## **Hypothesis and testing Project**

# Data Science Research Methodology (R programming language)

## บทน้ำ

ข้อมูลใน final.csv ประกอบไปด้วย 18 Attributes และข้อมูล 199 ตัวอย่าง เกี่ยวกับข้อมูลสมมติของลูกค้าสถาบัน ทางการเงิน โดยรายละเอียดแต่ละ attribute แสดงดังตารางที่ 1

ตารางที่ 1 แสดงรายละเอียดข้อมูลแต่ละ attribute

| ชื่อตัวแปร               | คำอธิบาย                                         |  |
|--------------------------|--------------------------------------------------|--|
| Attrition_Flag           | สถานะของลูกค้า                                   |  |
| Customer_Age             | อายุ                                             |  |
| Gender                   | เพศ                                              |  |
| Dependent_count          | จำนวนผู้อยู่ในความอุปถัมภ์                       |  |
| Education_Level          | ระดับการศึกษา                                    |  |
| Marital_Status           | สถานภาพ                                          |  |
| Income_Category          | ระดับรายได้                                      |  |
| Card_Category            | ประเภทของบัตรเครดิตที่ถือ                        |  |
| Months_on_book           | จำนวนเดือนที่ใช้บริการ                           |  |
| Total_Relationship_Count | จำนวนของประเภทผลิตภัณฑ์/บริการที่มีสถาบันการเงิน |  |
| Credit_Limit             | วงเงินรวม                                        |  |
| Total_Revolving_Bal      | วงเงินสินเชื่อหมุนเวียน                          |  |
| Total_Trans_Amt          | มูลค่ารวมของทุกรายการที่ใช้จ่าย                  |  |
| Total_Trans_Ct           | จำนวนธุรกรรมที่ใช้จ่าย                           |  |
| Avg_Utilization_Ratio    | อัตราการใช้วงเงิน                                |  |

# Part 1: Chi-Square Test of Independence

## บทนำ

ข้อมูลที่นำมาใช้ในการทดสอบ Chi-Square Test of Independence ประเภท categorical ในชุดข้อมูลนี้ ประกอบไปด้วย 6 จาก 18 Attributes แสดงดัง ตารางที่ 2 โดยจะตั้งเป้าหมายที่ [Income\_Categories] กับ attributes อื่นที่เหลือเพื่อทดสอบ Independence ของแต่ละข้อมูลเมื่อเทียบกับข้อมูล [Income\_Categories] เนื่องจากต้องการพิจารณาข้อมูลแต่ละชุดว่าชุดใดที่ไม่เป็นอิสระต่อเป้าหมาย หรือมีความสัมพันธ์อย่างมีนัยสำคัญ ต่อข้อมูลเป้าหมาย

### ตารางที่ 2 แสดงข้อมูล categorical ในชุดข้อมูล

| Attributes      | Data                                                               |  |
|-----------------|--------------------------------------------------------------------|--|
| Attrition_Flag  | "Attrited Customer" "Existing Customer"                            |  |
| Gender          | "M" "F"                                                            |  |
| Education_Level | "Uneducated" "College" "Graduate" "High School" "Post-Graduate"    |  |
|                 | "Doctorate" "Unknown"                                              |  |
| Marital_Status  | "Single" "Married" "Divorced" "Unknown"                            |  |
| Income_Category | "Gold" "Blue" "Silver"                                             |  |
| Card_Category   | "\$80K - \$120K" "\$40K - \$60K" "Less than \$40K" "\$60K - \$80K" |  |
|                 | "\$120K +" "Unknown"                                               |  |

### ผลการวิเคราะห์

สมมติฐานโดยจะทำการทำสอบ Chi-Square Test of Independence กำหนดเป้าหมาย [Income\_Categories] กับ attributes อื่นที่เหลือ คำสั่งที่ใช้ในโปรแกรมสถิติ (R) ดังรูปที่ 1 โดยสมมติฐานมีดังต่อไปนี้

