

Вебинар №3. Определение Предела Последовательности.

Основная теорема алгебры

Теорема 1. Любой многочлен степени n с комплексными коэффициентами имеет ровно n комплексных корней, если учитывать их кратность.

В более привычной форме для школьного курса, где коэффициенты обычно действительные числа, теорема звучит так же. Рассмотрим многочлен:

$$P_n(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = 0, \ a_i \in \mathbb{R}$$

Эта запись означает, что у уравнения всегда есть решение в поле комплексных чисел $\mathbb C$, и число этих решений равно степени многочлена n.

Что такое кратность корня? Если многочлен можно представить в виде $P_n(x) = (x - x_0)^k Q(x)$, где $Q(x_0) \neq 0$, то говорят, что x_0 — это корень кратности k. Проще говоря, это корень, который повторяется k раз.

Давайте посмотрим на примеры, чтобы стало понятнее.

Рассмотрим квадратное уравнение:

$$x^2 - 4x + 4 = 0$$

Его можно легко свернуть в полный квадрат:

$$(x-2)^2 = 0$$

Отсюда видно, что корень один — x=2. Однако, поскольку скобка возведена в квадрат, мы говорим, что корень x=2 имеет кратность 2. Таким образом, у нас есть два корня, просто они совпадают: $x_1=2$ и $x_2=2$. С точки зрения Основной теоремы алгебры, для многочлена второй степени мы и должны были получить два корня. Расчет через дискриминант подтверждает это:

$$D = (-4)^2 - 4 \cdot 1 \cdot 4 = 16 - 16 = 0$$

Нулевой дискриминант как раз и указывает на наличие одного корня кратности 2.

Теперь рассмотрим кубическое уравнение:

$$x^3 - 3x^2 + 3x - 1 = 0$$

Это известная формула куба разности, которая сворачивается в:

$$(x-1)^3 = 0$$

Решением является x=1. Степень тройка у скобки говорит нам, что это корень кратности 3. Таким образом, у многочлена третьей степени есть три корня, и все они равны единице: $x_1=1, x_2=1, x_3=1$.

А что, если корни не действительные? Вот еще один классический пример:

$$r^3 = 1$$

Перенесем единицу влево и воспользуемся формулой разности кубов:

$$x^{3} - 1 = 0$$
$$(x - 1)(x^{2} + x + 1) = 0$$

Это уравнение распадается на два. Из первого множителя сразу получаем действительный корень $x_1 = 1$ кратности 1. Второй множитель дает квадратное уравнение:

$$x^2 + x + 1 = 0$$

Найдем его корни через дискриминант:

$$D = 1^2 - 4 \cdot 1 \cdot 1 = 1 - 4 = -3$$

Дискриминант отрицательный, значит, корни будут комплексными. Используя мнимую единицу i, запишем $-3=3i^2$. Тогда корни:

$$x_{2,3} = \frac{-1 \pm \sqrt{3i^2}}{2} = \frac{-1 \pm i\sqrt{3}}{2}$$

Таким образом, мы получили еще два комплексных корня:

$$x_2 = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$$
 и $x_3 = -\frac{1}{2} - i\frac{\sqrt{3}}{2}$

В итоге, для кубического уравнения $x^3-1=0$ мы нашли ровно три корня: один действительный и два комплексно-сопряженных. Это полностью соответствует предсказанию Основной теоремы алгебры. Важно заметить, что для многочленов с действительными коэффициентами комплексные корни всегда появляются сопряженными парами, как в нашем примере.

Корни из комплексных чисел

Мы уже знаем, как извлекать корни из действительных чисел. Но что делать, если нужно найти корень из комплексного числа? Основная теорема алгебры говорит нам, что у любого уравнения $z^n=z_0$ должно быть ровно n комплексных корней. Давайте разберемся, как их найти.

Для того чтобы найти все n корней из комплексного числа z_0 , мы используем следующую формулу:

$$z^n = z_0, n \in \mathbb{N}, n > 1$$

Сначала представим число z_0 в показательной форме: $z_0 = |z_0|e^{i\varphi_0}$. Важно помнить, что аргумент комплексного числа периодичен, поэтому мы можем записать его как $z_0 = |z_0|e^{i(\varphi_0 + 2\pi k)}$.

