Application No.: 10/720906 Case No.: 59424US003

Amendments to the Claims:

The following Listing of Claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims

- 1. (Canceled) A method of making a crosslinked polymer comprising the steps of:
 - a) providing a highly fluorinated polymer comprising pendent groups which include a group according to the formula -SO₂X, wherein each X is independently selected from F, Cl, Br, I, -OH or -O-SO₂R² wherein R² is an aliphatic group containing 1-18 carbon atoms which may be substituted; and
- b) reacting said polymer with a crosslinking agent according to the formula Ar_nR^1 , wherein each Ar is selected independently from aromatic groups containing 6-24 carbon or nitrogen atoms and wherein each Ar may be substituted, wherein R^1 is a direct bond or an aromatic or aliphatic linking group, wherein R^1 may be straight-chain, branched, cyclic, heteroatomic, polymeric, halogenated, fluorinated or substituted, and where n is at least 2, to form crosslinks.
- 2. (Canceled) The method according to claim 1 wherein said crosslinks comprise units according to the formula (-SO₂Ar)_nR¹.
- 3. (Canceled) The method according to claim 1 wherein said method additionally comprises, prior to said step b), the step of:
 - c) forming said polymer into a membrane.
- 4. (Canceled) The method according to claim 3 wherein said membrane has a thickness of 90 microns or less.
- 5. (Canceled) The method according to claim 1 wherein said method additionally comprises, after said step b), the step of:

Application No.: 10/720906

Case No.: 59424US003

- d) converting any remaining groups according to the formula -SO₂X to sulfonic acid groups.
- 6. (Canceled) The method according to claim 1 wherein each Ar is a phenyl group which may be substituted.
- 7. (Canceled) The method according to claim 1 wherein one or more Ar is substituted with an electron donating group.
- 8. (Canceled) The method according to claim 1 wherein one or more Ar is substituted with an alkoxy group.
- 9. (Canceled) The method according to claim 1 wherein R¹ is an aliphatic linking group containing 1-20 carbon or oxygen atoms.
- (Currently Amended) A method of making a crosslinked polymer comprising the steps of: providing a highly fluorinated polymer comprising pendent groups which include a group according to the formula -SO2X, wherein each X is independently selected from F, Cl, Br, I, -OH or -O-SO₂R² wherein R² is an aliphatic group containing 1-18 carbon atoms which may be substituted; and
- reacting said polymer with a crosslinking agent according to the formula b) ArnR1, wherein each Ar is selected independently from aromatic groups containing 6-24 carbon or nitrogen atoms and wherein each Ar may be substituted, wherein R¹ is a direct bond or an aromatic or aliphatic linking group, wherein R1 may be straight-chain, branched, cyclic, heteroatomic, polymeric, halogenated, fluorinated or substituted, and where n is at least 2, to form crosslinks: The method according to claim 1

wherein R¹ is -O-R³-O-, where R³ is an aliphatic linking group containing 1-18 carbon or oxygen atoms.

Case No.: 59424US003

11. (Canceled) The method according to claim 1 wherein n is 2.

3M

- 12. (Currently Amended) A method of making a crosslinked polymer comprising the steps of:
 - providing a highly fluorinated polymer comprising pendent groups which include a group according to the formula -SO2X, wherein each X is independently selected from F. Cl. Br. I, -OH or -O-SO₂R² wherein R² is an aliphatic group containing 1-18 carbon atoms which may be substituted; and
- reacting said polymer with a crosslinking agent according to the formula ArnR¹, wherein each Ar is selected independently from aromatic groups containing 6-24 carbon or nitrogen atoms and wherein each Ar may be substituted, wherein \mathbb{R}^1 is a direct bond or an aromatic or aliphatic linking group, wherein R1 may be straight-chain, branched, cyclic, heteroatomic, polymeric, halogenated, fluorinated or substituted, and where n is at least 2, to form crosslinks; The method according to claim 1

wherein said step b) of reacting said polymer with a crosslinking agent is carried out in the presence of a catalyst such as a Lewis acid.

