Le mode mathématique

Formation LaTeX – niveau débutant Troisième partie

Céline Chevalier

Mai-Juin 2009

\usepackage{amsmath,amssymb,mathrsfs,amsthm}

Passage en mode mathématique : les \$ (synonyme : \(et \))

On a 3x+1=y où y < 1.

Notons \$f\$ la fonction.

\$\text{On a } 3x+1=y \text{ où } y<1.\$</pre>

Mode mathématique centré : \$\$ (synonyme : \[et \])

Indices et exposants :

$$x_i = x^{3a+b}$$

$$x_i = x^{3a+b}$$

 $x_i^n \neq \{x_i\}^n$

 $x_i^n \neq x_i^n$

2/32

1/32

Mathématiques
Présentations : la classe Beamer

Fractions, racines et fonctions

Mathématiques Présentations : la classe Beamer

<u>a</u> b	\$\frac{a}{b}\$	<pre>\$\tfrac{a}{b}\$ ou</pre>				
a b	\$\$\frac{a}{b}\$\$	$\frac{1}{x}\left(\frac{a}{b}\right) $	ou	\$\$\dfrac{a}{b}\$\$		

$$\sqrt{4} = \sqrt[3]{8}$$

	\lim \liminf \limsup	Pr inf sup	\Pr \inf \sup	lim lim gcd	<pre>\varlimsup \varliminf \gcd</pre>	max	\det \max \min
cos sin tan arccos	\cos \sin \tan \arccos	cosh sinh	\cot \cosh \sinh \tanh	exp In log deg	\exp \ln \log \deg	dim	\hom \dim \ker \csc
	\arcsin \arctan		\coth \arg	(mod q) $mod q$	\pmod q \mod q	lg sec	\lg \sec

Disposition des indices et des exposants, sommes, intégrales et produits

\int \int	\iint \iint	\iiint \iiint
∮ \oint	\iiint \iiiint	$\int \cdots \int$ \idotsint
\sum \sum	∏ \prod	∐ \coprod

3/32 4/32

Disposition des sommes, intégrales et produits

Les caractères en mode mathématique

ſ	\sim	2
J	<u>_</u>	aп

\$\int\sum a_n\$ ou \$\$\textstyle\int\sum a_n\$\$

$$\int \sum a_n$$

\$\$\int\sum a_n\$\$ ou \$\displaystyle\int\sum a_n\$

$$\int_0^1 \sum_{k=0}^n a_k x^k$$

 $\int_0^1 \sum_{k=0}^n a_k x^k$

$$\int_0^1 \sum_{k=0}^n a_k x^k$$

 $\$ int_0^1\sum_{k=0}^n a_k x^k\$\$

$$\int_{0}^{1} \sum_{k=0}^{n} a_k x^k$$

\$\int\limits_0^1 \sum\limits_{k=0}^n a_k x^k\$ la fonction \$t\mapsto \mathrm{P}(t)\$

 $t\mapsto P(t)$

\mathscr{A}

\mathbb{N}

Gras : \mathbf ltalique : \mathit

\usepackage{mathrsfs}

Calligraphique	\mathcal{D}	\mathbb{D}	Anglaise	Q
- raktur	\mathfrak{S}	\mathfrak{S}	Ajourée	ľ

Pour la fonction indicatrice 1, utilisez le package dsfont et la commande \mathds{1}. Pour un ensemble k, utilisez \Bbbk.

5/32

6/32

Mathématiques Présentations : la classe Beamer

Mathématiques Présentations : la classe Beamer

Les	es	ра	ces

Type d'espace	commande	AA	valeur (cadratins)
négatif	\!	AA	-3/18
fin		AA	1/18
moyen	\ :	AA	3/18
large	\ ;	AA	4/18
blanc normal	_	A A	(variable)
cadratin		A A	1
double cadratin	\qquad	A A	2

Signes,	cnapeaux	et accents
_		

â	\hat{a}	ä	$\det\{a\}$	ã	\tilde{a}
ā	\bar{a}	ä	\dot{a}	ă	\check{a}
ā	\sqrt{a}	 а	\dddot{a}	ă	\breve{a}
á	\acute{a}	 а	\ddddot{a}		
à	\grave{a}	å	$\mathbf{mathring}\{a\}$		

$$\vec{\imath}, \vec{\jmath}$$
 (et non \vec{i}) \$\vec{\imath}\$\$

\widetilde{AB}	\widetilde{AB}	\widehat{AB}	\widehat{AB}
<u>AB</u>	\underline{AB}		\overline{AB}
ĀΒ	\overrightarrow{AB}		

