

אוניברסיטת בן – גוריון הפקולטה להנדסה המחלקה להנדסת מחשבים

דו"ח מסכם – מטלת ארכיטקטורת יחידת עיבוד מרכזית

Final project

מגישים: דן בן עמי – 316333079

206018749 – קיסוס

מדריך: חנן ריבוא, מור אבי אהרון

16.09.20 תאריך הגשה:

Top level block diagram - RTL viewer - top level entity:

RTL viewer - top level 1 איור

Instruction fetch:

בלוק מזיכרון הפקודות (program counter) PC בלוק של הרגיסטר במיקום מזיכרון הפקודות נהראי על הבאת הפקודה במיקום של (instructions memory)

במקביל להבאת הפקודה מתבצע קידום של רגיסטר הPC ב-4 (היות ואורך כל פקודה הוא 4 בייטים) ומערכת לוגית צירופית הקובעת את ערך הרגיסטר PC בשעון הבא בהתאם לקווי הבקרה ולערך פקודת ההסתעפות.

RTL viewer:

איור 2 RTL viewer - IFETCH

Logic usage:

Flow Summary	
Flow Status	Successful - Wed Sep 09 12:59:09 2020
Quartus II 64-Bit Version	12.1 Build 177 11/07/2012 SJ Web Edition
Revision Name	task3final
Top-level Entity Name	Ifetch
Family	Cyclone II
Device	EP2C20F484C7
Timing Models	Final
Total logic elements	73 / 18,752 (< 1 %)
Total combinational functions	73 / 18,752 (< 1 %)
Dedicated logic registers	9 / 18,752 (< 1 %)
Total registers	9
Total pins	102 / 315 (32 %)
Total virtual pins	0
Total memory bits	57,344 / 239,616 (24 %)
Embedded Multiplier 9-bit elements	0 / 52 (0 %)
Total PLLs	0/4(0%)

איור 3 Ifetch Logic usage

Graphical description:

איור 4 Ifetch Graphical description

שימוש	כניסה/יציאה	מספר ביטים	שם
פקודה מהזיכרון	buffer	32	Instruction
קו בקרה העולה ל-1 בהינתן פקודת JUMP	IN	1	jump
הערך הבא של ה- PC במידה ואין הסתעפות.	OUT	10	PC_plus_4_out
הכתובת להסתעפות בהינתן פקודת הסתעפות.	IN	8	Add_result
קו בקרה העולה ל-1 בהינתן פקודת BEQ	IN	1	Beq
קו בקרה העולה ל-1 בהינתן פקודת BNE	IN	1	Bne
קו בקרה העולה ל-1 אם תוצאת פעולת ה- ALU היא -0.	IN	1	Zero
קו בקרה העולה ל – 1 בהינתן פקודת JAL	in	1	jal
קו בקרה העולה ל – 1 בהינתן פקודת JR	in	1	jr
המידע שנקרא מהרגיסטר	in	32	read_data_1
שעון	IN	1	clock
קו בקרה העולה ל-1 בהינתן לחיצה על key0. מביא את ה- PC לתחילת התוכנית.	IN	1	reset
קו בקרה העולה ל- 1 בהינתן בקשת פסיקה	buffer	1	intr
הכתובת המפנה ל dmemory אל המיקום בה נמצא כתובת רוטינת השירות.	in	10	int_vec_add
קו בקרה העולה ל- 1 כאשר המעבד מטפל בפסיקה	buffer	1	inta

Table 1 – port table Fetch

Instruction decode:

בלוק זה אחראי על פיענוח הפקודה מתוך 32 הביטים המובאים כפקודה ב Instruction fetch ולאחר מכן מוציא מהרגיסטר פייל את ערכי הרגיסטרים המתאימים לפקודה זו. במקביל, בשלב זה מתבצעת מכן מוציא מהרגיסטר פייל את ערכי הרגיסטרים המתאימים לכדי 32 ביטים על מנת שיהיה ניתן לבצע הרחבת סימן (sign extend) של הקבוע הנתון בפקודות פעולות שונות בבלוק הבא (למשל בפקודות לבשעים. בנוסף, בנוסף, בבלוק זה אנו מבצעים גם את פעולת ה write back כאשר נדרש לבצע כתיבה של תוצאה אל הרגיסטרים (לדוגמא בפקודות מסוג R-type).

