A partir de la solución óptima del primal, obten y_i:

Tomamos la tabla final del primal (problema original). Dame la óptima del dual.

Método 1

Valor óptimo de variable dual y_i = Coeficiente primal óptimo de la variable inicial x_i + Coef

Método 2

Valores óptimos de las vairables duales = Vector fila de los coeficientes objetivos originales

Ejercicio

 $MaximizarZ = 5x_1 + 12x_2 + 4x_3$

Sujeto a

$$x_1+2x_2+x_3\leq 10$$

$$2x_1 - x_2 + 3x_3 = 8$$

$$x_1,x_2,x_3\geq 0$$

Ecuaciones

$$Z - 5x_1 - 12x_2 - 4x_3 = 0$$

$$x_1 + 2x_2 + x_3 + s_1 = 10$$

$$2x_1 - x_2 + 3x_3 + R_1 = 8$$

Metodo 2 fases

$$Minr=R_1$$

$$r-R_1=0$$

$$x_1 + 2x_2 + x_3 + s_1 = 10$$

$$2x_1 - x_2 + 3x_3 + R_1 = 8$$

Tabla inicial

V_B	r	x_1	x_2	x_3	s_1	R_1	Solución
r	1	0	0	0	0	-1	0
s_1	0	1	2	1	1	0	10
R_1	0	2	-1	3	0	1	8

Corregir r

Se suman $r + R_1$ para convertir r a 0.

Nueva fila r o Fila actual $r + C_1 R_1$

Donde C_1 es el coeficiente que anula el valor de la fila r en la columna R_1 , en este caso es 1.

V_B	r	x_1	x_2	x_3	s_1	R_1	Solución
r	1	0	0	0	0	-1	0
R_1	0	2	-1	3	0	1	8
$r ightarrow r + 1 R_1 +$	1	2	-1	3	0	0	8

Tabla inicial

V_B	r	x_1	x_2	x_3	s_1	R_1	Solución
r	1	2	-1	3	0	0	8
s_1	0	1	2	1	1	0	10
R_1	0	2	-1	3	0	1	8

Primera iteración

V_E y V_P

$$V_E=x_3$$

V_B	Columna V_E	Columna Solución	Relación mínima	Válida
s_1	1	10	$\frac{10}{1} = 10$	Sí
R_1	3	8	$\frac{8}{3}$	Sí

$$V_P = R_1$$

Actualizar fila V_{P}

V_B	r	x_1	x_2	x_3	s_1	R_1	Solución
$R_1 o x_3$	0	$\frac{2}{3}$	$\frac{-1}{3}$	1	0	$\frac{1}{3}$	$\frac{8}{3}$

V_B	r	x_1	x_2	x_3	s_1	R_1	Solución
r	1	2	-1	3	0	0	8
s_1	0	1	2	1	1	0	10
x_3	0	$\frac{2}{3}$	$\frac{-1}{3}$	1	0	$\frac{1}{3}$	$\frac{8}{3}$

Actualizar filas respecto a la fila V_{P}

Actualizar r

V_B	r	x_1	x_2	x_3	s_1	R_1	Solución
r	1	2	-1	3	0	0	8
x_3	0	$\frac{2}{3}$	$\frac{-1}{3}$	1	0	$\frac{1}{3}$	$\frac{8}{3}$
$-3x_3$	0	-2	1	-3	0	-1	-8
$r=r-3x_3$	1	0	0	0	0	-1	0

Actualizar R_2

V_B	r	x_1	x_2	x_3	s_1	R_1	Solución
s_1	0	1	2	1	1	0	10
x_3	0	$\frac{2}{3}$	$\frac{-1}{3}$	1	0	$\frac{1}{3}$	$\frac{8}{3}$
$-x_3$	0	$-\frac{2}{3}$	$\frac{1}{3}$	-1	0	$-\frac{1}{3}$	$-\frac{8}{3}$
$s_1=s_1-x_3$	0	$\frac{1}{3}$	$\frac{5}{3}$	0	0	$-\frac{1}{3}$	$\frac{22}{3}$

Actualizar tabla con filas actualizadas

V_B	r	x_1	x_2	x_3	s_1	R_1	Solución
r	1	0	0	0	0	-1	0
s_1	0	$\frac{1}{3}$	$\frac{5}{3}$	0	0	$-\frac{1}{3}$	$\frac{22}{3}$
x_3	0	$\frac{2}{3}$	$\frac{-1}{3}$	1	0	$\frac{1}{3}$	$\frac{8}{3}$

Como la solución de r nos da 0. Significa que el problema si tiene solución factible y podemos proseguir a la fase 2.

