日本 国 特 許 庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2003年 3月24日

出願番号 Application Number:

特願2003-080221

[ST. 10/C]:

[J P 2 0 0 3 - 0 8 0 2 2 1]

出 願 人
Applicant(s):

富士写真フイルム株式会社

特許庁長官 Commissioner, Japan Patent Office 2004年 4月23日

【書類名】

特許願

【整理番号】

P044143

【提出日】

平成15年 3月24日

【あて先】

特許庁長官殿

【国際特許分類】

C09D 11/00

B41J 2/01

B41M 5/00

【発明者】

【住所又は居所】

静岡県富士宮市大中里200番地 富士写真フイルム株

式会社内

【氏名】

田口 敏樹

【発明者】

【住所又は居所】

静岡県富士宮市大中里200番地 富士写真フイルム株

式会社内

【氏名】

小川 学

【特許出願人】

【識別番号】

000005201

【氏名又は名称】

富士写真フイルム株式会社

【代理人】

【識別番号】

100105647

【弁理士】

【氏名又は名称】 小栗 昌平

【電話番号】

03-5561-3990

【選任した代理人】

【識別番号】 100105474

【弁理士】

【氏名又は名称】 本多 弘徳

【電話番号】

03-5561-3990

【選任した代理人】

【識別番号】

100108589

【弁理士】

【氏名又は名称】 市川 利光

【電話番号】

03-5561-3990

【選任した代理人】

【識別番号】

100115107

【弁理士】

【氏名又は名称】 高松 猛

【電話番号】

03-5561-3990

【選任した代理人】

【識別番号】

100090343

【弁理士】

【氏名又は名称】 栗宇 百合子

【電話番号】

03-5561-3990

【手数料の表示】

【予納台帳番号】 092740

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

要約書

【包括委任状番号】 0003489

【プルーフの要否】

要

【書類名】

明細書

【発明の名称】 インクジェット用インクセットならびにインクジェット記録方法

【特許請求の範囲】

【請求項1】少なくとも2種のインクからなるインクセットにおいて、少なくとも1つのインクにベタイン化合物を含有し、少なくとも1つの前記とは別のインクにノニオン界面活性剤を含有することを特徴とするインクセット。

【請求項2】ベタイン化合物の少なくとも1つが下記一般式(1)で表される化合物であることを特徴とする第1項記載のインクセット。

一般式(1)

$$(R^k)_p - N - [L^m - (COOM)_q]_r$$

式中、Rは、水素原子、アルキル基、アリール基、ヘテロ環基を表す。Lは2個の連結基を表す。Mは水素原子、アルカリ金属原子、アンモニウム基、プロトン化された有機アミンもしくは含窒素ヘテロ環基、4級アンモニウムイオン基を表し、式中のN原子からなるアンモニウムイオンの対イオンとなる場合は、カチオンとして存在しない基を表す。qは1以上の整数を表し、rは1以上4以下の整数を表す。kは0以上4以下の整数を表し、mは1以上の整数を表す。pは0以上4以下の整数を表し、p+rは3もしくは4である。p+rが4である場合はN原子はプロトン化されたアンモニウム原子となる。mが2以上の時はLは同じでも異なっていてもよい。qが2以上の時はCOOMは同じでも異なっていてもよい。rが2以上の時はLm-(COOM)qは同じでも異なっていてもよい。kが2以上の時はRは同じでも異なっていてもよい。pが2以上の時はRkは同じでも異なっていてもよい。

【請求項3】該ノニオン界面活性剤が下記一般式 $(2) \sim (4)$ 記載の化合物であることを特徴とする、請求項1または2項記載のインクジェット用インクセット。

【化1】

一般式(2)中、R₂₁は炭素数 $5\sim4$ 0のアルキル基を表す。 m^1 はエチレンオキシドの平均付加モル数を表し、 $2\sim4$ 0である。

【化2】

一般式(3)中、R₂₂は炭素数 $5\sim4$ 0のアルキル基を表す。 m^2 はエチレンオキシドの平均付加モル数を表し、 $2\sim4$ 0である。

【化3】

一般式(4)

一般式 (4) 中、 R_{31} 、 R_{32} はそれぞれ独立に、炭素数 $1\sim1$ 8のアルキル基を表す。 R_{33} は水素原子、炭素数 $1\sim6$ のアルキル基、またはフェニル基を表す。Xは水素原子、または

【化4】

$$R_{34}$$
 $\begin{vmatrix} R_{34} \\ -C-R_{35} \\ 0-\{CH_2CH_2O\}_{m4} \end{vmatrix}$ R_{36}

を表し、R₃₄、R₃₅はそれぞれ独立に、炭素数 $1\sim1$ 8のアルキル基を表す。R₃₆は水素原子、炭素数 $1\sim6$ のアルキル基、またはフェニル基を表す。 m^3 、 m^4 はそれぞれエチレンオキシドの平均付加モル数を表し、 m^3+m^4 は $0\sim1$ 00である。

ここで、 $m^3=0$ のとき R_{33} は水素原子を表し、 $m^4=0$ のとき R_{36} は水素原子を表す。またXが水素原子のとき m^3 は $1\sim100$ を表す。

【請求項4】少なくとも2種のインクからなるインクセットにおいて、少なくとも1つのインクにベタイン化合物を含有し、少なくとも1つの前記とは別の

インクにベタイン化合物及びノニオン界面活性剤を含有することを特徴とする請求項1~3のいずれかに記載のインクセット。

【請求項5】請求項1~4のいずれかに記載のインクセットを使用して、インクジェットプリンターにより画像記録を行うことを特徴とするインクジェット記録方法。

【発明の詳細な説明】

 $[0\ 0\ 0\ 1]$

【発明の属する技術分野】

本発明は、高湿条件下における画像の耐久性に優れたインクセットならびにインクジェット記録方法に関する。

[0002]

【従来の技術】

近年、コンピューターの普及に伴い、インクジェットプリンターがオフィスだけでなく家庭で紙、フィルム、布等に印字するために広く利用されている。

インクジェット記録方法には、ピエゾ素子により圧力を加えて液滴を吐出させる方式、熱によりインク中に気泡を発生させて液滴を吐出させる方式、超音波を用いた方式、あるいは静電力により液滴を吸引吐出させる方式がある。これらのインクジェット記録用インク組成物としては、水性インク、油性インク、あるいは固体(溶融型)インクが用いられる。これらのインクのうち、製造、取り扱い性・臭気・安全性等の点から水性インクが主流となっている。

[0003]

これらのインクジェット記録用インクに用いられる着色剤に対しては、溶剤に対する溶解性が高いこと、高濃度記録が可能であること、色相が良好であること、光、熱、空気、水や薬品に対する堅牢性に優れていること、受像材料に対して定着性が良く滲みにくいこと、インクとしての保存性に優れていること、毒性がないこと、純度が高いこと、さらには、安価に入手できることが要求されている。しかしながら、これらの要求を高いレベルで満たす着色剤を捜し求めることは、極めて難しい。既にインクジェット用として様々な染料や顔料が提案され、実際に使用されているが、未だに全ての要求を満足する着色剤は、発見されていな

いのが現状である。カラーインデックス(C. I.)番号が付与されているような、従来からよく知られている染料や顔料では、インクジェット記録用インクに要求される色相や堅牢性とを両立させることは難しい。これまで、良好な色相を有し、堅牢な染料について検討を進め、インクジェット用着色剤として優れたものの開発を進めてきた。しかしながら水溶性染料という化合物には必ず水溶性基が置換している。インクの安定性を向上させるためにこの水溶性基の数を増加させると、形成された画像が高湿条件下でにじみやすいという問題があることがわかった。

発明者は、このにじみ現象を克服するために、ベタイン化合物の利用が有効であることを見出した。

しかしながら、ベタイン化合物を使用したインクがある場合、インクセットに おいて他のインクに含まれる界面活性剤の種類によってはにじみは改良されるが 、色が混合した高濃度部での色材の析出が起こり、ブロンズ光沢の画像が生成し たり、ビーディング現象が起きやすくなったりすることがわかってきた。

[0004]

【発明が解決しようとする課題】

本発明が解決しようとする課題は、高湿条件下でも画像のにじみを起こしにくいインクジェット用セットならびにインクジェット記録方法を提供することである。

[0005]

【課題を解決するための手段】

本発明の課題は、下記1~3項のインクジェット用インク、インクセットなら びにインクジェット記録方法によって達成された。

- 1) 少なくとも2種のインクからなるインクセットにおいて、少なくとも1つのインクにベタイン化合物を含有し、少なくとも1つの前記とは別のインクにノニオン界面活性剤を含有することを特徴とするインクセット。
- 2) ベタイン化合物の少なくとも1つが下記一般式(1) で表される化合物であることを特徴とする第1項記載のインクセット。

一般式(1)

$$(R^k)_p - N - [L^m - (COOM)_q]_r$$

式中、Rは、水素原子、アルキル基、アリール基、ヘテロ環基を表す。Lは2個の連結基を表す。Mは水素原子、アルカリ金属原子、アンモニウム基、プロトン化された有機アミンもしくは含窒素ヘテロ環基、4級アンモニウムイオン基を表し、式中のN原子からなるアンモニウムイオンの対イオンとなる場合は、カチオンとして存在しない基を表す。qは1以上の整数を表し、rは1以上4以下の整数を表す。kは0以上4以下の整数を表し、mは1以上の整数を表す。pは0以上4以下の整数を表し、p+rは3もしくは4である。p+rが4である場合はN原子はプロトン化されたアンモニウム原子となる。mが2以上の時はLは同じでも異なっていてもよい。qが2以上の時はCOOMは同じでも異なっていてもよい。kが2以上の時はRは同じでも異なっていてもよい。pが2以上の時はRは同じでも異なっていてもよい。

3) ノニオン界面活性剤が下記一般式(2)~(4) 記載の化合物であることを 特徴とする、第1または2項記載のインクジェット用インクセット。

【化5】

[0007]

一般式(2)中、 R_{21} は炭素数 $5\sim40$ のアルキル基を表す。 m^1 はエチレンオキシドの平均付加モル数を表し、 $2\sim40$ である。

【化6】

[0009]

一般式(3)中、 R_{22} は炭素数 $5\sim40$ のアルキル基を表す。 m^2 はエチレンオキシドの平均付加モル数を表し、 $2\sim40$ である。

[0010]

【化7】

一般式(4)

 $[0\ 0\ 1\ 1]$

一般式(4)中、 R_{31} 、 R_{32} はそれぞれ独立に、炭素数 $1\sim1$ 8のアルキル基を表す。 R_{33} は水素原子、炭素数 $1\sim6$ のアルキル基、またはフェニル基を表す。Xは水素原子、または

[0012]

【化8】

[0013]

を表し、 R_{34} 、 R_{35} はそれぞれ独立に、炭素数 $1\sim1~8$ のアルキル基を表す。 R_{36} は水素原子、炭素数 $1\sim6$ のアルキル基、またはフェニル基を表す。 m^3 、 m^4 はそれぞれエチレンオキシドの平均付加モル数を表し、 m^3+m^4 は $0\sim1~0~0$ である。

ここで、 $m^3=0$ のとき R_{33} は水素原子を表し、 $m^4=0$ のとき R_{36} は水素原子を表す。またXが水素原子のとき m^3 は $1\sim100$ を表す。

- 4) 少なくとも2種のインクからなるインクセットにおいて、少なくとも1つのインクにベタイン化合物を含有し、少なくとも1つの前記とは別のインクにベタイン化合物及びノニオン界面活性剤を含有することを特徴とする第1~3項記載のインクセット。
- 5) 第1~4項記載のインクセットを使用して、インクジェットプリンターによ

画像記録を行うことを特徴とするインクジェット記録方法。

$[0\ 0\ 1\ 4]$

【発明の実施の形態】

以下、本発明について詳細に説明する。

本発明のインクジェット用インクセットは、インクのうち少なくとも1つにベタイン化合物を含有し、他のインクの少なくとも1つにノニオン界面活性剤(好ましくは及びベタイン化合物)を含有するという特徴を有する。

ここで言うベタイン化合物は、分子中にカチオン性の部位とアニオン性の部位を両方とも有する化合物と定義する。該化合物の中でも界面活性を有する化合物が好ましい。カチオン性の部位としてはアミン性の窒素原子、ヘテロ芳香族環の窒素原子、炭素との結合を4つ有するホウ素原子、リン原子などを挙げることができる。この中で好ましくはアミン性の窒素原子もしくはヘテロ芳香族環の窒素原子である。中でも特に第4級の窒素原子であることが好ましい。アニオン性の部位としては、水酸基、チオ基、スルホンアミド基、スルホ基、カルボキシル基、イミド基、リン酸基、ホスホン酸基などを挙げることができる。この中でも特にカルボキシル基、スルホ基が好ましい。界面活性剤分子全体としての荷電は、カチオン、アニオン、中性のいずれでもよいが、好ましくは中性である。

中でも本発明に用いるベタイン化合物は、前記一般式(1)で表される化合物であることが好ましい。

一般式(1)中、Rは、水素原子、アルキル基、アリール基、ヘテロ環基を表す。Lは2価の連結基を表す。Mは水素原子、アルカリ金属原子、アンモニウム基、プロトン化された有機アミンもしくは含窒素ヘテロ環基、4級アンモニウムイオン基を表し、式中のN原子からなるアンモニウムイオンの対イオンとなる場合は、カチオンとして存在しない基を表す。m,nは2または3の整数を表し、m,nが3の場合N原子はプロトン化されたアンモニウム原子となる。kは1以上の整数を表す。

さらに、本発明に使用するベタイン化合物としては、前記一般式(1)で表される化合物の中でも、特に下記一般式(5)または(6)で表される化合物が好ましく用いられる。

[0015]

【化9】

一般式(5)

[0016]

式中、R₁~R₃はアルキル基(置換されていてもよい。好ましくは炭素数1ない し20の基である。例えばメチル基、エチル基、プロピル基、ブチル基、ヘキシ ル基、オクチル基、ドデシル基、セチル基、ステアリル基、オレイル基など)、 アリール基(置換されていてもよい。好ましくは炭素数6ないし20の基である 。例えばフェニル基、トリル基、キシリル基、ナフチル基、クミル基、ドデシル フェニル基など)、ヘテロ環基(置換されていてもよい。好ましくは炭素数2な いし20の基である。例えばピリジル基、キノリル基など)。を表し、それぞれ が互いに連結して環状構造を形成してもよい。この中で特に好ましくはアルキル 基である。Lは2価の連結基を表す。この例としては、アルキレン基、アリーレ ン基を基本的な構成単位として含む2価の連結基が好ましい。連結主鎖部に酸素 原子、硫黄原子、窒素原子などのヘテロ原子を含有してもよい。R1~R3もしくは Lには種々の置換基が置換可能である。例えばアルキル基(好ましくは炭素数1 ~ 20 、より好ましくは炭素数 $1\sim 12$ 、特に好ましくは炭素数 $1\sim 8$ であり、 例えばメチル、エチル、isoープロピル、tertーブチル、nーオクチル、 nーデシル、nーヘキサデシル、シクロプロピル、シクロペンチル、シクロヘキ シル等が挙げられる。)、アルケニル基(好ましくは炭素数2~20、より好ま しくは炭素数2~12、特に好ましくは炭素数2~8であり、例えばビニル、ア リル、2-ブテニル、3-ペンテニル等が挙げられる。)、アルキニル基(好ま しくは炭素数2~20、より好ましくは炭素数2~12、特に好ましくは炭素数 2~8であり、例えばプロパルギル、3-ペンチニル等が挙げられる。)、アリ ール基(好ましくは炭素数6~30、より好ましくは炭素数6~20、特に好ま

しくは炭素数6~12であり、例えばフェニル、p-メチルフェニル、ナフチル 等が挙げられる。)、アミノ基(好ましくは炭素数0~20、より好ましくは炭 素数0~12、特に好ましくは炭素数0~6であり、例えばアミノ、メチルアミ ノ、ジメチルアミノ、ジエチルアミノ、ジフェニルアミノ、ジベンジルアミノ等 が挙げられる。)、アルコキシ基(好ましくは炭素数1~20、より好ましくは 炭素数1~12、特に好ましくは炭素数1~8であり、例えばメトキシ、エトキ シ、ブトキシ等が挙げられる。)、アリールオキシ基(好ましくは炭素数6~2 0、より好ましくは炭素数6~16、特に好ましくは炭素数6~12であり、例 えばフェニルオキシ、2-ナフチルオキシ等が挙げられる。)、アシル基(好ま しくは炭素数1~20、より好ましくは炭素数1~16、特に好ましくは炭素数 1~12であり、例えばアセチル、ベンゾイル、ホルミル、ピバロイル等が挙げ られる。)、アルコキシカルボニル基(好ましくは炭素数2~20、より好まし くは炭素数2~16、特に好ましくは炭素数2~12であり、例えばメトキシカ ルボニル、エトキシカルボニル等が挙げられる。)、アリールオキシカルボニル 基(好ましくは炭素数7~20、より好ましくは炭素数7~16、特に好ましく は炭素数7~10であり、例えばフェニルオキシカルボニルなどが挙げられる。)、アシルオキシ基(好ましくは炭素数2~20、より好ましくは炭素数2~1 6、特に好ましくは炭素数2~10であり、例えばアセトキシ、ベンゾイルオキ シ等が挙げられる。)、アシルアミノ基(好ましくは炭素数2~20、より好ま しくは炭素数2~16、特に好ましくは炭素数2~10であり、例えばアセチル アミノ、ベンゾイルアミノ等が挙げられる。)、アルコキシカルボニルアミノ基 (好ましくは炭素数2~20、より好ましくは炭素数2~16、特に好ましくは 炭素数2~12であり、例えばメトキシカルボニルアミノ等が挙げられる。)、 アリールオキシカルボニルアミノ基(好ましくは炭素数7~20、より好ましく は炭素数7~16、特に好ましくは炭素数7~12であり、例えばフェニルオキ シカルボニルアミノ等が挙げられる。)、スルホニルアミノ基(好ましくは炭素 数1~20、より好ましくは炭素数1~16、特に好ましくは炭素数1~12で あり、例えばメタンスルホニルアミノ、ベンゼンスルホニルアミノ等が挙げられ る。)、スルファモイル基(好ましくは炭素数0~20、より好ましくは炭素数

Ų,

○~16、特に好ましくは炭素数0~12であり、例えばスルファモイル、メチ ルスルファモイル、ジメチルスルファモイル、フェニルスルファモイル等が挙げ られる。)、カルバモイル基(好ましくは炭素数1~20、より好ましくは炭素 数1~16、特に好ましくは炭素数1~12であり、例えばカルバモイル、メチ ルカルバモイル、ジエチルカルバモイル、フェニルカルバモイル等が挙げられる 。)、アルキルチオ基(好ましくは炭素数1~20、より好ましくは炭素数1~ 16、特に好ましくは炭素数1~12であり、例えばメチルチオ、エチルチオ等 が挙げられる。)、アリールチオ基(好ましくは炭素数6~20、より好ましく は炭素数6~16、特に好ましくは炭素数6~12であり、例えばフェニルチオ 等が挙げられる。)、スルホニル基(好ましくは炭素数1~20、より好ましく は炭素数1~16、特に好ましくは炭素数1~12であり、例えばメシル、トシ ル等が挙げられる。)、スルフィニル基(好ましくは炭素数1~20、より好ま しくは炭素数1~16、特に好ましくは炭素数1~12であり、例えばメタンス ルフィニル、ベンゼンスルフィニル等が挙げられる。)、ウレイド基(好ましく は炭素数1~20、より好ましくは炭素数1~16、特に好ましくは炭素数1~ 12であり、例えばウレイド、メチルウレイド、フェニルウレイド等が挙げられ る。)、リン酸アミド基(好ましくは炭素数1~20、より好ましくは炭素数1 ~16、特に好ましくは炭素数1~12であり、例えばジエチルリン酸アミド、 フェニルリン酸アミド等が挙げられる。)、ヒドロキシ基、メルカプト基、ハロ ゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、 スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒド ラジノ基、イミノ基、ヘテロ環基(好ましくは炭素数1~30、より好ましくは 炭素数1~12であり、ヘテロ原子としては、例えば窒素原子、酸素原子、硫黄 原子を含むものであり具体的には例えばイミダゾリル、ピリジル、キノリル、フ リル、チエニル、ピペリジル、モルホリノ、ベンゾオキサゾリル、ベンゾイミダ ゾリル、ベンゾチアゾリル、カルバゾリル、アゼピニル等が挙げられる。)、シ リル基(好ましくは炭素数3~40、より好ましくは炭素数3~30、特に好ま しくは炭素数3~24であり、例えばトリメチルシリル、トリフェニルシリル等 が挙げられる。)等が挙げられる。これらの置換基は更に置換されても良い。ま

た置換基が二つ以上ある場合は、同一でも異なっていても良い。また、可能な場合には互いに連結して環を形成していても良い。また、 $R_1 \sim R_3$ もしくはLを介して、ベタイン構造が複数含まれていてもよい。

[0017]

本発明で使用するベタイン化合物においては、 $R_1 \sim R_3$ もしくはL中の少なくとも 1 つに、炭素数 8 以上の基を含有する。中でも特に、 $R_1 \sim R_3$ に長鎖アルキル基が含有されるものが好ましい。

一般式(6)

(R)
$$_{p}-N-[L_{m}-(COOM_{l})]_{q}$$
] r

式中、R、L、q、r、m、pは一般式(1)におけると同義ある。 M^1 はアルカリ金属イオンまたは水素原子である。但し、p+rは3である。pが2以上の時はRは同じでも異なっていてもよい。

[0019]

一般式(1)及び一般式(6)について以下に説明する。

式中、Rはアルキル基(置換されていてもよい。好ましくは炭素数1ないし20の基である。例えばメチル基、エチル基、プロピル基、ブチル基、ヘキシル基、オクチル基、ドデシル基、セチル基、ステアリル基、オレイル基など)、アリール基(置換されていてもよい。好ましくは炭素数6ないし20の基である。例えばフェニル基、トリル基、キシリル基、ナフチル基、クミル基、ドデシルフェニル基など)、ヘテロ環基(置換されていてもよい。好ましくは炭素数2ないし20の基である。例えばピリジル基、キノリル基など)を表し、それぞれが互いに連結して環状構造を形成してもよい。この中で特に好ましくはアルキル基である。

[0020]

Lは2価以上の連結基を表す。この例としては、アルキレン基、アリーレン基 等を基本的な構成単位として含む2価以上の連結基が好ましい。連結主鎖部に酸 素原子、硫黄原子、窒素原子などのヘテロ原子を含有してもよい。

[0021]

RもしくはLには種々の置換基が置換可能である。例えばアルキル基(好まし くは炭素数 $1 \sim 20$ 、より好ましくは炭素数 $1 \sim 12$ 、特に好ましくは炭素数1~8であり、例えばメチル、エチル、iso-プロピル、tert-ブチル、n ーオクチル、nーデシル、nーヘキサデシル、シクロプロピル、シクロペンチル 、シクロヘキシル等が挙げられる。)、アルケニル基(好ましくは炭素数2~2 0、より好ましくは炭素数2~12、特に好ましくは炭素数2~8であり、例え ばビニル、アリル、2-ブテニル、3-ペンテニル等が挙げられる。)、アルキ ニル基(好ましくは炭素数2~20、より好ましくは炭素数2~12、特に好ま しくは炭素数2~8であり、例えばプロパルギル、3-ペンチニル等が挙げられ る。)、アリール基(好ましくは炭素数6~30、より好ましくは炭素数6~2 0、特に好ましくは炭素数6~12であり、例えばフェニル、p−メチルフェニ ル、ナフチル等が挙げられる。)、アミノ基(好ましくは炭素数0~20、より 好ましくは炭素数0~12、特に好ましくは炭素数0~6であり、例えばアミノ 、メチルアミノ、ジメチルアミノ、ジエチルアミノ、ジフェニルアミノ、ジベン ジルアミノ等が挙げられる。)、アルコキシ基(好ましくは炭素数1~20、よ り好ましくは炭素数1~12、特に好ましくは炭素数1~8であり、例えばメト キシ、エトキシ、ブトキシ等が挙げられる。)、アリールオキシ基(好ましくは 炭素数6~20、より好ましくは炭素数6~16、特に好ましくは炭素数6~1 2であり、例えばフェニルオキシ、2-ナフチルオキシ等が挙げられる。)、ア シル基(好ましくは炭素数1~20、より好ましくは炭素数1~16、特に好ま しくは炭素数1~12であり、例えばアセチル、ベンゾイル、ホルミル、ピバロ イル等が挙げられる。)、アルコキシカルボニル基(好ましくは炭素数2~20 、より好ましくは炭素数2~16、特に好ましくは炭素数2~12であり、例え ばメトキシカルボニル、エトキシカルボニル等が挙げられる。)、アリールオキ シカルボニル基(好ましくは炭素数7~20、より好ましくは炭素数7~16、 特に好ましくは炭素数7~10であり、例えばフェニルオキシカルボニルなどが 挙げられる。)、アシルオキシ基(好ましくは炭素数2~20、より好ましくは 炭素数2~16、特に好ましくは炭素数2~10であり、例えばアセトキシ、ベ ンゾイルオキシ等が挙げられる。)、アシルアミノ基(好ましくは炭素数2~2

0、より好ましくは炭素数2~16、特に好ましくは炭素数2~10であり、例 えばアセチルアミノ、ベンゾイルアミノ等が挙げられる。)、アルコキシカルボ ニルアミノ基(好ましくは炭素数2~20、より好ましくは炭素数2~16、特 に好ましくは炭素数2~12であり、例えばメトキシカルボニルアミノ等が挙げ られる。)、アリールオキシカルボニルアミノ基(好ましくは炭素数7~20、 より好ましくは炭素数7~16、特に好ましくは炭素数7~12であり、例えば フェニルオキシカルボニルアミノ等が挙げられる。)、スルホニルアミノ基(好 ましくは炭素数1~20、より好ましくは炭素数1~16、特に好ましくは炭素 数1~12であり、例えばメタンスルホニルアミノ、ベンゼンスルホニルアミノ 等が挙げられる。)、スルファモイル基(好ましくは炭素数0~20、より好ま しくは炭素数0~16、特に好ましくは炭素数0~12であり、例えばスルファ モイル、メチルスルファモイル、ジメチルスルファモイル、フェニルスルファモ イル等が挙げられる。)、カルバモイル基(好ましくは炭素数1~20、より好 ましくは炭素数1~16、特に好ましくは炭素数1~12であり、例えばカルバ モイル、メチルカルバモイル、ジエチルカルバモイル、フェニルカルバモイル等 が挙げられる。)、アルキルチオ基(好ましくは炭素数1~20、より好ましく は炭素数1~16、特に好ましくは炭素数1~12であり、例えばメチルチオ、 エチルチオ等が挙げられる。)、アリールチオ基(好ましくは炭素数6~20、 より好ましくは炭素数6~16、特に好ましくは炭素数6~12であり、例えば フェニルチオ等が挙げられる。)、スルホニル基(好ましくは炭素数1~20、 より好ましくは炭素数1~16、特に好ましくは炭素数1~12であり、例えば メシル、トシル等が挙げられる。)、スルフィニル基(好ましくは炭素数1~2 0、より好ましくは炭素数1~16、特に好ましくは炭素数1~12であり、例 えばメタンスルフィニル、ベンゼンスルフィニル等が挙げられる。)、ウレイド 基(好ましくは炭素数1~20、より好ましくは炭素数1~16、特に好ましく は炭素数1~12であり、例えばウレイド、メチルウレイド、フェニルウレイド 等が挙げられる。)、リン酸アミド基(好ましくは炭素数1~20、より好まし くは炭素数1~16、特に好ましくは炭素数1~12であり、例えばジエチルリ ン酸アミド、フェニルリン酸アミド等が挙げられる。)、ヒドロキシ基、メルカ

۴

プト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(好ましくは炭素数1~30、より好ましくは炭素数1~12であり、ヘテロ原子としては、例えば窒素原子、酸素原子、硫黄原子を含むものであり具体的には例えばイミダゾリル、ピリジル、キノリル、フリル、チエニル、ピペリジル、モルホリノ、ベンゾオキサゾリル、ベンゾイミダゾリル、ベンゾチアゾリル、カルバゾリル、アゼピニル等が挙げられる。)、シリル基(好ましくは炭素数3~40、より好ましくは炭素数3~30、特に好ましくは炭素数3~24であり、例えばトリメチルシリル、トリフェニルシリル等が挙げられる。)等が挙げられる。これらの置換基は更に置換されても良い。また置換基が二つ以上ある場合は、同一でも異なっていても良い。また、可能な場合には互いに連結して環を形成していても良い。また、Rもしくはしを介して、ベタイン構造が複数含まれていてもよい。

[0022]

Mは水素原子、アルカリ金属カチオン(たとえばナトリウムイオン、カリウムイオン、リチウムイオン、セシウムイオン)、アンモニウムイオン、アミン性の有機カチオン(1ないし3級アミンの場合、プロトン化されたものを表す。たとえばプロトン化されたメチルアミン、ジメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、ジアザビシクロウンデセン、ジアザビシクロオクタン、ピペリジン、ピロリジン、モルホリン、Nーメチルピペリジン、Nーメチルモルホリン、ピリジン、ピラジン、アニリン、N, Nージメチルアニリン等。4級アンモニウム塩の場合、たとえばテトラメチルアンモニウムイオン、テトラエチルンモニウムイオン、トリメチルベンジルアンモニウムイオン、メチルピリジニウムイオン、ベンジルピリジニウムイオン等。)を表す。中でも特にある仮金属イオンもしくは水素原子が好ましい。

[0023]

qは1以上(好ましくは5以下、より好ましくは2以下)の整数を表し、rは 1以上4以下(好ましくは1または2)の整数を表す。kは0以上4以下の整数を表し、mは1以上(好ましくは4以下、より好ましくは1)の整数を表す。p

は0以上4以下(好ましくは1または2)の整数を表し、p+rは3もしくは4である。p+rが4の場合、N原子は4級アンモニウムカチオンとなり、Mのうちの1つが解離状態のアニオンとなる。mが2以上の時はLは同じでも異なっていてもよい。qが2以上の時はC O O M は同じでも異なっていてもよい。rが2以上の時は L^m- (C O O M)qは同じでも異なっていてもよい。k が2以上の時はk は同じでも異なっていてもよい。k がk 以上の時はk は同じでも異なっていてもよい。k がk 以上の時はk は同じでも異なっていてもよい。k がk は同じでも異なっていてもよい。

[0024]

さらに、RまたはLに炭素数8以上の炭化水素基が含まれていることが好ましく、下記一般式 (7) で表される化合物が最も好ましく使用される。

一般式 (7)

$$R - N - (L - COOM)_2$$

[0026]

R、Lは先述と同様である。二つの(L-COOM)は同じでも異なっていて もよい(二つの、L及びMは同じでも異なっていてもよい)。Rは特にアルキル 基が好ましく、Lはアルキレン基であることが好ましい。

[0027]

以下にベタイン化合物として好ましい例を列挙するが、本発明は勿論これによって限定されるものではない。

[0028]

【化10】

X1-1

$$\begin{array}{c} \mathsf{CH_3} \\ \mathsf{C_{12}H_{25}} \overset{\oplus}{-} \overset{\mathsf{N}}{\mathsf{N}} \text{-} \mathsf{CH_2COO}^{\ominus} \\ \overset{\mathsf{CH_3}}{\mathsf{CH_3}} \end{array}$$

X1-2

$$C_{10}H_{21} \xrightarrow{\oplus} N - CH_2COO^{\oplus}$$
 CH_3

X1-3

X1-4

$$C_{16}H_{33}\overset{\oplus}{-}\hat{N}-CH_{2}COO^{\ominus}$$

 $\overset{\leftarrow}{C}H_{3}$

X1-5

X1-6

[0029]

【化11】

X1-7

$$C_{12}H_{25}$$
 $C_{12}H_{25}$
 $\dot{C}_{12}H_{25}$
 $\dot{C}_{12}H_{25}$

X1-8

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} C_{12}H_{25} \\ \end{array} \\ N^{\oplus} \begin{array}{c} CH_2CH_2OO^{\ominus} \end{array}$$

X1-9

X1-10

X1-11

X1-12

[0030]

【化12】

[0031]

【化13】

X1-17

X1-18

X1-19

X1-20

X1-21

$$C_6H_{13}(n)$$

(n) C_6H_{13} $\overset{\oplus}{-}$ N-CH₂COO $\overset{\oplus}{-}$ $\overset{\bullet}{C}_6H_{13}(n)$

X1-22

X1-23

$$\begin{array}{ccc}
\mathsf{CH}_{3} & \mathsf{COO}^{\ominus} \\
\mathsf{H}_{3}\mathsf{C}^{\oplus} \mathsf{N}\text{-}\mathsf{CH} \\
\mathsf{CH}_{3} & \mathsf{C}_{10}\mathsf{H}_{21}
\end{array}$$

X1-24

$$\begin{array}{ccc}
 & \text{CH}_{3} & \text{COO}^{\Theta} \\
 & \text{H}_{3}\text{C}^{\oplus}_{N}\text{-CH} \\
 & \text{CH}_{3} & \text{C}_{14}\text{H}_{29}
\end{array}$$

[0032]

【化14】

X1-25

CH₃ COO[©]
H₃C[®]N-CH
CH₃ C₁₆H₃₃

X1-26

 $C_7H_{15}CONHC_3H_6$ -N CH_2COO CH_3

X1-27

 $\begin{array}{c}\mathsf{CH}_{3}\\\mathsf{C_{8}H_{17}CONHC_{3}H_{6}}\overset{\oplus}{-}\overset{\mathsf{N}}{\mathsf{N}}\text{-}\mathsf{CH}_{2}\mathsf{COO}^{\ominus}}\\\mathsf{CH}_{3}\end{array}$

X1-28

 $C_{11}H_{23}CONHC_{3}H_{6} \stackrel{\oplus}{-} N-CH_{2}COO^{\ominus}$ CH_{3}

X1-29

 $\begin{array}{c}\mathsf{CH_3}\\\mathsf{C_{13}H_{27}CONHC_3H_6}\overset{\oplus}{-}\mathsf{N-CH_2COO}^\ominus\\\mathsf{CH_3}\end{array}$

X1-30

 $C_{15}H_{31}CONHC_{3}H_{6}^{-0}N-CH_{2}COO^{\odot}$ CH_{3}

X1-31

CH₃ C₁₇H₃₅CONHC₃H₆[⊕]N-CH₂COO[⊕] CH₃

X1-32

 $C_{17}H_{31}CONHC_{3}H_{6} \stackrel{\oplus}{-} N-CH_{2}COO^{\ominus}$ $\dot{C}H_{3}$

【化15】

X1-33

$$\begin{array}{ccc} & & & & & \downarrow \\ \mathsf{CH_3} & & & & & \\ \mathsf{CH_3} & & & & & \\ \mathsf{CH_3} & & & \mathsf{OH} \end{array}$$

X1-34

$$\begin{array}{c} \mathsf{CH_3} \\ \mathsf{(n)C_{18}H_{37}} - \mathsf{N-CH_2CH-CH_2SO_3^{\ominus}} \\ \mathsf{CH_3} \quad \mathsf{OH} \end{array}$$

[0034]

【化16】

$$X2-3$$
 (n)C₁₂H₂₅—N CH_2COOH

$$X2-5$$
 CH_2COONa CH_2COONa

$$X2-7$$
 (n)C₁₂H₂₅—N $CH_2CH_2CH_2COOH$

[0035]

