Package 'predtoolsTS'

October 14, 2022

Type Package
Title Time Series Prediction Tools
Version 0.1.1
Date 2018-04-26
Author Alberto Vico Moreno [aut, cre], Antonio Jesus Rivera Rivas [aut, ths], Maria Dolores Perez Godoy [aut, ths]
Maintainer Alberto Vico Moreno <avm00016@red.ujaen.es></avm00016@red.ujaen.es>
Description Makes the time series prediction easier by automatizing this process using four main functions: prep(), modl(), pred() and postp(). Features different preprocessing methods to homogenize variance and to remove trend and seasonality. Also has the potential to bring together different predictive models to make comparatives. Features ARIMA and Data Mining Regression models (using caret).
License GPL (>= 2)
Encoding UTF-8
LazyData true
<pre>URL https://github.com/avm00016/predtoolsTS</pre>
RoxygenNote 6.0.1
Imports caret, forecast, graphics, methods, Metrics, stats, TSPred, tseries, utils
NeedsCompilation no
Repository CRAN
Date/Publication 2018-04-29 13:54:50 UTC
R topics documented:
modl

2 modl

modl.tsToDataFrame	7
plot.pred	7
plot.prep	8
postp	9
postp.deseason.differencing	9
postp.detrend.differencing	10
postp.detrend.sfsm	11
postp.homogenize.boxcox	11
postp.homogenize.log	12
pred	13
pred.arima	14
pred.compareModels	14
pred.dataMining	16
prep	16
prep.check.acf	18
prep.check.adf	19
prep.deseason.differencing	19
prep.detrend.differencing	
prep.detrend.sfsm	21
prep.homogenize.boxcox	
prep.homogenize.log	
print.modl	
print.pred	
print.prep	
summary.modl	
summary.pred	
summary.prep	25
	26

modl

Index

Building predictive models

Description

This function give us the tools to build predictive models for time series.

```
modl(tserie, method = "arima", algorithm = NULL, formula = NULL,
initialWindow = NULL, horizon = NULL, fixedWindow = NULL)
```

modl 3

Arguments

tserie A ts or prep object.

method A string. Current methods available are "arima" and "dataMining". Method

"arima" is set as default.

algorithm A string. In case method is "dataMining", pick the algorithm you want to use.

There is a complete list of available algorithms here (only regression type allowed): http://topepo.github.io/caret/train-models-by-tag.html.

formula An integer vector. Contains the indexes from the time series wich will indicate

how to extract the features. The last value will be the class index. Default value:

c(1:16)

initialWindow An integer. The initial number of consecutive values in each training set sample.

Default value: 30.

horizon An integer. The number of consecutive values in test set sample. Default value:

15.

fixedWindow A logical: if FALSE, the training set always start at the first sample and the

training set size will vary over data splits. Default value: TRUE.

Details

Returns an object mod1 which stores all the information related to the final chosen model (errors, parameters, model).

Currently this function covers two different methods: the widely know ARIMA and the "not so used for prediction" data mining. For the data mining we make use of the caret package.

The caret package offers plenty of data mining algorithms. For the data splitting here we use a rolling forecasting origin technique, wich works better on time series.

Value

A list is returned of class mod1 containing:

tserie Original time serie.

tserieDF Time serie converted to data frame.

method Method used to build the model.

algorithm If method is data mining, indicates wich algorithm was used.

horizon Horizon for the splitting.

model Model result from caret. It is a list, result of the caret::train function.

errors Contains three different metrics to evaluate the model.

Author(s)

Alberto Vico Moreno

References

http://topepo.github.io/caret/index.html

4 modl.arima

See Also

```
prep modl.arima, modl.tsToDataFrame, modl.trControl, modl.dataMining
```

Examples

```
p <- prep(AirPassengers)
modl(p,method='arima')
modl(p,method='dataMining',algorithm='rpart')</pre>
```

modl.arima

Automatic ARIMA model

Description

Assuming "tserie" is stationary, returns the best arima model

Usage

```
modl.arima(tserie)
```

Arguments

tserie

A ts object.

