Ejercicio 1: Estudia sistemáticamente la siguiente función

$$f(x) = e^{\left(-x^2\right)}$$

Esta solución ha sido generada automáticamente. Puede contener errores.

Es una función exponencial y, por tanto, continua y derivable en todo su dominio.

Dominio

$$D(f) = \mathbb{R}$$
$$= (-\infty, +\infty)$$

Puntos de corte con los ejes *Eje X* Para calcular los puntos de corte de la función con el eje x resolvemos la ecuación f(x) = 0 cuya solución es:

No tiene solución.

Obs: Sólo puede haber puntos de corte en puntos del dominio.

Eje Y Para calcular los puntos de corte de la función con el eje y calculamos f(0). En este caso: f(0) = 1, con lo que la gráfica corta en (0, 1) al eje Y.

Simetría Para estudiar la simetría de una función calculamos f(-x) y comparamos con f(x). En este caso:

$$f(-x) = e^{\left(-x^2\right)}$$

¿Es igual a f(x) o a -f(x)? Sí, a f(x), entonces la función es par.

Asíntotas

Asíntotas verticales Los posibles puntos en los que la función puede tener una asíntota vertical son aquellos en los que se anula el denominador o los que hacen 0 el argumento del logaritmo.

No tiene denominador, por lo que no hay puntos canditatos aquí.

Soluciones: No tiene soluciones reales

Asíntotas verticales

Asíntotas horizontales u oblícuas Las asíntotas horizontales y oblicuas nos dan la información acerca de la tendencia de la función en $-\infty$ y en $+\infty$.

Para calcular las asíntotas, necesitamos calcular el límite de la función tanto en $+\infty$ como en $-\infty$:

$$\lim_{x \mapsto \pm \infty} e^{\left(-x^2\right)}$$

Límite de la función en $+\infty$:

$$\lim_{x \mapsto +\infty} e^{\left(-x^2\right)} = \dots = 0$$

En $+\infty$ f(x) tiene una **asíntota horizontal** en y = 0.

Límite de la función en $-\infty$:

$$\lim_{x \mapsto -\infty} e^{\left(-x^2\right)} = \dots = 0$$

En $-\infty$ f(x) tiene una **asíntota horizontal** en y = 0.

Monotonía $f'(x) = -2 x e^{\left(-x^2\right)}$

Calculamos los puntos críticos, aquellos en los que f'(x) = 0

$$x_0 = 0;$$

Añadimos a estos puntos aquellos en los que la función primitiva no exista y aquellos puntos en los que la función derivada no exista, si hay alguno. En este caso, no hay.

Los intervalos a estudiar son: $(-\infty,0)$; $(0,+\infty)$; Ver tabla ??, con el estudio de f'(x)

$$\left| \begin{array}{c} (-\infty,0) \\ f'(-2) = 0.073 > 0 \\ \text{Creciente} \end{array} \right| \left| \begin{array}{c} (0,+\infty) \\ f'(2) = -0.073 < 0 \\ \text{Decreciente} \end{array} \right|$$

Tabla 1: Estudio del signo de $f'(x) = -2 xe^{(-x^2)}$

Lista de máximos y mínimos: obtenidos estudiando la monotonía a ambos lados de cada puntos, siempre que el punto esté en el dominio.

Criterio:

- Si por un lado crece, y por el otro decrece, entonces será un mínimo.
- Si por un lado decrece, y por el otro crece, será un máximo.
- Si a ambos lados tiene el mismo comportamiento, no será un máximo ni un mínimo
- El punto x = 0 es un máximo de la función.
- La función no tiene ningún mínimo.

Curvatura $f''(x) = 2(2x^2 - 1)e^{(-x^2)}$

Calculamos los puntos críticos, aquellos en los que f''(x) = 0

$$x_0 = -\frac{1}{2}\sqrt{2}; \quad x_1 = \frac{1}{2}\sqrt{2};$$

Añadimos a estos puntos aquellos en los que la función primitiva o la primera derivada no existan, si hay alguno. En este caso, no hay.

Los intervalos a estudiar son: $\left(-\infty, -\frac{1}{2}\sqrt{2}\right)$; $\left(-\frac{1}{2}\sqrt{2}, \frac{1}{2}\sqrt{2}\right)$; $\left(\frac{1}{2}\sqrt{2}, +\infty\right)$; Ver tabla ??, con el estudio de f"(x)

$$\begin{vmatrix} \left(-\infty, -\frac{1}{2}\sqrt{2}\right) \\ f''(-2) = 0.256 > 0 \end{vmatrix} \begin{vmatrix} \left(-\frac{1}{2}\sqrt{2}, \frac{1}{2}\sqrt{2}\right) \\ f''(0) = -2.0 < 0 \\ Convexa \end{vmatrix} \begin{vmatrix} \left(\frac{1}{2}\sqrt{2}, +\infty\right) \\ f''(2) = 0.256 > 0 \\ Convexa \end{vmatrix}$$

Tabla 2: Estudio del signo de $f''(x) = 2(2x^2 - 1)e^{(-x^2)}$

Figura 1: *Gráfica de la función.*

Ejercicio 2: Estudia sistemáticamente la siguiente función

$$f(x) = \frac{x^2}{x+1}$$

Esta solución ha sido generada automáticamente. Puede contener errores.

Es una función Racional y, por tanto, continua y derivable en todo su dominio.

Dominio

$$D(f) = \{x \in \mathbb{R} / x + 1 \neq 0\} = \mathbb{R} - \{-1\}$$

= $(-\infty, -1) \cup (-1, +\infty)$

Puntos de corte con los ejes *Eje X* Para calcular los puntos de corte de la función con el eje x resolvemos la ecuación f(x) = 0 cuya solución es:

$$x_0 = 0 \to (0,0);$$

Obs: Sólo puede haber puntos de corte en puntos del dominio.

Eje Y Para calcular los puntos de corte de la función con el eje y calculamos f(0). En este caso: f(0) = 0, con lo que la gráfica corta en (0,0) al eje Y.

Simetría Para estudiar la simetría de una función calculamos f(-x) y comparamos con f(x). En este caso:

$$f(-x) = -\frac{x^2}{x-1}$$

¿Es igual a f(x) o a -f(x)? No, entonces la función no tiene simetría respecto del eje Y.

Asíntotas

Asíntotas verticales Los posibles puntos en los que la función puede tener una asíntota vertical son aquellos en los que se anula el denominador o los que hacen 0 el argumento del logaritmo.

Por ello calculamos: x + 1 = 0

Soluciones: $x_0 = -1$;

Asintota en x = -1 Calculamos

$$\lim_{x \to -1} \frac{x^2}{x+1} = \begin{cases} \lim_{x \to -1^+} \frac{x^2}{x+1} = +\infty \\ \lim_{x \to -1^-} \frac{x^2}{x+1} = -\infty \end{cases}$$

Aunque el límite no exista (porque los límites laterales son diferentes), su magnitud sigue siendo infinita por ambos lados, por lo que la recta x = -1 es una **asíntota vertical** de f(x)

Asíntotas horizontales u oblícuas Las asíntotas horizontales y oblicuas nos dan la información acerca de la tendencia de la función en $-\infty$ y en $+\infty$.

Para calcular las asíntotas, necesitamos calcular el límite de la función tanto en $+\infty$ como en $-\infty$:

$$\lim_{x \to \pm \infty} \frac{x^2}{x+1}$$

Límite de la función en $+\infty$:

$$\lim_{x \to +\infty} \frac{x^2}{x+1} = \dots = +\infty$$

Como el límite obtenido es de magnitud infinita la función no tiene asíntota horizontal, pero puede tener una asíntota oblícua. Para saber si tiene una asíntota oblícua calculamos:

$$m = \lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{\frac{x^2}{x+1}}{x} = \lim_{x \to +\infty} \frac{x}{x+1} = \dots = 1$$

En este caso tenemos m=1 por lo que sí hay asíntota oblícua. Calculamos n:

$$n = \lim_{x \to +\infty} f(x) - m \cdot x = \lim_{x \to +\infty} \left(\frac{x^2}{x+1} - 1x \right) = \lim_{x \to +\infty} -x + \frac{x^2}{x+1} = -1$$

En $+\infty$, f(x) tiene una **asíntota oblícua** en y=x-1.

Límite de la función en $-\infty$:

$$\lim_{x\mapsto -\infty}\frac{x^2}{x+1}=\ldots=-\infty$$

Como el límite obtenido es de magnitud infinita la función no tiene asíntota horizontal, pero puede tener una asíntota oblícua. Para saber si tiene una asíntota oblícua calculamos:

$$m = \lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} \frac{\frac{x^2}{x+1}}{x} = \lim_{x \to -\infty} \frac{x}{x+1} = \dots = 1$$

En este caso tenemos m=1 por lo que sí hay asíntota oblícua. Calculamos n:

$$n = \lim_{x \to -\infty} f(x) - m \cdot x = \lim_{x \to -\infty} \left(\frac{x^2}{x+1} - 1x \right) = \lim_{x \to -\infty} -x + \frac{x^2}{x+1} = -1$$

En $-\infty$, f(x) tiene una **asíntota oblícua** en y = x - 1.

Monotonía $f'(x) = \frac{x^2 + 2x}{x^2 + 2x + 1}$

Calculamos los puntos críticos, aquellos en los que f'(x) = 0

$$x_0 = -2; \quad x_1 = 0;$$

Añadimos a estos puntos aquellos en los que la función primitiva no exista y aquellos puntos en los que la función derivada no exista, si hay alguno. En este caso, $x_0 = -1$;

Los intervalos a estudiar son: $(-\infty, -2)$; (-2, -1); (-1, 0); $(0, +\infty)$; Ver tabla ??, con el estudio de f'(x)

$$\begin{vmatrix} (-\infty, -2) \\ f'(-4) = 0.889 > 0 \\ \text{Creciente} \end{vmatrix} \begin{vmatrix} (-2, -1) \\ f'(-1.5) = -3.0 < 0 \\ \text{Decreciente} \end{vmatrix} \begin{vmatrix} (-1, 0) \\ f'(-0.5) = -3.0 < 0 \\ \text{Decreciente} \end{vmatrix} \begin{vmatrix} (0, +\infty) \\ f'(2) = 0.889 > 0 \\ \text{Creciente} \end{vmatrix}$$

Tabla 3: Estudio del signo de $f'(x) = \frac{x^2+2x}{x^2+2x+1}$

Lista de máximos y mínimos: obtenidos estudiando la monotonía a ambos lados de cada puntos, siempre que el punto esté en el dominio.

Criterio:

- Si por un lado crece, y por el otro decrece, entonces será un mínimo.
- Si por un lado decrece, y por el otro crece, será un máximo.
- Si a ambos lados tiene el mismo comportamiento, no será un máximo ni un mínimo
- El punto x = -2 es un máximo de la función.
- El punto x = 0 es un mínimo de la función.

Curvatura
$$f''(x) = \frac{2}{x^3+3x^2+3x+1}$$

Calculamos los puntos críticos, aquellos en los que f''(x) = 0

No tiene soluciones reales.

Añadimos a estos puntos aquellos en los que la función primitiva o la primera derivada no existan, si hay alguno. En este caso, $x_0 = -1$;

Los intervalos a estudiar son: $(-\infty, -1)$; $(-1, +\infty)$; Ver tabla ??, con el estudio de f''(x)

$$\left| \begin{array}{c} (-\infty,-1) \\ f''(-3) = -0.25 < 0 \\ \text{C\'oncava} \end{array} \right| \left| \begin{array}{c} (-1,+\infty) \\ f''(1) = 0.25 > 0 \\ \text{Convexa} \end{array} \right|$$

Tabla 4: *Estudio del signo de* $f''(x) = \frac{2}{x^3 + 3x^2 + 3x + 1}$

Figura 2: *Gráfica de la función.*

Ejercicio 3: Estudia sistemáticamente la siguiente función

$$f(x) = x^4 - 8x^2 + 7$$

Esta solución ha sido generada automáticamente. Puede contener errores.

Es una función Polinómica y, por tanto, continua y derivable en todo su dominio.

Dominio

$$D(f) = \mathbb{R}$$
$$= (-\infty, +\infty)$$

Puntos de corte con los ejes *Eje X* Para calcular los puntos de corte de la función con el eje x resolvemos la ecuación f(x) = 0 cuya solución es:

$$x_0=-\sqrt{7}
ightarrow \left(-\sqrt{7},0
ight); \quad x_1=\sqrt{7}
ightarrow \left(\sqrt{7},0
ight); \quad x_2=-1
ightarrow (-1,0); \quad x_3=1
ightarrow (1,0);$$
 Obs: Sólo puede haber puntos de corte en puntos del dominio.

Eje Y Para calcular los puntos de corte de la función con el eje y calculamos f(0). En este caso: f(0) = 7, con lo que la gráfica corta en (0,7) al eje Y.

Simetría Para estudiar la simetría de una función calculamos f(-x) y comparamos con f(x). En este caso:

$$f(-x) = x^4 - 8x^2 + 7$$

¿Es igual a f(x) o a -f(x)? Sí, a f(x), entonces la función es par.

Asíntotas

Asíntotas verticales Los posibles puntos en los que la función puede tener una asíntota vertical son aquellos en los que se anula el denominador o los que hacen 0 el argumento del logaritmo.

No tiene denominador, por lo que no hay puntos canditatos aquí.

Soluciones: No tiene soluciones reales

Asíntotas verticales

Asíntotas horizontales u oblícuas Las asíntotas horizontales y oblicuas nos dan la información acerca de la tendencia de la función en $-\infty$ y en $+\infty$.

Para calcular las asíntotas, necesitamos calcular el límite de la función tanto en $+\infty$ como en $-\infty$:

$$\lim_{x \mapsto \pm \infty} x^4 - 8x^2 + 7$$

Límite de la función en $+\infty$:

$$\lim_{x \to +\infty} x^4 - 8x^2 + 7 = \dots = +\infty$$

Como el límite obtenido es de magnitud infinita la función no tiene asíntota horizontal, pero puede tener una asíntota oblícua. Para saber si tiene una asíntota oblícua calculamos:

$$m = \lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{x^4 - 8x^2 + 7}{x} = \lim_{x \to +\infty} \frac{x^4 - 8x^2 + 7}{x} = \dots = +\infty$$

En este caso, tenemos $m = +\infty$ por lo que **no hay asíntota** oblícua (ni horizontal).

Límite de la función en $-\infty$:

$$\lim_{x \to -\infty} x^4 - 8x^2 + 7 = \dots = +\infty$$

Como el límite obtenido es de magnitud infinita la función no tiene asíntota horizontal, pero puede tener una asíntota oblícua. Para saber si tiene una asíntota oblícua calculamos:

$$m = \lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} \frac{x^4 - 8x^2 + 7}{x} = \lim_{x \to -\infty} \frac{x^4 - 8x^2 + 7}{x} = \dots = -\infty$$

En este caso, tenemos $m=-\infty$ por lo que **no hay asíntota** oblícua (ni horizontal).

