© Laurent Garcin MP Dumont d'Urville

Devoir à la maison n°14

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1 – D'après CCP 2017 PC

Soit *p* ∈]0, 1[. On pose q = 1 - p.

On considère un automate qui génère successivement les lettres C ou P jusqu'à obtenir une certaine séquence prédéfinie.

On suppose que pour tout $n \in \mathbb{N}^*$, l'automate génère la n-ième lettre à l'instant n de façon indépendante de toutes les générations précédentes. On suppose également qu'à chaque génération, les lettres P et C ont des probabilités p et q (respectivement) d'être générées. Suivant les parties considérées, on définit différents niveaux que l'automate peut atteindre.

On considère dans tous les cas que l'automate est initialement au niveau 0. On se propose alors d'étudier essentiellement l'existence de l'espérance et de la variance de la variable aléatoire correspondant au temps d'attente de la séquence prédéfinie à travers sa série génératrice.

Pour cette étude probabiliste, on mobilise diverses propriétés analytiques (surtout sur les séries entières) et quelques propriétés d'algèbre linéaire.

Dans les parties I, II et V, on examine le temps d'attente pour les séquences C puis CC, puis CPC et CCPPC. La partie II est indépendante de la partie I et traite de questions préliminaires sur les séries entières qui seront investies dans les parties III et V. La partie IV est indépendante des parties précédentes et traite les questions préliminaires d'algèbre linéaire qui servent exclusivement dans la partie V. La partie III ne dépend de la partie I que par la question 2 et de la partie II que par la question 4. La partie V utilise seulement la question 5 de la partie II et la partie IV.

Pour $n \in \mathbb{N}^*$, on note P_n l'évènement «l'automate génère la lettre P à l'instant n» et C_n l'évènement «l'automate génère la lettre C à l'instant n».

I Etude d'un cas simple

Dans cette partie, on dit que l'automate passe du niveau 0 au niveau 1 dès qu'il génère la lettre C. Si, en revanche, il génère la lettre P, alors il reste au niveau 0. L'expérience s'arrête dès que l'automate a atteint le niveau 1. On résume l'expérience par la figure 1 suivante :

Fig. 1

On note Y l'instant où, pour la première fois, l'automate atteint le niveau 1. On admet que Y est une variable aléatoire définie sur un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$ telle que $Y(\Omega) \subset \mathbb{N}^*$.

- 1 Reconnaître la loi de Y et préciser en particulier $\mathbb{P}(Y = n)$ pour $n \in \mathbb{N}^*$.
- $\boxed{\mathbf{2}}$ Donner les valeurs de $\mathbb{E}(Y)$ et de $\mathbb{V}(Y)$.

© Laurent Garcin MP Dumont d'Urville

II Séries entières

3 Soit $a \in \mathbb{C}^*$. Montrer que l'application $t \mapsto \frac{1}{t-a}$ est développable en série entière au voisinage de 0 et déterminer les coefficients et le rayon de convergence de cette série entière.

- Soit a, b des nombres complexes non nuls tels que $|a| \le |b|$.

 Justifier que l'application $t \mapsto \frac{1}{(t-a)(t-b)}$ est développable en série entière au voisinage de 0 et que la série entière qui lui est associé admet |a| pour rayon de convergence.
- Soient a, b, c des nombres complexes non nuls et distincts tels que $|a| \le |b| \le |c|$.

 Justifier que l'application $t \mapsto \frac{1}{(t-a)(t-b)(t-c)}$ est développable en série entière au voisinage de 0 et que la série entière qui lui est associée admet |a| pour rayon de convergence.

III Etude d'un cas intermédiaire

Dans cette partie, on suppose que l'automate passe du niveau 0 au niveau 1 en générant la lettre C. De même, l'automate passe du niveau 1 au niveau 2 en générant la lettre C. Si, en revanche, il génère la lettre P, alors qu'il est au niveau 0 ou 1, il retombe au niveau 0. L'expérience s'arrête dès que l'automate a atteint le niveau 2, c'est-à-dire dès que l'automate aura généré la séquence CC. On résume l'expérience par la figure 2 suivante :

Fig. 2

On note Z l'instant où, pour la première fois, l'automate atteint le niveau 2. Ainsi Z est le temps d'attente de la séquence CC.

