23-24 秋冬概率论

2024年1月13日

- 1. 证明: $P\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{i=1}^{n} P\left(A_{i}\right) \sum_{1 \leq i < j \leqslant n} P\left(A_{i} \cap A_{j}\right) + \dots + (-1)^{n-1} P\left(A_{1} \cap A_{2} \dots \cap A_{n}\right)$
- 2. 两批零件, 第一种 n_1 个, 寿命 $X_1, \cdots X_{n_1} \sim E(\lambda_1)$, 第二种 n_2 个,

寿命 $Y_1, \cdots, Y_{n_2} \sim E(\lambda_2)$,有一个零件失效则失效,记 T 为失效时间

- (1) 证明 $T \sim E(\lambda_1 n_1 + \lambda_2 n_2)$
- (2) 第一种零件失效导致失效的概率
- 3. $X_1 ... X_n$ 独立同分布 $\sim P(\lambda)$

$$S = x_1 + \dots + x_n$$
 $\bar{x} = \frac{x_1 + \dots + x_n}{n}$ $T = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$

- (1) 计算 ET
 - (2) $S = s(s = 0, 1, \cdots)$ 时, 证明 $X_i \sim B\left(s, \frac{1}{n}\right)$
 - (3) 计算 $E(T \mid S)$
 - 4. $p(x,y) = C(x-y)^2 e^{-\frac{1}{2}(x^2+y^2)}$
 - (1) 求 C
 - $(2) \stackrel{*}{\not \propto} P_x(x), P_y(y)$
 - (3) 计算 r_{XY}
 - (4) 证明 X + Y, X Y 独立
 - 5. X_i 独立同分布, $E|X_1| < \infty, \mu = EX_1$,证明 $\frac{S_n}{n} \stackrel{P}{\to} \mu$

6. N_{p} 服从几何分布,参数为 p X_{i} 独立同分布 $\sim N\left(\mu,\sigma^{2}\right)$

$$Y_p = \sum_{k=1}^{N_p} X_k$$

- (1) 证明 Y_p 是随机变量
- (2) 求 EY_p
- (3) $\Re \operatorname{Var} Y_p$
- (4) 证明 Y_p 不是正态随机变量
- 7. (附加) (1) 证明 Y_p 是连续型随机变量
- $(2) p \rightarrow 0$, 证明 Y_P 收敛到某个分布函数