MNuméricos para EDO/PVI

Realizado por:

Fábio Oliveira - 2022145902

Bruno Tiago Ferreira Martins – 2022147149

Carlos Emanuel Fernandes Silva - 2022127048

Índice

1. Introdução	
1.1 Equação diferencial: definição e propriedades	
1.2 Definição de PVI	3
2. Métodos Numéricos para resolução de PVI	4
2.1 Método de Euler	4
2.2 Método de Euler Melhorado ou Modificado	8
2.3 Método de RK2	10
2.4 Método de RK4	13
2.5 Função ODE45 do Matlab	15
	15
4. Conclusão	32
5. Bibliografia	33

Índice figuras

Figura 1 - Método de Euler	7
Figura 2 - Método Euler melhorado	9
Figura 3 - Método RK2	12
Figura 4 - Método RK4	14
Figura 5 - Método ODE45	15
Figura 6 - Exercício 3 do teste farol	16
Figura 7 - Execução do método de Euler da expressão y'= -2ty pela aplicação	17
Figura 8 - Execução do método RK2 da expressão y'= -2ty pela aplicação	17
Figura 9 - Tabela de resultados da execução de ambos os métodos anteriores	18
Figura 10 - Gráfico do PVI modelado anteriormente para o exercício 1	23
Figura 11 - Tabela de resultados do método Runge-Kutta de ordem 4 do PVI	23
Figura 12 - Gráfico do PVI	24
Figura 13 - Tabela de resultados do método Runge-Kutta de ordem 4 do PVI	24
Figura 14 - Tabela com os valores estimado de A(1), A(2), A(3), A(4) e A(5) pedidos po	ela alínea
b	25
Figura 15 - Gráfico da função do estado permanente	30
Figura 16 - Gráfico da função do estado transitório	30
Figura 17 - Execução de P na nossa aplicação	31
Figura 18- Tabela obtida na execução de P na nossa aplicação	31

1. Introdução

1.1 Equação diferencial: definição e propriedades

Uma equação que tem derivadas de uma função que não sabemos (a função que queremos encontrar) é uma equação diferencial. Podemos classificar uma equação diferencial pela sua ordem, tipo e linearidade.

Tipo 1 - Equação Diferencial Ordinária (EDO)

Se uma equação diferencial contém exclusivamente derivadas ordinárias de uma ou mais funções que dependem de uma única variável independente, então ela é uma equação diferencial ordinária (*EDO*).

Exemplo:

$$\frac{dx}{dt} + 3x = 2$$
$$(y - x)dx + 4ydy = 0$$
$$\frac{d^2x}{dt^2} - 2\frac{dx}{dt} + 5x = 0$$

Tipo 2 - Equação Diferencial Parcial (EDP)

Se uma equação diferencial envolve apenas derivadas ordinárias de uma ou mais funções que dependem de duas ou mais variáveis independentes, então ela é uma equação diferencial parcial (*EDP*).

Exemplo:

$$x\frac{\partial u}{\partial y} = \frac{-\partial v}{\partial x}$$
$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = u$$

• **Ordem de uma ED:** A ordem da mais alta derivada envolvida numa **ED** é chamada de sua ordem. Exemplo de uma **EDO** de segunda ordem:

$$y^{\prime\prime} + 2y^{\prime} + 1 = 0$$

• **Linearidade de uma ED:** Uma *ED* é chamada de linear se for possível escrevê-la na forma:

$$a_n(x)\frac{d^ny}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \cdots + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x)$$

1.2 Definição de PVI

Na matemática, um problema de valor inicial (*PVI*) ou problema de condições iniciais ou problema de *Cauchy* é uma equação diferencial que é acompanhada pelo valor da função objetivo num determinado ponto, chamado de valor inicial ou condição inicial. Noutras palavras, um *PVI* é uma equação diferencial que descreve uma relação entre uma função e as suas derivadas, e que é acompanhada de um valor inicial para a função e as suas derivadas.

Um problema de valor inicial é composto por uma equação diferencial juntamente da atribuição do valor das funções desejadas num ponto que denotamos abaixo por t₀. Formalmente um problema de valor inicial (*PVI*) é definido pelas equações

$$y'(t) = f(t, y(t)), t > t0$$

 $y(t0) = y0,$

em que

$$y: R \rightarrow R, f: R \times R \rightarrow Ret0, y0$$

Podemos assim concluir que são constantes reais.