Тогда корни уравнения $z^n = z_0$ находятся по формуле:

$$z_k = |z_0|^{1/n} e^{i(\varphi_0/n + 2\pi k/n)} k \in \overline{0, n-1},$$

где k принимает значения от 0 до n-1. Каждое значение k дает нам один из n различных корней.

При работе с комплексными числами в показательной форме важно помнить о периодичности экспоненты с мнимым показателем. Это напрямую вытекает из формулы Эйлера:

$$e^{i\varphi} = \cos(\varphi) + i\sin(\varphi)$$

Поскольку функции $\cos(\varphi)$ и $\sin(\varphi)$ являются 2π -периодическими, то и $e^{i\varphi}$ также является 2π -периодической функцией. Это значит, что:

$$e^{i\varphi} = e^{i(\varphi + 2\pi k)}, k \in \mathbb{Z}$$

Например:

$$e^{i\pi} = \cos(\pi) + i\sin(\pi) = -1$$

$$e^{-i\pi} = \cos(-\pi) + i\sin(-\pi) = -1$$

$$e^{i3\pi} = \cos(3\pi) + i\sin(3\pi) = -1$$

$$e^{i5\pi} = \cos(5\pi) + i\sin(5\pi) = -1$$

Именно эта периодичность позволяет нам получать n различных корней, перебирая значения k от 0 до n-1.

Общее замечание:

Корни уравнения $z^n = z_0$

$$z_k = |z_0|^{1/n} e^{i(\varphi_0/n + 2\pi k/n)}, \ k \in \overline{0, n-1}$$

где z_k — это вершины правильного n-угольника, вписанного в окружность радиуса $R=|z_0|^{1/n}$ с центром в начале координат. Первый корень z_0 находится под углом φ_0/n к положительной действительной оси, а каждый следующий корень повернут относительно предыдущего на угол $2\pi/n$.

Пример 1. Найдем все корни уравнения:

$$z^5 = 1$$

1) Представим число $z_0=1$ в показательной форме. Модуль равен |1|=1, а аргумент $\varphi_0=0$. Учитывая периодичность, запишем:

$$z_0 = 1 + 0i = 1 \cdot (\cos(0) + i\sin(0)) = 1 \cdot (\cos(0 + 2\pi k) + i\sin(0 + 2\pi k)) = e^{i(0 + 2\pi k)}, k \in \overline{0, 4}$$

2) Теперь извлечем корень пятой степени, используя формулу:

$$z^{5} = e^{i(0+2\pi k)}$$

$$z_{k} = \left(e^{i(2\pi k)}\right)^{1/5} = e^{i\frac{2\pi k}{5}}$$

3) Выпишем все пять корней, подставляя значения k:

$$z_0 = e^{i \cdot 0} = 1$$

$$z_1 = e^{i \frac{2\pi}{5}} = \cos\left(\frac{2\pi}{5}\right) + i\sin\left(\frac{2\pi}{5}\right)$$

$$z_2 = e^{i \frac{4\pi}{5}} = \cos\left(\frac{4\pi}{5}\right) + i\sin\left(\frac{4\pi}{5}\right)$$

$$z_3 = e^{i \frac{6\pi}{5}} = \cos\left(\frac{6\pi}{5}\right) + i\sin\left(\frac{6\pi}{5}\right)$$

$$z_4 = e^{i \frac{8\pi}{5}} = \cos\left(\frac{8\pi}{5}\right) + i\sin\left(\frac{8\pi}{5}\right)$$

Эти корни расположены на единичной окружности (поскольку $|z_0|^{1/n}=1^{1/5}=1$) и образуют вершины правильного пятиугольника.

