工科数学分析基础 2

2016年6月24日

- 一、填空题 (每题 6 分,共 30 分)
- 1. 曲面 $x^2 + 2y^2 + 3z = 9$ 在点 (1,1,2) 处的切平面方程是 2(x-1) + 4(y-1) + 3(z-2) = 0 (或 2x + 4y + 3z = 12),法线方程是 $\frac{x-1}{2} = \frac{y-1}{4} = \frac{x-2}{3}$ 。
- 2. 曲面 $x^2 + 2y^2 + 3z^2 = 6$ 在点 $P_0(1,1,1)$ 处指向外侧的单位法向量 $\vec{n} = (\frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}})$, 函数 $u(x,y,z) = x^2 + 2y^2 + 3z^2$ 在点 P_0 沿方向 \vec{n} 的方向导数 $\frac{\partial u}{\partial \vec{n}}\Big|_{P_0} = 2\sqrt{14}$.
- 3. 函数 $f(x) = \frac{1}{1+x}$ 在点 x = 1 处的幂级数为 $\sum_{n=0}^{\infty} (-1)^n \frac{(x-1)^n}{2^{n+1}}$, 收敛域为 |x-1| < 2.
- 4. 设函数 $f(x) = \begin{cases} x^2, 0 \le x \le \frac{1}{2} \\ 1 x, \frac{1}{2} < x < 1 \end{cases}$ 的 Fourier 级数是: $\sum_{n=1}^{\infty} b_n \sin n\pi x$, $x \in (-\infty, +\infty)$,

其和函数是S(x), 其中 $b_n = 2\int_0^1 f(x) \sin n\pi x dx$ $(n=1,2,\cdots)$, 则 $S\left(-\frac{1}{2}\right) = \frac{3}{8}$, S(9) = 0

5. 二次积分
$$I = \int_0^1 dy \int_y^1 \cos x^2 dx = \frac{1}{2} \sin 1$$
; $I = \oint_L (x^2 + \sin y + \sqrt{x^2 + y^2}) ds = \underline{2\pi a^2 + \pi a^3}$, 其中 L 为圆周 $x^2 + y^2 = a^2$ 。

- 二、单项选择题 (每题 4 分,共 20 分)
- 1. 微分方程组 $\begin{cases} y_1' = 3y_1 + 4y_2 \\ y_2' = 5y_1 + 2y_2 \end{cases}$ 的通解为(A)

(A)
$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = c_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{7x} + c_2 \begin{pmatrix} 4 \\ -5 \end{pmatrix} e^{-2x}$$
; (B) $\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = c_1 \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{7x} + c_2 \begin{pmatrix} 4 \\ -5 \end{pmatrix} e^{-2x}$;

(C)
$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = c_1 \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{7x} + c_2 \begin{pmatrix} 4 \\ 5 \end{pmatrix} e^{-2x}$$
; (D) $\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = c_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{7x} + c_2 \begin{pmatrix} 4 \\ 5 \end{pmatrix} e^{-2x}$.

2. 设 $z = f(xy, \frac{1}{2}(x^2 - y^2))$,其中f具有二阶连续偏导数,则 $\frac{\partial^2 z}{\partial x \partial y} = ($ A)

(A)
$$xy(f_{11}'' - f_{22}'') + f_1' + (x^2 - y^2)f_{12}''$$
; (B) $xy(f_{11}'' + f_{22}'') + f_1' + (x^2 - y^2)f_{12}''$;

(C)
$$xy(f_{11}'' + f_{22}'') + f_1' + (x^2 + y^2)f_{12}''$$
; (D) $xy(f_{11}'' - f_{22}'') + f_1' + (x^2 + y^2)f_{12}''$ o

- 3. 向量场 $\vec{A}(x,y,z) = (2x+y,2x-y,y-z)$ (**B**)
 - (A) 既是无源场又是无旋场; (B) 是无源场但不是无旋场;
 - (C) 是无旋场但不是无源场; (D) 既不是无源场又不是无旋场。
- 4. 均匀锥面 $\sum : z^2 = x^2 + y^2, 0 \le z \le 1$ 的质心坐标是(0,0,z),则z = (C)

(A)
$$\frac{1}{3}$$
 (B) $\frac{1}{2}$ (C) $\frac{2}{3}$ (D) $\frac{3}{4}$

5. 设交错级数 $\sum_{n=1}^{\infty} (-1)^{n+1} u_n$ 条件收敛, 其中 $u_n > 0, n = 1, 2, \dots$, 以下命题中正确的是(**D**)