2. Métodos Numéricos para resolução de PVI

2.1 Método de Euler

Na matemática e na ciência computacional, o método de Euler, é um procedimento numérico de primeira ordem para solucionar equações diferenciais ordinárias com um valor inicial conhecido. É o tipo mais básico de método explícito para integração numérica para equações diferenciais ordinárias.

2.1.1 Fórmulas

Supondo-se que se quer aproximar a solução de um problema de valor inicial:

$$y'(t) = f(t, y(t)),$$
 $y(t_0) = y_0.$

Escolhendo um valor para h, para o tamanho de cada passo e atribuindo a cada passo um ponto dentro do intervalo, temos que:

$$t_n = t_0 + nh$$
.

No próximo passo t_{n+1} a partir do anterior t_n fica definido como

$$t_{n+1} = t_n + h$$

então:

$$y_{n+1}=y_n+hf(t_n,y_n).$$

Com isto, para um valor menor de h iremos ter mais passos dentro de um dado intervalo, o que fará com que a exatidão seja muito superior (mais semelhante ao valor real).

O valor de y_n é uma aproximação da solução da EDO no ponto

$$t_n$$
: $y_n \approx y(t_n)$.

Enquanto o Método de Euler integra uma EDO de primeira ordem, qualquer EDO de ordem N pode ser representada como uma equação de primeira ordem: tendo a equação

$$y^{(N)}(t) = f(t, y(t), y'(t), \dots, y^{(N-1)}(t)),$$

temos a introdução de variáveis auxiliares

$$z_1(t) = y(t), z_2(t) = y'(t), \dots, z_N(t) = y^{(N-1)}(t)$$

obtendo a seguinte equação:

$$\mathbf{z}'(t) = egin{pmatrix} z_1'(t) \ dots \ z_{N-1}'(t) \ z_N'(t) \end{pmatrix} = egin{pmatrix} y'(t) \ dots \ y^{(N-1)}(t) \ y^{(N)}(t) \end{pmatrix} = egin{pmatrix} z_2(t) \ dots \ z_N(t) \ f(t,z_1(t),\ldots,z_N(t)) \end{pmatrix}$$

Este é um sistema de primeira ordem na variável z(t) e pode ser usada através do Método de Euler ou quaisquer outros métodos de resoluções de sistemas de primeira ordem.

2.1.2 Algoritmo/Função

```
function [t,y] = NEuler(f,a,b,n,y0)
%NEULER Método de Euler para resolução numérica de EDO/PVI
   y'=f(t,y), t=[a,b], y(a)=y0
%
    y(i+1)=y(i)+h*f(t(i),y(i)), i=0,1,2,...,n
%INPUT:
   f - função da EDO y'=f(t,y)
   [a,b] - intervalo de valores da variável independente t
   n - núnmero de subintervalos ou iterações do método
% v0 - aproximação inicial v(a)=v0
%OUTPUT:
   t - vetor da partição regular do intervalo [a,b]
%
    y - vetor das soluções aproximadas do PVI em cada um dos t(i)
%
%
    22/03/2023 Arménio Correia armenioc@isec.pt
    28/03/2023 Arménio Correia
h = (b-a)/n;
t = a:h:b;
y = zeros(1,n+1);
y(1) = y0;
for i = 1:n
    y(i+1) = y(i)+h*f(t(i),y(i));
end
end
```

Exemplo para a *ED* "y' = $y + \exp(3 * t)$ ", com n = 2 e y0 = 2:

Figura 1 - Método de Euler

2.2 Método de Euler Melhorado ou Modificado

2.2.1 Fórmulas

$$egin{array}{ll} k_1 &= f\left(t^{(k)}, u^{(k)}
ight), \ k_2 &= f\left(t^{(k+1)}, u^{(k)} + k_1
ight), \ u^{(k+1)} &= u^{(k)} + hrac{k_1 + k_2}{2}, \ u^{(1)} &= a \qquad (condiçãoinicial). \end{array}$$

