

(19)



Europäisches Patentamt  
European Patent Office  
Office européen des brevets

(11)



EP 1 186 606 A1

(12)

## EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:  
13.03.2002 Patentblatt 2002/11

(51) Int Cl.7: C07D 417/06, C07D 493/04,  
C07D 497/18, A61K 31/425,  
A01N 43/78, A61P 35/00

(21) Anmeldenummer: 01127352.1

(22) Anmeldetag: 18.11.1996

(84) Benannte Vertragsstaaten:  
AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC  
NL PT SE

(30) Priorität: 17.11.1995 DE 19542986  
25.09.1996 DE 19639456

(62) Dokumentnummer(n) der früheren Anmeldung(en)  
nach Art. 76 EPÜ:  
96939097.0 / 0 873 341

(71) Anmelder: Gesellschaft für Biotechnologische  
Forschung mbH (GBF)  
38124 Braunschweig (DE)

(72) Erfinder:  
• Höfle, Gerhard, Prof. Dr.  
38124 Braunschweig (DE)  
• Kiffe, Michael, Dr.  
38124 Braunschweig (DE)

(74) Vertreter: Boeters, Hans Dietrich, Dr. et al  
Patentanwälte Boeters & Bauer,  
Bereiteranger 15  
81541 München (DE)

### Bemerkungen:

Diese Anmeldung ist am 21 - 11 - 2001 als  
Teilanmeldung zu der unter INID-Kode 62  
erwähnten Anmeldung eingereicht worden.

(54) Epothilon-Derivate, ihre Herstellung und Verwendung

(57) Die vorliegende Erfindung betrifft Epothilonederivate und deren Verwendung.

BEST AVAILABLE COPY

EP 1 186 606 A1

## Beschreibung

[0001] Die vorliegende Erfindung betrifft allgemein Epothilonederivate und deren Verwendung zur Herstellung von Arzneimitteln. Insbesondere betrifft die vorliegende Erfindung die Herstellung der Epothilonederivate der nachfolgend dargestellten allgemeinen Formeln 1 bis 7 sowie deren Verwendung zur Herstellung von therapeutischen Mitteln und Mitteln für den Pflanzenschutz.

10



1

20

25

30

35

40

45



2

50

55



3

20

25



4

40

45

50

55



5



6



7

20 [0002] In den vorstehenden **Formeln 1 bis Formel 7** bedeuten:

R = H, C<sub>1-4</sub>-Alkyl;

25 R¹, R², R³, R⁴, R⁵ = H, C<sub>1-6</sub>-Alkyl,  
Benzoyl-C<sub>1-6</sub>,  
C<sub>1-4</sub>-Trialkylsilyl,  
Benzyl,  
Phenyl,  
C<sub>1-6</sub>-Alkoxy-,  
30 C<sub>6</sub>-Alkyl-, Hydroxy- und Halogen- substituiertes Benzyl bzw. Phenyl;

wobei auch zwei der Reste R¹ bis R⁵ zu der Gruppierung -(CH<sub>2</sub>)<sub>n</sub>-mit n = 1 bis 6 zusammentreten können und es sich bei den in den Resten enthaltenen Alkyl- bzw. Acylgruppen um gradkettige oder verzweigte Reste handelt;

35 Y und Z sind entweder gleich oder verschieden und stehen jeweils für Wasserstoff, Halogen, wie F, Cl, Br oder J, Pseudothalogen, wie -NCO, -NCS oder -N<sub>3</sub>, OH, O-(C<sub>1-6</sub>)-Acyl, O-(C<sub>1-6</sub>)-Alkyl, O-Benzoyl. Y und Z können auch das O-Atom eines Epoxides sein,

wobei Epothilon A und B nicht beansprucht werden, oder eine der C-C-Bindungen einer C=C-Doppelbindung bilden.

40 [0003] In der **Formel 3** steht X allgemein für -C(O)-, -C(S)-, -S(O)-, -CR¹R²-, wobei R¹ und R² die Bedeutung haben wie oben angegeben, und -SiR₂-, wobei R die Bedeutung hat wie oben angegeben.

[0004] In der **Formel 4** bedeutet X Sauerstoff, NOR³, N-NR⁴R⁵, und N-NHCONR⁴R⁵, wobei die Reste R³ bis R⁵ die oben angegebene Bedeutung haben.

[0005] In der **Formel 5** bedeutet X Wasserstoff, C<sub>1-18</sub>-Alkyl, C<sub>1-18</sub>-Acyl, Benzyl, Benzoyl und Cinnamoyl.

45 [0006] Für Epothilon A und B sei verwiesen auf DE-A-41 38 042. Verbindungen gemäß der allgemeinen **Formel 1** sind ausgehend von Epothilon A und B sowie von deren 3-O- und/oder 7-O-geschützten Derivaten durch Öffnung des 12,13-Epoxids zugänglich. Werden dazu Hydrogenwasserstoffsäuren in einem bevorzugt nicht wässrigen Lösungsmittel eingesetzt, wobei man die Halogenhydrine X = Hal, Y = OH und Y = OH, Y = Hal erhält. Protonensäuren wie z. B. Toluolsulfinsäure und Trifluoressigsäure führen in Gegenwart von Wasser zu 12,13-Diolen, die anschließend nach Standardverfahren acyliert (z.B. mit Carbonsäureanhydriden und Pyridin oder Triethylamin/DMAP) oder alkyliert (Alkylhalogenide und Silberoxid) werden. Die 3- und 7-Hydroxygruppen können dazu vorübergehend als Formiat (Ab-spaltung mit NH<sub>3</sub>/MeOH) oder p-Methoxy-benzylether (Ab-spaltung mit DDQ) geschützt werden.

50 [0007] Verbindungen gemäß der allgemeinen **Formel 2** sind aus Epothilon A und B sowie deren 3-O- und/oder 7-O-geschützten Derivaten durch Reduktion, z.B. mit NaBH<sub>4</sub> in Methanol erhältlich. Sind dabei 3-OH und/oder 7-OH reversibel geschützt, so können nach Acylierung oder Alkylierung und Entfernen der Schutzgruppen 5-O-monosubstituierte, 3,5- oder 5,7-O-disubstituierte Derivate der allgemeinen **Formel 2** erhalten werden.

55 [0008] Umsetzungen von Epothilon A und B mit bifunktionellen elektrophilen Reagenzien, wie (Thio)Phosgen, (Thio)Carbonyldimidazol, Thionylchlorid oder Dialkylsilyldichloriden bzw. -bistriflaten ergeben Verbindungen der allgemeinen **Formel 3**. Als Hilfsbasen dienen dabei Pyridin, Trialkylamine, ggf. zusammen mit DMAP bzw. 2,6-Lutidin in einem nichtprotischen Lösungsmittel. Die 3,7-Acetale der allgemeinen **Formel 3** entstehen durch Umacetalisierung z.B. von

Dimethylacetalen in Gegenwart eines sauren Katalysators.

[0009] Verbindungen gemäß der allgemeinen **Formel 4** werden aus Epothilon A und B oder ihren 3-O- und/oder 7-O-geschützten Derivaten durch Ozonolyse und reduktive Aufarbeitung, z.B. mit Dimethylsulfid, erhalten. Die C-16-Ketone können anschließend nach dem Fachmann geläufigen Standardverfahren in Oxime, Hydrazone oder Semicarba-zone 5 umgewandelt werden. Sie werden weiterhin durch Wittig-, Wittig-Horner-, Julia- oder Petersen-Olefinierung in C-16/C-17-Olefine überführt.

