

A COMPREHENSIVE PROGRAM FOR THE COMPILATION AND ANALYSIS OF THERMAL RADIATIVE PROPERTIES DATA

by D. P. DeWitt, M. C. Muinzer, and R. S. Hernicz

Prepared by
PURDUE UNIVERSITY
West Lafayette, Ind.
for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION . WASHINGTON, D. C. . SEPTEMBER 1969

A COMPREHENSIVE PROGRAM FOR THE COMPILATION AND ANALYSIS OF THERMAL RADIATIVE PROPERTIES DATA

By D. P. DeWitt, M. C. Muinzer, and R. S. Hernicz

Distribution of this report is provided in the interest of information exchange. Responsibility for the contents resides in the author or organization that prepared it.

Prepared under Contract No. NSR-15-005-037 by THERMOPHYSICAL PROPERTIES RESEARCH CENTER PURDUE UNIVERSITY

West Lafayette, Ind.

for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

FOREWORD

This report was prepared by the Thermophysical Properties Research Center (TPRC), Purdue University, West Lafayette, Indiana, under NASA Contract No. NSR-15-005-037, "Compilation and Analysis of Thermal Radiative Properties Data". The work was administered under the direction of the Office of Advanced Research and Technology, NASA, Washington, D. C., with Mr. Conrad Mook acting as project monitor.

The authors wish to thank Mr. D. W. Gates, Space Sciences Laboratory, NASA-MSFC, and Mr. W. F. Carroll, Materials Section, Jet Propulsion Laboratory, for giving much of their time and advice in many technical phases of the program.

Dr. D. P. DeWitt has been the major investigator and program director. Mr. M. C. Muinzer has served as coordinator for the group consisting of Dr. R. L. Jones, Mr. R. Hernicz, Dr. J. J. Hsia, Mr. D. Garcev, and Mr. R. Dilling. During his brief affiliation with TPRC, Dr. Jones initiated the data evaluation activities for the Series, Volume 7.

The authors wish to acknowledge the direct contributions of TPRC's Scientific Documentation Division, Dr. C. Y. Ho (Head, Data Tables Division); and the staff of the graphics and typing units.

·	
	 . . . i

TABLE OF CONTENTS

															Page
Foreword															iii
List of Tables and Figures	·														vi
Abstract	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	vii
Introduction															1
Scope of the Program															2
Organization of the Series															3
Property Classification															4
Presentation of Data															
Elements, Alloys a	ınd	Co	mp	our	ds										4
															7
Material Index and Referen														•	9
Sample Figures, Specifica	tio	n a	$\mathbf{n}\mathbf{d}$	Dat	аТ	ab	les	•							9
Data Analysis															58
Summary															60
References		•		•		•	•	•		•	•			•	61
Appendices:															
A. Table of Cont	ent	s													
TPRC Ser			Voli	ıme	. 7.										
Thermal I							es	of							
Metalli															63
B. Sub-Property 1									ns.	•	•	•	•	•	
and Classifi				vous	٠,		****		,						
TPRC Ser				ıme	. 7										
Thermal I							68	οf							
Metalli											_				67
C. Material Index									als	•	•	•		•	
and List of															
TPRC Ser							, 5								
Thermal I							عما	Ωf							
Metalli															73
D. References to						1 1	110.	y S	•	•	•	•	•	•	10
TPRC Ser															
Thermal I							00	οf							
Metalli															97
									· opl	• h	·		•	•	91
E. TPRC - Inform									_	•					107
Research															TO !

LIST OF TABLES AND FIGURES

	Tables	Page
1.	Classification of Materials	5
2.	Classification of Coatings	8
B-1.	Sub-Property Designation	72
E-1.	World Coverage of Research Literature on Thermophysical Properties Through the Eyes of 16 Abstracting Journals	110
E-2.	Substance and Property Coverages of Retrieval Guide	113
E-3.	Publication Schedule for TPRC Series on Thermophysical Properties of Matter	117
E-4.	Summary of Statistical Data on Volumes 1 to 7 of TPRC Series on Thermophysical Properties of Matter	118
	Figures	
	Normal Spectral Reflectance of Aluminum	10-11
	Normal Spectral Absorptance of Copper	18-19
	Normal Spectral Transmittance of Gallium	22
	Hemispherical Total Emittance of Molybdenum	26-27
	Normal Spectral Emittance of Tungsten	32-33
	Normal Total Emittance of Iron + Chromium + Nickel Alloys	44-47
B-1.	Notation for Describing Geometric Conditions	69

ABSTRACT

* 「

A frequent obstacle in technical developments is the paucity of knowledge on the properties of materials. While there exists an ever increasing volume of literature on the thermal radiative properties, engineering designers are using only a small fraction of what is already available either because it is in a form not directly useful to them or because its existence is not generally known to them, and such information remains buried in the world's literature.

The program described in this report has the objective to identify, collect, extract and analyze data on the thermal radiative properties for general dissemination. Effort is being concentrated on the technological materials of special interest to aerospace requirements under environmental conditions likely to occur in space application. The results of the program will be disseminated through the TPRC SERIES ON THERMOPHYSICAL PROPERTIES OF MATTER presented in three parts: metallic elements and their alloys, nonmetallic solids, and coatings. Data are presented in tabular and graphical forms with accompanying tables giving specifications for the test specimens. For each material four prime properties are identified - emittance, reflectance, absorptance and transmittance - and further grouped according to geometric conditions (hemispherical, normal and angular) and wavelength conditions (spectral, total, solar, and integrated). When sufficient evidence exists, the data has been analyzed and figures of "recommended" values for specific surface and/or environmental conditions are presented. The first part of the program is nearing completion (metallic elements and alloys) and the second and third parts are now well under way.

INTRODUCTION

The phenomenal growth of science and technology in the last twenty years has brought about a universal appreciation of the fact that present limitations in many technical developments are often a direct result of the paucity of knowledge on the properties of materials. Engineering developments in the years ahead will be closely linked to the research being performed today to contribute to a better understanding of the thermal behavior of materials.

The amount of activity in property determinations, especially thermal radiative properties in the more recent years, attests to the seriousness of the situation with the result that the volume of research literature has increased many fold. Despite the widespread efforts, it can safely be said that the present level of research still falls short of existing needs and anticipated demands. The really disturbing feature is that engineering groups across the nation are using only a small fraction of the information already available, either because it is in a form not directly useful to them or because its existence is not generally known to them and such information remains buried in the world's literature.

There are those who would argue that having full access to the world's literature in a convenient form would not be the total or final solution. Because of the elusive nature of radiative properties - the large influence of surface conditions arising from methods of preparation, thermal history, and environmental conditions - there is little assurance that the data, once located, can be considered reliable or applicable to the problem at hand. This point of view has given rise to a rash of measurement programs necessary for generating data required for specific applications. For the most part, the basic problem - that of gaining insight on how to characterize materials, thereby prescribing the suitability for data to the various applications - has been largely ignored.

Since 1960, the TPRC Retrieval Guide [1]* has provided a key to the world's literature permitting rapid identification of research papers on radiative properties data. While this is the first and most necessary step, it is not the most convenient form for design engineers. Since 1962, using the Retrieval Guide as the starting point, pertinent literature on radiative properties has been

The numbers in brackets refer to bibliographic citations listed in the section References.

examined and data extracted for the purpose of generating a compendia published as a part of the TPRC Data Book [2]. The program now in progress, and being described in this report, is an extension and enlargement of the modest effort started many years ago.

The current comprehensive program has the objective to concentrate on the technological materials of special interest to aerospace requirements under environmental conditions likely to occur in space applications. The result will be an extensive handbook for design use, containing original research data literature and also "recommended" values for surface and/or environmental conditions that can be well characterized.

This program will bring the world's literature under full and current organizational control. Such a tool, besides giving support to the designers, provides the starting point for further research as the topography of the world's knowledge will make evident the paucities and conflicts in data, as well as provide input for characterization studies using a great bulk of available data. The experience at TPRC using this approach for other properties has been rewarding and significant contributions, particularly in the area of thermal conduction in solids [3], have been made.

SCOPE OF THE PROGRAM

The primary objective of this program is to identify, collect, extract, and analyze data on thermal radiative properties for dissemination to and use by engineering design groups. This task, formidable in both its scope and magnitude, presents difficulties in devising an organizational form suitable and convenient for reference by the many interested users of such data.

The materials of interest include all metals, ceramics (excluding glasses), cermets, and coatings of all types especially those particularly suited for thermal control. The temperature range covers from near absolute zero to the material's melting point as only the solid state is being considered. The wavelength range covers from 500 Å to 1000 μ which encompasses the thermal portion of the spectrum, and special attention is given to solar spectrum conditions.

The thermal radiative properties being presented include the prime properties: emittance, reflectance, absorptance, and transmittance. Additionally, the various sub-properties of these prime ones, denoting geometric and wavelength conditions, are further categorized for efficient retrieval. In as much as the nomenclature for these properties is not universally accepted, it has been necessary to develop a consistent set of terms to unambiguously represent the various sub-properties. For the most part, the nomenclature, fully described in a later section, approximates common usage and lends itself well to the compact and systematic organization required of such a comprehensive work.

日本の 日本の

The following section of this report deals with the more significant problems in organization of the TPRC SERIES which will be the medium for communication of the information generated by the program.

ORGANIZATION OF THE SERIES

The data on thermal radiative properties will be presented in three volumes of the TPRC SERIES ON THERMOPHYSICAL PROPERTIES OF MATTER:

- Volume 7 Thermal Radiative Properties of Metallic Elements and Alloys
- Volume 8 Thermal Radiative Properties of Nonmetallic Solids
- Volume 9 Thermal Radiative Properties of Coatings

Each volume will have, in addition to a data section, a text portion concerning the theory, estimation and measurement of the thermal radiative properties of the materials covered in that volume. The purpose of this text is to provide tools for the use and understanding of the data section, and should be a unique contribution in that it contains, in some detail, the experience of the TPRC staff in the evaluation and estimation of property values. See Appendix A for the Contents of this text.

Following the text, there will be a section on data presentation and other related information. In this section the classification - properties and materials - systems are defined, along with the symbols and abbreviations used in the figures and tables. Since these systems are extensive, the user of the book will find it

desirable, if not necessary, to become familiar with this section for maximum efficiency of data retrieval.

PROPERTY CLASSIFICATION

The primary radiative properties - emittance, reflectance, absorptance, and transmittance - can all be further specified according to geometric and wavelength conditions. In this SERIES the geometric conditions are denoted by the terms angular, normal, and hemispherical. The wavelength conditions are denoted by the terms spectral, total, integrated and solar.

The definition of the terms and their representation by symbols is presented in Appendix B. This section also discusses the classification scheme for grouping related sub-properties for simplified retrieval by the user. What may at first glance appear to be a cumbersome scheme of unnecessary detail is really quite logical to serve the needs of both the casual and experienced user.

PRESENTATION OF DATA

Elements, Alloys and Compounds

The classification scheme for materials in Volumes 7 and 8 is based upon bulk composition rather than surface chemical composition which varies due to weathering, oxidation, etc. This classification scheme is shown in Table 1 which also illustrates the logic for dividing the materials into two volumes, metallic elements and alloys (Volume 7) and nonmetallic solids (Volume 8).

For each material, sub-property data are separately presented in graphical and tabular form, accompanied by a table presenting details of the test conditions and sample preparation.

The format for the presentation of the thermal radiative properties is designed specifically to supply the reader with the aspects of the properties in a comprehensive yet concise form. Each presentation consists of four sections*; Original Data Plot, Analyzed Data Graph, Specification Tables, and Data Tables, respectively.

In certain cases, where there exists only a small amount of data, the Original Data Plot and/or the Analyzed Data Graph may be omitted.

TABLE 1. CLASSIFICATION OF MATERIALS

	$X_1,\%$	$X_1 + X_2$, %	$X_2,\%$	X_3 ,%
1. Metallic Elements and Alloys				
Metallic Elements —	->99.5		<0.2	<0.2
Binary Alloys		≥99.5	≥0.2	≤0.2
Alloys-		≥99.5	>0.2	>0.2
		<99.5	≥0.2	≤0.2
Multiple Alloys		< 99.5	>0.2	>0.2
	- ≤99.5		<0.2	<0.2
2. Nonmetallic Solids*				
Nonmetallic Elements (or Single Compounds	 ≥ 95.0		≤2.0	

Nomenclature:

Mixtures-

X₁ = Major Constituent
X₂ = Second Highest Constituent
X₃ = Third Highest Constituent
% = Weight Percent

----- < 95.0

- ≥ 95.0

- < 95.0

≤2.0

>2.0

>2.0

^{*}The compositions of non-metals cannot be determined as accurately as those of metals. Therefore, those percentages indicated only serve as approximate limits.

The Original Data Plot is a graphical representation which presents most of the tabulated data. In overcrowded plots, some of the data which are repetitive in nature are omitted.

The Analyzed Data Graph presents a new and powerful approach to increasing the effectiveness of literature data. It is an evaluative review identifying and "recommending" reliable and/or typical data for various surface and/or environmental conditions. The study considers the interrelationships between the sub-properties to give a consistent set of data. Where the data are well characterized and/or highly reliable, it is represented by a solid curve; where there exists some speculation, the data are represented by dashed lines or a shaded band. Following presentation of selected figures from Volume 7, a brief section discusses this approach of data analysis.

The Specification Table gives the most important information: the curve number correlating the information on the Specification Table with that of the figures and Data Table, the reference number corresponding to the number given in the listed references, the year of the publication from which the data were extracted, independent variable range, parameter(s), geometry $(\theta, \theta', \omega, \omega')$ and the error (%) reported by the author.

The Composition (weight percent), Specification, and Remarks section of the Specification Table provides the available information about the specimen and test conditions. The presentation is standardized in this order:

- 1. trade name
- 2. composition (weight percent)
- 3. film or foil thickness
- 4. specimen preparation processes
- 5. surface condition (roughness, etc.)
- 6. environment
- 7. type of original presentation of the data (smooth curve, etc.)
- 8. reference standard
- 9. other pertinent information
- 10. author's designation

Following the Specification Table is the Data Table, a tabular presentation of the property values shown on the Figure and described in the Specification Tables.

Coatings

Considerable effort has been given during the past year to the organization of information on coatings. The term "coatings" is a general one and elusive to define. In the context of the SERIES, a coating is a system consisting of a layer (or layers) of any substance(s) upon a substrate. Of interest are all types of coatings used for many applications – covering protection, finishing, thermal control, etc.

Consideration was given to grouping by application, methods of preparation, and durability. Discussions were held with numerous national experts concerning potential classification systems based on different aspects of coatings. Considering suggestions in light of the purpose for which the SERIES was intended, four major groups of coatings have been delineated which are defined in Table 2.

It should be stressed that this system is still being studied for areas of improvement and that as more data are studied in detail, further analysis of the system structure will be possible.

In processing papers on coatings, it is necessary to include more information in the Specification Tables than is required for the non-coatings. In addition, the following parameters if available are given:

- 1. thickness of coating
- 2. substrate
- 3. condition of substrate
- 4. application technique
- 5. environmental effects
- 6. catalyst (paints)
- 7. pigment-vehicle ratio (paints)
- 8. properties of coating (viscosity, porosity, etc.)
- 9. other pertinent information given by author

Special emphasis will be given to environmental conditions before and during measurements.

TABLE 2. CLASSIFICATION OF COATINGS

Conversion - Diffusion Coatings

A layer of a compound, or mixture of compounds formed by the chemical reaction of the substrate with another material. Classified alphabetically by substrate. Examples:

- a. Anodized Aluminum
- b. Durak B
- c. Oxidized Inconel 702

Contact Coatings

A layer, or layers, of a substance coated on a substrate without a chemical reaction occurring between the coating material and the substrate. Classified alphabetically by coating material itself. Subdivided into the following three types, with examples:

- 1. Inorganic
 - a. Alclad Aluminum
 - b. Flame-sprayed Al₂O₃
 - c. Evaporated Gold Film
- 2. Organic
 - a. Teflon
 - b. Vinyl
- 3. Special Purpose
 - a. Anti-reflection Coatings
 - b. Second Surface Mirrors

Pigmented Coatings (Vitreous enamels and paints)

A mixture of pigment and vehicle applied to a substrate. Classified alphabetically by pigment. Subdivided into the following three types, with examples:

- 1. Inorganic Pigment
 - a. Paint (Sb₂O₃ + nitrocellulose)
 - b. Paint (TiO₂ + epoxy resin)
 - c. Paint (ZnO + silicone)
- 2. Organic Pigment
 - a. Paint (Vinyl-phenolic)
- 3. Miscellaneous Paints
 - a. Dynalac H-U
 - b. Korotherm HT
 - c. Colors

Uncharacterized Coatings

Classified alphabetically by commercial name.

MATERIAL INDEX AND REFERENCE LISTINGS

The Material Index is an alphabetical listing of all materials contained in the SERIES volume together with their respective page numbers for each subproperty. Many commercial designations are cross-indexed with their previous designations and synonyms for complete retrieval of the desired data. The Material Index and Grouping of Materials and List of Figures and Tables from Volume 7 is given in Appendix C.

)

The bibliographic citation for each reference number is furnished in the numerically ordered list of references at the end of the book. Appendix D contains the Reference listing from Volume 7.

SAMPLE FIGURES, SPECIFICATION AND DATA TABLES

The following pages contain several selected sets of Figures, Specification and Data Tables for the purpose of demonstrating the presentation of data in the TPRC SERIES, Volume 7. Included are the following:

Title	Page
Normal Spectral Reflectance of Aluminum	10
Normal Spectral Absorptance of Copper	18
Normal Spectral Transmittance of Gallium	22
Hemispherical Total Emittance of Molybdenum	26
Normal Spectral Emittance of Tungsten	32
Normal Total Emittance of Iron + Chromium + Nickel Alloys	44

10

المسترقيب

SPECIFICATION TABLE NO. 8 NORMAL SPECTRAL REFLECTANCE OF ALUMINUM

Curve No.	Ref. No.	Year	Temperature K	Wavelength Range, U	Geon 0	netry θ'ω'	Reported Error,%	Composition (weight percent), Specifications and Remarks
1	123	1960	298	0,30-2.50	~0°	2π		Foil; MgO reference; diffuse reflectance.
2	123	1960	298	0.30-2.50	~0°	2π		Foil; cemented on fiberglass laminate; MgO reference.
3	124	1941	298	0. 1347-0. 2026	~0°	~0°		An opaque film on glass deposited by the evaporation process; measured in vacuum (0.001 mm Hg).
4	125	1962	298	0.550-32	5°	5°	± 0.1	99.998 pure; Al film (0.065 to 0.11 μ thick), evaporated at 1 x 10 ⁻⁵ mm Hg, supersmooth fused quartz optical flats as substrate, no watermarks or other blemishes on the substrate surface, no shadows or streaks in the evaporated Al film; freshly prepared; measured in dry nitrogen.
5	125	1962	298	0.550-32	5°	5°	± 0.1	99.998 pure; Al film (0.065 to 0.11 μ thick), evaporated at 1 x 10 ⁻⁵ mm Hg, supersmooth fused quartz optical flats as substrate, no watermarks or other blemishes on the substrate surfaces, no shadows or streaks in the evaporated Al film; aged in air for several weeks; measured in dry nitrogen.
6	126	1953	300	1.00-15.00	50	2π	± 2.6	Foil (0.001 in. thick); data extracted from smooth curve; converted from β (2 π ,5°).
7	126	1953	300	1.00-15.00	5°	2π	± 2.6	Disc (0.032 in. thick); polished, roughened (roughness approximately 50 microinches); data extracted from smooth curve; converted from β (2π , 5°).
8	126	1953	300	1.00-15.00	50	2π	± 4.3	Disc; commercial finish; data extracted from smooth curve; converted from β (2π , 5°).
9	126	1953	300	1.00-15.00	50	2π	± 2.7	Disc; polished; data extracted from smooth curve; converted from β (2 π , 5°).
10	127	1955	298	0.46-0.60	10°	2π	± 0.5	99 pure; vacuum deposited on glass; measured immediately after removed from vacuum chamber; calculated by authors from $\rho=1-\alpha$ using an incandescent tungsten lamp as source.
11	127	1955	298	0.46-0.60	10°	2π	± 0.5	Above specimen and conditions except exposed to the atmosphere for 8 days.
12	127	1955	298	0.46-0.60	10°	2π		99.99 pure; vacuum deposited on glass; measured immediately after removed from vacuum chamber; calculated by authors from $\rho=1-\alpha$ using an incandescent tungsten lamp as source.
13	127	1955	298	0.46-0.60	10°	2π		Above specimen and conditions except except exposed to atmosphere for 8 days.
14	128	1962	298	2.00-20.00	~0°	2π		Evaporated Al on mylar substrate (0.20 μ thick); illumination solid angle is cone of 0.034 steradians; converted from β (2 π , 0).
15	129	1964	298	0,20-0.70	~0°	2π		Evaporated aluminum; data extracted from smooth curve.
16	130	1934	298	0.225-2.3	~0°.	~0°		Deposited on a mirror by evaporation.
17	133	1934	298	0.235-0.578	~0°	~0°	2	Disc; cold worked, annealed, etch tested, polished, stored in a solution of NaOH + NaF, washed and dried.
18	220	1965	298	0.300-1.000	~0°	2π		Sand blasted.
19	222	1960	298	0.450-0.600	~7°	~7°	< 0.16	Measured in air.
20	223	1962	298	2.01-25.96	~0°	2π		Polished; converted from β (2π , 0°).

Curve No.	Ref. No.	Year	Temperature K	Wavelength Range, μ	Geom θ θ		Reported Error,%	Composition (weight percent), Specifications and Remarks
21	223	1962	298	1, 57-25, 94	~0°	2π		Above specimen and conditions except after particle impact.
22	223	1962	77	1.91-26.00	~0°	2π		Above specimen and conditions.
23	224	1931	298	0.2653-0.4038	~5°	2π		Acid-etched,
24	216	1949	~298	1.01-15.00	0≎	2π	5	Foil; data extracted from smooth curve.
25	285	1962	298	1,97-13,05	~ 5° ~	.50		
26	336	1964	298	2.00-23.99	~0° ~	00		Polished.
27	336	1964	298	2.00-23.99	~0° ~	00		Above specimen and conditions except cratered with spherical particles (100 μ dia) of Zircalloy at 1.5 km sec ⁻¹ ; average crater dia 123 μ ; average crater depth 289 μ ; Knoop hardness 22 (100 g load).
28	336	1964	298	2.00-22.00	~6~	0°		Different sample, same as above specimen and conditions except cratered with spherical particles (100 μ dia \ of tungsten at 7 km sec ⁻¹ ; average crater depth 54 μ; average crater depth 183 μ; Knoop hardness 22 (100 g load).
29	341	1967	298	0.079-0.1175	~0°~	0°		Evaporated film; 99,999 pure; evaporated on microscope slide at 3 x 10^{-8} mm Hg; measured in vacuum (3 x 10^{-8} mm Hg) 4 min after evaporation.
30	341	1967	298	0.079-0.1175	~0° ~	0°		Different sample, same as above specimen and conditions except measured 8 min after evaporation.
31	341	1967	298	0.079-0.1175	~°~	00		Different sample, same as above specimen and conditions except measured 12 min after evaporation.
32	341	1967	298	0.079-0.1175	~0° ~	00		Different sample, same as above specimen and conditions except measured 16 min after evaporation.
33	344	1963	298	2.47-12.08	~5° ~	5°		Aluminized ground glass; aluminum mirror reference; ω = 0.03 Sr.
34	344	1963	298	0.52-12.07	~5° ~	50		Aluminized ground steel; aluminum mirror reference; $\omega' = 0.03 \text{ Sr.}$
35	344	1963	298	7.07-22.10	~5° ~	50		Aluminized ground glass; glass ground with M302 grinding powder (Al ₂ O ₃ emery) with average particle size of 22 μ ; aluminum mirror reference; ω ' = 0.03 Sr.
36	344	1963	298	5.08-22.19	~5° ~	5°		Aluminized ground glass; glass ground with W6 grinding powder (Fe ₃ Al ₂ (SiO ₄) ₃ garnet) with average particle size of 12 μ ; aluminum mirror reference; ω ¹ = 0.03 Sr.
37	344	1963	298	5.07-22.12	~5° ~	50		Aluminized ground glass; glass ground with M 303.5 grinding powder (Al ₂ O ₃ emery) with average particle size of $11~\mu$; aluminum mirror reference; $\omega'=0.03$ Sr.
38	344	1963	298	0.63-22.11	~5° ~	50		Aluminized ground glass; glass ground with W10 grinding powder (Fe ₃ Al ₂ (SiO ₄) ₃ garnet) with average particle size of 5 μ ; aluminum mirror reference; ω = 0.03 Sr.
39	344	1963	298	0.64-22.14	~5° ~	5°		Aluminized ground glass; glass ground with M 305 grinding powder (Al \wp_3 emery) with average particle size of 5 μ ; aluminum mirror reference; ω = 0.03 Sr.
40	344	1963	298	3. 93-22. 23	~5° ~	5°		Aluminized dense flint; flint ground with M303.5 grinding powder (Al ₂ O ₃ emery) with averag particle size of 11 μ ; aluminum mirror reference; $\omega^{_1}=0.03~\rm Sr.$

SPECIFICATION TABLE NO. 8 (continued)

Curve No.	Ref. No.	Year	Temperature K	Wavelength Range, μ	Geometry θ θ' ω'	Reported Error,%	Composition (weight percent), Specifications and Remarks
41	344	1963	298	3.88-22.25	~ 5° ~5°		Aluminized plate glass; glass ground with M303.5 grinding powder (Al_2O_3 emery) with average particle size of 11 μ ; aluminum mirror reference; ω' = 0.03 Sr.
42	344	1963	298	4.06-22.23	~5° ~5°		Aluminized Pyrex; Pyrex ground with M303.5 grinding powder (Al_2O_3 emery) with average particle size of 11μ ; aluminum mirror reference; $\omega'=0.03$ Sr.
43	344	1963	298	2.49-22.21	~5° ~5°		Aluminized fused quartz; quartz ground with M303.5 grinding powder (${\rm Al_2O_3}$ emery) with average particle size of 11 μ ; aluminum mirror reference; $\omega'=0.03$ Sr.

DATA TABLE NO. 8 NORMAL SPECTRAL REFLECTANCE OF ALUMINUM

[Wavelength λ , μ ; Reflectance ρ ; Temperature T, K]

The second secon

λ	ρ	λ	ρ .	λ	ρ	λ	ρ	λ	ρ	λ	ρ	λ	ρ
$\frac{\text{CUR}}{\text{T} = 2}$	VE 1	CU:	RVE 4 298	CURVE T =	5 (cont.)* 298		6 (cont.)	CUI T =	RVE 7	CURVE T =	7 (cont.) 300	CURVE T = 3	8 (cont.)
0.30 0.33	0.430 0.435	0.550 0.600	0.9094 0.9048	0.650 0.700	0, 8976 0, 8886	2.00 2.25	0.885 0.878	1.00 1.25	0.579 0.618	13.75 14.00	0.848 0.840	10.00 10.25	0.890 0.898
0.40 0.60	0.408 0.355	0.650 0.700	0.8989 0.8900	0.750 0.775	0.8761 0.8678	2.50 2.75	0.895 0.900	1.50 1.75	0.670 0.685	14.25 14.50	0.841 0.843	10.50 10.75	0.920 0.898
0.84 1.00	0.305 0.325	0.750 0.775	0.8761 0.8678	0.800 0.825	0.8596 0.8556	3.00 3.25	0.910 0.910	2.00 2.50	0.715 0.740	14.75 15.00	0.855 0.840	11.00 11.25	0.900 0.912
1.50 2.10	0.311 0.300	0.800 0.825	0, 8604 0, 8569	0.850	0.8596	3.50	0.923	2,75 3.00	0.745 0.725		RVE 8	11.50 11.75	0.913 0.910
2.50	0.300	0.850 0.875	0.8622 0.8759	0.875 0.900	0, 8730 0, 8894	3,75 4,00	0.925 0.935	3,25 3,50	0.740 0.772	T =	300	12.00 12.25	0.892
CUR	VE 2	0.900	0.8920	0.925 0.950	0.9030 0.9154	4.25 4.50	0.941 0.925	3.75	0.780	1.00	0.470	12.50	0.960 0.892
. T=2		0,925 0,950	0.9072 0.9192	1.000 1.200	0.9224 0.9585	4.75 5.00	0.948 0.940	4.00 4.25	0.788 0.780	1,25 1,50	0.530 0.569	12.75 13.00	0,922 0,915
0.30 0.33	0.790 0.775	1,000 1,200	0,9360 0,9596	1.500 2.000	0.9658 0.9699	5.25 5.50	0.939 0.940	4.50 4.75	0.793 0.800	1.75 2.00	0.601 0.630	13.25 13.50	0.899 0.915
0.40 0.50	0.796 0.819	1.500 2.000	0.9676 0.9718	3.000 4.000	0.9736 0.9758	5,75 6,00	0.948 0.950	5.00 5.25	0.800 0.802	2,25 2,50	0.655 0.670	13.75 14.00	0,919 0,915
0.60 0.70	0.812 0.800	3.000 4.000	0.9765 0.9795	5	0.9772 0.9784	6.25 6,50	0.960 0.948	5.50 5.75	0.805 0.809	2,75 3,00	0.700 0.710	14.25 14.50	0.900 0.895
0.825 0.90	0.752 0.800	5	0.9812 0.9823	7 8	0.9794 0.9801	6.75	0.950	6.00 6.25	0.800 0.805	3.25 3.50	0.725 0.735	14.75 15.00	0.891 0.915
1.00	0.840	7	0.9831	9	0.9807	7.25 7.50	0.950 0.945	7.00 7.75	0.805 0.821	3,75 4,00	0.760 0.765	-	
1,20 1,40	0.865 0.870	8	0.9837 0.9841	10 11	0.9812 0.9816	7,75 8,00	0.949 0.945	8.00	0.819	4.25	0.792	T =	300
1,60 1,80	0.877 0.877	10 11	0.9845 0.9849	12 13	0.9821 0.9826	8.25 8.50	0.942 0.951	8.25 8.50	0.821 0.820	4.50 4.75	0.782 0.805	1.00	0.731
2,00 2,20	0.890 0.884	12 13	0.9854 0.9857	14 16	0.9830 0.9838	9.25 10.00	0.949 0.960	8.75 9.00	0.819 0.819	5,00 5,25	0.810 0.813	1, 25 1, 50	0.788 0.840
2.40 2.50	0.899 0.905	14 16	0.9861 0.9868	18 20	0.9845 0.9852	10.50 10.75	0.940 0.955	9.25 9.50	0.821 0.818	5.50 5.75	0.830 0.820	1,75 2,00	0.845 0.855
CUR		18 20	0.9873 0.9878	22 24	0.9856 0.9861	11,00 11,25	0.949 0.960	9.75 10.00	0,819 0,820	6.00 6.25	0.820 0.855	2.25 2.50	0.881 0.860
T=2		22 24	0.9883 0.9887	26 28	0.9864 0.9867	11.50 11.75	0.951 0.960	10.25 10.50	0.831 0.831	6, 50 6, 75	0.849 0.860	2.75 3.00	0.860 0.875
0.1347 0.1438	0.10 0.14	26 28	0.9890 0.9893	30	0.9870	12.50	0.960	10.75 11.00	0, 839 0, 831	7.00 7.25	0.860 0.850	3.25 3.50	0.879 0.891
0.1570	0.17	30	0.9896	32	0.9872	12.75 13.00	0.965 0.960	11. 25 11. 50	0.841	7.50	0.879	3.75	0.898
0.1640 0.1857	0.20 0.23	32	0.9898	CUF T =	300	13.25 13.75	0.950 0.950	11.75	0.841 0.840	7.75 8.00	0.862 0.870	4,00 4,25	0,915 0,890
0.1901 0.2026	0.29 0.34	CUI T =	RVE 5* 298	1.00	0.765	14.00 14.25	0.935 0,955	12.00 12.25	0.848 0.845	8,25 8,50	0.889 0.891	4,50 4,75	0.931 0.910
		0,550	0, 9049	1.25 1.50	0.810 0.840	14.75 15.00	0.936 0.925	12.50 12.75	0, 849 0, 845	8.75 9.00	0.888 0.899	5.00 5.25	0.960 0.915
		0.600	0.9021	1,75	0.860		· · · · · ·	13.25 13.50	0.846 0.842	9.50 9.75	0.885 0.898	5,50 5,75	0.940 0.925

^{*}Not shown on plot

DATA TABLE NO.	8	(continued)
----------------	---	-------------

λ	P	λ	ρ	λ	ρ	λ	ρ	λ	ρ	λ	£	λ	ρ
$\frac{\text{CURVE 9}}{\text{T} = 3}$			RVE 12 298	$\frac{\text{CURVE 16}}{\text{T}} = 2$		CURVI T = 29		CURV T=	'E 24* - 298	$\frac{\text{CURVE } 24}{\text{T} = \sim 2}$		CURVE T = 29	
6, 00 6, 50	0.936 0.930	0.46 0.53	0.92 0.92	1,00 1,25	0.93 0.96	2.01 5.27	0.960 0.973	1.01 1.26	0.929 0.928	13.01 13.28	0.976 0.976	2.00 4.00	0.897 0.918
6.75 7.00 7.25	0.932 0.942 0.935	0.57 0.60	0.93 0.93	1.6 1.8 2.2	0.98 0.97 0.96	7.94 11.36 14.07	0.979 0.981 0.982	1.50 1.79 1.98	0.944 0.949 0.955	13.50 13.79 14.01	0.977 0.976 0.976	5.99 8.00 10.00	0.933 0.945 0.954
8.00 8.25	0.960 0.990		298	2.3	1.00	19.27 25.96	0.982 0.984	2.25 2.50	0.957 0.959	14.28 14.53	0.977 0.973	12.00 14.00	0, 952 0, 954
8, 75 9, 00 9, 25	0.935 0.960 0.960	0.46 0.53	0.895 0.895		298	CURV T = 2		2.75 2.98 3.27	0.955 0.956 0.964	14.75 15,00	0.966 0.971	16.00 18.00 20.00	0.958 0.958 0.955
9, 50 9, 75 10, 00	0.955 0.969 0.969	0.57 0.60	0.885 0.880	0, 235 0, 254 0, 265	0.413 0.482 0.523	1.57 4.34	0.890 0.929	3.50 3.75 3.96	0.955 0.963 0.974	CURV	E 25*	22.00 23.99	0.946 0.946
10.50 10.75	0.975 0.970		RVE 14 298	0,293 0,312 0,334	0.662 0.679 0.722	7.17 8.53	0.946 0.946 0.953	4.24 4.48	0.940 0.968	1. 97 2. 97	0.9670 0.9712	$\frac{\text{CURVI}}{\text{T} = 2}$	
11, 00 11, 25 11, 50	0.972 0.972 0.959	2.00 10.00	0.970 0.970*	0.366 0.406	0.740 0.712	11.73 14.46 17.38	0.954 0.961	4.76 4.98 5.24	0.969 0.969 0.972	3, 95 4, 98 6, 00	0. 9747 0. 9765 0. 9774	2.00 4.00	0.566 0.676
11, 75 12, 00 12, 25	0.972 0.960 0.960	20,00	0.975 RVE 15	0.435 0.546 0.578	0.759 0.780 0.781	19.33 22.54 25.94	0.961 0.957 0.952	5.50 5.73 5.98	0.969 0.965 0.977	7.03 8.03	0.9778 0.9783	5, 99 8, 00	0.731 0.741 0.757
12.50 12.75	0.963 0.959	T =	298	CUR	VE 18	CURV	E_22*	6.26 6.49	0.975 0.975	9.00 10.00 11.09	0.9790 0.9791 0.9796	10.00 12.00 14.00	$0.777 \\ 0.786$
13, 00 13, 25 13, 50	0,980 0,969 0,964	0.20 0.30 0.50	0.90 0.92 0.92	T =	0.671	T = 7	0.908	6.74 6.98 7.26	0.971 0.969 0.969	12. 04 13. 05	0. 9798 0. 98 0 5	16.00 18.00 20.00	0.789 0.790 0.792
13.75 14.00 14.25	0.960 0.965 0.951	0,70	0.89 RVE 16	0.357 0.419 0.488	0.706 0.733 0.753	3.95 5.94 7.90	0.939 0.937 0.945	7.51 7.76 7.98	0.970 0.976 0.974		VE 26* 298	22.00	0.792
14.50 14.75	0.969 0.965	T≅	298	0.538 0.579	0.756 0.754	9.94 11.97	0.955 0.952	8.26 8.53	0.974 0.978	2, 00 4, 00	0. 964 0. 970	CURV T=	
15. 00 CUI	0.972 RVE 10	0.225 0.250 0.275	0.79 0.80 0.81	0.627 0.752 0.871	0.751 0.751 0.747	13.88 15.89 17.92	0.953 0.959 0.962	8.78 9.00 9.29	0.968 0.967 0.972	5, 99 8, 00 10, 00	0. 973 0. 977 0. 980	0.0790 0.0833 0.0920	0.325 0.624 0.767
T =	298 0, 89	0,300 0,325 0,350	0.83 0.84 0.85	1.000	0.738	19.94 21.86 23.93	0.960 0.957 0.949	9.55 9.79	0.971 0.974	12. 00 14. 00	0, 981 0, 980	0. 1175	0.815
0.46 0.53 0.57	0.89 0.90	0.375 0.400	0.86 0.86	<u>Cuk</u> T=	VE 19* 298	26.00	0.949	10.01 10.27 10.53	0.973 0.973 0.973	16.00 18.00 20.00	0.980 0.980 0.979	CURV T≈	
0, 60	0.90 RVE 11	0.450 0.500 0.600	0.87 0.88 0.89	0.450 0.500 0.550	0.9083 0.9082 0.9064	$\frac{CURV}{T=2}$		10.77 11.04 11.30	0,973 0,973 0,974	22. 00 23. 99	0, 979 0, 978	0.0790 0.0833	0.308 0.588 0.728
T =	298	0.70 0.75	0.87 0.88	0,600	0.9026	0.2653 0.2890	0.756 0.796	11.52 11.78	0.976 0.976			0.0920 0.1175	0.728
0.46 0.53 0.57	0, 86 0, 86 0, 85	0.8 0.85 0.9	0.85 0.87 0.88			0.3133 0.3664 0.4038	0.822 0.839 0.849	12.02 12.27 12.51	0.976 0.977 0.974				
0.60	0.86	0.95	0.94					12.79	0.976				

*Not shown on plot

DATA TABLE NO. 8 (continued)

