

REMARKS

Reconsideration of the above-identified application is respectfully requested in view of the foregoing amendments and the following remarks.

The Pending Claims

Claims 1-28 are currently pending. Claims 1-28 are directed to direct-to-plate methods of lithographic printing with a reusable substrate having a hydrophilic surface.

The Amendments to the Claims

The claims have been amended to more particularly point out and distinctly claim the invention. In particular, claim 1 incorporates the subject matter of claim 8, thereby reciting that the cleaning solution comprises an aqueous emulsion of an alcohol and a cyclic compound having at least one double bond. Claim 8 has been cancelled, without prejudice.

As well, claims 5, 11-13, and 18 have been amended to delete the words "such as a cloth, a rotating brush or by jetting water or a volatile medium." New claims 29-33 have been added, incorporating the subject matter deleted in claims 5, 11-13 and 18. No new matter has been added by way of the amendments.

Summary of the Office Action

Claims 5, 11-13, 17, 18, 24, 27 and 28 stand rejected under 35 U.S.C. § 112, second paragraph, as being indefinite.

Claims 1-7 and 9-20 stand rejected under 35 U.S.C. § 103(a) as being unpatentable over Vermeersch et al. (EP 802,457) in view of Nussel et al. (U.S. Patent No. 5,816,161) and Timpe et al. (U.S. Patent No. 5,698,360). Claims 8 and 21-28 stand rejected under 35 U.S.C. § 103(a) as being unpatentable over Vermeersch et al. in view of Nussel et al. and Timpe et al., further in view of Walls (U.S. Patent No. 4,351,895).

Discussion of the Indefiniteness Rejections

The claims have been amended to no longer recite the "such as" clause cited by the Office, in claims 5, 11-13 and 18. Claims 17, 24, 27 and 28 depend from the one of the

amended claims, and do not recite the "such as" clause. As such, the indefiniteness rejection is considered moot, and should be withdrawn.

Discussion of the Obviousness Rejections

The subject matter of claim 8 has been incorporated herein into independent claim 1. Thus, the only remaining obviousness rejection would be predicated on Vermeersch et al. in view of Nussel et al. and Timpe et al., further in view of Walls, which was the only rejection set forth in the Office Action against claim 8. However, the rejections of the claims premised on Vermeersch et al. in view of Nussel et al. and Timpe et al., and further in view of Walls, is considered improper, inasmuch as the cited references, even in combination, fail to teach or fairly suggest the present inventive methods.

As recognized by the Office, Vermeersch et al., Nussel et al. and Timpe et al. do not describe or suggest an aqueous emulsion of an alcohol and a cyclic compound having at least one double bond. Walls is similarly deficient. Walls only discloses cleaning *solutions* (*see, e.g.*, Walls, Abstract at line 5, and col. 2, line 9, reciting an "aqueous solution"), as compared to the aqueous *emulsions* recited in the amended claims. For example, at column 2, lines 63-64, Walls states that "The composition also contains a *water miscible solvent*, preferably one having a high boiling point." Walls further describes "water miscible" as meaning that "a fully stable solution [of the solvent with water] is realized." (Walls at column 3, lines 1-2). The examples in Walls are directed to solutions comprising cyclohexanone, which is known in the art to be water soluble (*see, e.g.*, C.R.C. Handbook of Chemistry and Physics, 60th Ed. (1979) at C-80, C-264, appended hereto as Attachment A). Finally, Walls describes the claimed solution as being thick *clear* solutions (Walls, col. 4, line 65 (Example 2)). As such, Walls teaches away from the *emulsions* recited in the pending claims, which are milky liquids.

Therefore, in view of the failure of Walls to remedy the deficiencies of Vermeersch et al., Nussel et al. and Timpe et al. with respect to the claimed invention as discussed above, Applicants respectfully request the rejections under 35 U.S.C. § 103 (a) be withdrawn.

Conclusion

The application is considered in good and proper form for allowance, and the Examiner is respectfully requested to pass this application to issue. If, in the opinion of the Examiner, a telephone conference would expedite the prosecution of the subject application, the Examiner is invited to call the undersigned attorney.

