Comparison of MOST and Bipolar transistor models

Willy Sansen
KULeuven, ESAT-MICAS
Leuven, Belgium

willy.sansen@esat.kuleuven.be

Table of contents

- Models of MOST transistors
- Models of Bipolar transistors
- Comparison of MOSTs and Bipolars

Ref.: W. Sansen: Analog Design Essentials, Springer 2006

From Bipolar to MOST transistors

The SIA roadmap

Year	Lmin µm	•	Trans/chip millions/chip	Clock MHz	Wiring
1995	0.35	0.064	4	300	4 - 5
1998	0.25	0.256	7	450	5
2001	0.18	1	13	600	5 - 6
2004	0.13	4	25	800	6
2007	0.09	16	50	1000	6 - 7
2010	0.065	64	90	1100	7 - 8
2003					

Semiconductor Industry Association

The law of Moore

ISSCC 2005 paper distribution

 $\operatorname{nm}\, \mathbf{L}_{\min}$

Price MPW silicon for different L (nm)

MOST layout

MOST layout : Cox and CD

$$C_D = \frac{\varepsilon_{si}}{t_{si}}$$

$$C_{ox} = \frac{\varepsilon_{ox}}{t_{ox}}$$

$$\frac{C_D}{C_{ox}} = n - c$$

MOST layout : Cox and CD values

$$C_{D} = \frac{\varepsilon_{si}}{t_{si}} \qquad t_{si} = \sqrt{\frac{2\varepsilon_{si}(\phi - V_{BD})}{qN_{B}}}$$

Example :
$$L = 0.35 \mu m$$
; W/L = 8

$$V_{BD} = -3.3 \text{ V}$$
: $t_{Si} = 0.1 \ \mu\text{m}$

$$C_D \approx 10^{-7} \text{ F/cm}^2$$

$$t_{ox} = \frac{L_{min}}{50}$$

$$t_{ox} = 7 \text{ nm}$$

$$C_{ox} \approx 5 \cdot 10^{-7} \text{ F/cm}^2$$

$$\varepsilon_{si} = 1 \text{ pF/cm}$$

$$\varepsilon_{ox}$$
 = 0.34 pF/cm

$$\phi \approx 0.6 \text{ V}$$

$$q = 1.6 \ 10^{-19} \ C$$

$$N_{\rm B} \approx 4 \ 10^{17} \ {\rm cm}^{-3}$$

$$\frac{C_D}{C_{ox}} = n - 1 \approx 0.2$$

N-well CMOS technology

MOST I_{DS} versus V_{GS} and V_{DS}

Table of contents

- Models of MOST transistors
 - MOST as a resistor
 - MOST as an amplifier in strong inversion
 - Transition weak inversion-strong inversion
 - Transition strong inversion-velocity saturation
 - Capacitances and f_T
- Models of Bipolar transistors
- Comparison of MOSTs & Bipolar transistors

MOST I_{DS} versus V_{DS}

MOST parameters β , KP, C_{ox}, ...

$$\beta = \mathsf{KP} \frac{\mathsf{W}}{\mathsf{L}}$$

$$\mathsf{C}_{\mathsf{ox}} \approx 5 \ 10^{-7} \ \mathsf{F/cm^2}$$

$$\mathsf{E}_{\mathsf{ox}} = 0.34 \ \mathsf{pF/cm}$$

$$\mathsf{E}_{\mathsf{ox}} = 1 \ \mathsf{pF/cm}$$

$$\mathsf{E}_{\mathsf{ox}} = 7 \ \mathsf{nm}$$

$$\mathsf{E}_{\mathsf{ox}} = 7 \ \mathsf{nm}$$

$$\mathsf{E}_{\mathsf{ox}} = 0.35 \ \mathsf{\mum}$$

$$\mathsf{E}_{\mathsf{ox}} = 0.35 \ \mathsf{mm}$$

$$\mathsf{E}_{\mathsf{ox}} = 0.35 \ \mathsf{mm}$$

$$\mathsf{E}_{\mathsf{ox}} = 0.35 \ \mathsf{mm}$$

Example: Analog switch on CL

We want to switch 0.6 V to a load capacitance C_L of 4 pF. We want to do this fast, with time constant 0.5 ns. Supply voltage V_{DD} = 2.5 V V_T = 0.5 V Use standard 0.35 μ m CMOS.

