

ΕΞΙΣΟΡΡΟΠΗΣΗ ΦΟΡΤΙΟΥ ΔΙΑΔΙΚΤΎΑΚΩΝ ΥΠΗΡΕΣΙΩΝ ΣΤΑ ΕΥΦΎΗ ΠΡΟΓΡΑΜΜΑΤΙΖΟΜΕΝΑ ΔΙΚΤΎΑ

Καλαφατίδης Σαράντης

Εξεταστική επιτροπή:

Μαμάτας Ελευθέριος (Επίκουρος Καθηγητής)

Σακελλαρίου Ηλίας (Επίκουρος Καθηγητής)

Παπαδημητρίου Παναγιώτης (Επίκουρος Καθηγητής)

Φεβρουάριος 2019

Σκοπός-Στόχοι

Σκοπός: Η βελτίωση του τρόπου διαμοιρασμού της δικτυακής κυκλοφορίας με τη χρήση τεχνικών εξισορρόπησης φορτίου, αξιοποιώντας την τεχνολογία των ευφυών προγραμματιζόμενων δικτύων (ΕΠΔ)

Στόχοι:

- Αποφυγή συμφόρησης στο δίκτυο
- Μείωση του φορτίου εργασίας των διακομιστών
- Βελτίωση της απόδοσης των εφαρμογών.
- Πρέπει να λαμβάνεται υπόψη το είδος της Διαδικτυακής εφαρμογής που παρέχεται από τους διακομιστές σε μια απόφαση εξισορρόπησης φορτίου;

Διάρθρωση παρουσίασης

- Βασικούς αλγορίθμους εξισορρόπησης φορτίου
- Πρόταση νέου μηχανισμού εξισορρόπησης φορτίου
- Πειραματική προσέγγιση (Video)
- Πειραματικά σενάρια
 - Α. Επικύρωση των τεχνικών επιλογών της διατριβής
 - Β. Διερεύνηση του βαθμό επίδρασης των υπηρεσιών στους πόρους επεξεργασίας
 - C. Αξιολόγηση της απόδοσης του νέου αλγορίθμου
- Συμπεράσματα
- Μελλοντικές επεκτάσεις

Βασικότεροι μηχανισμοί εξισορρόπησης φορτίου

Στατικοί

- Αλγόριθμος κυκλικής επιλογής (Simple Round Robin)
- Αλγόριθμος κυκλικής επιλογής με βάρη (Weighted Round Robin)

Δυναμικοί

- Hedera, FDALB: Εντοπίζουν το μέγεθος των ροών
- > Statistics: Αλγόριθμος που βασίζεται σε στατιστικά
- Εντοπίσαμε ότι οι σχετικές προτάσεις δεν έχουν τη δυνατότητα δυναμικής προσαρμογής της εξισορρόπησης φορτίου στο είδος της εφαρμογής.

Μηχανισμός εξισορρόπησης φορτίου προσαρμοσμένος στην εφαρμογή (Application Adaptive Load Balancing)

- Δυναμικός, κεντροποιημένος
- Διαμοιράζει αιτήματα ανάμεσα σε διακομιστές
- Βασίζεται σε πληροφορίες της δικτυακής κίνησης και της επεξεργαστικής κατανάλωσης των διακομιστών
- Προσαρμόζεται στο είδος της εφαρμογής
- Ο αλγόριθμος αντιλαμβάνεται το είδος της εφαρμογής, σύμφωνα με την πόρτα

Τύπος για τον υπολογισμό του φόρτου κάθε διακομιστή:

$$L = w_1 *R(CPU) + w_2 *R(mem) + w_3 *R(band)$$

L – Τιμή του φορτίου

R(CPU) - ποσοστό χρήσης του επεξεργαστή

R(mem) - το ποσοστό δέσμευσης μνήμης

R(band) - το ποσοστό της δικτυακής κίνησης

 $w_1, w_2, w_3 - βάρη μετρικών$

Η τιμή του κάθε βάρους ορίζεται, αφού πρώτα διερευνηθεί, για κάθε υπηρεσία το πως επηρεάζονται οι επεξεργαστικοί πόροι των διακομιστών

