Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологии Высшая школа интеллектуальных систем и суперкомпьютерных технологий

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ Lab5_Z2

Дисциплина: Проектирование реконфигурируемых гибридных вычислительных систем

Тема: Введение в Optimizing Structure for performance

Выполнил студент гр. 01502

С.С. Гаспарян

Руководитель, доцент

Антонов А.П.

«25» ноября 2021

1. Задание

Текст задания находится в файле «Задание lab5 z2.docx»

2. Исходный код функции

Исходный код синтезируемой функции lab5 z2 представлен на рисунке 1.

Исходный код функции lab5_z2

Функция принимает два аргумента массива типа int — вычисляет сумму отдельных элементов массивов и записывает результат в выходной массив.

3. Исходный код теста

Исходный код теста проверки функции lab5_z2 приведен на рисунке 2. Тест обеспечивает проверку корректной работы функции.

4. Командный файл

На рисунке 3 представлен текст команд для автоматизированного создания варианта аппаратной реализаций — solution1 c clock period 20; В котором устанавливает директива «resource -core RAM_1P» и «array_partition -type block -factor 4 "lab5_z2" d_in» для входного массива d_in и добавление директивы рipeline для цикла for label0 в функции.

```
5@ int cmp_arr(int d in[N], int d cmp[N-3])
6 {
       for(int i = 0; i < (N-3); i+=4) {
7
           int tmp = d_in[i] + d_in[i+1] + d_in[i+2] + d_in[i+3];
8
           if (tmp != d cmp[i])
9
               return 0;
10
11
       }
12
       return 1;
13 }
14
15
16⊖ int main () {
17
       int pass = 0;
18
       // Create input data
19
20
       int d in[N];
       int d out[N-3];
21
22
       for (int i = 0; i < 3; ++i){
23
           for(int j = 0; j < N; j++){
24
               d in[j] = rand() % (N - 1) + 1;
25
           }
26
27
28
           lab5_z2(d in, d out);
29
           pass = cmp_arr(d_in, d out);
30
           if (pass == 0) {
31
               fprintf(stderr, "------Fail!----\n");
32
               return 1;
33
34
           }
       }
35
26
```

Рис. 2 Исходный код lab5 z2 test.c тестирования функции

```
# Create a project
open_project -reset lab5_z2_prj
# The source file and test bench
add_files
               ./source/lab5 z2.c
add files -tb ./source/lab5_z2_test.c
# Specify the top-level function for synthesis
set top
               lab5 z2
# Solution settings
# Create solution1
open solution -reset solution1
# Specify a Xilinx device and clock period
# - Do not specify a clock uncertainty (margin)
# - Let the margin to default to 12.5% of clock period
set_part {xa7a12tcsg325-1q}
create_clock -period 20
# Simulate the C code
csim_design
# Directives - RESOURCE (RAM 1P);
set directive resource -core RAM 1P "lab5 z2" d in
set_directive_array_partition -type block -factor 4 "lab5_z2" d_in
set_directive_pipeline "lab5_z2/for_label0"
# synthesis and c/rtl sim
csynth_design
cosim_design -trace_level all
```

Рис. 3 Текст команд для создания решения

5. Решение №1

Для размера массива N=8192 были директивы представлены на рисунке 4. На рисунке 5 представлен результат синтезирования performance и utilization estimates. На рисунке 6 представлена временная диаграмма для решения.

■ lab5_z2
 ■ d_in
 % HLS INTERFACE ap_hs port=d_in
 % HLS RESOURCE variable=d_in core=RAM_1P
 % HLS ARRAY_PARTITION variable=d_in block factor=4 dim=1
 ■ d_out
 ▼ # for_label0
 % HLS PIPELINE

Рис. 4 Директивы для решения

Performance Estimates

Timing

Summary

Clock Target Estimated Uncertainty ap_clk 20.00 ns 5.226 ns 2.50 ns

Latency

■ Summary

Latency (cycles) Latency (absolute) Interval (cycles)						
min	max	min	max	min	max	Туре
2050	2050	41.000 us	41.000 us	2050	2050	none

Detail

- Instance
- **⊥** Loop

Utilization Estimates

Summary

Name	BRAM_18K	DSP48E	FF	LUT	URAM
DSP	-	-	-	-	-
Expression	-	-	0	36	-
FIFO	-	-	-	-	-
Instance	-	-	0	21	-
Memory	-	-	-	-	-
Multiplexer	-	-	-	66	-
Register	-	-	17	-	-
Total	C	0	17	123	0
Available	40	40	16000	8000	0
	i				

Рис. 5 Результат синтезирования функции N=8192

Рис. 6 Временная диаграмма для решения

5.2 Решение №2

Для размера массива N=131072 на рисунке 7 представлен результат синтезирования performance и utilization estimates. На рисунке 8 представлен schedule viewer solution1. На рисунке 9 представлена временная диаграмма для решения. Как видно из результатов синтезирования закономерно увеличилось количество latency cycle, то есть количество необходимых итерации. Количество аппаратных ресурсов не изменилось. Как видно из рисунка 7 время выполнения функции составило Latency = 171256.0 нс = 0.17 мс.

