Statistinės hipotezės

Doc. Dr. Rūta Simanavičienė

Turinys 1

- Kaip suprasti statistinę hipotezė?
- Kada taikomos statistinės hipotezės?
- Statistinių hipotezių tipai;
- Statistinis kriterijus;
- Reikšmingumo lygmuo α ir *p-reikšmė*.

Populiacija, imtis

- Bendriausias statistikos uždavinys nustatyti tiriamų požymių reikšmių dažnių pasiskirstymus populiacijoje.
- Populiacija objektų, kurių požymiai tiriami, aibė.
- Imtis tai populiacijos dalis, naudojama statistiniam tyrimui.

Bendra statistinio tyrimo eiga:

Statistikų frazės apie eksperimentą

 Pakviesti statistiką, kai eksperimentas jau atliktas, gali reikšti ne ką kita kaip prašymą atlikti pomirtinį skrodimą: jis galbūt galės pasakyti, kodėl eksperimentas nepasisekė.

R. A. Fišeris

• Jeigu eksperimento rezultatui suprati prireikia statistiko pagalbos, tai turėtumėte geriau suplanuoti eksperimentą.

E. Razerfordas

Kur taikomos statistinės hipotezės?

- Tyrimo tikslas, susijęs su hipoteze, kurią norite patikrinti;
- Atliekamas eksperimentas ir renkami duomenys;
- Po to prireikia **statistikos** duomenims apdoroti, išvadoms daryti, eksperimento rezultato sąlygotoms naujoms hipotezėms formuluoti.

Pvz.: **Hipotezė** - Kaune daugiau avarijų nei Vilniuje.

Experiment_design in transportation research.pdf (26-27 psl.)

Statistinė hipotezė

- Statistine hipoteze vadinamas teiginys apie statistinių duomenų tikimybinį skirstinį arba apie tam tikro skirstinio parametrą.
- Pirmu atveju turime *neparametrinę hipotezę*, antru *parametrinę hipotezę*.

TYRIMO HIPOTEZĖ YRA STATISTINĖS HIPOTEZĖS ALTERNATYVA.

- Statistinės hipotezės tikrinimo **tikslas** yra išsiaiškinti, ar yra pagrindas **atmesti nulinę hipotezę** H_0 , naudojant tam tikro atsitiktinio dydžio imties duomenis.
- Nulinė hipotezė H_0 nurodo, jog nėra statistiškai reikšmingo skirtumo tarp imties duomenų ir nulinės hipotezės teiginio, o alternatyvi hipotezė H_1 nurodo, jog skirtumas yra.
- Alternatyvi hipotezė H₁ gali būti vienpusė, arba dvipusė.

Tyrimo hipotezių pavyzdžiai:

- Automobilių padangos-dangos paviršiaus kontakto triukšmas važiuojant 50 km/h ir 80 km/h greičiu skiriasi, kai kelio dangą sudaro asfalto mišinys SMA 8 TM.
- 2017 metų sausio mėnesį eismo intensyvumas keliuose A2 ir A4 skiriasi.
- Eismo intensyvumas kelyje A12, gegužės, birželio, liepos ir rugpjūčio mėnesiais skiriasi.

Statistinės hipotezės formulavimas

Statistinė parametrinė hipotezė:

$$\begin{cases} H_0: \theta = \theta_0, \\ H_1: \theta \neq \theta_0, (\theta > \theta_0), (\theta < \theta_0). \end{cases}$$

Pvz.: palyginkime dviejų populiacijos kintamųjų X ir Y vidurkius, kai žinome, jog populiacijos kintamieji yra normalūs:

$$\begin{cases} H_0 \colon \mu_X = \mu_Y, \\ H_1 \colon \mu_X \neq \mu_Y. \end{cases}$$

 Dažniausiai formuluojama statistinė neparametrinė hipotezė:

 $\begin{cases} H_0: \theta = \theta_0, \\ H_1: \theta \neq \theta_0, (\theta > \theta_0), (\theta < \theta_0). \end{cases}$ $\begin{cases} H_0: kintamųjų skirstiniai vienodi, \\ H_1: kintamųjų skirstiniai nėra vienodi. \end{cases}$

Pvz.: Patikrinkite ar kintamasi turi normalųjį skirstinį:

$$\begin{cases} H_0: X \sim N(\mu, \sigma^2), \\ H_1: X \sim N(\mu, \sigma^2). \end{cases}$$

Statistinis kriterijus - taisyklė

 Taisyklė, pagal kurią iš imties duomenų darome išvadas apie hipotezės teisingumą vadinama statistiniu kriterijumi.

Pvz.: Stjudento kriterijus dar vadinamas t testu.

- Taikydami statistinius kriterijus pagal imtį sprendžiame apie visą populiaciją.
- Hipotezių tikrinimui pasirinkus statistinį kriterijų, galimos jo taikymo baigtys pateiktos lentelėje.
- Statistinių hipotezių tikrinimui yra nagrinėjami tik tokie *statistiniai kriterijai*, kurių <u>I rūšies klaidos tikimybė</u> lygi α .