Value

ARIMA model.

Author(s)

Alberto Vico Moreno

```
modl.arima(AirPassengers)
```

modl.dataMining 5

|--|--|

Description

Train the time serie(as data frame) to build the model.

Usage

```
modl.dataMining(form, tserieDF, algorithm, timeControl, metric = "RMSE",
    maximize = FALSE)
```

Arguments

form A formula of the form $y \sim x1 + x2 + ...$

tserieDF Data frame.

algorithm A string. Algorithm to perform the training. Full list at http://topepo.

github.io/caret/train-models-by-tag.html. Only regression types al-

lowed.

timeControl trainControl object.

metric A string. Specifies what summary metric will be used to select the optimal

model. Possible values in caret are "RMSE" and "Rsquared". "RMSE" set as default. If you used a custom summaryFunction(see ?trainControl) your metrics

will prevail over default.

maximize A logical. Should the metric be maximized or minimized? Default is FALSE,

since that is what makes sense for time series.

Value

train object

Author(s)

Alberto Vico Moreno

```
modl.dataMining(form=Class ~ .,
    tserieDF=modl.tsToDataFrame(AirPassengers,formula=c(1:20)),
    algorithm='rpart',
    timeControl=modl.trControl(initialWindow=30,horizon=15,fixedWindow=TRUE))
```

6 modl.trControl

modl.trControl Control the splitting to train the data
--

Description

Creates the needed caret::trainControl object to control the training splitting.

Usage

```
modl.trControl(initialWindow, horizon, fixedWindow, givenSummary = FALSE)
```

Arguments

initialWindow An integer. The initial number of consecutive values in each training set sample.

Default value: 30.

horizon An integer. The number of consecutive values in test set sample. Default value:

15.

fixedWindow A logical: if FALSE, the training set always start at the first sample and the

training set size will vary over data splits. Default value: TRUE.

givenSummary A logical. Indicates if it should be used the customized summaryFunction(?trainControl

for more info) modl.sumFunction or not. Default is FALSE; this will use default

caret metrics.

Details

We always split using method "timeslice", wich is the better for time series. More information on how this works on http://topepo.github.io/caret/data-splitting.html#data-splitting-for-time-series.

Value

trainControl object

Author(s)

Alberto Vico Moreno

Examples

 $\verb|modl.trControl(initialWindow=30, horizon=15, fixedWindow=TRUE, givenSummary=TRUE)| \\$

modl.tsToDataFrame 7

mod1	tsToDataFrame
IIIOUI .	to lobatal lalle

Ts to data frame transformation

Description

Transform a ts object into a data frame using the given formula.

Usage

```
modl.tsToDataFrame(tserie, formula = NULL)
```

A ts object.

Arguments

tserie

formula An integer vector. Contains the indexes from the tserie wich will indicate how

to extract the features. The last value will be the class index. Default value:

c(1:16). Has to be length 6 minimum.

Value

the time serie as data frame

Author(s)

Alberto Vico Moreno

Examples

```
\label{local_model} $$ \bmod 1.ts To Data Frame (Air Passengers, formula = c(1,3,4,5,6,7)) $$ mod 1.ts To Data Frame (Air Passengers, formula = c(1:20)) $$
```

plot.pred

Generic function

Description

Plots object prep

```
## S3 method for class 'pred'
plot(x, ylab = "Values", main = "Predictions", ...)
```

8 plot.prep

Arguments

```
x pred object
ylab ylab
main main
... ignored
```

Examples

```
plot(pred(modl(prep(AirPassengers))))
```

plot.prep

Generic function

Description

Plots object prep

Usage

```
## S3 method for class 'prep'
plot(x, ylab = "Preprocessed time serie", xlab = "", ...)
```

Arguments

```
x prep objectylabxlabignored
```

```
plot(prep(AirPassengers),ylab="Stationary AisPassengers")
```

postp 9

postp

Post-processing of pre-processed data

Description

Using the prep data we undo the changes on a pred object.

