Algorithmique Avancée

Cours d'Antoine Genitrini, dispensé par Maryse Pelletier

Maryse.Pelletier@lip6.fr

Master Informatique 1

Année 2020-2021

Organisation

- Équipe pédagogique :
 - Cours: M. Pelletier & B.-M. Bui Xuan (mardi 10h45, amphi 45-A)
 - TD-TME: P. Aubry (lundi après-midi),
 P. Aubry & M. Danisch (jeudi matin)
- Planning :
 - 1er cours le mardi 28 septembre
 TD : à partir du 5 octobre.
- Contrôle des Connaissances :

Session 1

- Examen Réparti 1 (E1): 16-20 Novembre 2020
- Devoir de Programmation (D) : rendu Décembre 2020
- Fin des enseignements le 18 Décembre 2020
- Examen Réparti 2 (E2): 11-15 Janvier 2021
- Note de Session 1 = 0.3 E1 + 0.2 D + 0.5 E2

Session 2

- Examen Session 2 (SS): Juin 2021
- Note Session 2 = SS

Plan du cours

Objectifs : Complexité des algorithmes → Comparer, Optimiser

- Structures Arborescentes : Files de priorité
 - Files Binomiales et Files de Fibonacci
 - Coût amorti et Coût moyen
- Structures Arborescentes pour la Recherche
 - Arbres de Recherche équilibrés
 - Recherche externe
 - Tries et Arbres Digitaux
- Géométrie Algorithmique (B.-M. Bui-Xuan)
 - Collision d'objets
- Méthodes de Hachage
 - Hachage interne et externe
 - Hachage universel
 - Hachage cryptographique

Bibliographie

- T. Cormen, C. Leiserson, R. Rivest, C. Stein
 Introduction à l'algorithmique
- C. Froidevaux, M-C. Gaudel, M. Soria
 Types de données et algorithmes
- D. Beauquier, J. Berstel, P. Chrétienne Éléments d'algorithmique
- M. Crochemore, C. Hancart, T. Lecroq
 Algorithmique du texte

- Théorie de la complexité et classification de problèmes :
 - P : ce qui se calcule en temps polynomial $O(n^k)$
 - EXP : ce qui se calcule en temps exponentiel $O(2^n)$
 - NP: intermédiaire (P=NP?)
- Problèmes exponentiels : optimisation combinatoire, systèmes cryptographiques, ...
- Problèmes polynômiaux : tri, recherche, géométrie, texte, arithmétique, . . .

Analyse d'algorithmes

Algorithme \mathcal{A} opère sur des données de \mathcal{E} (mots, arbres, graphes) taille des données : $\mathcal{E} \to \mathbb{N}$ (longueur mot, nombre sommet, ...)

Mesure de la complexité de \mathcal{A} $au_{\mathcal{A}}: \mathcal{E} \to \mathbb{N}$ place mémoire, nombre d'opérations fondamentales effectuées

Analyse de la complexité sur les données de taille n $au_{\mathcal{A}}: \mathcal{E}_n \to \mathbb{N}$ pour comparer les méthodes de résolutions Ex : multiplication de matrices, tri, recherche, . . .

- complexité dans le meilleur des cas (minimale) : $\min\{\tau_{\mathcal{A}}(e); e \in \mathcal{E}_n\}$
- complexité dans le pire cas (maximale) : max $\{\tau_{\mathcal{A}}(e); e \in \mathcal{E}_n\}$ temps réel, systèmes embarqués
- complexité en moyenne (uniforme) : $\frac{1}{|\mathcal{E}_n|} \sum_{e \in \mathcal{E}_n} \tau_{\mathcal{A}}(e)$ $cas \ typique \rightarrow probabilité \ des \ données$

Analyse amortie : coût d'une suite d'opérations

Ordre de grandeur asymptotique

```
 \begin{array}{lll} f \mbox{ et } g: \mathbb{N} \mapsto \mathbb{R}^+ \\ f = o(g) & \Longleftrightarrow & \lim_{n \to \infty} f(n)/g(n) = 0 \\ f = O(g) & \Longleftrightarrow & \exists \alpha \in \mathbb{R}^{+*}, \exists n_0 \in \mathbb{N} \mid \forall n > n_0, f(n) \leq \alpha \cdot g(n) \\ f = \Theta(g) & \Longleftrightarrow & f = O(g) \mbox{ et } g = O(f) \end{array}
```


