WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

(11) International Publication Number:

WO 95/21834

C07D 267/14, A61K 31/55

A1

(43) International Publication Date:

17 August 1995 (17.08.95)

(21) International Application Number:

PCT/JP95/00148

(22) International Filing Date:

6 February 1995 (06.02.95)

(30) Priority Data:

6/15531

9 February 1994 (09.02.94) JP

EE, FI, GE, HU, KG, KR, KZ, LK, LR, LT, LV, MD, MG, MN, MX, NO, NZ, PL, RO, RU, SI, SK, TJ, TT, UA, UZ, VN, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG), ARIPO patent (KE, MW, SD, SZ).

(81) Designated States: AM, AU, BB, BG, BR, BY, CA, CN, CZ,

•

(71) Applicant: TAKEDA CHEMICAL INDUSTRIES, LTD. [JP/JP]; 1-1, Doshomachi 4-chome, Chuo-ku, Osaka-shi, Osaka 541 (JP).

(72) Inventors: YUKIMASA, Hidefumi; 683-3, Kiderahigashiguchicho, Nara-shi, Nara 630 (JP). TOZAWA, Ryuichi; 13-18, Higashinara 1-chome, Ibaraki-shi, Osaka 567 (JP). KORI, Masakuni; 20-4, Aoyama 5-chome, Shijimicho, Miki-shi, Hyogo 673-05 (JP). KITANO, Kazuaki; 15-4, Akasakadai 4-cho, Sakai-shi, Osaka 590-01 (JP).

(74) Agent: TANI, Yoshitaka; Osaka Plant of Takeda Chemical Industries, Ltd., 17-85, Jusohonmachi 2-chome, Yodogawaku, Osaka-shi, Osaka 532 (JP).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: OPTICALLY ACTIVE 4,1-BENZOXAZEPINE DERIVATIVES USEFUL AS SQUALENE SYNTHASE INHIBITORS

(57) Abstract

Disclosed is an optically active 4,1-benzoxazepin-2-one derivative of formula (I), wherein R₁ represents a lower alkyl group; X represents a hydrogen atom or a metal ion; ring A represents a phenyl group substituted with halogen; ring B represents a phenyl group substituted with a lower alkoxy, which is useful for the prophylaxis or treatment of hypercholesteremia or coronary sclerosis of mammals.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
AU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Benin	IT	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakia
CM	Cameroon	LI	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
CS	Czechoslovakia	LU	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Latvia	TJ.	Tajikistan
DE	Germany	MC	Monaco	TT	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	. UA	Ukraine
ES	Spain ,	MG	Madagascar	US	United States of America
FI	Fittland	ML	Mali	UZ	Uzbekistan
FR	France	MN	Mongolia	VN	Viet Nam
GA	Gabon		-	•	

- 1 -

DESCRIPTION

OPTICALLY ACTIVE 4,1-BENZOXAZEPINE DERIVATIVES USEFUL AS SQUALENE SYNTHASE INHIBITORS

5

10

15

20

25

30

35

Technical Field

This invention relates to an optically active 4,1-benzoxazepin-2-one derivative or a salt thereof and to a squalene synthase inhibitor composition and an antimycotic composition each comprising said derivative as an active ingredient.

Background Art

It is known that hypercholesterolemia, alongside hypertension and smoking, is one of the three major risk factors of ischemic heart disease and a judicious control of the blood cholesterol level is essential to the prophylaxis and therapy of ischemic heart disease and coronary atherosclerosis.

As drugs capable of lowering the blood cholesterol level, agents adapted to capture bile acid to inhibit its absorption, typically cholestyramine and colestipol (disclosed in, for example, US Patent 4027009), and agents designed to inhibit acyl coenzyme A-cholesterol O-acyltransferase (ACAT) to depress the intestinal absorption of cholesterol, typically melinamide (disclosed in French Patent 1476569), are known. Furthermore, drugs inhibiting the biosynthesis of cholesterol are also attracting attention. larly, lovastatin (disclosed in US Patent 4231938), simvastatin (disclosed in US Patent 4444784) and pravastatin (disclosed in US Patent 4346227), which inhibit 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, are already in clinical use. However, since inhibition of HMG-CoA reductase leads to inhibition of the biosynthesis of not only cholesterol but also ubiquinones, dolichols, heme A and other factors

PCT/JP95/00148

WO 95/21834

necessary for the body, the risk of consequent side effects is a serious concern.

5

10

15

20

25

30

35

Squalene synthase is an enzyme associated with an essential stage in the de novo cholesterol biosynthesis pathway. This enzyme catalizes the reductive dimerization of farnesyl pyrophosphate to synthesize squalene.

- 2 -

Meanwhile, a series of compounds which are expected to inhibit cholesterol biosynthesis through inhibition of squalene synthase have been disclosed in Journal of Medicinal Chemistry, Vol. 51(10), pp, 1869-1871 (1988), Japanese published unexamined patent application No. H1-213288/1989 (JP Kokai H1-213288/1989), JP Kokai H2-101088/1990, JP Kokai H2-235820/1990, JP Kokai H2-235821/1990, JP Kokai H3-20226/1991, JP Kokai H3-68591/1991, JP Kokai H3-148288/1991, USP 5,019,390, USP 5,135,935, WO 9215579, JP-Kokai H6-9668/1994, WO 9318039 and WO 9318040.

On the other hand, various compounds are known as antimycotic agents. In particular, compounds showing antimycotic activity through inhibition of squalene biosynthesis are described in JP Kokai H4-279589/1992, EP 475706, EP 494622 and EP 503520.

Referring, now, to 4,1-benzoxazepine derivatives and, more particularly, to 4,1-benzoxazepin-2-one derivatives which have a ketone group in the 2position, compounds derivatized by substituting one hydrogen atom in the 3-position, with a different atomic group are disclosed in JP Kokai S57-35576/1982 and Chem. Pharm. Bull. 34, 140 (1986).

Furthermore, EP 567026 discloses certain 4,1benzoxazepin-2-one derivatives.

It is known that ubiquinones, dolichols, heme A and other factors are biosynthesized from farnesyl pyrophosphate in the cholosterol biosynthesis pathway and, therefore, in order to avoid side effects arising

10

25

from their deficiencies, it appears to be a worthwhile attempt to inhibit enzymes subsequent to farnesyl pyrophosphate, particularly squalene synthase.

Disclosure of Invention

Under the circumstances described above the inventors of this invention did much research and discovered that an optically active 4,1-benzoxazepin-2-one derivative has excellent squalene synthase inhibiting activity. This invention has been developed on the basis of the above finding.

This invention, therefore, relates to
(1) an optically active 4,1-benzoxazepin-2-one derivative of the following formula (I)

$$\begin{array}{c|c}
R \\
\hline
R_1
\end{array}$$
(1)

wherein R₁ represents a lower alkyl group; X represents a hydrogen atom or a metal ion; ring A represents a phenyl group substituted with halogen; ring B represents a phenyl group substituted with a lower alkoxy;

- (2) a squalene synthase inhibitor composition comprising a compound of formula (I) as an active ingredient,
- 30 (3) an antimycotic composition comprising a compound of formula (I) as an active ingredient,
 - (4) a method for the prophylaxis or treatment for hypercholesterolemia or coronary sclerosis in a mammal which comprises administering a pharmaceutical
- effective amount of a compound of formula (I), to a mammal is need thereof,

(5) a method for the prophylaxis or treatment for mycotic diseases in a mammal which comprises administering a pharmaceutical effective amount of a

compound of formula (I), to a mammal in need thereof,

- (6) use of a compound of formula (I), for the manufacture of a medicament to be used as a prophylactic or therapeutic drug for hypercholesterolemia or coronary sclerosis,
- (7) use of a compound of formula (I), for the manufacture of a medicament to be used as a prophylactic or therapeutic drug for mycotic diseases,
 - (8) a method for producing a compound of formula (I) which comprises (i) subjecting a compound of the following formula:

15

10

5

20

25

30

35

wherein all symbols are of the same meanings as above, to optical resolution and (ii), if necessary, dissolving the resultant compound and an alkali metal hydroxide in an alcoholic solvent, and

(9) The method according to the above-mentioned (8), which comprises reacting the compound with an optically active amine.

Best Mode for Carrying Out the Invention

The invention further provides a production technology for novel compounds which was fallen under the purview of formula (I).

Referring to the formula (I) of this invention, the substituent groups in the 3- and 5-positions are oriented <u>trans</u> to each other, viz. in opposite directions, with respect to the plane of the 7-membered

10

15

20

25

ring and (R) stands for R-configuration.

Referring, further, to formula (I), the lower alkyl group indicated by the symbol R_1 includes straight-chain or branched C_{1-7} alkyl groups such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, secbutyl, tert-butyl, pentyl, isopentyl neopentyl, tert-pentyl, 1-ethylpropyl, hexyl, 1,1-dimethylbutyl, 2,2-dimethylbutyl, 3,3-dimethylbutyl, 2-ethylbutyl, 1-ethylpropyl, etc. and is preferably a C_{4-5} alkyl group and most desirably isobutyl or neopentyl.