2.1.2 Algoritmo/Função

```
function y = N_Euler_modificado(f,a,b,n,y0)
h=(b-a)/n;
t=a:h:b;
y=zeros(1,n+1);
y(1)=y0;

for i=1:n
    y(i+1)=y(i)+h*f(t(i),y(i));
    y(i+1)=y(i)+(h/2)*(f(t(i),y(i))+f(t(i+1),y(i+1)));
end
```

Exemplo para a *ED* "y' = $y + \exp(3 * t)$ ", com n = 2 e y0 = 2:

Figura 2 - Método Euler melhorado

2.3 Método de RK2

Em análise numérica, os métodos de Runge-Kutta formam uma família importante de métodos iterativos implícitos e explícitos para a resolução numérica (aproximação) de soluções de equações diferenciais ordinárias.

2.3.1 Fórmulas

Trata-se de um método por etapas que tem a seguinte expressão geral:

$$u^{n+1}=u^n+\Delta t\sum_{i=1}^e b_i k_i,$$

onde

$$k_i = F(u^n + \Delta t \sum_{j=i}^e a_{ij} k_j; t_n + c_i \Delta t) \ i = 1, \ldots, e$$

com a_{ij} , b_i , c_i constantes próprias do esquema numérico.

2.3.2 Algoritmo/Função

```
function [t,y] = NRK2(f,a,b,n,y0)
%NEULER Método de Euler para resolução numérica de EDO/PVI
   y'=f(t,y), t=[a,b], y(a)=y0
%
   y(i+1)=y(i)+h*f(t(i),y(i)), i=0,1,2,...,n
%INPUT:
% f - função da EDO y'=f(t,y)
   [a,b] - intervalo de valores da variável independente t
% n - núnmero de subintervalos ou iterações do método
   y0 - aproximação inicial y(a)=y0
%
%OUTPUT:
   t - vetor da partição regular do intervalo [a,b]
   y - vetor das soluções aproximadas do PVI em cada um dos t(i)
h = (b-a)/n;
t = a:h:b;
y = zeros(1,n+1);
y(1) = y0;
for i = 1:n
    k1 = h*f(t(i),y(i));
    k2 = h*f(t(i+1),y(i)+k1);
   y(i+1) = y(i)+(k1+k2)/2;
end
end
```

Exemplo para a ED "y' = $y + \exp(3 * t)$ ", com n = 2 e y0 = 2:

Figura 3 - Método RK2

2.4 Método de RK4

Um membro da família de métodos *Runge–Kutta* é usado com tanta frequência que costuma receber o nome de "**RK4**" ou simplesmente "*o* método *Runge–Kutta*".

2.4.1 Fórmulas

Seja um problema de valor inicial (PVI) especificado como segue:

$$y' = f(t, y), \quad y(t_0) = y_0.$$

Então o método RK4 para este problema é dado pelas seguintes equações:

$$egin{aligned} y_{n+1} &= y_n + rac{h}{6} \left(k_1 + 2 k_2 + 2 k_3 + k_4
ight) \ t_{n+1} &= t_n + h \end{aligned}$$

onde y_{n+1} é a aproximação por RK4 de $y(t_{n+1})$ e

$$egin{align} k_1 &= f\left(t_n, y_n
ight) \ k_2 &= f\left(t_n + rac{h}{2}, y_n + rac{h}{2}k_1
ight) \ k_3 &= f\left(t_n + rac{h}{2}, y_n + rac{h}{2}k_2
ight) \ k_4 &= f\left(t_n + h, y_n + hk_3
ight) \end{aligned}$$

Então, o próximo valor (yn+1) é determinado pelo valor atual (yn) somado com o produto do tamanho do intervalo (h) e uma inclinação estimada.

