

PATENT APPLICATION

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re the Application of

Satoshi TATSUURA et al.

Application No.: 10/621,605

Filed: July 18, 2003

Docket No.: 116607

For: OPTICAL SWITCHING SYSTEM

CLAIM FOR PRIORITY

Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

Sir:

The benefit of the filing date of the following prior foreign application filed in the following foreign country is hereby requested for the above-identified patent application and the priority provided in 35 U.S.C. §119 is hereby claimed:

Japanese Patent Application No. 2002-241820 filed on August 22, 2002

In support of this claim, a certified copy of said original foreign application:

is filed herewith.

It is requested that the file of this application be marked to indicate that the requirements of 35 U.S.C. §119 have been fulfilled and that the Patent and Trademark Office kindly acknowledge receipt of this document.

Respectfully submitted,

James A. Oliff
Registration No. 27,075

Joel S. Armstrong
Registration No. 36,430

JAO:JSA/amo

Date: December 2, 2003

OLIFF & BERRIDGE, PLC
P.O. Box 19928
Alexandria, Virginia 22320
Telephone: (703) 836-6400

**DEPOSIT ACCOUNT USE
AUTHORIZATION**
Please grant any extension
necessary for entry;
Charge any fee due to our
Deposit Account No. 15-0461

日本国特許庁
JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 2002年 8月22日
Date of Application:

出願番号 特願2002-241820
Application Number:
[ST. 10/C] : [JP2002-241820]

出願人 富士ゼロックス株式会社
Applicant(s):

日本
特許
庁
長官
印
Japan
Patent
Office

2003年10月17日

特許庁長官
Commissioner,
Japan Patent Office

今井康

【書類名】 特許願
【整理番号】 FE02-00784
【提出日】 平成14年 8月22日
【あて先】 特許庁長官殿
【国際特許分類】 G02F 1/01
【発明者】
【住所又は居所】 神奈川県足柄上郡中井町境430グリーンテクなかい
富士ゼロックス株式会社内
【氏名】 辰浦 智
【発明者】
【住所又は居所】 神奈川県足柄上郡中井町境430グリーンテクなかい
富士ゼロックス株式会社内
【氏名】 古木 真
【発明者】
【住所又は居所】 神奈川県足柄上郡中井町境430グリーンテクなかい
富士ゼロックス株式会社内
【氏名】 岩佐 泉
【発明者】
【住所又は居所】 神奈川県足柄上郡中井町境430グリーンテクなかい
富士ゼロックス株式会社内
【氏名】 佐藤 康郊
【発明者】
【住所又は居所】 神奈川県足柄上郡中井町境430グリーンテクなかい
富士ゼロックス株式会社内
【氏名】 田 民権
【発明者】
【住所又は居所】 神奈川県足柄上郡中井町境430グリーンテクなかい
富士ゼロックス株式会社内
【氏名】 夫 龍淳

【特許出願人】

【識別番号】 000005496

【氏名又は名称】 富士ゼロックス株式会社

【電話番号】 (0462)38-8516

【代理人】

【識別番号】 100087343

【弁理士】

【氏名又は名称】 中村 智廣

【選任した代理人】

【識別番号】 100082739

【弁理士】

【氏名又は名称】 成瀬 勝夫

【選任した代理人】

【識別番号】 100085040

【弁理士】

【氏名又は名称】 小泉 雅裕

【選任した代理人】

【識別番号】 100108925

【弁理士】

【氏名又は名称】 青谷 一雄

【選任した代理人】

【識別番号】 100114498

【弁理士】

【氏名又は名称】 井出 哲郎

【選任した代理人】

【識別番号】 100120710

【弁理士】

【氏名又は名称】 片岡 忠彦

【手数料の表示】**【予納台帳番号】** 012058**【納付金額】** 21,000円**【提出物件の目録】****【物件名】** 明細書 1**【物件名】** 図面 1**【物件名】** 要約書 1**【包括委任状番号】** 9004814**【包括委任状番号】** 9004812**【包括委任状番号】** 9004813**【包括委任状番号】** 9700092**【包括委任状番号】** 0000602**【包括委任状番号】** 0202861**【プルーフの要否】** 要

【書類名】 明細書

【発明の名称】 光スイッチングシステム

【特許請求の範囲】

【請求項 1】 光パルス列からなる信号光が照射される光制御部と、前記信号光と同期したパルス状の制御光を前記光制御部に照射して、前記信号光中の光パルス列を選択的に透過させて出力信号光を形成する制御光照射手段と、該制御光照射手段が照射する制御光を前記信号光に同期させるクロック抽出手段と、前記出力信号光を受光する信号検出手段と、を有する光スイッチングシステムであって、

前記光制御部が、カーボンナノチューブが積層された薄膜により構成されることを特徴とする光スイッチングシステム。

【請求項 2】 前記信号光が、 $10^9 \sim 10^{12}$ パルス／秒オーダーの繰り返し周波数を有することを特徴とする請求項 1 に記載の光スイッチングシステム。

【請求項 3】 前記制御光の繰り返し周波数が、前記信号光の繰り返し周波数の $1/10$ 以下であることを特徴とする請求項 1 または 2 に記載の光スイッチングシステム。

【請求項 4】 前記信号光および前記制御光が共に、 $10^{-12} \sim 10^{-15}$ 秒オーダーの時間幅の光パルスからなることを特徴とする請求項 1 ~ 3 のいずれか 1 に記載の光スイッチングシステム。

【請求項 5】 前記薄膜が、シングルウォール・カーボンナノチューブを含むことを特徴とする請求項 1 ~ 4 のいずれか 1 に記載の光スイッチングシステム。

【請求項 6】 前記薄膜の吸収波長域が、 $1.2 \sim 1.6 \mu\text{m}$ の範囲内であることを特徴とする請求項 1 ~ 5 のいずれか 1 に記載の光スイッチングシステム。

【請求項 7】 前記薄膜が、直径 $0.8 \sim 1.3 \text{ nm}$ の範囲内のカーボンナノチューブを含むことを特徴とする請求項 1 ~ 6 のいずれか 1 に記載の光スイッチングシステム。

【請求項 8】 前記薄膜が、カーボンナノチューブを分散媒に分散させた分

散液を用い、これをスプレー塗布することにより形成された薄膜であることを特徴とする請求項 1～7 のいずれか 1 に記載の光スイッチングシステム。

【請求項 9】 前記分散媒が、ジメチルホルムアミドであることを特徴とする請求項 8 に記載の光スイッチングシステム。

【請求項 10】 前記薄膜の膜厚が、100～600 nm の範囲内であることを特徴とする請求項 1～9 のいずれか 1 に記載の光スイッチングシステム。

【請求項 11】 前記光制御部に照射される前記信号光を、前記光制御部の照射面で集光する第 1 の集光手段が、前記信号光の進行経路に配されることを特徴とする請求項 1～10 のいずれか 1 に記載の光スイッチングシステム。

【請求項 12】 前記光制御部に照射される前記制御光を、前記光制御部の照射面で集光する第 2 の集光手段が、前記制御光の進行経路に配されることを特徴とする請求項 1～11 のいずれか 1 に記載の光スイッチングシステム。

【請求項 13】 前記第 1 の集光手段により集光された前記信号光、および／または、前記第 2 の集光手段により集光された前記制御光の、前記光制御部の照射面におけるスポット直径が、10～200 μm の範囲内であることを特徴とする請求項 11 または 12 に記載の光スイッチングシステム。

【請求項 14】 前記光制御部の照射面を複数の領域に分割し、該分割されたそれぞれの領域で独立かつ並列に光制御が行われることを特徴とする請求項 1～13 のいずれか 1 に記載の光スイッチングシステム。

【請求項 15】 前記光制御部に照射される前記信号光を、分割された前記複数の領域の全域に渡るように、拡大して平行信号光に変換する平行化手段を有し、

前記制御光照射手段から照射される前記制御光が、分割された前記複数の領域の全域に渡るような、進行方向に垂直な面内で広がりを有して前記光制御部に照射されることを特徴とする請求項 14 に記載の光スイッチングシステム。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】

