Small Nuclear Rocket Engine (SNRE) Geometry and Material Configuration SNRE Overview

Table 1: Core Overview of the SNRE

Core Overview	
Uranium Enrichment	93.0%
Total Number of Fuel Elements	564
Total Number of Support Elements	241
Mass of U235	59.6 kg

Geometry Data

Table 2: Geometry Data of the SNRE Fuel Element

Fuel Element Dimensions	
Flat-to-flat width	1.905 cm
Number of Coolant Channels	19
Borehole Diameter	$0.25654\mathrm{cm}$
Borehole Pitch	0.408 94 cm
Internal Coating Thickness	$100 \mu \mathrm{m}$
External Coating Thickness	$50\mu\mathrm{m}$

Table 3: Geometry Data of the SNRE Support Element

Support Element Dimensions	
Flat-to-flat width	1.894 84 cm
Central Coolant Channel Radius	0.209 55 cm
Inner Tie Tube Radius	0.260 35 cm
Inner Gap (Stagnant Hydrogen) Radius	$0.26670\mathrm{cm}$
Moderator Radius	$0.58420\mathrm{cm}$
Outer Coolant Channel Radius	0.678 18 cm
Outer Tie Tube Radius	0.698 50 cm
Mid Gap (Stagnant Hydrogen) Radius	0.704 85 cm
Insulator Radius	$0.80645\mathrm{cm}$
Outer Gap (Stagnant Hydrogen) Radius	$0.81280\mathrm{cm}$
External Coating Thickness	$50.8\mu\mathrm{m}$

The external core regions consist of a steel wrapper, beryllium barrel, beryllium reflector, containing 12 control drums. Positioned above the core is the control drum actuator zone, brim shield, core support plate, tie tube plenum, and shield regions. The control drums consist of a cylinder of reflective material, and control plate of absorptive material, which covers a 120 degree segment of the control drum.

Table 4: Geometry Data of the SNRE Core Exterior

Region	Inner Radius	Outer Radius	Aft Boundary	Fwd Boundary
Core	-	$29.5275\mathrm{cm}$	0.0 cm	89.0 cm
Gap	$29.5275\mathrm{cm}$	$29.8450\mathrm{cm}$	$0.0\mathrm{cm}$	$89.0\mathrm{cm}$
Stainless-Steel Wrapper	29.8450 cm	$30.1625{\rm cm}$	$0.0\mathrm{cm}$	$89.0\mathrm{cm}$
Gap	30.1625 cm	$30.4800\mathrm{cm}$	$0.0\mathrm{cm}$	$89.0\mathrm{cm}$
Beryllium Barrel	30.4800 cm	$33.3375\mathrm{cm}$	0.0 cm	$89.0\mathrm{cm}$
Gap	33.3375 cm	$33.6550{ m cm}$	$0.0\mathrm{cm}$	$89.0\mathrm{cm}$
Beryllium Reflector	33.6550 cm	$43.3870\mathrm{cm}$	$0.0\mathrm{cm}$	89.1 cm
Gap	43.3870 cm	48.7045 cm	0.0 cm	$129.640{ m cm}$
Pressure Vessel	48.7045 cm	$49.2633{ m cm}$	$0.0\mathrm{cm}$	$129.640\mathrm{cm}$
Lower Tie Tube Plenum	-	$33.6550{ m cm}$	89.0 cm	$96.62\mathrm{cm}$
Core Support Plate	-	33.6550 cm	$96.62\mathrm{cm}$	106.78 cm
Upper Tie Tube Plenum	-	$33.6550{ m cm}$	106.78 cm	$111.86\mathrm{cm}$
Lower Internal Shield	-	$33.6550{ m cm}$	111.86 cm	$119.734{ m cm}$
Hydrogen Plenum	-	$33.6550\mathrm{cm}$	119.734 cm	$121.766\mathrm{cm}$
Upper Internal Shield	-	$33.6550\mathrm{cm}$	121.766 cm	$129.640{ m cm}$
Control Drum Actuator	33.6550 cm	43.3870 cm	89.1 cm	111.860 cm
Zone	33.0330 CIII	45.5670 CIII	09.1 (111	111.000 CIII
Brim Shield	33.6550 cm	48.3870 cm	111.860 cm	119.734 cm
Hydrogen Plenum	$33.6550\mathrm{cm}$	$48.3870{ m cm}$	119.734 cm	$129.640{ m cm}$