Choose minimum channel length and find an average V_{GS}!

Example: Analog switch on RL

We want to switch 0.6 V to a load resistor R_L of 5 $k\Omega$.

W/L = 8

Supply voltage $V_{DD} = 2.5 \text{ V}$

0.35 μ m CMOS: $V_T = 0.5 V$

v_{OUT}? R_{on}?

Choose minimum channel length!

Body effect - Parasitic JFET

$$V_T = V_{T0} + \gamma \left[\sqrt{|2\Phi_F| + V_{BS}} - \sqrt{|2\Phi_F|} \right]$$

$$n = \frac{\gamma}{\sqrt{|2\Phi_{F}| + V_{BS}}} = 1 + \frac{C_{D}}{C_{ox}} \qquad |2\Phi_{F}| \approx 0.6 \text{ V}$$

$$n \approx 1.2 \dots 1.5$$

$$\gamma \approx 0.5 \dots 0.8 \text{ V}^{1/2}$$

Reverse v_{BS} increases |V_T| and decreases |i_{DS}|!!!

 $n = 1/\kappa$ subthreshold gate coupling coeff. Tsividis

Ex.: Analog switch with nonzero VBS

Switch 0.6 V to a load capacitance C_L of 4 pF or a load resistor R_L of 5 k Ω . W/L = 8 (R_{on} = 125 Ω @ V_{BS} = 0) Supply voltage V_{DD} = 2.5 V 0.35 μ m CMOS: V_T = 0.5 V V_{OUT} ? for γ = 0.5 V⁻¹

Start with $V_{BS} = 0$.

Table of contents

- Models of MOST transistors
 - MOST as a resistor
 - MOST as an amplifier in strong inversion
 - Transition weak inversion-strong inversion
 - Transition strong inversion-velocity saturation
 - Capacitances and f_T
- Models of Bipolar transistors
- Comparison of MOSTs & Bipolar transistors

MOST I_{DS} versus V_{GS}

MOST small-signal model: gm & rDS

$$\begin{array}{c|c}
G & \downarrow & \downarrow \\
V_{GS} & \downarrow & \downarrow \\
g_{m}V_{GS} & \downarrow & r_{DS}
\end{array}$$

$$S & g_{m} = \frac{di_{DS}}{dV_{CS}} & S$$

$$g_{m} = 2K'_{n} \frac{W}{L} (V_{GS}-V_{T}) = 2 \sqrt{K'_{n} \frac{W}{L} I_{DS}} = \frac{2 I_{DS}}{V_{GS}-V_{T}}$$

The transconductance g_m

Is
$$g_m \sim V_{DS}$$
or $\sim I_{DS}$?

MOST small-signal model: r_{DS}

MOST single-transistor gain A_v

$$A_{v} = g_{m}r_{DS} = \frac{2 V_{E}L}{V_{GS}-V_{T}}$$

$$A_{v} \approx 100$$

If
$$V_E L \approx 10 \text{ V}$$

and $V_{GS} - V_T \approx 0.2 \text{ V}$

Design for high gain:

	High gain	High speed	
V _{GS} -V _T	Low (0.2 V)		
L	High		

 V_{GS} - V_{T} sets the ratio g_{m}/I_{DS} !

Example: single-transistor amplifier

We want to realize a three-stage amplifier with a total gain of 10.000. We use three single-transistor stages in series. What minimum lengths do we have to use in an advanced 65 nm CMOS technology with $V_E = 4 \ V/\mu m$?

Choose $V_{GS}-V_T = 0.2 V!$

pMOST small-signal model

MOST small-signal model: g_m & g_{mb}

$$\frac{g_{mb}}{g_m} = \frac{C_D}{C_{ox}} = n - 1$$

$$g_m = \frac{al_{DS}}{dv_{GS}}$$
 $g_{mb} = \frac{al_{DS}}{dv_{BS}}$

Table of contents

- Models of MOST transistors
 - MOST as a resistor
 - MOST as an amplifier in strong inversion
 - Transition weak inversion-strong inversion
 - Transition strong inversion-velocity saturation
 - Capacitances and f_T
- Models of Bipolar transistors
- Comparison of MOSTs & Bipolar transistors

