Variable Normal

Es aquella que tiene media o esperanza nula $(\mu=0)$ y desvío unitario $(\sigma=1)$ y se la llama Z.

$$F(z) = P(Z \le z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}u^2} du$$

Como leer $P(Z \le z)$ en la tabla: $P(Z \le 0.43)$

			0,00	_		0 x		
X	0,00	0,01	0,02	0,03	0,04	0,05		
					0,5160			
0,1	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	(
0,2	0,5793	0,5832	0,5871	0,5910	0,5948	0,5987	(
0,3	0,6179	0,6217	0,6255	0.6293	0,6331	0,6368	(
0,4	0,6554	0,6591	0,6628	0,6664),6700	0,6736	(
0,5	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088	(
0,6	0,7257	0,7291	0,7324	0,7357	0,7389	0,7422	(
	0.7500	0.7044	0.7040	~ ~~~			١.	

1. Area a la izquierda de un número negativo

$$P(Z \leq -x) = P(Z \geq x) = 1 - P(Z \leq x)$$
, o sea, $F(-x) = 1 - F(x)$

2. Area a la derecha de un número negativo

$$P(Z \ge -x) = 1 - P(Z \le -x) = 1 - [1 - P(Z \le x)] = P(Z \le x).$$

3. Area entre 2 valores

$$P(-a \le Z \le b) = F(b) + F(a) - 1$$

Ejercicio 1:

- 1. ¿Cuál es el valor a que deja a su izquierda un área de 0,7190?
- 2. ¿Cuál es el valor a que deja a su derecha un área de 0,2810?
- 3. Hallar a tal que $P(Z \le a) = 0.2810$.
- 4. Hallar a tal que $P(Z \ge a) = 0.7190$.
- 5. Hallar a tal que:
 - $P(|Z| \le a) = 0.8904$,
 - $P(|Z| \ge a) = 0.1096$.

Estandarización

Si X es una variable aleatoria normal con $E(X)=\mu$ y $V(X)=\sigma^2$, la variable aleatoria

$$Z = \frac{X - \mu}{\sigma}$$

es una variable aleatoria normal con E(Z) = 0 y Var(Z) = 1.

Ejercicio 2:

Si el diámetro (en micrómetros) de los hematíes de los individuos normales sigue una N(7,5;0,2)

- 1. ¿Qué proporción de individuos tiene hematíes con un diámetro menor a 8 micrómetros?
- 2. ¿Qué proporción de individuos tiene hematíes con un diámetro entre 7 y 8 micrómetros?
- 3. Hallar el valor de a, tal que la probabilidad de que el diámetro de los hematíes sea menor que a, sea de 0,95.
- 4. Hallar dos valores simétricos entorno a la media tales que la probabilidad de que el diámetro de un hematíe esté entre ellos sea de 0,95.

Uniforme

 $X \sim \mathcal{U}(a,b)$ si tiene función de densidad

$$f_X(x) = \frac{1}{b-a} I_{\{x \in (a,b)\}}$$

$$a+b \qquad (b-a)^2$$

$$E(X) = \frac{a+b}{2}; \ Var(X) = \frac{(b-a)^2}{12}$$

Ejercicio 3:

Todas las mañanas Lucas llega a la estación del subte entre las 7:10 y las 7:30 (con distribución uniforme en el intervalo). El subte llega a la estación cada quince minutos comenzando a las 6:00. ¿Cuál es la densidad de probabilidades del tiempo que tiene que esperar Lucas hasta subirse al subte?