Comparaisons d'ordres de grandeur

Machine faisant de l'ordre de 109 opérations/secondes :

	n = 10	$n = 10^3$	$n = 10^6$
log n	<< sec	<< sec	<< sec
10 log <i>n</i>	<< sec	<< sec	<< sec
100 log <i>n</i>	<< sec	<< sec	<< sec
n	<< sec	<< sec	<< sec
10 · <i>n</i>	<< sec	<< sec	<< sec
100 ⋅ <i>n</i>	<< sec	<< sec	<< sec
n ²	<< sec	<< sec	Θ min
10 ⋅ <i>n</i> ²	<< sec	<< sec	⊖ heure
100 ⋅ <i>n</i> ²	<< sec	<< sec	⊖ jour
n^3	<< sec	Θ sec	Θ année
10 ∙ <i>n</i> ³	<< sec	Θ sec	∞
100 ⋅ <i>n</i> ³	<< sec	⊖ min	∞
2 ⁿ	<< sec	∞	∞
10 · 2 ⁿ	<< sec	∞	∞
100 ⋅ 2 ⁿ	<< sec	∞	∞

CHAPITRE 1 FILES de PRIORITÉ

Files binomiales

- 1. Opérations sur les files de priorité
- 2. Arbres binomiaux : définition et propriétés
- 3. Files binomiales : définition et propriétés
- 4. Union de 2 files binomiales en temps logarithmique
- Autres opérations sur les files binomiales
- 6. Analyse en Coût amorti

Opérations sur les files de priorité

Les files de priorité min :

- Ensemble d'éléments
 - Chaque élément identifié par une clé
 - Ordre total sur les clés

Opérations

- Ajouter un élément
- Supprimer l'élément de clé minimale
- Construction
- Union de 2 files de priorité min
- Modification d'une clé

Files de priorité

Tas

Exemple d'un tas min :

Représentations et Efficacité

Nombre de comparaisons dans le pire des cas :

	Liste triée	Tas	File Binomiale
Supp Min (1 élt parmi n)	<i>O</i> (1)	<i>O</i> (log <i>n</i>)	$O(\log n)$
Ajout (1 élt parmi n)	<i>O</i> (<i>n</i>)	$O(\log n)$	$O(\log n)$
Construction (n élts)	$O(n^2)$	<i>O</i> (<i>n</i>)	<i>O</i> (<i>n</i>)
Union (n élts et m élts)	O(n+m)	O(n+m)	$O(\log(n+m))$

Applications des Files de priorité

- Tri par tas (heapsort)
- Sur les graphes
 - plus court chemin à partir d'une source (Dijkstra)
 - plus court chemin entre tous les couples de sommets (Johnson)
 - arbre couvrant minimal (Prim)
- Interclassement de listes triées
- Code de Huffmann (compression)

Arbre binomial – Définition

Pour chaque puissance de 2, il existe une structure d'arbre binomial dont la taille est cette puissance de 2.

Un arbre binomial est une structure ne contenant pas d'information.

Définition par récurrence

- B₀ est l'arbre réduit à un seul nœud,
- Étant donnés 2 arbres binomiaux B_k , on obtient B_{k+1} en faisant de l'un des B_k le premier fils à la racine de l'autre B_k .

Exemples: dessiner B₀, B₁, B₂, B₃, B₄

Arbre binomial – Propriétés

Propriétés de B_k , $(k \ge 0)$

- 1. B_k a 2^k nœuds
- 2. B_k a $(2^k 1)$ arêtes
- 3. B_k a hauteur k
- 4. Le degré à la racine est k
- 5. Le nombre de nœuds à profondeur i est $\binom{k}{i}$
- 6. La forêt reliée à la racine de B_k est

$$\langle B_{k-1}, B_{k-2}, \ldots, B_1, B_0 \rangle$$

Arbre binomial - Idées de preuves

- 1. $n_0 = 1$ et $n_k = 2n_{k-1}$
- 2. arbre : n nœuds $\Rightarrow n-1$ arêtes
- 3. $h_0 = 0$ et $h_k = 1 + h_{k-1}$
- 4. $d_0 = 0$ et $d_k = 1 + d_{k-1}$
- 5. $n_{k,0} = 1$, $n_{k,l} = 0$ pour l > k, et $n_{k,i} = n_{k-1,i} + n_{k-1,i-1}$, pour i = 1, ..., k
- 6. propriété de décomposition, par récurrence sur k

