Tables for Digital Signal Processing

1 Mathematical formulae

Pythagoras's theorem: For a right-angle triangle with hypotenuse c and two other sides a, b,

$$c = \sqrt{a^2 + b^2}$$

Quadratic formula: If

$$ax^2 + bx + c = 0$$

then

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

1.1 Circular functions

$$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$$

$$\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$$

$$\tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}$$

$$\sin \theta + \sin \phi = 2 \sin \frac{\theta + \phi}{2} \cos \frac{\theta - \phi}{2}$$

$$\sin \theta - \sin \phi = 2 \sin \frac{\theta - \phi}{2} \cos \frac{\theta + \phi}{2}$$

$$\cos \theta + \cos \phi = 2 \cos \frac{\theta + \phi}{2} \cos \frac{\theta - \phi}{2}$$

$$\cos \theta + \cos \phi = -2 \sin \frac{\theta + \phi}{2} \sin \frac{\theta - \phi}{2}$$

$$2 \sin \theta \cos \phi = \sin(\theta + \phi) + \sin(\theta - \phi)$$

$$2 \cos \theta \sin \phi = \sin(\theta + \phi) - \sin(\theta - \phi)$$

$$2 \cos \theta \cos \phi = \cos(\theta - \phi) + \cos(\theta + \phi)$$

$$2 \sin \theta \sin \phi = \cos(\theta - \phi) - \cos(\theta + \phi)$$

$$\tan \theta \tan \phi = \frac{\cos(\theta - \phi) - \cos(\theta + \phi)}{\cos(\theta - \phi) + \cos(\theta + \phi)}$$

1.2 Euler's formula

$$e^{jx} = \cos x + j \sin x$$

$$\cos x = \frac{e^{jx} + e^{-jx}}{2}$$

$$\sin x = \frac{e^{jx} - e^{-jx}}{2j}$$

1.3 Series

$$\sum_{k=0}^{n-1} (a+kd) = \frac{n}{2} [2a + (n-1)d]$$

$$\sum_{k=0}^{n-1} ar^k = \frac{a(1-r^n)}{1-r}$$

$$\sum_{k=0}^{\infty} ar^k = \frac{a}{1-r} \quad \text{if } |r| < 1$$

2 Transforms

z transform:

$$X(z) = \sum_{n = -\infty}^{\infty} x(n)z^{-n}$$

Fourier transform:

$$X(\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$$
$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega$$

Discrete-time Fourier transform:

$$X(\omega) = \sum_{n = -\infty}^{\infty} x(n) e^{-j\omega n}$$
$$x(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\omega) e^{j\omega n} d\omega$$

Discrete Fourier transform (DFT):

$$X(k) = \sum_{n=0}^{N-1} x(n) e^{-j2\pi kn/N}, \qquad 0 \le k \le N-1$$

$$x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{j2\pi kn/N}, \qquad 0 \le n \le N-1$$

2.1 Discrete-time convolution

Linear convolution:

$$x(n) * h(n) = \sum_{k=-\infty}^{\infty} x(n-k)h(k) = \sum_{k=-\infty}^{\infty} h(n-k)x(k)$$

N-point circular convolution:

$$x(n)
otin h(n) = \sum_{k=0}^{N-1} x(n-k \mod N)h(k) = \sum_{k=0}^{N-1} h(n-k \mod N)x(k)$$

2.2 Discrete-time correlation

Auto-correlation:

$$r_{xx}(l) = \sum_{n=-\infty}^{\infty} x(n)x(n-l) = x(l) * x(-l)$$

Cross-correlation of energy signals:

$$r_{xy}(l) = \sum_{n=-\infty}^{\infty} x(n)y(n-l) = x(l) * y(-l)$$

Cross-correlation of periodic signals with period *N*:

$$r_{xy}(l) = \frac{1}{N} \sum_{n=0}^{N-1} x(n)y(n-l)$$

2.3 Bounded-Input Bounded-Output (BIBO) stability

A system is stable if input x(n) and output y(n) satisfy

$$|x(n)| < \infty \implies |y(n)| < \infty$$

A linear time-invariant system with impulse response h(n) is stable if and only if

