Minimal Cover (III)

☐ Algorithm for computing a minimal cover

```
F<sub>c</sub> CalculateMinimalCover(F)
// Input: A set F of FDs
// Output: A minimal cover F<sub>c</sub>
// Step 1: Initialize F_c
F_c := F
// Step 2: Perform a left reduction of the FDs in F_c, i.e., identify and remove
            all attributes on the left-hand sides of FDs in F_c that are extraneous
for each A \rightarrow B \in F_c do
    for each a \in A do
        if A - \{a\} \neq \emptyset and B \subseteq CalculateAttributeClosure(F_c, A - \{a\}) then
             F_c := F_c - \{A \to B\} \cup \{(A - \{a\}) \to B\}
```

Minimal Cover (IV)

- ☐ Algorithm for computing a minimal cover (*continued*)
 - // Step 3: Perform a right reduction of the remaining FDs in F_c , i.e., identify and remove all attributes on the right-hand sides of FDs in F_c that are extraneous

for each $A \rightarrow B \in F_c$ do

for each $b \in B$ do

if
$$b \in CalculateAttributeClosure(F_c - \{A \rightarrow B\} \cup \{A \rightarrow (B - \{b\})\}, A)$$
 then $F_c := F_c - \{A \rightarrow B\} \cup \{A \rightarrow (B - \{b\})\}$

// Step 4: Remove all FDs of the form $A \to \emptyset$ from F_c , which have perhaps been produced in the previous step, since they are meaningless

for each
$$A \rightarrow B \in F_c$$
 do

if
$$B = \emptyset$$
 then $F_c := F_c - \{A \rightarrow \emptyset\}$

Minimal Cover (V)

☐ Algorithm for computing a minimal cover (*continued*)

// Step 5a: If the goal is to obtain a minimal cover in standard form, decompose the right-hand sides of all FDs in F_c such that each FD in F_c has a single attribute on its right-hand side

for each
$$A \to B \in F_c$$
 do
if $B = \{b_1, ..., b_n\}$ and $n > 1$ then

$$F_c := F_c - \{A \to B\} \cup \{A \to \{b_1\}, ..., A \to \{b_n\}\}$$

return F_c

Minimal Cover (VI)

☐ Algorithm for computing a minimal cover (*continued*)

// Step 5b: If the goal is to obtain a minimal cover in *nonstandard form*, apply the union rule to all FDs with equal left-hand sides

$$H := F_c$$

$$F_c := \emptyset$$

for each $A \rightarrow B \in H$ do

 $G := \emptyset$ // FDs that have been processed and that have to be deleted from // H at the end of each loop

 $X := \emptyset$ // Union of all right-hand sides of FDs with A on their left-hand side

for each
$$C \rightarrow D \in H$$
 do

if
$$A = C$$
 then

$$G := G \cup \{C \rightarrow D\}$$

$$X := X \cup D$$

$$H := H - G$$

$$F_c := F_c \cup \{A \rightarrow X\}$$

return F_c

Minimal Cover (VII)

- Example 1
 - ❖ Compute a minimum cover for the set $F = \{B \rightarrow A, D \rightarrow A, AB \rightarrow D\}$ of FDs on R(A, B, D)
 - ❖ Step 1
 - $F_c := \{B \rightarrow A, D \rightarrow A, AB \rightarrow D\}$
 - ❖ Step 2
 - Only AB → D has more than one attribute on its left-hand side
 - To check whether B can be removed, we compute whether $D \subseteq CalculateAttributeClosure(F_c, A)$ holds
 - This is not the case since $A^+ = A$ and $D \not\subset A$ holds
 - To check whether A can be removed, we compute whether D ⊆ CalculateAttributeClosure(F_c, B) holds
 - This is the case since $B^+ = ABD$ and $D \subseteq ABD$
 - Hence, A can be removed, and we obtain $F_c := \{B \rightarrow A, D \rightarrow A, B \rightarrow D\}$

Minimal Cover (VIII)

- ☐ Example 1 (continued)
 - ❖ Step 3
 - To check whether A can be removed from $B \to A$, we check whether $A \subseteq CalculateAttributeClosure({B \to \emptyset, D \to A, B \to D}, B)$ holds
 - This is the case since $B^+ = ABD$ and $A \subseteq ABD$
 - Hence, A can be removed, and we obtain $F_c := \{B \to \emptyset, D \to A, B \to D\}$
 - To check whether A can be removed from $D \to A$, we check whether $A \subseteq CalculateAttributeClosure(\{B \to \emptyset, D \to \emptyset, B \to D\}, D)$ holds
 - This is not the case since $D^+ = D$ and $A \subset D$ holds
 - To check whether D can be removed from $B \to D$, we check whether $D \subseteq CalculateAttributeClosure(\{B \to \emptyset, D \to A, B \to \emptyset\}, B)$ holds
 - This is not the case since $B^+ = B$ and $D \not\subset B$ holds
 - After this step we have: $F_c := \{B \to \emptyset, D \to A, B \to D\}$
 - **\$** Step 4: We obtain $F_c := \{D \rightarrow A, B \rightarrow D\}$
 - **\$** Step 5a/5b: $F_c := \{D \rightarrow A, B \rightarrow D\}$ is in both forms