(A)
$$\sum_{n=1}^{\infty} u_{2n-1}$$
 收敛 , $\sum_{n=1}^{\infty} u_{2n}$ 发散; (B) $\sum_{n=1}^{\infty} u_{2n-1}$ 发散 , $\sum_{n=1}^{\infty} u_{2n}$ 收敛;

(C)
$$\sum_{n=1}^{\infty} u_{2n-1}$$
 和 $\sum_{n=1}^{\infty} u_{2n}$ 均收敛; (D) $\sum_{n=1}^{\infty} u_{2n-1}$ 和 $\sum_{n=1}^{\infty} u_{2n}$ 均发散。

三. (10 分) 求微分方程 $y'' - 5y' + 6y = e^{2x}$ 的通解。

解:特征方程 $r^2 - 5r + 6 = 0$,特征根 $r_1 = 2, r_2 = 3$

齐次方程通解
$$Y(x) = c_1 e^{2x} + c_2 e^{3x}$$
 (4分)

特解形式
$$y^*(x) = x^k \cdot Q_m(x) \cdot e^{\lambda x} = Axe^{2x}$$
 (7分)

将 $y^*(x)$ 代入原方程并整理得: A = -1, 所以 $y^*(x) = -xe^{2x}$,

∴通解
$$y(x) = c_1 e^{2x} + c_2 e^{3x} - x e^{2x}$$
 (10 分)

三、(微积分) 求二重积分 $I = \iint_D \sqrt{x^2 + y^2} dx dy$, 其中 $D = \{(x, y) | 0 \le y \le x, x^2 + y^2 \le 2x \}$ 。

解:
$$I = \int_0^{\frac{\pi}{4}} d\theta \int_0^{2\cos\theta} r \bullet r dr$$
 (4 分)

$$= \frac{8}{3} \int_0^{\frac{\pi}{4}} \cos^3 \theta d\theta = \frac{8}{3} \int_0^{\frac{\pi}{4}} (1 - \sin^2 \theta) d\sin \theta = \frac{8}{3} \left[\sin \theta - \frac{1}{3} \sin^3 \theta \right]_0^{\frac{\pi}{4}} = \frac{10}{9} \sqrt{2}$$
 (10 \(\frac{\frac{1}}{3}\))

四、(10 分) 已知幂级数 $\sum_{n=2}^{\infty} (n^2 - n)x^n$, 求:1、收敛域; 2、和函数。

解: 1、收敛半径
$$R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n \to \infty} \frac{n^2 - n}{(n+1)^2 - (n+1)} = 1$$

x = -1 时,级数为 $\sum_{n=2}^{\infty} (-1)^n (n^2 - n)$,发散; x = 1 时,级数为 $\sum_{n=2}^{\infty} (n^2 - n)$,发散。

所以收敛域为(-1,1)。 (4分)

2.
$$\Leftrightarrow S(x) = \sum_{n=2}^{\infty} (n^2 - n)x^n = x^2 \sum_{n=2}^{\infty} n(n-1)x^{n-2} = x^2 \bullet S_1(x)$$
, $\sharp \psi S_1(x) = \sum_{n=2}^{\infty} n(n-1)x^{n-2}$,

$$\int_0^x S_1(x)dx = \int_0^x \left(\sum_{n=2}^\infty n(n-1)x^{n-2}\right)dx = \sum_{n=2}^\infty \int_0^x n(n-1)x^{n-2}dx = \sum_{n=2}^\infty nx^{n-1}$$

$$\int_0^x \left(\int_0^x S_1(x) dx \right) dx = \int_0^x \left(\sum_{n=2}^\infty n x^{n-1} \right) dx = \sum_{n=2}^\infty \int_0^x n x^{n-1} dx = \sum_{n=2}^\infty x^n = \frac{x^2}{1-x} ,$$

所以
$$S_1(x) = (\frac{x^2}{1-x})^n = \frac{2}{(1-x)^3}$$
,

从而
$$S(x) = \frac{2x^2}{(1-x)^3}$$
。 (10 分)

五、(10 分) 求曲面积分 $I = \iint_{\Sigma} \frac{(xy^2 + 2xy) dy dz + (yz^2 + xy) dz dx + (x^2 z + y) dx dy}{x^2 + y^2 + z^2}$, 其中 \sum 是

下半球面 $z = -\sqrt{1-x^2-y^2}$, 取下侧。

解:将曲面方程 $x^2 + y^2 + z^2 = 1$ 代入化简得

$$I = \iint_{\Sigma} (xy^2 + 2xy) \, dy dz + (yz^2 + xy) dz dx + (x^2 z + y) dx dy, \qquad (2 \%)$$