$$\sum_{n=-\infty}^{\infty} |h(n)| < \infty$$

2.4 Common z transform pairs

Time domain	z domain	ROC
x(n)	X(z)	
$\delta(n)$	1	All z
U(n)	$\frac{1}{1-z^{-1}}$	z > 1
nU(n)	$\frac{z^{-1}}{1-z^{-1}}$	z > 1
a^n U(n)	$\frac{1}{1-az^{-1}}$	z > a
$na^nU(n)$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a
$-a^n U(-n-1)$	$\frac{1}{1-az^{-1}}$	z < a
$-na^nU(-n-1)$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a
$\cos(\omega_0 n) \mathrm{U}(n)$	$\frac{1 - z^{-1}\cos\omega_0}{1 - 2z^{-1}\cos\omega_0 + z^{-2}}$	z > 1
$\sin(\omega_0 n) \mathrm{U}(n)$	$\frac{z^{-1}\sin\omega_0}{1 - 2z^{-1}\cos\omega_0 + z^{-2}}$	z > 1
$a^n \cos(\omega_0 n) \mathrm{U}(n)$	$\frac{1 - az^{-1}\cos\omega_0}{1 - 2az^{-1}\cos\omega_0 + a^2z^{-2}}$	z > a
$a^n \sin(\omega_0 n) U(n)$	$\frac{az^{-1}\sin\omega_0}{1 - 2az^{-1}\cos\omega_0 + a^2z^{-2}}$	z > a

2.5 Properties of the z transform

Property	Time domain	z domain	ROC
	x(n)	X(z)	$ROC, r_1 < z < r_u$
Notation	$x_1(n)$	$X_1(z)$	$ ROC_1, r_{11} < z < r_{1u}$
	$x_2(n)$	$X_2(z)$	$ ROC_2, r_{2l} < z < r_{2u}$
Linearity	$a_1x_1(n) + a_2x_2(n)$	$a_1 X_1(z) + a_2 X_2(z)$	Includes the intersection of ROC_1 and ROC_2
Time shifting (two sided)	x(n-k)	$z^{-k}X(z)$	ROC, except z = 0 if $k > 0$ and $z = \infty$ if $k < 0$
Time delay (one sided)	x(n-k), k > 0	$z^{-k} \left[X(z) + \sum_{n=1}^{k} x(-n)z^n \right]$	ROC, except $z = 0$
Time advance (one sided)	x(n+k), k > 0	$z^{k} \left[X(z) - \sum_{n=0}^{k-1} x(n)z^{-n} \right]$	ROC , except $z = \infty$
Scaling in the \boldsymbol{z} domain	$a^n x(n)$	$X(a^{-1}z)$	$ a r_1 < z < a r_u$
Time reversal	<i>x</i> (- <i>n</i>)	$X(z^{-1})$	$\frac{1}{r_{\rm u}} < z < \frac{1}{r_{\rm l}}$
Conjugation	<i>x</i> *(<i>n</i>)	$X^*(z^*)$	ROC
Real part	$\operatorname{Re} x(n)$	$\frac{1}{2}[X(z) + X^*(z^*)]$	Includes ROC
Imaginary part	$\operatorname{Im} x(n)$	$\frac{1}{2}[X(z) - X^*(z^*)]$	Includes ROC
Differentiation in the z domain	nx(n)	$-z\frac{\mathrm{d}X(z)}{\mathrm{d}z}$	$ r_1 < z < r_u$
Convolution	$x_1(n) * x_2(n)$	$X_1(z)X_2(z)$	Includes the intersection of ROC_1 and ROC_2
Correlation	$r_{x_1x_2}(l) = x_1(l) * x_2(-l)$	$R_{x_1 x_2} = X_1(z) X_2(z^{-1})$	Includes the intersection of ROC_1 and ROC of $X_2(z^{-1})$
Multiplication	$x_1(n)x_2(n)$	$\frac{1}{2\pi \mathbf{j}} \oint_C X_1(v) X_2\left(\frac{z}{v}\right) v^{-1} \mathrm{d}v$	Includes $r_{11}r_{21} < z < r_{1u}r_{2u}$
Initial value theorem	If $x(n)$ is causal, then $x(0) = \lim_{z \to \infty} X(z)$		
Parseval's relation	$\sum_{n=-\infty}^{\infty} x_1(n) x_2^*(n) = \frac{1}{2\pi \mathbf{j}} \oint_C X_1(v) X_2^*(\frac{1}{v^*}) v^{-1} dv$		

2.6 Common discrete-time Fourier transform pairs

Note: $X(\omega)$ is periodic with period 2π . The table below only shows $X(\omega)$ in the range $-\pi < \omega \leq \pi$.

