Memo: Tutorial 5

March 16, 2004

Question 1:

Question I: Two leftmost derivations: $S \Rightarrow \text{if } b \text{ then } S \text{ else } S \Rightarrow \text{if } b \text{ then } S \text{ else } S \Rightarrow \text{if } b \text{ then } if b \text{ then } S \text{ else } S \text{ (replace the first } S \text{ with } if b \text{ then } S) \Rightarrow \text{if } b \text{ then } if b \text{ then } a \text{ else } S \text{ (replace the first } S \text{ with } a) \Rightarrow \text{if } b \text{ then } if b \text{ then } a \text{ else } a \text{ (replace the } S \text{ with } a)$

S⇒ if b then S

⇒ if b then if b then S else S (replace S with if b then S else S) ⇒ if b then if b then a else S (replace the first S a) ⇒ if b then if b then a else a (replace S with a)

Two different parse trees corresponding to if b then if b then a else a

Question 3:

0 Α 1 Ø Α 2 S,B В S,B

Since we have S here we can derive aab from S in the given grammar.

Question 4:

$$\begin{smallmatrix} | & b & | & a & | & b & | & a & | \\ 0 & 1 & 2 & 3 & 4 \end{smallmatrix}$$

0 1 T 2 R.T R 3 T S S S,R,T S R,T R 4

Since we have S here the string baba can be derived from S in the given grammar.

```
Question 2:
```

Grammar: $S \rightarrow aSa \mid B \mid \varepsilon$ $B \rightarrow bB \mid \varepsilon$

Now convert this grammar to Chomsky normal form. First we add a new start variable:

 $S_1 \rightarrow S$ $S \rightarrow aSa \mid B \mid \varepsilon$

Remove now the ε rules. Remove $S \rightarrow \varepsilon$

Remove now $S_1 \rightarrow S \mid \varepsilon$ $S \rightarrow aa \mid aSa \mid B$ $B \rightarrow bB \mid \varepsilon$

 $S_1 \rightarrow S \mid \varepsilon$ $S\rightarrow aa \mid aSa \mid B$ $B\rightarrow b \mid bB$

Now we remove unit rules. Remove $S_1 \rightarrow S$ S₁ \rightarrow aa | aSa | B | ε S \rightarrow aa | aSa | B B \rightarrow b | bB

 $\begin{array}{l} \operatorname{Remove} \, S_1 {\rightarrow} B \\ S_1 {\rightarrow} aa \mid aSa \mid b \mid bB \mid \varepsilon \\ S {\rightarrow} aa \mid aSa \mid B \\ B {\rightarrow} b \mid bB \end{array}$

 $\begin{array}{l} \text{Remove } S{\rightarrow}B \\ S_1{\rightarrow}aa \mid aSa \mid b \mid bB \mid \varepsilon \\ S{\rightarrow}aa \mid aSa \mid b \mid bB \\ B{\rightarrow}b \mid bB \end{array}$

Convert remaining rules in proper from: S₁ $\rightarrow aa \mid AC \mid b \mid DB \mid \varepsilon$ S $\rightarrow aa \mid AC \mid b \mid DB$ B $\rightarrow b \mid DB$ C $\rightarrow SA$ $D \rightarrow b$

2

Question 5: (Sipser, exercise 2.18(b)) Suppose $L=\{0^n\#0^{2n}\#0^{3n}|n\geq 0\}$ is context free and let p be the pumping length. Let $s=0^p\#0^{2p}\#0^{3p}$. Then $|s|=6p+2\geq p$, so according to the pumping lemma s=uvwxy such that:

- 1. $uv^iwx^iy \in L$ for each $i \ge 0$
- 2. |vx| > 0

Notice that v or x can not contain a #, since then uv^2xy^2z will have too many #'s. We can thus assume that $v\neq \#$ and $x\neq \#$. If $v=\varepsilon$ or $x=\varepsilon$ (by 2 v and x can't both equal ε), $uv^2wx^2y=0^i\#0^j\#0^k$ and i>p,j=2p,k=3p or i=p,j>2p,k=3p or i=p,j>2p,k=3p or i=p,j>2p,k=3p or i=p,j>2p. We can thus assume that $v\neq \varepsilon$ and $x\neq \varepsilon$.

It thus follows from 3) that we have the following possibilities for v and x:

- v and x is contained in the 0's before the first # - but then $uv^2wx^2y=0^i\#0^{2p}\#0^{3p}$ and i>p, which is not in L.
- v is contained in the 0's before the first # and x is contained in the 0's between the first and second # - but then $uv^2wx^2y=0^i\#0^j\#0^{3p}$ with i>p and j>2p, which is not in L.
- Similarly, if v and x is contained between the first and second # or after the second # or if v is between the first and second # are the second # we conclude that $uv^2wx^2y\not\in L$.

