REDES DE COMPUTADORAS 1

Clase 3: La capa de RED

La Capa de Red

- > Funciones claves.
- Modelos de servicio.
- > Redes de Circuitos virtuales.
- Redes de datagramas.
- > Interior de un Router
 - Puerto de entrada
 - Entramado de conmutación
 - Puerto de salida

Aplicación
Transporte
Red
Enlace
Física

La Capa de Red

La Capa de Red

- ➤ Le brinda servicios a la capa de *Transporte*.
- Transporta los segmentos de fuente a destino.
- > En origen: encapsula los segmentos en datagramas.
- ➤ En destino: desencapsula los datagramas y entrega los segmentos a la capa Transporte.
- Los protocolos de capa red se ejecutan en cada router y en cada Host.
- Cada router examinan la cabecera en todos los datagramas IP que pasan por él.

- Ruteo
- Re-envío (forwarding)

- Ruteo
 - Determinar ruta para los paquetes desde fuente a destino (Host de origen a Host de destino).
 - Algoritmos de Rute
 - Analogía: proceso de planear un viaje de origen a destino.
- Re-envío (forwarding)

Ruteo

- Determinar ruta para los paquetes desde fuente a destino (Host de origen a Host de destino).
- Algoritmos de Rute
 - Analogía: proceso de planear un viaje de origen a destino.
- Re-envío (forwarding)
 - Mover los paquetes desde una entrada del router a la salida apropiada del mismo router.
 - Analogía: proceso de transitar a través de una intersección de rutas.

Funciones de ruteo y reenvío: Tabla de reenvío

Figure 4.2 ◆ Routing algorithms determine values in forwarding tables

- Ruteo
- Re-envío (forwarding)
- Configuración de la Conexión (sólo para redes VC)

En algunas redes, antes que los datagramas fluyan, se **establece una** conexión virtual (Redes de Circuitos Virtuales o Redes VC)

- Fuera de ruteo y re-envío, la configuración de la conexión es la 3ra función en importancia
 - ATM, frame relay, (no en internet)
- > Diferencia en servicio de conexión de capas red y transporte:
 - Red: conexión entre dos terminales (hosts)
 - Transporte: conexión entre dos procesos

Modelos de servicio de red

El Modelo de Servicio define las características del transporte host to host de los paquetes entre los sistemas terminales (Tx y Rx)

Servicios que podría proporcionar la capa de red:

- Servicios para datagramas individuales:
 - Entrega garantizada.
 - Entrega garantizada con retardo limitado (especifica el retardo de host a host).
- Servicios para un flujo de datagramas:
 - > Entrega de datagramas en orden.
 - Ancho de banda mínimo garantizado.
 - > Fluctuación máxima garantizada (restricciones en los intervalos de tiempo entre paquetes).

Modelos de servicio de red

Δ	rquitectura de la Red	Modelo de servicio	Garantia de ancho de banda	Garantía Sin pérdidas	Orden	Tempo- Rización	Indicación de Congestión
	Internet	best effort	Ninguna	Ninguna	No	No	Ninguna
	ATM	CBR	Velocidad constante garantizada	Si	Si	Si	No se produce congestión
	ATM	ABR	Mínimo garantizado	Ninguna	Si	No	Si

CBR: Constant bit rate ABR: Available bit rate

Servicios con y sin conexión de la capa de red

- > Redes de datagramas:
 - Proveen servicio sin conexión en su capa de red (caso Internet).
- > Redes de Circuitos Virtuales (VC):
 - Proveen servicio con conexión en su capa de red (ej. ATM).

Circuitos Virtuales (VC)

"Camino de fuente a destino se comporta como un circuito telefónico" Para implementar un VC la red actúa desde fuente a destino

- Hay tres fases identificables:
 - Establecimiento de la llamada.
 - Transferencia de datos.
 - Finalización de la llamada.
- Cada paquete lleva un identificador del VC (no dirección de máquina destino).
- Cada router en el camino de fuente a destino mantiene el "estado" por cada conexión que pasa por él.
- Enlace y recursos del router (ancho de banda, buffers) pueden ser asignados al VC.

