# Natural Language Processing

Dr. Karen Mazidi



#### Part Six:

Deep Learning • RNNs Topics • CNNs • Q: DL; Quizzes **DLVariations** • Homework: Text Homework classification

### **CNNs**

- convolutional neural networks or covnets
- densely connected sequential layers learn global patterns in the data
- CNNs learn patterns in small windows
- Advantages:
  - a pattern learned in one location is recognized elsewhere
  - layers can learn hierarchies of shapes from edges and other features

### CNN convolution

 a 4x4 'filter' slides over the data, performing the convolution function

| 0.47557 | 0.13031 | 0.26269 | 0.98775 | 0.54559 | 0.70388 | 0.41101 | 0.10889 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| 0.25782 | 0.69232 | 0.53866 | 0.20306 | 0.01652 | 0.45732 | 0.49489 | 0.47130 |
| 0.87015 | 0.03241 | 0.00089 | 0.95473 | 0.25201 | 0.67926 | 0.66318 | 0.35740 |
| 0.13696 | 0.20884 | 0.20363 | 0.72029 | 0.26433 | 0.42732 | 0.87660 | 0.59141 |
| 0.51279 | 0.81518 | 0.50046 | 0.89543 | 0.77181 | 0.77192 | 0.45861 | 0.25983 |
| 0.03777 | 0.12560 | 0.54588 | 0.06574 | 0.31243 | 0.50573 | 0.60777 | 0.85029 |
| 0.82038 | 0.42600 | 0.16205 | 0.80647 | 0.10582 | 0.45355 | 0.59760 | 0.08356 |
| 0.71715 | 0.42875 | 0.85921 | 0.60168 | 0.92237 | 0.62636 | 0.71523 | 0.14542 |
| 0.09399 | 0.43249 | 0.84148 | 0.23740 | 0.30299 | 0.93350 | 0.03851 | 0.33104 |
| 0.30386 | 0.63560 | 0.72024 | 0.38294 | 0.78565 | 0.72367 | 0.52017 | 0.93030 |
| 0.97332 | 0.02479 | 0.31189 | 0.74439 | 0.62472 | 0.62113 | 0.13827 | 0.92139 |
| 0.95440 | 0.03046 | 0.41120 | O 7122E | 0.07406 | 0.03066 | 0.43504 | 0 02417 |

Figure 24.1: Convolving

### convolution

- convolution mathematical process of combining two functions
- the filter (aka kernel) moves with overlap in strides, the smaller the stride, the more the overlap



# padding

- notice the shrinkage of the data, at least one per dimension
- this can be avoided by padding the data



# padding

- padding = same gives same output size of data
- padding = none doesn't do padding



### CNN

- Conv1D layers work well on text data
- stacks of conv layers and max-pooling layers are common, followed by a flatten layer, then a dense layer for the final classification
- max pooling also reduces dimensions and helps prevent overfitting

# max pooling

dimensionality reduction

| 12  | 20  | 30 | 0  |                |     |    |
|-----|-----|----|----|----------------|-----|----|
| 8   | 12  | 2  | 0  | 2 × 2 Max-Pool | 20  | 30 |
| 34  | 70  | 37 | 4  |                | 112 | 37 |
| 112 | 100 | 25 | 12 |                |     |    |

### Flatten

 after conv-max pooling layers, flattening reshapes the data for further processing



### CNN visualization

https://www.youtube.com/watch?v=YRhxdVk\_sls

### Keras: IMDB data

- each example was shortened or padded to length 500
- input shape is (25000, 500)
- the embedding layer learns connections between words

```
model = models.Sequential()
model.add(layers.Embedding(max_features, 128, input_length=maxlen))
model.add(layers.Conv1D(32, 7, activation='relu'))
model.add(layers.MaxPooling1D(5))
model.add(layers.Conv1D(32, 7, activation='relu'))
model.add(layers.GlobalMaxPooling1D())
model.add(layers.Dense(1))
```

### Keras: IMDB data

Non-trainable params: 0

| Layer (type)                                        | Output Shape     | Param # |
|-----------------------------------------------------|------------------|---------|
| embedding_1 (Embedding)                             | (None, 500, 128) | 1280000 |
| conv1d_2 (Conv1D)                                   | (None, 494, 32)  | 28704   |
| max_pooling1d_1 (MaxPooling1                        | (None, 98, 32)   | 0       |
| conv1d_3 (Conv1D)                                   | (None, 92, 32)   | 7200    |
| global_max_pooling1d_1 (Glob                        | (None, 32)       | 0       |
| dense_1 (Dense)                                     | (None, 1)        | 33      |
| Total params: 1,315,937 Trainable params: 1,315,937 |                  |         |

### Keras: IMDB data

- train and test as before
- results: a couple of points higher than the sequential model

### Recurrent models

- a recurrent neural network, RNN, has memory, or state, which enables it to learn a sequence
- the looping mechanism produces a new hidden state at each iteration
- the final hidden state is a representation of previous states



#### RNNs

- vanishing gradient problem: with more layers, the back-propagated gradient becomes smaller and smaller
- LSTM (Long Short-Term Memory) is an RNN variation that helps the vanishing gradient problem
- keeps memory path independent of the back prop path
- LSTM allows information to be remembered or forgotten
- GRU is simpler than LSTM and may train faster

### LSTM and GRU visualization

https://www.youtube.com/watch?v=8HyCNIVRbSU

### RNN on IMDB data

```
model = models.Sequential()
model.add(layers.Embedding(max_features, 32))
model.add(layers.SimpleRNN(32))
model.add(layers.Dense(1, activation='sigmoid'))
           Model: "sequential_4"
           Layer (type)
                                       Output Shape
                                                                Param #
           embedding_3 (Embedding)
                                       (None, None, 32)
                                                                320000
           simple_rnn_1 (SimpleRNN)
                                       (None, 32)
                                                                2080
           dense_2 (Dense)
                                       (None, 1)
                                                                33
           Total params: 322,113
```

Trainable params: 322,113

Non-trainable params: 0

### LSTM on IMDB data

```
# build a model with LSTM
model = models.Sequential()
model.add(layers.Embedding(max_features, 32))
model.add(layers.LSTM(32))
model.add(layers.Dense(1, activation='sigmoid'))
```

### GRU on IMDB data

```
model = models.Sequential()
model.add(layers.Embedding(max_features, 32))
model.add(layers.GRU(32))
model.add(layers.Dense(1, activation='sigmoid'))
```

```
mirror_object
                       mirror object to mirror
                     peration == "MIRROR_X":
                     irror_mod.use_x = True
                    "Irror_mod.use_y = False
                       operation
                      Irror_mod.use_
                      irror_mod.use_y
                       Lrror_mod.use_z = False
       Code Examples × = False
                       rror_mod.use_z = True
                        er ob.select=1
                        ntext.scene.objects.act
"Selected" + str(modific

    Keras imdb 2 with RNN

    Keras imdb 3 with CNN

                         X mirror to the select
                      ject.mirror_mirror_x"
```



Essential points to note

- CNNs perform well on image data but also work on text data
- RNNs were created for sequential data like text, but suffer from vanishing gradients
- LSTM and GRU are improvements over the RNN

# To Do

- Quiz on deep learning variations
- Portfolio: Text classification



# Next topic

embeddings