The metal ion indicated by the symbol X includes sodium ion, potassium ion, calcium ion and aluminum ion, among others, and is preferably sodium ion or potassium ion.

The halogen atom of the halogen-substituted phenyl group, represented as ring A, includes fluorine, chlorine, bromine and iodine and is preferably chlorine.

The lower alkoxy group of the lower alkoxy-substituted phenyl group, represented as ring B, includes straight-chain or branched C₁₋₆ alkoxy groups such as methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, sec-butoxy, tert-butoxy, pentyloxy, isopentyloxy, neopentyloxy, hexyloxy, etc. and is preferably a C₁₋₄ alkoxy group and most desirably methoxy or ethoxy.

Practical examples of the compounds of this invention are disclosed as follows:

(3R,5S)-7-chloro-5-(2,3-dimethoxyphenyl)-1-neopentyl-2
oxo-1,2,3,5-tetrahydro-4,1-benzoxazepine-3-acetic acid or its sodium salt,

(3R,5S)-7-chloro-5-(2,4-dimethoxyphenyl)-1-neopentyl-2
oxo-1,2,3,5-tetrahydro-4,1-benzoxazepine-3-acetic acid or its sodium salt,

(3R,5S)-7-chloro-5-(4-ethoxy-2-methoxyphenyl)-1-

neopenty1-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepine-3-

25

30

acetic acid or its sodium salt.

Among compounds of formula (I), compounds of the following formula (Ia)

wherein R_1 , ring A and ring B are as defined hereinbefore, can be produced by subjecting the corresponding compounds of the following formula (II) to optical resolution.

wherein all the symbols have the meanings defined hereinbefore.

Compounds of formula (II) can be produced by the following processes as described in EP 567026. Incidentally the starting compound 2-aminobenzophenone can be synthesized by any of the processes described in D. A. Walsh: Synthesis 677, 1980, the processes referred to in the same literature, and processes analogous thereto.

35

wherein R_2 represents an alkyl or aralkyl group of 1-8 carbon atoms; the other symbols have the meanings defined hereinbefore.

The reaction from (III) to (IV) and that from (VIII) to (VI) can be respectively carried out by utilizing the per se known acylation procedures. For example, the acylation reaction for purposes of this invention can be carried out in a solvent, typically an

5

10

15

25

30

35

- 8 -

ether such as diethyl ether, tetrahydrofuran, dioxane, etc., a halogen-containing solvent such as dichloromethane, dichloroethane, chloroform, carbon tetrachloride, etc., a hydrocarbon solvent such as benzene, toluene, hexane, heptane, etc., dimethylformamide or dimethyl sulfoxide, where necessary in the presence of water and a base, typically an organic base such as 4dimethylaminopyridine, triethylamine, triethylenediamine, tetramethylethylenediamine, etc., or an inorganic base such as sodium hydrogen carbonate, potassium hydrogen carbonate, sodium carbonate, potassium carbonate, sodium hydroxide, potassium hydroxide, etc., sodium hydride, potassium hydride and so on. Relative to each mole of (III) or (VIII), fumaric acid chloride monoalkyl or aralkyl ester is used in a proportion of generally about 1-10 moles and

generally about 1-48 hours and preferably about 5-10

20 hours. The reaction temperature is generally about -50 to 100°C and preferably about 0-50°C.

preferably about 1-3 moles. The reaction time is

The reaction from (III) to (VII) and that from (V) to (VI) can respectively be carried out by treating the starting compound with a metal hydrogen complex compound, typically lithium aluminum hydride, sodium aluminum hydride, sodium triethoxyaluminum hydride, sodium borohydride, etc., in a protic solvent such as methanol, ethanol, propanol, butanol, etc. or an aprotic solvent such as ethyl ether, tetrahydrofuran, dioxane and so on. The metal hydride complex compound is used in a proportion of generally 0.3-5 moles and preferably 0.5-2 moles per mole of (III) or (V). The reaction temperature is generally about -20 to 100°C and preferably about 20-50°C.

The reaction from (VII) to (VIII) and that from (IV) to (V) can respectively be carried out by

5

10

15

- 9 -

permitting an alkyl halide, typically neopentyl chloride, neopentyl bromide, neopentyl iodide, isobutyl chloride, isobutyl bromide or isobutyl iodide, to act on (VII) or (IV) in a solvent, e.g. ethers such as diethyl ether, tetrahydrofuran, dioxane, etc., hydrocarbons such as benzene, toluene, hexane, heptane, etc., alcohols such as methanol, ethanol, propanol, butanol, etc., acetone, dimethylformamide, etc., where necessary in the presence of a base such as sodium hydrogen carbonate, potassium hydrogen carbonate, sodium carbonate, potassium carbonate, sodium hydride, potassium hydride and so on. Relative to each mole of (VII) or (IV), the alkyl halide is used in a proportion of generally about 1-10 moles or preferably about 1-2 The reaction temperature is about 0-100°C and moles. preferably about 20-50°C. The reaction time is generally about 1-24 hours and preferably about 3-10 hours.

Production of (VIII) from (VII) can also be 20 carried out in the manner of catalytic reduction by using Pd or Pd on activated carbon as the catalyst or in the manner of reductive amination in the presence of sodium borohydride or sodium cyanoborohydride between compound (VII) and straight-chain or branched alkyl 25 aldehydes and ketones such as formaldehyde, acetaldehyde, propionaldehyde, butyraldehyde, isobutyraldehyde, trimethylacetaldehyde, acetone, 2butanone, etc. in a solvent, e.g. ethers such as diethyl ether, tetrahydrofuran, dioxane, etc., hydrocarbons such as benzene, toluene, hexane, heptane, 30 etc., and alcohols such as methanol, ethanol, propanol, butanol, etc. Relative to each mole of (VII), the aldehyde is used in a proportion of generally 1-10 moles and preferably 1-2 moles and the reducing agent 35 is used in a proportion of 0.3-5 moles or preferably 0.5-1 mole. The reaction temperature is 0-100°C and

10

15

20

25

30

35

preferably 10 - 30°C. The reaction time is generally about 1-24 hours and preferably about 3-10 hours.

The reaction from (VI) to (IX) can be carried out in a solvent, e.g. ethers such as diethyl ether, tetrahydrofuran, dioxane, etc., hydrocarbons such as benzene, toluene, hexane, heptane, etc., alcohols such as methanol, ethanol, propanol, butanol, etc., acetone, and dimethylformamide, where necessary in the presence of a base such as sodium hydrogen carbonate, potassium hydrogen carbonate, sodium carbonate, potassium carbonate, sodium hydride, potassium hydride and so on. Relative to each mole of compound (VI), the base is used in a proportion of generally about 1-5 moles and preferably about 1-2 moles. The reaction temperature is generally -20 to 200°C and preferably 20-100°C. The reaction time is generally 1-20 hours and preferably about 2-5 hours.

The reaction from (IX) to (II) can be carried out by treating (IX) with an acid or a base. For example, this reaction can be carried out in an aqueous solution of mineral acid (e.g. nitric acid, hydrochloric acid, hydrobromic acid, iodic acid, sulfuric acid, etc.) or alkali metal hydroxide (e.g. sodium hydroxide, potassium hydroxide, barium hydroxide, lithium hydroxide, etc.) at a temperature of 0-150°C, preferably 20-50°C. The proper strength of the acid or base is about 1-10 normal, preferably 4-10N. The reaction time, which depends on the reaction temperature, is generally about 1-24 hours and preferably about 2-10 hours.

The optical resolution of compound (II) can be carried out by reacting compound (II) with an optically active amine.

The optical resolution of compound (II) can be carried out by reacting compound (II) with an optically active amine, such as an amino acid (e.g. alanine, valine, leucine, isoleucine, serine, threonine, lysine,

35

phenylalanine, tyrosine, asparagine, glutamine, aspartic acid, glutamic acid, methionine, etc.) whose carboxyl function has been esterified with an alkyl or aralkyl group of 1-8 carbon atoms, subjecting the resulting amide to distillation, recrystallization, column chromatography or other procedure to fractionate the desired optical isomer and cleaving the amide linkage to provide the object compound (Ia).

