17. Deep Perception part2

Last Lecture: Traditional Computer Vision

End to end, from pixel to joint torques

Today's Topic outline

- What should we output for manipulation?
- Trends:
 - Transfer learning (start from pre-trained image net, via fine-tuning, to retarget network into our domain)
 - Synthetic data works pretty well
 - Self-supervised learning -> foundation models
- Possible intermediate representations
 - Pose (Deep pose Estimation)
 - Grasp score (for grasp selection)
 - Keypoints
 - Dense coorespondences
 - Many more

1. Deep pose estimation, for a known object

- How do you represent pose? (esp 3D rotations)
 - Discretize into bins -> classification (looks unreasonalbe at first, but good choice for PDF)

- R-P-Y (Eular angles) <- bad idea
- Quaternions
- Rotation Matrices
- How to choose Loss function?
 - Dont use rpy MSE distance, use quaternion (ger) distance
 - Shortest path for the rotation, shortest arc

Projection via SVD

- What about symmetries + Partial view?
- What we really want: a probability distribution of possible pose
- Bingham distribution (over unit quaternions), gaussian in the 4-D space quaternions
- Intersection of Gaussian and unit sphere

Categorical distribution: https://bop.felk.cvut.cz/home/

Limitation: for KNOWN objects

- Pose is so hard to estimate, and most of the time, is more than what you need to get the job done;
- Keypoints for boxes work good
- What about force control?
- Feedback Control for Category-Level Robotic Manipulation
- https://www.youtube.com/watch?v=GbblE4BtH08

2. Keypoints Affordances for Category Level Manipulation

- Keypoints are not sufficient representation
- Keypoint "semantics" + dense 3D geometry
- Human pose estimation 2d guide
- keypointnet.github.io/

3. Force Control & Impedance Control?

- Feedback Control for Category-Level Robotic Manipulation:
- Need to know the points(Frames) that define impedances
 - Estimate the key points associated with orientation
 - Define the impedance, do peg insertion or wipping
- So far, the key points are geometric and semantic, required human labels.
- If we forgo semantics, can we self-supervise?

- Dense Object Nets, Core tech: dense correspondences
 - Dense Object Nets, Learning Dense Visual Object Descriptors by and for robot manipulation
 - Pick a point, scan, do the dense correspondances
 - SceneFlow
 - SceneFlow

- Take multiple images and do highlevel planning, get state of the environment object, where might the object move?
- Train a network to predict possible changes of the door

All examples today have one constraint. They need to be human interpretable, so that it can be connected to the manipulation pipeline