本発明は、光パルスからなる通信波長域の信号光を、パルス状の制御光により

分配、制御することが可能な光スイッチングシステムに関する。本発明は、詳しくは、カーボンナノチューブの有する光の吸収変化の特性を利用したものである。

【0002】

【従来の技術】

カーボンナノチューブ（CNT）は、グラフェンシートが丸まったチューブ状の炭素結晶で、グラフェンシートの丸まり方により金属状態から半導体状態を取り得る。カーボンナノチューブには、単層のグラフェンシートからなるシングルウォール・カーボンナノチューブ（SWNT）と、グラフェンシートが多層構造になったマルチウォール・カーボンナノチューブ（MWNT）とがある。これらのカーボンナノチューブは、その特異な性質から燃料電池、水素吸蔵、電界放出源などの材料として、各方面で研究が行われている（“カーボンナノチューブの基礎”、斎藤弥八、坂東俊治著、（1998）コロナ社等を参照）。しかしこまでのカーボンナノチューブ研究は、主として電子電気材料への応用を考えたもので、光学的応用に関しては十分に検討されてきたとはいえない。

【0003】

光学的応用の場合、電気電子素子への応用の場合のような、微細なプローブによる単一のカーボンナノチューブへのアクセスは困難であり、直径数百nmから数十 μ mに集光した光束によるカーボンナノチューブの集合体へのアクセスが主体となる。光学的応用の検討が、電気電子材料への応用に比べて遅れている理由としては、光学評価に必要となるスケールで高純度なカーボンナノチューブ試料、特にSWNT試料を得ることが困難だったこと、および、カーボンナノチューブが溶媒に溶け難く、光学的に均質な膜を得るのが困難だったこと、などが主な理由と考えられる。

【0004】

光学的応用に関しては、単一の吸収帯を持ち、また光学特性を計算値と比較する上で有利なSWNTを中心として検討が行われている。溶液分散状態のSWNTの非線形光学定数を非共鳴領域である1064nm、532nmおよび820nmで評価した例では、実用性を期待させるような大きな非線形性は報告されて

いない (X. Liu et al. Appl. Phys. Lett. 74 (1999) pp. 164-166, Z. Shi et al. Chem. Commun. (2000) pp. 461-462)。

【0005】

しかし一方、SWNTはチューブの直径に応じて通信波長領域である1.2～1.6 μmに吸収を持つことが計算により示されており (H. Kataura et al. Synth. Met. 103 (1999) pp. 2555-2558)、またチューブ径はSWNT作製時の温度によって制御可能なことが報告されている (O. Jost et al. Appl. Phys. Lett. 75 (1999) pp. 2217-2219)。これらの結果はSWNTの共鳴効果を通信波長域で有効に利用できる可能性があることを示唆している。

【0006】

我々は以上の考えに基づき、SWNTの通信波長帯における共鳴下での非線形光学効果について検討した。その結果、SWNT薄膜が同波長領域で高効率の吸収飽和を示すことを見出し、この現象を利用して、通信波長領域で動作するSWNT薄膜を用いた光学素子を完成させた（特願2001-320383号参照）。

【0007】

ここで見出された光学素子は、SWNTの通信波長帯における高効率の吸収飽和を利用した、光スイッチ、過飽和吸収ミラー、波形整形器などである。これらの素子は低コストかつ高効率で動作可能な非線形光学素子を提供するものであるが、その性能評価は駆動エネルギーなどの静的性能についてのみ行われ、制御光に対する時間応答特性などの動的性能に関しては未評価であった。

【0008】

通信波長領域で動作する超高速動作が可能な光スイッチングシステムを構築するには、動的性能、具体的には制御光に対する時間応答特性を評価する必要がある。すなわち、カーボンナノチューブを用いて超高速の光スイッチングシステムを構築するには、制御光により誘起された吸収変化の回復速度が十分に速い（吸収飽和の回復時定数が極めて小さい）ことが要求され、動的性能の評価を行って

いない、前記光学素子が見出された段階では、超高速動作が可能な光スイッチングシステムの構築は、未知の領域に属するものであった。

【0009】

光スイッチングシステムに要求される特性は、このような高効率、高速応答性のほか、加工性が良好であること、生産性が高いこと、低コストであること、大面积化が可能であること、S/N比が高いこと、等であり、これらを高い次元で満足する材料が望まれていた。

【0010】

【発明が解決しようとする課題】

したがって、本発明は、カーボンナノチューブを光学的応用に供して、通信波長領域で超高速動作が可能で、各種要求を高い次元で満足し得る光スイッチングシステムを提供することを目的とする。

【0011】

【課題を解決するための手段】

本発明者らは、カーボンナノチューブからなる薄膜（以下、単に「カーボンナノチューブ薄膜」という場合がある。）の動的性能、詳しくは、通信波長領域におけるカーボンナノチューブ薄膜の吸収変化の時間応答特性について評価した。その結果、制御光により誘起された吸収変化が1ps ($p\ s = 10^{-12}$ 秒) 以内という超高速で回復することを確認した。このカーボンナノチューブからなる薄膜の機能に関する重要な知見に基づいて、我々はカーボンナノチューブからなる薄膜を用いた新規構成の、超高速動作が可能な光スイッチングシステムを完成させた。

【0012】

すなわち本発明は、光パルス列からなる信号光が照射される光制御部と、前記信号光と同期したパルス状の制御光を前記光制御部に照射して、前記信号光中の光パルス列を選択的に透過させて出力信号光を形成する制御光照射手段と、該制御光照射手段が照射する制御光を前記信号光に同期させるクロック抽出手段と、前記出力信号光を受光する信号検出手段と、を有する光スイッチングシステムであって、

前記光制御部が、カーボンナノチューブが積層された薄膜により構成されるこ
とを特徴とする光スイッチングシステムである。

【0013】

本発明によれば、前記光制御部が、カーボンナノチューブが積層された薄膜に
より構成されており、これが制御光により誘起された吸収変化が超高速で回復す
るので、信号光および制御光にパルス状の光を用いることで、極めて高い繰り返
し周波数をもつ信号光パルス列を、これと同期した制御光を制御光照射手段によ
り前記光制御部に照射して処理することが可能となり、超高速動作が可能な光ス
イッキングシステムが実現される。

【0014】

本発明の光スイッキングシステムは、前記光制御部として、塗布成形が可能な
カーボンナノチューブが積層された薄膜により構成されているものであるため、
加工性が良好であり、生産性も高く、低コストであり、さらに大面積化をも可能
とする。

本発明の光スイッキングシステムでは、前記信号光として、具体的には、10
9～10¹²パルス／秒オーダーという高い繰り返し周波数の信号光パルス列を処
理することが可能である。

【0015】

本発明の光スイッキングシステムでは、前記制御光の繰り返し周波数を、前記
信号光の繰り返し周波数の1/10以下とすることができます。1つの制御光のパ
ルスで複数の信号光のパルスを制御するように装置構成することで、小さな繰り
返し周波数の制御光で前記信号光を制御することができる。したがって、超高速
光パルスの制御が可能となる。

本発明の光スイッキングシステムでは、前記信号光および前記制御光が共に、
10⁻¹²～10⁻¹⁵秒オーダーの時間幅の光パルスからなるものとすることができます。
る。

【0016】

本発明の光スイッキングシステムでは、カーボンナノチューブが積層された前
記薄膜として、吸収飽和が高効率で誘起されるシングルウォール・カーボンナノ

チューブを含むことが好ましい。前記薄膜をシングルウォール・カーボンナノチューブを含むものとすることで、吸収波長域を1.2～1.6μmの範囲内とすることができ、通信波長域の信号光制御ができる。

また、吸収波長域は、直径0.8～1.3nmの範囲内のカーボンナノチューブにより上記範囲内に良好に設定されるので、かかる範囲内のものを含むことが好ましい。

【0017】

前記薄膜としては、カーボンナノチューブを分散媒に分散させた分散液を用い、これをスプレー塗布することにより形成することができる。このように塗布により簡単に前記薄膜の形成ができるので、加工性が良好であり、生産性も高く、低コストであり、さらに大面積化も容易である。

