

Electrical Training

Week 2: Common Circuit Elements, Series vs. Parallel, KVL & KCL, Circuits on Breadboards

Agenda

- Resistors, Capacitors, Inductors, Diodes/LEDs, FETs
- Circuit Analysis
 - Nodes & Junctions
 - Series vs. Parallel
 - KVL & KCL
- Measurements
- Circuits & Breadboards

Resistors

- Element that inhibits the flow of electrons
- Changes flow of current

Capacitors

- Element that temporarily stores electrical energy
 - polarized
 - non-polarized

What is an Inductor?

 Element that temporarily stores energy in the form of a magnetic field among its coils

Diodes and LEDs

- Element that limits the flow of electrons to one direction
- Forward Bias: V+ > V-
- Reverse Bias: V- > V+
- Unbiased: V+ == V-

Field Effect Transistors (FET)

 Field Effect Transistors - Controls electric conductivity of a channel

Operational Amplifiers (OP Amps)

- Op amps are active devices that can be used to filter or amplify signals.
- · Boosts power without changing waveform.

Summary of RC and RLC (Passive) Filters

RC Lowpass:

RC Highpass:

RLC Lowpass:

Circuit Analysis

Series vs. Parallel

- Series → Same Current (I)
- Parallel → Same Voltage (V)

Series:
$$- \frac{R_1}{N} - \frac{R_2}{N} - \frac{R_3}{N} = - \frac{R_{eq} = R_1 + R_2 + R_3}{N}$$

Parallel: $= - \frac{R_1}{R_2} - \frac{R_2}{N} - \frac{R_2}{N} - \frac{R_2}{N} - \frac{R_3}{N} - \frac{R_3}$

Node

 Any place on a circuit where two or more circuit ELEMENTS meet.

Junction

Any place on a circuit where two or more WIRES meet.

Kirchoff's Voltage Law (KVL)

$$\sum V_{loop} = 0$$

Kirchoff's Current Law (KCL)

Sum of the currents leaving a node = sum of current entering the node

$$\sum i_{leaving} = \sum i_{entering}$$

Breadboard

Circuit - Measure Current

Ammeter connected in series with circuit

Circuit - Measure Voltage

Voltmeter connected in parallel with circuit

Voltage Divider

RC Circuit

Build Circuit and Measure Current Through R_{eq}

Challenge: Find R_{eq} of resistor cube

Assume all resistors are 100 ohm.

What if all resistors are 220 ohm?

END