Solution Manual for Analysis I

Dean F. Valentine Jr.

April 26, 2019

- 1 Beginning Chapter
- 2 Natural Numbers
- 3 Set Theory
- 3.1 Fundamentals
 - 1. Reflexivity:
 - (a) Equality between sets is defined as: $(\forall x \in A : x \in B) \land (\forall x \in B : x \in A)$
 - (b) A set is defined as a collection of objects.
 - (c) It is a contradiction for any object x to satisfy $x \in A$ be true but also $x \notin A$, so equality of sets is reflexive (A = A), meaning all objects that satisfy the claim $x \in A$ also satisfy $x \in A$, and "vice-versa"

Symmetry:

- (a) To say that sets A and B are equal, as per our definition of equality, is to say $\forall x \in A : x \in B \land \forall x \in B : x \in A$.
- (b) So, if A = B, and by definition $\forall x \in A : x \in B \land \forall x \in B : x \in A$, then we can just swap the given claims around as show that $\forall x \in B : x \in A \land \forall x \in A : x \in B$, and see that B = A.

Transitivity:

- (a) Suppose that among three sets A,B, and C, sets A = B, and B = C
- (b) Consider $\exists x : x \in A$
- (c) Since $A = B, \forall y \in A : y \in B$, and so $x \in B$
- (d) But also because $B=C,\,\forall z\in B,z\in C,$ and so also $x\in C$
- (e) Thus, $\forall x \in A, x \in C$, and the same logic can be applied in reverse to find $\forall x \in C, x \in A$, and so A = C

- 2. (a) Axiom 3.2 says that there exists a set \emptyset , the set of no elements.
 - (b) Axiom 3.1 says that if A is a set, it is also an object, and by the definition of sets (3.1.1), there exists the set X such that $A \in X$. Thus, there exists some set A_1 which contains the object \emptyset
 - (c) Two sets are not equal if they do not share each others objects. A_1 contains \emptyset , but \emptyset is defined as having lacking objects, so these two sets are not equal.
 - (d) Similarly we can consider the set A_2 which contains only A_1 , which is not equal to either A_1 or \emptyset because neither of them contain A_1 , and instead contain \emptyset and no objects, respectively.
 - (e) Lastly we think of a set $A_3: \emptyset \in A_3 \land A_2 \in A_3$, and see that this does not contain the sam objects as \emptyset , A_1 , or A_3 . $\emptyset \notin A_2$, $A_1 \notin A_1$, and neither \emptyset nor A_1 are in \emptyset so at this point we have proven 3.2.
- 3. Proof $\{a, b\} = \{a\} \cup \{b\}$:
 - (a) The union between sets A and B as defined in Axiom 3.4 is set whose elements are contained by A or B or both.
 - (b) $\{a\} \cup \{b\}$ contains a, because $a \in \{a\}$
 - (c) $\{a\} \cup \{b\}$ contains b, because $b \in \{b\}$
 - (d) There can be no other objects in $\{a\} \cup \{b\}$, because all objects in $\{a\} \cup \{b\}$ must either be in $\{a\}$ or $\{b\}$ or both by the definition of a union, and the existence of a third object would imply that $\{a\}$ and $\{b\}$ contained altogether three distinct objects, a contradiction.

Proof of commutativity:

(a) Suppose $\exists x \in A \cup B$. That means by Axiom $3.4 \ x \in A \lor x \in B$. If $x \in A$, then $x \in B \cup A$, because $B \cup A$ is the set of all elements either in B or A. If $x \in B$, then by the same logic $x \in B \cup A$ as well, and so we can say $\forall x \in A \cup B : x \in B \cup A$, and we have proven their equality.

Proof $A \cup A = A$

- (a) For the sake of contradiction assume $A \neq A \cup A$
- (b) This implies $\exists x : x \in A \land x \notin A \cup A$.
- (c) But $x \notin A \cup A \rightarrow x \notin A \land x \notin A$.
- (d) Both of these (equivalent) implied statements contradict the earlier one, that $\exists x : x \in A \land x \notin A \cup A$.

Proof $A \cup \emptyset = A$ and $\emptyset \cup A = A$

- (a) $\forall x \in A \cup \emptyset : x \in A \vee x \in \emptyset$, by Axiom 3.4
- (b) By axiom 3.2, $\neg \exists x \in \emptyset$.

