

MONASH BUSINESS SCHOOL

ETC3550/ETC5550 Applied forecasting

Ch9. ARIMA models OTexts.org/fpp3/

ARIMA models

AR: autoregressive (lagged observations as inputs)

I: integrated (differencing to make series stationary)

MA: moving average (lagged errors as inputs)

ARIMA models

AR: autoregressive (lagged observations as inputs)

I: integrated (differencing to make series stationary)

MA: moving average (lagged errors as inputs)

An ARIMA model is rarely interpretable in terms of visible data structures like trend and seasonality. But it can capture a huge range of time series patterns.

2

Stationarity

Definition

If $\{y_t\}$ is a stationary time series, then for all s, the distribution of (y_t, \ldots, y_{t+s}) does not depend on t.

Stationarity

Definition

If $\{y_t\}$ is a stationary time series, then for all s, the distribution of (y_t, \ldots, y_{t+s}) does not depend on t.

Transformations help to **stabilize the variance**.

For ARIMA modelling, we also need to **stabilize the mean**.

Differencing

- Differencing helps to stabilize the mean.
- The differenced series is the *change* between each observation in the original series: $y'_t = y_t y_{t-1}$.
- The differenced series will have only T-1 values since it is not possible to calculate a difference y'_1 for the first observation.

Random walk model

If differenced series is white noise with zero mean:

$$y_t - y_{t-1} = \varepsilon_t$$
 or $y_t = y_{t-1} + \varepsilon_t$

where $\varepsilon_t \sim NID(0, \sigma^2)$.

- Very widely used for non-stationary data.
- This is the model behind the **naïve method**.
- Random walks typically have:
 - long periods of apparent trends up or down
 - Sudden/unpredictable changes in direction
- Forecast are equal to the last observation
 - future movements up or down are equally likely.

Random walk with drift model

If differenced series is white noise with non-zero mean:

$$y_t - y_{t-1} = c + \varepsilon_t$$
 or $y_t = c + y_{t-1} + \varepsilon_t$

where $\varepsilon_t \sim NID(0, \sigma^2)$.

- *c* is the **average change** between consecutive observations.
- If c > 0, y_t will tend to drift upwards and vice versa.
- This is the model behind the **drift method**.

Unit root tests

Statistical tests to determine the required order of differencing.

- Augmented Dickey Fuller test: null hypothesis is that the data are non-stationary and non-seasonal.
- Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test: null hypothesis is that the data are stationary and non-seasonal.
- Other tests available for seasonal data.

Automatically selecting differences

STL decomposition:
$$y_t = T_t + S_t + R_t$$

Seasonal strength
$$F_s = \max \left(0, 1 - \frac{Var(R_t)}{Var(S_t + R_t)}\right)$$

If $F_s > 0.64$, do one seasonal difference.

A very useful notational device is the backward shift operator, *B*, which is used as follows:

$$By_t = y_{t-1}$$

A very useful notational device is the backward shift operator, *B*, which is used as follows:

$$By_t = y_{t-1}$$

In other words, B, operating on y_t , has the effect of **shifting the** data back one period.

9

A very useful notational device is the backward shift operator, *B*, which is used as follows:

$$By_t = y_{t-1}$$

In other words, B, operating on y_t , has the effect of **shifting the** data back one period.

Two applications of B to y_t shifts the data back two periods:

$$B(By_t) = B^2y_t = y_{t-2}$$

A very useful notational device is the backward shift operator, *B*, which is used as follows:

$$By_t = y_{t-1}$$

In other words, B, operating on y_t , has the effect of **shifting the** data back one period.

Two applications of B to y_t shifts the data back two periods:

$$B(By_t) = B^2y_t = y_{t-2}$$

The backward shift operator is convenient for describing the process of *differencing*.

The backward shift operator is convenient for describing the process of *differencing*.

A first-order difference can be written as

$$y'_t = y_t - y_{t-1} = y_t - By_t = (1 - B)y_t$$

The backward shift operator is convenient for describing the process of *differencing*.

A first-order difference can be written as

$$y'_t = y_t - y_{t-1} = y_t - By_t = (1 - B)y_t$$

Similarly, if second-order differences (i.e., first differences of first differences) have to be computed, then:

$$y_t'' = y_t - 2y_{t-1} + y_{t-2} = (1 - B)^2 y_t$$

- Second-order difference is denoted $(1 B)^2$.
- Second-order difference is not the same as a second difference, which would be denoted $1 B^2$;
- In general, a dth-order difference can be written as

$$(1-B)^d y_t$$

 A seasonal difference followed by a first difference can be written as

$$(1-B)(1-B^m)y_t$$

The "backshift" notation is convenient because the terms can be multiplied together to see the combined effect.

$$(1-B)(1-B^m)y_t = (1-B-B^m+B^{m+1})y_t$$

= $y_t - y_{t-1} - y_{t-m} + y_{t-m-1}$.

The "backshift" notation is convenient because the terms can be multiplied together to see the combined effect.

$$(1-B)(1-B^m)y_t = (1-B-B^m+B^{m+1})y_t$$

= $y_t - y_{t-1} - y_{t-m} + y_{t-m-1}$.

For monthly data, m = 12 and we obtain the same result as earlier.

Outline

- Non-seasonal ARIMA models
- 2 Estimation and order selection
- 3 ARIMA modelling in R
- 4 Forecasting
- 5 Seasonal ARIMA models
- 6 ARIMA vs ETS

Autoregressive models

Autoregressive (AR) models:

$$y_t = c + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \cdots + \phi_p y_{t-p} + \varepsilon_t,$$

where ε_t is white noise. This is a multiple regression with **lagged** values of y_t as predictors.

AR(1) model

$$y_t = 18 - 0.8y_{t-1} + \varepsilon_t$$

 $\varepsilon_t \sim N(0,1), \quad T = 100.$

AR(1) model

$$y_t = c + \phi_1 y_{t-1} + \varepsilon_t$$

- When ϕ_1 = 0, y_t is equivalent to WN
- When $\phi_1 = 1$ and c = 0, y_t is **equivalent to a RW**
- When $\phi_1 = 1$ and $c \neq 0$, y_t is equivalent to a RW with drift
- When $\phi_1 < 0$, y_t tends to oscillate between positive and negative values.

AR(2) model

$$y_t = 8 + 1.3y_{t-1} - 0.7y_{t-2} + \varepsilon_t$$

 $\varepsilon_t \sim N(0,1), \qquad T = 100.$

Stationarity conditions

We normally restrict autoregressive models to stationary data, and then some constraints on the values of the parameters are required.