Πειραματικά σενάρια

Σενάριο 1

- Υπολογισμός κατανάλωσης πόρων επεξεργασίας για κάθε Διαδικτυακή Υπηρεσία
- Υπολογισμός του βάρους κάθε παραμέτρου του AALB

Σενάριο 2

 Αξιολόγηση απόδοσης αλγορίθμων εξισορρόπησης φορτίου για κάθε Διαδικτυακή Υπηρεσία

Σενάριο 3

- Αξιολόγηση των αλγορίθμων εξισορροπώντας τα αιτήματα για δύο εφαρμογές ταυτόχρονα
- Ποιος αλγόριθμος η συνδυασμός αλγορίθμων είναι αποδοτικότερος;

Οι αλγόριθμοι που εξετάζονται:

- Αλγόριθμος κυκλικής κατανομής Simple Round Robin (SRR)
- Αλγόριθμος που βασίζεται σε στατιστικά Statistics
- Αλγόριθμος που προσαρμόζεται στο είδος της εφαρμογής Application Adaptive Load Balancing (AALB)

Σενάριο 1 - Αποτελέσματα

- Η web εφαρμογή κατανάλωσε πολύ μεγαλύτερη ποσότητα επεξεργαστικής ισχύος (15,73%) από την εφαρμογή Video Streaming (0,79%)
- Η video εφαρμογή δέσμευσε περισσότερο χώρο στη μνήμη (41,67%) έναντι της Web εφαρμογής (36,81%).

Bάρη για υπηρεσία παροχής ιστοσελίδων $L = \textbf{0,5} \ R(band) + \textbf{0,4*}R(CPU) + \textbf{0,1*}R(mem)$

Bάρη για την υπηρεσία μετάδοσης βίντεο L = 0.5*R(band) + 0.1*R(CPU) + 0.4*R(mem)

Σενάριο 2 – Αποτελέσματα

Simple Round Robin

- > Εξισορρόπησε τις μικρές ροές αποδοτικά
- Ροές μεγάλης διάρκειας συσσωρεύτηκαν σε ένα διακομιστή

Statistics

- Βελτίωσε την εξισορρόπηση φορτίου των μεγάλων ροών
- Ο αλγόριθμος δεν εξισορρόπησε το φορτίο των μικρών ροών

AALB

- Έχει καλύτερη απόδοση από τον statistics στις μικρές ροές
- Έχει την ίδια απόδοση με τον Statistics στις μεγάλες ροές
- Δεν είχε καλύτερη απόδοση από τον SRR για τις μικρές ροές

	Range			
Doguests	Web Service		Video Service	
Requests	SRR	Statistics	SRR	Statistics
100	0,04%	3,37%	5,73%	1,87%
200	0,10%	3,56%	9,13%	3,18%
400	0,08%	5,24%	12,99%	3,51%

D (Average Page Load Time (msec)			
Requests	SRR	STATISTICS	AALB	
100	4136	4191	4198	
200	4155	4321	4331	
400	4209	5018	4780	

Σενάριο 3 – Αποτελέσματα

SRR

- Ροές μεγάλης διάρκειας συσσωρεύονται σε ένα διακομιστή
- Προκύπτει η ανάγκη για δυναμικούς αλγορίθμους εξισορρόπησης φορτίου σε υπηρεσίες που παράγουν μεγάλες ροές.

Statistics

- > Όλες οι ροές σωρεύονται σε ένα διακομιστή
- Διογκώνει το πρόβλημα της εξισορρόπησης και αυτό έχει συνέπειες και στην απόδοση των υπηρεσιών.

