1.	(001085) 判断题: (
	(1) 若 $a > b$, $c = d$, 则 $ac > bd$;
	(2) 若 $\frac{a}{c^2} < \frac{b}{c^2}$, 则 $a < b$;
	(3) 若 $ac < bc$, 则 $a < b$;
	(4) $\ddot{\mathbf{z}} = a > b$, $\mathbf{y} = ac^2 > bc^2$;
	(5) $\rightleftarrows a > b, c < d, \not\!$
	(6) $\stackrel{.}{\mathbf{z}} = a > b > 0, c > d > 0, \mathbf{y} = \frac{a}{c} > \frac{b}{d};$
	(7) 若 $a > b, c \ge d, $ 则 $a + c > b + d;$
	(8) $\not = a > b, c \ge d, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
	(9) $ extbf{#} \sqrt[3]{a} > \sqrt[3]{b}$, $ extbf{M} a > b$.
	(10) $\mathbf{\ddot{z}} \ ab^2 \ge 0$, $\mathbf{M} \ a \ge 0$.
2.	(002750) 命题 (1) $a > b \Rightarrow ac^2 > bc^2$; (2) $ac^2 > bc^2 \Rightarrow a > b$; (3) $a > b \Rightarrow \frac{1}{a} < \frac{1}{b}$; (4) $a < b < 0$, $c < d < 0 \Rightarrow d$
	$ac > bd; (5) \sqrt[n]{a} > b \Rightarrow ac^2 > bc^2; (2) ac^2 > bc^2 \Rightarrow a > b; (3) a > b \Rightarrow \frac{1}{a} < \frac{1}{b}; (4) a < b < 0, c < d < 0 \Rightarrow ac > bd; (5) \sqrt[n]{a} > \sqrt[n]{b} \Rightarrow a > b (n \in \mathbf{N}^*); (6) a + c < b + d \Leftrightarrow \begin{cases} a < b, \\ c < d; \end{cases}$ (7) $a < b < 0 \Rightarrow a^2 > ab > b^2$. 其
	中真命题的序号是
3.	(001122) 在解不等式时,有时我们可以用不等式的性质来求解.例如解不等式 $x^2+x+1\geq 0$,我们可以利用不等式的基本性质,得到 $x^2+x+1=\left(x+rac{1}{2} ight)^2+rac{3}{4}\geq rac{3}{4}>0$ 恒成立,因此解集为 R.请你用基本不等式的观
	点解以下两个不等式:
	$(1) \ x + \frac{1}{x} > 1; $ $(2) \ x + \frac{1}{x} > 2.$
	d.
4.	(001138) 已知 a,b,c 是不全相等的正数. 证明: $\frac{a+b}{c} + \frac{b+c}{a} + \frac{c+a}{b} > 6$.
5.	(000022) 已知 $x > y$,求证: $x^3 - y^3 > x^2y - xy^2$.
6.	(001134) 已知 $x, y \in \mathbf{R}$, 用比较法证明: $x^2 + y^2 \ge 4(x+y) - 8$.
7.	(001139) 已知 $x,y \in \mathbf{R}^+$ 且 $x+y>2$,用反证法证明: $\frac{1+y}{x}$ 与 $\frac{1+x}{y}$ 中至少有一个小于 2.
8.	(001142) 已知 $g(x) = x^3 - 3x$.
	(1) 若 $a > b \ge 1$, 证明: $g(a) > g(b)$;
	(2) 若 $-1 \le a < b \le 1$, 证明: $g(a) > g(b)$.
9.	(002761) 设 $a,b \in \mathbf{R}$, 若 $a- b >0$, 则下列不等式中正确的是 ().
	A. $b - a > 0$ B. $a^3 + b^3 < 0$ C. $b + a > 0$ D. $a^2 - b^2 < 0$
10.	(002812) 已知 $a,b \in \mathbf{R}^+$ 且 $a \neq b$,求证: $ a^3 + b^3 - 2ab\sqrt{ab} > a^2b + ab^2 - 2ab\sqrt{ab} $.
11.	(000046) 已知实数 $0 < a < b$,求证: $a < \frac{2ab}{a+b} < \sqrt{ab} < \frac{a+b}{2} < \sqrt{\frac{a^2+b^2}{2}} < b$.

- 12. (001086) 设 $\{a, b, m, n\} \subseteq \mathbf{R}^+$ 且 a > b, 将 $\frac{a}{b}, \frac{b}{a}, \frac{a+m}{b+m}, \frac{b+n}{a+n}$ 按由大到小的次序排列:
- 13. (001120) 判断以下各不等式是否成立. 如果成立在前面的横线上写 "T", 如果不成立在前面的横线上写 "F".