4) Графическое представление корней $z^5=1$:

Рис. 1: Правильный 5-угольник, вписанный в окр. с R=1

Пример 2. Найдем корни уравнения:

$$z^3 = 8i$$

1) Представим число $z_0=8i$ в показательной форме. Модуль: $|z_0|=|8i|=8$. Аргумент: число 8i лежит на положительной мнимой оси, поэтому его аргумент $\varphi_0=\frac{\pi}{2}$. Учитывая периодичность, запишем:

$$8i = 8e^{i(\frac{\pi}{2} + 2\pi k)}, k \in \overline{0, 2}$$

2) Теперь извлечем кубический корень, используя формулу:

$$z_k = |8|^{1/3} e^{i(\frac{\pi/2}{3} + \frac{2\pi k}{3})} = 2e^{i(\frac{\pi}{6} + \frac{2\pi k}{3})}$$

3) Выпишем все три корня, подставляя значения k: Для k = 0:

$$z_0 = 2e^{i(\frac{\pi}{6} + \frac{2\pi \cdot 0}{3})} = 2e^{i\frac{\pi}{6}} = 2\left(\cos\left(\frac{\pi}{6}\right) + i\sin\left(\frac{\pi}{6}\right)\right) = 2\left(\frac{\sqrt{3}}{2} + i\frac{1}{2}\right) = \sqrt{3} + i$$

Для k=1:

$$z_1 = 2e^{i(\frac{\pi}{6} + \frac{2\pi \cdot 1}{3})} = 2e^{i(\frac{\pi}{6} + \frac{4\pi}{6})} = 2e^{i\frac{5\pi}{6}} = 2\left(\cos\left(\frac{5\pi}{6}\right) + i\sin\left(\frac{5\pi}{6}\right)\right) = 2\left(-\frac{\sqrt{3}}{2} + i\frac{1}{2}\right) = -\sqrt{3} + i\frac{\pi}{6}$$

Для k=2:

$$z_2 = 2e^{i(\frac{\pi}{6} + \frac{2\pi \cdot 2}{3})} = 2e^{i(\frac{\pi}{6} + \frac{8\pi}{6})} = 2e^{i\frac{9\pi}{6}} = 2e^{i\frac{9\pi}{6}} = 2e^{i\frac{3\pi}{2}} = 2\left(\cos\left(\frac{3\pi}{2}\right) + i\sin\left(\frac{3\pi}{2}\right)\right) = 2(0 - i) = -2i$$

Таким образом, корни уравнения $z^3 = 8i$ это $\sqrt{3} + i$, $-\sqrt{3} + i$ и -2i. Эти три корня образуют вершины правильного треугольника, вписанного в окружность радиуса R = 2 с центром в начале координат.

4) Графическое представление корней $z^3 = 8i$:

Рис. 2: Правильный треугольник, вписанный в окр. с R=2

Кванторы

При изучении математического анализа, особенно при работе с определениями пределов и непрерывности, вы часто будете сталкиваться со специальными символами, которые называются кванторами. Они позволяют очень кратко и точно формулировать сложные утверждения. Давайте познакомимся с основными из них:

 \forall – "для любого / для всякого"(от англ. "All").

Пример: $\forall x \in \mathbb{R} \hookrightarrow \cos^2(x) + \sin^2(x) = 1$. Это читается как: "Для любого действительного числа x выполняется: косинус квадрат x плюс синус квадрат x равно 1".

 \exists – "существует" (от англ. "Exist").

Пример: $\exists x: x^2-1=0$. Это читается как: "Существует x такой, что x в квадрате минус 1 равно 0".

∃! – "существует единственный".

Пример: $\exists !x: x^3-1=0$. Это читается как: "Существует единственный x такой, что x в кубе минус 1 равно 0".

 \hookrightarrow – "влечет "из этого следует "выполняется".

Этот символ показывает следствие или выполнение условия.

: - "такой, что".

Этот символ используется для указания условия, которому должен удовлетворять объект.

← - "тогда и только тогда, когда" (эквивалентность).

Этот символ означает, что два утверждения равносильны: если верно одно, то верно и другое, и наоборот.

Предел последовательности

В математике последовательность — это упорядоченный список чисел. Каждый элемент этого списка имеет свой порядковый номер. Формально, последовательность можно представить как функцию, которая каждому натуральному числу $n \in \mathbb{N} = \{1, 2, 3, \dots\}$ ставит в соответствие некоторое действительное число $x_n \in \mathbb{R}$.