Respectfully submitted,

Salim A. Hasan, Reg. No. 38,175
LEYDIG, VOIT & MAYER, LTD.
Two Prudential Plaza, Suite 4900
180 North Stetson
Chicago, Illinois 60601-6780
(312) 616-5600 (telephone)
(312) 616-5700 (facsimile)

Date: April 30, 2004

A T T A C H M E N T A

In re Appl'n of Verschueren et al.
Application No. 10/016,960

VCE
tion
-
ogy,
VCE.

Co.
ND
ent
VI-
ne
ID
IC

S

CRC Handbook OF Chemistry and Physics

A Ready-Reference Book of Chemical and Physical Data

EDITOR

ROBERT C. WEAST, Ph.D.

*Vice President, Research, Consolidated Natural Gas Service Company, Inc.
Formerly Professor of Chemistry at Case Institute of Technology*

ASSOCIATE EDITOR

MELVIN J. ASTLE, Ph.D.

*Formerly Professor of Organic Chemistry at Case Institute of Technology
and
Manager of Research at Glidden-Durkee Division of SCM Corporation*

In collaboration with a large number of professional chemists and physicists
whose assistance is acknowledged in the list of general collaborators and in
connection with the particular tables or sections involved.

CRC PRESS, Inc.
Boca Raton, Florida 33431

SYMBOLS AND ABBREVIATIONS

$[\alpha]$	specific rotation	fl	flakes	par	partial
δ	slightly	flr	fluorescent	peth	petroleum ether
>	above, more than	fr	freeses	pk	pink ³
<	below, less than	fr. p.	freezing point	Ph	phenyl
8	soluble in all proportions	fum	fuming	pl	plates
*	name approved by the International Union of Chemists (I.U.C.) ¹	gel	gelatinous	pr	prisms
Ω	IR, or UV, or NMR spectra referenced	gl	glacial	Prak	J. Prak. Chem.
?	unknown	gold	golden	purp	purple ³
aa	acetic acid	gr	green ³	pw	powder
abs	absolute	gran	granular	Py	pyrimidene
ac	acid	gy	gray ³	pym	pyramids
Ac	acetyl	H	hot	rac	racemic
ace	acetone	hex	Helv. Chim. Acta	rect	rectangular
al	alcohol ²	hp	hexagonal	red	red
alk	alkali	htng	heptane	res	resinous
Am	J. Am. Chem. Soc.	hx	heating	rh	rhombic
Am	amyl (pentyl)	hyd	hexane	rhd	rhombohedral
amor	amorphous	hyg	hydrate	s	soluble
anh	anhydrous	i	hygroscopic	<u>s</u>	secondary ⁷
aqu	aqueous	i-	insoluble	sc	scales
as	asymmetric	ign	iso-	sec	secondary ⁷
atm	atmospheres	in	ignites	sf	softens
b	boiling	inflam	inactive	sh	shoulder
B	Beilstein	infus	inflammable	silv	silvery
Ber	Chem. Ber.	irid	infusible	sl	slightly (δ)
bipym	bipyramidal	iso	iridescent	so	solid
bk	black ³	J	isooctane	sol	solution
bl	blue ³	JOC	J. Chem. Soc.	solv	solvent
br	brown ³	L, l	J. Org. Chem.	sph	sphenoidal
bt	bright	levo ⁴		st	stable
Bu	butyl	la		sub	sublimes
bz	Benzene	lf		suc	supercooled
C	Chem. Abs.	lig		sulf	sulfuric acid
c	percentage concentration	liq		sym	symmetrical
ca	about (circa)	lo		syr	syrup
chl	chloroform	lt		t	tertiary ⁷
co	columns	m		ta	tablets
col	colorless	m-		tcl	triclinic
con	concentrated	M		tert	tertiary ⁷
cor	corrected	M		Tet	Tetrahedron
cr	crystals	mcl		tetr	tetragonal
cy	cyclohexane	Me		THF	tetrahydrofuran
d	decomposes	met		to	toluene
D	line in the spectrum of sodium (subscript)	micr		tr	transparent
D, d	dextro ⁴	min		trg	trigonal
δd	slight decomposition	mod		undil	undiluted
dil	diluted	mut		uns	unsymmetrical
diox	dioxane	n		unst	unstable
distb	distillable	N		v	very
dk	dark	N		vac	vacuum
D_l, dl	racemic ⁴	nd		var	variable
dlq	deliquescent	o-		vap	vapor
DMF	dimethyl formamide	oct		vic	vicinal
E	Elsevier's	og		visc	viscous
eff	efflorescent	oos		volat	volatile or volatilises
Et	ethyl	or		vt	violet ³
eth	ether ⁵	ord		w	water
exp	explodes	org		wh	white ⁷
extrap	extrapolated	orh		wr	warm
		os		wx	waxy
		p-		ye	yellow ³
		pa		xyl	xylene

