SE103 Programming Logic Thinking

Operator

Agenda

- Precedence
- Arithmetic Operator
- Logical Operator
- Relational Operator

What is the result?

$$x = 7 + 3 * 6$$
a) $x=10*6$
=60
b) $x=7+18$
=25

Precedence

• The priority of calculation

• Order to do calculation

Order	Operators	Order of evaluation
1	()	Deeper first
		Left to right
2	*,/, modulus	Left to right
3	+, -	Left to right

Precedence

- You have to complete from the highest priority to the lowest priority.
- One level of priority at a time
- Only when all of the operator of a level priority is completely evaluated, we move to the next lower level.

$$(1+(1+3)-4)+2-(1+5)$$

Operators and Sequential Programming

Operation and Sequential Programming

• The set of declared variable

Move along the flow and perform the defined operation

SE103 Programming Logic Thinking

Relational Operator and Logical Operator

Conditi TRUE FALSE Do something 3

Repetition structure

Condition

- Boolean value
 - TRUE
 - FALSE
- You cannot use the other data type to be a Boolean vale.
- You need to create a open statement to used as a condition.

Open statement

• The open statement is:

"a statement is open when it is unknown if it is TRUE or FLASE."

• The unknown result value is a result of the presence of variables.

• The truth value is unknown until the value is assigned to the variable.

Open statement

X > 10

Statement

• If x is 11,

•If x is 9,

• The result is **TRUE**.

•The result is FALSE.

If user inputs 9

X>10 produces FALSE

Program says "Hi"

If user inputs 11

X>10 produces TRUE

Program says "Hello"

Statement

- Each data type has different operation
 - Just like the arithmetic operations.
- Binary operator
 - Always 2 operands
- The statement can be constructed by using:
 - Lesser thanLesser than or equal to
 - Greater than
 - Greater than or equal to
 - Equal to
 - Not equal to

• Convert the following statement into flowchart.

"you will get B if you get score higher than 70 but lesser than 80. Otherwise, you will get other grade."

• The condition can be broken down into 2 minor statements.

The score is higher than 70.

score >70

The score is lesser than 80.

score < 80

• Both of the statement must be true.

Logical Operators

- A type of operator for logical value
- In most programming language, there are 3 logical operators :
 - Not operator
 - Or operator
 - And operator

Logical Operators : NOT

- Unary operator
- Convert the value into the opposite

NOT (operand)

Operand	Result
True	False
False	True

Logical Operators

- Binary operator
- In ALICE, it is referred as
 - EITHER operand1 OR operand2

operand1 OR operand2

Operand1	Operand2	Result
True	True	True
False	True	True
True	False	True
False	False	False

Logical Operators

- Binary operator
- In ALICE, it is referred as
 - BOTH operand1 AND operand2

operand1 AND operand2

operand1	operand2	Result
True	True	True
False	True	False
True	False	False
False	False	False

Mixed Precedence

Order	Operators	Order of evaluation
1	()	Deeper first
		Left to right
2	NOT	Right to left
3	*, / , modulus	Left to right
4	+, -	Left to right
5	<, ≤, ≥ , >	Left to right
6	==, ≠	Left to right
7	AND	Left to right
8	OR	Left to right

$$(2+(1+(1+2))) > 4$$
 and $(2+2>3)$
 $(2+(1+3)) > 4$ and $(2+2>3)$
 $(2+4) > 4$ and $(2+2>3)$

6 > 4 and true

True and true

True

Score > 70 and Score < 80

Activity

• 5.0-3.0*2.0/4.0 > 2.0+3.0/2.0 OR 4.0<3.0 AND 1.0*2.0+3.0>4.0

• What is the result?

A&Q

