Home ► My courses ► EEE117-2017S-Tatro ► Homework ► Homework 11 - Chapter 14

Started on	Sunday, 16 April 2017, 9:15 PM
State	Finished
Completed on	Sunday, 16 April 2017, 9:15 PM
Time taken	8 secs
	400.00

Grade 100.00 out of 100.00

Correct

Mark 20.00 out of 20.00

P14.3_9ed

A resistor R₁ is added in series with the inductor in this circuit.

Given: $R_1 = 75 \Omega$ (Ohm) L = 10 mH (mill H) $R = 127 \Omega$ (Ohm)

a) Find the s domain transfer function $H(s) = V_0/V_i$.

$$H(s) = 12700$$
 $\sqrt{(s + 20200)}$

b) At what frequency will the magnitude of H(jw) be maximum?

$$W_{H,max} = \boxed{0}$$
 rad/sec

c) What is maximum value of the magnitude of H(jw)?

$$H(jw)_{max} = \boxed{.63}$$

d) At what frequency will the magnitude of H(jw) equal its maximum value divided by square root of 2?

$$w_{H,max,sqrt(2)} = 20200$$
 \checkmark rad/sec

e) Find w_c (omega_c)

$$w_c = 20200$$
 \checkmark rad/sec

Now examine the transfer function magnitude and phase as the frequency varies.

f) Find H(jw = 0) in polar form..

$$H(jw = 0) = Mag$$
 .63 \checkmark at angle 0 \checkmark ° (Degrees)

g) Find $H(jw = 0.3w_c)$ in polar form.

h) Find $H(jw = w_c)$ in polar form.

i) Find $H(jw = 3w_c)$ in polar form.

$$H(jw = 3w_c) = Mag$$
 2 at angle -71.6 \checkmark ° (Degrees)

Numeric Answer

a)
$$\frac{V_0}{V_i} = \frac{12,700}{s+20,200}$$

b)
$$\omega_{H,max} = 0 \text{ rad/sec}$$

c)
$$H(j\omega)_{max} = 0.6287$$

d)
$$\omega_{H,max,sqrt(2)}$$
 = 20,200 rad/sec

e)
$$\omega_c = 20,200 \text{ rad/sec}$$

f)
$$H(j\omega = 0) = 0.6287$$

g)
$$H(j\omega = 0.3\omega_c) = 0.6022$$
 $< -16.70^\circ$

h)
$$H(j_{\omega} = \omega_{c}) = 0.4446$$
 $\checkmark -45^{\circ}$

i)
$$H(j_{\omega} = 3\omega_{c}) = 0.1988$$
 \checkmark -71.57°

Correct

Correct

Mark 20.00 out of 20.00

P14.3 6ed

A resistor R_L is connected in parallel with the capacitor in this circuit. The circuit thus becomes a loaded low-pass filter.

Given: $R = 20 \text{ k}\Omega$ (kilo Ohm) C = 4 nF $R_T = 300 \text{ k}\Omega$ (kilo Ohm)

a) Find the s domain transfer function $H(s) = V_0/V_1$.

$$H(s) = 12500$$
 $\checkmark / (s + 13373.33)$ $\checkmark)$

b) Find w_c (omega_c)

$$w_c = \boxed{13333.3}$$
 rad/sec

Now examine the transfer function magnitude and phase as the frequency varies.

c) Find H(j0)

$$H(j0) = \boxed{.94}$$

d) Find $H(jw_c)$ i.e. evaluate H(jw) at $w = w_c$

$$H(jw_c) = Mag$$
 .66 Angle -45

e) Find $H(j0.2w_c)$ i.e. evaluate H(jw) at $w = 0.2 w_c$

$$H(j0.2w_c) = Mag$$
 .92 Angle -11.31

f) Find $H(j8w_c)$ i.e. evaluate H(jw) at $w = 8w_c$

$$H(j8w_c) = Mag$$
 .116 \checkmark Angle -82.9

Numeric Answer

a)
$$f = 50 Hz$$

b)
$$\omega_c = 13,333.3 \text{ rad/sec}$$

c)
$$H(j0) = 0.9375$$

d)
$$H(j\omega_c) = 0.6629$$
 $\checkmark -45^\circ$

e) H(j0.2
$$\omega_c$$
) = 0.9193 $< \sim$ -11.31 $^{\circ}$ This is an exact answer to the passband region.

f) H(j8
$$\omega_c$$
) = 0.1163 \checkmark -82.87 $^{\circ}$ This is an exact answer to the stopband region.

Correct

Correct

Mark 20.00 out of 20.00

P14.1 9ed

a) Find the cutoff frequency in hertz.

b) Find $H(j\omega = 0)$ in polar form.

Now examine the output magnitude and phase as the input frequency varies.

c) Find H(jw = $0.2\omega_c$) in polar form..

d) Find $H(j\omega = \omega_c)$ in polar form.

e) Find $H(j\omega = 5\omega_c)$ in polar form.

$$H(jw = 5\omega_c) = Mag$$
 .196 \checkmark at angle -78.69 \checkmark ° (Degrees)