- H<sub>o</sub>: [Income\_Categories] กับ [Attrition\_Flag] are independent
   H<sub>a</sub>: [Income Categories] กับ [Attrition Flag] are not independent
- 2. H<sub>o</sub>: [Income\_Categories] กับ [Gender] are independent H<sub>a</sub>: [Income Categories] กับ [Gender] are not independent
- 3. H<sub>o</sub>: [Income\_Categories] กับ [Education\_Level] are independentH<sub>a</sub>: [Income\_Categories] กับ [Education\_Level] are not independent
- 4. H<sub>o</sub>: [Income\_Categories] กับ [Marital\_Status] are independentH<sub>a</sub>: [Income\_Categories] กับ [Marital\_Status] are not independent
- 5. H<sub>o</sub>: [Income\_Categories] กับ [Card\_Category] are independentH<sub>a</sub>: [Income\_Categories] กับ [Card\_Category] are not independent

```
library(readr)
path <- "C://Final.csv"

df <- read_csv(path)

# cross tap
cross_tap_att_inc <- table(df$Attrition_Flag, df$Income_Category)
cross_tap_gen_inc <- table(df$Gender, df$Income_Category)
cross_tap_edu_inc <- table(df$Education_Level, df$Income_Category)
cross_tap_mar_inc <- table(df$Marital_Status, df$Income_Category)
cross_tap_card_inc <- table(df$Card_Category, df$Income_Category)

# Chi-sqr test
chisq.test(cross_tap_att_inc)
chisq.test(cross_tap_edu_inc)
chisq.test(cross_tap_edu_inc)
chisq.test(cross_tap_mar_inc)
chisq.test(cross_tap_card_inc)</pre>
```

รูปที่ 1 คำสั่งที่ใช้ในโปรแกรมสถิติ (R) สำหรับ Chi-Square Test of Independence

ผลของคำสั่งแสดง cross-tab ของแต่ละ attribute คู่กับ [Income\_Categories] แสดงดัง รูปที่ 2 ถึง รูปที่ 6

```
>table(df$Attrition_Flag, df$Income_Category)

$120K + $40K - $60K $60K - $80K $80K - $120K Less than $40K Unknown
Attrited Customer 1 4 1 4 26 2
Existing Customer 1 26 15 19 83 17
```

รูปที่ 2 ผลของ cross-tab : [Income\_Categories] กับ [Attrition\_Flag]

```
>table(df$Gender, df$Income_Category)

$120K + $40K - $60K $60K - $80K $80K - $120K Less than $40K Unknown
F 0 25 0 0 104 19
M 2 5 16 23 5 0
```

รูปที่ 3 ผลของ cross-tab : [Income\_Categories] กับ [Gender]

```
>table(df$Education_Level, df$Income_Category)
                $120K + $40K - $60K $60K - $80K $80K - $120K Less than $40K Unknown
 College
                      0
                                  4
                                               3
                                                             2
                                                                           14
 Doctorate
                      0
                                  5
                                               0
                                                             2
                                                                            7
                                                                                     1
 Graduate
                                                                           30
 High School
                                   5
                                                                           23
 Post-Graduate
                      0
                                                                            8
                                                                                    1
 Uneducated
                      0
                                   2
                                                                            8
 Unknown
                                                                           19
```

รูปที่ 4 ผลของ cross-tab : [Income\_Categories] กับ [Education\_Level]

```
>table(df$Marital_Status, df$Income_Category)
           $120K + $40K - $60K $60K - $80K $80K - $120K Less than $40K Unknown
                                          2
 Divorced
                                          4
                                                                                8
 Married
                 2
                                                       11
                                                                       41
 Single
                                                       10
                                                                       50
                                                                                5
                              4
 Unknown
                                                                       11
```

รูปที่ 5 ผลของ cross-tab : [Income\_Categories] กับ [Marital\_Status]

```
>table(df$Card_Category, df$Income_Category)

$120K + $40K - $60K $60K - $80K $80K - $120K Less than $40K Unknown

Blue 2 29 16 22 108 19

Gold 0 0 0 1 0 0

Silver 0 1 0 0 1 0
```

รูปที่ 6 ผลของ cross-tab : [Income\_Categories] กับ [Card\_Category]

ผลของคำสั่งแสดง Chi-Square Test ของแต่ละ attribute คู่กับ [Income\_Categories] แสดงดังรูปที่ 7 ถึงรูปที่ 11 จาก threshold  $\alpha$  = 0.05 ตามสมมติฐานเป็นดังต่อไปนี้

