楽しい運動計測実習その1: データ解析編(ver.3.1)

2020年4月15日

1 データ解析 (各個人): 目標 4 日間

以下のデータ解析用プログラムを作りなさい。主に C やシェルスクリプトを使うものとして書いてあるが、python や R を使っても良い。ただし、シェルスクリプトは使えた方が便利なので、指定された通り作成すること。

1.1 筋電データの処理: 目標 3 日間

以下の処理を行うプログラムを作りなさい。

- 1. 筋電位に 1~40 Hz の通過帯域を持つバンドパスフィルター (3 次バターワース) をかける。ただし、単純にバンドパスフィルターをかけて得られるデータは元データに対して少し時間ズレを起こすことが多い。そこで、順方向と逆方向の両方から一回づつフィルター処理することで時間的なズレを補正する。この処理は、python ならば scipy の filtfilt 関数を使えば自動で行われる。
- 2. 筋電位 E(t) を整流する (絶対値をとる)。
- 3. 適当な幅 ΔT の窓を設定して、その中での積分値を求め、筋肉の活動度を見る指標とする。

つまり、時刻tにおける筋肉の活動度(a(t))は以下で評価することになる。

$$a(t) = \frac{1}{\Delta T} \int_{t-\Delta T/2}^{t+\Delta T/2} |E(t)| dt$$

これらの処理を行う理由を生データから考察せよ。

1.1.1 運動軌道データの切取り

- 1. 計測によって得られた身体軌道のデータの内容を確認し、フォーマットとデータ (数値) の意味を把握しなさい。フォーマットは、使うソフトウェアの種類によって異なるが、大抵以下のようになっている。
 - (a) ヘッダ部 (始め):計測条件, データの各列のタイトル
 - (b) データ部: シーン番号、マーカ ID、x 座標, y 座標, z 座標等
 - (c) テール部 (最後): 計測データを統計処理したデータが格納されている。
- 2. データファイルの名前を joints.csv とするとき、このファイルからデータ部のみを取り出した pos-joints.dat と、それ以外 (ヘッダ部とテール部) のみを取り出したファイル info-joints.dat を作成するシェルスクリプト getdat.sh を作りなさい。各出力ファイルの仕様は以下の通りとする。
 - (a) pos-joints.dat は、データ部をそのままとり出す。
 - (b) info-joints.dat は、データ部以外を取り出す。(もしあれば) ダブルクォーテーション (") は取り除く。

取得データファイルにおいて、データ部の行頭が数字であることを利用すれば、egrep コマンドを使って データ部とそれ以外をそれぞれ抽出できる。

1.1.2 運動軌道データの処理

データファイル pos-joints.dat から、各関節の各座標データを抽出する処理を自動化したい。

- 1. 以下のようなプログラム extract.c(言語に応じて extract.py,extract.R等) を作りなさい。
 - (a) 実行時には以下のような引数を指定できるようにする。

\$ extract <サンプリング周波数> <マーカ数> <入力データファイル名>

- (b) 出力データに書き込む「時刻」は、引数で与えた「サンプリング周波数」と、入力データの「シーン」番号により計算する。
- (c) 入力ファイルが name.dat のとき、出力ファイル名は計測点 ID を使って 1-name.dat, 2-name.dat,… とする。もし、入力ファイル名が pos-joints.dat ならば、出力ファイル名は計測点 ID を使って 1-pos-joints.dat, 2-pos-joints.dat,… である。
- (d) 各出力データファイルのフォーマットは以下の通り。

時刻,x座標,y座標,z座標

- 2. 以下のようなシェルスクリプト extract.sh を作りなさい。その仕様は以下の通りとする。
 - (a) 実行時には以下のような引数を指定できるようにする。

\$ extract.sh <入力データファイル名>

- (b) 前問の extract コマンドを、サンプリング周波数、計測点数、入力データファイル名を指定して呼び出して、各関節の xyz データを抽出する。
- (c) サンプリング周波数とマーカ数は先につくってある info-*.dat から抽出する。(例えば grep と cut を用いて抽出できる。シェルスクリプトで、あるコマンド cmd の実行結果を変数 CMD に格納するには CMD='cmd'**とすれば** OK)
- 3. 以下のようなシェルスクリプト cut23 をつくりなさい。
 - (a) 以下のように実行したら,入力ファイルの第 2,3,4 フィールド (xyz 座標データ) のみを抽出したファイルを出力する。(cut コマンドを使う)
 - \$ cut23 1-pos-joints.dat
 - (b) 上記のように入力ファイル名が 1-pos-joints.dat ならば、出力ファイル名は 1-xy-joints.dat と する。

1.2 プレゼン作成: 目標 3 日間

- 1. 実験結果をプレゼンにまとめなさい。
- 2. 実験の目的、手法、結果、考察を自分なりにまとめること。
- 3. 生データや処理したデータはグラフ (x-t,y-t,x-y 等) にして考察しなさい。
- 4. 結果をわかりやすく示す図表を作ること。
- 5. グラフ作成に表計算ソフトは使わず、python や R のグラフ作成ライブラリを使いなさい。

1.3 レポート作成: 目標 2 日間

- 1. LATEX を使って、実験結果をレポートにしなさい。
- 2. 実験の目的、手法、結果、考察をきちんと書くこと。 ただし、考察は数行程度で OK。
- 3. 結果をわかりやすく示す図表を作ること。 絵を描くには LibreOffice 等を使う。表は LAT_EX の表組機能を使うこと。
- 4. 図表の引用は\label,\ref を使った LATEX の自動引用機能を使う事。
- 5. 掲載した図表は必ず本文中で引用して説明すること。

- 6. IATEX の使い方は裏ページや、本棚の書籍等を参照のこと。
- 7. **グラフ作成に表計算ソフトは使わず**、python や R のグラフ作成ライブラリを使いなさい。