LÓGICA

Cód:30829840

Turma: SI

Prof. Dr. João Paulo I. F. Ribas

Sejam P(p,q,r,...) e Q(p,q,r,...) duas proposições compostas, diz-se que P implica Q (ou implica logicamente) se e somente se a condicional entre as colunas resultantes de suas tabelas-verdade (P \rightarrow Q) é uma TAUTOLOGIA.

▶ Lê-se "P implica Q".

Notação: $P(p,q,r,...) \Rightarrow Q(p,q,r,...)$

Portanto, dizemos que P ⇒ Q quando nas respectivas tabelas-verdade dessas duas proposições não aparece V na última coluna de P e F na última coluna de Q, com V e F em uma mesma linha, isto é, não ocorre P e Q com valores lógicos simultâneos respectivamente V e F.

Exemplos:

a)
$$3 = 2 + 1 \Rightarrow 3^2 = (2 + 1)^2$$
.

Podemos usar o símbolo \Rightarrow , pois a proposição condicional: $3 = 2 + 1 \rightarrow 3^2 = (2 + 1)^2$ é verdadeira.

b) Não podemos escrever que $3 > 2 \Rightarrow 3 > 4$, pois a proposição condicional: $3 > 2 \rightarrow 3 > 4$ é falsa.

Observação: Os símbolos ⇒ e → têm significados diferentes: O símbolo ⇒ entre duas proposições dadas indica uma relação, isto é, que a proposição condicional associada é uma tautologia, enquanto → realiza uma operação entre proposições dando origem a uma nova proposição p → q (que pode conter valores lógicos V ou F.

Propriedades da Implicação

Propriedade Reflexiva:

$$P(p,q,r,...) \Rightarrow P(p,q,r,...)$$

Propriedade Transitiva:

Se P(p,q,r,...)
$$\Rightarrow$$
 Q(p,q,r,...) E
Q(p,q,r,...) \Rightarrow R(p,q,r,...) ENTÃO
P(p,q,r,...) \Rightarrow R(p,q,r,...).

Exemplos:

▶ Verificar se $p \leftrightarrow q \Rightarrow p \rightarrow q$

▶ Verificar se $p \leftrightarrow q \Rightarrow q \rightarrow p$

Substituir o símbolo \Rightarrow (implicação) pelo símbolo \rightarrow (condicional) e adicionar parentêsis limitando cada uma das proposições, ou seja : $(p \leftrightarrow q) \rightarrow (p \rightarrow q)$

 A condicional associada ao símbolo de implicação deve ser a última operação a ser feita;

(p	\leftrightarrow	q)	\rightarrow	(p	\rightarrow	q)
V	V	V	V	V	V	V
V	F	F	V	V	F	F
F	F	V	V	F	V	V
F	V	F	V	F	V	F
1	2	1	3	1	2	1

Portanto,

$$p \leftrightarrow q \Rightarrow p \rightarrow q$$

(p	\leftrightarrow	q)	\rightarrow	(q	\rightarrow	q)
V	V	V	V	V	V	V
V	F	F	V	F	V	V
F	F	V	V	V	F	F
F	V	F	V	F	V	F
1	2	1	3	1	2	1

Portanto, $p \leftrightarrow q \Rightarrow q \rightarrow p$

Exemplos:

$$p \rightarrow q \land r \rightarrow \neg q \Rightarrow r \rightarrow \neg p$$

$$((p \leftrightarrow q) \lor (q \leftrightarrow s)) \land \sim (p \leftrightarrow q) \Rightarrow (q \leftrightarrow s)$$

Exemplos:

▶ $p \rightarrow q \land r \rightarrow \sim q \Rightarrow r \rightarrow \sim p$ (não implica)

 $((p \leftrightarrow q) \lor (q \leftrightarrow s)) \land \sim (p \leftrightarrow q) \Rightarrow (q \leftrightarrow s)$ (implica)

Exercícios: Verifique as seguintes implicações por tabelaverdade:

a)
$$(p \rightarrow q) \land (q \rightarrow r) \Rightarrow p \rightarrow r$$

b)
$$(p \rightarrow q) \land (r \rightarrow s) \land (p \lor r) \Rightarrow q \lor s$$

c)
$$(p \rightarrow q) \land (r \rightarrow s) \land (\neg q \lor \neg s) \Rightarrow \neg p \lor \neg r$$

