Chapter 9 Network Management

We're making these slides freely available to all (faculty, students, readers). They're in PowerPoint form so you see the animations; and can add, modify, and delete slides (including this one) and slide content to suit your needs. They obviously represent a *lot* of work on our part. In return for use, we only ask the following:

- If you use these slides (e.g., in a class) that you mention their source (after all, we'd like people to use our book!)
- If you post any slides on a www site, that you note that they are adapted from (or perhaps identical to) our slides, and note our copyright of this material.

Thanks and enjoy! JFK/KWR

©All material copyright 1996-2012 J.F Kurose and K.W. Ross, All Rights Reserved

KUROSE ROSS

Computer
Networking: A Top
Down Approach
6th edition
Jim Kurose, Keith Ross
Addison-Wesley
March 2012

Chapter 9: Network Management

Chapter goals:

- introduction to network management
 - motivation
 - major components
- Internet network management framework
 - MIB: management information base
 - SMI: data definition language
 - SNMP: protocol for network management
 - security and administration
- presentation services: ASN. I

Chapter 9 outline

- What is network management?
- Internet-standard management framework
 - Structure of Management Information: SMI
 - Management Information Base: MIB
 - SNMP Protocol Operations and Transport Mappings
 - Security and Administration
- * ASN. I

What is network management?

- autonomous systems (aka "network"): 1000s of interacting hardware/software components
- other complex systems requiring monitoring, control:
 - jet airplane
 - nuclear power plant
 - others?

"Network management includes the deployment, integration and coordination of the hardware, software, and human elements to monitor, test, poll, configure, analyze, evaluate, and control the network and element resources to meet the real-time, operational performance, and Quality of Service requirements at a reasonable cost."

Infrastructure for network management

definitions:

managed devices
contain
managed objects
whose
data is gathered into a
Management
Information
Base (MIB)

Network management standards

OSI CMIP

- CommonManagementInformation Protocol
- designed 1980's: the unifying net management standard
- too slowly standardized

SNMP: Simple Network Management Protocol

- Internet roots (SGMP)
- started simple
- deployed, adopted rapidly
- growth: size, complexity
- currently: SNMP V3
- de facto network management standard

Chapter 9 outline

- What is network management?
- Internet-standard management framework
 - Structure of Management Information: SMI
 - Management Information Base: MIB
 - SNMP Protocol Operations and Transport Mappings
 - Security and Administration
- * ASN. I

SNMP overview: 4 key parts

- Management information base (MIB):
 - distributed information store of network management data
- Structure of Management Information (SMI):
 - data definition language for MIB objects
- SNMP protocol
 - convey manager<->managed object info, commands
- security, administration capabilities
 - major addition in SNMPv3

SMI: data definition language

- <u>Purpose:</u> syntax, semantics of management data well-defined, unambiguous
- base data types:
 - straightforward, boring
- ❖ OBJECT-TYPE
 - data type, status, semantics of managed object
- MODULE-IDENTITY
 - groups related objects into MIB module

Basic Data Types

INTEGER
Integer32
Unsigned32
OCTET STRING
OBJECT IDENTIFIED

IPaddress

Counter32

Counter64

Guage32

Time Ticks

Opaque

SNMP MIB

MIB module specified via SMI **MODULE-IDENTITY** (100 standardized MIBs, more vendor-specific) **MODULE OBJECT TYPE:** OBJECT TYPE **OBJECT TYPE:** objects specified via SMI OBJECT-TYPE construct

SMI: object, module examples

OBJECT-TYPE: ipInDelivers

```
ipInDelivers OBJECT TYPE
             Counter32
 SYNTAX
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
   "The total number of input
   datagrams successfully
   delivered to IP user-
   protocols (including ICMP)"
::= \{ ip 9 \}
```

MODULE-IDENTITY: ipMIB

```
ipMIB MODULE-IDENTITY
 LAST-UPDATED "941101000Z"
 ORGANZATION "IETF SNPv2
       Working Group"
 CONTACT-INFO
  " Keith McCloghrie
 DESCRIPTION
  "The MIB module for managing
IP
  and ICMP implementations, but
  excluding their management of
  IP routes."
 REVISION "019331000Z"
::= {mib-2 48}
                  Network Management 9-11
```

