STATS 310A: Theory of Probability I

Autumn 2016/17

Lecture 7: October 17

Lecturer: Persi Diaconis Scribes: Kenneth Tay

7.1 Distribution Functions

7.1.1 One-dimensional case

Definition 7.1 If μ is a probability on \mathbb{R} , we say that $F(x) = \mu(-\infty, x]$ is the (cumulative) distribution function of μ .

Note: If we know F, we know μ (by the $\pi - \lambda$ theorem).

Properties of distribution functions:

- 1. F is monotonically increasing (not necessarily strict).
- 2. F is right continuous, i.e. $\lim_{n\to\infty} F(x_n) = F(x)$ if $x_n\downarrow x$. This is because $\mu(A_n)\to \mu(A)$ if $A_n\downarrow A$.
- 3. $F(\infty) := \lim_{x \to \infty} F(x) = 1, F(-\infty) := \lim_{x \to -\infty} F(x) = 0.$

The converse is true too: If F is increasing, right-continuous, $F(\infty) = 1$, $F(-\infty) = 0$, then there exists a unique probability μ on \mathbb{R} such that $\mu(-\infty, x] = F(x)$ for all x.

Examples of distribution functions:

- Standard normal distribution: $F(x) = \int_{-\infty}^{x} \frac{e^{-\frac{x^2}{2}}}{\sqrt{2\pi}} dx$.
- Exponential distribution: $F(x) = 1 e^{-x}$ for $0 \le x < \infty$, F(x) = 0 otherwise.
- Point mass at x^* : F(x) = 0 for $x < x^*$, F(x) = 1 for $x \ge x^*$. Note that this is right-continuous but not left-continuous.

7.1.2 Multi-dimensional case

If μ is a probability on \mathbb{R}^k , for a set $A_x = \{y : y_i \le x_i, 1 \le x_i \le k\}$ (i.e. set of all points with all coordinates less than or equal to x), we can set $F(x) = \mu(A_x)$.

As in the 1-dimensional case, F is monotone, right-continuous and $F(\infty) = 1$, $F(-\infty) = 0$.

However, unlike the 1-dimensional case, the converse fails! For example, look at 2 dimensions. Take 4 points in the plane x, y, z, w which form the vertices of a rectangle B:

7-2 Lecture 7: October 17

Then we have the added condition that for every x, y, z, w, we must have

$$\mu(B) = F(x) - F(y) - F(w) + F(z) \ge 0. \tag{7.1}$$

It turns out that if we have an added condition that is similar to the above, then we do have a converse. In order to make that statement precise, we need to set up a few definitions.

Definition 7.2 In \mathbb{R}^k , a finite rectangle is a set that can be expressed as $A = \{x : a_i < x_i \le b_i, 1 \le i \le k\}$.

The class of finite rectangles is a semi-ring.

Definition 7.3 For a finite rectangle A in \mathbb{R}^k , let V_A denote the set of A's vertices (there are 2^k of them). For a vertex $v \in V_A$, define

$$sgn_A(v) = \begin{cases} -1 & \textit{if } v \textit{ involves an odd number of } a_i, \\ +1 & \textit{if } v \textit{ involves an even number of } a_i. \end{cases}$$

For a given function $F: \mathbb{R}^k \to \mathbb{R}$ and finite rectangle A in \mathbb{R}^k , define $\Delta_A(F) := \sum_{v \in V_A} sgn_A(v)F(v)$.

To get a feel for $\Delta_A(F)$, let's work it out for $\Delta_A(F)$ for 1 and 2 dimensions:

- For k = 1, let A = (a, b]. Then $\Delta_A(F) = F(b) F(a)$.
- For k = 2, let $A = \{a_1 < x_1 \le b_1, a_2 < x_2 \le b_2\}$. Then $\Delta_A(F) = F(b_1, b_2) F(a_1, b_2) F(a_2, b_1) + F(a_1, a_2)$, which is just Eqn 7.1.

We now state the converse theorem for \mathbb{R}^k :

Theorem 7.4 Let F(x) on \mathbb{R}^k be a monotonically increasing, right-continuous, $F(\infty) = 1$, $F(-\infty) = 0$.

If $\Delta_A(F) \geq 0$ for all finite rectangles A, then there exists a unique probability measure μ on the Borel sets of \mathbb{R}^k such that $\mu(A) = \Delta_A(F)$ for all A.

