

DEPARTMENT OF PUBLICATION

49218U-AD. A97-D25. HENK.31-12-71.
DT-165900. U29.
Henkel und Cie GmbH,
C1d-03/26 (05-07-73)...

*cjas.c.

WASHING AGENT-CONTG MODIFIED POLYETHYLENE
IMINE TO PREVENT GREYING..

A10-E8, A10-E15, A12-W12.

*DT-2165900-Q.

SPECIFICATION
Prepd. cpds. (b) have a ratio of ethylene imine units:
ethylene oxide of 2:20. Anti-greying carboxy-methyl-
cellulose is present in amt. of up to 5%, pref. 0.2-3%
to increase the anti-greying action of (a) and (b).

EXAMPLE

A suitable agent was prepd. by (1) reacting poly-
ethylene imine of mol. wt. 1860 with a 12 C alkylglycidyl
ether at an EI:GE ratio of 10:1 at 120°C for 4-8 hrs. and
then (2) reacting the product of (1) with ethylene oxide
at an EI:EO ratio of 2:1. The ethoxylation was at 30-50°
in presence of 0.3 wt.% Na methylate.

NEW
Washing agent contg. at least one surface-active wash-
activ substance, at least one builder salt of the phos-
phat polymer type, a sequestering agent, alkalis and
a wat r-sol. polymer together with 0.1-10%, based on the
polym r, of at least one of (a) and (b) below: (a) reaction
product of a polyethylene imine of mol.wt. 430-10,000,
with alkylglycidyl ethers pref. contg. linear 8-18 C alkyl
grps. th. mol. ratio of ethylene imine units (EI): alkyl-
glycidyl ether (GE) being 20:1 - 2:1, pref. 15:1 - 5:1; (b)
reaction product of (a), with ethylene oxide, the mol. ratio
of (EI) units: ethylene oxide (EO) being 1:1.

USE/ADVANTAGES

Gr ying of e.g. cotton, polyester and polypropylene
mat rials is inhibited.

FILED BY
IDS

49218U

⑤1 BUNDESREPUBLIK D T S C H L A N D

DEUTSCHES PATENTAMT

⑤2 Deutsche Kl.: 23 e, 2

⑩

Offenlegungsschrift 2165900

⑪

Aktenzeichen: P 21 65 900.7

⑫

Anmeldetag: 31. Dezember 1971

⑬

Offenlegungstag: 5. Juli 1973

Ausstellungsriorität: —

⑯

Unionspriorität

⑰

Datum: —

⑱

Land: —

⑲

Aktenzeichen: —

⑳

Bezeichnung: Waschmittel mit einem Gehalt an vergrauungsverhütenden Zusätzen

㉑

Zusatz zu: —

㉒

Ausscheidung aus: —

㉓

Anmelder: Henkel & Cie. GmbH, 4000 Düsseldorf

Vertreter gem. § 16 PatG: —

㉔

Als Erfinder benannt: Schnegelberger, Harald, Dipl.-Chem. Dr., 5672 Leichlingen;
Jakobi, Günter, Dipl.-Chem. Dr., 4010 Hilden;
Schmadel, Edmund, Dipl.-Chem. Dr., 4020 Mettmann

