

Dinámica (FIS1514)

Resumen Dinámica

Felipe Isaule

felipe.isaule@uc.cl

Miércoles 25 de Septiembre de 2024

Clase 13: Resumen Dinámica

- Repaso Leyes de Newton y fuerzas.
- Ejemplos.

Clase 13: Resumen Dinámica

- Repaso Leyes de Newton y fuerzas.
- Ejemplos.

Leyes de Newton

Primera Ley (Principio de Inercia)

$$\vec{a} = 0$$

Segunda Ley (Ley fundamental de la Dinámica)

Tercera Ley (Principio de acción y reacción)

Diagrama de cuerpo libre (DCL)

• En un diagrama de cuerpo libre o DCL dibujamos todas las fuerzas aplicadas sobre un objeto:

Estrategia general de resolución de problemas

- 1) Seleccionar el sistema de coordenadas inercial.
- 2) Dibujar el diagrama de cuerpo libre.
- 3) Identificar las incógnitas.
- 4) Identificar y **descomponer** los componentes de las fuerzas si el problema lo requiere.
- 5) Formular las **ecuaciones de movimiento** a partir de F=ma para cada componente.
- 6) Resolver la cinemática del problema.

Peso y normal

• El **peso** P es una fuerza constante aplicada sobre un cuerpo de masa m y va siempre en la **dirección de la superficie**.

• La **normal** N es una fuerza de contacto

Fuerza elástica: Ley de Hooke

 Un resorte ejerce una fuerza elástica (de restitución) dictada por la Ley de Hooke

$$F_e = -k\Delta x$$

- k es la constante elástica y depende del material.
- Δx es la elongación o desplazamiento desde la posición natural.
- x_0 es la **posición de natural** (de equilibrio) del elástico/resorte.

Tensión

• Una cuerda ideal con una fuerza llamada tensión T. Esta tensión es constante a través de la cuerda.

Ligaduras

- En problemas de **ligaduras** existe una **restricción** entre las coordenadas que describen cada cuerpo en movimiento.
- Al imponer las condiciones de ligaduras se reduce el número de grados de libertad.

- Las ecuaciones de ligaduras se combinan con las ecuaciones de movimiento.
- Se debe obtener el mismo número de ecuaciones y de incógnitas.

Fuerza elástica

 Un resorte (o elástico) ejerce una fuerza elástica dictada por la Ley de Hooke

$$F_e = -k\Delta x$$

- Δx es el desplazamiento desde la **posición natural**.
- x_0 es la **posición natural** (de equilibrio) del elástico/resorte.

Fuerzas de roce de contacto

- Si dos cuerpos están en reposo entre sí, se ejerce una fuerza de **roce estático** que impide que los cuerpos se muevan.
- El roce estático es variable, pero toma un valor máximo

$$|\vec{F}_s| \le \mu_s |\vec{N}| = F_{s,\text{max}}.$$

 Ya en movimiento, los cuerpos también ejercen una fuerza de roce dinámico que se opone al movimiento. Está dado por:

$$|\vec{F}_d| = \mu_d |\vec{N}|$$

- Ambas fuerzas siempre son paralelas a la superficie de contacto y se oponen al movimiento.
- Experimentalmente se tiene que $\mu_s > \mu_d$.

Fuerza de roce viscoso

• El **roce viscoso** corresponde a la **resistencia** que ejerce un **fluido** al movimiento de una partícula en la **dirección del movimiento**.

$$\vec{F}_v = -c \, v^n \hat{\vec{v}} \,.$$

 El roce viscoso siempre apunta en la dirección opuesta al movimiento relativo de la partícula con respecto al fluido.

Clase 13: Resumen Dinámica

- Repaso Leyes de Newton y fuerzas.
- Ejemplos.

• Una pelota es sujetada por una **cuerda ideal** de largo L. Si el cuerpo gira manteniendo una **altura constante** con una velocidad angular constante conocida ω . Encuentre el ángulo α .

Una pelota es sujetada por una **cuerda ideal** de largo L. Si el cuerpo gira manteniendo una **altura constante** con una velocidad angular constante conocida ω . Encuentre el ángulo α .

