MAT470

Exercices sur la résolution de systèmes d'équations linéaires

par Stéphane Lafrance

1. Utiliser la méthode d'élimination de Gauss pour triangulariser les systèmes linéaires suivants. (Utiliser la commande ref de votre TI.) En déduire la solution du système AX = B et le déterminant de la matrice A.

$$\begin{bmatrix} 1 & 2 & 1 \\ 2 & 2 & 3 \\ -1 & -3 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \\ 2 \end{bmatrix}$$

b)

$$\begin{bmatrix} 1 & 2 & 1 & 4 \\ 2 & 0 & 4 & 3 \\ 4 & 2 & 2 & 1 \\ -3 & 1 & 3 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \begin{bmatrix} 13 \\ 28 \\ 20 \\ 6 \end{bmatrix}$$

2. On veut appliquer la méthode d'élimination de Gauss pour résoudre le système linéaire suivant :

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$$

Déterminer si ce système linéaire admet une solution unique. Si ce n'est pas le cas, combien y a t-il de solutions?

3. a) Utiliser la méthode d'élimination de Gauss pour résoudre le système linéaire suivant :

1

$$\begin{bmatrix} 2 & -6a \\ 3a & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3 \\ b \end{bmatrix}$$

- b) Déterminer la déterminant de la matrice A.
- c) Déterminer les valeurs de a et b pour lesquelles la matrice A n'est pas inversible.
- d) Que pouvez-vous conclure à propos de ce système lorsque $a=\frac{1}{3}$ et b=1?
- e) Que pouvez-vous conclure à propos de ce système lorsque $a=\frac{1}{3}$ et b=3/2?
- 4. Résoudre les systèmes linéaires suivants par factorisation LU (selon la méthode de Crout, sans permutation de lignes).
 a)

$$\begin{bmatrix} 1 & 2 & 1 \\ 2 & 2 & 3 \\ -1 & -3 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \\ 2 \end{bmatrix}$$

b)

$$\begin{bmatrix} 1 & 2 & 1 & 4 \\ 2 & 0 & 4 & 3 \\ 4 & 2 & 2 & 1 \\ -3 & 1 & 3 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \begin{bmatrix} 13 \\ 28 \\ 20 \\ 6 \end{bmatrix}$$

5. Résoudre le système linéaire suivant par factorisation LU avec la TI (selon la méthode de Doolittle, avec permutation de lignes).

$$\begin{bmatrix} 1 & 2 & 6 \\ 4 & 8 & -1 \\ -2 & 3 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 23 \\ 17 \\ 10 \end{bmatrix}$$

6. La matrice:

$$A = \begin{bmatrix} 2 & -1 & 0 \\ 4 & -1 & 2 \\ -6 & 2 & 0 \end{bmatrix}$$

admet la factorisation LU suivante (notation compacte, selon la méthode de Crout, sans permutation de lignes):

$$\begin{bmatrix} 2 & -1/2 & 0 \\ 4 & 1 & 2 \\ -6 & -1 & 2 \end{bmatrix}.$$

Utiliser cette factorisation LU pour répondre aux questions suivantes.

- a) Calculer det(A).
- b) Résoudre le système linéaire AX = B où

$$B = \begin{bmatrix} -2 \\ 14 \\ 12 \end{bmatrix}$$

- c) Sans calculer A^2 , résoudre le système linéaire $A^2X=B$, pour B donné ci-dessus.
- 7. Soit le système d'équations linéaires :

$$\begin{cases} E_1 : 2x_1 - x_2 + 10x_3 & = -11 \\ E_2 : 3x_2 - x_3 + 8x_4 = -11 \\ E_3 : 10x_1 - x_2 + 2x_3 & = 6 \\ E_1 : -x_1 + 11x_2 - x_3 + 3x_4 = 25 \end{cases}$$

- a) Montrer que les méthodes de Jacobi et de Gauss-Seidel ne convergent pas lorsqu'on isole simplement les x_i de l'équation E_i .
- b) Réordonner les équations de façon à assurer la convergence des deux méthodes (puis résoudre).
- 8. Résoudre le système d'équations linéaires :

$$\begin{cases} 9x - 2y + z = 13 \\ -x + 5y - z = 9 \\ x - 2y + 9z = -11 \end{cases}$$

à l'aide des méthodes de Jacobi et de Gauss-Seidel à partir de l'approximation initiale $X^{(0)} = [0 \ 0 \ 0]^T$. (Faire seulement les cinq premières itérations.)