Tournoi Binomial (ou tas binomial)

Un *tournoi binomial* est un arbre binomial étiqueté croissant (croissance sur tout chemin de la racine aux feuilles)

File Binomiale

Une *file binomiale* est une suite de tournois binomiaux de tailles strictement décroissantes

Exemples:

- $FB_{12} = \langle TB_3, TB_2 \rangle$,
- $FB_7 = \langle TB_2, TB_1, TB_0 \rangle$

Représentation d'une file binomiale

Une file de binomiale \mathcal{P} de n éléments

- si $n = 2^k$, FB_n est un tournoi binomial
- sinon la file binomiale FB_n est une suite de tournois correspondants aux bits égaux à 1 dans la représentation binaire de n.

Représentation binaire de n

$$n = \sum_{i=0}^{\lfloor \log_2 n \rfloor} b_i \cdot 2^i, \quad ext{ avec } \quad b_i \in \{0,1\}, ext{ et } b_{\lfloor \log_2 n \rfloor} = 1$$

Le poids de Hamming de *n* vaut :

$$\nu(n) = \sum_i b_i$$
: # bits à 1 dans représentation binaire de n .

File binomiale - Propriétes

Propriétés de FB_n

- 1. FB_n a n nœuds
- 2. FB_n a $(n \nu(n))$ arêtes
- 3. Le plus grand arbre de la file est $B_{\lfloor \log_2 n \rfloor}$ (hauteur $\lfloor \log_2 n \rfloor$ et nombre de nœuds $2^{\lfloor \log_2 n \rfloor}$)
- 4. Le nombre d'arbres de la file est $\nu(n)$ (avec $\nu(n) \le 1 + |\log_2 n|$)
- 5. Le minimum de la file est à la racine de l'un des arbres
- 1. $n = \sum_{i} b_i \cdot 2^i$,
- 2. $n \nu(n) = \sum_{i} b_{i} \cdot (2^{i} 1),$
- 3. $\nu(n) = \sum_i b_i$

Union de files binomiales (clés ttes distinctes)

1. Union de 2 tournois de tailles différentes :

$$TB_k \cup TB_{k'}, k > k' \longrightarrow F_{2^k+2^{k'}} = < TB_k, TB_{k'} > Exemple : TB_1 \cup TB_2$$

2. Union de 2 tournois de même taille :

$$TB_k \cup TB'_k \longrightarrow TB_{k+1}$$
, avec $rac(TB_{k+1}) = min(rac(TB_k), (rac(TB_{k'})))$
Exemple : $TB_2 \cup TB'_2$

3. Union de 2 files binomiales \equiv addition binaire $Exemple: FB_5 \cup FB_7$

Union de deux files

- 1. Interclasser les 2 files en partant des tournois de degré minimum
- 2. Lorsque 2 tournois sont de même degré k, on engendre un tournoi de degré k+1
- À chaque étape au plus 3 tournois de même degré sont à fusionner (1 dans chacune des files + 1 retenue de la fusion à l'étape précédente)
- 4. Lorsque 3 tournois sont de même degré k, on en retient 2 pour engendrer un tournoi de degré k+1, et l'on garde le troisième comme tournoi de degré k.

Primitives sur les tournois binomiaux

```
def EstVide(T):
"""TournoiB -> booleen
   Renvoie vrai ssi le tournoi est vide."""
def Degre(T):
"""TournoiB -> entier
   Renvoie le degre de la racine du tournoi."""
def Union2Tid(T):
"""TournoiB * TournoiB -> TournoiB
   Renvoie l'union de 2 tournois de meme taille."""
def Decapite(T):
"""TournoiB -> FileB
   Renvoie la file binomiale obtenue en supprimant la racine
   du tournoi T_k \rightarrow \langle T_{k-1}, T_{k-2}, \dots, T_{1}, T_{0} \rangle.""
def File(T):
"""TournoiB -> FileB
   Renvoie la file binomiale reduite au tournoi
   T_k \rightarrow \langle T_k \rangle."""
```