Рис. 7 Результат синтезирования функции N=131072

Рис. 8 Schedule viewer синтезирования функции

Рис. 9 Временная диаграмма для решения

6. Решение с модифицированным тестом на ПК

Исходный код модифицированного теста для проверки функции lab5_z2 приведен на рисунке 10. Тест обеспечивает проверку производительности функции на ПК. На рисунке 11 представлен результат запуска теста, как видно из рисунка среднее время выполнения составило 152933.2 нс = 0.15 мс. Функция была скомпилирована компилятором gcc-9.3.0. В таблице 1 представлены характеристики ПК:

Таблица 1

CPU	Intel Core i5-6200U 2.3 GHz			
Core	2			
Threads	4			
RAM	8 Gb			

```
int main()
{
     int pass=0;
     // Call the function for 32 transactions
     int d_in[N];
     int d_out[N-3];
     struct timespec t0, t1;
     double acc_time = 0.0;
    for (int i = 0; i < 32; ++i){
   for(int j = 0; j < N; j++){
      d_in[j] = rand() % (N - 1) + 1;</pre>
         if(clock_gettime(CLOCK_REALTIME, &t0) != 0) {
              perror("Error in calling clock_gettime\n");
exit(EXIT_FAILURE);
          lab5_z2(d_in, d_out);
         if(clock_gettime(CLOCK_REALTIME, &t1) != 0) {
              perror("Error in calling clock_gettime\n");
              exit(EXIT_FAILURE);
         double diff_time = (((double)(t1.tv_sec - t0.tv_sec))*1000000000.0) + (double)(t1.tv_nsec - t0.tv_nsec);
         acc_time += diff_time;

double temp_avg_time = acc_time / (i + 1); // take average time

printf("Elapsed time: %.4lf nanoseconds\n", temp_avg_time);
         pass = cmp_arr(d_in, d_out);
          if (pass == 0) {
              fprintf(stderr, "------Fail!----\n");
              return 1;
         }
     }
     fprintf(stdout, "------Pass!-----\n");
}
```

Рис. 10 Исходный код модифицированного теста

```
Elapsed time: 141042.0000 nanoseconds
Elapsed time: 140575.0000 nanoseconds
Elapsed time: 140177.6667 nanoseconds
Elapsed time: 150804.5000 nanoseconds
Elapsed time: 150857.0000 nanoseconds
Elapsed time: 149732.0000 nanoseconds
Elapsed time: 148315.2857 nanoseconds
Elapsed time: 147214.7500 nanoseconds
Elapsed time: 145814.8889 nanoseconds
Elapsed time: 144716.1000 nanoseconds
Elapsed time: 146563.7273 nanoseconds
Elapsed time: 147489.8333 nanoseconds
Elapsed time: 148086.8462 nanoseconds
Elapsed time: 152473.5000 nanoseconds
Elapsed time: 151668.1333 nanoseconds
Elapsed time: 150616.0000 nanoseconds
Elapsed time: 149663.2941 nanoseconds
Elapsed time: 148833.6667 nanoseconds
Elapsed time: 148098.1579 nanoseconds
Elapsed time: 153017.4000 nanoseconds
Elapsed time: 152234.7143 nanoseconds
Elapsed time: 151444.1818 nanoseconds
Elapsed time: 150719.6087 nanoseconds
Elapsed time: 150193.5000 nanoseconds
Elapsed time: 149558.6000 nanoseconds
Elapsed time: 148984.8462 nanoseconds
Elapsed time: 151289.3704 nanoseconds
Elapsed time: 152053.7857 nanoseconds
Elapsed time: 152044.9310 nanoseconds
Elapsed time: 152863.5000 nanoseconds
Elapsed time: 153115.8387 nanoseconds
Elapsed time: 152933.2812 nanoseconds
-----Pass!-----
```

Рис. 11 Результат запуска модифицированного теста

Вывод

В данной работе была изучена возможность добавления директив по оптимизации работы с массивами для синтезируемой функции. Был подобраны директивы для достижения заданных показателей синтезирования функции. Также было произведено сравнение временных показателей между решением полученным Vivado HLS и программным решения на ПК. Как видно из результатов решением полученное на ПК почти такое же, как и у решения полученное аппаратно в Vivado HLS.