- 13. (Canceled) The method according to claim 1 wherein each X is independently selected from F or Cl.
- 14. (Canceled) The method according to claim 1 wherein said pendent groups are according to the formula $-O-(CF_2)_4-SO_2X$.
- 15. (Canceled) The method according to claim 1 wherein said pendent groups are according to the formula -O-CF2-CF(CF3)-O-CF2-CF2-SO2X.

3M

form crosslinks; The method according to claim-1-

Application No.: 10/720906 Case No.: 59424US003

16. (Currently Amended) A method of making a crosslinked polymer comprising the steps of:

a) providing a highly fluorinated polymer comprising pendent groups which include
a group according to the formula -SO₂X, wherein each X is independently selected from
F. Cl. Br. I. -OH or -O-SO₂R² wherein R² is an aliphatic group containing 1-18 carbon atoms which may be substituted; and
b) reacting said polymer with a crosslinking agent according to the formula

Ar_RR¹, wherein each Ar is selected independently from aromatic groups containing 6-24 carbon or nitrogen atoms and wherein each Ar may be substituted, wherein R¹ is a direct bond or an aromatic or aliphatic linking group, wherein R¹ may be straight-chain, branched, cyclic, heteroatomic, polymeric, halogenated, fluorinated or substituted, and where n is at least 2, to

wherein step a) of providing a highly fluorinated polymer comprises the steps of:

- e) providing a highly fluorinated polymer comprising pendent groups which include a group according to the formula -SO₂F; and
- f) converting at least a portion of said -SO₂F groups to -SO₂Cl.
- 17. (Original) The method according to claim 16 wherein step f) of converting at least a portion of said -SO₂F groups to -SO₂Cl is accomplished by reduction of the -SO₂F group to -SO₂H followed by conversion to -SO₂Cl by reaction with hypochloride.
- 18. (Original) The method according to claim 16 wherein step f) of converting at least a portion of said -SO₂F groups to -SO₂Cl is accomplished by reaction with oxalylchloride.
- 19. (Currently Amended) A method of making a crosslinked polymer comprising the steps of:
 a) providing a highly fluorinated polymer comprising pendent groups which include
 a group according to the formula -SO₂X, wherein each X is independently selected from

Application No.: 10/720906 Case No.: 59424US003

F. Cl. Br. I. -OH or -O-SO₂R² wherein R² is an aliphatic group containing 1-18 carbon atoms which may be substituted; and

b) reacting said polymer with a crosslinking agent according to the formula $Ar_{n}R^{1}$, wherein each Ar is selected independently from aromatic groups containing 6-24 carbon or nitrogen atoms and wherein each Ar may be substituted, wherein R^{1} is a direct bond or an aromatic or aliphatic linking group, wherein R^{1} may be straight-chain, branched, cyclic, heteroatomic, polymeric, halogenated, fluorinated or substituted, and where n is at least 2, to form crosslinks; The method-according to claim 1

wherein step a) of providing a highly fluorinated polymer comprises the steps of:

- e) providing a highly fluorinated polymer comprising pendent groups which include a group according to the formula -SO₂F; and
- f) converting at least a portion of said -SO₂F groups to -SO₂-O-SO₂R², wherein R² is an aliphatic group containing 1-18 carbon atoms which may be substituted.
- 20. (Withdrawn) A highly fluorinated crosslinked polymer comprising: a backbone, pendent groups which comprise sulfonic acid groups, and crosslinks comprising units according to the formula (-SO₂Ar)_nR¹ wherein each Ar is selected independently from aromatic groups containing 6-24 carbon or nitrogen atoms and wherein each Ar may be substituted, wherein R¹ is a direct bond or an aromatic or aliphatic linking group, wherein R¹ may be straight-chain, branched, cyclic, heteroatomic, polymeric, halogenated, fluorinated or substituted, and where n is at least 2.
- 21. (Withdrawn) A polymer electrolyte membrane comprising the highly fluorinated crosslinked polymer according to claim 20.
- 22. (Withdrawn) The polymer electrolyte membrane according to claim 21 having a thickness of 90 microns or less.

