

Productivity Group

Gulf of Maine
Research Institute
Science. Education. Community.

- Stock assessment using machine learning
- Diagnosing bias in stock assessments

Stock Assessment Goals

- estimate current & past abundance
- estimate recruitment & mortality
- specify reference points:
 - Bmsy = biomass that produces maximum sustainable yield (MSY)
 - Fmsy = fishing mortality that produces MSY
- determine stock status
 - B<Bmsy —> overfished
 - F>Fmsy —> overfishing
- Project forward ~3 years to set quotas

Stock Assessments

- Current approach
 - age-structured model for a particular region (stock)
 - strong dependence on trawl survey (stratified mean abundance)
 - fishery dependent data used to calculate catch
- Critiques
 - no environmental data
 - lots of data (esp. fishery dependent and human-system data) not included
 - poor performance in NE in last decade

Stock Assessments

- Current approach
 - age-structured model for a particular region (stock)
 - strong dependence on trawl survey (stratified mean abundance)
 - fishery dependent da

Can machine learning (e.g. neural nets) replicate stock assessments?

- Critiques
 - no environmental data
 - lots of data (esp. fishery dependent and human-system data) not included
 - poor performance in NE in last decade

Gulf of Maine
Research Institute
Science. Education. Community.

- Forward model
 - cod like fish, 5 ages
 - temperature dependent movement
 - temperature dependent mortality & recruitment
 - monthly time step

- Sampling
 - Survey: samples each cell twice per year
 - Fishery: randomly samples 100 cells each month

Gulf of Maine
Research Institute
Science. Education. Community.

- Machine-learning model
 - Feed-forward neural net

Gulf of Maine
Research Institute
Science. Education. Community.

- Machine-learning model
 - Feed-forward neural net

Spring Survey Survey

Number of age j fish in Year j

Simulating a survey

2018 from 2017

Hot takes

- Seems like it's working (more or less)
- ML is more flexible than standard methods
 - fitting takes only a few minutes
 - includes space
 - not clear if adding fishery-dependent data is helping
- Improvements:
 - log-transform data, ditch x,y
 - more interesting catch time series
 - single model for all ages

Diagnosing Bias in Fish Stock Assessment

- **Problem:** Retrospective patterns represent a large source of uncertainty in the assessment of Northeast groundfish stock. These patterns can lead to unintentional overfishing that undermines efforts to sustainably manage fisheries or to underutilization of the resource that can impact profitability of the fishery.
- Goal: Explore potential drivers of bias in a suite of Northeast groundfish on Georges Bank.
- We anticipate candidate drivers will include:
 - 1) Changes in the ecosystem that impact fish population dynamics,
 - 2) Changes in fishing behavior, management, and reporting of catch, and
 - 3) Changes in survey or fishery catchability.
- Approach: Evaluate associations between model diagnostics and time series data for candidate drivers using:
 - Machine learning approaches: neural networks
 - Non-linear models: generalized additive models or generalized additive mixed models.

Diagnosing Bias in Fish Stock Assessment

Potential Drivers to Investigate

THIS WOULD BE A LOT EASIER WITH AN OKN

Type of Driver	Detential Driver	Llymoth atical lease act	Time series	Course
Type of Driver	Potential Driver	Hypothetical Impact	Time series	Source
Ecosystem	Decadal-scale climate	Recruitment, growth and/		NOAA National Centers for Environmental
	variability	or natural mortality	NAO, AMO, and Gulf	Information
			Stream Index	
Ecosystem	Climate warming trend	Recruitment, growth and/		Modeled SST< bottom temp. (ROMs)
		or natural mortality	temperature anomaly	
Ecosystem	Unaccounted for	Time-varying natural	Predator abundance time	NOAA stock assessment output, NOAA
	predation	mortality	series (e.g., spiny dogfish)	food habits database
			or diet information	
Ecosystem	Fish distribution shift	Time-varying catchability	Sea surface or bottom	NASA Optimum Interpolation Sea Surface
		in survey or fishery	temperature anomaly for	Temp. (OISST) or FVCOM (bottom
			region	temperature)
Fishery	Misreporting of catch	Bias/error in reported	Catch reporting error	Catch-area reporting errors (Palmer
		catch		2017), Catch reporting error
				(Groundfish Plan Development Team.
				2018); Revised recreational data
				(NOAA MRIP)
Fishery	Misreporting of catch	Underestimated discards	Time series of stock	NEFMC time series of ACL utilization rates,
			utilization rate or	time series of TAC for choke species.
			constraining "choke"	
			stocks trajectories)	
Survey	Changes in survey	Time-varying catchability	Change in survey	Break-point transition between
	catchability		catchability that has not	NOAA survey vessels Albatross and
			been accounted for	Bigelow
			through standardization.	

- Machine-learning model
 - Feed-forward neural net

Two Stock Model

- Two stocks: GoM (blue), GB (red)
- Assume stocks correspond (roughly) to reproductive units
 - catch and prior abundance (survey) particular to a stock
- But, assume fish are essentially the same
 - expect similar relationships with environment (T, depth) regardless of area

Two stock area model

Number of fish in each age/length class at (x,y,month=m,year=j)

1 if sample from stock area A, 0 if not (one-hot)

Catch of fish in each age/length class in stock area A=1

Sample of fish in each age/length class from survey cell s

SST at location & time, averaged over stock area, and averaged over area and year

Catch of fish in each age/length class in stock area A=2

for s=1: number of survey cells