The Characteristic Polynomial

1. The General Second Order Case and the Characteristic Equation

For *m*, *b*, *k* constant, the homogeneous equation

$$m\ddot{x} + b\dot{x} + kx = 0. ag{1}$$

is a lot like $\dot{x} + kx = 0$, which has as solution $x = e^{-kt}$. We'll be optimistic and try for exponential solutions, $x(t) = e^{rt}$, for some as yet undetermined constant r.

To see which values of r might work, plug $x(t) = e^{rt}$ into (1). Organize the calculation: the k , b , m are flags indicating that we should multiply the corresponding line by this number.

$$k] x = e^{rt}$$

$$b] \dot{x} = re^{rt}$$

$$m] \ddot{x} = r^{2}e^{rt}$$

$$\Rightarrow m\ddot{x} + b\dot{x} + kx = (mr^{2} + br + k)e^{rt} = 0.$$

An exponential is never zero, so we can divide this equation by e^{rt} . We have found that e^{rt} is a solution to (1) exactly when \underline{r} satisfies the **characteristic equation**

$$mr^2 + br + k = 0.$$

The left hand side is a polynomial called, naturally enough, the **characteristic polynomial** and usually denoted p(r). (You will often also see s used as the variable instead of r. With this notation the characteristic polynomial is $p(s) = ms^2 + bs + k$.)

Example. Find all the solutions to $\ddot{x} + 8\dot{x} + 7x = 0$.

Solution. The characteristic polynomial is $r^2 + 8r + 7$. We want the roots. One reason we wrote out the polynomial was to remind you that you can find roots by factoring it. This one factors as (r+1)(r+7) so the roots are r=-1 and r=-7, with corresponding exponential solutions are $x_1(t)=e^{-t}$ and $x_2(t)=e^{-7t}$.

By superposition, the *linear combination* of independent solutions gives the general solution:

$$x(t) = c_1 e^{-t} + c_2 e^{-7t}.$$

Suppose that we have initial conditions x(0) = 2 and $\dot{x}(0) = -8$ then we can solve for c_1 and c_2 . Use $\dot{x}(t) = -c_1 e^{-t} - 7c_2 e^{-7t}$ and substitute t = 0 to get

$$x(0) = c_1 + c_2 = 2$$

 $\dot{x}(0) = -c_1 - 7c_2 = -8$

Adding these two equations yields $-6c_2 = -6$, so $c_2 = 1$ and $c_1 = 1$. The solution to our DE with the given initial conditions is then x(0) = 2, $\dot{x}(0) = -8$ is

$$x(t) = e^{-t} + e^{-7t}$$
.

2. The General *n*th Order Case

In the same way we can take the homogeneous constant coefficient linear equation of degree n

$$a_n x^{(n)} + \dots + a_1 \dot{x} + a_0 x = 0$$

and get its characteristic polynomial,

$$p(r) = a_n r^n + \dots + a_1 r + a_0$$

The exponential $x(t) = e^{rt}$ is a solution of the homogeneous DE if and only if r is a root of p(r), i.e. p(r) = 0. By superposition, any linear combination of these exponentials is also a solution.

MIT OpenCourseWare http://ocw.mit.edu

18.03SC Differential Equations Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.