Machine Learning in Finance

Challenges, Solutions, and Future Prospects

A Comprehensive PhD-level Overview

Report Date: 2025-09-05

Presented by
Chae-Shick Chung
Dept. of Economics, Sogang Univ.

Why Machine Learning Matters in Finance

Overcoming Human Limitations in Financial Decision-Making

Human Decision-Making Limitations

Emotional Biases

Humans, influenced by emotions and biases, often struggle with objective, fact-based financial decisions, especially with conflicts of interest.

Pattern Recognition Limitations

Human brains are adapted to 2D/3D, limiting their ability to recognize complex patterns in high-dimensional financial data.

Automated Decision-Making

Next-gen automation makes judgmental decisions, surpassing human emotional constraints.

Machine Learning Advantages

Objective Decision-Making

ML algorithms provide objective, optimized decisions by overcoming human emotional biases.

High-Dimensional Pattern Recognition

ML excels at recognizing patterns in high-dimensional spaces (e.g., 100D), beyond human capacity.

Robust Decision Framework

ML offers systematic, consistent decision-making for complex financial markets.

Generative AI (LLMs)

LLMs (e.g., GPT-5) parse unstructured financial data (statements, news) into structured datasets, surpassing human analytical limits.

Sentiment Analysis 2.0

Foundation models integrate multi-modal signals (text, audio,

The Sisyphus Paradox Challenge

Collaborative Strategy Development and Its Pitfalls

The Paradox

Problem Description

Can 50 discretionary investment managers or 50 PhDs collaborate to develop an investment strategy? This often leads to overfitting backtests, factor models, or other issues.

Manifestations

Overfitting Backtests

Strategies that perform perfectly on historical data but fail in actual markets due excessive curve-fitting to noise.

Factor Model Limitations

Reliance on limited known factors that fail to capture the complexity of market dynamics.

"Squeezing the Towel" Effect

The opportunity to find "alpha" in the market rapidly converges to zero, making it difficult to sustain.

Meta-Strategy Paradigm Challenge

Lack of Systematic Approach to Investment Strategy Development

The Challenge

Lack of Systematic Methodology

Investment strategy development lacks a systematic approach like a flowchart or automotive production line, relying instead on individual contributions.

Fragmented Responsibility

Individuals often don't take responsibility for the overall strategy development, each contributing their part without coordination.

Missing Unity

Lack of unified approach leads to inconsistent strategies that fail to adapt to changing market conditions.

The Solution: Meta-Strategy

Caissa Capitol's Approach

Successful implementation in options trading using a meta-strategy that systematically integrates multiple models and evaluation standards.

Meta-Strategy Integration

Practical Implementation

Using "half a dozen different volatility models for option pricing, and evaluating performance according to 30 different standards."

Data Quality and Technical Challenges

Garbage In, Garbage Out: Overcoming Financial ML Obstacles

Data Quality

ML performance relies on data quality. Financial data is complex, noisy, and hard to acquire.

Solutions:

- Process unique, hard-to-manipulate data
- Structure data correctly
- Generate informative labels
- Identify predictive features

Software Customization

Financial tasks need custom tools. Standard libraries offer shared advantages, limiting competitive edge.

Solutions:

- Develop custom code
- Tailor functions per task
- Customize tools for problems

Hardware Challenges

ML is computationally intensive, requiring significant resources.

Solutions:

- ❷ Become HPC expert
- Collaborate with labs
- Master parallel computing
- Explore quantum computing

Synthetic Data Generation

GANs and diffusion models create realistic financial time-series data, addressing sparsity and privacy.

Solutions:

- Overcome data scarcity
- Preserve data privacy
- Enhance model robustness

Mathematical vs. Experimental Approaches

The Trade-off in Financial Machine Learning

√x Mathematical Approach

- Proofs take years/decades/centuries to develop.
- Investors cannot wait that long for solutions.
- A Rigorous proofs often come too late for practical decisions.
- Focuses on certainty over practical utility.

Experimental Approach

- Solves problems via experimentation, not proof.
- Uses memory retention data transformation.
- Applies experimental strategy evaluation.
- Uses distributed computing and quantum methods.

Practical Solutions for Time-Sensitive Investment Decisions

- Adopt experimental mathematics for difficult problems.
- Implement memory retention data transformation.
- Al models (e.g., AlphaGeometry) assist in proving/approximating theoretical finance results.
- Use experimental methods for poor backtesting.
- Leverage experimental strategy evaluation.
- MARL enables 'what-if' market experiments before empirical testing.