I_{DS} & g_m versus V_{GS} : weak inversion

Transconductance g_m versus V_{GS}

Transition voltage V_{GSt} between wi & si

$$I_{DSwi} = I_{D0} \frac{W}{L} exp^{\frac{V_{GS}}{nkT/q}}$$

$$g_{mwi} = \frac{I_{DSwi}}{nkT/q}$$

$$\frac{g_{mwi}}{I_{DSwi}} = \frac{1}{nkT/q}$$

$$\left| (V_{GSt}-V_T)_t = 2n \frac{kT}{q} \right|$$

$$I_{DS} = K'_{n} \frac{W}{L} (V_{GS} - V_{T})^{2}$$

$$g_{m} = \frac{2 I_{DS}}{V_{GS} - V_{T}}$$

$$\frac{g_{m}}{I_{DS}} = \frac{2}{V_{GS}-V_{T}}$$

Transition Voltage V_{GSt} for different L

$$(V_{GSt}-V_T)_t = 2n \frac{kT}{q}$$

$$\left| (V_{GSt}-V_T)_t = 2n \frac{kT}{q} \right| I_{DSt} \approx K'_n \frac{W}{L} (2n \frac{kT}{q})^2$$

Is independent of channel length L Is still true in ... years!

$$(V_{GSt}-V_T)_t = 2n \frac{kT}{q} \approx 70 \text{ mV}$$
 $I_{DSt} \approx 2 \mu A \text{ for } \frac{W}{L} = 10$

for nMOST

Transition wi - si

Ratio g_m/I_{DS} at the transition wi - si

EKV model for smooth wi-si transition

$$I_{DS} = K' \frac{W}{L} V_{GSTt}^{2} [ln (1 + e^{V})]^{2} \qquad V_{GST} = V_{GS} - V_{T} \qquad K' = \frac{KP}{2n}$$

$$v = \frac{V_{GST}}{V_{GSTt}} \qquad V_{GSTt} = (V_{GS} - V_{T})_{t} = 2n \frac{kT}{q}$$

$$\approx 70 \text{ mV}$$

$$I_{DS} = K' \frac{W}{L} V_{GSTt}^{2} e^{2V} = K' \frac{W}{L} V_{GSTt}^{2} exp \left(\frac{V_{GS} - V_{T}}{n kT/q} \right)$$

$$Large \ v : ln (1 + e^{V}) \approx v$$

$$I_{DS} = K' \frac{W}{L} V_{GSTt}^{2} v^{2} = K' \frac{W}{L} (V_{GS} - V_{T})^{2} \qquad Enz, AlCSP '95, 83-114 Cunha, JSSC Oct.98 1510-1519$$

Transition current I_{DSt} between wi & si

$$I_{DSt} = I_{DS} = K' \frac{W}{L} V_{GSTt}^{2} \qquad I_{DSt} = 2 \mu A \text{ for W/L} = 10$$

$$V = 1$$

$$i = \frac{I_{DS}}{I_{DSt}} = [\ln (1 + e^{V})]^{2} \qquad \text{inversion coefficient}$$

$$V = \ln (e^{\sqrt{i}} - 1)$$

$$V_{GS} - V_{T} = V_{GSTt} \ln (e^{\sqrt{i}} - 1)$$

$$V_{GSTt} = 2n \frac{kT}{q} \approx 70 \text{ mV}$$

Relation V_{GS} - V_{T} and inversion coefficient i

Transconductance g_m between wi & si

$$i = \frac{I_{DS}}{I_{DSt}} = [\ln (1 + e^{v})]^{2}$$
 $g_{m} \approx$

$$GM = \frac{g_m}{I_{DS}} \frac{nkT}{q} = \frac{1 - e^{-\sqrt{i}}}{\sqrt{i}}$$

$$Large i : GM = \frac{1}{\sqrt{i}}$$

$$Small i : GM = 1 - \frac{\sqrt{i}}{2}$$

Large i :
$$GM = \frac{1}{\sqrt{i}}$$

Small i : GM =
$$1 - \frac{V_i}{2}$$

Alternative approximation:

$$GM = \frac{1}{\sqrt{1 + 0.5\sqrt{i} + i}}$$

Large i : GM =
$$\frac{1}{\sqrt{i}}$$

Small i : GM = $1 - \frac{\sqrt{i}}{4}$

Small i : GM =
$$1 - \frac{\sqrt{i}}{4}$$

GM versus inversion coefficient i

GM

Table of contents

- Models of MOST transistors
 - MOST as a resistor
 - MOST as an amplifier in strong inversion
 - Transition weak inversion-strong inversion
 - Transition strong inversion-velocity saturation
 - Capacitances and f_T
- Models of Bipolar transistors
- Comparison of MOSTs & Bipolar transistors