- 1. [Income Categories] กับ [Attrition Flag] ; P-value = 0.29 : Fail to Reject H<sub>o</sub>
- 2. [Income\_Categories] กับ [Gender] ; P-value < 2.2e-16 : Reject  $H_o$
- 3. [Income\_Categories] กับ [Education\_Level] ; P-value = 0.37 : Fail to Reject  $H_o$
- 4. [Income Categories] กับ [Marital Status] ; P-value = 0.15 : Fail to Reject H<sub>o</sub>
- 5. [Income\_Categories] กับ [Card\_Category] ; P-value = 0.44 : Fail to Reject  $H_o$

```
> chisq.test(cross_tap_att_inc)
          Pearson's Chi-squared test

data: cross_tap_att_inc
X-squared = 6.1335, df = 5, p-value = 0.2934
```

รูปที่ 7 ผลของ Chi-Square Test : [Income\_Categories] กับ [Attrition\_Flag]

รูปที่ 8 ผลของ Chi-Square Test : [Income Categories] กับ [Gender]

รูปที่ 9 ผลของ Chi-Square Test : [Income\_Categories] กับ [Education\_Level]

```
> chisq.test(cross_tap_mar_inc)
          Pearson's Chi-squared test

data: cross_tap_mar_inc
X-squared = 20.555, df = 15, p-value = 0.1516
```

รูปที่ 10 ผลของ Chi-Square Test : [Income Categories] กับ [Marital Status]

รูปที่ 11 ผลของ Chi-Square Test : : [Income\_Categories] กับ [Card\_Category]

## บทสรุป

ผลของคำสั่งแสดง Chi-Square Test ของแต่ละ attribute คู่กับ [Income\_Categories] ที่ threshold  $\alpha=0.05$  ตามสมมติฐานพบว่าเพียงแค่ผลของ Chi-Square Test : [Income\_Categories] กับ [Gender] เท่านั้นที่สามารถ ปฏิเสธ  $H_o$  ด้วย P-value < 2.2e-16 หมายความว่า [Income\_Categories] กับ [Gender] ไม่เป็นอิสระต่อกัน อย่างมีนัยสำคัญทางสถิติ หรืออีกอย่างคือ [Income\_Categories] กับ [Gender] ตัวแปรมีความสัมพันธ์หรือมีการ เชื่อมโยงกัน

# Part 2: Logit Model

### บทน้ำ

ในการวิเคราะห์ด้วยแบบจำลอง Logit เพื่อทำนายสถานะของลูกค้า [Attrition\_Flag] ที่มีตัวแปร "Attrited Customer" ลูกค้าที่หยุดหรือเลิกใช้บริการ และ "Existing Customer" ลูกค้าที่ยังใช้บริการ โดยสร้าง 2 แบบจำลอง ที่มีตัวแปรแตกต่างกัน โดยแบบจำลองที่ 1 จะใช้ตัวแปรเพื่อทำนายเป้าหมายจาก [Months\_on\_book] จำนวน เดือนที่ใช้บริการ, [Total\_Relationship\_Count] จำนวนผลิตภัณฑ์ และ[Total\_Trans\_Ct] จำนวนธุรกรรมที่ใช้ จ่าย และแบบจำลองที่ 2 จะใช้ตัวแปร [Credit Limit] วงเงินรวม, [Total\_Revolving\_Bal] วงเงินสินเชื่อหมุนเวียน และ[Avg\_Utilization\_Ratio] อัตราการใช้วงเงินในการวิเคราห์ โดยตัวแปรทั้ง 2 แบบจำของแสดงดัง ตารางที่ 3

ตารางที่ 3 แสดงข้อมูลตัวแปรที่ใช้ในโมเดล

| Model No.1               |                | Model No.2            |                |
|--------------------------|----------------|-----------------------|----------------|
| Variables                | Target         | Variables             | Target         |
| Months_on_book           |                | Credit Limit          |                |
| Total_Relationship_Count | Attrition_Flag | Total_Revolving_Bal   | Attrition_Flag |
| Total_Trans_Ct           |                | Avg_Utilization_Ratio |                |

## ผลการวิเคราะห์

## แบบจำลองที่ 1

สมมติฐานโดยจะทำการทำสอบ Logit Model เพื่อทำนายเป้าหมาย [Attrition\_Flag] กับ attributes อื่น สำหรับ แบบจำลองที่ 1 คำสั่งที่ใช้ในโปรแกรมสถิติ (R) รูปที่ 12 โดยมี cut-off ที่ 0.5 โดยสมมติฐานมีดังต่อไปนี้

