Selected Topics in Nature-inspired Algorithms

Seminar

Winter 2017

Nico Potyka

Today

- Introduction
- Organization
- Optimization and Metaheuristics
- Local Search

Introduction

Nature-inspired Algorithms

- nature-inspired algorithms take inspiration from problem solving methods inherent to biological systems
- they are often easy to understand conceptually, but can be difficult to tune
- some classical approaches are
 - Genetic Algorithms
 - Differential Evolution
 - Ant Colony Optimization
 - Particle Swarm Optimization

Applications

- successful applications include
 - Discrete and Numerical Optimization (logistics, routing)
 - Constraint Satisfaction (frequency assignment, scheduling)
 - Machine Learning (intrusion detection, anomaly detection)

Development of the Field

- the field keeps on developing new nature-inspired algorithms
- including successful ones
 - Firefly Algorithm
 - Bee Colony Optimization
 - Bat-inspired Algorithms

- and rather exotic ones
 - Reincarnation Algorithm
 - Zombie Survival Optimization
 - Community of Scientists Opt.

A Critical View

- most algorithms come down to a few principles like
 - adaptation
 - natural selection
 - swarm behavior
- lack of novelty is often hidden beneath biological metaphors
- as put in the Evolutionary Computation Bestiary¹, the field is

[...] as The island of Doctor Moreau: a place with a few good creatures, but which are vastly outnumbered by mindless beasts.

https://github.com/fcampelo/EC-Bestiary

On the bright Side

- many nature-inspired algorithms have proven useful for solving diverse problems heuristically
- no free lunch theorems² justify diversity of the field
- intuitively, these theorem show that there can be no algorithm that outperforms all other algorithms for every problem

²Wolpert, D. H., & Macready, W. G. No free lunch theorems for optimization. IEEE transactions on evolutionary computation, 1(1), 67-82: 1997.

Goals of the Course

- our goal is to understand a selection of well established nature-inspired algorithms properly
- the algorithms are usually simple to understand conceptually
- however, they can usually be configured by a significant number of parameters
- tuning these parameters is often art rather than science
- we will therefore have programming tasks where you
 - implement algorithms
 - and tune the parameters for a given problem

Organization

Prerequisites

- basic mathematical concepts
- basic computer science concepts
- basic programming skills (can be developed during course)

Organization

Course Structure

- we will alternate theory and practice sessions
- Theory Session: introduction to one framework and subsequent discussion
- Practice Session: presentation and discussion of experiences with implementation and parameter tuning

Theory Session

Preparation for Theory Session (presenting group)

- familiarize yourself with topic
- find additional citable literature if necessary (use Google Scholar for instance)
- prepare well-structured, correct and reader-friendly slides
- back up claims with references to the literature
- prepare a few questions for discussion
- presentation length based on group size

Practice Session

Preparation for Practice Session (every group)

- read slides/ basic literature for framework
- implement algorithm for given problem
- make experiments with different parameters
- report your findings in short presentation
- every group member has to present findings for at least one implementation
- every group member must be able to answer questions

Grading

Grading based on

- presentations
 - reader-friendly slides
 - self-contained, comprehensible presentation
 - well prepared for questions and discussion
- participation in discussion
 - raise critical questions
 - argue objectively
- programming exercises
 - systematic parameter tuning
 - clean and well documented code

(first few programming exercises will have less weight)

Topics and Basic Literature:

- 26/10: Introduction and Basic Local Search Algorithms
- 09/11: Genetic Algorithms

Sastry, K., Goldberg, D. E., & Kendall, G. Genetic algorithms. In Search methodologies (pp. 93-117). Springer US: 2014.

• 23/11: Ant Colony Optimization

Merkle, D., & Middendorf, M. Swarm intelligence. In Search methodologies (pp. 213-242). Springer US: 2014.

- 07/12: Differential Evolution
 - Das, S., & Suganthan, P. N. Differential evolution: A survey of the state-of-the-art. IEEE transactions on evolutionary computation, 15(1), 4-31: 2011.
- 21/12: Bee Colony Optimization

Teodorović, D. Bee colony optimization (BCO). Innovations in swarm intelligence, 39-60: 2009.

- 18/01: Particle Swarm Optimization
 - Poli, R., Kennedy, J., & Blackwell, T. Particle swarm optimization. Swarm intelligence, 1(1), 33-57: 2007.
- 01/02: Artificial Immune Systems

Aickelin, U., Dasgupta, D., & Gu, F. Artificial immune systems. In Search Methodologies (pp. 187-211). Springer US: 2014.