Application No.: 10/720906

Casc No.: 59424US003

- 23. (Withdrawn) The polymer according to claim 20 wherein each Ar is a phenyl group which may be substituted.
- 24. (Withdrawn) The polymer according to claim 20 wherein one or more Ar is substituted with an electron donating group.
- 25. (Withdrawn) The polymer according to claim 20 wherein one or more Ar is substituted with an alkoxy group.
- 26. (Withdrawn) The polymer according to claim 20 wherein R¹ is an aliphatic linking group containing 1-20 carbon or oxygen atoms.
- 27. (Withdrawn) The polymer according to claim 20 wherein \mathbb{R}^1 is -0- \mathbb{R}^3 -O-, where \mathbb{R}^3 is an aliphatic linking group containing 1-18 carbon or oxygen atoms.
- 28. (Withdrawn) The polymer according to claim 20 wherein n is 2.
- 29. (Withdrawn) The polymer according to claim 20 wherein said pendent groups are according to the formula -O-(CF₂)₄-SO₃H.
- 30. (Withdrawn) The polymer according to claim 20 wherein said pendent groups are according to the formula -O-CF₂-CF(CF₃)-O-CF₂-CF₂-SO₃H.
- 31. (Withdrawn) The polymer according to claim 20 having an equivalent weight of less than 1200.
- 32. (Withdrawn) A method of making a crosslinked polymer comprising the steps of:
 - a) providing a highly fluorinated polymer comprising first pendent groups which include a group according to the formula -SO₂X, wherein each X is independently

Case No.: 59424US003

selected from F, Cl, Br, I, -OH or -O-SO₂R² wherein R² is an aliphatic group containing 1-18 carbon atoms which may be substituted, and second pendent groups which include groups -Ar, wherein each Ar is selected independently from aromatic groups containing 6-24 carbon or nitrogen atoms and wherein each Ar may be substituted; and

- b) reacting said polymer to form crosslinks between said first and second pendent groups.
- 33. (Withdrawn) The method according to claim 32 wherein said crosslinks comprise units according to the formula -SO₂Ar-.
- 34. (Withdrawn) The method according to claim 32 wherein said method additionally comprises, prior to said step b), the step of:
 - c) forming said polymer into a membrane.
- 35. (Withdrawn) The method according to claim 34 wherein said membrane has a thickness of 90 microns or less.
- 36. (Withdrawn) The method according to claim 32 wherein said method additionally comprises, after said step b), the step of:
 - d) converting any remaining groups according to the formula -SO₂X to sulfonic acid groups.
- 37. (Withdrawn) The method according to claim 32 wherein each Ar is a phenyl group which may be substituted.
- 38. (Withdrawn) The method according to claim 32 wherein one or more Ar is substituted with an electron donating group.

