ÉCOLE POLYTECHNIQUE - ÉCOLES NORMALES SUPERIEURES

CONCOURS D'ADMISSION 2016

FILIÈRE MP

COMPOSITION DE MATHÉMATIQUES - C - (ULRC)

(Durée: 4 heures)

L'utilisation des calculatrices n'est pas autorisée pour cette épreuve

* * *

On note

- $\mathbb{R}_N[X]$ l'ensemble des polynômes à coefficients réels, de degré $\leq N$,
- $\langle .,. \rangle$ le produit scalaire euclidien sur \mathbb{R}^n : $\langle x,y \rangle = \sum_{j=1}^n x_j y_j$ pour tout $x = (x_1,...,x_n)$, $y = (y_1,...,y_n) \in \mathbb{R}^n$
- $\mathcal{M}_n(\mathbb{R})$ l'algèbre des matrices carrées $n \times n$ à coefficients réels,
- I_n son élément unité,
- exp l'exponentielle sur $\mathcal{M}_{n}\left(\mathbb{R}\right)$: exp $\left(A\right)=\sum_{k=0}^{+\infty}\frac{A^{k}}{k!},\,\forall A\in\mathcal{M}_{n}\left(\mathbb{R}\right),$
- $f^{(k)}$ la dérivée k-ième de la fonction f, pour $k \ge 1$, lorsque I est un intervalle ouvert de \mathbb{R} et $f: I \to \mathbb{R}$ est k-fois dérivable sur I; par convention $f^{(0)} = f$,
- $C^m([0,R],\mathbb{R})$, pour $m \ge 1$, l'ensemble des fonctions continues sur l'intervalle fermé [0,T], de classe C^m sur l'intervalle ouvert [0,T], admettant des dérivées à droite en 0, et à gauche en T, jusqu'à l'ordre m et telles que $f^{(k)}$ soit continue sur [0,T] pour k=1,...,m,
- $C^{\infty}([0,T],\mathbb{R}) = \bigcap_{m \in \mathbb{N}} C^{m}([0,T],\mathbb{R}),$
- $-\binom{n}{k} \text{ les coefficients binômiaux} : \binom{n}{k} = \frac{n!}{k! (n-k)!}, \forall n \in \mathbb{N}^*, \ k \in \{0, ..., n\}.$

Les relations entre les 5 parties sont :

$$1 \Rightarrow 2$$
 $3 \Rightarrow 4 \Rightarrow 5$.

Ainsi, la partie 1 est utile pour résoudre la partie 2 mais les parties (3,4,5) sont indépendantes des parties (1,2), etc.

1 Équation différentielle scalaire

Dans cette partie, on fixe $n \in \mathbb{N}^*$, T > 0, $a_0, ..., a_{n-1}, c_0, ..., c_{n-1} \in \mathbb{R}$. Le but de cette partie est de montrer le résultat suivant.

Proposition 1 Il existe $u \in C^0([0,T],\mathbb{R})$ tel que la solution f du système

vérifie $f^{(k)}(T) = 0$ pour k = 0, ..., n - 1.

- 1. Justifier, pour tout $u \in C^0([0,T],\mathbb{R})$, l'existence et l'unicité de $f \in C^n([0,T],\mathbb{R})$ vérifiant (Σ) .
- 2. Montrer que l'application suivante est un isomorphisme

- 3. Montrer qu'il existe $f \in C^{\infty}(\mathbb{R}, \mathbb{R})$ telle que $f^{(k)}(0) = c_k$ et $f^{(k)}(T) = 0$ pour k = 0, ..., n 1.
- 4. Montrer la Proposition 1.
- 5. La fonction u évoquée dans la Proposition 1 est-elle unique?

2 Système différentiel

Dans cette partie, on fixe $n \in \mathbb{N}^*$, T > 0, $A \in \mathcal{M}_n(\mathbb{R})$ et $b \in \mathbb{R}^n$. Le but de cette partie est de montrer l'équivalence entre les énoncés suivants.