 - _____(1) 当 x < 0 时, $x + \frac{1}{x} \le -2$; _____(2) 当 x > 0 时, $x + \frac{1}{x} \ge 2$; _____(3) 当 x > 0 时, $x^2 + \frac{1}{x} \ge 2\sqrt{x}$;
 - (4) 当 $a, b \ge 0$ 时, $a + b \ge 2ab$;
 - (5) 当 a, b > 0 时, 2ab > a + b;
 - (6) $\stackrel{\text{def}}{=} x, y, z \in \mathbf{R} \text{ iff}, x^2 + y^2 + z^2 > 2xy + yz;$

 - (8) 当 $a, b \in \mathbf{R}$ 时, $a^3 + b^3 > 2a^2b$;
 - ____(9) $\stackrel{\text{def}}{=} a, b \in \mathbf{R}$ $\stackrel{\text{def}}{=} b, a^3 + b^3 \ge a^2b + ab^2$;
 - ____(10) $\stackrel{\text{def}}{=} a, b \in \mathbf{R}^+ \text{ lpt}, \ a^3 + b^3 > a^2b + ab^2$:
 - (11) $\leq x, y > 0$ $\forall x, y > 0$ $\forall x, y > 0$
- 14. (001123) 试确定实常数 k 使得 $a^2 + b^2 + c^2 \ge k(a+b+c)^2 \ge ab + bc + ca$ 对任意的 $a,b,c \in \mathbf{R}$ 成立, 并证明该 不等式.
- 15. (001124) 设 a, b, c, d > 0.
 - (1) 利用三元的基本不等式 "x, y, z > 0 时, $x^3 + y^3 + z^3 \ge 3xyz$ ", 证明: $a^3 + b^3 + c^3 + d^3 \ge abc + bcd + cda + dab$;
 - (2) 该不等式能否加强为 $a^3 + b^3 + c^3 + d^3 \ge k(abc + bcd + cda + dab)$, 其中 k = 1.0001? 为什么?
 - (3) 利用三元的基本不等式 "x,y,z>0 时, $x^3+y^3+z^3\geq 3xyz$ ", 证明: $a^3+b^3+c^3+d^3\geq \frac{3\sqrt[3]{2}}{2}(abc+bcd)$.
- 16. (000371) 已知 $x, y \in \mathbb{R}^+$, 且 x + 2y = 1, 则 xy 的最大值为_
- 17. (000924) 已知 $x, y \in \mathbb{R}^+$, 且满足 $\frac{x}{3} + \frac{y}{4} = 1$, 则 xy 的最大值为______.
- 18. (000939) 若 m > 0, m > 0, m + n = 1, 且 $\frac{t}{m} + \frac{1}{n}(t > 0)$ 的最小值为 9, 则 $t = \underline{\hspace{1cm}}$
- 19. (001127) 已知正实数 x, y 满足 $x + \frac{4}{y} = 1$, 求 $\frac{1}{x} + y$ 的最小值.
- 20. (001128) 已知 x > 2, 求代数式 $\frac{x^2 3x + 3}{x 2}$ 的最小值.
- 21. (001151)(1) 已知 $f(x) = Ax^2 + Bx$, 并且 $f(1) \in [0,1]$, $f(2) \in [0,1]$, 求 f(5) 的最大值与最小值.
 - (2) 已知 $f(x) = Ax^2 + Bx$, 并且 $f(1) \in [0,1]$, $f(2) \in [0,1]$, $f(3) \in (-\infty,0]$, 求 f(-1) 的最大值与最小值.
- 22. (002753) 下列函数中, 最小值为 2 的函数有

(1)
$$y = x + \frac{1}{x}$$
, $x \in (0, +\infty)$; (2) $y = x + \frac{1}{x}$, $x \in (1, +\infty)$; (3) $y = \frac{x^2 + 3}{\sqrt{x^2 + 2}}$; (4) $y = \log_3 x + \log_x 3$.

- 23. (002755) 若正实数 a,b 满足 a+b=1,则 (
 - A. $\frac{1}{a}+\frac{1}{b}$ 的最大值是 4 B. ab 的最小值是 $\frac{1}{4}$ C. $\sqrt{a}+\sqrt{b}$ 有最大值 $\sqrt{2}$ D. a^2+b^2 有最小值 $\frac{\sqrt{2}}{2}$

- 25. (001130) 已知直角三角形的面积为 8, 求斜边长的最小值.
- 26. (001131) 已知直角三角形的斜边长为 2, 求周长的最大值.
- 27. (001132) 用长为 4L 的篱笆在一堵墙边上圈起一块矩形的地来 (只需要围三面),问能圈到的地最大面积为多少?如何圈?
- 28. (007826) 建造一个容积为 8 立方米、深为 2 米的长方形无盖水池. 如果池底和池壁的造价每平方米分别为 120 元和 80 元, 那么水池的最低造价是多少元?
- 29. (005225) 若实数 a,b 满足 ab > 0,则在① |a+b| > |a|; ② |a+b| < |b|; ③ |a+b| < |a-b|; ④ |a+b| > |a-b| 这四个式子中,正确的是 ().
 - A. (T)(2)

B. (1)(3)

C. (1)(4)

- D. (2)(4)
- 30. (010104) 证明: $|x+2|-|x-1| \ge -3$, 对所有实数 x 均成立, 并求等号成立时 x 的取值范围.
- 31. (001096) 利用绝对值的三角不等式 $|a+b| \le |a| + |b|$, 证明:
 - (1) 对任意 $x, y \in \mathbf{R}, |x y| \ge |x| |y|;$
 - (2) 对任意 $x, y \in \mathbf{R}, |x y| \ge ||x| |y||$.
- 32. (009468) 已知实数 a、b 满足 $|a|<\frac{1}{2},\,|b|<\frac{1}{2}.$ 证明下列各式:
 - (1) |a+b| < 1;
 - (2) |a-b| < 1.
- 33. (005239) 已知关于 x 的不等式 |x-4|+|x-3| < a 在实数集 R 上的解集不是空集, 求正数 a 的取值范围.