General condition for stationarity

Complex roots of $1 - \phi_1 z - \phi_2 z^2 - \cdots - \phi_p z^p$ lie outside the unit circle on the complex plane.

Stationarity conditions

We normally restrict autoregressive models to stationary data, and then some constraints on the values of the parameters are required.

General condition for stationarity

Complex roots of $1 - \phi_1 z - \phi_2 z^2 - \cdots - \phi_p z^p$ lie outside the unit circle on the complex plane.

- For $p = 1: -1 < \phi_1 < 1$.
- For p = 2:
 - $-1 < \phi_2 < 1$ $\phi_2 + \phi_1 < 1$ $\phi_2 \phi_1 < 1$.
- More complicated conditions hold for $p \ge 3$.

 Estimation software takes care of this

Moving Average (MA) models

Moving Average (MA) models:

$$y_t = c + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2} + \cdots + \theta_q \varepsilon_{t-q},$$

where ε_t is white noise. This is a multiple regression with **past** errors as predictors. Don't confuse this with moving average smoothing!

MA(1) model

$$y_t = 20 + \varepsilon_t + 0.8\varepsilon_{t-1}$$

 $\varepsilon_t \sim N(0,1), \quad T = 100.$

MA(2) model

$$y_t = \varepsilon_t - \varepsilon_{t-1} + 0.8\varepsilon_{t-2}$$

 $\varepsilon_t \sim N(0, 1), \quad T = 100.$

$MA(\infty)$ models

It is possible to write any stationary AR(p) process as an $MA(\infty)$ process.

Example: AR(1)

$$y_{t} = \phi_{1}y_{t-1} + \varepsilon_{t}$$

$$= \phi_{1}(\phi_{1}y_{t-2} + \varepsilon_{t-1}) + \varepsilon_{t}$$

$$= \phi_{1}^{2}y_{t-2} + \phi_{1}\varepsilon_{t-1} + \varepsilon_{t}$$

$$= \phi_{1}^{3}y_{t-3} + \phi_{1}^{2}\varepsilon_{t-2} + \phi_{1}\varepsilon_{t-1} + \varepsilon_{t}$$
...

$\mathsf{MA}(\infty)$ models

It is possible to write any stationary AR(p) process as an $MA(\infty)$ process.

Example: AR(1)

$$y_{t} = \phi_{1}y_{t-1} + \varepsilon_{t}$$

$$= \phi_{1}(\phi_{1}y_{t-2} + \varepsilon_{t-1}) + \varepsilon_{t}$$

$$= \phi_{1}^{2}y_{t-2} + \phi_{1}\varepsilon_{t-1} + \varepsilon_{t}$$

$$= \phi_{1}^{3}y_{t-3} + \phi_{1}^{2}\varepsilon_{t-2} + \phi_{1}\varepsilon_{t-1} + \varepsilon_{t}$$
...

Provided $-1 < \phi_1 < 1$:

Invertibility

- Any MA(q) process can be written as an AR(∞) process if we impose some constraints on the MA parameters.
- Then the MA model is called "invertible".
- Invertible models have some mathematical properties that make them easier to use in practice.
- Invertibility of an ARIMA model is equivalent to forecastability of an ETS model.

Invertibility

General condition for invertibility

Complex roots of $1 + \theta_1 z + \theta_2 z^2 + \cdots + \theta_q z^q$ lie outside the unit circle on the complex plane.

Invertibility

General condition for invertibility

Complex roots of $1 + \theta_1 z + \theta_2 z^2 + \cdots + \theta_q z^q$ lie outside the unit circle on the complex plane.

- For $q = 1: -1 < \theta_1 < 1$.
- For q = 2:

$$-1 < heta_2 < 1$$
 $heta_2 + heta_1 > -1$ $heta_1 - heta_2 < 1$.

- More complicated conditions hold for $q \ge 3$.
- Estimation software takes care of this.

ARIMA models

Autoregressive Moving Average models:

$$y_{t} = c + \phi_{1}y_{t-1} + \dots + \phi_{p}y_{t-p}$$
$$+ \theta_{1}\varepsilon_{t-1} + \dots + \theta_{q}\varepsilon_{t-q} + \varepsilon_{t}.$$

ARIMA models

Autoregressive Moving Average models:

$$y_{t} = c + \phi_{1}y_{t-1} + \dots + \phi_{p}y_{t-p}$$
$$+ \theta_{1}\varepsilon_{t-1} + \dots + \theta_{q}\varepsilon_{t-q} + \varepsilon_{t}.$$

- \blacksquare Predictors include both **lagged values of** y_t **and lagged errors.**
- Conditions on AR coefficients ensure stationarity.
- Conditions on MA coefficients ensure invertibility.

ARIMA models

Autoregressive Moving Average models:

$$y_t = c + \phi_1 y_{t-1} + \dots + \phi_p y_{t-p}$$

$$+ \theta_1 \varepsilon_{t-1} + \dots + \theta_a \varepsilon_{t-a} + \varepsilon_t.$$

- \blacksquare Predictors include both lagged values of y_t and lagged errors.
- Conditions on AR coefficients ensure stationarity.
- Conditions on MA coefficients ensure invertibility.

Autoregressive Integrated Moving Average models

■ Combine ARMA model with **differencing**.

- /1 D)dy fallows on ADMA model

ARIMA models

Autoregressive Integrated Moving Average models

ARIMA(p, d, q) model

AR: p =order of the autoregressive part

I: d =degree of first differencing involved

MA: q =order of the moving average part.

