# ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

FAKULTA STAVEBNÍ, OBOR GEODÉZIE A KARTOGRAFIE KATEDRA GEOMATIKY

| název předmětu              |                                |             |             |  |  |
|-----------------------------|--------------------------------|-------------|-------------|--|--|
| GEOINFORMATIKA              |                                |             |             |  |  |
| číslo                       | název úlohy                    |             |             |  |  |
| $\parallel$ $\acute{u}lohy$ | JPEG komprese rastru           |             |             |  |  |
| 1                           |                                |             |             |  |  |
| školní rok                  | zpracovali                     | datum       | klasifikace |  |  |
| 2025/26                     | Králič Adam, Matějková Barbora | 10. 8. 2025 |             |  |  |

# Technická zpráva

Adam Králič Barbora Matějková

## 1 Zadání úlohy

Úkolem bylo implementovat JPEG kompresi rastru ve zvoleném programovacím jazyku (Matlab), která by zahrnovala tyto fáze:

- transformaci do  $YC_BC_R$  modelu,
- diskrétní kosinovou transformaci,
- kvantizaci koeficientů,

a to bez vystavěných funkcí použitého programu.

Výstupem je i testování kompresního algoritmu na jednotlivých typech rastrových souborů s různými hodnotami faktoru komprese q=10,50,70, včetně vypočtení střední kvadratické odchylky m jednotlivých RGB složek.

$$m = \sqrt{\frac{\sum_{i=0}^{m \cdot n} (z - z')^2}{m \cdot n}}$$

Možností bylo implementovat další kroky či jiné kompresní algoritmy (viz tab. 1), které byly všechny v této úloze implementovány.

| Krok                                | Hodnocení |
|-------------------------------------|-----------|
| JPG komprese/dekomprese rastru.     | 20b       |
| Resamplování rastru.                | +5b       |
| Konverze prvků do ZIG-ZAG sekvencí. | +10b      |
| Huffmanovo kódování.                | +15b      |
| Náhrada DCT s využitím DFT.         | +15b      |
| Náhrada DCT s využitím DWT.         | +15b      |
| Max celkem:                         | 80b       |

Tabulka 1: Kroky a jejich hodnocení

Pro testování kompresí jednotlivými transformacemi byly vybrány tři obrázky – grafika typu pixel art s barevnými přechody o rozměrech  $128 \times 128$  px, jež byla vytvořena v programu Aseprite, fotografie  $256 \times 256$  px a vektorová grafika  $128 \times 128$  px s liniovými prvky z programu Inkscape.







(a) barevný obrázek

(b) fotografie

(c) vektorová grafika

Obrázek 1: Použité obrázky k testování kompresí

# 2 Postup výpočtu

#### 2.1 Komprese

- 1. Nahrání souboru: soubur je nahrán pomocí funkce imread(nazSouboru.bmp), následně je rozdělen na 3 barevné složky RGB, kde každá má stejný rozměr  $m \times n$ .
- 2. **Převod** RGB na YUV model: YUV model také obsahuje 3 složky jasovou Y a dvě barevné (chromatické) složky  $C_B$  a  $C_R$ .

```
% RGB to YCbCr

Y = 0.2990*R + 0.5870*G + 0.1140*B;

Cb = -0.1687*R - 0.3313*G + 0.5000*B + 128;

Cr = 0.5000*R - 0.4187*G - 0.0813*B + 128;
```

3. **Přepočet intervalu:** interval byl převeden z hodnot {0, 255} na {-255, 255}.

```
Y = 2*Y - 255;

Cb = 2*Cb - 255;

Cr = 2*Cr - 255;
```

- 4. **Převzorkování rastru:** Rastr je převzorkován pomocí kernelu o libovolné kladné celočíselné hodnotě (např. 2 × 2). Výsledkem je rastr o stejné velikosti, avšak obsahující zprůměrované hodnoty pro dané vyhledávací okno.
- 5. Rozdělení do submatic 8 × 8: Pro JPEG kompresi je zásadní rozdělení rastru do 8 × 8 submatic, u kterých probíhá komprese samostatně (což lze po dekompresi pozorovat na rastru pozorovat jako nespojitost mezi sousedními bloky).
- 6. **Transformace:** Stále bezztrátový krok komprese. Jedná se o převedení opakujících se hodnot pomocí funkčního vztahu do menšího počtu hodnot. Ke každé transformaci existuje i inverzní zápis, kterým lze zpět dostat originální data.