	H_0 teisinga	H_0 neteisinga
Atmetama H_0	I rūšies klaida	Teisingas sprendimas
Neatmetama H_0	Teisingas sprendimas	II rūšies klaida

Parametriniai ir neparametriniai kriterijai, priklausomai nuo uždavinio struktūros

Uždavinio struktūra	Parametrinis kriterijus	Neparametrinis kriterijus
Vienas kintamasis, viena imtis		Chi-kvadrato
Vienas kintamasis dvi atsitiktinės imtys	Stjudento t kriterijus, F kriterijus	Mano-Vitnio, Chi-kvadrato
Vienas kintamasis, dvi imtys, porinis palyginimas	Porinis Stjudento t kriterijus	Vilkoksono
Vienas kintamasis, daugiau negu dvi imtys	ANOVA	Kruskalo-Voliso, Chi-kvadrato

Reikšmingumo lygmuo \alpha

Atliekant hipotezių tikrinimą yra skaičiuojamos trys tikimybės: reikšmingumo $lygmuo <math>\alpha$, antros $r\bar{u}$ sies klaidos tikimybė β ir kriterijaus galia. Minėtas tikimybes galima užrašyti taip:

- $\alpha = P(I \text{ rūšies } klaida) = P(H_0 \text{ atmesta} | H_0 \text{ teisinga}).$
- $\beta = P(II \ r\bar{u}\check{s}ies \ klaida) = P(H_0 \ neatmetama | H_0 \ klaidinga),$
- Kriterijaus galia = $P(H_0 \text{ atmetama} | H_0 \text{ klaidinga}) = 1 \beta$.

Kaip dar suprasti α ? – Daug kartų taikydami statistinį kriterijų, pasirinkę $\alpha=0.05$, maždaug 95% atvejų neatmesime H_0 kai ji yra teisinga.

p-reikšmė hipotezių tikrinime

• Bendra taisyklė tinkanti visoms statistinės hipotezėms, pagal kurią naudojant p-reikšmę atmetama arba neatmetama hipotezė H_0 , skamba taip:

Tegul α yra reikšmingumo lygmuo, p – p-reikšmė. Tuomet,

- jeigu $p < \alpha$, tai hipotezė H_0 atmetama;
- jeigu $p \ge \alpha$, tai hipotezė H_0 neatmetama

 $\it p$ -reikšmė yra mažiausias reikšmingumo lygmuo, su kuriuo teisinga hipotezė $\it H_0$ gali būti atmesta turimiems duomenims.

Parametrinės hipotezės

Turinys 2

- Hipotezė apie vidurkio lygybę skaičiui;
- Hipotezė apie dviejų dispersijų lygybę;
- Hipotezė apie dviejų dispersijų lygybę.

Hipotezė apie vidurkio lygybę skaičiui, kai dispersija nežinoma

- Duomenys. Intervalinių duomenų imtis $(x_1, x_2, ..., x_n)$ gauta matuojant normalųjį atsitiktinį dydį $X \sim \mathcal{N}(\mu, \sigma^2)$. Vidurkis μ ir dispersija σ^2 nežinomi.
- 2 | Statistinė hipotezė:

$$\begin{cases} H_0: \ \mu = a, \\ H_1: \ \mu \neq a. \end{cases}$$
 (3.3.6)

3 | Kriterijaus statistika. Apskaičiuojame

$$t = \frac{\overline{x} - a}{\sqrt{s^2/n}},\tag{3.3.7}$$

čia \overline{x} yra imties vidurkis, s^2 – imties dispersija, n – imties didumas.

Sprendimo priėmimo taisyklė. Tegul reikšmingumo lygmuo lygus α . Hipotezė H_0 atmetama (taigi μ statistiškai reikšmingai skiriasi nuo a), jeigu $|t| > t_{\alpha/2}(n-1)$. Čia $t_{\alpha/2}(n-1)$ yra Stjudento skirstinio su (n-1) laisvės laipsnių $\alpha/2$ lygmens kritinė reikšmė. Hipotezė H_0 neatmetama, jeigu $|t| \leq t_{\alpha/2}(n-1)$.

Pilkai pažymėta sritis yra H_0 atmetimo sritis (kritinė sritis)

Hipotezės taikymo pavyzdys

Pateikti statistiniai duomenys:

Produkcijos apimtis (t.)	Х	3	4	5	4	6	8	7	6	11
Išlaidos gamybai (tūkst. eurų)	Υ	6	6	7	7	10	11	9	9	16

Tarkime, kad imtis X sudaryta iš **normalaus** atsitiktinio dydžio duomenų.

Ar galima teigti, kad atsitiktinio dydžio vidurkis $\mu = 5.5$ esant $\alpha = 0.05$.

$$\bar{x} = 6$$
; $s = 2,4495$

Matlab komanda:

ttest(x,5.5,'Alpha',0.05)

Descriptive Statistics

Hipotezė apie dviejų nepriklausomų imčių vidurkių lygybę, H_1 : $\mu_X \neq \mu_Y$, kai dispersijos lygios

- Duomenys. Dvi intervalinių duomenų imtys $(x_1, x_2, ..., x_n)$ ir $(y_1, y_2, ..., y_m)$ gautos matuojant du nepriklausomus normaliuosius atsitiktinius dydžius $X \sim \mathcal{N}(\mu_X, \sigma^2)$ ir $Y \sim \mathcal{N}(\mu_Y, \sigma^2)$. Vidurkiai μ_X , μ_Y ir dispersija σ^2 nežinomi.
- 2 | Statistinė hipotezė:

$$\begin{cases}
H_0: \ \mu_X = \mu_Y, \\
H_1: \ \mu_X \neq \mu_Y.
\end{cases}$$
(3.4.4)

3 | Kriterijaus statistika. Apskaičiuojame

$$t = \frac{\overline{x} - \overline{y}}{s_p \sqrt{1/n + 1/m}} = \frac{\overline{x} - \overline{y}}{\sqrt{(n-1)s_x^2 + (m-1)s_y^2}} \sqrt{\frac{nm(n+m-2)}{n+m}}; \quad (3.4.5)$$

čia \overline{x} , \overline{y} yra imčių vidurkiai, s_x^2 , s_y^2 – imčių dispersijos, o n, m – imčių didumai.