- White noise model: ARIMA(0,0,0)
- Random walk: ARIMA(0,1,0) with no constant
- Random walk with drift: ARIMA(0,1,0) with const.
- \blacksquare AR(p): ARIMA(p,0,0)
- \blacksquare MA(q): ARIMA(0,0,q)

Backshift notation for ARIMA

■ ARMA model:

$$y_t = c + \phi_1 B y_t + \dots + \phi_p B^p y_t + \varepsilon_t + \theta_1 B \varepsilon_t + \dots + \theta_q B^q \varepsilon_t$$
or
$$(1 - \phi_1 B - \dots - \phi_p B^p) y_t = c + (1 + \theta_1 B + \dots + \theta_q B^q) \varepsilon_t$$

ARIMA(1,1,1) model:

$$(1 - \phi_1 B)$$
 $(1 - B)y_t = c + (1 + \theta_1 B)\varepsilon_t$
 \uparrow \uparrow \uparrow

AR(1) First MA(1)

difference

Backshift notation for ARIMA

■ ARMA model:

$$y_t = c + \phi_1 B y_t + \dots + \phi_p B^p y_t + \varepsilon_t + \theta_1 B \varepsilon_t + \dots + \theta_q B^q \varepsilon_t$$
or
$$(1 - \phi_1 B - \dots - \phi_p B^p) y_t = c + (1 + \theta_1 B + \dots + \theta_q B^q) \varepsilon_t$$

ARIMA(1,1,1) model:

$$(1 - \phi_1 B)$$
 $(1 - B)y_t = c + (1 + \theta_1 B)\varepsilon_t$
 \uparrow \uparrow \uparrow \uparrow
AR(1) First MA(1)
difference

R model

Intercept form

$$(1 - \phi_1 B - \dots - \phi_p B^p) y_t' = c + (1 + \theta_1 B + \dots + \theta_q B^q) \varepsilon_t$$

Mean form

$$(1 - \phi_1 B - \dots - \phi_p B^p)(y_t' - \mu) = (1 + \theta_1 B + \dots + \theta_q B^q)\varepsilon_t$$

- $y_t' = (1-B)^d y_t$
- \blacksquare μ is the mean of y'_t .
- $c = \mu(1 \phi_1 \cdots \phi_p).$
- fable uses intercept form

```
global_economy |>
  filter(Code == "EGY") |>
  autoplot(Exports) +
  labs(y = "% of GDP", title = "Egyptian Exports")
```



```
fit <- global_economy |>
 filter(Code == "EGY") |>
 model(ARIMA(Exports))
report(fit)
Series: Exports
Model: ARIMA(2,0,1) w/ mean
Coefficients:
       ar1 ar2 ma1
                           constant
     1.676 -0.8034 -0.690
                              2.562
s.e. 0.111 0.0928 0.149
                              0.116
sigma^2 estimated as 8.046: log likelihood=-142
ATC=293 ATCc=294 BTC=303
```

```
fit <- global_economy |>
  filter(Code == "EGY") |>
  model(ARIMA(Exports))
report(fit)
```

```
Series: Exports
Model: ARIMA(2,0,1) w/ mean
```

Coefficients:

```
ar1 ar2 ma1 constant
1.676 -0.8034 -0.690 2.562
s.e. 0.111 0.0928 0.149 0.116
```

sigma^2 estimated as 8.046: log likelihood=-142

where c_i is white noise with a standard deviation of 2.927 = $\sqrt{9.046}$

ARIMA(2,0,1) model:

$$y_t = 2.56 + 1.68y_{t-1} - 0.80y_{t-2} - 0.69\varepsilon_{t-1} + \varepsilon_t$$

1 Egypt, Arab Rep. ARIMA(Exports) 5.78 0.448

```
fit |>
  forecast(h = 10) |>
  autoplot(global_economy) +
  labs(y = "% of GDP", title = "Egyptian Exports")
```


Understanding ARIMA models

- If c = 0 and d = 0, the long-term forecasts will go to zero.
- If c = 0 and d = 1, the long-term forecasts will go to a non-zero constant.
- If c = 0 and d = 2, the long-term forecasts will follow a straight line.
- If $c \neq 0$ and d = 0, the long-term forecasts will go to the mean of the data.
- If $c \neq 0$ and d = 1, the long-term forecasts will follow a straight line.

Understanding ARIMA models

Forecast variance and *d*

- The higher the value of *d*, the more rapidly the prediction intervals increase in size.
- For d = 0, the long-term forecast standard deviation will go to the standard deviation of the historical data.

Cyclic behaviour

- For cyclic forecasts, $p \ge 2$ and some restrictions on coefficients are required.
- If p = 2, we need $\phi_1^2 + 4\phi_2 < 0$. Then average cycle of length

$$(2\pi)/\left[\arccos(-\phi_1(1-\phi_2)/(4\phi_2))\right]$$
.

Outline

- 1 Non-seasonal ARIMA models
- 2 Estimation and order selection
- 3 ARIMA modelling in R
- 4 Forecasting
- 5 Seasonal ARIMA models
- 6 ARIMA vs ETS

Maximum likelihood estimation

Having identified the model order, we need to estimate the parameters $c, \phi_1, \ldots, \phi_p, \theta_1, \ldots, \theta_q$.

Maximum likelihood estimation

Having identified the model order, we need to estimate the parameters $c, \phi_1, \ldots, \phi_p, \theta_1, \ldots, \theta_q$.

 MLE is very similar to least squares estimation obtained by minimizing

$$\sum_{t=1}^{T} e_t^2$$

- The ARIMA() function allows CLS or MLE estimation.
- Non-linear optimization must be used in either case.
- Different software will give different estimates.

Partial autocorrelations

Partial autocorrelations measure relationship between y_t and y_{t-k} , when the effects of other time lags $-1, 2, 3, \ldots, k-1$ — are removed.

Partial autocorrelations

Partial autocorrelations measure relationship between y_t and y_{t-k} , when the effects of other time lags $-1, 2, 3, \ldots, k-1$ — are removed.

$$\alpha_k$$
 = k th partial autocorrelation coefficient
= equal to the estimate of ϕ_k in regression:
 $y_t = c + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \cdots + \phi_k y_{t-k} + \varepsilon_t$.

Partial autocorrelations

Partial autocorrelations measure relationship

between y_t and y_{t-k} , when the effects of other time lags $-1, 2, 3, \ldots, k-1$ — are removed.

$$\alpha_k$$
 = k th partial autocorrelation coefficient
= equal to the estimate of ϕ_k in regression:
 $y_t = c + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \cdots + \phi_k y_{t-k} + \varepsilon_t$.

- Varying number of terms on RHS gives α_k for different values of k.
- $\alpha_1 = \rho_1$
- same critical values of $\pm 1.96/\sqrt{T}$ as for ACF.
- Last significant α_{ν} indicates the order of an AR model.

```
egypt <- global_economy |> filter(Code == "EGY")
egypt |>
   ACF(Exports) |>
   autoplot()
egypt |>
   PACF(Exports) |>
   autoplot()
```



```
global_economy |>
  filter(Code == "EGY") |>
  gg_tsdisplay(Exports, plot_type = "partial")
```


AR(1)

$$\rho_k = \phi_1^k \qquad \text{for } k = 1, 2, \dots;$$
 $\alpha_1 = \phi_1 \qquad \alpha_k = 0 \qquad \text{for } k = 2, 3, \dots.$

So we have an AR(1) model when

- autocorrelations exponentially decay
- there is a single significant partial autocorrelation.