Monotonía $f'(x) = 4x^3 - 16x$

Calculamos los puntos críticos, aquellos en los que f'(x) = 0

$$x_0 = -2;$$
 $x_1 = 2;$ $x_2 = 0;$

Añadimos a estos puntos aquellos en los que la función primitiva no exista y aquellos puntos en los que la función derivada no exista, si hay alguno. En este caso, no hay.

Los intervalos a estudiar son: $(-\infty, -2)$; (-2, 0); (0, 2); $(2, +\infty)$; Ver tabla ??, con el estudio de f'(x)

$$\left| \begin{array}{c|c} (-\infty,-2) & (-2,0) \\ f'(-4) = -192.0 < 0 \\ Decreciente \end{array} \right| \left| \begin{array}{c} (-2,0) \\ f'(-1) = 12.0 > 0 \\ Creciente \end{array} \right| \left| \begin{array}{c} (0,2) \\ f'(1) = -12.0 < 0 \\ Decreciente \end{array} \right| \left| \begin{array}{c} (2,+\infty) \\ f'(4) = 192.0 > 0 \\ Creciente \end{array} \right|$$

Tabla 5: Estudio del signo de $f'(x) = 4x^3 - 16x$

Lista de máximos y mínimos: obtenidos estudiando la monotonía a ambos lados de cada puntos, siempre que el punto esté en el dominio.

Criterio:

- Si por un lado crece, y por el otro decrece, entonces será un mínimo.
- Si por un lado decrece, y por el otro crece, será un máximo.
- Si a ambos lados tiene el mismo comportamiento, no será un máximo ni un mínimo
- El punto x = 0 es un máximo de la función.
- Los puntos $\{x_0 = -2; x_1 = 2; \}$ son mínimos de la función.

Figura 3: Gráfica de la función.

Curvatura $f''(x) = 12 x^2 - 16$

Calculamos los puntos críticos, aquellos en los que f''(x) = 0

$$x_0 = -\frac{2}{3}\sqrt{3}; \quad x_1 = \frac{2}{3}\sqrt{3};$$

Añadimos a estos puntos aquellos en los que la función primitiva o la primera derivada no existan, si hay alguno. En este caso, no hay.

Los intervalos a estudiar son: $\left(-\infty, -\frac{2}{3}\sqrt{3}\right)$; $\left(-\frac{2}{3}\sqrt{3}, \frac{2}{3}\sqrt{3}\right)$; $\left(\frac{2}{3}\sqrt{3}, +\infty\right)$; Ver tabla ??, con el estudio de f"(x)

$$\left| \begin{array}{c} \left(-\infty, -\frac{2}{3} \sqrt{3} \right) \\ f''(-3) = 92.0 > 0 \\ Convexa \end{array} \right| \left| \begin{array}{c} \left(-\frac{2}{3} \sqrt{3}, \frac{2}{3} \sqrt{3} \right) \\ f''(0) = -16.0 < 0 \\ Concava \end{array} \right| \left| \begin{array}{c} \left(\frac{2}{3} \sqrt{3}, +\infty \right) \\ f''(3) = 92.0 > 0 \\ Convexa \end{array} \right|$$

Tabla 6: Estudio del signo de $f''(x) = 12 x^2 - 16$

Ejercicio 4: Estudia sistemáticamente la siguiente función

$$f(x) = x^3 - 3x$$

Esta solución ha sido generada automáticamente. Puede contener errores.

Es una función Polinómica y, por tanto, continua y derivable en todo su dominio.

Dominio

$$D(f) = \mathbb{R}$$
$$= (-\infty, +\infty)$$

Puntos de corte con los ejes *Eje X* Para calcular los puntos de corte de la función con el eje x resolvemos la ecuación f(x) = 0 cuya solución es:

$$x_0 = -\sqrt{3} \rightarrow \left(-\sqrt{3},0\right); \quad x_1 = \sqrt{3} \rightarrow \left(\sqrt{3},0\right); \quad x_2 = 0 \rightarrow (0,0);$$
 Obs: Sólo puede haber puntos de corte en puntos del dominio.

Eje Y Para calcular los puntos de corte de la función con el eje y calculamos f(0). En este caso: f(0) = 0, con lo que la gráfica corta en (0,0) al eje Y.

Simetría Para estudiar la simetría de una función calculamos f(-x) y comparamos con f(x). En este caso:

$$f(-x) = -x^3 + 3x$$

¿Es igual a f(x) o a -f(x)? Sí, a -f(x) entonces la función es impar.

Asíntotas

Asíntotas verticales Los posibles puntos en los que la función puede tener una asíntota vertical son aquellos en los que se anula el denominador o los que hacen 0 el argumento del logaritmo.

No tiene denominador, por lo que no hay puntos canditatos aquí.

Soluciones: No tiene soluciones reales

Asíntotas verticales

Asíntotas horizontales u oblícuas Las asíntotas horizontales y oblicuas nos dan la información acerca de la tendencia de la función en $-\infty$ y en $+\infty$.

Para calcular las asíntotas, necesitamos calcular el límite de la función tanto en $+\infty$ como en -∞:

$$\lim_{x \mapsto \pm \infty} x^3 - 3x$$

Límite de la función en $+\infty$:

$$\lim_{x \to +\infty} x^3 - 3x = \dots = +\infty$$

Como el límite obtenido es de magnitud infinita la función no tiene asíntota horizontal, pero puede tener una asíntota oblícua. Para saber si tiene una asíntota oblícua calculamos:

$$m = \lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{x^3 - 3x}{x} = \lim_{x \to +\infty} \frac{x^3 - 3x}{x} = \dots = +\infty$$

En este caso, tenemos $m=+\infty$ por lo que **no hay asíntota** oblícua (ni horizontal).

Límite de la función en $-\infty$:

$$\lim_{x \mapsto -\infty} x^3 - 3x = \dots = -\infty$$

Como el límite obtenido es de magnitud infinita la función no tiene asíntota horizontal, pero puede tener una asíntota oblícua. Para saber si tiene una asíntota oblícua calculamos:

$$m = \lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} \frac{x^3 - 3x}{x} = \lim_{x \to -\infty} \frac{x^3 - 3x}{x} = \dots = +\infty$$

En este caso, tenemos $m = +\infty$ por lo que **no hay asíntota** oblícua (ni horizontal).

Monotonía $f'(x) = 3x^2 - 3$

Calculamos los puntos críticos, aquellos en los que f'(x) = 0

$$x_0 = -1; \quad x_1 = 1;$$

Añadimos a estos puntos aquellos en los que la función primitiva no exista y aquellos puntos en los que la función derivada no exista, si hay alguno. En este caso, no hay.

Los intervalos a estudiar son: $(-\infty, -1)$; (-1, 1); $(1, +\infty)$; Ver tabla ??, con el estudio de f'(x)

$$\begin{vmatrix} (-\infty, -1) \\ f'(-3) = 24.0 > 0 \\ \text{Creciente} \end{vmatrix} \begin{vmatrix} (-1, 1) \\ f'(0) = -3.0 < 0 \\ \text{Decreciente} \end{vmatrix} \begin{vmatrix} (1, +\infty) \\ f'(3) = 24.0 > 0 \\ \text{Creciente} \end{vmatrix}$$

Tabla 7: Estudio del signo de $f'(x) = 3x^2 - 3$

Lista de máximos y mínimos: obtenidos estudiando la monotonía a ambos lados de cada puntos, siempre que el punto esté en el dominio.

Criterio:

- Si por un lado crece, y por el otro decrece, entonces será un mínimo.
- Si por un lado decrece, y por el otro crece, será un máximo.
- Si a ambos lados tiene el mismo comportamiento, no será un máximo ni un mínimo
- El punto x = -1 es un máximo de la función.
- El punto x = 1 es un mínimo de la función.

Figura 4: Gráfica de la función.

Curvatura f''(x) = 6x

Calculamos los puntos críticos, aquellos en los que f''(x) = 0

$$x_0 = 0;$$

Añadimos a estos puntos aquellos en los que la función primitiva o la primera derivada no existan, si hay alguno. En este caso, no hay.

Los intervalos a estudiar son: $(-\infty,0)$; $(0,+\infty)$; Ver tabla ??, con el estudio de f"(x)

$$\left| \begin{array}{c} (-\infty,0) \\ f''(-2) = -12.0 < 0 \\ \text{C\'oncava} \end{array} \right| \left| \begin{array}{c} (0,+\infty) \\ f''(2) = 12.0 > 0 \\ \text{Convexa} \end{array} \right|$$

Tabla 8: Estudio del signo de f''(x) = 6x

Ejercicio 5: Estudia sistemáticamente la siguiente función

$$f(x) = 3x^4 + 4x^3 - 36x^2$$

Esta solución ha sido generada automáticamente. Puede contener errores.

Es una función Polinómica y, por tanto, continua y derivable en todo su dominio.

Dominio

$$D(f) = \mathbb{R}$$
$$= (-\infty, +\infty)$$

Puntos de corte con los ejes *Eje X* Para calcular los puntos de corte de la función con el eje x resolvemos la ecuación f(x) = 0 cuya solución es:

$$x_0 = -\frac{4}{3}\sqrt{7} - \frac{2}{3} \rightarrow \left(-\frac{4}{3}\sqrt{7} - \frac{2}{3}, 0\right); \quad x_1 = \frac{4}{3}\sqrt{7} - \frac{2}{3} \rightarrow \left(\frac{4}{3}\sqrt{7} - \frac{2}{3}, 0\right); \quad x_2 = 0 \rightarrow (0, 0);$$
 Obs: Sólo puede haber puntos de corte en puntos del dominio.

Eje Y Para calcular los puntos de corte de la función con el eje y calculamos f(0). En este caso: f(0) = 0, con lo que la gráfica corta en (0,0) al eje Y.

Simetría Para estudiar la simetría de una función calculamos f(-x) y comparamos con f(x). En este caso:

$$f(-x) = 3x^4 - 4x^3 - 36x^2$$

¿Es igual a f(x) o a -f(x)? No, entonces la función no tiene simetría respecto del eje Y.

Asíntotas

Asíntotas verticales Los posibles puntos en los que la función puede tener una asíntota vertical son aquellos en los que se anula el denominador o los que hacen 0 el argumento del logaritmo.

No tiene denominador, por lo que no hay puntos canditatos aquí.

Soluciones: No tiene soluciones reales

Asíntotas verticales

Asíntotas horizontales u oblícuas Las asíntotas horizontales y oblicuas nos dan la información acerca de la tendencia de la función en $-\infty$ y en $+\infty$.

Para calcular las asíntotas, necesitamos calcular el límite de la función tanto en $+\infty$ como en $-\infty$:

$$\lim_{x \mapsto \pm \infty} 3 \, x^4 + 4 \, x^3 - 36 \, x^2$$

Límite de la función en $+\infty$:

$$\lim_{x \to +\infty} 3x^4 + 4x^3 - 36x^2 = \dots = +\infty$$

Como el límite obtenido es de magnitud infinita la función no tiene asíntota horizontal, pero puede tener una asíntota oblícua. Para saber si tiene una asíntota oblícua calculamos:

$$m = \lim_{x \mapsto +\infty} \frac{f(x)}{x} = \lim_{x \mapsto +\infty} \frac{3\,x^4 + 4\,x^3 - 36\,x^2}{x} = \lim_{x \mapsto +\infty} \frac{3\,x^4 + 4\,x^3 - 36\,x^2}{x} = \dots = +\infty$$

En este caso, tenemos $m = +\infty$ por lo que **no hay asíntota** oblícua (ni horizontal).

Límite de la función en $-\infty$:

$$\lim_{x \to -\infty} 3x^4 + 4x^3 - 36x^2 = \dots = +\infty$$

Como el límite obtenido es de magnitud infinita la función no tiene asíntota horizontal, pero puede tener una asíntota oblícua. Para saber si tiene una asíntota oblícua calculamos:

$$m = \lim_{x \mapsto -\infty} \frac{f(x)}{x} = \lim_{x \mapsto -\infty} \frac{3 \, x^4 + 4 \, x^3 - 36 \, x^2}{x} = \lim_{x \mapsto -\infty} \frac{3 \, x^4 + 4 \, x^3 - 36 \, x^2}{x} = \dots = -\infty$$

En este caso, tenemos $m=-\infty$ por lo que **no hay asíntota** oblícua (ni horizontal).

Monotonía
$$f'(x) = 12 x^3 + 12 x^2 - 72 x$$

Calculamos los puntos críticos, aquellos en los que f'(x) = 0

$$x_0 = -3;$$
 $x_1 = 2;$ $x_2 = 0;$

Añadimos a estos puntos aquellos en los que la función primitiva no exista y aquellos puntos en los que la función derivada no exista, si hay alguno. En este caso, no hay.

Los intervalos a estudiar son: $(-\infty, -3)$; (-3, 0); (0, 2); $(2, +\infty)$; Ver tabla ??, con el estudio de f'(x)

$$\begin{vmatrix} (-\infty, -3) \\ f'(-5) = -840.0 < 0 \\ Decreciente \end{vmatrix} \begin{vmatrix} (-3, 0) \\ f'(-1) = 72.0 > 0 \\ Creciente \end{vmatrix} \begin{vmatrix} (0, 2) \\ f'(1) = -48.0 < 0 \\ Decreciente \end{vmatrix} \begin{vmatrix} (2, +\infty) \\ f'(4) = 672.0 > 0 \\ Creciente \end{vmatrix}$$

Tabla 9: Estudio del signo de $f'(x) = 12 x^3 + 12 x^2 - 72 x$

Lista de máximos y mínimos: obtenidos estudiando la monotonía a ambos lados de cada puntos, siempre que el punto esté en el dominio.

Criterio:

- Si por un lado crece, y por el otro decrece, entonces será un mínimo.
- Si por un lado decrece, y por el otro crece, será un máximo.
- Si a ambos lados tiene el mismo comportamiento, no será un máximo ni un mínimo
- El punto x = 0 es un máximo de la función.
- Los puntos $\{x_0 = -3; x_1 = 2; \}$ son mínimos de la función.

Figura 5: Gráfica de la función.

Curvatura $f''(x) = 36x^2 + 24x - 72$

Calculamos los puntos críticos, aquellos en los que f''(x) = 0

$$x_0 = -\frac{1}{3}\sqrt{19} - \frac{1}{3}; \quad x_1 = \frac{1}{3}\sqrt{19} - \frac{1}{3};$$

Añadimos a estos puntos aquellos en los que la función primitiva o la primera derivada no existan, si hay alguno. En este caso, no hay.

Los intervalos a estudiar son: $\left(-\infty, -\frac{1}{3}\sqrt{19} - \frac{1}{3}\right)$; $\left(-\frac{1}{3}\sqrt{19} - \frac{1}{3}, \frac{1}{3}\sqrt{19} - \frac{1}{3}\right)$; $\left(\frac{1}{3}\sqrt{19} - \frac{1}{3}, +\infty\right)$; Ver tabla ??, con el estudio de f"(x)

$$\left| \begin{array}{c} \left(-\infty, -\frac{1}{3}\sqrt{19} - \frac{1}{3} \right) \\ f''(-3) = 180.0 > 0 \\ Convexa \end{array} \right| \left. \begin{array}{c} \left(-\frac{1}{3}\sqrt{19} - \frac{1}{3}, \frac{1}{3}\sqrt{19} - \frac{1}{3} \right) \\ f''(0) = -72.0 < 0 \\ Convexa \end{array} \right| \left. \begin{array}{c} \left(\frac{1}{3}\sqrt{19} - \frac{1}{3}, +\infty \right) \\ f''(3) = 324.0 > 0 \\ Convexa \end{array} \right|$$

Tabla 10: *Estudio del signo de* $f''(x) = 36 x^2 + 24 x - 72$

Ejercicio 6: Estudia sistemáticamente la siguiente función

$$f(x) = \frac{x^2 - 9}{x + 2}$$

Esta solución ha sido generada automáticamente. Puede contener errores.