MIB example: UDP module

Object ID	Name	Туре	Comments
1.3.6.1.2.1.7.1	UDPInDatagrams	Counter32	total # datagrams delivered
			at this node
1.3.6.1.2.1.7.2	UDPNoPorts	Counter32	# underliverable datagrams:
			no application at port
1.3.6.1.2.1.7.3	UDInErrors	Counter32	# undeliverable datagrams:
			all other reasons
1.3.6.1.2.1.7.4	UDPOutDatagram	s Counter32	# datagrams sent
1.3.6.1.2.1.7.5	udpTable	SEQUENCE	one entry for each port
			in use by app, gives port #
			and IP address

SNMP naming

question: how to name every possible standard object (protocol, data, more..) in every possible network standard??

answer: ISO Object Identifier tree:

- hierarchical naming of all objects
- each branchpoint has name, number

OSI **Object** ITU-T (0) ISO (1) Joint ISO/ITU-T (2) **Identifier** ISO member Standard (0) ISO identified Tree body (2) organization (3) US Open Software NATO DoD (6) Foundation (22) identified (57) Internet (1) experimental security mail directory management snmpv2 private (7)(1) (3)(5)(4)(6)MIB-2 (1) interface address system ip icmp tcp udp egp transmission snmp cmot rmon (6)(7)(8)(1) (2)translation (4)(5) (9)(10)(11)(16)

(3)

SNMP protocol

Two ways to convey MIB info, commands:

request/response mode

trap mode

SNMP protocol: message types

Message type	<u>Function</u>		
GetRequest GetNextRequest GetBulkRequest	Mgr-to-agent: "get me data" (instance,next in list, block)		
InformRequest	Mgr-to-Mgr: here's MIB value		
SetRequest	Mgr-to-agent: set MIB value		
Response	Agent-to-mgr: value, response to Request		
Trap	Agent-to-mgr: inform manager of exceptional event		

SNMP protocol: message formats

SNMP security and administration

- encryption: DES-encrypt SNMP message
- authentication: compute, send MIC(m,k): compute hash (MIC) over message (m), secret shared key (k)
- protection against playback: use nonce
- view-based access control:
 - SNMP entity maintains database of access rights, policies for various users
 - database itself accessible as managed object!

Chapter 9 outline

- What is network management?
- Internet-standard management framework
 - Structure of Management Information: SMI
 - Management Information Base: MIB
 - SNMP Protocol Operations and Transport Mappings
 - Security and Administration
- The presentation problem: ASN. I

The presentation problem

Q: does perfect memory-to-memory copy solve "the communication problem"?

A: not always!

```
struct {
                test.code
                                             test.code
                                                              a
                                 a
 char code;
                            0000001
                    test.x
  int x;
                                                          0000011
                                                 test.x
                             00000011
  } test;
                                                          00000001
test.x = 256;
test.code= 'a'
                                                       host 2 format
                          host 1 format
```

problem: different data format, storage conventions

A real-life presentation problem:

Presentation problem: potential solutions

- I. Sender learns receiver's format. Sender translates into receiver's format. Sender sends.
 - real-world analogy?
 - pros and cons?
- 2. Sender sends. Receiver learns sender's format. Receiver translate into receiver-local format
 - real-world-analogy
 - pros and cons?
- 3. Sender translates host-independent format. Sends. Receiver translates to receiver-local format.
 - real-world analogy?
 - pros and cons?

Solving the presentation problem

- I. Translate local-host format to host-independent format
- 2. Transmit data in host-independent format
- 3. Translate host-independent format to remote-host format

ASN. I: Abstract Syntax Notation I

- ISO standard X.680
 - used extensively in Internet
 - like eating vegetables, knowing this "good for you"!
- defined data types, object constructors
 - like SMI
- BER: Basic Encoding Rules
 - specify how ASN. I-defined data objects to be transmitted
 - each transmitted object has Type, Length, Value (TLV) encoding

TLV Encoding

Idea: transmitted data is self-identifying

- <u>T</u>: data type, one of ASN. I-defined types
- L: length of data in bytes
- \blacksquare V: value of data, encoded according to ASN. I standard

Tag Value	<u>Type</u>	
1	Boolean	
2	Integer	
3	Bitstring	
4	Octet string	
5	Null	
6	Object Identifier	
9	Real	

TLV encoding: example

Network management: summary

- network management
 - extremely important: 80% of network "cost"
 - ASN.1 for data description
 - SNMP protocol as a tool for conveying information
- network management: more art than science
 - what to measure/monitor
 - how to respond to failures?
 - alarm correlation/filtering?