Module V: Knowledge Graph Inference and Applications

2:05 pm - 3:10 pm

Module 5 Overview

KG Inference and Applications

Knowledge Graph Inference

- What & Why
- How
 - Problem formulation & Overview
 - Knowledge Graph Embedding

Knowledge Graph Applications

• Entity Recommendation

<u>Lab 5 – Paper Recommendation in *MAG*</u>

- ► Knowledge Base is largely incomplete
- ► Need systematic and scalable approaches to complete knowledge graph

Relation	Percentage unknown	
	All 3M	Top 100K
PROFESSION	68%	24%
PLACE OF BIRTH	71%	13%
NATIONALITY	75%	21%
EDUCATION	91%	63%
SPOUSES	92%	68%
PARENTS	94%	77%
CHILDREN	94%	80%
SIBLINGS	96%	83%
ETHNICITY	99%	86%

Incompleteness of Freebase for some relations that apply to entities of type PERSON. Left: all 3M Freebase PERSON entities. Right: only the 100K most frequent PERSON entities.

West, et al., WWW'14, Knowledge Base Completion via Search-Based Question Answering

$$Y_{ijk} = \begin{cases} 1, & \text{if the triple } (e_i, r_k, e_j) \text{ exists;} \\ 0, & \text{otherwise.} \end{cases}$$

Element-wise

$$Y \in \{0, 1\}^{Ne \times Ne \times Nr}$$

adjacency tensor (adjacency matrix)

Estimate the joint-distribution

Predict <u>unobserved</u> triples

PROBLEM FORMULATION -- STATISTICAL RELATIONAL LEARNING

- ► Within existing KG
 - ► Graph feature model
 - "Similar" entities
 - ► Local common neighbors
 - ► Global random walk
 - ▶ Quasi-local random walk with bounded length
 - ► Latent feature model
- ► Use external sources / information
 - ► QnA system

Graph

|N|: Number of Nodes in Grap

Knowledge Graph

|E|: Number of Entities in Knowledge Graph

|R|: Number of Relations in Knowledge Graph

LATENT FEATURE MODELS

Entity Representation

- Low dimensional vector: e_i
- Initialization
 - Random
 - Average word vector with pre-trained vectors ($V_{
 m word}$), e.g.

$$e_{homo\; sapiens} = 0.5 \times (V_{homo} \, + V_{sapiens})$$

► *Relation type* representation

- · Each relation type as matrix:
 - W_k : bilinear weight matrix
 - A_k : linear feature map
- Each relation type as **vector**: r_k

Entity-Relation interaction

- Linear : $A_k e_i$
- Bilinear: $e_i^T W_k e_j$

► Scoring function

- Margin-based ranking loss Maximize the margin btw existing & non-existing triple $\sum_{(s,r,o) \in T} \sum_{(s',r,o') \in T'(s',r,o')} \max(0,1+f(s',r,o')-f(s,r,o))$
- Negative sampling loss Negative log-likelihood of the correct triples & sampled corrupted triple $-\sum_{(s,r,o)\in T} (\log\sigma\big(f(s,r,o)\big) + \sum_{(s',r,o)\in T'(s,r,o)} \log\sigma\big(-f(s',r,o')\big) \)$

Graph

Knowledge

Graph

|N|: Number of Nodes in Graph

k: Dimensionality

|E|: Number of Entities in Knowledge Graph

|R|: Number of Relations in Knowledge Graph

k: Dimensionality

LATENT FEATURE MODELS - MILESTONES

LATENT FEATURE MODELS - SCALABILITY

Knowledge Graph Applications

ENTITY RECOMMENDATION

- ► <u>Co-occurrence</u> based
 - ► Search user behavior
 - ▶ Wikipedia
 - ▶ Web documents
- ► *Similarity* based
 - ► Textual (tf-idf)
 - ► Embedding

Knowledge Graph Applications

ENTITY RECOMMENDATION – CASE STUDY

- ► <u>Co-occurrence</u> based
 - ► Co-citation
 - ► Co-author
 - ▶ Co-venue
 - ► Graph embedding

Paper Recommendation

- ► *Similarity* based
 - ► Tf-idf
 - ▶ Word2Vec

Lab 5: Structural + Textual Similarity in MAG

- Task : Paper recommendation
 - Based on co-citation
 - Based on textual (tf-idf) similarity
 - Based on semantic (word embedding) similarity