## **SBML Model Report**

# Model name: "Singh2006\_TCA\_Ecoli\_acetate"



May 6, 2016

#### 1 General Overview

This is a document in SBML Level 2 Version 4 format. This model was created by the following two authors: Vijayalakshmi Chelliah<sup>1</sup> and Vivek Kumar Singh<sup>2</sup> at September 29<sup>th</sup> 2006 at 11:47 p. m. and last time modified at July fifth 2012 at 2:47 p. m. Table 1 provides an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

| Element           | Quantity | Element              | Quantity |
|-------------------|----------|----------------------|----------|
| compartment types | 0        | compartments         | 1        |
| species types     | 0        | species              | 12       |
| events            | 0        | constraints          | 0        |
| reactions         | 11       | function definitions | 0        |
| global parameters | 0        | unit definitions     | 3        |
| rules             | 0        | initial assignments  | 0        |

#### **Model Notes**

This a model from the article:

Kinetic modeling of tricarboxylic acid cycle and glyoxylate bypass in Mycobacterium tuberculosis, and its application to assessment of drug targets.

Singh VK, Ghosh I Theor Biol Med Model 2006 Aug 3;3:27 16887020,

<sup>&</sup>lt;sup>1</sup>EMBL-EBI, viji@ebi.ac.uk

<sup>&</sup>lt;sup>2</sup>University of Pune, vivek@bioinfo.ernet.in

#### **Abstract:**

BACKGROUND: Targeting persistent tubercule bacilli has become an important challenge in the development of anti-tuberculous drugs. As the glyoxylate bypass is essential for persistent bacilli, interference with it holds the potential for designing new antibacterial drugs. We have developed kinetic models of the tricarboxylic acid cycle and glyoxylate bypass in Escherichia coli and Mycobacterium tuberculosis, and studied the effects of inhibition of various enzymes in the M. tuberculosis model. RESULTS: We used E. coli to validate the pathway-modeling protocol and showed that changes in metabolic flux can be estimated from gene expression data. The M. tuberculosis model reproduced the observation that deletion of one of the two isocitrate lyase genes has little effect on bacterial growth in macrophages, but deletion of both genes leads to the elimination of the bacilli from the lungs. It also substantiated the inhibition of isocitrate lyases by 3-nitropropionate. On the basis of our simulation studies, we propose that: (i) fractional inactivation of both isocitrate dehydrogenase 1 and isocitrate dehydrogenase 2 is required for a flux through the glyoxylate bypass in persistent mycobacteria; and (ii) increasing the amount of active isocitrate dehydrogenases can stop the flux through the glyoxylate bypass, so the kinase that inactivates isocitrate dehydrogenase 1 and/or the proposed inactivator of isocitrate dehydrogenase 2 is a potential target for drugs against persistent mycobacteria. In addition, competitive inhibition of isocitrate lyases along with a reduction in the inactivation of isocitrate dehydrogenases appears to be a feasible strategy for targeting persistent mycobacteria. CONCLUSION: We used kinetic modeling of biochemical pathways to assess various potential anti-tuberculous drug targets that interfere with the glyoxylate bypass flux, and indicated the type of inhibition needed to eliminate the pathogen. The advantage of such an approach to the assessment of drug targets is that it facilitates the study of systemic effect(s) of the modulation of the target enzyme(s) in the cellular environment.

To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CCO Public Domain Dedication for more information.

In summary, you are entitled to use this encoded model in absolutely any manner you deem suitable, verbatim, or with modification, alone or embedded it in a larger context, redistribute it, commercially or not, in a restricted way or not.

To cite BioModels Database, please use: Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novre N, Laibe C (2010) BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol., 4:92.

#### 2 Unit Definitions

This is an overview of seven unit definitions of which four are predefined by SBML and not mentioned in the model.

#### 2.1 Unit substance

**Definition** mmol

## 2.2 Unit mmlmin

**Definition**  $mmol \cdot l^{-1} \cdot (60 \text{ s})^{-1}$ 

#### 2.3 Unit mml

**Definition**  $mmol \cdot l^{-1}$ 

#### 2.4 Unit volume

**Notes** Litre is the predefined SBML unit for volume.

**Definition** 1

#### 2.5 Unit area

**Notes** Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

**Definition** m<sup>2</sup>

## 2.6 Unit length

**Notes** Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

**Definition** m

#### 2.7 Unit time

 $\mbox{\bf Notes}\,$  Second is the predefined SBML unit for time.