Table 5: Geometry Data of the SNRE Control Drum

Control Drum Dimensions	
Control Drum Radius	6.0325 cm
Control Plate Inner Radius	$5.3975\mathrm{cm}$
Control Plate Thickness 0.6350 cm	
Coolant Channel Radius	$6.3500{ m cm}$

Material Data

Table 6: Material Data of the SNRE Fuel Element

Material	Mass Density (g/cm3) and w/o	
Fuel Element Coolant		
Density	5.4004×10^{-3}	
² H	1.0000	
Fuel	•	
Density	3.6400	
^{nat} C	3.3791×10^{-1}	
⁹⁰ Zr	2.5214×10^{-1}	
⁹¹ Zr	5.5597×10^{-2}	
92 Zr	8.5916×10^{-2}	
94 Zr	8.8964×10^{-2}	
⁹⁶ Zr	1.4638×10^{-2}	
²³⁵ U	1.5330×10^{-1}	
²³⁸ U	1.1538×10^{-2}	
Fuel Coatin	ıg	
Density (100%)	6.7300	
natC	1.1625×10^{-1}	
⁹⁰ Zr	4.4811×10^{-1}	
⁹¹ Zr	9.8811×10^{-2}	
⁹² Zr	1.5269×10^{-1}	
^{94}Zr	1.5811×10^{-1}	
⁹⁶ Zr	2.6016×10^{-2}	

Table 7: Material Data of the SNRE Support Element

Material	Mass Density (g/cm3) and w/o
iviateriai	Support Element Coolant
Density	5.4004×10^{-3}
² H	1.0000
••	Stagnant Hydrogen
Density	1.9127×10^{-3}
1 H	9.9977×10^{-1}
2 H	1.0000
	Inconel 718
Density	8.1900
¹⁰ B	9.2155×10^{-6}
¹¹ B	4.0785×10^{-5}
^{nat} C	7.3000×10^{-4}
²⁷ Al	5.0000×10^{-3}
²⁸ Si	2.9214×10^{-3}
²⁹ Si	1.5371×10^{-4}
³⁰ Si	1.0494×10^{-4}
³¹ P	1.4000×10^{-4}
³² S	1.3260×10^{-4}
³³ S	1.0797×10^{-6}
³⁴ S	6.3031×10^{-6}
³⁶ S	1.5704×10^{-8}
⁴⁶ Ti	7.1281×10^{-4}
⁴⁷ Ti	6.5680×10^{-4}
⁴⁸ Ti	6.6461×10^{-3}
⁴⁹ Ti	4.9790×10^{-4}
⁵⁰ Ti	4.8644×10^{-4}
⁵⁰ Cr	7.9300×10^{-3}
⁵² Cr	1.5903×10^{-1}
⁵³ Cr	1.8380×10^{-2}
⁵⁴ Cr	4.6614×10^{-3}
⁵⁵ Mn	3.1800×10^{-3}
⁵⁴ Fe ⁵⁶ Fe	9.5975×10^{-3}
⁵⁷ Fe	1.5623×10^{-1}
⁵⁸ Fe	3.6726×10^{-3}
⁵⁹ Co	$\begin{array}{ c c c } & 4.9733 \times 10^{-4} \\ & 9.1000 \times 10^{-3} \end{array}$
⁵⁸ Ni	3.5279×10^{-1}
⁶⁰ Ni	$\begin{array}{c} 3.5279 \times 10 \\ 1.4057 \times 10^{-1} \end{array}$
⁶¹ Ni	6.2126×10^{-3}
⁶² Ni	0.2120×10 2.0133×10^{-2}
⁶⁴ Ni	$\begin{bmatrix} 2.0153 \times 10 \\ 5.2928 \times 10^{-3} \end{bmatrix}$
⁶³ Cu	1.8695×10^{-3}
⁶⁵ Cu	8.6052×10^{-4}
⁹³ Nb	$\begin{array}{c} 3.0032 \times 10 \\ 5.1250 \times 10^{-2} \end{array}$
⁹² Mo	0.030500
⁹⁴ Mo	0.030 500
⁹⁵ Mo	0.030 500
⁹⁶ Mo	0.030 500
⁹⁷ Mo	0.030 500
⁹⁸ Mo	0.030 500
¹⁰⁰ Mo	0.030 500
·	Moderator
Density	5.6100
¹ H	1.7582×10^{-2}
	Continued on next page

