

# **DUAL OPERATIONAL AMPLIFIERS**

- LOW POWER CONSUMPTION
- LARGE INPUT VOLTAGE RANGE
- NO LATCH-UP
- HIGH GAIN
- SHORT-CIRCUIT PROTECTION
- NO FREQUENCY COMPENSATION REQUIRED



The MC1458 is a high performance monolithic dual operational amplifier intended for a wide range of analog

applications:

- Summing amplifier
- Voltage follower
- Integrator
- Active filter
- Function generator

The high gain and wide range of operating voltages provide superior performance in integrator, summing amplifier, and general feed back applications.



#### **ORDER CODES**

| Part Number      | Temperature | Package |   |  |  |
|------------------|-------------|---------|---|--|--|
| Fait Number      | Range       | N       | D |  |  |
| MC1458           | 0, +70°C    | •       | • |  |  |
| MC1458I          | –40, +105°C | •       | • |  |  |
| MC1558           | −55, +125°C | •       | • |  |  |
| Example: MC1458N |             |         |   |  |  |

# PIN CONNECTIONS (top view)



October 1997 1/8

# **SCHEMATIC DIAGRAM**



# **ABSOLUTE MAXIMUM RATINGS**

| Symbol            | Parameter                            | MC1458      | MC1458I     | MC1558      | Unit |
|-------------------|--------------------------------------|-------------|-------------|-------------|------|
| Vcc               | Supply Voltage                       | ±22         | ±22         | ±22         | V    |
| Vi                | Input Voltage                        | ±15         | ±15         | ±15         | V    |
| $V_{id}$          | Differential Input Voltage           | ±30         | ±30         | ±30         | V    |
| P <sub>tot</sub>  | Power Dissipation  D Suffix N Suffix |             | 300<br>500  |             | mW   |
|                   | Output Short-circuit Duration        |             | Infinite    |             |      |
| T <sub>oper</sub> | Operating Free-air Temperature Range | 0 to +70    | -40 to +105 | -55 to +125 | °C   |
| T <sub>stg</sub>  | Storage Temperature Range            | -65 to +150 | -65 to +150 | -65 to +150 | °C   |



# **ELECTRICAL CHARACTERISTICS**

 $V_{CC} = \pm 15V$ ,  $T_{amb} = 25^{\circ}C$ , (unless otherwise specified)

