

ΕΙΔΙΚΕΣ ΚΕΡΑΙΕΣ

ΣΕΙΡΑ 1 – ΥΠΟΛΟΓΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΚΕΡΑΙΩΝ ΜΕ ΤΟ ΝΕС

MARCH 21, 2019

ΠΑΛΑΣΚΟΣ ΜΑΡΙΟΣ (8492)

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ Η/Υ – ΤΟΜΕΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

----- οι κώδικες βρίσκονται στον παρακάτω σύνδεσμο -------

https://www.dropbox.com/sh/be2kdh68seolb80/AAD3ktGL87HAlNTyfT3BmyiGa?dl=0

$\underline{\mathbf{A}\Sigma\mathbf{K}\mathbf{H}\Sigma\mathbf{H}} \quad \mathbf{1} \quad (\lambda_o = 1 \, m, \, f_o = 300 MHz)$

(a) Δημιουργία κεραίας

Η συνάρτηση NecMatrixCalculation(r, 1, th0, d) δέχεται ως ορίσματα τις ζητούμενες μεταβλητές και κατασκευάζει τη μορφή του αρχείου .txt αλλά σε μορφή πίνακα (δηλαδή χωρίς το αρχικό GW). Επομένως, έχει 9 στήλες και 17 γραμμές από τις οποίες οι 8 πρώτες αναφέρονται στα wires του κυκλικού δίσκου, η 9^{n} στο wire τροφοδοσίας και οι τελευταίες 8 στα wires του κώνου. Ωστόσο, στον κώδικα, η συμπλήρωση των στοιχείων του πίνακα έγινε κατά στήλες, διότι τα "patterns" ήταν πιο φανερά (διευκόλυνση λόγω των μηδενικών).

Στο script Discone_Antenna δίνονται τιμές στα ορίσματα της παραπάνω συνάρτησης και δημιουργείται το αρχείο discone.nec, στο οποίο γράφονται οι γραμμές του πίνακα που δημιουργεί η συνάρτηση, οι οποίες στην αρχή συμπληρώνονται από το string "GW".

Το <u>πλήθος των segments</u> προσδιορίστηκε ως εξης: Πρέπει το μήκος των segments (ls) να είναι μικρότερο από λ/10 στη μεγαλύτερη συχνότητα:

$$ls \leq \frac{\lambda}{10} \ \sigma \varepsilon \ f_{max} \ \rightarrow \ ls \leq \frac{c}{10 f_{max}} \xrightarrow{f_{max} = 4 f_0} \ ls \leq \frac{c}{40 f_0} \Rightarrow \ ls \leq \frac{\lambda_0}{40}$$

κυκλικός δίσκος:
$$r=\frac{3\lambda_0}{10}$$
 , άρα πρέπει $\frac{3\lambda_0}{10} \leq \frac{\lambda_0}{40} N_{seg}^{disc} \Rightarrow N_{seg}^{disc} \geq 12$

κώνος:
$$l = \frac{\lambda_0}{2}$$
, άρα πρέπει $\frac{\lambda_0}{2} \leq \frac{\lambda_0}{40} N_{seg}^{cone} \Rightarrow N_{seg}^{cone} \geq 20$

Επέλεξα: $N_{seg}^{disc}=12$ και $N_{seg}^{cone}=20$

(b) Amelkóvian Z_{in} ato εύρος $0.5f_0-4f_0$ (150MHz-1.2GHz) για $Z_0=50\varOmega$

Αν απεικονίσουμε και το συντελεστή ανάκλασης, συμπεραίνουμε ότι δεν επιτελείται ευρυζωνική λειτουργία (εύρος ζώνης εκεί που refl coef < -10dB)

Από το διάγραμμα του $|Z_{in}|$ συμπεραίνουμε ότι μια μέση τιμή της χαρακτηριστικής αντίστασης εισόδου είναι περίπου $|Z_{in}|=120\Omega$. Το νέο διάγραμμα του συντελεστή ανάκλασης φαίνεται παρακάτω.

Παρατηρούμε ότι αυξήθηκε σημαντικά το εύρος ζώνης:

$$\frac{f_{max}}{f_{min}} pprox \frac{1200}{250} = 4.8 > 2 \ (πολύ ευρυζωνική)$$

(c) Στο ερώτημα αυτό κατασκευάζονται τα διαγράμματα ακτινοβολίας για τις πρώτες τρεις αρμονικές της f_0

$$> f_0 = 300MHz$$

$> f_0 = 600MHz$

$\rightarrow f_0 = 900MHz$

$F_0 = 1200MHz$

Το διάγραμμα ακτινοβολίας στις χαμηλότερες συχνότητες μοιάζει με αυτό ενός διπόλου λ/2, ενώ σε υψηλότερες συχνότητες οι λοβοί της κεραίας παρουσιάζουν μετατόπιση προς τα κάτω και τείνουν να στραφούν σε διεύθυνση παράλληλη προς την επιφάνεια του κώνου.

