1.0 A Positive Voltage Regulators

These voltage regulators are monolithic integrated circuits designed as fixed-voltage regulators for a wide variety of applications including local, on-card regulation. These regulators employ internal current limiting, thermal shutdown, and safe-area compensation. With adequate heatsinking they can deliver output currents in excess of 1.0 A. Although designed primarily as a fixed voltage regulator, these devices can be used with external components to obtain adjustable voltages and currents.

- Output Current in Excess of 1.0 A
- No External Components Required
- Internal Thermal Overload Protection
- Internal Short Circuit Current Limiting
- Output Transistor Safe–Area Compensation
- Output Voltage Offered in 2% and 4% Tolerance
- Available in Surface Mount D²PAK-3, DPAK-3 and Standard 3-Lead Transistor Packages
- NCV Prefix for Automotive and Other Applications Requiring Site and Control Changes
- Pb-Free Packages are Available

MAXIMUM RATINGS (T_A = 25°C, unless otherwise noted)

			Value		Unit
Rating	Symbol	369C	221A	936	
Input Voltage (5.0 – 18 V) (24 V)	Vı	71	35 40	N.	Vdc
Power Dissipation	P_{D}	Inte	W		
Thermal Resistance, Junction–to–Ambient	$R_{\theta JA}$	92	65	Figure 14	°C/W
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	5.0	5.0	5.0	°C/W
Storage Junction Temperature Range	T _{stg}	_	°C		
Operating Junction Temperature	TJ		+150		°C

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

*This device series contains ESD protection and exceeds the following tests: Human Body Model 2000 V per MIL_STD_883, Method 3015. Machine Model Method 200 V.

TO-220-3 T SUFFIX CASE 221A

Heatsink surface connected to Pin 2.

Pin 1. Input 2. Ground 3. Output D²PAK-3 D2T SUFFIX CASE 936

Heatsink surface (shown as terminal 4 in case outline drawing) is connected to Pin 2.

DPAK-3 DT SUFFIX CASE 369C

STANDARD APPLICATION

A common ground is required between the input and the output voltages. The input voltage must remain typically 2.0 V above the output voltage even during the low point on the input ripple voltage.

- XX, These two digits of the type number indicate nominal voltage.
 - * C_{in} is required if regulator is located an appreciable distance from power supply filter.
 - ** C_O is not needed for stability; however, it does improve transient response. Values of less than 0.1 μF could cause instability.

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 22 of this data sheet.

DEVICE MARKING INFORMATION

See general marking information in the device marking section on page 28 of this data sheet.

Figure 1. Representative Schematic Diagram

Electrónica S.A. de C.V.

ELECTRICAL CHARACTERISTICS ($V_{in} = 10 \text{ V}$, $I_{O} = 500 \text{ mA}$, $T_{J} = T_{low}$ to T_{high} (Note 1), unless otherwise noted)

		MC7	805B, NCV	7805	MC7805C			
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Output Voltage (T _J = 25°C)	Vo	4.8	5.0	5.2	4.8	5.0	5.2	Vdc
Output Voltage (5.0 mA \leq I $_{O}$ \leq 1.0 A, P $_{D}$ \leq 15 W) 7.0 Vdc \leq V $_{in}$ \leq 20 Vdc 8.0 Vdc \leq V $_{in}$ \leq 20 Vdc	Vo	- 4.75	- 5.0	- 5.25	4.75 -	5.0 -	5.25 –	Vdc
Line Regulation (Note 4) 7.5 Vdc \leq V _{in} \leq 20 Vdc, 1.0 A 8.0 Vdc \leq V _{in} \leq 12 Vdc	Reg _{line}	- -	5.0 1.3	100 50	- -	0.5 0.8	20 10	mV
Load Regulation (Note 4) 5.0 mA \leq I _O \leq 1.0 A 5.0 mA \leq I _O \leq 1.5 A (T _A = 25°C)	Reg _{load}	<u>-</u>	1.3 0.15	100 50	_ _	1.3 1.3	25 25	mV
Quiescent Current	Ι _Β	-	3.2	8.0	-	3.2	6.5	mA
Quiescent Current Change 7.0 Vdc \leq V _{in} \leq 25 Vdc 5.0 mA \leq I _O \leq 1.0 A (T _A = 25°C)	Δl _B	<u>-</u>	-	_ 0.5	=	0.3 0.08	1.0 0.8	mA
Ripple Rejection 8.0 Vdc \leq V _{in} \leq 18 Vdc, f = 120 Hz	RR	-	68	_	62	83	-	dB
Dropout Voltage (I _O = 1.0 A, T _J = 25°C)	$V_I - V_O$	_	2.0	-//		2.0		Vdc
Output Noise Voltage ($T_A = 25^{\circ}C$) 10 Hz \leq f \leq 100 kHz	V _n	-	10	1	-	10	-	μV/V _O
Output Resistance f = 1.0 kHz	r _O	_	0.9	- <u>-</u>	-	0.9	_	mΩ
Short Circuit Current Limit (T _A = 25°C) V _{in} = 35 Vdc	I _{SC}	-	0.2		- 4	0.6	-	А
Peak Output Current (T _J = 25°C)	I _{max}	-	2.2	-	_	2.2	-	А
Average Temperature Coefficient of Output Voltage	TCVO	- 6	-0.3	- 100 <u>-</u>	-	-0.3	_	mV/°C

Tlow = 0°C for MC78XXAC, C, Thigh = +125°C for MC78XXAC, NCV7805 = -40°C for MC78XXB, MC78XXAB, NCV7805
 Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

ELECTRICAL CHARACTERISTICS ($V_{in} = 10 \text{ V}$, $I_{O} = 1.0 \text{ A}$, $T_{J} = T_{low}$ to T_{high} (Note 3), unless otherwise noted)