Es una función Racional y, por tanto, continua y derivable en todo su dominio.

Dominio

$$D(f) = \{x \in \mathbb{R} / x + 2 \neq 0\} = \mathbb{R} - \{-2\}$$

= $(-\infty, -2) \cup (-2, +\infty)$

Puntos de corte con los ejes *Eje X* Para calcular los puntos de corte de la función con el eje x resolvemos la ecuación f(x) = 0 cuya solución es:

$$x_0 = -3 \rightarrow (-3, 0); \quad x_1 = 3 \rightarrow (3, 0);$$

Obs: Sólo puede haber puntos de corte en puntos del dominio.

Eje Y Para calcular los puntos de corte de la función con el eje y calculamos f(0). En este caso: $f(0) = -\frac{9}{2}$, con lo que la gráfica corta en $\left(0, -\frac{9}{2}\right)$ al eje Y.

Simetría Para estudiar la simetría de una función calculamos f(-x) y comparamos con f(x). En este caso:

$$f(-x) = -\frac{x^2 - 9}{x - 2}$$

¿Es igual a f(x) o a -f(x)? No, entonces la función no tiene simetría respecto del eje Y.

Asíntotas

Asíntotas verticales Los posibles puntos en los que la función puede tener una asíntota vertical son aquellos en los que se anula el denominador o los que hacen 0 el argumento del logaritmo.

Por ello calculamos: x + 2 = 0

Soluciones: $x_0 = -2$;

Asintota en x = -2 Calculamos

$$\lim_{x \to -2} \frac{x^2 - 9}{x + 2} = \begin{cases} \lim_{x \to -2^+} \frac{x^2 - 9}{x + 2} = -\infty \\ \lim_{x \to -2^-} \frac{x^2 - 9}{x + 2} = +\infty \end{cases}$$

Aunque el límite no exista (porque los límites laterales son diferentes), su magnitud sigue siendo infinita por ambos lados, por lo que la recta x = -2 es una **asíntota vertical** de f(x)

Asíntotas horizontales u oblícuas Las asíntotas horizontales y oblicuas nos dan la información acerca de la tendencia de la función en $-\infty$ y en $+\infty$.

Para calcular las asíntotas, necesitamos calcular el límite de la función tanto en $+\infty$ como en $-\infty$:

$$\lim_{x \mapsto \pm \infty} \frac{x^2 - 9}{x + 2}$$

Límite de la función en $+\infty$:

$$\lim_{x \mapsto +\infty} \frac{x^2 - 9}{x + 2} = \dots = +\infty$$

Como el límite obtenido es de magnitud infinita la función no tiene asíntota horizontal, pero puede tener una asíntota oblícua. Para saber si tiene una asíntota oblícua calculamos:

$$m = \lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{\frac{x^2 - 9}{x + 2}}{x} = \lim_{x \to +\infty} \frac{x^2 - 9}{(x + 2)x} = \dots = 1$$

En este caso tenemos m=1 por lo que sí hay asíntota oblícua. Calculamos n:

$$n = \lim_{x \to +\infty} f(x) - m \cdot x = \lim_{x \to +\infty} \left(\frac{x^2 - 9}{x + 2} - 1x \right) = \lim_{x \to +\infty} -x + \frac{x^2 - 9}{x + 2} = -2$$

En $+\infty$, f(x) tiene una **asíntota oblícua** en y=x-2.

Límite de la función en $-\infty$:

$$\lim_{x\mapsto -\infty} \frac{x^2-9}{x+2} = \dots = -\infty$$

Como el límite obtenido es de magnitud infinita la función no tiene asíntota horizontal, pero puede tener una asíntota oblícua. Para saber si tiene una asíntota oblícua calculamos:

$$m = \lim_{x \mapsto -\infty} \frac{f(x)}{x} = \lim_{x \mapsto -\infty} \frac{\frac{x^2 - 9}{x + 2}}{x} = \lim_{x \mapsto -\infty} \frac{x^2 - 9}{(x + 2)x} = \dots = 1$$

En este caso tenemos m=1 por lo que sí hay asíntota oblícua. Calculamos n:

$$n = \lim_{x \to -\infty} f(x) - m \cdot x = \lim_{x \to -\infty} \left(\frac{x^2 - 9}{x + 2} - 1x \right) = \lim_{x \to -\infty} -x + \frac{x^2 - 9}{x + 2} = -2$$

En $-\infty$, f(x) tiene una **asíntota oblícua** en y = x - 2.

Monotonía $f'(x) = \frac{x^2+4x+9}{x^2+4x+4}$

Calculamos los puntos críticos, aquellos en los que f'(x) = 0

No tiene soluciones reales.

Añadimos a estos puntos aquellos en los que la función primitiva no exista y aquellos puntos en los que la función derivada no exista, si hay alguno. En este caso, $x_0 = -2$;

Los intervalos a estudiar son: $(-\infty, -2)$; $(-2, +\infty)$; Ver tabla ??, con el estudio de f'(x)

$$\begin{vmatrix} (-\infty, -2) & (-2, +\infty) \\ f'(-4) = 2.25 > 0 & f'(0) = 2.25 > 0 \\ Creciente & Creciente \end{vmatrix}$$

Tabla 11: Estudio del signo de $f'(x) = \frac{x^2 + 4x + 9}{x^2 + 4x + 4}$

Lista de máximos y mínimos: obtenidos estudiando la monotonía a ambos lados de cada puntos, siempre que el punto esté en el dominio.

Criterio:

- Si por un lado crece, y por el otro decrece, entonces será un mínimo.
- Si por un lado decrece, y por el otro crece, será un máximo.
- Si a ambos lados tiene el mismo comportamiento, no será un máximo ni un mínimo
- La función no tiene ningún máximo.
- La función no tiene ningún mínimo.

Curvatura
$$f''(x) = -\frac{10}{x^3+6x^2+12x+8}$$

Calculamos los puntos críticos, aquellos en los que f''(x) = 0

No tiene soluciones reales.

Añadimos a estos puntos aquellos en los que la función primitiva o la primera derivada no existan, si hay alguno. En este caso, $x_0 = -2$;

Los intervalos a estudiar son: $(-\infty, -2)$; $(-2, +\infty)$; Ver tabla ??, con el estudio de f''(x)

$$\left| \begin{array}{c} (-\infty, -2) \\ f''(-4) = 1.25 > 0 \\ \text{Convexa} \end{array} \right| \left| \begin{array}{c} (-2, +\infty) \\ f''(0) = -1.25 < 0 \\ \text{C\'oncava} \end{array} \right|$$

Tabla 12: Estudio del signo de $f''(x) = -\frac{10}{x^3 + 6x^2 + 12x + 8}$

Figura 6: *Gráfica de la función.*

Ejercicio 7: Estudia sistemáticamente la siguiente función

$$f(x) = \frac{x^2 + 5x}{x^2 - 25}$$

Esta solución ha sido generada automáticamente. Puede contener errores.

Es una función Racional y, por tanto, continua y derivable en todo su dominio.

Dominio

$$D(f) = \{x \in \mathbb{R} / x^2 - 25 \neq 0\} = \mathbb{R} - \{-5, 5\}$$
$$= (-\infty, -5) \cup (-5, 5) \cup (5, +\infty)$$

Puntos de corte con los ejes *Eje X* Para calcular los puntos de corte de la función con el eje x resolvemos la ecuación f(x) = 0 cuya solución es:

$$x_0 = 0 \to (0,0);$$

Obs: Sólo puede haber puntos de corte en puntos del dominio.

Eje Y Para calcular los puntos de corte de la función con el eje y calculamos f(0). En este caso: f(0) = 0, con lo que la gráfica corta en (0,0) al eje Y.

Simetría Para estudiar la simetría de una función calculamos f(-x) y comparamos con f(x). En este caso:

$$f(-x) = \frac{x^2 - 5x}{x^2 - 25}$$

¿Es igual a f(x) o a -f(x)? No, entonces la función no tiene simetría respecto del eje Y.

Asíntotas

Asíntotas verticales Los posibles puntos en los que la función puede tener una asíntota vertical son aquellos en los que se anula el denominador o los que hacen 0 el argumento del logaritmo.

Por ello calculamos:
$$x^2 - 25 = 0$$

Soluciones: $x_0 = -5$; $x_1 = 5$;

Asintota en x = -5 Calculamos

$$\lim_{x \to -5} \frac{x^2 + 5x}{x^2 - 25} = \begin{cases} \lim_{x \to -5^+} \frac{x^2 + 5x}{x^2 - 25} = \frac{1}{2} \\ \lim_{x \to -5^-} \frac{x^2 + 5x}{x^2 - 25} = \frac{1}{2} \end{cases}$$

Asintota en x = 5 Calculamos

$$\lim_{x \to 5} \frac{x^2 + 5x}{x^2 - 25} = \begin{cases} \lim_{x \to 5^+} \frac{x^2 + 5x}{x^2 - 25} = +\infty \\ \lim_{x \to 5^-} \frac{x^2 + 5x}{x^2 - 25} = -\infty \end{cases}$$

Aunque el límite no exista (porque los límites laterales son diferentes), su magnitud sigue siendo infinita por ambos lados, por lo que la recta x = 5 es una **asíntota vertical** de f(x)

Asíntotas horizontales u oblícuas Las asíntotas horizontales y oblicuas nos dan la información acerca de la tendencia de la función en $-\infty$ y en $+\infty$.

Para calcular las asíntotas, necesitamos calcular el límite de la función tanto en $+\infty$ como en $-\infty$:

$$\lim_{x \mapsto \pm \infty} \frac{x^2 + 5x}{x^2 - 25}$$

Límite de la función en $+\infty$:

$$\lim_{x\mapsto +\infty}\frac{x^2+5\,x}{x^2-25}=\ldots=1$$

En $+\infty$ f(x) tiene una asíntota horizontal en y = 1.

Límite de la función en $-\infty$:

$$\lim_{x\mapsto -\infty}\frac{x^2+5\,x}{x^2-25}=\ldots=1$$

En $-\infty$ f(x) tiene una **asíntota horizontal** en y = 1.

Monotonía
$$f'(x) = -\frac{5}{x^2 - 10x + 25}$$

Calculamos los puntos críticos, aquellos en los que f'(x) = 0

No tiene soluciones reales.

Añadimos a estos puntos aquellos en los que la función primitiva no exista y aquellos puntos en los que la función derivada no exista, si hay alguno. En este caso, $x_0=-5$; $x_1=5$;

Los intervalos a estudiar son: $(-\infty, -5)$; (-5, 5); $(5, +\infty)$; Ver tabla ??, con el estudio de f'(x)

$$\left| \begin{array}{c} (-\infty, -5) \\ f'(-7) = -0.035 < 0 \\ \text{Decreciente} \end{array} \right| \left| \begin{array}{c} (-5, 5) \\ f'(0) = -0.2 < 0 \\ \text{Decreciente} \end{array} \right| \left| \begin{array}{c} (5, +\infty) \\ f'(7) = -1.25 < 0 \\ \text{Decreciente} \end{array} \right|$$

Tabla 13: *Estudio del signo de* $f'(x) = -\frac{5}{x^2 - 10 \, x + 25}$

Lista de máximos y mínimos: obtenidos estudiando la monotonía a ambos lados de cada puntos, siempre que el punto esté en el dominio.

Criterio:

- *Si por un lado crece, y por el otro decrece, entonces será un mínimo.*
- Si por un lado decrece, y por el otro crece, será un máximo.
- Si a ambos lados tiene el mismo comportamiento, no será un máximo ni un mínimo
- La función no tiene ningún máximo.
- La función no tiene ningún mínimo.

Curvatura
$$f''(x) = \frac{10}{x^3 - 15x^2 + 75x - 125}$$

Calculamos los puntos críticos, aquellos en los que f''(x) = 0

No tiene soluciones reales.

Añadimos a estos puntos aquellos en los que la función primitiva o la primera derivada no existan, si hay alguno. En este caso, $x_0 = -5$; $x_1 = 5$;

Los intervalos a estudiar son: $(-\infty, -5)$; (-5, 5); $(5, +\infty)$; Ver tabla ??, con el estudio de f"(x)

$$\begin{vmatrix} (-\infty, -5) \\ f''(-7) = -0.006 < 0 \\ C\'{o}ncava \end{vmatrix} \begin{vmatrix} (-5, 5) \\ f''(0) = -0.08 < 0 \\ C\'{o}ncava \end{vmatrix} \begin{vmatrix} (5, +\infty) \\ f''(7) = 1.25 > 0 \\ Convexa \end{vmatrix}$$

Tabla 14: Estudio del signo de $f''(x) = \frac{10}{x^3 - 15x^2 + 75x - 125}$

Figura 7: Gráfica de la función.

Ejercicio 8: Estudia sistemáticamente la siguiente función

$$f(x) = \frac{x^2 - 5x}{x^2 - 25}$$

Esta solución ha sido generada automáticamente. Puede contener errores.

Es una función Racional y, por tanto, continua y derivable en todo su dominio.

Dominio

$$D(f) = \{x \in \mathbb{R} / x^2 - 25 \neq 0\} = \mathbb{R} - \{-5, 5\}$$
$$= (-\infty, -5) \cup (-5, 5) \cup (5, +\infty)$$

Puntos de corte con los ejes *Eje X* Para calcular los puntos de corte de la función con el eje x resolvemos la ecuación f(x) = 0 cuya solución es:

$$x_0 = 0 \to (0,0);$$

Obs: Sólo puede haber puntos de corte en puntos del dominio.

Eje Y Para calcular los puntos de corte de la función con el eje y calculamos f(0). En este caso: f(0) = 0, con lo que la gráfica corta en (0,0) al eje Y.

Simetría Para estudiar la simetría de una función calculamos f(-x) y comparamos con f(x). En este caso:

$$f(-x) = \frac{x^2 + 5x}{x^2 - 25}$$

¿Es igual a f(x) o a -f(x)? No, entonces la función no tiene simetría respecto del eje Y.

Asíntotas

Asíntotas verticales Los posibles puntos en los que la función puede tener una asíntota vertical son aquellos en los que se anula el denominador o los que hacen 0 el argumento del logaritmo.