V této práci byly použity direktivní kosinová DCT, direktivní Fourierova DFT a direktivní vln-ková DWT transformace.



Obrázek 2: Zig-Zag sekvence

7. **Kvantizace koeficientů:** Jedná se o nejvíce ztrátovou část JPEG komprese. Cílem je vypuštění koeficientů s malou hodnotou.

Základní postup: kvantizace provádí dělení matice F(u,v) po prvcích kvantizační maticí Q(u,v). Kvantizační matice jsou pro jasovou i chromatickou složku. Ta se následně vydělí faktorem komprese q, který ve vysoké míře určuje ztrátu komprese a provede se celočíselné zaokrouhlení.

Ukázka jasové kvantizační matice:

```
Qy = [16 11 10 16 24 40 51 61;

12 12 14 19 26 58 60 55;

14 13 16 24 40 87 69 56;

14 17 22 29 51 87 80 62;

18 22 37 26 68 109 103 77;

24 35 55 64 81 104 113 92;

49 64 78 87 103 121 120 101;

72 92 95 98 112 100 103 99];
```

- 8. "Poskládání" do nové matice: Jednotlivé submatice 8 × 8 jsou poskládány do nové matice o rozměrech původních matice na své patřičné pozice.
- 9. **Zig-Zag sekvence:** Matice je dále přestrukturována do vektoru o velikosti  $m \cdot n \times 1$ . Je přeskládán po diagonální Zig-Zag sekvenci podle obr. 2.
- 10. **Huffmanova kódování:** Posledním krokem komprese je převedení hodnot do bitové podoby podle četnosti unikátních hodnot. Tuto podobu je možné získat právě Huffmanovo kódováním.

#### 2.2 Dekomprese

Dekomprese se od komprese liší pouze v převrácení výpočetních kroků a použití inverzních transformací a jiných potřebných výpočtů.

**Jednotlivé kroky:** dekomprese Huffmanova kódu  $\rightarrow$  inverzní Zig-Zag sekvence  $\rightarrow$  rozdělení do submatic  $8 \times 8 \rightarrow$  dekvantizace  $\rightarrow$  inverzní transformace  $\rightarrow$  poskládání do nové matice  $\rightarrow$  inverzní přepočet intervalu zpět na  $\{0, 255\} \rightarrow$  převod YUV do RGB modelu  $\rightarrow$  vytvoření nového souboru.

#### 2.3 Vyhodnocení

Pro každou barevnou složku, použitý faktor komprese q, použitý rastr a zvolené velikosti převzorkování byly vypočteny střední kvadratické odchylky m.

Ukázka kódu:

```
dR = R - R_new;
dG = G - G_new;
dB = B - B_new;
sigmaR = sqrt(sum(sum(dR.^2))/(m*n));
sigmaG = sqrt(sum(sum(dG.^2))/(m*n));
sigmaB = sqrt(sum(sum(dB.^2))/(m*n));
```

## 3 Vytvořené funkce

#### 3.1 Direktivní kosinová transformace

Povinná funkce, která byla vytvořena částečně na cvičení. V rámci úlohy byla dále doplněna její inverzní varianta. Výpočet probíhal pro submatice  $8\times 8$ , které byly následně skládány do původního rastru.