AR(p)

- ACF dies out in an exponential or damped sine-wave manner
- PACF has all zero spikes beyond the *p*th spike

So we have an AR(p) model when

- the ACF is exponentially decaying or sinusoidal
- there is a significant spike at lag *p* in PACF, but none beyond *p*

MA(1)

$$\rho_1 = \theta_1/(1 + \theta_1^2) \qquad \rho_k = 0 \qquad \text{for } k = 2, 3, \dots;$$

$$\alpha_k = -(-\theta_1)^k/(1 + \theta_1^2 + \dots + \theta_1^{2k})$$

So we have an MA(1) model when

- the PACF is exponentially decaying and
- there is a single significant spike in ACF

MA(q)

- PACF dies out in an exponential or damped sine-wave manner
- ACF has all zero spikes beyond the qth spike

So we have an MA(q) model when

- the PACF is exponentially decaying or sinusoidal
- there is a significant spike at lag q in ACF, but none beyond q

Akaike's Information Criterion (AIC):

$$AIC = -2 \log(L) + 2(p + q + k + 1),$$

where L is the likelihood of the data, k = 1 if $c \neq 0$ and k = 0 if c = 0.

Akaike's Information Criterion (AIC):

$$AIC = -2\log(L) + 2(p + q + k + 1),$$

where L is the likelihood of the data, k = 1 if $c \neq 0$ and k = 0 if c = 0.

Corrected AIC:

AICc = AIC +
$$\frac{2(p+q+k+1)(p+q+k+2)}{T-p-q-k-2}$$
.

Akaike's Information Criterion (AIC):

$$AIC = -2 \log(L) + 2(p + q + k + 1),$$

where L is the likelihood of the data, k = 1 if $c \neq 0$ and k = 0 if c = 0.

Corrected AIC:

AICc = AIC +
$$\frac{2(p+q+k+1)(p+q+k+2)}{T-p-q-k-2}$$
.

Bayesian Information Criterion:

BIC = AIC +
$$[\log(T) - 2](p + q + k + 1)$$
.

Akaike's Information Criterion (AIC):

$$AIC = -2\log(L) + 2(p + q + k + 1),$$

where L is the likelihood of the data, k = 1 if $c \neq 0$ and k = 0 if c = 0.

Corrected AIC:

AICc = AIC +
$$\frac{2(p+q+k+1)(p+q+k+2)}{T-p-q-k-2}$$
.

Bayesian Information Criterion:

Our proforance is to use the AICs

BIC = AIC +
$$\lceil \log(T) - 2 \rceil (p + q + k + 1)$$
.

Good models are obtained by minimizing either the AIC, AICc or BIC.

Outline

- 1 Non-seasonal ARIMA models
- 2 Estimation and order selection
- 3 ARIMA modelling in R
- 4 Forecasting
- 5 Seasonal ARIMA models
- 6 ARIMA vs ETS

A non-seasonal ARIMA process

$$\phi(B)(1-B)^d y_t = c + \theta(B)\varepsilon_t$$

Need to select appropriate orders: p, q, d

Hyndman and Khandakar (JSS, 2008) algorithm:

- Select no. differences d and D via KPSS test and seasonal strength measure.
- Select p, q by minimising AICc.
- Use stepwise search to traverse model space.

AICc =
$$-2 \log(L) + 2(p+q+k+1) \left[1 + \frac{(p+q+k+2)}{T-p-q-k-2}\right]$$
. where L is the maximised likelihood fitted to the *differenced* data, $k=1$ if $c \neq 0$ and $k=0$ otherwise.

AICc =
$$-2 \log(L) + 2(p+q+k+1) \left[1 + \frac{(p+q+k+2)}{T-p-q-k-2}\right]$$
. where L is the maximised likelihood fitted to the *differenced* data, $k=1$ if $c \neq 0$ and $k=0$ otherwise.

Step1: Select current model (with smallest AICc) from: ARIMA(2, d, 2), ARIMA(0, d, 0), ARIMA(1, d, 0), ARIMA(0, d, 1)

AICc =
$$-2 \log(L) + 2(p+q+k+1) \left[1 + \frac{(p+q+k+2)}{T-p-q-k-2}\right]$$
. where L is the maximised likelihood fitted to the *differenced* data, $k=1$ if $c \neq 0$ and $k=0$ otherwise.

Step1: Select current model (with smallest AICc) from: ARIMA(2, d, 2), ARIMA(0, d, 0), ARIMA(1, d, 0), ARIMA(0, d, 1)

Step 2: Consider variations of current model:

- vary one of p, q, from current model by ± 1 ;
- lacksquare p,q both vary from current model by ± 1 ;
- Include/exclude *c* from current model.

Model with lowest AICc becomes current model.

How does ARIMA() work?

How does ARIMA() work?

How does ARIMA() work?

Egyptian exports

```
global_economy |>
  filter(Code == "EGY") |>
  gg_tsdisplay(Exports, plot_type = "partial")
```


53

Egyptian exports

```
fit1 <- global_economy |>
 filter(Code == "EGY") |>
 model(ARIMA(Exports ~ pdq(4, 0, 0)))
report(fit1)
Series: Exports
Model: ARIMA(4,0,0) w/ mean
Coefficients:
       ar1 ar2 ar3 ar4 constant
     0.986 - 0.172 0.181 - 0.328 6.692
s.e. 0.125 0.186 0.186 0.127 0.356
sigma^2 estimated as 7.885: log likelihood=-141
ATC=293 ATCc=295 BTC=305
```

Egyptian exports

```
fit2 <- global_economy |>
 filter(Code == "EGY") |>
 model(ARIMA(Exports))
report(fit2)
Series: Exports
Model: ARIMA(2,0,1) w/ mean
Coefficients:
       ar1 ar2 mal constant
     1.676 -0.8034 -0.690
                             2.562
s.e. 0.111 0.0928 0.149
                              0.116
```

sigma^2 estimated as 8.046: log likelihood=-142

ATC=293 ATCc=294 BTC=303

```
global_economy |>
  filter(Code == "CAF") |>
  autoplot(Exports) +
  labs(title = "Central African Republic exports", y = "% of GDP")
```



```
global_economy |>
  filter(Code == "CAF") |>
  gg_tsdisplay(difference(Exports), plot_type = "partial")
difference(Exports
   8 -
        1960
                                        1980
                                                                       2000
                                                     Year
   0.2 -
                                                         0.2 -
                                                     pacf
   0.0
  -0.4 -
                                   12
                                                                                         12
                                             16
                                                                                                   16
                         lag [1Y]
                                                                               lag [1Y]
```

