Multivariate Analysis for the Behavioral Sciences, Second Edition (Chapman and Hall/CRC, 2019)

Solutions to Exercises of Chapter 2: Looking at Data

Kimmo Vehkalahti and Brian S. Everitt 8 October 2018

Solutions

Exercise 2.1

Exercise 2.2

Use the lengths data (see below).

```
lengths <- structure(list(group = structure(</pre>
2L, 2L, 2L, 2L, 2L, 2L),
.Label = c("Metres", "Feet"), class = "factor"),
guesses = c(8, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 12, 12, 13,
13, 13, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 16, 16, 16, 17, 17,
17, 17, 18, 18, 20, 22, 25, 27, 35, 38, 40, 24, 25, 27, 30, 30, 30, 30,
30, 30, 32, 32, 33, 34, 34, 35, 35, 36, 36, 36, 37, 37, 40, 40, 40,
40, 40, 40, 40, 40, 41, 41, 42, 42, 42, 42, 43, 43, 44, 44, 44, 45,
45, 45, 45, 45, 45, 46, 46, 47, 48, 48, 50, 50, 50, 51, 54, 54, 54, 55,
55, 60, 60, 63, 70, 75, 80, 94)),
.Names = c("group", "guesses"), row.names = c(NA, -113L), class = "data.frame")
head(lengths)
```

```
## group guesses
## 1 Metres 8
## 2 Metres 9
## 3 Metres 10
## 4 Metres 10
## 5 Metres 10
## 6 Metres 10
```



```
qqnorm(guesses[!feet], ylab = "Width guesses in metres")
qqline(guesses[!feet])
```

Normal Q-Q Plot


```
qqnorm(guesses[feet], ylab = "Width guesses in feet")
qqline(guesses[feet])
```

Normal Q-Q Plot

detach(lengths)

Exercise 2.3

Use the states data (see below).

```
states <- structure(list(
Population = c(3615, 21198, 2861, 2341, 812, 10735, 2284, 11860, 681, 472),
Income = c(3624, 5114, 4628, 3098, 4281, 4561, 4660, 4449, 4167, 3907),
Illiteracy = c(2.1, 1.1, 0.5, 2.4, 0.7, 0.8, 0.6, 1, 0.5, 0.6),
Life.Expectancy = c(69.05, 71.71, 72.56, 68.09, 71.23, 70.82, 72.13, 70.43, 72.08, 71.64),
Homicide = c(15.1, 10.3, 2.3, 12.5, 3.3, 7.4, 4.2, 6.1, 1.7, 5.5),
Graduates = c(41.3, 62.6, 59, 41, 57.6, 53.2, 60, 50.2, 52.3, 57.1),
Freezing = c(20, 20, 140, 50, 174, 124, 44, 126, 172, 168)),
.Names = c("Population", "Income", "Illiteracy", "Life.Expectancy", "Homicide", "Graduates", "Freezing"),
row.names = c("Alabama", "California", "Iowa", "Mississippi", "New Hampshire", "Ohio", "Oregon", "Pennsylvania", "South Dakota", "Vermont"), class = "data.frame")
states</pre>
```

##		Population	Tncome	Illiteracy	Life.Expectancy	Homicide		
	Alabama	3615	3624	2.1	69.05	15.1		
	California	21198	5114	1.1	71.71	10.3		
##	Iowa	2861	4628	0.5	72.56	2.3		
##	Mississippi	2341	3098	2.4	68.09	12.5		
##	New Hampshire	812	4281	0.7	71.23	3.3		
##	Ohio	10735	4561	0.8	70.82	7.4		
##	Oregon	2284	4660	0.6	72.13	4.2		
##	Pennsylvania	11860	4449	1.0	70.43	6.1		
##	South Dakota	681	4167	0.5	72.08	1.7		
##	Vermont	472	3907	0.6	71.64	5.5		
##	Graduates Freezing							
##	Alabama	41.3	20)				
##	California	62.6	20)				
##	Iowa	59.0	140)				
##	Mississippi	41.0	50)				
##	New Hampshire	57.6	174	1				
##	Ohio	53.2	124	1				
##	Oregon	60.0	44	1				
##	Pennsylvania	50.2	126	3				
##	South Dakota	52.3	172	2				
##	Vermont	57.1	168	3				


```
#install.packages("MVA")
require("MVA")

## Loading required package: MVA

## Loading required package: HSAUR2

## Loading required package: tools

pairs(states, panel = function(x,y) {
   text(x, y, abbreviate(row.names(states)), cex = 0.6)
   par(new = T)
   bvbox(cbind(x, y), mtitle = "")
})
```


detach(states)

Exercise 2.4

The graph commits the cardinal sin of quoting data out of context; remember that graphics often lie by omission, leaving out data sufficient for comparisons. Here, a few more data points for other years in the area would be helpful, as would similar data for other areas in which stricter enforcement of speeding had not been implemented.

Exercise 2.5

Use the suicides data (see below).

##		A25.34	A35.44	A45.54	A55.64	A65.74
##	Canada	22	27	31	34	24
##	Israel	9	19	10	14	27
##	Japan	22	19	21	31	49
##	Austria	29	40	52	53	69
##	France	16	25	36	47	56
##	Germany	28	35	41	49	52
##	Hungary	48	65	84	81	107
##	Italy	7	8	11	18	27
##	${\tt Netherlands}$	8	11	18	20	28
##	Poland	26	29	36	32	28
##	Spain	4	7	10	16	22
##	Sweden	28	41	46	51	35
##	${\tt Switzerland}$	22	34	41	50	51
##	UK	10	13	15	17	22
##	USA	20	22	28	33	37

A set of boxplots for the different countries might also be interesting.