【化17】

$$CH_3$$
 N- CH_2COOH (n) $C_{12}H_{25}$

[0036]

【化18】

СООН

[0037]

【化19】

X2-20

$$X2-22$$
 NaOOCH₂C CH₂COONa
HOOCH₂C N-C₁₂H₂₄N CH₂COOH

$$X2-23$$
 NaOOCH₂C CH₂COONa HOOCH₂C N-C₁₆H₃₂N CH₂COOH

$$C_{16}H_{33}OOCH_2C-N$$
C CH_2COOK C CH_2COOH

$$C_{12}H_{25}OOCH_2C-N$$
C H_2COOK C H_2COOH

[0038]

ベタイン化合物の好ましい添加量は発明の効果を奏する範囲であればいずれでもよいが、好ましくはインク組成物中の0.001~50質量%、さらに好ましくは0.01~20質量%である。

次に、ノニオン系界面活性剤について説明する。

ノニオン系界面活性剤とは、極性基としてイオン性の基を含まない界面活性剤を表す。この界面活性剤に含まれる水溶化基としては、ポリエーテル基が一般的に用いられる。ポリオキシエチレン基を有する界面活性剤が一般的であり、このアルキルもしくはアリールエーテル誘導体が一般的に使用される。

中でも特に、前記一般式(2) \sim (4) で表される化合物が好ましく使用される。

下記一般式(2)または(3)で表わされる化合物について詳細に説明する。

$$[0\ 0\ 4\ 1]$$

【化20】

[0042]

一般式(2)中、 R_{21} は炭素数 $5\sim40$ 、好ましくは炭素数 $8\sim18$ のアルキル基を表し、直鎖であっても分岐であってもよく、また置換されていてもよい。

 R_{21} で表されるアルキル基に置換可能な基としては、アリール基(例えばフェニル、o-hリル、p-hリル、p-t-ブチルフェニル)、アルコキシ基(例えば、メトキシ、エトキシ、n- ブトキシ等)、ハロゲン原子(例えば、塩素原子、臭素原子)等を挙げることができる。

 R_{21} で表されるアルキル基の具体例としては、n-ペンチル、n-ヘキシル、n-オクチル、n-デシル、n-ドデシル、n-ペンタデシル、n-オクタデシル、n-オクタデシル、n-オクチル、n-オクタデシル、n-オクチル、n-オクチル、n-オクチル、n-オクチル、n-オクチル、n-オクチル、n-ペンチル

、1-n-オクチルノニル、<math>6-メトキシヘキシル、2-フェニルエチル等を挙 げることができる。

[0044]

 m^1 はエチレンオキシドの平均付加モル数を表し、 $2 \sim 4$ 0 であり、好ましくは $3 \sim 3$ 0 であり、特に好ましくは $3 \sim 2$ 0 である。

[0045]

本発明における一般式 (2) で表される化合物の内、特に好ましいのは下記一般式 (2-1) で表される化合物である。

[0046]

【化21】

$$-$$
般式(2-1)
 R_{23}
 $CHO-(CH_2CH_2O)_{m11}-H$
 R_{24}

[0047]

一般式(2-1)中、 R_{23} 、 R_{24} は各々炭素数 $4\sim1$ 0 の飽和炭化水素であり、 R_{23} と R_{24} の炭素数の合計が $8\sim1$ 8 であり、 m^{11} は $3\sim2$ 0 である。 R_{23} 、 R_{24} で表される炭素数 $4\sim1$ 0 の飽和炭化水素としてはn-ブチル、i-ブチル、n-ペンチル、n-ペキシル、n-ペプチル、n-ペラチル、n-ペナシル、n-ペナシル、n-ペナシル、n-パテシル等を挙げることができる。 R_{11} と R_{12} の炭素数の合計は $8\sim1$ 8 であり、 $8\sim1$ 6 がさらに好ましい。 m^{11} は $3\sim2$ 0 であり、より好ましくは $5\sim2$ 0 であり、さらに好ましくは $6\sim1$ 8 である。

[0048]

以下に、一般式(2)で表わされる化合物の具体例を示すが、これらに限定されるものではない。

[0049]

【化22】

一般式(2)の具体例

W1-1,2 (n)C₈H₁₇O
$$-(CH_2CH_2O)_{m_1}$$
 H

 $W1-1 : m^1 = 5$

 $W1-2 : m^1 = 10$

$$W1-3,4$$
 (n)C₁₀H₂₁O - (CH₂CH₂O) H

 $W1-3 : m^1 = 10$

 $W1-4 : m^1 = 15$

$$W1-5\sim7$$
 (n)C₁₂H₂₅O $-(CH_2CH_2O)_{m1}$ H

 $W1-5 : m^1 = 10$

 $W1-6: m^1=15$

 $W1-7: m^1=20$

W1-8 (n)C₁₄H₂₉O
$$+$$
 (CH₂CH₂O) $+$ H

$$W1-9$$
 (n)C₁₆H₃₃O - (CH₂CH₂O) + H

W1-10,11
$$C_{18}H_{35}O - (CH_2CH_2O)_{m1} - H$$

 $W1-10 : m^1 = 12$

 $W1-11 : m^1 = 25$

W1-12
$$C_{18}H_{37}O - (CH_2CH_2O) - H$$

[0050]

以下に、一般式 (2-1) で表わされる化合物の具体例を示すが、これらに限 定されるものではない。

[0051]

【表1】

一般式(2-1)で表される化合物の具体例

No.	R ^{II}	R ¹²	· m ¹¹
W1-13	(n)C ₄ H ₉	(n)C₄H ₉	3
W1-14	(i)C₄H₃	(i)C ₄ H ₉	5
W1-15	(i)C₄H₅	(i)C ₄ H ₉	9.5
W1-16	(i)C₄H ₉	(i)C₄H ₉	11.4
W1-17	(n)C₅H ₁₁	(n)C₅H₁₁	8
W1-18	(n)C ₅ H ₁₁	(n)C ₅ H ₁₁	10
W1-19	(n)C ₅ H ₁₁	(n)C ₅ H ₁₁	11.4
W1-20	(n)C₅H ₁₁	(n)C ₅ H ₁₁	13.5
W1-21	(n)C₅H₁₁	(n)C ₆ H ₁₃	15
W1-22	(n)C ₆ H ₁₃	(n)C ₆ H ₁₃	10
W1-23	(n)C ₆ H ₁₃	(n)C ₆ H ₁₃	13.6
W1-24	(n)C ₆ H ₁₃	(n)C ₆ H ₁₃	15.8
W1-25	(n)C ₆ H ₁₃	(n)C ₇ H ₁₅	16
W1-26	(n)C ₇ H ₁₅	(n)C ₇ H ₁₅	15
W1-27	(n)C ₇ H ₁₅	(n)C ₇ H ₁₅	16.5
W1-28	(n)C ₈ H ₁₇	(n)C ₈ H ₁₇	14
W1-29	(n)C ₈ H ₁₇	(n)C ₈ H ₁₇	17.6
W1-30	(n)C ₈ H ₁₇	(n)C ₁₀ H ₂₁	20

[0052]

次に一般式(3)で表される化合物について説明する。

[0053]

【化23】

一般式(3)

$$R_{22}COO - (CH_2CH_2O)_{m^2} - H$$

[0054]

一般式(3)中、R $_{22}$ は炭素数 $_{5}$ ~ $_{4}$ 0、好ましくは炭素数 $_{5}$ ~ $_{3}$ 0のアルキル基を表し、直鎖であっても分岐であってもよく、また置換されていてもよい。 R $_{22}$ で表されるアルキル基に置換可能な基としては、アリール基(例えばフェ

ニル、o-hリル、p-hリル、p-t-ブチルフェニル)、アルコキシ基(例えば、メトキシ、エトキシ、n-ブトキシ等)、ハロゲン原子(例えば、塩素原子、臭素原子)等を挙げることができる。 R_{22} で表されるアルキル基の具体例としては、n-ペンチル、n-ヘキシル、n-オクチル、n-デシル、n-ボランル、n-オクタデシル、n-オクタデシル、n-オクタデシル、n-オクタデシル、n-オクタデシル、n-オクタデシル、n-オクタデシル、n-オクタデシル、n-オクタデシル、n-オクチル、n-カチル、n-カチル、n-カチル、n-カチル、n-カチル、n-カチル、n-カチル、n-カチル、n-カチル、n-カチル、n-カチル・デシル、n-カチル・デシル、n-カチル・デシル、n-カチル・デシル、n-カチル・デシル、n-カチル・デシル、n-カチル・デシル、n-カチル・デシル、n-カチル・デシル、n-カチル・デシル、n-カチル・デシル、n-カチル・デシル、n-カチル・デシル、n-カチル・デシル、n-カチル・デシル、n-カチル・デシル、n-カチル・デシル、n-カチル・デシル・n-カチル・デシル、n-カチル・デシル、n-カチル・デシル・n-カチル・デシル・n-カチル・デシル・n-カチル・デシル・n-カチル・デシル・n-カチル・デシル・n-カチル・デシル・n-カチル・デシル・n-カチル・n-カル・n-カル・n-カル・n-カル・n-カル・n-カル・n-カル・n-カル・n-カル・n-カル・n-カル・n-カル・n-カル・n-カル・n-カル・n-カル・n-カル・n-カル・n-カル・

[0055]

 m^2 はエチレンオキシドの平均付加数を表し、 $2 \sim 4~0$ であり、好ましくは $3 \sim 3~0$ であり、特に好ましくは $4 \sim 2~0$ である。

[0056]

本発明における、一般式 (3) で表される化合物のうち、特に好ましいのは下記一般式 (3-1) で表される化合物である。

[0057]

【化24】

$$R_{25}$$
 CHCOO $-(CH_2CH_2O)_{m^{21}}H$

[0058]

一般式(3-1)中、 R_{25} 、 R_{26} は各々炭素数 2-20 の飽和炭化水素基であり、炭素数 4-13 が好ましい。 R_{25} 、 R_{26} で表される炭素数 2-20 の飽和炭化水素基としてはエチル、n-ブチル、i-ブチル、n-ペンチル、n-ペンチル、n-ペンチル、n-ペンチル、n-ペンチル、n-インチル、n-インチル、n-インチル、n-インチル、n-インチル、n-インチル、n-インチル、n-インチル、n-インチル、n-インチンル、n-インチンル、n-インチンル、n-インチンル、n-インチンル、n-インチントの平均付加モル数を表し、2-40 であり、3-30 が好ましい。

[0059]

以下に、一般式(3)で表わされる化合物の具体例を示すが、これらに限定されるものではない。

[0060]

【化25】

一般式(3)の具体例

W2-1,2
(n)
$$C_7H_{15}COO - (CH_2CH_2O)_{m^2} + H_{15}COO - (CH$$

 $W2-1 : m^2 = 10$

 $W2-2 : m^2 = 15$

$$W2-3\sim5$$

(n)C₁₁H₂₃COO $-(CH_2CH_2O)_{m^2}$ H

 $W2-3 : m^2 = 10$

 $W2-4 : m^2 = 15$

 $W2-5 : m^2 = 20$

$$W2-6\sim7$$

(n)C₁₃H₂₇COO $-(CH_2CH_2O)_{n2}$ H

 $W2-6 : m^2 = 10$

 $W2-7 : m^2 = 15$

$$W2-8,9$$
(n)C₁₅H₃₁COO $-(CH_2CH_2O)_{m^2}$ H

 $W2-8 : m^2 = 10$

 $W2-9 : m^2 = 15$

W2-10
$$C_{17}H_{31}COO - (CH_2CH_2O)_{20} - H$$

W2-11
$$C_{17}H_{33}COO - (CH_2CH_2O)_{20} - H$$

W2-12
$$C_{17}H_{35}COO - (CH_{2}CH_{2}O) + H_{15} - H_{15}$$
[0 0 6 1]

以下に、一般式 (3-1) で表わされる化合物の具体例を示すが、これらに限 定されるものではない。

 $[0\ 0\ 6\ 2]$

【表2】

一般式(3-1)で表される化合物の具体例

No.	R ²¹	R ²²	m ²¹
W2-13	C₂H₅	C₄H₅	3
W2-14	C₂H₅	C₄H ₉	5
W2-15	C₄H ₉	C ₆ H ₁₃	9.5
W2-16	C ₆ H₁₃	C ₈ H ₁₇	5
W2-17	C ₆ H₁₃	C ₈ H₁ ₇	8
W2-18	C ₆ H₁₃	C ₈ H ₁₇	10
W2-19	C ₆ H₁₃	C ₈ H ₁₇	11.4
W2-20	C ₆ H ₁₃	C ₈ H ₁₇	12.5
W2-21	C ₆ H₁₃	C ₈ H ₁₇	15
W2-22	C ₆ H₁₃	C ₈ H₁ ₇	25
W2-23	C ₇ H ₁₅	C ₉ H ₁₉	14
W2-24	C ₇ H ₁₅	C ₉ H ₁₉	15
W2-25	C ₇ H ₁₅	C ₉ H ₁₉	20
W2-26	C ₇ H ₁₅	C ₉ H ₁₉	25
W2-27	C ₈ H ₁₇	C ₁₀ H ₂₁	30
W2-28	C ₁₀ H ₂₁	C ₁₂ H ₂₅	20
W2-29	C ₁₀ H ₂₁	C ₁₂ H ₂₅	25
W2-30	C ₁₀ H ₂₁	C ₁₃ H ₂₇	20
W2-31	C ₁₀ H ₂₁	C ₁₃ H ₂₇	25
W2-32	C ₁₀ H ₂₁	C ₁₃ H ₂₇	40

[0063]

本発明の一般式(2)(3)で表される化合物は、公知の方法を用いて合成する事が可能であり、例えば藤本武彦著 全訂版「新・界面活性剤入門」(1992年)94頁~107頁等に記載の方法で得ることができる。また本発明において、一般式(2)(3)で表される化合物は1種のみを用いてもよいし、異なる

化合物の2種以上を用いても構わない。

[0064]

次に、一般式(4)で表される界面活性剤について説明する。

界面活性剤は、インクの液物性を調整することで、インクの吐出安定性を向上させ、画像の耐水性の向上や印字したインクの滲みの防止などに優れたインク組成物が得られるが、本発明の一般式(4)で表される界面活性剤を含有させることで、さらに、泡立ちが少なく、有機溶媒によるヘッドや部材への浸食を抑えたインク組成物を得ることができる。

一般式(4)

[0065]

【化26】

一般式(4)

$$\begin{array}{c}
R_{32} \\
I \\
R_{31} - C - C \equiv C - X \\
I \\
O - \left(CH_2CH_2O\right)_{m^3} R_{33}
\end{array}$$

[0066]

式中 R_{31} 、 R_{32} はそれぞれ独立に、炭素数 $1\sim 18$ のアルキル基を表す。

さらに詳しく説明すると、 R_{31} 、 R_{32} はそれぞれ独立に、炭素数 $1\sim180$ アルキル基(例えば、メチル、エチル、n-プロピル、ブチル、ヘキシル、オクチル、デシル、ドデシル等)を表し、置換されていてもよい。置換基の例としては、アルキル基(例えば、メチル、エチル、イソプロピル等)、アルコキシ基(例えば、メトキシ、エトキシ等)、ハロゲン原子(例えば、塩素原子、臭素原子)等を挙げることができる。このうち、 R_{31} 、 R_{32} としては炭素数 $1\sim120$ 無置換の直鎖アルキル基もしくは無置換の分岐アルキル基が好ましく、その特に好ましい具体的としてはメチル、エチル、n-ブチル、2-メチルブチル、2, 4-ジメチルペンチル等を挙げることができる。

[0067]

R32は水素原子、炭素数1~6のアルキル基、またはフェニル基を表し、アル

キル基、フェニル基は置換されていてもよい。

 R_{33} のアルキル基の置換基としては、アルキル基(例えば、メチル、エチル、イソプロピル等)、アルコキシ基(例えば、メトキシ、エトキシ等)、フェニル基を挙げることができる。 R_{23} のフェニル基の置換基としては、アルキル基(例えば、メチル、エチル、イソプロピル等)、アルコキシ基(例えば、メトキシ、エトキシ等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子)等を挙げることができる。 R_{33} のうち好ましいのは、水素原子あるいは炭素数 $1\sim4$ のアルキル基であり、特に好ましいのは水素原子である。

[0068]

Xは水素原子、または

【化27】

$$R_{34}$$
 $-C - R_{35}$
 $O - (CH_2CH_2O)_{m4} - R_{36}$

[0070]

を表し、 R_{34} 、 R_{35} はそれぞれ独立に、炭素数 $1\sim1~8$ のアルキル基を表す。 R_{34} 、 R_{35} の好ましい置換基や具体例は、上記の R_{31} 、 R_{32} と同じ群から選ばれる置換基や具体例である。 R_{36} は水素原子、炭素数 $1\sim6$ のアルキル基、またはフェニル基を表し、その好ましい具体例は上記の R_{33} と同じ群から選ばれる置換基や具体例である。

 m^3 、 m^4 はそれぞれエチレンオキシドの平均付加モル数を表し、 m^3+m^4 は $0\sim1$ 00、好ましくは $0\sim5$ 0、特に好ましくは $0\sim4$ 0である。

ここで、 $m^3=0$ の時 R_{33} は水素原子を表し、 $m^4=0$ の時 R_{36} は水素原子を表す。またXが水素原子を表す時、 m^3 は $1\sim100$ を表し、好ましくは $1\sim50$ 、特に好ましくは $1\sim40$ を表す。

[0071]

以下に一般式(4)で表される化合物の具体例を示すが、これらに限定される

ものではない。

[0072]

[11:28]

一般式(4)の化合物の具体例

W4 - 1

$$\begin{array}{c|cccc} CH_2 & CH_3 & CH_3 & CH_3 \\ & & & | & | & | \\ CH_3CHCH_2C-C \equiv C-CCH_2CH-CH_3 \\ & & & | & \\ & & & O-(CH_2CH_2O)_{m^2}-H \\ & & & O-(CH_2CH_2O)_{m^1}-H \end{array}$$

 $W4-2 : m^1+m^2=1.3$

 $W4-3 : m^1+m^2=3.5$

 $W4-4 : m^1+m^2=10$

 $W4-5 : m^1+m^2=20$

 $W4-6: m^1+m^2=30$

W4-7,8

CH₃
|
CH₃C-C=CH
|
O-(CH₂CH₂O)
$$\frac{1}{m^{1}}$$
H
|
W5-7: m¹=5
|
W5-8: m¹=10

 $W5-8 : m^1 = 10$

W4 - 9, 10

$$C_{2}H_{5}-C-C\equiv C-C-C_{2}H_{5}$$

$$C_{2}H_{5}-C-C\equiv C-C-C_{2}H_{5}$$

$$C_{2}H_{5}-C-C=C-C-C_{2}H_{5}$$

$$C_{2}H_{5}-C-C=C-C-C_{2}H_{5}$$

$$C_{2}H_{5}-C-C=C-C-C_{2}H_{5}$$

$$C_{2}H_{5}-C-C=C-C-C_{2}H_{5}$$

$$C_{2}H_{5}-C-C=C-C-C_{2}H_{5}$$

$$C_{2}H_{5}-C-C=C-C-C_{2}H_{5}$$

$$C_{2}H_{5}-C-C=C-C-C_{2}H_{5}$$

$$C_{3}H_{5}-C-C=C-C-C-C_{2}H_{5}$$

$$C_{4}CH_{2}CH_{2}O)$$

 $W4-9 : m^1+m^2=3$

 $W4-10 : m^1+m^2=10$

[0073]

【化29】

W4-11

$$\begin{array}{cccc} CH_{3} & CH_{3} \\ | & | \\ CH_{3} - C - C \equiv C - C - CH_{3} \\ | & | \\ OH & OH \end{array}$$

W4 - 12

$$\begin{array}{cccc} CH_{3} & CH_{3} \\ | & | \\ CH_{3} - C - C \equiv C - C - CH_{3} \\ | & | \\ OH & O - (CH_{2}CH_{2}O)_{m^{2}} - H \end{array}$$

$$m^{2} = 3$$

13,14

$$CH_3$$
 CH_3
 CH_3
 CH_3
 CH_3
 CH_2
 CH_2
 CH_2
 CH_2
 CH_2
 CH_3
 CH_3

 $W4-13 : m^1=5$

 $W4-14 : m^1 = 10$

W4-15,16

$$\begin{array}{c|cccc} CH_{3} & CH_{3} & CH_{3} & CH_{3} & CH_{3} \\ & | & | & | & | & | \\ CH_{3}CHCH_{2}CHCH_{2}C-C \equiv C-CCH_{2}CHCH_{2}CHCH_{3} \\ & & | & | & | \\ & & O-(CH_{2}CH_{2}O)_{m^{2}}-H \\ & & O-(CH_{2}CH_{2}O)_{m^{1}}-H \end{array}$$

 $W4-15 : m^1+m^2=8$

 $W4-16 : m^1+m^2=20$

[0074]

【化30】

W4-17,18

$$CH_3 \quad CH_3 \\ \mid \quad \mid \quad |$$

$$CH_3CHCH_2CC \equiv CH$$

$$\mid \quad |$$

$$O - \left(CH_2CH_2O\right)_{m^1} + H$$

 $W4-17 : m^1=5$

 $W4-18 : m^1 = 10$

W4 - 19

$$\begin{array}{cccc} CH_{3} & CH_{3} \\ | & | \\ CH_{3}-C---C \equiv C-C-CH_{3} \\ | & | \\ OCH_{2}CH_{2}OH \ OH \end{array}$$

W4-20

$$\begin{array}{ccc}
CH_{3} & C_{2}H_{5} \\
| & | & | \\
HC-C \equiv C-CH \\
& | & | & | \\
O-(CH_{2}CH_{2}O)_{m^{2}}-H \\
O-(CH_{2}CH_{2}O)_{m^{1}}-H
\end{array}$$

 $m^1+m^2=2$

[0075]

本発明の一般式(4)で表される化合物は市販品として容易に入手する事ができ、その具体的な商品名としてはサーフィノール61,82,104,420,440,465,485,504、CT-1111,CT-121,CT-131,CT-136,CT-141,CT-151,CT-171,CT-324,DF-37,DF-58,DF-75,DF-110D,DF-210,GA,OP-340,PSA-204,PSA-216,PSA-336,SE,SE-F,ダイノール604(以上、日信化学(株)およびAir Products社)、オルフィンA,B,AK-02,CT-151W,E1004,E1010,P,SPC,STG,Y,32W(以上、日信化学(株))等を挙げることができる。

[0076]

本発明の一般式(4)で表される化合物は、公知の方法を用いて合成する事が可能であり、例えば藤本武彦著 全訂版「新・界面活性剤入門」(1992年)94頁~107頁等に記載の方法で得ることができる。また本発明において、一般式(4)で表される化合物は1種のみを用いてもよいし、異なる化合物の2種以上を用いても構わない。

[0077]

ノニオン系界面活性剤の好ましい添加量は広い範囲を持つが、好ましくはインク組成物中の0.001~50質量%、さらに好ましくは0.01~20質量%である。

[0078]

本発明のインクセットに使用するインクは、染料を水ならびに水溶性有機溶媒 に溶解もしくは分散してなるインクである。中でも水溶性染料による水溶液タイ プのインクであることが好ましい。またインクセット中、ベタイン化合物とノニ オン系界面活性剤を有するインクは何色のものであってもよい。

[0079]

本発明のベタイン化合物を使用した場合、インクにおいて気泡が発生する場合がある。この気泡は、インクジェット記録において印字欠陥を生じさせることがあるため、インクに泡を消す作用を有する化合物 (=消泡剤) を添加することにより、この問題を解決することができる。

消泡剤としては、プルロニック系消泡剤(ポリオキシエチレンーポリオキシプロピレン型消泡剤)、やシリコーン型消泡剤など、種々のものを使用することができる。

[0080]

本発明のインクセットに使用するインクは、染料を水ならびに水溶性有機溶媒に溶解もしくは分散してなるインクである。中でも水溶性染料による水溶液タイプのインクであることが好ましい。またインクセット中、ベタイン化合物とノニオン系界面活性剤を有するインクは何色のものであってもよい。

水溶性染料としては特開2002-371214号公報に記載のマゼンタ染料、特開2002-309118号公報に記載のフタロシアニン染料、特開200

3-12952号及び同2003-12956号公報中の水溶性フタロシアニン 染料等に記載の染料を用いることが好ましいが、更に、下記に好ましいシアン染料、マゼンタ染料、イエロー染料及びブラック用染料について詳細に説明する。

[0081]

本件出願人はインクジェット記録用インクについて鋭意、検討を行ない、その結果染料に関して要求される特性としては 1) 色相が良好で色相変化(ソルバト)がない、 2)耐性(光、オゾン、NOx、溶剤、油、水)に優れている、 3)安全である(エームズ、発ガン性が無い、皮膚刺激が無い、易分解性)、 4)低コストである, 5)高 ϵ である、 6)高溶解性である、 7)メデイアに対し強固着性を有することである。

次にインク物性、コンクインク物性に要求されるのは1)温度、経時に係わらず均一である、2)汚れにくい、3)メデイアへの浸透が良い、4)打滴サイズが均一である、5)紙を選ばない、6)調液しやすい、7)吐出ミスが無く、泡が立ちにくい、泡が消えやすい、8)安定吐出ができる。

画像に関して要求されるのは1) 滲み、変色、ピーデイングがなく綺麗である、2) 耐傷性を有している、3) 光沢が高く、均一である、4) 画像保存性が良く、褪色バランスに優れている、5) 乾きが速い、6) 高速でプリントされる、7) 褪色率に画像濃度依存性が無いことである。

[0082]

インクジェット記録用インクとして要求される物性は耐光性、オゾン耐性がともに優れ、色相・表面状態の変化が小さい(ブロンズが生じにくく、染料が析出しにくい)ことである。耐光性 (OD1.0) についてはエプソンPM写真用受像紙上でのXe 1.1W/m (間欠条件)でTACフィルターありの耐光性が3日間で残色率90%以上あることが好ましい。また14日間で色素残存率85%以上あることが好ましい。オゾン耐性についてはオゾン5ppm以下の条件でオゾン耐性 (OD1.0) が1日間で色素残存率60%以上あることが好ましい。オゾン耐性が1日間で色素残存率70%以上あることがさらに好ましく、色素残存率80%以上あることが特に好ましい。また5日間で色素残存率25%以上あることが好ましく、色素残存率50%以上あることがさらに好ましく、色素残存率50%

以上あることが特に好ましい。染料の塗布量を変えたサンプルをGTCで作成, 染料中に含まれるCu元素量を蛍光X線で測定する。

[0083]

フタロシアニン染料の分解によってCuイオンはフタル酸塩として存在する。 実際のプリントに存在するCuイオン換算量は10m g/m 2 以下にすることが好ましい。プリントから流出するCu量はCuイオン換算量が20m g/m 2 以下の一面シアンベタの画像を形成させ、この画像をオゾン褪色させた後、水中に流出するイオン量を分析した。なお褪色以前は全てのCu化合物は受像材料にトラップされている。水中に流出するイオン量は全染料の20%以下にすることが好ましい。

上記のような物性を有するフタロシアニン染料は 1)酸化電位を上げる。 2) 会合性を上げる。 3) 会合促進基を導入する。 π - π スタッキング時の水素結合を強くする。 4) α 位へ置換機を入れない。即ちスタッキングしやすくすること等によって達成されることが本発明により見出された。

[0084]

本発明のインクジェット記録用インクにおいて使用する染料の特徴は従来のインクジェットインクに用いていたフタロシアニン染料が無置換のフタロシアニンのスルホン化から誘導されたものであるため、置換基の数と位置を特定できない混合物であるのに対して、置換基の数と位置を特定できるフタロシアニン染料を用いることである。構造上の特徴の第一は無置換のフタロシアニンのスルホン化を経由しない水溶性フタロシアニン染料であることである。構造上の特徴の第二はフタロシアニンのベンゼン環のβ位に電子吸引性基を有することであり、特に好ましくは全てのベンゼン環のβ位に電子吸引性基を有することである。具体的にはスルホニル基が置換したもの(特願2001-47013、特願2001-190214)、スルファモイル基全般が置換したもの(特願2001-24352、特願2001-189982)、ヘテロ環スルファモイル基が置換したもの(特願2001-190216)、ヘテロ環スルホニル基が置換したもの(特願2001-190215)、特定スルファモイル基が置換したもの(特願2001-1902

カルボニル基が置換したもの(特願2002-012869)、溶解性、インク 安定性向上、ブロンズ対策のため特定置換基を有するものが好ましく、具体的に は不斉炭素を有する(特願2002-012868)、Li塩にしたもの(特願2002-012864)、が有用である。

[0085]

本発明のインクジェット記録用インクに使用する染料の物性上の特徴の第一は高い酸化電位を有することである。酸化電位は1.00Vより貴であることが好ましく、1.1Vより貴であることが更に好ましく、1.2Vより貴であることが最も好ましい。物性上の特徴の第二は強い会合性を有することである。具体的には油溶性染料の会合を規定したもの(特願2001-64413)、水溶性染料の会合を規定したもの(特願2001-117350)が挙げられる。

会合性基の数と性能(インクの吸光度)との関係は会合性基の導入で希薄溶液中でも吸光度の低下や λ maxの短波化が起きやすくなる。また会合性基の数と性能(エプソンPM920受像紙における反射OD)との関係は会合性基の数が増えるほど、同じイオン強度での反射ODが低下する。即ち受像紙上で会合が進むと思われる。会合性基の数と性能(オゾン耐性・耐光性)との関係は会合性基の数が増えるほど、オゾン耐性が良化する。会合性基の数が多い染料は耐光性も良化する傾向がある。オゾン耐性を付与するためには前記の置換基X($X_1 \sim X_4$ 等を表す)を付与することが必要である。反射ODと堅牢性の間はトレードオフの関係にあるので、会合を弱めずに耐光性を上げることが必要である。

[0086]

本発明の好ましいインクの態様としては

- 1) エプソンPM写真用受像紙上でのXe 1.1W/m(間欠条件)でTAC フィルターありの耐光性が3日間で残色率90%以上あるシアンインク。
- 2) 該インク(シアン)単色を用いて、ステータスAフィルターにおけるシアン 反射濃度が 0.9~1.1となるように印字した単色部位において、5ppmの オゾン環境に 24時間保存した際の色素残存率(褪色後の濃度/初期濃度×10
- 0) が60% (好ましくは80%) 以上あるシアンインク。
- 3) 2の条件でオゾン褪色させた後、水中に流出するCuイオン量は全染料の2

0%以下であるシアンインク。

4) 特定受像紙に対するインク染み込み量が受像層の上部30%以上まで浸透可能なシアンインク。

[0087]

本発明のインクジェット記録用インクに含有される染料は、フタロシアニン染料であり、その酸化電位が1.0より貴である水溶性染料が好ましく、さらにオゾンガスに対する堅牢性が上記の条件を満足するものがより好ましく、その中でも下記記一般式(CI)で表されるフタロシアニン染料であることがさらに好ましい。

[0088]

【化31】

[0089]

一般式(C I)において、 X_1 、 X_2 、 X_3 および X_4 は、それぞれ独立に、-SO-Z、 $-SO_2$ -Z、 $-SO_2$ NR1R2、スルホ基、-CONR1R2、または $-CO_2$ R1を表す。これらの置換基の中でも、 $-SO_2$ -Z、 $-SO_2$ -Z、 $-SO_2$ NR1R2および-CONR1R2が好ましく、特に $-SO_2$ -Zおよび $-SO_2$ NR1R2が好ましく、 $-SO_2$ -Zが最も好ましい。ここで、その置換基数を表す a 1 \sim a 4 のいずれかが 2 以上の数を表す場合、 X_1 \sim X_4 の内、複数存在するものは同一でも異なっていても良く、それぞれ独立に上記のいずれかの

基を表す。また、 X_1 、 X_2 、 X_3 および X_4 は、それぞれ全く同じ置換基であってもよく、あるいは例えば X_1 、 X_2 、 X_3 および X_4 が全て $-SO_2-Z$ であり、かつ各Zは異なるものを含む場合のように、同じ種類の置換基であるが部分的に互いに異なる置換基であってもよく、あるいは互いに異なる置換基を、例えば $-SO_2-Z$ と $-SO_2N$ R 1 R 2 を含んでいてもよい。

フタロシアニン染料は堅牢な染料として知られていたが、インクジェット用記録色素として使用した場合、オゾンガスに対する堅牢性に劣ることが知られている。

本発明では、求電子剤であるオゾンとの反応性を下げるために、フタロシアニン骨格に電子求引性基を導入して酸化電位を1.0V(vs SCE)よりも貴とすることが望ましい。酸化電位は貴であるほど好ましく、酸化電位が1.1V(vs SCE)よりも貴であるものがより好ましく、1.2V(vs SCE)より貴であるものが最も好ましい。

[0090]

酸化電位の値(Eox)は当業者が容易に測定することができる。この方法に関しては、例えばP. Delahay著"New Instrumental Methods in Electrochemistry"(1954年 Interscience Publishers社刊)、A. J. Bard他著"Electrochemical Methods"(1980年 JohnWiley & Sons社刊)、藤嶋昭他著"電気化学測定法"(1984年 技報堂出版社刊)などに記載されている。

具体的には、酸化電位は、過塩素酸ナトリウムや過塩素酸テトラプロピルアンモニウムなどの支持電解質を含むジメチルホルムアミドやアセトニトリルなどの溶媒中に、被験試料を $1\times10^{-4}\sim1\times10^{-6}$ モル/リットルの濃度に溶解して、サイクリックボルタンメトリーや直流ポーラログラフィーを用いてSCE(飽和カロメル電極)に対する値として測定する。この値は、液間電位差や試料溶液の液抵抗などの影響で、数10ミルボルト程度偏位することがあるが、標準試料(例えばハイドロキノン)を入れて電位の再現性を保証することができる。

なお、電位を一義的に規定するために、本発明では、 $0.1moldm^{-3}$ の過

塩素酸テトラプロピルアンモニウムを支持電解質として含むジメチルホルムアミド中(染料の濃度は $0.001moldm^{-3}$)で直流ポーラログラフィーにより測定した値(vsSCE)を染料の酸化電位とする。

[0091]

Eox(酸化電位)の値は試料から電極への電子の移りやすさを表わし、その値が大きい(酸化電位が貴である)ほど試料から電極への電子の移りにくい、言い換えれば、酸化されにくいことを表す。化合物の構造との関連では、電子求引性基を導入することにより酸化電位はより貴となり、電子供与性基を導入することにより酸化電位はより卑となる。本発明では、求電子剤であるオゾンとの反応性を下げるために、フタロシアニン骨格に電子求引性基を導入して酸化電位をより貴とすることが望ましい。従って、置換基の電子求引性や電子供与性の尺度であるハメットの置換基定数σρ値を用いれば、スルフィニル基、スルホニル基、スルファモイル基のようにσρ値が大きい置換基を導入することにより酸化電位をより貴とすることができると言える。

このような電位調節をする理由からも、上記一般式(CI)で表されるフタロシアニン染料を用いることは好ましい。

[0092]

前記の酸化電位を有するフタロシアニン染料は耐光性、オゾン耐性がともに優れたシアン染料であることは前記の耐光性、オゾン耐性の条件を満足することから、明らかである。

[0093]

