R=630Ω

3.3V

L=2nH

C₁=1pF

⊱ L=2nH

C₁=1pF

2.0V

Tutorial T8

R=630Ω §

- **T8.1** Let us consider the oscillator in the figure. Assume infinite & and $V_{BE,on} = 0.7V$, $V_{BC,sat} = 0.5V$ for the BJTs.
 - a) Derive the circuit bias point.
 - b) Neglecting R_2 and r_π of the BJTs, evaluate both oscillation frequency and start-up margin.
 - c) Assuming full-switching of the differential pair, evaluate the oscillation amplitude and provide a plot of base and collector voltages of the BJTs over one period. Analyze the operating regions of the BJTs during the oscillation period and discuss the purpose of C₁ and C₂.
 - d) How is the tank resistance modified by a finite value of R₂? Size R₂ in order to worsen the quality factor of the resonant network by maximum 10%.

[Sol. a) $I_C = 1.5$ mA, $V_E = 1.3$ V, $V_B = 2.0$ V, $V_C = 3.3$ V, $g_m = 60$ mS; b) $f_0 = 4.36$ GHz, $g_m RC_1/(C_1+C_2) = 12.6 > 1$; c) A = 2.4V; the base-collector voltage, V_{BC} , ranges between -2.9V and +0.3V; the BJTs go from cut-off to forward active region. C_1 and C_2 help reduce the oscillation amplitude of the base voltage, allowing for a higher oscillation amplitude before incurring in saturation of the BJTs; d) $R_2 = 630\Omega$.]

- **T8.2** Let V_b = 0.15V, L = 1nH, R = 10Ω, C = 250fF, C1 = 1pF, R1 = 1kΩ, $\mu C_{ox}(W/L)$ =120mA/V² (nMOS), $\mu C_{ox}(W/L)$ =56mA/V² (pMOS) and V_t =0.45V for all transistors.
 - a) With reference to the circuit in Fig. 1 (let $V_{dd} = 0.55V$), after deriving the bias current flowing into the FETs, calculate the frequency of oscillation and the gain margin for the oscillation start-up (i.e. the loop gain at the oscillation frequency).
 - b) With reference to the circuit in Fig. 2 (let V_{dd} = 1.5V), after deriving the bias current flowing into the FETs, calculate the frequency of oscillation and the gain margin for the oscillation startup.

[Sol. a) I = 600 uA, f_0 =7.114GHz, $|LG(j\omega_0)|$ =3.4; b) I=2mA, f_0 =7.114GHz, $|LG(j\omega_0)|$ =5]