AALB

- L = 0.5*R(band) + 0.25*R(CPU) + 0.25*R(mem)
- Έχει την καλύτερη απόδοση ως προς την εξισορρόπηση των πόρων των διακομιστών
- Δεν ξεπερνάει τον SRR ως προς την απόδοση των εφαρμογών
- Προκύπτει ότι η χρήση μηχανισμών που πέρα από τη δικτυακή κίνηση ελέγχουν και άλλες παραμέτρους, βελτιώνει το πρόβλημα της εξισορρόπησης φορτίου

Avg load time (msec)			
SRR	Statistics	AALB	
4151	4216	4210	
4195	4895	4313	
4202	6849	4456	

Σενάριο 3 – Αποτελέσματα

AALB-Statistics

- L = 0.5*R(band) + 0.4*R(CPU) + 0.1*R(mem)
- Είχε την καλύτερη απόδοση στην εξισορρόπηση των πόρων των διακομιστών
- Δεν ξεπερνάει τον SRR ως προς την απόδοση των εφαρμογών για 200 msec.
- Διαπιστώνουμε πως η χρήση διαφορετικών αλγορίθμων για κάθε υπηρεσία έχει καλύτερη απόδοση

SRR-AALB

- L = 0.5*R(band) + 0.1*R(CPU) + 0.4*R(mem)
- Είχε τα καλυτέρα αποτελέσματα από όλους τους άλλους και στην απόδοση των εφαρμογών και στην εξισορρόπηση των διακομιστών
- Προκύπτει πως ο συνδυασμός ενός απλού στατικού αλγορίθμου για τις μικρές ροές και ενός
 δυναμικού που προσαρμόζεται στο είδος για τις μεγάλες ροές, έχει τα καλύτερα αποτελέσματα

Avg load time				
SRR	Statistics	AALB	AALB-Statistics	SRR-AALB
4151	4216	4210	4187	4149
4195	4895	4313	4220	4155
4212	6849	4456	4458	4214

Συμπεράσματα

- Τα ευφυή προγραμματιζόμενα δίκτυα παρέχουν μία νέα δυναμική αρχιτεκτονική, μέσω της οποίας, δύσκολα προβλήματα που αφορούν στη βελτιστοποίηση της απόδοσης των δικτύων γίνονται διαχειρίσιμα με σωστά σχεδιασμένους κεντρικούς αλγόριθμους.
- Η χρήση ενός απλού στατικού αλγορίθμου όπως ο SRR για υπηρεσίες που παράγουν ροές μικρού μεγέθους και διάρκειας ζωής είναι αποδοτικότερος
- Η χρήση δυναμικών αλγορίθμων για υπηρεσίες που παράγουν μεγάλες ροές, βελτιώνει το πρόβλημα της εξισορρόπησης φορτίου
- Ο αλγόριθμος που δημιουργήθηκε από εμάς (AALB) και λαμβάνει υπόψη του περισσότερους παράγοντες για τον υπολογισμό του φορτίου, έχει καλύτερη απόδοση σε σχέση με τους άλλους αλγορίθμους.
- Σε ένα ομοιογενές σύμπλεγμα διακομιστών, η χρήση αλγορίθμων εξισορρόπησης φορτίου που είναι προσαρμοσμένοι στο είδος των υπηρεσιών έχουν την καλύτερη απόδοση

Μελλοντικές Επεκτάσεις

- 1. Η πραγματοποίηση των πειραμάτων μας σε ένα πραγματικό δικτυακό περιβάλλον
- 2. Σύγκριση του προτεινόμενου αλγορίθμου με περισσότερους αλγορίθμους εξισορρόπησης φορτίου της βιβλιογραφίας
- 3. Διερεύνηση της εφαρμογής του αλγορίθμου μας σε ένα περιβάλλον με περισσότερες Διαδικτυακές υπηρεσίες από αυτές που διαθέταμε κατά την εργασία μας
- 4. Τροποποίηση των αλγορίθμων έτσι ώστε να λειτουργούν βάσει της προληπτικής (proactive) μεθόδου