**Definition** s

## 3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.

| Id   | Name | SBO | Spatial Dimensions | Size | Unit  | Constant | Outside |
|------|------|-----|--------------------|------|-------|----------|---------|
| cell |      |     | 3                  | 1    | litre |          |         |

## 3.1 Compartment cell

This is a three dimensional compartment with a constant size of one litre.

# 4 Species

This model contains twelve species. The boundary condition of four of these species is set to true so that these species' amount cannot be changed by any reaction. Section 6 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

| Id     | Name | Compartment | Derived Unit                       | Constant | Boundary<br>Condi-<br>tion |
|--------|------|-------------|------------------------------------|----------|----------------------------|
| aca    |      | cell        | $\operatorname{mmol} \cdot 1^{-1}$ |          |                            |
| oaa    |      | cell        | $mmol \cdot l^{-1}$                |          |                            |
| coa    |      | cell        | $mmol \cdot l^{-1}$                |          |                            |
| cit    |      | cell        | $mmol \cdot l^{-1}$                |          | $ \mathbf{Z} $             |
| icit   |      | cell        | $mmol \cdot l^{-1}$                |          |                            |
| akg    |      | cell        | $\operatorname{mmol} \cdot 1^{-1}$ |          |                            |
| sca    |      | cell        | $\operatorname{mmol} \cdot 1^{-1}$ |          | $\Box$                     |
| suc    |      | cell        | $\operatorname{mmol} \cdot 1^{-1}$ |          |                            |
| fa     |      | cell        | $mmol \cdot l^{-1}$                |          | $\Box$                     |
| mal    |      | cell        | $mmol \cdot l^{-1}$                |          | $\Box$                     |
| gly    |      | cell        | $mmol \cdot l^{-1}$                |          | $\Box$                     |
| biosyn |      | cell        | $\text{mmol} \cdot l^{-1}$         |          |                            |

#### 

This model contains eleven reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 4: Overview of all reactions

| Nº | Id   | Name | Reaction Equation                     | SBO |
|----|------|------|---------------------------------------|-----|
| 1  | CS   |      | aca + oaa <del>====</del> coa + cit   |     |
| 2  | ACN  |      | cit <del>←</del> icit                 |     |
| 3  | ICD  |      | icit <del>←</del> akg                 |     |
| 4  | KDH  |      | akg <del>←</del> sca                  |     |
| 5  | ScAS |      | sca <del>←</del> suc                  |     |
| 6  | SDH  |      | suc <del>←</del> fa                   |     |
| 7  | FUM  |      | fa <del>← ``</del> mal                |     |
| 8  | MDH  |      | mal <del>←</del> oaa                  |     |
| 9  | ICL  |      | $icit \rightleftharpoons suc + gly$   |     |
| 10 | MS   |      | $gly + aca \Longrightarrow mal + coa$ |     |
| 11 | SYN  |      | akg <u>icit</u> biosyn                |     |

#### 5.1 Reaction CS

This is a reversible reaction of two reactants forming two products.

#### **Reaction equation**

$$aca + oaa \rightleftharpoons coa + cit$$
 (1)

#### **Reactants**

Table 5: Properties of each reactant.

| Id  | Name | SBO |
|-----|------|-----|
| aca |      |     |
| oaa |      |     |

#### **Products**

Table 6: Properties of each product.

| Id  | Name | SBO |
|-----|------|-----|
| coa |      |     |
| cit |      |     |

#### **Kinetic Law**

$$v_{1} = \text{vol}\left(\text{cell}\right) \cdot \frac{\text{Vf\_cs} \cdot \frac{[\text{aca}]}{\text{Kaca\_cs}} \cdot \frac{[\text{oaa}]}{\text{Koaa\_cs}} - \text{Vr\_cs} \cdot \frac{[\text{coa}]}{\text{Kcoa\_cs}} \cdot \frac{[\text{cit}]}{\text{Kcit\_cs}}}{\left(1 + \frac{[\text{aca}]}{\text{Kaca\_cs}} + \frac{[\text{coa}]}{\text{Kcoa\_cs}}\right) \cdot \left(1 + \frac{[\text{oaa}]}{\text{Koaa\_cs}} + \frac{[\text{cit}]}{\text{Kcit\_cs}}\right)}$$
(2)

Table 7: Properties of each parameter.

