Grafika Komputerowa Projekt Wirtualnej Kamery

Daniel Ślusarczyk (311511) i Michał Tomczyk (311524)

20.04.2023

1 Opis projektu

Projekt realizowany w ramach przedmiotu 'Grafika Komputerowa' zakłada stworzenie wirtualnej kamery korzystając z wyświetlania prostych elementów graficznych (np. punkt, linia, wielobok) w oknie aplikacji z uwzględnieniem prawidłowego wyświetlania ścian prezentowanych obiektów. Wymagane jest zrealizowanie implementacji wykonującej wszystkie niezbędne obliczenia i wyświetlającej prezentowane elementy w oknie aplikacji zgodnie z ludzką percepcją ze szczególnym naciskiem na prawidłowe zachowanie wypełnienia obiektów na całej powierzchni w czasie manipulowania położenia kamerą. Sama kamera powinna umożliwiać poruszanie się w dowolnym kierunku, manipulowanie kątem patrzenia, wykonywanie przybliżenia (ang. zoom in), oraz oddalenia (ang. zoom out) z zachowaniem odpowiedniej perspektywy charakteryzujące ludzkie postrzegania rzeczywistości.

2 Realizacja

2.1 Orientacja kamery

W celu uproszczenia modelu projekt zostanie zrealizowany w oparciu o jeden globalny układ współrzędnych. Kamera (punkt obserwacji) jest umieszczona w globalnym początku układu współrzędnych (x: 0, y: 0, z: 0), a widok będzie skierowany wzdłuż osi OZ w stronę dodatnich wartości.

2.2 Manipulowanie widokiem

W celu zapewnienia możliwości poruszania kamerą została wykorzystana implementacja z pierwszego projektu, którego celem było stworzenie obsługi wirtualnej kamery bez wypełnienia ścian. Poruszanie, rotacje i rzutowanie zostały zrealizowane przy użyciu odpowiednich macierzy przekształceń punktów. Natomiast możliwość przybliżania i oddalania widoku kamery jest wspierana poprzez zmianę współczynnika odpowiadającego za odległość kamery od obserwowanych obiektów.

2.3 Wypełnianie ścian

Wypełnianie ścian zostało zrealizowane poprzez użycie gotowej metody dostarczanej przez bibliotekę "JavaFX" do wyświetlania wielokątów o podanych współrzędnych. Kolor każdej ściany został zdefiniowany przy tworzeniu obiektu.

2.4 Zasłanianie ścian

Kluczowym elementem projektu było prawidłowe podejście do problemu zasłaniania ścian podczas poruszania kamerą. Problem ten został rozwiązany z użyciem algorytmu malarskiego bazującego na empirycznie zdefiniowanej metryce i podziale przetwarzanej ściany na mniejsze elementy za pomocą triangulacji. Implementacja zakłada brak obsługi sytuacji przenikania ścian i cyklicznego nakładania się na siebie elementów.

2.4.1 Triangulacja

Podział przetwarzanej figury na mniejsze elementy odbywa się poprzez użycie algorytmu triangulacji dla prostokątów. Istnieje możliwość manipulacji ilością tworzonych trójkątów poprzez zdefiniowanie współczynnika "głębokości" podziału. Dla wartości 1 oznacza to podział prostokąta na 4 mniejsze prostokąty, z których każdy tworzy dwa trójkąty. Dla wartości 2 każdy z mniejszych prostokątów jest ponownie dzielony na 4 itd.

2.4.2 Podstawa sortowania elementów

Sortowanie elementów w algorytmie malarskim odbywa się poprzez zdefiniowaną doświadczalnie metrykę sortowania opartą na dystansie danego punktu od kamery. Dla każdego trójkąta jest ona obliczana jako pierwiastek z sumy kwadratów odległości od kamery każdego z punktów figury.

2.4.3 Zorientowanie elementów

W celu polepszenie efektów działania zasłaniania ścian dla każdego trójkąta zdefiniowana jest jego orientacja względem obserwatora (punktu położenia kamery) liczona jako: iloczyn wektorowy wektora normalnego i wektora widzenia. W przypadku ujemnych wartości dana figura nie jest wyświetlana.

3 Problemy i wnioski

Algorytm malarski jest przykładem algorytmu, który rozwiązuje problem zasłania ścian i wyznaczania elementów widocznych. Niemniej jednak, prawidłowe posortowanie ścian jest bardzo trudne do realizacji w praktyce i wymagałoby obsługi wielu przypadków. Niezależnie od zastosowanej metryki można wskazać przypadki, w których algorytm nie będzie w stanie prawidłowo obsłużyć podstawowych sytuacji, w których dwa elementy nachodzą na siebie w specyficzny sposób. Niemniej jednak zastosowana w projekcie metryka daje najlepsze rezultaty dla zdefiniowanych elementów. Problem z obsługą niektórych sytuacji może zostać zminimalizowany poprzez podział większych figur na mniejsze fragmenty za pomocą triangulacji. Nie rozwiązuje to całkowicie problemu, ale pozwala na uzyskanie satysfakcjonujących rezultatów.

4 Efekty

