Einführung in die Technische Informatik

Prof. Dr.-Ing. Stefan Kowalewski | Dr. rer. nat. Marcus Völker

WS 25/26

Kapitel 2: Darstellung Boolescher Funktionen

Abschnitt 2.1

Boolesche Algebra

- Gesetze einer Booleschen Algebra
- Anwendung einer Booleschen Algebra

Motivation

- 2 Zustände reichen aus, um Informationen zu speichern
- Beispiel:

- Aufgabe des Systems:
 - "Da nur eine Leitung genutzt wird, darf nur eines der beiden Telefone zu einem Zeitpunkt verwendet werden."
- Formal ausgedrückt:

Boolesche Algebra

- Boolesche Algebra als formale Grundlage in der Schaltungstechnik und der Computerhardware
- In der Booleschen Algebra gibt es genau 2 Werte:
 0 (false) und 1 (true)
- Unäre Verknüpfung: ¬
- Binäre Verknüpfungen: V, A

		X	У	x _v y	X	У	x∧y
	.,	0	0	0	0	0	0
X	¬X	0	1	1	0	1	0
0	1	1	0	1	1	0	0
1	0	1	1	1	1	1	1

Gesetze in der Booleschen Algebra

(a) Kommutativgesetze:

$$x \wedge y = y \wedge x$$

$$x \lor y = y \lor x$$

(b) Assoziativgesetze:

$$(x \land y) \land z = x \land (y \land z)$$

$$(x \lor y) \lor z = x \lor (y \lor z)$$

(c) Distributivgesetze:

$$x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$$

$$x \lor (y \land z) = (x \lor y) \land (x \lor z)$$

(d) Absorption:

$$x \wedge (x \vee y) = x$$

$$x \lor (x \land y) = x$$

(e) Idempotenz:

$$x \wedge x = x$$

 $x \lor x = x$

(f) Nullelement:

$$x \wedge 0 = 0$$

$$x \vee 1 = 1$$

Gesetze in der Booleschen Algebra

(g) Eindeutiges Komplement:

$$(x \lor y = 1 \text{ und } x \land y = 0) \Leftrightarrow (x = \neg y)$$

(h) Involution:

$$\neg(\neg x) = x$$

(h) Konstanten:

$$\neg 0 = 1$$

$$\neg 1 = 0$$

(j) De Morgansche Regeln:

$$\neg(x \lor y) = \neg x \land \neg y$$

$$\neg(x \land y) = \neg x \lor \neg y$$

Abschnitt 2.2

Boolesche Funktionen

- Schaltfunktionen
- ► 1-stellige Boolesche Funktionen
- 2-stellige Boolesche Funktionen
- Darstellung Boolescher Funktionen

Schaltfunktionen

Definition: Seien $n, m \in N$, $n, m \ge 1$. Dann heißt eine Funktion $F: B^n \to B^m$ **Schaltfunktion**

Beispiele:

- Addition von zwei 16-stelligen Dualzahlen
- Multiplikation von zwei 16-stelligen Dualzahlen
- Sortieren von 30 16-stelligen Dualzahlen
- Primzahltest einer 16-stelligen Dualzahl

Boolesche Funktionen

Eine Schaltfunktion $f: B^n \to B^1$ heißt (n-stellige) Boolesche Funktion

Zusammenhang zu Schaltfunktionen:

Sei
$$F: B^n \to B^m$$
 mit $F(x_{n-1}, ..., x_1, x_0) = (y_{m-1}, ..., y_1, y_0)$
Setzt man für jedes $i \in \{m-1, ..., 0\}$
 $f_i: B^n \to B$

definiert durch

$$f_i(x_{n-1}, \dots, x_1, x_0) = y_i$$

so ist *F* wie folgt darstellbar:

$$F(x_{n-1}, \dots, x_1, x_0) = (f_{m-1}(x_{n-1}, \dots, x_1, x_0), f_{m-2}(x_{n-1}, \dots, x_1, x_0), \dots, f_0(x_{n-1}, \dots, x_1, x_0))$$

