$\Delta(1920) \ 3/2^{+}$

$$I(J^P) = \frac{3}{2}(\frac{3}{2}^+)$$
 Status: ***

Older and obsolete values are listed and referenced in the 2014 edition, Chinese Physics **C38** 070001 (2014).

△(1920) POLE POSITION

RFAI	DADT
KFAI	PARI

REAL PAR I				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1850 to 1950 (≈ 1900) OUR ESTIMATE				
1875 ± 30	SOKHOYAN	15A	DPWA	Multichannel
$1906 \pm 10 \pm 2$	¹ SVARC	14	L+P	$\pi N \rightarrow \pi N$
1900	HOEHLER	93	SPED	$\pi N \rightarrow \pi N$
1900 ± 80	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
ullet $ullet$ We do not use the following	data for averages	s, fits,	limits, e	etc. • • •
1875 ± 30	GUTZ	14	DPWA	Multichannel
1890 ± 30	ANISOVICH	12A	DPWA	Multichannel
2110	SHRESTHA	12A	DPWA	Multichannel
1880	VRANA	00	DPWA	Multichannel
-2×IMAGINARY PART				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
200 to 400 (≈ 300) OUR ESTIMA	TE			
300± 40	SOKHOYAN	15A	DPWA	Multichannel
$310\pm\ 20\pm11$	¹ SVARC	14	L+P	$\pi N \rightarrow \pi N$
300 ± 100	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
ullet $ullet$ We do not use the following	data for averages	s, fits,	limits, e	etc. • • •
300± 40	GUTZ	14	DPWA	Multichannel
300± 60	ANISOVICH	12A	DPWA	Multichannel
386	SHRESTHA	12A	DPWA	Multichannel
120	VRANA	00	DPWA	Multichannel

△(1920) ELASTIC POLE RESIDUE

MODULUS |r|

<i>VALUE</i> (MeV)	DOCUMENT ID		TECN	COMMENT
16±6	SOKHOYAN	15A	DPWA	Multichannel
$26 \pm 3 \pm 2$	¹ SVARC	14	L + P	$\pi N \rightarrow \pi N$
24 ± 4	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the follow	ing data for averages	, fits,	limits, e	tc. • • •
16 ± 6	GUTZ	14	DPWA	Multichannel
17 ± 8	ANISOVICH	12A	DPWA	Multichannel
PHASE θ				
VALUE (°)	DOCUMENT ID		TECN	COMMENT
-50 ± 25	SOKHOYAN	15A	DPWA	Multichannel
$-130\pm 5\pm 3$	¹ SVARC	14	L+P	$\pi N \rightarrow \pi N$
-150 ± 30	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$

HTTP://PDG.LBL.GOV

Page 1

Created: 5/30/2017 17:20

• • • We do not use the following data for averages, fits, limits, etc. • • •

 -50 ± 25 GUTZ 14 DPWA Multichannel

 -40 ± 20 ANISOVICH 12A DPWA Multichannel

△(1920) INELASTIC POLE RESIDUE

The "normalized residue" is the residue divided by $\Gamma_{nole}/2$.

Normalized residue in $N\pi \to \Delta(1920) \to \Delta\eta$

MODULUSPHASE (°)DOCUMENT IDTECNCOMMENT 0.15 ± 0.04 70 ± 20 GUTZ14DPWAMultichannel• • • We do not use the following data for averages, fits, limits, etc.• • •

ANISOVICH

12A DPWA Multichannel

Created: 5/30/2017 17:20

Normalized residue in $N\pi \to \Delta(1920) \to \Sigma K$

 70 ± 20

 0.17 ± 0.08

MODULUSPHASE ($^{\circ}$)DOCUMENT IDTECNCOMMENT 0.09 ± 0.03 80 ± 40 ANISOVICH12ADPWAMultichannel

Normalized residue in $N\pi \rightarrow \Delta(1920) \rightarrow \Delta\pi$, *P*-wave

