

Intended Learning Outcomes (ILOs)

- ☐ Identify the job responsibilities of a software project manager.
- Identify the necessary skills required in order to perform software project management.
- ☐ Identify the essential activities of project planning.
- Determine the different project related estimates performed by a project manager and suitably order those estimates.
- ☐ Explain what is meant by Sliding Window Planning.
- ☐ Explain what is Software Project Management Plan (SPMP).
- ☐ Identify and explain two metrics for software project size estimation.
- ☐ Identify the shortcomings of function point (FP) metric.

Organization of this Lecture

- Introduction to Project Planning
- ☐ Software Cost Estimation
 - ☐ Cost Estimation Models
 - ☐ Software Size Metrics
 - ☐ Empirical Estimation
 - ☐ Heuristic Estimation
 - COCOMO
- ☐ Staffing Level Estimation
- ☐ Effect of Schedule Compression on Cost
- Summary

Introduction

- ☐ Many software projects fail:
 - ☐ due to faulty project management practices:
 - ☐ It is important to learn different aspects of software project management.
- ☐ Goal of software project management:
 - enable a group of engineers to work efficiently towards successful completion of a software project.

Responsibility of Project Managers

- ☐ take the overall responsibility of steering a project to success.
- difficult to objectively describe the job responsibilities of a project manager.
- aranges from invisible activities like building up team morale to highly visible customer presentations.
- activities can be broadly classified into
 - □ **project planning** project planning activity is undertaken before the development starts to plan the activities to be undertaken during development.
 - project monitoring and
 - □ **control activities** undertaken once the development activities start with the aim of ensuring that the development proceeds as per plan and changing the plan whenever required to cope up with the situation.

Responsibility of Project Managers (Contd.)

- Project proposal writing,
- ☐ Project cost estimation,
- Scheduling,
- Project staffing,
- Project monitoring and control,
- ☐ Software configuration management,
- ☐ Risk management,
- ☐ Managerial report writing and presentations, etc.

Skills for Software Project Management

- ☐ theoretical knowledge,
- good qualitative judgment and decision making capabilities,
- good grasp of the latest software project management techniques such as cost estimation, risk management, configuration management,
- □ good communication skills and the ability to get work done,
- skills such as tracking and controlling the progress of the project, customer interaction, managerial presentations, and team building are largely acquired through experience.

Project Planning Activities

Estimation:

□ **Project size**: What will be problem complexity in terms of the effort and time required to develop the product?

Cost: How much is it going to cost to develop the project?

Duration: How long is it going to take to complete development?

Effort: How much effort would be required?

- ☐ **Project scheduling** of man power and other resources.
- **■** Staff organization:
 - staffing plans
- □ Risk handling:
 - ☐ identification, analysis, and abatement procedures.
- ☐ Miscellaneous plans: quality assurance plan, configuration management plan, etc.

Precedence of Project Planning Activities

Sliding Window Planning

- Requires utmost care and attention since commitment to unrealistic time and resource estimates result in schedule slippage.
- Delays can cause customer dissatisfaction and adversely affect team morale. It can even cause project failure.
- For large projects, it is very much difficult to make accurate plans. A part of this difficulty is due to the fact that the proper parameters, scope of the project, project staff, etc. may change during the span of the project.
- To overcome this problem, sometimes project managers undertake project planning in stages.
 - ☐ Protects from making commitments too early.
 - ☐ Technique of staggered planning is known as **Sliding Window Planning**
 - ☐ Starts with an initial plan,
 - ☐ Project is planned accurately in the successive stages,
 - After the completion of every phase, the project managers can plan each subsequent phase more accurately and with increasing levels of confidence.

SPMP (Software Project Management Plan)

- ☐ After planning is complete:
 - Document the plans:
 - ☐ in a Software Project Management Plan(SPMP) document.
 - List of different items.
 - □ <u>SPMP</u>

Organization of SPMP Document

- ☐ **Introduction** (Objectives, Major Functions, Performance Issues, Management and Technical Constraints)
- □ **Project Estimates** (Historical Data, Estimation Techniques, Effort, Cost, and Project Duration Estimates)
- ☐ **Project Resources Plan** (People, Hardware and Software, Special Resources)
- Schedules (Work Breakdown Structure, Task Network, Gantt Chart Representation, PERT Chart Representation)
- ☐ Staff Organization (Team Structure, Management Reporting)
- ☐ **Risk Management Plan** (Risk Analysis, Risk Identification, Risk Estimation, Abatement Procedures)
- Project Tracking and Control Plan
- ☐ **Miscellaneous Plans** (Process Tailoring, Quality Assurance)

Metrics For Software Project Size Estimation

- size of a problem is obviously not the number of bytes that the source code occupies
- neither is it the byte size of the executable code
- project size is a measure of the problem complexity in terms of the effort and time required to develop the product
- ☐ Currently two metrics are popularly being used widely to estimate size:
 - ☐ lines of code (LOC) and
 - ☐ function point (FP)

Software Size Metrics

LOC (Lines of Code):

- ☐ Simplest and most widely used metric.
- Comments and blank lines should not be counted.
- project size is estimated by counting the number of source instructions in the developed program.
- accurate estimation of the LOC count at the beginning of a project is very difficult.
- project managers usually divide the problem into modules, and each module into submodules and so on, until the sizes of the different leaf-level modules can be approximately predicted.
- using the estimation of the lowest level modules, project managers arrive at the total size estimation.

