ORF525 - Class Notes

Bachir EL KHADIR

February 24, 2016

Class 1

Definition 1 (Oridnary Lease Squares Regression). $f_i = \{f(x) = \beta^T X\}$ $\hat{\beta}^{OLS} = \arg\min_{\beta} ||Y - X\beta||_2^2 \ F(\beta) = Y^T Y + \beta^T X^T X \beta - 2\beta^T X^T Y \ \frac{\partial F(\beta)}{\partial \beta} = 2X^T X \beta - 2X^T Y = 0 \implies \hat{\beta} = (X^T X)^{-1} X^T Y$

Definition 2 (Model-based Interpretation of OLS). Statistical Model $Y = \beta^T X + \varepsilon, \varepsilon \sim \mathcal{N}(0, 1)$ Joint-Loglikelihood

$$l_n(\beta, \sigma^2) = f \sum_{i=1}^n \log p_{\beta, \sigma^2}(Y_i, X_i) = \sum_{i=1}^n \log p_{\beta, \sigma^2}(Y_i | X_i) + \sum_{i=1}^n \log p(X_i)$$

$$\underset{does \ not \ depend \ on \ \beta}{\underbrace{\sum_{i=1}^n \log p(X_i)}}$$

$$\arg \max_{\beta,\sigma^2} l_n(\beta,\sigma^2) = \arg \max_{\beta,\sigma^2} \underbrace{\sum_{i=1}^n \log p_{\beta,\sigma^2}(Y_i|X_i)}_{Conditional\ log-likelihood}$$

$$= \arg \max_{\beta,\sigma^2} \frac{1}{2\sigma^2} \sum_{i=1}^n (Y_i - \beta^T X_i)^2 + n \log(\frac{1}{\sqrt{2\pi\sigma^2}})$$

$$\hat{\beta}^{MLE} = \arg \min \sum_{i=1}^n (Y_i - \beta^T X_i)^2 = \hat{\beta}^{OLS}$$

1 Linear Regression with Basis Expansion

From linear to non linear

- Input vairables can be transofrmation of original feautres: Handraft features, Box-Cox tranformation (find the best transmformation)
- Input can have interactions, eg $X_1X_2...$
- Inputs can have basis expansions. Instead of $f(x) = \beta^T x$ we can have $f(x) = \sum_j \beta_j$ h_j (x).

 Adaptative learning

Definition 3 (Categorical Variable). A variable that can take on only one of a limited values. **Dummy coding**

2 High Dimensional Regression

Definition 4 (High Dimensional Regression). Data when dimension d is bigger than the sample size n.

$$Y = \begin{pmatrix} Y_1 \\ \cdots \\ Y_n \end{pmatrix}$$
$$X = \begin{pmatrix} X_{11} & \dots & X_{1n} \\ & \cdots & \\ X_{n1} & \dots & X_{nn} \end{pmatrix}$$

Question: $\hat{\beta}^{OLS} = (\underbrace{X^T X}_{\text{not invertible}})^{-1} X^T Y$, what should we do?

• Ridge Estimation $\hat{\beta}^{\lambda} = (\underbrace{X^TX + \lambda I}_{\text{Tuning Parameters}})^{-1}X^TY$

$$\iff \hat{\beta}^{\lambda} = \arg\min_{\beta \in \mathbb{R}^d} ||Y - X\beta||_2^2 + \lambda ||\beta||_2^2$$

$$\iff \hat{\beta}^t = \arg\min_{||\beta||_2^2 < t} ||Y - X\beta||_2^2$$

- Computation of Ridge:
 - Convex Optimization (QP)
 - Never naively use a general-purpose solver. (CVX, AMPL)
- Question: How to choose the tuning parameter λ ? Model selection: $\Lambda = \{\lambda_1, \dots, \lambda_n\}$ Basic Method: $D = D_1 \cup D_2$, let $\hat{\beta}^{\lambda_1}, \dots, \hat{\beta}^{\lambda_k}$ be ridge estimators on D_1 . We define the data split score $DS(k) = \frac{1}{n^2} \sum_{D_2} (Y_i X_i^T \hat{\beta}^{\lambda_k})^2$ We then pick the model with the smallest DS score. Intuition: Conditioning on D_1 , DS(k) is an unbiased estimator of $R(\hat{\beta}^{\lambda_1})$. Pro:Theoritically and conceptually simple. Con: Waste of the training sample. \Longrightarrow Cross validation.