Por ello calculamos:
$$x^2 - 25 = 0$$

Soluciones: $x_0 = -5$; $x_1 = 5$;

Asintota en x = -5 Calculamos

$$\lim_{x \to -5} \frac{x^2 - 5x}{x^2 - 25} = \begin{cases} \lim_{x \to -5^+} \frac{x^2 - 5x}{x^2 - 25} = -\infty \\ \lim_{x \to -5^-} \frac{x^2 - 5x}{x^2 - 25} = +\infty \end{cases}$$

Aunque el límite no exista (porque los límites laterales son diferentes), su magnitud sigue siendo infinita por ambos lados, por lo que la recta x = -5 es una **asíntota vertical** de f(x)

Asintota en x = 5 Calculamos

$$\lim_{x \to 5} \frac{x^2 - 5x}{x^2 - 25} = \begin{cases} \lim_{x \to 5^+} \frac{x^2 - 5x}{x^2 - 25} = \frac{1}{2} \\ \lim_{x \to 5^-} \frac{x^2 - 5x}{x^2 - 25} = \frac{1}{2} \end{cases}$$

Asíntotas horizontales u oblícuas Las asíntotas horizontales y oblicuas nos dan la información acerca de la tendencia de la función en $-\infty$ y en $+\infty$.

Para calcular las asíntotas, necesitamos calcular el límite de la función tanto en $+\infty$ como en $-\infty$:

$$\lim_{x \to \pm \infty} \frac{x^2 - 5x}{x^2 - 25}$$

Límite de la función en $+\infty$:

$$\lim_{x\mapsto +\infty} \frac{x^2 - 5x}{x^2 - 25} = \dots = 1$$

En $+\infty$ f(x) tiene una **asíntota horizontal** en y = 1.

Límite de la función en $-\infty$:

$$\lim_{x \mapsto -\infty} \frac{x^2 - 5x}{x^2 - 25} = \dots = 1$$

En $-\infty$ f(x) tiene una **asíntota horizontal** en y = 1.

Monotonía $f'(x) = \frac{5}{x^2 + 10x + 25}$

Calculamos los puntos críticos, aquellos en los que f'(x) = 0

No tiene soluciones reales.

Añadimos a estos puntos aquellos en los que la función primitiva no exista y aquellos puntos en los que la función derivada no exista, si hay alguno. En este caso, $x_0=-5$; $x_1=5$;

Los intervalos a estudiar son: $(-\infty, -5)$; (-5, 5); $(5, +\infty)$; Ver tabla ??, con el estudio de f'(x)

$$\left| \begin{array}{c} (-\infty, -5) \\ f'(-7) = 1.25 > 0 \\ \text{Creciente} \end{array} \right| \left| \begin{array}{c} (-5, 5) \\ f'(0) = 0.2 > 0 \\ \text{Creciente} \end{array} \right| \left| \begin{array}{c} (5, +\infty) \\ f'(7) = 0.035 > 0 \\ \text{Creciente} \end{array} \right|$$

Tabla 15: *Estudio del signo de* $f'(x) = \frac{5}{x^2 + 10 x + 25}$

Lista de máximos y mínimos: obtenidos estudiando la monotonía a ambos lados de cada puntos, siempre que el punto esté en el dominio.

Criterio:

- *Si por un lado crece, y por el otro decrece, entonces será un mínimo.*
- Si por un lado decrece, y por el otro crece, será un máximo.
- Si a ambos lados tiene el mismo comportamiento, no será un máximo ni un mínimo
- La función no tiene ningún máximo.
- La función no tiene ningún mínimo.

Curvatura
$$f''(x) = -\frac{10}{x^3 + 15 x^2 + 75 x + 125}$$

Calculamos los puntos críticos, aquellos en los que f''(x) = 0

No tiene soluciones reales.

Añadimos a estos puntos aquellos en los que la función primitiva o la primera derivada no existan, si hay alguno. En este caso, $x_0 = -5$; $x_1 = 5$;

Los intervalos a estudiar son: $(-\infty, -5)$; (-5, 5); $(5, +\infty)$; Ver tabla ??, con el estudio de f"(x)

$$\left| \begin{array}{c} (-\infty, -5) \\ f''(-7) = 1.25 > 0 \\ Convexa \end{array} \right| \left| \begin{array}{c} (-5, 5) \\ f''(0) = -0.08 < 0 \\ C\'oncava \end{array} \right| \left| \begin{array}{c} (5, +\infty) \\ f''(7) = -0.006 < 0 \\ C\'oncava \end{array} \right|$$

Tabla 16: Estudio del signo de
$$f''(x) = -\frac{10}{x^3+15x^2+75x+125}$$

Figura 8: *Gráfica de la función.*

Ejercicio 9: Estudia sistemáticamente la siguiente función

$$f(x) = \frac{x+6}{x-1}$$

Esta solución ha sido generada automáticamente. Puede contener errores.

Es una función Racional y, por tanto, continua y derivable en todo su dominio.

Dominio

$$D(f) = \{x \in \mathbb{R} / x - 1 \neq 0\} = \mathbb{R} - \{1\}$$

= $(-\infty, 1) \cup (1, +\infty)$

Puntos de corte con los ejes *Eje X* Para calcular los puntos de corte de la función con el eje x resolvemos la ecuación f(x) = 0 cuya solución es:

$$x_0 = -6 \rightarrow (-6, 0);$$

Obs: Sólo puede haber puntos de corte en puntos del dominio.

Eje Y Para calcular los puntos de corte de la función con el eje y calculamos f(0). En este caso: f(0) = -6, con lo que la gráfica corta en (0, -6) al eje Y.

Simetría Para estudiar la simetría de una función calculamos f(-x) y comparamos con f(x). En este caso:

$$f(-x) = \frac{x-6}{x+1}$$

¿Es igual a f(x) o a -f(x)? No, entonces la función no tiene simetría respecto del eje Y.

Asíntotas

Asíntotas verticales Los posibles puntos en los que la función puede tener una asíntota vertical son aquellos en los que se anula el denominador o los que hacen 0 el argumento del logaritmo.

Por ello calculamos:
$$x - 1 = 0$$

Soluciones: $x_0 = 1$;

Asintota en x = 1 Calculamos

$$\lim_{x \to 1} \frac{x+6}{x-1} = \begin{cases} \lim_{x \to 1^+} \frac{x+6}{x-1} = +\infty \\ \lim_{x \to 1^-} \frac{x+6}{x-1} = -\infty \end{cases}$$

Aunque el límite no exista (porque los límites laterales son diferentes), su magnitud sigue siendo infinita por ambos lados, por lo que la recta x = 1 es una **asíntota vertical** de f(x)

Asíntotas horizontales u oblícuas Las asíntotas horizontales y oblicuas nos dan la información acerca de la tendencia de la función en $-\infty$ y en $+\infty$.

Para calcular las asíntotas, necesitamos calcular el límite de la función tanto en $+\infty$ como en $-\infty$:

$$\lim_{x \to \pm \infty} \frac{x+6}{x-1}$$

Límite de la función en $+\infty$:

$$\lim_{x \mapsto +\infty} \frac{x+6}{x-1} = \dots = 1$$

En $+\infty$ f(x) tiene una asíntota horizontal en y = 1.

Límite de la función en $-\infty$:

$$\lim_{x\mapsto -\infty}\frac{x+6}{x-1}=\ldots=1$$

En $-\infty$ f(x) tiene una asíntota horizontal en y = 1.

Monotonía $f'(x) = -\frac{7}{x^2 - 2x + 1}$

Calculamos los puntos críticos, aquellos en los que f'(x) = 0

No tiene soluciones reales.

Añadimos a estos puntos aquellos en los que la función primitiva no exista y aquellos puntos en los que la función derivada no exista, si hay alguno. En este caso, $x_0 = 1$;

Los intervalos a estudiar son: $(-\infty, 1)$; $(1, +\infty)$; Ver tabla ??, con el estudio de f'(x)

$$\begin{vmatrix} (-\infty, 1) & (1, +\infty) \\ f'(-1) = -1.75 < 0 & f'(3) = -1.75 < 0 \\ Decreciente & Decreciente \end{vmatrix}$$

Tabla 17: Estudio del signo de $f'(x) = -\frac{7}{x^2-2x+1}$

Lista de máximos y mínimos: obtenidos estudiando la monotonía a ambos lados de cada puntos, siempre que el punto esté en el dominio.

Criterio:

- Si por un lado crece, y por el otro decrece, entonces será un mínimo.
- Si por un lado decrece, y por el otro crece, será un máximo.
- Si a ambos lados tiene el mismo comportamiento, no será un máximo ni un mínimo
- La función no tiene ningún máximo.
- La función no tiene ningún mínimo.

Figura 9: Gráfica de la función.

Curvatura
$$f''(x) = \frac{14}{x^3 - 3x^2 + 3x - 1}$$

Calculamos los puntos críticos, aquellos en los que f''(x) = 0

No tiene soluciones reales.

Añadimos a estos puntos aquellos en los que la función primitiva o la primera derivada no existan, si hay alguno. En este caso, $x_0 = 1$;

Los intervalos a estudiar son: $(-\infty, 1)$; $(1, +\infty)$; Ver tabla ??, con el estudio de f''(x)

$$\left| \begin{array}{c} (-\infty,1) \\ f''(-1) = -1.75 < 0 \\ \text{C\'oncava} \end{array} \right| \left| \begin{array}{c} (1,+\infty) \\ f''(3) = 1.75 > 0 \\ \text{Convexa} \end{array} \right|$$

Tabla 18: Estudio del signo de $f''(x) = \frac{14}{x^3 - 3x^2 + 3x - 1}$

Ejercicio 10: Estudia sistemáticamente la siguiente función

$$f(x) = \frac{x+2}{x-2}$$

Esta solución ha sido generada automáticamente. Puede contener errores.

Es una función Racional y, por tanto, continua y derivable en todo su dominio.

Dominio

$$D(f) = \{x \in \mathbb{R} / x - 2 \neq 0\} = \mathbb{R} - \{2\}$$

= $(-\infty, 2) \cup (2, +\infty)$

Puntos de corte con los ejes *Eje X* Para calcular los puntos de corte de la función con el eje x resolvemos la ecuación f(x) = 0 cuya solución es:

$$x_0 = -2 \to (-2, 0);$$

Obs: Sólo puede haber puntos de corte en puntos del dominio.

Eje Y Para calcular los puntos de corte de la función con el eje y calculamos f(0). En este caso: f(0) = -1, con lo que la gráfica corta en (0, -1) al eje Y.

Simetría Para estudiar la simetría de una función calculamos f(-x) y comparamos con f(x). En este caso:

$$f(-x) = \frac{x-2}{x+2}$$

¿Es igual a f(x) o a -f(x)? No, entonces la función no tiene simetría respecto del eje Y.

Asíntotas

Asíntotas verticales Los posibles puntos en los que la función puede tener una asíntota vertical son aquellos en los que se anula el denominador o los que hacen 0 el argumento del logaritmo.

Por ello calculamos: x - 2 = 0

Soluciones: $x_0 = 2$;

Asintota en x = 2 Calculamos

$$\lim_{x \to 2} \frac{x+2}{x-2} = \begin{cases} \lim_{x \to 2^+} \frac{x+2}{x-2} = +\infty \\ \lim_{x \to 2^-} \frac{x+2}{x-2} = -\infty \end{cases}$$

Aunque el límite no exista (porque los límites laterales son diferentes), su magnitud sigue siendo infinita por ambos lados, por lo que la recta x = 2 es una **asíntota vertical** de f(x)

Asíntotas horizontales u oblícuas Las asíntotas horizontales y oblicuas nos dan la información acerca de la tendencia de la función en $-\infty$ y en $+\infty$.

Para calcular las asíntotas, necesitamos calcular el límite de la función tanto en $+\infty$ como en $-\infty$:

$$\lim_{x \to \pm \infty} \frac{x+2}{x-2}$$

Límite de la función en $+\infty$:

$$\lim_{x \mapsto +\infty} \frac{x+2}{x-2} = \dots = 1$$

En $+\infty$ f(x) tiene una asíntota horizontal en y = 1.

Límite de la función en $-\infty$:

$$\lim_{x\mapsto -\infty}\frac{x+2}{x-2}=\ldots=1$$

En $-\infty$ f(x) tiene una asíntota horizontal en y = 1.

Monotonía $f'(x) = -\frac{4}{x^2 - 4x + 4}$

Calculamos los puntos críticos, aquellos en los que f'(x) = 0

No tiene soluciones reales.

Añadimos a estos puntos aquellos en los que la función primitiva no exista y aquellos puntos en los que la función derivada no exista, si hay alguno. En este caso, $x_0 = 2$;

Los intervalos a estudiar son: $(-\infty, 2)$; $(2, +\infty)$; Ver tabla ??, con el estudio de f'(x)

$$\begin{vmatrix} (-\infty, 2) & (2, +\infty) \\ f'(0) = -1.0 < 0 & f'(4) = -1.0 < 0 \\ \text{Decreciente} & \text{Decreciente} \end{vmatrix}$$

Tabla 19: Estudio del signo de $f'(x) = -\frac{4}{x^2 - 4x + 4}$

Lista de máximos y mínimos: obtenidos estudiando la monotonía a ambos lados de cada puntos, siempre que el punto esté en el dominio.

Criterio:

- Si por un lado crece, y por el otro decrece, entonces será un mínimo.
- Si por un lado decrece, y por el otro crece, será un máximo.
- Si a ambos lados tiene el mismo comportamiento, no será un máximo ni un mínimo
- La función no tiene ningún máximo.
- La función no tiene ningún mínimo.

Figura 10: Gráfica de la función.

Curvatura
$$f''(x) = \frac{8}{x^3 - 6x^2 + 12x - 8}$$

Calculamos los puntos críticos, aquellos en los que f''(x) = 0

No tiene soluciones reales.

Añadimos a estos puntos aquellos en los que la función primitiva o la primera derivada no existan, si hay alguno. En este caso, $x_0 = 2$;

Los intervalos a estudiar son: $(-\infty, 2)$; $(2, +\infty)$; Ver tabla ??, con el estudio de f''(x)

$$\left| \begin{array}{c} (-\infty,2) \\ f''(0) = -1.0 < 0 \\ \text{C\'oncava} \end{array} \right| \left| \begin{array}{c} (2,+\infty) \\ f''(4) = 1.0 > 0 \\ \text{Convexa} \end{array} \right|$$

Tabla 20: Estudio del signo de $f''(x) = \frac{8}{x^3 - 6x^2 + 12x - 8}$

Ejercicio 11: Estudia sistemáticamente la siguiente función

$$f(x) = \frac{1}{x^2}$$

Esta solución ha sido generada automáticamente. Puede contener errores.

Es una función Racional y, por tanto, continua y derivable en todo su dominio.

Dominio

$$D(f) = \{x \in \mathbb{R} / x^2 \neq 0\} = \mathbb{R} - \{0\}$$

= $(-\infty, 0) \cup (0, +\infty)$

Puntos de corte con los ejes *Eje X* Para calcular los puntos de corte de la función con el eje x resolvemos la ecuación f(x) = 0 cuya solución es:

No tiene solución.

Obs: Sólo puede haber puntos de corte en puntos del dominio.

Eje Y Para calcular los puntos de corte de la función con el eje y calculamos f(0). En este caso: No existe f(0).

