PhD Proposal Writeup

A realtime and parallel look-ahead control and feedrate compensation strategy for CNC reference-pulse interpolation.

Faculty of Mechanical Engineering,

Universiti Malaysia Pahang (UMP), 26600 Pekan, Pahang Darul Makmur, Malaysia.

PhD Program Registration Details				
1	Name of Student	Wan Ruslan bin W Yusoff		
2	Student ID	PFD18001		
3	National Reg. ID	560911-03-5067		
4	Faculty	Faculty of Mechanical Engineering		
5	Program	Doctor of Philosophy (PhD)		
6	Field of Research	Mechatronics and System Design		
7	Type of Study	Research		
8	Mode of Study	Full Time		
9	Registration Date	Tue, 03 April 2018		
10	Supervisor	Dr. Fadhlur Rahman bin Mohd Romlay		
12	External Advisor	Prof. Yashwant Prasad Singh		
13	Document Date	June 16, 2023		
14	Research Title	A realtime and parallel look-ahead control		
		and feedrate compensation strategy for CNC		
		reference-pulse interpolation		
15	Contact EMail	wruslandr@gmail.com		
16	Contact Mobile	6012-3218120		

Reference: Draft-44-Report-Latex-PhD-Proposal-WRY.tex

Date: **June 16, 2023** Version: **Draft-44** CONTENTS Page 1 of 53

Contents

C	Cover Page		1		
Ta	able o	of Cont	tents	1	
C	Contents				
Li	st of	Tables	3	3	
Li	st of	Tables	3	3	
1	Exp	erimer	\mathbf{at}	5	
	1.1	The Pa	arametric Equations	5	
		1.1.1	Teardrop parametric equation	6	
		1.1.2	Butterfly parametric equation	7	
		1.1.3	Ellipse parametric equation	8	
		1.1.4	Skewed-Astroid parametric equation	9	
		1.1.5	Circle parametric equation	10	
		1.1.6	AstEpi parametric equation	11	
		1.1.7	Snailshell parametric equation	12	
		1.1.8	SnaHyp parametric equation	13	
		1.1.9	Ribbon-10L parametric equation	14	
		1.1.10	Ribbon-100L parametric equation	15	
	1.2	Experi	imental Run Results	16	
		1.2.1	Teardrop and Butterfly Run Data	17	
		1.2.2	Ellipse and Skewed-Astroid Run Data	18	
		1.2.3	Circle and Astepi Run Data	19	
		1.2.4	Snailshell and SnaHyp Run Data	20	
		1.2.5	Ribbon-10L and Ribbon-100L Run Data	21	
	1.3	Result	s Feedrate Profile	22	
		1.3.1	Teardrop FC20 u versus x-y-curr feedrate profile	23	
		1.3.2	Teardrop FC20 x-y and colored feedrate profile	24	
		1.3.3	Butterfly FC20 u versus x-y-curr feedrate profile	25	
		1.3.4	Butterfly FC20 x-y and colored feedrate profile	26	
		1.3.5	Ellipse FC20 u versus x-y-curr feedrate profile	27	
		1.3.6	Ellipse FC20 x-y and colored feedrate profile	28	
		1.3.7	Skewed-Astroid FC20 u versus x-y-curr feedrate profile	29	
		1.3.8	Skewed-Astroid FC20 x-y and colored feedrate profile	30	
		1.3.9	Circle FC20 u versus x-y-curr feedrate profile	31	
		1.3.10	Circle FC20 x-y and colored feedrate profile	32	
		1.3.11	AstEpi FC20 u versus x-y-curr feedrate profile	33	