I_{DS} & g_m vs V_{GS} : velocity saturation

The saturation region and velocity saturation

Transconductance g_m versus V_{GS}

Velocity saturation: $v_{sat} & \theta$

$$I_{DS} = \frac{K'_n \frac{W}{L} (V_{GS} - V_T)^2}{1 + \theta (V_{GS} - V_T)}$$

[large
$$V_{GS}$$
]
$$\approx \frac{K'_n}{\theta} \frac{W}{L} (V_{GS}-V_T)$$

$$g_{msat} \approx 2K'_{n} \frac{W}{L} (V_{GS} - V_{T})^{2} \frac{1 + \frac{\theta}{2} (V_{GS} - V_{T})}{[1 + \theta (V_{GS} - V_{T})]^{2}} \approx \frac{K'_{n}}{\theta} \frac{W}{L}$$

$$= WC_{ox}v_{sat}$$

$$\theta L = \frac{\mu}{2n} \frac{1}{v_{sat}} = \frac{1}{E_c}$$

$$= \frac{1}{E_c}$$

$$=\frac{1}{E_c}$$

 θ L \approx 0.2 μ m/V : For L = 0.13 μ m $\theta \approx$ 1.6 V⁻¹

Velocity saturation: $\theta \& R_S \& v_{sat}$

$$I_{DS} = \frac{K'_n \frac{W}{L} (V_{GS} - V_T)^2}{1 + \theta (V_{GS} - V_T)}$$

[large V_{GS}]

$$g_{msat} \approx \frac{K'_n}{\theta} \frac{W}{L}$$

$$g_{mRs} = \frac{g_m}{1 + g_m R_S} \approx \frac{1}{R_S}$$

$$R_s = \frac{\theta}{K'_n W/L}$$

$$R_S \approx \frac{\mu}{2n} \frac{1}{W K'_n v_{sat}} \approx \frac{1}{W C_{ox} v_{sat}}$$

Transition Voltage V_{GSTvs} between si and vs

$$I_{DS} = \frac{K'_{n} \frac{W}{L} (V_{GS} - V_{T})^{2}}{1 + \theta (V_{GS} - V_{T})}$$

$$I_{DSsat} = WC_{ox} V_{sat} (V_{GS} - V_{T})$$

$$g_{msat} = WC_{ox}v_{sat} \approx \frac{K_n}{\theta} \frac{W}{L}$$

$$(V_{GS}-V_T)_{vs} = \frac{1}{\theta} \approx 2nL \frac{V_{sat}}{\mu}$$
 Is proportional to channel length L!!!

$$\approx$$
 5 L \approx 0.62 V if L = 0.13 μ m

Transition Current I_{DSvs} between si and vs

$$I_{DSvs} \approx K' WL \left(\frac{2n v_{sat}}{\mu}\right)^2 \approx 100 n \varepsilon_{ox} W \frac{v_{sat}^2}{\mu}$$

$$\frac{I_{DSvs}}{W} \approx 10 \text{ A/cm}$$

$$K' = \frac{\mu C_{o}x}{2n}$$

$$C_{ox} = \frac{\varepsilon_{ox}}{t_{ox}}$$
 $t_{ox} = \frac{L}{50}$

W = 2.6
$$\mu$$
m & L = 0.13 μ m : $I_{DSvs} \approx 2.6$ mA

$$v_{sat} = 10^7 \text{ cm/s}$$

 $n = 1.4$
 $\mu = 500 \text{ cm}^2/\text{Vs}$

Transconductance g_m between si and vs

$$g_{msat} = W C_{ox} v_{sat}$$

$$g_{mK'} = 2K' \frac{W}{L} (V_{GS} - V_T)$$
 $g_{mK'} \approx 1.2 \cdot 10^{-9} V_{GST} W/L^2 S/cm$

$$g_{mK'} \approx 1.2 \ 10^{-9} \ V_{GST} \ W/L^2 \ S/cm$$

$$\frac{1}{g_{m}} = \frac{1}{g_{mK'}} + \frac{1}{g_{msat}}$$

$$\frac{1}{g_{m}} = \frac{1}{g_{mK'}} + \frac{1}{g_{msat}}$$

$$g_{m} \approx \frac{W}{L} \frac{17 \cdot 10^{-5}}{1 + 2.8 \cdot 10^{4} \, L / V_{GST}}$$
 L in

