MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 2, 2018/2019

BMS 1824 - MANAGERIAL STATISTICS

(All sections / Groups)

4 MAC 2019 9.00 a.m – 11.00 a.m (2 Hours)

INSTRUCTIONS TO STUDENTS

- This question paper consists of ELEVEN (11) printed pages with: Section A: Ten (10) multiple-choice questions (20%)
 Section B: Three (3) structured questions (80%)
- 2. Answer all questions.
- 3. Answer Section A and Section B in the answer booklet provided.
- 4. Formula and Statistical tables are attached at the end of the question paper.
- 5. Students are allowed to use non-programmable scientific calculators with no restrictions.

NAA

SECTION A: MULTIPLE CHOICE QUESTIONS (20 MARKS)

There are TEN (10) questions in this section. Answer ALL questions on the answer booklet.

1.	A discrete variable is a variable whose value is A. constant
	B. fixed
	C. uncountable
	D. countable
2.	Type of hair colors is example of
	A. qualitative variable
	B. quantitative variable
	C. discrete variable
	D. continuous variable
3.	Population standard deviation are denoted by
	A. s
	B. s^2
	C. σ
	D. σ^2
4.	Given the raw data
	198 255 287 207 176 224 215 208 241
	Calculate the sample mean.
	A. 221.76
	B. 243.67
	C. 223.44
	D. 220.56
5.	The likelihood of two events occurring together and at the same point in time is a
	A. series probability
	B. conditional probability
	C. joint probability
	D. dependent probability
6.	When two fair coin are tossed, what is the probability that two tails is observed?
	A. $\frac{1}{4}$
	D 3
	D. 4
	C. $\frac{3}{2}$
	A. $\frac{1}{4}$ B. $\frac{3}{4}$ C. $\frac{3}{2}$ D. $\frac{1}{2}$ Continued
	Continued

1/11

- 7. The number of newspapers sold is an example of
 - A. Continuous random variable
 - B. Discrete random variable
 - C. Normal distribution
 - D. Cummulative distribution
- 8. Given a standard normal distribution, find P(z < 1.84).
 - A. 0.7807
 - B. 0.8051
 - C. 0.0329
 - D. 0.9671
- 9. The value of statistic that is used to estimate the value of a parameter is called
 - A. confidence interval
 - B. point estimate
 - C. significance level
 - D. sample size
- 10. In a hypothesis testing procedure, H_0 represents a
 - A. null hypothesis
 - B. alternative hypothesis
 - C. sample mean
 - D. population mean

Continued...

NAA 2/11

SECTION B: STRUCTURED QUESTIONS (80) MARKS)

There are THREE (3) questions in this section. Candidates MUST answer ALL questions.

Question 1 (30 Marks)

a) A discrete random variable can assume four possible values, as listed below:

x	1	2	3	4
P(X=x)	0,3	а	0,25	0.2

i) Find the value of a.

(3 marks)

ii) Find the probability that X is less than 2.

(2 marks)

iii) Calculate the mean and standard deviation of random variable X.

(8 marks)

- b) In a large shipment of books, the probability of the book will be in a bad condition is 0.10. By using the binomial formula, find
 - i) the probability that in a random sample of 10 books, 3 will be in a bad condition. (5 marks)
 - ii) the mean and standard deviation of this distribution.

(5 marks)

- c) The average of number of customers come to a coffee house is 6 for every 1 hour. Find the probability that during an hour, the number of customers who will come to a coffee house is exactly 10. (3 marks)
- d) The life span of a lorry is assumed to be normally distributed with a mean of 30 years and a standard deviation 0f 5 years. Find the probability that the life span of any given lorry is less than 33 years.

(4 marks)

Question 2 (25 Marks)

a) A manager of a used car company wants to estimate the population mean price (in RM1000) of a five-year old 1800cc car. A random sample of 10 cars has been selected and obtains the following data:

25	23	23	22	29
27	26	25	29	29

i) Calculate the sample mean and sample standard deviation. (7 marks)

ii) Construct a 90% confidence interval for the population mean price of a five-year old 1800cc car. Assume that the population standard deviation is 2.70. (5 marks)

Continued...