Henkel & Cie GmbH

Patentabteilung

Dr. Wa/Schr

Düsseldorf, den 29. Februar 1974
Henkelstr. 67

2165900

Patent anmeldung

D 4368

Waschmittel mit einem Gehalt an vergrauungsverhütenden
Zusätzen

Es ist bekannt, Wasch- und Reinigungsmitteln, die grenzflächenaktive Verbindungen enthalten, Stoffe zuzusetzen, die das Schmutztragevermögen der Waschflossen verbessern. Derartige, im folgenden als Vergrauungsinhibitoren bezeichnete Stoffe verhindern eine Resorption des abgelösten Schmutzes auf den gereinigten Oberflächen. Es handelt sich dabei meist um Polymere, die entweder aus Naturstoffen, wie Cellulose, Gelatine oder Leim oder durch Polymerisation von Vinylverbindungen, wie Acrylsäure, Methacrylsäure, Maleinsäure, Vinylazetat und Vinylpyrrolidon hergestellt werden. Auch die Polysulfonate von Vinylpolymeren sowie Polyester und Polyamide mit einem Gehalt an zur Salzbildung befähigten Carboxylgruppen wurden schon als vergrauungsinhibierende Zusätze zu Wasch- und Reinigungsmitteln empfohlen. Von den infrage kommenden Verbindungen hat jedoch nur die Carboxymethylcellulose eine größere technische Bedeutung erlangt, zumal sie in ihrer vergrauungsinhibierenden Wirkung alle bekannt gewordenen synthetischen Polymeren übertrifft. Die Carboxymethylcellulose und die Mehrzahl der genannten synthetischen Polymeren besitzen jedoch den Nachteil, daß ihre vergrauungsverhütende Wirkung auf Cellulosefasern beschränkt ist, während sie beim Waschen von synthetischem Fasermaterial, chemisch abgewandelter Cellulose oder veredelter Baumwolle weitgehend unwirksam sind. Dieser Nachteil macht sich insbesondere gegenüber weißen Textilien aus Polyester- oder Polyoleinfaser, bügelfrei ausgerüsteter Baumwolle sowie Mischgeweben aus den genannten

Synthesefasern mit Cellulosefasern bemerkbar, die beim Gebrauch trotz häufigen Waschens vergrauen und somit unansehnlich werden können. Die vorgenannten Polyester und Polyamide führen zwar zu einer wesentlichen Verbesserung, jedoch können sie im Gegensatz zu Vinylpolymeren durch stark alkalische Waschmittelsalze teilweise verseift werden.

Es bestand die Aufgabe, ein Mittel zu entwickeln, das die obengenannten Nachteile nicht besitzt.

Gegenstand der Erfindung sind Waschmittel mit einem Gehalt an mindestens einer oberflächenaktiven Waschaktivsubstanz und mindestens einem Aufbausalz aus der Klasse der Polymerphosphate, Sequestrierungsmittel und Waschalkalien sowie einem wasserlöslichen Polymeren, dadurch gekennzeichnet, daß das in Mengen von 0,1 bis 10 Gew.-% vorliegende Polymere mindestens aus einer der unter (a) und (b) aufgeführten Verbindungen besteht:

- a) Umsetzungsprodukt eines Polyäthylenimins vom Molekulargewicht 430 bis 10 000 mit Alkylglycidäthern, deren vorzugsweise geradkettige Alkylgruppe 8 bis 18 Kohlenstoffatome aufweist, wobei das Molverhältnis von Äthylenimin-Einheit zu Alkylglycidäther 20 : 1 bis 2 : 1, vorzugsweise 15 : 1 bis 5 : 1 beträgt,
- b) Umsetzungsprodukt der gemäß (a) erhältlichen Verbindung mit Äthylenoxid, wobei das Molverhältnis von Äthylenimin-Einheit zu Äthylenoxid bis 1 : 1 betragen kann.

Bei Herstellung der erfindungsgemäßen Verbindung geht man von Polymerisationsprodukten des Äthylenimins aus, die ein Molekulargewicht von 430 bis 10 000, vorzugsweise 600 bis 6000 aufweisen, was einer Zahl von 10 bis 230, vorzugsweise 14 bis 140 Monomeren-Einheiten im Molekül entspricht.