Usage

```
postp(prd, pre)
```

Arguments

prd A pred object. pre A prep object.

Value

A pred object with reverted transformations.

Author(s)

Alberto Vico Moreno

See Also

pred prep, postp.homogenize.log, postp.homogenize.boxcox, postp.detrend.differencing,
postp.detrend.sfsm, postp.deseason.differencing

Examples

```
preprocess <- prep(AirPassengers)
prediction <- pred(modl(preprocess),n.ahead=30)
postp.prediction <- postp(prediction,preprocess)</pre>
```

```
postp.deseason.differencing
```

Undo deseason(differencing)

Description

Uses inverse seasonal differences to reverse the changes

```
postp.deseason.differencing(tserie, nsd, firstseasons, frequency)
```

Arguments

tserie A ts object.

nsd Number of seasonal differences.

firstseasons Values lost on the original differences
frequency Frequency of the original time serie

Value

A ts object.

Author(s)

Alberto Vico Moreno

Examples

```
p <- prep.deseason.differencing(AirPassengers)
postp.deseason.differencing(p$tserie,p$nsd,p$firstseasons,frequency(AirPassengers))</pre>
```

```
postp.detrend.differencing
```

Undo detrend(differencing)

Description

Uses inverse differences to revert the changes

Usage

```
postp.detrend.differencing(tserie, nd, firstvalues)
```

Arguments

tserie A ts object.

nd Number of differences.

firstvalues Values lost on the original differences

Value

A ts object.

Author(s)

Alberto Vico Moreno

```
p <- prep.detrend.differencing(AirPassengers)
postp.detrend.differencing(p$tserie,p$nd,p$firstvalues)</pre>
```

postp.detrend.sfsm 11

postp.detrend.sfsm

Undo detrend(substracting full-means method)

Description

Undo detrend(substracting full-means method)

Usage

```
postp.detrend.sfsm(tserie, means, start, frequency)
```

Arguments

tserie A ts object.

means A numeric vector.

start Start of original time serie

frequency Frequency of the original time serie

Value

A ts object.

Author(s)

Alberto Vico Moreno

Examples

```
p <- prep.detrend.sfsm(AirPassengers)
postp.detrend.sfsm(p$tserie,p$means,start(AirPassengers),frequency(AirPassengers))</pre>
```

```
postp.homogenize.boxcox
```

Undo Box-Cox transformation

Description

Undo Box-Cox transformation

```
postp.homogenize.boxcox(tserie, lambda)
```

Arguments

tserie A ts object. lambda A numeric.

Value

A ts object.

Author(s)

Alberto Vico Moreno

Examples

```
p <- prep.homogenize.boxcox(AirPassengers)
postp.homogenize.boxcox(p$tserie,p$lambda)</pre>
```

Description

Uses exponent to reverse the logarithm

Usage

```
postp.homogenize.log(tserie)
```

Arguments

tserie A ts object.

Value

A ts object.

Author(s)

Alberto Vico Moreno

```
postp.homogenize.log(prep.homogenize.log(AirPassengers))
```

pred 13

pred	Predictions	

Description

Performs predictions over a trained model.

Usage

```
pred(model = NULL, n.ahead = 20, tserie = NULL, predictions = NULL)
```

Arguments

model A modl object. Contains the trained model we want to predict with.

n.ahead Number of values to predict ahead of the end of the original time serie. Default

value is 20. Must ve lower than 100.

tserie A ts object. predictions A ts object.

Details

Predicts future values over a "modl" object which can be ARIMA or data mining, and returns the predictions. Data mining predictions start right after the last value contained in the training data, so they overlap with the end of the original.

The object contains only two time series: the original one and the predictions. You can just set these series aswell.

Value

A list is returned of class pred containing:

tserie Original time serie.

predictions Time serie with the predictions.