| Id               | Name | SBO     | Value   | Unit                                                                                                                       | Constant  |
|------------------|------|---------|---------|----------------------------------------------------------------------------------------------------------------------------|-----------|
| Vf_cs            |      | 0000350 | 446.880 | $\begin{array}{ccc} \text{mmol} & \cdot & 1^{-1} & \cdot \\ (60 \text{ s})^{-1} & & \end{array}$                           |           |
| Kaca_cs          |      | 0000322 | 0.030   | $\text{mmol} \cdot 1^{-1}$                                                                                                 |           |
| Koaa_cs          |      | 0000322 | 0.070   | $\text{mmol} \cdot 1^{-1}$                                                                                                 |           |
| Vr_cs            |      | 0000353 | 4.469   | $\begin{array}{ccc} \operatorname{mmol} & \cdot & \mathrm{l}^{-1} & \cdot \\ \left(60\mathrm{s}\right)^{-1} & \end{array}$ | $\square$ |
| Kcoa_cs          |      | 0000323 | 0.300   | $\mathrm{mmol}\cdot\mathrm{l}^{-1}$                                                                                        |           |
| ${\tt Kcit\_cs}$ |      | 0000323 | 0.700   | $\operatorname{mmol} \cdot 1^{-1}$                                                                                         |           |

#### **5.2 Reaction ACN**

This is a reversible reaction of one reactant forming one product.

#### **Reaction equation**

$$cit \rightleftharpoons icit$$
 (3)

#### Reactant

Table 8: Properties of each reactant.

| Id  | Name | SBO |
|-----|------|-----|
| cit |      |     |

#### **Product**

Table 9: Properties of each product.

| Id   | Name | SBO |
|------|------|-----|
| icit |      |     |

#### **Kinetic Law**

$$v_{2} = vol\left(cell\right) \cdot \frac{Vf\_acn \cdot \frac{[cit]}{Kcit\_acn} - Vr\_acn \cdot \frac{[icit]}{Kicit\_acn}}{1 + \frac{[cit]}{Kcit\_acn} + \frac{[icit]}{Kicit\_acn}}$$
(4)

Table 10: Properties of each parameter.

| Id                            | Name | SBO     | Value   | Unit                                                                                                     | Constant  |
|-------------------------------|------|---------|---------|----------------------------------------------------------------------------------------------------------|-----------|
| Vf_acn                        |      | 0000350 | 629.280 | $\begin{array}{ccc} \operatorname{mmol} & \cdot & 1^{-1} & \cdot \\ (60 \text{ s})^{-1} & & \end{array}$ | Ø         |
| $\mathtt{Kcit}_\mathtt{-acn}$ |      | 0000322 | 1.700   | $\text{mmol} \cdot 1^{-1}$                                                                               | $\square$ |
| Vr_acn                        |      | 0000353 | 6.293   | $\begin{array}{ccc} \text{mmol} & \cdot & 1^{-1} & \cdot \\ (60 \text{ s})^{-1} & & \end{array}$         |           |
| Kicit_acn                     |      | 0000323 | 3.330   | $\operatorname{mmol} \cdot 1^{-1}$                                                                       |           |

#### 5.3 Reaction ICD

This is a reversible reaction of one reactant forming one product.

#### **Reaction equation**

$$icit \rightleftharpoons akg$$
 (5)

#### Reactant

Table 11: Properties of each reactant.

| Id   | Name | SBO |
|------|------|-----|
| icit |      |     |

#### **Product**

Table 12: Properties of each product.

| Id  | Name | SBO |
|-----|------|-----|
| akg |      |     |

#### **Kinetic Law**

$$v_{3} = \text{vol}\left(\text{cell}\right) \cdot \frac{\text{Vf\_icd} \cdot \frac{[\text{icit}]}{\text{Kicit\_icd}} - \text{Vr\_icd} \cdot \frac{[\text{akg}]}{\text{Kakg\_icd}}}{1 + \frac{[\text{icit}]}{\text{Kicit\_icd}} + \frac{[\text{akg}]}{\text{Kakg\_icd}}}$$
(6)

Table 13: Properties of each parameter.

| Id                | Name | SBO     | Value | Unit                                                                                  | Constant |
|-------------------|------|---------|-------|---------------------------------------------------------------------------------------|----------|
| Vf_icd            |      | 0000350 |       | $\begin{array}{cc} \text{mmol} & \cdot & l^{-1} \\ (60 \text{ s})^{-1} & \end{array}$ | . 🗹      |
| ${	t Kicit\_icd}$ |      | 0000322 | 0.008 | $\operatorname{mmol} \cdot 1^{-1}$                                                    |          |
| ${\tt Vr\_icd}$   |      | 0000353 | 0.066 | $\begin{array}{cc} \text{mmol} & \cdot & 1^{-1} \\ (60 \text{ s})^{-1} & \end{array}$ | . 🗹      |
| Kakg_icd          |      | 0000323 | 0.130 | $\operatorname{mmol} \cdot 1^{-1}$                                                    | Ø        |

#### 5.4 Reaction KDH

This is a reversible reaction of one reactant forming one product.

