

HIGH-TEMPERATURE, 80V N-CHANNEL POWER MOSFET FAMILY

FEATURES

- ▲ Minimum BV_{DSS} = 90V.
- ▲ Allowed V_{GS} range –5.5V to +5.5V.
- ▲ Operational beyond the -60°C to +230°C temperature range.
- - XTR2N0825: 1.54Ω @ 230°C
 XTR2N0850: 0.70Ω @ 230°C
- ▲ Maximum I_D:
 - o XTR2N0825: 3.4A @ 230°C
 - XTR2N0850: 7.4A @ 230°C
- \triangle On-time $(t_{d(on)}+t_r)$:
 - o XTR2N0825: 16nsec @ 230°C
 - XTR2N0850: 19nsec @ 230°C
- \blacktriangle Off-time $(t_{d(off)}+t_f)$:
 - XTR2N0825: 31nsec @ 230°C
 - XTR2N0850: 38nsec @ 230°C
- ▲ Ruggedized 3-lead TO257, 8-lead side brazed DIP and 8-lead SOIC with ePAD.
- ▲ Also available as bare die.

APPLICATIONS

- Reliability-critical, Automotive, Aeronautics & Aerospace, Down-hole.
- ▲ DC/DC converters, power switching, motor control, power inverters, power linear regulators, power supply.

DESCRIPTION

XTR2N0800 is a family of N-channel power MOSFETs designed to reliably operate over a wide range of temperatures. Full functionality is guaranteed from -60°C to +230°C, though operation well below and above this temperature range is achieved.

Fabricated on a Silicon-on-Insulator (SOI) process, XTR2N0800 family parts offer reduced leakage currents while providing high drain currents and low $R_{\text{DS(on)}}.$ These features allow XTR2N0800 parts to be ideally suited for switching applications.

XTR2N0800 family parts have been designed to reduce system cost and ease adoption by reducing the learning curve and providing smart and easy to use features.

Parts from the XTR2N0800 family are available in ruggedized 3-lead TO257, 8-lead side brazed DIP and 8-lead SOIC with ePAD. Parts are also available as tested bare die.

PRODUCT HIGHLIGHT

Power Series Regulator

Flyback DC-DC Converter

ORDERING INFORMATION

 $\frac{TR}{\Psi}$ Process: TR = HiTemp, HiRel R = HiRel

2N ↓
Part family 08xx ↓
Part number

Product Reference	Temperature Range	Package	Pin Count	Marking
XTR2N0825-TD	-60°C to +230°C	Tested Bare die		XTR2N0825
XTR2N0850-TD	-60°C to +230°C	Tested Bare die		XTR2N0850
XTR2N0825-D	-60°C to +230°C	Ceramic side Braze DIP	8	XTR2N0825
XTR2N0825-FE	-60°C to +230°C	Gull-wing flat pack with ePad	8	XTR2N0825
XTR2N0825-T	-60°C to +230°C	TO-257AA	3	XTR2N0825
XTR2N0850-T	-60°C to +230°C	TO-257AA	3	XTR2N0850

Other packages and packaging configurations possible upon request.

ABSOLUTE MAXIMUM RATINGS

Drain-source voltage -2V to +90V

Gate-source voltage ±6.0V

Storage temperature range -70°C to +230°C

Operating junction temperature range -70°C to +300°C

ESD classification 2kV HBM MIL-STD-750

Caution: Stresses beyond those listed in "ABSOLUTE MAXIMUM RATINGS" may cause permanent damage to the device. These are stress ratings only and functionality of the device at these or any other condition beyond those indicated in the operational sections of the specifications is not implied. Exposure to "ABSOLUTE MAXIMUM RATINGS" conditions for extended periods may permanently affect device reliability.

PRODUCT VARIANTS

DIP8 / CDFP8

Top view

AIN 1, 2, 3 SOURCE

4 GATE

5, 6, 7, 8 DRAIN ePAD of CDFP8 SOURCE

THERMAL CHARACTERISTICS

Parameter	Condition	Min	Тур	Max	Units	
XTR2N08xx-T (TO257)	XTR2N08xx-T (TO257)					
Thermal Resistance: J-C R _{Th_J-c}			5		°C/W	
Thermal Resistance: J-A R _{Th_J-A}	Still air.		50		°C/W	
XTR2N0825-D (DIP8)				_	_	
Thermal Resistance: J-C R _{Th_J-c}			20		°C/W	
Thermal Resistance: J-A R _{Th_J-A}	Still air.		100		°C/W	
XTR2N0825-FE (DFP8 with exposed pad)					_	
Thermal Resistance: J-C R _{Th_J-c}	Measured on ePAD.		7		°C/W	
Thermal Resistance: J-A R _{Th_J-A}	ePAD thermally connected to 3cm² PCB copper		70		°C/W	