Author(s)

Alberto Vico Moreno

See Also

```
modl pred.arima, pred.dataMining, pred.compareModels
```

```
prediction <- pred(model=modl(prep(AirPassengers)),n.ahead=25)
pred(tserie=prediction$tserie, predictions=prediction$predictions)</pre>
```

14 pred.compareModels

pred.arima

Predicts for ARIMA

Description

Performs predictions over an ARIMA model using the stats::predict function.

Usage

```
pred.arima(model, n.ahead)
```

Arguments

model An ARIMA model.

n. ahead Number of values to predict.

Value

A ts object containing the predictions.

Author(s)

Alberto Vico Moreno

Examples

```
pred.arima(forecast::auto.arima(prep(AirPassengers)$tserie),n.ahead=30)
```

pred.compareModels

Compare different predictions

Description

Plots the original time serie along with 2-5 predictive models.

```
pred.compareModels(originalTS, p_1, p_2, p_3 = NULL, p_4 = NULL,
    p_5 = NULL, legendNames = NULL, colors = NULL, legend = TRUE,
    legendPosition = NULL, yAxis = "Values", title = "Predictions")
```

pred.compareModels 15

Arguments

originalTS	A ts object
p_1	A ts object
p_2	A ts object
p_3	A ts object. Default is NULL.
p_4	A ts object. Default is NULL.
p_5	A ts object. Default is NULL.
legendNames	String vector with the names for the legend. Has to be same length as number of time series we are plotting(including the original one). Default is NULL.
colors	Vector with the colors. Has to be same length as number of time series we are plotting(including the original one). Default is NULL.
legend	A logical. Do we want a legend? Default is TRUE.
legendPosition	A string with the position of the legend (bottom right, topright, \ldots). Default is NULL.
yAxis	A string. Name for the y axis. "Values" as default.
title	A string. Title for the plot. Default is "Predictions".

Details

This function aims to ease the comparation between different predictive models by plotting them into the same graphic.

Author(s)

Alberto Vico Moreno

```
data(AirPassengers)
#pre-processing
p <- prep(AirPassengers)
#modelling
arima.modl <- modl(p)
cart.modl <- modl(p,method='dataMining',algorithm='rpart')
#predicting
arima.pred <- pred(arima.modl,n.ahead=30)
cart.pred <- pred(cart.modl,n.ahead=45)
#post-processing
arima.pred <- postp(arima.pred,p)
cart.pred <- postp(cart.pred,p)
#visual comparison
pred.compareModels(AirPassengers,arima.pred$predictions,cart.pred$predictions
,legendNames=c('AirPassengers','ARIMA','CART'),yAxis='Passengers',legendPosition = 'topleft')</pre>
```

16 prep

pred.dataMining

Predicts for data mining methods

Description

Performs predictions over a data mining model using the caret::predict.train function.

Usage

```
pred.dataMining(model, n.ahead)
```

Arguments

model

A mod1 object.

n.ahead

Number of values to predict.

Value

A ts object containing the predictions.

Author(s)

Alberto Vico Moreno

Examples

```
m <- modl(prep(AirPassengers), method='dataMining', algorithm='rpart')
pred.dataMining(m,n.ahead=15)</pre>
```

prep

Automatic pre-preprocessing

Description

This function performs pre-processing on a time series object(ts) to treat heterocedasticity, trend and seasonality in order to make the serie stationary.

```
prep(tserie, homogenize.method = "log", detrend.method = "differencing",
  nd = NULL, deseason.method = "differencing", nsd = NULL,
  detrend.first = TRUE)
```

prep 17

Arguments

tserie A ts object.

homogenize.method

A string. Current methods available are "log" and "boxcox". Method "log" is set as default. If you don't want to perform this transformation, set method as

"none".

detrend.method A string. Current methods available are "differencing" and "sfsm". Method

"differencing" is set as default. If you don't want to perform this transformation,

set method as "none".

nd A number. Number of differences you want to apply to the "differencing" de-

trending method. As default its value is NULL, which means nd will be calcu-

lated internally.

deseason.method

A string. Current methods available are "differencing". Method "differencing" is set as default. If you don't want to perform this transformation, set method as

"none".

nsd A number. Number of seasonal differences you want to apply to the "differenc-

ing" deseasoning method. As default its value is NULL, which means nsd will

be calculated internally.

detrend.first A boolean. TRUE if detrending method is applied first, then deseasoning. FALSE

if deseasoning method is applied first. Default is TRUE.