#### **Reaction equation**

$$akg \Longrightarrow sca$$
 (7)

#### Reactant

Table 14: Properties of each reactant.

| Id  | Name | SBO |
|-----|------|-----|
| akg |      |     |

#### **Product**

Table 15: Properties of each product.

| Id  | Name | SBO |
|-----|------|-----|
| sca |      |     |

#### **Kinetic Law**

$$v_{4} = \text{vol}\left(\text{cell}\right) \cdot \frac{\text{Vf\_kdh} \cdot \frac{[\text{akg}]}{\text{Kakg\_kdh}} - \text{Vr\_kdh} \cdot \frac{[\text{sca}]}{\text{Ksca\_kdh}}}{1 + \frac{[\text{akg}]}{\text{Kakg\_kdh}} + \frac{[\text{sca}]}{\text{Ksca\_kdh}}}$$
(8)

Table 16: Properties of each parameter.

|          | 14014 | roveroperates or t | ration param |                                                                                      |          |
|----------|-------|--------------------|--------------|--------------------------------------------------------------------------------------|----------|
| Id       | Name  | SBO                | Value        | Unit                                                                                 | Constant |
| Vf_kdh   |       | 0000350            | 57.344       | $\begin{array}{c} \text{mmol} & \cdot & 1^{-1} \\ (60 \text{ s})^{-1} & \end{array}$ | . 🛮      |
| Kakg_kdh |       | 0000322            | 0.100        | $\operatorname{mmol} \cdot 1^{-1}$                                                   |          |
| Vr_kdh   |       | 0000353            | 0.573        | $\begin{array}{c} \text{mmol} \cdot  l^{-1} \\ (60 \text{ s})^{-1} \end{array}$      |          |
| Ksca_kdh |       | 0000323            | 1.000        | $\text{mmol} \cdot 1^{-1}$                                                           |          |

#### **5.5 Reaction Scas**

This is a reversible reaction of one reactant forming one product.

#### **Reaction equation**

$$sca \rightleftharpoons suc$$
 (9)

#### Reactant

Table 17: Properties of each reactant.

| Id  | Name | SBO |
|-----|------|-----|
| sca |      |     |

#### **Product**

Table 18: Properties of each product.

| Id  | Name | SBO |
|-----|------|-----|
| suc |      |     |

#### **Kinetic Law**

$$v_{5} = \text{vol}\left(\text{cell}\right) \cdot \frac{\text{Vf\_scas} \cdot \frac{[\text{sca}]}{\text{Ksca\_scas}} - \text{Vr\_scas} \cdot \frac{[\text{suc}]}{\text{Ksuc\_scas}}}{1 + \frac{[\text{sca}]}{\text{Ksca\_scas}} + \frac{[\text{suc}]}{\text{Ksuc\_scas}}}$$
(10)

Table 19: Properties of each parameter.

| Id        | Name | SBO     | Value | Unit                                                                                                                  | Constant  |
|-----------|------|---------|-------|-----------------------------------------------------------------------------------------------------------------------|-----------|
| Vf_scas   |      | 0000350 | 8.960 | $\begin{array}{ccc} mmol & \cdot & l^{-1} & \cdot \\ (60 \text{ s})^{-1} & & \end{array}$                             | Ø         |
| Ksca_scas |      | 0000322 | 0.020 | $\text{mmol} \cdot 1^{-1}$                                                                                            |           |
| Vr_scas   |      | 0000353 | 0.090 | $\begin{array}{ccc} \operatorname{mmol} & \cdot & 1^{-1} & \cdot \\ \left(60  \mathrm{s}\right)^{-1} & & \end{array}$ |           |
| Ksuc_scas |      | 0000323 | 5.000 | $\operatorname{mmol} \cdot 1^{-1}$                                                                                    | $\square$ |

#### 5.6 Reaction SDH

This is a reversible reaction of one reactant forming one product.