Class 2

[Data spliting]

2.0.1 Pros and cons o f data splitting

Pro: Theoritically and computationaly simple. **Con:** Waste if training data ⇒ cross validation.

• training / test split: conditional (on the training) prediction error.

$$\mathbb{E}_{X,Y}[|Y - \hat{f}_{D_{train}}(X)|^2 | D_{train}]$$

• cross validation: converges to expected training data.

$$\mathbb{E}_D[\mathbb{E}[|Y - \hat{f}_{D_{train}}(X)|^2 | D_{train}]]$$

Definition 5 (*J*-Fold Cross validation). We split the data \mathcal{D} into *J*-equally sized parts $\mathcal{D}_1, \ldots, \mathcal{D}_J$. This forms:

$$(DS1): \mathcal{D}_1 \ vs \ \mathcal{D} \setminus \mathcal{D}_1$$
 \dots
 $(DS1): \mathcal{D}_1 \ vs \ \mathcal{D} \setminus \mathcal{D}_n$

For $\lambda_k \in \Lambda$ we calculate the data splitting scores Using DS1,...DS2. Denote the result as $DS_1(k),...,DS_J(k)$. The cross validation is

$$CV(k) := \frac{1}{J} \sum_{j}^{J} DS_{j}(k)$$

We then pick $\arg \min CV(k)$. In practice, picke the most parsimonious model whose error is no more than one standard deviation above the smallest CV score.

Question: After CVm we pick $\hat{\lambda}_k$. Then what shall we do?

- Use λ_k to fit the entire data, then deliver
- Take the average of the estimators.

2.0.2 Model assessment vs selection

Definition 6 (Lasso). Bridge estimator with $\beta = 1$ Least absolute shrinkage and selection operator Sparsity: Intersection of ellipsoid $(||Y - X\beta||_2^2 = cte)$ and a polytope $||\beta||_1 = cte$

Sparsity: many elements of β are $0 \implies$ model selection. (select variable with coefficient $\neq 0$)

Class 3

[Persistency]

Ridge	Lasso
Not Sparse	Sparse
Handles collinearity	Doesn't handle collinearity

Definition 7 (Collinearity). A phenomenon in which two or more predictor variables are highly correlated.

Question: Combine Ridge and Lasso? Answer: Elastic-Net

$$\hat{\beta}^{\text{Elastic}} = \arg\min ||Y - X\beta||_2^2 + \lambda(\alpha||\beta|||_1 + (1 - \alpha)||\beta||_2^2)$$

- $\alpha = 1 \implies \text{Lasso.}$
- $\alpha = 0 \implies \text{Ridge}$.

Question: two tuning parameters, how to choose then? Answer: Use a two stage approach:

- Use $\alpha = 1$, fit a full Lasso path, visualize the regularization path.
- Use $\alpha = 0.6$, fit the regularization path pagain. Then we examine whether there si significant change of the final path:
 - If not $\implies \alpha = 1$ (Lasso)
 - $\text{ o/w} \implies \alpha = 0.6 \text{ (Elastic)}$

Insight of the Lasso Estimator

Definition 8 (SQRT-Lasso). An equivalent representation of the lasso is called SQRT-Lasso:

$$\hat{\beta}^{Elastic} = \arg\min||Y - X\beta||_2^2 + \lambda||\beta||_1 \tag{1}$$

Symptotic aly $\lambda^{optimaly} \sim 2.1 \sqrt{\frac{t}{\log d} n}$, n > 10k + The model has to be linear

Theorem 1 (Robust Optimization Representation of Lasso). The SQRT-Lasso problem in (1) is equivalent to the following robust linear regression problem:

$$\min_{\beta} \max_{U \in \Omega_{\lambda}} ||Y - (X + U)\beta||_{2}$$

Where
$$\Omega_{\lambda} := \{U = (U_1, \dots, U_d) \in \mathbb{R}^{n \times d}, \max_j ||U_j||_2 \le \lambda\}$$

Proof. We only need to prove $\max_{U \in \Omega_{\Lambda}} ||Y - (X + U)\beta||_2 = ||Y - X\beta||_2 + \lambda ||\beta||_1$

•
$$\max_{U \in \Omega_{\Lambda}} ||Y - (X + U)\beta||_2 \le ||Y - X\beta||_2 + \lambda ||\beta||_1 ||Y - (X + U)\beta||_2 \le ||Y - X\beta||_2 + \sum_j |\beta_j| ||U_j||_2 \le ||Y - X\beta||_2 + \lambda ||\beta||_1$$

