2.5 Practicando con programas (II). Ejercicios de autoevaluación del módulo 2.

Ejercicio 2.5.1 Diseñar un programa que compruebe si un valor x0 es raíz de una ecuación de segundo grado. Se pedirán por teclado los valores de los coeficientes a, b, c que se almacenarán en el vector coef. A continuación se comprobará si x0 verifica la ecuación:

$$a x_0^2 + b x_0 + c = 0$$

La salida del programa a pantalla será una de estas dos frases:

RESULTADO DE LA COMPROBACIÓN: es raíz

RESULTADO DE LA COMPROBACIÓN: no es raíz

Ejercicio 2.5.2 Sea un triángulo de lados a, b, y c. Escribir un programa que lea el tamaño de los lados y escriba en pantalla si el triángulo es o no rectángulo.

Ejercicio 2.5.3 Sea un cubo centrado en el origen de lado L, y un punto en el espacio cuyas tres coordenadas están en el vector P. Escribir un programa que pida estos datos por teclado (lado y punto) y escriba en pantalla la posición relativa entre el punto y el cubo: interior, frontera o exterior.

Ejercicio 2.5.4 Escribir un programa M que pida al usuario que introduzca una matriz cuadrada llamada A. A continuación haciendo uso de la función sum, calcular la suma de cada fila de A, de cada columna de A y de todos los elementos de la matriz. Se formará la matriz B ensamblando a la matriz A los resultados anteriores, tal como se indica en la figura posterior. Se mostrará la matriz B en pantalla.

A modo de ejemplo, si

$$A = \begin{pmatrix} 1 & 7 & -2 \\ 3 & 0 & 11 \\ -7 & 1 & 0 \end{pmatrix}, \text{ se obtiene } B = \begin{pmatrix} 1 & 7 & -2 & 6 \\ 3 & 0 & 11 & 14 \\ -7 & 1 & 0 & -6 \\ -3 & 8 & 9 & 14 \end{pmatrix}$$

Ejercicio 2.5.5 Haciendo uso del operador 'división izquierda' (backslash):

a) Resolver el siguiente sistema de ecuaciones:

$$3x + 2y - z = 0$$

$$x - 4y + 2z = 7$$

$$8x + 5y - 8z = 5$$

b) Hallar la solución por el método de mínimos cuadrados del sistema:

$$7x + 2y = -7$$

$$2x - 4y = 20$$

$$-3x + 6y = 3$$

Solución Ejercicio 2.5.1

A continuación se muestra un programa válido:

```
coef=input('Introduce los coeficientes de la ecuación: ');
x0=input('Introduce posible raíz ');
comp=coef(1)*x0^2+coef(2)*x0+coef(3)==0;
if comp
    respuesta='es raíz';
else
    respuesta='no es raíz';
end
fprintf('RESULTADO DE LA COMPROBACIÓN: %s\n',respuesta)
```

Solución Ejercicio 2.5.2

```
lados=input('Introduce el tamaño de los tres lados del triángulo');
lados=sort(lados);
a=lados(1);b=lados(2); %catetos
c=lados(3); %hipotenusa
if a^2+b^2==c^2
    disp('El triángulo es rectángulo');
else
    disp('El triángulo no es rectángulo');
end
```

Solución Ejercicio 2.5.3

```
L=input('Introduce el lado del cubo');
P=input('Introduce las coordenadas del punto');
if max(abs(P))<L/2
    disp('El punto es interior al cubo');
elseif max(abs(P))==L/2
    disp('El punto está en la frontera del cubo');
else
    disp('El punto es exterior al cubo');
end</pre>
```

Solución Ejercicio 2.5.4

```
A=input('Introduce una matriz');
B=[ [A,sum(A')'] ; [sum(A),sum(sum(A))] ];
disp('La matriz resultado es: ');
disp(B);
```

Solución Ejercicio 2.5.5

Apartado a) Se escriben las siguientes sentencias obteniendo el resultado indicado.

```
A=[ 3 2 -1; 1 -4 2; 8 5 -8]
b=[0;7;5]
x=A\b

x =

1.0000
-1.9091
-0.8182
```

Apartado b) El sistema es sobredeterminado (tres ecuaciones y dos incógnitas), el operador *backslash* da una solución aproximada al problema mediante el método de mínimos cuadrados. Se escriben las siguientes sentencias obteniendo el resultado indicado.

```
A=[7,2;2,-4;-3,6];
b=[-7;20;3];
x=A\b
```

```
x =
-0.5769
-1.4808
```