- (c) This means that $\forall x \in A \cup \emptyset : x \in A$. Now we must prove $\neg \exists x \in A : x \notin A \cup \emptyset$.
- (d) Suppose for sake of contradiction $\exists x \in A : x \notin A \cup \emptyset$.
- (e) This would mean $x \notin A \land x \notin \emptyset$, by Axiom 3.4.
- (f) x is obviously not in the empty set, but by our assumption $x \in A$, meaning we have contradicted ourselves.
- (g) The sum of the two statements we have just proved is equivalent to saying $A = A \cup \emptyset$. Because of commutativity this also means $A = \emptyset \cup A$.
- 4. Proof $A \subseteq B \land B \subseteq C \implies A \subseteq C$:
 - (a) $A \subseteq B \equiv \forall x \in A : x \in B$
 - (b) $B \subseteq C \equiv \forall x \in B : x \in C$
 - (c) Thus, $x \in A \implies x \in B$, and $x \in B \implies x \in C$, so $x \in A \implies x \in B \implies x \in C$ or $x \in A \implies x \in C$

Proof $A \subseteq B \land B \subseteq A \implies A = B$

- (a) $A \subseteq B \equiv \forall x \in A : x \in B$
- (b) $B \subseteq A \equiv \forall x \in B : x \in A$
- (c) $\forall x \in A : x \in B \land \forall x \in B : x \in A \equiv A = B$, so these starting propositions combined are the definition of equality established earlier in the chapter.

Proof $A \subset B \land B \subset C \implies A \subset C$:

- (a) $A \subset C \equiv \forall x \in A : x \in C \land A \neq C$, so we must prove two things: $A \neq C$, and $\forall x \in A : x \in C$
- (b) $A \subset B \equiv \forall x \in A : x \in B \land A \neq B$
- (c) $A \neq B \implies \exists x \in A : x \notin B \lor \exists x \in B : x \notin A$
- (d) Since by the definition of a subset $\neg \exists x \in A : x \notin B$, this and the relation $A \neq B$ implies $\exists x \in B : x \notin A$
- (e) $B \subset C \equiv \forall x \in B : x \in C \land B \neq C$
- (f) Since $\forall x \in B : x \in C$ and $\exists x \in B : x \notin A$, $\exists x \in C : x \notin A$, and $C \neq A$.
- (g) But also, $\forall x \in A : x \in B \land \forall x \in B : x \in C$. This means $x \in A \implies x \in B \implies x \in C$, and we see $\forall x \in A : x \in C$.
- (h) These two statements $(A \neq C, \text{ and } \forall x \in A : x \in C)$ are equivalent to saying $(A \subset C)$, and so we have finished our proof.
- 5. Proof $A \subseteq B \implies A \cup B = B \land A \cap B = B$:
 - (a) $A \subseteq B \equiv \forall x \in A : x \in B$
 - (b) $A \cup B \equiv \{x \in A \lor x \in B\}$

- (c) $\forall x \in A : x \in B$, so $\forall x \in A : x \in x \in A \lor x \in B$ and $\forall x \notin A : x \notin x \in A \lor x \in B$, proving that if $A \subseteq B \implies A \cup B = B$
- (d) $A \cap B \equiv \{x \in A \land x \in B\}$
- (e) $A \subseteq B \equiv \forall x \in A : x \in B$, so if $A \subseteq B$, then $\{x \in A \land x \in B\} = \{x \in B\}$
- (f) $B \equiv \{x \in B\}$, so $A \subseteq B \implies A \cap B = B \land A \cup B = B$, and we have finished our proof.

Proof $A \cup B = B \implies A \subseteq B \land A \cap B = B$:

- (a) $A \subseteq B \implies A \cap B = B$, as per earlier proofs, so we need only prove $A \cup B = B \implies A \subseteq B$
- (b) $A \subseteq B \equiv \forall x \in A : x \in B$
- (c) $B = A \cup B \equiv \forall x \in B : x \in A \cup B \land \forall x \in A \cup B : x \in B$
- (d) $A \cup B \equiv \{x \in A \lor x \in B\}$, so
- (e) $\forall x \in A \lor x \in B : x \in B$ and
- (f) $\neg \exists x \in A : x \notin B$, the contrapositive of which is
- (g) $\forall x \in A : x \in B$, and so we have proved our hypothesis.

Proof $A \cap B = A \implies A \subseteq B \land A \cup B = B$:

