Xingyu (Tom) Wang

Vancouver, BC || 1 (604) 388-5164 || fortily@student.ubc.ca|| personal website: https://luckunately.github.io/

EDUCATION

University of British Columbia

Vancouver, Canada

Bachelor of Applied Science in Computer Engineering, CGPA: 4/4.33

08/2021 - 09/2025(expected)

 Related Courses: Computer Architecture, Digital and Microsystem design, Computing System, Error Control Coding, Algorithm and Data structure, Machine Learning, Software Construction

SKILLS SUMMARY

Programming Languages	Engineering skills	Programming skills
• Java, Python, C, C++	• FPGA, Digital design	Software Hardware Interface
 System Verilog, Assembly 	 Microprocessor and system buses 	 Embedded Programming
 Bash, Makefile 	 Memory Hierarchy 	 Deep Learning Algorithms
• Latex, Markdown	• Cache and Page Prefetching	• Git, GDB, Linux environment

WORK EXPERIENCE

Full-time Student Research Assistant

May, 2024 – Aug, 2024

UBC Systopia Lab

Vancouver, BC

- **Aim**: Investigate the applicability of the Learned Relaxed Belady (LRB) machine-learning model for cache and page pre-fetching.
- Methods: Collect SPEC 2017 traces with PIN, and apply Learning Memory Access Pattern methods.
- **Progress**: Tune LSTM model Add Attention Layer. Analyze trace. Experiment with heuristic methods. Hardware-Software Codesign for Prefetching
- Supervision under: Shaurya Patel, Prof. Alexandra Fedorova.

PROJECTS

Microsystem Design with Microprocessor

Jan 2024 - April 2024

- Build memory, data bus, various I/O around a M68K CPU on FPGA. Interact with CPU using embedded C programming.
- Implemented components include **DRAM controller**, **Cache Controller**, **SPI**, **Canbus**, **I2C**, **ADC/DAC**, and Simple RTOS usage with multi-threading and priority interrupts.
- Integrate the above components with VGA and Voice modules, and map addresses accordingly both in RTL design and C programming to produce a Tetris game with the M68K CPU.

ECC Performance Analysis on FPGA

Mar 2024 – April 2024

- RTL design of simple decoder and encoder for both **Hamming** code and **LDPC** code on FPGA.
- Analyze and compare performance on decode/encode cycle, combinational logic length, maximal frequency, gate usage, efficiency, and ease of use on DE1-SOC FPGA board.

RC4 Cracking on FPGA

June 2023

- Encryption and Decryption of RC4 using System Verilog on FPGA. Leveraging on-chip memory with multiple FSM.
- Multi-core system to brute force cracking RC4 Encryption. Parallel processing to accelerate execution. Communication between cores. The number of cores can adapt according to the Hardware Resources.

Supervised Learning on Audio Files

Nov 2023 – Dec 2023

- Collect Audio files, and process with Fourier Transform to get frequency data from Audio waveform. Apply PCA to reduce the dimension. Label data
- Supervised learning with Support Vector Machine and Neural Network, comparing the performance, memory usage, and
 efficiency of training and predicting.

AWARDS

• Dean's Honors List 2021 - 2024

NSERC Awards
 May 2024