Details

Returns an object prep which stores all data needed to undo the changes later on.

This function provides an automatic way of pre-processing based on unit root tests, but this is not the perfect way to do it. You should always check manually if the given time serie is actually stationary, and modify the parameters according to your thoughts.

Value

A list is returned of class prep containing:

tserie Processed ts object.

homogenize.method

Method used for homogenizing.

detrend.method Method used for detrending.

nd Number of differences used on detrending through differencing.

firstvalues First nd values of the original series.

deseason.method

Method used for deseasoning.

nsd Number of seasonal differences used on deseasoning through differencing.

firstseasons First nsd seasons of the original series.

detrend.first Processed ts object

prep.check.acf

means Vector of means used in "sfsm" detrending method.

lambda Coefficient used in "boxcox" transformation.

start Start of the original time serie.

length Length of the original time serie.

Author(s)

Alberto Vico Moreno

References

```
https://www.otexts.org/fpp/8/1
```

See Also

```
prep.homogenize.log, prep.homogenize.boxcox, prep.detrend.differencing, prep.detrend.sfsm,
prep.deseason.differencing, prep.check.acf, prep.check.adf
```

Examples

```
prep(AirPassengers)
prep(AirPassengers, homogenize.method='boxcox', detrend.method='none')
```

prep.check.acf

Autocorrelation function

Description

Plots the autocorrelation function to check stationarity

Usage

```
prep.check.acf(tserie)
```

Arguments

tserie

a ts or a prep object

Details

For a stationary time series, the ACF will drop to zero relatively quickly, while the ACF of non-stationary data decreases slowly. Also, for non-stationary data, the value is often large and positive.

```
prep.check.acf(AirPassengers)
prep.check.acf(prep(AirPassengers))
```

prep.check.adf

prep.check.adf

Augmented Dickey-Fuller test

Description

Performs ADF test just as another tool to check stationarity.

Usage

```
prep.check.adf(tserie)
```

Arguments

tserie

a ts or a prep object

Details

Shows the results of an ADF test. A p-value<0.05 suggests the data is stationary.

Examples

```
prep.check.adf(AirPassengers)
prep.check.adf(prep(AirPassengers))
```

prep.deseason.differencing

Deseason with differencing method

Description

Performs differencing with lag=frequency.

Usage

```
prep.deseason.differencing(tserie, nsd = NULL)
```

Arguments

tserie a ts object

number of seasonal differences to apply. As default its value is NULL; in this

case, the function will perform an automatic estimation of nsd.

Details

If no number of differences is specified, the function will make an estimation of the number of differences needed based on unit root test provided by forecast::nsdiffs

Value

A list is returned containing:

tserie Transformed ts object.

nsd Number of seasonal differencies applied.

firstseasons Lost values after differencing.

Examples

```
prep.deseason.differencing(AirPassengers)
prep.deseason.differencing(AirPassengers,nsd=2)
```

prep.detrend.differencing

Detrend with differencing method

Description

Performs differencing with lag=1.

Usage

```
prep.detrend.differencing(tserie, nd = NULL)
```

Arguments

tserie a ts object

nd number of differences to apply. As default its value is NULL; in this case, the

function will perform an automatic estimation of nd.

Details

If no number of differences is specified, the function will make an estimation of the number of differences needed based on unit root test provided by forecast::ndiffs

Value

A list is returned containing:

tserie Transformed ts object.

nd Number of differencies applied. firstvalues Lost values after differencing.

```
prep.detrend.differencing(AirPassengers)
prep.detrend.differencing(AirPassengers,nd=2)
```

prep.detrend.sfsm 21

prep.detrend.sfsm

Detrend with "substracting full-season means" method

Description

Performs "substracting full-season means" method to go for a totally automatic approach.

