

# 第八章

函数



#### PART 01 函数的定义与性质

PART 02 函数的复合与反函数

- 函数的定义
  - 函数定义
  - · 从A到B的函数
  - 函数的像
- 函数的性质
  - 函数的单射、满射、双射性
  - 构造双射函数

定义8.1 设 F 为二元关系,若  $\forall x \in \text{dom} F$  都存在 唯一的 $y \in \text{ran} F$  使 xFy 成立,则称 F 为函数. 对于函数F, 如果有 xFy, 则记作 y=F(x), 并称 y 为 F 在 x 的值.

例  $F_1$ ={ $<x_1,y_1>,<x_2,y_2>,<x_3,y_2>$ }, $F_2$ ={ $<x_1,y_1>,<x_1,y_2>$ } 判断 $F_1$ 和 $F_2$ 是不是函数  $F_1$ 是函数, $F_2$ 不是函数

定义8.2 设F, G为函数,则  $F = G \Leftrightarrow F \subseteq G \land G \subseteq F$ 

如果两个函数 F 和 G 相等,一定满足下面两个条件:

- (1) dom F = dom G
- (2)  $\forall x \in \text{dom} F = \text{dom} G$  都有 F(x) = G(x)

例 函数 $F(x)=(x^2-1)/(x+1)$ ,G(x)=x-1,判断两个函数是否相等

不相等,因为  $dom F \subset dom G$ .

定义8.3 设A,B为集合,如果f为函数,且 dom f = A  $ran f \subseteq B$ , 则称f为从A到B的函数,记作f: $A \rightarrow B$ .

例

 $f: N \rightarrow N, f(x)=2x$  是从 N 到 N 的函数  $g: N \rightarrow N, g(x)=2$ 也是从 N 到 N 的函数

定义8.4 <u>所有</u>从A到B的函数的集合记作 $B^A$ ,读作"B上A",符号化表示为:

$$B^A = \{ f \mid f: A \rightarrow B \}$$
.

例8.2 设  $A = \{1, 2, 3\}, B = \{a, b\}, 求 B^A$ .

解:  $dom f_i = A$ ,  $ran f_i \subseteq B$ ,  $B^A = \{f_0, f_1, \dots, f_7\}$ , 其中  $f_0 = \{<1, a>, <2, a>, <3, a>\}$ ,  $f_1 = \{<1, a>, <2, a>, <3, b>\}$   $f_2 = \{<1, a>, <2, b>, <3, a>\}$ ,  $f_3 = \{<1, a>, <2, b>, <3, b>\}$   $f_4 = \{<1, b>, <2, a>, <3, a>\}$ ,  $f_5 = \{<1, b>, <2, a>, <3, b>\}$   $f_6 = \{<1, b>, <2, b>, <3, a>\}$ ,  $f_7 = \{<1, b>, <2, b>, <3, b>\}$ 

定义8.4 所有从A到B的函数的集合记作 $B^A$ ,读作"B上A",符号化表示为:

$$B^A = \{ f \mid f: A \rightarrow B \}$$
.

#### 计数

- 1)  $|A|=m, |B|=n, \perp m, n>0, |B^A|=n^m.$
- 2)  $A=\emptyset$ , 则  $B^A=B^\emptyset=\{\emptyset\}$ .
- 3)  $A \neq \emptyset$ 且 $B = \emptyset$ , 则  $B^A = \emptyset^A = \emptyset$ .

定义8.5 设函数  $f: A \rightarrow B, A_1 \subseteq A, B_1 \subseteq B$ .

- 1) 令  $f(A_1) = \{f(x) | x \in A_1\}$ ,则称  $f(A_1)$ 为 $A_1$ 在 f下的像;当 $A_1 = A$ 时称 f(A)为函数的像.
- 2) 令  $f^{-1}(B_1) = \{x \mid x \in A \land f(x) \in B_1 \}$ ,称  $f^{-1}(B_1) \to B_1$ 在 f 下的完全原像.

