概率论和数理统计公式集锦

一、随机事件与概率。

公式名称↩	公式表达式₽
德摩根公式₽	$\overline{A \cup B} = \overline{A} \cap \overline{B}$, $\overline{A \cap B} = \overline{A} \cup \overline{B} \in$
古典概型↩	$P(A) = \frac{m}{n} = \frac{A \odot 2 \circ A \odot 4}{4 \odot 2}$ 基本事件总数
几何概型₹	$P(A) = \frac{\mu(A)}{\mu(\Omega)}$,其中 μ 为几何度量(长度、面积、体积) ϕ
求逆公式₽	$P(\overline{A}) = 1 - P(A) \varphi$
加法公式。	P(A∪B)=P(A)+P(B)-P(AB)+/ 当 P(AB)=0 时,P(A∪B)=P(A)+P(B)+/
减法公式₽	$P(A-B)=P(A)-P(AB)$, $B \subset AB \uparrow P(A-B)=P(A)-P(B) \varphi$
条件概率公式↔ 与乘法公式↔	$P(B A) = \frac{P(AB)}{P(A)} \qquad P(AB) = P(A)P(B A) = P(B)P(A B) \leftrightarrow$ $P(ABC) = P(A)P(B A)P(C AB) \leftrightarrow$
全概率公式₽	$P(A) = \sum_{i=1}^{n} P(B_i) P(A \mid B_i)^{4^{i}}$
贝叶斯公式↓ (逆概率公式)←	$P(B_i A) = \frac{P(B_i)P(A B_i)}{\sum_{i=1}^{n} P(B_i)P(A B_i)} $
两个事件↓ 相互独立↓	$P(AB) = P(A)P(B)$; $P(B A) = P(B)$; $P(B A) = P(B \overline{A})$; \Leftrightarrow

二、随机变量及其分布。

1、分布函数↩

$$F(x) = P(X \le x) = \begin{cases} \sum_{x_k \le x} P(X = x_k) \\ \int_{-\infty}^x f(t) dt \end{cases}, \quad P(a < X \le b) = F(b) - F(a)$$

2、稟勤型随机变量及其分布↔

分布名称₽		分布律↩	
0-1 分布	X~b(1,p)₽	$P(X = k) = p^{k} (1 - p)^{1 - k}, k = 0, 1 e^{-k}$	+
二项分布(贝	『努利分布》↩ X~B(n,p)←	$P(X = k) = C_n^k p^k (1-p)^{n-k}, k = 0,1,\dots,n^{\varphi}$	*
泊松分布	X~p(λ)₽	$P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}, k = 0, 1, 2, \dots $	*

∰、续型随机变量及其分布↩

分布名称₽	密度函数₽	分布函数₽	
均匀分布↓ x~u(<u>a, b</u>)↓	$f(x) = \begin{cases} \frac{1}{b-a}, & a < x < b_{\psi} \\ 0, & \text{#1.6} \end{cases}$	$F(x) = \begin{cases} 0, & x < a \\ \frac{x - a}{b - a}, a \le x < b \end{cases}$ $1, & x \ge b$	

[

分布名称₽	密度函数↩	分布函数₽
指数分布↩ X~E(λ)↩	$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0 \\ 0, & x \le 0 \end{cases}$	$F(x) = \begin{cases} 1 - e^{-\lambda x}, & x > 0 \\ 0, & x \le 0 \end{cases}$
正态分布ψ x~N (μ, σ²)ψ	$f(x) = \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \varphi$ $-\infty < x < +\infty$	$F(x) = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{x} e^{-\frac{(t-\mu)^{2}}{2\sigma^{2}}} dt$
标准正态分布↓ x~N(0,1)↓	$\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$ $-\infty < x < +\infty$	$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{1}{2}t^{2}} dt \varphi$

分布函数₽

が**対连续型随机变量**
$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(t)dt$$

对离散型随机变量
$$F(x) = P(X \le x) = \sum_{k \le x} P(X = k)$$

分布逐數与密度函数的重要关系: φ F'(x) = f(x)

4、随机变量函数 Y=g(X)的分布↔

离散型:
$$P(Y = y_i) = \sum_{j \in Y \in \mathcal{Y}} p_j, i = 1, 2, \dots, \Leftrightarrow$$