The amide mentioned above can be synthesized by 10 condensing compound (II) with said amino acid ester using a condensing agent in a solvent, where necessary in the presence of a base. The solvent that can be used includes hydrocarbons such as benzene, toluene, hexane, heptane, etc., halogen-containing solvents such 15 as dichloromethane, dichloroethane, chloroform, carbon tetrachloride, etc., ethers such as ethyl ether, tetrahydrofuran, dioxane, etc., acetonitrile, dimethylformamide and so on. The base may for example be triethylamine, 4-dimethylaminopyridine, 20 triethylenediamine, or tetramethylethylenediamine. The condensing agent includes those used in peptide synthesis, such as dicyclohexylcarbodiimide, diethyl cyanophosphonate, 1-ethyl-3-(3dimethylaminopropyl)carbodiimide and so on. Relative to each mole of compound (II), the amino acid ester is 25 used generally in a proportion of 0.5-2 molar equivalents, preferably 1-1.2 molar equivalents, and the condensing agent is used in a proportion of 0.5-5 molar equivalents, preferably 1-2 molar equivalents. 30 The reaction temperature is 0-100°C and preferably 20-50°C. The reaction time is 0.5-24 hours and preferably about 1-5 hours.

Cleavage of the amide linkage can be carried out in a solvent, such as water, methanol, ethanol, propanol, butanol, etc., in the presence of an alkali metal hydroxide (e.g. sodium hydroxide, potassium

hydroxide, barium hydroxide, lithium hydroxide, etc.), sodium hydrogen carbonate, potassium hydrogen carbonate, sodium carbonate, potassium carbonate, etc., or in the presence of a mineral acid (e.g. nitric acid, hydrochloric acid, hydrobromic acid, iodic acid, sulfuric acid, etc.) at a temperature of 10-150°C, preferably 10-50°C. The reaction time which depends on the reaction temperature is generally 1-24 hours and preferably about 2-10 hours.

- 12 -

Also, the optical resolution of compound (II) can be carried out by reacting compound (II) with an optically active amine (e.g. quinine, cinchonidine, brucine, dehydroabiethylamine, nicotine, etc.) and subjecting the resulting salt to fractional crystallization to provide the object compound (Ia).

As an alternative, compound (Ia) can be produced after optical resolution of compound (VII) or (VIII).

Among the compounds of formula (I), the compound of formula (Ib)

20

5

10

15

25

30

35

wherein X' represents a metal ion and the other symbols have the same meanings as defined hereinbefore, can be produced by dissolving compound (Ia) and an alkali metal hydroxide (e.g. sodium hydroxide, potassium hydroxide, etc.) in equimolar proportions in an alcoholic solvent such as methanol, ethanol, propanol or butanol.

While the compound (I) of this invention has squalene synthase inhibitory activity, some species have activity to inhibit other enzymes, as well, in the

10

15

20

25

30

35

- 13 -

cholesterol biosynthesis pathway. In any event, the compound (I) of this invention inhibits the biosynthesis of cholesterol and is, therefore, useful for the prevention and therapy of hypercholesterolemia and coronary atherosclerosis in mammalian animals (e.g. mouse, rat, rabbit, dog, cat, bovine, swine, man, etc.).

For use of the compound in man, it can be administered orally or by other routes. The composition for oral administration includes solid and liquid dosage forms such as tablets (inclusive of dragees, filmcoated tablets, etc.), pills, granules, powders, capsules (inclusive of soft capsules), syrups, emulsions, suspensions, and so on. These compositions can be manufactured by per se known procedures and generally contain some carrier or vehicle which is conventionally used in the pharmaceutical field. Taking the carrier for tablet use as an example, lactose, starch, sucrose, magnesium stearate, etc. can be mentioned.

Typical compositions for administration by other routes are injections and suppositors. The former includes subcutaneous, intradermal and intramuscular injections, among others. Such injections can be manufactured by suspending or emulsifying the compound of this invention in a sterile aqueous or oily vehicle which is conventionally used. The aqueous vehicle for injection includes physiological saline or other isotonic solution and may contain a suitable suspending agent such as carboxymethylcellulose sodium, a nonionic surfactant or the like. The oily vehicle includes sesame oil and soybean oil as typical examples and may contain a solubilizer such as benzyl benzoate, benzyl alcohol, etc. The injection so prepared is filled in appropriate ampules.

The compound (I) has only a low toxic potential

which provides for safe use. While the daily dosage is dependent on the patient's clinical condition and body weight, species of the compound, route of administration, etc., the recommended daily dose as an antihypercholesterolemic agent for an adult is about 1-500 mg, preferably about 10-200 mg, for an oral regimen and about 0.1-100 mg, preferably about 1-20 mg, for administration by other routes (e.g. in the case of an injection or a suppository). Within the abovementioned dose range, no toxic reactions have been observed.

Furthermore, the compound (I) has a broad antimicrobial spectrum as assayed by the broth or agar dilution assay.

15 For use of compound (I) as a therapeutic agent for mycotic diseases (e.g. in man), the effective daily dose for an adult is about 0.1-100 mg, preferably about 1-50 mg, for oral administration and about 0.1-100 mg, preferably 1-50 mg for administration by other routes (e.g. in the case of an injection or a suppository). For the treatment of mycotic infection, the unit dose of 2-5 mg/kg can be generally employed. Examples

The following examples, formulation examples and test examples are now presented to illustrate this invention in further detail and should by no means be construed as defining the scope of the invention.

Example 1

5

10

25

30

- (3S,5R)-7-Chloro-5-(2-methoxyphenyl)-1-neopentyl-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepine-3-acetic acid (I) and (3R,5S)-7-chloro-5-(2-methoxyphenyl)-1-neopentyl-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepine-3-acetic acid (II)
- (1) N-[(3S,5R)-7-chloro-5-(2-methoxyphenyl)-1neopentyl-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepine-3acetyl]-L-alanine tert-butyl ester and N-[3R,5S)-7-

15

25

chloro-5-(2-methoxyphenyl)-1-neopentyl-2-oxo-1,2,3,5tetrahydro-4,1-benzoxazepine-3-acetyl]-L-alanine tertbutyl ester

Trans-7-chloro-5-(2-methoxyphenyl)-1-neopentyl-2-5 oxo-1,2,3,5-tetrahydro-4,1-benzoxazepine-3-acetic acid (3.0 q) and L-alanine tert-butyl ester hydrochloride (1.51 g) were dissolved in dimethylformamide (20 ml), and after the solution was cooled to 0°C, diethyl cyanophosphonate (1.43 g) and triethylamine (2.42 ml) were added. The mixture was stirred at room temperature for 30 minutes, after which it was diluted with water and extracted with ethyl acetate (50 ml). The extract was washed with 1N-HCl (20 ml x 2) and a saturated aqueous solution of sodium hydrogen carbonate (20 ml x 2) and dried over anhydrous magnesium sulfate. The solvent was then removed and the residue was purified by silica gel column chromatography (eluent: hexane-ethyl acetate = 3:1 - 1:1). As a result, 1.55 g of N-[(3S,5R)-7-chloro-5-(2-methoxyphenyl)-1-neopentyl-20 2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepine-3-acetyl]-Lalanine tert-butyl ester was obtained as a first eluate. Colorless crystals (m.p. 94-97°C). Elemental analysis for C30H39ClN2O6

Calcd.: C, 64.55; H, 7.03; N, 5.01

Found : C, 64.05; H, 7.27; N, 4.72

In addition, 1.8 g of N-[(3R,5S)-7-chloro-5-(2methoxyphenyl)-1-neopentyl-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepine-3-acetyl]-L-alanine tert-butyl ester was obtained as a second eluate. An oil.

- 30 $^{1}H-NMR$ (CDCl₃) 8: 0.93 (9H, s), 1.35 (3H, d, J=7.0 Hz), 1.45 (9H, s), 2.69 (1H, dd, J=14.6, 5.7 Hz), 2.87 (1H, dd, J=14.4, 7.2 Hz), 3.34 (1H, d, J=14.0Hz), 3.62 (3H, s), 4.3-4.5 (2H, m), 4.49 (1H, d, J=14.0 Hz), 6.27 (1H, s), 6.3-6.4 (1H, brd), 6.6-6.7 (1H, m), 6.8-7.7 (6H, m)35
 - (2) N-[(3S,5R)-7-Chloro-5-(2-methoxyphenyl)-1-

amorphous solid.

