Informed Search: Incorporating Domain Knowledge

CS3243: Introduction to Artificial Intelligence – Lecture 3

Contents

- 1. Administrative Matters
- 2. Reviewing UCS
- 3. Greedy Best-First Search
- 4. A* Search
- 5. Dominant Heuristics

Administrative Matters

Project Poll

Grade distribution • 20% competitive - i.e., driven by performance of the solutions submitted by your peers Specifically, percentage_obtained = 20 * [(total_students -Version 1: 23% (your_rank - 1)) / total_students] 20% on competitive component Ranks based on 1224 ranking system • 30% tough cases - i.e., some optimisations would be required to clear • 50% applications on standard difficulty - i.e., basic implementations Note that only the 20% component is different between the two 199 responses options. Grade distribution • 20% hidden test cases - i.e., hidden cases requiring several Version 2: optimisations 77% • 30% tough cases - i.e., some optimisations would be required 20% on hidden test cases to clear 77% • 50% applications on standard difficulty - i.e., basic implementations Note that only the 20% component is different between the two options.

Project 1

- Released today
 - Individual work (no groups)
 - Python 3.7
 - Graded based on test cases (+ some inspection)
 - Public test cases given in release
 - Private test cases on codePost
- Deadline is 20 February 2022
 - Late penalties
 - Within deadline +24 hours = 80% of score
 - Within deadline +48 hours = 50% of score
 - Beyond deadline +48h hours = 0% of score

CNY Public Holidays

Affected Classes

- Monday: T02 (1300), T03 (1400), T04 (1500)
- Tuesday: T05 (0900), T06 (1000), T07 (1100), T08 (1200)
- Wednesday: T09 (0800), T10 (0900), T11 (1000), T12 (1100)

Alternative Zoom Sessions

- To be arranged by your tutors; announced next week
 - Rahul: T02, T03
 - May: T04, T07, T08
 - Bryan: T05, T06
 - Sagar : T09, T10
 - Jia Wei : T11, T12

Upcoming...

Tutorials

- Begin this week!
 - Today: T02 (1300 hrs), T03 (1400 hrs), T04 (1500 hrs)
 - Tuesday Friday: T05 T17
- Face-to-face in SR-2
 - Show negative FET → uNivUS Green Pass

Deadlines

- DQ3 (released today)
 - Due this Friday (28 January), 2359 hrs
- TA2 (released today)
 - Due this Sunday (30 January), 2359 hrs
 - Refer to the tutorial assignment instructions document on LumiNUS

Reviewing UCS

UCS Optimality

UCS traverses paths in order of path cost

- When UCS pops a node from the frontier
 - Minimum path cost to that sate
 - Since path costs always increase from initial state

Tree-search Versus Graph-search

```
frontier = {initial state} // frontier is a data structure
while frontier not empty:
    current = frontier.pop()
    if isGoal(current) return path found
    for a in actions(current):
        frontier.push(T(current, a))
return failure
UCS:
• Frontier = Priority Queue
• Priority of node n
• Path cost of current
path taken to n, g(n)
```

With a graph-search implementation:

- Maintain a reached hash table
- Add nodes corresponding to each state reached (i.e., on push)
- Only add new node to frontier (and reached) if
 - state represented by node not previously reached
 - path to state already reached is cheaper than one stored

UCS Under Tree-Search & Graph-Search

- Tree search will try ALL paths
 - No paths excluded
 - No issues with optimality
- What about graph-search?
 - Ensure optimal path not among excluded paths
 - Consider this example
 - $F = \{A(0)\}; R = \{A\}$
 - pop A(0), push C(1) and G(3)
 - $F = \{C(1), G(3)\}; R = \{A, C, G\}$
 - pop C(1), push G(2) since lower cost
 - $F = \{G(2), G(3)\}; R = \{A, C, G\}$
 - pop G(2), path is $A \rightarrow C \rightarrow G$

Completeness assumptions:

- b finite, and state space finite or has a solution
- All action costs are $> \varepsilon > 0$

Notice that without the update to G while it was on the frontier, we would not have returned the optimal path

Going in the Right Direction?