说明:函数值  $f(x) \in B$ ,而像  $f(A_1) \subseteq B$ .

例8.3 设  $f: N \rightarrow N$ , 且  $f(x) = \begin{cases} x/2 & \exists x \land \text{周数} \\ x+1 & \exists x \land \text{奇数} \end{cases}$ 令 $A = \{0,1\}, B = \{2\}, 求出 f(A)和 f^{-1}(B).$ 

解:  $f(A) = f(\{0,1\}) = \{f(0), f(1)\} = \{0, 2\}, f^{-1}(B) = \{1, 4\}.$ 

# 定义8.6(函数的性质) 设 $f: A \rightarrow B$ ,

- 1) 若ran f = B, 则称  $f: A \rightarrow B$ 是满射的.
- 2) 若  $\forall y \in \text{ran} f$  都存在唯一的  $x \in A$  使得 f(x)=y, 则 称  $f: A \rightarrow B$  是 单射的.
- 3) 若  $f: A \rightarrow B$  既是满射又是单射的,则称  $f: A \rightarrow B$  是双射的.

#### 说明:

- 1) f满射意味着:  $\forall y \in B$ , 都存在  $x \in A$  使得 f(x) = y.
- 2) f 单射意味着:  $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$

例8.4 判断下面函数是否为单射,满射,双射的,为什么?

(1) 
$$f: R \to R$$
,  $f(x) = -x^2 + 2x - 1$   
 $f: R \to R$ ,  $f(x) = -x^2 + 2x - 1 = -(x+1)^2 \le 0$   
在 $x=1$ 取得极大值0. 既不单射也不满射.

(2) 
$$f: Z^+ \to R$$
,  $f(x) = \ln x$ ,  $Z^+ \to E$  整数集  
 $f: Z^+ \to R$ ,  $f(x) = \ln x$   
单调上升, 是单射. 但不满射,  $ranf = \{\ln 1, \ln 2, ...\}$ .

(3) 
$$f: \mathbb{R} \to \mathbb{Z}, f(x) = \lfloor x \rfloor$$
  
 $f: \mathbb{R} \to \mathbb{Z}, f(x) = \lfloor x \rfloor$   
满射, 但不单射, 例如  $f(1.5) = f(1.2) = 1$ .

例8.4 判断下面函数是否为单射,满射,双射的,为什么?

(4) 
$$f: R \to R, f(x) = 2x+1$$

 $f: \mathbb{R} \rightarrow \mathbb{R}, f(x) = 2x + 1$ 

满射、单射、双射,因为它是单调的并且ranf=R.

(5) f: R<sup>+</sup> $\to$ R<sup>+</sup>,  $f(x)=(x^2+1)/x$ , 其中R<sup>+</sup>为正实数集.

 $f: \mathbf{R}^+ \to \mathbf{R}^+, f(x) = (x^2+1)/x$ 

有极小值f(1)=2. 该函数既不单射也不满射

例8.6(1)  $A=P(\{1,2,3\})$ ,  $B=\{0,1\}^{\{1,2,3\}}$ , 构造双射函数 $f:A\to B$ .

解 
$$A=\{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}\}.$$
 $B=\{f_0,f_1,\ldots,f_7\},$  其中
 $f_0=\{<1,0>,<2,0>,<3,0>\}, f_1=\{<1,0>,<2,0>,<3,1>\},$ 
 $f_2=\{<1,0>,<2,1>,<3,0>\}, f_3=\{<1,0>,<2,1>,<3,1>\},$ 
 $f_4=\{<1,1>,<2,0>,<3,0>\}, f_5=\{<1,1>,<2,0>,<3,1>\},$ 
 $f_6=\{<1,1>,<2,1>,<3,0>\}, f_7=\{<1,1>,<2,1>,<3,1>\}.$ 
 $\Leftrightarrow$   $f:$   $A\rightarrow B,$ 
 $f(\emptyset)=f_0,$   $f(\{1\})=f_1,$   $f(\{2\})=f_2,$   $f(\{3\})=f_3,$ 
 $f(\{1,2\})=f_4,$   $f(\{1,3\})=f_5,$   $f(\{2,3\})=f_6,$   $f(\{1,2,3\})=f_7$ 