		MC7	805AB/MC780	5AC		
Characteristic	Symbol	Min	Тур	Max	Unit	
Output Voltage (T _J = 25°C)	Vo	4.9	5.0	5.1	Vdc	
Output Voltage (5.0 mA \leq I _O \leq 1.0 A, P _D \leq 15 W) 7.5 Vdc \leq V _{in} \leq 20 Vdc	Vo	4.8	5.0	5.2	Vdc	
Line Regulation (Note 4)	Reg _{line}				mV	
$7.5 \text{ Vdc} \le V_{in} \le 25 \text{ Vdc}, I_O = 500 \text{ mA}$		-	0.5	10		
$8.0 \text{ Vdc} \le V_{in} \le 12 \text{ Vdc}, I_O = 1.0 \text{ A}$		-	0.8	12		
$8.0 \text{ Vdc} \le V_{in} \le 12 \text{ Vdc}, I_O = 1.0 \text{ A}, T_J = 25^{\circ}\text{C}$		_	1.3	4.0		
$7.3 \text{ Vdc} \le V_{in} \le 20 \text{ Vdc}, I_{O} = 1.0 \text{ A}, T_{J} = 25^{\circ}\text{C}$		-	4.5	10	la.	
Load Regulation (Note 4)	Reg _{load}				mV	
$5.0 \text{ mA} \le I_{O} \le 1.5 \text{ A}, T_{J} = 25^{\circ}\text{C}$		-	1.3	25		
$5.0 \text{ mA} \le I_{O} \le 1.0 \text{ A}$		-	0.8	25		
250 mA ≤ I _O ≤ 750 mA		-	0.53	15		
Quiescent Current	Ι _Β	-	3.2	6.0	mA	
Quiescent Current Change	ΔI_{B}				mA	
$8.0 \text{ Vdc} \le V_{in} \le 25 \text{ Vdc}, I_{O} = 500 \text{ mA}$		-//	0.3	0.8		
$7.5 \text{ Vdc} \le V_{in} \le 20 \text{ Vdc}, T_J = 25^{\circ}\text{C}$		//-	7- /	0.8		
$5.0 \text{ mA} \le I_{O} \le 1.0 \text{ A}$		// -	0.08	0.5		
Ripple Rejection 8.0 Vdc \leq V _{in} \leq 18 Vdc, f = 120 Hz, I _O = 500 mA	RR	68	83	1	dB	
Dropout Voltage (I _O = 1.0 A, T _J = 25°C)	V _I – V _O	-	2.0		Vdc	
Output Noise Voltage ($T_A = 25^{\circ}C$) 10 Hz \leq f \leq 100 kHz	V _n	-	10	-	μV/V _O	
Output Resistance (f = 1.0 kHz)	r _O	_	0.9	_	mΩ	
Short Circuit Current Limit (T _A = 25°C) V _{in} = 35 Vdc	I _{SC}	_	0.2	-	Α	
Peak Output Current (T _J = 25°C)	I _{max}	A - a	2.2	4 7	/ A	
Average Temperature Coefficient of Output Voltage	TCVO		-0.3	V 76 B	mV/°C	

^{3.} T_{low} = 0°C for MC78XXAC, C T_{high} = +125°C for MC78XXAC, C, NCV7805 = -40°C for MC78XXB, MC78XXAB, NCV7805

4. Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

ELECTRICAL CHARACTERISTICS ($V_{in} = 11 \text{ V}$, $I_{O} = 500 \text{ mA}$, $T_{J} = T_{low}$ to T_{high} (Note 5), unless otherwise noted)

			MC7806B	}		MC7806C	;	_
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Output Voltage (T _J = 25°C)	Vo	5.75	6.0	6.25	5.75	6.0	6.25	Vdc
Output Voltage (5.0 mA \leq I _O \leq 1.0 A, P _D \leq 15 W)	Vo							Vdc
$8.0 \text{ Vdc} \le V_{in} \le 21 \text{ Vdc}$		_	_	_	5.7	6.0	6.3	
$9.0 \text{ Vdc} \le V_{in} \le 21 \text{ Vdc}$		5.7	6.0	6.3	-	-	_	
Line Regulation, T _J = 25°C (Note 6)	Reg _{line}							mV
$8.0 \text{ Vdc} \le V_{in} \le 25 \text{ Vdc}$		_	5.5	120	-	0.5	24	
$9.0 \text{ Vdc} \le V_{in} \le 13 \text{ Vdc}$		_	1.4	60	-	0.8	12	
Load Regulation, T _J = 25°C (Note 6)	Reg _{load}	_	1.3	120	-	1.3	30	mV
5.0 mA ≤ I _O ≤ 1.5 A		le .						
Quiescent Current (T _J = 25°C)	I _B	9 -	3.3	8.0	- ,	3.3	8.0	mA
Quiescent Current Change	Δl _B					d)		mA
8.0 Vdc ≤ V _{in} ≤ 25 Vdc		_	-	_	4	0.3	1.3	
5.0 mA ≤ I _O ≤ 1.0 A		_	-	0.5	_	0.08	0.5	
Ripple Rejection	RR	-	65	-//	58	65	_	dB
$9.0 \text{ Vdc} \le V_{in} \le 19 \text{ Vdc}, f = 120 \text{ Hz}$					19			
Dropout Voltage (I _O = 1.0 A, T _J = 25°C)	$V_I - V_O$	-	2.0	-	7-	2.0	_	Vdc
Output Noise Voltage (T _A = 25°C)	V _n	-	10	- 0		10	_	μV/V _O
10 Hz ≤ f ≤ 100 kHz								
Output Resistance f = 1.0 kHz	r _O	- 4	0.9	/-	_	0.9	_	mΩ
Short Circuit Current Limit (T _A = 25°C)	I _{SC}	-	0.2	·	-	0.2	14-	А
V _{in} = 35 Vdc								
Peak Output Current (T _J = 25°C)	I _{max}	-	2.2	_	_	2.2	_	Α
Average Temperature Coefficient of Output Voltage	TCVO	_	-0.3	-	-	-0.3	-	mV/°C

^{5.} T_{low} = 0°C for MC78XXAC, C T_{high} = +125°C for MC78XXAC, NCV7805 = -40°C for MC78XXB, MC78XXAB, NCV7805
6. Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

ELECTRICAL CHARACTERISTICS ($V_{in} = 11 \text{ V}$, $I_{O} = 1.0 \text{ A}$, $T_{J} = T_{low}$ to T_{high} (Note 7), unless otherwise noted)

			MC7806AC		
Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = 25°C)	Vo	5.88	6.0	6.12	Vdc
Output Voltage (5.0 mA \leq I _O \leq 1.0 A, P _D \leq 15 W)	Vo	5.76	6.0	6.24	Vdc
$8.6 \text{ Vdc} \le V_{in} \le 21 \text{ Vdc}$					
Line Regulation (Note 8)	Reg _{line}				mV
$8.6 \text{ Vdc} \le V_{in} \le 25 \text{ Vdc}, I_O = 500 \text{ mA}$		_	5.0	12	
$9.0 \text{ Vdc} \le V_{in} \le 13 \text{ Vdc}, I_{O} = 1.0 \text{ A}$		_	1.4	15	
Load Regulation (Note 8)	Reg _{load}				mV
$5.0 \text{ mA} \le I_{O} \le 1.5 \text{ A}, T_{J} = 25^{\circ}\text{C}$		_	1.3	25	lin.
$5.0 \text{ mA} \le I_{O} \le 1.0 \text{ A}$		_	0.9	25	
250 mA ≤ I _O ≤ 750 mA		_	0.2	15	
Quiescent Current	I _B	-	3.3	6.0	mA
Quiescent Current Change	Δl_{B}		4		mA
$9.0 \text{ Vdc} \le V_{in} \le 25 \text{ Vdc}, I_{O} = 500 \text{ mA}$		-//	- 1	0.8	
$9.0 \text{ Vdc} \le V_{in} \le 21 \text{ Vdc}, I_{O} = 1.0 \text{ A}, T_{J} = 25^{\circ}\text{C}$			-	0.8	- 40
$5.0 \text{ mA} \le I_0 \le 1.0 \text{ A}$		/ -	<i>y</i> -	0.5	
Ripple Rejection	RR	58	65	-	dB
$9.0 \text{ Vdc} \le V_{in} \le 19 \text{ Vdc}, f = 120 \text{ Hz}, I_O = 500 \text{ mA}$					
Dropout Voltage (I _O = 1.0 A, T _J = 25°C)	$V_I - V_O$	- V	2.0	-	Vdc
Output Noise Voltage (T _A = 25°C)	V _n	-	10	-	μV/V _O
10 Hz ≤ f ≤ 100 kHz				- /	
Output Resistance (f = 1.0 kHz)	r _O	-	0.9	_	mΩ
Short Circuit Current Limit (T _A = 25°C)	I _{sc}	_	0.2	_	Α
V _{in} = 35 Vdc					
Peak Output Current (T _J = 25°C)	I _{max}		2.2		A
Average Temperature Coefficient of Output Voltage	TCVO	-#1	-0.3	- 1	mV/°C

