Kompatybilność elektromagnetyczna

2015/2016

Prowadzący: dr inż. Wiesław Sabat środa, 12:00

Data oddania: _____ Ocena: ____

Witold Olechowski 127517 Grzegorz Pelczar 125242 Mateusz Kut 125212 Tomasz Marecik 127374

Zadanie 6 : Badanie odporności odkurzacza na znormalizowane rodzaje zaburzeń elektromagnetycznych.

1. Cel ćwiczenia

Badanie odporności odkurzacza na znormalizowane rodzaje zaburzeń elektromagnetycznych tj. udar $1.2/50\mu s$ zgodnie z zaleceniami standardu PN-EN 61000-4-5. Serię szybkich elektrycznych stanów przejściowych zgodnie z zaleceniami standardu PN-EN 61000-4-4 i zapady, krótkie przerwy i zmiany napięcia przejściowych, zgodnie z zaleceniami standardu PN-EN 61000-4-11

2. Realizacja ćwiczenia

Norma PN-EN 61000-4-5 określa wymagania odnośnie sprzętu, stanowiska pomiarowego oraz procedury badań odporności na udary napięciowe i prądowe. Parametry udarów również są ściśle określone. Ich poziomy pokazano na rysunku 1.

Rysunek 1. Poziomy udarów.

W ramach wykonywanego ćwiczenia przeprowadzono test odporności odkurzacza na udar 1.2/50us. Wyniki przeprowadzonego testu zestawiono w tabeli.

3. Zgodnie z zaleceniami standardu PN-EN 55014-2 pomiary przeprowadzić dla poziomu udaru 1kV, wstrzykiwanego pomiędzy przewód L-N, dla chwil 0° , 90° , 180° i 270° .

W ramach wykonywanego ćwiczenia przeprowadzono test odporności odkurzacza na udar 1.2/50us. Wyniki przeprowadzonego testu zestawiono w tabeli 1.

Udar	Udar $1.2/50\mu s$, Up $-1kV$, Przewód L-N, $t_r=10s$, liczba udarów – 5, kryterium oceny B							
Waru	Warunki środowiskowe: Temperatura °C, Wilgotność wzgl %.							
L.p.	Kąt	Polaryzacja	Wynik	Ocena stanu pracy badanego urządzenia.				
1.	0°	+	+	bez zastrzeżeń				
2.	90°	+	+	bez zastrzeżeń				
3.	180°	+	+	bez zastrzeżeń				
4.	270°	+	+	bez zastrzeżeń				
5.	0°	-	+	bez zastrzeżeń				
6.	90°	-	+	bez zastrzeżeń				
7.	180°	-	+	bez zastrzeżeń				
8.	270°	-	+	bez zastrzeżeń				

Tabela 1. Wyniki pomiaru odporności odkurzacza na udar $1.2/50\mu s$.

4. Badania odporności na serię szybkich elektrycznych stanów przejściowych zgodnie z zaleceniami standardu PN-EN 61000-4-4.

Badanie polega na sprawdzeniu wpływu na urządzenie zakłócenia w postaci serii 75 impulsów o amplitudzie 1kV. Serie są powtarzane co 300ms. Wyniki pomiaru odporności odkurzacza na serię szybkich elektrycznych stanów przejściowych przedstawiono w poniższej tabeli 2. Zgodnie z zaleceniami standardu PN-EN 55014-2 pomiary przeprowadzone dla poziomu udaru 1kV, wstrzykiwanego do przewodów L, N, L+N, dla chwil 0° , 90° , 180° i 270°

Tabela 2. Wyniki pomiaru odporności odkurzacza na serię szybkich elektrycznych stanów przejściowych

Imp	$Impuls\ 5/50ns,\ N-75\ imp,\ f-5kHz,\ tp{=}15ms,\ tr\ {=}300ms,\ Up\ {-}1kV,$								
Prze	Przewód: L, N, L+N, czas narażenia – 1min, kryterium oceny B								
Warunki środowiskowe: Temperatura °C, Wilgotność wzgl %.									
L.p.	Kąt	Polaryzacja	Wynik	Ocena stanu pracy badanego urządzenia.					
1.	L 0°	+/-	+	bez zastrzeżeń					
2.	L 90°	+	+	bez zastrzeżeń					
3.	L 180°	+	+	bez zastrzeżeń					
4.	L 270°	+	+	bez zastrzeżeń					
5.	N 0°	+/-	+	bez zastrzeżeń					
6.	N 90°	+	+	bez zastrzeżeń					
7.	N180°	+	+	bez zastrzeżeń					
8.	N 270°	+	+	bez zastrzeżeń					
9.	L+N 0°	+/-	+	bez zastrzeżeń					
10.	L+N 90°	+	+	bez zastrzeżeń					
11.	L+N 180°	+	+	bez zastrzeżeń					
12.	L+ N 270°	+	+	bez zastrzeżeń					

5. Badania odporności na zapady i zaniki napięcia. Zgodnie z zaleceniami standardu PN-EN 55014-2.

Ostatnim zadaniem było zbadanie odporności odkurzacza na zapady i zaniki napięcia. rządzenie może się wyłączył w wyniku zapadu napięcia, ale po zniknięciu zakłóceń musi wrócić do pracy w trybie, w którym było ustawione, bądź do trybu określonego przez producenta.

Tabela 3. Wyniki pomiaru odporności odkurzacza na zapady i zaniki napięcia zasilania

Warunki środowiskowe: Temperatura 24 °C, Wilgotność wzgl. 80 %. Kryterium oceny C								
L.p.	Kąt	Czas trwania	Wynik	Ocena stanu pracy badanego urządzenia.				
1.	Zapad 40°	$10 \times 20 \text{ms}$	+	bez zastrzeżeń				
2.	Zapad 70°	$50 \times 20 \text{ms}$	+	bez zastrzeżeń				
3.	Zanik 100°	$0.5 \times 20 \text{ms}$	+	bez zastrzeżeń				

6. Wnioski

W ramach wykonywanego ćwiczenia zapoznano się z normami określającymi metody badania odporności urządzeń na różnego rodzaju zakłócenia elektryczne. Zgodnie z tymi regułami przeprowadzono sprawdzono odporność odkurzacza na udar 1.2/50, serię szybkich elektrycznych stanów przejściowych oraz zapady i zaniki napięcia. Na podstawie przeprowadzonych testów należy stwierdzić, że badany odkurzacz został odpowiednio zabezpieczony przed zakłóceniami.

Literatura

[1] Wiesław Sabat, Instrukcje laboratoryjne, Politechnika Rzeszowska, Rzeszów, 2015