1 For I.U.C. rules of nomenclature see General Index.

2 Generally means ethyl alcohol.

3 The abbreviation of a color ending in "sh" is to be read as ending with the suffix "-ish," e.g., grsh means greenish.

4 D, L generally mean configuration and d, l generally mean optical rotation, but there are many examples in the chemical literature for which the meaning of these symbols is ambiguous and/or interchangeable.

5 Generally means diethyl ether.

6 N indicates a position in the molecule.

7 s and sec , or t and $tert$, are used as convenient.

PHYSICAL CONSTANTS OF ORGANIC COMPOUNDS (Continued)

No.	Name	Synonyms and Formula	Mol. wt.	Color, crystalline form, specific rotation and λ_{max} , (log ε)	m.p. °C	b.p. °C	Density	n_D	Solubility							Ref.
									w	al	eth	ace	bz	other solvents		
	Cyclohexanol															
Ω c749	—, —(trans)*	$C_6H_{11}ClO$. See c742.	134.61	pr (bz-lig)	29	93 ²⁴	1.146 ¹⁶	1.4899 ²⁰	...	v	s	...	s	chls	B6 ¹ , 12	
Ω c750	—, 4-chloro-(trans)*	$C_6H_{11}ClO$. See c742.	134.61	pl (cy)	82-3	106 ¹⁴	1.1435 ¹⁷	1.4930 ²¹	...	s	s	...	s	chls	B6 ¹ , 12	
c751	—, 3-(dimethyl-amino)-*	$C_6H_{11}NO$. See c742.	143.23		73	231 ²⁴	0.9766 ²¹	1.4852 ²⁰	...	s	B13 ¹ , 19	
Ω c752	—, 1-ethyl-*	$C_6H_{12}O$. See c742.	128.22	pr, λ_{max}	34.5-5.0	166 67 ¹⁴	0.9227 ²¹	1.4633 ²⁰	δ	s	peths	B6 ¹ , 26	
c753	—, 2-ethyl-(cis, dl)*	$C_6H_{12}O$. See c742.	128.22			180-2 ²⁶	0.9274 ²¹	1.4655 ²¹	i	...	s	s	s	oosv peths	B6 ¹ , 26	
c754	—, —(trans, dl)*	$C_6H_{12}O$. See c742.	128.22			79 ¹²	0.9193 ²¹	1.4640 ²¹	i	...	s	s	s	oosv peths	B6 ¹ , 26	
Ω c755	—, 1-ethynyl-*	$C_6H_{12}O$. See c742.	124.19	cr (peth)	31-2	174 ⁷⁶ 73 ¹²	0.9873 ²⁰	1.4822 ²⁰	i	s	s	oosv	B6 ¹ , 100	
c757	—, 2(1-hydroxy-ethyl)-*	$C_6H_{12}O_2$. See c742.	144.22			140 ¹²	0.976 ²⁰	1.4900 ²⁰	i	C50 ¹	
	—, 2-isopropyl-5-methyl-*	see Neoisomenthol														329
Ω c758	—, 1-methyl-*	$C_7H_{14}O$. See c742.	114.19		25	155 ⁷⁶ 70 ¹⁴	9.9194 ²⁰	1.4595 ²⁰	i	s	s	chls	B6 ¹ , 16	
Ω c759	—, 2-methyl-(cis, dl)*	$C_7H_{14}O$. See c742.	114.19		7 (-4)	165 60 ¹²	0.9360 ²⁰	1.4640 ²⁰	δ	∞	s	B6 ¹ , 20	