5

10

15

20

30

neopentyl-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepine-3-acetyl]-L-alanine

N-[(3S,5R)-7-Chloro-5-(2-methoxyphenyl)-1-neo-pentyl-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepine-3-acetyl]-L-alanine tert-butyl ester (1.4 g) as obtained in (1) was dissolved in 4N-HCl in dioxane (20 ml) and the solution was stirred at room temperature for 5 hours. The reaction mixture was then diluted with water (50 ml) and extracted with ethyl acetate (50 ml). The extract was washed with water and dried over anhydrous magnesium sulfate. Finally the solvent was distilled off to provide N-[(3S,5R)-7-chloro-5-(2-methoxyphenyl)-1-neopentyl-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepine-3-acetyl]-L-alanine (1.20 g) as an

¹H-NMR (CDCl₃) 8: 0.93 (9H, s), 1.44 (3H, d, J=7.2 Hz), 2.71 (1H, dd, J=14.4, 5.5 Hz), 2.93 (1H, dd, J=14.4, 7.6 Hz), 3.35 (1H, d, J=13.9 Hz), 3.63 (3H, s), 4.3-4.4 (1H, m), 4.4-4.6 (2H, m), 6.27 (1H, s), 6.63 (1H, d, J=1.9 Hz), 6.71 (1H, brd, J=6.8 Hz), 6.8-7.7 (6H, m)

Elemental analysis for C26H31ClN2O6

Calcd.: C, 62.09; H, 6.21; N, 5.57 Found : C, 62.38; H, 6.51; N, 5.34

25 (3) N-[(3R,5S)-7-Chloro-5-(2-methoxyphenyl)-1-neo-pentyl-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepine-3-acetyl]-L-alanine

N-[(3R,5S)-7-Chloro-5-(2-methoxyphenyl)-1-neo-pentyl-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepine-3-acetyl]-L-alanine tert-butyl ester (1.8 g) as obtained in (1) was treated in the same manner as (2) to provide N-[(3R,5S)-7-chloro-5-(2-methoxyphenyl)-1-neopentyl-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepine-3-acetyl]-L-alanine (1.35 g) as an amorphous solid.

35 ¹H-NMR (CDCl₃) 8: 0.93 (9H, s), 1.43 (3H, d, J=7.2 Hz), 2.73 (1H, dd, J=14.6, 5.8 Hz), 2.89 (1H, dd,

10

15

20

25

30

35

J=14.6, 5.8 Hz), 3.35 (1H, d, J=14.0 Hz), 3.63 (3H, s), 4.38 (1H, t, J=7.4 Hz), 4.45-4.6 (2H, m), 6.28 (1H, s), 6.55 (1H, brd, J=6.8 Hz), 6.64 (1H, d, J=2.0 Hz), 6.8-7.7 (6H, m)Elemental analysis for C26H31ClN2O6 Calcd.: C, 62.09; H, 6.21; N, 5.57 Found: C, 61.96; H, 6.23; N, 5.38 (4) (3S,5R)-7-Chloro-5-(2-methoxyphenyl)-1-neopentyl-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepine-3-acetic acid (I) N-[(3S,5R)-7-Chloro-5-(2-methoxyphenyl)-1neopentyl-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepine-3acetyl]-L-alanine (1.0 g) as obtained in (2) was dissolved in methanol (10 ml) followed by addition of concentrated hydrochloric acid (10 ml) and the mixture was refluxed for 24 hours. The reaction mixture was then diluted with water and extracted with ethyl acetate (50 ml). The extract was washed with water and dried over anhydrous magnesium sulfate and the solvent was distilled off. The residue was dissolved in dimethylformamide (20 ml) followed by addition of methyl iodide (0.19 ml) and potossium carbonate (0.55 q) and the mixture was stirred at room temperature for This reaction mixture was diluted with water and extracted with ethyl acetate (50 ml). The extract was washed with 1N-hydrochloric acid (20 ml x 2) and a saturated aqueous solution of sodium hydrogen carbonate (20 ml x 2) and dried over anhydrous magnesium sulfate. The solvent was then distilled off and the residue was purified by silica gel column chromatography (eluent, hexane:ethyl acetate = 3:1) to provide methyl (3S,5R)-7-chloro-5-(2-methoxyphenyl)-1-neopentyl-2-oxo-1,2,3,5tetrahydro-4,1-benzoxazepine-3-acetate (0.51 g). compound was dissolved in a mixture of water (10 ml) and methanol (10 ml) followed by addition of potassium

carbonate (0.32 g) and the mixture was refluxed for 2.5

WO 95/21834 PCT/JP95/00148

hours. The reaction mixture was then acidified with 1N-HCl (20 ml) and extracted with ethyl acetate (50 ml). The extract was dried over anhydrous magnesium sulfate and the solvent was distilled off. The residue 5 was purified by silica gel column chromatography (eluent, hexane:ethyl acetate = 2:1dichloromethane:methanol = 2:1) to provide 0.46 g of (3S,5R)-7-chloro-5-(2-methoxyphenyl)-1-neopentyl-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepine-3-acetic acid as 10 colorless crystals (m.p. 179-183°C). $[\alpha]_{\rm b}^{25}$ + 248.7° (c=0.45, MeOH) Elemental analysis for C23H26ClNO5•H2O Calcd.: C, 61.40; H, 6.27; N, 3.11 Found: C, 61.12; H, 5.99; N, 3.28 15 (5) (3R,5S)-7-Chloro-5-(2-methoxyphenyl)-1-neopentyl-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepine-3-acetic acid (II) N-[(3R,5S)-7-Chloro-5-(2-methoxyphenyl)-1neopentyl-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepine-3-20 acetyl]-L-alanine (1.0 g) as obtained in (3) was subjected to the same procedure as (4) to provide 0.32 g of (3R,5S)-7-chloro-5-(2-methoxyphenyl)-1-neopentyl-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepine-3-acetic acid as colorless crystals (m.p. 176-180°C). $[\alpha]_0^{25} - 246.2^{\circ} \text{ (c=0.42, MeOH)}$ 25 Elemental analysis for C23H26ClNO5 • 1.5H2O Calcd.: C, 60.19; H, 6.37; N, 3.05 Found: C, 60.05; H, 5.88; N, 3.22 Example 2 30 (3S,5R)-7-Chloro-5-(2,3-dimethoxyphenyl)-1neopentyl-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepine-3acetic acid (I) and (3R,5S)-7-chloro-5-(2,3-dimethoxyphenyl)-1-neopentyl-2-oxo-1,2,3,5-tetrahydro-4,1benzoxazepine-3-acetic acid (II)

Using trans-7-chloro-5-(2,3-dimethoxyphenyl)-1neopentyl-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepine-3-

acetic acid, the title compound was sythesized in the same manner as Example 1.

- (1) N-[(3S,5R)-7-Chloro-5-(2,3-dimethoxyphenyl)-1neopentyl-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepine-3-
- 5 acetyl]-L-alanine tert-butyl ester Colorless crystals (m.p.: 120-122°C) Elemental analysis for C₃₁H₄₁ClN₂O₇•0.5H₂O Calcd.: C, 62.25; H, 7.08; N, 4.68

Found: C, 62.45; H, 6.89; N, 4.68

- 10 (2) N-[(3R,5S)-7-Chloro-5-(2,3-dimethoxyphenyl)-1neopentyl-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepine-3acetyl]-L-alanine tert-butyl ester Colorless crystals (m.p.: 136-137°C) Elemental analysis for C31H41ClN2O7.0.8H2O
- Calcd.: C, 61.69; H, 7.11; N, 4.64 15 Found: C, 61.60; H, 7.45; N, 4.58
 - (3) N-[(3S,5R)-7-Chloro-5-(2,3-dimethoxyphenyl)-1-neopentyl-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepine-3acetyl]-L-alanine
- 20 Colorless crystals (m.p.: 182-185°C) Elemental analysis for C27H33ClN2O7 Calcd.: C, 60.84; H, 6.24; N, 5.26 Found: C, 60.78; H, 6.09; N, 4.99
 - (4) N-[(3R,5S)-7-Chloro-5-(2,3-dimethoxyphenyl)-1-neo-
- pentyl-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepine-3-25 acetyl]-L-alanine

Colorless crystals (m.p.: 137-140°C)

Elemental analysis for C₂₇H₃₃ClN₂O₇ • 0.3C₆H₁₄ • 0.3H₂O

Calcd.: C, 61.11; H, 6.77; N, 4.95

- Found: C, 61.21; H, 6.91; N, 5.05 30
 - (5) (3S,5R)-7-Chloro-5-(2,3-dimethoxyphenyl)-1neopentyl-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepine-3acetic acid (I)

Colorless crystals (m.p.: 227-230°C)

 $[\alpha]_{D}^{25} + 242.7^{\circ} (c=0.41, MeOH)$ 35 Elemental analysis for C26H28ClNO6.0.5H2O

Calcd.: C, 61.21; H, 6.21; N, 2.97

Found : C, 61.20; H, 6.07; N, 2.91

- (6) (3R,5S)-7-Chloro-5-(2,3-dimethoxyphenyl)-1-neopentyl-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepine-3acetic acid (II)
- Colorless crystals (m.p.: 218-222°C) $[\alpha]_{D}^{25}$ 246.8° (c=0.43, MeOH)

Elemental analysis for C₂₄H₂₈ClNO₆•0.75H₂O

Calcd.: C, 60.63; H, 6.25; N, 2.95

10 Found : C, 60.58; H, 6.05; N, 2.95

Example 3

ester

5

20

- (3S,5R)-7-Chloro-5-(2,4-dimethoxyphenyl)-1-neopentyl-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepine-3-acetic acid
- (I) and (3R,5S)-7-chloro-5-(2,4-dimethoxyphenyl)-1-
- neopentyl-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepine-3acetic acid (II)
 - (1) N-[(3S,5R)-7-Chloro-5-(2,4-dimethoxyphenyl)-1-neo-pentyl-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepine-3-acetyl]-L-leucine methyl ester and N-[(3R,5S)-7-chloro-5-(2,4-dimethoxyphenyl)-1-neopentyl-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepine-3-acetyl]-L-leucine methyl