このとき、前記分散媒としては、例えば、ジメチルホルムアミドを用いることができる。

前記薄膜の膜厚としては、100～600nmの範囲内であることが好ましい。
。

【0018】

本発明の光スイッチングシステムにおいては、前記光制御部に照射される前記信号光を、前記光制御部の照射面で集光する第1の集光手段が、前記信号光の進行経路に配されることが好ましい。このように、前記光制御部に照射される前記信号光を集光することで強度を高めると、前記信号光の前記光制御部におけるスループットを向上させることができる。

【0019】

本発明の光スイッチングシステムにおいては、前記光制御部に照射される前記制御光を、前記光制御部の照射面で集光する第2の集光手段が、前記制御光の進行経路に配されることが好ましい。前記光制御部に照射される前記制御光は、光の吸収飽和を誘起させるためにある程度高い強度のものが要求されるが、このように前記光制御部に照射される前記制御光を集光することで強度を高めることができ、その分、制御光照射手段から照射する制御光の強度を抑えることができ、エネルギー効率を向上させることができる。

【0020】

このとき、前記第1の集光手段により集光された前記信号光、および／または、前記第2の集光手段により集光された前記制御光の、前記光制御部の照射面におけるスポット直径としては、 $10 \sim 200 \mu\text{m}$ の範囲内とすることが好ましい。

【0021】

本発明の光スイッチングシステムにおいては、前記光制御部の照射面を複数の領域に分割し、該分割されたそれぞれの領域で独立かつ並列に光制御が行われることが好ましい。このように前記光制御部の照射面を複数の領域に分割して光制御を行えば、1つの面で1度に大量の信号光の光パルスを制御することができ、超高速動作を可能とすることができます。なお、本発明における「領域の分割」とは、物理的な分割を指すものではなく、光スイッチング作用を独立的に機能させる領域に分割することをいい、外見上は仮想的な分割となる。勿論、物理的に分割させても構わない。

【0022】

特に、前記光制御部の照射面の分割されたそれぞれの領域で独立かつ並列に、複数の信号光の光パルスを、1つの制御光の光パルスで制御する構成とすれば、制御光の繰り返し周波数を小さく抑えることができ（例えば、前記信号光の繰り返し周波数の $1/10$ 以下）、極めて高い繰り返し周波数の信号光を制御することが可能となる。そのような構成の光スイッチングシステムとしては、前記光制御部に照射される前記信号光を、分割された前記複数の領域の全域に渡るように、拡大して平行信号光に変換する平行化手段を有し、

【0023】

前記制御光照射手段から照射される前記制御光が、分割された前記複数の領域の全域に渡るような、進行方向に垂直な面内で広がりを有して（必要に応じて、前記平行信号光と所定の角度を以って）前記光制御部に照射される構成のものが挙げられる。

以上の如き、本発明の光スイッチングシステムによれば、制御光による高繰り返し信号光の光ピックアップおよび光分配を行うことができる。

【0024】

なお、極めて最近、本発明におけるカーボンナノチューブの高速応答特性と類似の現象が記述されたカーボンナノチューブの光応答特性に関する論文が発表され、同時に米国特許出願も為されている (Y. -C. Chen et al. Appl. Phys. Lett. 81 (2002) pp. 975-977, Y. P. Zhao et al., US Patent (Serial No: 10/074, 937) filed on 12 Feb. 2002)。

【0025】

しかし、上記文献で述べられているカーボンナノチューブ薄膜は、通信波長域である $1.55\text{ }\mu\text{m}$ での超高速光スイッチを目指したものではあるが、吸収が $2.1\text{ }\mu\text{m}$ にあるため共鳴から外れており、非線形光学性能は、本発明におけるカーボンナノチューブ薄膜の最大値の $1/1000$ 程度にとどまる。また、そもそも上記文献で述べられているカーボンナノチューブ薄膜は、ポリマー中へのカーボンナノチューブの分散膜であるため、 $1.55\text{ }\mu\text{m}$ における吸収係数も、本発明におけるカーボンナノチューブ膜の $1/100$ 程度と小さく、後述の実施形態で示されるような垂直入射型の光スイッチに適用するには困難を伴う。

これらのことから、本発明は、上記文献で述べられているカーボンナノチューブ薄膜および同薄膜を用いた光スイッチとは別構成であり、しかもそれに対してより高効率の超高速光スイッチを提供することができるものである。

【0026】

【発明の実施の形態】

以下、本発明を詳細に説明する。以下の説明においては、まず本発明に特徴的なカーボンナノチューブ薄膜について説明し、その特性についての評価を行った上で、2つの好ましい実施形態を挙げる。

【0027】

＜カーボンナノチューブ薄膜＞

一般にカーボンナノチューブには、炭素の6角網目構造のチューブが1枚の構造のシングルウォール・カーボンナノチューブと、多層（多重壁）の前記チューブから構成されているマルチウォール・カーボンナノチューブと、があり、本発

明においては、いずれを用いても構わないが、高い可飽和吸収機能を有するシングルウォール・カーボンナノチューブをカーボンナノチューブ薄膜中に含むことが望ましい。

【0028】

用いるカーボンナノチューブ、特にシングルウォール・カーボンナノチューブとしては、その直径が、0.8～1.3 nmの範囲であることが好ましい。直径が上記範囲のカーボンナノチューブを含むことで、有効に可飽和吸収の機能が発現される。カーボンナノチューブの直径のさらに好ましい範囲としては、1.1～1.3 nmの範囲である。

【0029】

本発明においては、1.5 μm帯に見られるカーボンナノチューブの1次元ファンホーベ特異点に起因する、バンド間遷移に伴う疑1次元エキシトンの光吸収を利用している。この吸収の波長はカーボンナノチューブの直径により大きく変化する。カーボンナノチューブのエネルギーギャップが、直径の逆数に比例するためである。したがって、吸収ピーク波長は、カーボンナノチューブの直径を変化させることで調整することができる。

【0030】

この吸収以外の1.5 μm帯のカーボンナノチューブの基礎吸収は、それほど大きくないため、たとえ、多種類のカーボンナノチューブが混在していたとしても、機能を発揮することができる。使用したい波長で当該吸収を示すカーボンナノチューブが相当量混入していれば、相応の光吸収が期待でき、他のカーボンナノチューブが吸収に大きな影響を与えないからである。しかし、著しく直径分布が広がれば、当該カーボンナノチューブ以外のカーボンナノチューブによる光吸収（これは、紫外にあるπプラズモンの裾吸収に当たるものなので、可飽和吸収の効果がない）が大きく影響を与え、得られる光学素子の性能を低下させてしまう場合がある。

【0031】

用いるカーボンナノチューブの製造方法としては、特に制限されるものではなく、触媒を用いる熱分解法（気相成長法と類似の方法。P. N i k o l a e v

et al. Chem. Phys. Lett. 313 (1999) pp. 91-97）、アーク放電法、およびレーザー蒸発法等、従来公知のいずれの製造方法を採用しても構わない。また、製造されたカーボンナノチューブ中の不純物を取り除き、純度を高めるために、精製を行っても構わない。

【0032】

以上の如きカーボンナノチューブが積層された薄膜を形成することで、カーボンナノチューブ薄膜が得られる。かかる薄膜の形成方法としては、最終的にカーボンナノチューブが積層された薄膜となるような形成方法であれば、特に制限されるものではなく、具体的には例えば、スプレー法、電気泳動製膜法、ポリマー分散法、キャストコーティング法、浸漬塗布法等が挙げられる。以下、これらの薄膜形成方法のうち前三者について述べる。

【0033】

(スプレー法)

前記スプレー法とは、カーボンナノチューブを分散媒に分散させた分散液を用い、これをスプレー塗布することにより薄膜を形成する方法であり、一般にスプレー塗布と称されるものである。

【0034】

カーボンナノチューブを適当な分散媒に分散させることで、分散液が調製される。用いることができる分散媒としては、アルコール、ジクロロエタン、ジメチルホルムアミド、クロロフォルム等が挙げられ、ジクロロエタン、ジメチルホルムアミドは分散性が非常に良好であり、得られる薄膜の膜質が良好でとなる点で好ましく、特にジメチルホルムアミドが好ましい。一方、アルコールは、揮発性が高い点で好ましい。かかるアルコールとしては、メタノール、エタノール、イソプロピルアルコール（IPA）、n-プロピルアルコール等が挙げられるが、これらのなかでも、特にエタノールが好ましい。