für alle x_{n-1} , ..., $x_0 \in B$

Beispiel für Zusammenhang Schaltfunktion – Boolesche Funktion

1-stellige Boolesche Funktion

\mathbf{r}		_
N		\perp
D	$\overline{}$	D

X	$f_0(x)$	$f_1(x)$	$f_2(x)$	$f_3(x)$
0	0	0	1	1
1	0	1	0	1

Es gilt:
$$f_0(x) = 0$$
, $f_1(x) = x$, $f_2(x) = \overline{x}$, $f_3(x) = 1$

2-stellige Boolesche Funktion

B^2	\rightarrow	В

(1)	$x \cdot \overline{x}$	$x \cdot y$	$x \cdot \overline{y}$	х	$\overline{x} \cdot y$	у	$x \oplus y$	x + y
(:	2)	≡ 0	Min	>	x	<	y	≠	Max
(.	3)		٨	/ >	x	↔	y	↔	V
(4	4)		AND					XOR	OR
Х	У	f o	f ₁	f ₂	f ₃	f ₄	f ₅	f 6	f ₇
0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1

Sind das alle 2-stelligen Booleschen Funktionen?

2-stellige Boolesche Funktion

 $B^2 \to B$

(:	1)	$\overline{x+y}$	$x \oplus y$	\overline{y}	$x + \overline{y}$	\overline{x}	$\overline{x} + y$	$\overline{x \cdot y}$	$x + \overline{x}$
(2	2)	1-Max	=	1- <i>y</i>	≥	1- <i>x</i>	<u>≤</u>	1-Min	≡ 1
(3	3)	\downarrow	\leftrightarrow	¬у	←	¬x	\rightarrow	1	
(4	4)	NOR	XNOR					NAND	
Х	У	f ₈	f 9	f ₁₀	f ₁₁	f ₁₂	f ₁₃	f ₁₄	f ₁₅
0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1

Beispiel für eine 3-stellige Funktion

i	X ₂	X ₁	Xo	$f(x_2, x_1, x_0)$
0	0	0	0	0
1	0	0	1	0
2	0	1	0	0
3	0	1	1	1
4	1	0	0	0
5	1	0	1	1
6	1	1	0	0
7	1	1	1	1

Einschlägige Indizes

Wie viele 3-stellige Boolesche Funktionen gibt es?

Müssen wir die alle in Funktionstabellen definieren, bevor wir sie benutzen können?

Darstellung Boolescher Funktionen

Folgende Darstellungen werden vorgestellt:

- Disjunktive und Konjunktive Normalform (DNF, KNF)
- Directed Acyclic Graph (DAG)
- Ordered Binary Decision Diagram (OBDD)

Abschnitt 2.3

Disjunktive und Konjunktive Normalform

- Minterme
- Darstellungssatz für Boolesche Funktionen
- ► Folgerung aus dem Darstellungssatz
- Maxterme
- Grundbausteine zur Realisierung Boolescher Funktionen

Minterme

Gegeben: B³ in dieser Darstellung.

Minterm - eine Anzahl von Literalen (booleschen Variablen wie z.B. x_2), die alle durch ein UND (Λ) verknüpft sind

i	X ₂	X ₁	Xo
0	0	0	0
1	0	0	1
2	0	1	0
3	0	1	1
4	1	0	0
5	1	0	1
6	1	1	0
7	1	1	1

Beispiele für Minterme:

$$m_3(x_2, x_1, x_0) = \overline{x_2} \cdot x_1 \cdot x_0$$

 $m_4(x_2, x_1, x_0) = x_2 \cdot \overline{x_1} \cdot \overline{x_0}$

Informatik 11
Embedded Software

Darstellungssatz für Boolesche Funktionen

Jede Boolesche Funktion $f: B^n \to B$ ist eindeutig darstellbar als Summe der Minterme ihrer einschlägigen Indizes.

D.h: Ist $I \subseteq \{0, ..., 2^n - 1\}$ die Menge der einschlägigen Indizes von f, so gilt

$$f = \sum_{i \in I} m_i$$

und keine andere Minterm-Summe stellt f dar.

Die Summe der Minterme der einschlägigen Indizes wird als **Disjunktive Normalform (DNF)** bezeichnet.