NAA 3/11

- iii) Construct a 95% confidence interval for the population mean price of a fiveyear old 1800cc car. Assume that the population standard deviation is 2.70. (5 marks)
- b) Previous study done by HR department of Company A found that the population mean and population standard deviation starting salary of a fresh graduate is RM2500 and RM225 respectively. The financial analyst of the same company want to test whether the starting salary has changed. A recently taken random sample of 100 such positions found a mean starting salary of RM2700 with a variance of RM220. Would you conclude that the manager's claim is true at 10% significance level?
 (8 marks)

Question 3 (25 Marks)

a) Super Mart is interested in comparing its male and female customers. Super Mart would like to know if its female charge customers spend more money, on average, than its male charge customers. They have collected random samples of 20 female customers and 18 male customers. The result obtained below:

Sales (Female)	Sales (Male)
n =20	n = 18
$\bar{x} = \$100.50$	$\bar{x} = 78.50
s = \$8.25	s = \$6.25

Test at the 10% level of significance whether the data provide sufficient evidence to conclude that female charge customers spend more money than its male charge customer.

(12 marks)

b) Financial analyst of Fantastic Toys wants to examine the relationship between the size (ft^2) of a store and its annual sales (million \$). A sample of 14 stores is selected and the regression analysis yield the following output.

ANOVA				
	df	SS	MS	\overline{F}
Regression	1	105,748	105.748	113.234
Residual	12	11.207	0.9339	
Total	13	116.954		
-		Standard		
7-	Coefficients	Error	t Stat	P-value
Intercept	0.96447	0.52619	1.8329	0.0917
(X)	1.6699	0.15693	10.6411	1.82E-07

Continued...

NAA 4/11

i) Based on the summary output, find the least square regression line:

y = ax + b. (3 marks)

- ii) Compute the coefficient of determination. (3 marks)
- c) A research has been done to compare the sale prices for year 2016 and 2017. Create a simple index by using 2017 as the base year.

Commodity	2016	2017
A	30	20
В	70	50
С	90	110
D	100	120
E	130	100
F	70	50
G	50	80

(7 marks)

End of Page.

NAA 5/11

STATISTICAL FORMULAE

A. DESCRIPTIVE STATISTICS

Mean
$$(\bar{x}) = \frac{\sum\limits_{i=1}^{n} X_i}{n}$$

Standard Deviation (s) =
$$\sqrt{\frac{\sum_{i=1}^{n} X_i^2}{n-1} - \frac{(\sum_{i=1}^{n} X_i)^2}{n(n-1)}}$$

Coefficient of Variation (CV) = $\frac{\sigma}{\overline{X}} \times 100$

Pearson's Coefficient of Skewness $(S_k) = \frac{3(\overline{X} - Median)}{s}$

B. PROBABILITY

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

 $P(A \text{ and } B) = P(A) \times P(B)$ if A and B are independent

$$P(A \mid B) = P(A \text{ and } B) \div P(B)$$

Poisson Probability Distribution

If X follows a Poisson Distribution, $P(\lambda)$ where $P(X = x) = \frac{e^{-\lambda} \lambda^x}{x!}$

then the mean = $E(X) = \lambda$ and variance = $VAR(X) = \lambda$

Binomial Probability Distribution

If X follows a Binomial Distribution B(n, p) where $P(X = x) = {}^{n}C_{x}p^{x}q^{n-x}$

then the mean = E(X) = np and variance = VAR(X) = npq where q = 1-p

Normal Distribution

If X follows a Normal distribution, $N(\mu, \sigma)$ where $E(X) = \mu$ and $VAR(X) = \sigma^2$