MODULUS PHASE (°) DOCUMENT ID TECN COMMENT

0.20 \pm 0.08 - 105 \pm 25 SOKHOYAN 15A DPWA Multichannel

• • • We do not use the following data for averages, fits, limits, etc. • • •

0.20 \pm 0.12 - 120 \pm 30 ANISOVICH 12A DPWA Multichannel

Normalized residue in $N\pi \to \Delta(1920) \to \Delta\pi$, F-wave

 MODULUS
 PHASE (°)
 DOCUMENT ID
 TECN
 COMMENT

 0.37 ± 0.10
 −90 ± 20
 SOKHOYAN
 15A
 DPWA
 Multichannel

 • • • We do not use the following data for averages, fits, limits, etc.
 • • •

 0.28 ± 0.07
 −95 ± 35
 ANISOVICH
 12A
 DPWA
 Multichannel

Normalized residue in $N\pi \rightarrow \Delta(1920) \rightarrow N(1535)\pi$

MODULUSPHASE (°)DOCUMENT IDTECNCOMMENT 0.03 ± 0.02 35 ± 45 GUTZ14DPWAMultichannel

Normalized residue in $N\pi \rightarrow \Delta(1920) \rightarrow Na_0(980)$

MODULUSPHASE ($^{\circ}$)DOCUMENT IDTECNCOMMENT 0.03 ± 0.02 -85 ± 45 GUTZ14DPWAMultichannel

Normalized residue in $N\pi \rightarrow \Delta(1920) \rightarrow N(1440)\pi$

MODULUSPHASE ($^{\circ}$)DOCUMENT IDTECNCOMMENT 0.04 ± 0.03 undefinedSOKHOYAN15ADPWAMultichannel

Normalized residue in $N\pi \to \Delta(1920) \to N(1520)\pi$, S-wave

MODULUSPHASE (°)DOCUMENT IDTECNCOMMENT0.05 ± 0.05undefinedSOKHOYAN15ADPWAMultichannel

△(1920) BREIT-WIGNER MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1900 to 1970 (≈ 1920) OUR ESTIN	MATE			
1880± 30	SOKHOYAN	15A	DPWA	Multichannel
$1920\pm~80$	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
1868± 10	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the following of	data for averages	s, fits,	limits, e	etc. • • •
1880± 30	GUTZ	14	DPWA	Multichannel
1900 ± 30	ANISOVICH	12A	DPWA	Multichannel
2146± 32	SHRESTHA	12A	DPWA	Multichannel
2057 ± 1	PENNER	02 C	DPWA	Multichannel
1889 ± 100	VRANA	00	DPWA	Multichannel

△(1920) BREIT-WIGNER WIDTH

VALUE (MeV)	DOCUMENT ID	DOCUMENT ID		COMMENT
180 to 300 (≈ 260) OUR ESTIMAT	ΓE			
300± 40	SOKHOYAN	15A	DPWA	Multichannel
300 ± 100	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
220± 80	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the following	data for average	s, fits,	limits, e	etc. • • •
300± 40	GUTZ	14	DPWA	Multichannel
310± 60	ANISOVICH	12A	DPWA	Multichannel
400± 80	SHRESTHA	12A	DPWA	Multichannel
525± 32	PENNER	02C	DPWA	Multichannel
123± 53	VRANA	00	DPWA	Multichannel

△(1920) DECAY MODES

The following branching fractions are our estimates, not fits or averages.

Mode	Fraction (Γ_i/Γ)
$N\pi$	5–20 %
ΣK	2–6 %
$N\pi\pi$	
$\Delta(1232)\pi$	50–90 %
${\it \Delta}(1232)\pi$, $\it P$ -wave	8–28 %
${\it \Delta}(1232)\pi$, $\it F-wave$	44–72 %
$N(1440)\pi$, $ extit{P}$ -wave	<4 %
$N(1520)\pi$, S -wave	<5 %
$N(1535)\pi$	<2 %
N a ₀ (980)	seen
$\Delta(1232)\eta$	5–17 %
	$N\pi$ ΣK $N\pi\pi$ $\Delta(1232)\pi$ $\Delta(1232)\pi$, P -wave $\Delta(1232)\pi$, F -wave $N(1440)\pi$, P -wave $N(1520)\pi$, S -wave $N(1535)\pi$ $Na_0(980)$

