Homework 3

Question 1. (20 points) Suppose that in the optical and near-UV band, the extinction efficiency $Q_{\rm ext}(a,\lambda) \approx 2(\pi a/2\lambda)^{\beta}$ for $\pi a/\lambda < 2$; and $Q_{\rm ext} \approx 2$ for $\pi a/\lambda > 2$. Assume that the dust density is proportional to $n_{\rm H}$, with a simple power-law size distribution

$$\frac{1}{n_{\rm H}} \frac{dn}{da} = \frac{A_0}{a_0} \left(\frac{a}{a_0}\right)^{-p} \quad 0 < a \le a_{\rm max},$$

where $a_0 = 0.1 \mu \text{m}$ is a fiducial length, A_0 is dimentionless and p < 4. Let $\sigma_{\text{ext}}(\lambda)$ be the extinction cross section per H at wavelength λ .

- 1) Assume that $a_{\text{max}} < 0.28 \mu\text{m}$. Obtain an expression for $\sigma_{\text{ext}}(\lambda)/A_0\pi a_0^2$ that would be valid for $\lambda = \lambda_V$ or λ_B . Evaluate this ratio for $\beta = 1.5$, p = 3.5, $a_{\text{max}} = 0.25 \mu\text{m}$, and $\lambda = \lambda_V$.
- 2) For $a_{\text{max}} < 0.28 \mu\text{m}$, using your result from 1) to obtain an expression for the ratio $\sigma_{\text{ext}}(\lambda_B)/\sigma_{\text{ext}}(\lambda_V)$, and evaluate this ratio for $\beta = 1.5$.
 - 3) If assuming $a_{\text{max}} < 0.28 \mu\text{m}$, obtain an expression for R_V and evaluate this for $\beta = 1.5$.
 - 4) Suppose that $a_{\text{max}} > 2\lambda/\pi$. Obtain an expression for $\sigma_{\text{ext}}(\lambda)/A_0\pi a_0^2$.
 - 5) If $a_{\text{max}} = 0.35 \mu \text{m}$, p = 3.5, and $\beta = 2$, evaluate $\sigma_{\text{ext}}(\lambda_V)/A_0 \pi a_0^2$, $\sigma_{\text{ext}}(\lambda_B)/A_0 \pi a_0^2$ and R_V .
 - 6) Plot R_V as a function of p from 3-4 for different a_{max} (e.g. 0.25, 0.35, 0.45, 0.55, 0.65 μ m).

Question 2. (20 poinnts) Consider a hot plasma with density $n_{\rm H}$ in an elliptical galaxy. Suppose that planetary nebulae and other stellar outflows are injecting dust into the plasma with a rate per unit graine radius

$$\left(\frac{d\dot{N}_d}{da}\right)_{\rm ini} = \frac{A_0}{a_{\rm max}} \left(\frac{a}{a_{\rm max}}\right)^{-p}.$$

- 1) Obtain an expression for the total rate $(dM_d/dt)_{\rm inj}$ at which dust mass is being injected into the plasma, in terms of A_0 , $a_{\rm max}$, p, and the density ρ of the grain material.
- 2) Upon injection into the plasma, the grains are subject to sputtering at a rate $da/dt = -\beta n_{\rm H}$, where β is a constant. Find the steady state solution for dN_d/da , where $N_d(a)$ is the number of dust grains present with radii $\leq a$.
- 3) Obtain an expression for the steady-state dust mass $M_{\rm dust}$ and the characteristic survival time $\tau_{\rm surv} \equiv M_{\rm dust}/(dM_{\rm dust}/dt)_{\rm inj}$ in terms of $a_{\rm max}$, p, and da/dt.
- 4) Consider a passive elliptical galaxy NGC 4564 containing hot plasma $kT \approx 0.5$ keV and a core density $n_{\rm H} \approx 0.01/{\rm cm}^3$. Assuming $\beta = 10^{-6} \mu {\rm m \, cm}^3/{\rm yr}$, p = 3.5, and $a_{\rm max} = 0.3 \mu {\rm m}$, estimate the survival time $\tau_{\rm surv}$. If the dust injection rate from evolved stars in the central kpc is $1.3 \times 10^{-4} M_{\odot}/{\rm yr}$, estimate the estimated steady-state dust mass $M_{\rm dust}$. The observed upper limit of the dust mass from Clemens et al. (2010) is $M_{\rm dust} < 8700 M_{\odot}$. Is your estimate in agreement with observations?

Question 3. (20 points) Consider a diffuse molecular cloud with $n_{\rm H}=100/{\rm cm}^3$. The hydrogen is predominatly molecular, with $n(H_2)=50/{\rm cm}^3$. The oxygen is primarily atomic, with $n(O)\approx 4\times 10^{-4}n_{\rm H}$. Assume that cosmic ray ionization maintains an abundance $n(H_3^+)\approx 5\times 10^{-8}n_{\rm H}$ and cosmic ray ionization plus starlight photoionization of metals maintains $n_e\approx 10^{-4}n_{\rm H}$. Consider the reaction network for OH formation in Section 33.2.2 in Draine's textbook:

- 1) What is the steady-state density $n(OH^+)$?
- 2) What is the steady-state density $n(H_2O+)$?
- 3) What is the steady-state OH abundance relative to hydrogen, $n(OH)/n_{\rm H}$?
- 4) There is more than one reaction that can reproduce OH. Which is the most important for the diven conditions?

Question 4. (20 points) Consider the collapse of a uniform density (ρ_0) spherical cloud with no gas pressure to counteract gravity, the so-called free-fall condition. Derive the free-fall time $\tau_{\rm ff}$, which is the time it takes for a given gas shell starting at radius r_0 to collapse to the center of the cloud. How does $\tau_{\rm ff}$ depend on the starting radius r_0 ? What does this dependence mean?

Question 5. (20 points) A pulsar is observed at 1610 and 1660 MHz. The plane of polarization at these two frequencies differs by 57.5°..

- 1) What is the minimum possible magnitude of the rotation measure |RM| toward this source? Why is it a minimum? What would be the next largest possible value of |RM|?
- 2) If the source has a dispersion measure $DM = 200 \text{pc/cm}^3$. Using the minimum |RM| derived in 1), what is the electron-density-weighted component of magnetic field along the line-of-sight?