DNF Beispiel

Sei $f: B^3 \to B$ gegeben durch:

i	X ₂	X ₁	Xo	$f(x_2, x_1, x_0)$
0	0	0	0	0
1	0	0	1	0
2	0	1	0	0
3	0	1	1	1
4	1	0	0	0
5	1	0	1	1
6	1	1	0	0
7	1	1	1	1

DNF:

$$f(x_2, x_1, x_0) = m_3 + m_5 + m_7$$

= $\overline{x_2}x_1x_0 + x_2\overline{x_1}x_0 + x_2x_1x_0$

Folgerung aus dem Darstellungssatz

 Alle n-stelligen Booleschen Funktionen lassen sich mit den 2stelligen Funktionen UND und ODER und der 1-stelligen Funktion NICHT darstellen.

Man sagt:

Das System $\{\land, \lor, \bar{\ }\}$ ist funktional vollständig.

Maxterme

Gegeben: B^3 in dieser Darstellung.

Maxterm - eine Anzahl von Literalen (booleschen Variablen wie z.B. x₂), die alle durch ein ODER (V) verknüpft sind

i	X ₂	X ₁	Χo
0	0	0	0
1	0	0	1
2	0	1	0
3	0	1	1
4	1	0	0
5	1	0	1
6	1	1	0
7	1	1	1

Beispiele für Maxterme:

$$M_3(x_2, x_1, x_0) = x_2 + \overline{x_1} + \overline{x_0}$$

 $M_4(x_2, x_1, x_0) = \overline{x_2} + x_1 + x_0$

Informatik 11
Embedded Software

Konjunktive Normalform (KNF)

- Analog zu DNF: jede Boolesche Funktion ist eindeutig darstellbar als das Produkt der Maxterme ihrer NICHTeinschlägigen Indizes.
- Es gilt:
 - Sei m_i i-ter Minterm von f
 - Dann heißt $M_i = \overline{m_i}$ i-ter Maxterm von f

KNF Beispiel

Sei $f: B^3 \to B$ gegeben durch:

i	<i>X</i> ₂	<i>X</i> ₁	Xo	$f(x_2, x_1, x_0)$
0	0	0	0	0
1	0	0	1	0
2	0	1	0	0
3	0	1	1	1
4	1	0	0	0
5	1	0	1	1
6	1	1	0	0
7	1	1	1	1

KNF:

$$f(x_2, x_1, x_0) = M_0 \cdot M_1 \cdot M_2 \cdot M_4 \cdot M_6$$

= $(x_2 + x_1 + x_0) \cdot (x_2 + x_1 + \overline{x_0}) \cdot (x_2 + \overline{x_1} + x_0) \cdot (\overline{x_2} + x_1 + x_0) \cdot (\overline{x_2} + \overline{x_1} + x_0)$

Abschnitt 2.4

Funktionale Vollständigkeit

- ► Funktionale Vollständigkeit von NAND
- ► Funktionale Nicht-Vollständigkeit von {→,1}

Funktionale Vollständigkeit von NAND

Bekannt: $\{\Lambda, V, \neg\}$ ist funktional vollständig

Frage: Ist {1} funktional vollständig?

Vorgehen: Stelle ein bekanntes

fkt. vollst. System mit {1} dar.

(1	(1)			
(2	(2)			
(3	(3)			
(4	(4)			
х	У	f ₁₄		
0	0	1		
0	1	1		
1	0	1		
1	1	0		

1. Nicht
$$\{\neg\}$$
: $\bar{x} = \bar{x} \lor \bar{x} = \overline{\bar{x}} \lor \bar{x} = \bar{x} \land \bar{x} = x \uparrow x$

Funktionale Vollständigkeit von NAND

2. Oder {\bigvar}:
$$x \bigvarbox{\bigvar}y = \overline{x} \bigvarbox{\bigvar}y = \overline{x} \bigvarbox{\bigvar}y = \overline{x} \bigvarbox{\bigvar}y = (x \bigvarbox{\bigvar}x) \bigvarbox{\bigvarbox}(y \bigvarbox{\bigvarbox}y)$$

3. Und
$$\{\Lambda\}: x \wedge y = \overline{x} \overline{\wedge y} = \overline{x \uparrow y}$$
$$= (x \uparrow y) \uparrow (x \uparrow y)$$

(:	$\overline{x \cdot y}$	
(2	1-Min	
(3		
(4	4)	NAND
X	У	f ₁₄
0	0	1
0	1	1
1	0	1
1	1	0

→ Funktional Vollständig

Funktionale Nicht-Vollständigkeit von {→,1}

Bekannt: $\{\Lambda, V, \neg\}$ ist funktional vollständig

Frage: Ist $\{\rightarrow, 1\}$ nicht funktional vollständig?