Die Alkylglycidäther weisen eine verzweigte oder cyclische, vorzugsweise jedoch geradkettige Alkylgruppe, z.B. eine n-Octyl-, n-Decyl-, n-Dodecyl-, n-Tetradecyl-, n-Hexadecyl- oder n-Octadecyl-Gruppe auf. Auch Gemische von Glycidäthern mit verschiedener Alkylgruppe, wie sie z.B. in natürlich vorkommenden Fettresten enthalten sind, können verwendet werden. Das Molverhältnis von Äthylenimin-Einheit zu Glycidäther soll 20 : 1 bis 2 : 1, vorzugsweise 15 : 1 bis 5 : 1 betragen. Die Umsetzung kann in an sich bekannter Weise durch Erhitzen eines Gemisches aus Polyäthylenimin und Alkylglycidäther auf Temperaturen von 50° bis 180°C, vorzugsweise 80° bis 150°C erfolgen, wobei die Anwesenheit von Lösungsmitteln oder Reaktionsbeschleunigern nicht erforderlich ist. Man arbeitet vorzugsweise in einer Inertgasatmosphäre. Die vollständige Umsetzung kann beispielsweise durch IR-Spektrographie am Verschwinden der Epoxid-Bande festgestellt werden.

Die Reaktionsprodukte können unmittelbar als solche oder nach Umsetzung mit Äthylenoxid verwendet werden. Die Äthoxylierung erfolgt in bekannter Weise durch Einleiten von Äthylenoxid bei in die geschmolzene oder in Lösungsmitteln gelöste Verbindung unter Normaldruck oder im Druckgefäß. Die Äthoxylierung kann soweit geführt werden, bis auf eine Äthylenimin-Einheit 1 Mol Äthylenoxid entfällt. Vorzugsweise wendet man 1 Mol Äthylenoxid auf 2 bis 20 Monomeren-Einheiten an. Übliche Katalysatoren, wie Alkalien oder BF_3 -Addukte, können verwendet werden.

Die Herstellung der unter (b) genannten Verbindungen kann, sofern nicht mehr als eine Äthylenoxidgruppe auf 2 Äthylenimin-Einheiten entfällt, auch in der Weise erfolgen, daß man zunächst das Polyäthylenimin äthoxyliert und anschließend mit dem Glycidäther umsetzt.

Die in den Polymeren enthaltenen, wiederkehrenden Gruppen lassen sich durch das folgende Formelschema wiedergeben:

worin R der Alkylrest des Glycidäthers, R' Wasserstoff oder den Rest $\text{-CH}_2 - \text{CH}_2\text{OH}$ und $n + m$ den Polymerisationsgrad des Polyäthylenimins bedeuten.

Die Umsetzungsprodukte sind in Wasser löslich und können den Waschmitteln bzw. den zur Herstellung von Pulverprodukten bestimmten flüssigen Waschmittelansätze oder auch den fertigen Waschläugnen direkt zugesetzt werden.

Außer den vorgenannten Polymeren enthalten die Waschmittel übliche oberflächenaktive Waschaktivsubstanzen, wie anionische, nichtionische und zwitterionische Detergentien, ferner nichtoberflächenaktive Aufbausalze, beispielsweise kondensierte Phosphate, Sequestrierungsmittel und Waschalkalien sowie ggf. weitere, in Waschmittelrezepturen übliche Hilfs- und Zusatzstoffe.

Geeignete Waschrohstoffe sind solche vom Sulfonat- oder Sulfattyp, beispielsweise Alkylbenzolsulfonate, insbesondere n-Dodecylbenzolsulfonat, ferner Olefinsulfonate, wie sie beispielsweise durch Sulfonierung primärer oder sekundärer aliphatischer Monoolefine mit gasförmigem Schwefeltrioxid und anschließende alkalische oder saure Hydrolyse erhalten werden, sowie Alkylsulfonate, wie sie aus n-Alkanen durch Sulfochlorierung oder Sulfoxidation und anschließende Hydrolyse bzw. Neutralisation oder durch Bisulfitaddition an Olefine erhältlich sind. Geeignet sind ferner α -Sulfofettsäureester, primäre und sekundäre Alkylsulfate sowie die Sulfate von äthoxylierten oder propoxylierten höhermolekularen Alkoholen.

Weitere Verbindungen dieser Klasse, die ggf. in den Waschmitteln vorliegen können, sind die höhermolekularen sulfatierten Partialäther und Partialester von mehrwertigen Alkoholen, wie die Alkalosalze der Monoalkyläther bzw. der Monofettsäureester des Glycerinmonoschwefelsäureesters bzw. der 1,2-Dioxypropansulfonsäure. Ferner kommen Sulfate von äthoxylierten oder propoxylierten Fettsäureamiden und Alkylphenolen sowie Fettsäuretauride und Fettsäureisäthionate infrage.