Sprendimo priėmimo taisyklė. Tegul reikšmingumo lygmuo lygus α . Hipotezė H_0 atmetama, jeigu $|t| > t_{\alpha/2}(n+m-2)$. Čia $t_{\alpha/2}(n+m-2)$ yra Stjudento skirstinio su (n-1) laisvės laipsnių $\alpha/2$ lygmens kritinė reikšmė. Hipotezė H_0 neatmetama, jeigu $|t| \leq t_{\alpha/2}(n+m-2)$.

Šaltinis: (Čekanavičius ir Murauskas, 2004)

Hipotezė apie dviejų nepriklausomų imčių dispersijų lygybę, H_1 : $\sigma_v^2 \neq \sigma_v^2$

- Duomenys. Dvi intervalinių duomenų imtys $(x_1, x_2, ..., x_n)$ ir $(y_1, y_2, ..., y_m)$ gautos matuojant du nepriklausomus normaliuosius atsitiktinius dydžius, kurių dispersijos σ_X^2 ir σ_Y^2 .
- 2 | Statistinė hipotezė:

$$\begin{cases} H_0: \ \sigma_X^2 = \sigma_Y^2, \\ H_1: \ \sigma_X^2 \neq \sigma_Y^2. \end{cases}$$

Kriterijaus statistika. Apskaičiuojame

$$F = \frac{s_x^2}{s_y^2};$$

čia s_x^2 , s_y^2 yra imčių dispersijos.

Sprendimo priėmimo taisyklė. Tegul reikšmingumo lygmuo lygus α . Hipotezė H_0 atmetama (dispersijos statistiškai reikšmingai skiriasi), jeigu $F > F_{\alpha/2}(n-1, m-1)$ arba $F < F_{1-\alpha/2}(n-1, m-1)$. Čia $F_{\alpha/2}(n-1, m-1)$ yra Fišerio skirstinio su (n-1) ir (m-1) laisvės laipsnių $\alpha/2$ lygmens kritinė reikšmė. Hipotezė H_0 neatmetama, jeigu $F_{1-\alpha/2}(n-1, m-1) \le F \le F_{\alpha/2}(n-1, m-1)$.

ANOVA

ANOVA modelių tipai

2. Vi	enfaktorinė dispersinė ana	lizė		
2.1.	Dispersinė analizė ir t kriter	iius	3. D	vifaktorinė dispersinė analizė
2.2.	Struktūrinis ANOVA modeli		3.1.	Skirtumai nuo vienfaktorinės dispersinės analizės
2.3.	Dispersinės analizės prielaid	os	3.2.	Struktūrinis modelis
2.4.	Kriterijaus apie vidurkių lyg	ybę sudarymas	3.3.	Stebėjimo duomenų struktūra
2.5.	Vienfaktorinės dispersinės ar	nalizės taikymas	3.4.	Dvifaktorinės dispersinės analizės taikymas
2.6.	Post hoc kriterijai		3.5.	Post hoc kriterijai
2.7.	Aprioriniai kriterijai		3.6.	Kintamųjų priklausomybės matai
2.8.	Vidurkių trendas		3.7.	Hipotezė apie vidurkių lygybę fiksavus vieną iš faktorių
2.9.	Kintamųjų priklausomybės r	natai	3.8.	Atsitiktiniai ir mišrieji modeliai
2.10.	Hipotezės apie dispersijų ly	gybę tikrinimas		
	4. BI	okuotųjų duomenų dis	spersii	nė analizė
	4.1.	Blokuotieii duomenys.		
	4.2.			orinės dispersinės analizės modelis ir prielaidos.
	4.3.	•		
	4.4.	•		
	4.5.			post hoc kriterijai
	4.6.	Koeficientas η^2		
	4.7.	,		rinės dispersinės analizės modelis

ANOVA modelių tipai

Dispersinės analizės tikslas – nuspręsti , ar **priklausomo kintamojo**, išmatuoto skirtingose populiacijose, **vidurkiai** skiriasi.

- Kategorinis kintamasis (populiacijos požymis), pagal kurį skiriame populiacijas viena nuo kitos, vadinamas *nepriklausomuoju* kintamuoju, *arba faktoriumi*.
- Norėdami trumpai įvardyti, ką visose populiacijose matuojame, vartosime priklausomojo kintamojo sąvoką.
- Vienafaktorinė dispersinė analizė naudojama tada, kai populiacijas vieną nuo kitos tyrėjas skiria tik pagal *vieną požymį*.
- Dvifaktorinė dispersinė analizė naudojama tada, kai populiacijos vieną nuo kitos tyrėjas skiria atsižvelgiant į du požymius.
- Blokuotųjų duomenų dispersinė analizė. Blokuotieji duomenys dažniausiai atsiranda tokiose situacijose, kai tų pačių objektų tiriamą požymį matuojame keletą kartų.
 Pavyzdžiui: dvidešimt kompiuterinių žaidimų ekspertų balais vertina tris naujus žaidimus. Duomenų bloką sudaro visi vieno tiriamojo požymių matavimai. Blokų gaunama tiek, kiek ir tiriamųjų. Pavyzdžiui, surinkę ekspertų nuomones apie žaidimus, gauname dvidešimt blokų.