[0010] Durch Reduktion der C-16-Ketogruppe, z.B. mit einem Aluminium- oder Borhydrid, sind die 16-Hydroxyderivate gemäß der allgemeinen **Formel 5** erhältlich. Diese können, wenn 3-OH und 7-OH mit entsprechenden Schutzgruppen versehen sind, selektiv acyliert oder alkyliert werden. Die Freisetzung der 3-OH- und 7-OH-Gruppen erfolgt 10 z.B. bei O-Formyl durch  $\text{NH}_3/\text{MeOH}$ , bei O-p-Methoxybenzyl durch DDQ.

[0011] Die Verbindungen der allgemeinen **Formel 6** werden aus Derivaten von Epothilon A und B erhalten, bei denen die 7-OH-Gruppe durch Acyl- oder Ethergruppen geschützt ist, in dem die 3-OH-Gruppe z.B. formyliert, mesyliert oder tosyliert und anschließend durch Behandlung mit einer Base z.B. DBU eliminiert wird. Die 7-OH-Gruppe kann wie oben beschrieben freigesetzt werden.

[0012] Verbindungen der allgemeinen **Formel 7** werden aus Epothilon A und B oder deren 3-OH- und 7-OH-geschützten Derivaten durch basische Hydrolyse erhalten, z.B. mit NaOH in MeOH oder MeOH/Wasser. Vorzugsweise werden Verbindungen der allgemeinen **Formel 7** aus Epothilon A oder B oder deren 3-OH- oder 7-OH-geschützten Derivaten durch enzymatische Hydrolyse erhalten, insbesondere mit Esterasen oder Lipasen. Die Carboxylgruppe kann mit Diazoalkanen nach Schutz der 19-OH-Gruppe durch Alkylierung in Ester umgewandelt werden.

[0013] Ferner können Verbindungen der **Formel 7** durch Lactonisierung nach den Methoden von Yamaguchi (Trichlorbenzoylchlorid/DMAP), Corey (Aldrithiol/Triphenylphosphin) oder Kellogg (omega-Bromsäure/Caesiumcarbonat) in Verbindung der **Formel 1** umgewandelt werden. Einschlägige Arbeitsmethoden finden sich bei

[0014] Inanaga et al. in Bull. Chem. Soc. Japan, 52 (1979) 1989; Corey & Nicolaou in J. Am. Chem. Soc., 96 (1974) 5614; und Kruizinga & Kellogg in J. Am. Chem. Soc., 103 (1981) 5183.

[0015] Zur Herstellung der erfindungsgemäßen Verbindungen kann man auch von Epothilon C oder D ausgehen, wobei zur Derivatisierung auf die vorstehend beschriebenen Derivatisierungsmethoden verwiesen werden kann. Dabei kann man die 12,13-Doppelbindung selektiv hydrieren, beispielsweise katalytisch oder mit Diimin; oder epoxidieren, beispielsweise mit Dimethyldioxiran oder einer Persäure; oder in die Dihalogenide, Dipseudohalogenide oder Diazide umwandeln.

[0016] Die Erfindung betrifft ferner Mittel für den Pflanzenschutz in Landwirtschaft, Forstwirtschaft und/oder Gartenbau, bestehend aus einer oder mehreren der vorstehend aufgeführten Epothilonederivate bzw. bestehend aus einem oder mehreren der vorstehend aufgeführten Epothilonederivate neben einem oder mehreren üblichen Träger(n) und/oder Verdünnungsmittel(n).

[0017] Schließlich betrifft die Erfindung therapeutische Mittel, bestehend aus einer oder mehreren der vorstehend aufgeführten Verbindungen oder einer oder mehreren der vorstehend aufgeführten Verbindungen neben einem oder mehreren üblichen Träger(n) und/oder Verdünnungsmittel(n). Diese Mittel können insbesondere cytotoxische Aktivitäten zeigen und/oder Immunsuppression bewirken und/oder zur Bekämpfung maligner Tumore eingesetzt werden, wobei sie besonders bevorzugt als Cytostatika verwendbar sind.

[0018] Die Erfindung wird im folgenden durch die Beschreibung von einigen ausgewählten Ausführungsbeispielen 40 näher erläutert und beschrieben.

### Beispiele

#### Beispiel 1:

##### Verbindung 1a

[0019] 20 mg (0.041 mmol) Epothilon A werden in 1 ml Aceton gelöst, mit 50  $\mu\text{l}$  (0.649 mmol) Trifluoressigsäure versetzt und über Nacht bei 50 °C gerührt. Zur Aufarbeitung wird das Reaktionsgemisch mit 1 M Phosphatpuffer pH 50 7 versetzt und die wäßrige Phase viermal mit Ethylacetat extrahiert. Die vereinigten organischen Phasen werden mit gesättigter Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und vom Lösungsmittel befreit. Die Reinigung des Rohproduktes erfolgt mit Hilfe der präparativen Schichtchromatographie (Laufmittel: Dichlormethan/Aceton, 85 : 15).

55 Ausbeute: 4 mg (19 %) Isomer I  
4 mg (19 %) Isomer II

EP 1 186 606 A1

**Isomer I**

**[0020]**

5 R<sub>f</sub> (Dichlormethan/Aceton, 85 : 15) : 0.46

IR (Film): ny = 3440 (m, b, Sch), 2946 (s, Sch), 1734 (vs), 1686 (m), 1456 (m), 1375 (w), 1256 (s, Sch), 1190 (w, b, Sch), 1071 (m, Sch), 884 (w), 735 (w) cm<sup>-1</sup>.

10 MS (20/70 eV): m/e (%) = 493 (43 [M-H<sub>2</sub>O]<sup>+</sup>), 394 (47), 306 (32), 206 (30), 181 (40), 166 (72), 139 (100), 113 (19), 71 (19), 57 (24), 43 (24).

Hochauflösung: C<sub>26</sub>H<sub>39</sub>O<sub>6</sub>NS ber.: 493.2498 für [M-H<sub>2</sub>O]<sup>+</sup>  
gef.: 493.2478

15

**Isomer II**

**[0021]**

20 R<sub>f</sub> (Dichlormethan/Aceton, 85 : 15): 0.22

IR (Film): ny = 3484 (s, b, Sch), 2942 (vs, Sch), 1727 (vs), 1570 (w), 1456 (m), 1380 (m), 1265 (s), 1190 (w), 1069 (m), 975 (w), cm<sup>-1</sup>.

25 MS (20/70 eV): m/e (%) = 493 (21 [M-H<sub>2</sub>O]<sup>+</sup>), 394 (12), 306 (46), 206 (37), 181 (63), 166 (99), 139 (100), 113 (21), 71 (23), 57 (33), 43 (28).

Hochauflösung: C<sub>26</sub>H<sub>39</sub>O<sub>6</sub>NS ber.: 493.2498 für [M-H<sub>2</sub>O]<sup>+</sup>  
gef.: 493.2475

30

**Beispiel 2:**

**Verbindung 1b**

35 **[0022]** 55 mg (0.111 mmol) Epothilon A werden in 0.5 ml Tetrahydrofuran gelöst, mit 0.5 ml 1 N Salzsäure versetzt und 30 Minuten bei Raumtemperatur gerührt. Anschließend wird mit 1 N Phosphatpuffer pH 7 versetzt und die wässrige Phase viermal mit Ethylacetat extrahiert. Die vereinigten organischen Phasen werden mit gesättigter Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und vom Lösungsmittel befreit. Die Reinigung des Rohproduktes erfolgt mit Hilfe der präparativen Schichtchromatographie (Laufmittel: Dichlormethan/Methanol, 90 : 10). Ausbeute: 19 mg (32%)

R<sub>f</sub> (Dichlormethan/Methanol, 90 : 10) : 0.46

IR (Film): ny = 3441 (s, br, Sch), 2948 (s, Sch), 1725 (vs, Sch), 1462 (m), 1381 (w), 1265 (m), 1154 (w), 972 (m, br, Sch) cm<sup>-1</sup>.

