Bayesian Statistics and Modeling Part II

Time series modeling with pymc3

Based on this example

Prior predictions (WHAT??)

Prior predictions (WHAT??)

- Look at a large array of possible "reasonable" outcomes given our assumptions about the data
- Gives us an idea of whether our priors make sense
- In this case, we want to make some corrections

Updated priors

Posterior predictions

- Incorporate our actual data and then compare our model to observed outcomes
- Decide if we think that our model can make reasonable predictions

Posterior predictions

Adding seasonality

We add a group of periodic functions (fourier features) to function as our "seasonality splines" (if we think of our model as a GAM). They will get stretched or weighted based on observations.

Seasonal priors

Seasonal posteriors

Modeling baseball outcomes

A revised/updated version of this tutorial

- ϕ (phi) Our population-level expectation of batting average
- κ (kappa) Population variance in batting average
- α, β Parameters of our beta distribution
- p_i Individual batting average

$$lpha = \phi \cdot \kappa$$
 $eta = (1 - \phi) \cdot \kappa$

Beta distribution

- Used where there are binary outcomes (hit or no hit)
- Tilts toward 1 or 0
 based on observed
 outcomes and
 concentration of
 those outcomes

Population values

Player with 4 at-bats, no hits

Player with 25 at-bats, no hits

Player with 50 at-bats, no hits

Mariners 2021

