Solutions

1. Deactivate the independent sources. The equivalent circuit looks as shown in Fig. 1.

Fig. 1 Thevenin's equivalent circuit after deactivating the independent source.

The network shown in Fig. 1 can be simplified (Fig. 2a) and the equivalent resistance, as seen from nodes a-b, is determined (Fig. 2b). The equivalent resistance shown in Fig. 2b is the Thevenin's resistance:

$$Z_{th} = 12\Omega \tag{1}$$

Next we determine the open circuit voltage across a-b. The current is $I_x = 0$ because the terminals a-b are open (Fig. 3a). Hence, there is no voltage drop across the 4Ω resistance and this resistance can be ignored (Fig. 3b).

Fig. 2a Simplified circuit

Fig. 2b Equivalent resistance

Fig. 3a Current I_x=0

Fig. 3b Simplified circuit

Using a super node and applying KCL (Fig. 4) gives

$$\frac{V_{ab} - 10}{10} + \frac{V_{ab}}{40} + 2 = 0 \tag{2}$$

$$V_{ab} = -8V = V_{th} \tag{3}$$

Fig. 4 KCL at Supernode

Fig. 5 Thevenin's equivalent circuit

The Thevenin's equivalent circuit is shown in Fig. 5.

2. The equivalent circuit the arc welding system is shown in Fig. 6. In this figure V_{in} is the internal voltage of the source and R_{int} is the internal resistance of the source. The welding stick is connected across the terminals \mathbf{a} - \mathbf{b} .

Fig. 6 Thevenin's equivalent circuit of the arc welding system

When the arc welder is loaded, the equivalent circuit is as shown in Fig. 7 and when it is under no load, its equivalent circuit is shown in Fig. 8.

Fig. 7 Thevenin's equivalent circuit under load **Fig.** 8 Thevenin's equivalent circuit under no condition load condition

From the Fig.7 and 8 we can determine the open circuit voltage and it is:

$$V_{in} = V_{oc} = V_{th} = 32.7V (4)$$

The internal resistance R_{int} is given by

$$R_{\text{int}} = \frac{V_{in} - V_{ab} \text{ (during load condition)}}{I_{load} \text{ (during load condition)}} = \frac{32.7 - 18.9}{135} = 0.102 = R_{th}$$
(5)

The Norton's current is given by

$$I_{Norton} = \frac{V_{th}}{R_{th}} = \frac{32.7}{0.102} = 320.5A \tag{6}$$

3.

Inductor behaves as a short circuit to D.C. source

$$\therefore$$
 i_L = 2A. for t < 0 (Fig. 9)

For t > 0 the circuit becomes as shown in Fig. 10

$$i_L(t) = i_f + i_n$$

 i_f = forced response

 i_n = natural response

Inductor behaves as a short circuit to D.C. sources.

$$: i_f = 2A + 3A = 5A.$$

$$i_n = A e^{-t/\tau}$$

$$\tau = \text{time constant} = \frac{L}{R_{eq}}$$

$$R_{eq} = 20 \| 5 = 4\Omega.$$

$$\tau = \frac{0.1}{4} = 0.025 \,\mathrm{sec}$$

$$\therefore \ i_n = \ A \ e^{-t/0.025} = A \ e^{-40t}$$

$$\therefore$$
 Total response for $t > 0$ is, $i_L(t) = 5 + A e^{-40t}$

putting initial condition , $i_{L}\left(0^{\text{-}}\right) \equiv i_{L}\left(0^{\text{+}}\right)$

since the inductor cannot change the current through it instantaneously

$$i_L(0^-) = 2A$$

$$\therefore 2 = 5 + A \text{ (put t = 0)}$$

$$\therefore A = -3$$

:.
$$i_L(t) = 5 - 3 e^{-40t}$$
 for $t > 0$

For all time t,

$$i_L(t) = 2 + (3 - 3 e^{-40t}) u(t)$$
 for all t. [u(t) is the unit step function].

4.

For t < 0, the circuit is shown in Fig. 11.

Inductor will be short circuiting to D.C. source,

$$\therefore i_L = \frac{24}{10+50} = 0.4 \text{ A}$$
 for $t < 0$.

For t > 0, the circuit is shown in Fig. 12

$$i_{L}\left(t\right)=i_{f}+i_{n}$$

 i_f = forced response = 0 (since current will follow short circuit path 11')

 i_n = natural response = A $e^{-t/\tau}$

$$\tau = \text{time constant} = \frac{L}{R_{eq}} = \frac{L}{R_{eq}} = \frac{25 \times 10^{-3}}{R_{eq}},$$

$$R_{eq} = 30 \parallel 50 = 18.75 \Omega$$

$$\therefore \tau = \frac{25 \times 10^{-3}}{18.75} \operatorname{sec},$$

Now,
$$i_n = Ae^{-t/25 \times 10^{-3} \over 18.75} = Ae^{-750t}$$

:.
$$i_L(t) = A e^{-750 t}$$
 for $t > 0$

$$i_{L}(0^{-}) = i_{L}(0^{+})$$

$$\therefore 0.4 = A e^{-750 \times 0} = A$$
 for $t = 0$

:.
$$i_L(t) = 0.4 e^{-750 t}$$
 for $t > 0$

Fig. 13 **Fig.** 14

6. Fig. 15 shows Full-adder truth table. Where, Sum $S = \sum (1,2,4,7)$ and carry $C = \sum (3,5,6,7)$

Χ	Υ	Z	S	С
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1
	1			1

Fig. 15 Truth Table of Full adder

Fig. 16 Truth table for Sum

Io	l ₁	l ₂	l ₃
Х	\overline{x}	x	Х

Fig. 17 Inputs of Sum MUX in terms of X

Fig. 18 Truth table for Carry

Io	l ₁	l ₂	₃
0	Х	Х	1

Fig. 19 Inputs of Carry MUX in terms of X

Fig. 20 Full adder using two 4×1 multiplexers