Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «МОСКОВСКИЙ ЭНЕРГЕТИЧЕСКИЙ ИНСТИТУТ» (ФГБОУ ВО «НИУ «МЭИ»)

Институт радиотехники и электроники им. В.А. Котельникова Кафедра формирования и обработки радиосигналов

Лабораторная работа №3 «ИССЛЕДОВАНИЕ БИХ-ФИЛЬТРОВ»

Дисциплина: Цифровая обработка сигналов

Группа: ЭР-11-21

Студент: Тимохин С.А.

Вариант: 15

Преподаватель: Торопчин Д.С.

Цель лабораторной работы

Освоение проектирования БИХ-фильтров по заданному НЧ-прототипу методом обобщенного билинейного преобразования. Исследование частотных и импульсной характеристик фильтров.

НЧ -	Порядок	Тип фильтра	f_{Π} , к Γ ц	$f_{\!\scriptscriptstyle m f J}$, к Γ ц
прототип				
Чебышев	5	ФНЧ	6	18
0,3дБ				

Таблица 1 - Данные

Выполнение работы

1. Расчет передаточной функции фильтра методом обобщённого билинейного преобразования.

Метод ОБП позволяет находить передаточные функции фильтров с помощью справочных материалов по нормированным НЧ-прототипам аналоговых фильтров. Расчет цифровых фильтров можно проводить по НЧ-прототипам, используя специальные формулы замены переменных. Необходимые для рас чета формулы представлены ниже.

$$T(s) = \frac{1.0785}{s^2 + 0.2578 * s + 1.0785} * \frac{0.5195}{s^2 + 0.6749 * s + 0.5195} * \frac{0.4171}{s + 0.4171}$$
 — НЧ — прототип Чебышева 0.3 Дб, 5 порядок
$$s = \gamma \frac{1 - z^{-1}}{1 + z^{-1}}, \gamma = ctg(\pi W_{\scriptscriptstyle \Pi}), W_{\scriptscriptstyle \Pi} = \frac{f_{\scriptscriptstyle \Pi}}{f_{\scriptscriptstyle A}} = \frac{1}{3}$$

2. Расчет коэффициентов фильтра. Построение нормированной АЧХ и ФЧХ. Импульсная характеристика.

Коэффициенты БИХ фильтра (a): [0.00512555, 0.02562775, 0.0512555, 0.0512555, 0.02562775, 0.00512555]

Коэффициенты БИХ фильтра (b): [1, -2.51922522, 3.36960552, -2.62267466, 1.1825027, -0.24619074]

Pисунок 1 – Hормированная AЧX, Φ ЧX

Рисунок 2 – Импульсная характеристика БИХ фильтра

3. Моделирование рассчитанного фильтра в Micro – сар. Построение АЧХ и ФЧХ.

Рисунок 3 – Схема фильтра

Pисунок 4 - AЧX, Φ ЧX фильтра

$$W_{\!\scriptscriptstyle \Pi} = rac{1}{3} f_{\!\scriptscriptstyle
m Hareve{u}KBreve{u}CTa}$$
, где $f_{\!\scriptscriptstyle
m Hareve{u}KBreve{u}CTa} = rac{f_{\!\scriptscriptstyle
m H}}{2} = 9$ кгц — по условию

Из рисунка 4 видно, что $W_{\Pi} \approx 3$ кГц , что соответствует $\frac{1}{3} f_{\text{найквиста}}$

4. Вывод

В ходе данной работы я синтезировал БИХ-фильтр 5-го порядка на НЧпрототипе Чебышева 0.3 Дб. АЧХ ФЧХ, полученные в домашней подготовке и в лабораторной работе, сходятся (рисунок 1 и рисунок 4), следовательно, расчёт коэффициентов и собранная схема — верные.