Establecimiento del circuito virtual

Figure 4.4 ♦ Virtual-circuit setup

Implementación de VC

- □ Un VC consiste en:
 - Camino desde fuente a destino.
 - Número de VC: un número diferente por cada enlace a lo largo del camino.
 - Entradas en tablas de re-envío en los routers a lo largo de todo el camino.
- Los paquetes que pertenecen a un VC llevan el número de VC correspondiente.
- El número de VC debe ser cambiado en cada enlace.
 - El nuevo número de VC es tomado de la tabla de re-envío

Tabla de reenvío

Interfaz de entrada	Nº de VC de entrada	Interfaz de salida	Nº de VC de salida
1	12	3	22
2	63	1	18
3	7	2	17
1	97	3	87
•••		•••	

Router mantiene información del estado de la conexión

Redes de Datagramas

A diferencia que en las redes de VC,

en las Redes de Datagramas:

- ☐ Tx pone *dirección destino* en la cabecera del datagrama.
- No hay estado mantenido en cada router por cada conexión.
- Los paquetes se reenvían usando la dirección del Host de destino.
- Los datagramas pueden ser transmitidos por diferentes caminos

Redes de Datagramas

Figure 4.5 ◆ Datagram network

Tabla de reenvío IP

4000 millones de Posibles entradas

Rango de direcciones de destino	Interfaz de enlace
11001000 00010111 00010000 00000000 a 11001000 00010111 00010111 11111111	0
11001000 00010111 00011000 00000000 a 11001000 00010111 00011000 11111111	1
11001000 00010111 00011001 00000000 a 11001000 00010111 00011111 11111111	2
en otro caso	3

Coincidencia del prefijo más largo

Prefijo Coincidente	Interfaz de Enlace
11001000 00010111 00010	0
11001000 00010111 00011000	1
11001000 00010111 00011	2
Otro caso	3

Ejemplos

Dirección destino: 11001000 00010111 00010110 10100001

¿Qué interfaz?

Dirección destino: 11001000 00010111 00011000 10101010

¿Qué interfaz?

Red de Datagramas o de VC: ¿Por qué?

Internet Protocol (IP)

- Datos intercambiados entre computadores
 - Servicio "elástico", sin requerimientos de tiempo estricto.
- Sistemas terminales "inteligentes" (computadores)
 - Se pueden adaptar, hacer control, recuperación de errores
 - Red interna simple, la complejidad en "periferia"
- Muchos tipos de enlaces
 - Características diferentes: satélite, radio, fibra, cable
 - Es difícil uniformar servicios: tasas, pérdidas, BW

ATM

- Evoluciona desde la telefonía
- Conversación humana:
 - Tiempos estrictos, requerimientos de confiabilidad
 - Necesidad de servicios garantizados
- Sistemas terminales "torpes"
 - Teléfonos
 - · Complejidad dentro de la red

¿Por qué es más fácil ofrecer calidad de servicio (QoS) en ATM que en redes de datagramas?

- Es más simple porque en la etapa de establecimiento de la conexión se define una ruta única, lo cual hace posible hacer reserva de recursos en cada router y enlace de la ruta.
- En redes de datagramas los paquetes toman distintas rutas según las condiciones de la red y por ello la reserva de recursos no es posible.

