Solar activity was very low throughout the period. Four new-cycle sunspot groups were numbered this period, the most prominent of which was Region 2760 (S07, L=307, class/area=Cro/20 on 30 Apr). No significant solar flare activity was observed.

A filament eruption from the northern hemisphere midday on 27 Apr resulted in a very slow-moving CME. Modeling of the event suggested the CME may arrive at Earth on 02-03 May. A solar wind disturbance commensurate with the passage of a weak, slow-moving transient was detected on 03 May, however, the source of this disturbance is inconclusive at the time of this writing.

No proton events were observed at geosynchronous orbit.

The greater than 2 MeV electron flux at geosynchronous orbit was at normal to moderate levels throughout the period.

Geomagnetic field activity was generally quiet and quiet to unsettled this period under a largely nominal solar wind environment. Isolated unsettled activity late on 03 May is thought to be associated with the passage of the 27 Apr CME.

Space Weather Outlook 04 May - 30 May 2020

Solar activity is expected to be very quiet throughout the outlook period.

No proton events are expected at geosynchronous orbit.

The greater than 2 MeV electron flux at geosynchronous orbit is expected to be at normal to moderate levels throughout the outlook period.

Geomagnetic field activity is expected to be generally quiet or quiet-to-unsettled throughout the outlook period.

Daily Solar Data

	Ra	dio Sun	Suns	pot X-ray				Flares				
	Fl	ux spot	Are	a Background		X-1	ay		C)ptica	ıl	
Date	10.7	7cm No.	(10 ⁻⁶ h	emi.) Flux	C	. M	I X	S	1	2	3	4
27 April	69	12	10	A0.0	0	0	0	0	0	0	0	0
28 April	69	0	0	A0.0	0	0	0	0	0	0	0	0
29 April	70	24	30	A1.0	0	0	0	0	0	0	0	0
30 April	70	35	40	A1.3	0	0	0	0	0	0	0	0
01 May	70	0	0	A1.3	0	0	0	0	0	0	0	0
02 May	69	0	0	A1.1	0	0	0	0	0	0	0	0
03 May	69	0	0	A0.0	0	0	0	0	0	0	0	0

Daily Particle Data

	11000	on Fluence (cm ² -day -sr)	Electron Fluence (electrons/cm ² -day -sr)
Date	>1 MeV	>10 MeV	>2MeV
27 April	5.6e+04	4.7e+04	1.9e+06
28 April	5.5e+04	4.7e+04	1.9e+06
29 April	5.5e+04	4.7e+04	2.4e+06
30 April	5.5e+04	4.7e+04	2.7e+06
01 May	6.6e + 04	4.6e+04	1.5e+06
O2 May	5.6e + 04	4.6e+04	1.5e+06
03 May	7.1e+04	4.5e+04	1.4e+06

Daily Geomagnetic Data

		Middle Latitude		High Latitude	Estimated			
		Fredericksburg		College		Planetary		
Date	A	K-indices	A	K-indices	A	K-indices		
27 April	6	3-2-1-1-2-1	7	2-2-2-1-3-2-1-1	7	3-2-2-1-2-2-2		
28 April	6	3-1-1-2-2-1-2-1	5	2-1-1-3-2-1-0-0	6	3-1-1-2-2-1-1-1		
29 April	4	1-1-0-1-2-2-2-0	0	0-0-0-0-0-0-0	3	1-1-0-0-1-1-1		
30 April	1	0-1-0-0-1-1-0-0	0	0-0-0-0-0-0-0	2	1-0-0-0-0-0-0		
01 May	5	1-2-2-2-0-1-1	9	0-2-4-3-3-2-0-0	6	1-1-3-2-2-1-0-1		
02 May	3	0-2-1-1-2-0-1-1	3	1-1-2-2-2-0-0-0	5	1-2-2-1-1-1-0-1		
03 May	5	0-2-1-0-2-0-2-3	2	0-1-0-0-0-1-1-2	3	1-2-1-0-1-0-2-3		

Alerts and Warnings Issued

Date & Time of Issue UTC	Type of Alert or Warning	Date & Time of Event UTC
	No Alerts or Warnings Issued	