RECOMMENDED OPERATING CONDITIONS

Parameter	Min	Тур	Max	Units
Drain-source voltage V _{DS}	-1.5		80	V
Gate-source voltage V _{GS}	-5.5		+5.5	V
Junction Temperature ¹ T _j	-60		230	°C

Operation beyond the specified temperature range is achieved. The -60°C to +230°C range for the case temperature is considered for the case where $I_D \le I_{D(DC)}$ for a given case temperature.

XTR2N0825 SPECIFICATIONS

Unless otherwise stated, specification applies for -60°C<Tj<230°C.

Parameter	Condition	Min	Тур	Max	Units	
DC Characteristics						
Drain-source breakdown voltage BV _{DSS}	V _{GS} =0V, I _{DS} =100μA	90			V	
Static drain-source on-state resistance R _{DS(on)}	V_{GS} =+5V, I_{DS} =100mA T_{C} =-60°C T_{C} =85°C T_{C} =230°C		0.54 0.9 1.54	0.70 1.17 2.00	Ω	
Continuous drain current I _{D(DC)}	V_{GS} =+5V for TO-25 T_{J} =-60°C T_{J} =85°C T_{J} =230°C	1.15 0.80 0.60	1.6 1.1 0.85		A	
Gate threshold voltage V _{GS(th)}	V _{DS} =V _{GS} , I _{DS} =1mA T _C =-60°C T _C =85°C T _C =230°C		1.72 1.36 0.92		V	
Temperature drift of gate threshold voltage $\Delta \mathbf{V}_{\text{GS(TH)}}/\Delta \mathbf{T}_{j}$	V _{DS} =V _{GS} , I _{DS} =1mA		-2.8		mV/°C	
Off-state drain current I _{DSS}	V _{DS} =80V, V _{GS} =0V T _C =85°C T _C =230°C		0.02 13	0.5 60	μА	
Gate leakage current I _{css}	V _{GS} =±5V, V _{DS} =0V T _C =85°C T _C =230°C		±0.6 ±170	±5 ±1000	nA	
AC Characteristics						
Input capacitance C _{iss}			223		pF	
Output capacitance Coss	V _{DS} =64V, V _{GS} =0V, f=1MHz		48		pF	
Transfer capacitance C _{rss}			19		pF	
Switching Characteristics						
Pulsed drain current I _{DM}	V_{DS} =40V, $V_{GS sweep}$ =0 to +5V, d=0.2%, τ =1ms T_{C} =-60°C T_{C} =85°C T_{C} =230°C	4.5 3.1 2.3	6.4 4.5 3.4		A	
Total gate charge Q _g	V _{DS} =40V, V _{GS sweep} =0 to +5V		3.0		nC	
Turn-on delay time $t_{d(on)}$	$V_{DS}{=}20V,~V_{GS~sweep}{=}0~to~+5V,~R_{D}{=}47\Omega,~d{=}0.2\%,~\tau{=}1ms$		9			
Rise time t _r	$V_{DS}{=}20V,~V_{GS~sweep}{=}0~to~+5V,~R_{D}{=}47\Omega,~d{=}0.2\%,~\tau{=}1ms$		7		ns	
Turn-off delay time $\mathbf{t}_{d(off)}$	$V_{DS}{=}20V,~V_{GS~sweep}{=}0~to~+5V,~R_{D}{=}47\Omega,~d{=}0.2\%,~\tau{=}1ms$		18			
Fall time t _f	$V_{DS}{=}20V,~V_{GS~sweep}{=}0~to~+5V,~R_{D}{=}47\Omega,~d{=}0.2\%,~\tau{=}1ms$		13			
Drain-Source Diode Charac	teristics					
Forward diode voltage V _{SD_1A}	V _{GS} =0V, I _{DS} =-1A T _C =-60°C T _C =85°C T _C =230°C		1.28 1.15 1.10		V	

XTR2N0850 SPECIFICATIONS

Unless otherwise stated, specification applies for -60°C<T $_{\rm j}$ <230°C.

