CS143: Normalization Theory

Book Chapters

- (4th) Chapters 7.1-6
- (5th) Chapters 7.1-5
- (6th) Chapters 8.1-5
- (7th) Chapters 7.1-5

Introduction

Main question

- How do we design "good" tables for a relational database?
 - Typically we start with ER and convert it into tables
 - Still, different people come up with different ER, and thus different tables. Which one is better? What design should we choose?
- Relational design theory
 - A theory on how to identify and create a good table design or a "normal form"
 - Several definitions of "normal forms" exist
 - We learn the most popular normal form, Boyce-Codd Normal Form (BCNF)

Warning

• The most difficult and theoretical part of the course. Pay attention!

Motivation & Intuition

(StudentClass(sid, name, addr, dept, cnum, title, unit) slide)

- **Q:** Is it a good table design?
- REDUNDANCY: The same information mentioned multiple times. Redundancy leads to potential anomaly.
 - 1. UPDATE ANOMALY: Only some information may be updated

2. INSERTION ANOMALY: Some information cannot be represented - **Q:** What if a student does not take any class? 3. DELETION ANOMALY: Deletion of some information may delete others - **Q:** What if the only class that a student takes is cancelled? • Q: Is there a better design? What tables would you use? • Q: Any way to arrive at such table design more systematically? - **Q:** Where is the redundancy from? ⟨ Slide on "guessing" missing info ⟩ - FUNCTIONAL DEPENDENCY: Some attributes are "determined" by other attrs * e.g., sid \rightarrow (name, addr), (dept, cnum) \rightarrow (title, unit) * When there is a functional dependency, we may have redundancy. • e.g., (301, James, 11 West) is stored redundantly. So is (CS, 143, database, 04). - DECOMPOSITION: When there is a FD, no need to store multiple instances of this relationship. Store it once in a separate table * (Intuitive normalization of StudentClass table) StudentClass(sid, name, addr, dept, cnum, title, unit) FDs: $sid \rightarrow (name, addr), (dept, cnum) \rightarrow (title, unit)$ 1. $sid \rightarrow (name, addr)$: no need to store it multiple time. separate it out

- **Q:** What if a student changes the address?

- 2. (dept, cnum) \rightarrow (title, unit). separate it out
- Basic idea of table "normalization"
 - Whenever there is a FD, the table may be "bad" (not in normal form)
 - We use FDs to "split" or "decompose" table and remove redundancy
 - We learn FUNCTIONAL DEPENDENCY and DECOMPOSITION to formalize this.

Functional Dependency

Overview

- The fundamental tool for normalization theory
- May seem dry and irrelevant, but bear with me. Extremely useful
- Things to learn
 - FD, trivial FD, logical implication, closure, FD and key, projected FD

Functional dependency $X \to Y$

- Notation: u[X] values for the attributes X of tuple u e.g, Assuming $u = (\text{sid: } 100, \text{ name: James, addr: Wilshire}), \quad u[\text{sid, name}] = (100, \text{ James})$
- FUNCTIONAL DEPENDENCY $X \to Y$
 - For any $u_1, u_2 \in R$, if $u_1[X] = u_2[X]$, then $u_1[Y] = u_2[Y]$
 - More informally, $X \to Y$ means that "no two tuples in R can have the same X values but different Y values"

(e.g., StudentClass(sid, name, addr, dept, cnum, title, unit))

- * $\mathbf{Q}: \operatorname{sid} \to \operatorname{name}$?
- * **Q:** dept, cnum \rightarrow title, unit?
- * **Q:** dept, cnum \rightarrow sid?

- Whether a FD is true or not depends on real-world semantics

 $\langle examples \rangle$

$$\begin{array}{c|ccc} A & B & C \\ \hline a_1 & b_1 & c_1 \\ a_1 & b_2 & c_2 \\ a_2 & b_1 & c_3 \\ \hline \end{array}$$

Q: AB \rightarrow C. Is this okay?

Replace c_3 to c_1 .

$$\begin{array}{c|cccc}
A & B & C \\
\hline
a_1 & b_1 & c_1 \\
a_1 & b_2 & c_2
\end{array}$$

 a_2

Q: AB \rightarrow C. Is this okay?

NOTE: AB \rightarrow C does not mean no duplicate C values.

