Kaggle Project

▼ Describe Your Dataset

URL: https://www.kaggle.com/datasets/tawfikelmetwally/employee-dataset/data

Task: 직원의 학력 분포, 근무 장소, 근무 기간(입사년도), 급여 등급, 직무 경험, 성별 등 각 변수들과 퇴사의 상관 관계 규명

Datasets

• Train dataset: 전체 데이터의 70%, 4653*0.7 = 3257

• Test dataset: 전체 데이터의 30% = 4653*0.3 = 1396

Features(x): -Education: 최종 학력 -Joining Year: 입사 연도 -City: 근무 장소 -Payment Tier : 급여 등급 -Age: 연령 -Gender : 성별 -Ever Benched: 할당된 직무 없이 일시적으로 작업을 수행한 적이 있는지 여부 -Experience in Current Domain : 현재 분야에서 쌓은 경력 기간(단위 : 년)

Target(y): LeaveOrNot: 퇴사 여부 0: 재직(퇴사 안함) 1: 퇴사

▼ Build Your Model

Data preprocessing

import os
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
%matplotlib inline
import seaborn as sns
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import LabelEncoder
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split

from sklearn import svm os.chdir(r"C:\Users\Sedaily\Desktop\개인\동국대 경영정보\2023년 2학기\H다신러닝-딥러닝")

df=pd.read_csv("./Employee.csv")
df.head()

	Education	JoiningYear	City	PaymentTier	Age	Gender	EverBenched	Experie
0	Bachelors	2017	Bangalore	3	34	Male	No	
1	Bachelors	2013	Pune	1	28	Female	No	
2	Bachelors	2014	New Delhi	3	38	Female	No	
3	Masters	2016	Bangalore	3	27	Male	No	
4	Masters	2017	Pune	3	24	Male	Yes	

df.describe()

	JoiningYear	PaymentTier	Age	ExperienceInCurrentDomain	LeaveOrNot
count	4653.000000	4653.000000	4653.000000	4653.000000	4653.000000
mean	2015.062970	2.698259	29.393295	2.905652	0.343864
std	1.863377	0.561435	4.826087	1.558240	0.475047
min	2012.000000	1.000000	22.000000	0.000000	0.000000
25%	2013.000000	3.000000	26.000000	2.000000	0.000000
50%	2015.000000	3.000000	28.000000	3.000000	0.000000
75%	2017.000000	3.000000	32.000000	4.000000	1.000000
max	2018.000000	3.000000	41.000000	7.000000	1.000000

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4653 entries, 0 to 4652
Data columns (total 9 columns):

	#	Column	Non-Null Count	Dtype
-				
	0	Education	4653 non-null	object
	1	JoiningYear	4653 non-null	int64
	2	City	4653 non-null	object
	3	PaymentTier	4653 non-null	int64
	4	Age	4653 non-null	int64
	5	Gender	4653 non-null	object
	6	EverBenched	4653 non-null	object
	7	ExperienceInCurrentDomain	4653 non-null	int64
	8	LeaveOrNot	4653 non-null	int64

dtypes: int64(5), object(4)
memory usage: 327.3+ KB

1. 학력 분포와 퇴사 여부 관계 -> 석사 학위가 상대적으로 높은 비율

sns.countplot(x='Education',hue='LeaveOrNot',data=df)
plt.figure(figsize=(14,10))

<Figure size 1008x720 with 0 Axes>

<Figure size 1008x720 with 0 Axes>

2. 입사 시기와 퇴사 여부 관계 -> 2018년도 입사자가 유일하게 퇴사 인원 > 잔류 인원

sns.countplot(x='JoiningYear',hue='LeaveOrNot',data=df)
plt.figure(figsize=(14,10))

<Figure size 1008x720 with 0 Axes>

<Figure size 1008x720 with 0 Axes>

3. 근무 장소와 퇴사 여부 관계 -> Pune 지역이 상대적으로 퇴사자 비율 가장 높음

sns.countplot(x='City',hue='LeaveOrNot',data=df)
plt.figure(figsize=(14,10))

<Figure size 1008x720 with 0 Axes>

4. 급여 등급과 퇴사 여부 관계 -> 2등급이 가장 퇴사 비율 높고, 3등급은 낮음

sns.countplot(x='PaymentTier',hue='LeaveOrNot',data=df)
plt.figure(figsize=(14,10))

<Figure size 1008x720 with 0 Axes>

<Figure size 1008x720 with 0 Axes>

5. 연령과 퇴사 여부 관계 -> 그래프로는 판단 불가

sns.countplot(x='Age',hue='LeaveOrNot',data=df)
plt.figure(figsize=(14,10))