Time domain	Frequency domain (one period)
x(n)	$X(\omega), -\pi < \omega \le \pi$
1	$2\pi\delta(\omega)$
$\delta(n)$	1
U(n)	$\frac{1}{1 - \mathrm{e}^{-\mathrm{j}\omega}} + \pi \delta(\omega)$
$a^n U(n), a < 1$	$\frac{1}{1 - ae^{-j\omega}}$
$(n+1)a^n\mathrm{U}(n), a <1$	$\frac{1}{(1-a\mathrm{e}^{-\mathrm{j}\omega})^2}$
$\cos \omega_0 n$, $-\pi < \omega_0 < \pi$	$\pi \left[\delta(\omega - \omega_0) + \delta(\omega + \omega_0) \right]$
$\sin \omega_0 n, -\pi < \omega_0 < \pi$	$\frac{\pi}{\mathrm{j}} \left[\delta(\omega - \omega_0) - \delta(\omega + \omega_0) \right]$
$\cos \pi n = (-1)^n$	$2\pi\delta(\omega-\pi)$
$\sum_{m=-\infty}^{\infty} \delta(n-mN)$	$\frac{2\pi}{N} \sum_{m=\lfloor 1-N/2 \rfloor}^{\lfloor N/2 \rfloor} \delta\left(\omega - \frac{2\pi m}{N}\right)$
U(n+N) - U(n-N-1)	$\frac{\sin[\omega(N+1/2)]}{\sin(\omega/2)}$
$x(n) = \begin{cases} \frac{W}{\pi}, & n = 0\\ \frac{\sin Wn}{\pi n}, & n \neq 0 \end{cases}$	$X(\omega) = \begin{cases} 1, & \omega \le W \\ 0, & W < \omega \le \pi \end{cases}$

2.7 Properties of the discrete-time Fourier transform

Property	Time domain	Frequency domain	
	x(n)	$X(\omega)$	
Notation	$x_1(n)$	$X_1(\omega)$	
	$x_2(n)$	$X_2(\omega)$	
Linearity	$a_1 x_1(n) + a_2 x_2(n)$	$a_1X_1(\omega) + a_2X_2(\omega)$	
Time shifting	x(n-k)	$e^{-j\omega k}X(\omega)$	
Time reversal	x(-n)	$X(-\omega)$	
Convolution	$x_1(n) * x_2(n)$	$X_1(z)X_2(z)$	
Correlation	$r_{x_1x_2}(l) = x_1(l) * x_2(-l)$	$S_{x_1x_2}(\omega) = X_1(\omega)X_2(-\omega)$	
Frequency shifting	$e^{j\omega_0 n}x(n)$	$X(\omega-\omega_0)$	
Modulation	$x(n)\cos\omega_0 n$	$\frac{X(\omega - \omega_0) + X(\omega + \omega_0)}{2}$	
	$x(n)\sin\omega_0 n$	$\frac{X(\omega - \omega_0) - X(\omega + \omega_0)}{2j}$	
Multiplication	$x_1(n)x_2(n)$	$\frac{1}{2\pi} \int_{-\pi}^{\pi} X_1(\lambda) X_2(\omega - \lambda) \mathrm{d}\lambda$	
Differentiation in the frequency domain	nx(n)	$j\frac{\mathrm{d}X(\omega)}{\mathrm{d}\omega}$	
Conjugation	<i>x</i> *(<i>n</i>)	$X^*(-\omega)$	
Parseval's theorem	$\sum_{n=-\infty}^{\infty} x_1(n) x_2^*(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} X_1(\omega) X_2^*(\omega) d\omega$		