- 1.  $m H_o$ :  $m m{eta_1} = 0$  ; [Attrition\_Flag] กับ [Months\_on\_book] are no relationship
  - $\mathrm{H_{a:}}\,oldsymbol{eta_1}\, 
    eq 0$  ; [Attrition\_Flag] กับ [Months\_on\_book] are relationship
- 2.  $ho_{
  m o}$ :  $ho_2=0$  ; [Attrition\_Flag] กับ [Total\_Relationship\_Count] are no relationship
  - $H_a$ :  $oldsymbol{eta_2} 
    eq 0$  ; [Attrition\_Flag] กับ [Total\_Relationship\_Count] are relationship
- 3.  $_{ ext{o}}$ :  $oldsymbol{eta}_3=0$  ; [Attrition\_Flag] กับ [Total\_Trans\_Ct] are no relationship
  - $\mathrm{H_a}:oldsymbol{eta_3} 
    eq 0$  ; [Attrition\_Flag] กับ [Total\_Trans\_Ct] are relationship

```
library(readr)
path <- "C://Final.csv"</pre>
df <- read_csv(path)</pre>
# Assign parameters
df$att tran<- ifelse(df$Attrition Flag == "Attrited Customer",0, 1) #transform char to 0 1
target_att <- df$att_tran</pre>
var1 mb <- df$Months on book</pre>
var2_re <- df$Total_Relationship_Count</pre>
var3_tran_ct <- df$Total_Trans_Ct</pre>
# Log Reg
reg_log <- glm(target_att ~ var1_mb + var2_re +var3_tran_ct, family = binomial)</pre>
summary(reg_log)
# Predict
y_pred <- predict(reg_log, type = "response") # transform to logistic</pre>
# CM
table(y_prd > 0.5, target_att)
```

รูปที่ 12 คำสั่งที่ใช้ในโปรแกรมสถิติ (R) สำหรับ Logit Model - 1

ผลการทดสอบของแบบจำลองที่ 1 จาก threshold **α** = 0.05 เป็นดัง รูปที่ 13 และ confusion matrix จากการ เปรียบเทียบการทำนาย และค่าจริงจาก n= 199 samples TN = 34 และ TP = 158 ดังนั้นค่า accuracy ที่ได้คือ 96.48% ดัง รูปที่ 14 และตามสมมติฐานที่ตั้งไว้พบว่า

- 1. [Attrition\_Flag] กับ [Months\_on\_book]; P-value = 0.37: Fail to Reject H $_{\circ}$
- 2. [Attrition\_Flag] กับ [Total\_Relationship\_Count]; P-value = 0.11 : Fail to Reject  $H_o$
- 3. [Attrition Flag] กับ [Total Trans Ct]; P-value = 2.84e-06: **Reject H**。

```
> summary(reg_log)
Call:
glm(formula = target att ~ var1 mb + var2 re + var3 tran ct, family = binomial)
Coefficients:
            Estimate Std. Error z value Pr(>|z|)
(Intercept) -23.17847 5.57181 -4.160 3.18e-05 ***
                      0.06922 0.886
             0.06131
var1 mb
                                        0.376
             0.51961 0.32617 1.593
var2_re
                                        0.111
Signif. codes: 0 '***, 0.001 '**, 0.01 '*, 0.05 '., 0.1 ', 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 194.067 on 198 degrees of freedom
Residual deviance: 34.208 on 195 degrees of freedom
AIC: 42.208
Number of Fisher Scoring iterations: 8
```

รูปที่ 13 ผลสรุปภาพรวมแบบจำลองที่ 1

รูปที่ 14 confusion matrix ของแบบจำลองที่ 1

### แบบจำลองที่ 2

สมมติฐานโดยจะทำการทำสอบ Logit Model เพื่อทำนายเป้าหมาย [Attrition\_Flag] กับ attributes อื่น สำหรับ แบบจำลองที่ 2 คำสั่งที่ใช้ในโปรแกรมสถิติ (R) รูปที่ 15 โดยมี cut-off ที่ 0.5 โดยสมมติฐานมีดังต่อไปนี้