#### **Reaction equation**

$$\operatorname{suc} \rightleftharpoons \operatorname{fa}$$
 (11)

#### Reactant

Table 20: Properties of each reactant.

| Id  | Name | SBO |
|-----|------|-----|
| suc |      |     |

#### **Product**

Table 21: Properties of each product.

| Id | Name | SBO |
|----|------|-----|
| fa |      |     |

#### **Kinetic Law**

$$v_{6} = \text{vol}(\text{cell}) \cdot \frac{\text{Vf\_sdh} \cdot \frac{[\text{suc}]}{\text{Ksuc\_sdh}} - \text{Vr\_sdh} \cdot \frac{[\text{fa}]}{\text{Kfa\_sdh}}}{1 + \frac{[\text{suc}]}{\text{Ksuc\_sdh}} + \frac{[\text{fa}]}{\text{Kfa\_sdh}}}$$
(12)

Table 22: Properties of each parameter.

| Id                                       | Name | SBO     | Value | Unit                                                                                             | Constant  |
|------------------------------------------|------|---------|-------|--------------------------------------------------------------------------------------------------|-----------|
| Vf_sdh                                   |      | 0000350 |       | $\begin{array}{ccc} mmol & \cdot & l^{-1} & \cdot \\ (60 \text{ s})^{-1} & & \end{array}$        | Ø         |
| $\mathtt{Ksuc}_{\mathtt{-}}\mathtt{sdh}$ |      | 0000322 | 0.02  | $\mathrm{mmol}\cdot\mathrm{l}^{-1}$                                                              | $\square$ |
| ${\tt Vr\_sdh}$                          |      | 0000353 | 16.24 | $\begin{array}{ccc} \text{mmol} & \cdot & 1^{-1} & \cdot \\ (60 \text{ s})^{-1} & & \end{array}$ | $\square$ |
| Kfa_sdh                                  |      | 0000323 | 0.40  | $\operatorname{mmol} \cdot 1^{-1}$                                                               | $\square$ |

#### 5.7 Reaction FUM

This is a reversible reaction of one reactant forming one product.

#### **Reaction equation**

$$fa \rightleftharpoons mal$$
 (13)

#### Reactant

Table 23: Properties of each reactant.

| Id | Name | SBO |
|----|------|-----|
| fa |      |     |

#### **Product**

Table 24: Properties of each product.

| Id  | Name | SBO |
|-----|------|-----|
| mal |      |     |

#### **Kinetic Law**

$$v_{7} = \text{vol}\left(\text{cell}\right) \cdot \frac{\text{Vf\_fum} \cdot \frac{[\text{fa}]}{\text{Kfa\_fum}} - \text{Vr\_fum} \cdot \frac{[\text{mal}]}{\text{Kmal\_fum}}}{1 + \frac{[\text{fa}]}{\text{Kfa\_fum}} + \frac{[\text{mal}]}{\text{Kmal\_fum}}}$$

$$(14)$$

Table 25: Properties of each parameter.

| Id               | Name | SBO     | Value  | Unit                                                                                             | Constant |
|------------------|------|---------|--------|--------------------------------------------------------------------------------------------------|----------|
| Vf_fum           |      | 0000350 |        | $\begin{array}{ccc} mmol & \cdot & 1^{-1} & \cdot \\ (60 \text{ s})^{-1} & & \end{array}$        | Ø        |
| ${\tt Kfa\_fum}$ |      | 0000322 | 0.15   | $\text{mmol} \cdot 1^{-1}$                                                                       |          |
| ${\tt Vr\_fum}$  |      | 0000353 | 144.67 | $\begin{array}{ccc} \text{mmol} & \cdot & 1^{-1} & \cdot \\ (60 \text{ s})^{-1} & & \end{array}$ |          |
| Kmal_fum         |      | 0000323 | 0.04   | $\operatorname{mmol} \cdot 1^{-1}$                                                               | <b>I</b> |

#### 5.8 Reaction MDH

This is a reversible reaction of one reactant forming one product.

#### **Reaction equation**

$$mal \rightleftharpoons oaa$$
 (15)

#### Reactant

Table 26: Properties of each reactant.

| Id  | Name | SBO |
|-----|------|-----|
| mal |      |     |

#### **Product**

Table 27: Properties of each product.

| Id  | Name | SBO |
|-----|------|-----|
| oaa |      |     |

#### **Kinetic Law**

$$\nu_{8} = vol\left(cell\right) \cdot \frac{Vf\_mdh \cdot \frac{[mal]}{Kmal\_mdh} - Vr\_mdh \cdot \frac{[oaa]}{Koaa\_mdh}}{1 + \frac{[mal]}{Kmal\_mdh} + \frac{[oaa]}{Koaa\_mdh}}$$

$$(16)$$

Table 28: Properties of each parameter.