Material	Mass Density (g/cm3) and w/o
² H	4.0412×10^{-6}
^{nat} Zr	9.8241×10^{-1}
Insulator	•
Density (50%)	3.3650
nat C	1.1625×10^{-1}
⁹⁰ Zr	4.4811×10^{-1}
⁹¹ Zr	9.8811×10^{-2}
92 Zr	1.5269×10^{-1}
94 Zr	1.5811×10^{-1}
⁹⁶ Zr	2.6016×10^{-2}
Support Element Slo	eeve
Density	1.7000
¹⁰ B	1.8431×10^{-7}
¹¹ B	8.1569×10^{-7}
nat C	1.0000
Support Element Co.	
Density (100%)	6.7300
^{nat} C	1.1625×10^{-1}
⁹⁰ Zr	4.4811×10^{-1}
⁹¹ Zr	9.8811×10^{-2}
92 Zr	1.5269×10^{-1}
94 Zr	1.5811×10^{-1}
⁹⁶ Zr	2.6016×10^{-2}

Note that the insulator region is porous ZrC at 50% porosity. The support element contains regions of stagnant hydrogen.

Table 8: Material Data of the SNRE Core Exterior

Material	Mass Density (g/cm3) and w/o
Density	Beryllium Core Periphery Filler Element 1.8480
⁹ Be	1.0400
Бе	Steel Wrapper (SS-347)
Density	8.0000
nat C	8.0000×10^{-4}
²⁸ Si	9.1867×10^{-3}
²⁹ Si	4.8336×10^{-4}
³⁰ Si	3.2999×10^{-4}
31 P	4.5000×10^{-4}
32 S	2.8415×10^{-4}
³³ S	2.3413×10^{-6} 2.3136×10^{-6}
³⁴ S	1.3507×10^{-5}
³⁶ S	3.3651×10^{-8}
⁵⁰ Cr	7.0953×10^{-3}
⁵² Cr	1.4229×10^{-1}
⁵³ Cr	1.4223×10 1.6445×10^{-2}
⁵⁴ Cr	4.1707×10^{-3}
⁵⁵ Mn	2.0000×10^{-2}
⁵⁴ Fe	3.8415×10^{-2}
⁵⁶ Fe	6.2534×10^{-1}
⁵⁷ Fe	1.4700×10^{-2}
⁵⁸ Fe	1.9906×10^{-3}
⁵⁸ Ni	1.0000×10^{-1}
⁶⁰ Ni	2.9454×10^{-2}
⁶¹ Ni	1.3017×10^{-3}
⁶² Ni	4.2183×10^{-3}
⁶⁴ Ni	1.1090×10^{-3}
93 Nb	4.0000×10^{-3}
¹⁸¹ Ta	3.9995×10^{-3}
	Beryllium Barrel
Density	1.8480
⁹ Be	1.0000
	Reflector
Density	1.8480
⁹ Be	1.0000
	Control Drum
Density	1.8480
⁹ Be	1.0000
D ':	Control Plate
Density ¹⁷⁴ Hf	1.3300×10^{1}
¹⁷⁴ Hf ¹⁷⁶ Hf	2.0000×10^{-3}
177116	5.2000×10^{-2}
¹⁷⁷ Hf ¹⁷⁸ Hf	1.8600×10^{-1}
¹⁷⁰ Hf ¹⁷⁹ Hf	2.7100×10^{-1}
¹⁷⁹ Hf ¹⁸⁰ Hf	1.3700×10^{-1}
100 Ht	3.5200×10^{-1}
Donoity	Reactor Housing Coolant
Density ² H	$\begin{array}{c} 5.4004 \times 10^{-3} \\ 1.0000 \end{array}$
П	Lower Tie Tube Plenum
Density	3.9080×10^{-1}
¹ H	3.9080×10 7.4207×10^{-3}
_ п 2H	1.7052×10^{-6}
	1.7052×10^{-2} 5.6037×10^{-2}
⁵⁶ Fe	9.1220×10^{-1}
1.0	9.1220 × 10 Continued on next page
	Continued on next page