c760	—, —(trans, d)*	$C_7H_{14}O$. See c742.	114.19	[α] _D ²⁰ +17.19 (undil)		166 ¹² 78 ²⁰	0.9454 ²⁰	1.4610 ²⁰	δ	∞	s	B6 ¹ , 18	
Ω c761	—, —(trans, dl)*	$C_7H_{14}O$. See c742.	114.19		-4.3 to -3.7	167.2-7.6 78 ²⁰	0.9247 ²⁰	1.4616 ²⁰	δ	∞	s	B6 ¹ , 18	
c762	—, —(trans, l)*	$C_7H_{14}O$. See c742.	114.19	[α] _D ¹⁸ -35.5 (undil)		166 ⁷⁶ 78 ²⁰	0.9454 ²⁰	1.4610 ²⁰	δ	∞	s	B6 ¹ , 18	
Ω c763	—, 3-methyl-(cis, l)*	$C_7H_{14}O$. See c742.	114.19	[α] _D ² -4.75 (undil)	-4.7	174-5 94 ¹²	0.9155 ²⁰	1.4574 ²⁰	δ	∞	∞	B6 ¹ , 20	
Ω c764	—, —(trans, l)*	$C_7H_{14}O$. See c742.	114.19	[α] _D ¹⁸ -7.3 (undil)	-1	174-5 ⁷⁴ 84 ¹²	0.9214 ²⁰	1.4590 ²⁰	δ	∞	v	B6 ¹ , 20	
Ω c765	—, 4-methyl-(cis)*	$C_7H_{14}O$. See c742.	114.19		-9.2	173-4 ⁷⁶ 78-9 ²⁰	0.9170 ²⁰	1.4614 ²⁰	δ	∞	s	B6 ¹ , 22	
Ω c766	—, —(trans)*	$C_7H_{14}O$. See c742.	114.19			173-4 ⁷⁶ 54 ¹²	0.9118 ²¹	1.4561 ²⁰	δ	∞	s	B6 ¹ , 22	
Ω c767	—, 2-phenyl-(cis, dl)*	$C_{12}H_{16}O$. See c742.	176.24		41-2 (56)	140-1 ¹⁶	1.035 ¹⁶	1.5415 ¹⁶	B6 ¹ , 24	
Ω c768	—, —(trans, dl)*	$C_{12}H_{16}O$. See c742.	176.24	cr (peth)	56-7	152-5 ¹⁶	v	v	i	i	i	chls	B6 ¹ , 24	
Ω c769	—, 2,2,6,6-tetra-kis(hydroxy-methyl)-*	$C_{10}H_{20}O_5$. See c742.	220.27	pl (al)	131		v	v	i	i	i	MeOH, Py	B6 ¹ , 111	
c770	—, 1,2,2-tri-methyl-(dl)*	$C_9H_{18}O$. See c742.	142.24	cr (+ ½ w)	41 (hyd)	81.4- 1.8 ²⁰	0.9230 ²⁰	1.4682 ²⁰	i	s	s	...	s	oosv	B6 ¹ , 16	
c771	—, 1,2,6-tri-methyl-*	$C_9H_{18}O$. See c742.	142.24			78 ²¹	0.9126 ¹³	1.4598 ¹³	i	s	s	...	s	oosv	B6 ¹ , 17	
c772	—, 1,3,3-tri-methyl-*	$C_9H_{18}O$. See c742.	142.24	pr (dil al)	74		i	v	s	s	s	oosv	B6 ¹ , 16	
c773	—, 1,3,5-tri-methyl-*	$C_9H_{18}O$. See c742.	142.24			181 82-3 ¹⁹	0.8876 ¹⁷	1.4541 ¹⁶	i	s	s	...	chls	B6 ¹ , 17		
c774	—, 1,4,4-tri-methyl-*	$C_9H_{18}O$. See c742.	142.24	hyg nd (dil al)	58	79-80 ¹³	i	s	s	...	chls	B6 ¹ , 16		
c775	—, 2,2,3-tri-methyl-*	$C_9H_{18}O$. See c742.	142.24			85-7 ¹⁵	i	s	s	...	chls	B6 ¹ , 16		
c776	—, 2,2,5-tri-methyl-*	Puleanol. $C_9H_{18}O$. See c742.	142.24			187-9 ⁷⁶ 90-2 ²³	0.8955 ²⁰	1.4569 ²⁰	i	s	ooss	B6 ¹ , 22		
