Leckék Oracle gyakorlatra ./sql/lecke04_csoportok.pdf

Csoportosított adatok megjelenítése összesítő függvények használatával

Célkitűzés

- A használható összesítő függvények azonosítása
- Az összesítő függvények használatának leírása
- Adatok csoportosítása a GROUP BY résszel
- A csoportosított sorok szűrése a HAVING résszel

Az összesítő függvények azonosítása

 az összesítő függvény csoportosított sorok halmazain működik, és egyetlen eredményt ad vissza csoportonként.

EMPLOYEES

DEPARTMENT_ID	SALARY		
90	24000		
90	17000		
90	17000		
60	9000		
60	6000		
60	4200		
50	5800	A legmagasabb	
50	3500	fi-etí-e-	MAX(SALARY)
50	3100	fizetés az	24000
50	2600	EMPLOYEES	
50	2500	táblában	
80	10500	tabiabaii	
80	11000		
80	8600		
	7000		
10	4400		

Az aggregáló függvények

- AVG
- COUNT
- MAX
- MIN
- STDDEV
- SUM
- VARIANCE
- ... statisztikai aggregáló függvények

Az aggregáló függvények (folyt.)

Függvény	Leírása
AVG([DISTINCT ALL]n)	n átlagértéke (nullértékeket kihagyva)
COUNT({* [DISTINCT ALL]expr})	Azon sorok száma, amelyekre expr kiértékelése nem null (DE: * esetén az összes sorok száma, beleértve az ismétlődőket és a null értéket tartalmazókat is)
MAX([DISTINCT ALL]expr)	Expr legnagyobb értéke (nullértékeket kihagyva)
MIN([DISTINCT ALL]expr)	Expr legkisebb értéke (nullértékeket kihagyva)
STDDEV([DISTINCT ALL]x)	n szórása (nullértékeket kihagyva)
SUM([DISTINCT ALL]n)	n értékeinek összege (nullértékeket kihagyva)
VARIANCE ([DISTINCT ALL] x)	n szórásnégyzete (nullértékeket kihagyva)

Az aggregáló függvények használata

```
SELECT [column,] oszlop_függvény(column), . . FROM table
[WHERE condition]
[GROUP BY column]
[ORDER BY column];
```

Az összesítő függvények a nullértéket tartalmazó sorokat kihagyják, a nullérték helyettesítésére használható az NVL vagy a COALESCE függvény.

AVG és SUM összesítő függvény

 Az AVG és SUM csak numerikus adatokra használható (a VARIANCE és STDDEV szintén).

```
SELECT AVG(salary), MAX(salary),
MIN(salary), SUM(salary)
FROM employees
WHERE job_id LIKE '%REP%';
```

AVG(SALARY)	MAX(SALARY)	MIN(SALARY)	SUM(SALARY)
8150	11000	6000	32600

MIN és MAX összesítő függvény

• A MIN és MAX numerikus, karakteres és dátum típusú adatokra használható (LOB és LONG típusokra nem).

```
SELECT MIN(hire_date), MAX(hire_date)
FROM employees;
```

MIN(HIRE_	MAX(HIRE_
17-JUN-87	29-JAN-00

COUNT összesítő függvény

COUNT(*) visszaadja a sorok számát a táblában:

 COUNT(expr) azoknak a soroknak a számát adja vissza, amelyekben expr nem nullérték:

```
SELECT COUNT (commission_pct)
FROM employees
WHERE department_id = 80;
```

```
COUNT(COMMISSION_PCT)

3
```

A DISTINCT kulcsszó használata

- COUNT(DISTINCT expr) azoknak a soroknak a számát adja vissza, amelyekben expr értéke különböző és nem nullérték
- Pl. a különböző (nem null) osztályazonosítók száma az EMPLOYEES táblában:

```
SELECT COUNT(DISTINCT department_id)
FROM employees;
```

COUNT(DISTINCTDEPARTMENT_ID)

- 7

Összesítő függvények és a nullértékek

 Az összesítő függvények általában nem veszik figyelembe a nullértéket tartalmazó sorokat:

SELECT AVG(commission_pct)
FROM employees;

AVG(COMMISSION_PCT)

.2125

• A NVL függvénnyel kikényszeríthető a nullértéket tartalmazó sorok figyelembe vétele:

SELECT AVG(NVL(commission_pct, 0))
FROM employees;

AVG(NVL(COMMISSION_PCT,0))

.0425

Adatcsoportok létrehozása

EMPLOYEES

DEPARTMENT_ID	SALARY				
10	4400	4400			
20	13000	0500			
20	6000	9500			
50	5800				
50	3500			DEPARTMENT_ID	AVG(SALARY)
50	3100	3500	Az	10	4400
50	2500		EMPLOYEES	20	9500
50	2600			50	3500
60	9000		tábla	60	6400
60	6000	6400	osztályai	80	10033.3333
60	4200		és azokon az	90	19333.3333
80	10500			110	10150
80	8600	10033	átlagfizetésel	K	7000
80	11000				
90	24000				
90	17000				

- - -

Adatcsoportok létrehozása: a GROUP BY rész szintaxisa

```
SELECT column, group_function(column)

FROM table

[WHERE condition]

[GROUP BY group_by_expression]

[ORDER BY column];
```

- Egy tábla sorai csoportosíthatóak a GROUP BY rész használatával.
- A GROUP BY részben oszlop másodnevek nem szerepelhetnek.

A GROUP BY rész használata

 A SELECT lista minden olyan oszlopnevének, amely nem összesítő függvényekben fordul elő, szerepelnie kell a GROUP BY részben.

```
SELECT department_id, AVG(salary)
FROM employees
GROUP BY department_id;
```

DEPARTMENT_ID	AVG(SALARY)
10	4400
20	9500
50	3500
60	6400
80	10033.3333
90	19333.3333
110	10150
	7000

A GROUP BY rész használata (folyt.)