【0035】

なお、揮発性には劣るが他の性能が良好なジメチルホルムアミドやジクロロエタンを分散媒として用いる場合、スプレー塗布に際して、被塗物の温度を高く保ったり、スプレー量を減らして時間をかけて製膜する等の対処により、揮発性に

関する欠点も解消される。

【0036】

分散液の調製の際には、必要に応じて界面活性剤等の添加剤を用いることもあります。界面活性剤としては、一般に分散剤として用いられるものが好適に用いられる。好ましくは、極性を有するものや、化学的にカーボンナノチューブと結合しやすい官能基を有するもの等が挙げられる。

【0037】

分散液におけるカーボンナノチューブの濃度としては、特に限定されないが、分散媒としてジメチルホルムアミドを用いた場合には、1～2mg/mLの範囲とすることが好ましい。

【0038】

前記カーボンナノチューブおよび必要に応じて添加される前記添加剤を、前記分散媒に投入した後、前記カーボンナノチューブを均一に分散するために、分散媒は十分に攪拌しておくことが望ましい。攪拌に用いる装置としては、特に限定されず、攪拌羽根式攪拌装置、ニーダー、ロールミル、超音波分散器等が挙げられるが、なかでも超音波分散器が好ましい。

【0039】

以上のようにして得られた分散液を所定の被塗物にスプレー塗布する。スプレー塗布の手法としては、特に限定されず、公知の装置、条件等により行うことができ、例えば、エアブラシにより行うことができる。このとき、分散媒中のカーボンナノチューブは凝集しやすいため、エアブラシの液だめに超音波をかけて分散させることも効果がある。

【0040】

また、スプレー塗布において、被塗物の温度が低いと分散媒がなかなか蒸発せず、被塗物表面でカーボンナノチューブが凝集し、大きな塊となって、膜質が悪化する場合がある。したがって、ドライヤーで熱風を同時に吹き付けたり、ヒーターにより被塗物を直接加熱することにより、被塗物の温度を上げて、吹き付けた溶液が瞬時に蒸発するようにすることが好ましい。

【0041】

(電気泳動製膜法)

カーボンナノチューブをジメチルホルムアミド等スプレー法と同様の分散媒に、0.4～0.5mg/ml程度の濃度で分散し、そこに50質量%水酸化ナトリウム水溶液を1質量%（外添）程度加える。この分散液中に、1対の電極を1センチメートルほど離して挿入し、両電極間に直流電圧を印加する。電圧は20V程度とすることが好ましい。通電により、正の電極表面にカーボンナノチューブが泳動して、堆積し製膜される。すなわち、この方法においては、正の電極が被塗物となる。

【0042】

(ポリマー分散法)

前記ポリマー分散法とは、精製されたカーボンナノチューブをポリイミド、ポリスチレン等のポリマーの有機溶媒溶液中に分散し、それをスピンドルコーター等任意の塗布手段で被塗物表面に塗布する方法であり、当該方法によれば均一な膜が得られ、有効な手法である。ただし分散膜中のカーボンナノチューブの混合比率を高められない場合は、膜の吸収係数が低下するという欠点がある。

【0043】

使用可能なポリマーとしては、製膜可能なものであれば採用可能であるが、カーボンナノチューブへの影響が少ない、ポリスチレン等が好ましい。また、通信波長帯で吸収が小さいポリイミド等を用いることも有効である。有機溶媒としては、用いるポリマーを溶解し得るものを適宜選択すればよい。有機溶媒溶液中のポリマーの濃度は、塗布適性により適宜調整すればよい。

【0044】

(その他の方法)

カーボンナノチューブ製造装置内に基板等の被塗物を挿入し、直接被塗物表面にカーボンナノチューブを捕集するというのも効果的である。製膜後に、空气中酸化法により不純物であるアモルファスカーボンを除去し、真空中高温加熱昇華法により金属触媒を除去すれば、十分純度の高いカーボンナノチューブに精製可能であり、利用可能なカーボンナノチューブ薄膜を得ることができる。

【0045】

以上のようにして、カーボンナノチューブ薄膜が形成される。形成されるカーボンナノチューブ薄膜におけるカーボンナノチューブの付着量としては、当該カーボンナノチューブ薄膜に十分な可飽和吸収機能を発現させるためには、目的とする波長での透過率が、0.1～10%程度にすることが好ましく、1%程度にすることがさらに好ましい。また、具体的な膜厚としては、100～600nmの範囲内であることが好ましく、200～300nmの範囲内であることがより好ましい。

カーボンナノチューブ薄膜が形成される被塗物としては、ガラス基板や石英基板等の基板、光学材料または光学素子等が挙げられる。

【0046】

以上のようにして得られたカーボンナノチューブ薄膜は、赤外領域に複数の吸収波長域を示すものとなる。本発明においては、最も低エネルギーの吸収波長域を、通信波長領域である1.2～1.6μmの範囲内に調整することが望ましい。該吸収波長域は、用いるカーボンナノチューブの直径を適宜選択することで、調整することができる。

【0047】

以上の如きカーボンナノチューブ薄膜は、当該膜の可飽和吸収機能を共鳴領域で利用することにより、通信波長領域で高効率の動作が可能なものとなる。

このように、カーボンナノチューブ薄膜を通信波長領域における超高速光スイッチング材料として用いた場合、半導体材料に比べ次のような特徴を有すると考えられる。

【0048】

第一に、半導体素子のコストを極めて低く抑えることができる。カーボンナノチューブは、他の半導体材料に比べて比較的原材料が安価であり、大量生産が可能である。加えて半導体量子井戸のような真空プロセスによる量子構造形成過程を必要とせず、基板等の被塗物の表面に直接薄膜を形成するだけで済むことから、製造が簡単で歩留まりも良い。これらのことから半導体材料に比べ数桁低いコストで光学素子を製造することが可能であると予想される。

【0049】

第二に、大面積な薄膜を容易に得ることができる。従来の半導体材料で同様の機能を有する薄膜を形成しようとすると、ある程度大面積化することは可能であったとしても、そのためには、より大きな真空装置を必要とすることから製造コストが極めて高くなってしまう。カーボンナノチューブ薄膜の場合、スプレー塗布等簡易な塗布法により薄膜化が可能なことから、得られる膜面積に制限はなく、また形成操作自体も容易である。

【0050】

第三に、材料の耐久性としては、カーボンナノチューブが炭素原子の s p 2 共役結合という強固な結合のみから構成され、また電気伝導性が高く熱が溜まりにくいことから、極めて高い耐久性・耐光性が期待される。

また、カーボンナノチューブは、空気中において安定で、約 500℃まで燃えないため、空気中高温下で使用することができる。真空中では、1600℃まで構造を変化させないため、さらに高温で使用可能となる。

【0051】

<カーボンナノチューブ薄膜の特性>

次に、カーボンナノチューブ薄膜の特性（時間応答特性を含む。）についての評価を行った。

【0052】

カーボンナノチューブ薄膜を作製する材料には、シングルウォール・カーボンナノチューブを主成分とする材料を用いた。当該材料は、高圧下での気相触媒反応（触媒を用いる熱分解法）で製造されたもの（CNI社（C a r b o n N a n o t e c h n o l o g i e s I n c . ）製）である。この材料を濃度 0. 0 0 5 質量%でジメチルホルムアミドに分散させ、ガラス基板を加熱しながらスプレーすることで薄膜化した。

【0053】

得られたカーボンナノチューブ薄膜の吸収スペクトルと、分光エリプソメーターにより測定された屈折率分散曲線とを図 1 に示す。図 1 において、横軸は光の波長、左縦軸は吸光度（グラフの実線が対応）、右縦軸は屈折率（グラフの破線が対応）を示す。図 1 のグラフからわかるように、吸収ピーク波長は 1. 3 μm

で、分光エリプソメーターより求められた膜厚は270 nmであった。吸収ピーク波長から、カーボンナノチューブの直径は1.1 nmを中心に分布していると考えられる。なお、既述の通り吸収ピーク波長は、カーボンナノチューブの直径を変化させることで調整することができる。

