

¹Technical University of Berlin, Institute of Mathematics

²University of Minnesota, School of Mathematics

³Friedrich-Alexander-Universität Erlangen-Nürnberg, Department Mathematik

Convergence rates for Lipschitz learning on very sparse graphs Jeff Calder² Tim Roith³ Leon Bungert¹

Semi-supervised Learning

Given a finite set of n points $\Omega_n \subset \Omega \subset \mathbb{R}^d$ with labels $\mathbf{g}: \mathcal{O}_n \subset \Omega_n \to \mathbb{R}$, find a function

Weighted Graphs

We model the data as a weighted graph (Ω_n, w_n) with edge weights given by

$$w_n(x,y) := \eta(|x-y|/\varepsilon_n), \quad x,y \in \Omega_n.$$

Here $\varepsilon_n > 0$ is a scaling parameter and $\eta:[0,\infty)\to[0,\infty)$ is a kernel function.

Laplacian Learning

Laplacian learning for $p < \infty$ involves the energy

$$\mathbf{E}_p^{w_n}(\mathbf{u}) = \sum_{x,y \in \Omega_n} w_n(x,y)^p |\mathbf{u}(y) - \mathbf{u}(x)|^p$$

and the graph Laplacian

$$\Delta_p^{w_n} \mathbf{u}(x) := \sum_{y \in \Omega_n} w_n(x, y)^p |\mathbf{u}(y) - \mathbf{u}(x)|^{p-2} (\mathbf{u}(y) - \mathbf{u}(x))$$

which yields the equivalent problems:

s.t.
$$\mathbf{u} = \mathbf{g} \text{ on } \mathcal{O}_n$$
.

 $\min \mathbf{E}_p^{w_n}(\mathbf{u}),$

 $\Delta_p^{w_n}\mathbf{u}=0 \text{ in } \Omega_n\setminus\mathcal{O}_n,$ $\mathbf{u} = \mathbf{g}$ on \mathcal{O}_n .

Drawback: In the infinite data limit this problem is only well-posed if p > d.

Lipschitz Learning

In the limit $p \to \infty$ we obtain the energy

$$\mathbf{E}_{\infty}^{w_n}(\mathbf{u}) = \max_{x,y \in \Omega_n} w_n(x,y) |\mathbf{u}(y) - \mathbf{u}(x)|$$

and the graph infinity Laplacian

$$\Delta_{\infty}^{w_n} \mathbf{u}(x) := \max_{y \in \Omega_n} w_n(x, y) \left(\mathbf{u}(y) - \mathbf{u}(x) \right) + \min_{y \in \Omega_n} w_n(x, y) \left(\mathbf{u}(y) - \mathbf{u}(x) \right).$$

associated problems are not equivalent.

$$\min_{\mathbf{u}} \mathbf{E}^{w_n}_{\infty}(\mathbf{u}),$$
 s.t. $\mathbf{u} = \mathbf{g}$ on $\mathcal{O}_n.$

Minimizing $\mathbf{E}_{\infty}^{w_n}$ does not admit unique solutions: the blue line shows the AMLE.

Graph Resolution

Using the Hausdorff distance

$$d_H(A, B) = \sup_{x \in A} \operatorname{dist}(x, B) \vee \sup_{x \in B} \operatorname{dist}(x, A)$$

we consider the graph resolution:

$$\delta_n = d_H(\Omega_n, \Omega) \vee d_H(\mathcal{O}_n, \mathcal{O}).$$

Local Convexity

We assume that Ω is **locally** convex, i.e., $\forall x, y \in \Omega$:

$$d_{\Omega}(x,y) \leq |x-y| + \phi(|x-y|)$$
 where $\phi(\varepsilon) \ll \varepsilon$ as $\varepsilon \to 0$.

⇒ No sharp internal corners.