UV (Methanol): lambda<sub>max</sub> (lg epsilon) = 210 (4.29), 248 (4.11) nm.

MS (20/70 eV): m/e (%) = 529 (13 [M<sup>+</sup>]), 494 (10), 342 (38), 306 (23), 194 (32), 164 (100), 140 (31), 113 (15), 57 (16).

Hochauflösung: C<sub>26</sub>H<sub>40</sub>O<sub>6</sub>CINS ber.: 529.2265 für [M<sup>+</sup>],  
gef.: 529.2280

55

## EP 1 186 606 A1

### Beispiel 3:

#### Verbindung 1c

5 [0023] 25 mg (0.047 mmol) 12-Chlor-13-hydroxy-epothilon A (1b) werden in 1 ml Dichlormethan gelöst, mit 29 mg (0.235 mmol) Dimethylaminopyridin, 151 µl (1.081 mmol) Triethylamin und 20 µl (0.517 mmol) 98 %-iger Ameisensäure versetzt. Das Reaktionsgemisch wird mit Eis/Natriumchlorid abgekühlt. Nach Erreichen von -15 °C werden dem Reaktionsgemisch 40 µl (0.423 mmol) Essigsäureanhydrid zugegeben und 70 Minuten bei -15 °C gerührt. Nachdem ein Dünnschichtchromatogramm keinen vollständigen Umsatz anzeigt, werden dem Reaktionsgemisch weitere 6 mg (0.047 mmol) Dimethylaminopyridin, 7 µl (0.047 mmol) Triethylamin, 2 µl 98 %-ige Ameisensäure (0.047 mmol) und 4 µl (0.047 mmol) Essigsäureanhydrid zugesetzt und 60 Minuten gerührt. Zur Aufarbeitung wird das Reaktionsgemisch auf Raumtemperatur erwärmt, mit 1 M Phosphatpuffer pH 7 versetzt und die wäßrige Phase viermal mit Ethylacetat extrahiert. Die vereinigten organischen Phasen werden mit gesättigter Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und vom Lösungsmittel befreit. Die Reinigung des Rohproduktes erfolgt mit Hilfe der präparativen Schichtchromatographie (Laufmittel: Dichlormethan/Aceton, 90 : 10). Ausbeute: 5 mg (18 %)

R<sub>f</sub> (Dichlormethan/Aceton, 90 : 10): 0.67

20 IR (Film): ν = 3497 (w, b, Sch), 2940 (s, b, Sch), 1725 (vs), 1468 (m, b, Sch), 1379 (m), 1265 (s), 1253 (s), 1175 (vs), 972 (m, b, Sch), 737 (s) cm<sup>-1</sup>

MS (20/70 eV): m/e (%) = 613 (9 [M<sup>+</sup>]), 567 (43), 472 (63), 382 (23), 352 (21), 164 (100), 151 (33), 96 (31), 69 (17), 44 (26).

25 Hochauflösung: C<sub>29</sub>H<sub>40</sub>O<sub>9</sub>NSCI ber.: 613.2112 für [M<sup>+</sup>]  
gef.: 613.2131

### Beispiel 4:

#### Verbindung 1d

30 [0024] 10 mg (0.020 mmol) Epothilon B werden in 0.5 ml Tetrahydrofuran gelöst, mit 0.5 ml 1 N Salzsäure versetzt und 30 Minuten bei Raumtemperatur gerührt. Anschließend wird mit 1 M Phosphatpuffer pH 7 versetzt und die wäßrige Phase viermal mit Ethylacetat extrahiert. Die vereinigten organischen Phasen werden mit gesättigter Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und vom Lösungsmittel befreit. Die Reinigung des Rohproduktes erfolgt mit Hilfe der präparativen Schichtchromatographie (Laufmittel: Dichlormethan/Aceton, 85 : 15).

Ausbeute: 1 mg (9 %)

40 R<sub>f</sub> (Dichlormethan/Aceton, 85 : 15): 0.38

MS (20/70 eV): m/e (%) = 543 (3 [M<sup>+</sup>]), 507 (14), 320 (19), 234 (9), 194 (17), 182 (23), 164 (100), 140 (22), 113 (14), 71 (13).

45 Hochauflösung: C<sub>27</sub>H<sub>42</sub>O<sub>6</sub>NSCI ber.: 543.2421 für [M<sup>+</sup>]  
gef.: 543.2405

### Beispiel 5:

#### Verbindung 2a

50 [0025] 100 mg (0.203 mmol) Epothilon A werden in 4 ml Tetrahydrofuran/1 M Phosphatpuffer pH 7 (1 : 1) gelöst und solange mit Natriumborhydrid (150 mg = 3.965 mmol) versetzt bis das Edukt laut Dünnschichtchromatogramm vollständig abreaktiert ist. Anschließend wird mit 1 M Phosphatpuffer pH 7 verdünnt und die wäßrige Phase viermal mit Ethylacetat extrahiert. Die vereinigten organischen Phasen werden mit gesättigter Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und vom Lösungsmittel befreit. Die Reinigung des Rohproduktes erfolgt durch Kieselchromatographie (Laufmittel: Dichlormethan/Aceton, 95 : 5 - grad - nach Dichlormethan/Aceton, 85 : 15).

EP 1 186 606 A1

Ausbeute: (20 %)

R<sub>f</sub> (Dichlormethan/Aceton, 75 : 25): 0.27

5 IR (Film): ny = 3413 (s, b, Sch), 2965 (vs, Sch), 1734 (vs), 1458 (m, b, Sch), 1383 (m, Sch), 1264 (s, b, Sch), 1184 (m, b, Sch), 1059 (s, Sch), 966 (s), 885 (w), 737 (m) cm<sup>-1</sup>

10 MS (20/70 eV): m/e (%) = 495 (6 [M<sup>+</sup>]), 477 (8), 452 (12), 394 (9), 364 (16), 306 (49), 194 (19), 178 (35), 164 (100), 140 (40), 83 (21), 55 (27).

Hochauflösung: C<sub>26</sub>H<sub>41</sub>O<sub>6</sub>NS ber.: 495.2655 für [M<sup>+</sup>]  
gef.: 495.2623

15 **Beispiel 6:**

**Verbindung 3a-d (a-d sind Stereoisomere)**

20 [0026] 100 mg (0.203 mmol) Epothilon werden in 3 ml Pyridin gelöst, mit 50 µl (0.686 mmol) Thionylchlorid versetzt und 15 Minuten bei Raumtemperatur gerührt. Anschließend wird mit 1 M Phosphatpuffer pH 7 versetzt und die wässrige Phase viermal mit Ethylacetat extrahiert. Die vereinigten organischen Phasen werden mit gesättigter Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und vom Lösungsmittel befreit. Die Reinigung des Rohproduktes und Trennung der vier Stereoisomeren 3a-d erfolgt mit Hilfe der präparativen Schichtchromatographie (Laufmittel: Toluol/Methanol, 90 : 10).

