Exercise 4 - Random vector

The content of this script is only as a supplementary illustration to the exercise, it is not necessary to know at the exam. It is important to be able to calculate manually.

Martina Litschmannová, Adéla Vrtková, Michal Béreš

Example

Random vector $Z=(Y;X)^T$ has a probability function specified by the table </br>

$X \setminus Y$	1	2	3	4
3	0,01	0,02	0,03	0,25
5	0,04	0,16	?	0,05
7	0,12	0,07	0,06	0,01

a) Determine the missing value of the combined probability function,

```
In [1]:
          data = c(0.01, 0.04, 0.12,
                    0.02, 0.16, 0.07,
                    0.03, 0, 0.06,
                    0.25, 0.05, 0.01)
          P = matrix(data , nrow=3, ncol=4) # possibly byrow=...
          X = c(3, 5, 7)

Y = c(1, 2, 3, 4)
          dimnames(P) = list(X,Y)
          A matrix: 3 × 4 of type dbl
                   2 3
         3 0.01 0.02 0.03 0.25
         5 0.04 0.16 0.00 0.05
         7 0.12 0.07 0.06 0.01
In [2]:
          sum(P)
        0.82
In [3]:
          # do not run this cell twice, otherwise you will set the value back to 0,
          # Do you know why?
          p_5_3 = 1 - sum(P)
P["5","3"] = p_5_3
          A matrix: 3 × 4 of type dbl
                   2
         3 0.01 0.02 0.03 0.25
         5 0.04 0.16 0.18 0.05
```

b) Specify the distribution function

7 0.12 0.07 0.06 0.01

Attention! The vector Z is $(Y,X)^T$ so the first parameter is the value Y and the second value X.

```
In [4]: # F(2.8; 7.1) # P(Y<2.8, X<7.1)
```

```
P[X<7.1, Y<2.8]
        sum(P[X<7.1, Y<2.8])
       A matrix: 3 × 2
         of type dbl
            1
       3 0.01 0.02
       5 0.04 0.16
       7 0.12 0.07
       0.42
In [5]:
        F = matrix(rep(0,4*5), nrow=4, ncol=5)
        F
              A matrix: 4 × 5 of type dbl
             (-inf,1> (1,2> (2,3> (3,4> (4,inf)
       (-inf,3>
                               0
                      0
                           0
         (3,5>
                      0
                           0
                                0
                                     0
         (5,7>
                      0
                           0
                                0
                                     0
                  0
        (7,inf)
                  0
                      0
                           0
                                0
```

```
In [6]: # we go through the rows and columns, we always take one value
    # from the relevant row or column
    x_vals = c(3,5,7,8)
    y_vals = c(1,2,3,4,5)
    for(i in 1:4){
        for(j in 1:5){
            x = x_vals[i]
            y = y_vals[j]
            F[i,j] = sum(P[X<x, Y<y])
        }
    }
}</pre>
```

A matrix: 4 × 5 of type dbl

	(-inf,1>	(1,2>	(2,3>	(3,4>	(4,inf)
(-inf,3>	0	0.00	0.00	0.00	0.00
(3,5>	0	0.01	0.03	0.06	0.31
(5,7>	0	0.05	0.23	0.44	0.74
(7,inf)	0	0.17	0.42	0.69	1.00

