| 50               | 100                             | 150<br>150                       | 200               | 250<br>250                    | 300                    | 350<br>350             | 4 0 0<br>4 0 0               | 450<br>450        | 500               |
|------------------|---------------------------------|----------------------------------|-------------------|-------------------------------|------------------------|------------------------|------------------------------|-------------------|-------------------|
| 50<br>LRVIFAGKEL | 100<br>AAGGCEREPO<br>TSE.SIW.SR | 150<br>SIYNSFYVYC<br>PTFI        | 200<br>RMSGECQSPH | 250<br>CTDVRSPVLV             | 300<br>AGCPNSLIKE      | 350<br>LLPEPDQRKV      | 400<br>YRVDERAAEQ            | 450<br>CRLEWCWNCG | 200               |
| 40<br>AKRQGVPADQ | 90<br>NATGGDDPRN<br>SE.QS       | 140<br>SPPAGSPAGR<br>. EA.RG.V-K | SCWDDVLIPN        | 240<br>TNSRNITCIT<br>S.R.S.PA | 290<br>PQLGYSLPCV<br>A | 340<br>LCPRPGCGAG      | 390<br>FEASGTTTQA<br>L.P.A.S | 440<br>СМНМКСРОРО | 490               |
| 30<br>TSIFQLKEVV | 80<br>QRPWRKGQEM                | 130<br>VILHTDSRKD<br>DKR.        | 180<br>QATLTLTQGP | 230<br>ETPVALHLIA<br>D.SN.T   | 280<br>RLNDRQFVHD      | 330<br>EECVLQMGGV      | 380<br>AYHEGECSAV<br>D.DSL   | 430<br>CHVPVEKNGG | 480               |
| HGFPVEVDSD       | LDQQSIVHIV<br>E                 | VLPGDSVGLA<br>TV                 | 170<br>KLRVQCSTCR | 220<br>KCGAHPTSDK             | 270<br>LDCFHLYCVT      | 320<br>QYNRYQQYGA<br>T | 370<br>GFAFCRECKE            | 420<br>IKKTTKPCPR | 470<br>HWFDV*     |
| 10<br>MIVFVRFNSS | 60<br>RNDWTVQNCD<br>P.HL        | SLTRVDLSSS<br>H                  | 160<br>KGPCQRVQPG | 210<br>CPGTSAEFFF             | 260<br>FQCNSRHVIC      | 310<br>LHHFRILGEE      | 360<br>TCEGGNGLGC            | 410<br>ARWEAASKET | 460<br>CEWNRVCMGD |
| ਜਜ               | 51<br>51                        | 101                              | 151<br>151        | 201<br>201                    | 251<br>251             | 301<br>301             | 351<br>351                   | 44<br>10<br>1     | 44<br>451<br>1    |
| hPARK2<br>mPARK2 | hPARK2<br>mPARK2                | hPARK2<br>mPARK2                 | hPARK2<br>mPARK2  | hPARK2<br>mPARK2              | hPARK2<br>mPARK2       | hPARK2<br>mPARK2       | hPARK2<br>mPARK2             | hPARK2<br>mPARK2  | hPARK2<br>mPARK2  |

2a/3

| 5.0<br>5.0                  | 100                 | 150Exon1/2       | 200               | 250<br>250       | 300 Exon2/3        | 350<br>350       | 400<br>400          | 450<br>450           | 500<br>500       | 550Exon3/4          | 009                  | 650<br>650          | 700 Exon4/5      | 750Exon5/6                                      | 800              |
|-----------------------------|---------------------|------------------|-------------------|------------------|--------------------|------------------|---------------------|----------------------|------------------|---------------------|----------------------|---------------------|------------------|-------------------------------------------------|------------------|
| 50<br>CCAGGAGAC-<br>TGAC,AA | GCCTGTTC . T.C;     | TGTCAGG          | CCAGCAT           | GCTGACC          | GACTGTG            | AGAGACO          | CCCAGAA             | GGTGGAC<br>A         | TCATTCTGCA       | GCAGGTAGAT<br>.FA.C | TCAAAGAGTG<br>CC.AGC | AGGCAACGCT .AC      | ATTCCAAACC       | TAGTGCAGAA<br>CAT                               | O .              |
| 40<br>AC<br>ATGACTAA        | gcgcgcargg<br>cg.A. | TGATAGTGTT       | 190<br>GATTCTGACA | GGGGGTTCCG       | GGAATGACTG<br>CCCT | CACATTGTGC       | AGG(                | GCTI                 | GGGCTGGCTG       | TGGAAGTCCA<br>CAG   | AAGGCCCCTG           | ACCTGCAGGC          | TGATGTTTTA       | 4 A 0                                           | \ Ū ·            |
| 30<br>GGATT<br>GGCC.GG      | TGGCGCCGCT<br>GAG.  | CCAGTGACCA       | AGTGGAGGTC        | CTAAGCGACA       | AAGGAGCTGA         | GAGCATTGTT<br>TA | ATGCA               | GAGCCCC              | AGACTCTGT<br>G   | CACCACCAG           | GTGTATT<br>A.CC.     | ACAGTGCAG<br>TTG.   | CTTGCTGGGA       | $\frac{30}{10000000000000000000000000000000000$ | υ ·              |
| 20<br>GA<br>GGAAGGGG        | AGGCGCGG-C          | CGCCACCTAC       | ATGGTTTCCC        | GAGGTGGTTG       | TTTCGCAGGG         | TGGATCAGCA       |                     | L .                  | TCCTCCCAGG       | AGGAAGGACT<br>.AGT. | CAGCTTTTAT           | AACTCAGGGT<br>.GC.A | CAGGGTCCAT       | TGAATGCCAA                                      |                  |
|                             | ₽ED                 | GGCCCGCAGC       | AACTCCAGCC        | CCAGCTCAAG       | TGCGTGTGAT         | AATTGTGĀCC<br>C  | GAGAAAAGGT<br>G.G.A | CGGCGGGAGG C.CT.A.AG | AGCAGCTCAG       | CACTGACAGC          | CAATCTACAA<br>.C.C   | CAGCCGGGAA          | CACCTTGACC       | <b>კტ</b> ∙დ                                    | . ⊢              |
|                             | 51                  | 101              | 151<br>151        | 201              | 251<br>251         | 301              | 351<br>351          | 401<br>401           | 451<br>451       | 501                 | 551<br>551           | 601<br>601          | 651<br>651       | 701<br>701                                      | 751<br>751       |
| hPARK2<br>mPark2            | hPARK2<br>mPark2    | hPARK2<br>mPark2 | hPARK2<br>mPark2  | hPARK2<br>mPark2 | hPARK2<br>mPark2   | hPARK2<br>mPark2 | hPARK2<br>mPark2    | hPARK2<br>mPark2     | hPARK2<br>mPark2 | hPARK2<br>mPark2    | hPARK2<br>mPark2     | hPARK2<br>mPark2    | hPARK2<br>mPark2 | hPARK2<br>mPark2                                | hPARK2<br>mPark2 |