2.4.2 Algoritmo/Função

```
function [t,y] = NRK4(f,a,b,n,y0)

h = (b-a)/n;
t = a:h:b;
y = zeros(1,n+1);
y(1) = y0;
for i =1:n
     k1 = h*f(t(i),y(i));
     k2 = h*f(t(i)+(h/2),y(i)+k1/2);
     k3 = h*f(t(i)+(h/2),y(i)+k2/2);
     k4 = h*f(t(i+1),y(i)+k3);
     y(i+1) = y(i)+(k1+2*k2+2*k3+k4)/6;
end
end
```

Exemplo para a **ED** "y' = $y + \exp(3*t)$ ", com n = 2 e y0 = 2:

Figura 4 - Método RK4

2.5 Função ODE45 do Matlab

Exemplo para a **ED** "y' = $y + \exp(3 * t) \cos n = 2 e y0 = 2$:

Figura 5 - Método ODE45

3. Exemplos de aplicação e teste dos métodos

3.1 Exercício 3 do Teste Farol

3.1.1 PVI - Equação Diferencial de 1ª ordem e Condições Iniciais

- 3. Considere o problema de valor inicial $y'=-2ty,\ y(0)=2,\ t\in \left[0,1.5\right]$
- (a) Verifique que $y(t)=2\exp(-t^2)$ é a solução exata do problema.
- (b) Complete a tabela seguinte e interprete os resultados obtidos. Para o preenchimento da coluna das aproximações de Euler, deve apresentar os cálculos das iterações da aplicação da fórmula do método de Euler.

			Aproxi	mações	F	Erros
		$y(t_i)$	y_i	y_i	$ y(t_i) - y_i $	$ y(t_i) - y_i $
i	t_{i}	Exata	Euler	RK2	Euler	RK2
0	0	2			0	0
1		1.5576		1.5000		0.0576
2	1					0.0142
3	1.5	0.2108		0.3750		

Figura 6 - Exercício 3 do teste farol

a)

Nesta alínea observa-se o seguinte **PVI**:

$$\begin{cases} y' + 2xy = 0 \\ t \in [0,1.5] \\ y(0) = 2 \end{cases}$$

Resolução:

$$y' + 2xy = 0$$
 (=) $\frac{dy}{dt} = -2ty$ (=) $\frac{1}{y} dy = -2t dt$ (ED Separáveis)

(=)
$$\int \frac{1}{y} dy = \int -2t dt$$
 (=) $\int \frac{1}{y} dy = -2 \int t dt$

(=)
$$\ln|y| = -2\frac{t^2}{2} + c$$

$$(=) |y| = e^{-t^2 + c}$$

$$(=) y = e^{c} * e^{-t^{2}}$$

$$(=) y = c_2 * e^{-t^2}$$

$$(=) y = c * e^{-t^2}, c, c_2 \in R$$

$$y(0) = 2 (=)c * e^{-0^2} = 2 (=) c * 1 = 2 (=)c = 2$$

Então $y(t) = 2e^{-t^2}$ é a solução exata do problema.

3.1.2 Exemplos de output - App com gráfico e tabela

b) Resolvendo a alínea através da aplicação:

Figura 7 - Execução do método de Euler da expressão y'= -2ty pela aplicação.

Figura 8 - Execução do método RK2 da expressão y'= -2ty pela aplicação.

t	Exata	Euler	ErroEuler	RK2	ErroRK2
0	2.0000	2	0	2.0000	0
0.5000	1.5576	2	0.4424	1.5000	0.0576
1.0000	0.7358	1	0.2642	0.7500	0.0142
1.5000	0.2108	0	0.2108	0.3750	0.1642

Figura 9 - Tabela de resultados da execução de ambos os métodos anteriores.

			Aproxin	nações	Erros		
i	ti	ti y(t _i) y _i Euler		y _i RK2	y(t _i)-y _i Euler	$ y(t_i)-y_i\rangle$ RK2	
0	0	2	2	2	0	0	
1	0.5	1.5576	2	1.5000	0.4424	0.0576	
2	1	0.7358	1	0.7500	0.2642	0.0142	
3	1.5	0.2108	0	0.3750	0.2108	0.1642	

(c) Qual das figuras seguintes representa graficamente uma solução do PVI dado? Justifique a sua resposta.

(d) Estabeleça um PVI cuja solução em modo gráfico coincide com a figura que excluiu na alínea anterior.

c)

Depois de analisar os dois últimos gráficos apresentados é fácil concluir que a figura 4 é a que representa graficamente uma solução do PVI dado.