Primitives sur les files binomiales

```
def EstVide(F):
"""FileB -> booleen
   Renvoie vrai ssi la file est vide."""
def MinDeg(F):
"""FileB -> TournoiB
   Renvoie le tournoi de degre minimal dans la file."""
def Reste(F):
"""FileB -> FileB
   Renvoie la file privee de son tournoi de degre minimal."""
def AjoutMin(T, F):
"""Tournoi * FileB -> FileB
   Hypothese : le tournoi est de degre inferieur au MinDeg de la file
   Renvoie la file obtenue en ajoutant le tournoi comme
   tournoi de degre minimal de la file initiale."""
```

Algorithme d'Union

```
def UnionFile(F1. F2):
"""FileB * FileB -> FileB
   Renvoie la file binomiale union des deux files F1 et F2."""
return UFret(F1, F2, vide)
def UFret(F1, F2, T):
"""FileB * FileB * TournoiB-> FileB
   Renvoie la file binomiale union de deux files et d'un tournoi."""
 if EstVide(T): #pas de tournoi en retenue
   if EstVide(F1):
      return F2
    if EstVide(F2):
      return F1
   T1 = MinDeg(F1)
   T2 = MinDeg(F2)
   if Deare(T1) < Deare(T2):</pre>
      return AjoutMin(T1, UnionFile(Reste(F1), F2))
    if Degre(T2) < Degre(T1):</pre>
      return AjoutMin(T2, UnionFile(Reste(F2), F1))
    if Degre(T1) == Degre(T2):
      return UFret(Reste(F1), Reste(F2), Union2Tid(T1.T2))
```

Algorithme d'Union

```
else: #T tournoi en retenue
 if EstVide(F1):
    return UnionFile(File(T), F2)
  if EstVide(F2):
    return UnionFile(File(T). F1)
 T1 = MinDeg(F1)
 T2 = MinDeg(F2)
 if Degre(T) < Degre(T1) and Degre(T) < Degre(T2):</pre>
    return AjoutMin(T, UnionFile(F1, F2))
  if Degre(T) == Degre(T1) and Degre(T) == Degre(T2):
    return AjoutMin(T, UFret(Reste(F1), Reste(F2), \\
        Union2Tid(T1, T2)))
  if Degre(T) == Degre(T1) and Degre(T) < Degre(T2):</pre>
    return UFret(Reste(F1), F2, Union2Tid(T1, T))
  if Degre(T) == Degre(T2) and Degre(T) < Degre(T1):</pre>
    return UFret(Reste(F2), F1, Union2Tid(T2, T))
```

Analyse de complexité

Union de 2 files binomiales FB_n et FB_m en $O(\log_2(n+m))$

- Critère de complexité : nombre de comparaisons entre clés
- Complexité dans le pire des cas
- Hypothèse : toutes les primitives ont une complexité en O(1)
- Idée :
 L'union de 2 tournois de même taille nécessite 1 comparaison entre clés et ajoute 1 arête dans la file résultat.
- Conséquence : Le nombre de comparaisons pour faire l'union de 2 files c'est le nombre d'arêtes de la file union diminué du nombre d'arêtes des files de départ.

Calcul

Nombre de comparaisons pour faire l'union d'une file binomiale de n éléments et d'une file binomiale de m éléments.

$$\# cp(FB_n \cup FB_m) = n + m - \nu(n+m) - (n-\nu(n)) - (m-\nu(m))$$

$$= \nu(n) + \nu(m) - \nu(n+m)$$

$$< \lfloor \log_2 n \rfloor + 1 + \lfloor \log_2 m \rfloor + 1$$

$$\le 2 \lfloor \log_2(n+m) \rfloor + 2$$

$$= \underset{n \to \infty}{} O(\log_2(n+m)).$$

Exemples:

- FB₂₁ ∪ FB₁₀
- FB₂₁ ∪ FB₁₁

Ajout d'un élément x à une file FB_n

Algorithme

Créer une file binomiale FB_1 contenant uniquement x. Puis faire l'union de FB_1 et FB_n .