H<sub>o</sub>: β<sub>1</sub> = 0 ; [Attrition\_Flag] กับ [Credit Limit] are no relationship
 H<sub>a</sub>: β<sub>1</sub> ≠ 0 ; [Attrition\_Flag] กับ [Credit Limit] are relationship
 H<sub>o</sub>: β<sub>2</sub> = 0 ; [Attrition\_Flag] กับ [Total\_Revolving\_Bal] are no relationship
 H<sub>a</sub>: β<sub>2</sub> ≠ 0 ; [Attrition\_Flag] กับ [Total\_Revolving\_Bal] are relationship
 H<sub>o</sub>: β<sub>3</sub> = 0 ; [Attrition\_Flag] กับ [Avg\_Utilization\_Ratio] are no relationship
 H<sub>a</sub>: β<sub>3</sub> ≠ 0 ; [Attrition\_Flag] กับ [Avg\_Utilization\_Ratio] are relationship

```
library(readr)
path <- "C://Final.csv"</pre>
df <- read_csv(path)</pre>
# Assign parameters
df$att tran<- ifelse(df$Attrition Flag == "Attrited Customer",0, 1) #transform char to 0 1
target_att <- df$att_tran</pre>
var1 cl <- df$Credit Limit</pre>
var2_rev <- df$Total_Revolving_Bal</pre>
var3_avg <- df$Avg_Utilization_Ratio</pre>
# Log Reg
reg_log <- glm(target_att ~ var1_cl + var2_rev + var3_avg, family = binomial)</pre>
summary(reg_log)
# Predict
y_pred <- predict(reg_log, type = "response") # transform to logistic</pre>
# CM
table(y_pred > 0.5, target_att)
```

รูปที่ 15 คำสั่งที่ใช้ในโปรแกรมสถิติ (R) สำหรับ Logit Model - 2

ผลการทดสอบของแบบจำลองที่ 1 จาก threshold  $\alpha = 0.05$  เป็นดัง รูปที่ 16 และ confusion matrix จากการ เปรียบเทียบการทำนาย และค่าจริงจาก n= 199 samples TP = 161 ดังนั้นค่า accuracy ที่ได้คือ 80.90% ดัง รูปที่ 17 และตามสมมติฐานที่ตั้งไว้พบว่า

- 1. [Attrition Flag] กับ [Credit Limit]; P-value = 0.68 : Fail to Reject H<sub>o</sub>
- 2. [Attrition\_Flag] กับ [Total\_Revolving\_Bal]; P-value = 0.02 : Reject  $H_o$
- 3. [Attrition Flag] กับ [Avg Utilization Ratio]; P-value = 0.99: Fail to Reject  $H_o$

รูปที่ 16 ผลสรุปภาพรวมแบบจำลองที่ 2

```
> table(y_pred > 0.5, target_att)
     target_att
     0 1
TRUE 38 161
```

รูปที่ 17 confusion matrix ของแบบจำลองที่ 2

## บทสรุป

สรุปผลจากการวิเคราะห์แบบจำลอง Logit 2 แบบจำลองกับเป้าหมาย [Attrition\_Flag] พบว่าตัวแปรที่มี ความสัมพันธ์หรือความเชื่องโยงในแบบจำลองที่ 1 คือ [Total\_Trans\_Ct] และสำหรับแบบจำลองที่ 2 คือ [Total\_Revolving\_Bal] โดยค่า accuracy ของแบบจำลองที่ 1 มากกว่า แบบจำลองที่ 2 แสดงดัง ตารางที่ 4

ตารางที่ 4 แสดงตัวแปรที่ใช้และค่า accuracy ที่ได้จากการทำนาย

| Туре     | Model No.1               | Model No.2            |  |
|----------|--------------------------|-----------------------|--|
|          | Variables                | Variables             |  |
| Var 1    | Months_on_book           | Credit Limit          |  |
| Var 2    | Total_Relationship_Count | Total_Revolving_Bal*  |  |
| Var 3    | Total_Trans_Ct*          | Avg_Utilization_Ratio |  |
| accuracy | 96.48                    | 80.90                 |  |

<sup>\*</sup> Relationship with target

# Part 3: Regression Analysis

#### บทน้ำ

ข้อมูลเกี่ยวกับ New York City Airbnb ปี 2019 โดยเป็นข้อมูลการเปิดที่พักให้เช่าผ่าน Airbnb ในเมือง New York City ปี 2019 จาก Kaggle\* ประกอบไปด้วยตัวแปรทั้ง 16 ตัว/คอลัมน์ ได้แก่