Trans-7-chloro-5-(2,4-dimethoxyphenyl)-1neopentyl-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepine-3acetic acid (11.0 g) and L-leucine methyl ester
hydrochloride (5.2 g) were dissolved in
dimethylformamide (50 ml). The solution was cooled to
0°C and diethyl cyanophosphonate (4.9 g) and
triethylamine (8.3 ml) were added. The mixture was
stirred at room temperature for 30 minutes, after which
it was diluted with water (200 ml) and extracted with
ethyl acetate (300 ml). The extract was washed with
1N-hydrochloric acid (100 ml x 2) and a saturated
aqueous solution of sodium hydrogen carbonate (100 ml x

35 2) and dried over anhydrous magnesium sulfate. The solvent was then distilled off and the residue was

10

15

20

25

30

35

purified by silica gel column chromatography (eluent, hexane:ethyl acetate = 2:1-1:1). As a first eluate, 6.7 g of N-[(3R,5S)-7-chloro-5-(2,4-dimethoxyphenyl)-1-neopentyl-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepine-3-acetyl]-L-leucine methyl ester was obtained as colorless crystals (m.p. 93-96°C).

Elemental analysis for C₃₁H₄₁ClN₂O₇•0.5H₂O

Calcd.: C, 62.25; H, 7.08; N, 4.68

Found : C, 62.38; H, 7.42; N, 4.43

As a second eluate, 6.5 g of N-[(3S,5R)-7-chloro-5-(2,4-dimethoxyphenyl)-1-neopentyl-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepine-3-acetyl]-L-leucine methyl ester was obtained as oil.

H-NMR (CDCl₃) 8: 0.8-1.1 (15H, m), 1.5-1.75 (1H, m),
2.70 (1H, dd, J=14.4, 6.0 Hz), 2.88 (1H, dd,
J=14.4, 6.6 Hz), 3.35 (1H, d, J=14.0 Hz), 3.60
(3H, s), 3.71 (3H, s), 3.86 (3H, s), 4.33 (1H, t,
J=6.2 Hz), 4.51 (1H, d, J=14.0 Hz), 4.5-4.7 (1H,
m), 6.21 (1H, m), 6.45-6.7 (4H, m), 7.2-7.6 (3H,
m).

(2) (3S,5R)-7-Chloro-5-(2,4-dimethoxyphenyl)-1neopentyl-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepine-3acetic acid (I)

N-[(3S,5R)-7-Chloro-5-(2,4-dimethoxyphenyl)-1neopentyl-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepine-3acetyl]-L-leucine methyl ester (1.0 g) as obtained in
(1) was dissolved in methanol (20 ml) followed by
addition of concentrated sulfuric acid (4 ml) and the
mixture was refluxed for 24 hours. The reaction
mixture was then diluted with water and extracted with
ethyl acetate (50 ml). The extract was washed with
water and dried over anhydrous magnesium sulfate and
the solvent was distilled off. The residue was
purified by silica gel column chromatography (eluent,
hexane:ethyl acetate = 5:1) to provide methyl (3S,5R)7-chloro-5-(2,4-dimethoxyphenyl)-1-neopentyl-2-oxo-

1,2,3,5-tetrahydro-4,1-benzoxazepine-3-acetate (0.22 This compound was dissolved in a mixture of water (10 ml), methanol (10 ml) and tetrahydrofuran (5 ml) followed by addition of potassium carbonate (0.13 g) 5 and the mixture was refluxed for 2 hours. The reaction mixture was then acidified with 1N hydrochloric acid and extracted with ethyl acetate. The extract was dried over anhydrous magnesium suflate and the solvent was distilled off to provide 0.20 g of (3S,5R)-7-10 chloro-5-(2,4-dimethoxyphenyl)-1-neopentyl-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepine-3-acetic acid as colorless crystals (m.p. 233-234°C). $\{\alpha\}_{D}^{22} + 228.1^{\circ} \text{ (c=0.51, MeOH)}$ Elemental analysis for C24H28ClNO6 15 Calcd.: C, 62.40; H, 6.11; N, 3.03 Found: C, 62.28; H, 6.41; N, 2.89 (3) (3R,5S)-7-Chloro-5-(2,4-dimethoxyphenyl)-1neopentyl-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepine-3acetic acid (II) 20 Using N-[(3R,5S)-7-chloro-5-(2,4-dimethoxyphenyl)-1-neopentyl-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepine-3-acetyl]-L-leucine methyl ester (6.0 g) as obtained in (1), the procedure of (2) was otherwise repeated to provide 0.7 g of (3R,5S)-7-chloro-5-(2,4-25 dimethoxyphenyl)-1-neopentyl-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepine-3-acetic acid as colorless crystals (m.p. 234-235°C). $[\alpha]_{D}^{25}$ - 232.5° (c=0.41, MeOH) Elemental analysis for C24H28ClNO6 30 Calcd.: C, 62.40; H, 6.11; N, 3.03 Found: C, 62.39; H, 6.20; N, 2.81 Example 4 Sodium (3R,5S)-7-chloro-5-(2-methoxyphenyl)-1neopentyl-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepine-3-35 acetate (3R,5S)-7-Chloro-5-(2-methoxyphenyl)-1-neopentyl-

2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepine-3-acetic acid (12 g) as obtained in Example 1 was suspended in methanol (250 ml) and dissolved by adding 1N-aqueous sodium hydroxide (27.7 ml). After the solvent was 5 distilled off under reduced pressure, ethyl acetate (200 ml) was added to the residue and the solvent was distilled off under reduced pressure. This procedure was performed a second time and the resulting crystals were treated with ethyl acetate and filtered to provide 10 11.8 g of sodium (3R,5S)-7-chloro-5-(2-methoxyphenyl)-1-neopentyl-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepine-3-acetate as colorless crystals (m.p. >300°C). $[\alpha]_0^{22} - 263.6^{\circ} (c=0.64, MeOH)$ Elemental analysis for C23H25ClNO5Na • 0.75H2O 15 Calcd.: C, 59.10; H, 5.71; N, 3.00 Found : C, 59.27; H, 5.97; N, 2.75 Example 5 Sodium (3R,5S)-7-chloro-5-(2,3-dimethoxyphenyl)-1-neopentyl-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepine-3-20 acetate Using (3R,5S)-7-chloro-5-(2,3-dimethoxyphenyl)-1neopentyl-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepine-3acetic acid (30 g), the procedure of Example 4 was otherwise repeated to provide 31.9 g of sodium (3R,5S)-25 7-chloro-5-(2,3-dimethoxyphenyl)-1-neopentyl-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepine-3-acetate as colorless crystals (m.p. >300°C). $[\alpha]_{D}^{23}$ - 235.1° (c=0.60, MeOH) Elemental analysis for C24H27ClNO6Na • 1.5H2O 30 Calcd.: C, 56.42; H, 5.92; N, 2.74 Found: C, 56.49; H, 6.02; N, 2.75 Example 6 Sodium (3R,5S)-7-chloro-5-(2,4-dimethoxyphenyl)-1neopentyl-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepine-3-35 acetate

Using (3R,5S)-7-chloro-5-(2,4-dimethoxyphenyl)-1-

neopentyl-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepine-3-acetic acid (24 g), the procedure of Example 4 was otherwise repeated to provide 24.7 g of sodium (3R,5S)-7-chloro-5-(2,4-dimethoxyphenyl)-1-neopentyl-2-oxo-

5 1,2,3,5-tetrahydro-4,1-benzoxazepine-3-acetate as
colorless crystals (m.p. >300°C).

 $[\alpha]_{D}^{23}$ - 231.1° (c=0.70, MeOH)

Elemental analysis for C24H27ClNO6Na•0.75H2O

Calcd.: C, 57.95; H, 5.78; N, 2.82

Found: C, 57.86; H, 6.08; N, 2.81

Example 7

10

Trans-7-chloro-5-(4-ethoxy-2-methoxyphenyl)-1neopentyl-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepine-3acetic acid

15 (1) 2-Amino-4'-benzyloxy-5-chloro-2'-methoxy-benzophenone

A mixture of 4-bromo-3-methoxyphenol (21 g), benzyl bromide (13.5 ml), potassium carbonate (21.4 g) and acetone (200 ml) was stirred at room temperature

- for 24 hours. The insoluble matter was then filtered off and the filtrate was distilled under reduced pressure. The residue was purified by silica gel column chromatography (eluent, hexane:ethyl acetate = 20:1) to provide 4-benzyloxy-2-methoxybromobenzene (25 g) as colorless oil.
 - ¹H-NMR (CDCl₃) 8: 3.85 (3H, s), 5.04 (2H, s), 5.04 (2H, s), 6.47 (1H, dd, J=8.6, 2.6 Hz), 6.57 (1H, d, J=2.6 Hz), 7.3-7.5 (8H, m).

