Introduction to Abstract Algebra: Sheet 1

For discussion in Week 1 Skills Sessions and Week 2 Tutorials

Please complete all core problems. The additional practice problems are not required: try them if you're interested and have time. The problems marked with (SS) will be discussed in the Skills Session for Week 1. Please attempt these *before* your Skills Session. Some of the other problems will be discussed in your tutorial for Week 2. Please attempt these problems *before* your tutorial.

Core problems

Exercise 1. Consider the following subsets of \mathbb{Z} :

$$A = \{3n \mid n \in \mathbb{Z}\}, B = \{a \in \mathbb{Z} \mid -6 < a \le 6\}, C = \{-3, 2, 4, 9, 31\}.$$

List all elements of the following sets:

- (i) $B \cup (A \cap C)$
- (ii) $(B \cup A) \cap C$
- (iii) $(B \setminus A) \cap C$

Exercise 2 (SS). Let A, B, and C be as defined in Exercise 1. List the elements of the set $(A \cap B) \times (A \cap C)$

Exercise 3. Let A, B and C be subsets of a set X. Prove that

$$(A \cup B) \cap C = (A \cap C) \cup (B \cap C).$$

Exercise 4 (SS). Let X and Y be sets. Let A_1 and A_2 be subsets of X. Prove that

$$(A_1 \times Y) \cap (A_2 \times Y) = (A_1 \cap A_2) \times Y$$

Exercise 5 (SS). Let $f: \mathbb{N} \times \mathbb{Z} \to \mathbb{Z}$ be defined by f((x,y)) = x + y. Show that f is surjective.

Exercise 6. Let $g: \mathbb{R} \to \mathbb{R}$ be defined by

$$g(x) = \begin{cases} 0 & \text{if } x \le 0\\ 1 & \text{if } x > 0 \end{cases}$$

Show that the function $f: \mathbb{R} \to \mathbb{R} \times \mathbb{R}$ defined by $f(x) = (x^2, g(x))$ is injective.

Exercise 7. Let A, B, C be sets. Suppose $f: A \to B$ and $g: B \to C$ are surjective functions. Show that $g \circ f$ is surjective.

Exercise 8. Prove by induction that the sum of the first n odd positive squares is $\frac{1}{3}(4n^3 - n)$, i.e. that

$$1 + 9 + 25 + \dots + (2n - 1)^2 = \frac{1}{3}(4n^3 - n).$$

Additional practice

Exercise 9. Find a function $f: \mathbb{Z} \to \mathbb{Z}$ such that

- (i) f is injective but not surjective.
- (ii) f is surjective but not injective.

Exercise 10. Let X and Y be sets. Let $A_1, A_2 \subset X$ and $B_1, B_2 \subset Y$. For the following statements about subsets of $X \times Y$, give either a proof or a counterexample.

(i)
$$(A_1 \times B_1) \cap (A_2 \times B_2) = (A_1 \cap A_2) \times (B_1 \cap B_2)$$
.

(ii)
$$(A_1 \times B_1) \cup (A_2 \times B_2) = (A_1 \cup A_2) \times (B_1 \cup B_2).$$

Exercise 11. Let X be a finite set with n elements.

- (i) How many subsets does X have?
- (ii) How many functions $X \to \{0,1\}$ exist?
- (iii) Think about how and why your answer to (i) relates to your answer to (ii).

Exercise 12. Let A be a set with n elements and let B be a set with m elements. Find a formula for the number of injective functions $f: A \to B$.