• A GROUP BY oszlopneveknek nem kötelező szerepelni a SELECT listában.

```
SELECT AVG(salary)
FROM employees
GROUP BY department_id ;
```

AVG(SALARY)	
	4400
	9500
	3500
	6400
	10033.3333
	19333.3333
	10150
	7000

összesítő függvény szerepelhet az ORDER BY részben is.

Csoportosítás több oszlopnév alapján

EMPLOYEES

DEPARTMENT_ID	JOB_ID	SALARY
90	AD_PRES	24000
90	AD_VP	17000
90	AD_VP	17000
60	IT_PROG	9000
60	IT_PROG	6000
60	IT_PROG	4200
50	ST_MAN	5800
50	ST_CLERK	3500
50	ST_CLERK	3100
50	ST_CLERK	2600
50	ST_CLERK	2500
80	SA_MAN	10500
80 80	SA_MAN SA_REP	10500 11000

20	MK_REP	6000
110	AC_MGR	12000
110	AC_ACCOUNT	8300

Az
EMPLOYEES
tábla
osztályain
az egyes
beosztások
átlagfizetései

DEPARTMENT_ID	JOB_ID	SUM(SALARY)
10	AD_ASST	4400
20	MK_MAN	13000
20	MK_REP	6000
50	ST_CLERK	11700
50	ST_MAN	5800
60	IT_PROG	19200
80	SA_MAN	10500
80	SA_REP	19600
90	AD_PRES	24000
90	AD_VP	34000
110	AC_ACCOUNT	8300
110	AC_MGR	12000
	SA_REP	7000

13 rows selected.

A GROUP BY használata több oszlopnév esetén

```
SELECT department_id dept_id, job_id, SUM(salary)
FROM employees
GROUP BY department_id, job_id;
```

DEPT_ID	JOB_ID	SUM(SALARY)
10	AD_ASST	4400
20	MK_MAN	13000
20	MK_REP	6000
50	ST_CLERK	11700
50	ST_MAN	5800
60	IT_PROG	19200
80	SA_MAN	10500
80	SA_REP	19600
90	AD_PRES	24000
90	AD_VP	34000
110	AC_ACCOUNT	8300
110	AC_MGR	12000
	SA_REP	7000

Aggregátort tartalmazó szabálytalan lekérdezés

 Bármely oszlopnévnek vagy kifejezésnek a SELECT listában, ha az nem aggregáló függvény, szerepelnie kell a GROUP BY részben:

```
SELECT department_id, COUNT(last_name)
FROM employees;
```

```
SELECT department_id, COUNT(last_name)

*

ERROR at line 1:
not a single-group group function
```

Az oszlopnév nem szerepel a GROUP BY részben!

Aggregátort tartalmazó szabálytalan lekérdezés

- A csoportok korlátozására a WHERE feltétel nem használható.
- A HAVING rész szolgál a csoportok korlátozására.
- összesítő függvény a WHERE feltételben nem szerepelhet.

```
SELECT department_id, AVG(salary)
FROM employees
WHERE AVG(salary) > 8000
GROUP BY department_id;
```

```
WHERE AVG(salary) > 8000
     *
ERROR at line 3:
group function is not allowed here
```

A csoportok korlátozására a WHERE feltétel nem használható!

Csoportok korlátozása

EMPLOYEES

DEDARTMENT ID

SALARY
24000
17000
17000
9000
6000
4200
5800
3500
3100
2600
2500
10500
11000
8600
6000
12000
8300

A
legmagasabb
fizetés
osztályonként,
ha az nagyobb
mint
\$10,000

DEPARTMENT_ID	MAX(SALARY)
20	13000
80	11000
90	24000
110	12000

Csoportok korlátozása: HAVING

- A HAVING rész használata esetén az adatbázis szerver az alábbiak szerint korlátozza a csoportokat:
 - 1. Csoportosítja a sorokat.
 - 2. Alkalmazza Az összesítő függvényeket a csoportokra.
 - 3. A HAVING résznek megfelelő csoportokat megjeleníti.

```
SELECT column, group_function

FROM table
[WHERE condition]
[GROUP BY group_by_expression]
[HAVING group_condition]
[ORDER BY column];
```

A HAVING rész használata

```
SELECT department_id, MAX(salary)
FROM employees
GROUP BY department_id
HAVING MAX(salary)>10000;
```

DEPARTMENT_ID	MAX(SALARY)
20	13000
80	11000
90	24000
110	12000

A HAVING rész használata (folyt.)

```
SELECT job_id, SUM(salary) PAYROLL
FROM employees
WHERE job_id NOT LIKE '%REP%'
GROUP BY job_id
HAVING SUM(salary) > 13000
ORDER BY SUM(salary);
```

JOB_ID	PAYROLL
IT_PROG	19200
AD_PRES	24000
AD_VP	34000

összesítő függvények egymásba ágyazása

Az osztályonkénti legmagasabb átlagfizetés megjelenítése:

```
SELECT MAX (AVG(salary))

FROM employees
GROUP BY department_id;

MAX(AVG(SALARY))

19333.3333
```

Az összesítő függvények csak kétszeres mélységig ágyazhatóak egymásba!

Összefoglalás

- Ebben a részben megtanultuk:
 - a COUNT, MAX, MIN, és AVG összesítő függvények használatát,
 - hogyan írjunk GROUP BY részt tartalmazó lekérdezéseket,
 - hogyan írjunk HAVING részt tartalmazó lekérdezéseket.

```
SELECT column, group_function

FROM table

[WHERE condition]

[GROUP BY group_by_expression]

[HAVING group_condition]

[ORDER BY column];
```