Рис. 3: Отображение n в x_n

Представьте, что у нас есть своего рода черный ящик, в который мы закидываем натуральное число n. Этот черный ящик обрабатывает n и выдает нам соответствующий член последовательности x_n . Например, если мы подставим n=1, получим x_1 ; если n=2, то x_2 , и так далее. Таким образом, последовательность — это бесконечный список чисел: $x_1, x_2, x_3, \ldots, x_n, \ldots$

Пример 1.

Рассмотрим последовательность, заданную формулой $x_n = \frac{(-1)^n}{n}$. Давайте выпишем первые несколько членов этой последовательности:

Если посмотреть на значения x_n , мы видим, что они то отрицательные, то положительные, но их абсолютное значение постоянно уменьшается. Чем больше n, тем ближе x_n к нулю.

Графическое представление этой последовательности, где точки соединяются линиями, поможет увидеть это поведение:

Рис. 4:
$$x_n = (-1)^n/n$$

Чисто графически видно, что по мере увеличения n (то есть при движении вправо по оси n), точки последовательности приближаются к нулю. Математически это записывается так:

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} \frac{(-1)^n}{n} = 0$$

Это означает, что предел последовательности x_n при n, стремящемся к бесконечности, равен 0.

Пример 2.

Рассмотрим другую последовательность: $x_n = (-1)^n$. Составим для нее таблицу значений:

Построим график этой последовательности:

Рис. 5: $x_n = (-1)^n$

В этом случае, по мере увеличения n, члены последовательности не приближаются к какому-либо одному числу. Они постоянно прыгают между значениями -1 и 1. Из-за этого мы говорим, что предел этой последовательности не существует. Последовательность не сходится к единственному значению.

Определение предела последовательности

Теперь, когда мы знакомы с кванторами, давайте перейдем к строгому математическому определению предела последовательности. Это определение является одним из самых важных в математическом анализе.

Определение предела последовательности:

$$\lim_{n \to \infty} x_n = a \iff \forall \varepsilon > 0 \quad \exists N_{\varepsilon} > 0 : \forall n \ge N_{\varepsilon} \hookrightarrow |x_n - a| < \varepsilon$$

Как это читается: "Предел последовательности x_n при n, стремящемся к бесконечности, равен a тогда и только тогда, когда для любого (сколь угодно малого) положительного числа ε (эпсилон) существует такое натуральное число N_{ε} (эн, зависящее от эпсилон), что для всех n, больших или равных N_{ε} , выполняется: модуль разности между x_n и a меньше, чем ε ."

Что это значит? Представьте, что a — это наше предполагаемое значение предела. Неравенство $|x_n - a| < \varepsilon$ можно переписать как $a - \varepsilon < x_n < a + \varepsilon$. Это означает, что все члены последовательности x_n , начиная с некоторого номера N_ε , попадают в так называемую ε -окрестность точки a. Эта ε -окрестность представляет собой интервал $(a - \varepsilon, a + \varepsilon)$.

Давайте вернемся к нашему примеру $x_n = \frac{(-1)^n}{n}$, для которого мы графически увидели, что предел равен 0.

На графике последовательности $x_n = \frac{(-1)^n}{n}$ (который мы ранее построили) мы можем нарисовать коридор шириной 2ε с центром в точке a=0. Верхняя граница этого коридора будет $a+\varepsilon=0+\varepsilon=\varepsilon$, а нижняя граница $a-\varepsilon=0-\varepsilon=-\varepsilon$.

Рис. 6: Геометрическая интерпретация определения предела последовательности

Идея определения предела в том, что, как бы мал ни был этот коридор (то есть, как бы мало ни было ε), мы всегда сможем найти такой номер N_{ε} , что абсолютно все члены последовательности, начиная с этого номера N_{ε} и далее, будут находиться внутри этого коридора. Это означает, что хвост последовательности полностью залезает в сколь угодно узкую окрестность предела.

Покажем, что a=0 для последовательности $x_n=\frac{(-1)^n}{n}$ по определению предела. Нам нужно показать, что для любого $\varepsilon>0$ мы можем найти соответствующее N_ε .

$$\forall \varepsilon > 0 \quad \exists N_{\varepsilon} > 0 : \forall n \ge N \hookrightarrow \left| \frac{(-1)^n}{n} - 0 \right| < \varepsilon$$

Давайте рассмотрим несколько частных случаев для разных значений ε . Это поможет нам понять логику, но не является полноценным доказательством, так как доказательство требует, чтобы это работало для любого ε .