Usage

```
prep.detrend.sfsm(tserie)
```

Arguments

tserie

a ts object

Details

Under this detrending scheme, a series is first split into segments. The length of the segments is equal to the length of seasonality(12 for monthly). The mean of the historical observations within each of these segments is substacted from every historical observation in the segment. To get the detrended serie we do: ds = xi - m Being xi the actual values on the time series and m the mean of the segment of xi

Value

A list is returned containing:

tserie Transformed ts object.

means Vector containing the historical means.

Examples

```
prep.detrend.sfsm(AirPassengers)
```

```
prep.homogenize.boxcox
```

Box-Cox transformation

Description

Performs a Box-Cox transformation to a time serie.

```
prep.homogenize.boxcox(tserie)
```

22 prep.homogenize.log

Arguments

tserie a ts object

Value

A list is returned containing:

boxcox Transformed ts object.

lambda Lambda value.

References

Box-Cox transformation: https://en.wikipedia.org/wiki/Power_transform#Box.E2.80.93Cox_transformation

Examples

```
prep.homogenize.log(AirPassengers)
```

prep.homogenize.log

Logarithmic transformation

Description

Performs a logarithmic transformation to a time serie.

Usage

```
prep.homogenize.log(tserie)
```

Arguments

tserie a ts object

Value

ts object with transformed time serie

```
prep.homogenize.log(AirPassengers)
```

print.modl 23

print.modl

Generic function

Description

Prints object modl

Usage

```
## S3 method for class 'modl'
print(x, ...)
```

Arguments

x prep object ignored

Examples

```
print(modl(prep(AirPassengers)))
```

print.pred

 $Generic\ function$

Description

Prints object pred

Usage

```
## S3 method for class 'pred'
print(x, ...)
```

Arguments

```
x prep object ignored
```

```
print(pred(modl(prep(AirPassengers))))
```

24 summary.modl

print.prep

Generic function

Description

Prints object prep

Usage

```
## S3 method for class 'prep'
print(x, ...)
```

Arguments

```
x prep object ignored
```

Examples

```
print(prep(AirPassengers))
```

summary.modl

 $Generic\ function$

Description

Summary of object modl

Usage

```
## S3 method for class 'modl'
summary(object, ...)
```

Arguments

```
object prep object ... ignored
```

```
summary(modl(prep(AirPassengers)))
```

summary.pred 25

summary.pred

Generic function

Description

Summary of object pred

Usage

```
## S3 method for class 'pred'
summary(object, ...)
```

Arguments

object prep object ... ignored

Examples

```
summary(pred(modl(prep(AirPassengers))))
```

summary.prep

Generic function

Description

Summary of object prep

Usage

```
## S3 method for class 'prep'
summary(object, ...)
```

Arguments

```
object prep object ... ignored
```

```
summary(prep(AirPassengers))
```

Index

```
mod1, 2, 13
modl.arima, 4, 4
modl.dataMining, 4, 5
modl.trControl, 4, 6
modl.tsToDataFrame, 4, 7
plot.pred, 7
plot.prep, 8
postp, 9
\verb|postp.deseason.differencing|, 9, 9|
postp.detrend.differencing, 9, 10
postp.detrend.sfsm, 9, 11
postp.homogenize.boxcox, 9, 11
postp.homogenize.log, 9, 12
pred, 9, 13
pred.arima, 13, 14
pred.compareModels, 13, 14
pred.dataMining, 13, 16
prep, 4, 9, 16
prep.check.acf, 18, 18
prep.check.adf, 18, 19
prep.deseason.differencing, 18, 19
prep.detrend.differencing, 18, 20
prep.detrend.sfsm, 18, 21
prep.homogenize.boxcox, 18, 21
prep.homogenize.log, 18, 22
print.mod1, 23
print.pred, 23
print.prep, 24
summary.mod1, 24
summary.pred, 25
summary.prep, 25
```