Vienfaktorinės dispersinės analizės pavyzdžiai

- 1. Uždavinys: Sociologas nori sužinoti, ar mokytojų, medikų ir policininkų vidutiniškai per metus suvartojamas alkoholio kiekis skiriasi. Tiriant gėrimo įpročius nepriklausomas kintamasis yra respondento profesija, priklausomas kintamasis yra kiekvieno respondento per metus išgeriamas alkoholio kiekis.
- **2. Uždavinys**: Medikas domisi, kuri terapija garantuoja trumpiausią pooperacinę reabilitaciją. Tiriant pooperacinę reabilitaciją *nepriklausomas kintamasis* yra terapijos rūšis, *priklausomas kintamasis* yra pooperacinės reabilitacijos trukmė
- **3. Uždavinys**: Mokesčių inspekcija smalsauja, ar gydymo įstaigos daro mažiau buhalterinės apskaitos klaidų nei transporto arba prekybinės firmos. Tiriant buhalterinę apskaitą *nepriklausomas kintamasis* yra firmos veiklos pobūdis, *priklausomas kintamasis* yra padarytų klaidų skaičius.
- **4. Uždavinys**: autobusų parko direkcija susirūpina skirtingų rūšių padangų vidutine sudilimo trukme. Tiriant padangų dilimą, *nepriklausomas kintamasis* yra padangų rūšis, *priklausomas kintamasis* yra padangos sudilimo laikas.

ANOVA – vienfaktorinė dispersinė analizė

- Vienfaktorinę dispersinę analizę XX amžiaus pirmoje pusėje pasiūlė britų statistika, genetikas R. A. Fišeris (1890 - 1962).
- Šis **metodas** leidžia atsakyti į klausimą, *ar iš kelių nepriklausomų imčių bent dviejų vidurkiai statistiškai reikšmingai skiriasi* esant fiksuotam eksperimento reikšmingumo lygmeniui $\alpha_E = \alpha$.

Struktūrinis ANOVA modelis

Tarkime, turime *k* nepriklausomų populiacijų. **Priklausomas kintamasis**, matuojamas *i*-ojoje populiacijoje, vadinamas **populiacijos kintamuoju**.

Populiacijų kintamuosius pažymime $X_1, X_2, ..., X_k$.

Iš kiekvienos populiacijos parenkama paprastoji atsitiktinė imtis.

Struktūrinis ANOVA modelis *i-osios* imties *j-ajam* stebėjimui X_{ij}

Užrašomas taip:

$X_{ij} = \mu_i + e_{ij} = \mu + \tau_i + e_{ij}$

čia μ_i yra *i-osios* populiacios kintamojo vidurkis;

 e_{ij} - atsitiktinė paklaida;

 μ – bendrasis visų populiacijų vidurkis;

 $\tau_i = \mu_i - \mu$ yra i-osios populiacijos vidurkio ir bendrojo vidurkio skirtumas.

ANOVA duomenys

X_1	X_2	X_3		X_k
X_{11}	X_{21}	X_{31}		X_{k1}
X_{12}	X_{22}	X_{32}		X_{k2}
X_{13}	X_{23}	X_{33}	• • •	X_{k3}
			• • •	
X_{1n_1}	X_{2n_2}	X_{3n_3}		X_{kn_k}

ANOVA modelio prielaidos

Taikydami ANOVA, tiriame k populiacijų. Pirmoje populiacijoje stebime kintamąjį X_1 , antrojoje – X_2 , . . . , k-ojoje – X_k .

Ko reikia, kad būtų galima taikyti vienfaktorinę dispersinę analizę?

ANOVA modelis turi tenkinti prielaidas:

- 1) kintamieji pasiskirstę pagal normalųjį dėsnį;
- 2) kintamųjų dispersijos lygios;
- 3) kintamieji nepriklausomi.

Kriterijaus apie vidurkių lygybę sudarymas

ANOVA hipotezei tikrinti naudojama kriterijaus statistika:

$$F = \frac{MSB}{MSW}$$

$$MSB = \frac{SSB}{k-1}$$
; $MSW = \frac{SSW}{N-k}$,

čia k – populiacijų (imčių) kiekis;

$$N=n_1+n_2+\cdots+n_k$$
 - visų imčių didumų suma.

Vienfaktorinės dispersinės analizės (ANOVA) taikymas

- Duomenys. Turime k imčių $(x_{11}, x_{12}, \ldots, x_{1n_1}), (x_{21}, x_{22}, \ldots, x_{2n_2}), \ldots, (x_{k1}, x_{k2}, \ldots, x_{kn_k})$, gautų matuojant nepriklausomus normaliuosius atsitiktinius dydžius $X_1 \sim \mathcal{N}(\mu_1, \sigma^2), X_2 \sim \mathcal{N}(\mu_2, \sigma^2), \ldots, X_k \sim \mathcal{N}(\mu_k, \sigma^2)$ pagal intervalų skalę. Nei vidurkių μ_1, \ldots, μ_k , nei dispersijos σ^2 nežinome.
- 2 Statistinė hipotezė:

$$\begin{cases} H_0: \ \mu_1 = \mu_2 = \dots = \mu_k, \\ H_1: \ \text{bent du vidurkiai skiriasi.} \end{cases}$$
 (17)

- Kriterijaus statistika. Skaičiuojama F pagal (13) formulę.
- Sprendimo priėmimo taisyklė. Tegul reikšmingumo lygmuo lygus α . Hipotezė H_0 atmetama (taigi bent du vidurkiai statistiškai reikšmingai skiriasi), jeigu $F > F_{\alpha}(k-1, N-k)$; čia $N = n_1 + \cdots + n_k$, $F_{\alpha}(k-1, N-k)$ yra Fišerio skirstinio su k-1 ir N-k laisvės laipsnių α lygmens kritinė reikšmė. Hipotezė H_0 neatmetama, jeigu $F \leq F_{\alpha}(k-1, N-k)$.

ANOVA rezultatai lentelės pavidalu

- Jei F reikšmė didelė, tai tikėtina, kad vidurkiai skiriasi, jei artima vienetui ne.
- Dažniausiai ANOVA rezultatai pateikiami lentele:

	Kvadratų suma	Laisvės laipsniai	Dispersijos įverčiai	Statistika
Grupių Vidinė Visa	SSB SSW SST	k-1 $N-k$ $N-1$	MSB MSW	F

Kuris statistinis kriterijus tinka mano duomenims?

