University of Toronto Scarborough Department of Computer & Mathematical Sciences

MAT B41H 2013/2014

Assignment #1

assignment is due at the start of your tutorial inthe period September 16 – September 20, 2013.

A. Suggested reading: Marsden & Tromba, Chapter 1, sections 1.1, 1.2, 1.3 and 1.5.

B. Problems:

Most of these problems are a review of prerequisite material.

- (a) Using only the definition of derivative find f'(a) when $f(x) = 2x^2 + x 3$.
 - (b) Using only the definition of the Riemann integral find $\int_{a}^{2} f(x) dx$ when $f(x) = 2x^2 + x - 3$.
 - (c) Find $\frac{dF(x)}{dx}$ where $F(x) = \int_{-\infty}^{1-x^3} e^{t^2} dt$
- (a) Without using integral tables, evaluate each of the following

(i)
$$\int \frac{x^6 + x^3}{1 + x^2} dx$$
 (ii)
$$\int \frac{(\ln w)^3}{w} dw$$

(ii)
$$\int \frac{(\ln w)^3}{w} \, du$$

(iii)
$$\int \sin^4 x \cos^3 x \, dx$$
 (iv) $\int z^2 \cos z \, dz$

(iv)
$$\int z^2 \cos z \, dz$$

(v)
$$\int \sin(\ln x) \ dx$$

(v)
$$\int \sin(\ln x) dx$$
 (vi) $\int \frac{dx}{(x+1)(x-2)}$

(vii)
$$\int x^2 \sqrt{9 - x^2} \, dx$$

(b) Find the following definite integrals, if they converge.

(i)
$$\int_4^9 \frac{e^{\sqrt{y}}}{\sqrt{y}} \ dy$$

(i)
$$\int_{4}^{9} \frac{e^{\sqrt{y}}}{\sqrt{y}} dy$$
 (ii) $\int_{0}^{6} \frac{dx}{(x-4)^{2/3}}$ (iii) $\int_{0}^{\infty} \frac{x}{e^{x}} dx$

(iii)
$$\int_0^\infty \frac{x}{e^x} \ dx$$

3. The police observe that the skid marks of a stopping car are 200 m long. Assuming the car decelerated at a constant rate of 20 m/sec², skidding all the way, how fast was the car going when the brakes were applied?

- 4. Let $\mathbf{v} = (1, -1, 1)$ and $\mathbf{w} = (0, 1, -2)$ be vectors in \mathbb{R}^3 .
 - (a) Find the angle between \boldsymbol{v} and \boldsymbol{w} .
 - (b) Verify the Cauchy-Schwarz inequality and the triangle inequality for \boldsymbol{v} and \boldsymbol{w} .
 - (c) Find all unit vectors in \mathbb{R}^3 which are orthogonal to both \boldsymbol{v} and \boldsymbol{w} .
 - (d) Find the projection of (i) \boldsymbol{v} onto \boldsymbol{w} and (ii) \boldsymbol{w} onto \boldsymbol{v} .
- 5. (a) Suppose $\mathbf{u} \cdot \mathbf{v} = \mathbf{w} \cdot \mathbf{v}$ for all \mathbf{v} . Is it necessarily true that $\mathbf{u} = \mathbf{w}$? Justify your answer.
 - (b) Suppose $u \cdot v = w \cdot v$ for some $v \neq 0$. Is it necessarily true that u = w? Justify your answer.

6. Let
$$\boldsymbol{b}_1 = \left(\frac{1}{\sqrt{5}}, 0, \frac{2}{\sqrt{5}}\right)$$
, $\boldsymbol{b}_2 = \left(\frac{-2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)$ and $\boldsymbol{b}_3 = \left(\frac{-2}{\sqrt{30}}, \frac{-5}{\sqrt{30}}, \frac{1}{\sqrt{30}}\right)$.

- (a) Determine if b_1 , b_2 and b_3 form an orthonormal basis for \mathbb{R}^3 . Justify your answer.
- (b) If b_1 , b_2 , and b_3 should form an orthonormal basis, find the coordinates of v = (1, 0, 1) in the b_1 , b_2 , b_3 system.

7. Let
$$A = \begin{pmatrix} 1 & 0 & 3 \\ 2 & -1 & 4 \\ -3 & 2 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} \frac{3}{2} & -1 & -\frac{1}{2} \\ \frac{7}{3} & -\frac{5}{3} & -\frac{1}{3} \\ -\frac{1}{6} & \frac{1}{3} & \frac{1}{6} \end{pmatrix}$, and $C = \begin{pmatrix} -1 & 3 & 2 \\ 4 & -1 & 1 \\ 3 & 2 & 3 \end{pmatrix}$.

- (a) Compute $\det A$, $\det B$, $\det C$, $\det AB$ and $\det(A+B)$.
- (b) Verify that A and B are inverse matrices and use this fact to
 - (i) solve the simultaneous equations:

$$x + 3z = 1$$

$$2x - y + 4z = 2$$

$$-3x + 2y + z = 3$$

and

- (ii) show that the only $\mathbf{v} \in \mathbb{R}^3$ such that $A\mathbf{v} = \mathbf{0}$ is the zero vector.
- (c) Can you find a non-zero vector $\mathbf{v} \in \mathbb{R}^3$ such that $C\mathbf{v} = \mathbf{0}$? Would the argument used in (b)(ii) work here? Explain.