(d) Αλλάζοντας τη γωνία θ στο script *Discone_Antenna* παίρνουμε διαφορετικές κεραίες:

• $\theta = 5^{\circ}$ (discone5.nec)

Καλή λειτουργία για f>450MHz

• $\theta = 45^{\circ}$ (discone45.nec)

Περιοχή καλής λειτουργίας: 280 < f < 420, 530 < f < 650, 830 < f < 1200 (MHz)

• $\theta = 75^{\circ}$ (discone75.nec)

Περιοχή καλή λειτουργίας: 350 < f < 390, 550 < f < 640, 910 < f < 1110 (MHz)

Παρατηρούμε ότι αυξάνοντας τη γωνία θ «χαλάει» η ευρυζωνικότητα της κεραίας, καθώς μειώνεται το εύρος συχνοτήτων στο οποίο ο συντελεστής ανάκλασης παραμένει κάτω από -10dB. Πιθανόν, αυτό να είναι αποτέλεσμα του γεγονότος ότι αυξάνοντας αρκετά το θ, ο κώνος τείνει να «εκφυλιστεί» σε κυκλικό δίσκο μεγαλύτερης ακτίνας, βέβαια, από εκείνη του άνω κυκλικού δίσκου. Συνεπώς, όσο μειώνεται η γωνία θ, η επίδραση του κώνου είναι πιο καθοριστική στη συμπεριφορά της κεραίας ως δισκο-κωνική. Λογικά με βελτιστοποίηση μέσω του πες μπορεί να βρεθεί η βέλτιση τιμή της θ ώστε να έχουμε μέγιστο εύρος ζώνης (το οποίο λογικά θα είναι γύρω απο τις 30° , διότι για $\theta=5^\circ$ το εύρος ζώνης είναι πιο μικρό από ότι στις 30°)

ΑΣΚΗΣΗ 2 $(f_0 = 500MHz)$

Η κεραία σε 3D φαίνεται παρακάτω:

Για να εξασφαλίσουμε αξονικό ρυθμό, επιλέγουμε τις αντίστοιχες τιμές των διαφόρων παραμέτρων: $C=\lambda$ και $S=\frac{\lambda}{4}$. Στη συνέχεια προσδιορίζονται οι υπόλοιπες παράμετροι που θα χρησιμοποιηθούν στον builder.

- Ελικοειδής Κεραία (Helix.nec)

- Ground (Plane.nec)

Στο αρχείο Helix On Ground.nec αντιγράψαμε το περιεχόμενο των παραπάνω δύο αρχείων (start with tagnumber -> 1). Πρώτα αντιγράψαμε την ελικοειδή, η οποία αποτελείται από 402 wires. Το wire-403 είναι ένα segment που χρησιμοποιείται για τροφοδοσία (για το λόγο αυτό η ελικοειδής βρίσκεται σε ύψος $h=\lambda/20=0.03m$ από το έδαφος - άλλαξα το moveZ). Έτσι τα wires του ground πρέπει να μετράνε από το 404 (start with tagnumber -> 404). Το Helix On Ground.nec είναι η ζητούμενη κεραία.

(α) Σχεδίαση Z_{in} για ένα εύρος $0.3f_0-2f_0$

Παρατηρούμε ότι περίπου μετά τα 350MHz η αντίσταση εισόδου δεν μεταβάλλεται σημαντικά με μέση τιμή γύρω στα 145Ω . Μέγιστο $Z=175.7\Omega$ στα 840MHz. Προκειμένου να επιλέξουμε την κατάλληλη χαρακτηριστική αντίσταση γραμμής τροφοδοσίας, βλέπουμε το διάγραμμα του συντελεστή ανάκλασης για διάφορες τιμές της αντίστασης:

$Z_0 = 130\Omega$

Επιλέγω $Z_0 = 140 \Omega$, όπως προβλέπεται και από την προσεγγιστική σχέση

$$R_{in} = 140 \frac{c}{\lambda} \Omega$$

(b) Για την τιμή αυτή της αντίστασης παρουσιάζονται παρακάτω και τα δύο διαγράμματα SWR και του συντελεστή ανάκλασης:

Επειδή οι επιθυμητές τιμές του συντελεστή ανάκλασης είναι μικρότερες από - 10dB (SWR<2), θεωρώ ως χαμηλότερη συχνότητα $f_{min}=350MHz$. Οι συχνότητες πάνω από αυτή δίνουν καλό SWR. Συνεπώς:

$$\frac{f_{max}}{f_{min}} = \frac{1000}{350} \cong 2.85 > 2$$

Επομένως η κεραία είναι ευρυζωνική.

