Prices of Hybrid Vehicles

Shuangjie Zhang & Yuqing Zhang

UCSC

12/4/2019

UCSC

Find the most valuable car by 2013

- Find relationship behind suggested retail price and hybrid car features.
- https://shuangjiezhang.shinyapps.io/STA204-Final-Project/

Overview

Data Review

Method

$$Y = X\beta + \epsilon, \ \epsilon \sim N(0, \sigma^2 I)$$

Variable Selection & Model Comparison

Outlier Test

Conclusion

Data Review

- Transform msrp,mpg,mpgmpge into log form
- $log(msrp) \sim year + accelrate + log(mpg) + log(mpgmpge) + carclass$
- Additional variables: brand, company, country

	Estimate S	td. Error	t value	Pr(> t)
(Intercept)	14.7014041	17.0213437	0.8637041	0.3892070
year	-0.0019610	0.0084967	-0.2307977	0.8178042
accelrate	0.0864023	0.0119159	7.2510202	0.0000000
mpg	-0.5482133	0.1750384	-3.1319610	0.0021091
mpgmpge	0.1636797	0.1175983	1.3918541	0.1661428
carclassL	0.3903007	0.1465221	2.6637669	0.0086204
carclassM	-0.0797795	0.0769701	-1.0365009	0.3017304
carclassMV	0.2985002	0.1673562	1.7836217	0.0766211
carclassPT	-0.0809727	0.1756483	-0.4609933	0.6455087
carclassSUV	0.0632425	0.0999264	0.6328907	0.5278229
carclassTS	-0.2553617	0.1305925	-1.9554088	0.0524983

- All parameters
- $log(msrp) \sim year + accelrate + log(mpg) + log(mpgmpge) + carclass$ + brand + company + country

UCSC

Step function with AIC/BIC

Use stepwise method & AIC/BIC criterion to select variables.

AIC result:

```
year + accelrate + log(mpg) + log(mpgmpge) + carclass
```

- + brand
- -> Prefer more variables
- BIC result: accelrate + log(mpg)
 - -> Prefer fewer variables
- log(153) = 5.030438: the penalty term k for BIC is big.

Lasso

- Lasso is able to shrink coefficients to 0.
- gamlr function

Lasso Result 1

```
42 x 1 sparse Matrix of class "daCMatrix"
                                50
vear
accel rate
                       0.06425803
                       -0.20643582
mpa
mpampae
carclassi
                       0.14683584
carclassM
                       -0.05010318
carclassMV
                       0.06430422
carclassPT
carclassSUV
carclassTS
                                          brandlincoln
brandAudi
                                          brandMazda
                                                                     -0.07453768
hrandResturn
                       -0.12544422
                                          brandMercedes-Benz
                                                                     0.32936708
brandRMW
                       0.21584200
brandRui ck
                                          brandMercury
brandRYD
                                          brandNi ssan
brandCadillac
                       0.51753996
                                          brandPeuaeot
                                                                     0.01894611
brandChevrolet
                                          hrandPorsche
                                                                     0.18281847
brandChrysler
                                          brandSaturn
                                                                     -0.17052238
brandDodge
                                          brandTovota
brandFord
                                          hrandVauxhall
brandGMC
                       0.13154439
                                          brandVolkswagen
brandHonda
                       -0.26970231
brandHvundai
                       -0.02326671
                                          country_combinedJapan
brandInfiniti
                                          country combinedKorea
                                                                     -0.02415707
                       -0.34807474
brandJeep
                                          country_combinedOthers
brandKia
                                          country_combinedUSA
brandl exus
                       0 12021810
```

Lasso Result 2

```
14 x 1 sparse Matrix of class "dqCMatrix"
year
accelrate
                        0.06355273
                       -0.26222492
mpq
mpampae
carclass
                        0.08420204
carclassM
carclassMV
carclassPT
carclassSUV
carclassTS
country_combinedJapan
country_combinedKorea
country_combinedOthers
```

UCSC

country_combinedUSA

Lasso Result 3

```
38 x 1 sparse Matrix of class "dqCMatrix"
vear
accel rate
                    0.06451812
mpg
                   -0.21044835
mpampae
carclassL
                    0.14889670
carclassM
                   -0.04364799
carclassMV
                    0.02936425
carclassPT
carclassSIIV
carclassTS
brandAudi
brandResturn
                    -0 07000165
brandBMW
                    0.18955555
brandBuick
brandRYD
brandCadillac
                    0.47480093
brandChevrolet
brandChrysler
brandDodge
brandFord
brandGMC
                    0.10404587
                   -0.25229957
brandHonda
brandHvundai
                   -0.02464128
brandInfiniti
brandJeep
                   -0.28771098
brandKia
                                           brandLexus
                                                               0.10221202
                                           brandlincoln
```

UCSC

brandLincoln brandMazda -0.03957247 brandMercedes-Benz 0.30217752 brandMercury brandNisson

Summary of first stage selection

- Surprisingly, year and country are not significant.
- Left variables: accelrate, log(mpg), carclass, brand
- Remark: lasso treats each level separately as different covariates.
- Next, we considered interaction terms and combine some carclass/brand levels.