57

```
caf_fit <- global_economy |>
  filter(Code == "CAF") |>
  model(
    arima210 = ARIMA(Exports ~ pdq(2, 1, 0)),
    arima013 = ARIMA(Exports ~ pdq(0, 1, 3)),
    stepwise = ARIMA(Exports),
    search = ARIMA(Exports, stepwise = FALSE)
)
```

```
caf fit |> pivot longer(!Country.
  names_to = "Model name",
  values to = "Orders"
# A mable: 4 x 3
# Key: Country, Model name [4]
  Country
                             `Model name`
                                                    Orders
  <fct>
                                                   <model>
                             <chr>
1 Central African Republic arima210
                                            \langle ARIMA(2,1,0) \rangle
2 Central African Republic arima013
                                            < ARIMA(0,1,3) >
3 Central African Republic stepwise
                                            \langle ARIMA(2,1,2) \rangle
4 Central African Republic search
                                            <ARIMA(3,1,0)>
```

```
glance(caf_fit) |>
  arrange(AICc) |>
  select(.model:BIC)
```

```
# A tibble: 4 x 6
          sigma2 log_lik AIC AICc
  .model
                                     BIC
 <chr>
         <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <
1 search 6.52 -133. 274.
                              275.
                                    282.
2 arima210 6.71 −134. 275.
                              275.
                                    281.
3 arima013 6.54 -133, 274, 275.
                                    282.
4 stepwise 6.42 -132. 274. 275.
                                    284.
```



```
caf_fit |>
  forecast(h = 5) |>
  filter(.model == "search") |>
  autoplot(global_economy)
```


Modelling procedure with ARIMA()

- Plot the data. Identify any unusual observations.
- If necessary, transform the data (using a Box-Cox transformation) to stabilize the variance.
- If the data are non-stationary: take first differences of the data until the data are stationary.
- Examine the ACF/PACF: Is an AR(p) or MA(q) model appropriate?
- Try your chosen model(s), and use the AICc to search for a better model.
- Check the residuals from your chosen model by plotting the ACF of the residuals, and doing a portmanteau test of the residuals. If they do not look like white noise, try a modified model.
 - Once the residuals look like white noise, calculate forecasts.

Automatic modelling procedure with ARIMA()

- Plot the data. Identify any unusual observations.
- If necessary, transform the data (using a Box-Cox transformation) to stabilize the variance.

Use ARIMA to automatically select a model.

Check the residuals from your chosen model by plotting the ACF of the residuals, and doing a portmanteau test of the residuals. If they do not look like white noise, try a modified model.

Once the residuals look like white noise, calculate forecasts.

Modelling procedure

Outline

- 1 Non-seasonal ARIMA models
- 2 Estimation and order selection
- 3 ARIMA modelling in R
- 4 Forecasting
- 5 Seasonal ARIMA models
- 6 ARIMA vs ETS

- Rearrange ARIMA equation so y_t is on LHS.
- Rewrite equation by replacing t by T + h.
- On RHS, replace future observations by their forecasts, future errors by zero, and past errors by corresponding residuals.

Start with h = 1. Repeat for h = 2, 3, ...

$$(1 - \phi_1 B - \phi_2 B^2 - \phi_3 B^3)(1 - B)y_t = (1 + \theta_1 B)\varepsilon_t,$$

$$(1 - \phi_1 B - \phi_2 B^2 - \phi_3 B^3)(1 - B)y_t = (1 + \theta_1 B)\varepsilon_t$$

$$[1 - (1 + \phi_1)B + (\phi_1 - \phi_2)B^2 + (\phi_2 - \phi_3)B^3 + \phi_3B^4]y_t$$

= $(1 + \theta_1B)\varepsilon_t$,

$$(1 - \phi_1 B - \phi_2 B^2 - \phi_3 B^3)(1 - B)y_t = (1 + \theta_1 B)\varepsilon_t$$

$$[1 - (1 + \phi_1)B + (\phi_1 - \phi_2)B^2 + (\phi_2 - \phi_3)B^3 + \phi_3B^4]y_t$$

= $(1 + \theta_1B)\varepsilon_t$,

$$y_{t} - (1 + \phi_{1})y_{t-1} + (\phi_{1} - \phi_{2})y_{t-2} + (\phi_{2} - \phi_{3})y_{t-3} + \phi_{3}y_{t-4} = \varepsilon_{t} + \theta_{1}\varepsilon_{t-1}.$$

$$(1 - \phi_1 B - \phi_2 B^2 - \phi_3 B^3)(1 - B)y_t = (1 + \theta_1 B)\varepsilon_t$$

$$[1 - (1 + \phi_1)B + (\phi_1 - \phi_2)B^2 + (\phi_2 - \phi_3)B^3 + \phi_3B^4]y_t$$

= $(1 + \theta_1B)\varepsilon_t$,

$$y_{t} - (1 + \phi_{1})y_{t-1} + (\phi_{1} - \phi_{2})y_{t-2} + (\phi_{2} - \phi_{3})y_{t-3} + \phi_{3}y_{t-4} = \varepsilon_{t} + \theta_{1}\varepsilon_{t-1}.$$

Point forecasts (h=1)

$$y_{t} = (1 + \phi_{1})y_{t-1} - (\phi_{1} - \phi_{2})y_{t-2} - (\phi_{2} - \phi_{3})y_{t-3} - \phi_{3}y_{t-4} + \varepsilon_{t} + \theta_{1}\varepsilon_{t-1}.$$

Point forecasts (h=1)

$$y_{t} = (1 + \phi_{1})y_{t-1} - (\phi_{1} - \phi_{2})y_{t-2} - (\phi_{2} - \phi_{3})y_{t-3} - \phi_{3}y_{t-4} + \varepsilon_{t} + \theta_{1}\varepsilon_{t-1}.$$

$$y_{T+1} = (1 + \phi_1)y_T - (\phi_1 - \phi_2)y_{T-1} - (\phi_2 - \phi_3)y_{T-2} - \phi_3y_{T-3} + \varepsilon_{T+1} + \theta_1\varepsilon_T.$$

