RFIC Homework 1

Name: CHEN Li Student ID: 5092119006

2012/09/24

Problem 1

(a)

Verify the above equation for at least three stages.

For stage 1

$$N_1 = G_1 N_i + N_{n1} (1)$$

For stage 2

$$N_2 = G_2 N_1 + N_{n2} (2)$$

For stage 3

$$N_3 = G_3 N_2 + N_{n3} (3)$$

Combine the above 3 equations

$$N_3 = G_1 G_2 G_3 N_i + G_2 G_3 N_{n1} + G_3 N_{n2} + N_{n3}$$

$$\tag{4}$$

If we view the whole 3 stages as 1 stage

$$N_3 = G_1 G_2 G_3 N_i + N_{n123} (5)$$

Compare equation 5 with 4, we can derive that

$$N_{n123} = G_2 G_3 N_{n1} + G_3 N_{n2} + N_{n3} (6)$$

For stage 1

$$F_1 = 1 + \frac{N_{n1}}{GNi} \tag{7}$$

which is equivalent to

$$N_{n1} = (F_1 - 1)G_1 N_i (8)$$

For stage 2

$$N_{n2} = (F_2 - 1)G_2N_i (9)$$

For stage 3

$$N_{n3} = (F_3 - 1)G_3N_i (10)$$

So if we view the whole 3 stages as 1 stage

$$N_{n123} = (F_{total} - 1)G_1G_2G_3N_i (11)$$

Combine equation 11 with 6

$$G_2G_3N_{n1} + G_3N_{n2} + N_{n3} = (F_{total} - 1)G_1G_2G_3N_i$$
(12)

Combine equation 12 with 8,9,10

$$G_2G_3(F_1-1)G_1N_i+G_3(F_2-1)G_2N_i+(F_3-1)G_3N_i=(F_{total}-1)G_1G_2G_3N_i$$
 (13)

divide both sides by $G_1G_2G_3N_i$ we will get

$$F_1 - 1 + \frac{F_2 - 1}{G_1} + \frac{F_3 - 1}{G_1 G_2} = F_{total} - 1 \tag{14}$$

which is equivalent to

$$F_1 + \frac{F_2 - 1}{G_1} + \frac{F_3 - 1}{G_1 G_2} = F_{total} \tag{15}$$

(b)

Calculate the overall Noise Figure of the three cascaded amplifiers shown in Figure 1.

$$F_{total} = F_1 + \frac{F_2 - 1}{G_1} + \frac{F_3 - 1}{G_1 G_2}$$

$$= 10^{\frac{3}{10}} + \frac{10^{\frac{7}{10}} - 1}{10^{\frac{7}{10}}} + \frac{10^{\frac{15}{10}} - 1}{10^{\frac{7}{10}} * 10^{\frac{10}{10}}}$$

$$= 2.00 + 0.80 + 0.61$$

$$= 3.41$$

$$= 5.32dB$$

(c)

If you would like to design an amplifier with a power gain of 50dB from two separate amplifiers, each with the characteristics depicted in Figure, find the optimal order and explain why.

To achieve a low NF F_{total} , G1 should be larger but the dominant NF F_1 should be smaller.

$$F_{total} = F_1 + \frac{F_2 - 1}{G_1} \tag{16}$$

case 1

stage 1 G_1F_1 stage 2 G_2F_2

$$F_{total1} = F_1 + \frac{F_2 - 1}{G_1}$$

$$= 10^{\frac{1.7}{10}} + \frac{10^{\frac{1.3}{10}} - 1}{10^{\frac{30}{10}}}$$

$$= 1.48$$

$$= 1.70dB$$

case 2

stage 1 G_2F_2 stage 2 G_1F_1

$$F_{total2} = F_2 + \frac{F_1 - 1}{G_2}$$

$$= 10^{\frac{1.3}{10}} + \frac{10^{\frac{1.7}{10}} - 1}{10^{\frac{20}{10}}}$$

$$= 1.35$$

$$= 1.31dB$$

 $F_{total1} > F_{total2}$, so the optimal order is stage 1 G_2F_2 and stage 2 G_1F_1