DCL:

Ecuaciones de movimiento:

$$r: F_r = -T\sin\alpha = ma_r = -m(L\sin\alpha)\omega^2$$

$$\theta: F_{\theta} = 0$$

$$z: \quad F_z = T\cos\alpha - mg = ma_z = 0$$

De la ecuación en r:

$$\longrightarrow T = mL\omega^2$$

De la ecuación en θ :

• Una pelota es sujetada por una **cuerda ideal** de largo L. Si el cuerpo gira manteniendo una **altura constante** con una velocidad angular constante conocida ω . Encuentre el ángulo α .

DCL:

Para ω muy grande, tenemos que $\alpha = \pi/2$, Tal como uno esperaría.

- Dos bloques de igual masa m están cada una en dos planos inclinados con ángulo α y con mismo coeficiente de roce dinámico μ_d tal que los bloques caen $(\tan \alpha > \mu_d)$. Estos dos bloques están unidos por una cuerda ideal de largo L y sostienen vía una polea una tercera masa $M \neq m$. Encuentre:
 - Las condiciones de ligadura.
 - Las ecuaciones de movimiento.
 - Aceleración de cada bloque.

- Dos bloques de igual **masa** m están cada una en dos **planos inclinados** con **ángulo** α y con mismo **coeficiente de roce dinámico** μ_d tal que los bloques caen $(\tan \alpha > \mu_d)$. Estos dos bloques están unidos por una **cuerda ideal** de **largo** L y sostienen vía una polea una tercera **masa** $M \neq m$. Encuentre:
 - Las condiciones de ligadura.

Tenemos que:

$$L = x_1 + x_2 + 2x_3$$

Entonces:

$$0 = \dot{x}_1 + \dot{x}_2 + 2\dot{x}_3$$

$$0 = \ddot{x}_1 + \ddot{x}_2 + 2\ddot{x}_3$$

- Dos bloques de igual **masa** m están cada una en dos **planos inclinados** con ángulo α y con mismo coeficiente de roce dinámico μ_d tal que los bloques caen $(\tan \alpha > \mu_d)$. Estos dos bloques están unidos por una **cuerda ideal** de **largo** L y sostienen vía una polea una tercera **masa** $M \neq m$. Encuentre:
 - Las ecuaciones de movimiento.

Ecuaciones de movimiento:

$$x_1: F_{x1} = F_{r1} - T - mg\sin\alpha - = m\ddot{x}_1$$

$$y_1: \quad F_{y1} = N_1 - mg\cos\alpha = 0$$

$$x_2: F_{x2} = F_{r2} - T - mg \sin \alpha - m\ddot{x}_2$$

$$y_2: \quad F_{y2} = N_2 - mg\cos\alpha = 0$$

$$x_3: F_{x3} = Mg - 2T = M\ddot{x}_3$$

Tenemos que:

$$F_{r1} = F_{r2} = \mu_d mg \cos \alpha$$

- Dos bloques de igual masa m están cada una en dos planos inclinados con ángulo α y con mismo coeficiente de roce dinámico μ_d tal que los bloques caen $(\tan \alpha > \mu_d)$. Estos dos bloques están unidos por una cuerda ideal de largo L y sostienen vía una polea una tercera masa $M \neq m$. Encuentre:
 - Las ecuaciones de movimiento.

Entonces podemos escribir:

$$x_1: mg(\mu_d \cos \alpha - \sin \alpha) - T = m\ddot{x}_1$$

$$x_2: mg(\mu_d \cos \alpha - \sin \alpha) - T = m\ddot{x}_2$$

$$x_3: Mg-2T=M\ddot{x}_3$$

- Dos bloques de igual masa m están cada una en dos planos inclinados con ángulo α y con mismo coeficiente de roce dinámico μ_d tal que los bloques caen $(\tan \alpha > \mu_d)$. Estos dos bloques están unidos por una cuerda ideal de largo L y sostienen vía una polea una tercera masa $M \neq m$. Encuentre:
 - Aceleración de cada bloque.

