Programming Languages: Imperative Program Construction Practicals 0: Non-Looping Constructs and Weakest Precondition

Shin-Cheng Mu

Autumn Term, 2022

Guarded Command Language Basics

- 1. Which of the following Hoare triples hold?
 - (a) $\{x = 7\}$ skip $\{$ odd $x\}$;
 - (b) $\{x > 60\}x := x \times 2\{x > 100\};$
 - (c) $\{x > 40\}x := x \times 2\{x > 100\};$
 - (d) $\{true\}$ if $x \leqslant y \rightarrow y := y x \mid x \geqslant y \rightarrow x := x y$ fi $\{x \geqslant 0 \land y \geqslant 0\}$;
 - (e) $\{even \ x \land even \ y\}$ if $x \leqslant y \rightarrow y := y x \mid x \geqslant y \rightarrow x := x y$ fi $\{even \ x \land even \ y\}$.

Solution: As the first exercise I expect merely that you answer by informal reasoning. What follows is the more formal approach which you will learn later.

(a) The Hoare triple holds because:

$$wp \ skip \ (odd \ x)$$

$$\equiv \{ definition \ of \ wp \}$$

$$odd \ x$$

$$\Leftarrow x = 7 .$$

(b) The Hoare triple holds because:

$$wp (x := x \times 2) (x > 100)$$

$$\equiv \{ \text{ definition of } wp \}$$

$$x \times 2 > 100$$

$$\Leftarrow x > 60 .$$

(c) The Hoare triple does not hold because:

$$wp (x := x \times 2) (x > 100)$$

$$\equiv x \times 2 > 100$$

$$\not\Leftarrow x > 40.$$

(d) The annotated if statement is

$$\begin{cases} \textit{True} \rbrace \\ \textbf{if} \ x \leqslant y \rightarrow \{x \leqslant y\} \ y \coloneqq y - x \ \{x \geqslant 0 \ \land \ y \geqslant 0\} \\ x \geqslant y \rightarrow \{x \geqslant y\} \ x \coloneqq x - y \ \{x \geqslant 0 \ \land \ y \geqslant 0\} \\ \textbf{fi} \\ \{x \geqslant 0 \ \land \ y \geqslant 0\} \ . \end{cases}$$

That $x \le y \lor x \ge y$ certainly holds. For the Hoare triple in the first branch we reason:

$$(x \geqslant 0 \land y \geqslant 0)[y \backslash y - x]$$

$$\equiv x \geqslant 0 \land y - x \geqslant 0$$

$$\equiv x \geqslant 0 \land x \leqslant y$$

$$\not\Leftarrow x \leqslant y.$$

The situation with the other branch is similar. The bottom line is that the initial Hoare triple does *not* hold.

The initial Hoare triple would be true if the precondition were $x \ge 0 \land y \ge 0$.

(e) The annotated if statement is

That $x \le y \lor x \ge y$ certainly holds. For the Hoare triple in the first branch we reason:

```
(even \ x \land even \ y)[y \setminus y - x]
\equiv even \ x \land even \ (y - x)
\equiv even \ x \land even \ y
\Leftarrow even \ x \land even \ y \land x \leqslant y .
```

The situation with the other branch is similar. The bottom line is that the initial Hoare triple does hold.

2. Is it always true that $\{True\}$ x := E $\{x = E\}$? If you think the answer is yes, explain why. If your answer is no, give a counter example.

Solution: No. For a counterexample, let E be x + 1.

When do we do have the property that $\{True\}\ x := E\ \{x = E\}$? Since $(x = E)[x \setminus E] \equiv (E = E\ [x \setminus E])$, the Hoare triple holds if and only if $E = E\ [x \setminus E]$. Examples of such E include those that do not contain x, or those that are idempotent funtions on x, for example $E = 0 \uparrow x$.

The actual forward rule for assignment (due to Floyd) is:

$$\{P\} \ x := E \{(\exists x_0 :: x = E [x \backslash x_0] \land P [x \backslash x_0])\}$$

where x_0 is a fresh name.