| Symbol            | Parameter                                                                                                                                                                                                              |                      | MC1458 - 1458I - 1558 |            |      |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------|------------|------|
|                   | Falametei                                                                                                                                                                                                              | Min.                 | Тур.                  | Max.       | Unit |
| $V_{io}$          | $ \begin{array}{l} \text{Input Offset Voltage } (R_S \leq 10 k\Omega) \\ T_{amb} = 25^{\circ} C \\ T_{min.} \leq T_{amb} \leq T_{max}. \end{array} $                                                                   |                      | 1                     | 5<br>6     | mV   |
| l <sub>io</sub>   | Input Offset Current $T_{amb} = 25^{\circ}C$ $T_{min.} \le T_{amb} \le T_{max}$ .                                                                                                                                      |                      | 2                     | 200<br>300 | nA   |
| I <sub>ib</sub>   | Input Bias Current $T_{amb} = 25^{\circ}C$ $T_{min.} \le T_{amb} \le T_{max}$ .                                                                                                                                        |                      | 30                    | 500<br>800 | nA   |
| $A_{vd}$          | Large Signal Voltage Gain ( $V_O = \pm 10V$ , $R_L = 2k\Omega$ )<br>$T_{amb} = 25^{\circ}C$<br>$T_{min.} \le T_{amb} \le T_{max}$ .                                                                                    | 50<br>25             | 200                   |            | V/mV |
| SVR               | Supply Voltage Rejection Ratio ( $R_S \le 10k\Omega$ )<br>$T_{amb} = 25^{\circ}C$<br>$T_{min.} \le T_{amb} \le T_{max}$ .                                                                                              | 77<br>77             | 90                    |            | dB   |
| lcc               | Supply Current, all Amp, no Load $T_{amb} = 25^{\circ}C$ $T_{min} \leq T_{amb} \leq T_{max}.$                                                                                                                          |                      | 2.3                   | 5<br>6     | mA   |
| V <sub>icm</sub>  | Input Common Mode Voltage Range $T_{amb} = 25^{\circ}C$ $T_{min.} \le T_{amb} \le T_{max}$ .                                                                                                                           | ±12<br>±12           |                       |            | V    |
| CMR               | Common-mode Rejection Ratio (R <sub>S</sub> $\leq$ 10 k $\Omega$ )<br>$T_{amb} = 25^{\circ}C$<br>$T_{min} \leq T_{amb} \leq T_{max}$                                                                                   | 70<br>70             | 90                    |            | dB   |
| los               | Output Short-circuit Current T <sub>amb</sub> = 25°C                                                                                                                                                                   | 10                   | 20                    | 35         | mA   |
| ±V <sub>OPP</sub> | $ \begin{array}{ll} \text{Output Voltage Swing} \\ T_{amb} = 25^{\circ}\text{C} & R_{L} = 10 k\Omega \\ R_{L} = 2k\Omega \\ T_{min.} \leq T_{amb} \leq T_{max.} & R_{L} = 10 k\Omega \\ R_{L} = 2k\Omega \end{array} $ | 12<br>10<br>12<br>10 | 14<br>13              |            | V    |
| SR                | Slew Rate ( $V_l = \pm 10V$ , $R_L = 2k\Omega$ , $C_L = 100pF$ , $T_{amb} = 25^{\circ}C$ , unity gain)                                                                                                                 | 0.2                  | 0.8                   |            | V/μs |
| t <sub>r</sub>    | Rise Time ( $V_I = 20$ mV, $R_L = 2$ k $\Omega$ , $C_L = 100$ pF, $T_{amb} = 25$ °C, unity gain)                                                                                                                       |                      | 0.3                   |            | μs   |
| K <sub>OV</sub>   | Overshoot (V <sub>I</sub> = 20mV, R <sub>L</sub> = $2k\Omega$ ,<br>C <sub>L</sub> = $100pF$ , T <sub>amb</sub> = $25^{\circ}C$ , unity gain)                                                                           |                      | 5                     |            | %    |
| Rı                | Input Resistance                                                                                                                                                                                                       | 0.3                  | 2                     |            | ΜΩ   |
| Zic               | Common-mode Input Impedance                                                                                                                                                                                            |                      | 200                   |            | ΜΩ   |
| Cı                | Input Capacitance                                                                                                                                                                                                      |                      | 1.4                   |            | pF   |
| Ro                | Output Resistance                                                                                                                                                                                                      |                      | 75                    |            | Ω    |
| FPB               | Full Power Bandwidth $(R_L = 2k\Omega, V_O \ge \pm 10V, A_{VD} = 1, THD \le 5\%)$                                                                                                                                      |                      | 14                    |            | KHz  |
| В                 | Unity Gain Bandwidth (V <sub>I</sub> = 10mV, R <sub>L</sub> = $2k\Omega$ , C <sub>L</sub> = $100pF$ , $T_{amb} = 25$ °C)                                                                                               |                      | 1                     |            | MHz  |

#### **ELECTRICAL CHARACTERISTICS** (continued)

| Symbol                           | Parameter                                                                                                                                    |      | MC1458 - 1458I<br>MC1558 |      |                                      |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------|--------------------------|------|--------------------------------------|
|                                  |                                                                                                                                              | Min. | Тур.                     | Max. |                                      |
| GBP                              | Gain Bandwidth Product $(V_I = 10 \text{mV}, R_L = 2 \text{k}\Omega, C_L = 100 \text{pF}, f = 100 \text{kHz}, T_{amb} = 25^{\circ}\text{C})$ | 0.4  | 1                        |      | MHz                                  |
| THD                              | Total Harmonic Distortion (f = 1kHz, $A_V$ = 20dB, $R_L$ = 2k $\Omega$ , $V_O$ = 2 $V_{PP}$ , $C_L$ = 100pF, $T_{amb}$ = 25 $^{\circ}$ C)    |      | 0.02                     |      | %                                    |
| en                               | Equivalent Input Noise Voltage (f = kHz, $R_s = 100\Omega$ )                                                                                 |      | 45                       |      | $\frac{\text{nV}}{\sqrt{\text{Hz}}}$ |
| Øm                               | Phase Margin                                                                                                                                 |      | 65                       |      | Degrees                              |
| Am                               | Gain Margin                                                                                                                                  |      | 11                       |      | dB                                   |
| V <sub>O1</sub> /V <sub>O2</sub> | Channel Separation                                                                                                                           |      | 120                      |      | dB                                   |