(γ) ΔΙΑΓΡΑΜΜΑΤΑ ΑΚΤΙΝΟΒΟΛΙΑΣ

$\succ f_0 = 50MHz$

$F_0 = 150MHz$

$F_0 = 350MHz$

$\succ f_0 = 500MHz$

$F_0 = 650MHz$

$\rightarrow f_0 = 1000MHz$

$F_0 = 2000MHz$

Από τα διαγράμματα παρατηρούμε ότι στα διαστήματα $0.1f_0-0.3f_0$ και $2f_0-4f_0$ ο αξονικός ρυθμός «χαλάει», καθώς η κεραία φαίνεται να μη λειτουργεί ως ακροπυροδοτική. Σημαντικό κέρδος στη διεύθυνση του άξονα της κεραίας έχουμε μόνο στο διάστημα $0.7f_0-1.3f_0$. Λαμβάνοντας υπόψη και το διάγραμμα του συντελεστή ανάκλασης του προηγούμενου ερωτήματος, συμπεραίνουμε ότι το διάστημα καλής λειτουργίας της κεραίας είναι: 350-650 MHz. Συνεπώς ο λόγος μέγιστης προς ελάχιστη συχνότητα παραμένει αρκετά καλός:

$$\frac{f_{max}}{f_{min}} = \frac{650}{350} \cong 1.85$$

A Σ **KH** Σ **H** 3 $(f_0 = 300MHz)$

Παρακάτω φαίνεται η υλοποίηση της κεραίας στο 4nec2

NecMatrixCalculation(ls, wl, Nr, theta, d0, d1, d2, d3)

Υλοποιεί σε πίνακα το μέρος του αρχείου .nec που κατασκευάζει τα wires

- d_0 : η απόσταση των δύο κοντινότερων «Χ» στην πηγή (από την πηγή)
- d_1 : η απόσταση των δύο απομακρυσμένων «Χ» από το προηγούμενο «Χ» Στο διάνυσμα "z" του αρχείου οι αποστάσεις φαίνονται πιο καθαρά. Το επέλεξα έτσι ώστε να δίνεται η δυνατότητα οι αποστάσεις των «Χ» να μην απαραίτητα ίσες μεταξύ τους
- d_2 : το ύψος του ανακλαστήρα (= 3λ, δηλαδή το πήρα 1λ μεγαλύτερο της απόστασης μεταξύ των δύο απομακρυσμένων «Χ» $(4x\lambda/2=2\lambda)$)
- d_3 : το μήκος των wires του ανακλαστήρα (το πήρα ίσο με λ)
- ls: μήκος των segments (ίσο με $\lambda/30$, όπου λ το μήκος κύματος στην κεντρική συχνότητα, και υπολογίστηκε ώστε να είναι $\lambda/20$ στην μεγαλύτερη συχνότητα $f_{max}=1.5f_0$)
- *theta*: η γωνία μεταξύ των διπόλων (η γωνία του «Χ»), επιλέχθηκε 40°
- Nr: πλήθος wires του ανακληστήρα, επιλέχθηκε σε συνδυασμό με το d_2 , ώστε η απόσταση μεταξύ τους να μην είναι πολύ μεγάλη, αλλά ταυτόχρονα να μη χρειαστεί και μεγάλος αριθμός από wires $(\frac{d_2}{Nr} = \frac{\lambda}{10})$
- wl: το μήκος κύματος

Να σημειωθεί ότι:

- Τα «Χ» υλοποιήθηκαν σαν 4 μονόπολα (ανά δύο σε σχήμα "<" ή ">") με ένα segment «στο κέντρο» (μήκους λ/30)
- Φυσικά χρησιμοποιήθηκε διαφορετικός αριθμός segments για τα μονόπολα (ceil(wl/4/ls)) και για τα wires του ανακλαστήρα (ceil(d3/ls))

TL Matrix(Z1)

Κατασκευάζει τον πίνακα ΤΙ, δηλαδή τις γραμμές μεταφοράς

TV Antenna

Καλεί τις δύο συναρτήσεις και γράφει τα στοιχεία των δύο πινάκων στο αρχείο TVA.nec, προσθέτοντας τα απαραίτητα στοιχεία (GW, GE, TL κλπ)

(α) Μεταβολή του $|Z_{in}|$ για $Z_1=100\Omega$, $150\leq f_0\leq 450~MHz$, $Z_0=50\Omega$

Φαίνεται ότι μετά τα 230MHz υπάρχει μια διακύμαση της αντίστασης εισόδου γύρω από τα ~40Ω. Άρα επιλέγω $Z_0=40\Omega$ για τη γραμμή τροφοδοσίας.