^{7.} T_{low} = 0°C for MC78XXAC, C T_{high} = +125°C for MC78XXAC, C, NCV7805 = -40°C for MC78XXB, MC78XXAB, NCV7805

8. Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

ELECTRICAL CHARACTERISTICS ($V_{in} = 14 \text{ V}$, $I_{O} = 500 \text{ mA}$, $T_{J} = T_{low}$ to T_{high} (Note 9), unless otherwise noted)

			MC7808B			MC7808C		
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Output Voltage (T _J = 25°C)	Vo	7.7	8.0	8.3	7.7	8.0	8.3	Vdc
Output Voltage (5.0 mA \leq I _O \leq 1.0 A, P _D \leq 15 W)	Vo							Vdc
10.5 Vdc ≤ V _{in} ≤ 23 Vdc		_	_	_	7.6	8.0	8.4	
11.5 Vdc ≤ V _{in} ≤ 23 Vdc		7.6	8.0	8.4	-	-	_	
Line Regulation, T _J = 25°C, (Note 10)	Reg _{line}							mV
10.5 Vdc ≤ V _{in} ≤ 25 Vdc		_	6.0	160	-	6.0	32	
11 Vdc ≤ V _{in} ≤ 17 Vdc		_	1.7	80	-	1.7	16	
Load Regulation, T _J = 25°C (Note 10)	Reg _{load}	_	1.4	160	_	1.4	35	mV
5.0 mA ≤ I _O ≤ 1.5 A								
Quiescent Current	I _B	_	3.3	8.0	_	3.3	8.0	mA
Quiescent Current Change	Δl _B							mA
10.5 Vdc ≤ V _{in} ≤ 25 Vdc		_	_	_	14	- , ,	1.0	
5.0 mA ≤ I _O ≤ 1.0 A		-	_	0.5	_	1	0.5	
Ripple Rejection	RR	_	62	44	56	62		dB
11.5 Vdc ≤ V _{in} ≤ 18 Vdc, f = 120 Hz					100			
Dropout Voltage (I _O = 1.0 A, T _J = 25°C)	$V_I - V_O$	_	2.0	10 –	_	2.0	_	Vdc
Output Noise Voltage (T _A = 25°C)	V _n	_	10	- 4	-	10	_	μV/V _O
10 Hz ≤ f ≤ 100 kHz				389	-			
Output Resistance f = 1.0 kHz	r _O	- 4/4	0.9	-	-	0.9	-	mΩ
Short Circuit Current Limit (T _A = 25°C)	I _{SC}		0.2	_	-	0.2	_	А
V _{in} = 35 Vdc								100
Peak Output Current (T _J = 25°C)	I _{max}	- "	2.2	_	_	2.2		Α
Average Temperature Coefficient of Output Voltage	TCVO	_	-0.4	_	-	-0.4	-	mV/°C

^{9.} T_{low} = 0°C for MC78XXAC, C T_{high} = +125°C for MC78XXAC, C, NCV7805 = -40°C for MC78XXB, MC78XXAB, NCV7805

10. Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

ELECTRICAL CHARACTERISTICS ($V_{in} = 14 \text{ V}, I_O = 1.0 \text{ A}, T_J = T_{low} \text{ to } T_{high}$ (Note 11), unless otherwise noted)

		MC78	308AB/MC78	08AC	
Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = 25°C)	Vo	7.84	8.0	8.16	Vdc
Output Voltage (5.0 mA \leq I _O \leq 1.0 A, P _D \leq 15 W) 10.6 Vdc \leq V _{in} \leq 23 Vdc	Vo	7.7	8.0	8.3	Vdc
Line Regulation (Note 12) $10.6 \text{ Vdc} \le V_{in} \le 25 \text{ Vdc}, \ I_O = 500 \text{ mA} \\ 11 \text{ Vdc} \le V_{in} \le 17 \text{ Vdc}, \ I_O = 1.0 \text{ A} \\ 10.4 \text{ Vdc} \le V_{in} \le 23 \text{ Vdc}, \ T_J = 25^{\circ}\text{C}$	Reg _{line}	- - -	6.0 1.7 5.0	15 18 15	mV
Load Regulation (Note 12) 5.0 mA \leq I _O \leq 1.5 A, T _J = 25°C 5.0 mA \leq I _O \leq 1.0 A 250 mA \leq I _O \leq 750 mA	Reg _{load}	- - -	1.4 1.0 0.22	25 25 15	mV
Quiescent Current	I _B	-	3.3	6.0	mA
Quiescent Current Change 11 Vdc \leq V _{in} \leq 25 Vdc, I _O = 500 mA 10.6 Vdc \leq V _{in} \leq 23 Vdc, I _O = 1.0 A, T _J = 25°C 5.0 mA \leq I _O \leq 1.0 A	Δl _B	-//	-	0.8 0.8 0.5	mA
Ripple Rejection 11.5 Vdc \leq V _{in} \leq 21.5 Vdc, f = 120 Hz, I _O = 500 mA	RR	56	62	-	dB
Dropout Voltage (I _O = 1.0 A, T _J = 25°C)	V _I – V _O	- 7	2.0	-	Vdc
Output Noise Voltage ($T_A = 25^{\circ}C$) 10 Hz \leq f \leq 100 kHz	V _n		10		μV/V _O
Output Resistance f = 1.0 kHz	r _O	-	0.9	-	mΩ
Short Circuit Current Limit (T _A = 25°C) V _{in} = 35 Vdc	I _{SC}	_	0.2	-	А
Peak Output Current (T _J = 25°C)	I _{max}	-	2.2	-	А
Average Temperature Coefficient of Output Voltage	TCVO	_	-0.4	_	mV/°C

^{11.} T_{low} = 0°C for MC78XXAC, C T_{high} = +125°C for MC78XXAC, C, NCV7805 = -40°C for MC78XXB, MC78XXAB, NCV7805

12. Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

ELECTRICAL CHARACTERISTICS ($V_{in} = 15 \text{ V}$, $I_O = 500 \text{ mA}$, $T_J = T_{low}$ to T_{high} (Note 13), unless otherwise noted)

		MC7809B				MC7809C		
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Output Voltage (T _J = 25°C)	Vo	8.65	9.0	9.35	8.65	9.0	9.35	Vdc
Output Voltage (5.0 mA \leq I _O \leq 1.0 A, P _D \leq 15 W)	Vo							Vdc
11.5 $Vdc \le V_{in} \le 24 Vdc$		8.55	9.0	9.45	8.55	9.0	9.45	
Line Regulation, T _J = 25°C (Note 14)	Reg _{line}							mV
11 Vdc ≤ V _{in} ≤ 26 Vdc		_	6.2	32	-	6.2	32	
11.5 Vdc ≤ V _{in} ≤ 17 Vdc		_	1.8	16	-	1.8	16	
Load Regulation, T _J = 25°C (Note 14)	Reg _{load}	_	1.5	35	-	1.5	35	mV
5.0 mA ≤ I _O ≤ 1.5 A								line.
Quiescent Current	I _B	_	3.4	8.0	_	3.4	8.0	mA
Quiescent Current Change	Δl _B							mA
11.5 Vdc ≤ V _{in} ≤ 26 Vdc		-	-	1.0	-//	_	1.0	
5.0 mA ≤ I _O ≤ 1.0 A		-	-	0.5	14	- , , .	0.5	
Ripple Rejection	RR	56	61	- /	56	61	-	dB
11.5 $Vdc \le V_{in} \le 21.5 Vdc$, f = 120 Hz								20
Dropout Voltage (I _O = 1.0 A, T _J = 25°C)	V _I – V _O	_	2.0	<i>//-</i>	-/	2.0	-	Vdc
Output Noise Voltage (T _A = 25°C)	V _n	_	10	· –	% -	10	-	μV/V _O
10 Hz ≤ f ≤ 100 kHz								
Output Resistance f = 1.0 kHz	r _O	- 1	1.0	337	-	1.0	-	mΩ
Short Circuit Current Limit (T _A = 25°C)	I _{SC}	- ///	0.2	-	-	0.2	_	А
V _{in} = 35 Vdc				100				
Peak Output Current (T _J = 25°C)	I _{max}	-	2.2	-	-	2.2	-	Α
Average Temperature Coefficient of Output Voltage	TCVO	-	-0.5	_		-0.5		mV/°C

^{13.} T_{low} = 0°C for MC78XXAC, C T_{high} = +125°C for MC78XXAC, C, NCV7805 = -40°C for MC78XXB, MC78XXAB, NCV7805

14. Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

ELECTRICAL CHARACTERISTICS (V_{in} = 15 V, I_{O} = 1.0 A, T_{J} = 0°C to 125°C, unless otherwise noted)

			MC7809AC		
Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (TJ = 25°C)	Vo	8.82	9.0	9.18	Vdc
Output Voltage (5.0 mA \leq Io \leq 1.0 A, PD \leq 15 W) 11.5 Vdc \leq Vin \leq 24 Vdc	Vo	8.65	9.0	9.35	Vdc
Line Regulation (Note 15) 11.5 Vdc ≤ Vin ≤ 26 Vdc, Io = 500 mA 12 Vdc ≤ Vin ≤ 17 Vdc, Io = 1.0 A 11.5 Vdc ≤ Vin ≤ 24 Vdc, TJ = 25°C	Regline	- - -	6.2 1.8 5.2	16 7.0 16	mV
Load Regulation (Note 15) $5.0 \text{ mA} \le \text{Io} \le 1.5 \text{ A}, \text{TJ} = 25^{\circ}\text{C}$ $5.0 \text{ mA} \le \text{Io} \le 1.0 \text{ A}$ $250 \text{ mA} \le \text{Io} \le 750 \text{ mA}$	Regload	- - -	- - -	25 25 15	mV
Quiescent Current	lв	-	3.3	6.0	mA
Quiescent Current Change 11.5 Vdc \leq Vin \leq 26 Vdc, IO = 500 mA 11.5 Vdc \leq Vin \leq 24 Vdc, IO = 1.0 A, TJ = 25°C 5.0 mA \leq IO \leq 1.0 A	ΔΙΒ	-	/ <u>:</u> ,	0.8 0.8 0.5	mA
Ripple Rejection 11.5 $Vdc \le Vin \le 21.5 Vdc$, $f = 120 Hz$, $Io = 500 mA$	RR	56	61	_	dB
Dropout Voltage (IO = 1.0 A, TJ = 25°C)	Vı_Vo		2.0	Á,	Vdc
Output Noise Voltage (TA = 25° C) 10 Hz \leq f \leq 100 kHz	Vn	-	10	-	μV/VO
Output Resistance f = 1.0 kHz	ro	7-	1.0	-	mΩ
Short Circuit Current Limit (TA = 25°C) Vin = 35 Vdc	Isc		0.2		A
Peak Output Current (TJ = 25°C)	Imax	-	2.2	-	Α
Average Temperature Coefficient of Output Voltage	TCVo	-	-0.5	-	mV/°C

^{15.} Load and line regulation are specified at constant junction temperature. Changes in Vo due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

ELECTRICAL CHARACTERISTICS ($V_{in} = 19 \text{ V}$, $I_O = 500 \text{ mA}$, $T_J = T_{low}$ to T_{high} (Note 16), unless otherwise noted)

		MC7812B				MC7812C		
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Output Voltage (T _J = 25°C)	Vo	11.5	12	12.5	11.5	12	12.5	Vdc
Output Voltage (5.0 mA \leq I _O \leq 1.0 A, P _D \leq 15 W)	Vo							Vdc
14.5 $Vdc \le V_{in} \le 27 Vdc$		-	_	_	11.4	12	12.6	
15.5 $Vdc \le V_{in} \le 27 Vdc$		11.4	12	12.6	-	_	-	
Line Regulation, T _J = 25°C (Note 17)	Reg _{line}							mV
14.5 $Vdc \le V_{in} \le 30 Vdc$		-	7.5	240	-	3.8	24	
16 Vdc ≤ V _{in} ≤ 22 Vdc		-	2.2	120	-	0.3	24	
14.8 $Vdc \le V_{in} \le 27 Vdc$, $I_{O} = 1.0 A$		_	-	_	-	-	48	la.
Load Regulation, T _J = 25°C (Note 17)	Reg _{load}	_	1.6	240	_	8.1	60	mV
5.0 mA ≤ I _O ≤ 1.5 A								
Quiescent Current	I _B	_	3.4	8.0	-//	3.4	6.5	mA
Quiescent Current Change	Δl _B							mA
14.5 Vdc \leq V $_{in}$ \leq 30 Vdc, I $_{O}$ = 1.0 A, T $_{J}$ = 25°C		-	_	- /	_	100	0.7	
15 Vdc ≤ V _{in} ≤ 30 Vdc		-	_	1.0	-	_	0.8	212
$5.0 \text{ mA} \le I_0 \le 1.0 \text{ A}$		-	-	0.5	-	_	0.5	L.
Ripple Rejection	RR	_	60	10 –	55	60	-	dB
15 $Vdc \le V_{in} \le 25 Vdc$, $f = 120 Hz$				37				
Dropout Voltage (I _O = 1.0 A, T _J = 25°C)	$V_I - V_O$	- /	2.0		-	2.0	<u> </u>	Vdc
Output Noise Voltage (T _A = 25°C)	V _n	- ///	10	-	-	10	-	μV/V _O
10 Hz ≤ f ≤ 100 kHz								
Output Resistance f = 1.0 kHz	r _O	-	1.1	_	-	1.1	-	mΩ
Short Circuit Current Limit (T _A = 25°C)	I _{SC}	-	0.2	_	_	0.2	-	Α
V _{in} = 35 Vdc								
Peak Output Current (T _J = 25°C)	I _{max}	- Friday	2.2	_	20	2.2	w -	A
Average Temperature Coefficient of Output Voltage	TCVO	90	-0.8	- //	A do	-0.8	-	mV/°C