#### **OPEN LOOP VOLTAGE GAIN**

# 115 Tamb = +25 C 110 105 105 95 90 0 4 8 12 16 20 SUPPLY VOLTAGE (±V)

#### **OPEN LOOP FREQUENCY RESPONSE**



# POWER BANDWIDTH (LARGE SIGNAL SWING)



#### **POWER CONSUMPTION**

















# **TYPICAL APPLICATIONS**

# LOW PASS FILTER



# **GIRATOR**



# TURNABLE NOTCH FILTER



# PACKAGE MECHANICAL DATA

8 PINS - PLASTIC DIP



| Dimensions   | Millimeters |      |       | Inches |       |       |
|--------------|-------------|------|-------|--------|-------|-------|
| Dilliensions | Min.        | Тур. | Max.  | Min.   | Тур.  | Max.  |
| Α            |             | 3.32 |       |        | 0.131 |       |
| a1           | 0.51        |      |       | 0.020  |       |       |
| В            | 1.15        |      | 1.65  | 0.045  |       | 0.065 |
| b            | 0.356       |      | 0.55  | 0.014  |       | 0.022 |
| b1           | 0.204       |      | 0.304 | 0.008  |       | 0.012 |
| D            |             |      | 10.92 |        |       | 0.430 |
| Е            | 7.95        |      | 9.75  | 0.313  |       | 0.384 |
| е            |             | 2.54 |       |        | 0.100 |       |
| e3           |             | 7.62 |       |        | 0.300 |       |
| e4           |             | 7.62 |       |        | 0.300 |       |
| F            |             |      | 6.6   |        |       | 0260  |
| i            |             |      | 5.08  |        |       | 0.200 |
| L            | 3.18        |      | 3.81  | 0.125  |       | 0.150 |
| Z            |             |      | 1.52  |        |       | 0.060 |

#### **PACKAGE MECHANICAL DATA**

8 PINS - PLASTIC MICROPACKAGE (SO)



| Dimensions | Millimeters |      |      | Inches |       |       |
|------------|-------------|------|------|--------|-------|-------|
| Dimensions | Min.        | Тур. | Max. | Min.   | Тур.  | Max.  |
| А          |             |      | 1.75 |        |       | 0.069 |
| a1         | 0.1         |      | 0.25 | 0.004  |       | 0.010 |
| a2         |             |      | 1.65 |        |       | 0.065 |
| a3         | 0.65        |      | 0.85 | 0.026  |       | 0.033 |
| b          | 0.35        |      | 0.48 | 0.014  |       | 0.019 |
| b1         | 0.19        |      | 0.25 | 0.007  |       | 0.010 |
| С          | 0.25        |      | 0.5  | 0.010  |       | 0.020 |
| c1         |             |      | 45°  | (typ.) |       |       |
| D          | 4.8         |      | 5.0  | 0.189  |       | 0.197 |
| E          | 5.8         |      | 6.2  | 0.228  |       | 0.244 |
| е          |             | 1.27 |      |        | 0.050 |       |
| e3         |             | 3.81 |      |        | 0.150 |       |
| F          | 3.8         |      | 4.0  | 0.150  |       | 0.157 |
| L          | 0.4         |      | 1.27 | 0.016  |       | 0.050 |
| М          |             |      | 0.6  |        |       | 0.024 |
| S          | 8° (max.)   |      |      |        |       |       |

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

© 1997 SGS-THOMSON Microelectronics - Printed in Italy - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.