Unit -3

1. $(p \rightarrow q) \land (r \rightarrow q)$ is equivalent to

	a) $(p \lor r) \to q$ b) $(p \land r) \to q$ c) Tautology d) Contradiction
2.	Consider the statement, "Either $-2 \le x \le -1$ or $1 \le x \le 2$ ". The negation of this statement is
	a) X<-2 or 2 <x -1<x<1="" -2<x<2<="" 2<x="" b)="" c)="" d)="" or="" td="" x<-2=""></x>
3.	$(p \lor q) \lor (p \land r)$ is equivalent to
	a) $(p \lor q) \lor (p \lor r)$ b) $(p \lor q) \land r$ c) $(p \lor q) \land (p \land r)$ d) $p \lor q$ e) $(p \land q) \lor p$
4.	Which of the following statement is the negation of the statement, "2 is even and -3 is negative"?
	a) 2 is even and -3 is not negative b) 2 is odd and -3 is not negative
	c) 2 is even or -3 is not negative d) 2 is odd or -3 is not negative
5.	$p \rightarrow q$ is logically equivalent to
	a)7p \rightarrow 7q b)7p \rightarrow q c)7p \wedge q d) 7p \vee q
5.	$7q \land (p \rightarrow q) \rightarrow 7p$ is
	a) Consistent b) inconsistent c) Tautology d) Contradiction
7.	The statement $(p \land q) \Rightarrow p$ is a
	a) Consistent b) Contradiction c) Tautology d) None of the above
8.	Which one is the contrapositive of $q \rightarrow p$?
	a) $p \rightarrow q$ b) $\neg p \rightarrow \neg q$ c) $\neg q \rightarrow \neg p$ d) None of these
9.	The truth or falsity of a given proposition is called its
	a) Integer value b) Truth value c) Numerical value d) Actual value
10.	The of a proposition is generally formed by introducing the word "not" at the proper place

a)) Conjunction	b) Disjunction c) Neg	gation d) Conditiona	al		
11. State true (T) or false (F)						
I)	I) The proposition " $P \lor q$ " is F when 'p' is F and 'q' is F.					
II	II) The proposition " $p \land q$ " is T when 'p' is T and 'q' is F.					
a)) (i) T (ii) T	b) (i) F (ii) F	c) (i) T (ii) F	d) (i) F (ii) T		
12. State true (T) or false (F)						
I)	$a \wedge a = F$ II) $a \wedge a = F$	$(a \lor b) = b$				
a)) (i) T (ii) T	b) (i) F (ii) F	c) (i) T (ii) F	d) (i) F (ii) T		
13. T	he following are the	properties of logical e	quivalence			
i)	$p \equiv p_{ii}$ if $p \equiv q$	and $q \equiv r$ then $p \equiv r$	iii) $p \rightarrow q \equiv 7q \rightarrow p$ iv	$v) q \to p \equiv 7p \to 7q$		
a)	a) (i) T (ii) T (iii) F (iv) F					
b)	b) (i) T (ii) T (iii) F (iv) T					
c)	c) (i) F (ii) T (iii) F (iv) F					
d)	d) (i) T (ii) T (iii) T (iv) T					
14. Let 'p' be "He is tall" and let 'q' be "He is handsome". Then the statement "It is false that he is short or handsome" is:						
a)	$p \lor q$	b) 7(7p v q)	c) pv 7q	d) 7p v q		
15. W	15. Which of the following proposition is a tautology?					
a)	$(p \lor q) \to p$	b) $p \lor (q \to p)$	c) $p \lor (p \to q)$	d) $p \rightarrow (p \rightarrow q)$		
16. What is the converse of the following assertion? I stay only if you go.						
a)) I stay if you go	b) If you do no	ot go then I do not sta	y		
c)	c) If I stay then you go d) If you do not stay then you go					
17. Which of the following statement is the contra positive of the statement "If 4 is even and then -5 is negative"?						
a)	a) If -5 is not negative and then 4 is not even b) If 4 is even then -5 is not negative					

c) 4 is odd or -5 is not negative

- d) 4 is even and -5 is not negative
- 18. Which one is the inverse of $q \rightarrow p$?