1. Пусть $\varepsilon_1=1$. Нам нужно найти такой N_1 , чтобы для всех $n\geq N_1$ выполнялось $\left|\frac{(-1)^n}{n}-0\right|<1$.

$$\left| \frac{(-1)^n}{n} \right| < 1 \implies \frac{1}{n} < 1 \implies n > 1$$

Значит, мы можем взять $N_1=2$ (или любое число, большее 1). Для всех $n\geq 2$ условие выполняется. Например: $x_2=1/2<1,\ x_3=-1/3,\ |x_3|=1/3<1.$

2. Пусть $\varepsilon_2=0.3$. Нам нужно найти такой $N_{0.3}$, чтобы для всех $n\geq N_{0.3}$ выполнялось $\left|\frac{(-1)^n}{n}-0\right|<0.3$.

$$\left| \frac{(-1)^n}{n} \right| < 0.3 \implies \frac{1}{n} < 0.3 \implies n > \frac{1}{0.3} \implies n > 3.33\dots$$

Значит, мы можем взять $N_{0.3}=4$. Для всех $n\geq 4$ условие выполняется. Например: $x_4=1/4=0.25<0.3,\ x_5=-1/5,\ |x_5|=0.2<0.3.$

Рис. 7: Определение предела последовательности при конкретных значениях ε

Замечание: Эти частные случаи лишь иллюстрируют определение. Они показывают, что для конкретных ε мы можем найти соответствующее N_{ε} . Полное доказательство должно работать для любого $\varepsilon > 0$.

Докажем в общем виде:

Мы хотим доказать, что $\lim_{n\to\infty}\frac{(-1)^n}{n}=0$. Согласно определению, нам нужно для любого заданного $\varepsilon>0$ найти N_ε такое, чтобы для всех $n\geq N_\varepsilon$ выполнялось $\left|\frac{(-1)^n}{n}-0\right|<\varepsilon$.

Начнем с неравенства:

$$\left| \frac{(-1)^n}{n} - 0 \right| < \varepsilon$$

Упростим выражение:

$$\left| \frac{(-1)^n}{n} \right| < \varepsilon$$

Поскольку $|(-1)^n| = 1$ (модуль от -1 или 1 всегда равен 1) и n является натуральным числом, то n > 0, и мы можем убрать модуль в знаменателе:

$$\frac{1}{n} < \varepsilon$$

Теперь нам нужно выразить n из этого неравенства:

$$n > \frac{1}{\varepsilon}$$

Это неравенство показывает, что для того, чтобы $|x_n-0|<\varepsilon$ выполнялось, номер n должен быть больше, чем $\frac{1}{\varepsilon}$. Поскольку N_{ε} должно быть натуральным числом, мы можем выбрать N_{ε} как наименьшее целое число, которое больше $\frac{1}{\varepsilon}$. Для этого удобно использовать функцию "целая часть числа" или "floor function".

 $\lfloor x \rfloor$ (читается как целая часть x) — это наибольшее целое число, которое не превосходит x. Например, $\lfloor 3.14 \rfloor = 3$, $\lfloor 5 \rfloor = 5$, $\lfloor -2.7 \rfloor = -3$.

Тогда мы можем определить N_{ε} следующим образом:

$$N_{\varepsilon} = \left\lfloor \frac{1}{\varepsilon} \right\rfloor + 1$$

Это гарантирует, что N_{ε} будет целым числом и $N_{\varepsilon} > \frac{1}{\varepsilon}$, а значит, для всех $n \geq N_{\varepsilon}$ неравенство $|x_n - 0| < \varepsilon$ будет выполняться.

Таким образом, мы полностью доказали по определению, что:

$$\forall \varepsilon > 0 \quad \exists N_{\varepsilon} = \left\lfloor \frac{1}{\varepsilon} \right\rfloor + 1 : \forall n \ge N_{\varepsilon} \hookrightarrow \left| \frac{(-1)^n}{n} - 0 \right| < \varepsilon$$

Это подтверждает, что предел последовательности $x_n = \frac{(-1)^n}{n}$ равен 0.

