Лабораторная работа 2.1.6 Эффект Джоуля-Томсона

Мыздриков Иван Б06-401

20 мая 2025 г.

Цель работы: 1) Определение изменения температуры углекислого газа при протекании через малопроницаемую перегородку при разных начальных значениях давления и температуры; 2) вычисление по результатам опытов коэффициентов Ван-дер-Ваальса «а» и «b».

В работе используются: трубка с пористой перегородкой; труба Дьюара; термостат; термометры; дифференциальная термопара; микровольтметр; балластный баллон; манометр.

1. Введение

Эффектом Джоуля—Томсона называется изменение температуры газа, медленно протекающего из области высокого в область низкого давления в условиях хорошей тепловой изоляции. В разреженных газах, которые приближаются по своим свойствам к идеальному газу, при таком течении температура газа не меняется. Эффект Джоуля—Томсона демонстрирует отличие исследуемого газа от идеального.

В работе исследуется изменение температуры углекислого газа при медленном его течении по трубке с пористой перегородкой. Трубка 1 хорошо теплоизолирована. Газ из области повышенного давления P_1 проходит через множество узких и длинных каналов пористой перегородки 2 в область с атмосферным давлением P_2 . Перепад давления $\Delta P = P_1 - P_2$ из-за большого сопротивления каналов может быть заметным даже при малой скорости течения газа в трубке. Величина эффекта Джоуля—Томсона определяется по разности температуры газа до и после перегородки.

Рассмотрим стационарный поток газа между произвольными сечениями I и II трубки (до перегородки и после нее). Пусть, для определенности, через трубку прошел 1 моль углекислого газа; μ — его молярная масса. Молярные объемы газа, его давления и отнесенные к молю внутренние энергии газа в сечениях I и II обозначим соответственно V_1 , P_1 , U_1 и V_2 , P_2 , U_2 . Для того чтобы ввести в трубку объем V_1 , над газом нужно совершить работу $A_1 = P_1V_1$. Проходя через сечение II, газ сам совершает работу $A_2 = P_2$ V_2 . Так как через боковые стенки не происходит ни обмена теплом, ни передачи механической энергии, то

$$A_1 - A_2 = \left(U_2 + \frac{\mu v_2^2}{2}\right) - \left(U_1 + \frac{\mu v_1^2}{2}\right). \tag{1}$$

В уравнении (1) учтено изменение как внутренней (первые члены в скобках), так и кинетической (вторые члены в скобках) энергии газа. Подставляя в (1) написанные выражения

для A_1 и A_2 и перегруппировывая члены, найдем

$$H_1 - H_2 = (U + P_1 V_1) - (U_2 + P_2 V_2) = \frac{1}{2} \mu \left(v_2^2 - v_1^2 \right)$$
 (2)

Сделаем несколько замечаний. Прежде всего отметим, что в процессе Джоуля—Томсона газ испытывает в пористой перегородке существенное трение, приводящее к ее нагреву. Потери энергии на нагрев трубки в начале процесса могут быть очень существенными и сильно искажают ход явления. После того как температура трубки установится и газ станет уносить с собой все выделенное им в пробке тепло, формула (1) становится точной, если, конечно, теплоизоляция трубки достаточно хороша и не происходит утечек тепла наружу через ее стенки.

Второе замечание связано с правой частью (2). Процесс Джоуля–Томсона в чистом виде осуществляется лишь в том случае, если правой частью можно пренебречь, т. е. если макроскопическая скорость газа с обеих сторон трубки достаточно мала. У нас сейчас нет критерия, который позволил бы установить, когда это можно сделать. Поэтому мы отложим на некоторое время обсуждение вопроса о правой части (2), а пока будем считать, что энтальпия газа не меняется.

Рассмотрим выражение:

$$\mu_{\text{Д-T}} = \frac{\Delta T}{\Delta P} \approx \frac{\frac{2a}{RT} - b}{C_p} \tag{3}$$

Из формулы (3) видно, что эффект Джоуля—Томсона для не очень плотного газа зависит от соотношения величин a и b, которые оказывают противоположное влияние на знак эффекта. Если силы взаимодействия между молекулами велики, так что превалирует «поправка на давление», то основную роль играет член, содержащий a, и

$$\frac{\Delta T}{\Delta P} > 0,$$

то есть газ при расширении охлаждается ($\Delta t < 0$ так как всегда $\Delta P < 0$). В обратном случае (малые a):

$$\frac{\Delta T}{\Delta P} < 0,$$

то есть газ нагревается ($\Delta t < 0$ так как по-прежнему $\Delta P < 0$).

Этот результат нетрудно понять из энергетических соображений. Как мы уже знаем, у идеального газа эффект Джоуля–Томсона отсутствует. Идеальный газ отличается от реального тем, что в нем можно пренебречь потенциальной энергией взаимодействия молекул. Наличие этой энергии приводит к охлаждению или нагреванию реальных газов при расширении. При больших а велика энергия притяжения молекул. Это означает, что потенциальная энергия молекул при их сближении уменьшается, а при удалении — при расширении газа — возрастает. Возрастание потенциальной энергии молекул происходит за счет их кинетической энергии — температура газа при расширении падает. Аналогичные рассуждения позволяют понять, почему расширяющийся газ нагревается при больших значениях b.

Как следует из формул, при температуре T_i коэффициент $\mu_{\mathtt{д-r}}$ обращается в нуль. Используя связь между коэффициентами a и b и критической температурой, найдем:

$$T_{\text{инв}} = \frac{2a}{bR}, \qquad T_{\text{инв}} = \frac{27}{4}T_{\text{кр}}$$
 (4)

При температуре $T_{\text{инв}}$ эффект Джоуля–Томсона меняет знак: ниже температуры инверсии эффект положителен ($\mu_{\text{д-т}} > 0$, газ охлаждается), выше $T_{\text{инв}}$ эффект отрицателен ($\mu_{\text{д-т}} < 0$, газ нагревается).

