

Hierarchical Bayesian Inference + Probabilistic Graphical Models

Daniela Huppenkothen

DIRAC Institute, University of Washington

Nature is complex!

https://github.com/dhuppenkothen/cargese2018_tutorials

... so is our data (collection)!

All models are wrong, but some are useful.

— George Box

I have heard of Bayes theorem

- I have heard of Bayes theorem
- I have used Bayes theorem in research

- I have heard of Bayes theorem
- I have used Bayes theorem in research
- I have used Bayesian hierarchical models in research

- I have heard of Bayes theorem
- I have used Bayes theorem in research
- I have used Bayesian hierarchical models in research
- I have heard of machine learning

- I have heard of Bayes theorem
- I have used Bayes theorem in research
- I have used Bayesian hierarchical models in research
- I have heard of machine learning
- I have used machine learning in research

- I have heard of Bayes theorem
- I have used Bayes theorem in research
- I have used Bayesian hierarchical models in research
- I have heard of machine learning
- I have used machine learning in research
- I have written code in Python before

This week

(1) Fun With Bayes(ian Hierarchical Models)

(2) Machine Learning

(3) Statistical Machine Learning

0.98	0.01
0.004	0.006

0.98	0.01
0.004	0.006

1)	p(**,***) =
2)	
3)	
4)	

0.98	0.01
0.004	0.006

1)	p(\$\display\$, \$\display\$) = 0.98
2)	
3)	
4)	

0.98	0.01
0.004	0.006

1) P(~, -) - U.70	1)	p(**,***)	= 0.98
-------------------	----	-----------	--------

2)
$$p(x) = 0.9898$$

0.98	0.01
0.004	0.006

1)	p(**,***) =	: 0.98

2)
$$p(x) = 0.9898$$

3)
$$p(\Delta) = 0.01$$

0.98	0.01
0.004	0.006

41			000
	p		0.98
-		7 7	U. / U

2)
$$p(x) = 0.9898$$

3)
$$p(\Delta) = 0.01$$

4)
$$p(\pi) = 0.6$$

"The weather depends on your location"

$$p(x) = p(x) = p(x)$$

"The weather depends on your location"

$$p(x) = p(x) = p(x)$$

$$p(\Theta, \diamondsuit, \mathbb{Z}) = p(\Theta | \diamondsuit, \mathbb{Z})p(\diamondsuit | \mathbb{Z})p(\mathbb{Z})$$

$$p(\Theta, \diamondsuit, \mathbb{Z}) = p(\Theta | \diamondsuit, \mathbb{Z})p(\diamondsuit | \mathbb{Z})p(\mathbb{Z})$$

$$p(\Theta, \diamondsuit, \mathbb{Z}) = p(\Theta | \diamondsuit, \mathbb{Z})p(\diamondsuit | \mathbb{Z})p(\mathbb{Z})$$

$$p(\Theta, \diamondsuit, \mathbb{Z}) = p(\Theta | \diamondsuit, \mathbb{Z})p(\diamondsuit | \mathbb{Z})p(\mathbb{Z})$$

$$p(\Theta, \diamondsuit, \mathbb{Z}) = p(\Theta | \diamondsuit, \mathbb{Z})p(\diamondsuit | \mathbb{Z})p(\mathbb{Z})$$

$$p(\Theta, \diamondsuit, \mathbb{Z}) = p(\Theta | \diamondsuit, \mathbb{Z})p(\diamondsuit | \mathbb{Z})p(\mathbb{Z})$$

$$p(\Theta, \diamondsuit, \mathbb{Z}) = p(\Theta | \diamondsuit, \mathbb{Z})p(\diamondsuit | \mathbb{Z})p(\mathbb{Z})$$

"known"

$$p(\mathfrak{S}, \mathfrak{S}, \mathfrak{S}) = p(\mathfrak{S} | \mathfrak{S}, \mathfrak{S})p(\mathfrak{S} | \mathfrak{S})p(\mathfrak{S})$$

"known"

What else does 💝 depend on?

- Is it daytime?
- are you outside?
- what's the temperature?

Exercise: Add these variables to a graphical network!

What else does odepend on?