RTL viewer:

איור 5 Idecode RTL viewer

Flow Summary	
Flow Status	Successful - Wed Sep 09 13:05:52 2020
Quartus II 64-Bit Version	12.1 Build 177 11/07/2012 SJ Web Edition
Revision Name	task3final
Top-level Entity Name	Idecode
Family	Cyclone II
Device	EP2C20F484C7
Timing Models	Final
Total logic elements	1,485 / 18,752 (8 %)
Total combinational functions	1,485 / 18,752 (8 %)
Dedicated logic registers	992 / 18,752 (5 %)
Total registers	992
Total pins	209 / 315 (66 %)
Total virtual pins	0
Total memory bits	0 / 239,616 (0 %)
Embedded Multiplier 9-bit elements	0 / 52 (0 %)
Total PLLs	0/4(0%)

איור 6 Idecode logic usage

איור 7 Idecode Graphical description

שימוש	כניסה/יציאה	מספר	שם
		ביטים	
המידע שנקרא מהרגיסטר	OUT	32	read_data_1
המידע שנקרא מהרגיסטר	OUT	32	read_data_2
פקודה לביצוע	IN	32	Instruction
.Data memory המידע שנקרא מ-	IN	32	read_data
תוצאת החישוב של ALU	IN	32	ALU_result
קו בקרה לכתיבה לרגיסטרים	IN	1	RegWrite
קו הבקרה השולט על בחירת המידע שנכתב	IN	1	MemtoReg
לרגיסטרים.			
קו בקרה לבחירת הרגיסטר לכתיבה.	IN	1	RegDst
תוכן שדה immediate לאחר הרחבה ל 32 ביט	OUT	32	Sign_extend
קו בקרה העולה ל – 1 בהינתן פקודת JAL	in	1	jal
קו בקרה העולה ל- 1 בהינתן בקשת פסיקה	in	1	intr
הערך הבא של ה- PC במידה ואין הסתעפות.	in	10	PC_plus_4
שעון	IN	1	clock
קו בקרה העולה ל-1 בהינתן לחיצה על key0.	IN	1	reset
מאתחל כל רגיסטר לאחסן את מספרו הסידורי			
.register file -ב			

Table 2 – port table Decode

Control:

בלוק זה אחראי על הפעלת קווי הבקרה לרכיבי MUX השונים במערכת על מנת שינתבו את המידע ALU בהתאם לפקודה הנוכחית. בנוסף בלוק זה מעביר גם את קווי הבקרה לרכיב ה (Data path) שבאמצעותם הALU מפעיל את האופרציה הנכונה על האופרנדים השונים בהתאם לפקודה.

RTL viewer:

איור 8 control RTL viewer

Flow Status	Successful - Wed Sep 09 13:05:52 2020
Quartus II 64-Bit Version	12.1 Build 177 11/07/2012 SJ Web Edition
Revision Name	task3final
Top-level Entity Name	Idecode
Family	Cyclone II
Device	EP2C20F484C7
Timing Models	Final
Total logic elements	1,485 / 18,752 (8 %)
Total combinational functions	1,485 / 18,752 (8 %)
Dedicated logic registers	992 / 18,752 (5 %)
Total registers	992
Total pins	209 / 315 (66 %)
Total virtual pins	0
Total memory bits	0 / 239,616 (0 %)
Embedded Multiplier 9-bit elements	0 / 52 (0 %)
Total PLLs	0/4(0%)

