离散数学

XDwan

2021年8月30日

目录

1	绪论	绪论 代数结构																3							
2	代数																								
	2.1	定义.																							3
	2.2	组成.																							3
	2.3	代数运	算																						3
	2.4	定律 .																							3
		2.4.1	交担	負律																					3
		2.4.2	结合	合律																					3
		2.4.3	分四	記律																					3

1 绪论

研究离散对象之间的关系和结构的一门学科 具有逻辑性、抽象性、强盗概念、方法和应用 评分标准:期末 85% + 平时 15%

内容:

- 1. 数理逻辑
- 2. 集合
- 3. 关系
- 4. 函数
- 5. 无限集合
- 6. 代数系统(笔记内容)
- 7. 图论

特点:

- 1. 不关注具体问题
- 2. 假设遵循某些规律
- 3. 讨论和研究应有的性质
- 4. 结论具有普遍性

2 代数结构

2.1 定义

有一个非空集合 A, 具有若干个定义在 A 上的运算 $f_1.f_2, f_3, \ldots, f_n$, 这 些东西组成一个代数系统,简称**代数**,记为 $< A, f_1, f_2, \ldots, f_n >$ 。

2.2 组成

载体: 非空集合 A

运算: f_1, f_2, \ldots, f_n

代数常元:运算相关的特殊元素,如整数集中的0,1

2.3 代数运算

A, B 是非空集合, f 是从 A^n 到 B 的一个映射, 则 f 为从从 A^n 到 B 的一个 n 元代数运算, 简称运算, n 为代数运算的阶

封闭性: f 为从从 A^n 到 B 的一个 n 元代数运算,若 $B \subseteq A$,则称该运算在集合 A 上封闭

特别的:

f 为从从 A 到 B 的一个映射,则称 f 是一个在 A 上封闭的一元运算 f 为从从 A^2 到 B 的一个映射,则称 f 是一个在 A 上封闭的二元运算

2.4 定律

2.4.1 交換律

假设 * 是一个定义在 A 上的二元运算,如果 $\forall x,y \in A$ 都有 x*y = y*x,则称该二元运算可交换

2.4.2 结合律

假设 * 是一个定义在 A 上的二元运算,如果 $\forall x, y, z \in A$ 都有 x * (y * z) = (x * y) * z,则称该二元运算可结合

2.4.3 分配律