- a) $p \rightarrow q$ b) $7p \rightarrow 7q$ c) $7q \rightarrow p$ d) None of these
- 19. What is the dual of $(p \rightarrow q) \rightarrow (\neg q \rightarrow \neg p) \equiv T$
 - a) $\neg (\neg p \land q) \land (q \land \neg p) \equiv F$ b) $\neg (p \land q) \land (q \land p) \equiv T$
 - c) $(\neg p \land q) \land (q \land \neg p) \equiv F$ d) None of these
- 20. What is the dual of $\neg (p \lor q) \lor [(\neg q \land p)] \lor p$
 - a) $\neg (p \land q) \lor [(\neg p \lor q)] \land p$ b) $(p \lor q) \lor [(p \land q)] \lor p$
 - c) $(\neg p \lor \neg q) \lor [(p \land \neg q)] \lor \neg p$ d) None of these
- 21. $(p \rightarrow q) \land (r \rightarrow q)$ is equivalent to
- a) $(p \lor r) \to q$ b) $(p \land r) \to q$ c) Tautology d) Contradiction
- 22. $(p \lor q) \lor (p \land r)$ is equivalent to

 - a) $(p \lor q) \lor (p \lor r)$ b) $(p \lor q) \land r$ c) $(p \lor q) \land (p \land r)$ d) $p \lor q$ e) $(p \land q) \lor p$

- 23. $p \rightarrow q$ is logically equivalent to
 - a)7p \rightarrow 7q b)7p \rightarrow q c)7p \wedge q d) 7p \vee q

- 24. $7q \land (p \rightarrow q) \rightarrow 7p$ is

 - a) Consistent b) inconsistent c) Tautology d) Contradiction
- 25. The truth or falsity of a given proposition is called its _____
 - a) Integer value
- b) Truth value c) Numerical value d) Actual value

26.	Theproper place		of a proposition is generally formed by introducing the word "not" at the				
			b) Disjunction c) Negation d) Conditional				
	27. $P \rightarrow (Q)$	$(P \to R)$	$(P \to Q) \to (P \to R)$				
	a)	Check	whether RHS is a tautology				
		a)	Tautology				
		b)	Contradiction				
		c)	Contingency				
		d)	None				
	28. $\neg P \rightarrow 0$	$(\neg P \rightarrow$	$(\neg PQ)$				
	a)	The so	lution is				
		i)	pq				
		ii)					
			p o q				
			$q \rightarrow p$				
			pe of inference				
		Direct					
	-		matical induction				
	•	CP rule					
	· ·	iv) Inference					
			inference from the premises $P \rightarrow Q, Q \rightarrow R$ and P				
	a)		$\operatorname{ses} p \to q, q \to R \text{ implies}$				
		•	$P \to R$				
			$q \to R$				
		•	$R \to P$				
	21 CTD -	-	$Q \rightarrow P$				
	31. S.T $P \to S$ logically follws from the premises $\neg PQ$, $\neg QR$, $R \to S$ a) The rule used to convert $\neg PQ$ to $P \to Q$ is						
•			· · · · · · · · · · · · · · · · · · ·				
			i) Modus pollensii) Modus tollens				
			iii) Idempotent				
			iv) Conditional equivalence				
	22 STSD	امعندعال	of follows from $PQ, P \rightarrow R, Q \rightarrow S$				
	a)		uplication $\neg P \rightarrow S \neg S \rightarrow P$ is called				
	aj	i)	Modus pollens				
		ii)	Modus tollens				
		iii)	Idempotent				
		iv)	Contrapositive				
	33. Conditional premise						
		•	conclusion is of the form $r \to s$ then r is an				
	u,	i)	Rule T				
		ii)	Rule P				
		iii)	Premises				
		iv)	Additional premises				
		,	•				

- a) A set of premises is said to be consistent of their ______ is a contradiction
 - i) Conjunction
 - ii) Disjunction
 - iii) Negation
 - iv) Conditional

35. Symbolize the statements

- a) If Rama gets his degree (P), he will go for a job (q)
 - i) $q \rightarrow p$
 - ii) $p \rightarrow q$
 - iii) pq
 - iv) pq

36. symbolize the statements

- a) Krishna goes for a job (p) and he will not for higher studies (q)
 - i) p¬q
 - ii) pq
 - iii) $p \rightarrow q$
 - iv) $p \rightarrow \neg q$

Answer

1)a 2) a 3) a 4) d 5) d 6) c 7) c 8) c 9) b 10) c 11) c 12) b 13) b 14) d 15) a 16) a 17) a 18) b 19) a 20) d 21) a 22) a 23) d 24) c 25) b 26) c 27) c 28) b 29) a 30) c 31) d) 32) d 33) d 34) a) 35) b 36) b.