解  
令 
$$f: [0,1] \rightarrow [1/4,1/2]$$
  
 $f(x)=(x+1)/4$ 



实数区间之间构造双射方法:直线方程

例8.6(3) A=Z, B=N,构造双射  $f: A \rightarrow B$  将Z中元素以下列顺序排列并与N中元素对应:

则这种对应所表示的函数是:

$$f: Z \to N, f(x) = \begin{cases} 2x & \ge 0 \\ -2x - 1 & x < 0 \end{cases}$$

集合A与自然数集合之间构造双射方法:

- 1)将A中元素排成有序图形,
- 2) 从第一个元素开始按照次序与自然数对应.

# 常用函数

- 1) 设f:  $A \rightarrow B$ , 若存在  $c \in B$  使得  $\forall x \in A$  都有f(x)=c, 则称 f:  $A \rightarrow B$ 是常函数.
- 2) 称 A 上的恒等关系  $I_A$ 为 A 上的恒等函数, 对所有的  $x \in A$  都有  $I_A(x)=x$ .
- 3)设  $f: R \to R$ ,如果对任意的  $x_1, x_2 \in R$ , $x_1 < x_2$ ,就 有  $f(x_1) \le f(x_2)$ ,则称 f 为单调递增的;如果对任意的  $x_1, x_2 \in A$ , $x_1 < x_2$ ,就有  $f(x_1) < f(x_2)$ ,则称 f 为 严格单调递增的.

类似3)可以定义单调递减和严格单调递减的函数.

4)设 A 为集合,  $\forall A' \subseteq A$ , A' 的 特征函数  $\chi_{A'}$ :  $A \rightarrow \{0,1\}$  定义为

$$\chi_{A'}(a) = \begin{cases} 1, & a \in A' \\ 0, & a \in A - A' \end{cases}$$

例 集合:  $X = \{A, B, C, D, E, F, G, H\}$ ,

子集:  $T = \{A, C, F, G, H\}$ 

T的特征函数 $\chi_T$ :

x A B C D E F G H  $\chi_T(x)$  1 0 1 0 0 1 1 1

A的每一个子集A'都对应于一个特征函数,不同的子 集对应于不同的特征函数.

练 
$$A = \{a, b, c\}$$
, 求出 $\chi_{\varnothing}$ 和 $\chi_{\{a,b\}}$ .
$$\chi_{\varnothing} = \{ \langle a, 0 \rangle, \langle b, 0 \rangle, \langle c, 0 \rangle \},$$

$$\chi_{\{a,b\}} = \{ \langle a, 1 \rangle, \langle b, 1 \rangle, \langle c, 0 \rangle \}$$

5) 设 *R* 是 *A* 上的等价 关系,令

 $g: A \rightarrow A/R$ 

 $g(a) = [a], \forall a \in A$  称 g 是从 A 到商集 A/R 的自然映射.



练  $A=\{1,2,3\}$ ,  $R=\{<1,3>,<3,1>\}$   $\cup$   $I_A$ , 求出A 到商集 A/R 的自然映射.

解: 
$$I_A = \{<1,1>,<2,2>,<3,3>\}$$
  
 $g(1) = g(3) = \{1,3\}, g(2) = \{2\}$ 

# 作业

习题8(P170)

3 (3, 5)

**14** 

**16** 



PART 01
函数的定义与性质

PART 02 函数的复合与反函数

- 函数的复合
  - 函数复合的定理
  - 函数复合的性质
- 反函数
  - 反函数存在的条件
  - 反函数的性质

函数是一种特殊的二元关系, 函数的复合就是关系的右复合.