Rovnice DCT:

$$F(u,v) = \frac{1}{4}C(u) \cdot C(v) \left( \sum_{x=0}^{7} \sum_{y=0}^{7} f(x,y) \cdot \cos \frac{(2x+1)u\pi}{16} \cdot \cos \frac{(2y+1)v\pi}{16} \right)$$

$$C(u) = \begin{cases} \frac{\sqrt{2}}{2}, & u = 0, \\ 1, & u \neq 0, \end{cases} \quad C(v) = \begin{cases} \frac{\sqrt{2}}{2}, & v = 0, \\ 1, & v \neq 0. \end{cases}$$

Rovnice IDCT:

$$f(x,y) = \frac{1}{4} \left( \sum_{u=0}^{7} \sum_{v=0}^{7} C(u) \cdot C(v) F(u,v) \cdot \cos \frac{(2x+1)u\pi}{16} \cdot \cos \frac{(2y+1)v\pi}{16} \right)$$

$$C(u) = \begin{cases} \frac{\sqrt{2}}{2}, & u = 0, \\ 1, & u \neq 0, \end{cases} \quad C(v) = \begin{cases} \frac{\sqrt{2}}{2}, & v = 0, \\ 1, & v \neq 0. \end{cases}$$

DCT převádí obrazový signál na posloupnost signálů, které se odlišují amplitudou a frekvencí, tvořící frekvenční spektrum.

#### 3.2 Direktivní Fourierova transformace

Výpočet i princip metody DFT je dosti podobný DCT. Slouží k převedení signálu do frekvenční složky. Výsledkem DFT je matice o velikosti původního rastru, jejíž hodnoty obsahují i imaginární složku; s ní však nebylo dále pracováno. Výpočet probíhal obdobně pro submatice 8 × 8.

Rovnice DFT:

$$F(u,v) = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) e^{-j2\pi \left(\frac{ux}{M} + \frac{vy}{N}\right)}$$

Rovnice IDFT:

$$f(x,y) = \frac{1}{MN} \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F(u,v) e^{-j2\pi \left(\frac{ux}{M} + \frac{vy}{N}\right)}$$

#### 3.3 Direktivní vlnková (Wavelet) transformace

DWT rozděluje původní data do 4 frekvenčních pásem: LL ( $2 \times$  použitý nízkofrekvenční filtr), LH, HL (kombinace nízkofrekvenčního a vysokofrekvenčního filtru) a HH ( $2 \times$  použitý vysokofrekvenční filtr).

Na rozdíl od metod DCT a DFT byla tato metoda použita pro celý rastr o velikosti 128×128 pixelů. Tato metoda je i oddělena ve svém vlastním skriptu komprese\_dwt.m, jelikož postup výpočetních kroků je jiný.

Pro rastrová data, která mají spíše spojitý průběh, má největší význam LL, jenž se následně může opět rozdělit do 4 pásem, a výpočet lze provádět iteračně dále, dokud lze rastr ještě rozdělit.

V této úloze byla použita Haarova vlnka, což je nejstarší a nejjednodušší vlnka. Výpočet probíhal nejdřív podle sloupců, kde se vždy braly hodnoty ze dvou sousedních sloupců, nízkofrekvenční filtr (L) tyto hodnoty sčítal a vysokofrekvenční filtr (H) odčítal a výsledné hodnoty byly uloženy do jedné buňky  $\rightarrow 2\times$  méně sloupců. Obdobně probíhal výpočet podle řádek pro oba filtry L a H  $\rightarrow 2\times$  méně řádek. Výsledkem jsou 4 pásma (LL, LH, HL, HH), ze kterých bylo pro následnou dekompozici použito pouze pásmo LL.

Inverzní DWT byla vypočtena z dekomprimovaného LL a původních složek , LH, HL, HH, ze kterých byl vytvořen rastr o původní velikosti.