1. "id" : id ที่พัก

2. "name" : ชื่อที่พัก

3. "host\_id" : id เจ้าของที่พัก

4. "host name" : ชื่อเข้าของที่พัก

5. "neighbourhood\_group" : ย่านของที่พัก/เมือง

6. "neighbourhood" : ชุมชนของย่านที่พัก/เมือง

7. "latitude" : พิกัด latitude

8. "longitude" : พิกัด longitude

9. "room\_type" : ประเภทห้อง

10. "price": ราคาที่พัก

11. "minimum\_nights": คืนขั้นต่ำในการเข้าพัก

12. "number of reviews" : จำนวนรีวิว

13. "last review" : วันที่รีวิวล่าสุด

14. "reviews\_per\_month" : จำนวนรีวิวต่อเดือน

15. "calculated\_host\_listings\_count" : จำนวนที่พักที่เจ้าของมีใน Airbnb

16. "availability\_365" : เวลาที่เปิดให้บริการจาก 365 วัน

โดยข้อมูลที่จะใช้ในการวิเคราะห์จะมุ่งเน้นไปที่เมือง 'Manhattan' เนื่องจากเป็นเมืองที่มีข้อมูลมากที่สุด โดยสนใจ ประเภทของห้องพัก Private room และ Entire home/apt เนื่องจากปริมาณ Shared room มีน้อยมากเมื่อ เทียบกับทั้งสองประเภท แสดงรายละเอียดดัง รูปที่ 18 โดยตัวแปรเป้าหมายในการวิเคราะห์คือ "price" และตัว แปรอิสระที่ใช้ในการวิเคราะห์ 5 ตัวแปรที่อาจจะส่งผลต่อราคาที่พักในย่าน 'Manhattan' โดยตัดข้อมูลทั่วไปเช่น id, ชื่อ, พิกัด รวมไปถึงวันที่รีวิวล่าสุด และจำนวนที่พักที่เจ้าของมีใน Airbnb โดย 5 ตัวแปรที่เลือกได้แก่

<sup>\*</sup> https://www.kaggle.com/code/whyalwaysme/ab-nyc-2019/notebook?select=AB\_NYC\_2019.csv

- 1. "room type"
- 2. "minimum nights"
- 3. "number\_of\_reviews"
- 4. "reviews per month"
- 5. "availability\_365"



รูปที่ 18 chart แสดงประเภทที่พักตามเมืองใน New York

### ผลการวิเคราะห์

สมมติฐานโดยจะทำการทำสอบ Regression Model เพื่อทำนายเป้าหมาย ["price"] กับ attributes ต่างๆ สำหรับ คำสั่งที่ใช้ในโปรแกรมสถิติ (R) รูปที่ 19 โดยสมมติฐานมีดังต่อไปนี้

#### Overall Significant:

1.  $_{\circ}$ :  $eta_1=eta_2=\cdots=~eta_k=0$  ; all are no relationship

H<sub>a</sub>: At least one of slopes is non-zero ; at least 1 variable are relationship with target

#### Significance of Slope:

1.  $\rm H_o$ :  $m{eta_1}=0$  ; ["price"] กับ ["room\_type"] are no relationship  $\rm H_a$ :  $m{eta_1}\neq 0$  ; ["price"] กับ ["room\_type"] are relationship