Point forecasts (h=1)

$$y_{t} = (1 + \phi_{1})y_{t-1} - (\phi_{1} - \phi_{2})y_{t-2} - (\phi_{2} - \phi_{3})y_{t-3} - \phi_{3}y_{t-4} + \varepsilon_{t} + \theta_{1}\varepsilon_{t-1}.$$

ARIMA(3,1,1) forecasts: Step 2

$$y_{T+1} = (1 + \phi_1)y_T - (\phi_1 - \phi_2)y_{T-1} - (\phi_2 - \phi_3)y_{T-2} - \phi_3y_{T-3} + \varepsilon_{T+1} + \theta_1\varepsilon_T.$$

$$\hat{y}_{T+1|T} = (1+\phi_1)y_T - (\phi_1 - \phi_2)y_{T-1} - (\phi_2 - \phi_3)y_{T-2}$$

Point forecasts (h=2)

$$y_{t} = (1 + \phi_{1})y_{t-1} - (\phi_{1} - \phi_{2})y_{t-2} - (\phi_{2} - \phi_{3})y_{t-3} - \phi_{3}y_{t-4} + \varepsilon_{t} + \theta_{1}\varepsilon_{t-1}.$$

Point forecasts (h=2)

$$y_{t} = (1 + \phi_{1})y_{t-1} - (\phi_{1} - \phi_{2})y_{t-2} - (\phi_{2} - \phi_{3})y_{t-3} - \phi_{3}y_{t-4} + \varepsilon_{t} + \theta_{1}\varepsilon_{t-1}.$$

$$y_{T+2} = (1 + \phi_1)y_{T+1} - (\phi_1 - \phi_2)y_T - (\phi_2 - \phi_3)y_{T-1} - \phi_3y_{T-2} + \varepsilon_{T+2} + \theta_1\varepsilon_{T+1}.$$

Point forecasts (h=2)

$$y_{t} = (1 + \phi_{1})y_{t-1} - (\phi_{1} - \phi_{2})y_{t-2} - (\phi_{2} - \phi_{3})y_{t-3} - \phi_{3}y_{t-4} + \varepsilon_{t} + \theta_{1}\varepsilon_{t-1}.$$

ARIMA(3,1,1) forecasts: Step 2

$$y_{T+2} = (1 + \phi_1)y_{T+1} - (\phi_1 - \phi_2)y_T - (\phi_2 - \phi_3)y_{T-1} - \phi_3y_{T-2} + \varepsilon_{T+2} + \theta_1\varepsilon_{T+1}.$$

$$\hat{y}_{T+2|T} = (1+\phi_1)\hat{y}_{T+1|T} - (\phi_1 - \phi_2)y_T - (\phi_2 - \phi_3)y_{T-1}$$

95% prediction interval

$$\hat{y}_{T+h|T} \pm 1.96 \sqrt{v_{T+h|T}}$$

where $v_{T+h|T}$ is estimated forecast variance.

95% prediction interval

$$\hat{y}_{T+h|T} \pm 1.96 \sqrt{v_{T+h|T}}$$

where $v_{T+h|T}$ is estimated forecast variance.

- $v_{T+1|T} = \hat{\sigma}^2$ for all ARIMA models regardless of parameters and orders.
- Multi-step prediction intervals for ARIMA(0,0,q):

$$y_{t} = \varepsilon_{t} + \sum_{i=1}^{q} \theta_{i} \varepsilon_{t-i}.$$

$$v_{T|T+h} = \hat{\sigma}^{2} \left[1 + \sum_{i=1}^{h-1} \theta_{i}^{2} \right], \quad \text{for } h = 2, 3, \dots.$$

95% prediction interval

$$\hat{y}_{T+h|T} \pm 1.96\sqrt{v_{T+h|T}}$$

where $v_{T+h|T}$ is estimated forecast variance.

Multi-step prediction intervals for ARIMA(0,0,q):

$$y_t = \varepsilon_t + \sum_{i=1}^q \theta_i \varepsilon_{t-i}.$$

$$v_{T|T+h} = \hat{\sigma}^2 \left[1 + \sum_{i=1}^{h-1} \theta_i^2 \right], \quad \text{for } h = 2, 3, \dots.$$

95% prediction interval

$$\hat{y}_{T+h|T} \pm 1.96\sqrt{v_{T+h|T}}$$

where $v_{T+h|T}$ is estimated forecast variance.

■ Multi-step prediction intervals for ARIMA(0,0,q):

$$y_t = \varepsilon_t + \sum_{i=1}^q \theta_i \varepsilon_{t-i}.$$

$$v_{T|T+h} = \hat{\sigma}^2 \left[1 + \sum_{i=1}^{h-1} \theta_i^2 \right], \quad \text{for } h = 2, 3, \dots.$$

• AR(1): Rewrite as MA(∞) and use above result.

- Prediction intervals increase in size with forecast horizon.
- Prediction intervals can be difficult to calculate by hand
- Calculations assume residuals are uncorrelated and normally distributed.
- Prediction intervals tend to be too narrow.
 - the uncertainty in the parameter estimates has not been accounted for.
 - the ARIMA model assumes historical patterns will not change during the forecast period.
 - the ARIMA model assumes uncorrelated future errors

Outline

- 1 Non-seasonal ARIMA models
- 2 Estimation and order selection
- 3 ARIMA modelling in R
- 4 Forecasting
- 5 Seasonal ARIMA models
- 6 ARIMA vs ETS

Seasonal ARIMA models

where m = number of observations per year.

