东北大学2019-2020学年 第二学期期末试题

- 一 选择题 (每题3分,共30分)
- 1. 水蒸气分解成同温度的氢气和氧气 ($2H_2O = 2H_2 + O_2$), 内能增加了百分之几 (不计振动自由度和化学能)

[]

- (A) 66.7%
- (B) 50%
- (C) 25%
- (D) 0

- 2. 一定量的理想气体,在p-V图上从初态a经历
- (1) 或(2) 过程到达末态b,已知a、b两态处于同 一绝热线上(图中虚线是绝热线),则气体在
 - (A)(1)过程中吸热,(2)过程中放热。
 - (B)(1)过程中放热,(2)过程中吸热。
 - (C) 两种过程中都吸热。
 - (D) 两种过程中都放热。

- 1

- 3. 对于刚性的双原子分子理想气体,在等压膨胀的情况下,系统对外所作的功与 从外界吸收的热量之比A/Q等于
 - (A) 2/3
- **(B)** 1/2
- (C) 2/5
- **(D)** 2/7
- []
- 4. 一质点作简谐振动,周期为T。质点由平衡位置向x轴正方向运动时,由平衡位 置到二分之一最大位移处的这段路程中所需的时间为
 - (A) T/4
- **(B)** T/6
- (C) T/8
- **(D)** T/12

6. 两列时速均为 64.8km/h 迎面对开的列车,一列车的汽笛频率为 600Hz,则在另一列车上的乘客所听到的汽笛的频率(设空气中声速为 340m/s)约为 (A) 540Hz (B) 568Hz (C) 636Hz (D) 667Hz []				
7. 在折射率 $n_3 = 1.60$ 的玻璃片表面镀一层折射率 $n_2 = 1.38$ 的 ${\rm MgF}_2$ 薄膜作为增透膜。				
为了使波长为 $\lambda=500$ nm (1 nm= 10^{-9} m)的光,从折射率 $n_1=1.00$ 的空气垂直入射				
到玻璃片上的反射尽可能地减少, MgF_2 薄膜的厚度 e 最小为				
(A) 250nm (B) 181.2nm (C) 125nm (D) 90.6nm []				
8. 某元素的特征光谱中含有波长分别为 $\lambda_1=450$ nm 和 $\lambda_2=750$ nm 的光谱线。在光				
栅光谱中,这两种波长的谱线有重叠现象,重叠处 λ_2 的谱线的级数将是				
(A) 2,3,4,5 (B) 2,5,8,11 (B)				
(C) $2,4,6,8 \Leftrightarrow$ (D) $3,6,9,12 \Leftrightarrow$ []				
9. 若 α 粒子(电荷为 $2e$)在磁感应强度为 B 的均匀磁场中沿半径为 R 的圆形轨道运动,则 α 粒子的德布罗意波长是 (A) $h/(2eRB)$ (B) $h/(eRB)$ (C) $1/(2eRBh)$ (D) $1/(eRBh)$ []				
10. 下述说法中,正确的是 (A) 本征半导体是电子与空穴两种载流子同时参与导电,而杂质半导体(n型或p型)只有一种载流子(电子或空穴)参与导电,所以本征半导体导电性能比杂质半导体好。 (B) n型半导体的导电性能优于p型半导体,因为n型半导体是负电子导电,p型半导体是正离子导电。				
(C) n型半导体中杂质原子所形成的局部能级靠近空带(导带)底部,使局部 能级中多余的电子容易被激发跃迁到空带中去,大大提高了半导体导电性				

5. 长度为L,线密度为 ρ 的一根弦线、两端固定。线中张力为T(波速 $\sqrt{T/\rho}$),

以n表示正整数,则此弦所有可能的自由振动频率可表示为

(C) $(n/3L)\sqrt{T/\rho}$ (D) $(2\pi h \ p \sqrt{T/\rho})$ []

