

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

C12N 15/12, C07K 14/435, C12N 5/10, A01K 67/027, 67/033, A61K 38/17, A01H 5/00, C07K 16/18, C12N 5/26, C12Q 1/02

A2

(11) International Publication Number:

WO 96/38555

(43) International Publication Date:

5 December 1996 (05.12.96)

(21) International Application Number:

PCT/EP96/02311

(22) International Filing Date:

31 May 1996 (31.05.96)

(30) Priority Data:

Best Avgilch

9510944.3

31 May 1995 (31.05.95)

GB

(71)(72) Applicants and Inventors: BOGAERT, Thierry [BE/BE]; Voorstraat 36 bus 11, B-8500 Kortrijk (BE). STRINGHAM, Eve [CA/CA]; 9326-133 A Street, Surrey, British Columbia V3V 5R5 (CA). VANDEKERCKHOVE, Joel [BE/BE]; Rode Beukendreef 27, B-Loppem (BE).

(74) Agent: BALDOCK, Sharon, Claire; Boult Wade Tennant, 27 Furnival Street, London EC4A 1PO (GB). (81) Designated States: AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: PROCESSES FOR THE IDENTIFICATION OF COMPOUNDS WHICH CONTROL CELL BEHAVIOUR, THE COM-POUNDS IDENTIFIED AND PHARMACEUTICAL COMPOSITIONS CONTAINING THEM AND THEIR USE IN THE CONTROL OF CELL BEHAVIOUR

(57) Abstract

UNC-53 protein of <u>C. elegans</u> or its functional equivalent is identified as a signal transducer/integrator involved in controlling the rate and directionality of cell migration and/or cell shape. Nucleic acid sequences encoding UNC-53 protein or its functional equivalent, such as genomic or cDNA are used to transfect <u>C. elegans</u> or mammalian cell lines useful for identifying inhibitors or enhancers of the UNC-53 protein. Any of the inhibitors or enhancers identified or the UNC-53 protein itself or sequences encoding UNC-53 protein can be used in the preparation of medicament for treatment of neurological conditions such as Alzheimer's or Huntingdon's disease, peripheral neuropathies for inhibition of metastasis.

BNSDOCID: <WO___9638555A2_I_>

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	
CH	Switzerland	KZ	Kazakhstan	SI	Singapore Slovenia
CI	Côte d'Ivoire	ü	Liechtenstein	SK	
CM	Cameroon	LK	Sri Lanka	SN	Slovakia
CN	China	LR	Liberia		Senegal
CS	Czechoslovakia	LT	Lithuania	SZ	Swaziland
CZ	Czech Republic	LU		TD	Chad
DE	Germany	LV	Luxembourg Larvia	TG	Togo
DK	Denmark	MC	Monaco	TJ	Tajikistan
EE	Estonia	MD		TT	Trinidad and Tobago
ES	Spain	MG	Republic of Moldova	UA	Ukraine
FI	Finland	ML	Madagascar	UG	Uganda
FR	France		Mali	US	United States of America
GA	Gabon	MN	***************************************	UZ	Uzbekistan
		MR	Mauritania	VN	Viet Nam

PROCESSES FOR THE IDENTIFICATION OF COMPOUNDS WHICH CONTROL CELL BEHAVIOUR, THE COMPOUNDS IDENTIFIED AND PHARMACEUTICAL COMPOSITIONS CONTAINING THEM AND THEIR USE IN THE CONTROL OF CELL BEHAVIOUR

5

10

15

20

25

30

35

The present invention relates to processes for the identification of compounds which inhibit or enhance the rate and direction of cell migration or the control of cell shape, the compounds identified and pharmaceutical formulations containing such compounds together with their use in the regulation of cell behaviour. The invention also relates to an UNC-53 protein encoded by nucleic acid in the cells of the nematode worm <u>C. elegans</u> and cDNA sequences encoding an UNC-53 protein or functional equivalents thereof.

The control of cell motility, cell shape and the outgrowth of axones or other cell outgrowths is an essential feature in the morphogenesis and function of both unicellular and multicellular organisms. The control of this process is disturbed in a variety of disease states in which for example the Receptor Tyrosine Kinase (RTK) signal transduction pathways or the like or their downstream intra-cellular pathways (which are shared with other extra-cellular receptors, including cell adhesion molecules like N-CAMS and integrins) are overstimulated.

Some cell surface proteins and extracellular molecules controlling the directionality and potential of cell migration have been identified. However the processes in which these proteins or molecules are involved to effect cell migration, shape or rate of cell differentiation are not understood.

It is generally considered that a long-range migration of a cell process (which may also be known as a growth cone spike) is a stepwise event, whereby prior to and after each extension there is the

20

25

30

35

formation of a structure at the leading edge of the cell which senses signals in the environment instructing the cell to either stabilize a cell process extending in a preferred direction, or to cause a cell process lamellipodium to extend a process in a given direction. Localized stabilization of the actin cytoskeleton, is a general cell biological process underlying this choice of directional extension.

A gene from the free-living nematode

Caenorhabditis elegans, designated "unc-53" has been previously identified and cloned (Abstract,

International C. elegans meeting; June 1-5 1991,

Madison, Wisconsin, 58, Bogaert and Goh). However, to date no known biological function has been attributed to the unc-53 gene or its corresponding UNC-53 protein.

The present inventors have surprisingly identified, through biochemical, genetic, phenotypic and transgenic evidence which is presented herewith, UNC-53 as a signal transducer or signal integrator controlling the rate and directionality of cell migration, and/or cell shape. Key experiments leading to this conclusion were the molecular identification of its domain structure, its biochemical interaction with GRB-2, actin cytoskeleton sequence information and the presence of a potential signal integrating domain in the UNC-53 protein.

An additional key observation is that increased UNC-53 protein activity is proportional to increased cell process extension in the correct direction of cell migration. Reduction of UNC-53 function has previously been shown to lead to a reduction of cell process extension, identifying it as a general component required for cell migration. However, it had not been identified as a component whose level of

the action of a section is with a consistency of the contraction of th

10

15

20

25

30

35

activity has a determining role in the specification of the quantum and directionality of migration.

The work of the present inventors suggests that UNC-53 plays a central role in quantitatively transducing extracellular signals to the machinery controlling directional cell migration.

The importance of UNC-53 in a variety of cell types in C. elegans has been demonstrated. encodes a signal transduction molecule that transduces a signal from a Receptor Tyrosine Kinase such as for example via the adaptor protein SEM-5/GRB-2, to the machinery controlling directional growth cone extension or stabilization. The UNC-53 protein does this in a highly dosage-dependent fashion whereby reduction of protein activity such as reduction in expression of protein or in the reduction in its activity leads to proportional reduction of cell process extension (cell migration). This is believed to be either by regulated cross-linking of the actin cytoskeleton or by transferring the received signal downstream within the transduction pathway. Higher than wild type UNC-53 expression leads to higher than wild type growth cone extension in the anteriorposterior axis. Both the observed SEM-5/GRB-2 binding to UNC-53 and the predicted ATP/GTP-ase activity of UNC-53 demonstrate a signal transduction role for UNC-53 involved in cell process or growth cone quidance.

UNC-53 is a protein working at the intracellular level. It is so far believed to be the only intracellular protein identified which is involved in the control of directionality and rate of cell migration in response to a specific signal and which integrates different directional signals in defining direction of migration.

Based on the present inventors accumulated

10

15

20

25

30

knowledge of the unc-53 gene function in <u>C. elegans</u> it is understood that inhibitors or enhancers of the unc-53 gene or the UNC-53 protein will affect the cell motility including (metastasis) via an RTK pathway or the like, or may lead to changes in the shape of the cells (which has been demonstrated in <u>C. elegans</u> body muscle). Applications for such inhibitors and/or enhancers are envisaged in a wide variety of pathologies in which the RTK pathways play a central role, including oncogenesis, psoriasis, cell migration (metastasis), neuronal regeneration/degeneration and immunological disorders among others.

The identification of the biochemical function of the unc-53 gene (and UNC-53 pathway) in the RTK signal transduction pathway is novel and unexpected. No biological function has previously been linked to the unc-53 gene or UNC-53 protein, nor has any homology with any other nucleic acid sequence or gene been recognised.

An analysis of the predicted protein sequence of UNC-53 from the gene sequence thereof has revealed the following:

- (a) an N-terminal domain with homology to cortical actin binding proteins of the α -actinin and β -spectrin families (designated ABPII in Figure 11). Alignment of UNC-53 with the α -actinin and β -spectrin family of proteins is shown in Fig. 15.).
- (b) two putative actin binding sites of the LKK class (ABS1 and ABS2).
- (c) two polyproline rich sequences similar to the SH3 binding domains of the SOS family of signal transduction molecules (SH3 binding site) (Fig. 16).

THE REPORT OF THE PROPERTY OF

(d) a putative ATP/GTP nucleotide binding site having some of the additional features of the GTP

10

binding domain of RAS-like proteins (Dynamin, NBD).

(e) besides the N-terminal region of the protein, which is similar to actin binding proteins, the predicted protein sequence of UNC-53 identified two putative actin binding sites. The first borders on the 3' end of the region of α -actinin/ β -spectrin homology and the second lies in the 3' end of the cDNA sequence.

This suggests that UNC-53 could potentially bind two actin molecules and via actin cross linking, could stabilize a particular cell process to promote directional extension.

In addition, genetic evidence shows that alleles 15 of unc-53 enhance the sex myoblast migration defect of sem-5 mutants. Sem-5 represents the C. elegans homologue of GRB2, the function of these proteins being assigned/attributed to their SH2 and SH3 domains (Clark et al., (1992) Nature 356, 340-344; Stern et 20 al., (1993), Molec. Biol. Cell, 4, 1175-1188). current model regarding sem-5 function in the migration of sex myoblasts is that sem-5 transduces a signal received at the cell surface by egl-15, a receptor kinase of the fibroblast growth factor 25 family. Together, the genetic and molecular data suggest a role for UNC-53 in both signal transduction and actin binding. We have been able to demonstrate how UNC-53 might act to direct both growth cone rate and directionality. By binding directly to the actin 30 cytoskeleton, UNC-53 may stabilize and cross-link actin molecules (assuming a two actin binding site model) to promote directional growth cone extension. Alternatively, by binding actin, UNC-53 may convey a signal to the cytoskeleton and then via an ATP/GTPase 35 activity transduce the signal to downstream targets. To test these models, biochemical experiments were

10

15

20

25

30

35

conducted to determine if any of the sequence similarities observed represented functional domains (see examples 2 to 5). Transgenic analysis as described in examples 6 to 8 support this proposed model.

As described above, the unc-53 gene from C. elegans has been previously identified. However, cDNA sequences substantially corresponding to unc-53 genomic exon sequences of C. elegans or fragments or derivatives thereof have never been previously disclosed. The present inventors have advantageously identified two unc-53 cDNA clones which have been designated as the 7A and 8A clones. The two clones differ in the number of Adenosine(A) residues (7 or 8) in a poly A stretch of the 3' coding region. Therefore, the two clones have different reading frames in the carboxyterminal coding region.

Therefore according to one aspect of the present invention there is provided a cDNA encoding an UNC-53 protein of <u>C. elegans</u> or a functional equivalent derivative or bioprecursor of said protein which cDNA comprises at least from nucleotide position 431 to nucleotide position 4647 or alternatively to the 3' poly-A region of the sequence shown in Figure 1. More preferably the cDNA comprises at least from nucleotide position 64 to nucleotide position 4647 or to the 3' poly-A region of the sequence as shown in Figure 1. This cDNA is comprised in the 8A clone having 8A residues in a poly A stretch of the 3' coding region as shown in Figure 1.

In an alternative embodiment of this aspect of the invention the cDNA comprises at least from nucleotide position 431 to nucleotide position 4812 or alternatively to the 3' poly-A region of the sequence shown in Figure 2 and more preferably at least from position 64 to nucleotide position 4812 or the 3'

poly-A region of the sequence shown in Figure 2. cDNA according to the invention comprises the 7A clone, having only 7 Adenine residues in the poly A stretch of the 3' coding region as shown in the 5 nucleotide sequence of Figure 2 page 8. Each of the cDNA clones according to the invention, may be included in an expression vector which vector may itself be used to transform or transfect a host cell which may be bacterial, animal or plant in origin. 10 Thus, advantageously, once the cDNA corresponding to the unc-53 genome is synthesised using for example reverse transcriptase or the like, a range of cells, tissues or organisms may be transfected following incorporation of the selected cDNA clone into an 15 appropriate expression vector.

The present invention therefore, also further comprises a transgenic cell, tissue or organism comprising a transgene capable of expressing UNC-53 protein of <u>C. elegans</u> or a functional equivalent, fragment, derivative or bioprecursor thereof. The term "transgene capable of expressing UNC-53 protein" as used herein means a suitable nucleic acid sequence which leads to the expression of an UNC-53 protein having the same function and/or activity. The transgene may include for example genomic nucleic acid isolated from <u>C. elegans</u> or synthetic nucleic acid or alternatively any of the cDNA clones as described above.

The term "transgenic organism, tissue or cell" as used herein means any suitable organism and/or part of an organism, tissue or cell that contains exogenous nucleic acid either stably integrated in the genome or in an extra chromosomal state.

Preferably, the transgenic cell comprises either a <u>C. elegans</u> cell, an N4 neuroblastoma cell or an MCF-7 breast carcinoma cell. The transgenic organism may

and the control of th

20

25

30

10

15

20

25

30

35

be <u>C. elegans</u> itself, or alternatively may be an insect, a non-human animal or a plant. Preferably the unc-53 transgene comprises the unc-53 gene or a functional fragment thereof. The term "functional fragment" as used herein should be taken to mean a fragment of an UNC-53 gene which encodes an UNC-53 protein or a functional equivalent or bioprecursor of the protein. For example the gene may comprise deletions or mutations but may still encode a functional UNC-53 protein.

Reference to "tissue or tissue culture" for the purpose of the present invention should be taken to mean such a mutant cell which has been grown in such a culture. Further provided by the present invention is a mutant <u>C. elegans</u> organism which comprises an induced mutation, such as a point mutation in the wild-type unc-53 gene and which mutation affects the regulation of cell motility or shape or the direction of cell migration. Such mutations may be introduced using changes in the cDNA corresponding to qualitative, quantitative direct and indirect changes in the genomic make up.

The term "mutant organism" used herein means any suitable organism that contains genetic information which has been induced to mutate and is thus altered from the wild-type. Therefore naturally occurring mutations in the wild-type organism are not within the scope of this term.

The present invention further comprises an UNC-53 protein or a functional equivalent or fragment thereof, which protein may be encoded by a cDNA according to the invention, and which protein has the amino acid sequence shown in Figure 4 from amino acid position 135 to amino acid position 1528; this corresponds to the 8A clone. More preferably the UNC-53 protein, when encoded by a cDNA according to the

10

15

20

25

30

35

invention, comprises the amino acid sequence shown in Figure 4. In another aspect of the invention the protein comprises an UNC-53 protein or a functional equivalent, fragment or bioprecursor of the protein which comprises the sequence of from amino acid position 135 to amino acid position 1583 of the amino acid sequence shown in Figure 6. Preferably, the UNC-53 protein when encoded by a cDNA in accordance with the invention has the amino acid sequence shown in Figure 6.

The UNC-53 protein of <u>C. elegans</u> or a functional equivalent, fragment or bioprecursor of the UNC-53 protein, may advantageously be used as a medicament to promote neuronal regeneration, revascularisation or wound healing or the treatment of chronic neurodegenerative disorders or acute traumatic injuries. Similarly, the UNC-53 protein produced by the transgenic cells, tissue or organisms according to the invention may also be used in the preparation of a medicament for treatment of the conditions as described above.

Furthermore, in an alternative embodiment of the invention the nucleic acid sequence itself encoding an UNC-53 protein of <u>C. elegans</u> or a functional equivalent, fragment or bioprecursor of the protein may also be used as a medicament or, alternatively in the preparation of a medicament, to promote neuronal regeneration, vascularisation or wound healing or for treatment of chronic neuro-degenerative diseases or acute traumatic injuries. Typically neurological conditions which may be treated by either an UNC-53 protein or a functional equivalent thereof, or a nucleic acid according to the invention, comprise peripheral nerve regeneration after trauma; recovery of function of the spinal cord after spinal cord trauma or peripheral neuropathies. Similarly neuro-

THE CONTROL OF THE STORY OF SECTION AND A CONTROL OF THE CONTROL OF THE CONTROL OF

degeneration diseases which may be treated include Alzheimers disease or Huntingdons disease. Acute traumatic injuries such as stroke, head trauma or haemorrhages may also advantageously be treated.

The nucleic acid sequence according to the invention may comprise a cDNA sequence according to the invention as described above or alternatively may be genomic DNA derived from <u>C. elegans</u>.

The UNC-53 protein of <u>C. elegans</u>, or a functional equivalent, fragment or bioprecursor of said protein may be incorporated into a pharmaceutically acceptable composition together with a suitable carrier, diluent or an excipient therefor. The pharmaceutical composition may advantageously comprise, additionally or alternatively to the UNC-53 protein according to the invention, the nucleic acid sequence according to the invention as defined above.

The present invention also provides for a method of determining whether a compound is an inhibitor or an enhancer of the regulation of cell shape or motility or the direction of cell migration in a transgenic cell, tissue or organism according to the invention as described herein. The method preferably comprises contacting the compound with a transgenic cell, tissue or organism according to the invention as described above, and screening for a phenotypic change in the cell, tissue or organism. Preferably the compound comprises an inhibitor or enhancer of a protein of the signal transduction pathway of the cell, tissue or organism of which UNC-53 is a component or is an inhibitor or enhancer of a parallel or redundant signal transduction pathway. enhancers or inhibitors are defined by particular phenotypic changes in the transgenic cell, tissue or organism, for example changes in cell shape or mobility or the direction of cell migration.

5

10

15

20

25

30

10

15

20

25

30

35

Preferably the compound is an inhibitor or an enhancer of the activity of UNC-53 protein of <u>C. elegans</u> or a functional equivalent, derivative or bioprecursor thereof, which protein is expressed in the transgenic cell, tissue or organism as defined herein.

Preferably the phenotypic change to be screened comprises a change in cell shape or a change in cell motility. Where a transgenic cell is used in accordance with one embodiment of the method of the invention, an N4 neuroblastoma cell may be used and in such an embodiment the phenotypic change to be screened may be the length of neurite growth or changes in filipodia outgrowth or alternatively changes in ruffling behaviour or cell adhesion. alternative embodiment of the method of the invention, the transgenic cell may comprise an MCF-7 breast carcinoma cell. Typically in such an embodiment the phenotypic change to be screened comprises the extent of phagokinesis. The method according to the invention, may also utilise a mutant cell or mutant organism according to the invention as described above, where the mutant cell is capable of growing in tissue culture and either of which cell or organism has a mutation in the wild-type unc-53 gene.

In accordance with the present invention, a "phenotypic change", may be any phenotype resulting from changes at any suitable point in the life cycle of the cell, tissue or organism defined above, which change can be attributed to the expression of the transgene such as for example, growth, viability, morphology, behaviour, movement, cell migration or cell process or growth cone extension of cells and includes changes in body shape, locomotion, chemotaxis, mating behaviour or the like. The phenotypic change may preferably be monitored directly by visual inspection or alternatively by for example

THE CALL PROPERTY OF A SECURITION OF THE CARL PROPERTY OF A SECURITION OF A SE

10

15

20

25

30

35

measuring indicators of viability including endogenous or transgenically introduced histochemical markers or other reporter genes, such as for example 8-galactosidase.

A compound which is identifiable by the method according to the invention as described above, as an enhancer of the regulation of cell shape or motility or the direction of cell migration in <u>C. elegans</u> may be used as a medicament, or alternatively in the preparation of a medicament, for promoting neuronal regeneration, revascularisation or wound healing, or for treatment of chronic neuro-degenerative diseases or acute traumatic injuries. Examples of promoting neuronal regeneration include for example peripheral nerve regeneration after trauma and spinal cord trauma.

Where a compound is identified in accordance with the method described above as being an inhibitor of the regulation of cell shape, the compound may be used as a medicament, or in the preparation of a medicament, for substantially alleviating spread of disease inducing cells, such as in spread of cancers, or the like in metastasis. Advantageously, any of the compounds which may have been identified as an inhibitor or an enhancer in accordance with the method as described above, may also be included in a pharmaceutically acceptable formulation comprising the respective compound and an acceptable carrier, diluent or excipient therefor.

The particular mechanism of action of a compound identified as either an inhibitor or an enhancer of the cell motility or direction of cell migration is not limiting preferably the compound acts as an inhibitor or enhancer of a signal transduction pathway downstream. The compound may also act on parallel pathway or on the UNC-53 protein of <u>C. elegans</u>. For

10

15

20

25

30

35

example, the method of action of the compound may include direct interaction with UNC-53 protein, interaction with processes for regulating phosphorylation of UNC-53 or for processes regulating activity of an unc-53 gene or for processes for post-transcriptional or post-translational modification or the like.

Preferably the compound is identified by the method according to the invention as an inhibitor or an enhancer, by utilising differences of phenotype of the cell, tissue or organism, which are visible to the eye. Alternatively indicators of viability including endogenous or transgenically introduced histochemical markers or a reporter gene may be used.

According to a further aspect of the invention there is also provided a transgenic cell or tissue culture which has been constructed to comprise a promoter sequence of an unc-53 gene of C. elegans or a functional fragment thereof, fused to a nucleic acid sequence encoding a reporter molecule. Preferably, the reporter sequence encoding the reporter molecule encodes for a detectable protein, for example one which may be monitored by eye inspection such as antibiotic resistance, ß-galactosidase or a molecule detectable by spectrophotometric, spectrofluorometric, luminescent or radioactive assays. Preferably the reporter molecule is green fluorescent protein (GFP), which advantageously allows inhibition or enhancement of the UNC-53 protein according to the invention to be monitored visually.

The present invention also provides a method of determining whether a compound is an inhibitor or an enhancer of transcription of a an unc-53 gene in <u>C. elegans</u>, or a functional fragment thereof, which method comprises the steps of:

tian the contraction of the contraction and the contraction of the con

(a) contacting said compound with a transgenic

10

15

20

25

30

35

cell according to the further aspect of the invention as described above,

(b) monitoring the reporter molecule and comparing results obtained from this monitoring step with a control comprising a transgenic cell having the promoter sequence of an unc-53 gene, or a functional fragment thereof and the reporter molecule, in the absence of the compound.

In one embodiment of the method according to the invention the reporter molecule may comprise messenger RNA. Alternatively the reporter molecule may be green fluorescent protein (GFP).

A compound identified as an inhibitor or enhancer of transcription of the unc-53 gene or a fragment thereof may also be used as a medicament, or in the preparation of a medicament, for promoting neuronal regeneration, revascularisation or wound healing, or for treatment of chronic neuro-degenerative diseases or acute traumatic injuries. Furthermore, such compounds may be included in a pharmaceutical formulation including a carrier, diluent or excipient therefor.

The present invention also provides a kit for determining whether a compound is an enhancer or an inhibitor of the regulation of cell motility or shape or the direction of cell migration, which kit comprises at least a plurality of transgenic or mutant cells according to the invention as described above and a plurality of wild-type cells of the same cell type or cell line or tissue culture.

Also provided by the present invention is a kit for determining whether a compound is an inhibitor or an enhancer of transcription of an unc-53 gene of <u>C</u>. elegans or a functional fragment thereof, which comprises at least a plurality of transgenic cells as described above and means for monitoring the reporter

molecule.

For the purposes of the present invention, the term "unc-53 gene or a functional fragment thereof" includes the nucleic acid sequence shown in Figure 1 or a fragment thereof, including the differentially spliced isoforms and transcriptional start of the unc-53 gene sequence and which sequence encodes an UNC-53 protein or a functional equivalent, derivative, fragment or bioprecursor of the protein.

10 The present invention also provides an oligonucleotide probe which comprises the carboxyterminal 1.5 kb of the coding nucleic acid sequence shown in Figure 1 or a fragment thereof comprising not less than 15 base pairs. In addition, the present invention provides a further oligonucleotide probe 15 comprising a nucleic acid sequence encoding the amino acid sequence as numbered 1 to 10 and 14 to 133, 487 to 495, 537 to 545, 1032 to 1037, 1097 to 1116 or 1300 to 1307, as shown in Figure 3 or a fragment thereof comprising between 18 and 24 base pairs. 20 oligonucleotide probes described above may also be advantageously be labelled for detection.

The present invention also provides methods of identifying <u>C. elegans</u> genes or fragments thereof, which encode proteins which are active in the signal transduction pathway of which UNC-53 is a component and which are homologues of UNC-53. A preferred method comprises hybridizing to a <u>C. elegans</u> cDNA library an oligonucleotide probe according to the invention as described above, under appropriate conditions or stringency in order to identify genes having statistically significant homology with the cDNA clones of any one of the cDNA sequences according to the invention described above.

Furthermore, there is also provided by the present invention a method of identifying a protein

25

30

10

15

20

25

30

35

which is active in the signal transduction pathway of a cell. According to this aspect of the invention, the method comprises;

- (a) contacting an extract of said cell with an antibody to the UNC-53 protein or a functional equivalent, fragment or bioprecursor thereof,
- (b) identifying the antibody/UNC-53 complex, and
- (c) analysing the complex to identify any protein bound to the UNC-53 protein other than the antibody.

The UNC-53 protein, therefore may bind regions of other proteins involved in the signal transduction pathway. It is also possible to sequentially identify a whole range of proteins involved in the signal transduction pathway. This aspect of the invention, further comprises a method of identifying a further protein or proteins which are active in the signal transduction pathway of a cell which method comprises:

- (a) forming an antibody to the identified protein bound to the UNC-53 protein in the method as described above,
- (b) contacting a cell extract of <u>C. elegans</u> with the antibody,
- (c) identifying the antibody/protein complex,
- (d) analysing the complex to identify any further protein bound to the first protein other than the antibody, and
- (e) optionally repeating steps (a) to (d) to identify further proteins in the pathway.

According to this aspect of the present invention, the antibody, which is preferably a monoclonal antibody, such as for example monoclonal antibody designated as 16-48-2, starts the process by binding to the UNC-53 protein or a functional equivalent thereof in the signal transduction pathway. Any other proteins found complexed to the bound

15

antibody or UNC-53 protein can then be used to identify further interacting proteins involved in the pathway.

It may also be possible to identify proteins involved in the signal transduction of a cell by using UNC-53 protein of <u>C. elegans</u>. According to this aspect of the invention the method comprises:

- (a) contacting an extract of the cell with the UNC-53

 protein of <u>C. elegans</u> or a functional equivalent,
 fragment or bioprecursor of said UNC-53 protein
 - (b) identifying the UNC-53 protein/protein complex and
 - (c) analysing the complex to identify any protein bound to the UNC-53 protein other than another UNC-53 protein
- This method can also advantageously be used to identify further proteins in a signal transduction pathway of a cell by contacting an extract of the cell used as described above, with any protein identified from step (c) above not being an UNC-53 protein and repeating steps (b) and (c).

Other methods which may be used for identifying proteins in a signal transduction pathway of a cell may comprise for example a western blot overlay method which method is well known to those skilled in the art. Cell extracts are run on SDS-gels to separate out protein and subsequently blotted onto a nylon membrane. These membranes may then be incubated, for example in a medium containing UNC-53 with a biotin label thereon and any protein conjugates visualised

10

15

20

25

30

35

with a streptavidin-alkaline phosphatase conjugated antibody.

The present invention also advantageously provides a process for the preparation of binding antibodies which recognise proteins or fragments thereof involved in the rate and direction of cell migration or the control of cell shape, for the above methods. Preferably the antibody is monoclonal antibody and more preferably monoclonal antibody 16-48-2.

The monoclonal antibody for binding to UNC-53 (or its functional equivalent) may be prepared by known techniques as described by Kohler R. and Milstein C., (1975) Nature 256, 495 to 497.

Another method which may be used to identify proteins involved in the signal transduction pathway involves investigating protein-protein interactions using the two-hybrid vector method. This method, which is well known to those skilled in the art, utilises the properties of the GAL4 protein in yeast. GAL4 is a transcriptional activator of galactose metabolism in yeast and has a separate domain for binding to activators upstream of the galactose metabolising genes as well as a protein binding Nucleotide vectors may be constructed, one of which comprises the nucleotide residues encoding the DNA binding domain of GAL4. These binding domain residues may be fused to a known protein encoding sequence, such as for example unc-53. The other vector comprises the residues encoding the protein binding domain of GAL4. These residues are fused to residues encoding a test protein, preferably from the signal transduction pathway of C. elegans. Any interaction between the UNC-53 protein and the protein to be tested leads to transcriptional activation of a

10

15

20

25

30

35

reporter molecule in a GAL-4 transcription deficient yeast cell into which the vectors have been transformed. Preferably, a reporter molecule such as B-galactosidase is activated upon restoration of transcription of the yeast galactose metabolism genes. This method enables any interactions between proteins involved in the signal transduction pathway to be investigated.

Any proteins identified in the signal transduction pathway of the cell, which may be for example a mammalian cell, may also be included in a pharmaceutical composition together with a carrier, diluent or excipient therefor.

The present invention also provides a process for producing an UNC-53 protein of <u>C. elegans</u> or a functional equivalent, fragment, or derivative of the protein, which process comprises culturing the cells transformed or transfected with a cDNA expression vector having any of the cDNA sequences according to the invention as described above, and recovering the expressed UNC-53 protein. The cell may advantageously be a bacterial, animal, insect or plant cell.

A particularly preferred process for producing UNC-53 protein comprises using insect cells. Accordingly, the invention provides a process for producing an UNC-53 protein of <u>C. elegans</u> or a functional equivalent, fragment, derivative or bioprecursor of the UNC-53 protein, which process comprises culturing an insect cell transfected with a recombinant Baculovirus vector, said vector comprising a nucleotide vector encoding the UNC-53 protein or a functional equivalent, fragment or bioprecursor thereof downstream of the Baculovirus polyhedrin promoter and recovering the expressed UNC-53 protein. Advantageously, this method produces large amounts of protein for recovery. The insect cell may be from for

- 18 Committee (1918) - Marke 1918 - 18 Committee (1918) - 18 Comm

10

15

20

25

30

35

example <u>Spodoptera frugiperda</u> or <u>Drosophila</u> <u>Melanogester</u>.

In accordance with the present invention, a defined nucleic acid sequence includes not only the identical nucleic acid but also any minor base variations from the natural nucleic acid sequence including in particular, substitutions in bases which result in a synonymous codon (a different codon specifying the same amino acid), due to the degenerate code in conservative amino acid substitution. The term "nucleic acid sequence" also includes the complimentary sequence to any single stranded sequence given which includes the definition above regarding base variations.

Furthermore, a defined protein, polypeptide or amino acid sequence according to the invention, includes not only the identical amino acid sequence but also minor amino acid variations from the natural amino acid sequence including conservative amino acid replacements (a replacement by an amino acid that is related in its side chains). Also included are amino acid sequences which vary from the natural amino acid but result in a polypeptide which is immunologically identical or similar to the polypeptide encoded by the naturally occurring sequence. Such polypeptides may be encoded by a corresponding nucleic acid sequence.

The invention may be more clearly understood from the following description with reference to the accompanying drawings and photographs, in which

Fig. 1 shows one strand of the <u>C. elegans</u> unc-53 mRNA translated into DNA (U to T) (5073 bases) which corresponds to the 8A clone variant encoding the corresponding 8A protein shown in Figure 3. Designations "TB" are positions onto which SL1 transplices have been identified at the 5' end of the sequence. Different mRNAs which differ in their 5'

10

15

20

25

30

end therefore exist. Potential start methionines are double underlined (M). Restriction endonuclease sites are indicated. A region of 8 sequential A bases at positions 4594 to 4601 is underlined. This region differs from the corresponding region of the known sequence in the database (F45E10.1) by having 8 rather than 7 A'denine (A) bases resulting in a frame shift (see Fig 15) and corresponds to the 7A form of the protein. The nucleic acid sequence from the database is also included in the nucleic acid sequences of the present application for reference only.

Fig. 2 shows a comparison of the sequences of the 7A and 8A clones of Figure 1.

Fig. 3 shows the predicted <u>C. elegans</u> amino acid UNC-53 sequence corresponding to the nucleic acid sequence of the 8A clone shown numbered from 1 to 1528. Again, potential start methionines are double underlined (<u>M</u>). Designations "tb" are regions for PCR clones to identify PCR products. Other regions of interest are identified. The region indicated as S4 is part of a lambda clone - 16.8 kb of the UNC-53 nucleic acid. This sequence, when translated is part only of the UNC-53 protein. Yet, injection of this part gives transformation rescue in organisms, i.e. providing additional evidence for the existence of shorter forms of the protein.

Fig. 4 shows the predicted <u>C. elegans</u> amino acid sequences of Figure 3 in the three letter code for indicating amino acids.

Fig. 5 shows the predicted <u>C. elegans</u> amino acid sequence UNC-53 sequence corresponding to the nucleic acid sequence of the 7A clone of Figure 2 shown numbered from 1 to 1583.

Fig. 6 shows the amino acid sequence of Figure 5 in the corresponding three letter code format for indicating amino acids.

പ്രധ്യാത്തെ അത്രത്ത് അവരെ വരണം അത്രയത്തെന്ന് അത്രം പ്രത്യാത്തെന്ന് നിരുത്തെന്ന് അത്രം വര്യത്ത്തെന്ന് വര്യത്തെന്

10

15

20

25

30

35

Fig. 7 shows sequences of low complexity of the amino acid sequence of the corresponding nucleic acid sequence of the 8A clone of Fig. 3 identified with the filter and <u>SEG</u> algorithms of the BLAST sequence homology package. Regions of low complexity are indicated by "X" for the first copy of the sequence and by underlined amino acids for the second copy.

Fig. 8 shows, schematically, the known branches of the highly conserved Receptor Tyrosine Kinase/GRB2 signal transduction pathway including UNC-53.

Fig. 9 shows, schematically, the differences in cells with increased and decreased UNC-53 expression from the wild type.

Fig. 10 is a graph of the effect of anteriorposterior signal strength on growth cone extension rate of C. elegans organisms, with increased and decreased UNC-53 expression from the wild type. graph translates the observation that UNC-53 acts in a dosage-dependent way to direct the rate of extension in the anterior/posterior axis into a model. signal received e.g. (egl-15) is an RTK mediated signal which is postulated to be received by UNC-53 and which results in extension in the anterior/posterior axis. The graph shows an allelic series of organisms with a graded reduction in extension from increased UNC-53 expression down through wild type to a reduced UNC-53 expression. prediction is thus: for the same level of RTK mediated signal the increased/decreased growth in the anterior/posterior axis depends on the level of expression of UNC-53 in any organism. The graph also reflects the prediction that for organisms with a particular level of UNC-53 overexpression there is no requirement for a signal before growth cone extension occurs. This extension is likely to be in a random direction or influenced by alternative factors.

10

15

20

25

30

35

Fig. 11 shows constructs of unc-53 nucleic acid including identified functional domains .

Fig. 12 shows 5' amino terminus of the cDNA encoding from the first methionine amino acid through the actin binding protein homology domain (amino acids 1-133 from Fig. 1) and oligonucleotides designated oligo BG01, BG02 and BG03 (amplification strategies of amino terminus of the unc-53 cDNA). Combinations of oligo BG02 with either oligo BG02 or BG03 were used to amplify the 5' terminus of the cDNA from the first methionine through the actin binding protein homology domain (amino acids 1-133). All of the oligonucleotides are underlined and sequences identical to the cDNA are shown in upper-case. In addition to unc-53 sequence, oligo BG02 contains a stop codon and the recognition sequence for BamHI endonuclease. Oligo BG01 has engineered EcoRI and NdeI recognition sites for inclusion in bacterial expression vectors. Both constructs remove the 5' untranslated region of unc-53 and oligo BG03 contains a NotI cleavage site. Oligo BG03 has an improved ribosome binding site similar to mammalian ribosome binding sites. Use of BG03 in PCR thus results in constructs optimised for mammalian expression.

Figure 13 shows, schematically, constructs of the plasmids pTB109, pTB110, pTB111 and pTB112.

Fig. 14(a) shows a summary of transcript starts at the 5' end of the unc-53 gene. Different identified transcript starts and corresponding inframe ATG-codons are marked. Tab2 is the oligo from within cDNA M5 which was used in RT PCR experiment to identify/isolate the 5' ends of different UNC-53 mRNAs.

Figure 14(b) shows the location of the different transcript starts on the genomic DNA and the position of the S4 Lambda clone with respect to genomic DNA.

The control of the Co

10

15

20

25

35

Figure 14(c) shows the sequence near the 5' and 3' ends of the lambda S4 clone, identifying its composition corresponding to the 5' and at position 2260 of comid COGHIO and the 3' end of F45R10 at position 3287.

Fig. 15 shows the alignment of UNC-53 protein with the carboxytermini of the α -actinin and β -spectrin family (QY is UNC-53).

Fig 16 shows the predicted actin binding sites of UNC-53. The comparison shows internal LKK repeats.

Fig. 17 shows the alignment of the candidate SH3 binding sites in UNC-53 with known SH3 sites of other named proteins. Proteins at positions 4 and 7 are critical for binding into SH3 pockets.

Fig. 18 shows the alignment of the predicted amino acid sequences from F45E10.1 (available in public database) with UNC-53. The different identified amino acid is shown at position 1186. The frameshift which results in the different amino acid sequence from position 1513 is a result of the different number of adenine bases in the nucleic acid sequence (see Fig. 1).

Fig. 19 is a series of photographs of <u>C. elegans</u> embryos (strain TB4Ex25 (Table 1) [UNC-53-UNC-54 construct]). The photographs show increased outgrowth in the anterior-posterior axis of body wall cells in the <u>C. elegans</u> embryos which overexpress UNC-53 (immunofluorescence with UNC-53 mab 16-48-2) Individual photographs are as follows:

- 30 A: early embryo comma stage
 - B: 1.5 fold stage embryo
 - C: 3 fold stage embryo, first plane of focus
 - D: 3 fold stage embryo, second plane of focus
 - E: 3 fold stage, mosaic animal, 3-cells in a quadrant giving expression.

The Committee of the Co

This demonstrates that immunofluorescence

10

15

20

25

30

provides a measure of the expression in the transgenic lines of UNC-53.

Fig. 20A is a photograph of <u>C. elegans</u> embryo containing DNA construct pTB110 (strain TBAIn76(table 1)). Shown is expression of UNC-53 following heat shock.

Fig. 20B and C are photographs of <u>C. elegans</u> embryos containing DNA construct pTB111 (strain TB1Ex6 (table 1)). Shown is transgenic expression of UNC-53 in mechano-sensory neurons.

Fig. 21 shows photographs of the following:

- A: A wild-type UNC-53 L1 larva of genotype 4-25 (strain TB4Ex25) as in photographs 19B, C and D.
- B: L1 larva of 4-25 with morphological defects associated with muscle abnormalities.
- C: Lethal phenotype of 4-25.
- D: L1 larva of 4-25 showing misshapen animal and muscle cells with increased extensions. Also shows constipation problems associated with abnormal muscle pattern.
- E: L1 larva of the heat-shock line TBAIn76 (table 1) exhibiting morphological abnormalities following heat shock and recovery.
- F: L1 larva of line TBAIn76 (table 1) showing morphological defects in the pharynx.

All Figs. 19, 20 and 21 are Normarski optics of live embryos.

- Fig. 22 is a map of plasmid pTB110 (tables 1 and 2) a heat shock promoter fusion, indicating restriction endonuclease sites.
- Fig. 23 is a map of plasmid pTB112 (tables 1 and 2) a muscle specific UNC-54 fusion, indicating restriction endonuclease sites.
- Fig. 24 is a map of plasmid pTB54 (the 8A clone variant) (tables 1 and 2). In the construction of this plasmid the complete unc-53 cDNA (tb3M5) of the

15

20

25

30

35

8A variant, including 5' and 3' UTRs was cloned as a NotI-ApaI fragment into the mammalian expression vector pcDNA3 (Invitrogen).

Figure 25 is a map of plasmid pTB72 (the construct encoding the 7A clone variant of UNC-53 cDNA of Figure 2.

Figure 26 is nucleotide sequence of the plasmid map of Figure 25.

Figure 27 is a map of plasmid pTB73.

Figure 28 is a nucleotide sequence of plasmid pTB73 of Figure 27.

Figure 29 is a map of plasmid pCB50.

Figure 30 is a nucleotide sequence of plasmid pCB50 of Figure 29.

Figure 31 is a map of plasmid pCB51.

Figure 32 is a nucleotide sequence of the plasmid pCB51 of Figure 31.

Figure 33 is a map of plasmid ppCB55.

Figure 34 is a nucleotide sequence of plasmid pCB55 of Figure 33.

Figure 35A illustrates a flowchart of the actin co-sedimentation assay. Soluble UNC53 protein was incubated with monomeric G-actin in a buffer containing ATP. Polymerization of G-actin to F-actin was induced by increasing the salt concentration to 100 mM, F-actin protein complexes were collected by centrifugation and analyzed by SDS-PAGE and fluorography.

Figure 35(B) illustrates the concentration series of the actin co-sedimentation assay. The full length UNC-53 encoding cDNA (pTB72) was transcribed and translated in vitro and co-sedimented with F-actin at a starting G-actin concentrations ranging from 0 to 250 mg/ml. See methods for details. S=supernatant after airfuging. P=pellet after airfuging.

Figure 35(C) illustrates both the full length

10

15

20

25

30

35

(pTB72) and amino terminal deleted UNC53 (pTB73) protein co-sediment with F-actin. Starting G-actin concentration was 500 mg/ml. S=supernatant, P=pellet, R= starting in vitro reaction.

Figure 36(A) is a flowchart of a SEM-5 binding experiment. The truncated UNC53 cDNA (pTB50) was transcribed and translated in vitro and incubated with SEM5-GST sepharose or GST sepharose. After four washes, the remaining proteins bound to the matrix were analyzed by SDS-PAGE and fluorography.

Figure 36(B) illustrates an immunoprecipitation experiment of radioactively labelled UNC53 proteins from the TnT pTB50 reaction shows that monoclonal antibody 16-48-2 recognizes both the native (-SDS lanes) and denatured (+SDS) protein products in vitro. c=control reaction without anti-UNC53 monoclonal antibody 16-48-2. ab=reaction with monoclonal antibody 16-48-2. See methods for details.

Figure 36(C) illustrates the results of SEM-5-GST binding experiments outlined in (a). *In vitro* translated UNC53 protein were analyzed by SDS-PAGE and fluorography. See methods for details. sup=supernatant

Figure 36(D) illustrates a western blot overlay experiment of UNC-53 (construct pTB61) expressed in bacterial cells. Cell lysates were denatured in Laemmli buffer and the proteins separated by 5-25% gradient SDS-PAGE. The arrowhead indicates the presence of full length UNC-53 in the induced bacterial lysate. Additional gels were blotted to nylon membrane, incubated with biotinylated GST or biotinylated GST-GRB2 protein and bound protein complexes subsequently detected with a streptavidinalkaline phosphatase conjugated antibody. See methods for details. U=uninduced bacterial cell lysate, I=induced bacterial cell lysate.

Tandatakan berbuitan tandatan berbuitan bahan palaman tandat bahan bahan bahan bahan bahan bahan berbuitan bahan b

15

20

25

30

35

Figure 37 is a series of photographs of <u>C.</u>
elegans which illustrates overexpression of UNC-53 in
body muscle cells results in over-extension along the
longitudinal axis. Transgenic <u>C. elegans</u> embryos
carrying the construct pTB113 were analyzed for UNC-53
activity by immunohistochemistry with the 16-48-2
antibody. Starting from the photograph (a) of the top
left panel of Figure 37.

(A) and (B) illustrate ectopic growth cone spikes (indicated by the arrowheads) are observed early in myogenesis in the comma stage embryo. (C) and (D) illustrate over-extension of muscle cells in the head region of a three fold embryo during outgrowth. (E) illustrates over-extension is clearly observed along the anterior-posterior axis (indicated by the arrowheads) of a late 3 fold embryo.

Figure 38 is a map of plasmid ptb113.

Figure 39 is a nucleotide sequence of the plasmid ptb113 of Figure 38.

Figure 40 illustrates neurite tree length and fraction positive cells enhancement in a transfected cell C9 compared to wild-type cells C0. Black bars indicate fraction positive cells whereas hatched bars indicate neurite tree length cells, as described in example 8.

Figure 41 illustrates the results obtained following application of compound (I-(IH-pyrrol-2-ylmethyl)-2-piperidinone) to N4 transfected cells. The dark coloured bars indicate fraction positive CO clones whereas the hatched bars of the chart indicate fraction positive C9 clones.

The following sequence listings are referred to in the specification.

and a set on the control of our of the set of

Sequence 1D No 1: is a nucleic acid sequence

15

30

35

corresponding to the 7A nucleic acid sequence variant of Figure 2.

Sequence 1D No 2: is a nucleic acid sequence corresponding to the 8A nucleic acid sequence variant of figure 1.

Sequence 1D No 3: is an amino acid sequence corresponding to the amino acid sequence of the 8A variant of figure 3.

Sequence 1D No 4: is an amino acid sequence corresponding to the amino acid sequence of the 7A variant of figure 2.

Sequence 1D No 5: is an amino acid corresponding to the amino acid sequence shown in figure 7.

Sequence 1D No 6: is a nucleic acid sequence of the oligo BGO3 sequence of figure 12.

Sequence 1D No 7: nucleic acid sequence of the oligo BG01 sequence of figure 12.

25 Sequence 1D No 8: is a nucleic acid sequence of the oligo BG02 sequence of figure 12.

Sequence 1D No 9: is an amino acid sequence corresponding to the amino acid UNC-53(a) sequence shown in figure 17.

Sequence ID No 10: is an amino acid sequence corresponding to amino acid sequence of sequence (b) of UNC-53 shown in figure 17.

Sequence ID No 11: is an amino acid sequence

corresponding to the sequence (c) of an SOS shown in figure 17.

Sequence ID No 12: is an amino acid sequence

corresponding to the sequence (d) of an SOS shown in figure 17.

Sequence ID No 13: is an amino acid sequence corresponding to the sequence (d) of an SOS shown in figure 17.

Sequence ID No 14: is an amino acid sequence corresponding to the sequence (f) of SOS 1359 shown in figure 17.

15

10

Sequence ID No 15: is an amino acid sequence corresponding to the sequence (g) of SOS 1377 shown in figure 17.

- Sequence ID No 16: is an amino acid sequence corresponding to the sequence (h) of Dynamin shown in figure 17.
- Sequence ID No 17: is an amino acid sequence corresponding to the sequence (i) of dynamin shown in figure 17.

Sequence ID No 18: is an amino acid sequence corresponding to the sequence (j) of PI3K p85 shown in figure 17.

Sequence ID No 19: is an amino acid sequence corresponding to the sequence (k) of P13k p85 shown in figure 17.

35

Sequence ID NO 20: is an amino acid sequence

corresponding to the sequence (1) of AFAP-110 shown in figure 17.

Sequence No 21: is an amino acid sequence corresponding to the sequence (m) of AFAP-110 shown in figure 17.

Sequence No 22: is an amino acid sequence corresponding to the sequence (n) of 3BP-1 shown in figure 17.

Sequence ID No 23: is an amino acid sequence corresponding to the sequence (o) of 3BP-1 shown in figure 17.

15

10

Sequence ID No 24: is an amino acid sequence which corresponds to the amino acid sequence from positions 106 to 133 of UNC-53 shown in figure 16.

- Sequence ID No 25: is an amino acid sequence which corresponds to the amino acid sequence from positions 1093 to 1120 of UNC-53 shown in figure 16.
- Sequence ID No 26: is a nucleotide sequence corresponding to the nucleotide sequence of ptB72 shown in figure 26.

Sequence ID No 27: is a nucleotide sequence corresponding to the nucleotide sequence of ptB73 shown in figure 28.

Sequence ID No 28: is a nucleotide sequence corresponding to the nucleotide sequence of pCB50 shown in figure 30.

BANTAN PERPENDING AND PENDEMBERAKAN PENDEMBERAK

35

Sequence ID No 29: is a nucleotide sequence

15

30

corresponding to the nucleotide sequence of pCB51 shown in figure 32.

Sequence ID No 30: is a nucleotide sequence corresponding to the sequence of pCB55 shown in figure 34.

Sequence ID No 31: is a nucleotide sequence corresponding to the nucleotide sequence of ptb113 shown in figure 39.

Sequence ID No 32: is an amino acid sequence corresponding to the amino acid sequence as numbered from amino acid 1 to 110 of the sequence figure 3.

Sequence ID No 33: is an amino acid sequence corresponding to the sequence as numbered from amino acid sequence 114 to 133 of the sequence of figure 3.

20 Sequence ID No 34: is an amino acid sequence corresponding to the sequence as numbered from amino acid sequence 487 to 495 of the sequence of figure 3.

Sequence ID No 35: is an amino acid sequence

corresponding to the sequence as numbered from amino acid sequence 537 to 545 of the sequence of figure 3.

Sequence ID No 36: is an amino acid sequence corresponding to the sequence as numbered from amino acid sequence 1032 to 1037 of the sequence of figure 3.

Sequence ID No 37: is an amino acid sequence corresponding to the sequence as numbered from amino acid sequence 1097 to 1116 of the sequence of figure 3.

Sequence ID No 38: is an amino acid sequenc ecorresponding to the sequence as numbered from amino acid sequence 1300 to 1307 of the sequence shown in figure 3.

5

Sequence ID No 39: is an amino acid sequence corresponding to the amino acid sequence (a) of ~-actinin (aact) shown in figure 15.

- Sequence ID No 40: is an amino acid sequence corresponding to the amino acid sequence (b) of unc-53 shown in figure 15.
- Sequence ID No 41: is an amino acid sequence

 corresponding to the amino acid sequence (c) of
 β-spectrin (spectrin) shown in figure 15.

Sequence ID No 42: is an amino acid sequence corresponding to the amino acid sequence (d) of actinin (aact) shown in figure 15.

Sequence ID No 43: is an amino acid sequence corresponding to the amino acid sequence (e) of UNC-53 shown in figure 15.

25

20

Sequence ID No 44: is a amino acid sequence corresponding to the amino acid sequence (f) of β -spectrin (spectrin) shown in figure 15.

- Sequence ID No 45: is an amino acid sequence corresponding to the amino acid sequence (g) of ∝-actinin shown in figure 15.
- Sequence ID No 46: is an amino acid sequence

 corresponding to the amino acid sequence (h) of UNC-53

 shown in figure 15.

。1. 全型的现在分词 1. 电电子 1. 电子 1. 1. 电子 1

Sequence ID No 47: is an amino acid sequence corresponding to the amino acid sequence (I) of β -spectrin shown in figure 15.

5 Sequence ID No 48: is a nucleotide sequence corresponding to the nucleotide sequence of S4 lambda clone shown in figure 14(c).

The inventors have established a set of processes 10 particularly in C. elegans to select for inhibitors or enhancers of UNC-53. This screen is based on transgenic or mutant organisms or cells in which we have introduced a nucleic acid sequence encoding UNC-53 under the control of a specific promoter. 15 organisms UNC-53 is over-stimulated as judged by increased extension of growth cones of muscle cells which over-express UNC-53 in C. elegans. to a range of phenotypes in both embryonic and postembryonic development (from death to defective 20 morphology and motility). These phenotypes can be scored with simple means at high throughput. results can be obtained with heat shock specific lines. The basis of our test for inhibitors of the UNC-53 signal transduction pathway is reversal of this 25 phenotype to an improved state of health.

We have constructed transgenic strains of <u>C</u>.

<u>elegans</u> which over-express UNC-53 in body muscle.

This results in increased extension of muscle cells and embryonic lethality (17 to 80% of transgenic organisms depending on the line used). These strains are used to directly screen for drugs which interfere with unc-53 genes, UNC-53 protein activity or any regulatory factor thereof to thereby suppress the background lethality.

Another process which may be used for selecting

30

10

15

20

25

30

inhibitors or enhancers of UNC-53 uses a constitutively active unc-53. This is achieved by mutating the nucleotide binding domain such that GTP or ATP is always bound or by covalently attaching SEM-5. In this strategy, transgenics (tissue cultured cell lines, or organisms such as nematodes) are generated which maintain unc-53 in a higher endogenous level of activity. Over-extension and subsequent lethality results in a greater proportion than that observed in the UNC-54/UNC-53 wild type lines. By screening for survivors after drug treatment, this assay specifically identifies inhibitors of downstream components in the signal transduction pathway.

Another process utilises an UNC-53 promoter. In this approach, an UNC-53 promoter is fused to a nucleic acid sequence encoding a reporter molecule, for example green fluorescent protein (GFP). Cells will glow when trans-acting factors bind to the promoter to activate transcription. By screening for cells which do not fluoresce, molecules which inhibit transcription of UNC-53 are identified.

The processes for selecting inhibitors and/or enhancers according to the invention are preferably carried out on whole animals. This can be done using a <u>C. elegans</u> system. The advantages of these tests include:

(1) The screening in a whole animal assay.

C. elegans is a complex multicellular organism with a full nervous system, digestive system, etc. Its anatomy and development has been described in extreme detail. It is one of the best-characterised higher organisms at the genetic, molecular, developmental and cell biological level. Any observed changes to phenotype can be checked against this database.

35 (2) To study effects on rate and directionality of cell migration and the change of cell shape it is

10

15

20

25

30

35

important to leave the cells under study in a setting where they are surrounded by the <u>in vivo</u> interacting tissues, cells and substrates for cell migration etc. This can be done using whole <u>C. elegans</u> subjects. A situation has been created where the given pathway is over-stimulated leading to an easily scorable phenotype which can be reverted in any assay or process.

- (3) The endpoint of the screen is the substantially increased health of the organism. This permits the exclusion of non-specific and toxic compounds.
- (4) A complete and specific inhibition of UNC-53 in the transgenics will lead at the worst to the phenotype of an UNC-53 reduction or loss of function mutant which we have described, can recognise and have shown not to be essential for viability.
- (5) The test can be adapted to make full use of the advantages of the <u>C. elegans</u> model system such as the possibility to conduct the test chronically over several generations and the possibility to conduct the test in different genetic backgrounds, e.g. RTK constitutive or defective.
- (6) <u>C. elegans</u> exhibits a complex set of wild type, drug- and mutation-induced phenotypes such as changes in body shape, subtle changes in locomotion, mating behaviour, chemotaxis, pharyngeal pumping, egg laying behaviour, which can be used as part of a phenotype analysis or screen.

The results of <u>C. elegans</u> research described herein has provided important breakthroughs in biomedical research fields such as programmed cell death, neuronal guidance, the Receptor Tyrosine Kinase/RAS signal transduction pathway, integrin/cell adhesion receptor signalling, etc.,

The biochemical association of UNC-53 in the RTK signal transduction pathway enables identification of

10

15

20

25

30

35

genes or of biochemical pathways which are targets for pharmacologically or pharmaceutically active compounds and the development of high throughput and mode of action specific drug screens using wild type, mutant and transgenic animal strains including, in particular, <u>C. elegans</u>.

Thus pharmacological manipulation of the UNC-53 pathway is now possible on the following rationale:

We have scientific arguments to expect <u>C. elegans</u> UNC-53 to interact <u>in vivo</u> with the other components of RTK signal transduction pathways based on:

- (1) The observation that <u>C. elegans</u> SEM-5 and GRB-2 are mutually exchangeable <u>in vivo</u>, combined with our observed <u>in vitro</u> binding of both GRB-2 and SEM-5 to UNC-53. Thus, <u>C. elegans</u> UNC-53 will be able to interact with the activated GRB-2/RTK receptor in mammalian cells.
- (2) UNC-53 interacts with the rabbit actincytoskeleton

Expression of <u>C. elegans</u> UNC-53 in mammalian cell lines represents a shortcut to develop pharmacological assays and screens to target this pathway. We have shown that over-expression of the <u>C. elegans</u> UNC-53 in <u>C. elegans</u> myoblasts leads to over-extension of these cells in the anterior/posterior axis of the embryo and ultimate disorganisation of the muscle cell and myofilament pattern. (Over)-expression of <u>C. elegans</u> UNC-53 in a human cell line leads to a detectable change in phenotype, in particular increased motility of cells, increased outgrowth of neurons and morphological changes in the elongation and cytoskeletal morphology of differentiating myotubes.

The <u>C. elegans</u> unc-53 Open Reading Frame (ORF) (with and without optimised Kozak consensus sequence) of both 7A and 8A clone variants has been cloned between the CMV major intermediate early

www.indextor.com/windextor.com/section in the control of the translation of the control of the

10

15

20

25

30

35

promoter/enhancer and bovine growth hormone polyA signal sequence of expression vector pcDNA3 (Invitrogen). This vector is designed for high level stable and transient expression in most mammalian cells.

The following additional considerations require mention:

Genetic analysis of reduction in UNC-53 function and ectopic expression experiments suggest that UNC-53 acts in a highly dosage-dependent manner. As is the case for RAS, increased expression may lead to lowering the threshold of RTK-signal required for a given response or may remove the requirement for an activating signal to obtain a phenotype response (Fig In addition UNC-53 is an unusually low abundance protein in wild type C. elegans. It is therefore likely to be necessary or useful to control the temporal and quantitative expression of UNC-53 in the proposed assay conditions in all organisms or cells to be assayed. The already available or a further optimised expression cassette is then cloned in expression vectors with IPTG- inducible or tetracycline-repressible promoters. It is realised that both the Lac and Tet expression systems are leaky. Additional other repressible/inducible expression systems (e.g. Mx promoter) or weak mammalian promoters might be preferred. (2) Over-expression of the endocytosis controlling protein dynamin leads to phenotypes which are not

(2) Over-expression of the endocytosis controlling protein dynamin leads to phenotypes which are not associated with dynamin function in the cell but which are thought to be due to sequestration of the GRB-2 pool in the cell (GRB-2 is an adaptor for a variety of signal transduction pathways). Such sequestration is unlikely to lead to "positive effects" on the activity of the cell such as is observed in the presently described assay system (increased cell process

extension or motility), see Fig 19. Based on the homology between UNC-53 and GTP-binding, we can also predict specific mutations in the nucleotide-binding pocket or the predicted effector region which should lead to loss of function. Sequence analysis of unc-53 5 alleles is instructive in determining which amino acids of UNC-53 are essential for function, e.g. as exemplified by the indication that an allele (n152) which has a differential effect on anterior versus posterior guidance has a deletion in a region of 10 differential splicing. The differential splices of the C. elegans unc-53 gene encode different variants of the protein which independently affect posterior or anterior migration and/or cell specificity. predicted exon in C. elegans unc-53 is indicated in 15 It is conceivable that of two variants of the same protein one is inhibited or enhanced by a particular compound whereas the other is not (or to a lesser degree). Such a compound could then be used to control direction of migration or cell specificity by 20 selective inhibition or enhancement. To develop pharmacological screens for inhibitors of a biochemical pathway a "gain of function". phenotype has been invented which can be expected to revert to wild type in the presence of specific 25 inhibitors. Overexpression of UNC-53 in C. elegans myoblasts already leads to lethal subviable muscle phenotypes which can be easily scored with high throughput or a scorable heat shock inducible They may form the basis for a phenotype (Fig 21). 30 pharmacological screen for inhibitors. A similar screen is obtained for over-expressing UNC-53 in mammalian cells. An alternative strategy is based on the homology to GTP binding proteins, RAS and dynamin and NTPases. We can introduce amino-acid changes in 35 the nucleotide binding pocket which are

De BRICHARDER CONTRARA EN BRICH DE BEEN FORMENS BLE. GRAN AD DE BRICHBRICH BRICHBRICH BRICHBRICH DE PRÉSE

10

15

20

25

30

35

predicted/expected to lead to a constitutively activated or inactivated UNC-53. Similar changes are based on homologies with SOS, dynamin or ATP/GTP binding proteins from homology tables.

(4) Correct expression of UNC-53 in each cell line may be assessed by immunofluorescence and western blot analysis with the monoclonal antibody (mab) designated as 16-48-2.

The inventors have thus expressed and stably integrate the expression constructs in the neuronal, myoblast and 3T3 cell lines.

These cell lines are primarily used to:
- Assess the effect of UNC-53 expression on the
morphology, motility, metastatic potential and growth
cone extension of the cell lines.

- Produce protein and mRNA

· 是一定,这个现在分别,不是是特殊,更多的对方的特殊的。如果他们就是这么。

- Screen for pharmacological compounds inhibiting observed UNC-53 mediated phenotypes
- Analyse signal transduction pathways associated with UNC-53 activation (for example, phosphorylation,)
- Immunofluorescence studies with mab 16-48-2 to assess changes in subcellular localisation following growth factor treatment.

Thus, the present invention provides for the identification of compounds which inhibit or enhance the UNC-53 signal transduction pathway. Such compounds can be used in the control of cell directional migration, motility and differentiation. These compounds are useful in the treatment of oncogenesis, psoriasis, neuronal degeneration and cell migration (metastasis).

The present invention also provides the ability to identify nucleic acid sequences and proteins which are involved in the UNC-53 pathway in <u>C. elegans</u>. Such nucleic acid sequences and proteins may be UNC-53 equivalents, members of an UNC-53 pathway or may be

10

15

25

30

nucleic acid sequences or proteins which interact in the UNC-53 pathway, for example as demonstrated by the GRB-2/SEM-5 proteins. This knowledge of the UNC-53 pathway in <u>C. elegans</u> can be established as can factors which influence the functioning of the pathway, for example, factors/ proteins which feed into the pathway or are of a parallel pathway which at least, <u>in vitro</u>, compensates for steps in an UNC-53 pathway.

The identification of other components in the UNC-53 signal transduction pathway:

- (1) help to determine the interaction of UNC-53 with known signal transduction pathways (RAC-, RHO-, cdc42-RAS-pathway exchange factors, downstream or regulating kinases)
- (2) identify the new interacting proteins which may constitute additional potential pharmacological targets.
- (3) may assign functions to the more than 1000 amino 20 acids of UNC-53 which have no homology to known proteins.

Accordingly, proteins which cross-react with anti-C. elegans UNC-53 protein antibodies can be isolated. The basic experiment protocol for purifying antigen-antibody complexes is described in Example 11. This system can also be used to identify factors which interact with proteins which bind to anti-UNC-53 C. elegans antibodies.

The following tissue sources may be used for immuno-precipitation:

- (1) Mammalian cells which exhibit a phenotype after transfection with unc-53 indicating that it interacts with vertebrate components of its signal transduction pathway.
- (2) UNC-53 protein may be too low abundance to make affinity purification from wild type <u>C. elegans</u>

10

15

20

25

30

35

feasible. The inventors have affinity-purified UNC-53 from already constructed transgenic <u>C. elegans</u> lines which express UNC-53 under control of the hsp-16 promoter and/or the myosin promoter. These experiments in <u>C. elegans</u> are justified because with the vast amount of sequence information (genomic and cDNA) available, one has a good chance of identifying the corresponding genes in the databases with a minimum of peptide sequence.

Several types of proteins may be expected to copurify with UNC-53, including GRB-2 and other proteins with SH3 domains of the Grb2 class or phosphorylation sites, RTK-receptors, subunits of an UNC-53 homoheterodimer complex, downstream regulating kinases or proteins from the microfilament cytoskeleton.

This co-immuno-precipitation approach can also be used to dissect the order of events in this signal transduction pathway. For example: UNC-53 immuno-purified after stimulation of mammalian cell-lines with growth factors and pharmacological agents can also be assayed with respect to its state of phosphorylation, or complex formation with interacting proteins.

Proteins interacting with specific UNC-53 domains are identified using a yeast two-hybrid system, whereby two sets of hybrid proteins are used to assay for functional restoration of the GAL4 transcriptional activator: the first consisting of a GAL4 activation domain/UNC-53 structural domain of unknown function, the second derived from a cDNA library cloned into an expression vector to generate a library of hybrid proteins containing a GAL4 DNA binding domain. The yeast two-hybrid system is well know in the art.

A set of unc-53-fusion constructs can be constructed, including a fusion to

(1) the full length protein,

10

15

20

25

30

35

- (2) the carboxyterminal domain (from second actin binding domain to the ATP/GTP binding domain),
- (3) The aminoterminus (predicted cortical localisation domain up to the SH3 binding sites),
- (4) a variety of overlapping constructs within the central domain of 1000 amino acids to which no function can as yet be assigned.

These are tested in yeast to exclude those which lead to activation of the reporter gene in the absence of the cDNA-activator fusion. cDNA libraries were transformed into these reporter strains and positive clones identified. (In this strategy, screening of multiple libraries requires very little effort (transformation followed by plating on selective and indicator medium)).

A preferred cDNA library is from cell lines in which a phenotypic change is observed following UNC-53 expression such as mouse N4 neuroblastoma cells or MCF-7 breast carcinoma cells. The yeast two hybrid system can identify interacting proteins or "sections" of nucleic acid which may not be translated <u>in vivo</u> but which may inhibit UNC-53.

Candidate positives are tested for the fusionprotein dependence of the reporter gene activation.
The cDNA insert in remaining positive clones is
sequenced. The obtained sequence is screened through
the databases, which provides, especially in the case
of C. elegans clones, significant extra sequence.

Another system also exists for the identification of proteins which bind or modify UNC-53. An UNC-53 protein is bound by conventional techniques to a column. A sample to be tested is then passed over the column. This sample may be fractions from cells from C.elegans, mammals or any other organism. These sample fractions may have been incubated with ³²ATP. In this course the "reaction" of the labelled fraction

10

15

20

25

30

35

with UNC-53 can be determined. If the UNC-53 on the column becomes ³²P phosphorylated then this indicates that the sample fraction contains an UNC-53 modifying protein. Alternatively a constituent of the sample may bind to the UNC-53 and remain bound therewith on the column. The retention of any fraction of the sample on the column and the identification of the fraction can easily be determined by techniques known in the art.

Example 9 describes the identification of sensitive, dependant or resistant mutations as direct tools for the development of screens for compounds with similar or antagonistic activities. Both resistant and sensitising mutations may have a phenotype in the absence of the compound and no or a different phenotype in the presence of the compound. This permits the introduction of action-specificity in the screens.

High throughput screens are a basic feature of C. elegans genetic methodology. Non-complementation screens for new alleles in a locus require setting up of up to 8000 separate worm populations starting from one hand-picked individual each. This is done in 24 well plates or small Petri-plates. These are subsequently (after 1 or 2 generations) visually screened for a complex behavioural phenotype. For pharmacological screens where populations can be started from multiple individuals pipetted from a pool of synchronised eggs, high throughput screens can also be developed. If the endpoint of the assay can be scored in liquid, populations can be set up in microtitreplates. If the end-point is linked to a reporter gene (e.g. β-galactosidase activity) ELISA type colour-metric assays can be used to score the end-point. C. elegans can also be introduced into soils, exposed to compounds and subsequently recovered

THE CONTROL OF THE PROPERTY OF THE SECOND SE

10

15

and assayed. Such endpoints are used in the heat-shock assay developed by Stressgen (Stringham & Candido (1994), Environ. Toxicology and Chemistry, 13(8), 1211-1220).

Gain of function mutants of <u>C. elegans</u> or transgenic <u>C. elegans</u> in which a pathway of interest has been over- or constitutively activated, causing a dominant phenotype which can be used to develop specific screens for inhibitors.

Transgenic lines expressing UNC-53 ectopically under the <u>C. elegans</u> heat-shock (hsp-16) promoter, and body wall muscle (unc-54) promoter have been constructed. These lines lead to dominant phenotypes in development and are used directly to screen a spectrum of compounds. Where necessary or deemed useful endogenous <u>C. elegans</u> genes can be replaced by or complemented with human signal transduction pathways.

20 <u>DEPOSITED CELL LINES AND PLASMIDS</u>

BREAST CARCINOMA

	STRAIN NAME	DATE OF DEPOSIT	LMBP ACCESSION NUMBER
25	pTB54 Plasmid	22 MAY 1995	3296
30	pTB112 Plasmid	22 MAY 1995	3295
	pTB72	22 MAY 1996	3486
35	TB4EX25 Cell Line	22 MAY 1995	1384 CB
	TBAIn76 Cell Line	22 MAY 1995	1385 CB
40	HYBRIDOMA Cell Line	22 MAY 1995	1383 CB
	MCF-7 TRANSFECTED		

25

30

35

	CELL LINE	24 MAY 1996	1550 CB
5	TRANSFECTED N4 NEUROBLASTOMA CELL LINE	24 MAY 1996	1549 CB
10	WILD TYPE MCF-7 BREAST CARCINOMA CELL LINE	24 MAY 1996	1551 CB

The above plasmids and cell-lines were deposited at the Belgian Coordinated Collections of Micro organisms (BCCM) at Laboratorium voor Moleculaire Biologie - Plasmidencollective (LMBP) B-9000, Ghent, Belgium, in accordance with the provisions of the

The present invention will now be described with reference to the following Examples.

Budapest Treaty of 28 April 1977.

Examples

Example 1 - Molecular Characterisation of unc-53 gene in C. elegans Screen for muscle pattern mutants:

C. elegans has two sets of muscles which are suitable to study this problem, the body wall muscles and the sex muscles. The sex muscles are a set of 16 muscle cells (4 muscle types) in the hermaphrodite and 41 cells in the male (10 muscle types) with distinct attachments points on the hypodermis and gonads. The sex muscles develop postembryonically and are not required for viability. The body wall muscles are arranged longitudinally (roughly 2 cells abreast) into four quadrants. At birth there are 81 cells. In postembryonic development, extra muscles interdigitate with these bringing the total number of body wall

10

15

muscles in the hermaphrodite to 95. Head, neck and body muscles can be distinguished within these rows on the basis of their innervation and patterning within the rows.

We have screened 4800 haploid genomes using Nomarski and polarized microscopy for mutants with specific attachment or pattern defects in a subset of the male sex muscles but with wild type body wall muscle pattern and myofilament organization, wild type movement and wild type male bursa anatomy (a sensitive indicator of wild type morphogenesis). Amongst the 21 identified mutants we selected for further study those with specific phenotypes in both the male and hermaphrodite sex muscles. As these muscles lie in different regions of the animals this was thought to reduce the chance that the male tail phenotype is a pleiotropic consequence of changes in regional identity of the tail or defects in male tail hypodermal lineage or morphogenesis.

20

25

30

35

Muscle phenotype of e2432.

Mutant e2432 was isolated on the basis of its phenotype in the male spicule retractor muscles, a pair of bilaterally symmetrical muscles which attach anteriorly to the body wall and posteriorly to the base of the spicules. The spicule retractors of mutant e2432 are shorter than wild type. Their attachment to the spicules is wild type, but their attachment point to the body wall is shifted posteriorly. The spicule protractors sometimes extend processes onto the attachment point of the spicule retractors on the hypodermis, suggesting the defect is not in these attachment points, but rather in the extension of the muscles towards that point. The diagonal muscles are in most specimens wild type but they are occasionally not parallel to one another or are have a dorsal

and the control of th

10

15

20

25

30

35

attachment point that is more ventrally positioned than in wild tye. e2432 males have a nicely shaped fan with the normal pattern of rays, suggesting that the sex muscle defect is not pleiotropic due to defects in the hypodermis.

e2432 hermaphrodites have a reduced ability to lay eggs which is variable from animal to animal. This is due to a muscle pattern defect in the vulval sex muscles. The uterine muscles, 8 muscle cells which circle the hermaphrodite uterus, are wild type in e2432. The vulval muscles are a set of 4 pairs of cells arranged symmetrically in a cross-pattern around the vulval slit. Each pair consists of one vml and one vm2 muscle cell. The vm2 muscles attach to the junction between uterus and vulva and extend anteriorly to attach to the hypodermis in between two muscle cells of the ventral body wall muscle quadrant. In e2432 these muscles are shorter than in wild type small. In e2432 they can only be visualized by laser confocal microscopy (after FITC-phalloidin staining of the myofilaments). This showed that they attached to the uterus as in wild type, but that their attachment to the body wall is ectopic (in a random position lateral of the vulva, usually on the ventral edge of the muscle row). In e2432 vm2 myofilaments are oriented more dorsoventrally than in wild type (where their orientation is essentially in the longitudinal axis of the animal). This phenotype is not due to a defect in the attachment point on the epidermis to which these cells should attach in wild type, since we frequently observe that the vml sex muscles make an apparently wild type attachment to this unoccupied attachment point.

In wild type hermaphrodites, the vml muscle cells attach close to the junction between epidermis and vulva and in the adult extend dorsally and anteriorly

10

15

20

25

30

(under an angle of 45-50 degrees with respect of the vulval slit) to attach to the hypodermis at the dorsal edge of the ventral body wall muscle quadrants. In e2432 the attachment of the vml muscles to the vulva is wild type. With their other end they attach, like wild type vml cells, along the dorsal of the edge of the ventral body wall muscles. However the angle between the vulval slit and the myofilaments of the vml sex muscles is reduced (less than 45 degrees) so that their dorsal attachment point is closer to the vulva than in wild type. The forces acting on the vulva can be separated in an antero-posterior and a dorsal vector. In e2432, the antero-posterior vector of both the vml and vm2 muscle is significantly reduced, leading to a reduced ability to open the vulva upon contraction. Studies in which vulval muscles were ablated individually or in groups suggested that 2 vulval muscle cells of wild type orientation are sufficient for wild type function.

Adult <u>C. elegans</u> hermaphrodites have 95 body wall muscle cells arranged longitudinally (roughly 2 cells abreast) into four quadrants. In wild type cells these cells are spindle shaped.

e2432 adults have body wall muscles with a wild type muscle cell and myofilament pattern, except that cells with interdigitating tips occur more frequently than in wild type. Like the unc-53 phenotype in the male and hermaphrodite sex muscles, this body wall muscle defect, which can also be observed in other guidance and attachment mutants like unc-6 and mups, can also be attributed to a reduced ability to extend "growth cones" otherwise referred to as cell processes in the anterior-posterior axis of the animal.

Position on the genetic map:

e2432 was mapped to the left arm of chromosome II

والأنفي لمرتبع والمرتبع والمتراوي والمتراوين والمرتبي والمراوية والمراوي والمراوي والمراوي والمراوي والمراوي والمراوي

and was found not to complement unc-53(e404). The unc-53 locus was originally identified by Brenner (1974), Genetics, 77, 71-94 as one of the uncoordinated mutants but has received only sporadic attention in general phenotypic surveys of the UNC-collection 5 (Hedgecock et al (1987), Development, 100, 365-382 and Siddiqui (1990), Neurosci. Res. (Suppl) 13, 171-190, in a genome wide screen for egg laying defective mutants (Trent and Horvitz (1983), Genetics, 104, 619-647) and using e2432 as a tool to study the effect of 10 body shape on the pattern of neuronal processes (Hekimi and Kershaw (1993), J. Neuroscience, 13(10) 4254-4271). We initiated a detailed genetic and phenotypic analysis of this locus using the existing available alleles which various colleagues isolated in 15 different screens: The canonical unc-53 allele e404, a strong UNC was isolated by Sydney Brenner. n152, n166 and n1199 have been obtained in screens for egg laying defective mutants. Alleles NJ234 and NJ222 were isolated by Ed Hedgecock in a screen defective in 20 excretory canal outgrowth. As these screens were aimed isolating viable fertile alleles, we isolated additional alleles by pre-complementation screens designed to yield loss of function alleles irrespective of their phenotype. e2432/mnDf90 25 hermaphrodites are egl, weak unc's with a slightly stronger phenotype than e2432. Matings were set up on 3 cm petri dishes between 2 to 3 unc-53(e2432) sqt-1(sc13) /+ males and 2 e2431ts or dpy-6(e14) hermaphrodites mutagenized with EMS in the L4 stage 30 (Brenner, 1974) , Genetics, 77 71-94. The F1 egl, unc-53 like hermaphrodites, which may be unc-53(e2432) sqt-1(sc13)/unc-53(new) were cloned on petri dishes and their offspring examined for the segregation of new unc-53 alleles. In two screens, two unc-53 35 alleles, 5 and 8 were isolated in an estimated 13000

10

15

20

25

30

35

F1 offspring, giving an approx. mutation rate 1/3250 mutagenized chromosomes. Sqt-1(sc13), an allele of sqt-1 that confers a roller phenotype was included because it is closely linked to unc-53 (0.2 m.u.) and marks the original allele e2432. e2431ts, an X-linked ts larval lethal with a mup phenotype was included to eliminate F1 hermaphrodites arising from selfing and F1 males which can mate. In the second screen dpy-6(e14) was included to prevent F1 males from mating with F1 hermaphrodites.

All unc-53 alleles used in this study fail to complement to e2432. Complementation was tested by mating unc-53(e2432) sqt-1(scl3)/+ males to hermaphrodites of the respective alleles. The male sex muscle phenotype described above for e2432 was found to be the only 100% penetrant phenotype in the unc-53 locus (see below) and was the primary phenotype used in complementation tests. Each of these alleles was also complemented to mnDf90 by mating unc-4 mnDf90/mnC1 males to unc-53 homozygotes and temporary unc-53/unc-4 mnDf90 lines were established to evaluate the phenotype. The male and hermaphrodite phenotypes of all alleles over deficiency is identical or slightly, but not substantially stronger than that of the homozygous lines (which is not unusual for a large deficiency).

S. Brenner mapped unc-53 to 2.9 +/- 0.7 map units from dpy-10 (chromosome II). We refined this map position by mapping unc-53 with respect to different deficiencies in the region and doing three factor crosses between unc-4 and sqt-1, a 1.5 map unit interval. Unc-53(e2432)/+ males were mated in unc-4 sqt-1 hermaphrodites. Non-rolling F1 offspring were cloned on petriplates and their broods screened for the segregation of unc-53(e2432). Unc-4 non sqt-1 and sqt-1 non unc-4 hermaphrodites were picked from those

PARTATION PORTURES DE PRESENTACIONES ESTRES EN MARTINIS DE LA CONTRA CONTRA DE LA CONTRA DE LA CONTRA DE LA CO

10

15

20

25

30

35

plates and cloned on petriplates. 6 out of 42 sqt-1 non unc-4 recombinants segregated unc-53 and 3 out of 18 unc-4 non sqt-1 recombinants did not segregate unc-53. This yields a relative position of unc-4 / 51 / unc-53 / 9 / sqt-1. Or a calculated map position for unc-53 on chromosome II, 0.23 map units left of sqt-1.

Unc-53(e2432) was mapped relative to three deficiencies in the region mnDf90 mnDf87 and mnDf77 by mating e2432/+ males to unc-4 Dfx/mnC1 hermaphrodites and scoring for males and hermaphrodites with the unc-53 phenotype in the F1. The experiment was also performed by mating unc-4 mnDfx/mnC1 males to homozygous unc-53. mnDf87 and mnDf90 do not complement unc-53 while mnDf77 complements unc-53. Ooc-3, the only other gene on the genetic map in the region, was found to complement unc-53 in identical crosses between e2432 and unc-4 ooc-3/mnC1. Further mapping of unc-53 relative to RFLPs between wt strains in the region and the molecular cloning confirmed the map position of unc-53 (see below).

Molecular characterization :

We started cloning the unc-53 locus because the study and interpretation of the unc-53 phenotype and the different mutants in the locus would be greatly facilitated by having information on and probes for the unc-53 mRNA and gene product.

At the time we initiated cloning of unc-53, a contig extending between unc-4 and sqt-1 (approx. 1500 kb) had been identified by A. Coulson and J. Sulston (C. elegans genome project LMB Cambridge), with no clone markers in between. To correlate the genetic map with the physical map in this region we positioned cosmids of this contig relative to the deficiencies mnDf77, mnD87 and mnDf90 by comparing band intensities of Southern blots of mnDfx/mnC1 strains probed with

10

15

cosmids throughout the region. Cosmid KO2F7 is deleted in mnDf90 but not deleted in mnDf87 an mnDf77 thus identifying a leftmost location for unc-53. Cosmids W10G4, TO8D11 and F33G3 are in the unc-53 region (not deleted in mnDf77 but deleted in mnDf87 and mnDf90). Cosmid KO4H9 is deleted in mnDf77 and identifies a rightmost location for the gene. The distance between KO2F7 and KO4H9 is approx. 10 cosmids.

To narrow down the position of unc-53 further we looked for restriction fragment length polymorphisms between wild type strains in this interval and identified N2/RC301 RFLPs in cosmids W10G4, F40F8 and F22G3. We mapped these using three factor crosses with the strains unc-53 sqt-1/RC301 and unc-4 unc-53/RC301. We mapped F22G3 and F40F8 between unc-53 and sqt-1 at the following relative distances: unc-4 / 9 / W10G4 / 2 / unc-53 / 1 / F40F8 / 1 / F22G3 / sqt-1.

20

25

30

35

These data localize unc-53 in an interval of approx. 80kb in which more than 15 differently overlapping cosmids are available. Pools of cosmids were injected in unc-53(n152) gonads together with the rol-6 selectable marker. Transient roller lines were established and scored for rescue of the unc-53 phenotype. Cosmid T28D2 was found to rescue the backward movement egg laying phenotypes of allele n152.

A genomic library of N2 in lambda 2001 was screened with T28D2 and flanking overlapping cosmids. These were assayed in pools and individually for transformation rescue. Lambda clone, S4 carrying a sixteen kb insert was shown to give some rescue activity. Using restriction fragments of S4 as a probe, cDNA clones M5 (3.8 kb) and M18 (1-2 kb) were

ARTOGOGIESTOR O ROGERIE OOGSTANDE EEROOFERE OOK. OORDE SIEDE BEGENE OORSELDE LE GEGEROOFE DE DOORGEERDE GEGERO

isolated from a Lamda MGU1 cDNA library. Both M18 and M5 contain an identical 3'-end as judged by restriction fragment analysis. Partial sequence analysis showed that M18 is shorter version of M5. Insert M5 was sequenced on both strands and was found not to be a poly-A tail at its 3'-end but appears not to full length at its 5'-end.

To find the 5' end of the unc-53 transcript we did nested PCR on L2 stage random primed cDNA, between antisense oligos tab2 and tab (43 bp away from the 5' 10 end of cDNA M5) and an oligo to the SL1 trans-spliced leader sequence. This sequence is transspliced to the 5'-end of most C. elegans mRNAs. This yielded at least 6 classes of PCR-fragments which have been subcloned and sequenced. All contain the 43 bp between oligo 15 tab2 and the 5' end of cDNA M5 (bp1281 to 1338). The longest PCR fragment (TB3) extends the sequence of cDNA M5 with 1280 bp. When added to the length of the cDNA M5, this unc-53 transcript which we constructed 20 in vitro and named tb3-M5 would then be 5073 bp long (including some poly-A tail) and have a 1528 AA open reading frame. Recently a 5 kb cDNA, was identified in an embryonic cDNA library which has the TB3-5'-end (including part of the SL1), and the same 3'-end as M5, suggesting that TB3-M5 occurs in vivo. Similar 25 PCR reactions in which the SL1 oligo was replaced by an SL2 transplice oligo gave no reaction products. Preliminary Northern blot analysis identifies a major 5.0 kb transcript and at least 2 smaller transcripts that are expressed in L2, L4 and adult worms. 30 needs to be examined whether the unc-53 5' ends reported here are made in vivo and encode different proteins or whether they represent PCR noise. The smaller PCR-fragments TB1b, TB16, TB1, TB6b and TB22 35 are "nested deletions" of clone TB3 with SL1's at their 5' end. The sequence of each is identical in the

10

15

20

25

regions of overlap. The shorter SL1 transspliced transcripts contain ATGs downstream of the SL1 addition sites at positions 466, 988 and 1324. Comparison to the sequence of genomic clones confirmed that the SL1s are spliced onto intron exon boundaries. However not all intron-exon boundaries receive SL1, suggesting that there is some specificity to this differential trans-splicing.

Recently the <u>C. elegans</u> sequencing consortium has sequenced cosmids F45E10. We mapped cDNA tb3-M5 onto these cosmids and found that unc-53 is an unusually large locus. It has 23 exons spread over more than 31 kb of genomic DNA.

The lambda clone S4 that rescues does not contain the first 430 bp of the unc-53 transcript. This suggests that the ORF between positions 63 and 430 is not essential for transformation rescue. This rescue may derive from expression of transcripts TB6b or TB22 or from "non-specific" initiation of transcription on the extrachromosomal arrays.

Additional confirmation that M5 was derived from the unc-53 transcription unit is provided by the observation that allele n152 has a 300 bp deletion, disrupting the sequence of cDNA M5 and leading to a large (possibly complete) reduction of UNC-53 protein in n152 embryos stained in immunofluorescence with an anti-unc-53 antibody (16-48-2). In addition, allele e2432 was found to carry a 3-4 kb insertion in this transcription unit.

30

35

Sequence homology:

Antibody staining:

The NdeI-EcoRI fragment of cDNA M5, the 47 kd fragment of UNC-53 encoded by the NdeI-EcoRI (position 3187 to 4458 (tb-M5 fig 3) protein sequence

karala karala karan baran baran baran karan berman karan berman berman berman berman berman berman berman berm

- fig 2) was subcloned in the T7 expression vector prk172 (yielding vector TB66 and expressed in E. coli. Inclusion bodies containing recombinant protein were purified, by processes known in the art solubilized in 5 8 M Urea and the recombinant protein purified over a DEAE column equilibrated in 8M urea. Purified protein was mixed with complete Freund's adjuvant and injected in a rabbit and 4 Lou rats. This was followed six weeks later by bi-weekly boosts with antigen mixed with incomplete adjuvant. All sera are active in 10 western blotting at titers of 1:30,000 on Western blots of the 47 kd unc-53 fragment expressed in E.coli. With this western blotting assay, a ratmouse hybridoma cell line was prepared producing a 15 monoclonal antibody to UNC-53. Mab 16-48-2 has the
 - protein G-binding

following properties:

- binding activity on western blots of
- (1) the 47 kd UNC-53 fragment expressed in E. coli,
- 20 (pTB66)
 - (2) the 57 kd carboxyterminal fragment of UNC-53 expressed in <u>E. coli</u> (construct pTB65.)
 - (3) the full length TB3-M5 UNC-53 expressed in E. coli (construct pTB61) and mammalian cells (COS-cells;
- constructs pTB54 and 56).
 - immunoprecipitation of native and SDS denatured full length TB3-M5 UNC-53 construct pTB50 expressed in vitro-transcription translation reactions in reticulocyte lysates.
- immuno-histochemistry in wild-type <u>C. elegans</u> fixed with methanol, acetone or paraformaldehyde and transgenic <u>C. elegans</u> expressing UNC-53 tb3-m5 pTB110, 111 or 112 in epidermis, neurones, gut and muscle.

Mab 16-48-2 fail to detect antigen of the correct 35 size on Western blots of total worm proteins or worm proteins fractioned by progressive extraction with

detergents, urea and SDS.

Excretory canal phenotype :

The excretory canal of C. elegans is a large H-5 shaped cell. It's cell body is positioned ventrally at the level of the pharyngeal bulb and send out two processes dorsally. At the level of the lateral epidermis (seam) each of these bifurcates and extends anteriorly and posteriorly over the seam cells, until they extend over most of the whole body length. It has been reported that in unc-53 the posterior process of the excretory cell does not extend up to the V6/T seam-cell boundary (E. Hedgecock et al., (1987), Development, 100 365-382).

15 We have done an extensive characterization of this phenotype in all alleles listed, either by direct in vivo Nomarski microscopy or UL6 rol6d marked unc-53 strains which express LacZ in the epidermis and excretory cell (Hope(1991) Development 113(2) 399-20 In wild type the excretory cell processes are straight. In unc-53 the canal is often meandering from left to right over the seam before it arrests prematurely, as if it has lost directional cues in its migration. It never leaves the lateral epidermis seam. Both the anterior and posteriorward processes 25 are affected.

In weak unc-53 alleles the posterior excretory canal processes arrest anywhere between the vulval region and the V6/T boundary. We noticed that in even the strongest alleles or in unc-53/Df heterozygotes the canal arrests unusually frequently at or close to the vulva and never substantially before the vulva . We therefore set out to test whether the gonad dependent attractive signal which attracts the sex myoblasts to the gonad also might attract the excretory canal in an unc-53 independent manner to the

North Colon Colon Colon Control Contro

30

10

15

20

25

vulval region. If this is the case we would expect that in a strong unc-53 mutant n152 in which the 2 somatic gonad cells (the source of the signal) have been ablated, the excretory canal migration would be fully arrested. As a control we ablated one germ cell and one somatic gonad cell (Z1 and Z2 or Z2 and Z4). Embryos were ablated in the comma to 2 fold stage and the position of the excretory canal scored double blind in hatched embryos. At the time of ablation, the canal may already have started growing out. hatching, the endpoint of our experiment, the growth cone of the posterior canal process has reached just beyond the gonad. Although these are technically difficult laser ablations, the results show a substantial difference in excretory canal outgrowth between embryo with an ablated somatic gonad and control ablated embryos. In the experimental series the canal usually arrested a significant distance from the gonad or any other potentially damaged cells, suggesting the loss of a long range signal as described for the SM myoblast migration (Thomas et al (1990) and Stern (1991)). In the control series the excretory canal usually extended as far as unablated n152 and into region of the partially ablated gonad. This indicates that the premature arrest observed in the experimental series was not due to encountering a damaged region.

A gonad dependent and independent pathway were found to act redundantly in the posteriorard migration of the sex myoblasts. The data suggest that in wild type the migration of excretory cell growth cones is also guided by a gonad dependent and a gonad independent cue. In both cases the gonad dependent cue acts towards the gonad, but from opposite directions. However the gonad independent signal act anteriorward on the SM myoblasts and posteriorward on

A TO CONTROL OF STANDED TO SERVICE OF THE CONTROL OF SERVICE OF SERVICE OF THE CONTROL OF SERVICE OF THE CONTROL OF THE CONTRO

10

15

20

25

30

35

the posterior excretory cell growth cones. Since single mutants in both the gonad dependent pathway (sem-5) and independent pathway (unc-53) have no excretory cell phenotype these pathways may be redundant in the trajectory up to the gonad. An analogous redundancy has been observed for the sex myoblast migration. In the trajectory between gonad and tail the gonad independent pathway acts in different directions on the SM cells versus the excretory cell. In the excretory cell it acts in both anteriorward and posteriorward migration. A simple explanation which is elaborated in detail below is that unc-53 (like sem-5) may act downstream of a variety of receptors interpreting different cues.

The previously described interaction between the gonad and the sex myoblasts was rationalizable as an interaction between cells due to become part of the same organ. The interaction between the excretory cell and the gonad we report here suggests that the gonad may have a more general role as organizer cell migrations in the embryo. We wish to point out that the described dependent and independent pathways are formal genetic concepts. It is for example possible that in unc-53 embryos or unc-53 embryos in which the gonad dependent pathway has been genetically or laser ablated, as yet to be identified, pathway defining growth cones are misplaced leading indirectly to defective sex myoblast, neuronal (PLM, see below) or excretory canal migration. The observed highly restricted expression of unc-53 is an additional indication of this possibility.

Sex muscle phenotype :

All unc-53 alleles exhibit the sex muscle phenotype described for e2432. We quantified phenotype

a filip in the properties the contract of the contract of the properties of the properties of the contract of

10

in eight alleles:

Young adults grown at 20°C were mounted for polarized light or Nomarski microscopy on 2% agarose pads containing 0.2% phenoxypropanol as described in Sulston and Horvitz (1977) Dev. Biol. 56,110-156 . The vml sex muscles were examined under polarized light with a 40x objective and a Brace Kohler compensator and photographed. In addition, adults were fixed, incubated with fitc-coupled phalloidin and mounted for fluorescence microscopy as described in Goh and Bogaert (1991) Dev. Biol. <u>56</u>, 110-156. The angle between the longitudinal axis of the animal and the central bundle of myofilaments of the anterior and posterior vml was measured from the negatives with a protractor. As the vulva is a transverse slit at a right angle to the cylindrical body axis, the angle between the vml and the vulval slit can be measured independently of which side of the animal faces the observer.

20

25

30

35

15

Neuronal phenotype:

Unc-53 animals move poorly backwards when prodded but has good forward movement (Brenner (1974) Genetics 77 71-94). Various aspects of the neuronal phenotype of unc-53 has been reported in general phenotypic surveys of the UNC-collection (Brenner (1974) Genetics 77 71-94). The posterior branch of the PDE neuron can be abnormal (Hedgecock et al. (1987) Development 100 365-382) and the mechanosensory PLMR & PLML neurons can have commissures into the ventral cord at a position much posterior than in the wild-type. There are also frequently multiple ventralward PLM commissures evenly spaced along the posterior half of the body (Siddiqui (1990) Neurosci. Res. (Suppl) 13 171-190), Hedgecock et al., (1987) Development 100 365-382).

Examples 2 to 5 - Biochemical Analysis of UNC-53

Example 2 - Immunoprecipitations of ³⁵S labelled unc-53 gene products.

5

10

15

20

25

The rat anti-UNC-53 monoclonal antibody, 16-48-2 (obtained from the hybridoma LMBP Accession no. 1383CB) elicited against a 47 kD fragment of the 3' end of UNC-53 from C. elegans was used to immunoprecipitate UNC-53 proteins. experiment, the full length unc-53 construct pTB50 (Fig. 11) was transcribed and translated in vitro in rabbit reticulocyte lysates. The resulting radioactively labelled 35S unc-53 gene products were incubated with the monoclonal antibody under both denaturing (using SDS) and non-denaturing conditions, then incubated with protein G sepharose. The bound products were analysed by SDS-PAGE and fluorography. Monoclonal antibody 16-48-2 recognised both native and SDS denatured radioactive UNC-53 products verifying that the protein translated in vitro was bona fide UNC-53. This result shows that immuno-precipitation is a useful tool in schemes to purify native protein and to identify UNC-53 protein complexes in biochemical experiments.