连续型: ①分布函数法, ₽

②公式法 $f_Y(y) = f_X(h(y)) \cdot |h'(y)|(x = h(y))$ 期 ψ h(y)是 g(x)的反函数 ψ

三、多维随机变量及其分布。

1、离散型二维随机变量及其分布↔

分布律:
$$P(X = x_i, Y = y_j) = p_{ij}, i, j = 1, 2, \dots$$
 分布函数 $F(X, Y) = \sum_{x \le x_i, x \le y_i} p_{ij} \checkmark$

边缘分布律:
$$p_i = P(X = x_i) = \sum_j p_{ij}$$
 $p_j = P(Y = y_j) = \sum_i p_{ij} *^{ij}$

条件分布律:
$$P(X=x_i | Y=y_j) = \frac{p_{ij}}{p_{.j}}, i=1,2,\cdots, P(Y=y_j | X=x_i) = \frac{p_{ij}}{p_{.i}}, j=1,2,\cdots$$

· 2、连续型二维随机变量及其分布↔

①分布函数及性质₽

分布函数:
$$F(x, y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u, v) du dv$$

性质:
$$F(+\infty,+\infty) = 1$$
, $\frac{\partial^2 F(x,y)}{\partial x \partial y} = f(x,y)$, $P((x,y) \in G) = \iint_{\mathcal{G}} f(x,y) dx dy + \int_{\mathcal{G}} f(x,y) dx dy dy$

②边缘分布函数与边缘密度函数₽

分布函数:
$$F_X(x) = \int_{-\infty}^x \int_{-\infty}^{+\infty} f(u,v) dv du$$
 密度函数: $f_X(x) = \int_{-\infty}^{+\infty} f(x,v) dv + F_Y(y) = \int_{-\infty}^y \int_{-\infty}^{+\infty} f(u,v) du dv$
$$f_Y(y) = \int_{-\infty}^y f(u,v) du dv$$

③条件概率密度₽

$$f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)}, -\infty < y < +\infty, \quad f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}, -\infty < x < +\infty,$$

3、随机变量的独立性₽

随机变量 X、Y 相互独立 $\Leftrightarrow F(x,y) = F_x(x)F_y(y)$, φ

离散型: $p_{ij} = p_{i.}p_{.j}$,连续型: $f(x, y) = f_x(x)f_y(y) + f_y(y) + f_y$

4、二维随机变量和函数的分布(卷积公式)→

离散型: $P(Z=z_k) = \sum_{x_i \in \mathcal{X}} P(X=x_i, Y=y_j)$ 注意部分可加性 ψ

连续型: $f_z(z) = \int_{-\infty}^{+\infty} f(x, z - x) dx = \int_{-\infty}^{+\infty} f(z - y, y) dy$

四、随机变量的数字特征。

1、数学期望↩

①定义: 离散型 $E(X) = \sum_{k=0}^{+\infty} x_k p_k$, 连续型 $E(X) = \int_{-\infty}^{+\infty} x f(x) dx + x dx$

②性质: E(C) = C, E[E(X)] = E(X), E(CX) = CE(X), $E(X \pm Y) = E(X) \pm E(Y) + E(XX \pm b) = aE(X) \pm b$, 当 X、Y 相互独立时: E(XY) = E(X)E(Y) (正对逆错) \leftarrow

2、方差↩

①定义: $D(X) = E[(X - E(X))^2] = E(X^2) - E^2(X) + C(X)$

②性质: D(C) = 0 , $D(aX \pm b) = a^2D(X)$, $D(X \pm Y) = D(X) + D(Y) \pm 2Cov(X,Y)$ \leftrightarrow 当 X、Y 相互独立时: $D(X \pm Y) = D(X) + D(Y) \leftrightarrow$

3、协方差与相关系数↩

①协方差: Cov(X,Y) = E(XY) - E(X)E(Y), 当 X、Y 相互独立时: Cov(X,Y) = 0 + 0

②相关系数: $\rho_{XY} = \frac{Cov(X,Y)}{\sqrt{D(X)}\sqrt{D(Y)}}$, 当 X、Y 相互独立时: $\rho_{XY} = 0$ (X, Y 不相关) ρ

V= \--- V= \-- V

③协方差和相关系数的性质: Cov(X,X) = D(X) , $Cov(X,Y) = Cov(Y,X) \leftrightarrow Cov(X_1+X_2,Y) = Cov(X_1,Y) + Cov(X_2,Y)$, $Cov(aX+c,bY+d) = abCov(X,Y) \leftrightarrow Cov(x,a) = 0$ (a 为常数) , $D(aX\pm bY) = a^2D(X) + b^2D(Y) \pm 2abCov(X,Y) \leftrightarrow Cov(x,a) = 0$

4、常见随机变量分布的数学期望和方差₹

$p(1-p) \Rightarrow$ $p(1-p) \Rightarrow$ $p(1-p) \Rightarrow$
$p_{\varphi} \qquad pp(1-p)_{\varphi}$
a' a'
$\frac{+b}{2}$ ϕ $\frac{(b-a)^2}{12}$
u $\sigma^{2^{+}}$
$\frac{1}{\ell} \varphi$ $\frac{1}{\lambda^2} \varphi$

五、大数定律与中心极限定理。

1、切比雪夫不等式₽

若 $E(X) = \mu, D(X) = \sigma^2$, 对于任意 $\varepsilon > 0$ 有 $P\{|X - E(X)| \ge \varepsilon\} \le \frac{D(X)}{\varepsilon^2}$

2、大数定律(普通班不重要): ₩

六、数埋统计的基本概念→

1、总体和样本的分布函数→

设总体 $X \sim F(x)$,则样本的联合分布函数 $F(x_1, x_2 \cdots x_n) = \prod_{k=1}^n F(x_k) + \dots$

2、统计量↔

样本均值:
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
,样本方差: $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i^2 - n\overline{X}^2) \leftarrow \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2 = \frac{1}{n-1} \sum_{n=1}^{n} (X_i - \overline{X})^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2 =$

样本标准差: $S = \sqrt{\frac{1}{n-1}\sum_{i=1}^n(X_i-\overline{X})^2}$,样本k 阶原点距: $A_k = \frac{1}{n}\sum_{i=1}^nX_i^k, k=1,2\cdots$

样本 k 阶中心距: $B_k = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^k, k = 1, 2, 3 \cdots + 1$

3、三大抽样分布↔

(1) χ^2 分布: 设随机变量 $X \sim B(0,1)$ $(i=1,2,\cdots,n)$ 且相互独立,则称统计量 $\chi^2 = X_1^2 + X_2^2 + \cdots + X_n^2$ 服从自由度为n的 χ^2 分布,记为 $\chi^2 \sim \chi^2(n) \leftrightarrow \infty$

性质: ① $E[\chi^2(n)] = n, D[\chi^2(n)] = 2n$ ②设 $X \sim \chi^2(m), Y \sim \chi^2(n)$ 且相互独立,则 $X + Y \sim \chi^2(m+n) + 2\pi$

(2)t分布:设随机变量 $X \sim N(0,1), Y \sim \chi^2(n)$,且 X 与 Y 独立,则称统计量: $T = \frac{X}{\sqrt{Y/n}}$ 服从自由度为n的t分布,记为 $T \sim t(n) \leftrightarrow$

性质: ① $E(\mathcal{I}) = 0 \ (n > 1), D(\mathcal{I}) = \frac{n}{n-2} \ (n > 2)$ ② $\lim_{n \to \infty} f_n(x) = \varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2} + 1}$

(3) F 分布:设随机变量 $X \sim \chi^2(m), Y \sim \chi^2(n)$,且 X 与 Y 独立,则称统计量

 $F(m,n) = \frac{X/m}{Y/n}$ 服从第一自由度为 m,第二自由度为 n 的 F 分布,记为

 $F \sim F(m,n)$,性质:设 $F \sim F(m,n)$,则 $\frac{1}{F} \sim F(n,m)$

七、参数估计。

1.参数估计₩

①定义:用 $\hat{\theta}(X_1,X_2,L_1,X_n)$ 估计总体参数 θ ,称 $\hat{\theta}(X_1,X_2,L_1,X_n)$ 为 θ 的估

计量,相应的 $\hat{\theta}(x_1,x_2,\cdots,x_n)$ 为总体 θ 的估计值。 ψ

43

2. 点估计中的极大似然估计↔

设 X_1, X_2, L X_n 取自X的样本,设 $X \sim f(x, \theta)$ 或 $X \sim P(x, \theta)$, 求法步骤:

①似然函数: $L(\theta) = \prod_{i=1}^n f(x_i, \theta)$ (连续型)或 $L(\theta) = \prod_{i=1}^n P_i(x_i, \theta)$ (离散型) θ

②取对数: $\ln L(\theta) = \sum_{i=1}^{n} \ln f(x_i, \theta)$ 或 $\ln L(\theta) = \sum_{i=1}^{n} \ln p_i(x_i, \theta)$

③解方程:
$$\frac{\partial \ln L}{\partial \theta_1} = 0$$
, L , $\frac{\partial \ln L}{\partial \theta_k} = 0$, 解得:
$$\begin{cases} \hat{\theta_1} = \hat{\theta_1}(x_1, x_2, \cdots, x_n) \\ \dots \\ \hat{\theta_k} = \hat{\theta_k}(x_1, x_2, \cdots, x_n) \end{cases}$$

函 3.估计量的评价标准→

- 1		16 (1 ± 6 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 ×		
	估计	无偏性↩	设 $\hat{\theta} = \hat{\theta}(x_1, x_2, L_1, x_n)$ 为未知参数 θ 的估计量。若 $\mathbf{E}(\hat{\theta}) = \theta$,则称 $\hat{\theta}$ 为 θ 的无偏估计量。 \mathbf{P}	
	量的评价	有效性↩	设 $\hat{\theta}_1 = \hat{\theta}_1(x_1, x_2, L, x_n)$ 和 $\hat{\theta}_2 = \hat{\theta}_2(x_1, x_2, L, x_n)$ 是未知参数 θ 的两个无偏估计量。若 $D(\hat{\theta}_1) < D(\hat{\theta}_2)$,则称 $\hat{\theta}_1$ 比 $\hat{\theta}_2$ 有效。	
	价标准←	一致性₽	设 $\hat{\theta}_n$ 是 θ 的一串估计量,如 $\forall \varepsilon > 0$,有 $\lim_{n \to \infty} P(\hat{\theta}_n - \theta > \varepsilon) = 0$ 则称 $\hat{\theta}_n$ 为 θ 的一致估计量(或相合估计量)。 ω	
323		8 40		

正态总体中,样本均值 \overline{X} 是 μ 的无偏估计量4

修正样本方差S²是σ²的无偏估计量↓

5. 区间估计 单正杰总体参数的置信区间↔

条件₽	估计≠ 参数≠	枢轴量↩	枢轴量↔ 分布₽	置信水平为1-α的置信区间₽
已知 σ²₽	μφ	$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \varphi$	N(0,1) ÷	$\left(\bar{x}-z_{\alpha/2}\frac{\sigma}{\sqrt{n}},\bar{x}+z_{\alpha/2}\frac{\sigma}{\sqrt{n}}\right)\varphi$
未知 σ²ψ	μφ	$T = \frac{\overline{X} - \mu}{S / \sqrt{n}} \Leftrightarrow$	t(n−1) ←	$\left(\bar{x}-t_{\alpha_{2}}(n-1)\frac{S}{\sqrt{n}},\bar{x}+t_{\alpha_{2}}(n-1)\frac{S}{\sqrt{n}}\right)$
未知 μ₽	$\sigma^2 \varphi$	$\chi^2 = \frac{(n-1)S^2}{\sigma^2} \leftrightarrow$	χ ² (n-1)	$\left(\frac{(n-1)S^2}{\chi^2_{\alpha_2}(n-1)}, \frac{(n-1)S^2}{\chi^2_{1-\alpha_2}(n-1)}\right) \varphi$
未知 µ₽	$\sigma^2 \varphi$	$\chi^{2} = \sum_{i=1}^{n} \left(\frac{X_{i} - \mu}{\sigma} \right)^{2} +$	$\chi^2(n)$	$\left(\frac{\sum_{i=1}^{n} (X_i - \mu)^2}{\chi_{\alpha_M}^2(n)}, \frac{\sum_{i=1}^{n} (X_i - \mu)^2}{\chi_{1-\alpha_M}^2(n)}\right)^{-1}$