E.g., $ARIMA(1, 1, 1)(1, 1, 1)_4$ model (without constant)

E.g., $ARIMA(1, 1, 1)(1, 1, 1)_4$ model (without constant)

$$(1-\phi_1B)(1-\Phi_1B^4)(1-B)(1-B^4)y_t = (1+\theta_1B)(1+\Theta_1B^4)\varepsilon_t.$$

E.g., $ARIMA(1, 1, 1)(1, 1, 1)_4$ model (without constant)

$$(1-\phi_1B)(1-\Phi_1B^4)(1-B)(1-B^4)y_t \; = \; (1+\theta_1B)(1+\Theta_1B^4)\varepsilon_t.$$

E.g., $ARIMA(1, 1, 1)(1, 1, 1)_4$ model (without constant)

$$(1 - \phi_1 B)(1 - \Phi_1 B^4)(1 - B)(1 - B^4)y_t = (1 + \theta_1 B)(1 + \Theta_1 B^4)\varepsilon_t.$$

All the factors can be multiplied out and the general model written

$$y_{t} = (1 + \phi_{1})y_{t-1} - \phi_{1}y_{t-2} + (1 + \Phi_{1})y_{t-4}$$
$$- (1 + \phi_{1} + \Phi_{1} + \phi_{1}\Phi_{1})y_{t-5} + (\phi_{1} + \phi_{1}\Phi_{1})y_{t-6}$$
$$- \Phi_{1}y_{t-8} + (\Phi_{1} + \phi_{1}\Phi_{1})y_{t-9} - \phi_{1}\Phi_{1}y_{t-10}$$

Common ARIMA models

The US Census Bureau uses the following models most often:

ARIMA $(0,1,1)(0,1,1)_m$	with log transformation
ARIMA $(0,1,2)(0,1,1)_m$	with log transformation
ARIMA(2,1,0)(0,1,1) $_m$	with log transformation
ARIMA $(0,2,2)(0,1,1)_m$	with log transformation
ARIMA $(2,1,2)(0,1,1)_m$	with no transformation

The seasonal part of an AR or MA model will be seen in the seasonal lags of the PACF and ACF.

ARIMA(0,0,0)(0,0,1)₁₂ will show:

- a spike at lag 12 in the ACF but no other significant spikes.
- The PACF will show exponential decay in the seasonal lags; that is, at lags 12, 24, 36,

ARIMA(0,0,0)(1,0,0)₁₂ will show:

- exponential decay in the seasonal lags of the ACF
- a single significant spike at lag 12 in the PACF

```
leisure <- us_employment |>
  filter(Title == "Leisure and Hospitality", year(Month) > 2000) |>
  mutate(Employed = Employed / 1000) |>
  select(Month, Employed)
autoplot(leisure, Employed) +
  labs(title = "US employment: leisure & hospitality", y = "People (millions)")
```



```
leisure |>
   gg_tsdisplay(difference(Employed, 12), plot_type = "partial", lag = 36) +
   labs(title = "Seasonally differenced", y = "")
```



```
leisure |>
  gg_tsdisplay(difference(Employed, 12) |> difference(),
   plot_type = "partial", lag = 36
) +
labs(title = "Double differenced", y = "")
```



```
fit <- leisure |>
  model(
    arima012011 = ARIMA(Employed ~ pdq(0, 1, 2) + PDQ(0, 1, 1)),
    arima210011 = ARIMA(Employed ~ pdq(2, 1, 0) + PDQ(0, 1, 1)),
    auto = ARIMA(Employed, stepwise = FALSE, approx = FALSE)
)
fit |> pivot_longer(everything(),
  names_to = "Model name",
  values_to = "Orders"
)
```

```
glance(fit) |>
  arrange(AICc) |>
  select(.model:BIC)
```



```
forecast(fit, h = 36) |>
  filter(.model == "auto") |>
  autoplot(leisure) +
  labs(title = "US employment: leisure and hospitality", y = "Number of people (mill
     US employment: leisure and hospitality
```



```
h02 <- PBS |>
filter(ATC2 == "H02") |>
summarise(Cost = sum(Cost) / 1e6)
```

```
h02 |> autoplot(
  Cost
)
```



```
h02 |> autoplot(
  log(Cost)
)
```



```
h02 |> gg_tsdisplay(difference(log(Cost), 12),
   lag_max = 36, plot_type = "partial"
difference(log(Cost),
                                                     2000 Jan
                                                                               2005 Jan
                          1995 Jan
                                                     Month
                                                          0.4 -
                                                      pacf
acf
   -0.2 -
                     12
                                                                                         24
                                                                                                             93
                            18
                                                                                  18
                                                                               lag [1M]
                          lag [1M]
```

- Choose D = 1 and d = 0.
- Spikes in PACF at lags 12 and 24 suggest seasonal AR(2) term.
- Spikes in PACF suggests possible non-seasonal AR(3) term.
- Initial candidate model: $ARIMA(3,0,0)(2,1,0)_{12}$.

.model	AICc
ARIMA(3,0,1)(0,1,2)[12]	-485
ARIMA(3,0,1)(1,1,1)[12]	-484
ARIMA(3,0,1)(0,1,1)[12]	-484
ARIMA(3,0,1)(2,1,0)[12]	-476
ARIMA(3,0,0)(2,1,0)[12]	-475
ARIMA(3,0,2)(2,1,0)[12]	-475
ARIMA(3,0,1)(1,1,0)[12]	-463

ATC=-486 ATCc=-485 BTC=-463

```
fit <- h02 |>
 model(best = ARIMA(log(Cost) \sim 0 + pdq(3, 0, 1) + PDQ(0, 1, 2)))
report(fit)
Series: Cost
Model: ARIMA(3,0,1)(0,1,2)[12]
Transformation: log(Cost)
Coefficients:
        ar1 ar2 ar3 ma1 sma1
                                             sma2
     -0.160 0.5481 0.5678 0.383 -0.5222 -0.1768
s.e. 0.164 0.0878 0.0942 0.190 0.0861
                                           0.0872
sigma^2 estimated as 0.004278: log likelihood=250
```



```
fit <- h02 |> model(auto = ARIMA(log(Cost)))
report(fit)
Series: Cost
Model: ARIMA(2,1,0)(0,1,1)[12]
Transformation: log(Cost)
Coefficients:
         ar1 ar2 sma1
     -0.8491 -0.4207 -0.6401
s.e. 0.0712 0.0714 0.0694
```

AIC=-483 AICc=-483 BIC=-470

sigma^2 estimated as 0.004387: log likelihood=245


```
augment(fit) |>
  features(.innov, ljung_box, lag = 36, dof = 3)

# A tibble: 1 x 3
  .model lb_stat lb_pvalue
```

```
fit <- h02 |>
 model(best = ARIMA(log(Cost).
   stepwise = FALSE,
   approximation = FALSE,
   order_constraint = p + q + P + Q <= 9
report(fit)
Series: Cost
Model: ARIMA(4,1,1)(2,1,2)[12]
Transformation: log(Cost)
Coefficients:
         ar1 ar2 ar3 ar4 mal sar1 sar2 sma1 sma2
     -0.0425 0.210 0.202 -0.227 -0.742 0.621 -0.383 -1.202 0.496
s.e. 0.2167 0.181 0.114 0.081 0.207 0.242 0.118 0.249 0.213
```

sigma^2 estimated as 0.004049: log likelihood=254


```
augment(fit) |>
  features(.innov, ljung_box, lag = 36, dof = 9)
# A tibble: 1 x 3
```