Example 3 - Actin sedimentation assays (8A
variant).

Besides the N-terminal region of the protein which is similar to actin binding proteins, the predicted protein sequence of UNC-53 identified two putative actin binding sites. The first borders on the 3' end of the region of α-actinin/β-spectrin homology and the second lies in the 3' end of the cDNA sequence. This suggests that UNC-53 could potentially

ന്ന് വായ് പ്രത്യായ സ്വാഹം അന്ത്യായ പ്രത്യായ ത്രായ്ക്ക് അന്ത്യായിലെ അവസ്ഥാര് പ്രത്യാത്ത് വിവ്യാസ് വ്യാസ് വിശ്യാ

10

15

20

25

30

35

bind two actin molecules and via actin cross-linking, stabilise a particular growth cone spike to promote directional extension. Alternatively, the two actin binding sites may serve to anchor UNC-53 (and its shorter gene products) to the microfilament cytoskeleton to then transduce a signal via the NTPase domain to the downstream pathway.

To test the two site model, full length and truncated versions of UNC-53 (pTB50 and pTB52) were transcribed and translated in rabbit reticulocyte lysates for 90 minutes following standard protocols (Promega). To remove insoluble components, the reactions were airfuged for 1 hour at 100,000 x g and the supernatant containing 35S labelled UNC-53 products introduced in actin co-sedimentation assays according to the method of Vancompernolle et al. (1992), EMBO J. 11, 4739-4746. In this procedure, radioactively labelled UNC-53 was incubated with monomeric G-actin in G buffer (2 mM Tris pH 7.5, 0.2 mM CaCl, 0.5 mM βmercaptoethanol, 0.2 mM ATP) for one hour at room temperature. The salt concentration was then increased with F buffer (1 M KCl, 10 mM MgCl₂) to a final concentration of 100 mM to promote polymerisation of G-actin to F-actin. additional one hour incubation, polymerised Factin/protein complexes were pelleted at 100,000 x q in an airfuge, washed with G buffer, resuspended in Laemmli buffer and separated by denaturing SDS-PAGE. The presence of actin in the pellets was confirmed by Coomasie staining while radioactively labelled UNC-53 products were detected by fluorography. Both the full length UNC-53 protein, pTB50, and the truncated construct, pTB52 translated in vitro in rabbit reticulocyte lysates cosedimented with F-actin at starting G-actin concentrations of 50-100 μ g/ml. This suggests that UNC-53 binds to microfilament

15

cytoskeleton. Moreover, deletion of the first putative actin binding site (pTB52) did not eliminate actin binding.

5 <u>Example 4</u> - UNC53 interacts with F-actin cytoskeleton (7A and 8A variant)

Analysis of the predicted protein sequence of UNC-53 identified two putative actin binding sites of the LKK class. The first borders the 3' end of the region of α -actinin/ β -spectrin homology in the amino terminus of the protein while the second lies in the 3' end of the protein sequence upstream of the putative nucleotide binding domain. A single UNC-53 monomer could thus potentially bind and crosslink two actin molecules.

To test whether UNC-53 associates with the actin cytoskeleton, a 7A (pTB72) and 8A version (pTB73) of unc-53 (Figures 25 and 27 respectively) were 20 transcribed and translated in rabbit reticulocyte lysates and the "S labelled products introduced into F-actin co-sedimentation assays (Figure 35a). full length UNC-53 protein (pTB72) translated in vitro cosedimented with F-actin at starting G-actin 25 concentrations of 100 mg/ml (Figure 35b) suggesting that UNC-53 interacts with F-actin. By 250 mg/ml, all of the UNC53 protein co-sedimented with the F-actin pellet. In contrast, no UNC53 was present in the pellet of the control reaction without actin. 30 sedimentation was purely actin dependent. This result also indicated that the in vitro UNC-53 protein remained soluble even after the salt concentration was raised.

Harri relativistici variati in taria relativistici in termina a la compania de la compania de la compania de l

Deletion of the first putative actin binding site

in pTB73 did not eliminate actin binding since the larger pTB73 products, including the largest fragment co-sedimented with F-actin under the identical set of conditions (Figure 35b). However, since the rabbit reticulocyte lysates contain numerous proteins, it is possible that the interaction of UNC-53 with actin may not be direct but rather mediated through another associated protein.

Several smaller radiolabelled protein fragments in the TnT reactions were observed in addition to the 10 predicted protein products. Immunoprecipitation experiments confirmed that these products were UNC53 derived. Most likely they result from additional translational starts at internal methionines, since the identical set of smaller products was observed 15 from reaction to reaction; or from premature termination and proteolytic degradation. Many of these smaller fragments also co-sedimented with F-Since the second predicted actin binding site is within the 3' end of the molecule, truncated 20 proteins that are the result of internal starts would be expected to have this site and to bind actin.

EXPERIMENTAL PROCEDURES:

25 Construction of UNC53 plasmids.

The complete unc53 cDNA was cloned as a 5.1 kb NotI-ApaI cassette in the mammalian expression vector pCDNA3 (Invitrogen) to generate plasmid pTB72, the 7A clone variant. To optimize translational initiation at the first methionine, a mammalian KOZAK consensus sequence was engineered upstream of the start methionine by PCR amplification of DNA coding for the first 139 amino acids of the amino terminus with the

THE SOUND OF SERVICE

30

oligonucleotides BG03 (5'ataagaatgcggccgccatgacgacgtcaaatgtagaattgata-3') and BG02 (5'-cgcggatcctcaaaccgcgggtggcataatggatg-3'). BG03 contains the mammalian KOZAK consensus sequence in addition to a NotI restriction site. 5 pTB73 is a deletion of the first 408 base pairs of the unc53 cDNA contained in the vector Bluescript II-KS. construction removes the first two methionines of the unc53 cDNA sequence such that the first possible start 10 methionine in pTB73 is at amino acid position 165 in the cDNA sequence. In all these constructs, (pTB72, pTB73 and pTB50) the unc53 cDNA is inserted into the multiple cloning site such that the T7 promoter is immediately upstream of the 5' end of the cDNA 15 sequence.

The first 139 amino acids of the UNC53 cDNA were amplified by PCR with oligonuclectides BG01 (5'ggaattccaaccatatgacgacgtcaaatgtagaattgaata-3') and BG02 (5'-cgcggatcctcaaaccgcgggtggcataatggatg-3') to 20 generate a convenient NdeI cloning site immediately upstream of the start methionine. This amplification was cloned as an NdeI-BamHI fragment into the prokaryotic expression vector pRK172 (Godedert M. and Jakes R. (1990), EMBO J. Vol. 9, pp 4225-4230 and McLeod M et al, 1987 EMBO. J. Vcl 6, pp 729-736) to 25 generate construct pTB57. pTB61 contains the PCR derived amino terminus of pTB57 in addition to the 3' end of pTB50. Thus pTB61 contains the identical unc53 8A variant cDNA as in pTB50, but as an NdeI-NcoI 30 fragment in the vector pRK172 for prokaryotic expression.

In vitro transcription/ translation reactions

BETTI PART BATOR FOR PERMANENT, AND REPARTED HER STEEL OF BATOR STEEL FOR STEEL FOR STEEL FOR STEEL FOR A CONTRACT FOR STEEL F

10

15

20

25

30

The UNC53 cDNA constructs pTB72, pTB73 or pTB50 were transcribed and translated for 90' at 30°C in a cell free T7 polymerase expression system in rabbit reticulocyte lysates following the company's protocols (ProMega). Prior to further manipulations, the reactions were centrifuged for 1 hour at 100,000 x g to remove insoluble components. In all subsequent experiments, the supernatant containing the soluble fraction of 35 labelled UNC-53 products was utilized. Actin co-sedimentation assays

Soluble radioactively labelled "S-Met-UNC53 products were introduced in actin co-sedimentation assays according to the method of Vancompernolle et In this procedure, radioactively labelled al. (1992). UNC-53 was incubated with monomeric G-actin in G buffer (2 mM Tris-pH 7.5, 0.2 mM CaCl2, 0.5 mM bmercaptoethanol, 0.2 mM ATP) for one hour at room temperature and then the salt concentration increased with F buffer (1 M KCl, 10 mM MgCl2) to a final concentration of 100 mM to promote polymerization of G-actin to F-actin. After an additional one hour incubation, polymerized F-actin/protein complexes were pelleted at 100,000 x g in an airfuge (Beckman), washed with G buffer, resuspended in Laemmli buffer and separated by denaturing SDS-PAGE. The presence of actin in the pellets was confirmed by Coomasie staining while radioactively labelled UNC-53 products were detected by fluorography. Briefly, after destaining, gels were soaked in 45 c methanol, 7.5 % acetic acid (vol/vol) for 30 minutes, followed by 30 min. in dimethyl sulfoxide (DMSO), and 1 hour in 10 % PPO dissolved in DMSO (wt/vol). The scintillant was precipitated by rehydrating the gels with four five

minute water washes. After drying, gels were exposed to Xray film (Hyperfilm-Amersham).

Immunoprecipitations

To confirm that the radioactively labelled 5 proteins translated in vitro were of UNC53 origin, an anti-rat monoclonal antibody, 16-48-2, elicited against a 47 kD fragment of the 3' end of UNC-53 was used to immunoprecipitate UNC-53 proteins. experiment, the unc-53 construct pTB50 was transcribed 10 and translated in vitro in rabbit reticulocyte lysates. The resulting radioactively labelled 35S UNC-53 gene products were incubated with the monoclonal antibody under both denaturing (0.4% SDS, 2.0% Triton X-100) and non-denaturing conditions for 1 hour at 15 room temperature, then incubated with protein G sepharose for 2 hours at room temperature, the beads washed 3 times with PBS and the bound products analyzed by SDS-PAGE and fluorography. Monoclonal antibody 16-48-2 recognized both native and denatured 20 radioactive UNC-53 products. As a control, a reaction without monoclonal antibody 16-48-2 was treated identically.

25 Example 5 - Interaction of UNC-53 with SEM-5/GRB-2

The observation that certain alleles of UNC-53 enhance the sex myoblast migration defect of sem-5 mutants is difficult to interpret. While the genetics suggests that UNC-53 and SEM-5 cooperate to regulate sex myoblast migration, it is unclear whether this is the result of a direct molecular interaction. To answer this question, two types of biochemical experiments were used to determine if UNC-53

30

10

15

20

25

30

35

physically interacts with SEM-5. In the first experiment, radioactively labelled 35S UNC-53, synthesised in reticulocyte lysates, was incubated with SEM-5/GST (glutathione-S-transferase) fusion protein bound to glutathione resin or with GST protein bound to glutathione resin. After incubation, the beads were washed and the bound proteins analysed by SDS-PAGE and fluorography. This demonstrated that UNC-53 made in vitro specifically bound to the SEM-5/GST fusion protein resin. The GST fusion proteins have been previously described. Purification of GSTfusion proteins was facilitated by using a commercially available kit (Pharmacia). All purification methods followed the manufacturer's protocols.

To further characterise the nature of the interaction with SEM-5, a second experiment utilised Western blot overlays. UNC-53 fusion proteins were expressed in E.coli and the denatured protein lysates separated by SDS-PAGE and blotted to Immobilon-P nylon membrane (Milipore). Blots were incubated with biotin labelled SEM-5/GST, GRB-2/GST or GST protein, washed and bound multi-protein biotinylated complexes detected by probing with an avidin-alkaline phosphatase conjugate. The results from this experiment demonstrated that SEM-5 and its mammalian homologue GRB2 can interact with UNC-53 in vitro. Binding was observed in induced cell lysates only and probing with the UNC-53 monoclonal antibody 16-48-2 detected the identical sets of products. In addition, only the full length UNC-53 fusion, pTB61 (Fig. 7), which contained the SH3 binding sites gave a positive result (pTB52 was not tested) No signal was detectable for either of the SH3 binding site minus fusion proteins, pTB57 (Fig. 11) or pTB65 (Fig. 11). This provides supportive evidence that the polyproline

10

15

20

25

30

repeats of the UNC-53 directly bind to the SH3 domains of SEM-5. Moreover, these results show that a SEM-5 or GRB-2/GST glutathione resin may be used in schemes to affinity purify native UNC-53 from tissue culture cells or nematodes or other organism extracts.

Detailed Methodology

Radioactively labelled **S UNC-53 synthesized in reticulocyte lysates was incubated with SEM-5/GST (glutathione-S-transferase) fusion protein bound to glutathione resin or with GST protein alone bound to glutathione resin for one hour at 20°C. After incubation, the beads were washed four times with Phosphate Buffered Saline (PBS)/Triton X-100 (0.2%) and the bound proteins analyzed by SDS-PAGE and fluorography. The SEM5 and GRB2 GST fusions have been previously described (Lowenstein et al., 1992; Stern et al., 1993). Purification of GST-fusion proteins was facilitated using a commercially available kit (Pharmacia). All purification methods followed the company protocols.

Western blot overlays

Approximately 500-1000 mg each of purified GRB2-GST protein or GST protein were biotin labelled by the following procedure. After overnight dialysis in PBS at 4°C, 1 M Hepes, pH7.4, was added to a final concentration of 100 mM and 50-100 mg of biotinylation reagent, dissolved in dimethyl sulfoxide, and the mixture incubated at 20°C for 90 minutes. The biotinylation reaction was stopped by the addition of 1 M Tris, pH7.4 to a final concentration of 100 mM and the labelled proteins stored on ice.

The UNC-53 construct pTB61 was expressed in E. coli strain BL21 (DE3), and the denatured protein

ENGLES EL ARTUR EN ENCORDE CONTROL EN CONTROL EN CONTROL CONTR

10

15

30

35

lysate separated by SDS-PAGE and electroblotted to Immobilon-P nylon membrane (Millipore). Membranes were blocked with 1 % skim milk powder in TBS-T (20 mM Tris, pH7.6; 0.14 M NaCl; 0.1% Tween-20) for 1 hour at 37°C. Subsequently, membranes were incubated in equimolar amounts of either biotin labelled GRB-2/GST or biotin labelled GST protein for 1 hour at 20°C, washed 4 x with TBS-T and bound multi-protein biotinylated complexes detected by probing for 1 hour at 20°C with an avidin-alkaline phosphatase conjugate (dilution 1:5000). Biotinylated protein conjugate complexes were visualized with a chromogenic solution containing bromochloroindolyl phosphate (BCIP)/nitro blue tetrazolium (NBT) in 100 mM Tris(pH 9.5), 100 mM NaCl, 5 mM MgCl2. Development was terminated with 10 mM Tris (pH8.0), 1 mM EDTA.

Example 6 - Transgenic Analysis

To further our understanding of the function of unc-53 we developed an <u>in vivo</u> assay to test gene fusions generated <u>in vitro</u>. Nematode expression vectors containing the full length unc-53 cDNA, TB3M5, downstream of various tissue specific and inducible promoters were constructed.

The mec-7 promoter of pTB112 (Fig. 7) confers tissue specific expression to the mechanosensory neurons, the unc-54 promoter of pTB111 (Fig. 7) confers tissue specific expression to body wall muscle and the hsp16-41 promoter of pTB109 (Fig. 7) confers and pTB110 (Fig. 7) confers heat inducible expression to somatic cells. pTB109 is a transcriptional fusion containing only the hsp16-41 gene promoter and has been shown to confer high levels of inducible expression in embryos. pTB110 contains a larger

10

15

20

25

30

portion of the hsp16-41/2 intergenic region in addition to a synthetic intron. This plasmid is expected to be highly inducible in embryos and postembryonic stages in most somatic cell types.

Oocytes of both wild type (N2) and unc-53(n152) hermaphrodites were microinjected according to the method of Fire (1986), EMBO J., 5, 2673-2680. Coinjection of the unc-53 fusion with a selection plasmid, pRF4, a dominant marker of rol-6, allowed identification of transgenic animals by their right rolling phenotype (Mello et al, (1991), EMBO J., 10, In C. elegans, the injected DNA does not integrate into the genome but rather forms extrachromosomal arrays which are heritable at a frequency ranging from 20-95% (Stinchcomb et al, (1985), Mol. Cell. Biol., 5, 3483-3496; Fire et al, (1990), Gene, 93, 189-198; Mello et al, (1991), EMBO J., 10, 3959-3970. Transgenic extrachromosomal lines were considered stable after the rolling phenotype had passed through four generations. Some transgenic HSunc-53 strains were mutagenised with 3550 rads of y rays emanating from a 60Co source which produces breaks in the chromosomes allowing for insertion of the extrachromosomal array. Stable integrants were identified by screening for homozygous rolling F3 The names and genotypes of all transgenic strains are listed in Table 1 with details of the unc-53 fusions (constructs/vectors) listed in Table 2:

Table 1 - Extend in other constructs

STRAIN	PARENTAL	unc53		lacZ
NAME	STRAIN	FUSION	SELECTION	MARKER
TB3In54	n152	pTB109	pRF4	UL6
TBAIn8	N2	pTB110	pRF4	pPCZ1

DOS ABOTO, DATA A CARA DE SANTE DE PORTE DE LA PARTE DE LA MARTE A POPRA DA COMPANSA DE PROPERTIE DE PROPERTI DE PROPERTIE DE PROPERTIE DE PROPERTIE DE PROPERTIE DE PROPERTIE

				·	
	TBAIn61	N2	pTB110	pRF4	pPCZ1
	TBAIn69	N2	pTB110	pRF4	pPCZ1
	TBAIn76	N2	pTB110	pRF4	pPCZ1
_	Accession		·	÷	
5	No 1385CB (See Fig				
	17A)				
	TBAIn90	N2	pTB110	pRF4	pPCZ1
	TBAIn210	N2	рТВ110	pRF4	pPCZ1
10	TBAIn222	N2	рТВ110	pRF4	pPCZ1
	TBAIn306	N2	pTB110	pRF4	pPCZ1
	TBAIn327	N2	pTB110	pRF4	pPCZ1
	TBBIn3	N2	pTB110	pRF4	pPCZ1
	TBBIn267	N2	pTB110	pRF4	pPCZ1
15	TB1Ex10	n152	pTB112	pRF4	none
	TB1Ex23	n152	pTB112	pRF4	none
	TB1Ex8	N2	pTB112	pRF4	none
	TB1Ex16	. N2	pTB112	pRF4	none
	TB2Ex1	N2	pTB112	pRF4	none
20	TB2Ex37	N2	pTB112	pRF4	none
	TB3Ex10	N2	pTB112	pRF4	none
	TB3Ex12	N2	pTB112	pRF4	none
	TB3Ex20	N2	pTB112	pRF4	none
	TB3Ex37	N2	pTB112	pRF4	none
25	TB4Ex14	N2	pTB112	pRF4	none
	TB4Ex18	N2	pTB112	pRF4	none
	TB4Ex22	N2	pTB112	pRF4	none
·	TB4Ex25	N2	pTB112	pRF4	none
2.0	Accession				
30	No LMBP 1384CB (See			1	
	Fig 16)			,	
	TB1Ex3	n152	pTB111	pRF4	none

TB1Ex6	n152	pTB111	pRF4	none
(See Fig 17B, C)				
TB1Ex11	n152	pTB111	pRF4	none

Notes for Table 1:

Ex-extrachromosomal

In-integrated

pTB109, pTB110-Heat shock unc-53 fusions

10 pTB111-mec-7 fusion

pTB112-unc-54 fusion

pRF4-rol-6 (sul006) (Mello et al, (1991), EMBO J., 5,

3959-3970)

UL6-excretory canal promoter lacZ fusion

pPCZ1-Hsp16-48/1 lacZ fusion (Stringham et al, (1992)

Molec.Biol.Cell <u>3</u>, 221-233)

Table 2

Full length cDNA tb3M5 (still has SL1 and 5' UTR) 20 (NotI-ApaI fragment in Bluescript II-KS, for pTB50 in vitro transcription) (NotI-ApaI fragment in Bluescript II-SK, for pTB51 in vitro transcription) (NotI-ApaI fragment in pCDNA3, for mammalian 25 pTB54 expression) (Deposited as accession no. LMBP3296) (NotI-ApaI fragment in hsp16-pucBM21, for in pTB109 vivo expression) (NotI-Apa fragment in pGEM5 +) 30 pTB67

PCR1 of amino terminus of cDNA

(*PCR using oligos BG01 and BG02)

pTB57 (NdeI-BamHI fragment in pRK172, for E. coli

TO THE PERSON OF THE PERSON OF

35 expression)

pTB58 (NdeI-NcoI fragment in pGEM5)

	pTB63	(SacI-NcoI fragment in pRSETA, for E. coli
		expression)
	pTB64	(BamHI fragment in pBluescriptII-KS)
5	Full leng	th cDNA utilizing PCR1 amino terminus
	pTB61	(Ndel-Ncol fragment in pRK172, for E. coli
		expression)
	pTB110	(XbaI-KpnI fragment in pPD49.83, for <u>in vivo</u> expression)
10	pTB111	(XbaI-KpnI fragment in pPD52.102, for <u>in</u>
		<u>vivo</u> expression)
	pTB112	(XbaI-KpnI fragment in pPD30.38, for <u>in vivo</u>
	-	expression)
		(Deposited as accession no. LMBP3295)
15		
	PCR2 of a	mino terminus of cDNA
	(*PCR usi	ng oligos BG03 and BG01)
	pTB59	(NotI-BamHI fragment in pBluescript II-KS)
	pTB60	(NotI-XhoI fragment in pCDNA3, for mammalian
20		expression)
		th cDNA utilizing PCR2 amino terminus
	pTB55	(NotI-EaeI fragment in pBluescriptII-KS)
	pTB56	(NotI-ApaI fragment in pCDNA3, for mammalian
25		expression)
	Other con	etruate
	pTB52	(SacII deletion of amino terminus of pTB50)
	pTB52	(SacII deletion of amino terminus of pTB51)
30	pTB62	(Smal fragment of pTB52 in pGEX2T, for
30	PIBOL	prokaryotic expression)
	pTB65	(NdeI-NcoI fragment of 3' terminus in
	F -200	pRK172, for prokaryotic expression)
	p T B66	(NdeI-EcoRI fragment of 3' terminus in
35	•	pRK172, for prokaryotic expression, MAB 16-
		48-2)

10

15

20

25

30

35

Initially, the phenotype of each transgenic line was characterised by inspection with a dissecting microscope and/or Nomarski optics. Transgenic strains were directly analysed for expression of unc-53 by immunohistochemistry. Briefly, embryos were adhered to polylysine coated slides and permeabilised by a combination of freeze fracturing and immersion in cold methanol and acetone (3-4 minutes each). Embryos were rehydrated through an acetone/distilled water series and then incubated for 30 minutes at room temperature in TBS-Tween (0.1%). The anti-UNC-53 monoclonal 16-48-2 anti-sera was applied undiluted and the slides incubated at 4°C overnight. The embryos were washed three times with TBS-T and then incubated in a secondary rhodamine like (Cy3-M)conjugated antibody for 1 hour at 37°C. After 3-4 washed in TBS-T the slides were mounted for fluorescence microscopy in 2% propylgallate, 80% glycerol-pH 8.0.

Characterisation of transgenic strains carrying pTB112

UNC-53 was over-expressed in the muscle of wild type animals (pTB112 in N2). Each extrachromosomal pTB112/N2 line consisted of wild type and rolling animals as expected, but in addition, several mutant phenotypes were observed at low frequency. These animals varied considerably in phenotype and included embryos which arrested at the two fold stage, larvae which hatched but died soon afterward, animals with extra protrusions on the epidermis and animals with a truncated posterior end. This phenotype is consistent with that of the mup or mua classes of muscle mutants in which the positioning and/or integrity of muscle attachments to the hypodermis has been disrupted. Most of these animals were either inviable or sterile. The progeny of the viable mutants contained the same

and had and the light to the transfer of the

10

15

20

25

30

35

frequency of rollers, wild type and mutants as did the progeny of rolling individuals. Since the extrachromosomal array may be lost at each cell division, every animal is a mosaic. The healthy rollers may have lost the transgene from most muscle cells and may represent weak phenotypes whereas the 2 fold arrests represent the situation where the array has been lost from few muscle cells. Nomarski and polarised light microscopy of the severe larval lethals showed that the muscle cells were disorganised and over-extended.

Detailed analysis of the underlying defect in embryonic development that leads to this terminal phenotype were performed with immunofluorescence microscopy (Fig 21).

Since the unc-54 gene encodes the myosin heavy chain, we expected that this promoter would be active in body muscle descendants from the comma stage In the unc-54 - unc-53 strains, signal was indeed localised to the body muscle cells in comma and later stages as predicted. The immunofluorescence was localised to the cytoplasm of the cell bodies and was particularly intense at the tips of the extending processes. Increased process length was observed very early in muscle development (comma to 1.5 fold stage) and increased up to the three fold stage. No other abnormalities in shape or muscle myofilament pattern were observed in the anterior-posterior axis of the Two and three fold embryos which were stained with the monoclonal antibody NE8(4c6.3) (Goh and Bogaert, (1991), Dev. Biol. <u>56</u>, 110-156) appeared to have a relatively wild type myofilament structure. these animals are mosaic, it may be possible that severe cases die in late morphogenesis and those which survive through embryogenesis to adulthood can tolerate a few distorted muscle cells.

pTB111 transgenic lines

Immunostains indicates that the transgene is expressed efficiently in the mechanosensory neurons of a transgenic extrachromosomal line carrying the pTB111 transgene in an unc-53 (n152) genetic background (Fig 20).

pTB109 and pTB110 lines

10

15

20

25

30

35

5

Twelve integrated lines derived from three separate mutageneses of extrachromosomal lines have been isolated. TB3In54 carries the pTB109 fusion in addition to pRF4. Nine TBA strains were isolated after mutagenesis of an extrachromosomal strain, HSA. There are two strains (TBB) derived from mutagenesis of the extrachromosomal strain HS B. Both TBA and TBB strains contain the transgenes pTB110, pPCZ1 and pRF4. Inclusion of the HS-lacZ plasmid, pPCZ1 (Stringham et al, (1992), Molec.Bio.Cell 3, 221-233) allows one to monitor the strength of the heat shock induction by assaying for β-galactosidase activity.

Immunostains of embryos freeze fractured after a two hour heat shock showed that the signal was most prominent in the pharynx, gut and neurons.

Surprisingly, the signal had a speckled appearance.

This may be a feature of heat shock. Heat shock proteins may sequester UNC-53 to "chaperone" it during stress. Alternatively, UNC-53 may be targeted for degradation. In one experiment, embryos were heat shocked for two hours, allowed to recover overnight and then freeze fractured the next morning. While levels were reduced, there was a little residual UNC-53 signal in the gut cells. Thus, about 16 hours later most the protein has gone.

Level of heat shock and recovery times are

PROPERTY OF A STORM OF PROPERTY OF A STORM OF STORM OF STORM OF A STORM OF A

10

15

20

therefore important factors in the mutant rescue experiments and the preferred assay system described in example 10. In addition, experiments suggest that heat shock induction in liquid culture versus agar plates or dry incubators versus water baths need careful calibration.

After a strong three hour heat shock, a high percentage of animals were not able to recover from the stress. Embryos which were not subjected to a double shock (2-two hour heat shocks at 33°C separated by a two-hour recovery) hatch out as malformed worms reminiscent of the muscle overexpression lines (Fig 21). The heat shock promoter used is especially active in the pharynx. Consistent with this, a strong pharyngeal morphogenetic phenotype was observed (Fig 21). Pharyngeal phenotypes are easy to score and quantify (feeding rate, dye uptake, Lac2 lines staining the pharynx) by anyone skilled in the C. elegans field and may form a preferred embodiment of the assay.

Example 7

Over-expression of UNC-53 results in directional over-extension: Assay with 7A variant.

25

30

35

In wild type *C. elegans*, body muscle cells are normally spindle shaped while in UNC53 mutants, a number of these cells have a reduced process which results in a fork shaped tip. This phenotype is consistent with the general reduction of extension observed in many growth cone types along the longitudinal axis of the animal in unc-53 mutants. Recalling the extremely limited pattern of UNC53 expression in embryogenesis detected by immunostaining with monoclonal antibody 16-48-2; no UNC53 activity was

discernable in wild type body muscle cells during outgrowth suggesting that the levels of UNC53 activity required for this extension may be extremely low.

We overexpressed unc-53 in the muscle of wild 5 type animals by expressing the full length cDNA under the control of the unc-54 myosin heavy chain promoter in the fusion pTB113. Plasmid pTB113 is a translational fusion containing the 7A variant unc-53 cDNA sequence as an XbaI-KpnI fragment starting from 10 the first methionine and including the unc-53 poly adenylation tail under control of the myosin heavy chain unc-54 promoter of the nematode expression vector pPD30.38 available on Internet web site ftp archive: ciwl, ciwemb.edu. Plasmid pTB114 contains 15 the identical cDNA fragment under control of the hsp16-41 -2 promoter (Jones et al., 1995, Dev. Biol. VOL. 171, PAGES 60-72) which confers heat inducible expression to somatic cells, in the expression vector pPD 49.83 (Fire, pers. comm.) The amino terminus of 20 the UNC53 cDNA is identical to the PCR amplification with BG01 and BG02 of pTB57. Thus, both pTB113 and pTB114 are in frame translational fusions devoid of the SL1 leader sequence and upstream untranslated region of the cDNA.

25 Each transgenic mosaic line (3 were examined)
consisted of wild type and rolling animals as
expected, but in addition, several mutant phenotypes
were observed at a low frequency. These animals varied
considerably in phenotype and included, embryos which
arrested at the two fold stage, larvae which hatched
but died soon afterwards, animals with extra
protrusions on the epidermis and animals with a
truncated posterior end. Most of these latter animals

10

15

20

25

30

were either inviable or sterile. The progeny of the viable mutants contained the same frequency of rollers, wild type and mutants as did the progeny of rolling individuals. Since the extrachromosomal array may be lost at each cell division, every animal is a The healthy rollers may have lost the transgene from most muscle cells and may represent weak phenotypes whereas the 2 fold arrests represent the situation where the array has been retained in most muscle cells. The truncated posterior end may be the result of lethality in the D lineage due to Nomarski and polarized light microscopy of the severe larval lethals showed that the muscle cells were disorganized and over-extended in the longitudinal axis. In some cases the muscle cells appeared detached from the hypodermis. animals are mosaic, it may be possible that severe cases die early in morphogenesis whereas those which survive through embryogenesis to adulthood can tolerate a few distorted muscle cells.

In transgenic pTBl13 strains, UNC53 expression, as detected by immunostaining with monoclonal antibody 16-48-2, was localized to the body muscle cells in comma and later stages as predicted for the UNC-53 promoter (myosin heavy chain). The pattern of immunofluoresence with the anti UNC-53 antibody was localized to the cytoplasm of the cell bodies and was particularly intense at the tips of the extending processes and in the cytoskeleton, when compared to phalloidin staining which specifically stains the actin cytoskeleton. The identical pattern of subcellular localization, in the cytoplasm and cytoskeleton, was also observed in the intestinal

10

15

20

25

cells of pTB114 transgenic embryos expressing UNC-53 ectopically after heat shock.

In addition, the growth cone processes appeared to be overextended specifically in the anterior-posterior axis of the animal. To verify this, the length of body muscle cells over-expressing the UNC53 cDNA in the pTB113 strains were measured and compared to the length of wild-type muscle growth cones expressing an unc-54 promoter-GFP (green fluorescent protein) fusion, pPD49.83 (available on Internet Web Ste Ftp archive: ciwl. ciwemb.edu. The GFP reporter allowed visualization of the entire cell body and boundaries of the muscle cells in wild-type animals. We estimated that the processes of the pTB113 expressing cells were roughly 15 times the length of pPD49.83 expressing wild type cells.

The lethality in the transgenic progeny of the three pTB113 strains examined ranged from 32% to 78%. Thus a significant proportion of the transformed mosaic progeny did not survive morphogenesis. In contrast, no lethality was observed in the pPD93.48 (unc-54-GFP) control strains. The lethality observed in the pTB113 lines is likely the consequence of overextension of muscle cells during embryogenesis because (a) both pTB113 and pPD93.48 utilize the identical promoter and should be expressed in the same cells at the same point in development, and (b) rol-6 selection was used to identify transformants for both constructs.

30

Example 8

Transient and stable transfection of UNC-53 in N4 neuroblastoma cells.

10

15

25

30

pTB72 and a plasmid expressing LacZ under the CMV promoter were transfected transiently with the Caphosphate method in N4 neuroblastoma cells.

N4 cells and their stably transfected counterparts were grown in Minimum Essential Medium (MEM)-REGA 3 (GIBCO BRL) supplemented with 10% Foetal Calf Serum, 1% L-Glutamine, 2% Sodium Bicarbonate, 200 units/ml penicilline and 200 μ g/ml Streptomycine, in a humidified atmosphere of 90% air and 10% CO₂ at 37%C. Transfections were performed by the Lipofectamine method (GIBCO BRL). 18 to 24 hrs before transfection cells were seeded in complete growth medium at a density of 7×10^5 per well in a six well tissue culture plate, and incubated at 37% C in a CO₂ incubator. For each transfection the following solutions were prepared.: SolA = 4 μ g of DNA diluted in 200 ul of Optimem (GIBCO

SolA = 4 μ g of DNA diluted in 200 ul of Optimem (GIBCO BRL)

SolB = 12 ul of Lipofectamine reagent diluted in 200
ul of Optimem (GIBCO BRL)
Solutions A and B were combined, gently mixed and incubated at room temperature for 30 minutes. For each transfection 0.6 ml of Optimem was added to the lipid-DNA complex to reach the final volume of 1 ml.

This mixture was then added onto the cells (which had been previously rinsed once with 2 ml of Optimem). The cells were incubated in the transfection mixture for 5 hrs at 37C in a CO2 incubator. At the beginning of the sixth hour from transfection, 1 ml of complete growth medium supplemented with 20% of Foetal calf serum was added to the transfected cells. The cells were incubated for 18 hrs at 37C in a CO2 incubator. 24 hrs following the beginning of transfection the supernatans was replaced with fresh growth medium.

72hrs post transfection cell cultures from each well were harvested, diluted 1:24 and distributed over 24

well plates with the growth medium containing 500, 750 ug/ml or lmg/ml of geneticin (G418, GIBCO BRL). After ~12 days from the start of selection, single clones were picked and allowed to grow in the absence of selection. Of 27 initial clones, 7 were lost while expanding the clones because of their slow growth rate and the apparent general toxicity of caused by the transfected construct. Clone 9 was selected for further analysis.

10

15

5

Functional assay for neurite extension in N4 neuroblastoma

Step (1): Quantitative determination of neuronal morphology, i.e. length of neurites and fraction of positive cells is performed fully automatically. As an example we studied the degree of morphological differentiation in the wild-type N4 cells to a stably transfected C9 clone.

20

25

30

35

Step (2): Quantitative neuronal morphology

그 사람들은 이 사람들은 중에 작업하다면서 수 이렇게 하는 아이들이 얼굴이 들어 들어 가장 사용을 가득하는 수 없었다.

Morphological changes of neurones were quantitated as described in GEERTS et al (1992 Restorative Neurology and Neuroscience 4: 21-32 and Katsuhito et al Neurodegeration, 2: 173-181). Briefly, at appropriate times, glutaraldehyde was applied to cell cultures. No washing steps were performed. This ensured that the morphology of the cells at that time point was frozen. The cells were observed in transmitted light mode on an Axiovert microscope, equipped with a Marzhauser scanning stage driven by an Indy workstation (Silicon graphics). Images were captured using a MC5 video camera (HCS). About 3000 cells were detected in 64 neatly aligned images, forming a 8x8 square matrix of images. exact alignment of the images ensured that neurites

20

25

30

35

could be followed from one image field to the next. The analysis software automatically detected cell bodies and neurites and saved cell body size and length of each individual neurite on a file. Different parameters were subsequently calculated. 5 The neurite length per cell was calculated on freely lying cells (not within a cluster). The fraction positive cells is the fraction of cells having at least one neurite with a length exceeding twice the cell body diameter. Figure 40 clearly shows that clone C9 increases both neurite length (free length) and fraction of positive cells, compared to wild-type N4 cells clone.

15 Example 9

Transient and stable transfection of UNC-53 in MCF-7 breast carcinoma cells.

pTB72 and a plasmid expressing Lac Z under the CMV promoter where transfected transiently with the Ca-phosphate method in MCF-7 breast carcinoma cells.

MCF7 cells and their stably transfected counterparts were grown in Dulbecco's Modified Eagle's Medium (DMEM, GIBCO BRL) supplemented with 10% foetal Calf Serum, 1% L-Glutamine, 1% of a 5mg/ml stock of Gentamicine and 1% of a 100mM stock of Sodium Pyruvate in an humidified atmosphere of 90% air and 10% CO2 at 37 C. Construct pTB72 was transfected by the Calciumphosphate method (ref): 18-24hrs before transfection. cells were seeded at a density of 3x105 in a six well tissue culture plate with complete growth medium. Two hours before transfection the culture medium was removed and replaced with 1.8 ml of fresh medium. The cells were put back in the incubator until the moment of transfection. DNA-Ca, (PO4), precipitates were prepared one hour before transfection : For each transfection (1 well): 4 ug of DNA (=3-4 ul) was

combined with 76 ul of TE (Tris HCl-EDTA pH 8) 0.1M to a final volume of 80 ul. To these DNA's diluted in TE, 20 ul of CaCl, Hepes solution was added to a final volume of 100 ul of DNA/CaCl, mixture. The 100 ul of DNA/CaCl, mixture was added very slowly, drop-by-drop to 100ul of 2x BS/Hepes while shaking, to a final volume of 200 ul. The resulting 200 ul DNA/Calcium Phosphate mixture was added to the cells and the mixture incubated for 8 hrs at 37 C in a CO, incubator. At the beginning of the ninth hour from the 10 start of transfection, the supernatans with the DNA/Calcium phosphate mixture was replaced with 3 ml of complete culture medium. 72hrs post transfection, cells from each well were harvested, split1:24 in complete growth medium supplemented with 1mg/ml of 15 Geneticin (G418, GIBCO-BRL) and plated out in 24 well plates. 15 days from the start of selection, single clones where picked and allowed to grow without selection. Three clones MCF7-pTB72-clone9, MCF7-pTB72-20 14 and MCF7-pTB72-15 were retained all of which have a similar phenotype.

1) Phenotyping UNC-53 transfected MCF-7 breast carcinoma cells:

The general morphology and motile behaviour of the three transfected MCF-7 clones are different from non-transfected cells.

The assay consists of a tyramide amplification of a classical immunofluorescent reaction. The cells were grown in defined medium with 10% charcoal treated serum and supplemented by 10 μ g/ml insulin (final concentration) and 5 ng/ml basic fibroblast growth factor (final concentration). The substrate consisted of 50 μ g/ml poly-L-lysine in chamber slides; cultures were maintained in a humidified atmosphere of 95/5% air/CO₂.

STEEDS BOOK TO THE A RESEARCH WAS A RELEASE A RELEASE OF THE RESEARCH AND THE RESEARCH AND THE RESEARCH AND A

25

30

10

Inductin of expression of vimentin and of increased levels of fosfotyrosine was found in the transfected subclones. Vimentin formed dense clusters around the cell nucleus with some filamentous structures in the pseudo-podes. Fosfotyrosine, on the other hand, was predominantly found at the border of the cell ruffles, at the same subcellular area where UNC53 expression was found. This provides evidence of a controlling molecule functioning in a signal transduction pathway and that vimentin is an indicator of metastasis in cancerous cell lines.

2) Functional assay to establish the signal transduction role of UNC-53.

15 Cells locomote in tissues and on substrates. The type and amount of cell locomotion depends on different factors: (1) the physiological conditions perceived through receptors, which can be - for example - stimulation with or deprivation of serum, 20 growth factor(s), cytokine(s), chemokine(s) or (pro-) inflammatory mediators; (2) the type and functionality of cell adhesion molecules expressed by cells and extracellular matrix molecules present in tissue or in culture model, (3) the actin, tubulin and/or intermediate filament cytoskeleton and (4) proper 25 functioning of integrator proteins such as UNC-53, homologues or other molecules that translate physiological stimuli (or lack of stimuli) into increased or decreased cell motility, directional or 30 random motility or different types of motility. locomotion can be measured in different types of assays, such as disperse cells or in monolayer cultures, as cellular outgrowth from tissues in culture or in organotype cultures. Motility of live 35 cells can be quantified microscopically as in example 8 or by time-lapse video or cinematography or by

10

15

25

30

35

phagokinetic assays (Albrecht-Buehler, 1977, Cell, 11:395) amongst other methods.

Cell motility assays are interesting tools to study the functioning and pharmacology of UNC-53 and the unc-53 pathway.

All previous observations were performed on MCF-7 cells grown in defined medium supplemented by 10 μ g/ml insulin (final concentration) and 5ng/ml basic fibroblast growth factor (final concentration). This approach offers the possibility of investigating the role of FGF in the UNC53 role of signal transmission. Indeed, by comparing wild-type versus UNC53 transfected cells cultured in medium with or without FGF/insulin and/or by microinjection of UNC53 protein, it can be investigated if UNC53 is responsible directly for regulating a signal transduction pathway linking extracellular growth factors to the assembly of, amongst others, focal adhesions.

20 <u>Example 10</u>: Enhanced phagokinesis in Ce-unc-53 transfected MCF-7 cells.

In this example evidence is presented that transfection of a plasmid containing the Ce-unc-53 sequence under a suitable promoter enhances cell motility in the phagokinesis assay.

When culture plastics are coated with colloidal gold particles, a variety of cells types were shown to migrate over the plate and displace or phagocytose the gold lawn on their way while locomoting. The track left bare is a qualitative and quantitative measure of cell motility and/or locomotion. The basic methods have been described in detail elsewhere (Albrecht-Buehler, 1977, Cell, 11:395; Zetter, 1980, Nature, 285:41; O'Keefe et al., 1983, J. Invest. Dermatol., 85:130).

10

15

<u>Methods</u>

12 well plates were coated for 15 minutes with 5 μ g/ml gelatin in water and gold coated as described by Albrecht-Bueller (1977). Ce-unc-53 transfected MCF-7 cells and the parent MCF-7 were cultured in parallel, trypsinised dispersed in culture medium and seeded in 12-well plates at a density of 2550 cells per well. The cells were allowed to adhere to the plate and to locomote for 16 hours. After incubation the cells were chemically fixed to the plate using paraformaldehyde, washed with distilled water and finally air-dried.

Subsequently, images of the gold lawns were captured using automated videomicroscopy, composite images of the wells were generated and single-cell phagokinetic tracks were measured using a home-made routine in SCILTM software.

Results

20 The parent MCF-7 line displayed two cell populations with different motile behaviour in phagokinesis assays. In table 3 the fraction of parent and Ce-unc-53 transfected MCF-7 cells that produced linear tracks in the phagokinesis assay are 25 In the parent MCF-7 cells, 88% of the cells produce a round track (long and short axis less than 2-fold different) and 12% cells produce 'linear' tracks (long and short axis more than 2-fold different). Ceunc-53 transfection of MCF-7 cells produced an 30 increase of the fraction of cells displaying 'linear' tracks to 28% at the cost of the cells producing round tracks.

These observation suggest that Ce-unc-53 transfection into MCF-7 is capable of increasing in situ locomotion of MCF-7 e.g. by increased spreading, ruffling or other forms of non-directional motility in

10

15

the 'round' population as well as by driving a fraction of transfected MCF-7 cells from non-directional motility (round tracks) into directional migration (linear tracks).

In tissue culture, cells are provided with nondirectional signals. It is likely that providing directionality to these signals will enhance observed effects. Significant enhancement was observed for the fraction of linear tracks.

In addition, a significant increase of 35% in the area of tracks was observed in the Ce-unc-53 transfected MCF-7 cells versus the parent MCF-7 cells (Table 3). This increase occurred in the round track population; the area of linear tracks was found not to be changed by transfection.

These obsevations in phagokinesis suggest that Ce-unc-53 transfection into MCF-7 cells is capable of increasing insitu locomotion in Ce-unc-53 MCF-7, e.g. by increasing spreading, ruffling, or other forms of non-directional motility in the "round" population. In addition the Ce-unc-53 transgene in MCF-7 cells drives a fraction of the MCF-7 cells from nondirectional motility (round tracks) into directional migration (linear tracks).

25

20

Table 3.	Analysis of	phagokinesis	assays with
parent and	d Ce-unc-53	transfected Mo	CF-7 cells.

A PERSONAL PROGRAMMENT OF A STATE OF STATE OF THE STATE OF A STATE

(*) the fraction of linear tracks in 8 wells was pooled.

	parent MCF-7	Ce-unc-53 MCF-7	increase
Fraction linear	% +- SD(n)	%+-SD(n)	
tracks (*)	12+-3 (8)	28+-6 (8)	2.33
Track area (**)	pixels+-SD(n)	picels+-SD (n)	
all tracks	1261+-128(8)	1698+-179(8)	1.35
round tracks	1229+-162(8)	1464+-204(8)	1.19
linear tracks	2367+-424(8)	2300+-319(8)	0.97

30

BNSDOCID: <WO___9638555A2_I_>

MCF-7 cells expressing low levels of UNC-53 exhibit increased motility.

Individual transfected cells are much more flattened in appearance than wild type and have a broad lamellipodium extending from the edge of the cell. Ruffling edges are more frequent than in wild type. Transfected cells in clusters have a broad lamellipodium edge around the cluster while cluster of the non-transfected. Within the cluster the nuclei are more widely spaced from one-another than in wild type cells (also due to a lamellipodium edge).

15

20

25

30

10

5

Example 11

Method for Protein micro-sequencing of coaffinity purifying proteins

UNC-53 protein was immuno-affinity purified from extracts of cells expressing C. elegans UNC-53 using monoclonal antibody 16-48-2. One to five mg of Mab 16-48-2 was prepared, purified on protein-G sepharose and subsequently covalently linked to sepharose beads. A column of such beads was loaded with both crude cytosolic and Triton-X100 extracts (containing solubilised RTKs) and eluted with 4M MgCl, or other chaotropic agents. A co-immuno-purifying band was identified on SDS-denaturing PAGE gels, eluted from these gels and micro-sequenced. This protein sequence or mass information of peptides generated by proteolysis was used to identify the coimmunoprecipitation directly from the sequence databases.

Alternatively the sequence was reverse translated

10

15

20

25

and oligonucleotides based on the sequence prepared. This is used to clone the corresponding gene as well as other techniques well known in the art.

Example 12 C. elegans as a model assay system.

We have constructed transgenic strains which overexpress UNC-53 in body muscle. This results in increased extension of muscle cells and embryonic lethality at low frequency. These strains were used to screen for drugs which interfere with UNC-53 activity and thereby suppress the background lethality.

Another related assay was used to screen specifically to identify inhibitors of downstream components in the signal transduction pathway. assay utilised constitutively active mutant cDNA (or corresponding nucleic acid sequence). Such a mutant may be formed by mutating the nucleotide binding domain such that GTP or ATP is always bound or by covalently attaching SEM-5. In this strategy, transgenics/mutants (nematodes or tissue cultured cell lines) were generated which maintain the pathway in a permanently switched on state. Over-extension and subsequent lethality results in a greater frequency than that observed in the unc-54 - unc-53 wild-type By screening for survivors after drug treatment, this assay specifically identifies inhibitors of downstream components in the signal transduction pathway.

A range of other embodiments of the assay are obvious to a person skilled in the art of <u>C. elegans</u> genetics, including the use of alternative selectable markers, genetic backgrounds, histochemical detection and visual detection systems to identify phenotypic

A Section Control of Calculation of Carlos and Carlos April 1985 on Carlos African African Carlos Annies Carlos An

changes following contacting a single worm or a population of worms with a compound.

Another assay previously described herein utilizes the unc-53 promoter. The unc-53 promoter is fused to a nucleic acid sequence encoding a reporter molecule. By screening for cells which do not express the wild type pattern, molecules which increase or reduce transcription of unc-53 may be identified.

10 <u>Example 13</u> - Heterologous expression of <u>C. elegans</u> UNC-53 in insect cells.

<u>C. elegans</u> UNC53 cDNAs have been expressed in a Baculovirus system to obtain sufficient amounts of protein for biochemical and structural studies.

15 Two UNC53 cDNA clones (UNC53(7A) and UNC53(8A) have been documented differing in the number of adenosine (A) residues (7 or 8) in a polyA stretch of the of the 3' coding region; the two clones therefore have different reading frames in the carboxyterminal coding region.

The 5' (N-terminal) part of the UNC53 coding region was excised from pTB564 with SacII after linearizing the plasmid with NdeI. The Ndei site was blunted with Klenow. The remaining C-terminal part of the coding region was excised from pTB68 (7A) and pTB50(8A) with SacII plus KpnI. The NdeI/SacII fragment from pTB64 and the SacII/KpnI fragment from either pTB68 or pTB50 were ligated simultaneously into pBacPAK9 (Clontech) which had been linearized with Ecl136II (blunt end) and KpnI. In this way, a minimum amount of 5' untranslated region is left in the final construct.

The desired recombinant viruses were obtained by

25

co-transfection of Sf21 cells (Spodoptera frugiperda) with one of the aforementioned pBacPAK9 constructs and BacPAK6 Bsu361-digested DNA (Clontech). Several candidate recombinant viruses plaques were picked and screened by PCR for the presence of the target gene and the absence of wild-type virus.

Sf9 cells were infected at a high multiplicity with UNC53(7A) or UNC53(8A) recombinant Baculoviruses for protein expression. Proteins from whole cell 10 lysates were separated by denaturing (SDS) polyacrylamide gel electrophoresis and transferred to nitrocellulose membranes. The expression of UNC53 in those cell lysates was confirmed by immunoreaction with a monoclonal antibody (16-49-2) to UNC53 and 15 subsequent chemiluminescent detection (ECLTM Amersham). A Coomassie-stained band of the expected size was observed in lysates of Sf9 cells infected with UNC-53(7A) or UNC53(8A) recombinant baculoviruses, but not with control constructs. 20 Within the accuracy of the methods, this Coomassiestained band coincided with the largest immunoreactive Their estimated mass was approximately 180 kDa, which is compatible with the theoretically calculated mass (167 kDa). We therefore conclude that this band 25 most likely corresponds to intact UNC53.

For both UNC53(7A) and UNC53(8A) baculoviral expression constructs, mostly intact recombinant UNC53-protein was detected by immunoblotting in lysates from infected cells harvested 24 hours post infection. Larger amounts of recombinant protein could be detected in lysates from cells prepared during later stages of infection (48 and 72 hours post infection) but in those preparations a considerable amount of smaller fragments (presumptive degradation products) is observed.

30

10

15

20

25

30

Example 14

The UNC-53 protein expressed in Sf9 cells using a Baculovirus expression system is a valid tool to study its biochemical functions and a valid tool to identify interacting proteins.

UNC53 7A(L2.3)/pBacPAK9 were resuspended in 100 microliter Phosphate Buffered Saline supplemented with 0.14 micromolar of pepstatin, 10 mM of benzamidine and 0.015 micromolar aprotinin. The cells were briefly sonicated and the obtained material was centrifuged at 30,000 g for 30 minutes at 4 degrees centrigade. The clear supernatant (soluble fraction) was frozen in 50% glycerol. An aliquot of this fraction was incubated in the cold room for 48 hrs. The protein samples were analyzed by SDS-PAGE, blotted to nitrocellulose and probed with mab 16-48-2. This showed that UNC-53 protein made in SF9 cells is soluble and stable under the conditions tested.

20 microlitres of the UNC-53 SF9 lysate were incubated with 5 microlitre GST-Sepharose beads loaded with equal amouts (approx. 10 microgram) of GST-GRB-2 or GST alone. The beads were rinsed 3 times in 500 microlitres of solution PBS-0.2% Tween 20 and eluted with 50 microliter SDS sample buffer. The eluted material was analyzed by SDS-PAGE and Western blot analysis with mab 16-48-2. UNC-53 was retained on the GST-GRB2 column and not on the GST demonstrating that UNC-53 interacts in vitro with GRB-2.

20

25

Example 15

Identification of proteins interacting with UNC-

Vectors pCB50 and pCB51 were constructed as bait vectors for the yeast two hybrid system expressing resp. the full length and the carboxyterminal part of UNC-53.

pCB50 was constructed by cloning the full length

10 UNC-53 cDNA (7A variant; NdeI-NcoI fragment from
pTB74) into pAS1-CYH2 vector from Clontech. (Figure
30).

pCB51 (Figure 32) was constructed by cloning the 1880 bp NdeI-NcoI fragment from pTB74 into vector pAS1-CYH2 from Clontech. This protein encodes among others, the GTP/ATP binding domains, a leucine zipper domain, and an additional coiled-coil domain.

pCB50 and pCB51 were transformed in yeast strain Hf7C (YRG2). Expression was confirmed by western blotting using antibodies to the GAL4 protein fused to UNC-53 in these constructs. Bands of expected size (190 kd for pCB50 and 90 kd for pCB51) were observed both in yeast strains with pCB50 and pCB51 indicating that both fusion proteins are expressed in the yeast. The expression of the pCB50 and pCB51 fusion proteins in yeast strain Hf7C does not lead to expression of the LacZ or HIS reporter genes. These experiments demonstrate that the constructed fusions are useful baits in yeast two hybrid screens.

Vector pCB55 was made by cloning the 984 bp

BamHI-BqlII of pTB74 construct into the yeast two

ACTIVITATION IN THE THE CONTROL OF T

hybrid activation vector (pGAD-424 vector from Clontech) (Figure 34). In order to check the possible interactions of UNC-53 either with itself (homodimerization) or other proteins.

This vector expresses a Gal-4 activation domain fused to amongst others the predicted coiled coil or leucine zipper domain of UNC-53.

The following combinations of plasmids were cotransformed in yeast strain HF7C : (1) pCB51 and pCB55 (2) pCB55 with control plasmid- pTD1 and (3) positive 10 control plasmids pTD1 and PVA3 (two proteins known to interact (Bartel, P.L et al., Biotechniques Vol. 14 nr.6 (1993)). Yeast cotransformed with combination (1) and (3) grew well on -LEU; -TRYP plates and -LEU; -TRYP; -HIS plates indicating that an interacting 15 protein is present in both co-transformations. Only yeast co-transformed with (3) was positive in a lacZ assay indicating that the observed interaction in (1) (between pCB50 and pCB 55) is weak. For cotransformation (2), colonies grew on -LEU; -TRYP plates 20 and as expected not on -LEU; -TRYP; -HIS plates. The positive control were thus positive whereas the negative controls were negative. We conclude that there is a weak but significant interaction between pCB51 and pCB55, which is strong enough to activate 25 the HIS but not the lacZ reporter gene in this Hf7c strain.

Example 16

Protocol to screen for components which inhibit or enhance UNC-53 using <u>C. elegans</u> cell line pTBIn76

Embryos from large liquid C. elegans cultures of line pTBIn76 (table 1) are collected by sucrose flotation of a bleached population (Goh and Bogaert (1991), Dev. Biol. <u>56</u>, 110-156). Embryos are dispensed in 96 well microtiter plates with M9 medium 5 and various concentrations of the compound to be The embryos are allowed to hatch and are synchronised in the L1 stage by starvation. After a suitable exposure to the compound (by standard calibration) a standard quantity of E. coli (food) is 10 dispersed in the 96 well plates, which starts C. elegans post-embryonic development. The microtiter plates are then placed in an incubator to induce heat shock and subsequently placed at 25°C to permit continued development. After 0 to 1 generations of C. 15 elegans development wells are inspected to assess the degree of population growth inhibition. inspection can consist of an optical density measurement to assess the amount of food consumed by the developing nematodes. Very little food is 20 consumed when no test compound is present: most food is consumed if an UNC-53 inhibitor has blocked the lethal or subviable phenotype induced by the transgene. The inspection can also be a visual inspection of the number of healthy or subviable worms 25 or a histochemical measurement of C. elegans viability or of the remainder of E. coli (food).

Example 17 - Protocol to screen for compounds30 which inhibit or enhance cell regulation or motility.

SCO CONTROL PROGRAM OF A CONTROL OF A CONTRO

Transfected cells used in this example were the same as those obtained from example 8. Compounds to be tested were added to each of the cells and their effects on the cells monitored. Functional assays to determine neurite extension were also the same as used

in example 8 as described by Geests et al. One compound (of the Formula I below) was used for further testing.

5 <u>Example 18</u> - Compounds targetted at the unc-53 pathway.

Snythesis of $(1-(1\underline{H}-pyrro1-2-ylmethyl)-2-piperidone.$

10

15

Step 1

To a stirred solution of 150g of 1<u>H</u>-pyrrol-2-carboxaldehyde in 1500g parts of trichloromethane were added 690, of 5Å molecular Sieves. A kit solution of 264, of methyl 5-aminopentanoate hydrochloride in 1500g of tricholoromethane was added. After stirring for 5 minutes, 465g of thiethylamine were added over

10 minutes. Upon complete addition, the reaction mixture was stirred for 20 hours at ambient temperature. The mixture was filtered over diatomaceous earth and the filtrate was concentrated by evaporation of the solvent. The concentrate was triturated in 1,1'-oxybisethane. The precipitate was filtered off and the filtrate was concentrated, yielding 300g (91.1%) of 5-[[(1H-pyrrol-2-

SUBSTITUTE SHEET (RULE 26)

25

Step 2

A mixture of 150g of 5-[[(1H-pyrrol-2-yl)methylen]amino]pentanoate hydrogenated at 3.10⁵Pa and at ambient temperature with 3.3 parts of platinum oxide. After the calculated amount of hydrogen was consumed, the catalyst was filtered off and the filtrate was evaporated. The residue was dissolved in dichloromethane and the organic phase was washed three times with a sodium hydroxide 3 N solution. The product was distilled at 13.30 Pa (bp 100-130°C). The residue was crystallized from cyclohexane and hexane. The product was filtered off and dried, yielding 193 parts (100%) of 1-(1H-pyrrol-2-ylmethyl)-2-piperidone.; mp. 105.8°C.

15 The compound (1-(1<u>H</u>-pyrrol-2-ylmethyl)-2piperidinone) when applied for 24 hours to cultures of
both wild-type and transfected N4 (mouse
neuroblastoma) cells displays a differential
behaviour. There is no effect (or at most a small
20 stimulatory) effect on the wild-type N4 cells, up to
concentrations of 1 μM, the compound clearly becomes
toxic for both types of cells. The results indicate
that this compound conteracts the effects of
overexpression of UNC-53 and may have beneficial
effects therefore in for example metastasis.

BETTER OF THE THE TELEPOOR OF THE THE THE THE THE THE THE THE TREE PROPRIES AND THE THE TREE PROPRIES AND ADDRESS AND ADDRESS

BNSDOCID: <WO__9638555A2 1 >

SEQUENCE LISTING

(1) GENERAL INFORMATION:

- (i) APPLICANT:
 - (A) NAME: BOGAERT; THIERRY
 - (B) STREET: Voorstraat 36 bus 11
 - (C) CITY: Kortrijk
 - (E) COUNTRY: Belgium
 - (F) POSTAL CODE (ZIP): B-8500
 - (A) NAME: STRINGHAM; EVE
 - (B) STREET: 9326-133 A Street
 - (C) CITY: Surrey
 - (D) STATE: British Columbia
 - (E) COUNTRY: Canada
 - (F) POSTAL CODE (ZIP): V3V 5R5
 - (A) NAME: VANDEKERCKHOVE; JOEL
 - (B) STREET: Rode Benkendreef 27
 - (C) CITY: Loppem
 - (D) STATE: -
 - (E) COUNTRY: Belgium
 - (F) POSTAL CODE (ZIP): none
- (ii) TITLE OF INVENTION: Processes for the identification of compounds which control cell behaviour, the compounds identified and pharmaceutical compositions containing them and their use in the control of cell behaviour
- (iii) NUMBER OF SEQUENCES: 48
- (iv) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30 (EPO)
- (V) CURRENT APPLICATION DATA:
 - APPLICATION NUMBER: EP PCT/EP96/02311
- (vi) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: GB 9510944.3
 - (B) FILING DATE: 31-MAY-1995
- (2) INFORMATION FOR SEQ ID NO: 1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 5073 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (iii) HYPOTHETICAL: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Caenorhabditis elegans
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

SUBSTITUTE SHEET (RULE 26)

and the second of a substance of the control of the

60	TGCTCCGAAT	GAAATGTTGG	TCCATCGAAC	AGACATCAAT	CCCAAGTTTG	GGTTTAATTA
120	CAATCGGCAC	CGGATTGGGC	CCAATCTACA	AGAATTGATA	CGTCAAATGT	AAAATGACGA
180	TCGCGACTAT	CCAATGATTT	AGGGATATTT	AAAGTCGATT	GCAGCTTATC	CTTTCGAAGG
240	GCCTGCATTC	ACGAATTCTC	GTTCCGATCA	TAATGTGATC	CTCAGCTTAT	CGACTGGTTT
300	TCTCGACTAC	TCGAAACGTG	CTGGATGGCC	CACATCGAAC	TGGCAAAAAT	ACGAAACGTT
360	CAGCGGAAAC	CCGATATCGA	CTCACCAAAA	CTGCTCGAAA	TGGGTCTCGA	CTGAAAAATC
420	GCTTCGGCAA	ACAAGCAGAA	CTCTCCACCT	GCTCTTCCTG	TTCTCCAGCT	TTGGGTGCAG
480	ACCCGCGGTT	CCATTATGCC	CTACCCACAT	ATTGGAGCAA	ATCAGAAGAA	CTGAAAAAAG
540	TAACCCAAAT	CTTCAGCAAC	TCAGCAACCG	TGTCGCCACG	CCTCGCCACG	TCTAAATTAC
600	AATATCGAAA	CACAGTCAAG	CTTCAGACTC	AACATCCAGG	CACAAATGTC	TCCAACTTTC
660	ACCCTCATCA	GACTTAAACC	AAGACGTCTG	TATCAAGCCA	CAAAGATTGG	ATTGATTCAT
720	GAGTGGCAAT	CGAGCCGTTC	TTCCGTCCGT	TACAAATTCA	САТСАААТАА	TCAACCACTT
780	ATCAACGTAC	TAGAATCATC	GCGAAGAGCT	ATCCACATCT	GCTCGACGAT	AATAATGTTG
840	TAGACCACAA	AAAAACCTTC	TCCCAACTCC	CCGACCTACC	CGAATCTAAA	AGCTCTATTT
900	AGCCGCTCCG	GCTCAAAGCT	AAAATCGGAA	TACAACTACA	TTCGTGTTGC	ACCCAGCTAG
960	ACAAGAGCCC	TTGGAGCAAA	GTGAAGACTA	ACTTGCTTCT	GCACCCCAAA	AAAGCCGTGA
1020	TAGCAAAAAC	AGTTATTCAG	CTGAAATTAA	TGGTGGAATG	GTGGTGGTGG	GATAACAGCG
1080	GCCTCAACAA	CGGCGGCGGT	ACGAGAAAGG	CCCACAACCT	CATCGAATAG	CCATCTTCCT
1140	GACCAGTAAG	TGAAGCCGCC	AAAAGTGGCC	TGCCCCAGTG	CGAAAATCGC	CAAACTTTGT
1200	CCGTAAAACG	AAGTTTCCTA	TGTACGCCAA	GTCGAAGCTT	CCACGTCTAT	CTGGGAAGTG
1260	TGAAGAAGAG	CAAAGAGCAG	AAACGATGCT	ACAAGACTCG	TCATATCTCA	GACGCCCCAA
1320	AGGTTCCCTA	CATCGACGGA	CCAACGTCAT	CAGCACGTCG	CTGGATTCAA	TCCGGATACG
1380	GTCATCAGAC	AAAAGTCTCC	ACGTCAGACG	CAAGAGTTCA	CCACATCTTC	AGCATGCATT
1440	CGCAACACCG	AGCCGATAGC	GCTATCAGAC	CATCGTGACA	TTAACGCCTC	GATCTTACTC
1500	AGTGAAAGGA	CAACACTGGC	GAGGAAAAAC	CAAGCCTGTT	ATATTATCAA	GTTTCTCCAA
1560	CACCCAGCCA	CGCCACGTGA	CCAGCTGTTC	AGATCCACCT	CAGCGAAAAA	GTGAAAAGCA
1620	CCCCGTGATA	TGACAAATGA	CATAAGAAGT	AATTATGGCA	TTGTTAGTCC	ACAATCGGAG
1680	GGACGTTCCA	TCGACACGAC	TCAATGAGCA	AAAGCTCCAA	CAGAACCTGA	TCTGAAAAAC
1740	ACAACCACCA	CTTCAATCCG	CTTAAAATGA	AGTTGTTCCA	CTCTAAAATC	CCGCTTCCAC
1800	GTTTGGATAT	CTGTCAAGTC	ATCACATCGC	ACAAGGAAAA	TTCTTCTAAA	ACGTACGATG
1860	GGTGACTCCG	CGTCGGCTCA	GTGGCTCATG	AGACTCCATT	CCGCGTCTGA	GAGCAGTCGT
1000	mn n c n c n m c n	ጥ ርርር지 ሽ ሽ ሮ ኮ ኮ	CACACAACCA	TCATTCGCTG	CTTCTGGTAA	CCGACAAAAA

GAATCCAGC	GCTACACCTC	TGACGCCGGT	GTTGCGATGT	GCGCCAAAAT	GAGGGAGAAG	1980
CTGAAAGAAT	ACGATGACAT	GACTCGTCGA	GCACAGAACG	GCTATCCTG	CAACTTCGAA	2040
GACAGTTCCT	CCTTGTCGTC	TGGAATATCC	GATAACAACG	AGCTCGACGA	CATATCCACG	2100
GACGATTTGT	CCGGAGTAGA	CATGGCAACA	GTCGCCTCCA	AACATAGCGA	CTATTCCCAC	2160
TTTGTTCGCC	ATCCCACGTC	TTCTTCCTCA	AAGCCCCGAG	TCCCCAGTCG	GTCCTCCACA	2220
TCAGTCGATT	CTCGATCTCG	AGCAGAACAG	GAGAATGTGT	ACAAACTTCI	GTCCCAGTGC	2280
CGAACGAGCC	AACGTGGCGC	CGCTGCCACC	TCAACCTTCG	GACAACATTO	GCTAAGATCC	2340
CCGGGATACT	CATCCTATTC	TCCACACTTA	TCAGTGTCAG	CTGATAAGGA	CACAATGTCT	2400
ATGCACTCAC	AGACTAGTCG	ACGACCTTCT	TCACAAAAAC	CAAGCTATTC	AGGCCAATTT	2460
CATTCACTTG	ATCGTAAATG	CCACCTTCAA	GAGTTCACAT	CCACCGAGCA	CAGAATGGCG	2520
GCTCTCTTGA	GCCCGAGACG	GGTGCCGAAC	TCGATGTCGA	AATATGATTC	TTCAGGATCC	2580
TACTCGGCGC	GTTCCCGAGG	TGGAAGCTCT	ACTGGTATCT	ATGGAGAGAC	GTTCCAACTG	2640
CACAGACTAT	CCGATGAAAA	ATCCCCCGCA	CATTCTGCCA	AAAGTGAGAT	GGGATCCCAA	2700
CTATCACTGG	CTAGCACGAC	AGCATATGGA	TCTCTCAATG	AGAAGTACGA	ACATGCTATT	2760
CGGGACATGG	CACGTGACTT	GGAGTGTTAC	AAGAACACTG	TCGACTCACT	AACCAAGAAA	2820
CAGGAGAACT	ATGGAGCATT	GTTTGATCTT	TTTGAGCAAA	AGCTTAGAAA	ACTCACTCAA	2880
CACATTGATC	GATCCAACTT	GAAGCCTGAA	GAGGCAATAC	GATTCAGGCA	GGACATTGCT	2940
CATTTGAGGG	ATATTAGCAA	TCATCTTGCA	TCCAACTCAG	CTCATGCTAA	CGAAGGCGCT	3000
GGTGAGCTTC	TTCGTCAACC	ATCTCTGGAA	TCAGTTGCAT	CCCATCGATC	ATCGATGTCA	3060
TCGTCGTCGA	AAAGCAGCAA	GCAGGAGAAG	ATCAGCTTGA	GCTCGTTTGG	CAAGAACAAG	3120
AAGAGCTGGA	TCCGCTCCTC	ACTCTCCAAG	TTCACCAAGA	AGAAGAACAA	GAACTACGAC	3180
GAAGCACATA	TGCCATCAAT	TTCCGGATCT	CAAGGAACTC	TTGACAACAT	TGATGTGATT	3240
GAGTTGAAGC	AAGAGCTCAA	AGAACGCGAT	AGTGCACTTT	ACGAAGTCCG	CCTTGACAAT	3300
CTGGATCGTG	CCCGCGAAGT	TGATGTTCTG	AGGGAGACAG	TGAACAAGTT	GAAAACCGAG	3360
AACAAGCAAT	TAAAGAAAGA	AGTGGACAAA	CTCACCAACG	GTCCAGCCAC	TCGTGCTTCT	3420
TCCCGCGCCT	CAATTCCAGT	TATCTACGAC	GATGAGCATG	TCTATGATGC	AGCGTGTAGC	3,480
AGTACATCAG	CTAGTCAATC	TTCGAAACGA	TCCTCTGGCT	GCAACTCAAT	CAAGGTTACT	3540
GTAAACGTGG	ACATCGCTGG	AGAAATCAGT	TCGATCGTTA	ACCCGGACAA	AGAGATAATC	3600
GTAGGATATC	TTGCCATGTC	AACCAGTCAG	TCATGCTGGA	AAGACATTGA	TGTTTCTATT	3660
CTAGGACTAT	TTGAAGTCTA	CCTATCCAGA	ATTGATGTGG	AGCATCAACT	TGGAATCGAT	3720
GCTCGTGATT	CTATCCTTGG	CTATCAAATT	GGTGAACTTC	GACGCGTCAT	TGGAGACTCC	3780
ACAACCATGA	TAACCAGCCA	TCCAACTGAC	ATTCTTACTT	CCTCAACTAC	AATCCGAATG	3840

TTCATGCACG	GTGCCGCACA	GAGTCGCGTA	GACAGTCTGG	TCCTTGATAT	GCTTCTTCCA	3900
AAGCAAATGA	TTCTCCAACT	CGTCAAGTCA	ATTTTGACAG	AGAGACGTCT	GGTGTTAGCT	3960
GGAGCAACTG	GAATTGGAAA	GAGCAAACTG	GCGAAGACCC	TGGCTGCTTA	TGTATCTATT	4020
CGAACAAATC	AATCCGAAGA	TAGTATTGTT	AATATCAGCA	TTCCTGAAAA	CAATAAAGAA	4080
GAATTGCTTC	AAGTGGAACG	ACGCCTGGAA	AAGATCTTGA	GAAGCAAAGA	ATCATGCATC	4140
GTAATTCTAG	ATAATATCCC	AAAGAATCGA	ATTGCATTTG	TTGTATCCGT	TTTTGCAAAT	4200
GTCCCACTTC	AAAACAACGA	AGGTCCATTT	GTAGTATGCA	CAGTCAACCG	ATATCAAATC	4260
CCTGAGCTTC	AAATTCACCA	CAATTTCAAA	ATGTCAGTAA	TGTCGAATCG	TCTCGAAGGA	4320
TTCATCCTAC	GTTACCTCCG	ACGACGGGCG	GTAGAGGATG	AGTATCGTCT	AACTGTACAG	4380
ATGCCATCAG	AGCTCTTCAA	AATCATTGAC	TTCTTCCCAA	TAGCTCTTCA	GGCCGTCAAT	4440
AATTTTATTG	AGAAAACGAA	TTCTGTTGAT	GTGACAGTTG	GTCCAAGAGC	ATGCTTGAAC	4500
TGTCCTCTAA	CTGTCGATGG	ATCCCGTGAA	TGGTTCATTC	GATTGTGGAA	TGAGAACTTC	4560
ATTCCATATT	TGGAACGTGT	TGCTAGAGAT	GGCAAAAAAA	ACCTTCGGTC	GCTGCACTTC	4620
CTTCGAGGAT	CCCACCGACA	TCGTCTCTAA	AAAATGGCCG	TGGTTCGATG	GTGAAAACCC	4680
GGAGAATGTG	CTCAAACGTC	TTCAACTCCA	AGACCTCGTC	CCGTCACCTG	CCAACTCATC	4740
CCGACAACAC	TTCAATCCCC	TCGAGTCGTT	GATCCAATTG	CATGCTACCA	AGCATCAGAC	4800
CATCGACAAC	ATTTGAACAG	AAGACTCTAA	TCTTCTCG	CCTCTCCCCC	GCTTTCCTTA	4860
TCTTCGTACC	GGTACCTGAT	GATTCCCCAT	TTTCCCCCTT	TTCCCCCCAA	TTTCCCAGAA	4920
CCTCCTGTTC	CCTTTGTTCC	TAGTCCTCCC	GGGTGCCGAC	GCCGAAGCGA	TTTAAAAACC	4980
TTTTTCTTTC	CGAAACATTT	CCCATTGCTC	ATTAATAGTC	AAATTGAATA	AACAGTGTAT	5040
GTACTTAAAA	ААААААААА	АААААААА	ААА			5073

(2) INFORMATION FOR SEQ ID NO: 2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 5072 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

GGTTTAATTA	CCCAAGTTTG	AGACATCAAT	TCCATCGAAC	GAAATGTTGG	TGCTCCGAAT	60
AAAATGACGA	CGTCAAATGT	AGAATTGATA	CCAATCTACA	CGGATTGGGC	CAATCGGCAC	120
CTTTCGAAGG	GCAGCTTATC	AAAGTCGATT	AGGGATATTT	CCAATGATTT	TCGCGACTAT	180

SUBSTITUTE SHEET (RULE 26)

หารตาว กระเทศ กระการกระเทศ และ เมษายามาก สายหลาย การกระเทศ และ และ และ เพราะสามาย คนาย ผู้เหมียนมีนั้นใช้ เ

CGACTGGTT	TT CTCAGCTTA	TAATGTGAT	C GTTCCGATC	A ACGAATTCT	C GCCTGCATTC	240
ACGAAACGT	T TGGCAAAAA	T CACATCGAA	C CTGGATGGC	C TCGAAACGI	G TCTCGACTAC	300
CTGAAAAAT	C TGGGTCTCG	A CTGCTCGAA	A CTCACCAAA	A CCGATATCG	A CAGCGGAAAC	360
TTGGGTGCA	G TTCTCCAGC	T GCTCTTCCT	G CTCTCCACC	T ACAAGCAGA	A GCTTCGGCAA	420
CTGAAAAA	G ATCAGAAGA	A ATTGGAGCA	A CTACCCACA	T CCATTATGC	C ACCCGCGGTT	480
TCTAAATTA	C CCTCGCCAC	G TGTCGCCAC	G TCAGCAACC	g cttcagcaa	C TAACCCAAAT	540
TCCAACTTT	C CACAAATGT	C AACATCCAG	G CTTCAGACT	C CACAGTCAA	G AATATCGAAA	600
ATTGATTCA	T CAAAGATTG	G TATCAAGCC	A AAGACGTCT	G GACTTAAAC	C ACCCTCATCA	660
TCAACCACT	т сатсаваты	A TACAAATTC	A TTCCGTCCG	r cgagccgtt	C GAGTGGCAAT	720
AATAATGTT	G GCTCGACGA	T ATCCACATC	r gcgaagagc	TAGAATCAT	C ATCAACGTAC	780
AGCTCTATT	r cgaatctaa <i>i</i>	A CCGACCTAC	TCCCAACTC	C AAAAACCTT	TAGACCACAA	840
ACCCAGCTA	G TTCGTGTTG	C TACAACTAC	A AAAATCGGA	GCTCAAAGC	AGCCGCTCCG	900
AAAGCCGTG	A GCACCCAA	A ACTTGCTTCT	GTGAAGACT	TTGGAGCAA	A ACAAGAGCCC	960
GATAACAGC	GTGGTGGTGG	TGGTGGAAT	CTGAAATTA	AGTTATTCA	TAGCAAAAAC	1020
CCATCTTCCT	CATCGAATA	CCCACAACCT	ACGAGAAAGG	CGGCGGCGG	GCCTCAACAA	1080
CAAACTTTGT	CGAAAATCGC	TGCCCCAGT	AAAAGTGGCC	TGAAGCCGCC	GACCAGTAAG	1140
CTGGGAAGTG	CCACGTCTAT	GTCGAAGCTI	TGTACGCCAP	AAGTTTCCTA	CCGTAAAACG	1200
GACGCCCCA	TCATATCTCA	ACAAGACTCG	AAACGATGCT	CAAAGAGCAG	TGAAGAAGAG	1260
TCCGGATACG	CTGGATTCAA	CAGCACGTCG	CCAACGTCAT	CATCGACGGA	AGGTTCCCTA	1320
AGCATGCATT	CCACATCTTC	CAAGAGTTCA	ACGTCAGACG	AAAAGTCTCC	GTCATCAGAC	1380
GATCTTACTC	TTAACGCCTC	CATCGTGACA	GCTATCAGAC	AGCCGATAGC	CGCAACACCG	1440
GTTTCTCCAA	ATATTATCAA	CAAGCCTGTT	GAGGAAAAAC	CAACACTGGC	AGTGAAAGGA	1500
GTGAAAAGCA	CAGCGAAAAA	AGATCCACCT	CCAGCTGTTC	CGCCACGTGA	CACCCAGCCA	1560
ACAATCGGAG	TTGTTAGTCC	AATTATGGCA	CATAAGAAGT	TGACAAATGA	CCCCGTGATA	1620
TCTGAAAAAC	CAGAACCTGA	AAAGCTCCAA	TCAATGAGCA	TCGACACGAC	GGACGTTCCA	1680
CCGCTTCCAC	CTCTAAAATC	AGTTGTTCCA	CTTAAAATGA	CTTCAATCCG	ACAACCACCA	1740
ACGTACGATG	TTCTTCTAAA	ACAAGGAAAA	ATCACATCGC	CTGTCAAGTC	GTTTGGATAT	1800
GAGCAGTCGT	CCGCGTCTGA	AGACTCCATT	GTGGCTCATG	CGTCGGCTCA	GGTGACTCCG	1860
CCGACAAAAA	CTTCTGGTAA	TCATTCGCTG	GAGAGAAGGA	TGGGAAAGAA	TAAGACATCA	1920
GAATCCAGCG	GCTACACCTC	TGACGCCGGT	GTTGCGATGT	GCGCCAAAAT	GAGGGAGAAG	1980
CTGAAAGAAT	ACGATGACAT	GACTCGTCGA	GCACAGAACG	GCTATCCTGA	CAACTTCGAA	2040
SACAGTTCCT	CCTTGTCGTC	TGGAATATCC	GATAACAACG	AGCTCGACGA	CATATCCACG	2100

GACGATTTGT	CCGGAGTAGA	CATGGCAACA	GTCGCCTCCA	AACATAGCGA	CTATTCCCAC	2160
TTTGTTCGCC	ATCCCACGTC	TTCTTCCTCA	AAGCCCCGAG	TCCCCAGTCG	GTCCTCCACA	2220
TCAGTCGATT	CTCGATCTCG	AGCAGAACAG	GAGAATGTGT	ACAAACTTCT	GTCCCAGTGC	2280
CGAACGAGCC	AACGTGGCGC	CGCTGCCACC	TCAACCTTCG	GACAACATTC	GCTAAGATCC	2340
CCGGGATACT	CATCCTATTC	TCCACACTTA	TCAGTGTCAG	CTGATAAGGA	CACAATGTCT	2400
ATGCACTCAC	AGACTAGTCG	ACGACCTTCT	TCACAAAAAC	CAAGCTATTC	AGGCCAATTT	2460
CATTCACTTG	ATCGTAAATG	CCACCTTCAA	GAGTTCACAT	CCACCGAGCA	CAGAATGGCG	2520
GCTCTCTTGA	GCCCGAGACG	GGTGCCGAAC	TCGATGTCGA	AATATGATTC	TTCAGGATCC	2580
TACTCGGCGC	GTTCCCGAGG	TGGAAGCTCT	ACTGGTATCT	ATGGAGAGAC	GTTCCAACTG	2640
CACAGACTAT	CCGATGAAAA	ATCCCCGCA	CATTCTGCCA	AAAGTGAGAT	GGGATCCCAA	2700
CTATCACTGG	CTAGCACGAC	AGCATATGGA	TCTCTCAATG	AGAAGTACGA	ACATGCTATT	2760
CGGGACATGG	CACGTGACTT	GGAGTGTTAC	AAGAACACTG	TCGACTCACT	AACCAAGAAA	2820
CAGGAGAACT	ATGGAGCATT	GTTTGATCTT	TTTGAGCAAA	AGCTTAGAAA	ACTCACTCAA	2880
CACATTGATC	GATCCAACTT	GAAGCCTGAA	GAGGCAATAC	GATTCAGGCA	GGACATTGCT	2940
CATTTGAGGG	ATATTAGCAA	TCATCTTGCA	TCCAACTCAG	CTCATGCTAA	CGAAGGCGCT	3000
GGTGAGCTTC	TTCGTCAACC	ATCTCTGGAA	TCAGTTGCAT	CCCATCGATC	ATCGATGTCA	3060
TCGTCGTCGA	AAAGCAGCAA	GCAGGAGAAG	ATCAGCTTGA	GCTCGTTTGG	CAAGAACAAG	3120
AAGAGCTGGA	TCCGCTCCTC	ACTCTCCAAG	TTCACCAAGA	AGAAGAACAA	GAACTACGAC	3180
GAAGCACATA	TGCCATCAAT	TTCCGGATCT	CAAGGAACTC	TTGACAACAT	TGATGTGATT	3240
GAGTTGAAGC	AAGAGCTCAA	AGAACGCGAT	AGTGCACTTT	ACGAAGTCCG	CCTTGACAAT	3300
CTGGATCGTG	CCCGCGAAGT	TGATGTTCTG	AGGGAGACAG	TGAACAAGTT	GAAAACCGAG	3360
AACAAGCAAT	TAAAGAAAGA	AGTGGACAAA	CTCACCAACG	GTCCAGCCAC	TCGTGCTTCT	3420
TCCCGCGCCT	CAATTCCAGT	TATCTACGAC	GATGAGCATG	TCTATGATGC	AGCGTGTAGC	3480
AGTACATCAG	CTAGTCAATC	TTCGAAACGA	TCCTCTGGCT	GCAACTCAAT	CAAGGTTACT	3540
GTAAACGTGG	ACATCGCTGG	AGAAATCAGT	TCGATCGTTA	ACCCGGACAA	AGAGATAATC	3600
GTAGGATATC	TTGCCATGTC	AACCAGTCAG	TCATGCTGGA	AAGACATTGA	TGTTTCTATT	3660
CTAGGACTAT	TTGAAGTCTA	CCTATCCAGA	ATTGATGTGG	AGCATCAACT	TGGAATCGAT	3720
GCTCGTGATT	CTATCCTTGG	CTATCAAATT	GGTGAACTTC	GACGCGTCAT	TGGAGACTCC	3780
ACAACCATGA	TAACCAGCCA	TCCAACTGAC	ATTCTTACTT	CCTCAACTAC	AATCCGAATG	3840
TTCATGCACG	GTGCCGCACA	GAGTCGCGTA	GACAGTCTGG	TCCTTGATAT	GCTTCTTCCA	3900
AAGCAAATGA	TTCTCCAACT	CGTCAAGTCA	ATTTTGACAG	AGAGACGTCT	GGTGTTAGCT	3960
GGAGCAACTG	GAATTGGAAA	GAGCAAACTG	GCGAAGACCC	TGGCTGCTTA	TGTATCTATT	4020

CGAACAAATC	AATCCGAAGA	TAGTATTGTT	AATATCAGCA	TTCCTGAAAA	CAATAAAGAA	4080
GAATTGCTTC	AAGTGGAACG	ACGCCTGGAA	AAGATCTTGA	GAAGCAAAGA	ATCATGCATC	4140
GTAATTCTAG	ATAATATCCC	AAAGAATCGA	ATTGCATTTG	TTGTATCCGT	TTTTGCAAAT	4200
GTCCCACTTC	AAAACAACGA	AGGTCCATTT	GTAGTATGCA	CAGTCAACCG	ATATCAAATC	4260
CCTGAGCTTC	AAATTCACCA	CAATTTCAAA	ATGTCAGTAA	TGTCGAATCG	TCTCGAAGGA	4320
TTCATCCTAC	GTTACCTCCG	ACGACGGGCG	GTAGAGGATG	AGTATCGTCT	AACTGTACAG	4380
ATGCCATCAG	AGCTCTTCAA	AATCATTGAC	TTCTTCCCAA	TAGCTCTTCA	GGCCGTCAAT	4440
AATTTTATTG	AGAAAACGAA	TTCTGTTGAT	GTGACAGTTG	GTCCAAGAGC	ATGCTTGAAC	4500
TGTCCTCTAA	CTGTCGATGG	ATCCCGTGAA	TGGTTCATTC	GATTGTGGAA	TGAGAACTTC	4560
ATTCCATATT	TGGAACGTGT	TGCTAGAGAT	GGCAAAAAAA	CCTTCGGTCG	CTGCACTTCC	4620
TTCGAGGATC	CCACCGACAT	CGTCTCTAAA	AAATGGCCGT	GGTTCGATGG	TGAAAACCCG	4680
GAGAATGTGC	TCAAACGTCT	TCAACTCCAA	GACCTCGTCC	CGTCACCTGC	CAACTCATCC	4740
CGACAACACT	TCAATCCCCT	CGAGTCGTTG	ATCCAATTGC	ATGCTACCAA	GCATCAGACC	4800
ATCGACAACA	TTTGAACAGA	AGACTCTAAT	CTTCTCTCGC	CTCTCCCCG	CTTTCCTTAT	4860
CTTCGTACCG	GTACCTGATG	ATTCCCCATT	TTCCCCCTTT	TCCCCCCAAT	TTCCCAGAAC	4920
CTCCTGTTCC	CTTTGTTCCT	AGTCCTCCCG	GGTGCCGACG	CCGAAGCGAT	TTAAAAACCT	4980
TTTTCTTTCC	GAAACATTTC	CCATTGCTCA	TTAATAGTCA	AATTGAATAA	ACAGTGTATG	5040
ГАСТТААААА	АААААААА	АААААААА	AA			5072

(2) INFORMATION FOR SEQ ID NO: 3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1528 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:
- Met Thr Thr Ser Asn Val Glu Leu Ile Pro Ile Tyr Thr Asp Trp Ala 1 5 10 15
- Asn Arg His Leu Ser Lys Gly Ser Leu Ser Lys Ser Ile Arg Asp Ile 20 25 30
- Ser Asn Asp Phe Arg Asp Tyr Arg Leu Val Ser Gln Leu Ile Asn Val 35 40 45
- Ile Val Pro Ile Asn Glu Phe Ser Pro Ala Phe Thr Lys Arg Leu Ala 50 55 60

Lys Ile Thr Ser Asn Leu Asp Gly Leu Glu Thr Cys Leu Asp Tyr Leu 75 Lys Asn Leu Gly Leu Asp Cys Ser Lys Leu Thr Lys Thr Asp Ile Asp 90 Ser Gly Asn Leu Gly Ala Val Leu Gln Leu Leu Phe Leu Leu Ser Thr Tyr Lys Gln Lys Leu Arg Gln Leu Lys Lys Asp Gln Lys Lys Leu Glu 120 Gln Leu Pro Thr Ser Ile Met Pro Pro Ala Val Ser Lys Leu Pro Ser 135 Pro Arg Val Ala Thr Ser Ala Thr Ala Ser Ala Thr Asn Pro Asn Ser 150 Asn Phe Pro Gln Met Ser Thr Ser Arg Leu Gln Thr Pro Gln Ser Arg 165 Ile Ser Lys Ile Asp Ser Ser Lys Ile Gly Ile Lys Pro Lys Thr Ser Gly Leu Lys Pro Pro Ser Ser Ser Thr Thr Ser Ser Asn Asn Thr Asn 205 Ser Phe Arg Pro Ser Ser Arg Ser Ser Gly Asn Asn Asn Val Gly Ser 210 215 Thr Ile Ser Thr Ser Ala Lys Ser Leu Glu Ser Ser Ser Thr Tyr Ser 230 Ser Ile Ser Asn Leu Asn Arg Pro Thr Ser Gln Leu Gln Lys Pro Ser 245 250 Arg Pro Gln Thr Gln Leu Val Arg Val Ala Thr Thr Thr Lys Ile Gly Ser Ser Lys Leu Ala Ala Pro Lys Ala Val Ser Thr Pro Lys Leu Ala 280 Ser Val Lys Thr Ile Gly Ala Lys Gln Glu Pro Asp Asn Ser Gly Gly Gly Gly Gly Met Leu Lys Leu Lys Leu Phe Ser Ser Lys Asn Pro 315 Ser Ser Ser Ser Asn Ser Pro Gln Pro Thr Arg Lys Ala Ala Ala Val Pro Gln Gln Gln Thr Leu Ser Lys Ile Ala Ala Pro Val Lys Ser Gly 340 345 350 Leu Lys Pro Pro Thr Ser Lys Leu Gly Ser Ala Thr Ser Met Ser Lys Leu Cys Thr Pro Lys Val Ser Tyr Arg Lys Thr Asp Ala Pro Ile Ile . 375 Ser Gln Gln Asp Ser Lys Arg Cys Ser Lys Ser Ser Glu Glu Glu Ser 390 395

SUBSTITUTE SHEET (RULE 26)

Gly	7 Туг	Ala	a Gly	Phe 405	Asn	Ser	Thr	Ser	Pro 410		Ser	Ser	Ser	Thr 415	
G1?	/ Ser	: Let	1 Ser 420		His	Ser	Thr	Ser 425		Lys	Ser	Ser	Thr 430		Asp
Glu	Lys	Se1	Pro	Ser	Ser	Asp	Asp 440		Thr	Leu	Asn	Ala 445		Ile	Val
Thr	450		e Arg	Gln	. Pro	Ile 455		Ala	Thr	Pro	Val 460		Pro	Asn	Ile
Ile 465	Asn	Lys	Pro	Val	Glu 470	Glu	Lys	Pro	Thr	Leu 475		Val	Lys	Gly	Val 480
Lys	Ser	Thr	Ala	Lys 485		Asp	Pro	Pro	Pro 490		Val	Pro	Pro	Arg 495	Asp
Thr	Gln	Pro	500	Ile	Gly	Val	Val	Ser 5 05	Pro	Ile	Met	Ala	His 510	Lys	Lys
Leu	Thr	Asn 515	Asp	Pro	Val	Ile	Ser 520	Glu	Lys	Pro	Glu	Pro 525	Glu	Lys	Leu
	530		Ser			535					540				
545			Val		550					555					560
			Leu	565					570					575	
			Glu 580					585					590		
		595	Gln				600					605			
	610		Arg			615					620			_	
625			Ala		630					635					640
			Asp	645					650					655	
			Asp 660					665					670		
		675	Asp				680					685			
	690		Ser			695					700				
705			Ser		710					715					720
Val	Asp	Ser	Arg	Ser 725	Arg	Ala	Glu	Gln	Glu 730	Asn	Val	Tyr	Lys	Leu 735	Leu

Ser Gln Cys Arg Thr Ser Gln Arg Gly Ala Ala Ala Thr Ser Thr Phe 745 Gly Gln His Ser Leu Arg Ser Pro Gly Tyr Ser Ser Tyr Ser Pro His 755 Leu Ser Val Ser Ala Asp Lys Asp Thr Met Ser Met His Ser Gln Thr Ser Arg Arg Pro Ser Ser Gln Lys Pro Ser Tyr Ser Gly Gln Phe His Ser Leu Asp Arg Lys Cys His Leu Gln Glu Phe Thr Ser Thr Glu His Arg Met Ala Ala Leu Leu Ser Pro Arg Arg Val Pro Asn Ser Met Ser Lys Tyr Asp Ser Ser Gly Ser Tyr Ser Ala Arg Ser Arg Gly Gly Ser Ser Thr Gly Ile Tyr Gly Glu Thr Phe Gln Leu His Arg Leu Ser Asp . 855 Glu Lys Ser Pro Ala His Ser Ala Lys Ser Glu Met Gly Ser Gln Leu 870 Ser Leu Ala Ser Thr Thr Ala Tyr Gly Ser Leu Asn Glu Lys Tyr Glu His Ala Ile Arg Asp Met Ala Arg Asp Leu Glu Cys Tyr Lys Asn Thr Val Asp Ser Leu Thr Lys Lys Gln Glu Asn Tyr Gly Ala Leu Phe Asp Leu Phe Glu Gln Lys Leu Arg Lys Leu Thr Gln His Ile Asp Arg Ser Asn Leu Lys Pro Glu Glu Ala Ile Arg Phe Arg Gln Asp Ile Ala His Leu Arg Asp Ile Ser Asn His Leu Ala Ser Asn Ser Ala His Ala Asn 965 Glu Gly Ala Gly Glu Leu Leu Arg Gln Pro Ser Leu Glu Ser Val Ala 980 Ser His Arg Ser Ser Met Ser Ser Ser Ser Lys Ser Ser Lys Gln Glu 1000 Lys Ile Ser Leu Ser Ser Phe Gly Lys Asn Lys Lys Ser Trp Ile Arg 1015 1020 Ser Ser Leu Ser Lys Phe Thr Lys Lys Lys Asn Lys Asn Tyr Asp Glu 1030 1035 Ala His Met Pro Ser Ile Ser Gly Ser Gln Gly Thr Leu Asp Asn Ile 1045 1050 Asp Val Ile Glu Leu Lys Gln Glu Leu Lys Glu Arg Asp Ser Ala Leu

