Math 611 Homework 1

Paul Hacking

September 16, 2019

Reading: Dummit and Foote, Sections 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, and 1.7. Justify your answers carefully (complete proofs are expected).

- (1) Let G be a group of order p, a prime. Show that G is isomorphic to $\mathbb{Z}/p\mathbb{Z}$.
- (2) Let G be a group of order 4. Show that G is abelian
- (3) An isometry or rigid motion of \mathbb{R}^2 is a transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ which preserves distances, that is, for all $p, q \in \mathbb{R}^2$, d(T(p), T(q)) = d(p,q), where d(p,q) denotes the distance from p to q. The isometries of \mathbb{R}^2 form a group with the group law given by composition of transformations.
 - Let a be the isometry of \mathbb{R}^2 given by rotation about a point p through angle θ counterclockwise and let b be isometry of \mathbb{R}^2 given by reflection about a line l through p. Show that $bab = a^{-1}$.
- (4) Let G be a finite group of isometries of \mathbb{R}^2 .
 - (a) Show that there exists a point $p \in \mathbb{R}^2$ such that for all $g \in G$ g(p) = p. Choosing coordinates we may assume p is the origin; then each $g \in G$ is a linear transformation given by an orthogonal matrix.
 - (b) Show that the subgroup of G consisting of rotations is a cyclic group.

- (c) Show that G is either a group of rotations isomorphic to $\mathbb{Z}/n\mathbb{Z}$, or the dihedral group D_n of symmetries of a regular n-gon, for some $n \in \mathbb{N}$. (Here we include the cases $D_1 \simeq \mathbb{Z}/2\mathbb{Z}$ and $D_2 \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ of the dihedral group, which can (for example) be defined as the symmetries of an isosceles triangle and a rectangle respectively.)
- (5) Show that the dihedral group D_4 of symmetries of the square is not isomorphic to the quaternion group $Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}$.
- (6) Prove the Chinese remainder theorem: If gcd(m, n) = 1 then $\mathbb{Z}/mn\mathbb{Z} \simeq \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$.
- (7) Recall the structure theorem for finitely generated abelian groups G:

$$G \simeq \mathbb{Z}/p_1^{\alpha_1}\mathbb{Z} \times \cdots \mathbb{Z}/p_r^{\alpha_r}\mathbb{Z} \times \mathbb{Z}^s$$

for some $r \in \mathbb{Z}_{\geq 0}$, primes p_1, \ldots, p_r , exponents $\alpha_1, \ldots, \alpha_r \in \mathbb{N}$, and $s \in \mathbb{Z}_{\geq 0}$. Moreover, the factors in the product decomposition are uniquely determined up to reordering.

Now assume that G is finite. Prove the uniqueness statement for the factors in the product decomposition.

- (8) Let D_n be the dihedral group of symmetries of the regular n-gon. Prove that D_{2n} is isomorphic to $D_n \times \mathbb{Z}/2\mathbb{Z}$ if and only if n is odd.
- (9) (a) Suppose $\sigma \in S_n$ is a permutation which has cycle type (l_1, \ldots, l_r) (that is, is a product of disjoint cycles of lengths l_1, \ldots, l_r). What is the sign $\operatorname{sgn}(\sigma)$ of σ ?
 - (b) List the elements of S_3 , A_3 , S_4 , and A_4 in cycle notation (that is, write each element as a product of disjoint cycles).
 - (c) Given a group G, we say $a, b \in G$ are *conjugate* if there exists a $g \in G$ such that $gag^{-1} = b$. Show that two elements of S_n are conjugate iff they have the same cycle type.
 - (d) Let $\sigma \in S_n$. Suppose we draw smooth paths

$$\gamma_i = \{ (x_i(t), y_i(t)) \mid 0 \le t \le 1 \}$$

in the xy-plane from (i,1) to $(\sigma(i),0)$ for each $i=1,\ldots,n,$ such that

- i. $y_i'(t) < 0$ for all i, t,
- ii. at most two paths intersect at any point,
- iii. at a point where two paths γ_i and γ_j intersect, the tangent vectors to the paths at that point are linearly independent (we say the paths intersect transversely), and
- iv. the points of intersection of the paths have distinct y coordinates.

Let m be the total number of intersection points of the paths. Show that σ is a product of m transpositions. In particular, $\operatorname{sgn}(\sigma) = (-1)^m$.

