

Optimización I

Luis Rojo-González

luis.rojo.g@usach.cl

Departamento de ingeniería industrial, Universidad de Santiago, Chile

Ingeniería civil industrial

Introducción

- Elementos de un modelo matemático
 - Parámetros: Son los datos o información de entrada (inputs).
 - Cantidad de clavos necesarios para hacer una mesa.
 - Tiempo requerido para cruzar la calle.
 - <u>Función objetivo</u>: Es la medida cuantitativa que se desea optimizar (minimizar ó maximizar).
 - (Maximizar) Utilidad.
 - (Minimizar) Costos.
 - (Minimizar) Tiempo.
 - · (Maximizar) Distancia.
 - Variables: Son las incógnitas que se desean conocer (su valor), para lograr el óptimo.
 - Dinero a invertir en un portafolio (variable continua).
 - ¿Cuántas sillas debo construir? (variable entera).
 - Invierto o no en este fondo (variable binaria).
 - Restricciones: Representan relaciones entre las variables involucradas en el sistema a modelar las cuales están obligadas a ser satisfechas. Estas pueden representar la disponibilidad de cierta materia prima o normativas legales en cierto componente, por ejemplo.
 - Por cada dos tazas de agua se requiere una taza de arroz.
 - Los turnos son 7x2, 14x7.
 - Si invierto en el fondo A también debo invertir en el fondo C, pero no en el fondo B.

Un ejemplo

Usted tiene una empresa, donde vende mesas y sillas (suponga que todo lo que se produce se vende). Por cada mesa usted gana 3 u.m. y por cada silla usted gana 2 u.m. Por condiciones de mercado, se sabe que no se venderán más de 4 mesas al día. Además, usted cuenta con material limitado. En este momento, en bodega hay 15 kilos de pegamento y tiene sólo 10 trozos de madera . Los modelos a fabricar requieren de 1 kilo de pegamento y 3 kilos de pegamento para mesa y silla, respectivamente. Mientras que cada mesa ocupa 2 trozos de madera y cada silla ocupa 1 trozo de madera.

Pregunta: ¿Cuántas sillas y mesas debe frabricar para maximizar el ingreso?

Un ejemplo

Parámetros:

- Precio de cada producto (ingreso unitario).
- Cantidad de pegamento disponible.
- Cantidad de trozos de madera disponibles.
- Requerimiento de pegamento por cada mesa y cada silla.
- Requerimiento de trozos de madera por cada mesa y cada silla.
- Máxima cantidad de mesas a vender (cuota de mercado).

Variables:

- Sea x_1 y x_2 la cantidad a fabricar (vender) de mesas y sillas, respectivamente.
- Función Objetivo:
 - Maximizar $z = 3x_1 + 2x_2$
- Restricciones:
 - $-1x_1 + 3x_2 ≤ 15$ (restricción de pegamento)
 - $-2x_1 + 1x_2 \le 10$ (restricción de trozos de madera)
 - $-x_1 \le 4$ (restricción de cuota de mercado)
 - $-x_1 \ge 0, x_2 \ge 0$ (restricción de no-negatividad)

Un ejemplo – Método gráfico

Restricciones:

- $1x_1 + 3x_2 \le 15$ (restricción de pegamento)
- $2x_1 + 1x_2 \le 10$ (restricción de trozos de madera)
- $x_1 \le 4$ (restricción de cuota de mercado)
- $x_1 \ge 0, x_2 \ge 0$ (restricción de no-negatividad, se omite integralidad de momento)

Sea z la función de ingreso, entonces:

$$\mathsf{Maximizar}\ z(x_1,x_2)\coloneqq 3x_1+2x_2$$

Solución en puntos encontrados (fuerza bruta):

• A:
$$z(0,5) = 3 * 0 + 2 * 5 = 10$$

• B:
$$z(0,0) = 3 * 0 + 2 * 0 = 0$$

• C:
$$z(4,0) = 3 * 4 + 2 * 0 = 12$$

• D:
$$z(4,2) = 3 * 4 + 2 * 2 = 16$$

• E:
$$z(3,4) = 3 * 3 + 2 * 4 = 17$$

Óptimo: Fabricar 3 mesas y 4 sillas, esto implica un ingreso de 17 u.m.