Weitere geeignete anionische Waschrohstoffe sind Alkali-seifen von Fettsäuren natürlichen oder synthetischen Ursprungs, z.B. die Natriumseifen von Kokos-, Palmkern- oder Talgfettsäuren. Als zwitterionische Waschrohstoffe kommen Alkylbetaine und insbesondere Alkylsulfobetaine infrage, z.B. das 3-(N,N-Dimethyl-N-alkylammonium)-propan-1-sulfonat und 3-(N,N-Dimethyl-N-alkylammonium)-2-hydroxypropan-1-sulfonat.

Die anionischen Waschrohstoffe können in Form der Natrium-, Kalium- und Ammoniumsalze sowie als Salze organischer Basen, wie Mono-, Di- oder Triäthanolamin, vorliegen. Sofern die genannten anionischen und zwitterionischen Verbindungen einen aliphatischen Kohlenwasserstoffrest besitzen, soll dieser bevorzugt geradkettig sein und 8 bis 22 Kohlenstoffatome aufweisen. In den Verbindungen mit einem araliphatischen Kohlenwasserstoffrest enthalten die vorzugsweise unverzweigten Alkylketten im Mittel 6 bis 16 Kohlenstoffatome.

Als nichtionische oberflächenaktive Waschaktivsubstanzen kommen in erster Linie Polyglykolätherderivate von Alkoholen, Fettsäuren und Alkylphenolen infrage, die 3 bis 30 Glykoläthergruppen und 8 bis 20 Kohlenstoffatome im Kohlenwasserstoffrest enthalten. Besonders geeignet sind Polyglykolätherderivate, in denen die Zahl der Äthylenglykoläthergruppen 5 bis 15 beträgt und deren Kohlenwasserstoffreste sich von geradkettigen, primären Alkoholen mit 12 bis 18 Kohlenstoffatomen oder von Alkylphenolen mit einer geradkettigen, 6 bis 14 Kohlenstoffatome aufweisenden Alkylkette ableiten. Durch Anlagerung von 3 bis 15 Mol Propylenoxid an die letztgenannten Polyäthylenglykoläther oder durch Überführen in die Acetale werden Waschmittel erhalten, die sich durch ein besonders geringes Schaumvermögen auszeichnen.

BAD ORIGINAL

309827/0968

- 7 -

Weitere geeignete nichtionische Waschrohstoffe sind die wasserlöslichen, 20 bis 250 Äthylenglykoläthergruppen und 10 bis 100 Propylenglykoläthergruppen enthaltenden Polyäthylenoxidaddukte an Polypropylenglykol, Äthylendiaminopolypropylenglykol und Alkylpolypropylenglykol mit 1 bis 10 Kohlenstoffatomen in der Alkylkette. Die genannten Verbindungen enthalten üblicherweise pro Propylenglykol-Einheit 1 bis 5 Äthylenglykoleinheiten. Auch nichtionische Verbindungen vom Typ der Aminoxide und Sulfoxide, die ggf. auch äthoxyliert sein können, sind verwendbar.

Zu den Aufbausalzen zählen die Tripolyphosphate, insbesondere das Pentanatriumtriposphat. Die Triphosphate können auch im Gemisch mit höher kondensierten Phosphaten, wie Tetraphosphaten, oder ihren Hydrolyseprodukten, wie sauren oder neutralen Pyrophosphaten, vorliegen.