Points elliptiques, degrés et encadrés

Symboles classiques

$$x_1, \ldots, x_n$$

 $x_1 + \cdots + x_n$

\$34,7\$\degre{} hier

34,7° hier

Remarquez l'importance des dollars : comparez l'espace après la virgule dans 34,7 (obtenu avec \$34,7\$) et 34,7 (avec 34,7).

$$z = a + ib$$

$$i^2 = -1$$

\$ z=a+ib \qquad
\boxed{i^2=-1} \$

Exercice 4

∞ \infty	\exists \exists	\varnothing \varnothing	\hbar \hslash
ℓ \ell	\forall \forall	i \imath	\hbar \hbar
\Im \Im	$ abla$ \nabla	\jmath \jmath	& /Mb
\Re \Re	∂ \partial	ℵ \aleph	$ op$ \top
	\natural	# \sharp	⊥ \bot
≪ \11	$pprox$ \approx	\parallel \parallel	
$\gg \setminus gg$	\leqslant \leqslant	$\subset \setminus \mathtt{subset}$	$\in \setminus$ in
$\equiv \ ackslash ext{equiv}$	\geqslant \geqslant	⊃ \supset	<pre>→ \ni</pre>
\sim \sim	\propto \propto	$\subseteq \setminus \mathtt{subseteq}$	\mid
$\simeq \ \backslash {\tt simeq}$	\perp \perp	\subsetneq \varsubsetneq	¬ \neg

9/32

10/32

Mathématiques Présentations : la classe Beamer Mathématiques Présentations : la classe Beamer

Symboles classiques

	-			
_				

<u>+ \pm</u>	○ \bigcirc	⊕ \circledast	\\setminus
\mp \mp	♦ \Diamond		∩ \cap
* \ast	• \bullet	⊞ \boxplus	∪ \cup
⋆ \star	⊙ \odot	□ \boxminus	⋊ \rtimes
$ imes$ \times	⊕ \oplus		
⊎ \uplus	\ominus \ominus	□ \Box	∨ \vee
□ \sqcup	⊘ \oslash	C \complement	∧ \wedge
○ \circ	\otimes \otimes	<pre>\smallsetminus</pre>	$\models \setminus \mathtt{models}$
∩ \bigcap			
	+ \biguplus	→ \bigoplus	
√ \bigvee	\bigsqcup		
/\diagup	\ \diagdown	\ \backslash	

Lettres grecques

α	\alpha	θ	\theta	π	\pi	ϕ	\phi
β	\beta	ϑ	ϑ	ϖ	\varpi	φ	\varphi
γ	\gamma	ι	\iota	ρ	\rho	χ	\chi
δ	\delta	κ	\kappa	ϱ	\varrho	ψ	\psi
ϵ	\epsilon	λ	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	σ	\sigma	ω	ω
ε	$\vert varepsilon$	μ	\mu	ς	\varsigma		
ζ	\zeta	ν	\nu	au	\tau		
η	\eta	ξ	\xi	v	υ		
Γ	\Gamma	٨	\Lambda	Σ	\Sigma	Ψ	\Psi
Δ	\Delta	Ξ	\Xi	Υ	\Upsilon	Ω	\Omega
Θ	\Theta	П	\Pi	Φ	\Phi		

Flèches

Négations

\leftarrow donne \leftarrow et \Downarrow permet d'obtenir \Downarrow .

→ \rightarrow (synonyme: \to)	
\longrightarrow \setminus longrightarrow	ightharpoonup
\Rightarrow \setminus Rightarrow	♡ \circlearrowright
\Longrightarrow \setminus Longrightarrow	
→ \dashrightarrow	↑ \uparrow
$ ightarrow$ \rightrightarrows	↑ \Uparrow
$ wo$ \twoheadrightarrow	
\leftrightarrow \leftrightarrow	→ \mapsto
$\longleftrightarrow \setminus longleftrightarrow$	$\longmapsto \setminus ext{longmapsto}$
\Leftrightarrow \setminus Leftrightarrow	/ \nearrow
\iff \Longleftrightarrow (syn.: \iff)	
\leftrightarrows \setminus leftrightarrows	∖ \searrow
ightleftarrows	√ \swarrow
\leftrightarrows \leftrightharpoons	<pre></pre>
ightharpoons	↓ \Updownarrow
→ \leadsto	