2.8 Properties of the discrete Fourier transform (DFT)

Property	Time domain	Frequency domain
	x(n)	X(k)
Notation	$x_1(n)$	$X_1(k)$
	$x_2(n)$	$X_2(k)$
Linearity	$a_1 x_1(n) + a_2 x_2(n)$	$a_1 X_1(k) + a_2 X_2(k)$
Circular time shifting	$x(n-l \mod N)$	$e^{-j2\pi kl/N}X(k)$
Time reversal	x(N-n)	X(N-k)
Circular convolution	$x_1(n) \otimes x_2(n)$	$X_1(k)X_2(k)$
Circular correlation	$x_1(n) \otimes x_2^*(N-n)$	$X_1(k)X_2^*(k)$
Circular frequency shifting	$e^{j2\pi ln/N}x(n)$	$X(k-l \mod N)$
Multiplication	$x_1(n)x_2(n)$	$\frac{1}{N}X_1(k) \widehat{N} X_2(k)$
Conjugation	<i>x</i> *(<i>n</i>)	$X^*(N-k)$
Parseval's theorem	$\sum_{n=0}^{N-1} x_1(n)x_2^*(n) = \frac{1}{N} \sum_{k=0}^{N-1} X_1(k)X_2^*(k)$	
	$x(n) = x_{R}^{e}(n) + x_{R}^{o}(n) + jx_{I}^{e}(n) + jx_{I}^{o}(n)$	
Symmetry	$X(k) = X_{\rm R}^{\rm e}(k) + X_{\rm R}^{\rm o}(k) + jX_{\rm I}^{\rm e}(k) + jX_{\rm I}^{\rm o}(k)$	
	where $x_{\rm R}^{\rm e}(n), X_{\rm R}^{\rm e}(k)$ are real and even,	
	$x_{\mathrm{R}}^{\mathrm{o}}(n), X_{\mathrm{R}}^{\mathrm{o}}(k)$ are real and odd,	
	$x_{ m I}^{ m e}(n), X_{ m I}^{ m e}(k)$ are imaginary and even,	
	$x_{ m I}^{ m o}(n), X_{ m I}^{ m o}(k)$ are imaginary and odd	

3 Filters

Kaiser formula to determine the equiripple filter order:

$$M \approx \frac{-10\log_{10}(\delta_1\delta_2) - 13}{14.6\Delta f} + 1$$

Order of Butterworth filter:

$$\frac{\log(\delta/\epsilon)}{\log(\Omega_{\rm s}/\Omega_{\rm p})}$$

Order of Chebyshev filter:

$$\frac{\operatorname{arcosh}(\delta/\epsilon)}{\operatorname{arcosh}(\Omega_{\rm s}/\Omega_{\rm p})}$$

Bilinear transform:

$$s = \frac{2}{T_{\rm s}} \left(\frac{1 - z^{-1}}{1 + z^{-1}} \right)$$

$$z = \frac{\frac{2}{T_{\rm s}} + s}{\frac{2}{T_{\rm s}} - s}$$

$$\Omega = \frac{2}{T_{\rm s}} \tan \frac{\omega}{2}$$

$$\omega = 2 \arctan \frac{\Omega T_{\rm s}}{2}$$

where $T_{\rm s}$ is the sampling period.

3.1 Window functions for FIR filter design

Name	Time domain sequence
Bartlett	$1 - \frac{2\left n - \frac{M-1}{2}\right }{M-1}$
Blackman	$0.42 - 0.5\cos\frac{2\pi n}{M - 1} + 0.08\cos\frac{4\pi n}{M - 1}$
Hamming	$0.54 - 0.46 \cos \frac{2\pi n}{M - 1}$
Hann	$\frac{1}{2}\left(1-\cos\frac{2\pi n}{M-1}\right)$
Kaiser	$\frac{I_0\left[\alpha\sqrt{\left(\frac{M-1}{2}\right)^2-\left(n-\frac{M-1}{2}\right)^2}\right]}{I_0\left[\alpha\left(\frac{M-1}{2}\right)\right]}$

3.2 Frequency transformations for analogue filters

The prototype low-pass filter has band edge frequency $\Omega_{\rm p}.$

Type	Transformation	Parameters
Low pass	$s \to \frac{\Omega_{\rm p}}{\Omega_{\rm p}'} s$	$arOmega_{ m p}'={ m band\ edge\ frequency\ for\ new\ filter}$
High pass	$s o rac{\Omega_{ m p} \Omega_{ m p}'}{s}$	$arOmega_{ m p}'={ m band\ edge\ frequency\ for\ new\ filter}$
Band pass	$s \to \Omega_{\rm p} \frac{s^2 + \Omega_{\rm l} \Omega_{\rm u}}{s(\Omega_{\rm u} - \Omega_{\rm l})}$	$\Omega_{ m l}=$ lower band edge frequency $\Omega_{ m u}=$ upper band edge frequency
Band stop	$s \to \Omega_{\rm p} \frac{s(\Omega_{\rm u} - \Omega_{\rm l})}{s^2 + \Omega_{\rm l}\Omega_{\rm u}}$	$\Omega_{ m l}=$ lower band edge frequency $\Omega_{ m u}=$ upper band edge frequency

