MAC0352 - Redes de Computadores e Sistemas Distribuídos

Daniel Macêdo Batista

IME - USP, 27 de Abril de 2021

Roteiro

Camada de aplicação

Visão geral de sockets

Softwares

Camada de aplicação Visão geral de sockets Softwares Camada de aplicação

Visão geral de sockets

Softwares

Camada de aplicação

Parte 2: Camada de aplicação

Nossos objetivos:

- Conceitual, aspectos de implementação de protocolos de aplicação de redes
 - Modelos de serviço da camada de transporte
 - Paradigma cliente-servidor
 - Paradigma peer-to-peer
 - Aprender sobre protocolos examinando protocolos da camada de aplicação populares:
 - HTTP
 - FTP
 - SMTP/ POP3/ IMAP
 - DNS
- Programação de aplicações de rede
 - Socket API

2

Algumas aplicações de rede

- E-mail
- Web
- Mensagem instantânea
- Login remoto
- P2P file sharing
- Jogos de rede multi-usuário
- Streaming stored videoclipes
- Telefonia via Internet
- Videoconferência em tempo real
- Computação paralela massiva

Criando uma nova aplicação de rede

Escrever programas que

- Executem sobre diferentes sistemas finais e
- Se comuniquem através de uma rede.
- Ex.: Web software de servidor Wel se comunicando com software do browser.

Nenhum software é escrito para dispositivos no núcleo da rede

- Dispositivos do núcleo da rede não trabalham na camada de aplicação
- Esta estrutura permite um rápido desenvolvimento de aplicação

Addison

Wesley

Arquiteturas de aplicação

- Cliente-servidor
- Peer-to-peer (P2P)
- Híbrida de cliente-servidor e P2P

Arquitetura cliente-servidor

Servidor:

- Hospedeiro sempre ativo
- Endereço IP permanente
- Fornece serviços solicitados pelo cliente

Clientes:

- Comunicam-se com o servidor
- Pode ser conectado intermitentemente
- Pode ter endereço IP dinâmico
- Não se comunicam diretamente uns com os outros

a. Aplicação cliente-servidor

Arquitetura P2P pura

- Nem sempre no servidor
- Sistemas finais arbitrários comunicam-se diretamente
- Pares são intermitentemente conectados e trocam endereços IP
- Ex.: Gnutella

Altamente escaláveis mas difíceis de gerenciar

b. Aplicação P2P

Híbrida de cliente-servidor e P2P

Napster

- Transferência de arquivo P2P
- Busca centralizada de arquivos:
 - Conteúdo de registro dos pares no servidor central
 - Consulta de pares no mesmo servidor central para localizar o conteúdo

Instant messaging

- Bate-papo entre dois usuários é P2P
- Detecção/localização centralizada de presença:
 - Usuário registra seu endereço IP com o servidor central quando fica on-line
 - Usuário contata o servidor central para encontrar endereços IP dos vizinhos

Comunicação de processos

Processo: programa executando num hospedeiro

- Dentro do mesmo hospedeiro: dois processos se comunicam usando comunicação interprocesso (definido pelo OS)
- Processos em diferentes hospedeiros se comunicam por meio de troca de mensagens
- Processo cliente: processo que inicia a comunicação
- Processo servidor: processo que espera para ser contatado

Nota: aplicações com arquiteturas P2P possuem processos cliente e processos servidor

Sockets

- Um processo envia/recebe mensagens para/de seu socket
- O socket é análogo a uma porta
 - O processo de envio empurra a mensagem para fora da porta
 - O processo de envio confia na infra-estrutura de transporte no outro lado da porta que leva a mensagem para o socket no processo de recepção.

 API: (1) escolha do protocolo de transporte; (2) habilidade para fixar poucos parâmetros (será explicado mais tarde)

Processos de endereçamento

- Para um processo receber mensagens, ele deve ter um identificador
- Um hospedeiro possui um único endereço IP de 32 bits
- P.: O endereço IP do hospedeiro onde o processo está executando é suficiente para identificar o processo?
- R.: Não, muitos processos podem estar em execução no mesmo hospedeiro.
- O identificador inclui o endereço IP e o número da porta associada ao processo no hospedeiro
- Exemplos de números de porta:
 - Servidor HTTP: 80
 - Servidor de Correio: 25
- (mais detalhes serão mostrados mais tarde)

O protocolo da camada de aplicação define

- Tipo das mensagens trocadas, mensagens de requisição e resposta
- Sintaxe dos tipos de mensagem: os campos nas mensagens e como são delineados
- Semântica dos campos, ou seja, significado da informação nos campos
- Regras para quando e como os processos enviam e respondem às mensagens

Protocolos de domínio público:

- Definidos nas RFCs
- Recomendados para interoperabilidade
- Ex.: HTTP, SMTP

Protocolos proprietários:

• Ex.: KaZaA

Camada de aplicação

Camada de aplicação

Visão geral de sockets

Softwares

Visão geral de sockets

Sockets

Camada de aplicação

Visão geral de sockets

- □ Permitem a escrita de programas que se comunicam via rede
- □ Utilizam serviços da camada de transporte
- □ Necessário mais algumas informações das camadas inferiores

Códigos

Camada de aplicação

Visão geral de sockets

- □ Cliente daytime
- □ Servidor daytime

Camada de aplicação

Visão geral de sockets

nmap

Camada de aplicação

Visão geral de sockets

- □ http://nmap.org/
- □ Lista as portas TCP e UDP abertas em computadores
- Na execução padrão ele busca as portas mais conhecidas para não demorar demais. A busca por todas as portas (de 0 até 65535) consome muito tempo mesmo se executada em uma rede local
- Se ele diz que o servi
 ço é por exemplo SSH, ele sabe disso porque ele entende como um servidor SSH se apresenta. Ele não olha simplesmente a porta no arquivo /etc/services

netstat

Camada de aplicação

Visão geral de sockets

- □ Lista o estado de todos os sockets do computador onde o comando é executado
- Se você escreve um programa servidor usando a API de sockets e executa ele, mesmo sem ter nenhum cliente conectado, a porta utilizada pelo servidor tem que aparecer na saída do netstat

Isof

Camada de aplicação

Visão geral de sockets

- Lista todos os descritores abertos na máquina, inclusive sockets
- Permite descobrir qual o processo que está associado a cada porta apresentada na saída do netstat
- A depender dos parâmetros passados na linha de comando, ao invés do número da porta mostra o nome do protocolo (http, ftp, etc...). Mas ele não tem certeza que o protocolo é aquele, como o nmap faz, pois ele só olha o /etc/services