Marcelo Dreux

Seja $V \subset \mathbb{R}^n$ um subespaço vetorial. O <u>complemento ortogonal</u> de V (diz-se V perp) é o conjunto

$$V^{\perp} = \{ w \in \mathbb{R}^n | \langle v, w \rangle = 0 \text{ para todo } v \in V \}$$

Obs:

- V^{\perp} é subespaço vetorial
- O único vetor comum a $V \in V^{\perp}$ é o vetor **0**
- O complemento ortogonal de V^{\perp} é V

Dado $V \subset \mathbb{R}^n$ para encontrar V^\perp basta testar a condição < v, w > = 0 para os vetores de uma base qualquer de V. Dada $\{v_1, v_2, ..., v_k\}$ base de V, então:

$$V^{\perp} = \{ w \in \mathbb{R}^n | \langle v_1, w \rangle = \dots = \langle v_k, w \rangle = 0 \}$$

Seja $V \subset \mathbb{R}^n$ um subespaço. Se dim V = k então dim $V^{\perp} = n - k$, ou seja, $\mathbb{R}^n = V \oplus V^{\perp}$. Além disso, se $\{v_1, \dots, v_k\}$ é base de V e $\{v_{k+1}, \dots, v_n\}$ é base de V^{\perp} , então $\{v_1, \dots, v_n\}$ é base de \mathbb{R}^n .

Observação Importante

Seja A uma matrix $m \times n$

O espaço nulo de A e o espaço linha de A são complementos ortogonais em \mathbb{R}^n .

Exemplos

1 - Dado $H = span\{(1,2,3), (1,-1,1)\}$, encontrar H^{\perp} . Verificar as dimensões de H e H^{\perp} .

Exemplos

2 – Dado $H = \{(x, y, z) \in \mathbb{R}^3 \mid x - y + z = 0\}$, encontrar H^{\perp} .

3 – Dado H a reta (t, -t, 2t), encontrar H^{\perp} .

Resumindo para o \mathbb{R}^2 e para o \mathbb{R}^3

V	$W \subset V$	W^{\perp}
\mathbb{R}^2	(0,0)	
\mathbb{R}^2	(t, -t)	
\mathbb{R}^2	\mathbb{R}^2	
\mathbb{R}^3	(0,0,0)	
\mathbb{R}^3	(t,t,2t)	
\mathbb{R}^3	x + z = 0	
\mathbb{R}^3	\mathbb{R}^3	