| Id       | Name | SBO     | Value   | Unit                                                                                             | Constant  |
|----------|------|---------|---------|--------------------------------------------------------------------------------------------------|-----------|
| Vf_mdh   |      | 0000350 |         | $(60 \text{ s})^{-1}$                                                                            |           |
| Kmal_mdh |      | 0000322 | 2.60    | $\text{mmol} \cdot l^{-1}$                                                                       |           |
| Vr_mdh   |      | 0000353 | 1276.06 | $\begin{array}{ccc} \text{mmol} & \cdot & 1^{-1} & \cdot \\ (60 \text{ s})^{-1} & & \end{array}$ |           |
| Koaa_mdh |      | 0000323 | 0.04    | $\text{mmol} \cdot l^{-1}$                                                                       | $\square$ |

#### 5.9 Reaction ICL

This is a reversible reaction of one reactant forming two products.

#### **Reaction equation**

$$icit \rightleftharpoons suc + gly$$
 (17)

#### Reactant

Table 29: Properties of each reactant.

| Id   | Name | SBO |
|------|------|-----|
| icit |      |     |

#### **Products**

Table 30: Properties of each product.

| Id  | Name | SBO |
|-----|------|-----|
| suc |      |     |
| gly |      |     |

#### **Kinetic Law**

$$v_{9} = \text{vol}\left(\text{cell}\right) \cdot \frac{Vf\_\text{icl} \cdot \frac{\left[\text{icit}\right]}{\text{Kicit\_icl}} - Vr\_\text{icl} \cdot \frac{\left[\text{suc}\right]}{\text{Ksuc\_icl}} \cdot \frac{\left[\text{gly}\right]}{\text{Kgly\_icl}}}{1 + \frac{\left[\text{icit}\right]}{\text{Kicit\_icl}} + \frac{\left[\text{suc}\right]}{\text{Ksuc\_icl}} + \frac{\left[\text{gly}\right]}{\text{Kgly\_icl}} + \frac{\left[\text{icit}\right]}{\text{Kicit\_icl}} \cdot \frac{\left[\text{suc}\right]}{\text{Ksuc\_icl}} + \frac{\left[\text{suc}\right]}{\text{Ksuc\_icl}} \cdot \frac{\left[\text{gly}\right]}{\text{Kgly\_icl}}}$$

$$(18)$$

Table 31: Properties of each parameter.

| Id                | Name | SBO     | Value  | Unit                                                                                                       | Constant |
|-------------------|------|---------|--------|------------------------------------------------------------------------------------------------------------|----------|
| Vf_icl            |      | 0000350 | 28.500 | $\begin{array}{ccc} \operatorname{mmol} & \cdot & 1^{-1} & \cdot \\ (60  \mathrm{s})^{-1} & & \end{array}$ | Z        |
| ${	t Kicit\_icl}$ |      | 0000322 | 0.604  | $\operatorname{mmol} \cdot 1^{-1}$                                                                         |          |
| Vr_icl            |      | 0000353 | 0.285  | $\begin{array}{ccc} \text{mmol} & \cdot & 1^{-1} & \cdot \\ (60 \text{ s})^{-1} & & \end{array}$           |          |
| $Ksuc\_icl$       |      | 0000323 | 0.590  | $mmol \cdot l^{-1}$                                                                                        |          |
| Kgly_icl          |      | 0000323 | 0.130  | $\operatorname{mmol} \cdot 1^{-1}$                                                                         |          |

#### 5.10 Reaction MS

This is a reversible reaction of two reactants forming two products.

#### **Reaction equation**

$$gly + aca \Longrightarrow mal + coa \tag{19}$$

#### **Reactants**

Table 32: Properties of each reactant.

| Id  | Name | SBO |
|-----|------|-----|
| gly |      |     |
| aca |      |     |

#### **Products**

Table 33: Properties of each product.

| Id  | Name | SBO |
|-----|------|-----|
| mal |      |     |
| coa |      |     |

#### **Kinetic Law**

$$v_{10} = \text{vol}\left(\text{cell}\right) \cdot \frac{\text{Vf\_ms} \cdot \frac{[\text{gly}]}{\text{Kgly\_ms}} \cdot \frac{[\text{aca}]}{\text{Kaca\_ms}} - \text{Vr\_ms} \cdot \frac{[\text{mal}]}{\text{Kmal\_ms}} \cdot \frac{[\text{coa}]}{\text{Kcoa\_ms}}}{\left(1 + \frac{[\text{gly}]}{\text{Kgly\_ms}} + \frac{[\text{mal}]}{\text{Kmal\_ms}}\right) \cdot \left(1 + \frac{[\text{aca}]}{\text{Kaca\_ms}} + \frac{[\text{coa}]}{\text{Kcoa\_ms}}\right)}$$
(20)