Note: The existence of the Lebesgue measure is a special case of this theorem $(F(x) = x_1 \dots x_n, \Delta_A(F) = (b_1 - a_1) \dots (b_k - a_k)).$

Proof: Given Let \mathcal{A} be the semi-ring of finite rectangles. For $A \in \mathcal{A}$, define $\mu(A) := \Delta_A(F)$. We have to prove that μ is finitely additive on \mathcal{A} and countably sub-additive. Once we have done that, Theorem 11.3 from the book tells us that μ has an extension to $\sigma(\mathcal{A})$, i.e. the Borel sets of \mathbb{R}^k . (The extension is unique by the $\pi - \lambda$ theorem.)

Lecture 7: October 17 7-3

We prove finite additivity in 2 steps:

Step 1: A decomposes into a regular partition.

That is, for every $1 \le i \le k$, there exist t_{ij} with $a_i = t_{i0} < t_{i1} < \cdots < t_{in_i} = b_i$, $J_{ik} = (t_{i(k-1)}, t_{ik})$, such that

$$B_{j_1...j_k} = J_{1j_1} \times \ldots \times F_{kj_k}$$

are the disjoint sets in this partition of A. Then,

$$\begin{split} \sum_{B} \mu(B) &= \sum_{B} \Delta_{B}(F) \\ &= \sum_{B} \sum_{v \in V_{B}} \operatorname{sgn}_{B}(v) F(v) \\ &= \sum_{v \in V_{B}} F(v) \sum_{B} \operatorname{sgn}_{B}(v). \end{split}$$

If v is an internal vertex (i.e. not a vertex of A), it is contained in at least 2 boxes. The boxes containing v can be paired off so that v has positive sign in one box and negative sign in the other. Hence, $\sum_{B} \operatorname{sgn}_{B}(v) = 0$.

If v is not an internal vertex, then it is a vertex of A and $\operatorname{sgn}_B(v) = \operatorname{sgn}_A(v)$. Thus,

$$\sum_{v \in V_B} F(v) \sum_B \operatorname{sgn}_B(v) = \sum_{v \in V_A} \operatorname{sgn}_A(v) F(v)$$
$$= \mu(A).$$

Step 2: A does not decompose into a regular partition.

Let the partition be denoted by \mathcal{B} . We can make regular partition $\tilde{\mathcal{B}}$ from \mathcal{B} by extending the sides of the rectangles in \mathcal{B} . Then, using Step 1 twice, we get

$$\mu(A) = \sum_{B \in \tilde{\mathcal{B}}} \mu(B) = \sum_{B \in \mathcal{B}} \mu(B).$$

Having shown finite additivity, we can use Lemma 2(ii) of Theorem 11.4 in the book to conclude that μ is finitely sub-additive.

To show countable sub-additivity: let $A = \{x : a_i < x_i \le b_i, 1 \le i \le k\} \in \mathcal{A}, \{A_u\}_1^{\infty} \in \mathcal{A}, A \subseteq I \}$

Let $A = \{x : a_i < x_i \le b_i, 1 \le i \le k\}$. Define a slightly smaller rectangle $B = \{x : a_i + \delta < x_i \le b_i, 1 \le i \le k\}$. Then $B \subset A$. By right-continuity, there exists a sufficiently small δ such that $\mu(A) - \varepsilon \le \mu(B)$. Further, we can choose δ small enough so that the closure $\bar{B} \subset A$.

For each $A_u = \{x: a_i^u < x_i \le b_i^u, 1 \le i \le k\}$, define a slightly larger rectangle $B_u = \{x: a_i^u < x_i \le b_i^u + \delta, 1 \le i \le k\}$ such that $\mu(B_u) \le \mu(A_u) + \varepsilon/2^u$ and the interior $B_u^{\circ} \supseteq A_u$.

Putting these facts together, we have

$$\bar{B} \subseteq A \subseteq \bigcup_{1}^{\infty} A_u \subseteq \bigcup_{1}^{\infty} B_u^{\circ}.$$

7-4 Lecture 7: October 17

Hence, by the Heine-Borel Theorem, there exist a finite subcover of \bar{B} (and B) by $B_{i_j}^{\circ}$, $1 \leq j \leq N$. Then

$$\mu(A) - \varepsilon \le \mu(B)$$

$$\le \sum_{j=1}^N \mu(B_{i_j})$$
 (by finite sub-additivity)
$$\le \sum_{j=1}^N \mu(A_{i_j}) + \varepsilon/2^{i_j}.$$

We get countable sub-additivity by letting ε go to zero.

By setting $F(x) = \prod_{i=1}^{k} F_i(x_i)$, we obtain the following corollary:

Corollary 7.5 If F_i 's are distribution functions on \mathbb{R} , then $F(x) = \prod_{i=1}^k F_i(x_i)$ is a distribution function on \mathbb{R}^k .

(In this case, $\Delta_A(F) = \prod (F_i(b_i) - F_i(a_i)) \ge 0$.)