K Kytölä & T Kelomäki

(Exercise sessions: 26.-27.1.2023) Hand-in due: Tue 31.1.2023 at 23:59

Fill-in-the-blanks 1. Let (X, d) be a metric space and $(\mathsf{V}, \| \cdot \|)$ a normed space. On V , we use the metric induced by the norm, $\mathsf{d}_{\mathsf{V}}(u, v) = \|v - u\|$ for $u, v \in \mathsf{V}$. Complete the proof of the following statement.

Claim. If $f, g: X \to V$ are two continuous functions, then the function $f + g: X \to V$ is also continuous.

Remark: The function $f + g \colon X \to \mathsf{V}$ is the pointwise sum of the vector valued functions f and g, defined by the formula (f+g)(x) = f(x) + g(x) (the right hand side is vector addition in vector space V).

Proof. First fix $x \in X$. Let us show that f + g is continuous at the point x. Let $\varepsilon > 0$. Then also $\frac{\varepsilon}{2} > 0$, and since by assumption f is continuous at x, there exists a

such that we have $\|f(x')-f(x)\|<\frac{\varepsilon}{2}$ whenever $x'\in X$ and ________. Similarly, since g is also continuous at x by assumption, there exists a _______ such that ________. Now let $\delta=$ __________ > 0. Then whenever $x'\in X$ and $\mathsf{d}(x,x')<\delta$, we have both $\mathsf{d}(x,x')<$ ___________, so $\|(f+g)(x')-(f+g)(x)\|=$ ________

This implies that f + g is continuous at x. Since $x \in X$ was arbitrary, f + g is therefore a continuous function. \square

Fill-in-the-blanks 2. Consider the space C([-1, 1]) of continuous real-valued functions on the closed interval [-1, 1], and its subspace

$$\mathcal{C}^{1}([-1,1]) = \left\{ x \in \mathcal{C}([-1,1]) \mid x' \text{ exists and is continuous } [-1,1] \to \mathbb{R} \right\}$$

of continuously differentiable functions. Equip $\mathcal{C}([-1,1])$ with the sup-norm and its induced metric, and equip $\mathcal{C}^1([-1,1]) \subset \mathcal{C}([-1,1])$ with the metric it inherits as a subset. Taking the derivative is a function $D: \mathcal{C}^1([-1,1]) \to \mathcal{C}([-1,1])$; concretely, D(x) = x' for $x \in \mathcal{C}^1([-1,1])$. Complete the proof of the following claim:

Claim. The function $D: \mathcal{C}^1([-1,1]) \to \mathcal{C}([-1,1])$ is not Lipschitz.

Proof. Let us argue by contradiction: suppose instead that D is M-Lipschitz for some $M \geq 0$. With such an M fixed, define a function $x \colon [-1,1] \to \mathbb{R}$ by

$$x(t) = \sin((M+1)t)$$
 for $t \in [-1, 1]$.

We have

$$|x(t)| = |\sin((M+1)t)| \le$$
 for all $t \in [-1, 1]$,

so for the sup-norm of x we get

$$||x||_{\infty} = \sup_{t \in [-1,1]} \underline{\qquad} \leq \underline{\qquad}.$$

The function x is continuously differentiable, with derivative given by

$$x'(t) =$$
_____ for $t \in [-1, 1]$.

In particular we get the following inequality for the sup-norm of the derivative x':

$$||x'||_{\infty} = \sup_{t \in [-1,1]} |x'(t)|$$
 _____ $|x'(0)| =$ _____.

Now let us consider the distance of D evaluated at the two arguments $x \in \mathcal{C}^1([-1,1])$ and $0 \in \mathcal{C}^1([-1,1])$. The previous observation yields

$$\mathsf{d}\big(D(0),D(x)\big) \; = \; \|D(x)-D(0)\|_{\infty} \; = \; \|x'-0\|_{\infty} \; \geq \; \underline{\hspace{1cm}} \; .$$

This, however, is a contradiction with the assumed M-Lipschitz property of D, because that property says

$$d(D(0), D(x)) \le M d(0, x) = M ||x - 0||_{\infty} \le \underline{\hspace{1cm}},$$

where the last inequality follows by an earlier observation. The contradiction shows that D cannot be M-Lipschitz for any $M \geq 0$, which completes the proof of the claim.