TREDNet PARNARs

Training and Utilizing the PAR/NAR Model with ChIP-seq Peaks

Overview

This document outlines the process of training the PAR/NAR model using ChIP-seq peaks and applying the trained model to scan enhancer sequences.

Step 0: Train the TREDNet Model with Enhancer Coordinates

0.1 Navigate to the Training Directory

Go to the path:

/data/Dcode/gaetano/CenTRED/CenTRED_for_PARNARs/TREDNet

0.2 Submit the Training Job

Run the following script to start the training:

sh submit_local_jobs.sh H1

- Trains the model using data from H1 enhancers.
- Replace H1 with any available biosample from the input files directory.

0.3 Input Files

Input data location:

 $/data/Dcode/gaetano/CenTRED/CenTRED_for_PARNARs/input_training_trednet$

Complete input file:

/data/Dcode/common/CenTRED/hg38/green_celllines/CenTRED_training_files

Pre-processed dataset for HepG2 (HDF5 format):

/data/Dcode/common/CenTRED/hg38/green_celllines/CenTRED_models/BioS11/phase_two_dataset.hdf5

0.4 Output

The trained model will be saved in:

/data/Dcode/gaetano/CenTRED/CenTRED_for_PARNARs/CenTRED_models/part1

Step 1: Training the PAR/NAR Model

1.1 Define Positive TF Binding Sites

FIMO-predicted motif positions serve as true TF binding sites:

/data/Dcode/gaetano/CenTRED/CenTRED_for_PARNARs/PARNNAR_model/FIMO_identified_Chipseq_TFBS

- Example: total_final_chip2fimo_HepG2.pvaluee_04.merged
- ToDo: Ensure .merged file exists for each cell line.

1.2 Generate Input Positive and Control Sets

Navigate to:

/data/Dcode/gaetano/CenTRED/CenTRED_for_PARNARs/PARNNAR_model/step1_input_PARNNAR

1.2.1 Create Positive and Control Sets

Run:

sh submit_step0_inputfile.sh

- Generates positive sets (FIMO motif locations in HepG2 enhancers).
- Generates control sets (HepG2 enhancers excluding motif locations).

1.2.2 Extract Features per Nucleotide

Run:

sh submit_step1_genebasepair_bychrom.sh

Computes 220 features per nucleotide.

1.2.3 Split Data into Training and Testing Sets

Run:

sh submit_step2_split.sh

- Training set: Excludes chromosomes 8 and 9.
- Testing set: Includes chromosomes 8 and 9.

1.3 Train the PAR/NAR Model

Navigate to:

/data/Dcode/common/CenTRED_for_Mehari_94biosamples/PARNNAR_model/step2_train_PARNNAR

Output File:

BioS11_HepG2hg38_peak

Step 2: Scanning DNA Sequences Using a Pre-trained PAR/NAR Model

2.1 Generate In-Silico Mutagenesis for Enhancers

Navigate to:

/data/Dcode/gaetano/CenTRED/CenTRED_for_PARNARs/gene_mutagenesis/step1_gene_mutagenesis/

• Extract fasta sequences using:

sh submit_step1_fasta_allenh.sh

Generate raw delta scores using TREDNet:

sh submit_step2_run_trednet.sh

Normalize delta scores:

sh submit_step3_calculate_deltascore.sh

2.2 Generate 220 Features for Each Nucleotide

Navigate to:

/data/Dcode/gaetano/CenTRED/CenTRED_for_PARNARs/gene_mutagenesis/step2_gene_220feature/

Run:

sh submit_step1_220feature.sh

2.3 Scan DNA Sequences Using the Pre-trained Model

Navigate to:

/data/Dcode/gaetano/CenTRED/CenTRED_for_PARNARs/gene_mutagenesis/step3_gene_peakNdip

Run:

Predict peak/dip status:

 $\verb|sh submit_step1_scan_peakNdip.sh|\\$

• Filter predictions by FPR (0.01 or 0.05):

sh submit_step2_filter_fpr.sh

Merge filtered peak/dip nucleotides into PAR/NAR regions:

 $\verb|sh submit_step3_gene_PASNDAS.sh|\\$

Step 3: Alternative Approach - Using Delta Scores for PAR/NAR Modeling

Instead of defining PAR/NAR directly using top/bottom 5% delta scores, an additional modeling step can be performed. Navigate to:

This approach builds an extra layer of the PAR/NAR model based on delta scores.

Summary

- Step 0: Train TREDNet with enhancer coordinates.
- Step 1: Train PAR/NAR using motif locations from ChIP-seq peaks.
- Step 2: Scan sequences using the trained model and generate predictions.
- Step 3: Alternative approach using delta scores.

Ensure proper storage management to handle large data files efficiently.