λ	ρ	λ	ρ	λ	o	λ	۵	λ	٥	λ	ρ
CURV		CURV		CURVE 3	37 (cont.)	CURV T=		CURVE 4	40 (cont.)*	CURV T =	
•		_		9.06	0.474			20.23	0.862	1	550
0.0790	0.292	7.07	0.083	10.03	0.537	0.64	0.027	21.23	0.876	2, 49	0.033
0.0833	0.559	8.04	0.140	11,07	0.602	0.77	0.077	22,23	0.892	3, 09	0.077
0.0020	0.689	9.06	0.206	12.08	0.660	0.97	0.126			4.07	0.225
0. 1175	0.811	10.04	0.272	13,08	0,703	1.07	0.172	CURV	Æ 41*	5.06	0.382
		11.04	0.337	14, 07	0.738	1,56	0.412	T =		6.08	0.509
CURV	E 32*	12.01	0.409	15.26	0.777	2.08	0.575			7.08	0.611
T = :	298	13, 00	0.456	16. 12	0.803	3.11	0.752	3.88	0.014	8, 07	0.683
		14.06	0.509	17.10	0.820	4.08	0.845	5.03	0, 107	9, 13	0.753
0.0790	0.276	15.25	0.565	18.10	0.840	5.07	0.892	6.01	0.197	10. 11	0.789
0.0833	0.528	16.07	0.597	19.10	0.859	6.05	0.919	7.01	0.292	11, 09	0.824
0.0920	0,653	17.07	0.634	20.13	0.877	7.10	0.942	8,03	0.380	12, 10	0.855
0.1175	0.811*	18,05	0.668	21.14	0.891	8, 10	0.956	9.03	0.467	13. 07	0.874
		19.07	0.694	22.12	0.902	9.09	0.965	10,03	0.531	14. 10	0.890
CURV	E 33	20.12	0.728			10.09	0.970	11.07	0.597	15. 35	0.910
T = 1		21.12	0.755	CURV	TE 38	11.08	0.974	12. 12	0.655	16, 16	0.918
•		22.10	0.788	T		12.09	0.980	13.07	0.694	17, 13	0.930
2.47	0.033			_		13.11	0.983	14. 12	0.733	18, 18	0.939
2.99	0.082	CURV	TE 36	0.63	0.025	14. 12	0. 986	15.30	0.769	19, 17	0.946
3.97	0.230	T=		0.87	0.079	15.08	0. 989			-	
4.98	0.388	-	200	0.99	0.126	16. 1 5	0.993	16, 13 17, 12	0.795	20. 25	0.952
6.00	0.515	5.08	0.079	1,08	0.168	17.13	0. 993		0.814	21.23	0,960
7.00	0.615	6.07	0.161	1.49	0.277	18. 13	0. 993	18.16	0.832	22, 21	0.967
8, 02	0.692	7.08	0.250	2.09	0.398	19.11	0.994	19.17	0.853		
9.00	0.760	8.06	0.339	3.06	0.548	20.16	0.994	20.20	0.872		
	0.797	9, 03	0.428	4.06	0.661	21.15	0.994	21.25	0.886		
10.04	0.797	10.08	0.420	5.07	0.738	21.15	0. 998	22.25	0.898		
11.04	0.857	11.04	0.559	6.07	0.801*	22.14	0. 556		 40		
12.08	0.001		0.617	7.04	0.841	CITEI	7F 40*	CURV			
CITI I	TE 94	12. 08 13. 06	0.656	8.06	0.873	T =	Æ 40*	T =	298		
CURV T=		14.10	0.699	9.10	0.896	1 -	250	4 00	0.440		
1 -	230	15.34	0.738	10.01	0.911	3, 93	0.005	4.06	0. 119		
0.59	0,065	16. 12	0.759		0.926		0.005	5.03	0.243		
0,52 0,71	0, 063	17. 03	0. 782	11.06 12.06	0.939	5.05	0. 190	6.05	0.372		
		18.04	0.802			6.03		7.05	0.479		
0.89 1.47	0.060 0.075	19.07	0.823	13. 12	0.953 0.958	7.01	0.284 0.373	8.02	0.564		
2.00	0.073	20, 13	0.846	14.12		8.02		9.07	0.646		
2.00			0.864	15.08	0.963	9.02	0.452	10.05	0.694		
	0. 163 0. 270	21, 16	0.883	16.10	0.969	10.03	0.524	11.10	0.738		
3.99		22.19	0.000	17.08	0.972	11.02	0.588	12.09	0.781		
4.99	0.398	arm.	m 07	18.09	0.974	12.09	0.649	13.08	0.807		
6.00	0.513		VE 37	19.13	0.978	13.10	0.684	14. 14	0.833		
7.00	0.612	I. =	298	20, 18	0.981	14.10	0.722	15.32	0.856		
8.01	0.688		0.100	21, 12	0.981	15.28	0.762	16, 13	0.867		
9.02	0.746	5.07	0.108	22.11	0.989	16.15	0.783	17.17	0.883		
10.03	0.784	6.02	0.197			17.11	0.806	18.24	0.897		
11.06	0.822	7.05	0.294			18.17	0.829	19. 16	0.908		
12,07	0.849	8.05	0.384			19.20	0.845	20.22	0.918		
								21, 22	0.927		
*	shour on nle							22.23	0.939		

^{*}Not shown on plot

SPECIFICATION TABLE NO. 62 NORMAL SPECTRAL ABSORPTANCE OF COPPER

Curve No.	Ref. No.	Year	Temperature K	Wavelength Range, µ	Geometry 0	Reported Error,%	Composition (weight percent), Specifications and Remarks
1	30	1963	294	1.20-14.00	~ 0°		Mechanically polished (surface roughness 0.02μpeak to peak and 5μ lateral); measured in air; data extracted from smooth curve; [Author's designation: Sample 3].
2	30	1963	294	1.15-14.00	~ 0°		Above specimen and conditions except heated at 450 K for 3 hrs; surface oxidation possible.
3	30	1963	294	1.10-15.00	~ 0°		Above specimen and conditions except heated at 922 K for 3 hrs.
4	30	1963	294	1.10-14.00	~ 0°		Above specimen and conditions except heated at 1222 K for 102 hrs.
5	65	1962	294	0.40-2.00	~ 0°		Electropolished; calculated from $(1-\rho)$.
6	65	1962	294	0.41-14.40	~ 0°		Mechanically polished; calculated from $(1 - \rho)$.
7	65	1962	294	0.41-14.20	~ 0°		Above specimen and conditions except roughened with sand paper; surface roughness 1.25 μ .
8	307	1954	~298	0.207-2.600	~ 0°		Data extracted from smooth curve.
9	307	1954	~298	0.401-2.600	~ 0°		Polished; data extracted from smooth curve.

DATA TABLE NO. 62 NORMAL SPECTRAL ABSORPTANCE OF COPPER

[Wavelength, λ, μ ; Absorptance, α ; Temperature, T,K]

λ	α	λ	α	λ	α	λ	α	λ	α
CUR T=	VE 1 = 294	CURVE 2	(cont.)	CURVE 4	(cont.)	CURV	VE 7 294	CURVE	8 (cont.)
-		6.20	0.021	3,30	0.050	-		2.000	0,053
1.20	0.057	7.00	0.019	380	0.048	0.41	0.58	2.200	0.091
1.50	0.046	7.80	0.018	4.50	0.047	0.51	0.56	2,400	0.075
2,00	0.036	9.00	0.018	5.50	0.046	0.55	0.52	2.600	0.067
2.10	0.034	14.00	0.019	9.40	0.048	0.80	0.20		-
2.20	0.034			11.00	0.044	0.90	0.19	CUR	VE 9
2.30	0.033	CUR	VE_3	12.00	0.043	1.00	0.18	T =	~298
2.40	0.034	T =	294	14.00	0.043	1.20	0.17		
2.50	0.035					1,44	0.16	0.401	0.751
2.70	0.035	1.10	0.082		VE 5	1.80	0.16	0.457	0.686
3.00	0.033	1.25	0.080	T =	294	2.70	0.14	0.515	0.658
3.50	0.028	1.30	0.076			3.50	0.12	0.539	0, 607
4.00	0.027	1.40	0.070	0.40	0.475	4.05	0.11	0.549	0.567
4.50	0.025	1.50	0.057	0.50	0.410	4.55	0.11	0.579	0.544
5.00	0.023	1.70	0.040	0.54	0.360	5.00	0.11	0.583	0.389
5.50	0.022	1.80	0.035	0.70	0.031	6.00	0.10	0.612	0. 296
6.00	0.021	2.00	0.031	0.80	0.031	7.00	0.09	0.664	0.231
6.10	0.021	2.50	0.024	0.92	0.031	8.00	0.08	0.779	0.170
7.00	0.018	2.60	0.024	1.00	0.030	9.00	0.07	1.001	0. 104
8.00	0.017	2.70	0.025	2.00	0.031*	10.00	0.07	1.096	0.095
9.00	0.015	3.00	0.022	G run:	TE C	11.20	0.06	1, 200	0.060
10.00	0.015	3.50	0.019		VE 6	12.00	0.06	1.394	0.048
14.00	0.015	4.00 4.50	0.016 0.013	1 =	294	13.00	0.06	1. 594	0.047
CITE	EVE 2	5,00	0.013	0.41	0.73	14.20	0.05	1.798	0.034
	= 294	6.00	0.012	0.41 0.50	0.13	armi		2.000	0.023
1.	- 407	7.00	0.012	0.60	0.37	CURY		2.200	0, 014 0, 008
1.15	0.110	8,00	0.011	0.70	0.37	T = r	~298	2.400 2.600	0.023
1.30	0.090	9.00	0.010	0.80	0.12	0, 207	0.724	2.000	0.023
1.50	0.062	10.00	0.008	0.90	0.10	0. 275	0.755		
1.60	0.057	11.00	0.008	1.00	0.09	0.301	0. 802		
1.80	0.051	13.00	0.007	1.20	0.08	0.415	0.752		
2.05	0.040	14.00	0.007	1.40	0.07*	0. 484	0.681		
2.30	0.032*	15.00	0.007	2.00	0.06	0, 535	0.649		
2.50	0.031			2.40	0.05	0. 583	0.542		
2.80	0.041	CUR	VE 4	3.00	0.05	0, 615	0.324		
3.00	0.035		294	4.00	0.04	0, 660	0.212		
3,20	0.031			5.00	0.03	0.759	0.141		
3, 50	0.028	1.10	0.064	7.00	0.03	0.971	0.083		
4.10	0.020	1.50	0.055*	9.00	0.02^{*}	1, 075	0.090		
4.50	0.017	1.60	0.054	11.00	0.03	1, 340	0.026		
5.00		1.90	0.054	13.00	0.03	1, 555	0.004		
5.20		2,30	0.050	14.40	0.03	1, 688	0.010		
6.00	0.020*	2.80	0.055			1.801	0.003		

Not shown on plot

SPECIFICATION TABLE NO. 73 NORMAL SPECTRAL TRANSMITTANCE OF GALLIUM

Curve No.	Ref. No.	Year	Temperature K	Wavelength Range, μ	Geometry θ θ' ω'	Reported Error,%	Composition (weight percent), Specifications and Remarks
1	229	1963	298	0. 231-0. 574	~0° ~0°		Vacuum deposited thin film of gallium (19 m μ thick); measured in vacuum; spectral Philips Zn, Cd and Hg Lamp sources; 3.5 Å min ⁻¹ evaporation rate.
2	229	1963	298	0. 233-0. 579	~0° ~0°		Different sample, same as above specimen and conditions except 11 m μ thick; 2 Å min $^{-1}$ evaporation rate.
3	229	1963	298	0. 236-0. 578	~0° ~0°		Different sample, same as above specimen and conditions except 9.5 m μ thick.
4	229	1963	298	0. 236-0. 581	~0° ~0°		Different sample, same as above specimen and conditions except 5 m μ thick; 2 Å min ⁻¹ evaporation rate.
5	229	1963	298	0. 242-0. 577	~0° ~0°		Different sample, same as above specimen and conditions except 4.5 m μ thick.
6	229	1963	298	0. 242-0. 584	~0° ~0°		Different sample, same as above specimen and conditions except 2.5 m μ thick; 2 Å min $^{-1}$ evaporation rate.
7	229	1 9 63	298	0. 250-0. 579	~0° ~0°		Different sample, same as above specimen and conditions except 42 m μ thick; 300 Å min ⁻¹ evaporation rate; supercooled liquid suspected in the evaporated film.
8	229	1963	298	0.248-0.578	~0° ~0°		Different sample, same as curve 7 specimen and conditions except 28 m μ thick; 11 Å min ⁻¹ evaporation rate.
9	229	1963	298	0.258-0.579	~0° ~0°		Different sample, same as curve 7 specimen and conditions except 21 m µ thick.
10	229	1963	298	0.247-0.579	~0° ~0°		Different sample, same as curve 7 specimen and conditions except 14 m μ thick; 11 Å min ⁻¹ evaporation rate.
11	229	1963	298	0.249-0.581	~0° ~0°		Different sample, same as curve 7 specimen and conditions except 10 m µ thick.
12	229	1963	298	0.252-0.581	~0° ~0°		Different sample, same as curve 7 specimen and conditions except 7 m μ thick; 11 Å min ⁻¹ evaporation rate.

DATA TABLE NO. 73 NORMAL SPECTRAL TRANSMITTANCE OF GALLIUM

[Temperature, T, K; Transmittance, τ ; Wavelength, λ, μ]

λ	τ	λ	τ	λ	τ	λ	au		
CURVE 1 T = 298		CUR T =			<u>VE 7</u> 298		$\frac{\text{CURVE 10}}{\text{T} = 298}$		
0.231 0.249	0.162 0.160	0.236 0.250	0.396 0.362	0.250 0.265	0.050 0.057	0.247 0.262	0.282 0.318		
0.261	0.155	0.267	0.338	0.280	0.068	0.278	0.369		
0.278 0.311	0.140 0.122	0.277 0.333	0.317 0.294	0.313 0.333	0.107 0.130	0.314 0.336	0.468 0.525		
0.329	0.107	0.365	0.324	0.364	0.161	0.367	0.607		
0.359 0.401	0.094 0.081	0.408 0.435	0.404 0.463	0.405 0.432	0.224 0.251	0.405 0.438	0.684 0.741		
0.430	0.081	0.495	0.572	0.487	0.314	0.494	0.794		
0.484 0.547 0.574	0.078 0.091 0.105	0.551 0.581	0.658 0.693	0.548 0.579	0.356 0.370	0.550 0.579	0.838 0.851		
	VE 2		VE 5 298		VE 8 298		VE 11 298		
	298								
0.233	0.233	0.242 0.253	0.504 0.481	0.248 0.262	0.122 0.147	0.249 0.268	0,257 0,279		
0.250	0.224	0.265	0.459	0.279	0.180	0.283	0.318		
0.263 0.276	0.207 0.189	0.279 0.319	0.441 0.414	0.311 0.332	0.280 0.325	0.315 0.334	0.432		
0.314	0.161	0.336	0.420	0.364	0.388	0.365	0.544		
,0.333 *0.360	0.148 0.144	0.366 0.404	0.442 0.483	0.402 0.433	0.473 0.529	0.406 0.436	0.639		
0.402	0.170	0.436	0.527	0.490	0.582	0.493	0.755		
0.434 0.490	0.193 0.250	0.490 0.557	0.610 0.697	0.549 0.578	0.651 0.673	0.549 0.581	0.802 0.833		
0.549 0.579	0.313 0.352	0.577	0.722	CITE	RVE 9	CITIE	WE 10		
	0.332 RVE 3		298		298		VE 12 298		
	298	-		0.258	0.158	0.252	0.412		
0.236	0.330	0.242 0.253	0.564 0.515	0.275 0.311	0.190 0.264	0.268 0.284	0.437		
0.248	0.324	0.267	0.493	0.333	0.303	0.317	0.587		
0.280 0.337	0.282 0.234	0.284 0.318	0.481 0.505	0.362 0.406	0.370 0.424	0.336 0.366	0.644 0.708		
0.364	0.222	0.334	0.544	0.434	0.462	0.407	0.787		
0.405 0.433	0.225 0.239	0.364 0.409	0.604 0.701	0.491 0.550	0.538 0.589	0.436 0.496	0.825 0.860		
0.489	0.272	0.435	0.747	0.579	0.614	0.551	0.875		
0.549 0.578	0.316 0.335	0.497 0.554	0.818 0.860			0.581	0.879		
		0.584	0.875						

Curve No.	Ref. No.	Year	Temperature Range, K	Reported Error,%	Composition (weight percent), Specifications and Remarks
1	47	1961	468-1093	< 10	Vacuum arc cast, machined, extruded, recrystallized, rolled; disc (0.04 in. thick); ground with 600 grit carborundum and polished on a wet cloth lap with unlevigated jewelers rouge; measured in vacuum (10 ⁻⁵ mm Hg).
2	69	1960	1544-2172	± 10	Measured in vacuum,
3	22	1958	589-811	≤ 2	Stably oxidized at 811 K in quiescent air.
4	58	1961	673-1773	± 2.5	Lightly etched and flashed in vacuum at 2073 K for 10 min; measured in vacuum ($<5 \times 10^{-6}$ mm Hg); data extracted from smooth curve.
จิ	58	1961	773-1493	± 2.5	Shot-blasted and pickled in hydrochloric acid to remove iron; measured in vacuum ($<5 \times 10^{-6}$ mm Hg); data extracted from smooth curve.
6	70	1960	2300-2900		0.18 Fe, 0.073 Si, 0.04 C, 0.036 Mn, 0.005 O ₂ , 0.01 others, Mo balance; cast under inert gas; hot rolled; successively polished with No. 1-, 0-, 00-, 000-, and 0000- abrasive papers; measured in argon.
7	71	1962	1540-2180	± 10	Measured in vacuum (<10 to mm Hg).
ક	72	1963	1506-2825		0.07-0.09 Fe, 0.04-0.06 Nb, 0.001-0.003 Mn, 0.001-0.003 Si, 0.0004-0.0006 Cu, 0.0001-0.0005 Mg, Mo balance; thin walled tube; polished using felt with a GOI paste; annealed; measured in vacuum.
9 '	73	1964	1200-1700	< 2.3	99. 96 Mo. 0. 004 SiO ₂ , 0. 004 CaO and MgO, 0. 026 sesquioxides; prepared by rubbing with abrasive paper; surface roughness 0. 063 - 0. 050 μ RMS; measured in vacuum (10 ⁻³ to 10 ⁻⁴ mm Hg); [Author's designation: Specimen 1].
10	73	1964	1200-1700	< 2.3	Different sample, same as curve 9 specimen and conditions; [Author's designation; Specimen 2].
11	73	1964	1200-1700	< 2.3	Different sample. same as curve 9 specimen; same conditions except surface roughness 1.25-1.00 μ RMS; [Author's designation: Specimen 3].
12	5 4	1962	1070-1990	± 4	Degreased with acetone, cleaned with a rubber eraser, wiped with acetone; measured in vacuum (10 ⁻⁴ to 10 ⁻⁵ mm Hg); same data reported for both samples; [Author's designation; Sample No. 1 and Sample No. 2].
13	54	1962	1185-1905	± 4	Degreased with acetone, cleaned with a rubber eraser, wiped with acetone; aged for 1 hr at 1773 K; measured in vacuum (10 ⁻⁴ to 10 ⁻⁶ mm Hg); [Author's designation: Sample 2].
14	54	1962	1100-1800	± 4	Polished using rouge in wax on a buffing wheel; measured in vacuum $(10^{-4} \text{ to } 10^{-6} \text{ mm Hg})$; [Author's designation: Sample No. 3].
15	54	1962	800-1300	± 4	Polished using fine aluminum oxide powder on a circular rotatable drum with a rotating lap; measured in vacuum $(10^{-4} \text{ to } 10^{-5} \text{ mm Hg})$; cycle 1; [Author's designation: Sample No. 5].
16	54	1962	800-1300	± 4	Above specimen and conditions; cycle 2.
17	54	1962	1400-1800	± 4	Different sample, same as curve 15 specimen and conditions; cycle 1; [Author's designation: Sample No. 6].
18	54	1962	1100-1300	± 4	Above specimen and conditions; cycle 2.

The state of the s

Curve No.	Ref. No.	Year	Temperature Range, K	Reported Error,%	Composition (weight percent), Specifications and Remarks
19	54	1962	1800	± 4	Above specimen and conditions; cycle 3.
20	54	1962	1300-1500	± 4	Above specimen and conditions; cycle 4.
21	54	1962	1000-2000	± 4	Above specimen and conditions; cycle 5.
22	12	1962	385. 6-1075. 1	± 2.7	Grit blasted with aluminum oxide No. 90 (PMC-3043A); measured in vacuum (<2.9 x 10^{-6} mm Hg); Run No. 1.
23	12	1962	1061. 1-1251. 5	± 2.7	Above specimen and conditions; Run No. 2A.
24	12	1962	1255, 1-1235, 9	± 2.7	Above specimen and conditions; Run No. 2B.
25	12	1962	491. 2-1385. 2	± 2.7	Vapor-blasted with Techline Liquabrasive, PMC-3067, grit No. 325; measured in vacuum (<5 x 10 ⁻⁶ mm Hg); Run No. 1.
26	12	1962	545. 2-1375. 7	± 2.7	Above specimen and conditions; Run No. 2.
27	12	1962	412-1373	± 2.7	Above specimen and conditions; Run No. 3.
28	12	1962	410-1244	± 2.7	Above specimen and conditions; Run No. 4A.
29	12	1962	1378-1273	± 2.7	Above specimen and conditions; Run No. 4B.
30	12	1962	429. 2-1401. 2	± 2.7	Chemically cleaned; measured in vacuum (<5 x 10 ⁻⁶ mm Hg); Run No. 1.
31	12	1962	449.7-1405.2	± 2.7	Above specimen and conditions; Run No. 2.
32	12	1962	407. 2-1374. 2	± 2.7	Above specimen and conditions; Run No. 3A.
33	12	1962	1002. 4-1169. 2	± 2.7	Above specimen and conditions; Run No. 3B.
34	12	1962	1054-1538	± 2.3	As received; measured in vacuum (<2 x 10 ⁻⁶ mm Hg); Run No. 1A.
35	12	1962	1539-1100	± 2.3	Above specimen and conditions; Run No. 1B.
36	12	1962	1242-1540	± 2.3	Above specimen and conditions; Run No. 2.
37	12	1962	1045-1539	± 2.7	As received; measured in vacuum (<2 x 10-6 mm Hg); Run No. 1A.
38	12	1962	1535-1097	± 2.7	Above specimen and conditions; Run No. 1B.
39	12	1962	1239-1541	± 2.7	Above specimen and conditions; Run No. 2.
40	12	1962	1368-998	± 2.7	Grit blasted with aluminum oxide No. 90 (PMC-3043A); measured in vacuum (< 5.1×10^{-6} mm Hg); Run No. 1.

DATA TABLE NO. 132 HEMISPHERICAL TOTAL EMITTANCE OF MOLYBDENUM

[Temperature, T, K; Emittance, €]

T	€	Т	€	T	\in	T	€	T	€	Т	€	Т	\in
cu	RVE 1	CURVI	E 6 (cont.)	CURVE	8 (cont.)	CURVI	E 10 (cont.)	CURVE	13 (cont.)	CURY	VE 18	CURVE	22 (cont.)
468	0.07	2440	0.279	2175	0.2325	1650	0.186	1290	0.230	1100	0.115	778.2	0.303
668	0.09	2500	0.278	2212	0.2337	1700	0.192	1305	0.230	1200	0.135*	808.5	0.310
873	0.12	2565	0.282	2225	0.2375			1370	0.237	1300	0.157*	845.3	0.312
1093	0.13	2600	0.282	2218	0.2400	CUR	VE 11	1390	0.240	1300	0.185	870.6	0.312
1000	0.10	2630	0.281	2237	0.2450	-		1500	0.257	1300	0.200	904.0	0.320
CI	RVE 2	2655	0.281	2275	0.2325	1200	0.143	1600	0.277	1300	0.240	952.2	0.330
00		2695	0.282	2300	0.2400	1250	0.150	1705	0.285			975.7	0.329
1544	0.280	2760	0.285	2356	0.2475	1300	0.157	1810	0.300	CUR	VE 19	1001.7	0.334
1686	0.300	2800	0.285	2400	0.2475	1350	0.164	1905	0.310	-		1030.2	0.339
1822	0.315	2825	0.285	2406	0.2600	1400	0.171	1000	0.020	1800	0.300	1071.5	0.337
1967	0.320	2900	0.285	2412	0.2575	1450	0.178	CHR	VE 14*	1800	0.275	1075.1	0.330
2033	0.325	2500	0.200	2518	0.2575	1500	0.185	-		1800	0.273		
2103	0.325	CI	RVE 7*	2506	0.2687	1550	0.192	1100	0.195	1800	0.285	CURV	/E 23
2172	0.325	0.0	RVE	2575	0.2675	1600	0.198	1195	0.207		*		
		1540	0.275	2612	0.2700	1650	0.205	1400	0.235	CUR	VE 20*	1061.1	0.323
CU	RVE 3	1690	0.300	2662	0.2712	1700	0.211	1600	0.255	1300	0.215	1092.2	0.329
-		1830	0.310		0.2662			1800	0.280	1300	0.230	1123.6	0.326
589	0.785	1970	0.320	2650		CUF	RVE 12			1500	0.262	1134.1	0.335
644	0.830	2040	0.325	2700	0.2750	4050	0.400	CUR	VE 15*	1300	0.202	1156.4	0.344
700	0.825	2110	0.326	2750	0.2750	1070	0.190	000	0.085	CUP	VE 21*	1210.2	0.341
755	0.810	2180	0.326	2825	0,2812	1100	0.200	800		COR		1234.8	0.346
811	0.805	2200	0.000		****	1200	0.210	900	0.090	1000	0.185	1241.6	0.339
		CI	JRVE 8	CUR	VE 9	1205	0.210	1000	0.100	1100	0.200	1247.8	0.332
CU	RVE 4	-	-	1200	0.117	1210	0.215	1100	0.113	1200	0.215	1251.5	0.328
673	0.065	1506	0.1580	1250	0.123	1300	0.220	1200	0.132	1300	0.230		
873	0.115	1588	0.1650	1300	0.130	1300	0.225	1300	0.157	1400	0.247	CURY	VE 24*
1073	0.175	1638	0.1850	1350	0.136	1305	0.223	1310	0.170	1600	0.280	1055 1	0.004
		1738	0.1925	1400	0.143	1380	0.230	1310	0.177	1700	0.295	1255.1	0.324
1273	0.240	1750	0.1825	1450	0.149	1385	0.233	1310	0.185	1800	0.305	1235.9	0.320
1473		1775	0.1875	1500	0.155	1405	0.240	1300	0.210	1900	0.310		
1673	0.390	1825	0.1975			1410	0.237	1300	0.217	2000	0.312	CUR	VE 25
1773	0.430	1856	0.1825	1550	0.161	1495	0.245	1300	0.222	2000	0.012	491.2	0.082
		1906	0.1987	1600	0.167 0.173	1500	0.245			CITE	RVE 22	625.2	0.099
CU	IRVE 5	1912	0.1912	1650	0.178	1500	0.245*	CUI	RVE 16			762.2	0.109
773 *	0.215	1950	0.2075	1700	0.118	1600	0.260	800	0.155	385.6	0.272	900.2	0.133
873	0.245	1975	0.2200	CITI	2777	1600	0.263*			446.7	0.276	1018.2	0.141
1073	0.300	2006	0.2125	CUI	RVE 10	1600	0.265	900	0.165	485.6	0.268	1161.2	0.163
1273	0.355	2025	0.2250	1200	0.124	1705	0.275	1000	0.180	514.6	0.272	1270.2	0.173
1473	0.410	2031	0.2200	1250	0.136	1705	0.275*	1100	0.192	554.2	0.277		0.180
1493	0.415	2062	0.2150	1300	0.142	1805	0,285	1200	0.205	587.8		1385.2	0.180
7.7.00	0,110	2081	0.2225	1350	0.149	1900	0.245	1300	0.222*	621.3		CIT	VE 26*
CI	JRVE 6	2112	0.2225	1400	0.156	1990	0.305			655.0		CUR	VE 26
		2137	0.2220	1450	0.162	2000	0,000	CUI	RVE 17*	688.9		545.2	0.055
2300	0.276	2137	0.2275	1500	0.168	CII	RVE 13	1400	0.160	716.6		685.7	0.065
2370	0.274	2162	0.2225	1550	0.174			1600	0.190	750.4		813.2	0.082
2400	0.276	2102	0.2220	1600	0.180	1185	0.217	1800	0.217	751.8		936,2	0.101
				1000	0,200	1200	0.217	2000	0	.04.0			

^{*} Not shown on plot

€

CURVE	26 (cont.)	CURV	/E 31 [≉]	CURV	E 35 (cont.)	CUR	VE 40
545.2	0.055	449.7	0.043	1135	0.109	1368	0.314
685.7	0.065	594.2	0.054	1100	0.104	1308	0.302
813.2	0.082	696,2	0.062			1266	0.290
936.2	0.101	784.2	0.069	CUF	VE 36*	1233	0,281
1084.2	0.126	913.7	0.081	4040		1204	0.280
1191.7	0.143	1052.9	0.098	1242	0.122	1180	0,269
1308.7	0.163	1177.2	0.112	1290	0.128	1149	0,264
1375.7	0.173	1318, 2	0.135	1337	0.134 0.143	1125	0.260
		1405.2	0.146	1387 1431	0.143	1093	0,253
CURV	E 27			1481	0.149	1063	0.248
412	0.043	CURV	/E 32*	1540	0.165	1034	0.242
545	0.052	407.2	0.034	1340	0.100	1004	0.235
675	0.052		0.034	CHE	VE 37*	998	0,236
797	0.081	590.2	0.055	_			
909	0.096	767.0	0.066	1045	0.122		
1007	0.111	889.2	0.000	1083	0.125		
1131	0.129	1159.2	0.113	1140	0.131		
1255	0.148	1283.2	0.130	1201	0.135		
1373	0.172	1374.2	0.142	1258	0.139		
20.0	0.2.2	10,11,1	0.212	1311	0.143		
CURV	E 28*	CURV	/E 33	1366	0.150		
				1475	0.158		
410	0.038	1002.4		1539	0.165		
553	0.050	1169.2	0.112	CUE	VE 38*		
646	0.061	CHDI	TE 04		VE 38		
768	0.073 0.088	CURV	/ E 34	1535	0.167		
892 990	0.100	1054	0.118	1480	0.156		
1114	0.100	1089	0.123	1429	0.150		
1244	0.139	1145	0.128	1385	0.143		
1244	0.133	1209	0.132	1333	0.136		
CHRV	E 29≠	1263	0.136	1284	0.131		
		1315	0.142	1237	0.124		
1378	0.163	1374	0.147	1184	0.117		
1273	0.144	14 26	0.158	1131	0.110		
		1538	0.165	1097	0.105		
CURV	E 30						
429.2	0.056	CURY	/E 35 *	CUR	VE 39*		
520.2	0.063	1539	0.165	1239	0,124		
648.2	0.073	1481	0.156	1286	0.130		
763.2	0.082	1431	0.149	1333	0.136		
919.2	0.097	1387	0.143	1385	0.144		
1054.2	0.112	1335	0.135	1429	0.150		
1198.2	0.128	1290	0.128	1480	0.156		
1307.7	0.139	1243	0.122	1541	0.164		
1401.2	0.147	1188	0.115				

 $T \in T \in T$

Not shown on plot

SPECIFICATION TABLE NO. 252 NORMAL SPECTRAL EMITTANCE OF TUNGSTEN

Curve No.	Ref. No.	Year	Temperature K	Wavelength Range, μ	Geometry θ'	Reported Error,%	Composition (weight percent), Specifications and Remarks
I	112	1963	1605	0. 4-5. 0	~0°		Polished single crystal tungsten; measured in argon (1140 mm Hg) along 002 crystal plane; data extracted from smooth curve.
2	112	1963	2140	0.4-5.0	~0°		Above specimen and conditions.
3	112	1963	2639	0, 4-5, 0	~0°		Above specimen and conditions.
4	112	1963	2650	0.4-5.0	~0°		Above specimen and conditions.
5	113	1961	1830	0, 5-3, 5	~0°		Measured in argon (760 mm Hg); data extracted from smooth curve.
6	113	1961	2040	0. 5-3. 5	~0°		Above specimen and conditions.
7	113	1961	1316	1. 10-3. 47	~0°		Trace of surface oxidation observed; measured in vacuum.
8	113	1961	1340	1. 12-3. 48	~0°		Above specimen and conditions.
9	113	1961	1382	1. 13-4. 04	~0°		Above specimen and conditions except measured in argon (760 mm Hg).
10	113	1961	1429	1. 16-3. 48	~0°		Above specimen and conditions.
11	86	1961	523	2. 00-15. 00	~0°	±5	As received; data extracted from smooth curve.
12	86	1961	773	1. 00-15. 00	~0°		Different sample, same as curve 11 specimen and conditions.
13	86	1961	1023	1. 00-15. 00	~0°	±5	Different sample, same as curve 11 specimen and conditions.
14	95	1963	1600	0. 50-4. 00	~0°		99.9 W from Carbide Specialty Co.; polished with carbide paper of 240, 400, and 600 grit, respectively, and then with silk cloth and felt cloth; washed in acetone, then alcohol, and dried with dry nitrogen; data extracted from smooth curve.
15	95	1963	2000	0.40-4.00	~0°		Above specimen and conditions.
16	95	1963	2800	0.40-4.00	~0°		Above specimen and conditions.
17	95	1963	3100	0.40-4.00	~0°		Above specimen and conditions.
18	114	1954	1600	0. 25-2. 60	~0°	0. 1	0.014-0.015 Fe, 0.004-0.008 Si, 0.001-0.003 Mn, 0.0003-0.0006 Mg, W balance; heated at 2400 K, treated in hydrogen, annealed at 2400 K for 100 hrs; measured in vacuum $(5 \times 10^{-6} \text{ mm Hg})$; data extracted from smooth curve.
19	114	1954	1800	0, 25-2, 60	~0°	0.1	Above specimen and conditions.
20	114	1954	2000	0. 25-2. 60	~0°	0. 1	Above specimen and conditions.
21	114	1954	2200	0, 25-2, 60	~0°	0. 1	Above specimen and conditions.
22	114	1954	2400	0. 25-2. 60	~0°	0. 1	Above specimen and conditions.
23	114	1954	2600	0, 25-2, 60	~0°	0. 1	Above specimen and conditions except measured in argon (500 mm Hg).
24	114	1954	2800	0, 25-2, 60	~0°	0. 1	Above specimen and conditions.
25	115	1959	1600	0. 310-0. 800	~0°		Better than 99. 99 percent pure; heated at 2750 K for $1/2$ hr in vacuum, then annealed at 2500 K for 30 hrs, at 2800 K for $1/2$ hr, and at 2500 K for 20 hrs; measured in vacuum $(3 \times 10^{-9} \text{ to } 9.5 \times 10^{-9} \text{ mm Hg})$.

Above specimen and conditions.

Reported

Error, %

Geometry

٩¹

~0°

~n°

~0°

Curve

No.

26

27

28

48

49

50

227

227

227

1964

1964

1964

702

870

1039

1.5-10

1.5-10

1.5-12

~0°

~0°

~0°

Ref.

No.

115

115

115

Year

1959

1959

1959

Temperature

1800

2000

2200

Wavelength

Range, u

0.310-0.800

0.310-0.800

0.310-0.800

Composition (weight percent), Specifications and Remarks

Impurities < 40 ppm; as received; surface roughness 1.5 microinches rms before emittance test, 2.4 microinches rms after emittance; preheated in vacuum for 2 hrs; measured in vacuum (7 x 10⁻⁵ mm Hg); [Author's designation: Sample 1].

	29	115	1959	2400	0. 310-0. 800	~0°		Above specimen and conditions.
	30	12	1962	1200	0. 50-12. 00	~0°	±3	Measured in vacuum ($<10^{-7}$ mm Hg).
	31	12	1962	1428	0.50-12.00	~0°	±3	Above specimen and conditions.
	32	12	1962	1972	0.45-7.00	~0°	±3	Above specimen and conditions.
	33	241	1963	1660	1.10-1.70	0	<1	Single crystal; oriented so that surface of interest coincided with closed packed plane; optically polished; heated at several hundred degrees above temperature of interest in $90 \text{ Ar} + 10 \text{ H}$ atm; computed from optical constants.
	34	241	1963	1790	0.9-1.7	0°	<1	Above specimen and conditions.
ယ	35	241	1963	1950	0.90-1.70	0°	<1	Above specimen and conditions.
O1	36	241	1963	2050	0.90-1.70	0°	<1	Above specimen and conditions.
	37	227	1964	693	1. 5-10	~0°		Impurities < 40 ppm; grit blasted; surface roughness 17 microinches rms, 21 microinches rms after emittance test; preheated in vacuum at 1000 K for 0.5 hr; measured in vacuum (8 x 10^{-5} mm Hg); [Author's designation: Sample 2].
	38	227	1964	860	1.5-12	~0°		Above specimen and conditions.
	39	227	1964	1033	0.65-12	~0°		Above specimen and conditions.
	40	227	1964	1200	0.65-12	~0°		Above specimen and conditions.
	41	227	1964	1373	0.65-12	~0°		Above specimen and conditions.
	42	227	1964	1603	0.65-4	~0°		Above specimen and conditions.
	43	227	1964	698	1.5-10	~0°		Above specimen and conditions except second temperature cycle.
	44	227	1964	860	1. 5-10	~0°		Above specimen and conditions.
	45	227	1964	1029	1-12	~0°		Above specimen and conditions.
	46	227	1964	1196	1-12	~0°		Above specimen and conditions.
	47	227	1964	1378	1. 5-4	~0°		Above specimen and conditions.