If $V_{GST} = 0.2 \text{ V}$, v_{sat} takes over for L < 65 nm (If 0.5 V for L < 0.15 μ m)

Now in velocity saturation?

Range of V_{GS} - V_{T} values for si vs time

MOST operating region in si

gm vs V_{GS} for different L (same t_{ox})

Exercise:

g_m vs V_{GS} for different t_{ox} ($\approx L_{min}/50$)

Exercise:

Table: MOST I_{DS} , $g_m \& g_m/I_{DS}$

Summary:

TABLE 1-4 EXPRESSIONS OF I_{DS} , g_m AND g_m/I_{DS} FOR MOST

	I _{DS}	g _m	$\frac{g_m}{I_{DS}} = f(v_{GS} - V_T)$	$\frac{g_m}{I_{DS}} = f(I_{DS})$
wi	$I_{D0} \frac{W}{L} \exp\left(\frac{v_{GS}}{nkT/q}\right) $ (1-25a)	$\frac{I_{D0}}{nkT/q} \frac{W}{L} \exp\left(\frac{v_{GS}}{nkT/q}\right) $ (1-25b)	$\frac{1}{nkT/q}$ (1-26b)	$\frac{1}{nkT/q}$ (1-26 <i>b</i>)
ws			$(v_{GS} - V_T)_{ws} = 2n \frac{kT}{q}$	$I_{DSws} = \frac{KP}{2n} \frac{W}{L} \left(2n \frac{kT}{q} \right)^2$
si	$\frac{KP}{2n} \frac{W}{L} (v_{GS} - V_T)^2 \tag{1-18c}$	$2\frac{KP}{2n}\frac{W}{L}(v_{GS}-V_T) \tag{1-22a}$	$\frac{2}{v_{GS} - V_T} \tag{1-26a}$	$2\sqrt{\frac{KP}{2n}} \frac{W}{L} \frac{1}{I_{DS}} \tag{1-26a}$
sv			$(v_{GS} - V_T)_{sv} = \frac{2nLC_{ox}v_{sat}}{KP}$	$I_{DSsv} = \frac{2WLC_{ox}^2 v_{sat}^2}{KP/2n}$
VS	$WC_{\text{ox}}v_{\text{sat}}(v_{GS}-V_T)$ $(1-38b)$	$WC_{ox}v_{sat}$ (1-39)	$\frac{1}{v_{GS}-V_T}$	$\frac{WC_{\text{ox}}V_{\text{sat}}}{I_{DS}}$

Ref.: Laker, Sansen: Design of analog ..., MacGrawHill 1994; Table 1-4

Gate current

For 0.1 μ m CMOS :

 $t_{ox} \approx 2 \text{ nm}$

 $J_G \approx 4 \cdot 10^{-2} \text{ A/cm}^2$

For 10 x 0.5 μ m

I_G≈2 nA

 $J_G (A/cm^2)$ $\approx 4.5 \cdot 10^5 \exp(-\frac{L}{6.5})$ L in nm

Ref. Koh, Tr ED 2001, 259-Annema, JSSC Jan.05, 135.