- Uninformed search algorithms are systematic
 - Search outward from the initial state
 - All directions
- What can we do to try to move in the right direction?

General idea

Use domain knowledge about the problem environment to determine the cost required to go from a particular state to its nearest goal

Path Costs & Heuristics

- UCS
 - Frontier = Priority Queue
 - Priority for node n = g(n)
 - g(n) quantifies the path cost from the initial state S to n.state as defined by n.path
- General idea: use domain knowledge to estimate cost from n.state to G
- Define a heuristic function h
 - h approximates the path cost from n.state to its nearest goal G

Ideas on Deriving Heuristic Functions

- Consider a Maze Puzzle problem
 - Layout known
 - Moves \leftarrow , \uparrow , \rightarrow , \downarrow
 - Find path from S to G
- Example: Euclidean distance
 - h(n) = Euclidean distance from n to G

h(G) = 0 requirement

General requirements

- Efficient e.g., Euclidean distance is O(m), where m = no, dimensions
- More properties discussed later

General idea

Use domain knowledge about the costs (e.g., distances) between a given node and its closest goal – i.e., think about how to define the function h.

More on this in the next lecture.

Implementation with Evaluation Functions

- Keep using a priority queue for frontier
 - Use different priorities
- Define an evaluation function f
 - Priority for priority queue
 - Priority for node n = f(n)
 - UCS: priority = f(n) = g(n)
- Now consider different evaluation functions
 - **Greedy Best-First Search**: priority = f(n) = h(n)
 - A* Search: priority = f(n) = g(n) + h(n)

Best-First Search Algorithm

General graph-search implementation

```
function BEST-FIRST-SEARCH(problem, f) returns a solution node or failure
  node \leftarrow Node(State=problem.Initial)
  frontier \leftarrow a priority queue ordered by f, with node as an element
  reached \leftarrow a lookup table, with one entry with key problem. INITIAL and value node
  while not IS-EMPTY(frontier) do
    node \leftarrow Pop(frontier)
    if problem.IS-GOAL(node.STATE) then return node
                                                                                              Late Goal Test
    for each child in EXPAND(problem, node) do
       s \leftarrow child.STATE
       if s is not in reached or child.PATH-COST < reached[s].PATH-COST then
         reached[s] \leftarrow child
                                                                                              Graph-search
         add child to frontier
  return failure
function EXPAND(problem, node) yields nodes
  s \leftarrow node.STATE
  for each action in problem.ACTIONS(s) do
    s' \leftarrow problem.RESULT(s, action)
                                                                                              Utilises search problem definitions
    cost \leftarrow node.PATH-COST + problem.ACTION-COST(s, action, s')
    yield NODE(STATE=s', PARENT=node, ACTION=action, PATH-COST=cost)
```

Greedy Best-First Search

The Greedy Best-First Search Algorithm

- Implemented like UCS except
 - f(n) = h(n)
- General idea
 - Given all nodes along the frontier
 - Explore next reachable state that you estimate is closest to a goal

The Greedy Best-First Search Algorithm

Example (tree-search)

Notice that even with the perfect heuristic, we may not get the optimal solution. Why?

Assume this h:

n	h(n)	h*(n)
Α	3	3
В	2	2
С	1	1
D	1	1
G	0	0

Trace:

ITR1 = [A((-),3)]

ITR2 = [C((A),1), B((A),2)]

ITR3 = [G((A,C),0), B((A),2)]

ITR4 = DONE (A,C,G)

 $h^*(n)$ = true path cost from n to nearest goal

Algorithm never exploits information on path already travelled.

Completeness & Optimality

- Tree-search version is incomplete
 - General idea
 - Can get stuck in a loop between nodes where h values are lowest
 - Prove with counter example T02 Q1a
- Graph-search is complete as long as search space is finite
 - General idea
 - With no revisits, in finite state space, will visit entire space
 - Prove T02 Q1b
- Not optimal under either tree-search or graph-search
 - As shown in example on last slide
 - Find another example T02 Q1c

Questions on the Lecture so far?