2.  $m H_o$ :  $m m{eta}_2=0$  ; ["price"] กับ ["minimum\_nights"] are no relationship

```
H_a: eta_2 
eq 0 ; ["price"] กับ ["minimum_nights"] are relationship

3. H_o: eta_3 = 0 ; ["price"] กับ ["number_of_reviews"] are no relationship

H_a: eta_3 
eq 0 ; ["price"] กับ ["number_of_reviews"] are relationship

4. H_o: eta_4 = 0 ; ["price"] กับ ["reviews_per_month"] are no relationship

H_a: eta_4 
eq 0 ; ["price"] กับ ["reviews_per_month"] are relationship

5. H_o: eta_5 = 0 ; ["price"] กับ ["availability_365"] are no relationship

H_a: eta_5 
eq 0 ; ["price"] กับ ["availability_365"] are relationship
```

```
library(dplyr)
library(readr)
library(ggplot2)
path <- "C://AB_NYC_2019.csv"
df <- read csv(path)</pre>
# Selected Manhattan and "Private room", "Entire home/apt
# Eliminate null data
# Transform "Private room", "Entire home/apt to 0, 1
df_selected <- filter(df, `neighbourhood_group` == 'Manhattan' &</pre>
                          `room_type` == c("Private room","Entire home/apt"))
df_selected <- na.omit(df_selected)</pre>
df_selected$room_type <- ifelse(df_selected$room_type == "Private room", 0, 1)</pre>
# Assing Variables
target_price <- df_selected$price</pre>
var1 rt <- df selected$room type</pre>
var2 mn <- df selected$minimum nights</pre>
var3_nr <- df_selected$number_of_reviews</pre>
var4_rm <- df_selected$reviews_per_month</pre>
var5 365 <- df selected$availability 365
# Multiple Reg
reg mul <- lm(target price ~ var1 rt + var2 mn +var3 nr +var4 rm + var5 365)
summary(reg mul)
```

รูปที่ 19 คำสั่งที่ใช้ในโปรแกรมสถิติ (R) สำหรับ Regression Analysis

ผลการวิเคราะห์สำหรับ Regression Analysis จาก threshold  $\alpha = 0.05$  แสดงดัง รูปที่ 20 และตามสมมติฐาน ที่ตั้งไว้พบว่า

#### Overall Significant:

- 1. p-value: < 2.2e-16 ; **Reject H<sub>o</sub>** (At least one of slopes is non-zero)
- 2. Goodness-of-fit: Adjusted  $R^2 = 0.0945$  (Model สามารถอธิบายได้ 9.45%)

#### Significance of Slope:

- 1. ["price"] กับ ["room type"] ; p-value: < 2.2e-16 ; **Reject H**o
- 2. ["price"] กับ ["minimum nights"] p-value: 0.0358; Reject H<sub>o</sub>
- 3. ["price"] กับ ["number\_of\_reviews"] p-value: 3.04e-06; Reject H<sub>o</sub>
- 4. ["price"] กับ ["reviews per month"] p-value: 0.0206; Reject H<sub>o</sub>
- 5. ["price"] กับ ["availability 365"] p-value: < 2e-16; **Reject H**<sub>o</sub>

```
> summary(reg_mul)
lm(formula = target_price ~ var1_rt + var2_mn + var3_nr + var4_rm + var5_365)
Residuals:
          1Q Median
  Min
                       3Q
                             Max
-224.7 -72.2 -24.3 18.6 9917.3
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 84.72083 4.65624 18.195 < 2e-16 ***
var1 rt
         118.06074 4.85735 24.306 < 2e-16 ***
var2 mn
           -0.24660
                       0.11744 -2.100 0.0358 *
                       0.06035 -4.672 3.04e-06 ***
            -0.28193
var3 nr
var4 rm
            4.13891
                       1.78770
                               2.315 0.0206 *
var5_365
                      0.01914 14.175 < 2e-16 ***
             0.27137
Signif. codes: 0 '***, 0.001 '**, 0.01 '*, 0.05 '.', 0.1 ', 1
Residual standard error: 210.8 on 8058 degrees of freedom
Multiple R-squared: 0.09506, Adjusted R-squared: 0.0945
F-statistic: 169.3 on 5 and 8058 DF, p-value: < 2.2e-16
```

รูปที่ 20 ผลสรุปภาพรวมของ Regression Analysis

# บทสรุป

สรุปผลจากการวิเคราะห์ Regression Analysis กับเป้าหมาย ["price"] พบว่าแบบจำลองมีอย่างน้อย 1 ตัวแปรที่ ความสัมพันธ์ และค่า R<sup>2</sup> = 0.0945 หมายความว่าถึงแม้แบบจำลองกับตัวแปรจะมีความสัมพันธ์ แต่แบบจำลองยัง ไม่สามารถอธิบายได้อย่างน่าพอใจ เนื่องจากสามารถอธิบายตัวแปรในแบบจำลองได้ 9.45% และเมื่อตรวจสอบแต่ ละตัวแปร พบว่าตัวแปรทุกตัวที่มีความสัมพันธ์หรือความเชื่องโยงในแบบจำลอง Regression