25 **Verbindung 3a**

**[0027]**

30 Ausbeute: 4 mg (12 %)

R<sub>f</sub> (Toluol/Methanol, 90 : 10): 0.50

35 IR (Film): ny = 2961 (m, b, Sch), 1742 (vs), 1701 (vs), 1465 (m, Sch), 1389 (m, Sch), 1238 (s, Sch), 1210 (vs, Sch), 1011 (s, Sch), 957 (s, b, Sch), 808 (m, Sch), 768 (s, Sch) cm<sup>-1</sup>

UV (Methanol): lambda<sub>max</sub> (lg epsilon) = 210 (4.50), 248 (4.35) nm.

40 MS (20/70 eV): m/e (%) = 539 (40 [M<sup>+</sup>]), 457 (22), 362 (16), 316 (27), 222 (30), 178 (30), 164 (100), 151 (43), 96 (38), 69 (29), 55 (28), 43 (20).

Hochauflösung: C<sub>26</sub>H<sub>37</sub>O<sub>7</sub>NS<sub>2</sub> ber.: 539.2011 für [M<sup>+</sup>]

45 **Verbindung 3b**

**[0028]**

Ausbeute: 14 mg (13 %)

50 R<sub>f</sub> (Toluol/Methanol, 90 : 10): 0.44

IR (Film): ny = 2963 (s, br, Sch), 1740 (vs), 1703 (s), 1510 (w), 1464 (m, br, Sch), 1389 (m, Sch), 1240 (s, br, Sch), 1142 (m), 1076-(w), 1037 (w), 1003 (m), 945 (s, br, Sch), 806 (m, Sch), 775 (s), 737 (m) cm<sup>-1</sup>.

55 UV (Methanol): lambda<sub>max</sub> (lg epsilon) = 211 (4.16), 250 (4.08) nm.

MS (20/70 eV): m/e (%) = 539 (27 [M<sup>+</sup>]), 475 (17), 322 (41), 306 (67), 222 (16), 206 (17), 194 (19),

## EP 1 186 606 A1

178 (32), 164 (100), 151 (33), 125 (18), 113 (15), 96 (39), 81 (23), 64 (58), 57 (42), 41 (19).

5 Hochauflösung:  $C_{26}H_{37}O_7NS_2$  ber.: 539.2011 für  $[M^+]$   
gef.: 539.1998

### Verbindung 3c

10 [0029]

10 Ausbeute: 4 mg (4 %)

15 R<sub>f</sub> (Toluol/Methanol, 90 : 10): 0.38

15 MS (20/70 eV): m/e (%) = 539 (51 [M<sup>+</sup>]), 322 (22), 306 (53), 222 (36), 178 (31), 164 (100), 151 (41), 96 (25), 81 (20), 69 (26), 55 (25), 41 (25).

20 Hochauflösung:  $C_{26}H_{37}O_7NS_2$  ber.: 539.2011 für  $[M^+]$   
gef.: 539.2001

### Verbindung 3d

25 [0030]

25 Ausbeute: 1 mg (1 %)

30 R<sub>f</sub> (Toluol/Methanol, 90 : 10): 0.33

30 MS (20/70 eV): m/e (%) = 539 (69 [M<sup>+</sup>]), 322 (35), 306 (51), 222 (41), 178 (31), 164 (100), 151 (46), 96 (31), 81 (26), 69 (34), 55 (33), 41 (35)

35 Hochauflösung:  $C_{26}H_{37}O_7NS_2$  ber.: 539.2011 für  $[M^+]$   
gef.: 539.1997

### Beispiel 7:

#### Verbindung 4a

40 [0031] 10 mg (0.020 mmol) Epothilon A werden in 2 ml Dichlormethan gelöst, auf -70 °C abgekühlt und anschließend 5 Minuten mit Ozon bis zur schwachen Blaufärbung behandelt. Das resultierende Reaktionsgemisch wird anschließend mit 0.5 ml Dimethylsulfid versetzt und auf Raumtemperatur erwärmt. Zur Aufarbeitung wird das Reaktionsgemisch vom Lösungsmittel befreit und schließlich durch präparative Schichtchromatographie (Laufmittel Dichlormethan/Aceton/Methanol, 85 : 10 : 5) gereinigt.

45 Ausbeute: 5 mg (64 %)

45 R<sub>f</sub> (Dichlormethan/Aceton/Methanol, 85 : 10 : 5): 0.61

50 IR (Film): ny = 3468 (s, br, Sch), 2947 (s, br, Sch), 1734 (vs, Sch), 1458 (w), 1380 (w), 1267 (w), 1157 (w), 1080 (w), 982 (w)  $\text{cm}^{-1}$ .

55 UV (Methanol):  $\lambda_{\text{max}}$  (lg  $\epsilon$ ) = 202 (3.53) nm.

MS (20/70 eV): m/e (%) = 398 (2 [M<sup>+</sup>]), 380 (4), 267 (14), 249 (17), 211 (20), 193 (26), 171 (34), 139 (34), 111 (40), 96 (100), 71 (48), 43 (50).

55 Hochauflösung:  $C_{21}H_{34}O_7$  ber.: 398.2305 für  $[M^+]$   
gef.: 398.2295

## EP 1 186 606 A1

### Beispiel 8:

#### Verbindung 6a

5 [0032] 10 mg (0.018 mmol) 3,7-Di-O-formyl-epothilon A werden in 1 ml Dichlormethan gelöst, mit 27 µl (0.180 mmol) 1,8-Diazabicyclo[5.4.0]undec-7-en (DBU) versetzt und 60 Minuten bei Raumtemperatur gerührt.  
Zur Aufarbeitung wird das Reaktionsgemisch mit 1 M Natriumdihydrogenphosphat-Puffer pH 4.5 versetzt und die wäßrige Phase viermal mit Ethylacetat extrahiert. Die vereinigten organischen Phasen werden mit gesättigter Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und vom Lösungsmittel befreit. Nach Beseitigung des Lösungsmittel wird das resultierende Rohprodukt in 1 ml Methanol gelöst, mit 200 µl einer ammoniakalischen Methanolösung (2 mmol NH<sub>3</sub>/ml Methanol) versetzt und über Nacht bei Raumtemperatur gerührt. Zur Aufarbeitung wird das Lösungsmittel im Vakuum entfernt.

10

Ausbeute: 4 mg (22 %)

R<sub>f</sub> (Dichlormethan/Aceton, 85 : 15): 0.46

IR (Film): ny = 3445 (w, br, Sch), 2950 (vs, br, Sch), 1717 (vs, Sch), 1644 (w), 1466 (m, Sch), 1370 (m, Sch), 1267 (s, br, Sch), 1179 (s, Sch), 984 (s, Sch), 860 (w), 733 (m) cm<sup>-1</sup>

UV (Methanol): lambda<sub>max</sub> (lg epsilon) = 210 (4.16) nm.

MS (20/70 eV): m/e (%) = 475 (28 [M<sup>+</sup>]), 380 (21), 322 (37), 318 (40), 304 (66), 178 (31), 166 (100), 151 (29), 140 (19), 96 (38), 81 (20), 57 (26).

Hochauflösung: C<sub>26</sub>H<sub>37</sub>O<sub>5</sub>NS ber.: 475.2392 für [M<sup>+</sup>]  
gef. 475.2384

### Beispiel 9:

#### Verbindung 6b

35 [0033] 50 mg (0.091 mmol) 3,7-Di-O-formyl-epothilon A (werden in 1 ml Dichlorethan gelöst, mit 2 ml (0.013 mol) 1,8-Diazabicyclo[5.4.0]undec-7-en (DBU) versetzt und 12 Stunden bei 90 °C gerührt.  
Zur Aufarbeitung wird das Reaktionsgemisch mit 1 M Natriumdihydrogenphosphat-Puffer pH 4.5 versetzt und die wäßrige Phase viermal mit Ethylacetat extrahiert. Die vereinigten organischen Phasen werden mit gesättigter Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und vom Lösungsmittel befreit. Die Reinigung des aus zwei Verbindungen bestehenden Rohproduktes erfolgt mittels präparativer Schichthochchromatographie (Laufmittel: Dichlormethan/Aceton, 90 : 10).