Ukázka výpočtu pro DWT

```
function [LL, LH, HL, HH] = dwt2d(img)
    % processes columns (n columns -> n/2)
    [m, n] = size(img);
    L = zeros(m, n/2);
    H = zeros(m, n/2);
    % creates low pass and high pass filter
    for i = 1:m
        k = 1;
        for j = 1:2:n
            L(i, k) = (img(i,j) + img(i,j+1)) / sqrt(2);
                                                            % lowpass
            H(i, k) = (img(i,j) - img(i,j+1)) / sqrt(2);
                                                            % highpass
            k = k + 1;
        end
    end
    % processes rows creates LL, LH, HL and HH filters
    LL = zeros(m/2, n/2);
    LH = zeros(m/2, n/2);
    HL = zeros(m/2, n/2);
    HH = zeros(m/2, n/2);
    for j = 1:n/2
        k = 1;
        for i = 1:2:m
            % lowpass rows
            LL(k,j) = (L(i,j) + L(i+1,j)) / sqrt(2);
            LH(k,j) = (L(i,j) - L(i+1,j)) / sqrt(2);
            % highpass rows
```

```
\begin{split} HL(k,j) &= (H(i,j) + H(i+1,j)) \; / \; sqrt(2); \\ HH(k,j) &= (H(i,j) - H(i+1,j)) \; / \; sqrt(2); \\ k &= k+1; \\ end \\ end \\ end \\ end \end{split}
```

#### 3.4 Huffmanovo kódování

Huffmanovo kódování se často používá jako poslední část před uložením komprimovaného souboru. Jde o převedení hodnot do bitové podoby, kde nejčastější hodnoty mají nejkratší bitový zápis a nejdelší bitový zápis má dvojce nejméně se vyskytujících hodnot.

Pro tyto hodnoty je potřeba mít uložený "slovník" neboli soubor s převody mezi hodnotou a jejím bitovým zápisem.

Princip algoritmu: Data se přetvoří na seznam bodů, ze kterých se následně vyberou 2 nejméně četné hodnoty a vytvoří z nich uzly (levý uzel přijímá hodnotu 0, pravý 1). Z těchto hodnot vznikne další uzel o stupeň výše, jehož četnost je součet četností všech jeho synů a zařadí se do původního seznamu bodů, první dva body se ze seznamu vyřadí. Dále se opět vyberou dva body s nejmenší četností (v tomto případě to může být nově vzniklý uzel + nepoužitý uzel nebo 2 nepoužité uzly) a proces se opakuje, dokud seznam bodů neobsahuje ani jeden bod. Poslední uzel (kořen) by měl obsahovat četnost 100%.

Algoritmus v této úloze vrací novou matici s již zakódovanými bitovými hodnotami a slovník mezi původními hodnotami a jejich bitovým zápisem.

Inverzní funkce přijímá vzniklý slovník a zakódovanou matici a vrací původní nezakódovanou matici.

#### 3.5 ZIG-ZAG sekvence

Tento algoritmus slouží k vytvoření posloupnosti, kterou lze efektivně komprimovat  $\to$  prvky se stejnými hodnotami budou za sebou.

Implementována je následovně: postupně se naplňuje nově vznikající vektor. Ukazatel se pohybuje po původní matici buďto nahoru doprava nebo dolu doleva. Vždy se provede test, zda by se ukazatel v příští iteraci dostal *out of bounds*. Pokud ano, změnil by se směr pohybu a ukazatel by se posunul na adekvátní pozici. Algoritmus se provádí tak dlouho, dokud se vektor celý "nenaplní".

Inverzní funkce funguje na stejném principu.

#### 3.6 Převzorkování (Resampling)

Jedná se změnu velikosti rastru na požadovanou velikost. Časté využití je například v mapové algebře či při komprimacích rastrových souborů.

V této úloze byly implementovány 2 funkce pro převzorkování a inverzní převzorkování. Vstupem je rastr a krok ("level") převzorkování.

Byla zde zvolena metoda vyhledávacího okna (kernel), které pro zvolený celočíselný krok (pro krok 2: kernel = (2,2)) byla uložena průměrná hodnota buněk v kernelu do nového rastru. Pokud byl tedy zvolen krok 2, výsledná velikost souboru je  $2 \times$  menší.

Pro následující výpočty byla každopádně vytvořena i inverzní funkce, která s tím samým krokem vytvoří nový rastr, kde naopak vezme hodnotu z předchozího rastru a vloží ji do buněk o velikosti původního vyhledávacího okna.