Groups and Topics:

- 6 topics: 6 or 12 groups (dependent on number of participants)
- send me your preferred group members and topics until Monday morning
- if you have little programming experience, you can focus on parameter tuning intially and learn during the course

Optimization Problems and Meta-Heuristics

Some interesting Classes of Algorithms

- during the next weeks, we will in particular look at optimization problems
- in this context, nature-inspired algorithms can be regarded as meta-heuristics
- meta-heuristics can be seen as a special class of algorithms
 - Optimal Algorithms: solve problem optimally
 - Approximation Algorithms: solve problem with guaranteed error bound (e.g., at most 20% worse than optimal)
 - Heuristics: solve problem often well in practice, but there are no general guarantees (error can be arbitrarily large)
 - Meta-Heuristics: template heuristics that can be applied to many problems

Why Heuristics?

- many interesting problems cannot be solved efficiently under the usual complexity-theoretical assumptions
- in fact, many cannot even be approximated efficiently
- for many of these problems, heuristics have been developed that 'often' perform well
- meta-heuristics abstract from a concrete problem and can be applied to many problems

Optimization Problems

- optimization problems have the following ingredients
 - variables with corresponding domains
 - constraints on values that variables can take (optional)
 - objective function (cost or utility of variable assignments)

$$\begin{array}{lll} \text{minimize} & \sum\limits_{i \in F, \ j \in C} c_{ij} x_{ij} + \sum\limits_{i \in F} f_i y_i & \text{min} \sum\limits_{i \in I} \left(\sum\limits_{i \in I} f_i^l y_i^l + \sum\limits_{i \in J} \sum\limits_{i \in I} c_{ij}^l x_{ij} + \sum\limits_{j \in I} h_j^l x_j^l \right), \\ \text{subject to} & \sum\limits_{i \in F} x_{ij} \geq 1, & j \in C & \\ \sum\limits_{i \in F} x_{ij}^l \geq 0, & i \in F, \ j \in C & \sum\limits_{i \in I} x_{ij}^l \leq q_i y_i^l, \ t \in T, \ i \in I, \\ y_i \in \{0,1\}, & i \in F & j \in C & \sum\limits_{i \in I} x_{ij}^l \leq q_i y_i^l, \ t \in T, \ i \in I, \\ y_i^l \leq 0, 1\}, & i \in F & y_i^l \leq y_i^{l+1}, \ t \in T \setminus \{k\}, \ i \in I, \\ y_i^l \geq 0, \ t \in T, \ i \in I, \\ x_i^l \geq 0, \ t \in T, \ i \in J. \end{array}$$

- examples include
 - loss minimization in ML (unconstrained)
 - routing problems (discrete)
 - logistic problems (discrete or numerical)

Traveling Salesman Problem

- Problem: given complete weighted graph, compute cheapest cycle that contains all nodes
- Examples
 - find the shortest tour visiting all offices in the US that starts and ends in your own office (minimize travel cost)
 - find the shortest tour visiting all tourist attractions starting and ending in your hotel (minimize walking distance)
 - find the shortest tour visiting all customers starting and ending in your distribution center (minimize time)

Traveling Salesman Problem Formalized

- given completely connected weighted graph (V, E, c) with
 - $n \text{ nodes } V = \{1, ..., n\}$
 - edges $E = V \times V$
 - cost function $c: E \to \mathbb{R}_0^+$
- compute shortest cycle starting from 1 and visiting all nodes
- optimization problem
 - Variables: n-1 variables with domain $\{2, \ldots, n\}$ $(x_i = j \text{ means that we visit node j at time i})$
 - no constraints
 - Objective function: cost of tour $f(x_1, ..., x_{n-1}) = c(1, x_1) + c(x_{n-1}, 1) + \sum_{i=1}^{n-2} c(x_i, x_{i+1})$

Example

c(row,col)	1	2	3	4	5
1	0	2	3	4	5
2	2	0	3	2	3
3	3	3	0	1	1
4	4	2	1	0	2
5	5	3	1	2	0

We abbreviate assignment $(x_1 = v_1, \dots, x_5 = v_5)$ by (v_1, \dots, v_5)

- f(2,3,4,5) = 2+3+1+2+5=13
- f(3,4,5,2) = 3+1+2+3+2=11
- f(5,2,3,4) = 5+3+3+1+4=16

Complexity of TSP

- TSP is NP-complete
- we cannot even find an efficient approximation algorithm if $P \neq NP$, see (Vazirani 2013)³, Theorem 3.6 for a proof
- if the edge costs satisfy triangle inequality (Metric TSP), approximation guarantee is possible
- however, even for Metric TSP, heuristics 'may' perform better

³Vazirani, V. Approximation algorithms. Springer Science & Business Media: 2013.

