### FST Transducers

# Definition of the symbols (t.sym)

red 1
green 2
blue 3
yellow 4

### Definition of a transducer (t.txt)

0 0 red yellow .5
0 1 green blue .3
1 2 blue green
1 2 yellow red .6
2 .8

### **Graphical representation (t.ps)**





# UNION OF TRANSDUCERS

#### fstunion A.fst B.fst > C.fst



A.fst



B.fst



C.fst



# CONCATENATION OF TRANSDUCERS

#### fstconcat A.fsm B.fsm > C.fsm



A.fst



B.fst



C.fst



# CLOSURE OF TRANSDUCERS

#### fstclosure B.fst > C.fst



B.fst



C.fst



# "REVERSAL" OF TRANSDUCERS

#### fstreverse A.fst > C.fst



A.fst



C.fst



# INVERSION OF TRANSDUCERS

#### fstinvert A.fst > C.fst



A.fst



C.fst



# PROJECTION OF TRANSDUCERS

### fstproject -1 A.fst > C.fst



A.fst



C.fst



## COMPOSITION OF TRANSDUCERS

- **We see that the composition of two transducers:** 
  - $\blacksquare$  Creates a new state (x,y) for all the possible pairs  $x \in Q_1$  and  $y \in Q_2$
  - The transition function of the composition is defines by

$$\delta((x,y),i:o)=(v,z)$$

if

$$\delta_1(x,i:c) = v$$
 and  $\delta_2(y,c:o) = z$ 



# COMPOSITION OF TRANSDUCERS

### fstcompose A.fsm B.fsm > C.fsm











### INTERSECTION OF TRANSDUCERS

The intersection algorithm only considers the cartesian product of the states

- For each state q<sub>i</sub> of the first transducer, and state q<sub>j</sub> of the second transducer, build a new state q<sub>ij</sub>
- For the input symbol a, if the first transducer has a transition to the state q<sub>n</sub> and the second transducer has a transition to state q<sub>m</sub> the new transducer has a transition to state q<sub>nm</sub>



# INTERSECTION OF TRANSDUCERS

#### fstintersect A.fst B.fst > C.fst





A.fst

B.fst







# DIFFERENCE OF TRANSDUCERS

 $\bigcirc$  Difference(A,B) = Intersection(A,Complement(B))

**Q** Complement(B) = all the sentences not belonging to B



# DIFFERENCE OF TRANSDUCERS

#### fsmdifference A.fsm B.fsm > C.fsm





A.fsm









### REMOVAL OF INACCESSIBLE STATES

com a opção -t, devolve (exit status) 1 se a saída não tiver estados, útil para testar se a saída é vazia ...

fstconnect A.fst > C.fst



A.fst