then
$$Z = \frac{X - \mu}{\sigma}$$

C. EXPECTATION AND VARIANCE OPERATORS

$$E(X) = \sum [X \bullet P(X)]$$

$$VAR(X) = E(X^2) - [E(X)]^2$$
 where $E(X^2) = \sum [X^2 \cdot P(X)]$

If
$$E(X) = \mu$$
 then $E(cX) = c \mu$, $E(X_1 + X_2) = E(X_1) + E(X_2)$

If
$$VAR(X) = \sigma^2$$
 then $VAR(cX) = c^2 \sigma^2$,

$$VAR(X_1 + X_2) = VAR(X_1) + VAR(X_2) + 2 COV(X_1, X_2)$$

where
$$COV(X_1, X_2) = E(X_1X_2) - [E(X_1) E(X_2)]$$

NAA 6/11

D. CONFIDENCE INTERVAL ESTIMATION AND **SAMPLE** SIZE DETERMINATION

 $(100 - \alpha)$ % Confidence Interval for Population Mean (σ Known) =

$$\mu = \overline{X} \pm Z_{\alpha/2} \left(\frac{\sigma}{\sqrt{n}} \right)$$

 $(100 - \alpha)$ % Confidence Interval for Population Mean (σ Unknown) =

$$\mu = \overline{X} \pm t_{\alpha/2, n-1} \left(\sqrt[s]{\sqrt{n}} \right)$$

 $(100 - \alpha)\%$ Confidence Interval for Population Proportion = $\hat{p} \pm Z_{\alpha/2}\sigma_{n}$

Where
$$\sigma_{\hat{p}} = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

Sample Size Determination for Population Mean $= n \ge \left\lceil \frac{(Z_{\alpha/2})\sigma}{F} \right\rceil^2$

Sample Size Determination for Population Proportion = $n \ge \frac{(Z_{\alpha/2})^2 \hat{p}(1-\hat{p})}{\epsilon^2}$

Where E = Limit of Error in Estimation

HYPOTHESIS TESTING

One Sample Mean Test						
Standard Deviation (G) Known	Standard Deviation (G) Not Known					
$Z = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}}$	$t = \frac{\bar{x} - \mu}{s / \sqrt{n}}$					

One Sample Proportion Test

$$z = \frac{\hat{p} - p}{\sigma_p} \qquad \text{where } \sigma_p = \sqrt{\frac{p(1-p)}{n}}$$

Two Sample Mean Test

Standard Deviation (5) Known

$$z = \frac{\overline{(x_1 - x_2)} - (\mu_1 - \mu_2)}{\sqrt{\sigma_1^2 / n_1 + \sigma_2^2 / n_2}}$$

NAA

Standard Deviation (5) Not Known

$$t = \frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)}{\sqrt{S_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

where $S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{(n_1 + n_2 - 2)}$

$$Z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{p(1-p)\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} \quad \text{where } p = \frac{X_1 + X_2}{n_1 + n_2}$$

where X_1 and X_2 are the number of successes from each population

7/11

F. REGRESSION ANALYSIS

Simple Linear Regression

Population Model: $Y = \beta_0 + \beta_1 X_1 + \varepsilon$

Sample Model: $y = b_0 + b_1 x_1 + e$

Correlation Coefficient

$$r = \frac{\sum XY - \left[\frac{\sum X \sum Y}{n}\right]}{\sqrt{\left[\sum X^2 - \left((\sum X)^2 / n\right)\right]\left[\sum Y^2 - \left((\sum Y)^2 / n\right)\right]}} = \frac{cov(X, Y)}{\sigma_X \sigma_Y}$$

ANOVA Table for Regression

Source	Degrees of Freedom	Sum of Squares	Mean Squares					
Regression	1	SSR	MSR = SSR/1					
Error/Residual	n-2	SSE	MSE = SSE/(n-2)					
Total	n-1	SST						

Test Statistic for Significance of the Predictor Variable

$$t_i = \frac{b_i}{S_{b_i}}$$
 and the critical value = $\pm t_{\alpha/2,(n-p-1)}$

Where p = number of predictor

G. INDEX NUMBERS

Simple Price Index	Laspeyres Quantity Index
$P = \frac{p_t}{p_0} \times 100$	$P = \frac{\sum p_0 q_t}{\sum p_0 q_0} \times 100$
Aggregate Price Index	Paasche Quantity Index
$P = \frac{\sum p_t}{\sum p_0} (100)$	$P = \frac{\sum p_t q_t}{\sum p_t q_0} \times 100$
Laspeyres Price Index	Fisher's Ideal Price Index
$P = \frac{\sum p_t q_0}{\sum p_0 q_0} \times 100$	$\sqrt{\text{(Laspeyres Price Index)(Paa sche Price Index)}}$
Paasche Price Index	Value Index
$P = \frac{\sum p_t q_t}{\sum p_0 q_t} \times 100$	$V = \frac{\sum p_t q_t}{\sum p_0 q_0} \times 100$

NAA 8/11

STATISTICAL TABLE

TABLE 4. THE NORMAL DISTRIBUTION FUNCTION

The function tabulated is $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{1}{2}t^2} dt$. $\Phi(x)$ is

the probability that a random variable, normally distributed with zero mean and unit variance, will be less than or equal to x. When x < 0 use $\Phi(x) = x - \Phi(-x)$, as the normal distribution with zero mean and unit variance is symmetric about zero.