Τέλος παρουσίασης

ΣΑΣ ΕΥΧΑΡΙΣΤΩ

Κατηγορίες μηχανισμών εξισορρόπησης φορτίου

Στατικοί και δυναμικοί

- Στατικοί: Γνωρίζουν μόνο πληροφορίες της κατάσταση του δικτύου (π.χ τοπολογία)
- Δυναμικοί: Υπολογίζουν τις διαδρομές βάσει πληροφοριών που συλλέγουν σε πραγματικό χρόνο

Κεντροποιημένοι και Κατανεμημένοι

- Κεντροποιημένοι : Λογισμικό σε κεντρικό ελεγκτή υπολογίζει τις διαδρομές
- Κατανεμημένοι : Οι διαδρομές υπολογίζονται στους κόμβους του δικτύου

Ανά προορισμό (per flow) και ανά πακέτο (per packet)

- Ανα πακέτο: Εγγυάται ίσο φορτίο σε όλους τις διαθέσιμες διαδρομές
- Ανά ροή: Διατηρεί την σειρά πακέτων

Διακομιστών

- Ομάδες διαθέσιμων διακομιστών (pool members)
- Εικονικές διευθύνσεις

Ευφυή Προγραμματιζόμενα Δίκτυα (ΕΠΔ)

Διαχωρίζουν το επίπεδο ελέγχου από το επίπεδο δεδομένων.

- Επίπεδο δεδομένων: Η προώθηση δεδομένων από δικτυακές συσκευές
- Επίπεδο έλεγχου: Η λήψη αποφάσεων από κεντρικό ελεγκτή και η εκχώρηση των κανόνων των ροών στις δικτυακές συσκευές

Οφέλη των ΕΠΔ

- 🥊 Κεντροποιημένη αυτοματοποιημένη διαχείριση
- Βελτίωση της απόδοσης
- Ενθάρρυνση της καινοτομίας

Διαδικτυακές υπηρεσίες

Υπηρεσία παροχής ιστοσελίδων

- Μικρές ροές
- Flask
- Παροχή τριών ιστοσελίδων

Υπηρεσία μετάδοσης video

- Μεγάλες ροές
- VLC
- Ζωντανή μετάδοση
- Video 31 δευτερολέπτων

Ιστοσελίδες			
Όνομα	Μέγεθος (bytes)	href (link's URLs)	
Light	26259 (0,26MB)	1	
Medium	1021425 (1MB)	43	
Heavy	17692570 (17MB)	77	

Εφαρμογή παρακολούθησης διακομιστών

Σκοπός

- Παρακολούθηση κατανάλωσης χρήσης CPU,RAM
- Ανάλυση αποτελεσμάτων στα πειραματικά σενάρια
- Χρήση στον AALB για τον υπολογισμό του φόρτου

Υλοποίηση

- Docker stats
- Ενημέρωση κάθε δευτερόλεπτο
- JSON
- Υπολογίζει μεγίστη και μέση κατανάλωση

```
{"container":"e128797e2f3f","name":"mn.d4","memory":{"raw":"37.62MiB/128MiB","percent":"29.39%"},"cpu":"0.20%"}

{"container":"68539585b0f4","name":"mn.d3","memory":{"raw":"40.98MiB/128MiB","percent":"32.02%"},"cpu":"0.21%"}

{"container":"81dd43024c6d","name":"mn.d2","memory":{"raw":"48.17MiB/128MiB","percent":"37.63%"},"cpu":"0.17%"}

{"container":"1d6c2ee856e7","name":"mn.d1","memory":{"raw":"46.97MiB/128MiB","percent":"1d6c2ee856e7","name":"mn.d1","memory":{"raw":"46.97MiB/128MiB","percent":"1d6c2ee856e7","name":"mn.d1","memory":{"raw":"46.97MiB/128MiB","percent":"1d6c2ee856e7","name":"mn.d1","memory":{"raw":"46.97MiB/128MiB","percent":"1d6c2ee856e7","name":"mn.d1","memory":{"raw":"46.97MiB/128MiB","percent":"1d6c2ee856e7","name":"mn.d1","memory":{"raw":"46.97MiB/128MiB","percent":"1d6c2ee856e7","name":"mn.d1","memory":{"raw":"46.97MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128MiB/128M
```