(A) $(n/4L)\sqrt{T/\rho}$ **(B)** $(n/2L)\sqrt{T/\rho}$

	能。		
(D)	p型半导体的导电机构完全决定于满带中电子的运动。	[]
		•	-

东北大学期末试题

二 填空题 (共 30 分)
1. (本题 3 分) 常温常压下,一定量的某种理想气体(其分子可视为刚性分子,自由
度为 i)。在等压过程中吸热为 Q ,对外作功为 W ,内能增加为 ΔE ,则 $W/Q=$
$\Delta E/Q =$
2. (本题 5 分)已知 $f^{(v)}$ 为麦克斯韦速率分布函数, N 为总分子数,则(1)速率
v > 100 m/s的分子数占总分子数的百分比的表达式为
(2) 速率 $v>100$ m/s 的分子数的表达式为。
3. (本题 3 分) 一平面简谐波沿 x 轴正向传播,速度 $u = 0.2 \text{m/s}$,已知 $x = 0.05 \text{m}$ 处
的 A 点振动方程为 $y_A=0.03\cos(4\pi)$ (ST) ,则该简谐波的波函数为
o
4. (本题 5 分)有一单缝,宽为 a ,在缝后放一焦距为 f 的凸透镜,用波长为 λ 的平
行光垂直照射单缝,则位于透镜焦平面处的屏上的中央亮条纹的宽度约为
; 如果把此装置浸入水中(设水的折射率为 n),中央亮条纹的宽度约为
•
2 (长期 2 八)
5. (本题 3 分) 一束平行单色光垂直入射在一光栅上,若光栅的透明缝宽度 a 与不透明部分宽度 b 相等,则可能看到的衍射光谱的级次为。
奶的刀见反。伯奇,则可能有到的们别几值的级认为。
6. (本题 3 分) 一毫米内有 500 条刻痕的平面透射光栅,用平行钠光束($\lambda = 589$ nm,
$1 \text{nm} = 10^{-9} \text{m}$) 与光栅平面法线成 30^{0} 角入射,在屏幕上最多能看到第级
光谱。 ····································
7. (本题 5 分)光子与电子的波长都是 $0.2 \mathrm{nm}$,它们的动量分别为,
;它们的总能量分别为,,,,。(普朗克常量:
$h = 6.63$ 以 10^{-34} J s , 真 空 中 光 速 : 3 以 10^8 m $\sqrt{5}$, 电 子 静 止 质 量 :
$m_0 = 9.11 \mathrm{kg} \mathrm{j}$
8. (本题 3 分)根据量子力学原理,当氢原子中电子的角动量 $L = \sqrt{6}\hbar$ 时, L 在外磁

场方向上的投影 L_z 的可取的值分别为	•o

三 计算题 (共40分)

1。(本题 10 分)压强为 $p_0 = 1.013$ № 10^6 Pa、温度为 27 $\mathbb C$ 的氮气 2 mol,使它先作等温膨胀,待压强变为 $p_1 = 1.013$ № 10^5 Pa 后再等压加热,直到其体积增加一倍为止(如图 所示)。试求氮气在整个过程中吸收的热量、增加的内能和对外所作的功。

2. (本题5分) 在双缝干涉实验中,单色光源 S_0 到两缝 S_1 和 S_2 的距离分别为 l_1 和 l_2 ,并且 $l_1-l_2=3\lambda$, λ 为入射光的波长,双缝之间的距离为 d ,双缝到屏幕的距离为 D (D>>d) ,如图。求: (1) 零级明纹到屏幕中央 O 点的距离。 (2) 相邻明条纹间的距离。

东北大学期末试题

3. (本题10分) 如图所示,牛顿环装置的平凸透镜与平板玻璃有一小缝隙 e_0 。现用波长为 λ 的单色光垂直照射,已知平凸透镜的曲率半径为R,求反射光形成的牛顿环的各暗环半径。

4. (本题 5 分)当两偏振片的偏振化方向成 30°角时看一光源的透射光,与当两偏振片的偏振化方向成 60°角时看同一位置的另一个光源时,两次观察所得的光强相等,求两光源的光强之比。

5. (本题5分) 一质量为m 的微观粒子被约束在长度为L的一维线段上,试根据不确

定关系式估算该粒子所具有的最小能量值,并由此计算在直径为10⁻¹⁴m的核内质子

或中子的最小能量。($h=6.63\,\mathrm{WT}0^{-34}\,\mathrm{J}_{\mathrm{S}}$, $m_p=1.67\,\mathrm{W}10^{-27}\,\mathrm{kg}$)

6. (本题5分) 当氢原子的核外电子在 ls 态时其定态波函数为 $\psi_{100} = \frac{1}{\sqrt{\pi a^3}} e^{-r/a}$,式中

 $a = \frac{\varepsilon_0 h^2}{\pi m_e e^2}$ 。试求(1)在半径为r、厚度为 dr 的球壳内(即径向 $r \sim r + dr$ 区间)找

到电子的概率; (2) 沿径向找到电子的概率为最大时的位置坐标值。

参考答案

- 一 选择题 (共30分)
- 1.C 2.B 3.D 4.D 5.B 6.D 7.D 8.D 9.A 10.C
- 二 填空题 (共30分)

