2. Übung zur Komplexen Analysis

1. Berechnen Sie die Konvergenzradien der Potenzreihen:

$$\sum \left(\frac{\log n}{n}\right)^n i^n z^n, \quad \sum \frac{n!}{\log n^n} z^{2n}, \quad \sum \frac{n!}{n^{n-1}} (z-3i)^n$$

2. Zeigen Sie, dass die Reihe $\sum \frac{z^n}{n}$ für z=1 divergiert, aber für alle $z\neq 1$ mit |z|=1 konvergiert.

Hinweis: Schätzen Sie
$$(1-z)\sum_{n=k}^{m}\frac{z^{n}}{n}$$
 ab.

- 3. (i) Berechnen Sie $\int_{\gamma} z \cos(z^2) dz$, wenn
 - (1) γ die Verbindungsstrecke von i und -i+2 ist.
 - (2) γ die Punkte 0 und 1 + i entlang der Kurve $y = x^2$ verbindet.
 - (ii) Berechnen Sie $\int_{\gamma} \bar{z} \, dz$ längs der Streckenzge $0 \to 1 \to 1+i, \, 0 \to i \to 1+i, \, 0 \to 1+i.$
- 4. Es sei $G = \{z \in \mathbb{C} : |z| < 1 \text{ und } \operatorname{Re} z + \operatorname{Im} z > 1\}$. Konstruieren Sie einen Weg $\gamma : [a,b] \to \mathbb{C}$ mit $\gamma([a,b]) = \partial G$ und berechnen Sie $\int_{\gamma} \operatorname{Im} z \, dz$ und $\int_{\gamma} \operatorname{Re} z \, dz$. Berechnen und interpretieren Sie $\int_{\gamma} \overline{z} \, dz$.

Hinweis: Verwenden Sie die Leibnizsche Sektorformel:

Es sei F ein Flächenstück in der Ebene, das von einer einfach geschlossenen Jordankurve mit stückweise stetig differenzierbarer Parameterdarstellung $x=x(t),y=y(t),t\in[a,b]$, berandet wird. Dann gilt für den Flächeninhalt I(F) von F:

$$I(F) = \frac{1}{2} \left| \int_a^b (x(t)\dot{y}(t) - \dot{x}(t)y(t))dt \right|.$$

- 5. Berechnen Sie $\int_{\gamma} \frac{1}{(z-w)^2} dw$ mit $\gamma(t) = a + r e^{it}$ für $0 \le t \le 2\pi, z \notin \text{Bild}(\gamma)$, indem Sie den Integranden in eine Potenzreihe entwickeln.
- 6. Berechnen Sie für $b \in \mathbb{C}$:

$$\int\limits_{|z|=r} \frac{1}{z^2 + b^2} \, dz$$

mit r > |b| durch Partialbruchzerlegung und Anwendung der Cauchyschen Integralformel.

- 7. Es sei $n \in \mathbb{N}$ und r, c > 0. Für die ganze Funktion f gelte $|f(z)| \le c |z|^n$ für alle $z \in \mathbb{C}$ mit $|z| \ge r$. Man zeige, dass dann f eine Polynom höchstens n-ten Grades ist.
- 8. Sei f eine ganze nichtkonstante Funktion. Man beweise, dass die Bildmenge $f(\mathbb{C})$ dicht in \mathbb{C} liegt.