CC212/CC212NA DC9 A	
CS213/CS213M DS&A	
Sharat Chandran	
www.cse.iitb.ac.in/~sharat/current/213m	
Patterns	
. Alexanthur is mathemas.	
 Algorithmic patterns: Recursion Software design patterns: Iterator 	
Divide-and-conquer Adapter	
Amortization Position	
The greedy method Composition	
• Prune-and-search • Template method	
Brute force Locator	
Dynamic programming Factory method	
Agenda	
Recursion Analysis and the master theorem	
- How do we get the solution to the time complexity of algorithms like	
merge sort	
 And also, towers of Hanoi, the bad Fibonacci algorithm (Generating functions) 	
•	

•

Divide and Conquer

- · Recursive in structure
 - Divide the problem into sub-problems that are similar to the original but smaller in size
 - Conquer the sub-problems by solving them recursively. If they are small enough, just solve them in a straightforward manner.
 - Combine the solutions to create a solution to the original problem

An Example: Merge Sort

<u>Sorting Problem:</u> Sort a sequence of *n* elements into non-decreasing order.

- *Divide*: Divide the *n*-element sequence to be sorted into two subsequences of *n*/2 elements each
- Conquer: Sort the two subsequences recursively using merge sort.
- *Combine*: Merge the two sorted subsequences to produce the sorted answer.

Merge Sort — Example Original Sequence 18 26 32 6 43 15 9 1 1 6 9 15 18 26 32 43 18 26 32 6 43 15 9 1 6 18 26 32 1 9 15 43 18 26 32 6 43 15 9 1 18 26 6 32 15 43 1 9 1 18 26 32 6 43 15 9 1 18 26 6 32 6 43 15 9 1 18 26 32 6 43 15 9 1

Merge-Sort (A, p, r)

INPUT: a sequence of *n* numbers stored in array A

 $\begin{tabular}{ll} \textbf{OUTPUT:} an ordered sequence of n numbers \\ \end{tabular}$

```
then q \leftarrow \lfloor (p+r)/2 \rfloor
          MergeSort (A, p, q)

MergeSort (A, q+1, r)

Merge (A, p, q, r) // merges A[p..q] with A[q+1..r]
```

Initial Call: MergeSort(A, 1, n)

Procedure Merge

Merge – Example ... 1 6 8 9 26 32 42 43 ... L 6 8 26 32 co R 1 9 42 43 co

Analysis of Merge Sort	
 Running time T(n) of Merge Sort: finding a closed form solution – That is, a solution that has T(n) only on the left-hand side. Divide: computing the middle takes Θ(1) Conquer: solving 2 subproblems takes 2T(n/2) Combine: merging n elements takes Θ(n) Total: T(n) = Θ(1) if n = 1 	
$T(n) = 2T(n/2) + \Theta(n) \qquad \text{if } n > 1$ $\Rightarrow T(n) = \Theta(n \mid g \mid n)$	
Iterative Method	
• In the iterative substitution, or "plug-and-chug," technique, we iteratively apply the recurrence equation to itself and see if we can find a pattern: $T(n) = 2T(n/2) + bn$ $= 2^2T(n/2^2) + b(n/2) + bn$ $= 2^2T(n/2^2) + 2bn$ $= 2^2T(n/2^2) + 3bn$ $= 2^4T(n/2^4) + 4bn$ $= \dots$ $= 2^2T(n/2^4) + ibn$ • Note that base, $T(n) = b$, case occurs when $2^4 = n$. That is, $t = \log n$. • So, $T(n) = bn + bn \log n$ • Thus, $T(n)$ is $O(n \log n)$.	
Recurrence Relations	
 Equation or an inequality that characterizes a function by its values on smaller inputs. Technicality: We ignore floors and ceilings, and boundary conditions Solution Methods Substitution Method. Recursion-tree Method. Master Method. Recurrence relations arise when we analyze the running time of iterative or recursive algorithms. Ex: Divide and Conquer. T(n) = 0(1) if n ≤ c T(n) = a T(n/b) + D(n) + C(n) otherwise 	