Figura 4

d)

Depois de reparar que o intervalo da figura 5 é [-1.5,1.5] e o ajustarmos a execução da nossa aplicação, é possível reparar que o gráfico da figura 5 se assemelha mais ao nosso gráfico da execução.

Se aumentarmos o número de subintervalos de 3 para 25 já conseguimos obter a figura 5 na nossa aplicação.

3.2 Problema de aplicação

3.2.1 Modelação Matemática do Problema

Exercício 1:

1. If air resistance is proportional to the square of the instantaneous velocity, then the velocity v of a mass m dropped from a height h is determined from

$$m\frac{dv}{dt} = mg - kv^2, \ k > 0$$

Let v(0) = 0, k = 0.125, m = 5 slugs, and $g = 32 ft/s^2$.

- (a) Use the Runge-Kutta method with h=1 to find an approximation to the velocity of the falling mass at $t=5\,s$.
- (b) Use a numerical solver to graph the solution of the initial-value problem.
- (c) Use separation of variables to solve the initial-value problem and find the true value v(5).

$$\begin{cases} m\frac{dv}{dt} = mg - kv^{2}, \ k > 0 \\ v(0) = 0 \\ k = 0.125 \\ m = 5 \ slugs \\ h = 1 \\ g = 32ft/s^{2} \end{cases} \iff \begin{cases} mv' = mg - kv^{2}, \ k > 0 \\ v(0) = 0 \\ k = 0.125 \\ m = 5 \ slugs \\ h = 1 \\ g = 32ft/s^{2} \end{cases} \Leftrightarrow$$

$$\begin{cases} 5*v' = 5*32 - 0.125v^{2} \\ v(0) = 0 \\ k = 0.125 \\ m = 5 slugs \\ h = 1 \\ g = 32ft/s^{2} \end{cases} \Leftrightarrow \begin{cases} v' = 32 - \frac{0.125v^{2}}{5} \\ v(0) = 0 \\ k = 0.125 \\ m = 5 slugs \\ h = 1 \\ g = 32ft/s^{2} \end{cases} \Leftrightarrow \begin{cases} v' = 32 - 0.025v^{2} \\ v(0) = 0 \\ k = 0.125 \\ m = 5 slugs \\ h = 1 \\ g = 32ft/s^{2} \end{cases}$$

Exercício 2:

2. A mathematical model for the area A (in cm^2) that a colony of bacteria (B. forbiddenkeyworddendroides) occupies is given by

$$\frac{dA}{dt} = A(2.128 - 0.0432A).$$

Suppose that the initial area is $0.24\,cm^2$.

(a) Use the Runge-Kutta method with h=0.5 to complete the following table.

t(days)	1	2	3	4	5
A(observed)	2.78	13.53	36.30	47.50	49.40
A(approximated)					

- (b) Use a numerical solver to graph the solution of the initial-value problem. Estimate the values A(1), A(2), A(3), A(4), and A(5) from the graph.
- (c) Use separation of variables to solve the initial-value problem and compute the values $A(1),\ A(2),\ A(3),\ A(4),$ and A(5).

$$\begin{cases} \frac{dA}{dt} = A(2.128 - 0.0432A) \\ t \in [1,5] \\ A(0) = 0.24cm^2 \\ h = 0.5 \end{cases} \iff \begin{cases} A' = A(2.128 - 0.0432A) \\ t \in [1,5] \\ A(0) = 0.24cm^2 \\ h = 0.5 \end{cases}$$

3.2.2 Resolução do Problema Através da Aplicação

Exercício 1:

b)

Como a alínea a) pede uma aproximação à velocidade em t = 5s e a alínea c) pede o valor real de y(5), introduzimos a equação na aplicação com intervalo [0,5], y0 = 0 e o método Runge-Kutta de ordem 4 pois é o mais preciso.

Visto que h=1 então,
$$h = \frac{b-a}{n}$$
 (=) $1 = \frac{5-0}{n}$ (=) $n = 5$

Figura 10 - Gráfico do PVI modelado anteriormente para o exercício 1.

t	Exata	RK4	ErroRK4
0	0	0	0
1	25.5296	25.2570	0.2726
2	33.8322	32.9390	0.8932
3	35.4445	34.9772	0.4673
4	35.7213	35.5503	0.1709
5	35.7678	35.7128	0.0550

Figura 11 - Tabela de resultados do método Runge-Kutta de ordem 4 do PVI

- c) Mais uma vez após analisar o gráfico e a tabela reparamos que o valor real de y(5) é 35.7678.

