Imprimir domingo, 2 mai 2021, 15:30

Site: AVA - IFPE Recife

Curso: Residência Matemática (Residência Matemática)

Glossário: Glossário - Jardel

Т

Teorema da Bissetriz Interna

Seja ABC um triângulo qualquer. Se a bissetriz interna do ângulo \widehat{BAC} intercepta o lado BC no ponto D, então:

$$\frac{\overline{BD}}{\overline{AB}} = \frac{\overline{CD}}{\overline{AC}}$$

Isto é: O ponto D divide o lado BC em dois segmentos cujos comprimentos são proporcionais aos lados correspondentes.

Observação: O teorema é válido para qualquer bissetriz interna considerada (não é exclusiva à bissetriz interna do ângulo \widehat{BAC}).

Exemplo: Encontrar \overline{AD} , sendo que o segmento BD é uma bissetriz interna do triângulo ABC.

Resolução:

Utilizando o teorema da bissetriz interna, temos que:

$$\frac{\overline{AD}}{\overline{AB}} = \frac{\overline{CD}}{\overline{BC}}$$

Ou seja,

$$\frac{x}{16} = \frac{\frac{8 \cdot \sqrt{3}}{3}}{8}$$

Fazendo a multiplicação cruzada, obtemos:

$$x\cdot 8 = 16\cdot (\frac{8\cdot \sqrt{3}}{3}) \Rightarrow x = \frac{16\cdot (\frac{8\cdot \sqrt{3}}{3})}{8} \Rightarrow x = 16\cdot (\frac{\sqrt{3}}{3}) \therefore x = \frac{16\cdot \sqrt{3}}{3}$$

Demonstração do teorema (feita pelo professor Gustavo Adolfo):

Fontes e outras formulações:

- https://cdnportaldaobmep.impa.br/portaldaobmep/uploads/material_teorico/a3zlqf5kcp3.pdf
- https://portaldaobmep.impa.br/index.php/modulo/ver?modulo=10#

Teorema de Tales

Sejam r_1 , r_2 e r_3 retas paralelas entre si. Se as retas secantes s e t interceptam as retas r_1 , r_2 e r_3 , respectivamente, nos pontos A, B, C e A', B' e C', como ilustrado pela figura abaixo, então temos que:

$$\frac{\overline{AB}}{\overline{BC}} = \frac{\overline{A'B'}}{\overline{B'C'}} \qquad \qquad \frac{\overline{AB}}{\overline{AC}} = \frac{\overline{A'B'}}{\overline{A'C'}} \qquad \qquad \frac{\overline{BC}}{\overline{AC}} = \frac{\overline{B'C'}}{\overline{A'C'}}$$

Isto é: A proporção entre os comprimentos dos segmentos de uma reta secante é a mesma para segmentos correspondentes de outra reta secante (Isso independe da reta secante, desde que sejam considerados segmentos correspondentes).

Observação: O teorema ainda é valido se tivermos apenas duas retas paralelas ou se tivermos mais de três retas paralelas. O mesmo pode ser dito para as retas secantes.

Exemplo: Encontrar \overline{AB} , sendo que r_1 , r_2 e r_3 compõem um feixe (conjunto) de retas paralelas e as retas s e t são retas que interceptam as retas do feixe.

Resolução:

Utilizando o teorema de Tales, temos que:

$$\frac{\overline{AB}}{\overline{BC}} = \frac{\overline{A'B'}}{\overline{B'C'}}$$

Ou seja:

$$\frac{x}{20} = \frac{3}{16}$$

Fazendo a multiplicação cruzada, obtemos:

$$16 \cdot x = 3 \cdot 20 \Rightarrow 16x = 60 \Rightarrow x = \frac{60}{16} : x = \frac{15}{4}$$

ou

$$x = 3,75$$

Fontes e outras formulações:

- https://portaldaobmep.impa.br/index.php/modulo/ver?modulo=10#
- https://cdnportaldaobmep.impa.br/portaldaobmep/uploads/material_teorico/dsvqlq1lrux4.pdf
- https://en.wikipedia.org/wiki/Intercept_theorem#Formulation