Δ (1920) BRANCHING RATIOS

$\Gamma(N\pi)/\Gamma_{total}$					Γ_1/Γ
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
5 to 20 OUR ESTIMATE					
8±4	SOKHOYAN	15A		Multichannel	
20±5	CUTKOSKY	80	IPWA IPWA	$\pi N \rightarrow \pi N$	
14±4• • We do not use the following •	HOEHLER	79 s fits		$\pi N \rightarrow \pi N$	
8 ± 4 8 ± 4	GUTZ ANISOVICH	14 12A		Multichannel Multichannel	
16 ± 4	SHRESTHA	12A		Multichannel	
15±1	PENNER	02C		Multichannel	
5±4	VRANA	00		Multichannel	
$\Gamma(\Sigma K)/\Gamma_{\text{total}}$					Γ ₂ /Γ
VALUE (%)	DOCUMENT ID		TECN	COMMENT	12/1
4 ±2	ANISOVICH	12Δ		Multichannel	
• • • We do not use the following •					
2.1±0.3	PENNER			Multichannel	
$\Gamma(\Delta(1232)\pi$, <i>P</i> -wave $)/\Gamma_{total}$					Γ ₅ /Γ
<u>VALUE (%)</u>	DOCUMENT ID		TECN	COMMENT	- 5/ -
18±10	SOKHOYAN			Multichannel	
• • • We do not use the following					
22±12	ANISOVICH	12A		Multichannel	
7± 5	SHRESTHA	12A		Multichannel	
41± 3	VRANA	00	DPWA	Multichannel	
$\Gamma(\Delta(1232)\pi$, <i>F</i> -wave $)/\Gamma_{total}$					Г ₆ /Г
VALUE (%)	DOCUMENT ID		TECN	COMMENT	- 0/ -
58±14	SOKHOYAN	15A		Multichannel	
• • We do not use the following	data for averages	s, fits,	limits, e	etc. • • •	
45±20	ANISOVICH	12A	DPWA	Multichannel	
$\Gamma(N(1440)\pi$, P -wave $)/\Gamma_{ ext{total}}$					Γ ₇ /Γ
VALUE (%)	DOCUMENT ID		TECN	COMMENT	- //-
< 4	SOKHOYAN			Multichannel	
• • We do not use the following •					
<20	SHRESTHA			Multichannel	
53±8	VRANA	00		Multichannel	
$\Gamma(N(1520)\pi$, S-wave $)/\Gamma_{total}$					Γ ₈ /Γ
VALUE (%)	DOCUMENT ID		TECN	COMMENT	O,
<5	SOKHOYAN		DPWA	Multichannel	
$\Gamma(N(1535)\pi)/\Gamma_{total}$					٦/و٦
VALUE (%)	DOCUMENT ID		TECN	COMMENT	٠,
<2	GUTZ	14		Multichannel	
HTTP://PDG.LBL.GOV	Page 4		Creat	ed: 5/30/2017	17:20

$\Gamma(Na_0(980))/\Gamma_{\text{total}}$					Γ_{10}/Γ
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
• • • We do not use the following of	data for averages	s, fits,	limits, e	etc. • •	
4±2	HORN	08A	DPWA	Multichannel	
$\Gamma(\Delta(1232)\eta)/\Gamma_{total}$					Γ_{11}/Γ
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
11 ± 6	GUTZ	14	DPWA	Multichannel	
• • • We do not use the following of	data for averages	s, fits,	limits, e	etc. • • •	
15±8	ANISOVICH	12A	DPWA	Multichannel	

Δ (1920) PHOTON DECAY AMPLITUDES AT THE POLE

Δ (1920) \rightarrow N γ , helicity-1/2 amplitude A $_{1/2}$

$MODULUS$ ($GeV^{-1/2}$)	PHASE (°)	DOCUMENT ID		TECN	COMMENT
0.110 ± 0.030	-50 ± 20	SOKHOYAN	15A	DPWA	Multichannel
$0.190 ^{+ 0.050}_{- 0.022}$	-160^{+24}_{-11}	ROENCHEN	14	DPWA	

