Differential Geometry 2023 - Minor 2

PART A: each question carries a maximum of 3 marks.

- 1. Define the following:
 - (a) Normal vector field on an n-surface
 - (b) Connected subset of \mathbb{R}^{n+1}
 - (c) Gauss map
- 2. Define the velocity and speed of a parametrized curve α . Show that if $\alpha: I \to \mathbb{R}^{n+1}$ is a parametrized curve with constant speed then $\ddot{\alpha}(t) \perp \dot{\alpha}(t)$ for all $t \in I$.
- 3. Explain the positive θ -rotation at a point on an oriented 2-surface.
- 4. Show that the spherical image of an n-surface with orientation N is the reflection through the origin of the spherical image of the same n-surface with orientation -N.
- 5. Let S_1 and S_2 be two distinct *n*-surfaces exhibited as level sets of a smooth function $f: U \to \mathbb{R}$ where U is an open subset of \mathbb{R}^{n+1} . Then $S_1 \cap S_2 = \phi$ and U can be expressed a disjoint union of level sets of f.

PART B: Each question carries a maximum of 5 marks.

- 1. State true or false with explanation: Let $S=\{(x,y)\in\mathbb{R}^2:x^2+y^2=2\text{ and }x\leq 0\}\cup\{(x,y)\in\mathbb{R}^2:x^2+y^2=2,x>0\text{ and }y<0\}$ is a plane curve in \mathbb{R}^2 .
- 2. State true or false with explanation: $S = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 + 2x = 0\} \cup \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 4x 4y + 7 = 0\}$ has exactly two smooth unit normal vector fields.
- 3. Let $U=\{(x,y,z)\in\mathbb{R}^3: x^2+y^2+z^2<3\},\ S=\{(x,y,z)\in\mathbb{R}^3: x^2+y^2+z^2=1\}$ and let $f:U\to\mathbb{R}$ be a smooth function. Find g such that S is a level set of g. Then there exist a point $p\in S$ such that $f(p)\geq f(x)$ for all $x\in S$ and $\nabla f(p)$ is a scalar multiple of $\nabla g(p)$.