₁ Kapitola 1

11

13

14

22

² Minorové operace

- ³ V této kapitole zavedeme operace s klastrovým grafem, které zachovávají
- 4 klastrovou rovinnost. V závěru kapitoly zavedeme pojem klastrového minoru
- 5 jakožto hlavní pojem této kapitoly, jenž v následující kapitole použijeme pro
- 6 charakterizaci zakázaných minorů omezených problémů klastrové rovinnosti.
- **Definice 1.1.** (minorové operace) Mějme klastrový graf (G, \mathcal{C}) . Minorové operace na klastrových grafech jsou následující:
- (Pozn.: Pokud se neřekne jinak, operace se smí provést v nakreslené i o nenakreslené verzi)
- $Odebráním\ vrcholu\ v\ z\ klastrového\ grafu\ (G, C)\ vznikne\ klastrový\ grafu\ (G', C'),\ kde\ G'=(V\setminus\{v\}, E\setminus\{f|\ hrana\ f\ obsahovala\ vrchol\ v\}\ a\ C'\ je\ klastrová\ hierarchie,\ kde\ se\ z\ klastrů\ odebere\ vrchol\ v,\ pokud\ v\ nich\ byl.$
- Odebráním hrany e z klastrového grafu (G, \mathcal{C}) vznikne klastrový graf (G', \mathcal{C}) , kde $G' = (V, E \setminus \{e\})$.
- Odebráním klastru K z klastrového grafu (G,\mathcal{C}) vznikne klastrový graf (G,\mathcal{C}') , kde $\mathcal{C}'=C\setminus K$.
 - Kontrakcí hrany $e = \{x, y\}$ z klastrového grafu (G, \mathcal{C}) vznikne klastrový graf (G', \mathcal{C}) , kde G' je graf , který obdržíme kontrakcí hrany e. Kontrakci můžeme provést za předpokladu, že koncové vrcholy x, y leží ve stejných klastrech.
 - $Nahrazen i klastru K o velikosti 2 hranou e z klastrového grafu klastrového grafu <math>(G, \mathcal{C})$ vznikne klastrový graf (G', \mathcal{C}') , kde $G' = (V, E \cup e)$ a $\mathcal{C}' = C \setminus K$.
- Nahrazení smíme provést pokud v grafu G' nevznikne minor $K_{3,3}$ nebo K_5 .

 U nakreslené verze navíc jen pokud to lze provést jednoznačně.
 - Odebrání vrcholu v z klastru K z klastrového grafu (G, \mathcal{C}) vznikne klastrový graf (G, \mathcal{C}') , kde \mathcal{C}' vznikne přeřazením vrcholu v z Klastru K do jeho

rodiče. Tahle operace lze provést za předpokladu, že z vrcholu v vychází právě jedna hrana ven z K a K je nejmenší (vzhledem k inkluzi) klastr obsahující v.

Sjednocení disjuktních klastrů K_1 a K_2 z klastrového grafu (G,\mathcal{C}) vznikne klastrový graf (G,\mathcal{C}') , kde $C':=(C\setminus\{K_1,K_2\})\cup\{K_1\cup K_2\}$. Sjednocení klastrů můžeme provést za předpokladů, že m K_1,K_2 jsou dva minimální klastry (nemají podklastry) se společným rodičem, $K_1\cup K_2$ neindukuje kružnici s vrcholem mimo $K_1\cup K_2$ uvnitř. Jinými slovy $K_1\cup K_2$ nemá díru v G (v nakreslené verzi). V nenakreslené verzi je podmínkou, že existuje nakreslení takové, že $K_1\cup K_2$ nemá díru v G. Posledním předpokladem je, že existuje hrana spojující K_1 s K_2 .

Název minorové operace je užit proto, že každá operace zjednoduše daný vstupní klastrový graf. Nyní vyzkoumáme dopad minorových operací na klastrový graf, konkrétně na dopad existence klastrového nakreslení.

- **Definice 1.2.** Mějme klastrově rovinný klastrový graf (G, \mathcal{C}) . Operace s klastrovým grafem OP zachovává klastrovou rovinnost pokud (G, \mathcal{C}) zůstane klastrově rovinný.
- Tvrzení 1.3. Minorové operace zachovávají klastrovou rovinnost.
- Důkaz. Mějme klastrový graf (G,\mathcal{C}) a jeho klastrové nakreslení ho.

Odebrání vrcholu, hrany, klastru zachovává klastrovou rovinnost:

Mějme dáno klastrové nakreslení. Odebrání hrany zapříčiní jedině to, že se nemusí v daném nakreslení hrana kreslit. Podobně pro odebraný vrchol, kdy se odebereu hrany vedoucí do něj. Odebráný klastr se též prostě nenakreslí

Kontrakce hrany zachovává klastrovou rovinnost:

47

51

54

58

62

Mějme dáno klastrové nakreslení. Kontrakce je jen vlastně smrštění hrany do jediného bodu, jenž zastupuje vrchol vzniklý kontrakcí.

