

Physique

Classe: 4-ème Math & 4 -ème Sc-Exp

Chapitre: La cinétique chimique

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

Exercice 1

() 20 min

4 pts

Dans des conditions appropriées l'ion peroxodisulfate $S_2O_8^{2-}$ oxyde l'ion I^- selon la réaction totale et d'équation :

$$S_2O_8^{2-} + 3I^- \rightarrow 2 SO_4^{2-} + I_3^-$$

Le milieu réactionnel brunit $progressivement \ du \ fait \ de \ la \ formation \\ de \ l'ion \ I_3^- \ .$

A la date t=0 on mélange un volume

 V_1 = 50cm³ de solution de d'iodure de potassium (KI) de concentration

 $C_1 = 0.$ 15 mol. L^{-1} et un volume

 $V_2=50$ cm³ de solution de peroxodisulfate de sodium $Na_2S_2O_8$ de concentration C_2 , à la température $\theta=25$ °C. A des différentes dates on prélève 10cm³ du milieu réactionnel qu'on dose par une solution de thiosulfate de sodium $(Na_2S_2O_3)$ de concentration molaire c=0.02 mol. L⁻¹. Le bilan de la réaction de dosage est :

$$2S_2O_3^{2-} + I_3^- \rightarrow 2S_4O_6^{2-} + 3I^-$$

Les résultats du dosage ont permis de tracer la courbe représentée ci-contre :

- 1. En utilisant le graphique
 - a. Montrer que les ions iodures sont en excès.
 - **b.** Déterminer la valeur de la concentration C_2 de la solution peroxodisulfate de sodium.

2. Déterminer le volume nécessaire, de la solution de thiosulfate, au dosage de la quantité de matière de I_3^- à la date t=20min.

Exercice 2

(5) 10 min

3 pts

On étudie l'évolution, au cours du temps, d'un mélange formé d'un volume $V_1 = 50 \text{ mL}$ d'une solution aqueuse acidifiée (S_1) de permanganate de potassium $KMnO_4$ de concentration molaire C_1 et d'un volume $V_2 = 50 \text{ mL}$ d'une solution aqueuse (S_2) d'acide oxalique $H_2C_2O_4$ de concentration molaire $C_2 = 0,12 \text{ mol. L}^{-1}$. Une mesure de la concentration finale en ions Mn^{2+} donne : $[Mn^{2+}]_f = 20 \text{mmol.L}^{-1}$

- 1. Établir l'équation de la réaction d'oxydoréduction qui se produit dans ce système sachant que les couples rédox mis en jeu sont : MnO_4 / Mn^{2+} et CO_2 / $H_2C_2O_4$.
- 2. Dresser le tableau descriptif d'évolution du système.
- 3. Calculer l'avancement final de la réaction.
- 4. L'un des deux réactifs MnO_4 ou $H_2C_2O_4$ est le réactif limitant. Préciser lequel et déduire la valeur de C_1

Exercice 3

(S) 20 min

5 pts

A un instant t=0 min, on mélange un volume $V_1=50 mL$ d'une solution aqueuse de peroxodisulfate de potassium $(2K^+ + S_2O_8^{\ 2-})$ de concentration molaire C_1 avec un volume $V_2=450 mL$ d'une solution d'iodure de potassium $(K^+ + I^-)$ de concentration molaire $C_2=0,05$ mol. L^{-1} .

- 1. Le mélange prend une coloration jaune brunâtre caractéristique du diiode et qui devient de plus en plus foncée au cours du temps.
 - a. Préciser le caractère prouvé par cette observation, pour la réaction chimique qui a lieu.
 - b. Ecrire l'équation de cette réaction chimique supposée totale.
- 2. On effectue régulièrement, à partir du mélange réactionnel un prélèvement auquel on ajoute de l'eau glacée puis on y dose le diiode, à l'aide d'une solution de thiosulfate de sodium. Les résultats du dosage ont permis de tracer la courbe de la figure ci-contre, donnant l'évolution temporelle de la concentration des ions S₂O₈ ²-

a. Dresser le tableau d'évolution du système chimique en fonction de l'avancement volumique **y** de la réaction d'apparition du diiode.

- b. Préciser le réactif limitant et déterminer C₁.
- Déterminer la vitesse moyenne volumique de la réaction entre les instants t_1 =50min et t_2 =150min.
- $\boldsymbol{d}_{\boldsymbol{v}}$ Définir la vitesse volumique, $\boldsymbol{V}_{\boldsymbol{v}}$, de cette réaction et déterminer sa valeur à l'instant **t=100min**.

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

www.takiacademy.com

73.832.000