Problema	Duomenys (kintamieji)				
Tiobicina	Normalieji	Ranginiai	Nominalieji		
Dviejų nepriklausomų imčių lyginimas	Stjudento t kriterijus	Mano-Vitnio- Vilkoksono kriterijus	Proporcijų lygybė		
Dviejų priklausomų imčių lyginimas	Porinis Stjudento t kriterijus	Vilkoksono kriterijus	Maknemaro kriterijus		
Trijų ir daugiau nepriklausomų imčių lyginimas	ANOVA	Kruskalo– Voliso kriterijus	Chi kvadratu nepriklausomumo kriterijus		
Trijų ir daugiau priklausomų imčių lyginimas	Blokuotųjų duomenų ANOVA	Frydmano kriterijus			
Dviejų kintamųjų priklausomybės vertinimas	Pirsono koreliacija	Spirmeno koreliacija			
Kintamojo reikšmių prognozavimas pagal kito kintamojo reikšmes		sinė resija			
Kintamojo reikšmių prognozavimas pagal kitų kintamųjų reikšmes		rialypė resija			
Objektų grupavimas pagal kintamųjų reikšmes		Klasterinė ana	llizė		
Grupių atskiriamumas ir patekimo į jas prognozavimas		ntinė analizė ė regresija	Logistinė regresija		
Kintamųjų grupavimas pagal jų koreliacijas	Faktorinė	analizė			

Bartleto kriterijus

Bartleto¹ kriterijus yra pakankamai galingas tik tuo atveju, kai stebimi kintamieji yra normalieji.

- Duomenys. Turime k imčių $(x_{11}, x_{12}, \ldots, x_{1n_1}), (x_{21}, x_{22}, \ldots, x_{2n_2}), \ldots, (x_{k1}, x_{k2}, \ldots, x_{kn_k})$, kurios gautos matuojant nepriklausomus normaliuosius atsitiktinius dydžius $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2), X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2), \ldots, X_k \sim \mathcal{N}(\mu_k, \sigma_k^2)$ pagal intervalų skalę.
- 2 | Statistinė hipotezė:

$$\begin{cases} H_0: \ \sigma_1^2 = \sigma_2^2 = \dots = \sigma_k^2, \\ H_1: \ \text{bent dvi dispersijos nelygios.} \end{cases}$$

3 | Kriterijaus statistika. Apskaičiuojame

$$T = \frac{(N-k)\ln s_p^2 - \sum_{i=1}^k (n_i - 1)\ln s_i^2}{1 + \Lambda};$$

čia

$$\Delta = \frac{1}{3(k-1)} \sum_{i=1}^{k} \left(\frac{1}{n_i - 1} - \frac{1}{N-k} \right), \qquad s_p^2 = \frac{1}{N-k} \sum_{i=1}^{k} (n_i - 1) s_i^2,$$

 $N = n_1 + n_2 + \cdots + n_k$, s_i^2 yra *i*-osios imties dispersija.

Sprendimo priėmimo taisyklė. Tegul reikšmingumo lygmuo lygus α . Hipotezė H_0 atmetama (taigi bent dvi dispersijos statistiškai reikšmingai skiriasi), jeigu $T > \chi_{\alpha}^2(k-1)$; čia $\chi_{\alpha}^2(k-1)$ yra χ^2 skirstinio su (k-1) laisvės laipsnių α lygmens kritinė reikšmė. Hipotezė H_0 neatmetama, jeigu $T \leq \chi_{\alpha}^2(k-1)$.

Neparametrinės hipotezės

Turinys 3

- Parametrinių kriterijų trūkumai ir pranašumai;
- Parametrinių ir neparametrinių kriterijų skirtumai;
- Vienpusės ir dvipusės neparametrinių hipotezių alternatyvos;
- Neparametriniai kriterijai:
 - Vilkoksono;
 - Mano-Vitnio-Vilkoksono;
 - Kruskalo-Voliso;
 - Frydmano.

Parametrinių kriterijų trūkumai ir pranašumai

- Parametrinės hipotezės tai hipotezės apie kintamųjų skirstinių parametrų (vidurkio, dispersijos ir pan.) reikšmes.
- Parametrinės hipotezės apie vidurkių lygybę, apie dispersijų lygybę, ANOVA testas reikalauja, kad stebimi kintamieji tenkintų tam tikras sąlygas, tokias kaip:
 - **Kintamųjų normalumas** Mažoms imtims šios sąlygos patikrinti neįmanoma. Normalusis kintamasis yra simetrinis, o realiai stebimų kintamųjų skirstiniai dažnai yra asimetriniai.
 - Imtys turi būti nemažos (n > 25);
 - Kintamieji matuojami pagal intervalų ar santykių skalę (kiekybiniai kintamieji);
 - Dispersijų lygybė;
 - Kintamųjų nepriklausomumas.
- Praktiškai minėtos sąlygos tenkinamos ne visada.

Parametrinių ir neparametrinių kriterijų skirtumai

 Be parametrinių kriterijų yra nemaža grupė kriterijų, kuriuos taikant nėra reikalaujama, kad stebimasis kintamasis būtų normalusis, ar kad imtis būtų didelė, ar kad kintamasis būtų kiekybinis.

Šie kriterijai vadinami *nepriklausomais nuo skirstinio*, arba *neparametriniais* kriterijais. Jie nėra skirti hipotezėms apie populiacijų parametrų reikšmes tikrinti.