- Was anything unclear?
- Do you need to clarify anything?

- Channels
 - Verbally on Zoom
 - On Archipelago —
 - Via Zoom Chat

OR https://archipelago.rocks/app/resend-invite/71722702648

A* Search

The A* Search Algorithm

- Greedy Best-First Search
 - With greedy, f(n) = h(n)
 - Does not consider cost of path already taken
- Accounting for costs already incurred: A*
 - With A*, f(n) = g(n) + h(n)
 - g(n): actual path cost from S to n
 - h(n): estimated cheapest path cost from n to G
- A* priorities
 - Total path cost estimates from S to G
 - Gets more accurate as paths get explored

The A* Search Algorithm

Example (tree-search)
 same example as used on greedy (slide 19)

A* outputs the optimal solution, unlike the Greedy Best-First Search

Will it always be optimal? What about graph-search?

Assume this h: again, same as before (slide 19)

n	h(n)	h*(n)
Α	3	3
В	2	2
С	1	1
D	1	1
G	0	0

Trace: ITR1 = [A((-),0+3)] ITR2 = [B((A),1+2), C((A),8+1)]

ITR3 = [D((A,B),2+1), C((A),8+1)]

ITR4 = [G((A,B,D),3+0), C((A),8+1)]

ITR5 = DONE (A,B,D,G)

 $h^*(n)$ = true path cost from n to nearest goal

Completeness & Optimality

- Completeness
 - Same criteria as UCS
 - b finite, and state space finite or has a solution
 - All action costs $> \varepsilon > 0$
- Optimality
 - Depends on the properties of h

Admissible Heuristics

- h(n) is *admissible* if $\forall n$, $h(n) \leq h^*(n)$
 - h(n) never overestimates the cost
 - Implications
 - Paths not ending at a goal are under-estimated
 - Evaluation function of value of a non-goal is under-estimated
 - At non-goal n, $f(n) = g(n) + h(n) \le g(n) + h^*(n)$
 - Paths ending at a goal are exact
 - Evaluation function of value of a goal is exact
 - At goal m, f(m) = g(m) + h(m), where h(m) = 0
- Examples:
 - Euclidean distance in the maze environment (always underestimates)
- Theorem: If h(n) is admissible, then A^* using tree-search is optimal

Optimality of A* Using Tree-Search

- Proving the Theorem
 - T02 Q2a
- Consider the following
 - A* is optimal → returns optimal path
 - Let *s* to *n* to *t** be the optimal path
 - If not optimal:
 - Must explore path to t first
 - Where t is a goal
 - Not optimal → explore t before n

Optimality of Admissible A* Under Tree-Search

- Assume t expanded before n
 - f(t) < f(n)
- Assuming tree-search
 - All paths searched
 - All sub-paths* along a single path to a goal must be searched before that goal
 - For non-goal m, $f(m) \le g(m) + h^*(m)$ (since admissible)
 - If goal m^* on path from m, $f(m) \le f(m^*)$ (since before
 - Since t* is goal on optimal path
 - $f(n) < f(t^*) < f(t)$
 - CONTRADICTION

^{*} Consider a path, P, from an initial state s to a goal state t, to be $s > n_1 > n_2 > ... > n_k > t$ Let a sub-path to P, P ' be any path $s > n_1 > n_2 > ... > n_i$, where $1 \le i \le k$

A* Using Graph-Search

- Difference between tree-search and graph-search
 - Under admissibility and tree search
 - All nodes leading to a goal are expanded before the goal
 - Optimal path will be found
 - Under graph-search we may skip some paths (due to no revisiting)
- Skipping only redundant paths
 - Graph-search checks and allows some revisits
 - As long as a path is cheaper, allow it onto the frontier even if must revisit
 - Still optimal since equivalent to tree-search