- Is it daytime?
- are you outside?
- what's the temperature?

$$p(\mathfrak{S}, \mathfrak{S}, \mathfrak{S}, \mathfrak{S}, \mathfrak{S}, \mathfrak{S}) = p(\mathfrak{S} | \mathfrak{S}, \mathfrak{S}) p(\mathfrak{S} | \mathfrak{S}, \mathfrak{S})$$

$$\times p(\mathfrak{S} | \mathfrak{S}) p(\mathfrak{S}) p(\mathfrak{S}) p(\mathfrak{S})$$

What else does odepend on?

$$p(\mathfrak{S}, \mathfrak{S}, \mathfrak{S}, \mathfrak{S}, \mathfrak{S}, \mathfrak{S}, \mathfrak{S}) = p(\mathfrak{S} | \mathfrak{S}, \mathfrak{S}) p(\mathfrak{S} | \mathfrak{S}, \mathfrak{S})$$

$$\times p(\mathfrak{S} | \mathfrak{S}) p(\mathfrak{S}) p(\mathfrak{S})$$

What else does odepend on?

$$p(\mathfrak{S}, \mathfrak{S}, \mathfrak{S}, \mathfrak{S}, \mathfrak{S}, \mathfrak{S}) = p(\mathfrak{S} | \mathfrak{S}, \mathfrak{S}) p(\mathfrak{S} | \mathfrak{S}, \mathfrak{S})$$

$$\times p(\mathfrak{S} | \mathfrak{S}) p(\mathfrak{S}) p(\mathfrak{S})$$

Repeated Observations

$$p(\mathfrak{S}, \mathfrak{S}, \mathfrak{S}, \mathfrak{S}, \mathfrak{S}, \mathfrak{S}) = \prod_{i=1}^{7} p(\mathfrak{S} | \mathfrak{S}, \mathfrak{S}) p(\mathfrak{S} | \mathfrak{S}, \mathfrak{S})$$

$$\times p(\mathfrak{S} | \mathfrak{S}) p(\mathfrak{S}) p(\mathfrak{S})$$

Repeated Observations

$$p(\mathfrak{S}, \mathfrak{S}, \mathfrak{S}, \mathfrak{S}, \mathfrak{S}, \mathfrak{S}, \mathfrak{S}) = \prod_{i=1}^{7} p(\mathfrak{S} | \mathfrak{S}, \mathfrak{S}) p(\mathfrak{S} | \mathfrak{S}, \mathfrak{S})$$

$$\times p(\mathfrak{S} | \mathfrak{S}) p(\mathfrak{S}) p(\mathfrak{S})$$

Repeated Observations

$$p(\mathfrak{S}, \mathfrak{S}, \mathfrak{S}, \mathfrak{S}, \mathfrak{S}, \mathfrak{S}) = \prod_{i=1}^{7} p(\mathfrak{S} | \mathfrak{S}, \mathfrak{S}) p(\mathfrak{S} | \mathfrak{S}, \mathfrak{S})$$

$$\times p(\mathfrak{S} | \mathfrak{S}) p(\mathfrak{S}) p(\mathfrak{S})$$

"repeated variables"

"The weather depends on your location"

$$p(\diamondsuit, \clubsuit) = p(\diamondsuit|\clubsuit)p(\clubsuit)$$

$$= p(\clubsuit|\diamondsuit)p(\diamondsuit)$$

"The weather depends on your location"

$$p(\diamondsuit, \diamondsuit) = p(\diamondsuit|\diamondsuit)p(\diamondsuit)$$

$$= p(\diamondsuit|\diamondsuit)p(\diamondsuit)$$

$$p(\mathfrak{S}) * p(\mathfrak{S}, \mathfrak{S}, \mathfrak{S}, \mathfrak{S}, \mathfrak{S}, \mathfrak{S}) = \prod_{i=1}^{7} p(\mathfrak{S} | \mathfrak{S}, \mathfrak{S}) p(\mathfrak{S}) p(\mathfrak{S})$$

$$\times p(\mathfrak{S} | \mathfrak{S}) p(\mathfrak{S}) p(\mathfrak{S})$$

Exercise

Write down a graphical model for the toy cosmological parameter inference exercise from the Bayesian statistics session

Alternative Exercise

Write down a graphical model for the probability of catching a cold. What different factors does that probability depend on? What variables should you take into account? What do they in turn depend on?

