EXERCISE 1.1

- If $a, b \in \mathbb{R}$ and a + b = 0, prove that a = -b.
- 2. Prove that (-a)(-b) = ab for all $a, b \in \mathbb{R}$.
- 3. Prove that $|a| |b| \le |a b|$ for every $a, b \in \mathbb{R}$.
- 4. $\sqrt{\text{Express } 3 < x < 7}$ in modulus notation.
- 5. Let $\delta > 0$ and $a \in \mathbb{R}$. Show that $a \delta < x < a + \delta$ if and only if $|x-a|<\delta$.
- Give an example of a set of rational numbers which is bounded above but does not have a rational Sup.

Solve each of the following (Problems 7-15):

7.
$$\sqrt{|2x+5|} > |2-5x|$$

7.
$$\sqrt{|2x+5|} > |2-5x|$$
 8. $\left|\frac{x+8}{12}\right| < \frac{x-1}{10}$

$$9.^{V}|x| + |x-1| > 1$$

10.
$$12x^2 - 25x + 12 > 0$$

12.
$$|x^2-x+1| > 1$$

$$13.7x^{-2}-4x^{-1}+4>0$$

$$14. \qquad \frac{2x}{x+2} \geq \frac{x}{x-2}$$

$$15.\sqrt{x^4} - 5x^3 - 4x^2 + 20x \le 0.$$

16. The cost function C(x) and the revenue function R(x) for producing x units of a certain product are given by

$$C(x) = 5x + 350, R(x) = 50 - x^2.$$

Find the values of x that yield a profit.

Function from R to R is defined by the given formula. Determine the domain of the function (Problems 17-22)

17.
$$f(x) = \sqrt{1-x^2}$$

$$18. \qquad f(x) = \frac{a+x}{a-x}$$

19.
$$f(x) = \frac{1}{\sqrt{(1-x)(2-x)}}$$

20.
$$f(x) = \sqrt{3+x} + \sqrt{7-x}$$

21.
$$f(x) = \begin{cases} x^2 - 1 & \text{if } x \le 2 \\ \sqrt{x - 1} & \text{if } x > 2 \end{cases}$$
 22. $f(x) = \sqrt{\frac{x - 4}{x + 1}}$

22.
$$f(x) = \sqrt{\frac{x-4}{x+1}}$$

and find f(2).

Draw the graphs of the following functions (Problems 23 - 30):

23.
$$f(x) = [x] + [x-1]$$
, for all $x \in \mathbb{R}$

24.
$$f(x) = [x] + [x+1]$$
, for all $x \in \mathbb{R}$

25.
$$f(x) = x - [x]$$
, for $x \in [-3, 3]$ [Saw Tooth Function]

26.
$$f(x) = \begin{cases} \frac{1}{x} & \text{if } x < 0 \\ -\frac{1}{x} & \text{if } x > 0 \end{cases}$$

27.
$$f(x) = x^2 + 2x - 1$$
, for all $x \in \mathbb{R}$.

28.
$$f(x) = \frac{1}{x^2}, x \neq 0$$

29.
$$f(x) = \frac{1}{x}$$
, $x \neq 0$

30.
$$f(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{if } x = 0 \\ -1 & \text{if } x < 0. \end{cases}$$

This is known as signum (agn) function.

Find the Sup and Inf (if they exist) of the given set (Problems 31 - 34):

31.
$$\left\{ (-1)^n \left(1 - \frac{1}{n} \right), n = 1, 2, 3 \dots \right\}$$

32. The set of all nonnegative integers.

33. The set
$$A = \{x \in \mathbb{R} : 0 < x \le 3\}$$

34. The set
$$B = \{x \in \mathbb{R} : x^2 - 2x - 3 < 0\}$$

Sketch the graph of the given equation. Also determine which is the graph of a function (Problems 35 - 38):

35.
$$y^2 = x$$

37.
$$x^2 + y^2 = 9$$

36.
$$|x| = |y|$$

38. $y = |x| + x$

39. Find formulas for the functions
$$f+g$$
, fg and $\frac{f}{g}$, where

$$f(x) = \sqrt{x^2 - 1}, g(x) = \frac{1}{\sqrt{4 - x^2}}$$

Also write the domain of each of these functions.