Starting with this compound, the process described in L. H. Sternbach et al.: J. Org. Chem., <u>27</u>, 378, 1962 was followed to provide 20.4 g of 2-amino-4'-benzyloxy-5-chloro-2'-methoxybenzophenone as light-yellow crystals (m.p. 97-98°C).

Elemental analysis for C21H18ClNO3

35 Calcd.: C, 68.57; H, 4.93; N, 3.81 Found : C, 68.62; H, 5.09; N, 3.65

10

15

20

25

30

35

(2) 2-Amino-α-(4-benzyloxy-2-methoxyphenyl)-5-chlorobenzyl alcohol

2-Amino-4'-benzyloxy-5-chloro-2'-methoxy-benzophenone (10 g) was dissolved in methanol (100 ml) followd by addition of sodium borohydride (1.4 g) and the mixture was stirred for 24 hours. The solvent was then distilled off under reduced pressure and the residue was diluted with water (200 ml) and extracted with ethyl acetate (300 ml). The extract was washed with water and dried over anhydrous magnesium sulfate and the solvent was distilled off under reduced pressure. The residue was purified by silica gel column chromatography (eluent, hexane:ethyl acetate = 4:1-2:1) to provide 9.5 g of 2-amino- α -(4-benzyloxy-2-methoxyphenyl)-5-chlorobenzyl alcohol as colorless crystals (m.p. 101-103°C).

Elemental analysis for C21H20ClNO3

Calcd.: C, 68.20; H, 5.41; N, 3.79 Found : C, 67.97; H, 5.42; N, 3.58

(3) α-(4-Benzyloxy-2-methoxyphenyl)-2-neopentylamino-5-chlorobenzyl alcohol

A mixture of 2-amino- α -(4-benzyloxy-2methoxyphenyl)-5-chlorobenzyl alcohol (9.5 g), pivalaldehyde (3.35 ml), acetic acid (1.85 g) and ethanol (200 ml) was stirred at room temperature for 30 minutes. Then, sodium cyanoborohydride (2.33 g) was added and the mixture was stirred for 24 hours. solvent was then distilled off under reduced pressure and the residue was diluted with water (200 ml) and extracted with ethyl acetate (200 ml). The extract was washed with water and dried over anhydrous magnesium sulfate and the solvent was distilled off under reduced pressure. The residue was purified by silica gel column chromatography (eluent, hexane:ethyl acetate = 5:1) to provide α -(4-benzyloxy-2-methoxyphenyl)-2neopentylamino-5-chlorobenzyl alcohol (10 g) as

```
colorless oil.
       ^{1}H-NMR (CDCl<sub>3</sub>) \delta: 0.91 (9H, s), 2.82 (2H, s), 3.10 (1H,
            br), 3.85 (3H, s), 4.75 (1H, br), 5.06 (2H, s),
            5.94 (1H, s), 6.45-6.7 (3H, m), 6.95-7.5 (7H, m)
 5
      (4) Ethyl 3-[N-[4-chloro-2-(4-benzyloxy-\alpha-hydroxy-2-
      methoxybenzyl)phenyl]-N-neopentylcarbamoyl]acrylate
           \alpha-(4-Benzyloxy-2-methoxyphenyl)-2-neopentylamino-
      5-chlorobenzyl alcohol (10 g) in dichloromethane (200
      ml) was added sodium hydrogen carbonate (6.3 g) and
10
      while the mixture was stirred, fumaric acid
      monochloride monoethyl ester (4.43 g) was added
                  The mixture was stirred at room temperature
      for 30 minutes.
                        This reaction mixture was washed with
      water and dried over anhydrous magnesium sulfate and
      the solvent was distilled off under reduced pressure.
15
      The residue was purified by silica gel column
      chromatography (eluent, hexane:ethyl acetate = 5:1-2:1)
     to provide ethyl 3-[N-[4-chloro-2-(4-benzyloxy-\alpha-
      hydroxy-2-methoxybenzyl)phenyl]-N-neopentylcarbamoyl]-
20
      acrylate (12 g) as colorless oil.
      ^{1}H-NMR (CDCl<sub>3</sub>) \delta: 0.7-1.0 (9H, m), 1.1-1.3 (3H, m),
           2.5-3.15 (2H, m), 3.69, 3.77 (3H, each s), 3.9-4.5
           (3H, m), 4.95, 5.07 (2H, each s), 5.9-6.85 (5H,
           m), 6.95-7.9 (10H, m)
25
           Ethyl trans-7-chloro-5-(4-benzyloxy-2-
      methoxyphenyl)-1-neopentyl-2-oxo-1,2,3,5-tetrahydro-
      4,1-benzoxazepine-3-acetate
           To a solution of ethyl 3-[N-[4-chloro-2-(4-
      benzyloxy-α-hydroxy-2-methoxybenzyl)phenyl]-N-
      neopentylcarbamoyl]acrylate (12 g) in ethanol (150 ml)
30
      was added potassium carbonate (5.9 g) and the mixture
     was stirred for 24 hours. The solvent was then
      distilled off under reduced pressure and the residue
     was diluted with water (200 ml) and extracted with
```

ethyl acetate (200 ml). The extract was washed with water and dried over anhydrous magnesium sulfate and

- 27 -

the solvent was distilled off under reduced pressure. The residue was purified by silica gel column chromatography (eluent: hexane:ethyl acetate = 3:1) to provide 9.8 g of ethyl trans-7-chloro-5-(4-benzyloxy-2methoxyphenyl)-1-neopentyl-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepine-3-acetate as colorless crystals (m.p. 130-131°C).

Elemental analysis for C32H36ClNO6

5

15

20

25

30

Calcd.: C, 67.90; H, 6.41; N, 2.47

10 Found: C, 67.73; H, 6.35; N, 2.33

> Ethyl trans-7-chloro-5-(4-hydroxy-2methoxyphenyl)-1-neopentyl-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxyazepine-3-acetate

In ethyl acetate (150 ml) was dissolved ethyl trans-7-chloro-5-(4-benzyloxy-2-methoxyphenyl)-1neopentyl-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxyazepine-3-acetate (7.0 g) followed by addition of 1N-HCl (0.1 ml) and 10% palladium-on-carbon (50% hydrous, 1.0 g) and the catalytic reduction reaction was carried out at room temperature under atmospheric pressure. stoichiometric amount of hydrogen had been absorbed, the palladium-on-carbon was filtered off and the filtrate was distilled under reduced pressure to recover 5.6 g of ethyl trans-7-chloro-5-(4-hydroxy-2methoxyphenyl)-1-neopentyl-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepine-3-acetate as colorless crystals (m.p. 197-199°C).

Elemental analysis for C25H30ClNO6

Calcd.: C, 63.09; H, 6.35; N, 2.94

Found: C, 62.97; H, 6.57; N, 2.81

Ethyl trans-7-chloro-5-(4-ethoxy-2-methoxyphenyl)-1-neopentyl-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepine-3-acetate

A mixture of ethyl trans-7-chloro-5-(4-hydroxy-2methoxyphenyl)-1-neopentyl-2-oxo-1,2,3,5-tetrahydro-35 4,1-benzoxazepine-3-acetate (0.25 g), ethyl iodide

PCT/JP95/00148

(0.06 ml), potassium carbonate (0.15 g) and N,N-dimethylformamide (20 ml) was stirred at room temperature for 3 hours. The reaction mixture was then diluted with water (50 ml) and extracted with ethyl acetate (100 ml). The extract was washed with 1N-HCl (30 ml x 2) and a saturated aqueous solution of sodium hydrogen carbonate and dried over anhydrous magnesium sulfate. The solvent was then distilled off under reduced pressure to provide 0.24 g of ethyl trans-7-chloro-5-(4-ethoxy-2-methoxyphenyl)-1-neopentyl-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepine-3-acetate as colorless crystals (m.p. 164-166°C). Elemental analysis for C₂₇H₃₄ClNO₆

Calcd.: C, 64.34; H, 6.80; N, 2.78

15 Found: C, 64.18; H, 6.70; N, 2.74

5

10

(8) trans-7-Chloro-5-(4-ethoxy-2-methoxyphenyl)-1-neo-pentyl-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepine-3-acetic acid

A mixture of ethyl trans-7-chloro-5-(4-ethoxy-2-20 methoxyphenyl)-1-neopentyl-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepine-3-acetate (0.18 g), potassium carbonate (0.1 g), methanol (10 ml), tetrahydrofuran (10 ml) and water (5 ml) was refluxed for 1.5 hours. The reaction mixture was then concentrated under 25 reduced pressure, 1N-HCl (50 ml) was added, and the mixture was extracted with ethyl acetate (50 ml). The extract was washed with water and dried over anhydrous magnesium sulfate and the solvent was distilled off under reduced pressure to provide 0.15 g of trans-7chloro-5-(4-ethoxy-2-methoxyphenyl)-1-neopentyl-2-oxo-30 1,2,3,5-tetrahydro-4,1-benzoxazepine-3-acetic acid as colorless crystals (m.p. 230-232°C). Elemental analysis for C25H30ClNO6