【0054】

図1のグラフにおいて、光の波長1.2～1.6 μmで屈折率は1.1～1.6と低い値を示しているが、これはカーボンナノチューブ薄膜が稠密でなく多数の空孔を含んでいるため、空気との平均値が算出されたものと考えられる。膜厚と吸光度との関係についても同様で、カーボンナノチューブ薄膜が稠密であれば、遙かに大きな吸光度を示すものと予想される。

【0055】

次に、カーボンナノチューブ薄膜の吸収変化の時間応答特性について検証する。

カーボンナノチューブ薄膜の時間応答特性は、ポンプ・プロープ法により測定した。上記のようにして得られたカーボンナノチューブ薄膜に、中心波長1.3 μmの強いパルス光（ポンプ光）を照射し、ポンプ光に対し時間的差異を持たせて同じ中心波長を持つ弱いパルス光（プロープ光）を照射した。ポンプ光とプロープ光との照射時期を相対的に変化させて（相対時間差をつけて）、ポンプ光によりカーボンナノチューブ薄膜に誘起された吸収変化をプロープ光により観測した。この時用いたポンプ光、プロープ光は、チタン・サファイアレーザパルスを再生増幅し、Optical parametric amplifierにより通信波長帯の光に変換したものを用いた。パルス幅は約120 fs (fs = 10⁻¹⁵秒) で、ポンプ光とプロープ光との相対時間差は-2～10 psの間で変動させた。

【0056】

6.5 pJ/μm²のポンプ光を照射した際に、プロープ光により観測されたカーボンナノチューブ薄膜の吸収変化を、相対時間差に対してプロットしたグラフを図2に示す。時間原点（ポンプ光とプロープ光との相対時間差がない、すなわち両者が同時にカーボンナノチューブ薄膜に照射されるタイミング）で吸収飽和

和による吸光度の急激な減少が生じ、それが極めて短い時間内で回復していることがわかる。

【0057】

図3に、図2のグラフのプロットを指数関数的に減衰する2成分系の関数曲線を仮定してフィッティングさせた減衰曲線のグラフを示す。図3に示すように、減衰曲線はよくフィッティングされており、各々の成分の半減時定数は140 fsおよび640 fsと求められた。この結果は、時間原点での吸収変化の80%が回復するのに0.44 ps、90%が回復するのに0.69 psの時間しか要しないことを示している。

【0058】

なお、図2および図3のグラフにおいて、吸光度変化は、ポンプ光が存在しないときの透過光量に対する変化量として定義されていることから、時間原点で、透過光量は実際には約2倍に増加している。これらの結果から、ポンプ光を制御光、プローブ光を信号光と見立てれば、制御光により信号光を、1 ps以下のスイッチング速度、2倍のS/N比でオン・オフ制御できることがわかる。

【0059】

また、カーボンナノチューブ薄膜の、光の波長1.3 μmにおける3次非線形光学定数($\chi_{\text{I}}^{(3)}$)についても評価した。ここで「3次非線形光学定数」とは、材料の $\chi_{\text{I}}^{(3)}$ が大きいほど、同材料を光スイッチとして用いた場合の駆動エネルギーを低減できることを示す指標である。ただし、カーボンナノチューブ薄膜の場合、既述の如く膜が稠密でないため材料の能力の限界を表した値とはなっていないことに注意する必要がある。

【0060】

吸収飽和曲線、膜厚および屈折率を光学的に評価した結果、 $\chi_{\text{I}}^{(3)}$ は $-1.2 \times 10^{-15} (\text{m}^2/\text{V}^2)$ ($= -8.5 \times 10^{-8} (\text{esu})$) と求められた。カーボンナノチューブと同様に薄膜化が容易であり、かつ高い非線形性を示す有機非線形光学材料として知られているフタロシアニンの非線形光学定数が $10^{-10} \sim 10^{-12} \text{ esu}$ であることから、カーボンナノチューブは、赤外波長領域で既存有機非線形光学材料の100倍以上大きな $\chi_{\text{I}}^{(3)}$ を示し、さらに今後の膜質の改

善によっては従来の材料に比べ飛躍的に高性能な材料を形成できる可能性を持つことがわかる。

【0061】

<第1の実施形態>

図4は、本発明の光スイッチングシステムの一例である第1の実施形態を示す概略構成図である。図4において、10は光パルス列からなる信号光であり、12はクロック抽出部（クロック抽出手段）、14は制御光を照射する制御光源（制御光照射手段）、16はカーボンナノチューブが積層された薄膜であるCNT薄膜（光制御部）、18はフォトダイオードやCCD素子等の信号検出部（信号検出手段）である。

【0062】

信号光10は、外部の通信ネットワーク等から光ファイバなどにより伝送され取り出されて、本実施形態の光スイッチングシステムにより制御される。信号光10としては、本実施形態では、CNT薄膜16の吸収波長領域で $10^9\sim 10^{12}$ パルス／秒オーダーという高い繰り返し周波数の信号光パルス列のものである。また、高い非線形性能を実現するには光強度が強いことが望まれ、そのため用いる光パルスは $10^{-12}\sim 10^{-15}$ 秒オーダーの短い時間幅であることが望ましい。

【0063】

光ファイバなどから射出された信号光10は、まず、クロック抽出部12に入射する。クロック抽出部12は、本実施形態においては、3R-regenerator（「3R」とは、Re-amplification, Re-timing, Re-shapingを意味する。）を採用している。これは、信号光10のパルスの繰り返し周波数や時間幅等を修正して整形する機能を有し、その過程で信号光10のパルスのタイミングを計り、これと制御光源14からの制御光20のパルスを同期させるものである。勿論、本発明において、これら整形機能等は必須の構成ではなく、クロック抽出部12には制御光源14からの制御光20のパルスを信号光10のパルスと同期させる機能があれば十分であるが、ネットワークから取り出された信号光のパルスは、通常、微妙にその波形等が歪んで

おり、それを処理するに際して一般的にその整形を要し、しかもその整形時に信号光のパルスのタイミングを計ることができることから、クロック抽出部12として、3R-regeneratorを用いる本実施形態の態様が好ましい。

【0064】

3R-regeneratorとしては、例えば、P. Brindel et al. The 8th International workshop on Femtosecond Technology Abstracts (2000) pp. 19-22に記載のものが挙げられ、近年、80 Gbit/sで動作可能なものも、例えばM. Nakazawa et al. Electron. Lett. 35 (1999) pp. 1358-1359等の中で報告されている。

【0065】

制御光源14からは、クロック抽出部12からの信号により、信号光10のパルスと同期した制御光20のパルスが照射される。なお、このとき制御光源14は、クロック抽出部12内部に組み込まれていてもよいし、本実施形態のように外部光源としておき、これを抽出したクロック信号により変調してもよい。

【0066】

信号光10のパルスと同期した制御光20の繰り返し周波数としては、信号光10の繰り返し周波数の1/10以下であることが望ましく、1/1000以下とすることがより好ましい。1つの制御光20のパルスで複数の信号光10のパルスを制御するように装置構成することで、小さな繰り返し周波数の制御光20で、大きな繰り返し周波数の信号光10を制御することができる。したがって、信号光10として、超高速光パルスの制御が可能となる。

制御光20のパルスについても、高い非線形性能を実現するには光強度が強いことが望まれ、そのため用いる光パルスは10⁻¹²~10⁻¹⁵秒オーダーの短い時間幅であることが望ましい。

【0067】

次に、信号光10と制御光20は、CNT薄膜16に入射する。このときの基本動作は、以下の通りである。制御光20がない場合、CNT薄膜16の吸収の

ため信号光10はこれを透過することができない。一方制御光20が存在する場合、制御光20によりCNT薄膜16に吸収飽和が誘起され、一時的にCNT薄膜16の吸収が減少し信号光10はこれを透過することができる。

【0068】

この時、信号光10のパルス列の時間間隔を、CNT薄膜16の吸収変化の回復時間の、例えば3倍以上に設定し、2つの連続した信号光10のパルスがCNT薄膜16に照射され、かつ、その1つ目のパルスと同時に制御光20の1つのパルスのみが照射されることを想定すると、信号光10の2つの連続したパルスが双方とも透過することは不可能になる。その結果、制御光20のパルスと同時にCNT薄膜16に到達した信号光10のパルスのみがピックアップされて、CNT薄膜16を透過する。