Fase 2

Eliminar columnas R_1 . Ya no será parte de la solución.

Definición del problema

$$Z - 5x_1 - 12x_2 - 4x_3 = 0$$

$$\frac{1}{3}x_1 + \frac{5}{3}x_2 = \frac{22}{3}$$

$$\frac{2}{3}x_1 - \frac{1}{3}x_2 + x_3 = \frac{8}{3}$$

$$x_1,x_2,x_3\geq 0$$

V_B	w	x_1	x_2	x_3	s_1	Solución
w	1	-5	-12	-4	0	0
s_1	0	$\frac{1}{3}$	$\frac{5}{3}$	0	0	$\frac{22}{3}$
x_3	0	$\frac{2}{3}$	$\frac{-1}{3}$	1	0	$\frac{8}{3}$

La fila Z no es congruente a la solución, así que corregiremos Z.

$$Z-C_{x_3}x_3$$

V_B	w	x_1	x_2	x_3	s_1	Solución
w	1	-5	-12	-4	0	0
x_3	0	$\frac{2}{3}$	$\frac{-1}{3}$	1	0	$\frac{8}{3}$
$4x_3$	0	$\frac{8}{3}$	$\frac{-4}{3}$	4	0	$\frac{32}{3}$
$Z=Z+4x_3$	1	$\frac{-7}{3}$	$\frac{-40}{3}$	0	0	$\frac{32}{3}$

Tabla inicial

V_B	w	x_1	x_2	x_3	s_1	Solución
w	1	$\frac{-7}{3}$	$\frac{-40}{3}$	0	0	$\frac{32}{3}$
s_1	0	$\frac{1}{3}$	$\frac{5}{3}$	0	0	$\frac{22}{3}$
x_3	0	$\frac{2}{3}$	$\frac{-1}{3}$	1	0	$\frac{8}{3}$

V_E y V_P

$$V_E=x_2$$

V_B	Columna V_E	Columna Solución	Relación mínima	Válida
s_1	$\frac{5}{3}$	$\frac{22}{3}$	$\frac{\frac{22}{3}}{\frac{5}{3}} = \frac{22}{5}$	Sí
x_3	$\frac{-1}{3}$	$\frac{8}{3}$	$\frac{\frac{8}{3}}{\frac{-1}{3}} = -8$	No

$$V_P=s_1$$

Actualizar fila V_P

V_B	w	x_1	x_2	x_3	s_1	Solución
s_1	0	$\frac{1}{3}$	$\frac{5}{3}$	0	0	$\frac{22}{3}$
$s_1 ightarrow x_2$	0	$\frac{1}{5}$	1	0	0	$\frac{22}{5}$

V_B	w	x_1	x_2	x_3	s_1	Solución
w	1	$\frac{-7}{3}$	$\frac{-40}{3}$	0	0	$\frac{32}{3}$
x_2	0	$\frac{1}{5}$	1	0	0	$\frac{22}{5}$
x_3	0	$\frac{2}{3}$	$\frac{-1}{3}$	1	0	$\frac{8}{3}$

Actualizar filas respecto a la fila V_{P}

Actualizar w

V_B	w	x_1	x_2	x_3	s_1	Solución
w	1	$\frac{-7}{3}$	$\frac{-40}{3}$	0	0	$\frac{32}{3}$
x_2	0	$\frac{1}{5}$	1	0	0	$\frac{22}{5}$
$\frac{40}{3}x_2$	0	$\frac{40}{15}$	40 3	0	0	880 15
$w=w+rac{40}{3}x_2$	1	$\frac{1}{3}$	0	0	0	$\frac{208}{3}$

Actualizar x_3

V_B	w	x_1	x_2	x_3	s_1	Solución
x_3	0	$\frac{2}{3}$	$\frac{-1}{3}$	1	0	$\frac{8}{3}$
x_2	0	$\frac{1}{5}$	1	0	0	$\frac{22}{5}$
$rac{1}{3}x_2$	0	$\frac{1}{15}$	$\frac{1}{3}$	0	0	$\frac{22}{15}$
$x_3=w+rac{1}{3}x_2$	0	11 15	0	1	0	$\frac{62}{15}$

Actualizar tabla con filas actualizadas

V_B	w	x_1	x_2	x_3	s_1	Solución
w	1	$\frac{1}{3}$	0	0	0	$\frac{208}{3}$
x_2	0	$\frac{1}{5}$	1	0	0	<u>22</u> 5
x_3	0	$\frac{11}{15}$	0	1	0	$\frac{62}{15}$