40

Ausbeute: 7 mg (15 %)  
Substanzcode

R<sub>f</sub> (Dichlormethan/Aceton, 90 : 10): 0.62

IR (Film): ny = 2951 (m, br, Sch), 1723 (vs), 1644 (w, br, Sch), 1468 (w), 1377 (w), 1271 (m, br, Sch), 1179 (s); 987 (m, br, Sch), 735 (w, br, Sch) cm<sup>-1</sup>.

UV (Methanol): lambda<sub>max</sub> (lg epsilon) = 210 (4.44) nm.

MS (20/70 eV): m/e (%) = 503 (68 [M<sup>+</sup>]), 408 (58), 390 (32), 334 (25), 316 (34), 220 (21), 206 (27), 194 (20), 181 (33), 164 (100), 151 (34), 139 (28), 113 (20), 96 (82), 81 (33), 67 (24), 55 (26), 43 (22).

Hochauflösung: C<sub>27</sub>H<sub>37</sub>O<sub>6</sub>NS ber.: 503.2342 für [M<sup>+</sup>]  
gef.: 503.2303

## EP 1 186 606 A1

### Beispiel 10:

#### Verbindung 6c

5 [0034] 5 mg (0.009 mmol) 3,7-Di-O-acetyl-epothilon werden in 1 ml Methanol gelöst, mit 150 µl einer ammoniakalischen Methanolösung (2 mmol NH<sub>3</sub>/ml Methanol) versetzt und über Nacht bei 50 °C gerührt.  
Zur Aufarbeitung wird das Lösungsmittel im Vakuum entfernt. Die Reinigung des Rohproduktes erfolgt mit Hilfe der präparativen Schichtchromatographie (Laufmittel: Toluol/Methanol, 90 : 10).

10 Ausbeute: 3 mg (67 %)

R<sub>f</sub> (Dichlormethan/Aceton, 90 : 10) : 0.55

15 IR (Film): ny = 2934 (s, b, Sch), 1719 (vs, b, Sch), 1641 (m), 1460 (m, Sch), 1372 (s, Sch), 1237 (vs, b, Sch), 1179 (s, Sch), 1020 (s), 963 (s, Sch), 737 (vs) cm<sup>-1</sup>.

UV (Methanol): lambda<sub>max</sub> (lg epsilon) = 210 (4.33) nm.

20 MS (20/70 eV): m/e (%) = 517 (57 [M<sup>+</sup>]), 422 (58), 318 (31), 194 (20), 181 (34), 166 (100), 151 (31), 96 (96), 81 (32), 69 (27), 55 (29), 43 (69).

Hochauflösung: C<sub>28</sub>H<sub>39</sub>O<sub>6</sub>NS ber.: 517.2498 für [M<sup>+</sup>]  
gef.: 517 2492

### 25 Beispiel 11:

#### Verbindung 7a

30 [0035] 20 mg (0.041 mmol) Epothilon werden in 0.5 ml Methanol gelöst, mit 0.5 ml 1 N Natronlauge versetzt und 5 Minuten bei Raumtemperatur gerührt.

Zur Aufarbeitung wird das Reaktionsgemisch mit 1 M Phosphatpuffer pH 7 versetzt und die wäßrige Phase viermal mit Ethylacetat extrahiert. Die vereinigten organischen Phasen werden mit gesättigter Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und vom Lösungsmittel befreit. Die Reinigung des Rohproduktes erfolgt mit Hilfe der präparativen Schichtchromatographie (Laufmittel: Dichlormethan/Methanol, 85 : 15).

35 Ausbeute: 11 mg (52 %)

R<sub>f</sub> (Dichlormethan/Methanol, 85 : 15): 0.92

40 IR (Film): ny = 3438 (s, br, Sch), 2971 (vs, br, Sch), 1703 (vs), 1507 (m), 1460 (s, Sch), 1383 (m, Sch), 1254 (w), 1190 (w, br, Sch), 1011 (w, br, Sch), 866 (w, br), 729 (s) cm<sup>-1</sup>

45 MS (20/70 eV): m/e (%) = 423 (0.1 [M<sup>+</sup>]), 323 (4), 168 (89), 140 (100), 85 (31), 57 (67).

Hochauflösung: C<sub>23</sub>H<sub>37</sub>O<sub>4</sub>NS ber.: 423.2443 für [M<sup>+</sup>]  
gef.: 423.2410

### 50 Beispiel 12:

#### Verbindung 7b

55 [0036] 5 mg (0.009 mmol) 7-O-Acetyl-epothilon werden in 1 ml Methanol gelöst, mit 200 µl einer ammoniakalischen Methanolösung (2 mmol NH<sub>3</sub>/ml Methanol) versetzt und zwei Tage bei 50 °C gerührt. Zur Aufarbeitung wird das Lösungsmittel im Vakuum entfernt. Die Reinigung des Rohproduktes erfolgt mit Hilfe der präparativen Schichtchromatographie (Laufmittel: Toluol/Methanol, 90 : 10).

Ausbeute: 3 mg (59 %)

## EP 1 186 606 A1

R<sub>f</sub> (Dichlormethan/Methanol, 90 : 10): 0.63

IR (Film): ν = 3441 (m, b, Sch), 2946 (s, Sch), 1732 (vs), 1600 (w), 1451 (m), 1375 (m), 1246 (s, b, Sch), 1013 (m, b, Sch) cm<sup>-1</sup>

UV (Methanol): λ<sub>max</sub> (lg ε) = 211 (3.75), 247 (3.59) nm.

MS (20/70 eV): m/e (%) = 567 (1 [M<sup>+</sup>]), 465 (4), 422 (7), 388 (5), 194 (5), 182 (7), 168 (65), 164 (17), 140 (100), 97 (10), 71 (22), 43 (27).

Hochauflösung: C<sub>29</sub>H<sub>45</sub>O<sub>8</sub>NS ber.: 567.2866 für [M<sup>+</sup>]  
gef.: 567.2849

### Beispiel 13:

[0037] 50 mg Epothilon A werden in 20 µl Dimethylsulfoxid gelöst und mit 30 ml Phosphatpuffer (pH 7,1, 30 mM) verdünnt. Nach Zugabe von 5 mg Schweineleberesterase (Fa. Boehringer Mannheim) wird 2 Tage bei 30 °C gerührt. Man säuert mit 2 N HCl auf pH 5 an und extrahiert die Epothilonsäure 7 mit Ethylacetat. Die organische Phase wird mit Natriumsulfat getrocknet, im Vakuum zur Trockne eingedampft. Ausbeute 48 mg (96 %).

### Beispiel 14:

[0038] 48 mg Epothilonsäure 7 werden in 6 ml THF abs. gelöst und unter Rühren mit 40 µl Triethylamin und 16 µl 2,4,6-Trichlorbenzoyl-chlorid versetzt. Nach 15 min wird vom Niederschlag abfiltriert und innerhalb von 15 min unter schnellem Rühren in eine siedende Lösung von 20 mg 4-Dimethylaminopyridin in 200 ml Toluol abs. getropft. Nach weiteren 10 min wird im Vakuum eingedampft und der Rückstand zwischen Ethylacetat/Citratpuffer (pH 4) verteilt. Der Eindampfrückstand der organischen Phase ergibt nach präparativer HPLC Trennung 15 mg Epothilon A.

