B.TECH/CSE/4TH SEM/MATH 2201/2017

- State the definitions of a ring homomorphism and a ring isomorphism. Prove that $(Z, +, \times)$ is homomorphic to Z_7 under addition and multiplication modulo 7 by defining an appropriate function from Zonto Z_7 and showing that it is a homomorphism.
 - Let R be a ring. The centre of R is the set $\{x \in R : ax = xa\}$ for all $a \in R$. Prove that the centre of a ring is a subring.

6 + 6 = 12

B.TECH/CSE/4TH SEM/MATH 2201/2017

NUMBER THEORY AND ALGEBRAIC STRUCTURES (MATH 2201)

Time Allotted: 3 hrs Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and any 5 (five) from Group B to E, taking at least one from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)						
1.	Choo	Choose the correct alternative for the following:				$0 \times 1 = 10$
	(i)	Let G be a group and (a) 17 (b)			en $o(a^8)$ is (d) none o	f the others.
	(ii)	In the additive grou	up <i>(R, +),</i> who (b) 0	ere <i>R</i> denote	s the set of real (c) -1	s, $(2.5)^0 =$ (d) 2.5.
	(iii)	In the additive grou order of the element (a) 0		[1], [2], [3],	[4], [5]} under : (c) 3	addition, the (d) 6.
	(iv)	The remainder in the (a) 0	ne division o (b) 1		! + 4! + ··· + 10 (c) 2	00! by 4 is (d) 3.
	(v)	In the field Z ₁₁ multiplication mod (a) [3]				
	(vi)	A divisor of zero multiplication mod (a) [3]		[0], [1],,	[8]} under a	ddition and (d) [5].
	(vii)	Which of the follow (a) $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 1 & 3 \end{pmatrix}$ (c) $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix}$	ing permuta		(b) $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 4 \end{pmatrix}$ (d) $\begin{pmatrix} 1 & 2 & 3 \\ 3 & 4 & 1 \end{pmatrix}$	4 3 4 2

B.TECH/CSE/4TH SEM/MATH 2201/2017

- (viii) In a lattice (L, \wedge , \vee), the dual of the statement (a \wedge b) \vee a = a \wedge (b \vee a) is
 - (a) $(a \land b) \land a = a \land (b \land a)$

(b) $(a \lor b) \lor a = a \lor (b \lor a)$

(c) $(a \land b) \lor a=a \lor (b \lor a)$

- (d) none of these.
- (ix) $H = \{1, -1\}$ is a multiplicative subgroup of $G = \{1, -1, i, -1\}$. Then the index of H in G is
 - (a) 1

(b) 2

(c) 3

- (d) 4.
- (x) In the set $S = \{1, 2, 3, 4, 6, 9\}$, R is defined as follows : a R b if b is a multiple of a. Then
 - (a) 3 and 4 are comparable

(b) 9 succeeds 3

(c) 3 succeeds 9

(d) 4 and 6 are comparable.

Group - B

2. (a) Solve the following set of simultaneous congruences by using the Chinese Remainder Theorem

$$x \equiv 5 \pmod{11}$$

 $x \equiv 14 \pmod{29}$

 $x \equiv 15 \pmod{31}$

(b) State the definition of a primitive root of a prime number p. Find all the primitive roots of p=11 and p=17. Show your calculations in detail.

6 + 6 = 12

- 3. (a) Use the Euclidean algorithm to find the greatest common divisor of 522 and 332 and express it as 522x + 332y, where x and y are integers.
 - (b) Let S be a set and P(S) be its power set, i.e., set of all subsets of S. Prove that P(S) is a lattice with respect to the operations \cap (intersection) and \cup (union).

6 + 6 = 12

Group - C

- 4. (a) Show that the set $G = \{a + b\sqrt{2}\}: a, b \in Q\}$ is a group with respect to addition, where Q denotes the set of rationals.
 - (b) Either prove the following statements or give counter-examples:
 - (i) Every binary operation on a set consisting of a single element is both commutative and associative.

B.TECH/CSE/4TH SEM/MATH 2201/2017

- (ii) Every commutative binary operation on a set having just two elements is associative.
- (c) Prove that in a group G, for all a, b in G, the equation ax = b has a unique solution in G.

$$4 + (2 + 2) + 4 = 12$$

- 5. (a) Show that the set S_3 of all permutations on three symbols 1, 2, 3 forms a finite non-abelian group of order 6 with respect to the usual 'composition' operation.
 - (b) Find a solution of the equation ax = b in S_3 , where $a = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$ and $b = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$.
 - (c) Let G be a group with finite number of elements. Show that for any $a \in G$, there exists an $n \in \mathbb{Z}^+$ such that $a^n = e$.

$$6 + 3 + 3 = 12$$

Group - D

- 6. (a) State and prove Lagrange's Theorem regarding the order of a subgroup of a finite group.
 - (b) If in a group G, $a^5 = e$ and $aba^{-1} = b^2$ for all a, b in G, find the order of b.

6 + 6 = 12

- 7. (a) Let G be a finite group and $a \in G$. Prove that $a^{o(G)} = e$. Hence prove Fermat's Little Theorem.
 - (b) Let H be a subgroup of a group G such that [G:H] = 2. Then prove that H is a normal subgroup of G.

6 + 6 = 12

Group - E

- 8. (a) Prove that \mathbb{Z}_{11} , the ring of all integers modulo 11, is a field. State any theorem that you use. Find the multiplicative inverses of all the non-zero elements of \mathbb{Z}_{11} . Show your calculations.
 - (b) State the definition of the characteristic of a ring. Prove that the characteristic of an integral domain is 0 or a prime number.

6 + 6 = 12