

Climate Variability and Change

- Shift in mean and variance
- Increase in frequency of extreme conditions

Outline of Presentation

- Background on climate and health
 - Climate change and vulnerability
 - Health effects and disease ecology
- Systems modeling
- Steps in climate and health research
 - Simulation of disease incidence (San Juan, PR)
 - Investigation of outbreaks (Hermosillo, MX)
 - Disease forecasting (San Juan, PR)
 - Projected risk under future climate (Southern US)
- Conclusions and Future work

Climate Change Deaths

- 150,000 lives annually over last 30 years (WHO)
- Who & where? How & why?

WHO estimated mortality attributable to climate change by the year 2000

Climate Effects on Human Health

Pathogens

- Vector-borne
- Water-borne
- Air-borne

Extreme Weather

- Flooding
- Hurricanes
- Tornadoes

Air Quality

- Pollen
- Ozone
- Particulate Matter

Interdisciplinary Research

- Risk
- <u>V</u>ulnerability

•
$$V = f(E, S, A)$$

- <u>Exposure</u>

 } Environmental Stimulus
- <u>S</u>ensitivity
- Adaptive Capacity \ Social Resilience

Challenges in Climate and Health Research

Reporting problems

- Misdiagnosis
- Subclinical cases
- Reporting errors/bias
- Availability of data

Knowledge gaps

- Incubation periods
- Transmission probabilities
- Evolution and adaption of virus and human immunity

Human vs. climate influences

- Socioeconomic status
- Microclimatic influences
- Human adaptions to climate

Infectious Disease Transmission Cycles

Vector-borne Diseases in the US

Dengue Viruses

- Annually ~ 96 million cases of symptomatic disease (WHO)
- Endogenous transmission in Texas and Florida
- Symptoms: muscle and bone ache, fever, and hemorrhagic manifestations in rare cases

Lyme Disease

- Transmitted by the tick *Ixodes* scapularis (*Ixodes pacificus*)
- Symptoms: rash, joint pain, headaches, arthritis
- 11-30,000 cases per year in US

West Nile Virus

- In the US: 39,557 cases of disease and 1,668 deaths (CDC, 1999-2013)
- Disease ranges from mild fever to encephalitis and meningitis
- Now endemic in most of the United States

Chikungunya Virus

- In 2013 first locally acquired cases reported in the Americas
- Symptoms include fever, joint pain, headaches, and rash

How does weather/climate affect mosquito-borne disease risk and can it be predited?

Increases in the range of diseases

Increases in the seasonality of diseases

Epidemiologic Triangle of Disease (Vector-borne Diseases)

 A multi-factorial relationship between hosts, agents, vectors and environment

Systems Modeling

"A system is an interconnected set of elements that is coherently organized in a way that achieves something."

- Donella H. Meadows

- Why this method?
- Allows us to consider multiple elements of disease ecology and nonlinear relationships

Modeling Aedes aegypti and Dengue Virus Ecology

Simulating Dengue Fever in San Juan, PR

- Vector population are not always reliable measures of transmission risk
 - Added pathogen and human transmission component to the model
- Aedes aegypti mosquitoes
 - Urban, container breeding
 - Live in tropical habitats
 - Anthropophilic
- San Juan, PR
 - Tropical climate
 - Seasonal precipitation
 - Endemic dengue
 - Seasonal cycles of transmission

Data and Methods

Study Area

- San Juan Municipality, Puerto Rico
- Meteorological and Health Data
 - Daily maximum and minimum temperatures and total precipitation for San Juan, PR
 - Weekly clinically diagnosed dengue case counts for 2010-2013 from CDC for San Juan Municipality, PR

Model

- Parameterized for *Aedes aegypti* mosquitoes
- Daily time step
- Run over time period 2009-2013 under varying parameters
 - 9600 runs
- Chose best 1% of runs by comparing output to CDC reported data

Simulation Results (By Year)

Reported Cases ———

Simulated Cases —

Parameter Statistics

- Open containers vs. water storage
 - Climate dependence
 - Socioeconomic dependence

Proportion Uncovered Container	All	2010	2011	2012	2013
0.9	0	44	22	0	0
0.7	0	32	37	0	0
0.5	0	4	18	0	0
0.3	0	8	14	20	0
0.1	96	8	5	76	96

	2010	2011	2012	2013	
Annual Precip	227.51	223.99	140.30	216.33	

Conclusions: Modeling Dengue Fever in San Juan, PR

- Climate is a key regulator of dengue transmission in San Juan County, PR
 - Temperature limits viral replication during winter
 - Precipitation limits mosquito populations during spring
- Human response to weather and climate is important
 - Permanent water sources during dry years

- Non-climatic factors are important
 - Immunity, virus genetics, public health response

Investigating Dengue Transmission in Sonora Mexico

- Why is there little/no dengue transmission in nearby Nogales?
- Hypothesis: Climate conditions are cooler
 - Suppression of mosquito population
 - Extension of extrinsic incubation period (EIP)
- Experiments:
 - 1: Perform simulations for Hermosillo and evaluate with reported case data
 - 2: Rerun Hermosillo simulations with Nogales meteorological data
 - 3: Rerun experiment 2 with 1°C warming

