Lois de Probabilité Usuelles

On rappelle que
$$C_n^k = \frac{n!}{k! \, (n-k)!},$$

$$\Gamma\left(\alpha\right) = \int_0^{+\infty} x^{\alpha-1} e^{-x} dx,$$

$$\beta\left(a,b\right) = \int_0^1 x^{a-1} \left(1-x\right)^{b-1} dx.$$
 Le support est l'ensemble des valeurs que peut prendre la variable aléatoire ayant une loi donnée.

1/ Lois discrètes

Rappel : l'espérance est obtenue par la formule : $\mathbb{E}X = \sum_{k \in \text{support}} k \mathbb{P}\left(X = k\right)$.

Nom et Symbole	Paramètre(s)	Support	Loi	Espérance	Variance
Bernoulli $\mathcal{B}(1,p)$	$p \in \left]0,1\right[$	{0,1}	$ \begin{cases} \mathbb{P}(X=0) = 1 - p \\ \mathbb{P}(X=1) = p \end{cases} $	p	p(1-p)
Binomiale $\mathcal{B}(n,p)$	$n \in \mathbb{N}^*$ $p \in]0,1[$	$ \{0,,n\}$	$\mathbb{P}(X=k) = C_n^k p^k (1-p)^{n-k}$	np	np(1-p)
Poisson $\mathcal{P}(\lambda)$	$\lambda \in \mathbb{R}^{+*}$	N	$\mathbb{P}(X=k) = e^{-\lambda} \frac{\lambda^k}{k!}$	λ	λ
Géométrique $\mathcal{G}\left(p\right)$	$p \in]0,1[$	N*	$\mathbb{P}(X=k) = (1-p) p^{k-1}$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
Binomiale négative $\mathcal{BN}(n,p)$	$n \in \mathbb{N}^*$ $p \in]0,1[$	$\left\{ n, n+1, \ldots \right\}$	$\mathbb{P}(X = k) = C_{k-1}^{n-1} p^n (1-p)^{k-n}$	$\frac{n}{p}$	$n\frac{1-p}{p^2}$
Hypergéométrique $\mathcal{H}(N, m, n)$	$N \in \mathbb{N}^*$ $(m, n) \in \{1,, N\}^2$	$\{0,,\min\left(m,n\right)\}$	$\mathbb{P}(X=k) = \frac{C_m^k C_{N-m}^{n-k}}{C_N^n}$	$\frac{nm}{N}$	$nm\frac{(N-n)(N-m)}{N^2(N-1)}$
Multinomiale $\mathcal{M}\left(n,p_{1},,p_{m}\right)$	$n \in \mathbb{N}^*$ $0 < p_i < 1, \sum p_i = 1$	$\left\{0,,n\right\}^m$	$\mathbb{P}(X_i = k_i, 1 \le i \le m)$ $= \frac{n!}{k_1! k_m!} p_1^{k_1} p_m^{k_m}$ $\text{si } \sum k_i = n$	$(np_i)_{1 \le i \le k}$	$var(X_i) = np_i (1 - p_i)$ $cov (X_i, X_j) = -np_i p_j$

N.B: La loi multinomiale est une loi vectorielle (associée à la variable $(x_1,...,x_k)$).