Table 34: Properties of each parameter.

| Id               | Name | SBO     | Value  | Unit                                                                                                       | Constant |
|------------------|------|---------|--------|------------------------------------------------------------------------------------------------------------|----------|
| Vf_ms            |      | 0000350 | 28.500 | $\begin{array}{ccc} \operatorname{mmol} & \cdot & 1^{-1} & \cdot \\ (60  \mathrm{s})^{-1} & & \end{array}$ | Z        |
| $\tt Kgly\_ms$   |      | 0000322 | 2.000  | $\text{mmol} \cdot l^{-1}$                                                                                 |          |
| Kaca_ms          |      | 0000322 | 0.010  | $\operatorname{mmol} \cdot 1^{-1}$                                                                         |          |
| ${\tt Vr\_ms}$   |      | 0000353 | 0.285  | $mmol \cdot l^{-1} \cdot$                                                                                  |          |
|                  |      |         |        | $(60 \text{ s})^{-1}$                                                                                      |          |
| ${\tt Kmal\_ms}$ |      | 0000323 | 1.000  | $mmol \cdot l^{-1}$                                                                                        |          |
| Kcoa_ms          |      | 0000323 | 0.100  | $\operatorname{mmol} \cdot 1^{-1}$                                                                         |          |

#### **5.11 Reaction SYN**

This is a reversible reaction of one reactant forming one product influenced by one modifier.

#### **Reaction equation**

$$akg \stackrel{icit}{\longleftarrow} biosyn \tag{21}$$

#### Reactant

Table 35: Properties of each reactant.

| Id  | Name | SBO |
|-----|------|-----|
| akg |      |     |

#### **Modifier**

Table 36: Properties of each modifier.

| Id   | Name | SBO |
|------|------|-----|
| icit |      |     |

#### **Product**

Table 37: Properties of each product.

| Id     | Name | SBO |
|--------|------|-----|
| biosyn |      |     |

#### **Kinetic Law**

$$v_{11} = \text{vol}\left(\text{cell}\right) \cdot 0.0341 \cdot \frac{\text{Vf\_icd} \cdot \frac{[\text{icit}]}{\text{Kicit\_icd}} - \text{Vr\_icd} \cdot \frac{[\text{akg}]}{\text{Kakg\_icd}}}{1 + \frac{[\text{icit}]}{\text{Kicit\_icd}} + \frac{[\text{akg}]}{\text{Kakg\_icd}}}$$
(22)

Table 38: Properties of each parameter.

| Id                                 | Name | SBO     | Value | Unit                                                                                                         | Constant  |
|------------------------------------|------|---------|-------|--------------------------------------------------------------------------------------------------------------|-----------|
| Vf_icd                             |      | 0000350 | 6.625 | $\begin{array}{ccc} \text{mmol} & \cdot & 1^{-1} & \cdot \\ (60 \text{ s})^{-1} & & \end{array}$             | Ø         |
| $	ext{Kicit\_icd}$ $	ext{Vr\_icd}$ |      |         |       | $ \begin{array}{c} \text{mmol} \cdot 1^{-1} \\ \text{mmol} \cdot 1^{-1} \\ (60 \text{ s})^{-1} \end{array} $ |           |
| ${\tt Kakg\_icd}$                  |      | 0000323 | 0.130 | $\text{mmol} \cdot l^{-1}$                                                                                   | $\square$ |

## **6 Derived Rate Equations**

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

#### 6.1 Species aca

SBO:0000247 simple chemical

Initial concentration  $0.5 \text{ mmol} \cdot 1^{-1}$ 

This species takes part in two reactions (as a reactant in CS, MS), which do not influence its rate of change because this species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{aca} = 0\tag{23}$$

#### 6.2 Species oaa

SBO:0000247 simple chemical

Initial concentration  $0.0014 \text{ } \text{mmol} \cdot l^{-1}$ 

This species takes part in two reactions (as a reactant in CS and as a product in MDH), which do not influence its rate of change because this species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{oaa} = 0\tag{24}$$