Minimal Cover (IX)

- ☐ Example 2
 - ❖ Compute a minimum cover for the set $F = \{A \rightarrow BC, B \rightarrow C, A \rightarrow B, AB \rightarrow C\}$ of FDs on R(A, B, C)
 - ❖ Step 1
 - $F_c := \{A \rightarrow BC, B \rightarrow C, A \rightarrow B, AB \rightarrow C\}$
 - ❖ Step 2
 - Only AB → C has more than one attribute on its left-hand side
 - To check whether A can be removed, we compute whether $C \subseteq CalculateAttributeClosure(F_c, B)$ holds
 - This is the case since $B^+ = BC$ and $C \subseteq BC$
 - Hence, A can be removed, and we obtain $F_c := \{A \rightarrow BC, B \rightarrow C, A \rightarrow B\}$
 - This also means that the number of FDs in F_c has been reduced by 1

Minimal Cover (X)

- ☐ Example 2 (continued)
 - We have so far: $F_c := \{A \rightarrow BC, B \rightarrow C, A \rightarrow B\}$
 - ❖ Step 3
 - To check whether C can be removed from $A \to BC$, we check whether $C \subseteq CalculateAttributeClosure({A \to B, B \to C}, A)$ holds
 - This is the case since $A^+ = ABC$ and $C \subseteq ABC$
 - Hence, C can be removed, and we obtain $F_c := \{A \rightarrow B, B \rightarrow C\}$
 - To check whether B can be removed from $A \to B$, we check whether $B \subseteq CalculateAttributeClosure({A \to \emptyset, B \to C}, A)$ holds
 - This is not the case since $A^+ = A$ and $B \not\subset A$ holds
 - To check whether C can be removed from $B \to C$, we check whether $C \subseteq CalculateAttributeClosure({A \to B, B \to \emptyset}, B)$ holds
 - This is not the case since $B^+ = B$ and $C \not\subset B$ holds
 - After this step we have: $F_c := \{A \rightarrow B, B \rightarrow C\}$
 - ❖ Step 4: Nothing to do since there is no FD with an Ø on its right-hand side
 - **\$\leftrightarrow\$** Step 5a/5b: $F_c := \{A \rightarrow B, B \rightarrow C\}$ is in both forms

Minimal Cover (XI)

■ Example 3

- ❖ This example shows that more than one minimal cover can exist for the same set F of FDs
 - The minimal covers computed for the same F of FDs depend on the order in which the FDs are processed
 - Different orders can lead to different minimal covers
 - However, the algorithm computes exactly one of them; they are all equivalent
- ❖ Compute a minimum cover for the set $F = \{A \rightarrow BC, C \rightarrow AB, B \rightarrow AC\}$ of FDs on R(A, B, C, D)
- Step 1
 - $F_c := \{A \rightarrow BC, C \rightarrow AB, B \rightarrow AC\}$
- ❖ Step 2
 - There is no FD that has more than one attribute on its left-hand side
 - Therefore, nothing has to be done

Minimal Cover (XII)

- ☐ Example 3 (continued)
 - We have so far: $F_c := \{A \rightarrow BC, C \rightarrow AB, B \rightarrow AC\}$
 - ❖ Step 3
 - In A → BC both B and C are extraneous under F_c
 - C can be removed since $C \subseteq CalculateAttributeClosure(\{A \rightarrow B, C \rightarrow AB, B \rightarrow AC\}, A)$ holds: $A^+ = ABC$ and $C \subseteq ABC$
 - B can be removed since $B \subseteq CalculateAttributeClosure({A \rightarrow C, C \rightarrow AB, B \rightarrow AC}, A)$ holds: $A^+ = ABC$ and $B \subseteq ABC$
 - We are not allowed to remove B and C at the same time since the algorithm picks one of the two and deletes it
 - Case 1: C is removed; we get $F_c^1 = \{A \rightarrow B, C \rightarrow AB, B \rightarrow AC\}$
 - *B* is now not extraneous in $A \to B$ since $A^+ = A$ under $\{A \to \emptyset, C \to AB, B \to AC\}$ holds and $B \not\subset A$ holds
 - Continuing the algorithm, we find that A and B are extraneous in the right-hand side of $C \rightarrow AB$ under F_c^{-1}
 - B can be removed since $B \subseteq CalculateAttributeClosure({A \rightarrow B, C \rightarrow A, B \rightarrow AC}, C)$ holds: $C^+ = ABC$ and $B \subseteq ABC$