Replace b_2 to b_1

 $b_1 \mid c_1$

$$\begin{array}{c|cccc} A & B & C \\ \hline a_1 & b_1 & c_1 \\ a_1 & b_1 & c_2 \\ a_2 & b_1 & c_3 \\ \end{array}$$

Q: AB \rightarrow C. Is this okay?

- TRIVIAL functional dependency: $X \to Y$ when $Y \subset X$
 - It is always true regardless of real world semantics (diagram)
- NON-TRIVIAL FD: $X \to Y$ when $Y \not\subset X$ (diagram)
- COMPLETELY NON-TRIVIAL FD: $X \to Y$ with no overlap between X and Y (diagram)

We will focus on completely non-trivial functional dependency.

Implication and Closure

• LOGICAL IMPLICATION

ex)
$$R(A, B, C, G, H, I)$$

 $F: A \to B, A \to C, CG \to H, CG \to I, B \to H$ (set of functional dependencies)

- **Q:** Is $A \to H$ true under F?

F LOGICALLY IMPLIES $A \to H$

 $\langle \text{canonical database method to prove } A \to H \rangle$

A	В	С	G	H	I
a_1 a_1	b_1	c_1	g_1	h_1 ?	i_1

If ? = h1, then $A \to H$

* **Q:** $AG \rightarrow I$?

• CLOSURE OF FD F: F⁺

F⁺: the set of all FD's that are logically implied by F.

• CLOSURE OF ATTRIBUTE SET X: X⁺

X⁺: the set of all attrs that are functionally determined by X

- Q: What attribute values do we know given (sid, dept, cnum)?

• CLOSURE X^+ COMPUTATION ALGORITHM

 $\langle X^+$ computation algorithm slide \rangle

Start with
$$X^+ = X$$

Repeat until no change in X^+

If there is $Y \to Z$ and $Y \subset X^+$, add Z to X^+

 $\langle example \rangle$

$$R(A, B, C, G, H, I)$$
 and $A \to B, A \to C, CG \to H, CG \to I, B \to H$

$$- \mathbf{Q}: \{A\}^+$$
?

$$- \mathbf{Q}: \{A,G\}^+$$
?

• FUNCTIONAL DEPENDENCY AND KEY

- Key determines a tuple and functional dependency determines other attributes. Any formal relationship?
- **Q:** In previous example, is (A, B) a key of R? R(A, B, C, G, H, I) and $A \to B, A \to C, CG \to H, CG \to I, B \to H$
- -X is a KEY of R if and only if
 - 1. $X \to \text{all attributes of } R \text{ (i.e., } X^+ = R)$
 - 2. No subset of X satisfies 1 (i.e., X is minimal)
- PROJECTING FD

$$R(A, B, C, D): A \rightarrow B, B \rightarrow A, A \rightarrow C$$

- **Q**: What FDs hold for R'(B, C, D) which is a projection of R?
- In order to find FD's after projection, we first need to compute F^+ and pick the FDs from F^+ with only the attributes in the projection.

Decomposition

- (Remind the decomposition idea of StudentClass table)
- Splitting table $R(A_1, \ldots, A_n)$ into two tables, $R_1(A_1, \ldots, A_i)$ and $R_2(A_i, \ldots, A_n)$
 - $\{A_1, \dots, A_n\} = \{A_1, \dots, A_i\} \cup \{A_j, \dots, A_n\}$
 - (Conceptual diagram for $R(X,Y,Z) \to R_1(X,Y)$ and $R_2(Y,Z)$)

• Q: When we decompose, what should we watch out for?

LOSSLESS-JOIN DECOMPOSITION

- $R = R_1 \bowtie R_2$
- Intuitively, we should not lose any information by decomposing R
- Can reconstruct the original table from the decomposed tables
- **Q:** When is decomposition lossless?

 $\langle example \rangle$

\ I	. /	
cnum	sid	name
143	1	James
143	2	Elaine
325	3	Susan

- \mathbf{Q} : Decompose into $S_1(cnum, sid)$, $S_2(cnum, name)$. Lossless?

- \mathbf{Q} : Decompose into $S_1(\text{cnum, sid})$, $S_2(\text{sid, name})$. Lossless?

