Public Key Cryptography

Asymmetric Encryption Schemes

- Main idea: Use two keys, public and private
- Everyone can encrypt, but to decrypt one needs the private key
- Useful if we need to communicate with someone we don't have any preliminary agreements
- Usually slower and more expensive than private cryptography
- This defines usual applications:
 - key distribution
 - digital signatures

- ...

Asymmetric Encryption Schemes (cntd)

Definition

An asymmetric encryption scheme (AES) is a triple of algorithms (K, E, D):

- keys: (e, d) e is a public encryption key
 d is a private decryption key
- encryption: $E_{e(P)} = C$
- decryption: $D_d(C) = P$

Trapdoor Functions

- Requirement to a AES: it has to be a trapdoor function:
 - All algorithms are polynomial time (efficient)
 - *K*: is a randomized algorithm
 - E_e : is a permutation on some set S (sometimes it is required that S is efficiently sampleable)
 - $D_d(E_e(P)) = P$ for all $P \in S$
 - for each e generated by K, E_e is a one-way permutation even if the adversary knows e

That is for some superpolynomial pair (T, ε) , for any Eve of time complexity at most T

$$\Pr_{\substack{(e,d) \leftarrow K \\ P \leftarrow S}} \left[\text{Eve}(e, E_e(P)) = P \right] < \varepsilon$$

Candidates: RSA

- Invented in 1977 by Rabin, Shamir and Adleman
- K: choose random primes p,q of length k $n = p \cdot q. \quad \text{Note that } \varphi(n) = (p-1)(q-1)$ $\text{choose } e \text{ at random from } \mathbb{Z}_{\varphi(n)}^*$
- Public key: n, e
- Private key: d such that $d = e^{-1} \pmod{\varphi(n)}$ that is $e \cdot d = m \cdot \varphi(n) + 1$
- Encryption: $RSA_{n,e}(P) \equiv P^e \pmod{n}$
- RSA_{n,e} is a permutation on \mathbb{Z}_n^* . Indeed, let $C \equiv P^e \pmod{n}$ $C^d \equiv P^{ed} \equiv P^{m\varphi(n)+1} \equiv P \pmod{n}$
- Decryption: $P \equiv C^d \pmod{n}$
- RSA assumption: RSA is a trapdoor function

The Chinese Remainder Theorem

Theorem

Let $m_1, m_2, ..., m_k$ be pairwise relatively prime positive integers and $a_1, a_2, ..., a_k$ arbitrary integers. Then the system

$$x \equiv a_1 \pmod{m_1}$$

 $x \equiv a_2 \pmod{m_2}$
 \vdots
 $x \equiv a_k \pmod{m_k}$

has a unique solution modulo $m=m_1\cdot m_2\cdot ...\cdot m_k$. (That is, there is a solution x with $0\leq x < m$, and all other solutions are congruent modulo m to this solution.)

Garner's Formula

Suppose

$$x \equiv a \pmod{p}$$

$$x \equiv b \pmod{q}$$
 Then
$$x = \left((a - b) \cdot \left(q^{-1} \bmod{p} \right) \right) \cdot q + b$$
 Check.

Candidates: Rabin Trapdoor Permutation

- It is not a permutation. But it is a permutation on quadratic residues A quadratic residue modulo n is a number $t \equiv s^2 \pmod{n}$
- K: choose p,q, random primes of length m with $p,q\equiv 3(\bmod 4),\ n=p\cdot q.$ Note that $\varphi(n)=(p-1)(q-1)=(4k+2)(4k'+2)=4k''$
- Public key: n
- Private key: p, q
- Encryption: $RABIN_n(P) \equiv P^2 \pmod{n}$ RABIN_n is a permutation on the set of quadratic residues.

Candidates: Rabin Trapdoor Permutation (cntd)

Decryption: $C = \text{RABIN}_n(P) \equiv P^2 \pmod{n}$ If p = 4k + 3 and q = 4k' + 3 then let $P_1 = C^{k+1}$ and $P_2 = C^{k'+1}$

We show that $P_1 \equiv P \pmod{p}$ and $P_2 \equiv P \pmod{q}$

Note that $P \equiv S^2 \pmod{n}$

Therefore

$$P_1 = (P^2)^{k+1} \equiv S^{4(k+1)} \equiv S^{p-1+2} \equiv S^2 \equiv P \pmod{p}$$

Then use Chinese Remainder Theorem

- Inverting Rabin's function is equivalent to factoring Blum integers
- A Blum integer is a number $n = p \cdot q$ with $p, q \equiv 3 \pmod{4}$