		-								1
Roll No.	2	0	2	2	2	0	4	cl	7	
			,							

NIST INSTITUTE OF SCIENCE & TECHNOLOGY (Autonomous)

B. Tech 3 rd Sen	nester (2022Bat	Branch(s)	CSE, IT, CST				
Subject Code	Subject Name			Digital Logic Design			
Time 90 min		Exam	m Mid Semester		Max. Marks	50	
Examination S	uperintendent	Prof. Chittaranjan Biswal					
Name of the Ir	nstructor(s)	Durga Prasad Dash, Mitu Baral, Malabika Pattnaik and Manoj K. Senapati					
Date of Exami	nation	25-11-	23	Sitting	1ST		

Answer Question No.1from PART-I which is compulsory, any four from PART-II and any one from PART-III.

The figures in the right hand margin indicate marks.

PART-I

(Answer all the questions)

Q1.	II	со	Level	Level-1: Knowledge Level-2: Comprehension Level-3: Application Level-4: Analysis Level-5: Synthesis Level -6: Evaluation	2 X 5				
	(a)	1	3	Do the following operation (-15-12) in binary using 2's complement method.					
	(b)	1	3	A Max-term is represented by (P' + Q + R'+S'+T). What will be the Min-term for the corresponding inputs?					
	(c)	2	1	What is the application of Gray code?					
	(d)	2	3	A Multiplexer is having 10,000 data input lines. How many control signals are required to design it?					
_	(e)	1	2	What do you mean by Negative logic in Digital circuit design?					

PART-II (Answer Any Four questions out of six)

Q2.		со	Level	Level-1: KnowledgeLevel-2: ComprehensionLevel-3: ApplicationLevel-4: AnalysisLevel-5: SynthesisLevel -6: Evaluation	4 X 6		
	(a)	1	3	Simplify the following function in SOP and POS forms $f(a,b,c,d) = \sum m(2,3,5,13,14) + d(8,9,10,11)$			
	(b)	2	2	Design the Borrow of a Full Subtractor using only 2-Level NOR gates.			
	(c)	2	2	Design a 3-bit Multiplier circuit.			
	(d)	2	3	Design a 3-bit Magnitude Comparator circuit			
	(e)	2	2	Specify the name of the arithmetic circuit that produces the output $W=xy+yz+zx$. Also draw it's truth table.			
	(f)	1	3	A 4-variable function is represented by			
14 100	7	7 -	- 14-	F(p,q,r,s)=p'q'+rs'+qs.			
			,	Represent the above function in canonical POS form and simplify it to POS form. Design the simplified expression using only NOR gates.			

PART-III (Answer Any One question out of two)

		со	Level	Level-1: Knowledge Level-2: Comprehension Level-3: Application Level-4: Analysis Level-5: Synthesis Level -6: Evaluation	1 X 16
Q3.	(a)	2	4	Design the following function using 4 to 1 MUX, where (a and d) should be used as the selection lines. $f(a,b,c,d) = \sum m(0,1,3,6,9,11,13,14)$	8
	(b)	2	3	Prove that a Full Adder can be designed using 2-Half Adders.	8
Q4.		2	4	Explain the disadvantages of Binary parallel adder and how to overcome it. Design the adder circuit that resolves the above issues. Also specifying the output logic expressions.	16