【0069】

こうして選択的にCNT薄膜16を透過した信号光10'は、信号検出部18に到達し、フォトダイオードやCCD素子により電気信号への変換を受ける。なお、本発明において、この信号検出手段は、フォトダイオードやCCD素子等のように信号を検出して他の信号に変換する手段のほか、単に検出された光を光ファイバなどに再結合して伝送する手段であっても構わない。

こうして制御光による、高い繰り返し周波数を持つ信号光パルス列の光ピックアップ動作が可能になる。

【0070】

(第1の実施形態の機能の検証試験)

第1の実施形態に類似した光スイッチングシステム（1入力1出力型）を作製し、その超高速吸収変化の動作を確認することで、第1の実施形態の光スイッチングシステムの機能を検証した。なお、当該検証試験では、機能実証を主目的としたため、クロック抽出は行わず、同一光源からの光をハーフミラー等により分離することで生成した2つの光を、信号光および制御光と見立てる（擬似信号光および擬似制御光）こととした。

【0071】

本検証試験に用いた1入力1出力型の光スイッチングシステムの概略構成図を

特願2002-241820

図5に示す。図5において、36が光制御部としてのCNT薄膜、38が信号検出手段としてのCCD素子であり、信号光と見立てられる40sが、制御光と見立てられる40pにより、制御されるように構成される。実際には、ハーフミラー22a～22c、ミラー24a～24h、ND（ニュートラルデンシティ）-22a～22c、および1/2波長板28、28'等を組み合わせて配置するフィルター26、および1/2波長板28、28'等を組み合わせて配置することで、1つの光源からの光40を、分割し、強度や偏光方向を調整し、かつタイミングを合わせて、擬似信号光40sと擬似制御光40pを作り出している。

【0072】

CNT薄膜36には、1.3μmに吸収極大を持つ、前記<カーボンナノチューブ薄膜の特性>の項で作製したカーボンナノチューブ薄膜を用いた。また、光40には、チタン・サファイアレーザパルスを再生増幅し、Optical parametric amplifierにより、波長1.3μmの光に変換したもの（パルス幅は約120fsで、1kHz繰り返しのパルス列）を用いた。

【0073】

光40は、まずハーフミラー22aで2つに分割される。分割された光のうち一方（40α）は、複数のレトロリフレクター（ハーフミラー22b～22c、ミラー24d～24h）を用いて、1THz繰り返しに相当する2連パルス列に変換し、擬似信号光40sとした。パルス間隔は、1THz繰り返しに相当する1psとした。この時、信号検出のため、1/2波長板28により、2つのパルスの偏光方向を直交させた（図5におけるxおよびy）。

【0074】

また、分割された光のうちの他の一方（40β）は、NDフィルター26により光量が調整され、擬似制御光40pとした。この時、直交した2つの信号光に同等の非線形効果を与えるため、1/2波長板28'により偏光させ（図5におけるz）、擬似信号光40sの2つのパルス（図5におけるxおよびy）に対して偏光方向が45°になるようにずらした。

【0075】

なお、ハーフミラー22aで光40を2つに分割する際の、光の強度の分配割

合は、擬似信号光40sとなる40 α に対して、擬似制御光40pとなる40 β の強度が9倍になるようにした。

焦点距離120mmの平凸レンズ30に、擬似信号光40sおよび擬似制御光40pを照射させ、CNT薄膜36表面で直径150 μm のスポットになるよう両光とも集光させた。

【0076】

なお、本発明においては、本検証試験のように、光制御部に照射される信号光や制御光を光制御部の照射面で集光することが好ましい。光制御部に照射される信号光を集光することで強度を高めると、信号光の光制御部におけるスループットを向上させることができる。一方、光制御部に照射される制御光を集光することで強度を高めると、光制御部の吸収飽和に十分な請うエネルギーとすることで強度を高めると、容易となり、その分、制御光照射手段から照射する制御光の強度を抑えることができる。エネルギー効率を向上させることができ。信号光および制御光のいずれかでも集光すれば、集光した効果が得られるので、いずれか一方の集光手段で2つの光を集光することとしても構わないが、それぞれ別の集光手段を設けても構わない。換言すれば、既述の「第1の集光手段」と「第2の集光手段」とは、別々のものであってもよいし、本検証試験のように1つの集光手段で第1および第2の2つの集光手段を兼ねても構わない。

【0077】

本検証試験では、擬似信号光40sおよび擬似制御光40pともCNT薄膜36表面でのスポット直径が150 μm であるが、本発明においては、集光された信号光、および／または、集光された制御光の光制御部の照射面におけるスポット直径が、10～200 μm の範囲内とすることが好ましく、10～50 μm の範囲内とすることがより好ましい。

【0078】

話を本検証試験に戻す。

CNT薄膜36表面に照射される際の擬似信号光40sと擬似制御光40pとの成す角は約20°とし、擬似制御光40pのパルスを擬似信号光40sの2つ

のパルスのいずれかに同期するように、ミラー24a, 24bの配置を調整してタイミングを計った。そして、擬似信号光40sの透過成分をフィルター32により擬似制御光40pをカットし、偏光子34を通してCCD素子38で受光した。この受光した信号を観測し、その偏光方向により、擬似信号光40sの2連のパルスのどちらが透過したかを判別した。

【0079】

検証試験の結果、擬似制御光40pに同期した擬似信号光40sのパルスのみが選択的にCNT薄膜36を透過したことが確認された。これは、制御光に見立てる擬似制御光40pによって誘起されたCNT薄膜36の吸収変化が、超高速で回復したことにより、信号光に見立てられる擬似信号光40sの近接したパルスのうち、一方のみが選択的に透過したことを示しており、本検証試験によって、超高速の光スイッチングシステムが構成できることが検証された。

【0080】

なお、本検証試験において、同期信号パルス（擬似制御光と同期して透過した擬似信号光のパルス）と非同期信号パルス（擬似制御光と同期せず透過できなかつて透過光の光強度の比は、擬似制御光40pの光強度が約 $6 \text{ pJ}/\mu\text{m}^2$ のとき、約 $1.5/1$ （同期信号パルス/非同期信号パルス）であった。また、擬似信号光40sの透過損失は約17dBであった。

【0081】

<第2の実施形態>

次に、本発明の光スイッチングシステムの他の一例である第2の実施形態について説明する。本実施形態の光スイッチングシステムは、光制御部の照射面を複数の領域に分割し、該分割されたそれぞれの領域で独立かつ並列に光制御が行われることで、単一制御光により空間的に光分配することが可能なシステムである。これは、本発明者らによる特開平11-015031号公報に記載の発明である。光分配装置に、光スイッチ（超高速光スイッチ）の材料として、前記カーボンナノチューブ薄膜を採用したものである。まず、その動作原理について説明する。

。

【0082】

図6は、本実施形態のシステムの動作状態を説明するための断面から見た模式図である。十分に波面の広がった信号光150をカーボンナノチューブ薄膜からなる光制御部156に対して垂直に入射させる（例として、図6においては6連のパルスの場合を示している。）。一方、同様に波面を広げたパルス状の制御光160を、光制御部156に対して傾斜した方向から入射させる（図6（A））。

【0083】

光制御部156の傾斜による制御光160の光路差のため、ある瞬間においては、光制御部156の照射面を複数の領域に分割した光スイッチ列のうち、唯一の光スイッチ154のみを作動させることができ（図6（B））。

【0084】

光制御部156上に到達している信号光150は、制御光160と交差する位置である光スイッチ154のみが作動しているため、当該箇所のみが切り出され、制御光160の光制御部156上への到達時間の違いから、信号光150の各パルスは異なる空間位置で切り出される（図6（C））。

【0085】

空間的に並列に切り出された出力信号光152は、信号検出手段158の各素子上に平面的に割り振ることが可能となり、信号検出手段158により別々に読み出される（図6（D））。