40. Find formulas for $f \circ g$ and $g \circ f$, where

$$f(x) = \sqrt{x^3-3}, g(x) = x^2+3.$$

Exercise 1-1

1:- If $a_1b \in R$ and $a_1b = 0$, Phone that a = -bSince $b \in R$ (given)

So there exist $-b \in R$ 8. t b + (-b) = 0 — 9()

.: a + b = 0 (fiven)

Adding (-b) both Sides a + b + (-b) = 0 + (-b) a + (b + (-b)) = -b (by Associating Law a + 0 = -b (5y Att. Inverse Law a + 0 = -b (5y Att. Inverse Law a = -b (5y + Iden tily Law

2:- Phone that $(-a)(-b) = ab + ab \in R$ Sol: (-a)(-b) - ab = (-a)(-b) + (-ab) (Decise Sull)

2:- Place that (-a)(-b) = ab $\forall 9, b \in \mathbb{R}$ Sol: (-a)(-b) - ab = (-a)(-b) + (-ab) (Deg: g Subl:) = (-a)(-b) + (-a)b (-a)b = -ab = (-a)(-b+b) (Leg Dist: Law) = (-a)(0) (Inverse Law)So (-a)(-b) - ab = 0 $\Rightarrow (-a)(-b) = ab$ $\therefore z-y=0 \Rightarrow z=y$

3: Prone | 191 - 161 | \ 10-6 + 9,5 \ R

Sol: Here 1a1 = |a-b+b| + k-b $\leq |a-b|+|b|$ $|a| \leq |a-b|+|b|$ $|a| - |b| \leq |a-b| \rightarrow 0$ Again |b| = |b-a+a| + k-by a $\leq |b-a|+|a|$ $|b|-|a| \leq |b-a|$

|b|-|a| \le |a-b| |x by -| on both Sides |a|-|b| > -|a-b| ->2) |From (D f2) |-|a-b| \le |a| -|b| \le |a-b| |=|a|-|b| \le |a-b| | Plane || |x| \le a |=|-a\le x \le a

Express 3<2<7 in modulus notation We Know 12-01 < 5 => -b< α-a< 5 => a-b < 2 < a+5 - Addy a, Also given 3 < x < 7 Company O &O a-b=3 & a+b=7Adding a b = 3 a+b=3 a+b=7 a+b=7 a+b=7 a+b=7 a+b=7So Required Mod Notation is $|x-a| < 5 \implies |x-5| < 2$ D Let S>0 and a∈R Show that a-8 < 2 < a+8 48 1x-al < 8 Sd: Set a-8<2<a+8 a-8-a < x-a < a+8-a "Sub a, -8 < x-9 < 8 => |x-a| < 8 By deg: 7 Mod. Conversely la 12-a1 < 8 => -8 < x-a < 8 By dy: 8 mod. $\Rightarrow -8+a < x-a+a < 8+a$ > -8+a < x <8+a => a-8 < x < a+8 Promd.

So a-8<x<a+8 iff |x-a| < 8.

Give an example of a Set of Rational numbers which is bounded above but does not have a Rational Supremum

Sol: Consider a Set A of Rational number defined by $A = \left\{ \begin{array}{ccc} \chi \in \mathbb{Q} : & \chi^2 < 2 \end{array} \right\}$ It is obvious that Set A is bounded above but it does not have Rational Sup.

Because its Sup is 52 which is Irrational.