SUBSTITUTE SHEET (RULE 26)

1065

STATEMENT OF THE STATE OF THE STATEMENT OF THE STATEMENT

- Tyr Glu Val Arg Leu Asp Asn Leu Asp Arg Ala Arg Glu Val Asp Val 1075 1080 1085
- Leu Arg Glu Thr Val Asn Lys Leu Lys Thr Glu Asn Lys Gln Leu Lys 1090 1095 1100
- Lys Glu Val Asp Lys Leu Thr Asn Gly Pro Ala Thr Arg Ala Ser Ser 1105 1110 1115 1120
- Arg Ala Ser Ile Pro Val Ile Tyr Asp Asp Glu His Val Tyr Asp Ala 1125 1130 1135
- Ala Cys Ser Ser Thr Ser Ala Ser Gln Ser Ser Lys Arg Ser Ser Gly
 1140 1145 1150
- Cys Asn Ser Ile Lys Val Thr Val Asn Val Asp Ile Ala Gly Glu Ile 1155 1160 1165
- Ser Ser Ile Val Asn Pro Asp Lys Glu Ile Ile Val Gly Tyr Leu Ala 1170 1175 1180
- Met Ser Thr Ser Gln Ser Cys Trp Lys Asp Ile Asp Val Ser Ile Leu 1185 1190 1195 1200
- Gly Leu Phe Glu Val Tyr Leu Ser Arg Ile Asp Val Glu His Gln Leu 1205 1210 1215
- Gly Ile Asp Ala Arg Asp Ser Ile Leu Gly Tyr Gln Ile Gly Glu Leu 1220 1225 1230
- Arg Arg Val Ile Gly Asp Ser Thr Thr Met Ile Thr Ser His Pro Thr 1235 1240 1245
- Asp Ile Leu Thr Ser Ser Thr Thr Ile Arg Met Phe Met His Gly Ala 1250 1255 1260
- Ala Gln Ser Arg Val Asp Ser Leu Val Leu Asp Met Leu Leu Pro Lys 1265 1270 1275 1280
- Gln Met Ile Leu Gln Leu Val Lys Ser Ile Leu Thr Glu Arg Arg Leu 1285 1290 1295
- Val Leu Ala Gly Ala Thr Gly Ile Gly Lys Ser Lys Leu Ala Lys Thr 1300 1305 1310
- Leu Ala Ala Tyr Val Ser Ile Arg Thr Asn Gln Ser Glu Asp Ser Ile 1315 1320 1325
- Val Asn Ile Ser Ile Pro Glu Asn Asn Lys Glu Glu Leu Leu Gln Val 1330 1335 1340
- Glu Arg Arg Leu Glu Lys Ile Leu Arg Ser Lys Glu Ser Cys Ile Val 1345 1350 1355 1360
- Ile Leu Asp Asn Ile Pro Lys Asn Arg Ile Ala Phe Val Val Ser Val 1365 1370 1375
- Phe Ala Asn Val Pro Leu Gln Asn Asn Glu Gly Pro Phe Val Val Cys 1380 1385 1390
- Thr Val Asn Arg Tyr Gln Ile Pro Glu Leu Gln Ile His His Asn Phe 1395 1400 1405

in the control of the

Lys Met Ser Val Met Ser Asn Arg Leu Glu Gly Phe Ile Leu Arg Tyr 1410 1415 1420

Leu Arg Arg Arg Ala Val Glu Asp Glu Tyr Arg Leu Thr Val Gln Met 1425 1430 1435 1440

Pro Ser Glu Leu Phe Lys Ile Ile Asp Phe Phe Pro Ile Ala Leu Gln 1445 1450 1455

Ala Val Asn Asn Phe Ile Glu Lys Thr Asn Ser Val Asp Val Thr Val 1460 1465 1470

Gly Pro Arg Ala Cys Leu Asn Cys Pro Leu Thr Val Asp Gly Ser Arg 1475 1480 1485

Glu Trp Phe Ile Arg Leu Trp Asn Glu Asn Phe Ile Pro Tyr Leu Glu 1490 1495 1500

Arg Val Ala Arg Asp Gly Lys Lys Asn Leu Arg Ser Leu His Phe Leu 1505 1510 1515 1520

Arg Gly Ser His Arg His Arg Leu 1525

(2) INFORMATION FOR SEQ ID NO: 4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1583 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

Met Thr Thr Ser Asn Val Glu Leu Ile Pro Ile Tyr Thr Asp Trp Ala 1 5 10 15

Asn Arg His Leu Ser Lys Gly Ser Leu Ser Lys Ser Ile Arg Asp Ile 20 25 30

Ser Asn Asp Phe Arg Asp Tyr Arg Leu Val Ser Gln Leu Ile Asn Val 35 40 45

Ile Val Pro Ile Asn Glu Phe Ser Pro Ala Phe Thr Lys Arg Leu Ala 50 55 60

Lys Ile Thr Ser Asn Leu Asp Gly Leu Glu Thr Cys Leu Asp Tyr Leu 65 70 75 80

Lys Asn Leu Gly Leu Asp Cys Ser Lys Leu Thr Lys Thr Asp Ile Asp 85 90 95

Ser Gly Asn Leu Gly Ala Val Leu Gln Leu Leu Phe Leu Leu Ser Thr 100 105 110

Tyr Lys Gln Lys Leu Arg Gln Leu Lys Lys Asp Gln Lys Lys Leu Glu 115 120 125

SUBSTITUTE SHEET (RULE 26)

a di 1900 mang mengang kanang mengangkan di kepadah pang pengang pengang pangangan kanang pengang pengangkan di pengang pengang

Glr	130		Thr	Ser	Ile	Met 135		Pro	Ala	Val	Ser 140		Leu	Pro	Se
Pro 145	Arg	Val	Ala	Thr	Ser 150	Ala	Thr	Ala	Ser	Ala 155	Thr	Asn	Pro	Asn	Se:
Asr	n Phe	Pro	Gln	Met 165		Thr	Ser	Arg	Leu 170		Thr	Pro	Gln	Ser 175	
Ile	e Ser	Lys	Ile 180		Ser	Ser	Lys	Ile 185	Gly	Ile	Lys	Pro	Lys 190	Thr	Se
Gly	/ Leu	Lys 195		Pro	Ser	Ser	Ser 200	Thr	Thr	Ser	Ser	Asn 205	Asn	Thr	Ası
Ser	210		Pro	Ser	Ser	Arg 215	Ser	Ser	Gly	Asn	Asn 220	Asn	Val	Gly	Sei
Thr 225	Ile	Ser	Thr	Ser	Ala 230	Lys	Ser	Leu	Glu	Ser 235	Ser	Ser	Thr	Tyr	Ser 240
Ser	lle	Ser	Asn	Leu 245	Asn	Arg	Pro	Thr	Ser 250	Gln	Leu	Gln	Lys	Pro 255	Ser
Arg	Pro	Gln	Thr 260	Gln	Leu	Val	Arg	Val 265	Ala	Thr	Thr	Thr	Lys 270	Ile	Gly
Ser	Ser	Lys 275		Ala	Ala	Pro	Lys 280	Ala	Val	Ser	Thr	Pro 285	Lys	Leu	Ala
Ser	Val 290	Lys	Thr	Ile	Gly	Ala 295	Lys	Gln	Glu	Pro	Asp 300	Asn	Ser	Gly	Gly
305					310					315				Asn	320
				325					330					Ala 335	
			340					345					350	Ser	_
		355					360					365	·	Ser	_
	370					375					380			Ile	
385					390					395				Glu	400
				405					410					Thr 415	
•			420					425					430	Ser	
		435					440					445		Ile	
Thr	Ala	Ile	Arg	Gln	Pro	Ile	Ala	Ala	Thr	Pro	Val	Ser	Pro	Asn	Ile

Ile 465	Asn	Lys	Pro	Val	Glu 470	Glu	Lys	Pro	Thr	Leu 475	Ala	Val	Lys	Gly	Val 480
Lys	Ser	Thr	Ala	Lys 485	Lys	Asp	Pro	Pro	Pro 490	Ala	Val	Pro	Pro	Arg 495	
Thr	Gln	Pro	Thr 500	Ile	Gly	Val	Val	Ser 505	Pro	Ile	Met	Ala	His 510		Lys
Leu	Thr	Asn 515	Asp	Pro	Val	Ile	Ser 520	Glu	Lys	Pro	Glu	Pro 525		Lys	Leu
Gln	Ser 530	Met	Ser	Ile	Asp	Thr 535	Thr	Asp	Val	Pro	Pro 540	Leu	Pro	Pro	Leu
Lys 545	Ser	Val	Val	Pro	Leu 550	Lys	Met	Thr		Ile 555	Arg	Gln	Pro	Pro	Thr 560
Tyr	Asp	Val	Leu	Leu 565	Lys	Gln	Gly	Lys	11e 570		Ser	Pro	Val	Lys 575	Ser
Phe	Gly	Tyr	Glu 580	Gln	Ser	Ser	Ala	Ser 585	Glu	Asp	Ser	Ile	Val 590	Ala	His
Ala	Ser	Ala 595	Gln	Val	Thr	Pro	Pro 600	Thr	Lys	Thr	Ser	Gly 605	Asn	His	Ser
	610				Gly	615				٠	620				
623					Val 630					635					640
				645	Met				650					655	
			660		Ser			665					670		
	,	6/5			Ser		680					685		•	
	690				His	695					700			^	
					Lys 710					/13					720
				725	Arg		•		730					735	
			740		Ser			745			•		750		
		755		-	Arg		760			٠		765	:		
	770					775					780		•		
Ser 785	Arg	Arg	Pro	Ser	Ser 790	Gln	Lys	Pro		Tyr 795	Ser	Gly	Gln	Phe	His 800

Se	r Lei	u Asj	P Ar	805	s Cys	Hi:	s Lei	ı Gl	n Gl:	u Phe	e Thi	r Se	r Th	r Glu 815	
Ar	g Mei	t Ala	820	a Lei O	ı Lev	se:	r Pro	82:	g Aro	g Val	l Pro	Ası	n Se:		Ser
Lys	тул	835	Sei	r Sei	c Gly	Se:	840	Se:	r Ala	a Arg	g Sei	845	g Gly	y Gly	/ Ser
Sei	Th: 850	Gly	/ Ile	Э Туг	Gly	61 g 855	Thr	Phe	e Glr	Leu	His 860	Arg	J Let	ı Ser	: Asp
865	•				His 870					875	•				880
				885					890)				895	
			900)	Met			905	i				910)	
		915	,		Lys		920					925			,
	930				Leu	935					940				
343					Glu 950					955					960
				965	Asn				970					975	
			980		Leu			985					990		
		993			Met		100	0				100	5		
	101	U			Ser	101	5				102	0 .			
102.	,		,		Phe 1030	,				103	5				1040
				104.				,	103					1055	•
			1060	J	Lys			106	5 ,				1070)	
		1075			Asp		1080)				1085	5		
	1090	,			Asn	1095	•				1100)			_
1105)				Leu 1110					1115	5				1120
Arg	Ala	ser	Ile	Pro 1125	Val	Ile	Tyr	Asp	Asp 1130	Glu)	His	Val	Tyr	Asp 1135	

- Ala Cys Ser Ser Thr Ser Ala Ser Gln Ser Ser Lys Arg Ser Ser Gly 1140 1145 1150
- Cys Asn Ser Ile Lys Val Thr Val Asn Val Asp Ile Ala Gly Glu Ile 1155 1160 1165
- Ser Ser Ile Val Asn Pro Asp Lys Glu Ile Ile Val Gly Tyr Leu Ala 1170 1175 1180
- Met Ser Thr Ser Gln Ser Cys Trp Lys Asp Ile Asp Val Ser Ile Leu 1185 1190 1195 1200
- Gly Leu Phe Glu Val Tyr Leu Ser Arg Ile Asp Val Glu His Gln Leu 1205 1210 1215
- Gly Ile Asp Ala Arg Asp Ser Ile Leu Gly Tyr Gln Ile Gly Glu Leu 1220 1225 1230
- Arg Arg Val Ile Gly Asp Ser Thr Thr Met Ile Thr Ser His Pro Thr 1235 1240 1245
- Asp Ile Leu Thr Ser Ser Thr Thr Ile Arg Met Phe Met His Gly Ala 1250 1255 1260
- Ala Gln Ser Arg Val Asp Ser Leu Val Leu Asp Met Leu Leu Pro Lys 1265 1270 1275 1280
- Gln Met Ile Leu Gln Leu Val Lys Ser Ile Leu Thr Glu Arg Arg Leu 1285 1290 1295
- Val Leu Ala Gly Ala Thr Gly Ile Gly Lys Ser Lys Leu Ala Lys Thr 1300 1305 1310
- Leu Ala Ala Tyr Val Ser Ile Arg Thr Asn Gln Ser Glu Asp Ser Ile 1315 1320 1325
- Val Asn Ile Ser Ile Pro Glu Asn Asn Lys Glu Glu Leu Leu Gln Val 1330 1335 1340
- Glu Arg Arg Leu Glu Lys Ile Leu Arg Ser Lys Glu Ser Cys Ile Val 1345 1350 1355 1360
- Ile Leu Asp Asn Ile Pro Lys Asn Arg Ile Ala Phe Val Val Ser Val 1365 1370 1375
- Phe Ala Asn Val Pro Leu Gln Asn Asn Glu Gly Pro Phe Val Val Cys 1380 1385 1390
- Thr Val Asn Arg Tyr Gln Ile Pro Glu Leu Gln Ile His His Asn Phe 1395 1400 1405
- Lys Met Ser Val Met Ser Asn Arg Leu Glu Gly Phe Ile Leu Arg Tyr 1410 1415 1420
- Leu Arg Arg Arg Ala Val Glu Asp Glu Tyr Arg Leu Thr Val Gln Met 1425 1430 1435 1440
- Pro Ser Glu Leu Phe Lys Ile Ile Asp Phe Phe Pro Ile Ala Leu Gln 1445 1450 1455
- Ala Val Asn Asn Phe Ile Glu Lys Thr Asn Ser Val Asp Val Thr Val 1460 1465 1470

SUBSTITUTE SHEET (RULE 26)

116

Gly Pro Arg Ala Cys Leu Asn Cys Pro Leu Thr Val Asp Gly Ser Arg 1475 1480 1485

Glu Trp Phe Ile Arg Leu Trp Asn Glu Asn Phe Ile Pro Tyr Leu Glu 1490 1495 1500

Arg Val Ala Arg Asp Gly Lys Lys Thr Phe Gly Arg Cys Thr Ser Phe 1505 1510 1515 1520

Glu Asp Pro Thr Asp Ile Val Ser Lys Lys Trp Pro Trp Phe Asp Gly 1525 1530 1535

Glu Asn Pro Glu Asn Val Leu Lys Arg Leu Gln Leu Gln Asp Leu Val 1540 1545 1550

Pro Ser Pro Ala Asn Ser Ser Arg Gln His Phe Asn Pro Leu Glu Ser 1555 1560 1565

Leu Ile Gln Leu His Ala Thr Lys His Gln Thr Ile Asp Asn Ile 1570 1575 1580

- (2) INFORMATION FOR SEQ ID NO: 5:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 47 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (iii) HYPOTHETICAL: NO
- (x1) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

ATAAGAATGC GGCCGCCGCC ATGACGACGT CAAATGTAGA ATTGATA

47

- (2) INFORMATION FOR SEQ ID NO: 6:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 41 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (iii) HYPOTHETICAL: NO
- (XI) SEQUENCE DESCRIPTION: SEQ ID NO: 6:
 GGAATTCCAA CCATATGACG ACGTCAAATG TAGAATTGAT A

41

The Control of the State of the

Comment of the second

- (2) INFORMATION FOR SEQ ID NO: 7:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 35 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (iii) HYPOTHETICAL: NO
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:

CGCGGATCCT CAAACCGCGG GTGGCATAAT GGATG

35

- (2) INFORMATION FOR SEQ ID NO: 8:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 13 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:

Lys Lys Asp Pro Pro Pro Ala Val Pro Pro Arg Asp Thr 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 9:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 12 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:

Thr Thr Asp Val Pro Pro Leu Pro Pro Leu Lys Ser 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 10:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 12 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: peptide

SUBSTITUTE SHEET (RULE 26)

化三氯化二氯甲酚 网络普通人名 经价值

118

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:

Glu Val Pro Val Pro Pro Pro Val Pro Pro Arg Arg 5

- (2) INFORMATION FOR SEQ ID NO: 11:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 11 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:

His Leu Asp Ser Pro Pro Ala Ile Pro Pro Arg

- (2) INFORMATION FOR SEQ ID NO: 12:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 11 amino acids
 - (B) TYPE: amino acid (C) STRANDEDNESS:

 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:

His Ser Ile Ala Gly Pro Pro Val Pro Pro Arg 5

- (2) INFORMATION FOR SEQ ID NO: 13:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 13 amino acids
 - (B) TYPE: amino acid (C) STRANDEDNESS:

 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:

Tyr Arg Ala Val Pro Pro Pro Leu Pro Pro Arg Arg Lys

NUMBER DE MINISTRA DAMA PRODUCESA A SE A

- (2) INFORMATION FOR SEQ ID NO: 14:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 13 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:

Gly Glu Leu Ser Pro Pro Pro Ile Pro Pro Arg Leu Asn 10

- (2) INFORMATION FOR SEQ ID NO: 15:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 11 amino acids
 - (B) TYPE: amino acid(C) STRANDEDNESS:

 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:

Ala Pro Ala Val Pro Pro Ala Arg Pro Gly Ser 5 10

- (2) INFORMATION FOR SEQ ID NO: 16:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 8 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:

Pro Ala Val Pro Pro Ala Arg Pro

- (2) INFORMATION FOR SEQ ID NO: 17:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 11 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: peptide

BUIGNIBA BEDERADA BARA BERADA BUIGNIBA BERADA BERA

120

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:

Pro Pro Arg Pro Leu Pro Val Ala Pro Gly Ser 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 18:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18:

Pro Ala Pro Ala Pro Pro Lys Pro Pro Lys 1

- (2) INFORMATION FOR SEQ ID NO: 19:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 13 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19:

Pro Pro Asp Asn Gly Pro Pro Pro Leu Pro Thr Ser Ser 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 20:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 13 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 20:

Pro Pro Gln Met Pro Leu Pro Glu Ile Pro Gln Gln Trp

- (2) INFORMATION FOR SEQ ID NO: 21:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 13 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: peptide

SUBSTITUTE SHEET (RULE 26)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 21:

Ala Pro Thr Met Pro Pro Pro Leu Pro Pro Val Pro Pro 10

- (2) INFORMATION FOR SEQ ID NO: 22:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 12 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22:

Phe Pro Ala Tyr Pro Pro Pro Pro Val Pro Val Pro 5

- (2) INFORMATION FOR SEQ ID NO: 23:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 28 amino acids(B) TYPE: amino acid

 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23:

Leu Leu Phe Leu Leu Ser Thr Tyr Lys Gln Lys Leu Arg Gln Leu Lys

Lys Asp Gln Lys Lys Leu Glu Gln Leu Pro Thr Ser 20

- (2) INFORMATION FOR SEQ ID NO: 24:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 28 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 24:

Glu Thr Val Asn Val Asn Lys Leu Lys Thr Glu Asn Lys Gln Leu Lys 10

Lys Glu Val Asp Lys Leu Thr Asn Gly Pro Ala Thr 25

SUBSTITUTE SHEET (RULE 26)

LONG PARTER OF THE PARTER OF THE PARTER OF A PARTER OF THE AND AND THE PARTER OF THE P

(2) INFORMATION FOR SEQ ID NO: 25:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10443 base pairs (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "plasmid"
- (iii) HYPOTHETICAL: NO
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 25:

GGCCGCCGCC ATGACGACGT CA	AATGTAGA	מייהמיימרכמ	ATCTACACGG	APPROCECTON N	
		ni i ani noon		ATTGGGCCAA	60
TCGGCACCTT TCGAAGGGCA GC	TTATCAAA	GTCGATTAGG	GATATTTCCA	ATGATTTTCG	120
CGACTATCGA CTGGTTTCTC AG	CTTATTAA	TGTGATCGTT	CCGATCAACG	AATTCTCGCC	180
TGCATTCACG AAACGTTTGG CA	AAAATCAC	ATCGAACCTG	GATGGCCTCG	AAACGTGTCT	240
CGACTACCTG AAAAATCTGG GT	CTCGACTG	CTCGAAACTC	ACCAAAACCG	ATATCGACAG	300
CGGAAACTTG GGTGCAGTTC TC	CAGCTGCT	CTTCCTGCTC	TCCACCTACA	AGCAGAAGCT	360
TCGGCAACTG AAAAAAGATC AG	AAGAAATT	GGAGCAACTA	CCCACATCCA	TTATGCCACC	420
CGCGGTTTCT AAATTACCCT CG	CCACGTGT	CGCCACGTCA	GCAACCGCTT	CAGCAACTAA	480
CCCAAATTCC AACTTTCCAC AA	ATGTCAAC .	ATCCAGGCTT	CAGACTCCAC	AGTCAAGAAT	540
ATCGAAAATT GATTCATCAA AG	ATTGGTAT	CAAGCCAAAG	ACGTCTGGAC	TTAAACCACC	600
CTCATCATCA ACCACTTCAT CA	AATAATAC	AAATTCATTC	CGTCCGTCGA	GCCGTTCGAG	660
TGGCAATAAT AATGTTGGCT CG	ACGATATC	CACATCTGCG	AAGAGCTTAG	AATCATCATC	720
AACGTACAGC TCTATTTCGA AT	CTAAACCG	ACCTACCTCC	CAACTCCAAA	AACCTTCTAG	780
ACCACAAACC CAGCTAGTTC GT	GTTGCTAC	ААСТАСАААА	ATCGGAAGCT	CAAAGCTAGC	840
CGCTCCGAAA GCCGTGAGCA CC	CCAAAACT '	TGCTTCTGTG	AAGACTATTG	GAGCAAAACA	900
AGAGCCCGAT AACAGCGGTG GT	GGTGGTGG '	TGGAATGCTG	AAATTAAAGT	TATTCAGTAG	960
CAAAAACCCA TCTTCCTCAT CG	AATAGCCC 2	ACAACCTACG	AGAAAGGCGG	CGGCGGTGCC	1020
TCAACAACAA ACTTTGTCGA AAA	ATCGCTGC	CCCAGTGAAA	AGTGGCCTGA	AGCCGCCGAC	1080
CAGTAAGCTG GGAAGTGCCA CG	TCTATGTC (GAAGCTTTGT	ACGCCAAAAG	TTTCCTACCG	1140
TAAAACGGAC GCCCAATCA TA	TCTCAACA	AGACTCGAAA	CGATGCTCAA	AGAGCAGTGA	1200
AGAAGAGTCC GGATACGCTG GA	TTCAACAG (CACGTCGCCA	ACGTCATCAT	CGACGGAAGG	1260
TTCCCTAAGC ATGCATTCCA CAT	TCTTCCAA (GAGTTCAACG	TCAGACGAAA	AGTCTCCGTC	1320
ATCAGACGAT CTTACTCTTA ACC					1380
AACACCGGTT TCTCCAAATA TT					1440

1987 - 1897 - 18

GAAAGGAGTG	AAAAGCACAG	CCDDDDDDGD	TOTACOTOTA	CCMCMMCCCC	Ch coman and	
						1500
	ATCGGAGTTG					1560
					ACACGACGGA	1620
CGTTCCACCG	CTTCCACCTC	TAAAATCAGT	TGTTCCACTT	AAAATGACTT	CAATCCGACA	1680
ACCACCAACG	TACGATGTTC	TTCTAAAACA	AGGAAAAATC	ACATCGCCTG	TCAAGTCGTT	1740
TGGATATGAG	CAGTCGTCCG	CGTCTGAAGA	CTCCATTGTG	GCTCATGCGT	CGGCTCAGGT	1800
GACTCCGCCG	ACAAAAACTT	CTGGTAATCA	TTCGCTGGAG	AGAAGGATGG	GAAAGAATAA	1860
GACATCAGAA	TCCAGCGGCT	ACACCTCTGA	CGCCGGTGTT	GCGATGTGCG	CCAAAATGAG	1920
GGAGAAGCTG	AAAGAATACG	ATGACATGAC	TCGTCGAGCA	CAGAACGGCT	ATCCTGACAA	1980
CTTCGAAGAC	AGTTCCTCCT	TGTCGTCTGG	AATATCCGAT	AACAACGAGC	TCGACGACAT	2040
ATCCACGGAC	GATTTGTCCG	GAGTAGACAT	GGCAACAGTC	GCCTCCAAAC	ATAGCGACTA	2100
TTCCCACTTT	GTTCGCCATC	CCACGTCTTC	TTCCTCAAAG	CCCCGAGTCC	CCAGTCGGTC	2160
CTCCACATCA	GTCGATTCTC	GATCTCGAGC	AGAACAGGAG	AATGTGTACA	AACTTCTGTC	2220
CCAGTGCCGA	ACGAGCCAAC	GTGGCGCCGC	TGCCACCTCA	ACCTTCGGAC	AACATTCGCT	2280
AAGATCCCCG	GGATACTCAT	CCTATTCTCC	ACACTTATCA	GTGTCAGCTG	ATAAGGACAC	2340
AATGTCTATG	CACTCACAGA	CTAGTCGACG	ACCTTCTTCA	САААААССАА	GCTATTCAGG	2400
CCAATTTCAT	TCACTTGATC	GTAAATGCCA	CCTTCAAGAG	TTCACATCCA	CCGAGCACAG	2460
AATGGCGGCT	CTCTTGAGCC	CGAGACGGGT	GCCGAACTCG	ATGTCGAAAT	ATGATTCTTC	2520
AGGATCCTAC	TCGGCGCGTT	CCCGAGGTGG	AAGCTCTACT	GGTATCTATG	GAGAGACGTT	2580
CCAACTGCAC	AGACTATCCG	ATGAAAAATC	CCCCGCACAT	TCTGCCAAAA	GTGAGATGGG	2640
ATCCCAACTA	TCACTGGCTA	GCACGACAGC	ATATGGATCT	CTCAATGAGA	AGTACGAACA	2700
TGCTATTCGG	GACATGGCAC	GTGACTTGGA	GTGTTACAAG	AACACTGTCG	ACTCACTAAC	2760
CAAGAAACAG	GAGAACTATG	GAGCATTGTT	TGATCTTTTT	GAGCAAAAGC	TTAGAAAACT	2820
CACTCAACAC	ATTGATCGAT	CCAACTTGAA	GCCTGAAGAG	GCAATACGAT	TCAGGCAGGA	2880
CATTGCTCAT	TTGAGGGATA	TTAGCAATCA	TCTTGCATCC	AACTCAGCTC	ATGCTAACGA	2940
AGGCGCTGGT	GAGCTTCTTC	GTCAACCATC	TCTGGAATCA	GTTGCATCCC	ATCGATCATC	3000
GATGTCATCG	TCGTCGAAAA	GCAGCAAGCA	GGAGAAGATC	AGCTTGAGCT	CGTTTGGCAA	3060
GAACAAGAAG	AGCTGGATCC	GCTCCTCACT	CTCCAAGTTC	ACCAAGAAGA	AGAACAAGAA	3120
CTACGACGAA	GCACATATGC	CATCAATTTC	CGGATCTCAA	GGAACTCTTG	ACAACATTGA	3180
TGTGATTGAG	TTGAAGCAAG	AGCTCAAAGA	ACGCGATAGT	GCACTTTACG	AAGTCCGCCT	3240
TGACAATCTG	GATCGTGCCC	GCGAAGTTGA	TGTTCTGAGG	GAGACAGTGA	ACAAGTTGAA	3300
	AAGCAATTAA			•	. •	3360
			-0.0.20.010			5500

SUBSTITUTE SHEET (RULE 26)

TGCTTCTTC	C CGCGCCTCA	A TTCCAGTTA	r ctacgacgat	GAGCATGTC	ATGATGCAGC	3420
GTGTAGCAG	T ACATCAGCT	A GTCAATCTT	GAAACGATCO	TCTGGCTGC	ACTCAATCAA	3480
GGTTACTGT	a aacgtggac <i>i</i>	A TCGCTGGAGA	A AATCAGTTCG	ATCGTTAACC	CGGACAAAGA	3540
GATAATCGT	A GGATATCTT	CCATGTCAAC	CAGTCAGTCA	TGCTGGAAAG	ACATTGATGT	3600
TTCTATTCT	A GGACTATTT	AAGTCTACCT	T ATCCAGAATI	GATGTGGAGG	ATCAACTTGG	3660
AATCGATGC	r cgtgattct	A TCCTTGGCTA	A TCAAATTGGT	GAACTTCGAC	GCGTCATTGG	3720
AGACTCCAC	A ACCATGATA	CCAGCCATC	AACTGACATT	CTTACTTCCT	CAACTACAAT	3780
CCGAATGTT	C ATGCACGGT	CCGCACAGAG	TCGCGTAGAC	AGTCTGGTCC	TTGATATGCT	3840
TCTTCCAAA	G CAAATGAȚTC	TCCAACTCGT	CAAGTCAATT	TTGACAGAGA	GACGTCTGGT	3900
GTTAGCTGG	A GCAACTGGAA	TTGGAAAGAG	CAAACTGGCG	AAGACCCTGG	CTGCTTATGT	3960
ATCTATTCG	A ACAAATCAAT	CCGAAGATAG	TATTGTTAAT	ATCAGCATTC	CTGAAAACAA	4020
TAAAGAAGA	TTGCTTCAAG	TGGAACGACG	CCTGGAAAAG	ATCTTGAGAA	GCAAAGAATC	4080
ATGCATCGT	ATTCTAGATA	ATATCCCAAA	GAATCGAATT	GCATTTGTTG	TATCCGTTTT	4140
TGCAAATGTC	CCACTTCAAA	ACAACGAAGG	TCCATTTGTA	GTATGCACAG	TCAACCGATA	4200
TCAAATCCCT	GAGCTTCAAA	TTCACCACAA	TTTCAAAATG	TCAGTAATGT	CGAATCGTCT	4260
CGAAGGATTC	ATCCTACGTT	ACCTCCGACG	ACGGGCGGTA	GAGGATGAGT	ATCGTCTAAC	4320
TGTACAGATG	CCATCAGAGC	TCTTCAAAAT	CATTGACTTC	TTCCCAATAG	CTCTTCAGGC	4380
CGTCAATAAT	TTTATTGAGA	AAACGAATTC	TGTTGATGTG	ACAGTTGGTC	CAAGAGCATG	4440
CTTGAACTGT	CCTCTAACTG	TCGATGGATC	CCGTGAATGG	TTCATTCGAT	TGTGGAATGA	4500
GAACTTCATT	CCATATTTGG	AACGTGTTGC	TAGAGATGGC	AAAAAAACCT	TCGGTCGCTG	4560
CACTTCCTTC	GAGGATCCCA	CCGACATCGT	СТСТААААА	TGGCCGTGGT	TCGATGGTGA	4620
AAACCCGGAG	AATGTGCTCA	AACGTCTTCA	ACTCCAAGAC	CTCGTCCCGT	CACCTGCCAA	4680
CTCATCCCGA	CAACACTTCA	ATCCCCTCGA	GTCGTTGATC	CAATTGCATG	CTACCAAGCA	4740
TCAGACCATC	GACAACATTT	GAACAGAAGA	CTCTAATCTT	CTCTCGCCTC	TCCCCGCTT	4800
TCCTTATCTT	CGTACCGGTA	CCTGATGATT	CCCCATTTTC	CCCCTTTTCC	CCCCAATTTC	4860
CCAGAACCTC	CTGTTCCCTT	TGTTCCTAGT	CCTCCCGGGT	GCCGACGCCG	AAGCGATTTA	4920
AAAACCTTTT	TCTTTCCGAA	ACATTTCCCA	TTGCTCATTA	ATAGTCAAAT	TGAATAAACA	4980
GTGTATGTAC	TTAAAAAAAA	АААААААА	ACTCGAGGGG	GGGCCCTATT	CTATAGTGTC	5040
ACCTAAATGC	TAGAGCTCGC	TGATCAGCCT	CGACTGTGCC	TTCTAGTTGC	CAGCCATCTG	5100
TTGTTTGCCC	CTCCCCGTG	CCTTCCTTGA	CCCTGGAAGG	TGCCACTCCC	ACTGTCCTTT	5160
ССТААТАААА	TGAGGAAATT	GCATCGCATT	GTCTGAGTAG	GTGTCATTCT	ATTCTGGGGG	5220
GTGGGGTGGG	GCAGGACAGC	AAGGGGGAGG	ATTGGGAAGA	CAATAGCAGG	CATGCTGGGG	5280

ATGCGGTGGG	CTCTATGGCT	TCTGAGGCGG	AAAGAACCAG	CTGGGGCTCT	AGGGGGTATC	5340
CCCACGCGCC	CTGTAGCGGC	GCATTAAGCG	CGGCGGGTGT	GGTGGTTACG	CGCAGCGTGA	5400
CCGCTACACT	TGCCAGCGCC	CTAGCGCCCG	CTCCTTTCGC	TTTCTTCCCT	TCCTTTCTCG	5460
CCACGTTCGC	CGGCTTTCCC	CGTCAAGCTC	TAAATCGGGG	CATCCCTTTA	GGGTTCCGAT	5520
TTAGTGCTTT	ACGGCACCTC	GACCCCAAAA	AACTTGATTA	GGGTGATGGT	TCACGTAGTG	5580
GGCCATCGCC	CTGATAGACG	GTTTTTCGCC	CTTTGACGTT	GGAGTCCACG	TTCTTTAATA	5640
GTGGACTCTT	GTTCCAAACT	GGAACAACAC	TCAACCCTAT	CTCGGTCTAT	TCTTTTGATT	5700
TATAAGGGAT	TTTGGGGATT	TCGGCCTATT	GGTTAAAAAA	TGAGCTGATT	TAACAAAAAT	57 60
TTAACGCGAA	TTAATTCTGT	GGAATGTGTG	TCAGTTAGGG	TGTGGAAAGT	CCCCAGGCTC	58 20
CCCAGGCAGG	CAGAAGTATG	CAAAGCATGC	ATCTCAATTA	GTCAGCAACC	AGGTGTGGAA	58 80
AGTCCCCAGG	CTCCCCAGCA	GGCAGAAGTA	TGCAAAGCAT	GCATCTCAAT	TAGTCAGCAA	5940
CCATAGTCCC	GCCCCTAACT	CCGCCCATCC	CGCCCTAAC	TCCGCCCAGT	TCCGCCCATT	6000
CTCCGCCCCA	TGGCTGACTA	ATTTTTTTA	TTTATGCAGA	GGCCGAGGCC	GCCTCTGCCT	6 060
CTGAGCTATT	CCAGAAGTAG	TGAGGAGGCT	TTTTTGGAGG	CCTAGGCTTT	TGCAAAAAGC	6120
TCCCGGGAGC	TTGTATATCC	ATTTTCGGAT	CTGATCAAGA	GACAGGATGA	GGATCGTTTC	6180
GCATGATTGA	ACAAGATGGA	TTGCACGCAG	GTTCTCCGGC	CGCTTGGGTG	GAGAGGCTAT	6240
TCGGCTATGA	CTGGGCACAA	CAGACAATCG	GCTGCTCTGA	TGCCGCCGTG	TTCCGGCTGT	6300
CAGCGCAGGG	GCGCCCGGTT	CTTTTTGTCA	AGACCGACCT	GTCCGGTGCC	CTGAATGAAC	6360
TGCAGGACGA	GGCAGCGCGG	CTATCGTGGC	TGGCCACGAC	GGGCGTTCCT	TGCGCAGCTG	6420
TGCTCGACGT	TGTCACTGAA	GCGGGAAGGG	ACTGGCTGCT	ATTGGGCGAA	GTGCCGGGGC	6480
AGGATCTCCT	GTCATCTCAC	CTTGCTCCTG	CCGAGAAAGT	ATCCATCATG	GCTGATGCAA	6540
TGCGGCGGCT	GCATACGCTT	GATCCGGCTA	CCTGCCCATT	CGACCACCAA	GCGAAACATC	6600
GCATCGAGCG	AGCACGTACT	CGGATGGAAG	CCGGTCTTGT	CGATCAGGAT	GATCTGGACG	6660
AAGAGCATCA	GGGCTCGCG	CCAGCCGAAC	TGTTCGCCAG	GCTCAAGGCG	CGCATGCCCG	6720
ACGGCGAGGA	TCTCGTCGTG	ACCCATGGCG	ATGCCTGCTT	GCCGAATATC	ATGGTGGAAA	6780
ATGGCCGCTT	TTCTGGATTC	ATCGACTGTG	GCCGGCTGGG	TGTGGCGGAC	CGCTATCAGG	6840
ACATAGCGTT	GGCTACCCGT	GATATTGCTG	AAGAGCTTGG	CGGCGAATGG	GCTGACCGCT	6900
TCCTCGTGCT	TTACGGTATC	GCCGCTCCCG	ATTCGCAGCG	CATCGCCTTC	TATCGCCTTC	6960
TTGACGAGTT	CTTCTGAGCG	GGACTCTGGG	GTTCGAAATG	ACCGACCAAG	CGACGCCCAA	7020
CCTGCCATCA	CGAGATTTCG	ATTCCACCCC	CGCCTTCTAT	GAAAGGTTGG	GCTTCGGAAT	7080
CGTTTTCCGG	GACGCCGGCT	GGATGATCCT	CCAGCGCGGG	GATCTCATGC	TGGAGTTCTT	7140
CGCCCACCCC	AACTTGTTTA	TTGCAGCTTA	TAATGGTTAC	AAATAAAGCA	ATAGCATCAC	7200

THE STATE OF THE PROPERTY OF T

AAATTTCAC	a aataaagca	r ttttttcac	T GCATTCTAG	TGTGGTTTG	r ccaaactcat	7260
CAATGTATC	T TATCATGTC	r Gtataccgt	C GACCTCTAGO	TAGAGCTTG	G CGTAATCATG	7320
GTCATAGCT	G TTTCCTGTG	r gaaattgtt	A TCCGCTCAC	ATTCCACAC	A ACATACGAGC	7380
CGGAAGCAT	A AAGTGTAAA	CCTGGGGTG	C CTAATGAGT	AGCTAACTC	A CATTAATTGC	7440
GTTGCGCTC	A CTGCCCGCT	TCCAGTCGG	AAACCTGTCG	TGCCAGCTG	ATTAATGAAT	7500
CGGCCAACG	C GCGGGGAGA	GCGGTTTGC	TATTGGGCGC	TCTTCCGCT	CCTCGCTCAC	7560
TGACTCGCT	GCTCGGTC	TTCGGCTGC	GCGAGCGGTA	TCAGCTCACT	CAAAGGCGGT	7620
AATACGGTTA	A TCCACAGAAT	CAGGGGATA	CGCAGGAAAG	AACATGTGAG	CAAAAGGCCA	7680
GCAAAAGGCC	AGGAACCGTA	AAAAGGCCGC	GTTGCTGGCG	TTTTTCCATA	GCTCCGCCC	7740
CCCTGACGAG	CATCACAAA	ATCGACGCT	AAGTCAGAGG	TGGCGAAACC	CGACAGGACT	7800
ATAAAGATAC	CAGGCGTTTC	CCCCTGGAAG	CTCCCTCGTG	CGCTCTCCTG	TTCCGACCCT	7860
GCCGCTTACC	GGATACCTGT	CCGCCTTTCT	CCCTTCGGGA	AGCGTGGCGC	TTTCTCAATG	7920
CTCACGCTGT	AGGTATCTCA	GTTCGGTGTA	GGTCGTTCGC	TCCAAGCTGG	GCTGTGTGCA	7980
CGAACCCCC	GTTCAGCCCG	ACCGCTGCGC	CTTATCCGGT	AACTATCGTC	TTGAGTCCAA	8040
	CACGACTTAT					8100
				•	GCTACACTAG	8160
AAGGACAGTA	TTTGGTATCT	GCGCTCTGCT	GAAGCCAGTT	ACCTTCGGAA	AAAGAGTTGG	8220
	TCCGGCAAAC				•	8280
	CGCAGAAAA					8340
	TGGAACGAAA					8400
	TAGATCCTTT					8460
	TGGTCTGACA				•	8520
	CGTTCATCCA					8580
GGAGGGCTTA	CCATCTGGCC	CCAGTGCTGC	AATGATACCG	CGAGACCCAC	GCTCACCGGC	8640
					GTGGTCCTGC	8700
AACTTTATCC	GCCTCCATCC	AGTCTATTAA	TTGTTGCCGG	GAAGCTAGAG	TAAGTAGTTC	8760
GCCAGTTAAT	AGTTTGCGCA	ACGTTGTTGC	CATTGCTACA	GGCATCGTGG	TGTCACGCTC	8820
GTCGTTTGGT	ATGGCTTCAT	TCAGCTCCGG	TTCCCAACGA	TCAAGGCGAG	TTACATGATC	8880
CCCCATGTTG	TGCAAAAAAG	CGGTTAGCTC	CTTCGGTCCT	CCGATCGTTG	TCAGAAGTAA	8940
GTTGGCCGCA	GTGTTATCAC	TCATGGTTAT	GGCAGCACTG	CATAATTCTC	TTACTGTCAT	9000
GCCATCCGTA	AGATGCTTTT	CTGTGACTGG	TGAGTACTCA	ACCAAGTCAT	TCTGAGAATA	90 <u>6</u> 0
GTGTATGCGG	CGACCGAGTT	GCTCTTGCCC	GGCGTCAATA	CGGGATAATA	CCGCGCCACA	9120

TAGCAGAACT	TTAAAAGTGC	TCATCATTGG	AAAACGTTCT	TCGGGGCGAA	AACTCTCAAG	9180
GATCTTACCG	CTGTTGAGAT	CCAGTTCGAT	GTAACCCACT	CGTGCACCCA	ACTGATCTTC	9240
AGCATCTTTT	ACTTTCACCA	GCGTTTCTGG	GTGAGCAAAA	ACAGGAAGGC	AAAATGCCGC	9300
aaaaaaggga	ATAAGGGCGA	CACGGAAATG	TTGAATACTC	ATACTCTTCC	TTTTTCAATA	9360
TTATTGAAGC	ATTTATCAGG	GTTATTGTCT	CATGAGCGGA	TACATATTTG	AATGTATTTA	9420
GAAAAATAAA	CAAATAGGGG	TTCCGCGCAC	ATTTCCCCGA	AAAGTGCCAC	CTGACGTCGA	9480
CGGATCGGGA	GATCTCCCGA	TCCCCTATGG	TCGACTCTCA	GTACAATCTG	CTCTGATGCC	9540
GCATAGTTAA	GCCAGTATCT	GCTCCCTGCT	TGTGTGTTGG	AGGTCGCTGA	GTAGTGCGCG	9600
AGCAAAATTT	AAGCTACAAC	AAGGCAAGGC	TTGACCGACA	ATTGCATGAA	GAATCTGCTT	9660
AGGGTTAGGC	GTTTTGCGCT	GCTTCGCGAT	GTACGGGCCA	GATATACGCG	TTGACATTGA	9720
TTATTGACTA	GTTATTAATA	GTAATCAATT	ACGGGGTCAT	TAGTTCATAG	CCCATATATG	9780
GAGTTCCGCG	TTACATAACT	TACGGTAAAT	GGCCCGCCTG	GCTGACCGCC	CAACGACCCC	9840
CGCCCATTGA	CGTCAATAAT	GACGTATGTT	CCCATAGTAA	CGCCAATAGG	GACTTTCCAT	9900
TGACGTCAAT	GGGTGGACTA	TTTACGGTAA	ACTGCCCACT	TGGCAGTACA	TCAAGTGTAT	9960
CATATGCCAA	GTACGCCCCC	TATTGACGTC	AATGACGGTA	AATGGCCCGC	CTGGCATTAT	10020
GCCCAGTACA	TGACCTTATG	GGACTTTCCT	ACTTGGCAGT	ACATCTACGT	ATTAGTCATC	10080
GCTATTACCA	TGGTGATGCG	GTTTTGGCAG	TACATCAATG	GGCGTGGATA	GCGGTTTGAC	10140
PCACGGGGAT	TTCCAAGTCT	CCACCCCATT	GACGTCAATG	GGAGTTTGTT	TTGGCACCAA	10200
AATCAACGGG	ACTTTCCAAA	ATGTCGTAAC	AACTCCGCCC	CATTGACGCA	AATGGGCGGT	10260
AGGCGTGTAC	GGTGGGAGGT	CTATATAAGC	AGAGCTCTCT	GGCTAACTAG	AGAACCCACT	10320
SCTTACTGGC	TTATCGAAAT	TAATACGACT	CACTATAGGG	AGACCCAAGC	TTGGTACCGA	10380
SCTCGGATCC	ACTAGTAACG	GCCGCCAGTG	TGCTGGAATT	CTGCAGATAT	CCATCACACT	10440
GC	• .		-			10443

(2) INFORMATION FOR SEQ ID NO: 26:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 7474 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: other nucleic acid
 (A) DESCRIPTION: /desc = "plasmid"
- (iii) HYPOTHETICAL: NO

SUBSTITUTE SHEET (RULE 26)

TO A STORE TO STORE THE REPORT OF THE STORE AND A STOR

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 26:

CTAAATTGTA	AGCGTTAATA	TTTTGTTAAA	ATTCGCGTTA	AATTTTTGTT	AAATCAGCTC	60
ATTTTTTAAC	CAATAGGCCG	AAATCGGCAA	AATCCCTTAT	AAATCAAAAG	AATAGACCGA	120
GATAGGGTTG	AGTGTTGTTC	CAGTTTGGAA	CAAGAGTCCA	CTATTAAAGA	ACGTGGACTC	180
CAACGTCAAA	GGGCGAAAAA	CCGTCTATCA	GGGCGATGGC	CCACTACGTG	AACCATCACC	240
CTAATCAAGT	TTTTTGGGGT	CGAGGTGCCG	TAAAGCACTA	AATCGGAACC	CTAAAGGGAG	300
CCCCGATTT	AGAGCTTGAC	GGGGAAAGCC	GGCGAACGTG	GCGAGAAAGG	AAGGGAAGAA	360
AGCGAAAGGA	GCGGGCGCTA	GGGCGCTGGC	AAGTGTAGCG	GTCACGCTGC	GCGTAACCAC	420
CACACCCGCC	GCGCTTAATG	CGCCGCTACA	GGGCGCGTCC	CATTCGCCAT	TCAGGCTGCG	480
CAACTGTTGG	GAAGGGCGAT	CGGTGCGGC	CTCTTCGCTA	TTACGCCAGC	TGGCGAAAGG	540
GGGATGTGCT	GCAAGGCGAT	TAAGTTGGGT	AACGCCAGGG	TTTTCCCAGT	CACGACGTTG	600
TAAAACGACG	GCCAGTGAGC	GCGCGTAATA	CGACTCACTA	TAGGGCGAAT	TGGAGCTCCA	660
CCGCGGTTTC	TAAATTACCC	TCGCCACGTG	TCGCCACGTC	AGCAACCGCT	TCAGCAACTA	720
ACCCAAATTC	CAACTTTCCA	CAAATGTCAA	CATCCAGGCT	TCAGACTCCA	CAGTCAAGAA	780
TATCGAAAAT	TGATTCATCA	AAGATTGGTA	TCAAGCCAAA	GACGTCTGGA	CTTAAACCAC	840
CCTCATCATC	AACCACTTCA	TCAAATAATA	CAAATTCATT	CCGTCCGTCG	AGCCGTTCGA	900
GTGGCAATAA	TAAŢGTTGGC	TCGACGATAT	CCACATCTGC	GAAGAGCTTA	GAATCATCAT	960
CAACGTACAG	CTCTATTTCG	AATCTAAACC	GACCTACCTC	CCAACTCCAA	AAACCTTCTA	1020
GACCACAAAC	CCAGCTAGTT	CGTGTTGCTA	CAACTACAAA	AATCGGAAGC	TCAAAGCTAG	1080
CCGCTCCGAA	AGCCGTGAGC	ACCCCAAAAC	TTGCTTCTGT	GAAGACTATT	GGAGCAAAAC	1140
AAGAGCCCGA	TAACAGCGGT	GGTGGTGGTG	GTGGAATGCT	GAAATTAAAG	TTATTCAGTA	1200
GCAAAAACCC	ATCTTCCTCA	TCGAATAGCC	CACAACCTAC	GAGAAAGGCG	GCGGCGGTGC	1260
CTCAACAACA	AACTTTGTCG	AAAATCGCTG	CCCCAGTGAA	AAGTGGCCTG	AAGCCGCCGA	1320
CCAGTAAGCT	GGGAAGTGCC	ACGTCTATGT	CGAAGCTTTG	TACGCCAAAA	GTTTCCTACC	1380
GTAAAACGGA	CGCCCCAATC	ATATCTCAAC	AAGACTCGAA	ACGATGCTCA	AAGAGCAGTG	1440
AAGAAGAGTC	CGGATACGCT	GGATTCAACA	GCACGTCGCC	AACGTCATCA	TCGACGGAAG	1500
GTTCCCTAAG	CATGCATTCC	ACATCTTCCA	AGAGTTCAAC	GTCAGACGAA	AAGTCTCCGT	1560
CATCAGACGA	TCTTACTCTT	AACGCCTCCA	TCGTGACAGC	TATCAGACAG	CCGATAGCCG	1620
CAACACCGGT	TTCTCCAAAT	ATTATCAACA	AGCCTGTTGA	GGAAAAACCA	ACACTGGCAG	1680
TGAAAGGAGT	GAAAAGCACA	GCGAAAAAAG	ATCCACCTCC	AGCTGTTCCG	CCACGTGACA	1740
CCCAGCCAAC	AATCGGAGTT	GTTAGTCCAA	TTATGGCACA	TAAGAAGTTG	ACAAATGACC	1800
CCGTGATATC	TGAAAAACCA	GAACCTGAAA	AGCTCCAATC	AATGAGCATC	GACACGACGG	1860

SUBSTITUTE SHEET (RULE 26)

The end of the services of the control of the contr

						:
ACGTTCCAC	GCTTCCACCT	CTAAAATCAG	TTGTTCCACT	TAAAATGACT	TCAATCCGAC	1920
AACCACCAA	C GTACGATGTT	CTTCTAAAAC	AAGGAAAAT	CACATCGCCT	GTCAAGTCGT	1980
TTGGATATG	A GCAGTCGTC	GCGTCTGAAG	ACTCCATTGT	GGCTCATGCG	TCGGCTCAGG	2040
TGACTCCGCC	GACAAAAACI	TCTGGTAATC	ATTCGCTGGA	GAGAAGGATG	GGAAAGAATA	2100
AGACATCAGA	ATCCAGCGG	TACACCTCTG	ACGCCGGTGT	TGCGATGTGC	GCCAAAATGA	2160
GGGAGAAGCT	GAAAGAATAC	GATGACATGA	CTCGTCGAGC	ACAGAACGGC	TATCCTGACA	2220
ACTTCGAAGA	CAGTTCCTCC	TTGTCGTCTG	GAATATCCGA	TAACAACGAG	CTCGACGACA	2280
TATCCACGGA	CGATTTGTCC	GGAGTAGACA	TGGCAACAGT	CGCCTCCAAA	CATAGCGACT	2340
ATTCCCACTT	TGTTCGCCAT	CCCACGTCTT	CTTCCTCAAA	GCCCCGAGTC	CCCAGTCGGT	2400
CCTCCACATO	AGTCGATTCT	CGATCTCGAG	CAGAACAGGA	GAATGTGTAC	AAACTTCTGT	2460
CCCAGTGCCG	AACGAGCCAA	CGTGGCGCCG	CTGCCACCTC	AACCTTCGGA	CAACATTCGC	2520
TAAGATCCCC	GGGATACTCA	TCCTATTCTC	CACACTTATC	AGTGTCAGCT	GATAAGGACA	2580
CAATGTCTAT	GCACTCACAG	ACTAGTCGAC	GACCTTCTTC	АСАААААССА	AGCTATTCAG	2640
GCCAATTTCA	TTCACTTGAT	CGTAAATGCC	ACCTTCAAGA	GTTCACATCC	ACCGAGCACA	2700
GAATGGCGGC	TCTCTTGAGC	CCGAGACGGG	TGCCGAACTC	GATGTCGAAA	TATGATTCTT	2760
CAGGATCCTA	CTCGGCGCGT	TCCCGAGGTG	GAAGCTCTAC	TGGTATCTAT	GGAGAGACGT	2820
TCCAACTGCA	CAGACTATCC	GATGAAAAAT	CCCCGCACA	TTCTGCCAAA	AGTGAGATGG	2880
GATCCCAACT	ATCACTGGCT	AGCACGACAG	CATATGGATC	TCTCAATGAG	AAGTACGAAC	2940
ATGCTATTCG	GGACATGGCA	CGTGACTTGG	AGTGTTACAA	GAACACTGTC	GACTCACTAA	3000
CCAAGAAACA	GGAGAACTAT	GGAGCATTGT	TTGATCTTTT	TGAGCAAAAG	CTTAGAAAAC	3060
TCACTCAACA	CATTGATCGA	TCCAACTTGA	AGCCTGAAGA	GGCAATACGA	TTCAGGCAGG	3120
ACATTGCTCA	TTTGAGGGAT	ATTAGCAATC	ATCTTGCATC	CAACTCAGCT	CATGCTAACG	3180
AAGGCGCTGG	TGAGCTTCTT	CGTCAACCAT	CTCTGGAATC	AGTTGCATCC	CATCGATCAT	3240
CGATGTCATC	GTCGTCGAAA	AGCAGCAAGC	AGGAGAAGAT	CAGCTTGAGC	TCGTTTGGCA	3300
AGAACAAGAA	GAGCTGGATC	CGCTCCTCAC	TCTCCAAGTT	CACCAAGAAG	AAGAACAAGA	3360
ACTACGACGA	AGCACATATG	CCATCAATTT	CCGGATCTCA	AGGAACTCTT	GACAACATTG	3420
ATGTGATTGA	GTTGAAGCAA	GAGCTCAAAG	AACGCGATAG	TGCACTTTAC	GAAGTCCGCC	3480
TTGACAATCT	GGATCGTGCC	CGCGAAGTTG	ATGTTCTGAG	GGAGACAGTG	AACAAGTTGA	3540
AAACCGAGAA	CAAGCAATTA	AAGAAAGAAG	TGGACAAACT	CACCAACGGT	CCAGCCACTC	3600
GTGCTTCTTC	CCGCGCCTCA	ATTCCAGTTA	TCTACGACGA	TGAGCATGTC	TATGATGCAG	3660
CGTGTAGCAG	TACATCAGCT	AGTCAATCTT	CGAAACGATC	СТСТСССТСС	AACTCAATCA	3720
AGGTTACTGT	AAACGTGGAC	ATCGCTGGAG	AAATCAGTTC	GATCGTTAAC	CCGGACAAAG	3780

AGATAATCGT	AGGATATCTI	GCCATGTCAA	CCAGTCAGTC	ATGCTGGAAA	GACATTGATG	3840
TTTCTATTCT	' AGGACTATTI	GAAGTCTACC	TATCCAGAAT	TGATGTGGAG	CATCAACTTG	3900
GAATCGATGC	TCGTGATTCT	ATCCTTGGCT	ATCAAATTGG	TGAACTTCGA	CGCGTCATTG	3960
GAGACTCCAC	AACCATGATA	ACCAGCCATC	CAACTGACAT	TCTTACTTCC	TCAACTACAA	4020
TCCGAATGTT	CATGCACGGT	GCCGCACAGA	GTCGCGTAGA	CAGTCTGGTC	CTTGATATGC	4080
TTCTTCCAAA	GCAAATGATT	CTCCAACTCG	TCAAGTCAAT	TTTGACAGAG	AGACGTCTGG	4140
TGTTAGCTGG	AGCAACTGGA	ATTGGAAAGA	GCAAACTGGC	GAAGACCCTG	GCTGCTTATG	4200
TATCTATTCG	AACAAATCAA	TCCGAAGATA	GTATTGTTAA	TATCAGCATT	CCTGAAAACA	4260
ATAAAGAAGA	ATTGCTTCAA	GTGGAACGAC	GCCTGGAAAA	GATCTTGAGA	AGCAAAGAAT	4320
CATGCATCGT	AATTCTAGAT	AATATCCCAA	AGAATCGAAT	TGCATTTGTT	GTATCCGTTT	4380
TTGCAAATGT	CCCACTTCAA	AACAACGAAG	GTCCATTTGT	AGTATGCACA	GTCAACCGAT	4440
ATCAAATCCC	TGAGCTTCAA	ATTCACCACA	ATTTCAAAAT	GTCAGTAATG	TCGAATCGTC	4500
TCGAAGGATT	CATCCTACGT	TACCTCCGAC	GACGGGCGGT	AGAGGATGAG	TATCGTCTAA	4560
CTGTACAGAT	GCCATCAGAG	CTCTTCAAAA	TCATTGACTT	CTTCCCAATA	GCTCTTCAGG	4620
CCGTCAATAA	TTTTATTGAG	AAAACGAATT	CTGTTGATGT	GACAGTTGGT	CCAAGAGCAT	4680
GCTTGAACTG	TCCTCTAACT	GTCGATGGAT	CCCGTGAATG	GTTCATTCGA	TTGTGGAATG	4740
AGAACTTCAT	TCCATATTTG	GAACGTGTTG	CTAGAGATGG	САААААААСС	TTCGGTCGCT	4800
GCACTTCCTT	CGAGGATCCC	ACCGACATCG	TCTCTAAAAA	ATGGCCGTGG	TTCGATGGTG	4860
AAAACCCGGA	GAATGTGCTC	AAACGTCTTC	AACTCCAAGA	CCTCGTCCCG	TCACCTGCCA	4920
ACTCATCCCG	ACAACACTTC	AATCCCCTCG	AGTCGTTGAT	CCAATTGCAT	GCTACCAAGC	4980
ATCAGACCAT	CGACAACATT	TGAACAGAAG	ACTCTAATCT	TCTCTCGCCT	CTCCCCGCT	5040
TTCCTTATCT	TCGTACCGGT	ACCTGATGAT	TCCCCATTTT	CCCCCTTTTC	CCCCAATTT	5100
CCCAGAACCT	CCTGTTCCCT	TTGTTCCTAG	TCCTCCCGGG	TGCCGACGCC	GAAGCGATTT	5160
AAAAACCTTT	TTCTTTCCGA	AACATTTCCC	ATTGCTCATT	AATAGTCAAA	TTGAATAAAC	5220
AGTGTATGTA	СТТАААААА	АААААААА	AACTCGAGGG	GGGGCCCGGT	ACCCAGCTTT	5280
TGTTCCCTTT	AGTGAGGGTT	AATTGCGCGC	TTGGCGTAAT	CATGGTCATA	GCTGTTTCCT	5340
GTGTGAAATT	GTTATCCGCT	CACAATTCCA	CACAACATAC	GAGCCGGAAG	CATAAAGTGT	5400
AAAGCCTGGG	GTGCCTAATG	AGTGAGCTAA	CTCACATTAA	TTGCGTTGCG	CTCACTGCCC	5460
GCTTTCCAGT	CGGGAAACCT	GTCGTGCCAG	CTGCATTAAT	GAATCGGCCA	ACGCGCGGG	5520
AGAGGCGGTT	TGCGTATTGG	GCGCTCTTCC	GCTTCCTCGC	TCACTGACTC	GCTGCGCTCG	5580
GTCGTTCGGC	TGCGGCGAGC	GGTATCAGCT	CACTCAAAGG	CGGTAATACG	GTTATCCACA	5640
GAATCAGGGG	ATAACGCAGG.	AAAGAACATG	TGAGCAAAAG	GCCAGCAAAA	GGCCAGGAAC	5700

CGTAAAAAG	3 CCGCGTTGCT	r GGCGTTTTTC	CATAGGCTCC	GCCCCCTGA	CGAGCATCAC	5760
AAAAATCGA	C GCTCAAGTC	A GAGGTGGCG	A AACCCGACAG	GACTATAAAG	ATACCAGGCG	5820
TTTCCCCCT	GAAGCTCCCT	r cetecectci	CCTGTTCCGA	CCCTGCCGCT	TACCGGATAC	5880
CTGTCCGCCT	r ttctcccttc	C GGGAAGCGT	GCGCTTTCTC	ATAGCTCACG	CTGTAGGTAT	5940
CTCAGTTCG	F TGTAGGTCGT	TCGCTCCAAG	CTGGGCTGTG	TGCACGAACC	CCCCGTTCAG	6000
CCCGACCGCT	GCGCCTTATC	CGGTAACTAI	CGTCTTGAGT	CCAACCCGGT	AAGACACGAC	6060
TTATCGCCAC	TGGCAGCAGC	CACTGGTAAC	AGGATTAGCA	GAGCGAGGTA	TGTAGGCGGT	6120
GCTACAGAGT	: TCTTGAAGTG	GTGGCCTAAC	TACGGCTACA	CTAGAAGGAC	AGTATTTGGT	6180
ATCTGCGCTC	TGCTGAAGCC	AGTTACCTTC	GGAAAAAGAG	TTGGTAGCTC	TTGATCCGGC	6240
AAACAAACCA	CCGCTGGTAG	CGGTGGTTTT	TTTGTTTGCA	AGCAGCAGAT	TACGCGCAGA	6300
AAAAAAGGAT	'CTCAAGAAGA	TCCTTTGATC	TTTTCTACGG	GGTCTGACGC	TCAGTGGAAC	6360
GAAAACTCAC	GTTAAGGGAT	TTTGGTCATG	AGATTATCAA	AAAGGATCTT	CACCTAGATC	6420
CTTTTAAATT	AAAAATGAAG	TTTTAAATCA	ATCTAAAGTA	TATATGAGTA	AACTTGGTCT	6480
GACAGTTACC	AATGCTTAAT	CAGTGAGGCA	CCTATCTCAG	CGATCTGTCT	ATTTCGTTCA	6540
TCCATAGTTG	CCTGACTCCC	CGTCGTGTAG	ATAACTACGA	TACGGGAGGG	CTTACCATCT	6600
GGCCCCAGTG	CTGCAATGAT	ACCGCGAGAC	CCACGCTCAC	CGGCTCCAGA	TTTATCAGCA	6660
ATAAACCAGC	CAGCCGGAAG	GGCCGAGCGC	AGAAGTGGTC	CTGCAACTTT	ATCCGCCTCC	6720
ATCCAGTCTA	TTAATTGTTG	CCGGGAAGCT	AGAGTAAGTA	GTTCGCCAGT	TAATAGTTTG	6780
CGCAACGTTG	TTGCCATTGC	TACAGGCATC	GTGGTGTCAC	GCTCGTCGTT	TGGTATGGCT	6840
TCATTCAGCT	CCGGTTCCCA	ACGATCAAGG	CGAGTTACAT	GATCCCCCAT	GTTGTGCAAA	6900
AAAGCGGTTA	GCTCCTTCGG	TCCTCCGATC	GTTGTCAGAA	GTAAGTTGGC	CGCAGTGTTA	6960
			TCTCTTACTG			7020
			TCATTCTGAG		· .	7080
AGTTGCTCTT	GCCCGCCGTC	AATACGGGAT	AATACCGCGC	CACATAGCAG	AACTTTAAAA	7140
GTGCTCATCA	TTGGAAAACG	TTCTTCGGGG	CGAAAACTCT	CAAGGATCTT	ACCGCTGTTG	7200
					TTTTACTTTC	7260
					GGGAATAAGG	7320
					AAGCATTTAT	7380
		•	•	ТТТАСААААА	TAAACAAATA	7440
GGGTTCCGC	GCACATTTCC	CCGAAAAGTG	רכאכ			245

en distribut denna den antara estra de a comar dia en marcino den escretoramenta de marcina en conflicio de la

(2) INFORMATION FOR SEQ ID NO: 27:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 13414 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: other nucleic acid
 - (A) DESCRIPTION: /desc = "plasmid"
- (iii) HYPOTHETICAL: NO

(ix) FEATURE:

- (A) NAME/KEY: misc_feature
- (B) LOCATION: 11582
- (D) OTHER INFORMATION:/note= "N is A,G,C or T"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 27:

TATO	BACGACG	TCAAATGTAG	AATTGATACC	ATTCTACACG	GATTGGGCCA	ATCGGCACCT	60
TTC	SAAGGGC	AGCTTATCAA	AGTCGATTAG	GGATATTTCC	AATGATTTTC	GCGACTATCG	120
ACTO	GTTTCT	CAGCTTATTA	ATGTGATCGT	TCCGATCAAC	GAATTCTCGC	CTGCATTCAC	180
GAAA	CGTTTG	GCAAAAATCA	CATCGAACCT	GGATGGCCTC	GAAACGTGTC	TCGACTACCT	240
GAAA	AATCTG	GGTCTCGACT	GCTCGAAACT	CACCAAAACC	GATATCGACA	GCGGAAACTT	300
GGGT	'GCAGTT	CTCCAGCTGC	TCTTCCTGCT	CTCCACCTAC	AAGCAGAAGC	TTCGGCAACT	360
GAAA	AAAGAT	CAGAAGAAAT	TGGAGCAACT	ACCCACATCC	ATTATGCCAC	CCGCGGTTTC	420
TAAA	TTACCC	TCGCCACGTG	TCGCCACGTC	AGCAACCGCT	TCAGCAACTA	ACCCAAATTC	480
CAAC	TTTCCA	CAAATGTCAA	CATCCAGGCT	TCAGACTCCA	CAGTCAAGAA	TATCGAAAAT	540
TGAT	TCATCA	AAGATTGGTA	TCAAGCCAAA	GACGTCTGGA	CTTAAACCAC	CCTCATCATC	600
AACC	ACTTCA	TCAAATAATA	CAAATTCATT	CCGTCCGTCG	AGCCGTTCGA	GTGGCAATAA	660
TAAT	GTTGGC	TCGACGATAT	CCACATCTGC	GAAGAGCTTA	GAATCATCAT	CAACGTACAG	720
CTCT	ATTTCG	AATCTAAACC	GACCTACCTC	CCAACTCCAA	AAACCTTCTA	GACCACAAAC	780
CCAG	CTAGTT	CGTGTTGCTA	СААСТАСААА	AATCGGAAGC	TCAAAGCTAG	CCGCTCCGAA	840
AGCC	GTGAGC	ACCCCAAAAC	TTGCTTCTGT	GAAGACTATT	GGAGCAAAAC	AAGAGCCCGA	900
TAAC	AGCGGT	GGTGGTGGTG	GTGGAATGCT	GAAATTAAAG	TTATTCAGTA	GCAAAAACCC	960
ATCT	TCCTCA	TCGAATAGCC	CACAACCTAC	GAGAAAGGCG	GCGGCGGTGC	CTCAACAACA	1020
AACT'	TTGTCG	AAAATCGCTG	CCCCAGTGAA	AAGTGGCCTG	AAGCCGCCGA	CCAGTAAGCT	1080
GGGA	AGTGCC	ACGTCTATGT	CGAAGCTTTG	TACGCCAAAA	GTTTCCTACC	GTAAAACGGA	1140
CGCC	CCAATC	ATATCTCAAC	AAGACTCGAA	ACGATGCTCA	AAGAGCAGTG	AAGAAGAGTC	1200
CGGAT	PACGCT	GGATTCAACA	GCACGTCGCC	AACGTCATCA	TCGACGGAAG	G ずでででですねねで	1260

SUBSTITUTE SHEET (RULE 26)

CATGCATTC	C ACATCTTCC	A AGAGTTCAAC	GTCAGACGA	A AAGTCTCCGT	CATCAGACGA	1320
TCTTACTCTT	AACGCCTCC	A TCGTGACAGO	TATCAGACAC	CCGATAGCC	CAACACCGGT	1380
TTCTCCAAA	TATTATCAACA	A AGCCTGTTGA	GGAAAAACC	A ACACTGGCAG	TGAAAGGAGT	1440
GAAAAGCACA	GCGAAAAAA	ATCCACCTCC	AGCTGTTCC	CCACGTGACA	CCCAGCCAAC	1500
AATCGGAGTT	GTTAGTCCAP	TTATGGCACA	TAAGAAGTTG	ACAAATGACC	CCGTGATATC	1560
TGAAAAACCA	GAACCTGAAA	AGCTCCAATC	AATGAGCATC	GACACGACGG	ACGTTCCACC	1620
GCTTCCACCT	CTAAAATCAG	TTGTTCCACT	TAAAATGACT	TCAATCCGAC	AACCACCAAC	1680
GTACGATGTT	CTTCTAAAAC	AAGGAAAAAT	CACATCGCCT	GTCAAGTCGT	TTGGATATGA	1740
GCAGTCGTCC	GCGTCTGAAG	ACTCCATTGT	GGCTCATGCG	TCGGCTCAGG	TGACTCCGCC	1800
GACAAAAACT	TCTGGTAATC	ATTCGCTGGA	GAGAAGGATG	GGAAAGAATA	AGACATCAGA	1860
ATCCAGCGGC	TACACCTCTG	ACGCCGGTGT	TGCGATGTGC	GCCAAAATGA	GGGAGAAGCT	1920
GAAAGAATAC	GATGACATGA	CTCGTCGAGC	ACAGAACGGC	TATCCTGACA	ACTTCGAAGA	1980
CAGTTCCTCC	TTGTCGTCTG	GAATATCCGA	TAACAACGAG	CTCGACGACA	TATCCACGGA	2040
CGATTTGTCC	GGAGTAGACA	TGGCAACAGT	CGCCTCCAAA	CATAGCGACT	ATTCCCACTT	2100
TGTTCGCCAT	CCCACGTCTT	CTTCCTCAAA	GCCCGAGTC	CCCAGTCGGT	CCTCCACATC	2160
AGTCGATTCT	CGATCTCGAG	CAGAACAGGA	GAATGTGTAC	AAACTTCTGT	CCCAGTGCCG	2220
AACGAGCCAA	CGTGGCGCCG	CTGCCACCTC	AACCTTCGGA	CAACATTCGC	TAAGATCCCC	2280
GGGATACTCA	TCCTATTCTC	CACACTTATC	AGTGTCAGCT	GATAAGGACA	CAATGTCTAT	2340
GCACTCACAG	ACTAGTCGAC	GACCTTCTTC	ACAAAAACCA	AGCTATTCAG	GCCAATTTCA	2400
TTCACTTGAT	CGTAAATGCC	ACCTTCAAGA	GTTCACATCC	ACCGAGCACA	GAATGGCGGC	2460
TCTCTTGAGC	CCGAGACGGG	TGCCGAACTC	GATGTCGAAA	TATGATTCTT	CAGGATCCTA	2520
CTCGGCGCGT	TCCCGAGGTG	GAAGCTCTAC	TGGTATCTAT	GGAGAGACGT	TCCAACTGCA	2580
CAGACTATCC	GATGAAAAAT	CCCCGCACA	TTCTGCCAAA	AGTGAGATGG	GATCCCAACT	2640
ATCACTGGCT	AGCACGACAG	CATATGGATC	TCTCAATGAG	AAGTACGAAC	ATGCTATTCG	2700
GGACATGGCA	CGTGACTTGG	AGTGTTACAA	GAACACTGTC	GACTCACTAA	CCAAGAAACA	2760
					TCACTCAACA	2820
					ACATTGCTCA	2880
TTTGAGGGAT	ATTAGCAATC	ATCTTGCATC	CAACTCAGCT	CATGCTAACG	AAGGCGCTGG	2940
TGAGCTTCTT	CGTCAACCAT	CTCTGGAATC	AGTTGCATCC	CATCGATCAT	CGATGTCATC	3000
GTCGTCGAAA	AGCAGCAAGC	AGGAGAAGAT	CAGCTTGAGC	TCGTTTGGCA	AGAACAAGAA	3060
GAGCTGGATC	CGCTCCTCAC	TCTCCAAGTT	CACCAAGAAG	AAGAACAAGA	ACTACGACGA	3120
AGCACATATG	CCATCAATTT	CCGGATCTCA	AGGAACTCTT	GACAACATTG	ATGTGATTGA	3180

GTTGAAGCAA GAGCTCAAAG AACGCGATAG TGCACTTTAC GAAGTCCGCC TTGACAATCT	3240
GGATCGTGCC CGCGAAGTTG ATGTTCTGAG GGAGACAGTG AACAAGTTGA AAACCGAGAA	3300
CAAGCAATTA AAGAAAGAAG TGGACAAACT CACCAACGGT CCAGCCACTC GTGCTTCTTC	3360
CCGCGCCTCA ATTCCAGTTA TCTACGACGA TGAGCATGTC TATGATGCAG CGTGTAGCAG	3420
TACATCAGCT AGTCAATCTT CGAAACGATC CTCTGGCTGC AACTCAATCA AGGTTACTGT	3480
ARACGTGGAC ATCGCTGGAG ARATCAGTTC GATCGTTAAC CCGGACARAG AGATAATCGT	3540
AGGATATCTT GCCATGTCAA CCAGTCAGTC ATGCTGGAAA GACATTGATG TTTCTATTCT	3600
AGGACTATTT GAAGTCTACC TATCCAGAAT TGATGTGGAG CATCAACTTG GAATCGATGC	3660
TCGTGATTCT ATCCTTGGCT ATCAAATTGG TGAACTTCGA CGCGTCATTG GAGACTCCAC	3720
AACCATGATA ACCAGCCATC CAACTGACAT TCTTACTTCC TCAACTACAA TCCGAATGTT	3780
CATGCACGGT GCCGCACAGA GTCGCGTAGA CAGTCTGGTC CTTGATATGC TTCTTCCAAA	3840
GCAAATGATT CTCCAACTCG TCAAGTCAAT TTTGACAGAG AGACGTCTGG TGTTAGCTGG	3900
AGCAACTGGA ATTGGAAAGA GCAAACTGGC GAAGACCCTG GCTGCTTATG TATCTATTCG	3960
AACAAATCAA TCCGAAGATA GTATTGTTAA TATCAGCATT CCTGAAAACA ATAAAGAAGA	4020
ATTGCTTCAA GTGGAACGAC GCCTGGAAAA GATCTTGAGA AGCAAAGAAT CATGCATCGT	4080
AATTCTAGAT AATATCCCAA AGAATCGAAT TGCATTTGTT GTATCCGTTT TTGCAAATGT	4140
CCCACTTCAA AACAACGAAG GTCCATTTGT AGTATGCACA GTCAACCGAT ATCAAATCCC	4200
TGAGCTTCAA ATTCACCACA ATTTCAAAAT GTCAGTAATG TCGAATCGTC TCGAAGGATT	4260
CATCCTACGT TACCTCCGAC GACGGGCGGT AGAGGATGAG TATCGTCTAA CTGTACAGAT	4320
GCCATCAGAG CTCTTCAAAA TCATTGACTT CTTCCCAATA GCTCTTCAGG CCGTCAATAA	4380
TTTTATTGAG AAAACGAATT CTGTTGATGT GACAGTTGGT CCAAGAGCAT GCTTGAACTG	4440
TCCTCTAACT GTCGATGGAT CCCGTGAATG GTTCATTCGA TTGTGGAATG AGAACTTCAT	4500
TCCATATTTG GAACGTGTTG CTAGAGATGG CAAAAAAACC TTCGGTCGCT GCACTTCCTT	4560
CGAGGATCCC ACCGACATCG TCTCTAAAAA ATGGCCGTGG TTCGATGGTG AAAACCCGGA	4620
GAATGTGCTC AAACGTCTTC AACTCCAAGA CCTCGTCCCG TCACCTGCCA ACTCATCCCG	4680
ACAACACTTC AATCCCCTCG AGTCGTTGAT CCAATTGCAT GCTACCAAGC ATCAGACCAT	4740
CGACAACATT TGAACAGAAG ACTCTAATCT TCTCTCGCCT CTCCCCCGCT TTCCTTATCT	4800
TCGTACCGGT ACCTGATGAT TCCCCATTTT CCCCCTTTTC CCCCCAATTT CCCAGAACCT	4860
CCTGTTCCCT TTGTTCCTAG TCCTCCGGG TGCCGACGCC GAAGCGATTT AAAAACCTTT	4920
TTCTTTCCGA AACATTTCCC ATTGCTCATT AATAGTCAAA TTGAATAAAC AGTGTATGTA	4980
CTTAAAAAA AAAAAAAA AAAAAAAAA GGCCTATGCG GCCGGGCCAT GGAGGCCGAA	5040
TTCCCGGGGA TCCGTCGACC TGCAGCCAAG CTAATTCCGG GCGAATTTCT TATGATTTAT	5100

GATTTTTAT	ATTAAATAA	TTATAAAAA	AATAAGTGTA	TACAAATTTT	AAAGTGACTC	5160
					TCAGGTTGCT	5160
						5220
			: .		TGCAAGCTTG	5280
		GTTTCCTGTG				5340
		AAAGTGTAAA				5400
ACATTAATTO	CGTTGCGCTC	ACTGCCCGCT	TTCCAGTCGG	GAAACCTGTC	GTGCCAGCTG	5460
GATTAATGA	TCGGCCAACG	CGCGGGGAGA	GGCGGTTTGC	GTATTGGGCG	CTCTTCCGCT	5520
TCCTCGCTCF	CTGACTCGCT	GCGCTCGGTC	GTTCGGCTGC	GGCGAGCGGT	ATCAGCTCAC	5580
TCAAAGGCGG	TAATACGGTT	ATCCACAGAA	TCAGGGGATA	ACGCAGGAAA	GAACATGTGA	5640
GCAAAAGGCC	AGCAAAAGGC	CAGGAACCGT	AAAAAGGCCG	CGTTGCTGGC	GTTTTTCCAT	5700
AGGCTCCGCC	CCCCTGACGA	GCATCACAAA	AATCGACGCT	CAAGTCAGAG	GTGGCGAAAC	5760
CCGACAGGAC	ТАТАААБАТА	CCAGGCGTTT	CCCCTGGAA	GCTCCCTCGT	GCGCTCTCCT	5820
GTTCCGACCC	TGCCGCTTAC	CGGATACCTG	TCCGCCTTTC	TCCCTTCGGG	AAGCGTGGCG	5880
CTTTCTCATA	GCTCACGCTG	TAGGTATCTC	AGTTCGGTGT	AGGTCGTTCG	CTCCAAGCTG	5940
GGCTGTGTGC	ACGAACCCCC	CGTTCAGCCC	GACCGCTGCG	CCTTATCCGG	TAACTATCGT	6000
CTTGAGTCCA	ACCCGGTAAG	ACACGACTTA	TCGCCACTGG	CAGCAGCCAC	TGGTAACAGG	6060
ATTAGCAGAG	CGAGGTATGT	AGGCGGTGCT	ACAGAGTTCT	TGAAGTGGTG	GCCTAACTAC	6120
GGCTACACTA	GAAGGACAGT	ATTTGGTATC	TGCGCTCTGC	TGAAGCCAGT	TACCTTCGGA	6180
AAAAGAGTTG	GTAGCTCTTG	ATCCGGCAAA	CAAACCACCG	CTGGTAGCGG	TGGTTTTTTT	6240
GTTTGCAAGC	AGCAGATTAC	GCGCAGAAAA	AAAGGATCTC	AAGAAGATCC	TTTGATCTTT	6300
TCTACGGGGT	CTGACGCTCA	GTGGAACGAA	AACTCACGTT	AAGGGATTTT	GGTCATGAGA	6360
ТТАТСААААА	GGATCTTCAC	CTAGATCCTT	TTAAATTAAA	AATGAAGTTT	TAAATCAATC	6420
TAAAGTATAT	ATGAGTAAAC	TTGGTCTGAC	AGTTACCAAT	GCTTAATCAG	TGAGGCACCT	6480
ATCTCAGCGA	TCTGTCTATT	TCGTTCATCC	ATAGTTGCCT	GACTCCCCGT	CGTGTAGATA	6540
ACTACGATAC	GGGAGGGCTT	ACCATCTGGC	CCCAGTGCTG	CAATGATACC	GCGAGACCCA	6600
CGCTCACCGG	CTCCAGATTT	ATCAGCAATA	AACCAGCCAG	CCGGAAGGGC	CGAGCGCAGA	6660
AGTGGTCCTG	CAACTTTATC	CGCCTCCATC	CAGTCTATTA	ATTGTTGCCG	GGAAGCTAGA	6720
GTAAGTAGTT	CGCCAGTTAA	TAGTTTGCGC	AACGTTGTTG	CCATTGCTAC	AGGCATCGTG	6780
GTGTCACGCT	CGTCGTTTGG	TATGGCTTCA	TTCAGCTCCG	GTTCCCAACG	ATCAAGGCGA	6840
GTTACATGAT	CCCCCATGTT	GTGCAAAAA	GCGGTTAGCT	CCTTCGGTCC	TCCGATCGTT	6900
	• •	AGTGTTATCA	•		,	6960
		AAGATGCTTT				7020

TTCTGAGAAT	AGTGTATGCG	GCGACCGAGT	TGCTCTTGCC	CGGCGTCAAT	ACGGGATAAT	7080
ACCGCGCCAC	ATAGCAGAAC	TTTAAAAGTG	CTCATCATTG	GAAAACGTTC	TTCGGGGCGA	7140
AAACTCTCAA	GGATCTTACC	GCTGTTGAGA	TCCAGTTCGA	TGTAACCCAC	TCGTGCACCC	7200
AACTGATCTT	CAGCATCTTT	TACTTTCACC	AGCGTTTCTG	GGTGAGCAAA	AACAGGAAGG	7260
CAAAATGCCG	CAAAAAAGGG	AATAAGGGCG	ACACGGAAAT	GTTGAATACT	CATACTCTTC	7320
CTTTTTCAAT	ATTATTGAAG	CATTTATCAG	GGTTATTGTC	TCATGAGCGG	ATACATATTT	7380
GAATGTATTT	AGAAAAATAA	ACAAATAGGG	GTTCCGCGCA	CATTTCCCCG	AAAAGTGCCA	7440
CCTGAACGAA	GCATCTGTGC	TTCATTTTGT	AGAACAAAAA	TGCAACGCGA	GAGCGCTAAT	7500
TTTTCAAACA	AAGAATCTGA	GCTGCATTTT	TACAGAACAG	AAATGCAACG	CGAAAGCGCT	7560
ATTTTACCAA	CGAAGAATCT	GTGCTTCATT	TTTGTAAAAC	AAAAATGCAA	CGCGAGAGCG	7620
CTAATTTTTC	AAACAAAGAA	TCTGAGCTGC	ATTTTTACAG	AACAGAAATG	CAACGCGAGA	7680
GCGCTATTTT	ACCAACAAAG	AATCTATACT	TCTTTTTTGT	TCTACAAAAA	TGCATCCCGA	7740
GAGCGCTATT	TTTCTAACAA	AGCATCTTAG	ATTACTTTTT	TTCTCCTTTG	TGCGCTCTAT	7800
AATGCAGTCT	CTTGATAACT	TTTTGCACTG	TAGGTCCGTT	AAGGTTAGAA	GAAGGCTACT	7860
TTGGTGTCTA	TTTTCTCTTC	САТАААААА	GCCTGACTCC	ACTTCCCGCG	TTTACTGATT	7920
ACTAGCGAAG	CTGCGGGTGC	ATTTTTCAA	GATAAAGGCA	TCCCCGATTA	TATTCTATAC	7980
CGATGTGGAT	TGCGCATACT	TTGTGAACAG	AAAGTGATAG	CGTTGATGAT	TCTTCATTGG	8040
TCAGAAAATT	ATGAACGGTT	TCTTCTATTT	TGTCTCTATA	TACTACGTAT	AGGAAATGTT	8100
TACATTTTCG	TATTGTTTTC	GATTCACTCT	ATGAATAGTT	CTTACTACAA	TTTTTTTGTC	8160
TAAAGAGTAA	TACTAGAGAT	AAACATAAAA	AATGTAGAGG	TCGAGTTTAG	ATGCAAGTTC	8220
AAGGAGCGAA	AGGTGGATGG	GTAGGTTATA	TAGGGATATA	GCACAGAGAT	ATATAGCAAA	8280
GAGATACTTT	TGAGCAATGT	TTGTGGAAGC	GGTATTCGCA	ATATTTTAGT	AGCTCGTTAC	8340
AGTCCGGTGC	GTTTTTGGTT	TTTTGAAAGT	GCGTCTTCAG	AGCGCTTTTG	GTTTTCAAAA	8400
GCGCTCTGAA	GTTCCTATAC	TTTCTAGAGA	ATAGGAACTT	CGGAATAGGA	ACTTCAAAGC	8460
GTTTCCGAAA	ACGAGCGCTT	CCGAAAATGC	AACGCGAGCT	GCGCACATAC	AGCTCACTGT	8520
TCACGTCGCA	CCTATATCTG	CGTGTTGCCT	GTATATATAT	ATACATGAGA	AGAACGGCAT	8580
AGTGCGTGTT	TATGCTTAAA	TGCGTACTTA	TATGCGTCTA	TTTATGTAGG	ATGAAAGGTA	8640
GTCTAGTACC	TCCTGTGATA	TTATCCCATT	CCATGCGGGG	TATCGTATGC	TTCCTTCAGC	8700
ACTACCCTTT	AGCTGTTCTA	TATGCTGCCA	CTCCTCAATT	GGATTAGTCT	CATCCTTCAA	8760
TGCTATCATT	TCCTTTGATA	TTGGATCATA	TTAAGAAACC	ATTATTATCA	TGACATTAAC	8820
СТАТАААААТ	AGGCGTATCA	CGAGGCCCTT	TCGTCTCGCG	CGTTTCGGTG	ATGACGGTGA	888.0
AAACCTCTGA	CACATGCAGC	TCCCGGAGAC	GGTCACAGCT	TGTCTGTAAG	CGGATGCCGG	8940

GAGCAGACAA	GCCCGTCAGG	GCGCGTCAGC	GGGTGTTGGC	GGGTGTCGGG	GCTGGCTTAA	9000
CTATGCGGCA	TCAGAGCAGA	TTGTACTGAG	AGTGCACCAT	AGATCAACGA	CATTACTATA	9060
TATATAATAT	AGGAAGCATT	TAATAGACAG	CATCGTAATA	TATGTGTACT	TTGCAGTTAT	9120
GACGCCAGAT	GGCAGTAGTG	GAAGATATTC	TTTATTGAAA	AATAGCTTGT	CACCTTACGT	9180
ACAATCTTGA	TCCGGAGCTT	TTCTTTTTT	GCCGATTAAG	AATTAATTCG	GTCGAAAAAA	9240
GAAAAGGAGA	GGGCCAAGAG	GGAGGGCATT	GGTGACTATT	GAGCACGTGA	GTATACGTGA	9300
TTAAGCACAC	AAAGGCAGCT	TGGAGTATGT	CTGTTATTAA	TTTCACAGGT	AGTTCTGGTC	9360
CATTGGTGAA	AGTTTGCGGC	TTGCAGAGCA	CAGAGGCCGC	AGAATGTGCT	CTAGATTCCG	9420
ATGCTGACTT	GCTGGGTATT	ATATGTGTGC	CCAATAGAAA	GAGAACAATT	GACCCGGTTA	9480
TTGCAAGGAA	AATTTCAAGT	CTTGTAAAAG	САТАТАААА	TAGTTCAGGC	ACTCCGAAAT	9540
ACTTGGTTGG	CGTGTTTCGT	AATCAACCTA	AGGAGGATGT	TTTGGCTCTG	GTCAATGATT	9600
ACGGCATTGA	TATCGTCCAA	CTGCATGGAG	ATGAGTCGTG	GCAAGAATAC	CAAGAGTTCC	9660
TCGGTTTGCC	AGTTATTAAA	AGACTCGTAT	TTCCAAAAGA	CTGCAACATA	CTACTCAGTG	9720
CAGCTTCACA	GAAACCTCAT	TCGTTTATTC	CCTTGTTTGA	TTCAGAAGCA	GGTGGGACAG	9780
GTGAACTTTT	GGATTGGAAC	TCGATTTCTG	ACTGGGTTGG	AAGGCAAGAG	AGCCCCGAAA	9840
GCTTACATTT	TATGTTAGCT	GGTGGACTGA	CGCCAGAAAA	TGTTGGTGAT	GCGCTTAGAT	9900
TAAATGGCGT	TATTGGTGTT	GATGTAAGCG	GAGGTGTGGA	GACAAATGGT	GTAAAAGACT	9960
CTAACAAAAT	AGCAAATTTC	GTCAAAAATG	CTAAGAAATA	GGTTATTACT	GAGTAGTATT	10020
TATTTAAGTA	TTGTTTGTGC	ACTTGCCGAT	CTATGCGGTG	TGAAATACCG	CACAGATGCG	10080
TAAGGAGAAA	ATACCGCATC	AGGAAATTGT	AAACGTTAAT	ATTTTGTTAA	AATTCGCGTT	10140
AAATTTTTGT	TAAATCAGCT	CATTTTTTAA	CCAATAGGCC	GAAATCGGCA	AAATCCCTTA	10200
ТАААТСАААА	GAATAGACCG	AGATAGGGTT	GAGTGTTGTT	CCAGTTTGGA	ACAAGAGTCC	10260
ACTATTAAAG	AACGTGGACT	CCAACGTCAA	AGGGCGAAAA	ACCGTCTATC	AGGGCGATGG	10320
CCCACTACGT	GAACCATCAC	CCTAATCAAG	TTTTTTGGGG	TCGAGGTGCC	GTAAAGCACT	10380
AAATCGGAAC	CCTAAAGGGA	GCCCCGATT	TAGAGCTTGA	CGGGGAAAGC	CGGCGAACGT	10440
GGCGAGAAAG	GAAGGGAAGA	AAGCGAAAGG	AGCGGGCGCT	AGGGCGCTGG	CAAGTGTAGC	10500
GGTCACGCTG	CGCGTAACCA	CCACACCCGC	CGCGCTTAAT	GCGCCGCTAC	AGGGCGCGTC	10560
GCGCCATTCG	CCATTCAGGC	TGCGCAACTG	TTGGGAAGGG	CGATCGGTGC	GGGCCTCTTC	10620
GCTATTACGC	CAGCTGGCGA	AAGGGGGATG	TGCTGCAAGG	CGATTAAGTT	GGGTAACGCC	10680
AGGGTTTTCC	CAGTCACGAC	GTTGTAAAAC	GACGGCCAGT	CGTCCAAGCT	TTCGCGAGCT	10740
CGAGATCCCG	AGCTTTGCAA	ATTAAAGCCT	TCGAGCGTCC	CAAAACCTTC	TCAAGCAAGG	10800
TTTTCAGTAT	AATGTTACAT	GCGTACACGC	GTCTGTACAG	AAAAAAAAGA	AAAATTTGAA	10860

en transferior de la compactación d

ATATAAATA	A CGTTCTTAA	r actaacata?	СТАТАААААА	ATAAATAGGG	ACCTAGACTT	10920
CAGGTTGTC	AACTCCTTC	TTTTCGGTTA	GAGCGGATGT	GGGGGGAGGG	CGTGAATGTA	10980
AGCGTGACAT	AACTAATTA	C ATGATATCGA	CAAAGGAAAA	GGGGCCTGTT	TACTCACAGG	11040
CTTTTTTCA	A GTAGGTAAT1	AAGTCGTTTC	TGTCTTTTC	CTTCTTCAAC	CCACCAAAGG	11100
CCATCTTGGT	ACTTTTTT	TTTTTTTTT	TTTTTTTTT	TTTTTTTTT	TTTTTTTTTT	11160
TTTTTTTTT	TTTTTTTTTT	TTTTTTTTT	TTTTTTTTT	TTTTTTCATA	GAAATAATAC	11220
AGAAGTAGAT	GTTGAATTAG	ATTAAACTGA	AGATATATAA	TTTATTGGAA	AATACATAGA	11280
GCTTTTTGTT	GATGCGCTTA	AGCGATCAAT	TCAACAACAC	CACCAGCAGC	TCTGATTTTT	11340
TCTTCAGCCA	ACTTGGAGAC	GAATCTAGCT	TTGACGATAA	CTGGAACATT	TGGGATTCTA	11400
CCCTTACCCA	AGATCTTACC	GTAACCGGCT	GCCAAAGTGT	CAATAACTGG	AGCAGTTTCC	11460
TTAGAAGCAG	ATTTCAAGTA	TTGGTCTCTC	TTGTCTTCTG	GGATCAATGT	CCACAATTTG	11520
TCCAAGTTCA	AGACTGGCTT	CCAGAAATGA	GCTTGTTGCT	TGTGGAAGTA	TCTCATACCA	11580
ANCCTTACCG	AAATAACCTG	GATGGTATTT	ATCCATGTTA	ATTCTGTGGT	GATGTTGACC	11640
ACCGGCCATA	CCTCTACCAC	CGGGGTGCTT	TCTGTGCTTA	CCGATACGAC	CTTTACCGGC	11700
TGAGACGTGA	CCTCTGTGCT	TTCTAGTCTT	AGTGAATCTG	GAAGGCATTC	TTGATTAGTT	11760
GGATGATTGT	TCTGGGATTT	AATGCAAAAA	AATCACTAAG	AAGGAAAAA	ATCAACGGAG	11820
AAAGCAAACG	CCATCTTAAA	TATACGGGAT	ACAGATGAAA	GGTTTGAACC	TATCTGGGAA	11880
AATACGCATT	AAACAAGCGA	AAAACTGCGA	GGAAAATTGT	TTGCGTCTCT	GCGGGCTATT	11940
CACGCGCCAG	AGGAAAATAG	GAAAAATAAC	AGGGCATTAG	AAAAATAATT	TTGATTTTGG	12000
			ACATTGGTTA			12060
TGTTTTTCGA	TGAATCTCCA	AAATGGTTGT	TAGCACATGG	AAGAGTCACC	GATGCTAAGT	12120
			TTGATGAAGC		•	12180
GGCAACTGCA	AATAGAATCT	GGGGATCTAG	ATATCCTTTT	GTTGTTTCCG	GGTGTACAAT	12240
ATGGACTTCC	TCTTTTCTGG	CAACCAAACC	CATACATCGG	GATTCCTATA	ATACCTTCGT	12300
TGGTCTCCCT	AACATGTAGG	TGGCGGAGGG	GAGATATACA	ATAGAACAGA	TACCAGACAA	12360
GACATAATGG	GCTAAACAAG	ACTACACCAA	TTACACTGCC	TCATTGATGG	TGGTACATAA	12420
CGAACTAATA	CTGTAGCCCT	AGACTTGATA	GCCATCATCA	TATCGAAGTT	TCACTACCCT	12480
TTTTCCATTT	GCCATCTATT	GAAGTAATAA	TAGGCGCATG	CAACTTCTTT	TCTTTTTTT	12540
TCTTTTCTCT	CTCCCCGTT	GTTGTCTCAC	CATATCCGCA	ATGACAAAAA	AAATGATGGA	12600
AGACACTAAA	GGAAAAAATT	AACGACAAAG	ACAGCACCAA	CAGATGTCGT	TGTTCCAGAG	12660
CTGATGAGGG	GTATCTTCGA	ACACACGAAA	CTTTTTCCTT	CCTTCATTCA	CGCACACTAC	12720
TCTCTAATGA	GCAACGGTAT	ACGGCCTTCC	ייירכעכיייער	ጥጥር እ እ መጥጥር እ	מממממממממ	12700

GTTTGCCGCT	TTGCTATCAA	GTATAAATAG	ACCTGCAATT	ATTAATCTTT	TGTTTCCTCG	12840
TCATTGTTCT	CGTTCCCTTT	CTTCCTTGTT	TCTTTTTCTG	CACAATATTT	CAAGCTATAC	12900
CAAGCATACA	ATCAACTCCA	AGCTTGAAGC	AAGCCTCCTG	AAAGATGAAG	CTACTGTCTT	12960
CTATCGAACA	AGCATGCGAT	ATTTGCCGAC	TTAAAAAGCT	CAAGTGCTCC	АААБАААААС	13020
CGAAGTGCGC	CAAGTGTCTG	AAGAACAACT	GGGAGTGTCG	CTACTCTCCC	ААААССАААА	13080
GGTCTCCGCT	GACTAGGGCA	CATCTGACAG	AAGTGGAATC	AAGGCTAGAA	AGACTGGAAC	13140
AGCTATTTCT	ACTGATTTTT	CCTCGAGAAG	ACCTTGACAT	GATTTTGAAA	ATGGATTCTT	13200
TACAGGATAT	AAAAGCATTG	TTAACAGGAT	TATTTGTACA	AGATAATGTG	AATAAAGATG	13260
CCGTCACAGA	TAGATTGGCT	TCAGTGGAGA	CTGATATGCC	TCTAACATTG	AGACAGCATA	13320
GAATAAGTGC	GACATCATCA	TCGGAAGAGA	GTAGTAACAA	AGGTCAAAGA	CAGTTGACTG	13380
TATCGCCGGA	ATTGCAATAC	CCAGCTTTGA	CTCA			13414

(2) INFORMATION FOR SEQ ID NO: 28:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10288 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (iii) HYPOTHETICAL: NO
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION: 8456
 - (D) OTHER INFORMATION:/note= "N is A,C,G, or T"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 28:

			·			
TATGCCATCA	ATTTCCGGAT	CTCAAGGAAC	TCTTGACAAC	ATTGATGTGA	TTGAGTTGAA	60
GCAAGAGCTC	AAAGAACGCG	ATAGTGCACT	TTACGAAGTC	CGCCTTGACA	ATCTGGATCG	120
TGCCCGCGAA	GTTGATGTTC	TGAGGGAGAC	AGTGAACAAG	TTGAAAACCG	AGAACAAGCA	180
ATTAAAGAAA	GAAGTGGACA	AACTCACCAA	CGGTCCAGCC	ACTCGTGCTT	CTTCCCGCGC	240
CTCAATTCCA	GTTATCTACG	ACGATGAGCA	TGTCTATGAT	GCAGCGTGTA	GCAGTACATC	30,0
AGCTAGTCAA	TCTTCGAAAC	GATCCTCTGG	CTGCAACTCA	ATCAAGGTTA	CTGTAAACGT	360
GGACATCGCT	GGAGAAATCA	GTTCGATCGT	TAACCCGGAC	AAAGAGATAA	TCGTAGGATA	420
TCTTGCCATG	TCAACCAGTC	AGTCATGCTG	GAAAGACATT	GATGTTTCTA	TTCTAGGACT	480
ATTTGAAGTC	TACCTATCCA	GAATTGATGT	GGAGCATCAA	CTTGGAATCG	ATGCTCGTGA	540

องเขา เป็นสาขาง เป็นสาขาง เล่าเป็นสาขาง เป็นเป็นสาขาง เสดสาขาง เล่นสาขาง เล่นสาขาง เล่นสาขาง เล่นสาขาง เล่นสาข

TTCTATCCTT GGCTATCAAA TTGGTGAACT	TCGACGCGTC	ATTGGAGACT	CCACAACCAT	600
GATAACCAGC CATCCAACTG ACATTCTTAC	TTCCTCAACT	ACAATCCGA	A TGTTCATGCA	660
CGGTGCCGCA CAGAGTCGCG TAGACAGTCT	GGTCCTTGAT	ATGCTTCTTC	CAAAGCAAAT	720
GATTCTCCAA CTCGTCAAGT CAATTTTGAC	AGAGAGACGT	CTGGTGTTAG	CTGGAGCAAC	780
TGGAATTGGA AAGAGCAAAC TGGCGAAGAC	CCTGGCTGCT	TATGTATCTA	TTCGAACAAA	840
TCAATCCGAA GATAGTATTG TTAATATCAG	CATTCCTGAA	AACAATAAAG	AAGAATTGCT	900
TCAAGTGGAA CGACGCCTGG AAAAGATCTT	GAGAAGCAAA	GAATCATGCA	TCGTAATTCT	960
AGATAATATC CCAAAGAATC GAATTGCATT	TGTTGTATCC	GTTTTTGCAA	ATGTCCCACT	1020
TCAAAACAAC GAAGGTCCAT TTGTAGTATG	CACAGTCAAC	CGATATCAAA	TCCCTGAGCT	1080
TCAAATTCAC CACAATTTCA AAATGTCAGT A	AATGTCGAAT	CGTCTCGAAG	GATTCATCCT	1140
ACGTTACCTC CGACGACGGG CGGTAGAGGA	TGAGTATCGT	CTAACTGTAC	AGATGCCATC	1200
AGAGCTCTTC AAAATCATTG ACTTCTTCCC A	AATAGCTCTT	CAGGCCGTCA	ATAATTTTAT	1260
TGAGAAAACG AATTCTGTTG ATGTGACAGT 1	TGGTCCAAGA	GCATGCTTGA	ACTGTCCTCT	1320
AACTGTCGAT GGATCCCGTG AATGGTTCAT 1	PCGATTGTGG	AATGAGAACT	TCATTCCATA	1380
TTTGGAACGT GTTGCTAGAG ATGGCAAAAA A	AACCTTCGGT	CGCTGCACTT	CCTTCGAGGA	1440
TCCCACCGAC ATCGTCTCTA AAAAATGGCC C	GTGGTTCGAT	GGTGAAAACC	CGGAGAATGT	1500
GCTCAAACGT CTTCAACTCC AAGACCTCGT C	CCCGTCACCT	GCCAACTCAT	CCCGACAACA	1560
CTTCAATCCC CTCGAGTCGT TGATCCAATT G	SCATGCTACC	aagcatcaga	CCATCGACAA	1620
CATTTGAACA GAAGACTCTA ATCTTCTCTC G	SCCTCTCCCC	CGCTTTCCTT	ATCTTCGTAC	1680
CGGTACCTGA TGATTCCCCA TTTTCCCCCT T	TTTCCCCCCA	ATTTCCCAGA	ACCTCCTGTT	1740
CCCTTTGTTC CTAGTCCTCC CGGGTGCCGA C	GCCGAAGCG	АТТТАААААС	CTTTTTCTTT	1800
CCGAAACATT TCCCATTGCT CATTAATAGT C	AAATTGAAT .	AAACAGTGTA	TGTACTTAAA	1860
чалалалал алалалала алалддеста т	GCGGCCGGG	CCATGGAGGC	CGAATTCCCG	1920
GGGATCCGTC GACCTGCAGC CAAGCTAATT C	CGGGCGAAT	TTCTTATGAT	TTATGATTTT	1980
TATTATTAAA TAAGTTATAA AAAAAATAAG T	GTATACAAA	TTTTAAAGTG	ACTCTTAGGT	2040
TTAAAACGA AAATTCTTGT TCTTGAGTAA C	TCTTTCCTG	TAGGTCAGGT	TGCTTTCTCA	2100
GGTATAGCAT GAGGTCGCTC TTATTGACCA C	ACCTCTACC	GGCATGCAAG	CTTGGCGTAA	2160
CATGGTCAT AGCTGTTTCC TGTGTGAAAT T	GTTATCCGC	TCACAATTCC	ACACAACATA	2220
GAGCCGGAA GCATAAAGTG TAAAGCCTGG G	GTGCCTAAT (GAGTGAGGTA	ACTCACATTA	2280
TTGCGTTGC GCTCACTGCC CGCTTTCCAG TO	CGGGAAACC :	rgtcgtgcca	GCTGGATTAA	2340
GAATCGGCC AACGCGCGGG GAGAGGCGGT T	TGCGTATTG (GGCGCTCTTC	CGCTTCCTCG	2400
TCACTGACT CGCTGCGCTC GGTCGTTCGG C	TGCGGCGNC 4		MC3.0MC3.3.3.	