3. Verify:

$$\left\{ x = X \land y = Y \right\}$$

$$x := x \not\Leftrightarrow y$$

$$y := x \not\Leftrightarrow y$$

$$x := x \not\Leftrightarrow y$$

$$\left\{ x = Y \land y = X \right\}$$

where x and y are boolean and $(\not\Leftrightarrow)$ is the "not equal" or "exclusive or" operator. In fact, the code above works

for any (\otimes) that satisfies the properties that for all a, b, and c:

```
associative : a \otimes (b \otimes c) = (a \otimes b) \otimes c,
unipotent : a \otimes a = 1,
```

where 1 is the unit of (\otimes), that is, 1 \otimes *b* = *b* = *b* \otimes 1.

```
Solution: The annotated program is:
         \{x = X \land y = Y, \mathsf{Pf}_2\}
         x := x \otimes y
         \{y = Y \land x \otimes y = X, Pf_1\}
         y := x \otimes y
         \{x \otimes y = Y \wedge y = X\}
         x := x \otimes y
         \{x = Y \land y = X\} .
Pf_1:
             (x \otimes y = Y \wedge y = X) [x \otimes y / y]
         \equiv x \otimes (x \otimes y) = Y \wedge x \otimes y = X
          \equiv \{ (\otimes) \text{ associative } \}
             (x \otimes x) \otimes y = Y \wedge x \otimes y = X
          \equiv { unipotence }
            1 \otimes y = Y \wedge x \otimes y = X
          \equiv { identity }
             y = Y \wedge x \otimes y = X.
Pf_2:
             (y = Y \land x \otimes y = X) [x \otimes y / x]
          \equiv y = Y \wedge (x \otimes y) \otimes y = X
          \equiv \{ (\otimes) \text{ associative } \}
             y = Y \wedge x \otimes (y \otimes y) = X
          \equiv { unipotence }
             y = Y \wedge x \otimes 1 = X
          \equiv { identity }
             y = Y \wedge x = X.
```

4. Verify the following program:

var
$$r, b : Int$$

 $\{0 \le r < 2 \times b\}$
if $b \le r \rightarrow r := r - b$
 $\mid r < b \rightarrow skip$
fi
 $\{0 \le r < b\}$

Solution: The annotated program is:

$$\begin{aligned} & \textbf{var} \; r, b \colon Int \\ & \{0 \leqslant r < 2 \times b\} \\ & \textbf{if} \; b \leqslant r \to \{0 \leqslant r < 2 \times b \wedge b \leqslant r\} \; r \coloneqq r - b \, \{0 \leqslant r < b, \mathsf{Pf}_1\} \\ & \mid \; r < b \to \{0 \leqslant r < 2 \times b \wedge r < b\} \; skip \, \{0 \leqslant r < b, \mathsf{Pf}_2\} \\ & \textbf{fi} \\ & \{0 \leqslant r < b, \mathsf{Pf}_3\} \end{aligned}$$

Pf₁. We reason:

$$(0 \leqslant r < b) [r \backslash r - b]$$

$$\equiv 0 \leqslant r - b < b$$

$$\equiv b \leqslant r < 2 \times b$$

$$\Leftarrow 0 \leqslant r < 2 \times b \land b \leqslant r.$$

Pf₂. Trivial.

Pf₃. Certainly any proposition implies $b \le r \lor r < b$.

5. Verify:

var
$$x, y : Int$$

{ True}
 $x, y := x \times x, y \times y$
if $x \ge y \to x := x - y$
 $| y \ge x \to y := y - x$
fi
 $\{x \ge 0 \land y \ge 0\}$.