(β) Για την παραπάνω χαρακτηριστική αντίσταση τροφοδοσίας, το διάγραμμα του συντελεστή ανάκλασης είναι:

Παρατηρούμε ότι η κεραία είναι ευρυζωνική:

$$\frac{f_{max}}{f_{min}} = \frac{410}{260} = 1.57$$

(γ) Διαγράμματα Ακτινοβολίας

$F_0 = 150MHz$

$\rightarrow f_0 = 300MHz$

Μέγιστο κέρδος μπροστά: 14.26dB και μέγιστο προς τα πισω -7.76, άρα διαφορά ~22dB (ικανοποιητικό)

$\succ f_0 = 450MHz$

(δ) Από τις προσομοιώσεις που ακολουθούν συμπεραίνουμε ότι η περίπτωση $Z_0=40\Omega$, $Z_1=100\Omega$, $\theta=40^\circ$, $d=\lambda/2$ δίνει το καλύτερο εύρος ζώνης.

Σημείωση: το frequency sweep έγινε για λίγα δείγματα, ώστε οι προσομοιώσεις να εκτελεστούν πιο γρήγορα (σε πρώτη προσέγγιση). Τα δεδομένα (Z_0,Z_1,θ,d) που έδιναν καλύτερα αποτελέσματα, εκτελούνταν εκ νέου για περισσότερες συχνότητες.

1. Αλλάζοντας τη Z_1 $(Z_0=40\Omega,\theta=40^\circ,d=\lambda/2)$

$$Z_1 = 50 \Omega$$

$$Z_1 = 75 \,\Omega$$

$$Z_1 = 100 \,\Omega$$

$Z_1=125\,\Omega$

Βέλτιστο εύρος ζώνης για $Z_1=100\,\varOmega$

2. Αλλάζοντας τη d $(Z_0 = 40Ω, \theta = 40°, Z_1 = 100Ω)$

$d=0.4\lambda$

Το εύρος ζώνης είναι καλό (450/290 = 1.55), δηλαδή το ίδιο ικανοποιητικό με την περίπτωση $d=0.5\lambda$. Η διαφορά είναι ότι σε αυτή την περίπτωση ο συντελεστής ανάκλασης είναι καλός σε μπάντα συχνοτήτων που είναι μετατοπισμένη σε λίγο υψηλότερες συχνότητες (περίπου 35-40 MHz πιο πάνω).

$d = 0.6\lambda$

Το διάγραμμα δεν παρουσιάζεται, διότι το εύρος ζώνης είναι πολύ μικρό. Γενικότερα και η τιμή αυτή δε δίνει καλά αποτελέσματα, οπότε περιορίστηκα στις τιμές 0.4λ και 0.5λ.

3. «Ανάμεικτη προσομοίωση» για $heta=40^\circ$

$$d = 0.4\lambda, Z_1 = 75\Omega, Z_0 = 40\Omega$$

Το εύρος ζώνης είναι μικρό και διακριτό (όχι σε συνεχή μπάντα συχνοτήτων)

 $d=0.4\lambda\text{, }Z_{1}=125\Omega\text{ , }Z_{0}=40\Omega$

Το εύρος ζώνης είναι λίγο χειρότερο της αντίσοιχης περίπτωσης για $d=0.4\lambda$, $Z_1=100\Omega$, $Z_0=40\Omega$, $\theta=40^\circ$ (ωστόσο παραμένει καλό)

4. Αλλαγή της γωνίας θ

$$\theta=30^{\circ},\ d=0.5\lambda,\ Z_1=100\varOmega\,,\ \ Z_0=40\varOmega$$

Παρακάτω απεικονίζεται και το διάγραμμα ακτινοβολίας για την περίπτωση αυτή στα 300MHz. Παρατηρούμε ότι η μείωση της γωνίας θ κατά 10 μοίρες δεν μεταβάλλει ούτε το εύρος ζώνης, ούτε το διάγραμμα ακτινοβολίας (ίδιο κέρδος και λοβοί). Το ίδιο συμβαίνει και στην περίπτωση $d=0.4\lambda$.

 $\theta=60^{\circ},\;d=0.5\lambda,\;Z_{1}=100\varOmega\,,\;\;Z_{0}=40\varOmega$

Η αύξηση της γωνίας θ κατά 20 μοίρες οδηγεί σε μείωση του εύρους ζώνης (για $\theta=40^\circ$ ξεκινούσε από τα 260MHz, ενώ για $\theta=60^\circ$ από τα 270MHz). Συνεπώς και η αύξηση της γωνίας φαίνεται να επιδρά αρνητικά στην ευρυζωνικότητα της κεραίας.