NETWORK SCIENCE OF ONLINE INTERACTIONS

Chapter 4: Directions and Weights

Joao Neto 12/May/2023

SUMMARY

- Different node/link centrality measures with different goals
 - Degree, closeness and betweenness centrality
- Statistical distributions of social networks are usually heavy-tailed
 - Careful when analysing/plotting it
- Networks can have non-intuitive properties (friendship paradox)
- Networks are robust against random failure, but weak against target attack

4.1 DIRECTED NETWORKS

- Many real-world networks are directed
- Can be due to asymmetric, temporal interactions
- Many metrics split
- Degree
 - In-degree
 - Out-degree
- Component
 - In-component
 - Out-component

- World-Wide Web
 - nodes are pages with URLs
 - (directed) links are hyperlinks between pages
- How big is the web?
 - Lots of dynamic, ephemeral links
 - Estimate: web search indexes
 - Google: about 40-50B pages
 - Other estimates: 6-100B pages
- How to search that?

- Searching the web
 - Web crawler
 - Breadth-First Search

- Web graph structure
 - "Bow-tie" structure
 - Giant strongly connected component
 - Giant weakly connected component is >90% of the web

- Characterizing the web
 - In-degree: signature of popularity
 - Out-degree: signature of spam
- Heavy-tailed in-degree distribution
- 2012 web crawl
 - $N \approx 1.8 \times 10^9$
 - $\langle \ell \rangle \approx 13$
 - The web is an ultra small-world network

- Topical locality
 - Pages with related content tend to link (homophily)
 - Links are not random
 - Browsing is possible
 - BFS crawling is efficient
- **Topic drift**: as distance increases, similarity decreases

- How to measure similarity?
- Word embedding
 - Text content is represented as a vector in some space:
 - $\vec{d} = \{w_{d,1}, \dots, w_{d,n_t}\}$
 - One dimension for each term in your dictionary
 - Dictionary can be the entire language (~171K for English)
 - Smaller, expertly designed dictionaries are often more useful
 - Dimensionality-reduction techniques can help
- Similar content stays close in that space
- Weight (norm) of a term usually proportional to frequency

- Cosine similarity
 - $\cos\left(\overrightarrow{d_1}, \overrightarrow{d_2}\right) = \frac{\overrightarrow{d_1}}{\|d_1\|} \cdot \frac{\overrightarrow{d_2}}{\|d_2\|}$
- What is the average cosine similarity of webpages?
 - Decays with distance
 - Average of 100 seeds x 100 topics x 6 depths of a web search
 - Shows topic locality

4.3 PAGERANK

- How to measure centrality of webpages?
- Centrality metrics so far
 - Easily gamed (spam)
 - Not iterative (doesn't scale)
 - Don't reproduce browsing behaviour

PageRank

- Created in 1998, backbone of Google
- Ranks pages
- Measures page prestige

PR_dict = nx.pagerank(D)

4.3 PAGERANK

Random surfer model:

- random links are clicked
- Browsing can stop and start somewhere else
- Random walk model modified with random jumps (teleportation)
- PageRank of node i is given by R(i)
- Defined recursively
- Free parameter: teleportation α
 - Typically, $\alpha = 0.15$
 - Dual role: dampens random walk, prevents rank sinks

Power method to calculate PageRank:

Initialize each node with

$$R_0 = 1/N$$

• At each iteration *t*, loop over nodes and update PageRank of each node *i* via this recursive equation:

$$R_t(i) = \frac{\alpha}{N} + \left(1 - \alpha\right) \sum_{j \in pred(i)} \frac{R_{t-1}(j)}{k_{out}(j)}$$

probability to land on *i* by teleportation

probability to land on *i* by random surfing

4.3 PAGERANK

- What is the PageRank distribution?
 - Again, power-law
- How does it differ from e.g. in-degree?
 - Depends on the prestige of who links to you
 - Harder to game by spam
- PageRank exemplifies the benefit of having a targeted model (browsing) when choosing a model
 - Better sorting -> \$1.5T market cap

4.4-4.6 INTERESTING WEIGHTED NETWORKS

- Many real-world networks are weighted
- Information diffusion networks
 - How does content spreads/diffuses/percolates in a network?
 - How can we measure the influence of the nodes in this diffusion?
- Best-studied case: Twitter
 - Retweet/reply processes
 - User networks

CONTENT VIRALITY

- How to measure content virality?
 - Number of users exposed
 - Tree properties
- Tree properties
 - Structural virality

 - Average path length of the diffusion tree

Figure 1 A Schematic Depiction of Broadcast vs. Viral Diffusion, Where Nodes Represent Individual Adoptions and Edges Indicate Who Adopted from Whom

NODE INFLUENCE

- Measuring influence
 - Number of followers (in-degree in follower network)
 - Number of users exposed (out-degree in retweet network)
 - Number of retweets (out-strength in retweet network)
 - Fraction of retweets to followers
 - New: number of impression

MEASURING VIRALITY

- Measuring virality is tricky
- Widely-cited paper from 2018
 - "fake news spread 6x more than true news"
 - Fake news spread more and more broadly

SOCIAL SCIENCE

The spread of true and false news online

Soroush Vosoughi, Deb Roy, Sinan Aral2*

MEASURING VIRALITY

- 2021 re-analysis
- Cascade match:
 - If we match the size of the diffusion cascades, what happens to the other metrics?
 - The fake news tweets spread more, but not more broadly
 - May be due to data sampling bias
 - Requires processes to be extremely similar to work

Comparing information diffusion mechanisms by matching on cascade size

Jonas L. Juul^{a,1} and Johan Ugander^{b,1}

Juul & Ugander. 'Proceedings of the National Academy of Sciences 118, no. 46. doi:10.1073/pnas.2100786118.

4.7 WEIGHT HETEROGENEITY

- Weights can span many orders of magnitude
- Do we need all of them?
- Thresholding: prunes weak links
 - Makes it more manageable
 - Can more easily reveal important structure
 - Dangerous
- Simple pruning:
 - Removes links with $w_{ij} < \alpha$
 - Can quickly break and mischaracterize the network if heavy-tailed
- Per-node pruning
 - Per-node threshold, removes less-important links of each node

$$p_{ij} = \left(1 - \frac{w_{ij}}{s_i}\right)^{k_i - 1} < \alpha$$

SUMMARY

- Lots of directed networks are heavy-tailed both in degree and weights
- Word embedding is a powerful tool to study content networks (e.g. social media)
- Diffusion models are very useful
 - Metrics that model diffusion can excel (PageRank)
 - Can be used to study spread of misinformation in social media