Γ -Convergence

Considering the functionals

$$egin{aligned} E^{w_n}_\infty(\mathbf{u}) &:= rac{1}{arepsilon_n} \mathbf{E}^{w_n}_\infty(\mathbf{u}) &+ \mathsf{constraint}, \ \mathcal{E}_\infty(u) &:= \|
abla u \|_{L^\infty(\Omega)} &+ \mathsf{constraint}, \end{aligned}$$

we prove in [LIP-I]:

- $E_{\infty}^{w_n} \xrightarrow{I} \sigma_n \mathcal{E}_{\infty}$ in a suitable topology,
- $\sup_{n\in\mathbb{N}} E_{\infty}^{w_n}(\mathbf{u}_n) < \infty$ and boundedness imply that $(\mathbf{u}_n)_{n\in\mathbb{N}}$ is relatively compact.

Here we assume the weakest scaling

$$\delta_n \ll \varepsilon_n \ll 1.$$

The ∞ -Laplacian and AMLEs

For $\Delta_{\infty}u(x):=\langle \nabla u(x), \nabla^2 u(x) \nabla u(x) \rangle$ we consider the problems:

∞-Laplacian	
$\Delta_{\infty} u = 0$	in Ω ,
u = g	on \mathcal{O} ,
$\frac{\partial u}{\partial x} = 0$	on $\partial\Omega\setminus\mathcal{O}$.

AMLE $\operatorname{Lip}_{d_{\mathcal{O}}}(u; \overline{V}) = \operatorname{Lip}_{d_{\mathcal{O}}}(u, \partial V),$ u = g on \mathcal{O} ,

for all open and connected

sets $V \subset \overline{\Omega} \setminus \mathcal{O}$.

CDF

 $h_{\pm} := \pm u - a |\cdot - y|$ satisfies $\max_{\overline{V}} h_{\pm} = \max_{\partial V} h_{\pm},$

for all such sets $V \subset \overline{\Omega} \setminus \mathcal{O}$, $y \in \overline{\Omega} \setminus V$, and $a \ge 0$.

- Regular $\partial \Omega$: ∞ -harmonic \Leftrightarrow AMLE \Leftrightarrow CDF.
- AMLE and CDF can be generalized to the graph, using the distance

$$d_n(x,y) := \inf \left\{ \sum_{i=1}^{m-1} \frac{1}{\omega_n(p_{i+1},p_i)} : m \in \mathbb{N}, p \in \Omega_n^m, p_1 = x, p_m = y \right\}.$$

[LIP-II]: $\Delta_{\infty}^{w_n} \mathbf{u} = 0 \Rightarrow \mathbf{u}$ is graph AMLE and fulfills graph CDF.

Meeting in the Middle

Larger length scale $\tau > 0$: consider homogenized operator

$$\tau^2 \Delta_{\infty}^{\tau} u(x) := \sup_{y \in \overline{B}(x; \tau)} (u(y) - u(x)) + \inf_{y \in \overline{B}(x; \tau)} (u(y) - u(x)).$$

Local to Non-Local: CDF implies [AS10] for

$$u_{\tau}(x) = \inf_{\overline{B}(x; \tau)} u$$

that

$$-\Delta_{\infty} u \ge 0 \Rightarrow -\Delta_{\infty}^{\tau} u_{\tau} \ge 0.$$

Discrete to Non-Local: CDF on the graph implies [LIP-II] for $u_n^{\tau}(x) := \max_{y \in \overline{B}(x; \tau) \cap \Omega_n} \mathbf{u}_n(y)$ that

$$-\Delta_{\infty}^{w_n} \mathbf{u}_n \leq 0 \Rightarrow -\Delta_{\infty}^{\tau} u_n^{\tau} \lesssim \frac{r_{\tau}}{\tau} + \frac{\varepsilon_n}{\tau^2},$$

where

$$r_{\tau}(x) := \frac{\sup_{y \in \overline{B}(x,\tau) \cap \Omega_n} d_n(x,y)}{\inf_{y \in \Omega_n \setminus \overline{B}(x,2\tau-\varepsilon_n)} d_n(x,y)} - \frac{1}{2}.$$

Non-Local: Using strictness perturbations and Lipschitzness, and swapping signs we obtain

$$\sup_{\Omega_n} |\mathbf{u}_n - u| \lesssim \tau + \sqrt[3]{\frac{r_\tau}{\tau}} + \frac{\varepsilon_n}{\tau^2}. \tag{rate}$$

Key Insight from Equation (rate):

"Ratio convergence rates for the distance function imply convergence rates for AMLEs."

