

# Varianta 3

## Subjectul I.

**a**) 
$$|(1-i)^4| = 4$$

- **b)** Distanța căutată este  $\sqrt{2}$
- c) Ecuația tangentei în P la hiperbolă este x y = 1.
- **d)** Punctul C aparține cercului  $\iff a = 2$ .
- e) Aria căutată este  $S_{ABC} = 2$ .
- **f**) a = -1, b = 0.

#### Subjectul II.

- 1
- **a)** x = 0.
- **b**) 0.
- **c**)  $(f \circ f)(1) = 0$ .
- **d**) Probabilitatea cerută este  $\frac{2}{5}$ .
- e) În  $\mathbb{Z}_8$  avem:  $\hat{0} + \hat{1} + ... + \hat{7} = \hat{4}$ .
- 2.
- a)  $f'(x) = \frac{2x}{x^2 + 3}$ , pentru  $x \in \mathbf{R}$ .
- **b**)  $\int_{0}^{1} f'(x) dx = \ln \frac{4}{3}$ .
- c) Pentru  $x \in [0, \infty)$ , avem  $f'(x) \ge 0$ , deci f este strict crescătoare pe  $[0, \infty)$ .
- **d**)  $\lim_{x \to 1} \frac{f(x) f(1)}{x 1} = \frac{1}{2}$
- e) Funcția f are un singur punct de extrem local și anume x = 0.

### Subjectul III.

- a) Evident.
- **b**) Evident,  $A, B \in M_3(\mathbf{N}) \Rightarrow A + B \in M_3(\mathbf{N})$ , suma a două numere naturale fiind un număr natural.
- c) Evident,  $A, B \in M_3(\mathbf{N}) \implies A \cdot B \in M_3(\mathbf{N})$ ,
- **d**)  $\det(E)=1$ .
- e)  $C = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \in M$  are rangul 1, iar  $D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in M$  are rangul 2.



**f**)  $det(E)=1 \neq 0$ , deci E este o matrice inversabilă în  $M_3(\mathbf{R})$ .

$$E^{-1} = \frac{1}{\det(E)} \cdot E^* = E^* = \begin{pmatrix} 1 & -2 & e_{13} \\ e_{21} & e_{22} & e_{23} \\ e_{31} & e_{32} & e_{33} \end{pmatrix} \notin M \text{ , deoarece } -2 \notin \mathbf{N} \text{ .}$$

**g**) Presupunem că X are o linie cu cel puțin două elemente nenule. Fără a restrânge generalitatea, putem considera că prima linie a matricei X este

$$\begin{pmatrix} a & b & c \end{pmatrix}$$
, cu  $a, b \in \mathbf{N}^*$ . Notăm cu  $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$  prima coloană a matricei  $X^{-1}$ .

Făcând efectiv înmulțirea, obținem  $x \neq 0$  și  $y \neq 0$ , deci  $ax + by + cz \ge 2$ , contradicție cu ax + by + cz = 1.

Rezultă că fiecare linie a matricei X are exact un element nenul.

Analog obținem că și fiecare coloană a lui X conține un singur element nenul.

Aşadar X are exact trei elemente nenule, situate pe linii şi pe coloane diferite.

Fie  $\alpha, \beta, \gamma \in \mathbb{N}^*$  aceste trei elemente. Atunci  $\det(X) = \alpha\beta\gamma$  sau  $\det(X) = -\alpha\beta\gamma$ . și deoarece  $\det(X \cdot X^{-1}) = \det(X) \cdot \det(X^{-1}) = 1$ , deducem că  $\det(X) \in \{-1, 1\}$  și de aici  $\alpha = \beta = \gamma = 1$ , de unde rezultă concluzia.

## Subjectul IV.

**a**) 
$$f'(x) = \ln a - \frac{a}{x}, x > 0$$
.

**b)** 
$$f(a)=0$$
,  $f'(a)=\ln a-1$ .

- c) Alcătuind tabelul de variație al funcției  $u:(0,\infty)\to \mathbf{R}$ ,  $u(x)=x-e\cdot \ln x$  se deduce că x=e este punct de minim global pentru funcția u, de unde rezultă concluzia.
- **d**)  $f(x) \ge 0$ ,  $\forall x \in (0, \infty) \iff x = a$  este punct de minim pentru funcția f. Din teorema lui *Fermat* rezultă că  $f'(a) = \ln a 1 = 0$ , deci a = e.

Reciproc, din punctul **c**) deducem că pentru a = e avem  $f(x) \ge 0$ ,  $\forall x \in (0, \infty)$ .

În consecință, soluția este a = e.

e) Integrând pe intervalul [1, 2] inegalitatea obținută la c), rezultă concluzia.

**f**) 
$$e^x = x^e \iff x \cdot \ln e = e \cdot \ln x \iff u(x) = 0 \iff x = e$$
.

**g**) Înlocuind în **c**) x cu fiecare din numerele b, c, d și folosind **f**), obținem b = c = d = e.