Limited-Graph-Search

- What if we just avoid revisits altogether without any exceptions?
 - i.e., as long as in reached, do not revisit, even if new paths are lower cost
- Limited-Graph-Search (version 1)
 - Just like graph-search, but no exceptions even on lower path costs
 - Uses reached hash table
 - Adds to reached on push to frontier
 - Only pushes to frontier when not in reached
 - Excludes all redundant paths, but may also exclude some non-redundant paths
- Limited-graph-search (version 2)
 - Similar to version 1
 - Except adds to reached on pop from frontier
 - Excludes less redundant paths than version 1*
 - Excludes **less*** non-redundant paths than version 1*

^{*} Now allows revisits to states on the frontier, but not yet popped from the frontier

Limited-Graph-Search

- Consider limited-graph-search on UCS
- Recall UCS example

$$- F = \{A(0)\}; R = \{A\}$$

- pop A(0), push C(1) and G(3)
- $F = \{C(1), G(3)\}; R = \{A, C, G\}$
 - pop C(1), push G(2)
- $F = \{G(2), G(3)\}; R = \{A, C, G\}$
 - pop G(2), path is $A \rightarrow C \rightarrow G$

This works only under limited-graph-search version 2, and not version 1, for a similar reason to why an Early Goal Test would cause UCS to not return an optimal solution

From this point, let limited-graph-search imply limited-graph-search version 2. We will not study version 1 any further

Limited-Graph-Search Consistent Heuristics

Does this mean A* is optimal under limited-graph-search?

G

T02 Q3b - construct an alternative example

Assume this admissible h:

n	h(n)	h*(n)
S	8	8
Α	7	7
В	0	6
G	0	0

Trace:

ITR1 = [S((-),0+8)]

ITR2 = [B((S),3+0), A((S),1+7)]

ITR3 = [A((S),1+7), G((S,B),9+0)]

ITR4 = [G((S,B),9+0)] as B popped before, do not revisit

ITR5 = DONE (S,B,G) <u>not</u> the optimal path!

We need a tighter constraint on h

Similar to what UCS offers → contours of search progression

Why Not Optimal?

Consider the previous example

Observe the sequence of f(n) = g(n) + h(n) values along each path:

path to <i>n</i> (from <i>S</i>)	g(n)+ h(n)	g(n) + h*(n)	
S	0+8	0+8	
S > A	1+7	1+7	
S > A > B	2+0	2+6	Dip!
S > A > B > G	8+0	8+0	

path to <i>n</i> (from <i>S</i>)	g(n)+ h(n)	g(n) + h*(n)
S	0+8	0+9
S > B	3+0	3+6
S > B > G	9+0	6

Dip!

Consistent Heuristics

- Forming contours
 - Under tree-search g costs are monotonically increasing
 - For f costs to be monotonically increasing along a path
 - We need: $g(n) + h(n) \le g(n) + cost(n, a, n') + h(n')$
 - And thus $h(n) \le cost(n, a, n') + h(n')$
 - We will use the above requirement
- h(n) is **consistent** if $\forall n$, and successor of n, n, $h(n) \leq \cot(n, a, n') + h(n')$

Note that: consistency ⇒ admissibility Proof – T02 Q3a

- Theorem: If h(n) is consistent, then A* using graph-search is optimal
- Prove this in a similar manner to the UCS proof (contours) T02 Q2b

Dominant Heuristics

Efficiency & Dominance

- Efficiency of A* depends on the accuracy of its heuristics
 - Higher heuristic accuracy means we need to try fewer paths
 - Specifics not covered in CS3243
- Which heuristics are better?
- If $h_1(n) \ge h_2(n)$ for all n, then h_1 dominates h_2
 - If h₁ is also *admissible*
 - h₁ must be closer to h* than h₂
 - h₁ must be more efficient than h₂

Note: with some interpretations, dominance requires admissibility. We apply a more generic version that does not.

Questions on the Lecture?

- Was anything unclear?
- Do you need to clarify anything?

- Channels
 - Verbally on Zoom
 - On Archipelago
 - Via Zoom Chat

OR https://archipelago.rocks/app/resend-invite/75289652625