			GATAACGCAG	GAAAGAACAT	GTGAGCAAAA	2520
CCCCDCCDD	necessar.					
GGCCAGCAA	AGGCCAGGA	CCGTAAAAA	GCCGCGTTGC	TGGCGTTTTI	CCATAGGCTC	2580
CGCCCCCCT	ACGAGCATCA	CAAAAATCGA	CGCTCAAGTC	AGAGGTGGCG	AAACCCGACA	2640
GGACTATAA	GATACCAGGO	GTTTCCCCCT	GGAAGCTCCC	TCGTGCGCTC	TCCTGTTCCG	2700
ACCCTGCCG	TTACCGGATA	CCTGTCCGCC	TTTCTCCCTT	CGGGAAGCGT	GGCGCTTTCT	2760
CATAGCTCA	GCTGTAGGTA	TCTCAGTTCG	GTGTAGGTCG	TTCGCTCCAA	GCTGGGCTGT	2820
GTGCACGAA	CCCCGTTCA	GCCCGACCGC	TGCGCCTTAT	CCGGTAACTA	TCGTCTTGAG	2880
TCCAACCCG	TAAGACACGA	CTTATCGCCA	CTGGCAGCAG	CCACTGGTAA	CAGGATTAGC	2940
AGAGCGAGGT	ATGTAGGCGG	TGCTACAGAG	TTCTTGAAGT	GGTGGCCTAA	CTACGGCTAC	3000
ACTAGAAGGA	CAGTATTTGG	TATCTGCGCT	CTGCTGAAGC	CAGTTACCTT	CGGAAAAAGA	3060
GTTGGTAGCT	CTTGATCCGG	CAAACAAACC	ACCGCTGGTA	GCGGTGGTTT	TTTTGTTTGC	3120
AAGCAGCAGA	TTACGCGCAG	AAAAAAAGGA	TCTCAAGAAG	ATCCTTTGAT	CTTTTCTACG	3180
GGGTCTGACG	CTCAGTGGAA	CGAAAACTCA	CGTTAAGGGA	TTTTGGTCAT	GAGATTATCA	3240
AAAAGGATCT	TCACCTAGAT	CCTTTTAAAT	TAAAAATGAA	GTTTTAAATC	AATCTAAAGT	3300
ATATATGAGT	AAACTTGGTC	TGACAGTTAC	CAATGCTTAA	TCAGTGAGGC	ACCTATCTCA	3360
GCGATCTGTC	TATTTCGTTC	ATCCATAGTT	GCCTGACTCC	CCGTCGTGTA	GATAACTACG	3420
ATACGGGAGG	GCTTACCATC	TGGCCCCAGT	GCTGCAATGA	TACCGCGAGA	CCCACGCTCA	3480
CCGGCTCCAG	ATTTATCAGC	AATAAACCAG	CCAGCCGGAA	GGGCCGAGCG	CAGAAGTGGT	3540
CCTGCAACTT	TATCCGCCTC	CATCCAGTCT	ATTAATTGTT	GCCGGGAAGC	TAGAGTAAGT	3600
AGTTCGCCAG	TTAATAGTTT	GCGCAACGTT	GTTGCCATTG	CTACAGGCAT	CGTGGTGTCA	3660
CGCTCGTCGT	TTGGTATGGC	TTCATTCAGC	TCCGGTTCCC	AACGATCAAG	GCGAGTTACA.	3720
TGATCCCCCA	TGTTGTGCAA	AAAAGCGGTT	AGCTCCTTCG	GTCCTCCGAT	CGTTGTCAGA	3780
AGTAAGTTGG	CCGCAGTGTT	ATCACTCATG	GTTATGGCAG	CACTGCATAA	TTCTCTTACT	3840
GTCATGCCAT	CCGTAAGATG	CTTTTCTGTG	ACTGGTGAGT	ACTCAACCAA	GTCATTCTGA	3900
GAATAGTGTA	TGCGGCGACC	GAGTTGCTCT	TGCCCGGCGT	CAATACGGGA	TAATACCGCG	3960
CCACATAGCA	GAACTTTAAA	AGTGCTCATC	ATTGGAAAAC	GTTCTTCGGG	GCGAAAACTC	4020
TCAAGGATCT	TACCGCTGTT	GAGATCCAGT	TCGATGTAAC	CCACTCGTGC	ACCCAACTGA	4080
TCTTCAGCAT	CTTTTACTTT	CACCAGCGTT	TCTGGGTGAG	CAAAAACAGG	AAGGCAAAAT	4140
GCCGCAAAAA	AGGGAATAAG	GGCGACACGG	AAATGTTGAA	TACTCATACT	CTTCCTTTTT	4200
CAATATTATT	GAAGCATTTA	TCAGGGTTAT	TGTCTCATGA	GCGGATACAT	ATTTGAATGT	4260
ATTTAGAAAA	ATAAACAAAT	AGGGGTTCCG	CGCACATTTC	CCCGAAAAGT	GCCACCTGAA	4320
CGAAGCATCT	GTGCTTCATT	TTGTAGAACA	AAAATGCAAC	GCGAGAGCGC	TAATTTTTCA	. 4380

			A CONTRACTOR OF THE PROPERTY O	A contract of the contract of	*	
					CGCTATTTTA	4440
					AGCGCTAATT	4500
TTTCAAACAA	AGAATCTGAG	CTGCATTTTT	' ACAGAACAGA	AATGCAACGC	GAGAGCGCTA	4560
TTTTACCAAC	AAAGAATCTA	TACTTCTTTT	TTGTTCTACA	AAAATGCATC	CCGAGAGCGC	4620
TATTTTTCTA	ACAAAGCATC	TTAGATTACT	TTTTTTCTCC	TTTGTGCGCI	CTATAATGCA	4680
GTCTCTTGAT	AACTTTTTGC	ACTGTAGGTC	CGTTAAGGTT	AGAAGAAGGC	TACTTTGGTG	4740
TCTATTTTCT	CTTCCATAAA	AAAAGCCTGA	CTCCACTTCC	CGCGTTTACT	GATTACTAGC	4800
GAAGCTGCGG	GTGCATTTTT	TCAAGATAAA	GGCATCCCCG	ATTATATTCT	ATACCGATGT	4860
GGATTGCGCA	TACTTTGTGA	ACAGAAAGTG	ATAGCGTTGA	TGATTCTTCA	TTGGTCAGAA	4920
AATTATGAAC	GGTTTCTTCT	ATTTTGTCTC	TATATACTAC	GTATAGGAAA	TGTTTACATT	4980
TTCGTATTGT	TTTCGATTCA	CTCTATGAAT	AGTTCTTACT	ACAATTTTT	TGTCTAAAGA	5040
GTAATACTAG	AGATAAACAT	AAAAAATGTA	GAGGTCGAGT	TTAGATGCAA	GTTCAAGGAG	5100
CGAAAGGTGG	ATGGGTAGGT	TATATAGGGA	TATAGCACAG	AGATATATAG	CAAAGAGATA	5160
CTTTTGAGCA	ATGTTTGTGG	AAGCGGTATT	CGCAATATTT	TAGTAGCTCG	TTACAGTCCG	5220
GTGCGTTTTT	GGTTTTTTGA	AAGTGCGTCT	TCAGAGCGCT	TTTGGTTTTC	AAAAGCGCTC	5280
TGAAGTTCCT	ATACTTTCTA	GAGAATAGGA	ACTTCGGAAT	AGGAACTTCA	AAGCGTTTCC	5340
GAAAACGAGC	GCTTCCGAAA	ATGCAACGCG	AGCTGCGCAC	ATACAGCTCA	CTGTTCACGT	5400
CGCACCTATA	TCTGCGTGTT	GCCTGTATAT	ATATATACAT	GAGAAGAACG	GCATAGTGCG	5460
TGTTTATGCT	TAAATGCGTA	CTTATATGCG	TCTATTTATG	TAGGATGAAA	GGTAGTCTAG	5520
TACCTCCTGT	GATATTATCC	CATTCCATGC	GGGGTATCGT	ATGCTTCCTT	CAGCACTACC	5580
CTTTAGCTGT	TCTATATGCT	GCCACTCCTC	AATTGGATTA	GTCTCATCCT	TCAATGCTAT	5640
CATTTCCTTT	GATATTGGAT	CATATTAAGA	AACCATTATT	ATCATGACAT	TAACCTATAA	5700
AAATAGGCGT 2	ATCACGAGGC	CCTTTCGTCT	CGCGCGTTTC	GGTGATGACG	GTGAAAACCT	5760
CTGACACATG (CAGCTCCCGG	AGACGGTCAC	AGCTTGTCTG	TAAGCGGATG	CCGGGAGCAG	5820
ACAAGCCCGT (CAGGGCGCGT	CAGCGGGTGT	TGGCGGGTGT	CGGGGCTGGC	TTAACTATGC	5880
GGCATCAGAG (CAGATTGTAC	TGAGAGTGCA	CCATAGATCA	ACGACATTAC	TATATATATA	5940
ATATAGGAAG (CATTTAATAG	ACAGCATCGT	AATATATGTG	TACTTTGCAG	TTATGACGCC	6000
AGATGGCAGT A	AGTGGAAGAT	ATTCTTTATT	GAAAAATAGC	TTGTCACCTT	ACGTACAATC	6060
TTGATCCGGA (SCTTTTCTTT :	TTTTGCCGAT	TAAGAATTAA	TTCGGTCGAA	AAAAGAAAAG	6120
GAGAGGGCCA A	AGAGGGAGGG (CATTGGTGAC	TATTGAGCAC	GTGAGTATAC	GTGATTAAGC	6180
ACACAAAGGC A	AGCTTGGAGT 1	ATGTCTGTTA	TTAATTTCAC	AGGTAGTTCT	GGTCCATTGG	6240
TGAAAGTTTG C	GGCTTGCAG I	AGCACAGAGG	CCGCAGAATG	TGCTCTAGAT	TCCGATGCTG	6300

the second second

ACTTGCTGGG	TATTATATGT	GTGCCCAATA	GAAAGAGAAC	AATTGACCCG	GTTATTGCAA	6360
GGAAAATTTC	: AAGTCTTGTA	AAAGCATATA	AAAATAGTTC	AGGCACTCCG	AAATACTTGG	6420
TTGGCGTGTT	' TCGTAATCAA	CCTAAGGAGG	ATGTTTTGGC	TCTGGTCAAT	GATTACGGCA	6480
TTGATATCGT	CCAACTGCAT	GGAGATGAGT	CGTGGCAAGA	ATACCAAGAG	TTCCTCGGTT	6540
TGCCAGTTAT	TAAAAGACTC	GTATTTCCAA	AAGACTGCAA	CATACTACTC	AGTGCAGCTT	6600
CACAGAAACC	TCATTCGTTT	ATTCCCTTGT	TTGATTCAGA	AGCAGGTGGG	ACAGGTGAAC	6660
TTTTGGATTG	GAACTCGATT	TCTGACTGGG	TTGGAAGGCA	AGAGAGCCCC	GAAAGCTTAC	6720
ATTTTATGTT	AGCTGGTGGA	CTGACGCCAG	AAAATGTTGG	TGATGCGCTT	AGATTAAATG	6780
GCGTTATTGG	TGTTGATGTA	AGCGGAGGTG	TGGAGACAAA	TGGTGTAAAA	GACTCTAACA	6840
AAATAGCAAA	TTTCGTCAAA	AATGCTAAGA	AATAGGTTAT	TACTGAGTAG	TATTTATTTA	6900
AGTATTGTTT	GTGCACTTGC	CGATCTATGC	GGTGTGAAAT	ACCGCACAGA	TGCGTAAGGA	6960
GAAAATACCG	CATCAGGAAA	TTGTAAACGT	TAATATTTTG	TTAAAATTCG	CGTTAAATTT	7020
TTGTTAAATC	AGCTCATTTT	TTAACCAATA	GGCCGAAATC	GGCAAAATCC	CTTATAAATC	7080
AAAAGAATAG	ACCGAGATAG	GGTTGAGTGT	TGTTCCAGTT	TGGAACAAGA	GTCCACTATT	7140
AAAGAACGTG	GACTCCAACG	TCAAAGGGCG	AAAAACCGTC	TATCAGGGCG	ATGGCCCACT	7200
ACGTGAACCA	TCACCCTAAT	CAAGTTTTTT	GGGGTCGAGG	TGCCGTAAAG	CACTAAATCG	7260
GAACCCTAAA	GGGAGCCCCC	GATTTAGAGC	TTGACGGGGA	AAGCCGGCGA	ACGTGGCGAG	7320
AAAGGAAGGG	AAGAAAGCGA	AAGGAGCGGG	CGCTAGGGCG	CTGGCAAGTG	TAGCGGTCAC	7380
GCTGCGCGTA	ACCACCACAC	CCGCCGCGCT	TAATGCGCCG	CTACAGGGCG	CGTCGCGCCA	7440
TTCGCCATTC	AGGCTGCGCA	ACTGTTGGGA	AGGGCGATCG	GTGCGGGCCT	CTTCGCTATT	7500
ACGCCAGCTG	GCGAAAGGGG	GATGTGCTGC	AAGGCGATTA	AGTTGGGTAA	CGCCAGGGTT	7560
					AGCTCGAGAT	7620
CCCGAGCTTT	GCAAATTAAA	GCCTTCGAGC	GTCCCAAAAC	CTTCTCAAGC	AAGGTTTTCA	7680
GTATAATGTT	ACATGCGTAC	ACGCGTCTGT	ACAGAAAAAA	AAGAAAAATT	TGAAATATAA	7740
ATAACGTTCT	TAATACTAAC	ATAACTATAA	ТАААТАААА	AGGGACCTAG	ACTTCAGGTT	7800
					TGTAAGCGTG	7860
ACATAACTAA	TTACATGATA	TCGACAAAGG	AAAAGGGGCC	TGTTTACTCA	CAGGCTTTTT	7920
TCAAGTAGGT.	AATTAAGTCG	TTTCTGTCTT	TTTCCTTCTT	CAACCCACCA	AAGGCCATCT	7980
	TTTTTTTTT			• •	• • • • • • • • • • • • • • • • • • • •	8040
TTTTTTTTT	TTTTTTTTT	TTTTTTTTT	TTTTTTTTTT	CATAGAAATA	ATACAGAAGT	8100
AGATGTTGAA	TTAGATTAAA	CTGAAGATAT	АТААТТТАТТ	GGAAAATACA	TAGAGCTTTT	8160
TGTTGATGCG	CTTAAGCGAT	CAATTCAACA	ACACCACCAG	CAGCTCTGAT	TTTTTCTTCA	8220,

GCCAACTTG	G AGACGAATC	r agctttgac	G ATAACTGGA	A CATTTGGGA	TCTACCCTTA	8280
CCCAAGATC	T TACCGTAAC	C GGCTGCCAAJ	A GTGTCAATA	A CTGGAGCAG	TTCCTTAGAA	8340
GCAGATTTC	A AGTATTGGT	C TCTCTTGTC	TCTGGGATC	A ATGTCCACA	A TTTGTCCAAG	8400
TTCAAGACT	G GCTTCCAGAI	A ATGAGCTTG	TGCTTGTGG	A AGTATCTCA	T ACCAANCETT	8460
ACCGAAATA	A CCTGGATGG	CATTTATCCA	GTTAATTCT	TGGTGATGT	GACCACCGGC	8520
CATACCTCT	A CCACCGGGG	GCTTTCTGT	CTTACCGATA	CGACCTTTAC	CGGCTGAGAC	8580
GTGACCTCT	G TGCTTTCTAC	TCTTAGTGA	TCTGGAAGGC	ATTCTTGATT	AGTTGGATGA	8640
TTGTTCTGG	S ATTTAATGC	AAAAAATCAC	TAAGAAGGAA	AAAAATCAA	GGAGAAAGCA	8700
AACGCCATC	TAAATATAC	GGATACAGAT	GAAAGGTTTG	AACCTATCT	GGAAAATACG	8760
CATTAAACA	A GCGAAAAACT	GCGAGGAAAA	TTGTTTGCGT	CTCTGCGGGC	TATTCACGCG	8820
CCAGAGGAA	ATAGGAAAA	TAACAGGGCA	TTAGAAAAAT	AATTTTGATI	TTGGTAATGT	8880
GTGGGTCCCT	GGTGTACAGA	TGTTACATTG	GTTACAGTAC	TCTTGTTTTT	GCTGTGTTTT	8940
TCGATGAATC	TCCAAAATGG	TTGTTAGCAC	ATGGAAGAGT	CACCGATGCT	AAGTTATCTC	9000
TATGTAAGCT	ACGTGGCGTG	ACTTTTGATG	AAGCCGCACA	AGAGATACAG	GATTGGCAAC	3 090
TGCAAATAGA	ATCTGGGGAT	CTAGATATCC	TTTTGTTGTT	TCCGGGTGTA	CAATATGGAC	9120
TTCCTCTTTT	CTGGCAACCA	AACCCATACA	TCGGGATTCC	TATAATACCT	TCGTTGGTCT	9180
CCCTAACATG	TAGGTGGCGG	AGGGGAGATA	TACAATAGAA	CAGATACCAG	ACAAGACATA	9240
ATGGGCTAAA	CAAGACTACA	CCAATTACAC	TGCCTCATTG	ATGGTGGTAC	ATAACGAACT	9300
AATACTGTAG	CCCTAGACTT	GATAGCCATC	ATCATATCGA	AGTTTCACTA	CCCTTTTTCC	9360
ATTTGCCATC	TATTGAAGTA	ATAATAGGCG	CATGCAACTT	CTTTTCTTTT	TTTTTCTTTT	9420
CTCTCTCCCC	CGTTGTTGTC	TCACCATATC	CGCAATGACA	AAAAAAATGA	TGGAAGACAC	9480
TAAAGGAAAA	AATTAACGAC	AAAGACAGCA	CCAACAGATG	TCGTTGTTCC	AGAGCTGATG	9540
AGGGGTATCT	TCGAACACAC	GAAACTTTTT	CCTTCCTTCA	TTCACGCACA	CTACTCTCTA	9600
ATGAGCAACG	GTATACGGCC	TTCCTTCCAG	TTACTTGAAT	TTGAAATAAA	AAAAGTTTGC	9660
CGCTTTGCTA	TCAAGTATAA	ATAGACCTGC	AATTATTAAT	CTTTTGTTTC	CTCGTCATTG	9720
TTCTCGTTCC	CTTTCTTCCT	TGTTTCTTTT	TCTGCACAAT	ATTTCAAGCT	ATACCAAGCA	9780
TACAATCAAC	TCCAAGCTTG	AAGCAAGCCT	CCTGAAAGAT	GAAGCTACTG	TCTTCTATCG	9840
AACAAGCATG	CGATATTTGC	CGACTTAAAA	AGCTCAAGTG	CTCCAAAGAA	AAACCGAAGT	9900
GCGCCAAGTG	TCTGAAGAAC	AACTGGGAGT	GTCGCTACTC	TCCCAAAACC	AAAAGGTCTC	9960
CGCTGACTAG	GGCACATCTG	ACAGAAGTGG	AATCAAGGCT	AGAAAGACTG	GAACAGCTAT	10020
TTCTACTGAT	TTTTCCTCGA	GAAGACCTTG	ACATGATTTT	GAAAATGGAT	TCTTTACAGG	10080
ATATAAAAGC	ATTGTTAACA	GGATTATTTG	TACAAGATAA	TGTGAATAAA	GATGCCGTCA	10140

CAGATAGATT	GGCTTCAGTG	GAGACTGATA	TGCCTCTAAC	ATTGAGACAG	CATAGAATAA	10200
GTGCGACATC	ATCATCGGAA	GAGAGTAGTA	ACAAAGGTCA	AAGACAGTTG	ACTGTATCGC	10260
CGGAATTGCA	ATACCCAGCT	TTGACTCA				10288

(2) INFORMATION FOR SEQ ID NO: 29:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 7625 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: other nucleic acid
 (A) DESCRIPTION: /desc = "plasmid"
- (iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 29:

GCTTGCATGC	AACTTCTTTT	CTTTTTTTT	CTTTTCTCTC	TCCCCCGTTG	TTGTCTCACC	60
ATATCCGCAA	ТGACAAAAA	AATGATGGAA	GACACTAAAG	GAAAAAATTA	ACGACAAAGA	120
CAGCACCAAC	AGATGTCGTT	GTTCCAGAGC	TGATGAGGGG	TATCTTCGAA	CACACGAAAC	180
TTTTTCCTTC	CTTCATTCAC	GCACACTACT	CTCTAATGAG	CAACGGTATA	CGGCCTTCCT	240
TCCAGTTACT	TGAATTTGAA	ATAAAAAAAG	TTTGCCGCTT	TGCTATCAAG	TATAAATAGA	300
		GTTTCCTCGT	•			360
		AAGCTATACC				420
		TTCCCGAGCC			* *	480
		AAAGTGGGAA	•			540
:		the second second			AAGCGCTTTC	600
		ACGTTCATGA		•		660
		ATTCAAAACC				720
		CTACAGGGAT			•	780
		AAGATACCCC		•		840
		CCAAGTTCAC			•	900
		GATCTCAAGG				960
		GCGATAGTGC		•		1020
		TTCTGAGGGA		•		1080
		ACAAACTCAC			•	1140
		ACGACGATGA		•		1200
				C.I. COAGCG1	GINGCAGIAC	1200

SUBSTITUTE SHEET (RULE 26)

TENTETECH EN MAN DE MENTE ON GENERAL DE MENTE DE

ATCAGCTAGT	CAATCTTCG	AACGATCCTC	TGGCTGCAAC	TCAATCAAGG	TTACTGTAAA	1260
CGTGGACATC	GCTGGAGAA	TCAGTTCGAT	CGTTAACCCG	GACAAAGAGA	TAATCGTAGG	1320
ATATCTTGCC	ATGTCAACCA	GTCAGTCATG	CTGGAAAGAC	ATTGATGTTT	CTATTCTAGG	1380
ACTATTTGAA	GTCTACCTAI	CCAGAATTGA	TGTGGAGCAT	CAACTTGGAA	TCGATGCTCG	1440
TGATTCTATC	CTTGGCTATC	AAATTGGTGA	ACTTCGACGC	GTCATTGGAG	ACTCCACAAC	1500
CATGATAACC	AGCCATCCAA	CTGACATTCT	TACTTCCTCA	ACTACAATCC	GAATGTTCAT	1560
GCACGGTGCC	GCACAGAGTO	GCGTAGACAG	TCTGGTCCTT	GATATGCTTC	TTCCAAAGCA	1620
AATGATTCTC	CAACTCGTCA	AGTCAATTTT	GACAGAGAGA	CGTCTGGTGT	TAGCTGGAGC	1680
AACTGGAATT	GGAAAGAGCA	AACTGGCGAA	GACCCTGGCT	GCTTATGTAT	CTATTCGAAC	1740
AAATCAATCC	GAAGATAGTA	TTGTTAATAT	CAGCATTCCT	GAAAACAATA	AAGAAGAATT	1800
GCTTCAAGTG	GAACGACGCC	TGGAAAAGAT	CTATGAATCG	TAGATACTGA	AAAACCCCGC	1860
AAGTTCACTT	CAACTGTGCA	TCGTGCACCA	TCTCAATTTC	TTTCATTTAT	ACATCGTTTT	1920
GCCTTCTTTT	ATGTAACTAT	ACTCCTCTAA	GTTTCAATCT	TGGCCATGTA	ACCTCTGATC	1980
TATAGAATTT	TTTAAATGAC	TAGAATTAAT	GCCCATCTTT	TTTTTGGACC	TAAATTCTTC	2040
ATGAAAATAT	ATTACGAGGG	CTTATTCAGA	AGCTTTGGAC	TTCTTCGCCA	GAGGTTTGGT	2100
CAAGTCTCCA	ATCAAGGTTG	TCGGCTTGTC	TACCTTGCCA	GAAATTTACG	AAAAGATGGA	2160
AAAGGGTCAA	ATCGTTGGTA	GATACGTTGT	TGACACTTCT	AAATAAGCGA	ATTTCTTATG	2220
ATTTATGATT	TTTATTATTA	AATAAGTTAT	АААААААТА	AGTGTATACA	ÄATTTTAAAG	2280
TGACTCTTAG	GTTTTAAAAC	GAAAATTCTT	GTTCTTGAGT	AACTCTTTCC	TGTAGGTCAG	2340
GTTGCTTTCT	CAGGTATAGC	ATGAGGTCGC	TCTTATTGAC	CACACCTCTA	CCGGCATGCC	2400
CGAAATTCCC	CTACCCTATG	AACATATTCC	ATTTTGTAAT	TTCGTGTCGT	TTCTATTATG	2460
AATTTCATTT	ATAAAGTTTA	TGTACAAATA	тсаталалал	AGAGAATCTT	TTTAAGCAAG	2520
GATTTTCTTA	ACTTCTTCGG	CGACAGCATC	ACCGACTTCG	GTGGTACTGT	TGGAACCACC	2580
TAAATCACCA	GTTCTGATAC	CTGCATCCAA	AACCTTTTTA	ACTGCATCTT	CAATGGCCTT	2640
ACCTTCTTCA	GGCAAGTTCA	ATGACAATTT	CAACATCATT	GCAGCAGACA	AGATAGTGGC	2700
GATAGGGTCA	ACCTTATTCT	TTGGCAAATC	TGGAGCAGAA	CCGTGGCATG	GTTCGTACAA	2760
ACCAAATGCG	GTGTTCTTGT	CTGGCAAAGA	GGCCAAGGAC	GCAGATGGCA	ACAAACCCAA	2820
GGAACCTGGG	ATAACGGAGG	CTTCATCGGA	GATGATATCA	CCAAACATGT	TGCTGGTGAT	2880
rataatacca	TTTAGGTGGG	TTGGGTTCTT	AACTAGGATC	ATGGCGGCAG	AATCAATCAA	2940
TTGATGTTGA	ACCTTCAATG	TAGGAAATTC	GTTCTTGATG	GTTTCCTCCA	CAGTTTTTCT	3000
CCATAATCTT	GAAGAGGCCA	AAACATTAGC	TTTATCCAAG	GACCAAATAG	GCAATGGTGG	3060
CTCATGTTGT	AGGGCCATGA	AAGCGGCCAT	ጥርጥጥርጥርአጥጥ	COUNTY COME	CDCCD D CCCD	2100

			•		1	
GTATTGTTCA	CTATCCCAAG	CGACACCATC	ACCATCGTCT	TCCTTTCTCT	TACCAAAGTA	3180
AATACCTCCC	ACTAATTCTC	TGACAACAAC	GAAGTCAGTA	CCTTTAGCAA	ATTGTGGCTT	3240
GATTGGAGAT	AAGTCTAAAA	GAGAGTCGGA	TGCAAAGTTA	CATGGTCTTA	AGTTGGCGTA	3300
CAATTGAAGT	TCTTTACGGA	TTTTTAGTAA	ACCTTGTTCA	GGTCTAACAC	TACCTGTACC	3360
CCATTTAGGA	CCACCCACAG	CACCTAACAA	AACGGCATCA	ACCTTCTTGG	AGGCTTCCAG	3420
CGCCTCATCT	GGAAGTGGGA	CACCTGTAGC	ATCGATAGCA	GCACCACCAA	TTAAATGATT	3480
TTCGAAATCG	AACTTGACAT	TGGAACGAAC	ATCAGAAATA	GCTTTAAGAA	CCTTAATGGC	3540
TTCGGCTGTG	ATTTCTTGAC	CAACGTGGTC	ACCTGGCAAA	ACGACGATCT	TCTTAGGGGC	3600
AGACATTAGA	ATGGTATATC	CTTGAAATAT	ATATATATAT	TGCTGAAATG	TAAAAGGTAA	3660
GAAAAGTTAG	AAAGTAAGAC	GATTGCTAAC	CACCTATTGG	AAAAAACAAT	AGGTCCTTAA	3720
ATAATATTGT	CAACTTCAAG	TATTGTGATG	CAAGCATTTA	GTCATGAACG	CTTCTCTATT	3780
CTATATGAAA	AGCCGGTTCC	GGCCTCTCAC	CTTTCCTTTT	TCTCCCAATT	TTTCAGTTGA	3840
AAAAGGTATA	TGCGTCAGGC	GACCTCTGAA	ATTAACAAAA	AATTTCCAGT	CATCGAATTT	3900
GATTCTGTGC	GATAGCGCCC	CTGTGTGTTC	TCGTTATGTT	GAGGAAAAA	ATAATGGTTG	3960
CTAAGAGATT	CGAACTCTTG	CATCTTACGA	TACCTGAGTA	TTCCCACAGT	TGGGGATCTC	4020
GACTCTAGCT	AGAGGATCAA	TTCGTAATCA	TGGTCATAGC	TGTTTCCTGT	GTGAAATTGT	4080
TATCCGCTCA	CAATTCCACA	CAACATACGA	GCCGGAAGCA	TAAAGTGTAA	AGCCTGGGGT	4140
GCCTAATGAG	TGAGGTAACT	CACATTAATT	GCGTTGCGCT	CACTGCCCGC	TTTCCAGTCG	4200
GGAAACCTGT	CGTGCCAGCT	GGATTAATGA	ATCGGCCAAC	GCGCGGGGAG	AGGCGGTTTG	4260
CGTATTGGGC	GCTCTTCCGC	TTCCTCGCTC	ACTGACTCGC	TGCGCTCGGT	CGTTCGGCTG	4320
CGGCGAGCGG	TATCAGCTCA	CTCAAAGGCG	GTAATACGGT	TATCCACAGA	ATCAGGGGAT	4380
AACGCAGGAA	AGAACATGTG	AGCAAAAGGC	CAGCAAAAGG	CCAGGAACCG	TAAAAAGGCC	4440
GCGTTGCTGG	CGTTTTTCCA	TAGGCTCCGC	CCCCTGACG	AGCATCACAA	AAATCGACGC	4500
TCAAGTCAGA	GGTGGCGAAA	CCCGACAGGA	CTATAAAGAT	ACCAGGCGTT	TCCCCCTGGA	4560
AGCTCCCTCG	TGCGCTCTCC	TGTTCCGACC	CTGCCGCTTA	CCGGATACCT	GTCCGCCTTT	4620
CTCCCTTCGG	GAAGCGTGGC	GCTTTCTCAT	AGCTCACGCT	GTAGGTATCT	CAGTTCGGTG	4680
TAGGTCGTTC	GCTCCAAGCT	GGGCTGTGTG	CACGAACCCC	CCGTTCAGCC	CGACCGCTGC	4740
GCCTTATCCG	GTAACTATCG	TCTTGAGTCC	AACCCGGTAA	GACACGACTT	ATCGCCACTG	4800
GCAGCAGCCA	CTGGTAACAG	GATTAGCAGA	GCGAGGTATG	TAGGCGGTGC	TACAGAGTTC	4860
TTGAAGTGGT	GGCCTAACTA	CGGCTACACT	AGAAGGACAG	TATTTGGTAT	CTGCGCTCTG	4920
CTGAAGCCAG	TTACCTTCGG	AAAAAGAGTT	GGTAGCTCTT	GATCCGGCAA	ACAAACCACC	4980
GCTGGTAGCG	GTGGTTTTTT	TGTTTGCAAG	CAGCAGATTA	CGCGCAGAAA	AAAAGGATCT	5040

CAAGAAGATC	CTTTGATCTT	TTCTACGGGG	TCTGACGCTC	AGTGGAACGA	AAACTCACGT	5100
TAAGGGATTT	TGGTCATGAG	ATTATCAAAA	AGGATCTTCA	CCTAGATCCT	AATTAAATTT	5160
Aaatgaagtt	TTAAATCAAT	CTAAAGTATA	TATGAGTAAA	CTTGGTCTGA	CAGTTACCAA	5220
TGCTTAATCA	GTGAGGCACC	TATCTCAGCG	ATCTGTCTAT	TTCGTTCATC	CATAGTTGCC	5280
TGACTCCCCG	TCGTGTAGAT	' AACTACGATA	CGGGAGGGCT	TACCATCTGG	CCCCAGTGCT	5340
GCAATGATAC	CGCGAGACCC	ACGCTCACCG	GCTCCAGATT	TATCAGCAAT	AAACCAGCCA	5400
GCCGGAAGGG	CCGAGCGCAG	AAGTGGTCCT	GCAACTTTAT	CCGCCTCCAT	CCAGTCTATT	5460
AATTGTTGCC	GGGAAGCTAG	AGTAAGTAGT	TCGCCAGTTA	ATAGTTTGCG	CAACGTTGTT	5520
GCCATTGCTA	CAGGCATCGT	GGTGTCACGC	TCGTCGTTTG	GTATGGCTTC	ATTCAGCTCC	5580
GGTTCCCAAC	GATCAAGGCG	AGTTACATGA	TCCCCCATGT	TGTGCAAAAA	AGCGGTTAGC	5640
TCCTTCGGTC	CTCCGATCGT	TGTCAGAAGT	AAGTTGGCCG	CAGTGTTATC	ACTCATGGTT	5700
ATGGCAGCAC	TGCATAATTC	TCTTACTGTC	ATGCCATCCG	TAAGATGCTT	TTCTGTGACT	5760
GGTGAGTACT	CAACCAAGTC	ATTCTGAGAA	TAGTGTATGC	GGCGACCGAG	TTGCTCTTGC	5820
CCGGCGTCAA	TACGGGATAA	TACCGCGCCA	CATAGCAGAA	CTTTAAAAGT	GCTCATCATT	5880
GGAAAACGTT.	CTTCGGGGCG	AAAACTCTCA	AGGATCTTAC	CGCTGTTGAG	ATCCAGTTCG	5940
ATGTAACCCA	CTCGTGCACC	CAACTGATCT	TCAGCATCTT	TTACTTTCAC	CAGCGTTTCT	6000
GGGTGAGCAA	AAACAGGAAG	GCAAAATGCC	GCAAAAAAGG	GAATAAGGGC	GACACGGAAA	6060
TGTTGAATAC	TCATACTCTT	CCTTTTTCAA	TATTATTGAA	GCATTTATCA	GGGTTATTGT	6120
CTCATGAGCG	GATACATATT	TGAATGTATT	TAGAAAAATA	AACAAATAGG	GGTTCCGCGC	6180
				TTATTATCAT		6240
				GTTTCGGTGA		6300
				GTCTGTAAGC		6360
				GGTGTCGGGG		6420
TATGCGGCAT	CAGAGCAGAT	TGTACTGAGA	GTGCACCATA	ACGCATTTAA	GCATAAACAC	6480
				ACACGCAGAT		6540
				TTCGGAAGCG		6600
					TATAGGAACT	6660
				CTTTCAAAAA		6720
				. •	CATTGCTCAA	6780
					CATCCACCTT	6840
				TTTATGTTTA		6900
PACTCTTTAG	АСАААААААТ	TGTAGTAAGA	ACTATTCATA	GAGTGAATCG	ממממממממ	6960

600

660

GAAAATGTAA	ACATTTCCTA	TACGTAGTAT	ATAGAGACAA	AATAGAAGAA	ACCGTTCATA	7020
ATTTTCTGAC	CAATGAAGAA	TCATCAACGC	TATCACTTTC	TGTTCACAAA	GTATGCGCAA	7080
TCCACATCGG	TATAGAATAT	AATCGGGGAT	GCCTTTATCT	TGAAAAAATG	CACCGCAGC	7140
TTCGCTAGTA	ATCAGTAAAC	GCGGGAAGTG	GAGTCAGGCT	TTTTTTATGG	AAGAGAAAAT	7200
AGACACCAAA	GTAGCCTTCT	TCTAACCTTA	ACGGACCTAC	AGTGCAAAAA	GTTATCAAGA	7260
GACTGCATTA	TAGAGCGCAC	AAAGGAGAAA	AAAAGTAATC	TAAGATGCTT	TGTTAGAAAA	7320
ATAGCGCTCT	CGGGATGCAT	TTTTGTAGAA	САААААА	GTATAGATTC	TTTGTTGGTA	7380
AAATAGCGCT	CTCGCGTTGC	ATTTCTGTTC	TGTAAAAATG	CAGCTCAGAT	TCTTTGTTTG	7440
AAAAATTAGC	GCTCTCGCGT	TGCATTTTTG	TTTTACAAAA	ATGAAGCACA	GATTCTTCGT	7500
TGGTAAAATA	GCGCTTTCGC	GTTGCATTTC	TGTTCTGTAA	AAATGCAGCT	CAGATTCTTT	7560
GTTTGAAAAA	TTAGCGCTCT	CGCGTTGCAT	TTTTGTTCTA	CAAAATGAAG	CACAGATGCT	7620
TCGTT		. •				7625

(2) INFORMATION FOR SEQ ID NO: 30:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 9642 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "plasmid"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 30:

- (iii) HYPOTHETICAL: NO
- ATGACCATGA TTACGCCAAG CTTGTCTTCT TCTAAATTCC CATAAAATCC CGAAACTCCT 60 TCCCTCTATC TTCTTTTCT TCTCGTTTTC AAATGTTTCT CTCTATCCCA TTCTCTCATC 120 AATTGAGTGG GATGAGGCTA TCTCTGCCTC TCTTCTGAAT CTCTGAACCA TCTTACATTA 180 -CACTGTGGAT GACGAGCCCC ACAGGCTCCC TTGCATCAGA TACTGCCATT GGGGATGGCA 240 AAGAAGAGA AAGATATTGT GAGGATATAT TTTTCTAAGA AAAAACGTTT GAAGAAAAGA 300 AGATGAAGAA GATCTGCTTG ATTCATTGCA CAAGTTAGAA GTAACAGGGG TCTATATTTC 360 GAAGAACTTA AAGGGAATGC AACTGAACAT AAAATTAAAC AAAGGGATTG AATCCTGCAG 420 TGAGTATTTT CGGTTTTTCA CTGGTTCTCT GTAAAAAGAG TAATGCAAAG GGCAAGTTAA 480 CTTAGGTCGT AAATGTATTG AATTTGCTTA AAATCTGAAG ATCTAGTGGT GAACCGTGGA

SUBSTITUTE SHEET (RULE 26)

。1915年11日,1916年11日,1916年11日,1916年11日,1916年11日,1916年11日,1916年11日,1916年11日,1916年11日,1916年11日,1916年11日,1916年11日,

AGATTATCAA GAGGAGGCTG AAGATCTGTT TAAGAACCAT TAATCAAACT GGTATTCTAT

TTTCACTGGT TGTATGTAAA CATTCTATCT TATTCCTTTT ATCACTGTTC TGCACTTTCC

TATAAAAAA	A GTTGACCGAC	CGTACTCTCT	GAATTCATTT	TTCCCGATCT	TACCAACTCC	720
CGATCTATC	T CTATCCCTG	TTTTTTCTTC	GTGCTCCAAT	GGAATTCTTG	AGACTTCCAC	780
TATCTTCTC	T GGCACCCTCC	ACTACGCGTA	GCCTCTCTC	GCTTCGTGTA	TTCCCGGGAA	840
GCCGGTTCC	C GTCTCTCCC	CCGCTGCCGC	TGCCGCACAC	AGCTTTACAC	CTCGTAGAAT	900
CCCCAAAGA	G GGGCGTGGCI	TGCGGGTGCC	AACATCCTCC	TGCCGAGGAA	GAAGCAGGCA	960
CTCATCACT	C GCATCATCAA	CCTCGGGATT	GGCCAAAGGA	CCCAAAGGTA	TGTTTCGAAT	1020
GATACTAAC	A TAACATAGAA	CATTTTCAGG	AGGACCCTTG	GCTAGAACTA	GTGGATCCGA	1080
GCTCTCCCA	T ATGACGACGT	' CAAATGTAGA	ATTGATACCA	ATCTACACGG	ATTGGGCCAA	1140
TCGGCACCT	T TCGAAGGGCA	GCTTATCAAA	GTCGATTAGG	GATATTTCCA	ATGATTTTCG	1200
CGACTATCG	A CTGGTTTCTC	AGCTTATTAA	TGTGATCGTT	CCGATCAACG	AATTCTCGCC	1260
TGCATTCAC	G AAACGTTTGG	CAAAAATCAC	ATCGAACCTG	GATGGCCTCG	AAACGTGTCT	1320
CGACTACCT	G AAAAATCTGG	GTCTCGACTG	CTCGAAACTC	ACCAAAACCG	ATATCGACAG	1380
CGGAAACTT	G GGTGCAGTTC	TCCAGCTGCT	CTTCCTGCTC	TCCACCTACA	AGCAGAAGCT	1440
TCGGCAACT	G AAAAAAGATC	AGAAGAAATT	GGAGCAACTA	CCCACATCCA	TTATGCCACC	1500
CGCGGTTTC	I AAATTACCCT	CGCCACGTGT	CGCCACGTCA	GCAACCGCTT	CAGCAACTAA	1560
CCCAAATTC	C AACTTTCCAC	AAATGTCAAC	ATCCAGGCTT	CAGACTCCAC	AGTCAAGAAT	1620
ATCGAAAATT	r gattcatcaa	AGATTGGTAT	CAAGCCAAAG	ACGTCTGGAC	TTAAACCACC	1680
CTCATCATC	A ACCACTTCAT	CAAATAATAC	AAATTCATTC	CGTCCGTCGA	GCCGTTCGAG	1740
TGGCAATAA1	r aatgttggct	CGACGATATC	CACATCTGCG	AAGAGCTTAG	AATCATCATC	1800
AACGTACAGO	C TCTATTTCGA	ATCTAAACCG	ACCTACCTCC	CAACTCCAAA	AACCTTCTAG	1860
ACCACAAAC	CAGCTAGTTC	GTGTTGCTAC	AACTACAAAA	ATCGGAAGCT	CAAAGCTAGC	1920
CGCTCCGAA	A GCCGTGAGCA	CCCCAAAACT	TGCTTCTGTG	AAGACTATTG	GAGCAAAACA	1980
AGAGCCCGAT	T AACAGCGGTG	GTGGTGGTGG	TGGAATGCTG	AAATTAAAGT	TATTCAGTAG	2040
CAAAAACCCA	A TCTTCCTCAT	CGAATAGCCC	ACAACCTACG	AGAAAGGCGG	CGGCGGTGCC	2100
TCAACAACAA	A ACTTTGTCGA	AAATCGCTGC	CCCAGTGAAA	AGTGGCCTGA	AGCCGCCGAC	2160
CAGTAAGCTG	GGAAGTGCCA	CGTCTATGTC	GAAGCTTTGT	ACGCCAAAAG	TTTCCTACCG	2220
TAAAACGGAC	GCCCCAATCA	TATCTCAACA	AGACTCGAAA	CGATGCTCAA	AGAGCAGTGA	2280
AGAAGAGTCC	GGATACGCTG	GATTCAACAG	CACGTCGCCA	ACGTCATCAT	CGACGGAAGG	2340
TTCCCTAAGC	ATGCATTCCA	CATCTTCCAA	GAGTTCAACG	TCAGACGAAA	AGTCTCCGTC	2400
ATCAGACGAT	CTTACTCTTA	ACGCCTCCAT	CGTGACAGCT	ATCAGACAGC	CGATAGCCGC	2460
AACACCGGTT	TCTCCAAATA	TTATCAACAA	GCCTGTTGAG	GAAAAACCAA	CACTGGCAGT	2520
AAAGGAGTG	AAAAGCACAG	CGAAAAAAGA	TCCACCTCCA	GCTGTTCCGC	САССТСАСАС	2580

	CCAGCCAACA	ATCGGAGTTG	TTAGTCCAAT	TATGGCACAT	AAGAAGTTGA	CAAATGACCC	2640
	CGTGATATCT	GAAAAACCAG	AACCTGAAAA	GCTCCAATCA	ATGAGCATCG	ACACGACGGA	2700
	CGTTCCACCG	CTTCCACCTC	TAAAATCAGT	TGTTCCACTT	AAAATGACTT	CAATCCGACA	2760
	ACCACCAACG	TACGATGTTC	TTCTAAAACA	AGGAAAAATC	ACATCGCCTG	TCAAGTCGTT	2820
	TGGATATGAG	CAGTCGTCCG	CGTCTGAAGA	CTCCATTGTG	GCTCATGCGT	CGGCTCAGGT	2880
	GACTCCGCCG	ACAAAAACTT	CTGGTAATCA	TTCGCTGGAG	AGAAGGATGG	GAAAGAATAA	2940
	GACATCAGAA	TCCAGCGGCT	ACACCTCTGA	CGCCGGTGTT	GCGATGTGCG	CCAAAATGAG	3000
	GGAGAAGCTG	AAAGAATACG	ATGACATGAC	TCGTCGAGCA	CAGAACGGCT	ATCCTGACAA	3060
	CTTCGAAGAC	AGTTCCTCCT	TGTCGTCTGG	AATATCCGAT	AACAACGAGC	TCGACGACAT	3120
2	ATCCACGGAC	GATTTGTCCG	GAGTAGACAT	GGCAACAGTC	GCCTCCAAAC	ATAGCGACTA	3180
•	TTCCCACTTT	GTTCGCCATC	CCACGTCTTC	TTCCTCAAAG	CCCCGAGTCC	CCAGTCGGTC	3240
•	CTCCACATCA	GTCGATTCTC	GATCTCGAGC	AGAACAGGAG	AATGTGTACA	AACTTCTGTC	3300
•	CCAGTGCCGA	ACGAGCCAAC	GTGGCGCCGC	TGCCACCTCA	ACCTTCGGAC	AACATTCGCT	3360
- 1	AAGATCCCCG	GGATACTCAT	CCTATTCTCC	ACACTTATCA	GTGTCAGCTG	ATAAGGACAC	3420
1	AATGTCTATG	CACTCACAGA	CTAGTCGACG	ACCTTCTTCA	САААААССАА	GCTATTCAGG	3480
(CCAATTTCAT	TCACTTGATC	GTAAATGCCA	CCTTCAAGAG	TTCACATCCA	CCGAGCACAG .	3540
7	AATGGCGGCT	CTCTTGAGCC	CGAGACGGGT	GCCGAACTCG	ATGTCGAAAT	ATGATTCTTC	3600
7	AGGATCCTAC	TCGGCGCGTT	CCCGAGGTGG	AAGCTCTACT	GGTATCTATG	GAGAGACGTT	3660
(CCAACTGCAC	AGACTATCCG	ATGAAAAATC	CCCCGCACAT	TCTGCCAAAA	GTGAGATGGG	3720
I	ATCCCAACTA	TCACTGGCTA	GCACGACAGC	ATATGGATCT	CTCAATGAGA	AGTACGAACA	3780
7	GCTATTCGG	GACATGGCAC	GTGACTTGGA	GTGTTACAAG	AACACTGTCG	ACTCACTAAC	3840
C	AAGAAACAG	GAGAACTATG	GAGCATTGTT	TGATCTTTTT	GAGCAAAAGC	TTAGAAAACT	3900
C	CACTCAACAC	ATTGATCGAT	CCAACTTGAA	GCCTGAAGAG	GCAATACGAT	TCAGGCAGGA	3960
C	CATTGCTCAT	TTGAGGGATA	TTAGCAATCA	TCTTGCATCC	AACTCAGCTC	ATGCTAACGA	4020
P	AGGCGCTGGT	GAGCTTCTTC	GTCAACCATC	TCTGGAATCA	GTTGCATCCC	ATCGATCATC	4080
G	SATGTCATCG	TCGTCGAAAA	GCAGCAAGCA	GGAGAAGATC	AGCTTGAGCT	CGTTTGGCAA	4140
G	BAACAAGAAG	AGCTGGATCC	GCTCCTCACT	CTCCAAGTTC	ACCAAGAAGA	AGAACAAGAA	4200
C	TACGACGAA	GCACATATGC	CATCAATTTC	CGGATCTCAA	GGAACTCTTG	ACAACATTGA	4260
T	'GTGATTGAG	TTGAAGCAAG	AGCTCAAAGA	ACGCGATAGT	GCACTTTACG	AAGTCCGCCT	4320
T	'GACAATCTG	GATCGTGCCC	GCGAAGTTGA	TGTTCTGAGG	GAGACAGTGA	ACAAGTTGAA	4380
A	ACCGAGAAC	AAGCAATTAA	AGAAAGAAGT	GGACAAACTC	ACCAACGGTC	CAGCCACTCG	4440
T	GCTTCTTCC	CGCGCCTCAA	TTCCAGTTAT	CTACGACGAT	GAGCATGTCT	ATGATGCAGC	4500

					14	-
GTGTAGCAG	T ACATCAGCT	GTCAATCTTC	GAAACGATCO	TCTGGCTGCA	ACTCAATCAA	4560
GGTTACTGT	A AACGTGGAC	A TCGCTGGAGA	AATCAGTTC	ATCGTTAACC	CGGACAAAGA	4620
GATAATCGT	A GGATATCTT	CCATGTCAAC	CAGTCAGTCA	TGCTGGAAAG	ACATTGATGT	4680
TTCTATTCT	A GGACTATTT	AAGTCTACCI	ATCCAGAATI	GATGTGGAGC	ATCAACTTGG	4740
AATCGATGC:	CGTGATTCT	TCCTTGGCTA	TCAAATTGGT	GAACTTCGAC	GCGTCATTGG	4800
AGACTCCAC	A ACCATGATA	CCAGCCATCC	AACTGACATT	CTTACTTCCT	CAACTACAAT	4860
CCGAATGTT	ATGCACGGTG	CCGCACAGAG	TCGCGTAGAC	AGTCTGGTCC	TTGATATGCT	4920
TCTTCCAAA	G CAAATGATTO	: TCCAACTCGT	CAAGTCAATT	TTGACAGAGA	GACGTCTGGT	4980
GTTAGCTGG	A GCAACTGGAA	TTGGAAAGAG	CAAACTGGCG	AAGACCCTGG	CTGCTTATGT	5040
ATCTATTCG	ACAAATCAAT	CCGAAGATAG	TATTGTTAAT	ATCAGCATTC	CTGAAAACAA	5100
TAAAGAAGAA	TTGCTTCAAG	TGGAACGACG	CCTGGAAAAG	ATCTTGAGAA	GCAAAGAATC	5160
ATGCATCGT	ATTCTAGATA	ATATCCCAAA	GAATCGAATT	GCATTTGTTG	TATCCGTTTT	5220
TGCAAATGTC	CCACTTCAAA	ACAACGAAGG	TCCATTTGTA	GTATGCACAG	TCAACCGATA	5280
TCAAATCCCT	GAGCTTCAAA	TTCACCACAA	TTTCAAAATG	TCAGTAATGT	CGAATCGTCT	5340
CGAAGGATTC	ATCCTACGTT	ACCTCCGACG	ACGGGCGGTA	GAGGATGAGT	ATCGTCTAAC	5400
TGTACAGATG	CCATCAGAGC	TCTTCAAAAT	CATTGACTTC	TTCCCAATAG	CTCTTCAGGC	5460
CGTCAATAAT	TTTATTGAGA	AAACGAATTC	TGTTGATGTG	ACAGTTGGTC	CAAGAGCATG	5520
CTTGAACTGT	CCTCTAACTG	TCGATGGATC	CCGTGAATGG	TTCATTCGAT	TGTGGAATGA	5580
GAACTTCATT	CCATATTTGG	AACGTGTTGC	TAGAGATGGC	AAAAAAACCT	TCGGTCGCTG	5640
CACTTCCTTC	GAGGATCCCA	CCGACATCGT	СТСТААААА	TGGCCGTGGT	TCGATGGTGA	5700
AAACCCGGAG	AATGTGCTCA	AACGTCTTCA	ACTCCAAGAC	CTCGTCCCGT	CACCTGCCAA	5760
CTCATCCCGA	CAACACTTCA	ATCCCCTCGA	GTCGTTGATC	CAATTGCATG	CTACCAAGCA	5820
TCAGACCATC	GACAACATTT	GAACAGAAGA	CTCTAATCTT	CTCTCGCCTC	TCCCCCCCTT	5880
TCCTTATCTT	CGTACCGGTA	CCATGGTATT	GATATCTGAG	CTCCGCATCG	GCCGCTGTCA	5940
TCAGATCGCC	ATCTCGCGCC	CGTGCCTCTG	ACTTCTAAGT	CCAATTACTC	TTCAACATCC	6000
CTACATGCTC	TTTCTCCCTG	TGCTCCCACC	CCCTATTTT	GTTATTATCA	AAAAAACTTC	6060
TTCTTAATTT	CTTTGTTTTT	TAGCTTCTTT	TAAGTCACCT	CTAACAATGA	AATTGTGTAG	6120
ATTCAAAAAT	AGAATTAATT	CGTAATAAAA	AGTCGAAAAA	AATTGTGCTC	CCTCCCCCA	6180
TTAATAATAA	TTCTATCCCA	AAATCTACAC	AATGTTCTGT	GTACACTTCT	TATGTTTTTT	6240
TTACTTCTGA	TAAATTTTTT	TTGAAACATC	АТАБААААА	CCGCACACAA	AATACCTTAT	6300
CATATGTTAC	GTTTCAGTTT	ATGACCGCAA	TTTTTATTTC	TTCGCACGTC	TGGGCCTCTC	6360
ATGACGTCAA	ATCATGCTCA	TCGTGAAAAA	GTTTTGGAGT	ATTTTTGGAA	TTTTTCAATC	6420

AAGTGAAAGT	TTATGAAATT	AATTTTCCTG	CTTTTGCTTT	TTGGGGGTTT	CCCCTATTGT	6480
TTGTCAAGAG	TTTCGAGGAC	GGCGTTTTTC	TTGCTAAAAT	CACAAGTATT	GATGAGCACG	6540
ATGCAAGAAA	GATCGGAAGA	AGGTTTGGGT	TTGAGGCTCA	GTGGAAGGTG	AGTAGAAGTT	6600.
GATAATTTGA	AAGTGGAGTA	GTGTCTATGG	GGTTTTTGCC	TTAAATGACA	GAATACATTC	6660
CCAATATACC	AAACATAACT	GTTTAAAATT	AAACATTTTT	CTAAATTTTA	TATGATTTCT	6720
TTTAAATTTG	CAAAAATTAC	TTAAATTTGA	ATTCCCGCGC	AAATGAGTGA	CTTCATTTTC	6780
TGCATTATTG	TGTTTTCCGG	СТАТАТТААТ	AGGTATTTGT	TTGTGTTTTT	CTTTATTTTA	6840
TGATTCGAAC	TCCAATTTGT	AAATTTTCGA	ACATATTTCC	CTAAAGAAAA	AATATGATTA	6900
ATCTGGAAAA	ATTGGAAAAT	TATTTTTCAA	АТАЛАЛАЛАСА	ААĢАААААА	TGAAGAAAA	6960
CCTATTAGTT	TGGCCATAAA	ACGCAAAAAT	GTCGAAAATG	ACGTCACTCA	TCTGCGCGG	7020
AAATCAAGAA	TAATTCGGCC	TTTTTTTTTT	TTTTGGAAAA	TCGTAAAACA	TTTAGAAAAA	70 80
TTTTTTAATA	GTTATAGTGG	GACTGTATTC	TGTCATTTAG	GGCAAAAGCC	AGAGACGCTA	7140
CTCCACCGTT	GGGGGATCCA	CTAGTCGGCC	GTACGGGCCC	TTTCGTCTCG	CGCGTTTCGG	7200
TGATGACGGT	GAAAACCTCT	GACACATGCA	GCTCCCGGAG	ACGGTCACAG	CTTGTCTGTA	7260
AGCGGATGCC	GGGAGCAGAC	AAGCCCGTCA	GGGCGCGTCA	GCGGGTGTTG	GCGGGTGTCG	7320
GGGCTGGCTT	AACTATGCGG	CATCAGAGCA	GATTGTACTG	AGAGTGCACC	ATATGCGGTG	7380
TGAAATACCG	CACAGATGCG	TAAGGAGAAA	ATACCGCATC	AGGCGGCCTT	AAGGGCCTCG	.7440
TGATACGCCT	ATTTTTATAG	GTTAATGTCA	TGATAATAAT	GGTTTCTTAG	ACGTCAGGTG	7500
GCACTTTTCG	GGGAAATGTG	CGCGGAACCC	CTATTTGTTT	ATTTTTCTAA	ATACATTCAA	7560
ATATGTATCC	GCTCATGAGA	CAATAACCCT	GATAAATGCT	TCAATAATAT	TGAAAAAGGA	7620
AGAGTATGAG	TATTCAACAT	TTCCGTGTCG	CCCTTATTCC	CTTTTTTGCG	GCATTTTGCC	7680
TTCCTGTTTT	TGCTCACCCA	GAAACGCTGG	TGAAAGTAAA	AGATGCTGAA	GATCAGTTGG	7740
GTGCACGAGT	GGGTTACATC	GAACTGGATC	TCAACAGCGG	TAAGATCCTT	GAGAGTTTTC	7800
GCCCCGAAGA	ACGTTTTCCA	ATGATGAGCA	CTTTTAAAGT	TCTGCTATGT	GGCGCGGTAT	7860
TATCCCGTAT	TGACGCCGGG	CAAGAGCAAC	TCGGTCGCCG	CATACACTAT	TCTCAGAATG	7920
ACTTGGTTGA	GTACTCACCA	GTCACAGAAA	AGCATCTTAC	GGATGGCATG	ACAGTAAGAG	7980
AATTATGCAG	TGCTGCCATA	ACCATGAGTG	ATAACACTGC	GGCCAACTTA	CTTCTGACAA	. 8040
CGATCGGAGG	ACCGAAGGAG	CTAACCGCTT	TTTTGCACAA	CATGGGGGAT	CATGTAACTC	8100
GCCTTGATCG	TTGGGAACCG	GAGCTGAATG	AAGCCATACC	AAACGACGAG	CGTGACACCA	8160
CGATGCCTGT	AGCAATGGCA	ACAACGTTGC	GCAAACTATT	AACTGGCGAA	CTACTTACTC	8220
TAGCTTCCCG	GCAACAATTA	ATAGACTGGA	TGGAGGCGGA	TAAAGTTGCA	GGACCACTTC	8280
TGCGCTCGGC	CCTTCCGGCT	GGCTGGTTTA	TTGCTGATAA	ATCTGGAGCC	GGTGAGCGTG	8340

GGTCTCGCGG	TATCATTGCA	GCACTGGGGC	CAGATGGTAA	GCCCTCCCGT	ATCGTAGTTA	840
TCTACACGAC	GGGGAGTCAG	GCAACTATGG	ATGAACGAAA	TAGACAGATC	GCTGAGATAG	8460
GTGCCTCACT	GATTAAGCAT	TGGTAACTGT	CAGACCAAGT	TTACTCATAT	ATACTTTAGA	8520
TTGATTTAAA	ACTTCATTTT	TAATTTAAAA	GGATCTAGGT	GAAGATCCTT	TTTGATAATC	8580
TCATGACCAA	AATCCCTTAA	CGTGAGTTTT	CGTTCCACTG	AGCGTCAGAC	CCCGTAGAAA	8640
AGATCAAAGG	ATCTTCTTGA	GATCCTTTTT	TTCTGCGCGT	AATCTGCTGC	TTGCAAACAA	8700
AAAAACCACC	GCTACCAGCG	GTGGTTTGTT	TGCCGGATCA	AGAGCTACCA	ACTCTTTTTC	8760
CGAAGGTAAC	TGGCTTCAGC	AGAGCGCAGA	TACCAAATAC	TGTCCTTCTA	GTGTAGCCGT	8820
AGTTAGGCCA	CCACTTCAAG	AACTCTGTAG	CACCGCCTAC	ATACCTCGCT	CTGCTAATCC	8880
TGTTACCAGT	GGCTGCTGCC	AGTGGCGATA	AGTCGTGTCT	TACCGGGTTG	GACTCAAGAC	8940
GATAGTTACC	GGATAAGGCG	CAGCGGTCGG	GCTGAACGGG	GGGTTCGTGC	ACACAGCCCA	9000
GCTTGGAGCG	AACGACCTAC	ACCGAACTGA	GATACCTACA	GCGTGAGCAT	TGAGAAAGCG	9060
	CGAAGGGAGA					9120
GAGAGCGCAC	GAGGGAGCTT	CCAGGGGGAA	ACGCCTGGTA	TCTTTATAGT	CCTGTCGGGT	9180
	CTGACTTGAG					9240
	CAGCAACGCG					9300
	TCCTGCGTTA					9360
	CGCTCGCCGC					9420
	CCCAATACGC					9480
	CAGGTTTCCC					9540
	TCATTAGGCA					9600
	GAGCGGATAA					9642

(2) INFORMATION FOR SEQ ID NO: 31:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 110 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 31:

Met Thr Thr Ser Asn Val Glu Leu Ile Pro Ile Tyr Thr Asp Trp Ala 1 5 10 15

Asn Arg His Leu Ser Lys Gly Ser Leu Ser Lys Ser Ile Arg Asp Ile 20 25 30

Ser Asn Asp Phe Arg Asp Tyr Arg Leu Val Ser Gln Leu Ile Asn Val

Ile Val Pro Ile Asn Glu Phe Ser Pro Ala Phe Thr Lys Arg Leu Ala

Lys Ile Thr Ser Asn Leu Asp Gly Leu Glu Thr Cys Leu Asp Tyr Leu

Lys Asn Leu Gly Leu Asp Cys Ser Lys Leu Thr Lys Thr Asp Ile Asp 85

Ser Gly Asn Leu Gly Ala Val Leu Gln Leu Leu Phe Leu Leu 100

- (2) INFORMATION FOR SEQ ID NO: 32:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 32:

Lys Gln Lys Leu Arg Gln Leu Lys Lys Asp Gln Lys Lys Leu Glu Gln 10

Leu Pro Thr Ser 20

- (2) INFORMATION FOR SEQ ID NO: 33:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 9 amino acids
 - (B) TYPE: amino acid

 - (C) STRANDEDNESS:(D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 33:

Asp Pro Pro Pro Ala Val Pro Pro Arg

- (2) INFORMATION FOR SEO ID NO: 34:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 9 amino acids

。 1985年,1986年,1986年,1986年,1986年,1986年,1986年,1986年,1986年,1986年,1986年,1986年,1986年,1987年,1987年,1987年,1987年,1987年,1

- (B) TYPE: amino acid
- (C) STRANDEDNESS:
- (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: peptide

(x1) SEQUENCE DESCRIPTION: SEQ ID NO: 34:

Asp Val Pro Pro Leu Pro Pro Leu Lys 1

- (2) INFORMATION FOR SEQ ID NO: 35:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 5 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 35:

Lys Lys Lys Asn Lys

- (2) INFORMATION FOR SEQ ID NO: 36:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 36:

Lys Thr Glu Asn Lys Gln Leu Lys Lys Glu Val Asp Lys Leu Thr Asn 1 5 10 15

Gly Pro Ala Thr 20

- (2) INFORMATION FOR SEQ ID NO: 37:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 8 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 37:

Gly Ala Thr Gly Ile Gly Lys Ser

process and successful and the s

- (2) INFORMATION FOR SEQ ID NO: 38:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 58 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 38:

Met Ser Glu Glu Pro Thr Pro Val Ser Gly Asn Asp Lys Gln Leu Leu

Asn Lys Ala Trp Glu Ile Thr Gln Lys Lys Thr Phe Thr Ala Trp Cys

Asn Ser His Leu Arg Lys Leu Gly Ser Ser Ile Glu Gln Ile Asp Thr

Asp Phe Thr Asp Gly Ile Lys Leu Ala Gln

- (2) INFORMATION FOR SEQ ID NO: 39:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 44 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 39:

Met Thr Thr Ser Asn Val Glu Leu Ile Pro Ile Tyr Thr Asp Trp Ala

Asn Arg His Leu Ser Lys Gly Ser Leu Ser Lys Ser Ile Arg Asp Ile

Ser Asn Asp Phe Arg Asp Tyr Arg Leu Val Ser Gln 40

- (2) INFORMATION FOR SEQ ID NO: 40:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 51 amino acids
 - (B) TYPE: amino acid(C) STRANDEDNESS:

 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: peptide

CARTERIO CONTRA CONTRA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 40:

Phe Glu Arg Ser Arg Ile Lys Ala Leu Ala Asp Glu Arg Glu Val Val 1 5 10 15

Gln Lys Lys Thr Phe Thr Lys Trp Val Asn Ser His Leu Ala Arg Val 20 25 30

Ser Cys Arg Ile Thr Asp Leu Tyr Lys Asp Leu Arg Asp Gly Arg Met
35 40 45

Leu Ile Lys 50

(2) INFORMATION FOR SEQ ID NO: 41:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 59 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 41:

Leu Leu Glu Val Ile Ser Asn Asp Pro Val Phe Lys Val Asn Lys Thr 1 5 10 15

Pro Lys Leu Arg Arg Ile His Asn Ile Gln Asn Val Gly Leu Cys Leu 20 25 30

Lys His Ile Glu Ser His Gly Val Lys Leu Val Gly Ile Gly Ala Glu 35 40 45

Glu Leu Val Asp Lys Asn Leu Lys Met Thr Leu 50 55

(2) INFORMATION FOR SEQ ID NO: 42:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 60 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 42:

Leu Ile Asn Val Ile Val Pro Ile Asn Glu Phe Ser Pro Ala Phe Thr
1 5 10 15

Lys Arg Leu Ala Lys Ile Thr Ser Asn Leu Asp Gly Leu Glu Thr Cys 20 25 30

Leu Asp Tyr Leu Lys Asn Leu Gly Leu Asp Cys Ser Lys Leu Thr Lys
35 40 45

Thr Asp Ile Asp Ser Gly Asn Leu Gly Ala Val Leu 50 55 60

- (2) INFORMATION FOR SEQ ID NO: 43:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 57 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 43:

Leu Leu Glu Val Leu Ser Gly Glu Met Leu Pro Lys Pro Thr Lys Gly

1 10 15

Lys Met Arg Ile His Cys Leu Glu Asn Val Asp Lys Ala Leu Gln Phe 20 25 30

Leu Lys Glu Gln Arg Val His Leu Glu Asn Met Gly Ser His Asp Ile 35 40 45

Val Asp Gly Asn His Arg Leu Val Leu 50 55

- (2) INFORMATION FOR SEQ ID NO: 44:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 42 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 44:
 - Gly Met Ile Trp Thr Ile Ile Leu Arg Phe Ala Ile Gln Asp Ile Ser 1 10 15
 - Ile Glu Glu Leu Ser Ala Lys Glu Ala Leu Leu Leu Trp Cys Gln Arg 20 25 30
 - Lys Thr Glu Gly Tyr Asp Arg Val Lys Val 35
- (2) INFORMATION FOR SEQ ID NO: 45:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 46 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: unknown

BORFFOR SOUTH TO BE A COMMETTER A SECURIT FOR A COMMETTER CONTRACTOR AND A COMMETTER AND A

- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 45:

Gln Leu Leu Phe Leu Leu Ser Thr Tyr Lys Gln Lys Leu Arg Gln Leu 1 5 10 15

Lys Lys Asp Gln Lys Lys Leu Glu Gln Leu Pro Thr Ser Ile Met Pro 20 25 30

Pro Ala Val Ser Lys Leu Pro Ser Pro Arg Val Ala Thr Ser 35 40 45

- (2) INFORMATION FOR SEQ ID NO: 46:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 48 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 46:
 - Gly Leu Ile Trp Thr Ile Ile Leu Arg Phe Gln Ile Gln Asp Ile Val 5 10 15

Val Gln Thr Gln Glu Gly Arg Glu Thr Arg Ser Ala Lys Asp Ala Leu 20 25 30

Leu Gln Phe Leu Lys Glu Gln Arg Val His Leu Glu Asn Met Gly Ser

- (2) INFORMATION FOR SEQ ID NO: 47:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 100 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cosmid DNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 47:

GATCAGAAGA AATTGGAGCA ACTACCCACA TCCATTATGC CACCCGCGGT TTCTAAGTGA 60
GTTTAATTTT GAGTTTACGA CTACAAAAAT GTGTTCTTTA 100

	_					
(2)	INFORMATION	FOR	SEO	TD	NO.	40

(i)	SEQUENCE	CHARACTERISTICS:
\ /	22221102	CIPTUTCIENTSIICS

- (A) LENGTH: 91 base pairs
- (B) TYPE: nucleic acid (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cosmid DNA

(2	xi) S	EQUENCE	DESC	CRIPTION: SI	EQ ID NO: 4	18:		
ccccc	TTCTG	ACTTCGT	GAC	GACAGTCTCG	ACACGTGGGG	TTGCAGGTAG	GAGTGGATGA	60
GTCGA	AACTG	ATAAGAT	AGT	CATTTGAGAT	С			91

CLAIMS:

- 1. A cDNA encoding an UNC-53 protein of <u>C. elegans</u> or a functional equivalent derivative fragment or bioprecursor of said protein, which cDNA comprises at least from nucleotide position 431 to nucleotide position 4647 of the sequence shown in Figure 1.
- A cDNA as claimed in claim 1 comprising at least
 from nucleotide position 431 to the 3' end of the sequence shown in Figure 1.
- A cDNA as claimed in Claim 1 comprising at least from nucleotide position 64 to nucleotide position
 4647 of the sequence as shown in Figure 1.
 - 4. A cDNA as claimed in claim 3 comprising at least from nucleotide position 64 to the 3' end of the sequence shown in Figure 1.

20

- 5. A cDNA as claimed in Claims 1 to 4 comprising the nucleotide sequence shown in Figure 1.
- 6. A cDNA encoding an UNC-53 protein of <u>C. elegans</u>
 25 or a functional equivalent, derivative, fragment or
 bioprecursor of said protein, which cDNA comprises at
 least from nucleotide position 431 to nucleotide
 position 4812 of the 7A variant of the sequence shown
 in Figure 2.

30

7. A cDNA as claimed in claim 6 comprising at least

from nucleotide position 431 to the 3' end of the 7A variant of the sequences shown in figure 2.

- 8. A cDNA as claimed in Claim 6 comprising at least
 5 from nucleotide position 64 to nucleotide position
 4812 of the sequence shown in Figure 2.
- A cDNA as claimed in claim 8 comprising at least from nucleotide position 64 to the 3' end of the 7A
 variant of the sequence shown in figure 2.
 - 10. A cDNA as claimed in any of claims 6 to 9 comprising the nucleotide sequence of the 7A variant of the sequence shown in Figure 2.

15

- 11. A DNA expression vector which comprises a cDNA as claimed in any one of Claims 1 to 10.
- 12. A host cell transformed or transfected with thevector of Claim 11.
 - 13. A host cell as claimed in Claim 12 which is a bacterial, an animal, a plant or an insect cell.
- 25 14. A transgenic cell comprising a transgene capable of expressing UNC-53 protein of <u>C. elegans</u> or a functional equivalent, derivative, fragment or bioprecursor of said protein.
- 30 15. A transgenic cell as claimed in Claim 14 which

TO THE SECOND PROCESS OF A SECOND OF SOME OF THE SECOND OF A SECOND OF THE SECOND OF SECOND OF A SECON

cell is a <u>C. elegans</u> cell, an N4 neuroblastoma cell or an MCF-7 breast carcinoma cell.

- 16. A transgenic organism comprising a transgene
 5 capable of expressing UNC-53 protein of <u>C. elegans</u> or
 a functional equivalent, derivative, fragment or
 bioprecursor of said protein.
- 17. A transgenic organism as claimed in Claim 1610 wherein said organism is <u>C. elegans</u>.
 - 18. A transgenic organism as claimed in Claim 16 wherein said organism is an insect, a non-human mammal or a plant.

15

19. A mutant of <u>C. elegans</u> which comprises an induced mutation in the wild-type unc-53 gene, which mutation affects the regulation of cell motility or the shape or direction of cell migration.

20

20. An UNC-53 protein encoded by the cDNA of Claim 1 and which protein has the amino acid sequence shown in Figure 4 from amino acid position 135 to amino acid position 1528.

- 21. An UNC-53 protein encoded by the cDNA sequence of any of Claims 2 to 5 and which protein has the amino acid sequence shown in Figure 4.
- 30 22. An UNC-53 protein encoded by the cDNA sequence of Claim 6 and which protein has the amino acid

sequence shown in Figure 6 from amino acid position 135 to amino acid position 1583.

- 23. An UNC-53 protein encoded by the cDNA sequence
 5 according to any of Claims 7 to 10 and which protein has the amino acid sequence shown in Figure 6.
- 24. An UNC-53 protein of <u>C. elegans</u>, or a functional equivalent, derivative, fragment or bioprecursor of said protein, for use as a medicament to promote neuronal regeneration, revascularisation or wound healing, or for treatment of chronic neurodegenerative diseases or acute traumatic injuries.
- 25. An UNC-53 protein as claimed in any one of Claims 20 to 23 for use as a medicament to promote neuronal regeneration, revascularisation or wound healing, or for treatment of chronic neurodegenerative diseases or acute traumatic injuries.

20

- 26. Use of an UNC-53 protein of <u>C. elegans</u>, or a functional equivalent, derivative, fragment or bioprecursor of said protein in the manufacture of a medicament for promoting neuronal regeneration, revascularisation or wound healing, or for treatment of chronic neuro-degenerative diseases or acute traumatic injuries.
- 27. Use of an UNC-53 protein as claimed in any one
 of Claims 20 to 23 in the manufacture of a medicament
 for promoting neuronal regeneration, revascularisation
 or wound healing, or for treatment of chronic neurodegenerative or acute traumatic injuries.

- 28. A pharmaceutical composition comprising an UNC-53 protein of <u>C. elegans</u>, a functional equivalent, derivative, bioprecursor or fragment of said protein and an acceptable carrier, diluent or excipient therefor.
- 29. A pharmaceutical composition as claimed in Claim 28 which comprises an UNC-53 protein as claimed in any one of Claims 20 to 23.

15

- 30. A nucleic acid sequence encoding an UNC-53 protein of <u>C. elegans</u> or a functional fragment, equivalent, derivative or bioprecursor of said protein, for use as a medicament to promote neuronal regeneration, vascularisation or wound healing, or for treatment of chronic neuro-degenerative diseases or acute traumatic injuries.
- 31. A nucleic acid sequence for use as claimed in Claim 27 wherein said sequence is a cDNA sequence as claimed in any one of Claims 1 to 10 or a functional fragment of said nucleic acid sequence.
- 32. Use of a nucleic acid sequence encoding and UNC53 protein of <u>C. elegans</u> or a functional equivalent
 fragment, derivative or bioprecursor of said protein,
 in the manufacture of a medicament to promote neuronal
 regeneration, vascularization or wound healing, or for
 treatment of chronic neuro-degenerative diseases or
 acute traumatic injuries.
 - 33. Use of a nucleic acid sequence as claimed in Claim 32 wherein said sequence is a cDNA sequence as

claimed in any one of Claims 1 to 10 or a functional fragment of said nucleic acid sequence.

- 34. A pharmaceutical composition comprising a nucleic sequence acid encoding an UNC-53 protein of C. elegans or a functional equivalent, derivative fragment or bioprecursor of said protein and an acceptable carrier, diluent, or excipient therefor.
- 35. A pharmaceutical composition as claimed in Claim 34 wherein said nucleic acid sequence is a cDNA sequence as claimed in any one of Claims 1 to 10.
- 36. A method of determining whether a compound is an inhibitor or an enhancer of the regulation of cell shape or motility or the direction of cell migration, which method comprises contacting said compound with a transgenic cell as claimed in Claims 14 or 15 and screening for a phenotypic change in said cell.

20

- 37. A method as claimed in Claim 36 wherein said compound is an inhibitor or an enhancer of a protein of the signal transduction pathway of said transgenic cell of which pathway UNC-53 protein or a functional equivalent, fragment or bioprecursor thereof is a component or said compound is an inhibitor or an enhancer of a parallel or redundant signal transduction pathway in said cell.
- 38. A method as claimed in Claim 36 or 37 wherein said protein is UNC-53 protein or a functional equivalent, fragment, derivative or bioprecursor thereof.

- 39. A method as claimed in any of Claims 36 to 38 wherein said phenotypic change to be screened is a change in cell shape or a change in cell motility.
- 5 40. A method as claimed in any of claims 36 to 38 wherein said phenotypic change to be screened is a change in filipodia outgrowth, ruffling behaviour, cell adhesion or the length of neurite growth.
- 41. A method as claimed in any of Claims 36 to 40 wherein said transgenic cell is an N4 neuroblastoma cell and the phenotypic change to be screened is the length of neurite growth.
- 42. A method as claimed in any of Claims 36 to 40 wherein said transgenic cell is an MCF-7 breast carcinoma cell and the phenotypic change to be screened is the extent of phagokinesis.
- 43. A method of determining whether a compound is an inhibitor or an enhancer of the regulation of cell shape or motility or of the direction of cell migration which method comprises administering said compound to a transgenic organism as claimed in any one of Claims 16 to 20, or a mutant organism as claimed in Claim 19, and screening for a phenotypic change in said organism.
- 44. A method as claimed in Claim 43 wherein said compound is an inhibitor or enhancer of a protein of the signal transduction pathway of said transgenic or mutant organisms, of which pathway UNC-53 protein or a functional equivalent, derivative or bioprecursor

thereof is a component or said compound is an inhibitor or an enhancer of a parallel or redundant signal transduction pathway in said cell.

- 5 45. A method as claimed in Claim 44 wherein said protein of the signal transduction pathway is UNC-53 protein itself or a functional equivalent, fragment, derivative or bioprecursor of said protein.
- 46. A compound which is identifiable by the method according to any one of Claims 36 to 45 as an enhancer of the regulation of cell shape or motility or the direction of cell migration for use as a medicament for promoting neuronal regeneration, revascularisation or wound healing, or for treatment of chronic neurodegenerative diseases or acute traumatic injuries.
- 47. Use of a compound identifiable by the method of any one of Claims 36 to 45 as an enhancer of the regulation of cell shape or motility or the direction of cell migration in <u>C. elegans</u> in the manufacture of a medicament for promoting neuronal regeneration, revascularisation or wound healing, or for treatment of chronic neuro-degenerative diseases or acute traumatic injuries.
 - 48. A pharmaceutical composition comprising the compound as claimed in Claim 46 and an acceptable carrier, diluent or excipient therefor.

30

49. A compound which is identifiable by the method according to any one of Claims 36 to 45 as an inhibitor of the regulation of cell motility or shape

or the direction of cell migration of <u>C. elegans</u> for use as a medicament for alleviating the spread of disease inducing cells or metastasis.

- 50. Use of a compound identifiable by the method according to any one of Claims 36 to 45 in the manufacture of a medicament for alleviating the spread of disease inducing cells or metastasis.
- 10 51. A pharmaceutical composition comprising the compound as claimed in Claim 49 and an acceptable carrier diluent or excipient therefor.
- 52. A transgenic cell which has been constructed to comprise a promoter sequence of an unc-53 gene of C. elegans fused to a nucleic acid sequence encoding a reporter molecule.
- 53. A transgenic cell as claimed in Claim 52 wherein said reporter molecule is green fluorescent protein (GFP).
- 54. A method of determining whether a compound is an inhibitor or an enhancer of transcription of an unc-53 gene in <u>C. elegans</u> or a functional fragment of said gene, which method comprises the steps of (a) contacting said compound with a transgenic cell according to Claim 52 and (b) monitoring of said reporter molecule and comparing the results obtained from said monitoring step with a control comprising a transgenic cell as claimed in Claim 48, which cell has not been contacted with said compound.

CAPA A COMPANIA (CAPA A PARAMETER) (CAPA A PARAMETER) A PARAMETER A CAPA A COMPANIA A CAPA A

- 55. A method as claimed in Claim 54 wherein said reporter molecule detected is mRNA.
- 56. A method as claimed in Claim 54 wherein said reporter molecule detected is green fluorescent protein (GFP).
- 57. A compound which is identifiable by the method according to any one of Claims 54 to 56, as an enhancer of transcription of an unc-53 gene of C. elegans or a functional fragment of said gene for use in promoting neuronal regeneration, revascularisation or wound healing, or for treatment of chronic neuro-degenerative diseases or acute traumatic injuries.
- 58. Use of a compound which is identifiable by the method of any one of Claims 54 to 56 as an enhancer of transcription of an unc-53 gene of <u>C. elegans</u> or a functional fragment of said gene in the manufacture of a medicament for promoting neuronal regeneration, revascularisation or wound healing, or for treatment of chronic neuro-degenerative diseases or acute traumatic injuries.

- 59. A pharmaceutical composition which comprises the compound of Claim 57 and an acceptable carrier, diluent or excipient therefor.
- 60. A compound which is identifiable by the method of any one of Claims 54 to 56 as an inhibitor of transcription of an unc-53 gene of <u>C. elegans</u> or a functional fragment of said gene for use in

alleviating the spread of disease inducing cells or metastasis.

61. Use of a compound which is identifiable by the method of any one of Claims 54 to 56 as an inhibitor of transcription of an unc-53 gene of <u>C. elegans</u> or a functional fragment of said gene in the manufacture of a medicament for alleviating spread of disease inducing cells or metastasis.

- 62. A pharmaceutical composition which comprises the compound of Claim 60 and an acceptable carrier, diluent or excipient therefor.
- 15 63. A kit for determining whether a compound is an enhancer or an inhibitor of the regulation of cell motility or shape or the direction of cell migration which kit comprises at least a plurality of transgenic cells as claimed in any one of Claims 14 or 15 and a plurality of wild-type cells of the same cell or cell-line.
- 64. A kit for determining whether a compound is an inhibitor or an enhancer of transcription of an unc-53 gene of <u>C. elegans</u> or a functional fragment of said gene which kit comprises at least a plurality of transgenic cells as claimed in Claims 52 or 53 and means for monitoring the reporter molecule.
- 65. A kit for determining whether a compound is an enhancer or an inhibitor of the activity of UNC-53 protein or a functional equivalent, derivative, fragment or bioprecusor of said protein, which kit

comprises at least, one mutant organism of <u>C. elegans</u> as claimed in claim 10 or a transgenic organism as claimed in any of claims 16 to 18 and a wild type organism of <u>C. elegans</u>.

5

66. An oligonucleotide probe which comprises the carboxy-terminal 1.5 kb of the coding nucleic acid sequence shown in Figure 1 or a fragment thereof comprising between 18 and 24 base pairs.

10

15

- 67. An oligonucleotide probe comprising a nucleic acid sequence encoding the amino acid sequence as numbered 1 to 110, 114 to 133, 487 to 495, 537 to 545, 1032 to 1037, 1097 to 1116 or 1300 to 1307 shown in Figure 3 or a fragment thereof.
- 68. A probe as claimed in Claim 66 or 67 which is labelled for detection.
- 20 69. A method of identifying homologues of a

 C. elegans unc-53 gene or a functional fragment
 thereof which method comprises hybridizing to a C.
 elegans DNA library an oligonucleotide probe as
 claimed in any one of Claims 66 to 68 under
 appropriate conditions of stringency to identify genes
 having statistically significant homology with the

cDNA of any one of Claims 1 to 10.