<Figure size 1008x720 with 0 Axes>

<Figure size 1008x720 with 0 Axes>

6. 성별과 퇴사 여부 관계 -> 여성이 남성보다 상대적으로 퇴사자 많음

sns.countplot(x='Gender',hue='LeaveOrNot',data=df)
plt.figure(figsize=(14,10))

<Figure size 1008x720 with 0 Axes>

<Figure size 1008x720 with 0 Axes>

7. 대기 발령 여부와 퇴사 관계 -> 대기 발령 경험자가 상대적으로 높은 퇴사 비율

sns.countplot(x='EverBenched',hue='LeaveOrNot',data=df)
plt.figure(figsize=(14,10))

<Figure size 1008x720 with 0 Axes>

<Figure size 1008x720 with 0 Axes>

8. 직무 경력과 퇴사 관계 -> 6~7년이 가장 높은 비율

sns.countplot(x='ExperienceInCurrentDomain',hue='LeaveOrNot',data=df)
plt.figure(figsize=(14,10))

▼ Model Construction

le=LabelEncoder() # 문자 데이터였던 학력, 근무장소, 성별, 대기발령 여부를 숫자로 변환

```
df['Education']=le.fit_transform(df['Education'])
df['City']=le.fit_transform(df.City)
df['Gender']=le.fit_transform(df['Gender'])
df['EverBenched']=le.fit_transform(df['EverBenched'])
df.head()
```

	Education	JoiningYear	City	PaymentTier	Age	Gender	EverBenched	Experiencel
0	0	2017	0	3	34	1	0	
1	0	2013	2	1	28	0	0	
2	0	2014	1	3	38	0	0	
3	1	2016	0	3	27	1	0	
4	1	2017	2	3	24	1	1	

```
target=df['LeaveOrNot']
y=target
y.head()

0      0
1      1
2      0
3      1
4      1
Name: LeaveOrNot, dtype: int64

X=df.drop(['LeaveOrNot'],axis='columns')
X.head()
```

	Education	JoiningYear	City	PaymentTier	Age	Gender	EverBenched	Experiencel
0	0	2017	0	3	34	1	0	
1	0	2013	2	1	28	0	0	

df.corr()

	Education	JoiningYear	City	PaymentTier	Age	
Education	1.000000	0.142670	0.149903	-0.140741	-0.010611	-
JoiningYear	0.142670	1.000000	0.051441	-0.096078	0.013165	-
City	0.149903	0.051441	1.000000	-0.295884	-0.030706	-
PaymentTier	-0.140741	-0.096078	-0.295884	1.000000	0.007631	
Age	-0.010611	0.013165	-0.030706	0.007631	1.000000	-
Gender	-0.010889	-0.012213	-0.168546	0.235119	-0.003866	
EverBenched	-0.052249	0.049353	-0.007046	0.019207	-0.016135	
ExperienceInCurrentDomain	-0.004463	-0.036525	-0.009925	0.018314	-0.134643	
LeaveOrNot	0.080497	0.181705	0.201058	-0.197638	-0.051126	-

※ 퇴사와 상관 관계 있는 요인은 학력, 입사연도, 근무장소, 대기발령 여부

▼ Train Model & Select Model

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) # 훈련 데C print(X_train.shape, X_test.shape, y_train.shape, y_test.shape) # 훈련 데이터, 테스트 데이터 수 확인 (3257, 8) (1396, 8) (3257,) (1396,)

Ir=LogisticRegression(max_iter=4000) # 로지스틱 회귀 모델 적용, 최대 4000번 반복

Ir.fit(X_train,y_train)

LogisticRegression
LogisticRegression(max_iter=4000)

Ir.score(X_test,y_test) #. 1-로지스틱회귀 모델 적용 예측 결과 정확도 72% 0.7213467048710601

```
dtc=DecisionTreeClassifier()
dtc.fit(X_train,y_train)
      ▼ DecisionTreeClassifier
      DecisionTreeClassifier()
```

dtc.score(X_test,y_test) #. 2-의사결정나무 모델 적용 예측 결과 정확도 83% 0.8302292263610315

```
sv = svm.SVC(C = 40, kernel = 'rbf')
sv.fit(X_train,y_train)
          SVC
      SVC(C=40)
```

sv.score(X_test,y_test) #. 3-서포트벡터머신 모델 적용 예측 결과 정확도 65% 0.6590257879656161

▼ Conclusion

1~3 중 가장 높은 점수는 의사결정나무의 0.83 -> 3개 머신러닝 모델 중 가장 정확한 모델은 의사결정나도