2/ Lois continues

Nom et Symbole	Paramètre(s)	Support	Densité	Espérance	Variance
Uniforme $\mathcal{U}\left[a,b\right]$	$a < b \in \mathbb{R}$	[a,b]	$f\left(x\right) = \frac{1}{b-a}$	(a+b)/2	$\frac{(b-a)^2}{12}$
Normale $\mathcal{N}\left(m,\sigma^2\right)$	$m \in \mathbb{R}$ $\sigma^2 \in \mathbb{R}^{+*}$	\mathbb{R}	$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-m)^2}{2\sigma^2}\right)$	m	σ^2
Exponentielle $\mathcal{E}(\lambda)$	$\lambda \in \mathbb{R}^{+*}$	\mathbb{R}^+	$f(x) = \lambda \exp(-\lambda x)$	$\left \begin{array}{c} 1 \\ \overline{\lambda} \end{array} \right $	$\frac{1}{\lambda^2}$
Gamma $\gamma\left(\alpha,\lambda\right)$	$(\alpha, \lambda) \in (\mathbb{R}^{+*})^2$	\mathbb{R}^+	$f(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} \exp(-\lambda x)$ $f(x) = \frac{a}{\pi (a^2 + x^2)}$	$\frac{\alpha}{\lambda}$	$\frac{\alpha}{\lambda^2}$
Cauchy \mathcal{C}	$a \in \mathbb{R}$	\mathbb{R}	$f(x) = \frac{a}{\pi (a^2 + x^2)}$	∞	∞
Pareto $\mathcal{P}a\left(\alpha\right)$	$\alpha > 0$	$[1,+\infty[$	$f\left(x\right) = \alpha/x^{1+\alpha}$	$\frac{\alpha}{\alpha - 1}, \alpha > 1$	$\frac{\alpha}{(\alpha-1)^2(\alpha-2)}, \alpha > 2$
Weibull $\mathcal{W}(\alpha, \beta)$	$(\alpha,\beta) \in (\mathbb{R}^{+*})^2$	\mathbb{R}^+	$f(x) = \frac{\alpha}{\beta^{\alpha}} x^{\alpha - 1} e^{-\left(\frac{x}{\beta}\right)^{\alpha}}$	$\beta\Gamma\left(1+\frac{1}{\alpha}\right)$	$\beta^2 \left[\Gamma \left(1 + \frac{2}{\alpha} \right) - \Gamma^2 \left(1 + \frac{1}{\alpha} \right) \right]$
Béta de 1ère espèce $\beta_1(a,b)$	$(a,b) \in (\mathbb{R}^{+*})^2$	[0, 1]	$f(x) = \frac{x^{a-1} (1-x)^{b-1}}{\beta (a,b)}$	a/(a+b)	$\frac{ab}{(a+b)^2(a+\beta+1)}$
Béta de 2ème espèce $\beta_{2}\left(a,b\right)$	$(a,b) \in (\mathbb{R}^{+*})^2$	\mathbb{R}^+	$f(x) = \frac{x^{a-1}}{\beta(a,b)(1+x)^{a+b}}$	a/(b-1), b > 1	$\frac{a(a+b-1)}{(b-1)^2(b-2)}, b > 2$

Lois dérivées de la loi normale

Nom et Symbole	Paramètre(s)	Support	Densité	Espérance	Variance
Chi-deux $\chi^2(n)$	$n \in \mathbb{N}^*$	\mathbb{R}^+	$\gamma\left(\frac{n}{2},\frac{1}{2}\right)$ (Cf au dessus)	n	2n
Student $\mathcal{T}(n)$	$n \in \mathbb{N}^*$		$f(x) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi}\Gamma\left(\frac{1}{2}\right)} \left(1 + \frac{x^2}{n}\right)^{-(n+1)/2}$	0	$\frac{n}{n-2}$
Fischer $\mathcal{F}(n,m)$	$(n,m) \in \mathbb{N}^{*2}$	\mathbb{R}^+	$f(x) = \frac{\Gamma\left(\frac{n+m}{2}\right)n^{m/2}m^{n/2}}{\Gamma\left(\frac{m}{2}\right)\Gamma\left(\frac{n}{2}\right)}\left(1+\frac{x^2}{n}\right)^{-(n+1)/2}$	$\frac{m}{m-2}, m > 2$	$2\frac{m^{2}}{n}\frac{n+m-2}{(m-2)^{2}(m-4)},$ $m > 4$
Log-Normale $\mathcal{LN}\left(m,\sigma^2\right)$	$m \in \mathbb{R}, \sigma^2 \in \mathbb{R}^{+*}$	\mathbb{R}^+	$f(x) = \frac{1}{x\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(\ln x - m)^2}{2\sigma^2}\right]$	$e^{m+\sigma^2/2}$	$e^{2m+\sigma^2}\left(e^{\sigma^2-1}\right)$