Calcd.: C, 63.09; H, 6.35; N, 2.94

35 Found: C, 62.92; H, 6.60; N, 3.01 Example 8

10

15

20

35

WO 95/21834 PCT/JP95/00148

(3R,5S)-7-Chloro-5-(4-ethoxy-2-methoxyphenyl)-1neopentyl-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepine-3acetic acid

- 29 -

In the same manner as Example 1, trans-7-chloro-5-(4-ethoxy-2-methoxyphenyl)-1-neopentyl-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepine-3-acetic acid (2.2 g) was reacted with L-alanine tert-butyl ester and the reaction product purified by silica gel column chromatography to provide N-[(3S,5R)-7-chloro-5-(4-ethoxy-2-methoxyphenyl)-1-neopentyl-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepine-3-acetyl]-L-alanine tert-butyl ester (1.0 g) and N-[(3R,5S)-7-chloro-5-(4-ethoxy-2-methoxyphenyl)-1-neopentyl-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepine-3-acetyl]-L-alanine tert-butyl ester (1.1 g).

Repeating the procedure described in Example 1 (2), N-[(3R,5S)-7-chloro-5-(4-ethoxy-2-methoxyphenyl)-1-neopentyl-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepine-3-acetyl]-L-alanine tert-butyl ester (0.8 g) was reacted to provide 0.33 g of (3R,5S)-7-chloro-5-(4-ethoxy-2-methoxyphenyl)-1-neopentyl-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepine-3-acetic acid as colorless crystals (m.p. 162-165°C).

Elemental analysis for C25H30ClNO6

25 Calcd.: C, 63.09; H, 6.35; N, 2.94 Found: C, 62.87; H, 6.23; N, 2.66 $\left[\alpha\right]_{D}^{23}$ - 212.0° (c=0.94, MeOH)

Example 9

Sodium (3R,5S)-7-chloro-5-(4-ethoxy-2-methoxyphenyl)-1neopentyl-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepine-3acetate

Using (3R,5S)-7-chloro-5-(4-ethoxy-2-methoxyphenyl)-1-neopentyl-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepine-3-acetic acid (3.65), the procedure of Example 4 was repeated to provide 3.54 g of sodium (3R,5S)-7-chloro-5-(4-ethoxy-2-methoxyphenyl)-1-

neopentyl-2-oxo-1,2,3,5-tetrahydro-4,1-penzoxazepine-3-acetate as colorless crystals (230-250°C, decomp.). Elemental analysis for $C_{25}H_{29}ClNO_6Na \cdot 0.7H_2O$

Calcd.: C, 58.81; H, 6.00; N, 2.74 Found: C, 58.91; H, 6.24; N, 2.71 [\alpha]₂²³ - 218.8° (c=0.48, MeOH)

Reference Example 1

5

10

15

25

30

35

Sodium (3R,5S)-7-chloro-5-(2-chlorophenyl)-1-neopentyl-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepine-3-acetate

Starting with (3R,5S)-7-chloro-5-(2-chlorophenyl)1-neopentyl-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepine3-acetic acid (1.2 g) as described in Example 118 of EP
567026, the procedure of Example 4 was otherwise
repeated to provide 1.1 g of sodium (3R,5S)-7-chloro-5(2-chlorophenyl)-1-neopentyl-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepine-3-acetate as colorless crystals (m.p. >300°C).

 $[\alpha]_D^{22} - 237.1^{\circ} (c=0.57, MeOH)$

Elemental analysis for C22H22Cl2NO4Na•H2O

20 Calcd.: C, 55.47; H, 5.08; N, 2.94

Found: C, 55.41; H, 5.26; N, 2.83

Assay of squalene synthase inhibitory activity

Squalene synthase inhibitory activity is assayed by the following method using the enzyme preparations described in Test Examples 1 and 2.

To a solution containing 5 μ M[1- 3 H] farnesyl pyrophosphate (specific activity 25 μ Ci/mole), 1 mM NADPH (nicotinamide adenine dinucleotide phosphate, reduced form), 5mM MgCl₂, 6 mM glutathione, 100 mM potassium phosphate buffer (pH 7.4) and the test drug (dissolved in water or DMSO) (total volume: 50 μ l) is added the enzyme solution (0.8 μ g protein) prepared in Test Example 1 or 2 and the reaction is carried out at 37°C for 45 minutes. The reaction is stopped by adding 150 μ l of chloroform-methanol (2:1) followed by addition of 50 μ l of chloroform and 50 μ l of 3N-sodium

15

20

25

30

35

hydroxide solution. The chloroform layer (bottom layer, 50 μ l) containing the reaction product composed predominantly of squalene is mixed with 3 ml of toluenic liquid scintillator and its radioactivity was measured using a liquid scintillation counter.

The squalene synthase inhibitory activity was expressed in the concentration which caused 50% inhibition of the radioactivity uptake by the chloroform layer [IC50, molar concentration (M)].

10 <u>Test Example 1</u> Preparation of a rat enzyme

A male SD rat (6 weeks old) is bled to death and the liver is enucleated. About 10 g of the heptic tissue was washed with ice-cooled saline and homogenized in 15 ml of ice-cooled buffer [100 mM potassium phosphate buffer (pH 7.4), 15 mM nicotinamide, 2mM MgCl2] and the homogenate was centrifuged at 10000 x g (4°C) for 20 minutes. supernatant was further centrifuged at 105000 x g (4°C) for 90 minutes and the resultant pellet was suspended in ice-cooled 100 mM potassium phosphate buffer (pH 7.4) and recentrifuged at 105000 x g (4°C) for 90 The pellet (microsome fraction) was suspended in ice-cooled 100 mM potassium phosphate buffer (pH 7.4) (protein concentration ca. 40 mg/ml, as determined with Pias BCA Protein Assay Kit) to provide an enzyme preparation.

Test Example 2 Preparation of a human enzyme

Human hepatocarcinoma cells HepG2 (ca. 1 x 109

cells) grown in Dulbecco's modified Eagle's medium

containing 10% fetal calf serum (37°C, 5% CO2) were

suspended in 10 ml of ice-cooled buffer [100 mM

potassium phosphate buffer (pH 7.4), 30 mM

nicotinamide, 2.5 mM MgCl2] and disrupted by sonication

(30 seconds x 2). From the sonicate, a microsome

fraction was separated by the same procedure as

described in Test Example 1. This fraction was

suspended in ice-cooled 100 mM potassium phosphate buffer (pH 7.4) (protein ca. 4 mg/ml) to provide an enzyme preparation. The results are shown below.

5 [Table 1] Squalene synthase inhibitory activity (in vitro)

10			Rat enzyme IC ₅₀ (µM)	Human hepG2 enzyme IC ₅₀ (μΜ)
•	Example 1	I	43% ¹⁾ 0.026	0.011
15	Example 2	I	7.7 0.017	0.011
20	Example 3	I	15.8% ¹⁾ 0.022	0.0086
20	Example 8		0.029	0.019
	Example 9		0.041	0.022
25	Reference Example 1		0.067	0.020

^{1) %} Inhibition at 10^{-5} M

30

Formulation Examples

The squalene synthase inhibitor composition comprising the optically active 4,1-benzoxazepin-2-one derivative
(I) or its salt as an active ingredient for the therapy of
35 hypercholesterolemia in accordance with this invention can
be provided typically in the following formulations and
dosage forms.

1. Capsule

	(1)	Compound of Example 5	10	mg
40	(2)	Lactose	90	mg
	(3)	Microcrystalline cellulose	70	mg
	(4)	Magnesium stearate	10	mg
		Each capsule contains	180	mg
		The whole amounts of (1), (2) and (3) and	one-half

amount of (4) are blended and granulated. To the granulation is added the balance of (4) and the whole composition is filled in a gelatin capsule.

2. Tablet

5	(1) Compound of Example 5	10 mg
	(2) Lactose	35 mg
	(3) Corn starch	150 mg
	(4) Microcrystalline cellulose	30 mg
	(4) Magnesium stearate	5 mg
10	Each tablet contains	230 mg

The whole amounts of (1), (2) and (3), 2/3 amount of (4) and 1/2 amount of (5) are blended and granulated. To the granulation is added the remainders of (4) and (5) and the whole composition is compressed into a tablet.

15 3. Capsule

(1) Compound of Example 9	10 mg
(2) Lactose	90 mg
(3) Microcrystalline cellulose	70 mg
(4) Magnesium stearate	10 mg
Each capsule contains	180 mg

The whole amounts of (1), (2) and (3) and one-half amount of (4) are blended and granulated. To the granulation is added the balance of (4) and the whole composition is filled in a gelatin capsule.