- Jie gali būti taikomi mažos imtims;
- Nereikalaujamas kintamųjų normalumas;
- Jie gali būti taikomi, kai kintamasis matuojamas pagal intervalų, santykių ar rangų skalę.

Parametriniai ir neparametriniai kriterijai papildo vieni kitus:

- Jeigu tam pačiam uždaviniui spręsti tinka ir parametrinis, ir neparametrinis kriterijus, geriau taikyti parametrinį kriterijų.
- Jei sprendžiamam uždaviniui reikia normalumo prielaidos, o ji negalioja, tai geriau taikyti neparametrinį kriterijų.
- Taikant neparametrinius kriterijus taip pat reikia atsižvelgti į jiems keliamas sąlygas.

Vienpusės ir dvipusės neparametrinių hipotezių alternatyvos

Neparametrinės hipotezės užrašomos kiek kitaip nei parametrinės.

• **Dvipusės alternatyvos** statistinė hipotezė užrašoma taip:

$$\begin{cases} H_0: X \text{ ir } Y \text{ skirtiniai nesiskiria,} \\ H_1: X \text{ ir } Y \text{ skirstiniai skiriasi.} \end{cases}$$

arba

$$\begin{cases} H_0: P(X > t) = P(Y > t), \forall t \in T, \\ H_1: P(X > t) \neq P(Y > t), \forall t \in T. \end{cases}$$

Vienpusių alternatyvų statistinės hipotezės užrašomos taip:

a)
$$\begin{cases} H_0: P(X > t) = P(Y > t), \forall t \in T, \\ H_1: P(X > t) < P(Y > t), \forall t \in T. \end{cases}$$
 b)
$$\begin{cases} H_0: P(X > t) = P(Y > t), \forall t \in T, \\ H_1: P(X > t) > P(Y > t), \forall t \in T. \end{cases}$$

Vienpusių alternatyvų žodinės formuluotės skambėtų taip:

- a) Kintamasis X "linkęs" įgyti **mažesnes** reikšmes už Y; b) Kintamasis X "linkęs" įgyti **didesnes** reikšmes už Y.

Vienpusių alternatyvų pavyzdžiai

a) Kintamasis X "linkęs" įgyti mažesnes reikšmes už Y;

$$\begin{cases} H_0: P(X > t) = P(Y > t), \forall t \in T, \\ H_1: P(X > t) < P(Y > t), \forall t \in T. \end{cases}$$

b) Kintamasis **X** "linkęs" įgyti **didesnes** reikšmes už Y.

$$\begin{cases} H_0: P(X > t) = P(Y > t), \forall t \in T, \\ H_1: P(X > t) > P(Y > t), \forall t \in T. \end{cases}$$

Neparametrinių hipotezių alternatyvų pavyzdžiai

Pvz.: Norime palyginti eismo intensyvumą Vilniuje ir Kaune. Ar jis vienodas, ar viename iš miestų jis didesnis nei kitame? Kaip matėme praeitoje paskaitoje – šio duomenų rinkinio kintamieji netenkina normalumo sąlygos.

1. Norėdami atsakyti į klausimą ar eismo intensyvumas Vilniuje – X skiriasi nuo eismo intensyvumo Kaune – Y, užrašome statistinę hipotezę su dvipuse alternatyva:

$$\begin{cases} H_0: X \text{ ir } Y \text{ skirtiniai nesiskiria,} \\ H_1: X \text{ ir } Y \text{ skirstiniai skiriasi.} \end{cases}$$

2. Norėdami atsakyti į klausimą ar eismo intensyvumas Vilniuje – X didesnis nei eismo intensyvumo Kaune – Y, užrašome statistinę hipotezę su vienpuse alternatyva:

$$\begin{cases} H_0: P(X > t) = P(Y > t), \forall t \in T, \\ H_1: P(X > t) > P(Y > t), \forall t \in T. \end{cases} \text{ arba} \begin{cases} H_0: X \text{ ir } Y \text{ skirtiniai nesiskiria,} \\ H_1: X' \text{linkes'igyti } \textit{didesnes} \text{ reikšmes už } Y. \end{cases}$$

3. Norėdami atsakyti į klausimą ar eismo intensyvumas Vilniuje – X mažesnis nei eismo intensyvumo Kaune – Y, užrašome statistinę hipotezę su vienpuse alternatyva:

$$\begin{cases} H_0: P(X>t) = P(Y>t), \forall t \in T, \\ H_1: P(X>t) < P(Y>t), \forall t \in T. \end{cases} \text{ arba} \begin{cases} H_0: X \text{ ir } Y \text{ skirtiniai nesiskiria,} \\ H_1: \textbf{\textit{X}'linkes'igyti mažesnes} \text{ reikšmes už } Y. \end{cases}$$

Neparametriniai kriterijai

- Vilkoksono ženklų kriterijus *priklausomoms imtims* kriterijus skirtas hipotezei apie **dviejų** priklausomų (porinių) imčių skirstinių lygybę, tikrinti.
- Mano-Vitnio-Vilkoksono kriterijus nepriklausomoms imtims kriterijus skirtas hipotezei apie dviejų nepriklausomų imčių skirstinių lygybę, tikrinti.
- Kruskalo-Voliso ranginis kriterijus nepriklausomoms imtims kriterijus skirtas hipotezei apie dviejų ar daugiau populiacijų skirstinių lygybę, esant nepriklausomoms imtims, tikrinti.
- Frydmano kriterijus priklausomoms imtims kriterijus skirtas hipotezei apie k kintamųjų (k > 2) skirstinių lygybę tikrinti, kai imtys yra priklausomos.

Kurį neparametrinį kriterijų rinktis?

Priklauso ar imtys *priklausomos* ar *nepriklausomos*. Paprasčiausias *priklausomų imčių* atvejis yra tų *pačių objektų pakartotiniai matavimai*.