Arquitectura de routers: Generalidades

Dos funciones claves de routers:

- Correr algoritmos/protocolos de ruteo (RIP, OSPF, BGP)
- Re-envío de datagramas desde enlaces de entrada a salida

La gran mayoría de los enlaces son bidireccionales. Para analizar la arquitectura de un router separaremos las entradas de las salida

Arquitectura de routers: Generalidades

Routers: Puerto de entrada

Recepción

nivel de bits

Capa enlace datos:

e.g., Ethernet (más adelante)

Conmutación Descentralizada:

- Dada la dirección destino del datagrama, se obtiene el puerto de salida usando la tabla de re-envío de la memoria del puerto de entrada.
- Objetivo: que el procesamiento se realice en el puerto de entrada a la "velocidad de la línea".
- Se formará cola si los datagramas llegan más rápido que la tasa de re-envío de la estructura de switches.

Routers: Entramado de Conmutación

Routers: Entramado de Conmutación

Estructuras de switches o entramado de conmutación:

Conmutación vía memoria

Primera generación de routers:

- Computador tradicional con conmutación bajo control directo de la CPU (procesador de enrutamiento).
- Paquetes son copiados a la memoria del sistema
- Rapidez limitada por ancho de banda de la memoria (cada datagrama debe cruzar 2 buses)

Conmutación vía bus

- Los datagramas transitan desde la memoria del puerto de entrada a la memoria del puerto de salida vía un bus compartido.
- Solo se transmite un paquete por vez.
- El ancho de banda de conmutación del router está limitado por ancho de banda del bus.
- Bus de 1 Gbps: velocidad suficiente para routers de acceso y empresariales (Cisco 1900).
- Otras compañías importantes en esta área son Alcatel, Huawei, Juniper.

Cisco 1900

Conmutación vía red de interconexión

- Supera limitaciones de ancho de banda del bus.
- Redes de interconexión originalmente desarrolladas para conectar procesadores en computadoras multiprocesador.
- Consiste en 2n buses que conectan n puertos de entrada con n puertos de salida.
- Si el bus vertical está ocupado el paquete queda a la espera en cola.
- Diseño avanzado: fragmentación de datagramas en celdas de tamaño fijo, las cuales pueden ser conmutadas en la estructura más rápidamente.
- Cisco 12000: conmuta a través de una red de interconexión a 60 Gbps.

Routers: Puerto de salida

Routers: Puerto de salida

¿Dónde se crean las colas?

- Colas en los puertos de entrada.
- Colas en los puertos de salida.
- A medida que las colas crecen:
 - > Se agota el espacio en el buffer.
 - > Se producen pérdida de paquetes.
- Estas colas depended de:
 - Velocidad del entramado de conmutación (n veces mayor que la de linea).
 - Velocidad de la línea de entrada y la de salida.
 - De la carga y naturaleza del tráfico.

Encolamiento en puerto de entrada

- Redes de interconexión más lentas que n veces la velocidad de la línea de entrada → encolamiento puede ocurrir en colas de entrada.
- ➤ Contención por puerto de salida → si el puerto de salida deseado está ocupado.
- ➤ Bloqueo de inicio de cola (HOL, Head-Of-the-Line): datagramas encolados al inicio de la cola impiden que otros en la cola puedan seguir.
- Retardo en colas y pérdidas debido a rebalse de buffer de entrada!

Encolamiento en puerto de salida

- Cuando la tasa de llegada del entramado excede la rapidez de la línea de salida.
- Cuando los paquetes entrantes por distintos puertos de entrada están destinados al *mismo puerto de salida*.
 - Retardo en cola y pérdidas debido a que el buffer de salida se puede rebalsar.

Políticas de descarte y envío

- Para el envío de paquetes:
 - First-come-first-served (FCFS): como cola de banco.
 - Colas ponderadas equitativas (WFQ Weighted fair queuing): comparte el enlace de salida equitativamente entre las conexiones terminal a terminal que tienen paquetes en cola.
- Descarte al ingresar a la cola:
 - Drop-tail: descartar el que llega cuando no hay espacio
 - Random Early Detection (RED): A la llegada de un paquete, éste es marcado (para su eliminación posterior al hacer espacio en caso de llegar a un buffer lleno) o descartado dependiendo del largo promedio de la cola.