Solution to Presentation Exercises

By Since $0 < \frac{k}{n!} < 52$ for all $\frac{k}{n!} \in S$, so S is bounded below by 0 and bounded above by 52. For every $n \in \mathbb{N}$, let $k = (n-1)! \in \mathbb{N}$, then $\frac{1}{n} = \frac{k}{n!} \in S$ and $\lim_{n \to \infty} \frac{1}{n} = 0$. So $\inf_{n \to \infty} S = 0$ by infimum limit theorem.

Next for every $n \in \mathbb{N}$, let $k = (n-1)! [n52] \in \mathbb{N}$, then $\frac{[n52]}{n} = \frac{k}{n!} \in S$.

Now $152 - \frac{1}{n} = \frac{n52-1}{n} < \frac{[n52]}{n} < \frac{n52}{n} = 52$. Since $\lim_{n \to \infty} 52 - \frac{1}{n} = 52$, by Sandwich theorem, $\lim_{n \to \infty} \frac{[n52]}{n} = 52$. So $\sup_{n \to \infty} S = 52$ by supremum limit theorem.

GI(n) Note $S = \bigcup_{n=1}^{10} (I_{n}\sqrt{z}, 2-hI_{n}Q) = [\frac{1}{10\sqrt{z}}, 1.9I_{n}Q] \cdot Q$. So S is bounded below by $\overline{10\sqrt{z}}$ and above by 1.9. We will show in $fS = \frac{1}{10\sqrt{z}}$ and $\sup S = 1.9$.

Since $\overline{10\sqrt{z}} \in S$, every lower bound $m \leq \overline{10\sqrt{z}}$, so in $fS = \overline{10\sqrt{z}}$.

Next, let $W_{n} = 1.9 - \overline{10\sqrt{z}}$, then $\overline{10\sqrt{z}} < 1 < 1.9 - \overline{12} \le W_{n} < 1.9$. So $W_{n} \in S$. Since $\lim_{n \to \infty} W_{n} = 1.9$, by the Supremum bruil theorem, $\sup_{n \to \infty} S = 1.9$.

Ball Note $x_1 = 1 < x_2 = \frac{1}{2} + \sqrt{3} = \frac{3}{4} + \sqrt{3} = \frac{3+2\sqrt{6}}{4}$. Also $x = \frac{x}{2} + \sqrt{x} \Rightarrow x = 0$ or 4.) We will show $x_n \in x_{n+1} \le 4$ by induction. For n = 1, $1 \le \frac{3}{2} \le 4$. Next suppose $x_n \le x_{n+1} \le 4$. Then $\frac{x_n}{2} \le \frac{x_{n+1}}{2} \le 2$ and $\sqrt{x_n} \le \sqrt{x_{n+1}} \le \sqrt{4} \Rightarrow x_{n+1} = \frac{x_n}{2} + \sqrt{x_n} \le x_{n+2} = \frac{x_{n+1}}{2} + \sqrt{x_{n+1}} \le 2 + \sqrt{4} = \frac{x_n}{2} + \sqrt{x_n} \le x_{n+2} = \frac{x_{n+1}}{2} + \sqrt{x_n} \le x_{n+2} = \frac{x_{n+2}}{2} + \sqrt{x_n} = x_{n+2} = \frac{x_{n+2}}{2} + \sqrt{x_n} = x_{n+2} = x$

tb) (Note $x_1 = 1 < x_2 = 2 < x_3 = 52 + 51 = 52 + 1$, so we suspect $\{x_n\}$ is increasing.) We will show $x_n < x_{n+1}$ for all $n \in \mathbb{N}$ by induction. The cases n = 1, 2 are true as shown above. Assume the cases n < k are true. For the case n = k, we have $x_k < x_{k+1} \iff 5x_{k-1} + 5x_{k-2} < 5x_{k+1} + 5x_{k-2} < 5x_{k+1} + 5x_{k-2} < 5x_{k+1} + 5x_{k-2} < 5x_{k+1} + 5x_{k+1} < 5$

Next we will show $x_n \le 4$ for all $n \in \mathbb{N}$. For n=1,2, this is clear. Assume the cases n < k are true, then $x_k = \sqrt{x_{k-1}} + \sqrt{x_{k-2}} \le \sqrt{4} + \sqrt{4} = 4$. So by induction, $x_n \le 4$ for all $n \in \mathbb{N}$. By the monotone sequence theorem, $\{x_n\}$ converges. Let $x = \lim_{n \to \infty} x_n$, then $x = \lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} (\sqrt{x_n} + \sqrt{x_{n-1}}) = 2\sqrt{x} \Rightarrow x = 0 \text{ or } 4$. Since $1 = x_1 \le x$, x = 4,

(32) (i) $\chi_1=2$, $\chi_2=\frac{3}{2}=1.5$, $\chi_3=\frac{4}{3}=1.33...$ We suspect $\{\chi_n\}$ is decreasing. Thoughts (If $\{\chi_n\}$ converges to χ , then $\chi=\lim_{n\to\infty}\chi_{n+1}=\lim_{n\to\infty}(2-\frac{1}{\chi_n})=2-\frac{1}{\chi}$, which leads to $\chi=2-\frac{1}{\chi}$, hence $\chi=1$.