Die kondensierten Phosphate können auch ganz oder teilweise durch organische, komplexierend wirkende Aminopolycarbonsäuren ersetzt sein. Hierzu zählen insbesondere Alkalosalze der Nitrilotriessigsäure und Äthylendiaminetetraessigsäure. Geeignet sind ferner die Salze der Diäthylentriamino-pentaessigsäure sowie der höheren Homologen der genannten Aminopolycarbonsäuren. Diese Homologe können beispielsweise durch Polymerisation eines Esters, Amids oder Nitrils des N-Essigsäureaziridins und anschließende Verseifung zu carboxylierten Salzen oder durch Umsetzung von Polyaminen mit einem Molekulargewicht von 500 bis 10 000 mit chlor-essigsauren oder bromessigsauren Salzen in alkalischem Milieu hergestellt werden. Weitere geeignete Aminopoly-

BAD ORIGINAL

carbonsäuren sind Poly-(N-bernsteinsäure)-äthylenimine und Poly-(N-tricarballylsäure)-äthylenimine vom mittleren Molekulargewicht 500 bis 500 000, die analog den N-Essigsäurederivaten erhältlich sind.

Weiterhin können komplexierend wirkende polyphosphonsäure Salze anwesend sein, z.B. die Alkalosalze von Aminopolyphosphonsäuren, insbesondere Aminotri-(methylenphosphonsäure), 1-Hydroxyäthan-1,1-diphosphonsäure, Methylenphosphonsäure, Äthylendiphosphonsäure sowie Salze der höheren Homologen der genannten Polyphosphonsäuren. Auch Gemische der vorgenannten Komplexierungsmittel sind verwendbar.

Als Waschalkalien kommen z.B. Alkalisilikate infrage, insbesondere Natriumsilikat, in dem das Verhältnis von $\text{Na}_2\text{O} : \text{SiO}_2$ 1 : 3,5 bis 1 : 1 beträgt. Weiter geeignete Waschalkalien sind Carbonate, Bicarbonate und Borate des Natriums oder Kaliums. Die Menge der alkalisch reagierenden Stoffe einschließlich der Alkalisilikate und Phosphate soll so bemessen sein, daß der pH-Wert einer gebrauchsfähigen Lauge für Grobwäsche 9 bis 12 für Feinwäsche 6 bis 9 beträgt.

Als weiterer Mischungsbestandteil kommen Sauerstoff abgebende Bleichmittel, wie Alkaliperborate, -percarbonate, -perpyrophosphate und -persilikate sowie Harnstoffperhydrat infrage. Bevorzugt wird Natriumperborat-tetrahydrat verwendet. Zwecks Stabilisierung der Perverbindungen können die Mittel Magnesiumsilikat enthalten, beispielsweise in Mengen von 3 bis 20 Gew.-%, bezogen auf die Menge an Perborat. Zur Textilwäsche bei Temperaturen unterhalb 70°C anzuwendende Mittel, sogenannte Kaltwaschmittel können Bleichaktivatoren aus der Klasse der N- und O-Acylverbindungen, insbesondere Tetra-

BAD ORIGINAL

acetyläthylendiamin oder Tetraacetylglykouril, als Pulverbestandteil enthalten. Die aus dem Bleichaktivator oder aus der Perverbindung bestehenden Pulverpartikel können mit Hüllsubstanzen, wie wasserlöslichen Polymeren, Fettsäuren oder aufgranulierten Salzen, wie Alkalisilikaten, Natriumsulfat oder Dinatriumhydrogenphosphat, überzogen sein, um eine Wechselwirkung zwischen der Perverbindung und dem Aktivator während der Lagerung zu vermeiden.

Die Waschmittel können ferner optische Aufheller enthalten, insbesondere Derivate der Diaminostilbendisulfonsäure bzw. deren Alkalimetallsalze der Formel:

in der X und Y die folgende Bedeutung haben: NH₂, NH-CH₃, NH-CH₂-CH₂OH, CH₃-N-CH₂-CH₂OH, N(CH₂-CH₂OH)₂, Morpholino, Dimethylmorpholino, NH-C₆H₅, NH-C₆H₄-SO₃H, OCH₃, Cl, wobei X und Y gleich oder ungleich sein können. Besonders geeignet sind solche Verbindungen, in denen X eine Anilino- und Y eine Diäthanolamino- oder Morpholinogruppe darstellen.