Αρχείο JSON

```
mn.d1, Max cpu:15.15%, Max memory:41.76%, Average cpu:0.88%, Average mem: 37.0% mn.d2, Max cpu:17.27%, Max memory:46.74%, Average cpu:0.81%, Average mem: 35.39% mn.d3, Max cpu:18.18%, Max memory:39.18%, Average cpu:1.64%, Average mem: 34.32% mn.d4, Max cpu:16.28%, Max memory:41.89%, Average cpu:1.54%, Average mem: 34.93%
```

- Στα ευφυή προγραμματιζόμενα δίκτυα (ΕΠΔ) επιτυγχάνεται μεγαλύτερος έλεγχος ενός δικτύου μέσω του προγραμματισμού
- επιτρέπουν τον κεντρικό έλεγχο ενός δικτυού σε πραγματικό χρόνο ο οποίος βασίζεται τόσο στην στιγμιαία κατάσταση δικτύου όσο και σε πολιτικές προκαθορισμένες από τον διαχειριστή
- προβλήματα που αφορούν την βελτιστοποίηση της απόδοσης των δικτύων (όπως η εξισορρόπηση φορτίου) γίνονται εύκολα διαχειρίσιμα, με σωστά σχεδιασμένους κεντροποιημένους (centralized) μηχανισμούς

Η πειραματική προσέγγιση

- Εξομοίωση εικονικού δικτυακού περιβάλλοντος ΕΠΔ
- Παροχή Διαδικτυακών υπηρεσιών
- Παρακολούθηση διακομιστών
- Εφαρμογή αλγορίθμων εξισορρόπησης φορτίου
- Προσομοίωση αιτημάτων πελατών
- Υλοποίηση πειραματικών σεναρίων

Δικτυακό περιβάλλον

Εικονικό περιβάλλον

- Ομοιογενές
- Containeret Mininet

Ελεγκτής Floodlight

- Πολυνηματικός (multithreaded)
- Διαχείριση μέσω REST API
- Εύκολα επεκτάσιμες εφαρμογές
- Περιέχει μηχανισμούς εξισορρόπησης φορτίου

Διακομιστές

- Docker Containers
- Μνήμη 128mb
- ► CPU 10%

Αρχιτεκτονική των ΕΠΔ

Επίπεδο εφαρμογών

- Συλλογή πληροφοριών
- Λήψη αποφάσεων

Επίπεδο ελέγχου

- Έλεγχος του δικτύου
- Εγκατάσταση των κανόνων προώθησης στην υποδομή

Επίπεδο υποδομής

- Δικτυακές συσκευές ΕΠΔ
- Προώθηση δεδομένων

Υλοποίηση πειραματικών σεναρίων

Σενάριο 1

- Δύο διακομιστές
- Προσομοίωση πελατών (100,200,400 αιτήματα)

Σενάριο 2

- Τέσσερεις διακομιστές
- Κάθε διακομιστής έχει μια μεμονωμένη διεύθυνση IP (DIP).
- Μία εικονική διεύθυνση (VIP)
- Προσομοίωση πελατών (100,200,400 αιτήματα)

Σενάριο 3

- Τέσσερεις διακομιστές
- Κάθε διακομιστής έχει μια μεμονωμένη διεύθυνση IP (DIP).
- Δύο εικονικές διευθύνσεις (VIPs)
- Η προσομοίωση πελατών (50,100,200)

Αποτελέσματα:

- Χρόνς ολοκλήρωσης αιτημάτων (Avg Load Time)
- Μέγιστη τιμή χρήση επεξεργαστή (Max CPU)
- Μέγιστη τιμή δέσμευσης μνήμης (Max memory)
- Μέση τιμή της χρήσης του επεξεργαστή (Average cpu)
- Μέση τιμή της χρήσης της μνήμης (Average mem)
- Εύρος μέσων τιμών επεξεργαστικής κατανάλωσης