Disadvantages of Using LOC

- ☐ Size can vary with coding style.
- ☐ Focuses on coding activity alone.
- ☐ Correlates poorly with quality and efficiency of code.
- ☐ Penalizes higher level programming languages, code reuse, etc.
- ☐ Measures lexical/textual complexity only.
 - ☐ does not address the issues of structural or logical complexity.
- ☐ Difficult to estimate LOC from problem description.
 - ☐ So not useful for project planning.

Function Point Metrics

- ☐ Function point metric (FP) was first proposed by Albrecht in early 80's.
- ☐ FP can be used to:
 - ☐ Estimate the cost of effort required to design, code and test the software,
 - ☐ Predict the number of errors that will be encountered during testing,
 - ☐ Forecast the number of components and/or the number of projected source lines.
- ☐ FPs are derived using an empirical relationship based on countable measures of software's information domain and assessment of its quality.

Function Point Metric – Information Domain Values (IDVs)

	Nu	umber of External Inputs (Els):						
		A set of related inputs is counted as one input.						
		It originates from a user or is transmitted from another application.						
□ Number of External Outputs (EOs):								
		A set of related outputs is counted as one output.						
		It is derived within the application and provides information to the user.						
		It refers to reports, screens, error messages etc.						
	Nu	umber of External Inquiries (EQs):						
		Each user query type is counted.						
	Nu	umber of Internal Logical Files (ILFs):						
		Files are logically related data and thus can be data structures or physical files.						
		It resides within the application's boundary.						
	Nu	Number of External Interface Files (EIFs):						
		Data transfer to other systems.						
		Resides external to the application.						

□ Computing Function Points

- Once the data have been collected, the following table is computed and a complexity value is associated with each count.
- Organizations develop a criteria for determining whether a particular entry is simple, average or complex.

IDV	COUNT	X	SIMPLE	AVERAGE	COMPLEX	=	
EIs			3	4	6		
EOs			4	5	7		
EQs			3	4	6		
ILFs			7	10	15		
EIFs			5	7	10		
Count Total						→	

Computing Function Points

FP = Count Total x $[0.65 + 0.01 \times \Sigma (F_i)]$, constants/weighing factors are empirically determined.

- F_i (i = 1 to 14) are Value Adjustment Factors (VAFs)/Technical Complexity Factors (TCFs) based on responses to the following questions.
 - > Does the system require reliable backup and recovery?
 - > Are specialized data communications required to transfer information to or from the application?
 - ➤ Are there distributed processing functions?
 - ➤ Is performance critical?
 - ➤ Will the system run in an existing, heavily utilized operational environment?
 - > Does the system require online data entry?
 - Does the online data entry require the input transaction to be built over multiple screens or operations?
 - > Are the ILFs updated online?
 - > Are the inputs, outputs, files or enquires complex?
 - ➤ Is the internal processing complex?
 - ➤ Is the code designed to be reusable?
 - ➤ Are conversion and installation included in the design?
 - ➤ Is the system designed for multiple installations in different organizations?
 - ➤ Is the application designed to facilitate change and for ease of use by the user?

VAFs/TCFs

General System Characteristics

Data Communication On-Line Update

Distributed Data Processing Complex Processing

Performance Objectives Reusability

Heavily Used Configuration Conversion & Install Ease

Transaction Rate Operational Ease

On-Line Data Entry Multiple-Site Use

End-User Efficiency Facilitate Change

- Degrees of Influence for VAFs/TCFs
 - \square Each of these questions is answered using a scale that ranges from 0-5
 - \square 0 No Influence
 - □ 1 Incidental
 - □ 2 Moderate
 - \square 3 Average
 - □ 4 Significant
 - **□** 5 Essential

Case Study I: Safe Home Software

- ☐ The function manages user interaction, accepting a user password to activate or deactivate the system and allows inquires on the status of security zones and various security sensors.
- ☐ The function displays a series of prompting messages and sends appropriate control signals to various components of the security system.

Case Study I: Safe Home Software

Case Study I: Safe Home Software (Computing FP)

I Function Point Metric Safe Home Software.xls

8/21/2023 25

Case Study II: Spell Checker Software

- ☐ The spell-checker accepts as input, a document file and an optional personal directory file.
- ☐ Then the spell checker lists all words which are not contained in either of these files.
- ☐ The user can query the number of words processed and the number of spelling errors which are found at any stage during the processing.

Case Study II: Spell Checker Software

Case Study II: Spell Checker Software (Computing FP)

I Function Point Metric Spell Checker Software.xls

Function Point Metric (CONT.)

- ☐ Suffers from a major drawback:
 - ☐ the size of a function is considered to be independent of its complexity.
- ☐ Extend function point metric:
 - ☐ Feature Point metric:
 - □ considers an extra parameter:
 - ☐ Algorithm Complexity.

Function Point Metric (CONT.)

- Proponents claim:
 - ☐ FP is language independent.
 - ☐ Size can be easily derived from problem description.
- Opponents claim:
 - ☐ it is subjective --- Different people can come up with different estimates for the same problem.

Case Study III: Mobile Application (Class Assignment)

- ☐ The activity has been designed and developed specifically to run on tablet computers for teaching autistic children.
- ☐ They are very important visual support systems for the autistic children to develop skills like getting organized, acting independently and making selections.

Case Study IV: Payroll Application

- ☐ Transaction to input, amend and delete employee details.
- ☐ Transaction to calculate pay details from timesheet data.
- ☐ Transaction to print pay-to-date details for each employee.
- ☐ A file of payroll details for each employee.
- ☐ A personnel file maintained by another system that is accessed for name and address details.