Simetría Para estudiar la simetría de una función calculamos f(-x) y comparamos con f(x). En este caso:

$$f(-x) = \frac{1}{x^2}$$

¿Es igual a f(x) o a -f(x)? Sí, a f(x), entonces la función es par.

Asíntotas

Asíntotas verticales Los posibles puntos en los que la función puede tener una asíntota vertical son aquellos en los que se anula el denominador o los que hacen 0 el argumento del logaritmo.

Por ello calculamos: $x^2 = 0$

Soluciones: $x_0 = 0$;

Asintota en x = 0 Calculamos

$$\lim_{x \to 0} \frac{1}{x^2} = \begin{cases} \lim_{x \to 0^+} \frac{1}{x^2} = +\infty \\ \lim_{x \to 0^-} \frac{1}{x^2} = +\infty \end{cases}$$

La recta x = 0 es una **asíntota vertical** de f(x)

Asíntotas horizontales u oblícuas Las asíntotas horizontales y oblicuas nos dan la información acerca de la tendencia de la función en $-\infty$ y en $+\infty$.

Para calcular las asíntotas, necesitamos calcular el límite de la función tanto en $+\infty$ como en $-\infty$:

$$\lim_{x \to \pm \infty} \frac{1}{x^2}$$

Límite de la función en $+\infty$:

$$\lim_{x\mapsto +\infty}\frac{1}{x^2}=\ldots=0$$

En $+\infty$ f(x) tiene una asíntota horizontal en y=0.

Límite de la función en $-\infty$:

$$\lim_{x\mapsto -\infty}\frac{1}{x^2}=\ldots=0$$

En $-\infty$ f(x) tiene una **asíntota horizontal** en y = 0.

Monotonía $f'(x) = -\frac{2}{x^3}$

Calculamos los puntos críticos, aquellos en los que f'(x) = 0

No tiene soluciones reales.

Añadimos a estos puntos aquellos en los que la función primitiva no exista y aquellos puntos en los que la función derivada no exista, si hay alguno. En este caso, $x_0 = 0$;

Los intervalos a estudiar son: $(-\infty, 0)$; $(0, +\infty)$; Ver tabla ??, con el estudio de f'(x)

$$\begin{vmatrix} (-\infty, 0) \\ f'(-2) = 0.25 > 0 \end{vmatrix} \begin{vmatrix} (0, +\infty) \\ f'(2) = -0.25 < 0 \\ \text{Decreciente} \end{vmatrix}$$

Tabla 21: Estudio del signo de $f'(x) = -\frac{2}{x^3}$

Lista de máximos y mínimos: obtenidos estudiando la monotonía a ambos lados de cada puntos, siempre que el punto esté en el dominio.

Criterio:

- Si por un lado crece, y por el otro decrece, entonces será un mínimo.
- Si por un lado decrece, y por el otro crece, será un máximo.
- Si a ambos lados tiene el mismo comportamiento, no será un máximo ni un mínimo
- La función no tiene ningún máximo.
- La función no tiene ningún mínimo.

Figura 11: Gráfica de la función.

Curvatura $f''(x) = \frac{6}{x^4}$

Calculamos los puntos críticos, aquellos en los que f''(x) = 0

No tiene soluciones reales.

Añadimos a estos puntos aquellos en los que la función primitiva o la primera derivada no existan, si hay alguno. En este caso, $x_0 = 0$;

Los intervalos a estudiar son: $(-\infty,0)$; $(0,+\infty)$; Ver tabla ??, con el estudio de f"(x)

$$\left| \begin{array}{c} (-\infty,0) \\ f''(-2) = 0.375 > 0 \\ Convexa \end{array} \right| \left| \begin{array}{c} (0,+\infty) \\ f''(2) = 0.375 > 0 \\ Convexa \end{array} \right|$$

Tabla 22: Estudio del signo de $f''(x) = \frac{6}{x^4}$

Ejercicio 12: Estudia sistemáticamente la siguiente función

$$f(x) = -\frac{2x^2 - 1}{x - 5}$$

Esta solución ha sido generada automáticamente. Puede contener errores.

Es una función Racional y, por tanto, continua y derivable en todo su dominio.

Dominio

$$D(f) = \{x \in \mathbb{R} / x - 5 \neq 0\} = \mathbb{R} - \{5\}$$

= $(-\infty, 5) \cup (5, +\infty)$

Puntos de corte con los ejes *Eje X* Para calcular los puntos de corte de la función con el eje x resolvemos la ecuación f(x) = 0 cuya solución es:

$$x_0 = -\frac{1}{2}\sqrt{2} \rightarrow \left(-\frac{1}{2}\sqrt{2},0\right); \quad x_1 = \frac{1}{2}\sqrt{2} \rightarrow \left(\frac{1}{2}\sqrt{2},0\right);$$
 Obs: Sólo puede haber puntos de corte en puntos del dominio.

Eje Y Para calcular los puntos de corte de la función con el eje y calculamos f(0). En este caso: $f(0) = -\frac{1}{5}$, con lo que la gráfica corta en $\left(0, -\frac{1}{5}\right)$ al eje Y.

Simetría Para estudiar la simetría de una función calculamos f(-x) y comparamos con f(x). En este caso:

$$f(-x) = \frac{2x^2 - 1}{x + 5}$$

¿Es igual a f(x) o a -f(x)? No, entonces la función no tiene simetría respecto del eje Y.

Asíntotas

Asíntotas verticales Los posibles puntos en los que la función puede tener una asíntota vertical son aquellos en los que se anula el denominador o los que hacen 0 el argumento del logaritmo.

Por ello calculamos: x - 5 = 0

Soluciones: $x_0 = 5$;

Asintota en x = 5 Calculamos

$$\lim_{x \to 5} -\frac{2x^2 - 1}{x - 5} = \begin{cases} \lim_{x \to 5^+} -\frac{2x^2 - 1}{x - 5} = -\infty \\ \lim_{x \to 5^-} -\frac{2x^2 - 1}{x - 5} = +\infty \end{cases}$$

Aunque el límite no exista (porque los límites laterales son diferentes), su magnitud sigue siendo infinita por ambos lados, por lo que la recta x = 5 es una asíntota vertical de f(x)

38

Asíntotas horizontales u oblícuas Las asíntotas horizontales y oblicuas nos dan la información acerca de la tendencia de la función en $-\infty$ y en $+\infty$.

Para calcular las asíntotas, necesitamos calcular el límite de la función tanto en $+\infty$ como en $-\infty$:

$$\lim_{x \mapsto \pm \infty} -\frac{2x^2 - 1}{x - 5}$$

Límite de la función en $+\infty$:

$$\lim_{x\mapsto +\infty} -\frac{2\,x^2-1}{x-5} = \ldots = -\infty$$

Como el límite obtenido es de magnitud infinita la función no tiene asíntota horizontal, pero puede tener una asíntota oblícua. Para saber si tiene una asíntota oblícua calculamos:

$$m = \lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{-\frac{2x^2 - 1}{x - 5}}{x} = \lim_{x \to +\infty} -\frac{2x^2 - 1}{(x - 5)x} = \dots = -2$$

En este caso tenemos m=-2 por lo que sí hay asíntota oblícua. Calculamos n:

$$n = \lim_{x \to +\infty} f(x) - m \cdot x = \lim_{x \to +\infty} \left(-\frac{2x^2 - 1}{x - 5} - -2x \right) = \lim_{x \to +\infty} 2x - \frac{2x^2 - 1}{x - 5} = -10$$

En $+\infty$, f(x) tiene una **asíntota oblícua** en y = -2x - 10.

Límite de la función en $-\infty$:

$$\lim_{x \to -\infty} -\frac{2x^2 - 1}{x - 5} = \dots = +\infty$$

Como el límite obtenido es de magnitud infinita la función no tiene asíntota horizontal, pero puede tener una asíntota oblícua. Para saber si tiene una asíntota oblícua calculamos:

$$m = \lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} \frac{-\frac{2x^2 - 1}{x - 5}}{x} = \lim_{x \to -\infty} -\frac{2x^2 - 1}{(x - 5)x} = \dots = -2$$

En este caso tenemos m=-2 por lo que sí hay asíntota oblícua. Calculamos n:

$$n = \lim_{x \to -\infty} f(x) - m \cdot x = \lim_{x \to -\infty} \left(-\frac{2x^2 - 1}{x - 5} - -2x \right) = \lim_{x \to -\infty} 2x - \frac{2x^2 - 1}{x - 5} = -10$$

En $-\infty$, f(x) tiene una **asíntota oblícua** en y = -2x - 10.

Monotonía $f'(x) = -\frac{2x^2-20x+1}{x^2-10x+25}$

Calculamos los puntos críticos, aquellos en los que f'(x) = 0

$$x_0 = \frac{1}{2}\sqrt{2}(5\sqrt{2}-7); \quad x_1 = \frac{1}{2}\sqrt{2}(5\sqrt{2}+7);$$

Añadimos a estos puntos aquellos en los que la función primitiva no exista y aquellos puntos en los que la función derivada no exista, si hay alguno. En este caso, $x_0 = 5$;

Los intervalos a estudiar son:
$$\left(-\infty, \frac{1}{2}\sqrt{2}\left(5\sqrt{2}-7\right)\right); \quad \left(\frac{1}{2}\sqrt{2}\left(5\sqrt{2}-7\right), 5\right); \quad \left(5, \frac{1}{2}\sqrt{2}\left(5\sqrt{2}+7\right)\right);$$
 $\left(\frac{1}{2}\sqrt{2}\left(5\sqrt{2}+7\right), +\infty\right); \quad \text{Ver tabla ??, con el estudio de f'(x)}$

$$\begin{vmatrix} \left(-\infty, \frac{1}{2}\sqrt{2}\left(5\sqrt{2}-7\right)\right) & \left(\frac{1}{2}\sqrt{2}\left(5\sqrt{2}-7\right), 5\right) & \left(5, \frac{1}{2}\sqrt{2}\left(5\sqrt{2}+7\right)\right) & \left(\frac{1}{2}\sqrt{2}\left(5\sqrt{2}+7\right), +\infty\right) \\ f'(-1) = -0.639 < 0 & f'(1) = 1.063 > 0 & f'(8) = 3.444 > 0 & f'(11) = -0.639 < 0 \\ \text{Decreciente} & \text{Creciente} & \text{Decreciente} \end{vmatrix}$$

Tabla 23: *Estudio del signo de* $f'(x) = -\frac{2x^2-20x+1}{x^2-10x+25}$

Lista de máximos y mínimos: obtenidos estudiando la monotonía a ambos lados de cada puntos, siempre que el punto esté en el dominio.

Criterio:

- Si por un lado crece, y por el otro decrece, entonces será un mínimo.
- Si por un lado decrece, y por el otro crece, será un máximo.
- Si a ambos lados tiene el mismo comportamiento, no será un máximo ni un mínimo
- El punto $x = \frac{1}{2}\sqrt{2}(5\sqrt{2} + 7)$ es un máximo de la función.
- El punto $x = \frac{1}{2}\sqrt{2}(5\sqrt{2} 7)$ es un mínimo de la función.

Curvatura
$$f''(x) = -\frac{98}{x^3 - 15x^2 + 75x - 125}$$

Calculamos los puntos críticos, aquellos en los que f''(x) = 0

No tiene soluciones reales.

Añadimos a estos puntos aquellos en los que la función primitiva o la primera derivada no existan, si hay alguno. En este caso, $x_0 = 5$;

Los intervalos a estudiar son: $(-\infty, 5)$; $(5, +\infty)$; Ver tabla ??, con el estudio de f''(x)

$$\left| \begin{array}{c} (-\infty,5) \\ f''(3) = 12.25 > 0 \\ \text{Convexa} \end{array} \right| \left| \begin{array}{c} (5,+\infty) \\ f''(7) = -12.25 < 0 \\ \text{C\'oncava} \end{array} \right|$$

Tabla 24: Estudio del signo de $f''(x) = -\frac{98}{x^3 - 15x^2 + 75x - 125}$

Figura 12: Gráfica de la función.

Ejercicio 13: Estudia sistemáticamente la siguiente función

$$f(x) = \log(x - 2)$$

Esta solución ha sido generada automáticamente. Puede contener errores.

Es una función Racional y, por tanto, continua y derivable en todo su dominio.

Dominio

$$D(f) = \{x \in \mathbb{R} / x - 2 > 0\}$$

= ((2, +oo))
= (2, +\infty)

Puntos de corte con los ejes *Eje X* Para calcular los puntos de corte de la función con el eje x resolvemos la ecuación f(x) = 0 cuya solución es:

$$x_0 = 3 \to (3,0);$$

Obs: Sólo puede haber puntos de corte en puntos del dominio.

 $\it Eje~Y$ Para calcular los puntos de corte de la función con el eje y calculamos f(0). En este caso: No existe f(0).

Simetría Para estudiar la simetría de una función calculamos f(-x) y comparamos con f(x). En este caso:

$$f(-x) = \log(-x - 2)$$

¿Es igual a f(x) o a -f(x)? No, entonces la función no tiene simetría respecto del eje Y.

Asíntotas

Asíntotas verticales Los posibles puntos en los que la función puede tener una asíntota vertical son aquellos en los que se anula el denominador o los que hacen 0 el argumento del logaritmo.

No tiene denominador, por lo que no hay puntos canditatos aquí.

Soluciones: No tiene soluciones reales

Atención: Como la función es un logaritmo, podríamos tener una asíntota vertical (ya que $\lim_{x \to 0^+} \log(x) = -\infty$ y $\lim_{x \to \infty} \log(x) = \infty$). Vamos a comprobarlo.

Para ello, calculamos los puntos en los que se haga 0 o $+\infty$ el interior del logaritmo . En este caso:

$$x - 2 = 0$$

Soluciones: $x_0 = 2$;

Asintota en x = 2 Calculamos

$$\lim_{x \to 2} \log (x - 2) = \begin{cases} \lim_{x \to 2^+} \log (x - 2) = -\infty \\ \lim_{x \to 2^-} \log (x - 2) = # \end{cases}$$

x = 2 es **A.V.** de f(x) por la derecha.

Asíntotas horizontales u oblícuas Las asíntotas horizontales y oblicuas nos dan la información acerca de la tendencia de la función en $-\infty$ y en $+\infty$.

Para calcular las asíntotas, necesitamos calcular el límite de la función tanto en $+\infty$ como en $-\infty$:

$$\lim_{x \to +\infty} \log (x-2)$$

No existe el límite de la función en $-\infty$:

Límite de la función en $+\infty$:

$$\lim_{x \to +\infty} \log(x - 2) = \dots = +\infty$$

Como el límite obtenido es de magnitud infinita la función no tiene asíntota horizontal, pero puede tener una asíntota oblícua. Para saber si tiene una asíntota oblícua calculamos:

$$m = \lim_{x \mapsto +\infty} \frac{f(x)}{x} = \lim_{x \mapsto +\infty} \frac{\log{(x-2)}}{x} = \lim_{x \mapsto +\infty} \frac{\log{(x-2)}}{x} = \dots = 0$$

En este caso, tenemos m=0 por lo que **no hay asíntota** oblícua (ni horizontal).