Exercício 2:

Observando a tabela da alínea a) reparamos que nos são pedidos dados no intervalo [0,5]. O y0 é nos dado na questão, ou seja, y0 = 0.24.

Visto que h=0.5 então,
$$h = \frac{b-a}{n}$$
 (=) $0.5 = \frac{5-0}{n}$ (=) $n = 10$

Usando a equação modelada anteriormente para este exercício com o método Runge-Kutta de ordem 4 mais uma vez pela razão de ser mais preciso, obtemos o seguinte gráfico e tabela:

Figura 12 - Gráfico do PVI

t	Exata	RK4	ErroRK4
0	0.2400	0.2400	0
0.5000	0.6891	0.6860	0.0031
1.0000	1.9454	1.9288	0.0166
1.5000	5.2446	5.1856	0.0590
2.0000	12.6436	12.5007	0.1429
2.5000	24.6379	24.4334	0.2044
3	36.6283	36.4618	0.1665
3.5000	44.0210	43.9020	0.1189
4.0000	47.3164	47.2349	0.0814
4.5000	48.5710	48.5245	0.0465
5	49.0196	48.9965	0.0231

Figura 13 - Tabela de resultados do método Runge-Kutta de ordem 4 do PVI

Completemos agora o gráfico de acordo com os valores da tabela acima representada:

a)

t(days)	1	2	3	4	5
A(observed)	2.78	13.53	36.30	47.50	49.40
A(approximated)	1.93	12.5	36.46	47.23	49

b)

t	Exata	RK4	ErroRK4	
0	0,24	0,24	0	
0,5	0,689133018	0,686013999	0,003119019	
1	1,94541126	1,928773847	0,016637413	A(1)
1,5	5,244572562	5,185556402	0,05901616	
2	12,64355504	12,50067932	0,142875729	A(2)
2,5	24,6378852	24,43344779	0,204437408	
3	36,6283009	36,46180136	0,166499538	A(3)
3,5	44,02096641	43,90203505	0,118931364	
4	47,31635176	47,23494199	0,081409773	A(4)
4,5	48,57103668	48,52452007	0,046516609	
5	49,01957926	48,99649487	0,023084387	A(5)

Figura 14 - Tabela com os valores estimado de A(1), A(2), A(3), A(4) e A(5) pedidos pela alínea b.

3.3 Problemas de aplicação do exercício 2 do teste Farol

3.3.1 Modelação matemática do problema

Exercício 2.a)

- 2. Qual o valor lógico das seguintes afirmações? Justifique a sua resposta.
- (a) A equação diferencial, de menor ordem possível, que possui a família de curvas $y=c \times \exp(-x^2)$ como integral geral é dada por y'+2xy=0 cujo campo direcional é dado pela figura 2 e o gráfico da solução geral pela figura 1. Justifique analiticamente e graficamente a sua resposta.

Passo 01 - Isolar y' na equação e verificar se a ED é de variáveis separáveis:

$$y' + 2xy = 0$$
 (=) $y' = -2xy$ (=) $\frac{dy}{dx} = -2xy$ (=) $\frac{1}{y} dy = -2x dx$

Nesta ultima situação observamos que é uma **ED** de variáveis separáveis.

Passo 02 - Calcular a integral geral usando a expressão anterior:

$$\frac{1}{y} dy = -2x dx$$

$$(=) \int \frac{1}{y} \, dy = \int -2x \, dx$$

$$(=) \int \frac{1}{y} dy = -2 \int x dx (=)$$

$$\ln|y| = -2\frac{x^2}{2} + c$$

$$(=) |y| = e^{-x^2 + c}$$

$$(=) y = e^c * e^{-x^2}$$

(=)
$$y = c_2 * e^{-x^2}$$

(=) $y = c * e^{-x^2}$, $c, c_2 \in R$

Passo 03 – Provar que o campo direcional de y' + 2xy = 0 (=) y' = -2xy é dado pela figura 2;