The Overfitting Problem

Why standard validation methods fail in finance

Problem Definition

- X Standard cross-validation methods often fail in finance
- X Many "discoveries" are false due to multiple testing

Ethical Implications

- Overfitting is both unethical and wasteful of time
- Every backtest is somewhat overfitted

Solutions

- Quantify the degree of overfitting
- Use robust asset allocation techniques

ML Production Chain in Finance

Specialized Roles in the Financial ML Pipeline

Data Curators

Microstructure & Protocols

Feature Analysts

Signal Transformation

Strategists

Algorithm Development

Backtesting

Empirical Validation

Deployment

Product Integration

Data Curators

- · Collect, clean, index data
- · Store and adjust data
- · Focus on microstructure
- · Handle bond, forex, stock data

Deployment

- Integrate strategy code
- Algorithm implementation
- System integration
- · Real-time execution

Feature Analysts

- · Convert data to signals
- Information theory expertise
- Signal extraction techniques
- Feature importance analysis

Strategists

- Develop ML algorithms
- Incorporate theories:
- · Behavioral bias
- - Asymmetric information

Backtesting

- Test scenarios and paths
- Focus on overfitting issues
- Address second-order errors
- Validate robustness

LLM Copilots

- Assist strategists
- Suggest feature engineering
- Stress-test models
- Draft research notes

Multi-Agent Systems

- Simulate heterogeneous investors
- · Simulate central bank decisions
- Stress-test strategies under diverse beliefs

AutoML & Orchestration

- Automated hyperparameter tuning
- Workflow orchestration (LangGraph, Ray)
- Shorten deployment cycles

Machine Learning vs. Traditional Methods

Bridging Algorithmic and Human Decision-Making

Machine Learning

- Learns patterns in high-dimensional space without explicit guidance.
- Complements theory by discovering complex patterns.
- Adapts to new data and changing market conditions.

Quantamental Approach

Combines quantitative analysis with fundamental analysis.

Requires investment managers to work with ML algorithms.

Traditional Methods

- Econometrics: Applies classic statistical methods, lacks learning.
- Requires explicit formulation of relationships.
- Struggles with complex, high-dimensional data patterns.

L Human-in-the-Loop

"In ML applied to high-frequency trading, there will always be a 'human in the loop'."

- Necessary for complex, rapidly changing domains.
- When applied properly, can be powerful and scalable.

器 Neuro-Symbolic Al

Combines ML pattern discovery with symbolic economics models for enhanced interpretability.

Explainable AI (XAI)

SHAP, counterfactual reasoning, and causal ML increase trust in black-box models.

Core Problems and Solutions Matrix

Key ML Challenges in Finance and Their Solutions

Category	Challenges (Pitfalls)	Solutions
Epistemologica	Backtesting	Feature Importance Analysis
Data Processing	Time clock	Volume clock
Data Processing	Stationarity	Fractional diff.
Classification	Fixed time	Triple barrier
Classification	Learning side and size	Meta-labelling
Classification	Non-iid	Weighting; Bootstrapping

Prerequisites for Financial Machine Learning

Multidisciplinary Knowledge Required for Successful Application

Core ML Knowledge

Financial Domain Knowledge

Technical Skills

Machine Learning Algorithms

Pattern recognition, feature learning, and prediction methods

Statistics

Statistical analysis and probability theory for data interpretation

Linear Algebra

Vector spaces and matrices for data representation and transformation

Convex Optimization

Optimal portfolio construction and risk management

Market Microstructure

Order books, liquidity dynamics, and trading mechanisms

Portfolio Management

Asset allocation and risk-adjusted returns

Mathematical Finance

Stochastic calculus and financial derivatives pricing

Econometrics

Time series analysis and statistical modeling

Signal Processing

Time series analysis and pattern recognition

Information Theory

Entropy and information gain for feature selection

OOPs

Object-oriented programming for system development

Parallel Processing

High-performance computing for ML workloads

Future Research Directions

Emerging Areas in Financial Machine Learning

Meta-Strategy Dev.

- Systematic, methodology-driven strategy development
- · Identify cross-asset features
- Combine multiple predictions
- Robust out-of-sample methods

Overfitting Solutions

- Develop powerful backtesting techniques
- Quantify & mitigate overfitting
- Robust validation for financial models
- Address Sisyphus Paradox

Hardware Optimization

- High-quality data acquisition
- Custom tool development
- HPC infrastructure
- Quantum computing apps

Experimental Math

- Solve complex, hard-to-prove problems
- Experimental over mathematical proofs
- Data-driven pattern discovery

Quantum Computing

- Financial optimization
- Complex portfolio optimization
- Risk analysis & management
- High-dimensional parameters

Generative Agents

- Simulate heterogeneous investors
- Stress-test monetary policy
- Analyze market microstructure

Graph AI (TGNNs)

- Systemic risk analysis
- Supply-chain contagion
- Financial interdependence

AI Governance & Ethics

- Ensure fairness & transparency
- Regulatory alignment
- Ethical AI deployment

Hybrid Quantum-Al

- Quantum-enhanced optimization
- Deep reinforcement learning
- Complex portfolio strategies