CONTENTS Page 2 of 53

	1.3.12	AstEpi FC20 x-y and colored feedrate profile	34
	1.3.13	Snailshell FC20 u versus x-y-curr feedrate profile	35
	1.3.14	Snailshell FC20 x-y and colored feedrate profile	36
	1.3.15	SnaHyp FC20 u versus x-y-curr feedrate profile	37
	1.3.16	SnaHyp FC20 x-y and colored feedrate profile	38
	1.3.17	Ribbon-10L FC20 u versus x-y-curr feedrate profile	39
	1.3.18	Ribbon-10L FC20 x-y and colored feedrate profile	40
	1.3.19	Ribbon-100L FC20 u versus x-y-curr feedrate profile	41
	1.3.20	Ribbon-100L FC20 x-y and colored feedrate profile	42
1.4	Interpo	olated Points Distribution	43
	1.4.1	Teardrop distribution of interpolated points	44
	1.4.2	Butterfly distribution of interpolated points	45
	1.4.3	Ellipse distribution of interpolated points	46
	1.4.4	Skewed-Astroid distribution of interpolated points	47
	1.4.5	Circle distribution of interpolated points	48
	1.4.6	AstEpi distribution of interpolated points	49
	1.4.7	Snailshell distribution of interpolated points	50
	1.4.8	SnaHyp distribution of interpolated points	51
	1.4.9	Ribbon-10L distribution of interpolated points	52
	1 4 10	Ribbon-100L distribution of interpolated points	53

LIST OF TABLES Page 3 of 53

List of Tables

1.1	Teardrop parametric equation and dimensions	6
1.2	Butterfly parametric equation and dimensions	7
1.3	Ellipse equation and dimensions	8
1.4	Skewed-Astroid and dimensions	Ö
1.5	Circle equation and dimensions	10
1.6	Astepi equation and dimensions	11
1.7	Snailshell equation and dimensions	12
1.8	SnaHyp equation and dimensions	13
1.9	Ribbon-10L equations and dimensions	14
1.10	Ribbon-100L equation and dimensions	15
1.11	Teardrop and Butterfly Run Data	17
	Ellipse and Skewed-Astroid Run Data	18
	Circle and Astepi Run Data	19
1.14	Snailshell and SnaHyp Run Data	20
1.15	Ribbon-10L and Ribbon-100L Run Data	21
	Teardrop FC20 u versus x-y-curr feedrate profile	23
	Teardrop FC20 x-y and colored feedrate profile	24
1.18	Butterfly FC20 u versus x-y-curr feedrate profile	25
	Butterfly FC20 x-y and colored feedrate profile	26
1.20	Ellipse FC20 u versus x-y-curr feedrate profile	27
	Ellipse FC20 x-y and colored feedrate profile	28
	Skewed-Astroid FC20 u versus x-y-curr feedrate profile	29
	Skewed-Astroid FC20 x-y and colored feedrate profile	30
	Circle FC20 u versus x-y-curr feedrate profile	31
	Circle FC20 x-y and colored feedrate profile	32
	AstEpi FC20 u versus x-y-curr feedrate profile	33
	AstEpi FC20 x-y and colored feedrate profile	34
	Snailshell FC20 u versus x-y-curr feedrate profile	35
	Snailshell FC20 x-y and colored feedrate profile	36
	SnaHyp FC20 u versus x-y-curr feedrate profile	37
	SnaHyp FC20 x-y and colored feedrate profile	38
	Ribbon-10L FC20 u versus x-y-curr feedrate profile	39
	Ribbon-10L FC20 x-y and colored feedrate profile	40
	Ribbon-100L FC20 u versus x-y-curr feedrate profile	41
	Ribbon-100L FC20 x-y and colored feedrate profile	42
1.36		44
1.37		45
1.38		46
1.39	1 1	47
1.40	Circle distribution of interpolated points	48

LIST OF TABLES Page 4 of 53

1.41	AstEpi distribution of interpolated points	49
1.42	Snailshell distribution of interpolated points	50
1.43	SnaHyp distribution of interpolated points	51
1.44	Ribbon-10L distribution of interpolated points	52
1 45	Ribbon-100L distribution of interpolated points	53

1 Experiment

Describe Section 5.1, 5.2 and 5.3

1.1 The Parametric Equations

The ten(10) 2D parametric curves covered in this work are:

- 1. Teardrop
- 2. Butterfly
- 3. Ellipse
- 4. Skewed-Astroid
- 5. Circle
- 6. AstEpi = Astroid + Epicycloid combination
- 7. Snailshell
- 8. SnaHyp = Snailshell + Hypotrocoid combination
- 9. Ribbon-10L
- 10. Ribbon-100l = 10 times scaleup of Ribbon-10L

The parametric equations describing each of the curves x(u), and y(u) are provided in the next table. The independent parameter u is limited to

$$u \in [0.0, 1.0]$$

The curves were selected based on their different characteristics like closed loop curves, open ended curves, symmetric or non-symmetric about the x-axis and y-axis, and having concave or convex turns. The x and y dimensions (sizes) vary among the different curves.