### Beispiel 15:

#### Epothilone C und D als Ausgangsverbindungen

##### A. Produktionsstamm und Kulturbedingungen entsprechend dem Epothilon Basispatent.

##### B. Produktion mit DSM 6773

[0039] 75 l Kultur werden wie im Basispatent beschrieben angezogen und zum Animpfen eines Produktionsfermenters mit 700 l Produktionsmedium aus 0.8 % Stärke, 0.2 % Glukose, 0.2 % Soyamehl, 0.2 % Hefeextrakt, 0.1 % CaCl<sub>2</sub> × 2H<sub>2</sub>O, 0.1 % MgSO<sub>4</sub> × 7H<sub>2</sub>O, 8 mg/l Fe-EDTA, pH = 7.4 und optional 15 l Adsorberharz Amberlite XAD-16 verwendet. Die Fermentation dauert 7 - 10 Tage bei 30 C, Belüftung mit 2 m<sup>3</sup> Luft/h. Durch Regulierung der Drehzahl wird der pO<sub>2</sub> bei 30 % gehalten.

##### C. Isolierung

[0040] Das Adsorberharz wird mit einem 0.7 m<sup>2</sup>, 100 mesh Prozeßfilter von der Kultur abgetrennt und durch Waschen mit 3 Bettvolumen Wasser/Methanol 2:1 von polaren Begleitstoffen befreit. Durch Elution mit 4 Bettvolumen Methanol wird ein Rohextrakt gewonnen, der i. Vak. bis zum Auftreten der Wasserphase eingedampft wird. Diese wird dreimal mit dem gleichen Volumen Ethylacetat extrahiert. Eindampfen der organischen Phase ergibt 240 g Rohextrakt, der zwischen Methanol und Heptan verteilt wird, um lipophile Begleitstoffe abzutrennen. Aus der Methanolphase werden durch Eindampfen i. Vak. 180 g Raffinat gewonnen, das in drei Portionen über Sephadex LH-20 (Säule 20 × 100 cm, 20 ml/min Methanol) fraktioniert wird. Die Epothilone sind in der mit 240 - 300 min Retentionszeit eluierten Fraktion von insgesamt 72 g enthalten. Zur Trennung der Epothilone wird in drei Portionen an Lichrosorb RP-18 (15 µm, Säule 10 × 40 cm, Laufmittel 180 ml/min Methanol/Wasser 65:35) chromatographiert. Nach Epothilon A und B werden mit R<sub>f</sub> = 90-95 min Epothilon C und 100-110 min Epothilon D eluiert und nach Eindampfen i. Vak. in einer Ausbeute von jeweils 0.3 g als farblose Öle gewonnen.

## D. Physikalische Eigenschaften

[0041]

5



20 Epothilon C R = H  
Epothilon D R =  $\text{CH}_3$

## Epothilon C

〔0042〕

C<sub>6</sub>H<sub>5</sub>NO<sub>5</sub>S [477]

ESI-MS: (positiv Ionen): 478.5 für  $[M+H]^+$

1H und 13C siehe NMR-Tabelle

DC·Bf = 0.82

DC-Alufolie 60 E 254 Merck | Laufmittel: Dichlormethan/Methanol - 9:1

35 Detektion: UV-Lösung bei 254 nm. Ansprühen mit Vanillin-Schwefelsäure-Reagenz, blau-graue Anfärbung beim Erhitzen auf 120 °C.

HPLC: R<sub>t</sub> = 11.5 min

Säule: Nucleosil 100 C-18 7 µm, 125 x 4 mm

Laufmittel: Methanol/Wasser = 65:35

40 Fluß: 1 ml/min

### Detection: Diodenarray

## Epothilon D

45 [00431]

### C<sub>6</sub>H<sub>14</sub>NO<sub>5</sub>S [491]

ESI-MS: (positiv Ionen): 492.5 für  $[M+H]^+$

50 1H und 13C siehe NMR-Tabelle

DC:Rf = 0.82

DC-Alufolie 60 F 254 Merck, Laufmittel: Dichlormethan/Methanol = 9:1

55 Detektion: UV-Lösung bei 254 nm. Ansprühen mit Vanillin-Schwefelsäure-Reagenz, blau-graue Anfärbung beim Erhitzen auf 120 °C.

HPLC:  $R_t = 15,3 \text{ min}$

## EP 1 186 606 A1

Säule: Nucleosil 100 C-18 7µm, 125 × 4 mm

Laufmittel: Methanol/Wasser = 65:35

Fluß: 1ml/min

Detection: Diodenarray

5

Tabelle:

| 1H-und 13C-NMR Daten von Epothilon C und Epothilon D in [D <sub>6</sub> ]DMSO bei 300 MHz |         |        |         |             |        |         |  |
|-------------------------------------------------------------------------------------------|---------|--------|---------|-------------|--------|---------|--|
| Epothilon C                                                                               |         |        |         | Epothilon D |        |         |  |
| H-Atom                                                                                    | δ (ppm) | C-Atom | δ (ppm) | δ (ppm)     | C-Atom | δ (ppm) |  |
|                                                                                           |         | 1      | 170.3   |             | 1      | 170.1   |  |
| 2-Ha                                                                                      | 2.38    | 2      | 38.4    | 2.35        | 2      | 39.0    |  |
| 2-Hb                                                                                      | 2.50    | 3      | 71.2    | 2.38        | 3      | 70.8    |  |
| 3-H                                                                                       | 3.97    | 4      | 53.1    | 4.10        | 4      | 53.2    |  |
| 3-OH                                                                                      | 5.12    | 5      | 217.1   | 5.08        | 5      | 217.4   |  |
| 6-H                                                                                       | 3.07    | 6      | 45.4    | 3.11        | 6      | 44.4    |  |
| 7-H                                                                                       | 3.49    | 7      | 75.9    | 3.48        | 7      | 75.5    |  |
| 7-OH                                                                                      | 4.46    | 8      | 35.4    | 4.46        | 8      | 36.3    |  |
| 8-H                                                                                       | 1.34    | 9      | 27.6    | 1.29        | 9      | 29.9    |  |
| 9-Ha                                                                                      | 1.15    | 10     | 30.0    | 1.14        | 10     | 25.9    |  |
| 9-Hb                                                                                      | 1.40    | 11     | 27.6    | 1.38        | 11     | 31.8*   |  |
| 10-Ha                                                                                     | 1.15*   | 12     | 124.6   | 1.14*       | 12     | 138.3   |  |
| 10-Hb                                                                                     | 1.35*   | 13     | 133.1   | 1.35*       | 13     | 120.3   |  |
| 11-Ha                                                                                     | 1.90    | 14     | 31.1    | 1.75        | 14     | 31.6*   |  |
| 11-Hb                                                                                     | 2.18    | 15     | 76.3    | 2.10        | 15     | 76.6    |  |
| 12-H                                                                                      | 5.38**  | 16     | 137.3   |             | 16     | 137.2   |  |
| 13-H                                                                                      | 5.44**  | 17     | 119.1   | 5.08        | 17     | 119.2   |  |
| 14-Ha                                                                                     | 2.35    | 18     | 152.1   | 2.30        | 18     | 152.1   |  |
| 14-Hb                                                                                     | 2.70    | 19     | 117.7   | 2.65        | 19     | 117.7   |  |
| 15-H                                                                                      | 5.27    | 20     | 164.2   | 5.29        | 20     | 164.3   |  |
| 17-H                                                                                      | 6.50    | 21     | 18.8    | 6.51        | 21     | 18.9    |  |
| 19-H                                                                                      | 7.35    | 22     | 20.8    | 7.35        | 22     | 19.7    |  |
| 21-H <sub>3</sub>                                                                         | 2.65    | 23     | 22.6    | 2.65        | 23     | 22.5    |  |
| 22-H <sub>3</sub>                                                                         | 0.94    | 24     | 16.7    | 0.90        | 24     | 16.4    |  |
| 23-H <sub>3</sub>                                                                         | 1.21    | 25     | 18.4    | 1.19        | 25     | 18.4    |  |
| 24-H <sub>3</sub>                                                                         | 1.06    | 27     | 14.2    | 1.07        | 26     | 22.9    |  |
| 25-H <sub>3</sub>                                                                         | 0.90    |        |         | 0.91        | 27     | 14.1    |  |
| 26-H <sub>3</sub>                                                                         |         |        |         | 1.63        |        |         |  |
| 27-H <sub>3</sub>                                                                         | 2.10    |        |         | 2.11        |        |         |  |

