Integrated Forms of Common Rate Laws for $R \rightarrow P$

	Zero-Order Reaction	First-Order Reaction	Second-Order Reaction
The Rate Law	Rate = k	Rate = k[R]	Rate = $k[R]^2$
The Differential Form of the Rate Law	$-\frac{d[R]}{dt} = k$	$-\frac{d[R]}{dt} = k[R]$	$-\frac{d[R]}{dt} = k[R]^2$
	$d[\mathbf{R}] = -kdt$	$\frac{1}{[R]}d[R] = -kdt$	$\frac{1}{\left[\mathbf{R}\right]^2}d\left[\mathbf{R}\right] = -kdt$
The Integrated Form of the Rate Law and its Derivation	$\int d[R] = -k \int dt$	$\int \frac{1}{[R]} d[R] = -k \int dt$	$\int \frac{1}{\left[\mathbf{R}\right]^2} d[\mathbf{R}] = -k \int dt$
(Last equation is linear form for	$[R]_{t} - [R]_{o} = -kt$	$\ln[R]_{t} - \ln[R]_{o} = -kt$	$-\frac{1}{\left[\mathrm{R}\right]_{\mathrm{t}}} + \frac{1}{\left[\mathrm{R}\right]_{\mathrm{o}}} = -kt$
plotting)	$[R]_{t} = [R]_{o} - kt$	$\ln[R]_{t} = \ln[R]_{o} - kt$	$\frac{1}{[R]_{t}} = \frac{1}{[R]_{o}} + kt$
What to Plot and How to Interpret	A plot of $[R]_t$ vs. time is linear with a slope of $-k$ and a y-intercept of $[R]_o$	A plot of $\ln[R]_t$ vs. time is linear with a slope of $-k$ and a y-intercept of $\ln[R]_0$	A plot of [R] ⁻¹ vs. time is linear with a slope of <i>k</i> and a y-intercept of [R] _o ⁻¹

You are not responsible for these derivations; you are, however, responsible for knowing the linear forms of the integrated rate laws and how to use them to (i) determine a reaction's rate law; and (ii) to determine values for a reaction's rate constant and the initial concentration of reactant. Study them!