70. A method of identifying a protein which is
30 active in the signal transduction pathway of a cell of
which an UNC-53 protein or a functional equivalent,
fragment or bioprecursor of said UNC-53 protein is a
component, which method comprises:

5、

10

15

20

component, which method comprises:

- (a) contacting an extract of said cell with an antibody to the UNC-53 protein of C.elegans or a functional equivalent, fragment, derivative or bioprecursor of said protein,
- (b) identifying the antibody/UNC-53 complex, and
- (c) analysing the complex to identify any protein bound to the UNC-53 protein other than the antibody.
- 71. A method of identifying a further protein which is active in the signal transduction pathway of a cell of which an UNC-53 protein or a functional equivalent, fragment or bioprecursor of said UNC-53 protein is a component which method comprises:
 - (a) forming an antibody to the identified protein bound to the UNC-53 protein in Claim 65,
 - (b) contacting a cell extract with said antibody and identifying the antibody/protein complex,
 - (c) analysing the complex to identify any further protein bound to the first protein other than the antibody, and
- (d) optionally repeating steps (a) to (c) to identify further proteins in said pathway.
- 72. A method of identifying a protein which is active in the signal transduction pathway of a cell of which an UNC-53 protein or a functional equivalent, fragment or bioprecursor of said UNC-53 protein is a component, which method comprises

- (a) contacting an extract of said cell with UNC-53 protein of <u>C. elegans</u> or a functional equivalent, derivative or bioprecursor of said UNC-53 protein
- 5 (b) identifying UNC-53 protein/protein complex formed and
 - (c) analysing the complex to identify any protein bound to the UNC-53 protein other than another UNC-53 protein.

15

25

30

- 73. A method according to claim 72 which further comprises contacting a cell extract with any protein identified from step (c) not being UNC-53 protein and repeating steps (b) and (c) so as to identify any further protein involved in the signal transduction pathway of said cell.
- 74. A method of identifying a protein involved in the signal transduction pathway of <u>C. elegans</u> which method comprises:
 - (a) constructing at least two nucleotide vectors, the first of which comprises a nucleotide segment encoding for a DNA binding domain of GAL4 protein fused to a sequence encoding UNC-53 protein of <u>C. elegans</u> or a functional equivalent, derivative, fragment or bioprecursor thereof, the second vector comprising a nucleotide sequence encoding a protein binding domain of GAL4 protein fused to a nucleotide sequence encoding a protein to be tested.
 - (b) co-transforming each of said vectors into a yeast cell being deficient for transcription of genes encoding galactose metabolites, wherein

SUBSTITUTE SHEET (RULE 26)

interaction between said test protein and said UNC-53 protein leads to transcription of said galactose metabolite genes.

75. A protein identified by the method, of any one of claims 70 to 74 for use as a medicament to promote neuronal regeneration, revascularisation or wound healing, or for treatment of chronic neurodegeroactive diseases or acute traumatic injuries.

10

15

- 76. Use of a protein identified by the methods of any one of claims 70 to 74 in the manufacture of a medicament for promoting neuronal regeneration, revasculerisation or wound healing, or for treatment of chronic neurodegenerative diseases or acute traumatic injuries.
- 77. A pharmaceutical composition comprising a protein identified by the methods of any one of Claims
 70 to 74 and an acceptable carrier diluent, or excipient therefor.
- 78. A process for producing an UNC-53 protein of C. elegans or a functional equivalent fragment,
 derivative or bioprecursor of said UNC-53 protein which process comprises culturing the transfected or transformed cells of Claim 12 or Claim 13 and recovering the expressed UNC-53 protein.
- 79. A process for producing an UNC-53 protein of C. elegans or a functional equivalent fragment, derivative or bioprecursor of said protein which process comprises culturing an insect cell transfected

with a recombinant Baculovirus vector, said vector comprising a DNA insert encoding said UNC-53 protein or a functional equivalent, fragment or bioprecursor thereof, downstream of the Baculovirus polyhedrin promoter, and recovering the expressed UNC-53 protein.

- 80. A hybridoma cell line deposited under the LMBP Accession No. 1383CB.
- 10 81. Monoclonal antibody 16-48-2 obtainable from the hybridoma deposited under the LMBP Accession No. 1383CB.
- 82. Plasmid pTB54 deposited under the LMBP Accession No. 3296.
 - 83. Plasmid pBT112 deposited under the Accession No. 3295.
- 20 84. Plasmid pTB72 deposited under the LMBP Accession No. 3486.
- 85. Transgenic cell-line of <u>C.elegans</u> designated
 TB4EX25 and deposited under the LMBP Accession No.
 1384CB.
 - 86. Transgenic cell-line of <u>C. elegans</u> designated TBAIn76 and deposited under the Accession No. 1385CB.
- 30 87. A transgenic cell-line of MCF-7 breast carcinoma

SUBSTITUTE SHEET (RULE 26)

era Julius Piriusa (1974) arimani suma in lingui marka parka parka ka ka kuna ka ka

cells deposited under the LMBP Accession No. 1550CB.

88. A transgenic cell-line of N4 neuroblastoma cells deposited under LMBP Accession No. 1549CB.

FIG. 1

```
TB6 & TB3
                                                BSP1286
  10 20 30 40 50 60
                                OUT OF FRAME ATG
         TTHIIII
         .AHAII
         .. AATII
  AAAATGACGACGTCAAATGTAGAATTGATACCAATCTACACGGATTGGGCCAATCGGC AC
     70 80 90 100 110 120
M T T S N V E L I P I Y T D W A N R H
    ATG1
     ASUII
                    BBVI
 CTTTCGAAGGCCAGCTTATCAAAGTCGATTAGGGATATTTCCAATGATTTTCGCGACT AT
  130 140 150 160 170 180
L S K G S L S K S I R D I S N D F R D Y
                           TB1B
                                     ECORI
 CGACTGGTTTCTCAGCTTATTAATGTGATCGTTCCGATCAACGAATTCTCGCCTGCAT TC
    190 200 210 220 230 240
L V S Q L I N V I V P I N E F S P A F
                          TB16
                          BSTNI
                          ۱.
 ACGAAACGTTTGGCAAAAATCACATCGAACCTGGATGGCCTCGAAACGTGTCTCGACT AC
      250 260 270 280
                                       290 300
  T K R L A K I T S N L D G L E T C L D Y
                     HPHI
                                     IECORV NSPBII
 CTGAAAAATCTGGGTCTCGACTGCTCGAAACTCACCAAAACCGATATCGACAGCGGAA AC
   310 320 330 340 350 360
K N L G L D C S K L T K T D I D S G N
            MBOII
             . NSPBII
              PVUII
TTGGGTGCAGTTCTCCAGCTGCTCTCCTCCACCTACAAGCAGAAGCTTCGGC AA
           380 390 400 410
 LGAVLQLLFLLSTYKQKLRQ
                    FOKI
                    . MBOII
CTGAAAAAGATCAGAAGAAATTGGAGCAACTACCCACATCCATTATGCCACCCGCGG TT
 430 440 450 460 470 480
L K K D Q K K L E Q L P T S I M P P A V
ATG 2
               AFLIII
TCTAAATTACCCTCGCCACGTGTCGCCACGTCAGCAACCGCTTCAGCAACTAACCCAA AT
490 500 510 520 530 540
S K L P S P R V A T S A T A S A T N P N
                HINCII BSTNI
TCCAACTTTCCACAAATGTCAACATCCAGGCTTCAGACTCCACAGTCAAGAATATCGA AA
  NFPQMSTSRLQTPQSRISK
```

SUBSTITUTE SHEET (RULE 26)

ANNO PERMITE AND TO A PORT OF A CONTROL OF A

FIG. 1 CONTINUED. 21

```
AATII
 ATTGATTCATCAAAGATTGGTATCAAGCCAAAGACGTCTGGACTTAAACCACCCTCAT CA
  610 620 630 640 650 660
I D S S K I G I K P K T S G L K P P S S
 670 680 690
                            700
                                    710 720
  S T T S S N N T N S F R P S S R S S G N
                ECORV
                                     MBOII
 AATAATGTTGGCTCGACGATATCCACATCTGCGAAGAGCTTAGAATCATCAACGT AC
      730 740 750 760 770 780
 N N V G S T I S T S A K S L E S S S T Y
        ASUII
 AGCTCTATTTCGAATCTAAACCGACCTACCTCCCAACTCCAAAAACCTTCTAGACCAC AA
 790 800 810 820 830 840
S S I S N L N R P T S Q L Q K P S R P Q
ACCCAGCTAGTTCGTGTTGCTACAACTACAAAAATCGGAAGCTCAAAGCTAGCCGCTC CG
      850 860 870 880
                                     890
 TQLVRVATTTKIGSSKLAAP
           BSP1286
           HGIAI
                                     MBOII
AAAGCCGTGAGCACCCCAAAACTTGCTTCTGTGAAGACTATTGGAGCAAAACAAGAGC CC
 910 920 930 940 950 960
KAVSTPKLASVKTIGAKQEP
       NSPBII
                         BSMI
GATAACAGCGGTGGTGGTGGTGGAATGCTGAAATTAAAGTTATTCAGTAGCAAAA AC
 970 980 990 1000 1010 1020
D N S G G G G G M L K L F S S K N
                    ATG4
CCATCTTCCTCATCGAATAGCCCACAACCTACGAGAAAGGCGGCGGCGGTGCCTCAAC AA
 1030 1040 1050 1060 1070 1080
P S S S N S P Q P T R K A A A V P Q Q
CAAACTTTGTCGAAAATCGCTGCCCCAGTGAAAAGTGGCCTGAAGCCGCCGACCAGTA AG
TB22
BSTXI
                    HINDIII
CTGGGAAGTGCCACGTCTATGTCGAAGCTTTGTACGCCAAAAGTTTCCTACCGTAAAA CG
1150 1160 1170 1180 1190 1200
L G S A T S M S K L C T P K V S Y R K T
                                   SFANI
GACGCCCCAATCATATCTCAACAAGACTCGAAACGATGCTCAAAGAGCAGTGAAGAAG AG
D A P I I S Q Q D S K R C S K S S E E E
```

in the Control of the

```
F/G. 1 CONTINUED.
      MBOII
      .BSPMII
      .. MBOII
  TCCGGATACGCTGGATTCAACAGCACGTCGCCAACGTCATCATCGACGGAAGGTTCCC TA
   1270 1280 1290 1300 1310 1320
S G Y A G F N S T S P T S S S T E G S L
                                           1310 1320
       BSMI
       SPHI
       . MBOII
       . NSII
  AGCATGCATTCCACATCTTCCAAGAGTTCAACGTCAGACGAAAAGTCTCCGTCATCAG AC
      1330 1340 1350 1360 1370 1380
   S M H S T S S K S S T S D E K S P S S D
    ATG5
 GATCTTACTCTTAACGCCTCCATCGTGACAGCTATCAGACAGCCGATAGCCGCAACAC CG
  1390 1400 1410 1420 1430 1440
D L T L N A S I V T A I R Q P I A A T P
      1390 1400 1410
                                           1430 1440
            SSPT
 GTTTCTCCAAATATTATCAACAAGCCTGTTGAGGAAAAACCAACACTGGCAGTGAAAG GA
     1450 1460 1470 1480 1490 1500
S P N I I N K P V E E K P T L A V K G
                BINI XHOII
                                NSPBII
                                PVUII
 GTGAAAAGCACAGCGAAAAAAGATCCACCTCCAGCTGTCCGCCACGTGACACCCAGC CA
  1510 1520 1530 1540 1550 1560
V K S T A K K D P P P A V P P R D T Q P
                                      HINCII
 ACAATCGGAGTTGTTAGTCCAATTATGGCACATAAGAAGTTGACAAATGACCCCGTGA TA
      1570 1580 1590 1600 1610 1620
    I G V V S P I M A H K K L T N D P V I
                           SFANI
 1630 1640 1650 1660 1670 1680
E K P E P E K L Q S M S I D T T D V P
 CCGCTTCCACCTCTAAAATCAGTTGTTCCACTTAAAATGACTTCAATCCGACAACCAC CA
 1690 1700 1710 1720 1730 1740 P L P P L K S V V P L K M T S I R Q P P
   MBOII
ACGTACGATGTTCTTAAAACAAGGAAAAATCACATCGCCTGTCAAGTCGTTTGGAT AT
 1750 1760 1770 1780 1790 1800
T Y D V L L K Q G K I T S P V K S F G Y
  HGAI
                           HGAI
                           . MBOII
gagcagtcgtccgcgtctgaagactccattgtggctcatgcgtcggctcaggtgactc cg
 E Q S S A S E D S I V A H A S A Q V T P
   HPHI
                                               FOKI
CCGACAAAAACTTCTGGTAATCATTCGCTGGAGAGGAGGATGGGAAAGAATAAGACAT CA
   1870 1880 1890 1900 1910 1920
T K T S G N H S L E R R M G K N K T S
                     AHAII HGAI
       NSPBII
GAATCCAGCGGCTACACCTCTGACGCCGGTGTTGCGATGTGCGCCAAAATGAGGGAGA AG
```

SUBSTITUTE SHEET (RULE 26)

是有的**是是**要是我们的一个种的对象的一个人,不是不是的,不是不是的一个人,就是这些人的一个人,也是是这一个的,也不是这个的,我们就是<mark>不是这么,不是是是不是是</mark>是是

```
FIG. 1 CONTINUED. 4/99
```

```
NSPBII
                    ABAII BGAI
GAATCCAGCGGCTACACCTCTGACGCCGGTGTTGCGATGTGCGCCAAAATGAGGGAGAAG
 1930 1940 1950 1960 1970 1980
E S S G Y T S D A G V A M C A K M R E K
                             BSP1286
                             HGIAI
CTGAAAGAATACGATGACATGACTCGTCGAGCACAGAACGGCTATCCTGACAACTTCGAA
   1990 2000 2010 2020 2030 2040
 LKEYDDNTRRAQNGYPDNFE
         MBOII
                                       BSP1286
GACAGTTCCTCCTTGTCGTCTGGAATATCCGATAACAACGAGCTCGACGACATATCCACG
2050 2060 2070 2080 2090 2100
D S S S L S S G I S D N N E L D D I S T
           BSPMII
GACGATTTGTCCGGAGTAGACATGGCAACAGTCGCCTCCAAACATAGCGACTATTCCCAC
2110 2120 2130 2140 2150 2160
D D L S G V D M A T V A S K H S D Y S H
        MBOII
         . MBOII
                               AVAI
TTTGTTCGCCATCCCACGTCTTCTTCCTCAAAGCCCCGAGTCCCAGTCGGTCCTCCACA
  2170 2180 2190 2200 2210 2220
V R B P T S S S S K P R V P S R S S T
      IAVA
IOHK
TCAGTCGATTCTCGATCTCGAGCAGAACAGGAGAATGTGTACAAACTTCTGTCCCAGTGC
2230 2240 2250 2260 2270 2280
S V D S R S R A E Q E N V Y K L L S Q C
      BBVI BGLI
        . BANI
            . .ABAII
        . ... NSPBII
CGAACGAGCCAACGTGGCGCCGCTGCCACCTCAACCTTCGGACAACATTCGCTAAGATCC
2290 2300 2310 2320 2330 2340
R T S Q R G A A A T S T F G Q E S L R S
AVAI
.NCII
..NCII
..SMAI
CCGGGATACTCATCCTATTCTCCACACTTATCAGTGTCAGCTGATAAGGACACAATGTCT
    2350 2360 2370 2380 2390 2400
PGYSSYSPHLSVSADKDTMS
```

and the course of the protection of the transport of the protection of the protectio

FIG. 1 CONTINUED.

```
SPEI
              . SALI
                 .ACCI
                 ..HINCII
                  ...MBOII
 ATGCACTCACAGACTAGTCGACGACCTTCTTCACAAAAACCAAGCTATTCAGGCCAAT TT
 2410 2420 2430 2440 2450 2460
M H S Q T S R R P S S Q K P S Y S G Q F
                         FOKI
                                                  HGIAI -
CATTCACTTGATCGTAAATGCCACCTTCAAGAGTTCACATCCACCGAGCACAGAATGG CG
      2470 2480 2490 2500 2510 2520
 H S L D R K C H L Q E F T S T E H R M A
            AVAI
            .BANII
            .BSP1296 BANI
                                        MBOII
                                                 BINI BAMHI
GCTCTCTTGAGCCCGAGACGGGTGCCGAACTCGATGTCGAAATATGATTCTTCAGGAT CC
 2530 2540 2550 2560 2570 2580
A L L S P R R V P N S M S K Y D S S G S
TACTCGGCGCGTTCCCGAGGTGGAAGCTCTACTGGTATCTATGGAGAGACGTTCCAAC TG
 2590 2600 2610 2620 2630 2640
Y S A R S R G G S S T G I Y G E T F Q L
                                               BINI BAMHI
CACAGACTATCCGATGAAAATCCCCCGCACATTCTGCCAAAAGTGAGATGGGATCCC AA
 2650 2660 2670 2680 2690 2700
H R L S D E K S P A H S A K S E M G S Q
        NHEI
                       NDEI
                    . XHOII
                                  BINI
CTATCACTGGCTAGCACGACAGCATATGGATCTCTCAATGAGAAGTACGAACATGCTA TT
 2710 2720 2730 2740 2750 2760
L S L A S T T A Y G S L N E K Y E H A I
                                        .ACCI
                                        ..HINCII
CGGGACATGGCACGTGACTTGGAGTGTTACAAGAACACTGTCGACTCACTAACCAAGA AA
2770 2780 2790 2800 2810 2820
R D M A R D L E C Y K N T V D S L T K K
                                       HINDIII
```

2830 2840 2850 2860 2870 2880 Q E N Y G A L F D L F E Q K L R K L T Q

BINI

CLAI MBOII 2890 2900 2910 2920 2930 2940 H I D R S N L K P E E A I R F R Q D I A

TRINGWAY OF A COMPLETE WAS ASSOCIATED AND AND AND AND AND AND AND AND A CONTROL OF A SOCIAL PROPERTY OF A SOCIAL PROPERTY OF A CONTROL OF A SOCIAL PROPERTY OF A SOCIAL PROPERTY

SUBSTITUTE SHEET (RULE 26)

FIG. 1 CONTINUED.

```
FOKI
                . SFANI
  CATTTGAGGGATATTAGCAATCATCTTGCATCCAACTCAGCTCATGCTAACGAAGGCG CT
   2950 2960 2970 2980 2990 3000
H L R D I S N H L A S N S A H A N E G A
   MBOII HPHI
           . HINCII FOKI
                . SFANI
  GGTGAGCTTCTTCGTCAACCATCTCTGGAATCAGTTGCATCCCATCGATCATCGATGT CA
   3010 3020 3030 3040 3050 3060
G E L L R Q P S L E S V A S H R S S M S
                   ECOB
                        BBVI
                                      MBOII
                                        BANII
BSP1286
                                         HGIAI
 TCGTCGTCGAAAAGCAGCAAGCAGGAGAAGATCAGCTTGAGCTCGTTTGGCAAGAACA AG
  3070 3080 3090 3100 3110 3120
S S S K S S K Q E K I S L S S F G K N K
    BINI BAMHI
    . XHOII
        . MBOII
        . BINI HPHI
                                                MBOII
                                                 . MBOII
 AAGAGCTGGATCCGCTCCTCACTCTCCAAGTTCACCAAGAAGAAGAACAAGAACTACG AC
  3130 3140 3150 3160 3170 3180
K S W I R S S L S K F T K K K N K N Y D
        NDEI
                        XHOII
                        .BSPMII BINI
 GAAGCACATATGCCATCAATTTCCGGATCTCAAGGAACTCTTGACAACATTGATGTGA TT
 3190 3200 3210 3220 3230 3240
E A H M P S I S G S Q G T L D N I D V I
                BANII
                 BSP1286
                 HGIAT
                 SACI ECOK
                              APALI .
                              BSP1286
                 •
GAGTTGAAGCAAGAGCTCAAAGAACGCGATAGTGCACTTTACGAAGTCCGCCTTGACA AT
     3250 3260 3270 3280 3290 3300
 ELKQELKERDSALYEVRLDN
          BINI
          .BSP1286
CTGGATCGTGCCCGCGAAGTTGATGTTCTGAGGGAGACAGTTGAAAAACCG AG
 3310 3320 3330 3340 3350 3360
L D R A R E V D V L R E T V N K L K T E
                                    AVAII MBOII
                      HPHI
AACAAGCAATTAAAGAAAGAAGTGGACAAACTCACCAACGGTCCAGCCACTCGTGCTT CT
3370 3380 3390 3400 3410 3420
N K Q L K K E V D K L T N G P A T R A S
```

🗱 ANTERIO SERVICIONA A CONTROL CONTROL AND A ANTERIO ANTERIO

7/99

FIG. 1 CONTINUED.

```
SFANT
 TCCCGCGCCTCAATTCCAGTTATCTACGACGATGAGCATGTCTATGATGCAGCGTGTA GC
     3430 3440 3450 3460 3470 3480
    RASIPVIYDDEHVYDAACS
         MBOII
                  ASUII
                  .BINI
                  .. BBVI
3490 3500 3510 3520 3530 3540
 STSASQSSKRSSGCNSIKVT
                             PVUI
                              HINCII
                                . NCII
GTAAACGTGGACATCGCTGGAGAAATCAGTTCGATCGTTAACCCGGACAAAGAGATAA TC
 3550 3560 3570 3580 3590 3600
V N V D I A G E I S S I V N P D K E I I
      ECORV
               HINCII
GTAGGATATCTTGCCATGTCAACCAGTCAGTCATGCTGGAAAGACATTGATGTTTCTA TT
 3610 3620 3630 3640 3650 3660 V G Y L A M S T S Q S C W K D I D V S I
             ACCI
                         SFANI
CTAGGACTATTGAAGTCTACCTATCCAGAATTGATGTGGAGCATCAACTTGGAATCG AT
                           3700 3710 3720
            3680 3690
 LGLFEVYLSRIDVEHQLGID
      SFANI STYI
                          HGAI
                                  AFLIII
                                  .HPHI
GCTCGTGATTCTATCCTTGGCTATCAAATTGGTGAACTTCGACGCGTCATTGGAGACT CC
   3730 3740 3750 3760 3770 3780
R D S I L G Y Q I G E L R R V I G D S
     FOKI
ACAACCATGATAACCAGCCATCCAACTGACATTCTTACTTCCTCAACTACAATCCGAA TG
   3790 3800 3810 3820 3830 3840 T M I T S H P T D I L T S S T T I R M
                      ACCI
                               AVAII MBOII
TTCATGCACGGTGCCGCACAGAGTCGCGTAGACAGTCTGGTCCTTGATATGCTTCTTC CA
    3850 3860 3870 3880 3890 3900
 F M H G A A Q S R V D S L V L D M L L P
                                    AHAII
                                     AATII
AAGCAAATGATTCTCCAACTCGTCAAGTCAATTTTGACAGAGAGACGTCTGGTGTTAG CT
3910 3920 3930 3940 3950 3960
K Q M I L Q L V K S I L T E R R L V L A
                        BBVI
                                . MBOII
GGAGCAACTGGAATTGGAAAGAGCAAACTGGCGAAGACCCTGGCTGCTTATGTATCTA TT
    3970 3980 3990 4000 4010 4020
  ATGIGKSKLAKTLAAYVSI
```

SUBSTITUTE SHEET (RULE 26)

entra la comparta de la composició de la c

```
FIG. 1 CONTINUED. 8/99
```

```
MBOII
                                  BSMI
  CGAACAAATCAATCCGAAGATAGTATTGTTAATATCAGCATTCCTGAAAACAATAAAG AA
   4030 4040 4050 4060 4070 4080
R T N Q S E D S I V N I S I P E N N K E
      XMNI MBOII
                   ILAHA
                    . BSTNI
                       . HGAI
                           . BGLII
. XHOII
                                            SFANI
 GAATTGCTTCAAGTGGAACGACGCCTGGAAAAGATCTTGAGAAGCAAAGAATCATGCA TC
                                                      NSII
  4090 4100 4110 4120 4130 4140
E L L Q V E R R L E K I L R S K E S C I
       XRAT
 GTAATTCTAGATAATATCCCAAAGAATCGAATTGCATTTGTTGTATCCGTTTTTGCAA AT
  4150 4160 4170 4180 4190 4200
V I L D N I P K N R I A F V V S V F A N
                     AVAII
                                          HINCII ECORV
 GTCCCACTTCAAAACAACGAAGGTCCATTTGTAGTATGCACAGTCAACCGATATCAAA TC
      4210 4220 4230 4240 4250 4260
     P L Q N N E G P F V V C T V N R Y Q I
       HPHI
 CCTGAGCTTCAAATTCACCACAATTTCAAAATGTCAGTAATGTCGAATCGTCTCGAAG GA
  4270 4280 4290 4300 4310 4320
P E L Q I H H N F K M S V M S N R L E G
 TTCATCCTACGTTACCTCCGACGACGGGCGGTAGAGGATGAGTATCGTCTAACTGTAC AG
     4330 4340 4350
                                4360 4370
 FILRYLRRRAVEDEYRLTVQ
      MBOII
      . SFANI
        . BANII
            BSP1286
             HGIAI
             SACI MBOII
                            MBOII
ATGCCATCAGAGCTCTTCAAAATCATTGACTTCTTCCCAATAGCTCTTCAGGCCGTCA AT
 4390 4400 4410 4420 4430 4440
M P S E L F K I I D F F P I A L Q A V N
                ECORI
                                    AVAII
AATTTTATTGAGAAAACGAATTCTGTTGATGTGACAGTTGGTCCAAGAGCATGCTTGA AC
 4450 4460 4470 4480 4490 4500
N F I E K T N S V D V T V G P R A C L N
             BINI BAMHI
               XHOII BINI
TGTCCTCTAACTGTCGATGGATCCCGTGAATGGTTCATTCGATTGTGGAATGAGAACT TC
     4510 4520 4530 4540 4550 4560
 C P L T V D G S R E W F I R L W N E N F
             AFLIII
                                  BBVI
ATTCCATATTTGGAACGTGTTGCTAGAGATGGCAAAAAAACCTTCGGTCGCTGCACT TC
4570 4580 4590 4600 4610 4620
I P Y L E R V A R D G K K N L R S L H F
     4570 4580 4590
```

SUBSTITUTE SHEET (RULE 26)

FIG. 1 CONTINUED.

BINI BAMHI XHOII BINI TTHIIII EAEI CTTCGAGGATCCCACCGACATCGTCTCTAAAAAATGGCCGTGGTTCGATGGTGAAAAC CC 4630 4640 4650 4660 4670 4680 L R G S H R H R L HPHI MBOII .BSP1286 .HGIAI TTHIIII .HPHI FOKI BSPMI GGAGAATGTGCTCAAACGTCTTCAACTCCAAGACCTCGTCCCGTCACCTGCCAACTCA TC 4690 4700 4710 4720 4730 4740 AVAI XHOI BINI SFANI . SPHI CCGACAACACTTCAATCCCCTCGAGTCGTTGATCCAATTGCATGCTACCAAGCATCAG AC 4750 4760 4770 4780 4790 4800 MBOII MBOII MBOIT CATCGACAACATTTGAACAGAAGACTCTAATCTTCTCTCGCCTCTCCCCCGCTTTCCT TA 4810 4820 4830 4840 4850 BANI - KPNI TCTTCGTACCGGTACCTGATGATTCCCCCATTTTCCCCCCCAATTTCCCAG AA 4870 4880 4890 4900 4910 4920 AVAI .NCII ..NCII ..SMAI ... BANI AHAII HGAI DRAI CCTCCTGTTCCCTTGTTCCTAGTCCTCCCGGGTGCCGACGCCGAAGCGATTTAAAAA CC 4940 4950 4960 4970

TTTTTCTTTCCGAAACATTTCCCATTGCTCATTAATAGTCAAATTGAATAAACAGTGT AT

5010. 5020

entende e el el entende de la completa de la comp

SUBSTITUTE SHEET (RULE 26)

XMNI

СТАСТТААААААААААААААААААААААА 5050 5060 5070

4990 5000

```
10/99 FIG. 2
COMPARISON OF 7A VS 8A CLONE
                TB6 € TB3
                                        BSP1286
                                        EGIAI
<u>GGTTTAATTACCCAAGTTTGAG</u>ACATCAATTCCATCGAACGAAATGTTGGTGCTCCGAAT
      10 20 30 40 50 60
      TTHILLI
       IIABA.
       .. AATII
AAAATGACGACGTCAAATGTAGAATTGATACCAATCTACACGGATTGGGCCAATCGGCAC
      70 80 90 100 110 120
   M T T S N V E L I P I Y T D W A N R H
                BBVI
CTTTCGAAGGGCAGCTTATCAAAGTCGATTAGGGATATTTCCAATGATTTTCGCGACTAT
  130 140 150 160 170 180
S K G S L S K S I R D I S N D F R D Y
                       TBIB
                               ECORI
CGACTGGTTTCTCAGCTTATTAATGTGATCGTTCCGATCAACGAATTCTCGCCTGCATTC
    190 200 210 220 230 240
R L V S Q L I N V I V P I N E F S P A F
                      TB16
                                 AFLIII
                      BSTNI
ACGAAACGTTTGGCAAAAATCACATCGAACCTGGATGGCCTCGAAACGTGTCTCGACTAC
    250 260 270 280 290 300
T K R L A K I T S N L D G L E T C L D Y
CTGAAAAATCTGGGTCTCGACTGCTCGAAACTCACCAAAACCGATATCGACAGCGGAAAC
    310 320 330 340 350 360
LKNLGLDCSKLTKTDIDSGN
         MBOII
   BBVI
           . NSPBII
           . PVUII
TTGGGTGCAGTTCTCCAGCTGCTCTTCCTGCTCTCCACCTACAAGCAGAAGCTTCGGCAA
   370 380 390 400 410 420
LGAVLQLLFLLSTYKQKLRQ
                 FORI
                 . MBOII
                                        NSPBII
CTGAAAAAAGATCAGAAGAAATTGGAGCAACTACCACATCATTATGCCACCCGCGGTT
AFLIII
TCTAAATTACCCTCGCCACGTGTCGCCACGTCAGCAACCGCTTCAGCAACTAACCCAAAT
490 500 510 520 530 540 S K L P S P R V A T S A T A S A T N P N
      FOKI HINCII BSTNI
TCCAACTTTCCACAAATGTCAACATCCAGGCTTCAGACTCCACAGTCAAGAATATCGAAA
     550 560 570 580 590 600
S N F P Q M S T S R L Q T P Q S R I S K
```

第四条 "你说,我们就是我们,我们的现在分词,你们不知道我的,你就是这个人的,我们就是这个人的,我们就是这个人的,我们就是这个人的,我们就是这个人的,我们的人的

FIG. 2 CONTINUED.

11/99

	TB	16 B									A	BAI	I							
										AA	TTT									
	_ ! _															~~	000	m < 1		
ATT	GAT	TCA'	TCA	AAG	ATT	GGT	ATC	AAC	CCA	AAG	ACC	TCT	GGA	CTT	AAA	CCH	CCC	TC	TCA	
		61	0		6	20		٠.	630			64	0		6	550			660	
I	D		s	ĸ					P			S	G	T.	ĸ	. P	P	S	s	
_	U	3	3		•	G	-		-		•	-	. •	_		_	_	_	_	
mCh	B C C	1 Cm	n/a	መር አ	ת מ	ת מ	202	ח מ	TCA	ጥጥር	CCT	rccc	ጥሮር	AGC	CGT	TCG	AGT	GGC	TAAT	
1 Ch	ACC			1 641	mai.	~~	, C	1		110	.001		-		-	110			720	
		67	0		6	80			690									_		
S	T	T	S	S	N	N	T	N	S	F	R	P	s	S	R	S	S	G	N	
		. –																		
						_									MBC					
						E	COR	V												
AAT	AAT	GTT	GGC	TCG	ACG	ATA	TCC	'ACA	TCT	GCG	AAG	AGC	TTA	GAA	TCA	TCA	TCA	ACG	TAC	
			0						750			76			7				780	
				_					s					•	٠.		•	T	v	
N	N	V,	G	>	T.	1	5	T	5	A	v	3	ע	E	3	3	3	-	-	•
						•														
			AS	UII												XB	AI			
100							003	~~	ACC	m~~	~ n n	CEC	מ מי		CCT	Т	406	CCA	C A A	
AGC	TCT			AAT					ACC	TCC	CAA	CIC	مم			101	AO11	-		
			0			00			810			82	0		6	30			840	
s	S	I	S	N	L	N	R	P	T	S	0	L	Q	K	P	S	R	₽	Q	
_	_	-	_	••	_			_	_		-		_							
																	_			
								•								NBE	_			•
ACC	CAG	CTA	GTT	CGT	GTT	GCT	ACA	ACI	'ACA	AAA	ATC	GGA.	AGC	TCA	AAG	СТА	GCC	GCI	CCG	
•		85			Ω	60			870			88	O		Я	90			900	
	_ `		-	_																
T.	Q	L	V	R	V	A	T	T	T	K	I	G	S	5	, K	L	A	A	P	
															•					
				RC	P12	86														
															MBC	II			-	NNTT
				HG	IAI										MBC	/				ANII
																				SP1286
				•					100						• •					
AAA	GCC	GTG	AGC.	ACC	CCA	AAA	CTT	GCI	TCT	GTG	AAG	ACT	ATT	GGA	.GCA	AAA	CAA	GAG		
AAA	GCC						CTI	'GC'I	TCT	GTG	AAG	ACT.	ATT O	GGA	GCA	AAA	CAA	.GAG	CCC	
		91	0		9	20			930			94	0		9	50			960	
		91	0		9	20			930 8			94	0		9	50			960	
		91	0		9 P	20 K	L	A	930 S	v		94	0		9	50			960	
		91 V	o s	T	9 P	20 K	L	A	930 S	v	K.	94 T	0	G	9	50 K	Q	E	960	I
ĸ	A	91 V N	0 S SPB	T	9 P	20 K	L	A	930 \$	V _.	K SMI	94 T	O I	G	9 A	50 K	Q	E	ECCC 960 P	I
ĸ	A	91 V N	0 S SPB GGT	T	9 P GGT	20 K GGT	L	A 'GG#	930 S ATG	V _. B CTG	k Smi	94 T : :	O I AAG	G	A A	50 K AGT	Q 'AGC	E M AAA	P BOI AAC	I
ĸ	A	91 V N AGC 97	0 S SPB GGT 0	T II GGT	9 P GGT 9	20 K GGT 80	L GGT	A 'GGZ	930 S ATG 990	V B CTG	K SMI	94 T 	O I AAG O	G TTA	A .TTC	SAGT	Q 'AGC	E M AAA 1	P BOI AAC	I
K GAT	A	91 V N AGC 97	0 S SPB GGT 0	T II GGT	9 P GGT 9	20 K GGT 80	L GGT	A 'GGZ	930 S ATG 990	V B CTG	K SMI	94 T 	O I AAG O	G TTA	A .TTC	50 K AGT	Q 'AGC	E M AAA 1	P BOI AAC	I
K GAT	A AAC	91 V N AGC 97	0 S SPB GGT 0	T II GGT	9 P GGT 9	20 K GGT 80	L GGT	A 'GGZ	930 S ATG	V B CTG	K SMI	94 T 	O I AAG O	G TTA	A .TTC	SAGT	Q 'AGC	E M AAA 1	P BOI AAC	I
K GAT	A AAC	91 V N AGC 97	0 S SPB GGT 0	T II GGT	9 P GGT 9	20 K GGT 80	L GGT	A 'GGZ	930 S ATG 990	V B CTG	K SMI	94 T 	O I AAG O	G TTA	A .TTC	SAGT	Q 'AGC	E M AAA 1	P BOI AAC	I
K GAT	A AAC	91 V N AGC 97	0 S SPB GGT 0	T II GGT	9 P GGT 9	20 K GGT 80	L GGT	A 'GGZ	930 S ATG 990	V B CTG	K SMI	94 T 	O I AAG O	G TTA	A .TTC	SAGT	Q 'AGC S	E M AAA 1	P BOI AAC	I
K GAT D	A AAC N	91 V NGC 97 S	0 S SPB GGT 0 G	T II GGT G	P GGT 9 G	20 K GGT 80 G	L GGT	A 'GG? G	930 S ATG 990 M	V B CTG L	k Smi Aaa K	94 T ATTA 100 L	O I AAG O K	G TTA L	A ATTC 10 F	AGT 10 S BAN	Q AGC S	E MAAA 1 K	P BOI AAC 020 N	I
K GAT D	A AAC N	91 V NAGC 97 S	0 SPB GGT 0 G	T II GGT G	9 P GGT G	20 K GGT 80 G	L GGT G	A 'GG! G	930 S ATG 990 M	V B CTG L	K SMI AAA K	94 T ATTA 100 L	O I AAG O K	G TTA L	A ATTO 10 F	AGT AGT 10 S BAN	Q AGC S	E MAAA 1 K	P BOI AAC 020 N	I
K GAT D	A AAC N	91 V NGC 97 S	0 SPB GGT 0 G	T II GGT G	9 P GGT G	20 K GGT 80 G	L G G	A G G	930 S ATG 990 M ACCT	V B CTG L	K SMI AAA K SAGA	94 T TTTA 100 L AAG	O I AAG O K GCG	G TTA L	A TTC 10 F	AGT BAN	Q AGC S	E AAA 1 K	P BOI AAC 020 N	I
K GAT D	A AAC N	91 V AGC 97 S TCC	0 SPB GGT 0 G	T II GGT G	9 P GGT G AAT	20 K GGT 80 G	L GGT G	A G G	930 S ATG 990 M	V B CTG L	K SMI AAA K SAGA	94 T TTTA 100 L AAG	O I AAG O K GCG	G TTA L	A TTC 10 F	AGT AGT 10 S BAN	Q AGC S	E MAAA 1 K	P BOI AAC 020 N	I
R GAT D	a aac n tct	91 V AGC 97 S TCC	O SPB GGT O G	T GGT G	9 P GGT G AAT	20 K GGT 80 G	L G G	A G G	930 S ATG 990 M ACCT	V B CTG L	K SMI AAA K SAGA	94 T TTTA 100 L AAG	O I AAG O K GCG	G TTA L	A TTC 10 F	AGT BAN	Q AGC S	E AAA 1 K	P BOI AAC 020 N	I
R GAT D	A AAC N TCT S	91 V AGC 97 S TCC 103 S	O SPB GGT O G TCA O S	T GGT G	9 P GGT G AAT	20 K GGT 80 G	L G G	A G G	930 S ATG 990 M ACCT	V B CTG L	K SMI AAA K SAGA	94 T TTTA 100 L AAG	O I AAG O K GCG	G TTA L	A TTC 10 F	AGT BAN	Q AGC S	E AAA 1 K	P BOI AAC 020 N	I
R GAT D CCA	A AAC N TCT S	91 V AGC 97 S TCC 103 S	O SPB GGT O G TCA O S	T GGT G TCG	9 P GGT 9 G AAT 10 N	20 K GGT 80 G AGC 40 S	L GGT G CCA	A G G LCA2 Q	930 S ATG 990 M CCT 050	V ETG L ACG	K SMI R K BAGA	94 T 100 L AAG 106 K	AAG O K GCG O A	G TTA L GGCG	A ATTC 10 F GGCG 10 A	AGT AGT 10 S BAN GGT 070	Q PAGC S S ECCT P	E MAAA 1 K CAA	BOI AAC 020 N	I
R GAT D CCA	A AAC N TCT S	91 V AGC 97 S TCC 103 S BBV	O SPB GGT O G TCA O S	T GGT G TCG S	9 P GGT 9 G AAT 10 N ATC	GGT 80 G AGC 40 S	L G G CCA P	A G G CAI	930 S ATG 990 M CCT 050 P	V BCTG L ACG	K SMI K K R R	94 T TTTA 100 L AAG 106 K	AAG OK GCG A	G TTA L GCG A	A A A F A A A A A	AGT AGT 10 S BAN GGT 070 V	Q PAGC S FI FCCT P	E MAAA I K CAA Q	P BOI AAC 020 N CAA 080 Q	I
R GAT D CCA	A AAC N TCT S	91 V AGC 97 S TCC 103 S BBV	O SPB GGT O G TCA O S	T GGT G TCG S	9 P GGT 9 G AAT 10 N ATC	GGT 80 G AGC 40 S	L G G CCA P	A G G CAI	930 S ATG 990 M CCT 050 P	V BCTG L ACG	K SMI K K R R	94 T TTTA 100 L AAG 106 K	AAG OK GCG A	G TTA L GCG A	A A A F A A A A A	AGT AGT 10 S BAN GGT 070 V	Q PAGC S FI FCCT P	E MAAA I K CAA Q	P BOI AAC 020 N CAA 080 Q	
R GAT D CCA P	A AAC N TCT S	91 V AGC 97 S TCC 103 S BBV TTG	O S SPB GGT O G TCA TCA TCG O	T GGT G TCG S	9 P GGT 9 G AAT 10 N	20 K GGT 80 G AGC 40 S	L G G P	A G G G G G G G G G G G G G G G G G G G	930 S ATG 990 M ACCT 050 P	V BCTG L ACG	K SMI AAA K R RAGI	94 T 100 L AAG 106 K	O I AAGO K GCCO A	G L GGCG A	A ATTO F GGCO A 11	EAGT O S BAN GTO V	Q PAGC	E MAAA I K CAA Q CAA Q AGT	P BOI BAC 020 N CAA 080 Q	I
R GAT D CCA P	A AAC N TCT S	91 V AGC 97 S TCC 103 S BBV TTG	O S SPB GGT O G TCA TCA TCG O	T GGT G TCG S	9 P GGT 9 G AAT 10 N	20 K GGT 80 G AGC 40 S	L G G P	A G G G G G G G G G G G G G G G G G G G	930 S ATG 990 M CCT 050 P	V BCTG L ACG	K SMI AAA K BAGA R	94 T 100 L 106 K	O I AAG O K GCCG O A	G L GGCG A	A ATTO F A A A A A A A A A A A A A A A A A A	EAGT O S BAN GTO V	Q PAGC	E MAAA I K CAA Q CAA Q AGT	P BOI BAC 020 N CAA 080 Q	I
R GAT D CCA P	A AAC N TCT S	91 V AGC 97 S TCC 103 S BBV TTG	O S SPB GGT O G TCA TCA TCG O	T GGT G TCG S	9 P GGT 9 G AAT 10 N	20 K GGT 80 G AGC 40 S	L G G P	A G G G G G G G G G G G G G G G G G G G	930 S ATG 990 M ACCT 050 P	V BCTG L ACG	K SMI K K R R AGI	94 T 100 L AAG 106 K	O I AAGO K GCG O A CCTG O L	G TTA L GGCG A KAAG	A ATTO F A A A A A A A A A A A A A A A A A A	EAGT O S BAN GTO V	Q PAGC	E MAAA I K CAA Q CAA Q AGT	P BOI BAC 020 N CAA 080 Q	
R GAT D CCA P	A AAC N TCT S	91 V AGC 97 S TCC 103 S BBV TTG	O S SPB GGT O G TCA TCA TCG O	T GGT G TCG S	9 P GGT 9 G AAT 10 N	20 K GGT 80 G AGC 40 S	L G G P	A G G G G G G G G G G G G G G G G G G G	930 S ATG 990 M ACCT 050 P	V BCTG L ACG	K SMI K K R R AGI	94 T 100 L AAG 106 K	O I AAGO K GCG O A CCTG O L	G TTA L GGCG A KAAG	A ATTO F A A A A A A A A A A A A A A A A A A	EAGT O S BAN GTO V	Q PAGC	E MAAA I K CAA Q CAA Q AGT	P BOI BAC 020 N CAA 080 Q	
R GAT D CCA P CAA	A AAC N TCT S ACT	91 V NAGC 97 S TCC 103 S BBV TTG 109 L	O S SPB GGT O G TCA TCA TCG O	T GGT G TCG S	9 P GGT 9 G AAT 10 N	20 K GGT 80 G AGC 40 S	L GGGT P	A CAN	930 S ATG 990 M ACCT 050 P	V BCTG L ACG T AAAA	K SMI AAA R RAGA R	94 T 1000 L AAAG 1066 K	O I AAGO K GCG O A CCTG O L	G TTA L GGCG A KAAG	A ATTO F GGCO A 11	EAGT O S BAN GTO V	Q PAGC	E MAAA I K CAA Q CAA Q AGT	P BOI BAC 020 N CAA 080 Q	I
R GAT D CCA P CAA Q BST	A AAC N TCT S ACT T	91 V AGC 97 S TCC 103 S BBV TTG	O S SPB GGT O G G TCA O S I TCG O S	T II GGT G TCG S AAA	9 P GGT 9 G AAT 10 N ATC	20 R GGTT 80 G AGC 40 S	L GGT G CCA P	A CAP	930 S ATG 990 M ACCT 050 P	V BCTG L ACG T AAAA K	K SMIAAA K R RAGA S	94 T TTTA 1000 L AAAG 1066 K TGGCC 112	AAGO K GCCG O A L CCTG	G L EGCG A K	A A A A A A A A A A A A A A A A A A A	CAGTO V GCCCC 30 P	Q PAGC S S S S S S S S S S S S S S S S S S S	E MAAA 1 K CCAA 1 Q Q	CCCC 960 P BOI AAC 020 N CAA 080 Q	I
R GAT D CCA P CAA Q BST	A AAC N TCT S ACT T	91 V AGC 97 S TCC 103 S BBV TTG 109 L	O S SPB GGT O G C C GCC	T II GGT G TCG S AAAA K	9 P GGT 9 G AAT 10 N ATC	GGT 80 GAGC AGC AGC AGC AGC ATG	L GGT G CCA P GGCC A	A CAM	930 S ATG 990 M ACCT 050 P	V BCTG L ACG T AAAA K III TGT	K SMIRAAA K R RAGA	94 T ITTA 1000 L AAAG 106 K TGGCC 112 G TB:	AAGO K CTG O L	G L GGCG A GAAG	A ATTO F SGCO A A CTTCO	CAGTOO V	Q SAGO S S S S S S S S S S S S S S S S S S S	E MAAA 1 K CAA 1 Q Q S	CCCC 960 P BOI AAC 020 N CAA 080 Q	
R GAT D CCA P CAA Q BST	A AAC N TCT S ACT T	91 V AGC 97 S TCC 103 S BBV TTG 109 L	O S SPB GGT O G C C GCC	T II GGT G TCG S AAAA K	9 P GGT 9 G AAT 10 N ATC	GGT 80 GAGC AGC AGC AGC AGC ATG	L GGT G CCA P GGCC A	A CAM	930 S ATG 990 M ACCT 050 P	V BCTG L ACG T AAAA K III TGT	K SMIRAAA K R RAGA	94 T ITTA 1000 L AAAG 106 K TGGCC 112 G TB:	AAGO K CTG O L	G L GGCG A GAAG	A ATTO F SGCO A A CTTCO	CAGTOO V	Q SAGO S S S S S S S S S S S S S S S S S S S	E MAAA 1 K CAA 1 Q Q S	CCCC 960 P BOI AAC 020 N CAA 080 Q	
R GAT D CCA P CAA Q BST CTG	A AAC N TCT S ACT T	91 V AGC 97 S TCC 103 S BBV TTG 109 L	O S SPB GGT O GCC O	T II GGT G TCG S AAAA K	9 P GGT 9 G AAT 10 N ATC 11 I	20 K GGT 80 G AGC	L GGGT G GCCA	A CAMPAGE P	930 S ATG 990 M ACCT 050 P	V BCTG L ACG T AAAA K III TGT	K SMI AAA K GAGA R R AGT S	94 T ::TTA 1000 L :AAGG 1066 K :TGGC 112 G :GCCA 118	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	G L GGCG A KAAG	A ATTO F SGCO A CTTCO 11 P	CAGTOO V CAGCOO P	Q SAGO S SAGO P SAGO T	E MAAA 1 K CAAA 1 Q Q S S S S S S S S S S S S S S S S S	CCCC 960 P BOI AAC 020 N CAA 080 Q	I
R GAT D CCA P CAA Q BST CTG	A AAC N TCT S ACT T	91 V AGC 97 S TCC 103 S BBV TTG 109 L	O S SPB GGT O GCC O	T II GGT G TCG S AAAA K	9 P GGT 9 G AAT 10 N ATC 11 I	20 K GGT 80 G AGC	L GGGT G GCCA	A CAMPAGE P	930 S ATG 990 M ACCT 050 P	V BCTG L ACG T AAAA K III TGT	K SMI AAA K GAGA R R AGT S	94 T ::TTA 1000 L :AAGG 1066 K :TGGC 112 G :GCCA 118	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	G L GGCG A KAAG	A ATTO F SGCO A CTTCO 11	CAGTOO V CAGCOO P	Q SAGO S SAGO P SAGO T	E MAAA 1 K CAAA 1 Q Q S S S S S S S S S S S S S S S S S	CCCC 960 P BOI AAC 020 N CAA 080 Q	I
R GAT D CCA P CAA Q BST CTG	A AAC N TCT S ACT T CGGA	91 V AGC 97 S TTCC 103 S BBV TTG 109 L	O S SPB GGT O GCC O A	T II GGT G TCG S AAAA K ACG	9 P GGT 9 G AAT 10 N ATC 11 1 TCT	20 K GGT 80 G AGC	L GGGT G GCCA A GTCCC S	A CAMPOSTA	930 S ATG 990 M CCT 050 P AGTG 110 V	V BCTG L ACG T AAAA K III TGT	K SMI AAA K GAGA R AGT S	94 T INTTA 1000 L AAAG 1066 K TGGCC 112 GCCA 118 P	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	G L GGCG A KAAG	A ATTO F SGCO A CTTCO 11	CAGTOO V CAGCOO P	Q SAGO S SAGO P SAGO T	E MAAA 1 K CAAA 1 Q Q S S S S S S S S S S S S S S S S S	CCCC 960 P BOI AAC 020 N CAA 080 Q	
R GAT D CCA P CAA Q BST CTG	A AAC N TCT S ACT T CGGA	91 V AGC 97 S TTCC 103 S BBV TTG 109 L	O S SPB GGT O GCC O A	T II GGT G TCG S AAAA K ACG	9 P GGT 9 G AAT 10 N ATC 11 1 TCT	20 K GGT 80 G AGC	L GGGT G GCCA A GTCCC S	A CAMPOSTA	930 S ATG 990 M CCT 050 P AGTG 110 V	V BCTG L ACG T AAAA K III TGT	K SMI AAA K GAGA R AGT S	94 T INTTA 1000 L AAAG 1066 K TGGCC 112 GCCA 118 P	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	G L GGCG A K AGTT	A TTCC 10 F GGCCC 11 P	EAGTOON V	Q SAGO S SAGO P SAGO T	E MAAA 1 K CAAA 1 Q Q S S S S S S S S S S S S S S S S S	CCCC 960 P BOI AAC 020 N CAA 080 Q	•
R GAT D CCA P CAA Q BST CTG	A AACC N TCT S ACT TCSGGA G HAI	91 V NAGC 97 S TCC 103 S BBV TTG 109 L	O S SPB GGT O G S I CG O S GCC O A HG	T II GGT G TCG S AAAA K ACG T	9 P GGT 9 G AATT 110 I TCT 111 S	20 K GGT 80 G AGC 40 S GCT 00 A	L GGGT G GCCAA	A CAMPAGA COMPAGA COMP	930 S ATG 990 M ACCT 050 P AGTG 110 V	V BCTG L ACG T AAAA K II TGT	K SMI AAA K SAGA R SAGA T	94 T 100 L AAG 106 K TB: GCCA 118 P	O I AAGO O K GCGO O L CTGO L AAA	G L L GGCG A AAAG K V S	A TTCC 10 F SGCCC 11 P TTCC 11 S SFAN	CAGTO O CAGTO	Q SAGO S SAGO T T CCGT R	E MAAAA 1 Q Q S S S S S S S S S S S S S S S S S	CCCC 960 P BOI AAC 020 N CAA 080 Q PAAG 140 K	
R GAT D CCA P CAA Q BST CTG	A AACC N TCT S ACT TCSGGA G HAI	91 V AGC 97 S TCC 103 S BBV TTG 109 L	O S SPB GGT O G S TCA TCG S GCC O A HG	T II GGT G TCG S AAAA K ACG T	9 P GGT 9 G AATT 110 I TCT 111 S	20 K GGT 80 G AGC 40 S GCT 00 A	L GGGT G GCCAA A GGCCCAA S GGCCCAA	A CAMBO COLOR OF THE CAMBO COLOR	930 S ATG 990 M ACCT 050 P AGTG 110 V INDI	V BCTG L ACG T AAAA K II TGT	K SMI AAA K R AGT S TACG	94 T INTTA 1000 L LAAGG 1066 R PGGCC 112 GCCA 118 P	O I AAG O K GCG O A CTG O L AAA	G L GGCG A AAAG K V SAAAG	A TTCC 10 F SGCCC A SCCCC 11 P TTCC 11 S SFAN SAGGCC TTCC	CTAC	Q SAGO T T CCGT R	E MAAA 1 K CAA 1 Q CAA 1 S K K K K K K K K K K K K K K K K K K	CCCC 960 P BOI AAC 020 N CAA 080 Q CAA CAA CAA CAA CAA CAA CAA CAA CAA C	
R GAT D CCA P CAA Q BST CTG	A AACT T S ACT T GGGA G G HAI	91 V AGC 97 S TCC 103 S BBV TTG 109 L	0 S SPB GGT O G TCA TCG S GCC O A HG	T II GGT G TCG S AAAA K ACG T	9 P GGT 9 G AATT 11 I TCT 11 S	20 K GGT 80 G AGC 40 S GGT 00 A ATG 60 M CAA	L GGGT G GCCAA A GGCCCAA S GCCAA S GCCAA GGCCCAA GGCCCAA GGCCCAA GGCCCAA GGCCCAA GGCCAA GGCCA	A CAMAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGA	930 S ATG 990 M ACCT 050 P AGTG 1110 V	V BCTG L ACG T AAAA K III TGT	R SMI R R R R AGT T	94 T INTTA 1000 L AAAG 1066 K PGGCC 112 GCCA 118 P	AAGO K CTC	G L L GGCG A AAAG K V SAAAG	A A GCCCC A FTCCC 11 P TTCCC 11 S SFAN GAGGCCC 12 CTCCC 11 C	CTAC	Q SAGO T T CCGT R	E MAAA I CAA S	CCCC 960 P BOI AAC 020 N CAA 080 Q CAA 080 Q	
R GAT D CCA P CAA Q BST CTG	A AACT T S ACT T GGGA G G HAI	91 V AGC 97 S TCC 103 S BBV TTG 109 L	0 S SPB GGT O G TCA TCG S GCC O A HG	T II GGT G TCG S AAAA K ACG T	9 P GGT 9 G AATT 11 I TCT 11 S	20 K GGT 80 G AGC 40 S GGT 00 A ATG 60 M CAA	L GGGT G GCCAA A GGCCCAA S GCCAA S GCCAA GGCCCAA GGCCCAA GGCCCAA GGCCCAA GGCCCAA GGCCAA GGCCA	A CAMAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGA	930 S ATG 990 M ACCT 050 P AGTG 110 V	V BCTG L ACG T AAAA K III TGT	R SMI R R R R AGT T	94 T INTTA 1000 L AAAG 1066 K PGGCC 112 GCCA 118 P	AAGO K CTC	G L L GGCG A AAAG K V SAAAG	A A GCCCC A FTCCC 11 P TTCCC 11 S SFAN GAGGCCC 12 CTCCC 11 C	CTAC	Q SAGO T T CCGT R	E MAAA I CAA S	CCCC 960 P BOI AAC 020 N CAA 080 Q CAA 080 Q	

er tradition of the control of the c

FIG. 2 CONTINUED.

12/99

```
MBOII
   .BSPMII
   .. MBOII
TCCGGATACGCTGGATTCAACAGCACGTCGCCAACGTCATCATCGACGGAAGGTTCCCTA
   1270 1280 1290 1300 1310 1320
 S G Y A G F N S T S P T S S S T E G S L
    BSMI
    SPHI
    . MBOII
                                 START CE7
     . NSII
AGCATGCATTCCACATCTTCCAAGAGTTCAACGTCAGACGAAAAGTCTCCGTCATCAGAC
   1330 1340 1350 1360 1370 1380
SMBSTSSKSSTSDEKSPSSD
GATCTTACTCTTAACGCCTCCATCGTGACAGCTATCAGACAGCCGATAGCCGCAACACCG
  1390 1400 1410 1420 1430 1440
D L T L N A S I V T A I R Q P I A A T P
GTTTCTCCAAATATTATCAACAAGCCTGTTGAGGAAAAACCAACACTGGCAGTGAAAGGA
                         1480
                  1470
                                1490
V S P N I I N K P V E E K P T L A V K G
           BINI XBOII
                        NSPBII
GTGAAAAGCACAGCGAAAAAAGATCCACCTCCAGCTGTTCCGCCACGTGACACCCAGCCA
1510 1520 1530 1540 1550 1560 V K S T A K K D P P P A V P P R D T Q P
ACAATCGGAGTTGTTAGTCCAATTATGGCACATAAGAAGTTGACAAATGACCCCGTGATA
   1570 1580 1590 1600 1610 1620
  IGVVSPIMAEKKLTNDPVI
1630 1640 1650 1660 1670 1680
SEKPEPEKLQSMSIDTTDVP
CCGCTTCCACCTCTAAAATCAGTTGTTCCACTTAAAATGACTTCAATCCGACAACCACCA
   1690 1700 1710 1720
                               1730
PLPPLKSVVPLKMTSIRQPP
ACGTACGATGTTCTTCTAAAACAAGGAAAAATCACATCGCCTGTCAAGTCGTTTGGATAT
1750 1760 1770 1780 1790 1800
T Y D V L L K Q G K I T S P V K S F G Y
                     . MBOII
GAGCAGTCGTCCGCGTCTGAAGACTCCATTGTGGCTCATGCGTCGGCTCAGGTGACTCCG
   1810 1820 1830 1840 1850 1860
E Q S S A S E D S I V A H A S A Q V T P
CCGACAAAAACTTCTGGTAATCATTCGCTGGAGAGGAGGATGGGAAAGAATAAGACATCA
   1870 1880 1890 1900 1910 1920
```

SUBSTITUTE SHEET (RULE 26)

PTKTSGNHSLERRMGKNKTS

```
FIG. 2 CONTINUED.
```

13/99

ABAII BGAI NSPBII GAATCCAGCGGCTACACCTCTGACGCCGGTGTTGCGATGTGCGCCAAAATGAGGGAGAAG 1930 1940 1950 1960 1970 1980 ESSGYTSDAGVAMCAKMREK BSP1286 **EGIAI** ASULT CTGAAAGAATACGATGACATGACTCGTCGAGCACAGAACGGCTATCCTGACAACTTCGAA 1990 2000 2010 2020 2030 2040 KEYDDM.TRRAQNGYPDNFE BANII MBOII BSP1286 HGIAI GACAGTTCCTCCTTGTCGTCTGGAATATCCGATAACAACGAGCTCGACGACATATCCACG 2050 2060 2070 2080 2090 2100 D S S S L S S G I S D N N E L D D I S T BSPMII FOKI . ACCI GACGATTTGTCCGGAGTAGACATGGCAACAGTCGCCTCCAAACATAGCGACTATTCCCAC 2110 2120 2130 2140 2150 2160 D D L S G V D M A T V A S K H S D Y S H MBOII . MBOII AVAI AVAII TTTGTTCGCCATCCCACGTCTTCTTCCTCAAAGCCCCGAGTCCCCAGTCGGTCCTCCACA 2170 2180 2190 2200 2210 2220 F V R B P T S S S S K P R V P S R S S T AVAI XHOI TCAGTCGATTCTCGATCTCGAGCAGAACAGGAGAATGTGTACAAACTTCTGTCCCAGTGC 2230 2240 2250 2260 2270 2280 V D S R S R A E Q E N V Y K L L S Q C BBVI BGLI . BANI . ABAII . .NARI . .. BAEII NSPBII BINI XHOII . FORI CGAACGAGCCAACGTGGCGCCGCTGCCACCTCAACCTTCGGACAACATTCGCTAAGATCC 2290 2300 2310 2320 2330 2340 R T S Q R G A A A T S T F G Q H S L R S AVAI .NCII ..NCII ..SMAI NSPBII PVUII CCGGGATACTCATCCTATTCTCCACACTTATCAGTGTCAGCTGATAAGGACACAATGTCT 2350 2360 2370 2380 2390 2400 PGYSSYSPELSVSADKDTMS

```
FIG. 2 CONTINUED.
```

```
SPEI
           SALI
             .ACCI
             ..HINCII
             ...MBOII
ATGCACTCACAGACTAGTCGACGACCTTCTTCACAAAAACCAAGCTATTCAGGCCAATTT
   2410 2420 2430 2440 2450 2460
M H S Q T S R R P S S Q K P S Y S G Q F
                  FOKI
                                      BSP1286
CATTCACTTGATCGTAAATGCCACCTTCAAGAGTTCACATCCACCGAGCACAGAATGGCG
   2470 2480 2490 2500 2510 2520
H S L D R K C H L Q E F T S T E H R M A
         AVAI
         .BANII
                              MBOII BINI BAMHI
         .BSP1286 BANI
GCTCTCTTGAGCCCGAGACGGGTGCCGAACTCGATGTCGAAATATGATTCTTCAGGATCC
   2530 2540 2550 2560 2570 2580
A L L S P R R V P N S M S K Y D S S G S
       AVAI
  BINI
TACTCGGCGCGTTCCCGAGGTGGAAGCTCTACTGGTATCTATGGAGAGACGTTCCAACTG
2590 2600 2610 2620 2630 2640
Y S A R S R G G S S T G I Y G E T F Q L
                                   BINI BAMHI
CACAGACTATCCGATGAAAAATCCCCCGCACATTCTGCCAAAAGTGAGATGGGATCCCAA
   2650 2660 2670 2680 2690 2700
HRLSDEKSPAHSAKSEMGSQ
BINI
       NHEI
                  NDEI
                  . XHOII BINI
CTATCACTGGCTAGCACGACAGCATATGGATCTCTCAATGAGAAGTACGAACATGCTATT
   2710 2720 2730 2740 2750 2760
L S L A S T T A Y G S L N E K Y E H A I
                              SALI
                              .ACCI
                               ..BINCII
CGGGACATGGCACGTGACTTGGAGTGTTACAAGAACACTGTCGACTCACTAACCAAGAAA
2770 2780 2790 2800 2810 2820
R D M A R D L E C Y K N T V D S L T K K
                              HINDIII
```

2830 2840 2850 2860 2870 2880 Q E N Y G A L F D L F E Q K L R K L T Q

BINI

SUBSTITUTE SHEET (RULE 26)

A STATE OF THE STA

in kompresent karologisk polikis remedi olikini indici indici karologiski karologiski karologiski karologiski

```
FIG. 2 CONTINUED.
```

```
FOKI
            . SFANI
Cattigagggatattagcaatcatcttgcatccaactcagctcatgctaacgaaggcgct
   2950 2960 2970 2980 2990 3000
H L R D I S N H L A S N S A H A N E G A
        HPHI
MBOII
          . BINCII FOKI
                                   CLAI CLAI
                  . SFANI
GGTGAGCTTCTTCGTCAACCATCTCTGGAATCAGTTGCATCCCATCGATCATCGATGTCA
 3010 3020 3030 3040 3050 3060
G E L L R Q P S L E S V A S H R S S M S
                              MBOII
               ECOB BBVI
                                  BANII
                                  BSP1286
TCGTCGTCGAAAAGCAGCAGCAGGAGAAGATCAGCTTGAGCTCGTTTGGCAAGAACAAG
  3070 3080 3090 3100 3110 3120
S S S K S S K Q E K I S L S S F G K N K
  BINI BAMBI
    XHOII
      . MBOII
         . BINI HPHI
                                         MROTT
                                         . MBOII
AAGAGCTGGATCCGCTCCTCACTCTCCAAGTTCACCAAGAAGAAGAACAAGAACTACGAC
3130 3140 3150 3160 3170 3180
K S W I R S S L S K F T R K K N K N Y D
                    IIOHX
                   .BSPMII BINI
GAAGCACATATGCCATCAATTTCCGGATCTCAAGGAACTCTTGACAACATTGATGTGATT
    3190 3200 3210 3220 3230 3240
EAHMPSISGSQGTLDNIDVI
             BANII
             BSP1286
             BGIAI
              SACI ECOK
                        APALI
                         . BSP1286
GAGTTGAAGCAAGAGCTCAAAGAACGCGATAGTGCACTTTACGAAGTCCGCCTTGACAAT
  3250 3260 3270 3280 3290 3300
ELKQELKERDSALYEVRLDN
        BINI
         .BSP1286
CTGGATCGTGCCCGCGAAGTTGATGTTCTGAGGGAGACAGTGAACAAGTTGAAAACCGAG
3310 3320 3330 3340 3350 3360
L D R A R E V D V L R E T V N K L K T E
                   HPHI
                               AVAII
                                       MROTT
AACAAGCAATTAAAGAAAGAAGTGGACAAACTCACCAACGGTCCAGCCACTCGTGCTTCT
3370 3380 3390 3400 3410 3420
N K Q L K K E V D K L T N G P A T R A S
```

The entropy of the first transfer of the entropy of the

1 1 1 mg

FIG. 2 CONTINUED.

16/99

```
TCCCGCGCCTCAATTCCAGTTATCTACGACGATGAGCATGTCTATGATGCAGCGTGTAGC
   3430 3440 3450 3460 3470 3480 R A S I P V I Y D D E H V Y D A A C S
       MBOII ASUII
        •
                 .. BBVI
3490 3500 3510 3520 3530 3540
 S T S A S Q S S K R S S G C N S I K V T
                           PVUI
                              HINCII
                              HPAI
GTAAACGTGGACATCGCTGGAGAAATCAGTTCGATCGTTAACCCGGACAAAGAGATAATC
   3550 3560 3570 3580 3590 3600
V N V D I A G E I S S I V N P D R E I I
     ECORV
               BINCII
GTAGGATATCTTGCCATGTCAACCAGTCAGTCATGCTGGAAAGACATTGATGTTTCTATT
    3610 3620 3630 3640 3650 3660
V G Y L A M S T S Q S C W K D I D V S I
             ACCI
                        SFANI
CTAGGACTATTGAAGTCTACCTATCCAGAATTGATGTGGAGCATCAACTTGGAATCGAT
   3670 3680 3690 3700 3710 3720
LGLFEVYLSRIDVEHQLGID
     SFANI STYI
                         EGAI
                                AFLIII
                                MLUI
                                .HPHI
GCTCGTGATTCTATCCTTGGCTATCAAATTGGTGAACTTCGACGCGTCATTGGAGACTCC
    3730 3740 3750 3760 3770 3780
ARDSILGYQIGELRRVIGDS
   FOKI
ACAACCATGATAACCAGCCATCCAACTGACATTCTTACTTCCTCAACTACAATCCGAATG
3790 3800 3810 3820 3830 3840 T T M I T S B P T D I L T S S T T I R M
                      ACCI
       BANI
                             AVAII MBOII
TTCATGCACGGTGCCGCACAGAGTCGCGTAGACAGTCTGGTCCTTGATATGCTTCTTCCA
3850 3860 3870 3880 3890 3900 F M H G A A Q S R V D S L V L D M L L P
                                   . AATII
AAGCAAATGATTCTCCAACTCGTCAAGTCAATTTTGACAGAGAGACGTCTGGTGTTAGCT
    3910 3920 3930 3940 3950 3960
K Q M I L Q L V K S I L T E R R L V L A
                       BBVI
                               . MBOII
GGAGCAACTGGAATTGGAAAGAGCAAACTGGCGAAGACCCTGGCTGCTTATGTATCTATT
  3970 3980 3990 4000 4010 4020
ATGIGKSKLAKTLAAYVSI
```

```
FIG 2 CONTINUED. 17/99
                      MBOII
ASUII CE6
                             BSMI
CGAACAATCAATCCGAAGATAGTATTGTTAATATCAGCATTCCTGAAAACAATAAAGAA
    4030 4040 4050 4060 4070 4080
   T N Q S E D S I V N I S I P E N N K E
    XMNI MBOII
               AHAII
                . BSTNI
                 . HGAI
                   . . BGLII
                   . XHOII
                                            NSII
                                  SFANI
GAATTGCTTCAAGTGGAACGACGCCTGGAAAAGATCTTGAGAAGCAAAGAATCATGCATC
    4090 4100 4110 4120 4130 4140
ELLQVERRLEKILRSKESCI
    XBAI
GTAATTCTAGATAATATCCCAAAGAATCGAATTGCATTTGTTGTATCCGTTTTTGCAAAT
     4150 4160 4170 4180 4190 4200
VILDNIPKNRIAFVVSVFAN
                AVAII
                                  HINCII ECORV
GTCCCACTTCAAAACAACGAAGGTCCATTTGTAGTATGCACAGTCAACCGATATCAAATC
    4210 4220 4230 4240
                                 4250 4260
V P L Q N N E G P F V V C T V N R Y Q I
                                     FORT .
     RPHI
CCTGAGCTTCAAATTCACCACAATTTCAAAATGTCAGTAATGTCGAATCGTCTCGAAGGA
    4270 4280 4290 4300 4310 4320
   ELQIH B N F K M S V M S N R L E G
TTCATCCTACGTTACCTCCGACGACGGGGGGTAGAGGATGAGTATCGTCTAACTGTACAG
   4330 4340 4350 4360 4370 4380
FILRYLRRRAVEDEYRLTVQ
    MBOII
     . SFANI
          BANII
          BSP1286
          EGIAI
                 MBOII
          SACI
ATGCCATCAGAGCTCTTCAAAATCATTGACTTCTTCCCAATAGCTCTTCAGGCCGTCAAT
    4390 4400 4410 4420 4430 4440
SELFKIIDFFPIALQAVN
             ECOR1 USED FOR EXPRESSION
             ECORI
                             AVAII
AATTTTATTGAGAAAACGAATTCTGTTGATGTGACAGTTGGTCCAAGAGCATGCTTGAAC
4450 4460 4470 4480 4490 4500
N F I E K T N S V D V T V G P R A C L N
          BINI BAMBI
           . XHOII
                   BINI
TGTCCTCTAACTGTCGATGGATCCCGTGAATGGTTCATTCGATTGTGGAATGAGAACTTC
          4520 4530 4540 4550 4560
 C P L T V D G S R E W F I R L W N E N F
```

SUBSTITUTE SHEET (RULE 26)

I P Y L E R V A R D G K K N L R S L H F

4590

BBVI

4600 4610

area and a substantial and a substantial and a substantial and a contract of the substantial and a substantial

4620

TFGRCTS

AFLIII

4580

18/99 F1G. 2 CONTINUED.

```
BINI BAMBI
            BINI TTHIIII
                            EAEI
CTTCGAGGATCCCACCGACATCGTCTAAAAAATGGCCGTGGTTCGATGGTGAAAACCC
            4640
                                  4670 4680
                    4650 4660
  RGSBRBRL *
 FEDPTDIVSEKWPWFDGENP
        MBOII
         .BSP1286
         .HGIAI
                            TTHIIII
                             .BPHI FOKI
GGAGAATGTGCTCAAACGTCTTCAACTCCAAGACCTCGTCCCGTCACCTGCCAACTCATC
     4690 4700 4710
                         4720
                                     4730
 ENVLKRLQLQDLVPSPANSS
                AVAI
                XHOI BINI
                                 SFANI
                                  . SPHI
CCGACAACACTTCAATCCCCTCGAGTCGTTGATCCAATTGCATGCTACCAAGCATCAGAC
                    4770
            4760
                             4780
 R Q B F N P L E S L I Q L.B A T K B Q T
                  MBOII MBOII
CATCGACAACATTTGAACAGAAGACTCTAATCTTCTCTCGCCTCTCCCCCGCTTTCCTTA
    4810 4820 4830 4840 4850
 I D N I *
        BANI
TCTTCGTACCGGTACCTGATGATTCCCCCATTTTCCCCCCCTTTTCCCCCCAATTTCCCAGAA
            4880
                    4890 4900 4910
                                         4920
                      AVAI
                       .NCII
                       ..NCII
                       ..SMAI
                       ... BANI
                              IIAHA
                                    HGAI DRAI
CCTCCTGTTCCCTTGTTCCTAGTCCTCCCGGGTGCCGACGCCGAAGCGATTTAAAAACC
    4930
            4940
                     4950 4960
                                     4970
            IMMX
TTTTTCTTTCCGAAACATTTCCCATTGCTCATTAATAGTCAAATTGAATAAACAGTGTAT
            5000
                    5010
                            5020
                                             5040
GTACTTAAAAAAAAAAAAAAAAAAAAAA
    5050
            5060
```

F/G. 3.

19/99

Sequences of low complexity in UNC-53 TB3-M5 identified with the FILTER and SEG algorithms of the BLAST sequence homology package.

MTTSNVELIPIYTDWANRHLSKGSLSKSIRDISNDFRDYRLVSQLINVIVPINEFSPAFT KRLAKITSNLDGLETCLDYLKNLGLDCSKLTKTDIDSGNLGAVLQLLFLLSTYXXXXXXX XXXXXXXXXPTSIMPPAVSKLXXXXXXXXXXXXXXXXXXXFPQMSTSRLQTPQXXXXXX XXXNLNRPTSQLQKPSRPQTQLVRVATTTKIGSSKLAAPKAVSTPKLASVKTIGAKQEPD NSXXXXXMXXXXXXXXXXXXXXXXXQPTRKAAAVPQQQTLSKIAAPVKSGLKPPTSKL GSATSMSKLCTPKVSYRKTDAPIISQQDSKRCSKXXXXXXXGYAGFNXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXDDLTLNASIVTAIRQPIAATPVSPNIINKPVEEKPTLAVKGV KSTAKKDPPPAVPPRDTQPTIGVVSPIMAHKKLTNDPVISEKPEPEKLQSMSIDTTDXXX XXXXXXXXXXXMTSIRQPPTYDVLLKQGKITSPVKSFGYEQSSASEDSIVAHASAQVTPP TKTSGNHSLERRMGKNKTSESSGYTSDAGVAMCAKMREKLKEYDDMTRRAQNGYPDNFED XXXXXXAEQENVYKLLSQCRTSQRGAAATSTFGQHSLRSPGYSSYSPHLSVSADKDTMSM HSQTSRRPSSQKPSYSGQFHSLDRKCHLQEFTSTEHRMAALLSPRRVPNXXXXXXXXXXXX XXXXXXXXXXIYGETFQLHRLSDEKSPAHSAKSEMGSQLSLASTTAYGSLNEKYEHAIR DMARDLECYKNTVDSLTKKQENYGALFDLFEQKLRKLTQHIDRSNLKPEEAIRFRQDIAH LRDISNHLASNSAHANEGAGELLRQPSLEXXXXXXXXXXXXXXXXXXXXXXXXXFGKNKK SWIRSSLSKFTKKKNKNYDEAHMPSISGSQGTLDNIDVIELKQELKERDSALYEVRLDNL DRAREVDVLRETVNKLKTENKQLKKEVDKLTNGPATRASSRASIPVIYDDEHVYDXXXXX GLFEVYLSRIDVEHQLGIDARDSILGYQIGELRRVIGDSTTMITSHPTDILTSSTTIRMF MHGAAQSRVDSLVLDMLLPKQMILQLVKSILTERRLVLAGATGIGKSKLAKTLAAYVSIR TNQSEDSIVNISIPENNKEELLQVERRLEKILRSKESCIVILDNIPKNRIAFVVSVFANV PLQNNEGPFVVCTVNRYQIPELQIHHNFKMSVMSNRLEGFILRYLRRRAVEDEYRLTVQM PSELFKIIDFFPIALQAVNNFIEKTNSVDVTVGPRACLNCPLTVDGSREWFIRLWNENFI PYLERVARDGKKNLRSLHFLRGSHRHRL

MTTSNVELIPIYTDWANRHLSKGSLSKSIRDISNDFRDYRLVSQLINVIVPINEFSPAFT KRLAKITSNLDGLETCLDYLKNLGLDCSKLTKTDIDSGNLGAVLQLLFLLSTYKOKLROL KKDOKKLEOLPTSIMPPAVSKLPSPRVATSATASATNPNSNFPQMSTSRLQTPOSRISKI <u>DSSKIGIKPK</u>TSGLKP<u>PSSSTTSSNNTNSFRPSSRSSGNNNVGSTISTSAKSLESSSTYS</u> <u>SIS</u>NLNRPTSQLQKPSRPQTQLVRVATTTKIGSSKLAAPKAVSTPKLASVKTIGAKQEPD ${\tt NS}_{\hbox{\scriptsize GGGGGGM}}{\tt LKLKLFSSKNPSSSSNSP}{\tt QPTRKAAAVPQQQTLSKIAAPVKSGLKPPTSKL}$ GSATSMSKLCTPKVSYRKTDAPIISQQDSKRCSK<u>SSEEES</u>GYAGFN<u>STSPTSSSTEGSLS</u> MHSTSSKSSTSDEKSPSSDDLTLNASIVTAIRQPIAATPVSPNIINKPVEEKPTLAVKGV KSTAKKDPPPAVPPRDTQPTIGVVSPIMAHKKLTNDPVISEKPEPEKLQSMSIDTTD<u>VPP</u> <u>LPPLKSVVPLK</u>MTSIRQPPTYDVLLKQGKITSPVKSFGYEQSSASEDSIVAHASAQVTPP TKTSGNHSLERRMGKNKTSESSGYTSDAGVAMCAKMREKLKEYDDMTRRAQNGYPDNFED <u>SSSLSSGIS</u>DNNELDDISTDDLSGVDMATVASKHSDYSHFVRHP<u>TSSSSKPRVPSRSSTS</u> <u>VDSRSR</u>AEQENVYKLLSQCRTSQRGAAATSTFGQHSLRSPGYSSYSPHLSVSADKDTMSM HSQTSRRPSSQKPSYSGQFHSLDRKCHLQEFTSTEHRMAALLSPRRVPNSMSKYDSSGSY <u>SARSRGGSSTG</u>IYGETFQLHRLSDEKSPAHSAKSEMGSQLSLASTTAYGSLNEKYEHAIR DMARDLECYKNTVDSLTKKQENYGALFDLFEQKLRKLTQHIDRSNLKPEEAIRFRQDIAH LRDISNHLASNSAHANEGAGELLRQPSLESVASHRSSMSSSKSSKOEKISLSSFGKNKK SWIRSSLSKFTKKKNKNYDEAHMPSISGSQGTLDNIDVIELKQELKERDSALYEVRLDNL DRAREVDVLRETVNKLKTENKQLKKEVDKLTNGPATRASSRASIPVIYDDEHVYDAACSS

SUBSTITUTE SHEET (RULE 26)

CONTENT OF A CONTENT OF A CONTENT OF THE CONTENT OF

FIG. 3 CONTINUED.

TSASOSSKRSSGCNSIKVTVNVDIAGEISSIVNPDKEIIVGYLAMSTSQSCWKDIDVSIL GLFEVYLSRIDVEHQLGIDARDSILGYQIGELRRVIGDSTTMITSHPTDILTSSTTIRMF MHGAAQSRVDSLVLDMLLPKQMILQLVKSILTERRLVLAGATGIGKSKLAKTLAAYVSIR TNQSEDSIVNISIPENNKEELLQVERRLEKILRSKESCIVILDNIPKNRIAFVVSVFANV PLQNNEGPFVVCTVNRYQIPELQIHHNFKMSVMSNRLEGFILRYLRRAVEDEYRLTVQM PSELFKIIDFFPIALQAVNNFIEKTNSVDVTVGPRACLNCPLTVDGSREWFIRLWNENFI PYLERVARDGKKNLRSLHFLRGSHRHRL

F1G.4.

21/99

Length of tb3-m5.pro from cDNA pTB54 : 1528 aa; +1 at: 1; Listed (Ordinary) from: 1 to: 1528; din, 23 apr 1996 Met Thr Thr Ser Asn Val Glu Leu Ile Pro Ile Tyr Thr Asp Trp 15 Ala Asn Arg His Leu Ser Lys Gly Ser Leu Ser Lys Ser Ile Arg 30 Asp Ile Ser Asn Asp Phe Arg Asp Tyr Arg Leu Val Ser Gln Leu 45 Ile Asn Val Ile Val Pro Ile Asn Glu Phe Ser Pro Ala Phe Thr 60 Lys Arg Leu Ala Lys Ile Thr Ser Asn Leu Asp Gly Leu Glu Thr 75 Cys Leu Asp Tyr Leu Lys Asn Leu Gly Leu Asp Cys Ser Lys Leu 90 Thr Lys Thr Asp Ile Asp Ser Gly Asn Leu Gly Ala Val Leu Gln 105 Leu Leu Phe Leu Leu Ser Thr Tyr Lys Gln Lys Leu Arg Gln Leu 120 Lys Lys Asp Gln Lys Lys Leu Glu Gln Leu Pro Thr Ser Ile Met 135 ; Pro Pro Ala Val Ser Lys Leu Pro Ser Pro Arg Val Ala Thr Ser 150 -Ala Thr Ala Ser Ala Thr Asn Pro Asn Ser Asn Phe Pro Gln Met 165 Ser Thr Ser Arg Leu Gln Thr Pro Gln Ser Arg Ile Ser Lys Ile 180 Asp Ser Ser Lys Ile Gly Ile Lys Pro Lys Thr Ser Gly Leu Lys 195 Pro Pro Ser Ser Ser Thr Thr Ser Ser Asn Asn Thr Asn Ser Phe 210 Arg Pro Ser Ser Arg Ser Ser Gly Asn Asn Asn Val Gly Ser Thr 225 Ile Ser Thr Ser Ala Lys Ser Leu Glu Ser Ser Ser Thr Tyr Ser 240 Ser Ile Ser Asn Leu Asn Arg Pro Thr Ser Gln Leu Gln Lys Pro 255 Ser Arg Pro Gln Thr Gln Leu Val Arg Val Ala Thr Thr Lys 270 Ile Gly Ser Ser Lys Leu Ala Ala Pro Lys Ala Val Ser Thr Pro 285 Lys Leu Ala Ser Val Lys Thr Ile Gly Ala Lys Gln Glu Pro Asp 300 Asn Ser Gly Gly Gly Gly Gly Met Leu Lys Leu Lys Leu Phe 315 Ser Ser Lys Asn Pro Ser Ser Ser Ser Asn Ser Pro Gln Pro Thr 330 Arg Lys Ala Ala Val Pro Gln Gln Gln Thr Leu Ser Lys Ile 345 Ala Ala Pro Val Lys Ser Gly Leu Lys Pro Pro Thr Ser Lys Leu 360 Gly Ser Ala Thr Ser Met Ser Lys Leu Cys Thr Pro Lys Val Ser 375 Tyr Arg Lys Thr Asp Ala Pro Ile Ile Ser Gln Gln Asp Ser Lys 390

STATES POR PORTE DE PARE EN LA LABORACIÓN DE PORTO DE PROPERTO DE PARE PARE DE LA SERVICIO DE LA CONTRACTOR DE PARE DE LA CONTRACTOR DEL CONTRACTOR DE LA CONTRAC

FIG. 4 CONTINUED.

22/99

Ar	д Су	's S€	er Ly	ys Se	er Se	r Gl	u Gl	u Glı	u Sei	r Gl	у Туг	Ala	a Gl	y Ph	e	40
As	n Se	r Th	r Se	er Pr	o Th	r Se	r Se	r Sei	r Thi	r Glı	u Gly	/ Se	r Le	ı Se	r	42
Me	t Hi	s Se	r Th	ır Se	r Se	r Ly	s Se	r Ser	Thr	Sei	r Asp	Gli	ı Lys	s Se	r _.	43
Pro	Se	r Se	r As	p As	p Le	u Thi	r Le	u Asr	Ala	Ser	r Ile	(Val	Thi	Ala	a	. 45
Ile	Ar	g Gl	n Pr	o Il	e Al	a Ala	a Thi	r Pro	Val	Ser	Pro	Asr	ı Ile	e Ile	.	46
Asr	Ly:	s Pr	o Va	1 G1	u Gl	u Lys	s Pro	Thr	Leu	Ala	a Val	Lys	Gly	/ Val	L	480
Lys	Se	r Th	r Al	a Ly	s Ly	s Asp	Pro	Pro	Pro	Ala	Val	Pro	Pro	Arg	ī	495
Asp	Th	r Gl	n Pr	o Th	r Ile	e Gly	/ Val	Val	Ser	Pro	Ile	Met	Ala	His	;	510
Lys	Lys	s Le	u Th	r Ası	n Ası	Pro	Val	Ile	Ser	Glu	Lys	Pro	Glu	Pro)	525
Glu	Lys	Le	ے G1	n Se	r Met	, Ser	Ile	Asp	Thr	Thr	Asp	Val	Pro	Pro	1	540
Leu	Pro	Pro	Le	u Lys	s Sei	Val	Val	Pro	Leu	Lys	Met	Thr	Ser	Ile		555
Arg	Gln	Pro	Pro	o Thi	Tyr	Asp	Val	Leu	Leu	Lys	Gln	Gly	Lys	Ile		570
Thr	Ser	Pro	Va:	l Lys	Ser	Phe	Gly	Tyr	Glu	Gln	Ser	Ser	Ala	Ser		585
Glu	Asp	Ser	Ile	e Val	Ala	His	Ala	Ser	Ala	Gln	Val	Thr	Pro	Pro		600
Thr	Lys	Thr	Ser	Gly	Asn	His	Ser	Leu	Glu	Arg	Arg	Met	Gly	Lys		615
Asn	Lys	Thr	Ser	Glu	Ser	Ser	Gly	Tyr	Thr	Ser	Asp	Ala	Gly	Val		630
Ala	Met	Cys	Ala	Lys	Met	Arg	Glu	Lys	Leu	Lys	Glu	Tyr	Asp	Asp		645
1et	Thr	Arg	Arg	Ala	Gln	Asn	Gly	Tyr	Pro	Asp	Asn	Phe	Glu	Asp		660
Ser	Ser	Ser	Leu	Ser	Ser	Gly	Ile	Ser	Asp	Asn	Asn	Glu	Leu	Asp		675
Asp	Ile	Ser	Thr	Asp	Asp	Leu	Ser	Gly	Val	Asp	Met	Ala	Thr	Val		690
Ala	Ser	Lys	His	Ser	Asp	Tyr	Ser	His	Phe	Val	Arg	His	Pro	Thr		705
Ser	Ser	Ser	Ser	Lys	Pro	Arg	Val	Pro	Ser	Argʻ	Ser	Ser	Thr	Ser		720
al	Asp	Ser	Arg	Ser	Arg	Ala	Glu	Gln	Glu .	Asn	Val	Tyr	Lys	Leu		735
eu	Ser	Gln	Cys	Arg	Thr	Ser	Gln	Arg	Gly .	Ala	Ala i	Ala	Thr	Ser		750
hr	Phe	Gly	Gln	His	Ser	Leu	Arg	Ser	Pro (Glv	Tvr :	Ser	Ser	Tvr		765

SUBSTITUTE SHEET (RULE 26)

FIG. 4 CONTINUED. 23/95

Ser	Pro	His	Leu	Ser	Val	Ser	Ala	Asp	Lys	Asp	Thr	Met	Ser	Met	780
His	Ser	Gln	Thr	Ser	Arg	Arg	Pro	Ser	Ser	Gln	Lys	Pro	Ser	Tyr	795
Ser	Gly	Gln	Phe	His	Ser	Leu	Asp	Arg	Lys	Cys	His	Leu	Gln	Glu	810
Phe	Thr	Ser	Thr	Glu	His	Arg	Met	Ala	Ala	Leu	Ĺeu	Ser	Pro	Arg	825
Arg	Val	Pro	Asn	Ser	Met	Ser	Lys	Tyr	Asp	Ser	Ser	Gly	Ser	Tyr	840
Ser	Ala	Arg	Ser	Arg	Gly	Gly	Ser	Ser	Thr	Gly	Ile	Týr	Gly	Glu	855
Thr	Phe	Gln	Leu	His	Arg	Leu	Ser	Asp	Glu	Lys	Ser	Pro	Ala	His	870
Ser	Ala	Lys	Ser	Glu	Met	Gly	Ser	Gln	Leu	Ser	Leu	Ala	Ser	Thr	885
Thr	Ala	Tyr	Gly	Ser	Leu	Asn	Glu	Lys	Tyr	Glu	His	Ala	Ile	Arg	900
Asp	Met	Ala	Arg	Asp	Leu	Glu	Cys	Tyr	Lys	Asn	Thr	Val	Asp	Ser	915
Leu	Thr	Lys	Lys	Gln	Glu	Asn	Tyr	Gly	Ala	Leu	Phe	Asp	Leu	Phe	930
Glu	Gln	Lys	Leu	Arg	Lys	Leu	Thr	Gln	His	Ile	Asp	Arg	Ser	Asn	945
Leu	Lys	Pro	Glu	Glu	Ala	Ile	Arg	Phe	Arg	Gln	Asp	Ile	Ala	His	960
Leu	Arg	Asp	Ile	Ser	Asn	His	Leu	Ala	Ser	Asn	Ser	Ala	His	Ala	975
Asn	Glu	Gly	Ala	Gly	Glu	Leu	Leu	Arg	Gln	Pro	Ser	Leu	Glu	Ser	990
Val	Ala	Ser	His	Arg	Ser	Ser	Met	Ser	Ser	Ser	Ser	Lys	Ser	Ser	1005
Lys	Gln	Glu	Lys	Ile	Ser	Leu	Ser	Ser	Phe	Gly	Lys	Asn	Lys	Lys	1020
Ser	Trp	Ile	Arg	Ser	Ser	Leu	Ser	Lys	Phe	Thr	Lys	Lys	Lys	Asn	1035
Lys	Asn	Tyr	Asp	Glu	Ala	His	Met	Pro	Ser	Ile	Ser	Gly	Ser	Gln	1050
Gly	Thr	Leu	Asp	Asn	Ile	Asp	Val	Ile	Glu	Leu	Lys	Gln	Glu	Leu	1065
Lys	Glu	Arg	Asp	Ser	Ala	Leu	Tyr	Glu	Val	Arg	Leu	Asp	Asn	Leu	1080
Asp	Arg	Ala	Arg	Glu	Val	Asp	Val	Leu	Arg	Glu	Thr	Val	Asn	Lys	1095
Leu	Lys	Thr	Glu	Asn	Lys	Gln	Leu	Lys	Lys	Glu	Val	Asp	Lys	Leu	1110
Thr	Asn	Gly	Pro	Ala	Thr	Arg	Ala	Ser	Ser	Arg	Ala	Ser	Ile	Pro	1125
Val	Ile	Tyr	Asp	Asp	Glu	His	Val	Tyr	Asp	Ala	Ala	Cys	Ser	Ser	1140

FIG. 4 CONTINUED.

24/99

Thr	Ser	Ala	Ser	Gln	Ser	Ser	Lys	Arg	Ser	Ser	Gly	Cys	Asn	Ser	1155
Ile	Lys	. Val	Thr	Val	Asn	Val	Asp	Ile	Ala	Gly	/ Glu	Ile	Ser	Ser	1170
Ile	.Val	Asn	Pro	Asp	Lys	Glu	Ile	Ile	Val	Gly	Tyr	Leu	Ala	Met	1185
Ser	Thr	Ser	Gln	Ser	Cys	Trp	Lys	Asp	Ile	Asp	Val	Ser	Ile	Leu	1200
Gly	Leu	Phe	Glu	Val	Tyr	Leu	Ser	Arg	Ile	Asp	Val	Glu	His	Gln	1215
Leu	Gly	Ile	Asp	Ala	Arg	Asp	Ser	Ile	Leu	Gly	Tyr	Gln	Ile	Gly	1230
Glu	Leu	Arg	Arg	Val	Ile	Gly	Asp	Ser	Thr	Thr	Met	Ile	Thr	Ser	1245
His	Pro	Thr	Asp	Ile	Leu	Thr	Ser	Ser	Thr	Thr	Ile	Arg	Met	Phe	1260
Met	His	Gly	Ala	Ala	Gln	Ser	Arg	Val	Asp	Ser	Leu	Val	Leu	Asp	1275
Met	Leu	Leu	Pro	Lys	Gln	Met	Ile	Leu	Gln	Leu	Val	Lys	Ser	Ile	1290
Leu	Thr	Glu	Arg	Arg	Leu	Val	Leu	Ala	Gly	Ala	Thr	Gly	Ile	Gly	1305
Lys	Ser	Lys	Leu	Ala	Lys	Thr	Leu	Ala	Ala	Tyr	Val	Ser	Ile	Arg	1320
Thr	Asn	Gln	Ser	Glu	Asp	Ser	Ile	Val	Asn	Ile	Ser	Ile	Pro	Glu	1335
Asn	Asn	Lys	Glu	Glu	Leu	Leu	Gln	Val	Glu	Arg	Arg	Leu	Glu	Lys	1350
Ile	Leu	Arg	Ser	Lys	Glu	Ser	Cys	Ile	Val	Ile	Leu	Asp	Asn	Ile	1365
Pro	Lys	Asn	Arg	Ile	Ala	Phe	Val	Val	Ser	Val	Phe	Ala	Asn	Val	1380
Pro	Leu	Gln	Asn	Asn	Glu	Gly	Pro	Phe	Val	Val	Cys	Thr	Val	Asn	1395
Arg	Tyr	Gln	Ile	Pro	Glu	Leu	Gln	Ile	His	His	Asn	Phe	Lys	Met	1410
Ser	Val	Met	Ser	Asn	Arg	Leu	Glu	Gly	Phe	Ile	Leu	Arg	Tyr	Leu	1425
Arg	Arg	Arg	Ala	Val	Glu	Asp	Glu	Tyr.	Arg	Leu	Thr	Val	Gln	Met	1440
Pro	Ser	Glu	Leu	Phe	Lys	Ile	Ile	Asp	Phe	Phe	Pro	Ile	Ala	Leu	1455
Gln	Ala	Val	Asn	Asn	Phe	Ile	Glu	Lys	Thr	Asn	Ser	Val	Asp	Val	1470.
Thr	Val	Gly	Pro	Arg	Ala	Cys	Leu	Asn	Cys	Pro	Leu	Thr	Val	Asp	1485
Gly	Ser	Arg	Glu	Trp	Phe	Ile	Arg	Leu	Trp	Asn	Glu	Asn	Phe	Ile	1500
Pro	Tyr	Leu	Glu	Arg	Val	Ala	Arg	Asp	Gly	Lys	Lys	Asn	Leu	Arg	1515
Ser	Leu	His	Phe	Leu	Arg	Gly	Ser	His	Arg	His	Arg	Leu			

FIG. 5.