Vorgehen: Versuche ein bekanntes fkt. vollst. System mit $\{\rightarrow, 1\}$ darzustellen.

Zeige, dass sich eine der Funktionen mit keiner Kombination darstellen lässt.

(1	$\overline{x} + y$		
(2	(2)		
(3	(3)		
(4	(4)		
х	У	f ₁₃	
0	0	1	
0	1	1	
1	0	0	
1	1	1	

Funktionale Nicht-Vollständigkeit von {→,1}

1. Nicht $\{\neg\}$: $\bar{x} = ?$

Mögliche Kombinationen von x mit $\{\rightarrow, 1\}$:

$$1 \rightarrow 1 = 1$$

$$1 \rightarrow x = x$$

$$x \rightarrow 1 = 1$$

$$x \rightarrow x = 1$$

(1	$\overline{x} + y$		
(2	(2)		
(3	(3)		
(4	(4)		
х	У	f ₁₃	
0	0	1	
0	1	1	
1	0	0	
1	1	1	

Es lassen sich keine neuen Funktionen und insbesondere kein Nicht {¬} darstellen.

→ Nicht funktional Vollständig

Abschnitt 2.5

Schaltnetze

- DAG-Darstellung
- Anwendung: Schaltungsabhängige Fehlerdiagnose

Grundbausteine zur Realisierung Boolescher Funktionen

Funktion Unser Symbol IEEE-Symbol Negation (Komplement-Gatter) Addition (Oder-Gatter) Multiplikation $x \cdot y$ $x.\lambda$ (Und-Gatter)

Grundbausteine zur Realisierung Boolescher Funktionen

Funktion Unser Symbol IEEE-Symbol NOR-Gatter $x \longrightarrow \overline{x+y} \longrightarrow \overline{x+y}$ NAND-Gatter $x \longrightarrow \overline{x\cdot y} \longrightarrow \overline{x\cdot y}$

Beispiel

Sei $f: B^3 \to B$ gegeben durch:

i	X ₂	X ₁	Xo	$f(x_2, x_1, x_0)$
0	0	0	0	0
1	0	0	1	0
2	0	1	0	0
3	0	1	1	1
4	1	0	0	0
5	1	0	1	1
6	1	1	0	0
7	1	1	1	1

DNF:

$$f(x_2, x_1, x_0) = m_3 + m_5 + m_7$$

= $\overline{x_2}x_1x_0 + x_2\overline{x_1}x_0 + x_2x_1x_0$

Beispiel

Beispiel

Alternative Schaltung:

DAG-Darstellung

DAG= Directed Acyclic Graph

gerichteter azyklischer Graph

 $f(x_2, x_1, x_0)$

Beispiel für zyklischen Graph: Flimmerschaltung

Beispiel für zyklischen Graph: Flimmerschaltung

Beispiel für zyklischen Graph: Flimmerschaltung

Anwendung: Schaltungsabhängige Fehlerdiagnose

Beispiel:

$$f(x_2, x_1, x_0) = \overline{x_2}x_1x_0 + x_2\overline{x_1}x_0 + x_2x_1x_0$$

Annahmen:

- Es tritt im gegebenen Schaltnetz höchstens ein Fehler auf
- Der Defekt, welcher den Fehler verursacht, ist ein gerissener Verbindungsdraht

Hier: **0-Verklemmung** bzw. **Stuck-at-Zero-Fault**

DAG mit Drahtnummern

Darstellung von f

$$f_{1} = \overline{0} \cdot x_{1}x_{0} + x_{2}\overline{x_{1}}x_{0} + x_{2}x_{1}x_{0} = x_{1}x_{0} + x_{2}x_{0}$$

$$f_{2} = 0 \cdot x_{1}x_{0} + x_{2}\overline{x_{1}}x_{0} + x_{2}x_{1}x_{0} = x_{2}\overline{x_{1}}x_{0} + x_{2}x_{1}x_{0} = x_{2}x_{0}$$