Curve No.	Ref. No.	Year	Temperature K	Wavelength Range, μ	Geometry θ'	Reported Error,%	Composition (weight percent), Specifications and Remarks
51	227	1964	1208	0.65-12	~0°		Above specimen and conditions.
52	227	1964	1378	0.65-4	~0°		Above specimen and conditions.
53	227	1964	1603	0.65-4	~0°		Above specimen and conditions.
54	227	1962	692	2-10	~0°		Impurities < 40 ppm; grit blasted; surface roughness 110 microinches rms before emittance test, 38 microinches after emittance test; preheated in vacuum at 1000 K for 0.5 hr; measured in vacuum (5 x 10 $^{-5}$ mm Hg); $\omega' = 3.4 \times 10^{-4}$ sr.; [Author's designation: Sample 3].
55	227	1964	863	1.5-12	~0°		Above specimen and conditions.
56	227	1964	1040	1.5-12	~0°		Above specimen and conditions.
57	227	1964	1214	0.65-12	~0°		Above specimen and conditions.
58	227	1964	1383	0.65-12	~0°		Above specimen and conditions.
59	227	1964	699	1.5-10	~0°		Above specimen and conditions.
60	227	1964	529	1, 5-10	~0°		Above specimen and conditions.
61	227	1964	700	1.5-12	~0°		Above specimen and conditions.
62	227	1964	858	1.5-12	~0°		Above specimen and conditions.
63	227	1964	1198	0.65-12	~0°		Above specimen and conditions,
64	227	1964	1358	0.65-12	~0°		Above specimen and conditions.
65	76	1962	1600	0.50-4.00	~0°		Prepared from micronized powder; hot pressed at >2273 K; sintered, polished, etched, then degassed by heating to~973 K; measured in argon; data extracted from smooth cur
66	76	1962	2000	0.40-4.00	~0°		Above specimen and conditions.
67	76	1962	2800	0.40-4.00	~0°		Above specimen and conditions.
68	76	1962	3100	0.40-4.00	~0°		Above specimen and conditions.
69	239	1959	1429	1.157-3.486	~0°	5	Highly polished; measured in argon.
70	239	1959	1382	1.127-4.038	~0°	5	Different sample, same as above specimen and conditions.
71	239	1959	1340	1.120-3.485	~0°	5	Different sample, same as above specimen and conditions.
72	239	1959	1316	1,096-3,459	~0°	5	Different sample, same as above specimen and conditions.
73	237	1965	1800	0.467-0.698	~0°		Chemically pure; measured in vacuum; authors assumed \in = 1- ρ and computed ρ from optical constants.
74	237	1965	2150	0.467-0.698	~0°		Above specimen and conditions.
75	237	1965	2520	0.467-0.698	~0°		Above specimen and conditions.

Curve No.	Ref. No.	Year	Temperature K	Wavelength Range, µ	Geometry 9'	Reported Error,%	Composition (weight percent), Specifications and Remarks
76	338	1965	1244	1.00-5.10	0°		Ribbon; black body (at 1336 K) used as reference standard.
77	338	1965	1339	1.00-5.10	0°		Above specimen and conditions.
78	338	1965	14 13	1.00-5.10	0°		Above specimen and conditions.
79	338	1965	1629	1.00-5.10	0°		Above specimen and conditions.
80	338	1965	1833	1.00-5.10	0°		Above specimen and conditions.
81	338	1965	2002	1.00-5.10	0°		Above specimen and conditions.
82	338	1965	2160	1.00-5.10	0°		Above specimen and conditions.
83	338	1965	2327	1.00-5.10	0.0		Above specimen and conditions.
84	338	1965	2441	1.00-5.10	0 °		Above specimen and conditions.
85	323	1966	300	0.46-2.00	0°		Filament (0.25-0.32 mm in dia); baked for 1 hr at 798 K in vacuum, cooled, heated for 5-10 min in vacuum, and cooled; measured in argon (600 mm Hg); data calculated from optical constants.
86	323	1966	1100	0.45-2.00	0.		Above specimen and conditions.
87	323	1966	1500	0.46-2.00	0°		Above specimen and conditions.
88	323	1966	2000	0.46-2.00	0°		Above specimen and conditions.
89	323	1966	2500	0.46-2.00	0°		Above specimen and conditions.
90	331	1917	2143	0.3478-0.5641	~0°	5	Measured in nitrogen; data is mean of three or more measurements.
91	333	1962	1600	0.230-0.269	~0°		Tungsten ribbon; data extracted from smooth curve
92	333	1962	1800	0.229-0.270	~0°		Above specimen and conditions.
93	333	1962	2000	0.229-0.271	~0°		Above specimen and conditions.
94	333	1962	2200	0.231-0.268	~0°		Above specimen and conditions.
95	333	1962	2400	0.231-0.268	~0°		Above specimen and conditions.
96	333	1962	2600	0.231-0.269	~0°		Above specimen and conditions.
97	333	1962	2800	0.229-0.268	~0°		Above specimen and conditions.

DATA TABLE NO. 252 NORMAL SPECTRAL EMITTANCE OF TUNGSTEN

[Wavelength, λ , μ ; Emittance, \in ; Temperature, T, K]

λ	€	λ	€	λ	€	λ	€	λ	€	λ	€	λ	€	λ	€
	RVE 1 = 1605	CURVE	2 4 (cont.)	CURVE	7 (cont.)	CURVE	10 (cont.)	CURVE :	12 (cont.)	CURVE	14 (cont.)	CUR'	VE 17 3100	CURVE	18 (cont.)
0. 4	0. 478	2. 0 3. 0	0. 308 0. 270	3. 12 3. 35	0. 156 0. 155	2. 17 2. 43	0. 246 0. 235	11. 25 12. 00	0, 135 0, 140	1. 50 2. 00	0. 280 0. 208*	0. 40	0. 472*	2.40 2.60	0. 176 0. 164
0. 6 0. 8	0. 455 0. 427	4. 0 5. 0	0. 250 0. 243	3.47	0. 150≄	2, 93 3, 12	0. 200 0. 195	13. 00 14. 50	0. 160 0. 175	2. 50 3. 00	0. 184 0. 163*	0.50 0.60	0, 458 0, 442*		VE 19*
0. 9 1. 0	0. 410 0. 390	CU	RVE 5	CUI T =	RVE 8 1340	3. 48	0. 190	15. 00	0. 170	4. 00	0. 130	0. 70 0. 80	0. 426 0. 412*		1800
2. 0 3. 0	0.210 0.147		= 1830	1. 12	0.390	CUR T =	VE 11 523	CURV T = 1	/E 13 1023	CUR T =	<u>VE 15</u> 2000	0, 90 1, 00	0.396* 0.380*	0. 25 0. 27	0. 442 0. 471
4. 0 5. 0	0. 123 0. 113	0, 5 1, 0	0. 450 0. 380*	1, 45 1, 70	0.300 0.260	2. 00	0. 130	1. 00	0. 590	0. 40	0. 510	1. 50 2. 00	0.318 0.290	0. 30 0. 32	0. 478 0. 476
	TRVE 2	1. 5 2. 0	0. 295 0. 218	2, 00 2, 22	0. 220 0. 208	2.50 3.00	0. 100 0. 085	1. 20 1. 40	0. 675 0. 700	0. 50 0. 60	0. 488 0. 466	2.50 3.00	0. 272 0. 262	0, 35 0, 37	0. 476 0. 479
_	= 2140	2. 5 3. 0	0. 170 0. 146	2. 42 2. 92	0. 195 0. 165*	3, 50 4, 00	0. 070 0. 060	1. 50 2. 00	0. 710 0. 700	0. 70 0. 80	0. 445 0. 425*	4.00	0. 252	0. 40 0. 45	0. 478 0. 470
0. 4 0. 6	0, 470 0, 445	3. 5	0. 138	3. 13 3. 48	0. 164 0. 156	4, 50 6, 00	0. 050 0. 040	2. 50 3. 50	0. 720 0. 775	0. 90 1. 00	0.404 0.381*	CUR T =	VE 18 1600	0. 50 0. 55	0. 466 0. 460
0. 8 1. 0 2, 0	0. 422 0. 387 0. 237	<u>C 0</u> T :	RVE 6 = 2040	<u>ក្</u> ពុបា	RVE 9 = 1382	9, 50 12, 75	0.040 0.035	4. 50 5. 00	0. 805 0. 825	1. 42 1. 50	0. 306* 0. 282*	0. 25	0.448	0. 60 0. 65	0. 452 0. 446
3. 0 4. 0	0. 177 0. 150	0. 5 1. 0	0. 440 0. 365	1. 13	0. 382	14, 50 15, 00	0.030 0.020	6. 00 6. 50	0. 800 0. 805	2, 00 2, 50	0. 236** 0. 220	0. 27 0. 30	0. 476 0. 482	0. 70 0. 75	0. 440 0. 434
5. 0	0. 145	1. 5 2. 0	0. 293 0. 244	1, 55 1, 62	0. 310 0. 285	CUR	VE 12 = 773	7. 25 8. 00 9. 50	0. 845 0. 880 0. 865	3. 00 4. 00	0. 204* 0. 180*	0. 32 0. 35 0. 37	0. 478 0. 479 0. 482	0. 80 0. 90 1. 00	0. 426 0. 406 0. 386
CT T	JRVE 3 = 2639	2. 5 3. 0	0. 195 0. 165	1. 70 1. 85	0. 263 [‡] 0. 255	1, 00	0, 960	10. 00 11. 00	0. 835 0. 610	CUR	VE 16 2800	0. 40 0. 42	0. 481 0. 478	1, 00 1, 20 1, 27	0. 345 0. 328
0. 4	0. 455	3. 5	0. 150	1. 94 2. 14	0. 250 0. 228	1. 05 1. 20	0, 900 0, 850	11. 50 12. 00	0. 560 0. 550	0, 40	0, 478*	0. 45 0. 50	0. 474 0. 469	1. 35 1. 50	0. 312 0. 284
0. 6 0. 8	0. 430 0. 403	<u>CU</u> T	RVE 7 = 1316	2. 25 2. 4 3	0. 221 0. 225	1. 50 2. 00	0.815 0.830	12. 75 13. 50	0. 580 0. 580	0. 50 0. 60	0. 467 0. 450	0. 55 0. 60	0. 464 0. 456*	1, 60 1, 80	0, 269 0, 242
1. 0 2. 0	0. 375 0. 258	1. 10	0. 465	2. 68 2. 92	0. 193 0. 185	2.50 3.00	0.820 0.800	14.50 15.00	0. 570 0. 550	0. 70 0. 80	0.430 0.412	0.65 0.70	0. 450 0. 444*	2. 40 2. 60	0. 187 0. 175
3. 0 4. 0	0. 205 0. 183	1. 27 1. 47	0. 345 0. 290	3. 12 3. 33	0. 183 0. 175	3. 50 4. 00	0.805 0.810	CUR	VE 14	0. 90 1. 00	0. 393 0. 367	0. 75 0. 80	0. 438 0. 432	CUF	VE 20
5. 0	0. 180	1. 67 1. 86	0. 260 0. 225	3. 62 3. 84	0. 172 0. 170	4. 50 4. 75	0. 765 0. 715	_	1600	1. 42 1. 50	0. 306* 0. 294*	0. 90 1. 00	0. 412* 0. 390*	_	= 2000
	JRVE 4 = 2650	2. 05 2. 24	0. 208 0. 195	4.04	0. 169	5. 00 5. 50	0. 650 0. 560	0. 50 0. 60	0. 500 0. 478	2.00 2.50	0. 267 0. 252	1, 20 1, 27	0. 344 0. 328	0. 25 0. 27	0. 436 0. 466
0. 4 0. 5	0. 433 0. 430	2. 40 2. 50 2. 70	0. 185 0. 175		VE 10 = 1429	6. 00 7. 00	0. 480 0. 360	0. 70 0. 80	0. 457 0. 437	3. 00 4. 00	0. 240 0. 228	1. 35 1. 50	0.310 0.280*	0. 30 0. 32	0. 470 0. 472
0. 5 0. 6 0. 8	0. 430 0. 425 0. 405	2. 70 2. 82 2. 97	0. 174 0. 167	1. 16	0.37 <i>3</i>	7. 75 9. 00	0. 305 0. 200	0. 90 1. 00	0, 415 0, 390*			1. 60 1. 80	0. 263 0. 234	0. 35 0. 37	0. 473 0. 476
1. 0	0. 383	2. 97 3. 10	0. 165 0. 160	1, 68 1, 99	0. 299 0. 263	10. 00 10. 75	0. 150 0. 150	1, 15 1, 42	0. 360 0. 306			2. 00 2. 20	0, 210* 0, 190	0, 40 0, 45	0. 474* 0. 467

^{*} Not shown on plot

DATA TABLE NO. 252 (continued)

The second second

λ	€	λ	€	λ	€	λ	€	λ	€	λ	€	λ	€	λ	€
	20 (cont.)		VE 22 2400	CURVE	23 (cont.)	CURVE	25 (cont.)	CURVE	26 (cont.)	CURVE	27 (cont.)	CURVE	29 (cont.)	CURVE	30 (cont.)
		_		1.00	0.360	0,340	0.481	0, 520	0.453	0.740	0.422	0.340	0. 472	6. 45	0.065
0.50	0. 462	0.25	0.422	1. 20	0.339	0.360	0.480	0.540	0.451	0. 760	0.420	0.350	0, 472	7, 20	0.060
0. 55	0.456	0.27	0. 456	1. 32	0.328	0.370	0, 479*	0.460	0.449	0.780	0.418	0.360	0.471	7.60	0.060
0. 60	0. 448 [÷]	0.30	0.465	1.40	0.317	0.380	0.477**	0.580	0.447	0, 800	0.416	0.370	0.470	8, 90	0.060
0. 65	0.442	0.32	0. 465	1. 50	0.299	0.390	0, 475	0.600	0.444			0. 380	0.469	10.00	0.060
0. 75	0. 428	0.35	0.467	1.60	0.288	0.400	0.473 [‡]	0.620	0,441	CURY	/E 28*	0.390	0.467	11.00	0.060
0. 80	0. 420 [*]	0.37	0, 470	1.80	0. 268	0.420	0.469	0.640	0.438	T =		0.400	0, 466	12.00	0.060
0.90	0. 400*	0.40	0. 468 [#]	2.40	0. 224	0.440	0.465	0.660	0.436			0.420	0.463		
1. 00	0.382*	0.45	0.460	2. 60	0.214	0.460	0.462	0.680	0. 435	0.310	0.471	0.440	0, 459	CUR	VE 31
1. 20	0. 342*	0.50	0. 455≉			0.480	0.459	0.700	0.433	0.320	0.473	0.460	0.456	T =	1428
1. 27	0. 328**	0. 55	0. 450		VE 24	0.500	0.457*	0.720	0.429	0.330	0.474	0.480	0.452		
1. 35	0. 313*	0.60	0.440 [#]	T =	2800	0.520	0.455	0.740	0.426	0.340	0.474	0. 500	0.449	0, 50	0, 456*
1. 50	0. 288*	0.65	0. 434			0.540	0. 453**	0.760	0.423	0.350	0.474	0.520	0. 446	0.60	0. 445*
1. 60	0. 273	0.70	0.428*	0.25	0.410	0.560	0.452	0.780	0.421	0.360	0.473	0,540	0.443	0.70	0.428*
1.80	0. 247	0. 75	0.418	0. 27	0.445	0, 580	0.450	0.800	0.419	0.370	0.472	0.560	0.441	1, 00	0.380*
2, 40	0. 196*	0.80	0. 409*	0.30	0.456	0.600	0.447			0.380	0.471	0.580	0.437	1.50	0.275
2. 60	0. 187	0.90	0.396*	0.32	0.457	0.620	0.445	CUR	VE 27*	0.390	0.469	0.600	0.434	2.00	0. 225*
		1. 00	0. 373 [‡]	0.35	0.461	0.640	0. 442*	T =	2000	0.400	0, 468	0.620	0.430	2, 50	0. 155
CUR	VE 21*	1, 20	0. 339	0.37	0.463	0.660	0.441			0.420	0.464	0.640	0.426	3.00	0. 125
T =	2200	1. 32	0.328	0.40	0.461	0.680	0.440*	0.310	0.474	0, 440	0.461	0.660	0.424	3. 50	0. 110
		1. 40	0.313	0.45	0. 454 [*]	0.700	0.437	0. 320	0.476	0.460	0.457	0.680	0.421	3.75	0. 100
0. 25	0.430	1, 50	0. 288*	0.50	0. 448 [‡]	0.720	0.434	0.330	0.477	0.480	0. 454	0.700	0.419	4.50	0.090
0. 27	0.460	1.60	0. 273	0.55	0.443	0.740	0.430	0.340	0.477	0.500	0, 451	0.720	0.417	5. 65	0.085
0. 30	0.470	1.80	0. 247*	0.60	0.434	0.760	0.427*	0.350	0.476	0.520	0. 44 8	0.740	0.415	7.00	0.080
0. 32	0. 468	2.40	0. 196 ²²	0. 65	0.427	0.780	0.424	0.360	0.475	0.540	0.446	0.760	0.413	8. 00	0.080
0. 35	0.470	2.60	0. 185 [‡]	0.70	0.419	0.800	0. 422*	0.370	0.474	0, 560	0.443	0.780	0.412	9.00	0. 080
0. 37	0.473			0.75	0.410			0.380	0. 473	0.580	0.440	0.800	0.411	10.00	0.080
0. 40	0.470	CUR	VE 23 [™]	0.80	0.400	CUR	VE 26*	0.390	0.471	0.600	0.437			11.00	0.080
0. 45	0. 464	T =	2600	0.90	0.373	T =	1800	0.400	0.469	0,620	0.433	CUR	VE 30	12.00	0.080
0.50	0. 458			1.00	0. 367*			0.420	0.466	0.640	0. 430	T =	1200		
0. 55	0. 453	0. 25	0.416	1. 20	0. 337≈	0.310	0.476	0.440	0.462	0.660	0.428				VE 32
0.60	0. 444	0, 27	0.450	1. 32	0. 328 [#]	0.320	0.479	0.460	0. 459	0.680	0.426	0. 50	0.465*	T =	= 1972
0.65	0. 438	0. 30	0.460	1. 35	0.318	0.330	0.480	0.480	0.456	9.700	0.424	0.66	0.450*		
0. 70	0. 432	0. 33	0.461	1. 50	0.302	0.340	0.479	0.500	0. 453	0.720	0.421	0. 70	0. 445*	0. 45	0. 455*
0. 75	0. 423	0.35	0. 466	1. 60	0. 292	0.350	0.479	0, 520	0.450	0.740	0.419	1. 00	0. 380*	0.50	0.446*
0. 80	0.414	0.40	0.464	1.80	0.271	0, 360	0.478	0.54^{0}	0.448	0.760	0.416	1. 80	0.210	0. 55	0. 444 [‡]
0. 90	0. 396	0.45	0. 457	2.40	0. 233*	0, 370	0. 476	0.569	0, 446	0.780	0.415	2, 50	0. 140	0.60	0. 440*
1, 00	0.377	0.50	0.451	2.60	0. 224	0.380	0.475	0.580	0. 443	0.800	0.413	2. 75	0. 125	0.65	0. 433*
1. 20	0. 340	0. 55	0.446			0. 390	0.473	0.600	0.440		4.	3.00	0. 110	0.70	0.423*
1. 32	0. 328	0.60	0.438		VE 25	0.400	0.471	0.620	0. 437		VE 29 [≠]	3, 25	0. 100	0.80	0. 410*
1. 50	0. 284	0. 65	0.430	T =	1600	0.420	0.467	0.640	0. 434	T =	2400	3. 50	0. 090	1, 50	0. 275*
1. 60	0. 278	0.70	0. 423			0.440	0.463	0.660	0.432			3, 90	0.085	2, 00	0. 225*
1. 80	0. 255	0. 75	0.414	0.310	0.479	0.460	0.460	0.680	0. 430	0.310	0.468	4. 50	0.075	2, 50	0. 175*
2.40	0. 205	0. 80	0. 404	0. 320	0.482	0.480	0.457	0.700	0.428	0.320	0.471	5.00	0. 075	3. 00	0. 155
2. 60	0. 195	0. 90	0. 388	6.330	0.482	0. 500	0.455	0, 720	0.425	0.330	0.472	5. 90	0. 070	3. 50	0. 145

^{*} Not shown on plot

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{\text{CURVE 71(cor)}}{\text{T} = 1340}$	$\frac{\text{CUR}}{\text{T}}$	VE 75*								\in
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					76 (cont.)	CURVE	77 (cont.)*	CURVE	78(cont.)*	CURVE	79/cont.)*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		* =	2520	T =	1244	T =	1339	T =	1413	T =	1629
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.420 0.	93 0.467	0.454	4.00	0.063	2 00	0.000				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.919 0.		0.452	4.20		3.80	0.076	3.60	0.089	3.40	0.114
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3, 121 0.		0.446	4.40	0.058	4.00	0.071	3.80	0.083	3.60	0.107
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.485 0.		0.441	4.60	0.053	4.20	0.066	4.00	0.077	3.80	0.100
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.654	0.429		0.049	4.40	0.061	4.20	0.072	4.00	0.094
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CURVE 72*	0.698	0.423	4.80	0.045	4.60	0.057	4.40	0.067	4.20	0.088
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	T = 1316	0.030	0.420	5.00	0.041	4.80	0.053	4.60	0.062	4.40	0.083
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 = 1010	CITE	VE 76	5.10	0.039	5.00	0.048	4.80	0.058	4.60	0.078
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.096 0.	GA T	VE 76 1244			5.10	0.047	5.00	0.054	4.80	0.074
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.264 0.3		1244		VE 77*			5.10	0.052	5.00	0.070
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0 400	T =	1339		7E 78*			5.10	0.068
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0.402			T =	1413	CURY	VE 79*	0.10	0.000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			0.389	1.00	0.398			T =		CHRY	VE 80*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.860 0.3		0.373	1.05	0.385	1.00	0.396			T =	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.049 0.1		0.360	1.10	0.369	1.05	0.382	1.00	0.388	1 =	1000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2,231 0,		0.345	1.15	0.358	1.10	0.368	1.05	0.377	1.00	0 000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.389 0.		0.333	1.20	0.344	1.15	0.357	1. 10	0.364		0.382
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.539 0.		0.318	1.24	0.333	1.20	0.343	1. 15	0.354	1.05	0.372
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2,694 0.		0.305	1.30	0.319	1.24	0.333	1. 20	0.342	1.10	0.361
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.823 0.1	67 1.40	0.292	1,35	0.306	1.30	0.320			1. 15	0.352
$ \begin{array}{c} 2,00 & 0.240 & 1.551 & 0.302 \\ 2,50 & 0.220 & 1.615 & 0.286 \\ 4,00 & 0.180 & 1.693 & 0.272 \\ \hline & 1.846 & 0.255 \\ \hline \frac{CURVE 67^{\times}}{T=2800} & 2.135 & 0.229 \\ 0.40 & 0.480 & 2.422 & 0.224 \\ 0.50 & 0.460 & 2.685 & 0.191 \\ 0.70 & 0.425 & 2.919 & 0.184 \\ 0.90 & 0.390 & 3.128 & 0.181 \\ 1.21 & 0.330 & 3.335 & 0.173 \\ 1.50 & 0.295 & 3.627 & 0.171 \\ 2.00 & 0.260 & 3.843 & 0.170 \\ 3.00 & 0.220 \\ \hline \end{array} $	2.970 0.	65 1.45	0.280	1.40	0.294	1.35	0.308	1.24	0.333	1.20	0.342
2,50 0.220 1.615 0.286 4,00 0,180 1.693 0.272 1.846 0.255 2.135 0.229 2.239 0.223 0.40 0.480 2.422 0.224 0.50 0.460 2.685 0.191 0.70 0.425 2.919 0.184 0.90 0.390 3.128 0.181 1.21 0.330 3.335 0.173 1.50 0.295 3.627 0.171 2.00 0.260 3.843 0.170 3.00 0.231 4.038 0.169 4.00 0.220	3.092 0.1	58 1.50	0.269*	1.45	0.283	1.40	0.296	1.30	0.321	1.24	0.333
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.220 0.1	54 1.55	0.259	1.50	0.272	1.45		1.35	0.311	1.30	0.322
CURVE 67* 1.846 0.255 T = 2800 2.135 0.229 2.135 0.229 2.239 0.223 0.40 0.480 2.422 0.224 0.50 0.460 2.685 0.191 0.70 0.425 2.919 0.184 0.90 0.390 3.128 0.181 1.21 0.330 3.335 0.173 1.50 0.295 3.627 0.171 2.00 0.260 3.843 0.170 3.00 0.231 4.038 0.169 4.00 0.220	3.340 0.		0.249	1.55	0.262		0.286	1.40	0.301	1.35	0.313
$\begin{array}{c ccccc} CURVE & 67^{\circ} & 1.934 & 0.252 \\ \hline T = 2800 & 2.135 & 0.229 \\ 2.239 & 0.223 \\ 0.40 & 0.480 & 2.422 & 0.224 \\ 0.50 & 0.460 & 2.685 & 0.191 \\ 0.70 & 0.425 & 2.919 & 0.184 \\ 0.90 & 0.390 & 3.128 & 0.181 \\ 1.21 & 0.330 & 3.335 & 0.173 \\ 1.50 & 0.295 & 3.627 & 0.171 \\ 2.00 & 0.260 & 3.843 & 0.170 \\ 3.00 & 0.221 & 4.038 & 0.169 \\ 4.00 & 0.220 & & \\ \hline & CURVE & 71^{*} \\ \end{array}$	3,459 0.		0.240	1.60		1.50	0.275	1.45	0.292	1.40	0.304
$\begin{array}{c ccccc} CURVE & 67^{\circ} & 1.934 & 0.252 \\ \hline T = 2800 & 2.135 & 0.229 \\ 2.239 & 0.223 \\ 0.40 & 0.480 & 2.422 & 0.224 \\ 0.50 & 0.460 & 2.685 & 0.191 \\ 0.70 & 0.425 & 2.919 & 0.184 \\ 0.90 & 0.390 & 3.128 & 0.181 \\ 1.21 & 0.330 & 3.335 & 0.173 \\ 1.50 & 0.295 & 3.627 & 0.171 \\ 2.00 & 0.260 & 3.843 & 0.170 \\ 3.00 & 0.221 & 4.038 & 0.169 \\ 4.00 & 0.220 & & \\ \hline & CURVE & 71^{*} \\ \end{array}$		1.70	0.231		0.253	1,55	0.265	1.50	0.282	1.45	0.296
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CURVE 73*	1.75	0.222	1.65	0.244	1.60	0.256	1.55	0.274	1.50	0.288
2,239 0,223 0,40 0,480 2,422 0,224 0,50 0,460 2,685 0,191 0,70 0,425 2,919 0,184 0,90 0,390 3,128 0,181 1,21 0,330 3,335 0,173 1,50 0,295 3,627 0,171 2,00 0,260 3,843 0,170 3,00 0,231 4,038 0,169 4,00 CURVE 71*	T = 1800	1.80		1.70	0.236	1.65	0.248	1.60	0.265	1.55	0.280
0,40 0,480 2,422 0,224 0,50 0,460 2,685 0,191 0,70 0,425 2,919 0,184 0,90 0,390 3,128 0,181 1,21 0,330 3,335 0,173 1,50 0,295 3,627 0,171 2,00 0,260 3,843 0,170 3,00 0,231 4,038 0,169 4,00 0,220 CURVE 71*	1 = 1000		0.214	1.75	0.227	1.70	0.240	1.65	0.257	1.60	0.273
0,50 0,460 2,685 0,191 0,70 0,425 2,919 0,184 0,90 0,390 3,128 0,181 1,21 0,330 3,335 0,173 1,50 0,295 3,627 0,171 2,00 0,260 3,843 0,170 3,00 0,231 4,038 0,169 4,00 0,220	0.467 0.4	1.85	0.206	1.80	0.219	1.75	0.232	1.70	0.250	1.65	0.266
0.70 0.425 2.919 0.184 0.90 0.390 3.128 0.181 1.21 0.330 3.335 0.173 1.50 0.295 3.627 0.171 2.00 0.260 3.843 0.170 3.00 0.231 4.038 0.169 4.00 0.220			0.198	1.85	0.212	1.80	0.224	1.75	0.242	1.70	0.259
0.90 0.390 3.128 0.181 1.21 0.330 3.335 0.173 1.50 0.295 3.627 0.171 2.00 0.260 3.843 0.170 3.00 0.231 4.038 0.169 4.00 0.220		2100	0.191	1.90	0.204	1.85	0.217	1.80	0.236	1.75	0.252
1.21 0.330 3.335 0.173 1.50 0.295 3.627 0.171 2.00 0.260 3.843 0.170 3.00 0.231 4.038 0.169 4.00 0.220 CURVE 71*	0.548 0.4		0.184	1.95	0.197	1.90	0.209	1.85	0.229	1.80	0.245
1,50 0,295 3,627 0,171 2,00 0,260 3,843 0,170 3,00 0,231 4,038 0,169 4,00 0,220 CURVE 71*	0.578 0.4		0.172	2.00	0.194	1.95	0.203	1.90	0.222	1.85	0.239
2.00 0.260 3.843 0.170 3.00 0.231 4.038 0.169 4.00 0.220 CURVE 71*	0.654 0.4	COLUMN TO THE PARTY OF THE PART	0.161	2.10	0.180	2.00	0.197	1.95	0.217	1. 90	
3.00 0.231 4.038 0.169 4.00 0.220 CURVE 71*	0.698 0.4		0.150	2.20	0.169	2.10	0.186	2.00	0.210	1. 95	0.233
4.00 0.220 CURVE 71*		2.40	0.141	2.30	0.158	2.20	0.175	2.10	0.199		
CURVE 71*	CURVE 74*	2.50	0.133	2.40	0.149	2.30	0.165	2.20	0.189	2.00	0.221
	T = 2150	2.60	0.124	2.50	0.141	2.40	0.156	2.30		2.10	0.211
		2.70	0.117	2.60	0.132	2.50	0. 147		0.180	2.20	0.201
CURVE 68* $T = 1340$	0.467 0.4	63 2.80	0.110	2.70	0.125	2.60	0. 139	2.40	0.171	2.30	0.192
T = 3100	0.499 0.4	60 2.90	0.104	2.80	0.118	2.70	0. 133	2.50	0.163	2.40	0.184
1.120 0.386	0.548 0.4		0.099	2.90	0.112	2.80	0. 132	2.60	0.156	2.50	0.176
0.40 0.470 1.449 0.295	0.578 0.4		0.089	3.00	0.106	2.90		2.70	0.150	2.60	0.169
0.50 0.451 1.696 0.262	0.654 0.4		0.082	3.20			0.119	2.80	0.143	2.70	0.163
0.70 0.420 2.002 0.223	0.698 0.4		0.032	3.40	0.097	3.00	0.114	2.90	0.137	2,80	0.157
0.90 0.390 2.204 0.208		3, 80	0.068		0.090	3.20	0.104	3.00	0.132	2.90	0.154
		0,00	0,000	3,60	0.082	3.40	0.096	3.20	0.122	3.00	0.146
										3.20	0.136

Not shown on plot

DATA TABLE NO. 252 (continued)

λ	E	λ	€	λ	€	λ	€	λ	€	λ	€	λ	€	λ	€
CURV	/E 65*	$\frac{\text{CURVE } 0}{\text{T} = 3}$	38(cont.) *	CURVE 7	71(cont.)*	CURV T = S		CURVE T =	76 (cont.)	CURVE T = 1	77(cont.)*		78(cont.)*		79/cont.)*
1 =	111100	1 = 0	100	1 = 1	.,,40	1 = .	2020	1 = .	1241	1 = -	1333	T = 1	413	T = .	1029
0.50	0.495	1.50	0.320	2.420	0.193	0.467	0.454	4.00	0.063	3.80	0.076	3,60	0.089	3.40	0, 114
0,70	0.450	2.00	0, 291	2.919	0.165	0.499	0.452	4.20	0.058	4.00	0.071	3.80	0.083	3.60	0. 107
0, 90	0.410	3.00	0.260	3, 121	0.164	0.548	0.446	4.40	0.053	4,20	0.066	4.00	0.077	3.80	0. 100
1, 15	0.360	4,00	0.240	3,485	0.159	0,578	0,441	4.60	0.049	4.40	0.061	4, 20	0.072	4.00	0.094
1,50	0.290	-,				0.654	0.429	4.80	0.045	4.60	0,057	4.40	0, 067	4.20	0.088
1,72	0.240	CURV	E 69%	CURV	E 72"	0.698	0.423	5,00	0.041	4.80	0.053	4.60	0.062	4.40	0.083
2,00	0.210	T = 1		T = 1				5.10	0.039	5.00	0.048	4. 80	0, 058	4.60	0.078
2.10	0.200					CURV	/E 76			5.10	0.047	5.00	0.054	4.80	0.074
2,50	0.185	1. 157	0.378	1.096	0.464	T = 3	1244	CURY	/E 77#			5. 10	0.052	5.00	0.070
4.00	0.128	1,676	0.298	1,264	0.345			T =	1339		/E 78≄			5.10	0,068
		1,984	0.261	1. 457	0.290	1.00	0.402			$\overline{T} = \overline{T}$	1413	CURV	Æ 79*		
	/F. 66*	2.164	0.246	1.655	0.259	1.05	0.389	1.00	0.398			T = 3	L629	CUR	VE 80*
T = :	2000	2.416	0.235	1.860	0.224	1, 10	0.373	1.05	0.385	1.00	0.396			T =	1833
		2.929	0.199	2.049	0.206	1, 15	0.360	1, 10	0.369	1.05	0.382	1.00 .	0.388		
0.40	0.505	3, 122	0.194	2.231	0.194	1.20	0.345	1. 15	0.358	1. 10	0.368	1.05	0.377	1.00	0.382
0.50	0.480	3.486	0.189	2.389	0.182	1.24	0.333	1.20	0.344	1.15	0.357	1, 10	0.364	1.05	0.372
0.70	0.440			2,539	0.175	1.30	0.318	1.24	0.333	1.20	0.343	1.15	0.354	1.10	0.361
0.90	0.400	CURV		2,694	0.171	1.35	0.305	1.30	0.319	1.24	0.333	1, 20	0.342	1. 15	0.352
1, 15	0.350	T = 1	1382	2,823	0.167	1.40	0.292	1.35	0.306	1.30	0.320	1.24	0.333	1.20	0.342
1.50	0.290			2.970	0.165	1.45	0.280	1.40	0.294	1.35	0.308	1.30	0.321	1.24	0.333
1.75	0.260	1, 127	0.382	3,092	0.158	1.50	0.269*	1.45	0.283	1.40	0.296	1.35	0,311	1.30	0.322
2.00	0.240	1.551	0.302	3.220	0.154	1.55	0.259	1.50	0.272	1.45	0.286	1.40	0.301	1.35	0.313
2.50	0, 220	1.615	0,286	3.340	0.154	1.60	0.249	1,55	0.262	1,50	0.275	1.45	0.292	1.40	0.304
4.00	0.180	1,693	0.272	3,459	0.150	1,65	0.240	1.60	0.253	1.55	0, 265	1.50	0.282	1.45	0.296
	_	1.846	0.255			1.70	0.231	1.65	0.244	1.60	0.256	1,55	0.274	1.50	0.288
	E 67	1. 934	0.252	CURV		1.75	0.222	1.70	0.236	1.65	0.248	1.60	0.265	1.55	0.280
T = :	2800	2, 135	0.229	T = 1	1800	1.80	0.214	1,75	0.227	1.70	0, 240	1.65	0.257	1.60	0.273
		2,239	0.223			1.85	0.206	1.80	0.219	1.75	0.232	1.70	0, 250	1.65	0.266
0.40	0.480	2.422	0.224	0.467	0.470	1.90	0.198	1.85	0.212	1.80	0.224	1.75	0.242	1.70	0.259
0.50	0.460	2.685	0.191	0.499	0.466	1. 95	0.191	1. 90	0.204	1, 85	0.217	1.80	0.236	1,75	0.252
0.70	0.425	2.919	0.184	0.548	0.460	2.00	0.184	1.95	0.197	1.90	0.209	1.85	0.229	1.80	0.245
0.90	0.390	3. 128	0.181	0.578	0.456	2.10	0.172	2.00	0.194	1. 95	0.203	1. 90	0.222	1.85	0.239
1.21	0.330	3, 335	0.173	0.654	0.445	2, 20	0. 161	2.10	0.180	2.00	0.197	1.95	0.217	1. 90	0.233
1, 50	0.295	3,627	0.171	0.698	0.441	2.30	0.150	2.20	0.169	2.10	0.186	2.00	0.210	1.95	0.227
2.00	0.260	3.843	0.170	O.T.O.T	TD 74×	2.40	0.141	2.30	0.158	2.20	0. 175	2.10	0.199	2.00	0.221
3.00	0.231	4.038	0.169		E 74*	2.50	0. 133 0. 124	2.40	0.149	2.30	0, 165	2, 20	0.189	2.10	0.211
1.00	0.220	0		T = 2	2150	2.60	0. 124	2,50	0.141	2.40	0.156	2.30	0.180	2.20	0.201
C	TE COS		/E 71*	0.405	0.463	2.70	0.117	2.60	0, 132	2.50	0. 147	2.40	0.171	2.30	0. 192
T = :	E 68%	T = 1	1340	0.467 0.499	0.463	2.80	0.110	2.70	0. 125	2.60	0. 139 0. 132	2,50	0.163	2.40	0. 184
(=	0.100	1, 120	0,386	0.499	0.453	2.90 3.00	0. 104	2.80 2.90	0.118 0.112	$2.70 \\ 2.80$	0. 132	2.60	0.156 0.150	2.50	0.176 0.169
0, 13	0.470	1, 120 1, 449	0,300	0.548	0.449	3,00	0.033	3.00	0.112	2.80	0.123	2.70	0. 150	2.60	
2, 50	0.470	1, 449	0, 262	0.654	0.443	3.40	0.082	3.20	0.100	3.00	0.115	2.80 2.90	0. 143	2,70	0.163
2.70	0.420	2.002	0.223	0.698	0.431	3.60	0.032	3.40	0.090	3.20	0.114	3.00	0. 137	2.80	0.157
2, 90	0.390	2.204	0.208	V. 000	0. 101	3, 80	0.068	3, 40	0.082	3.40	0.104	3.20	0. 132	2.90 3.00	0, 154 0, 146
	0.000	2.201	0.20			5,00	0.000	0.00	0.002	0. 10	0.000	0.20	0. 120	3.00	0.146
														3.40	0. 190

Not shown on plot

DATA TABLE NO. 252 (continued)