以下、本発明で用いられるフタロシアニン染料(好ましくは一般式(CI)で表されるフタロシアニン染料)について詳細に説明する。

一般式(C I)において、 X_1 、 X_2 、 X_3 および X_4 は、それぞれ独立に、-SO-Z、 $-SO_2$ -Z、 $-SO_2$ NR1R2、スルホ基、-CONR1R2、または $-CO_2$ R1を表す。これらの置換基の中でも、 $-SO_2$ -Z、 $-SO_2$ -Z、 $-SO_2$ -Z 、 $-SO_2$ NR1R2および-CONR1R2が好ましく、特に $-SO_2$ -Zおよび $-SO_2$ NR1R2が好ましく、 $-SO_2$ -Zが最も好ましい。ここで、その置換基数を表す a 1 ~ a 4 のいずれかが2以上の数を表す場合、 X_1 ~ X_4 の内、複数

存在するものは同一でも異なっていても良く、それぞれ独立に上記のいずれかの基を表す。また、 X_1 、 X_2 、 X_3 および X_4 は、それぞれ全く同じ置換基であってもよく、あるいは例えば X_1 、 X_2 、 X_3 および X_4 が全て $-SO_2-Z$ であり、かつ各Zは異なるものを含む場合のように、同じ種類の置換基であるが部分的に互いに異なる置換基であってもよく、あるいは互いに異なる置換基を、例えば $-SO_2-Z$ と $-SO_2NR1R2$ を含んでいてもよい。

[0094]

上記 Z は、それぞれ独立に、置換もしくは無置換のアルキル基、置換もしくは 無置換のシクロアルキル基、置換もしくは無置換のアルケニル基、置換もしくは 無置換のアラルキル基、置換もしくは無置換のアリール基、置換もしくは無置換 の複素環基を表す。好ましくは、置換もしくは無置換のアルキル基、置換もしく は無置換のアリール基、置換もしくは無置換の複素環基であり、その中でも置換 アルキル基、置換アリール基、置換複素環基が最も好ましい。

上記R1、R2は、それぞれ独立に、水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のシクロアルキル基、置換もしくは無置換のアルケニル基、置換もしくは無置換のアラルキル基、置換もしくは無置換のアリール基、または置換もしくは無置換の複素環基を表す。なかでも、水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基、および置換もしくは無置換の複素環基が好ましく、その中でも水素原子、置換アルキル基、置換アリール基、および置換複素環基がさらに好ましい。但し、R1、R2がいずれも水素原子であることは好ましくない。

[0095]

R1、R2およびZが表す置換もしくは無置換のTルキル基としては、炭素原子数が $1\sim30$ のTルキル基が好ましい。特に染料の溶解性やインク安定性を高めるという理由から、分岐のTルキル基が好ましく、特に不斉炭素を有する場合(ラセミ体での使用)が特に好ましい。置換基の例としては、後述のZ、R1、R2、 Y_1 、 Y_2 、 Y_3 および Y_4 が更に置換基を持つことが可能な場合の置換基と同じものが挙げられる。中でも水酸基、 X_1 エステル基、シアノ基、アミド基、 X_1 スルホンアミド基が染料の会合性を高め堅牢性を向上させるので特に好

ましい。この他、ハロゲン原子やイオン性親水性基を有していても良い。なお、 アルキル基の炭素原子数は置換基の炭素原子を含まず、他の基についても同様で ある。

[0096]

R1、R2およびZが表す置換もしくは無置換のシクロアルキル基としては、炭素原子数が $5\sim30$ のシクロアルキル基が好ましい。特に染料の溶解性やインク安定性を高めるという理由から、不斉炭素を有する場合(ラセミ体での使用)が特に好ましい。置換基の例としては、後述のZ、R1、R2、 Y_1 、 Y_2 、 Y_3 および Y_4 が更に置換基を持つことが可能な場合の置換基と同じものが挙げられる。なかでも、水酸基、エーテル基、エステル基、シアノ基、アミド基、およびスルホンアミド基が染料の会合性を高め堅牢性を向上させるので特に好ましい。この他、ハロゲン原子やイオン性親水性基を有していても良い。

R1、R2およびZが表す置換もしくは無置換のアルケニル基としては、炭素原子数が $2\sim30$ のアルケニル基が好ましい。特に染料の溶解性やインク安定性を高めるという理由から、分岐のアルケニル基が好ましく、特に不斉炭素を有する場合(ラセミ体での使用)が特に好ましい。置換基の例としては、後述のZ、R1、R2、Y1、Y2、Y3およびY4が更に置換基を持つことが可能な場合の置換基と同じものが挙げられる。なかでも、水酸基、エーテル基、エステル基、シアノ基、アミド基、スルホンアミド基が染料の会合性を高め堅牢性を向上させるので特に好ましい。この他、ハロゲン原子やイオン性親水性基を有していてもよい。

[0097]

R1、R2およびZが表す置換もしくは無置換のTラルキル基としては、炭素原子数が $T \sim 30$ のTラルキル基が好ましい。特に染料の溶解性やインク安定性を高めるという理由から、分岐のTラルキル基が好ましく、特に不斉炭素を有する場合(ラセミ体での使用)が特に好ましい。置換基の例としては、後述のZ、R1、R2、 Y_1 、 Y_2 、 Y_3 および Y_4 が更に置換基を持つことが可能な場合の置換基と同じものが挙げられる。なかでも、水酸基、 X_1 、 X_2 、 X_3 に表し、 X_4 、 X_4 、 X_5 、 X_5

ので特に好ましい。この他、ハロゲン原子やイオン性親水性基を有していてもよい。

R1、R2およびZが表す置換もしくは無置換のアリール基としては、炭素原子数が $6\sim30$ のアリール基が好ましい。置換基の例としては、後述のZ、R1、R2、Y $_1$ 、Y $_2$ 、Y $_3$ およびY $_4$ が更に置換基を持つことが可能な場合の置換基と同じものが挙げられる。なかでも、染料の酸化電位を貴とし堅牢性を向上させるので電子吸引性基が特に好ましい。電子吸引性基としては、ハメットの置換基定数 σ p 値が正のものが挙げられる。なかでも、ハロゲン原子、複素環基、シアノ基、カルボキシル基、アシルアミノ基、スルホンアミド基、スルファモイル基、カルバモイル基、スルホニル基、イミド基、アシル基、スルホ基、4級アンモニウム基が好ましく、シアノ基、カルボキシル基、スルファモイル基、カルバモイル基、スルホニル基、イミド基、アシル基、スルホ基、4級アンモニウム基が更に好ましい。

[0098]

R1、R2およびZが表す複素環基としては、5員または6員環のものが好ましく、それらは更に縮環していてもよい。また、芳香族複素環であっても非芳香族複素環であっても良い。以下にR1、R2およびZで表される複素環基を、置換位置を省略して複素環の形で例示するが、置換位置は限定されるものではなく、例えばピリジンであれば、2位、3位、4位で置換することが可能である。ピリジン、ピラジン、ピリミジン、ピリダジン、トリアジン、キノリン、イソキノリン、キナゾリン、シンノリン、フタラジン、キノキサリン、ピロール、インドール、フラン、ベンゾフラン、チオフェン、ベンゾチオフェン、ピラゾール、イミダゾール、ベンズイミダゾール、トリアゾール、オキサゾール、ピロリジン、ピッジン、イミダゾリジン、チアゾリンなどが挙げられる。なかでも、芳香族複素環基が好ましく、その好ましい例を先と同様に例示すると、ピリジン、ピラジン、ピリミジン、ピリダジン、トリアジン、ピラゾール、イミダゾール、ベンズイミダゾール、トリアゾール、チアゾール、ベンブチアゾール

、イソチアゾール、ベンズイソチアゾール、チアジアゾールが挙げられる。それらは置換基を有していても良く、置換基の例としては、後述のZ、R1、R2、Y1、Y2、Y3およびY4が更に置換基を持つことが可能な場合の置換基と同じものが挙げられる。好ましい置換基は前記アリール基の置換基と、更に好ましい置換基は、前記アリール基の更に好ましい置換基とそれぞれ同じである。

Y1、Y2、Y3およびY4は、それぞれ独立に、水素原子、ハロゲン原子、アルキル基、シクロアルキル基、アルケニル基、アラルキル基、アリール基、複素環基、シアノ基、ヒドロキシル基、ニトロ基、アミノ基、アルキルアミノ基、アルコキシ基、アリールオキシ基、アシルアミノ基、アリールアミノ基、ウレイド基、スルファモイルアミノ基、アルキルチオ基、アリールチオ基、アルコキシカルボニルアミノ基、スルホンアミド基、カルバモイル基、スルファモイル基、スルホニル基、アルコキシカルボニル基、複素環オキシ基、アゾ基、アシルオキシ基、カルバモイルオキシ基、シリルオキシ基、アリールオキシカルボニル基、アリールオキシカルボニルアミノ基、イミド基、複素環チオ基、ホスホリル基、アリールオキシカルボニルアミノ基、イミド基、複素環チオ基、ホスホリル基、アシル基、カルボキシル基、またはスルホ基を挙げる事ができ、各々はさらに置換基を有していてもよい。

[0099]

なかでも、水素原子、ハロゲン原子、アルキル基、アリール基、シアノ基、アルコキシ基、アミド基、ウレイド基、スルホンアミド基、カルバモイル基、スルファモイル基、アルコキシカルボニル基、カルボキシル基、およびスルホ基が好ましく、特に水素原子、ハロゲン原子、シアノ基、カルボキシル基およびスルホ基が好ましく、水素原子が最も好ましい。

Z、R 1 、R 2 、Y 1 、Y 2 、Y 3 および Y 4 が更に置換基を有することが可能な基であるときは、以下に挙げる置換基を更に有してもよい。

[0100]

炭素数 $1\sim12$ の直鎖または分岐鎖アルキル基、炭素数 $7\sim18$ の直鎖または分岐鎖アラルキル基、炭素数 $2\sim12$ の直鎖または分岐鎖アルケニル基、炭素数 $2\sim12$ の直鎖または分岐鎖アルキニル基、炭素数 $3\sim12$ の直鎖または分岐鎖シクロアルキル基、炭素数 $3\sim12$ の直鎖または分岐鎖シクロアルケニル基(以

上の各基は分岐鎖を有するものが染料の溶解性およびインクの安定性を向上させ る理由から好ましく、不斉炭素を有するものが特に好ましい。以上の各基の具体 例:例えばメチル、エチル、プロピル、イソプロピル、sec-ブチル、 t ーブチル 、2-エチルヘキシル、2-メチルスルホニルエチル、3-フェノキシプロピル 、トリフルオロメチル、シクロペンチル)、ハロゲン原子(例えば、塩素原子、 臭素原子)、アリール基(例えば、フェニル、4-t-ブチルフェニル、2.4 ージーtーアミルフェニル)、複素環基(例えば、イミダゾリル、ピラゾリル、 トリアゾリル、2-フリル、2-チエニル、2-ピリミジニル、2-ベンゾチア ゾリル)、シアノ基、ヒドロキシル基、ニトロ基、カルボキシ基、アミノ基、ア ルキルオキシ基(例えば、メトキシ、エトキシ、2-メトキシエトキシ、2-メ タンスルホニルエトキシ)、アリールオキシ基(例えば、フェノキシ、2ーメチ ルフェノキシ、4-t-ブチルフェノキシ、3-ニトロフェノキシ、3-t-ブ チルオキシカルバモイルフェノキシ、3-メトキシカルバモイル)、アシルアミ ノ基(例えば、アセトアミド、ベンズアミド、4-(3-t-ブチル-4-ヒド ロキシフェノキシ)ブタンアミド)、アルキルアミノ基(例えば、メチルアミノ 、ブチルアミノ、ジエチルアミノ、メチルブチルアミノ)、アニリノ基(例えば 、フェニルアミノ、2-クロロアニリノ、ウレイド基(例えば、フェニルウレイ ド、メチルウレイド、N.N-ジブチルウレイド)、スルファモイルアミノ基(例えば、N, N-ジプロピルスルファモイルアミノ)、アルキルチオ基(例えば 、メチルチオ、オクチルチオ、2-フェノキシエチルチオ)、アリールチオ基(例えば、フェニルチオ、2-ブトキシ-5-t-オクチルフェニルチオ、2-カ ルボキシフェニルチオ)、アルキルオキシカルボニルアミノ基(例えば、メトキ シカルボニルアミノ)、スルホンアミド基(例えば、メタンスルホンアミド、ベ ンゼンスルホンアミド、n-トルエンスルホンアミド)、カルバモイル基(例え ば、N-エチルカルバモイル、N,N-ジブチルカルバモイル) 、スルファモイ ル基(例えば、N-エチルスルファモイル、N.N-ジプロピルスルファモイル 、N-フェニルスルファモイル)、スルホニル基(例えば、メタンスルホニル、 オクタンスルホニル、ベンゼンスルホニル、トルエンスルホニル)、アルキルオ キシカルボニル基(例えば、メトキシカルボニル、ブチルオキシカルボニル)、

複素環オキシ基(例えば、1-フェニルテトラゾール-5-オキシ、2-テトラ ヒドロピラニルオキシ)、アゾ基(例えば、フェニルアゾ、4-メトキシフェニ ルアゾ、4-ピバロイルアミノフェニルアゾ、2-ヒドロキシ-4-プロパノイ ルフェニルアゾ)、アシルオキシ基(例えば、アセトキシ)、カルバモイルオキ シ基(例えば、N-メチルカルバモイルオキシ、N-フェニルカルバモイルオキ シ)、シリルオキシ基(例えば、トリメチルシリルオキシ、ジブチルメチルシリ ルオキシ)、アリールオキシカルボニルアミノ基(例えば、フェノキシカルボニ ルアミノ)、イミド基(例えば、N-スクシンイミド、N-フタルイミド)、複 素環チオ基(例えば、2ーベンゾチアゾリルチオ、2,4ージーフェノキシー1 ,3,5-トリアゾール-6-チオ、2-ピリジルチオ)、スルフィニル基(例 えば、3-フェノキシプロピルスルフィニル)、ホスホニル基(例えば、フェノ キシホスホニル、オクチルオキシホスホニル、フェニルホスホニル)、アリール オキシカルボニル基(例えば、フェノキシカルボニル)、アシル基(例えば、ア セチル、3-フェニルプロパノイル、ベンゾイル)、イオン性親水性基(例えば 、カルボキシル基、スルホ基、ホスホノ基および4級アンモニウム基)が挙げら れる。

[0101]

前記一般式(CI)で表されるフタロシアニン染料が水溶性である場合には、イオン性親水性基を有することが好ましい。イオン性親水性基には、スルホ基、カルボキシル基、ホスホノ基および4級アンモニウム基等が含まれる。前記イオン性親水性基としては、カルボキシル基、ホスホノ基、およびスルホ基が好ましく、特にカルボキシル基、スルホ基が好ましい。カルボキシル基、ホスホノ基およびスルホ基は塩の状態であってもよく、塩を形成する対イオンの例には、アンモニウムイオン、アルカリ金属イオン(例、リチウムイオン、ナトリウムイオン、カリウムイオン)および有機カチオン(例、テトラメチルアンモニウムイオン、テトラメチルグアニジウムイオン、テトラメチルホスホニウム)が含まれる。対イオンのなかでも、アルカリ金属塩が好ましく、特にリチウム塩は染料の溶解性を高めインク安定性を向上させるため特に好ましい。

[0102]

イオン性親水性基の数としては、フタロシアニン系染料1分子中少なくとも2個有することが好ましく、スルホ基および/またはカルボキシル基を少なくとも2個有することが特に好ましい。

a 1 と b 1 は、a 1 + b 1 = 4 の関係を満たす。特に好ましいのは、a 1 が 1 または 2 を表し、b 1 が 3 または 2 を表す組み合わせであり、そのなかでも、a 1 が 1 を表し、b 1 が 3 を表す組み合わせが最も好ましい。

a1とb1、a1とb1、a1とb1の各組み合わせにおいても、a1とb1の組み合わせと同様の関係であり、好ましい組み合わせも同様である。

[0103]

Mは、水素原子、金属元素またはその酸化物、水酸化物もしくはハロゲン化物を表す。

Mとして好ましいものは、水素原子の他に、金属元素として、Li、Na、K、Mg、Ti、Zr、V、Nb、Ta、Cr、Mo、W、Mn、Fe、Co、Ni、Ru、Rh、Pd、Os、Ir、Pt、Cu、Ag、Au、Zn、Cd、Hg、Al、Ga、In、Si、Ge、Sn、Pb、Sb、Bi等が挙げられる。酸化物としては、VO、GeO等が好ましく挙げられる。 また、水酸化物としては、Si(OH)2、Cr(OH)2、Sn(OH)2等が好ましく挙げられる。さらに、ハロゲン化物としては、AICI、SiCI2、VCI、VCI2、VOCI、FeCI、GaCI、ZrCI等が挙げられる。なかでも、Cu、Ni、Zn、AI等が好ましく、Cuが最も好ましい。

また、L(2価の連結基)を介してPc(フタロシアニン環)が2量体(例えば、Pc-M-L-M-Pc)または3量体を形成してもよく、その時のMはそれぞれ同一であっても異なるものであってもよい。

[0104]

Lで表される2価の連結基は、オキシ基-O-、チオ基-S-、カルボニル基-CO-、スルホニル基-SO₂-、イミノ基-NH-、メチレン基-CH₂-、およびこれらを組み合わせて形成される基が好ましい。

前記一般式(CI)で表される化合物の好ましい置換基の組み合わせについては、種々の置換基の少なくとも1つが前記の好ましい基である化合物が好ましく、より多くの種々の置換基が前記好ましい基である化合物がより好ましく、全ての置換基が前記好ましい基である化合物が最も好ましい。

前記一般式(CI)で表されるフタロシアニン染料のなかでも、前記一般式(CII)で表される構造のフタロシアニン染料が更に好ましい。

[0105]

【化32】

$$(X_{14})a_{14}$$
 Y_{17}
 Y_{18}
 Y_{16}
 Y_{17}
 Y_{18}
 Y_{16}
 Y_{17}
 Y_{18}
 Y_{17}
 Y_{18}
 Y_{19}
 Y_{11}
 Y_{11}
 Y_{12}
 Y_{14}
 Y_{13}
 Y_{14}
 Y_{14}
 Y_{13}
 Y_{14}
 Y_{14}
 Y_{15}
 Y_{14}
 Y_{15}
 Y_{14}
 Y_{15}
 Y_{14}
 Y_{15}
 Y_{15}
 Y_{16}
 Y_{17}
 Y_{18}
 Y_{19}
 $Y_$

[0106]

以下に本発明の一般式(CII)で表されるフタロシアニン染料について詳しく述べる。

前記一般式(CII)において、 $X_{11} \sim X_{14}$ 、 $Y_{11} \sim Y_{18}$ は一般式(CI)の中の $X_1 \sim X_4$ 、 $Y_1 \sim Y_4$ とそれぞれ同義であり、好ましい例も同じである。また、 M_1 は一般式(CI)中のMと同義であり、好ましい例も同様である。

一般式 (CII) 中、a 1 1 ~ a 1 4 は、それぞれ独立に、1 または 2 の整数であり、好ましくは $4 \le a$ 1 1 + a 1 2 + a 1 3 + a 1 $4 \le 6$ を満たし、特に好ま

しくはa11=a12=a13=a14=1のときである。

 X_{11} 、 X_{12} 、 X_{13} および X_{14} は、それぞれ全く同じ置換基であってもよく、あるいは例えば X_1 、 X_2 、 X_3 および X_4 が全て $-SO_2-Z$ であり、かつ各Zは異なるものを含む場合のように、同じ種類の置換基であるが部分的に互いに異なる置換基であってもよく、あるいは互いに異なる置換基を、例えば $-SO_2-Z$ と $-SO_2NR1R2$ を含んでいてもよい。

[0107]

一般式(CII)で表されるフタロシアニン染料のなかでも、特に好ましい置換 基の組み合わせは、以下の通りである。

 X_{11} ~ X_{14} としては、それぞれ独立に、-SO-Z、 $-SO_2-Z$ 、 $-SO_2$ NR1R2または-CONR1R2が好ましく、特に $-SO_2-Z$ または $-SO_2$ NR1R2が好ましく、 $-SO_2-Z$ が最も好ましい。

Zは、それぞれ独立に、置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基、置換もしくは無置換の複素環基が好ましく、そのなかでも、置換アルキル基、置換アリール基、置換複素環基が最も好ましい。特に染料の溶解性やインク安定性を高めるという理由から、置換基中に不斉炭素を有する場合(ラセミ体での使用)が好ましい。また、会合性を高め堅牢性を向上させるという理由から、水酸基、エーテル基、エステル基、シアノ基、アミド基、スルホンアミド基が置換基中に有する場合が好ましい。

[0108]

R1、R2は、それぞれ独立に、水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基、置換もしくは無置換の複素環基が好ましく、そのなかでも、水素原子、置換アルキル基、置換アリール基、置換複素環基がより好ましい。ただしR1、R2が共に水素原子であることは好ましくない。特に染料の溶解性やインク安定性を高めるという理由から、置換基中に不斉炭素を有する場合(ラセミ体での使用)が好ましい。また、会合性を高め堅牢性を向上させるという理由から、水酸基、エーテル基、エステル基、シアノ基、アミド基、スルホンアミド基が置換基中に有する場合が好ましい。

Y₁₁~Y₁₈は、それぞれ独立に、水素原子、ハロゲン原子、アルキル基、アリ

ール基、シアノ基、アルコキシ基、アミド基、ウレイド基、スルホンアミド基、カルバモイル基、スルファモイル基、アルコキシカルボニル基、カルボキシル基、およびスルホ基が好ましく、特に水素原子、ハロゲン原子、シアノ基、カルボキシル基、またはスルホ基であることが好ましく、水素原子であることが最も好ましい。

 $a 1 1 \sim a 1 4$ は、それぞれ独立に、1 または2 であることが好ましく、全てが1 であることが特に好ましい。

[0109]

 M_1 は、水素原子、金属元素またはその酸化物、水酸化物もしくはハロゲン化物を表し、特にCu、Ni、Zn、Alが好ましく、なかでも特にEuが最も好ましい。

前記一般式(CII)で表されるフタロシアニン染料が水溶性である場合には、イオン性親水性基を有することが好ましい。イオン性親水性基には、スルホ基、カルボキシル基、ホスホノ基および4級アンモニウム基等が含まれる。前記イオン性親水性基としては、カルボキシル基、ホスホノ基、およびスルホ基が好ましく、特にカルボキシル基、スルホ基が好ましい。カルボキシル基、ホスホノ基およびスルホ基は塩の状態であってもよく、塩を形成する対イオンの例には、アンモニウムイオン、アルカリ金属イオン(例、リチウムイオン、ナトリウムイオン、カリウムイオン)および有機カチオン(例、テトラメチルアンモニウムイオン、テトラメチルグアニジウムイオン、テトラメチルホスホニウム)が含まれる。対イオンのなかでも、アルカリ金属塩が好ましく、特にリチウム塩は染料の溶解性を高めインク安定性を向上させるため特に好ましい。

[0110]

イオン性親水性基の数としては、フタロシアニン系染料1分子中に少なくとも2個有することが好ましく、スルホ基および/またはカルボキシル基を少なくとも2個有することが特に好ましい。

前記一般式(CII)で表される化合物の好ましい置換基の組み合わせについては、種々の置換基の少なくとも1つが前記の好ましい基である化合物が好ましく、より多くの種々の置換基が前記好ましい基である化合物がより好ましく、全て

の置換基が前記好ましい基である化合物が最も好ましい。

本発明のフタロシアニン染料の化学構造としては、スルフィニル基、スルホニル基、スルファモイル基のような電子吸引性基を、フタロシアニンの4つの各ベンゼン環に少なくとも一つずつ、フタロシアニン骨格全体の置換基のσρ値の合計で1.6以上となるように導入することが好ましい。

$[0\ 1\ 1\ 1\]$

ハメットの置換基定数 σ p値について若干説明する。ハメット則は、ベンゼン誘導体の反応または平衡に及ぼす置換基の影響を定量的に論ずるために1935年L. P. Hamme t t により提唱された経験則であるが、これは今日広く妥当性が認められている。ハメット則に求められた置換基定数には σ p値と σ m値があり、これらの値は多くの一般的な成書に見出すことができるが、例えば、J. A. Dean編、「Lange's Handbook of Chemis try」第12版、1979年(Mc Graw-Hill)や「化学の領域」増刊、122号、96~103頁、1979年(南光堂)に詳しい。

前記一般式(CI)で表されるフタロシアニン誘導体は、その合成法によって不可避的に置換基Xn($n=1\sim4$)およびYm($m=1\sim4$)の導入位置および導入個数が異なる類縁体混合物である場合が一般的であり、従って一般式はこれら類縁体混合物を統計的に平均化して表している場合が多い。本発明では、これらの類縁体混合物を以下に示す三種類に分類すると、特定の混合物が特に好ましいことを見出したものである。すなわち前記一般式(CI)および(CII)で表されるフタロシアニン系染料類縁体混合物を置換位置に基づいて以下の三種類に分類して定義する。式(CII)中における Y_{11} 、 Y_{12} 、 Y_{13} 、 Y_{14} 、 Y_{15} 、 Y_{16} 、 Y_{17} 、 Y_{18} を各々1、4、5、8、9、12、13、16位とする。

[0112]

- (1) β 位置換型:2 およびまたは3 位、6 およびまたは7 位、1 0 およびまたは1 1 位、1 4 およびまたは1 5 位に特定の置換基を有するフタロシアニン染料。
- (2) α -位置換型: 1 およびまたは 4 位、 5 およびまたは 8 位、 9 およびまたは 1 2 位、 1 3 およびまたは 1 6 位に特定の置換基を有する フタロシアニン染料

(3) α , β - 位混合置換型: $1\sim1$ 6 位に規則性なく、特定の置換基を有する フタロシアニン染料

本明細書中において、構造が異なる(特に、置換位置が異なる)フタロシアニン染料の誘導体を説明する場合、上記 β 一位置換型、 α 一位置換型、 α , β 一位混合置換型を使用する。

本発明に用いられるフタロシアニン誘導体は、例えば白井-小林共著、(株) アイピーシー発行「フタロシアニンー化学と機能ー」(P. $1\sim62$)、C. C. LeznoffーA. B. P. Lever共著、VCH発行 'Phthalo cyanines-Properties and Applications' (P. $1\sim54$) 等に記載、引用もしくはこれらに類似の方法を組み合わせて合成することができる。

[0113]

本発明の一般式(C I)で表されるフタロシアニン化合物は、国際公開 0 0 / 1 7 2 7 5 号、同 0 0 / 0 8 1 0 3 号、同 0 0 / 0 8 1 0 1 号、同 9 8 / 4 1 8 5 3 号、特開平 1 0 - 3 6 4 7 1 号などに記載されているように、例えば無置換のフタロシアニン化合物のスルホン化、スルホニルクロライド化、アミド化反応を経て合成することができる。この場合、スルホン化がフタロシアニン核のどの位置でも起こり得る上にスルホン化される個数も制御が困難である。従って、このような反応条件でスルホ基を導入した場合には、生成物に導入されたスルホ基の位置と個数は特定できず、必ず置換基の個数や置換位置の異なる混合物を与える。従ってそれを原料として本発明の化合物を合成する時には、複素環置換スルファモイル基の個数や置換位置は特定できないので、本発明の化合物としては置換基の個数や置換位置の異なる化合物が何種類か含まれる α , β -位混合置換型混合物として得られる。

[0114]

前述したように、例えばスルファモイル基のような電子求引性基を数多くフタロシアニン核に導入すると酸化電位がより貴となり、オゾン耐性が高まる。上記の合成法に従うと、電子求引性基が導入されている個数が少ない、即ち酸化電位がより卑であるフタロシアニン染料が混入してくることが避けられない。従って

、オゾン耐性を向上させるためには、酸化電位がより卑である化合物の生成を抑えるような合成法を用いることがより好ましい。

本発明の一般式(CII)で表されるフタロシアニン化合物は、例えば下記式で表されるフタロニトリル誘導体(化合物 P)および/またはジイミノイソインドリン誘導体(化合物 Q)を一般式(CIII)で表される金属誘導体と反応させるか、或いは下記式で表される4-スルホフタロニトリル誘導体(化合物 R)と一般式(CIII)で表される金属誘導体を反応させて得られるテトラスルホフタロシアニン化合物から誘導することができる。

[0115]

【化33】

[0116]

上記各式中、Xpは上記一般式(CII)における X_{11} 、 X_{12} 、 X_{13} または X_{14} に相当する。また、Yq、Yq'は、それぞれ上記一般式(CII)における Y_{11}

、 Y_{12} 、 Y_{13} 、 Y_{14} 、 Y_{15} 、 Y_{16} 、 Y_{17} または Y_{18} に相当する。化合物Rにおいて、M、はカチオンを表す。

M'が表わすカチオンとしては、Li、Na、Kなどのアルカリ金属イオン、またはトリエチルアンモニウムイオン、ピリジニウムイオンなどの有機カチオンなどが挙げられる。

- 一般式 (CIII):M-(Y) d
- 一般式(CIII)中、Mは前記一般式(CI)および(CII)のMと同義であり、Yはハロゲン原子、酢酸陰イオン、アセチルアセトネート、酸素などの1価または2価の配位子を示し、dは $1\sim4$ の整数である。

即ち、上記の合成法に従えば、望みの置換基を特定の数だけ導入することができる。特に本発明のように酸化電位を貴とするために電子求引性基を数多く導入したい場合には、上記の合成法は、一般式(CI)のフタロシアニン化合物を合成するための既に述べた方法と比較して極めて優れたものである。

かくして得られる前記一般式(CII)で表されるフタロシアニン化合物は、通常、Xpの各置換位置における異性体である下記一般式(a)-1~(a)-4で表される化合物の混合物、すなわち β -位置換型となっている。

[0117]

【化34】

$$X_{14}$$
 Y_{q}
 $Y_$

$$X_{14}$$
 Y_q
 Y_q

[0118]

上記合成法において、Xpとして全て同一のものを使用すれば X_{11} 、 X_{12} 、 X_{13} および X_{14} が全く同じ置換基である β —位置換型フタロシアニン染料を得ることができる。一方、Xpとして異なるものを組み合わせて使用すれば、同じ種類の置換基であるが部分的に互いに異なる置換基をもつ染料や、あるいは、互いに異なる種類の置換基をもつ染料を合成することができる。一般式(CII)の染料

のなかでも、互いに異なる電子吸引性置換基を持つこれらの染料は、染料の溶解 性、会合性、インクの経時安定性などを調整できるので、特に好ましい。

本発明では、いずれの置換型においても酸化電位が 1.0V (vsSCE) よりも貴であることが堅牢性の向上に非常に重要であることが見出され、その効果の大きさは前記先行技術から全く予想することができないものであった。また、原因は詳細には不明であるが、なかでも、 α , β -位混合置換型よりは β -位置換型の方が色相、光堅牢性、オゾンガス耐性等において明らかに優れている傾向にあった。

前記一般式(CI)および(CII)で表されるフタロシアニン染料の具体例(例示化合物 I - 1 ~ I - 1 2 および 1 0 1 ~ 1 9 0)を下記に示すが、本発明に 用いられるフタロシアニン染料は、下記の例に限定されるものではない。

[0119]

【化35】

例示化合物

SO₂NH′

[0120]

【化36】

$$SO_{2}NH \longrightarrow OEt$$

$$SO_{2}NH \longrightarrow N$$

$$N \longrightarrow N$$

$$N \longrightarrow N$$

$$N \longrightarrow N$$

$$N \longrightarrow N$$

$$SO_{2}NH \longrightarrow OEt$$

$$SO_{2}NH \longrightarrow OEt$$

[0121]

$$\begin{array}{c} SO_2N \\ N \\ SO_2N \\ \end{array}$$

$$(1-6)$$

[0122]

【化38】

$$(I-7)$$

$$SO_{2}NH \longrightarrow N$$

$$N \longrightarrow N$$

[0123]

【化39】

(I-9)

(I-10)

[0124]

【化40】

$$\begin{array}{c} SO_2NH - \\ SO_3Na \\ N - Ni - N \\ SO_3Na \\ SO_3Na \\ SO_3Na \\ SO_3Na \\ SO_3Na \\ \end{array}$$

[0125]

【表3】

X1 X2 Y16 N N V11 X2 N N N V11 X14 N N N V12 Y14 N N N N N N N N N N N N N N N N N N N	X2 Y11, Y12 Y13, Y14 Y15, Y16 Y17, Y18	-н -н -н -н -н -н -н -н	-H -Ci -H -Ci -H -Ci -H	H- H- H- H- H- H- H- H-	-н -н -н -н -н -н -н -н	-H -Ci, -H -Ci, -H -Ci, -H	-CN -H, -H -H, -H -H, -H -H, -H	H- H	H H H H H H H	H H H H H H H H	H H H H H H H H H
	X1	-SO ₂ -NH-CH ₂ -CH ₂ -SO ₃ Li	OH 1 - SO ₂ - NH - CH ₂ - CH - CO - NH - CH ₂ CH ₂ - SO ₃ Na	OH -SO ₂ -NH-CH ₂ -CH ₂ -SO ₂ NH-CH ₂ CH-SO ₃ Li	-SO ₂ -NH-SO ₂ NH-CH ₂ CH ₂ -SO ₃ Li	CH2-COONB -SO2-NH-CH2-CH-CO-NH-CH-COONB	-SO ₂ -NH-CH ₂ -CH ₂ -SO ₂ -NH-CH ₂ -COONa	CH2-OH -802-CH2-CH2-SO2-NH-CH-COOL	-50,-CH,-CH,-CH,-SO,L	-50,-CH,-CH,-CH,-SO,K	-50 ₂ (GH ₂) ₅ GO ₂ K
	Σ	వె	ng.	రె	õ	芝	ತ	3	ਠੌ	ਤੋ	ος
卷 (X1,X	化合物 No.	101	102	103	104	105	106	107	108	109	110

[0126]

【表4】

級中 (X1、	X2), (Y	喪中 (X1、X2)、(Y11、Y12)、(Y13、Y14)、(Y15、Y16)、(Y17、Y18)の各組の具体例はそれぞれ独立に順不同である。	れぞれ独立	1に順不同	である。		
化合物 No.	₹	1X	X2	Y11, Y12	Y13, Y14	Y11, Y12 Y13, Y14 Y15, Y16 Y17, Y18	Y17, Y18
111	ű	OH -SO2-NH-CH2-CH2-SO2-NH-CH2CH-CH2-SO3LI	H-	-н -н	-НН	-HH	H- ,-H
112	J	OH 	-SO ₃ Li	Ŧ	Ŧ	#- #-	Ŧ Ŧ
113	3	– so ₂ – cH ₂ - cH – cH ₂ so ₃ K l oH	Ŧ	Ŧ Ŧ	Ŧ Ŧ	# #	Ŧ Ŧ
114	3	ОН - 	-SO ₃ Li	-HН	H- ,H	푸 푸	Ŧ
115	õ	CH3 	Ŧ	¥	Ŧ Ŧ	H, H	-
116	ਹ	OH 	Ŧ	Ŧ	-НН	-нн	Ŧ
117	3	COOLI 	Ŧ	Ŧ	-Н Н	-НН	-HH

[0127]