Bayesian Hierarchical Models

We have shown that we can write down arbitrarily complex probability distributions ...

$$p(\mathfrak{D}) p(\mathfrak{D}, \mathfrak{D}, \mathfrak{D}, \mathfrak{D}, \mathfrak{D}) = \prod_{i=1}^{7} p(\mathfrak{D} | \mathfrak{D}, \mathfrak{D}) p(\mathfrak{D}) p(\mathfrak{D})$$

$$\times p(\mathfrak{D} | \mathfrak{D}) p(\mathfrak{D}) p(\mathfrak{D})$$

We have shown that we can write down arbitrarily complex probability distributions ...

$$p(\mathfrak{D}) p(\mathfrak{D}, \mathfrak{D}, \mathfrak{D}, \mathfrak{D}, \mathfrak{D}, \mathfrak{D}) = \prod_{i=1}^{7} p(\mathfrak{D} | \mathfrak{D}, \mathfrak{D}) p(\mathfrak{D}) p(\mathfrak{D})$$

$$\times p(\mathfrak{D} | \mathfrak{D}) p(\mathfrak{D}) p(\mathfrak{D})$$

... now what?

Might have many objects ...

... or many observations per object

Huppenkothen et al (2015)

... or several types of uncertainties

A motivating example ...

SN la Light Curves

What observables and parameters do you have in SN Ia light curves?

supernova physics

supernova physics

dust extinction/reddening

supernova physics

dust extinction/reddening

distance modulus

population-level (global) parameters

supernova physics

dust extinction/reddening

distance modulus

supernova physics

dust extinction/reddening

distance modulus

supernova physics

dust extinction/reddening

distance modulus

$$p(\theta|D,I) \propto p(D|\theta,I)p(\theta|\alpha,I)$$

$$p(\theta|D,I) \propto p(D|\theta,I)p(\theta|\alpha,I)$$

assume to be known

$$p(\theta|D,I) \propto p(D|\theta,I)p(\theta|\alpha,I)$$

assume to be known

$$p(\theta, \alpha | D, I) \propto p(D|\theta, I)p(\theta|\alpha, I)p(\alpha|I)$$

$$p(\theta|D,I) \propto p(D|\theta,I)p(\theta|\alpha,I)$$

assume to be known

$$p(\theta, \alpha|D, I) \propto p(D|\theta, I)p(\theta|\alpha, I)p(\alpha|I)$$
 \uparrow

infer α along with θ

$$P(\boldsymbol{\phi}_{s}, \mu_{s}, A_{H}^{s}, R_{V}^{s} | \mathcal{D}_{s}, z_{s}; \boldsymbol{\mu}_{\psi}, \boldsymbol{\Sigma}_{\psi}, \tau_{A}, \alpha_{R})$$

$$\propto P(\mathcal{D}_{s} | \boldsymbol{\phi}_{s}) \times P(\mu_{s} | z_{s})$$

$$\times P(\boldsymbol{\psi}_{s} = \boldsymbol{\phi}_{s} - \mathbf{v}\mu_{s} - \mathbf{A}_{s} | \boldsymbol{\mu}_{\psi}, \boldsymbol{\Sigma}_{\psi})$$

$$\times P(\boldsymbol{A}_{H}^{s}, R_{V}^{s} | \tau_{A}, \alpha_{R}).$$
(17)

Could histogram individual parameters ...

... but how?

$$P(\{\boldsymbol{\phi}_{s}, \mu_{s}, A_{H}^{s}, R_{V}^{s}\}; \boldsymbol{\mu}_{\psi}, \boldsymbol{\Sigma}_{\psi}, \tau_{A}, \alpha_{R} | \mathcal{D}, \mathcal{Z})$$

$$\propto \left[\prod_{s=1}^{N_{SN}} P(\boldsymbol{\phi}_{s}, \mu_{s}, A_{H}^{s}, R_{V}^{s} | \mathcal{D}_{s}, z_{s}; \boldsymbol{\mu}_{\psi}, \boldsymbol{\Sigma}_{\psi}, \tau_{A}, \alpha_{R}) \right]$$

$$\times P(\boldsymbol{\mu}_{\psi}, \boldsymbol{\Sigma}_{\psi}) \times P(\tau_{A}, \alpha_{R}).$$

$$(18)$$

Why?

- Learn population parameters
- Improve inferences on individual population members
- self-consistent constraints on the physics
- can deal with large measurement uncertainties, systematic uncertainties and upper limits
- enables direct, probabilistic relationships between theory and observations

Population Parameters

Population Parameters

Bayesian Shrinkage

SN2006cp

50

40

60

Bayesian Shrinkage

Short Aside: Gibbs Sampling

- hierarchical models can be hard to sample with regular MCMC
- sample each variable (or group of variables) in turn, keep everything else constant
- exploit conditional independence in joint probability density to make sampling much more efficient

Exercises: See Notebook!

Nature is complex!

DiRAC

Click to add text

Click to add title

Click to add text

Click to add text

Click to add subtitle

Click to add subtitle