1.
$$\frac{2}{i+2}$$
, $\frac{i}{i+2}$; 2. $\prod_{i\neq 0}^{\kappa} f(v) dv$, $N \prod_{i\neq 0}^{\kappa} f(v) dv$; 3. $y = 0.03 \cos[4\pi (t-5x) + \frac{\pi}{2}]$

4.
$$2f\lambda/a$$
, $2f\lambda/na$; 5. 0 , 4, 49, 49; 6. 5.0933 ; 7. $p = \frac{h}{\lambda} = 3.31 \text{ MeV} 0^{-24} \text{kg m/s}$,

$$\varepsilon = h \frac{c}{\lambda} = 9.96 \, \text{M} \, 10^{-16} \, \text{J} , \quad E = \sqrt{p^2 c^2 + m_0^2 c^4} \cong 0.51 \, \text{MeV} ; \quad 8.0, \Pi \, \hbar, \Pi \, 2 \, \hbar$$

三 计算题 (共40分)

1. 依题意设氮气初态为 (p_0, V_0, T_0) , 等温膨胀到 (p_1, V_1, T_0) , 再等压加热到末态

$$(p_1, V_2, T), \exists V_2 = 2V_1, \bigcup$$

$$V_1 = \frac{p_0 V_0}{p_1} = \frac{1.013 \times 10^6}{1.013 \times 10^5} V_0 = 10 V_0$$
 $T = \frac{V_2}{V_1} T_0 = \frac{2V_1}{V_1} T_0 = 2 \times 300 = 600 \text{ K}$

等温过程
$$Q_T=A_T=rac{m}{M}RT_0\lnrac{V_1}{V_0}=2$$
 以8.31 $300\lnrac{10V_0}{V_0}=1.148$ 以 $10^4\mathrm{J}$, $\Delta E_T=0$

等压过程
$$\Delta E_p = \frac{m}{M} C_V (T - T_0) = 2$$
 以 8.31 $(600 - 300) = 1.247 \times 10^4 \,\text{J}$

$$Q_p = \frac{m}{M}C_p(T - T_0) = 2 \text{ with } 8.31 \quad (600 - 300) = 1.745 \times 10^4 \text{ J}$$

$$A_p = Q_p - \Delta E_p = 1.745 \times 10^4 - 1.247 \times 10^4 = 4986 \text{ J}$$

故知:
$$\Delta E = \Delta E_p + \Delta E_T = 1.247 \times 10^4$$
 J

$$A = A_T + A_p = 1.148 \times 10^4 + 4986 = 1.647 \times 10^4 \text{ J}$$

$$Q = Q_T + Q_p = 1.148 \times 10^4 + 1.745 \times 10^4 = 2.902 \times 10^4 \text{ J}$$

2. (1)
$$r_2 - r_1 = d \overline{P_0 O} / D$$
, $r_2 - r_1 = l_1 - l_2 = 3\lambda$, $\overline{P_0 O} = 3D\lambda / d$

(2)
$$\delta = (dx/D) - 3\lambda = \Box k\lambda$$
, $\Delta x = D\lambda/d$

3.
$$e = r^2/2R$$
, $2e + 2e_0 + \frac{\lambda}{2} = (2k+1)\frac{\lambda}{2}$, $r = \sqrt{R(k\lambda - 2e_0)}$, k 为整数,且 $k > 2e_0/\lambda$

4.
$$I_1' = I_1 \cdot \frac{1}{2} \cdot \cos^2 30^\circ = \frac{3}{8}I_1$$
 $I_2' = I_2 \cdot \frac{1}{2} \cdot \cos^2 60^\circ = \frac{1}{8}I_2$ 根据已知, $I_1' = I_2'$,则有 $\frac{I_1}{I_2} = \frac{1}{3}$

5. $\Delta x \Delta p_x = \hbar/2$, $\Delta v_x = \hbar/2 m \Delta x$,

$$E_{\rm min} = \frac{1}{2} m (\Delta v_{x})^{2} \, \, \text{left} \, \, \hbar^{2} \, / \, 8 m (\Delta x)^{2} = \hbar^{2} \, / \, 8 m L^{2} = 8.3 \, \text{left} \, 10^{-15} \, \text{J} \, \, ,$$

6.
$$w = |\psi_{100}|^2 4\pi d^2 r$$
, $w \wedge r^2 e^{-2r/a}$, $\frac{\mathrm{d}w}{\mathrm{d}r} = \frac{\mathrm{d}}{\mathrm{d}r} (r^2 e^{-2r/a}) = (2r - \frac{2r^2}{a})e^{-2r/a} = 0$, $r = a$