λ	€	λ	€	λ	€	λ	€	λ	€	λ	€	λ	€	λ	€
CURVE T = 1	80(cont.)* 1833	$\frac{\text{CURVE}}{\text{T} = 2}$	81 (cont.) * 2002	$\frac{\text{CURVE } }{\text{T } = 2}$	82 (cont.)* 2160	$\frac{\text{CURVE}}{T = 2}$	83 (cont.* 1327	$\frac{\text{CURVE } 8}{\text{T} = 2}$	84(cont.)* 441	$\frac{\text{CURV}}{\text{T} = 1}$		$\frac{CURV}{T=2}$		$\frac{\text{CURVE 9}}{\text{T} = 1}$	
3.40	0.128	3.20	0.147	3.00	0.167	2.90	0.179	2.80	0.191	0.46	0,529	0.3478	0.485	0.365	0.477
3.60	0.121	3.40	0.139	3,20	0.157	3.00	0.174	2.90	0.186	0.49	0.519	0.3717	0.495	0.383	0.478
3.80	0.114	3.60	0.132	3.40	0.149	3,20	0.166	3.00	0.181	0.55	0.507	0.3956	0.493	0.450	0.470
4.00	0.108	3.80	0.125	3.60	0.142	3.40	0.157	3,20	0.172	0.61	0.494	0.4196	0.503	0.545	0.461
4.20	0.102	4.00	0.119	3.80	0.135	3.60	0.151	3.40	0.164	0.79	0.450	0.4435	0.470	0.612	0.450
4.40	0.097	4.20	0.113	4.00	0.129	3.80	0.144	3.60	0.158	1.00	0.405	0.4677	0.475	0.731	0.437
4.60	0.092	4.40	0.108	4.20	0.124	4.00	0.139	3.80	0.151	1.19	0.357	0.4916	0.463	0.828	0.423
4.80	0.088	4.60	0.103	4.40	0.119	4.20	0.134	4.00	0.146	1.40	0.315	0.5158	0.453	0.972	0.393
5.00	0.084	4.80	0.099	4.60	0.114	4.40	0.128	4.20	0.140	1.61	0.268	0.5400	0.438	1, 10	0.363
5.10	0.082	5.00	0.095	4.80	0.110	4.60	0.124	4.40	0.136	1.79	0.240	0.5641	0.415	1.27	0.329
		5.10	0.093	5.00	0.106	4.80	0.120	4.60	0.132	2.00	0.208			1.48	0.289
	/E 81*			5.10	0.104	5.00	0.116	4.80	0.127			CURV		1.70	0.254
T = 2	2002	CURY	/E 82™			5.10	0.114	5.00	0.124	CURY	/E 88*	T = 1	600	1.97	0.222
		T =	2160		VE 83#			5.10	0.122	T = 2	2000			2.34	0.191
1.00	0.378			T = 2	2327		/E 84*		05			0.230	0.393	2.70	0.170
1.05	0.369	1.00	0.374			T = 3	2441	CURY		0.46	0.506	0.244	0.438		
1. 10	0.359	1.05	0.366	1.00	0.371			T =	300	0.49	0.503	0.264	0.469		E 93*
1.15	0.351	1. 10	0.357	1.05	0.364	1.00	0.369		00	0.55	0.489	0.280	0.478	T = 2	3000
1.20	0.341	1, 15	0.349	1. 10	0.356	1.05	0.362	0.46	0.583	0.61	0.482	0.299	0.481	0.000	0.054
1.24	0.333	1.20	0.341	1. 15	0.348	1. 10	0.354	0.49	0.560	0.79	0.438	0.335	0.477	0.229	0.374
1.30	0.323	1. 24	0.333	1,20	0.340	1.15	0.347	0.55	0.537	0.99	0.398	0.356	0.479	0.240	0.415
1, 35	0.314	1.30	0.324	1.24	0.333	1,20	0.339	0.61	0.519	1,20	0.360	0.382	0.481	0.259	0.451
1.40	0.306	1, 35	0.316	1.30	0.324	1.24	0.333	0.79	0.506	1.40	0.312	0.452	0.473	0.279	0.468
1.45	0.298	1.40	0.308	1.35	0.317	1.30	0.325	0.99	0.428	1.60	0.270	0.561	0.462	0, 302	0.473
1.50	0.291	1.45	0.301	1.40	0.310	1.35	0.318	1, 19	0.371	1.79	0.250	0.625	0.451	0.323	0.471
1.55	0.284	1.50	0.294	1.45	0.303	1.40	0.312	1.40	0.332	2.00	0.221	0.753	0.439	0.343	0.471
1.60	0.277	1.55	0.287	1.50	0.297	1.45	0.305	1.60	0.262	0.12		0.853	0.424	0.380	0.475
1.65	0.271	1.60	0.280	1.55	0.291	1.50	0.299	1.80	0.175		VE 89*	0.963	0.400	0.450	0.466
1.70	0.264	1.65	0.274	1.60	0.285	1.55	0.294	2.00	0.128	T =	2500	1. 13	0.360	0.553	0.456
1.75	0.257	1.70	0.268	1.65	0,279	1.60	0.288		001			1.27	0.328	0.604	0.448
1.80	0.251	1.75	0.262	1.70	0.273	1.65	0.282		VE 86*	0.46	0.485	1.50	0.282	0.706	0.436
1.85	0.245	1.80	0.251	1.75	0.268	1.70	0.277	T =	1100	0.49	0.484	1.79	0,234	0.807	0.420
1.90	0.239	1.85	0.251	1.80	0.262	1.75	0.272			0.55	0.480	2.14	0.196	0. 939	0.394
1.95	0.234	1.90	0.245	1.85	0.257	1.80	0.266	0.45	0.531	0.61	0.467	2.40	0.176	1.06	0.368
2.00	0.229	1.95	0,241	1.90	0.252	1.85	0.262	0.49	0.526	0.80	0.423	2.69	0.160	1.28	0.328
2.10	0.220	2.00	0,236	1, 95	0.247	1.90	0,257	0.54	0.517	0.99	0.385			1.56	0.281
2.20	0,211	2.10	0.227	2.00	0.243	1.95	0.252	0.61	0.505	1.20	0.352		/E 92*	1.84	0.243
2.30	0.202	2.20	0.218	2,10	0.234	2.00	0.248	0.80	0.467	1.40	0.303	T =	1800	2.09	0.220
2.40	0.194	2.30	0.210	2.20	0.225	2.10	0.239	0.99	0.414	1.60	0.282			2.40	0.198
2.50	0.187	2.40	0.202	2.30	0.217	2.20	0.231	1.19	0.359	1.80	0.262	0.229	0.379	2.71	0.180
2.60	0.180	2.50	0.195	2.40	0.209	2.30	0.223	1.41	0.315	2.00	0.237	0.241	0.424		
2.70	0.173	2.60	0.189	2.50	0.202	2.40	0.216	1.60	0.271			0.258	0.456		
2.80	0.167	2.70	0.183	2.60	0.155	2.50	0.209	1.79	0.217			0.274	0.471		
2.90	0.162	2.80	0.177	2.70	0.189	2.60	0.202	2.00	0.185			0.299	0.477		
3.00	0.157	2,90	0.172	2.80	0.184	2.70	0.196					0.327	0.474		

^{*} Not shown on plot

λ	€	λ	€
	VE 94≠	CURV	E 96≉
	2200	T = 2	600
0.231	0.364	0.231	0.363
0.247	0.427	0.241	0.400
0.264	0.452	0.260	0.437
0.285	0.466	0.283	0.454
0.306	0.469	0.301	0.460
0.331	0.467	0.340	0.462
0.375	0.471	0.377	0.465
0.451	0.463	0.419	0.460
0.553	0.453	0.502	0.450
0.604	0.444	0.567	0.443
0.704	0.432	0.654	0.430
0.807	0.414	0.756	0.413
0.918 1.27 1.60 2.00 2.40 2.68	0. 392 0. 329 0. 279 0. 236 0. 206 0. 191	0.883 1.04 1.27 1.60 2.00 2.41 2.69	0.390 0.364 0.328 0.289 0.250 0.224 0.210
T = 2	/E 95* 2400	2.05 CURV T = 2	E 97‡
0.231 0.238 0.247 0.258 0.273 0.293	0.363 0.397 0.419 0.439 0.455 0.463	0.229 0.238 0.248 0.268 0.293	0.350 0.386 0.412 0.440 0.455
0.314	0.465	0.332	0.457
0.331	0.464	0.364	0.462
0.373	0.469	0.384	0.462
0.400	0.466	0.450	0.453
0.451	0.459	0.554	0.443
0.526	0.452	0.604	0.433
0.562	0.448	0.704	0.420
0.608	0.440	0.822	0.397
0.706	0.428	0.979	0.371
0.820	0.407	1.11	0.350
0.942	0.384	1.27	0.328
1. 14 1. 27 1. 55 1. 83 2. 21 2. 68	0.350 0.329 0.290 0.259 0.228 0.201	1.51 1.85 2.21 2.68	0.302 0.270 0.245 0.220

^{*} Not shown on plot

The second secon

SPECIFICATION TABLE NO. 389 NORMAL TOTAL EMITTANCE OF [IRON + CHROMIUM + NICKEL + ΣX_i] ALLOYS

Curve No.	Ref. No.	Year	Temperature Range, K	Geometry θ'	Reported Error,%	Composition (weight percent), Specifications and Remarks
1	68	1952	573-873	~0°		Stainless steel Vickers F.D.P.; nominal composition: 18 Cr, 8 Ni, Fe balance; as rolled; cleaned with CCl4; measured in air.
2	68	1952	633-1073	~0°		Different sample, same as curve 1 specimen and conditions; oxidized at 873 K until steady state reached.
3	68	1952	633-1073	~0°		Different sample, same as curve 1 specimen and conditions except oxidized at 1173 K until steady state reached.
4	68	1952	663-893	~0°		Different sample, same as curve 1 specimen and conditions except buffed.
5	68	1952	573-1053	~0°		Different sample, same as curve 4 specimen and conditions; oxidized at 873 K until steady state reached.
6	68	1952	633-1053	~0°		Different sample, same as curve 4 specimen and conditions except oxidized at $1173~\mathrm{K}$ until steady state reached.
7	68	1952	583-873	~0°		Different sample, same as curve 1 specimen and conditions except shot blasted with fused alumina.
8	68	1952	633-1033	~0°		Different sample, same as curve 7 specimen and conditions; oxidized at 873 K until steady state reached.
9	68	1952	613-1053	~0°		Different sample, same as curve 7 specimen and conditions except oxidized at 1173 K until steady state reached.
10	160	1954	377-414	~0°		Stainless steel 301; nominal composition: 16.00-18.00 Cr. 6.00-8.00 Ni, 2.00 max Mn, 1.00 max Si, 0.15 max C, Fe balance; cleaned with methyl alcohol; measured in vacuum (10-3 mm Hg); [Author's designation. Sample 6].
11	160	1954	505-1280	~0°		Different sample, same as above specimen and conditions except measured in argon (10 ⁻³ mm Hg); [Author's designation: Sample 11].
12	160	1954	697-1183	~0°		Above specimen and conditions.
13	160	1954	88.9-364	~0°		Different sample, same as curve 10 specimen and conditions except scrubbed with Bon Am on a wet cloth, washed and dried, wiped with tolvene and alcohol; [Author's designation: Sample 2].
14	160	1954	439-1347	~0°		Different sample, same as above specimen and conditions except measured in argon (10^{-3} mm Hg) ; heating and cooling; [Author's designation: Sample 12].
15	160	1954	305-412	~0°		Different sample, same as curve 10 specimen and conditions except polished, then finished with a wool buff and rouge and washed; surface free from scratches; [Author's designation: Sample 4].
16	160	1954	469-1258	~0°		Different sample, same as above specimen and conditions except measured in argon (10^{-3}mm Hg) ; [Author's designation: Sample 13].
17	160	1954	310-423	~0°		Stainless steel 316; nominal composition: 16.00-18.00 Cr, 10.00-14.00 Ni, 2.00-3.00 M. 2.00 max Mn, 1.00 max Si, 0.08 max C; cleaned with methyl alcohol; measured in vacu (10-3 mm Hg); heating; [Author's designation: Sample 1]

Curve No.	Ref. No.	Year	Temperature Range, K	Geometry θ'	Reported Error,%	Composition (weight percent), Specifications and Remarks
18	160	1954	623-1221	~0 ~		Different sample, same as above specimen and conditions except measured in argon (10 ⁻³ mm Hg); [Author's designation: Sample 10].
19	160	1954	496-1219	~0°		Above specimen and conditions.
20	160	1954	88,9-372	~0°		Different sample, same as curve 17 specimen and conditions except scrubbed with Bon Ami on a wet cloth, washed and dried, wiped with toluene and alcohol; [Author's designation, Sample 2].
21	160	1954	517-1402	~0°		Different sample, same as above specimen and conditions except measured in argon (10^{-3} mm Hg); [Author's designation: Sample 11]
22	160	1954	314-432	~0°		Different sample, same as curve 17 specimen and conditions except polished and then finishe with a wool buff and rouge and washed; surface free from scratches; [Author's designation: Sample 3].
23	160	1954	281-1417	~0°		Different sample, same as above specimen and conditions except measured in argon (10 ⁻³ mm Hg); [Author's designation: Sample 12].
24	160	1954	318-423	~0°·		Stainless steel 347; nominal composition: 17.00-19.00 Cr, 9.00-13.00 Ni, 2.00 max Mn, 1.00 max Si, 0.08 max C, 10 x C min Nb-Ta, Fe balance; cleaned with methyl alcohol; measured in vacuum (10 ⁻³ mm Hg); heating; [Author's designation: Sample 7].
25	160	1954	319-423	~0°		Different sample, same as curve 24 specimen and conditions; [Author's designation: Sample 13].
26	160	1954	574-1191	~0°		Different sample, same as curve 24 specimen and conditions except measured in argon (10^{-3} mm Hg) ; [Author's designation: Sample 12].
27	160	1954	474-1192	~0°		Above specimen and conditions except heating and cooling.
28	160	1954	303-426	~0°		Different sample, same as curve 24 specimen and conditions except polished and then finished with a wool buff and rouge and washed; surface free from scratches; [Author's designation: Sample 6].
29	160	1954	488-1294	~0°		Different sample, same as curve 28 specimen and conditions except measured in argon (10^{-3} mm Hg); [Author's designation: Sample 15].
30	160	1954	303-434	~0°		Different sample, same as curve 24 specimen and conditions except scrubbed with Bon Ami on a wet cloth, washed and dried, wiped with toluene and alcohol; [Author's designation: Sample 5].
31	160	1954	493-1267	~0°		Different sample, same as curve 30 specimen and conditions except measured in argon (10 ⁻³ mm Hg): [Author's designation: Sample 14].
32	34	1957	83, 2	~0°	± 10	Cobalt alloy N-155; nominal composition: 21 Cr, 20 Co, 20 Ni, 3 Mo, 3 W, 1.5 Mn, 1 Nb, 0.5 Si, 0.15 C, 0.15 N, Fe balance; as received; measured in vacuum (5 x 10 mm Hg).
33	34	1957	461-1139	~0°	± 10	Different sample, same as above specimen and conditions; increasing temp, cycle 1.
34	34	1957	533-850	~0°	± 10	Above specimen and conditions; cycle 2.

Curve No.	Ref. No.				Composition (weight percent), Specifications and Remarks	
35	34	1957	522	~0°	± 10	Above specimen and conditions; cycle 3.
36	34	1957	83.2	~0°	± 10	Different sample, same as curve 32 specimen and conditions except cleaned with liquid detergent.
37	34	1957	603-1161	~0°	● 10	Different sample, same as above specimen and conditions; increasing temp, cycle 1.
38	34	1957	772-1161	~0°	● 10	Above specimen and conditions; cycle 2.
39	34	1957	800-1003	~0°	± 10	Above specimen and conditions; cycle 3.
40	34	1957	83.2	~0°	± 10	Different sample, same as curve 32 specimen and conditions except polished.
41	34	1957	544-1233	~0°	± 10	Different sample, same as above specimen and conditions; increasing temp, cycle 1.
42	34	1957	811-989	~0°	± 10	Above specimen and conditions; cycle 2.
40	34	1957	911-1108	~0°	● 10	Above specimen and conditions; cycle 3.
44	34	1957	83.2	~0°	± 10	Different sample, same as curve 32 specimen and conditions except oxidized in air at red heat for 30 min.
45	34	1957	680-1205	~0°	♠ 10	Different sample, same as above specimen and conditions; increasing temp, cycle 1.
46	34	1957	769-911	~0°	± 10	Above specimen and conditions; cycle 2.
47	34	1957	611-1289	~0°	± 10	Above specimen and conditions; cycle 3.
48	34	1957	83.2	~0°	1 0	Stainless steel type PH 15-7 Mo; nominal composition: 15 Cr, 7 Ni, 2.25 Mo, 1.15 Al, 0.70 Mn, 0.40 Si, 0.07 C, Fe balance; surface roughness ~2 microinches rms; measured in vacuum (5 x 10 ⁻⁴ mm Hg).
49	34	1957	333-955	~0°	± 10	Different sample, same as above specimen and conditions; increasing temp, cycle 1.
50	34	1957	661-866	~0°	± 10	Above specimen and conditions; cycle 2.
51	34	1957	511-950	~0°	● 10	Above specimen and conditions; cycle 3.
52	34	1957	83.2	~0°	± 10	Different sample, same as curve 48 specimen and conditions; surface roughness ~ 15 microinches.
53	34	1957	425-828	~0°	± 10	Different sample, same as above specimen and conditions; increasing temp, cycle 1.
54	34	1957	483-878	~0°	± 10	Above specimen and conditions; cycle 2.
55	34	1957	625-844	~0°	± 10	Above specimen and conditions; cycle 3.
56	34	1957	83.2	~0°	± 10	Stainless steel type 17-7 PH; nominal composition: 17 Cr, 7 Ni, 1.15 Al, 0.70 Mn, 0.40 Si, 0.07 C. Fe balance; surface roughness \sim 2 microinches rms; measured in vacuum (5 x 10 ⁻⁴ mm Hg).
57	34	1957	472-755	~0°	± 10	Different sample, same as above specimen and conditions except increasing temp, cycle
58	34	1957	444-1000	~0°	1 0	Above specimen and conditions; cycle 2.
59	34	1957	650-933	~0°	± 10	Above specimen and conditions; cycle 3.

_	_
c	
ī	

Curve No.	Ref. No.	Year	Year Temperature Geometry Reported Range, K 9' Error,%			Composition (weight percent), Specifications and Remarks
60	34	1957	83.2	~0°	± 10	Different sample, same as curve 56 specimen and conditions; surface roughness ~15 microinches rms.
61	34	1957	444-828	~0°	± 10	Different sample, same as above specimen and conditions except increasing temp, cycle 1.
62	34	1957	661-1053	~0°	± 10	Above specimen and conditions; cycle 2.
63	34	1957	605	~0°	± 10	Above specimen and conditions; decreasing temp, cycle 2.
64	34	1957	478-722	~0°	± 10	Above specimen and conditions; cycle 3.
65	34	1957	616	~0°	± 10	Above specimen and conditions; decreasing temp, cycle 3.
66	34	1957	83.2	~0°	± 10	Stainless steel type 316; nominal composition: 16.00-18.00 Cr. 10.00-14.00 Ni, 2.00-3.00 Mo, 2.00 max Mn, 1.00 max Si, 0.08 max C, Fe balance; surface roughness ~2 microinches rms; measured in vacuum (5 x 10 ⁻⁴ mm Hg).
67	34	1957	494-1222	~0°	± 10	Different sample, same as above specimen and conditions except increasing temp, cycle 1.
68	34	1957	505-1039	~0°	± 10	Above specimen and conditions; cycle 2.
69	34	1957	83.2	~0°	± 10	Different sample, same as curve 66 specimen and conditions; surface roughness ~ 15 microinches rms.
70	34	1957	444-628	~0°	± 10	Different sample, same as above specimen and conditions except increasing temp, cycle 1.
71	34	1957	466-855	~0°	± 10	Above specimen and conditions; cycle 2.
72	34	1957	500-1116	~0°	• 10	Above specimen and conditions; cycle 3.
73	34	1957	83.2	~0°	± 10	Stainless steel type 321; nominal composition: 17.00-19.00 Cr, 9.00-12.00 Ni, 2.00 max N 1.00 max Si, 0.08 max C, 5 x C min Ti, Fe balance; bright finish; measured in vacuum (5 x 10 4 mm Hg).
74	34	1957	544-1083	~0°	± 10	Different sample, same as above specimen and conditions except increasing temp, cycle 1.
75	34	1957	622-894	~0°	± 10	Above specimen and conditions; cycle 2.
76	34	1957	872-1122	~0°	± 10	Above specimen and conditions; cycle 3.
77	34	1957	83.2	~0°	± 10	Different sample, same as curve 73 specimen and conditions; surface roughness $\sim\!2$ microinches rms.
78	34	1957	494-1205	~0°	± 10	Different sample, same as above specimen and conditions except increasing temp, cycle 1.
79	. 34	1957	633-994	~0°	± 10	Above specimen and conditions; cycle 2.
50	34	1957	728-1061	~0°	± 10	Above specimen and conditions; cycle 3.
81	34	1957	83.2	~0°	± 10	Different sample, same as curve 73 specimen and conditions except dull finish; surface rounces ~ 6 microinches rms.
82	34	1957	375-1089	~0°	1 0	Different sample, same as above specimen and conditions.
÷3	34	1957	561-761	~0°	± 10	Above specimen and conditions; cycle 2.

Curve No.	Ref. No.	Year	Temperature Range, K	Geometry 9'	Reported Error,%	Composition (weight percent), Specifications and Remarks
94	34	1957	83.2	~0°	± 10	Different sample, same as curve 73 specimen and conditions except oxidized in air at red heat for 30 min; surface roughness ~6 microinches rms.
85	34	1957	594-1069	~0°	± 10	Different sample, same as above specimen and conditions except increasing temp, cycle 1.
86	34	1957	544-789	~0°	± 10	Above specimen and conditions; cycle 2.
87	34	1957	950	~0°	± 10	Above specimen and conditions; cycle 3.
35	34	1957	83.2	~0°	± 10	Stainless steel type AM 350; nominal composition: 16.50 Cr, 4.25 Ni, 2.75 Mo, 0.75 Mn, 0.35 Si, 0.10 C, 0.10 N, Fe balance; surface roughness ~2 microinches rms; measured in vacuum (5 x 10 ⁻⁴ mm Hg).
89	34	1957	422-605	~0°	± 10	Different sample, same as above specimen and conditions except increasing temp, cycle 1.
90	34	1957	553-1200	~0°	± 10	Above specimen and conditions; cycle 2.
91	34	1957	83.2	~0°	± 10	Different sample, same as curve 88 specimen and conditions except oxidized in air at red heat for 30 min.
92	34	1957	539-1022	~0°	± 10	Different sample, same as above specimen and conditions except increasing temp, cycle 1
93	34	1957	900-1161	~0°	± 10	Above specimen and conditions; cycle 2.
94	170	1959	755-922	~0°		Stainless steel 321; titanium stabilized 18 Cr. 8 Ni austenitic stainless steel; electropolish computed from spectral data.
95	170	1959	755-1255	~0°		Different sample, same as curve 94 specimen and conditions except also oxidized in air at 1255 K for $1/2\ hr.$
96	17.0	1959	755-922	~0°		Different sample, same as curve 94 specimen and conditions except sandblasted by 40-mes glass sand and air at 40 psi.
97	170	1959	755-1255	~0°		Different sample, same as curve 94 specimen and conditions except also oxidized in air at $1255~\mathrm{K}$ for $1/2~\mathrm{hr}$.
98	15	1947	373	~0°		Alleghany metal; nominal composition: 17-20 Cr, 7-10 Ni, 0.50 max Mn, 0.20 C. Fe balance; No. 4 polish.
99	157	1944	356-441	~0°		Stainless steel 18-8; nominal composition: 18.45 Cr, 8.79 Ni, 0.50 Mn, 0.10 C, Fe bala oxidized at 811 K; measured in air.
100	157	1944	350-435	~0°		Different sample, same as curve 99 specimen and conditions except oxidized at 1089 K.
101	157	1944	351-446	~0°		Different sample, same as curve 99 specimen and conditions except chromic and sulfuric blackened.
102	157	1944	355-456	~0°		Different sample, same as curve 99 specimen and conditions except sand blasted.
103	15 5	1948	419-594	~0°		Stainless steel 18-8; nominal composition: 18.45 Cr. 8.79 Ni, 0.50 Mn, 0.10 C. Fe bala sand blasted and weathered.
104	155	1948	342-646	~0°		Different sample, same as curve 103 specimen and conditions except oxidized at 1089 K as weathered.

Curve No.	Ref. No.	Year	Temperature Range, K	Geometry θ'	Reported Error,%	Composition (weight percent), Specifications and Remarks
105	155	1948	344-661	~0°		Different sample, same as curve 103 specimen and conditions except chromic and sulphuric acid treated and weathered.
106	155	1948	455-650	~0°		Different sample, same as curve 103 specimen and conditions except unpolished.
107	155	1948	353-655	~0°		Different sample, same as curve 103 specimen and conditions.
108	155	1948	344-603	~.0°		Above specimen and conditions except polished with Aerobright and Bon Ami.
109	107	1960	644-1644	~0°	± 20	Stainless steel 301; nominal composition: 16.00-18.00 Cr, 6.00-8.00 Ni, 2.00 Mn, 1.00 max Si, 0.15 max C, Fe balance; measured in demoisturized helium gas.
110	99	1958	366-699	~0°	< 9	Type 321 corrosion-resistant steel; MIL-S-6721; nominal composition: 17.00-19.00 Cr, 9.00-12.00 Ni, 2.00 max Mn, 1.00 max Si, 0.08 max C, 5 x C min Ti, Fe balance; measured in air.
111	. 99	1958	366-699	~0°	< 9	Different sample, same as curve 110 specimen and conditions except heated at 647 K for 1000 hrs.
112	99	1958	366-699	~0°		Different sample, same as curve 110 specimen and conditions except calculated from spectral β (2π , 0°).
113	99	1958	366-699	~0°		Different sample, same as curve 112 specimen and conditions except heated at 647 K for 10 hrs.
114	164	1961	1366	~0°	± 2.5	Stainless steel type 303; nominal composition: 17.00-19.00 Cr, 8.00-10.00 Ni, 2.00 max 1.00 max Si, 0.15 min S, 0.15 max C, Fe balance; mechanically polished and cleaned; oxidized in quiescent air at 1366 K for 10 min; measured in air.
115	164	1961	1366	~0°	± 2.5	Above specimen and conditions except oxidized in quiescent air at 1366 K for 25 min.
116	164	1961	1366	~0°	± 2.5	Above specimen and conditions except oxidized in quiescent air at 1366 K for 40 min.
117	164	1961	1366	~0°	± 2.5	Above specimen and conditions except oxidized in quiescent air at 1366 K for 70 min.
118	40	1962	408-1061	~0°		Cobalt alloy N-155 (surface N-1); nominal composition: 21 Cr, 20 Co, 20 Ni, 3 Mo, 3 W, 1.5 Mn, 1 Nb, 0.5 Si, 0.15 C, 0.15 N, Fe balance; as received; increasing temp.
119	40	1962	408-655	~0°		Above specimen and conditions; decreasing temp.
120	40	1962	367	~0°		Different sample, same as curve 118 specimen and conditions except highly polished, mirr finish; oxide formation at 873 K for 3 hrs.
121	40	1962	447-1061	~0°		Different sample, same as curve 118 specimen and conditions except surface N-2; increasi temp.
122	40	1962	1033-447	~0°		Above specimen and conditions; decreasing temp.
123	40	1962	411-1084	~0°		Different sample, same as curve 121 specimen and conditions except heat treated; same results for increasing and decreasing temp.
124	40	1962	352-564	~0°		Poroloy (18-8 stainless steel); nominal composition: 18.45 Cr, 8.79 Ni, 0.50 Mn, 0.10 C Fe balance; porosity between 28 and 31%.

Curve No.	Ref. No.	Year	Temperature Range, K	Geometry θ'	Reported Error,%	Composition (weight percent), Specifications and Remarks
125	40	1962	367	~0.5		Different sample, same as above specimen and conditions except porosity 28%.
126	40	1962	367	~0°		Different sample, same as above specimen and conditions except porosity 31%,
127	40	1962	367	~0°		Different sample. same as above specimen and conditions except porosity 43%.
128	75	1962	811-1444	~0°		Stainless steel 304; nominal composition: 18.00-20.00 Cr, 8.00-12.00 Ni, 2.00 max Mn, 1.00 max Si, 0.08 max C, Fe balance; machine finished; helium purge.
129	92	1963	1328-1466	~0°		Haynes Alloy N-155 (Multimet); 23.98-36.15 Fe, 19-21 Ni, 18.5-21 Co, 20-22.5 Cr, 2-3 W, 0.75-1.25 Nb and Ta, 2.5-3.5 Mo, 1.0-2.0 Mn, 0.5 max Cu, 1.0 max Si, 0.03 max S, 0.04 max P, 0.1-0.2 N ₂ , 0.08-0.16 C; polished; surface roughness 1 to 2 μ (RMS) measured with profilometer; measured in vacuum (3 to 4 x 10 $^{-4}$ mm Hg); 1st cycle.
130	92	1963	1289-1600	~0°		Above specimen and conditions; 2nd cycle.
131	92	1963	1239-1452	~0°		Curve 129 specimen and conditions except oxidized.
132	273	1962	805-1442	~0°		Stainless steel 304; nominal composition: 18.00-20.00 Cr, 8.00-12.00 Ni, 2.00 max Mn, 1.00 max Si, 0.08 max C, Fe balance; mechanical finish; measured in He gas.

data table no. 389 Normal total emittance of [iron + Chromium + nickel + ΣX_i] alloys

[Temperature, T, K; Emittance, €]

- Promise production of the second

Т	€	T	€	T	€	Т	Ę	т	€	T	€	T	€	T	€
CUR	VE_1	CUR	VE 6	CURVE	11" (cont.)	CUR	VE 16 ²	CUR	VE 21*	CUR	VE 25**	CURVE	29*(cont.)	CURV	Æ 36
573 673	0.47 0.48	633 713	0.85 0.85	1250 507	0.577 0.557	526 707	0.233 0.212	538 792	0.314 0.312	423 319	0.424 0.463	1183 547	0.636 0.497	83.2	0.033
773	0.47	793	0.87	1218	0.547	908	0.261	929	0.330	359	0.424			CURV	DE 37
873	0.50	873	0.86	505	0.573	1067	0.466	1051	0.396			CURY	VE 30×	00111	2 01
		1053	0.87			1128	0.536	1160	0.559	CUR	VE 26			603	0.105
CUR	VE 2			CURV	/E 12	1186	0.640	1217	0.663			434	0.324	758	0.115
		CUR	VE 71.5			1239	0.729	1282	0.777	574	0.394	303	0.381	966	0.170
633	0.77			697	0.241	1258	0.675	1321	0.657	739	0.398	368	0.336	1072	0.225
723	0.79	583 ·	0.40	852	0.301	469	0.427	1397	0.431	785	0.414			1161	0.345
803	0.80	683	0.43	924	0.315	1178	0.708	1402	0.362	919	0.413	CURY	VE 31 th		
873	0.82	733	0.44	1018	0.344	485	0.549	523	0.331	1029	0.426			CURV	Æ 38
933	0.83	783	0.45	1080	0.389	1185	0.699	1164	0.410	1045	0.444	493	0.367		
1013	0.95	833	0.47	1133	0.451	483	0.502	1329	0.552	1088	0.458	661	0.385	772	0.225
1073	0.87	873	0.49	1183	0.477			1350	0.510	1098	0.474	923	0.437	1050	0.225
					***	CUR	VE 17*	533	0.529	1191	0.568	1017	0.475	1161	0.375
CUR	VE_3	CUR	VE 8	CURV	/E 13*	400	0.045	1329	0.504	1173	0.620	1111	0.629		
				20.0	0.245	423	0.247 0.280	517	0.517	1159	0.639	1194	0.696	CURY	Æ 39%
633	0.79	633	0.59	88.9 214	0.245	310 364	0.280	0	**** 000			1247	0.717		
713	0.81	733	0.65	364	0.200	304	0.483	COR	VE 22*	CUR	VE 27*	1267	0.705	800	0.270
793	0.83	813	0.66	304	0.275	O.T.	TTP 10	432	0.169	505	0.004	525	0.561	1003	0.325
883	0.87	893	0.67	CITE	Æ 14"	CUR	VE 18	314	0.109	525	$0.394 \\ 0.495$	548	0.485	arm.	
953	0.85	963	0.68	COR	VE 14	623	0.306	371	0.196	1192	0.495	1151	0.654	CURV	VE 40
1013	0.88	1033	0.71	464	0.300	929	0.405	3/1	0.176	1159 482	0.493	550	0.521	20.0	0.011
1073	0.89	CIT	VE 9	706	0.270	971	0.457	CITE	VE 23*	1177	0.493	CUR	VE 32	83.2	0.041
CIT	VE 4*	CUR	VE 9	872	0.320	1043	0.490	COR	VE ZO	474	0.516	83, 2	0.058	OUD	TD 41
COR	VE 4	613	0.87	947	0.345	1114	0.532	679	0.174	414	0.510	63. 2	0.058	CUR	VE 41
663	0.22	733	0.86	1114	0.460	1221	0.626	893	0.203	CITE	VE 28*	CITE	VE 33	544	0.090
733	0.24	803	0.88	1197	0.580	1001	0.020	1029	0.283	COR	VE 20	CUR	VE 33	544 819	0.090
783	0.24	873	0.88	1247	0.620	CIR	VE 19 ²	1127	0.362	426	0.150	461	0.090	989	0.145
853	0.28	933	0.93	1347	0.370	2010	1711 10	1169	0.431	303	0.169	628	0.030	1105	0.215
893	0.28	993	0.93	556	0.230	496	0.329	1214	0.594	370	0.173	803	0.130	1233	0.215
030	0.20	1053	0.94	1206	0.460	786	0.319	1280	0.629	010	0.110	961	0.155	1233	0.215
CUR	VE 5*	2000	•••	1189	0.525	1164	0.585	1300	0.597	CUE	VE 29*	1055	0.235	CITE	VE 42*
<u>c 01</u> ,	<u></u>	CUB	VE 10	1189	0.580	1219	0.674	14 17	0.320	001	112 40	1139	0.315	COR	VL TA
573	0.42	201		1172	0.690	510	0.572	502	0.226	532	0.211	1100	0.010	811	0.190
653	0.40	4 14	0.202	439	0.440	1132	0.663	1147	0.282	719	0.217	CITE	VE 34 [:] *	989	0.240
763	0.42	312	0.246	488	0.400	504	0.581	1327	0.316	919	0.232	001	12 01	303	0.240
853	0.42	377	0.240	1222	0.630			281	0.262	1046	0.281	533	0.150	CIIR	VE 43*
933	0.46			547	0.540	CUR	VE 20	-		1170	0.412	850	0.125	2011	
993	0.50	CUE	VE 11*					CUI	RVE 24*	1232	0.553			911	0.230
1053	0.52	201		CUR	VE 15	88.9	0.260			1290	0.624	CUR	VE 35*	1108	0.280
		531	0.223			206	0.320	423	0.368	1294	0.656				
		1242	0.487	412	0.100	372	0.305	318	0.394	488	0.388	522	0.140	CUR	VE 44
		1239	0.603	305	0.145			360	0.368	1175	0.607			<u> </u>	
				390	0,203					537	0.488			83.2	0.072

^{*} Not shown on plot

DATA TABLE NO. 389 (continued)

Т	€	T	€	Т	€	T	€	т	€	T	€	T	€	T	€
CURVE	45	CURVE	53	CURVE	61	CURVE	<u>69</u> ₩	CURVE	77*	CURVE	84	CURV	E 92	CURVE	99*(cont.)
680	0.165	425	0.091	444	0.093	83.2	0.045	83.2	0.036	83.2	0.155	539	0.155	394	0.340
905	0.235	519	0.103	489	0.105							778	0.170	395	0.348
1025	0.265	628	0.116	600	0.106	CURVE	<u>70</u> *	CURVE	78	CURVE	85	891	0.255	396	0.354
1130	0.315	828	0.152	711	0,123							1022	0.305	405	0.347
1205	0.335			828	0.143	444	0.100	494	0.085	594	0.285			406	0.348
		CURVI	<u>54</u> **		0.04	628	0.120	633	0.105	744	0.320	CURV	E 93*	407	0.358
CURVE	46**			CURVE	62×			775	0.115	844	0.355			421	0.346
		483	0.082			CURVE	71*	939	0.150	930	0.405*	900	0.290	422	0.341
769	0.220	616	0.103	661	0.106			1011	0.260	1011	0.445	1005	0.345	423	0.358
911	0.265	733	0.132	939	0.154	466	0.100	1072	0.335	1069	0.460	1161	0.390	436	0.348
		816	0.153	1053	0.147	661	0.120	1139	0.415					436	0.356
CURVE	47*	878	0.172			761	0.145	1205	0.440	CURVE	:8 6 *	CURV	E 94	438	0.364
		~~		CURVE	63×	855	0.170							440	0.366
611	0.150	CURVI	E 55*					CURVE	79*	544	0.300	755	0.10	441	0.366
1289	0.280			605	0.103	CURVE	72*			789	0.360	922	0.18		
		625	0.131					633	0.280					CUR	VE 100
CURVE	48	844	0.196	CURVE	64×	500	0.100	844	0.345	CURVE	87*	CURV	E 95		
						700	0.145	955	0.360					350	0.628
83.2	0.022	CURV	E 56*	478	0.103	839	0.170	994	0.390	950	0.420	755	0.65	351	0.606
				722	0.126	961	0.255					922	0.69	351	0.594
CURVE	49	83.2	0.022			1016	0.390	CURVE	80*	CURVE	88	1089	0.74	352	0.644
				CURVE	65*	1116	0.490					1255	0.72	353	0.644*
333	0.085	CURV	E 57*					728	0.320	83.2	0.161			364	0.642
694	0.085			616	0.101	CURVE	_73*	1061	0.425			CURV	E 96*	365	0.654
955	0.160	472	0.046							CURVI	₹ 89*			365	0.656*
		666	0.053	CURVE	66	83.2	0.044	CURVE	81			755	0.34	367	0.616
CURVE	50*	755	0.057							422	0.110	922	0.38	369	0.624
				83.2	0.027	CURVE	74	83.2	0.111	605	0.125		****	372	0.624*
661	0.090	CURV	E 58									CURV	/E 97	373	0.628*
866	. 0.115			CURVE	67	544	0.115	CURVE	82	CURVI	90	00111	2 01	380	0.654
		444	0.049			889	0.160					755	0.68	382	0.645
CURVE	51*	683	0.053	494	0.080	1005	0.250	375	0.145	553	0.130	922	0.75	386	0.668
		778	0.056	678	0.090	1083	0.335	622	0.195	755	0.155	1089	0.70	396	0.672
511	0.080	878	0.079	833	0.125			733	0.230	883	0.170	1255	0.74	398	0.670*
678	0.100	1000	0.101	1044	0.280	CURVE	75×	861	0.270	941	0.200	1200	0.14	406	0.674
950	0.140			1222	0.400			933	0.315	1044	0.240	CURV	Æ 98*	410	0.676*
		CURV	E 59*			622	0.165	1000	0.423	1144	0.325	CORV	E 30.		
CURVE	52			CURVE	68*	894	0.275	1089	0.465	1200	0.340	373	0.13	422	0.660
		650	0.052					1000	01100	1200	0.020	212	0.13	423	0.654*
83.2	0.044	933	0.086	505	0.090	CURVE	76*	CURVE	83*	CURV	F 0.1%	CYITA	7T 00%	424	0.686
				666	0.100	20.112		COLVE		CORV	91	CURV	Æ 99*	432	0.698
		CURV	E 60*	772	0.095	872	0.275	561	0.260	83.2	0.111	250	0.010	435	0.712
				1039	0.300	1044	0.350	761	0.345	00.2	0.111	356	0.312		
		83.2	0.044			1122	0.420	.01	3,010			357	0.328		
						*****	3.120					359	0.314		

^{*} Not shown on plot

DATA TABLE NO. 389 (continued)

T	€	T	€	T	€	T	€	T	€	т	€
CURY	VE 101	CURVE	104 (cont.)	CURVE	107*(cont.)	CUR	VE 113	CUR	VE 122	CURV	E 129*
351	0.560	528	0.850	563	0.203	366	0.33	1033	0.566	1328	0.230
391	0.570	577	0.850	592	0.200	477	0.34	683	0.410	1369	0. 250
405	0.522	579	0.845	611	0.210	588	0.35	447	0.300	1466	0. 245
418	0.560	6-16	0.855	655	0.205	699	0.36			2100	0,210
433	0.524							CUR	VE 123	CURV	Æ 130*
445	0.542	CURY	VE 105	CURY	VE 108	CUR	VE 114			0021	
446	0.560	-						411	0.445	1289	0, 205
		344	0.650	344	0.155	1366	0.841	416	0.410	1354	0. 220
CURV	VE 102	350	0.670	433	0.160			677	0.510	1392	0. 220
		375	0.625	483	0.170	CUR	VE 115	844	0.570	1490	0. 240
355	0.510	380	0.610	528	0.175			1084	0.628	1549	0. 250*
360	0.484	392	0.605	603	0.195	1366	0.867			1575	0. 270*
364	0.510	397	0.610*					CUR	VE 124	1600	0. 290*
366	0.486	400	0.640	CUR	VE 109	CUR	VE 116			2000	0. 200
369	0.476	4 19	0.625			-		352	0.23	CURY	Æ 131*
370	0.504	428	0.620	644	0.09	1366	0.870	358	0.26	00211	
377	0.500	433	0.620**	811	0.16			425	0.25	1239	0,720
383	0.486	436	0.615	1089	0.31	CUR	VE 117*	425	0.26*	1255	0. 730
383	0.508	442	0.615*	1367	0.51			469	0.26	1311	0.760
393	0.504	483	0.610	1644	0.72*	1366	0.874	489	0.25	1355	0.780
395	0.506*	525	0.595					490	0.26	1452	0.700
404	0.511	533	0.605	CURY	VE 110 [™]	CUR	VE 118	491	0.26*	1100	0.100
419	0.492	605	0.630	3011		9011		530	0.26	CURY	/E 132*
425	0.524	608	0.595	366	0.31	408	0.165	564	0.26	0011	100
429	0.510	617	0.600	477	0.31	444	0.150	001	0.20	805	0.135
435	0.522	661	0.610	588	0.31	683	0.175	CIR	VE 125*	808	0. 161
438	0.518*			699	0.33	891	0.155	0010	12.120	1128	0.477
444	0.484	CURY	VE 106*			1061	0.550	367	0.23	1402	0.711
456	0.484			CUR	VE 111*	2002	*****	001	0.20	1442	0.722
		4 55	0.205			CUR	VE 119*	CIIR	VE 126*	****	0.722
CURY	VE 103	472	0.170	366	0.31	0011		0010	111111		
		542	0.225	477	0.33	408	0,225	367	0.23		
419	0.850	550	0.204	588	0.31	655	0.338	331	0.20		
422	0.825	583	0.210	699	0.33	000		CHR	VE 127*		
458	0.850	594	0.230			CITE	VE 120*	0011			
475	0.845	632	0.220	CUR	VE 112	<u> </u>		367	0.32		
594	0.845	650	0.225			367	0.16	001	****		
				366	0.36			CUR	VE 128		
CURY	VE 104	CURY	VE 107*	477	0.37	CHR	VE 121	0011	72		
				588	0.38	0011		811	0.145		
342	0.855	353	0.180	699	0.39	447	0.190	811	0.175		
353	0.845	380	0.170			722	0.220	1128	0.480		
394	0.840	4 14	0.180			855	0.290	1400	0.720		
425	0.840	503	0.190			916	0.325	1444	0.730		
453	0.850	539	0.195			964	0.400		000		
		•	• • • • • •			1061	0.600				
						1001	0.000				

^{*} Not shown on plot

DATA ANALYSIS

The objective of the Analyzed Data Graphs is to give the user an evaluative review of available experimental data. It is quite apparent from a study of data sheets of the previous section that the analysis effort is first a filtering process; it identifies the data which are felt to be reliably or typically identified with the materials and gives the user a good deal of "relief" from the "spaghetti" type of presentation shown on the original or archival graphs. However, even these original graphs are the result of some filtering where grossly uncharacterized and second hand data sources have not been included. For certain circumstances of surface preparation and/or environmental conditions, data can be used with some degree of confidence but a great deal of data can only be considered as typical within certain limits.

