

COLLEGE OF COMPUTING AND INFORMATION SCIENCES

PAF	Mid-Term Assessment Fall 2020 Semester				
Class Id	104973, 104974, 104975, 104976	Course Title	Internet and Intranet Architecture.		
Program	BSCS	Campus / Shift	Main Campus / Morning		
Date	20 th – October 2020	Total Marks	40		
Duration	02 hours	Faculty Name	Kashif Bashir / Sanjay Kumar		
Student Id	Asif Ali Bhutto	Student Name	8789		

Instructions:

- Filling out Student-ID and Student-Name on exam header is mandatory.
- Do not remove or change any part of exam header or question paper.
- Write down your answers in given space or at the end of exam paper with proper title "Answer for Question# _ _".
- Answers should be formatted correctly (font size, alignment and etc.)
- Handwritten text or image should be on A4 size page with clear visibility of contents.
- Only PDF format is accepted (Student are advise to install necessary software)
- In case of CHEATING, COPIED material or any unfair means would result in negative marking or ZERO.
- A mandatory recorded viva session will be conducted to ascertain the quality of answer scripts where deemed necessary.
- <u>Caution</u>: Duration to perform Mid-Term Assessment is **02 hours only**. Extra 01 hour are given to cater all kinds of odds in submission of Answer-sheet. Therefore, if you failed to upload answer sheet on LMS (in PDF format) within 03 hours limit, you would be considered as ABSENT/FAILED.

Question 1. [10]

a) Configure EIGRP with unequal cost load balancing on router "Main Campus" of the internetwork shown in Figure 1.

b) When you type the command **"SHOW IP ROUTE"** on router "Main Campus", What do you see? Show all necessary calculation required.

Figure 1

Media	Bandwidth	BW _{IGRP}	Delay	DLY IGRP
100M ATM	100000K	100	100μS	10
Fast Ethernet	100000K	100	100μS	10
FDDI	100000K	100	100μS	10
HSSI	45045K	222	20000μS	2000
16M Token Ring	16000K	625	630µS	63
Ethernet	10000K	1000	1000μS	100
T1	1544K	6476	20000μS	2000
DS0	64K	156250	20000μS	2000
56K	56K	178571	20000μS	2000
Tunnel	9K	1111111	500000μS	50000

Questions 2: [10]

- a) Configure Simple static routes for Main Campus router of the internetwork shown in Figure 2.
- b) Configure **Floating Static Route** for North campus router of the internetwork shown in Figure 2
- c) Configure **Equal load balancing** for Malir Campus router of the internetwork shown in Figure 2.
- d) Configure **Recursive Table Lookup** for City Campus router of the internetwork shown in Figure 2.

Write the routes so that every subnet of the internet has an individual entry

Figure 2

Answer:				

Asif Ali Bhutto (8789) ONOZ

(a) Simple > ip 601 > ip 601	140.45.55 10.1.2.64	255.255.255. 255.255.255. 255.255.255.	248 178.99.111. 240 178.99.111. 92 40.1.2.6	50
U	Static Poule 10.1.2.64	255.255.255.240 255.255.255.240	140,45,55, 66	5 10
→ ip soute → ip soute	199.88.99.6	4 255.255.255.192 4 255.255.255.192		5 (0
⇒ ip soute ⇒ ip soute	30.1.2.64	255.255.255.240 255.256.255.240	178.99.111.50	5 10
> ip soute		255.255.255.240	140.45.55.66	5 10
⇒ip boute	60.1.2.64	255.255.256.240 255.255.255.240	140.48.85.66	-

@ Equal loads belowing

10 soute 177.88.99.64 255.255.255.192 ip soute 177.88.99.64 255.255.255.192	199.88.99.111
ip soute 178.99.111.0 255.255.255.192 ip soute 178.99.111.0 255.255.255.192	199.88.99.11
ip soute 60.1.2.64 255.255.255.240 ip soute 60.1.2.64 255.255.255.240	199.88.99.111
ip soule 40.1.2.64 255.255.255.240 ip soule 40.1.2.64 255.255.255.240	140.45.55.65
ip soute 30.1.2.64 255.255.255.240 ip soute 30.1.2.64 255.255.255.240	140.45.55.65

@ Recursive table laskup

ip soute 10.1.2.64 255.255.255.240 199.88.99.111

ip soute 140.45.55.64 255.255.255.248 199.88.99.111

ip soute 177.88.99.64 255.255.255.192 140.45.55.65

ip soute 178.99.111.0 255.255.255.192 40.1.2.65

Question 3. [10]

a. Configure RIP protocol on Routers Main and City Campus for the Figure 3. A policy has been established that dictates that network 177.88.99.64/26 should be unreachable from Main Campus and that network 10.1.2.64/28 should be unreachable from City campus.

b. In the Figure 3, No RIP updates should be exchanged between Main and North Campus, but both should exchange updates with other routers. The no-RIP policy between Main and North campus remains in place, but Malir and North campus, as well as Main and City, must exchange RIP advertisements.

Figure 3

()+03 (9) Main compus > Pader Rip > Network 60.0.0.0 city compus - Lower Rip -> Network 60.0.0.0 -> Network 30.0.0.0 -> 199.88.99.0 Network (99.88.99.0 -> Router Fip -> Router Fip -> Notwork 6000.0.0 -> Parise Interpree S3 night campus City campus Router Rip Router Rip Parive interface S3 Network 60,0,0,0 Passive interface \$2 Network 60.0.0.0 Network 30.0.0.0 Network (99.88.99.0

Neighor MOYCES

Answer:

UNOY city campus Main Compos North compos Net vis Not via hop Not via hop 10.1.2.64 --- 0 40.1.2.64-0 20.1.2.64 -- 0 20.1.2.64-- 0 60.1.2.84...0 30.1.2.64 - 0 50-1-2-64-0 50.1.2.64--0 40.1.2.64-6 1 101.2.64 .-- 0 40.fr2.64-0 20.1.2.64 --- 0 50.1.2.64...0 30.1.2.64.0 50.1.2.64 -- 0 20.1.2.64 .- 0 60.1.2.64...0 30.1.2.64 20.1.2.66 1 40.1.2.64 .- D 20.1.2.64 50.1.2.65 1 60.1.2.84 40.1.2.65 30-1-2-64 50-1-2-66 2 20.1.2.64 40.1.2.66 1 60. \$. 2.64 20.1.2.65 2 40.1.2.64 20.1.2.66 1 10.1.2.64 50.1.2.65 1 50.1.2.64 140.1.2.65 16.12.64 40.1.2.64 2 50.1.2.64 20.1.2.65 60.1.2.64 20.1.2.66 2 30.1.2.64 40.1.2.65 1 10.1.2.64 20.1.2.65 60.1.5.64 20.1.5.64 1 30.1.5.64 \$0.1.5.68 \$ 10.1.5.64 40.1.5.68

Figure 4