Substitution Method	
• Guess the form of the solution, then	
use mathematical induction to show it correct.	
 Substitute guessed answer for the function when the inductive hypothesis is applied to smaller values – hence, the name. 	
Works well when the solution is easy to guess.	
No general way to guess the correct solution.	
Example	
Recurrence: $T(n) = 1$ if $n = 1$ T(n) = 2T(n/2) + n if $n > 1$	
*Guess: T(n) = n g n + n. *Induction: *Basis: n = 1 ⇒ n gn + n = 1 = T(n). *Hypothesis: T(k) = k g k + k for all k < n. *Inductive Step: T(n) = 2 T(n/2) + (n/2) + n = n (g(n/2)) + 2n = n g n - n - 2 n = n g n - n - 2 n = n g n + n	
Example: Substitution Method	
Also called as the guess-and-test method, we guess a closed form	
solution and then try to prove it is true by induction: $T(n) = \begin{cases} b & \text{if } n < 2 \\ 2T(n/2) + bn \log n & \text{if } n \ge 2 \end{cases}$	
• Guess: $T(n) < cn \log n$. $T(n) = 2T(n/2) + bn \log n$	
$= 2(c(n/2)\log(n/2)) + bn \log n$ = $cn(\log n - \log 2) + bn \log n$	
$= cn \log n - cn + bn \log n$	
Wrong: we cannot make this last line be less than on log n	

Substitution Method	
• Consider again the recurrence equation: $T(n) = \begin{cases} b & \text{if } n < 2 \\ 2T(n/2) + bn \log n & \text{if } n \geq 2 \end{cases}$	
• Guess #2: $T(n) < cn \log^2 n$. $T(n) = 2T(n/2) + bn \log n$	
$=2(c(n/2)\log^2(n/2))+bn\log n$	
$= cn(\log n - \log 2)^2 + bn \log n$ = $cn \log^2 n - 2cn \log n + cn + bn \log n$	
$\leq c n \log^2 n$	
 So, T(n) is O(n log² n). In general, to use this method, you need to have a good guess and you need to be good at induction proofs. 	
need to be good actitudation proofs.	
D	
Recursion-tree Method	
 Making a good guess is sometimes difficult with the substitution method. 	
Use recursion trees to devise good guesses.	
Recursion Trees	
 Show successive expansions of recurrences using 	
trees. — Keep track of the time spent on the subproblems of	
a divide and conquer algorithm.	
 Help organize the algebraic bookkeeping necessary to solve a recurrence. 	
to solve a recurrence.	
Recursion Tree – Example	
·	
• Running time of Merge Sort: $T(n) = \Theta(1)$ if $n = 1$	
$T(n) = 2T(n/2) + \Theta(n)$ if $n > 1$	
• Rewrite the recurrence as $T(n) = c if n = 1$	
T(n) = 2T(n/2) + cn if $n > 1$	
c > 0: Running time for the base case and time per array element for the divide and	
combine steps.	

Recursion Tree for Merge Sort

For the original problem, we have a cost of cn, plus two subproblems each of size (n/2) and running time T(n/2).

Each of the size n/2 problems has a cost of cn/2 plus two subproblems, each costing T(n/4).

Recursion Tree for Merge Sort

Recursion Tree for Merge Sort

•Each level has total cost cn.
•Each time we go down one level, the number of subproblems doubles, but the cost per subproblem halves \Rightarrow cost per level remains the some.
•There are $\lfloor g \cdot n + 1 \rfloor$ levels, height is $\lfloor g \cdot n \rfloor$.
(Assuming n is a power of 2.)
•Can be proved by induction.
•Total cost \Rightarrow sum of costs at each level \Rightarrow $\lfloor g \cdot n \rfloor$.

Recursion Trees – Caution Note	
 Recursion trees only generate guesses. Verify guesses using substitution method. 	
A small amount of "sloppiness" can be tolerated. If confidential description and approximately approximately and approximately approximately and approximately approxima	
 If careful when drawing out a recursion tree and summing the costs, can be used as direct proof. 	
The Master Method	
Based on the Master theorem.	
 "Cookbook" approach for solving recurrences of the form 	
$T(n) = aT(n/b) + f(n)$ • $a \ge 1, b > 1$ are constants.	
 f(n) is asymptotically positive. n/b may not be an integer, but we ignore floors and 	
ceilings.	
Requires memorization of three cases.	
The Master Theorem	
Let $a \ge 1$ and $b > 1$ be constants, let $f(n)$ be a function, and	
Let $T(n)$ be defined on nonnegative integers by the recurrence $T(n) = aT(n/b) + f(n)$, where we can replace n/b by $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$.	
T(n) can be bounded asymptotically in three cases: 1. If $f(n) = O(n^{\log_{2} a - e})$ for some constant $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_{2} a})$.	
 If f(n) = Θ(n^{log,θ}), then T(n) = Θ(n^{log,θ} g n). If f(n) = Ω(n^{log,θ+θ}) for some constant ε > 0, 	
and if, for some constant $c < 1$ and all sufficiently large n , we have $a \cdot f(n/b) \le c f(n)$, then $T(n) = \Theta(f(n))$.	