The procedure for generating the Analyzed Data Graph varies according to the experimental evidence available for all the related sub-properties of the material being studied. Where there is some assurance that the data are well characterized and can be used with some confidence in engineering applications, the analyzed curve is shown as a solid line. A dotted line curve is used for reasonable extrapolations of well characterized conditions and for conditions felt to be typical and as such should be used with some caution. Shaded areas between solid lines are indicative of the limits in which so-called "typical" data will be found.

Each of the curves or areas is identified by key words which are felt descriptive of the surface conditions, etc.; frequently, these words are seen to be incomplete descriptions and the user will find it necessary, if not desirable in all cases, to consult the specification tables for a more complete description of the test conditions being represented. For this reason, the analyzed data graphs show the original curve number identifying the particular set(s) of data used to derive the analyzed curve.

In the SERIES Volume 7 nearly 25 percent of the data will be represented in analyzed or evaluated form. The sample figures presented in the previous section are some extreme examples selected to demonstrate the variety of approaches used to increase the value of the data to the user. The subsequent remarks on the data sheets of the previous section should give the reader of the

report some appreciation for the procedure/technique used in the data evaluation work.

ALUMINUM - For nearly all the materials, one of the first sets of data to be identified is the ideal surface conditions typified by the terms evaporated films for this material (and also electropolished for other materials to be discussed); the curves 4, 5, 15 and 29 when combined, and also interpolated in the near UV, give the reflectivity of well prepared "evaporated films". Bulk material polished by various techniques is identified by the broad band "polished" according to curves 9, 20 and 26; curve 17, the only visible data, also labeled "polished", is represented by a dashed line since it is uncharacterized data. The other curves on the same figure are all represented by solid lines because the surface conditions are characterized, could possibly be reproduced, and would be useful for many engineering applications.

COPPER - The figure for the normal spectral absorptance (room temperature) demonstrates the use of simply related sub-property data; in this case the results of analysis on the reflectance has been used to generate the absorptance in the visible region. The surface conditions - "electropolished & films" - for original measurements of both reflectance and absorptance have been evaluated to give a consistent recommended curve. The other curve on the figure labeled "mechanically polished, 6" demonstrates the influence of polishing techniques on the sub-property. Other data is shown on the original data sheet, but is seen to lack any particular value in demonstrating an effect or trend.

GALLIUM - The spectral transmittance data for this material has been presented in a hybrid manner; it is indicative of our philosophy to present the data based upon technical clarity. The measurements have been grouped into two figures distinguishing the high and low evaporation rate data. The curves are represented by the original data points and identified only by curve number. This data has not really been analyzed in depth but rather it has been filtered based upon some evaporation rate considerations. The reader has the obligation of labeling the curves as he sees fit and also of determining the reliability of the data which is not apparent without some other supporting data.

MOLYBDENUM - The analyzed data graph for the hemispherical total emittance demonstrates the effective use of bands indicative of limits of an effect, in this

case, for "polished" and "grit blasted conditions". It is assumed for all these curves an attempt is made to retard oxidation; this is the general case unless otherwise specified. The "stably oxidized at 811 K, 3" curve has a note warning the user about an extrapolation to higher temperatures in a vacuum; this note is not based upon data at hand, but rather reflects the experience of the analysis workers.

<u>TUNGSTEN</u> - This graph for the normal spectral emittance shows separately the very special case of "annealed aged ribbon" as commonly found in strip lamps or otherwise can be readly obtained and prepared; this data has its special uses and deserves to be distinguished from other types of specimens. The remaining data is analyzed in a manner consistent with the previous materials. It is especially interesting to note that the most significant information in 97 original data curves has been very concisely shown on one uncluttered graph.

STAINLESS STEEL - The original data graph for the normal total emittance contains 132 curves for measurements on the various alloys in extreme variations of surface conditions; it is understandable that the curves range in emittance from 0 to 1 and fill the whole graph. The first step in the analysis effort was to separate the data into three major groups: polished, cleaned and oxidized. It was quickly apparent that the influence of composition or alloy identification was lost by comparison to environmental effects; the exception to this in N-155. The remaining steps in the analysis procedure were to identify typical conditions.

SUMMARY

This report has described in some detail the problems and progress of a comprehensive program for the compilation and analysis of thermal radiative properties data. The procedures for compilation of the literature – an operation in scientific documentation and data extraction – draws upon the experience of TPRC as an information center*. The <u>analysis</u> work is an evaluative review of the literature attempting to filter out data thought to be of little value and to "recommend" data which is of engineering application use.

Appendix E, TPRC-Information Center for Thermophysics Research, discusses in some detail the objective and activities of TPRC.

The results of this program will be available as the TPRC SERIES, a collection of three volumes distributed as a commercial publication. With an audience of diversified interests and backgrounds, the SERIES has been designed to be authorative and yet simple to use; the need for this reference work has necessarily caused a compromise between availability and completeness of coverage. A special feature of this publication, quite distinctive from other data sources or handbooks, is the continuing program to upgrade or maintain its coverage current and the user can always get the "last word" from the SERIES generator, TPRC.

A program of this magnitude with such wide objectives can benefit from the reaction of the technical community. Reaction to the SERIES is very much desired whether it be technical in nature or in regard to the organization or structure. A technical problem of current concern is the Classification Scheme for Coatings. The program can also benefit from personal assistance of specialists in this field – as new papers or reports are generated they should be forwarded to TPRC for their immediate addition to the System; in this direct and simple manner, the coverage can be made current.

REFERENCES

- 1. Thermophysical Properties Research Literature Retrieval Guide, Revised and Expanded Edition, Y.S. Touloukian (Editor), The Plenum Publishing Corporation, 1967.
- 2. Description of a Continuing Program on Tables of Thermophysical Properties of Materials, C. Y. Ho, Air Force Systems Command, Wright-Patterson Air Force Base, Ohio, AFML-TR-68-98, May 1968.
- 3. Thermal Conductivity of Selected Materials, C. Y. Ho, R. W. Powell, and P. E. Liley, NSRDS-NBS 16, 1968.

.

APPENDIX A

Table of Contents

TPRC Series, Volume 7 Thermal Radiative Properties of Metallic Elements and Alloys

				·
	,			
				1

CONTENTS

		Page
Pref	eword ace oduction	v vii ix
Grou	ping of Materials and List of Figures and Tables	xiii
	THEORY, ESTIMATION AND MEASUREMENT	
Nom	enclature	1a
I.	Introduction	5a
II.	Physics of Thermal Radiation A. Wave theory B. Basic laws C. Interaction of waves with materials	10a
ш.	Property Definitions A. The prime properties B. Sub-property descriptors C. The reflectance factor	15a
IV.	Interrelationships Between Properties A. Geometric B. Wavelength	20a
V.	Theoretical Models - Ideal Surfaces A. Classical free electron theory B. Other models	25a
VI.	Surface Characterization A. Real surface effects B. Topographical characterization C. Chemical characterization D. Physical or structural characterization	35a
VII.	Methods of Measurement A. Basic techniques B. Reflectometry C. Emittance techniques – radiance comparisons D. Calorimetric techniques	40a
Refe	rences to Text	50a

NUMERICAL DATA

		Page
I.	 Data Presentation and Related General Information A. Scope of coverage B. Presentation of data C. Classification of materials D. Symbols and abbreviations used in the figures and tables E. Convention for bibliographic citation F. Crystal structure, transition temperatures, and pertinent physical constants of the elements G. Conversion factors for thermal radiative properties units 	55a
II.	Numerical Data on Thermal Radiative Properties of Metallic Elements and Alloys [see pp. xiii to xvi for detailed listing of entries for each of the following groups of materials] A. Elements B. Binary alloys C. Multiple alloys	1 1 887 1063
ш.	References to Data Sources	1650
IV.	Material Index	A1

APPENDIX B

Sub-property Nomenclature, Definitions, and Classification

TPRC Series, Volume 7
Thermal Radiative Properties
of
Metallic Elements and Alloys

1.0 Primary Property Definitions

The primary radiation properties -- emittance, reflectance, absorptance, and transmittance -- are all dimensionless quantities descriptive of the radiant energy transport process. They are defined as follows:

Emittance ratio of the emitted flux per unit area

to that of a blackbody radiator at the same temperature, and the same wavelength and geometric viewing conditions.

Reflectance ratio of some specified portion of the re-

flected radiant flux to the incident radiant

flux.

Absorptance ratio of the absorbed radiant flux to the

incident radiant flux.

Transmittance ratio of some specified portion of the

transmitted radiant flux to the incident

radiant flux.

To present the data in a more concise form for efficient retrieval, the primary properties are further categorized into sub-properties. Since there is no universally accepted nomenclature for this division, it has been necessary to develop a consistent set of terms to unambiguously represent the various sub-properties. For the most part, the nomenclature, fully described in the next section, approximates common usage and lends itself well to the compact and systematic organization required of such comprehensive work.

2.0 Sub-Property Designation

Each of the primary properties needs to be further specified by descriptors indicating the geometry of the incident and/or viewing conditions, and the wavelength condition. It is the convention here to list these discriptors in the following order: geometry of incidence (or viewing) and wavelength condition. The terminology of these descriptors is now further discussed.

2.1 Geometry descriptors

These descriptors designate the geometric conditions of incidence and/or viewing (in that order) under which the sample is being observed. Figure B-1 defines the six (6) parameters required to completely specify the incidence and viewing conditions.

- θ Zenith Angle or Co-Latitude, O
- φ Azimuthal Angle or Longitude, ⁰
- ω Beam Solid Angle, Steradians
- ' (Prime) Refers to Viewing Conditions

FIGURE B-1. NOTATION FOR DESCRIBING GEOMETRIC CONDITIONS

For the purpose of categorizing the various sub-properties, the following three terms are used as the geometric descriptors for all of the primary properties.

Angular conditions for incidence and/or viewing

through a solid angle (steradians) ω and/or ω ' at some direction specified by θ or θ '

≥15°.

Normal conditions for incidence and/or viewing

through a solid angle ω and/or ω ', nearly normal to the specimen (to be interpreted

as θ or $\theta' < 15^{\circ}$).

Hemispherical conditions for incidence and/or viewing the flux

over a hemispherical region; beam geometry,

 ω or ω' indicated as 2π .

The selection of these descriptors is at best a compromise with standard practice and convenience. For emittance and absorptance, only one beam need be specified - viewing and incidence respectively. For reflectance and transmittance, the geometry of two beams must be specified. However, for convenience it is desirable to group the reflectance and transmittance data as follows: those sub-properties with common incidence geometric descriptors are grouped together.

The grouping of reflectance and transmittance sub-properties by common incidence conditions deserves some explanation. A grouping scheme is desirable to reduce the physical size of the book, and equally important, to bring together simply related sub-properties allowing the user to locate fragments of data that can be put together to generate information not found directly. For example, if one desires information on normal emittance or normal absorptance, it can easily be calculated from the following equation under certain conditions.

$$\epsilon(0^{\circ}) = \alpha(0^{\circ}) = 1 - \rho(0^{\circ}, 2\pi) - \tau(0^{\circ}, 2\pi)$$

If the sample is opaque, the equation simplifies to

$$\in (0^{\circ}) = \alpha (0^{\circ}) = 1 - \rho (0^{\circ}, 2\pi)$$

and the calculation can be made by simply using normal reflectance.

"Reflectance factor" data is classified according to the sub-property of reflectance which it most nearly approximates. For instance, consider a reflectometer which hemispherically (diffusely), illuminates a specimen and views normally through a small solid angle. If the reflectometer then determins the ratio of the reflected flux from the specimen to that reflected from a perfect diffusing standard, the sub-property is the reflectance factor, $\beta(2\pi,0^{\circ})$. This is numerically equal to the reflectance sub-property $\rho(0^{\circ},2\pi)$. Such data is included in the "normal" category and a note added that it is in reality a reflectance factor.

2.2 Wavelength descriptors

These descriptors indicate spectrum conditions for which the observations are reported. They are:

Spectral nearly monochromatic or a very narrow band

, and a

Total relative to blackbody wavelength dis-

tribution; applicable only to emittance

Integrated relative to some specified wavelength

distribution of the irradiating source or a

a broad band

Solar relative to the wavelength distribution

of the sun, natural or simulated

The terms "spectral", "total" and "solar" are in common use and need little justification, the last term being a special case of "integrated", separately categorized because of the great current interest in solar property data.

The term "integrated" is a compromise as it has not been used extensively in the literature. The intent here is to group under this term data for broad wavelength bands, over spectral regions of a source, etc. A synonym for this term could be heterochromatic.

3.0 Sub-Property Groupings

The following Table B-1 lists the grouping of the various sub-properties that are presented in the book. This shows that thirty-three (33) sub-properties are classified for retrieval and organizational purposes. The amount of existing data for some of these sub-properties is quite small, but there are good

reasons to present the data using this generalized scheme. First, the clarity of presentation is better by not grouping together data which logically are unrelated. Also, this scheme lends itself especially well to up-dating and expansion in the future.

TABLE B-1. SUB-PROPERTY DESIGNATION

EMITTANCE

Hemispherical Total Emittance Normal Total Emittance Angular Total Emittance

Hemispherical Spectral Emittance Normal Spectral Emittance Angular Spectral Emittance

REFLECTANCE*

Hemispherical Integrated Reflectance Normal Integrated Reflectance Angular Integrated Reflectance

Hemispherical Spectral Reflectance Normal Spectral Reflectance Angular Spectral Reflectance

Hemispherical Solar Reflectance Normal Solar Reflectance Angular Solar Reflectance

ABSORPTANCE

Hemispherical Integrated Absorptance Normal Integrated Absorptance Angular Integrated Absorptance

Hemispherical Spectral Absorptance Normal Spectral Absorptance Angular Spectral Absorptance

Hemispherical Solar Absorptance Normal Solar Absorptance Angular Solar Absorptance

TRANSMITTANCE*

Hemispherical Integrated Transmittance Normal Integrated Transmittance Angular Integrated Transmittance

Hemispherical Spectral Transmittance Normal Spectral Transmittance Angular Spectral Transmittance

Hemispherical Solar Transmittance Normal Solar Transmittance Angular Solar Transmittance

^{*}The geometry descriptors refer to the conditions of the incident radiant flux.

APPENDIX C

Material Index and Grouping of Materials and List of Figures and Tables

TPRC Series, Volume 7 Thermal Radiative Properties of Metallic Elements and Alloys

MATERIAL INDEX

	1	E	MIT	CANC	E					REFI	ECTA	ANCE			ł				ABSO	RPTA	NCE						T	RANS	MITT	ANCI	Ξ			
	1	Total		S	pectra	al l	Int	egrat	ed	S	pectra	1		Solar	. 1	nI	tegra	ted	S	pectra	.1	,	Solar		Int	egrat	.ed	Sı	pectra	al		Solar		
Sub-property code	3	02	03	3	02	90	10	86	0.0	10	===	12	13	7.	15	16	17	≆	13	2	21	22	23	24	25	92	27	28	59	30	31	32	33	34
Material Name	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	 Temispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Alpha/Epsilon
Alcoa No. 2 reflector plate .	3		-	-	-	-	-	-	-	-	-	-	-	i -	-	35		-	-	-	-	-	-	-	-	-	-	-	-	-	-	! ~ 	-	-
Alleghany Alloy No. 66	-	1120	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Alleghany Metal	-	1160	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Aluminum	1	6	-	-	10	13	16	-	18	20	23	30 34	-	36	i -	38	41	-	-	43	46	-	48	51	-	-	-	-	53	56	-	-	-	59
Aluminum 1075	-	-	- '	-	-	-	-	-	-	21	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Aluminum 1100	-	8	-	-	-	14	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	- 1	-
Aluminum foil	3	7	-	-	-	-	-	-	-	-	24		-	-	-	39	-	-	-	-	46	-	-	-	-	-	-	-	-	56	-	-	-	- '
Aluminum alloys:	1				1	l		!	1	l		!		İ		١.	į			1		ĺ		}	l		ĺ	İ	ĺ		Ì			
24-ST	1004	1007 1008	-	-	-	-	-	1014	-	-	1018	\ - 	-	-	-	-	-	-	-	-	-	-	1027	-	-	-	-	-	-	-	-	-	-	-
53-SO	-	1042	-	-	-	-	-	į -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
75-ST	-	1061	-	٦.	-	-	 -	1070	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1075	-	-·	-	-	-	-	-	-	-	-	-
2024	1004	-	-	-	1011	-	-	-	-	-	-] -	-	-	-	-	-	-	-	-	-	-	1027	-	-	-	-	-	-	-	-	-	-	-
2024-T (see 24-ST)	1										1				1		1		1	1							i		1	1		}	1	

The same of the sa

			EMIT	TANC	E					REF	LECTA	NCE	:						ABSC	RPTA	NCE						T	RANS	MITI	ANC	E			
	ļ	Tota	1	s	pectr	al	In	tegrat	ed	5	Spectra	l		Solar		In	egra	ted	5	Spectr:	al		Solar		Int	egrat	ted	S	pectr	al		Solar	I	i
Sub-property code	10	03	63	2	65	3	6	š	60	ន	=	13	2	-14	15	9	11	18	្ន	20	21	22	23	24	25	25	27	28	23	30	3	32	8	25
Material Name	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Alpha/Epsilon
Aluminum alloys (continued)	<u>{</u>			i	:		i	. 1	ı		: :				:	•		1	1								i			i			,	l
2219	ļ - i	-	-	-	· : -	-	-	1014	-	-	1018	-	-	· -	ļ -	-	-	-	-	í - i	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3003	1054	1056	i, -	-	_	-	-		-	-	- 1		-	-	- 1	-	-	-	-		-	-	-	-	1 -	_	! -	-	-	_ !	-	[-]	_	-
5053-O (see 53-SO)	i.		İ	·	: :	i								i i	:			!											[
6061	1039	-	-	i -		٠ -	-	1045	-	-	1048	-	-	-	-	-	-	-	-	- ;	; -	-	1052	-	-	! -	-	-	-		-	-	-	-
7075	- 1	-	-	-	1064	-	-	٠- :	-	-	- :	-	-	-	· -	-	-	: -	-		- }	-	-	-	-	-	; -	-	-	-	-		-	-
7075-T (see 75-ST)		!	:												:			:					!			:			1					
7075-T6		-		-	-	1067	-	- '	-	-		-	-		: -	-	-	-	-	: -	-	-	- }	-	-	-	-	-	! -	: -	-	, -	· -	-
Alcind 24-SO] - '	-	: -	-	-	-	-	- '	-	-	- ,	-	-	1024	-	-	-	! -	-	-	-	-	-	-	-	-	-	-	! -	-	-	-	-	-
Alclad 24-ST		1007 1008		-	· -	-	-	· - :	-	-	-	-	-	-	-	-	-	-	-	: -	-	-	-	-	-	-	-	-	: : :	- :	-	-	-	-
Alclad 75-ST	1058	1061	: -	-	-	-	-		-	-	- !	-	-	1072	-	-	-	-	-	-	-	-	-	-	-	! -	-	-	-	-	-	- '	-	-
Alclad 2024-O (see Alclad 24-SO)					i													i								:	!							
Alclad 2024-T (see Alclad 24-ST)					:						: .				!														:					
Alclad 7075-T (see Alclad 75-ST)			!													ļ		j	ļ															
L34	-	-	-	-	-	-	-	- [-	-	1030	-	-	1033	-	-	-	-	-	-	-	-	1037	-	-	-	-	-	-	-	-	-	-	-
L72	1 - 1	-	-	-		-	-	-	-	-	-	-	۱-	1024	-	۱ -	-	-	۱ -	١ _ ا	-	۱-	1027	-	-	١-	-	-	-	۱.	-	-	-	-

			E	мітт	ANC	E	1			1	REFI	ECTA	NCE			-			A	BSOF	RPTA	NCE						TI	RANS	MITT	ANCE			-	
			Total		Sp	oectra	.1	Int	egrate	ed	S	pectra	1	5	Solar	- 1	Int	egrat	ed	Sp	ectra	1		Solar	- 1	Inte	egrate	ed	Sp	ectra	1	5	Solar		
1	Sub-property code	10	61	63	90	ço	90	20	90	60	10	≒	12	13	14	15	91	17	18	19	20	21	22	23	24	25	56	27	28	29	8	31	32	33	34
	Material Name	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Alpha/Epsilon
j	Aluminum bronze	-	1097	-	-	1100	-	-	-	-	-	1104	- 1	-	-		-	-	-1	- [-	-	-	1107	-	-	- [-	-	-	\neg	-	-1	-1	77
1	Aluminum + Cobalt	-	-	-	-	-	-	-	-	-	-	837	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Aluminum + Copper + ΣX_i .	1003	1006	_	-	1010	_	-	1013	_	-	1017	-	-	1023	_	_	-	-	-	-	- }	-	1026	-	-	-	- 1	-	-	-	-	-	- \	-
	Aluminum + Iron + ΣX_i	-	-	-	-	-	-	-	-	-	-	1029	-	-	1032	-	-	-	-	-	-	-	-	1036	-	-	-	-	-	-	-	-	-	-	-
	Aluminum + Magnesium	-	-	-	-	· -	-	-	- !	-	-	840	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-	-	-	-	-	-	-	- 1	-
	Aluminum + Magnesium + $\Sigma X_{\dot{1}}$	1039	1041	-	-	; -	-	-	1044	-	-	1047	-	-	-	-	-	-	_	-	-	-	-	1052	-	-	-	-	-	-	-	-	}	-	-
70	Aluminum + Manganese + ΣX_i	1054	1056	-	-	-	-	-	! -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	- (-	- !	-	-
	Aluminum + Silicon	-	-	-	-	-	-	-	-	-	-	843	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	¦ - ,	-	-	- :	-	-
	Aluminum + Sliver	-	-	¦ -	-	-	-	-	-	-	-	846	-	-	-	-	-	-	-	-	~	-	-	- }	-	-	-	-	-	-	-	-	- 1	-	-
	Aluminum + Zinc + ΣX_i	1058	1060	-	-	1063	1066	-	1069	-	-	-	-	-	1072	-	-	-	-	-	-	-	-	1074	-	-	-	-	-	[-]	-	-	- !	-	-
	Antimony	-	-	-	-	-	-	-	-	-	-	-	61	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	64	-	-	-	-	-
	Armco Iron	291	294	-	-	-	-	304	i -	-	300	311	-	-	-	-	-	-	- 1	-	-	-	-	322	-	-	-	• -	} -	; -	: -	1 -	; - ;	-	-
	Astrolloy	-	-	-	-	1303 1348		-	-	-	-	1318 1352	-	-	-	-	-	-	-	-	-	-	-	-	~	-	-	-	-	-	-	-	-	- 1	-
	AZ-31	-	1268	-	-	-	-	-	1271	-	-	1278	-	-	-	-	-	-	-	-	-	-	-	1280	-	-	-	-	-	-	-	-	-	-	-
	AZ-31B] -	<u> </u>	-	} -	Ì -	-	-	-	-	127	1 -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-
	Barium	-	-	-	-	-	-	-	-	-	-	-	66	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-	-
	Beryllium	-	69	-	-	72	-	-	76	-	-	78	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	82	i -	-	-	-	-

		F	MIT.	ranc	E	İ				REFI	LECT	ANCE							ABSO	RPTA	NCE						т	RANS	MITT	ANC	ε			ĺ
		Total		S	pectra	ıl	lnt	egrat	ed	S	pectra	al	:	Solar		Int	egrat	ed	s	pectr	al		Solar	_ i	Int	egrat	ed	Sį	pectra	d		Solar		
Sub-property code	03	02		04	90	90	10	80	00	10	=	12	13	14	15	16	17	18	19	20	21	22	23	24	25	56	27	28	29	30	31	32	33	34
Material Name	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemisphertcal	Normal	Angular	Hemispherical	Normul	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angwlar	Alpha/Epsilon
Beryllium extrusion #30	-	-	-	-	-	-	-	76	-	-	79	-	-	-	-	-	-	-	-	-	-	-	-	,	-	-	-	-	-	-	-	- :	- 1	-
Beryllium + Iron + ΣX_i	-	-	-	-	<u> </u>	-	-	-	-	-	- 1	1077	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-	-
Bismuth	-	-	-	-	١.	-	-	-	-	-	_	-	-	-	_	-	-	-	-	-	-	-	-	-	-	_	-	-	85	88	-	-	-	-
Bismuth + Tin	-	-	-	-	-	-	-	-	-	-	; -	-	-	-	-	_	849	-	_	-	-	_	-	_	-	 -	-	-	-	-	-	-	-	} -
Brass	862	865	-	-	-	-	-	-	-	-	¦ -	-	-	-	_	-	875	_	-	-	-	-	-	-	-	-	-	۱-	-	_	-	- 1	-	-
Brass, α	-	-	-	-	-	-	-	-	: -	-	- :	871	-	-	-	-	-	- !	-	-	-	-	- !	-	-	-	-	-	-	-	-	-	-	-
Brass, \$	-	-	-	-	-	-	-	-	-	-	: -	871	-	-	-	-	-	-	-	-	-	_	-	-	-	ļ -	-	-	-	-	-	: - İ	-	-
Brass, yellow	862	-	-	-	-	_	-	-	-	-	! - !	· -	-	-	-	873	-	-	-	; ; -	-	-	-	-	-	-	-	-	_	-	-	- 1	-	-
Bronze · · · · · · ·	-	-	-	-	-	-	-	! 	-	-	868	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-] -	-	-	-
B.S. 1433 Copper	-	-	-	-		-	-	-	-	-	-	-	-	170 171		-	-	' - ' 	-	-	-	-	189	-	-	-	-	-	-	-	-	-	-	-
Cadmium	91	-	-	-	-	-	-	-	<u>'</u> -	-	i -	93	-	-	-	96	-	- :	-	-	98	-	-	_	-	-	ļ -		ļ -	-	-	-	j -	ľ -
Chromium	101	103	-	-	106		110	! -	-	-	112	115	-	-	-	-	-	-	-	117		-	120	-	-	-	-	-	122	-	-	-	-	-
Cobalt	_	125	 -	-	128	-	_	-		-	-	133	_	-	-	_	-	-	_	i ! -	-	-	-	_	-	-	-	-	-	-]_	-	-	-
Cobalt alloy N-155	l	1120 1121 1157 1161	-	-	1124		-	-	-	-	1138 1203		-	-	-	-	-	-	-	-	-	-	1147 1234 1236	-	-	-	-	-	-	-	-	-	-	-
Cobalt + Aluminum	-	-	-	-	-	-	-	-	-	-	851	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Cobalt + Chromium + EX;	1080	1083	-	-	1086	-	-	-	-	-	1092	-	-	i -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

		E	MITI	TANC	Е	-			;	REFL	ECTA	NCE							ABSO	RPTA	NCE			-			T	RANS	мгтт	ANCE	Ε			
	١.	Total		S	pectra	.	Int	egrat	ed	S	pectra	ıl	1	Solar	- }	Int	egrat	ed	S	pectra	ıl		Solar		Int	egrat	ed	S	pectra	d		Solar		
Sub-property code	0.0	02	03	40	02	90	0.7	80	60	10	1	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
Material Name	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Alpha/Epsilon
Cobalt + Iron	-	-	-	-	854	-	-	-	-	-	-	-	-	-	-	-	-	-	-	[-]	-	-	- 1	-	1	-	-	-	-	- :	-	-	-	-
Cobalt + Nickel	-	-		-	856	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	- :	-	-	-	-	ļ -	-	-	-	-	-	-	-
Cockron home foil	2 3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	38 39	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Copper	136	140	-	-	146 149	-	-	-	-	154	156	162 164 167		169	-	174	176	-	-	178 180	183	186	188	-	-	-	-	-	192	-	-	-	-	195
Copper, B.S. 1433	-	-	-	-	-	-	-	-	-	-	-	-	-	170 171	-	-	-	-	-	-	-	-	189	-	-	-	-	-	-	-	-	-	-	-
Copper, OFHC	137	-	-	-	! -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	184	-	-	-	-	-	-	-	-	-	-	- !	! -	-
Copper + Aluminum + ΣX_i .	-	1096	-	-	1099	-	-	-	-	-	1103	-	-	-	-	-	-	-	-	-	-	-	1106	-	-	-	-	-	-	-	-	-	-	-
Copper + Nickel	-	858	-	-	-	-	-	-	-	-	-	-	-	į -	-	-	-	-	-	-	-	-	-	-	-	-	i -	-	-	-	-	-	-	-
Copper + Nickel + \(\Delta \tilde{x}_i\)	-	! -	-	-	-	-	-	-	-	-	1109	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Copper + Tin	-	-	-	-	-	-	-	-	-	-	860	-	-	-	-	-	! -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Copper + Tin + ΣX_1	-	-	-	-	· -	! -	-	-	-	1111	1113	-	-	-	-	-	-	-	-	-	-	-	-	-	-	į -	-	-	-	-	-	-	-	-
Copper + Zinc	862	864	-	-	-	-	¦ -	-	-	-	867	870	-	-	-	87.3	875	-	-	-	877	-	-	-	-	-	-	-	-	-	-	-	: -	-
Copper + Zinc + ΣX_i	-	-	-	-	-	-	1115	-	-	1117	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ļ -	-	-	-	-	-	-	-	(-
D-43	1402	<u> </u>	-	-	; -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	: -	-
Erbium	-	-	-	-	197	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	: -	-
Gadolinium	-	! -	} -	-	-	-	-	-	-	-	199	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	202	-	-	-	; - !	-
Gallium	-	<u> </u>	-	-	! -	ļ -	-	-	-	-	205	-	-	-	-	-	-	-	-	208	-	-	-	-	-	-	-	-	211	İ -	l -	! -	-	-

	İ	1	EMIT	TANC	E					REF	LECT	ANCI	:						AB\$0	ORPTA	ANCE						т	RANS	мгтт	ANCE	Ε			
		Total		s	pectra	u l	In	legra	ted	5	Spectr	al		Solar		ln	tegra	ted		Spectr	al		Solar		Int	egrat	ted	s	pectr	al		Solar	. [
Sub-property code	10	00	03	04	002	90	0.7	80	60	9	=	12	13	7	15	16	17	18	67	20	21	22	ន	22	25	26	22	82	29	30	31	32	33	34
Material Name	Hemispherical	Normal	Angular	Hemispherical	Normai	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angul. r	Alpha/Epsilon
Germanium	-	214	-	-	217 219		-	-	-	-	221	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	227	230	-	-	-	-
Gold	233	236	-	-	239 241		-	-	-	-	244	249	-	252	-	254	-	-	-	256 258		-	262	-	-	-	-	-	-	-	-	-	-	265
Gold + Silver	-	-	-	-	-	-	-	-	-	-	880	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- !	-	-
Hafnium	267	-	-	-	269 271	-	-	-	-	-	-	-	-	-	-	-	-	ļ -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hastelloy X	-	-	-	-	1304	- '	-	-	-	-	1319	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-	
Harnes Alloy No. 25	1081	1084	l -	-	1087 1090	-	-	! -	-	-	1093	-	-	-	-	-	-	-	-	-	-	~	-	-	-	-	-	-	-	-	-	-	~	-
Haynes Alloy N-155	-	1162	-	-	1171	- 1	-	-	j -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-	-
Haynes Alloy X	1289	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	j -	-	-	-	-	-	-	-	-	-	-	-	-	-
Hastelloy B	-	1382	-	-	1385	-	-	-	-	-	1388	-	-	-	-	-	-	-	-	-	-	-	1391	-	-	-	-	-	-	-	-	: - ⁱ	-	-
Hastelloy C	1379	1382	-	-	1385	-	-	-	i -	-	1388	-	-	-	-	-	-	-	-	-	-	-	1391	-	-	-	-	-	-	-	-	- 1	ا - ا	-
нк-31	-	1282	-	-	1284	- '	-	-	-	-	-	-	ĺ -	-	- 1	-	-	-	-	-	-	-	1286	-	-	i -	-	-	-	-	-	- :	- [-
Hurwich home foil	2 3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	38 39	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- :	-	-
Inconel		1294 1295	-	-	1303 1306		-	-	-	-	1323	-	-	-	-	-	-	-	-	1334	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Inconel 600 (see Inconel)								 																										
Inconel 702	1290	-	-	-	1304	-	-	-	-	·-	1319	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- .	-	-	-	-	-	- [-