Twenty-seven Day Outlook

Date	Radio Flux 10.7cm	Planetary A Index	Largest Kp Index	Date	Radio Flux 10.7cm	•	Largest Kp Index
			•				
04 May	70	8	3	18 May	70	10	3
05	70	10	3	19	70	8	3
06	70	8	3	20	70	5	2
07	70	5	2	21	70	5	2
08	70	5	2	22	70	5	2
09	70	5	2	23	70	5	2
10	70	5	2	24	70	5	2
11	70	5	2	25	70	5	2
12	70	5	2	26	70	5	2
13	70	5	2	27	70	5	2
14	70	5	2	28	70	5	2
15	70	5	2	29	70	5	2
16	70	5	2	30	70	5	2
17	70	5	2				

Energetic Events

		Time		X-ray		_Opti	cal Informat	ion	Peak		Sweep Free		
			Half		Integ I		Location	Rgn	Radi	Radio Flux		Intensity	
Date	Begin	Max	Max	Class	Flux	Brtns	Lat CMD	#	245	2695	II	IV	

No Events Observed

Flare List

					Optical						
		Time		X-ray	Imp/	Location	Rgn				
Date	Begin	Max	End	Class	Brtns	Lat CMD	#				
30 Apr	0129	1217	1221	B1.3			2762				
01 May	1430	1436	1440	B2.6			2762				

Region Summary

	Locatio	on	Su	nspot C	haracte	ristics]	Flares	S			
		Helio	Area	Extent	Spot	Spot	Mag	X	K-ray			О	ptica	.1	
Date	Lat CMD	Lon 1	0 ⁻⁶ hemi.	(helio)	Class	Count	Class	C	M	X	S	1	2	3	4
		Regio	on 2760												
25 Ann	S07E37	305	10	1	Axx	1	٨								
25 Apr 26 Apr	S07E37 S07E24	305	10	1 3	Bxo	4	A B								
27 Apr	S07E24 S07E10	304	10	5	Axx	2	A								
28 Apr	S06W03	305	plage	3	IIAA	2	71								
29 Apr	S06W17	306	20	2	Cro	2	В								
30 Apr	S07W31	307	20	3	Cro	$\frac{1}{2}$	В								
01 May		307	plage												
02 May	S07W57	307	plage												
03 May	S07W71	307	plage												
-								0	0	0	0	0	0	0	0
Still on	Disk.														
Absolut	e heliograp	hic long	gitude: 3	05											
		Regio	on 2761												
28 Apr	S18W27	329	plage												
29 Apr	S18W41	330	plage												
30 Apr	S18W55	331	plage												
01 May	S18W69	332	plage												
02 May	S18W82	332	plage												
								0	0	0	0	0	0	0	0
Crossed	West Limb	b.													
Absolut	e heliograp	hic long	gitude: 3	29											
		Regio	on 2762												
29 Apr	N24W48	336	10	2	Bxo	2	В								
30 Apr	N23W61	337	10	1	Axx	1	A								
•	N23W75	338	plage												
02 May	N23W88	338	plage												
								0	0	0	0	0	0	0	0
Crossed	West Limi	b.													

Crossed West Limb. Absolute heliographic longitude: 336

Region Summary - continued

	Location	on	Su	nspot C	haracte	ristics		Flares							
		Helio	Area	Extent	Spot	Spot	Mag	X	X-ray			Optical			
Date	Lat CMD	Lon 1	0 ⁻⁶ hemi.	(helio)	Class	Count	Class	C	M	X	S	1	2	3	4
		Regio	n 2763												
02 May	N32E16 N32E02 N32W11 N32W25	260 261 261 261	plage plage plage	2	Bxo	2	В	0	0	0	0	0	0	0	0

