

* RF Exposure

1. Regulation

According to §15.247(i), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. See § 1.1307(b)(1) of this Chapter.

Limits for Maximum Permissive Exposure: RF exposure is calculated.

Elinits for Maximum Leminssive Exposure. At exposure is carealated.							
Eraguanay Danga	Electric Field	Magnetic Field	Power Density	Averaging Time			
Frequency Range	Strength [V/m]	Strength [A/m]	$[mW/cm^2]$	[minute]			
Limits for General Population / Uncontrolled Exposure							
0.3 ~ 1.34	614	1.63	*(100)	30			
1.34 ~ 30	824/f	2.19/f	$*(180/f^2)$	30			
30 ~ 300	27.5	0.073	0.2	30			
300 ~ 1 500	/	/	f/1 500	30			
1 500 ~ 15 000	/	/	1.0	30			

f=frequency in ML, *= plane-wave equivalent power density

MPE (Maximum Permissive Exposure) Prediction

Predication of MPE limit at a given distance: Equation from page 18 of OET Bulletin 65, Edition 97-01

$$S = PG/4\pi R^2 \quad (\Rightarrow R = \sqrt{PG/4\pi S})$$

 $S = power density [mW/cm^2]$

P = Power input to antenna [mW]

G = Power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna [cm]

2. RF Exposure Compliance Issue

The information should be included in the user's manual:

This appliance and its antenna must not be co-located or operation in conjunction with any other antenna or transmitter. A minimum separation distance of 20 cm must be maintained between the antenna and the person for this appliance to satisfy the RF exposure requirements.

3. Calculation Result of RF Exposure

Mode	Target power	Tune up tolerance	Max tune up power	Max tune up power	Ant Gain	Ant Gain	Power Density at 20 cm	Limit
	[dBm]	[dB]	[dBm]	[mW]	[dBi]	[mW]	[mW/cm²]	[mW/cm²]
Blutooth GFSK	1.5	±1.0	2.5	1.78	3.85	2.43	0.000 86	1.000 00
Blutooth 8DPSK	0	±2.0	2.0	1.58	3.85	2.43	0.000 77	1.000 00

4. Target power and tolerance, Max tuneup power

Mode	Target power [dBm]	Tolerance [dB]	Max tuneup power [dBm]	Average Power [dBm]
GFSK	1.5	±1.0	2.5	1.64
8DPSK	0	±2.0	2.0	0.84

KCTL-TIR001-002/0 Page: (2) /(2) Pages