^{16.}T_{low} = 0°C for MC78XXAC, C T_{high} = +125°C for MC78XXAC, C, NCV7805 = -40°C for MC78XXB, MC78XXAB, NCV7805 17.Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

ELECTRICAL CHARACTERISTICS ($V_{in} = 19 \text{ V}$, $I_{O} = 1.0 \text{ A}$, $T_{J} = T_{low}$ to T_{high} (Note 18), unless otherwise noted)

		мс7	812AB/MC781	2AC		
Characteristic	Symbol	Min	Тур	Max	Unit	
Output Voltage (T _J = 25°C)	Vo	11.75	12	12.25	Vdc	
Output Voltage (5.0 mA \leq I _O \leq 1.0 A, P _D \leq 15 W)	Vo	11.5	12	12.5	Vdc	
$14.8 \text{ Vdc} \leq V_{in} \leq 27 \text{ Vdc}$						
Line Regulation (Note 19)	Reg _{line}				mV	
14.8 Vdc \leq V $_{in}$ \leq 30 Vdc, I $_{O}$ = 500 mA		_	3.8	18		
16 Vdc \leq V _{in} \leq 22 Vdc, I _O = 1.0 A		_	2.2	20		
14.5 $Vdc \le V_{in} \le 27 Vdc, T_J = 25^{\circ}C$		_	6.0	120		
Load Regulation (Note 19)	Reg _{load}				mV	
$5.0 \text{ mA} \le I_{O} \le 1.5 \text{ A}, T_{J} = 25^{\circ}\text{C}$		_	-	25		
$5.0 \text{ mA} \le I_{O} \le 1.0 \text{ A}$	10	_	-	25		
Quiescent Current	I _B	-	3.4	6.0	mA	
Quiescent Current Change	Δl_{B}			100	mA	
15 Vdc \leq V _{in} \leq 30 Vdc, I _O = 500 mA		-	- 3	0.8		
14.8 Vdc \leq V _{in} \leq 27 Vdc, T _J = 25°C		- //	- /	0.8	111	
$5.0 \text{ mA} \le I_{O} \le 1.0 \text{ A}, T_{J} = 25^{\circ}\text{C}$			-	0.5		
Ripple Rejection	RR	55	60	-	dB	
15 Vdc \leq V $_{in}$ \leq 25 Vdc, f = 120 Hz, I $_{O}$ = 500 mA						
Dropout Voltage (I _O = 1.0 A, T _J = 25°C)	$V_I - V_O$	- 19	2.0	-	Vdc	
Output Noise Voltage (T _A = 25°C)	V _n	7	10	-	μV/V _O	
10 Hz ≤ f ≤ 100 kHz						
Output Resistance (f = 1.0 kHz)	r _O	-	1.1	-	mΩ	
Short Circuit Current Limit (T _A = 25°C)	I _{SC}	_	0.2	_	Α	
V _{in} = 35 Vdc						
Peak Output Current (T _J = 25°C)	I _{max}		2.2		Α.	
Average Temperature Coefficient of Output Voltage	TCVO	/ - /	-0.8	Ø - T	mV/°C	

^{18.}T_{low} = 0°C for MC78XXAC, C T_{high} = +125°C for MC78XXAC, C, NCV7805 = -40°C for MC78XXB, MC78XXAB, NCV7805 19.Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

 $\textbf{ELECTRICAL CHARACTERISTICS} \ (V_{in} = 23 \ V, \ I_O = 500 \ \text{mA}, \ T_J = T_{low} \ \text{to} \ T_{high} \ (\text{Note 20}), \ \text{unless otherwise noted})$

		MC7815B				MC7815C		
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Output Voltage (T _J = 25°C)	Vo	14.4	15	15.6	14.4	15	15.6	Vdc
Output Voltage (5.0 mA \leq I _O \leq 1.0 A, P _D \leq 15 W)	Vo							Vdc
17.5 $Vdc \le V_{in} \le 30 Vdc$		_	_	_	14.25	15	15.75	
$18.5 \; \text{Vdc} \leq \text{V}_{\text{in}} \leq 30 \; \text{Vdc}$		14.25	15	15.75	_	-	-	
Line Regulation, T _J = 25°C (Note 21)	Reg _{line}							mV
17.9 $Vdc \le V_{in} \le 30 Vdc$		_	8.5	300	_	8.5	30	
20 Vdc ≤ V _{in} ≤ 26 Vdc		_	3.0	150	_	3.0	28	
Load Regulation, T _J = 25°C (Note 21)	Reg _{load}	_	1.8	300	_	1.8	55	mV
5.0 mA ≤ I _O ≤ 1.5 A							_	
Quiescent Current	I _B	-	3.5	8.0	-	3.5	6.5	mA
Quiescent Current Change	Δl _B							mA
17.5 Vdc ≤ V _{in} ≤ 30 Vdc		_	_	_	14	-,,,	0.8	
17.5 $Vdc \le V_{in} \le 30 Vdc$, $I_O = 1.0 A$, $T_J = 25^{\circ}C$		_	_	1.0	_	300	0.7	
5.0 mA ≤ I _O ≤ 1.0 A		_	_	0.5	-	_	0.5	118
Ripple Rejection	RR	_	58	//-	54	58	_	dB
18.5 $Vdc \le V_{in} \le 28.5 Vdc$, f = 120 Hz					3			
Dropout Voltage (I _O = 1.0 A, T _J = 25°C)	$V_I - V_O$	_	2.0			2.0	-	Vdc
Output Noise Voltage (T _A = 25°C)	V _n	- 1	10	3	-	10	-	μV/V _O
10 Hz ≤ f ≤ 100 kHz								
Output Resistance f = 1.0 kHz	r _O		1.2	-	-	1.2	_	mΩ
Short Circuit Current Limit (T _A = 25°C)	I _{SC}	- 1	0.2	_	-	0.2	-	А
V _{in} = 35 Vdc								
Peak Output Current (T _J = 25°C)	I _{max}	-	2.2	_	-	2.2	-	Α
Average Temperature Coefficient of Output Voltage	TCVO	- Inches	-1.0	_		-1.0	w Ter	_mV/°C

