2^{I} 上の null イデアルと meager イデアルが Baire supported な こと

でいぐ (@fujidig)

2020/2/17

I を集合として、直積空間 2^I を考える。 2^I の null イデアルと meager イデアルは Baire supported なこと が知られている [1]. これを示す。

定義 1. 位相空間 X の Baire 集合とは clopen 集合で生成される σ 代数のことである.

 $\mathcal{P}(X)$ 上のイデアル I が Baire supported とは

 $\forall A \in I \exists B \in I [A \subseteq B \land B \text{ ld Baire 集合}]$

となることを言う.

1 可算直積測度

まず可算個の確率空間 (X_i,S_i,μ_i) $(i\in\omega)$ の直積確率空間の定義を述べる.

定義 2. $X^{(n)}=\prod_{i\geqslant n}X_i$ とおく. $E=A\times X^{(n)}$ で A は可測な $X_1\times\cdots\times X_n$ の部分集合に対し,

$$\mu(E) = (\mu_1 \times \cdots \times \mu_n)(A)$$

と定める.これを拡張する一意な完備測度を $\prod_{i \in \omega} X_i$ の測度とする.

定理 3. 2^{ω} の meager イデアルは Baire supported である.

証明. 2^{ω} の測度は正則であり、 2^{ω} の開集合は可算個の clopen 集合の和集合で書けるので OK. 2^{ω} の測度の正則性は、 \mathbb{R} のルベーグ測度が正則なことの証明 ([2] の定理 7.6) を修正すればよい.

2 非可算直積測度

非可算個の確率空間 (X_i, S_i, μ_i) $(i \in I)$ の直積確率空間の定義を述べる.

定義 4. $X=\prod_{i\in I}X_i$ の部分集合 A で $A=\prod_{i\in I}A_i$ の形をしていて, A_i がすべて可測であり有限個を除いて A_i が全体集合 X_i になっているものを可測矩形と呼ぶ.可測矩形で生成される σ 代数 $\mathcal R$ を考える.

$$x, y \in X, x \upharpoonright J = y \upharpoonright J \Rightarrow (x \in A \Leftrightarrow y \in A)$$

となることを言う.

どんな $A \in \mathcal{R}$ についても、可算な J がとれて、A は J シリンダーとなる.そこで A の測度 $\mu(A)$ を

$$\mu(A) = \mu_{\prod_{i \in J} X_i}(A \upharpoonright J)$$

と定める.ここに $\prod_{j\in J} X_j$ 上の測度は第 1 節で定義したものである. μ の完備化を改めて μ と書く.

定理 5. 2^I の null イデアルは Baire supported である.

証明. A を 2^I の零集合とする. このとき,完備化の定義より $B \in \mathcal{R}$ があり, $A \subseteq B$ かつ $\mu(B) = 0$. 今,可算な $J \subseteq I$ があり, $\mu_{2^J}(B \upharpoonright J) = \mu(B) = 0$. 可算な添え字集合に対しては null イデアルが Baire supported で あることは証明済みなので, $C \subseteq 2^J$ で Baire 集合なものがあり, $B \subseteq C$ かつ $\mu_{2^J}(C) = 0$. 今, $A \subseteq C \times 2^{I \backslash J}$ で $C \times 2^{I \backslash J}$ は Baire 集合で, $\mu(C \times 2^{I \backslash J}) = 0$. よって示せた.

3 meager イデアル

 2^I の meager イデアルが Baire supported であることを示すには 2^I が ccc であることを使う.そこで ccc について軽く触れる.

定義 6. 位相空間 X が ccc とは disjont な開集合の族は必ず可算になることを言う.

補題 7. 位相空間の直積 $X=\prod_{i\in I}X_i$ について,添え字のどの有限部分集合 $J\subseteq I$ についても $\prod_{j\in J}X_j$ が ccc なら X も ccc である.

証明は [3] の Theorem III.2.8 を参照せよ. この補題より、 2^I は ccc であることが分かる.

補題 8. X を位相空間とするとき次は同値.

- 1. X 1 ccc.
- 2. X の任意の非空開集合の族 U に対し、可算な $V \subseteq U$ が存在し、[] $U \subseteq \overline{[\]V}$.

証明は [4] を参照せよ.

補題 9. 2^I において、任意の稠密開集合 D に対して、稠密かつ clopen 集合の可算和で書ける集合 H で $H\subseteq D$ なるものがある.

証明. D を稠密開集合とする. $\mathcal{U} = \{H \subseteq D : H \text{ is clopen}\}$ とおく、すると補題 8 より $\{H_i : i \in \omega\} \subseteq \mathcal{U}$ が存在して, $\bigcup \mathcal{U} \subseteq \overline{\bigcup_{i \in \omega} H_i}$. ここで $H_i \subseteq D$ (for all i) より $\bigcup_{i \in \omega} H_i \subseteq D$. D が開集合なことから $\bigcup \mathcal{U} = D$ なので, $D \subseteq \overline{\bigcup_{i \in \omega} H_i}$. D が稠密なので,これは $\bigcup_{i \in \omega} H_i$ の稠密性を含意する.以上より $\bigcup_{i \in \omega} H_i$ が求める べき集合である.

定理 10. 2^{I} の meager イデアルは Baire supported である.

証明. M を meager 集合とし, $M = \bigcup_{i \in \omega} M_i$,各 M_i は nowhere dense とする. $D_i = \overline{M_i}^c$ とおくと D_i は 稠密開集合. よって補題 9 より clopen 集合の列 H_{ij} があって, $\bigcup_{j \in \omega} H_{ij} \subseteq D_i$ かつ $\bigcup_{j \in \omega} H_{ij}$ は稠密. そこで補集合をとり, $M_i \subseteq \overline{M_i} \subseteq \bigcap_{j \in \omega} H_{ij}^c$. ここで $\bigcap_{j \in \omega} H_{ij}^c$ は nowhere dense である.今和集合をとると, $M = \bigcup_{i \in \omega} M_i \subseteq \bigcup_{i \in \omega} \bigcap_{j \in \omega} H_{ij}^c$. 右辺は meager な Baire 集合である.

4 謝辞

meager イデアルが Baire supported なことの証明は残響氏の手助けを得た.

参考文献

- [1] Kenneth KUNEN. "CHAPTER 20 Random and Cohen Reals". In: *Handbook of Set-Theoretic Topology*. Ed. by Kenneth KUNEN and Jerry E. VAUGHAN. Amsterdam: North-Holland, 1984, pp. 887–911.
- [2] 伊藤清三. ルベーグ積分入門. 数学選書. 裳華房, 2017.
- [3] K. Kunen. Set Theory. Studies in logic. College Publications, 2011.
- [4] Dan Ma. Another characterization about CCC spaces Dan Ma's Topology Blog. https://dantopology.wordpress.com/2014/02/28/another-characterization-about-ccc-spaces/.
- [5] P.R. Halmos. Measure Theory. Graduate Texts in Mathematics. Springer New York, 1976.