Math 557 Oct 10

Ultrapoducts - Exercises

Key concepts

(Ultra)filters

A filter \mathcal{F} on a set I is a nonempty collection of subsets of I satisfying:

- 1. $\emptyset \notin \mathcal{F}$
- 2. If $A, B \in \mathcal{F}$, then $A \cap B \in \mathcal{F}$
- 3. If $A \in \mathcal{F}$ and $A \subseteq B \subseteq I$, then $B \in \mathcal{F}$

An ultrafilter \mathcal{U} is a maximal filter, equivalently:

For all $A \subseteq I$, either $A \in \mathcal{U}$ or $I \setminus A \in \mathcal{U}$.

Reduced products

Given: filter $\mathcal F$ on I and structures $(\mathcal M_i)_{i\in I}.$ Let $M=\prod_{i\in I}M_i$ and define

$$a\sim_{\mathcal{F}}b\iff \{\,i\in I: a_i=b_i\,\}\in \mathcal{F}.$$

The universe of \mathcal{M}/\mathcal{F} is the quotient $M/\sim_{\mathcal{F}}$, with elements denoted $a_{\mathcal{F}}$ (alternatively, a/\mathcal{F}).

• Relations:

$$R^{\mathcal{M}/\mathcal{F}}(\vec{a}_{\mathcal{F}}) : \iff \{ i : \mathcal{M}_i \models R(\vec{a}_i) \} \in \mathcal{F}.$$

• Functions:

$$f^{\mathcal{M}/\mathcal{F}}(\vec{a}_{\mathcal{F}}) = [\,(f^{\mathcal{M}_i}(\vec{a}_i))_{i \in I}\,]_{\mathcal{F}}.$$

• Constants:

$$c^{\mathcal{M}/\mathcal{F}} = ((c^{\mathcal{M}_i})_{i \in I})_{\mathcal{F}}.$$

Łoś' Theorem

Let $\mathcal{M}/\mathcal{U} = \prod_{i \in I} \mathcal{M}_i/\mathcal{U}$ be an ultraproduct. For every \mathcal{L} -formula $\varphi(x_1, \dots, x_n)$ and tuples $\vec{a} \in \prod_{i \in I} M_i$, $\mathcal{M}/\mathcal{U} \models \varphi[\vec{a}_{\mathcal{U}}] \iff \{\, i \in I : \mathcal{M}_i \models \varphi[\vec{a}_i] \,\} \in \mathcal{U}.$