=5\%$
 - we can compute that the proportion of **false negative** person (greater than critical value BUT Diseased) is $\beta=16\%$
 - we thus **detect the disease** in $1-\beta=84\%$ of diseased persons.

Performances of the test

	'Healthy': case H_0	'Diseased': case <i>H</i> ₁
True Diagnostic Wrong Diagnostic	95% 5%	84% 16%

- ullet n=10 persons per group were used to determine the reference values
- $\mu_0 = 25$
- $\mu_1 = 20$
- critical value = 21.88
- $\sigma = 6$

Risks associated to a test / a decision.

	H_0 true	H_1 true
Accept H ₀	$1-\alpha$	β
Reject H_0	α	$1-\beta$

- ullet α : risk of the first kind or significance level reject H_0 when it is true
- 1α : probability to accept H_0 when it is true
- β : error of the second kind accept H_0 when it is false
- ullet 1-eta : power of the experiment reject H_0 when it is false

Disease and molecule - decrease α ?

Quantification of a molecule

The disease DECREASES the dosage

Disease and molecule - OK . . . increase α . . . but create panics

Quantification of a molecule

The disease DECREASES the dosage SciTrain Center of Plant Biotechnologies

Wich criteria influence the power?

- the difference between μ_0 and μ_1 : look for / use the most contrasted conditions
- the variance of the measures: look for the greatest repeatability
- number of data : often the more easy to perform
- the risk of the first kind α : often a bad solution

Let's go practical and play with power computations using R

We will illustrate the use of a priori power computations using the pwr library.

At your keyboard

► Explore Power-Independance.R