【表 5】

	Y15, Y16 Y17, Y18	푸 푸	Ŧ Ŧ	푸 푸	Ŧ Ŧ	# #	H. H	+ +
	Y15, Y1	Ŧ.	푸 푸	푸 푸	¥ ¥	-H, -H	Ŧ	¥ ¥
で あ る。	Y13, Y14	H. H.	Ŧ	Ŧ	푸 푸	<u>구</u>	푸 푸	¥ ¥
かる。	Y11, Y12 Y13, Y14	-нн	H, -H	Ŧ Ŧ	Ŧ Ŧ	# #	Ŧ,	Ŧ Ŧ
ただれた。	X2	Н-	Ŧ	Ŧ	Ŧ	Ŧ	푸	Ŧ
X2 X1 X2 Y17 Y18 N N Y11 X2 X1 X2 X1		- so ₂ ch2h2h -	OH - 	сн, 1 1 -802-сн,-сн,-сооц	—SO₂(CH₂)₃SO₂NHCH₂—CH—CH₂—SO₃⊔i OH	OH 1 1 - CO ₂ CH ₂ CH ₂ CH ₂ SO ₂ NH - CH ₂ - CH - CH ₂ - SO ₃ Li	-SO,NHC ₈ H ₁ ,(t)	CH2CH3 CH2CHCH2-CH3 CH2CHCH3-CH3
<u> </u>	W	S	o.	సె	O.	3	3	3
# (X X X) (X11 X)	化合物 No.	118	119	120	121	122	123	124

[0128]

【表6】

[0129]

【表7】

		Y17, Y18	Ŧ	Ŧ	Ŧ	Ŧ Ŧ	Ŧ Ŧ
		Y15, Y16	H- 'H-	H, H	Ŧ	Ŧ	Ŧ Ŧ
	である。	Y11, Y12 Y13, Y14 Y15, Y16	-Н, -Н	НН.	¥ ¥	H- H-	¥ ¥
	立に順不同	Y11, Y12	-HH	-H, -H	H- 'H-	H- 'H-	∓ ∓
	れぞれ独	X2	-H	H-	Ŧ	Ŧ	干
X2 X1 X2 X18 X11 X2 X1 X12 X12 X12 X12 X12 X12 X12 X	表中 (X1、X2)、(Y11、Y12)、(Y13、Y14)、(Y15、Y18)、(Y17、Y18)の各組の具体例はそれぞれ独立に順不同である。	ΙX	CO ₂ C ₆ H ₁₃ (n)	- SO ₂ NH CH ₂ CCH ₃ C ₂ H ₅ SO ₂ NHCH ₂ CH C ₄ H ₉	CH2CH3 - SO2NH - SO2 - NH - CH2 - CH2CH2 - CH3 - CH3	- SO ₂ -	-SO ₂ N C ₄ H ₉ (n)
	X2), (Y	×	ō	J.	ű	ng C	J.
	表中 (X1、	化合物 No.	132	133	134	135	136

[0130]

【表8】

		X1 X2 Y17 X18					
		X2					
表 本 (X1,	X2), (Y1	<u>※2</u> x1 ※2 x1 表中 (X1、X2)、(Y11、Y12)、(Y13、Y14)、(Y15、Y16)、(Y17、Y18)の各組の具体例はそれぞれ独立に順不同である。	れぞれ独	立に順不同.	ሮある。	:	
化合物 No.	×	X1	X2	Y11, Y12	14	Y15, Y16	Y17, Y18
137	Co	- SO ₂ —{ S SO ₃ Li	Ŧ	H- 'H-	H, H	푸 푸	Ŧ
138	3	- SO ₂ NH N, N SO ₃ Li	Ŧ	+ +	Ŧ Ŧ	H H-	Ŧ Ŧ
139	õ	CO ₂ Li -SO ₂ (CH ₂) ₃ -NH-C-CO ₂ Li 0	ᅙ	푸 푸	+ +	Ŧ Ŧ	Ŧ Ŧ
140	On	NH - CH ₂ - CH - SO ₃ Li N	Ŧ	Ŧ	+ ギ	푸 푸	+ +

[0131]

【表 9 】

*	Y17, Y18	Ŧ Ŧ	Ŧ Ŧ	∓ T	-H, -H	Ŧ
	Y11, Y12 Y13, Y14 Y15, Y16 Y17, Y18	-Н, -Н	-нн	-Ĥ.	H- 'H	H. H
° 2	Y13, Y14	-н, -н	-нн	-Н, -Н	H H	-нн
	Y11, Y12	H- 'H-	-Н, -Н	H- 'H-	Ŧ	H, H
二立般	X2	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ
x1 x2 x10 N N V11 x2 N N N V11 x10 N N V12 x14 N N V12 x14 N N V12 x15 N N N V12 x15 X14), (Y15, Y16), (Y17, Y18)の各組の具体例はそれぞれ独立に順不同である。	IX	COON8 	SO ₂ NH SO ₃ Li	OH COOK 1	COOLI CH2CH2-NH-CO-(−so ₂ ch,ch,och,ch,so ₃ Li
x2), (Y:	¥	n _O	రె	ΩΩ	Cu	n O
表中 (X1, X2), (Y11, Y12),	化合物 No.	141	142	143	144	145

[0132]

【表10】

	c		-		2			1.5	2		2	-	2
表中(Xp1)、(Xp1)の各置換基のβ位置換基型内で導入位置の順序は順不同である。	Χp,	OH -SO ₂ -NH-CH ₂ -CH-CH ₃	OH -SO2-NH-CH2-CH2-SO2-NH-CH2-CH-CH3	-S0,NH-CH,-CH,-CH,-S0,-NH-CH,-CH,-O-CH,-CH,-OH	- SO ₂ - NH - CH ₂ - CH ₂ - CH ₂ - CO - N + CH ₂ - CH ₂ - OH) ₂	CH ₃ SO ₂ NH-CH-CH ₂ OH	-50_1 NH $-$ CH, $-$ CH, $-$ 0 $-$ CH, $-$ CH, $-$ OH	$-50_1 - CH_1 - CH_1 - 0 - CH_1 - CH_1 - 0H$	-802-CH2-CH2-CH2-CO-N-(CH2-CH2-OH)2	OH 	OH 	OH -S0 ₂ -CH ₂ -CH ₂ -CH ₂ -SO ₃ Li	-802-CH2-CH2-CH2-CH2-CH2-CH2-COK
置换	Ø	3	3	3	2	က	က	2.5	2	3	2	3	2
M-Pc(Xp ₁) _n (Xp ₁) _n 表中(Xp ₁)、(Xp ₁)の各置換基のA位	Χp1	CH ⁹ - SO ² - NH - CH ² - CH - SO ³ Li	$-SO_{i}-NH-CH_{i}-CH_{i}SO_{i}Li$	CH3 SO2-NH-CH2-CH-SQLi	CH3 - SO2-NH-CH2-SO3Li - SO2-NH-CH2-SO3Li	$-\mathrm{SO_1} - \mathrm{NH} - \mathrm{CH_1} - \mathrm{CH_2} - \mathrm{SO_2} - \mathrm{NH} - \mathrm{CH_1}\mathrm{CH_2} - \mathrm{COONa}$	OH SO ₂ -NH-CH ₂ -CH-SO ₃ Li	CH ₃ 	CH ₃ -SO ₂ -CH ₂ -CH ₂ -CH-SO ₃ Na	$- SO_t - CH_t - CH_t - CH_t - SO_tLi$	$-50_{1}-CH_{1}-CH_{1}-CH_{1}-C00K$	$-50_{1}-CH_{1}-CH_{1}-CH_{1}-50_{1}Li$	$-50_1-CH_1-CH_1-0-CH_1-CH_1-50_1Li$
(Xp_1)	Σ	Ça	, no	r,	no	Çn	Cu	J.	ης	D,	Cu	Ç	23
M-Pc	化合物 No.	146	147	148	149	.150	151	152	153	154	155	156	157

[0133]

【表11】

	u	1		Ţ	1	2	1	2		-	1.5	2		~
表中(Xp1)、(Xp1)の各置換基のβ位置換基型内で導入位置の順序は順不同である。	Χp ₁	он -so ₂ -ch ₂ -сh ₂ -сh ₂ -сн -сh ₂ -сн	OH - - SO2CH2CH2-CH3CH3CH3CH3CH3CH3	CH2-CH2-COONa SO2-CH2-CH2-CONH-CH2-COONa	— SO2CH2CH2SO2NHCH2 −CH−CH3SO3Li OH	- So,ch,ch,och,ch,och,ch,oh	СН ₂ so ₂ ch2ch2o ₂ NH-cH-cH-сh2-OH	- SO,CH,CH,CH,SO,N(CH,CH,OH),	$-C0 - NH - CH_{i} - CH_{i} - 0 - CH_{i} - CH_{i} - 0H$	OH -CO-NH-CH-CH ₂	-co-nh-ch-ch-ch-co-nfch-ch-ch-oH)2	-co-ch-ch-ch-co-n-(ch-ch-oh);	ОН - 	OH CO,-CH,-CH,-SO,-NH-CH,-CH-CH,-COOK
位置	=	3	ۍ -	က	က	2	က	2	က	က	2.5	2	3	2
M-Pc(Xp _l)。(Xp _l)。 表中(Xp _l)、(Xp _l)の各置換基の <i>B</i>		OH - - - - - - - - - -	- SO,NHCH,CH, - SO,Li	-S0,-CH,-CH,-O-CH,-CH,-O-CH,-CH,-SO,Na	- S0,CH,CH,CH,SO,Li	- so,ch,ch,ch,so,li	- SO,CH,CH,CH,SO,K	- so,ch,ch,ch,so,li	- CO NH CH ₁ CO ₁ K	- CO-NH-CH,-CH,-SO,-NH-CH,-CH,-COONa	OH -SO,(CH,),SO,NHCH,-CH-CH,CO,Li	CH ₃ - CO ₃ - CH ₃ - CH - SO ₃ Na	- CO ₁ - CH ₁ - CH ₁ - CH ₁ - SO ₁ Li	- CO ₁ - CH ₁ - CH ₁ - CH ₂ COOK
$(X_{p_1})_{a}$	×	r.J	25	Cu	Çn	25	ņ	Ę,	η	Cu	Çn	Çn	Çn	រូ
M-Pc	化合物 No.	158	159	160	161	162	163	164	165	166	167	168	169	170

[0134]

【表12】

	u	1	2	2	-	2	1	1	1	2	-	-	1.5
表中(Xp1)、(Xp1)の各置換基のβ位置換基型内で導入位置の順序は順不同である。	Хр,	-SO2-CH2-CH2-CH2-СH2-СH2-СH2-СH2-СH2-СH2-СH2-СH2-СH2-С	OH 	OH CO2-CH3-CH3-SO3Li	OH 	CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-	CH2CH3 -SO2-CH2-CH2-SO2-NHCH2-CH-CH2CH2-CH2CH3	ОН 1 1 – SO ₂ -CH2-CH2-CH2-CH3	CH2CH3 -SO2-CH2-CH2-CH2-CH2-CH2CH3-CH2CH3	O — CH ₃ 	-SO,NH-CH,-CH,-SO,NH-CH,-CH,-O-CH,-CH,-OH	-502-CH2-CH2-SO2-NH-CH-(CH3)2	CH3
位置	Ħ	3	2	2	3	2	3	2	3	2	3	3	2.5
$M-Pc(Xp_l)_{\bullet}(Xp_l)_{\bullet}$ 、 表中 (Xp_l) 、 (Xp_l) の各置換基の β		CO,-CH,-CH,-O-CH,-CH,-O-CH,-CH,-SO,Na	— S0,CH,CH,OCH,CH,O — CH,CH,SO,K	−SO ₂ (CH ₂) ₃ SO ₂ NHCH ₂ CHCH ₂ OH OH	SO ₂ (CH ₂) ₃ SO ₂ NHCH ₂ -CH-CH ₂ SO ₃ K I OH	-S0,(CH,),S0,NH(CH,),N(CH,CH,OH),	OH - 	$-50_1-CH_2-CH_2-0-CH_2-CH_3-0-CH_3$	-S0,-CH,-CH,-0-CH,-CH,-0-CH,-OH	—so ₂ —сн ₂ сн ₃ — сн-сн ₂ сн ₂ сн ₃	0-CH ₃ -SO ₂ -CH ₂ -CH ₂ -CH ₂ -SO ₂ -NH-CH ₂ -CH-CH ₃	CH ₃ -SO ₂ -CH ₂ -CH ₂ -CH ₂ -CO ₂ -NH-CH-CH ₂ -CH ₃	OH
(Xp_1)	Σ	Cu	3	ņ	r _o	13	η	Çn	Cu	Çn	Çn	Çn	Çn
M-Pc	化合物 No.	171	172	173	174	175	176	177	178	179	180	181	182

[0135]

【表13】

	r.	2	-		-				-
表中(Xp1)、(Xp1)の各置換基のβ位置換基型内で導入位置の順序は順不同である。	Χp ₁	-S0 ₁ -CH ₁ -CH ₁ -CH ₁ -S0 ₂ -NH-(CH ₁) ₁ -CH ₁ -0-CH ₁ CH ₁ -0H	$-50_{i}-CH_{i}-CH_{i}-0-CH_{i}-CH_{i}-0-CH_{i}$	$-SO_1 - CH_1 - CH_2 - CCH_1 - CCH_2 - CCH_2 - CCH_3 - CCH_3$	$-SO_{i}-CH_{i}-CH_{i}-0-CH_{i}-CH_{i}-0-CH_{i}-0-CH_{i}-0H$	%545-45-45-45-45-65- %1545	$-c0_{i}-cH_{i}-cH_{i}-0-cH_{i}-cH_{i}-0-cH_{i}$	CH ₂ CH ₃ -SO ₂ -NH-CH ₂ -CH ₂ -CH ₃ -CH ₃	$-CO-NH-CH_{1}-CH_{2}-O-CH_{2}-CH_{3}-O-CH_{3}$
位置	B	2	ဗ	3	3	£ .	. 3	3	က
M-Pc(Xp ₁),(Xp ₂), 表中(Xp ₁)、(Xp ₁)の各置換基の A	Χp,	CH3 - -SO2-CH2-CH2-CO2-NH-CH-CH4-CH3	OH 	0H 	°H⊃-HN-°CD-°H⊃-°H⊃-°CS- °H⊃-CH¬-COS- °H⊃-CH¬-CH¬-CH¬-CH¬-СH¬-СH¬-СH¬-СH¬-СH¬-СH¬-СH¬-СH¬-СH¬-С	²(°H⊃-)—H⊃-HN-²OS-²HЭ-²HЭ-²HЭ-²OS—	°H⊃−H⊃−HN−°O⊃−°H⊃−°H⊃−°H⊃−°O⊃− °H⊃ °H⊃	-со-ин-сно-чо-чо-ин-со-	⁶ HOHO-HO-HO-HO-HO-HO-OO- GHOHO
(Xp1)	W	r,	Cu	ռշ	ng	ກລ	ກງ	n)	nე
M-P.	化合物 No.	183	184	185	186	187	188	189	190

[0136]

なお、化合物No. $146 \sim 190$ のM-Pc (Xp1) m (Xp2) nで示されるフタロシアニン化合物の構造は下記の通りである。

[0137]

【化41】

$$X_{pl}$$
 $Y_{q'}$ $Y_{q'}$

[0138]

前記一般式(CI)で表されるフタロシアニン染料は、前述した特許に従って合成することが可能である。また、一般式(CII)で表されるフタロシアニン染料は、前記した合成方法の他に、特開2001-226275号、同2001-96610号、同2001-47013号、同2001-193638号の各公報に記載の方法により合成することができる。また、出発物質、染料中間体および合成ルートについてはこれらに限定されるものでない。

本発明のインクジェット記録用インクは、前記フタロシアニン染料を好ましくは $0.2 \sim 20$ 質量%含有し、より好ましくは $0.5 \sim 15$ 質量%含有する。

本発明のインクジェット記録用インクは、水性媒体中に、フタロシアニン染料を溶解および/または分散させることによって作製することができる。本発明における「水性媒体」とは、水または水と少量の水混和性有機溶剤との混合物に、必要に応じて湿潤剤(好ましくは溶解助剤または分散助剤としての界面活性剤)、安定剤、防腐剤等の添加剤を添加したものを意味する。

[0139]

本発明のインクジェット記録用インクに用いるマゼンタインクは、水性媒体中にアゾ染料から選択されるマゼンタ染料を溶解または分散されており、該水性媒体中において $500\sim580$ n mの分光領域に吸収極大を有し、かつ 1.0 V (v s S C E) よりも貴の酸化電位を有する染料であることを基本的特徴としている。

このアゾ染料の好ましい染料の構造上の特徴の第一は、一般式(複素環A) - N=N-(複素環B)で表される発色団を有する染料であることである。この場合、複素環Aと複素環Bは同一の構造であってもよい。複素環A及び複素環Bは、具体的には5員環、または6員環の複素環で、ピラゾール、イミダゾール、トリアゾール、オキサゾール、チアゾール、セレナゾール、ピリドン、ピラジン、ピリミジン、ピリジンから選ばれた複素環である。具体的には特願2000-15853、特願2001-15614、特開平2002-309116号公報,特願2001-195014などに記載されている。

さらに、前記アゾ染料の好ましい構造上の特徴の第2は、アゾ基が、少なくともその一方に芳香族含窒素6員複素環をカップリング成分として直結させたアゾ 染料であることで、その具体例は2001-110457に記載されている。

構造上の好ましい特徴の第三は、助色団が芳香族環アミノ基または複素環アミノ基の構造を有することであり、具体的にはアニリノ基、ヘテリルアミノ基である。

好ましい構造上の特徴の第四は立体構造を有することである。具体的には特願 2002-12015に記載されている。

上記したアゾ染料の好ましい構造上の特徴の中でも、本発明の目的を達する上で最も好ましいのは、下記一般式(1)で表される染料である。

[0140]

【化42】

$$A-N=N- \begin{cases} B^2=B^1 & R^5 \\ N & R^6 \end{cases}$$

[0141]

一般式(MI)において、Aは5員複素環基を表す。

 B^1 および B^2 は各々= CR^1 -、 $-CR^2$ =を表すか、あるいはいずれか一方が 窒素原子、他方が= CR^1 -または $-CR^2$ =を表す。 R^5 および R^6 は各々独立に 水素原子または置換基を表し、該置換基は脂肪族基、芳香族基、複素環基、アシ ル基、アルコキシカルボニル基、アリールオキシカルボニル基、カルバモイル基 、アルキルスルホニル基、アリールスルホニル基、またはスルファモイル基を表 し、該各置換基の水素原子は置換されていても良い。

G、R¹およびR²は各々独立して、水素原子または置換基を示し、該置換基は、ハロゲン原子、脂肪族基、芳香族基、複素環基、シアノ基、カルボキシル基、カルバモイル基、アルコキシカルボニル基、アリールオキシカルボニル基、アシル基、ヒドロキシ基、アルコキシ基、アリールオキシ基、複素環オキシ基、シリルオキシ基、アシルオキシ基、カルバモイルオキシ基、アルコキシカルボニルオキシ基、アリールオキシカルボニルオキシ基、アリールオキシカルボニルオキシ基、アリールオキシカルボニルアミノ基、ウレイド基、スルファモイルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、アルキルスルホニルアミノ基、アリールスルホニルアミノ基、アリールスルホニルアミノ基、アリールスルホニル基、アリールスルホニル基、アリールスルホニル基、アリールスルホニル基、アリールスルホニル基、アリールスルホニル基、アリールスルホニル基、アリールスルホニル基、アリールスルホニル基、アリールスルホニル基、複素環スルホニル基、アルキルスルフィニル基、アリールスルフィニル基、複素環スルカニル基、アルキルスルフィニル基、アリールスルカフィニル基、複素環スルカニル基、スルファモイル基、またはスルホ基を表し、該各置換基の水素原子は置換されていても良い。

 R^1 と R^5 、あるいは R^5 と R^6 が結合して $5\sim 6$ 員環を形成しても良い。 前記一般式(MI)の染料について更に詳細に説明する。

一般式(MI)において、Aは5員複素環基を表す。該複素環のヘテロ原子の例には、N、O、およびSを挙げることができる。好ましくは含窒素5員複素環であり、複素環に脂肪族環、芳香族環または他の複素環が縮合していてもよい。好ましい複素環の例には、ピラゾール環、イミダゾール環、チアゾール環、イソチアゾール環、ベンゾチアゾール環、ベンゾオキサゾール環、ベンゾイソチアゾール環を挙げる事ができる。各複素環基は更に置換基を有し

ていても良い。中でも下記一般式(a)から(f)で表されるピラゾール環、イミダゾール環、イソチアゾール環、チアジアゾール環、ベンゾチアゾール環が好ましい。

【化43】

(c)
$$N = \mathbb{R}^{12}$$
 \mathbb{R}^{13} \mathbb{R}^{13}

(e)
$$R^{14}$$
 R^{15} R^{19} R^{19} R^{20}

[0143]

上記一般式(a)から(f)において、 R^7 から R^{20} は一般式(MI)におけるG、 R^1 、 R^2 と同じ置換基を表す。

一般式(a)から(f)のうち、好ましいのは一般式(a)、(b)で表されるピラゾール環、イソチアゾール環であり、最も好ましいのは一般式(a)で表されるピラゾール環である。

一般式(M I)において、 B^1 および B^2 は各々 $=CR^1$ -および $-CR^2$ =を表すか、あるいはいずれか一方が窒素原子、他方が $=CR^1$ -または $-CR^2$ =を表すが、各々 $=CR^1$ -、 $-CR^2$ =を表すものがより好ましい。

 R^5 および R^6 は各々独立に水素原子または置換基を表し、該置換基は脂肪族基、芳香族基、複素環基、アシル基、アルコキシカルボニル基、アリールオキシカ

ルボニル基、カルバモイル基、アルキルスルホニル基、アリールスルホニル基、 またはスルファモイル基を表し、該各置換基の水素原子は置換されていても良い。

 R^5 、 R^6 は好ましくは、水素原子、脂肪族基、芳香族基、複素環基、アシル基、アルキルスルホニル基またはアリールスルホニル基を挙げる事ができる。さらに好ましくは水素原子、芳香族基、複素環基、アシル基、アルキルスルホニル基またはアリールスルホニル基である。最も好ましくは、水素原子、アリール基、複素環基である。該各置換基の水素原子は置換されていても良い。ただし、 R^5 および R^6 が同時に水素原子であることはない。

[0144]

Gとしては水素原子、ハロゲン原子、脂肪族基、芳香族基、ヒドロキシ基、アルコキシ基、アリールオキシ基、アシルオキシ基、複素環オキシ基、アミノ基(アルキルアミノ基、アリールアミノ基、複素環アミノ基を含む)、アシルアミノ基、ウレイド基、スルファモイルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、アルキル及びアリールチオ基、または複素環

チオ基が好ましく、更に好ましくは水素原子、ハロゲン原子、アルキル基、ヒドロキシ基、アルコキシ基、アリールオキシ基、アシルオキシ基、アミノ基またはアシルアミノ基であり、中でも水素原子、アミノ基(好ましくは、アニリノ基)、またはアシルアミノ基が最も好ましい。該各置換基の水素原子は置換されていても良い。

[0145]

R¹、R²として好ましいものは、水素原子、アルキル基、ハロゲン原子、アルコキシカルボニル基、カルボキシル基、カルバモイル基、ヒドロキシ基、アルコキシ基、シアノ基を挙げる事ができる。該各置換基の水素原子は置換されていても良い。

 R^{1} と R^{5} 、あるいは R^{5} と R^{6} が結合して $5\sim6$ 員環を形成しても良い。

Aが置換基を有する場合、または R^1 、 R^2 、 R^5 、 R^6 またはGの置換基が更に置換基を有する場合の置換基としては、上記G、 R^1 、 R^2 で挙げた置換基を挙げる事ができる。

本発明の一般式(MI)の染料が水溶性染料である場合には、A、R¹、R²、R⁵、R⁶、G上のいずれかの位置に置換基としてさらにイオン性親水性基を有することが好ましい。置換基としてのイオン性親水性基には、スルホ基、カルボキシル基、ホスホノ基および4級アンモニウム基等が含まれる。前記イオン性親水性基としては、カルボキシル基、ホスホノ基、およびスルホ基が好ましく、特にカルボキシル基、スルホ基が好ましい。カルボキシル基、ホスホノ基およびスルホ基は塩の状態であってもよく、塩を形成する対イオンの例には、アンモニウムイオン、アルカリ金属イオン(例、リチウムイオン、ナトリウムイオン、カリウムイオン)および有機カチオン(例、テトラメチルアンモニウムイオン、テトラメチルグアニジウムイオン、テトラメチルホスホニウム)が含まれる。

[0146]

本明細書において使用される用語(置換基)について説明する。これら用語は一般式(MI)及び後述の一般式(MIa)における異なる符号間であっても共通である。

[0147]

ハロゲン原子としては、フッ素原子、塩素原子および臭素原子が挙げられる。

[0148]

脂肪族基はアルキル基、置換アルキル基、アルケニル基、置換アルケニル基、アルキニル基、置換アルキニル基、アラルキル基および置換アラルキル基を意味する。本明細書で、「置換アルキル基」等に用いる「置換」とは、「アルキル基」等に存在する水素原子が上記G、 R^1 、 R^2 で挙げた置換基等で置換されていることを示す。

脂肪族基は分岐を有していてもよく、また環を形成していてもよい。脂肪族基の炭素原子数は1~20であることが好ましく、1~16であることがさらに好ましい。アラルキル基および置換アラルキル基のアリール部分はフェニル基またはナフチル基であることが好ましく、フェニル基が特に好ましい。脂肪族基の例には、メチル基、エチル基、ブチル基、イソプロピル基、tーブチル基、ヒドロキシエチル基、メトキシエチル基、シアノエチル基、トリフルオロメチル基、3ースルホプロピル基、4ースルホブチル基、シクロヘキシル基、ベンジル基、2ーフェネチル基、ビニル基、およびアリル基を挙げることができる。

[0149]

芳香族基はアリール基および置換アリール基を意味する。アリール基は、フェニル基またはナフチル基であることが好ましく、フェニル基が特に好ましい。芳香族基の炭素原子数は6~20であることが好ましく、6~16がさらに好ましい。

芳香族基の例には、フェニル基、p-トリル基、p-メトキシフェニル基、o-クロロフェニル基およびm-(3-スルホプロピルアミノ)フェニル基が含まれる。

[0150]

複素環基には、置換複素環基が含まれる。複素環基は、複素環に脂肪族環、芳香族環または他の複素環が縮合していてもよい。前記複素環基としては、5 員または6 員環の複素環基が好ましい。前記置換複素環基の置換基の例には、脂肪族基、ハロゲン原子、アルキルスルホニル基、アリールスルホニル基、アシル基、アシルアミノ基、スルファモイル基、カルバモイル基、イオン性親水性基などが

含まれる。前記複素環基の例には、2-ピリジル基、2-チエニル基、2-チア ゾリル基、2-ベンゾチアゾリル基、2-ベンゾオキサゾリル基および2-フリ ル基が含まれる。

[0151]

カルバモイル基には、置換カルバモイル基が含まれる。前記置換基の例には、 アルキル基が含まれる。前記カルバモイル基の例には、メチルカルバモイル基お よびジメチルカルバモイル基が含まれる。

[0152]

アルコキシカルボニル基には、置換アルコキシカルボニル基が含まれる。前記 アルコキシカルボニル基としては、炭素原子数が2~20のアルコキシカルボニ ル基が好ましい。前記置換基の例には、イオン性親水性基が含まれる。前記アル コキシカルボニル基の例には、メトキシカルボニル基およびエトキシカルボニル 基が含まれる。

[0153]

アリールオキシカルボニル基には、置換アリールオキシカルボニル基が含まれる。前記アリールオキシカルボニル基としては、炭素原子数が7~20のアリールオキシカルボニル基が好ましい。前記置換基の例には、イオン性親水性基が含まれる。前記アリールオキシカルボニル基の例には、フェノキシカルボニル基が含まれる。

[0154]

複素環オキシカルボニル基には、置換複素環オキシカルボニル基が含まれる。 複素環としては、前記複素環基で記載の複素環が挙げられる。前記複素環オキシ カルボニル基としては、炭素原子数が2~20の複素環オキシカルボニル基が好 ましい。前記置換基の例には、イオン性親水性基が含まれる。前記複素環オキシ カルボニル基の例には、2 ーピリジルオキシカルボニル基が含まれる。

アシル基には、置換アシル基が含まれる。前記アシル基としては、炭素原子数が1~20のアシル基が好ましい。前記置換基の例には、イオン性親水性基が含まれる。前記アシル基の例には、アセチル基およびベンゾイル基が含まれる。

[0155]

アルコキシ基には、置換アルコキシ基が含まれる。前記アルコキシ基としては、炭素原子数が1~20のアルコキシ基が好ましい。前記置換基の例には、アルコキシ基、ヒドロキシル基、およびイオン性親水性基が含まれる。前記アルコキシ基の例には、メトキシ基、エトキシ基、イソプロポキシ基、メトキシエトキシ基、ヒドロキシエトキシ基および3-カルボキシプロポキシ基が含まれる。

[0156]

アリールオキシ基には、置換アリールオキシ基が含まれる。前記アリールオキシ基としては、炭素原子数が6~20のアリールオキシ基が好ましい。前記置換基の例には、アルコキシ基、およびイオン性親水性基が含まれる。前記アリールオキシ基の例には、フェノキシ基、pーメトキシフェノキシ基およびoーメトキシフェノキシ基が含まれる。

[0157]

複素環オキシ基には、置換複素環オキシ基が含まれる。複素環としては、前記 複素環基で記載の複素環が挙げられる。前記複素環オキシ基としては、炭素原子 数が2~20の複素環オキシ基が好ましい。前記置換基の例には、アルキル基、 アルコキシ基、およびイオン性親水性基が含まれる。前記複素環オキシ基の例に は、3-ピリジルオキシ基、3-チエニルオキシ基が含まれる。

[0158]

シリルオキシ基としては、炭素原子数が1~20の脂肪族基、芳香族基が置換 したシリルオキシ基が好ましい。前記シリルオキシ基の例には、トリメチルシリ ルオキシ、ジフェニルメチルシリルオキシが含まれる。

[0159]

アシルオキシ基には、置換アシルオキシ基が含まれる。前記アシルオキシ基としては、炭素原子数1~20のアシルオキシ基が好ましい。前記置換基の例には、イオン性親水性基が含まれる。前記アシルオキシ基の例には、アセトキシ基およびベンゾイルオキシ基が含まれる。

[0160]

カルバモイルオキシ基には、置換カルバモイルオキシ基が含まれる。前記置換 基の例には、アルキル基が含まれる。前記カルバモイルオキシ基の例には、N- メチルカルバモイルオキシ基が含まれる。

[0 1 6 1]

アルコキシカルボニルオキシ基には、置換アルコキシカルボニルオキシ基が含まれる。前記アルコキシカルボニルオキシ基としては、炭素原子数が2~20のアルコキシカルボニルオキシ基が好ましい。前記アルコキシカルボニルオキシ基の例には、メトキシカルボニルオキシ基、イソプロポキシカルボニルオキシ基が含まれる。

[0162]

アリールオキシカルボニルオキシ基には、置換アリールオキシカルボニルオキシ基が含まれる。前記アリールオキシカルボニルオキシ基としては、炭素原子数が7~20のアリールオキシカルボニルオキシ基が好ましい。前記アリールオキシカルボニルオキシ基の例には、フェノキシカルボニルオキシ基が含まれる。

[0163]

アミノ基には、置換アミノ基が含まれる。該置換基としてはアルキル基、アリール基または複素環基が含まれ、アルキル基、アリール基および複素環基はさらに置換基を有していてもよい。アルキルアミノ基には、置換アルキルアミノ基が含まれる。アルキルアミノ基としては、炭素原子数1~20のアルキルアミノ基が好ましい。前記置換基の例には、イオン性親水性基が含まれる。前記アルキルアミノ基の例には、メチルアミノ基およびジエチルアミノ基が含まれる。

アリールアミノ基には、置換アリールアミノ基が含まれる。前記アリールアミノ基としては、炭素原子数が6~20のアリールアミノ基が好ましい。前記置換基の例としては、ハロゲン原子、およびイオン性親水性基が含まれる。前記アリールアミノ基の例としては、フェニルアミノ基および2-クロロフェニルアミノ基が含まれる。

複素環アミノ基には、置換複素環アミノ基が含まれる。複素環としては、前記 複素環基で記載の複素環が挙げられる。前記複素環アミノ基としては、炭素数2 ~20個の複素環アミノ基が好ましい。前記置換基の例としては、アルキル基、 ハロゲン原子、およびイオン性親水性基が含まれる。

[0164]

アシルアミノ基には、置換アシルアミノ基が含まれる。前記アシルアミノ基としては、炭素原子数が2~20のアシルアミノ基が好ましい。前記置換基の例には、イオン性親水性基が含まれる。前記アシルアミノ基の例には、アセチルアミノ基、プロピオニルアミノ基、ベンゾイルアミノ基、N-フェニルアセチルアミノおよび3,5-ジスルホベンゾイルアミノ基が含まれる。

[0165]

ウレイド基には、置換ウレイド基が含まれる。前記ウレイド基としては、炭素原子数が $1\sim20$ のウレイド基が好ましい。前記置換基の例には、アルキル基およびアリール基が含まれる。前記ウレイド基の例には、3-メチルウレイド基、3、3-ジメチルウレイド基および3-フェニルウレイド基が含まれる。

[0166]

スルファモイルアミノ基には、置換スルファモイルアミノ基が含まれる。前記 置換基の例には、アルキル基が含まれる。前記スルファモイルアミノ基の例には 、N,N-ジプロピルスルファモイルアミノ基が含まれる。

[0167]

アルコキシカルボニルアミノ基には、置換アルコキシカルボニルアミノ基が含まれる。前記アルコキシカルボニルアミノ基としては、炭素原子数が2~20のアルコキシカルボニルアミノ基が好ましい。前記置換基の例には、イオン性親水性基が含まれる。前記アルコキシカルボニルアミノ基の例には、エトキシカルボニルアミノ基が含まれる。

[0168]

アリールオキシカルボニルアミノ基には、置換アリールオキシカルボニルアミノ基が含まれる。前記アリールオキシカルボニルアミノ基としては、炭素原子数が7~20のアリールオキシカルボニルアミノ基が好ましい。前記置換基の例には、イオン性親水性基が含まれる。前記アリールオキシカルボニルアミノ基の例には、フェノキシカルボニルアミノ基が含まれる。

[0169]

アルキルスルホニルアミノ基及びアリールスルホニルアミノ基には、それぞれ 置換アルキルスルホニルアミノ基及び置換アリールスルホニルアミノ基が含まれ る。前記アルキルスルホニルアミノ基及びアリールスルホニルアミノ基としては、炭素原子数が1~20のアルキルスルホニルアミノ基及び炭素原子数が7~20のアリールスルホニルアミノ基が好ましい。前記置換基の例には、イオン性親水性基が含まれる。前記アルキルスルホニルアミノ基及びアリールスルホニルアミノ基の例には、メチルスルホニルアミノ基、N-フェニルーメチルスルホニルアミノ基、フェニルスルホニルアミノ基、および3ーカルボキシフェニルスルホニルアミノ基が含まれる。

[0170]

複素環スルホニルアミノ基には、置換複素環スルホニルアミノ基が含まれる。 複素環としては、前記複素環基で記載の複素環が挙げられる。前記複素環スルホ ニルアミノ基としては、炭素原子数が1~12の複素環スルホニルアミノ基が好 ましい。前記置換基の例には、イオン性親水性基が含まれる。前記複素環スルホ ニルアミノ基の例には、2ーチエニルスルホニルアミノ基、3ーピリジルスルホ ニルアミノ基が含まれる。

