

PARCIAL II DE INTRODUCCIÓN A LA LÓGICA Y LA COMPUTACIÓN 31 / 10 / 2008

0,75 1. [1.5 pto] Probar que la cantidad de ocurrencias de átomos en una $\varphi \in PROP$ es igual a la cantidad ocurrencias de conectivos binarios más 1.

1 2. Hallar derivaciones que muestren:

-a) [1 pto] \vdash $(\varphi \lor \psi) \rightarrow (\psi \lor \varphi)$.

 \mathcal{N} b) [1 pto] $\{\varphi, \psi\} \vdash \neg(\varphi \rightarrow \neg \psi)$.

 $_{\wedge} c)$ [1 pto] $\vdash \neg(\varphi \rightarrow \neg \psi) \rightarrow (\varphi \wedge \psi)$

OS3. Decida cuáles de los siguientes conjuntos son consistentes.

`a) [1 pto] PROP \ {⊥}.

 $\sim b$) [1.5 pto] $\{p_0, \neg p_1, p_2, \neg p_3, p_4, \neg p_5, \dots\}$.

74. [1.5 pto] Probar que los conjuntos Γ consistentes maximales realizan la conjunción, es decir $\varphi \wedge \psi \in \Gamma$ si y sólo si $\varphi \in \Gamma$ y $\psi \in \Gamma$.

5. [1.5 pto] Probar que si $n \neq m$ entonces $\overline{p_n}$ y $\overline{p_m}$ son incomparables en \overline{PROP} . Es decir, $\overline{p_n} \not\preccurlyeq \overline{p_m}$ y $\overline{p_m} \not\preccurlyeq \overline{p_n}$. (Ayuda: usar un par de valuaciones y Corrección).

GURI LaBisagra

CETMAF

CENTRO DE ESTUDIANTES

FAMAF

2.25