On admet que Z est une variable aléatoire définie sur un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$ telle que $Z(\Omega) \subset \mathbb{N}^*$. Pour tout $n \in \mathbb{N}^*$, on note $p_n = \mathbb{P}(Z = n)$. On note G_Z la série génératrice de Z et R_Z son rayon de convergence. On rappelle que $R_Z \ge 1$.

- **6** Calculer p_1 , p_2 et p_3 .
- 7 Justifier que $(P_1, C_1 \cap P_2, C_1 \cap C_2)$ est un système complet d'évènements.
- 8 En déduire que pour tout $n \ge 3$, on a : $p_n = pp_{n-1} + pqp_{n-2}$.
- **9** En déduire que pour tout $t \in]-1,1[$, on a : $G_Z(t)(1-pt-pqt^2)=q^2t^2$.
- Montrer que le polynôme $Q = 1 pX pqX^2$ admet deux racines réelles a et b vérifiant $1 < |a| \le |b|$. On pourra s'intéresser aux signes de Q(-1) et Q(1).
- 11 A l'aide de la question 4, justifier que

$$\forall t \in]-|a|, |a|[, G_Z(t) = \frac{q^2 t^2}{1 - pt - pqt^2}$$

- **12** En déduire que Z admet une espérance et une variance puis que $\mathbb{E}(Z) = q^{-1} + q^{-2}$.
- Vérifier, à l'aide des questions 2 et 12, que $\mathbb{E}(Z) \ge \mathbb{E}(Y) + 1$ où Y est la variable aléatoire définie en partie I. Pouvait-on prévoir ce résultat?

IV Algèbre linéaire

On considère les matrices
$$I_4 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, A = \begin{pmatrix} p & 0 & p & 0 \\ q & q & 0 & 0 \\ 0 & p & 0 & 0 \\ 0 & 0 & q & 0 \end{pmatrix} \text{ et } L = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}.$$

Soit $t \in \mathbb{R}$. On note χ_A le polynôme caractéristique de A, si bien que $\chi_A(t)$ est le déterminant de $tI_4 - A$.

- 14 Montrer que 0 est valeur propre de A et donner un vecteur propre de A associé à la valeur propre 0.
- **15** Trouver les réels α , β et γ tels que, pour tout $t \in \mathbb{R}$, $\chi_{A}(t) = t^4 t^3 + \alpha t^2 + \beta t + \gamma$.

On dit que la matrice colonne $S = \begin{pmatrix} S_0 \\ S_1 \\ S_2 \\ S_3 \end{pmatrix}$ est solution de (E_t) lorsque S = tAS + L.

Pour tout $t \in \mathbb{R}$, on note $\psi_A(t)$ le déterminant de la matrice $I_4 - tA$.

- **16** Montrer que pour tout $t \in \mathbb{R}$, $\psi_{A}(t) = 1 t + pqt^2 p^2qt^3$.
- En déduire que, pour t au voisinage de 0, l'équation (E_t) possède une unique solution S.
- 18 On suppose que la matrice colonne $S = \begin{pmatrix} S_0 \\ S_1 \\ S_2 \\ S_3 \end{pmatrix}$ est solution de (E_t) .

Montrer que, pour t au voisinage de 0, on a l'égalité :

$$S_3 = \frac{pq^2t^3}{1 - t + pqt^2 - p^2qt^3}$$

On pourra utiliser à bon escient la formule de la comatrice.

On se propose de déterminer certaines propriétés des valeurs propres de A. On note λ une valeur propre complexe non nulle de A.