In [LIP-II] we prove:

$$|x-y| \leq \sigma_{\eta} d_n(x,y) \leq \left(1 + C\frac{\delta_n}{\varepsilon_n}\right) |x-y| + \tau_{\eta} \varepsilon_n,$$
 where $\sigma_{\eta} := \sup_{t>0} \eta(t) t$ and $\tau_{\eta} := \sup_{t>0} \sigma_{\eta} \eta(t)^{-1} - t$.

Sparse regime: If $\delta_n \lesssim \varepsilon_n \lesssim \delta_n^{\frac{3}{9}}$ the rate is $(\delta_n/\varepsilon_n)^{\frac{1}{4}}$. **Dense regime**: If $\varepsilon_n \gtrsim \delta_n^{\bar{9}}$ the rate is $\varepsilon_n^{\bar{5}}$.

What about $\varepsilon_n \sim \delta_n$? Percolation!

On a unit intensity Poisson Point Process $X \subset \mathbb{R}^d$ and for h>0let $\Pi_h(x,y)$ be the set of admissible paths and

$$T_s := d_{h_s}(0,se_1) := \inf \left\{ \sum_{i=1}^{\mathrm{len}(p)-1} |p_{i+1}-p_i| : p \in \Pi_{h_s}(0,se_1)
ight\}.$$

Important: Replace T_s by distance T_s' on an enriched process \mathcal{X}_s .

tim.roith@fau.de

 $s\mapsto h_s$ are growing step sizes with $h_s\gtrsim \log(s)^{\frac{1}{d}}$. **Approximate sub- and superadditivity:**

$$\mathbb{E}\left[T'_{s+t}\right] \le \mathbb{E}\left[T'_{s}\right] + \mathbb{E}\left[T'_{t}\right] + g(s+t)$$

$$\mathbb{E}\left[T'_{2s}\right] \ge 2\mathbb{E}\left[T'_{s}\right] - g(s)$$
???

For **ratio convergence** it suffices to freeze h_s :

 $\mathbb{E}[d_{h_s,\mathcal{X}_s}(0,2se_1)] \ge 2\mathbb{E}[d_{h_s,\mathcal{X}_s}(0,s)] - g(s).$

$$\left| \frac{\mathbb{E}\left[d_{h_s, \mathcal{X}_s}(0, se_1)\right]}{\mathbb{E}\left[d_{h_s, \mathcal{X}_s}(0, 2se_1)\right]} - \frac{1}{2} \right| \lesssim \sqrt{\frac{\log(s)^{2/d} \log(s)}{h_s}} \frac{\log(s)}{\sqrt{s}}$$

$$\Rightarrow \max |\mathbf{u}_n - u| \lesssim \log(n)^{2/9} \delta_n^{1/9}.$$

Numerical Examples

Infinity harmonic function $u(x_1, x_2) = |x_1|^{4/3} - |x_2|^{4/3}$ on $\Omega := \{ |x_1|^{2/3} + |x_2|^{2/3} \le 1 \}.$

AMLE rates for $\eta(s) = \frac{1}{s}$:

Ratio convergence rates for percolation length scales:

References

[AS10]

[LIP-III]

S. N. Armstrong and C. K. Smart. "An easy proof of Jensen's theorem on the uniqueness of infinity harmonic functions". In: Calculus of Variations and PDEs 37.3 (2010), pp. 381-384.

T. Roith and L. Bungert. "Continuum limit of Lipschitz learning on graphs". In: Foun-[LIP-I] dations of Computational Mathematics 23.2 (2023), pp. 393-431.

[LIP-II] L. Bungert, J. Calder, and T. Roith. "Uniform convergence rates for Lipschitz learning on graphs". In: IMA Journal of Numerical Analysis (2022).

L. Bungert, J. Calder, and T. Roith. Ratio convergence rates for Euclidean firstpassage percolation: Applications to the graph infinity Laplacian. 2022. arXiv: 2210. 09023 [math.PR]