Weiterhin kommen optische Aufheller vom Typ der Diarylpyrazoline nachstehender Formel infrage:

- 10 -

In dieser Formel bedeuten Ar und Ar' Arylreste, wie Phenyl, Diphenyl oder Naphtyl, die weitere Substituenten tragen können, wie Hydroxy-, Alkoxy-, Hydroxalkyl-, Amino-, Alkylamino-, Acylamino-, Carboxyl-, Sulfonsäure- und Sulfonamidgruppen oder Halogenatome. Bevorzugt wird ein 1,3-Diarylpyrazolinderivat verwendet, in dem der Rest Ar eine p-Sulfonamidophenylgruppe und der Rest Ar' eine p-Chlorphenylgruppe darstellt. Weitere geeignete Weißtöner sind solche vom Typ der Naphthotriazolstilbensulfonate, Äthylenbis-benzimidazole, Äthylen-bis-benzoxazole, Thiophen-bis-benzoxazole, Dialkylaminocumarine und des Cyanoanthracens. Auch Gemische von optischen Aufhellern sind verwendbar.

Die Mittel können ferner Enzyme aus der Klasse der Proteasen, Lipasen und Amylasen bzw. deren Gemische enthalten. Besonders geeignet sind aus Bakterienstämmen oder Pilzen, wie *Bacillus subtilis* und *Streptoyces griseus* gewonnene enzymatische Wirkstoffe verwendet, die gegenüber Alkali, Perverbindungen und anionische Waschaktivsubstanzen relativ beständig sind und auch bei Temperaturen 50° und 70° noch nicht nennenswert inaktiviert werden.

Weitere Bestandteile, die in den erfindungsgemäßen Mitteln enthalten sein können, sind Neutralsalze, insbesondere Natriumsulfat, bacteriostatische Stoffe, wie halogenierte Phenoläther und -thioäther, halogenierte Carbanilide und Salicylanilide sowie halogenierte Diphenylmethane, ferner Farb- und Duftstoffe.

Flüssige Mittel können außerdem hydrotrope Substanzen und Lösungsmittel enthalten, wie Alkalosalze der Benzol-Toluol- oder Xyloolsulfonsäure, Harnstoff, Glycerin, Polyglycerin, Di- oder Triglykol, Polyäthylenglykol, Äthanol, i-Propanol und Ätheralkohole.

BAD ORIGINAL

Gegebenenfalls können die Waschmittel noch bekannte Schaum-dampfungsmittel enthalten, wie gesättigte Fettsäuren oder deren Alkalimetallseifen mit 20 bis 24 Kohlenstoffatomen, höhermolekulare Fettsäureester bzw. Triglyceride oder Tri-alkylmelamine.

Zur weiteren Steigerung des Schmutztragevermögens können noch weitere bekannte Vergrauungsinhibitoren, insbesondere Natriumcelluloseglykolat (Carboxymethylcellulose) zugesetzt werden. Die gemeinsame Verwendung der erfundungsgemäßen Copolymeren und des Celluloseglykolats ist insbesondere bei der Reinigung von Textilien aus Cellulosefasern und Synthesefasern enthaltenden Mischgeweben von Vorteil.

Die qualitative und quantitative Zusammensetzung der Waschmittel hängt weitgehend von deren Einsatzgebiet ab. Der Gehalt an den erfundungsgemäß zu verwendenden Vergrauungsinhibitoren beträgt in den zusammengesetzten Waschmitteln 0,1 bis 10, vorzugsweise 0,2 bis 5 Gewichtsprozent. Die Differenz von 90 bis 99,9, vorzugsweise 95 bis 99,8 Gewichtsprozent entfällt auf sonstige Waschmittelbestandteile, deren quantitative Zusammensetzung folgendem Schema entsprechen kann (Angaben in Gewichtsprozent):

BAD ORIGINAL

1 bis 40 % mindestens einer Verbindung aus der Klasse der anionischen, nichtionischen und zwitterionischen Waschaktivsubstanzen,

10 bis 80 % mindestens eines nichtoberflächenaktiven, reinigungsverstärkend bzw. komplexierend wirkenden Aufbausalzes,

10 bis 50 % einer Perverbindung, insbesondere kristallwasserhaltiges oder wasserfreies Natriumperborat, sowie deren Gemische mit Stabilisatoren und Aktivatoren,

0,1 bis 20 % sonstige Hilfs- und Zusatzstoffe.

