PREDICTION DU DESABONNEMENT DES CLIENTS BANCAIRES

Professeur: FLORIAN SAWADOGO

GROUPE I

- OUEDRAOGO WENDTOIN ISSAKA
- SOME FIARMA LANDRY

Le désabonnement des clients représente un défi majeur pour les banques, impactant directement leur rentabilité. L'objectif de ce projet est de développer un modèle prédictif pour identifier les clients à risque de désabonnement.

PROBLEMATIQUE

Pourquoi la prédiction du désabonnement est-elle cruciale ?

Des études ont montré qu'acquérir un nouveau client peut coûter jusqu'à cinq fois plus cher que de fidéliser un client existant (Bain & Company).

Ce projet vise à fournir un outil pour anticiper les départs et agir en conséquence.

.

BASE DE DONNEES

☐ Source des données : Kaagle

□ Contenu:

La base de données sur laquelle on va travailler, contient 5 000 enregistrements clients et 18 Variables, pas de données manquantes.

Variables numeriques(14): RowNumber, Customerld, CreditScore, Age, Tenure, Balance, NumOfProducts, HasCrCard, IsActiveMembrer, EstimatedSalary, Exited, Complain, Satisfaction.Score, Point.Earned

Variables catégorielles(4): Surname, Geography, Gender,

Card.Type

RowNumb	CustomerId <int></int>	CreditScore <int></int>	Age <int></int>	Tenure <int></int>	Balance <dbl></dbl>	NumOfProducts <int></int>
6603	15580872	761	38	1	120530.13	2
4061	15593250	640	29	4	0.00	2
2013	15780124	841	74	9	108131.53	1
161	15692132	717	22	6	101060.25	1
8058	15620836	816	34	2	108410.87	2
8504	15794101	559	48	2	0.00	2
4062	15605333	529	31	6	0.00	1
7038	15789611	568	46	8	150836.92	1
1244	15593331	693	25	6	146580.69	1
8667	15785920	687	35	1	125141.24	2

Des	cription: df [6	× 18]					
1	Balance <dbl></dbl>	NumOfProducts <int></int>	HasCrCard <int></int>	IsActiveMember <int></int>	EstimatedSalary <dbl></dbl>	Exited <int></int>	٠
	120530.1	2	1	0	109394.62	0	
	0.0	2	1	0	44904.26	0	
	108131.5	1	0	1	60830.38	0	
	101060.2	1	0	1	84699.56	0	
	108410.9	2	1	0	102908.91	0	
	0.0	2	0	1	137961.41	0	

•	EstimatedSalary <dbl></dbl>	Exited <int></int>	Complain <int></int>	Satisfaction.Score <int></int>	Card.Type <chr></chr>	Point.Earned
	109394.62	0	0	2	GOLD	815
	44904.26	0	0	3	GOLD	758
	60830.38	0	0	5	SILVER	698
	84699.56	0	0	2	GOLD	666
	102908.91	0	0	4	PLATINUM	555
	137961.41	0	0	3	GOLD	640

ANALYSE DESCRIPTIVE

ANALYSE FACTORIELLE: ACP

- Les variables Balance, Age, et EstimatedSalary sont fortement corrélées avec la première dimension (Dim 1).
- SatisfactionScore se distingue sur la deuxième dimension (Dim 2), représentant un aspect différent du comportement des clients.
- CreditScore et Point.Earned contribuent modérément aux deux dimensions, capturant des variations distinctes.

- Les individus sont colorés selon leur solde (Balance), montrant que ceux avec un solde élevé sont situés vers la droite (Dim 1).
- La distribution des individus est bien équilibrée, indiquant une bonne variabilité dans les données.
- Les individus marqués comme Complain.2 apparaissent principalement au centre du graphique, ce qui suggère un comportement modéré.

MODÉLISATION ET RÉSULTATS

- □ Nous avons développé un modèle de régression logistique pour prédire si un client quittera la banque ou non. Après avoir ajusté le modèle sur l'ensemble de données d'entraînement(70%) et évalué ses performances sur un ensemble de test(30%), voici les résultats clés.
- □ Prédictions : Le modèle a prédit les probabilités de départ des clients avec une grande précision
- ☐ Exactitude : Le modèle a atteint une exactitude (accuracy) de 99.8%
- Matrice de confusion(clients =1499; 0:1204; 1:295) :
 - ☐ 1202 vrais négatifs (clients restés correctement identifiés).
 - ☐ 295 vrais positifs (clients quittés correctement identifiés).
 - 2 faux positifs (clients prédits comme quittant alors qu'ils sont restés).
 - 0 faux négatif (client prédit comme resté alors qu'il a quitté).

1745 2277 4240 2942 1993 4774 0.0001241055 0.0004292380 0.0002271780 0.9921250496 0.0001242309 0.9999664393

- [1] "Logistic Regression Accuracy 0.99866577718479"
- [1] "Confusion Matrix for Logistic Regression"

FALSE TRUE 0 1202 2 1 0 295

CONCLUSION

- ❖ Résultats Clés: Les modèles d'apprentissage automatique permettent de prédire efficacement le désabonnement des clients. Les caractéristiques les plus influentes identifiées sont la Plainte, l'Age, la Geographie, selon que le client soit un membre actif ou pas de la banque.
- Impact : Ces prédictions offrent à la banque la possibilité de cibler ses efforts de rétention, réduisant ainsi les coûts d'acquisition de nouveaux clients.

Merci pour votre attention!

- APPORTS
- QUESTIONS?

Lien GitHub Script: https://github.com/wendtoinissaka/UVBF L3 ANALYSE DE DONNEES/tree/main/Data mining R