Jeigu norite atsakyti į panašius klausimus:

- Ar vyrų ir žmonų šeimoje pajamos yra vienodos? Ar studentai geriau išlaiko rudens nei pavasario sesijos egzaminus? Ar eismo intensyvumas kelyje A1 vasarą didesnis nei žiemą?
 taikomas Vilkoksono ženklų kriterijus dviems priklausomoms imtims.
- Ar eismo intensyvumas žiemą Vilniuje didesnis nei Kaune?
 taikomas Mano-Vitnio-Vilkoksono kriterijus dviems nepriklausomoms imtims.
- Ar kaimo, rajonų centrų ir didžiųjų miestų gyventojai būstui išlaikyti išleidžia vienodą sumą pinigų; Ar dienos metu skirtinguose keliuose yra vienodas eismo intensyvumas?
 taikomas Kruskalo-Voliso ranginis kriterijus k > 2 nepriklausomoms imtims.
- Ar tame pačiame kelyje eismo intensyvumas skirtingomis valandomis vienodas?
 taikomas Frydmano kriterijus priklausomoms k > 2 imtims.

Vilkoksono ženklų kriterijus priklausomoms imtims, mažų imčių atveju $(n \leq 25)$

- Duomenys. Stebime tolydžiųjų kintamųjų porą (X, Y). Duomenys $(x_1, y_1), \ldots, (x_n, y_n)$ gauti matavimams naudojant santykių, intervalų arba rangų skalę.
- 2 | Statistinė hipotezė:

 $\begin{cases} H_0: & \text{kintamųjų skirstiniai vienodi,} \\ H_1: & \text{kintamųjų skirstiniai nėra vienodi.} \end{cases}$

- Kriterijaus statistika. Apskaičiuojame kiekvienos poros duomenų skirtumą $d_i = x_i y_i$, i = 1, ..., n. Jeigu $d_i = 0$ (t. y. $x_i = y_i$), tai šios d_i reikšmės tolesniems skaičiavimams nebenaudojame, o imties didumą laikome lygiu nenulinių d_i reikšmių skaičiui. Randame visų d_i absoliučiuosius didumus $|d_i|$ ir juos ranguojame. Rangas, atitinkantis neigiamą d_i reikšmę, vadinamas neigiamuoju, rangas, atitinkantis teigiamą d_i reikšmę, vadinamas teigiamuoju rangu. Apskaičiuojame teigiamų T^+ ir neigiamų T^- rangų sumas. Kriterijaus statistika pasirenkame T^+ .
- Sprendimo priėmimo taisyklė. Tarkime, reikšmingumo lygmuo yra α . T^+ palyginame su 8 lentelės kritine reikšme, atitinkančia: a) imties didumą n, b) reikšmingumo lygmenį α , c) alternatyvos tipą (dvipusę alternatyvą). Jei statistikos reikšmė mažesnė už kritinę reikšmę, hipotezę apie skirstinių vienodumą atmetame.

Vilkoksono ženklų kriterijus priklausomoms imtims, didelių imčių atveju (n>25)

- Duomenys. Stebime tolydžiųjų kintamųjų porą (X, Y). Duomenys $(x_1, y_1), \ldots, (x_n, y_n)$ gauti matavimams naudojant santykių, intervalų arba rangų skalę.
- 2 | Statistinė hipotezė:

 $\begin{cases}
H_0: & \text{kintamųjų skirstiniai vienodi,} \\
H_1: & \text{kintamųjų skirstiniai nėra vienodi.}
\end{cases}$

Kriterijaus statistika. Apskaičiuojame:

$$\mu = \frac{n(n+1)}{4}, \qquad \sigma = \sqrt{\frac{n(n+1)(2n+1)}{24}}, \qquad Z = \frac{T^{+} - \mu}{\sigma}.$$

Sprendimo priėmimo taisyklė. Tarkime, reikšmingumo lygmuo lygus α . Jei $|Z| > z_{\alpha/2}$, hipotezę H_0 atmetame (skirstiniai skiriasi); čia $z_{\alpha/2}$ yra standartinio normaliojo skirstinio $\alpha/2$ lygmens kritinė reikšmė. Priešingu atveju nulinės hipotezės neatmetame.

Mano-Vitnio-Vilkoksono rangų sumų kriterijus nepriklausomoms imtims, mažų imčių atvejis $(n_1 \le 20, n_2 \le 20)$

- Duomenys. Dviejų tolydžiųjų nepriklausomų kintamųjų X ir Y stebėjimai yra x_1, x_2, \ldots, x_{n1} ir y_1, y_2, \ldots, y_{n2} . Duomenys gauti matavimams naudojant santykių, intervalų arba rangų matavimų skalę.
- 2 | Statistinė hipotezė:

 H_0 : kintamųjų skirstiniai vienodi, H_1 : kintamųjų skirstiniai nėra vienodi.

- 3 | Kriterijaus statistika.
 - 1. Dvi imtis sujungiame į vieną išdėstydami jų narius didėjimo tvarka nuo mažiausio iki didžiausio stebėjimo (sudarome bendrą variacinę eilutę).
 - 2. Eilutės nariams priskiriame rangus.
 - 3. Apskaičiuojame statistikas:

$$U_1 = n_1 n_2 + \frac{n_1(n_1+1)}{2} - R_1, \qquad U_2 = n_1 n_2 + \frac{n_2(n_2+1)}{2} - R_2;$$

čia R_1 ir R_2 – rangų, priskirtų atitinkamai pirmosios ir antrosios imčių nariams, suma.