Die Waschaktivsubstanzen können bis zu 100 %, vorzugsweise 5 bis 70 % aus Verbindungen vom Sulfonat- und bzw. oder Sulfattyp, bis zu 100 %, vorzugsweise 5 bis 40 % aus nichtionischen Verbindungen vom Polyglykoläthertyp und bis zu 100 %, vorzugsweise 10 bis 50 % aus Seife bestehen. Die Aufbausalze können bis zu 100 %, vorzugsweise 25 bis 95 % aus Alkalimetalltriphosphaten und deren Gemischen mit Alkalimetallpyrophosphaten, bis zu 100 %, vorzugsweise 5 bis 50 % aus einem Alkalimetallsalz eines Komplexierungsmittels aus der Klasse der Polyphosphonsäuren, Nitrilotriessigsäure, Äthylendiaminotetraessigsäure und bis zu 100 %, vorzugsweise 5 bis 75 % aus mindestens einer Verbindung aus der Klasse der Alkalimetallsilikate, Alkalimetallcarbonate und Alkalimetallborate zusammengesetzt sein.

Zu den sonstigen Hilfs- und Zusatzstoffen zählen neben den optischen Aufhellern insbesondere die Schauminhibitoren, die in den erfahrungsgemäßigen Mitteln in einer Menge bis zu 5 %, vorzugsweise in einer Menge von 0,2 bis 3 % anwesend sein können, ferner die Enzyme, die in einer Menge bis zu 5 %, vorzugsweise 0,2 bis 3 % vorliegen können und die Carboxymethylcellulose, deren Anteil bis zu 5 %, vorzugsweise 0,2 bis 3 %, betragen kann.

BAD ORIGINAL

Beispiele

Die vergrauungsinhibierende Wirkung der in den folgenden Beispielen beschriebenen Verbindungen wurde nach der bekannten "Soil-Redeposition"-Methode geprüft [vergl. H. STÜPEL "Textil-Praxis" Bd. 3, Seite 264 (1954)]. Dabei werden in einer Laborwaschmaschine (Lauder-Ometer[®], ATLAS, Chicago USA) jeweils 4 Läppchen aus dem zu untersuchenden Gewebe von 8,3 g Gesamtgewicht zusammen mit 1,3 g eines künstlich angeschmutzten Baumwollgarnes 30 Minuten bis zu dreimal gewaschen. Danach wird der Reflexionswert mit einem Photometer (Elrepho[®] der Firma CARL ZEISS, unter Verwendung des Filters Nr. 6) ermittelt.

Die zur Anschmutzung des Baumwollgarnes benutzte praxisnahe Staub/Hautfettkombination besteht aus einem Gemisch von Kaolin, Eisenoxidschwarz, Ruß und synthetischem Hautfett (aus 1/3 Fettsäuren, 1/3 Fett und 1/3 Kohlenwasserstoffen). Das Baumwollgarn enthält nach der Anschmutzung ca. 11 % Pigmente und ca. 2 % Hautfett.

Verwendet wurde ein Waschmittel der Zusammensetzung (in Gewichtsprozent):

- 8 % n-Dodecylbenzolsulfonat (Na-Salz)
- 3 % Oleylalkohol mit 10 Äthylenglykoläthergruppen
- 3 % Na-Seife aus gesättigten C₁₂-C₂₂-Fettsäuren
- 40 % Pentanatriumtriphasphat
- 22 % Natriumperborat
- 3,5 % Natriumsilikat (Na₂O:SiO₂=1:3,3)
- 2,5 % Magnesiumsilikat
- 0,2 % Na-Nitrilotriacetat
- 0,3 % optische Aufheller.