- $(E_1):(b,Ab,...,A^{n-1}b)$ est une base de \mathbb{R}^n .
- (E_2) : Pour tout $y^0 \in \mathbb{R}^n$, il existe $u \in C^0([0,T],\mathbb{R})$ tel que la solution de

$$\begin{cases}
\frac{dy}{dt}(t) = Ay(t) + u(t)b, & \forall t \in [0, T] \\
y(0) = y^{0}
\end{cases}$$
(2,1)

vérifie y(T) = 0.

- 1. Justifier, pour tout $u \in C^0([0,T],\mathbb{R})$ et tout $y^0 \in \mathbb{R}^n$, l'existence et l'unicité de $y \in C^1([0,T],\mathbb{R})$ vérifiant (2.1).
- 2. Exprimer y(T) en fonction de A, b, u et y^0 . En déduire une reformulation de l'égalité y(T) = 0 de la forme $y^0 = \Phi(A, b, u)$.
- 3. Montrer que, pour tout $k\geqslant n$, il existe un polynôme $P_{k}\in\mathbb{R}_{n-1}\left[X\right]$ tel que $A^{k}=P_{k}\left(A\right)$.
- 4. Le but de cette question est de démontrer $(E_2) \Rightarrow (E_1)$. On suppose que $(b, Ab, ..., A^{n-1}b)$ n'est pas une base de \mathbb{R}^n .
 - (a) Justifier l'existence de $z \in \mathbb{R}^n \setminus \{0\}$ tel que $\langle z, A^k b \rangle = 0$ pour tout $k \in \mathbb{N}$.
 - (b) Que dire de $\langle z, \exp(At) b \rangle$ pour $t \in \mathbb{R}$?
 - (c) Soit $y^0 \in \mathbb{R}^n$ tel que $\langle z, y^0 \rangle \neq 0$. Montrer qu'il n'existe pas de fonction $u \in C^0([0, T], \mathbb{R})$ pour laquelle la solution de (2.1) vérifie y(T) = 0.
 - (d) Conclure.

Juqu'à la fin de la partie 2, notre but est de démontrer $(E_1) \Rightarrow (E_2)$. On suppose donc que (E_1) est vérifié. On note $a_0, ..., a_{n-1}$ les coefficients du polynôme caractéristique de A:

$$\det(XI_n - A) = X^n + a_{n-1}X^{n-1} + \dots + a_1X + a_0$$

et on définit une famille $(v_1,...,v_n)$ de \mathbb{R}^n par récurrence descendante, de la façon suivante

$$\begin{cases} v_n := b \\ v_k := Av_{k+1} + a_k v_n \text{ pour } k = n - 1, \ n - 2, ..., 1. \end{cases}$$

- 5. Exprimer v_k en fonction de A et b pour k = 1, ..., n.
- 6. Montrer que $A^jb \in \text{Vect}\{v_1,...,v_n\}$ pour j=0,...,n-1. En déduire que $(v_1,...,v_n)$ est une base de \mathbb{R}^n .
- 7. Montrer que $Av_1 = -a_0v_n$.
- 8. En déduire l'existence de $U \in GL_n(\mathbb{R})$ telle que

$$\widetilde{A} := U^{-1}AU = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ \vdots & 0 & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & 0 & 1 \\ -a_0 & -a_1 & \cdots & \cdots & -a_{n-1} \end{pmatrix} \text{ et } U^{-1}b = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}.$$

- 9. Soit $y^0 \in \mathbb{R}^n$, $u \in C^0([0,T],\mathbb{R})$ et y la solution de (2.1).
 - (a) Quel problème de Cauchy la fonction

$$\left| \begin{array}{ccc} F: & [0,T] & \to & \mathbb{R}^n \\ & t & \mapsto & U^{-1}y(t) \end{array} \right|$$

résout-elle?

- (b) Notons f(t) la première composante de F(t). Quel problème de Cauchy la fonction f résout-elle?
- 10. Conclure.