		E	MITI	ranc	E				1	REFL	ECTA	NCE						ı	BSO	RPTA	NCE			-			T	RANSI	итт.	ANCE	2			
		Total		Sp	ectra	ո	Int	egrat	ed	S	pectra	ıì		Solar		Int	egrat	eđ	S	pectra	ų		Solar	- {	Int	egrat	ed	Sp	ectra	1		Solar	\	
Sub-property code	0.1	0.5	63	94	92	90	20	90	60	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	22	56	27	28	29	30	31	32	33	34
Material Name	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normai	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Alpha/Epsilon
Inconel B	-	1293	-	-	-	-	-	1315	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1339	-	~ 7	-	-	-	-	-	-	-	T - 1	-
Inconel X	1289 1290	1294 1295 1296	-		1300 1305	~	-	1315	-		1318 1320	-	~ ;	-	-	-	-	-	-	-	1336	-	1339 1340	-	- '	-	-	-	-	-	-	-	-	-
Inconel X-750 (see Inconel X)																																		
Indium	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	¦ - ;	-	-	273	-	-	-	-	-	-	-	-	-	-	-	-	-
Inor-8	1379	! -	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- '	-	-	۱ -	-	-	-
Iodide Hafnium	267	-	- :	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	_	-	-	-	-
Iodine	-	-	-	-	-	-	- '	-	-	-	276	-	-	-	-	-	-	- '	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-
Iridium	-	-	-	-	278 280	-	-	-	-	-	283	286 289		-	-	-	: ~	-	-	-	· ~	-	: -	: - :	-	-		-	-	-	-	-	-	-
Iron	290	293	-	-	296 301	-	304	-	-	306	308 310	313	-	-	-	-	-	-	-	316 318		-	321	! -	-	· -	: :	-	-	-	-	-	-	-
Iron + Carbon	-	883	-	-	-	-	-	-	-	-	i -	-	-	-	-	-		! -	_	-	_	۱ -	ļ -	-	-	-	-	-	-		-	; -	<u> </u>	-
Iron + Chromium	-	_	-	_	-	-	_	_	-	_	886	888	_	-	-	-	-	_	-	! ! -	-	-	! _	! _	-	-	ļ _	-	_	_	-	-	-	-
Iron + Chromium + ΣX_i	-	1119	-		1123 1127	-	1132	-	-	1134	1137	-	-	-	-	-	-	-	-	1143	-	-	1146	; - i	-	-	-	-	-	-	-	-	-	-
Iron + Chromium + Nickel + ΣΧ _i	1149	1155	1166	-	1168 1175	1183 1186	1192	1194	-	1199	1202	1220 1222	-	~	-	1224	-	-	-	1226	1229	-	1232	-	-	-	-	-	-	-	-	i -	-	1238
Iron + Cobalt + ΣX_i	-	-	-	-	-	-	1240	-	-	1242	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ļ -	-	-	-	¦ -	-	¦ -	-	-
Iron + Manganese + ΣX_i	1244	1246	-	-	-	-	1248	-	-	1250	-	-	۱ -	۱ -	-	-	Ì -	i -	-	١ -	-	١.	1252	· -	i -	i -) -	1 -	۱ -	١	∦ _	ì -	-	۱ -

- and the same of

		1	EMIT	FANC	E					REF	LECTA	ANCE							ABSO	RPTA	NCE						T	RANSI	MITT.	ANCE	2			
		Total		Sj	pectra	ıl	Int	egrat	ed	5	Spectra	al		Solar		Int	egra	ted	s	pectra	al		Solar		Int	egrat	ed	Sp	ectra	ı	:	Solar		
Sub-property code	01	02	03	2	05	90	0.7	90	60	10	7	12	13	1	15	16	17	18	19	20	21	22	23	72	25	26	27	28	29	30	31	32	33	34
Material Name	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemisphorical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Alpha/Epsilon
Iron + Nickel		-	-	-	890	-	-	-	-	-			-		_	-			-	- :	-	-	-	-	-			-	-	_	- :	_	- 1	$\overline{}$
Iron + Nickel + ΣX_i	_	_	_	_		_	_	_	_	_	1255	_	_	_	_	_	_	· 	_		_	_	_	_	_	_	_	_ ˈ	_	_	_ '	_	_	_
Iron + Nickel + Chromium +ΣX _i	1258	. <u>.</u>	: -	-	1261	-		: . - .	-	_	1264	_	-	_	_	_ ,	-	. -	_	: - :		_	: : _	_	-		_		_	-	_	_	- !	
Iron + Tungsten]_	-	-	_	893	_	_	: - i	-	-	: -	_	_			_ ;	_	: -	١.	_ :	_	_	-	_	-	. -	_	_		_	-	_ :	_	_
K Monel	Ì	1360		_	. <u>.</u> .	_	_	1365	_		· _ :	_		-	_	_	_	_	_			_	. 1373		_		_	_	_ '	_			_	
KR Monel			١_	_		_	1362	į .	_	1367	, _	_	<u> </u>		: _	١.			l _	٠ _ ٠		_	_		_				_ ;	_	,	_	_	_
Kaiser foil	2 3			-	-	-	-	- :	-	-	! - ;	-	-	- 		38	-	. -	-			-	· -	-	-	<u>-</u>	-		-	-	-	- :	-	-
Kanthal	_		-	_	1128	_	_	_ :	_	_	-	_	_	:	_	-		_	۱.	1144	_	_		_	_	_	_		_ '	-	_		_	_
Kanthal A	_			_	1128	_	_	_	_	_	1 _ 3	_	۱.	: _	· -	_	_	: -	-	: _ :		_	_	! -	_	_	_	_ 1	_ ;	-	-	_ 1	-	
Konel	1342		: _	_	1345	_	·		_	_	-	_	_	٠ _	_	_	_	· : -	_	•		_		· _	_	_	_	_	_	_		_	-	_
Kovar	_	· _		_	' ' : -	_	_	-	-	_	1256	_	l _	-	· _	_		: -	۱.	!		۱.		_	_	_	_		1	_	-	_ ;	_	_
L34		! _	_			-	_		_	۱_	1030	-	۱.	1033		١.	i -	i -	_	1 - '	; -	١.	11037	· -			! _	_ ;	_	_	_		_	
L72	1_			_	: !	_	_	_	_	l _		_		1024	:	<u> </u>	_		l _				1027	1	_	! _		_	_	_	_	!	_	_
L120 Magnesium	-		-		_	_			_	-	:			350	ţ	_		i .		1			354	1			į _		_			. []		
Lizo Muguesium	-	-	-	-	! -	_	-	-	-	٦	-	_	-	351	-	"	-	-	-	-	-	1 -	354	i -	-	<u> </u>	-		-	_]	!	-	-
Lead	324	326	-	-	-	-	-	-	-	-	-	-	-	-	-	328	330	-	-	332	334	-	-	-	-	-	-	-	-	-	-	-	-	ı -
Lead + Tip	896	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	, -
Lutetium	-	-	-	-	-	-	-	-	-	-	336	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	339	-	-	-	-	, - I

	1	E	EMIT	TANC	E					REF	LECT	ANCE	1						ABSO	RPTA	NCE						т	RANS	MITT	ANCE	3		1	
		Total		s	pectra	d	In	tegrat	ed	S	pectra	al		Solar		In	egra	ted	S	pectr	al		Solar		Int	egrat	ed	S	pectra	al		Solar	- 1	i
Sub-property code	01	02	03	04	92	90	07	90	60	2	н	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	8	31	32	g	젊
Material Name	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Alpha/Epsilon
M252	-	-	-	-	1306	-	1	-	-	-	1323	-	-	-	-	-	1	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	[-]
Magnesium	342	-	-	-	-	-	-	-	-	-	345	347	-	349	-	-	-	-	-	-	-	-	353	-	-	-	-	-	356	-	-	-	-	-
Magnesium, L120	-	-	-	-	-	-	-	-	-	-	-	-	-	350 351	-	-	-	-	-	-	-	-	354	-	-	-	-	-	-	-	-	-	-	- 1
Magnesium alloys:					1	!			[!									1														
AZ-31	-	1268	-	-	-	-	-	1271	i -	-	1278	-	-	-	-	-	i -	-	- :	-	-	-	1280	-	-	-	-	-	-	-	-	-	-	-
AZ-31B	-	-	-	-	- 1	-	-	- 1		1274	-	-	-	! -	<u>'</u> -	-	<u> </u>	· -	-	-	-	-	¦ -	-	-	-	-	-	- 1	-	-	- !	-	-
нк-31	-	1282		-	-	-	-	-	: -	-	1284	-	-	: -	i -	-	 -	-	-	· -	i -	-	1286	· -	-	-	! -	-	! - '		-	- !	- !	-
Magnesium + Aluminum	-	-	-	-	-	-	-	-	-	-	898	-	-			-	-	_	-	; -	· -	-	-		-	· -	i -	-	-	-	-	ļ - i	ļ -	-
Magnesium + Aluminum + ΣΧ _i · · · · · · · · · ·	-	1267	-	_	: 	-	_	1270			:1277	_	-	_	•	-	-		-	· ! -	-	1280	-	-	-		: -	-	_ !	_	-	-		-
Magnesium + Thorium + ΣΧ ₁	-	1282	_	_		-	_	i -		i	1284	_	-	: -	· : <u>-</u>	_	: _	_	-	_	: -	-	1286	_	-	-	!	-	į _ !	-	-	 -	-	_
Manganese	-	. -	-	-	358	_	-	-		-	-	360	-	_	-		: <u>-</u>	_	-	-	363	-	-	: _	-	_	-	-	- 1	-	-	-	-	-
Mild steel	1244	1246		_	· _ ˈ	-	-			-		-	-		, -	! -	: -	_		i -	, -	_	1253	; -]_	-	-	-		_	-	-	-	_
Mo + 0.5 Ti alloy	-	902	905	-	_	_	_	· -		-		_	-	; -	-			-	-	! -	-	-	-	: 	-		-	-	: -	-	-	! -	-	-
Molybdenum	365	370	· -		374 379	-	-	; <u>-</u>	-	-	384	388	-	-	-	-	-	-	-	390	; , 393	-	396	-	-	; 	-	-	-	! ! -	-	-	-	-
Molybdenum + Titanium	-	901	904	- <i>.</i>	907	-	-	-	; -	-	910	-	-	' -	<u>:</u> -	-	-		-	· 	; -	-		-	-	; -	! -	-	-	ļ -	-	i -	: :	-
Molybdenum + Tungsten	914	-	' -	-	916	-	-	: -	-	-	! -	-	-	· -	· -	-	-	· -	-	-	! <u>-</u>	-	· -	· -	-	١ -	· -	-	· -	-] -	-	-	-
Monel	1357	:1360		-	: 	_	-	ı –	i -	_	1370	-	-		j _	-	: _	-	_	; _	٠_	-	-	-	· -	-	_	í -	_	; -] -	_	! -	-

!		F	:MIT	ranc	E					REF:	LECT	ANCE							ABSO	RPT	INCE			ļ			т	TANS	Mirr	CANCI	R			
		Total					ļ <u>,</u> ,				pectr			Solar		_							0-1									n - 1		
					pectra			egrat			<u> </u>						tegra			Spectr	$\overline{}$	~	Solar			egral			pectr			Solar		Ļ
Sub-property code	10	02	8	2	90	90	0.0	80	60	2	7	12	13	77	15	16	17	18	16	20	2	22	8	2	25	26	27	28	29	30	31	32	33	क्र
Material Name	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemisphorical	Normal	Angular	Hemispherical	Normal	Angular	Alpha/Epsilon
Monel 400 (see Monel)												1			:					:														
Monel K-500 (see K Monel)			!					:										•														İ		
Monel 501 (see KR Monel)											÷															l							!	
Multimet	1152	1162	-	-	1171	-	- :	- ;	-	-		-	-		: -	-	-	-	-	-	-	-	-	-	-	-	· -	-	-	-	-	-	-	-
Nb - 1 Zr alloy	934	-	-	-	٠	-	-			-	-	-	-	-	-	-	-	-	-	٠ -	- 1	-	-	-	-	-	-	-	i -	-	-	-		-
Nichrome	1289	1296	-	-	-	-	-	-	-	-		-	-	-	· -	-		-	-	. -	· -	-	' - '	-	-	-	-	-	• -		-	-	-	-
Nickel · · · · · · · · · · · · · · · · · · ·	399	402	-	-	408 417	-	422	424	428	-	434	437	-	-	. -	440	442	-	-	444	447	450	452	-	-			-	-	-	-	-	-	45
Nickel, Grade A	-	403 404 405		-	409 410 411 412		- :	- !	-	-	435	<u>-</u>	-	-	-	-	· -	: - -	-	-	-	-	453	-	-	-	- !	-	-	-	-	! -	-	-
Nickel, Grade NP-3	-	-	-	-	418	-	-	- !	-	-	-	-	-	-	-	-	-	· -	-	-	; 	-	-	-	-	-	-	-	-	-	-	-	-	-
Nickel + Chromium	-	-	-	۱.	919	_	- <u> </u>	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-
Nickel + Chromium + ΣX_{i} .	1288	1292	-	-	1299 1302		-	1314	; 	-	1317	-	-	-	-	-	-	-	-	1333	1336	-	1338	-	-	-	-	-	-	-	-	-	-	-
Nickel + Cobalt + ΣX_i	1342	-	-		1344 1347	-	-	-	-	-	1351	-	-	-	-	-	-	-	-	-	- ;	-	-	-	-	-	-	-	-	-	-	-	-	-
Nickel + Copper + ΣX_i	1357	1359	_	-	-	-	1362	1364	-	1367	1369	-	-	-	-	-	-	-	-	-	- :	-	1372	-	-	-	-	-	-	-	-	-	-	-
Nickel + Iron	-	-	-	-	922	-	-	- 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

		I	EMIT'	ranc	E		Ì			REF	ECTA	NCE							ABSO	RPTA	NCE						т	RANS	MITT.	ANCE	;		1	
		Total		S	pectra	ıl	Integrated Spectral Solar						Int	egrat	ed	S	pectra	al		Solar		Int	egrat	ed	S	pectra	ı	5	Solar	- 1				
Sub-property code	10	02	03	04	05	90	20	08	60	2	=	12	13	14	15	16	17	18	19	20	21	22	ន	22	25	26	27	28	83	8	31	32	g	2
	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Mormal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Alpha/Epsilon
Material Name	Η.		,	_	,	_			_	├			 							-			1		-		<u>, </u>	 			-		$\stackrel{\sim}{ o}$	<u> </u>
Nickel + Iron + ΣX_i	-	-	-	-	1375	-	-	-	-	-	-	-	-	-	- :	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	- [- 1
Nickel + Molybdenum + ∑X _i	1378	1381	-	-	1384	-	-	-	-	-	1387	-	-	-	-	-	-	-	-	-	-	-	1390	-	-	_	-	-	-	-	-	-	-	-
Nickel silver	-	-	-	-	-	-	1115	-	-	1117	-	-	-	-	-	- 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-	- 1
Nickel + Silver	- !	925	١ -	-	: -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Nimonic 75	1290	1293		-	-	-	-	-	-	-	-	-	-	ļ -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-	-	-	:
Niobium	457	462	; ; -	-	464 467	-	-	[:]	-	-	471	-	-	-	- [:]	-	-	-	-	-	475	-	- 1	-	-	-	-	-	-	-	_	-	-	_
Niobium + Molybdenum + ΣX_i	-	1393		_	: _	· ; -	_	-	· · -	-	-		-	: -	:	-	-	-	-	-	-	_	_	_	-	-	-	-	-	_ !	-	-	-	-
Niobium + Tantalum + ∑X _i •	1395	-	-	-	1398	-	-	. -	· -	-	ļ <u>-</u>	-	-		· -	-	-	! -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	i -
Niobium + Tungsten	927	-	, -	-	930	-	-	-	-	-	-	-	-	i _	: -	-	· -	: -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Niobium + Tungsten + ΣX_i	1401	-	-	-	-	-	-	<u>-</u>	, -	-	: : -	. -	-	· _	· -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Niobium + Zirconium	933	936	-	-	938	-	-	: -	-	-	-	-	-	-	· -	-	-	<u> </u>	-	-	-	-	-	-	-	-	-	-	-	-	-	i - ¦	, - I	-
OFHC Copper	137	-	-	-	: -		-		· -	-	<u>:</u> -	; ; -	ļ -	: _	-	-	-	1 -	-	-	184	-	-	-	-	-	-	-	-	-	-	-	, - }	-
Osmium	-	-	-	-	478	-	-	-	· -	-		-	-	· -	-	i -	-	-	-	-	- 1	-	-	-	-	-	-	-	-	-	-	-	-	-
Palladium	480	482	: _		: 485 : 488		-	-		-	490	-	-	-	-	-	i : -	-	-	493	-	-	496	-	-	-	-	-	498	-	-	-	-	-
Phosphor bronze	-	-	<u>-</u>	-	-	-	-	i _	ļ ! -	1111	! -	-	-		-	-	-	ļ -	-	-	-	-	_	 -	-	-	-	-	-	-	-	-	-	-
Platinum	501	505	: -		508 511		-	<u>.</u> -	-	-	518	521 523	-	<u>-</u>	-	į -	; -	ļ -	-	525	528	-	531	i -	-	-	<u> </u>	-	-	-	-	-	-	-

			EMIT	TANO	E					REF	LECTA	ANCE	:						ABSC	RPTA	ANCE						Т	RANS	TTIME	ANCI	Ε		İ	
	l	Tota	1	S	pectra	al	In	tegrat	ted	S	pectra	ıl		Solar		In	tegra	ted	S	Spectr	al		Solar		Int	egra	ted	S	pectr	al		Solar		
Sub-property code	01	02	69	94	02	90	07	0.8	60	10	77	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	22	28	53	30	31	32	8	7.
Material Name	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Alpha/Epsilon
Platinum, NBS	-		-	-	512	-	-	-	-	-	-	-	-		-	-	-		-	526	ļ -	-	-	-	-	: -	· -	-	_	-	-	_	-	-
Platinum wire, grade MPTU 4292-53	502	-	: ! -	_		_	-	-	-	-	-	-	-	· _	: _	-	-	_	-	· -	-	-	: -	_	-	-	٠_	į -		-	-	_ ′	-	-
Platinum + Rhodium	941	943		-	946	-	-	-	-	-	;	-	-	: -	: -	-	: ~	-	-	-	-	_	j -	-	_	-	-	i -	! - [:]	_	-	-	-	-
Poroloy	-	1161	-	-	-	-	-	· -	-	-	- '	-	-	-	· -	ş -	-	_	-		-) -	1236	-	-	-		-		İ	-		-	-
Potomac A	-	: -	· -	-	1128	-	-		-	-	1138	-	-	_	· -	-	٠ -	-	-	-		-	-	_	-	: -	-	-	-	-	-	_	_	-
Pt-10 Rn alloy	941	-		-		-	-	-	-	-	- :	-	-	-	٠ -	-		-	-	-		-	: -	-	_			-	_	_	-	_	-	-
Pt-13 Rh alloy	-	-	-	-	947	: -	-		_	-	;	-	-	٠_		-	_	-	-		-	-		-	-	· _	:_	-	-	_	-	_	- 1	-
Renc' 41	-	1298			1305 1306	-	-	-		-	1321 1323	-	-	-	-	-	-	-	-	: -		-	-	-	-	: -	<u>:</u> -	-	· -	-	-	- '	-	-
Reynolds Wrap	-	-	· -	-	-	-	-	-		-	-	-	-	36		-	-	-	-	-	-	-	٠.	51	-		-	-	· -	-	-	_ :	- 1	-
Rhenium	533	536	; -	-	539 542	-	-	-	-	-	,	-	-		-	-	-	-	-	-	i -	-	; -	-	-		-	-	-	-	-	-	-	-
Rhodium	545	547	: -	-	550 553	-	-	-	~	-	555	557	-	-	-	-	: -	-	-	-	560	-	562	-	-	-	: -	-	· -	-	-	-	-	-
Roneusil	-	-	-	-	-	-	1248	-	-	-	- 1	-	-	-	-	-	-	-	-		: _	-	-	-	-	-	: -	-	٠ _	-	-	-		-
Ruthenium	-			-	564	-	-		-	-	- :	-	-		· -	-	: -	-	-	_	-	-	_	-	-	i -	ļ -	-	-	-	-	- '	-	-
Selenium	-	-	<u> </u>	-	- '	-	-	-	-	-	566	-	-	-	-	-	-	-	-	; -	-	-	; -	-	-	-	į -	-	568	-	-	-	-	-
Silicon	-	-	-	-	571 573	-	-	 -	-	-	577	582	-	-	-	-	-	-	-	-	-	-	-	: : -	-	-	-	-	585	-	-	-	-	-
Silicon, n-type	-	-	-	-	574	-	-	-	-	-	578	583	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	586	-	-	-	-	-

		F	MIT	ranc	E					REFI	ECTA	INCE						,	ABSO	RPTA	NCE						T	RANS	MITT	ANCE	Ξ			
		Total		s	pectr	1	Integrated Spectral Solar in							Int	egrat	ed	S	pectra	ıl		Solar		Int	egrat	ed	s	pectr	al _		Solar		L		
Sub-property code	0.1	02	03	04	05	90	0.0	90	60	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	8
Material Name	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normai	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Alpha/Epsilon
Silicon, p-type	-	-	-	-	574	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-
Silver	588	591	-	-	593 595		597	-	-	-	599	603	-	-	-	606	-	-	-	608 610	612	-	615	-	-	-	-	-	618	-	-	-	-	62
Silver + Aluminum	-	-	-	-	-	-	-	-	-	-	949	951	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Silver + Beryllium	-	-	-	-	-	-	-	-	-	-	-	954	-	-	-	-	-	- '	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Silver + Cadmium + ΣX_i	-	-	-	-	-	-	-	-	-	-	-	1404	-	-	-	-	-	-	-	i -	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Silver + Copper + ΣX_1	-	-	-	-	-	-	-	-	-	-	-	1407	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Silver + Gold	-	-	-	-	-	-	-	-	-	-	957	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Silver + Silicon	-	-	-	-	-	-	-	-	! -	-	-	960	-	-	-	-	-	-	-	-	-	-	-	-	ĺ -	-	-	-	-	-	-	-	-	-
Silver + Zinc + ΣX_i	-	-	-	-	-	-	-	-	-	-	-	1410	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Solder	896	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-] -	-	-	-	-	-] -	-	-] -
Stainless steel	-	-	-	-	1128	-	-	-	-	-	-	888	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Stainless Steels:						İ				ĺ		ļ																						
17-7 РН	-	1158	-	-	1170		-	-	-	-	1203 1205		-	¦ - 	-	-	-	-	-	-	-	-	1235	-	-	-	-	-	-	-	-	-	-	-
18-8	1150 1152	1160 1161	-	-	-	-	-	-	-	1200	_	-	-	-	-	-	-	-	-	-	-	-	1236	-	-	-	-	-	-	-	-	-	-	-
18-8 Cr-Cu	-	-	-	-	-	-	1132	-	-	1135	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
18-20 Cr-Mn	-	-	-	-	-	<u>-</u>	1248	1 -	-	1250	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
18-21 Cr-Co	-	-	-	۱-	_	-	1240	-	-	1242	-	-	-	_	-	-	_	-	-	_	-	-	-	-	١.	-	-	-	-	_	-	-	_	-

!	!	E	MIT:	ranc	E					REF	LECT	ANCE	:						ABSC	RPT	NCE			Ì			T	RANS	мітт	ANC	E		;	
		Total		s	pectr	al	Integrated Spectral Solar Int							egrat	ed	5	pectr	al		Solar	.	. Int	egrat	ed	S	pectra	al		Solar					
Sub-property code		70	63	22	05	90	-20	80	60	101	=	13	13	4	15	16	17	18	-61	8	- 12	22	8	75	25	92	27	8	62	=	#	8		*
Sup-property code			-				- Te			<u> </u>			cal						cal			ca.			Las Las			cal					_	-
Material Name	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	eri	Normal	Angular	Hemispherical	Normal	Angular	Hemispherica	Normal	Angular	Hemispherical	Normal	Angular	Hemispheric	Normal	Angular	Hemispherica	Normal	Angular	Hemispherica	Normal	Angular	Hemispherica	Normal	Angular	Hemisphericul	Normal	Angular	Alpha/Epsilon
Stainless Steels (continued)										-			_		_			_											_	_	_			-
301		1156 1161	-	-	-	· 	i -	1195 1196		-	1206		-	· -	; -	-	-	-	-		-	-	1233	-	-	-	: -	-	-	-	-	- :	-	-
302	1150 1151	-	-	-	-	: : -	- I	٠ -	· -	-	! - !	i -	-		! -	1224	-	-	-	: ! -	-	_	- !	-	-		-	-	-	-	-	- :	-	-
303	1150 1151	1161	-	-		118 118 118 118	5 7	-	-	-	-	-	-	-	: -	-	-	-	-		1230	_	· -	-	_	-	-	-	- -	-	-	-	-	-
304	1151	1162	-	-	1176	3 -	1192	: -	-	120	0 1207	-	-	<u> </u>	: ! -	-	-	. -	-	٠-	· -	-	· -	! -	-	٠ -	١-	-	-	,	-	-	-	123
304 ELC	1151	-	-	-	-	-	- ا	-	-	-	-	-	-		_	-	-	· -	-	-	_	-	· -	-	-	-	<u> </u>	-	. -	-	-	- ,	-	-
309	- 1	-	-	-	-	-	1192	}. -	: _	120	0 -	٠ ـ	-	_	-	-	_	: -	-	i -	-	-	٠ _	-	-	-	-	-	-	_	-	-	-	-
310	1150 1151	. -	-	-	-	: <u>-</u>	1192		-	120	0 -		-	- :	! -	-	-	. -	-	-	-	-	· -	-	-	. -		-	_	-	-	-	-	-
316		1156 1159			1170 1170		1192	1195	-	120	0 1203 1207 1208		-	:	· -	-	-		-	· -		-	1233 1235		-	-	-	-	-	: -	-	- 1	-	-
321	1 :	1159 1160 1161	I	-	1170 1171 1170 1170	1 6	-	: :	; - !	-	1203 1204 1207 1209	:	_	- 	-	 - 	-	-	-	1227	: -	-	1235 1236		-	-	: - 	-	- 	-	-	-	-	-
347	1150	1157	-	-	-	-	-	1196	-	-	<u> </u> -	-	-	-	-	-	-	-	-	-	-	-	1234	-	-	-	-	-	-	-	-	-	-	-
410	-	-	-	-	-	-	1132	-	-	113	5 -	i -	-	-	-	-	-	-	-	-	-	-	-	ļ -	-	-	-	-	-	-	-	-	_	-
420	-	-	-	-	-	-	1132	-	-	113	5 -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	j -	-	-	-	-

		E	MIT	ranc	E					REFI	ECT#	NCE						,	ABSO	RPTA	NCE			١			T	RANS	мгтт	ANCE	;		1	
!	L	Total		S	pectra	ıl							Int	egrat	.ed	s	pectr	al		Solar		Inte	egrate	ed	Sı	ectra	1	S	Solar	l				
Sub-property code	0.1	02	8	04	05	90	07	90	60	01	Ħ	12	13	4	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	33	8	34
Material Name	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Alpha/Epsilon
Stainless Steels (continued)	İ				i				Ī																									\neg
430	-	ļ - '	-	-	-	-	1132	- '	-	1135	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-]	-	-	_
431	-	i -	-	-	-	-	1192	-	-	1200	-	-	-	-	- '	-	-	-	-	-	_	-	-	-	-	-	-	_	-	-	-	-	- 1	_
446	-	1120	-	-	1125	-	1132	-	-	1135	1138	-	-	-	-	-	-	-	-	-	-	-	1147	-	-	-	_	-	_	-	-	- [-	_
A286	-	-	-	-	1262	~	-	-	-	-	1265	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	_	_	-	_	-	_
AM 350	-	1160	-		1171 1177		-	-	-	l	1203 1204 1205		-	-	¦ -	-	-	-	-	-	-	-	1235 1236	-	-	-	-	-	-	-	-	-	-	-
РН 15-7 Мо	-	1158	-		1170 1177		-	-	<u> </u>		1203 1204	-	-	-	-	-	-	-	-	-	-	-	1234	-	-	-	-	-	-	-	-	-	-	-
SF 11	-	_		-	! -	-	-	-	-	-	886	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	_	-	-	_
SF 20	-	-	-	-	-	į -	-	-	! _	-	1203	-	-	-	-	-	-	-	-	-	İ -	-	-	-	-	-	-	_	_	-	_	_	-	_
Stellite	-	: -	-	-		-	-	-		-	1093	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	_	- !
T-111	1413		-	-	· -	; -	-	-	<u> </u>	-	-	-	-	-	-	-	-	-	-	-	ļ _	_	_	-	_ '	_	-	_	_	-	_	-	-	-
Tantalum	623	627	-		631 636	i -	-	-	-	-	641	646	-	-	-	-	-	-	-	-	-	-	649	-	-	-	-	-	-	-	-	-	-	-
Tantalum + Tungsten	-	963		-	966	-	- ;	-	! -	-	-	-	-	-	ļ _	-	_	~	_	_	-	-	-	_	_ :	_	_	-	ļ _	_	_	_	_	-
Tantalum + Tungsten + ΣX _i · · · · · · · · ·	1413	<u>:</u> -	-	-	<u> </u>	! ! -	-	-	-	-	-	-	-	-	-	_	-	_	_	_	_	_	-	-	_	_	-	_	-	_	-	-	_	_
Tellurium	-	-	. -	-	i -	-	-	-	-	-	-	652	-	-	-	-	_	, _	-	ļ_	_	-	-	_	_	_	-	_	655	_ '	_	-	-	-
Tellurium + Selenium	-	-		-	-	<u> </u>	-	-	-	-	-	-	-	: -	-	-	-	-	-	Ì -	-	-	-	-	-	-	-	-	968		-	-	-	-

		1	EMIT	TANG	Œ		REFLECTANCE											ABSC	OR PT/	ANCE						T	RANS	MITT	ANCI	2				
		Total		8	pectr	al	In	tegra	ted	5	pectra	ıl		Solar		ln.	tegra	ted	5	Spectr	al		Solar		Int	egrai	ed	S	pectra	ıl		Solar	ļ	
Sub-property code	10	05	03	8	90	98	6	80	60	2	Ξ	12	13	14	15	91	17	18	1.0	20	2.1	22	83	24	25	56	27	28	29	30	31	32	25	\$
Material Name	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Alpha/Epsilon
Thallium	-	-	-	-		-	-	-	-	-	660	663	-	: -	-	-	-		-	, -	-	-		-	-	-	-	-	666	,	-	-	-	-
Thorium	-	-		-	669 671	-	-	-	-	-	-	-	-	-	-	-	-	-	-	: -	_	-	-	-	-	-	· -	-	: -	٦.	-	-	-	-
Tin	673	675	-	-	: -	-	-	-	٠ -	-	677	-	-	: _	; -	680	682	<u>.</u> -	-	684	687	-	-	-			· -	-	690	-	- :	: -	-	-
Tin + Indium	-	! <u>-</u>		-	٠.		-	-		-	:	-	-	-	-	-	970	-	-	¦ -	· -	-	· -	_	-	-	-	ļ	-	-	-	-	-	-
Titanium	693	696	-		1 699 , 702			-	-	-	712	718	-	733	. -	-	-	-	-		735	-	-	-	-	-	1 -	-	737	-	-	· - :	-	-
Titanium, AMS 4901	-	697	-	-	. -	-	-	-	-	-	713	-	-		-	-	-	: -	-	, -	· -	-	-	-	-	-	-	-		-	-	- '	-	-
Titanium, Ti-75 A	694	697		-	, -		-	-		-	713	-	-	-	; -	-	-	-	-	· -	. -	-	: -	-	-	· -	-	-	_ '	-	-			-
Titanium alloys;			:		i	:			t					!	[:	į			:								:			. !		
6A1-4V	1416	1419	-	-	1422 1423		-	-	; - 	-	1426	-	-	-	-	-	-	-	-	-	<u> </u>	-	1429	-	-	-	-	-	- !	-	-	- !	-	-
A-110-AT	-	1419	-	-	1422	: -	-	-	: -	-	1426	-	-	<u> </u>	-	-	! -	<u> </u>	-	-	: -	-	1429	-	-	-	-	-	-	-	-	; - ·		-
AMS 4908	-	973	-	-	· -	-] -	-	-	-	979	-	-	-	-	-		: -	-	-	. -	-	ļ -	_	-	-	-	-	-	-	-	}	-	-
B120 VAC	-	-	; -	-	-	-	-	: -	-	1437	- :	-	-	-	-	-	-		-	· -		-	ļ -	! -	-	-	-	-		-	-	-	!	-
C-110 M	-	973	į -	-	976	-	-	-	i _	-	979	-	-	! -	-	-	-	; -	-	-	į -	-	982	-	-	-	-	-	-	· -	-	-	! - !	-
RS-120	1431	1434	-	-	-	¦ -	-	-	-	-	- 1	-	-	-	i -	-	ļ -	-	-	i -	-	-	_	-	-	-	-	-	-	-	-	į <u>.</u> :	: -	-
TA5E	1416	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-	-
TA6V	1416	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ļ -	-	-	-	-	-	-	-	-	-	-
Titanium + Aluminum + ΣX_1	1415	1418	_	_	1421	_	_	_	_		1426	_	_	_	_			_	_	_	_	_	1428	_	_	_	_		_		_		! _ !	١.

!	ļ	_			_	1					nam.	NOD			ı				L DCO	RPTA	NOE			ı			т	DANS	MITT	ANCE	,		ı	
	1	E	MITT	ANG	E	- 1				REFI	ECTA	INCE			ĺ			-	1000	RPIA	NCE			1				ILANG	WIII I	ANGE	•		1	
	<u> </u>	Total		S	pectra	ı l							_	egrat			pectr			Solar	_		egrat			ectra			Solar		_			
Sub-property code	01	05	03	04	92	90	07	90	60	10	=	12	13	14	15	36	17	18	19	20	21	22	23	. 24	25	26	27	28	25	30	31	32	33	8
Material Name	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normai	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Alpha/Epsilon
Titanium + Manganese	-	972	-	- -	975	-	-	-	-	-	978	-	-	-	-	-	-	-	-	-	-	-	982	-	-	-	-	-	-	-	-	-	-	-
Titanium + Manganese + ΣX_i · · · · · · · · · ·	1431	1433	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	~	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Titanium + Vanadium + EX _I	-	-	-	-	-	-	-	-	-	1436	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Tungsten	739	744	-	-	750 755	766 768		-	770	-	772	779	-	-	-	-	-	-	-	-	781	-	į -	-	- 	-	-	-	-	-	-	-	-	-
Tungsten alloys:		,	,		:				1		1									:	:		1	:		į								l
VR-27-VT	990	-		-	-	-	-	-	-	-		-	-	-	-	-	-	٠ -	-	. -		-	: -	-	-	-	! -	-	-	-	- '	- :	- ,	-
Tungsten + Molybdenum	984	-	-	- (986	: <u>-</u>	-	-	-	-	i -	-	-	-	-	-	-	-	-	-	: -	-	; -	. -	-	-		-	-	-	-	- :	-	-
Tungsten + Rhenium	989	-	-	-	992	, ~	l		i -	-	· -	-	-	-	-	-	-	: -	-	-	-	-		-	-	-		-	-	-	-		-	-
Udimet 500	-		· -	-	1305 1348		-	٠ -		-	1322		-	-	-	-	:		-	: -	· - :	-	-	-	-			-	-	-	-	. -	-	-
Unitemp No. 41		884 1295		-	-	; -	-	-	; -	-	-	-	-	-	-	-	- :	-	-		-	-	-	-	-	-	· -	-	-	-	-	-	-	-
Uranium	784	-	: -	-	790 793		-	-	-	-	-	-	-	· -	-	-	-	1 -	-	; -	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Uranium + Niobium	994	-	; -	-	997	<u> </u>	-	-		-	٠ -	-	-	: -	-	-	-		-	_	-	-	-	-	-	-	-	-	-	j -	-	-	-	-
Uranium + Zirconium +ΣXi.	. 1439	· -	-	-	1442	· -	-	٠ -	· -	-	: -	: <u>-</u>	-	-	-	-	· _	: :	-	-	-	-	<u>-</u>	-	-	· -		-	-	-	-	-	-	-
Uranus 10	. -		-	-	<u>-</u>	-	-	-	-	-	<u>;</u> -	1220	-		-	-	-		-	-	-	-	j -	-	-	-	-	-	: -	-	-	-	-	-
Vanadium	. -	-	-	-	795	· -	-	<u>'</u> -	-	-	798	801	-	} -	-	-	· -	, -	-	-	803	-	-	-	-	· -	! -	-	-	· -	-	i - i	-	-
Vascojet 1000	1.			-	1128	!	-	! _	1 -	١.	1139	-	١.	_	1_	1 _	١_		_	-	! _	ļ _	_	-	١.	! _	1 -	_	_	<u> </u>	_	1 _ :	_	1 _

The second second

	P	1	EMIT	TANC	E		REFLECTANCE												ABSC	OR PT	ANCE						T	RANS	мітт	ANCE	2			
	ŗ	Total		S	pectra	al	Integrated Spectral Solar I									Int	tegra	ted	8	Spectr	al		Solar		Int	legrat	ted	s	pectra	al	8	Solar		
Sub-property code	10	02	63	2	90	90	20	80	60	10	=	12	13	14	15	16	17	18	19	20	23	22	23	24	25	56	22	28	53	8	31	32	33	34
Material Name	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Hemispherical	Normal	Angular	Alpha/Epsilon
Vickers F.D.P	-	1156	-	-		-	-	-	-	-		-	-	-	-	-		· -	-	-	-	-	-	-	-	-	-	-	-	-	-	- ;	-	-
VR-27-VT	990	-	-	-	-	-	-	-	-	-	;	-	-	-	: -	-	-	٠ -	-	-	<u>.</u> -	-	-	j -	-	-	-	-	-	-	-	- !	-]	-
Yellow brass	862		-	-	-	-	-		-	-	- :	-	-	-	-	873	-	-	-	i _	-	-	-	-	-	-	-	-	-	-	-	- 1	-	-
Yttrium	-	٠-	-	-	806	-	-	- 1	-	-	-	-	-	-	-	-	-	-	-	٠ -	-	-	-	-	-	-	-	-	-	-	- :	-	-	-
Zinc	808	810	-	-	; -	~	-	:	-	-	812	-	-	-	-	815	-	· -	-	817	820	-	-	-	-	-	-	-	- !	-	-	- 1	-	-
Zinc + Aluminum	-		-	-		-	-	-	-	-	1000	-	-	-	-	-	-		-	: -	! -	-		-	-	-	-	-	-	-	- :	•	-	-
Zircalloy 2	-	1448	-	-	1451	-	-	- :	-	-	- '	-	-	; -	-	-		-	-	-	: -	-	-	ļ -	-	-	-	-	- 1	- 1	-	- }	-	-
Zirconium	-	823	-		826 829	-	-	· - :	-	-	832	-	-	:	-	-	-	-	-	-	834	-	<u> </u>	-	-	-	-	-	- ;	-	- 3	-	-	-
Zirconium + Hafnium + EX ₁	- :		-	-	1445	-	-	- ;	-	-	-	-	-	-	-	-	-	! ! -	-	-	; -	-	-	-	-	-	-	-	-	-	- ;	-	-	-
Zirconium + Tin $\bullet \Sigma X_i$	-	1447	-	-	1450	-	-		-	-	- :	-	-	<u> </u>	-	-	-	-	-	-	-	-	-	-	-	-	<u>'</u> -	-	-		-	- ;	-	-
Zirconium + Uranium + Ex _l	1453	-	-	-	1456	-	-	- '	-	-		-	-	i ' -	-	-	-	-	-	-	· - ·	-	-	-	-	_	; ; -	-	-	-	-		-	-