Training data: July 1991 to June 2006

Test data: July 2006–June 2008

```
fit <- h02 |>
  filter_index(~ "2006 Jun") |>
  model(
    ARIMA(log(Cost) \sim 0 + pdq(3, 0, 0) + PDQ(2, 1, 0)),
    ARIMA(log(Cost) \sim 0 + pdq(3, 0, 1) + PDQ(2, 1, 0)),
    ARIMA(log(Cost) \sim 0 + pdq(3, 0, 2) + PDO(2, 1, 0)),
    ARIMA(log(Cost) \sim 0 + pdg(3, 0, 1) + PDO(1, 1, 0))
    # . . . #
fit |>
  forecast(h = "2 years") |>
  accuracy(h02)
```

.model	RMSE
ARIMA(3,0,1)(1,1,1)[12]	0.0619
ARIMA(3,0,1)(0,1,2)[12]	0.0621
ARIMA(3,0,1)(0,1,1)[12]	0.0630
ARIMA(2,1,0)(0,1,1)[12]	0.0630
ARIMA(4,1,1)(2,1,2)[12]	0.0631
ARIMA(3,0,2)(2,1,0)[12]	0.0651
ARIMA(3,0,1)(2,1,0)[12]	0.0653
ARIMA(3,0,1)(1,1,0)[12]	0.0666
ARIMA(3,0,0)(2,1,0)[12]	0.0668

- Models with lowest AICc values tend to give slightly better results than the other models.
- AICc comparisons must have the same orders of differencing.
 But RMSE test set comparisons can involve any models.
- Use the best model available, even if it does not pass all tests.

```
fit <- h02 |>
  model(ARIMA(Cost ~ 0 + pdq(3, 0, 1) + PDQ(0, 1, 2)))
fit |>
  forecast() |>
  autoplot(h02) +
  labs(y = "H02 Expenditure ($AUD)")
```


Outline

- 1 Non-seasonal ARIMA models
- 2 Estimation and order selection
- 3 ARIMA modelling in R
- 4 Forecasting
- 5 Seasonal ARIMA models
- 6 ARIMA vs ETS

ARIMA vs ETS

- Myth that ARIMA models are more general than exponential smoothing.
- Linear exponential smoothing models all special cases of ARIMA models.
- Non-linear exponential smoothing models have no equivalent ARIMA counterparts.
- Many ARIMA models have no exponential smoothing counterparts.
- ETS models all non-stationary. Models with seasonality or non-damped trend (or both) have two unit roots; all other models have one unit root.

ARIMA vs ETS

Equivalences

ETS model	ARIMA model	Parameters
ETS(A,N,N)	ARIMA(0,1,1)	$\theta_1 = \alpha - 1$
ETS(A,A,N)	ARIMA(0,2,2)	θ_1 = α + β – 2
		$\theta_2 = 1 - \alpha$
$ETS(A,A_d,N)$	ARIMA(1,1,2)	$\phi_1 = \phi$
		θ_1 = α + $\phi\beta$ $-$ 1 $ \phi$
		$\theta_2 = (1 - \alpha)\phi$
ETS(A,N,A)	$ARIMA(0,0,m)(0,1,0)_m$	
ETS(A,A,A)	$ARIMA(0,1,m+1)(0,1,0)_m$	
$ETS(A,A_d,A)$	ARIMA $(1,0,m+1)(0,1,0)_m$	

Example: Australian population

```
aus_economy <- global_economy |>
 filter(Code == "AUS") |>
 mutate(Population = Population / 1e6)
aus economy |>
 slice(-n()) |>
 stretch_tsibble(.init = 10) |>
 model(
   ets = ETS(Population),
   arima = ARIMA(Population)
 ) |>
 forecast(h = 1) |>
 accuracy(aus_economy) |>
 select(.model, ME:RMSSE)
```

```
# A tibble: 2 x 8
.model ME RMSE MAE MPE MAPE MASE RMSSE
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> 1 arima 0.0420 0.194 0.0789 0.277 0.509 0.317 0.746
```

Example: Australian population

```
aus_economy |>
model(ETS(Population)) |>
forecast(h = "5 years") |>
autoplot(aus_economy) +
labs(title = "Australian population", y = "People (millions)")
```



```
cement <- aus_production |>
  select(Cement) |>
  filter_index("1988 Q1" ~ .)

train <- cement |> filter_index(. ~ "2007 Q4")

fit <- train |>
  model(
    arima = ARIMA(Cement),
    ets = ETS(Cement)
)
```

```
fit |>
 select(arima) |>
  report()
Series: Cement
Model: ARIMA(1,0,1)(2,1,1)[4] w/ drift
Coefficients:
               mal sar1 sar2 smal constant
        ar1
     0.8886 -0.237 0.081 -0.234 -0.898
                                            5.39
s.e. 0.0842 0.133 0.157 0.139
                                  0.178 1.48
sigma^2 estimated as 11456: log likelihood=-464
ATC=941 ATCc=943 BTC=957
```

```
fit |>
 select(ets) |>
  report()
Series: Cement
Model: ETS(M,N,M)
  Smoothing parameters:
    alpha = 0.753
    gamma = 1e-04
 Initial states:
l[0] s[0] s[-1] s[-2] s[-3]
 1695 1.03 1.05 1.01 0.912
 sigma^2: 0.0034
AIC AICC BIC
```

1104 1106 1121


```
fit |>
  select(arima) |>
  augment() |>
  features(.innov, ljung_box, lag = 16, dof = 6)

# A tibble: 1 x 3
```

```
fit |>
  select(ets) |>
  augment() |>
  features(.innov, ljung_box, lag = 16, dof = 6)

# A tibble: 1 x 3
```

```
fit |>
  forecast(h = "2 years 6 months") |>
  accuracy(cement) |>
  select(-ME, -MPE, -ACF1)
```

```
fit |>
  select(arima) |>
  forecast(h = "3 years") |>
  autoplot(cement) +
  labs(title = "Cement production in Australia", y = "Tonnes ('000)")
```