æ	$\Phi(x)$	æ	$\Phi(x)$	22	$\Phi(x)$	20	$\Phi(x)$	30	$\Phi(x)$	36	$\Phi(\omega)$
0.00	0.2000	0.40	0.6554	0.80	0.7881	1.30	0.8849	ж-бо	0.9452	2100	0.97725
·oz	5040	-41	-6591	-8x	7910	.31	-8869	-6x	·9463	.or	.97778
.02	.2080	-42	6628	-82	7939	.32	-8888	-62	*9474	.02	197831
.03	5120	43	.6664	·8 ₃	7967	*23	.8907	-63	·9484	.03	197882
.04	-5160	.44	.6700	·84	7995	.24	8925	-64	19495	·04	97932
	3.00		-,		.,,,,	•		-			
0.02	0.2100	0.45	0.6736	0.85	0.8023	1.25	0-8944	1.65	0.0202	3.02	0.97982
'06	-5239	-46	6772	-86	·8051	-26	-8962	-66	9515	-05	. 68030
107	.5279	.47	6868	.87	8078	-27	•8 <u>9</u> 80	-67	.9525	.07	.08022
·08	.5319	-48	.6844	-88	-8106	.28	-8997	-68	9535	*0S	98124
.09	5359	*49	6879	·89	·8133	.53	-9015	-69	.9545	.03	-98169
			6		0.8129	1.30	0-9032	1.70	0.9554	2.10	0.98214
0.X0	0.2398	0.20	0.6915	0.90	-8186	-3I	9032	·7x	9564	·IX	98257
*XX	*5438	·5x	·6950	.9z	*8212	-32	19066	.72	9573	12	-98300
12	•5478	:52	-6985	.92	·8238	*33	·9082	.73	·9582	'13	·9834x
.x3	.2212	'53	7019	'93	8264		19099	.74	.0201	-14	-98382
1.4	*5557	'54	7054	.94	-020 4	*34	9099	A***	303*	-4	y-3-4
0.15	0.5596	0.55	0.7088	0.02	0.8289	1.32	0.9112	1.75	0.9599	2-15	0.08422
· z6	-5636	.56	.7123	.96	-8315	.36	*9131	-76	-9608	-z6	198461
-17	.5675	.57	7157	-97	.8340	-37	9147	-77	-9616	-17	-98500
81.	.5714	-58	.7190	198	-8365	.38	9162	.78	-9625	·18	98537
ex.	5753	.20	-7224	.99	48389	'39	9177	'79	.8633	.19	-98574
		0.60		x.00	0.8413	1.40	0.0102	1.8 0	0.064x	2-20	0.08610
0.20	0.5793	-6x	0.7257	10.	8438	'4I	9207	·8x	9649	-21	98645
.3I	15832		7291	.03	·846I	.42	.9222	-82	-9656	-22	-98679
22	·2871	-62	7324		18485	43	9236	.83	-9664	123	-98773
23	-5910	-63	7357	-03 -04	-8508	*44	9251	-84	-967x	.24	98745
24	.5948	⁺64	-7389	-04	~0500	44	9~3		90/1		
0.25	0.5087	0.65	0.7422	1.02	o-8531	¥*45	0.9265	x-85	a-9678	2.25	0.98778
-26	·6026	.66	7454	-06	8554	-46	9279	-86	·9686	-26	-98809
.27	-6064	-67	7486	07	8577	.47	9292	-87	-9693	*27	·98840
28	-6103	-68	7517	-08	8500	48	-9306	-88	•9699	•28	-98870
-29	6141	-69	'75 49	.09	·8621	49	9319	۰89	-9706	.29	-98899
					0.5				A+0270	2.30	0.08028
0.30	0.6179	0.70	0-7580	1.10	0.8643	1.20	0.0332	1.00	0.9713	.3x	198926
.3x	-6217	-7x	·76xx	-3.2	-8665	.2x	9345	·9z	.9719	-	.08083
.32	-6255	.72	7642	12	-8686	-52	9357	.03	-9726	.32	.00010
-33	6293	.73	-7673	.x3	-8708	-53	9370	-93	.9732	'33	-99036
'34	•6331	*7 4	7704	-14	.8729	'54	-9382	*94	-9738	'34	-99030
0.35	0.6368	0.75	0.7734	1-15	0.8749	T'55	0.9394	1.95	0-9744	2:35	0-9906I
-36	.6496	.76	.7764	-x6	-8770	-56	.9406	-96	-9750	·36	-99086
*37	6443	.77	.7794	.17	-8790	.57	-9418	-97	-9756	*37	.00111
.38	6480	-78	7823	·x8	·8810	.58	9429	-98	.9761	.38	99134
-39	6517	79	.7852	.19	-8830	.59	'944X	.99	9767	.39	.99128
	0.6554	0.80	0.7881	1.30	0.8840	1.60	0.9452	2.00	0.9772	2.40	0-99180
0.40	J-0554	0.00	A 1001	4 40	2 0044	- 00	- 545		,,,	-	* *