$$f_{3} = \overline{x_{2}}x_{1}x_{0} + x_{2}x_{1}x_{0} = x_{1}x_{0}$$

$$f_{4} = \overline{x_{2}}x_{1}x_{0} + x_{2}\overline{x_{1}}x_{0}$$

$$f_{5} = x_{2}\overline{x_{1}}x_{0} + x_{2}x_{1}x_{0} = x_{2}x_{0}$$

$$f_{6} = \overline{x_{2}}x_{1}x_{0} + x_{2}x_{0}$$

$$f_{14} = \overline{x_{2}}x_{1}x_{0} + x_{2}\overline{x_{1}}x_{0}$$

$$f_{15} = x_{2}x_{0}$$

$$f_{16} = x_{1}x_{0}$$

$$f_{16} = x_{1}x_{0}$$

$$f_{17} = x_{2}x_{1}x_{0} + x_{2}\overline{x_{1}}x_{0}$$

$$f_{11} = \overline{x_{2}}x_{1}x_{0} + x_{2}\overline{x_{1}}x_{0} + x_{2}\overline{x_{1}}x_{0}$$

$$f_{12} = 0 \cdot x_{0} + x_{2}\overline{x_{1}}x_{0} + x_{2}x_{1}x_{0} = x_{2}x_{0}$$

Hinweis: $xyz + x\overline{y}z = xz$

Fehlermöglichkeiten (Ausfalltafel/-matrix)

X ₂	X ₁	Χo	f_1	f_2	fз	f_4	f_5	f_6	f ₇	f ₈	f ₉
0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	0	0
0	1	1	1	0	1	1	0	1	1	1	0
1	0	0	0	0	0	0	0	0	0	0	0
1	0	1	1	1	0	1	1	1	0	1	1
1	1	0	0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	0	1	1	1	0	1
X ₂	X ₁	Χo	f10	f ₁₁	f ₁₂	f ₁₃	f ₁₄	f ₁₅	f ₁₆	f ₁₇	f ₁₈
<i>X</i> ₂	<i>X</i> ₁	<i>x_o</i> 0	<i>f</i> ₁₀	<i>f</i> ₁₁	<i>f</i> ₁₂	<i>f</i> ₁₃	<i>f</i> ₁₄	<i>f</i> ₁₅	<i>f</i> ₁₆	<i>f</i> ₁₇	<i>f</i> ₁₈
0	0	0	0	0	0	0	0	0	0	0	0
0	0 0	0 1	0	0	0	0	0	0	0	0	0
0 0 0	0 0 1	0 1 0	0 0 0								
0 0 0 0	0 0 1 1	0 1 0 1	0 0 0 1	0 0 0 1	0 0 0 0	0 0 0 1	0 0 0 1	0 0 0 0	0 0 0 1	0 0 0 0	0 0 0 1
0 0 0 0	0 0 1 1 0	0 1 0 1 0	0 0 0 1 0	0 0 0 1 0	0 0 0 0 0	0 0 0 1	0 0 0 1	0 0 0 0	0 0 0 1 0	0 0 0 0	0 0 0 1

Reduzierte Ausfallmatrix

Es gilt:

$$f_1 = f_6$$

 $f_2 = f_5 = f_9 = f_{12} = f_{15}$
 $f_3 = f_7 = f_{10} = f_{13} = f_{16}$
 $f_4 = f_8 = f_{11} = f_{14} = f_{18}$

X ₂	X ₁	Xo	f	f_1	f_2	fз	f_4	f ₁₇
0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0
0	1	1	1	1	0	1	1	0
1	0	0	0	0	0	0	0	0
1	0	1	1	1	1	0	1	0
1	1	0	0	0	0	0	0	0
1	1	1	1	1	1	1	0	1

Fehlermatrix

Zeilen-Nr.	X ₂	X ₁	Χo	f	$f \oplus f_1$	$f \oplus f_2$	$f \oplus f_3$	$f \oplus f_4$	$f \oplus f_{17}$
0	0	0	0	0	0	0	0	0	0
1	0	0	1	0	0	0	0	0	0
2	0	1	0	0	0	0	0	0	0
3	0	1	1	1	0	1	0	0	1
4	1	0	0	0	0	0	0	0	0
5	1	0	1	1	0	0	1	0	1
6	1	1	0	0	0	0	0	0	0
7	1	1	1	1	0	0	0	1	0