- (a) $A \subseteq B \implies A \cup B = B$, as per earlier proofs, so we need only prove $A \cap B = A \implies A \subseteq B$
- (b) $A \subseteq B \equiv \forall x \in A : x \in B$
- (c) $A \cap B = A \equiv \{x \in A\} = \{x \in A \land x \in B\}$
- (d) Thus, $A \cap B = A \implies \forall x \in A : x \in B$, or $A \cap B = B \implies A \subseteq B$, so we have already proved our hypothesis.
- 6. Let A, B, C be sets, and let X be a set containing A, B, C as subsets. Proof $A \cup X = X \cap A = X$: See 3.1.5 Proof $A \cup A = A$:
 - (a) Suppose for sake of contradiction suppose $A \cup A \neq A$.
 - (b) This would mean either A contains an item not contain in $A \cup A$, or $A \cup A$ contains an item not contained in X.
 - (c) Suppose $\exists x \in A \cup A : x \notin A$
 - (d) $x \in A \cup A \equiv x \in A \lor x \in A$, which when simplified means $x \in A$.
 - (e) We have now already contradicted ourselves, by declaring $x \in A \land x \notin A$.
 - (f) Suppose then that $\exists x : x \in A \land x \notin A \cup A$
 - (g) We can just as easily see that $x \notin A \cup A \equiv x \notin A \land x \notin A$, equivalent to saying $x \notin A$.

- (h) $x \notin A$ contradicts our earlier assumption that $x \in A$, and our premises must be incorrect, and $\neg \exists x : x \in A \land x \notin A \cup A$.
- (i) Thus, $A \cup A$ has the same elements as A and is equivalent by our definition.

Proof $A \cap A = A$

- (a) Suppose for sake of contradiction suppose $A \cap A \neq A$.
- (b) This would mean either A contains an item not contain in $A \cap A$, or $A \cap A$ contains an item not contained in X.
- (c) Suppose $\exists x : x \in A \cap A \land x \notin A$
- (d) This means that $x \in A \land x \in A$, simplified $x \in A$.
- (e) We have now already contradicted ourselves, by declaring $x \in A \land x \notin A$.
- (f) Suppose then that $\exists x : x \in A \land x \notin A \cap A$
- (g) We can just as easily see that $x \notin A \cap A \equiv x \notin A \lor x \notin A$, equivalent to saying $x \notin A$.
- (h) $x \notin A$ contradicts our earlier assumption that $x \in A$, and our premises must be incorrect, and $\neg \exists x : x \in A \land x \notin A \cap A$.
- (i) Thus, $A \cap A$ has the same elements as A and is equivalent by our definition.

Proof of Distributivity $(A \cap (B \cup C) = (A \cup B) \cup C)$

(a)

7. Proof $A \cap B \subseteq A \land A \cap B \subseteq B$

- (a) $A \cap B = B \cap A$ because of commutativity, so we need only prove $A \cap B \subseteq A$.
- (b) $(A \cap B) \equiv \{x \in A \land x \in B\}$
- (c) Since $x \in x \in A \land x \in B \implies x \in A, \forall x \in (A \cap B) : x \in A$, which is the definition of $(A \cap B) \subseteq A$.

Proof $C \subseteq A \land C \subseteq B \iff C \subseteq A \cap B$

- (a) This is a bidirectional equality, so we have to prove both that $C \subseteq A \cap B \implies C \subseteq A \wedge C \subseteq B$ and that $C \subseteq A \wedge C \subseteq B \implies C \subseteq A \wedge B$
- (b) $C \subseteq A \cap B \equiv \forall x \in C : x \in A \land x \in B$
- (c) $\forall x \in C : x \in A \land x \in B \implies \forall x \in C : x \in A$, so $C \subseteq A$. Similarly, $\forall x \in C : x \in A \land x \in B \implies \forall x \in C : x \in B$, so $C \subseteq B$. Thus, $C \subseteq A \cap B \implies C \subseteq A \land C \subseteq B$
- (d) $C \subseteq A \land C \subseteq B \equiv \forall x \in C : x \in A \land \forall x \in C : x \in B$

- (e) $\forall x \in C : x \in A \land \forall x \in C : x \in B = \forall x \in C : x \in A \land x \in B$, so we also have $\forall x \in C : x \in A \land x \in B$.
- (f) $A \cap B$ is the set of elements $\forall x : x \in A \cap B$, so $\forall x \in C : x \in A \cap B$ or $C \subseteq A \cap B$, so $C \subseteq A \wedge C \subseteq B \implies C \subseteq A \cap B$. This concludes our proof that $C \subseteq A \cap B \iff C \subseteq A \wedge C \subseteq B$.
- 8. Proof $A \cap (A \cup B) = A$:
 - (a) $\forall x \in A : x \in A \cup B$, because $A \cup B \equiv \{x \in A \lor x \in B\}$
 - (b) $A \cap (A \cup B) \equiv \{x \in A \land x \in (A \cup B)\}$
 - (c) As a result, $\forall x \in A : x \in A \cap (A \cup B)$
 - (d) Also we see $\neg \exists x \in A \cap (A \cup B) : x \notin A$, because $x \in A \cap (A \cup B) \equiv x \in A \wedge x \in (A \cup B) \equiv x \in A \wedge (x \in A \vee x \in B)$. This proves $A \cap (A \cup B) = A$ and our hypothesis is correct.

