| 题号 一 二                                                                   | 三 四        | _               |                 |                     |
|--------------------------------------------------------------------------|------------|-----------------|-----------------|---------------------|
| · · · · · · · · · · · · · · · · · · ·                                    |            | 五               | 六               | 总分                  |
| ਹ <b>਼</b>                                                               |            |                 |                 |                     |
| 也人                                                                       | 选择题(共 30   | ŕ               | ,               |                     |
| 如图,在螺线管中心外<br>(A) 向外转 90°.<br>(B) 向里转 90°.<br>(C) 保持图示位置<br>(D) 旋转 180°. |            | 十,当电键闭合         | 时,小磁针的<br>- s   | J N 极的表             |
| 以下四种运动形式中,<br>(A)单摆的运动.<br>(C)行星的椭圆轨道                                    |            | (B)匀速率          |                 | [                   |
| 在标准状态下,若氧气(A) 2/3. (B) 3/5                                               |            |                 | • •             | /E <sub>2</sub> 为 [ |
| 下列说法正确的是<br>A)等势面上各点场强一                                                  | 定相等. (B)正电 | .荷在电势高 <b>幼</b> | <b>少</b> ,电势能也- | [<br>一定高.           |

将进行自由膨胀,达到平衡后
(A) 温度不变,熵增加. (B) 温度升高,熵增加.

(C) 温度降低,熵增加.(D) 温度不变,熵不变.



6.用线圈的自感系数 L 来表示载流线圈磁场能量的公式  $W_m = \frac{1}{2}LI^2$ 

| 得分  |  |
|-----|--|
| 何刀  |  |
|     |  |
| 阅卷人 |  |
| 风仓八 |  |
|     |  |

### 二、填空题(共30分,每空3分)

- 1. 均匀磁场的磁感应强度  $\vec{B}$ 垂直于半径为 r 的圆面,今以该圆周为边线作一半球面 S,则通过 S 面的磁通量的大小为\_\_\_\_\_\_\_.
- 2. 一质量为 m,电荷为 q 的粒子,以  $\bar{v}_0$ 速度垂直进入均匀的稳恒磁场  $\bar{B}$ 中,电荷做圆周运动的半径为 .
- 3. 法拉第电磁感应定律的表达式为\_\_\_\_\_\_.
- 4.点电荷电量为 Q,在距离它为 r 处的 p 点的电场强度大小的表达式为
- 6. 一质点沿半径为 0.2m 的圆周运动,其角位移  $\theta$  随时间 t 的变化规律是  $\theta = 6 + 5t^2(SI)$ ,在 t=2s 时,它的

法向加速度  $a_n = ______ m/s^2$ ;

切向加速度  $a_t = \underline{\qquad} m / s^2$ .

7. 两个容器内分别贮有 1mol 氦气和 1mol 氢气,若它们的温度都升高 1K,则两种气体的内能的增量值分别为:

 $\Delta E_{\rm s} = \underline{\hspace{1cm}}; \quad \Delta E_{\rm s} = \underline{\hspace{1cm}}.$ 

8. 假设地球绕太阳做椭圆运动,R和r分别是远日点和近日点的轨道半径, $v_l$ 是近日点的地球公转速率,则远日点的地球公转速率是

| 得分  |  |
|-----|--|
| 阅卷人 |  |

#### 三、计算题(本题10分)

一质量为m,长为l的棒能绕通过O点的水平轴自由转动,开始时棒垂直悬挂。现有一质量也为m,速率为 $v_0$ 的子弹从水平方向飞来,击中棒的中点又穿出棒,速率为v,棒恰好摆到水平位置。求子弹的初速率 $v_0$ .



| 得分  |  |
|-----|--|
| 阅卷人 |  |

# 四、 计算题 (本题 10 分)

均匀带电球壳内半径为  $R_1$ ,外半径为  $R_2$ ,电荷体密度为  $\rho$ , 求(1)  $r < R_1$ ; (2)  $R_1 < r < R_2$ ; (3)  $r > R_2$  各处的电场强度的大小.





### 五、计算题(本题10分)

温度为 25 ℃, 压强为 1 atm 的 1 mol 理想气体。

- (1) 经等温过程体积膨胀至原来的 3 倍,求该过程中气体对外所做的功.
- (2) 经等压过程体积膨胀至原来的 5 倍, 求该过程中气体对外所做的功.



## 六、计算题(本题 10 分)

如图所示,无限长均匀载流圆柱体中电流强度为 I,圆柱体半径为 R,求圆柱体内、外的磁感强度分布.

