SCHOOL OF ENGINEERING, ELECTRICAL AND ELECTRONIC ENGINEERING

Ronald van Buuren April 2023

NET4 PROGRAM BY WEEK

- 1. 1st order RC networks discharging DC source
- 2. 1st order RC networks charging –DC source
- 3. RL networks Steady-state DC
- 4. RL networks Switched DC source
- 5. RC & RL networks complementary solution
- 6. <spare week>
- 7. Sample Exam

CAPACITOR & INDUCTOR RELATIONS

	Capacitor	Inductor
Voltage	$v = \frac{1}{C} \int i(t)dt$	$v = L \frac{di}{dt}$
Current	$i = C \frac{dv}{dt}$	$i = \frac{1}{L} \int v(t) dt$
Power	$P(t) = v(t) \cdot i(t)$	
Energy	$W(t) = \frac{1}{2}Cv^2(t)$	$W(t) = \frac{1}{2}Li^2(t)$
Energy stored in:	Electric field	Magnetic field

WEEK B: CHARGING A CAPACITOR

$$C\frac{dv_C(t)}{dt} + \frac{v_C(t) - V_s}{R} = 0$$

$$v_C(t) = V_s - V_s e^{-t/\tau}$$

$$\tau = RC$$

STEADY STATE

- Stable (steady) situation
- (at $t = \infty$)
- DC Steady State: circuit stabilises to fixed (DC) values
 - Inductor: consider to be a short circuit
 - Capacitor: consider to be open (i.e. no connection)

EXAMPLE: DC STEADY STATE

At t = 0 we close the switch

EXAMPLE SOLVED:

Equivalent circuit at $t = \infty$

$$i_x = V/(R_1 + R_2) = 1 A$$

$$v_x = R_2 / (R_1 + R_2) \times V = 5 \text{ V (voltage division)}$$

EXERCISE (1)

Find the DC Steady-state values of v_a and i_a :

EXERCISE (1) SOLVED

Find the DC Steady-state values of v_a and i_a :

EXERCISE (2)

Find the DC Steady-state values of i_1 and i_2 :

Copyright ©2014 Pearson Education, publishing as Prentice Hall

EXERCISE (2) SOLVED

Find the DC Steady-state values of i_1 and i_2 :

Copyright ©2014 Pearson Education, publishing as Prentice Hall

PROBLEMS FOR THIS WEEK

- P4.22
- P4.23
- P4.25
- P4.28
- P4.30