25/99

Annotated sequence of 7A variant of UNC-53

					,
1		0 3	0 4	0 50	60
MTTSNVELI	P IYTDWANRH	L SKGSLSKSI	R DISNDFRDY	R LVSOLTNVT	/ DINEFEDRET
start tb6	and tb3 si	milarity to	amino-term	ini of alfa-	actinin.
7		0 9	0 · 10	0 110	120
KRLAKITSN	L DGLETCLDY	L KNLGLDCSK	L TKTDIDSGN	. GAVIOLIELT	STYVOYTROT
beta-spec	trin, dystr	osphin, fim	brin, filam	in actin-bin	ding site 1
					(114 - 133)
		_	•		
130	14	0 15	0 16	0 170	180
VVDOKKTEO	L PTS IMPPAV	S KLPSPRVAT	S ATASATNPN:	S NFPOMSTSRL	QTPQSRISKI
Start :	poss.	start tblb	& tb6 & tb:	l lamda clon	' '
190	300	210			
	ZUI TSGI KDDCC	C TOCCHNONIC	220	230 NVGSTISTSA	240
	· ISGENFFSS:	o II SONNINSI	RPSSRSSGNI	N NVGSTISTSA	KSLESSSTYS
250	260	270	280		
		יים יידיים אפעורה יו	ZOU C TESSYINADU	290 AVSTPKLASV	300
	Endurous A.	QDVNVAIIII	, TOSSUMMEL	AVSTPKLASV	KTIGAKQEPD
310	320	330	340	350	360
NSGGGGGGMI		SSSSNSPOPT	RKAAAVPOOC	TLSKIAAPVK	SCI KDDAGNI
_					DODKELIDED
370			400	410	420
GSATSMSKLC	TPKVSYRKTO	APIISQQDSK	RCSKSSEEES	GYAGFNSTSP	TSSSTEGSLS
				*	
430		450	460	470	480
MHSTSSKSST	SDEKSPSSDD	LTLNASIVTA	IRQPIAATPV	SPNIINKPVE	EKPTLAVKGV
poss. star	t tb22				
490	500	510	520	530	540
V21VVVDPA	AVPPRDTOPT	IGVVSPIMAH	KKLTNDPVIS	EKPEPEKLQS	MSIDTT <u>DVPP</u>
_ 503-	binding 1				SH3-
550	560	570	580	-1	
	MTSTPARK	VDVI I KOCKI	DAC	QSSASEDSIV	600
binding 2	MATOTKÖLLI	IDADDUĞQVI	ISPVASEGIE	QSSASEDSIV	AHASAQVTPP
	• •			•	••
610	620	630	640	650	660
TKTSGNHSLE	RRMGKNKTSE	SSGYTSDAGV	AMCAKMREKI.	KEYDDMTRRA	ONCABONEED
				NO I DOMINION	QNG1FDNFED .
670	680	690	700	710	720
SSSLSSGISD	NNELDDISTD	DLSGVDMATV	ASKHSDYSHF	VRHPTSSSSK	PRVPSRSSTS
730		750	760	770	780
VDSRSRAEQE	NVYKLLSQCR	TSQRGAAATS	TFGQHSLRSP	GYSSYSPHLS	VSADKDTMSM
790		810	820	830	840
nsqtsrrpss	OKPSYSGOFH	SLDRKCHLOE	FTSTEHRMAA	LLSPRRVPNS	<u>MSKYDSS</u> GSY
		Kohara Ex	on deleted	in cDNA YK2	5D6

SUBSTITUTE SHEET (RULE 26)

FIG. 5 CONTINUED.

### 850 860 870 880 890 900 SARSRGSST GIYGETFQLH RLSDEKSPAH SAKSEMGSQL SLASTTAYGS LNEKYEHAIR 910 920 930 940 950 960 DMARDLECYK NTVDSLTKKQ ENYGALFDLF EQKLRKLTQH IDRSNLKPEE AIRFRQDIAH 970 980 990 1000 1010 1020 LRDISNHLAS NSAHANEGAG ELLRQPSLES VASHRSSMSS SSKSSKQEKI SLSSFGKNKK 1030 1040 1050 1060 1070 1080 SWIRSSLSKF TKKKNNKNYDE AHMPSISGSQ GTLDNIDDVIE LKQELKERDS ALYEVRLDNL candidate nuclear Start GP45 localization signal 1090 1100 1110 1120 1130 1140 DRAREVDVLR ETVNKLKTEN KOLKKEVDKL TNGPATRASS RASIPVIYDD EHVYDAACSS actin binding site 2 (1097-1116) canditate leucine zipper pattern 1150 1160 1170 1180 1190 1200 TSASQSSKRS SGCNSIKVTV NVDIAGEISS IVNPDKEIIV GYLAMSTSQS CWKDIDVSIL 1210 1220 1230 1240 1250 1260 GLFEVYLSRI DVEHQLGIDA RDSILGYQIG ELRRVIGDST TMITSHPTDI LTSSTTIRMF 1270 1280 1290 1300 1310 1320 MHGAAQSRVD SLVLDMLEPK QMILQLVKSI LTERRLVILAG ATGIGKSKLA KTLAAYVSIR canditate leucine zipper pattern 1330 1340 1350 1360 1370 1380 FNQSEDSIVN ISIPENNKEE LLQVERRLEK ILRSKESCIV ILDNIPKNRI AFVVSVFANV 1390 1400 1410 1420 1430 1440 PLQNNEGPFV VCTVNRYQIP ELQIHHNFKM SVMSNRLEGF ILRYLRRAV EDEYRLTVQM PLQNNEGPFV VCTVNRYQIP ELQIHHNFKM SVMSNRLEGF ILRYLRRAV EDEYRLTVQM PLQNNEGPFV VCTVNRYQIP ELQIHHNFKM SVMSNRLEGF ILRYLRRAV EDEYRLTVQM 1450 1460 1470 1480 1490 1500 PSELFKIIDF FPIALQAVNN FIEKTNSVDV TVGPRACLNC PLTVDGSREW FIRLWNENFI end GP45	ed af
### SARSRGSST GIYGETFQLH RLSDEKSPAH SAKSEMGSQL SLASTTAYGS LNEKYEHAIR 910 920 930 940 950 960	
### DMARDLECYK NTVDSLTKKQ ENYGALFDLF EQKLRKLTQH IDRSNLKPEE AIRFRQDIAH 970	
970 980 990 1000 1010 1020 LRDISNHLAS NSAHANEGAG ELLRQPSLES VASHRSSMSS SSKSKQEKI SLSSFGKNKK 1030 1040 1050 1060 1070 1080 SWIRSSLSKF TKKKNINYDE AHMPSISGSQ GTLDNIDVIE LKQELKERDS ALYEVRLDNL candidate nuclear Start GP45 localization signal 1090 1100 1110 1120 1130 1140 DRAREVDVLR ETVNKLITEN KOLKKEVDKL TNGPATRASS RASIPVIYDD EHVYDAACSS actin binding site 2 (1097-1116) canditate leucine zipper.pattern 1150 1160 1170 1180 1190 1200 ISASQSSKRS SGCNSIKVTV NVDIAGEISS IVNPDKEIIV GYLAMSTSQS CWKDIDVSIL 1210 1220 1230 1240 1250 1260 ELFEVYLSRI DVEHQLGIDA RDSILGYQIG ELRRVIGDST TMITSHPTDI LTSSTTIRMF 1270 1280 1290 1300 1310 1320 ELGAAQSRVD SLVLDMLLPK QMILQLVKSI LTERRLVLAG ATGIGKSKLA KTLAAYVSIR nucleotide binding pocket canditate leucine zipper.pattern 1330 1340 1350 1360 1370 1380 NOSEDSIVN ISIPPNNKEE LLQVERRLEK ILRSKESCIV ILDNIPKNRI AFVVSVFANV 1390 1400 1410 1420 1430 1440 PLQNNEGPFV VCTVNRYQIP ELQIHHNFKM SVMSNRLEGF ILRYLRRRAV EDEYRLTVQM 1450 1460 1470 1480 1490 1500 SELFKIIDF FPIALQAVNN FIEKTNSVDV TVGPRACLNC PLTVDGSREW FIRLWNENFI	
1030	
1030 1040 1050 1060 1070 1080 SWIRSSLSKF TKKKNKNYDE AHMPSISGSQ GTLDNIDVIE LKQELKERDS ALYEVRLDNL candidate nuclear Start GP45 localization signal 1090 1100 1110 1120 1130 1140 DRAREVDVLR ETVNKLKTEN KOLKKEVDKL TNGPATRASS RASIPVIYDD EHVYDAACSS actin binding site 2	
SWIRSSLSKF TKKKNKNYDE AHMPSISGSQ GTLDNIDVIE LKQELKERDS ALYEVRLDNL candidate nuclear Start GP45 localization signal 1090 1100 1110 1120 1130 1140 DRAREVDVLR ETVNKLKTEN KOLKKEVDKL TNGPATRASS RASIPVIYDD EHVYDAACSS actin binding site 2	
Candidate nuclear Start GP45 localization signal 1090 1100 1110 1120 1130 1140 DRAREVDVIR ETVNKLKTEN KOLKKEVDKL TNGPATRASS RASIPVIYDD EHVYDAACSS actin binding site 2	
1090 1100 1110 1120 1130 1140 DRAREVDVIR ETVNKLKTEN KOLKKEVDKL TNGPATRASS RASIPVIYDD EHVYDAACSS	
CANCELED LEGAL RESIDENCE ETVNKLKTEN KOLKKEVOKL TNGPATRASS RASIPVIYOD EHVYDAACSS actin binding site 2 (1097-1116) Canditate leucine zipper.pattern 1150 1160 1170 1180 1190 1200 CSASQSSKRS SGCNSIKVTV NVDIAGEISS IVNPDKEIIV GYLAMSTSQS CWKDIDVSIL 1210 1220 1230 1240 1250 1260 CLIFEVYLSRI DVEHOLGIDA RDSILGYQIG ELRRVIGDST TMITSHPTDI LTSSTTIRMF 1270 1280 1290 1300 1310 1320 CHGAAQSRVD SLVLDMLLPK OMILQLVKSI LTERRLVLAG ATGIGKSKLA KTLAAYVSIR Canditate leucine zipper.pattern 1330 1340 1350 1360 1370 1380 NOSEDSIVN ISIPENNKEE LLQVERRLEK ILRSKESCIV ILDNIPKNRI AFVVSVFANV 1390 1400 1410 1420 1430 1440 LQNNEGPFV VCTVNRYQIP ELQIHHNFKM SVMSNRLEGF ILRYLRRRAV EDEYRLTVQM 1450 1460 1470 1480 1490 1500 SELFKIIDF FPIALQAVNN FIEKTNSVDV TVGPRACLNC PLTVDGSREW FIRLWNENFI	
canditate leucine zipper.pattern 1150 1160 1170 1180 1190 1200 SASQSSKRS SGCNSIKVTV NVDIAGEISS IVNPDKEIIV GYLAMSTSQS CWKDIDVSIL 1210 1220 1230 1240 1250 1260 SLFEVYLSRI DVEHQLGIDA RDSILGYQIG ELRRVIGDST TMITSHPTDI LTSSTTIRMF 1270 1280 1290 1300 1310 1320 SHGAAQSRVD SLVLDMLLPK OMILQLVKSI LTERRLVLAG ATGIGKSKLA KTLAAYVSIR canditate leucine zipper.pattern 1330 1340 1350 1360 1370 1380 NQSEDSIVN ISIPENNKEE LLQVERRLEK ILRSKESCIV ILDNIPKNRI AFVVSVFANV 1390 1400 1410 1420 1430 1440 LQNNEGPFV VCTVNRYQIP ELQIHHNFKM SVMSNRLEGF ILRYLRRRAV EDEYRLTVQM 1450 1460 1470 1480 1490 1500 SELFKIIDF FPIALQAVNN FIEKTNSVDV TVGPRACLNC PLTVDGSREW FIRLWNENFI	
Canditate leucine zipper.pattern 1150 1160 1170 1180 1190 1200 CSASQSSKRS SGCNSIKVTV NVDIAGEISS IVNPDKEIIV GYLAMSTSQS CWKDIDVSIL 1210 1220 1230 1240 1250 1260 CLFEVYLSRI DVEHQLGIDA RDSILGYQIG ELRRVIGDST TMITSHPTDI LTSSTTIRMF 1270 1280 1290 1300 1310 1320 CHGAAQSRVD SLVLDMLLPK OMILQLVKSI LTERRLVLAG ATGICKSKLA KTLAAYVSIR Canditate leucine zipper.pattern 1330 1340 1350 1360 1370 1380 NQSEDSIVN ISIPENNKEE LLQVERRLEK ILRSKESCIV ILDNIPKNRI AFVVSVFANV 1390 1400 1410 1420 1430 1440 LQNNEGPFV VCTVNRYQIP ELQIHHNFKM SVMSNRLEGF ILRYLRRRAV EDEYRLTVOM 1450 1460 1470 1480 1490 1500 SELFKIIDF FPIALQAVNN FIEKTNSVDV TVGPRACLNC PLTVDGSREW FIRLWNENFI	
1150 1160 1170 1180 1190 1200 CSASQSSKRS SGCNSIKVTV NVDIAGEISS IVNPDKEIIV GYLAMSTSQS CWKDIDVSIL 1210 1220 1230 1240 1250 1260 CLFEVYLSRI DVEHQLGIDA RDSILGYQIG ELRRVIGDST TMITSHPTDI LTSSTTIRMF 1270 1280 1290 1300 1310 1320 CHGAAQSRVD SLVLDMLLPK QMILQLVKSI LTERRLVLAG ATGIGKSKLA KTLAAYVSIR canditate leucine zipper.pattern 1330 1340 1350 1360 1370 1380 NQSEDSIVN ISIPENNKEE LLQVERRLEK ILRSKESCIV ILDNIPKNRI AFVVSVFANV 1390 1400 1410 1420 1430 1440 LQNNEGPFV VCTVNRYQIP ELQIHHNFKM SVMSNRLEGF ILRYLRRRAV EDEYRLTVQM 1450 1460 1470 1480 1490 1500 SELFKIIDF FPIALQAVNN FIEKTNSVDV TVGPRACLNC PLTVDGSREW FIRLWNENFI	
TSASQSSKRS SGCNSIKVTV NVDIAGEISS IVNPDKEIIV GYLAMSTSQS CWKDIDVSIL 1210 1220 1230 1240 1250 1260 ELFEVYLSRI DVEHQLGIDA RDSILGYQIG ELRRVIGDST TMITSHPTDI LTSSTTIRMF 1270 1280 1290 1300 1310 1320 EMGAAQSRVD SLVLDMLLPK QMILQLVKSI LTERRLVLAG ATGIGKSKLA KTLAAYVSIR canditate leucine zipper.pattern 1330 1340 1350 1360 1370 1380 ENQSEDSIVN ISIPENNKEE LLQVERRLEK ILRSKESCIV ILDNIPKNRI AFVVSVFANV 1390 1400 1410 1420 1430 1440 LQNNEGPFV VCTVNRYQIP ELQIHHNFKM SVMSNRLEGF ILRYLRRRAV EDEYRLTVQM 1450 1460 1470 1480 1490 1500 SELFKIIDF FPIALQAVNN FIEKTNSVDV TVGPRACLNC PLTVDGSREW FIRLWNENFI	
1210 1220 1230 1240 1250 1260 ELFEVYLSRI DVEHQLGIDA RDSILGYQIG ELRRVIGDST TMITSHPTDI LTSSTTIRMF 1270 1280 1290 1300 1310 1320 EMGAAQSRVD SLVLDMLLPK QMILQLVKSI LTERRLVLAG ATGIGKSKLA KTLAAYVSIR canditate leucine zipper.pattern 1330 1340 1350 1360 1370 1380 ENQSEDSIVN ISIPENNKEE LLQVERRLEK ILRSKESCIV ILDNIPKNRI AFVVSVFANV 1390 1400 1410 1420 1430 1440 LQNNEGPFV VCTVNRYQIP ELQIHHNFKM SVMSNRLEGF ILRYLRRRAV EDEYRLTVQM 1450 1460 1470 1480 1490 1500 SELFKIIDF FPIALQAVNN FIEKTNSVDV TVGPRACLNC PLTVDGSREW FIRLWNENFI	
1270 1280 1290 1300 1310 1320 HGAAQSRVD SLVLDMLLPK OMILOLVKSI LTERRLVLAG ATGIGKSKLA KTLAAYVSIR canditate leucine zipper.pattern 1330 1340 1350 1360 1370 1380 NQSEDSIVN ISIPENNKEE LLQVERRLEK ILRSKESCIV ILDNIPKNRI AFVVSVFANV 1390 1400 1410 1420 1430 1440 LQNNEGPFV VCTVNRYQIP ELQIHHNFKM SVMSNRLEGF ILRYLRRRAV EDEYRLTVQM 1450 1460 1470 1480 1490 1500 SELFKIIDF FPIALQAVNN FIEKTNSVDV TVGPRACLNC PLTVDGSREW FIRLWNENFI	
1270 1280 1290 1300 1310 1320 CHGAAQSRVD SLVLDMLLPK OMILOLVKSI LTERRLVLAG ATGIGKSKLA KTLAAYVSIR TOUCLEOTIDE binding pocket canditate leucine zipper.pattern 1330 1340 1350 1360 1370 1380 NQSEDSIVN ISIPENNKEE LLQVERRLEK ILRSKESCIV ILDNIPKNRI AFVVSVFANV 1390 1400 1410 1420 1430 1440 LQNNEGPFV VCTVNRYQIP ELQIHHNFKM SVMSNRLEGF ILRYLRRRAV EDEYRLTVOM 1450 1460 1470 1480 1490 1500 SELFKIIDF FPIALQAVNN FIEKTNSVDV TVGPRACLNC PLTVDGSREW FIRLWNENFI	
HGAAQSRVD SLVLDMLLPK QMILQLVKSI LTERRLVLAG ATGIGKSKLA KTLAAYVSIR nucleotide binding pocket canditate leucine zipper.pattern 1330 1340 1350 1360 1370 1380 NQSEDSIVN ISIPENNKEE LLQVERRLEK ILRSKESCIV ILDNIPKNRI AFVVSVFANV 1390 1400 1410 1420 1430 1440 LQNNEGPFV VCTVNRYQIP ELQIHHNFKM SVMSNRLEGF ILRYLRRRAV EDEYRLTVQM 1450 1460 1470 1480 1490 1500 SELFKIIDF FPIALQAVNN FIEKTNSVDV TVGPRACLNC PLTVDGSREW FIRLWNENFI	
Canditate leucine zipper.pattern 1330 1340 1350 1360 1370 1380 NQSEDSIVN ISIPENNKEE LLQVERRLEK ILRSKESCIV ILDNIPKNRI AFVVSVFANV 1390 1400 1410 1420 1430 1440 LQNNEGPFV VCTVNRYQIP ELQIHHNFKM SVMSNRLEGF ILRYLRRRAV EDEYRLTVQM 1450 1460 1470 1480 1490 1500 SELFKIIDF FPIALQAVNN FIEKTNSVDV TVGPRACLNC PLTVDGSREW FIRLWNENFI	
Canditate leucine zipper.pattern 1330 1340 1350 1360 1370 1380 NQSEDSIVN ISIPENNKEE LLQVERRLEK ILRSKESCIV ILDNIPKNRI AFVVSVFANV 1390 1400 1410 1420 1430 1440 LQNNEGPFV VCTVNRYQIP ELQIHHNFKM SVMSNRLEGF ILRYLRRRAV EDEYRLTVQM 1450 1460 1470 1480 1490 1500 SELFKIIDF FPIALQAVNN FIEKTNSVDV TVGPRACLNC PLTVDGSREW FIRLWNENFI	
1330 1340 1350 1360 1370 1380 NQSEDSIVN ISIPENNKEE LLQVERRLEK ILRSKESCIV ILDNIPKNRI AFVVSVFANV 1390 1400 1410 1420 1430 1440 LQNNEGPFV VCTVNRYQIP ELQIHHNFKM SVMSNRLEGF ILRYLRRRAV EDEYRLTVQM 1450 1460 1470 1480 1490 1500 SELFKIIDF FPIALQAVNN FIEKTNSVDV TVGPRACLNC PLTVDGSREW FIRLWNENFI	
1390 1400 1410 1420 1430 1440 LQNNEGPFV VCTVNRYQIP ELQIHHNFKM SVMSNRLEGF ILRYLRRRAV EDEYRLTVQM 1450 1460 1470 1480 1490 1500 SELFKIIDF FPIALQAVNN FIEKTNSVDV TVGPRACLNC PLTVDGSREW FIRLWNENFI	
LQNNEGPFV VCTVNRYQIP ELQIHHNFKM SVMSNRLEGF ILRYLRRRAV EDEYRLTVQM 1450 1460 1470 1480 1490 1500 SELFKIIDF FPIALQAVNN FIEKTN <u>S</u> VDV TVGPRACLNC PLTVDGSREW FIRLWNENFI	
1450 1460 1470 1480 1490 1500 SELFKIIDF FPIALQAVNN FIEKTN <u>S</u> VDV TVGPRACLNC PLTVDGSREW FIRLWNENFI	
SELFKIIDF FPIALQAVNN FIEKTNSVDV TVGPRACLNC PLTVDGSREW FIRLWNENFI	
	•
1510 1520 1530 1540 1550 1560	
ERVARDG KKTFGRCTSF EDPTDIVSEK WPWFDGENPE NVLKRLQLQD LVPSPANSSR	

F1G. 6. 27/99

Length of Untitled: 1583 aa from cDNA pTB72; +1 at: 1; Listed (Ordinary) from: 1 to: 1583; din, 23 apr 1996 11:37 Met Thr Thr Ser Asn Val Glu Leu Ile Pro Ile Tyr Thr Asp Trp 15 Ala Asn Arg His Leu Ser Lys Gly Ser Leu Ser Lys Ser Ile Arg 30 Asp Ile Ser Asn Asp Phe Arg Asp Tyr Arg Leu Val Ser Gln Leu 45 Ile Asn Val Ile Val Pro Ile Asn Glu Phe Ser Pro Ala Phe Thr 60 Lys Arg Leu Ala Lys Ile Thr Ser Asn Leu Asp Gly Leu Glu Thr 75 Cys Leu Asp Tyr Leu Lys Asn Leu Gly Leu Asp Cys Ser Lys Leu 90 Thr Lys Thr Asp Ile Asp Ser Gly Asn Leu Gly Ala Val Leu Gln 105 Leu Leu Phe Leu Leu Ser Thr Tyr Lys Gln Lys Leu Arg Gln Leu 120 Lys Lys Asp Gln Lys Lys Leu Glu Gln Leu Pro Thr Ser Ile Met 135 Pro Pro Ala Val Ser Lys Leu Pro Ser Pro Arg Val Ala Thr Ser 150 Ala Thr Ala Ser Ala Thr Asn Pro Asn Ser Asn Phe Pro Gln Met 165 Ser Thr Ser Arg Leu Gln Thr Pro Gln Ser Arg Ile Ser Lys Ile 180 Asp Ser Ser Lys Ile Gly Ile Lys Pro Lys Thr Ser Gly Leu Lys 195 Pro Pro Ser Ser Ser Thr Thr Ser Ser Asn Asn Thr Asn Ser Phe 210 Arg Pro Ser Ser Arg Ser Ser Gly Asn Asn Asn Val Gly Ser Thr 225 Ile Ser Thr Ser Ala Lys Ser Leu Glu Ser Ser Ser Thr Tyr Ser 240 Ser Ile Ser Asn Leu Asn Arg Pro Thr Ser Gln Leu Gln Lys Pro 255 Ser Arg Pro Gln Thr Gln Leu Val Arg Val Ala Thr Thr Thr Lys 270 Ile Gly Ser Ser Lys Leu Ala Ala Pro Lys Ala Val Ser Thr Pro 285 Lys Leu Ala Ser Val Lys Thr Ile Gly Ala Lys Gln Glu Pro Asp 300 Asn Ser Gly Gly Gly Gly Gly Met Leu Lys Leu Lys Leu Phe 315 Ser Ser Lys Asn Pro Ser Ser Ser Ser Asn Ser Pro Gln Pro Thr 330 Arg Lys Ala Ala Ala Val Pro Gln Gln Gln Thr Leu Ser Lys Ile 345 Ala Ala Pro Val Lys Ser Gly Leu Lys Pro Pro Thr Ser Lys Leu 360 Gly Ser Ala Thr Ser Met Ser Lys Leu Cys Thr Pro Lys Val Ser 375

SUBSTITUTE SHEET (RULE 26)

ting a contration to the contration of the first of the contration of the contration

FIG. 6 CONTINUED.

28/99

Tyr	Arg	J Lys	5 Thi	Asp	Ala	Pro	Ile	Ile	Ser	Glr	Gln	Asp	Se	r Lys		390
Arg	Cys	Ser	Lys	Ser	Ser	Glu	Glu	Glu	Ser	Gly	/ Tyr	Ala	Gl	y Phe		405
Asn	Ser	Thr	Ser	Pro	Thr	Ser	Ser	Ser	Thr	Glu	Gly	Ser	Le	ı Ser		420
Met	His	Ser	Thr	Ser	Ser	Lys	Ser	Ser	Thr	Ser	Asp	Glu	Lys	s Ser		435
Pro	Ser	Ser	Asp	Asp	Leu	Thr	Leu	Asn	Ala	Ser	Ile	Val	Thi	Ala		450
Ile	Arg	Gln	Pro	Ile	Ala	Ala	Thr	Pro	Val	Ser	Pro	Asn	Ile	lle		465
Asn	Lys	Pro	Val	Glu	Glu	Lys	Pro	Thr	Leu	Ala	Val	Lys	Gly	Val	,	480
Lys	Ser	Thr	Ala	Lys	Lys	Asp	Pro	Pro	Pro	Ala	Val	Pro	Pro	Arg		495
Asp	Thr	Gln	Pro	Thr	Ile	Gly	Val	Val	Ser	Pro	Ile	Met	Ala	His		510
Lys	Lys	Leu	Thr	Asn	Asp	Pro	Val	Ile	Ser	Glu	Lys	Pro	Glu	Pro		525
Glu	Lys	Leu	Gln	Ser	Met	Ser	Ile	Asp	Thr	Thr	Asp	Val	Pro	Pro		540
Leu	Pro	Pro	Leu	Lys	Ser	Val	Val	Pro	Leu	Lys	Met	Thr	Ser	Ile		555
Arg	Gln	Pro	Pro	Thr	Tyr	Asp	Val	Leu	Leu	Lys	Gln	Gly	Lys	Ile		570
Thr	Ser	Pro	Val	Lys	Ser	Phe	Gly	Tyr	Glu	Gln	Ser	Ser	Ala	Ser		585
Glu	Asp	Ser	Ile	Val	Ala	His	Ala	Ser	Ala	Gln	Val	Thr	Pro	Pro		600
Thr	Lys	Thr	Ser	Gly	Asn	His	Ser	Leu	Glu	Arg	Arg	Met	Gly	Lys		615
Asn	Lys	Thr	Ser	Glu	Ser	Ser	Gly	Tyr	Thr	Ser	Asp	Ala	Gly	Val		630
Ala	Met	Cys	Ala	Lys	Met	Arg	Glu	Lys	Leu	Lys	Glu	Tyr	Asp	Asp		645
Met	Thr	Arg	Arg	Ala	Gln	Asn	Gly	Tyr	Pro	Asp	Asn	Phe	Glu	Asp		660
Ser	Ser	Ser	Leu	Ser	Ser	Gly	Ile	Ser	Asp	Asn	Asn	Glu	Leu	Asp		675
Asp	Ile	Ser	Thr	Asp	Asp	Leu	Ser	Gly	Val	Asp	Met	Ala	Thr	Val		690
Ala	Ser	Lys	His	Ser	Asp	Tyr	Ser	His	Phe	Val	Arg	His	Pro	Thr	•	705
Ser	Ser	Ser	Ser	Lys	Pro	Arg	Val	Pro	Ser	Arg	Ser	Ser	Thr	Ser		720
Val	Asp	Ser	Arg	Ser	Arg	Ala	Glu	Gln	Glu	Asn	Val	Tyr	Lys	Leu		735
Leu	Ser	Gln	Cys	Arg	Thr	Ser	Gln	Arg	Gly	Ala	Ala	Ala	Thr	Ser		750
Thr	Phe	Gly	Gln	His	Ser	Leu	Arg	Ser	Prò	Gly	Tyr	Ser	Ser	Tyr		765
Ser	Pro	His	Leu	Ser	Val	Ser	Ala.	Asp	Lys	Asp	Thr	Met	Ser	Met	•	780

FIG. 6 CONTINUED.

29/99

His	s Sei	Glr	Th:	r Se	r Arg	g Arg	Pro	Ser	Ser	Glr	Lys	Pro	Se	r Tyr	79	15
Ser	Gly	/ Glr	n Phe	e His	s Ser	Leu	Asp	Arg	J Lys	Cys	His	Lev	Gli	ı Glu	81	0
Phe	Thi	Ser	Thi	Glu	ı His	Arg	Met	Ala	Ala	Lev	Leu	Ser	Pro	Arg	82	5
Arg	[Va]	Pro) Asr	Ser	Met	Ser	Lys	Tyr	Asp	Ser	Ser	Gly	Ser	Tyr	84	0
Ser	Ala	Arg	Ser	Arg	g Gly	Gly	Ser	Ser	Thr	Gly	Ile	Tyr	Gly	/ Glu	85	5
Thr	Phe	Gln	Leu	His	Arg	Leu	Ser	Asp	Glu	Lys	Ser	Pro	Ala	His	87	0
Ser	Ala	Lys	Ser	Glu	Met	Gly	Ser	Gln	Leu	Ser	Leu	Ala	Ser	Thr	88	5
Thr	Ala	Tyr	Gly	Ser	Leu	Asn	Glu	Lys	Tyr	Glu	His	Ala	Ile	Arg	90	0
Asp	Met	Ala	Arg	Asp	Leu	Glu	Cys	Tyr	Lys	Asn	Thr	Val	Asp	Ser	91	5
Leu	Thr	Lys	Lys	Gln	Glu	Asn	Tyr	Gly	Ala	Leu	Phe	Asp	Leu	Phe	930	0
Glu	Gln	Lys	Leu	Arg	Lys	Leu	Thr	Gln	His	Ile	Asp	Arg	Ser	Asn	94	5
Leu	Lys	Pro	Glu	Glu	Ala	Ile	Arg	Phe	Arg	Gln	Asp	Ile	Ala	His	960)
Leu	Arg	Asp	Ile	Ser	Asn	His	Leu	Ala	Ser	Asn	Ser	Ala	His	Ala	975	5
Asn	Glu	Gly	Ala	Gly	Glu	Leu	Leu	Arg	Gln	Pro	Ser	Leu	Glu	Ser	990)
Val	Ala	Ser	His	Arg	Ser	Ser	Met	Ser	Ser	Ser	Ser	Lys	Ser	Ser	1005	5
Lys	Gln	Glu	Lys	Ile	Ser	Leu	Ser	Ser	Phe	Gly	Lys	Asn	Lys	Lys	1020)
Ser	Trp	Ile	Arg	Ser	Ser	Leu	Ser	Lys	Phe	Thr	Lys	Lys	Lys	Asn	1035	>
Lys	Asn	Tyr	Asp	Glu	Ala	His	Met	Pro	Ser	Ile	Ser	Gly	Ser	Gln	1050)
Gly	Thr	Leu	Asp	Asn	Ile	Asp	Val	Ile	Glu	Leu	Lys	Gln	Glu	Leu	1065	,
Lys	Glu	Arg	Asp	Ser	Ala	Leu	Tyr	Glu	Val	Arg	Leu	Asp	Asn	Leu	1080)
Asp	Arg	Ala	Arg	Glu	Val	Asp	Val	Leu	Arg	Glu	Thr	Val	Asn	Lys	1095	;
Leu	Lys	Thr	Glu	Asn	Lys	Gln	Leu	Lys	Lys	Glu	Val	Asp	Lys	Leu	1110)
Thr	Asn	Gly	Pro	Ala	Thr	Arg	Ala	Ser	Ser	Arg	Ala	Ser	Ile	Pro	1125	,
Val	Ile	Tyr	Asp	Asp	Glu	His	Val	Tyr	Asp	Ala	Ala	Cys	Ser	Ser	1140)
Thr	Ser	Ala	Ser	Gln	Ser	Ser	Lys	Arg	Ser	Ser	Gly	Cys	Asn	Ser	1155	7
Ile	Lys	Val	Thr	Val	Asn	Val	Asp	Ile	Ala	Gly	Glu	Ile	Ser	Ser	1170	l .
Ile	Val	Asn	Pro	Asp	Lys	Glu	Ile	Iļe	Val	Gly	Tyr	Leu	Ala	Met	1185	,

SUBSTITUTE SHEET (RULE 26)

WO 96/38555 PCT/EP96/02311

FIG.6 CONTINUED.

30/99

Ser	Thr	Ser	Gln	Ser	Cys	Trp	Lys	Asp	Ile	Asp	Val	Ser	Ile	Leu	1200
Gly	Leu	Phe	Glu	, Val	Tyr	Leu	Ser	Arg	Ile	Asp	Val	Glu	His	Gln	1215
Leu	Gly	Ile	Asp	Ala	Arg	Asp	Ser	Ile	Leu	Gly	Tyr	Gln	Ile	Gly	1230
Glu	Leu	Arg	Arg	Val	Ile	Gly	Asp	Ser	Thr	Thr	Met	Ile	Thr	Ser	1245
His	Pro	Thr	Asp	Ile	Leu	Thr	Ser	Ser	Thr	Thr	Ile	Arg	Met	Phe	1260
Met	His	Gly	Ala	Ala	Gln	Ser	Arg	Val	Asp	Ser	Leu	Val	Leu	Asp	1275
Met	Leu	Leu	Pro	Lys	Gln	Met	Ile	Leu	Gln	Leu	Val	Lys	Ser	Ile	1290
Leu	Thr	Glu	Arg	Arg	Leu	Val	Leu	Ala	Gly	Ala	Thr	Gly	Ile	Gly	1305
Lys	Ser	Lys	Leu	Ala	Lys	Thr	Leu	Ala	Ala	Tyr	Val	Ser	Ile	Arg	1320
Thr	Asn	Gln	Ser	Glu	Asp	Ser	Ile	Val	Asn	Ile	Ser	Ile	Pro	Glu	1335
Asn	Asn	Lys	Glu	Glu	Leu	Leu	Gln	Val	Glu	Arg	Arg	Leu	Glu	Lys	1350
Ile	Leu	Arg	Ser	Lys	Glu	Ser	Cys	Ile	Val	Ile	Leu	Asp	Asn	Ile	1365
Pro	Lys	Asn	Arg	Ile	Ala	Phe	Val	Val	Ser	Val	Phe	Ala	Asn	Val	1380
Pro	Leu	Gln	Asn	Asn	Glu	Gly	Pro	Phe	Val	Val	Cys	Thr	Val	Asn	1395
Arg	Tyr	Gln	Ile	Pro	Glu	Leu	Gln	Ile	His	His	Asn	Phe	Lys	Met	1410
Ser	Val	Met	Ser	Asn	Arg	Leu	Glu	Gly	Phe	Ile	Leu	Arg	Týr	Leu	1425
Arg	Arg	Arg	Ala	Val	Glu	Asp	Glu	Tyr	Arg	Leu	Thr	Val	Gln	Met	1440
Pro	Ser	Glu	Leu	Phe	Lys	Ile	Ile	Asp	Phe	Phe	Pro	Ile	Ala	Leu	1455
Gln	Ala	Val	Asn	Asn	Phe	Ile	Glu	Lys	Thr	Asn	Ser	Val	Asp	Val	1470
Thr	Val	Gly	Pro	Arg	Ala	Cys	Leu	Asn	Cys	Pro	Leu	Thr	Val	Asp	1485
Gly	Ser	Arg	Glu	Trp	Phe	Ile	Arg	Leu	Trp	Asn	Glu	Asn	Phe	Ile	1500
Pro	Tyr	Leu	Glu	Arg	Val	Ala	Arg	Asp	Gly	Lys	Lys	Thr	Phe	Gly	1515
Arg	Cys	Thr	Ser	Phe	Glu	Asp	Pro	Thr	Asp	Ile	Val	Ser	Lys	Lys	1530
Trp	Pro	Trp	Phe	Asp	Gly	Glu	Asn	Pro	Glu	Asn	Val	Leu	Lys	Arg	1545
Leu	Gl'n	Leú	Gln	Asp	Leu	Val	Pro	Ser	Pro	Ala	Asn	Ser	Ser	Arg	1560
Gln	His	Phe	Asn	Pro	Leu	Glu	Ser	Leu	Ile	Gln	Leu	His	Ala	Thr	1575
Lys	His	Gln	Thr	Ile	Asp	Asn	Ile	•	•	-					

SUBSTITUTE SHEET (RULE 26)

FIG. 7.

31/99

MTTSNVELIPIYTDWANRHLSKGSLSKSIRDISNDFRDYRLVSQLINVIVPINEFSPAFT KRLAKITSNLDGLETCLDYLKNLGLDCSKLTKTDIDSGNLGAVLQLLFLLSTYXXXXXXX XXXXXXXXXPTSIMPPAVSKLXXXXXXXXXXXXXXXXXXXFPQMSTSRLQTPOXXXXXX XXXNLNRPTSQLQKPSRPQTQLVRVATTTKIGSSKLAAPKAVSTPKLASVKTIGAKQEPD NSXXXXXXXXXXXXXXXXXXXXXXXQPTRKAAAVPQQQTLSK1AAPVKSGLKPPTSKL GSATSMSKLCTPKVSYRKTDAPI ISQQDSKRCSKXXXXXXGYAGFNXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXDDLTLNASIVTAIRQPIAATPVSPNIINKPVEEKPTLAVKGV KSTAKKDPPPAVPPRDTQPTIGVVSPIMAHKKLTNDPVISEKPEPEKLQSMSIDTTDXXX XXXXXXXXXXMTSIRQPPTYDVLLKQGKITSPVKSFGYEQSSASEDSIVAHASAQVTPP TKTSGNHSLERRMGKNKTSESSGYTSDAGVAMCAKMREKLKEYDDMTRRAQNGYPDNFED XXXXXXAEQENVYKLLSQCRTSQRGAAATSTFGQHSLRSPGYSSYSPHLSVSADKDTMSM HSQTSRRPSSQKPSYSGQFHSLDRKCHLQEFTSTEHRMAALLSPRRVPNXXXXXXXXXXXX XXXXXXXXXXIYGETFQLHRLSDEKSPAHSAKSEMGSQLSLASTTAYGSLNEKYEHAIR DMARDLECYKNTVDSLTKKQENYGALFDLFEQKLRKLTQHIDRSNLKPEEAIRFRQDIAH LRDISNHLASNSAHANEGAGELLRQPSLEXXXXXXXXXXXXXXXXXXXXXXXXFGKNKK SWIRSSLSKFTKKKNKNYDEAHMPSISGSQGTLDNIDVIELKQELKERDSALYEVRLDNL DRAREVDVLRETVNKLKTENKQLKKEVDKLTNGPATRASSRASIPVIYDDEHVYDXXXXX XXXXXXXXXXGCNXXXXXXXXXXXXXXXXXXXXXDKEIIVGYLAMSTSQSCWKDIDVSIL GLFEVYLSRIDVEHQLGIDARDSILGYQIGELRRVIGDSTTMITSHPTDILTSSTTIRMF MHGAAQSRVDSLVLDMLLPKQMILQLVKSILTERRLVLAGATGIGKSKLAKTLAAYVSIR TNQSEDSIVNISIPENNKEELLQVERRLEKILRSKESCIVILDNIPKNRIAFVVSVFANV PLQNNEGPFVVCTVNRYQIPELQIHHNFKMSVMSNRLEGFILRYLRRRAVEDEYRLTVQM PSELFKI IDFFP I ALQAVNNF I EKTNSVDVTVGPRACLNCPLTVDGSREWF I RLWNENF I **PYLERVARDGKKNLRSLHFLRGSHRHRL**

MTTSNVELIPIYTDWANRHLSKGSLSKSIRDISNDFRDYRLVSQLINVIVPINEFSPAFT KRLAKITSNLDGLETCLDYLKNLGLDCSKLTKTDIDSGNLGAVLQLLFLLSTYKOKLROL KKDOKKLEOLPTSIMPPAVSKLPSPRVATSATASATNPNSNFPQMSTSRLQTPOSRISKI <u>DSSKIGIKPK</u>TSGLKP<u>PSSSTTSSNNTNSFRPSSRSSGNNNVGSTISTSAKSLESSSTYS</u> SISNLNRPTSQLQKPSRPQTQLVRVATTTKIGSSKLAAPKAVSTPKLASVKTIGAKQEPD NSGGGGGGMLKLKLFSSKNPSSSSNSPQPTRKAAAVPQQQTLSKIAAPVKSGLKPPTSKL GSATSMSKLCTPKVSYRKTDAPI I SQQDSKRCSKSSEEESGYAGFNSTSPTSSSTEGSLS MHSTSSKSSTSDEKSPSSDDLTLNASIVTAIROPIAATPVSPNIINKPVEEKPTLAVKGV KSTAKKDPPPAVPPRDTQPTIGVVSPIMAHKKLTNDPVISEKPEPEKLOSMSIDTTDVPP <u>LPPLKSVVPLK</u>MTSIRQPPTYDVLLKQGKITSPVKSFGYEOSSASEDSIVAHASAOVTPP TKTSGNHSLERRMGKNKTSESSGYTSDAGVAMCAKMREKLKEYDDMTRRAONGYPDNFED <u>SSSLSSGISDNNELDDISTDDLSGVDMATVASKHSDYSHFVRHPTSSSSKPRVPSRSSTS</u> <u>VDSRSR</u>AEQENVYKLLSQCRTSQRGAAATSTFGQHSLRSPGYSSYSPHLSVSADKDTMSM HSQTSRPSSQKPSYSGQFHSLDRKCHLQEFTSTEHRMAALLSPRRVPNSMSKYDSSGSY <u>SARSRGGSSTG</u>IYGETFQLHRLSDEKSPAHSAKSEMGSQLSLASTTAYGSLNEKYEHAIR DMARDLECYKNTVDSLTKKQENYGALFDLFEQKLRKLTQHIDRSNLKPEEAIRFRQDIAH LRDISNHLASNSAHANEGAGELLRQPSLESVASHRSSMSSSSKSSKOEKISLSSFGKNKK SWIRSSLSKFTKKKNKNYDEAHMPSISGSQGTLDNIDVIELKOELKERDSALYEVRLDNL DRAREVDVLRETVNKLKTENKQLKKEVDKLTNGPATRASSRASIPVIYDDEHVYDAACSS

SUBSTITUTE SHEET (RULE 26)

and the contract of the contract of the contract of the cold of the contract o

FIG. 7 CONTINUED.

TSASOSSKRSSGCNSIKVTVNVDIAGEISSIVNPDKEIIVGYLAMSTSQSCWKDIDVSIL GLFEVYLSRIDVEHQLGIDARDSILGYQIGELRRVIGDSTTMITSHPTDILTSSTTIRMF MHGAAQSRVDSLVLDMLLPKQMILQLVKSILTERRLVLAGATGIGKSKLAKTLAAYVSIR TNQSEDSIVNISIPENNKEELLQVERRLEKILRSKESCIVILDNIPKNRIAFVVSVFANV PLQNNEGPFVVCTVNRYQIPELQIHHNFKMSVMSNRLEGFILRYLRRRAVEDEYRLTVQM PSELFKIIDFFPIALQAVNNFIEKTNSVDVTVGPRACLNCPLTVDGSREWFIRLWNENFI PYLERVARDGKKNLRSLHFLRGSHRHRL

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

nucleotide binding domain nvc/estide binding domain binding domain binding domain nucleotide nucleotide DT850. PT851. PT854. PT855. PT856. PT861. PT8109. PT8 110. PT8111. PT8112. 4852 4852 4852 4852 4852 p1857. p1858. p1859. p1860. p1863. p1864. 99 810 5H3B5 54385 48PH 4851 1884 HB81 0785253 48PH ack CK3937

SUBSTITUTE SHEET (RULE 26)

5'ataaqaatqcqqccqccATGACGACGTCAAATGTAGAATTGATA (01igo BG03)

5'ggaattccaaccatATGACGACGTCAAATGTAGAATTGATA (oligo BG01)

ATGACGACGTCAAATGTAGAATTGATACCAATCTACAGGATTGGGCCAATCGGCACCTTTCG

AAGGGCAGCTTATCAAAGTCGATTAGGGATATTTCCAATGATTTTCGCGACTATCGACTGGTT

TCTCAGCTTATTAATGTGATCGTTCCGATCAACGAATTCTCGCCTGCATTCACGAAACGTTTG

GCAAAAATCACATCGAACCTGGATGGCCTCGAAACGTCTCGACTACCTGAAAATCTGGGT

CTCGACTGCTCCTCCTCCACCTACAAGCAGAAGCTTCGGCAAACTTGGGTGCAGAAAA

TTGGAGCAACTACCCACATTATGCCACCCGGGTTTCTAAATTACCCTCGCCACGTGTC

(oligo BG02) GTAGGTAATACGGTGGGCGCCAAActcctaggcgc-5

F16.

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

F1G. 14c.

S4

5'
gatcagaagaaattggagcaactacccacatccattatgccacccgcggtttctaagtgagt
ttaattttgagtttacgactacaaaaatgtgttcttta

ccgccttctgacttcgtgacgacagtctcgacacgtggggttgcaggtaggagtggatgagtcgaaactgataagatagtcatttgagatc 3'

Co-ordinates in ACEDB.
5' begins at position 2260 in CO9HIO.
3' finishes at 3287 in F45 E10.

Total 16818 bp.

41/99

FIG. 15.

(a) aact 1 MSEEPTPVSGNDKQLLNKAWEITQKKTFTAWCNSHLRK--LGSSIEQIDTDFTDGIKLAQ (b) unc-53 1 MTTSNVELIPIYTDWANRHLSKGSLSKSIRDISNDFRDYRLVSQ (C) spectrin 40 FERSRIKALADEREVVOKKTFTKWVNSHLAR--VSCRITDLYKDLRDGRMLIK (d) aact LLEVISNDPVFKVNKTPKLRRIH-NIQNVGLCLKHIESHGVKLVGIGAEELVDKNLKMTL (e) unc-53 LINVIVPINEFSPAFTKRLAKITSNLDGLETCLDYLKNLGLDCSKLTKTDIDSGNLGAVL (f) spectrin LLEVL-S-GEMLPKPTKGKMRIHC-LENVDKALQFLKEQRVHLENMGSHDIVDGNHRLVL (g) aact GMIWTIILRFAIQDISIEEL-----SAKEALLLWCQRKTEGYDRVKV ::: :: : : : (h) unc-53 QLLF-LLSTYK-QKLRQLKKDQKKLEQLPTSIMPPAVSKLPSPRVATS (i) spectrin GLIWTIILRFQIQDIVVQTQEGRETRSAKDALLQFLKEQRVHLENMGS actin binding region in unc-53 ?

KAMBARING TERUPATAN KITAN TERUPATAN PARTAN PARTAN PARTAN ENGAL PERSAMBAN PER

FIG. 16.

LLFLLSTYKQKLRQLKKDQKKLEQLPTS unc-53 106 to 133
: | :||||: || |::
ETVNVNKLKTENKQLKKEVDKLTNGPAT unc-53 1093 to 1120

FIG. 17.

	side on h	elix	1	4	7
			Хp	hPpx	¢Ρ
(a)	UNC-53		KK <u>D</u> P	P <u>P</u> AV	<u>P</u> PRDT
(6)	UNC-53		TT <u>D</u> V	P <u>P</u> LF	PLKS
(0)	mSOS		EVPV	P <u>P</u> PV	<u>P</u> PRR
(d)	mSOS		HL <u>D</u> S	P <u>P</u> AI	<u>P</u> P <u>R</u>
<i>(e)</i>	mSOS		HSIA	G <u>P</u> PV	PPR
(F)	SOS 1359		YRAV	P <u>P</u> PL	<u>P</u> PRRK
(9)	SOS 1377		GELS	P <u>P</u> PI	<u>P</u> P <u>R</u> LN
(h)	Dynamin		APAVI	P <u>P</u> AR	<u>P</u> GS
(i)	dynamin			PAV	P <u>P</u> AR <u>P</u>
(j)	PI3K p85		PPRPI	L <u>P</u> VA	PGS
(K)	PI3K p85		PAPAI	<u>P</u> PK	<u>PPK</u>
(1)	AFAP-110	P	PDNG	PPL	PTSS
(m)	AFAP-110	P	PQMPI	L <u>P</u> EI	PQQW
(n)	3BP-1	APTM:	PPPLE	PVP.	<u>P</u> ;
(0)	3BP-2	F	PAYPE	PPV	PVP

FIG. 18.

43/99

v	1 MTTSNVEL	11 [P IYTDWANF	21 HL SKGSLSK	31 SIR DISNDFRI	41 DYR LVSQLIM	51 VIV PINEFSPAFT
н	1	11	21	31	41	51
V	61 KRLAKITSN	71	81	91	101	111 LL STYKQKLRQL
H V	61	71	81	91 151	101	111
•	KKDÇKKLEÇ	L PTSIMPPA	VS KLPSPRVA	TS ATASATNE	NS NEPOMSTS	171 RL QTPQSRISKI
н V	121 181	131	141	151 211	161	171
•	DSSKIGIKP	K TSGLKPPS	SS TTSSNTN	SF RPSSRSSG	NN NVGSTIST	231 SA KSLESSSTYS
н	181	191	201	211	221	231
V	241 SISNLNRPT	S QLQKPSRP(OT OLVRVATT	TK IGSSKLAA		291 SV KTIGAKQEPD
н		251	261	271	281	291
•	NSGGGGGGM		IP SSSSNSPQ	PT RKAAAVPQ	•• ••••••	K SGLKPPTSKL
н	301	311	321	331	341	K SGLKPPTSKL 351
V	********	TPKVSYRKT	D APIISQQDS	K RCSKSSEE		P TSSSTEGSLS
н		17.1	381	391	401	P TSSSTEGSLS
V	***************************************	SDEKSPSSD	D LTLNASIVI	451 A IROPIAATE	461 PV SPNIINKPV	E EKPTLAVKGV
H	MHSTSSKSST			A IROPIAATE 451		E EKPTLAVKGV
Ÿ,	481 4 KSTAKKOPPP	91 AVPPRDTQP	501 T igvvspima	511 JI KKLTNDPVI	521 S EKPEPEKLO	531 S MSIDTTDVPP
		AVPPRDTQP	T IGVVSPIMA	H KKLTNDPVI	S EKPEPEKLQ	S MSIDTTDVPP
н V	481 4	91	501	511	521	531 591
	*******	*******	• ••••••	I TSPVKSFGY	E QSSASEDSI	V AHASAQVTPP
H			r ydvilkogk 561			V AHASAQVTPP 591
V	TKTSGNHSLE	RRMGKNKTS	E SSGYTSDAG	V AMCAKMREK	L KEYDDMTRR	
н						A QNGYPDNFED
V	SSSLSSGISD	71 NNELDDIST	681 D DLSGVDMAT	691 V ASKHSDYSH	701 F VRHPTSSSSI	711 C PRVPSRSSTS
	SSSLSSGISD	NNELDDIST	D DLSGVDMAT	,	· ····································	C PRVPSRSSTS
H V	661 6	71 - (691 ·	701	
	VDSRSRAEQE	NVYKLLSQC	TSORGAAATS	TEGOHSLES	PGYSSYSPHLS	VSADKDTMSM

APPART TO THE SEASON AND THE COLUMN TO THE C

FIG. 18 CONTINUED.

	VDSRSRAEQE NVYKLLSQCR TSQRGAAATS TFGQHSLRSP GYSSYSPHLS VS	adkdtmsm
H	721 731 741 751 761 771	
V		
	HSQTSRRPSS QKPSYSGQFH SLDRKCHLQE FTSTEHRMAA LLSPRRVPNS MS	

	HSQTSRRPSS QKPSYSGQFH SLDRKCHLQE FTSTEHRMAA LLSPRRVPNS MS	KYDSSGSY
Н		
٧	7 841 851 861 871 881 891 SARSRGGSST GIYGETFQLH RLSDEKSPAH SAKSEMGSQL SLASTTAYGS LN	EKYEHDIR
	2462400001 Oliopitānu vapanustat ordeniosān amerintos mi	
	SARSRGGSST GIYGETFQLH RLSDEKSPAH SAKSEMGSQL SLASTTAYGS LN	EKYEHAIR
H	841 851 861 871 881 891	
V		
	DMARDLECYK NTVDSLTKKQ ENYGALFDLF EQKLRKLTQH IDRSNLKPEE AII	RERODIAH
	DMARDLECYK NTVDSLTKKQ ENYGALFDLF EQKLRKLTQH IDRSNLKPEE AII	CERQUIAH
H V		
V	LRDISNHLAS NSAHANEGAG ELLRQPSLES VASHRSSMSS SSKSSKQEKI SLS	SEGKNKK
	******** ******** ******* ******* ******	
	LRDISNHLAS NSAHANEGAG ELLRQPSLES VASHRSSMSS SSKSSKQEKI SLS	SEGKNKK
H		
V		EVEL DAIL
	SWIRSSLSKF TKKKNKNYDE AHMPSISGSQ GTLDNIDVIE LKQELKERDS ALY	
	SWIRSSLSKE TKKKNKNYDE AHMPSISGSQ GTLDNIDVIE LKQELKERDS ALY	
н		
Ÿ	1081 1091 1101 1111 1121 1131	
	DRAREVOVLR ETVNKLKTEN KQLKKEVDKL TNGPATRASS RASIPVIYDD EHV	YDAACSS
	*********	*******
	DRAREVDVLR ETVNKLKTEN KQLKKEVDKL TNGPATRASS RASIPVIYDD EHV 1081 1091 1101 1111 1121 1131	IDAACSS
H V	1081 1091 1101 1111 1121 1131 1141 1151 1161 1171 1181 1191	
•	TSASQSSKRS SGCNSIKVTV NVDIAGEISS IVNPDKEIIV GYLAMSTSQS CWK	DIDVSIL
	******** ******* ******** ******** *****	•••••
	TSASQSSKRS SGCNSIKVTV NVDIAGEISS IVNPDKEIIV GYLAMPTSQS CWK	DIDVSIL
Н	1141 1151 1161 1171 1181 1191	
V	1201 1211 1221 1231 1241 1251 GLFEVYLSRI DVEHQLGIDA RDSILGYQIG ELRRVIGDST TMITSHPTDI LTS	STTIBME
	GPEGATOR SERVICES RESERVED SERVED SERVED SERVED TO	******
	GLFEVYLSRI DVEHQLGIDA RDSILGYQIG ELRRVIGDST TMITSHPTDI LTS	STTIRME
н	1201 1211 1221 1231 1241 1251	
V	1261 1271 1281 1291 1301 1311	DDV1/CTD
	MHGAAQSRVD SLVLDMLLPK QMILQLVKSI LTERRLVLAG ATGIGKSKLA KTL	*******
	MHGAAQSRVD SLVLDMLLPK QMILQLVKSI LTERRLVLAG ATGIGKSKLA KT	LAAYVSIR
н	1261 1271 1281 1291 1301 1311	
v	1321 1331 1341 1351 1361 1371	
	TNOSEDSIVN ISIPENNKEE LLQVERRLEK ILRSKESCIV ILDNIPKNRI AFV	VSVFANV
	********* ******* ******** ******** ****	
	THOSEDSIVN ISIPENNKEE LLQVERRLEK ILRSKESCIV ILDNIPKNRI AFV	SVFANV
H	1321 1331 1341 1351 1361 1371 1381 1391 1401 1411 1421 1431	
V ,	1381 1391 1401 1411 1421 1431 PLONNEGPFV VCTVNRYQIP ELQIHHNFKM SVMSNRLEGF ILRYLRRRAV EDE	YRLTVOM

	PLONNEGPEV VCTVNRYQIP ELQIHHNEKM SVMSNRLEGE ILRYLRRRAV EDE	/RLTVQM
H	1381 1391 1401 1411 1421 1431	
٧	1441 1451 1461 1471 1481 1491	LINDALDA
	PSELFKIIDF FPIALQAVNN FIEKTNSVDV TVGPRACLNC PLTVDGSREW FIR	THUP WS.T

FIG. 18 CONTINUED

	PSELFKIIDF	FPIALQAVNN	FIEKTNSVDV	TVGPRACLNC	PLTVDGSREW	FIRLWNENFI
H	1441 145	51. 140	51 14°	71 148	31 149	1
٧	1501 15:					•
1	PYLERVARDG	KKNLRSLHFL	RGSHRHRL			
	PYLERVARDG	KKTFGRCTSF	EDPTDIVSEK	WPWFDGENPE	NVLKRLQLQD	LVPSPANSSR
Н	1501 151	11 152	21 15	31 154	155	1
V						
•	QHFNPLESLI				<i>:</i> • •	7
Н	1561 157	71 158	31			

- Promiseration allowers to a control promise of the control programme of the control of the con

FIG. 19.

F1G. 20.

FIG. 21.

FIG. 22.

50/99 F16. 23.

FIG. 24.

FIG. 25.

FIG. 26

GCCCCCCCC	ATGACGACG1	CAAATGTAGA	ATTGATACCA	ATCTACACGG	ATTGGGCCAA	60
TCGGCACCTT	TCGAAGGGCA	GCTTATCAA	GTCGATTAGG	GATATTTCCA	ATGATTTTCG	120
CGACTATCGA	CTGGTTTCTC	AGCTTATTA	TGTGATCGTT	CCGATCAACG	AATTCTCGCC	180
TGCATTCACG	AAACGTTTGG	CAAAAATCAC	ATCGAACCTG	GATGGCCTCG	AAACGTGTCT	240
CGACTACCTG	AAAAATCTGG	GTCTCGACTG	CTCGAAACTC	ACCAAAACCG	ATATCGACAG	300
CGGAAACTTG	GGTGCAGTTC	TCCAGCTGCT	CTTCCTGCTC	TCCACCTACA	AGCAGAAGCT	360
TCGGCAACTG	AAAAAAGATC	AGAAGAAATT	GGAGCAACTA	CCCACATCCA	TTATGCCACC	420
CGCGGTTTCT	AAATTACCCT	CGCCACGTGT	CGCCACGTCA	GCAACCGCTT	CAGCAACTAA	480
CCCAAATTCC	AACTTTCCAC	AAATGTCAAC	ATCCAGGCTT	CAGACTCCAC	AGTCAAGAAT	540
ATCGAAAATT	GATTCATCAA	AGATTGGTAT	CAAGCCAAAG	ACGTCTGGAC	TTAAACCACC	600
CTCATCATCA	ACCACTTCAT	CAAATAATAC	AAATTCATTC	CGTCCGTCGA	GCCGTTCGAG	660
TGGCAATAAT	AATGTTGGCT	CGACGATATC	CACATCTGCG	AAGAGCTTAG	AATCATCATC	720
AACGTACAGC	TCTATTTCGA	ATCTAAACCG	ACCTACCTCC	CAACTCCAAA	AACCTTCTAG	780
ACCACAAACC	CAGCTAGTTC	GTGTTGCTAC	ААСТАСАААА	ATCGGAAGCT	CAAAGCTAGC	840
CGCTCCGAAA	GCCGTGAGCA	CCCCAAAACT	TGCTTCTGTG	AAGACTATTG	GAGCAAAACA	900
AGAGCCCGAT	AACAGCGGTG	GTGGTGGTGG	TGGAATGCTG	AAATTAAAGT	TATTCAGTAG	960
CAAAAACCCA	TCTTCCTCAT	CGAATAGCCC	ACAACCTACG	AGAAAGGCGG	CGGCGGTGCC	1020
TCAACAACAA	ACTTTGTCGA	AAATCGCTGC	CCCAGTGAAA	AGTGGCCTGA	AGCCGCCGAC	1080
CAGTAAGCTG	GGAAGTGCCA	CGTCTATGTC	GAAGCTTTGT	ACGCCAAAAG	TTTCCTACCG	1140
TAAAACGGAC	GCCCCAATCA	TATCTCAACA	AGACTCGAAA	CGATGCTCAA	AGAGCAGTGA	12,00
AGAAGAGTCC	GGATACGCTG	GATTCAACAG	CACGTCGCCA	ACGTCATCAT	CGACGGAAGG	1260
TTCCCTAAGC	ATGCATTCCA	CATCTTCCAA	GAGTTCAACG	TCAGACGAAA	AGTCTCCGTC	1320
ATCAGACGAT	CTTACTCTTA	ACGCCTCCAT	CGTGACAGCT	ATCAGACAGC	CGATAGCCGC	1380
ACACCGGTT	TCTCCAAATA	TTATCAACAA	GCCTGTTGAG	GAAAAACCAA	Cherecener	1440

FIG. 26 CONTINUED.

54/99

	GAAAGGAGTG	AAAAGCACAG	CGAAAAAAGA	TCCACCTCCA	GCTGTTCCGC	CACGTGACAC	1500
	CCAGCCAACA	ATCGGAGTTG	TTAGTCCAAT	TATGGCACAT	AAGAAGTTGA	CAAATGACCC	1560
	CGTGATATCT	GAAAAACCAG	AACCTGAAAA	GCTCCAATCA	ATGAGCATCG	ACACGACGGA	1620
	CGTTCCACCG	CTTCCACCTC	TAAAATCAGT	TGTTCCACTT	AAAATGACTT	CAATCCGACA	1680
	ACCACCAACG	TACGATGTTC	TTCTAAAACA	AGGAAAAATC	ACATCGCCTG	TCAAGTCGTT	1740
	TGGATATGAG	CAGTCGTCCG	CGTCTGAAGA	CTCCATTGTG	GCTCATGCGT	CGGCTCAGGT	1800
	GACTCCGCCG	ACAAAAACTT	CTGGTAATCA	TTCGCTGGAG	AGAAGGATGG	GAAAGAATAA	1860
	GACATCAGAA	TCCAGCGGCT	ACACCTCTGA	CGCCGGTGTT	GCGATGTGCG	CCAAAATGAG	1920
	GGAGAAGCTG	AAAGAATACG	ATGACATGAC	TCGTCGAGCA	CAGAACGGCT	ATCCTGACAA	1980
	CTTCGAAGAC	AGTTCCTCCT	TGTCGTCTGG	AATATCCGAT	AACAACGAGC	TCGACGACAT	2040
	ATCCACGGAC	GATTTGTCCG	GAGTAGACAT	GGCAACAGTC	GCCTCCAAAC	ATAGCGACTA	2100
	TTCCCACTTT	GTTCGCCATC	CCACGTCTTC	TTCCTCAAAG	CCCCGAGTCC	CCAGTCGGTC	2160
	CTCCACATCA	GTCGATTCTC	GATCTCGAGC	AGAACAGGAG	AATGTGTACA	AACTTCTGTC	2220
	CCAGTGCCGA	ACGAGCCAAC	GTGGCGCCGC	TGCCACCTCA	ACCTTCGGAC	AACATTCGCT	2280
	AAGATCCCCG	GGATACTCAT	CCTATTCTCC	ACACTTATCA	GTGTCAGCTG	ATAAGGACAC	2340
	AATGTCTATG	CACTCACAGA	CTAGTCGACG	ACCTTCTTCA	САААААССАА	GCTATTCAGG	2400
	CCAATTTCAT	TCACTTGATC	GTAAATGCCA	CCTTCAAGAG	TTCACATCCA	CCGAGCACAG	2460
	AATGGCGGCT	CTCTTGAGCC	CGAGACGGGT	GCCGAACTCG	ATGTCGAAAT	ATGATTCTTC	2520
	AGGATCCTAC	TCGGCGCGTT	CCCGAGGTGG	AAGCTCTACT	GGTATCTATG	GAGAGACGTT	2580
	CCAACTGCAC	AGACTATCCG	ATGAAAAATC	CCCCGCACAT	TCTGCCAAAA	GTGAGATGGG	2640
	ATCCCAACTA	TCACTGGCTA	GCACGACAGC	ATATGGATCT	CTCAATGAGA	AGTACGAACA	2700
	TGCTATTCGG	GACATGGCAC	GTGACTTGGA	GTGTTACAAG	AACACTGTCG	ACTCACTAAC	2760
	CAAGAAACAG	GAGAACTATG	GAGCATTGTT	TGATCTTTTT	GAGCAAAAGC	TTAGAAAACT	2820
	CACTCAACAC	ATTGATCGAT	CCAACTTGAA	GCCTGAAGAG	GCAATACGAT	TCAGGCAGGA	2880
	CATTGCTCAT	TTGAGGGATA	TTAGCAATCA	TCTTGCATCC	AACTCAGCTC	ATGCTAACGA	2940
٠	AGGCGCTGGT	GAGCTTCTTC	GTCAACCATC	TCTGGAATCA	GTTGCATCCC	ATCGATCATC	3000
	GATGTCATCG	TCGTCGAAAA	GCAGCAAGCA	GGAGAAGATC	AGCTTGAGCT	CGTTTGGCAA	3060
	GAACAAGAAG	AGCTGGATCC	GCTCCTCACT	CTCCAAGTTC	ACCAAGAAGA	AGAACAAGAA	3120
	CTACGACGAA	GCACATATGC	CATCAATTTC	CGGATCTCAA	GGAACTCTTG	ACAACATTGA	3180
•	TGTGATTGAG	TTGAAGCAAG	AGCTCAAAGA	ACGCGATAGT	GCACTTTACG	AAGTCCGCCT	3240
•	TGACAATCTG	GATCGTGCCC	GCGAAGTTGA	TGTTCTGAGG	GAGACAGTGA	ACAAGTTGAA	3300
į	AACCGAGAAC	AAGCAATTAA	AGAAAGAAGT	GGACAAACTC	ACCAACGGTC	CAGCCACTCG	3360

FIG.	26	CONTINUED.
------	----	------------

TGCTTCTTCC	CGCGCCTCAA	TTCCAGTTAT	CTACGACGAT	GAGCATGTCT	ATGATGCAGC	3420
GTGTAGCAGT	ACATCAGCTA	GTCAATCTTC	GAAACGATCC	TCTGGCTGCA	ACTCAATCAA	3480
GGTTACTGTA	AACGTGGACA	TCGCTGGAGA	AATCAGTTCG	ATCGTTAACC	CGGACAAAGA	3540
GATAATCGTA	GGATATCTTG	CCATGTCAAC	CAGTCAGTCA	TGCTGGAAAG	ACATTGATGT	3600
TTCTATTCTA	GGACTATTTG	AAGTCTACCT	ATCCAGAATT	GATGTGGAGC	ATCAACTTGG	3660
AATCGATGCT	CGTGATTCTA	TCCTTGGCTA	TCAAATTGGT	GAACTTCGAC	GCGTCATTGG	3720
AGACTCCACA	ACCATGATAA	CCAGCCATCC	AACTGACATT	CTTACTTCCT	CAACTACAAT	3780
CCGAATGTTC	ATGCACGGTG	CCGCACAGAG	TCGCGTAGAC	AGTCTGGTCC	TTGATATGCT	3840
TCTTCCAAAG	CAAATGATTC	TCCAACTCGT	CAAGTCAATT	TTGACAGAGA	GACGTCTGGT	3900
GTTAGCTGGA	GCAACTGGAA	TTGGAAAGAG	CAAACTGGCG	AAGACCCTGG	CTGCTTATGT	3960
ATCTATTCGA	ACAAATCAAT	CCGAAGATAG	TATTGTTAAT	ATCAGCATTC	CTGAAAACAA	4020
TAAAGAAGAA	TTGCTTCAAG	TGGAACGACG	CCTGGAAAAG	ATCTTGAGAA	GCAAAGAATC	4080
ATGCATCGTA	ATTCTAGATA	ATATCCCAAA	GAATCGAATT	GCATTTGTTG	TATCCGTTTT	4140
TGCAAATGTC	CCACTTCAAA	ACAACGAAGG	TCCATTTGTA	GTATGCACAG	TCAACCGATA	4200
TCAAATCCCT	GAGCTTCAAA	TTCACCACAA	TTTCAAAATG	TCAGTAATGT	CGAATCGTCT	4260
CGAAGGATTC	ATCCTACGTT	ACCTCCGACG	ACGGGCGGTA	GAGGATGAGT	ATCGTCTAAC	4320
TGTACAGATG	CCATCAGAGC	TCTTCAAAAT	CATTGACTTC	TTCCCAATAG	CTCTTCAGGC	4380
CGTCAATAAT	TTTATTGAGA	AAACGAATTC	TGTTGATGTG	ACAGTTGGTC	CAAGAGCATG	4440
CTTGAACTGT	CCTCTAACTG	TCGATGGATC	CCGTGAATGG	TTCATTCGAT	TGTGGAATGA	4500
GAACTTCATT	CCATATTTGG	AACGTGTTGC	TAGAGATGGC	ааааааасст	TCGGTCGCTG	4560
CACTTCCTTC	GAGGATCCCA	CCGACATCGT	СТСТААААА	TGGCCGTGGT	TCGATGGTGA	4620
AAACCCGGAG	AATGTGCTCA	AACGTCTTCA	ACTCCAAGAC	CTCGTCCCGT	CACCTGCCAA	4680
CTCATCCCGA	CAACACTTCA	ATCCCCTCGA	GTCGTTGATC	CAATTGCATG	CTACCAAGCA	4740
TCAGACCATC	GACAACATTT	GAACAGAAGA	CTCTAATCTT	CTCTCGCCTC	TCCCCCGCTT	4800
TCCTTATCTT	CGTACCGGTA	CCTGATGATT	CCCCATTTTC	CCCCTTTTCC	CCCCAATTTC	4860
CCAGAACCTC	CTGTTCCCTT	TGTTCCTAGT	CCTCCCGGGT	GCCGACGCCG	AAGCGATTTA	4920
AAAACCTTTT	TCTTTCCGAA	ACATTTCCCA	TTGCTCATTA	ATAGTCAAAT	TGAATAAACA	4980
GTGTATGTAC	TTAAAAAAAA	ааааааааа	ACTCGAGGGG	GGGCCCTATT	CTATAGTGTC	5040
ACCTAAATGC	TAGAGCTCGC	TGATCAGCCT	CGACTGTGCC	TTCTAGTTGC	CAGCCATCTG	5100
TTGTTTGCCC	CTCCCCGTG	CCTTCCTTGA	CCCTGGAAGG	TGCCACTCCC	ACTGTCCTTT	5160
ССТААТАААА	TGAGGAAATT	GCATCGCATT	GTCTGAGTAG	GTGTCATTCT	ATTCTGGGGG	5220
GTGGGGTGGG	GCAGGACAGC	AAGGGGGAGG	ATTGGGAAGA	CAATAGCAGG	CATGCTGGGG	5280

FIG.	26	CONTINUED.

			•			
ATGCGGTGGG	CTCTATGGCT	TCTGAGGCGG	AAAGAACCAG	CTGGGGCTCT	AGGGGGTATC	5340
CCCACGCGCC	CTGTAGCGGC	GCATTAAGCG	CGGCGGGTGT	GGTGGTTACG	CGCAGCGTGA	5400
CCGCTACACT	TGCCAGCGCC	CTAGCGCCCG	CTCCTTTCGC	TTTCTTCCCT	TCCTTTCTCG	5460
CCACGTTCGC	CGGCTTTCCC	CGTCAAGCTC	TAAATCGGGG	CATCCCTTTA	GGGTTCCGAT	5520
TTAGTGCTTT	ACGGCACCTC	GACCCCAAAA	AACTTGATTA	GGGTGATGGT	TCACGTAGTG	5580
GGCCATCGCC	CTGATAGACG	GTTTTTCGCC	CTTTGACGTT	GGAGTCCACG	TTCTTTAATA	5640
GTGGACTCTT	GTTCCAAACT	GGAACAACAC	TCAACCCTAT	CTCGGTCTAT	TCTTTTGATT	5700
TATAAGGGAT	TTTGGGGATT	TCGGCCTATT	GGTTAAAAAA	TGAGCTGATT	TAACAAAAAT	5760
TTAACGCGAA	TTAATTCTGT	GGAATGTGTG	TCAGTTAGGG	TGTGGAAAGT	CCCCAGGCTC	5820
CCCAGGCAGG	CAGAAGTATG	CAAAGCATGC	ATCTCAATTA	GTCAGCAACC	AGGTGTGGAA	5,880
AGTCCCCAGG	CTCCCCAGCA	GGCAGAAGTA	TGCAAAGCAT	GCATCTCAAT	TAGTCAGCAA	5940
CCATAGTCCC	GCCCCTAACT	CCGCCCATCC	CGCCCCTAAC	TCCGCCCAGT	TCCGCCCATT	6000
CTCCGCCCCA	TGGCTGACTA	ATTTTTTTA	TTTATGCAGA	GGCCGAGGCC	GCCTCTGCCT	6060
CTGAGCTATT	CCAGAAGTAG	TGAGGAGGCT	TTTTTGGAGG	CCTAGGCTTT	TGCAAAAAGC	6120
TCCCGGGAGC	TTGTATATCC	ATTTTCGGAT	CTGATCAAGA	GACAGGATGA	GGATCGTTTC	6180
GCATGATTGA	ACAAGATGGA	TTGCACGCAG	GTTCTCCGGC	CGCTTGGGTG	GAGAGGCTAT	6240
TCGGCTATGA	CTGGGCACAA	CAGACAATCG	GCTGCTCTGA	TGCCGCCGTG	TTCCGGCTGT	6300
CAGCGCAGGG	GCGCCCGGTT	CTTTTTGTCA	AGACCGACCT	GTCCGGTGCC	CTGAATGAAC	6360
TGCAGGACGA	GGCAGCGCGG	CTATCGTGGC	TGGCCACGAC	GGGCGTTCCT	TGCGCAGCTG	6420
TGCTCGACGT	TGTCACTGAA	GCGGGAAGGG	ACTGGCTGCT	ATTGGGCGAA	GTGCCGGGGC	6480
AGGATCTCCT	GTCATCTCAC	CTTGCTCCTG	CCGAGAAAGT	ATCCATCATG	GCTGATGCAA	6540
TGCGGCGGCT	GCATACGCTT	GATCCGGCTA	CCTGCCCATT	CGACCACCAA	GCGAAACATC	6600
GCATCGAGCG	AGCACGTACT	CGGATGGAAG	CCGGTCTTGT	CGATCAGGAT	GATCTGGACG	6660
AAGAGCATCA	GGGGCTCGCG	CCAGCCGAAC	TGTTCGCCAG	GCTCAAGGCG	CGCATGCCCG	6720
ACGGCGAGGA	TCTCGTCGTG	ACCCATGGCG	ATGCCTGCTT	GCCGAATATC	ATGGTGGAAA	6780
ATGGCCGCTT	TTCTGGATTC	ATCGACTGTG	GCCGGCTGGG	TGTGGCGGAC	CGCTATCAGG	6840
ACATAGCGTT	GGCTACCCGT	GATATTGCTG	AAGAGCTTGG	CGGCGAATGG	GCTGACCGCT	6900
TCCTCGTGCT	TTACGGTATC	GCCGCTCCCG	ATTCGCAGCG	CATCGCCTTC	TATCGCCTTC	6960
TTGACGAGTT	CTTCTGAGCG	GGACTCTGGG	GTTCGAAATG	ACCGACCAAG	CGACGCCCAA	7020
CCTGCCATCA	CGAGATTTCG	ATTCCACCGC	CGCCTTCTAT	GAAAGGTTGG	GCTTCGGAAT	7080
CGTTTTCCGG	GACGCCGGCT	GGATGATCCT	CCAGCGCGGG	GATCTCATGC	TGGAGTTCTT	7140
CCCCACCC	AACTTGTTTA	TTGCAGCTTA	TAATGGTTAC	AAATAAAGCA	ATAGCATCAC	7200

FIG. 26 CONTINUED.

AAATTTCAC	A AATAAAGCA	r ttttttcac	T GCATTCTAG	TGTGGTTTG	CCAAACTCAT	7260
CAATGTATC	T TATCATGTC	r GTATACCGT	C GACCTCTAGO	TAGAGCTTG	G CGTAATCATG	7320
GTCATAGCT	G TTTCCTGTG	r gaaattgtti	A TCCGCTCAC	ATTCCACAC	A ACATACGAGC	7380
CGGAAGCAT	AAGTGTAAA	CCTGGGGTG	C CTAATGAGT	G AGCTAACTC	CATTAATTGC	7440
GTTGCGCTC	A CTGCCCGCTT	TCCAGTCGG	G AAACCTGTCG	TGCCAGCTGC	ATTAATGAAT	7500
CGGCCAACG	CGCGGGAGAG	GCGGTTTGC	TATTGGGCGC	TCTTCCGCTT	CCTCGCTCAC	7560
TGACTCGCT	GCTCGGTCG	TTCGGCTGCC	G GCGAGCGGTA	TCAGCTCACT	CAAAGGCGGT	7620
AATACGGTTA	TCCACAGAAT	CAGGGGATA	CGCAGGAAAG	AACATGTGAG	CAAAAGGCCA	7680
GCAAAAGGCC	AGGAACCGTA	AAAAGGCCGC	GTTGCTGGCG	TTTTTCCATA	GGCTCCGCCC	7740
CCCTGACGAC	CATCACAAAA	ATCGACGCTC	AAGTCAGAGG	TGGCGAAACC	CGACAGGACT	7800
ATAAAGATAC	CAGGCGTTTC	CCCCTGGAAG	CTCCCTCGTG	CGCTCTCCTG	TTCCGACCCT	7860
GCCGCTTACC	GGATACCTGT	CCGCCTTTCT	CCCTTCGGGA	AGCGTGGCGC	TTTCTCAATG	7920
CTCACGCTGT	AGGTATCTCA	GTTCGGTGTA	GGTCGTTCGC	TCCAAGCTGG	GCTGTGTGCA	7980
CGAACCCCC	GTTCAGCCCG	ACCGCTGCGC	CTTATCCGGT	AACTATCGTC	TTGAGTCCAA	8040
CCCGGTAAGA	CACGACTTAT	CGCCACTGGC	AGCAGCCACT	GGTAACAGGA	TTAGCAGAGC	8100
GAGGTATGTA	GGCGGTGCTA	CAGAGTTCTT	GAAGTGGTGG	CCTAACTACG	GCTACACTAG	8160
AAGGACAGTA	TTTGGTATCT	GCGCTCTGCT	GAAGCCAGTT	ACCTTCGGAA	AAAGAGTTGG	8220
TAGCTCTTGA	TCCGGCAAAC	AAACCACCGC	TGGTAGCGGT	GGTTTTTTTG	TTTGCAAGCA	8280
GCAGATTACG	CGCAGAAAAA	AAGGATCTCA	AGAAGATCCT	TTGATCTTTT	CTACGGGGTC	8340
TGACGCTCAG	TGGAACGAAA	ACTCACGTTA	AGGGATTTTG	GTCATGAGAT	TATCAAAAAG	8400
GATCTTCACC	TAGATCCTTT	TAAATTAAAA	ATGAAGTTTT	AAATCAATCT	AAAGTATATA	8460
	· · · · · · · · · · · · · · · · · · ·		CTTAATCAGT			8520
			ACTCCCCGTC		* * * * * * * * * * * * * * * * * * *	8580
			AATGATACCG	-		8640
		. *			GTGGTCCTGC	
		•		:	TAAGTAGTTC	8760
GCCAGTTAAT	AGTTTGCGCA	ACGTTGTTGC	CATTGCTACA	GGCATCGTGG	TGTCACGCTC	8820
GTCGTTTGGT	ATGGCTTCAT	TCAGCTCCGG	TTCCCAACGA	TCAAGGCGAG	TTACATGATC	8880
	•		CTTCGGTCCT			.8940
			GGCAGCACTG			9000
					TCTGAGAATA	
GTGTATGCGG	CGACCGAGTT	GCTCTTGCCC	GGCGTCAATA	CGGGATAATA	CCGCGCCACA	9120

FIG. 26 CONTINUED

TAGCAGAACT	' TTAAAAGTGC	TCATCATTGG	AAAACGTTCT	TCGGGGCGAA	AACTCTCAAG	9180
GATCTTACCG	CTGTTGAGAT	CCAGTTCGAT	GTAACCCACT	CGTGCACCCA	ACTGATCTTC	9240
AGCATCTTTT	ACTTTCACCA	GCGTTTCTGG	GTGAGCAAAA	ACAGGAAGGC	AAAATGCCGC	9300
A AAAAAGGGA	ATAAGGGCGA	CACGGAAATG	TTGAATACTC	ATACTCTTCC	TTTTTCAATA	9360
TTATTGAAGC	ATTTATCAGG	GTTATTGTCT	CATGAGCGGA	TACATATTTG	AATGTATTTA	9420
Gaaaaataaa	CAAATAGGGG	TTCCGCGCAC	ATTTCCCCGA	AAAGTGCCAC	CTGACGTCGA	9480
CGGATCGGGA	GATCTCCCGA	TCCCCTATGG	TCGACTCTCA	GTACAATCTG	CTCTGATGCC	9540
GCATAGTTAA	GCCAGTATCT	GCTCCCTGCT	TGTGTGTTGG	AGGTCGCTGA	GTAGTGCGCG	9600
AGCAAAATTT	AAGCTACAAC	AAGGCAAGGC	TTGACCGACA	ATTGCATGAA	GAATCTGCTT	9660
AGGGTTAGGC	GTTTTGCGCT	GCTTCGCGAT	GTACGGGCCA	GATATACGCG	TTGACATTGA	9720
TTATTGACTA	GTTATTAATA	GTAATCAATT	ACGGGGTCAT	TAGTTCATAG	CCCATATATG	9780
GAGTTCCGCG	TTACATAACT	TACGGTAAAT	GGCCCGCCTG	GCTGACCGCC	CAACGACCCC	9840
CGCCCATTGA	CGTCAATAAT	GACGTATGTT	CCCATAGTAA	CGCCAATAGG	GACTTTCCAT	9900
TGACGTCAAT	GGGTGGACTA	TTTACGGTAA	ACTGCCCACT	TGGCAGTACA	TCAAGTGTAT	9960
CATATGCCAA	GTACGCCCCC	TATTGACGTC	AATGACGGTA	AATGGCCCGC	CTGGCATTAT	10020
GCÇCAGTACA	TGACCTTATG	GGACTTTCCT	ACTTGGCAGT	ACATCTACGT	ATTAGTCATC	10080
SCTATTACCA	TGGTGATGCG	GTTTTGGCAG	TACATCAATG	GGCGTGGATA	GCGGTTTGAC	10140
ICACGGGGAT	TTCCAAGTCT	CCACCCCATT	GACGTCAATG	GGAGTTTGTT	TTGGCACCAA	10200
AATCAACGGG	ACTTTCCAAA	ATGTCGTAAC	AACTCCGCCC	CATTGACGCA	AATGGGCGGT	10260
AGGCGTGTAC	GGTGGGAGGT	CTATATAAGC	AGAGCTCTCT	GGCTAACTAG	AGAACCCACT	10320
SCTTACTGGC	TTATCGAAAT	TAATACGACT	CACTATAGGG	AGACCCAAGC	TTGGTACCGA	10380
SCTCGGATCC	ACTAGTAACG	GCCGCCAGTG	TGCTGGAATT	CTGCAGATAT	CCATCACACT	10440
GC ·					٠	10443

FIG. 27.

AND THE POST OF THE TOTAL PROPERTY OF A SECURE AND A SECURA AND A SECURE AND A SECU

FIG. 28.

CTAAATTGT	A AGCGTTAAT	A TTTTGTTAA	A ATTCGCGTT	'A AATTTTTGT	T AAATCAGCTC	60
ATTTTTTAA	C CAATAGGCC	G AAATCGGCA	A AATCCCTTA	Т АААТСААА	G AATAGACCGA	120
GATAGGGTT	G AGTGTTGTT	C CAGTTTGGA	A CAAGAGTCC	A CTATTAAAG	A ACGTGGACTC	180
CAACGTCAA	A GGGCGAAAA	A CCGTCTATC	A GGGCGATGG	C CCACTACGT	G AACCATCACC	240
CTAATCAAG	r tttttgggg	T CGAGGTGCC	G TAAAGCACT	A AATCGGAAC	C CTAAAGGGAG	300
CCCCGATT	r agagettga	C GGGGAAAGC	C GGCGAACGT	G GCGAGAAAG	G AAGGGAAGAA	360
AGCGAAAGG	A GCGGGCGCT	A GGGCGCTGG	C AAGTGTAGC	G GTCACGCTG	C GCGTAACCAC	420
CACACCCGC	C GCGCTTAAT	G CGCCGCTAC	A GGGCGCGTC	C CATTCGCCA	T TCAGGCTGCG	480
CAACTGTTG	GAAGGGCGA	r cggtgcggg	CCTCTTCGCT	A TTACGCCAG	C TGGCGAAAGG	540
GGGATGTGCT	GCAAGGCGA	TAAGTTGGG1	AACGCCAGG	S TTTTCCCAG	T CACGACGTTG	600
TAAAACGACG	GCCAGTGAG	GCGCGTAAT	CGACTCACT	A TAGGGCGAA	T TGGAGCTCCA	660
CCGCGGTTTC	TAAATTACCO	TCGCCACGT	TCGCCACGT	AGCAACCGC	T TCAGCAACTA	720
ACCCAAATTC	CAACTTTCC	CAAATGTCAA	CATCCAGGCT	TCAGACTCC	A CAGTCAAGAA	780
TATCGAAAAT	TGATTCATCA	AAGATTGGTA	TCAAGCCAA	GACGTCTGG	CTTAAACCAC	840
CCTCATCATC	AACCACTTCA	ТСАААТААТА	CAAATTCATT	CCGTCCGTC	G AGCCGTTCGA	900
GTGGCAATAA	TAATGTTGGC	TCGACGATAT	CCACATCTGC	GAAGAGCTTA	GAATCATCAT	960
CAACGTACAG	CTCTATTTCG	AATCTAAACC	GACCTACCTC	CCAACTCCAA	AAACCTTCTA	1020
GACCACAAAC	CCAGCTAGTT	CGTGTTGCTA	СААСТАСААА	AATCGGAAGC	TCAAAGCTAG	1080
CCGCTCCGAA	AGCCGTGAGC	ACCCCAAAAC	TTGCTTCTGT	GAAGACTATT	GGAGCAAAAC	1140
AAGAGCCCGA	TAACAGCGGT	GGTGGTGGTG	GTGGAATGCT	GAAATTAAAG	TTATTCAGTA	1200
GCAAAAACCC	ATCTTCCTCA	TCGAATAGCC	CACAACCTAC	GAGAAAGGCG	GCGGCGGTGC	1260
CTCAACAACA	AACTTTGTCG	AAAATCGCTG	CCCCAGTGAA	AAGTGGCCTG	AAGCCGCCGA	1320
					GTTTCCTACC	1380
GTAAAACGGA	CGCCCCAATC	ATATCTCAAC	AAGACTCGAA	ACGATGCTCA	AAGAGCAGTG	1440
AAGAAGAGTC	CGGATACGCT	GGATTCAACA	GCACGTCGCC	AACGTCATCA	TCGACGGAAG	1500
GTTCCCTAAG	CATGCATTCC	ACATCTTCCA	AGAGTTCAAC	GTCAGACGAA	AAGTCTCCGT	1560
CATCAGACGA	TCTTACTCTT	AACGCCTCCA	TCGTGACAGC	TATCAGACAG	CCGATAGCCG	1620
CAACACCGGT	TTCTCCAAAT	ATTATCAACA	AGCCTGTTGA	GGAAAAACCA	ACACTGGCAG	1680
rgaaaggagt	GAAAAGCACA	GCGAAAAAAG	ATCCACCTCC	AGCTGTTCCG	CCACGTGACA	1740
CCCAGCCAAC	AATCGGAGTT	GTTAGTCCAA	TTATGGCACA	TAAGAAGTTG	ACAAATGACC	1800
CCGTGATATC	TGAAAAACCA	GAACCTGAAA	AGCTCCAATC	AATGAGCATC	GACACGACGG	1860

FIG. 28 CONTINUED.

61/99

	ACGTTCCACC	GCTTCCACCT	CTAAAATCAG	TTGTTCCACT	TAAAATGACT	TCAATCCGAC	1920
	AACCACCAAC	GTACGATGTT	CTTCTAAAAC	AAGGAAAAAT	CACATCGCCT	GTCAAGTCGT	1980
	TTGGATATGA	GCAGTCGTCC	GCGTCTGAAG	ACTCCATTGT	GGCTCATGCG	TCGGCTCAGG	2040
	TGACTCCGCC	GACAAAAACT	TCTGGTAATC	ATTCGCTGGA	GAGAAGGATG	GGAAAGAATA	2100
	AGACATCAGA	ATCCAGCGGC	TACACCTCTG	ACGCCGGTGT	TGCGATGTGC	GCCAAAATGA	2160
	GGGAGAAGCT	GAAAGAATAC	GATGACATGA	CTCGTCGAGC	ACAGAACGGC	TATCCTGACA	2220
	ACTTCGAAGA	CAGTTCCTCC	TTGTCGTCTG	GAATATCCGA	TAACAACGAG	CTCGACGACA	2280
	TATCCACGGA	CGATTTGTCC	GGAGTAGACA	TGGCAACAGT	CGCCTCCAAA	CATAGCGACT	2340
	ATTCCCACTT	TGTTCGCCAT	CCCACGTCTT	CTTCCTCAAA	GCCCCGAGTC	CCCAGTCGGT	2400
	CCTCCACATC	AGTCGATTCT	CGATCTCGAG	CAGAACAGGA	GAATGTGTAC	AAACTTCTGT	2460
	CCCAGTGCCG	AACGAGCCAA	CGTGGCGCCG	CTGCCACCTC	AACCTTCGGA	CAACATTCGC	2520
	TAAGATCCCC	GGGATACTCA	TCCTATTCTC	CACACTTATC	AGTGTCAGCT	GATAAGGACA	2580
	CAATGTCTAT	GCACTCACAG	ACTAGTCGAC	GACCTTCTTC	АСАААААССА	AGCTATTCAG	2640
	GCCAATTTCA	TTCACTTGAT	CGTAAATGCC	ACCTTCAAGA	GTTCACATCC	ACCGAGCACA	2700
	GAATGGCGGC	TCTCTTGAGC	CCGAGACGGG	TGCCGAACTC	GATGTCGAAA	TATGATTCTT	2760
	CAGGATCCTA	CTCGGCGCGT	TCCCGAGGTG	GAAGCTCTAC	TGGTATCTAT	GGAGAGACGT	2820
	TCCAACTGCA	CAGACTATCC	GATGAAAAAT	CCCCGCACA	TTCTGCCAAA	AGTGAGATGG	2880
	GATCCCAACT	ATCACTGGCT	AGCACGACAG	CATATGGATC	TCTCAATGAG	AAGTACGAAC	2940
. •	ATGCTATTCG	GGACATGGCA	CGTGACTTGG	AGTGTTACAA	GAACACTGTC	GACTCACTAA	3000
	CCAAGAAACA	GGAGAACTAT	GGAGCATTGT	TTGATCTTTT	TGAGCAAAAG	CTTAGAAAAC	3060
	TCACTCAACA	CATTGATCGA	TCCAACTTGA	AGCCTGAAGA	GGCAATACGA	TTCAGGCAGG	3120
	ACATTGCTCA	TTTGAGGGAT	ATTAGCAATC	ATCTTGCATC	CAACTCAGCT	CATGCTAACG	3180
i	AAGGCGCTGG	TGAGCTTCTT	CGTCAACCAT	CTCTGGAATC	AGTTGCATCC	CATCGATCAT	3240
•	CGATGTCATC	GTCGTCGAAA	AGCAGCAAGC	AGGAGAAGAT	CAGCTTGAGC	TCGTTTGGCA	3300
i	AGAACAAGAA	GAGCTGGATC	CGCTCCTCAC	TCTCCAAGTT	CACCAAGAAG	AAGAACAAGA	3360
2	ACTACGACGA	AGCACATATG	CCATCAATTT	CCGGATCTCA	AGGAACTCTT	GACAACATTG	3420
į	ATGTGATTGA	GTTGAAGCAA	GAGCTCAAAG	AACGCGATAG	TGCACTTTAC	GAAGTCCGCC	3480
•	TTGACAATCT	GGATCGTGCC	CGCGAAGTTG	ATGTTCTGAG	GGAGACAGTG	AACAAGTTGA	3540
2	AAACCGAGAA	CAAGCAATTA	AAGAAAGAAG	TGGACAAACT	CACCAACGGT	CCAGCCACTC	3600
•	GTGCTTCTTC	CCGCGCCTCA	ATTCCAGTTA	TCTACGACGA	TGAGCATGTC	TATGATGCAG	3660
•	CGTGTAGCAG	TACATCAGCT	AGTCAATCTT	CGAAACGATC	CTCTGGCTGC	AACTCAATCA	3720
1	AGGTTACTGT	AAACGTGGAC	ATCGCTGGAG	AAATCAGTTC	GATCGTTAAC	CCGGACAAAG	3780

FIG. 28 CONTINUED.