Local Search Methods

Local Search Methods

- computational problems arise due to size of the search space
- the idea of local search methods is to narrow down the space
- to this end, we define a neighborhood for variable assignments
- local search algorithms basically work as follows:
 - start with random assignment
 - Preplace current assignment with a 'reasonable' neighbor
 - go back to 2 until no improvement is possible

Choosing a good Neighborhood

- use the whole search space as neighborhood
 - 1 the found solution will be optimal
 - 4 however, we do not gain anything computationally
- use empty set as neighborhood
 - our algorithm will run in constant time
 - 2 however, the solution is just a random guess
- a good neighborhood balances between runtime and solution quality
- however, usually local search algorithms will find only locally optimal solutions (optimal in local neighborhood)

Swap-Neighborhood for TSP

- Swap-Neighborhood: select one variable and swap value with left neighbor
- each assignment has $n-1=\Theta(n)$ neighbors

Example: (2,3,4,5) has neighbors

- \bullet (3, 2, 4, 5)
- \bullet (2, 4, 3, 5)
- \bullet (2, 3, 5, 4)
- (5, 3, 4, 2)

Transposition-Neighborhoods for TSP

- Transposition-Neighborhood: swap values of two arbitrary variables
- ullet each assignment has $inom{n-1}{2}=rac{(n-1)(n-2)}{2}=\Theta(n^2)$ neighbors

Example: (2,3,4,5) has neighbors

- \bullet (3, 2, 4, 5)
- \bullet (4, 3, 2, 5)
- \bullet (5, 3, 4, 2)
- \bullet (2, 4, 3, 5)
- \bullet (2, 5, 4, 3)
- \bullet (2, 3, 5, 4)

Hill-Climbing

- the easiest local search method is Hill-Climbing
- it chooses the steepest descent neighbor (thus hill-climbing) until no improvement is possible anymore

Hill-Climbing

```
A \leftarrow random \ assignment
repeat
if \ neighborhood \ of \ A \ contains \ better \ assignment \ A'
A \leftarrow best \ assignment \ in \ neighborhood
else
return \ A
```

Demo

Results for Random TSP with 15 nodes $\{0, 1, \dots, 14\}$

Initial assignment: (1,2,3,4,5,6,7,8,9,10,11,12,13,14)

Hill Climbing with Swap Neighborhood

Found local optimum after 5 iterations.

Cost: 52.0

Hill Climbing with Transposition Neighborhood

Found local optimum after 6 iterations.

Cost: 38.0

Initial assignment: (6,3,4,1,8,5,2,11,14,10,13,7,9,12)

Hill Climbing with Swap Neighborhood

Found local optimum after 6 iterations.

Cost: 47.0

Hill Climbing with Transposition Neighborhood

Found local optimum after 5 iterations.

Cost: 33.0

Observations

- Transposition Neighborhood gives us often better solutions than Swap Neighborhood
- this makes intuitively sense, since it allows to explore the search space better
- on the other hand, each iteration can take significantly more time (quadratic vs. linear)
- indeed, exploring the whole neighborhood can be expensive in large domains

First-Choice Hill-Climbing

- Hill-Climbing can take a lot of time if neighborhoods are large
- First-Choice Hill-Climbing stops iterating neighbors as soon as a better neighbor is found

First-Choice Hill-Climbing

```
A \leftarrow random \ assignment
repeat
  A^* \leftarrow A
  for neighbors A' of A^*
    if A' improves A^*
      A^* \leftarrow A'
      skip loop
  if A* did not change
    return A
```