\*, \*\* Zuordnung vertauschbar

## Beispiel 15:

50

## Epothilon A und 12,13-Bisepi-epothilon A aus Epothilon C

55

[0044] 50 mg Epothilon A werden in 1.5 ml Aceton gelöst und mit 1.5 ml einer 0.07 molaren Lösung von Dimethyl-dioxiran in Aceton versetzt. Nach 6 Stunden Stehen bei Raumtemperatur wird i. Vak. eingedampft und durch präparative HPLC an Kieselgel (Laufmittel: Methyl-tert.butylether/Petrolether/Methanol 33:66:1) getrennt.

EP 1 186 606 A1

Ausbeute:

[0045] 25 mg Epothilon A,  $R_t$  = 3,5 min (analyt. HPLC, 7  $\mu\text{m}$ , Säule 4  $\times$  250 mm, Laufmittel s. o., Fluß 1.5 ml/min) und

5 20 mg 12,13-Bisepi-epothilon A,  $R_t$  = 3.7 min, ESI-MS (pos. Ionen)  $m/z$  = 494 [M+H]<sup>+</sup>

<sup>1</sup>H-NMR in [D<sub>4</sub>] Methanol, ausgewählte Signale:  $\delta$  = 4.32 (3-H), 3.79 (7-H), 3.06 (12-H), 3.16 (13-H), 5.54 (15-H), 6.69 (17-H), 1.20 (22-H), 1.45 (23-H).

10

15



20

12,13-Bisepi-epothilon A R = H

25

**Patentansprüche**

1. Epothilonnderivat der Formel 1

30

35

40



1

45

wobei

R = H oder C<sub>1-4</sub>-Alkyl;

50  $R_1, R^2$  = H, C<sub>1-6</sub>-Alkyl, C<sub>1-6</sub>-Acyl, Benzoyl, C<sub>1-4</sub>-Trialkyl silyl, Benzyl, Phenyl, C<sub>1-6</sub>-Alkoxy, C<sub>6</sub>-Alkyl-, Hydroxy- und halogensubstituiertes Benzyl bzw. Phenyl; und es sich bei den in den Resten enthaltenen Alkyl- bzw. Acylgruppen um gradkettige oder verzweigte Reste handelt, und

Y und Z eine der C-C-Bindungen einer C=C-Doppelbindung bilden.

55

2. Epothilonnderivat der Formel 2



wobei

20 R = H, C<sub>1-4</sub>-Alkyl;

R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup> = H, C<sub>1-6</sub>-Alkyl, C<sub>1-6</sub>-Acyl, Benzoyl, C<sub>1-4</sub>-Trialkylsilyl, Benzyl, Phenyl, C<sub>1-6</sub>-Alkoxy-, C<sub>6</sub>-Alkyl-, Hydroxy- und halogensubstituiertes Benzyl bzw. Phenyl; es sich bei den in den Resten enthaltenen Alkyl- bzw. Acylgruppen um gradkettige oder verzweigte Reste handelt; und Y und Z die Bedeutung gemäß Anspruch 1 besitzen.

25

3. Epothilonderivat der Formel 4



wobei

50 R = H, C<sub>1-4</sub>-Alkyl;

R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup>, R<sup>4</sup>, R<sup>5</sup> = H, C<sub>1-6</sub>-Alkyl, C<sub>1-6</sub>-Acyl, Benzoyl, C<sub>1-4</sub>-Trialkylsilyl, Benzyl, Phenyl, C<sub>1-6</sub>-Alkoxy-, C<sub>6</sub>-Alkyl-, Hydroxy- und halogensubstituiertes Benzyl bzw. Phenyl; es sich bei den in den Resten enthaltenen Alkyl- bzw. Acylgruppen um gradkettige oder verzweigte Reste handelt;

X Sauerstoff, NOR<sup>3</sup>, N-NR<sup>4</sup>R<sup>5</sup> und N-NHCONR<sup>4</sup>R<sup>5</sup> bedeutet, wobei die Reste

R<sup>3</sup> bis R<sup>5</sup> die oben angegebene Bedeutung haben und

R<sup>4</sup> und R<sup>5</sup> auch zusammen eine Alkylengruppe mit 2 bis 6 Kohlenstoffatomen bilden können; und

Y und Z die Bedeutungen gemäß Anspruch 1 besitzen.

55 4. Epothilonderivat der Formel 5



5

wobei

20 R = H, C<sub>1-4</sub>-Alkyl;  
 R<sub>1</sub>, R<sub>2</sub> = H, C<sub>1-6</sub>-Alkyl, C<sub>1-6</sub>-Acyl, Benzoyl, C<sub>1-4</sub>-Trialkylsilyl, Benzyl, Phenyl, C<sub>1-6</sub>-Alkoxy-, C<sub>6</sub>-Alkyl-, Hydroxy- und halogensubstituiertes Benzyl bzw. Phenyl; es sich bei den in den Resten enthaltenen Alkyl- bzw. Acylgruppen um gradkettige oder verzweigte Reste handelt; und

25 X Wasserstoff, C<sub>1-18</sub>-Alkyl, C<sub>1-18</sub>-Acyl, Benzyl, Benzoyl und Cinnamoyl bedeutet und  
 Y und Z die Bedeutungen gemäß Anspruch 1 besitzen.

5. Epothilonderivat der Formel 7



7

wobei

50 R = H, C<sub>1-4</sub>-Alkyl;  
 R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup>, R<sup>4</sup> = H, C<sub>1-6</sub>-Alkyl, C<sub>1-6</sub>-Acyl, Benzoyl, C<sub>1-4</sub>-Trialkylsilyl, Benzyl, Phenyl, C<sub>1-6</sub>-Alkoxy-, C<sub>6</sub>-Alkyl-, Hydroxy- und halogensubstituiertes Benzyl bzw. Phenyl; es sich bei den in den Resten enthaltenen Alkyl- bzw. Acylgruppen um geradkettige oder verzweigte Reste handelt; und  
 Y und Z entweder gleich oder verschieden sind und jeweils für Wasserstoff, Halogen, Pseudohalogen, OH, O-C<sub>1-6</sub>-Alkyl, O-C<sub>1-6</sub>-Acyl oder O-Benzoyl stehen.

