Se da automatul finit de stari

Se da automatul finit de stari

Alegeti afirmatiile corecte. Alegeri incorecte se penalizeaza

Select one or more:

- a. are acelasi limbaj cu expresia regulata 10*
- ☐ b. are acelasi limbaj cu expresia regulata 1000*
- c. este un automat finit determinist
- ✓ d. are acelasi limbaj cu expresia regulata 1(000)*

Completati (prin drag & drop) derivarea cea mai din stanga pentru stringul (lambda x.x x)

```
Var ( x ) LExp y

Se da gramatica G=(\{\lambda, x, y, ..., (, )\}, \{LExp, Var\}, LExp, P\}, unde P contine 
LExp -> Var | \lambda Var . LExp | ( LExp LExp)

Var -> x | y

Completati (prin drag &drop) derivarea cea mai din stanga pentru stringul (\lambdax.x x)

LExp => ( LExp LExp ) => (\lambda Var LExp LExp ) => * (\lambdax.x x)
```

Se da gramatica G={{cat,dog,rug,chased,sat,in,out},{S,NP,VP,PP,N,V,P),S,PROD} unde PROD este setul de productii

Fie automatul

Care dintre expresiile regulate exprima limbajul {w|w contine pe orice pozitie para 0}

Se da gramatica G={{lambda,x,y,(,)} {L,V},L,P} unde P continue

```
Se da gramatica G = \{\{\lambda, x, y, ..., (, )\}, \{L, V\}, L, P\}, unde P contine L -> V | \lambda V . L | (L L) Var -> x | y

Completati (prin drag &drop) derivarea cea mai din dreapta pentru stringul (x y)

L => (L L) => (L \Rightarrow V \Rightarrow ) => (L \Rightarrow Q \Rightarrow ) =>*(x y)
```

Completati (prin drag & drop) derivarea cea mai din stanga pentru stringul (lambda x.y y)

Se aplica LL(k) strong .Alegeti afirmatiile adevarate

```
Se da gramatica cu productiile

A-> (Es)

Es -> e , Es | e

si simbolurile terminale e, (, ) si ,

Se aplica LL(k) strong. Alegeti afirmatiile adevarate. Alegerile incorecte se penalizeaza

Select one or more:

a. Pentru k=0, automatul rezultat este nedeterminist

b. Pentru k=1, automatul rezultat este nedeterminist

c. Pentru k=1, automatul rezultat este determinist

d. un lookahead de 1 singur terminal este suficient

e, este necesar cel putin un lookahead de 2 simboluri terminale
```

Ce fel de automat este?

Se dau gramaticile G1,G2

Care aifrmatii sunt adevarate?

```
Se dau gramaticile G1=({e, ','}, {P, Ps}, Ps, Productii1}, G2=({e, ','}, {P,
            Productii1 = { Ps \rightarrow P; Ps \mid \varepsilon
                            P-> e}
ion
           Productii2 = { Ps-> P ; Ps | P
                           P-> e}
           Care afirmatii sunt adevarate?
          e,e,e apartine
                            L(G2), dar nu si L(G1)
                                                          $
          e,e,e, apartine
                            L(G1), dar nu si L(G2)
                                  6
```

Completati gramatica stiind ca arborii de parsare de mai jos sunt corecti

Se da gramatica G cu productiile

Se construieste automatul stiva in abordarea simpla top-down

Se da gramatica G cu prod		
S -> Food 'is' Quality		
Food -> Modifier Food 'p	izza' 'avocado'	
Modifier -> 'large' 'big' 'sm	nall' 'this' 'that'	>
Quality -> 'fresh' 'healthy'	'expensive' 'not' Quality	
si is, large, big, small, this, t	that, fresh, healthy, expensive, not drept terminale.	
Se construieste automatul	stiva in abordarea simpla top-down (descendenta) (algoritmul fara lookahead).	
S q -> Quality 'is' Food q	este o productie din acest automat de tip consum de la intrare pe baza stivei	
	este o productie prin care se mentioneaza ca se poate consuma oricand un terminal de la intrare	

LA ASTEA ESTE LA PRIMA : ESTE O PRODUCTIE DIN AUTOMAT; IN MOMENTUL FOLOSIRII, SE PREZICE CA SE VA IDENTIFICA IN STRINGUL DE LA INTRARE UN STRING DERIVAT DIN FOOD IS QUALITY

LA A DOUA: ESTE O PRODUCTIE DIN ACEST AUTOMAT DE TIP CONSUM DE LA INTRARE PE BAZA STIVEI

Se da gramatica cu productiile

Presupunem ca s-a ajuns cu analiza la starea q3=[Es->.e,Es]

Se aplica LL(2) strong. Alegeti afirmatiile adevarate.

Se da gramatica .

Care stringuri apartin limbajului gramaticii?