Sprendimo priėmimo taisyklė. Tarkime, reikšmingumo lygmuo yra α . Iš 5 arba 6 lentelių randame n_1 ir n_2 atitinkančias dvipusio kriterijaus kritines reikšmes. Jeigu U_1 ne mažesnis už didesniąją reikšmę arba U_1 ne didesnis už mažesniąją reikšmę, tai nulinė hipotezė H_0 atmetama (skirstiniai skiriasi). Priešingu atveju H_0 neatmetama.

Mano-Vitnio-Vilkoksono rangų sumų kriterijus nepriklausomoms imtims, didelių imčių atvejis $(n_1>20,n_2>20)$

- Duomenys. Tarkime, dviejų nepriklausomų tolydžiųjų kintamųjų X ir Y stebėjimai yra x_1, x_2, \ldots, x_{n1} ir y_1, y_2, \ldots, y_{n2} . Duomenys gauti matavimams naudojant santykių, intervalų arba rangų skalę.
- 2 | Statistinė hipotezė:

 $\begin{cases} H_0$: kintamųjų skirstiniai yra vienodi, H_1 : kintamųjų skirstiniai nėra vienodi.

3 | Kriterijaus satistika. Apskaičiuojame statistiką

$$Z = \frac{U_1 - \mu}{\sigma}$$
; čia $\mu = \frac{n_1 n_2}{2}$, $\sigma = \sqrt{\frac{n_1 n_2 (n_1 + n_2 + 1)}{12}}$.

Sprendimo priėmimo taisyklė. Tarkime, reikšmingumo lygmuo yra α . Jei $|Z| > z_{\alpha/2}$, tai hipotezę H_0 atmetame (skirstiniai skiriasi); čia $z_{\alpha/2}$ yra standartinio normaliojo skirstinio $\alpha/2$ lygmens kritinė reikšmė. Priešingu atveju H_0 neatmetame.

Kruskalo-Voliso ranginis kriterijus nepriklausomoms imtims

- Duomenys. Nepriklausomų tolydžiųjų kintamųjų X, Y, Z, ... stebėjimai yra $(x_1, x_2, x_3, ..., x_{n1}), (y_1, y_2, ..., y_{n2}), (z_1, z_2, ..., z_{n3}), ...$ Duomenys gauti matavimams naudojant santykių, intervalų arba rangų skalę.
- 2 | Statistinė hipotezė:

 $\begin{cases}
H_0: & \text{kintamųjų skirstiniai yra vienodi,} \\
H_1: & \text{kintamųjų skirstiniai nėra vienodi.}
\end{cases}$

- Kriterijaus statistika.
 - 1. Sudarome jungtinę variacinę eilutę.
 - 2. Ranguojame duomenis.
 - 3. Skaičiuojame statistiką

$$H = \frac{12}{n(n+1)} \cdot \sum_{j=1}^{k} \frac{R_j^2}{n_j} - 3 \cdot (n+1);$$

čia k – kintamųjų skaičius, n_j – j-ojo kintamojo stebėjimų skaičius ($n = n_1 + n_2 + \cdots + n_k$), R_j^2 – j-osios imties rangų sumos kvadratas. Jei hipotezė H_0 teisinga, tai statistika H apytiksliai pasiskirsčiusi pagal χ^2 dėsnį su (k-1) laisvės laipsnių, t. y. $H \approx \chi^2(k-1)$.

Sprendimo priėmimo taisyklė. Tarkime, reikšmingumo lygmuo yra α . Jei $H > \chi^2_{0.05}(k-1)$, hipotezę apie skirstinių lygybę atmetame. Priešingu atveju H_0 neatmetame.

Frydmano kriterijus priklausomoms imtims

- Duomenys. Tolydžiųjų kintamųjų rinkinio (X, Y, Z, ...) stebėjimai yra $(x_i, y_i, z_i, ...)$, i = 1, ..., n (žr. 1.12 lentelę). Duomenys gauti matavimams naudojant santykių, intervalų arba rangų skalę.
- 2 | Statistinė hipotezė:

 $\begin{cases} H_0$: kintamųjų skirstiniai vienodi, H_1 : kintamųjų skirstiniai nėra vienodi.

Kriterijaus statistika. Kiekvieną kintamųjų rinkinio stebėjimą (eilutę) ranguojame atskirai, t. y. iš pradžių x_1, y_1, z_1, \ldots , po to x_2, y_2, z_2, \ldots ir t. t. Kiekvieno stebėjimo rangų suma yra $1+2+\cdots+k=k(k+1)/2$. Vidutinis rangas lygus (k+1)/2. Sudedame visus x-ams tekusius rangus. Gautą sumą pažymime R_1 . Analogiškai skaičiuojame y-ams tekusių rangų sumą R_2 ir t. t. Randame

$$S = \frac{12}{nk(k+1)} \sum_{j=1}^{k} R_j^2 - 3n(k+1).$$

Sprendimo priėmimo taisyklė. Tarkime, reikšmingumo lygmuo yra α . Hipotezę apie skirstinių lygybę atmetame, kai $S > \chi_{\alpha}^2(k-1)$; čia $\chi_{\alpha}^2(k-1)$ yra χ^2 skirstinio su (k-1) laisvės laipsnių α lygmens kritinė reikšmė. Priešingu atveju H_0 neatmetame.

Frydmano kriterijaus duomenys

X	Y	Z	
x_1	у1	z ₁	
x_2	У2	Z.2	
<i>x</i> ₃	У3	Z3	
x_n	Уn	z_n	

p – reikšmė tikrinant neparametrines hipotezes

Tegul reikšmingumo lygmuo yra α , o p-reikšmė lygi p. Tuomet darome išvadą, kad: skirstiniai skiriasi, jeigu $p < \alpha$; skirstiniai nesiskiria, jeigu $p \geqslant \alpha$.