MATH 2554: 3.7-3.8 Review Sheet

Some Problems I recommend

— Section 3.1:17, **32** — Section 3.6:**21**, **23**, **28**

— Section 3.2 : 20, **25**, **28**, 29a — Section 3.7 : 20, 22, 38, 40, **55**, **69**

— Section 3.3: 12, 13, 14, 16, 25, 26, 30, 34, 45, 64, 66 — Section 3.8: 7, 14, 17, 26, 34, 46, 51, 52

— Section 3.4: 19, 22, 28, **29**, **40**, 45, **61**, 76, 79, **81** — Section 3.5: **13**, 16, **19**, 28, **29**, 33, 45, 50 — Section 3.5: **13**, 16, **19**, 28, **29**, 33, 45, 50

Especially important ones in **bold**

Key Concepts

Basic derivative Rules:

1. $\frac{d}{dx}c = 0$ 5. $\frac{d}{dx}cf(x) = cf'(x)$

2. $\frac{d}{dx}f(x) + g(x) = f'(x) + g'(x)$ 6. $\frac{d}{dx}f(x) - g(x) = f'(x) - g'(x)$

3. $\frac{d}{dx}f(x)g(x) = f'(x)g(x) + f(x)g'(x)$ 7. $\frac{d}{dx}\frac{f(x)}{g(x)} = \frac{g(x)f'(x) - f(x)g'(x)}{g(x)^2}$

4. $\frac{d}{dx}x^n = xn^{n-1}$ 8. $\frac{d}{dx}f(g(x)) = f'(g(x)) \cdot g'(x)$

The above show the following rules: constant rule (1), constant multiple rule (5), sum rule (2 & 6), product rule (3), quotient rule (7), power rule (4), chain rule (8)

Trig derivatives:

1. $\frac{d}{dx}\sin x = \cos x$ 3. $\frac{d}{dx}\tan x = \sec^2 x$ 5. $\frac{d}{dx}\sec x = \sec x \tan x$

2. $\frac{d}{dx}\cos x = -\sin x$ 4. $\frac{d}{dx}\cot x = -\csc^2 x$ 6. $\frac{d}{dx}\csc x = -\csc x\cot x$

3.7 Chain Rule Forms:

 $\frac{d}{dx}f(g(h(x))) = f'(g(h(x))) \cdot g'(h(x)) \cdot h'(x)$ $\frac{d}{dx}f(x)^n = n(f(x))^{n-1} \cdot f'(x)$ $\frac{d}{dx}sin(f(x)) = \cos(f(x)) \cdot f'(x)$ $\frac{d}{dx}e^{f(x)} = e^{f(x)} \cdot f'(x)$

3.8 Implicit Differentiation : Just as y=x gives the derivation y'=1, with the chain rule we can use **implicit differentiation** to find $y^2=x$ gives $2y\cdot y'=1$ which reduces to $y'=\frac{1}{2y}$. To find the second derivative, simply repeat and replace any y' with your first answer. Using the previous answer this gives $y''=-\frac{1}{2}y^{-2}\cdot y'=-\frac{1}{2}y^{-2}\cdot \frac{1}{2y}=-\frac{1}{4y^3}$