- 9. Déterminez les valeurs propres et vecteurs propres des matrices suivantes.
- a) $A = \begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix}$ b) $A = \begin{bmatrix} 4 & 2 \\ 3 & -1 \end{bmatrix}$ c) $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 2 & 2 \\ 1 & 1 & 0 \end{bmatrix}$ d) $A = \begin{bmatrix} 2 & 2 & -5 \\ 3 & 7 & -15 \\ 1 & 2 & -4 \end{bmatrix}$ e) $I_n = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \dots & 1 \end{bmatrix}$

Réponses

1. a) Matrice augmentée triangularisée :

$$\left[\begin{array}{ccc|ccc}
1 & 2 & 1 & 0 \\
0 & -2 & 1 & 3 \\
0 & 0 & 1/2 & 1/2
\end{array}\right]$$

Solution : $X = \begin{bmatrix} 1 & -1 & 1 \end{bmatrix}^T$

Déterminant : det(A) = -1.

b) Matrice augmentée triangularisée :

$$\begin{bmatrix} 1 & 2 & 1 & 4 & 13 \\ 0 & -4 & 2 & -5 & 2 \\ 0 & 0 & -5 & -15/2 & -35 \\ 0 & 0 & 0 & -9 & -18 \end{bmatrix}$$

Solution : $X = [3 -1 \ 4 \ 2]^T$

Déterminant : det(A) = -180.

2. On obtient la matrice augementée triangularisée :

$$\left[
\begin{array}{c|c|c|c}
1 & 1 & 0 & 1 \\
0 & 1 & 1 & -2 \\
0 & 0 & 0 & 2
\end{array}
\right]$$

Puisque $\det(A) = 1 \cdot 1 \cdot 0 = 0$, le système n'admet pas une solution unique. De plus, la dernière ligne de la matrice augementée triangularisée correspond à l'équation 0 = 2; ce système possède donc aucune solution.

3. a) Matrice augementée triangularisée :

$$\begin{bmatrix}
 1 & -3a & 3/2 \\
 0 & 9a^2 - 1 & b - \frac{9a}{2}
 \end{bmatrix}$$

Si $9a^2 - 1 \neq 0$, la solution unique est

$$x = \frac{3(2ab-1)}{2(9a^2-1)}$$
 et $y = \frac{2b-9a}{2(9a^2-1)}$

5

- b) $\det(A) = 18a^2 2$
- c) Résoudre $\det(A)=0$, qui donne $a=\pm\frac{1}{3}$ et $b\in\mathbb{R}$
- d) Puisque $a=\frac{1}{3}$, $\det(A)=0$ et le système n'admet pas une solution unique. Puisque b=1, la dernière équation devient $0=\frac{-1}{2}$ et le système n'admet aucune solution.
- e) Puisque $a=\frac{1}{3}$, $\det(A)=0$ et le système n'admet pas une solution unique. Puisque $b=\frac{3}{2}$, la dernière équation devient 0=0 et le système admet une infinité de solutions.
- 4. a) Factorisation LU (sous forme compacte):

$$\begin{bmatrix}
 1 & 2 & 1 \\
 2 & -2 & -1/2 \\
 -1 & -1 & 1/2
 \end{bmatrix}$$

Solution intermédiaire : $Y = [0, -3/2, 1]^T$ Solution $X = [1, -1, 1]^T$.

b) Factorisation LU (sous forme compacte):

$$\begin{bmatrix} 1 & 2 & 1 & 4 \\ 2 & -4 & -1/2 & 5/4 \\ 4 & -6 & -5 & 3/2 \\ -3 & 7 & 19/2 & -9 \end{bmatrix}$$

Solution intermédiaire : $Y = [13, -1/2, 7, 2]^T$ Solution $X = [3, -1, 4, 2]^T$.