c) Determine the marginal distribution

```
In [7]:

A matrix: 3 × 4 of type dbl

1 2 3 4

3 0.01 0.02 0.03 0.25

5 0.04 0.16 0.18 0.05

7 0.12 0.07 0.06 0.01

In [8]:

P_x = rowSums(P)
P_x

3: 0.31 5: 0.43 7: 0.26
```

```
In [9]: F_x = c(0, cumsum(P_x))
```

```
F_x
         1: 0 3: 0.31 5: 0.74 7: 1
In [10]:
          P_y = colSums(P)
          Р_у
         1: 0.17 2: 0.25 3: 0.27 4: 0.31
In [11]:
          F_y = c(0, cumsum(P_y))
          F_y
         1: 0 1: 0.17 2: 0.42 3: 0.69 4: 1
         d) Conditional probabilities and conditional probability functions
         P(x|y), P(y|x)
In [12]:
          \# P(Y>2.1|X<5.3)
          # P(Y>2.1 \land X<5.3)/P(X<5.3)
          sum(P[X<5.3, Y>2.1])
          sum(P[X<5.3,])
          sum(P[X<5.3, Y>2.1])/sum(P[X<5.3,])
         0.51
         0.74
         0.689189189189189
In [13]:
          \# P(X=5|Y=1)
          # P(X=5 \land Y=1)/P(Y=1)
          P['5','1']/sum(P[,'1'])
          P['5','1']/sum(P_y['1'])
         0.235294117647059
         0.235294117647059
         P(x|y) = rac{P(X=x,Y=y)}{P_Y(y)}
In [14]:
          P_xy = P # it's the same size, so we'll steal the formatting
          X_lab = c('3', '5', '7')
Y_lab = c('1', '2', '3', '4')
          for(x in X_lab){
              for(y in Y_lab){
                  P_xy[x, y] = P[x, y]/P_y[y]
          P_xy
          colSums(P_xy)
                   A matrix: 3 × 4 of type dbl
                    1
                         2
                                   3
          3 0.05882353 0.08 0.1111111 0.80645161
          5 0.23529412 0.64 0.6666667 0.16129032
          7 0.70588235 0.28 0.2222222 0.03225806
         1: 1 2: 1 3: 1 4: 1
         P(y|x)
In [15]:
          P_yx = P # it's the same size, so we'll steal the formatting
          for(x in X_lab){
               for(y in Y_lab){
                   P_yx[x, y] = P[x, y]/P_x[x]
               }
          }
```

```
2
         3 0.03225806 0.06451613 0.09677419 0.80645161
         5 0.09302326 0.37209302 0.41860465 0.11627907
         7 0.46153846 0.26923077 0.23076923 0.03846154
        3: 1 5: 1 7: 1
        e) basic characteristics of random variables X and Y
In [16]:
          E_X = sum(X*P_x)
          E X
          E_XX = sum(X*X*P_X)
          D_X = E_XX - E_X^2
          D_X
        4.9
        2.27
In [17]: E_Y = sum(Y*P_y)
          E_Y
          E_{YY} = sum(Y*Y*P_y)
          D_Y = E_{YY} - E_{Y^2}
        2.72
        1.1616
        f) conditional mean E(X|Y=2)
In [18]:
          \# P(x|Y=2)
          P_xy[,'2']
          E_X_{Y2} = sum(X*P_xy[,'2'])
          E_X_Y2
        3: 0.08 5: 0.64 7: 0.28
        5.4
        g) covariance and correlation
In [19]:
          X_Y = P \# matrix where in each column is the value <math>x * y
          for(x in X){
              for(y in Y){
                  X_Y[toString(x), toString(y)] = x*y
          X_Y
          A matrix: 3 × 4 of
             type dbl
           1 2 3 4
         3 3 6 9 12
         5 5 10 15 20
         7 7 14 21 28
In [20]:
          X_Y*P
          A matrix: 3 × 4 of type dbl
```

P_yx

rowSums(P_yx)

A matrix: 3 × 4 of type dbl

2 3

1

```
3 0.03 0.12 0.27 3.00
         5 0.20 1.60 2.70 1.00
         7 0.84 0.98 1.26 0.28
In [21]: # or we can use matrix multiplication
          X %*% t(Y)
         A matrix: 3 × 4 of
            type dbl
         3 6 9 12
         5 10 15 20
         7 14 21 28
In [22]: # mean value of E(X * Y)
         E_XY = sum(X_Y*P)
         E_XY
         12.28
In [23]: # covariance
         cov_XY = E_XY-E_X*E_Y
          cov_XY
        -1.048
In [24]: # correlation
          cov_XY/sqrt(D_X*D_Y)
```

-0.64538676102769

1 2 3 4