Экзаменационное задание

по курсу «Дополнительные главы алгебры»

- 1. Найти индекс группы (\mathbb{Z}_{40} , +) по её подгруппе, порождённой элементами 12 и 20.
- 2. Доказать, что аддитивная группа $\mathbb{Z}_2 \times \mathbb{Z}_3$ является циклической.
- 3. Пусть G конечная абелева p-группа. Доказать, что $pG \neq G$.
- 4. Доказать, что множество всех многочленов с чётными свободными членами является идеалом в кольце $\mathbb{Z}[x]$.
- 5. Пусть F поле, а $f \in F[x]$. Доказать, что если $c \in F$ и f(x+c) неприводим в F[x], то f(x) также неприводим в F[x].
- 6. Пусть F поле с единицей $1, c \in F$ и K расширение F. Доказать, что если элемент $u \in K$ алгебраический над F, то u+1 и cu также алгебраические над F.
- 7. Построить поле разложения многочлена $x^3 + x + 1$ над полем \mathbb{Z}_2 .

Экзаменационное задание

по курсу «Дополнительные главы алгебры»

- 1. Найти индекс группы (\mathbb{Z}_{40} , +) по её подгруппе, порождённой элементами 12 и 20.
- 2. Доказать, что аддитивная группа $\mathbb{Z}_2 \times \mathbb{Z}_3$ является циклической.
- 3. Пусть G конечная абелева p-группа. Доказать, что $pG \neq G$.
- 4. Доказать, что множество всех многочленов с чётными свободными членами является идеалом в кольце $\mathbb{Z}[x]$.
- 5. Пусть F поле, а $f \in F[x]$. Доказать, что если $c \in F$ и f(x+c) неприводим в F[x], то f(x) также неприводим в F[x].
- 6. Пусть F поле с единицей $1, c \in F$ и K расширение F. Доказать, что если элемент $u \in K$ алгебраический над F, то u+1 и cu также алгебраические над F.
- 7. Построить поле разложения многочлена $x^3 + x + 1$ над полем \mathbb{Z}_2 .