Induction

Stephen Styles

November 25, 2019

1. Prove by induction that
$$\sum_{k=1}^{n} k = \frac{n(n-1)}{2}$$

2. Prove by induction that
$$\sum_{k=1}^{n} k^2 = \frac{n(n-1)(2n-1)}{6}$$

3. Prove by induction that $n^3 - n$ is divisible by 3 for all positive integers.

4. Prove that the sequence $x_{n+1} = \frac{x_n + \sqrt{3x_n}}{2}$ is an increasing sequence where $x_1 = 1$.

5. Prove that $n! > 2^n$ for all positive integers greater than or equal to 4.

6. Prove that for any real number x > -1 and any positive integer n, $(1+x)^n \ge 1 + nx$.

7. Using induction, prove that the sequence $a_{n+1} = \frac{2a_n}{3+a_n}$ is monotone with $a_1 = 1$ and bounded below by 0.

- 8. A sequence $\{a_n\}$ is given by $a_1 = 2$, $a_n = \sqrt{2 + a_{n-1}}$
 - (a) Show by induction that $\{a_n\}$ is increasing and bounded above by 3.
 - (b) Find $\lim_{a\to\infty} a_n$.