Abschnitt 2.6

Alternative Darstellungen

- Kofaktoren
- Geordnete Binäre Entscheidungs-Diagramme (OBDD)
- Gray-Code
- Karnaugh-Diagramme

Kofaktoren

$$f(x_i/a) = f(x_{n-1}, ..., x_{i+1}, a, x_{i-1}, ..., x_0)$$

Dabei sei a ein fester Wert:

- Positiver Kofaktor: $f(x_i/a) = f(x_{n-1}, ..., x_{i+1}, 1, x_{i-1}, ..., x_0)$
- Negativer Kofaktor: $f(x_i/a) = f(x_{n-1}, ..., x_{i+1}, 0, x_{i-1}, ..., x_0)$

Baumdarstellung einer Booleschen Funktion anhand der Kofaktoren

Beispiel: Funktion als Entscheidungsbaum

x ₂	X ₁	X ₀	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Beispielbaum nach Zusammenlegen der Blätter

Beispiel 2

$$f = ?$$

Beispiel: OBDD für die "Schwellenwert-Funktion"

 $f(x_4, x_3, x_2, x_1, x_0) = T_2^{5}$

Beispiel: OBDD für die "Ungerade-Paritäts-Funktion"

OBDD zur Variablenordnung

$$V_1 = x_5 \le x_2 \le x_4 \le x_1 \le x_3 \le x_0$$

OBDD zur Variablenordnung

$$V_2 = x_5 \le x_4 \le x_3 \le x_2 \le x_1 \le x_0$$

Gray-Code

- Generierungsverfahren zur robusten Übertragung
- Eigenschaft:

Die Darstellung zweier benachbarter Zahlen unterscheidet sich nur durch 1 Bit

- Generierung (eine Möglichkeit):
 - 1. Zahl im Binärcode darstellen $x_1 = (11)_2$
 - 2. Links-Shift um 1 Bit $x_2 = x_1 \ll 1 = (110)_2$
 - 3. XOR-Verknüpfung $x_3 = x_1 \oplus x_2 = (101)_2$
 - 4. Rechts-Shift um 1 Bit $x_4 = x_3 \gg 1 = (10)_2$

Beispiel: 2-Bit Gray-Code

Dualzahl	Gray-Code
00	00
01	01
10	11
11	10

→ Normale Reihenfolge

Gray-Code

Beispiel: 3-Bit Gray-Code

C ₂	c ₁	c_{o}	C ₂	C ₁	C ₀
0	0	0	0	0	0
0	0	1	0	0	1
0	1	0	0	1	1
0	1	1	0	1	0
1	0	0	1	1	0
1	0	1	1	1	1
1	1	0	1	0	1
1	1	1	1	0	0

Beispiel: 3-Bit Gray-Code

$$C_2 = f(c_2, c_1, c_0) = c_2 \cdot \overline{c_1} \cdot \overline{c_0} + c_2 \cdot \overline{c_1} \cdot c_0 + c_2 \cdot c_1 \cdot \overline{c_0} + c_2 \cdot c_1 \cdot \overline{c_0}$$

$$C_1 = g(c_2, c_1, c_0) = \overline{c_2} \cdot c_1 \cdot \overline{c_0} + \overline{c_2} \cdot c_1 \cdot c_0 + c_2 \cdot \overline{c_1} \cdot \overline{c_0} + c_2 \cdot \overline{c_1} \cdot c_0$$

$$C_0 = h(c_2, c_1, c_0) = \overline{c_2} \cdot \overline{c_1} \cdot c_0 + \overline{c_2} \cdot c_1 \cdot \overline{c_0} + c_2 \cdot \overline{c_1} \cdot c_0 + c_2 \cdot c_1 \cdot \overline{c_0}$$

Karnaugh-Diagramme für n = 2

X	X ₁	Xo	f
0	0	0	0
1	0	1	1
2	1	0	0
3	1	1	0

Karnaugh-Diagramme für n = 3, 4

Zusammenfassung

- Boolesche Algebra als formale Grundlage in der Schaltungstechnik und der Computerhardware
- Mehrere Möglichkeiten Boolesche Funktionen darzustellen: KNF, DNF, DAGs, OBDDs, Karnaugh-Diagramme
- Gray-Code: Generierungsverfahren zur robusten Übertragung

