Modellbildung mechatronischer Systeme (MMS)

Mechatronische Wandler

Peltier-Element

Eingangsparameter / physikalische Größen

elektrische Messgrößen bei 50°C (TEC1-12706)

Spannung im Arbeitspunkt $U_{AP} = 9 V$

Strom im Arbeitspunkt $I_{AP} = 3 A$

elektrischer Widerstand im Arbeitspunkt $R_{AP} = 2.3 \ \Omega$

Temperaturdifferenz im Leerlauf $\Delta T_{AP} = 40 \ K$

Grundlagen

mechatronischer Transformator

elektrische Spannung $U_{AP} = H_{11} \cdot I_{AP} + H_{12} \cdot \Delta T_{AP}$

Entropiestrom $S_P = H_{21} \cdot I_{AP} + H_{22} \cdot \Delta T_{AP}$

Wandlerparameter $H_{11} \coloneqq R_{AP} = 2.3 \ \Omega$

$$H_{12} \coloneqq \frac{U_{AP} \!-\! H_{11} \!\cdot\! I_{AP}}{\Delta T_{AP}} \!=\! \left(52.5 \!\cdot\! 10^{-3}\right) \frac{W}{A \!\cdot\! K}$$

 $H_{22} \coloneqq \frac{U_{AP} \cdot I_{AP} - H_{11} \cdot I_{AP}^{\ \ 2}}{\Delta T_{AP}^{\ \ 2}} = \left(3.938 \cdot 10^{-3}\right) \frac{\textit{W}}{\textit{\textit{K}}^2}$

$$H_{21} = \frac{-H_{22} \cdot \Delta T_{AP}}{I_{AP}} = -52.5 \cdot 10^{-3} \frac{W}{A \cdot K}$$

Hybridmatrix $H \coloneqq \begin{bmatrix} H_{11} & H_{12} \\ H_{21} & H_{22} \end{bmatrix}$

maximaler Wirkungsgrad $\eta \coloneqq \left(\frac{H_{21}}{\sqrt{H_{11} \cdot H_{22}} + \sqrt{\|H\|}} \right)^2 = 0.066$