Model LM1 - LM4

- LM1:
 - log(msrp) = accelrate + log(mpg) + carclass + brand
 - Significant:
 - accelrate, carclassL, carlassMV, brandCadillac, brandJeep
- LM2: log(msrp) = accelrate * log(mpg)
 - All coefficients are significant at 95% confidence level.
 - Adj R-squared is only 0.571.
- LM3: log(msrp) = accelrate * log(mpg) + carclass
 - Significant:
 - accelrate,carclassL,carclassTS,accelrate:log(mpg)
- LM4: log(msrp) = accelrate * log(mpg) + brand
 - Significant: accelrate,log(mpg),brandCadillac,brandJeep, brandMercedesBenz,accelrate:log(mpg)

Table 2: Comparison of LM1 through LM4

	AIC	BIC
LM1	-413.3292	-301.2030
LM2	-346.8987	-334.7770
LM3	-353.3303	-323.0259
LM4	-427.6842	-330.7102

Model LM5 - LM7

- Identify representative brands and carclasses
- LM5: log(msrp) = accelrate * log(mpg) + brandCadillac
 - + brandJeep + brandBenz
 - We encode brand into three significant brands and others with 0.
 - All coefficients are significant, adj R-squared=0.6513.
- LM6: log(msrp) = accelrate * log(mpg) + brandCadillac
 - + brandJeep + brandBenz + classL + classMV + classTS
 - Similarly, add in three significant carclasses.
 - Only TS (Two-Seater) is significant among the three carclasses.
- LM7: log(msrp) = accelrate * log(mpg) + brandCadillac
 - + brandJeep + brandBenz + classTS
 - All coefficients are significant, adj R-squared=0.6686.

Table 3: Comparison of LM2, LM4, LM5, LM6, LM7

	AIC	BIC	adj_R_squared
LM2	-346.8987	-334.7770	0.5710
LM4	-427.6842	-330.7102	0.7839
LM5	-375.7193	-354.5062	0.6513
LM6	-382.5683	-352.2639	0.6726
LM7	-382.5769	-358.3334	0.6686

- Check for interaction: step(Im(log_msrp ~ (accelrate + log_mpg + brandCadillac + brandJeep + brandBenz + classTS)^2))
- We also got LM7.

Final Model

Table 4: Final model: LM7

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	5.5130315	1.1829141	4.660551	0.0000071
accelrate	0.5218653	0.0999225	5.222703	0.0000006
log_mpg	1.1280302	0.3407428	3.310504	0.0011752
brandCadillac	0.8982650	0.2051142	4.379341	0.0000227
brandJeep	-0.6994143	0.2806561	-2.492069	0.0138260
brandBenz	0.4770443	0.1198410	3.980642	0.0001083
classTS	-0.3127326	0.1063798	-2.939775	0.0038235
accelrate:log_mpg	-0.1269567	0.0294695	-4.308073	0.0000302

Outlier Test

Warning: not plotting observations with leverage one:
59

Mean shift outlier test

- $Y = X\beta + d_i\phi + \epsilon, \epsilon \sim N(0, \sigma^2 I)$
- d_i is an n-vector with i-th element equal to 1, and all other elements are 0.
- $H_0: \phi = 0$ and $H_1: \phi \neq 0$
- Bonferroni p-values for testing each observation in turn to be a mean-shift outlier

```
## rstudent unadjusted p-value Bonferroni p
## 21 -3.958069 0.00011826 0.017976
```

https://shuangjiezhang.shinyapps.io/STA204-Final-Project/

Conclusions

- Acceleration rate and mpg both positively affects the price, but their interaction will moderate the effect.
- Three representative brands are Cadillac(+), Jeep(-) and Mercedes-Benz(+).
- TS (Two-Seater) has significantly lower price than other car classes.

*# of people looking at the same car!' is just from random number generation. Don't believe it!

Reference

- Lim, D.-J., Jahromi, S. R., Anderson, T. R., Tudorie, A.-A. (2015). Comparing technological advancement of hybrid electric vehicles (HEV) in different market segments. Technological Forecasting and Social Change, 97, 140-153. doi: 10.1016/j.techfore.2014.05.008.
- University of Toronto R homework: https://www.coursehero.com/file/12498270/a3/
- University of Illinois at Urbana-Champaign: https://www.studocu.com/en-us/document/university-of-illinois-at-urbana-champaign/applied-regression-and-design/mandatory-assignments/kanuru-sai-hw-06-homeworks-given-every-lecture/3821289/view