Q₇ Solw | 2x + 51 > |2 - 5x| - 9DSet: Associate 69: $2x + 5 = \pm (2 - 5x)$ 2x + 5 = 2 - 5x 2x + 5 = -(2 - 5x) 2x + 5 = -(2 - 5x) 2x + 5 = -2 + 5x 2x + 5 = -3 2x + 5 = -32x + 5 = -3

A -3 0 7 + ~

For Region A Pat x=-1 in 0 1-2+51 7|2+51 False

For Region B Pat x=1 in 0 |2+5| > |2-5| True

For Region C Pat x=3 in 0 |6+5| > |2-15| False

Hence Solution Set is $\{x: \frac{3}{7} < x < \frac{7}{3}\} =]-\frac{3}{7}$, $\frac{7}{3}[$

Associate by $\frac{x+8}{12} = \pm \left(\frac{x-1}{10}\right)$

$$\frac{2+8}{12} = \frac{x-1}{10}$$

$$\frac{10x+80=12x-12}{10x+80=-12x+12}$$

$$\frac{10x+80=-12x+12}{10x+80=-12x+12}$$

$$\frac{10x+80=-12x+12}{10x+90=-12x+12}$$

$$\frac{10x+80=-12x+12}{10x+90=-12x+12}$$

$$\frac{10x+80=-12x+12}{10x+90=-12x+12}$$

$$\frac{10x+80=-12x+12}{10x+90=-12x+12}$$

$$\frac{10x+80=-12x+12}{10x+90=-12x+12}$$

$$\frac{10x+80=-12x+12}{10x+90=-12x+12}$$

$$\frac{10x+80=-12x+12}{10x+90=-12x+12}$$

$$\frac{10x+90=-12x+12}{10x+90=-12x+12}$$

$$\frac{10x+12x+12x+12}{10x+12x+12}$$

$$\frac{10x+12x+12x+12}{10x+12x+12}$$

$$\frac{10x+12x+12x+12}{10x+12x+12}$$

$$\frac{10x+12x+12x+12}{10x+12x+12}$$

$$\frac{10x+12x+12x+12}{1$$

$$S.S = J-\omega, o[u]_{1,\omega}[$$

$$12x^2 - 25x + 12 = 0$$

$$x = \frac{25 \pm 1625 - 576}{24} = \frac{25 \pm 7}{24} = \frac{4}{3} > \frac{3}{4} \text{ are boundary}$$
Number for 0

The number line will be divided into the segion as Show in fig

$$\frac{x-1}{2} - \frac{1}{2} = \frac{4}{2} + 5$$

$$\alpha \frac{x^2 - x - 2}{2x} = \frac{4+5x}{x}$$

by Xmulteply.

$$\chi(x^2-x-2) = 2\chi(4+5x)$$

$$x^{3} - x^{2} - 2x = 8x + 10x^{2}$$

$$= \chi^3 - 1/\chi^2 - 10\chi = 0$$

$$\Rightarrow \chi(\chi^2 - 1/\chi - 10) = 0$$

Note

O is free boundary

number because at

$$x=0$$
 The demonstrator

 $f(0)$ Vanishes

 $f(0)$ $f(0)$

$$2 = \frac{11 + \sqrt{121 + 40}}{2}$$

$$= \frac{11 + \sqrt{161}}{2} = \frac{11 + \sqrt{12.68}}{2}$$

$$= \frac{2}{\sqrt{1.68}}$$

$$=\frac{23.68}{2}$$
, $-\frac{1.68}{2}$

=
$$11.84$$
 , $-.84$ | are only Bound

 ≈ 12 , -1 Mumber

Region A test
$$x = -2$$
 in 0 $\frac{-2-1}{2} + \frac{1}{2} > -\frac{4}{2} + 5$
or $\frac{-3}{2} + \frac{1}{2} > 3$ (False)

Region B test
$$x = \pm in6$$
 $\frac{1}{2} - \frac{1}{12} > \frac{4}{-12} + 5$ $\frac{-3}{2} + 2 > -8+5$

$$-\frac{3}{4}$$
 + 2 > -8+5
 $\frac{5}{4}$ > -3 (Tsue)

$$\frac{10-1}{2} - \frac{1}{10} > \frac{5}{10} + 5$$

$$\frac{9}{1} - \frac{1}{10} > \frac{59}{10}$$

$$\frac{49}{10} > \frac{59}{10}$$
 (False)