The main objective of the selection criteria is to ensure that the interpolation algorithm for the parametric curve succeeds and does not break in all cases.

The results for the feedrates in machining the ten(10) curves show continuity, smoothness, with no abrupt jumps as the CNC machine traverse the entire curve from the start (u = 0.0) until the end (u = 1.0).

1.1.1 Teardrop parametric equation

Table 1.1: Teardrop parametric equation and dimensions

1.1.2 Butterfly parametric equation

No. 2 - Butterfly parametric curve $x(u) = \sin(2\pi u) \left[e^{\cos(2\pi u)} - 2\cos(8\pi u) - (\sin(2\pi u/12))^5\right]$ $y(u) = \cos(2\pi u) \left[e^{\cos(2\pi u)} - 2\cos(8\pi u) - (\sin(2\pi u/12))^5\right]$ $u \in [0.0, 1.0]$ Closed loop Overall Multiple loops Reflection x-axis: non-symmetrical Reflection y-axis: symmetrical Reflection y-axis: symmetrical $x = \frac{8^{17} \operatorname{Er} \left(-\frac{1}{2} \operatorname{Er} \left($

Table 1.2: Butterfly parametric equation and dimensions

1.1.3 Ellipse parametric equation

Table 1.3: Ellipse equation and dimensions

1.1.4 Skewed-Astroid parametric equation

Table 1.4: Skewed-Astroid and dimensions

1.1.5 Circle parametric equation

Table 1.5: Circle equation and dimensions

1.1.6 AstEpi parametric equation

Table 1.6: Astepi equation and dimensions

1.1.7 Snailshell parametric equation

Table 1.7: Snailshell equation and dimensions

1.1.8 SnaHyp parametric equation

No. 8 - SnaHyp = Sum of (Snailshell + Hypotrocoid) parametric curves $xsna(u) = [4\sin(8\pi u)]/[16(\pi u)^2 + 4]$ $xhyp(u) = [2\cos(4\pi u) + 5\cos(8\pi u/3)]$ x(u) = 10[xsna(u) + xhyp(u)] $ysna(u) = [10\cos(8\pi u)]/[16(\pi u)^2 + 4]$ $yhyp(u) = [2\sin(8\pi u) - 5\sin(8\pi u/3)]$ y(u) = 10[ysna(u) + yhyp(u)] $u \in [0.0, 1.0]$ Open ended curve Overall 1 loop, except for 1 concave curve, the rest are convex curves Reflection x-axis: non-symmetrical Reflection y-axis: non-symmetrical $x = x\sin(\pi u) + x\cos(\pi u) + x\cos($

Table 1.8: SnaHyp equation and dimensions

1.1.9 Ribbon-10L parametric equation

Table 1.9: Ribbon-10L equations and dimensions

1.1.10 Ribbon-100L parametric equation

No. 10 - Ribbon-100L parametric curve t(u) = 4(u - 0.50) $x(u) = 10t^2$ $y(u) = 10t^3 - 30t + 30$ $u \in [0.0, 1.0]$ Open ended curve (10 times larger than RIBBON-10L) Overall Single loop, smooth convex curves Reflection x-axis: non-symmetrical Reflection y-axis: non-symmetrical