Now given $v_i(t) = 10 \cos(\omega t) \text{ V}$. Write the steady-state expression for v_0 for:

f) $\omega = 0.2\omega_c$

$$v_0(t) = 9.81$$
 $\sqrt{\cos(2540)}$ $t + -11.31$ $\sqrt{\circ}$ Volts

g) $\omega = \omega_{\alpha}$

$$v_0(t) = \boxed{7.07}$$
 \checkmark $cos(\boxed{12700}$ \checkmark $t + \boxed{-45}$ \checkmark °) Volts

h) $\omega = 5\omega_{c}$

$$v_0(t) = \begin{bmatrix} 1.96 & \checkmark & \cos(63500 & \checkmark & t + \begin{bmatrix} -78.69 & \checkmark & \circ \end{bmatrix}) \text{ Volts}$$

a)
$$f_c = 2021.27 \text{ Hz}$$

b)
$$H(j\omega = 0) = 1 \angle 0^{\circ}$$

c)
$$H(j_{\omega} = 0.2\omega_c) = 0.981$$
 \checkmark -11.31°

d)
$$H(j_{\omega} = \omega_c) = 0.707$$
 \checkmark -45°

e)
$$H(j_{\omega} = 5\omega_{c}) = 0.196$$
 \checkmark -78.69°

f) For
$$\omega$$
 = 0.2 $\omega_{\rm c}$, v₀(t) = 9.81 cos(2,540 t $-$ 11.31°) Volts

g) For
$$\omega = \omega_c$$
, $v_0(t) = 7.07 \cos(12,700 \text{ t} - 45^\circ) \text{ Volts}$

h) For
$$\omega$$
 = $5\omega_c$, $v_0(t)$ = 1.96 cos(63,500 t $-$ 78.69°) Volts

Correct

Correct

Mark 20.00 out of 20.00

P14.11 9ed

Given: $R_c = 12.5 \text{ k}\Omega$ (kilo Ohm) C = 5 nF $R = 50 \text{ k}\Omega$ (kilo Ohm)

a) Find the cutoff frequency $f_{\rm c}$ for this high-pass filter.

$$f_c = 509.3$$
 \checkmark Hz

b) Find the H(jw) for

$$H(jw = w_c) = \boxed{.57}$$
 at angle $\boxed{45}$ ° (degrees)
 $H(jw = 0.2w_c) = \boxed{.16}$ at angle $\boxed{78.69}$ ° $\boxed{}$ H(jw = 5w_c) = $\boxed{.78}$ at angle $\boxed{11.31}$ °

c) If $v_i(t) = 500 \cos(\omega t)$ mV (milli V), write the steady-state output voltage $v_0(t)$ for

For
$$\omega = \omega_c$$
, $v_o(t) = 282.85$ $\cos(wt + 45)$ °) mV (milli V)
For $\omega = 0.2\omega_c$, $v_o(t) = 78.45$ $\cos(wt + 78.69)$ °) mV (milli V)
For $\omega = 5\omega_c$, $v_o(t) = 392.25$ $\cos(wt + 11.31)$ °) mV (milli V)

- a) $f_c = 509.2958 \text{ Hz}$
- b) Find the $H(j\omega)$ for

$$H(j\omega = \omega_c) = 0.5657$$
 at angle 45°

$$H(j\omega = 0.2\omega_c) = 0.1569$$
 at angle 78.69°

$$H(j\omega = 5\omega_c) = 0.7845$$
 at angle 11.31°

c) If $v_i(t) = 500 \cos(\omega t)$, write the steady-state output voltage $v_o(t)$ for

For
$$\omega = \omega_c$$
, $v_o(t) = 282.850 \cos(\omega t + 45^\circ) \text{ mV}$

For
$$\omega = 0.2\omega_c$$
, $v_o(t) = 78.450 \cos(\omega t + 78.69^\circ) \text{ mV}$

For
$$\omega = 5\omega_c$$
, $v_o(t) = 392.250 \cos(\omega t + 11.31^\circ) \text{ mV}$

Correct

Correct

Mark 20.00 out of 20.00

P14.10 9ed

a) Find the cutoff frequency f_c for this high-pass filter.

$$f_c = 636.62$$
 \checkmark Hz

b) Find the H(jw) for

$$H(jw = w_c) = \boxed{.71} \qquad \text{at angle } \boxed{45} \qquad \circ \text{ (degrees)}$$

$$H(jw = 0.2w_c) = \boxed{.2} \qquad \text{at angle } \boxed{78.69} \qquad \circ$$

$$H(jw = 5w_c) = \boxed{.98} \qquad \text{at angle } \boxed{11.31} \qquad \circ$$

c) If $v_i(t) = 500 \cos(\omega t)$ mV (milli V), write the steady-state output voltage $v_0(t)$ for

For
$$\omega = \omega_c$$
, $v_o(t) = 353.55$ $< cos(wt + 45) < cos(wt + 45) < cos(wt + 45) < cos(wt + 45) < cos(wt + 78.7) < cos(wt + 78$

- a) $f_c = 636.6198 \text{ Hz}$
- b) Find the $H(j\omega)$ for

$$H(j\omega = \omega_c) = 0.7071$$
 at angle 45°

$$H(j\omega = 0.2\omega_c) = 0.1961$$
 at angle 78.69°

$$H(j\omega = 5\omega_c) = 0.9806$$
 at angle 11.31°

c) If $v_i(t) = 500 \cos(\omega t)$, write the steady-state output voltage $v_0(t)$ for

For
$$\omega = \omega_c$$
, $v_o(t) = 353.550 \cos(\omega t + 45^\circ) \text{ mV}$

For
$$\omega = 0.2\omega_c$$
, $v_o(t) = 98.050 \cos(\omega t + 78.69^\circ) \text{ mV}$

For
$$\omega = 5\omega_c$$
, $v_0(t) = 490.30 \cos(\omega t + 11.31^\circ) \text{ mV}$

Correct