25 4. Tablets

20

	(1) Compound of Example 9	10	mg
	(2) Lactose	35	mg
	(3) Corn starch	150	mg
	(4) Microcrystalline cellulose	30	mg
30	(5) Magnesium stearate	5	mg
	Each tablet contains	230	mα

The whole amounts of (1), (2) and (3), 2/3 amount of (4) and 1/2 amount of (5) are blended and granulated. To the granulation are added the remainders of (4) and (5) and the whole composition is compressed into a tablet.

CLAIM

1. An optically active 4,1-benzoxazepin-2-one derivative of the following formula (I):

$$\begin{array}{c|c}
 & B \\
 & O \\
 & (R) \\
 & O
\end{array}$$

$$\begin{array}{c}
 & (I) \\
 & (I) \\$$

wherein R_1 represents a lower alkyl group; X represents a hydrogen atom or a metal ion; ring A represents a phenyl group substituted with halogen; ring B represents a phenyl group substituted with a lower alkoxy.

- 2. The optically active 4,1-benzoxazepin-2-one derivative according to claim 1 wherein said lower alkyl group is isobutyl or neopentyl.
- 3. The optically active 4,1-benzoxazepin-2-one derivative according to claim 1 wherein said metal ion is sodium ion or potassium ion.
- 4. The optically active 4,1-benzoxazepin-2-one derivative according to claim 1 wherein said halogen is chlorine.
- 5. The optically active 4,1-benzoxazepin-2-one derivative according to claim 1 wherein said lower alkoxy is methoxy or ethoxy.
- 6. The optically active 4,1-benzoxazepin-2-one derivative according to claim 1 which is (3R,5S)-7-chloro-5-(2,3-dimethoxyphenyl)-1-neopentyl-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepine-3-acetic acid or its sodium salt.
- 7. The optically active 4,1-benzoxazepin-2-one derivative according to claim 1 which is (3R,5S)-7-chloro-5-(2,4-dimethoxyphenyl)-1-neopentyl-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepine-3-acetic acid or its sodium

salt.

8. The optically active 4,1-benzoxazepin-2-one derivative or salt according to claim 1 which is (3R,5S)-7-chloro-5-(4-ethoxy-2-methoxyphenyl)-1-neopentyl-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepine-3-acetic acid or its sodium salt.

9. A squalene synthase inhibitor composition comprising an optically active 4,1-benzoxazepin-2-one derivative of the following formula (I) as an active ingredient.

$$\begin{array}{c|c}
B \\
0 \\
R_1
\end{array}$$
COOX
$$\begin{array}{c}
(I) \\
(R)
\end{array}$$

wherein R_1 represents a lower alkyl group; X represents a hydrogen atom or a metal ion; ring A represents a phenyl group substituted with halogen; ring B represents a phenyl group substituted with a lower alkoxy.

- 10. The squalene synthase inhibitor composition according to claim 9 wherein said lower alkyl group is isobutyl or neopentyl.
- 11. The squalene synthase inhibitor composition according to claim 9 wherein said metal ion is sodium ion or potassium ion.
- 12. The squalene synthase inhibitor composition according to claim 9 wherein said halogen is chlorine.
- 13. The squalene synthase inhibitor composition according to claim 9 wherein said lower alkoxy is methoxy or ethoxy.
- 14. The squalene synthase inhibitor composition according to claim 9 wherein said active ingredient is (3R,5S)-7-chloro-5-(2,3-dimethoxyphenyl)-1-neopentyl-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepine-3-acetic acid or its sodium salt.

- 15. The squalene synthase inhibitor composition according to claim 9 wherein said active ingredient is (3R,5S)-7-chloro-5-(2,4-dimethoxyphenyl)-1-neopentyl-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepine-3-acetic acid or its sodium salt.
- 16. The squalene synthase inhibitor composition according to claim 9 wherein said active ingredient is (3R,5S)-7-chloro-5-(4-ethoxy-2-methoxyphenyl)-1-neopentyl-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepine-3-acetic acid or its sodium salt.
- 17. An antimycotic composition comprising an optically active 4,1-benzoxazepin-2-one derivative of the following formula (I) as an active ingredient.

$$\begin{array}{c|c}
 & B \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

wherein R_1 represents a lower alkyl group; X represents a hydrogen atom or a metal ion; ring A represents a phenyl group substituted with halogen; ring B represents a phenyl group substituted with a lower alkoxy.

- 18. A method for the prophylaxis or treatment for hypercholesterolemia or coronary sclerosis in a mammal which comprises administering a pharmaceutical effective amount of the compound claimed in claim 1, to a mammal in need thereof.
- 19. A method for the prophylaxis or treatment for mycotic diseases in a mammal which comprises administering a pharmaceutical effective amount of the compound claimed in claim 1, to a mammal in need thereof.
- 20. Use of the compound claimed in claim 1, for the manufacture of a medicament to be used as a prophylactic

or therapeutic drug for hypercholesterolemia or coronary sclerosis.

- 21. Use of the compound claimed in claim 1, for the manufacture of a medicament to be used as a prophylactic or therapeutic drug for mycotic diseases.
- 22. A method for producing the compound claimed in claim 1 which comprises (i) subjecting a compound of the following formula:

wherein all symbols are of the same meaning as defined in claim 1 to optical resolution and (ii), if necessary, dissolving the resultant compound and an alkali metal hydroxide in an alcoholic solvent.

23. The method according to claim 22, which comprises reacting the compound with an optically active amine.

INTERNATIONAL SEARCH REPORT

Inter anal Application No PCT/JP 95/00148

	•			
A. CLASS IPC 6	CO7D267/14 A61K31/55			
According (to International Patent Classification (IPC) or to both national c	classification and IPC		
	SEARCHED			
Minimum d IPC 6	locumentation searched (classification system followed by class CO7D	ification symbols)		
Documenta	tion searched other than minimum documentation to the extent	that such documents are included in the fields s	earched	
Electronic d	lata hase consulted during the international search (name of dat	a base and, where practical, scarch terms used)		
C. DOCUM	TENTS CONSIDERED TO BE RELEVANT			
Category *	Citation of document, with indication, where appropriate, of	the relevant passages	Relevant to claim No.	
A	EP,A,O 567 026 (TAKEDA CHEMICA INDUSTRIES, LTD.) 27 October 1 cited in the application see the whole document, partic 102, 103, 105, 152, 155, 156 a 146-150, examples 114, 118 and	993 ularly pages nd pages	1-23	
A	CHEMICAL ABSTRACTS, vol. 97, n 11 October 1982 Columbus, Ohio, US; abstract no. 127667f, page 731; cited in the application see abstract & JP,A,82 035 576 (TAKEDA CHEM INDUSTRIES, LTD.)		1-23	
Furt	her documents are listed in the continuation of box C.	Y Patent family members are listed	in annex.	
<u> </u>	her documents are listed in the continuation of box C.			
'A' docum consid 'E' earlier filing 'L' docum which citatio 'O' docum other 'P' docum	ent defining the general state of the art which is not lered to be of particular relevance document but published on or after the international	"I later document published after the in or priority date and not in conflict veited to understand the principle or invention "X" document of particular relevance; the cannot be considered novel or cannot involve an inventive step when the considered to involve an inventive step when the control to considered to involve an involve an inventive step when the common to the considered to involve an involve an involve an involve an involve an involve an inventive step with one or invents, such combination being obvi in the art. "&" document member of the same pater	with the application out theory underlying the e claimed invention by the considered to locument is taken alone to claimed invention inventive step when the more other such docu- ous to a person skilled	
	actual completion of the international search	Date of mailing of the international		
7	June 1995	16.06.95		
Name and	Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Td. (+ 31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+ 31-70) 340-3016 Authorized officer Authorized officer Authorized officer			

. 1

INTERNATIONAL SEARCH REPORT

national application No.

DCT.	/ IP	95/	00148
	JI	731	W171

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This into	ernational search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1.	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely: Although claims 18 and 19 are directed to a method of treatment of the
	human/animal body, the search has been carried out and based on the alleged effects of the compounds/compositions.
2.	Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
	ernational Searching Authority found multiple inventions in this international application, as follows:
	·
1. 🗌	As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2.	As all searchable claims could be searches without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.	As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
ا ا ا	No required additional search fees were timely paid by the applicant. Consequently, this international search report is
	restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark	on Protest The additional search fees were accompanied by the applicant's protest.
	No protest accompanied the payment of additional search fees.
1 .	

INTERNATIONAL SEARCH REPORT

Inter mal Application No
PCT/JP 95/00148

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
EP-A-567026	27-10-93	AU-B- CN-A- JP-A-	3700393 1083481 6239843	21-10-93 09-03-94 30-08-94

Form PCT/ISA/210 (patent family annex) (July 1992)