Kinematics of Davinai's links (without wrist)

A vizid body frame is now attached to each link, according to the D-H communtion.

di	ઇ દ	ð i,	≪ i.	
-e ωs(σ)	91	e sin(o)	TL/2	
0	82	Ь	٥	
0	θ3	e	٥	
0	04	$b \sin(x)$	$\pi_{/2}$	
d ₅	0	0	0	
9 = (0, 02 03 04 d5) T				

The motion of joints 2,3 and 4 is constrained to produce a "remote center of motion".

That is, 24 always intersects Po at a distance of do = b cosy from P4. As a consequence, the parallelogram PoPaP2P3 is formed. The parallelogram's propreties

are now used to solve the Kinematic constraints. In particular, we find that

- (i) Adjacent angles add up to T, and
- (ii) Opposite angles are equal. These angles are computed from $\theta_2, \theta_3, \theta_4$ as $\alpha = \theta_2 \nabla \pi/2, \beta = \theta_3 + \pi, \alpha = \theta_4 + 8 + \pi/2.$

Thus, from (i) and (ii), we find

$$\theta_3 = -\theta_2 + \sigma + \frac{\pi}{2} \quad , \quad \theta_4 = \theta_2 - \sigma - \gamma - \pi \quad .$$

These constraints can now be introduced in the D-H Table. The reduced set of coordinates is here notated as

$$\overline{q} = (\theta_1 \theta_2 d_S)^T$$
.

di	0 :	a i	ď i.	
-eco	01	e so	TC/2	
0	9 2	Ь	0	
0	$-\theta_2+6+\frac{\pi}{2}$	e	٥	
0	02-5-8-1	65g	$TL_{/2}$	
ds	0	0	0	
$q = \left(\theta_1 \theta_2 -\theta_2 + \zeta + \frac{\pi}{2} \theta_2 - \zeta - \gamma - \pi d_5\right)$				

Home configuration (joint offsets) It will be very useful to affset the pravious D-H coordinates. Here, the offsetted wordinates, \bar{q} , are related to the praxions reduced coordinates through $\bar{q} = \bar{q} + affset$.

Placing the manipulator in the illustrated

configuration and specifying $\bar{q}=0$ for this configuration, yields offset = $(\pi, \pi+\gamma, be_7)^T - (0,0,0)$.

We may now raplace q=q+offset in the D-H Table, as follows.

· Relation with the reduced links formulation

Note that the previous offset choice was not arbitrary.

Recall the previous reduced DH*, without the wrist, as illustrated. Then, since the home configurations, $q^2=0$ and $q^2=0$, represent identical configurations, in both joint diagrams, and the joint directions are equal, we can conclude that $q^2=q^2$, or,

$$\theta_1' = \theta_1'$$
, $\theta_2' = \theta_2'$, $\theta_5' = \theta_3'$.

$$\frac{d_{1}}{d_{2}} = 0$$

$$\frac{d_{2}}{d_{3}} = 0$$

$$\frac{d_{3}}{d_{4}} = 0$$

$$\frac{d_{1}}{d_{5}} = 0$$

* See the class notes from Lab. 3.

Newton - Enler Formulation

· Forward Remosion (wi , wi , più) , i = 1,..., n

$$\omega_{i}^{i} = \begin{cases} R_{i}^{i-1} w_{i-1}^{i-1} & \text{of is prismatic} \\ R_{i}^{i-1} (w_{i-1}^{i-1} + q_{i} \hat{k}) & \text{of is revolute} \end{cases}$$

$$\hat{\omega}_{i}^{\lambda} = \begin{cases} R_{i}^{\lambda-1} \hat{\omega}_{i-1}^{\lambda-1} & \text{of is prismatic} \\ R_{i}^{\lambda-1} \hat{\nabla} (\hat{\omega}_{i-1}^{\lambda-1} + \hat{q}_{i} \hat{\kappa} + \hat{q}_{i} \hat{\omega}_{i-1}^{\lambda-1} \times \hat{\kappa}) & \text{of is revolute} \end{cases}$$

$$\ddot{p}_{i}^{2} = \begin{cases} R_{i}^{i-1}^{i-1} + \ddot{q}_{i} \dot{R} + 2\dot{q}_{i} \dot{w}_{i}^{i} \times (R_{i}^{i-1} \dot{R}) \\ + \dot{w}_{i}^{i} \times (R_{i}^{i-1} \dot{r}_{i-1,i}^{i-1}) + \dot{w}_{i}^{i} \times (w_{i}^{i} \times (R_{i}^{i-1} \dot{r}_{i-1,i}^{i-1})) \\ R_{i}^{i-1} \ddot{p}_{i-1}^{i-1} + \dot{w}_{i}^{i} \times (R_{i}^{i-1} \dot{r}_{i-1,i}^{i-1}) \\ + \dot{w}_{i}^{i} \times (w_{i}^{i} \times (R_{i}^{i-1} \dot{r}_{i-1,i}^{i-1})) \end{cases} , q_{i} \text{ is rest.}$$

$$\vec{p}_{c_{\hat{i}}}^{i} = \vec{p}_{\hat{i}}^{i} + \hat{\omega}_{\hat{i}}^{i} \times \vec{r}_{\hat{i},c_{\hat{i}}}^{i} + \hat{\omega}_{\hat{i}}^{i} \times (\hat{\omega}_{\hat{i}}^{i} \times \vec{r}_{\hat{i},c_{\hat{i}}}^{i})$$

· Backward Recurssion (fi, hi), i=n,...,1

$$f_{i}^{\lambda} = M_{i} p_{c_{i}}^{\lambda} + R_{\lambda+1}^{i} f_{\lambda+1}^{\lambda+1}$$

$$p_{i}^{\lambda} = \overline{T}_{i}^{\lambda} \dot{W}_{i}^{\lambda} + W_{i}^{\lambda} \times (\overline{T}_{\lambda}^{\lambda} \dot{W}_{i}^{\lambda})$$

$$+ R_{\lambda+1}^{\lambda} p_{\lambda+1}^{\lambda+1} - r_{\lambda,c_{\lambda}}^{\lambda} \times (R_{\lambda+1}^{\lambda} f_{\lambda+1}^{\lambda+1})$$

$$+ (R_{i}^{\lambda-1} r_{\lambda-1,i}^{\lambda-1} + r_{\lambda,c_{\lambda}}^{\lambda}) \times f_{i}^{\lambda}$$

· Voint exis projection

$$T_{i} = \begin{cases} \hat{k}^{T} R_{i}^{i-1} f_{i}^{i} & \text{if } i \text{ prismatic} \\ \hat{k}^{T} R_{i}^{i-1} \mu_{i}^{i} & \text{if } i \text{ prismatic} \end{cases}$$

· Example - Polar Manipulator (9th Set of Problems)

· Implementation in mottob/simulink

The agustions of motion can be partitioned as follows,

$$\mathcal{B}(q)\ddot{q} + C(q,\dot{q})\dot{q} + g(q) = T$$
 $\Rightarrow 3(q)\ddot{q} + \phi(q,\dot{q}) + g(q) = T$.

Acceleration objection dynamics dynamics dynamics dynamics

A function can be crusted to simbolically compute t, through

Then, for afficiency sake, the provious partitions can be created through

Then, the mass matrix is determined through B= ata/aq.

mottabFunctionBlock () is now used to create a simuliak model.