Solution: We claim $1 \le x_{n+1} \le x_n$ for n=1,2,3,... for n=1, $1 \le x_2=1.5 \le x_1=2$. Suppose the n-th case is true (that is $1 \le x_{n+1} \le x_n$). Then $1 \ge \frac{1}{x_{n+1}} \ge \frac{1}{x_n}$ and so $2-\frac{1}{1} \le 2-\frac{1}{x_{n+1}} \le 2-\frac{1}{x_n}$ yielding $1 \le x_{n+2} \le x_{n+1}$. By M.I., the claim is true. Now the claim implies $1 \le x_n \le$

(01) Let $x \in \mathbb{R}$. For every positive integer n, Since $x - \frac{1}{n} < x - \frac{1}{n+1}$, by the density of irrational numbers, there exists $x_n \in \mathbb{R} \setminus \mathbb{Q}$ such that $x - \frac{1}{n} < x_n < x_{-n+1}$. Since $\lim_{n \to \infty} (x - \frac{1}{n+1})$, by Sandwich theorem, $\lim_{n \to \infty} x_n = x$. Finally, x_n is increasing because $x_n < x_{-n+1} < x_{-n+1} < x_{-n+2}$. Strictly

Note $\frac{1}{N^2} < \frac{2}{2} \Leftrightarrow \sqrt{\frac{2}{2}} < n$ and $\frac{\sqrt{2}}{N^3} < \frac{2}{2} \Leftrightarrow \sqrt{\frac{2}{2}} < n$. For every $\epsilon > 0$, by the Archimedean principle, there exists $k \in \mathbb{N}$ such that $k > \max(\sqrt{\frac{2}{\epsilon}}, \sqrt{\frac{2\sqrt{\epsilon}}{2}})$. Then $n \ge k \Rightarrow |\sqrt{n^2} - \frac{\sqrt{2}}{N^3}| - 0| \le \sqrt{n^2} + \frac{\sqrt{2}}{N^3} < \frac{2}{2} + \frac{2}{2} = \epsilon$. So $\lim_{n \to \infty} (\sqrt{n^2} - \frac{\sqrt{2}}{N^3}) = 0$. by definition.

From Note above

For every $\varepsilon > 0$, Since $\lim_{N \to \infty} x_n = 0$, there is $K, \varepsilon N$ such that $n \ge K_j \Rightarrow |x_n - 0| < \frac{\varepsilon}{\varepsilon}$.

By the Archimedean principle, there is $K_\varepsilon \varepsilon \varepsilon N$ such that $K_\varepsilon > \frac{\varepsilon}{\varepsilon}$. Let $K_\varepsilon = \max(K,K_\varepsilon)$ then $n \ge K \Rightarrow |(x_n + \frac{1}{n}) - 0| \le |x_n - 0| + \frac{1}{n} < \frac{\varepsilon}{\varepsilon} + \frac{1}{K_\varepsilon} < \frac{\varepsilon}{\varepsilon} + \frac{\varepsilon}{\varepsilon} = \varepsilon$, Therefore, $n \ge K_\varepsilon (x_n + \frac{1}{n}) = 0$ by definition. $n \ge K_\varepsilon (x_n + \frac{1}{n}) = 0$ by definition. $n \ge K_\varepsilon (x_n + \frac{1}{n}) \le K_\varepsilon (x_n + \frac{1}{n}$

(is) Since $\lim_{n\to\infty} x_n = \frac{1}{2}$, so for $\varepsilon_0 = \frac{1}{3}$, there is $K:\in\mathbb{N}$ such that $n\geq K_1 \Rightarrow |x_n - \frac{1}{2}|K_0 = \frac{1}{3}$ $\Rightarrow -\frac{1}{3}(x_n - \frac{1}{2}C\frac{1}{3}) \Rightarrow \frac{1}{6}(x_n(\frac{5}{6})) \Rightarrow |x_n^n - 0| < (\frac{5}{6})^n. So \text{ for every } \varepsilon > 0, let$ $K = \max_{n\to\infty} (K_1, \frac{1}{n} \frac{1}{n} \frac{1}{n} \frac{1}{n}), \text{ then } n\geq K \Rightarrow |x_n^n - 0| < (\frac{5}{6})^n < \varepsilon.$