Payword

- Schema de microplata electronica bazata pe lanturi hash https://people.csail.mit.edu/rivest/pubs/RS96a.prepub.pdf
- utilizata pentru realizarea de cumparaturi ce au valori mici (1 cent, 1\$)
- destinata furnizarii repetate a unei cantitati mici de informatii:
 - plata pentru paginile web vizitate
 - plata pentru melodii, filme descarcate
 - plata pentru știri, articole de jurnal
- scopul constructiei mecanismului de plata: reducerea aplicarii operatiilor cu chei publice prin inlocuirea acestora cu operatii hash

Descrierea Schemei

 notatie: sig_B (m) inseamna concatenarea m, sig_B (h(m)) unde

h - functia hash SHA-1(https://en.wikipedia.org/wiki/Secure Hash Algorithm),

sig - semnatura digitala RSA

(http://profs.info.uaic.ro/~cbirjoveanu/RSA Signature.pdf https://en.wikipedia.org/wiki/RSA cryptosystem#Signing messages)

- participanti:
 - user/cumparator (U)
 - vanzator (V)
 - broker (B)
- doua faze:

1. Inregistrarea U la B

U furnizeaza informatii personale (identitatea sa, K_U - cheia sa publica RSA, etc) la B pe un canal privat autentic.

B trimite la U un certificat payword **C(U)**

• $B \rightarrow U$: $C(U) = sig_B (B, U, K_B, K_U, exp, info)$

unde:

B/U - identitate Broker/User

K_B/K_U - cheia publica RSA a lui B/U

exp - data de expirare

info - serial, limita creditare, etc

- U verifica C(U) prin verificarea semnaturii lui B (utilizand cheia publica RSA a lui B)
- Prin C(U), B autorizeaza U sa realizeze plati catre vanzatori utilizand acest certificat, adica sa construiasca lanturi hash

2. Plata

Daca U doreste realizarea unei plati la V pentru prima data in acea zi, atunci U genereaza un nou lant hash

```
c_n
c_{n-1} = h(c_n)
c_{n-2} = h(c_{n-1})
:
c_1 = h(c_2)
c_0 = h(c_1)
```

unde

n - ales de U convenabil pentru a permite succesiunea de plati

c_n - secret generat aleator de U

toate payword-urile **c**_i au aceeasi valoare (de exemplu de 1 cent)

U calculeaza un angajament $commit(U) = sig_U(V, C(U), c_0, d, info)$ unde

V - identitate vanzator

C(U) - certificat payword al lui U

c₀ - radacina lantului hash

d - data curenta

info - lunginea lantului (n), etc

U trimite angajamentul la V

• U → V: commit(U)

- V verifica semnatura lui U pe commit(U) si semnatura lui B pe C(U), datele de expirare
- Prin commit(U), V este asigurat ca U este autorizat sa realizeze plati, si toate payword-urile c_i pe care V le va receptiona de la U (pana la data d) le va rascumpara de la B

U trimite prima plata la V:

- $U \rightarrow V: c_1, 1$
 - V verifica autenticitatea platii: daca $h(c_1) = c_0$ accepta plata, altfel nu

In aceeasi maniera, U trimite a i-a plata la V:

• $U \rightarrow V: c_i$, i

La sfarsitul zilei, V va rascumpara de la B payword-urile receptionate de la U

- V → B: commit(U), c_I, I
 unde
 - c_I, I ultima plata receptionata de V de la U
 - B verifica commit(U), ultima plata (prin l aplicari ale functiei h)
 - daca plata e autentica si nu a mai fost rascumparata intr-o sesiune anterioara, atunci B transfera I centi din contul lui U in contul lui V

Exercitiu:

Implementati schema de microplata Payword descrisa mai sus utilizand comunicatii client/server pentru a simula transmiterea mesajelor intre participanti. Implementarea trebuie sa permita plati pentru produse de valori diferite si sa verifice cazurile in care U incearca sa utilizeze aceleasi payword-uri pentru a cumpara mai multe produse de la V.