Minimal Cover (XIII)

- ☐ Example 3 (continued)
 - Step 3 (continued)
 - A can be removed since $B \subseteq CalculateAttributeClosure(\{A \rightarrow B, C \rightarrow B, B \rightarrow AC\}, C)$ holds: $C^+ = ABC$ and $A \subseteq ABC$
 - Case 1.1: B is removed; we get $F_c^2 = \{A \rightarrow B, C \rightarrow A, B \rightarrow AC\}$
 - o A is now not extraneous in $C \to A$ since $C^+ = C$ under $\{A \to B, C \to \emptyset, B \to AC\}$ holds and $A \not\subset C$ holds
 - o C is not extraneous in $B \to AC$ since $B^+ = AB$ under $\{A \to B, C \to A, B \to A\}$ holds and $C \not\subset AB$ holds
 - A is extraneous in $B \rightarrow AC$ since $B^+ = ABC$ under $\{A \rightarrow B, C \rightarrow A, B \rightarrow C\}$ holds and $A \subseteq ABC$ holds
 - We get $F_c^3 = \{A \rightarrow B, C \rightarrow A, B \rightarrow C\}$
 - C is not extraneous in $B \rightarrow C$ since $B^+ = B$ under $\{A \rightarrow B, C \rightarrow A, B \rightarrow \emptyset\}$ holds and $C \not\subset B$ holds
 - The algorithm terminates, and we obtain the first minimal cover $F_{c1} = \{A \rightarrow B, C \rightarrow A, B \rightarrow C\}$

Minimal Cover (XIV)

- ☐ Example 3 (continued)
 - Step 3 (continued)
 - Case 1.2: A is removed; we get $F_c^4 = \{A \rightarrow B, C \rightarrow B, B \rightarrow AC\}$
 - o B is now not extraneous in $C \to B$ since $C^+ = C$ under $\{A \to B, C \to \emptyset, B \to AC\}$ holds and $B \not\subset C$ holds
 - C is not extraneous in $B \rightarrow AC$ since $B^+ = AB$ under $\{A \rightarrow B, C \rightarrow B, B \rightarrow A\}$ holds and $C \not\subset AB$ holds
 - o A is not extraneous in $B \to AC$ since $B^+ = BC$ under $\{A \to B, C \to B, B \to C\}$ holds and $A \not\subset BC$ holds
 - o The algorithm terminates, and we obtain the second minimal cover $F_{c2} = \{A \rightarrow B, C \rightarrow B, B \rightarrow AC\}$
 - Case 2: *B* is removed; we get $F_c^{5} = \{A \rightarrow C, C \rightarrow AB, B \rightarrow AC\}$
 - Similarly to case 1, we obtain two further minimal covers:

$$\circ F_{c3} = \{A \rightarrow C, C \rightarrow B, B \rightarrow A\}$$

$$\circ F_{C^4} = \{A \to C, C \to AB, B \to C\}$$

Minimal Cover (XV)

- ☐ Example 3 (continued)
 - Step 3 (continued)
 - For $F = \{A \rightarrow BC, C \rightarrow AB, B \rightarrow AC\}$ we have detected the following four minimal covers:

•
$$F_{c1} = \{A \rightarrow B, C \rightarrow A, B \rightarrow C\}$$

•
$$F_{c2} = \{A \rightarrow B, C \rightarrow B, B \rightarrow AC\}$$

•
$$F_{c3} = \{A \rightarrow C, C \rightarrow B, B \rightarrow A\}$$

•
$$F_{C4} = \{A \rightarrow C, C \rightarrow AB, B \rightarrow C\}$$

- Note that more minimal covers can be found for F
- ❖ Step 4
 - There is no FD with an Ø on its right-hand side
- Step 5a
 - We have to modify F_{c2} and F_{c4} and obtain

$$F_{c2}$$
' = { $A \rightarrow B, C \rightarrow B, B \rightarrow A, B \rightarrow C$ }

$$F_{c4}$$
' = { $A \rightarrow C, C \rightarrow A, C \rightarrow B, B \rightarrow C$ }

❖ Step 5b: F_{c1} , F_{c2} , F_{c3} , and F_{c4} are already in nonstandard form