Lue See that Region B & D are Solution Sol So Solution Set is $\left[\frac{11-5161}{2}, o\right]$ U $\left[\frac{11+5161}{2}, o\right]$

 $|x^{2}-x+1| > 1 - \infty$ Associated Eq. 9 (b) is $|x^{2}-x+1| = 0$ $|x^{2}-x+1| = \pm 1$

 $\chi^{2} - \chi + 1 = 1$ $\chi^{2} - \chi + 1 = -1$ $\chi^{2} - \chi = 1 - 1$ $\chi^{2} - \chi = 0$ $\chi(\chi - 1) = 0$ $\chi = 0, 1$ $\chi^{2} - \chi + 1 = -1$ $\chi^{2} - \chi$

Since both 1+217 & 1-17 are Complex number and Can not Sepresented by a number line.

Thus they are not boundary number.

There are only two boundary number "0". 1

So the number line is divided into Regions

A B C

Region A fest x = -1 in () |1+1+1| 7/(Thue.)Region B test $x = \frac{1}{2}$ in () $|\frac{1}{4} - \frac{1}{2} + 1| > 1$ $|\frac{3}{4}| > 1$ (False)

Regime Lest x=2 into 14-2+117/ (Tsue)

S.S is]-00,0[U]1,0[

(3)
$$x^2 - 4x^2 + 4 > 0$$
 $\rightarrow 0$ or $\frac{1}{22} - \frac{4}{x} + 4 > 0 \rightarrow 0$

Associated Eq. 9 6 is

 $\frac{1}{2^2} - \frac{4}{y} + 4 = 0 \Rightarrow \frac{1 - 4x + 4x^2}{x^2} = 0$

With $\frac{1}{2^2} - \frac{4}{y} + 4 > 0 \Rightarrow \frac{1 - 4x + 4x^2}{x^2} = 0$
 $\Rightarrow (\frac{1 - 2x}{x})^2 = 0 \Rightarrow (2x - 1)^2 = 0$
 $\Rightarrow (2x -$

$$\frac{2x}{x+2} = \frac{x}{x-2}$$

$$\Rightarrow 2x(x-2) = x(x+2)$$

$$\Rightarrow 2x^2 - 4x = x^2 + 2x$$

$$\Rightarrow$$
 $\chi^2 - 6\chi = 0$

The boundary numbers divide the number

line into Legions as Shown.

Region A, test
$$x = -3$$

$$-3$$

$$-3 + 2 = -3$$

$$-3 + 2 = -3$$

$$-3 + 2 = -3$$

$$-3 + 2 = -3 = 2$$
Region B test $x = -1$ in 0

$$-2$$

$$-1+2 = 7$$

$$-1+2 = 7$$

$$-2 = 7$$
Region C test $x = 1$ in 0

$$\frac{2}{3} > \frac{1}{1-2}$$
(False)

Region E test $x = 7$ in 0

$$\frac{1}{9} > \frac{7}{5}$$
(Solution Set is Union.

Solution Set is Union.

Ø15 $x^4 - 5x^3 - 4x^2 + 20x \le 0$

Associated Eq & O is $\chi^{4} - 5\chi^{3} - 4\chi^{2} + 20\chi = 0$ $\chi (\chi^3 - 5\chi^2 - 4\chi + 20) = 0$ $\times \left(\times^{2}(x-5) - 4(x-5) \right) = 0$ $\pi \left(\chi^2 - 4 \right) (\chi - 5) = 0$

x(x-2)(x+2)(x-5)=0x=0,2,-2,5 are the Boundary number for (1)

Line and Check each Segion whether it belongs to the Solution Set or not.