# 4 Výsledky

V rámci úlohy byly vyhotoveny všechny bonusové části, výpočetní skripty k nim jsou dostupné na githubu skupiny. Jedná se o dva hlavní skripty – jeden obsahující kompresi funkcemi DCT a DFT a druhý s DWT – a pomocné funkce vyhotovené povětšinou ve vlastních skriptech.

#### 4.1 Barevný obrázek

Pro první obrázek (barevný pixelart) byly kromě jednotlivých transformací testovány i dva typy resamplingu, s hodnotou 1 a 2.

| DCT          |    |            |            |            |  |  |
|--------------|----|------------|------------|------------|--|--|
| resampling   | q  | $\sigma_R$ | $\sigma_G$ | $\sigma_B$ |  |  |
| $1 \times 1$ | 10 | 15.781     | 13.291     | 11.343     |  |  |
| $1 \times 1$ | 50 | 10.281     | 7.235      | 6.056      |  |  |
| $1 \times 1$ | 70 | 8.769      | 5.962      | 5.177      |  |  |
| $2 \times 2$ | 10 | 16.006     | 16.610     | 13.929     |  |  |
| $2 \times 2$ | 50 | 14.205     | 16.779     | 13.506     |  |  |
| $2 \times 2$ | 70 | 13.985     | 16.865     | 13.473     |  |  |
| DFT          |    |            |            |            |  |  |
| resampling   | q  | $\sigma_R$ | $\sigma_G$ | $\sigma_B$ |  |  |
| $1 \times 1$ | 10 | 19.371     | 23.781     | 18.693     |  |  |
| $1 \times 1$ | 50 | 18.222     | 23.392     | 18.345     |  |  |
| $1 \times 1$ | 70 | 18.168     | 23.377     | 18.309     |  |  |
| $2 \times 2$ | 10 | 21.164     | 26.635     | 20.999     |  |  |
| $2 \times 2$ | 50 | 20.674     | 26.497     | 20.840     |  |  |
| $2 \times 2$ | 70 | 20.674     | 26.503     | 20.838     |  |  |
| DWT          |    |            |            |            |  |  |
| resampling   | q  | $\sigma_R$ | $\sigma_G$ | $\sigma_B$ |  |  |
| $1 \times 1$ | 10 | 84.818     | 67.455     | 84.122     |  |  |
| $1 \times 1$ | 50 | 21.608     | 13.793     | 22.576     |  |  |
| $1 \times 1$ | 70 | 14.188     | 10.071     | 18.878     |  |  |
| $2 \times 2$ | 10 | 88.957     | 75.198     | 88.186     |  |  |
| $2 \times 2$ | 50 | 34.440     | 35.984     | 34.783     |  |  |
| $2 \times 2$ | 70 | 30.340     | 34.728     | 32.504     |  |  |

Tabulka 2: Odchylky transformací pro barevný obrázek





Obrázek 3: Barevný pixel art obrázek, (a) – (f) DCT, (g) – (l) DFT, (m) – (r) DWT, liché řádky resampling  $1\times 1,$  sudé  $2\times 2$ 

| DCT          |    |            |            |            |  |
|--------------|----|------------|------------|------------|--|
| resampling   | q  | $\sigma_R$ | $\sigma_G$ | $\sigma_B$ |  |
| $1 \times 1$ | 10 | 20.083     | 19.898     | 20.904     |  |
| $1 \times 1$ | 50 | 9.405      | 9.065      | 9.790      |  |
| $1 \times 1$ | 70 | 7.212      | 6.846      | 7.600      |  |
| DFT          |    |            |            |            |  |
| resampling   | q  | $\sigma_R$ | $\sigma_G$ | $\sigma_B$ |  |
| $1 \times 1$ | 10 | 21.852     | 22.572     | 23.876     |  |
| $1 \times 1$ | 50 | 21.316     | 22.138     | 23.310     |  |
| $1 \times 1$ | 70 | 21.292     | 22.125     | 23.280     |  |
| DWT          |    |            |            |            |  |
| resampling   | q  | $\sigma_R$ | $\sigma_G$ | $\sigma_B$ |  |
| $1 \times 1$ | 10 | 76.721     | 42.814     | 76.896     |  |
| $1 \times 1$ | 50 | 18.761     | 12.200     | 21.962     |  |
| $1 \times 1$ | 70 | 13.951     | 9.590      | 19.132     |  |