Отрицание предела последовательности

Иногда нам нужно доказать, что последовательность НЕ имеет определенного предела, или что предел вообще не существует. Для этого используется отрицание определения предела.

При отрицании утверждения с кванторами происходит следующее:

- 1. Квантор всеобщности ∀ меняется на квантор существования ∃.
- 2. Квантор существования ∃ меняется на квантор всеобщности ∀.
- 3. Неравенство меняется на противоположное (например, < на \ge , или > на \le).
- 4. ":"переходит в \hookrightarrow , и наоборот, \hookrightarrow переходит в ":".

Наше исходное определение предела было:

$$\lim_{n \to \infty} x_n = a \iff \forall \varepsilon > 0 \quad \exists N_{\varepsilon} > 0 : \forall n \ge N_{\varepsilon} \hookrightarrow |x_n - a| < \varepsilon$$

Теперь давайте запишем отрицание этого определения, которое означает, что последовательность x_n HE имеет предела a:

$$\lim_{n \to \infty} x_n \neq a \iff \exists \varepsilon > 0 \quad \forall N > 0 \hookrightarrow \exists n \ge N : |x_n - a| \ge \varepsilon$$

Как это читается: "Предел последовательности x_n при n, стремящемся к бесконечности, не равен a тогда и только тогда, когда существует такое положительное число ε , что для любого (сколь угодно большого) натурального числа N существует номер n, больший или равный N, для которого модуль разности между x_n и a больше или равен ε ."

Проще говоря, если предел не равен a, это означает, что мы можем найти такой коридор $(a-\varepsilon,a+\varepsilon)$ вокруг a, что, сколько бы мы ни продвигались по последовательности, в этом коридоре всегда будут оставаться дыры – то есть, за пределами этого коридора всегда будут находиться члены последовательности, независимо от того, насколько далеко мы зайдем.

Пример:

Используем последовательность $x_n = (-1)^n$ из предыдущего раздела, для которой мы уже знаем, что предел не существует. Давайте покажем, что a=0 не является пределом этой последовательности, используя отрицание определения предела.

Нам нужно показать, что существует такое $\varepsilon > 0$, что для любого N найдется $n \geq N$, для которого $|x_n - 0| \geq \varepsilon$.

Члены нашей последовательности это $1, -1, 1, -1, \dots$ Расстояние от этих членов до 0 всегда равно |1-0|=1 или |-1-0|=1. То есть $|x_n-0|=1$ для всех n.

Давайте попробуем выбрать ε .

1. Пусть $\varepsilon = 1.2$. Нам нужно, чтобы $|x_n - 0| \ge 1.2$. Но мы знаем, что $|x_n - 0| = 1$. Поскольку $1 \ge 1.2$ является ложным утверждением, это значение ε не подходит для доказательства отсутствия предела. Наоборот, для этого ε все члены последовательности удовлетворяют условию $|x_n - 0| < 1.2$, что соответствует определению предела, если бы он был равен 0. Это показывает, что такой большой ε не позволяет "поймать" нежелательное поведение.

2. Пусть $\varepsilon=0.5$. Нам нужно, чтобы $|x_n-0|\geq 0.5$. Мы знаем, что $|x_n-0|=1$ для любого n. Проверим условие: $1\geq 0.5$. Это истинное утверждение! Таким образом, мы нашли $\varepsilon=0.5$ (и любое другое ε в интервале (0,1] тоже подошло бы), для которого выполняется следующее: для любого N (сколько бы мы ни взяли), мы можем выбрать любое $n\geq N$ (например, n=N), и для этого n будет выполняться $|x_n-0|\geq 0.5$. Это означает, что члены последовательности x_n никогда не попадают в ε -окрестность (-0.5,0.5) точки a=0. Ни один член последовательности, начиная с любого N, не окажется в этом "коридоре". Это доказывает, что 0 не является пределом данной последовательности.