Application No.: 10/720906

Case No.: 59424US003

- (Withdrawn) The method according to claim 32 wherein one or more Ar is substituted with an alkoxy group.
- 40. (Withdrawn) The method according to claim 32 wherein said step b) of reacting said polymer is carried out in the presence of a catalyst such as a Lewis acid.
- 41. (Withdrawn) The method according to claim 32 wherein each X is independently selected from F or Cl.
- 42. (Withdrawn) The method according to claim 32 wherein said first pendent groups are according to the formula -O-(CF₂)₄-SO₂X.
- 43. (Withdrawn) The method according to claim 32 wherein said first pendent groups are according to the formula -O-CF₂-CF(CF₃)-O-CF₂-CF₂-SO₂X.
- 44. (Withdrawn) The method according to claim 32 wherein step a) of providing a highly fluorinated polymer comprises the steps of:
 - e) providing a highly fluorinated polymer comprising first pendent groups which include a group according to the formula -SO₂F; and
 - f) converting at least a portion of said -SO₂F groups to -SO₂Cl.
- 45. (Withdrawn) The method according to claim 44 wherein step f) of converting at least a portion of said -SO₂F groups to -SO₂Cl is accomplished by reduction of the -SO₂F group to -SO₂H followed by conversion to -SO₂Cl by reaction with hypochloride.
- 46. (Withdrawn) The method according to claim 44 wherein step f) of converting at least a portion of said -SO₂F groups to -SO₂Cl is accomplished by reaction with oxalylchloride.

3M

Case No.: 59424US003

Application No.: 10/720906

- 47. (Withdrawn) The method according to claim 32 wherein step a) of providing a highly fluorinated polymer comprises the steps of:
 - providing a highly fluorinated polymer comprising first pendent groups which include a group according to the formula -SO₂F; and
- converting at least a portion of said -SO₂F groups to -SO₂-O-SO₂R², wherein R² is an aliphatic group containing 1-18 carbon atoms which may be substituted.
- 48. (Withdrawn) The method according to claim 32 wherein said highly fluorinated polymer comprises a greater number of first pendant groups than second pendant groups.
- 49. (Withdrawn) A highly fluorinated crosslinked polymer comprising: a backbone, pendent groups which comprise sulfonic acid groups, and crosslinks comprising units according to the formula -SO₂Ar- wherein each Ar is selected independently from aromatic groups containing 6-24 carbon or nitrogen atoms and wherein each Ar may be substituted.
- 50. (Withdrawn) A polymer electrolyte membrane comprising the highly fluorinated crosslinked polymer according to claim 49.
- 51. (Withdrawn) The polymer electrolyte membrane according to claim 50 having a thickness of 90 microns or less.
- 52. (Withdrawn) The polymer according to claim 49 wherein each Ar is a phenyl group which may be substituted.
- 53. (Withdrawn) The polymer according to claim 49 wherein one or more Ar is substituted with an electron donating group.
- 54. (Withdrawn) The polymer according to claim 49 wherein one or more Ar is substituted with an alkoxy group.

ЗM

Case No.: 59424US003

- 55. (Withdrawn) The polymer according to claim 49 wherein said first pendent groups are according to the formula -O-(CF₂)₄-SO₃H.
- 56. (Withdrawn) The polymer according to claim 49 wherein said first pendent groups are according to the formula -O-CF₂-CF(CF₃)-O-CF₂-CF₂-SO₃H.
- 57. (Withdrawn) The polymer according to claim 49 having an equivalent weight of less than 1200.
- 58. (Canceled) The method according to claim 3 wherein step c) comprises imbibing said mixture into a porous supporting matrix.
- 59. (Canceled) The method according to claim 58 wherein said porous supporting matrix is a porous polytetrafluoroethylene web.
- 60. (Withdrawn) The method according to claim 34 wherein step c) comprises imbibing said mixture into a porous supporting matrix.
- 61. (Withdrawn) The method according to claim 60 wherein said porous supporting matrix is a porous polytetrafluoroethylene web.
- 62. (Withdrawn) The polymer electrolyte membrane according to claim 21 wherein said intimate mixture is embedded in a porous supporting matrix.
- 63. (Withdrawn) The polymer electrolyte membrane according to claim 62 wherein said porous supporting matrix is a porous polytetrafluoroethylene web.

Application No.: 10/720906

Case No.: 59424US003

- 64. (Withdrawn) The polymer electrolyte membrane according to claim 50 wherein said intimate mixture is embedded in a porous supporting matrix.
- 65. (Withdrawn) The polymer electrolyte membrane according to claim 64 wherein said porous supporting matrix is a porous polytetrafluoroethylene web.