62/99

AGATAA	ATCGT	AGGATATCTT	GCCATGTCAA	CCAGTCAGTC	ATGCTGGAAA	GACATTGATG	3840
TTTCTA	ATTCT	AGGACTATTT	GAAGTCTACC	TATCCAGAAT	TGATGTGGAG	CATCAACTTG	3900
GAATC	SATGC	TCGTGATTCT	ATCCTTGGCT	ATCAAATTGG	TGAACTTCGA	CGCGTCATTG	3960
GAGACT	CCAC	AACCATGATA	ACCAGCCATC	CAACTGACAT	TCTTACTTCC	TCAACTACAA	4020
TCCGAP	ATGTT	CATGCACGGT	GCCGCACAGA	GTCGCGTAGA	CAGTCTGGTC	CTTGATATGC	4080
TTCTTC	CAAA	GCAAATGATT	CTCCAACTCG	TCAAGTCAAT	TTTGACAGAG	AGACGTCTGG	4140
TGTTA	SCTGG	AGCAACTGGA	ATTGGAAAGA	GCAAACTGGC	GAAGACCCTG	GCTGCTTATG	4200
TATCTA	ATTCG	AACAAATCAA	TCCGAAGATA	GTATTGTTAA	TATCAGCATT	CCTGAAAACA	4260
ATAAAG	SAAGA	ATTGCTTCAA	GTGGAACGAC	GCCTGGAAAA	GATCTTGAGA	AGCAAAGAAT	4320
CATGC	ATCGT	AATTCTAGAT	AATATCCCAA	AGAATCGAAT	TGCATTTGTT	GTATCCGTTT	4380
TTGCA	ATGT	CCCACTTCAA	AACAACGAAG	GTCCATTTGT	AGTATGCACA	GTCAACCGAT	4440
ATCAA	ATCCC	TGAGCTTCAA	ATTCACCACA	ATTTCAAAAT	GTCAGTAATG	TCGAATCGTC	4500
TCGAAG	GATT	CATCCTACGT	TACCTCCGAC	GACGGGCGGT	AGAGGATGAG	TATCGTCTAA	4560
CTGTAC	CAGAT	GCCATCAGAG	CTCTTCAAAA	TCATTGACTT	CTTCCCAATA	GCTCTTCAGG	4620
CCGTC	AATAA	TTTTATTGAG	AAAACGAATT	CTGTTGATGT	GACAGTTGGT	CCAAGAGCAT	4680
GCTTGA	AACTG	TCCTCTAACT	GTCGATGGAT	CCCGTGAATG	GTTCATTCGA	TTGTGGAATG	4740
AGAACT	TCAT	TCCATATTTG	GAACGTGTTG	CTAGAGATGG	CAAAAAAACC	TTCGGTCGCT	4800
GCACTI	CCTT	CGAGGATCCC	ACCGACATCG	TCTCTAAAAA	ATGGCCGTGG	TTCGATGGTG	4860
AAAACO	CCGGA	GAATGTGCTC	AAACGTCTTC	AACTCCAAGA	CCTCGTCCCG	TCACCTGCCA	4920
ACTCAT	rcccg	ACAACACTTC	AATCCCCTCG	AGTCGTTGAT	CCAATTGCAT	GCTACCAAGC	4980
ATCAGA	ACCAT	CGACAACATT	TGAACAGAAG	ACTCTAATCT	TCTCTCGCCT	CTCCCCCGCT	5040
TTCCTI	ratct	TCGTACCGGT	ACCTGATGAT	TCCCCATTTT	CCCCCTTTTC	CCCCCAATTT	5100
CCCAGA	AACCT	CCTGTTCCCT	TTGTTCCTAG	TCCTCCCGGG	TGCCGACGCC	GAAGCGATTT	5160
AAAAA	CCTTT	TTCTTTCCGA	AACATTTCCC	ATTGCTCATT	AATAGTCAAA	TTGAATAAAC	5220
AGTGTA	ATGTA	СТТАААААА	AAAAAAAAA	AACTCGAGGG	GGGGCCCGGT	ACCCAGCTTT	5280
TGTTC	CCTTT	AGTGAGGGTT	AATTGCGCGC	TTGGCGTAAT	CATGGTCATA	GCTGTTTCCT	5340
GTGTG#	NAATT	GTTATCCGCT	CACAATTCCA	CACAACATAC	GAGCCGGAAG	CATAAAGTGT	5400
AAAGC	CTGGG	GTGCCTAATG	AGTGAGCTAA	CTCACATTAA	TTGCGTTGCG	CTCACTGCCC	5460
GCTTT	CCAGT	CGGGAAACCT	GTCGTGCCAG	CTGCATTAAT	GAATCGGCCA	ACGCGCGGG	5520
AGAGG	CGGTT	TGCGTATTGG	GCGCTCTTCC	GCTTCCTCGC	TCACTGACTC	GCTGCGCTCG	5580
GTCGTT	rcggc	TGCGGCGAGC	GGTATCAGCT	CACTCAAAGG	CGGTAATACG	GTTATCCACA	5640
GAATC	AGGGG	ATAACGCAGG	AAAGAACATG	TGAGCAAAAG	GCCAGCAAAA	GGCCAGGAAC	5700

FIG. 28 CONTINUED.

63/99

CGTAAAAAGG	CCGCGTTGCT	GGCGTTTTTC	CATAGGCTCC	GCCCCCTGA	CGAGCATCAC	5760
AAAAATCGAC	GCTCAAGTCA	GAGGTGGCGA	AACCCGACAG	GACTATAAAG	ATACCAGGCG	5820
TTTCCCCCTG	GAAGCTCCCT	CGTGCGCTCT	CCTGTTCCGA	CCCTGCCGCT	TACCGGATAC	5880
CTGTCCGCCT	TTCTCCCTTC	GGGAAGCGTG	GCGCTTTCTC	ATAGCTCACG	CTGTAGGTAT	5940
CTCAGTTCGG	TGTAGGTCGT	TCGCTCCAAG	CTGGGCTGTG	TGCACGAACC	CCCCGTTCAG	6000
CCCGACCGCT	GCGCCTTATC	CGGTAACTAT	CGTCTTGAGT	CCAACCCGGT	AAGACACGAC	6060
TTATCGCCAC	TGGCAGCAGC	CACTGGTAAC	AGGATTAGCA	GAGCGAGGTA	TGTAGGCGGT	6120
GCTACAGAGT	TCTTGAAGTG	GTGGCCTAAC	TACGGCTACA	CTAGAAGGAC	AGTATTTGGT	6180
ATCTGCGCTC	TGCTGAAGCC	AGTTACCTTC	GGAAAAAGAG	TTGGTAGCTC	TTGATCCGGC	6240
аласаласса	CCGCTGGTAG	CGGTGGTTTT	TTTGTTTGCA	AGCAGCAGAT	TACGCGCAGA	6300
AAAAAAGGAT	CTCAAGAAGA	TCCTTTGATC	TTTTCTACGG	GGTCTGACGC	TCAGTGGAAC	6360
GAAAACTCAC	GTTAAGGGAT	TTTGGTCATG	AGATTATCAA	AAAGGATCTT	CACCTAGATC	6420
CTTTTAAATT	AAAAATGAAG	TTTTAAATCA	ATCTAAAGTA	TATATGAGTA	AACTTGGTCT	6480
GACAGTTACC	AATGCTTAAT	CAGTGAGGCA	CCTATCTCAG	CGATCTGTCT	ATTTCGTTCA	6540
TCCATAGTTG	CCTGACTCCC	CGTCGTGTAG	ATAACTACGA	TACGGGAGGG	CTTACCATCT	6600
GGCCCCAGTG	CTGCAATGAT	ACCGCGAGAC	CCACGCTCAC	CGGCTCCAGA	TTTATCAGCA	6660
ATAAACCAGC	CAGCCGGAAG	GGCCGAGCGC	AGAAGTGGTC	CTGCAACTTT	ATCCGCCTCC	6720
ATCCAGTCTA	TTAATTGTTG	CCGGGAAGCT	AGAGTAAGTA	GTTCGCCAGT	TAATAGTTTG	6780
CGCAACGTTG	TTGCCATTGC	TACAGGCATC	GTGGTGTCAC	GCTCGTCGTT	TGGTATGGCT	6840
TCATTCAGCT	CCGGTTCCCA	ACGATCAAGG	CGAGTTACAT	GATCCCCCAT	GTTGTGCAAA	6900
AAAGCGGTTA	GCTCCTTCGG	TCCTCCGATC	GTTGTCAGAA	GTAAGTTGGC	CGCAGTGTTA	6960
TCACTCATGG	TTATGGCAGC	ACTGCATAAT	TCTCTTACTG	TCATGCCATC	CGTAAGATGC	7020
TTTTCTGTGA	CTGGTGAGTA	CTCAACCAAG	TCATTCTGAG	AATAGTGTAT	GCGGCGACCG	7080
AGTTGCTCTT	GCCCGGCGTC	AATACGGGAT	AATACCGCGC	CACATAGCAG	AACTTTAAAA	7140
GTGCTCATCA	TTGGAAAACG	TTCTTCGGGG	CGAAAACTCT	CAAGGATCTT	ACCGCTGTTG	7200
AGATCCAGTT	CGATGTAACC	CACTCGTGCA	CCCAACTGAT	CTTCAGCATC	TTTTACTTTC	7260
ACCAGCGTTT	CTGGGTGAGC	AAAAACAGGA	AGGCAAAATG	CCGCAAAAAA	GGGAATAAGG	7320
GCGACACGGA	aatgttgaat	ACTCATACTC	TTCCTTTTTC	AATATTATTG	AAGCATTTAT	7380
CAGGGTTATT	GTCTCATGAG	CGGATACATA	TTTGAATGTA	TTTAGAAAAA	TAAACAAATA	7440
GGGGTTCCGC	GCACATTTCC	CCGAAAAGTG	CCAC			7474

FIG. 29.

FIG. 30.

•	TATGACGACG	TCAAATGTAG	AATTGATACC	ATTCTACACG	GATTGGGCCA	ATCGGCACCT	60
•	TTCGAAGGGC	AGCTTATCAA	AGTCGATTAG	GGATATTTCC	AATGATTTTC	GCGACTATCG	120
2	ACTGGTTTCT	CAGCTTATTA	ATGTGATCGT	TCCGATCAAC	GAATTCTCGC	CTGCATTCAC	180
•	GAAACGTTTG	GCAAAAATCA	CATCGAACCT	GGATGGCCTC	GAAACGTGTC	TCGACTACCT	240
(Gaaaaatctg	GGTCTCGACT	GCTCGAAACT	CACCAAAACC	GATATCGACA	GCGGAAACTT	300
(GGTGCAGTT	CTCCAGCTGC	TCTTCCTGCT	CTCCACCTAC	AAGCAGAAGC	TTCGGCAACT	360
(GAAAAAAGAT	CAGAAGAAAT	TGGAGCAACT	ACCCACATCC	ATTATGCCAC	CCGCGGTTTC	420
•	TAAATTACCC	TCGCCACGTG	TCGCCACGTC	AGCAACCGCT	TCAGCAACTA	ACCCAAATTC	480
(CAACTTTCCA	CAAATGTCAA	CATCCAGGCT	TCAGACTCCA	CAGTCAAGAA	TATCGAAAAT	540
•	IGATTCATCA	AAGATTGGTA	TCAAGCCAAA	GACGTCTGGA	CTTAAACCAC	CCTCATCATC	600
1	AACCACTTCA	TCAAATAATA	CAAATTCATT	CCGTCCGTCG	AGCCGTTCGA	GTGGCAATAA	660
•	FAATGTTGGC	TCGACGATAT	CCACATCTGC	GAAGAGCTTA	GAATCATCAT	CAACGTACAG	720
(CTCTATTTCG	AATCTAAACC	GACCTACCTC	CCAACTCCAA	AAACCTTCTA	GACCACAAAC	780
•	CCAGCTAGTT	CGTGTTGCTA	CAACTACAAA	AATCGGAAGC	TCAAAGCTAG	CCGCTCCGAA	840
1	AGCCGTGAGC	ACCCCAAAAC	TTGCTTCTGT	GAAGACTATT	GGAGCAAAAC	AAGAGCCCGA	900
•	TAACAGCGGT	GGTGGTGGTG	GTGGAATGCT	GAAATTAAAG	TTATTCAGTA	GCAAAAACCC	960
1	ATCTTCCTCA	TCGAATAGCC	CACAACCTAC	GAGAAAGGCG	GCGGCGGTGC	CTCAACAACA.	1020
2	AACTTTGTCG	AAAATCGCTG	CCCCAGTGAA	AAGTGGCCTG	AAGCCGCCGA	CCAGTAAGCT	1080
(GGGAAGTGCC	ACGTCTATGT	CGAAGCTTTG	TACGCCAAAA	GTTTCCTACC	GTAAAACGGA	1140
(CGCCCCAATC	ATATCTCAAC	AAGACTCGAA	ACGATGCTCA	AAGAGCAGTG	AAGAAGAGTC	1200
•	CGGATACGCT	GGATTCAACA	GCACGTCGCC	AACGTCATCA	TCGACGGAAG	GTTCCCTAAG	1260

<i>F</i> /	[G. 30 co	NTINUED.	00/3			
CATGCATTC	ACATCTTCCA	AGAGTTCAAC	GTCAGACGAA	AAGTCTCCGT	CATCAGACGA	1320
TCTTACTCTT	AACGCCTCCA	TCGTGACAGC	TATCAGACAG	CCGATAGCCG	CAACACCGGT	1380
TTCTCCAAAT	ATTATCAACA	AGCCTGTTGA	GGAAAAACCA	ACACTGGCAG	TGAAAGGAGT	1440
GAAAAGCACA	GCGAAAAAAG	ATCCACCTCC	AGCTGTTCCG	CCACGTGACA	CCCAGCCAAC	1500
AATCGGAGTT	GTTAGTCCAA	TTATGGCACA	TAAGAAGTTG	ACAAATGACC	CCGTGATATC	1560
TGAAAAACCA	GAACCTGAAA	AGCTCCAATC	AATGAGCATC	GACACGACGG	ACGTTCCACC	1620
GCTTCCACCT	CTAAAATCAG	TTGTTCCACT	TAAAATGACT	TCAATCCGAC	AACCACCAAC	1680
GTACGATGTT	CTTCTAAAAC	AAGGAAAAAT	CACATCGCCT	GTCAAGTCGT	TTGGATATGA	1740
GCAGTCGTCC	GCGTCTGAAG	ACTCCATTGT	GGCTCATGCG	TCGGCTCAGG	TGACTCCGCC	1800
GACAAAAACT	TCTGGTAATC	ATTCGCTGGA	GAGAAGGATG	GGAAAGAATA	AGACATCAGA	1860
ATCCAGCGGC	TACACCTCTG	ACGCCGGTGT	TGCGATGTGC	GCCAAAATGA	GGGAGAAGCT	1920
GAAAGAATAC	GATGACATGA	CTCGTCGAGC	ACAGAACGGC	TATCCTGACA	ACTTCGAAGA	1980
CAGTTCCTCC	TTGTCGTCTG	GAATATCCGA	TAACAACGAG	CTCGACGACA	TATCCACGGA	2040
CGATTTGTCC	GGAGTAGACA	TGGCAACAGT	CGCCTCCAAA	CATAGCGACT	ATTCCCACTT	2100
TGTTCGCCAT	CCCACGTCTT	CTTCCTCAAA	GCCCCGAGTC	CCCAGTCGGT	CCTCCACATC	2160
AGTCGATTCT	CGATCTCGAG	CAGAACAGGA	GAATGTGTAC	AAACTTCTGT	CCCAGTGCCG	2220
AACGAGCCAA	CGTGGCGCCG	CTGCCACCTC	AACCTTCGGA	CAACATTCGC	TAAGATCCCC	2280
GGGATACTCA	TCCTATTCTC	CACACTTATC	AGTGTCAGCT	GATAAGGACA	CAATGTCTAT	2340
GCACTCACAG	ACTAGTCGAC	GACCTTCTTC	ACAAAAACCA	AGCTATTCAG	GCCAATTTCA	2400
TTCACTTGAT	CGTAAATGCC	ACCTTCAAGA	GTTCACATCC	ACCGAGCACA	GAATGGCGGC	2460
TCTCTTGAGC	CCGAGACGGG	TGCCGAACTC	GATGTCGAAA	TATGATTCTT	CAGGATCCTA	2520
CTCGGCGCGT	TCCCGAGGTG	GAAGCTCTAC	TGGTATCTAT	GGAGAGACGT	TCCAACTGCA	2580
CAGACTATCC	GATGAAAAAT	CCCCCGCACA	TTCTGCCAAA	AGTGAGATGG	GATCCCAACT	2640
ATCACTGGCT	AGCACGACAG	CATATGGATC	TCTCAATGAG	AAGTACGAAC	ATGCTATTCG	2700
GGACATGGCA	CGTGACTTGG	AGTGTTACAA	GAACACTGTC	GACTCACTAA	CCAAGAAACA	2760
GGAGAACTAT	GGAGCATTGT	TTGATCTTTT	TGAGCAAAAG	CTTAGAAAAC	TCACTCAACA	2820
CATTGATCGA	TCCAACTTGA	AGCCTGAAGA	GGCAATACGA	TTCAGGCAGG	ACATTGCTCA	2880
TTTGAGGGAT	ATTAGCAATC	ATCTTGCATC	CAACTCAGCT	CATGCTAACG	AAGGCGCTGG	2940
TGAGCTTCTT	CGTCAACCAT	CTCTGGAATC	AGTTGCATCC	CATCGATCAT	CGATGTCATC	3000
GTCGTCGAAA	AGCAGCAAGC	AGGAGAAGAT	CAGCTTGAGC	TCGTTTGGCA	AGAACAAGAA	3060
GAGCTGGATC	CGCTCCTCAC	TCTCCAAGTT	CACCAAGAAG	AAGAACAAGA	ACTACGACGA	3120
AGCACATATG	CCATCAATTT	CCGGATCTCA	AGGAACTCTT	GACAACATTG	ATGTGATTGA	3180

FIG. 30 CONTINU	VED.	67/99		
GTTGAAGCAA GAGCTCAAAG AAC	GCGATAG TGCACTT	TAC GAAGTCCGCC	TTGACAATCT	3240
GGATCGTGCC CGCGAAGTTG ATG	TTCTGAG GGAGACA	STG AACAAGTTGA	AAACCGAGAA	3300
CAAGCAATTA AAGAAAGAAG TGG	ACAAACT CACCAAC	GGT CCAGCCACTC	GTGCTTCTTC	3360
CCGCGCCTCA ATTCCAGTTA TCT	ACGACGA TGAGCAT	STC TATGATGCAG	CGTGTAGCAG	3420
TACATCAGCT AGTCAATCTT CGA	AACGATC CTCTGGC	rgc aactcaatca	AGGTTACTGT	3480
AAACGTGGAC ATCGCTGGAG AAA	TCAGTTC GATCGTT	AAC CCGGACAAAG	AGATAATCGT	3540
AGGATATCTT GCCATGTCAA CCA	GTCAGTC ATGCTGG	AAA GACATTGATG	TTTCTATTCT	3600
AGGACTATTT GAAGTCTACC TAT	CCAGAAT TGATGTG	GAG CATCAACTTG	GAATCGATGC	3660
TCGTGATTCT ATCCTTGGCT ATC	AAATTGG TGAACTT	CGA CGCGTCATTG	GAGACTCCAC	3720
AACCATGATA ACCAGCCATC CAA	CTGACAT TCTTACT	rcc tcaactacaa	TCCGAATGTT	3780
CATGCACGGT GCCGCACAGA GTC	GCGTAGA CAGTCTG	GTC CTTGATATGC	TTCTTCCAAA	3840
GCAAATGATT CTCCAACTCG TCA	AGTCAAT TTTGACA	GAG AGACGTCTGG	TGTTAGCTGG	3900
AGCAACTGGA ATTGGAAAGA GCA	AACTGGC GAAGACC	CTG GCTGCTTATG	TATCTATTCG	3960
AACAAATCAA TCCGAAGATA GTA	TTGTTAA TATCAGC	ATT CCTGAAAACA	ATAAAGAAGA	4020;
ATTGCTTCAA GTGGAACGAC GCC	TGGAAAA GATCTTG	AGA AGCAAAGAAT	CATGCATCGT	4080
AATTCTAGAT AATATCCCAA AGA	ATCGAAT TGCATTT	GTT GTATCCGTTT	TTGCAAATGT	4140
CCCACTTCAA AACAACGAAG GTC	CATTTGT AGTATGC	ACA GTCAACCGAT	ATCAAATCCC	4200
TGAGCTTCAA ATTCACCACA ATT	TCAAAAT GTCAGTA	ATG TCGAATCGTC	TCGAAGGATT	4260
CATCCTACGT TACCTCCGAC GAC	GGGCGGT AGAGGAT	GAG TATCGTCTAA	CTGTACAGAT	4320
GCCATCAGAG CTCTTCAAAA TCA	TTGACTT CTTCCCA	ATA GCTCTTCAGG	CCGTCAATAA	4380
TTTTATTGAG AAAACGAATT CTC	TTGATGT GACAGTT	GGT CCAAGAGCAT	GCTTGAACTG	4440
TCCTCTAACT GTCGATGGAT CCC	GTGAATG GTTCATT	CGA TTGTGGAATG	AGAACTTCAT	4500
TCCATATTTG GAACGTGTTG CTA	AGAGATGG CAAAAAA	ACC TTCGGTCGCT	GCACTTCCTT	4560
CGAGGATCCC ACCGACATCG TCT	CTAAAAA ATGGCCG	TGG TTCGATGGTG	AAAACCCGGA	4620
GAATGTGCTC AAACGTCTTC AAC	TCCAAGA CCTCGTC	CCG TCACCTGCCA	ACTCATCCCG	4680
ACAACACTTC AATCCCCTCG AG	CGTTGAT CCAATTO	CAT GCTACCAAGC	ATCAGACCAT	4740
CGACAACATT TGAACAGAAG ACT	CTAATCT TCTCTCG	CCT CTCCCCGCT	TTCCTTATCT	4800
TCGTACCGGT ACCTGATGAT TCC	CCATTTT CCCCCTT	TTC CCCCAATTT	CCCAGAACCT	4860
CCTGTTCCCT TTGTTCCTAG TCC	CTCCGGG TGCCGAC	GCC GAAGCGATTT	AAAAACCTTT	4920
TTCTTTCCGA AACATTTCCC ATT	GCTCATT AATAGTO	AAA TTGAATAAAC	AGTGTATGTA	4980
СТТАВАВАВА ВАВАВАВАВ ВВ	AAAAAAA GGCCTAT	GCG GCCGGCCAT	GGAGGCCGAA	5040
TTCCCGGGGA TCCGTCGACC TGC	CAGCCAAG CTAATTO	CGG GCGAATTTCT	TATGATTTAT	5100

A GATE CONTRACTOR CONT

FIG. 30 CONTINUED. 68/99

GATTTTTATT ATTAAATAAG TTATAAAAAA AATAAGTGTA TACAAATTTT AAAGTGACTC 5160 TTAGGTTTTA AAACGAAAAT TCTTGTTCTT GAGTAACTCT TTCCTGTAGG TCAGGTTGCT 5220 TTCTCAGGTA TAGCATGAGG TCGCTCTTAT TGACCACACC TCTACCGGCA TGCAAGCTTG 5280 GCGTAATCAT GGTCATAGCT GTTTCCTGTG TGAAATTGTT ATCCGCTCAC AATTCCACAC 5340 AACATACGAG CCGGAAGCAT AAAGTGTAAA GCCTGGGGTG CCTAATGAGT GAGGTAACTC 5400 ACATTAATTG CGTTGCGCTC ACTGCCCGCT TTCCAGTCGG GAAACCTGTC GTGCCAGCTG 5460 GATTAATGAA TCGGCCAACG CGCGGGGAGA GGCGGTTTGC GTATTGGGCG CTCTTCCGCT 5520 TCCTCGCTCA CTGACTCGCT GCGCTCGGTC GTTCGGCTGC GGCGAGCGGT ATCAGCTCAC 5580 TCAAAGGCGG TAATACGGTT ATCCACAGAA TCAGGGGGATA ACGCAGGAAA GAACATGTGA 5640 GCAAAAGGCC AGCAAAAGGC CAGGAACCGT AAAAAGGCCG CGTTGCTGGC GTTTTTCCAT 5700 AGGCTCCGCC CCCCTGACGA GCATCACAAA AATCGACGCT CAAGTCAGAG GTGGCGAAAC 5760 CCGACAGGAC TATAAAGATA CCAGGCGTTT CCCCCTGGAA GCTCCCTCGT GCGCTCTCCT 5820 GTTCCGACCC TGCCGCTTAC CGGATACCTG TCCGCCTTTC TCCCTTCGGG AAGCGTGGCG 5880 CTTTCTCATA GCTCACGCTG TAGGTATCTC AGTTCGGTGT AGGTCGTTCG CTCCAAGCTG 5940 GGCTGTGTGC ACGAACCCCC CGTTCAGCCC GACCGCTGCG CCTTATCCGG TAACTATCGT 6000 CTTGAGTCCA ACCCGGTAAG ACACGACTTA TCGCCACTGG CAGCAGCCAC TGGTAACAGG 6060 ATTAGCAGAG CGAGGTATGT AGGCGGTGCT ACAGAGTTCT TGAAGTGGTG GCCTAACTAC 6120 GGCTACACTA GAAGGACAGT ATTTGGTATC TGCGCTCTGC TGAAGCCAGT TACCTTCGGA 6180 AAAAGAGTTG GTAGCTCTTG ATCCGGCAAA CAAACCACCG CTGGTAGCGG TGGTTTTTTT 6240 GTTTGCAAGC AGCAGATTAC GCGCAGAAAA AAAGGATCTC AAGAAGATCC TTTGATCTTT 6300 TCTACGGGGT CTGACGCTCA GTGGAACGAA AACTCACGTT AAGGGATTTT GGTCATGAGA 6360 6420 TAAAGTATAT ATGAGTAAAC TTGGTCTGAC AGTTACCAAT GCTTAATCAG TGAGGCACCT 6480 ATCTCAGCGA TCTGTCTATT TCGTTCATCC ATAGTTGCCT GACTCCCCGT CGTGTAGATA 6540 ACTACGATAC GGGAGGGCTT ACCATCTGGC CCCAGTGCTG CAATGATACC GCGAGACCCA 6600 CGCTCACCGG CTCCAGATTT ATCAGCAATA AACCAGCCAG CCGGAAGGGC CGAGCGCAGA 6660 AGTGGTCCTG CAACTTTATC CGCCTCCATC CAGTCTATTA ATTGTTGCCG GGAAGCTAGA 6720 GTAAGTAGTT CGCCAGTTAA TAGTTTGCGC AACGTTGTTG CCATTGCTAC AGGCATCGTG 6780 GTGTCACGCT CGTCGTTTGG TATGGCTTCA TTCAGCTCCG GTTCCCAACG ATCAAGGCGA 6840 GTTACATGAT CCCCCATGTT GTGCAAAAAA GCGGTTAGCT CCTTCGGTCC TCCGATCGTT 6900 GTCAGAAGTA AGTTGGCCGC AGTGTTATCA CTCATGGTTA TGGCAGCACT GCATAATTCT 6960 CTTACTGTCA TGCCATCCGT AAGATGCTTT TCTGTGACTG GTGAGTACTC AACCAAGTCA 7020

FIG. 30 CONTINUED.

59/99

TTCTGAGAAT	AGTGTATGCG	GCGACCGAGT	TGCTCTTGCC	CGGCGTCAAT	ACGGGATAAT	7080
ACCGCGCCAC	ATAGCAGAAC	TTTAAAAGTG	CTCATCATTG	GAAAACGTTC	TTCGGGGCGA	7140
AAACTCTCAA	GGATCTTACC	GCTGTTGÄGA	TCCAGTTCGA	TGTAACCCAC	TCGTGCACCC	7200
AACTGATCTT	CAGCATCTTT	TACTTTCACC	AGCGTTTCTG	GGTGAGCAAA	AACAGGAAGG	7260
CAAAATGCCG	CAAAAAAGGG	AATAAGGGCG	ACACGGAAAT	GTTGAATACT	CATACTCTTC	7320
CTTTTTCAAT	ATTATTGAAG	CATTTATCAG	GGTTATTGTC	TCATGAGCGG	ATACATATTT	7380
GAATGTATTT	AGAAAAATAA	ACAAATAGGG	GTTCCGCGCA	CATTTCCCCG	AAAAGTGCCA	7440
CCTGAACGAA	GCATCTGTGC	TTCATTTTGT	AGAACAAAAA	TGCAACGCGA	GAGCGCTAAT	7500
TTTTCAAACA	AAGAATCTGA	GCTGCATTTT	TACAGAACAG	AAATGCAACG	CGAAAGCGCT	7560
ATTTTACCAA	CGAAGAATCT	GTGCTTCATT	TTTGTAAAAC	AAAAATGCAA	CGCGAGAGCG	7620
CTAATTTTTC	AAACAAAGAA	TCTGAGCTGC	ATTTTTACAG	AACAGAAATG	CAACGCGAGA	7680
GCGCTATTTT	ACCAACAAAG	AATCTATACT	TCTTTTTTGT	тстасалала	TGCATCCCGA	7740
GAGCGCTATT	TTTCTAACAA	AGCATCTTAG	ATTACTTTTT	TTCTCCTTTG	TGCGCTCTAT	7800
AATGCAGTCT	CTTGATAACT	TTTTGCACTG	TAGGTCCGTT	AAGGTTAGAA	GAAGGCTACT	7860
TTGGTGTCTA	TTTTCTCTTC	САТАААААА	GCCTGACTCC	ACTTCCCGCG	TTTACTGATT	7920
ACTAGCGAAG	CTGCGGGTGC	ATTTTTTCAA	GATAAAGGCA	TCCCCGATTA	TATTCTATAC	7980
CGATGTGGAT	TGCGCATACT	TTGTGAACAG	AAAGTGATAG	CGTTGATGAT	TCTTCATTGG	8040
TCAGAAAATT	ATGAACGGTT	TCTTCTATTT	TGTCTCTATA	TACTACGTAT	AGGAAATGTT	8100
TACATTTTCG	TATTGTTTTC	GATTCACTCT	ATGAATAGTT	CTTACTACAA	TTTTTTTGTC	8160
TAAAGAGTAA	TACTAGAGAT	AAACATAAAA	AATGTAGAGG	TCGAGTTTAG	ATGCAAGTTC	8220
AAGGAGCGAA	AGGTGGATGG	GTAGGTTATA	TAGGGATATA	GCACAGAGAT	ATATAGCAAA	8280
GAGATACTTT	TGAGCAATGT	TTGTGGAAGC	GGTATTCGCA	ATATTTTAGT	AGCTCGTTAC	8340
AGTCCGGTGC	GTTTTTGGTT	TTTTGAAAGT	GCGTCTTCAG	AGCGCTTTTG	GTTTTCAAAA	8400
GCGCTCTGAA	GTTCCTATAC	TTTCTAGAGA	ATAGGAACTT	CGGAATAGGA	ACTTCAAAGC	8460
GTTTCCGAAA	ACGAGCGCTT	CCGAAAATGC	AACGCGAGCT	GCGCACATAC	AGCTCACTGT	8520
TCACGTCGCA	CCTATATCTG	CGTGTTGCCT	GTATATATAT	ATACATGAGA	AGAACGGCAT	8580
AGTGCGTGTT	TATGCTTAAA	TGCGTACTTA	TATGCGTCTA	TTTATGTAGG	ATGAAAGGTA	8640
GTCTAGTACC	TCCTGTGATA	TTATCCCATT	CCATGCGGGG	TATCGTATGC	TTCCTTCAGC	8700
ACTACCCTTT	AGCTGTTCTA	TÄTGCTGCCA	CTCCTCAATT	GGATTAGTCT	CATCCTTCAA	8760
TGCTATCATT	TCCTTTGATA	TTGGATCATA	TTAAGAAACC	ATTATTATCA	TGACATTAAC	8820
СТАТАЛАЛАТ	AGGCGTATCA	CGAGGCCCTT	TCGTCTCGCG	CGTTTCGGTG	ATGACGGTGA	8880
AAACCTCTGA	CACATGCAGC	TCCCGGAGAC	GGTCACAGCT	TGTCTGTAAG	CGGATGCCGG	8940

F1G.	30 CONT	INUED	701	99		
GAGCAGACAA	GCCCGTCAGG	GCGCGTCAGC	GGGTGTTGGC	GGGTGTCGGG	GCTGGCTTAA	9000
CTATGCGGCA	TCAGAGCAGA	TTGTACTGAG	AGTGCACCAT	AGATCAACGA	CATTACTATA	9060
TATATAATAT	AGGAAGCATT	TAATAGACAG	CATCGTAATA	TATGTGTACT	TTGCAGTTAT	9120
GACGCCAGAT	GGCAGTAGTG	GAAGATATTC	TTTATTGAAA	AATAGCTTGT	CACCTTACGT	9180
ACAATCTTGA	TCCGGAGCTT	TTCTTTTTT	GCCGATTAAG	AATTAATTCG	GTCGAAAAA	9240
GAAAAGGAGA	GGGCCAAGAG	GGAGGGCATT	GGTGACTATT	GAGCACGTGA	GTATACGTGA	9300
TTAAGCACAC	AAAGGCAGCT	TGGAGTATGT	CTGTTATTAA	TTTCACAGGT	AGTTCTGGTC	9360
CATTGGTGAA	AGTTTGCGGC	TTGCAGAGCA	CAGAGGCCGC	AGAATGTGCT	CTAGATTCCG	9420
ATGCTGACTT	GCTGGGTATT	ATATGTGTGC	CCAATAGAAA	GAGAACAATT	GACCCGGTTA	9480
TTGCAAGGAA	AATTTCAAGT	CTTGTAAAAG	CATATAAAAA	TAGTTCAGGC	ACTCCGAAAT	9540
ACTTGGTTGG	CGTGTTTCGT	AATCAACCTA	AGGAGGATGT	TTTGGCTCTG	GTCAATGATT	9600
ACGGCATTGA	TATCGTCCAA	CTGCATGGAG	ATGAGTCGTG	GCAAGAATAC	CAAGAGTTCC.	9660
TCGGTTTGCC	AGTTATTAAA	AGACTCGTAT	TTCCAAAAGA	CTGCAACATA	CTACTCAGTG	9720
CAGCTTCACA	GAAACCTCAT	TCGTTTATTC	CCTTGTTTGA	TTCAGAAGCA	GGTGGGACAG	9780
GTGAACTTTT	GGATTGGAAC	TCGATTTCTG	ACTGGGTTGG	AAGGCAAGAG	AGCCCCGAAA	9840
GCTTACATTT	TATGTTAGCT	GGTGGACTGA	CGCCAGAAAA	TGTTGGTGAT	GCGCTTAGAT	9900
TAAATGGCGT	TATTGGTGTT	GATGTAAGCG	GAGGTGTGGA	GACAAATGGT	GTAAAAGACT	9960
СТААСААААТ	AGCAAATTTC	GTCAAAAATG	CTAAGAAATA	GGTTATTACT	GAGTAGTATT	10020
TATTTAAGTA	TTGTTTGTGC	ACTTGCCGAT	CTATGCGGTG	TGAAATACCG	CACAGATGCG	10080
TAAGGAGAAA	ATACCGCATC	AGGAAATTGT	AAACGTTAAT	ATTTTGTTAA	AATTCGCGTT	10140
AAATTTTTGT	TAAATCAGCT	CATTTTTTAA	CCAATAGGCC	GAAATCGGCA	AAATCCCTTA	10200
ТАААТСАААА	GAATAGACCG	AGATAGGGTT	GAGTGTTGTT	CCAGTTTGGA	ACAAGAGTCC	10260
ACTATTAAAG	AACGTGGACT	CCAACGTCAA	AGGGCGAAAA	ACCGTCTATC	AGGGCGATGG	10320
CCCACTACGT	GAACCATCAC	CCTAATCAAG	TTTTTTGGGG	TCGAGGTGCC	GTAAAGCACT	10380
AAATCGGAAC	CCTAAAGGGA	GCCCCGATT	TAGAGCTTGA	CGGGGAAAGC	CGGCGAACGT	10440
GGCGAGAAAG	GAAGGGAAGA	AAGCGAAAGG	AGCGGGCGCT	AGGGCGCTGG	CAAGTGTAGC	10500
GGTCACGCTG	CGCGTAACCA	CCACACCCGC	CGCGCTTAAT	GCGCCGCTAC	AGGGCGCGTC	10560
GCGCCATTCG	CCATTCAGGC	TGCGCAACTG	TTGGGAAGGG	CGATCGGTGC	GGGCCTCTTC	10620
GCTATTACGC	CAGCTGGCGA	AAGGGGGATG	TGCTGCAAGG	CGATTAAGTT	GGGTAACGCC	10680
AGGGTTTTCC	CAGTCACGAC	GTTGTAAAAC	GACGGCCAGT	CGTCCAAGCT	TTCGCGAGCT	10740
CGAGATCCCG	AGCTTTGCAA	ATTAAAGCCT	TCGAGCGTCC	CAAAACCTTC	TCAAGCAAGG	10800
TTTTCAGTAT	AATGTTACAT	GCGTACACGC	GTCTGTACAG	AAAAAAAAGA	AAAATTTGAA	10860

FIG. 30 CONTINUED.

71/99

LATAAATAI	A CGTTCTTAA	r actaacatai	A СТАТААААА	ATAAATAGG	G ACCTAGACTT	10920
CAGGTTGTC	AACTCCTTC	C TTTTCGGTT/	A GAGCGGATG1	GGGGGGAGG	G CGTGAATGTA	10980
AGCGTGACAT	AACTAATTA	ATGATATCG	A CAAAGGAAAA	GGGGCCTGT	TACTCACAGG	11040
CTTTTTTCA	GTAGGTAAT	AAGTCGTTTC	TGTCTTTTTC	CTTCTTCAAC	CCACCAAAGG	11100
CCATCTTGGT	ACTTTTTTT	r trttttttt	TTTTTTTTT	TTTTTTTTT	TTTTTTTTT	11160
TTTTTTTTT	TTTTTTTTT	TTTTTTTTTT	TTTTTTTTT	TTTTTTCATA	GAAATAATAC	11220
AGAAGTAGAT	GTTGAATTAG	ATTAAACTGA	AGATATATAA	TTTATTGGA	AATACATAGA	11280
GCTTTTTGTT	GATGCGCTTA	AGCGATCAAT	TCAACAACAC	CACCAGCAGO	TCTGATTTTT	11340
TCTTCAGCCA	ACTTGGAGAC	GAATCTAGCT	TTGACGATAA	CTGGAACATT	TGGGATTCTA	11400
CCCTTACCCA	AGATCTTACO	GTAACCGGCT	GCCAAAGTGT	CAATAACTGG	AGCAGTTTCC	11460
TTAGAAGCAG	ATTTCAAGTA	TTGGTCTCTC	TTGTCTTCTG	GGATCAATGT	CCACAATTTG	11520
TCCAAGTTCA	AGACTGGCTT	CCAGAAATGA	GCTTGTTGCT	TGTGGÄAGTA	TCTCATACCA	11580
ANCCTTACCG	AAATAACCTG	GATGGTATTT	ATCCATGTTA	ATTCTGTGGT	GATGTTGACC	11640
ACCGGCCATA	CCTCTACCAC	CGGGGTGCTT	TCTGTGCTTA	CCGATACGAC	CTTTACCGGC	11700
TGAGACGTGA	CCTCTGTGCT	TTCTAGTCTT	AGTGAATCTG	GAAGGCATTC	TTGATTAGTT	11760
GGATGATTGT	TCTGGGATTT	AATGCAAAAA	AATCACTAAG	AAGGAAAAA	ATCAACGGAG	11820
AAAGCAAACG	CCATCTTAAA	TATACGGGAT	ACAGATGAAA	GGTTTGAACC	TATCTGGGAA	11880
AATACGCATT	AAACAAGCGA	AAAACTGCGA	GGAAAATTGT	TTGCGTCTCT	GCGGGCTATT	11940
CACGCGCCAG	AGGAAAATAG	GAAAAATAAC	AGGGCATTAG	AAAAATAATT	TTGATTTTGG	12000
TAATGTGTGG	GTCCCTGGTG	TACAGATGTT	ACATTGGTTA	CAGTACTCTT	GTTTTTGCTG	12060
TGTTTTTCGA	TGAATCTCCA	AAATGGTTGT	TAGCACATGG	AAGAGTCACC	GATGCTAAGT	12120
TATCTCTATG	TAAGCTACGT	GGCGTGACTT	TTGATGAAGC	CGCACAAGAG	ATACAGGATT	12180
GGCAACTGCA	AATAGAATCT	GGGGATCTAG	ATATCCTTTT	GTTGTTTCCG	GGTGTACAAT	12240
ATGGACTTCC	TCTTTTCTGG	CAACCAAACC	CATACATCGG	GATTCCTATA	ATACCTTCGT	12300
TGGTCTCCCT	AACATGTAGG	TGGCGGAGGG	GAGATATACA	ATAGAACAGA	TACCAGACAA	12360
GACATAATGG	GCTAAACAAG	ACTACACCAA	TTACACTGCC	TCATTGATGG	TGGTACATAA	12420
CGAACTAATA	CTGTAGCCCT	AGACTTGATA	GCCATCATCA	TATCGAAGTT	TCACTACCCT	12480
TTTTCCATTT	GCCATCTATT	GAAGTAATAA	TAGGCGCATG	CAACTTCTTT	TCTTTTTTT	12540
TCTTTTCTCT	CTCCCCGTT	GTTGTCTCAC	CATATCCGCA	ATGACAAAAA	AAATGATGGA	12600
AGACACTAAA	GGAAAAAATT	AACGACAAAG	ACAGCACCAA	CAGATGTCGT	TGTTCCAGAG	12660
CTGATGAGGG	GTATCTTCGA	ACACACGAAA	CTTTTTCCTT	CCTTCATTCA	CGCACACTAC	12720
TCTCTAATGA	GCAACGGTAT	ACGGCCTTCC	TTCCAGTTAC	TTGAATTTGA	AATAAAAAAA	12780

FIG. 30 CONTINUED.

GT	TGCCGCT	TTGCTATCAA	GTATAAATAG	ACCTGCAATT	ATTAATCTTT	TGTTTCCTCG	12840
rca	attettet	CGTTCCCTTT	CTTCCTTGTT	TCTTTTTCTG	CACAATATTT	CAAGCTATAC	12900
CAZ	AGCATACA	ATCAACTCCA	AGCTTGAAGC	AAGCCTCCTG	AAAGATGAAG	CTACTGTCTT	12960
CTA	ATCGAACA	AGCATGCGAT	ATTTGCCGAC	TTAAAAAGCT	CAAGTGCTCC	AAAGAAAAAC	13020
CGJ	VAGTGCGC	CAAGTGTCTG	AAGAACAACT	GGGAGTGTCG	CTACTCTCCC	AAAACCAAAA	13080
GG1	CTCCGCT	GACTAGGGCA	CATCTGACAG	AAGTGGAATC	AAGGCTAGAA	AGACTGGAAC	13140
AGC	CTATTTCT	ACTGATTTTT	CCTCGAGAAG	ACCTTGACAT	GATTTTGAAA	ATGGATTCTT	13200
rac	CAGGATAT	AAAAGCATTG	TTAACAGGAT	TATTTGTACA	AGATAATGTG	AATAAAGATG	13260
CC	TCACAGA	TAGATTGGCT	TCAGTGGAGA	CTGATATGCC	TCTAACATTG	AGACAGCATA	13320
GAZ	ATAAGTGC	GACATCATCA	TCGGAAGAGA	GTAGTAACAA	AGGTCAAAGA	CAGTTGACTG	13380
ra1	CGCCGGA	ATTGCAATAC	CCAGCTTTGA	CTCA	•	•	13414

FIG. 31.

F16.32

TATGCCATCA	ATTTCCGGAT	CICAAGGAAC	TCTTGACAAC	ATTGATGTGA	TIGAGTIGAA	00
GCAAGAGCTC	AAAGAACGCG	ATAGTGCACT	TTACGAAGTC	CGCCTTGACA	ATCTGGATCG	120
TGCCCGCGAA	GTTGATGTTC	TGAGGGAGAC	AGTGAACAAG	TTGAAAACCG	AGAACAAGCA	180
ATTAAAGAAA	GAAGTGGACA	AACTCACCAA	CGGTCCAGCC	ACTCGTGCTT	CTTCCCGCGC	240
CTCAATTCCA	GTTATCTACG	ACGATGAGCA	TGTCTATGAT	GCAGCGTGTA	GCAGTACATC	300
AGCTAGTCAA	TCTTCGAAAC	GATCCTCTGG	CTGCAACTCA	ATCAAGGTTA	CTGTAAACGT	360
GGACATCGCT	GGAGAAATCA	GTTCGATCGT	TAACCCGGAC	AAAGAGATAA	TCGTAGGATA	420
TCTTGCCATG	TCAACCAGTC	AGTCATGCTG	GAAAGACATT	CATGTTTCTA	TTCTAGGACT	480
ATTTGAAGTC	TACCTATCCA	GAATTGATGT	GGAGCATCAA	CTTGGAATCG	ATGCTCGTGA	540

FIG	32 CONTINUED.	
110.	JZ LUMINOLU.	

TTCTATCCTT	GGCTATCAAA	TTGGTGAACT	TCGACGCGTC	ATTGGAGACT	CCACAACCAT	600
GATAACCAGO	CATCCAACTG	ACATTCTTAC	TTCCTCAACT	ACAATCCGAA	TGTTCATGCA	660
CGGTGCCGCA	CAGAGTCGCG	TAGACAGTCT	GGTCCTTGAT	ATGCTTCTTC	CAAAGCAAAT	720
GATTCTCCAA	CTCGTCAAGT	CAATTTTGAC	AGAGAGACGT	CTGGTGTTAG	CTGGAGCAAC	780
TGGAATTGGA	AAGAGCAAAC	TGGCGAAGAC	CCTGGCTGCT	TATGTATCTA	TTCGAACAAA	840
TCAATCCGAA	GATAGTATTG	TTAATATCAG	CATTCCTGAA	AACAATAAAG	AAGAATTGCT	900
TCAAGTGGAA	CGACGCCTGG	AAAAGATCTT	GAGAAGCAAA	GAATCATGCA	TCGTAATTCT	960
AGATAATATC	CCAAAGAATC	GAATTGCATT	TGTTGTATCC	GTTTTTGCAA	ATGTCCCACT	1020
TCAAAACAAC	GAAGGTCCAT	TTGTAGTATG	CACAGTCAAC	CGATATCAAA	TCCCTGAGCT	1080
TCAAATTCAC	CACAATTTCA	AAATGTCAGT	AATGTCGAAT	CGTCTCGAAG	GATTCATCCT	1140
ACGTTACCTC	CGACGACGGG	CGGTAGAGGA	TGAGTATCGT	CTAACTGTAC	AGATGCCATC	1200
AGAGCTCTTC	AAAATCATTG	ACTTCTTCCC	AATAGCTCTT	CAGGCCGTCA	ATAATTTTAT	1260
TGAGAAAACG	AATTCTGTTG	ATGTGACAGT	TGGTCCAAGA	GCATGCTTGA	ACTGTCCTCT	1320
AACTGTCGAT	GGATCCCGTG	AATGGTTCAT	TCGATTGTGG	AATGAGAACT	TCATTCCATA	1380
TTTGGAACGT	GTTGCTAGAG	ATGGCAAAAA	AACCTTCGGT	CGCTGCACTT	CCTTCGAGGA	1440
TCCCACCGAC	ATCGTCTCTA	AAAAATGGCC	GTGGTTCGAT	GGTGAAAACC	CGGAGAATGT	1500
GCTCAAACGT	CTTCAACTCC	AAGACCTCGT	CCCGTCACCT	GCCAACTCAT	CCCGACAACA	1560
CTTCAATCCC	CTCGAGTCGT	TGATCCAATT	GCATGCTACC	AAGCATCAGA	CCATCGACAA	1620
CATTTGAACA	GAAGACTCTA	ATCTTCTCTC	GCCTCTCCCC	CGCTTTCCTT	ATCTTCGTAC	1680
CGGTACCTGA	TGATTCCCCA	TTTTCCCCCT	TTTCCCCCCA	ATTTCCCAGA	ACCTCCTGTT	1740
CCCTTTGTTC	CTAGTCCTCC	CGGGTGCCGA	CGCCGAAGCG	ATTTAAAAAC	CTTTTTCTTT	1800
CCGAAACATT	TCCCATTGCT	CATTAATAGT	CAAATTGAAT	AAACAGTGTA	TGTACTTAAA	1860
ААААААААА	AAAAAAAAA	AAAAGGCCTA	TGCGGCCGGG	CCATGGAGGC	CGAATTCCCG	1920
GGGATCCGTC	GACCTGCAGC	CAAGCTAATT	CCGGGCGAAT	TTCTTATGAT	TTATGATTTT	1980
AAATTATTAA	TAAGTTATAA	AAAAAATAAG	TGTATACAAA	TTTTAAAGTG	ACTCTTAGGT	2040
TTTAAAACGA	AAATTCTTGT	TCTTGAGTAA	CTCTTTCCTG	TAGGTCAGGT	TGCTTTCTCA	2100
GGTATAGCAT	GAGGTCGCTC	TTATTGACCA	CACCTCTACC	GGCATGCAAG	CTTGGCGTAA	2160
TCATGGTCAT	AGCTGTTTCC	TGTGTGAAAT	TGTTATCCGC	TCACAATTCC	ACACAACATA	2220
CGAGCCGGAA	GCATAAAGTG	TAAAGCCTGG	GGTGCCTAAT	GAGTGAGGTA	ACTCACATTA	2280
ATTGCGTTGC	GCTCACTGCC	CGCTTTCCAG	TCGGGAAACC	TGTCGTGCCA	GCTGGATTAA	2340
TGAATCGGCC	AACGCGCGGG	GAGAGGCGGT	TTGCGTATTG	GGCGCTCTTC	CGCTTCCTCG	2400
CTCACTGACT	CGCTGCGCTC	GGTCGTTCGG	CTGCGGCGAG	CGGTATCAGC	TCACTCAAAG	2460

FIG. 32 CONTINUED.	76/99	
GCGGTAATAC GGTTATCCAC AGAATCAGGG	GATAACGCAG GAAAGAACAT GTGAGCAAAA	2520
GGCCAGCAAA AGGCCAGGAA CCGTAAAAAG	GCCGCGTTGC TGGCGTTTTT CCATAGGCTC	2580
CGCCCCCTG ACGAGCATCA CAAAAATCGA	CGCTCAAGTC AGAGGTGGCG AAACCCGACA	2640
GGACTATAAA GATACCAGGC GTTTCCCCCT	GGAAGCTCCC TCGTGCGCTC TCCTGTTCCG	2700
ACCCTGCCGC TTACCGGATA CCTGTCCGCC	TTTCTCCCTT CGGGAAGCGT GGCGCTTTCT	2760
CATAGCTCAC GCTGTAGGTA TCTCAGTTCG	GTGTAGGTCG TTCGCTCCAA GCTGGGCTGT	2820
GTGCACGAAC CCCCGTTCA GCCCGACCGC	TGCGCCTTAT CCGGTAACTA TCGTCTTGAG	2880
TCCAACCCGG TAAGACACGA CTTATCGCCA	CTGGCAGCAG CCACTGGTAA CAGGATTAGC	2940
AGAGCGAGGT ATGTAGGCGG TGCTACAGAG	TTCTTGAAGT GGTGGCCTAA CTACGGCTAC	30,00
ACTAGAAGGA CAGTATTTGG TATCTGCGCT	CTGCTGAAGC CAGTTACCTT CGGAAAAAGA	3060
GTTGGTAGCT CTTGATCCGG CAAACAAACC	ACCGCTGGTA GCGGTGGTTT TTTTGTTTGC	3120
AAGCAGCAGA TTACGCGCAG AAAAAAAGGA	TCTCAAGAAG ATCCTTTGAT CTTTTCTACG	3180
GGGTCTGACG CTCAGTGGAA CGAAAACTCA	CGTTAAGGGA TTTTGGTCAT GAGATTATCA	3240
AAAAGGATCT TCACCTAGAT CCTTTTAAAT	TAAAAATGAA GTTTTAAATC AATCTAAAGT	3300
ATATATGAGT AAACTTGGTC TGACAGTTAC	CAATGCTTAA TCAGTGAGGC ACCTATCTCA	3360
GCGATCTGTC TATTTCGTTC ATCCATAGTT	GCCTGACTCC CCGTCGTGTA GATAACTACG	3420
ATACGGGAGG GCTTACCATC TGGCCCCAGT	GCTGCAATGA TACCGCGAGA CCCACGCTCA	3480
CCGGCTCCAG ATTTATCAGC AATAAACCAG	CCAGCCGGAA GGGCCGAGCG CAGAAGTGGT	3540
CCTGCAACTT TATCCGCCTC CATCCAGTCT	ATTAATTGTT GCCGGGAAGC TAGAGTAAGT	3600
AGTTCGCCAG TTAATAGTTT GCGCAACGTT	GTTGCCATTG CTACAGGCAT CGTGGTGTCA	3660
CGCTCGTCGT TTGGTATGGC TTCATTCAGC	TCCGGTTCCC AACGATCAAG GCGAGTTACA	3720
TGATCCCCCA TGTTGTGCAA AAAAGCGGTT	AGCTCCTTCG GTCCTCCGAT CGTTGTCAGA	3780
AGTAAGTTGG CCGCAGTGTT ATCACTCATG	GTTATGGCAG CACTGCATAA TTCTCTTACT	3840
GTCATGCCAT CCGTAAGATG CTTTTCTGTG	ACTGGTGAGT ACTCAACCAA GTCATTCTGA	3900
GAATAGTGTA TGCGGCGACC GAGTTGCTCT	TGCCCGGCGT CAATACGGGA TAATACCGCG	39,60
CCACATAGCA GAACTTTAAA AGTGCTCATC	ATTGGAAAAC GTTCTTCGGG GCGAAAACTC	4020
TCAAGGATCT TACCGCTGTT GAGATCCAGT	TCGATGTAAC CCACTCGTGC ACCCAACTGA	4080
TCTTCAGCAT CTTTTACTTT CACCAGCGTT	TCTGGGTGAG CAAAAACAGG AAGGCAAAAT	4140
GCCGCAAAAA AGGGAATAAG GGCGACACGG	AAATGTTGAA TACTCATACT CTTCCTTTTT	4200
CAATATTATT GAAGCATTTA TCAGGGTTAT	TGTCTCATGA GCGGATACAT ATTTGAATGT	4260
ATTTAGAAAA ATAAACAAAT AGGGGTTCCG	CGCACATTTC CCCGAAAAGT GCCACCTGAA	4320
CGAAGCATCT GTGCTTCATT TTGTAGAACA	AAAATGCAAC .GCGAGAGCGC .TAATTTTTCA	4380

FIG. 32 CONTINUED. 77	199
AACAAAGAAT CTGAGCTGCA TTTTTACAGA ACAGAAATGC AACGCGAAAG CGCT	ATTTTA 4440
CCAACGAAGA ATCTGTGCTT CATTTTTGTA AAACAAAAAT GCAACGCGAG AGCG	CTAATT 4500
TTTCAAACAA AGAATCTGAG CTGCATTTTT ACAGAACAGA	GCGCTA 4560
TTTTACCAAC AAAGAATCTA TACTTCTTTT TTGTTCTACA AAAATGCATC CCGA	GAGCGC 4620
TATTTTCTA ACAAAGCATC TTAGATTACT TTTTTCTCC TTTGTGCGCT CTAT	AATGCA 4680
GTCTCTTGAT AACTTTTTGC ACTGTAGGTC CGTTAAGGTT AGAAGAAGGC TACT	TTGGTG 4740
TCTATTTCT CTTCCATAAA AAAAGCCTGA CTCCACTTCC CGCGTTTACT GATTA	ACTAGC 4800
GAAGCTGCGG GTGCATTTTT TCAAGATAAA GGCATCCCCG ATTATATTCT ATACC	CGATGT 4860
GGATTGCGCA TACTTTGTGA ACAGAAAGTG ATAGCGTTGA TGATTCTTCA TTGGT	CAGAA 4920
AATTATGAAC GGTTTCTTCT ATTTTGTCTC TATATACTAC GTATAGGAAA TGTTT	TACATT 4980
TTCGTATTGT TTTCGATTCA CTCTATGAAT AGTTCTTACT ACAATTTTTT TGTCT	TAAAGA 5040
GTAATACTAG AGATAAACAT AAAAAATGTA GAGGTCGAGT TTAGATGCAA GTTC	AAGGAG 5100
CGAAAGGTGG ATGGGTAGGT TATATAGGGA TATAGCACAG AGATATATAG CAAAG	GAGATA 5160
CTTTTGAGCA ATGTTTGTGG AAGCGGTATT CGCAATATTT TAGTAGCTCG TTAC	AGTCCG 5220
GTGCGTTTTT GGTTTTTTGA AAGTGCGTCT TCAGAGCGCT TTTGGTTTTC AAAAC	SCGCTC 5280
TGAAGTTCCT ATACTTTCTA GAGAATAGGA ACTTCGGAAT AGGAACTTCA AAGCC	STTTCC 5340
GAAAACGAGC GCTTCCGAAA ATGCAACGCG AGCTGCGCAC ATACAGCTCA CTGTT	CACGT 5400
CGCACCTATA TCTGCGTGTT GCCTGTATAT ATATATACAT GAGAAGAACG GCATA	AGTGCG 5460
TGTTTATGCT TARATGCGTA CTTATATGCG TCTATTTATG TAGGATGAAA GGTAG	STCTAG 5520
TACCTCCTGT GATATTATCC CATTCCATGC GGGGTATCGT ATGCTTCCTT CAGC	ACTACC 5580
CTTTAGCTGT TCTATATGCT GCCACTCCTC AATTGGATTA GTCTCATCCT TCAAT	GCTAT 5640
CATTTCCTTT GATATTGGAT CATATTAAGA AACCATTATT ATCATGACAT TAACC	CTATAA 5700
ARATAGGCGT ATCACGAGGC CCTTTCGTCT CGCGCGTTTC GGTGATGACG GTGA	AACCT 5760
CTGACACATG CAGCTCCCGG AGACGGTCAC AGCTTGTCTG TAAGCGGATG CCGGC	SAGCAG 5820
ACAAGCCCGT CAGGGCGCGT CAGCGGGTGT TGGCGGGTGT CGGGGCTGGC TTAAC	CTATGC 5880
GGCATCAGAG CAGATTGTAC TGAGAGTGCA CCATAGATCA ACGACATTAC TATAT	CATATA 5940
ATATAGGAAG CATTTAATAG ACAGCATCGT AATATATGTG TACTTTGCAG TTATC	EACGCC 6000
AGATGGCAGT AGTGGAAGAT ATTCTTTATT GAAAAATAGC TTGTCACCTT ACGTA	ACAATC 6060
TTGATCCGGA GCTTTTCTTT TTTTGCCGAT TAAGAATTAA TTCGGTCGAA AAAAC	GAAAAG 6120
GAGAGGCCA AGAGGGAGGG CATTGGTGAC TATTGAGCAC GTGAGTATAC GTGAT	TAAGC 6180
ACACAAAGGC AGCTTGGAGT ATGTCTGTTA TTAATTTCAC AGGTAGTTCT GGTCC	CATTGG 6240
TGAAAGTTTG CGGCTTGCAG AGCACAGAGG CCGCAGAATG TGCTCTAGAT TCCGA	TGCTG 6300

8220

FIG. 32 CON	TINUED	÷	•	78/99	
ACTTGCTGGG TATTATATGT	GTGCCCAATA	GAAAGAGAAC	AATTGACCCG	GTTATTGCAA	6360
GGAAAATTTC AAGTCTTGTA	AAAGCATATA	AAAATAGTTC	AGGCACTCCG	AAATACTTGG	6420
TTGGCGTGTT TCGTAATCAA	CCTAAGGAGG	ATGTTTTGGC	TCTGGTCAAT	GATTACGGCA	6480
TTGATATCGT CCAACTGCAT	GGAGATGAGT	CGTGGCAAGA	ATACCAAGAG	TTCCTCGGTT	6540
TGCCAGTTAT TAAAAGACTC	GTATTTCCAA	AAGACTGCAA	CATACTACTC	AGTGCAGCTT	6600
CACAGAAACC TCATTCGTTT	ATTCCCTTGT	TTGATTCAGA	AGCAGGTGGG	ACAGGTGAAC	6660
TTTTGGATTG GAACTCGATT	TCTGACTGGG	TTGGAAGGCA	AGAGAGCCCC	GAAAGCTTAC	6720
ATTTTATGTT AGCTGGTGGA	CTGACGCCAG	AAAATGTTGG	TGATGCGCTT	AGATTAAATG	6780
GCGTTATTGG TGTTGATGTA	AGCGGAGGTG	TGGAGACAAA	TGGTGTAAAA	GACTCTAACA	6840
AAATAGCAAA TTTCGTCAAA	AATGCTAAGA	AATAGGTTAT	TACTGAGTAG	TATTTATTTA	6900
AGTATTGTTT GTGCACTTGC	CGATCTATGC	GGTGTGAAAT	ACCGCACAGA	TGCGTAAGGA	6960
GAAAATACCG CATCAGGAAA	TTGTAAACGT	TAATATTTTG	TTAAAATTCG	CGTTAAATTT	7020
TTGTTAAATC AGCTCATTTT	TTAACCAATA	GGCCGAAATC	GGCAAAATCC	CTTATAAATC	7080
AAAAGAATAG ACCGAGATAG	GGTTGAGTGT	TGTTCCAGTT	TGGAACAAGA	GTCCACTATT	7140
AAAGAACGTG GACTCCAACG	TCAAAGGGCG	AAAAACCGTC	TATCAGGGCG	ATGGCCCACT	7200
ACGTGAACCA TCACCCTAAT	CAAGTTTTTT	GGGGTCGAGG	TGCCGTAAAG	CACTAAATCG	7260
GAACCCTAAA GGGAGCCCCC	GATTTAGAGC	TTGACGGGGA	AAGCCGGCGA	ACGTGGCGAG	7320
AAAGGAAGGG AAGAAAGCGA	AAGGAGCGGG	CGCTAGGGCG	CTGGCAAGTG	TAGCGGTCAC	7380
GCTGCGCGTA ACCACCACAC	CCGCCGCGCT	TAATGCGCCG	CTACAGGGCG	CGTCGCGCCA	7440
TTCGCCATTC AGGCTGCGCA	ACTGTTGGGA	AGGGCGATCG	GTGCGGGCCT	CTTCGCTATT	7500
ACGCCAGCTG GCGAAAGGGG	GATGTGCTGC	AAGGCGATTA	AGTTGGGTAA	CGCCAGGGTT	7560
TTCCCAGTCA CGACGTTGTA	AAACGACGGC	CAGTCGTCCA	AGCTTTCGCG	AGCTCGAGAT	7620
CCCGAGCTTT GCAAATTAAA	GCCTTCGAGC	GTCCCAAAAC	CTTCTCAAGC	AAGGTTTTCA	7680
GTATAATGTT ACATGCGTAC	ACGCGTCTGT	ACAGAAAAA	AAGAAAAATT	TGAAATATAA	7740
ATAACGTTCT TAATACTAAC	ATAACTATAA	TAAAATAAAT	AGGGACCTAG	ACTTCAGGTT	7800
GTCTAACTCC TTCCTTTTCG	GTTAGAGCGG	ATGTGGGGG	AGGGCGTGAA	TGTAAGCGTG	7860
ACATAACTAA TTACATGATA	TCGACAAAGG	AAAAGGGGCC	TGTTTACTCA	CAGGCTTTTT	7920
TCAAGTAGGT AATTAAGTCG	TTTCTGTCTT	TTTCCTTCTT	CAACCCACCA	AAGGCCATCT	7980
TGGTACTTTT TTTTTTTT	TTTTTTTTT	TTTTTTTTT	TTTTTTTT	TTTTTTTTT	8040
TTTTTTTTT TTTTTTTT	TTTTTTTTT	TTTTTTTTT	CATAGAAATA	ATACAGAAGT	8100
AGATGTTGAA TTAGATTAAA	CTGAAGATAT	ATAATTTATT	GGAAAATACA	TAGAGCTTTT	8160

SUBSTITUTE SHEET (RULE 26)

TGTTGATGCG CTTAAGCGAT CAATTCAACA ACACCACCAG CAGCTCTGAT TTTTTCTTCA

FIG. 32 CONTIN	IVED.
----------------	-------

• •						
GCCAACTTGG	AGACGAATCT	AGCTTTGACG	ATAACTGGAA	CATTTGGGAT	TCTACCCTTA	8280
CCCAAGATCT	TACCGTAACC	GGCTGCCAAA	GTGTCAATAA	CTGGAGCAGT	TTCCTTAGAA	8340
GCAGATTTCA	AGTATTGGTC	TCTCTTGTCT	TCTGGGATCA	ATGTCCACAA	TTTGTCCAAG	8400
TTCAAGACTG	GCTTCCAGAA	ATGAGCTTGT	TGCTTGTGGA	AGTATCTCAT	ACCAANCCTT	8460
ACCGAAATAA	CCTGGATGGT	ATTTATCCAT	GTTAATTCTG	TGGTGATGTT	GACCACCGGC	8520
CATACCTCTA	CCACCGGGGT	GCTTTCTGTG	CTTACCGATA	CGACCTTTAC	CGGCTGAGAC	8580
GTGACCTCTG	TGCTTTCTAG	TCTTAGTGAA	TCTGGAAGGC	ATTCTTGATT	AGTTGGATGA	8640
TTGTTCTGGG	ATTTAATGCA	AAAAAATCAC	TAAGAAGGAA	AAAAATCAAC	GGAGAAAGCA	8700
AACGCCATCT	TAAATATACG	GGATACAGAT	GAAAGGTTTG	AACCTATCTG	GGAAAATACG	8760
CATTAAACAA	GCGAAAAACT	GCGAGGAAAA	TTGTTTGCGT	CTCTGCGGGC	TATTCACGCG	8820
CCAGAGGAAA	ATAGGAAAAA	TAACAGGGCA	TTAGAAAAAT	AATTTTGATT	TTGGTAATGT	8880
GTGGGTCCCT	GGTGTACAGA	TGTTACATTG	GTTACAGTAC	TCTTGTTTTT	GCTGTGTTTT	8940
TCGATGAATC	TCCAAAATGG	TTGTTAGCAC	ATGGAAGAGT	CACCGATGCT	AAGTTATCTC	9000
TATGTAAGCT	ACGTGGCGTG	ACTTTTGATG	AAGCCGCACA	AGAGATACAG	GATTGGCAAC	9060
TGCAAATAGA	ATCTGGGGAT	CTAGATATCC	TTTTGTTGTT	TCCGGGTGTA	CAATATGGAC	9120
TTCCTCTTTT	CTGGCAACCA	AACCCATACA	TCGGGATTCC	TATAATACCT	TCGTTGGTCT	9180
CCCTAACATG	TAGGTGGCGG	AGGGGAGATA	TACAATAGAA	CAGATACCAG	ACAAGACATA	9240
ATGGGCTAAA	CAAGACTACA	CCAATTACAC	TGCCTCATTG	ATGGTGGTAC	ATAACGAACT	9300
AATACTGTAG	CCCTAGACTT	GATAGCCATC	ATCATATCGA	AGTTTCACTA	CCCTTTTTCC	9360
ATTTGCCATC	TATTGAAGTA	ATAATAGGCG	CATGCAACTT	CTTTTCTTTT	TTTTTCTTTT	9420
CTCTCTCCCC	CGTTGTTGTC	TCACCATATC	CGCAATGACA	AAAAAAATGA	TGGAAGACAC	9480
TAAAGGAAAA	AATTAACGAC	AAAGACAGCA	CCAACAGATG	TCGTTGTTCC	AGAGCTGATG	9540
AGGGGTATCT	TCGAACACAC	GAAACTTTTT	CCTTCCTTCA	TTCACGCACA	CTACTCTCTA	9600
ATGAGCAACG	GTATACGGCC	TTCCTTCCAG	TTACTTGAAT	TTGAAATAAA	AAAAGTTTGC	9660
CGCTTTGCTA	TCAAGTATAA	ATAGACCTGC	AATTATTAAT	CTTTTGTTTC	CTCGTCATTG	9720
TTCTCGTTCC	CTTTCTTCCT	TGTTTCTTTT	TCTGCACAAT	ATTTCAAGCT	ATACCAAGCA	9780
TACAATCAAC	: TCCAAGCTTG	AAGCAAGCCT	CCTGAAAGAT	GAAGCTACTG	TCTTCTATCG	9840
AACAAGCATO	G CGATATTTGC	CGACTTAAAA	AGCTCAAGTG	CTCCAAAGAA	AAACCGAAGT	9900
GCGCCAAGT	TCTGAAGAAC	: AACTGGGÄGT	GTCGCTACTC	TCCCAAAACC	AAAAGGTCTC	9960
CGCTGACTAC	GGCACATCT	ACAGAAGTGG	AATCAAGGC1	AGAAAGACTO	GAACAGCTAT	10020
TTCTACTGAT	TTTTCCTCG	GAAGACCTT	ACATGATTT	GAAAATGGAT	TCTTTACAGG	10080
ATATAAAAGG	C ATTGTTAAC	GGATTATTT	TACAAGATA	A TGTGAATAA	GATGCCGTCA	10140

FIG. 32 CONTINUED.

CAGATAGATT	GGCTTCAGTG	GAGACTGATA	TGCCTCTAAC	ATTGAGACAG	CATAGAATAA	10200
GTGCGACATC	ATCATCGGAA	GAGAGTAGTA	ACAAAGGTCA	AAGACAGTTG	ACTGTATCGC	10260
CGGAATTGCA	ATACCCAGCT	TTGACTCA				10288

er folkti Moor Folkel oo an 1880 oo tale oo telebook is kale waa oo beerskeis kale kale kale kale kale kale ka

F16.34.

GCTTGCATGC	AACTTCTTTT	CTTTTTTTT	CTTTTCTCTC	TCCCCCGTTG	TTGTCTCACC	60
ATATCCGCAA	TGACAAAAA	AATGATGGAA	GACACTAAAG	GAAAAAATTA	ACGACAAAGA	120
CAGCACCAAC	AGATGTCGTT	GTTCCAGAGC	TGATGAGGGG	TATCTTCGAA	CACACGAAAC	180
TTTTTCCTTC	CTTCATTCAC	GCACACTACT	CTCTAATGAG	CAACGGTATA	CGGCCTTCCT	240
TCCAGTTACT	TGAATTTGAA	ATAAAAAAAG	TTTGCCGCTT	TGCTATCAAG	TATAAATAGA	300
CCTGCAATTA	TTAATCTTTT	GTTTCCTCGT	CATTGTTCTC	GTTCCCTTTC	TTCCTTGTTT	360
CTTTTTCTGC	ACAATATTTC	AAGCTATACC	AAGCATACAA	TCAACTCCAA	GCTTTGCAAA	420
GATGGATAAA	GCGGAATTAA	TTCCCGAGCC	TCCAAAAAAG	AAGAGAAAGG	TCGAATTGGG	480
TACCGCCGCC	AATTTTAATC	AAAGTGGGAA	TATTGCTGAT	AGCTCATTGT	CCTTCACTTT	540
CACTAACAGT	AGCAACGGTC	CGAACCTCAT	AACAACTCAA	ACAAATTCTC	AAGCGCTTTC	600
ACAACCAATT	GCCTCCTCTA	ACGTTCATGA	TAACTTCATG	AATAATGAAA	TCACGGCTAG	660
FAAAATTGAT	GATGGTAATA	ATTCAAAACC	ACTGTCACCT	GGTTGGACGG	ACCAAACTGC	720
STATAACGCG	TTTGGAATCA	CTACAGGGAT	GTTTAATACC	ACTACAATGG	ATGATGTATA	780
FAACTATCTA	TTCGATGATG	AAGATACCCC	ACCAAACCCA	AAAAAAGAGA	TCGAATTCCC	840
GGGGATCCGC	TCCTCACTCT	CCAAGTTCAC	CAAGAAGAAG	AACAAGAACT	ACGACGAAGC	900
ACATATGCCA	TCAATTTCCG	GATCTCAAGG	AACTCTTGAC	AACATTGATG	TGATTGAGTT	960
SAAGCAAGAG	CTCAAAGAAC	GCGATAGTGC	ACTTTACGAA	GTCCGCCTTG	ACAATCTGGA	1020
rcgrgcccgc	GAAGTTGATG	TTCTGAGGGA	GACAGTGAAC	AAGTTGAAAA	CCGAGAACAA	1080
SCAATTAAA G	AAAGAAGTGG	ACAAACTCAC	CAACGGTCCA	GCCACTCGTG	CTTCTTCCCG	1140
CGCCTCAATT	CCAGTTATCT	ACGACGATGA	GCATGTCTAT	GATGCAGCGT	GTAGCAGTAC	1200

FIG.	340	CONTINUED.	

ATCAGCTAGT	CAATCTTCGA	AACGATCCTC	TGGCTGCAAC	TCAATCAAGG	TTACTGTAAA	1260
CGTGGACATC	GCTGGAGAAA	TCAGTTCGAT	CGTTAACCCG	GACAAAGAGA	TAATCGTAGG	1320
	ATGTCAACCA					1380
	GTCTACCTAT				*	1440
	CTTGGCTATC					1500
	AGCCATCCAA	,				1560
	GCACAGAGTC			•		1620
•	CAACTCGTCA					1680
	GGAAAGAGCA		•			1740
AAATCAATCC	GAAGATAGTA	TTGTTAATAT	CAGCATTCCT	GAAAACAATA	AAGAAGAATT	1800
GCTTCAAGTG	GAACGACGCC	TGGAAAAGAT	CTATGAATCG	TAGATACTGA	AAAACCCCGC	1860
AAGTTCACTT	CAACTGTGCA	TCGTGCACCA	TCTCAATTTC	TTTCATTTAT	ACATCGTTTT	1920
GCCTTCTTTT	ATGTAACTAT	ACTCCTCTAA	GTTTCAATCT	TGGCCATGTA	ACCTCTGATC	1980
TATAGAATTT	TTTAAATGAC	TAGAATTAAT	GCCCATCTTT	TTTTTGGACC	TAAATTCTTC	2040
ATGAAAATAT	ATTACGAGGG	CTTATTCAGA	AGCTTTGGAC	TTCTTCGCCA	GAGGTTTGGT	2100
CAAGTCTCCA	ATCAAGGTTG	TCGGCTTGTC	TACCTTGCCA	GAAATTTACG	AAAAGATGGA	2160
AAAGGGTCAA	ATCGTTGGTA	GATACGTTGT	TGACACTTCT	AAATAAGCGA	ATTTCTTATG	2220
ATTTATGATT	TTTATTATTA	AATAAGTTAT	АЛАААААТА	AGTGTATACA	AATTTTAAAG	2280
TGACTCTTAG	GTTTTAAAAC	GAAAATTCTT	GTTCTTGAGT	AACTCTTTCC	TGTAGGTCAG	2340
GTTGCTTTCT	CAGGTATAGC	ATGAGGTCGC	TCTTATTGAC	CACACCTCTA	CCGGCATGCC	2400
CGAAATTCCC	CTACCCTATG	AACATATTCC	ATTTTGTAAT	TTCGTGTCGT	TTCTATTATG	2460
AATTTCATTT	ATAAAGTTTA	TGTACAAATA	TCATAAAAAA	AGAGAATCTT	TTTAAGCAAG	2520
GATTTTCTTA	ACTTCTTCGG	CGACAGCATC	ACCGACTTCG	GTGGTACTGT	TGGAACCACC	2580
TAAATCACCA	GTTCTGATAC	CTGCATCCAA	AACCTTTTTA	ACTGCATCTT	CAATGGCCTT	2640
ACCTTCTTCA	GGCAAGTTCA	ATGACAATTT	CAACATCATT	GCAGCAGACA	AGATAGTGGC	2700
GATAGGGTCA	ACCTTATTCT	TTGGCAAATC	TGGAGCAGAA	CCGTGGCATG	GTTCGTACAA	2760
ACCAAATGCG	GTGTTCTTGT	CTGGCAAAGA	GGCCAAGGAC	GCAGATGGCA	ACAAACCCAA	2820
GGAACCTGGG	ATAACGGAGG	CTTCATCGGA	GATGATATCA	CCAAACATGT	TGCTGGTGAT	2880
TATAATACCA	TTTAGGTGGG	TTGGGTTCTT	AACTAGGATC	ATGGCGGCAG	AATCAATCAA	2940
TTGATGTTGA	ACCTTCAATG	TAGGAAATTC	GTTCTTGATG	GTTTCCTCCA	CAGTTTTTCT	3000
CCATAATCTT	GAAGAGGCCA	AAACATTAGC	TTTATCCAAG	GACCAAATAG	GCAATGGTGG	3060
CTCATGTTGT	AGGGCCATGA	AAGCGGCCAT	TCTTGTGATT	CTTTGCACTT	CTGGAACGGT	3120
					_	-

FIG. 34 CONTINUED.	84/99	
GTATTGTTCA CTATCCCAAG CGACACCATC ACCATCGTCT	TCCTTTCTCT TACCAAAGTA	3180
AATACCTCCC ACTAATTCTC TGACAACAAC GAAGTCAGTA	CCTTTAGCAA ATTGTGGCTT	3240
GATTGGAGAT AAGTCTAAAA GAGAGTCGGA TGCAAAGTTA	CATGGTCTTA AGTTGGCGTA	3300
CAATTGAAGT TCTTTACGGA TTTTTAGTAA ACCTTGTTCA	GGTCTAACAC TACCTGTACC	3360
CCATTTAGGA CCACCCACAG CACCTAACAA AACGGCATCA	ACCTTCTTGG AGGCTTCCAG	3420
CGCCTCATCT GGAAGTGGGA CACCTGTAGC ATCGATAGCA	GCACCACCAA TTAAATGATT	3480
TTCGAAATCG AACTTGACAT TGGAACGAAC ATCAGAAATA	GCTTTAAGAA CCTTAATGGC	3540
TTCGGCTGTG ATTTCTTGAC CAACGTGGTC ACCTGGCAAA	ACGACGATCT TCTTAGGGGC	3600
AGACATTAGA ATGGTATATC CTTGAAATAT ATATATATAT	TGCTGAAATG TAAAAGGTAA	3660
GAAAAGTTAG AAAGTAAGAC GATTGCTAAC CACCTATTGG	AAAAAACAAT AGGTCCTTAA	3720
ATAATATTGT CAACTTCAAG TATTGTGATG CAAGCATTTA	GTCATGAACG CTTCTCTATT	3780
CTATATGAAA AGCCGGTTCC GGCCTCTCAC CTTTCCTTTT	TCTCCCAATT TTTCAGTTGA	3840
AAAAGGTATA TGCGTCAGGC GACCTCTGAA ATTAACAAAA	AATTTCCAGT CATCGAATTT	3900
GATTCTGTGC GATAGCGCCC CTGTGTGTTC TCGTTATGTT	GAGGAAAAA ATAATGGTTG	3960
CTAAGAGATT CGAACTCTTG CATCTTACGA TACCTGAGTA	TTCCCACAGT TGGGGATCTC	4020
GACTCTAGCT AGAGGATCAA TTCGTAATCA TGGTCATAGC	TGTTTCCTGT GTGAAATTGT	4080
TATCCGCTCA CAATTCCACA CAACATACGA GCCGGAAGCA	TAAAGTGTAA AGCCTGGGGT	4140
GCCTAATGAG TGAGGTAACT CACATTAATT GCGTTGCGCT	CACTGCCCGC TTTCCAGTCG	4200
GGAAACCTGT CGTGCCAGCT GGATTAATGA ATCGGCCAAC	GCGCGGGAG AGGCGGTTTG	4260
CGTATTGGGC GCTCTTCCGC TTCCTCGCTC ACTGACTCGC	TGCGCTCGGT CGTTCGGCTG	4320
CGGCGAGCGG TATCAGCTCA CTCAAAGGCG GTAATACGGT	TATCCACAGA ATCAGGGGAT	4380
AACGCAGGAA AGAACATGTG AGCAAAAGGC CAGCAAAAGG	CCAGGAACCG TAAAAAGGCC	4440
GCGTTGCTGG CGTTTTTCCA TAGGCTCCGC CCCCTGACG	AGCATCACAA AAATCGACGC	4500
TCAAGTCAGA GGTGGCGAAA CCCGACAGGA CTATAAAGAT	ACCAGGCGTT TCCCCCTGGA	4560
AGCTCCCTCG TGCGCTCTCC TGTTCCGACC CTGCCGCTTA	CCGGATACCT GTCCGCCTTT	4620
CTCCCTTCGG GAAGCGTGGC GCTTTCTCAT AGCTCACGCT	GTAGGTATCT CAGTTCGGTG	4680
TAGGTCGTTC GCTCCAAGCT GGGCTGTGTG CACGAACCCC	CCGTTCAGCC CGACCGCTGC	4740
GCCTTATCCG GTAACTATCG TCTTGAGTCC AACCCGGTAA	GACACGACTT ATCGCCACTG	4800
GCAGCAGCCA CTGGTAACAG GATTAGCAGA GCGAGGTATG	TAGGCGGTGC TACAGAGTTC	4860
TTGAAGTGGT GGCCTAACTA CGGCTACACT AGAAGGACAG	TATTTGGTAT CTGCGCTCTG	4920
CTGAAGCCAG TTACCTTCGG AAAAAGAGTT GGTAGCTCTT	GATCCGGCAA ACAAACCACC	4980
GCTGGTAGCG GTGGTTTTTT TGTTTGCAAG CAGCAGATTA	CGCGCAGAAA AAAAGGATCT	5040

FIG. 34 CONT	INUED.		851	199	
CAAGAAGATC CTTTGATCTT	TTCTACGGGG	TCTGACGCTC	AGTGGAACGA	AAACTCACGT	5100
TAAGGGATTT TGGTCATGAG	ATTATCAAAA	AGGATCTTCA	CCTAGATCCT	TTTAAATTAA	5160
AAATGAAGTT TTAAATCAAT	CTAAAGTATA	TATGAGTAAA	CTTGGTCTGA	CAGTTACCAA	5220
TGCTTAATCA GTGAGGCACC	TATCTCAGCG	ATCTGTCTAT	TTCGTTCATC	CATAGTTGCC	5280
TGACTCCCCG TCGTGTAGAT	AACTACGATA	CGGGAGGGCT	TACCATCTGG	CCCCAGTGCT	5340
GCAATGATAC CGCGAGACCC	ACGCTCACCG	GCTCCAGATT	TATCAGCAAT	AAACCAGCCA	5400
GCCGGAAGGG CCGAGCGCAG	AAGTGGTCCT	GCAACTTTAT	CCGCCTCCAT	CCAGTCTATT	5460
AATTGTTGCC GGGAAGCTAG	AGTAAGTAGT	TCGCCAGTTA	ATAGTTTGCG	CAACGTTGTT	5520
GCCATTGCTA CAGGCATCGT	GGTGTCACGC	TCGTCGTTTG	GTATGGCTTC	ATTCAGCTCC	5580
GGTTCCCAAC GATCAAGGCG	AGTTACATGA	TCCCCCATGT	TGTGCAAAAA	AGCGGTTAGC	5640
TCCTTCGGTC CTCCGATCGT	TGTCAGAAGT	AAGTTGGCCG	CAGTGTTATC	ACTCATGGTT	5700
ATGGCAGCAC TGCATAATTC	TCTTACTGTC	ATGCCATCCG	TAAGATGCTT	TTCTGTGACT	5760
GGTGAGTACT CAACCAAGTC	ATTCTGAGAA	TAGTGTATGC	GGCGACCGAG	TTGCTCTTGC	5820
CCGGCGTCAA TACGGGATAA	TACCGCGCCA	CATAGCAGAA	CTTTAAAAGT	GCTCATCATT	5880
GGAAAACGTT CTTCGGGGCG	AAAACTCTCA	AGGATCTTAC	CGCTGTTGAG	ATCCAGTTCG	5940
ATGTAACCCA CTCGTGCACC	CAACTGATCT	TCAGCATCTT	TTACTTTCAC	CAGCGTTTCT	6000
GGGTGAGCAA AAACAGGAAG	GCAAAATGCC	GCAAAAAAGG	GAATAAGGGC	GACACGGAAA	6060
TGTTGAATAC TCATACTCTT	CCTTTTTCAA	TATTATTGAA	GCATTTATCA	GGGTTATTGT	6120
CTCATGAGCG GATACATATT	TGAATGTATT	TAGAAAAATA	AACAAATAGG	GGTTCCGCGC	618.0.;
ACATTTCCCC GAAAAGTGCC	ACCTGACGTC	TAAGAAACCA	TTATTATCAT	GACATTAACC	6240
TATAAAATA GGCGTATCAC	GAGGCCCTTT	CGTCTCGCGC	GTTTCGGTGA	TGACGGTGAA	6300
AACCTCTGAC ACATGCAGCT	CCCGGAGACG	GTCACAGCTT	GTCTGTAAGC	GGATGCCGGG	6360
AGCAGACAAG CCCGTCAGGG	CGCGTCAGCG	GGTGTTGGCG	GGTGTCGGGG	CTGGCTTAAC	6420
TATGCGGCAT CAGAGCAGAT	TGTACTGAGA	GTGCACCATA	ACGCATTTAA	GCATAAACAC	6480
GCACTATGCC GTTCTTCTCA	TGTATATATA	TATACAGGCA	ACACGCAGAT	ATAGGTGCGA	6540
CGTGAACAGT GAGCTGTATG	TGCGCAGCTC	GCGTTGCATT	TTCGGAAGCG	CTCGTTTTCG	6600
GAAACGCTTT GAAGTTCCTA	TTCCGAAGTT	CCTATTCTCT	AGCTAGAAAG	TATAGGAACT	6660
TCAGAGCGCT TTTGAAAACC	AAAAGCGCTC	TGAAGACGCA	CTTTCAAAAA	ACCAAAAACG	6720
CACCGGACTG TAACGAGCTA	CTAAAATATT	GCGAATACCG	CTTCCACAAA	CATTGCTCAA	6780
AAGTATCTCT TTGCTATATA	TCTCTGTGCT	ATATCCCTAT	ATAACCTACC	CATCCACCTT	6840
TCGCTCCTTG AACTTGCATC	TAAACTCGAC	CTCTACATTT	TTTATGTTTA	TCTCTAGTAT	6900
TACTCTTTAG ACAAAAAAT	TGTAGTAAGA	ACTATTCATA	GAGTGAATCG	AAAACAATAC	6960

FIG. 34 CONTINUED.

GAAAATG	TAA	ACATTTCCTA	TACGTAGTAT	ATAGAGACAA	AATAGAAGAA	ACCGTTCATA	7020
ATTTTCT	GAC	CAATGAAGAA	TCATCAACGC	TATCACTTTC	TGTTCACAAA	GTATGCGCAA	7080
TCCACAT	CGG	TATAGAATAT	AATCGGGGAT	GCCTTTATCT	TGAAAAAATG	CACCCGCAGC	7140
TTCGCTA	GTA	ATCAGTAAAC	GCGGGAAGTG	GAGTCAGGCT	TTTTTTATGG	AAGAGAAAAT	7200
AGACACC	AAA	GTAGCCTTCT	TCTAACCTTA	ACGGACCTAC	AGTGCAAAAA	GTTATCAAGA	7260
GACTGCA'	TTA	TAGAGCGCAC	AAAGGAGAAA	AAAAGTAATC	TAAGATGCTT	TGTTAGAAAA	7320
ATAGCGC	TCT	CGGGATGCAT	TTTTGTAGAA	CAAAAAAGAA	GTATAGATTC	TTTGTTGGTA	7380
AAATAGC	GCT	CTCGCGTTGC	ATTTCTGTTC	TGTAAAAATG	CAGCTCAGAT	TCTTTGTTTG	7440
TTAAAAF	AGC	GCTCTCGCGT	TGCATTTTTG	TTTTACAAAA	ATGAAGCACA	GATTCTTCGT	7500
rggtaaai	ATA	GCGCTTTCGC	GTTGCATTTC	TGTTCTGTAA	AAATGCAGCT	CAGATTCTTT	7560
STTTGAA	AAA	TTAGCGCTCT	CGCGTTGCAT	TTTTGTTCTA	CAAAATGAAG	CACAGATGCT	7620
CGTT	•			*			7625

*F/G. 35.*SUBSTITUTE SHEET (RULE 26)

FIG. 36.

SUBSTITUTE SHEET (RULE 26)

FIG. 36 (CONTD.)

F/G. 37.

SUBSTITUTE SHEET (RULE 26)

FIG. 38.

F16.39.

