Automated Fish Classification Using Unprocessed Fatty Acid Chromatographic Data: A Machine Learning Approach

Jesse Wood, Bach Nguyen, Bing Xue, Mengjie Zhang, Daniel Killeen

INTRO

- Gas Chromatography is an analytical chemistry method that produces high-dimensional low-sample data.
- This study compares classification and feature selection when applied to gas chromatography data from fish oil.
- Classification to predict Fish Species and Body Parts, two datasets that share the same features.
- Feature selection to reduce the dimensionality, improve computation efficiency, and (even) improve classification performance.

METHODS

- Evaluation: average balanced classification accuracy over 10-fold crossvalidation.
- 30 independent runs for each classification method.
- Each **feature selection** method for number of features in { 50, 100, ..., 4800 }. PSO was evaluated on 30 independent runs.

RESULTS

- Classification: **Linear SVM** performed best, with **near-perfect** accuracy for fish species, and best accuracy for body parts.
- Feature Selection: PSO has **improves** accuracy for fish species, using 25% of the features making it **4 times faster**.

DISCUSSION

- Linear SVM provides an interpretable and accurate model.
- PSO/mRMR feature selection improve accuracy and efficiency.
- Body Parts is harder to classify than Fish Species

Linear SVM can accurately predict fish species, PSO makes that process 4 times faster, producing an accurate, interpretable and efficient model for Gas Chromatography.

Gas Chromatogram - where x-axis is time, y-axis is intensity - for the Snapper **Fish Species**:

A table with **classification** results:

	Dataset	Method	Train	Test
	Species	KNN	83.57	74.88
		RF	100.0	85.65
		DT	100.0	76.98
		NB	79.54	75.27
		SVM	100.0	98.33
,	Parts	KNN	68.95	43.61
		RF	100.00	72.60
		DT	100.00	60.14
		NB	65.54	48.61
		SVM	100.00	79.86

Linear SVM hyperplane coefficients for the Snapper **Fish Species**:

A table best accuracy for **feature selection** methods:

Dataset	Method	# Features	Train	Test
	ReliefF	359	100.0	98.33
	mRMR	1500	100.0	99.17
Species	χ^2	3250	100.0	98.33
	PSO	1192	100.0	99.17
	Full	4800	100.0	98.33
	ReliefF	1650	100.0	84.44
	mRMR	1500	100.0	86.94
Parts	χ^2	1550	100.0	82.50
	PSO	1223	100.0	84.31
	Full	4800	100.0	79.86