Regras de Inferência						
Adição disjuntiva (AD)	$p \Rightarrow p \lor q$	$p \Rightarrow q \lor p$				
Simplificação	$p \land q \Rightarrow p$	$p \land q \Rightarrow q$				
Modus Ponens(MP)	$(p \rightarrow q) \land p \Rightarrow q$					
Modus Tollens(MT)	$(p \rightarrow q) \land \neg q \Rightarrow \neg p$					
Silogismo Disjuntivo(SD)	$(p \lor q) \land \sim q \Rightarrow p$					
Silogismo Hipotético(SH)	$(p \rightarrow q) \land (q \rightarrow r) \Rightarrow p \rightarrow r$					
Dilema Construtivo(DC)	$(p \rightarrow q) \land (r \rightarrow s) \land (p \lor r) \Rightarrow q \lor s$					
Dilema Destrutivo(DD)	$(p \rightarrow q) \land (r \rightarrow s) \land (\neg q \lor \neg s) \Rightarrow \neg p \lor \neg r$					
Absorção(ABS)	$p \rightarrow q \Rightarrow p \rightarrow (p \rightarrow q)$					

Sejam P e Q duas proposições quaisquer (simples ou compostas) e a condicional entre elas dada por P \rightarrow Q, tem-se as seguintes proposições associadas a P \rightarrow Q:

- ▶ Recíproca de $P \rightarrow Q: Q \rightarrow P$
- ▶ Contrária de P \rightarrow Q: \sim P \rightarrow \sim Q
- ▶ Contrapositiva de $P \rightarrow Q$: $\sim Q \rightarrow \sim P$

Observações:

- A condicional é equivalente a sua contrapositiva: (P→Q) ⇔ (~Q→~P)
- A recíproca da condicional é equivalente à contrária da condicional: (Q → P) ⇔ (~P → ~Q)

Exemplos:

- $p \rightarrow q$: Se Carlos é professor, então é pobre.
- A contrapositiva é ~q → ~p : Se Carlos não é pobre, então não é professor.
- ▶ Portanto, $(p \rightarrow q \Leftrightarrow \sim q \rightarrow \sim p)$ (Proposições equivalentes).

Exemplos:

p : x é menor que zero

q : x é negativo

- $p \to p$: Se x é negativo, então x é menor que zero.
- A contrapositiva é $\sim p \rightarrow \sim q$: Se x não é menor que zero, então x não é negativo.
- Portanto, $(q \rightarrow p \Leftrightarrow \sim p \rightarrow \sim q)$ (Proposições equivalentes).

Exemplos:

P: "Se meu amor tem duas vidas para amar-te, então te amo duplamente".

- Contrária:
- Recíproca:
- Contrapositiva:

Exemplos:

- P: "Se meu amor tem duas vidas para amar-te, então te amo duplamente".
- Contrária: "Se meu amor não tem duas vidas para amarte, então não te amo duplamente".
- Recíproca: "Se te amo duplamente então meu amor tem duas vidas para amar-te".
- Contrapositiva:. "Se não te amo duplamente então meu amor não tem duas vidas para amar-te".

Exemplos:

• Q: Se seu espírito está isento de toda turvação, então as nuvens da desordem se dissiparão e você conhecerá seu verdadeiro Eu.

Contrária:

Recíproca:

Contrapositiva:

Exemplos:

- Q: Se seu espírito está isento de toda turvação, então as nuvens da desordem se dissiparão e você conhecerá seu verdadeiro Eu.
- Contrária: Se seu espírito não está isento de toda turvação, então não é verdade que as nuvens da desordem se dissiparão e você conhecerá seu verdadeiro Eu.
- Recíproca: Se as nuvens da desordem se dissiparão e você conhecer seu verdadeiro Eu, então seu espírito está isento de toda turvação.
- Contrapositiva: Se não é verdade que as nuvens da desordem se dissiparão e você conhecerá seu verdadeiro Eu, então seu espírito não estará isento de toda turvação.

Exercícios:

- Sejam as proposições P:~p ↔ r v q e Q:r → s ^ t. Apresente:
- A Contrária da Contrapositiva da Recíproca de $Q \rightarrow P$: