GPT-ME (Versão Científica Auditada)

GPT-ME: Arquitetura de Inteligência Artificial Baseada em Memória Esferocêntrica

Resumo:

Este artigo propõe a arquitetura GPT-ME (Esferocentric Memory GPT), um modelo simbólico de processamento e memória que substitui mecanismos de atenção estatística por estruturas geométricas persistentes, fundamentadas na Teoria da Memória Esferocêntrica. O modelo introduz esferas interconectadas com coordenadas fixas e reforço contextual, representando conceitos, experiências e decisões. A arquitetura possibilita interpretabilidade, persistência e reorganização simbólica autônoma ? requisitos ausentes nos modelos clássicos de IA.

1. Introdução:

O desenvolvimento de arquiteturas cognitivas artificiais tem sido dominado por modelos conexionistas como Transformers. No entanto, tais modelos carecem de memória simbólica persistente, interpretabilidade causal e adaptação sem reprocessamento. A Teoria da Memória Esferocêntrica propõe uma solução baseada em geometria relacional, contextual e reforçada, modelando o conhecimento como esferas simbólicas conectadas.

2. Fundamentação Teórica:

Cada esfera representa um conceito, experiência ou estímulo sensorial. A ativação de uma esfera ocorre por "entrada de luz simbólica" em sua superfície, projetada por coordenadas esferocêntricas relativas ao centro de cognição. A distância ao centro define o tempo simbólico da memória. As conexões entre esferas são reforçadas dinamicamente por sucessos anteriores. As esferas são autossuficientes, conectadas por relações topológicas, formando uma rede simbólica com organização hierárquica emergente.

3. Arquitetura do GPT-ME:

- Unidade simbólica: Esfera(nome, coord[x,y,z], conexões, histórico)
- Mecanismo de ativação: Luz simbólica ativa esferas baseadas na entrada
- Rota de ativação: Caminho topológico entre esferas relevantes
- Reforço: Ajuste dinâmico de conexões por sucesso contextual
- Persistência: Estado simbólico imutável com reforço cumulativo
- Decisão: Soma vetorial da trajetória da luz com pesos históricos
- Explicabilidade: Caminho de ativação completamente rastreável

4. Comparativo Técnico com GPT Tradicional:

Transformers dependem de atenção multi-head estatística e vetores posicionais, limitando rastreamento causal. GPT-ME, em contraste, baseia-se em rota topológica simbólica, memória contextual persistente,

GPT-ME (Versão Científica Auditada)

organização esferocentrada e reforço interno por feedback. A inferência é mais barata e a adaptação é imediata sem retraining.

5. Simulação Técnica:

A frase ?O gato pulou o muro.? é processada por três esferas ativadas sequencialmente: animal.doméstico.felino ? ação.saltar ? objeto.obstáculo.vertical. Cada transição é reforçada e armazenada, permitindo futuras inferências com rastreamento simbólico completo.

6. Aplicações Estratégicas:

- Robótica autônoma com memória contextual explicável
- Agentes linguísticos com identidade persistente
- Sistemas médicos e jurídicos com rastreamento de decisão
- Substituição de redes neurais opacas em sistemas críticos

7. Conclusão:

GPT-ME representa uma ruptura no paradigma de processamento simbólico, oferecendo um caminho viável, explicável e tecnicamente denso para a construção de inteligências artificiais com memória verdadeira. Ao substituir estatísticas por relações simbólicas persistentes, a arquitetura viabiliza sistemas autônomos cognitivos, interpretáveis e evolutivos.

Anexos:

- Pseudocódigo da arquitetura
- Protótipo funcional (Python)
- Comparativo técnico com GPT-Transformer