NAA 9/11

TABLE 4. THE NORMAL DISTRIBUTION FUNCTION

00	$\Phi(x)$	æ	$\Phi(x)$	œ	$\Phi(x)$	æ	$\Phi(x)$	æ	$\Phi(x)$	æ	$\Phi(x)$
2.40	0.90180	2.55	0.99461	2.70	0.99653	2.85	0.99781	3.00	0.99862	3.12	0.99918
41	99202	.56	99477	7.1	99664	-86	.99788	·OI	-99869	.16	99921
42	99224	-57	99492	'72	99674	87	99795	.02	99874	·17	99924
43	99245	158	199506	'73	.99683	-88	10800	-03	-99878	18	199926
44	99266	159	99520	74	.00603	-89	.99807	.04	99882	.19	99929
2.45	0.99286	2.60	0.99534	2.75	0199702	2.90	0.00813	3.02	0.00886	3.30	0.00031
46	99305	·6x	99547	.76	99711	.ox	·99819	.06	-99889	.21	199934
47	99324	62	99560	77	90720	.92	99825	.07	.00803	22	99936
48	99343	•63	99573	-78	199728	.93	·99831	-08	.99896	23	99938
49	.99361	.64	99585	.79	99736	94	99836	.09	99900	24	-99940
2.20	0.99379	2.65	0.99298	2.80	0'99744	2.02	0.99841	3.10	0.99903	3:25	0.99942
·51	99396	-66	-99609	·81	99752	-96	99846	·II	199906	26	99944
52	99413	-67	99621	-82	-99760	.97	·9985x	12	99920	-27	99946
53	99430	-68	-99632	-83	99767	98	99856	'13	.999±3	28	99948
54	99446	-69	99643	-84	99774	.99	99861	114	99916	-29	199950
2.55	0.99461	2.70	0-99653	2.85	0-99781	3.00	0.99865	3·15	0.99918	3.30	0.99952

The critical table below gives on the left the range of values of x for which $\Phi(x)$ takes the value on the right, correct to the last figure given; in critical cases, take the upper of the two values of $\Phi(x)$ indicated.

2:075	3°263 0°9995 3°320 0°9995	3.73x 0.99990 3.759 0.99992 3.79x 0.99992 3.826 0.99993	2:016 0:09995
3 0,2 0,0000	3 203 0.9995	9 737 0.99991	3 910 0-99996
3 103 0.0991	0 9996	3 /39 0.99992	3 970 0199997
3 3 0.9992	3.309 0.9997	3 79 0.99993	4.055 0.00008
3.174 0.0003	3.460 0.9998	3.020 0.00004	4*173 0.00000
3.075 3.x05 0.9991 3.x38 0.9992 3.x74 0.9993 3.2x5 0.9994	3-389 0-9996 3-389 0-9997 3-480 0-9998 3-6×5 0-9999	3.867 0.99994	3.916 0.99995 3.976 0.99996 4.955 0.99997 4.173 0.99999 4.417 1.00000

When x > 3.3 the formula $1 - \Phi(x) = \frac{e^{-ix^2}}{x\sqrt{2\pi}} \left[1 - \frac{1}{x^2} + \frac{3}{x^4} - \frac{15}{x^6} + \frac{105}{x^8} \right]$ is very accurate, with relative error less than $945/x^{10}$.