^{20.}T_{low} = 0°C for MC78XXAC, C T_{high} = +125°C for MC78XXAC, C, NCV7805 = -40°C for MC78XXB, MC78XXAB, NCV7805
21.Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

ELECTRICAL CHARACTERISTICS ($V_{in} = 23 \text{ V}$, $I_{O} = 1.0 \text{ A}$, $T_{J} = T_{low}$ to T_{high} (Note 22), unless otherwise noted)

	MC7815AB/MC7815AC			5AC	
Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = 25°C)	Vo	14.7	15	15.3	Vdc
Output Voltage (5.0 mA \leq I _O \leq 1.0 A, P _D \leq 15 W)	Vo	14.4	15	15.6	Vdc
17.9 Vdc ≤ V _{in} ≤ 30 Vdc					
Line Regulation (Note 23)	Reg _{line}				mV
17.9 Vdc \leq V _{in} \leq 30 Vdc, I _O = 500 mA		_	8.5	20	
20 Vdc ≤ V _{in} ≤ 26 Vdc		_	3.0	22	
$17.5 \text{ Vdc} \le V_{in} \le 30 \text{ Vdc}, I_{O} = 1.0 \text{ A}, T_{J} = 25^{\circ}\text{C}$		_	7.0	20	
Load Regulation (Note 23)	Reg _{load}				mV
5.0 mA ≤ I _O ≤ 1.5 A, T _J = 25°C		-	1.8	25	
5.0 mA ≤ I _O ≤ 1.0 A		_	1.5	25	
250 mA ≤ I _O ≤ 750 mA		-	1.2	15	
Quiescent Current	I _B	-	3.5	6.0	mA
Quiescent Current Change	Δl_{B}				mA
17.5 Vdc \leq V _{in} \leq 30 Vdc, I _O = 500 mA		- //	- //	8.0	111
$17.5 \text{ Vdc} \le V_{in} \le 30 \text{ Vdc}, I_{O} = 1.0 \text{ A}, T_{J} = 25^{\circ}\text{C}$		#/	-	0.8	
5.0 mA ≤ I _O ≤ 1.0 A		//-	y - //	0.5	
Ripple Rejection	RR	60	80		dB
$18.5 \text{ Vdc} \le V_{in} \le 28.5 \text{ Vdc}, f = 120 \text{ Hz}, I_{O} = 500 \text{ mA}$		3.97		1	
Dropout Voltage (I _O = 1.0 A, T _J = 25°C)	V _I – V _O	7	2.0	-	Vdc
Output Noise Voltage (T _A = 25°C)	V _n	- 20	10		μV/V _O
10 Hz ≤ f ≤ 100 kHz					10
Output Resistance f = 1.0 kHz	r _O	_	1.2	_	mΩ
Short Circuit Current Limit (T _A = 25°C)	I _{SC}	-	0.2	-	А
V _{in} = 35 Vdc	W759		207	ACTIVITIES	-
Peak Output Current (T _J = 25°C)	I _{max}	/ - /	2.2	97 -	/ A
Average Temperature Coefficient of Output Voltage	TCVO	Ro V	-1.0		mV/°C

^{22.} $T_{low} = 0$ °C for MC78XXAC, C $T_{high} = +125$ °C for MC78XXAC, C, NCV7805 = -40°C for MC78XXB, MC78XXAB, NCV7805

^{23.} Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

 $\textbf{ELECTRICAL CHARACTERISTICS} \ (V_{in} = 27 \ V, \ I_O = 500 \ \text{mA}, \ T_J = T_{low} \ \text{to} \ T_{high} \ (\text{Note 24}), \ \text{unless otherwise noted})$

			MC7818B			MC7818C		
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Output Voltage (T _J = 25°C)	Vo	17.3	18	18.7	17.3	18	18.7	Vdc
Output Voltage (5.0 mA \leq I _O \leq 1.0 A, P _D \leq 15 W)	Vo							Vdc
21 Vdc ≤ V _{in} ≤ 33 Vdc		_	_	_	17.1	18	18.9	
$22 \text{ Vdc} \le V_{in} \le 33 \text{ Vdc}$		17.1	18	18.9	_	-	_	
Line Regulation, (Note 25)	Reg _{line}							mV
21 Vdc ≤ V _{in} ≤ 33 Vdc		_	9.5	360	_	9.5	50	
24 Vdc ≤ V _{in} ≤ 30 Vdc		_	3.2	180	_	3.2	25	
Load Regulation, (Note 25)	Reg _{load}	_	2.0	360	_	2.0	55	mV
5.0 mA ≤ I _O ≤ 1.5 A								
Quiescent Current	I _B	_	3.5	8.0	_	3.5	6.5	mA
Quiescent Current Change	Δl _B							mA
21 Vdc ≤ V _{in} ≤ 33 Vdc		_	_	_	//-	- , ,	1.0	
5.0 mA ≤ I _O ≤ 1.0 A		_	_	0.5	/ -	100	0.5	
Ripple Rejection	RR	_	57	44	53	57		dB
22 $Vdc \le V_{in} \le 33 Vdc$, f = 120 Hz								
Dropout Voltage (I _O = 1.0 A, T _J = 25°C)	V _{iI} – V _O	_	2.0	10 –	_	2.0	_	Vdc
Output Noise Voltage (T _A = 25°C)	V _n	_	10	- 4	- 4	10	_	μV/V _O
10 Hz ≤ f ≤ 100 kHz				389	1			
Output Resistance f = 1.0 kHz	r _O	- ///	1.3	-	_	1.3	_	mΩ
Short Circuit Current Limit (T _A = 25°C)	I _{SC}		0.2	_	-	0.2	_	А
V _{in} = 35 Vdc								10
Peak Output Current (T _J = 25°C)	I _{max}	- "	2.2	_	_	2.2	_	Α
Average Temperature Coefficient of Output Voltage	TCVO	_	-1.5		_	-1.5	_	mV/°C

^{24.} T_{low} = 0°C for MC78XXAC, C T_{high} = +125°C for MC78XXAC, C, NCV7805 = -40°C for MC78XXB, MC78XXAB, NCV7805

25. Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

ELECTRICAL CHARACTERISTICS ($V_{in} = 27 \text{ V}$, $I_{O} = 1.0 \text{ A}$, $T_{J} = T_{low}$ to T_{high} (Note 26), unless otherwise noted)