5. Factorisation LU (sous forme compacte):

$$\begin{bmatrix} 4 & 8 & -1 \\ -1/2 & 7 & 3/2 \\ 1/4 & 0 & 25/4 \end{bmatrix}$$

avec la matrice des permutations:

$$P = \left[\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{array} \right]$$

Solution intermédiaire : $Y = [17, 37/2, 75/4]^T$ Solution : $X = [1, 2, 3]^T$

- 6. a) $\det(A) = 2 \cdot 1 \cdot 2 = 4$.
 - b) $Y = [-1 \ 18 \ 12]^T$ et $X = [-4 \ -6 \ 12]^T$
 - c) On doit résoudre LULUX = B. Il suffit de résoudre (dans l'ordre) $LY_1 = B$, $UY_2 = Y_1$, $LY_3 = Y_2$ et $UX = Y_3$. On trouve (voir a)) $Y_1 = [-1 \ 18 \ 12]^T$, $Y_2 = [-4 \ -6 \ 12]^T$, $Y_3 = [-2 \ 2 \ 1]^T$ et $X = [-2 \ 0 \ 1]^T$.
- 7. b) Il faut réordonner les équations de telle sorte que la nouvelle matrice admette une diagonale strictement dominante : E_3 , E_4 , E_1 , E_2 .
- 8. Les cinq premières itérations de la méthode de Jacobi :

$$X^{(0)} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^T$$
 $X^{(1)} = \begin{bmatrix} 1.444 & 444 & 1.800 & 000 & -1.222 & 222 \end{bmatrix}^T$
 $X^{(2)} = \begin{bmatrix} 1.980 & 247 & 1.844 & 444 & -0.982 & 716 \end{bmatrix}^T$
 $X^{(3)} = \begin{bmatrix} 1.963 & 512 & 1.999 & 506 & -1.032 & 373 \end{bmatrix}^T$
 $X^{(4)} = \begin{bmatrix} 2.003 & 487 & 1.986 & 228 & -0.996 & 056 \end{bmatrix}^T$
 $X^{(5)} = \begin{bmatrix} 1.996 & 501 & 2.001 & 486 & -1.003 & 448 \end{bmatrix}^T$

Les cinq premières itérations de la méthode de Gauss-Seidel :

$$X^{(0)} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^T$$
 $X^{(1)} = \begin{bmatrix} 1.444 & 444 & 2.088 & 889 & -0.918 & 519 \end{bmatrix}^T$
 $X^{(2)} = \begin{bmatrix} 2.010 & 700 & 2.018 & 436 & -0.997 & 092 \end{bmatrix}^T$
 $X^{(3)} = \begin{bmatrix} 2.003 & 774 & 2.001 & 336 & -1.000 & 122 \end{bmatrix}^T$
 $X^{(4)} = \begin{bmatrix} 2.000 & 311 & 2.000 & 038 & -1.000 & 026 \end{bmatrix}^T$
 $X^{(5)} = \begin{bmatrix} 2.000 & 011 & 1.999 & 997 & -1.000 & 002 \end{bmatrix}^T$

La méthode de Gauss-Seidel converge plus rapidement vers la solution $[2\ 2\ -1]$.

- 9. a) $\lambda_1 = 4$ avec $\vec{v}_1 = (2,3)$ et $\lambda_2 = -1$ avec $\vec{v}_2 = (-1,1)$
 - b) $\lambda_1 = 5$ avec $\vec{v}_1 = (2,1)$ et $\lambda_2 = -2$ avec $\vec{v}_2 = (-1,3)$
 - c) $\lambda_1 = -1.3615$ avec $\vec{v}_1 = (0.5501, 0.4270, -0.7177), <math>\lambda_2 = -0.8326$ avec $\vec{v}_2 = (0.7888, -0.5308, 0.3099)$ et $\lambda_3 = 3.5289$ avec $\vec{v}_3 = (0.8033, 0.4732, 0.3617)$
 - d) $\lambda_1 = 1$ avec $\vec{v}_1 = (3, 0, 1), \ \lambda_2 = 1$ avec $\vec{v}_2 = (-2, 1, 0)$ et $\lambda_3 = 3$ avec $\vec{v}_3 = (1, 3, 1)$
 - e) Il y a une seule valeur propre $\lambda = 1$, et tous les vecteurs de \mathbb{R}^n (sauf le vecteur nul) sont des vecteurs propres.