Table of contents

- Models of MOST transistors
 - MOST as a resistor
 - MOST as an amplifier in strong inversion
 - Transition weak inversion-strong inversion
 - Transition strong inversion-velocity saturation
 - Capacitances and f_T
- Models of Bipolar transistors
- Comparison of MOSTs & Bipolar transistors

MOST capacitances

MOST capacitances C_{GS} & C_{GD}

$$C_{GS} \approx \frac{2}{3} WLC_{ox} \approx 2W \text{ fF/}\mu\text{m for } L_{min}$$

$$L_{min}C_{ox} \approx L_{min} \frac{\varepsilon_{ox}}{t_{ox}} \approx 50 \ \varepsilon_{ox} \approx 2 \ fF/\mu m$$

$$C_{GD} = WC_{gdo}$$

MOST f_T where $i_{DS} = i_{GS}$

$$G \xrightarrow{i_{GS}} \xrightarrow{D} \qquad i_{GS} = v_{GS} C_{GS} s$$

$$c_{GS} = \frac{2}{3} \text{WLC}_{ox} \qquad g_m = 2 \text{K}' \frac{\text{W}}{\text{L}} (\text{V}_{GS} - \text{V}_T) \qquad \text{K}' = \frac{\mu C_{ox}}{2n}$$

$$f_T = \frac{g_m}{2\pi C_{GS}} = \frac{1}{2\pi} \frac{3}{2n} \frac{\mu}{\text{L}^2} (\text{V}_{GS} - \text{V}_T) \qquad \text{or} \qquad \approx \frac{\text{V}_{sat}}{2\pi \text{L}}$$

$$f_{max} \approx \sqrt{f_T / 8\pi r_G C_{GD}}$$

Design for high speed:

	High gain	High speed	
V _{GS} -V _T	Low (0.2 V)	High (0.5 V)	
L	High	Low	

 V_{GS} - V_{T} sets the ratio g_{m}/I_{DS} !

Maximum f_T values versus channel length L

Processors

f_T model in si and velocity saturation

$$f_{T} = \frac{g_{m}}{2\pi C_{GS}} \qquad C_{GS} = kW \qquad k = 2 \text{ fF/}\mu\text{m} = 2 \text{ 10}^{-11} \text{ F/cm}$$

$$g_{m} = \frac{W}{L} \frac{17 \text{ 10}^{-5}}{1 + 2.8 \text{ 10}^{4} \text{ L/V}_{GST}} \qquad \text{L in cm}$$

$$f_T = \frac{1}{L} \frac{13.5}{1 + 2.8 L / V_{GST}}$$
 GHz

If
$$V_{GST}$$
 = 0.2 V, v_{sat} takes over for L < 65 nm
If V_{GST} = 0.5 V for L < 0.15 μ m

f_T model in si and weak inversion

$$\begin{split} f_T &= \frac{g_m}{2\pi\,C_{GS}} & \qquad GM = \frac{g_m}{I_{DS}} \, \frac{nkT}{q} \, = \, \frac{1-e^{\, \sqrt{i}}}{\sqrt{i}} \\ g_m &= \, \frac{I_{DS}}{nkT/q} \, \frac{1-e^{\, -\sqrt{i}}}{\sqrt{i}} \quad \text{but } I_{DS} = i\,I_{DSt} \\ g_m &= \, \frac{I_{DSt}}{nkT/q} \, \sqrt{i} \, \left(1-e^{\, -\sqrt{i}}\right) \\ \frac{f_T}{f_{TH}} &= \, \sqrt{i} \, \left(1-e^{\, -\sqrt{i}}\right) \\ &= \, \frac{I_{DSt}}{2\pi\,C_{GS} \, nkT/q} \, = \, \frac{K'\,V_{GSTt}^{\,2}\,W/L}{2\pi\,WL\,C_{ox} \, nkT/q} \\ &\approx \, i \, \, \text{for small } i \, ! \\ \end{split}$$

f_T versus inversion coefficient i

$$\frac{f_{T}}{f_{TH}} = f_{TH}$$

$$\sqrt{i} (1 - e^{-\sqrt{i}})$$

$$GM = \frac{1 - e^{-\sqrt{i}}}{\sqrt{i}}$$

$$i = \frac{I_{DS}}{I_{DSt}}$$

Exercise: MOST f_T or not f_T?

all L= L_{min}

$$f_T = \frac{1}{2\pi} \frac{\mu}{L^2} (V_{GS} - V_T) = \frac{\sqrt{K'I_{DS}}}{\pi C_{ox} \sqrt{WL^3}} = \frac{I_{DS}}{\pi WLC_{ox} (V_{GS} - V_T)}$$

MOST capacitances C_{SB} & C_{DB}

$$C_{SB} = \frac{C_{jSB0}}{\sqrt{1 + V_{color}}}$$

$$C_{DB} = \frac{C_{jDB0}}{\sqrt{1 + V_{DB}/\phi_{iD}}}$$

$$\phi_{jS} \approx \phi_{jD} \approx 0.5 \dots 0.7 \text{ V}$$

RF MOST model

$$C_G = C_{GS} + C_{GD}$$

Ref. Tin, Tr. CAD, April 1998, 372

Ref. Sansen, etal, ACD, XDSL, RFMOS models, Kluwer 1999

Single-page MOST model

Growing number of parameters!