Ahora tenemos que combinar las condiciones de ligadura con las ecuacionse de movimiento Sumando las para x_1 y x_2 y restando la de x_3 :

Restando las ecuaciones para x_1 y x_2 :

$$2mg(\mu_d\cos\alpha - \sin\alpha) - Mg = 2m\ddot{x}_1 - M\ddot{x}_3$$

$$\ddot{x}_1 = \ddot{x}_2$$

Utilizando la condición de ligadura:

$$0 = \ddot{x}_1 + \ddot{x}_2 + 2\ddot{x}_3 \quad \rightarrow \quad \ddot{x}_3 = -\ddot{x}_1$$

Obtenemos:

$$\ddot{x}_1 = \ddot{x}_2 = -\ddot{x}_3 = g\frac{2m(\mu_d\cos\alpha - \sin\alpha) - M}{(2m+M)}$$

• Se lanza una partícula de **masa** m con **rapidez inicial** v_0 e **inclinación** θ respecto a la horizontal en un medio con **roce viscoso** de -cv. ¿Cuánto **tiempo** transcurre hasta que la trayectoria vuelva a formar un **ángulo** θ con la horizontal?

• Se lanza una partícula de **masa** m con **rapidez inicial** v_0 e **inclinación** θ respecto a la horizontal en un medio con **roce viscoso** de -cv. ¿Cuánto **tiempo** transcurre hasta que la trayectoria vuelva a formar un **ángulo** θ con la horizontal?

DCL:

Ecuaciones de movimiento:

$$x: F_x = -c\dot{x} = m\ddot{x}$$

$$y: F_y = -c\dot{y} - mg = m\ddot{y}$$

Se vuelve a formar un ángulo θ cuando:

$$\tan \theta = -\dot{y}/\dot{x} = -v_y/v_x$$

Integramos la ecuación en x:

$$\int_{v_{0x}}^{v_x} \frac{d\dot{x}}{\dot{x}} = -\frac{c}{m} \int_0^t dt \qquad \longrightarrow \qquad v_x = v_{0x} e^{-ct/m}$$

Integramos la ecuación en y:

$$\int_{v_{0y}}^{v_{y}} \frac{d\dot{y}}{\dot{y} + mg/c} = -\frac{c}{m} \int_{0}^{t} dt$$

$$\longrightarrow v_{y} = \left(v_{0y} + \frac{mg}{c}\right) e^{-ct/m} - \frac{mg}{c}$$

• Se lanza una partícula de **masa** m con **rapidez inicial** v_0 e **inclinación** θ respecto a la horizontal en un medio con **roce viscoso** de -cv. ¿Cuánto **tiempo** transcurre hasta que la trayectoria vuelva a formar un **ángulo** θ con la horizontal?

La velocidad:
$$\longrightarrow v_x = v_{0x}e^{-ct/m}$$

$$\longrightarrow v_y = \left(v_{0y} + \frac{mg}{c}\right)e^{-ct/m} - \frac{mg}{c}$$

Donde:

$$v_{0x} = v_0 \cos \theta, \quad v_{0y} = v_0 \sin \theta$$

Entonces:
$$\tan\theta = -\frac{v_y}{v_x} = \frac{-\left(v_{0y} + \frac{mg}{c}\right)e^{-ct^*/m} + \frac{mg}{c}}{v_{0x}e^{-ct^*/m}}$$

$$= \frac{-\left(v_0 \sin \theta + \frac{mg}{c}\right) + \frac{mg}{c}e^{ct^*/m}}{v_0 \cos \theta}$$

Despejando:
$$\tan \theta = -\tan \theta + \frac{mg}{cv_0 \cos \theta} \left(e^{ct^*/m} - 1 \right)$$

$$\longrightarrow \left| t^* = \frac{m}{c} \ln \left(\frac{2cv_0}{mg} \sin \theta + 1 \right) \right|$$

Resumen

- Hemos terminado la unidad de Dinámica.
- Próxima clase:
 - → Inicio unidad de Trabajo y Energía