- DECOMPOSITION $R(X,Y,Z) \Rightarrow R_1(X,Y), R_2(X,Z)$ IS LOSSLESS IF $X \to Y$ OR $X \to Z$
 - That is, the shared attributes are the key of one of the decomposed tables
 - We can use FDs to check whether a decomposition is lossless

Example: StudentClass(sid, name, addr, dept, cnum, title, unit)

 $sid \rightarrow (name, addr), (dept, cnum) \rightarrow (title, unit)$

* **Q:** Decomposition into $R_1(sid, name, addr)$, $R_2(sid, dept, cnum, title, unit)$. Lossless?

Boyce-Codd Normal Form (BCNF)

FD, key & redundancy

- Example: StudentClass(sid, name, addr, dept, cnum, title, unit)
 - \mathbf{Q} : sid \rightarrow (name,addr). Does it cause redundancy?
 - After decomposition, Student(sid, name, addr)
 - * $\mathbf{Q}: \operatorname{sid} \to (\operatorname{name,addr})$. Does it still cause redundancy?
 - * Q: Why does the same FD cause redundancy in one case, but not in the other?
- In general, FD $X \to Y$ leads to redundancy if X DOES NOT CONTAIN A KEY.

BCNF definition

- R is in BCNF with regard to F, iff for every non-trivial $X \to Y$, X contains a key
- "Good" table design (no redudancy due to FD)
- Q: Class(dept, cnum, title, unit). dept,cnum \ritle,unit.
 - Q: Intuitively, is it a good table design? Any redundancy? Any better design?
 - **Q:** Is it in BCNF?
- Q: Employee(name, dept, manager). name \rightarrow dept, dept \rightarrow manager.

- **Q:** What is the English interpretation of the two dependencies? - Q: Intuitively, is it a good table design? Any redundancy? Better design? - **Q:** Is it in BCNF? • Remarks: Most times, BCNF tells us when a design is "bad" (due to redundancy from functional dependency. BCNF normalization algorithm • Decomposing tables until all tables are in BCNF - For each FD $X \to Y$ that violates the condition, separate those attributes into another table to remove redundancy. – We also have to make sure that this decomposition is lossless. • Algorithm For any R in the schema If non-trivial $X \to Y$ holds on R, and if X does not have a key 1. Compute X^+ (X^+ : closure of X) 2. Decompose R into $R_1(X^+)$ and $R_2(X, Z)$ // X is common attributes where Z is all attributes in R except X⁺ Repeat until no more decomposition • Example: ClassInstructor(dept, cnum, title, unit, instructor, office, fax) instructor \rightarrow office, office \rightarrow fax $(dept, cnum) \rightarrow (title, unit), (dept, cnum) \rightarrow instructor.$ - **Q:** What is the English interpretation of the two dependencies? - Q: Intuitively, is it a good table design? Any redundancy? Better design? - **Q:** Is it in BCNF?

- **Q:** Normalize it into BCNF using the algorithm.

NOTE: The algorithm guarantees lossless join decomposition, because after the decomposition based on $X \to Y$, X becomes the key of one of the decomposed table

• Example: $R(A, B, C, G, H, I), A \to B, A \to C, G \to I, B \to H$. Convert to BCNF.

• Q: Does the algorithm lead to a unique set of relations?

$$\langle \text{e.g., } R(A,B,C), A \to C, B \to C \rangle$$

Q: What if we start with $A \to C$?

Q: What if we start with $B \to C$?

• Q: $R_1(A,B)$, $R_2(B,C,D)$ with $A \to B$, $B \to A$, $A \to C$. Are R_1 and R_2 in BCNF?

NOTE: We have to check all implied FD's for BCNF, not just the given ones.

Good Table Design in Practice

- Normalization splits tables to reduce redundancy.
- However, splitting tables has negative performance implication

Example: Instructor: name, office, phone, fax name
$$\rightarrow$$
 office, office \rightarrow (phone,fax)

(design 2) Instructor(name, office), Office(offce, phone, fax)

Q: Retrieve (name, office, phone) from Instructor. Which design is better?

• As a rule of thumb, start with normalized tables and merge them if performance is not good enough

Things to Remember

- Functional dependency $X \to Y$
 - Trivial functional dependency
 - Logical implication
 - Closure
- Decomposition
 - Lossless join decomposition
- Boyce-Codd Normal Form (BCNF)
- BCNF decomposition algorithm