Lagrange Multipliers and Optimization

Dorian Goldman

February 22, 2017

1 Introduction to Constrained Optimization

Let $\beta = (\beta_1, \beta_2)$ be the desired coefficients in a linear regression so that we seek to minimize

$$\mathcal{L}(\beta) := \frac{1}{N} \sum_{i=1}^{N} (y_i - \beta_1 x_{i1} - \beta_2 x_{i2})^2.$$
 (1.1)

Recall that we wish to penalize the size of the coefficients in order to not over fit our model, so we impose a constraint on the size of β . More precisely, we seek to solve the **constrained optimization problem:**

$$\min_{\beta} \mathcal{L}_{\lambda}(\beta) \tag{1.2}$$

$$|\beta_1|^p + |\beta_2|^p \le C, (1.3)$$

for p = 1, 2.

Common Question: Why do we choose p = 1 or p = 2? Why not some other p?

Answer:

• The norm L^2 (ie. p=2) is very well behaved and is related to the equation for a sphere $(x^2+y^2=r^2)$. Recall that we have an exact solution to the linear regression problem, ie. (1.1), when we choose our norm to be L^2 (as we have above, known

FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression (right). Shown are contours of the error and constraint functions. The solid blue areas are the constraint regions $|\beta_1| + |\beta_2| \le t$ and $\beta_1^2 + \beta_2^2 \le t^2$, respectively, while the red ellipses are the contours of the least squares error function.

Figure 1.1: L^1 and L^2 regularizaiton.

as ordinary least squares - there is no exact solution if we replace the exponent 2 in (1.1) with a 1). For L^1 we can have many solutions to the same problem. ie. |1/2| + |1/2| = 1 and |1| + |0| = 1.

- The constant surfaces of L^2 (level surfaces, ie. where $x^2+y^2=r^2$) are the surfaces of constant distance from the origin, meaning that distances are rotationally invariant (why would we want to count certain directions more than others?)
- Thinking of a convex function $f(x) = x^2$, this has a constant second derivative f''(x) = 2 so it's uniformly convex - meaning we have stability, uniqueness, etc when minimizing with respect to this norm generally.
- p=1 is rather unique in that it provides a way of regularizing which results in sparse coefficients (ie. many zero coefficients, allowing you to choose the most important features). This is explained in these notes below.
- There isn't really any other advantage to using some other L^p space for p>2, yet many disadvantages (such as degeneracy).

Let's define $g(\beta) = |\beta_1|^p + |\beta_2|^p$, and for now, focus on p = 2. Referring to the figure on the right below, we seek to minimize (1.1) with some constraint

$$\beta_1^2 + \beta_2^2 \le C.$$

The size of the constraint depends on how strong we want our regularization to be, and we choose the constant C which gives the best performance on test data (as in lecture). More on this below.

How do we minimize this? Imagine to fix ideas that C=1 so that $\beta_1^2+\beta_2^2\leq 1$, and we seek to solve

$$\min_{\beta} \mathcal{L}_{\lambda}(\beta) \tag{1.4}$$

$$\min_{\beta} \mathcal{L}_{\lambda}(\beta) \tag{1.4}$$

$$\beta_1^2 + \beta_2^2 \le 1. \tag{1.5}$$

2 Derivation of Lagrange Multipliers

The following facts will make the above clear:

- $\beta \mapsto \mathcal{L}(\beta)$ is constant along level sets (ie. where $\mathcal{L}(\beta) = \text{constant}$) by definition.
- $\beta \mapsto \mathcal{L}(\beta)$ changes only in the direction **orthogonal** to the level sets, and this is given by $\nabla_{\beta} \mathcal{L}(\beta)$. This is clear because in any direction along the surface, \mathcal{L} is constant.
- Case 1: If $\nabla \mathcal{L}(\beta_0) = 0$ for some β^0 in $\beta_1^2 + \beta_2^2 < 1$ then we solve as we do in normal calculus.

- Case 2: If $\nabla \mathcal{L}(\beta_0) \neq 0$ in $\beta_1^2 + \beta_2^2 < 1$. Then the minimum occurs on the boundary of $\beta_1^2 + \beta_2^2$. This is the Lagrange multiplier case.
- Recall the vector orthogonal to the level set is the gradient vector. So if $g(\beta_1, \beta_2) = \beta_1^2 + \beta_2^2$, then the orthogonal vector to the surface $\beta_1^2 + \beta_2^2$ is in the direction of $\nabla g = 2\langle \beta_1, \beta_2 \rangle$.
- Main Point: The minimum of \mathcal{L} has to occur at a point where $\nabla \mathcal{L}$ is in the same direction as ∇g . If it weren't, then we could move along the surface $\beta_1^2 + \beta_2^2$ a bit to decrease the value (try drawing a picture or looking at the figures), so it wouldn't be a minimum!.

From the above points, we conclude that the minimum occurs at some point $\langle \beta_1^*, \beta_2^* \rangle$ such that

$$\nabla \mathcal{L}(\beta_1^*, \beta_2^*) = \lambda \nabla g(\beta_1^*, \beta_2^*).$$

3 Interpreting Lasso and Ridge regression

Observing the figure on the right, when we have $\beta_1^2 + \beta_2^2 \leq C$, we see the minimum has an equal chance of hitting the level set of $\beta_1^2 + \beta_2^2 = C$ at any point. As a result, the errors are generally equally distributed amongst the coefficients β_1 and β_2 .

On the other hand, when $|\beta_1| + |\beta_2| = C$, we see that the level set of \mathcal{L} is most likely to be tangent to the level sets (diamonds) at a corner (ie. where $\beta_1 = 0$ or $\beta_2 = 0$), since there are only 4 possible directions where both of the coefficients are non-zero, making it highly unlikely that the level sets of \mathcal{L} has a tangent parallel to any one of these directions.

Conclusion: As a result, Lasso tends to result in *sparser* coefficients (ie. many zero coefficients), while Ridge generally distributes the error more evenly among the coefficients.

4 HOW MUCH OF A CONSTRAINT DO WE USE?

Recall from lecture that we want to train a model by solving the problem:

$$\min_{\beta} \mathcal{L}_{\lambda}(\beta|(x_i, y_i) = \text{ training data })$$
 (4.1)

$$|\beta_1|^p + |\beta_2|^p \le C. (4.2)$$

Let's denote β_C as the solution to the above constrained optimization problem (note it depends on C), so that our model is

$$f_C(x) = \beta_C \cdot x.$$

Then the optimal C, denoted C^* is determined by

$$C^* = \operatorname{argmin}_C \frac{\sum_{i=1}^N (y_i - f_C(x_i))^2}{\sum_{i=1}^N (y_i - \bar{y})^2}.$$
 (4.3)