		MC7818AC				
Characteristic	Symbol	Min	Тур	Max	Unit	
Output Voltage (T _J = 25°C)	Vo	17.64	18	18.36	Vdc	
Output Voltage (5.0 mA \leq I _O \leq 1.0 A, P _D \leq 15 W)	Vo	17.3	18	18.7	Vdc	
21 $Vdc \le V_{in} \le 33 Vdc$						
Line Regulation (Note 27)	Reg _{line}				mV	
21 Vdc \leq V _{in} \leq 33 Vdc, I _O = 500 mA		-	9.5	22		
24 Vdc \leq V _{in} \leq 30 Vdc, I _O = 1.0 A		-	3.2	25		
24 Vdc \leq V $_{in}$ \leq 30 Vdc, I $_{O}$ = 1.0 A, T $_{J}$ = 25°C		-	3.2	10.5		
$20.6 \text{ Vdc} \le V_{in} \le 33 \text{ Vdc}, I_{O} = 1.0 \text{ A}, T_{J} = 25^{\circ}\text{C}$		-	8.0	22		
Load Regulation (Note 27)	Reg _{load}				mV	
$5.0 \text{ mA} \le I_{O} \le 1.5 \text{ A}, T_{J} = 25^{\circ}\text{C}$		-	2.0	25		
$5.0 \text{ mA} \le I_{O} \le 1.0 \text{ A}$		-	1.8	25		
250 mA ≤ I _O ≤ 750 mA		- /	1.5	15		
Quiescent Current	I _B	-//	3.5	6.0	mA	
Quiescent Current Change	ΔI_{B}	111	1900		mA	
21 Vdc \leq V _{in} \leq 33 Vdc, I _O = 500 mA		/ -	<i>y</i> –	0.8		
21.5 $Vdc \le V_{in} \le 30 Vdc$, $T_J = 25^{\circ}C$		-)	-//	0.8		
$5.0 \text{ mA} \le I_0 \le 1.0 \text{ A}$		-/-	4	0.5		
Ripple Rejection	RR	53	57	-	dB	
22 Vdc \leq V $_{in}$ \leq 32 Vdc, f = 120 Hz, I $_{O}$ = 500 mA						
Dropout Voltage (I _O = 1.0 A, T _J = 25°C)	$V_I - V_O$	-	2.0	- 4-	Vdc	
Output Noise Voltage (T _A = 25°C)	V _n	-	10	-	μV/V _O	
10 Hz ≤ f ≤ 100 kHz						
Output Resistance f = 1.0 kHz	r _O	-	1.3	-	mΩ	
Short Circuit Current Limit (T _A = 25°C)	I _{SC}	-	0.2		A	
V _{in} = 35 Vdc		61	an A	7 ' 1	/	
Peak Output Current (T _J = 25°C)	I _{max}	Le	2.2		- 📦 A	
Average Temperature Coefficient of Output Voltage	TCV _O	_	-1.5	_	mV/°C	

 $^{26.}T_{low} = 0^{\circ}\text{C for MC78XXAC, C} \qquad T_{high} = +125^{\circ}\text{C for MC78XXAC, C, NCV7805} \\ = -40^{\circ}\text{C for MC78XXB, MC78XXAB, NCV7805}$

^{27.} Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

ELECTRICAL CHARACTERISTICS ($V_{in} = 33 \text{ V}$, $I_O = 500 \text{ mA}$, $T_J = T_{low}$ to T_{high} (Note 28), unless otherwise noted)

			MC7824B			MC7824C		
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Output Voltage (T _J = 25°C)	Vo	23	24	25	23	24	25	Vdc
Output Voltage (5.0 mA \leq I _O \leq 1.0 A, P _D \leq 15 W)	Vo							Vdc
27 Vdc ≤ V _{in} ≤ 38 Vdc		_	_	_	22.8	24	25.2	
28 Vdc ≤ V _{in} ≤ 38 Vdc		22.8	24	25.2	-	-	_	
Line Regulation, (Note 29)	Reg _{line}							mV
27 Vdc ≤ V _{in} ≤ 38 Vdc		_	11.5	480	-	2.7	60	
30 Vdc ≤ V _{in} ≤ 36 Vdc		_	3.8	240	-	2.7	48	
Load Regulation, (Note 29)	Reg _{load}	_	2.1	480	-	4.4	65	mV
5.0 mA ≤ I _O ≤ 1.5 A								
Quiescent Current	I _B	_	3.6	8.0	_	3.6	6.5	mA
Quiescent Current Change	ΔI_{B}							mA
27 Vdc ≤ V _{in} ≤ 38 Vdc		-	_	_	14	- , , .	1.0	
5.0 mA ≤ I _O ≤ 1.0 A		-	_	0.5	_	300	0.5	
Ripple Rejection	RR	-	54	4	50	54		dB
28 Vdc ≤ V _{in} ≤ 38 Vdc, f = 120 Hz								
Dropout Voltage (I _O = 1.0 A, T _J = 25°C)	V _I – V _O	-	2.0	-	y -	2.0	_	Vdc
Output Noise Voltage (T _A = 25°C)	V _n	-	10	-02	-	10	_	μV/V _O
10 Hz ≤ f ≤ 100 kHz				339	1			
Output Resistance f = 1.0 kHz	r _O	- //	1.4	-	_	1.4	-	mΩ
Short Circuit Current Limit (T _A = 25°C)	I _{SC}	-6	0.2	_	-	0.2	_	А
V _{in} = 35 Vdc		1						
Peak Output Current (T _J = 25°C)	I _{max}	- "	2.2	_	_	2.2	_	Α
Average Temperature Coefficient of Output Voltage	TCVO	_	-2.0	_	-	-2.0	-	mV/°C

^{28.} T_{low} = 0°C for MC78XXAC, C T_{high} = +125°C for MC78XXAC, C, NCV7805 = -40°C for MC78XXB, MC78XXAB, NCV7805
29. Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

ELECTRICAL CHARACTERISTICS ($V_{in} = 33 \text{ V}$, $I_{O} = 1.0 \text{ A}$, $T_{J} = T_{low}$ to T_{high} (Note 30), unless otherwise noted)