TABLE 5. PERCENTAGE POINTS OF THE NORMAL DISTRIBUTION

This table gives percentage points x(P) defined by the equation

$$\frac{P}{100} = \frac{1}{\sqrt{2\pi}} \int_{x(P)}^{\infty} e^{-\frac{1}{2}t^2} dt.$$

If X is a variable, normally distributed with zero mean and unit variance, P/100 is the probability that $X \ge x(P)$. The lower P per cent points are given by symmetry as -x(P), and the probability that $|X| \ge x(P)$ is 2P/100.

\boldsymbol{P}	$\kappa(P)$	P	x(P)	\boldsymbol{P}	$\kappa(P)$	P	x(P)	P	z(P)	P	$\alpha(P)$
50	0.0000	5.0	1.6449	3.0	x-8808	2.0	2.0537	x.o	2.3263	0.10	3.0002
45	0.1257	4.8	1.6646	29	1-8957	x-9	2.0749	0.0	2.3656	0.09	3'1214
40	0.2533	4-6	1.6849	2.8	1.0110	I.8	2.0969	0.8	2.4089	0.08	3-7559
35	0.3823	4.4	1.7060	2.7	1-9268	1.7	2 1201	0.7	2.4573	0.07	3-1947
30	0.5244	4.3	1.7279	2.6	1.9431	1.6	2-1444	0 6	2-5121	0.06	3.2389
25	0.6745	4.0	1.7507	2.5	1-9600	1.5	2.1701	0.2	2-5758	0.05	3.2905
20	0.8416	3.8	1.7744	2.4	1-9774	I.4	2-1973	0.4	2-6521	O.OI	3.7190
15	1.0364	3.6	1.7991	2.3	1.9954	1.3	2-2262	0.3	2.7478	0.005	3.8906
ro	1.2816	3'4	1.8250	2.2	2.0141	1.3	2.2571	0.3	2.8782	0.00I	4.2649
5	1.6449	3.3	1.8522	2.1	2.0335	I-I	2.2004	O.I	3.0002	0.0002	4.4172

NAA 10/11

.4

TABLE 10. PERCENTAGE POINTS OF THE t-DISTRIBUTION

This table gives percentage points $t_p(P)$ defined by the equation

$$\frac{P}{100} = \frac{1}{\sqrt{\nu_N}} \frac{\Gamma(\frac{1}{4}\nu + \frac{1}{4})}{\Gamma(\frac{1}{4}\nu)} \int_{\frac{1}{4\rho}(P)}^{\infty} \frac{dt}{(r + t^2/\nu)^{\frac{1}{4}(\nu+1)}}.$$

Let X_1 and X_2 be independent random variables having a normal distribution with zero mean and unit variance and a χ^2 -distribution with r degrees of freedom respectively; then $t = X_1/\sqrt{X_1/r}$ has Student's t-distribution with r degrees of freedom, and the probability that $t \ge t_r(P)$ is P/x = 0. The lower percentage points are given by symmetry as $-t_r(P)$, and the probability that $|t| \ge t_r(P)$ is 2P/x = 0.

The limiting distribution of t as ν tends to infinity is the normal distribution with zero mean and unit variance. When ν is large interpolation in ν should be harmonic.