- (10) (a) Show that the dihedral group D_3 of symmetries of an equilateral triangle is isomorphic to S_3 . What is the image of the subgroup of rotations under this isomorphism?
 - (b) Show that the group G of symmetries of a regular tetrahedron is isomorphic to S_4 . What is the image of the subgroup of rotations under this isomorphism? For each of the cycle types of S_4 , give a geometric description of the corresponding symmetry. Show that the 3-cycles in A_4 form two conjugacy classes in A_4 , and describe how to distinguish them geometrically.
- (11) Given two groups H and K, we say a group G is a semi-direct product of H and K and write $G = H \rtimes K$ if
 - (a) H is a normal subgroup of G,
 - (b) K is a subgroup of G,
 - (c) $HK := \{hk \mid h \in H, k \in K\} = G$, and
 - (d) $H \cap K = \{e\}.$

In this situation, the isomorphism type of G is determined by the homomorphism $\varphi \colon K \to \operatorname{Aut}(H)$ from K to the group of automorphisms of H, given by $k \mapsto (h \mapsto khk^{-1})$; we write $G = H \rtimes_{\varphi} K$ if we want to make the dependence on φ explicit.

Now let $G = \mathbb{Z}/3\mathbb{Z} \rtimes_{\varphi} \mathbb{Z}/4\mathbb{Z}$, where $\varphi \colon \mathbb{Z}/4\mathbb{Z} \to \operatorname{Aut}(\mathbb{Z}/3\mathbb{Z})$ is the homomorphism given by $1 \mapsto (x \mapsto -x)$.

Show that no two of the groups D_6 , A_4 , and G are isomorphic.

- (12) Let F be a field and $n \in \mathbb{N}$. Let \sim be the equivalence relation on $F^{n+1} \setminus \{0\}$ defined by $(x_0, \ldots, x_n) \sim (y_0, \ldots, y_n)$ if there exists $0 \neq \lambda \in F$ such that $(x_0, \ldots, x_n) = \lambda \cdot (y_0, \ldots, y_n)$. Define \mathbb{P}_F^n , the projective n-space over F, to be the set of equivalence classes $\mathbb{P}_F^n = (F^{n+1} \setminus \{0\}) / \sim$.
 - (a) Show that there is a bijection of sets $\mathbb{P}^1_F \to F \cup \{\infty\}$ given by

$$[(x,y)] \mapsto \begin{cases} \frac{x}{y} & \text{if } y \neq 0\\ \infty & \text{if } y = 0. \end{cases}$$

- (b) (Optional) Show that there is a bijection of sets $\mathbb{P}^n_F \to F^n \cup \mathbb{P}^{n-1}_F$.
- (c) The action of $GL_{n+1}(F)$ on F^{n+1} induces an action of $PGL_{n+1}(F)$ on \mathbb{P}_F^n . Deduce that, for $|F| = q < \infty$ there is a natural homomorphism $\theta \colon PGL_2(F) \to S_{q+1}$.
- (d) Show that θ is injective.
- (e) Deduce that θ is an isomorphism for q=2,3. What is the image of θ for q=4?

Hints:

- 2 There exist elements $a, b \in G$ such that $G = \{e, a, b, ab\}$ (why?). Now use cases to show that ba = ab. Deduce that G is abelian.
- 3 By choosing coordinates we may assume p is the origin and l is the x-axis. Now compute using matrices. Alternatively, one can try to argue geometrically.
- 4 (a) Pick a point $q \in \mathbb{R}^2$, consider its orbit $\mathcal{O} = \{g \cdot q \mid g \in G\}$ under the action of G, and the center of mass of the orbit.
- 5 What are the orders of the elements of these groups?
- 6 First write down a natural homomorphism $\mathbb{Z}/mn\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$ and show it is injective. What is the pigeonhole principle?
- 7 Consider the orders of elements.
- 8 Recall that the center Z(G) of a group G is the subgroup of elements $z \in G$ such that zg = gz for all $g \in G$. What is the center of the dihedral group D_n ?
- 10 (a) The action of the group of symmetries on the vertices of the triangle defines a homomorphism $D_3 \to S_3$. (b) The regular tetrahedron can be realized as the polyhedron with vertices (1,1,1), (-1,-1,1), (1,-1,-1), (-1,1,-1) in \mathbb{R}^3 (a subset of the vertices $(\pm 1,\pm 1,\pm 1)$ of a cube). What are the types of isometry of \mathbb{R}^3 ? (What is a rotary reflection?)