MATH 265 Homework 9

Due Nov 21

Instructions:

• Please scan your work and upload it to Gradescope by the end of Nov 21.

1 Non-Graded Questions

Textbook Section 4.2 Questions 2bd, 5, 8, 9, 10 Textbook Section 5.1: Problems 3, 8, 9, 12.

2 Graded Questions

- 1. (6 points) Let $f: \mathbb{R} \to \mathbb{R}$ be a function which satisfies f(x+y) = f(x) + f(y) for all $x, y \in \mathbb{R}$. Suppose that $\lim_{x\to 0} f(x) = L$ for some $L \in \mathbb{R}$.
 - (a) Prove that L=0.
 - (b) Prove that for any $c \in \mathbb{R}$, f has a limit at c, and that this limit is equal to f(c).
 - (c) Let a = f(1). Prove that for all $x \in \mathbb{R}$, f(x) = ax. **Hint** Prove this first for rational x, and then for irrational x.
- 2. (2 points) Suppose $A \subseteq \mathbb{R}$ and $f, g: A \to \mathbb{R}$ are both continuous on A. Let

$$S = \{x \in A : f(x) \le g(x)\}.$$

Suppose $c \in A$ is a cluster point of S. Prove that $c \in S$.

3. (2 points) Suppose $f:[a,b] \to \mathbb{R}$ is increasing and satisfies the intermediate value property (for each $k \in \mathbb{R}$ such that $f(a) \le k \le f(b)$, there exists a $c \in [a,b]$ such that f(c) = k). Prove that f is continuous on [a,b].