Region A, lest x = -3 in 0 81 + 135 + 36 - 60 \leq 0 (False) Region B, lest x = -1 in 0 1 + 5 - 4 - 20 \leq 0 (Tsue) Rasinc, lest x = 1 in 0 1 - 5 - 4 + 20 \leq 0 (False) Region D, lest x = 3 in 0 81 - 135 - 36 + 60 \leq 0 (Tsue) Region E, test x = 6 in 0 1296 - 1080 - 144 + 120 \leq 0 Thus

Soli Set is $\{x: -2 \in x \in 0\} \cup \{x: 2 \in x \in s\}$ = I - 2, o = 0 \(\text{U} \, I_2, \(5 \) \(\text{L}_2 \)

B) The Cost function C(z) and the Sevenue function R(z) for Producing x limits of Certain Product one given C(x) = 5x + 350 $R(x) = 50 - x^{2}$

i, Find the values of x that fields a Profit.

Extra ii. Find the Values of x that results in a Loss.

Solidion A Profit is Produced of Sevenue exceeds Cost

For Profit

Revenue > Cost R(x) > C(x) $Sox - x^2 > Sx + 3So$ $O > x^2 - Sox + 5x + 3So$ $O > x^2 - 4Sx + 3So$ $\Rightarrow x^2 - 4Sx + 3So < 0 \longrightarrow 0$

ASSOCIATED : $\chi^2 - 45\chi + 350 = 0$ $\chi^2 - 35\chi - 10\chi + 350 = 0$

 $(\chi - 10)(\chi - 35) = 0$ x=10, 35(B.N)

A B C

for Region A Put x=0 mO 0 > 350 (False)

for Region B Put 2=15 into

0 > 15-45(15) 1350

0 > 225-675+350

0 > -100 (True)

for Region C Put x=40 in (1)

0 > 402- 45(40) +350

0 7 1600 - 1800 7350

07 150 (False)

Thus The Values of & that gives a Refit

are { x: 10 < x < 35 }

J. For Loss Cost > Revenue C(x) > R(x)5x+350 > 50x-x2

7 x2-45x +35070 -0

ASS: Eq (1) x2-45x +350 =0

(x-10)(x-35)=0

X = 10) 35 Boundary No:

 $A \downarrow B \downarrow C \rightarrow 35$

Regui A Pat x = 0 in 0 35070 (Tsue)

Regi B Put x=15 in

-100 20 (Felse)

Payione Part x=40 in 1

15070 Thus.

Hence the Value of & that

Sesults is loss are

{x: x<10} u {x: x>35}

Where x is the Integer.

(7) Function of Grow R to R is defined by the given formulo. Determine the domain of the function.

(1) f(x) = J1-x+

fox) will be Seal if

1-x2 70

- x2 > -1

 $x^{2} \leq +1$

⇒ ± × ≤ 1

X & 1 P - X & 1

-1 & X & 1

ラ 12151

Lohen |x| > 1 f(x) will be complex = for 12/5/ has head Values Hence don't fo 12/5/

(B)
$$f(x) = \frac{a+x}{a-x}$$

Sd: $f(x)$ Will be infinite
cohen $x = a$
Domo of $f = \mathbb{R} - (a)$
of Set of all seal number
except $x = a$

Sol f(x) =
$$\frac{1}{\int (1-x)(2-x)}$$
Sol we see that when we put

 $x=1,2$
 $f(x)$ will be undefined.

So domain of f is Sol

 $f(x)$ seal number except

 $f(x)$ dom $f(x)$ is $f(x)$ decome imaginary

$$f(x) = \sqrt{3} + \sqrt{7} - x - 90$$

$$f(x) \text{ will be Seal if}$$

$$7 - x > 0 \qquad |^{2} 3 + x > 0$$

$$7 - x > 0 \qquad |^{2} 3 + x > 0$$

$$7 > x < 7$$

⇒ achen x77 @ become Imaginary
also cohen x <-3 @ become Imaginary
So domain of f is Set of Real
number (x, Such that
x ≤ 7 & x >>-3

∴ x ∈ [-3, 7]

$$f(x) = \begin{cases} x^{2} - 1 & \forall x \leq 2 \\ \sqrt{x - 1} & \forall x > 2 \end{cases}$$

Function is defined for all Real Values of X

So alomain of fis R.