Complexité : $\nu(n) + 1 - \nu(n+1) \longrightarrow$ entre 0 et $\nu(n)$

Exemples:

- $FB_1 \cup FB_8$
- *FB*₁ ∪ *FB*₇

Construction

Complexité de la construction d'une file binomiale par **adjonctions successives** de ses *n* éléments.

$$\#cp(FB_n) = \nu(n-1) + 1 - \nu(n) + \nu(n-2) + 1 - \nu(n-1) + \dots + \nu(1) + 1 - \nu(2) = n - \nu(n).$$

Donc le nombre moyen de comparaisons pour 1 ajout est $1 - \frac{\nu(n)}{n} < 1$.

Coût amorti d'une opération dans une série d'opérations :

$$\frac{\text{coût total}}{\text{\#opérations}}$$

Suppression du minimum de FB_n

Recherche du minimum

Le minimum de la file est à la racine d'un des tournois la composant.

Complexité : $\nu(n) - 1$ comparaisons = $O(\log n)$

Suppression du minimum

- Déterminer l'arbre B_k de racine minimale
- Supprimer la racine de $B_k \longrightarrow \text{File} < B_{k-1}, \dots, B_0 >$
- Faire l'union des files $FB_n \setminus B_k$ et $\langle B_{k-1}, \dots, B_0 \rangle$

Complexité : $O(\log n)$.

Diminuer une clé

Hypothèse:

Accès direct au nœud dont il faut diminuer la clé

- modifier la clé
- échanger le nœud avec son père jusqu'à vérifier l'hypothèse de croissance (≡ tas)

Le nombre maximum de comparaisons est la hauteur de l'arbre.

Complexité : $O(\log n)$.

Coût amorti

Définition

- Coût amorti d'une opération dans une suite d'opérations

 coût moyen d'une opération dans le pire cas, quelle que soit la suite d'opérations.
- ne dit rien sur le coût d'une opération particulière, qui, prise indépendamment, pourrait avoir un coût pire supérieur.

Méthodes

- méthode par agrégat : coût amorti = coût total /# d'opérations
- méthode du potentiel
- autres...

Coût amorti : méthode par agrégat

- **Principe :** majorer le coût total d'une suite de *n* opérations et diviser par *n*.
- Exemple : opérations sur les piles
 - empiler(S,x) \rightarrow coût 1
 - dépiler(S) \rightarrow coût 1
 - multidépiler(S,k) \rightarrow coût $\leq k$

Suite de *n* opérations :

- coût maximal d'une opération O(n)
- mais coût amorti de chaque opération en O(1) :

(on ne dépile que les éléments empilés \rightarrow coût de n opérations en O(n)).

Coût amorti : méthode du potentiel

- Principe: à chaque structure de données est associé un potentiel, qui peut être libéré pour payer des opérations futures
 - structure de données *D_i*,
 - fonction potential $\Phi: \mathcal{D} \to \mathcal{R}^+$, vérifiant $\Phi(D_i) \ge \Phi(D_0)$
 - coût amorti de la i-ème opération : $\hat{c}_i = c_i + \Phi(D_i) \Phi(D_{i-1})$ (c_i coût réel de la i-ème opération)
 - coût amorti total : $\sum_{i=1}^{n} \hat{c}_i = \sum_{i=1}^{n} c_i + \Phi(D_n) \Phi(D_0)$ Borne sup du coût réel total car $\Phi(D_n) \ge \Phi(D_0)$

Méthode du potentiel : exemple

Exemple: opérations sur les piles

- $\Phi(D_i)$ = nombre d'objets de D_i
- coût amorti de chaque opération en O(1) :
 - empiler : $\Phi(D_i) \Phi(D_{i-1}) = (s+1) s$ donc $\hat{c}_i = 1 + 1 = 2$
 - depiler : $\Phi(D_i) \Phi(D_{i-1}) = -1$ donc $\hat{c}_i = 1 1 = 0$
 - Multidepiler : $\Phi(D_i) \Phi(D_{i-1}) = -min(s, k)$ donc $\hat{c}_i = 0$

coût amorti total $\sum_{i=1}^{n} \hat{c}_i < 2n$, coût amorti d'une opération de la suite en O(1).

Retour sur les files binomiales : Coût amorti

Files Binomiales:

- ajout d'un élément et recherche du minimum en O(log n)
- suppression du minimum et union de 2 files en O(log n)

Remarque : on ne peut pas espérer avoir O(1) pour ajout et suppression du minimum, car alors on serait en contradiction avec les résultats de borne inférieure en $O(n \log n)$ pour le tri par comparaisons.