Monotonía $f'(x) = \frac{1}{x-2}$

Calculamos los puntos críticos, aquellos en los que f'(x) = 0

No tiene soluciones reales.

Añadimos a estos puntos aquellos en los que la función primitiva no exista y aquellos puntos en los que la función derivada no exista, si hay alguno. En este caso, no hay.

Los intervalos a estudiar son: $(2, +\infty)$; Ver tabla ??, con el estudio de f'(x)

Tabla 25: Estudio del signo de $f'(x) = \frac{1}{x-2}$

Lista de máximos y mínimos: obtenidos estudiando la monotonía a ambos lados de cada puntos, siempre que el punto esté en el dominio.

43

Criterio:

- *Si por un lado crece, y por el otro decrece, entonces será un mínimo.*
- Si por un lado decrece, y por el otro crece, será un máximo.
- Si a ambos lados tiene el mismo comportamiento, no será un máximo ni un mínimo
- La función no tiene ningún máximo.
- La función no tiene ningún mínimo.

Curvatura
$$f''(x) = -\frac{1}{x^2 - 4x + 4}$$

Calculamos los puntos críticos, aquellos en los que f''(x) = 0

No tiene soluciones reales.

Añadimos a estos puntos aquellos en los que la función primitiva o la primera derivada no existan, si hay alguno. En este caso, no hay.

Los intervalos a estudiar son: $(2, +\infty)$; Ver tabla ??, con el estudio de f''(x)

$$\left| \begin{array}{c} (2,+\infty) \\ f''(4) = -0.25 < 0 \\ \text{C\'oncava} \end{array} \right|$$

Tabla 26: Estudio del signo de $f''(x) = -\frac{1}{x^2-4x+4}$

Figura 13: Gráfica de la función.

Ejercicio 14: Estudia sistemáticamente la siguiente función

$$f(x) = \log\left(-2x^2 + 8\right)$$

Esta solución ha sido generada automáticamente. Puede contener errores.

Es una función Racional y, por tanto, continua y derivable en todo su dominio.

Dominio

$$D(f) = \{x \in \mathbb{R} / -2x^2 + 8 > 0\}$$

= ((-2,2))
= (-2,2)

Puntos de corte con los ejes Eje X Para calcular los puntos de corte de la función con el eje x resolvemos la ecuación f(x) = 0 cuya solución es:

$$x_0 = -\frac{1}{2}\sqrt{7}\sqrt{2} \rightarrow \left(-\frac{1}{2}\sqrt{7}\sqrt{2},0\right); \quad x_1 = \frac{1}{2}\sqrt{7}\sqrt{2} \rightarrow \left(\frac{1}{2}\sqrt{7}\sqrt{2},0\right);$$
 Obs: Sólo puede haber puntos de corte en puntos del dominio.

Eje Y Para calcular los puntos de corte de la función con el eje y calculamos f(0). En este caso: $f(0) = 3 \log(2)$, con lo que la gráfica corta en $(0, 3 \log(2))$ al eje Y.

Simetría Para estudiar la simetría de una función calculamos f(-x) y comparamos con f(x). En este caso:

$$f(-x) = \log\left(-2x^2 + 8\right)$$

¿Es igual a f(x) o a -f(x)? Sí, a f(x), entonces la función es par.

Asíntotas

Asíntotas verticales Los posibles puntos en los que la función puede tener una asíntota vertical son aquellos en los que se anula el denominador o los que hacen 0 el argumento del logaritmo.

No tiene denominador, por lo que no hay puntos canditatos aquí.

Soluciones: No tiene soluciones reales

Atención: Como la función es un logaritmo, podríamos tener una asíntota vertical (ya que $\lim_{x\to\infty}\log(x)=-\infty$ y $\lim_{x\to\infty}\log(x)=\infty$). Vamos a comprobarlo.

Para ello, calculamos los puntos en los que se haga 0 o $+\infty$ el interior del logaritmo . En este caso:

$$-2x^2 + 8 = 0$$

Soluciones: $x_0 = -2$; $x_1 = 2$;

Asintota en x = -2 Calculamos

$$\lim_{x \to -2} \log \left(-2x^2 + 8 \right) = \begin{cases} \lim_{x \to -2^+} \log \left(-2x^2 + 8 \right) = -\infty \\ \lim_{x \to -2^-} \log \left(-2x^2 + 8 \right) = \# \end{cases}$$

x = -2 es **A.V.** de f(x) por la derecha.

Asintota en x = 2 Calculamos

$$\lim_{x \to 2} \log \left(-2x^2 + 8 \right) = \begin{cases} \lim_{x \to 2^+} \log \left(-2x^2 + 8 \right) = \# \\ \lim_{x \to 2^-} \log \left(-2x^2 + 8 \right) = -\infty \end{cases}$$

x = 2 es **A.V.** de f(x) por la izquierda.

Asíntotas horizontales u oblícuas Las asíntotas horizontales y oblicuas nos dan la información acerca de la tendencia de la función en $-\infty$ y en $+\infty$.

Para calcular las asíntotas, necesitamos calcular el límite de la función tanto en $+\infty$ como en $-\infty$:

$$\lim_{x \mapsto \pm \infty} \log \left(-2 \, x^2 + 8 \right)$$

No existe el límite de la función en ∞ :

No existe el límite de la función en $-\infty$: La función no puede tener asíntotas horizontal por no estar definida en $\pm\infty$

Monotonía
$$f'(x) = \frac{2x}{x^2-4}$$

Calculamos los puntos críticos, aquellos en los que f'(x) = 0

$$x_0 = 0;$$

Añadimos a estos puntos aquellos en los que la función primitiva no exista y aquellos puntos en los que la función derivada no exista, si hay alguno. En este caso, no hay.

Los intervalos a estudiar son: (-2,0); (0,2); Ver tabla ??, con el estudio de f'(x)

Tabla 27: Estudio del signo de $f'(x) = \frac{2x}{x^2-4}$

Lista de máximos y mínimos: obtenidos estudiando la monotonía a ambos lados de cada puntos, siempre que el punto esté en el dominio.

Criterio:

- Si por un lado crece, y por el otro decrece, entonces será un mínimo.
- Si por un lado decrece, y por el otro crece, será un máximo.
- Si a ambos lados tiene el mismo comportamiento, no será un máximo ni un mínimo
- El punto x = 0 es un máximo de la función.
- La función no tiene ningún mínimo.

Curvatura
$$f''(x) = -\frac{2(x^2+4)}{x^4-8x^2+16}$$

Calculamos los puntos críticos, aquellos en los que f''(x) = 0

No tiene soluciones reales.

Añadimos a estos puntos aquellos en los que la función primitiva o la primera derivada no existan, si hay alguno. En este caso, no hay.

Los intervalos a estudiar son: (-2,2); Ver tabla ??, con el estudio de f''(x)

$$\left| \begin{array}{c} (-2,2) \\ f''(0) = -0.5 < 0 \\ \text{C\'oncava} \end{array} \right|$$

Tabla 28: Estudio del signo de
$$f''(x) = -\frac{2(x^2+4)}{x^4-8x^2+16}$$

Figura 14: *Gráfica de la función.*

Ejercicio 15: Estudia sistemáticamente la siguiente función

$$f(x) = \frac{\log(x)}{x^2}$$

Esta solución ha sido generada automáticamente. Puede contener errores.

Es una función compuesta de racional y logarítmica y, por tanto, continua y derivable en todo su dominio.

Dominio

$$D(f) = \{x \in \mathbb{R} / x^2 \neq 0\} = \mathbb{R} - \{0\} \cap \{x \in \mathbb{R} / x > 0\}$$

= $((0, +oo))$
= $(0, +\infty)$

Puntos de corte con los ejes *Eje X* Para calcular los puntos de corte de la función con el eje x resolvemos la ecuación f(x) = 0 cuya solución es:

$$x_0 = 1 \to (1,0);$$

Obs: Sólo puede haber puntos de corte en puntos del dominio.

Eje Y Para calcular los puntos de corte de la función con el eje y calculamos f(0). En este caso: No existe f(0).

Simetría Para estudiar la simetría de una función calculamos f(-x) y comparamos con f(x). En este caso:

$$f(-x) = \frac{\log(-x)}{x^2}$$

¿Es igual a f(x) o a -f(x)? No, entonces la función no tiene simetría respecto del eje Y.

Asíntotas

Asíntotas verticales Los posibles puntos en los que la función puede tener una asíntota vertical son aquellos en los que se anula el denominador o los que hacen 0 el argumento del logaritmo.

Por ello calculamos: $x^2 = 0$

Soluciones: No tiene soluciones reales

Atención: Como la función es un logaritmo, podríamos tener una asíntota vertical (ya que $\lim_{x \mapsto 0^+} \log(x) = -\infty$ y $\lim_{x \mapsto \infty} \log(x) = \infty$). Vamos a comprobarlo.

Para ello, calculamos los puntos en los que se haga 0 o $+\infty$ el interior del logaritmo . En este caso:

$$x = 0$$

Soluciones: $x_0 = 0$;

Asintota en x = 0 Calculamos

$$\lim_{x \to 0} \frac{\log(x)}{x^2} = \begin{cases} \lim_{x \to 0^+} \frac{\log(x)}{x^2} = -\infty \\ \lim_{x \to 0^-} \frac{\log(x)}{x^2} = \# \end{cases}$$

x = 0 es **A.V.** de f(x) por la derecha.

Asíntotas horizontales u oblícuas Las asíntotas horizontales y oblicuas nos dan la información acerca de la tendencia de la función en $-\infty$ y en $+\infty$.

Para calcular las asíntotas, necesitamos calcular el límite de la función tanto en $+\infty$ como en $-\infty$:

$$\lim_{x \mapsto \pm \infty} \frac{\log(x)}{x^2}$$

No existe el límite de la función en $-\infty$:

Límite de la función en $+\infty$:

$$\lim_{x\mapsto +\infty}\frac{\log\left(x\right)}{x^{2}}=\ldots=0$$

En $+\infty$ f(x) tiene una asíntota horizontal en y=0.

Monotonía $f'(x) = -\frac{2\log(x)-1}{x^3}$

Calculamos los puntos críticos, aquellos en los que f'(x) = 0

$$x_0 = e^{\frac{1}{2}};$$

Añadimos a estos puntos aquellos en los que la función primitiva no exista y aquellos puntos en los que la función derivada no exista, si hay alguno. En este caso, no hay.

Los intervalos a estudiar son: $\left(0,e^{\frac{1}{2}}\right)$; $\left(e^{\frac{1}{2}},+\infty\right)$; Ver tabla ??, con el estudio de f'(x)

$$\begin{vmatrix} \left(0,e^{\frac{1}{2}}\right) & \left(e^{\frac{1}{2}},+\infty\right) \\ f'(1)=1.0>0 & f'(3)=-0.044<0 \\ \text{Creciente} & \text{Decreciente} \end{vmatrix}$$

Tabla 29: Estudio del signo de $f'(x) = -\frac{2 \log(x) - 1}{x^3}$

Lista de máximos y mínimos: obtenidos estudiando la monotonía a ambos lados de cada puntos, siempre que el punto esté en el dominio.

Criterio:

- Si por un lado crece, y por el otro decrece, entonces será un mínimo.
- Si por un lado decrece, y por el otro crece, será un máximo.

- Si a ambos lados tiene el mismo comportamiento, no será un máximo ni un mínimo
- El punto $x = e^{\frac{1}{2}}$ es un máximo de la función.
- La función no tiene ningún mínimo.

Curvatura
$$f''(x) = \frac{6 \log(x) - 5}{x^4}$$

Calculamos los puntos críticos, aquellos en los que f''(x) = 0

$$x_0 = e^{\frac{5}{6}};$$

Añadimos a estos puntos aquellos en los que la función primitiva o la primera derivada no existan, si hay alguno. En este caso, no hay.

Los intervalos a estudiar son: $\left(0,e^{\frac{5}{6}}\right)$; $\left(e^{\frac{5}{6}},+\infty\right)$; Ver tabla ??, con el estudio de f''(x)

$$\begin{vmatrix} \begin{pmatrix} (0, e^{\frac{5}{6}}) \\ f''(1) = -5.0 < 0 \\ \text{C\'oncava} \end{vmatrix} \begin{vmatrix} \begin{pmatrix} e^{\frac{5}{6}}, +\infty \\ f''(4) = 0.013 > 0 \\ \text{Convexa} \end{vmatrix}$$

Tabla 30: Estudio del signo de $f''(x) = \frac{6 \log(x) - 5}{x^4}$

Figura 15: Gráfica de la función.

Ejercicio 16: Estudia sistemáticamente la siguiente función

$$f(x) = \frac{e^x}{x}$$

Esta solución ha sido generada automáticamente. Puede contener errores.

Es una función compuesta de racional y logarítmica y, por tanto, continua y derivable en todo su dominio.

Dominio

$$D(f) = \{x \in \mathbb{R} / x \neq 0\} = \mathbb{R} - \{0\}$$

= $(-\infty, 0) \cup (0, +\infty)$

Puntos de corte con los ejes *Eje X* Para calcular los puntos de corte de la función con el eje x resolvemos la ecuación f(x) = 0 cuya solución es:

No tiene solución.

Obs: Sólo puede haber puntos de corte en puntos del dominio.

Eje Y Para calcular los puntos de corte de la función con el eje y calculamos f(0). En este caso: No existe f(0).

Simetría Para estudiar la simetría de una función calculamos f(-x) y comparamos con f(x). En este caso:

$$f(-x) = -\frac{e^{(-x)}}{x}$$

¿Es igual a f(x) o a -f(x)? No, entonces la función no tiene simetría respecto del eje Y.

Asíntotas

Asíntotas verticales Los posibles puntos en los que la función puede tener una asíntota vertical son aquellos en los que se anula el denominador o los que hacen 0 el argumento del logaritmo.

Por ello calculamos: x = 0

Soluciones: $x_0 = 0$;

Asintota en x = 0 Calculamos

$$\lim_{x \to 0} \frac{e^x}{x} = \begin{cases} \lim_{x \to 0^+} \frac{e^x}{x} = +\infty \\ \lim_{x \to 0^-} \frac{e^x}{x} = -\infty \end{cases}$$

Aunque el límite no exista (porque los límites laterales son diferentes), su magnitud sigue siendo infinita por ambos lados, por lo que la recta x = 0 es una **asíntota vertical** de f(x)

54

Asíntotas horizontales u oblícuas Las asíntotas horizontales y oblicuas nos dan la información acerca de la tendencia de la función en $-\infty$ y en $+\infty$.

Para calcular las asíntotas, necesitamos calcular el límite de la función tanto en $+\infty$ como en $-\infty$:

$$\lim_{x \to \pm \infty} \frac{e^x}{x}$$

Límite de la función en $+\infty$:

$$\lim_{x \mapsto +\infty} \frac{e^x}{x} = \dots = +\infty$$

Como el límite obtenido es de magnitud infinita la función no tiene asíntota horizontal, pero puede tener una asíntota oblícua. Para saber si tiene una asíntota oblícua calculamos:

$$m = \lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{\frac{e^x}{x}}{x} = \lim_{x \to +\infty} \frac{e^x}{x^2} = \dots = +\infty$$

En este caso, tenemos $m=+\infty$ por lo que **no hay asíntota** oblícua (ni horizontal).