La négation des symboles relationnels s'obtient en faisant précéder la commande de \not, comme dans $A \rightarrow E$

```
\neq \neq
                            ⇒ \nRightarrow
              \nmid
            ∦ \nparallel
∄ \nexists
            → \nrightarrow
                            ⟨→ \nleftrightarrow
\notin \setminus notin
            ← \nleftarrow
                            ⇔ \nLeftrightarrow
```

14/32

Mathématiques Présentations : la classe Beamer

Mathématiques Présentations : la classe Beamer

Parenthèses extensibles

$\left(\frac{a}{b}\right)$ \$\left(\dfrac{a}{b} \right)\$

\$\left|\frac{\phi(t)}{3} \right\rangle\$

\$\left. \dfrac{\partial f} {\partial T} \right)_{P,V}\$

Cas particulier:

$$BC^2^{\star}_{D^2}^{\bullet}$$

\big, \Big, \bigg et \Bigg (par ordre croissant)

\$\big(\overbrace{AB^2 + BC^2}^{\text{Pythagore}} \big)\$

$$(AB^2 + BC^2)$$

Parenthèses extensibles

13/32

15/32

(({ \{	\langle \langle	↑ \updownarrow
))	} \}	\rangle \rangle	
[[\lfloor	↑ \uparrow	\ \backslash
]]] \rfloor	↑ \Uparrow	\
/ /	\lceil	↓ \downarrow	$\llbracket \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
	\rceil	\Downarrow \Downarrow	$ bracket^\dagger$

† commandes du package stmaryrd

Tableaux et matrices

f(t)	<i>F</i> (<i>p</i>)
1	1/p
t	$1/p^{2}$

La commande \hphantom{texte} produit un caractère blanc, de hauteur nulle, ayant la même largeur que texte, tandis que \vphantom{texte} produit un caractère blanc, de largeur nulle, ayant la même hauteur que le texte.

Matrices

··· \cdots : \vdots ·· \ddots

{Bmatrix}

Exercice 6

17/32

19/32

{smallmatrix}

Présentations : la classe Beamer

Mathématiques _____

{Vmatrix}

Mathématiques Présentations : la classe Beamer

i i i

Empilement de symboles

$$f(\theta) = \underbrace{\cos^2 \theta + \sin^2 \theta}_{=1} + \underbrace{2 \sin \theta \cos \theta}_{=1} = 1 + \sin 2\theta.$$

 $f(\theta) = \frac{\cos^2\theta^2}{\cot^2\theta^2} + \cos^2\theta^2 = 1$

On obtient $1, \ldots, n$ par $\displaystyle 1, \ldots, n$ par $\displaystyle 1, \ldots, n$.

a	
$\overbrace{1,\ldots,n}$	<pre>\$\overbrace{1,\ldots,n}^a\$</pre>
$\overline{1,\ldots,n}$	<pre>\$\overline{1,\ldots,n}\$</pre>
$\overline{1,\ldots,n}$	<pre>\$\overleftarrow{1,\ldots,n}\$</pre>
$\overrightarrow{1,\ldots,n}$	<pre>\$\overrightarrow{1,\ldots,n}\$</pre>
$\overrightarrow{1,\ldots,n}$	<pre>\$\overleftrightarrow{1,\ldots,n}\$</pre>

Autres empilements

$a \stackrel{def}{=} b^2$	\$a\stackrel{\text{déf}}{=} b^2\$ Empilement (stack) d'un premier argument audessus d'un second, ce dernier étant sur la ligne de base
$\binom{n}{p}$	<pre>\$\binom{n}{p}\$ Coefficients binomiaux de Newton</pre>
$x_n \xrightarrow[n \to \infty]{N_2} 0$	<pre>\$x_n\xrightarrow[n\to\infty]{N_2} 0\$ Flèches extensibles vers la droite</pre>
$U \xleftarrow{g^{x_i}} V$	$ $U\times (b_1,\ldots,b_n)_{g^{x_i}}V$ Flèches extensibles vers la gauche $

Numérotation des équations

Å	<pre>\$\overset{\circ}{A}\$ Exposant centré</pre>
<i>E</i> *	<pre>\$\underset{*}{E}\$ Indice centré</pre>
$a\prod_{b}^{c}$	<pre>\$\sideset{_a^\ell}{_b^c} \prod\$ Indices et exposants sur les deux côtés d'un opé- rateur</pre>
$\sum_{\substack{i=1\\i\neq j}}^{n}a_{ij}$	<pre>\$\sum_{\substack{i=1 \\ i\neq j}}^n\$ Empilement d'un nombre quelconque de lignes centrées¹ séparées par des \\</pre>

$$y'' - \omega^2 y = f \tag{1}$$

L'équation (1) implique la continuité de y.