#### 6.3 Species coa

SBO:0000247 simple chemical

Initial concentration  $10^{-4} \text{ mmol} \cdot l^{-1}$ 

This species takes part in two reactions (as a product in CS, MS), which do not influence its rate of change because this species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\cos = 0\tag{25}$$

#### 6.4 Species cit

SBO:0000247 simple chemical

Initial concentration  $9 \text{ mmol} \cdot 1^{-1}$ 

This species takes part in two reactions (as a reactant in ACN and as a product in CS).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{cit} = v_1 - v_2 \tag{26}$$

#### 6.5 Species icit

SBO:0000247 simple chemical

Initial concentration  $0.15 \text{ mmol} \cdot l^{-1}$ 

This species takes part in four reactions (as a reactant in ICD, ICL and as a product in ACN and as a modifier in SYN).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{icit} = v_2 - v_3 - v_9 \tag{27}$$

#### 6.6 Species akg

SBO:0000247 simple chemical

Initial concentration  $0.2 \text{ } \text{mmol} \cdot l^{-1}$ 

This species takes part in three reactions (as a reactant in KDH, SYN and as a product in ICD).

$$\frac{d}{dt}akg = v_3 - v_4 - v_{11} \tag{28}$$

#### 6.7 Species sca

SBO:0000247 simple chemical

Initial concentration  $0.04 \text{ mmol} \cdot 1^{-1}$ 

This species takes part in two reactions (as a reactant in ScAS and as a product in KDH).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{sca} = v_4 - v_5 \tag{29}$$

#### 6.8 Species suc

SBO:0000247 simple chemical

Initial concentration  $6 \text{ } \text{mmol} \cdot l^{-1}$ 

This species takes part in three reactions (as a reactant in SDH and as a product in ScAS, ICL).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{suc} = v_5 + v_9 - v_6 \tag{30}$$

#### 6.9 Species fa

SBO:0000247 simple chemical

Initial concentration  $0.3 \text{ mmol} \cdot 1^{-1}$ 

This species takes part in two reactions (as a reactant in FUM and as a product in SDH).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{fa} = v_6 - v_7 \tag{31}$$

#### 6.10 Species mal

SBO:0000247 simple chemical

Initial concentration  $5 \text{ mmol} \cdot l^{-1}$ 

This species takes part in three reactions (as a reactant in MDH and as a product in FUM, MS).

$$\frac{d}{dt}\text{mal} = v_7 + v_{10} - v_8 \tag{32}$$

#### **6.11 Species** gly

SBO:0000247 simple chemical

Initial concentration  $4 \text{ } \text{mmol} \cdot l^{-1}$ 

This species takes part in two reactions (as a reactant in MS and as a product in ICL).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{gly} = v_9 - v_{10} \tag{33}$$

#### 6.12 Species biosyn

Initial concentration  $0.1 \text{ mmol} \cdot l^{-1}$ 

This species takes part in one reaction (as a product in SYN), which does not influence its rate of change because this species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{biosyn} = 0\tag{34}$$

## A Glossary of Systems Biology Ontology Terms

- SBO:0000247 simple chemical: Simple, non-repetitive chemical entity
- **SBO:0000322 Michaelis constant for substrate:** Substrate concentration at which the velocity of product production by the forward activity of a reversible enzyme is half its maximum.
- **SBO:0000323 Michaelis constant for product:** Product concentration at which the velocity of substrate production by the reverse activity of a reversible enzyme is half its maximum.
- **SBO:0000350 forward reaction velocity:** The speed of an enzymatic reaction at a defined concentration of substrate(s) and enzyme
- **SBO:0000353** reverse reaction velocity: The speed of an enzymatic reaction at a defined concentration of substrate(s) and enzyme.

 $\mathfrak{BML2}^{d}$  was developed by Andreas Dräger<sup>a</sup>, Hannes Planatscher<sup>a</sup>, Dieudonné M Wouamba<sup>a</sup>, Adrian Schröder<sup>a</sup>, Michael Hucka<sup>b</sup>, Lukas Endler<sup>c</sup>, Martin Golebiewski<sup>d</sup> and Andreas Zell<sup>a</sup>. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

<sup>&</sup>lt;sup>a</sup>Center for Bioinformatics Tübingen (ZBIT), Germany

<sup>&</sup>lt;sup>b</sup>California Institute of Technology, Beckman Institute BNMC, Pasadena, United States

<sup>&</sup>lt;sup>c</sup>European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

<sup>&</sup>lt;sup>d</sup>EML Research gGmbH, Heidelberg, Germany