Límite de la función en $-\infty$:

$$\lim_{x \to -\infty} \frac{e^x}{x} = \dots = 0$$

En $-\infty$ f(x) tiene una asíntota horizontal en y = 0.

Monotonía $f'(x) = \frac{(x-1)e^x}{x^2}$

Calculamos los puntos críticos, aquellos en los que f'(x) = 0

$$x_0 = 1;$$

Añadimos a estos puntos aquellos en los que la función primitiva no exista y aquellos puntos en los que la función derivada no exista, si hay alguno. En este caso, $x_0 = 0$;

Los intervalos a estudiar son: $(-\infty,0)$; (0,1); $(1,+\infty)$; Ver tabla ??, con el estudio de f'(x)

$$\begin{vmatrix} (-\infty,0) \\ f'(-2) = -0.102 < 0 \\ Decreciente \end{vmatrix} \begin{vmatrix} (0,1) \\ f'(0.5) = -3.297 < 0 \\ Decreciente \end{vmatrix} \begin{vmatrix} (1,+\infty) \\ f'(3) = 4.463 > 0 \\ Creciente \end{vmatrix}$$

Tabla 31: Estudio del signo de $f'(x) = \frac{(x-1)e^x}{x^2}$

Lista de máximos y mínimos: obtenidos estudiando la monotonía a ambos lados de cada puntos, siempre que el punto esté en el dominio.

Criterio:

- Si por un lado crece, y por el otro decrece, entonces será un mínimo.
- Si por un lado decrece, y por el otro crece, será un máximo.
- Si a ambos lados tiene el mismo comportamiento, no será un máximo ni un mínimo

Figura 16: Gráfica de la función.

- La función no tiene ningún máximo.
- El punto x = 1 es un mínimo de la función.

Curvatura
$$f''(x) = \frac{\left(x^2 - 2x + 2\right)e^x}{x^3}$$

Calculamos los puntos críticos, aquellos en los que f''(x) = 0

No tiene soluciones reales.

Añadimos a estos puntos aquellos en los que la función primitiva o la primera derivada no existan, si hay alguno. En este caso, $x_0 = 0$;

Los intervalos a estudiar son: $(-\infty,0)$; $(0,+\infty)$; Ver tabla ??, con el estudio de f"(x)

$$\left| \begin{array}{c|c} (-\infty,0) & (0,+\infty) \\ f''(-2) = -0.169 < 0 & f''(2) = 1.847 > 0 \\ C\'{o}ncava & Convexa \end{array} \right|$$

Tabla 32: Estudio del signo de $f''(x) = \frac{\left(x^2 - 2x + 2\right)e^x}{x^3}$

Ejercicio 17: Estudia sistemáticamente la siguiente función

$$f(x) = x(e^x - 1)$$

Esta solución ha sido generada automáticamente. Puede contener errores.

Es una función compuesta de racional y logarítmica y, por tanto, continua y derivable en todo su dominio.

Dominio

$$D(f) = \mathbb{R}$$
$$= (-\infty, +\infty)$$

Puntos de corte con los ejes *Eje X* Para calcular los puntos de corte de la función con el eje x resolvemos la ecuación f(x) = 0 cuya solución es:

$$x_0 = 0 \to (0,0);$$

Obs: Sólo puede haber puntos de corte en puntos del dominio.

Eje Y Para calcular los puntos de corte de la función con el eje y calculamos f(0). En este caso: f(0) = 0, con lo que la gráfica corta en (0,0) al eje Y.

Simetría Para estudiar la simetría de una función calculamos f(-x) y comparamos con f(x). En este caso:

$$f(-x) = -x\left(e^{(-x)} - 1\right)$$

¿Es igual a f(x) o a -f(x)? No, entonces la función no tiene simetría respecto del eje Y.

Asíntotas

Asíntotas verticales Los posibles puntos en los que la función puede tener una asíntota vertical son aquellos en los que se anula el denominador o los que hacen 0 el argumento del logaritmo.

No tiene denominador, por lo que no hay puntos canditatos aquí.

Soluciones: No tiene soluciones reales

Asíntotas verticales

Asíntotas horizontales u oblícuas Las asíntotas horizontales y oblicuas nos dan la información acerca de la tendencia de la función en $-\infty$ y en $+\infty$.

Para calcular las asíntotas, necesitamos calcular el límite de la función tanto en $+\infty$ como en $-\infty$:

$$\lim_{x \mapsto \pm \infty} x(e^x - 1)$$

Límite de la función en $+\infty$:

$$\lim_{x \to +\infty} x(e^x - 1) = \dots = +\infty$$

Como el límite obtenido es de magnitud infinita la función no tiene asíntota horizontal, pero puede tener una asíntota oblícua. Para saber si tiene una asíntota oblícua calculamos:

$$m = \lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{x(e^x - 1)}{x} = \lim_{x \to +\infty} e^x - 1 = \dots = +\infty$$

En este caso, tenemos $m = +\infty$ por lo que **no hay asíntota** oblícua (ni horizontal).

Límite de la función en $-\infty$:

$$\lim_{x \to -\infty} x(e^x - 1) = \dots = +\infty$$

Como el límite obtenido es de magnitud infinita la función no tiene asíntota horizontal, pero puede tener una asíntota oblícua. Para saber si tiene una asíntota oblícua calculamos:

$$m = \lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} \frac{x(e^x - 1)}{x} = \lim_{x \to -\infty} e^x - 1 = \dots = -1$$

En este caso tenemos m=-1 por lo que sí hay asíntota oblícua. Calculamos n:

$$n = \lim_{x \to -\infty} f(x) - m \cdot x = \lim_{x \to -\infty} (x(e^x - 1) - -1x) = \lim_{x \to -\infty} x(e^x - 1) + x = 0$$

En $-\infty$, f(x) tiene una **asíntota oblícua** en y = -x.

Monotonía $f'(x) = (x+1)e^x - 1$

Calculamos los puntos críticos, aquellos en los que f'(x) = 0

No tiene soluciones reales.

Añadimos a estos puntos aquellos en los que la función primitiva no exista y aquellos puntos en los que la función derivada no exista, si hay alguno. En este caso, no hay.

Los intervalos a estudiar son: $(-\infty, 0.0)$; $(0.0, +\infty)$; Ver tabla ??, con el estudio de f'(x)

$$\left| \begin{array}{c} (-\infty, 0.0) \\ f'(-2) = -1.135 < 0 \\ \text{Decreciente} \end{array} \right| \left| \begin{array}{c} (0.0, +\infty) \\ f'(2) = 21.167 > 0 \\ \text{Creciente} \end{array} \right|$$

Tabla 33: Estudio del signo de $f'(x) = (x+1)e^x - 1$

Lista de máximos y mínimos: obtenidos estudiando la monotonía a ambos lados de cada puntos, siempre que el punto esté en el dominio.

Criterio:

- Si por un lado crece, y por el otro decrece, entonces será un mínimo.
- Si por un lado decrece, y por el otro crece, será un máximo.

- Si a ambos lados tiene el mismo comportamiento, no será un máximo ni un mínimo
- La función no tiene ningún máximo.
- El punto x = 0.0 es un mínimo de la función.

Curvatura
$$f''(x) = (x+2)e^x$$

Calculamos los puntos críticos, aquellos en los que f''(x) = 0

$$x_0 = -2;$$

Añadimos a estos puntos aquellos en los que la función primitiva o la primera derivada no existan, si hay alguno. En este caso, no hay.

Los intervalos a estudiar son: $(-\infty, -2)$; $(-2, +\infty)$; Ver tabla ??, con el estudio de f''(x)

$$\left| \begin{array}{c} (-\infty, -2) \\ f''(-4) = -0.037 < 0 \\ \text{C\'oncava} \end{array} \right| \left| \begin{array}{c} (-2, +\infty) \\ f''(0) = 2.0 > 0 \\ \text{Convexa} \end{array} \right|$$

Tabla 34: Estudio del signo de $f''(x) = (x+2)e^x$

Figura 17: Gráfica de la función.

Ejercicio 18: Estudia sistemáticamente la siguiente función

$$f(x) = \log\left(\frac{x+2}{x-1}\right)$$

Esta solución ha sido generada automáticamente. Puede contener errores.

Es una función compuesta de racional y logarítmica y, por tanto, continua y derivable en todo su dominio.

Dominio

$$D(f) = \{x \in \mathbb{R} / \frac{x+2}{x-1} > 0\}$$

= $((-oo, -2) \cup (1, +oo))$
= $(-\infty, -2) \cup (1, +\infty)$

Puntos de corte con los ejes *Eje X* Para calcular los puntos de corte de la función con el eje x resolvemos la ecuación f(x) = 0 cuya solución es:

No tiene solución.

Obs: Sólo puede haber puntos de corte en puntos del dominio.

Eje Y Para calcular los puntos de corte de la función con el eje y calculamos f(0). En este caso: No existe f(0).

Simetría Para estudiar la simetría de una función calculamos f(-x) y comparamos con f(x). En este caso:

$$f(-x) = \log\left(\frac{x-2}{x+1}\right)$$

¿Es igual a f(x) o a -f(x)? No, entonces la función no tiene simetría respecto del eje Y.

Asíntotas

Asíntotas verticales Los posibles puntos en los que la función puede tener una asíntota vertical son aquellos en los que se anula el denominador o los que hacen 0 el argumento del logaritmo.

No tiene denominador, por lo que no hay puntos canditatos aquí.

Soluciones: No tiene soluciones reales

Atención: Como la función es un logaritmo, podríamos tener una asíntota vertical (ya que $\lim_{x \to 0^+} \log(x) = -\infty$ y $\lim_{x \to \infty} \log(x) = \infty$). Vamos a comprobarlo.

Para ello, calculamos los puntos en los que se haga 0 o $+\infty$ el interior del logaritmo . En este caso:

 $\frac{x+2}{x-1} = 0$

Soluciones: $x_0 = -2$; $x_1 = 1$;

Asintota en x = -2 Calculamos

$$\lim_{x \to -2} \log \left(\frac{x+2}{x-1} \right) = \begin{cases} \lim_{x \to -2^+} \log \left(\frac{x+2}{x-1} \right) = \# \\ \lim_{x \to -2^-} \log \left(\frac{x+2}{x-1} \right) = -\infty \end{cases}$$

x = -2 es **A.V.** de f(x) por la izquierda.

Asintota en x = 1 Calculamos

$$\lim_{x \to 1} \log \left(\frac{x+2}{x-1} \right) = \begin{cases} \lim_{x \to 1^+} \log \left(\frac{x+2}{x-1} \right) = +\infty \\ \lim_{x \to 1^-} \log \left(\frac{x+2}{x-1} \right) = # \end{cases}$$

x = 1 es **A.V.** de f(x) por la derecha.

Asíntotas horizontales u oblícuas Las asíntotas horizontales y oblicuas nos dan la información acerca de la tendencia de la función en $-\infty$ y en $+\infty$.

Para calcular las asíntotas, necesitamos calcular el límite de la función tanto en $+\infty$ como en $-\infty$:

$$\lim_{x \to \pm \infty} \log \left(\frac{x+2}{x-1} \right)$$

Límite de la función en $+\infty$:

$$\lim_{x \to +\infty} \log \left(\frac{x+2}{x-1} \right) = \dots = 0$$

En $+\infty$ f(x) tiene una **asíntota horizontal** en y=0.

Límite de la función en $-\infty$:

$$\lim_{x\mapsto -\infty}\log\left(\frac{x+2}{x-1}\right)=\ldots=0$$

En $-\infty$ f(x) tiene una **asíntota horizontal** en y = 0.

Monotonía $f'(x) = -\frac{3}{x^2 + x - 2}$

Calculamos los puntos críticos, aquellos en los que f'(x) = 0

No tiene soluciones reales.

Añadimos a estos puntos aquellos en los que la función primitiva no exista y aquellos puntos en los que la función derivada no exista, si hay alguno. En este caso, no hay.

Los intervalos a estudiar son: $(-\infty, -2)$; $(1, +\infty)$; Ver tabla ??, con el estudio de f'(x)

$$\begin{vmatrix} (-\infty, -2) \\ f'(-4) = -0.3 < 0 \\ Decreciente \end{vmatrix} \begin{vmatrix} (1, +\infty) \\ f'(3) = -0.3 < 0 \\ Decreciente \end{vmatrix}$$

Tabla 35: Estudio del signo de $f'(x) = -\frac{3}{x^2+x-2}$

Lista de máximos y mínimos: obtenidos estudiando la monotonía a ambos lados de cada puntos, siempre que el punto esté en el dominio.

Criterio:

- Si por un lado crece, y por el otro decrece, entonces será un mínimo.
- Si por un lado decrece, y por el otro crece, será un máximo.
- Si a ambos lados tiene el mismo comportamiento, no será un máximo ni un mínimo
- La función no tiene ningún máximo.
- La función no tiene ningún mínimo.

Curvatura
$$f''(x) = \frac{3(2x+1)}{x^4+2x^3-3x^2-4x+4}$$

Calculamos los puntos críticos, aquellos en los que f''(x) = 0

$$x_0 = -\frac{1}{2};$$

De estas soluciones, $x_0 = -\frac{1}{2}$; no son válidas porque no pertenecen al dominio.

Añadimos a estos puntos aquellos en los que la función primitiva o la primera derivada no existan, si hay alguno. En este caso, no hay.

Los intervalos a estudiar son: $(-\infty, -2)$; $(1, +\infty)$; Ver tabla ??, con el estudio de f''(x)

$$\left| \begin{array}{c} (-\infty,-2) \\ f''(-4) = -0.21 < 0 \\ \text{C\'oncava} \end{array} \right| \left| \begin{array}{c} (1,+\infty) \\ f''(3) = 0.21 > 0 \\ \text{Convexa} \end{array} \right|$$

Tabla 36: Estudio del signo de
$$f''(x) = \frac{3(2x+1)}{x^4+2x^3-3x^2-4x+4}$$

Figura 18: Gráfica de la función.

Ejercicio 19: Estudia sistemáticamente la siguiente función

$$f(x) = \log\left(\frac{x^2 - 5x + 6}{x - 1}\right)$$

Esta solución ha sido generada automáticamente. Puede contener errores.

Es una función compuesta de racional y logarítmica y, por tanto, continua y derivable en todo su dominio.

Dominio

$$D(f) = \{x \in \mathbb{R} / \frac{x^2 - 5x + 6}{x - 1} > 0\}$$
$$= ((1, 2) \cup (3, +oo))$$
$$= (1, 2) \cup (3, +\infty)$$

Puntos de corte con los ejes *Eje X* Para calcular los puntos de corte de la función con el eje x resolvemos la ecuación f(x) = 0 cuya solución es:

$$x_0 = -\sqrt{2} + 3 \to \left(-\sqrt{2} + 3, 0\right); \quad x_1 = \sqrt{2} + 3 \to \left(\sqrt{2} + 3, 0\right);$$

Obs: Sólo puede haber puntos de corte en puntos del dominio.