[0171]

アルキルチオ基、アリールチオ基及び複素環チオ基には、それぞれ置換アルキルチオ基、置換アリールチオ基及び置換複素環チオ基が含まれる。複素環としては、前記複素環基で記載の複素環が挙げられる。前記アルキルチオ基、アリールチオ基及び複素環チオ基としては、炭素原子数が1から20のものが好ましい。前記置換基の例には、イオン性親水性基が含まれる。前記アルキルチオ基、アリールチオ基及び複素環チオ基の例には、メチルチオ基、フェニルチオ基、2ーピリジルチオ基が含まれる。

[0172]

アルキルスルホニル基およびアリールスルホニル基には、置換アルキルスルホニル基および置換アリールスルホニル基が含まれる。アルキルスルホニル基およびアリールスルホニル基の例としては、それぞれメチルスルホニル基およびフェニルスルホニル基をあげる事ができる。

[0173]

複素環スルホニル基には、置換複素環スルホニル基が含まれる。複素環として

は、前記複素環基で記載の複素環が挙げられる。前記複素環スルホニル基としては、炭素原子数が1~20の複素環スルホニル基が好ましい。前記置換基の例には、イオン性親水性基が含まれる。前記複素環スルホニル基の例には、2-チエニルスルホニル基、3-ピリジルスルホニル基が含まれる。

アルキルスルフィニル基およびアリールスルフィニル基には、それぞれ置換アルキルスルフィニル基および置換アリールスルフィニル基が含まれる。アルキルスルフィニル基およびアリールスルフィニル基の例としては、それぞれメチルスルフィニル基およびフェニルスルフィニル基をあげる事ができる。

[0174]

複素環スルフィニル基には、置換複素環スルフィニル基が含まれる。複素環としては、前記複素環基で記載の複素環が挙げられる。前記複素環スルフィニル基としては、炭素原子数が1~20の複素環スルフィニル基が好ましい。前記置換基の例には、イオン性親水性基が含まれる。前記複素環スルフィニル基の例には、4-ピリジルスルフィニル基が含まれる。

[0175]

スルファモイル基には、置換スルファモイル基が含まれる。前記置換基の例には、アルキル基が含まれる。前記スルファモイル基の例には、ジメチルスルファモイル基およびジー (2-ヒドロキシエチル) スルファモイル基が含まれる。

[0176]

本発明において、特に好ましい構造は、下記一般式(MIa)で表されるものである。

一般式 (MIa)

[0177]

【化44】

$$Z^{2}$$

$$Z^{1}$$

$$N = N$$

$$Q$$

$$R^{4} - N$$

$$R^{3}$$

[0178]

式中、 R^1 、 R^2 、 R^5 および R^6 は一般式 (MI) と同義である。

R³およびR⁴は各々独立に水素原子または置換基を表し、該置換基は脂肪族基、芳香族基、複素環基、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、カルバモイル基、アルキルスルホニル基、アリールスルホニル基、またはスルファモイル基を表す。中でも水素原子、芳香族基、複素環基、アシル基、アルキルスルホニル基、またはアリールスルホニル基が好ましく、水素原子、芳香族基、または複素環基が特に好ましい。

[0179]

Z¹はハメットの置換基定数σρ値が0.20以上の電子吸引性基を表す。Z¹はσρ値が0.30以上の電子吸引性基であるのが好ましく、0.45以上の電子吸引性基が更に好ましく、0.60以上の電子吸引性基が特に好ましいが、1.0を超えないことが望ましい。好ましい具体的な置換基については後述する電子吸引性置換基を挙げることができるが、中でも、炭素数2~20のアシル基、炭素数2~20のアルキルオキシカルボニル基、ニトロ基、シアノ基、炭素数1~20のアルキルスルホニル基、炭素数1~20のアルキルスルホニル基、炭素数1~20のアルキルスルホニル基が好ましい。特に好ましいものは、シアノ基、炭素数1~20のアルキルスルホニル基、炭素数6~20のアリールスルホニル基、炭素数6~20のアリールスルホニル基、炭素数6~20のアリールスルホニル基であり、最も好ましいものはシアノ基である。

 Z^2 は水素原子または置換基を表し、該置換基は脂肪族基、芳香族基もしくは 複素環基を表す。 Z^2 は好ましくは脂肪族基であり、更に好ましくは炭素数 $1\sim$ 6のアルキル基である。

Qは水素原子または置換基を表し、該置換基は脂肪族基、芳香族基もしくは複素環基を表す。中でもQは5~8員環を形成するのに必要な非金属原子群からなる基が好ましい。前記5~8員環は置換されていてもよいし、飽和環であっても不飽和結合を有していてもよい。その中でも特に芳香族基、複素環基が好ましい。好ましい非金属原子としては、窒素原子、酸素原子、イオウ原子または炭素原子が挙げられる。そのような環構造の具体例としては、例えばベンゼン環、シク

ロペンタン環、シクロヘキサン環、シクロヘプタン環、シクロオクタン環、シクロヘキセン環、ピリジン環、ピリミジン環、ピラジン環、ピリダジン環、トリアジン環、イミダゾール環、ベンゾイミダゾール環、オキサゾール環、ベンゾオキサゾール環、チアゾール環、ベンゾチアゾール環、オキサン環、スルホラン環およびチアン環等が挙げられる。

[0180]

一般式(MIa)で説明した各置換基の水素原子は置換されていても良い。該置換基としては、一般式(MI)で説明した置換基、G、 R^1 、 R^2 で例示した基やイオン性親水性基が挙げられる。

ここで、本明細書中で用いられるハメットの置換基定数 σ p 値について説明す る。ハメット則はベンゼン誘導体の反応または平衡に及ぼす置換基の影響を定量 的に論ずるために1935年にL.P.Hammettにより提唱された経験則 であるが、これは今日広く妥当性が認められている。ハメット則に求められた置 換基定数にはσρ値とσm値があり、これらの値は多くの一般的な成書に見出す ことができるが、例えば、J. A. Dean編、 | Lange's Handb ook of Chemistry」第12版、1979年(Mc Graw-Hill)や「化学の領域」増刊、122号、96~103頁、1979年(南 光堂)に詳しい。尚、本発明において各置換基をハメットの置換基定数σρによ り限定したり、説明したりするが、これは上記の成書で見出せる、文献既知の値 がある置換基にのみ限定されるという意味ではなく、その値が文献未知であって もハメット則に基づいて測定した場合にその範囲内に包まれるであろう置換基を も含むことはいうまでもない。また、本発明の一般式(1a)の中には、ベンゼ ン誘導体ではない物も含まれるが、置換基の電子効果を示す尺度として、置換位 置に関係なくσρ値を使用する。本発明において、σρ値をこのような意味で使 用する。

$[0\ 1\ 8\ 1\]$

ハメット置換基定数 σ p 値が 0. 6 0 以上の電子吸引性基としては、シアノ基 、ニトロ基、アルキルスルホニル基(例えばメチルスルホニル基、アリールスル ホニル基(例えばフェニルスルホニル基)を例として挙げることができる。 ハメット σ p値が0. 45以上の電子吸引性基としては、上記に加えアシル基 (例えばアセチル基)、アルコキシカルボニル基 (例えばドデシルオキシカルボニル基)、アリールオキシカルボニル基 (例えば、<math>m-クロロフェノキシカルボニル)、アルキルスルフィニル基 (例えば、n-プロピルスルフィニル)、アリールスルフィニル基 (例えば、n-プロピルスルフィニル)、アリールスルフィニル基 (例えばフェニルスルフィニル)、スルファモイル基 (例えば、N-エチルスルファモイル、N, N-ジメチルスルファモイル)、ハロゲン化アルキル基 (例えば、N-リフロロメチル)を挙げることができる。

ハメット置換基定数 σ p値が 0. 3 0以上の電子吸引性基としては、上記に加え、アシルオキシ基(例えば、アセトキシ)、カルバモイル基(例えば、N-エチルカルバモイル、N,N-ジブチルカルバモイル)、ハロゲン化アルコキシ基(例えば、トリフロロメチルオキシ)、ハロゲン化アリールオキシ基(例えば、ペンタフロロフェニルオキシ)、スルホニルオキシ基(例えばメチルスルホニルオキシ基)、ハロゲン化アルキルチオ基(例えば、ジフロロメチルチオ)、2つ以上の σ p値が 0. 15以上の電子吸引性基で置換されたアリール基(例えば、2,4-ジニトロフェニル、ペンタクロロフェニル)、およびヘテロ環(例えば、2 - ベンゾオキサゾリル、2 - ベンゾチアゾリル、1 - フェニルー2 - ベンゾイミダゾリル)を挙げることができる。

 σ p 値が 0. 2 0 以上の電子吸引性基の具体例としては、上記に加え、ハロゲン原子などが挙げられる。

[0182]

前記一般式(MI)で表されるアゾ染料として特に好ましい置換基の組み合わせは、R⁵およびR⁶として好ましくは、水素原子、アルキル基、アリール基、複素環基、スルホニル基、アシル基であり、さらに好ましくは水素原子、アリール基、複素環基である。ただし、R⁵およびR⁶が共に水素原子であることは無い。 Gとして好ましくは、水素原子、ハロゲン原子、アルキル基、ヒドロキシル基、アミノ基、アシルアミノ基であり、さらに好ましくは水素原子、ハロゲン原子、アルキルス・アミノ基であり、さらに好ましくは水素原子、ハロゲン原子、アミノ基、アシルアミノ基であり、もっとも好ましくは水素原子、アミノ基、アシルアミノ基である。

Aのうち、好ましくはピラゾール環、イミダゾール環、イソチアゾール環、チアジアゾール環、ベンゾチアゾール環であり、さらにはピラゾール環、イソチアゾール環であり、最も好ましくはピラゾール環である。

 B^1 および B^2 がそれぞれ= CR^1 -、 $-CR^2$ =であり、 R^1 、 R^2 は各々好ましくは水素原子、アルキル基、ハロゲン原子、シアノ基、カルバモイル基、カルボキシル基、ヒドロキシル基、アルコキシ基、アルコキシカルボニル基であり、さらに好ましくは水素原子、アルキル基、カルボキシル基、シアノ基、カルバモイル基である。

[0183]

尚、前記一般式(MI)で表される化合物の好ましい置換基の組み合わせについては、種々の置換基の少なくとも1つが前記の好ましい基である化合物が好ましく、より多くの種々の置換基が前記好ましい基である化合物がより好ましく、全ての置換基が前記好ましい基である化合物が最も好ましい。

[0184]

前記一般式(MI)で表される化合物(アゾ染料)の具体例を以下に示すが、 本発明に用いられるアゾ染料は、下記の例に限定されるものではない。

[0185]

【表14】

 染料	R ₁	R₂	R ₃
a-1	$\stackrel{s}{\prec_{N}}$	-C ₈ H ₁₇	C ₈ H ₁₇
a−2	S CI	——————————————————————————————————————	CH_3 CH_3 CH_3
a−3	S CI CI	CH_3 CH_3	C ₈ H ₁₇
a-4	$\stackrel{s}{\longrightarrow}$	OC ₈ H ₁₇	-C ₈ H ₁₇
a-5	N NO ₂	CH ₃ CH ₃	CH ₃

[0186]

【表15】

$$H_3$$
C CN H N_1 N_2 N_1 N_2 N_3 N_1 N_2 N_3 N_4 N_4 N_5 N_5 N_4 N_5 N_4 N_5 N_5

[0187]

【表16】

 染料	R ₁	R₂	R ₃	R ₄
a-11	+	SO ₂ Na	——CH₃	——SO₃Na
a-12	-	-S COOH	{so₃K .	COOH T
a-13	CI	S N S	—∕So₃K	соон
a−14	-	SO ₃ Na	CH ₃ SO ₃ Na CH ₃	CH ₃ SO ₃ Na CH ₃
a−15	+	SSO₃K SO₃K	CH ₃ SO ₃ K ————————————————————————————————————	CH ₃ SO ₃ K CH ₃ CH ₃
a-16	+	S CI	CH₃ CH₂ CH₃ N(CH₂CO₂F	CH ₃ CH ₂ N(CH ₂ CO ₂ H) ₂
a-17	+	SO ₃ Na	CH ₃ SO ₃ Na CH ₃	CH ₃ SO ₃ Na CH ₃

[0188]

【表17】

 染料	R _i	R ₂	R ₃	R ₄
a-18	→ _N S	~s	CH ₃	CH ₃ CH ₃
a-19	→ S CI	-SO₂CH₃	CH ₃ CH ₃	——СТ—СН ₈
a-20	$\stackrel{s}{\longrightarrow}$	-COCH₃	C ₈ H ₁₇ (t)	C ₈ H ₁₇ (t)
a-21	S CI	-SO₂CH₃	H ₃ C ————————————————————————————————————	C ₈ H ₁₇ (t)
a-22	\prec_{N}^{S}	н	CH ₃ CH ₃	CH ₃ CH ₃
a-23	$\stackrel{s}{\underset{N}{\longleftarrow}}$	Н	CH ₃	CH ₃
a-24	$\stackrel{s}{\prec_{N}}$	Н	CH ₃	CH ₃
a−25	$\stackrel{\circ}{\prec_{\scriptscriptstyle N}}$	$\stackrel{\circ}{\sim}$	CH ₃ CH ₃	CH ₃ CH ₃

[0189]

【表18】

[0190]

【表19】

[0191]

【表20】

[0192]

【表21】

	R	£ 🔷	COCH3	00	so ₂ cH ₃	C.H.	S.F.
	В,	8 A	C ₈ H ₁₇ (t)	CH ₃	\$	5 5 5 5	C.H.s.
·	ď	SO ₂ CH ₃	Sy Z	[□] v z	σ z	ຼືກ ບ=0	Sy Z
R. N.	ng R	CONH	I	I	I	CONH	±
A N N N N N N N N N N N N N N N N N N N	ď	I	COOEt	CONH,	I	I	ъ́в
	R	Z	Z	LAND AND AND AND AND AND AND AND AND AND	NO S	o o	ω _z
	R,	CN	Br	SO2CH3	N N	à	S
	ď	f	+	a-43 N SO ₂ CH ₃	-	+	+
	紫	a-41	a-42	a-43	a-44	a-45	a-46

[0193]

【表22】

	R	C ₈ H ₁₇	, \$ \$	± +	ch ch	-SO ₃ Na	
4 ×	R	Cult.17	5 4 5	-C ₈ H ₁₇	CH ₃ SO ₃ U	SO ₃ Na	
R ₂ R ₃ H - N - H -	Α,	x	I	±	I	포	
S S T	ъ.	Ö	N O	CONH ₂	I	NO	
	R,	СH	°,	сн	cH ₂	I	
	χ,	он,	ř. OH	он³	cH ₃	CH³	
	紫	b-1	b-2	p-3	b-4	b-5	

[0194]

【表23】

	a,	CH ₃ CH ₂ CH ₃ CO ₂ N ₂	C ₆ H ₁ ,	SO ₃ Na
R, N	Ŗ	CH ₃	£ \$ \$	- SO ₃ Na
CN	ď	w z	S Z	SO ₂ CH ₃
E Z	R.	I	I	r
	R ₂	ъ́в	cH,	I
·	S.	OH,	ъ́в	CH,
	茶	9-q	b-7	p-8

[0195]

【表24】

	Re	C ₈ H ₁₇	×°os-≺	×°o3∗K	CaH17	C ₈ H ₁₇ (t)
	R	C ₈ H ₁₇ (t)	×°os-	xcos X	₹ \	£ 45
R ₂ R ₃ R ₄ H-N H ₅	ď	I	I	SO ₃ ×	SOZNE NCCH2)3	NHSO ₂ OC ₈ H ₁₇ (n)
a Z Z X	ď	N O	CONH	I	Ι	x
	R,	ř.	I	CH³	ь́но	I
	R ₁	-SCH3		A _E O _S SO ₃ K	- CH	
	禁禁	1-5	2-5	c-3	c-4	ن ئ

[0196]

【表25】

	Ŗ	X _c os-	#5 #5	Sp. So. A.	C ₈ H ₁₇	S.H.S.
	R	- So ₃ K	*	Ch soyk	-C ₂ H,7	OC4H ₉ (n)
N=N H-N H-N H-S	.	Ξ	x		I	₹ - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -
Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	R	N O	N	x	CONH,	I
	R ₂	сн³	ř.	π	cH3	он, П
	<u>م</u>	Ме	₩	Me	ዊ	£
	张	d-1	d-2	q-3	d-4	g - 22

[0197]

【表26】

[0198]

本発明のインクジェット記録用インク組成物(本発明では単に「インク」とも

ページ: 110/

いう)は、前記アゾ染料の少なくとも1種を、水性媒体中に溶解および/または分散してなり、アゾ染料を好ましくは、 $0.2\sim20$ 質量%含有し、より好ましくは、 $0.5\sim15$ 質量%含有する。

[0199]

本発明に用いられる前記アゾ染料は、実質的に水溶性のものである。実質的に 水溶性とは、20℃の水に2質量%以上溶解することを指す。

また、本発明のインクジェット用インク組成物には、前記アゾ染料 (マゼンタ 色素) とともに他のマゼンタ色素を併用しうる。

併用しうるマゼンタ色素としては、例えばカップリング成分としてフェノール類、ナフトール類、アニリン類を有するアリールもしくはヘテリルアゾ色素(本発明の一般式(MI)以外);例えばカップリング成分としてピラゾロン類、ピラゾロトリアゾール類を有するアゾメチン色素;例えばアリーリデン色素、スチリル色素、メロシアニン色素、オキソノール色素のようなメチン色素;ジフェニルメタン色素、トリフェニルメタン色素、キサンテン色素のようなカルボニウム色素、例えばナフトキノン、アントラキノン、アントラピリドンなどのようなキノン系色素、例えばジオキサジン色素等のような縮合多環系色素等を挙げることができる。これらの色素は、クロモフォアの一部が解離して初めてマゼンタを呈するものであっても良く、その場合のカウンターカチオンはアルカリ金属や、アンモニウムのような無機のカチオンであってもよいし、ピリジニウム、4級アンモニウム塩のような有機のカチオンであってもよい。なお、本発明の一般式(MI)の化合物を含有するインク組成物中には本発明でのインク析出試験を満足する範囲で他の色素を併用するものとする。

[0200]

以下、本発明に有用なイエロー染料について詳細に説明する。

本発明のインクジェット記録方法に用いられる1つのインク(組成物)に使用するイエロー染料は、堅牢性、オゾンガスに対する堅牢性の点から、インクを反射型メディアに印画した後に、ステータスAフィルター(例えば、X-rite 310TR濃測機)を通して反射濃度を測定し、イエロー領域における反射濃度

(DB) が、 $0.90\sim1.10$ の点を1点そのインクの初期濃度として規定して、この印画物を、5ppmのオゾンを常時発生可能なオゾン褪色試験機を用いて強制的に褪色させ、その反射濃度が初期濃度の80%となるまでの時間(t)から求めた強制褪色速度定数(k)を($0.8=e^{-kt}$)から定めたときに、該速度定数が 5.0×10^{-2} [$hour^{-1}$] 以下、好ましくは、 3.0×10^{-2} [$hour^{-1}$] 以下、更に好ましくは、 1.0×10^{-2} [$hour^{-1}$] 以下に制御される。

また、該イエロー染料は、酸化電位が 1.0 V (vs SCE) よりも貴である染料が好ましく、1.1 V (vs SCE) よりも貴である染料がさらに好ましく、1.2 V (vs SCE) よりも貴である染料が特に好ましい。染料の種類としては、上記物性要件を満たすアゾ染料が特に好ましい。

酸化電位の値(Eox)は当業者が容易に測定することができる。この方法に関しては、例えばP. Delahay著"New Instrumental Methods in Electrochemistry"(1954年 Interscience Publishers社刊)やA. J. Bard他著"Electrochemical Methods"(1980年 John Wiley & Sons社刊)、藤嶋昭他著"電気化学測定法"(1984年 技報堂出版社刊)に記載されている。

[0201]

具体的に酸化電位は、過塩素酸ナトリウムや過塩素酸テトラプロピルアンモニウムといった支持電解質を含むジメチルホルムアミドやアセトニトリルのような溶媒中に、被験試料を $1\times10^{-4}\sim1\times10^{-6}$ モル/リットル溶解して、サイクリックボルタンメトリーや直流ポーラログラフィーを用いてSCE(飽和カロメル電極)に対する値として測定する。この値は、液間電位差や試料溶液の液抵抗などの影響で、数10ミルボルト程度偏位することがあるが、標準試料(例えばハイドロキノン)を入れて電位の再現性を保証することができる。

なお、電位を一義的に規定する為、本発明では、 0.1 mold m^{-3} の過塩素酸テトラプロピルアンモニウムを支持電解質として含むジメチルホルムアミド中 (染料の濃度は $0.001 \text{ mold m}^{-3}$) で直流ポーラログラフィーにより測定

した値(vs SCE)を染料の酸化電位とする。

[0202]

Eoxの値は試料から電極への電子の移りやすさを表わし、その値が大きい(酸化電位が貴である)ほど試料から電極への電子の移りにくい、言い換えれば、酸化されにくいことを表す。化合物の構造との関連では、電子求引性基を導入することにより酸化電位はより貴となり、電子供与性基を導入することにより酸化電位はより卑となる。本発明では、求電子剤であるオゾンとの反応性を下げるために、イエロー染料骨格に電子求引性基を導入して酸化電位をより貴とすることが望ましい。

[0203]

また、本発明において使用する染料は、堅牢性が良好であると共に色相が良好であるということが好ましく、特に吸収スペクトルにおいて長波側の裾切れが良好であることが好ましい。このため λ maxが390nmから470nmにあり、 λ maxの吸光度 I(λ max)と、 λ max+70nmの吸光度 I(λ max+70nm)/ I(λ max)(以下、この比を比 I が、0.2以下であるイエロー染料が好ましく、0.1以下がさらに好ましい。該比の下限は0.01程度である。上記の λ max等の数値は水溶液でのものである。

[0204]

このような酸化電位及び吸収特性を満足する染料として、下記一般式(Y1)で表されるものが好ましい。ただし、一般式(1)で表される化合物は、 λ m a x が 3 9 0 n m か 6 4 7 0 n m にあればよく、必ずしも上記酸化電位及び I (λ m a x + 7 0 n m) / I (λ m a x) を満足しなくともよい。尚、請求項 1 に記載のイエロー染料及び請求項 4 に記載の一般式(Y1)で表されるイエロー染料を総称する場合には、本発明のイエロー染料という。

-般式 (Y1) A-N=N-B

式中、AおよびBはそれぞれ独立して、置換されていてもよい複素環基を表す

前記複素環としては、5員環または6員環から構成された複素環が好ましく、

単環構造であっても、2つ以上の環が縮合した多環構造であっても良く、芳香族 複素環であっても非芳香族複素環であっても良い。前記複素環を構成するヘテロ 原子としては、N,O,S原子が好ましい。

[0205]

前記一般式(Y1)において、Aで表される複素環としては、5ーピラゾロン、ピラゾール、トリアゾール、オキサゾロン、イソオキサゾロン、バルビツール酸、ピリドン、ピリジン、ローダニン、ピラゾリジンジオン、ピラゾロピリドン、メルドラム酸およびこれらの複素環にさらに炭化水素芳香環や複素環が縮環した縮合複素環が好ましい。中でも5ーピラゾロン、5ーアミノピラゾール、ピリドン、2,6ージアミノピリジン、ピラゾロアゾール類が好ましく、5ーアミノピラゾール、2ーヒドロキシー6ーピリドン、ピラゾロトリアゾールが特に好ましい。

[0206]

Bで表される複素環としては、ピリジン、ピラジン、ピリミジン、ピリダジン 、トリアジン、キノリン、イソキノリン、キナゾリン、シンノリン、フタラジン 、キノキサリン、ピロール、インドール、フラン、ベンゾフラン、チオフェン、 ベンゾチオフェン、ピラゾール、イミダゾール、ベンゾイミダゾール、トリアゾ ール、オキサゾール、イソオキサゾール、ベンゾオキサゾール、チアゾール、ベ ンゾチアゾール、イソチアゾール、ベンゾイソチアゾール、チアジアゾール、ベ ンゾイソオキサゾール、ピロリジン、ピペリジン、ピペラジン、イミダゾリジン 、チアゾリンなどが挙げられる。中でもピリジン、キノリン、チオフェン、ベン ゾチオフェン、ピラゾール、イミダゾール、ベンゾイミダゾール、トリアゾール 、オキサゾール、イソオキサゾール、ベンゾオキサゾール、チアゾール、ベンゾ チアゾール、イソチアゾール、ベンゾイソチアゾール、チアジアゾール、ベンゾ イソオキサゾールが好ましく、キノリン、チオフェン、ピラゾール、チアゾール 、ベンゾオキサゾール、ベンゾイソオキサゾール、イソチアゾール、イミダゾー ル、ベンゾチアゾール、チアジアゾールがさらに好ましく、ピラゾール、ベンゾ チアゾール、ベンゾオキサゾール、イミダゾール、1,2,4ーチアジアゾール 、1,3,4-チアジアゾールが特に好ましい。

[0207]

AおよびBに置換する置換基は、ハロゲン原子、アルキル基、シ久ロアルキル基、アラルキル基、アルケニル基、アルキニル基、アリール基、ヘテロ環基、シアノ基、ヒドロキシル基、ニトロ基、アルコキシ基、アリールオキシ基、シリルオキシ基、ヘテロ環オキシ基、アシルオキシ基、カルバモイルオキシ基、アルコキシカルボニルオキシ基、アリールオキシカルボニルオキシ基、アリールオキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルファモイルアミノ基、アルキル及びアリールスルホニルアミノ基、メルカプト基、アルキルチオ基、アリールチオ基、ヘテロ環チオ基、スルファモイル基、アルキル及びアリールスルフィニル基、アルキル及びアリールスルホニル基、アルキル及びアリールスルホニル基、アルキカルボニル基、カルバモイル基、イミド基、ホスフィノ基、ホスフィニル基、ホスフィニル本・ホスフィニルオキシ基、ホスフィニルアミノ基、シリル基、イオン性親水性基が例として挙げられる。

[0208]

一般式(Y1)の染料を水溶性染料として使用する場合には、分子内にイオン性親水性基を少なくとも1つ有することが好ましい。イオン性親水性基には、スルホ基、カルボキシル基、ホスホノ基および4級アンモニウム基等が含まれる。前記イオン性親水性基としては、カルボキシル基、ホスホノ基、およびスルホ基が好ましく、特にカルボキシル基、スルホ基が好ましい。カルボキシル基、ホスホノ基およびスルホ基は塩の状態であってもよく、塩を形成する対イオンの例には、アンモニウムイオン、アルカリ金属イオン(例、リチウムイオン、ナトリウムイオン、カリウムイオン)および有機カチオン(例、テトラメチルアンモニウムイオン、テトラメチルグアニジウムイオン、テトラメチルホスホニウム)が含まれる。対イオンの中でもアルカリ金属塩が好ましい。

[0209]

- 一般式(Y1)で表される染料の中でも、一般式(Y2)、(Y3)、(Y4)の染料が好ましい。
 - 一般式 (Y2)

ページ: 115/

[0210]

【化45】

[0211]

一般式(Y 2)中、R 1 およびR 3 は、水素原子、シアノ基、アルキル基、シクロアルキル基、アラルキル基、アルコキシ基、アルキルチオ基、アリールチオ基、アリール基またはイオン性親水性基を表し、R 2 は、水素原子、アルキル基、シクロアルキル基、アラルキル基、カルバモイル基、アシル基、アリール基または複素環基を表し、R 4 は複素環基を表す。

一般式 (Y3)

[0212]

【化46】

$$\begin{array}{c|c}
R5 & N = N - R6 \\
\hline
N & Za \\
Zc-Zb
\end{array}$$

[0213]

一般式(Y3)中、R5は、水素原子、シアノ基、アルキル基、シクロアルキル基、アラルキル基、アルコキシ基、アルキルチオ基、アリールチオ基、アリール基またはイオン性親水性基を表し、 Zaは-N=、-NH-、または-C(R11)=を表し、ZbおよびZcは各々独立して、-N=または-C(R11)=を表し、R11は水素原子または非金属置換基を表し、R6は複素環基を表す。

一般式 (Y4)

[0214]

【化47】

[0215]

一般式(Y 4)において、R 7およびR 9は各々独立して、水素原子、シアノ基、アルキル基、シクロアルキル基、アラルキル基、アリール基、アルキルチオ基、アリールチオ基、アルコキシカルボニル基、カルバモイル基、またはイオン性親水性基を表し、R 8 は水素原子、ハロゲン原子、アルキル基、アルコキシ基、アリール基、アリールオキシ基、シアノ基、アシルアミノ基、スルホニルアミノ基、アルコキシカルボニルアミノ基、ウレイド基、アルキルチオ基、アリールチオ基、アルコキシカルボニル基、カルバモイル基、スルファモイル基、アルキルスルホニル、アリールスルホニル基、アシル基、アミノ基、ヒドロキシ基、またはイオン性親水性基を表し、R 1 0 は複素環基を表す。

[0216]

前記一般式(Y2)、(Y3)および(Y4)中、R1、R2、R3、R5、R7、R8およびR9が表すアルキル基には、置換基を有するアルキル基および無置換のアルキル基が含まれる。前記アルキル基としては、炭素原子数が1乃至20のアルキル基が好ましい。前記置換基の例には、ヒドロキシル基、アルコキシ基、シアノ基、ハロゲン原子、およびイオン性親水性基が含まれる。前記アルキル基の例には、メチル、エチル、ブチル、イソプロピル、tーブチル、ヒドロキシエチル、メトキシエチル、シアノエチル、トリフルオロメチル、3ースルホプロピル、および4ースルホブチルが含まれる。

[0217]

R1、R2、R3、R5、R7、R8およびR9が表すシクロアルキル基には、置換基を有するシクロアルキル基および無置換のシクロアルキル基が含まれる。前記シクロアルキル基としては、炭素原子数が5乃至12のシクロアルキル基

が好ましい。前記置換基の例にはイオン性親水性基が含まれる。前記シクロアルキル基の例には、シクロヘキシル基が含まれる。

R1、R2、R3、R5、R7、R8およびR9が表すアラルキル基には、置換基を有するアラルキル基および無置換のアラルキル基が含まれる。前記アラルキル基としては、炭素原子数が7乃至20のアラルキル基が好ましい。前記置換基の例にはイオン性親水性基が含まれる。前記アラルキル基の例には、ベンジル、および2-フェネチルが含まれる。

[0218]

R1、R2、R3、R5、R7、R8およびR9が表すアリール基には、置換基を有するアリール基および無置換のアリール基が含まれる。前記アリール基としては、炭素原子数が6乃至20のアリール基が好ましい。前記置換基の例には、アルキル基、アルコキシ基、ハロゲン原子、アルキルアミノ基、およびイオン性親水性基が含まれる。前記アリール基の例には、フェニル、pートリル、pーメトキシフェニル、oークロロフェニル、およびmー(3ースルホプロピルアミノ)フェニルが含まれる。

[0219]

R1、R2、R3、R5、R7、R8およびR9が表すアルキルチオ基には、 置換基を有するアルキルチオ基および無置換のアルキルチオ基が含まれる。前記 アルキルチオ基としては、炭素原子数が1乃至20のアルキルチオ基が好ましい 。前記置換基の例にはイオン性親水性基が含まれる。前記アルキルチオ基の例に は、メチルチオおよびエチルチオが含まれる。

R1、R2、R3、R5、R7、R8およびR9が表すアリールチオ基には、 置換基を有するアリールチオ基および無置換のアリールチオ基が含まれる。前記 アリールチオ基としては、炭素原子数が6乃至20のアリールチオ基が好ましい 。前記置換基の例には、アルキル基、およびイオン性親水性基が含まれる。前記 アリールチオ基の例には、フェニルチオ基およびpートリルチオが含まれる。

[0220]

R 2 及び後述の R ²²で表される複素環基は、5 員または 6 員の複素環が好ましくそれらはさらに縮環していても良い。複素環を構成するヘテロ原子としては、

N, S, Oが好ましい。また、芳香族複素環であっても非芳香族複素環であっても良い。前記複素環はさらに置換されていてもよく、置換基の例としては、後述のアリール基の置換基と同じものが挙げられる。好ましい複素環は、6 員の含窒素芳香族複素環であり、特にトリアジン、ピリミジン、フタラジンを好ましい例としてあげることが出来る。

[0221]

R8が表すハロゲン原子としては、フッ素原子、塩素原子および臭素原子が挙 げられる。

R1,R3,R5,R8が表すアルコキシ基には、置換基を有するアルコキシ基および無置換のアルコキシ基が含まれる。前記アルコキシ基としては、炭素原子数が1乃至20のアルコキシ基が好ましい。前記置換基の例には、ヒドロキシル基、およびイオン性親水性基が含まれる。前記アルコキシ基の例には、メトキシ、エトキシ、イソプロポキシ、メトキシエトキシ、ヒドロキシエトキシおよび3-カルボキシプロポキシが含まれる。

[0222]

R8が表すアリールオキシ基には、置換基を有するアリールオキシ基および無置換のアリールオキシ基が含まれる。前記アリールオキシ基としては、炭素原子数が6乃至20のアリールオキシ基が好ましい。前記置換基の例には、アルコキシ基、およびイオン性親水性基が含まれる。前記アリールオキシ基の例には、フェノキシ、p-メトキシフェノキシおよびo-メトキシフェノキシが含まれる。

R8が表すアシルアミノ基には、置換基を有するアシルアミノ基および無置換のアシルアミノ基が含まれる。前記アシルアミノ基としては、炭素原子数が2乃至20のアシルアミノ基が好ましい。前記置換基の例には、イオン性親水性基が含まれる。前記アシルアミノ基の例には、アセトアミド、プロピオンアミド、ベンズアミドおよび3、5ージスルホベンズアミドが含まれる。

[0223]

R8が表すスルホニルアミノ基には、置換基を有するスルホニルアミノ基および無置換のスルホニルアミノ基が含まれる。前記スルホニルアミノ基としては、 炭素原子数が1乃至20のスルホニルアミノ基が好ましい。前記スルホニルアミ ノ基の例には、メチルスルホニルアミノ、およびエチルスルホニルアミノが含まれる。

R8が表すアルコキシカルボニルアミノ基には、置換基を有するアルコキシカルボニルアミノ基および無置換のアルコキシカルボニルアミノ基が含まれる。前記アルコキシカルボニルアミノ基としては、炭素原子数が2乃至20のアルコキシカルボニルアミノ基が好ましい。前記置換基の例にはイオン性親水性基が含まれる。前記アルコキシカルボニルアミノ基の例には、エトキシカルボニルアミノが含まれる。

[0224]

R8が表すウレイド基には、置換基を有するウレイド基および無置換のウレイド基が含まれる。前記ウレイド基としては、炭素原子数が1万至20のウレイド基が好ましい。前記置換基の例には、アルキル基およびアリール基が含まれる。前記ウレイド基の例には、3-メチルウレイド、3,3-ジメチルウレイドおよび3-フェニルウレイドが含まれる。

R7, R8、R9が表すアルコキシカルボニル基には、置換基を有するアルコキシカルボニル基および無置換のアルコキシカルボニル基が含まれる。前記アルコキシカルボニル基としては、炭素原子数が2乃至20のアルコキシカルボニル基が好ましい。前記置換基の例にはイオン性親水性基が含まれる。前記アルコキシカルボニル基の例には、メトキシカルボニルおよびエトキシカルボニルが含まれる。