BSIM4: http://www-device.eecs.berkeley.edu/bsim/bsim ent.html

Model 11: http://www.semiconductors.philips.com/Philips Models/mos models

EKV: http://legwww.epfl.ch/ekv/model.html /model11/index.html

Benchmark tests

- 1. Weak inversion transition for I_{DS} and g_m/I_{DS} ratio
- 2. Velocity saturation transition for I_{DS} and g_m/I_{DS} ratio
- 3. Output conductance around V_{DSsat}
- 4. Continuity of currents and caps around zero V_{DS}
- 5. Thermal and 1/f noise
- 6. High frequency input impedance (s_{11}) and transimpedance (s_{21})

Table of contents

- Models of MOST transistors
- Models of Bipolar transistors
- Comparison of MOSTs & Bipolar transistors

Bipolar transistors

Bipolar transistor I_{CE} versus V_{BE}

$$I_{CE} = I_{S} \exp \frac{V_{BE}}{kT/q}$$

$$I_{BE} = \frac{I_{CE}}{\beta}$$

$$I_S \approx 10^{-15} \text{ A}$$
 kT/q = 26 mV at 300 K

is leakage current

$$β \approx 10 ... 1000$$

Bipolar transistor small-signal model: gm & ro

$$g_{m} = \frac{di_{CE}}{dv_{BE}} = \frac{I_{CE}}{kT/q}$$

$$g_{m} = \frac{dv_{BE}}{di_{BE}} = \beta \frac{dv_{BE}}{di_{CE}} = \frac{\beta}{g_{m}}$$

$$r_{o} = \frac{V_{E}}{V_{ED}} \approx 20 \text{ M}$$

$$r_{o} = \frac{V_{E}}{V_{ED}} \approx 10 \text{ M}$$

Bipolar transistor capacitance C_{π}

C_D is the diffusion capacitance

Diffusion capacitance CD

$$C_D = \frac{Q_B}{v_{BE}} = \tau_F \frac{di_{CE}}{dv_{BE}} = \tau_F g_m = \tau_F \frac{I_{CE}}{kT/q}$$

Base transit time
$$\tau_F = \frac{W_B^2}{2D_n}$$
 or now $\approx \frac{W_B}{v_{sat}}$

Bipolar transistor capacitances C_{μ} & C_{CS}

Bipolar transistor f_T

$$f_T = \frac{g_m}{2\pi C_{\pi}} = \frac{1}{2\pi} \frac{1}{\tau_F + \frac{C_{jBE} + C_{\mu}}{g_m}}$$

or
$$\approx \frac{V_{sat}}{2\pi W_{B}}$$

For a current drive!

$$f_{\text{max}} \approx \sqrt{f_{\text{T}} / 8\pi r_{\text{B}} C_{\mu}}$$

Bipolar transistor f_T versus I_{CE}

Single-page Bipolar transistor model

$$I_{CF} = I_{S} \exp \frac{V_{BE}}{kT/q}$$

$$I_S \approx 10^{-15} \,\text{A}$$
 kT/q = 26 mV at 300 K

$$g_m = \frac{I_{CE}}{kT/q}$$
 $r_o = \frac{V_E}{I_{CE}}$

$$r_o = \frac{V_E}{I_{CE}}$$

$$V_{En} \approx 20 \text{ V} \quad V_{Ep} \approx 10 \text{ V}$$

$$f_{T} = \frac{1}{2\pi} \frac{1}{\tau_{F} + \frac{C_{je} + C_{jc}}{g_{m}}}$$

or≈
$$\frac{V_{sat}}{2\pi W_B}$$

Table of contents

- Models of MOST transistors
- Models of Bipolar transistors
- Comparison of MOSTs and Bipolars