3.3 Frequency transformations for digital filters

The prototype low-pass filter has band edge frequency $\omega_{\mathrm{p}}.$

Туре	Transformation	Parameters
Low pass	$z^{-1} \to \frac{z^{-1} - a}{1 - az^{-1}}$	$\omega_{\rm p}'={ m band\ edge\ frequency\ for\ new\ filter}$ $a=rac{\sin[(\omega_{ m p}-\omega_{ m p}')/2]}{\sin[(\omega_{ m p}+\omega_{ m p}')/2]}$
High pass	$z^{-1} \to -\frac{z^{-1} + a}{1 + az^{-1}}$	$\omega_{\rm p}'={ m band\ edge\ frequency\ for\ new\ filter}$ $a=-{\cos[(\omega_{\rm p}+\omega_{\rm p}')/2]\over\cos[(\omega_{\rm p}-\omega_{\rm p}')/2]}$
Band pass	$z^{-1} \to \frac{z^{-2} - a_1 z^{-1} + a_2}{a_2 z^{-2} - a_1 z^{-1} + 1}$	$\omega_{\rm l} = {\rm lower \ band \ edge \ frequency}$ $\omega_{\rm u} = {\rm upper \ band \ edge \ frequency}$ $a_1 = 2\alpha K/(K+1)$ $a_2 = (K-1)/(K+1)$ $\alpha = \frac{\cos[(\omega_{\rm u}+\omega_{\rm l})/2]}{\cos[(\omega_{\rm u}-\omega_{\rm l})/2]}$ $K = \cot\frac{\omega_{\rm u}-\omega_{\rm l}}{2}\tan\frac{\omega_{\rm p}}{2}$
Band stop	$z^{-1} \to \frac{z^{-2} - a_1 z^{-1} + a_2}{a_2 z^{-2} - a_1 z^{-1} + 1}$	$\omega_{\rm l} = {\rm lower \ band \ edge \ frequency}$ $\omega_{\rm u} = {\rm upper \ band \ edge \ frequency}$ $a_1 = 2\alpha/(K+1)$ $a_2 = (1-K)/(1+K)$ $\alpha = \frac{\cos[(\omega_{\rm u}+\omega_{\rm l})/2]}{\cos[(\omega_{\rm u}-\omega_{\rm l})/2]}$ $K = \tan\frac{\omega_{\rm u}-\omega_{\rm l}}{2}\tan\frac{\omega_{\rm p}}{2}$

3.4 Lattice filters

Conversion of lattice coefficients to direct-form filter coefficients:

$$\begin{split} A_0(z) &= B_0(z) = 1 \\ A_m(z) &= A_{m-1}(z) + K_m z^{-1} B_{m-1}(z) & m = 1, 2, \dots, M-1 \\ B_m(z) &= z^{-m} A_m(z^{-1}) & m = 1, 2, \dots, M-1 \end{split}$$

Conversion of direct-form filter coefficients to lattice coefficients:

$$A_{m-1}(z) = \frac{A_m(z) - K_m B_m(z)}{1 - K_m^2}$$

$$m = M - 1, M - 2, \dots, 1$$

$$B_m(z) = z^{-m} A_m(z^{-1})$$

$$m = 1, 2, \dots, M - 1$$

$$A_0(z) = 1$$

Conversion of direct-form IIR filter coefficients to lattice coefficients (in addition to FIR filter coefficient above):

$$C_M(z) = \sum_{m=0}^{M} v_m B_m(z)$$

$$C_{m-1}(z) = C_m(z) - v_m B_m(z)$$

4 Wavelets

Haar wavelet function:

$$\psi(t) = \begin{cases} 1, & \text{for } 0 \le t < 1/2 \\ -1, & \text{for } 1/2 \le t < 1 \\ 0, & \text{otherwise} \end{cases}$$

Haar scaling function:

$$\phi(t) = \begin{cases} 1, & \text{for } 0 \le t < 1 \\ 0, & \text{otherwise} \end{cases}$$

Wavelet dilation and translation:

$$\psi_{j,n}(t) = \frac{1}{\sqrt{2^j}} \psi\left(\frac{t - 2^j n}{2^j}\right)$$

Last update: 2023-01-10