Nahrazení klastru hranou zachovává klastrovou rovinnost:

Stačí si uvědomit, že takový klastr se chová jako hrana. V nakreslené verzi je požadavek na jednoznačnost (jen jediná stěna, kde lze hranu dokreslit), protože by jinak se mohlo stát nahrazením klastru hranou, že vznikne díra.

Odebraní vrcholu z klastru zachovává klastrovou rovinnost:

Jednoduchý překreslovací argument, kdy podél hrany protáhneme hranici klastru až ji přetáhneme přes vyjímaný vrchol. (TODO dát ilustrativní obrázek)

Sjednocení klastrů zachovává klastrovou rovinnost:

Nechť S je minimální saturátor (G, \mathcal{C}) takový, že $(G[V, E \cup S], \mathcal{C})$ nemá díru.

S je saturátorem i pro klastrový graf (G, \mathcal{C}') , kde ale může být díra. Nechť existuje minimální saturátor $S' \subseteq S$ takový, tvrdíme že $(G[V, E \cup S'], \mathcal{C})$ nemá díru. To dokážeme sporem.

Nechť D je díra. Ta musí být ve sjednocení klastrů K_1 a K_2 , neboť kdyby byla jinde, bylo by to ve sporu s předpokladem, že původní klastrový graf je klastrově rovinný. Díra D má neprázdný průnik se saturátorem S'. Kdyby průnik byl prázdný, znamenalo by to, že příslušná díra byla v původním klastrovém grafu. Označme tuto hranu $e = \{x, y\}$, kde x a y jsou její koncové vrcholy. Jako S" označme $S' \setminus e$. Množina S" je saturátorem, protože každý klastr $K \in C'$ obsahující vrcholy x a y obsahuje i cestu $D \setminus \{e\}$. Dostali jsme tedy spor s minimalitou S'. S' tedy neobsahuje díry.

Sjednocení klastrů má dost přepodkladů, a proto uvedeme proč jsou tyto předpoklady nutné. Předpoklad o společném rodiči je z důvodu zachování klastrové hierarchie. Následující příklad klastrové grafu ukazuje, proč je nutný předpoklad o tom, že sjednocované klastry nesmějí mít podklastry.

Obrázek 1.1: Klastr K_3 brání sjednocení klastrů K_1 a K_2 , neboť jeho saturováním (nahrazení hranou) by v $K_1 \cup K_2$ vznikla díra. Kdybychom vynechali K_3 , pak už je snadné najít klastrové nakreslení.

Nyní se podíváme na dva speciální případy sjednocení klastrů. Jeden případ je přidání vrcholu do klastru, který je vlastně inverzí k odebrání vrcholu z klastru.

Tvrzení 1.4. Připojení vrcholu do klastru

83 (G, \mathcal{C}) nakreslená instance klastrové rovinnosti, $v \in V(G)$ a $K \in \mathcal{C}$.

84 $\mathcal{C}' = (\mathcal{C} \setminus \{K\}) \cup \{K \cup \{v\}\}$

- 1. v sousedí s K (je spojen s nějakým vrcholem v K hranou) 85
- 2. Každý klastr obsahující v obsahuje i K 86
- 3. K nemá podklastry
- 4. $K \cup \{v\}$ neindukuje kružnici s vrcholem mimo K uvnitř
- Potom(G, C) je klastrově rovinný $\implies (G, C')$ je klastrově rovinný.
- Důkaz. Jednoduše, budeme vrchol vydávat za jednovrcholový klastr. Zbytek

- plyne z toho, že sjednocení zachovává klastrovou rovinnost.
- Podobně pro nenakreslenou verzi. Druhý případ je, když klastry spojuje právě jedna hrana.
- **Tvrzení 1.5.** Mějme klastrový graf (G, \mathcal{C}) a dva disjunktní klastry K_1 a K_2 ,
- které spojuje právě jedna hrana e. K_1 a K_2 mají společného rodiče a nemají
- podklastry. Mějme klastrový graf (G, \mathcal{C}') , kde $C' := (C \setminus \{K_1, K_2\}) \cup \{K_1 \cup K_2\}$.
- Potom(G, C) je klastrově rovinný $\implies (G, C')$ je klastrově rovinný.
- $D\mathring{u}kaz$. Jednoduchý překreslovací argument, kdy podél hrany e protáhneme
- hranici klastru, viz obrázek. Jelikož je G rovinný, tak se s hranou e žádná
- jiná hrana nekříží, proto lze provést to překreslení. Požadavek na podklastry
- zajišťuje, že nakreslení klastru $K_1 \cup K_2$ se neprotne s jiným klastrem. 101
- Vyzbrojeni minorovými operacemi můžeme definovat pojem klastrového 102 minoru 103
- **Definice 1.6.** Mějme klastrový graf (G, \mathcal{C}) . Klastrový graf (G', \mathcal{C}') je klastro-
- vým minorem, pokud jej lze získat konečnou posloupností minorových operací 105
- z klastrového grafu (G, \mathcal{C}) .
- **Důsledek 1.7.** Klastrový minor klastrově rovinného klastrového grafu je 107 klastrově rovinný.
- 108
- Důkaz. Důkaz se provede indukcí podle délky posloupnosti, kde se využije
- toho, že minorové operace zachovávají klastrovou rovinnost.