Proof $A \cup (A \cap B) = A$:

- (a) Using the properties of commutativity and associativity we can rearrange the equation like the following:
- (b) $A \cup (A \cap B) = (A \cap B) \cup A$
- (c) $(A \cap B) \cup A = A \cap (B \cup A)$
- (d) $A \cap (B \cup A) = A \cap (A \cup B)$, which was proven in an earlier exercise.
- 9. Let A, B, X be sets such that $A \cup B = X \land A \cap B = \emptyset$. Proof $A = X \setminus B$:
 - (a) $A \cap B = \emptyset \equiv \forall x \in A \land x \in B : x \in \emptyset$
 - (b) $\neg \exists x : x \in \emptyset$, so $\forall x \in A : x \notin B$
 - (c) $X \equiv \{x : x \in A \lor x \in B\}$, and $X \setminus B \equiv \{x : x \in X \land x \notin B\}$, so $X \setminus B \equiv (A \cup B) \setminus B \equiv \{x : (x \in A \lor x \in B) \land x \notin B\}$
 - (d) Since $\forall x \in X \setminus A : x \in (A \cup B) \land x \notin B, X \setminus B = \{x : (x \in A \lor x \in B) \land x \in B\} = \{x : (x \in A \land x \notin B) \lor x (\in B \land x \notin B)\} = \{x : x \in A \land x \notin B\}$
 - (e) Again, $\forall x \in A : x \notin B$, so $A = x : x \in A \land x \notin B = X \setminus B$, and we have proven our hypothesis

Proof $B = X \setminus A$

(a) The \cup and \cap operators have the property of associativity so we need merely rearrange our starting assumptions to get:

 $A \cup B = B \cup A = X$ and

 $A \cap B = B \cap A = \emptyset$, and invoke our proof from the previous exercise.

10. Proof $A \setminus B$, $B \setminus A$, and $A \cap B$ are disjoint, and that their union is $A \cup B$:

- (a) First we prove $A \setminus B$ is disjoint from $B \setminus A$ and $A \cap B$, and then that $A \cap B$ is disjoint from $B \setminus A$
- (b) $A \setminus B \equiv \{x : x \in A \land x \notin B\}$
- (c) $\forall x \in B \setminus A : x \notin A$, so $\forall x \in B \setminus A : x \notin A \setminus B$
- (d) Similarly, $\forall x \in A \setminus B : x \notin B$, so $\forall x \in A \setminus B : x \notin B \setminus A$, and we can say that $A \setminus B$ and $B \setminus A$ are disjoint.
- (e) By definition, $\forall x \in A \cap B : x \in A \land x \in B$
- (f) This means that $\forall x \in A \cap B : x \notin B \setminus A$, because $\forall x \in B \setminus A : x \notin A$.

Proof $(A \setminus B) \cup (B \setminus A) \cup (A \cap B) = A \cup B$

- (a) $(A \setminus B) \cup (B \setminus A) \cup (A \cap B) \equiv \{x : x \in A \land x \notin B\} \cup \{x : x \in B \land x \notin A\} \cup \{x : x \in A \land x \in B\}$
- (b) $\{x: x \in A \land x \notin B\} \cup \{x: x \in B \land x \notin A\} = \{x: (x \in A \land x \notin B) \lor (x \in B \land x \notin A)\} = \{x: (x \in A \lor x \in B) \land \neg (x \in A \land x \in B)\},$
- (c) $\{x: x \in A \land x \notin B\} \cup \{x: x \in B \land x \notin A\} \cup \{x: x \in A \land x \in B\} = \{x: (x \in A \lor x \in B) \land \neg (x \in A \land x \in B)\} \cup \{x: x \in A \land x \in B\}, \text{ and:}$
- (d) $\{x: (x \in A \lor x \in B) \land \neg (x \in A \land x \in B)\} \cup \{x: x \in A \land x \in B\} = \{x: x \in A \lor x \in B\} = A \cup B$, finally proving also that $(A \backslash B) \cup (B \backslash A) \cup (A \cap B) = A \cup B$
- 11. Proof axiom of replacement implies axiom of specification:
 - (a) The axiom of replacement states that for any set A and objects $x \in A$ and y "there exists a set $\{y : P(x, y) \text{ is true for some } x \in A\}$ '.
 - (b) Given this axiom lets consider a possible property $P(x,y) = (y = x \land P(y))$, where P(x) is an arbitrary property.
 - (c) Applied to the axiom of choice, this property proves the existence of the set $\{y: y=x \land P(y) \text{ for some } x \in A\}$. In other words: $z \in \{y: y=x \land P(y) \text{ for some } x \in A\} \iff (\exists x \in A: x=z \land P(z))$
 - (d)