Parameter	Condition	Min	Тур	Max	Units	
DC Characteristics			_	_	_	
Drain-source breakdown voltage BV _{DSS}	V _{GS} =0V, I _{DS} =100μA	90			V	
Static drain-source on-state resistance R _{DS(on)}	V _{GS} =+5V, I _{DS} =100mA T _C =-60°C T _C =85°C T _C =230°C		245 410 700	320 530 910	mΩ	
Continuous drain current $I_{D(DC)}$	V _{GS} =+5V for TO-25 T _J =-60°C T _J =85°C T _J =230°C	2.50 1.75 1.30	3.55 2.45 1.85		A	
Gate threshold voltage $V_{\text{GS(th)}}$	$V_{DS}=V_{GS},\ I_{DS}=1mA$ $T_{C}=-60^{\circ}C$ $T_{C}=85^{\circ}C$ $T_{C}=230^{\circ}C$		1.66 1.28 0.81		V	
Temperature drift of gate threshold voltage ΔV _{GS(TH)} /ΔT _j	V _{DS} =V _{GS} , I _{DS} =1mA		-2.9		mV/°C	
Off-state drain current I _{DSS}	V _{DS} =80V, V _{GS} =0V T _C =85°C T _C =230°C		0.04 30	1 150	μА	
Gate Leakage current I _{GSS}	V _{GS} =±5V, V _{DS} =0V T _C =85°C T _C =230°C		±0.8 ±190	±5 ±1000	nA	
AC Characteristics					_	
Input capacitance C _{iss}			524		pF	
Output capacitance Coss	V _{DS} =64V, V _{GS} =0V, f=1MHz		113		pF	
Transfer capacitance C _{rss}			45		pF	
Switching Characteristics						
Pulsed drain current I _{DM}	V_{DS} =40V, $V_{GS sweep}$ =0 to +5V, d=0.2%, τ =1ms T_{C} =-60°C T_{C} =85°C T_{C} =230°C	9.9 6.9 5.2	14.2 9.9 7.4		A	
Total gate charge Q _g	V _{DS} =40V, V _{GS sweep} =0 to +5V		6.6		nC	
Turn-on delay time $\mathbf{t}_{d(on)}$	V_{DS} =20V, V_{GS} sweep=0 to +5V, R_D =47 Ω , d=0.2%, τ =1ms		11			
Rise time t _r	$V_{DS}{=}20V,~V_{GS~sweep}{=}0~to~+5V,~R_{D}{=}47\Omega,~d{=}0.2\%,~\tau{=}1ms$		8		ns	
Turn-off delay time $t_{d(off)}$	V_{DS} =20V, $V_{GS~sweep}$ =0 to +5V, R_D =47 Ω , d=0.2%, τ =1ms		22			
Fall time t _f	$V_{DS}{=}20V,~V_{GS~sweep}{=}0~to~+5V,~R_{D}{=}47\Omega,~d{=}0.2\%,~\tau{=}1ms$		16			
Drain-Source Diode Charact	teristics					
Forward diode voltage V_{SD_1A}	V _{GS} =0V, I _{DS} =-1A T _C =-60°C T _C =85°C T _C =230°C		1.10 0.95 0.83		V	

XTR2N0825 TYPICAL PERFORMANCE

Figure 1. Drain Current (I_{DS}) vs Gate-Source Voltage for several case temperatures. V_{DS} =50mV.

Figure 3. Drain-Source ON Resistance ($R_{DS(on)}$) vs Gate-Source Voltage for several case temperatures. V_{DS} =50mV.

Figure 5. Drain Current (IDS) vs Gate-Source Voltage for several case temperatures. $V_{\text{GS}}\!\!=\!\!V_{\text{DS}}$

Figure 2. Gate-Source Threshold Voltage ($V_{GS(th)}$) vs Case temperatures. V_{GS} = V_{DS} .

Figure 4. Drain-Source ON Resistance ($R_{DS(on)}$) vs Case Temperature. V_{DS} =50mV.

Figure 6. Body Diode Forward Current (I_{FD}) vs Forward Voltage for several case temperature. V_{GS} =0V.

Figure 7. Off-State Drain Current (I_DSS) vs Case Temperature. $V_{DS}\!=\!40V,\,V_{GS}\!=\!0V.$

Figure 9. Pulsed Drain Current (I_{DM}) vs Drain-Source Voltage for several case temperatures. $V_{\rm GS}$ =3V, 4V and 5V.

Figure 11. Timing Characteristics vs Case Temperature. $V_{\text{DS}}{=}20V,\,V_{\text{GS sweep}}{=}\,0$ to 5V.