补有向曲面 \sum_{1} : z = z(x, y) = 0 $(x^{2} + y^{2} \le 1)$, 取上侧。

由高斯公式,
$$I + \iint_{\Sigma_1} = \iint_{\Omega} (x^2 + y^2 + z^2 + x + 2y) dV$$
, (5分)

由对称性,得 $\iint_{\Omega} x dV = \iint_{\Omega} 2y dV = 0$,

$$\iiint_{\Omega} (x^2 + y^2 + z^2) dV = \int_0^{2\pi} d\theta \int_{\frac{\pi}{2}}^{\pi} \sin \varphi d\varphi \int_0^1 r^4 dr = \frac{2\pi}{5},$$

$$\prod_{\sum_{1}} (xy^{2} + 2xy) \, dydz + (yz^{2} + xy) dzdx + (x^{2}z + y) dxdy = \iint_{\sum_{1}} y dxdy = \iint_{D_{xy}:x^{2} + y^{2} \le 1} y dxdy ,$$

由对称性,得
$$\iint\limits_{D_{xy}:x^2+y^2\leq 1} y dx dy = 0$$
,故 $I = \frac{2\pi}{5}$ 。 (10 分)

六、**(10** 分**)** 计算曲线积分 $I = \oint_L \frac{x \, dy - y \, dx}{a^2 x^2 + b^2 y^2} (a, b > 0, a \neq b)$,其中 L 是以点(1,1) 为中心, $R(R > \sqrt{2})$ 为半径的圆周,取逆时针方向。

解:
$$P = \frac{-y}{a^2x^2 + b^2y^2}, Q = \frac{x}{a^2x^2 + b^2y^2}, \frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} = \frac{b^2y^2 - a^2x^2}{(a^2x^2 + b^2y^2)^2}$$
, (2分)

取充分小的正数 ε ,补有向曲线C: $a^2x^2+b^2y^2=\varepsilon^2$,取顺时针方向。由格林公式,

$$I + \oint_C \frac{x \, dy - y \, dx}{a^2 x^2 + b^2 y^2} = \iint_D 0 \, dx \, dy = 0 ,$$
 (5 分)

所以
$$I = \oint_{C^{-}} \frac{x \, dy - y \, dx}{a^2 x^2 + b^2 y^2} = \frac{1}{\varepsilon^2} \oint_{C^{-}} x \, dy - y \, dx = \frac{1}{\varepsilon^2} \iint_{a^2 x^2 + b^2 y^2 < \varepsilon^2} 2 dx dy = \frac{2}{\varepsilon^2} \bullet \pi \bullet \frac{\varepsilon}{a} \bullet \frac{\varepsilon}{b} = \frac{2\pi}{ab}$$
 (10 分)

七、(10分) 求函数 $f(x,y) = x^3 + y^3 + 3x^2 + 3y^2$ 在 $x^2 + y^2 \le 1$ 上的最大值。

解: 在
$$x^2 + y^2 < 1$$
 内部,由
$$\begin{cases} f_x = 3x^2 + 6x = 0 \\ f_y = 3y^2 + 6y = 0 \end{cases}$$
 得
$$\begin{cases} x_1 = 0 \\ y_1 = 0 \end{cases}$$
, $f(0,0) = 0$ o

在 $x^2 + y^2 = 1$ 时, $L(x, y, \lambda) = x^3 + y^3 + 3x^2 + 3y^2 + \lambda(x^2 + y^2 - 1)$ o

由
$$\begin{cases} L_x = 3x^2 + 6x + 2\lambda x = 0 \\ L_y = 3y^2 + 6y + 2\lambda y = 0, \\ L_\lambda = x^2 + y^2 - 1 = 0 \end{cases}$$
 (5 分)

$$\begin{cases} x_2 = 0 & \begin{cases} x_3 = 0 \\ y_2 = 1 \end{cases} & \begin{cases} x_4 = 1 \\ y_3 = -1 \end{cases} & \begin{cases} x_4 = 1 \\ y_4 = 0 \end{cases} & \begin{cases} x_5 = -1 \\ y_5 = 0 \end{cases} & \begin{cases} x_6 = \frac{1}{\sqrt{2}} \\ y_6 = \frac{1}{\sqrt{2}} \end{cases} & \begin{cases} x_7 = -\frac{1}{\sqrt{2}} \\ y_7 = -\frac{1}{\sqrt{2}} \end{cases}$$

f(0, 1) = f(1, 0) = 4, f(0, -1) = f(-1, 0) = 2,

$$f\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) = 3 + \frac{1}{\sqrt{2}}, f\left(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right) = 3 - \frac{1}{\sqrt{2}}$$