

National University of Computer & Emerging Sciences, Karachi Spring-2021CS-Department

Mid Term-II 23rd of April 2021, 09:45a.m– 10:45a.m

Course Code: CS301	Course Name: Theory of Automata			
Instructor Names: Mr. Shahzad, Shaharbano, Bakhtawar, Musawar				
Student Roll No:	Section No:			

Instructions:

- Return the question paper.
- Read each question completely before answering it. There are 5 questions and 2 pages.
- In case of any ambiguity, you may make assumption. But your assumption should not contradict any statement in the question paper.
- Start each question in a new sheet.

Time: 60 minutes. Max Marks: 50 points

Question 1A (5 Points):

The circuit of a simple 3-bit Up/Down counter gives a maximum count of zero (000) to seven (111) and back to zero again. The 3-Bit counter advances upward in sequence (0,1,2,3,4,5,6,7) or downwards in reverse sequence (7,6,5,4,3,2,1,0). Design a mealy machine for the 3-bit Up/Down counter, which produce the upward and downward sequence in between 000 and 111. The input and output alphbet of this machine are Σ ={0, 1} and Δ ={0,1}. Some of the random input/output transitions on some states are as follows:

[Note: Mealy & Moore machines are capable to produce strings by reading 1 input symbol e.g. following intermediate transition represents that, by reading 1, 010 will be produced as output.]

Current	Current	Input	New
State	Output		Output
q3	010	1	011
q3	010	0	001
q5	100	1	101
q5	100	0	011

0/0

0/0

1/0

Question 1B (5 points):

Convert the given Mealy machine into equivalent More Machine:

0/0

Question 2 (10 points):

Find the minimal DFA of the following:

Question 3 (5+5 points):

Common misunderstanding test in Pumping Lemma

Assume you are a TA of CS301, and you are grading the **Bilal** and **Amjad** provided answers:

Part A.

"Is the language

L = {w | w is a binary string with at least as many 1's as 0's} regular?

Prove your answer using pumping lemma"

Bilal, has submitted following answer:

I will prove that L is not regular, using the pumping lemma.

- i. Let p is a pumping length
- ii. Let $w = 01^p$, so that $w \in L$ and $|w| \ge p$.
- iii. Let w = xyz, with $x = \mathcal{E}$, y = 0, and $z = 1^p$, so that $|xy| \le p$ and |y| > 0.
- iv. Then $xy^{p+1}z$ is not in L.

Identify the single incorrect line in Bilal's proof and explain what he did wrong.

[NOTE: do not list small mistakes, typos, etc.; explain the major logical error which invalidates Bilal's proof]

Part B.

"Show that where the language $L=\{0^{2n} \mid n \ge 0\}$ is regular or not regular"

Prove your answer using pumping lemma"

Amjad has submitted the following answer:

- i. Let p is pumping length
- ii. Let's take s=0^{2p}
- iii. Let $s=\epsilon 00^{2p-1}$ (i.e., $x=\epsilon$, y=0, $z=0^{2p-1}$). This satisfies |y|>0 and $|xy|\le p$.
- iv. But, taking i=0, we get $xy^iz = \epsilon 0^00^{2p-1} = 0^{2p-1}$, which isn't in L because its length is odd. So the language isn't regular.

Identify the single incorrect line in Amjad's proof, and explain what he did wrong.

[NOTE: explain the major logical error which invalidates Amjad's proof]

Question 4(10 points):

Find closure of the given below FA:

$$r = aa*bb*$$

Question 5 (4+4+2 points):

Write CFG of the following languages:

- a. $L1 = \{a^nb^m, (n+m) \text{ is divisible by 2}\}$
- b. $L2 = \{a^nb^{n-3} : n \ge 3\}$
- c. $L3 = \{a^m b^n c^p \mid m > n > p \}$

BEST OF LUCK!