Figure 8. Gate Leakage Current (I_GSS) vs Case Temperature. $V_{\text{GS}}{=}\pm5V,\,V_{\text{DS}}{=}0V.$

Figure 10. Total Gate Charge (\mathbf{Q}_g) vs Gate-Source Voltage for several case temperatures. $I_{DS}{=}900mA$.

Figure 12. Capacitance vs Drain-Source Voltage at Tc=25°C.

XTR2N0850 TYPICAL PERFORMANCE

Figure 13. Drain Current (I_{DS}) vs Gate-Source Voltage for several case temperatures. V_{DS} =50mV.

Figure 15. Drain-Source ON Resistance ($R_{DS(on)}$) vs Gate-Source Voltage for several case temperatures. V_{DS} =50mV.

Figure 17. Drain Current (IDS) vs Gate-Source Voltage for several case temperatures. $V_{\text{GS}} \! = \! V_{\text{DS}}$

Figure 14. Gate-Source Threshold Voltage ($V_{GS(th)}$) vs Case Temperature. V_{GS} = V_{DS} .

Figure 16. Drain-Source ON Resistance ($R_{DS(on)}$) vs Case Temperature. V_{DS} =50mV.

Figure 18. Body Diode Forward Current (I_{FD}) vs Forward Voltage for several case temperature. V_{GS} =0V.

Figure 19. Off-State Drain Current (IDSS) vs Case Temperature. $V_{DS}\!=\!80V,\,V_{GS}\!=\!0V.$

Figure 21. Pulsed Drain Current (I_{DM}) vs Drain-Source Voltage for several case temperatures. V_{GS} =3V, 4V and 5V.

Figure 23. Timing Characteristics vs Case Temperature. $V_{\text{DS}}{=}20V,\,V_{\text{GS sweep}}{=}\,0$ to 5V.

Figure 20. Gate Leakage Current (I_GSS) vs Case Temperature. V_GS= ± 5 V, V_DS=0V.

Figure 22. Total Gate Charge (\mathbf{Q}_g) vs Gate-Source Voltage for several case temperatures. $I_{DS}{=}900mA$.

Figure 24. Capacitance vs Drain-Source Voltage at Tc=25°C.

Figure 25. Timing diagram definition.

PACKAGE OUTLINES

Dimensions shown in mm [inches]. Tolerances ±0.13 mm [±0.005 in] unless otherwise stated.

	Part Marking Convention				
Part Referen	Part Reference: XTRPPPPP				
XTR	X-REL Semiconductor, high-temperature, high-reliability product (XTRM Series).				
PPPPP	Part number (0-9, A-Z).				
Unique Lot A	Unique Lot Assembly Code: YYWWANN				
YY	Two last digits of assembly year (e.g. 15 = 2015).				
ww	WW Assembly week (01 to 52).				
Α	A Assembly location code.				
NN	Assembly lot code (01 to 99).				

IMPORTANT NOTICE & DISCLAIMER

Information in this document supersedes and replaces all information previously supplied. Information in this document is provided solely in connection with X-REL Semiconductor products.

The information contained herein is believed to be reliable. X-REL Semiconductor makes no warranties regarding the information contain herein. X-REL Semiconductor assumes no responsibility or liability whatsoever for any of the information contained herein. X-REL Semiconductor assumes no responsibility or liability whatsoever for the use of the information contained herein. The information contained herein is provided "AS IS, WHERE IS" and with all faults, and the entire risk associated with such information is entirely with the user. X-REL Semiconductor reserves the right to make changes, corrections, modifications or improvements, to this document and the information herein without notice. Customers should obtain and verify the latest relevant information before placing orders for X-REL Semiconductor products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information. Unless expressly approved in writing by an authorized representative of X-REL Semiconductor, X-REL Semiconductor products are not designed, authorized or warranted for use in military, aircraft, space, life saving, or life sustaining applications, nor in products or systems where failure or malfunction may result in personal injury, death, or property or environmental damage.

General Sales Terms & Conditions apply.

CONTACT US

For more information on X-REL Semiconductor's products, technical support or ordering:

✓ Web: www.x-relsemi.com/products

✓ Tel: +33 456 580 580
 ✓ Fax: +33 456 580 599
 ✓ Sales: sales@x-relsemi.com

www.x-relsemi.com/EN/Sales-Representatives

✓ Information: info@x-relsemi.com✓ Support: support@x-relsemi.com

X-REL Semiconductor

90, Avenue Léon Blum 38100 Grenoble France