c777	—, 2,2,6-tri-methyl-(liquid)*	$C_9H_{18}O$. See c742.	142.24			186-7 ⁷³	0.9128 ²⁰	1.4600 ²⁰	i	s	s	...	chls	B6 ¹ , 10		
c778	—, (solid)*	$C_9H_{18}O$. See c742.	142.24	cr (peth or al)	51	87 ²⁸	i	s	s	...	chls	B6 ¹ , 16		
c779	—, 2,3,3-tri-methyl-*	$C_9H_{18}O$. See c742.	142.24	nd	28	197 97 ¹⁹	i	v	...	v	oosv	B6 ¹ , 16		
c780	—, 2,3,6-tri-methyl-*	$C_9H_{18}O$. See c742.	142.24			193-5 ⁷⁴	0.9117 ¹⁷	...	i	s	...	chls	B6 ¹ , 22			
c781	—, 2,4,5-tri-methyl-(cis)*	$C_9H_{18}O$. See c742.	142.24	hyg		191-3 ⁷⁶ 84 ¹²	0.9120 ²⁰	1.4632 ²⁰	i	s	s	...	chls	B6 ¹ , 16		
c782	—, (trans)*	$C_9H_{18}O$. See c742.	142.24	hyg		196 ⁶⁰ 112 ³⁵	0.9062 ²⁰	1.4612 ²⁰	i	s	s	...	chls	B6 ¹ , 16		
Ω c783	—, 3,3,5-tri-methyl-(cis)*	cis-Dihydroisophorole. $C_9H_{18}O$. See c742.	142.24		37.3	201-3 ⁷⁰ 92 ¹²	0.9006 ¹⁶	1.4550 ¹⁶	i	s	s	...	chls	B6 ¹ , 16		
Ω c784	—, (trans)*	$C_9H_{18}O$. See c742.	142.24	cr (eth)	55.8	189.2 ⁷⁶ 155.65 ⁷⁶	0.8643 ⁵⁸ 0.9478 ²⁰	1.4507 ²⁰	i	s	s	...	chls	B6 ¹ , 16		
Ω c785	Cyclohexanone*	Ketohexamethylene. Pimelic ketone.	98.15	1 ⁴ 284 (1.26)	-16.4 (-45)	47 ¹⁵	s	s	s	s	s	chls	B7 ¹ , 1	
Ω c786	—, oxime*	$C_6H_{11}NO$. See c785.	113.16	hex pr (lig)	90	206-10	s	s	s	MeOH s	B7 ¹ , 10	
c787	—, 2-acetyl-*	$C_9H_{18}O_2$. See c785.	140.19	1 ⁴ 290 (3.95)		111-2 ¹⁸	1.0782 ²⁰	1.5138 ²⁰	B7 ¹ , 10	
Ω c788	—, 2-butyl-*	$C_{10}H_{18}O$. See c785.	154.26			70 ¹	0.9052 ²⁰	1.4545 ²⁰	i	oosv	Am 71		
Ω c789	—, 2-butylidene-...	$C_{10}H_{18}O$. See c785.	152.24			98-100 ¹⁰ (95-100 ¹)	0.9352 ²⁰	1.4800 ²⁰	i	s	v	s	v	oosv	C49	
Ω c790	—, 2-chloro-*	C_6H_5ClO . See c785.	132.59	2 ¹ 294 (1.38)	23	82 ¹²	1.161 ¹⁹	1.4825 ²⁰	...	s	...	s	diox s	B7 ¹ , 1		
c791	—, 3-chloro-*	C_6H_5ClO . See c785.	132.59			91-2 ¹⁴	s	...	s	B7 ¹ , 1		
c792	—, 4-chloro-*	C_6H_5ClO . See c785.	132.59			93 ¹⁷	...	1.4867 ²⁰	...	s	...	s	...	B7 ¹ , 1		
c793	—, 2,6-dibenzyl-idiene	$C_{20}H_{18}O$. See c785.	274.37	yend (al) 1 ⁴	117-8 330 (4.40)	185-95 ²⁰	δ	...	s	...	aas	B7 ¹ , 15		

For explanations, symbols and abbreviations see beginning of table. For structural formulas see end of table.