Still on Disk. Absolute heliographic longitude: 261

Recent Solar Indices (preliminary) Observed monthly mean values

	S	unspot N	umbers			Radio	Flux	Geoma	gnetic
	Observed values	Ratio	Smoot	th values		Penticton	Smooth	Planetary	Smooth
Month	SEC RI	RI/SEC	SEC	RI		10.7 cm	Value	Ap	Value
				2018					
May	15.0	7.9	0.53	9.2	4.5	70.9	70.2	8	7.6
June	19.7	9.4	0.48	9.1	4.3	72.5	70.0	7	7.4
July	1.3	1.0	0.77	9.4	4.2	69.7	70.0	6	7.3
August	10.0	5.2	0.53	9.0	4.0	69.1	70.0	10	7.3
September	5.7	2.0	0.35	8.7	3.9	68.3	70.1	9	7.3
October	6.9	2.9	0.42	9.2	4.1	69.5	70.3	7	7.1
November		2.9	0.48	9.5	4.0	68.9	70.4	6	7.0
December	5.6	1.9	0.34	9.3	3.6		70.3	7	6.9
				2019					
January	16.0	4.6	0.29	9.0	3.2	71.6	70.0	6	6.8
February		0.5	52	8.7	3.0		69.8	7	6.7
March	14.8	5.6	0.39	8.3	2.8		69.7	6	6.6
April	11.5	5.5	0.48	7.9	2.6	72.4	69.6	6	6.7
May	18.1	5.9	0.34	7.4	2.3		69.6	7	6.7
June	11.6	0.7	0.06	7.3	2.2		69.6	5	6.5
July	1.6	0.5	0.31	7.0	2.1	67.1	69.7	6	6.3
August	2.5	0.3	0.16	7.0	2.1		69.8	7	6.2
September		0.7	0.27	6.8	1.9		69.7	10	6.2
October	1.8	0.2	0.11	6.2	1.6	67.4	69.5	8	6.2
November		0.3	0.27			70.2		4	
December	7.2	0.9	0.14			70.9		4	
				2020					
January	9.2	3.8	0.41			72.3		5	
February	5.5	0.2	0.04			71.0		6	
March	3.0	0.9	0.30			70.1		6	
April	8.5	3.2	0.38			69.5		6	

Note: Values are final except for the most recent 6 months which are considered preliminary. Cycle 24 started in Dec 2008 with an RI=1.7.

ISES Solar Cycle Sunspot Number Progression Observed data through Apr 2020

Smoothed Sunspot Number Prediction

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
2016	33	32	30	29	27	25	23	22	20	19	18	17
	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)
2017	17	16	15	15	14	13	13	12	11	10	9	9
	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)
2018	9	8	6	5	5	4	4	4	4	4	4	4
	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)
2019	3	3	3	3	2	2	2	2	2	2	1	1
	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(1)	(2)
2020	1	2	2	2	2	2	2	2	2	2	2	2
	(3)	(5)	(5)	(6)	(7)	(7)	(8)	(9)	(9)	(10)	(10)	(10)
2021	2	1	1	1	1	1	1	1	1	1	1	1
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)
2022	1	0	0	0	0	0	0	0	0	0	0	0
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)

ISES Solar Cycle F10.7cm Radio Flux Progression
Observed data through Apr 2020

Smoothed F10.7cm Radio Flux Prediction

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
2016	100	98	97	95	93	90	88	86	84	83	81	80
	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)
2017	79	79	79	78	78	77	77	76	76	75	75	74
	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)
2018	74	73	72	71	70	70	70	70	70	70	70	70
	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)
2019	70	70	70	70	70	70	70	70	70	70	69	68
	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(1)	(1)
2020	68	67	67	66	65	65	64	63	62	61	60	60
	(2)	(3)	(4)	(4)	(5)	(6)	(7)	(8)	(8)	(9)	(9)	(9)
2021	60	60	60	60	60	60	60	59	59	59	59	59
	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)
2022	59	59	59	59	59	59	59	59	59	59	59	59
	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)

Solar Cycle Comparison charts are temporarily unavailable.

Preliminary Report and Forecast of Solar Geophysical Data (The Weekly)

Published every Monday by the Space Weather Prediction Center.

U.S. Department of Commerce NOAA / National Weather Service Space Weather Prediction Center 325 Broadway, Boulder CO 80305

Notice: The 27-day Outlook, Satellite Environment, X-ray and Proton plots have been redesigned. Comments and suggestions are welcome SWPC.Webmaster@noaa.gov

The Weekly has been published continuously since 1951 and is available online since 1997.

https://www.swpc.noaa.gov/products/weekly-highlights-and-27-day-forecast --

Current

ftp://ftp.swpc.noaa.gov/pub/warehouse -- Online archive from 1997

https://www.ngdc.noaa.gov/stp/satellite/goes-r.html -- NCEI GOES data

textarchive

https://www.swpc.noaa.gov/products/solar-cycle-progression -- Solar Cycle

Progression web site

https://www.swpc.noaa.gov/content/contact-us -- Contact and Copyright

information

https://www.swpc.noaa.gov/sites/default/files/images/u2/Usr_guide.pdf -- User

Guide

