

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭКОНОМИЧЕСКИЙ УНИВЕРСИТЕТ»

Факультет информатики и прикладной математики
Кафедра прикладной математики и экономико-математических методов **ОТЧЁТ**

по дисциплине:

«Методы оптимизации»

на тему:

// L' a de a a a a a a		1 Dam 2 1
WI NAMMUECKNE NEIHEHM	e 39/1940 Huheuhata Haata:	AMMUNARSHUQ KSAUSHI / I)
WI paph iccroc pement	c saga in similemitoro irporpa	аммирования. Вариант 2.1>

Направление (специальность)_	01.03.02(код, наименование)
Обучающийся	_Бронников Егор Игоревич
ГруппаПМ-1901 (номер группы)	

Дано

Целевая функция: $f(X) = -x_1 + x_2 \rightarrow max$

Ограничения:

- 1. $-x_1 + 2x_2 \ge -1$
- 2. $-2x_1 + x_2 \le 2$
- 3. $3x_1 + x_2 \le 3$
- 4. $x_1 \ge 0, x_2 \ge 0$

Находим область допустимых значений

$$1) - x_1 + 2x_2 = -1$$

$$A_1 = \left(0; -\frac{1}{2}\right); \ A_2 = (1; 0)$$

$$2) -2x_1 + x_2 = 2$$

$$B_1 = (0; 2); B_2 = (-1; 0)$$

3)
$$3x_1 + x_2 = 3$$

$$C_1 = (0;3); C_2 = (1;0)$$

Находим градиент целевой функции

$$\overrightarrow{grad} f = (-1; 1)$$

Находим линию уровня

$$f = -x_1 + x_2 = 1$$

$$F_1=(0;1)$$

$$F_2 = (-1; 0)$$

Строим график

Итог

Из графика видно, что если двигаться в направлении градиента целевой функции, так как мы ищем максимум, то эта точка достигается на пересечении 2 и 3 ограничений.

Решаем систему:

$$\begin{cases} -2x_1 + x_2 = 2\\ 3x_1 + x_2 = 3 \end{cases}$$

Тогда
$$X^* = (0.2; 2.4)$$
 и $f(X^*) = -0.2 + 2.4 = 2.2$