Un ejemplo – Método gráfico

Restricciones:

- $1x_1 + 3x_2 \le 15$ (restricción de pegamento)
- $2x_1 + 1x_2 \le 10$ (restricción de trozos de madera)
- $x_1 \le 4$ (restricción de cuota de mercado)
- $x_1 \ge 0, x_2 \ge 0$ (restricción de no-negatividad, se omite integralidad de momento)

Sea z la función de ingreso, entonces:

$$\mathsf{Maximizar}\ z(x_1,x_2) \coloneqq 3x_1 + 2x_2$$

Se generan distintas curvas (en rojo) con la forma

$$x_2 = \frac{z - 3x_1}{2}$$

en donde el coeficiente de posición de esta curva (z/2) indica el valor de la función objetivo.

Óptimo: Fabricar 3 mesas y 4 sillas, esto implica un ingreso de 17 u.m.

Restricciones:

- $1x_1 + 3x_2 \le 15$ (restricción de pegamento)
- $2x_1 + 1x_2 \le 10$ (restricción de trozos de madera)
- $x_1 \le 4$ (restricción de cuota de mercado)
- $x_1 \ge 0, x_2 \ge 0$ (restricción de no-negatividad, se omite integralidad de momento)

Para utilizar el método simplex (en su versión tabular o tableux), se requiere estandarizar las restricciones con las llamadas variables de holgura (holgura complementario en algunos libros, slack) o de exceso (surplus). En este caso, se necesitan variables de holgura pues las restricciones son \leq (sin considerar las restricciones de no-negatividad). Entonces,

$$x_1 + 3x_2 + h_1 = 15$$

$$2x_1 + x_2 + h_2 = 10$$

$$x_1 + h_3 = 4$$

$$x_1, x_2, h_1, h_2, h_3 \ge 0$$

Forma (estándar) modelo matemático

$$\max z \coloneqq 3x_1 + 2x_2$$

sujeto a: $x_1 + 3x_2 + h_1 = 15$

 $2x_1 + x_2 + h_2 = 10$

 $x_1 + h_3 = 4$

 $x_1, x_2, h_1, h_2, h_3 \ge 0$

Iteración 0:

VB	x_1	x_2	h_1	h_2	h_3	LD
h_1	1	3	1	0	0	15
h_2	2	1	0	1	0	10
h_3	1	0	0	0	1	4
-z	3	2	0	0	0	0

Iteración 0:

VB	x_1	x_2	h_1	h_2	h_3	LD
h_1	1	3	1	0	0	15
h_2	2	1	0	1	0	10
h ₃	1	0	0	0	1	4
-z	3	2	0	0	0	0

- 1. Entra a la base aquella variable con mayor "costo" reducido.
- 2. Se propone un criterio de salida (intercambio) para valores finitos no-negativos:

$$\min\left\{h_1 = \frac{15}{1}, h_2 = \frac{10}{2}, h_3 = \frac{4}{1}\right\} = 4 = h_3$$

- 3. Luego, utilizar el pivote encontrado según el algoritmo de Gauss.
- 4. El algoritmo finaliza cuando los costos reducidos son, en este caso, no-positivos.

Nota: La idea basicamente es comenzar fabricando aquel producto con mayor ingreso unitario, esto es iterativo así que podría cambiar de acuerdo a las restricciones.