21/32

Mathématiques Présentations : la classe Beamer

Présentations : la classe Beamer

Modification locale de la numérotation

$\mathbf{v''} - \omega^2 \mathbf{v} = \mathbf{f}$ (*)

L'équation (*) implique la continuité de y.

La commande \tag* n'insère pas de parenthèses autour de son argument.

L'instruction \notag (ou son synonyme \nonumber) permet au contraire de supprimer une numérotation.

Equations sur plusieurs lignes

$$\langle f(ax), \phi(x) \rangle = \int f(ax) \phi(x) dx$$

$$= \int f(x) \phi\left(\frac{x}{a}\right) \frac{dx}{|a|}$$

$$= \frac{1}{|a|} \left\langle f(x), \phi\left(\frac{x}{a}\right) \right\rangle$$
(3)

Exercice 8

Exercice 9

22/32

Équation à l'intérieur d'une équation

25/32

26/32

Mathématiques Présentations : la classe Beamer

Mathématiques Présentations : la classe Beamer

Sous-équations

Les lignes trop longues

$$\iiint_{\Delta} f(u, v, w) \, \mathrm{d}u \, \mathrm{d}v \, \mathrm{d}w =$$

$$\iiint_{D} f\left(u(x, y, z), v(x, y, z), w(x, y, z)\right) \times$$

$$\left|\frac{D(u, v, w)}{D(x, y, z)}\right| \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z \quad (6)$$

$$\left|\frac{D(u, v, w)}{D(x, y, z)}\right| \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z \quad (6)$$

$$\left|\frac{D(u, v, w)}{D(x, y, z)}\right| \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z \quad (6)$$

$$\left|\frac{D(u, v, w)}{D(x, y, z)}\right| \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z \quad (6)$$

$$\left|\frac{D(u, v, w)}{D(x, y, z)}\right| \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z \quad (6)$$

$$\left|\frac{D(u, v, w)}{D(x, y, z)}\right| \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z \quad (6)$$

$$\left|\frac{D(u, v, w)}{D(x, y, z)}\right| \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z \quad (6)$$

$$\left|\frac{D(u, v, w)}{D(x, y, z)}\right| \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z \quad (6)$$

$$\left|\frac{D(u, v, w)}{D(x, y, z)}\right| \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z \quad (6)$$

$$\left|\frac{D(u, v, w)}{D(x, y, z)}\right| \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z \quad (6)$$

$$\left|\frac{D(u, v, w)}{D(x, y, z)}\right| \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z \quad (6)$$

27/32 28/32

\newtheorem{conj}{Conjecture}

Numéroter des théorèmes

 $\[\delta_{ij} = \]$ \begin{cases} $\delta_{ij} = \begin{cases} 0 & \text{si } i \neq j \\ 1 & \text{si } i = j \end{cases}$ $0 & \text{k \text{text{si } i \neq j}}$ $1 & \text{k \text{text{si } i = j}}$ \end{cases} \l

Autres environnements : {split}, {gather}, {gathered}, {alignat} et {flalign}

Exercice 10

\begin{conj}[Goldbach] Tout nombre entier pair \$n\geqslant 4\$ peut s'écrire comme la somme de deux nombres premiers. \end{conj}

Pour que le compteur de référence soit la section : \newtheorem{conj2}{Conjecture}[section]

et dans le texte : \begin{conj2}[Goldbach] ... \end{conj2}

Personnalisation: package ntheorem

Exercice 11

29/32

30/32

Exemple minimal

\documentclass{beamer} \usetheme{Warsaw} \modeentation> \title{Le titre} \author{L'auteur} \begin{document} \begin{frame} \titlepage \end{frame} \section{Première partie} \begin{frame} \frametitle{Le titre du premier transparent} \end{frame} \end{document}

Présentations : la classe Beamer

Découvrir des éléments au fur et à mesure

Présentations : la classe Beamer

Du texte révélé uniquement à partir du 4^e affichage du transparent, mais dont la place est réservé dès le départ.

\uncover<4->{texte}

La même chose, sans réserver la place :

\only<4->{texte}

Pour des énumérations dont les éléments apparaissent les uns après les autres :

\begin{itemize} \item<1-> texte 1 $\left| \text{item} \right| < 2 -> \text{ texte } 2$ \item<3-> texte 3 \end{itemize}

31/32