Master Method - Examples

• T(n) = 16T(n/4)+n

- -a = 16, b = 4, $n^{\log_b a} = n^{\log_4 16} = n^2$.
- $-f(n) = n = O(n^{\log_b a \varepsilon}) = O(n^{2-\varepsilon})$, where $\varepsilon = 1 \Rightarrow \mathsf{Case} \ 1$.
- Hence, $T(n) = \Theta(n^{\log_b a}) = \Theta(n^2)$.

• T(n) = T(3n/7) + 1

- -a = 1, b = 7/3, and $n^{\log_b a} = n^{\log_{7/3} 1} = n^0 = 1$
- $$\begin{split} &-f(n)=1=\Theta(n^{\log_b a}) \Longrightarrow \mathsf{Case}\; \mathsf{2}.\\ &-\mathsf{Therefore},\; T(n)=\Theta(n^{\log_b a} \lg n)=\Theta(\lg n) \end{split}$$

Recursion tree view f(n/b) $f(n/b^2) f(n/b^2) f(n/b^2)$ $f(n/b^2)$ Total: $T(n) = \Theta(n^{\log_b a}) + \sum_{i=0}^{\log_b n-1} a^i f(n/b^i)$

The Master Theorem

Let $a \ge 1$ and b > 1 be constants, let f(n) be a function, and Let T(n) be defined on nonnegative integers by the recurrence T(n) = aT(n/b) + f(n), where we can replace $n/b \text{ by } \lfloor n/b \rfloor \text{ or } \lceil n/b \rfloor$. T(n) can be bounded asymptotically in three cases: 1. If $f(n) = O(n^{\log_b a})$ for some constant $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.

- If f(n) = Θ(n^{log,e}), then T(n) = Θ(n^{log,e}lg n).
 If f(n) = Ω(n^{log,e}*e) for some constant ε > 0, and if, for some constant c < 1 and all sufficiently large n, we have $a \cdot f(n/b) \le c f(n)$, then $T(n) = \Theta(f(n))$.

Master Method — Examples • $T(n) = 3T(n/4) + n \lg n$ - a = 3, b=4, thus $n^{\log_b n} = n^{\log_b 3} = O(n^{0.793})$ - $f(n) = n \lg n = Ω(n^{\log_b 3} + ε)$ where $ε ≈ 0.2 \Rightarrow$ Case 3.

- Therefore, $T(n) = \Theta(f(n)) = \Theta(n \lg n)$.

 T 	(n)	=	2T	n	/21	+	n	lg	n

- a = 2, b = 2, $f(n) = n \log n$, and $n^{\log_2 a} = n^{\log_2 2} = n$ - f(n) is asymptotically larger than $n^{\log_2 a}$, but not polynomially larger. The ratio $\log n$ is asymptotically less than n^e for any positive ε . Thus, the Master Theorem doesn't

Master Theorem - What it means?

- Case 1: If $f(n) = O(n^{\log_b o \varepsilon})$ for some constant $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b o})$.
 - $n^{\log_b a} = a^{\log_b a}$: Number of leaves in the recursion tree.
 - f(n) = O(n^{log,p-c}) ⇒ Sum of the cost of the nodes at each internal level asymptotically smaller than the cost of leaves by a polynomial factor.
 - − Cost of the problem dominated by leaves, hence cost is $\Theta(n^{\log_8 o})$.

Case 2: If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} g n)$.	
- $n^{\log_a a} = a^{\log_a n}$: Number of leaves in the recursion tree.	
 f(n) = \(\text{O}(n^{\log_0 n})\) ⇒ Sum of the cost of the nodes at each level asymptotically the same as the cost of leaves. 	
 There are Θ(lg n) levels. 	
- Hence, total cost is $\Theta(n^{\log_a a} \mathbf{g} n)$.	
Master Theorem – What it means?	
Case 3: If $f(n) = \Omega(n^{\log_n a + \epsilon})$ for some constant $\epsilon > 0$,	
and if, for some constant $c < 1$ and all sufficiently large n ,	
we have $a \cdot f(n/b) \le c f(n)$, then $T(n) = \Theta(f(n))$.	
- $\eta^{\log p} = q^{\log p}$; Number of leaves in the recursion tree.	
- $n^{\log_{n}\theta} = o^{\log_{n}\theta}$: Number of leaves in the recursion tree. - $f(n) = \Omega(n^{\log_{n}\theta}) \Rightarrow$ Cost is dominated by the root. Cost of	
 f(n) = Ω(n^{log,a+ε}) ⇒ Cost is dominated by the root. Cost of the root is asymptotically larger than the sum of the cost 	
$-f(n) = \Omega(n^{\log_6 a + \varepsilon}) \Rightarrow$ Cost is dominated by the root. Cost of	