Substituindo os valores das variáveis "x" e "y" com os valores que conseguimos observar no gráfico da figura 2 e tendo em conta que y' representa o declive (m) da reta tangente em cada ponto do gráfico da equação ou seja:

	-2	-1	0	1	2	
Y						111111111111111111111111111111111111111
-1	y' = -4	y' = -2	y' = 0	y' = 2	y' = 4	11111777
-0.5	y' = -2	y' = -1	y' = 0	y' = 1	y' = 2	
0	y' = 0	y' = 0	y' = 0	y' = 0	y' = 0	111111111111111111111111111111111111111
0.5	y' = 2	y' = 1	y' = 0	y' = -1	y' = -2	
1	y' = 4	y' = 2	y' = 0	y' = -2	y' = -4	111111111111111111111111111111111111111

Comparando os declives obtidos a cada respetiva coordenada na figura é possível observar que as curvas da figura 1 "encaixam" totalmente na figura 2 e o ajuste é perfeito, ou seja, a figura 1 é uma representação gráfica do campo direcional da figura 2.

Passo 04

Usando a expressão final obtida ($y = ce^{-x^2}$, c, $c_2 \in R^+$) no Geogebra e dando valores à variável c, obtemos uma figura exatamente igual à figura 1.

Concluindo assim após todos estes passos que a figura 1 descreve a trajetória do campo direcional da figura 2, provando que a afirmação da alínea a) é verdadeira.

Exercício 2.b)

(b) A força eletromotriz e de um circuito RL com intensidade i, resistência $R=10~\Omega({\rm ohms})$ e indutância L=0.5~h (henry), é igual à queda de tensão Ri mais a força eletromotriz de autoindução $L\frac{di}{dt}$. Assim, a intensidade de corrente i, no instante t, se $e=3\sin(2t)$ (em volts) e i=6 quando t=0 é dada pela solução particular $i(t)=\frac{609}{101}e^{-20t}-\frac{30}{101}\sin 2t+\frac{3}{101}\cos 2t$. À medida que o tempo aumenta, o termo que envolve e^{-20t} perde influência no valor da intensidade da corrente. Diz-se que este termo é o termo do estado~transitório~e~o~outro~é~o~termo~do~estado~permanente.

Passo 01

$$e = Ri + L * \frac{di}{dt} (=) e = Ri + L * i'$$

Passo 02

$$e = 3*sin(2t)$$

 $R = 10\Omega$
 $L = 0.5 henry$

Passo 03

$$e = Ri + L * i'$$

$$(=) 3 \sin(2t) = 10i + 0.5 * i'$$

$$(=) 6 \sin(2t) = 20i + i'$$

$$(=) i' = 6 \sin(2t) - 20i$$

$$p \begin{cases} i' = 6 \sin(2t) - 20i \\ y(0) = 6 \end{cases}$$

Passo 04

$$i(t) = \frac{609}{101} * e^{-20t} - \frac{30}{101} * \sin(2t) + \frac{3}{101} * \cos(2t)$$

Verificar se esta é solução de P

$$i(0) = 6$$

$$(=) \frac{609}{101} * e^{-20*0} - \frac{30}{101} * \sin(2*0) + \frac{3}{101} * \cos(2*0) = 6$$

$$(=)\frac{609}{101} * e^0 - \frac{30}{101} * \sin(0) + \frac{3}{101} * \cos(0) = 6$$

$$(=)\frac{609}{101} * 1 - \frac{30}{101} * 0 + \frac{3}{101} * 1 = 6$$

$$(=)\frac{609}{101} + \frac{3}{101} = 6$$

$$(=)\frac{612}{101} \neq 6$$
 Proposição falsa

O valor lógico da afirmação colocada na questão da alínea b) é falso.

3.3.2 Resolução através da App desenvolvida

Analisando P notamos que a equação pode ser dividida em duas partes de forma a compreender melhor o exercício. Executando esta metade da equação de P, $i' = 6\sin(2t)$, com y(0) = 0 na app obtemos o seguinte gráfico:

Analisando este gráfico, podemos observar uma função sinusoidal e suspeitar que este é o gráfico do estado permanente.