Графически это выглядит так:

Рис. 8: Отрицание определения предела последовательности

На графике последовательности $x_n=(-1)^n$ (который мы ранее построили) точки колеблются между 1 и -1. Если мы попытаемся нарисовать коридор $(-\varepsilon,\varepsilon)$ вокруг нуля, например, с $\varepsilon=0.5$, то этот коридор будет простираться от -0.5 до 0.5. Мы видим, что ни одна точка последовательности (1 или -1) не попадает в этот коридор. Они всегда остаются вне его. Таким образом, невозможно найти N такое, чтобы все последующие точки попали в этот коридор, потому что ни одна из них туда не попадает. Это наглядно демонстрирует, что предел не равен 0 (и, фактически, вообще не существует).

Пример.

Рассмотрим последовательность, заданную формулой:

$$x_n = \frac{n}{2n+1}$$

Составим таблицу значений для первых нескольких членов, а также для больших n, чтобы увидеть, к чему стремится последовательность:

n	1	2	3	4	5	6	7	8	9	10	 100	1000	
x_n	$\frac{1}{3}$	$\frac{2}{5}$	$\frac{3}{7}$	$\frac{4}{9}$	$\frac{5}{11}$	$\frac{6}{13}$	$\frac{7}{15}$	$\frac{8}{17}$	$\frac{9}{19}$	$\frac{10}{21}$	 $\frac{100}{201}$	$\frac{1000}{2001}$	

Если $n \to \infty$, то $x_n \to \frac{1}{2}$.

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} \frac{n}{2n+1} = \frac{1}{2}$$

Интуитивно, при очень больших $n,\,2n+1$ практически равно 2n. Тогда дробь $\frac{n}{2n+1}$ становится похожей на $\frac{n}{2n}=\frac{1}{2}.$

Теперь докажем это строго по определению предела. Мы хотим показать, что для любого $\varepsilon > 0$ существует такое N_{ε} , что для всех $n \geq N_{\varepsilon}$ выполняется $\left| x_n - \frac{1}{2} \right| < \varepsilon$.

Подставим x_n и $a=\frac{1}{2}$ в неравенство $|x_n-a|<\varepsilon$:

$$\left| \frac{n}{2n+1} - \frac{1}{2} \right| < \varepsilon$$

Приведем дроби к общему знаменателю:

$$\left| \frac{2n - (2n+1)}{2(2n+1)} \right| < \varepsilon$$

$$\left| \frac{2n - 2n - 1}{4n + 2} \right| < \varepsilon$$

$$\left| \frac{-1}{4n + 2} \right| < \varepsilon$$

Поскольку n — натуральное число, 4n+2 всегда положительно, а |-1|=1. Таким образом, мы можем убрать знак модуля:

$$\frac{1}{4n+2} < \varepsilon$$

Теперь выразим n из этого неравенства:

$$1 < \varepsilon(4n+2)$$
$$\frac{1}{\varepsilon} < 4n+2$$

$$\frac{1}{\varepsilon} - 2 < 4n$$

$$\frac{1}{4\varepsilon} - \frac{2}{4} < n$$

$$n > \frac{1}{4\varepsilon} - \frac{1}{2}$$

Чтобы найти N_{ε} , мы должны выбрать наименьшее натуральное число, которое строго больше $\frac{1}{4\varepsilon}-\frac{1}{2}.$

Для этого мы используем функцию $\lfloor x \rfloor$, которая возвращает наибольшее целое число, не превосходящее x.

Таким образом, мы можем выбрать N_{ε} как:

$$N_{\varepsilon} = \left\lfloor \frac{1}{4\varepsilon} - \frac{1}{2} \right\rfloor + 1$$

Это гарантирует, что N_{ε} будет натуральным числом, и для любого $n \geq N_{\varepsilon}$, условие $|x_n - \frac{1}{2}| < \varepsilon$ будет выполняться.

Окончательно, по определению:

$$\forall \varepsilon > 0 \quad \exists N_{\varepsilon} = \left\lfloor \frac{1}{4\varepsilon} - \frac{1}{2} \right\rfloor + 1 : \forall n \ge N_{\varepsilon} \hookrightarrow \left| \frac{n}{2n+1} - \frac{1}{2} \right| < \varepsilon$$

Это доказывает, что предел последовательности $x_n = \frac{n}{2n+1}$ равен $\frac{1}{2}$.