定理8.1 设F, G是函数,则F。G也是函数,且满足

- 1)  $\operatorname{dom}(F \circ G) = \{ x \mid x \in \operatorname{dom} F \land F(x) \in \operatorname{dom} G \}$
- 2)  $\forall x \in \text{dom}(F \circ G)$  有  $F \circ G(x) = G(F(x))$

推论1 设F, G, H为函数, 则 (F° G)° H和 F° (G° H) 都是函数, 且

$$(F \circ G) \circ H = F \circ (G \circ H).$$

推论2 设  $f: A \rightarrow B, g: B \rightarrow C, 则 f \circ g: A \rightarrow C, 且$   $\forall x \in A$  都有  $f \circ g(x) = g(f(x)).$ 

- 定理8.2 设 $f: A \rightarrow B, g: B \rightarrow C$ .
- 1) 如果  $f: A \rightarrow B, g: B \rightarrow C$  都是满射的,则  $f^{\circ} g: A \rightarrow C$ 也是满射的.
- 2) 如果  $f: A \rightarrow B, g: B \rightarrow C$  都是单射的,则  $f \circ g: A \rightarrow C$ 也是单射的.
- 3) 如果  $f: A \rightarrow B, g: B \rightarrow C$  都是双射的,则  $f \circ g: A \rightarrow C$ 也是双射的.

定理8.3 设 $f: A \rightarrow B$ ,则 $f = f \circ I_B = I_A \circ f$ .

# 反函数存在的条件

任给函数 F, 它的逆 $F^{-1}$ 不一定是函数, 是二元关系.

例  $F=\{\langle a,b\rangle,\langle c,b\rangle\}$ ,  $F^{-1}=\{\langle b,a\rangle,\langle b,c\rangle\}$   $F^{-1}$ 是二元关系,不是函数。

任给单射函数  $f: A \rightarrow B$ , 则  $f^{-1}$ 是函数, 且是从 ranf 到 A的双射函数, 但不一定是从 B 到 A 的双射函数.

例  $f: \mathbb{N} \to \mathbb{N}, f(x) = 2x,$   $f^{-1}(x) = x/2$   $f^{-1}: \operatorname{ran} f \to \mathbb{N}$ 

定义 对于双射函数 $f: A \rightarrow B$ ,称  $f^{-1}: B \rightarrow A$ 是它的反函数,且  $f^{-1}: B \rightarrow A$ 也是双射的.

定理8.5 设  $f: A \rightarrow B$ 是双射的,则  $f^{-1}\circ f = I_B$ ,  $f\circ f^{-1} = I_A$ 

推论 对于双射函数  $f: A \rightarrow A$ ,有  $f^{-1} \circ f = f \circ f^{-1} = I_A$ 

例8.9 设 
$$f: \mathbb{R} \to \mathbb{R}, g: \mathbb{R} \to \mathbb{R}$$

$$f(x) = \begin{cases} x^2 & x \ge 3 \\ -2 & x < 3 \end{cases}$$

$$g(x) = x + 2$$

求 $f \circ g, g \circ f$ . 如果f和g存在反函数,求出它们的反函数.

$$\begin{aligned}
\mathbf{f} &\circ \mathbf{g} : \mathbf{R} \to \mathbf{R} \\
f &\circ \mathbf{g}(\mathbf{x}) = \begin{cases} x^2 + 2 & x \ge 3 \\ 0 & x < 3 \end{cases} & g \circ f(\mathbf{x}) = \begin{cases} (x+2)^2 & x \ge 1 \\ -2 & x < 1 \end{cases}
\end{aligned}$$

 $f: R \to R$ 不是双射的,不存在反函数.

 $g: R \to R$ 是双射的,它的反函数是

$$g^{-1}(x) = x-2$$
,  $g^{-1}$ :  $R \rightarrow R$ 

# 作业

习题8(P170)

19