GROUPING OF MATERIALS AND LIST OF FIGURES AND TABLES

1. ELEMENTS

Figure and/or Table No.	Name	Page
1	Aluminum	1
21	Antimony	61
23	Barium	66
24	Beryllium	69
30	Bismuth	85
32	Cadmium	91
36	Chromium	101
46	Cobalt	125
49	Copper	136
68	Erbium	197
69	Gadolinium	199
71	Gallium	205
74	Germanium	214
80	Gold	233
93	Hainium	267
96	Indium	273
97	Iodine	276
98	Iridium	278
103	Iron	290
115	Lead	324
121	Lutetium	336
123	Magnesium	342
129	Manganese	358
132	Molybdenum	365
141	Nickel	399
157	Niobium	457
163	Osmium	478
164	Palladium	480
172	Platinum	501
182	Rhenium	533
186	Rhodium	545
194	Ruthenium	564
195	Selenium	566
197	Silicon	571
202	Silver	588
216	Tantalum	623
223	Tellurium	652
225	Thallium	660
228	Thorium	669
930	Tin	672

1. ELEMENTS (continued)

Figure and/or Table No.	Name																						Page
238	Titanium																		•		,		693
249	Tungsten											•		•						٠.		•	739
260	Uranium .						•	•															784
263	Vanadium										•				•								795
267	Yttrium .																						806
268	Zinc			,																			808
274	Zirconium	٠.																			,		823

2. BINARY ALLOYS

Figure and/or Table No.	Name Page
279	Aluminum + Cobalt
280	Aluminum + Magnesium
281	Aluminum + Silicon
282	Aluminum + Silver
283	Bismuth + Tin
284	Cobalt + Aluminum
285	Cobalt + Iron
286	Cobalt + Nickel
287	Copper + Nickel
288	Copper + Tin
289	Copper + Zinc
296	Gold + Silver
297	Iron + Carbon
298	Iron + Chromium
300	Iron + Nuckel
301	Iron + Tungsten
302	Lead + Tin
303	Magnesium + Aluminum
304	Molybdenum + Titanium
308	Molybdenum + Tungsten
310	Nickel + Chromium
311	Nickel + Iron
312	Nickel + Silver
313	Niobium + Tungsten
315	Niobium + Zirconium
318	Platinum + Rhodium
321	Silver + Aluminum
323	Silver + Beryllium
324	Silver + Gold
325	Silver + Silicon
326	Tantalum + Tungsten
328	Tellurium + Selenium

2. BINARY ALLOYS (continued)

Figure and/o: Table No.	Name	Page
329	Tin + Indium	970
330	Titanium + Manganese	972
334	Tungsten + Molybdenum	984
336	Tungsten + Rhenium	989
338	Uranium + Niobium	994
340	Zinc + Aluminum	1000
3. MULTIPLE ALLOYS		
Figure and/or Table No.	Name	Page
341	Aluminum + Copper + $\Sigma x_1 \dots \dots \dots \dots \dots$	1003
348	Aluminum + Iron + ΣX_i	1029
351	Aluminum + Magnesium + Σx_1	1039
356	Aluminum + Manganese + ΣX_i	1054
358	Aluminum + Zinc + ΣX_1	1058
365	Beryllium + Iron + ΣX_i	1077
366	Cobalt + Chromium + ΣX_i	1080
371	Copper + Aluminum + ΣX_{i}	1096
375	Copper + Nickel + ΣX_1	1109
376	Copper + $Tin + \Sigma X_1$	1111
378	$Copper + Zinc + \Sigma X_1 \dots \dots \dots \dots \dots \dots$	1115
380	Iron + Chromium + ΣX_1	1119
388	Iron + Chromium + Nickel + ΣX_1	1149
406	Iron + Cobalt + $\Sigma X_{\frac{1}{2}}$	1240
408	Iron + Manganese + ΣX_1	1244
413	Iron + Nickel + ΣX_i	1255
414	Iron + Nickel + Chromium + ΣX_i	1258
417	Magnesium + Aluminum + ΣX_1	1267
422	Magnesium + Thorium + ΣX_i	1282
425	Nickel + Chromium + ΣX_1	1288
434	Nickel + Cobalt + ΣX_i	1342
438	Nickel + Copper + ΣX_i	1357
445	Nickel + Iron + ΣX_1	1375
446	Nickel + Molybdenum + ΣX_1	1378
451	Niobium + Molybdenum + ΣX_1	1393
452	Nioblum + Tantalum + ΣX_1	1395
454	Nioblum + Tungsten + ΣX_1	1401
455	Silver + Cadmium + ΣX_1	1404
456	Silver + Copper + ΣX_1	1407
457	Silver + Zinc + ΣX_1	1410
458	Tantalum + Tungsten + ΣX_1	1413
459	Titanium + Aluminum + ΣX_1	1415
464	Titanium + Manganese + ΣX_1	1431

3. MULTIPLE ALLOYS (continued)

Figure and/or Table No.		Page
466	Titanium + Vanadium + ΣX_i	1436
467	Uranium + Zirconium + ΣX_i	1439
469	Zirconium + Hafnium + ΣX_1	1445
470	Zirconium + Tin + ΣX_1	1447
472	Zirconium + Uranium + ΣX_1	1453

			•	
•				
-				

APPENDIX D

References to Data Sources

TPRC Series, Volume 7 Thermal Radiative Properties of Metallic Elements and Alloys

REFERENCES TO DATA SOURCES

		·
Ref. No.	TPRC No.	
1	6639	Goodman, S., NBS Rept. 4239, 1-13, 1955. [AD 71409]
2	11723	Reynolds, P.M., Brit. J. Appl. Physics, 12 (3), 111-4, 1961.
3	10185	Fulk, M.M., Reynolds, M.M., and Park, O.E., NBS Rept. 3517, 151-7, 1955. [AD 125047]
4	19293	Reynolds, M.M., Fulk, M.M., Weitzel, D.H., and Park, O.E., Nat'l. Bur. Stds. Cryogenic Eng. Lab., Boulder, Colo., NBS Rept. 2484, 1-10, 1953.
5	25038	Jenkins, R.J., Butler, C.P., and Parker, W.J., USNRDL-TR-663, SSD-TDR-62-189, 1-57, 1963. [AD 419 067]
6	27325	Carpenter, W. G. D. and Sc. ell, J. H., Royal Aircraft Establishment, RAE-TN-CPM-20, 1-9 1963. [AD 418612]
7	26738	Haury, G. L., ASD-TDR-63-146, 1-16, 1963. [AD 411140]
8	22816	Anderson, D. L. and Nothwang, G.J., NASA-TN-D-1646, 1-36, 1963.
9	27333	Ziegler, W.T. and Cheung, H., Advan. Cryog. Eng., 2, 100-3, 1960.
10	4981	Best, G., J. Opt. Soc. Amer., 39 (12), 1009-11, 1949.
11	25811	Carpenter, W. G. D. and Sewell, J. H., Royal Aircraft Establishment (G. Brit.), RAE Rept. CHem-538, 1-6, 1962. [AD 295648]
12	20641	Askwyth, W. H., Yahes, R. J., House, R. D., and Mikk, G., NASA-CR-56496, 56497, 56498, 1-277, 1962.
13	6459	Taylor, C.S. and Edwards, J.D., Heating, Piping, and Air-Conditioning, 11 (1), 59-63, 1939.
14	16426	Randolf, C.P. and Overholzer, M.J., Phys. Rev., 2, 144-52, 1913.
15	9353	Barnes, T.T., Forsythe, W.E., and Adams, E.Q., J. Opt. Soc. Am., 37 (10), 804-7, 1947.
16	6353	McDermott, P. F., Rev. Sci. Instruments, 8 (6), 185-92, 1937.
17	6348	Taylor, C.S., Willey, L.A., Smith, D.W., and Edwards, J.D., Metals and Alloys, $\underline{7}$ (8), 189-92, 1938.
18	30642	Konopken, S. and Klemm, R., NASA-SP-31, 505-13, 1963.
19	22522	Burgess, G.K. and Waltenberg, R.G., Nat'l. Bur. Stds. Bull., 11, 591-605, 1915.
20	8677	Allen, F.G., J. Appl. Phys., <u>28</u> (12), 1510-11, 1957.
21	16961	Stierwalt, D. L., Naval Ordnance Lab., NAVWEPS Rept. 7160, NOLC Rept. 537, 1-34, 1961. [AD 250 530]
22	6965	Wade, W.R., Langley Aeronaut. 12b., NASA, 1-43, 1958. [AD 153191]
23	5125	Zimmermann, F.J., J. Appl. Phys., 26, 1483-8, 1955.
24	17044	Dunkle, R.V. and Gier, J.T., Univ. Calif., ONR, 1-24, 1948. [ATI 91560]
25	24863	Gaumer, R. E., McKellar, L. A., Streed, E. R., Frame, K. L., and Grammer, J. R., ASME Second Symposium on Thermophysical Properties, Princeton, N. J., 575-87, Jan. 24-6, 1962.
26	35270	Thaler, W.J., Finn, E.J., Treado, P.A., and Nakhleh, J., J. Appl. Opt., 3 (12), 1411-5, 1964.
27	24830	Butler, C.P. and Inn, E.C.Y., First Symposium on Surface Effects on Spacecraft Materials, John Wiley and Sons, Inc., 195-211, 1960.
28	9060	Aref, M.N., ASME-AIChE Joint Heat Transfer Conf., Chicago, Ill., Paper 58-HT-18, 1-15, 1958.
29	8144	Betz, H.T., Olson, O.H., Schurin, B.D., and Morris, J.C., WADC-TR-56-222 (Pt 1), 1-43, 1956. [AD 110458]
30	27592	Seban, R.A., WADD-TR-60-370 (Pt 3), 1-68, 1963. [AD 419 028]
31	31741	Southern Research Inst., Birmingham, Ala., NASA-CR-55073, 1-77, 1963.
32	6469	Morris, J.C., Schurin, B., and Olson, O.H., ASME Symp. on Thermal Properties, Purdue Univ., 400-4, 1959.
33	23267	Rudnaya, A. I. and Bostrem, Z. D., Trudy Vsesoyuz Nauch-Issledouatel. Inst. Metrol, (35), 95-107, 1958.
34	6979	Betz, H.T., Olson, O.H., Schurin, B.D., and Morris, J.C., WADC-TR-56-222 (Pt 2), 1-184, 1957. [AD 202493]

```
TPRC
Ref.
         No.
No.
                Stubbs, C.M., Proc. Roy. Soc. (London), A88, 195-205, 1913.
 36
         9910
                Price, D. J., Proc. Phys. Soc. (London); 59 (1), 118-31, 1947.
 37
         5060
                Hurst, C., Proc. Roy. Soc. (London), A142, 466-90, 1933.
 38
        16329
                Wahlin, H.B., Phys. Rev., 73, 1458-9, 1948.
         4783
 39
                 Birkebak, R.C., Hartnett, J.P., and Eckert, R.G., ASME Second Symposium on Thermophysical
 40
        24862
                 Properties, Princeton, N.J., 563-74, 1962.
                Ward, L., Proc. Phys. Soc. (London), B69, 339-43, 1956.
 41
         4113
                 Wahlin, H.B. and Wright, R., J. Appl. Phys., 13, 40-2, 1942.
 42
         4830
                 Lund. H. and Ward, L., Proc. Phys. Soc. (London), B65, 535-40, 1952.
 43
         9899
                Wahlin, H.B. and Knop, H.W., Jr., Phys. Rev., 74, 687-9, 1948.
         7488
 44
                 Gaumer, R.E., Clauss, F.J., Sibert, M.E., and Shaw, C.C., WADD-TR-60-773, 117-36, 1961.
 45
        31646
                 [AD 267310]
                 Cline, D. and Kropschot, R. H., Advan. in Cryog. Eng., 7, 534-8, 1962.
 46
        23922
                 Butler, C.P., Jenkins, R.J., Rudkin, R.L., and Laughridge, F.I., WADD-TR-60-773, 229-52,
 47
        31650
                 1961. [AD 267310]
                 Hall, W.M., NASA-CP-56037, 1-8, 1964.
 48
        31790
                 Stubbs, C.M. and Prideaux, E.B.R., Proc. Roy. Soc. (London), A87, 451-65, 1912.
 49
         9909
                 Worthing, A.G., J. Franklin Inst., 192, 112, 1921.
 50
        16284
                 Worthing, A.G., Phys. Rev., 28, 174-89, 1926.
 61
        16436
 52
         4003
                 Taylor, J. E., J. Opt. Soc. Am., 42, 33-6, 1952.
                 Bidwell, C.C., Phys. Rev., 1, 482-3, 1913.
        16425
 53
                 Abbott, G. L., Alvares, N. J., and Parker, W. J., WADD-TR-61-94 (Pt 2), 1-31, 1962. [AD 297 865]
 54
        29589
                 Whitney, L. V., Phys. Rev., 48, 458-61, 1935.
 55
        16444
                 Davisson, C. and Weeks, J.R., Phys. Rev., 17, 261-3, 1921.
        22542
 56
        41915
                 Agababov, S. G. and Komarek, A., NLL, RTS-2762, 1-5, 1966.
 57
                 Cade, C.M., IRE Transactions on Electron Devices, ED-8, 56-69, 1961.
        25564
 58
                 Abbott, G. L., Alvares, N.J., and Parker, W.J., WADD-TR-61-94, 1-48, 1961. [AD 270470]
        21110
 59
                 Davisson, C. and Weeks, J.R., Jr., J. Opt. Soc. Am., 8, 581-605, 1924.
 60
        16296
 61
        16400
                 Foote, P.D., J. Wash. Acad. Sci., 5, 1-7, 1915.
                 Krishnan, K.S. and Jain, S.C., Brit. J. Appl. Phys., 5 (12), 1-7, 1915.
 62
         7189
                 Shatz, E.A. and McCandless, L.C., ASD-TR-62-443, 1-92, 1962. [AD 281 621]
 63
         25127
                 Stephens, R.E., J. Opt. Soc. Am., 29 (4), 158-61, 1939.
 64
         6441
                 Seban, R.A., WADD-TR-60-370 (Pt 2), 1-72, 1962, [AD 286 863]
 65
         33603
                 Maki, A.G., Stair, R., and Johnston, R.G., J. Res. Nat'l. Bur. Std., 64C (2), 99-102, 1960.
         10876
 66
                 McElroy, D. L. and Kollie, T. G., NASA-SP-31, 365-79, 1963.
 67
         30630
                 Sully, A. H., Brandes, E. A., and Waterhouse, R. B., Brit. J. Appl. Phys., 3 (3), 97-101, 1952.
          6523
 68
                 Rudkin, R. L., USNRDL-TR-433, 1-19. 1960. [AD 244 211]
  69
         16635
                 Allen, R.D., Glasier, L.F., Jr., and Jordan, P.L., J. Appl. Phys., 31, 1382-7, 1960.
         16668
  70
                 Rudkin, R. L., Parker, W. J., and Jenkins, R. J., Temp. Meas. Control Sci. Ind., 3 (Pt 2), 523-34,
         31192
  71
                 Petrov, V.A., Chekhovskoi, V.Ya., and Sheindlin, A.E., High Temperature, 1 (1), 19-23, 1963.
 72
         26244
  73
         30821
                 Gordon, A.R. and Muchnik, G.F., High Temperature (USSR), 2 (2), 258-60, 1964.
                 Baldwin, G. J., Shilts, J. L., and Coomes, E. A., Notre Dame Physical Electronic Group Res.,
  74
          6634
                 ONR, 1-8, 1955, [AD 78005]
                 Pears, C.D., ASME Second Symposium on Thermophysical Properties, Princeton, N.J., 588-98,
  75
         24864
                 Riethof, T.R. and DeSantis, V.J., NASA-SP-31, 565-84, 1963.
  76
         30647
  77
          6349
                 Bossart, P. N., Physica, 7 (2), 50-4, 1936.
```

Zwikker, C., Physica, 7, 71-4, 1927.

Worthing, A.G., Phys. Rev., 25, 846-57, 1925.

```
Ref. TPRC
```

- 80 10555 Ill. Inst. of Tech., Determination of Emissivity and Reflectivity Data on Aircraft Structural Materials, Progress Rept. No. 9, 1-8, 1956. [AD 122711]
- 81 11083 Moore, G.E. and Allison, H.W., J. Appl. Phys., 12, 431-5, 1941.
- 82 16439 Barnes, B. T., Phys. Rev., 34, 1026-30, 1929.
- 83 22521 Burgess, G.K. and Foote, P.D., Nat'l. Bur. Std. Bull. 11, 41-64, 1915.
- 84 29504 Allen, R.D., ARS Journal, 32 (6), 965-7, 1962.
- 85 28741 Abbott, G. L., WADD-TR-61-94 (Pt 3), 1-30, 1963. [AD 435 825], [AD 436 887]
- 96 29405 Adams, J.G., Northrop Corp., Novair Dov., 1-259, 1962. [AD 274558]
- 87 13553 Howl, C. D. A. and Davis, A. F., Brit, J. Appl. Phys., 13 (5), 223-6, 1962.
- 88 9109 Marple, D. T. F., J. Opt. Soc. Am., 46 (7), 490-4, 1956.
- 89 10162 Rosenbaum, D.M., Sherwood, E.M., Campbell, I.E., Jaffee, R.L., Sims, C.T., Craighead, C.M., Wyler, E.N., and Todd, F.C., BMI, Investigations of Rhenium, Quarterly Progress Rept. No. 3, 1-40, 1953. [AD 14174]
- 90 10514 Sims, C.T., Craighead, C.M., Jaffee, R.I., Gideon, D.N., Wayler, E.N., Todd, F.C., Rosenbaum, D.M., Sherwood, E.M., and Campbell, I.E., WADC-TR-54-371, 1-138, 1954. [AD 48 279]
- 91 6460 Sims, C.T., Craighead, C.M., and Jaffee, R.I., AIME Trans., 203, 168-78, 1955.
- 92 23145 Skiarew, S. and Rabensteine, A.S., Marquardt Corp., Rept. No. PR 281-3Q-1, 1-37, 1963. [AD 299 417]
- 93 11752 Malter, L. and Langmuir, D.B., Phys. Rev., 55, 743-7, 1939.
- 94 14404 Serebryakova, T.I., Paderno, Yu.B., and Samsonov, G.V., Optics and Spectroscopy (USSR), <u>8</u> (3), 212-3, 1960.
- 95 23126 Coffman, J.A., Kibler, G.M., Lyon, T.F., and Acchione, B.D., WADD-TR-60-646 (Pt 2), 1-183, 1963. [AD 297946]
- 96 31743 Pratt and Whitney Aircraft. PWA-2309, NASA-CR-58054, 1-83, 1964.
- 97 5062 Michels, W.C. and Wilford, S., J. Appl. Phys., 20, 1223-6, 1949.
- 98 18591 Cairns, J. H., J. Sci. Instrum., 37 (3), 84-7, 1960.
- 99 19724 Beyans, J.T., Gier, J.T., and Dunkle, R.V., Trans. ASME, 80, 1405-16 1958.
- 100 5025 Bradshaw, F.J., Proc. Phys. Soc. (London), <u>B63</u>, 573-7, 1950.
- 101 31016 Edwards, J. W., Johnston, H. L., and Ditmars, W. E., J. Am. Chem. Soc., 75, 2467-70, 1953.
- 102 20450 Forsythe, W.E. and Watson, E.M., J. Opt. Soc. Am., 24, 114-8, 1934.
- 103 34926 Isreal, S. L., Hawkins, T. D., and Hyman, S. C., NASA-CR-402, 1-46, 1966.
- 104 28865 Rudkin, R. L., Parker, W. J., and Westover, R. W., USNRDL-TR-419, 1-27, 1960. [AD 240 185-L]
- 105 10768 Jenkins, R.J., Parker, W.J., and Butler, C.P., USNRDL-TR-348, 1-24, 1959. [AD 226 896]
- 106 26008 Pears, C.D., ASD-TDR-62-765, 1-420, 1963. [AD 298 061]
- 107 16727 Pears, C.D., WADC-TR-59-744, Vol. 3, 99-116, 1960. [AD 247110-L]
- 108 21878 Barnes, B. T., J. Phys. Chem., 33, 688-91, 1929.
- 109 22616 Reynolds, T.W. and Kreps, L.W., NASA-TN-D-871, 1-43, 1961. [AD 262047]
- 20863 Lockwood, D. L. and Cybulski, R. J., NASA-TN-D-766, 1-53, 1961. [AD 253 876]
- 111 16445 Wahlin, H.B. and Whitney, L.V., Phys. Rev., 50, 735-8, 1936.
- 112 26981 Kibler, G.M., Lyon, T. F., Linevsky, M.J., and DeSantis, V.J., Gen. Elec. Co., Refractory Materials Research, Quart. Progress Rept. No. 10, 1-34, 1963. [AD 403 529], [AD 405 520]
- 113 16963 Riethof, Gen. Elec. Co., Space Sci. Lab., 1-34, 1961. [AD 250 274]
- 114 16423 DeVos, J.C., Physica, 20, 690-714, 1954.
- 115 9978 Larrabee, R.D., J. Opt. Soc. Am., 49 (6), 619-25, 1959.
- 116 9364 Lemmon, A.W., BMI-1192, 1-74, 1957.
- 117 4440 Hole, W. L. and Wright, R. W., Phys. Rev., 56, 785-7, 1939.
- 118 10931 Furman, S.C. and McManus, P.A., USAEC, GEAP-3338, 1-46, 1960.
- 21371 Maki, A.G. and Plyler, E.K., J. Res. Nat'l, Bur. Std., C66 (3), 283-7, 1962.
- 120 10168 Rosenbaum, D.M., Sherwood, E.M., Campbell, I.E., Sims, C.T., Craighead, C.M., Jaffee, R.I., Wyler, E.N., and Todd, F.C., BMI, Investigations of Rhenium, Quart. Progress Rept. No. 4, 1-40, 1953. [AD 17543]

```
TPRC
Ref.
         No.
No.
121
        31729
                Bloom, F.K., Metal Progr., 63, 67-72, 1953.
                 Janssen, J.E., Torborg, R.H., Luck, J.R., and Schmidt, R.N., ASD-TR-61-147, 1-269, 1961.
        29316
122
                 [AD 270 453]
                 Walin, D.R., Gen. Dynamics Convair, Study of Thermal Insulating Materials, Final Rept., 1-200
123
        27253
                 1961. [AD 606 107]
        31731
                 Johnson, B. K., Proc. Phys. Soc. (London), 53, 258-64, 1941.
124
                 Bennett, H. E., Bennett, J. M., and Ashley, E.J., J. Opt. Soc. Am., 52, 1245-50, 1962.
125
        27424
                 [AD 404 995]
                 Dunkle, R.V. and Gier, J.T., Inst. of Eng. Res., Calif. Univ., Berkeley, Progress Rept., 1-73,
126
        28940
                 1953. [AD 16 830]
127
        25806
                 Holland, L. and Williams, B.J., J. Sci. Instr., 32, 287, 1955.
128
        24861
                 Dunkle, R. V., Edwards, D. K., Gier, J. T., Nelson, K. E., and Roddick, R. D., ASME Second
                 Symposium on Thermophysical Properties, Princeton, N.J., 541-62, 1962.
                 Cox, J.T., Hass, G., and Ramsey, J.B., Proc. 1964 Army Sci. Conf., West Point, N.Y., 193-205,
129
        36483
                 1964. [AD 612 134]
                 Pettit, E., Publ. Astron. Soc. Pacific, 46, 27-31, 1934.
130
        31933
                 Porter, J. and Butler, E.A.W., Royal Aircraft Establishment, RAE-TN-S-64, 1-24, 1964.
        25561
131
                 [AD 612164]
                 Coblentz, W. W., Bull. Nat'l. Bur. Std., 7 (2), 197-225, 1911.
132
        23741
                 Wulff, J., J. Opt. Soc. Am., 24, 223-6, 1934.
133
         7159
                 Romanathan, K.G., Nat'l. Bur. Std. Circ., 519, 257-9, 1952.
         7538
134
                 Douglass, R.W. and Adkins, E.F., Trans. Met. Soc. AIME, 221 (2), 248-9, 1961.
135
         20294
                 Gier, J. T., Dunkle, R. V., and Bevans, J. T., J. Opt. Soc. Am., 44 (7), 558-62, 1954.
136
        25436
                 Lowery, H. and Moore, R. L., Phil. Mag., 13, 938-52, 1932.
137
         22526
                 Seban, R.A. and Rolling, R.E., WADD-TR-60-370, 1-110, 1960.
         19294
138
                 Rayne, J.A., Phys. Rev. Letters, 3 (11), 512-4, 1959.
139
         23290
140
         7464
                 Biondi, M.A., Phys. Rev., 96 (2), 534-5, 1954.
                 Bueche, F., J. Opt. Soc. Am., 38, 806-10, 1948.
141
          4687
                 Weil, R., Proc. Phys. Soc. (London), 59, 781-91, 1947.
142
           896
                 Coblentz, W.W. and Stair, R.J., Research, Nat'l. Bur. Std., 2, 343-54, 1929.
143
         22516
                 Crowell, C.R., Spitzer, W.G., Howarth, L.E., and LaBate, E.E., Phys. Rev., 127, 2006-15,
         21573
144
         20474
                 Harris, L. and Fowler, P., J. Opt. Soc. Am., 51 (2), 164-7, 1981.
145
                 Olson, O. H. and Morris, J. C., WADC-TR-56-222 (Pt 2 Suppl. 1), 1-31, 1958. [AD 202494]
         10017
146
                 Blau, H. H., Jr., Chaffee, E., Jasperse, J. R., and Martin, W. S., AFCRC-TN-60-165, 1-71,
147
         10461
                 1960. [AD 236 394]
                 Edwards, D.K., Gier, J.T., Nelson, K.E., and Roddick, R.D., J. Opt. Soc. Am., 51 (11),
148
        29595
                 1279-88, 1961.
                 Weniger, W. and Pfund, A. H., J. Franklin Inst., 183, 354-5, 1917.
149
         22500
                 Weniger, W. and Pfund, A. H., Phys. Rev., 14, 427-433, 1919.
         22539
150
151
         22523
                 Coblenz, W. W., Nat'l. Bur. Std. Bull., 16, 249-52, 1920.
                 Waltenburg, R. G. and Coblenz, W. W., Sci. Papers, Nat'l. Bur. Std., 15, 653-7, 1920.
152
         25234
                 Adams, J.G., Northrop Space Labs., Hawthorne, Calif., NSL-62-198, 1-101, 1962.
153
         29572
```

416, 1-78, 1960. [AD 248 276]
157 12280 Boelter, L.M.K., Bromberg, B.R., and Gier, J.T., Univ. Calif., Berkeley, NACA, ARR-4 A21.

19423, AFBMD-TR-61-12, 1-32, 1960, [AD 255 968]

[ATI 90 576] [PB 142 256]

23571

16503

16606

154

155

156

- 157 12280 Boelter, L. M. K., Bromberg, B. R., and Gier, J. T., Univ. Calif., Berkeley, NACA, ARR-4 A21, 1-13, 1944.
- 24808 Cowling, J. E., Alexander, A. L., and Noonan, F. M., WADD-TR-60-773, 17-37, 1961. [AD 267310]

Bevans, J.T., LeVantine, A.D., and Luedke, E.E., Space Tech. Labs. Inc., STL/TR-60-0000-

Snyder, N.W., Gier, J.T., Dunkle, R.V., and Possner, L., Univ. Calif., Berkeley, 1-28, 1948.

Blau, H. H., Jr., March, J.B., Martin, W.S., Jasperse, J.R., and Chaffee, E., AFCRL-TR-60-

- Ref. TPRC
- No. No.
- 159 29202 Research Projects Div., G. C. Marshall Space Flight Center, Huntsville, Ala., NASA-TN-D-1523, NASA-N63-14272, 1-253, 1963.
- 160 6596 Wilkes, G.B., WACD-TR-54-42, 1-94, 1954. [AD 88066]
- 161 8135 Wade, W.R., NASA MEMO 1-20-59 L, 1-30, 1959. [AD 209 192]
- 162 29579 Gordon, A.R. and Muchnik, G.F., High Temperature, 2 (4), 505-8, 1964.
- 163 4310 Roeser, W. F., Proc. Am. Soc. Testing Materials, 39, 780-7, 1939
- 164 20772 O'Sullivan, W. J. and Wade, W. R., NASA-TR-T-90, 1-24, 1961.
- 165 26089 Wade, W. R. and Slemp, W. S., NASA-TN-D-998, 1-35, 1962. [AD 272614]
- 166 6740 Lemmon, A.W., Jr., USAEC, BMI-1154, 114, 1957.
- 167 26268 Komarek, A. and Strigin, B.K., High Temperature, 1 (1), 24-6, 1963.
- 168 6639 Goodman, S., NBS Rept. 4239, 1-13, 1955. [AD 71409]
- 169 6932 O'Sullivan, W.J., Jr. and Wade, W.R., NACA-TN-4121, 1-48, 1957.
- 170 8277 Richmond, J.C. and Stewart, J.E., NASA Memo 4-9-59 W, 1-30, 1959.
- 171 30639 Evans, R.J., Clayton, W.A., and Fries, M., NASA-SP-31, 483-88, 1963.
- 172 28946 Harrison, W.N., Richmond, J.C., Plyler, E.K., Stair, R., and Skramstad, H.K., WADC-TR-59-510 (Pt 2), 1-21, 1961. [AD 259326]
- 173 3735 Weil, R., Nature, 159, 305, 1947.
- 174 759 Knop, H.W., Jr., Phys. Rev., 74, 1413-6, 1948.
- 175 23134 Muldawer, L., AFOSR-TN-57-667, 1-33, 1957. [AD 136656]
- 176 4799 Wahlin, H.B., Zentner, R., and Martin, J., J. Appl. Physics, 23 (1), 107-8, 1952.
- 177 6444 Bossart, P. N., Univ. Pittsburgh Bull. No. 30, 59-64, 1933.
- 178 31929 Lucks, C. F., Gaines, G.B., Deem, H.W., Wood, W.D., and Nexsen, W.E., Jr., USAEC, BMI-1094 (Del.), 84-6, 1956.
- 179 12198 Shibata, K., J. Opt. Soc. Am., 47 (2), 172-5, 1957.
- 180 24537 Gannon, R.E. and Linder, B., J. Am. Ceram. Soc., 47 (11), 592-3, 1964.
- 131 10060 Olson, O.H. and Morris, J.C., WADC-TR-56-222 (Pt 3), 1-96, 1959. [AD 239 302]
- 182 22272 Schatz, E.A., Goldberg, D.M., Pearson, E.G., and Burks, T.L., ASD-TDR-63-657 (Pt 1), 1-181, 1963. [AD 423 743]
- 183 4200 Patterson, J.R., Trans. Brit. Ceram. Soc., 54, 698-705, 1955.
- 184 25074 Childers, H.M. and Cerceo, J.M., WADD-TR-60-190, 1-66, 1961. [AD 272691]
- 185 36236 Laszlo, T.S., Gannon, R.E., and Sheehan, P.J., Solar Energy (USA), 8 (4), 105-11, 1964. [AD 611945]
- 186 10101 Kingery, W.D. and Norton, F.H., M.I.T., USAEC, NYO-6447, 1-16, 1955.
- 187 29570 Folweiler, R.C., ASD-TDR-62-719, 1-115, 1964, [AD 600 370]
- 188 3340 Seifert, R. L., Phys. Rev., 73, 1181-7, 1948.
- 189 28431 Durig, J.R., Lord, R.C., Gardner, W.J., and Johnston, L.H., J. Opt. Soc. Am., <u>52</u>, 1078, 1962.
- 190 22518 Burgess. G. K., Nat'l. Bur. Std. Bull., 6, 111-9, 1909.
- 191 24705 McMahon, W.R. and Wilder, D.R., Ames Lab., Iowa State, USAEC, IS-578, 1-48, 1963.
- 192 16013 Bailey, P.C. and Goldman, A., AFCRC-TR-60-147, 1-75, 1960. [AD 240 236]
- 193 26852 Kaiser, W., Spitzer, W.G., Kaiser, R.H., and Howarth, L.E., Phys. Rev., 127 (6), 1950-4, 1962.
- 194 4784 Benford, F., Lloyd, G.P., and Schwarz, S., J. Opt. Soc. Am., 38, 445-7, 1948.
- 195 31733 Avgustinik, A.I., FTD-TT-63-265, 1-7, 1963. [AD 409 701]
- 196 19967 Mergerian, D., Olson, O. H., and Weigandt, A., ARF-1159, Second Quarterly Progress Rept., 1-8, 1960.
- 197 12026 Seifert, H.S. and Randall, H.M., Rev. Sci. Instruments, 11, 365-8, 1940.
- 198 8271 Ehlert, T.C. and Margrave, J.L., J. Am. Ceram. Soc., 41 (8), 330, 1958.
- 199 24582 Wickersheim, K. A. and Lefever, R. A., J. Opt. Soc. Am., <u>51</u>, 1147-8, 1961.
- 200 4837 Mollwo, E., Zangew. Phys., 6, 257-60, 1954.
- 201 21923 Slemp, W.S. and Wade, W.R., NASA-SP-31, 433-9, 1963.
- 202 27141 Bogdan, L., NASA-CR-27, NAS 8-823, 1-39, 1964.

```
Ref. TPRC
```

- No, No,
- 203 18429 Gottlieb, M., J. Opt. Soc. Am., <u>50</u>, 350-1, 1960.
- 204 33682 Kibler, G.M., Lyon, T.F., Linevsky, M.J., and Desantis, V.J., WADD-TR-60-646 (Pt 4),1-141, 1964. [AD 606 836]
- 205 15869 Lowrie, R., Crist, R.H., and Schomaker, V., Union Carbide Res. Inst., Research in Physical and Chemical Principles Affecting High Temperature Materials for Rocket Nozzles, 1-58, 1960.