【0086】

以上の動作原理を応用した本実施形態の光スイッチングシステムの概略構成図を図7に示す。ただし、上記動作原理では、信号光の6連のパルスを直線的に切り出す様で説明したが、本実施形態では、光遅延器を用いることで、信号光の8連のパルスを 4×2 の平面的に切り出す様である。

【0087】

図7において、50は光パルス列からなる信号光である。また、62はクロック抽出部（クロック抽出手段）、64は波面を広げたパルス状の制御光を照射する制御光源（制御光照射手段）、56はカーボンナノチューブが積層された薄膜であるCNT薄膜（光制御部）、58はフォトダイオードやCCD素子等の信号

検出部（信号検出手段）であり、これらは基本的に第1の実施形態と同様の構成のものである（ただし、制御光源64では、波面を広げたパルスを照射できる機能が要求される。）。

【0088】

本実施形態においては、さらに、CNT薄膜56に照射される信号光50を、CNT薄膜56の照射面の仮想的に分割された複数の領域（4×2）の全域に渡るように、拡大して平行信号光50'に変換するレンズ（平行化手段）66と、波面を広げた制御光のパルスのうち、半分の面積のパルスを光遅延させる光遅延器68と、を有する。

【0089】

信号光50は、外部の通信ネットワーク等から光ファイバなどにより伝送され取り出されて、まず、クロック抽出部62に入射する。信号光50は、第1の実施形態と同様であり、クロック抽出部62の機能も第1の実施形態と同様であるため、その詳細な説明は省略する。信号光50は、レンズ66により拡大されて平行信号光50'に変換される。レンズ66としては、例えば凹レンズと凸レンズとの組み合わせが挙げられるが、信号光50を拡大して平行信号光50'に変換し得る機能を有していればよく、さらにレンズでなくても構わない。

【0090】

制御光源64からは、クロック抽出部62からの信号により、信号光50のパルスと同期した制御光60のパルスが照射される。制御光60は、既述の通り、波面を広げたパルス状のものであるが、信号光50と同様、1次元的なパルス光をレンズ等により拡大して波面を広げたもので構わない。

【0091】

信号光50のパルスと同期した制御光60の繰り返し周波数としては、信号光50の繰り返し周波数の1/10以下であることが望ましく、1/1000以下とすることがより好ましい。1つの制御光60のパルスで複数の信号光50のパルスを制御するように装置構成することで（本実施形態では、光制御部であるCNT薄膜56の照射面の分割領域の数を、「信号光50の繰り返し周波数」÷「制御光60の繰り返し周波数」とすることで）、小さな繰り返し周波数の制御光

60で、大きな繰り返し周波数の信号光50を制御することができる。したがって、信号光50として、超高速光パルスの制御が可能となる。

制御光60のパルスについても、高い非線形性能を実現するには光強度が強いことが望まれ、そのため用いる光パルスは10-12~10-15秒オーダーの短い時間幅であることが望ましい。

【0092】

本実施形態における光スイッチ動作について、説明する。図8は、本実施形態における光スイッチ動作を説明するための概念図である。パルス状の光である信号光50が展開され、シート状の平行信号光50' とされた、8連の光パルス50' - 1 ~ 50' - 8は、順に光制御部であるCNT薄膜56に正面から入射する。一方、空間的に展開されたパルス状の制御光60もCNT薄膜56に、信号光50（平行信号光50'）の進行方向と所定の角度θで斜めから入射するが、この時、光遅延器68により部分的に時間遅延を与え、異なった時間にCNT薄膜56の各位置に到達する制御光60' となる。具体的には、図8における上段の光パルス60' - 1に対して下段の光パルス60' - 2が、信号光50（平行信号光50'）の4パルス分の時間、遅延させられてCNT薄膜56に入射するよう調整される。

【0093】

CNT薄膜56の照射面は、図に示されるように、8つの領域（4×2）に仮想的に分割されている。平行信号光50' および制御光60' は、分割された前記8つの領域の全域に渡るような、進行方向に垂直な面内で広がりを有する光となっている。

【0094】

クロック抽出部62による制御光60の同期は、具体的には、平行信号光50' の先頭のパルスである光パルス50' - 1がCNT薄膜56の照射面に達した時に、制御光60' の上段の光パルス60' - 1がCNT薄膜56の照射面における1の領域に到達するようにタイミングが調整される。また、制御光60' の進行方向は、平行信号光50' の4つ目のパルスである光パルス50' - 4がCNT薄膜56の照射面に達した時に、制御光60' の上段の光パルス60' - 1

がC N T薄膜56の照射面における4の領域に到達するように角度 θ が調整される。すると、C N T薄膜56の照射面における1～4の各領域において、平行信号光50'の上段のパルスである光パルス50'－1～50'－4が順次切り出される。

【0095】

さらに、制御光60'の下段の光パルス60'－2は、上段の光パルス60'－1に対して、平行信号光50'の4パルス分の時間、遅延しているので、これがC N T薄膜56の照射面における5の領域に到達する時には、平行信号光50'の5つ目のパルスである光パルス50'－5が同時に到達し、切り出される。そして、上段のパルスと同様に下段のパルスも、光パルス50'－5～50'－8の順で切り出される。そして、空間的に切り出された8つのパルスからなる出力信号光52となって、信号検出部58に到達し、フォトダイオードやCCD素子により電気信号への変換を受ける。この時、信号検出部58では、平面的に独立して分割された各領域(1～8)でそれぞれ信号を検出するので、信号検出部58の装置の時間特性を、パルス間隔での時間応答から大幅に緩和することができる(本実施形態では、パルス間隔の8倍)。すなわち、繰り返し周波数の高い信号光を1つの制御光で処理することができ、かつ検出することができる。

【0096】

このように、本実施形態によれば、シリアル信号である信号光を、単一の制御光により並列複数出力に変換することが可能である。すなわち、カーボンナノチューブ薄膜を用いることで、特開平11-015031号公報に記載の発明である光分配装置を通信波長帯で動作させることができることになる。

【0097】

なお、本実施形態では、信号光の8連のパルスを 4×2 の平面的に切り出す様で説明したが、光制御部の照射面の分割 $m \times n$ をより多くし、光遅延器による制御光の遅延の段数も2段からn段に増やし、制御光の入射角 θ を光制御部の照射面の横方向の分割mに合わせて調整してやれば、極めて多く($m \times n$)の信号光のパルスを1つの制御光のパルスで処理することができる。これについては特開平11-015031号公報に記載の通りである。

【0098】

(第2の実施形態の機能の検証試験)

第2の実施形態に類似した光スイッチングシステム（1入力多出力型）を作製し、その超高速吸収変化の動作を確認することで、第2の実施形態の光スイッチングシステムの機能を検証した。なお、当該検証試験では、機能実証を主目的としたため、クロック抽出は行わず、同一光源からの光をハーフミラー等により分離することで生成した2つの光を、信号光および制御光と見立てる（擬似信号光および擬似制御光）こととした。この点は、（第1の実施形態の機能の検証試験）と同様である。また、CNT薄膜86には、 $1.3\text{ }\mu\text{m}$ に吸収極大を持つ、前記<カーボンナノチューブ薄膜の特性>の項で作製したカーボンナノチューブ薄膜を用いた。なお、光70には、（第1の実施形態の機能の検証試験）における光40と同一のものを用いた。

【0099】

本検証試験に用いた1入力多出力型の光スイッチングシステムの概略構成図を図9に示す。図9において、86が光制御部としてのCNT薄膜、88が信号検出手段としてのInGaAs fotodiode array、96が平行化手段としてのレンズであり、信号光と見立てられる70sが、制御光と見立てられる70pにより、制御されるように構成される。実際には、ハーフミラー72a～72d、ミラー74a～74m、およびNDフィルター76等を組み合わせて配置することで、1つの光源からの光70を、分割し、強度を調整し、かつタイミングを合わせて、擬似信号光70sと擬似制御光70pを作り出している。本実施形態では8連パルスを2次元状に空間分離した例を示したが、本検証試験では1次元状の分離を行い、4連の光パルス列とした。

