AMATH 353: Homework 8

Due May, 2 2018

ID: 1064712

Trent Yarosevich

May 1, 2018

Instructor: Jeremy Upsal

Part 1

a.) Assuming solutions of the form u(x,t) = G(t)F(x) and the PDE $u_{tt} + u_{xx} = 0$ we get the following:

$$G''(t)F(x) = -F''(x)G(t)$$

$$\frac{G''(t)}{G(t)} = -\frac{F''(x)}{F(x)} = \lambda$$
(1)

The two equations are equal to the constant λ because neither the RHS or LHS is in terms of its independent variable. This results in the two ODEs:

$$G''(t) = \lambda G(t)$$

$$F''(x) = -\lambda F(x)$$
(2)

b.) Assuming solutions of the form u(x,t) = G(t)F(x) and the PDE $u_t = \kappa u_{xx}$ we get the following:

$$G'(t)F(x) = \kappa F''(x)G(t)$$

$$\frac{G'(t)}{G(t)} = \kappa \frac{F''(x)}{F(x)} = \lambda$$
(3)

The two equations are equal to the constant λ as above, yielding the two ODEs:

$$G'(t) = \lambda G(t)$$

$$F''(x) = \frac{\lambda}{\kappa} F(x)$$
(4)

Part 2

a.) Starting with the equation $u_{tt} + u_{xx} = 0$ we have the following x dependent ODE and three cases for λ :

$$F''(x) = -\lambda F(x) \tag{5}$$

lambda = 0

In this case we have F''(x) = -0*F(x). Integrating twice gives F(x) = A + Bx. With the BC u(0,t) = 0 we get F(0) = A + B(0) = 0 and thus A = 0. With the other BC $u_x(L,t) = 0$ and F'(L) = B we must conclude that B = 0 as well, yielding only trivial solutions, so $\lambda = 0$ is not an allowed value.

 $\lambda > 0$

In this case we have $F''(x) = -\lambda F(x)$ where λ is a positive real number. Let $\lambda = r^2$, with $r \in \mathbb{R}_{>0}$. Then by characteristic polynomial we get following, per Euler's Formula:

$$F(x) = C_1 e^{irx} + C_2 e^{-irx}$$

$$F(x) = C_1 \cos(rx) + C_2 \sin(rx)$$
(6)

We then apply the BC u(0,t) = 0:

$$F(0) = C_1 \cos(0) + C_2 \sin(0) = 0$$

$$C_1 = 0$$

$$F(x) = C_2 \sin(rx)$$
(7)

And then the second BC:

$$F'(x) = C_2 r \cos(rx)$$

$$F'(L) = C_2 r \cos(rL) = 0$$
(8)

Because $\cos(x)=0$ at odd multiples of $\frac{\pi}{2}$ it follows that to satisfy the second BC without setting $C_2=0$ that we must have the argument of cosine, $rL=\frac{\pi(2n-1)}{2}$ where n>0 is a positive integer. Thus with positive eigenvalues λ we have the eigenfunctions:

$$F_n(x) = C_n \sin(\frac{\pi(2n-1)x}{2L} , n \in \mathbb{Z}^+$$
(9)

 $\lambda < 0$

In the same fashion as above, but now let $\lambda = -r^2$, $r \in \mathbb{R}_{>0}$. From characteristic polynomial we then get:

$$F(x) = C_1 e^{rx} + C_2 e^{-rx} (10)$$

Applying the first BC we get:

$$F(0) = C_1 e^0 + C_2 e^{-0} = 0$$

$$C_1 + C_2 = 0$$

$$C_2 = -C_1$$

$$F(x) = C(e^{rx} - e^{-rx})$$
(11)

Then applying this to the second BC:

$$F'(x) = C(re^{rx} + re^{-rx})$$

$$F'(L) = C(re^{rL} + re^{-rL}) = 0$$

$$e^{rL} = -e^{-rL}$$
(12)

Since there is no possibility of $e^{rL}=-e^{-rL}$, this means the only way to satisfy the BCs with $\lambda<0$ is to have C=0, yielding a trivial solution. Thus $\lambda<0$ is not an allowed value.

b.) We now consider the same possible values for λ for the second equation from above, and the ODE for x:

$$u_t = \kappa u_{xx}$$

$$F''(x) = \frac{\lambda}{\kappa} F(x) \tag{13}$$

 $\lambda = 0$

Similarly to the previous equation, setting $\lambda=0$ and integrating twice gives us

$$F(x) = A + Bx \tag{14}$$

which gives only trivial solutions in a manner identical to above, Part 2, subsection a.).