we have the	- · · · · · · · · · · · · · · · · · · ·
Departamento de Matemática, Universidade de Aveiro	Matemática Discreta
EXAME FINAL, 14 de Junho de 2023, Duração: 2h30m Nome: Excuplo de resoluçõe	Classificação:
Declaro que desisto:	Folhas supl.:

3. (2 val) Considere um conjunto A de 30 números inteiros positivos de 7 dígitos. Mostre que existem dois subconjuntos diferentes e não vazios X e Y de A tal que a soma dos elementos de X é igual à soma dos elementos de Y.

Sugestão. $30 \cdot 10^7 < 2^{30} - 1$.

- 4. (5 val) Um hotel tem 20 quartos que vão ser pintados usando 5 cores. Cada quarto é pintado com uma única cor e existe tinta de cada cor suficiente para pintar todos os quartos.
 - a) De quantas maneiras podemos pintar os quartos, tendo em conta que os quartos são indistinguíveis.
 - b) Determine o número de possibilidades de pintar os quartos, considerando que são numerados.
 - c) Considere, agora, que só tem tinta azul (uma das cinco cores) para pintar três quartos e o mesmo acontece relativamente à tinta verde, continuando a ter tinta suficiente de cada uma das restantes três cores para pintar todos os quartos.
 - i. Determine a série geradora correspondente ao problema de determinação do número de possibilidades de pintar n quartos com as cinco cores.
 - ii. A partir da série geradora obtida em (4(c)i) obtenha o valor do coeficiente que dá a solução do problema para os 20 quartos.

Coinade (
Com

1 a)

b)

do Teste 2.

Como (A = 30, 0 nómero de subcorjentos de A é 2, retirando o conjunto vazio ten se 2º1 subconjuto posicileis (pombos/objeto) pena afetar as somas porseiveis.

Sendo p e A um enteino positoro de 7 dígitos, tem se p e {1121..., 99999999}, pelo que, escolhendo 30 números em A a soma máxima e menor que 30×10 < 2-1.

Ou seja, o número de subconjunto e superior ao número de somas possiveis (garolas (coixas), donde, pelo himapor das garolas dos pombos haverá felo menos dois Subconjuntos nas vazios X e Y de A, tal que os seus elementos tem i qual soma:

se + x2+ ... + xk = y + y + - + y;, xxe X, y; e Y, ki e N.

4.(a) Temos 20 quartos indistinguíveis (bolas ignais) para afetar 5 cores (caixas), for exemplo;

$$C_1$$
 C_2 C_3 C_4 C_5
 $209 \rightarrow 99$ 99999 999999 999999 999999 9999999 (2)

respetivamente, combinações com repetiço de 5 elementos (bres) Tomadas 20 a 20:

(1) LC1, C1, C2, C2, C2, C3, C3, C3, C3, C3, C4, C4, C4, C4, C4, C4, C4, C4)

Donde, a soluqué de de da per
$$\binom{5}{20} = \binom{5+20-1}{20} = \binom{24}{20}$$

$$= \binom{24}{4} = \frac{24!}{4! \cdot 20!}$$

(b) Sendo es quartos numerados, teru-se 91,92,93,..., 919,920, podendo cada um deles ser pontado de uma cor a escelher entre as 5:

$$\frac{5}{91} \times \frac{5}{92} \times \frac{5}{93} \times \dots \times \frac{5}{919} \times \frac{5}{920} = 5^{20}$$

istré, a soluça é doda por avanjos com repetiça de 5 elementos (vores) 20 a 20, sendo o noveres de tais avanjos 5²⁰ (apticando se o puncipo da multiplicaço).