## 2b/3

| 850<br>850       | 900<br>900 Exon6/7 | 950<br>950       | 1000<br>1000 Exon7/8 | 1050<br>1050     | 1100<br>1100 Exon8/9 | 1150<br>1150        | 1200<br>1200        | 1250 Exon9/10      | 1300 Exon10/11            | 1350<br>1350     | 1400<br>1400     | 1450 Exon11/12      | 1500<br>1500      | 1550<br>1550                 | 1600<br>1600              |
|------------------|--------------------|------------------|----------------------|------------------|----------------------|---------------------|---------------------|--------------------|---------------------------|------------------|------------------|---------------------|-------------------|------------------------------|---------------------------|
| _LO (1) · (      | DK .n              | GACTCAATG        | CCTTCG               | CAGO             | AGGAG                | GGAG                | GGGCAATGG           | 1250<br>CGTACCATGA | $\circ \circ \cdot \iota$ | 35<br>TC         | GCCATGTACCA.CG   | n છ - લ             | 73<br>73          | nAH                          | $\rightarrow \cdot \cdot$ |
| GAACATCA<br>C.GC | TCCAGTGCAA         | TGTGTGA          | CTACTCCCTG           | TCCATCACT        | TATGGI               | CCCI<br>T           | CCTGCGAAG           | TGTA               | AGGAAC                    | 13<br>CTCGTTGG   | TGTCCC           | *ひ・0                | GCGAGTGGAA<br>TT. | GGGCGGCCGG<br>. A. AT. T. AC | ζŢ:                       |
| CAAATAGT<br>GCCG | GTC                | CCACTTATAC       | CICA                 | ATTAAA           | <b>.</b>             | ATGCCC<br>G;        | AGGAAA              | CTGCCG             | TTGAAG                    | GCCGAGC          | CACCAAGCCC       | CA C                | 44.Q0 ∙F          | いひなに                         | GA                        |
| g<br>CTGATCGC    | CAGGAGCCCC         | TAGACTGTT        | GTTCACGAC            | CAACT            | AGTACAACCG G         | GGGGG               | GCCTGACCA<br>A.AG.G | GGFTT              | AGTGCCG<br>GACT.AC        | TGAAAGAGC<br>CA  | TCAAGAAAAC       | AATGGAGGCT          | GTGGTGCTGG        | ACTGGTTCGA                   | GC AA                     |
| AGCTTTGCA        | GCACAGACGT         | GTGATTTGCT       | TCGGCAG              | CTGGCTGT         | GGAGAA               | CCTGCA              | TGCTGC              | CTGGGCTGTG         | AGGGGAGTGC                | ACAGAGTCGA       | AAAGAAACCA       | AGTGGAAAAA<br>.A.T; | ↔ የነፖካ፣           | コひほく                         | GC-CACATCC<br>A.GA        |
| 801<br>801       | 851<br>851         | 901              | 951                  | 1001             | 1051<br>1051         | $\frac{1101}{1101}$ | 1151<br>1151        | 1201<br>1201       | 1251<br>1251              | 1301<br>1301     | 1351<br>1351     | 1401<br>1401        | 1451<br>1451      | 1501<br>1501                 | 1551<br>1551              |
| hPARK2<br>mPark2 | hPARK2<br>mPark2   | hPARK2<br>mPark2 | hPARK2<br>mPark2     | hPARK2<br>mPark2 | hPARK2<br>mPark2     | hPARK2<br>mPark2    | hPARK2<br>mPark2    | hPARK2<br>mPark2   | hPARK2<br>mPark2          | hPARK2<br>mPark2 | hPARK2<br>mPark2 | hPARK2<br>mPark2    | hPARK2<br>mPark2  | hPARK2<br>mPark2             | hPARK2<br>mPark2          |

