Géométrie de l'espace

#geometrie

• Un plan ${\cal P}$ dans l'espace n'a aucune orientation, il suffit de choisir un vecteur $\stackrel{
ightarrow}{k} \perp {\cal P}$

• Coordonnées cylindriques : $(r, heta, z): egin{cases} x = r\cos(heta) \ y = r\sin(heta) \ z = z \end{cases}$

Produit vectoriel

 $\mathcal P$ plan contenant \overrightarrow{u} et \overrightarrow{v} , \overrightarrow{k} unitaire et normal à $\mathcal P$.

$$ullet \overrightarrow{u} \wedge \overrightarrow{v} = [\overrightarrow{u}, \overrightarrow{v}] \cdot \overrightarrow{k} = ||\overrightarrow{u}|| ||\overrightarrow{v}|| \sin(heta) \cdot \overrightarrow{k}$$

- $\|\overrightarrow{u} \wedge \overrightarrow{v}\| = \|\overrightarrow{u}\| \|\overrightarrow{v}\| |\sin(\theta)|$ aire du parallélogramme.
- $\overrightarrow{u} \wedge \overrightarrow{v} = \overrightarrow{0} \Leftrightarrow \overrightarrow{u} \text{ et } \overrightarrow{v} \text{ sont colinéaires.}$

$$ullet \overrightarrow{u} \wedge \overrightarrow{v} = egin{pmatrix} x \ y \ z \end{pmatrix} \wedge egin{pmatrix} x' \ y' \ z' \end{pmatrix} = egin{pmatrix} yz' - zy' \ -(xz' - zx') \ xy' - yx' \end{pmatrix}$$

• $\overrightarrow{w} = \overrightarrow{u} \wedge \overrightarrow{v} \Leftrightarrow \overrightarrow{u} \cdot \overrightarrow{w} = 0$ et $\overrightarrow{v} \cdot \overrightarrow{w} = 0$

Produit mixte

$$\overrightarrow{[u,v,w]} = \overrightarrow{(u}\wedge\overrightarrow{v})\cdot\overrightarrow{w}$$

- $[\overrightarrow{u},\overrightarrow{v},\overrightarrow{w}]=0\Leftrightarrow\overrightarrow{u}\wedge\overrightarrow{v}\perp\overrightarrow{w}$ et $\overrightarrow{u},\overrightarrow{v}$ et \overrightarrow{w} sont coplanaires.
- $[\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}]$ mesure le volume du parallélépipède.
- $\bullet \ \ [\overrightarrow{u},\overrightarrow{v},\lambda\overrightarrow{w_1}+\mu\overrightarrow{w_2}]=\lambda[\overrightarrow{u},\overrightarrow{v},\overrightarrow{w_1}]+\mu[\overrightarrow{u},\overrightarrow{v},\overrightarrow{w_2}]$

Plans

$$egin{cases} x = x_A + s lpha + t lpha' \ y = y_A + s eta + t eta' \ AM = s \overrightarrow{u} + t \overrightarrow{v} \ z = z_A + s \gamma + t \gamma' \end{cases}$$

$$egin{align} ullet & ax+by+cz+d=0\Leftrightarrow \overrightarrow{AM}\cdot\overrightarrow{n}=0 \ & M\in\mathcal{P}\Leftrightarrow [\overrightarrow{AM},\overrightarrow{u},\overrightarrow{v}]=0 \ \end{matrix}$$

$$ullet \ M \in \mathcal{P} \Leftrightarrow [\overrightarrow{AM}, \overrightarrow{u}, \overrightarrow{v}] = 0$$

Droites

$$egin{cases} x = x_A + tlpha \ y = y_A + teta \ z = z_A + t\gamma \end{cases}$$

• On a besoin de deux équations cartésiennes pour décrire une droite.

Projeté orthogonal

$$ullet \ d(M,\mathcal{P}) = rac{|ax_M + by_M + cz_M + d|}{\sqrt{a^2 + b^2 + c^2}}$$

$$ullet \ d(M,\mathcal{P}) = rac{|\overrightarrow{AM} \cdot \overrightarrow{n}|}{||\overrightarrow{n}||}$$

$$ullet \ d(M,\mathcal{P}) = rac{|\overrightarrow{AM} \wedge \overrightarrow{u}|}{||\overrightarrow{u}||}$$

Sphère

$$(x-a)^2 + (y-b)^2 + (z-c)^2 = R^2$$

Cercle

Il faut une équation de sphère et une équation de plan.