Comparison MOST - Bipolar

TABLE 2-8 COMPARISON OF MOSTS AND BIPOLAR TRANSISTORS

	Specification		MOST	Bipolar transistor	
1.	I _{IN} R _{IN}		0 ∞	$\frac{I_C/\beta}{r_\pi + r_B}$	β?
2.	V_{DSsat}		$V_{GS} - V_T = \sqrt{\frac{I_{DS}}{K'W/L}}$	few kT/q	
3.	$\frac{g_m}{I}$	wi	$\frac{1}{nkT/q}$	$\frac{1}{kT/q}$ n	$= 1 + \frac{C_{c}}{C_{c}}$
		si	$\frac{2}{V_{GS}-V_{T}}$	$\frac{1}{kT/q}$ 4	6 х
		vs	$\frac{1}{V_{GS}-V_{T}}$	$\frac{1}{kT/q}$	

Comparison MOST - Bipolar : minimum $\mathbf{V}_{\mathbf{DS}}$

Ref. Laker - Sansen Table 2-8

Comparison MOST - Bipolar : g_m/I_{DS} ratio

Design plan for g_m:

$$I_{DS} = K'_{n} \frac{W}{L} (V_{GS} - V_{T})^{2}$$

$$g_{m} = 2K'_{n} \frac{W}{L} (V_{GS}-V_{T}) = 2 \sqrt{K'_{n} \frac{W}{L} I_{DS}} = \frac{2 I_{DS}}{V_{GS}-V_{T}}$$

4 variables with 2 equations >> 2 free variables

Choose V_{GS} - V_{T} and L!

Comparison MOST - Bipolar

4.	Design planning		L , $V_{GS}-V_{T}$	kT/q
5.	I-range		1 decade	7 decades
6.	Max f _T	low / high /	C_{GS} , C_{GD} v_{sat}/L_{eff}	C_{jEt} , C_{μ} $v_{ m sat}/W_B$
7.	Noise $\frac{1}{dv_i^2}$	Therm. 1/f	$\frac{4kT\left(\frac{2/3}{g_m}+R_G\right)}{10\times}$	$4kT\left(\frac{1/2}{g_m}+R_B\right)$
	Offset		10×	

 $v_{sat} \approx 10^7 \text{ cm/s}$

Table of contents

- Models of MOST transistors
- Models of Bipolar transistors
- Comparison of MOSTs and Bipolars

Ref.: W. Sansen: Analog Design Essentials, Springer 2006

Reference books on Transistor models

- T. Fjeldly, T. Ytterdal, M. Shur, "Introduction to Device Modeling and Circuit Simulation", Wiley 1998.
- D. Foty, "MOSFET Modeling with SPICE, Prentice Hall
- K. Laker, W.Sansen, "Design of Analog Integrated Circuits andSystems", MacGrawHill. NY., Febr.1994.
- A. Sedra, K.Smith, "Microelectronic Circuits", CBS College Publishing, 2004.
- Y. Taur, T. Ning, "Fundamentals of Modern VLSI Devices" Cambridge Univ. Press, 1998.
- Y. Tsividis, "Operation and modeling of the MOS transistor", McGraw-Hill, 2004.
- A. Vladimirescu "The SPICE book", Wiley, 1994

References on Analog Design

- P.Allen, D.Holberg, "CMOS Analog Circuit Design", Holt, Rinehart and Winston. 1987, Oxford Press 2002
- P.Gray, P.Hurst, S. Lewis, R.Meyer, "Analysis and Design of Analog Integrated Circuits", Wiley, 1977/84/93/01
- R.Gregorian, G.Temes, "Analog MOS Int. Circuits for Signal Processing", Wiley, 1986. Huijsing, Van de Plassche, Sansen, "Analog Circuit Design", Kluwer Ac.Publ. 1993/4/5....
- D.Johns, K.Martin, "Analog integrated circuit design", Wiley 1997.
- K.Laker, W.Sansen, "Design of Analog Integrated Circuits and Systems", McGraw Hill. NY., Febr.1994.
- H.W.Ott, "Noise reduction techniques in Electronic Systems", Wiley, 1988.
- B. Razavi, "Design of analog CMOS integrated circuits", McGraw Hill. NY., 2000.
- A.Sedra, K.Smith, "Microelectronic Circuits", CBS College Publishing, 1987.