Solution: For brevity we abbreviate $x \ge 0 \land y \ge 0$ to *P*. The fully annotated program could be:

$$\begin{split} & \{\mathit{True}\} \\ & x,y \coloneqq x \times x, y \times y \\ & \{\mathit{P}, \mathsf{Pf}_4\} \\ & \mathbf{if} \ x \geqslant y \to \{x \geqslant y \land \mathit{P}\} \ x \coloneqq x - y \ \{\mathit{P}, \mathsf{Pf}_1\} \\ & | \ y \geqslant x \to \{y \geqslant x \land \mathit{P}\} \ y \coloneqq y - x \ \{\mathit{P}, \mathsf{Pf}_2\} \\ & \mathbf{fi} \\ & \{\mathit{P}, \mathsf{Pf}_3\} \ . \end{split}$$

To verify the if branching, we check that

Pf₁. $\{x \geqslant y \land P\} x := x - y \{P\}$. The Hoare triple is valid because

$$(x \geqslant 0 \land y \geqslant 0)[x \backslash x - y]$$

$$\Leftrightarrow x - y \geqslant 0 \land y \geqslant 0$$

$$\Leftrightarrow x \geqslant y \land y \geqslant 0$$

$$\Leftarrow x \geqslant y \land x \geqslant 0 \land y \geqslant 0.$$

Pf₂. $\{y \geqslant x \land P\} y := y - x \{P\}$. Omitted.

Pf₃. And indeed $x \ge y \lor y \ge x$ always holds, thus $P \Rightarrow x \ge y \lor y \ge x$.

Do not forget that we have yet to verify $\{true\} x, y := x \times x, y \times y \{P\}$, which is not difficult either:

Pf₄.

$$(x \ge 0 \land y \ge 0)[x, y \backslash x \times x, y \times y]$$

$$\Leftrightarrow x \times x \ge 0 \land y \times y \ge 0$$

$$\Leftrightarrow true.$$

6. Verify:

```
var a, b : Bool

{True}

if \neg a \lor b \rightarrow a := \neg a

\mid a \lor \neg b \rightarrow b := \neg b

fi

{a \lor b}.
```

Solution:

```
 \begin{aligned} & \textbf{var} \ a,b : Bool \\ & \{\textit{True}\} \\ & \textbf{if} \ \neg \ a \lor \ b \rightarrow \{ \neg \ a \lor \ b \} \ a := \neg \ a \{ a \lor \ b, \mathsf{Pf}_1 \} \\ & | \ a \lor \neg \ b \rightarrow \{ a \lor \neg \ b \} \ b := \neg \ b \{ a \lor \ b, \mathsf{Pf}_2 \} \\ & \textbf{fi} \\ & \{ a \lor \ b, \mathsf{Pf}_3 \} \end{aligned} .
```

Pf₁. To verify the first branch:

$$(a \lor b)[a \backslash \neg a]$$

$$\equiv \neg a \lor b.$$

Pf₂. The other branch is similar.

Pf₃. Certainly $true \Rightarrow \neg a \lor b \lor a \lor \neg b$.

- 7. Assuming that x, y, and z are integers, prove the following
 - (a) $\{True\}\$ **if** $x \ge 1 \to x := x + 1 \mid x \le 1 \to x := x 1$ **fi** $\{x \ne 1\}$.
 - (b) $\{True\}$ if $x \ge y \rightarrow skip \mid y \ge x \rightarrow x, y := y, x$ fi $\{x \ge y\}$.
 - (c) $\{x = 0\}$ if $True \rightarrow x := 1 \mid True \rightarrow x := -1 \{x = 1 \lor x = -1\}.$
 - (d) $\{A = x \times y + z\}$ if even $x \to x$, y := x / 2, $y \times 2 \mid True \to y$, z := y 1, $z + x \{A = x \times y + z\}$.

Solution: The annotated program is

$$\begin{cases} A = x \times y + z \\ \text{if } even \ x \rightarrow \left\{ A = x \times y + z \wedge even \ x \right\} x, y \coloneqq x \ / \ 2, y \times 2 \left\{ A = x \times y + z, \mathsf{Pf}_0 \right\} \\ \mid \textit{True} \quad \rightarrow \left\{ A = x \times y + z \right\} y, z \coloneqq y - 1, z + x \left\{ A = x \times y + z, \mathsf{Pf}_1 \right\} \\ \text{fi} \\ \left\{ A = x \times y + z, \mathsf{Pf}_2 \right\}$$

Pf₀: We reason:

$$(A = x \times y + z)[x, y \setminus x / 2, y \times 2]$$

$$\equiv A = (x / 2) \times (y \times 2) + z$$

$$\Leftarrow A = x \times y + z \wedge even x .$$

Pf₂: We reason:

$$(A = x \times y + z)[y, z \setminus y - 1, z + x]$$

$$\equiv A = x \times (y - 1) + (z + x)$$

$$\Leftarrow A = x \times y + z.$$

Pf₂: Certainly $P \Rightarrow Q \land True$ for any P and Q.