Рис. 1: Схема установки для изучения эффекта Джоуля-Томсона

2. Выполнение

- 1. Убедившись в том, что термостат залит водой, а все электрические приборы заземлены. Установим на контактном термометре температуру регулирования, близкую к комнатной $T_1 = T_{\kappa} = 20.80^{\circ}C$.
- 2. Включим вольметр и иземерим паразитные ЭДС при $\Delta P=0$, получим $U_0=1$ мкВ. Откроем регулирующий вентиль В настолько, чтобы избыточное давление составило $\Delta P=4$ бар. Теперь будем постепенно понижая давление, выжидать установления равновесия и снимать показания вольтметра. Провести соответствующие измерения удалось 4 раза. Далее $\Delta U=1$ мкВ
- 3. В результате построения Графиков №1-4 соответственно по Таблицам №1-4 имеем такие соотношения (Таблица №5):

Таблица 1: Измерение при $T_1 = 25^{\circ}C, \ \alpha \frac{\text{мкB}}{^{\circ}C} = 40.7, \ \delta T = 0.02^{\circ}C$

ΔP , бар	4.1	3.6	3.0	2.55	2.0
$U-U_0$, мкВ	99.0	72.0	44.0	25.0	3.0
ΔT , °C	2.43	1.77	1.08	0.61	0.07

Таблица 2: Измерение при $T_2 = 45^{\circ}C, \ \alpha \frac{\text{мкB}}{^{\circ}C} = 42.4, \ \delta T = 0.02^{\circ}C$

ΔP , бар	4.1	3.3	2.7	2.2	1.6
$U-U_0$, мкВ	69.0	35.0	12.0	-5.0	-20.0
ΔT , °C	1.63	0.83	0.28	-0.12	-0.47

4. Теперь по Таблице №5 построим Графиков №5 $\mu(T^{-1})$.

$$k = 51 / \frac{K^2}{6ap}, \quad \Delta k = 22 \frac{K^2}{6ap}, \quad \varepsilon_k \approx 43.7\%$$

Таблица 3: Измерение при $T_3 = 55^{\circ}C, \ \alpha \frac{\text{мкB}}{^{\circ}C} = 43.2, \ \delta T = 0.02^{\circ}C$

ΔP , бар	4.1	3.6	2.9	2.5	1.7
$U-U_0$, мкВ	52.0	31.0	7.0	-5.0	-23.0
ΔT , °C	1.2	0.72	0.16	-0.12	-0.53

Таблица 4: Измерение при $T_4 = 65^{\circ}C, \ \alpha \frac{\text{мкB}}{^{\circ}C} = 44.1, \ \delta T = 0.02^{\circ}C$

ΔP , бар	3.9	3.4	3.1	2.2	1.8
$U-U_0$, мкВ	22.0	2.0	1.0	-19.0	-25.0
ΔT , °C	0.5	0.05	0.02	-0.43	-0.57

Таблица 5: Коэффициенты наклона графиков $\Delta T(\Delta P)$ при различных температурах

Номер	$T, ^{\circ}C$	$\mu, \frac{K}{\text{fap}}$	$\Delta\mu, \frac{K}{\text{fap}}$
1	25	1.19	0.11
2	45	0.84	0.10
3	55	0.72	0.08
4	65	0.48	0.06

Далее воспользуемся формулой (3):

$$k = \frac{2a}{c_p R} \implies a = \frac{k c_p R}{2} = (0.364 \pm 0.15) \frac{\Pi a \cdot M^6}{MOJIb^2}$$

$$c = \frac{b}{c_p} \implies b = c c_p = (0.427 \pm 0.1) \cdot 10^{-4} \frac{\text{M}^3}{\text{MOJIB}}$$

Используя формулу (4), по полученным параметрам газа Ван-дер-Ваальса вычислим:

$$T_{\text{инв}} = \frac{2a}{bR} = 2050 \,\text{K}, \quad \Delta T_{\text{инв}} = 150 \,\text{K}, \quad \varepsilon_{T_{\text{инв}}} \approx 7\%$$

3. Вывод

Полученные нами в результате эксперимента значения для a и b получились довольно сильно отличающимися от теоретических значений a^* и b^* для углекислого газа.

$$a = (0.364 \pm 0.15) \frac{\Pi a \cdot m^6}{MOJIb^2}, \quad \varepsilon_a \approx 41\%, \quad a^* = 0.36 \frac{\Pi a \cdot m^6}{MOJIb^2}$$
 $b = (0.427 \pm 0.1) \cdot 10^{-4} \frac{m^3}{MOJIb}, \quad \varepsilon_b \approx 23\%, \quad b^* = 0.42 \cdot 10^{-4} \frac{m^3}{MOJIb}$

Полученное из значений a и b значение $T_{\rm инв}$ получилось так же сильно отличающимся от теоретического $T_{\rm инв}^*$:

$$T_{\text{инв}} = (2050 \pm 625) \,\text{K}, \quad \varepsilon_{T_{\text{инв}}} \approx 7\%, \quad T_{\text{инв}}^* = 2053 \,\text{K}$$

Проведя этот эксперимент, мы удостоверились в неприменимости модели Ван-дер-Ваальса в данной лабораторной работе. Полученные зависимости оказались линейны, как и предсказывала теория, но характеризующие коэффициенты этих зависимостей разительно отличаются от теоретических предсказаний.

Рис. 2: График №1

Рис. 3: График №2

Рис. 4: График №3

Рис. 5: График №4

Рис. 6: График №5