Pacchetto su RF24: conversione dei programmi da seriale a RF24

(Parte Raspberry)

1. Attività preliminari

1.1. Piedinatura versione 3 e 4

Vedi anche https://www.vincenzov.net/tutorial/RaspberryPi/connettore-GPIO.htm

	. telephoning .		PIO Header	
Pin#	NAME		NAME NAME	Pin#
01	3.3v DC Power		DC Power 5v	02
03	GPIO02 (SDA1 , I ² C)	0	DC Power 5v	04
05	GPIO03 (SCL1 , I ² C)	0	Ground	06
07	GPIO04 (GPIO_GCLK)	00	(TXD0) GPIO14	08
09	Ground	00	(RXD0) GPIO15	10
11	GPIO17 (GPIO_GEN0)	00	(GPIO_GEN1) GPIO18	12
13	GPIO27 (GPIO_GEN2)	00	Ground	14
15	GPIO22 (GPIO_GEN3)	00	(GPIO_GEN4) GPIO23	16
17	3.3v DC Power	00	(GPIO_GEN5) GPIO24	18
19	GPIO10 (SPI_MOSI)	00	Ground	20
21	GPIO09 (SPI_MISO)	00	(GPIO_GEN6) GPIO25	22
23	GPIO11 (SPI_CLK)		(SPI_CE0_N) GPIO08	24
25	Ground	00	(SPI_CE1_N) GPIO07	26
27	ID_SD (I2C ID EEPROM)	00	(I ² C ID EEPROM) ID_SC	28
29	GPIO05	00	Ground	30
31	GPIO06	00	GPIO12	32
33	GPIO13	00	Ground	34
35	GPIO19	00	GPIO16	36
37	GPIO26	00	GPIO20	38
39	Ground	00	GPIO21	40

1.2. Uso dei piedini da shell

- Provare l'esempio del <u>video (5:56)</u>
- Provare lo script bash della sezione "Accendere un LED" al link https://www.vincenzov.net/tutorial/RaspberryPi/helloREALworld-sh.htm

1.3. Connessione con nRF24L01

nRF24L01	Pi (BCM Notation)	Pi (BOARD Notation)
Vcc	3.3v	Pin 1
GND	Ground	Pin 6
CSN	GPIO08	Pin 24
CE	GPIO17	Pin 11
MOSI	GPIO10	Pin 19
MISO	GPIO09	Pin 21
SCK	GPIO11	Pin 23

fritzing

1.4. Installazione librerie

• **pigpiod:** è il processo di sistema che fa da interfaccia verso GPIO

sudo apt install pigpiod

• nrf24: è la libreria a che fa da interfaccia fra l'applicazione Python e nRF24L01

python3 -m pip install nrf24

2. Ricezione dati sensore

2.1. Libreria e costanti

```
import time
import sys
import struct

import pigpio
from nrf24 import *

#-----
# costanti
#------
PIGPIONAME='localhost'
PIGPIOPORT=8888
READINGPIPE='00001'

MIO_ID=b"AB"
MIO_INDIRIZZO=b"P001"
MIO_TIPO=b"S1"
```

2.2. Settaggi e apertura pipe

```
# connessione a pigpiod
pi = pigpio.pi(PIGPIONAME, PIGPIOPORT)
if not pi.connected:
    print("Pigpiod non connesso. Lanciare: SUDO PIGPIOD")
    sys.exit()

# Crea l'oggetto NRF24
nrf = NRF24(pi, ce=17, payload_size=32, channel=76,
data_rate=RF24_DATA_RATE.RATE_1MBPS, pa_level=RF24_PA.LOW)

# apre la pipe
nrf.set_address_bytes(5)
nrf.open_reading_pipe(RF24_RX_ADDR.P1, READINGPIPE)
```

2.3. Lettura pacchetto

```
while True:
   if nrf.data_ready():
      msg=(struct.unpack("2s 4s 4s 2s 4s 16s",nrf.get_payload()))
      print(msg)
```

3. Invio comandi motore

3.1. Libreria e costanti

```
import time
import sys
import pigpio
from nrf24 import *
import struct
#-----
# costanti
#-----
PIGPIONAME='localhost'
PIGPIOPORT=8888
WRITINGPIPE='00001'
ID=b"AB"
MITTENTE=b"P001"
DESTINATARIO=b"A328"
TIPO=b"A1"
VUOTO=("."*16).encode()
```

3.2. Settaggi e apertura pipe

```
# connessione a pigpiod
pi = pigpio.pi(PIGPIONAME, PIGPIOPORT)
if not pi.connected:
    print("Pigpiod non connesso. Lanciare: SUDO PIGPIOD")
    sys.exit()

# Crea l'oggetto NRF24
nrf = NRF24(pi, ce=17, payload_size=32, channel=76,
data_rate=RF24_DATA_RATE.RATE_1MBPS, pa_level=RF24_PA.LOW)

# apre le pipe
nrf.set_address_bytes(5)
nrf.open writing pipe(WRITINGPIPE)
```

3.3. Scrittura pacchetto