- 19 Montrer que λ est valeur propre de la matrice transposée de A.
- **20** En déduire qu'il existe trois complexes non tous nuls x_1 , x_2 et x_3 tels que :

$$(\mathcal{H}) \begin{cases} px_1 + qx_2 = \lambda x_1 \\ qx_2 + px_3 = \lambda x_2 \\ px_1 = \lambda x_3 \end{cases}$$

On considère désormais trois complexes non tous nuls x_1 , x_2 et x_3 qui vérifient le système (\mathcal{H}) . On note alors $M = \max(|x_1|, |x_2|, |x_3|)$ et on remarque que l'on peut toujours se placer dans l'un des trois cas suivants :

- (i) $M = |x_3|$; (ii) $M = |x_2|$ avec $M > |x_3|$; (iii) $M = |x_1|$ avec $M > |x_2|$ et $M > |x_3|$.
- **21** Montrer, en distinguant ces trois cas, que $|\lambda| < 1$.
- **22** Montrer l'existence de nombres complexes λ_1 , λ_2 et λ_3 tels que :

$$0 < |\lambda_1| \le |\lambda_2| \le |\lambda_3| < 1$$
 et $\forall t \in \mathbb{R}, \ \chi_A(t) = t(t - \lambda_1)(t - \lambda_2)(t - \lambda_3)$

23 Montrer l'existence de nombres complexes μ , a, b et c tels que :

$$\mu \neq 0$$
, $1 < |a| \le |b| \le |c|$ et $\forall t \in \mathbb{R}, \ \psi_{A}(t) = \mu(t-a)(t-b)(t-c)$

© Laurent Garcin MP Dumont d'Urville

Etude d'un dernier cas

Dans cette partie, on suppose que :

- l'automate passe du niveau 0 au niveau 1 en générant la lettre C;
- l'automate passe du niveau 1 au niveau 2 en générant la lettre P;
- l'automate passe du niveau 2 au niveau 3 en générant la lettre C;
- si l'automate est au niveau 0 ou 2 et qu'il génère la lettre P, alors il retombe au niveau 0;
- si l'automate est au niveau 1 et qu'il génère la lettre C, alors il reste au niveau 1.

L'expérience s'arrête dès que l'automate a atteint le niveau 3, c'est-à-dire dès que l'automate aura généré la séquence CPC.

24 Reproduire, sur votre copie, la figure 3 suivante en la complétant pour résumer l'expérience de cette partie

Pour $i \in [0,3]$ et $n \in \mathbb{N}^*$, on note $E_{n,i}$ l'événement «après avoir généré la n-ième lettre, l'automate se trouve au niveau i» et $\mathbb{E}_{0,i}$ l'événement «l'automate se trouve initialement au niveau i». On pose $p_{n,i} = \mathbb{P}(\mathbb{E}_{n,i})$

et pour tout
$$t \in]-1,1[$$
, on définit $S_i(t) = \sum_{n=0}^{+\infty} p_{n,i}t^n$.

On note T l'instant où, pour la première fois, l'automate atteint le niveau 3.

On admet que T est une variable aléatoire définie sur un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$ telle que $T(\Omega) \subset \mathbb{N}^*$. On remarque que la série génératrice de T (notée G_T) est alors S_3 et on note R_T son rayon de convergence.

On rappelle que $R_T \ge 1$.

- **25** Déterminer $p_{0,0}$, $p_{0,1}$, $p_{0,2}$ et $p_{0,3}$.
- **26** Montrer que pour tout $n \in \mathbb{N}^*$, on a :

$$\begin{cases} p_{n,0} = p \cdot p_{n-1,0} + p \cdot p_{n-1,2} \\ p_{n,1} = q \cdot p_{n-1,0} + q \cdot p_{n-1,1} \\ p_{n,2} = p \cdot p_{n-1,1} \\ p_{n,3} = q \cdot p_{n-1,2} \end{cases}$$

Soit $t \in]-1,1[$. On note S(t) la matrice colonne suivante : $S(t) = \begin{bmatrix} S_0(t) \\ S_1(t) \\ S_2(t) \end{bmatrix}$.

- 27 | Montrer que la matrice colonne S(t) est solution de l'équation (E_t) définie en partie IV.
- **28** Montrer que $\forall t \in]-R_T, R_T[, G_T(t) = \frac{pq^2t^3}{1-t+pqt^2-p^2qt^3}$ et montrer que $R_T > 1$.
- 29 Montrer que T admet une espérance et une variance.
- **30** Donner l'expression de $\mathbb{E}(T)$ en fonction de q seulement.
- 31 Proposer une méthode permettant de déterminer le temps d'attente moyen de la première réalisation par l'automate de la séquence CCPPC : on précisera notamment le schéma des six niveaux correspondants et la matrice analogue à A que l'on peut faire intervenir dans ce problème.