Figura 15 - Gráfico da função do estado permanente

Por fim executando a restante equação, i' = -20i, na app obtemos o seguinte gráfico:

Figura 16 - Gráfico da função do estado transitório

E analisando este segundo gráfico de declive negativo, podemos suspeitar que este é o gráfico do estado transitório.

Usando agora a equação total de P, i' = $6\sin(2t)$ - 20i, na nossa app e no intervalo [0,0.4] com y(0) = 6, conseguimos observar o seguinte resultado:

Figura 17 - Execução de P na nossa aplicação

t	Exata	Euler	Euler Modificado	RK2	RK4	ODE45	Heun	ErroEuler	ErroEulerMelhorado	ErroRK2	ErroRK4	ErroODE45	erroHeun
0	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000	0	0	0	0	0	0
0.0400	2.7034	1.2000	3.1296	3.1296	2.7179	2.7030	2.6150	1.5034	0.4261	0.4261	0.0145	4.5176e-04	0.0884
0.0800	1.2354	0.2592	1.6484	1.6484	1.2484	1.2355	1.1572	0.9762	0.4130	0.4130	0.0131	1.4991e-04	0.0782
0.1200	0.5888	0.0901	0.8895	0.8895	0.5976	0.5890	0.5369	0.4987	0.3008	0.3008	0.0088	2.0283e-04	0.0518
0.1600	0.3110	0.0751	0.5060	0.5060	0.3163	0.3112	0.2805	0.2360	0.1950	0.1950	0.0053	1.5097e-04	0.0305
0.2000	0.1987	0.0905	0.3174	0.3174	0.2017	0.1988	0.1819	0.1082	0.1187	0.1187	0.0030	9.2920e-05	0.0169
0.2400	0.1604	0.1116	0.2298	0.2298	0.1620	0.1605	0.1515	0.0489	0.0694	0.0694	0.0016	5.3966e-05	0.0089
0.2800	0.1549	0.1331	0.1943	0.1943	0.1558	0.1549	0.1503	0.0218	0.0394	0.0394	0.0008	2.9724e-05	0.0046
0.3200	0.1636	0.1541	0.1855	0.1855	0.1640	0.1636	0.1613	0.0095	0.0219	0.0219	0.0004	1.5798e-05	0.0023
0.3600	0.1780	0.1741	0.1899	0.1899	0.1782	0.1780	0.1769	0.0039	0.0119	0.0119	0.0002	8.1746e-06	0.0011
0.4000	0.1944	0.1931	0.2007	0.2007	0.1945	0.1944	0.1939	0.0013	0.0063	0.0063	0.0001	4.2325e-06	0.0005

Figura 18- Tabela obtida na execução de P na nossa aplicação

Como conclusão final, após a análise do gráfico e da tabela da execução de P, observamos o instante em que ocorre a mudança entre o estado transitório para o estado permanente. Esse instante é t = 0.28, que podemos observar com mais clareza na tabela, e ocorre quando a função transitória perde influxo para a função sinusoidal.

4. Conclusão

Em suma, podemos analisar a nossa prestação e o nosso desempenho na realização do trabalho, e no final só temos razões para estarmos contentes e satisfeitos com o resultado. Os requisitos propostos foram cumpridos com o máximo esforço e dedicação, de modo que o trabalho ficasse concluído.

Embora tivéssemos tarefas divididas, fizemos por nos ajudar sempre uns aos outros para concluir com a máxima perfeição.

Foi, sem dúvida, um ótimo desafio para os três. Deu-nos a oportunidade de adquirir uma série de conhecimentos úteis para uma melhor compreensão nesta unidade curricular.

5. Bibliografia

https://www.somatematica.com.br/superior/equacoesdif/eq.php https://www.infoescola.com/matematica/equacoes-diferenciais/

https://pt.wikipedia.org/wiki/Problema_de_valor_inicialhttps://www.ime.unicamp.br/~pjssilv a/pdfs/notas_de_aula/ms211/Problemas_de_Valor_Inicial.pdf https://pt.wikipedia.org/wiki/M%C3%A9todo_de_Euler https://pt.wikipedia.org/wiki/M%C3%A9todo_de_Runge-Kutta

Fórum Matlab: https://moodle.isec.pt/moodle/mod/forum/view.php?id=236987