(e)
$$\{x \times y = 0 \land y \leq x\}$$
 if $y < 0 \rightarrow y := -y \mid y = 0 \rightarrow x := -1 \{x < y\}$.

Solution: The annotated program is

Pf₀: Note that $x \times y = 0$ equivals $x = 0 \lor y = 0$. Therefore

$$x \times y = 0 \land y \leqslant x \land y < 0$$

$$\equiv (x = 0 \lor y = 0) \land y \leqslant x \land y < 0$$

$$\equiv \{ \text{ distributivity } \}$$

$$(x = 0 \land y \leqslant x \land y < 0) \lor (y = 0 \land y \leqslant x \land y < 0)$$

$$\equiv \{ \text{ since } (y = 0 \land y \leqslant x \land y < 0) \equiv \text{False } \}$$

$$x = 0 \land y \leqslant x \land y < 0$$

$$\equiv x = 0 \land y < 0.$$

To prove the Hoare triple we reason:

$$(x < y)[y \setminus -y]$$

$$\equiv x < -y$$

$$\Leftarrow x = 0 \land y < 0.$$

Pf₁: We reason:

$$(x < y)[x \setminus -1]$$

$$\equiv -1 < y$$

$$\Leftarrow x \times y = 0 \land y \leqslant x \land y = 0.$$

Pf₂: We reason:

$$x \times y = 0 \land y \leqslant x$$

$$\equiv (x = 0 \lor y = 0) \land y \leqslant x$$

$$\equiv \{ \text{ distributivity } \}$$

$$(x = 0 \land y \leqslant x) \lor (y = 0 \land y \leqslant x)$$

$$\Rightarrow y < 0 \lor y = 0 .$$

Weakest Precondition of Simple Statements

- 8. Given below is a list of statements and predicates. What are the weakest precondition for the predicates to be true after the statement?
 - (a) $x := x \times 2, x > 100$;
 - (b) $x := x \times 2$, even x;
 - (c) $x := x \times 2, x > 100 \land even x$;
 - (d) $x := x \times 2$, odd x.
 - (e) skip, odd x.

Solution:

- (a) $x \times 2 > 100$, that is, x > 50.
- (b) even $(x \times 2)$, which simplifies to *True*.
- (c) $x \times 2 > 100 \land even(x \times 2)$, that is, x > 50.
- (d) odd ($x \times 2$), that is, *False*.
- (e) *odd x*.
- 9. Determine the weakest *P* that satisfies
 - (a) $\{P\} x := x + 1; x := x + 1 \{x \ge 0\}.$
 - (b) $\{P\} x := x + y; y := 2 \times x \{y \ge 0\}.$
 - (c) $\{P\} x := y; y := x \{x = A \land y = B\}.$
 - (d) $\{P\} x := E; x := E \{x = E\}.$

Solution:

(a)
$$wp (x := x + 1; x := x + 1) (x \ge 0)$$

$$= wp (x := x + 1) (wp (x := x + 1) (x \ge 0))$$

$$= wp (x := x + 1) (x + 1 \ge 0)$$

$$= (x + 1) + 1 \ge 0$$

$$= x \ge -2 .$$

(b)
$$wp (x := x + y; y := 2 \times x) (y \ge 0)$$

$$= wp (x := x + y) (wp (y := 2 \times x) (y \ge 0))$$

$$= wp (x := x + y) (2 \times x \ge 0)$$

$$= 2 \times (x + y) \ge 0 .$$
(c)
$$wp (x := y; y := x) (x = A \land y = B)$$

$$\equiv wp (x := y) (wp (y := x) (x = A \land y = B))$$

$$\equiv wp (x := y) (x = A \land x = B)$$

$$\equiv y = A \land y = B$$

$$\equiv y = A = B .$$

(d)
$$wp (x := E; x := E) (x = E)$$

$$\equiv wp (x := E) (wp (x := E)(x = E))$$

$$\equiv wp (x := E) ((x = E)[x \setminus E])$$

$$\equiv wp (x := E) (E = E[x \setminus E])$$

$$\equiv (E = E[x \setminus E])[x \setminus E]$$

$$\equiv E[x \setminus E] = (E[x \setminus E])[x \setminus E].$$

The equation certainly does not hold in general. One example where it does hold is $E = (-x) \uparrow 0$, for which we have:

$$E[x \setminus E]$$
= $(-((-x) \uparrow 0)) \uparrow 0$
= $(x \downarrow 0) \uparrow 0$
= 0
= $(-0) \uparrow 0$
= $(-((-((-x) \uparrow 0)) \uparrow 0)) \uparrow 0$
= $(E[x \setminus E])[x \setminus E]$.

Let me know if you have a more interesting *E*.

10. What is the weakest *P* such that the following holds?

var
$$x : Int$$

 $\{P\}$
 $x := x + 1$
if $x > 0 \rightarrow x := x + 1$
 $| x < 0 \rightarrow x := x + 2$
 $| x = 1 \rightarrow skip$
fi
 $\{x \ge 1\}$.

Solution: Denote the **if** statement by IF. The aim is to compute wp (x := x + 1; IF) ($x \ge 1$). Recall the definition of wp for **if**. We have

wp IF
$$(x \ge 1) = (x > 0 \Rightarrow wp \ (x := x + 1) \ (x \ge 1)) \land (x < 0 \Rightarrow wp \ (x := x + 2) \ (x \ge 1)) \land (x = 1 \Rightarrow wp \ skip \ (x \ge 1)) \land (x > 0 \lor x < 0 \lor x = 1)$$
.

We calculate the four conjuncts separately:

•
$$x > 0 \Rightarrow wp (x := x + 1) (x \ge 1)$$

 $\equiv x > 0 \Rightarrow x + 1 \ge 1$
 $\equiv x > 0 \Rightarrow x \ge 0$
 $\equiv True$.

$$x < 0 \Rightarrow wp (x := x + 2) (x \ge 1)$$

$$\equiv x < 0 \Rightarrow x + 2 \ge 1$$

$$\equiv x < 0 \Rightarrow x \ge -1$$

$$\equiv \{ (P \Rightarrow Q) = (\neg P \lor Q) \}$$

$$x \ge 0 \lor x \ge -1$$

$$\equiv x \ge -1.$$

$$x = 1 \Rightarrow wp \ skip \ (x \geqslant 1)$$

$$\equiv x = 1 \Rightarrow x \geqslant 1$$

$$\equiv True \ .$$

• Furthermore, $x > 0 \lor x < 0 \lor x = 1$ simplifies to $x \neq 0$.

Therefore,

$$wp \ \mathsf{IF} \ (x \geqslant 1) \\ = \mathit{True} \ \land \ x \geqslant -1 \ \land \ \mathit{True} \ \land \ x \neq 0 \\ = x \geqslant -1 \ \land \ x \neq 0 \ .$$

Finally, recall what we want to compute:

$$wp (x := x + 1; IF) (x \ge 1)$$
= $wp (x := x + 1) (wp IF (x \ge 1))$
= $wp (x := x + 1) (x \ge -1 \land x \ne 0)$
= $x + 1 \ge -1 \land x + 1 \ne 0$
= $x \ge -2 \land x \ne -1$.