55

6. Verfahren zur Herstellung eines Epothilonderivats der Formel 7 gemäß Anspruch 5, dadurch gekennzeichnet, daß man Epothilon A und/oder Epothilon B oder ein 3-OH-geschütztes Derivat derselben und/oder ein 7-OH-geschütztes Derivat derselben

EP 1 186 606 A1

(a) enzymatisch hydrolysiert, insbesondere mit einer Esterase oder Lipase, oder  
(b) in alkalischem Medium hydrolysiert, insbesondere mit Natriumhydroxid in einem Methanol/Wasser-Ge-  
misch, und das Epothilonderivat der Formel 7 gewinnt und isoliert.

5 7. Verfahren zur Herstellung eines Epothilonderivats der Formel 1 gemäß Anspruch 1, **dadurch gekennzeichnet**,  
daß man ein Epothilonderivat der Formel 7 gemäß Anspruch 5 oder als Produkt des Verfahrens gemäß Anspruch 6

(a) nach der Yamaguchi-Methode oder  
(b) nach der Corey-Methode oder  
10 (c) nach der Kellogg-Methode

lactonisiert und in das Epothilonderivat der Formel 1 umwandelt und dieses Umwandlungsprodukt isoliert.

15 8. Verfahren zur Herstellung von Epothilon A und/oder 12,13-Bisepi-epothilon A, **dadurch gekennzeichnet**, daß  
man Epothilon C epoxidiert, insbesondere mit Dimethyldioxiran oder einer Persäure.

9. Verfahren zur Herstellung von Epothilon B und/oder 12,13-Bisepi-epothilon B, **dadurch gekennzeichnet**, daß  
man Epothilon D epoxidiert, insbesondere mit Dimethyldioxiran oder einer Persäure.

20 10. Mittel für den Pflanzenschutz in der Landwirtschaft und Forstwirtschaft und/oder im Gartenbau, bestehend aus  
einer oder mehreren der Verbindungen gemäß einem der vorangehenden Ansprüche oder einer oder mehreren  
dieser Verbindungen neben einem oder mehreren üblichen Träger(n) und/oder Verdünnungsmittel(n).

25 11. Therapeutisches Mittel, insbesondere zum Einsatz als Cytostatikum, bestehend aus einer oder mehreren der Ver-  
bindungen nach einem oder mehreren der Ansprüche 1 bis 5 oder einer oder mehreren der Verbindungen nach  
einem oder mehreren der Ansprüche 1 bis 5 neben einem oder mehreren üblichen Träger(n) und/oder Verdün-  
nungsmittel(n).

30

35

40

45

50

55

Europäisches  
Patentamt

## EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung  
EP 01 12 7352

| EINSCHLÄGIGE DOKUMENTE                                                                                                                                                                                                                                                                      |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                            |                                        |                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------|------------------------------|
| Kategorie                                                                                                                                                                                                                                                                                   | Kennzeichnung des Dokuments mit Angabe, soweit erforderlich, der maßgeblichen Teile                                                               | Betrifft<br>Anspruch                                                                                                                                                                                                                                                                                                                                                                       | KLASSIFIKATION DER<br>ANMELDUNG (Int.Cl.)                                                  |                                        |                              |
| A, D                                                                                                                                                                                                                                                                                        | <p>WO 93 10121 A (CIBA GEIGY AG ; BIOTECHNOLOG<br/>FORSCHUNG GMBH (DE))<br/>27. Mai 1993 (1993-05-27)<br/>* das ganze Dokument *</p> <p>-----</p> | 1-11                                                                                                                                                                                                                                                                                                                                                                                       | <p>C07D417/06<br/>C07D493/04<br/>C07D497/18<br/>A61K31/425<br/>A01N43/78<br/>A61P35/00</p> |                                        |                              |
| <table border="1"> <tr> <td>RECHERCHIERTE<br/>SACHGEBiete (Int.Cl.)</td> </tr> <tr> <td>C07D<br/>A61K<br/>A01N<br/>A61P</td> </tr> </table>                                                                                                                                                 |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                            | RECHERCHIERTE<br>SACHGEBiete (Int.Cl.) | C07D<br>A61K<br>A01N<br>A61P |
| RECHERCHIERTE<br>SACHGEBiete (Int.Cl.)                                                                                                                                                                                                                                                      |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                            |                                        |                              |
| C07D<br>A61K<br>A01N<br>A61P                                                                                                                                                                                                                                                                |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                            |                                        |                              |
| <p>Der vorliegende Recherchenbericht wurde für alle Patentansprüche erstellt.</p>                                                                                                                                                                                                           |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                            |                                        |                              |
| Rechercherort:                                                                                                                                                                                                                                                                              | Abschlußdatum der Recherche                                                                                                                       | Prüfer:                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                            |                                        |                              |
| DEN HAAG                                                                                                                                                                                                                                                                                    | 20. Dezember 2001                                                                                                                                 | Diederer, J                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            |                                        |                              |
| KATEGORIE DER GENANNTEN DOKUMENTE                                                                                                                                                                                                                                                           |                                                                                                                                                   | <p>T : der Erfindung zugrunde liegende Theorien oder Grundsätze<br/>     E : älteres Patentdokument, das jedoch erst am oder<br/>     nach dem Anmelde datum veröffentlicht worden ist<br/>     D : in der Anmeldung angeführtes Dokument<br/>     L : aus anderen Gründen angeführtes Dokument</p> <p>&amp; : Mitglied der gleichen Patentfamilie übereinstimmendes<br/>     Dokument</p> |                                                                                            |                                        |                              |
| <p>X : von besonderer Bedeutung allein betrachtet<br/>     Y : von besonderer Bedeutung in Verbindung mit einer<br/>     anderen Veröffentlichung derselben Kategorie<br/>     A : technologischer Hintergrund<br/>     O : nickschriftliche Offenbarung<br/>     P : Zwischenliteratur</p> |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                            |                                        |                              |

EPRINTS 155715 DE (PRO-029)

EP 1 186 606 A1

**ANHANG ZUM EUROPÄISCHEN RECHERCHENBERICHT  
ÜBER DIE EUROPÄISCHE PATENTANMELDUNG NR.**

EP 01 12 7352

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten europäischen Recherchenbericht angeführten Patentdokumente angegeben.

Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am  
Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

20-12-2001

| Im Recherchenbericht<br>angeführtes Patentdokument |   | Datum der<br>Veröffentlichung |    | Mitglied(er) der<br>Patentfamilie | Datum der<br>Veröffentlichung |
|----------------------------------------------------|---|-------------------------------|----|-----------------------------------|-------------------------------|
| WO 9310121                                         | A | 27-05-1993                    | DE | 4138042 A1                        | 27-05-1993                    |
|                                                    |   |                               | AU | 2943792 A                         | 15-06-1993                    |
|                                                    |   |                               | WO | 9310121 A1                        | 27-05-1993                    |

EPOFORM Rev.01

Für nähere Einzelheiten zu diesem Anhang : siehe Amtsblatt des Europäischen Patentamts, Nr.12/82

**This Page is Inserted by IFW Indexing and Scanning  
Operations and is not part of the Official Record**

**BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

**BLACK BORDERS**

**IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**

**FADED TEXT OR DRAWING**

**BLURRED OR ILLEGIBLE TEXT OR DRAWING**

**SKEWED/SLANTED IMAGES**

**COLOR OR BLACK AND WHITE PHOTOGRAPHS**

**GRAY SCALE DOCUMENTS**

**LINES OR MARKS ON ORIGINAL DOCUMENT**

**REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**

**OTHER:** \_\_\_\_\_

**IMAGES ARE BEST AVAILABLE COPY.**

**As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.**