Modeling Dengue Fever in Hermosillo, MX

Study area

- Hermosillo, Mexico
- Arid climate, summer monsoon
- Meteorological/Dengue case data
 - Daily maximum and minimum temperatures (NLDAS)
 - Daily precipitation (TRMM, NLDAS)
 - Weekly suspected dengue cases for Hermosillo, MX 2006-2011

Model

- Parameterized for Aedes aegypti
- Run from 2005-2011 (500 simulations)
- Best 3% of runs chosen by comparison with suspected case data (r^2)

Model Parameter Estimation

Containers

- Based on household surveys (Hermosillo)
- Human managed and open containers
- Used mean values and +/- 25% and 50%

beingalison.com

Minimum infectious rate

- Minimum amount of infectious humans
- Maintains virus within the population
- Based on case data and previous study in San Juan, PR

Maximum larval density

- Used to calculate density-dependent mortality
- Based on observations, literature, and previous study in San Juan, PR

Climate, Dengue, Parameters: Hermosillo

- 2008 and 2010 are largest dengue years
- Generally epidemics follow monsoon rains
- Precipitation magnitude has little influence on dengue magnitude
- Introduction from nearby areas is likely important

Hermosillo/Nogales Comparison: Mosquitoes

- Little/no dengue is simulated under Nogales meteorological conditions
- With warming, there is a modest mosquito population increase in 2008
 - No dengue
- Warming increases the mosquito considerably population in 2010
 - Results in increased virus transmission

Hermosillo/Nogales Comparison: EIP

- EIP is considerably longer under Nogales conditions
 - Under Nogales conditions, the EIP is longer during the transmission season in 2008
 - Prevents completion of EIP during mosquito lifetime
 - EIP shortened under 1°C warming conditions
 - Especially during transmission season

Conclusions

- Dengue epidemics follows monsoon rains
 - Timing is consistent, however, the magnitude is not well correlated
- Climate is an important regulator of dengue transmission in Nogales
 - Affects mosquito population dynamics and the virus incubation period
 - Year to year variability is important
- Dengue transmission dynamics in northern Mexico may affect dengue risk in the United States
 - Travel, climate change
 - Recent dengue epidemic in Nogales

Forecasting Dengue in San Juan, PR

- Produce weekly forecasts of dengue incidence using weather forecasts
 - Allow public health workers to allocate appropriate resources for disease treatment and prevention
- Meteorological data
 - Real-time numerical weather prediction (NWP) model forecasts
 - Daily min + max temp, total precipitation
- Dengue case data
 - Puerto Rico Department of Health
 - Updated weekly

Creating and Operational Model

 Iterative weekly process: using weather forecast (SPoRT) and weekly reported dengue data

Drive model with weather forecast data

Forecast Evaluation

 Results are difficult to evaluate because of anomalously low dengue transmission due to El Nino caused drought

- Most spikes in cases are predicted
- However, not all of them
 - Algorithm has difficulty recovering from zero

Climate Change and Expanding Dengue Risk

- Dengue outbreaks in the US were common in 19th and early 20th century
 - Mostly around port cities
 - Improved public health measures largely eradicated the disease
- Recent transmission in the US
 - Along the Texas-Mexico boarder
 - Southern Florida (2009 Pres)

Modeling Dengue Risk under Projected Climate Conditions in the US

- Simulate *Aedes aegypti* populations and dengue transmission in 32 locations in the southern US
 - Use parameter values from San Juan, PR
 - Drive model with current and projected future meteorological data
 - Meteorological data produced using a weather generator trained with data from the National Climatic Data Center
 - Projected change in temperature and precipitation from the 15 gloabl climate models run using the SRA1B scenario from IPCC AR4 report
- Simulated mosquito populations and cases are compared to San Juan, PR
 - Dengue is endemic in San Juan
 - Could not parameterize the model for US locations
 - Isolate the effects of climate / climate change

Change in Aedes aegypti Population Dynamics

- Ae. aegypti populations increase under projected climate conditions
- Populations near San Juan levels during summer
- Winter populations low excepts in summer Florida

Change in Dengue Transmission Dynamics

- Dengue range is more limited than that of Ae. aegypti
- Future summer and fall case magnitudes match those of San Juan
- Winter transmission is almost nonexistent

Conclusions

- The future risk of dengue transmission is not synonymous with that of Ae. aegypti
- Most locations in the southern US can support dengue transmission but only for a short period during the year
 - Creates risk of small, local outbreaks

 Winter temperatures are likely a major barrier for sustained dengue transmission in the continental US

Overall Conclusions and Future Work

- Understanding climate and environmental effects on infectious disease ecology provides opportunities to simulate, investigate, and predict transmission dynamics

- However, natural and human systems are complex and coupled requiring interdisciplinary efforts to truly understand
- Future research must identify methods to transition research to better public health practice
 - Incorporate socio-economic and demographic variables into models
 - Creation of seasonal forecasts to help preparedness

Thank You for Your Attention!

"Pull out, Betty! Pull out! ... You've hit an artery!"