11. Two programs S_0 and S_1 are equivalent if, for all Q, $wp S_0 Q = wp S_1 Q$. Show that the two following programs are equivalent.

if
$$B_0 \rightarrow S_0 \mid B_1 \rightarrow S_1$$
 fi; S if $B_0 \rightarrow S_0$; $S \mid B_1 \rightarrow S_1$; S fi

Solution:

$$wp (\mathbf{if} \ B_0 \to S_0 \mid B_1 \to S_1 \ \mathbf{fi}; S) \ Q$$

$$= \left\{ \begin{array}{l} \text{definition of } wp \right\} \\ wp (\mathbf{if} \ B_0 \to S_0 \mid B_1 \to S_1 \ \mathbf{fi}) \ (wp \ S \ Q) \\ \\ = \left\{ \begin{array}{l} \text{definition of } wp \right\} \\ (B_0 \Rightarrow wp \ S_0 \ (wp \ S \ Q)) \land \\ (B_1 \Rightarrow wp \ S_1 \ (wp \ S \ Q)) \land (B_0 \lor B_1) \\ \\ = \left\{ \begin{array}{l} \text{definition of } wp \right\} \\ (B_0 \Rightarrow wp \ (S_0; S) \ Q) \land \\ (B_1 \Rightarrow wp \ (S_1; S) \ Q) \land (B_0 \lor B_1) \\ \\ = \left\{ \begin{array}{l} \text{definition of } wp \right\} \\ wp \ (\mathbf{if} \ B_0 \to S_0; S \mid B_1 \to S_1; S \ \mathbf{fi}) \ Q \end{array} \right.$$

12. Consider the two programs:

$$\begin{aligned} \mathsf{IF}_0 &= \mathbf{if} \ B_0 \to S_0 \ | \ B_1 \to S_1 \ \mathbf{fi} \ , \\ \mathsf{IF}_1 &= \mathbf{if} \ B_0 \to S_0 \ | \ B_1 \land \neg B_0 \to S_1 \ \mathbf{fi} \ . \end{aligned}$$

Show that for all Q, $wp \ \mathsf{IF}_0 \ Q \Rightarrow wp \ \mathsf{IF}_1 \ Q$.

Solution: Firstly, we show that $B_0 \vee (B_1 \wedge \neg B_0) = B_0 \vee B_1$.

$$B_0 \lor (B_1 \land \neg B_0)$$
=\begin{cases} \distributivity \\ (B_0 \lor B_1) \land (B_0 \lor \neg B_0) \\ = (B_0 \lor B_1) \land True \\ = B_0 \lor B_1 \end{cases}

Secondly, recall that

- conjunction is monotonic, that is, $(P_0 \land Q) \Rightarrow (P_1 \land Q)$ if $P_0 \Rightarrow P_1$;
- implication is anti-monotonic in its first argument, that is $(P_0 \Rightarrow Q) \Rightarrow (P_1 \Rightarrow Q)$ if $P_1 \Rightarrow P_0$.

Therefore we have

$$\begin{array}{l} \textit{wp} \ (\textbf{if} \ B_0 \rightarrow S_0 \ | \ B_1 \rightarrow S_1 \ \textbf{fi}) \ Q \\ = (B_0 \Rightarrow \textit{wp} \ S_0 \ Q) \ \land \ (B_1 \Rightarrow \textit{wp} \ S_1 \ Q) \ \land \ (B_0 \lor B_1) \\ = \ \left\{ \ \text{since} \ B_0 \lor (B_1 \land \neg B_0) = B_0 \lor B_1 \ \right\} \\ (B_0 \Rightarrow \textit{wp} \ S_0 \ Q) \ \land \ (B_1 \Rightarrow \textit{wp} \ S_1 \ Q) \ \land \ (B_0 \lor (B_1 \land \neg B_0)) \\ \Rightarrow \ \left\{ \ \text{since} \ B_1 \land \neg B_0 \Rightarrow B_1, \ (\text{anti-}) \text{monotonicity as discussed above.} \ \right\} \\ (B_0 \Rightarrow \textit{wp} \ S_0 \ Q) \ \land \ (B_1 \land \neg B_0 \Rightarrow \textit{wp} \ S_1 \ Q) \ \land \ (B_0 \lor (B_1 \land \neg B_0)) \\ = \textit{wp} \ (\textbf{if} \ B_0 \rightarrow S_0 \ | \ B_1 \land \neg B_0 \rightarrow S_1 \ \textbf{fi}) \ Q \ . \end{array}$$

Properties of Weakest Precondition

13. Prove that $(wp \ S \ Q_0 \lor wp \ S \ Q_1) \Rightarrow wp \ S \ (Q_0 \lor Q_1)$.

14. Recall the definition of Hoare triple in terms of wp:

$$\{P\} S \{Q\} = P \Rightarrow wp S Q$$
.

