- 1. Any soft-computing methodology is characterized with
 - (a) precise solutions
 - (b) control actions are unambiguous and accurate
 - (c) extensive mathematical model of the problem to be investigated
 - (d) algorithm which can easily adapt with the change of dynamic environment
- 2. Given that

```
R1: IF x is A THEN z is C
R2: IF y is B THEN z is c
```

Then, the Fuzzy rule "IF x is A OR y is B THEN z is C" can be expressed as (with all symbols bearing usual meaning)

- (a) $(A \times B) + (B \times C)$
- (b) $(A \times B) \rightarrow C$
- (c) $(A \times B) \rightarrow (B \times C)$
- (d) $(A \times C) \cup (B \times C)$
- **3.** If A and B are two fuzzy sets and $x \in A$, $y \in B$. Let $C = A \oplus B$. Then
 - (a) $\mu_C(x, y) = \min\{\mu_A(x), \mu_B(y)\}$
 - (b) $\mu_C(x, y) = \min\{1, \mu_A(x) + \mu_B(y)\}$
 - (c) $\mu_C(x, y) = \max\{0, \mu_A(x) + \mu_B(y) 1\}$
 - (d) $\mu_C(x, y) = \max\{\mu_A(x), \mu_B(y)\}$
- **4.** The *support* of Fuzzy set A is the set of all points x in X (is the universe of discourse) such that
 - (a) $\mu_A(x) > 0$
 - (b) $\mu_{A}(x) = 1$
 - (c) $\mu_A(x) = 0.5$
 - (d) $\mu_A(x) \neq 1$
- 5. A transfer function f(I) with transfer coefficient α follows its partial derivative with respect to input I as $\frac{\partial f}{\partial I} = \alpha f(I)(1-f(I))$. The transfer function is most likely the
 - (a) Linear transfer function
 - (b) Log-sigmoid transfer function
 - (c) Tan-sigmoid transfer function
 - (d) Hard limit transfer function

- **6.** If x is A then y is B else y is C. The output of the above fuzzy rule is
 - (a) a fuzzy set
 - (b) a crisp set
 - (c) a fuzzy relation
 - (d) a membership function
- 7. Given two Fuzzy sets A and B with MFs μ_A and μ_B , respectively where μ_A is of m-dimensional MF and μ_B n-dimensional MF. A relation $R = A \times B$ can be represented with
 - (a) Two dimensional matrix of size $m \times n$
 - (b) $m \times n$ dimensional matrix
 - (c) Two dimension matrix of size $p \times q$ where p = |A| and q = |B|
 - (d) $p \times q$ dimensional matrix of size $m \times n$ where p = |A| and q = |B|
- **8.** Given that "x is Sweet" with T(x) = 0.8 and "y is Sweet" with T(y) = 0.6. The Fuzzy truth value of " $If \ x$ is Sweet then y is Sweet" is
 - (a) 0.4
 - (b) 0.2
 - (c) 0.8
 - (d) 0.6
- An equivalence between Fuzzy vs. Probability to that of Prediction vs. Forecasting is
 - (a) $Fuzzy \approx Prediction$
 - (b) $Probability \approx Prediction$
 - (c) $Fuzzy \approx Forecasting$
 - (d) $Probability \approx Forecasting$
- **10.** One difference between Mamdani approach and Takagi-Sugeno appraoch to FLC design is that
 - (a) Mamdani approach needs defuzzification module whereas Takagi-Sugeno approach does not
 - (b) Mamdani approach is easy to interpret but less accurate
 - (c) Takagi-Sugeno approach does not require any fuzzification module whereas Mamdani approach needs
 - (d) Takagi-Sugeno approach is less interpretable but more accurate
- 11. For the same size of training data as input, the fastest learning techniques is
 - (a) Supervised training with error correction.
 - (b) Supervised training with stochastic method.
 - (c) Supervised training without error calculation.
 - (d) Supervised training with Hebbian method.

- **12.** In case of layer calculation, the maximum time involved in
 - (a) Output layer computation.
 - (b) Hidden layer computation.
 - (c) Equal effort in each layer.
 - (d) Input layer computation.
- 13. The Back Propagation Learning algorithm is used to train
 - (a) a single layer feed forward neural network only
 - (b) a multiple layer feed forward neural network only
 - (c) a recurrent neural network only
 - (d) any artificial neural network
- **14.** Which of the following are not necessarily an essential neural network parameters.
 - (a) Weight matrices.
 - (b) Value of l, m and n in l m n network.
 - (c) Threshold values.
 - (d) Transfer functions.
- 15. If the problem is to classify input patterns, then the more preferred type of learning is/are is
 - (a) Reinforced learning.
 - (b) Unsupervised learning with competitive method.
 - (c) Supervised with error calculation.
 - (d) Unsupervised learning with Habbian method.
- **16.** Which of the following logic can not be modelled with a single neuron.
 - (a) 3 AND
 - (b) 3 XOR
 - (c) NOT
 - (d) (A XOR B) AND (A OR C)
- 17. Both fuzzy logic and artificial neural network are soft computing techniques because,
 - (a) Both gives precise and accurate results.
 - (b) Artificial neural network gives accurate result but fuzzy logic does not.
 - (c) In each, no precise mathematical model of the problem is required.
 - (d) Fuzzy gives exact result but artificial neural network does not.
- **18.** An ANN learn quickly if η , the learning rate assumes the following value(s).
 - (a) $\eta = 1$
 - (b) $\eta < 1$
 - (c) $\eta > 1$
 - (d) $\eta = 0$

- **19.** Which of the following is true for neural networks?
 - (i) The training time depends on the size of the network.
 - (ii) Neural networks can be simulated on a conventional computer.
 - (iii) Artificial neurons are identical in operation to biological ones.
 - (a) (i) and (ii) are true
 - (b) (i) and (iii) are true
 - (c) (ii) is true.
 - (d) all of them are true
- **20.** Which of the following is true for neural networks?
 - (i) The error calculation which is followed in "Back-propagation algorithm" is the steepest descent method.
 - (ii) Simulated annealing approach is followed in unsupervised learning.
 - (iii) A problem whose output is linearly separable can also be solved with MLFFNN.
 - (iv) The output of the perceptron with hard limit transfer function is more accurate than it is defined with any sigmoid transfer function.
 - (a) (i) and (iii) are true
 - (b) (i) and (ii) are true
 - (c) (ii) and (iv) are true
 - (d) all are true