【0100】

光70は、まずハーフミラー72aで2つに分割される。分割された光のうちの一方（70a）は、複数のレトロリフレクター（ハーフミラー72b～72d、ミラー74f～74m）を用いて、1THz繰り返しに相当する4連パルス列に変換し、擬似信号光70sとした。パルス間隔は、1THz繰り返しに相当する1psとした。

【0101】

また、分割された光のうちの他の方（70β）は、NDフィルター76により光量が調整され、擬似制御光40pとした。

なお、ハーフミラー72aで光70を2つに分割する際の、光の強度の分配割合は、擬似信号光70sとなる70αに対して、擬似制御光70pとなる70βの強度が4倍になるようにした。

【0102】

擬似信号光70sは、レンズ（平行化手段）96により拡大され空間的に展開されて平行擬似信号光70s'となり、CNT薄膜86に垂直に入射する。その際、CNT薄膜86の照射面で仮想的に分割された4つの領域に対応した平行擬似信号光70s'をそれぞれ、焦点距離120mmのレンズアレイ90a～90dにより、CNT薄膜86の照射面で1mm間隔、直径140μmの4つのスポット状になるよう集光した。なお、本発明において、信号光について集光することの意義や好ましい態様等は、（第1の実施形態の機能の検証試験）の中で説明した通りである。

【0103】

また信号光に対し17.5°傾いた方向から、擬似信号光70sに同期させて擬似制御光70pが入射するように、ミラー74a～74eの配置を調整した。擬似制御光70pは、焦点距離120mmのシリンドリカルレンズ80により、CNT薄膜86の照射面で150μm×5mmの横長のストライプ状になるよう集光した。なお、本発明において、制御光について集光することの意義や好ましい態様等は、（第1の実施形態の機能の検証試験）の中で説明した通りである。

【0104】

ストライプ状の擬似制御光70pとCNT薄膜86の照射面とが交わるスポットで、CNT薄膜86の吸収が減少するが、このスポットは擬似制御光70pの進行に伴いCNT薄膜86の照射面上を移動する。擬似制御光70pの照射スポットは、異なる時間に各擬似信号光70sの照射スポットと重なるが、それらが重なった照射スポットにおける擬似信号光70sのパルスのみがCNT薄膜86を透過する。既述の如く、CNT薄膜86の吸収回復が十分に速いため、2つ以

上の連続するパルスは、C N T薄膜86の同一の照射スポットを透過できず、擬似信号光70sの各パルスは、空間的に異なる位置で観測され光分配が行われる。なお、擬似信号光70sの進行方向と擬似制御光70pの進行方向との為す角度は、擬似信号光70sの1ps間隔の各パルスが1mmピッチで空間分離されるよう設定した。

【0105】

透過した出力擬似信号光92は、InGaAsフォトダイオードアレイ88により検出した。光分配の確認は、擬似信号光70s'においてレトロリフレクターの一部を遮ることで形成した出力擬似信号光92の信号パターンを、InGaAsフォトダイオードアレイ88の出力変化を観測することで行った。

【0106】

検証試験の結果、出力擬似信号光92における遮られた領域に対応した位置のInGaAsフォトダイオードアレイ88の出力が変化することから、1THz相当の擬似信号光70s'の光パルス列が空間的に分離されていることを確認された。なお、本検証試験において、同期信号パルスと非同期信号パルスとの透過光の光強度の比は、擬似制御光70pの強度が6.5pJ/ μm^2 のとき、約2/1（同期信号パルス/非同期信号パルス）であった。また、擬似信号光40sの透過損失は約21dBであった。

【0107】

以上、本発明の光スイッチングシステムについて、2つの実施形態を挙げて説明したが、本発明はこれらに限定されるものではなく、本発明の構成を具備する限り、従来公知の如何なる構成をも転用および/または付加することができる。特に、上記2つの実施形態における具体的な数値は、いずれも構成を説明するために便宜的に用いたものであり、本発明を具現化するに当たり、当業者は、所望とする作用・効果に応じて自由に設計することができる。

【0108】

なお、上記検証試験は原理実証を主目的とした基本的構成によるものであり、ここで得られたシステム特性は、S/N比、スループットとともに十分なものであるとまでは言えないが、カーボンナノチューブ薄膜の膜質やデバイス形態の改善

により、性能向上が可能である（勿論、従来公知の知見の範疇での改善でも、性能向上が可能である。）。

【109】

【発明の効果】

本発明によれば、通信波長領域で超高速動作が可能な光スイッチングシステムを、極めて低コストで提供可能であり、また、大面積薄膜材料の提供による新規な構成が採用可能であるなど、通信波長領域の超高速光スイッチングシステム形成において寄与するところが極めて大きい。

【図面の簡単な説明】

【図1】 カーボンナノチューブ薄膜の特性の評価の試験において、カーボンナノチューブ薄膜における光の波長に対する、吸収スペクトルと、分光エリプソメーターにより測定された屈折率分散曲線とを示すグラフである。

【図2】 カーボンナノチューブ薄膜の特性の評価の試験において、ポンプ光を照射した際に、プローブ光により観測されたカーボンナノチューブ薄膜の吸収変化を、相対時間差に対してプロットしたグラフである。

【図3】 図2のグラフのプロットを指数関数的に減衰する2成分系の関数曲線を仮定してフィッティングさせた減衰曲線のグラフである。

【図4】 本発明の光スイッチングシステムの一例である第1の実施形態を示す概略構成図である。

【図5】 第1の実施形態の検証試験に用いた1入力1出力型の光スイッチングシステムの概略構成図である。

【図6】 本発明の光スイッチングシステムの他の一例である第2の実施形態のシステムの動作状態を説明するための断面から見た模式図である。

【図7】 第2の実施形態の光スイッチングシステムを示す概略構成図である。

【図8】 第2の実施形態における光スイッチ動作を説明するための概念図である。

【図9】 第2の実施形態の検証試験に用いた1入力多出力型の光スイッチングシステムの概略構成図である。

【符号の説明】

10, 10', 50, 150 信号光、12, 62 クロック抽出部、1
4, 64 制御光源（制御光照射手段）、16, 36, 56, 86 CNT薄
膜（光制御部）、18, 58 信号検出部（信号検出手段）、20, 60,
160 制御光、22a～22c, 72a～72d ハーフミラー、24a
～24d, 74a～74m ミラー、26, 76 NDフィルター、28,
28' 1/2波長板、30 平凸レンズ（第1の集光手段、第2の集光手段
）、32 フィルター、34 偏光子、38 CCD素子（信号検出手段
）、40, 70 光、50' 平行信号光、52, 152 出力信号光、
66 レンズ（平行化手段）、68 光遅延器、80 シリンドリカルレ
ンズ（第2の集光手段）、88 フォトダイオードアレイ（信号検出手段）、
90a～90d レンズアレイ（第1の集光手段）、92 出力擬似信号光
、154 光スイッチ、158 信号検出手段

【書類名】 図面

【図 1】

カーボンナノチューブ薄膜の吸収スペクトルおよび屈折率分散曲線

【図2】

カーボンナノチューブ薄膜の吸収変化の時間応答特性

【図3】

カーボンナノチューブ薄膜の時間応答特性のフィッティング結果

【図4】

【図5】

【図6】

【図 7】

【図8】

【図9】

【書類名】 要約書

【要約】

【課題】 カーボンナノチューブを光学的応用に供して、通信波長領域で超高速動作が可能で、各種要求を高い次元で満足し得る光スイッチングシステムを提供すること。

【解決手段】 光パルス列からなる信号光10が照射される光制御部16と、信号光10と同期したパルス状の制御光20を光制御部16に照射して、信号光10中の光パルス列を選択的に透過させて出力信号光10'を形成する制御光照射手段14と、制御光照射手段14が照射する制御光20を信号光10に同期させるクロック抽出手段12と、出力信号光10'を受光する信号検出手段18と、を有する光スイッチングシステムであって、光制御部16が、カーボンナノチューブが積層された薄膜により構成されることを特徴とする光スイッチングシステムである。

【選択図】 図4

特願 2002-241820

出願人履歴情報

識別番号

[000005496]

1. 変更年月日

[変更理由]

住 所

氏 名

1996年 5月29日

住所変更

東京都港区赤坂二丁目17番22号

富士ゼロックス株式会社