We conclude that it is not possible to divide s in five pieces with properties 1) - 3). Thus L is not regular.

Question 6: (Sipser, exercise 2.18(c)) Suppose $L=\{r\#s|r$ is a substring of s where $r,s\in\{a,b\}^*\}$ is context free and let p be the pumping length. Let $s=a^ab^p\#a^pb^p$. Then $|s|=4p+1\geq p$, so according to the pumping lemma s=uvwxy such that:

- 1. $uv^iwx^iy \in L$ for each $i \ge 0$
- 2. |vx| > 0
- 3. $|vwx| \le p$

Notice that v or x can not contain a #, since then uv^2xy^2z will have too many #s. We can thus assume that $v\neq\#$ and $x\neq\#$. If $v=\varepsilon$, then $x\neq\varepsilon$ (by 2 not both v and x equal ε). Thus if x is before the #, $uv^2wx^2y=r\#s$ with |r|>|s|. Similarly, if x is after the #, $uv^0wx^0y=r\#s$

with |r|>|s|. For $v\neq \varepsilon$ and $x=\varepsilon$ we obtain similarly strings of the form uv^iwx^iy that is not in L. We thus assume that $v\neq \varepsilon$ and $x\neq \varepsilon$.

It follows from 3) that we have the following possibilities for v and x:

- vwx appears before the # but then $uv^2wx^2y\not\in L,$ since $uv^2wx^2y=r\#s$ and
- vux appears of the vux appears after the #, $uv^0wx^0y\not\in L$, since $uv^0wx^0y=r\#x$ and |r|>|s|.

 $vux^0wx^0y=r\#x$ and |r|>|s|.

 $vux^0wx^0y=r\#x$ after the $vux^0wx^0y=r\#x$ and $vux^0wx^0y=r\#x$ after the $vux^0wx^0y=r\#x$ and $vux^0wx^0y=r\#x$ and $vux^0wx^0y=r\#x$.

We conclude that it is not possible to divide s in five pieces with properties 1) − 3). Thus L is not regular.

Question 7: (Sipser, exercise 2.15) CFL's are closed under union:

CFLS are cosed under amount of the G_1 be a context-free grammar that generates the CFL L_1 and G_2 be a context-free grammar that generates the CFL L_2 . Assume that S_1 is the start variable for L_1 and S_2 the start variable for L_2 . Also assume that G_1 and G_2 have no variables in common. We can obtain a context grammar G_3 that generates one of the start variables of the start variables of S_1 and S_2 have no variables in common.

The variables for G_3 are the union of the variables for G_1 and G_2 , but we add a new start variable S_3 . The rules are the union of the rules of G_1 and G_2 , but we add the new rule $S_3 \rightarrow S_1 \mid S_2$.

CFL's are closed under concatenation: Same as for union, but we add the rule $S_3 \to S_1 S_2$ instead of $S_3 \to S_1 \mid S_2$.

CFL's are closed under star: Let G_1 be a context-free grammar that generates the CFL L_1 . Assume that S_1 is the start variable for L_1 . We can obtain a context grammar G_3 that generates

 L_1^* as follows: The variables for G_3 are the same as the variables for G_1 . The rules are the same but we add the rule $S_1 \rightarrow S_1 S_1 \mid \varepsilon$.

Question 8: (Sipser, exercise 2.16)
We use Definition 1.26 (the definition of a regular expression) on p64 of Sipser.

1. The regular expression a with $a\in \Sigma$ has an equivalent CFL generated by

- the grammar $S \rightarrow a$
- 2. The regular expression ε has an equivalent CFL generated by the grammar
- 3. The regular expression \emptyset has an equivalent CFL generated by the grammar
- 4. If R_1 and R_2 are regular eexpressions, and we have CFL's with grammars G_1 and G_2 that are respectively equivalent to R_1 and R_2 , we showed in the previous question how to get a grammar for the union of the two languages.
- 5. We handle concatenation and star similar to union.

Question 9: (Sipser, exercise 2.19)

We may assume that in the derivation of w we first obtain all the necessary n variables, and then in the last n steps we replace the n variables by n terminals. Notice that since rules with variables on the the right hand side are of the form $A{\to}BC,$ we need (n-1) steps to obtain the n variables. Thus in total we need n+(n-1)=2n-1 steps.