Δ (1920) \rightarrow N γ , helicity-3/2 amplitude A $_{3/2}$

$MODULUS$ ($GeV^{-1/2}$)	PHASE (°)	DOCUMENT ID		TECN	COMMENT
-0.100 ± 0.040	0 ± 20	SOKHOYAN	15A	DPWA	Multichannel
$-0.398 ^{\displaystyle +0.070}_{\displaystyle -0.067}$	-110^{+4}_{-5}	ROENCHEN	14	DPWA	

Δ (1920) BREIT-WIGNER PHOTON DECAY AMPLITUDES

Δ (1920) \rightarrow N γ , helicity-1/2 amplitude A $_{1/2}$

$VALUE~({ m GeV}^{-1/2})$	DOCUMENT ID		TECN	COMMENT
0.110 ± 0.030	SOKHOYAN	15A	DPWA	Multichannel
• • • We do not use the following of	data for averages	s, fits,	limits, e	tc. • • •
0.110 ± 0.030	GUTZ	14	DPWA	Multichannel
$0.130 {}^{+ 0.030}_{- 0.060}$	ANISOVICH	12A	DPWA	Multichannel
0.051 ± 0.010 - 0.007	SHRESTHA PENNER	12A 02D		Multichannel Multichannel
-0.007	I LIVIVLIX	020	DIVVA	Multichamie

$\Delta(1920) \rightarrow N\gamma$, helicity-3/2 amplitude A_{3/2}

<i>VALUE</i> (GeV $^{-1/2}$)	DOCUMENT ID		TECN	COMMENT
-0.105 ± 0.035	SOKHOYAN	15A	DPWA	Multichannel
• • • We do not use the following of	lata for averages	s, fits,	limits, e	tc. • • •
-0.105 ± 0.035	GUTZ	14	DPWA	Multichannel
$-0.115 {+0.025 \atop -0.050}$	ANISOVICH	12A	DPWA	Multichannel
0.017 ± 0.015	SHRESTHA	12A	DPWA	Multichannel
-0.001	PENNER	02 D	DPWA	Multichannel

Created: 5/30/2017 17:20

Δ (1920) FOOTNOTES

△(1920) REFERENCES

For early references, see Physics Letters 111B 1 (1982).

SOKHOYAN	15A	EPJ A51 95	V. Sokhoyan et al. (CBELSA/TAPS Collab.)
GUTZ	14	EPJ A50 74	E. Gutz et al.	CBELSA/TAPS Collab.)
PDG	14	CP C38 070001	K. Olive et al.	(PDG Collab.)
ROENCHEN	14	EPJ A50 101	D. Roenchen et al.	,
Also		EPJ A51 63 (errat.)	D. Roenchen et al.	
SVARC	14	PR C89 045205	A. Svarc et al.	
ANISOVICH	12A	EPJ A48 15	A.V. Anisovich et al.	(BONN, PNPI)
SHRESTHA	12A	PR C86 055203	M. Shrestha, D.M. Manley	` (KSU)
HORN	08A	EPJ A38 173	I. Horn <i>et al.</i>	(CB-ELSA Collab.)
Also		PRL 101 202002	I. Horn <i>et al.</i>	(CB-ELSA Collab.)
PENNER	02C	PR C66 055211	G. Penner, U. Mosel	(GIES)
PENNER	02D	PR C66 055212	G. Penner, U. Mosel	(GIES)
VRANA	00	PRPL 328 181	T.P. Vrana, S.A. Dytman, TS.H.	Lee (PITT, ANL)
HOEHLER	93	π N Newsletter 9 1	G. Hohler	(KARL)
CUTKOSKY	80	Toronto Conf. 19	R.E. Cutkosky et al.	(CMÙ, LBL) IJP
Also		PR D20 2839	R.E. Cutkosky et al.	(CMU, LBL) IJP
HOEHLER	79	PDAT 12-1	G. Hohler et al.	(KARLT) IJP
Also		Toronto Conf. 3	R. Koch	(KARLT) IJP

Created: 5/30/2017 17:20

 $^{^{\}mathrm{1}}$ Fit to the amplitudes of HOEHLER 79.