

DIGITAL VLSI DESIGN

Dr. Rashmi SeethurDepartment of
Electronics and
Communication Engg.

DIGITAL VLSI DESIGN

MODULE 4

Sequential MOS Logic circuits

Dr. Rashmi Seethur

Department of Electronics and Communication Engineering

Introduction

- •Sequential Circuit
- Behavior of Bistable Elements
- •SR Latch Circuit
- Clocked Latch and Flip Flop Circuits
- •CMOS D-Latch and Edge-Triggered Flip-Flop

Classification of logic circuits based on temporal behaviour

Sequential circuit

BiStable

inverters is larger
than unity at unstable Point,
a small voltage perturbation
at the input of any of the
inverters will be amplified,
causing the operation point
to move
unstable
to one of the stable points.

(b)

stable

Voltage gain of

simple analogy the energy function P(x) could be the potential energy of some one-dimensional mechanical system. The gradient of P(x) is a "force"

Bistable

At
$$V_{01} = V_{02}$$
 Unstable $i_{g1} = i_{d2} = g_m v_{g2}$ Condition $i_{g2} = i_{d1} = g_m v_{g1}$ where $g_m = (g_{mN} + g_{mP})$: All four

Transistor are in saturation

Output Expectation (exponential!!!)

Direction
is determined
by initial
perturbation
polarity.

Gate Capacitance >>> Drain Capacitance

$$\frac{dq_1}{dt} = ig_1$$

$$i_{g1} = g_m \, v_{g2}$$

Combination of two equation yields 2nd order differential equation

Time behaviour of gate charge q1

$$q_1(0) = C_g \cdot v_{g1}(0)$$

Assume ~ Large t

SR Latch Circuit

Gate-level Schematic/Block Diagram.

Truth Table

Operation Mode

Capacitance

$$C_Q = C_{gb,2} + C_{gb,5} + C_{db,3} + C_{db,4} + C_{db,7} + C_{sb,7} + C_{db,8}$$

$$C_{\overline{O}} = C_{gb,3} + C_{gb,7} + C_{db,1} + C_{db,2} + C_{db,5} + C_{sb,5} + C_{db,6}$$

Circuit with Capacitance

Rise Time

$$\tau_{rise,Q} (SR - latch) = \tau_{rise,O} (NOR2 + \tau_{fall,\overline{Q}} (NOR2)$$

Depletion Load nMOS (NOR2)

Gate Schematic(NAND)

Truth Table

Depletion Load nMOS (NAND)

Clocked Latch and Flip-Flop Circuits

Sample Input-Output Waveforms

AOI Implementation (NOR)

Gate Schematic (NAND), active low

Partial Block Diagram

Gate Schematic

Block Diagram

All NAND Implementation

Detailed Truth Table

• J, K Compliments Q will go to J value at the next clock edge. J, K HIGH, the output will reverse its state after each clock pulse.

NOR-based JK Latch

AOI Realization(NOR)

Toggle Switch

Master-Slave Flip Flop

Master-Slave Flip Flop

Master-Slave Flip Flop (NOR)

- CLK is HIGH MASTER is enable. Slave is disable and retains its previous state.
- CLK is LOW is disconnected while input of slaves are simultaneously coupled to the output of the slaves.

CMOS D-Latch and Edge-Triggered Flip Flop

CMOS Implementation

Simplified Schematic View

Timing Diagram

2nd CMOS Implementation

CMOS –ve Edge-triggered

Simulated Input-Output

Timing Violation

Layout

CMOS +ve Edge-triggered

Timing Diagram

References

 S-M. Kang and Y. Leblebici , CMOS Digital Integrated Circuits: Analysis and Design,, 3rd edition