Extra f(2)=(2)-1=4-1=3

Bas $f(x) = \int \frac{x-y}{x+1}$ Sol we see that f is not defined at x=-1Also if -1 < x < 4 Then again f(x) becomes imaginary

Hence domain of

Hence domain of f(x)1's Set of all seal

numbers except when $x \in [-1, 4] = -1 \le x \le 1$ 1'-e R - [-1, 4]

(23)

Deach the graphs of the following fn:Note graph is Function

When Vertical line

and the graph at fox) = |x| + |x-i| for all One pt:

2 € R

$$= \begin{cases} x + x-1 = 2x-1 & \text{Cohen } x \geq 0 \\ -x - x + 1 = -2x + 1 & \text{When } x < 0 \end{cases}$$

Some Table Values of Jiven function are

j									*			
	χ 	0	-1	-2	-3	1	,	-		T		·-··
	y=fexi	l	3	5	7		7	حر	-4	4	5	
		·		<u> </u>				5	9	7	9	7
		O.			" →							

$$f(x) = [x] + [x+i] \quad \text{for all } x \in R$$

Note Here [x] denotes greatest integer or Brackel familian not greates than x. Since x is an integer so Values of fax) are also integers. Now if n is an integer and $n \leq x < n+1$ then [x] = n and So f i's Constant on [n, n+1]

Note The right hand end pts of Segments of Lines are not part of the graph.

```
Hence 7 con f(x) = [x] + [x+1]
y = f(x) = 1
               when 0 < 2 < 1
                 1 = 2 < 2
                 ₹ ₹ ₹ ₹ 3
       = 5
                3 =2<4
       =9
                45x<5
                75 x 20
               -2 Ex <-/
              -3 £ 2 < -2
 Met f(x) = [x] + [x+1]
        = [0] + [0+1] = 1,0 < × × 1 => (0,1) (.1,1) (2,1) .... (.9,1)
        = [1] +[1+1] = 3, ( < x42 + (113) (1-113) (1-213) ... (1-913)
        = [-1] +[-1+1] = +,-15240 = (-1)+), (-.9,-1) (-.8,-1)...
 25) fox = x - [x] for all x \( [-3,3] - \)
 Sol. cohen x is on integer. (whether the a -ue)
                                       (Saw - toots function)
   Then f(x) = 0
                    e.る マニ ±3, ±2, ±1,0
    When x=-3 fox) = -3-[-3] = -3+3=0
     When x=3 -f(x) = 3 - [3] = 3-3 = 0
     Cohen x=2 fox) = 2-[2] = 2-2=0
     Similarly for other integral Values of Y \in [-3,3] f(x)=0
   when x is not integer
   Lt x=2.5 fox) = 2.5-(2.5) = 2.5-2 = .5
   Cohen x=-2.5 fox) = -2.5 - [-2.5] = -2.5 - (-3) = -2.5+3
   Colon x=1.5 fox) = 1.5 - [1.5] = 1.5-1=.5
    LOLIO X=1.5 A(x) = -1.5 - [-1.5] = -1.5 - (-2) = 7.5 +2 =.5
   SPP PP
```

Note
$$[-n,n,n] = n-1$$
, $[n,n,n] = n$ By definite j Bracks of j
 $[n,n,n] = n$ By definite j

Bracks of j
 $[n,n,n] = n$ By definite j

Bracks of j
 $[n,n,n] = n$ By definite j
 $[n,n] = n$ By definite j
 $[n,n,n] = n$
 $[n,n$

(-1,-2)

.