Prove that

1.
$$(\lbrace P \rbrace S \lbrace Q \rbrace \land (P_0 \Rightarrow P)) \Rightarrow \lbrace P_0 \rbrace S \lbrace Q \rbrace$$
.

2.
$$\{P\} S \{Q\} \land \{P\} S \{R\} \equiv \{P\} S \{Q \land R\}.$$

Solution:

1. We reason:

2. We reason:

15. Recall the weakest precondition of if:

$$wp ext{ (if } B_0 \rightarrow S_0 \mid B_1 \rightarrow S_1 ext{ fi) } Q = (B_0 \Rightarrow wp S_0 Q) \land (B_1 \Rightarrow wp S_1 Q) \land (B_0 \lor B_1) .$$

Prove that

$${P}$$
 if $B_0 \to S_0 \mid B_1 \to S_1$ fi ${Q} \equiv {P \land B_0} S {Q} \land {P \land B_1} S {Q} \land {P \Rightarrow (B_0 \lor B_1)}$.

Note: having proved so shows that the way we annotate if is correct:

$$\begin{array}{l} \{P\} \\ \textbf{if } B_0 \to \{P \wedge B_0\} \, S_0 \, \{Q\} \\ \mid \, B_1 \to \{P \wedge B_1\} \, S_1 \, \{Q\} \\ \textbf{fi} \\ \{Q\} \ . \end{array}$$

```
Solution: We reason:
              \{P\} \text{ if } B_0 \to S_0 \mid B_1 \to S_1 \text{ fi } \{Q\}
           = { definition of Hoare triple }
              P \Rightarrow wp (\mathbf{if} \ B_0 \rightarrow S_0 \mid B_1 \rightarrow S_1 \mathbf{fi}) \ Q
           = \{ definition of wp \}
              P \Rightarrow ((B_0 \Rightarrow wp \ S_0 \ Q) \land (B_1 \Rightarrow wp \ S_1 \ Q) \land (B_0 \lor B_1))
           = \{ \text{ since } (P \Rightarrow (Q \land R)) \equiv (P \Rightarrow Q) \land (P \Rightarrow R) \}
              (P \Rightarrow (B_0 \Rightarrow wp S_0 Q)) \land
              (P \Rightarrow (B_1 \Rightarrow wp S_1 Q)) \land
              (P \Rightarrow (B_0 \vee B_1))
            = \{ \text{ since } (P \Rightarrow (Q \Rightarrow R)) \equiv ((P \land Q) \Rightarrow R) \}
              ((P \wedge B_0) \Rightarrow wp S_0 Q) \wedge
              ((P \wedge B_1) \Rightarrow wp S_1 Q) \wedge
              (P \Rightarrow (B_0 \vee B_1))
                { definition of Hoare triple }
              \{P \wedge B_0\} S_0 \{Q\} \wedge
              {P \wedge B_1} S_1 {Q} \wedge
              (P \Rightarrow (B_0 \vee B_1)).
```

- 16. Recall that *wp S Q* stands for "the weakest precondition for program *S* to terminate in a state satisfying *Q*". What programs *S*, if any, satisfy each of the following conditions?
 - 1. wp S True = True.
 - 2. wp S True = False.
 - 3. wp S False = True.
 - 4. wp S False = False.

Solution:

- 1. wp S True = True: S is a program that always terminates.
- 2. wp S True = False: S is a program that never terminates.
- 3. $wp \ S \ False = True$: there is no such a program S.
- 4. wp S False = False: S can be any program.