Iteración 0:

VB	x_1	x_2	h_1	h_2	h_3	LD
h_1	1	3	1	0	0	15
h_2	2	1	0	1	0	10
h_3	1	0	0	0	1	4
-z	3	2	0	0	0	0

Iteración 1:

VB	x_1	x_2	h_1	h_2	h_3	LD
h_1	0	3	1	0	-1	11
h_2	0	1	0	1	-2	2
x_1	1	0	0	0	1	4
-z	0	2	0	0	-3	-12

$$\min\left\{h_1 = \frac{11}{3}, h_2 = \frac{2}{1}, x_1 = \frac{4}{0}\right\} = 2 = h_2$$

Iteración 1:

VB	x_1	x_2	h_1	h_2	h_3	LD
h_1	0	3	1	0	-1	11
h ₂	0	1	0	1	-2	2
x_1	1	0	0	0	1	4
-z	0	2	0	0	-3	-12

Iteración 2:

VB	x_1	x_2	h_1	h_2	h_3	LD
h_1	0	0	1	-3	5	5
\boldsymbol{x}_2	0	1	0	1	-2	2
x_1	1	0	0	0	1	4
-z	0	0	0	-2	1	-16

$$\min\left\{h_1 = \frac{5}{5}, x_2 = \frac{2}{-2}, x_1 = \frac{4}{1}\right\} = 1 = h_1$$

Iteración 2:

VB	x_1	x_2	h_1	h_2	h_3	LD
h ₁	0	0	1	-3	5	5
\boldsymbol{x}_2	0	1	0	1	-2	2
x_1	1	0	0	0	1	4
-z	0	0	0	-2	1	-16

Iteración 3:

h_3 0 0 1/5 -3/5 1 1 x_2 0 1 2/5 -1/5 0 4 x_1 1 0 -1/5 3/5 0 3 $-z$ 0 0 -1/5 -7/5 0 -17	VB	<i>x</i> ₁	x_2	h_1	h_2	h_3	LD
x ₁ 1 0 -1/5 3/5 0 3	h_3	0	0	1/5	-3/5	1	1
	x_2	0	1	2/5	-1/5	0	4
-z 0 0 -1/5 -7/5 0 -17	x_1	1	0	-1/5	3/5	0	3
	-z	0	0	-1/5	-7/5	0	-17

Costos reducidos no-positivos (≤ 0)

Iteración 3:

VB	x_1	x_2	h_1	h_2	h_3	LD
h_3	0	0	1/5	-3/5	1	1
x_2	0	1	2/5	-1/5	0	4
x_1	1	0	-1/5	3/5	0	3
-z	0	0	-1/5	-7/5	0	-17

- Según el método simplex, hemos de fabricar $x_1 = 3$ mesas y $x_2 = 4$ sillas.
- Además, recordar que la variable de holgura h_3 está asociada a la tercera restricción (cuota de mercado), por lo que en este caso, este resultado implica que hay una unidad que no se está utilizando ($x_1 + h_3 = 3 + 1 = 4$).
- Por otro lado, la interpretación de los costos reducidos (o precios sombra en algunos libros), hace referencia a cuánto mejoraría/empeoraría mi solución obtenida al agregar una unidad de alguna variable, es decir, es un costo unitario marginal.

Un ejemplo – Vamos al solver de MS Excel

	Mesas	Sillas					
Variables de decisión	3	4					
Ingreso unitario	3	2		Ingreso	17		
			Disponibilidad				
Pegamento requerido	1	3	15	Restricciones			
Trozo madera requerida	2	1	10				
				Pegamento	15	<=	15
			Máximo	Trozo madera	10	<=	10
Cuota de mercado	1	0	4	Cuota	3	<=	4

Celdas de variables

Celda	Nombre	Final Valor	Reducido Coste	Objetivo Coeficiente	Permisible Aumentar	Permisible Reducir
	Variables de decisión mesas	3	0	3		2.333333333
\$D\$2	Variables de decisión sillas	4	0	2	7	0.5

Restricciones

		Final	Sombra	Restricción	Permisible	Permisible
Celda	Nombre	Valor	Precio	Lado derecho	Aumentar	Reducir
\$B\$15	Pegamento	15	0.2	15	15	5
\$B\$16	Trozo madera	10	1.4	10	1.666666667	5
\$B\$17	Cuota	3	0	4	1E+30	1