[0225]

R2, R7、R8、R9が表すカルバモイル基には、置換基を有するカルバモイル基および無置換のカルバモイル基が含まれる。前記置換基の例にはアルキル基が含まれる。前記カルバモイル基の例には、メチルカルバモイル基およびジメチルカルバモイル基が含まれる。

R8が表す置換基を有するスルファモイル基および無置換のスルファモイル基が含まれる。前記置換基の例には、アルキル基が含まれる。前記スルファモイル基の例には、ジメチルスルファモイル基およびジー(2ーヒドロキシエチル)スルファモイル基が含まれる。

[0226]

R8が表すアルキルスルホニルおよびアリールスルホニル基の例には、メチルスルホニルおよびフェニルスルホニルが含まれる。

R2, R8が表すアシル基には、置換基を有するアシル基および無置換のアシル基が含まれる。前記アシル基としては、炭素原子数が1乃至20のアシル基が好ましい。前記置換基の例にはイオン性親水性基が含まれる。前記アシル基の例には、アセチルおよびベンゾイルが含まれる。

[0227]

R8が表すアミノ基には、置換基を有するアミノ基および無置換のアミノ基が含まれる。置換基の例にはアルキル基、アリール基、複素環基が含まれる。アミノ基の例には、メチルアミノ、ジエチルアミノ、アニリノおよび2-クロロアニリノが含まれる。

[0228]

R4、R6, R10で表される複素環基は、一般式(Y1)のBで表される置換されていてもよい複素環基と同じであり、好ましい例、さらに好ましい例、特に好ましい例も先述のものと同じである。置換基としては、イオン性親水性基、炭素原子数が1乃至12のアルキル基、アリール基、アルキルまたはアリールチオ基、ハロゲン原子、シアノ基、スルファモイル基、スルホンアミノ基、カルバモイル基、およびアシルアミノ基等が含まれ、前記アルキル基およびアリール基等はさらに置換基を有していてもよい。

[0229]

前記一般式(Y3)中、Zaは-N=、-NH-、または-C(R11)=を表し、ZbおよびZcは各々独立して、-N=または-C(R11)=を表し、R11は水素原子または非金属置換基を表す。R11が表す非金属置換基としては、シアノ基、シクロアルキル基、アラルキル基、アリール基、アルキルチオ基、アリールチオ基、またはイオン性親水性基が好ましい。前記置換基の各々は、R1が表す各々の置換基と同義であり、好ましい例も同様である。前記一般式(Y3)に含まれる2つの5員環からなる複素環の骨格例を下記に示す。

[0230]

【化48】

上記で説明した各置換基がさらに置換基を有していても良い場合の置換基の例としては、先述の一般式(Y1)の複素環A, Bに置換しても良い置換基を挙げることが出来る。

[0232]

前記一般式(Y2)~(Y4)で表される染料を水溶性染料として使用する場合には、分子内にイオン性親水性基を少なくとも1つ有することが好ましい。前記一般式(YY2)~(Y4)中の、X10、X20、X20、X30、X40、X40 中の、X40、X40 中の、X40 中の X40 中の

[0233]

上記一般式(Y 2)、(Y 3)、及び(Y 4)のうち、好ましいものは一般式 (Y 2) であるが、中でも下記一般式(Y 2 - 1) で表されるものが特に好ましい。

一般式 (Y2-1)

[0234]

【化49】

$$\begin{array}{c|c}
R^{21} & N = N \\
N & N \\
N & N + R^{23}
\end{array}$$

$$\begin{array}{c}
N & X \\
N & Y \\
N & N + R^{23}
\end{array}$$

[0235]

式 (Y2-1) 中、 R^{21} 及び R^{23} は、水素原子、アルキル基、シクロアルキル

基、アラルキル基、アルコキシ基またはアリール基を表す。R²²は、アリール基または複素環基を表す。X及びYは、一方は窒素原子を表し、他方は一CR²⁴を表す。R²⁴は、水素原子、ハロゲン原子、シアノ基、アルキル基、アルキルチオ基、アルキルスルホニル基、アルキルスルフィニル基、アルキルオキシカルボニル基、カルバモイル基、アルコキシ基、アリール基、アリールチオ基、アリールスルホニル基、アリールスルフィニル基、アリールオキシ基またはアシルアミノ基を表す。それぞれの置換基はさらに置換していてもよい。

一般式(Y 2 - 1)において、イオン性親水性基を有する染料が好ましくい。

[0236]

以下に、本発明で使用される好ましい染料の具体例を示すが、本発明に用いられる染料は、下記の具体例に限定されるものではない。これらの化合物は特開平 2-24191号、特開2001-279145号、特願2000-12483 2号を参考にして合成できる。

[0237]

【化50】

YI-1

$$H_3C$$
 $N=N$
 $N=N$
 $N+1$
 $N+1$
 $N+1$
 $N+2$
 $N+1$
 $N+2$
 $N+3$
 $N+4$
 $N+4$

YI-2

$$N=N-N$$
 $N=N-N$
 $N+N$
 $N+1$
 $N+1$

YI-3

$$N=N-N$$
 $N=N-N$
 $N=N-N$
 $N=N-N$
 $N=N-N$
 $N+N$
 $N+N$
 $N+N$
 $N+1$
 $N+1$

YI-4

$$N=N$$
 $N=N$
 $N=N$
 $N=N$
 $N=N$
 $N+1$
 $N+1$
 $N+2$
 $N+2$
 $N+3$
 $N+4$
 $N+4$

[0238]

【化51】

YI-6

YI-7

$$N=N$$
 $N=N$
 $N+0$
 $N+0$

YI-8

[0239]

【化52】

YI-10

$$HO$$
 $HN-C$
 $N=N-N$
 $N=N$
 $N=N$

YI-11

$$N=N$$
 $N=N$
 $N=N$

YI-12

【化53】

$$VI-13$$
 H_3C
 $N=N SO_2NHC$
 SO_3Na
 SO_3Na
 CH_2COOH

YI-15

YI-17

YI-14
$$N=N-S$$

$$N=N-S$$

$$SO_3N_6$$

$$N+SO_2CH_3$$

$$0$$

$$N=N-1$$
 $N=N-1$
 $N=N-$

$$H_3C$$
 $N=N-0$
 SO_3Na
 SO_2NH-0
 SO_3Na

SO₃Na

[0241]

【化54】

[0242]

【化55】

$$N=N$$
 $N=N$
 $N=N$

色素	R	
YI-28	CH₃	
YI-29		
YI-30	OC ₂ H ₅	

[0243]

【化56】

YI-31 CH_3 YI-32 CH_3 YI-33 $SC_2H_4SO_3Na$ YI-34 $SO_2C_2H_4SO_3Na$	色素	R	
YI-33 SC ₂ H ₄ SO ₃ Na	YI-31		
_ , , , , , , , , , , , , , , , , , , ,	YI-32	CH ₃	
YI-34 SO₂C₂H₄SO₃Na	YI-33	SC₂H₄SO₃Na	
* * * *	YI-34	SO₂C₂H₄SO₃Na	

[0244]

【化57】

$$(t)C_4H_9$$
 $N=N-N$
 $N=N$
 $N+N$
 $N+$

色素	R
YI-35	Н
YI-36	CH ₃
YI-37	

[0245]

【化58】

色素	R	
YI-38	COOC₄H ₉	
YI-39	CON(C ₄ H ₉) ₂	
YI-40	SO ₂ NHC ₁₂ H ₂₅	
YI-41	OC ₈ H ₁₇	

[0246]

【化59】

色素	R	R'
YI-42	CON(C ₄ H ₉) ₂	Н
YI-43	COOC ₈ H ₁₇	<u>H</u>
YI-44	CON(C ₄ H ₉) ₂	
YI-45	CON(C ₄ H ₉) ₂	CH ₃
YI-46	н	
Y1-47	н	SC ₈ H ₁₇

[0247]

【化60】

【化61】

[0249]

【化62】

色素	R	R'
YI-66	Ph	Н
YI-67	OC ₂ H ₅	C ₂ H ₅
YI-68	CH ₃	н
YI-69	t-C₄H ₉	н
YI-70	t-C ₄ H ₉	−C ₂ H ₄ COOH

[0250]

【化63】

【化64】

[0252]

【化65】

色素	R ¹	R ²	R ³
YI-78	CI	Cl	Cl
YI-79	CI	Cl	F
YI-80	Cl	-CONHPh	CI

[0253]

【化66】

$$\begin{array}{c|c}
H_3C & N=N-S-N \\
N & NH_2 \\
R^1 & R^3 \\
N & N
\end{array}$$

色素	R ¹	R ²	R ³
YI-81	F	Н	н
YI-82	CI	Н	F

[0254]

【化67】

$$t-C_4H_9$$
 $N=N$
 N
 NH_2
 CN
 R^1
 N
 N
 R^3

色素	R ¹	R ²	R ³
YI-83	Н	F	F
YI-84	F	F	Н

[0255]

【化68】

色素	R	
YI-85	н	
Y1-86	CH₃	
YI-87	Ph	
YI-88	SCH₂COONa	
YI-89	SC ₂ H ₅	
YI-90	SC₄H ₉ -n	
YI-91	SCH ₂ CHMe ₂	
YI-92	SCHMeEt	
YI-93	SC₄H ₉ -t	
YI-94	SC ₇ H ₁₅ -n	
YI-95	SC ₂ H ₄ OC ₂ H ₅	
YI-96	SC ₂ H ₄ OC ₄ H ₉ -n	
YI-97	SCH ₂ CF ₃	

[0256]

【化69】

[0257]

本発明のインクジェット記録用インクは、前記イエロー染料を好ましくは、0. $2\sim20$ 質量%含有し、より好ましくは、0. $5\sim15$ 質量%含有する。

[0258]

以下、本発明のブラック用染料について詳細に説明する。

本発明のインクジェット記録用ブラックインクには、まず λ m a x が 5 0 0 n m か 6 7 0 0 n m にあり、吸光度 1. 0 に規格化した希薄溶液の吸収スペクトルにおける半値幅(W λ , 1/2)が 1 0 0 n m 以上(好ましくは 1 2 0 n m 以上 5 0 n m 以下、さらに好ましくは 1 2 0 n m 以上 3 5 0 n m 以下)である染料(L)を使用する。

[0259]

この染料(L)単独で、画像品質の高い「(しまりのよい)黒」=観察光源によらず、かつB、G、Rのいずれかの色調が強調されにくい黒を実現できる場合は、この染料を単独でブラックインク用染料として使用することも可能であるが、通常はこの染料の吸収が低い領域をカバーする染料と併用するのが一般的である。通常はイエロー領域に主吸収を有する染料(S)と併用するのが好ましい。また、さらに他の染料と併用してブラックインクを作製することも可能である。

[0260]

本発明においては、該染料を単独もしくは混合して水性媒体中に溶解または分散することによりブラックインクを作製するが、インクジェット記録用ブラックインクとして好ましい性能、すなわち、1)耐候性に優れること、および/または、2)褪色後も黒のバランスが崩れないことを満足するために、下記の条件を満たすようなインクを作製する。

[0261]

まず、該ブラックインクを用いてJISコード2223の黒四角記号を48ポイントで印字し、これをステータスAフィルター(ビジュアルフィルター)により測定した反射濃度(D_{ViS})を初期濃度として規定する。ステータスAフィルターを搭載した反射濃度測定機としては、たとえばX-Ri te濃度測定機などを挙げることができる。ここで「黒」を濃度測定する場合、標準的な観察反射濃

度として D_{vis} による測定値を使用する。この印画物を、5ppmのオゾンを常時発生可能なオゾン褪色試験機を用いて強制的に褪色させ、その反射濃度(D_{vi} s)が初期反射濃度値の80%となるまでの時間(t)から強制褪色速度定数(k_{vis})を $\left\lceil 0.8 \right\rceil$ = $exp\left(-k_{vis}\cdot t\right)$ 」なる関係式から求める。

本発明では該速度定数(k_{vis})が 5. 0×10^{-2} [hour-l] 以下、好ましくは 3. 0×10^{-2} [hour-l] 以下、さらに好ましくは 1. 0×10^{-2} [hour-l] 以下となるようなインクを作製する。(条件 1)

[0262]

[0263]

なお、上記で使用した「JISコード2223の黒四角記号を48ポイントで印字した印字物」は、濃度測定に十分な大きさを与えるため、測定機のアパーチャーを十分にカバーする大きさに画像を印字したものである。

[0264]

また、ブラックインクに使用する少なくとも 1 つの染料の酸化電位が 1.0 V (vs SCE) よりも貴、好ましくは 1.1 V (vs SCE) よりも貴、さらに好ましくは 1.2 V (vs SCE) よりも貴、最も好ましくは 1.25 V

(vs SCE) よりも貴であり、その染料の少なくとも1つはλmaxが50 0nm以上であることが好ましい。(条件3)

[0265]

本発明における酸化電位は、0.1 mol·d m⁻³の過塩素酸テトラプロピルアンモニウムを支持電解質として含むN, Nージメチルホルムアミド中(化合物の濃度は1×10⁻³mol·d m⁻³)で、参照電極としてSCE(飽和カロメル電極)、作用極としてグラファイト電極、対極として白金電極を使用し、直流ポーラログラフィーにより測定した値を使用する。水溶性染料の場合では直接N, Nージメチルホルムアミドに溶解し辛い場合があるが、その場合には出来る限り少量の水を用いて染料を溶解した後、含水量が2%以下となるようにN, Nージメチルホルムアミドで希釈して測定する。

[0266]

酸化電位の値は、液間電位差や試料溶液の液抵抗などの影響で、数10ミルボルト程度偏位することがあるが、標準試料 (例えばハイドロキノン) を用いて校正することにより、測定された電位の値の再現性を保証することができる。

[0267]

さらに、本発明のブラックインクとしては、下記一般式(BK1)に記載のア ゾ染料を使用することが好ましい。一般式(BK1)に記載のアゾ染料としては 、まず λ m a x が 5 0 0 n m から 7 0 0 n m にあり、吸光度 1. 0 に規格化した 希薄溶液の吸収スペクトルにおける半値幅が 1 0 0 n m以上である染料(L)に 該当するものを挙げることができる。これの他に、 λ m a x が 3 5 0 n m から 5 0 0 n m にある染料(S)も同様に一般式(BK1)の染料に該当するものとし て挙げることができる。好ましくは染料(L)の少なくとも 1 つが一般式(BK 1)の染料であるが、特に好ましくは染料(L)、(S)のいずれにおいても少 なくとも 1 つが一般式(BK1)の染料であり、中でもインク中全染料の 9 0 質 量%が一般式(BK1)の染料であることが好ましい。(条件 4)

一般式(BK1)

[0268]

【化70】

$$A + N = N + B + N = N - C$$

[0269]

本発明で使用するブラックインクは、上記条件1~4のいずれか少なくとも1 つを満たすブラックインクである。

[0270]

次に、一般式(B K 1)で表される染料のうち、特に染料(L)に該当するものについて詳細に述べる。

[0271]

一般式(BK1)中、A、BおよびCは、それぞれ独立に、置換されていてもよい芳香族基または置換されていてもよい複素環基を表す(AおよびCは一価の基であり、Bは二価の基である)。mは1または2であり、nは0以上の整数である。

中でもm, nがそれぞれ1または2である化合物が好ましく、そのとき、A、BおよびCのうち少なくとも2つ以上は置換されていてもよい不飽和複素環基であることが好ましい。その中でも特に好ましいのはm, n=1であり、少なくともB、Cが不飽和複素環基の場合である。

一般式(BK1)で表されるアゾ染料は、特に下記一般式(BK2)で表される染料であることが好ましい。

一般式(BK2)

[0272]

【化71】

[0273]

上記一般式 (BK2) 中、A、Bは一般式 (BK1) におけると同義である。 B_1 および B_2 は、各々 $=CR_1$ -および $-CR_2$ =を表すか、あるいはいずれか一

方が窒素原子,他方が $=CR_1$ -または $-CR_2$ =を表す。

G、R1およびR2は、それぞれ独立して、水素原子、ハロゲン原子、脂肪族基、芳香族基、複素環基、シアノ基、カルボキシル基、カルバモイル基、アルコキシカルボニル基、アリールオキシカルボニル基、複素環オキシカルボニル基、アシル基、ヒドロキシ基、アルコキシ基、アリールオキシ基、アルコキシカルボニルオキシ基、アシルオキシ基、カルバモイルオキシ基、アルコキシカルボニルオキシ基、アリールオキシカルボニルオキシ基、アリールオキシカルボニルオキシ基、アリールアミノ基、ウレイド基、スアリールアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、アルキルもしくはアリールスルホニルアミノ基、複素環スルホニルアミノ基、ニトロ基、アルキルもしくはアリールチオ基、複素環チオ基、アルキルもしくはアリールスルホニル基、アルキルもしくはアリールスルカニル基、複素環スルカニールスルフィニル基、複素環スルフィニル基、スルファモイル基、またはスルホ基を表し、各基は更に置換されていても良い。

 R_5 、 R_6 は、各々独立に、水素原子、脂肪族基、芳香族基、複素環基、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、カルバモイル基、アルキルもしくはアリールスルホニル基、またはスルファモイル基を表し、各基は更に置換基を有していても良い。但し、 R_5 、 R_6 が同時に水素原子であることはない。

また、 R_1 と R_5 、あるいは R_5 と R_6 が結合して5乃至6 員環を形成しても良い。

一般式(BK2)で表されるアゾ染料は、さらに下記一般式(BK3)で表される染料であることが好ましい。

一般式(BK3)

[0274]

【化72】

$$A-N=N$$

$$S$$

$$N=N$$

$$R_{5}$$

$$R_{6}$$

$$R_{6}$$

[0275]

上記一般式(BK3)中R7およびR8は、一般式(BK2)のR1と同義である。

[0276]

ハロゲン原子としては、フッ素原子、塩素原子および臭素原子が挙げられる。 脂肪族基は、アルキル基、置換アルキル基、アルケニル基、置換アルケニル基、 アルキニル基、置換アルキニル基、アラルキル基および置換アラルキル基を意味 する。脂肪族基は分岐を有していてもよく、また環を形成していてもよい。脂肪 族基の炭素原子数は1~20であることが好ましく、1~16であることがさら に好ましい。アラルキル基および置換アラルキル基のアリール部分はフェニルま たはナフチルであることが好ましく、フェニルが特に好ましい。脂肪族基の例に は、メチル、エチル、ブチル、イソプロピル、tーブチル、ヒドロキシエチル、 メトキシエチル、シアノエチル、トリフルオロメチル、3ースルホプロピル、4 ースルホブチル、シクロヘキシル基、ベンジル基、2ーフェネチル基、ビニル基 、およびアリル基を挙げることができる。

[0277]

1 価の芳香族基はアリール基および置換アリール基を意味する。アリール基は、フェニルまたはナフチルであることが好ましく、フェニルが特に好ましい。 1 価の芳香族基の炭素原子数は $6\sim2$ 0 であることが好ましく、6 から 1 6 がさらに好ましい。 1 価の芳香族基の例には、フェニル、p- トリル、p- メトキシフェニル、0- クロロフェニルおよびm- (3- スルホプロピルアミノ) フェニルが含まれる。 2 価の芳香族基は、これらの 1 価の芳香族基を 2 価にしたものであり、その例にはとしてフェニレン、p- トリレン、p- メトキシフェニレン、0 - クロロフェニレンおよびm- (3- スルホプロピルアミノ) フェニレン、ナフ

チレンなどが含まれる。

[0278]

複素環基には、置換基を有する複素環基および無置換の複素環基が含まれる。 複素環に脂肪族環、芳香族環または他の複素環が縮合していてもよい。複素環基 としては、5 員または6 員環の複素環基が好ましく、複素環のヘテロ原子として はN、O、およびSをあげることができる。上記置換基の例には、脂肪族基、ハ ロゲン原子、アルキル及びアリールスルホニル基、アシル基、アシルアミノ基、 スルファモイル基、カルバモイル基、イオン性親水性基などが含まれる。1 価及 び2 価の複素環基に用いられる複素環の例には、ピリジン、チオフェン、チアゾ ール、ベンゾチアゾール、ベンズオキサゾール、及びフラン環が含まれる。

[0279]

カルバモイル基には、置換基を有するカルバモイル基および無置換のカルバモイル基が含まれる。前記置換基の例には、アルキル基が含まれる。前記カルバモイル基の例には、メチルカルバモイル基およびジメチルカルバモイル基が含まれる。

[0280]

アルコキシカルボニル基には、置換基を有するアルコキシカルボニル基および 無置換のアルコキシカルボニル基が含まれる。アルコキシカルボニル基としては 、炭素原子数が2~20のアルコキシカルボニル基が好ましい。置換基の例には 、イオン性親水性基が含まれる。前記アルコキシカルボニル基の例には、メトキ シカルボニル基およびエトキシカルボニル基が含まれる。

[0281]

アリールオキシカルボニル基には、置換基を有するアリールオキシカルボニル基および無置換のアリールオキシカルボニル基が含まれる。アリールオキシカルボニル基としては、炭素原子数が7~20のアリールオキシカルボニル基が好ましい。前記置換基の例には、イオン性親水性基が含まれる。前記アリールオキシカルボニル基の例には、フェノキシカルボニル基が含まれる。

[0282]

複素環オキシカルボニル基には、置換基を有する複素環オキシカボニル基およ

び無置換の複素環オキシカルボニル基が含まれる。複素環オキシカルボニル基としては、炭素原子数が2~20の複素環オキシカルボニル基が好ましい。前記置換基の例には、イオン性親水性基が含まれる。前記複素環オキシカルボニル基の例には、2-ピリジルオキシカルボニル基が含まれる。

上記アシル基には、置換基を有するアシル基および無置換のアシル基が含まれる。前記アシル基としては、炭素原子数が1~20のアシル基が好ましい。上記置換基の例には、イオン性親水性基が含まれる。上記アシル基の例には、アセチル基およびベンゾイル基が含まれる。

[0283]

アルコキシ基には、置換基を有するアルコキシ基および無置換のアルコキシ基が含まれる。アルコキシ基としては、炭素原子数が1~20のアルコキシ基が好ましい。置換基の例には、アルコキシ基、ヒドロキシル基、およびイオン性親水性基が含まれる。上記アルコキシ基の例には、メトキシ基、エトキシ基、イソプロポキシ基、メトキシエトキシ基、ヒドロキシエトキシ基および3ーカルボキシプロポキシ基が含まれる。

[0284]

アリールオキシ基には、置換基を有するアリールオキシ基および無置換のアリールオキシ基が含まれる。アリールオキシ基としては、炭素原子数が6~20のアリールオキシ基が好ましい。上記置換基の例には、アルコキシ基およびイオン性親水性基が含まれる。上記アリールオキシ基の例には、フェノキシ基、pーメトキシフェノキシ基およびoーメトキシフェノキシ基が含まれる。

[0285]

複素環オキシ基には、置換基を有する複素環オキシ基および無置換の複素環オキシ基が含まれる。上記複素環オキシ基としては、炭素原子数が2~20の複素環オキシ基が好ましい。上記置換基の例には、アルキル基、アルコキシ基、およびイオン性親水性基が含まれる。上記複素環オキシ基の例には、3-ピリジルオキシ基、3-チエニルオキシ基が含まれる。

[0286]

シリルオキシ基としては、炭素原子数が1~20の脂肪族基、芳香族基が置換

したシリルオキシ基が好ましい。シリルオキシ基の例には、トリメチルシリルオキシ、ジフェニルメチルシリルオキシが含まれる。

[0287]

アシルオキシ基には、置換基を有するアシルオキシ基および無置換のアシルオキシ基が含まれる。アシルオキシ基としては、炭素原子数1~20のアシルオキシ基が好ましい。前記置換基の例には、イオン性親水性基が含まれる。アシルオキシ基の例には、アセトキシ基およびベンゾイルオキシ基が含まれる。

[0288]

カルバモイルオキシ基には、置換基を有するカルバモイルオキシ基および無置換のカルバモイルオキシ基が含まれる。置換基の例には、アルキル基が含まれる。カルバモイルオキシ基の例には、N-メチルカルバモイルオキシ基が含まれる。

[0289]

アルコキシカルボニルオキシ基には、置換基を有するアルコキシカルボニルオキシ基および無置換のアルコキシカルボニルオキシ基が含まれる。アルコキシカルボニルオキシ基としては、炭素原子数が2~20のアルコキシカルボニルオキシ基が好ましい。アルコキシカルボニルオキシ基の例には、メトキシカルボニルオキシ基、イソプロポキシカルボニルオキシ基が含まれる。

[0290]

アリールオキシカルボニルオキシ基には、置換基を有するアリールオキシカルボニルオキシ基および無置換のアリールオキシカルボニルオキシ基が含まれる。 アリールオキシカルボニルオキシ基としては、炭素原子数が7~20のアリールオキシカルボニルオキシ基が好ましい。アリールオキシカルボニルオキシ基の例には、フェノキシカルボニルオキシ基が含まれる。

[0291]

アミノ基には、アルキル基、アリール基または複素環基で置換されたアミノ基が含まれ、アルキル基、アリール基および複素環基はさらに置換基を有していてもよい。アルキルアミノ基としては、炭素原子数1~20のアルキルアミノ基が好ましい。置換基の例には、イオン性親水性基が含まれる。アルキルアミノ基の

例には、メチルアミノ基およびジエチルアミノ基が含まれる。

アリールアミノ基には、置換基を有するアリールアミノ基および無置換のアリールアミノ基が含まれる。アリールアミノ基としては、炭素原子数が6~20のアリールアミノ基が好ましい。置換基の例としては、ハロゲン原子、およびイオン性親水性基が含まれる。アリールアミノ基の例としては、アニリノ基および2ークロロフェニルアミノ基が含まれる。

複素環アミノ基には、置換基を有する複素環アミノ基および無置換の複素環アミノ基が含まれる。複素環アミノ基としては、炭素数2~20個の複素環アミノ基が好ましい。置換基の例としては、アルキル基、ハロゲン原子、およびイオン性親水性基が含まれる。

[0292]

アシルアミノ基には、置換基を有するアシルアミノ基および無置換のアシルアミノ基が含まれる。前記アシルアミノ基としては、炭素原子数が2~20のアシルアミノ基が好ましい。置換基の例には、イオン性親水性基が含まれる。アシルアミノ基の例には、アセチルアミノ基、プロピオニルアミノ基、ベンゾイルアミノ基、N-フェニルアセチルアミノおよび3,5-ジスルホベンゾイルアミノ基が含まれる。

[0293]

ウレイド基には、置換基を有するウレイド基および無置換のウレイド基が含まれる。ウレイド基としては、炭素原子数が1~20のウレイド基が好ましい。置換基の例には、アルキル基およびアリール基が含まれる。ウレイド基の例には、3-メチルウレイド基、3,3-ジメチルウレイド基および3-フェニルウレイド基が含まれる。

[0294]

スルファモイルアミノ基には、置換基を有するスルファモイルアミノ基および 無置換のスルファモイルアミノ基が含まれる。置換基の例には、アルキル基が含 まれる。スルファモイルアミノ基の例には、N, N-ジプロピルスルファモイル アミノ基が含まれる。

[0295]

アルコキシカルボニルアミノ基には、置換基を有するアルコキシカルボニルアミノ基および無置換のアルコキシカルボニルアミノ基が含まれる。アルコキシカルボニルアミノ基としては、炭素原子数が2~20のアルコキシカルボニルアミノ基が好ましい。置換基の例には、イオン性親水性基が含まれる。アルコキシカルボニルアミノ基の例には、エトキシカルボニルアミノ基が含まれる。

[0296]

アリールオキシカルボニルアミノ基には、置換基を有するアリールオキシカボニルアミノ基および無置換のアリールオキシカルボニルアミノ基が含まれる。アリールオキシカルボニルアミノ基としては、炭素原子数が7~20のアリールオキシカルボニルアミノ基が好ましい。置換基の例には、イオン性親水性基が含まれる。アリールオキシカルボニルアミノ基の例には、フェノキシカルボニルアミノ基が含まれる。

[0297]

アルキル及びアリールスルホニルアミノ基には、置換基を有するアルキル及びアリールスルホニルアミノ基、および無置換のアルキル及びアリールスルホニルアミノ基が含まれる。スルホニルアミノ基としては、炭素原子数が1~20のスルホニルアミノ基が好ましい。置換基の例には、イオン性親水性基が含まれる。これらスルホニルアミノ基の例には、メチルスルホニルアミノ基、Nーフェニルーメチルスルホニルアミノ基、フェニルスルホニルアミノ基、および3ーカルボキシフェニルスルホニルアミノ基が含まれる。

[0298]

複素環スルホニルアミノ基には、置換基を有する複素環スルホニルアミノ基および無置換の複素環スルホニルアミノ基が含まれる。複素環スルホニルアミノ基としては、炭素原子数が1~12の複素環スルホニルアミノ基が好ましい。置換基の例には、イオン性親水性基が含まれる。複素環スルホニルアミノ基の例には、2ーチオフェンスルホニルアミノ基、3ーピリジンスルホニルアミノ基が含まれる。

[0299]

複素環スルホニル基には、置換基を有する複素環スルホニル基および無置換の

複素環スルホニル基が含まれる。複素環スルホニル基としては、炭素原子数が1~20の複素環スルホニル基が好ましい。置換基の例には、イオン性親水性基が含まれる。複素環スルホニル基の例には、2ーチオフェンスルホニル基、3ーピリジンスルホニル基が含まれる。

[0300]

複素環スルフィニル基には、置換基を有する複素環スルフィニル基および無置換の複素環スルフィニル基が含まれる。複素環スルフィニル基としては、炭素原子数が1~20の複素環スルフィニル基が好ましい。置換基の例には、イオン性親水性基が含まれる。複素環スルフィニル基の例には、4-ピリジンスルフィニル基が含まれる。

[0301]

アルキル,アリール及び複素環チオ基には、置換基を有するアルキル,アリール及び複素環チオ基と無置換のアルキル,アリール及び複素環チオ基が含まれる。アルキル,アリール及び複素環チオ基としては、炭素原子数が1から20のものが好ましい。置換基の例には、イオン性親水性基が含まれる。アルキル,アリール及び複素環チオ基の例には、メチルチオ基、フェニルチオ基、2ーピリジルチオ基が含まれる。

[0302]

アルキルおよびアリールスルホニル基には、置換基を有するアルキルおよびアリールスルホニル基、無置換のアルキルおよびアリールスルホニル基が含まれる。アルキルおよびアリールスルホニル基の例としては、それぞれメチルスルホニル基およびフェニルスルホニル基を挙げることができる。

[0303]

アルキルおよびアリールスルフィニル基には、置換基を有するアルキルおよび アリールスルフィニル基、無置換のアルキルおよびアリールスルフィニル基が含 まれる。アルキルおよびアリールスルフィニル基の例としては、それぞれメチル スルフィニル基およびフェニルスルフィニル基を挙げることができる。

[0304]

スルファモイル基には、置換基を有するスルファモイル基および無置換のスル

ファモイル基が含まれる。置換基の例には、アルキル基が含まれる。スルファモイル基の例には、ジメチルスルファモイル基およびジー (2-ヒドロキシエチル) スルファモイル基が含まれる。

[0305]

次に、一般式(BK1)、(BK2)および(BK3)について説明する。 以下の説明において、基、置換基は、既に説明したことが適用される。

一般式(BK1)において、A, B, Cは、それぞれ独立して、置換されていてもよい芳香族基(A、Cは1価の芳香族基、例えばアリール基;Bは2価の芳香族基、例えばアリーレン基)または置換されていてもよい複素環基(A、Cは1価の複素環基;Bは2価の複素環基)を表す。芳香族環の例としてはベンゼン環やナフタレン環をあげることができ、複素環のヘテロ原子としてはN、O、およびSをあげることができる。複素環に脂肪族環、芳香族環または他の複素環が縮合していてもよい。

置換基としてはアリールアゾ基または複素環アゾ基であってもよい。 また、A, B, Cの少なくとも二つは、好ましくは複素環基である。

[0306]

Cの好ましい複素環基として、下記一般式(BK4)で表される芳香族含窒素 6 員複素環基があげられる。Cが、下記一般式(BK4)で表される芳香族含窒素 6 員複素環基である場合は、一般式(BK1)は一般式(BK2)に相当する

一般式 (BK4)

[0307]

【化73】

$$\begin{array}{c|c}
B_2 & B_1 \\
\hline
 & N \\
G
\end{array}$$

$$\begin{array}{c|c}
R_5 \\
R_6
\end{array}$$

一般式 (BK4) において、 B_1 および B_2 は、各々 $=CR_1$ -および $-CR_2$ =を表すか、あるいはいずれか一方が窒素原子,他方が $=CR_1$ -または $-CR_2$ =

を表すが、各々=CR1-、-CR2=を表すものがより好ましい。

R5、R6は、各々独立に、水素原子、脂肪族基、芳香族基、複素環基、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、カルバモイル基、アルキルまたはアリールスルホニル基、スルファモイル基を表し、各基は更に置換基を有していても良い。R5、R6で表される好ましい置換基は、水素原子、脂肪族基、芳香族基、複素環基、アシル基、アルキルまたはアリールスルホニル基を挙げることができる。さらに好ましくは水素原子、芳香族基、複素環基、アシル基、アルキルまたはアリールスルホニル基である。最も好ましくは、水素原子、アリール基、複素環基である。各基は更に置換基を有していても良い。但し、R5、R6が同時に水素原子であることはない。

[0309]

G、R₁, R₂は、各々独立して、水素原子、ハロゲン原子、脂肪族基、芳香族基、複素環基、シアノ基、カルボキシル基、カルバモイル基、アルコキシカルボニル基、アリールオキシカルボニル基、アシル基、ヒドロキシ基、アルコキシ基、アリールオキシ基、複素環オキシ基、シリルオキシ基、アシルオキシ基、カルバモイルオキシ基、アルコキシカルボニルオキシ基、アリールオキシカルボニルオキシ基、アリールオキシカルボニルオキシ基、アリールアミノ基、アリールアミノ基、アリールアミノ基、アリールオキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、アルキルもしくはアリールスルホニルアミノ基、複素環スルホニルアミノ基、アルキル及びアリールスルホニル基、複素環スルホニルアミノ基、アルキル及びアリールスルホニル基、複素環スルホニルとびアリールスルホニル基、複素環スルホニル基、複素環スルホニル基、複素環スルホニル基、複素環スルホニル基、複素環スルホニル基、複素環スルホニル基、複素環スルホニル基、複素環スルホニル基、存品は更に置換されていても良い。

[0310]

Gで表される置換基としては、水素原子、ハロゲン原子、脂肪族基、芳香族基 、ヒドロキシ基、アルコキシ基、アリールオキシ基、アシルオキシ基、複素環オ キシ基、アミノ基(アルキルアミノ基、アリールアミノ基、複素環アミノ基を含 む)、アシルアミノ基、ウレイド基、スルファモイルアミノ基、アルコキシカル ボニルアミノ基、アリールオキシカルボニルアミノ基、アルキル及びアリールチオ基、または複素環チオ基が好ましく、更に好ましくは水素原子、ハロゲン原子、アルキル基、ヒドロキシ基、アルコキシ基、アリールオキシ基、アシルオキシ基、アミノ基(アルキルアミノ基、アリールアミノ基、複素環アミノ基を含む)またはアシルアミノ基であり、中でも水素原子、アニリノ基、アシルアミノ基が最も好ましい。各基は更に置換基を有していても良い。