AT	Gaccatga	TTACGCCAAG	CTTGTCTTCT	TCTAAATTCC	CATAAAATCC	CGAAACTCCT	60
TC	CCTCTATC	TTCTTTTTCT	TCTCGTTTTC	AAATGTTTCT	CTCTATCCCA	TTCTCTCATC	120
AA	TTGAGTGG	GATGAGGCTA	TCTCTGCCTC	TCTTCTGAAT	CTCTGAACCA	TCTTACATTA	180
CA	CTGTGGAT	GACGAGCCCC	ACAGGCTCCC	TTGCATCAGA	TACTGCCATT	GGGGATGGCA	240
AA	GAAGAGAG	AAGGTATTGT	GAGGATATAT	TTTTCTAAGA	AAAAACGTTT	GAAGAAAGA	300
AG	atgaagaa	GATCTGCTTG	ATTCATTGCA	CAAGTTAGAA	GTAACAGGGG	TCTATATTTC	360
GA.	AGAACTTA	AAGGGAATGC	AACTGAACAT	AAAATTAAAC	AAAGGGATTG	AATCCTGCAG	420
TG.	AGTATTTT	CGGTTTTTCA	CTGGTTCTCT	GTAAAAAGAG	TAATGCAAAG	GGCAAGTTAA	480
CT'	TAGGTCGT	AAATGTATTG	AATTTGCTTA	Aaatctgaag	ATCTAGTGGT	GAACCGTGGA	540
AG	ATTATCAA	GAGGAGGCTG	AAGATCTGTT	TAAGAACCAT	TAATCAAACT	GGTATTCTAT	600
TT'	PCACTGGT	TGTATGTAAA	CATTCTATCT	TATTCCTTTT	ATCACTGTTC	TGCACTTTCC	660

F16.39 con	TINUED.	93	3/99		
TATAAAAAA GTTGACCGAC	CGTACTCTCT	GAATTCATTT	TTCCCGATCT	TACCAACTCC	720
CGATCTATCT CTATCCCTGG	TTTTTTCTTC	GTGCTCCAAT	GGAATTCTTG	AGACTTCCAC.	780
TATCTTCTCT GGCACCCTCC	ACTACGCGTA	GGCGTCTCTC	GCTTCGTGTA	TTCCCGGGAA	840
GCCGGTTCCC GTCTCTCCCG	CCGCTGCCGC	TGCCGCACAC	AGCTTTACAC	CTCGTAGAAT	900
CCCCAAAGAG GGGCGTGGCT	TGCGGGTGCC	AACATCCTCC	TGCCGAGGAA	GAAGCAGGCA	960
CTCATCACTC GCATCATCAA	CCTCGGGATT	GGCCAAAGGA	CCCAAAGGTA	TGTTTCGAAT	1020
GATACTAACA TAACATAGAA	CATTTTCAGG	AGGACCCTTG	GCTAGAACTA	GTGGATCCGA	1080
GCTCTCCCAT ATGACGACGT	CAAATGTAGA	ATTGATACCA	ATCTACACGG	ATTGGGCCAA	1140
TCGGCACCTT TCGAAGGGCA	GCTTATCAAA	GTCGATTAGG	GATATTTCCA	ATGATTTTCG	1200
CGACTATCGA CTGGTTTCTC	AGCTȚATTAA	TGTGATCGTT	CCGATCAACG	AATTCTCGCC	1260
TGCATTCACG AAACGTTTGG	CAAAAATCAC	ATCGAACCTG	GATGGCCTCG	AAACGTGTCT	1320
CGACTACCTG AAAAATCTGG	GTCTCGACTG	CTCGAAACTC	ACCAAAACCG	ATATCGACAG	1380
CGGAAACTTG GGTGCAGTTC	TCCAGCTGCT	CTTCCTGCTC	TCCACCTACA	AGCAGAAGCT	1440
TCGGCAACTG AAAAAAGATC	AGAAGAAATT	GGAGCAACTA	CCCACATCCA	TTATGCCACC	1500
CGCGGTTTCT AAATTACCCT	CGCCACGTGT	CGCCACGTCA	GCAACCGCTT	CAGCAACTAA	1560
CCCAAATTCC AACTTTCCAC	AAATGTCAAC	ATCCAGGCTT	CAGACTCCAC	AGTCAAGAAT	1620
ATCGAAAATT GATTCATCAA	AGATTGGTAT	CAAGCCAAAG	ACGTCTGGAC	TTAAACCACC	1680
CTCATCATCA ACCACTTCAT	CAAATAATAC	AAATTCATTC	CGTCCGTCGA	GCCGTTCGAG	1740
TGGCAATAAT AATGTTGGCT	CGACGATATC	CACATCTGCG	AAGAGCTTAG	AATCATCATC	1800
AACGTACAGC TCTATTTCGA	ATCTAAACCG	ACCTACCTCC	СААСТССААА	AACCTTCTAG	1860
ACCACAAACC CAGCTAGTTC	GTGTTGCTAC	AACTACAAAA	ATCGGAAGCT	CAAAGCTAGC	1920
CGCTCCGAAA GCCGTGAGCA	CCCCAAAACT	TGCTTCTGTG	AAGACTATTG	GAGCAAAACA	1980
AGAGCCCGAT AACAGCGGTG	GTGGTGGTGG	TGGAATGCTG	Aaattaaagt	TATTCAGTAG	2040
CAAAAACCCA TCTTCCTCAT	CGAATAGCCC	ACAACCTACG	AGAAAGGCGG	CGGCGGTGCC	2100
TCAACAACAA ACTTTGTCGA	AAATCGCTGC	CCCAGTGAAA	AGTGGCCTGA	AGCCGCCGAC	2160
CAGTAAGCTG GGAAGTGCCA	CGTCTATGTC	GAAGCTTTGT	ACGCCAAAAG	TTTCCTACCG	2220
TAAAACGGAC GCCCCAATCA	TATCTCAACA	AGACTCGAAA	CGATGCTCAA	agagcagtga	2280
AGAAGAGTCC GGATACGCTG	GATTCAACAG	CACGTCGCCA	ACGTCATCAT	CGACGGAAGG	2340
TTCCCTAAGC ATGCATTCCA	CATCTTCCAA	GAGTTCAACG	TCAGACGAAA	AGTCTCCGTC	2400
ATCAGACGAT CTTACTCTTA	ACGCCTCCAT	CGTGACAGCT	ATCAGACAGC	CGATAGCCGC	2460
AACACCGGTT TCTCCAAATA	TTATCAACAA	GCCTGTTGAG	GAAAAACCAA	CACTGGCAGT	2520
GAAAGGAGTG AAAAGCACAG	CGAAAAAAGA	TCCACCTCCA	GCTGTTCCGC	CACGTGACAC	2580

FIG. 39 CONTINUED. 94/99

CGTTCCACCG CTTCCACCTC TARARTCAGT TGTTCCACTT ARARTGACTT CARTCCGACA ACCACCAACG TACGATGTTC TTCTARAACA AGGARAARTC ACATCGCCTG TCAAGTCGTT TGGATATGAG CAGTCGTCCG CGTCTGAAGA CTCCATTGTG GCTCATGCGT CGGCTCAGGT GACTCCGCCG ACARAAACTT CTGGTAATCA TTCGCTGGAG AGAAGGATGG GRAAGAATAA 294 GACRTCAGAA TCCACGGGGT ACACCTCTGA CGCCGGTGTT GCGATGTGGG CAAAATGAG GACATCAGAA TCCACGGGGT ACACCTCTGA CGCCGGTGTT GCGATGGGG CAAAATGAG GACATCAGAA TCCACGGGGT ACACCTCTGA CGCCGGTGTT GCGATGAGG CAGAAACGAGC CTTCGAAGAC AGTTCCTCCT TGTCGTCTGG AATATCCGAT AACAACGAGC TCGACGACAT ATCCACGGAC GATTGTCCG GAGTAGACAT GGCAACAGTC GCCTCCAAAC ATAGCGACAT ATCCACGGAC GATTGTCCG GAGTAGACAT GGCAACAGTC GCCTCCAAAC ATAGCGACTA ATCCACAGGAC GATTCTCC GATCTCACAC GAGACAGGGA AACATTCTGTC CTCCACATCA GTCGATTCTC GATCTCACAC AGAACAGGAG AACATTCTGT CCCACTCTT GTTCGCCATC CCACGTCTC TCCTCAAAG CCCCGAGTCC CCAGTCGGTC CCCACTCAA ACAGCCAAC GTGGCGCCGC TGCCACCTCA ACCTTCGGAC AACATTCGCT AAGATCCCCG GGATACTCAT CCTATTCTCC ACACTTATCA GTGTCAGCA ACATTCGCT AAAGATCCCAG GGATACTCAT CCTATTCTCC ACACTTATCA GTGTCAGCA ACATTCGCT AAAGATCCCAG GGATACTCAT CCTATTCTCC ACACTTATCA GTGTCAGCAC ACCTTCTCAG AAATGCCCAAC GCAACCCAGA CTAATGCCAA CCTTCAAGAG TTCACATCCA CCGAGCACAG AATGGCGGCT CTCTTGAGCC CGAGACGGGT GCCGAACTCG ATGTCCAAACA CTATTCTCG AAAGGATCCTAC TCGGCGCGTT CCCGAGGGGG GCCGAACTCG ATGTCCAAAA ATGATTCTTC CCAACTGCACA GAACTATCCG ATGAAAACC CCCCCCACAT TCTGCCAAAA GTGAGAGACGT CCAACTGCACA GAACTATCCG ATGAAAACC CCCCCCACAT TCTGCCAAAA GTGAGAGACGT ATCCCAACTA TCACTGGCTA GCACGACAGC ATAGGATCT CTCAATGAGA AGTACGAACA ATGCCAACTA TCACTGGCTA GCACGACAGC ATATGGATCT CTCAATGAGA AGTACGAACA ATGCCAACTA TCACTGGCTA GCACTTGTT TGATCTTTT GAGCAAAACT CTCAACTAGA AGTACGAACA ATGCCTAACAC ATGACCAAC GTGACTTGAA GCCTAACAGAACA ACACTCTCA CACTCAACAA ACCCAACACA TTGACCAAC GCACACACC ATTGATCAACA ACCACTCACACAACAACAACAACAACAACAACAACAACAA	CCAGCCAACA	. ATCGGAGTTG	TTAGTCCAAT	TATGGCACAT	AAGAAGTTGA	CAAATGACCC	2640
ACCACCAACG TACGATGTTC TTCTAAAACA AGGAAAAATC ACATCGCCTG TCAAGTCGTT TGGATATGAG CAGTCGTCCG CGTCTGAAGA CTCCATTGTG GCTCATGCGT CGGCTCAGGT GACTCCGCCG ACAAAAACTT CTGGTAATCA TTCGCTGGAG AGAAGGATGG GAAAGAATAA 29.4 GACATCAGAA TCCAGCGGGT ACACCTCTGA CGCCGGTGTT GCGATGTGG CCAAAAAACTA GACATCAGAA TCCAGCGGGT ACACCTCTGA CGCCGGTGTT GCGATGTGGG CCAAAAAACTA GGGAGAAGCTG AAAGAATACG ATGACATGAC TCGTCGAGGA CAGAACGGCT ATCCTGACAA 30.6 CTTCGAAGAC AGTTCCTCCT TGTCGTCTGG AATATCCGAT AACAACGAGC TCGACGCACTA ATCCACGGAC GATTTGTCCG GAGTAGACAT GGCAACAGTC GCCTCCAAAC ATAGCGACTA TTCCCACTTT GTTCGCCATC CCACGTCTTC TTCCTCAAAG CCCCGAGTCC CCAGTCGGTC CTCCACACTCA GTCGATTCTC GATCTCGACC AGAACAGGGA AAAGTTCGAC CCAGTGCCGA ACGAGCCAAC GTGGCGCCGC TGCCACCTCA ACCTTCGGAC AACATTCGCT 33.6 AAAGATCCCCG GGATACTCAT CCTATTCTCC ACACTTATCA GTGTCAGGCA AACATTCGCT AAAGATCCCCG GGATACTCAT CCTATTCTCC ACACTTATCA GTGTCAGGCA AACATTCGGT AAAGATCCCCG GGATACTCAT CCTATTCTCC ACACTTATCA GTGTCAGGCA AACATTCGGT AAAGATCCCCG GGATACTCAT CCTATTCTCC ACACTTATCA GTGTCAGGCA AACATTCGGT AAAGATCCCCG GGATACTCAT CCTATTCTCC ACACTTATCA GTGTCAGGCA ACATTCAGG AAAGATCCCAC GAGACCAGA CTAGTCGACG ACCTTCTTCA CAAAAACCAA GCTATTCAGG AAAGGCGGGT CTCTTGAGCC CGAGACGGGT GCCGAACTCG ATGTCGAAAT ATGATTCTTC AGGATCCTAC TCACTGACC CTGAGACGGT GCCGAACTCG ATGTCGAAAA ATGATTCTTC CCAACTGCAC AGACTATCCG ATGAAAAAAC CCCCGGCACAT TCTGCCAAAA GTGAGAACGTT CCAACTGCAC AGACTATCCG ATGAAAAAAC CCCCGGCACAT TCTGCCAAAA GTGAGAACGT CCAACTGCAC AGACTATCCG ATGAAAAAAC CCCCGGCACAT TCTGCCAAAA GTGAGAACGT CCAACTGCAC AGACTATCCG ATGAAAAAAC CCCCCGCACAT TCTGCCAAAAG AGTACGAACA 378 TGCTATTCGG GACATGGCAC GTGACTTGGA GTGTTACAAG AACACTGCG ATCACTAAC AAGAAACAAG GAGAACTATG GACACTGTT TGAGCAACAC TTGAGAACAA ACACTGTCC ACCTACACAC CAACTGCAC ATGATCGAT CCAACTTGAA GCCCTGAACGAT TCAGGCACGGA AACACAAGAA GACACTATG CCAACTTGAA GCCTGAACAAC ATCGATCATC ACCACACACA GACACACAC GAGACACAC GCGAAAACAC TCAGCTCC ATCGATCAC ACCACTCAC TCTGGAACAC GCACAACAC GCACAACAC TCAGACAACAC ACACATTGA AGGCGCTGGT GAGCTTCTTC GTCAACAAC GCGACAACAC ACCACTGACC ACCAACAACAA AACCGAACAACAA ACACATTGA CCCCCCACTCC CTCCACT CCCACGACACC ACCACACACAC	CGTGATATCT	GAAAAACCAG	AACCTGAAAA	GCTCCAATCA	ATGAGCATCG	ACACGACGGA	2700
GACTCCGCCG ACAAAAACTT CTGGTAAGA CTCCATTGTG GCTCATGCGT CGGCTCAGGT GACTCCGCCG ACAAAAACTT CTGGTAATCA TTCGCTGGAG AGAAGGATGG GAAAGAATAA 294 GACATCAGAA TCCAGCGGCT ACACCTCTGA CGCCGGTGTT GCGATGTGG CCAAAATGAG GACATCAGAA TCCAGCGGCT ACACCTCTGA CGCCGGTGTT GCGATGTGGG CCAAAATGAG GGAGAAGCTG AAAGAATACG ATGACATGAC TCGTCGAGCA CAGAACGGCT ATCCTGACAA 306 CTTCGAAGAC AGTTCCTCCT TGTCGTCTGG AATATCCGAT AACAACGAGC TCGACGACAT 312 ATCCACGGAC GATTTGTCCG GAGTAGACAT GGCAACAGTC GCCTCCAAAC ATAGCGACTA 312 CTCCACACTT GTTCGCCATC CCACGTCTTC TTCCTCAAAG CCCCGAGTCC CCAGTCGGTC CTCCACATCA GTCGATTCTC GATCTCGAGC AGAACAGGAG AATGTGTACA AACTTCGTC CCAGTGCCGA ACGAGCCAAC GTGGCGCCGC TGCCACCTCA ACCTTCGGAC AACATTCGGT AAGATCCCCG GGATACTCAT CCTATTCTCC ACACTTATCA GTGTCAGCTG ATAAGGACAC AATGTCTATG CACTCACAGA CTAGTCGACG ACCTTCTTCA CAAAAACCAA GCTATTCAGG CCAAATTCAT TCACTTGATC GTAAATGCCA CCTTCAAGAG TTCACATCCA CCGAGCACAG AATGGCGGCT CTCTTGAGCC CGAGACGGGT GCCGAACTCG ATGTCGAAAT ATGATTCTTC AGGGATCCTAC TCGGCGCGCTT CCCGAGGGTG GCCGAACTCG ATGTCGAAAT ATGATTCTTC CCAACTGCAC AGACTATCCG ATGAAAAATC CCCCGCACAT TCTGCCAAAA GTGAGAACGT 372 ATCCCAACTA TCACTGGCTA GCACGACAGG ATATGGATCT CTCAATGAGA AGTACGAACA 378 TGCCTATTCGG GACATGCAC GTGACTTGGA GTGTTACAAG AACACTGTCG ACTCACTAAC 384 TGCTATTCGG GACATGCAC GTGACTTGGA GTGTTACAAG AACACTGTCG ACTCACTAAC 384 TGCTATTCGG GACATGCAC GTGACTTGGA GTGTTACAAG AACACTGTCG ACTCACTAAC 384 TGCTATTCGG GACATGCAC GTGACTTGTT TGATCTTTTT GAGCAATAAGCT TTCAGGCAGGA 372 CAACTCAACAC ATTGATCGAT CCAACTTGAA GCCTGAAGAG GCAATACGAT TCAGGCAGGA 386 CAATGCTCAT TGAGGGATA TTAGCAATCA TCTTGCATCC AACTCAGCT ATGCTAACCA 384 CAATGCTCAT TGAGGGATA TTAGCAATCA TCTTGCATCC AACTCAGCT ATGCTAACCA 384 CAATGCTCAT TGAGGGATA TTAGCAATCA TCTTGCATCC AACTCAGCT ATGCTAACCA 384 CAATGCTCAT TGAGGGAAC GGAGCAAGCA GGAGAAGAC TAGGAT TCAGGCAGGAA CAATGCTCAT TTGAGGGATA CCAACTTCT CTCGAAGAG GCAATACGAT TCAGGCAGGAA CAATGCTCT TTGAGGAACA GCACAAGCA GGAGAAGATC AACTCAGCT CATCGAACACA 402 GAACAAGAACAGAACACAC GCCCCTCCACT CTCCAAGGACA AGACATGAA ACAACATGAA 420 CAACGGACAGA GCACAATGC CATCAATTC CGCACAGCGC CACCTCG ACACACTGA ACAACTTGAA 426 GAACAAC	CGTTCCACCG	CTTCCACCTC	TAAAATCAGT	TGTTCCACTT	AAAATGACTT	CAATCCGACA	2760
GACTCCGCCG ACARAACTT CTGGTAATCA TTCGCTGGAG AGAAGGATGG GRAAGAATAA 29.00 GACATCAGAA TCCAGCGGCT ACACCTCTGA CGCCGGTGTT GCGATGTGG CCAAAATGAG 30.00 GGAGAAGCTG AAAGAATACG ATGACATGAC TCGTCGAGCA CAGAACGGCT ATCCTGACAA 30.00 CTTCGAAGAC AGTTCCTCCT TGTCGTCTGG AATATCCGAT AACAACGAGC TCGACGACAT 31.20 ATCCACGGAC GATTTGTCCG GAGTAGACAT GGCAACAGTC GCCTCCAAAC ATAGCGACTA 31.80 ATCCACGGAC GATTTGTCCG GAGTAGACAT GGCAACAGTC GCCTCCAAAC ATAGCGACTA 31.80 ATCCACACATCA GTCGATTCTC GATCTCGAGC AGAACAGGAG AATGTGTACA AACTTCTGTC 33.00 CCAGTGCCGA ACGAGCCAAC GTGGGCCGC TGCCACCTCA ACCTTCGGAC AACATTCGCT 33.00 AAAGATCCCCG GGATACTCAT CCTATTCTCC ACACTTATCA GTGTCAGCT ATAAGGACAC 34.20 AAAGATCCCCG GGATACTCAT CCTATTCTCC ACACTTATCA GTGTCAGCT ATAAGGACAC 34.20 AAAGATCCCCG GGATACTCAT CCTATTCTCC ACACTTCTCA CAAAAACCAA GCTATTCAGG 34.80 CCAAATTCAT TCACTTGATC GTAAATGCCA CCTTCAAGAG TTCACATCCA CCGAGCACAG 35.40 AATGGCGGCT CTCTTGAGCC CGAGACGGGT GCCGAACTCG ATGTCGAAAT ATGATTCTTC 36.00 AAGGGATCCTAC TCGGCGCGTT CCCGAGGGGG AGCCTTCACT GGTATCTATG GAGACCGTT 36.00 AAGGGATCCTAC TCGGGGCGGTT CCCGAGGGGG AGCCTTCACT GGTATCTATG GAGACACTG 37.20 ACCCAACTA TCACTGGCTA GCACGACAGC ATATGGATCT CTCACAAAA GTGAGACGGT 37.20 ACCCAACTA TCACTGGCTA GCACGACAGC ATATGGATCT CTCACAAAA GTGAGACAAA 37.80 ACCCAACTAT CCACTGCAAC GTGACTTGGA GTGTTACAAG AACACTGTCG ACTCACTAAC 38.40 ACCCAACTAT CCACTGCAAC GTGACTTGGA GTGTTACAAG AACACTGTCG ACTCACTAAC 38.40 ACCCAACACA ATTGATCGAT CCAACTTGTA GCCTGAAGAG GCAATACGAT TCAGGCAGGA 39.60 CATTGCTCAT TTGAGGGATA TTAGCAATCA TCTTGCATCC AACTCAGCT CACCTAACCA 40.20 AGGCGCTGGT GAGCTTCTTC GTCAACCATC TCTGGAACAC TTGGATCAC ATGGTAACGA 40.20 AGGCGCTGGT GAGCTTCTTC GTCAACCATC TCTGGAATCA GTTGCATCCC ATCGATCATC 40.80 AGGCGCTGGT GAGCTTCTTC GTCAACCATC TCTGGAATCA GTTGCATCCC ATCGATCATC 40.80 AGACAAGAAGA GCACATATGC CACCAACGAC GGAGAAGATC AGCTTGAGCT CTTTTGGCAA 41.40 AGACAAGAAGA GCACATATGC CACCAACACCA GGAACAAGAA AGAACAAGAA AGCACAAGAA AGCACAAGAA AGAACAAGAA AGAACAAGAA AGAACAAGAA AGCA	ACCACCAACG	TACGATGTTC	TTCTAAAACA	AGGAAAAATC	ACATCGCCTG	TCAAGTCGTT	2820
GACATCAGAA TCCAGCGGGT ACACCTCTGA CGCCGGTGTT GCGATGTGCG CCAAAATGAG GGAGAAGCTG AAAGAATACG ATGACATGAC TCGTCGAGCA CAGAACGGCT ATCCTGACAA 306 GGAGAAGCTG AAAGAATACG ATGACATGAC TCGTCGAGCA CAGAACGGCT ATCCTGACAA 312 ATCCACGGAC AGTTCCTCCT TGTCGTCTGG AATATCCGAT AACAACGAGC TCGACGACAT 312 ATCCACGGAC GATTTGTCCG GAGTAGACAT GGCAACAGTC GCCTCCAAAC ATAGCGACTA 318 TTCCCACATTC GTTCGCCATC CCACGTCTTC TTCCTCAAAG CCCCGAGTCC CCAGTCGGTC CCAGTGCCGA ACGAGCCAAC GTGGCGCCGC TGCCACCTCA ACCTTCGGAC AACATTCGCT 336 CCAGTGCCCG GGATACTCAT CCTATTCTCC ACACTTATCA GTGTCAGCTG ATAAGGACAC AATGTCTCATG CACTCACAGA CTAGTCGAC ACCTTCTTCA CAAAAACCAA GCTATTCAGG 348 CCAAATTCAT TCACTTGATC GTAAATGCCA CCTTCAAGAG TTCACATCCA CCGAGCACAG 354 AATGGCGGCT CTCTTGAGCC CGAGACGGGT GCCGAACTCG ATGTCGAAAT ATGATTCTTC 360 AATGGCGGCT CTCTTGAGCC CGAGACGGGT GCCGAACTCG ATGTCGAAAA ATGATTCTTC 360 AATGCCAACTAC TCGGCGCGTT CCCGAGGTGG AAGCTCTACT GGTATCTATG GAGAGACGGT 372 ATCCCAACTAC TCGGCGCGTT CCCGAGGTGG AAGCTCTACT GGTATCTATG GAGAGACGGT 372 ATCCCAACTAC TCACTGGCA GCACAGCGGT GCCGAACTCG ATGTCGAAAA ATGATTCTTC 360 AACACTGCAC AGACTATCCG ATGAAAAACC CCCCGCACAT TCTGCCAAAA GTGAGATAGGG 372 ATCCCAACTA TCACTGGCTA GCACGACAGC ATATGGATCT CTCAATGAGA AGTACGAACA 378 TGCTATTCGG GACATGCCA GTGACTTGGA GTGTTACAAG AACACTGCG ACTCACTAAC 384 CAACAAAACAG GAGAACTATG GACCATTGTA GCTGTAACAGA AGCACTGCAC ATGCAACAC CAACAAACAC ATTGATCGAT CCAACTTGA GCTGTAACAGA CAACTGCAC ATGCAACAC CATTGCTCAT TTGAGGGATA TAGCAATCA TCTTGCATCC AACCTCACC ATGCACACAC CATTGCTCAT TTGAGGGATA TAGCAATCA TCTTGCATCC AACTCAGCTC ATGCATCACC AAGCACACA AGCTCTCTC GTCAACCATC TCTGGAATCA GTTGCATCCC ATCGATCATC AGGCGCTGGT GAGCTTCTC GTCAACCATC TCTGGAATCA GCTTGAACCA TCGATCACC CAACTGAACA AGCTATTGC CACCAACT TCTGGAATCA GCTTGAACAACA AGAACAAGAA 420 CTACGACAGAA AGCTGATCC CCTCCTCACT CTCCAAGTTC ACCAAGAAGA AGAACAAGAA 420 CTACGACAAC AGCCAATATGC CATCAATTC CGGACTCTAAC GAACATTGA ACAACTTGA 426 AGCACAAGAA AGCCAATATGC CATCAATTC CGGACTCTAAC GAACATTGA ACAACTTGA 426 AGCAAACAC GACCAATATGC CATCAATTC CGGACTCTCAA GAACATTGA ACAACTTGA 427 TGTACAACAC GACCAATATGC CACCAACAT TCTCCAAGTTC ACCAAGAAGA ACAACT	TGGATATGAG	CAGTCGTCCG	CGTCTGAAGA	CTCCATTGTG	GCTCATGCGT	CGGCTCAGGT	2880
GGAGAAGCTG AAAGAATACG ATGACATGAC TCGTCGAGCA CAGAACGGCT ATCCTGACAA CTTCGAAGAC AGTTCCTCCT TGTCGTCTGG AATATCCGAT AACAACGAGC TCGACGACAT ATCCACGGAC GATTTGTCCG GAGTAGACAT GGCAACAGTC GCCTCCAAAC ATAGCGACTA TTCCCACTTT GTTCGCCATC CCACGTCTTC TTCCTCAAAG CCCCGAGTCC CCAGTCGGTC CTCCACATCA GTCGATTCTC GATCTCAGCC AGAACAGGAG AATGTGTACA AACTTCTGTC CCAGTGCCGA ACGAGCCAAC GTGGCGCCGC TGCCACCTCA ACCTTCGGAC AACATTCGGT AAGAATCCCCG GGATACTCAT CCTATTCTCC ACACTTATCA GTGTCAGCTG ATAAGGACAC AATGTCTATG CACTCACAGA CTAGTCGAC ACCTTCTTCA CAAAAACCAA GCTATTCAGG AAAGGTCCCCG GGATACTCAT CCTATTCTCC ACACTTATCA GTGTCAGCTG ATAAGGACAC CCAATTTCAT TCACTTGATC GTAAATGCCA CCTTCAAGAG TTCACATCCA CCGAGCACAG AATGGCGGCT CTCTTGAGCC CGAGACGGGT GCCGAACTCG ATGTCGAAAA ATGATTCTTC AGGATCCTAC TCGGCGGCGT CCCGAGGTGG AAGCTCTACT GGTATCTATG GAGAGACGGTT CCAACTGCAC AGACTATCCG ATGAAAAACC CCCCGCACAT TCTGCCAAAA GTGAGATAGGT ATCCCAACTA TCACTGGCTA GCACGAGACAG ATATGGATC TCCAATGAA GTGAGATAGG TGCTATTCGG GACATGCCA GTGACTTGGA GTGTTACAAGA ATGACTGAACA TGCTATTCGG GACATGCCA GTGACTTGGA GTGTTACAAGA AACACTGCG ACTCACTAAC AACACAACAC ATGATCGAT CCAACTTGAA GCCTGAAGAG GCAATACGAT TCAGGCAGAA CAACAAACAC ATTGATCGAT CCAACTTGAA GCCTGAAGAG GCAATACGAT TCAGGCAGGA AGGCGCTGGT GAGCTTCTC GTCAACCATC TCTGGAATCA GTTGCATCC ATGCTAACGA AGGCGCTGGT GAGCTTCTC GTCAACCATC TCTGGAATCA GTTGCATCC ATCGATCATC GAACAAGAAA AGCTTCTC GTCAACCATC TCTGGAATCA GTTGCATCC ATCGATCATC GAACAAGAAA ACCTGGATC GCTCCTCACT TCTGGAATCA GTTGGATCCC ATCGATCATC GAACAAGAAA ACCTGGATCC GCTCCTCACT TCTGGAATCA GTTGGATCCC ATCGATCATC GAACAAGAAA ACCTGGATCC GCTCCTCACT TCTCCAAGTTC ACCAAGAAGA AGAACAAGAA ACCGACAACAC ATGGACAC GCTCCTCACT TCTCCAAGTTC ACCAAGAAGA AGAACAAGAA ACCGACAACAC AGCCAATATGC CATCAATTC CGGACATCTAC GACACATTGA ACAACTTGA CTACGACAACAACAA GCACATATGC CATCAATTC CTCCAAGTTC ACCAAGAAGA AGAACAAGAA ACCGGACATTGA GCACATATGC CATCAATTC CTCCAAGTTC ACCAAGAAGA AGAACAAGAA ACCGACATTGA GACCATTGA GCACCAACT TCTCCAAGTTC ACCAAGAAGA ACAACTTGA ACCGACATCG GACCATTAC GCACCATCTC CTCCAAGTTC ACCAACGGTC CAGCCACTCG TGACAAATCG ATCGTCCC CCGAAGTTAA TGTTCTCAAG GACCATT	GACTCCGCCG	ACAAAAACTT	CTGGTAATCA	TTCGCTGGAG	AGAAGGATGG	GAAAGAATAA	2940
ATTCCACAGA AGTTCCTCCT TGTCGTCTGG AATATCCGAT AACAACGAGC TCGACGACAT ATCCACGGAC GATTTGTCCG GAGTAGACAT GGCAACAGTC GCCTCCAAAC ATAGCGACTA TTCCCACTTT GTTCGCCATC CCACGTCTTC TTCCTCAAAG CCCCGAGTCC CCAGTCGGTC CTCCACATCA GTCGATTCTC GATCTCGAGC AGAACAGGAG AATGTGTACA AACATTCGGT CCAGTGCCGA ACGAGCCAAC GTGGCCCGC TGCCACCTCA ACCTTCGGAC AACATTCGCT AAGATCCCCG GGATACTCAT CCTATTCTCC ACACTTATCA GTGTCAGCTG ATAAGGACAC AATGTCTATG CACTCACAGA CTAGTCGACG ACCTTCTTCA CAAAAACCAA GCTATTCAGG AATGGCGGCT CTCTTGAGCC CGAGACCGGT GCCGAACTCG ATCCCACATCA CCGAGCACAG AATGGCGGCT CTCTTGAGCC CGAGACGGGT GCCGAACTCG ATGTCGAAAT ATGATTCTTC AGGATCCTAC TCGGCGCGTT CCCGAGGTG AACCTTCATCT GGTATCTATG GAGAGACGTT AGGATCCTAC TCACTGGCC AGACACGGT GCCGAACTCG ATGTCGAAAA ATGATTCTTC AGGATCCTAC TCACTGGCCA AGACAAAAACC CCCCGCACAT TCTGCCAAAA GTGAGAGCGTT ATCCCAACTA TCACTGGCTA GCACGAGCAGC ATATGGATCT CTCAATGAGA AGTACGAACA ATGCCAACTA TCACTGGCTA GCACGACAGC ATATGGATCT CTCAATGAGA AGTACGAACA TGCTAATTCGG GACATGCCA GTGACATGGA GTGTTACAAG AACACTGTCG ACTCACTAAC AACACAAAACAG GACACTATC GAGCACTTGT TGATCTTTTT GAGCAAAAGC TTAGAAAACT CAACAAAACAG AATGATCGAT CCAACTTGAA GCCTGAAGAG GCAATACGAT TCAGGCAGGA AGGCGCTGGT GAGCTTCTTC GTCAACCATC TCTGGCAAAA GTGAGAACGC TTAGAAAACT AACCGAACAAA AGGCATATCG GAGCATTGTT TGATCTTTTT GAGCAAAAGC TTAGAAAACT AACACTAACAC ATTGATCGAT CCAACTTGAA GCCTGAAGAG GCAATACGAT TCAGGCACAGA AGGCGCTGGT GAGCTTCTTC GTCAACCATC TCTGGAATCA ACCTCAGCTC ATGCTAACCAA AACACAAGAAA GCAGCATATGC GCTCCACTC CTCCAAGTTC ACCAAGAAGA AGAACAAGAA 402 CAACAAGAAA GAGAATATGC CATCAATTTC CGGATCACA AGCTTTACG AACACATTGA 408 CAACAAGAAA GAGAATATGC CATCAATTTC CGGATCACA AGCACTTGA CAACAATTGA 426 CAACAAGAAA GAGAATATGC CATCAATTTC CGGATCACA AGCACTTGA ACAACATTGA 426 CTACGACGAA GCACATATGC CATCAATTTC CGGATCTCAA GAACACTTGA ACAACATTGA 426 TGTGACAATTGA TTGAAGCAAG AGCTCAAAAAA ACAGCGATCA ACAACATTGA 426 TGACAACTGG GAACCATTAA AGAAAGAAAA ACGCGATAGT GCACTTTACG AACACATTGA 4384 AACCGGAGAAC AAGCAATTAA AGAAAGAAAA AGGCGATAACTC ACCAACGGTC CAGCCCCTCG 4444	GACATCAGAA	TCCAGCGGCT	ACACCTCTGA	CGCCGGTGTT	GCGATGTGCG	CCAAAATGAG	3000
ATCCACGGAC GATTGTCCG GAGTAGACAT GGCAACAGTC GCCTCCAAAC ATAGCGACTA TTCCCACTTT GTTCGCCATC CCACGTCTTC TTCCTCAAAG CCCCGAGTCC CCAGTCGGTC CTCCACATCA GTCGATTCTC GATCTCGAGC AGAACAGGAG AATGTGTACA AACTTCTGTC 330 CCAGTGCCGA ACGAGCCAAC GTGGCGCCGC TGCCACCTCA ACCTTCGGAC AACATTCGCT AAGATCCCCG GGATACTCAT CCTATTCTCC ACACTTATCA GTGTCAGCTG ATAAGGACAC AATGTCTATG CACTCACAGA CTAGTCGACG ACCTTCTTCA CAAAAACCAA GCTATTCAGG 348 CCAATTTCAT TCACTTGATC GTAAATGCCA CCTTCAAGAG TTCACATCCA CCGAGCACAG AATGGCGGCT CTCTTGAGCC CGAGACGGGT GCCGAACTCG ATGTCGAAAT ATGATTCTTC AGGATCCTAC TCGGCGCGTT CCCGAGGTG AACCTCTACT GGTATCTATG GAGAGACGTT AGGATCCTAC TCGGCGCGTT CCCGAGGTG AACCTCTACT GGTATCTATG GAGAGACGTT ACCCAACTA TCACTGGCCA AGACTATCCG ATGAAAAACC CCCCGCACAT TCTGCCAAAA AGTACGAACA ATGCCAACTA TCACTGGCTA GCACGACAGC ATATGGATCT CTCAATGAGA AGTACGAACA ATGCCAACTA TCACTGGCTA GCACGACAGC ATATGGATCT CTCAATGAGA AGTACGAACA ATGCCAAACACA ATGATGCAC GTGACTTGGA GTGTTACAAG AACACTGTCG ACTCACTAAC AACACACACA ATTGATCGAT CCAACTTGGA GCCTGAAGAG GCAATACGAT TCAGGCAGGA CAACTCAACAC ATTGATCGAT CCAACTTGAA GCCTGAAGAG GCAATACGAT TCAGGCAGGA AGGCGCTGGT GAGCTTCTTC GTCAACCATC TCTGGAATCA ATCCTAACCA ATGCTAACGA AGGCGCTGGT GAGCTTCTTC GTCAACCATC TCTGGAATCA GTTGCATCCC ATCGATCATC AGGCGCTGGT GAGCTTCTTC GTCAACCATC TCTGGAATCA GTTGCATCCC ATCGATCATC AGGCGCTGGT GAGCTTCTTC GTCAACCATC TCTGGAATCA GTTGCATCCC ATCGATCATC AGGCGCTGGT GAGCTTCTTC GTCAACCATC TCTGGAATCA GGTTGCATCCC ATCGATCATC ACTCAACAGAAGA AGCTGGAACA GGAGAAGATC AGCTTGAGCA AGAACAAGAA 420 CTACGACGAAA GCACATATGC CATCAATTTC CGGATCTCAA GGAACCTTGA ACAACATTGA 426 CTACGACGAAA GCACATATGC CATCAATTTC CGGATCTCAA GGAACCTTGA ACAACATTGA 426 TGTGATTGAG TTGAAGCAAG AGCTCAAAGA ACGCGATAGT GCACTTTACG AAGTCCGCCT 432 TGACAATTGA GACCAATTAA AGAAAGAAGT AGCCGATAGT GCACTTTACG AACAACTTGA 438 AACCGGAGAAC AACCAATTAA AGAAAGAAGT GGACCAACCT ACCAACGGTC AACAACTTGA 438 AACCGGAGAAC AACCAATTAA AGAAAGAAGT GGACCAACCT ACCAACGGTC CAGCCACTCG 444	GGAGAAGCTG	AAAGAATACG	ATGACATGAC	TCGTCGAGCA	CAGAACGGCT	ATCCTGACAA	3060
TTCCCACTT GTTCGCCATC CCACGTCTC TTCCTCAAAG CCCCGAGTCC CCAGTCGGTC CTCCACATCA GTCGATTCTC GATCTCGAGC AGAACAGGAG AATGTGTACA AACTTCTGTC 330 CCAGTGCCGA ACGAGCCAAC GTGGCGCCGC TGCCACCTCA ACCTTCGGAC AACATTCGCT 336 AAGATCCCCG GGATACTCAT CCTATTCTCC ACACTTATCA GTGTCAGCT ATAAGGACAC AATGTCTATG CACTCACAGA CTAGTCGACG ACCTTCTCA CAAAAACCAA GCTATTCAGG 348 CCAATTTCAT TCACTTGATC GTAAATGCCA CCTTCAAGAG TTCACATCCA CCGAGCACAG 354 AATGGCGGCT CTCTTGAGCC CGAGACGGGT GCCGAACTCG ATGTCGAAAT ATGATTCTTC AGGATCCTAC TCGGCGCGTT CCCGAGGTGG AAGCTCTACT GGTATCTATG GAGAGACGTT ATCCCAACTA TCACTGGCTA GCACGACAGC ATGTCGACAT TCTGCCAAAA GTGAGATGGG ATCCCAACTA TCACTGGCTA GCACGACAGC ATATGGATCT CTCAATGAGA AGTACGAACA TGCTATTCGG GACATGGCAC GTGACTTGGA GTGTTACAAG AACACTGTCG ACTCACTAAC CAAGAAACAG GAGAACTATG GAGCATTGTT TGATCTTTTT GAGCAAAAGC TTAGAAAACT CAACTAAACAC ATTGATCGAT CCAACTTGAA GCCTGAAGAG GCAATACGAT TCAGGCAGGA AGGCGCTGGT GAGCTTCTTC GTCAACCATC TCTGCAACA GTGAGACGA 396 CATTGCTCAT TTGAGGGATA TTAGCAATCA TCTTGCATCC AACTCAGCT ATGCTAACGA AGGCGCTGGT GAGCTTCTTC GTCAACCATC TCTGGAATCA GTTGCATCC ATGCTAACGA AGGCGCTGGT GAGCTTCTTC GTCAACCATC TCTGGAATCA GTTGCATCC ATGCTAACGA 402 AGGCGCTGGT GAGCTTCTTC GTCAACCATC TCTGGAATCA GTTGCATCC ATGCTAACGA 414 GAACAAGAAA GAGCAATAGC CATCAATTC CGGAAGAGA AGAACTAGAA AGAACAAGAA 420 CTACGACGAA GCACATATGC CATCAATTC CGGATCATC ACCAAGAAGA AGAACAAGAA 421 CTACGACGAA GCACATATGC CATCAATTC CGGATCTCA GGAACATTGA ACAACATTGA 426 CTACGACGAA GCACATATGC CATCAATTC CGGATCTCA GGAACATTGA ACAACATTGA 426 CTACGACGAA GCACATATGC CATCAATTC CGGATCTCAA GGAACATTGA ACAACATTGA 426 CTACGACGAA GACCATTAA AGAAAGAAGA ACGCGATAGT GCACATTGA ACAACATTGA 438 AACCGAGAAC AAGCAATTAA AGAAAGAAG GGACAAACTC ACCAACGGTC CAGCCACTCG 432	CTTCGAAGAC	AGTTCCTCCT	TGTCGTCTGG	AATATCCGAT	AACAACGAGC	TCGACGACAT	3120
CTCCACATCA GTCGATTCTC GATCTCGAGC AGAACAGGAG AATGTGTACA AACTTCTGTC CCAGTGCCGA ACGAGCCAAC GTGGCGCCGC TGCCACCTCA ACCTTCGGAC AACATTCGCT AAGATCCCCG GGATACTCAT CCTATTCTCC ACACTTATCA GTGTCAGCTG ATAAGGACAC AATGTCTATG CACTCACAGA CTAGTCGACG ACCTTCTTCA CAAAAACCAA GCTATTCAGG CCAATTTCAT TCACTTGATC GTAAATGCCA CCTTCAAGAG TTCACATCCA CCGAGCACAG AATGGCGGCT CTCTTGAGCC CGAGACGGGT GCCGAACTCG ATGTCGAAAT ATGATTCTTC AGGATCCTAC TCGGCGCGTT CCCGAGGTGG AAGCTCTACT GGTATCTATG GAGAGACGTT ATCCCAACTA TCACTGGCTA GCACGACAGC ATATGGATCT CTCGCCAAAA GTGAGATGGG ATCCCAACTA TCACTGGCTA GCACGACAGC ATATGGATCT CTCAATGAGA AGTACGAACA TGCTATTCGG GACATGGCAC GTGACTTGGA GTGTTACAAG AACACTGTCG ACTCACTAAC AACAGAAACAG GAGAACTATG GAGCATTGTT TGATCTTTTT GAGCAAAAGC TTAGAAAACT CAACTCAACAC ATTGATCGAT CCAACTTGAA GCCTGAAGAG GCAATACGAT TCAGGCAGGA AGGCCCTGGT GAGCTTCTC GTCAACCATC TCTGGAATCA GTGCATCAC ATGGTAACGA AGGCCCTGGT GAGCTTCTC GTCAACCACC TCTGGAATCA GTTGCATCCC ACCTCACCACA AGGCCCTGGT GAGCTTCTC GTCAACCACC TCTGGAATCA GTTGCATCCC ACCTCACCACA GAACAAGAAA AGCAATAGC CATCAACTAC TCTCGGAATCA GTTGCATCCC ACCGATCACC AGGCCCTGGT GAGCTTCTC GTCAACCACC TCTGGAATCA GTTGCATCCC ACCGATCACC ACCACAGAAA ACCACAGAACA ACAACAAGAA ACCACAGAACA ACCACACAGAA ACCACATTGA 426 GAACAAGAAAA ACCCGAAAAA ACCCGAATAGT CACCAACTTCA ACCAACATTGA 426 TGTGATTGAG TTGAAGCAAG AGCCCAAAGAA ACCGCGATAGT GCACTTTACG AACACATTGA 426 TGTGATTGAG TTGAAGCAAG AGCCCAAAGAA ACGCGATAGT GCACTTTACG AACACATTGA 426 TGTGATTGAG TTGAAGCAAG AGCCCAAAGAA ACGCGATAGT GCACTTTACG ACACACTTGA 432 TGACCAATTGA GACCAATTAA AGAAAGAAGT ACCACAGGTC CAGCCACTCG 444 AACCCGAGAACA AAGCAATTAA AGAAAGAAGT ACCACAGTGA ACAACTTGA 444 AACCCGAGAACA AAGCAATTAA AGAAAGAAGT GGAACAACTC ACCACGGTC CAGCCACTCG 444 AACCCGAGAACA AAGCAATTAA AGAAAGAAGT GGAACAACTC ACCACGGTC CAGCCACTCG 444 AACCCGAGAACA AAGCAATTAA AGAAAGAAGT GGAACAACTC ACCACGGTC CAGCCACTCG 444 AACCCGAGAACAACATTAA AGAAAGAAGT GGAACAACTC ACCACGGTC CAGCCACTCG 444 AACCCGAGAACATTAA AGAAAGAAGT	ATCCACGGAC	GATTTGTCCG	GAGTAGACAT	GGCAACAGTC	GCCTCCAAAC	ATAGCGACTA	3180
CCAGTGCCGA ACGAGCCAAC GTGGCGCCGC TGCCACCTCA ACCTTCGGAC AACATTCGCT AAGATCCCCG GGATACTCAT CCTATTCTCC ACACTTATCA GTGTCAGCTG ATAAGGACAC AATGTCTATG CACTCACAGA CTAGTCGACG ACCTTCTTCA CAAAAACCAA GCTATTCAGG ACCAATTCAT TCACTTGATC GTAAATGCCA CCTTCAAGGAG TTCACATCCA CCGAGCACAG AATGGCGGCT CTCTTGAGCC CGAGACGGGT GCCGAACTCG ATGTCGAAAT ATGATTCTTC AGGATCCTAC TCGGCGCGTT CCCGAGGTGG AAGCTCTACT GGTATCTATG GAGAGACGTT ATCCCAACTA TCACTGGCC ATGAAAAACC CCCCGCACAT TCTGCCCAAAA GTGAGATGGG ATCCCAACTA TCACTGGCTA GCACGACAGC ATATGGATCT CTCAATGAGA AGTACGAACA ATGCCAACTA TCACTGGCTA GCACGACAGC ATATGGATCT CTCAATGAGA AGTACGAACA ATGCTATTCCG GACATGCCA GTGACTTGGA GTGTTACAAG AACACTGTCG ACTCACTAAC CAAGAAACAG GAGAACTATG GAGCATTGTT TGATCTTTTT GAGCAAAAGC TTAGAAAACT CACTCAACAC ATTGATCGAT CCAACTTGAA GCCTGAAGAG GCAATACGAT TCAGGCAGGA AGGCGCTGGT GAGCTTCTTC GTCAACCATC TCTGGAATCA GTTGCATCCC ATCGATCACCA AGGCGCTGGT GAGCTTCTTC GTCAACCATC TCTGGAATCA GTTGCATCCC ATCGATCATC GAACAAGAAG AGCCTCTCTC CTCCAACTC ACCAAGAAGA AGAACAAGAA GCACCAAGAA GCACAATGC CATCAATTC CCGAATCACA AGCACAAGAA AGAACAAGAA CAACAAGAAG AGCCGCAATGC CTCCCAACTC CTCCCAAGTTC ACCAAGAAGA AGAACAAGAA CAACAAGAAG AGCCGAATACC CATCAATTC CGGATCTCAA GGAACCATTGA AGAACAAGAA CTACGACGAA GCACATATGC CATCAATTC CGGATCTCAA GGAACCATTGA ACAACATTGA ACCGAGAACA AGCAATTAA AGAACAAGA ACGCGATAGT GCACTTTACG AACTCTGCAC TGGACAATCTG GATCGTGCCC GCGAAGTTGA TGTTCTGAGG GAGACAGTGA ACAAGTTGAA AACCGAGAAC AAGCAATTAA AGAAAGAAGT GGACAAACCC ACCAACGGTC CAGCCACTCG TGGACAATTAA AGAAAGAAGT GGACAAACCC ACCAACGGTC CAGCCACTCG TGGACAATTAA AGAAAGAAGT GGACAAACCC ACCAAGGAAC ACAAGTTGAA AACCGAGAAC AAGCAATTAA AGAAAGAAGT GGACAAACCC ACCAACGGTC CAGCCACTCG TGGACAATTAA AGAAAGAAGT GGACAAACCC ACCAACGGTC CAGCCACTCG TGGACAATTAA AGAAAGAAGT GGACAAACCC ACCAACGGTC CAGCCACTCG TGACCAATTAA AGAAAGAAGT GGACAAACCC ACCAACGGTC CAGCCACTCG TGACCAATTAA AGAAAGAAGT GGACAAACCC ACCAACGGTC CAGCCACTCG TAGACCAATTAA AGAAAGAAGT GGACAAACCC ACCAACGGTC CAGCCACTCG TAGACCAATTAA AGAAAGAAGA GGACAACTC ACCAACGGTC CAGCCACTCG TAGACCAAGAACAAAAAAAAAAAAAAAAA	TTCCCACTTT	GTTCGCCATC	CCACGTCTTC	TTCCTCAAAG	CCCCGAGTCC	CCAGTCGGTC	3240
AAGATCCCCG GGATACTCAT CCTATTCTCC ACACTTATCA GTGTCAGCTG ATAAGGACAC AATGTCTATG CACTCACAGA CTAGTCGACG ACCTTCTTCA CAAAAACCAA GCTATTCAGG CCAATTTCAT TCACTTGATC GTAAATGCCA CCTTCAAGAG TTCACATCCA CCGAGCACAG AATGGCGGCT CTCTTGAGCC CGAGACGGGT GCCGAACTCG ATGTCGAAAT ATGATTCTTC AGGATCCTAC TCGGCGCGTT CCCGAGGTGG AAGCTCTACT GGTATCTATG GAGAGACGGTT ACCCAACTGCAC AGACTATCCG ATGAAAAATC CCCCGCACAT TCTGCCAAAA GTGAGATGGG ATCCCAACTA TCACTGGCTA GCACGACAGC ATATGGATCT CTCAATGAGA AGTACGAACA TGCTATTCGG GACATGGCAC GTGACTTGGA GTGTTACAAG AACACTGTCG ACTCACTAAC CAAGAAAACAG GAGAACTATG GAGCATTGTT TGATCTTTTT GAGCAAAAGC TTAGAAAACT CAACTCAACAC ATTGATCGAT CCAACTTGAA GCCTGAAGAG GCAATACGAT TCAGGCAGGA AGGCGCTGGT GAGCTTCTC GTCAACCATC TCTGGAATCA GTTGCATCCC ATGCTAACGA AGGCGCTGGT GAGCTTCTC GTCAACCATC TCTGGAATCA GTTGCATCCC ATCGATCATC GAACAAGAAG AGCTGGATC GCTCCTCACT CTCCAAGTTC ACCAAGAAGA AGAACAAGAA 420 CTACGACGAA GCACATATGC CATCATTCC CTCCAAGTTC ACCAAGAAGA AGAACAAGAA 420 CTACGACGAA GCACATATGC CATCATTCC CTCCAAGTTC ACCAAGAAGA AGAACAAGAA 420 CTACGACGAA GCACATATGC CATCATTTC CGGATCTCAA GGAACTCTTG ACAACATTGA 426 TGTGATTGAG TTGAAGCAAG AGCTCAAAGA ACGCGATTAGT GCACCTTTACG AAGTCCGCCT 432 TGACAAATCTG GATCGTGCCC GCGAAGTTGA TGTTCTGAGG GAGACAGTGA ACAAGTTGAA AACCGAGAAC AAGCAATTAA AGAAAGAAGT GGACAAACTC ACCAACGGTC CAGCCACTCG 434 AACCGAGAAC AAGCAATTAA AGAAAGAAGT GGACAAACTC ACCAACGGTC CAGCCACTCG 436 AACCGAGAAC AAGCAATTAA AGAAAGAAGT GGACAAACTC ACCAACGGTC CAGCCACTCG 436 AACCGAGAAC AAGCAATTAA AGAAAGAAGT GGACAAACTC ACCAACGGTC CAGCCACTCG 436 AACCGAGAACA AAGCAATTAA AGAAAGAAGT GGACAAACTC ACCAACGGTC CAGCCACTCG 436 AACCGAGAAC AAGCAATTAA AGAAAGAAGT GGACAAACTC ACCAACGGTC CAGCCACTCG 436 AACCGAGAACA AAGCAATTAA AGAAAGAAGT GGACAAACTC ACCAACGGTC CAGCCACTCG 436 AACCGAGAACA AAGCAATTAA AGAAAGAAGT GGACAAACTC ACCAACGGTC CAGCCACTCG 436 AACCGAGAACACTAA AGAAAGAAGT GGACAAACTC ACCAACGGTC CAGCCACTCG 436 AACCGAGAACACTAAACACTC ACCAACTCC ACCAACGGTC CAGCCACTCG 436 AACCGAGAACACTAAACACTC ACCAACTCC ACCAACGGTC CAGCCACTCG 446 AACCGAGAACTATAA AGAAAGAAGTA GGACAACTC ACCAACGGTC	CTCCACATCA	GTCGATTCTC	GATCTCGAGC	AGAACAGGAG	AATGTGTACA	AACTTCTGTC	3300
AATGTCTATG CACTCACAGA CTAGTCGACG ACCTTCTTCA CAAAAACCAA GCTATTCAGG 348 CCAATTTCAT TCACTTGATC GTAAATGCCA CCTTCAAGAG TTCACATCCA CCGAGCACAG 354 AATGGCGGCT CTCTTGAGCC CGAGACGGGT GCCGAACTCG ATGTCGAAAT ATGATTCTTC 360 AGGATCCTAC TCGGCGCGTT CCCGAGGTGG AAGCTCTACT GGTATCTATG GAGAGACGTT 366 CCAACTGCAC AGACTATCCG ATGAAAAATC CCCCGCACAT TCTGCCAAAA GTGAGATGGG 372 ATCCCAACTA TCACTGGCTA GCACGACAGC ATATGGATCT CTCAATGAGA AGTACGAACA 378 TGCTATTCGG GACATGGCAC GTGACTTGGA GTGTTACAAG AACACTGTCG ACTCACTAAC 384 CAAGAAACAG GAGAACTATG GAGCATTGTT TGATCTTTTT GAGCAAAAGC TTAGAAAACT 390 CACTCAACAC ATTGATCGAT CCAACTTGAA GCCTGAAGAG GCAATACGAT TCAGGCAGGA 396 CATTGCTCAT TTGAGGGATA TTAGCAATCA TCTTGCATCC AACTCAGCTC ATGCTAACGA 402 AGGCGCTGGT GAGCTTCTTC GTCAACCATC TCTGGAATCA GTTGCATCCC ATCGATCATC 408 GATGTCATCG TCGTCGAAAA GCAGCAAGCA GGAGAAGATC AGCTTGAGCT CGTTTGGCAA 414 GAACAAGAAG AGCTGGATCC CATCAATTC CCGGATCTCA GCAAGAAGA AGAACAAGAA 420 CTACGACGAA GCACATATGC CATCAATTC CCGGATCTCA GCAAGAAGA AGAACAAGAA 420 CTACGACGAA GCACATATGC CATCAATTTC CGGATCTCAA GCAAGAAGA AGAACAAGAA 420 CTACGACGAA GCACATATGC CATCAATTTC CGGATCTCAA GCAACATTGA ACAACATTGA 426 TGTGATTGAG TTGAAGCAAG AGCTCAAAGA ACGCGATAGT GCACTTTACG AAGTCCGCCT 432 TGACAATCTG GATCGTCCC GCGAAGTTGA TGTTCTGAGG GAGACAGTGA ACAAGTTGAA 438 AACCGAGAAC AAGCAATTAA AGAAAGAAGT GGAACAACTC ACCAAGGGTC CAGCCACTCG 444 AACCGAGAAC AAGCAATTAA AGAAAGAAGT GGAACAACTC ACCAACGGTC CAGCCACTCG 444	CCAGTGCCGA	ACGAGCCAAC	GTGGCGCCGC	TGCCACCTCA	ACCTTCGGAC	AACATTCGCT	3360
CCAATTTCAT TCACTTGATC GTAAATGCCA CCTTCAAGAG TTCACATCCA CCGAGCACAG 354 AATGGCGGCT CTCTTGAGCC CGAGACGGGT GCCGAACTCG ATGTCGAAAT ATGATTCTTC 360 AGGATCCTAC TCGGCGCGTT CCCGAGGTGG AAGCTCTACT GGTATCTATG GAGAGACGGTT 366 CCAACTGCAC AGACTATCCG ATGAAAAATC CCCCGCACAT TCTGCCAAAA GTGAGATGGG 372 ATCCCAACTA TCACTGGCTA GCACGACAGC ATATGGATCT CTCAATGAGA AGTACGAACA 378 TGCTATTCGG GACATGGCAC GTGACTTGGA GTGTTACAAG AACACTGTCG ACTCACTAAC 384 CAAGAAACAG GAGAACTATG GAGCATTGTT TGATCTTTTT GAGCAAAAGC TTAGAAAACT 390 CACTCAACAC ATTGATCGAT CCAACTTGAA GCCTGAAGAG GCAATACGAT TCAGGCAGGA 396 CATTGCTCAT TTGAGGGATA TTAGCAATCA TCTTGCATCC AACTCAGCTC ATGCTAACGA 402 AGGCGCTGGT GAGCTTCTTC GTCAACCATC TCTGGAATCA GTTGCATCC ATCGATCATC 408 GATGTCATCG TCGTCGAAAA GCAGCAAGCA GGAGAAGATC AGCTTGAGCT CGTTTGGCAA 414 GAACAAGAAG AGCTGGATCC GCTCCTCACT CTCCAAGTTC ACCAAGAAGA AGAACAAGAA 420 CTACGACGAA GCACATATGC CATCAATTTC CGGATCTCAA GGAACTCTTG ACAACATTGA 426 TGTGATTGAG TTGAAGCAAG AGCTCAAAGA ACGCGATAGT GCACTTTACG AAGTCCGCCT 432 TGACAATCTG GATCGTGCCC GCGAAGTTGA TGTTCTGAGG GAGACAGGAA ACAACATTGA 438 AACCGAGAAC AAGCAATTAA AGAAAGAAGT GGACCAACTC ACCAACGGTC CAGCCACTCG 438 AACCGAGAAC AAGCAATTAA AGAAAGAAGT GGACCAACTC ACCAACGGTC CAGCCACTCG 438 AACCGAGAAC AAGCAATTAA AGAAAGAAGT GGACCAACGGTC CAGCCACTCG 438 AACCGAGAAC AAGCAATTAA AGAAAGAAGT GGACCAACGGTC CAGCCACTCG 438	AAGATCCCCG	GGATACTCAT	CCTATTCTCC	ACACTTATCA	GTGTCAGCTG	ATAAGGACAC	3420
AATGGCGGCT CTCTTGAGCC CGAGACGGGT GCCGAACTCG ATGTCGAAAT ATGATTCTTC 360 AGGATCCTAC TCGGCGCGTT CCCGAGGTGG AAGCTCTACT GGTATCTATG GAGAGACGTT 366 CCAACTGCAC AGACTATCCG ATGAAAAATC CCCCGCACAT TCTGCCAAAA GTGAGATGGG 372 ATCCCAACTA TCACTGGCTA GCACGACAGC ATATGGATCT CTCAATGAGA AGTACGAACA 378 TGCTATTCGG GACATGGCAC GTGACTTGGA GTGTTACAAG AACACTGTCG ACTCACTAAC 384 CAAGAAACAG GAGAACTATG GAGCATTGTT TGATCTTTTT GAGCAAAAGC TTAGAAAACT 390 CACTCAACAC ATTGATCGAT CCAACTTGAA GCCTGAAGAG GCAATACGAT TCAGGCAGGA 396 CATTGCTCAT TTGAGGGATA TTAGCAATCA TCTTGCATCC AACTCAGCTC ATGCTAACGA 402 AGGCGCTGGT GAGCTTCTC GTCAACCATC TCTGGAATCA GTTGCATCCC ATCGATCATC 408 GATGTCATCG TCGTCGAAAA GCAGCAAGCA GGAGAAGATC AGCTTGAGCT CGTTTGGCAA 414 GAACAAGAAG AGCTGGATCC GCTCCTCACT CTCCAAGTTC ACCAAGAAGA AGAACAAGAA 420 CTACGACGAA GCACATATGC CATCAATTTC CGGATCTCAA GGAACTCTTG ACAACATTGA 426 TGTGATTGAG TTGAAGCAAG AGCTCAAAGA ACGCGATAGT GCACTTTACG AAGTCCGCCT 432 TGACAATCTG GATCGTCCC GCGAAGTTGA TGTTCTGAGG GAGACAGTGA ACAAGTTGAA 438 AACCGAGAAC AAGCAATTAA AGAAAGAAGT GGACCAACTC ACCAACGGTC CAGCCACTCG 438 AACCGAGAAC AAGCAATTAA AGAAAGAAGT GGACCAACCTC ACCAACGGTC CAGCCACTCG 444 AACCGAGAAC AAGCAATTAA AGAAAGAAGT GGACCAACCTC ACCAACGGTC CAGCCACTCG 444	AATGTCTATG	CACTCACAGA	CTAGTCGACG	ACCTTCTTCA	CAAAAACCAA	GCTATTCAGG	3480
AGGATCCTAC TCGGCGCGTT CCCGAGGTGG AAGCTCTACT GGTATCTATG GAGAGACGTT 366 CCAACTGCAC AGACTATCCG ATGAAAAATC CCCCGCACAT TCTGCCAAAA GTGAGATGGG 372 ATCCCAACTA TCACTGGCTA GCACGACAGC ATATGGATCT CTCAATGAGA AGTACGAACA 378 TGCTATTCGG GACATGGCAC GTGACTTGGA GTGTTACAAG AACACTGTCG ACTCACTAAC 384 CAAGAAACAG GAGAACTATG GAGCATTGTT TGATCTTTTT GAGCAAAAGC TTAGAAAACT 390 CACTCAACAC ATTGATCGAT CCAACTTGAA GCCTGAAGAG GCAATACGAT TCAGGCAGGA 396 CATTGCTCAT TTGAGGGATA TTAGCAATCA TCTTGCATCC AACTCAGCTC ATGCTAACGA 402 AGGCGCTGGT GAGCTTCTTC GTCAACCATC TCTGGAATCA GTTGCATCCC ATCGATCATC 408 GATGTCATCG TCGTCGAAAA GCAGCAAGCA GGAGAAGATC AGCTTGAGCT CGTTTGGCAA 414 GAACAAGAAG AGCTGGATCC GCTCCTCACT CTCCAAGTTC ACCAAGAAGA AGAACAAGAA 420 CTACGACGAA GCACATATGC CATCAATTTC CGGATCTCAA GGAACCTTTG ACAACATTGA 426 TGTGATTGAG TTGAAGCAAG AGCTCAAAGA ACGCGATAGT GCACTTTACG AAGTCCGCCT 432 TGACAATCTG GATCGTGCCC GCGAAGTTGA TGTTCTGAGG GAGACAGTGA ACAAGTTGAA 438 AACCGAGGAC AAGCAATTAA AGAAAGAAGT GGACCAACCT ACCAACGGTC CAGCCACTCG 444 AACCGAGGAAC AAGCAATTAA AGAAAGAAGT GGACCAACCT ACCAACGGTC CAGCCACTCG 444	CCAATTTCAT	TCACTTGATC	GTAAATGCCA	CCTTCAAGAG	TTCACATCCA	CCGAGCACAG	3540
CCAACTGCAC AGACTATCCG ATGAAAAATC CCCCGCACAT TCTGCCAAAA GTGAGATGGG 372 ATCCCAACTA TCACTGGCTA GCACGACAGC ATATGGATCT CTCAATGAGA AGTACGAACA 378 TGCTATTCGG GACATGGCAC GTGACTTGGA GTGTTACAAG AACACTGTCG ACTCACTAAC 384 CAAGAAACAG GAGAACTATG GAGCATTGTT TGATCTTTTT GAGCAAAAGC TTAGAAAACT 390 CACTCAACAC ATTGATCGAT CCAACTTGAA GCCTGAAGAG GCAATACGAT TCAGGCAGGA 396 CATTGCTCAT TTGAGGGATA TTAGCAATCA TCTTGCATCC AACTCAGCTC ATGCTAACGA 402 AGGCGCTGGT GAGCTTCTTC GTCAACCATC TCTGGAATCA GTTGCATCCC ATCGATCATC 408 GATGTCATCG TCGTCGAAAA GCAGCAAGCA GGAGAAGATC AGCTTGAGCT CGTTTGGCAA 414 GAACAAGAAG AGCTGGATCC GCTCCTCACT CTCCAAGTTC ACCAAGAAGA AGAACAAGAA 420 CTACGACGAA GCACATATGC CATCAATTTC CGGATCTCAA GGAACTCTTG ACAACATTGA 426 TGTGATTGAG TTGAAGCAAG AGCTCAAAGA ACGCGATAGT GCACTTTACG AAGTCCGCCT 432 TGACAATCTG GATCGTGCCC GCGAAGTTGA TGTTCTGAGG GAGCACGGTC ACCAAGGTGAA 438 AACCGAGAAC AAGCAATTAA AGAAAGAAGT GGACCAACCT ACCAACGGTC CAGCCACTCG 444	AATGGCGGCT	CTCTTGAGCC	CGAGACGGGT	GCCGAACTCG	ATGTCGAAAT	ATGATTCTTC	3600
ATCCCAACTA TCACTGGCTA GCACGACAGC ATATGGATCT CTCAATGAGA AGTACGAACA 378 TGCTATTCGG GACATGGCAC GTGACTTGGA GTGTTACAAG AACACTGTCG ACTCACTAAC 384 CAAGAAACAG GAGAACTATG GAGCATTGTT TGATCTTTTT GAGCAAAAGC TTAGAAAACT 390 CACTCAACAC ATTGATCGAT CCAACTTGAA GCCTGAAGAG GCAATACGAT TCAGGCAGGA 396 CATTGCTCAT TTGAGGGATA TTAGCAATCA TCTTGCATCC AACTCAGCTC ATGCTAACGA 402 AGGCGCTGGT GAGCTTCTTC GTCAACCATC TCTGGAATCA GTTGCATCCC ATCGATCATC 408 GATGTCATCG TCGTCGAAAA GCAGCAAGCA GGAGAAGATC AGCTTGAGCT CGTTTGGCAA 414 GAACAAGAAG AGCTGGATCC GCTCCTCACT CTCCAAGTTC ACCAAGAAGA AGAACAAGAA 420 CTACGACGAA GCACATATGC CATCAATTTC CGGATCTCAA GGAACTCTTG ACAACATTGA 426 TGTGATTGAG TTGAAGCAAG AGCTCAAAGA ACGCGATAGT GCACTTTACG AAGTCCGCCT 432 TGACAATCTG GATCGTGCCC GCGAAGTTGA TGTTCTGAGG GAGACAGTGA ACAAGTTGAA 438 AACCGAGAAC AAGCAATTAA AGAAAGAAGT GGACAAACTC ACCAACGGTC CAGCCACTCG 444	AGGATCCTAC	TCGGCGCGTT	CCCGAGGTGG	AAGCTCTACT	GGTATCTATG	GAGAGACGTT	3660
TGCTATTCGG GACATGGCAC GTGACTTGGA GTGTTACAAG AACACTGTCG ACTCACTAAC 384 CAAGAAACAG GAGAACTATG GAGCATTGTT TGATCTTTTT GAGCAAAAGC TTAGAAAACT 390 CACTCAACAC ATTGATCGAT CCAACTTGAA GCCTGAAGAG GCAATACGAT TCAGGCAGGA 396 CATTGCTCAT TTGAGGGATA TTAGCAATCA TCTTGCATCC AACTCAGCTC ATGCTAACGA 402 AGGCGCTGGT GAGCTTCTTC GTCAACCATC TCTGGAATCA GTTGCATCCC ATCGATCATC 408 GATGTCATCG TCGTCGAAAA GCAGCAAGCA GGAGAAGATC AGCTTGAGCT CGTTTGGCAA 414 GAACAAGAAG AGCTGGATCC GCTCCTCACT CTCCAAGTTC ACCAAGAAGA AGAACAAGAA 420 CTACGACGAA GCACATATGC CATCAATTTC CGGATCTCAA GGAACTCTTG ACAACATTGA 426 TGTGATTGAG TTGAAGCAAG AGCTCAAAGA ACGCGATAGT GCACTTTACG AAGTCCGCCT 432 TGACAATCTG GATCGTGCCC GCGAAGTTGA TGTTCTGAGG GAGACAGTGA ACAAGTTGAA 438 AACCGAGAAC AAGCAATTAA AGAAAGAAGT GGACAAACTC ACCAACGGTC CAGCCACTCG 444	CCAACTGCAC	AGACTATCCG	ATGAAAAATC	CCCCGCACAT	TCTGCCAAAA	GTGAGATGGG	3720
CAAGAAACAG GAGAACTATG GAGCATTGTT TGATCTTTTT GAGCAAAAGC TTAGAAAACT 390 CACTCAACAC ATTGATCGAT CCAACTTGAA GCCTGAAGAG GCAATACGAT TCAGGCAGGA 396 CATTGCTCAT TTGAGGGATA TTAGCAATCA TCTTGCATCC AACTCAGCTC ATGCTAACGA 402 AGGCGCTGGT GAGCTTCTTC GTCAACCATC TCTGGAATCA GTTGCATCCC ATCGATCATC 408 GATGTCATCG TCGTCGAAAA GCAGCAAGCA GGAGAAGATC AGCTTGAGCT CGTTTGGCAA 414 GAACAAGAAG AGCTGGATCC GCTCCTCACT CTCCAAGTTC ACCAAGAAGA AGAACAAGAA 420 CTACGACGAA GCACATATGC CATCAATTTC CGGATCTCAA GGAACTCTTG ACAACATTGA 426 TGTGATTGAG TTGAAGCAAG AGCTCAAAGA ACGCGATAGT GCACTTTACG AAGTCCGCCT 432 TGACAATCTG GATCGTGCCC GCGAAGTTGA TGTTCTGAGG GAGACAGTGA ACAAGTTGAA 438 AACCGAGAAC AAGCAATTAA AGAAAGAAGT GGACAAACTC ACCAACGGTC CAGCCACTCG 4444	ATCCCAACTA	TCACTGGCTA	GCACGACAGC	ATATGGATCT	CTCAATGAGA	AGTACGAACA	3780
CACTCAACAC ATTGATCGAT CCAACTTGAA GCCTGAAGAG GCAATACGAT TCAGGCAGGA 396 CATTGCTCAT TTGAGGGATA TTAGCAATCA TCTTGCATCC AACTCAGCTC ATGCTAACGA 402 AGGCGCTGGT GAGCTTCTTC GTCAACCATC TCTGGAATCA GTTGCATCCC ATCGATCATC 408 GATGTCATCG TCGTCGAAAA GCAGCAAGCA GGAGAAGATC AGCTTGAGCT CGTTTGGCAA 414 GAACAAGAAG AGCTGGATCC GCTCCTCACT CTCCAAGTTC ACCAAGAAGA AGAACAAGAA 420 CTACGACGAA GCACATATGC CATCAATTTC CGGATCTCAA GGAACTCTTG ACAACATTGA 426 TGTGATTGAG TTGAAGCAAG AGCTCAAAGA ACGCGATAGT GCACTTTACG AAGTCCGCCT 432 TGACAATCTG GATCGTGCCC GCGAAGTTGA TGTTCTGAGG GAGACAGTGA ACAAGTTGAA 438 AACCGAGAAC AAGCAATTAA AGAAAGAAGT GGACCAACCC ACCAACGGTC CAGCCACTCG 444	TGCTATTCGG	GACATGGCAC	GTGACTTGGA	GTGTTACAAG	AACACTGTCG	ACTCACTAAC	3840
CATTGCTCAT TTGAGGGATA TTAGCAATCA TCTTGCATCC AACTCAGCTC ATGCTAACGA 402 AGGCGCTGGT GAGCTTCTTC GTCAACCATC TCTGGAATCA GTTGCATCCC ATCGATCATC 408 GATGTCATCG TCGTCGAAAA GCAGCAAGCA GGAGAAGATC AGCTTGAGCT CGTTTGGCAA 414 GAACAAGAAG AGCTGGATCC GCTCCTCACT CTCCAAGTTC ACCAAGAAGA AGAACAAGAA 420 CTACGACGAA GCACATATGC CATCAATTTC CGGATCTCAA GGAACTCTTG ACAACATTGA 426 TGTGATTGAG TTGAAGCAAG AGCTCAAAGA ACGCGATAGT GCACTTTACG AAGTCCGCCT 432 TGACAATCTG GATCGTGCCC GCGAAGTTGA TGTTCTGAGG GAGACAGTGA ACAAGTTGAA 438 AACCGAGAAC AAGCAATTAA AGAAAGAAGT GGACAAACTC ACCAACGGTC CAGCCACTCG 444	CAAGAAACAG	GAGAACTATG	GAGCATTGTT	TGATCTTTTT	GAGCAAAAGC	TTAGAAAACT	3900
AGGCGCTGGT GAGCTTCTTC GTCAACCATC TCTGGAATCA GTTGCATCCC ATCGATCATC 408 GATGTCATCG TCGTCGAAAA GCAGCAAGCA GGAGAAGATC AGCTTGAGCT CGTTTGGCAA 414 GAACAAGAAG AGCTGGATCC GCTCCTCACT CTCCAAGTTC ACCAAGAAGA AGAACAAGAA 420 CTACGACGAA GCACATATGC CATCAATTTC CGGATCTCAA GGAACTCTTG ACAACATTGA 426 TGTGATTGAG TTGAAGCAAG AGCTCAAAGA ACGCGATAGT GCACTTTACG AAGTCCGCCT 432 TGACAATCTG GATCGTGCCC GCGAAGTTGA TGTTCTGAGG GAGACAGTGA ACAAGTTGAA 438 AACCGAGAAC AAGCAATTAA AGAAAGAAGT GGACAAACTC ACCAACGGTC CAGCCACTCG 444	CACTCAACAC	ATTGATCGAT	CCAACTTGAA	GCCTGAAGAG	GCAATACGAT	TCAGGCAGGA	3960
GATGTCATCG TCGTCGAAAA GCAGCAAGCA GGAGAAGATC AGCTTGAGCT CGTTTGGCAA 414 GAACAAGAAG AGCTGGATCC GCTCCTCACT CTCCAAGTTC ACCAAGAAGA AGAACAAGAA 420 CTACGACGAA GCACATATGC CATCAATTTC CGGATCTCAA GGAACTCTTG ACAACATTGA 426 TGTGATTGAG TTGAAGCAAG AGCTCAAAGA ACGCGATAGT GCACTTTACG AAGTCCGCCT 432 TGACAATCTG GATCGTGCCC GCGAAGTTGA TGTTCTGAGG GAGACAGTGA ACAAGTTGAA 438 AACCGAGAAC AAGCAATTAA AGAAAGAAGT GGACAAACTC ACCAACGGTC CAGCCACTCG 444	CATTGCTCAT	TTGAGGGATA	TTAGCAATCA	TCTTGCATCC	AACTCAGCTC	ATGCTAACGA	4020
GAACAAGAAG AGCTGGATCC GCTCCTCACT CTCCAAGTTC ACCAAGAAGA AGAACAAGAA 420 CTACGACGAA GCACATATGC CATCAATTTC CGGATCTCAA GGAACTCTTG ACAACATTGA 426 TGTGATTGAG TTGAAGCAAG AGCTCAAAGA ACGCGATAGT GCACTTTACG AAGTCCGCCT 432 TGACAATCTG GATCGTGCCC GCGAAGTTGA TGTTCTGAGG GAGACAGTGA ACAAGTTGAA 438 AACCGAGAAC AAGCAATTAA AGAAAGAAGT GGACAAACTC ACCAACGGTC CAGCCACTCG 444	AGGCGCTGGT	GAGCTTCTTC	GTCAACCATC	TCTGGAATCA	GTTGCATCCC	ATCGATCATC	4080
CTACGACGAA GCACATATGC CATCAATTC CGGATCTCAA GGAACTCTTG ACAACATTGA TGTGATTGAG TTGAAGCAAG AGCTCAAAGA ACGCGATAGT GCACTTTACG AAGTCCGCCT 432 TGACAATCTG GATCGTGCCC GCGAAGTTGA TGTTCTGAGG GAGACAGTGA ACAAGTTGAA 438 AACCGAGAAC AAGCAATTAA AGAAAGAAGT GGACAAACTC ACCAACGGTC CAGCCACTCG 444	GATGTCATCG	TCGTCGAAAA	GCAGCAAGCA	GGAGAAGATC	AGCTTGAGCT	CGTTTGGCAA	4140
TGTGATTGAG TTGAAGCAAG AGCTCAAAGA ACGCGATAGT GCACTTTACG AAGTCCGCCT 432 TGACAATCTG GATCGTGCCC GCGAAGTTGA TGTTCTGAGG GAGACAGTGA ACAAGTTGAA 438 AACCGAGAAC AAGCAATTAA AGAAAGAAGT GGACAAACTC ACCAACGGTC CAGCCACTCG 444	GAACAAGAAG	AGCTGGATCC	GCTCCTCACT	CTCCAAGTTC	ACCAAGAAGA	AGAACAAGAA	4200
TGACAATCTG GATCGTGCCC GCGAAGTTGA TGTTCTGAGG GAGACAGTGA ACAAGTTGAA 438 AACCGAGAAC AAGCAATTAA AGAAAGAAGT GGACAAACTC ACCAACGGTC CAGCCACTCG 444	CTACGACGAA	GCACATATGC	CATCAATTTC	CGGATCTCAA	GGAACTCTTG	ACAACATTGA	4260
AACCGAGAAC AAGCAATTAA AGAAAGAAGT GGACAAACTC ACCAACGGTC CAGCCACTCG 444	TGTGATTGAG	TTGAAGCAAG	AGCTCAAAGA	ACGCGATAGT	GCACTTTACG	AAGTCCGCCT	4320
	TGACAATCTG	GATCGTGCCC	GCGAAGTTGA	TGTTCTGAGG	GAGACAGTGA	ACAAGTTGAA	4380
TGCTTCTTCC CGCGCCTCAA TTCCAGTTAT CTACGACGAT GAGCATGTCT ATGATGCAGC 450	AACCGAGAAC	AAGCAATTAA	AGAAAGAAGT	GGACAAACTC	ACCAACGGTC	CAGCCACTCG	4440
	TGCTTCTTCC	CGCGCCTCAA	TTCCAGTTAT	CTACGACGAT	GAGCATGTCT	ATGATGCAGC	4500

FIG. 39 CONTIL	VUED.	95/99		
GTGTAGCAGT ACATCAGCTA GTCA	TCTTC GAAACGAT	CC TCTGGCTGCA	ACTCAATCAA	4560
GGTTACTGTA AACGTGGACA TCGCT	'GGAGA AATCAGTT	CG ATCGTTAACC	CGGACAAAGA	4620
GATAATCGTA GGATATCTTG CCATC	TCAAC CAGTCAGT	CA TGCTGGAAAG	ACATTGATGT	4680
TTCTATTCTA GGACTATTTG AAGTO	TACCT ATCCAGAA	IT GATGTGGAGC	ATCAACTTGG	4740
AATCGATGCT CGTGATTCTA TCCTT	GGCTA TCAAATTG	GT GAACTTCGAC	GCGTCATTGG	4800
AGACTCCACA ACCATGATAA CCAGC	CATCC AACTGACA	TT CTTACTTCCT	CAACTACAAT	4860
CCGAATGTTC ATGCACGGTG CCGCA	CAGAG TCGCGTAG	AC AGTCTGGTCC	TTGATATGCT	4920
TCTTCCAAAG CAAATGATTC TCCAA	CTCGT CAAGTCAA	TT TTGACAGAGA	GACGTCTGGT	4980
GTTAGCTGGA GCAACTGGAA TTGGA	AAGAG CAAACTGG	G AAGACCCTGG	CTGCTTATGT	5040
ATCTATTCGA ACAAATCAAT CCGAA	GATAG TATTGTTAJ	T ATCAGCATTC	CTGAAAACAA	5100
TAAAGAAGAA TTGCTTCAAG TGGAA	CGACG CCTGGAAA	G ATCTTGAGAA	GCAAAGAATC	5160
ATGCATCGTA ATTCTAGATA ATATC	CCAAA GAATCGAAT	T GCATTTGTTG	TATCCGTTTT	5220
TGCAAATGTC CCACTTCAAA ACAAC	GAAGG TCCATTTGT	A GTATGCACAG	TCAACCGATA	5280
TCAAATCCCT GAGCTTCAAA TTCAC	CACAA TTTCAAAAT	G TCAGTAATGT	CGAATCGTCT	5340
CGAAGGATTC ATCCTACGTT ACCTC	CGACG ACGGGCGGT	A GAGGATGAGT	ATCGTCTAAC	5400
TGTACAGATG CCATCAGAGC TCTTC	AAAAT CATTGACTT	C TTCCCAATAG	CTCTTCAGGC	5460
CGTCAATAAT TTTATTGAGA AAACG	ATTC TGTTGATGT	G ACAGTTGGTC	CAAGAGCATG	5520
CTTGAACTGT CCTCTAACTG TCGAT	GGATC CCGTGAATG	G TTCATTCGAT	TGTGGAATGA	5580
GAACTTCATT CCATATTTGG AACGT	STTGC TAGAGATGG	С АААААААССТ	TCGGTCGCTG	5640
CACTTCCTTC GAGGATCCCA CCGAC	ATCGT CTCTAAAAA	A TGGCCGTGGT	TCGATGGTGA	5700
AAACCCGGAG AATGTGCTCA AACGT	•			5760
CTCATCCCGA CAACACTTCA ATCCCC			* · · · · · · · · · · · · · · · · · · ·	5820
TCAGACCATC GACAACATTT GAACAC	AAGA CTCTAATCT	r ctctcccctc	TCCCCCGCTT	5880
TCCTTATCTT CGTACCGGTA CCATGO				5940
TCAGATCGCC ATCTCGCGCC CGTGCC			•	6000
CTACATGCTC TTTCTCCCTG TGCTCC		•		6060
TTCTTAATTT CTTTGTTTTT TAGCTT			•	6120
ATTCAAAAAT AGAATTAATT CGTAAT	•			6180
TTAATAATAA TTCTATCCCA AAATCT			•	6240
TTACTTCTGA TAAATTTTTT TTGAAA	•			6300
CATATGTTAC GTTTCAGTTT ATGACO	4	·	•	6360
ATGACGTCAA ATCATGCTCA TCGTGA	AAAA GTTTTGGAG	ATTTTTGGAA	TTTTCAATC	6420

FIG.	39 co	NTINUED.		96/99	,	
Aagtgaaagt	TTATGAAATT	* AATTTTCCTG	CTTTTGCTTT	TTGGGGGTTI	CCCCTATTGT	6480
TTGTCAAGAG	TTTCGAGGAC	GGCGTTTTTC	TTGCTAAAAT	CACAAGTATI	GATGAGCACG	6540
ATGCAAGAAA	GATCGGAAGA	AGGTTTGGGT	TTGAGGCTCA	GTGGAAGGTG	AGTAGAAGTT	6600
GATAATTTGA	A AAGTGGAGTA	GTGTCTATGG	GGTTTTTGCC	TTAAATGACA	GAATACATTC	6660
CCAATATACO	AAACATAACT	GTTTAAAATT	AAACATTTTT	CTAAATTTTA	TATGATTTCT	6720
TTTAAATTT	CAAAAATTAC	: TTAAATTTGA	ATTCCCGCGC	AAATGAGTGA	CTTCATTTTC	6780
TGCATTATTG	TGTTTTCCGG	CTATATTAAT	AGGTATTTGT	TTGTGTTTTT	CTTTATTTTA	6840
TGATTCGAAC	TCCAATTTGT	AAATTTTCGA	ACATATTTCC	CTAAAGAAAA	AATATGATTA	6900
ATCTGGAAAA	ATTGGAAAAT	TATTTTTCAA	ATAAAAAACA	AAGAAAAAA	TGAAGAAAA	6960
CCTATTAGTT	TGGCCATAAA	ACGCAAAAAT	GTCGAAAATG	ACGTCACTCA	TCTGCGCGGG	7020
AAATCAAGAA	TAATTCGGCC	TTTTTTATTT	TTTTGGAAAA	TCGTAAAACA	TTTAGAAAAA	7080
TTTTTTAATA	GTTATAGTGG	GACTGTATTC	TGTCATTTAG	GGCAAAAGCC	AGAGACGCTA	7140
CTCCACCGTT	GGGGGATCCA	CTAGTCGGCC	GTACGGGCCC	TTTCGTCTCG	CGCGTTTCGG	7200
TGATGACGGT	GAAAACCTCT	GACACATGCA	GCTCCCGGAG	ACGGTCACAG	CTTGTCTGTA	7260
AGCGGATGCC	GGGAGCAGAC	AAGCCCGTCA	GGGCGCGTCA	GCGGGTGTTG	GCGGGTGTCG	7320
GGGCTGGCTT	AACTATGCGG	CATCAGAGCA	GATTGTACTG	AGAGTGCACC	ATATGCGGTG	7380
TGAAATACCG	CACAGATGCG	TAAGGAGAAA	ATACCGCATC	AGGCGGCCTT	AAGGCCTCG	7440
TGATACGCCT	ATTTTTATAG	GTTAATGTCA	TGATAATAAT	GGTTTCTTAG	ACGTCAGGTG	7500
GCACTTTTCG	GGGAAATGTG	CGCGGAACCC	CTATTTGTTT	ATTTTTCTAA	ATACATTCAA	7560
ATATGTATCC	GCTCATGAGA	CAATAACCCT	GATAAATGCT	TCAATAATAT	TGAAAAAGGA	7620
AGAGTATGAG	TATTCAACAT	TTCCGTGTCG	CCCTTATTCC	CTTTTTTGCG	GCATTTTGCC	7680
TTCCTGTTTT	TGCTCACCCA	GAAACGCTGG	TGAAAGTAAA	AGATGCTGAA	GATCAGTTGG	7740
GTGCACGAGT	GGGTTACATC	GAACTGGATC	TCAACAGCGG	TAAGATCCTT	GAGAGTTTTC	7800
GCCCCGAAGA	ACGTTTTCCA	ATGATGAGCA	CTTTTAAAGT	TCTGCTATGT	GGCGCGGTAT	7860
TATCCCGTAT	TGACGCCGGG	CAAGAGCAAC	TCGGTCGCCG	CATACACTAT	TCTCAGAATG	7920
ACTTGGTTGA	GTACTCACCA	GTCACAGAAA	AGCATCTTAC	GGATGGCATG	ACAGTAAGAG	7980
AATTATGCAG	TGCTGCCATA	ACCATGAGTG	ATAACACTGC	GGCCAACTTA	CTTCTGACAA	8040
CGATCGGAGG	ACCGAAGGAG	CTAACCGCTT	TTTTGCACAA	CATGGGGGAT	CATGTAACTC	8100
GCCTTGATCG	TTGGGAACCG	GAGCTGAATG	AAGCCATACC	AAACGACGAG	CGTGACACCA	8160
CGATGCCTGT	AGCAATGGCA	ACAACGTTGC	GCAAACTATT	AACTGGCGAA	CTACTTACTC	8220
TAGCTTCCCG	GCAACAATTA	Atagactgga	TGGAGGCGGA	TAAAGTTGCA	GGACCACTTC	8280
TGCGCTCGGC	CCTTCCGGCT	GGCTGGTTTA	TTGCTGATAA	ATCTGGAGCC	GGTGAGCGTG	8340

FIG. 39 CONTINUED.

GGTCTCGCGG	TATCATTGCA	GCACTGGGGC	CAGATGGTAA	GCCCTCCCGT	ATCGTAGTTA	8400
TCTACACGAC	GGGGAGTCAG	GCAACTATGG	ATGAACGAAA	TAGACAGATC	GCTGAGATAG	8460
GTGCCTCACT	GATTAAGCAT	TGGTAACTGT	CAGACCAAGT	TTACTCATAT	ATACTTTAGA	8520
TTGATTTAAA	ACTTCATTTT	TAATTTAAAA	GGATCTAGGT	GAAGATCCTT	TTTGATAATC	8580
TCATGACCAA	AATCCCTTAA	CGTGAGTTTT	CGTTCCACTG	AGCGTCAGAC	CCCGTAGAAA	8640
AGATCAAAGG	ATCTTCTTGA	GATCCTTTTT	TTCTGCGCGT	AATCTGCTGC	TTGCAAACAA	87.00
AAAAACCACC	GCTACCAGCG	GTGGTTTGTT	TGCCGGATCA	AGAGCTACCA	ACTCTTTTTC	8760
CGAAGGTAAC	TGGCTTCAGC	AGAGCGCAGA	TACCAAATAC	TGTCCTTCTA	GTGTAGCCGT	8820
AGTTAGGCCA	CCACTTCAAG	AACTCTGTAG	CACCGCCTAC	ATACCTCGCT	CTGCTAATCC	8880
TGTTACCAGT	GGCTGCTGCC	AGTGGCGATA	AGTCGTGTCT	TACCGGGTTG	GACTCAAGAC	8940
GATAGTTACC	GGATAAGGCG	CAGCGGTCGG	GCTGAACGGG	GGGTTCGTGC	ACACAGCCCA	9000
GCTTGGAGCG	AACGACCTAC	ACCGAACTGA	GATACCTACA	GCGTGAGCAT	TGAGAAAGCG	9060
CCACGCTTCC	CGAAGGGAGA	AAGGCGGACA	GGTATCCGGT	AAGCGGCAGG	GTCGGAACAG	9120
GAGAGCGCAC	GAGGGAGCTT	CCAGGGGGAA	ACGCCTGGTA	TCTTTATAGT	CCTGTCGGGT	9180
TTCGCCACCT	CTGACTTGAG	CGTCGATTTT	TGTGATGCTC	GTCAGGGGG	CGGAGCCTAT	9240
GGAAAAACGC	CAGCAACGCG	GCCTTTTTAC	GGTTCCTGGC	CTTTTGCTGG	CCTTTTGCTC	9300
ACATGTTCTT	TCCTGCGTTA	TCCCCTGATT	CTGTGGATAA	CCGTATTACC	GCCTTTGAGT	9360
GAGCTGATAC	CGCTCGCCGC	AGCCGAACGA	CCGAGCGCAG	CGAGTCAGTG	AGCGAGGAAG	9420
CGGAAGAGCG	CCCAATACGC	AAACCGCCTC	TCCCCGCGCG	TTGGCCGATT	CATTAATGCA	9480
GCTGGCACGA	CAGGTTTCCC	GACTGGAAAG	CGGGCAGTGA	GCGCAACGCA	ATTAATGTGA	9540
GTTAGCTCAC	TCATTAGGCA	CCCCAGGCTT	TACACTTTAT	GCTTCCGGCT	CGTATGTTGT	9600
STGGAATTGT	GAGCGGATAA	CAATTTCACA	CAGGAAACAG	CT		9642

FIG. 40 98/99

99/99 FIG 41

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: C12N 15/12, C07K 14/435, C12N 5/10, A01K 67/027, 67/033, A61K 38/17, A01H 5/00, C07K 16/18, C12N 5/26

A3

(11) International Publication Number:

WO 96/38555

(43) International Publication Date:

5 December 1996 (05.12.96)

(21) International Application Number:

PCT/EP96/02311

(22) International Filing Date:

31 May 1996 (31.05.96)

(30) Priority Data:

9510944.3

31 May 1995 (31.05.95)

GB

(71)(72) Applicants and Inventors: BOGAERT, Thierry [BE/BE]; Voorstraat 36 bus 11, B-8500 Kortrijk (BE), STRINGHAM. Eve [CA/CA]; 9326-133 A Street, Surrey, British Columbia V3V 5R5 (CA). VANDEKERCKHOVE, Joel [BE/BE]; Rode Beukendreef 27, B-Loppem (BE).

(74) Agent: BALDOCK, Sharon, Claire; Boult Wade Tennant, 27 Furnival Street, London EC4A 1PQ (GB).

(81) Designated States: AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of

(88) Date of publication of the international search report: 30 January 1997 (30.01.97)

(54) Title: UNC-53 FROM C. ELEGANS AND ITS USES IN TESTING COMPOUNDS INVOLVED IN THE CONTROL OF CELL BEHAVIOUR AND PHARMACEUTICAL COMPOSITIONS

(57) Abstract

UNC-53 protein of C. elegans or its functional equivalent is identified as a signal transducer/integrator involved in controlling the rate and directionality of cell migration and/or cell shape. Nucleic acid sequences encoding UNC-53 protein or its functional equivalent, such as genomic or cDNA are used to transfect C. elegans or mammalian cell lines useful for identifying inhibitors or enhancers of the UNC-53 protein. Any of the inhibitors or enhancers identified or the UNC-53 protein itself or sequences encoding UNC-53 protein can be used in the preparation of medicament for treatment of neurological conditions such as Alzheimer's or Huntingdon's disease, peripheral neuropathies for inhibition of metastasis.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	··· MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	. NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP -	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	·KR	Republic of Korea	SG	Singapore
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	LI .	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	SZ	Swaziland
CS	Czechoslovakia	LT	Lithuania	TD	Chad
CZ	Czech Republic	LU	Luxembourg	TG	Togo
DE	Germany	LV	Latvia	TJ	Tajikistan
DK .	Denmark	MC ·	Моласо	TT	Trinidad and Tobago
EE	Estonia	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	UG	Uganda
FI	Finland	ML	Mali	US	United States of America
FR	France	MN	Mongolia	UZ	Uzbekistan
GA	Gabon	MR	Mauritania	VN	Viet Nam

INTERNATIONAL SEARCH REPORT

Inte onal Application No PCT/EP 96/02311

A CLASS	IFICATION OF SUBJECT MATTER		·
ÎPC 63	C12N15/12 C07K14/435 C12N5/1 A01H5/00 A61K38/17 C07K16/		67/033
According t	to International Patent Classification (IPC) or to both national class	sification and IPC	
_	SEARCHED		· · · · · · · · · · · · · · · · · · ·
Minimum d	ocumentation searched (classification system followed by classification sy	ation symbols)	
IPC 6	CO7K C12N A01K A61K A01H		
Documenta	tion searched other than minimum documentation to the extent that	such documents are included in the fields s	earched
· .			·
Electronic d	ata base consulted during the international search (name of data ba	ase and, where practical, search terms used)	
			. *
C. DOCUM	IENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the	relevant passages	Relevant to claim No.
			·
Х	EMBL Database Entry CEF45E10		1-10
	Accession number Z47810; 26 Janu	ary 1995	
A	XP002019188		
^	& NATURE, vol. 368, no. 6466, 3 April 1994	LONDON	
	GB,	, LONDON	·
	pages 32-38,		
	R. WILSON ET AL.: "2.2 Mb of co	ntiguous	
	nucleotide sequence from chromos C. elegans"	ome III of	
	see the whole document		
,			
	•	-/	
	•		
			;
	•		
		·	
<u>-</u>		·	
	her documents are listed in the continuation of box C.	Patent family members are listed	in annex.
Special ca	tegories of cited documents :	To later document published after the inte	mational filing date
count	ent defining the general state of the art which is not ered to be of particular relevance	or priority date and not in conflict wi cited to understand the principle or th invention	th the application but
	document but published on or after the international	"X" document of particular relevance; the	claimed invention
"L" docume	ent which may throw doubts on priority claim(s) or is cited to establish the publication date of another	cannot be considered novel or cannot involve an inventive step when the do	curnent is taken alone
citation	n or other special reason (as specified)	"Y" document of particular relevance; the cannot be considered to involve an in	claimed invention ventive step when the
otner i		document is combined with one or m ments, such combination being obvious	ore other such docu-
"P" docume later ti	ent published prior to the international filing date but nan the priority date claimed	in the art. *& document member of the same patent	family
Date of the	actual completion of the international search	Date of mailing of the international se	
4	December 1996	1 3. 12. 96	3
Name and r	nailing address of the ISA	Authorized officer	
	European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk	_	
	Tel. (+ 31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+ 31-70) 340-3016	Montero Lopez, B	

Form PCT/ISA/210 (second sheet) (July 1997

INTERNATIONAL SEARCH REPORT

Inte onal Application No PCT/EP 96/02311

		PCT/EP 9	6/02311	
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT			
Category *	Citation of document, with indication, where appropriate, of the relevant passages	,	Relevant to claim No	
	JOURNAL OF NEUROSCIENCE 13 (10). 1993. 4254-4271. ISSN: 0270-6474, XP000612286 HEKIMI S ET AL: "Axonal guidance defects in a Caenorhabditis elegans mutant reveal cell-extrinsic determinants of neuronal morphology."		19,43	
\	see abstract		1-18, 20-42, 44-88	
	see page 4255, left-hand column, paragraph 2 - paragraph 3 see page 4267, right-hand column, paragraph 2 - page 4271, left-hand column, paragraph 3			1
			·	
.:				
j		·		-

4

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include but are not limited to the items checked:

☑ BLACK BORDERS
☐ IMAGE CUT OF AT TOP, BOTTOM OR SIDES
☑ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLATED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)