Eje Y Para calcular los puntos de corte de la función con el eje y calculamos f(0). En este caso: No existe f(0).

Simetría Para estudiar la simetría de una función calculamos f(-x) y comparamos con f(x). En este caso:

$$f(-x) = \log\left(-\frac{x^2 + 5x + 6}{x + 1}\right)$$

¿Es igual a f(x) o a -f(x)? No, entonces la función no tiene simetría respecto del eje Y.

Asíntotas

Asíntotas verticales Los posibles puntos en los que la función puede tener una asíntota vertical son aquellos en los que se anula el denominador o los que hacen 0 el argumento del logaritmo.

No tiene denominador, por lo que no hay puntos canditatos aquí.

Soluciones: No tiene soluciones reales

Atención: Como la función es un logaritmo, podríamos tener una asíntota vertical (ya que $\lim_{x \to 0^+} \log(x) = -\infty$ y $\lim_{x \to \infty} \log(x) = \infty$). Vamos a comprobarlo.

Para ello, calculamos los puntos en los que se haga 0 o $+\infty$ el interior del logaritmo . En este caso:

$$\frac{x^2 - 5x + 6}{x - 1} = 0$$

Soluciones: $x_0 = 3$; $x_1 = 2$; $x_2 = 1$;

Asintota en x = 3 Calculamos

$$\lim_{x \to 3} \log \left(\frac{x^2 - 5x + 6}{x - 1} \right) = \begin{cases} \lim_{x \to 3^+} \log \left(\frac{x^2 - 5x + 6}{x - 1} \right) = -\infty \\ \lim_{x \to 3^-} \log \left(\frac{x^2 - 5x + 6}{x - 1} \right) = # \end{cases}$$

x = 3 es **A.V.** de f(x) por la derecha.

Asintota en x = 2 Calculamos

$$\lim_{x \to 2} \log \left(\frac{x^2 - 5x + 6}{x - 1} \right) = \begin{cases} \lim_{x \to 2^+} \log \left(\frac{x^2 - 5x + 6}{x - 1} \right) = \nexists \\ \lim_{x \to 2^-} \log \left(\frac{x^2 - 5x + 6}{x - 1} \right) = -\infty \end{cases}$$

x = 2 es **A.V.** de f(x) por la izquierda.

Asintota en x = 1 Calculamos

$$\lim_{x \to 1} \log \left(\frac{x^2 - 5x + 6}{x - 1} \right) = \begin{cases} \lim_{x \to 1^+} \log \left(\frac{x^2 - 5x + 6}{x - 1} \right) = +\infty \\ \lim_{x \to 1^-} \log \left(\frac{x^2 - 5x + 6}{x - 1} \right) = # \end{cases}$$

x = 1 es **A.V.** de f(x) por la derecha.

Asíntotas horizontales u oblícuas Las asíntotas horizontales y oblicuas nos dan la información acerca de la tendencia de la función en $-\infty$ y en $+\infty$.

Para calcular las asíntotas, necesitamos calcular el límite de la función tanto en $+\infty$ como en $-\infty$:

$$\lim_{x \to \pm \infty} \log \left(\frac{x^2 - 5x + 6}{x - 1} \right)$$

No existe el límite de la función en $-\infty$:

Límite de la función en $+\infty$:

$$\lim_{x \to +\infty} \log \left(\frac{x^2 - 5x + 6}{x - 1} \right) = \dots = +\infty$$

Como el límite obtenido es de magnitud infinita la función no tiene asíntota horizontal, pero puede tener una asíntota oblícua. Para saber si tiene una asíntota oblícua calculamos:

$$m = \lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{\log\left(\frac{x^2 - 5x + 6}{x - 1}\right)}{x} = \lim_{x \to +\infty} \frac{\log\left(\frac{x^2 - 5x + 6}{x - 1}\right)}{x} = \dots = 0$$

En este caso, tenemos m=0 por lo que **no hay asíntota** oblícua (ni horizontal).

Monotonía
$$f'(x) = \frac{x^2 - 2x - 1}{x^3 - 6x^2 + 11x - 6}$$

Calculamos los puntos críticos, aquellos en los que f'(x) = 0

$$x_0 = -\sqrt{2} + 1; \quad x_1 = \sqrt{2} + 1;$$

 $x_0=-\sqrt{2}+1; \quad x_1=\sqrt{2}+1;$ De estas soluciones, $x_0=-\sqrt{2}+1; \quad x_1=\sqrt{2}+1; \quad$ no son válidas porque no pertenecen al dominio.

Añadimos a estos puntos aquellos en los que la función primitiva no exista y aquellos puntos en los que la función derivada no exista, si hay alguno. En este caso, no hay.

Los intervalos a estudiar son: (1,2); $(3,+\infty)$; Ver tabla ??, con el estudio de f'(x)

$$\begin{vmatrix} (1,2) & (3,+\infty) \\ f'(1.5) = -4.667 < 0 & f'(5) = 0.583 > 0 \\ \text{Decreciente} & \text{Creciente} \end{vmatrix}$$

Tabla 37: Estudio del signo de $f'(x) = \frac{x^2 - 2x - 1}{x^3 - 6x^2 + 11x - 6}$

Lista de máximos y mínimos: obtenidos estudiando la monotonía a ambos lados de cada puntos, siempre que el punto esté en el dominio.

Criterio:

- *Si por un lado crece, y por el otro decrece, entonces será un mínimo.*
- Si por un lado decrece, y por el otro crece, será un máximo.
- Si a ambos lados tiene el mismo comportamiento, no será un máximo ni un mínimo
- La función no tiene ningún máximo.
- La función no tiene ningún mínimo.

Curvatura
$$f''(x) = -\frac{x^4 - 4x^3 - 2x^2 + 24x - 23}{x^6 - 12x^5 + 58x^4 - 144x^3 + 193x^2 - 132x + 36}$$

Calculamos los puntos críticos, aquellos en los que f''(x) = 0

$$x_0 = -\frac{1}{18}\sqrt{6} \left(\sqrt{3}\sqrt{\frac{8 \cdot 3^{\frac{5}{6}} \left(9 \sqrt{43} \sqrt{3} + 105\right)^{\frac{1}{3}} + \sqrt{3} \left(9 \sqrt{43} \sqrt{3} + 105\right)^{\frac{2}{3}} + 12 \cdot 3^{\frac{1}{6}}}{\left(9 \sqrt{43} + 35 \sqrt{3}\right)^{\frac{1}{3}}}} - 3\sqrt{6} + \sqrt{\frac{\sqrt{3}\left(\sqrt{3}\left(16 \cdot 3^{\frac{3}{4}} \left(9 \sqrt{43} \sqrt{3} + 105\right)^{\frac{1}{3}} - 3^{\frac{5}{12}} \left(9$$

Añadimos a estos puntos aquellos en los que la función primitiva o la primera derivada no existan, si hay alguno. En este caso, no hay.

$$\left(1, -\frac{1}{18}\sqrt{6} \left(\sqrt{3}\sqrt{\frac{8 \cdot 3^{\frac{5}{6}} \left(9\sqrt{43}\sqrt{3} + 105\right)^{\frac{1}{3}} + \sqrt{3}\left(9\sqrt{43}\sqrt{3} + 105\right)^{\frac{2}{3}} + 12 \cdot 3^{\frac{1}{6}}}{\left(9\sqrt{43} + 35\sqrt{3}\right)^{\frac{1}{3}}}} - 3\sqrt{6} - \sqrt{\frac{\sqrt{3}\left(\sqrt{3}\left(16 \cdot 3^{\frac{3}{4}} \left(9\sqrt{43}\sqrt{3} + 105\right)^{\frac{1}{3}} - 3^{\frac{5}{12}} \left(9\sqrt{43}\sqrt{3} + 105\right)^{\frac{1}{3}} - 3^{\frac{5}{1$$

Tabla 38: Estudio del signo de $f''(x) = -\frac{x^4 - 4x^3 - 2x^2 + 24x - 23}{x^6 - 12x^5 + 58x^4 - 144x^3 + 193x^2 - 132x + 36}$

Figura 19: Gráfica de la función.

Ejercicio 20: Estudia sistemáticamente la siguiente función

$$f(x) = \frac{x^2 + 3x + 1}{x}$$

Esta solución ha sido generada automáticamente. Puede contener errores.

Es una función compuesta de racional y logarítmica y, por tanto, continua y derivable en todo su dominio.

Dominio

$$D(f) = \{x \in \mathbb{R} / x \neq 0\} = \mathbb{R} - \{0\}$$

= $(-\infty, 0) \cup (0, +\infty)$

Puntos de corte con los ejes *Eje X* Para calcular los puntos de corte de la función con el eje x resolvemos la ecuación f(x) = 0 cuya solución es:

$$x_0 = -\frac{1}{2}\sqrt{5} - \frac{3}{2} \rightarrow \left(-\frac{1}{2}\sqrt{5} - \frac{3}{2}, 0\right); \quad x_1 = \frac{1}{2}\sqrt{5} - \frac{3}{2} \rightarrow \left(\frac{1}{2}\sqrt{5} - \frac{3}{2}, 0\right);$$
 Obs: Sólo puede haber puntos de corte en puntos del dominio.

Eje Y Para calcular los puntos de corte de la función con el eje y calculamos f(0). En este caso: No existe f(0).

Simetría Para estudiar la simetría de una función calculamos f(-x) y comparamos con f(x). En este caso:

$$f(-x) = -\frac{x^2 - 3x + 1}{x}$$

¿Es igual a f(x) o a -f(x)? No, entonces la función no tiene simetría respecto del eje Y.

Asíntotas

Asíntotas verticales Los posibles puntos en los que la función puede tener una asíntota vertical son aquellos en los que se anula el denominador o los que hacen 0 el argumento del logaritmo.

Por ello calculamos: x = 0

Soluciones: $x_0 = 0$;

Asintota en x = 0 Calculamos

$$\lim_{x \to 0} \frac{x^2 + 3x + 1}{x} = \begin{cases} \lim_{x \to 0^+} \frac{x^2 + 3x + 1}{x} = +\infty \\ \lim_{x \to 0^-} \frac{x^2 + 3x + 1}{x} = -\infty \end{cases}$$

Aunque el límite no exista (porque los límites laterales son diferentes), su magnitud sigue siendo infinita por ambos lados, por lo que la recta x = 0 es una asíntota vertical de f(x)

Asíntotas horizontales u oblícuas Las asíntotas horizontales y oblicuas nos dan la información acerca de la tendencia de la función en $-\infty$ y en $+\infty$.

Para calcular las asíntotas, necesitamos calcular el límite de la función tanto en $+\infty$ como en $-\infty$:

$$\lim_{x \to \pm \infty} \frac{x^2 + 3x + 1}{x}$$

Límite de la función en $+\infty$:

$$\lim_{x \to +\infty} \frac{x^2 + 3x + 1}{x} = \dots = +\infty$$

Como el límite obtenido es de magnitud infinita la función no tiene asíntota horizontal, pero puede tener una asíntota oblícua. Para saber si tiene una asíntota oblícua calculamos:

$$m = \lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{\frac{x^2 + 3x + 1}{x}}{x} = \lim_{x \to +\infty} \frac{x^2 + 3x + 1}{x^2} = \dots = 1$$

En este caso tenemos m=1 por lo que sí hay asíntota oblícua. Calculamos n:

$$n = \lim_{x \to +\infty} f(x) - m \cdot x = \lim_{x \to +\infty} \left(\frac{x^2 + 3x + 1}{x} - 1x \right) = \lim_{x \to +\infty} -x + \frac{x^2 + 3x + 1}{x} = 3$$

En $+\infty$, f(x) tiene una **asíntota oblícua** en y=x+3.

Límite de la función en $-\infty$:

$$\lim_{x \to -\infty} \frac{x^2 + 3x + 1}{x} = \dots = -\infty$$

Como el límite obtenido es de magnitud infinita la función no tiene asíntota horizontal, pero puede tener una asíntota oblícua. Para saber si tiene una asíntota oblícua calculamos:

$$m = \lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} \frac{\frac{x^2 + 3x + 1}{x}}{\frac{x}{x}} = \lim_{x \to -\infty} \frac{x^2 + 3x + 1}{x^2} = \dots = 1$$

En este caso tenemos m=1 por lo que sí hay asíntota oblícua. Calculamos n:

$$n = \lim_{x \to -\infty} f(x) - m \cdot x = \lim_{x \to -\infty} \left(\frac{x^2 + 3x + 1}{x} - 1x \right) = \lim_{x \to -\infty} -x + \frac{x^2 + 3x + 1}{x} = 3$$

En $-\infty$, f(x) tiene una **asíntota oblícua** en y = x + 3.

Monotonía $f'(x) = \frac{x^2-1}{x^2}$

Calculamos los puntos críticos, aquellos en los que f'(x) = 0

$$x_0 = -1; \quad x_1 = 1;$$

Añadimos a estos puntos aquellos en los que la función primitiva no exista y aquellos puntos en los que la función derivada no exista, si hay alguno. En este caso, $x_0 = 0$;

Los intervalos a estudiar son: $(-\infty, -1)$; (-1, 0); (0, 1); $(1, +\infty)$; Ver tabla ??, con el estudio de f'(x)

$$\left| \begin{array}{c|c} (-\infty,-1) & (-1,0) \\ f'(-3) = 0.889 > 0 \\ Creciente \end{array} \right| \left| \begin{array}{c} (-1,0) \\ f'(-0.5) = -3.0 < 0 \\ Decreciente \end{array} \right| \left| \begin{array}{c} (0,1) \\ f'(0.5) = -3.0 < 0 \\ Decreciente \end{array} \right| \left| \begin{array}{c} (1,+\infty) \\ f'(3) = 0.889 > 0 \\ Creciente \end{array} \right|$$

Tabla 39: Estudio del signo de $f'(x) = \frac{x^2 - 1}{x^2}$

Lista de máximos y mínimos: obtenidos estudiando la monotonía a ambos lados de cada puntos, siempre que el punto esté en el dominio.

Criterio:

- Si por un lado crece, y por el otro decrece, entonces será un mínimo.
- Si por un lado decrece, y por el otro crece, será un máximo.
- Si a ambos lados tiene el mismo comportamiento, no será un máximo ni un mínimo
- El punto x = -1 es un máximo de la función.
- El punto x = 1 es un mínimo de la función.

Curvatura $f''(x) = \frac{2}{x^3}$

Calculamos los puntos críticos, aquellos en los que f''(x) = 0

No tiene soluciones reales.

Añadimos a estos puntos aquellos en los que la función primitiva o la primera derivada no existan, si hay alguno. En este caso, $x_0 = 0$;

Los intervalos a estudiar son: $(-\infty, 0)$; $(0, +\infty)$; Ver tabla ??, con el estudio de f''(x)

$$\left| \begin{array}{c} (-\infty,0) \\ f''(-2) = -0.25 < 0 \end{array} \right| \left| \begin{array}{c} (0,+\infty) \\ f''(2) = 0.25 > 0 \end{array} \right|$$

Cóncava Convexa

Tabla 40: Estudio del signo de $f''(x) = \frac{2}{x^3}$

Figura 20: Gráfica de la función.