[0311]

R₁、R₂で表される好ましい置換基は、水素原子、アルキル基、ハロゲン原子、アルコキシカルボニル基、カルボキシル基、カルバモイル基、ヒドロキシ基、アルコキシ基、シアノ基を挙げることができる。各基は更に置換基を有していても良い。

R1とR5、あるいはR5とR6が結合して5乃至6員環を形成しても良い。

A、 R_1 、 R_2 、 R_5 、 R_6 、Gで表される各置換基が更に置換基を有する場合の置換基としては、上記G, R_1 、 R_2 で挙げた置換基を挙げることができる。また、A, R_1 , R_2 , R_5 , R_6 , G上のいずれかの位置に置換基としてさらにイオン性親水性基を有することが好ましい。

置換基としてのイオン性親水性基には、スルホ基、カルボキシル基、ホスホノ基および4級アンモニウム基等が含まれる。前記イオン性親水性基としては、カルボキシル基、ホスホノ基、およびスルホ基が好ましく、特にカルボキシル基、スルホ基が好ましい。カルボキシル基、ホスホノ基およびスルホ基は塩の状態であってもよく、塩を形成する対イオンの例には、アンモニウムイオン、アルカリ金属イオン(例、リチウムイオン、ナトリウムイオン、カリウムイオン)および有機カチオン(例、テトラメチルアンモニウムイオン、テトラメチルグアニジウムイオン、テトラメチルホスホニウム)が含まれる。

[0312]

Bが環構造であるときの好ましい複素環としてはチオフェン環、チアゾール環、イミダゾール環、ベンゾチアゾール環、チエノチアゾール環を挙げることができる。各複素環基は更に置換基を有していても良い。中でも下記一般式(a)から(e)で表されるチオフェン環、チアゾール環、イミダゾール環、ベンゾチア

ゾール環、チエノチアゾール環が好ましい。なお、m=n=1であり、Bが(a)で表されるチオフェン環であり、Cが前記一般式(4)で表される構造であるときは、一般式(B K 1)は一般式(B K 3)に相当することになる。

[0313]

【化74】

(a)
$$R_9$$
 R_{10} (b) R_{11} N

[0314]

上記一般式 (a) から (e) において、 R_9 から R_{17} は、一般式 (BK2) におけるG、 R_1 、 R_2 と同義の置換基を表す。

[0315]

本発明において、特に好ましい構造は、下記一般式(BK5)で表されるものである。

一般式(BK5)

[0316]

【化75】

[0317]

式中、 Z_1 はハメットの置換基定数 σ p 値が 0 . 2 0 以上の電子吸引性基を表す。 Z_1 は、 σ p 値が 0 . 3 0 以上の電子吸引性基であるのが好ましく、 0 . 4 5 以上の電子吸引性基が更に好ましく、 0 . 6 0 以上の電子吸引性基が特に好ましいが、 1 . 0 を超えないことが望ましい。好ましい具体的な置換基については後述する電子吸引性置換基を挙げることができるが、中でも、炭素数 2 ~ 2 0 のアシル基、炭素数 2 ~ 2 0 のアルキルオキシカルボニル基、ニトロ基、シアノ基、炭素数 1 ~ 2 0 のアルキルスルホニル基、炭素数 6 ~ 2 0 のアリールスルホニル基、炭素数 1 ~ 2 0 のアルキルスルホニル基が好ましい。特に好ましいものは、シアノ基、炭素数 1 ~ 2 0 のアルキルスルホニル基、炭素数 6 ~ 2 0 のアリールスルホニル基が好ましい。特に好ましいものは、シアノ基、炭素数 1 ~ 2 0 のアルキルスルホニル基、炭素数 6 ~ 2 0 のアリールスルホニル基であり、最も好ましいものはシアノ基である。

[0318]

R₁、R₂、R₅、R₆は、一般式(BK2)と同義である。R₃、R₄は、各々独立に、水素原子、脂肪族基、芳香族基、複素環基、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、カルバモイル基、アルキルもしくはアリールスルホニル基、またはスルファモイル基を表す。中でも、水素原子、芳香族基、複素環基、アシル基、アルキルもしくはアリールスルホニル基が好ましく、水素原子、芳香族基、複素環基が特に好ましい。

[0319]

一般式(BK5)で説明した各基は更に置換基を有していても良い。これらの各基が更に置換基を有する場合、該置換基としては、一般式(BK2)で説明した置換基、G、 R_1 、 R_2 で例示した基やイオン性親水性基が挙げられる。

ここで、本明細書中で用いられるハメットの置換基定数σp値について説明す る。ハメット則はベンゼン誘導体の反応または平衡に及ぼす置換基の影響を定量 的に論ずるために1935年にL.P.Hammettにより提唱された経験則 であるが、これは今日広く妥当性が認められている。ハメット則に求められた置 換基定数には σ p値と σ m値があり、これらの値は多くの一般的な成書に見出す ことができるが、例えば、J. A. Dean編、「Lange's Handb ook of Chemistry」第12版、1979年(McGraw-H ill)や「化学の領域」増刊、122号、96~103頁、1979年(南光 堂)に詳しい。尚、本発明において各置換基をハメットの置換基定数 σ_{p} により 限定したり、説明したりするが、これは上記の成書で見出せる、文献既知の値が ある置換基にのみ限定されるという意味ではなく、その値が文献未知であっても ハメット則に基づいて測定した場合にその範囲内に包まれるであろう置換基をも 含むことはいうまでもない。また、本発明の一般式(1)または(2)の中には 、ベンゼン誘導体ではないものも含まれるが、置換基の電子効果を示す尺度とし て、置換位置に関係なく σ_p 値を使用する。本発明において、 σ_p 値をこのような 意味で使用する。

[0320]

ハメット置換基定数 σ_p 値が0.60以上の電子吸引性基としては、シアノ基、ニトロ基、アルキルスルホニル基(例えばメタンスルホニル基、アリールスルホニル基(例えばベンゼンスルホニル基)を例として挙げることができる。

ハメット σ_p 値が0. 45以上の電子吸引性基としては、上記に加えアシル基 (例えばアセチル基)、アルコキシカルボニル基 (例えばドデシルオキシカルボニル基)、アリールオキシカルボニル基 (例えば、<math>m-クロロフェノキシカルボニル)、アルキルスルフィニル基 (例えば、n-プロピルスルフィニル)、アリールスルフィニル基 (例えばフェニルスルフィニル)、スルファモイル基 (例えば、N-エチルスルファモイル、N, N-ジメチルスルファモイル)、ハロゲン化アルキル基 (例えば、トリフロロメチル)を挙げることができる。

ハメット置換基定数 σ_p 値が0. 30以上の電子吸引性基としては、上記に加え、アシルオキシ基(例えば、アセトキシ)、カルバモイル基(例えば、<math>N-エ

チルカルバモイル、N, N ージブチルカルバモイル)、ハロゲン化アルコキシ基 (例えば、トリフロロメチルオキシ)、ハロゲン化アリールオキシ基(例えば、ペンタフロロフェニルオキシ)、スルホニルオキシ基(例えばメチルスルホニルオキシ基)、ハロゲン化アルキルチオ基(例えば、ジフロロメチルチオ)、2つ以上の σ_p 値が0. 15以上の電子吸引性基で置換されたアリール基(例えば、2, 4 ージニトロフェニル、ペンタクロロフェニル)、およびヘテロ環(例えば、2 ーベンゾオキサゾリル、2 ーベングチアゾリル、1 ーフェニルー2 ーベンズイミダゾリル)を挙げることができる。

 σ_p 値が0.20以上の電子吸引性基の具体例としては、上記に加え、ハロゲン原子などが挙げられる。

[0321]

前記一般式(BK3)で表されるアゾ色素として特に好ましい置換基の組み合わせは、 R_5 および R_6 として好ましくは、水素原子、アルキル基、アリール基、複素環基、スルホニル基、アシル基であり、さらに好ましくは水素原子、アリール基、複素環基、スルホニル基であり、最も好ましくは、水素原子、アリール基、複素環基である。ただし、 R_5 および R_6 が共に水素原子であることは無い。

Gとして、好ましくは、水素原子、ハロゲン原子、アルキル基、ヒドロキシル基、アミノ基、アシルアミノ基であり、さらに好ましくは水素原子、ハロゲン原子、アミノ基、アシルアミノ基であり、もっとも好ましくは水素原子、アミノ基、アシルアミノ基である。

Aのうち、好ましくは芳香族基、ピリジン環、ピラゾール環、イミダゾール環、イソチアゾール環、ベンゾイソチアゾール環、チアジアゾール環、チアゾール環、ベンゾチアゾール環、トリアゾール環であり、さらには芳香族基、ピリジン環、イソチアゾール環、ベンゾイソチアゾール環、チアジアゾール環、ベンゾチアゾール環であり、最も好ましくは芳香族基、ピリジン環、ベンゾチアゾール環である。

 B_1 および B_2 が、それぞれ $=CR_1-$, $-CR_2=$ であり、 R_1 、 R_2 は、各々好ましくは水素原子、アルキル基、ハロゲン原子、シアノ基、カルバモイル基、カルボキシル基、ヒドロキシル基、アルコキシ基、アルコキシカルボニル基であり

、さらに好ましくは水素原子、アルキル基、カルボキシル基、シアノ基、カルバ モイル基である。

[0322]

尚、前記一般式(BK1)で表される化合物の好ましい置換基の組み合わせについては、種々の置換基の少なくとも1つが前記の好ましい基である化合物が好ましく、より多くの種々の置換基が前記好ましい基である化合物がより好ましく、全ての置換基が前記好ましい基である化合物が最も好ましい。

[0323]

前記一般式(BK1)で表されるアゾ色素の具体例を以下に示すが、本発明に 用いられるアゾ色素は、下記の例に限定されるものではなく、またカルボキシル 基、ホスホノ基およびスルホ基は塩の状態であってもよく、塩を形成する対イオ ンの例には、アンモニウムイオン、アルカリ金属イオン(例、リチウムイオン、 ナトリウムイオン、カリウムイオン)および有機カチオン(例、テトラメチルア ンモニウムイオン、テトラメチルグアニジウムイオン、テトラメチルホスホニウ ム)が含まれる。

[0324]

【表27】

[0325]

【表28】

[0326]

【表29】

【表30】

[0328]

【表31】

$$A-N=N-B-N=N-C$$

$$A \qquad B \qquad C$$

$$(e-1) \qquad HO_3S \longrightarrow SO_3H$$

$$(e-2) \qquad HO_3S \longrightarrow SO_3H$$

$$(e-2) \qquad HO_3S \longrightarrow SO_3H$$

[0329]

【表32】

$$A-N=N-B-N=N-C$$

$$A \qquad B \qquad C$$

$$(f-1)$$

$$HO_3S \longrightarrow S$$

$$(f-2)$$

$$HO_2C \longrightarrow S$$

$$CN \qquad H_2N \longrightarrow N$$

$$H_2N \longrightarrow N$$

$$N \longrightarrow N$$

$$N$$

[0330]

前記一般式 (BK1)、 (BK2)、 (BK3)、 (BK5) で表される染料は、ジアゾ成分とカプラーとのカップリング反応によって合成することができる。主たる合成法としては、特願 2002-113460 号記載の方法により合成できる。

[0331]

この染料(L)単独で、画像品質の高い「(しまりのよい)黒」=観察光源によらず、かつB、G、Rのいずれかの色調が強調されにくい黒を実現できる場合は、この染料を単独でブラックインク用染料として使用することも可能であるが、通常はこの染料の吸収が低い領域をカバーする染料と併用するのが一般的である。通常はイエロー領域に主吸収を有する染料や顔料と併用して、好ましい黒を実現する。イエロー染料としては通常使用されるアゾ色素、アゾメチン色素などに代表される直接染料や酸性染料等を使用することができる。顔料としては、ピグメント番号のついた一般的な顔料の水性分散物を併用することが可能である。中でも特に好ましいのは、先述した短波側染料(S)として、一般式(BK1)で表される染料を使用するのが好ましい。

[0332]

一般式(B K 1)で表される染料のうち、短波側染料(S)として好ましいものとしては、まずm=n=0であるアゾ染料を挙げることができる。このとき、A、C は好ましくは複素芳香族環である。次に好ましいものとしては、m=n=1であるアゾ染料である。

[0333]

いずれの場合でも、前記酸化電位(Eox)は1.0V(vsSCE)である染料が好ましく、特に好ましくは、Eoxが1.2V(vsSCE)となる染料である。

ブラックインクでは、長波側の染料を少なくとも2種併用することもできる。

[0334]

また、さらに他の染料を併用してブラックインクを作製することも可能である

本発明のインクジェット記録用ブラックインクとしては、前記一般式(B K 1)の染料をインク全体で $0.2\sim25$ 質量%含有し、好ましくは、 $0.5\sim15$ 質量%含有する。

[0335]

λ max が350nm から500nm にある染料は後述のイエロー色素及び黄色顔料も用いられる。

[0336]

本発明の前記ブラック染料は実質的に水溶性又は水分散性のものである。特に本発明のブラック染料を含むインク組成物は染料が水溶性のものであって、溶液タイプのインク組成物であることが好ましい。具体的には20℃における該染料の水への溶解度は2質量%上であることが好ましく、より好ましくは5質量%以上である。

[0337]

本発明におけるブラック染料以外の染料は実質的に水溶性又は水分散性のものであることが好ましい。具体的には20℃における色素の水への溶解度が2質量%以上が好ましく、より好ましくは5質量%以上である。

[0338]

また、二種以上のインクを作製する際には、一方を薄いライト系のインク、一方を濃いインクとすることができるが、本発明では、このようなインクのつくり分けをすることも可能であるし、ほとんど濃度が同じインク組成物を作製することも可能である。

[0339]

前記ブラック染料以外の使用可能な染料としては、トリアリールメタン染料、アントラキノン染料、アントラピリドン染料、アゾメチン染料、アゾ染料、シアニン染料、メロシアニン染料、オキソノール染料等当該分野で公知の染料を単独または組合せ(好ましくはブラック染料となるように組合せ)て使用することが可能である。中でも特にアゾ染料が好ましい。

[0340]

より具体的には、イエロー染料としては、例えばカップリング成分としてフェノール類、ナフトール類、アニリン類、ピラゾロン類、ピリドン類、開鎖型活性メチレン化合物類を有するアリールもしくはヘテリルアゾ染料;例えばカップリング成分として開鎖型活性メチレン化合物類を有するアゾメチン染料;例えばベンジリデン染料やモノメチンオキソノール染料等のようなメチン染料;例えばナフトキノン染料、アントラキノン染料等のようなキノン系染料などがあり、これ以外の染料種としてはキノフタロン染料、ニトロ・ニトロソ染料、アクリジン染

料、アクリジノン染料等を挙げることができる。これらの染料は、クロモフォアの一部が解離して初めてイエローを呈するものであってもよく、その場合のカウンターカチオンはアルカリ金属や、アンモニウムのような無機のカチオンであってもよいし、ピリジニウム、4級アンモニウム塩のような有機のカチオンであってもよく、さらにはそれらを部分構造に有するポリマーカチオンであってもよい。

[0341]

マゼンタ染料としては、例えばカップリング成分としてフェノール類、ナフトール類、アニリン類を有するアリールもしくはヘテリルアゾ染料;例えばカップリング成分としてピラゾロン類、ピラゾロトリアゾール類を有するアゾメチン染料;例えばアリーリデン染料、スチリル染料、メロシアニン染料、オキソノール染料のようなメチン染料;ジフェニルメタン染料、トリフェニルメタン染料、キサンテン染料のようなカルボニウム染料、例えばナフトキノン、アントラピリドンなどのようなキノン系染料、例えばジオキサジン染料等のような縮合多環系染料等を挙げることができる。これらの染料は、クロモフォアの一部が解離して初めてマゼンタを呈するものであってもよく、その場合のカウンターカチオンはアルカリ金属や、アンモニウムのような無機のカチオンであってもよいし、ピリジニウム、4級アンモニウム塩のような有機のカチオンであってもよく、さらにはそれらを部分構造に有するポリマーカチオンであってもよい。

[0342]

シアン染料としては、例えばインドアニリン染料、インドフェノール染料のようなアゾメチン染料;シアニン染料、オキソノール染料、メロシアニン染料のようなポリメチン染料;ジフェニルメタン染料、トリフェニルメタン染料、キサンテン染料のようなカルボニウム染料;フタロシアニン染料;アントラキノン染料;例えばカップリング成分としてフェノール類、ナフトール類、アニリン類を有するアリールもしくはヘテリルアゾ染料、インジゴ・チオインジゴ染料を挙げることができる。これらの染料は、クロモフォアの一部が解離して初めてシアンを呈するものであってもよく、その場合のカウンターカチオンはアルカリ金属や、アンモニウムのような無機のカチオンであってもよいし、ピリジニウム、4級ア

ンモニウム塩のような有機のカチオンであってもよく、さらにはそれらを部分構造に有するポリマーカチオンであってもよい。

[0343]

水溶性染料としては、直接染料、酸性染料、食用染料、塩基性染料、反応性染料等が挙げられる。好ましいものとしては、

- C.I. ダイレクトレッド2、4、9、23、26、31、39、62、63、72、75、76、79、80、81、83、84、89、92、95、111、173、184、207、211、212、214、218、21、223、224、225、226、227、232、233、240、241、242、243、247
- C. I. ダイレクトバイオレット 7、 9、47、48、51、66、90、93、94、95、98、10 0、101
- C.I. ダイレクトイエロー8、9、11、12、27、28、29、33、35、39、41、44、50、53、58、59、68、86、87、93、95、96、98、100、106、108、109、110、130、132、142、144、161、163
- C. I. ダイレクトブルー 1、10、15、22、25、55、67、68、71、76、77、78、80、84、86、87、90、98、106、108、109、151、156、158、159、160、168、189、192、193、194、199、200、201、202、203、207、211、213、214、218、225、229、236、237、244、248、249、251、252、264、270、280、288、289、291 C. I. ダイレクトブラック 9、17、19、22、32、51、56、62、69、77、80、91、94、97、108、112、113、114、117、118、121、122、125、132、146、154、166、168、173、199
- C. I. アシッドレッド35、42、52、57、62、80、82、111、114、118、119、127、1 28、131、143、151、154、158、249、254、257、261、263、266、289、299、301、305、336、337、361、396、397
- C. I. アシッドバイオレット5、34、43、47、48、90、103、126
- C. I. アシッドイエロー17、19、23、25、39、40、42、44、49、50、61、64、76、79、110、127、135、143、151、159、169、174、190、195、196、197、199、218、219、222、227
- C.I. アシッドブルー9、25、40、41、62、72、76、78、80、82、92、106、112、113、120、127:1、129、138、143、175、181、205、207、220、221、230、232

- 247, 258, 260, 264, 271, 277, 278, 279, 280, 288, 290, 326
- C. I. アシッドブラック7、24、29、48、52:1、172
- C. I. リアクティブレッド3、13、17、19、21、22、23、24、29、35、37、40、41 、43、45、49、55
- C. I. リアクティブバイオレット1、3、4、5、6、7、8、9、16、17、22、23、24、26、27、33、34
- C. I. リアクティブイエロー2、3、13、14、15、17、18、23、24、25、26、27、29、35、37、41、42
- C. I. リアクティブブルー2、3、5、8、10、13、14、15、17、18、19、21、25、26、27、28、29、38
- C. I. リアクティブブラック4、5、8、14、21、23、26、31、32、34
- C. I. ベーシックレッド12、13、14、15、18、22、23、24、25、27、29、35、36、38、39、45、46
- C. I. ベーシックバイオレット1、2、3、7、10、15、16、20、21、25、27、28、35、37、39、40、48
- C. I. ベーシックイエロー1、2、4、11、13、14、15、19、21、23、24、25、28、2 9、32、36、39、40
- C. I. ベーシックブルー1、3、5、7、9、22、26、41、45、46、47、54、57、60、6 2、65、66、69、71
- C. I. ベーシックブラック8、等が挙げられる。

[0344]

また、本発明のインクセットには、前記染料とともに、フルカラーの画像を得るための色調を整えるために、他の色素を併用してもよい。併用することができる他の色素の例としては、前記の染料及び下記の顔料を挙げることができる。

[0345]

本発明に用いられる顔料としては、市販のものの他、各種文献に記載されている公知のものが利用できる。文献に関してはカラーインデックス(The Society of Dyers and Colourists編)、「改訂新版顔料便覧」日本顔料技術協会編(1989年刊)、「最新顔料応用技術」CMC出版(1986年刊)、「印刷インキ技術」CMC出版

(1984年刊)、W. Herbst, K. Hunger共著によるIndustrial Organic Pigments (VCHVerlagsgesellschaft、1993年刊)等がある。具体的には、有機顔料ではアゾ顔料(アゾレーキ顔料、不溶性アゾ顔料、縮合アゾ顔料、キレートアゾ顔料)、多環式顔料(フタロシアニン系顔料、アントラキノン系顔料、ペリレン及びペリノン系顔料、インジゴ系顔料、キナクリドン系顔料、ジオキサジン系顔料、イソインドリノン系顔料、キノフタロン系顔料、ジケトピロロピロール系顔料等)、染付けレーキ顔料(酸性または塩基性染料のレーキ顔料)、アジン顔料等があり、無機顔料では、黄色顔料のC. I. Pigment Yellow 34, 37, 42, 53など、赤系顔料のC. I. Pigment Red 101, 108など、青系顔料のC. I. Pigment Blue 27, 29,17:1など、黒系顔料のC. I. Pigment Black 7,マグネタイトなど、白系顔料のC. I. Pigment White 4,6,18,21などを挙げることができる。

[0346]

画像形成用に好ましい色調を持つ顔料としては、青ないしシアン顔料ではフタロシアニン顔料、アントラキノン系のインダントロン顔料(たとえばC. I. Pigm ent Blue 60など)、染め付けレーキ顔料系のトリアリールカルボニウム顔料が好ましく、特にフタロシアニン顔料(好ましい例としては、C. I. Pigment Blue 15:1、同15:2、同15:3、同15:4、同15:6などの銅フタロシアニン、モノクロロないし低塩素化銅フタロシアニン、アルニウムフタロシアニンでは欧州特許860475号に記載の顔料、C. I. Pigment Blue 16である無金属フタロシアニン、中心金属がZn、Ni、Tiであるフタロシアニンなど、中でも好ましいものはC. I. Pigment Blue 15:3、同15:4、アルミニウムフタロシアニン)が最も好ましい。

[0347]

赤ないし紫色の顔料では、アゾ顔料(好ましい例としては、C. I. Pigment Red 3、同5、同11、同22、同38、同48:1、同48:2、同48:3、同48:4、同49:1、同52:1、同53:1、同57:1、同63:2、同144、同146、同184)など、中でも好ましいものはC. I. Pigment Red 57:1、同146、同184)、キナクリドン系顔料(好ましい例としてはC. I. Pigment Red 122、同192、同202、同207、同209、C. I. Pigment Violet 19、同42、なかでも好ましいものはC. I. Pigment Red 122)、染め付けレーキ顔料系のトリアリールカルボニウム顔料(好ましい例としてはキサン

テン系のC. I. Pigment Red 81:1、C. I. Pigment Violet 1、同 2、同 3、同27、同39)、ジオキサジン系顔料(例えばC. I. Pigment Violet 23、同37)、ジケトピロロピロール系顔料(例えばC. I. Pigment Red 254)、ペリレン顔料(例えばC. I. Pigment Violet 29)、アントラキノン系顔料(例えばC. I. Pigment Violet 5:1、同31、同33)、チオインジゴ系(例えばC. I. Pigment Red 38、同88)が好ましく用いられる。

[0348]

黄色顔料としては、アゾ顔料(好ましい例としてはモノアゾ顔料系のC. I. Pigment Yellow 1, 3, 74, 98、ジスアゾ顔料系のC. I. Pigment Yellow 12, 13,14, 16, 17, 83、総合アゾ系のC. I. Pigment Yellow 93, 94, 95, 128, 155、ベンズイミダゾロン系のC. I. Pigment Yellow 120, 151, 154, 156, 180など、なかでも好ましいものはベンジジン系化合物を原料に使用しなもの)、イソインドリン・イソインドリノン系顔料(好ましい例としてはC. I. Pigment Yellow 109, 110, 137, 139など)、キノフタロン顔料(好ましい例としてはC. I. Pigment Yellow 138など)、フラパントロン顔料(例えばC. I. Pigment Yellow 24など)が好ましく用いられる。

[0349]

黒顔料としては、無機顔料(好ましくは例としてはカーボンブラック、マグネタイト)やアニリンブラックを好ましいものとして挙げることができる。

この他、オレンジ顔料 (C. I. Pigment Orange 13, 16など) や緑顔料 (C. I. Pigment Green 7など) を使用してもよい。

[0350]

本発明に使用できる顔料は、上述の裸の顔料であっても良いし、表面処理を施された顔料でも良い。表面処理の方法には、樹脂やワックスを表面コートする方法、界面活性剤を付着させる方法、反応性物質(例えば、シランカップリング剤やエポキシ化合物、ポリイソシアネート、ジアゾニウム塩から生じるラジカルなど)を顔料表面に結合させる方法などが考えられ、次の文献や特許に記載されている。

(1) 金属石鹸の性質と応用(幸書房)

- (2) 印刷インキ印刷 (CMC出版 1984)
- (3) 最新顔料応用技術 (CMC出版 1986)
- (4) 米国特許5,554,739号、同5,571,311号
- (5) 特開平9-151342号、同10-140065号、同10-292143号、同11-166145号 特に、上記(4)の米国特許に記載されたジアゾニウム塩をカーボンブラックに 作用させて調製された自己分散性顔料や、上記(5)の日本特許に記載された方法 で調製されたカプセル化顔料は、インク中に余分な分散剤を使用することなく分散安定性が得られるため特に有効である。

[0351]

本発明においては、顔料はさらに分散剤を用いて分散されていてもよい。分散剤は、用いる顔料に合わせて公知の種々のもの、例えば界面活性剤型の低分子分散剤や高分子型分散剤を用いることが出来る。分散剤の例としては特開平3-69949号、欧州特許549486号等に記載のものを挙げることができる。また、分散剤を使用する際に分散剤の顔料への吸着を促進するためにシナジストと呼ばれる顔料誘導体を添加してもよい。

本発明に使用できる顔料の粒径は、分散後で $0.01\sim10\mu$ の範囲であることが好ましく、 $0.05\sim1\mu$ であることが更に好ましい。

顔料を分散する方法としては、インク製造やトナー製造時に用いられる公知の分散技術が使用できる。分散機としては、縦型あるいは横型のアジテーターミル、アトライター、コロイドミル、ボールミル、3本ロールミル、パールミル、スーパーミル、インペラー、デスパーサー、KDミル、ダイナトロン、加圧ニーダー等が挙げられる。詳細は「最新顔料応用技術」(CMC出版、1986)に記載がある。

[0352]

次に、本発明のインクジェット記録用インク組成物に含有され得る他の成分に ついて説明する。

本発明のインクジェット記録用インク組成物は、界面活性剤を含有することができ、これにより、インク組成物の液物性を調整することで、インク組成物の吐出安定性を向上させ、画像の耐水性の向上や印字したインク組成物の滲みの防止

などに優れた効果を持たせることができる。

界面活性剤としては、例えばドデシル硫酸ナトリウム、ドデシルオキシスルホン酸ナトリウム、アルキルベンゼンスルホン酸ナトリウム等のアニオン性界面活性剤、セチルピリジニウムクロライド、トリメチルセチルアンモイニウムクロライド、テロラブチルアンモニウムクロライド等のカチオン性界面活性剤や、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンナフチルエーテル、ポリオキシエチレンオクチルフェニルエーテル等のノニオン性界面活性剤などが挙げられる。中でも特にノニオン系界面活性剤が好ましく使用される。

[0353]

界面活性剤の含有量はインク組成物に対して $0.01\sim15$ 質量%、好ましくは $0.005\sim10$ 質量%、更に好ましくは $0.01\sim5$ 質量%である。

[0354]

本発明のインクジェット記録用インクは、水性媒体中に染料と界面活性剤を溶解および/または分散させることによって作製することができる。本発明における「水性媒体」とは、水又は水と少量の水混和性有機溶剤との混合物に、必要に応じて湿潤剤、安定剤、防腐剤等の添加剤を添加したものを意味する。

[0355]

本発明において用いることができる水混和性有機溶剤(水溶性有機溶剤を含む)の例には、アルコール(例えば、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、secーブタノール、tーブタノール、ペンタノール、ヘキサノール、シクロヘキサノール、ベンジルアルコール)、多価アルコール類(例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ペンタンジオール、グリセリン、ヘキサントリオール、チオジグリコール)、グリコール誘導体(例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングルコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリ

コールモノブチルエーテル、ジプロピレングリコールモノメチルエーテル、トリエチレングルコールモノメチルエーテル、エチレングリコールジアセテート、エチレングリコールモノメチルエーテルアセテート、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノスチルエーテル、エチレングリコールモノフェニルエーテル)、アミン(例えば、エタノールアミン、バーエチルンジアミン、ハーエチルジエタノールアミン、トリエタノールアミン、Nーエチルジエタノールアミン、トリエチレンテトラミン、ポリエチレンイミン、テトラメチルプロピレンジアミン)およびその他の極性溶媒(例えば、ホルムアミド、N, Nージメチルホルムアミド、N, Nージメチルアセトアミド、ジメチルスルホキシド、スルホラン、2ーピロリドン、Nーメチルー2ーピロリドン、Nービニルー2ーピロリドン、2ーオキサゾリドン、1,3ージメチルー2ーイミダゾリジノン、アセトニトリル、アセトン)が挙げられる。尚、前記水混和性有機溶剤は、2種類以上を併用してもよい。本発明では、なかでも、沸点が150℃以上の水溶性有機溶剤が好ましく用いられる。

[0356]

前記染料が油溶性染料の場合は、該油溶性染料を高沸点有機溶媒中に溶解させ、水性媒体中に乳化分散させることによって調製することができる。

本発明に用いられる高沸点有機溶媒の沸点は150℃以上であるが、好ましくは170℃以上である。

例えば、フタール酸エステル類(例えば、ジブチルフタレート、ジオクチルフタレート、ジシクロヘキシルフタレート、ジー2-エチルヘキシルフタレート、デシルフタレート、ビス(2,4-ジーtert-アミルフェニル)イソフタレート、ビス(1,1-ジエチルプロピル)フタレート)、リン酸又はホスホンのエステル類(例えば、ジフェニルホスフェート、トリフェニルホスフェート、トリクレジルホスフェート、2-エチルヘキシルジフェニルホスフェート、ジオクチルブチルホスフェート、トリシクロヘキシルホスフェート、トリー2-エチルヘキシルホスフェート、トリドデシルホスフェート、ジー2-エチルヘキシルフェニルホスフェート)、安息香酸エステル酸(例えば、2-エチルヘキシルベン

ゾエート、2、4-ジクロロベンゾエート、ドデシルベンゾエート、2-エチル ヘキシル-p-ヒドロキシベンゾエート)、アミド類(例えば、N, N-ジエチ ルドデカンアミド、N. N-ジエチルラウリルアミド)、アルコール類またはフ ェノール類(イソステアリルアルコール、2、4-ジーtert-アミルフェノ ールなど)、脂肪族エステル類(例えば、コハク酸ジブトキシエチル、コハク酸 ジー2-エチルヘキシル、テトラデカン酸2-ヘキシルデシル、クエン酸トリブ チル、ジエチルアゼレート、イソステアリルラクテート、トリオクチルシトレー ト)、アニリン誘導体(N,N-ジブチル-2-ブトキシ-5-tert-オク チルアニリンなど)、塩素化パラフィン類(塩素含有量10%~80%のパラフ ィン類)、トリメシン酸エステル類(例えば、トリメシン酸トリブチル)、ドデ シルベンゼン、ジイソプロピルナフタレン、フェノール類(例えば、2,4-ジ - t e r t - アミルフェノール、4 - ドデシルオキシフェノール、4 - ドデシル オキシカルボニルフェノール、4-(4-ドデシルオキシフェニルスルホニル) フェノール)、カルボン酸類(例えば、2-(2,4-ジーtert-アミルフ ェノキシ酪酸、2-エトキシオクタンデカン酸)、アルキルリン酸類(例えば、 ジー2(エチルヘキシル)リン酸、ジフェニルリン酸)などが挙げられる。高沸 点有機溶媒は油溶性染料に対して質量比で 0.01~3倍量、好ましくは 0.0 1~1.0倍量で使用できる。

これらの高沸点有機溶媒は単独で使用しても、数種の混合 「例えばトリクレジルホスフェートとジブチルフタレート、トリオクチルホスフェートとジ (2-エチルヘキシル) セバケート、ジブチルフタレートとポリ (N-t-ブチルアクリルアミド) 〕で使用してもよい。

$[0\ 3\ 5\ 7]$

本発明において用いられる高沸点有機溶媒の前記以外の化合物例及び/またはこれら高沸点有機溶媒の合成方法は例えば米国特許第2,322,027 号、同第2,533,514 号、同第2,772,163 号、同第2,835,579 号、同第3,594,171 号、同第3,676,137 号、同第3,689,271 号、同第3,700,454 号、同第3,748,141 号、同第3,764,336 号、同第3,765,897 号、同第3,912,515 号、同第3,936,303 号、同第4,004,928 号、同第4,080,209 号、同第4,127,413 号、同第4,193,802 号、同第4,207,

393 号、同第4,220,711 号、同第4,239,851 号、同第4,278,757 号、同第4,353,979 号、同第4,363,873 号、同第4,430,421 号、同第4,430,422 号、同第4,464,464 号、同第4,483,918 号、同第4,540,657 号、同第4,684,606 号、同第4,728,599 号、同第4,745,049 号、同第4,935,321 号、同第5,013,639 号、欧州特許第276,319A号、同第286,253A号、同第289,820A号、同第309,158A号、同第309,159A号、同第309,160A号、同第509,311A号、同第510,576A号、東独特許第147,009 号、同第157,147 号、同第159,573 号、同第225,240A号、英国特許第2,091,124A号、特開昭48-47335号、同50-26530号、同51-25133号、同51-26036号、同51-27921号、同53-15127号、同53-146622号、同54-91325号、同54-106228号、同54-118246号、同55-59464号、同56-64333号、同56-81836号、同59-204041号、同61-84641号、同62-118345号、同62-247364号、同63-167357号、同63-214744号、同63-301941号、同64-9452号、同64-9454号、同64-68745号、特開平1-101543号、同1-102454号、同2-792号、同2-4239号、同2-43541号、同4-29237号、同4-30165号、同4-232946号、同4-346338号等に記載されている。

上記高沸点有機溶媒は、油溶性染料に対し、質量比で $0.01\sim3.0$ 倍量、好ましくは $0.01\sim1.0$ 倍量で使用する。

[0358]

本発明では油溶性染料や高沸点有機溶媒は、水性媒体中に乳化分散して用いられる。乳化分散の際、乳化性の観点から場合によっては低沸点有機溶媒を用いることができる。低沸点有機溶媒としては、常圧で沸点約30℃以上150℃以下の有機溶媒である。例えばエステル類(例えばエチルアセテート、ブチルアセテート、エチルプロピオネート、βーエトキシエチルアセテート、メチルセロソルブアセテート)、アルコール類(例えばイソプロピルアルコール、nーブチルアルコール、セカンダリーブチルアルコール)、ケトン類(例えばメチルイソブチルケトン、メチルエチルケトン、シクロヘキサノン)、アミド類(例えばジメチルホルムアミド、Nーメチルピロリドン)、エーテル類(例えばテトラヒドロフラン、ジオキサン)等が好ましく用いられるが、これに限定されるものではない

