Partie A

- 1) Lecture graphique et sans justification:
 - a) La droite *D* passe par le point de coordonnées (1;10); 1 représente 100 litres et 10 représentent 1000 euros. Donc la vente de 100 litres de crème rapporte 1000 euros.
 - b) La droite D passe par l'origine donc représente une fonction linéaire r avec r(x) = ax. Cette droite passe par le point de coordonnées (1;10) donc $r(1) = 10 \iff a = 10$. Donc r(x) = 10x.
 - c) Pour que l'entreprise réalise un bénéfice, il faut que la droite D représentant la recette soit au dessus de la courbe $\mathcal C$ représentant le coût; la droite et la courbe se coupent au point d'abscisse 1. Il faut donc que x>1 pour réaliser un bénéfice, donc que l'artisan produise au moins 100 litres de crème.

- 2) On admet que $\int_1^3 20x \ln x \, dx = 90 \ln 3 40$.
 - a) $\int_{1}^{3} f(x) dx = \int_{1}^{3} (10x^{2} 20x \ln x) dx = \int_{1}^{3} 10x^{2} dx \int_{1}^{3} 20x \ln x dx$

La fonction $x \mapsto 10x^2$ a pour primitive $x \mapsto 10\frac{x^3}{3}$ donc

$$\int_{1}^{3} 10x^{2} dx = \left[10 \frac{x^{3}}{3}\right]_{1}^{3} = \left(10 \times \frac{27}{3}\right) - \left(10 \times \frac{1}{3}\right) = \frac{260}{3}$$

$$\int_{1}^{3} f(x) dx = \frac{260}{3} - (90 \ln 3 - 40) = \frac{260}{3} - 90 \ln 3 + 40 = \frac{380}{3} - 90 \ln 3$$

b) La valeur moyenne de la fonction f entre 1 et 3 est $\frac{1}{3-1} \int_1^3 f(x) dx \approx 13,90.$

Donc pour une production comprise entre 100 et 300 litres, la valeur moyenne du coût total de production est égale à 1 390 euros.

Partie B

On note B(x) le bénéfice réalisé par l'artisan pour la vente de x centaines de litres de crème produits. D'après les données précédentes, pour tout x de l'intervalle [1; 3], on a : $B(x) = -10x^2 + 10x + 20x \ln x$ où B(x) est exprimé en centaines d'euros.

- 1) On note B' la fonction dérivée de la fonction B; $B(x) = -10x^2 + 10x + 20x \ln x$ donc $B'(x) = -20x + 10 + 20\left(1 \times \ln x + x \times \frac{1}{x}\right) = -20x + 10 + 20 \ln x + 20 = -20x + 20 \ln x + 30.$
- 2) On donne le tableau de variation de la fonction dérivée B' sur l'intervalle $[1\ ;\ 3]$:

a) B'(1) = 10 > 0 et $B'(3) \approx -8 < 0$ donc B'(1) > 0 > B'(3). On complète le tableau de variations de B' sur [1;3]:

D'après ce tableau de variations, on peut dire que l'équation B'(x) = 0 admet une solution unique α dans l'intervalle [1;3].

$$B'(2) \approx 3,9 > 0 B'(3) \approx -8 < 0$$
 $\Rightarrow \alpha \in [2;3]$

$$B'(2,3) \approx 0,7 > 0 B'(2,4) \approx -0,5 < 0$$
 $\Rightarrow \alpha \in [2,3;2,4]$

$$B'(2,35) \approx 0,09 > 0 B'(2,36) \approx -0,03 < 0$$
 $\Rightarrow \alpha \in [2,35;2,36]$

Donc $\alpha \approx 2,35$.

- b) D'après la question précédente :
- $B'(x) > 0 \text{ sur } [1; \alpha[$;
- $B'(\alpha) = 0$;
- $B'(x) < 0 \text{ sur } [\alpha; 3].$

S'il n'y a aucune production, il n'y a pas de bénéfice donc B(1) = 0; $B(3) \approx 5,92$. D'où le tableau de variations de la fonction B sur [1;3]:

3) Le bénéfice maximum est obtenu pour $x = \alpha$ avec $\alpha \in [2, 35; 2, 36]$.

À la calculatrice on obtient $B(2,35) \approx 8{,}432\,5$ et $B(2,36) \approx 8{,}432\,8$, correspondant respectivement à des bénéfices de $843{,}25 \in$ et de $843{,}28 \in$.

Il ne semble donc pas envisageable d'atteindre un bénéfice d'au moins 850 €.