Se dau urmatoarele doua automate

Alegeti afirmatiile corecte

Fie automatul

Alegeti raspunsul corect

Stiind ca gramatica de mai jos are terminale $\{\},1,2$, simbolul de start este A,iar arborele de mai jos este arborele de parsare pentru $\{1\{2\}2\}$. completati gramatica

Se da gramatica cu productiile

Se aplica LL(2) strong .Alegeti afirmatiile adevarate

```
Se da gramatica cu productiile

A-> (Es)

Es -> e , Es | e

si simbolurile terminale e, (, ) si ,

Se aplica LL(2) strong. Alegeti afirmatiile adevarate. Alegerile incorecte se penalizeaza

Select one or more:

\square a. Se porneste de la situatia q_0 = [A \rightarrow .(Es)]

\square b. in analiza lui q0 se identifica o noua stare q_1 = [A \rightarrow .(Es)]

\square c. in analiza lui q0 se identifica o noua stare q_1 = [Es \rightarrow .e, Es]

\square d. Din starea q_0 se adauga productia q_0(\rightarrow q_1)

\square e. Din starea q_0 se adauga productia q_0e \rightarrow q_1
```

Stiind ca gramatica de mai jos este o gramatica regulate al carei limbaj continue toate stringurile formate din 0 si 1 mai putin cele care incep cu 0 si se termina cu 1.Completati spatiile libere

Se da gramatica cu Song

Care afirmatii sunt adevarate

Se da gramatica cu Song(alte variante)

Alegeti afirmatiile corecte

So do gramatino G. (1)	
Se da gramatica G=({do, mi, sol}, {Song, SongDo, SongMi, SongSol}, Song, P}, unde P cont	tine
Song = do SongDo mi SongMl sol SongSol	
SongDo = mi SongMi sol SongSol	
SongMi = mi SongMi sol SongSol do songDo	
SongSol = sol SongSol mi SongMi epsilon	
Notatio feterite	
Notatia folosita pt expresiile regulate este cea conceptuala, nu cea din Lex	
Alegeti afirmatiile corecte.	
Alegerile gresite se penalizeaza.	
Select one or more:	
a. Limbajul gramaticii este acelasi cu al expresiei regulate do+mi +sol	
□ b. Limbajul gramaticii este acelasi cu al expresiei regulate (do + mi+ sol)*	
□ c. Limbajul gramaticii este acelasi cu al expresiei regulate do*mi*sol* □	
d. Limbajul gramaticii nu este acelasi cu al expresiei regulate (do+mi+sol)(do + mi+ sol))*

Stiind ca gramatica de mai jos are doua terminale ,\ si / ,simbolul de start este X ,iar L(G)={string cu numar efal de \bigvee si \bigwedge },completati spatiile libere

Ce fe de automat este?

Se da A1 si A2 Alegeti raspunsul corect

Sw da gramatica

Care stringuri apartin gramaticii

Stiind ca folosind gramatica se pot construe cei doi arbori de derivare, completati

Se da A1 si A2 (altul)

Alegeti raspunsul corect

Se da gramatica G cu productiile

Se construieste automatul stiva in abordarea simpla top-down

LA ASTEA ESTE

LA PRIMA: ESTE O PRODUCTIE DIN ACEST AUTOMAT DE TIP CONSUM DE LA INTRARE PE BAZA STIVEI

LA A DOUA : ESTE O PRODUCTIE DIN AUTOMAT; IN MOMENTUL FOLOSIRII, SE PREZICE CA SE VA IDENTIFICA IN STRINGUL DE LA INTRARE UN STRING DERIVAT DIN FOOD IS QUALITY

MAI JOS SUNT TOATE VARIANTELE POSIBILE

Se da gramatica G cu productiile

Se construieste automatul stiva in abordarea simpla top-down

Se da gramatica G cu Song(iara alta)

Select one or more

Se da gramatica ,unde P

Alegeti afirmatiile adevarate

Fie automatul

Alegeti raspunsul corect

Fie automatul

Alegeti raspunsul corect

Alegeti raspunsurile adevarate.

egeti raspunsurile adevarate. Fiecare raspuns gresit se penalizeaza.	
Select one or more: ✓ a. Limbajul parantezelor poate fi analizat de un automat stiva. ✓ b. Limbajul parantezelor nu poate fi analizat de un automat finit de stare. ✓ c. Limbajul parantezelor poate fi descris cu o gramatica regulata. ✓ d. Limbajul format din stringuri palindrom poate fi descris cu o gramatica regulata. ✓ e. Pentru orice automat finit determinist exista o expresie regulata cu acelasi limbaj	
 g. Pentru orice automat finit determinist exista o expresie regulata cu acelasi limbaj. ✓ g. Etapa de scanare are loc inainte etapei de analiza sintatica h. Automatele stiva recunosc aceleasi limbaje precum automatele finite 	