₽	40	30	35	20	±5	10	5	3.2	x	0.2	O.X	0.02
≥ = x	0"3249	0.2262	1.0000	1-3764	1-963	3.078	0-314	12.71	31.82	63.66	318-3	.636-6
2	0.4887	0.6172	0.8165	1.0607	1.386	x-886	8'920	4:303	6.065	0.025	22.33	31/60
3	0.2767	0 5844	07649	0-9785	1-250	r-638	2353	3-182	4.241	5.841	10.31	12.02
4	0.1707	0.2686	07407	0.0410	1.130	×-533	2-132	2.776	3.747	4 604	7'173	8-6x0
5	0.2672	0.5594	0.7267	0.9195	x-x56	1.476	2.015	2.571	3.362	4'032	5-893	6-869
	0.2648	0.5534	0.7176	0.9057	1-134	1.440	T'943	2'447	3'743	3.202	2.303	5.950
7	0.3633	0°5491	0-7111	0'8960	I'II9	1.412	1.895	2.362	3.008	3'499	4-78	5.408
	0.3010	0.5459	0.7064	0.8883	1.108	1.392	T-860	2.300	3.80 0	3.355	4.20.	5.041
9	0.7910	0.5435	0.7027	0-8834	1.100	1.383	1.833	2:262	2.821	3:250	4.29	4·78=
XO	0.3603	0.2412	a-6998	0.8791	11'093	I:372	1-S12	2.228	2.764	3.160	4.144	4.587
**	0-2596	9.5399	0.6974	0.8755	x - 088	1.363	1-796	2-20X	2.718	3-106	4.024	4:437
12	0.3230	05386	0.6955	0.8726	z.083	X 356	1.782	21170	2.68x	3.055	3.030	4.318
x3	0.3586	O'5375	0.6938	0.8702	1.070	1.350	1.771	2'160	2.680	3.013	3.85%	4"231
24	0.3283	0.5366	0.6924	o- 8 68x	1.076	1.345	1-76x	2145	2.624	2.977	3.78	4.140
15	0-3579	O'5357	0.6912	0.8662	I-074	I-34X	1'753	2'131	2.602	2.947	31733	4.073
16	0.2576	0.2320	0-6901	0.8647	1.071	¥'337	1.746	2.130	2.583	2.031	3.686	4 025
17	0'2573	0.5344	0.6802	0.8633	1.060	1,333	1.740	2.110	2:567	2.808	3:646	3 965
xŠ.	O'#57I	0.5338	cr6884	0.8630	1.067	1.330	X*734	2.101	2.552	2.878	3.010	3.022
79	0.2569	0.5333	0.6876	0.8610	1.000	1,358	1.729	2.093	2:539	2.86x	3.579	3.883
20	0.2567	0.2350	0.6870	0.8600	1.004	1.342	7725	2'086	2.528	2.845	3.552	3.850
ar.	0.2566	9.3325	0 6864	0.8291	1.003	1.323	1.431	2.080	2.218	2 83 r	3,244	3.213
22	0'2564	O.2321	0.6828	0.8283	1.00x	1.331	Z-727	2.074	2.208	2.819	3*505	3.454
23	0.3563	0.2312	0.6853	0.8575	1.000	1.319	1714	3.000	2-500	2 507	3.485	3-768
24	0.2562	O-53 =4	o-6848	0.8260	1.059	I.312	ギウエエ	2.064	2.493	2.797	3.467	3.745
25	o-256x	0.2312	0.6844	0.8262	x-058	1.316	11708	2.060	2.485	2.787	3.450	3 725
26	o 2560	0.5309	0.6840	0.8557	1.028	1:315	I: 706	2.056	2.479	2.779	3*435	3'707
27	0.3223	0.2300	0.6837	0.8221	1-057	1-324	I-703	2.023	2:473	2.771	3.421	3.69¢
28	0'2558	0.2304	0.6834	0.8546	1.056	X'313	X: 70X	2.048	2-467	2:763	3-408	3 674
29	0.3557	0.2308	o. 6830	0.8542	1.022	1.321	x 699	2.045	2:462	2.756	3-396	3.659
30	0.3226	0.2300	0.6838	0.8538	1.022	1.310	1 697	2-042	2-457	2.750	3.382	3.646
32	0.3555	0'5297	0.6833	0.8230	1-054	1.300	1.694	2.037	2'449	2.738	3.302	3.622
34	o ≈553	0.2294	0.6818	0.8523	1.023	1.307	1,60x	2-032	244I	2.728	3.348	3.20x
36	0"2552	0.2331	0.6814	0.8517	1.023	1.300	1.688	2-025	2434	2.410	3.333	3.285
38	0.3221	0.2288	D-6810	0.8213	1.021	1.304	z-686	2.034	2.429	2.415	3.310	3.266
40	0'2550	0.2386	0.6807	0.8507	1.050	1.303	1 684	2.021	2.423	2.704	3-307	3.22
50	C-2547	0.2278	0.6794	0.8489	1.042	1.500	1 676	3,000	2.403	2:678	3-261	4
60	0'2545	0 5272	0-6786	0.8477	1.042	1.500	1:671	2.000	5.300	2.660	3.535	
120	0.8239	0-5258	0.6765	0.8446	1.041	1.520	1:658	1.080	2.358	2.617	3.120	3.373
œ	0-2533	0.5244	0.6745	0.8416	1-036	1-282	1 645	1-960	3.336	2.576	3-090	3-29x

NAA . 11/11