(3) Find the Sup and Inf (8 they exist) $(-1)^n (1-\frac{1}{n}) \quad n = 1/213 - \cdots$... in Jiven Set, we get Sol: Put values of n=1,2,3,4 n=5 $(-1)^5(1-\frac{1}{5})=-\frac{4}{5}$ (-1) (1-+) = 0 n= 1 When $(-1)^{2}(1-\frac{1}{2})=\frac{1}{2}$ n=6 (-16 (1-8) = 5/6 (ーリ) (1ーも) = == (-1)4 (1-4) = == くの、生ノーろ、号ノー学ノモノーラーーー」 Re-assanging, we get く…き、ち、つう、のような、を、……) It is clear that ---- 3, -2, -1 are Lower bounds of the Set. Since any Roal number greater than -1

is not a Lower bound. - 1 is the greatest lawer bound.

GL6 = Inf = -1

Again 1, 2,3 --- are upper bounds of the Set But any seal number Smaller Than I is not an upper bound. I is the Lowest of all.

So Lus a Sup = 1

B33 The Set of all mon-negative Integers. $S = \{0, 1, 2, 3, \dots \}$

> O is Lowest of all mon - he Integer So GLB OR DN(S) =0 As the Set extends to &. So there does

not exist LUB or Sup(s)

3 The Set A = { x \in R: 0 < x \in 3} Sof Inf A = 0: of A and Sup A = 3 But $3 \in A$ @34 The Set B = { x \in R: x2-2x -3 <0} Associated Eq: x2-2x-3=0 (2+1)=0 x = 13 et x= -1.5 => x2-2x-3<0 (-1.5-3)(-1.5+1) (-4.5)(...s) = +m False) x2-3x +x-3 <0 at x = 0 (-2)(1) = - ne (Tanc) ス (スー3) ナ1 (スラ)人の x=4 (4-3) (4+1) = + Lee Fage (x-3)(x+1) Lo ---(1 There are two Coses (1) x-3 >0 & x+1<0 1. x-3 <0 fx+1>0 Case-O x 73 & x <-1 There is no head number Colich Settingted (So this is not possible. Cone-ii x < 3 & x >-1 Thus + < x < 3 > Inf B = -1 and Sup (B) = 3 O35 Sketch the graph of given function. Also determine which is y'= x the graph of function. y 1=x →0 => 1=±12 If x is -he y becomes Imaginary So Leave -he value of x If put y = - J No chape 1 So it is Symmithic alonge x-axi. graph of O him the side of x-ani Also x=0 f y=0 graph passes through origin. x 0 1 4 9 Pa) 0 ±1 ±2 ±3 J=± TX is not a graph of for because for one Value of x These does not exist Usugue Value & 7 - Vertical line Cut The graph at two point:-

: for one value of x there exist theighe halve of y.

39) Find formula for Function ++9, fg and fg, where fre) = 5x=1 and gow) - for Also write The domain of cach of These Functions Sol:-J. (f+3) x = f(x) + g(x) i". $(fg)(x) = f(x) \cdot g(x)$ = 1x2-1. - $= \sqrt{\frac{\chi^2 - 1}{U - \chi_1}}$ ii $\left(\frac{f}{f}\right)(x) = \frac{f(x)}{f(x)}$ = 1/12-1

 $= \sqrt{(x^{2}-1)(4-x^{2})}$ $= \sqrt{(x^{2}-1)(4-x^{2})}$:: 0

fox) = $\int x^{2} - \int x^{2}$

土々らる

2529 27-2

[-2,2] is the domain of g(x). Now domain of each of the function frg, fg and to 5 Donf 1 Dong=]-2,-1]u[1,0] 1 [-2,2] $= \begin{bmatrix} -2 & -1 \end{bmatrix} u \begin{bmatrix} 1/2 \end{bmatrix}$ -w f(x) (60) Find Formula for fog and Jof , where fox) = 12=3 and g(x) = x+3 (i. $fog(x) = f(g(x) = f(x^2+3))$ $=/(x^2+3)^2-3$ $= \sqrt{x^9+6x^2+9-3}$ = 1/x4+6x2+6 ji fof(x) = ff(x)=)(/x2-5) $= \left[\sqrt{x^2-3} \right]^2 + 3$ = 22-3 +3

Available at http://www.mathcity.org

END

ما و د د د د ن الي رك

(5.~ AM)