Tabulka 3: Odchylky transformací pro fotografii



Obrázek 4: Fotografie, a, b, c DCT, d, e, f DFT, g, h, i DWT

| DCT          |    |            |            |            |  |
|--------------|----|------------|------------|------------|--|
| resampling   | q  | $\sigma_R$ | $\sigma_G$ | $\sigma_B$ |  |
| 1 × 1        | 10 | 21.134     | 12.723     | 16.068     |  |
| $1 \times 1$ | 50 | 10.020     | 6.360      | 8.387      |  |
| 1 × 1        | 70 | 7.919      | 5.158      | 6.951      |  |
| DFT          |    |            |            |            |  |
| resampling   | q  | $\sigma_R$ | $\sigma_G$ | $\sigma_B$ |  |
| 1 × 1        | 10 | 51.542     | 28.769     | 29.043     |  |
| 1 × 1        | 50 | 51.082     | 28.439     | 28.505     |  |
| $1 \times 1$ | 70 | 51.068     | 28.426     | 28.471     |  |
| DWT          |    |            |            |            |  |
| resampling   | q  | $\sigma_R$ | $\sigma_G$ | $\sigma_B$ |  |
| $1 \times 1$ | 10 | 120.884    | 111.411    | 69.860     |  |
| 1 × 1        | 50 | 25.533     | 15.938     | 20.363     |  |
| 1 × 1        | 70 | 15.771     | 12.449     | 12.740     |  |

Tabulka 4: Odchylky transformací pro vektorovou grafiku





Obrázek 5: Vektorová grafika, a, b, c DCT, d, e, f DFT, g, h, i DWT

#### Závěr

Směrodatné odchylky jednotlivých barev samozřejmě závisí na hodnotě q, kdy nižší hodnoty obrazová data silněji poznamenaly, avšak lze vypozorovat jisté trendy i u jednotlivých transformací.

Po kompresi a následné dekompresi nejpodobněji originálu dopadly všechny obrázky při použití metody DCT. Odchylky jsou v tomto případě menší i při použití q=10, než u ostatních metod při použití mírnějšího faktoru komprese q=70.

Při DFT došlo k nápadnému rozložení obrazu na pixely obsahující velké množství reliktů. Lze zde pozorovat jednotlivé "vlny", které jsou odlišné pro každý  $8\times 8$  blok. Nejmarkantnější je tento jev v případě liniových prvků u třetího obrázku, kde už tvoří překážku pro vnímání objektů. Odchylky se se zvyšujícím se q moc nesnižují, zapříčiňuje to nejspíš samotná vlastnost DFT, která nalezne pár vyskytujících se frekvencí v hledaném  $8\times 8$  bloku, není tedy nejvhodnější metodou pro použitá rastrová data, jelikož se nejedná o data s harmonickou vlastností.

DWT barvy rozkládala úplně, nejvíce nepřekvapivě v případě použité fotografie. Může za to nejspíše jiná metoda výpočtu, která spočívá v transformaci celého rastru, odkud se následně chyby ze ztráty komprese projeví ve všech  $8\times 8$  blocích obdobně.

#### Přílohy

• Příloha 1 - výpočetní skripty z programu Matlab

#### Reference

- [1] Výklad ze cvičení doc. Ing. Tomáš Bayer, Ph.D.
- [2] 155YGEI Geoinformatika. Online. 2025. Dostupné z: https://geo.fsv.cvut.cz/gwiki/155YGEI\_Geoinformatika. [cit. 2025-10-13]..

Podepsáno dne 13. 10. 2025 v Praze

Králič Adam, Matějková Barbora