Diesem Mittel wurden 4 % an Vergrauungsinhibitoren zugesetzt. Die Differenz bis 100 % entfiel auf Natriumsulfat.

Die Anwendungskonzentration der Waschmittel betrug 5 g/l, die Härte des Wassers 10°dH. Die Textilproben aus Synthesegewebe sowie die Mischgewebe aus veredelter Baumwolle und Synthesefaser wurden bei 40 bis 60°C, die aus veredelter Baumwolle bei 95°C gewaschen. Das Gewichtsverhältnis von Textilgut zu Waschflotte (Flottenverhältnis) betrug 1 : 30 bzw. 1 : 12. Nach einer Waschdauer von 30 Minuten wurden die Textilproben viermal mit destilliertem Wasser gespült. Nach drei Waschbehandlungen wurde der Weißgrad der Proben auf photometrischem Wege bestimmt. Zum Vergleich wurden Waschversuche ohne Anwendung eines Vergrauungsinhibitors durchgeführt. Die Ergebnisse sind in der folgenden Tabelle zusammengestellt.

Die Umsetzung der Polyäthylenimine mit Alkylglycidäthern erfolgte bei 120°C und war nach 4 bis 8 Stunden beendet. Die Äthoxylierung wurde in Gegenwart von 0,3 Gew.-% Natrium-methylat bei Temperaturen zwischen 30 und 50°C durchgeführt. In der Tabelle bedeutet MG das Molekulargewicht, EI:GE das Verhältnis von Äthylenimineinheit zu Glycidäther, EI:EO das Verhältnis Äthylenimineinheit zu Äthylenoxid, T die Waschtemperatur und F das Flottenverhältnis.

Aus den Remissionswerten geht hervor, daß bei Anwendung der erfindungsgemäßen Polymeren in allen Versuchen eine geringere Vergrauung der Textilfasern eintritt. Wurde anstelle der erfindungsgemäßen Mittel Carboxymethylcellulose verwendet, so wurde bei den Geweben aus Synthesefasern bzw. solchen aus ausgerüsteter Baumwolle keine nennenswerte Verbesserung gegenüber dem Vergleichswert ohne Vergrauungsinhibitor erzielt, d.h. die Zunahme der Remissionswerte lag unter 1 %.

BAD ORIGINAL

Remissionsschwelle

309827 / 0968

Patentansprüche

(1) Waschmittel mit einem Gehalt an mindestens einer oberflächenaktiven Waschaktivsubstanz und mindestens einem Aufbausalz aus der Klasse der Polymerphosphate, Sequestrierungsmittel und Waschalkalien sowie einem wasserlöslichen Polymeren, dadurch gekennzeichnet, daß das in Mengen von 0,1 bis 10 Gew.-% vorliegende Polymere mindestens aus einer der unter (a) und (b) aufgeführten Verbindungen besteht:

- a) Umsetzungsprodukt eines Polyäthylenimins vom Molekulargewicht 430 bis 10 000 mit Alkylglycidäthern, deren vorzugsweise geradkettigen Alkylgruppen 8 bis 18 Kohlenstoffatome aufweist, wobei das Molverhältnis von Äthylenimin-Einheit zu Alkylglycidäther 20 : 1 bis 2 : 1, vorzugsweise 15 : 1 bis 5 : 1 beträgt,
- b) Umsetzungsprodukt der gemäß (a) erhältlichen Verbindung mit Äthylenoxid, wobei das Molverhältnis von Äthylenimin-Einheit zu Äthylenoxid bis 1 : 1 betragen kann.

2. Mittel nach Anspruch 1, dadurch gekennzeichnet, daß das Verhältnis von Äthylenimin-Einheit zu Äthylenoxid 2 : 20 beträgt.

3. Mittel nach Anspruch 1 und 2, dadurch gekennzeichnet, daß sie bis zu 5 Gew.-%, vorzugsweise 0,2 bis 3 Gew.-% an Carboxymethylcellulose enthalten.

BAD ORIGINAL