 [AD 239 305] [PB 159 273]
- 206 30773 Samsonov, G.V., Fomenko, V.S., and Paderno, Yu.B., Oyneupory, 27 (1), 49-2, 1962.
- 207 758 Silverman, S., J. Opt. Soc. Am., 38, 989, 1948.
- 208 25673 Mitchell, C.A., J. Opt. Soc. Am., <u>52</u> (3), 341-2, 1962.
- 209 20761 Shaffer, P.T.B., Development of Ultra Refractory Materials, Progress Rept. No. 25, 1-4, 1961.
 [AD 261461]
- 210 26949 Grossman, L. N., Hoyt, E. W., Ingold, H. H., Kaznoff, A., and Sanderson, M. J., Gen. Elec. Co., Pleasanton, Calif., GEST-2009, 1-208, 1962. [AD 296 577]
- 211 18819 Los Alamos Scientific Lab., Quarterly Status Report on the LASL Plasma Thermocouple Development Program for Period Ending March 20, 1961, USAEC, LAMS-2544, 1-15, 1961.
- 212 23663 Haas, C. and Corbey, M.M.G., J. Phys. Chem. Solids, 20 (3/4), 197-203, 1961.
- 213 39680 Schleiger, E.R., AFML-TR-66-148, 1-41, 1966. [AD 801 322-L]
- 214 32537 Stierwalt, D. L. and Potter, R. F., Proc. Intern. Conf. Phys. Semicond., Exeter, Engl., 513-20, 1962.
- 215 33491 Maki, A.G., Proc. Conf. on Radiative Transfer from Solid Materials, Boston, Mass., 135-41, 1962.
- 216 29648 Gier, J.T., Possner, L., Test, A.J., Dunkle, R.V., and Bevans, J.T., Calif. Univ., Dept. Eng., USN, NR-05-202, 1-4, 1949. [ATI 59635]
- 217 33206 Schmidt, E., Hauzeitschr, V.A.W., and Erftwerk, A.G., Aluminum, 3, 91-6, 1930.
- 218 30622 Zerlaut, G. A., NASA-SP-31, 275-85, 1963.
- 219 38391 Edwards, D. K. and Catton, I., From Advances in Thermophysical Properties at Extreme Temperatures and Pressures, 3rd ASME Symp. on Thermophysical Properties, Laf. ind., 189-99, 1965.
- 220 36320 Davies, J.M. and Zagieboylo, W., Appl. Opt., 4 (2), 167-74, 1965.
- 221 37355 Keating, G.M. and Mullings, J.A., NASA-TN-D-2398, J-45, 1964.
- 222 24473 Bennett, H. E. and Koehler, W. F., J. Opt. Soc. Am., 50, 1-6, 1960.
- 223 33512 Leigh, C.H., RAD-TR-62-33, NASA-CR-53235, N64-17590, 1-68, 1962.
- 224 33287 Taylor, A.H., J. Opt. Soc. Am., 21, 776-84, 1931.
- 225 38390 Edwards, D. K. and deVolo, N. B., From Advances in Thermophysical Properties at Extreme Temperatures and Pressures, 3rd ASME Symp. on Thermophysical Properties, Purdue Univ., 174-88, 1965.
- 226 27345 LaBaw, K.B., Olsen, A.L., and Nichols, L.W., Naval Ordnance Test Station, NavWeps 8086, 1-32, 1963, [AD 403 988]
- 227 35833 Rolling, R.E., Funai, A.I., and Grammer, J.R., USAF, ML-TR-64-363, 1-161, 1964. [AD 466 662]
- 228 20392 Hagen, E. and Rubens, H., Ann. Physik, 1, 352-75, 1900.
- 229 33080 Wesolowska, C. and Richard, J., Compt. Rend., 258 (9), 2533-6, 1964.
- 230 38173 Brekhovskikh, V. F., Inzhen. -Fiz. Zh. (USSR), 7 (5), 66-9, 1964.
- 231 32234 Spitzer, W. G., Gobeli, G. W., and Trumbore, F. A., J. Appl. Phys., 35 (1), 205-11, 1964.
- 232 38629 Richard, J., Compt. Rend., 256 (5), 1093-5, 1963.
- 233 18520 Philip, R., J. Phys. Radium, 20, 535-40, 1959.
- 234 15016 Philip, R., Compt. Rend., 247 (25), 2322-4, 1958.
- 235 20474 Harris, L. and Fowler, P., J. Opt. Soc. Am., <u>51</u> (2), 164-7, 1961.
- 236 34758 Shaw, M. L., J. Appl. Phys., 37 (2), 919-20, 1966.
- 237 36161 Tingwaldt, C., Schley, U., Verch, J., and Takata, S., Optik, 22 (1), 48-59, 1965.
- 238 30957 Naumann, V.O., Univ. of Wisc., PhD. Thesis, 1-23, 1956.
- 239 30838 Metzger, J.W., Drexel Inst. of Tech., M.S. Thesis, 1-115, 1959.
- 240 35988 Davey, J. E. and Pankey, T., J. Appl. Phys., 36 (8), 2571-6, 1965.
- 241 23414 Martin, W.S., Duchane, E.M., and Blau, H.H., Jr., AFCRL-63-547, 1026, 1963. [AD 428932]
- 242 26461 Loferski, J.J., Univ. of Penn., Semi-Conductor Res., Quarterly Rept. No. 3, 1-59, 1953. [AD 14711] [PB 160 835]

```
Ref. TPRC
```

- No. No.
- 243 36689 Rabinovich, K., Canfield, L.R., and Madden, R.P., Appl. Opt., 4 (8), 1005-10, 1965.
- 244 30611 Hembach, R.J., Hemmerdinger, L., and Katz, A.J., NASA-SP-31, 153-67, 1963.
- 245 36942 Seban, R.A., J. Heat Transfer ASME, C87 (2), 173-6, 1965.
- 246 40949 Jain, S.C., Goel, T.C., and Chandra, I., Phys. Letters, 24A (6), 320-1, 1967.
- 247 31791 Birkebak, R.C., Sparrow, E.M., Eckert, E.R.G., and Ramsey, J.W., Trans. ASME, 86C (2), 193-99, 1964.
- 248 32639 Lapina, E.A. and Chudnovskii, F.A., High Temperature (USSR), 3 (5), 639-42, 1965.
- 249 30472 Birkebak, R.C., M.S. Thesis, Univ. Minnesota, 1-27, 1956.
- 250 40866 Voskressenskii, V. Yu., Peletskii, V. E., and Timrot, D. L., High Temperature, 4 (1), 39-42, 1966.
- 251 12687 Male, D. and Trompette, J., J. Phys. Radium, 18 (2), 128-30, 1957.
- 252 36503 Alvares, N.J., NASA-SP-55, 183-7, 1965.
- 253 22542 Davisson, C. and Weeks, J.R., Phys. Rev., 17, 261-3, 1921.
- 254 21284 Harrison, W.N., Richmond, J.C., Shorten, F.J., and Joseph, H.M., WADC-TR-59-510 (Pt 4), 1-90, 1963. [AD 426 846]
- 255 30353 Kollie, T.G. and McElroy, D.L., Oak Ridge Nat'l. Lab., USAEC, ORNL-3670, 109-11, 1964.
- 256 30379 Gaines, G.B. and Sims, C.T., J. Appl. Phys., 34 (9), 2922, 1963.
- 257 35334 Vasko, A., Czechoslov. J. Physics, 15 (3), 170-7, 1965.
- 258 32456 Eckart, F. and Henrion, W., Monatsber. Deutschen Akad. Wiss., Berlin, 4 (7), 440-51, 1962.
- 259 32340 Kuharskii, A.A. and Subashiev, V.K., Soviet Physics-Solid State, 8 (3), 603-6, 1966.
- 260 40955 Koltun, M. M. and Golovner, T. M., Opt. Spectry, 21 (5), 347-50, 1966.
- 261 29605 Howarth, L. E. and Gilbert, J. F., J. Appl. Phys., 34, 236-7, 1963.
- 262 40599 Rudyavskaya, I.G., Kurdryavtseva, A.G., and Kislovskii, L.D., Opt. Spectr'y, 21 (4), 266-9, 1966.
- 263 8386 Trompette, J., Comptes Rendus, 246, 753-6, 1958.
- 264 31619 Raub, E. and Engel, M., Z. Metallk., 31 (11), 339-44, 1939.
- 265 38766 Valeev, A.S. and Gisin, M.A., Opt. Spectr'y, 19 (1), 62-5, 1965.
- 266 24388 Wesolowska, C., Compt. Rend., 258 (21), 5191-4, 1964.
- 267 38987 Jun, C.K. and Hoch, M., AFML-TR-65-191, 1-11, 1965. [AD 477 224]
- 268 41008 Seemuller, H. and Stark, D., Z. Physik, 198 (2), 201-4, 1967.
- 269 29596 Dunkle, R.V., Edwards, D.K., Gier, J.T., and Bevans, J.T., Solar Energy, 4 (2), 27-39, 1960.
- 270 30750 Malek, G.J., Univ. of Calif., M.S. Thesis, 1-145, 1962.
- 271 16433 Worthing, A.G. and Forsythe, W.E., Phys. Rev., 18, 144-7, 1921.
- 272 32539 Langmuir, I., Phys. Rev., 7 (3), 302-30, 1916.
- 273 29638 Engelke, W. T. and Pears, C. D., Southern Research Inst., SRI-5465-1419-I, 1-10, 1962.
 [AD 459521]
- 274 37801 Deadmore, D., J. Am. Ceram. Soc., 47, 649-50, 1964.
- 275 16298 Worthing, A.G., J. Opt. Soc. Am., 13, 635-49, 1926.
- 276 31931 Cubicciotti, D., J. Am. Chem. Soc., 73, 2032-5, 1951.
- 277 30766 Baker, L., Jr., Mouradian, E.M., and Bingle, J.D., Nucl. Sci. Eng., 15, 218-20, 1963.
- 278 16009 Noonan, F.M., Alexander, A.L., and Cowling, J.E., NRL Rept. 5503, 1-39, 1960. [AD 240 141]
- 279 35821 DeSantis, V.J., Gen. Elec. Co., Missile and Space Div., Rept. No. R64 SD60, 1-30, 1964.
 [AD 466 356]
- 280 24826 McDonough, R., First Symposium on Surface Effects on Spacecraft Materials, John Wiley and Sons, Inc., 141-51, 1960.
- 281 41003 Mitor, V.V. and Konopel' Ko, L.N., Thermal Engineering, 13 (7), 92-7, 1966.
- 282 34454 Brandenberg, W.M., Clausen, O.W., and McKeown, D., J. Opt. Soc. Am., 56 (1), 80-6, 1966.
- 283 37595 Minura, T., Anagnostou, E., and Colarusso, P.E., NASA-TN-D-3234, 1-56, 1966.
- 284 33623 Clavier, J., Rev. Optique, 8, 379-91, 1929.
- 285 33241 Bennett, H.E., Proc. Conf. on Radiative Transfer from Solid Materials, MacMillan Co., N.Y., 166-80, 1962.
- 286 32538 Biondi, M.A. and Rayne, J.A., Phys. Rev., <u>115</u> (6), 1522-30, 1959.

```
Ref. TPRC
```

No. No.

- 287 44279 Biondi, M.A., Phys. Rev., 102 (4), 964-67, 1956.
- 288 20810 Gillespie, G.T., Olsen, A.L., and Nichols, L.W., NAVWEPS Rept. 8558, NOTS-TP-3586, 1-28, 1964. [AD 609 036]
- 289 40152 Husmann, O.K., J. Appl. Phys., 37 (13), 4662-70, 1966.
- 290 44300 Hunter, W.R., Optical Properties and Electronic Structure of Metals and Alloys, North-Holland Pub. Co., Amsterdam, 136-46, 1966.
- 291 38325 Petrov, V.A., Checkovskoi, V.Ys., and Sheindlin, A.E., High Temperature (USSR), <u>1</u>(3), 416-18, 1963.
- 292 38726 Clark, H. E., Appl. Opt., 4 (10), 1356-7, 1965.
- 293 33882 Muller, W. E., Appl. Opt., 5 (5), 876-7, 1966.
- 294 37539 Howl, D.A. and Davis, A.F., Iron and Steel Institute, J., 202, 523-6, 1964.
- 295 30625 Funai, A.I., NASA-SP-31, 317-27, 1963,
- 296 18661 Richmond, J.C. and Harrison, W.N., Am. Ceramic Soc. Bull., 39, 668-73, 1960.
- 297 32493 Wessel, P.R., Phys. Rev., 132 (5), 2062-4, 1963.
- 298 26751 Richmond, J.C., DeWitt, D.P., and Hayes, W.D., Jr., NBS-TN-252-ML-TDR-64-257, 55, 1964. [AD 612812]
- 299 31957 de L'Estoile, H. and Rosenthal, L., Advisory Group for Aeronautical Research and Development, Paris, France, AGARD-211, N63-21549, 1-82, 1958.
- 300 31794 Lucks, C.F., Gaines, G.B., Deem, H.W., Wood, W.D., and Nexsen, W.E., Jr., USAEC, BMI-1088, 66-7, 1956.
- 301 39182 Sambongi, T., Hagiwara, R., and Yamadaya, T., J. Phys. Soc. Japan, 21 (5), 923-5, 1966.
- 302 10649 Grenis, J.A. and Wong, K., Watertown Arsenal, WAL TR 397. 1/1, 11, 1958. [AD 201488]
- 303 32538 Biondi, M.A., Phys. Rev., <u>102</u> (4), 964-67, 1956.
- 304 16590 Fieldhouse, I.B., Lang, J.I., and Blau, H.H., Jr., WADC-TR-59-744, 4, 1-78, 1960. [AD 249 166]
- 305 25754 Bradley, D. and Entwistle, A.G., British J. Appl. Phys., 12 (12), 708-11, 1961.
- 306 32363 Hass, G. and Tousey, R., J. Opt. Soc. Am., 49 (6), 593-602, 1959.
- 307 32388 Byrne, R. F. and Mancinelli, L. N., Material Lab., N.Y. Naval Shipyard, 39, 1954. [PB 159 155]
- 308 36346 Rustgi, Om. P., J. Opt. Soc. Am., 55 (6), 630-4, 1965.
- 39977 Fisher, E.I., Fujita, I., and Weissler, G.L., J. Opt. Soc. Am., 56 (11), 1560-4, 1966.
- 310 34548 Jelinek, T.M., Hamm, R.N., Arakawa, E.T., and Huebner, R.H., J. Opt. Soc. Am., <u>56</u> (2), 185-6, 1966.
- 311 39976 Henderson, G. and Weaver, C., J. Opt. Soc. Am., <u>56</u> (11), 1551-9, 1966.
- 312 28197 Lowery, H., Wilkinson, H., and Smare, D.L., Phila. Mag., 22, 769-90, 1936.
- 313 33099 Ehrenreich, H. and Philipp, H.R., Phys. Rev., 128 (4), 1622-9, 1962.
- 314 33896 Torrance, K.E. and Sparrow, E.M., Trans. ASME, J. Heat Transfer, 88C (2), 223-30, 1966.
- 315 38254 Canfield, L.R. and Hass, G., J. Opt. Soc. Am., 55 (1), 61-4, 1965.
- 316 44307 Schuler, C.Chr., Optical Properties of Electronic Structure of Metals and Alloys, North-Holland Pub. Co., Amsterdam, 221-36, 1966.
- 317 32673 Anderson, A. E., Univ. of Calif., M.S. Thesis, 1-57, 1962.
- 318 32880 Russell, A.D., Univ. of Calif., M.S. Thesis, 1-47, 1960.
- 319 24665 Philipp, H. R. and Taft, E. A., Phys. Rev., 113 (4), 1002-5, 1959.
- 320 39215 Rideout, V. L. and Wemple, S. H., J. Opt. Soc. Am., <u>56</u> (6), 749-51, 1966.
- 321 28015 Braner, A.A. and Chen, R., J. Phys. Chem. Solids, 24, 135-9, 1963.
- 322 40221 Hass, G., Jacobus, G.F., and Hunter, W.R., J. Opt. Soc. Am., 57 (6), 758-62, 1967.
- 323 39975 Barnes, T.B., J. Opt. Soc. Am., 56 (11), 1546-50, 1966.
- 324 17329 Brandt, J.A., Irvine, T.F., Jr., and Eckert, E.R.G., Proc. Heat Trans. Fluid Mech. Inst., Stanford Univ., 220-7, 1960.
- 325 26230 Krzhizhanovskii, B.A., Kolchenogova, I.P., and Rakov, A.M., High Temperature, 1 (1), 13-18, 1963.
- 326 26832 Sasaki, T. and Ishiguro, K., Phys. Rev., <u>127</u>, 1091-2, 1962.
- 327 26044 Vavilov, V.S. and Galkin, G.N., Fiz. Tverdogo Tela, 1, 1201-4, 1959.

TPRC Ref. No. No. Peletskii, J. E. and Voskresenskii, V. Yu., High Temperature, 4 (3), 325-33, 1966. 328 42006 Codling, K., Madden, R.P., Hunter, W.R., and Angel, D.W., J. Opt. Soc. Am., 56 (2), 329 34549 189-92, 1966, Coblentz, W.W., Bull. Nat'l. Bur. Std., 14, 307-16, 1917. 330 25167 Hulburt, E.O., Astrophys. J., 45, 149-63, 1917. 331 27822 Cairns, R.B. and Samson, J.A.R., J. Opt. Soc. Am., 56 (11), 1568-73, 1966. 332 39978 Good, R.C., Jr., Space Sciences Lab., General Electric Co., AFOSR-5096, 1-80, 1963. 333 25454 [AD 413 974 38942 Timrot, D. L. and Peletskii, V. E., High Temperature, 3 (2), 199-202, 1965. 334 Peletskii, V. E. and Voskrenskii, V. Yu., High Temperature, 4 (2), 293-4, 1966. 41741 335 Schocken, K. and Fountain, J.A., Proc. of Conf. on Spacecraft Coatings Development, NASA-TM-336 40413 X-56167, 20, 1964. 35223 Cairns, R.B. and Samson, J.A.R., J. Opt. Soc. Am., 57 (3), 433-4, 1967. 337 Dmitriev, V.D. and Kholopov, G.K., Zh. Prikl. Spektrosk., Akad Nauk. Belorussk, SSR, 2 (6), 338 39369 481-8, 1965. 339 39439 Grant, P.M. and Paul, W., J. Appl. Phys., 37 (8), 3110-20, 1966. Coblentz, W.W., Phys. Rev., 30 (5), 645-7, 1910. 340 28621 42894 Vehse, R.C., Arakawa, E.T., and Stanford, J.L., J. Opt. Soc. Am., 57 (4), 551-2, 1967. 341 Gordon, G.D., Rev. Sci. Instr., 31 (11), 1204-8, 1960. 342 31937 Landensperger, W. and Stark, D., Z. Physik, 180 (2), 178-83, 1964. 343 37418 Bennett, H. E., J. Opt. Soc. Am., 53 (12), 1389-94, 1963. 344 32449 Kunyrina, L.I. and Titkov, A.S., High Temperature, 4 (3), 394-8, 1966. 345 43899 Timrot, D. L., Peletskii, V. E., and Voskresenskii, V. Yu., High Temperature (USSR), 4 (6), 44061 346 808-9, 1966. Blodgett, A.J., Jr., Spicer, W.E., and Yu, A.Y.C., Optical Properties and Electronic Structure 347 44308 of Metals and Alloys, North-Holland Pub. Co., Amsterdam, 246-56, 1966. Sasaki, T. and Ejiri, A., Optical Properties and Electronic Structure of Metals and Alloys, North-348 44310 Holland Pub. Co., Amsterdam, 417-27, 1966. Rustgi, Om. P. and Weissler, G. L., J. Opt. Soc. Am., 55 (4), 456, 1965. 349 36342 350 44314 Fukutani, H. and Sueoka, O., Optical Properties and Electronic Structure of Metals and Alloys, North-Holland Pub. Co., Amsterdam, 565-73, 1966. 351 33490 Martin, W.S., Proc. Conf. on Radiative Transfer from Solid Materials, MacMillan Co., 123-32,

Anderson, D. L., Trans. Nat'l. Vacuum Syp., 10, 37-41, 1963.

352

35744

APPENDIX E

TPRC - Information Center for Thermophysics Research

1.0 Introduction

The overall activities of the Thermophysical Properties Research Center (TPRC) are divided into four areas: namely, (1) Scientific Documentation, (2) Generation of Data Tables, (3) Experimental Research, and (4) Theoretical Research. Since 1957, TPRC has contributed much to the knowledge of the thermophysical properties of pure and engineering materials [4]. Its results are disseminated at large in the form of two major publications: the Retrieval Guide and the Data Book.

Previously, the Retrieval Guide was published by McGraw-Hill Book Co., Volume 1 in 1960 and Volume 2 in 1963. Early in 1967, as Volume 3 of the Retrieval Guide was nearing completion, it was decided to publish a single comprehensive volume of this work thus merging the earlier Volumes 1 and 2 with the completed Volume 3. This merged, revised, and enlarged edition of the Retrieval Guide (THERMOPHYSICAL PROPERTIES RESEARCH LITERATURE RETRIEVAL GUIDE) was published in October 1967 by the Plenum Publishing Corporation. This definitive work contains a complete coverage of the world literature published from 1920 (in many cases earlier) to June 1964 on thirteen thermophysical properties. Its 2,800 pages (in 3 books) report 45,116 materials, citing 33,700 references representing 26.562 authors and 3.600 separate scientific and technical journals and books in addition to Government reports. Thus, the new Retrieval Guide brings to the scientific and technical community a single reference work heretofore thought impractical to generate. Effective with the completion of this work, the scope of coverage of the Retrieval Guide has been increased to sixteen properties. Furthermore, each property is coded separately instead of by groups.

The TPRC Data Book brought together the available data on the thermophysical properties of materials to provide for engineers and scientists the most comprehensive and authoritative reference data sources. Whenever possible, the recommended "most probable values" of particular properties for particular materials are also included. The original Data Book consisted of loose-leaf data sheets (11" x 17" in size) organized into three volumes. The data sheets constituted the final formal outlet of all TPRC data tables activities on all of its programs. As of December 1966, the Data Book contained 3,322 sheets, reporting 11,425 test specimens and citing 3,424 references.

In view of the continuing rapid growth of this work since 1960, and the extensive physical proportions it has assumed, early in 1967 it was decided to discontinue the procedure of publication in loose-leaf format, and its semi-annual dissemination by TPRC.

Instead, this Data Book is now restructured and extensively revised and will soon be available through a commercial publisher in the form of formal hard-bound volumes grouped by properties. This forthcoming publication is entitled TPRC SERIES ON THERMOPHYSICAL PROPERTIES OF MATTER.

The information processing and data processing for preparing the Retrieval Guide and the Data Book and the status of the various active projects are outlined briefly in the following sections. The activities of Data Tables Division pertaining to the generation of data tables on thermal radiative properties have been described in the text of this report.

2.0 Scientific Documentation

2.1 Literature Search and Information Processing

The Scientific Documentation Division of TPRC provides comprehensive and authoritative source information on the thermophysical properties of all matter through continuing and systematic search, collection, organization, and codification of the existing information in the world literature. From 1957 to 1964 TPRC has searched the world literature primarily through the abstracting journals. Since 1965, TPRC has subscribed to some 80 scientific and technical journals in addition to the abstracting journals, and accordingly, literature search has since been made on both of these two types of journals.

The abstracting journals searched from 1957 to 1964 are listed in Table E-1. This search, covering the period from 1920 to June 1964, involved the scanning of approximately 33,400,000 abstracts out of approximately 81,000,000 abstracts reported by these journals. Out of the 33,400,000 abstracts scanned, only 52,500 (0.16%) were considered pertinent. Subsequent examination and checking of the 52,500 abstracts and the original papers revealed a large number of duplications between the various abstracting journals and nearly 9,900 irrelevant ones, leaving a net total of 28,800 documents obtained from these sources. In addition to abstracts, 4,900 documents came to TPRC's attention from other sources making a total of 33,700

TABLE E-1. WORLD COVERAGE OF RESEARCH LITERATURE ON THERMOPHYSICAL PROPERTIES THROUGH THE EYES OF 16 ABSTRACTING JOURNALS

(As of December 31, 1964)

ABSTRACTING JOURNALS	COVERAGE
Applied Mechanics Review (AM)	Jan. 1948 to June 1964
ASM Review of Current Metal Literature (in Metals Review) (MR)*	Jan. 1957 to Aug. 1959
ASM Review of Metal Literature (RM)	Jan. 1944 to Dec. 1955 and Jan. 1959 to June 1964
Battelle Technical Review (BR)	Feb. 1957 to June 1964
Ceramics Abstracts-Amer. Ceramic Soc. (JA)	Jan. 1957 to June 1964
Ceramics Abstracts-Brit. Ceramic Soc. (BA)	Jan. 1958 to June 1964
Chemical Abstracts (CA)	Jan. 1920 to June 1964
Masters Theses in the Pure and Applied Sciences - TPRC(MT)	1957 to 1964
Metallurgical Abstracts, Series II (MA)	Jan. 1934 to Aug. 1956 and Sept. 1958 to June 1964
Nuclear Science Abstracts (NA)	Jan. 1963 to June 1964
Physics Abstracts (SA)	Jan. 1957 to June 1964
Refrigeration Abstracts (RA)	Jan. 1946 to Oct. 1957
Scientific and Technical Aerospace Reports-NASA (PA)	Jan. 1957 to June 1964
Technical Abstract Bulletin-DDC (TA)*	Jan. 1957 to June 1964
Technical Translations-CFSTI (TT)*	Jan. 1957 to June 1964
U.S. Government Research Reports-CFSTI (RR)	Jan. 1957 to June 1964

^{*}Ceased publication

documents up to June 1964. These 33,700 references are covered in the revised and expanded edition of the Retrieval Guide.

Subsequently, in preparation for the future volume of the Retrieval Guide, an additional 17,300 reference entries have been made. Thus, as of 31 December 1968 there were 51,000 references in TPRC's Information storage and Retrieval System. The above figure gives an insight as to the magnitude of the effort involved in a thorough search of world knowledge even in a relatively specialized field.

When the retrospective search of the world literature, primarily through the medium of abstracting journals, was completed early in 1956, TPRC reviewed its procedure of using abstracting journals for the identification of current literature on thermophysical properties research. It was recognized that continued use of abstracting journals for research awareness would represent, at best, one to two years of delay in identifying and procuring such literature, with the result that bibliographic searches provided by TPRC could never be on a reasonably current basis. A statistical study was made of the data accumulated at TPRC concerning the yield of 3,600 technical and scientific journals cited to date, and it was found that some 80 journals yielded approximately 50 percent of the total articles. Hence, effective January 1965, TPRC subscribed to these journals and began its search directly from these publications. Simultaneously, with the adoption of this procedure, the effort in searching abstracting journals was reduced, by 1967, to seven abstracting journals: Chemical Abstracts, Dissertation Abstracts, International Aerospace Abstracts, Nuclear Science Abstracts, Scientific and Technical Aerospace Reports-NASA, Technical Abstract Bulletin, and U.S. Government Research and Development Reports. As a result of this policy, TPRC is now able to keep abreast of published research results with an average time lag not to exceed six months.

The problem of procuring research documents from the open literature is beginning to assume major proportions especially in the case of foreign literature and special publications of limited distribution. Therefore, TPRC's specialized holdings, which number 35,800 to data, are assuming increasing importance for rapid access to the world literature on thermophysics and thermophysical properties. It is TPRC's experience that literature retrieval programs which yield bibliographies as their end product are becoming increasingly less useful because of the time lapse involved in

procuring the cited documents. In an attempt to remedy this situation, TPRC has supplemented its long-standing practice of submitting bibliographic responses to literature search requests with standard microfiche copies of documents. The conversion of hard copy document holdings into microfiche was completed in 1967.

2.2 The Retrieval Guide

The comprehensive edition of the THERMOPHYSICAL PROPERTIES RE-SEARCH LITERATURE RETRIEVAL GUIDE was published in October 1967 by the Plenum Publishing Corporation [1].

This three-book volume represents the printout of a special computer program and provides quick access to world literature on thirteen thermophysical properties of all matter. Its substance and property coverage are listed in Table E-2.

This volume completes the coverage of the world literature published from 1920 (in some cases earlier) to June 1964 on thirteen thermophysical properties. It is a merger of the material contained in the earlier Volumes 1 and 2 together with the material of Volume 3 which was not published separately. The contents of the three books of the Retrieval Guide are as follows:

Book 1 - Primarily constitutes TPRC's classified Directory of Substances in which information on the thirteen thermophysical properties are reported. Book 1 also contains three other major chapters which greatly enhance its usefulness. These consist of: (1) Guide to TPRC Substance Classification Procedure and Numerical Codes; (2) Dictionary of Synonyms and Trade Names with a Listing of Cross References; and (3) Index to Mixtures.

Book 2 - Contains the classified code entries and publication year of each reference for each property of each material. The classified code entries cover the following:

Phys. State: 1-Solid; 2-Liquid; 3-Gas; 4-Semi-solid; 5-Powder; 6-Suspensoid; 7-Sintered; 8-Solid-Gas system;

9-Solid-Liquid system.

Subject: 1-Theoretical; 2-Experimental; 3-Theo. and Exp.;

4-Property values; 5-Theo. and Prop. val.; 6-Exp. and Prop. val.; 7-Theo., Exp., and Prop. val.; 8-Survey, Review, Compendia, or Bibliography.

Language: 1-Eng.; 2-Fr.; 3-Ger.; 4-Dutch; 5-It.; 6-Jap.;

7-Rus.; 8-Span.; 9-Other.

Temperature: 1-Low, 0 to 75 K; 2-Normal, 75 to 1275 K; 3-High,

1275 K and up; 4-(Low+Normal); 5-(Normal+High);

6-(Low+Normal+High); 7-Not specific

TABLE E-2. SUBSTANCE AND PROPERTY COVERAGES OF RETRIEVAL GUIDE*

SUBSTANCE COVERAGE - All Matter		PROPERTY COVERAGE – Transport and Thermodynamic Properties Encountered in Heat and Mass Transfer Calculations				
Elements and chemical compounds Ferrous and nonferrous alloys Mixtures Systems, composites, etc.	9,030 9,970 13,396 1,643	Thermal conductivity (including commodation coefficient and thermal contact resistance)	31,050			
Polymers, rubbers, etc. Refractories Glasses Natural products	2,600 961 1,109 1,100	Specific heat Viscosity (Newtonian and non- Newtonian; including fluidity)	28,020 46,870			
Minerals Paints, surface finishes, coatings Slags, scales, aggregates, cermets, fuels, lubricants, fibers, fabrics,	rals 662 s, surface finishes, coatings 2,632 , scales, aggregates, cermets,	Thermal radiative properties (Emittance, reflectance, absorption, transmittance, and optical constants)	9,400			
pharmaceuticals, insulations,		Diffusion coefficient	21,720			
building materials, residues, etc. General	1,967 46	Thermal diffusivity	1,705			
Goldzar		Prandtl number	504			
Total number of substances	45,116	Total number of reference entries	139,305			

^{*} This storehouse of information has come from 33,700 references representing 26,562 authors and 3,600 separate scientific and technical journals and books in addition to sources of governmental and industrial reports (e.g., Defense Documentation Center, Clearinghouse for Federal Scientific and Technical Information, Atomic Energy Commission, National Aeronautics and Space Administration, research centers, and the like).

Book 3 - Part A provides bibliographic citations for the 33,700 references covering scientific and technical journals in addition to university dissertations and technical reports of governmental agencies, industrial organizations, and research centers and laboratories. Part B contains an index to names of contributing authors.

In January 1967, the scope of property coverage was increased to include the coefficients of linear and volumetric thermal expansion and surface tension. Furthermore, each thermophysical property is coded separately instead of by groups. For instance, the thermal conductivity, accommodation coefficient, and thermal contact resistance, formerly all coded under the property "thermal conductivity", are now coded separately. Similarly, the five entries under thermal radiative properties are now listed separately. Thus, since January 1967 TPRC maintains coverage of over sixteen thermophysical properties for all materials. They are:

- 1. Thermal conductivity
- 2. Accommodation coefficient
- 3. Thermal contact resistance
- 4. Thermal diffusivity
- 5. Specific heat at constant pressure
- 6. Viscosity
- 7. Emittance
- 8. Reflectance
- 9. Absorptance
- 10. Transmittance
- 11. Absorptance to emittance ratio
- 12. Prandtl number
- 13. Diffusion coefficient
- 14. Thermal linear expansion
- 15. Thermal volumetric expansion coefficient
- 16. Surface tension

2.3 Automation and Computerized Information Storage and Retrieval System

With the installation of the CDC 6500 computer at Purdue University in Summer 1967, TPRC's long-standing need for a remote-accessed time-shared computer capability has been fulfilled. As a result, TPRC now has a fully automated bibliographic search capability to respond to specific inquiries or to process standing requests for a continuing bibliographic service tailored to meet demands for specific technical profiles of individual engineers, scientists, corporations, or laboratories.

Since 1968, TPRC has generated, quarterly, a miniature "Retrieval Guide" for each property in order to serve its own inhouse programs. This service, called the UPDATE PLAN, is also available to subscribers at a very nominal cost.

3.0 Data Tables Projects [2]

3.1 Data Book

Synthesis of existing fragments of knowledge is as important as so-called original observation. The availability of adequate standard reference tables of numerical data is essential to national progress, economy, and defense.

The three-volume loose-leaf 11" x 17" size TPRC Data Book is well known nationally and, indeed, internationally as the most comprehensive and authoritative reference data source of its kind. In view of this work's continuing rapid growth since 1960, and the extensive physical proportions it has assumed, early in 1967 it was decided to discontinue the present procedure of publication in loose-leaf format and its semi-annual dissemination by TPRC. Instead, this Data Book was restructured and extensively revised and will soon be available through a commercial publisher in the form of formal hard-bound volumes. The forthcoming publication is entitled TPRC SERIES ON THERMOPHYSICAL PROPERTIES OF MATTER and will be described in more detail later.

The last supplement of the data sheets in the loose-leaf format was that of December 1966. All the available sets of the loose-leaf Data Book were exhausted by mid-year 1967. The data sheets produced during 1967 were held in abeyance and will be released for the first time in the forthcoming Series. It is anticipated that the new volumes will become available according to the tentative schedule presented subsequently.

The changeover from the loose-leaf TPRC publication to formal commercial publication has entailed a number of considerations. Significant among these were the following:

- 1. The Data Book was to be reduced from its unconventional 11" x 17" dimensions to 9-1/4" x 11-1/4" with printing back to back.
- 2. The organization of the contents were completely restructured in order to improve user's convenience. The new series is organized into volumes by properties.

- 3. In order to obviate the cumbersome merging of supplements and the associated high cost of dissemination, it was decided that each edition of a volume will be updated, revised and enlarged approximately every five years.
- 4. For those who have need for the most up-to-date information, TPRC will provide specific inquiry service or one may subscribe to the automatic UPDATE PLAN tailored to meet a specific technical profile of an engineer, scientist, corporation, or laboratory.

The above-outlined procedure closely parallels the concept which TPRC has followed during the past ten years for the dissemination of bibliographic information. That is, the major accomplishments are published in formal volumes through commercial channels while TPRC disseminates materials to maintain its publications and audience on a current basis.

3.2 TPRC Series on Thermophysical Properties of Matter

Table E-3 gives an indication of the structure, scope, and publication schedule of the forthcoming TPRC SERIES ON THERMOPHYSICAL PROPERTIES OF MATTER. As shown in Table E-3, to be published in 1969 are Volumes 1 through 8, on which a further summary of statistical data is given in Table E-4.

Each volume of the series comprises three sections: the first section is a text on the theory, estimation, and measurement of the property, the second section presents the available numerical data for the property of the materials, and the third section is a comprehensive material index.

The following brief summaries will serve to characterize each of the active data tables projects.

3.3 Projects

a. Thermal Radiative Properties (Emittance, Reflectance, Absorptance, and Transmittance)

This group of properties constitutes Volumes 7, 8, and 9 of the new TPRC SERIES. Only Volume 7 (Metallic Elements and Alloys) has now been finished and is ready for publication.

The present tables are organized in a way that is much different from that in the original TPRC Data Book. This is due to the establishment of a new scheme for the designation and categorization of the sub-properties. According to the new scheme, by applying the proper geometric and wavelength descriptors to the prime properties, there are altogether thirty-three sub-properties for any material.

TABLE E-3. PUBLICATION SCHEDULE FOR TPRC SERIES ON THERMOPHYSICAL PROPERTIES OF MATTER*

		1969	1970	1971	1972	1973	1974	1975	1976	1977
Volume 1.	Thermal Conductivity of Metallic Elements and Alloys	1565				Second Edition				
Volume 2.	Thermal Conductivity of Nonmetallic Solids	1255				Second Edition				
Volume 3.	Thermal Conductivity of Nonmetallic Liquids and Gases	640				Second Edition				
Volume 4.	Specific Heat of Metallic Metallic Elements and Alloys	825					Second Edition			
Volume 5.	Specific Heat of Nonmetallic Solids	1720					Second Edition			
Volume 6.	Specific Heat of Nonmetallic Liquids and Gases	390					Second Edition			
Volume 7.	Thermal Radiative Properties of Metallic Elements and Alloys	1650						Second Edition		
Volume 8.	Thermal Radiative Properties of Nonmetallic Solids	880						Second Edition		
Volume 9.	Thermal Radiative Properties of Coatings		1690					Second Edition		
Volume 10.	Thermal Diffusivity		500						Second Edition	
Volume 11.	Viscosity		400						Second Edition	
Volume 12.	Thermal Expansion of Metallic Elements and Alloys			500						Second Edition
Volume 13.	Thermal Expansion of Nonmetallic Solids			500						Second Edition

^{*}The publication schedule shown in the table gives the estimated number of pages for the first edition and the years in which the volumes are to be published. After the second edition, subsequent editions of each volume will be released at intervals of five years.

TABLE E-4. SUMMARY OF STATISTICAL DATA ON VOLUMES 1 TO 7 OF "TPRC SERIES ON THERMOPHYSICAL PROPERTIES OF MATTER"

		No. of Pages*	No. of Curves	No. of References**
Volume 1.	Thermal Conductivity of Metallic Elements and Alloys	1565	5539	1013
Volume 2.	Thermal Conductivity of Nonmetallic Solids	1255	4627	598
Volume 3.	Thermal Conductivity of Nonmetallic Liquids and Gases	640	1505	725
Volume 4.	Specific Heat of Metallic Elements and Alloys	825	1186	428
Volume 5.	Specific Heat of Non- metallic Solids	1720	1009	449
Volume 6.	Specific Heat of Non- metallic Liquids and Gases	390	863	595
Volume 7.	Thermal Radiative Properties of Metallic Elements and Alloys	1650	5309	352

^{*} Estimated

^{**} These are the references to data sources only, not including those references to the text on the theory, estimation, and measurement of the respective thermophysical properties.

Since Volume 7 is now essentially finished, the major efforts are concentrated on the processing of data on coatings and nonmetallic solids so that Volumes 8 and 9 can be published in 1969 and 1970 respectively. The new classification scheme for coatings is now "finalized" after considerable study by the TPRC staff in consultation with several national experts.

Although in Volume 3 of the Retrieval Guide there are only 2,829 references on thermal radiative properties (8.4 percent), in recent years the number of new research documents on the thermal radiative properties has increased steadily and rapidly. Presently, TPRC's acquisition rate is about 6,000 papers per year, 20 percent related to radiative properties. Also, 50 percent of the papers pertaining to radiative properties contain information on coatings. Therefore, it is a very arduous task just to remain current by processing the incoming documents, 1,200 per year, and it has become a standing practice to try to finish the data processing for the most current research documents first, and then to work backwards on the earlier documents. A similar situation is present in the thermal conductivity and specific heat projects.

b. Thermal Conductivity

Thermal conductivity constitutes Volumes 1, 2, and 3 of the new TPRC SERIES. Data compilation for the thermal conductivity of the elements is totally completed and is being maintained on a current basis.

In Volume 3 of the Retrieval Guide, which contains 33,700 references, there are 7,329 references on thermal conductivity, i.e., 21.7 percent (neglecting the relatively small number of references on accommodation coefficient and thermal contact resistance). The present rate of document input into TPRC's Information Storage and Retrieval System is about 6,000 per year. If the past ratio remains the same, there will be 1,300 new documents per year on thermal conductivity entering the System.

In the forthcoming Volumes 1, 2, and 3 of the TPRC SERIES, the thermal conductivity of all metals and alloys, which are organized into seven groups, are included in Volume 1. Volume 2 presents data for thirty groups of nonmetallic solids. Volume 3 contains the critically evaluated and recommended values for 58 fluids which are organized into four groups; for the elements recommended

values are given for solid, saturated liquid, saturated vapor, and gaseous states while for the other three groups of fluids recommended values are given for saturated liquid and gaseous states only.

The three volumes on thermal conductivity contain 2,287 references to data sources. Past experience indicates that only one out of three to four earlier research documents and only one out of two to three more recent documents contains original experimental data. Therefore, to have 2,287 references to data sources, over 7,000 research documents must have been processed.

c. Specific Heat

Specific heat constitutes Volumes 4, 5, and 6 of the new TPRC SERIES. Tables on the specific heat of the elements and of all the important alloys, compounds, and mixtures have been prepared. Data compilation on the specific heat of metallic elements and alloys and nonmetallic solids has been done here at TPRC while the work on nonmetallic liquids and gases has been done at TPRC's Overseas Branch in Japan.

The specific heat of all metals and alloys, which are organized into four groups, are included in Volume 4. Volume 5 presents data for twenty-four groups of nonmetallic solids. Volume 6 contains the critically evaluated and recommended values for 56 fluids organized into four groups.

In Volume 3 of the Retrieval Guide there are 6,978 references on specific heat, i.e., 20.7 percent of the 33,700 references. If the past ratio remains the same, there will be 1,240 new documents per year on specific heat entering the System.

d. Thermal Diffusivity

Thermal diffusivity will constitute Volume 10 of the new TPRC SERIES. The work on this property has been greatly accelerated and all the previous tables have been extensively updated and revised and new research documents are being processed. There are 597 documents on thermal diffusivity in the Retrieval Guide, i.e., 1.7 percent. About 100 new documents enter the System each year.

e. Thermal Expansion

Thermal expansion will constitute Volumes 12 and 13 of the new TPRC SERIES. The work on this property had been active in 1964-66, and suspended

until mid 1968. This work has been reactivated and Volumes 12 and 13 will be published in early 1971.

f. Viscosity

Viscosity will constitute Volume 11 of the new TPRC SERIES. The work on this property had been suspended from 1964 to 1966. Starting early 1967, this work was reactivated in TPRC's European Branch at the Belgian Institute for High Pressure, Brussels, Belgium, with Dr. P. Hestermans as Senior Investigator. This Volume 11 is planned to be published in early 1970.