Problem 2

 A_{1dB}

$$x(t) = A \cos \omega t$$

$$y(t) = a_1 x(t) + a_2 x^2(t) + a_3 x^3(t)$$

$$= a_1 A \cos \omega t + a_2 A^2 \cos^2 \omega t + a_3 A^3 \cos^3 \omega t$$

the third-order part of output

$$a_{3}A^{3}\cos^{3}\omega t = a_{3}A^{3}\cos\omega t * \frac{1}{2}(1 + \cos 2\omega t)$$

$$= a_{3}A^{3}(\frac{1}{2}\cos\omega t + \frac{1}{2}\cos\omega t * \cos 2\omega t)$$

$$= a_{3}A^{3}(\frac{1}{2}\cos\omega t + \frac{1}{4}\cos\omega t + \frac{1}{4}\cos 3\omega t)$$

$$= a_{3}A^{3}(\frac{3}{4}\cos\omega t + \frac{1}{4}\cos 2\omega t)$$

the equivalent first-order part of output is $a_3A^3(\frac{3}{4}\cos\omega t)(a_3<0)$ A_{1dB} is the point when the nominal first-order part minus real first-order equals 1dB

$$(a_1 A \cos \omega t + \frac{3}{4} a_3 A^3 \cos \omega t) - A \cos \omega t = -1dB$$
$$20 \log \left(1 + \frac{3}{4} \frac{a_3}{a_4} A^2\right) = -1dB$$

thus

$$A_{1db} = \sqrt{\frac{4}{3} \left| \frac{a_1}{a_3} \right|} * \sqrt{0.109} \tag{17}$$

 A_{IP3}

$$x(t) = A\cos\omega_1 t + A\cos\omega_2 t$$

$$y(t) = a_1 x(t) + a_2 x^2(t) + a_3 x^3(t)$$

the third-order part of output

$$a_3 x^3(t) = a_3 (A \cos \omega_1 t + A \cos \omega_2 t)^3$$

= $a_3 (A^3 \cos^3 \omega_1 t + A^3 \cos^3 \omega_2 t + 3A^3 \cos^2 \omega_1 t \cos \omega_2 t + 3A^3 \cos \omega_1 t \cos^2 \omega_2 t)$

only consider the $2\omega_1 - \omega_2$ and $2\omega_2 - \omega_1$ component

$$3a_3A^3\cos^2\omega_1t\cos\omega_2t = \frac{3}{2}a_3A^3(1+\cos 2\omega_1t)\cos\omega_2t$$
$$= \frac{3}{2}a_3A^3(\cos\omega_2t + \frac{1}{2}(\cos(2\omega_1+\omega_2) + \cos(2\omega_1-\omega_2)))$$

thus the $2\omega_1-\omega_2$ and $2\omega_2-\omega_1$ components are $\frac{3}{4}a_3A^3\cos{(2\omega_1+\omega_2)}$, $\frac{3}{4}a_3A^3\cos{(2\omega_1-\omega_2)}$, $\frac{3}{4}a_3A^3\cos{(2\omega_2+\omega_1)}$ and $\frac{3}{4}a_3A^3\cos{(2\omega_2-\omega_1)}$

the ω_1 and ω_2 components are $a_1A\cos\omega_1t$ and $a_1A\cos\omega_2t$

 A_{IP3} is the point when the $2\omega_1-\omega_2$ and $2\omega_2-\omega_1$ components equal the ω_1 and ω_2 components

$$\frac{3}{4}a_3A_{IP3}^3 = a_1A_{IP3} \tag{18}$$

thus

$$A_{IP3} = \sqrt{\frac{4}{3} \left| \frac{a_1}{a_3} \right|} \tag{19}$$

thus the relation between A_{1db} and A_{IP3} is

$$A_{1db} = A_{IP3} * \sqrt{0.109} \tag{20}$$