Material	Mass Density (g/cm3) and w/o
⁵⁷ Fe	2.1443×10^{-2}
⁵⁸ Fe	2.9037×10^{-3}
Core Support Pla	
Density	1.0050
¹ H ² H	$\begin{array}{c} 2.0891 \times 10^{-3} \\ 4.8017 \times 10^{-7} \end{array}$
	5.6338×10^{-2}
56 Fe	9.1709×10^{-1}
⁵⁷ Fe	2.1559×10^{-2}
⁵⁸ Fe	2.9193×10^{-3}
Upper Tie Tube Ple	
Density	9.7180×10^{-1}
H H	2.1604×10^{-3}
² H	4.9658×10^{-7}
⁵⁴ Fe ⁵⁶ Fe	5.6338×10^{-2}
57 Fe	$\begin{array}{c} 9.1709 \times 10^{-1} \\ 2.1559 \times 10^{-2} \end{array}$
58 Fe	$\begin{bmatrix} 2.1559 \times 10 \\ 2.9193 \times 10^{-3} \end{bmatrix}$
Lower Internal Shi	1
Density Lower Internal Sin	4.4519
¹ H	2.0526×10^{-2}
² H	4.7179×10^{-6}
10B	9.1080×10^{-4}
11B	4.0309×10^{-3}
90Zr	4.9415×10^{-1}
9 ¹ Zr 9 ² Zr	1.0896×10^{-1}
94Zr	$ \begin{array}{c c} 1.6838 \times 10^{-1} \\ 1.7435 \times 10^{-1} \end{array} $
96Zr	1.7435×10 2.8688×10^{-2}
Hydrogen Plenur	
Density	5.4004×10^{-3}
² H	1.0000
Upper Internal Shi	eld
Density	4.4519
1H	2.0526×10^{-2}
² H ¹⁰ B	$\begin{array}{c} 4.7179 \times 10^{-6} \\ 9.1080 \times 10^{-4} \end{array}$
11B	4.0309×10^{-3}
90 Z r	4.0309×10 4.9415×10^{-1}
91 Z r	1.0896×10^{-1}
⁹² Zr	1.6838×10^{-1}
⁹⁴ Zr	1.7435×10^{-1}
⁹⁶ Zr	2.8688×10^{-2}
Control Drum Actuato	
Density	4.2790×10^{-1}
¹ H ² H	$\begin{array}{c c} 5.1402 \times 10^{-3} \\ 1.1815 \times 10^{-6} \end{array}$
- H ⁵⁴ Fe	$\begin{vmatrix} 1.1815 \times 10 \\ 3.6678 \times 10^{-2} \end{vmatrix}$
56 Fe	5.9707×10^{-1}
⁵⁷ Fe	1.4036×10^{-2}
⁵⁸ Fe	1.9006×10^{-3}
⁶³ Cu	2.3637×10^{-1}
⁶⁵ Cu	1.0880×10^{-1}
Brim Shield	
Density	4.4519
¹ H ² H	$\begin{array}{c} 2.0526 \times 10^{-2} \\ 4.7179 \times 10^{-6} \end{array}$
10B	$\begin{vmatrix} 4.7179 \times 10 \\ 9.1080 \times 10^{-4} \end{vmatrix}$
11B	9.1080×10 4.0309×10^{-3}
90 Zr	4.9415×10^{-1}
⁹¹ Zr	1.0896×10^{-1}
⁹² Zr	1.6838×10^{-1}
⁹⁴ Zr	1.7435×10^{-1}
⁹⁶ Zr	2.8688×10^{-2}
Pressure Vessel	
Density 27 Al	2.7000
²⁷ AI	1.0000

Figure 1: x-y Model Plot of the Core in the Subcritical Position (0 degrees)

Figure 2: x-z Model Plot of the Core in the Subcritical Position (0 degrees)