•
$$||Y - X\beta||_2 + \lambda ||\beta||_1 \le \max_{U \in \Omega_{\Lambda}} ||Y - (X + U)\beta||_2$$

$$u = \begin{cases} \frac{Y - X\beta}{||Y - X\beta||_2} & \text{if } Y \neq X\beta\\ \text{arbitrary unit vector} & \text{o.w} \end{cases}$$

And define:

$$U_j^* = -\lambda sign(\beta_j)u$$

(sign(0) = 1)

We can verify that $|U_j|_2 \leq \lambda$

$$\begin{split} |(Y - (X + U^*)\beta|_2 &\geq |(Y - X\beta - \sum_j \beta_j U_j^*|_2 \\ &\geq |(Y - X\beta - \sum_j |\beta_j| \frac{Y - X\beta}{||Y - X\beta||_2} \\ &= |(|Y - X\beta)|_2 + \lambda |\beta|_1) \frac{Y - X\beta}{||Y - X\beta||_2}|_2 \\ &= |Y - X\beta|_2 + \lambda |\beta|_1 \end{split}$$

Definition 9 (Theory of Lasso (Greenshtein and Ritov '2006)). We define

$$R(\beta) = E_{Y,X}(Y - \beta^T X)^2, \hat{R}(\beta) = \frac{1}{n} \sum_{j} (Y_j - \beta^T X_i)^2$$

 $\hat{\beta} = \arg\min_{|\beta|_1 \le L} \hat{R}(\beta)$: Lasso estimator $\beta^* = \arg\min_{|\beta|_1 \le L} R(\beta)$: Lasso estimator

Definition 10 (Persistence). An estimator $\hat{\beta}$ is persistent within a class \mathcal{B}_n if $R(\hat{\beta}) - \inf_{\beta \in \mathcal{B}_n} R(\beta) \to_{\mathbb{P}} 0$ as $n \to \infty$

Theorem 2 (Lasso). Assume $|Y_i| \leq B$ and $|X|_{\infty} \leq B$. Then

$$P\left(R(\hat{\beta}) - R(\beta^*) \le 2(1 + L^2)\sqrt{\frac{2B^4 \log(\frac{2d^2}{\delta})}{n}}\right) \ge 1 - \delta$$

Proof.

$$\begin{split} R(\hat{\beta}) - R(\beta^*) &= R(\hat{\beta}) - \hat{R}(\hat{\beta}) + \hat{R}(\hat{\beta}) - R(\beta^*) \\ &\leq R(\hat{\beta}) - \hat{R}(\hat{\beta}) + \hat{R}(\beta^*) - R(\beta^*) \\ &\leq 2 \sup_{\|\beta\|_{L_1} \leq L} |R(\beta) - R(\hat{\beta})| \end{split}$$

Let
$$Z = (Y, X^T)^T$$
, $r = (-1, \beta^T)^T$
$$R(\beta) = \mathbb{E}(Y - \beta^T X)^2 = \mathbb{E}(r^T Z Z^T r) = r^T \mathbb{E}(Z Z^T) r = r^T \Sigma r$$

$$\hat{R}(\beta) = \frac{1}{n} \sum_i (Y_i - \beta^T X_i)^2 = r^T \frac{1}{n} \sum_i Z_i Z_i^T r = r^T \hat{\Sigma} r$$

Therefore

$$\sup_{\|\beta\|_{L_1} \le L} |R(\beta) - R(\hat{\beta})| = \sup |r^T (\hat{\Sigma} - \Sigma)r|$$
$$\le \|r(\beta)\|_1^2 \|\hat{\Sigma} - \Sigma\|_{\infty}$$

By Hoeding

$$\mathbb{P}(\|\hat{\Sigma} - \Sigma\|_{\infty} > t) \le \sum \mathbb{P}(\hat{\Sigma}_{ij} - \Sigma_{ij} > t) \le 2d^2 \exp(-\frac{nt^2}{2B^4})$$

Theorem 3 (Persistency of the Lasso). $\forall k > 0, d = O(n^k), \ \mathcal{B}_n = \{\beta, |\beta|_1 \leq L_n, L_= o(\frac{n}{\log n})^{\frac{1}{4}}\}$ Then: $R(\hat{\beta}) - \inf_{\beta \in \mathcal{B}_n} R(\beta) \to_{\mathbb{P}} 0$ as $n \to \infty$

6