איור 9 control logic usage

איור 10 control Graphical description

שימוש	כניסה/יציאה	מספר	שם
		ביטים	
instraction -מתוך ה opcode	IN	6	Opcode
instraction -מתוך ה Function_opcode	IN	6	Function_opcode
קו בקרה לבחירת הרגיסטר לכתיבה.	OUT	1	RegDst
קו בקרה לבחירת מבוא ה- ALU.	OUT	1	ALUSrc
קו הבקרה השולט על בחירת המידע שנכתב	OUT	1	MemtoReg
לרגיסטרים.			
קו בקרה לכתיבה לרגיסטרים	OUT	1	RegWrite
קו בקרה המורה אם לקרוא מהזיכרון	OUT	1	MemRead
קו בקרה המורה אם לכתוב להזיכרון	OUT	1	MemWrite
קו בקרה העולה ל-1 בהינתן פקודת BEQ	buffer	1	Beq
קו בקרה העולה ל-1 בהינתן פקודת BNE	buffer	1	Bne
קו בקרה העולה ל-1 בהינתן פקודת JUMP	OUT	1	Jump
מורה ל- ALU איזו פעולה לבצע.	OUT	2	ALUop
קו בקרה העולה ל – 1 בהינתן פקודת JAL	buffer	1	jal
קו בקרה העולה ל – 1 בהינתן פקודת JR	OUT	1	jr
קו בקרה העולה ל-1 בהינתן פקודת I-format.	OUT	1	i_format
שעון	IN	1	clock
קו בקרה העולה ל-1 בהינתן לחיצה על key0. מביא	IN	1	reset
את ה- PC לתחילת התוכנית.			

Table 3 – port table Execute

Exectute:

בלוק זה אחראי על ביצוע הפעולות האריתמטיות בין הערכים השונים שהיו ברגיסטרים או בחלק של הקבוע בפקודה. בעזרת הקו בקרה המתאים נבחרת הפעולה המתאימה ב ALU מבין מספר פעולות כמו חיבור, חיסור,AND,OR, הזזה וכו'. הבלוק מכיל בנוסף ל ALU גם רכיב Adder על מנת לחשב את ערך הכתובת להסתעפות במידה והפקודה היא פקודת branch וההסתעפות אכן נלקחת.

RTL viewer:

איור 11 Execute RTL viewer

Flow Summary	
Flow Status	Successful - Mon Aug 24 17:11:57 2020
Quartus II 64-Bit Version	12.1 Build 177 11/07/2012 SJ Web Edition
Revision Name	task3final
Top-level Entity Name	Execute
Family	Cyclone II
Device	EP2C20F484C7
Timing Models	Final
Total logic elements	607 / 18,752 (3 %)
Total combinational functions	607 / 18,752 (3 %)
Dedicated logic registers	0 / 18,752 (0 %)
Total registers	0
Total pins	159 / 315 (50 %)
Total virtual pins	0
Total memory bits	0 / 239,616 (0 %)
Embedded Multiplier 9-bit elements	0 / 52 (0 %)
Total PLLs	0/4(0%)

איור 12 Execute logic usage

איור 13 Execture Graphical description

שימוש	כניסה/יציאה	מספר	שם
		ביטים	
המידע שנקרא מהרגיסטר	IN	32	read_data_1
המידע שנקרא מהרגיסטר	IN	32	read_data_2
תוכן שדה immediate לאחר הרחבה ל 32 ביט	IN	32	Sign_extend
instraction -מתוך ה- Function_opcode	IN	6	Function_opcode
מורה ל- ALU איזו פעולה לבצע.	IN	2	ALUop
קו בקרה לבחירת מבוא ה- ALU.	IN	1	ALUSrc
קו בקרה העולה ל-1 אם תוצאת פעולת ה- ALU היא	OUT	1	Zero
.0-			
תוצאת החישוב של ALU	OUT	32	ALU_result
הכתובת לקפיצה בהינתן פקודת Brunch.	OUT	8	Add_Result
הכתובת הבאה לפקודת Brunch.	IN	10	PC_plus_4
קו בקרה העולה ל-1 בהינתן פקודת I-format.	IN	1	i_format
שעון	IN	1	clock
קו בקרה העולה ל-1 בהינתן לחיצה על key0. מביא	IN	1	reset
את ה- PC לתחילת התוכנית.			

Table 4 – port table Execute

I/O decoder:

בלוק זה אחראי על הממשק בין המערכת למשתמש, הוא אחראי על פיענוח הקלט הנכנס בקלטים כאשר התוכנית בזיכרון מבקשת לטעון את קלטי המשתמש וכן על הוצאת הפלט אל הלדים והמסך בהתאם לפקודות התוכנית המאוחסנת בזיכרון. בנוסף, בלוק זה אחראי על פיענוח יעד הפקודות (LW,SW , האם הן מתכוונות להתממשקות עם הזיכרון נתונים או עם מתכוונות להתממשקות עם הקלט/פלט של המשתמש.