[0359]

乳化分散は、高沸点有機溶媒と場合によっては低沸点有機溶媒の混合溶媒に染料を溶かした油相を、水を主体とした水相中に分散し、油相の微小油滴を作るために行われる。この際、水相、油相のいずれか又は両方に、後述する界面活性剤、湿潤剤、染料安定化剤、乳化安定剤、防腐剤、防黴剤等の添加剤を必要に応じて添加することができる。

乳化法としては水相中に油相を添加する方法が一般的であるが、油相中に水相 を滴下して行く、いわゆる転相乳化法も好ましく用いることができる。

[0360]

本発明の乳化分散する際には、種々の界面活性剤を用いることができる。例えば脂肪酸塩、アルキル硫酸エステル塩、アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、ジアルキルスルホコハク酸塩、アルキルリン酸エステル塩、ナフタレンスルホン酸ホルマリン縮合物、ポリオキシエチレンアルキルで酸エステル塩等のアニオン系界面活性剤や、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルアリルエーテル、ポリオキシエチレンアルキルアリルエーテル、ポリオキシエチレンアルキルアリルエーテル、ポリオキシエチレンアルキルアリルエーテル、ポリオキシエチレン別が酸エステル、オリオキシエチレンアルキルアミン、グリセリン脂肪酸エステル、オキシエチレンオキシプロピレンブロックコポリマー等のノニオン系界面活性剤が好ましい。また、アセチレン系ポリオキシエチレンオキシド界面活性剤が好ましい。また、アセチレン系ポリオキシエチレンオキシド界面活性剤であるSURFYNOLS(AirProducts&Chemicals社)も好ましく用いられる。また、N,NージメチルーNーアルキルアミンオキシドのようなアミンオキシド型の両性界面活性剤等も好ましい。更に、特開昭59-157,636号の第(37)~(38)頁、リサーチ・ディスクロージャーNo.308119(1989年)記載の界面活性剤として挙げたものも使うことができる。

[0361]

また、乳化直後の安定化を図る目的で、上記界面活性剤と併用して水溶性ポリマーを添加することもできる。水溶性ポリマーとしては、ポリビニルアルコール、ポリビニルピロリドン、ポリエチレンオキサイド、ポリアクリル酸、ポリアクリルアミドやこれらの共重合体が好ましく用いられる。また多糖類、カゼイン、

ゼラチン等の天然水溶性ポリマーを用いるのも好ましい。さらに染料分散物の安定化のためには実質的に水性媒体中に溶解しないアクリル酸エステル類、メタクリルでミド類、メタクリルアミド類、オレフィン類、スチレン類、ビニルエーテル類、アクリロニトリル類の重合により得られるポリビニルやポリウレタン、ポリエステル、ポリアミド、ポリウレア、ポリカーボネート等も併用することができる。これらのポリマーは一S〇3~、一C〇〇~を含有していることが好ましい。これらの実質的に水性媒体中に溶解しないポリマーを併用する場合、高沸点有機溶媒の20質量%以下用いられることが好ましく、10質量%以下で用いられることがより好ましい。

[0362]

乳化分散により油溶性性染料や高沸点有機溶媒を分散させて水性インク組成物とする場合、特に重要なのはその粒子サイズのコントーロールである。インクジェットにより画像を形成した際の、色純度や濃度を高めるには平均粒子サイズを小さくすることが必須である。体積平均粒子サイズで好ましくは $1~\mu$ m以下、より好ましくは 5~1~0~0~n mである。

前記分散粒子の体積平均粒径および粒度分布の測定方法には静的光散乱法、動的光散乱法、遠心沈降法のほか、実験化学講座第4版の417~418ページに記載されている方法を用いるなど、公知の方法で容易に測定することができる。例えば、インク組成物中の粒子濃度が0.1~1質量%になるように蒸留水で希釈して、市販の体積平均粒子サイズ測定機(例えば、マイクロトラックUPA(日機装(株)製))で容易に測定できる。更に、レーザードップラー効果を利用した動的光散乱法は、小サイズまで粒径測定が可能であり特に好ましい。

体積平均粒径とは粒子体積で重み付けした平均粒径であり、粒子の集合において、個々の粒子の直径にその粒子の体積を乗じたものの総和を粒子の総体積で割ったものである。体積平均粒径については「高分子ラテックスの化学」(室井宗一著 高分子刊行会)」119ページに記載がある。

[0363]

また、粗大粒子の存在も印刷性能に非常に大きな役割を示すことが明らかになった。即ち、粗大粒子がヘッドのノズルを詰まらせる、あるいは詰まらないまで

これらの粗大粒子を除去する方法としては、公知の遠心分離法、精密濾過法等を用いることができる。これらの分離手段は乳化分散直後に行ってもよいし、乳化分散物に湿潤剤や界面活性剤等の各種添加剤を加えた後、インクカートリッジに充填する直前でもよい。

平均粒子サイズを小さくし、且つ粗大粒子を無くす有効な手段として、機械的 な乳化装置を用いることができる。

[0364]

乳化装置としては、簡単なスターラーやインペラー撹拌方式、インライン撹拌 方式、コロイドミル等のミル方式、超音波方式など公知の装置を用いることがで きるが、高圧ホモジナイザーの使用は特に好ましいものである。

高圧ホモジナイザーは、米国特許 4 5 3 3 2 5 4 号、特開平 6 - 4 7 2 6 4 号等に詳細な機構が記載されているが、市販の装置としては、ゴーリンホモジナイザー(A. P. V GAULIN INC.)、マイクロフルイダイザー(MICROFLUIDEX INC.)、アルティマイザー(株式会社スギノマシン)等がある。

また、近年になって米国特許5720551号に記載されているような、超高 圧ジェット流内で微粒子化する機構を備えた高圧ホモジナイザーは本発明の乳化 分散に特に有効である。この超高圧ジェット流を用いた乳化装置の例として、D eBEE2000(BEE INTERNATIONAL LTD.) があげら れる。

[0365]

高圧乳化分散装置で乳化する際の圧力は50MPa以上であり、好ましくは60MPa以上、更に好ましくは180MPa以上である。

例えば、撹拌乳化機で乳化した後、高圧ホモジナイザーを通す等の方法で2種 以上の乳化装置を併用するのは特に好ましい方法である。また、一度これらの乳 化装置で乳化分散した後、湿潤剤や界面活性剤等の添加剤を添加した後、カートリッジにインクを充填する間に再度高圧ホモジナイザーを通過させる方法も好ましい方法である。

高沸点有機溶媒に加えて低沸点有機溶媒を含む場合、乳化物の安定性及び安全衛生上の観点から低沸点溶媒を除去するのが好ましい。低沸点溶媒を除去する方法は溶媒の種類に応じて各種の公知の方法を用いることができる。即ち、蒸発法、真空蒸発法、限外濾過法等である。この低沸点有機溶剤の除去工程は乳化直後、できるだけ速やかに行うのが好ましい。

[0366]

本発明で得られたインクジェット記録用インク組成物には、インクの噴射口での乾操による目詰まりを防止するための乾燥防止剤、インクを紙によりよく浸透させるための浸透促進剤、紫外線吸収剤、酸化防止剤、粘度調整剤、表面張力調整剤、分散剤、分散安定剤、防黴剤、防錆剤、pH調整剤等の添加剤を適宜選択して適量使用することができる。

[0367]

本発明に使用される乾燥防止剤としては水より蒸気圧の低い水溶性有機溶剤が好ましい。具体的な例としてはエチレングリコール、プロピレングリコール、ジエチレングリコール、ポリエチレングリコール、チオジグリコール、ジチオジグリコール、2ーメチルー1,3ープロパンジオール、1,2,6ーへキサントリオール、アセチレングリコール誘導体、グリセリン、トリメチロールプロパン等に代表される多価アルコール類、エチレングリコールモノメチル(又はエチル)エーテル、ジエチレングリコールモノメチル(又はエチル)エーテル、シエチレングリコールモノメチル(又はブチル)エーテル等の多価アルコールの低級アルキルエーテル類、2ーピロリドン、Nーメチルー2ーピロリドン、1,3ージメチルー2ーイミダブリジノン、Nーエチルモルホリン等の複素環類、スルホラン、ジメチルスルホキシド、3ースルホレン等の含硫黄化合物、ジアセトンアルコール、ジエタノールアミン等の多官能化合物、尿素誘導体が挙げられる。これらのうちグリセリン、ジエチレングリコール等の多価アルコールがより好ましい。また上記の乾燥防止剤は単独で用いてもよいし2種以上併用してもよい。これ

らの乾燥防止剤はインク中に10~50質量%含有することが好ましい。

[0368]

本発明に使用される浸透促進剤としてはエタノール、イソプロパノール、ブタノール、ジ(トリ)エチレングリコールモノブチルエーテル、1,2ーヘキサンジオール等のアルコール類やラウリル硫酸ナトリウム、オレイン酸ナトリウムやノニオン性界面活性剤等を用いることができる。これらはインク中に10~30質量%含有すれば充分な効果があり、印字の滲み、紙抜け(プリントスルー)を起こさない添加量の範囲で使用するのが好ましい。

[0369]

本発明で画像の保存性を向上させるために使用される紫外線吸収剤としては特開昭58-185677号公報、同61-190537号公報、特開平2-782号公報、同5-197075号公報、同9-34057号公報等に記載されたベンゾトリアゾール系化合物、特開昭46-2784号公報、特開平5-194483号公報、米国特許第3214463号等に記載されたベンゾフェノン系化合物、特公昭48-30492号公報、同56-21141号公報、特開平10-88106号公報等に記載された桂皮酸系化合物、特開平4-298503号公報、同8-53427号公報、同8-239368号公報、同10-182621号公報、特表平8-501291号公報等に記載されたトリアジン系化合物、リサーチディスクロージャーNo.24239号に記載された化合物やスチルベン系、ベンズオキサゾール系化合物に代表される紫外線を吸収して蛍光を発する化合物、いわゆる蛍光増白剤も用いることができる。

[0370]

本発明では、画像の保存性を向上させるために使用される酸化防止剤としては、各種の有機系及び金属錯体系の褪色防止剤を使用することができる。有機の褪色防止剤としてはハイドロキノン類、アルコキシフェノール類、ジアルコキシフェノール類、フェノール類、アニリン類、アミン類、インダン類、クロマン類、アルコキシアニリン類、ヘテロ環類などがあり、金属錯体としてはニッケル錯体、亜鉛錯体などがある。より具体的にはリサーチディスクロージャーNo. 17643の第VIIのIないしJ項、同No. 15162、同No. 18716の6

50頁左欄、同No. 36544の527頁、同No. 307105の872頁、同No. 15162に引用された特許に記載された化合物や特開昭62-215272号公報の127頁~137頁に記載された代表的化合物の一般式及び化合物例に含まれる化合物を使用することができる。

[0371]

本発明に使用される防黴剤としてはデヒドロ酢酸ナトリウム、安息香酸ナトリウム、ナトリウムピリジンチオンー1ーオキシド、pーヒドロキシ安息香酸エチルエステル、1,2ーベンズイソチアゾリンー3ーオンおよびその塩等が挙げられる。これらはインク中に0.02~5.00質量%使用するのが好ましい。

尚、これらの詳細については「防菌防黴剤事典」(日本防菌防黴学会事典編集 委員会編)等に記載されている。

また、防錆剤としては、例えば、酸性亜硫酸塩、チオ硫酸ナトリウム、チオグリコール酸アンモン、ジイソプロピルアンモニウムニトライト、四硝酸ペンタエリスリトール、ジシクロヘキシルアンモニウムニトライト、ベンゾトリアゾール等が挙げられる。これらは、インク中に0.02~5.00質量%使用するのが好ましい。

[0372]

本発明に使用されるpH調整剤は、pH調節、分散安定性付与などの点で好適に使用する事ができ、25 $\mathbb C$ でのインクのpHが8~11 に調整されていることが好ましい。pHが8未満である場合は染料の溶解性が低下してノズルが詰まりやすく、11 を超えると耐水性が劣化する傾向がある。pH調整剤としては、塩基性のものとして有機塩基、無機アルカリ等が、酸性のものとして有機酸、無機酸等が挙げられる。

前記有機塩基としては、トリエタノールアミン、ジエタノールアミン、Nーメチルジエタノールアミン、ジメチルエタノールアミン等が挙げられる。前記無機アルカリとしては、アルカリ金属の水酸化物(例えば、水酸化ナトリウム、水酸化リチウム、水酸化カリウム等)、炭酸塩(例えば、炭酸ナトリウム、炭酸水素ナトリウム等)、アンモニウム等が挙げられる。また、前記有機酸としては、酢酸、プロピオン酸、トリフルオロ酢酸、アルキルスルホン酸等が挙げられる。前

記無機酸としては、塩酸、硫酸、リン酸等が挙げられる。

[0373]

本発明では前記した界面活性剤を含むベタイン化合物とは別に表面張力調整剤として、ノニオン、カチオンあるいはアニオン界面活性剤が挙げられる。例えばアニオン系界面活性剤としては脂肪酸塩、アルキル硫酸エステル塩、アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、ジアルキルスルホコハク酸塩、アルキルリン酸エステル塩、ナフタレンスルホン酸ホルマリン縮合物、ポリオキシエチレンアルキル硫酸エステル塩等を挙げることができ、ノニオン系界面活性剤としては、ソルビタン脂肪酸エステル、ポリオキシエチレンアルキルアミン、グリセリン脂肪酸エステル、オキシエチレンオキシプロピレンブロックコポリマー等を挙げることができる。アセチレン系ポリオキシエチレンオキシド界面活性剤であるSURFYNOLS(AirProducts&Chemicals社)も好ましく用いられる。

本発明で用いるインクの表面張力は動的・静的表面張力のいずれも、25℃において $20\sim50$ mN/m以下であることが好ましく、 $20\sim40$ mN/m以下であることが更に好ましい。表面張力が50 mN/mを超えると吐出安定性、混色時のにじみ、ひげ等印字品質が著しく低下する。また、インクの表面張力を20 mN/m以下にすると吐出時、ハード表面へのインクの付着等により印字不良となる場合がある。

[0374]

本発明のインク粘度は、25 Cにおいて $1 \sim 20$ m Pa·sである。更に好ましくは $2 \sim 15$ m Pa·sであり、特に好ましくは $2 \sim 10$ m Pa·sである。30 m Pa·sを超えると記録画像の定着速度が遅くなり、吐出性能も低下する。1 m Pa·s未満では、記録画像がにじむために品位が低下する。

粘度の調製はインク溶剤の添加量で任意に調製可能である。インク溶剤として 例えば、グリセリン、ジエチレングリコール、トリエタノールアミン、2ーピロ リドン、ジエチレングリコールモノブチルエーテル、トリエチレングリコールモ ノブチルエーテルなどがある。

また、粘度調整剤を使用してもよい。粘度調整剤としては、例えば、セルロー

ス類、ポリビニルアルコールなどの水溶性ポリマーやノニオン系界面活性剤等が 挙げられる。更に詳しくは、「粘度調製技術」(技術情報協会、1999年)第9章 、及び「インクジェットプリンタ用ケミカルズ(98増補)-材料の開発動向・展 望調査-」(シーエムシー、1997年)162~174 頁に記載されている。

[0375]

本発明のインクを調液する際には、水溶性インクの場合、まず水に溶解することが好ましい。そのあと、各種溶剤や添加物を添加し、溶解、混合して均一なインクとする。

このときの溶解方法としては、攪拌による溶解、超音波照射による溶解、振とうによる溶解等種々の方法が使用可能である。中でも特に攪拌法が好ましく使用される。攪拌を行う場合、当該分野では公知の流動攪拌や反転アジターやディゾルバを利用した剪断力を利用した攪拌など、種々の方式が利用可能である。一方では、磁気攪拌子のように、容器底面との剪断力を利用した攪拌法も好ましく利用できる。

[0376]

本発明の画像記録方法に用いられる反射型メディアである記録紙及び記録フィルムについて説明する。記録紙及び記録フィルムおける支持体はLBKP、NBKP等の化学パルプ、GP、PGW、RMP、TMP、CTMP、CMP、CGP等の機械パルプ、DIP等の古紙パルプ等をからなり、必要に応じて従来の公知の顔料、バインダー、サイズ剤、定着剤、カチオン剤、紙力増強剤等の添加剤を混合し、長網抄紙機、円網抄紙機等の各種装置で製造されたもの等が使用可能である。これらの支持体の他に合成紙、プラスチックフィルムシートのいずれであってもよく、支持体の厚み $10\sim250\mu$ m、坪量は $10\sim250g/m^2$ が望ましい。

支持体にそのままインク受容層及びバックコート層を設けて受像材料としてもよいし、デンプン、ポリビニルアルコール等でサイズプレスやアンカーコート層を設けた後、インク受容層及びバックコート層を設けて受像材料としてもよい。さらに支持体には、マシンカレンダー、TGカレンダー、ソフトカレンダー等のカレンダー装置により平坦化処理を行ってもよい。

本発明では支持体としては、両面をポリオレフィン(例、ポリエチレン、ポリスチレン、ポリエチレンテレフタレート、ポリブテンおよびそれらのコポリマー)でラミネートした紙およびプラスチックフイルムがより好ましく用いられる。 ポリオレフィンポリオレフィン中に、白色顔料(例、酸化チタン、酸化亜鉛)または色味付け染料(例、コバルトブルー、群青、酸化ネオジウム)を添加することが好ましい。

[0377]

支持体上に設けられるインク受容層には、多孔質材料や水性バインダーが含有される。また、インク受容層には顔料を含むのが好ましく、顔料としては、白色顔料が好ましい。白色顔料としては、炭酸カルシウム、カオリン、タルク、クレー、珪藻土、合成非晶質シリカ、珪酸アルミニウム、珪酸マグネシウム、珪酸カルシウム、水酸化アルミニウム、アルミナ、リトポン、ゼオライト、硫酸バリウム、硫酸カルシウム、二酸化チタン、硫化亜鉛、炭酸亜鉛等の無機白色顔料、スチレン系ピグメント、アクリル系ピグメント、尿素樹脂、メラミン樹脂等の有機顔料等が挙げられる。特に好ましくは、多孔性の白色無機顔料がよく、特に細孔面積が大きい合成非晶質シリカ等が好適である。合成非晶質シリカは、乾式製造法によって得られる無水珪酸及び湿式製造法によって得られる含水珪酸のいずれも使用可能であるが、特に含水珪酸を使用することが望ましい。これらの顔料は2種以上を併用してもよい。

[0378]

インク受容層に含有される水性バインダーとしては、ポリビニルアルコール、シラノール変性ポリビニルアルコール、デンプン、カチオン化デンプン、カゼイン、ゼラチン、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ポリビニルピロリドン、ポリアルキレンオキサイド、ポリアルキレンオキサイド誘導体等の水溶性高分子、スチレンブタジエンラテックス、アクリルエマルジョン等の水分散性高分子等が挙げられる。これらの水性バインダーは単独または2種以上併用して用いることができる。本発明においては、これらの中でも特にポリビニルアルコール、シラノール変性ポリビニルアルコールが顔料に対する付着性、インク受容層の耐剥離性の点で好適である。

ページ: 186/

[0379]

インク受容層は、顔料及び水性バインダーの他に媒染剤、耐水化剤、耐光性向 上剤、界面活性剤、硬膜剤その他の添加剤を含有することができる。

[0380]

インク受容層中に添加する媒染剤は、不動化されていることが好ましい。その ためには、ポリマー媒染剤が好ましく用いられる。

ポリマー媒染剤については、特開昭48-28325号、同54-74430号、同54-124726号、同55-22766号、同55-142339号、同60-23850号、同60-23852号、同60-23852号、同60-23853号、同60-23852号、同60-23853号、同60-57836号、同60-60643号、同60-1188334号、同60-122940号、同60-122941号、同60-122942号、同60-122942号、同60-122942号、同60-122942号、同60-135134号、特開平1-161236号の各公報、米国特許2484430号、同2548564号、同3148061号、同3309690号、同4115124号、同4124386号、同4193800号、同4273853号、同4282305号、同4450224号の各明細書に記載がある。特開平1-161236号公報の212~215頁に記載のポリマー媒染剤を含有する受像材料が特に好ましい。同公報記載のポリマー媒染剤を用いると、優れた画質の画像が得られ、かつ画像の耐光性が改善される

[0381]

耐水化剤は、画像の耐水化に有効であり、これらの耐水化剤としては、特にカチオン樹脂が望ましい。このようなカチオン樹脂としては、ポリアミドポリアミンエピクロルヒドリン、ポリエチレンイミン、ポリアミンスルホン、ジメチルジアリルアンモニウムクロライド重合物、カチオンポリアクリルアミド、コロイダルシリカ等が挙げられ、これらのカチオン樹脂の中で特にポリアミドポリアミンエピクロルヒドリンが好適である。これらのカチオン樹脂の含有量は、インク受容層の全固形分に対して1~15質量%が好ましく、特に3~10質量%であることが好ましい。

[0382]

耐光性向上剤としては、硫酸亜鉛、酸化亜鉛、ヒンダーアミン系酸化防止剤、

ベンゾフェノン等のベンゾトリアゾール系の紫外線吸収剤等が挙げられる。これ らの中で特に硫酸亜鉛が好適である。

[0383]

界面活性剤は、塗布助剤、剥離性改良剤、スベリ性改良剤あるいは帯電防止剤として機能する。界面活性剤については、特開昭62-173463号、同62-183457号の各公報に記載がある。

界面活性剤の代わりに有機フルオロ化合物を用いてもよい。有機フルオロ化合物は、疎水性であることが好ましい。有機フルオロ化合物の例には、フッ素系界面活性剤、オイル状フッ素系化合物(例、フッ素油)および固体状フッ素化合物樹脂(例、四フッ化エチレン樹脂)が含まれる。有機フルオロ化合物については、特公昭57-9053号(第8~17欄)、特開昭61-20994号、同62-135826号の各公報に記載がある。

[0384]

硬膜剤としては特開平1-161236号公報の222頁に記載されている材料等を用いることが出来る。

[0385]

その他のインク受容層に添加される添加剤としては、顔料分散剤、増粘剤、消 泡剤、染料、蛍光増白剤、防腐剤、pH調整剤、マット剤、硬膜剤等が挙げられ る。尚、インク受容層は1層でも2層でもよい。

[0386]

記録紙及び記録フィルムには、バックコート層を設けることもでき、この層に 添加可能な成分としては、白色顔料、水性バインダー、その他の成分が挙げられ る。

バックコート層に含有される白色顔料としては、例えば、軽質炭酸カルシウム、重質炭酸カルシウム、カオリン、タルク、硫酸カルシウム、硫酸バリウム、二酸化チタン、酸化亜鉛、硫化亜鉛、炭酸亜鉛、サチンホワイト、珪酸アルミニウム、珪藻土、珪酸カルシウム、珪酸マグネシウム、合成非晶質シリカ、コロイダルシリカ、コロイダルアルミナ、擬ベーマイト、水酸化アルミニウム、アルミナ、リトポン、ゼオライト、加水ハロイサイト、炭酸マグネシウム、水酸化マグネ

シウム等の白色無機顔料、スチレン系プラスチックピグメント、アクリル系プラスチックピグメント、ポリエチレン、マイクロカプセル、尿素樹脂、メラミン樹脂等の有機顔料等が挙げられる。

[0387]

バックコート層に含有される水性バインダーとしては、スチレン/マレイン酸塩共重合体、スチレン/アクリル酸塩共重合体、ポリビニルアルコール、シラノール変性ポリビニルアルコール、デンプン、カチオン化デンプン、カゼイン、ゼラチン、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ポリビニルピロリドン等の水溶性高分子、スチレンブタジエンラテックス、アクリルエマルジョン等の水分散性高分子等が挙げられる。バックコート層に含有されるその他の成分としては、消泡剤、抑泡剤、染料、蛍光増白剤、防腐剤、耐水化剤等が挙げられる。

[0388]

インクジェット記録紙及び記録フィルムの構成層(バック層を含む)には、ポリマー微粒子分散物を添加してもよい。ポリマー微粒子分散物は、寸度安定化、カール防止、接着防止、膜のひび割れ防止のような膜物性改良の目的で使用される。ポリマー微粒子分散物については、特開昭62−245258号、同62−1316648号、同62−110066号の各公報に記載がある。ガラス転移温度が低い(40℃以下の)ポリマー微粒子分散物を媒染剤を含む層に添加すると、層のひび割れやカールを防止することができる。また、ガラス転移温度が高いポリマー微粒子分散物をバック層に添加しても、カールを防止できる。

[0389]

本発明では、インクジェットの記録方式に制限はなく、公知の方式例えば静電誘引力を利用してインクを吐出させる電荷制御方式、ピエゾ素子の振動圧力を利用するドロップオンデマンド方式(圧力パルス方式)、電気信号を音響ビームに変えインクに照射して放射圧を利用してインクを吐出させる音響インクジェット方式、及びインクを加熱して気泡を形成し、生じた圧力を利用するサーマルインクジェット(バブルジェット)方式等に用いられる。

インクジェット記録方式には、フォトインクと称する濃度の低いインクを小さ

い体積で多数射出する方式、実質的に同じ色相で濃度の異なる複数のインクを用いて画質を改良する方式や無色透明のインクを用いる方式が含まれる。

[0390]

本発明のインクジェット記録用インクは、インクジェット記録以外の用途に使用することもできる。例えば、ディスプレイ画像用材料、室内装飾材料の画像形成材料などに使用が可能である。

[0391]

ディスプレイ画像用材料としては、ポスター、壁紙、装飾小物(置物や人形など)、商業宣伝用チラシ、包装紙、ラッピング材料、紙袋、ビニール袋、パッケージ材料、看板、交通機関(自動車、バス、電車など)の側面に描画や添付した画像、ロゴ入りの洋服、等各種の物を指す。本発明の染料をディスプレイ画像の形成材料とする場合、その画像とは狭義の画像の他、抽象的なデザイン、文字、幾何学的なパターンなど、人間が認知可能な染料によるパターンをすべて含む。

[0392]

室内装飾材料としては、壁紙、装飾小物(置物や人形など)、照明器具の部材、家具の部材、床や天井のデザイン部材等各種の物を指す。本発明の染料を画像形成材料とする場合、その画像とは狭義の画像の他、抽象的なデザイン、文字、幾何学的なパターンなど、人間が認知可能な染料によるパターンをすべて含む。

[0393]

屋外装飾材料としては、壁材、ルーフィング材、看板、ガーデニング材料屋外装飾小物(置物や人形など)、屋外照明器具の部材等各種の物を指す。本発明の染料を画像形成材料とする場合、その画像とは狭義の画像ののみならず、抽象的なデザイン、文字、幾何学的なパターンなど、人間が認知可能な染料によるパターンをすべて含む。

[0394]

以上のような用途において、パターンが形成されるメディアとしては、紙、繊維、布(不織布も含む)、プラスチック、金属、セラミックス等種々の物を挙げることができる。染色形態としては、媒染、捺染、もしくは反応性基を導入した 反応性染料の形で色素を固定化することもできる。この中で、好ましくは媒染形 態で染色されることが好ましい。

[0395]

【実施例】

以下、本発明を実施例によって説明するが、本発明はこれに限定されるものではない。

[0396]

(実施例)

下記の成分に超純水(抵抗値 $18\,\mathrm{M}\,\Omega$ 以上)を加え $1\,\mathrm{U}$ ッターとした後、 $3\,\mathrm{O}$ ~ $4\,\mathrm{O}\,$ で加熱しながら 1 時間撹拌した。その後、平均孔径 $0.25\,\mu\,\mathrm{m}$ のミクロフィルターで減圧濾過して各インク液によるインクセット 101 を調製した。

(インクセット101構成)

[0397]

【表33】

	C	LC	M	LM	Υ	DY	Bk
染料	C-1 45g	C-1 15g	M-1 30g	M-1 10g	Y-1 30g	Y-1 30g C-1 3g M-1 5g	Bk-1 55g BK-2 15g
BTZ	3g	3g	3g	3g	3g	3g	3g
UR	12g	5g	10g	5g	10g	159	17g
DGB	_	_	_		130g	125g	120g
TGB	150g	140g	120g	120g	_		-
DEG	100g	100g	90g	80g	_	_	
TEG	-		_	_	110g	125g	100g
GR	120g	130g	130g	120g	125g	135g	125g
PRD	35g	35g		_		_	35g
TEA	10g	10g	10g	10g	10g	10g	10g
PRX	1g	1g	1g	19	1g	1g	1g
SW	10g	10g	10g	10g	10g	10g	10g

[0398]

【化76】

C-1

Y-1

[0399]

【化77]

BK-1

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

BK-2

[0400]

BTZ:ベンゾトリアゾール

UR: 尿素

DGB: ジエチレングリコールモノブチルエーテル

TGB: トリエチレングリコールモノブチルエーテル

DEG: ジエチレングリコール

TEG: トリエチレングリコール

GR:グリセリン

PRD: 2-ピロリドン

TEA: トリエタノールアミン(TEA)

PRX:プロキセルXL2(S) Avecia社製

SW:サーフィノールSTG (本発明のノニオン界面活性剤)

インクセット101に対して、下記の通りにSWを変更した以外は、全く同じ構成のインクセット102~110をそれぞれ作製した。

[0401]

【表34】

	C	LC	М	LM	Y	DY	Bk
101	SW						
(比較例)	10g/1						
102	POEN						
(比較例)	10g/1	10g/1	10g/1	109/1	10g/7	10g/1	10g/1
103	POEN	POEN	X1-1	X1-1	POEN	POEN	AZOT
(比較例)	10g/1	10g/1	10g/l	10g/1	10g/l	10g/1	10g/1
104	POEN	POEN	X1-1	X1-1	AZ0T	AZOT	AZOT
(比較例)	10g/1	10g/1	10g/1	10g/l	10g/1	10g/1	10g/1
105	SW	SW	X1-1	X1-1	SW	SW	SW
(本発明)	10g/1						
106	SW	SW	X2-3	X2-3	SW	SW	SW
(本発明)	10g/l	10g/1	109/1	10g/1	10g/1	10g/1	10g/1
107	W4-5	₩4-5	X1-1	X1-1	W4-5	W4-5	W4-5
(本発明)	10g/1	10g/1	10g/1	10g/1	10g/l	10g/1	10g/1
108	W4-5	W4-5	X2-3	X2-3	W4-5	W4-5	W4-5
(本発明)	10g/l	10g/1	10g/1	10g/l	10g/l	10g/1	10g/1
109	SW	SW	X2-3	X2-3	X-9	X-9	SW
(本発明)	10g/7	10g/1	10g/l	10g/1	10g/l	10g/1	10g/1
110	W4-5	W4-5	X1-1	X1-1	W4-5	W4-5	X2-3
(本発明)	10g/7	10g/1	10g/1	10g/1	10g/1	10g/1	10g/1

POEN: ポリオキシエチレンノニルフェニルエーテル

AZOT:エーロゾルOT

[0402]

これらのインクをEPSON社製インクジェットプリンターPM-950Cのインクカートリッジに装填し、グレーの階段状画像パターンと人物の写ったポートレート画像を印字させた。

受像シートは、富士写真フイルム(株)製インクジェットペーパーフォト光沢 紙「画彩」に画像を印刷し、画像品質ならびにインクの吐出性と画像堅牢性の評価を行った。

(評価実験)

1) 吐出安定性(吐出性)については、カートリッジをプリンターにセットし全 ノズルからのインクの突出を確認した後機械を止め、15℃30%RHの環境、さらに3 5℃90%RH の環境にプリンターをそれぞれ240時間ずつ放置し、その後A4画像1 00枚を出力して、以下の基準で評価した。 A:印刷開始から終了まで印字の乱れ無し

B:印字の乱れのある出力が発生する

C:印刷開始から終了まで印字の乱れあり

- 2) 画像保存性については、印字サンプルを用いて、以下の評価を行った。
- [1]光堅牢性は印字後、アトラス社製ウェザーメーターを用い画像にキセノン光 (8万5千ルックス)を7日照射した後、画像評価を行った。初期に比べて画像 低下レベルが許容範囲のものをA、濃度低下は少ないものの、カラーバランスが 崩れてしまったものをB、明らかに濃度低下して画像レベルが大きく低下したものをCとした。
- [2] 熱堅牢性については、80℃70%RHの条件下に10日間、試料を保存して、同様の評価を行った。
- [3]耐オゾン性(O_3 堅牢性)については、オゾンガス濃度が0.5ppmに設定されたボックス内に7日間放置し、同様の評価を行った。
- 3) 高濃度部における印字品質(ブロンズ)の評価は、C, M, Y, B, G, R, Bkの7色が段階的に8段階純色で濃度変化した画像パターンをソフトウェア(Adobe Photos hop 7)で作製し、このパターンを15^C80%RHの環境条件下印字することにより行った。

低濃度部から高濃度部まで、光沢ある印字画像が得られた場合をA、画像に不透明な部位が $1\sim3$ ヶ所認められた場合をB、4 ヶ所以上認められた場合をC とした。

4) 高湿条件下での画像のにじみについては、B, G, Rの3cm×3cmの正方形パターンが4つそれぞれ1mmの白地隙間を形成するように「田」の字型に並んだ印字パターンを作製し、この画像サンプルを25℃90%RHの条件下、72時間保存後に白地隙間における染料のにじみを観察し、印字直後に対する白地の濃度増加がステータスAのビジュアル濃度フィルターにおいて、0.01以下の場合をA、0.01~0.05の場合をB、0.05以上の場合をCとした。

得られた結果を下表に示す。

[0403]

No.	吐出性	光堅牢性	熱堅牢性	0,堅牢性	ブロンズ	にじみ
PM-950C(Bk) (比較例)	А	В	В	С	Α	В
101(比較例)	Α	Α	Α	Α	В	С
102(比較例)	Α	Α	Α	А	В	С
103(比較例)	В	Α	Α	Α	С	Α
104(比較例)	В	Α	Α	Α	С	Α
105(本発明)	Α	Α	Α	Α	Α	Α
106(本発明)	Α	Α	Α	Α	Α	Α
107(本発明)	Α	Α	Α	Α	Α	Α
108(本発明)	Α	Α	Α	Α	Α	Α
109(本発明)	Α	Α	Α	Α	Α	Α
110(本発明)	Α	Α	Α	Α	Α	Α

[0404]

上表の結果から、本発明のインクセットを使用した系ではすべての性能で比較 例に対して勝っていることがわかった。

本発明のインクおよびインクセットを、サーマル方式のインクジェットプリンターに使用しても同様の効果が得られた。

[0405]

【発明の効果】

本発明により、高湿条件下でも画像のにじみを起こしにくいインクジェット用セットならびにインクジェット記録方法が提供できる。

【書類名】

要約書

【要約】

【課題】高湿条件下でも画像のにじみを起こしにくいインクジェット用セットを 提供する。

【解決手段】少なくとも2種のインクからなるインクセットにおいて、少なくとも1つの前記とは別のインクにベタイン化合物を含有し、少なくとも1つのインクにベタイン化合物またはノニオン界面活性剤を含有するインクセット。

【選択図】 なし

出願人履歴情報

識別番号

[000005201]

1. 変更年月日 [変更理由] 住 所 1990年 8月14日

由] 新規登録

神奈川県南足柄市中沼210番地

氏 名 富士写真フイルム株式会社