Demo

Run	Algorithm	Neighborhood	Iterations	Cost	Time (ms)	Time/Iteration
1	HC	Swap	26	331	15	0.58
	HC	Transp	42	135	123	2.93
	FCHC	Swap	40	337	0	0
	FCHC	Transp	132	140	78	0.59
2	HC	Swap	35	328	0	0
	HC	Transp	35	159	38	1.01
	FCHC	Swap	48	337	15	0.31
	FCHC	Transp	156	145	69	0.44
3	HC	Swap	25	347	0	0
	HC	Transp	39	138	31	0.79
	FCHC	Swap	33	344	0	0
	FCHC	Transp	120	145	54	0.45

Results for Random TSP with 100 nodes, runs started from different initial assignments

Observations

- FCHC can sometimes find better local optima than HC
- the reason is that locally suboptimal choices can lead to better regions in search space
- two further improve exploration of search space, we can
 - **1** allow suboptimal (or even worse) moves in search space (e.g. Stochastic Hill-Climbing, Simulated Annealing)
 - ② consider multiple search paths in parallel (e.g. Parallel Hill-Climbing, Local Beam Search)

Conclusions

- Local Search methods can be seen as metaheuristics
- choice of neighborhood balances between exploration (large) and efficiency (small)
- one of the fastest local search method is Hill Climbing
- in terms of solution quality, it is often outperformed by other metaheuristics that provide better exploration of search space
- however, Hill Climbing is often used in hybrid algorithms because of its efficiency (e.g. memetic algorithms)

Programming Task

Knapsack Problem

- Problem: given items l_1, \ldots, l_n with weights w_1, \ldots, w_n , values v_1, \ldots, v_n and a weight limit W, maximize value
- Examples
 - invest budget in assets with maximum expected return
 - cut sheet metal into pieces of specified size, minimize waste
 - load truck with items of maximal value
 - subproblem (resource allocation) in many other problems

Knapsack Problem Formalized

- given n items I_1, \ldots, I_n with
 - weights w_1, \ldots, w_n
 - values v_1, \ldots, v_n
 - and a weight limit W
- select items to meet weight limit and maximize value
- optimization problem
 - Variables: n variables with domain $\{0,1\}$ $(x_i = 1 \text{ iff we select } I_i)$
 - Constraints: $w(x_1, ..., x_n) = \sum_{i=1}^n w_i \cdot x_i \leq W$
 - Objective function: $f(x_1, ..., x_n) = \sum_{i=1}^n v_i \cdot x_i$

Feasible Solutions

	Patte	ern 1	Patte	ern 2			Patte	ern 3				
	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>X</i> 4	<i>X</i> 5	<i>x</i> ₆	<i>X</i> 7	<i>x</i> ₈	<i>X</i> 9	<i>x</i> ₁₀	<i>x</i> ₁₁	<i>x</i> ₁₂
w	40	40	25	25	25	25	15	15	15	15	15	15
V	20	20	10	10	10	10	5	5	5	5	5	5

•
$$v_1 = (1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0), w(v_1) = 105 > 100$$
 (infeasible)

•
$$v_2 = (0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0), w(v_2) = 100, f(v_2) = 40$$
 (feasible)

•
$$v_3 = (1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1), w(v_3) = 95, f(v_3) = 45$$
 (feasible)

Knapsack Problem Programming Task

- define a 'small' and a 'large' neighborhood (don't forget to assure feasibility)
- implement Hill-Climbing and First-Choice Hill-Climbing
- make experiments with both implementations for some Knapsack instances and different initial assignments
- document your findings and prepare a small presentation (5-10 minutes)

Complexity of Knapsack Problem

- Knapsack Problem is NP-complete
- however, as opposed to TSP, it is only weakly NP-hard (there exists a 'pseudo-polynomial' algorithm)
- in particular, it can be approximated efficiently to an arbitrary degree (there exists an 'FPTAS')
- see (Vazirani 2013)⁴, Chapter 8 for more details

⁴Vazirani, V. Approximation algorithms. Springer Science & Business Media: 2013.

Questions

MY HOBBY:
EMBEDDING NP-COMPLETE PROBLEMS IN RESTAURANT ORDERS

[CHOTCHKIES R	ESTAURALT?					
- APPETIZERS						
MIXED FRUIT	2.15					
FRENCH FRIES	2.75					
SIDE SALAD	3.35					
HOT WINGS	3.55					
MOZZARELLA STICKS	4.20					
SAMPLER PLATE	5.80					
→ SANDWICHES ~						
RAPRECUE	6 55					

 $^{^{5}}_{\rm https://imgs.xkcd.com/comics/np_complete.png}$