RTL viewer:

איור 14 I/O decoder RTL viewer

Flow Status	Successful - Mon Aug 24 17:15:59 2020
Quartus II 64-Bit Version	12.1 Build 177 11/07/2012 SJ Web Edition
Revision Name	task3final
Top-level Entity Name	decoder
Family	Cyclone II
Device	EP2C20F484C7
Timing Models	Final
Total logic elements	65 / 18,752 (< 1 %)
Total combinational functions	28 / 18,752 (< 1 %)
Dedicated logic registers	44 / 18,752 (< 1 %)
Total registers	44
Total pins	159 / 315 (50 %)
Total virtual pins	0
Total memory bits	0 / 239,616 (0 %)
Embedded Multiplier 9-bit elements	0 / 52 (0 %)
Total PLLs	0/4(0%)

איור 15 I/O decoder Logic usage

איור 16 I/O decoder Graphical description

שימוש	כניסה/יציאה	מספר	שם
911.6	1114.7.7110.77		1 10
		ביטים	
instraction -מתוך ה opcode	IN	6	Opcode
תוצאת החישוב של ALU	IN	32	ALU_result
שמונת המתגים בלוח.	IN	8	Switches
המידע שנקרא מהרגיסטר	IN	32	read_data_2
קו בקרה המורה אם לקרוא מהזיכרון	IN	1	MemRead
קו בקרה המורה אם לכתוב להזיכרון	IN	1	MemWrite
שעון	IN	1	clock
קו בקרה המורה אם לקרוא מהזיכרון או לקרוא מ IO	OUT	1	DMemRead
קו בקרה המורה אם לכתוב לזיכרון או לכתוב ל ١٥	OUT	1	DMemWrite
.Data memory -המידע שנקרא מ	OUT	32	read_data
שמונת לדים ירוקים	OUT	8	LEDSG
שמונת לדים אדומים	OUT	8	LEDSR
ספרה 0 בצג	OUT	7	Digit0
ספרה 1 בצג	OUT	7	Digit1
ספרה 2 בצג	OUT	7	Digit2
ספרה 3 בצג	OUT	7	Digit3

Table 5 – port table decoder

Data Memory:

בלוק זה אחראי על הממשק של המערכת עם הזיכרון נתונים. בפקודות כמו LW,SW בלוק זה אחראי על הממשק של הנתונים באמצעות בלוק זה ומביאה/מאחסנת שם את הנתונים בכתובת המחושבת בבלוק ה- Execute.

RTL viewer:

איור 17 Dmemory RTL viewer

Flow Status	Successful - Mon Aug 24 17:17:14 2020
Quartus II 64-Bit Version	12.1 Build 177 11/07/2012 SJ Web Edition
Revision Name	task3final
Top-level Entity Name	dmemory
Family	Cyclone II
Device	EP2C20F484C7
Timing Models	Final
Total logic elements	0 / 18,752 (0 %)
Total combinational functions	0 / 18,752 (0 %)
Dedicated logic registers	0 / 18,752 (0 %)
Total registers	0
Total pins	78 / 315 (25 %)
Total virtual pins	0
Total memory bits	32,768 / 239,616 (14 %)
Embedded Multiplier 9-bit elements	0 / 52 (0 %)
Total PLLs	0/4(0%)

איור 18 Dmemory Logic usage

איור 19 Dmemory Graphical description

שימוש	כניסה/יציאה	מספר	שם
		ביטים	
.Data memory -המידע שנקרא מ	OUT	32	read_data
הכתובת לקריאה או כתיבה.	IN	10	address
המידע שיכתב לזיכרון.	IN	32	write_data
קו בקרה המורה אם לקרוא מהזיכרון	IN	1	MemRead
קו בקרה המורה אם לכתוב להזיכרון	IN	1	Memwrite
שעון	IN	1	clock
קו בקרה העולה ל-1 בהינתן לחיצה על key0. מביא את ה- PC לתחילת התוכנית.	IN	1	reset

Table 6 – port table Dmemory

Interrupt controller:

רכיב זה הוא רכיב האחראי למתן פסיקות למעבד מכפתורים על לוח ה IDE ופסיקות מטיימר. הטיימר הוא טיימר בסיסי, המוציא פסיקה כאשר המונה של הטיימר מגיע לרוויה שנקבעת באמצעות רגיסטר הבקרה (BTCTL). בתוך רכיב זה נמצאים הטיימר עצמו (רגיסטר מונה, רגיסטר בקרה) וכן רגיסטר איפשור פסיקות ורגיסטר דגלי הפסיקות.