Table 1.10: Ribbon-100L equation and dimensions

1.2 Experimental Run Results

Bismillah

Describe the Table FC10, FC, 20, FC25, FC30 and FC40

1.2.1 Teardrop and Butterfly Run Data

Table 1.11: Teardrop and Butterfly Run Data

Bismillah Allah huakbar

1.2.2 Ellipse and Skewed-Astroid Run Data

Table 1.12: Ellipse and Skewed-Astroid Run Data

1.2.3 Circle and Astepi Run Data

Table 1.13: Circle and Astepi Run Data

1.2.4 Snailshell and SnaHyp Run Data

Table 1.14: Snailshell and SnaHyp Run Data

1.2.5 Ribbon-10L and Ribbon-100L Run Data

Table 1.15: Ribbon-10L and Ribbon-100L Run Data

1.3 Results Feedrate Profile

1.3.1 Teardrop FC20 u versus x-y-curr feedrate profile

Table 1.16: Teardrop FC20 u versus x-y-curr feedrate profile

1.3.2 Teardrop FC20 x-y and colored feedrate profile

Table 1.17: Teardrop FC20 x-y and colored feedrate profile

1.3.3 Butterfly FC20 u versus x-y-curr feedrate profile

Table 1.18: Butterfly FC20 u versus x-y-curr feedrate profile

1.3.4 Butterfly FC20 x-y and colored feedrate profile

Table 1.19: Butterfly FC20 x-y and colored feedrate profile

1.3.5 Ellipse FC20 u versus x-y-curr feedrate profile

Table 1.20: Ellipse FC20 u versus x-y-curr feedrate profile

1.3.6 Ellipse FC20 x-y and colored feedrate profile

Table 1.21: Ellipse FC20 x-y and colored feedrate profile

1.3.7 Skewed-Astroid FC20 u versus x-y-curr feedrate profile

Table 1.22: Skewed-Astroid FC20 u versus x-y-curr feedrate profile

1.3.8 Skewed-Astroid FC20 x-y and colored feedrate profile

Table 1.23: Skewed-Astroid FC20 x-y and colored feedrate profile

1.3.9 Circle FC20 u versus x-y-curr feedrate profile

Table 1.24: Circle FC20 u versus x-y-curr feedrate profile

1.3.10 Circle FC20 x-y and colored feedrate profile

Table 1.25: Circle FC20 x-y and colored feedrate profile

1.3.11 AstEpi FC20 u versus x-y-curr feedrate profile

Table 1.26: AstEpi FC20 u versus x-y-curr feedrate profile

1.3.12 AstEpi FC20 x-y and colored feedrate profile

Table 1.27: AstEpi FC20 x-y and colored feedrate profile

1.3.13 Snailshell FC20 u versus x-y-curr feedrate profile

Table 1.28: Snailshell FC20 u versus x-y-curr feedrate profile

1.3.14 Snailshell FC20 x-y and colored feedrate profile

Table 1.29: Snailshell FC20 x-y and colored feedrate profile

1.3.15 SnaHyp FC20 u versus x-y-curr feedrate profile

Table 1.30: SnaHyp FC20 u versus x-y-curr feedrate profile

1.3.16 SnaHyp FC20 x-y and colored feedrate profile

Table 1.31: Sna Hyp FC20 x-y and colored feedrate profile

1.3.17 Ribbon-10L FC20 u versus x-y-curr feedrate profile

Table 1.32: Ribbon-10L FC20 u versus x-y-curr feedrate profile

1.3.18 Ribbon-10L FC20 x-y and colored feedrate profile

Table 1.33: Ribbon-10L FC20 x-y and colored feedrate profile

1.3.19 Ribbon-100L FC20 u versus x-y-curr feedrate profile

Table 1.34: Ribbon-100L FC20 u versus x-y-curr feedrate profile

1.3.20 Ribbon-100L FC20 x-y and colored feedrate profile

Table 1.35: Ribbon-100L FC20 x-y and colored feedrate profile

1.4 Interpolated Points Distribution

 $Histogram\ FC10,\ FC20,\ FC25,\ FC30,\ FC40$

1.4.1 Teardrop distribution of interpolated points

Table 1.36: Teardrop distribution of interpolated points

1.4.2 Butterfly distribution of interpolated points

Table 1.37: Butterfly distribution of interpolated points

1.4.3 Ellipse distribution of interpolated points

Table 1.38: Ellipse distribution of interpolated points

1.4.4 Skewed-Astroid distribution of interpolated points

Table 1.39: Skewed-Astroid distribution of interpolated points

1.4.5 Circle distribution of interpolated points

Table 1.40: Circle distribution of interpolated points

1.4.6 AstEpi distribution of interpolated points

Table 1.41: AstEpi distribution of interpolated points

1.4.7 Snailshell distribution of interpolated points

Table 1.42: Snailshell distribution of interpolated points

1.4.8 SnaHyp distribution of interpolated points

Table 1.43: SnaHyp distribution of interpolated points

1.4.9 Ribbon-10L distribution of interpolated points

Table 1.44: Ribbon-10L distribution of interpolated points

1.4.10 Ribbon-100L distribution of interpolated points

Table 1.45: Ribbon-100L distribution of interpolated points