中山大学本科生期末考试

考试科目:《电磁学》(A 卷)

试卷编号:	$\underline{19W089}$		

学年学期: 2019学年第2学期 学院/系: 物理学院

考试方式: 开卷 年级/专业: 19 级物理学

警示 《中山大学授予学士学位工作细则》第八条:"考试作弊者,不授予学士学位。"

以下为试题区域, 共31道填空题, 总分100分, 考生请在答题纸上作答

一些可能要用到的常数: 电子电荷 $e=-1.602\times 10^{-19}C$, 真空介电常数 $\epsilon_0=8.85\times 10^{-12}C^2/Nm^2$, 真空磁导率 $\mu_0=4\pi\times 10^{-7}N/A^2$, 普朗克常数 $h=6.626\times 10^{-34}Js$, 真空中的光速 $c=3\times 10^8m/s$, 重力加速度 $g=9.8m/s^2$, 圆周率 $\pi=3.1415926$.

- 2. 一激光束平均能流密度为 92W/m², 其中电场最大值为

4.	一很长的直导线有	$\dot{\zeta}$ 交变电流 $i(t) = 1.0 \mathrm{sig}$	n(9t)A,它旁边有一	长方形线圈 ABC	lD,如图, $l=$
	0.2m, $a = 0.5m$,	b=1.0m,线圈和导线	是在同一平面内,则在	生 $2s$ 时,穿过回	路 ABCD 的
	磁通量为	,若此时线圈	ABCD 是静止的,	则回路 ABCD	中的感应电动
	势为	,若回路 <i>ABCD</i>	的电阻为 64 欧,	则线圈 ABCD	受到的力大小
	为	,方向为	。若此时线圈	圖 <i>ABCD</i> 正以速	速度 4.6m/s 向

右平移,则回路 ABCD 中的感应电动势为

5. 电荷的相互作用是通过静电场实现的,静电场是个有源场,而电通量是某个曲面上面的积分量, 当一个带电量为 1.0C 的点电荷位于一个边长为 99cm 的立方体的中心时,通过立方体的其中一个面的电通量为 ,通过立方体六个面的总电通量为

- 6. 一圆形线圈由 490 匝表面绝缘的细导线绕成,圆半径为 0.8cm,放在另一个半径为 1.2m 的大圆形线圈中心,两者同轴,大线圈由 1654 匝表面绝缘的导线绕成,则两线圈的互感为______
- 7. 两金属球半径分别为 5cm 和 9cm,它们之间距离 10m,开始时球 1 带电荷 $0.9\mu C$,球 2 不 带电。若用一细导线将它们连起来,达到静电平衡后,球 1 带电量为_______,球 2 带电量为
- 8. 一很长的导体直圆筒, 筒厚为 3.0*m*, 外直径为 8.7*m*, 载有 2.6*A* 的直流电, 电流沿轴向流动, 并且均匀分布在筒的横截面上。则离轴 3.2*m* 处的磁感应强度大小为
- 10. 如图(纸面为水平面。此为示意图,图中距离的大小以题干中数字为准。),一金属棒 ab 长 0.8m,水平放置在竖直向上的匀强磁场中,磁感应强度为 0.7T,金属棒绕某竖直轴在水平面内 旋转,每秒 93 转,a 端距转轴 0.2m,b 端距转轴 0.9m,a、b 端的电势差为_______

11. 静电荷之间的作用力称为库仑力,与万有引力具有类似的表达形式,考虑经典的氢原子模型为一个质子($m_p = 1.67 \times 10^{-27} kg$)的正电荷中心,特定轨道上电子($m_e = 9.11 \times 10^{-31} kg$)绕原子核做圆周运动(轨道半径为 $5.29 \times 10^{-11} m$),原子核与电子的万有引力为

	静电力为,库仑力是万有引力的					
12.	一横截面积为 9.2cm ² 的空心螺绕环,每厘米长度上绕有 28 匝,环上另外还绕有 10 匝的副线圈,副线圈与电流计串联,构成一个电阻为 9.3 欧的闭合电路,今使螺绕环中电流每秒减小7.0 <i>A</i> ,则副线圈中的感应电动势为,感应电流为					
13.	半径为 $0.9m$ 的无限长圆柱形导线外裹有一层厚度为 $0.9m$ 的均匀介质,介质的介电常数为 $5.8\times 10^{-11}C^2/(Nm^2)$,导线均匀带电 $1.0\mu C/m$,离导线 $1.6m$ 处的电场为,介质内外表面电势差为					
14.	在空气($\mu_1=1.0$)和软铁($\mu_2=4824$)的交界面上,软铁内磁感应强度与交界面法线的夹角为 38° ,则空气中磁场强度 H 与交界面法线的夹角为					
15.	一螺绕环横截面为圆形,半径为 $0.3cm$,中心环线半径为 $0.7m$,其上由表面绝缘的导线均匀地密绕两个线圈,线圈 A 有 625 匝,其电流每秒减小 $0.3A$,线圈 B 有 3246 匝,两线圈的互感为,线圈 B 中的感应电动势为					
16.	一回旋加速器 D 形盒的半径为 $39cm$,用它来加速质量为 $1.67 \times 10^{-27} kg$ 的质子,要把质子从静止加速到 $3MeV$ 的能量。需要磁感应强度大小					
17.	同心球形电容器由一个同心的球和球壳构成,内球半径为 $38cm$,球壳的内表面半径为 $49cm$,外半径为 $50cm$,中间有介电常数为 6.0 ,电导率为 $2.6\times10^{-4}S/m$ 的均匀漏电介质,电容器充电后随即缓慢漏电,这时在介质中有径向衰减电流通过。在 $8.5s$ 时,漏电电流大小为 $7.3A$,此时内球带电多少					
18.	如图所示,两个边长为 $9.8m$ 的正三角形组成一个菱形,在正三角的中心分别放置点电荷,带电量为 0.8μ C 与 -0.8μ C,则菱形中心点 O 点及两个顶点 A 点与 B 点的电势分别为: O 点					
19.	一铜片厚 $0.5mm$,放在 $1.5T$ 的磁场中,磁场方向与铜片表面垂直,如图。已知铜里每立方厘米有					

 8.4×10^{22} 个自由电子, 当铜片中有 75A 的电流时铜片上下两边的电势差为_____

20. 如图, 金属棒 ab 与一长直细导线垂直, 以 9.9m/s 的速率平行于该导线平动, a 端距导线 8.0m, b 端距导线 9.8m, 长直导线内有电流 2.6A, 则棒中感应电动势大小为 21. 一圆柱形电容器,由直径为 4.5cm 的直圆筒和与它共轴的直导线构成,导线直径为 3.7mm, 筒与导线间填满介电常数为 4.6, 击穿场强为 172125V/m 的均匀介质, 电容器能耐多高的电 压 22. 如图(图中角度仅为示意,具体大小见题干文字),一条无穷长直导线在一处弯成圆弧,圆弧 的半径为 0.8m,圆心在 O, $\theta = 30°$,直线的延长线都通过圆心。导线中的电流为 0.4A,则 O 点的磁感应强度大小为 23. 一均匀磁化的磁棒,直径为 24mm,长为 74mm,磁矩为 $18319Am^2$,则棒侧表面上的磁化 电流密度为_____ 24. 一个内半径为 21cm,外半径为 68cm 的金属球壳带电 $0.2\mu C$,在距离球壳中心 34cm 处电 场强度为 ,在距离球壳中心 89cm 处电场强度为 。这个 金属球壳静电能的 60.1% 都集中在以球壳球心为中心、以 为半径的球内。 25. 极板面积为 $2.5m^2$ 的两平行金属板,间距为 3.1mm,内部充满了介电常数为 2.2 的均匀电介 质,电容器带有电量 $38\mu C$,略去边缘效应,介质内的电场强度大小为 ,电 位移矢量大小为_____,两板间电势差为_____,介质表面上的极化电 荷面密度绝对值为 , 电容器存储的能量为 26. 平板电容器极板面积为 $3.2m^2$, 极板间距为 0.8mm, 两极板间加上 21V 电压后, 取去电 源,再在其间充满两层介质,介质一厚 0.2mm,介电常数为 6.4,介质二填满两极板间剩余 的空间,介电常数为 4.2,则介质一中的极化强度大小为_____,电场强度大小 为_____, 两极板间电势差为_____ 27. 一直螺线管长 2.0m, 直径为 1.5cm, 均匀地绕有 870 匝导线, 通过电流 0.3A, 则螺线管中

心的磁感应强度大小为

宽度为 0.4mm 的空气隙,要在空气隙内产生 0.7T 的磁场,导线中电流应为_____(设铁芯磁导率不变)

29. 如图,有一根长度为 0.5m,质量为 5.2g 的导体杆,用细绳子平挂在大小为 1.6T 的水平外磁场中,导线中通有电流,电流的方向与磁场垂直,绳子张力为 0,则电流的大小为

30. 电荷的定向移动可以形成电流,而电流连续性本质是电荷守恒。如图所示,两边为电导率很大的导体,中间两层是电导率分别为 58S/m 和 80S/m,相对介电常数为 1 的均匀导电介质,其厚度分别为 5.1m,8.3m,导体的截面积为 $5.3cm^2$,当导体通过恒定电流,方向如图时,电势差 U_{AC} 为 2.9V,则两层导电介质中的场强 E_1 为________, E_2 为______,电势差 U_{BC} 为______,A 面的电荷面密度______,B 面的电荷面密度为_____

31. 两个相同的平板电容器 A、B,它们的极板是圆形的,半径为 0.3m,极板间隔 1.6mm,电容器 A 中介质为空气,电容器 B 中介质相对介电常数为 4.9。把它们充电到各自带电 $0.5\mu C$,此时 A 中的电能为_______,取去电源,将两电容器正向并联,稳定之后,两电容器中的总电能为______。若以 0.2A 的直流电单独给电容器 A 充电,当 A 带电 $0.5\mu C$ 时,A 极板边缘的磁感应强度大小为______,能流密度大小为______