RTL viewer:

איור 20 RTL viewer - interrupt/timer

0 0	
Flow Summary	
Flow Status	Successful - Wed Sep 09 12:14:23 2020
Quartus II 64-Bit Version	12.1 Build 177 11/07/2012 SJ Web Edition
Revision Name	task3final
Top-level Entity Name	interrupt
Family	Cyclone II
Device	EP2C20F484C7
Timing Models	Final
Total logic elements	70 / 18,752 (< 1 %)
Total combinational functions	69 / 18,752 (< 1 %)
Dedicated logic registers	38 / 18,752 (< 1 %)
Total registers	38
Total pins	92 / 315 (29 %)
Total virtual pins	0
Total memory bits	0 / 239,616 (0 %)
Embedded Multiplier 9-bit elements	0 / 52 (0 %)
Total PLLs	0/4(0%)

Logic usage interrupt/timer 21 איור

Graphical description - interrupt/timer 22 איור

שימוש	מספר כניסה/יציאה		שם	
	,	ביטים		
instraction -מתוך ה opcode	IN	6	Opcode	
תוצאת החישוב של ALU	IN	32	ALU_result	
המידע שנקרא מהרגיסטר	IN	32	read_data_2	
קו בקרה המורה אם לקרוא מהזיכרון	IN	1	MemRead	
קו בקרה המורה אם לכתוב להזיכרון	IN	1	MemWrite	
קו בקרה העולה ל- 1 כאשר המעבד מטפל בפסיקה	buffer	1	inta	
לחצן פסיקה מספר 1	IN	1	Key1	
לחצן פסיקה מספר 2	IN	1	Key2	
לחצן פסיקה מספר 3	IN	1	Key3	
שעון	IN	1	clock	
ו קו בקרה העולה ל-1 בהינתן לחיצה על key0. מאפס		1	reset	
את הרגיסטרים של הטיימר ובקר הפסיקות.				
קו בקרה העולה ל- 1 בהינתן בקשת פסיקה	buffer	1	intr	
הכתובת המפנה ל dmemory אל המיקום בה נמצא	in 10 int_vec_add הכתובת המפנה ל			
כתובת רוטינת השירות.				

Table 7 – port table Execute

מסלול קריטי:

critical path 23 איור

ניתן לראות כי המסלול הקריטי שתוכנת ה- Quartus מציגה אינו תואם את הציפיות שלנו. מהאיור עולה כי הנתיב הקריטי הוא בפקודת SW לרגיסטרי פסיקה\טיימר. אולם מניסיוננו ומהרצאות הקורס עולה כי דווקא פקודת LW אמורה להוות את הנתיב הקריטי מכיוון שזאת עוברת תהליך של חישוב הכתובת ב ALU ולאחר מכן קוראת מ- Data memory ולאחר מכן צריכה לכתוב את המידע לרגיסטר. נתיב זה אמור להיות הארוך ביותר מפאת זמני גישה ארוכים יחסית לזיכרון המידע.

<u>תדר מקסימלי:</u>

Slow Model Fmax Summary						
	Fmax	Restricted Fmax	Clock Name	Note		
1	18.13 MHz	18.13 MHz	clock			

איור 24 תדר מקסימלי

נתיב מינימלי:

הנתיב המינימלי יהיה בפקודת שזאתי מכיוון שזאתי לא ניגשת כלל לזיכרון ולא הנתיב המינימלי יהיה בפקודת את ערך האפיצה בעוברת תהליך חישוב ב ALU. הפקודה מעדכנת את ערך ה-PC המבוקשת.

Signal tap:

בדוגמא מטה הרצנו את קובץ ה test2 שקיבלנו במודל לבדיקת תקינות המערכת. בדוגמא זו בחנו את מנגנון הפסיקות של הטיימר. ניתן לראות כי כאשר מתקבלת פסיקה מהטיימר, התוכנית קופצת לרוטינת השירות של הטיימר ומבצעת את הנדרש. לאחר סיום הפסיקה התוכנית חוזרת למקום ממנה התבצעה הפסיקה, כמצופה.

Signal tap 25 איור