

- 128 x 128
- time res = 64 μs
- freq res = 4.53 MHz

Noise

- 60 epochs
- 4,000 data points (no noise)
 - 1,000/class x 4 classes
- Learning rate = 1e-5
- 400 test images
- Adam = 92% accuracy
- SGD = 94% accuracy
- Cross entropy loss
 - Better for classification than MSE

Adaptive Movement Estimation (Adam)

 Computes adaptive learning rates for different parameters from estimates of the first and second moments of the gradients. Stochastic Gradient Decent (SGD)

Maintains a single learning rate for all weight updates. Learning rate does not change during training.

Ер	1	2	3	4	6	10	15	20	22	25	29	33	38	39	44	47	51	56	57	66	77	89
Tr	73	74	82	87	84	85	89	86	88	90	92	92	94	94	96	92	94	92	94	96	98	100
Те	74	79	80	82	84	83	85	84	86	83	86	87	88	88	87	87	89	88	86	86	88	88

Loss = 0.41

Expected vs Predicted Classification Table

= test data= training data

Epochs = 6

Total Accuracy = 81%, 85%

Predicted Expected	Long-lived broadband	Long-lived narrowband	Short-lived broadband	Short-lived narrowband	Noise
Long-lived broadband	1.0 1.0	0.0	0.0	0.0	0.0
Long-lived narrowband	0.0	0.77 0.79	0.0	0.10 0.07	0.13 0.14
Short-lived broadband	0.01 0.0	0.0	0.96 0.98	0.01 0.0	0.02 0.02
Short-lived narrowband	0.0	0.13 0.05	0.0	0.33 0.51	0.54 0.44
Noise	0.0	0.0	0.0	0.0	1.0 1.0

= test data= training data

Epochs = 20

Total Accuracy = 84%, 86%

Predicted Expected	Long-lived broadband	Long-lived narrowband	Short-lived broadband	Short-lived narrowband	Noise
Long-lived broadband	0.99 0.99	0.0	0.1 0.1	0.0	0.0
Long-lived narrowband	0.0	0.85 0.78	0.0	0.06 0.16	0.09 0.06
Short-lived broadband	0.1 0.0	0.1 0.0	0.97 1.0	0.1 0.0	0.0
Short-lived narrowband	0.0	0.09 0.08	0.0	0.66 0.76	0.25 0.16
Noise	0.0	0.0	0.0	0.28 0.17	0.72 0.83

Expected vs Predicted Classification Table

Loss = 0.15

Epochs = 57

Total Accuracy = 86%, 94%

= test data
= training data

Predicted Expected	Long-lived broadband	Long-lived narrowband	Short-lived broadband	Short-lived narrowband	Noise
Long-lived broadband	1.0 1.0	0.0	0.0	0.0	0.0
Long-lived narrowband	0.0	0.88 0.88	0.0	0.04 0.01	0.08 0.11
Short-lived broadband	0.01 0.0	0.0	0.98 1.0	0.01 0.0	0.0
Short-lived narrowband	0.0	0.07 0.04	0.0	0.67 <mark>0.85</mark>	0.26 <mark>0.11</mark>
Noise	0.0	0.02	0.0	0.22 0.02	0.76 0.98

All Categories

Increased SNR slnb

no SLNB, no noise

Only noise

Only slnb

Increased SNR slnb

Loss = 0.21

Expected vs Predicted Classification Table

= test data = training data

Epochs = 10

Total Accuracy = 73%, 77%

Predicted Expected	Long-lived broadband	Long-lived narrowband	Short-lived broadband	Short-lived narrowband	Noise
Long-lived broadband	1.0 1.0	0.0	0.0	0.0	0.0
Long-lived narrowband	0.0	0.88 0.92	0.0	0.12 0.08	0.0
Short-lived broadband	0.0 0.01	0.0	0.99 <mark>0.98</mark>	0.01 0.01	0.0
Short-lived narrowband	0.0	0.30 0.04	0.0	0.70 <mark>0.96</mark>	0.0
Noise	0.0	0.0	0.0	1.0 0.96	0.0 0.04

*Increased SNR slnb

Loss = 0.0

Epochs = 89

Expected vs Predicted Classification Table

*Increased SNR slnb Total Accuracy = 81%, 100%

= test data
= training data

Predicted Expected	Long-lived broadband	Long-lived narrowband	Short-lived broadband	Short-lived narrowband	Noise
Long-lived broadband	1.0 1.0	0.0	0.0	0.0	0.0
Long-lived narrowband	0.0	0.85 1.0	0.0	0.10 0.0	0.05 0.0
Short-lived broadband	0.0	0.0	0.98 1.0	0.01 0.0	0.01 0.0
Short-lived narrowband	0.0	0.22 0.0	0.01 0.0	0.51 1.0	0.26 0.0
Noise	0.0	0.03	0.0	0.27 0.0	0.7 1.0

Next

- Incorporate real-world data (FRB 121102)
 http://seti.berkeley.edu/frb121102/technical.html
- Split up data arrays to fit into network
- Using smoothing techniques outlined by Akshay in jupyter notebook to identify label bursts for training

pulse + RFI

just pulse