			MC7824AC		
Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = 25°C)	Vo	23.5	24	24.5	Vdc
Output Voltage (5.0 mA \leq I _O \leq 1.0 A, P _D \leq 15 W)	Vo	23.2	24	25.8	Vdc
$27.3 \text{ Vdc} \leq V_{in} \leq 38 \text{ Vdc}$					
Line Regulation (Note 31)	Reg _{line}				mV
27 Vdc \leq V _{in} \leq 38 Vdc, I _O = 500 mA		_	11.5	25	
$30 \text{ Vdc} \le V_{in} \le 36 \text{ Vdc}, I_O = 1.0 \text{ A}$		_	3.8	28	
$30 \text{ Vdc} \le V_{in} \le 36 \text{ Vdc}, T_J = 25^{\circ}\text{C}$		_	3.8	12	
$26.7 \text{ Vdc} \le V_{in} \le 38 \text{ Vdc}, I_O = 1.0 \text{ A}, T_J = 25^{\circ}\text{C}$		_	10	25	
Load Regulation (Note 31)	Reg _{load}				mV
$5.0 \text{ mA} \le I_0 \le 1.5 \text{ A}, T_J = 25^{\circ}\text{C}$		_	2.1	15	
$5.0 \text{ mA} \le I_0 \le 1.0 \text{ A}$		_	2.0	25	
250 mA ≤ I _O ≤ 750 mA		- /	1.8	15	
Quiescent Current	Ι _Β	-//	3.6	6.0	mA
Quiescent Current Change	Δl_{B}	111			mA
$27.3 \text{ Vdc} \le V_{in} \le 38 \text{ Vdc}, I_O = 500 \text{ mA}$		// -	-	0.8	
$27 \text{ Vdc} \le V_{in} \le 38 \text{ Vdc}, T_J = 25^{\circ}\text{C}$		- 3	-//	0.8	
$5.0 \text{ mA} \le I_0 \le 1.0 \text{ A}$		-/-	14	0.5	
Ripple Rejection	RR	45	54	-	dB
$28 \text{ Vdc} \le V_{in} \le 38 \text{ Vdc}, f = 120 \text{ Hz}, I_O = 500 \text{ mA}$					
Dropout Voltage (I _O = 1.0 A, T _J = 25°C)	$V_I - V_O$	* <u>-</u>	2.0	- 1- <u>-</u>	Vdc
Output Noise Voltage (T _A = 25°C)	V _n	_	10	_	μV/V _O
10 Hz ≤ f ≤ 100 kHz					1000
Output Resistance (f = 1.0 kHz)	r _O	_	1.4	-	mΩ
Short Circuit Current Limit (T _A = 25°C)	I _{SC}	-	0.2		A
V _{in} = 35 Vdc		48	de de	7 7 1	
Peak Output Current (T _J = 25°C)	I _{max}		2.2		- 📦 A
Average Temperature Coefficient of Output Voltage	TCVO	-	-2.0	-	mV/°C

^{30.} $T_{low} = 0$ °C for MC78XXAC, C $T_{high} = +125$ °C for MC78XXAC, C, NCV7805 = -40°C for MC78XXB, MC78XXAB, NCV7805

^{31.} Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Figure 2. Peak Output Current as a Function of Input/Output Differential Voltage (MC78XXC, AC, B)

Figure 4. Ripple Rejection as a Function of Frequency (MC78XXC, AC, B)

Figure 6. Output Impedance as a Function of Output Voltage (MC78XXC, AC, B)

Figure 3. Ripple Rejection as a Function of Output Voltages (MC78XXC, AC, B)

Figure 5. Output Voltage as a Function of Junction Temperature (MC7805C, AC, B)

Figure 7. Quiescent Current as a Function of Temperature (MC78XXC, AC, B)

APPLICATIONS INFORMATION

Design Considerations

The MC7800 Series of fixed voltage regulators are designed with Thermal Overload Protection that shuts down the circuit when subjected to an excessive power overload condition, Internal Short Circuit Protection that limits the maximum current the circuit will pass, and Output Transistor Safe—Area Compensation that reduces the output short circuit current as the voltage across the pass transistor is increased.

In many low current applications, compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with a capacitor if the regulator is connected to the power supply filter with long

wire lengths, or if the output load capacitance is large. An input bypass capacitor should be selected to provide good high–frequency characteristics to insure stable operation under all load conditions. A 0.33 μF or larger tantalum, mylar, or other capacitor having low internal impedance at high frequencies should be chosen. The bypass capacitor should be mounted with the shortest possible leads directly across the regulators input terminals. Normally good construction techniques should be used to minimize ground loops and lead resistance drops since the regulator has no external sense lead.

The MC7800 regulators can also be used as a current source when connected as above. In order to minimize dissipation the MC7805C is chosen in this application. Resistor R determines the current as follows:

$$I_0 = \frac{5.0 \, V}{R} + I_B$$

 $I_B \cong 3.2$ mA over line and load changes.

For example, a 1.0 A current source would require R to be a 5.0 Ω , 10 W resistor and the output voltage compliance would be the input voltage less 7.0 V.

The addition of an operational amplifier allows adjustment to higher or intermediate values while retaining regulation characteristics. The minimum voltage obtainable with this arrangement is 2.0 V greater than the regulator voltage.

Figure 8. Current Regulator

XX = 2 digits of type number indicating voltage.

The MC7800 series can be current boosted with a PNP transistor. The MJ2955 provides current to 5.0 A. Resistor R in conjunction with the V_{BE} of the PNP determines when the pass transistor begins conducting; this circuit is not short circuit proof. Input/output differential voltage minimum is increased by V_{BE} of the pass transistor.

Figure 10. Current Boost Regulator

Figure 9. Adjustable Output Regulator

XX = 2 digits of type number indicating voltage.

The circuit of Figure 10 can be modified to provide supply protection against short circuits by adding a short circuit sense resistor, $R_{SC},$ and an additional PNP transistor. The current sensing PNP must be able to handle the short circuit current of the three–terminal regulator. Therefore, a four–ampere plastic power transistor is specified.

Figure 11. Short Circuit Protection

Figure 12. Worst Case Power Dissipation versus Ambient Temperature (Case 221A)

Figure 13. Input Output Differential as a Function of Junction Temperature (MC78XXC, AC, B)

Figure 14. D²PAK Thermal Resistance and Maximum

Power Dissipation versus P.C.B. Copper Length

Power Dissipation versus P.C.B. Copper Length

Figure 15. DPAK Thermal Resistance and Maximum Power Dissipation versus P.C.B. Copper Length

DEFINITIONS

Line Regulation – The change in output voltage for a change in the input voltage. The measurement is made under conditions of low dissipation or by using pulse techniques such that the average chip temperature is not significantly affected.

Load Regulation – The change in output voltage for a change in load current at constant chip temperature.

Maximum Power Dissipation – The maximum total device dissipation for which the regulator will operate within specifications.

Quiescent Current – That part of the input current that is not delivered to the load.

Output Noise Voltage – The rms ac voltage at the output, with constant load and no input ripple, measured over a specified frequency range.

Long Term Stability – Output voltage stability under accelerated life test conditions with the maximum rated voltage listed in the devices' electrical characteristics and maximum power dissipation.

Device	Nominal Voltage	Operating Temperature Range	Package	Shipping [†]
MC7805ABD2T	5.0 V	$T = -40^{\circ}C \text{ to } +125^{\circ}C$	D ² PAK	50 Units /Rail
MC7805ABD2TG			D ² PAK (Pb-free)	50 Units /Rail
MC7805ABD2TR4			D ² PAK	800 / Tape & Reel
MC7805ABD2TR4G			D ² PAK (Pb-free)	800 / Tape & Reel
MC7805ABT			TO 220	50 Units /Rail
MC7805ABTG			TO 220 (Pb-free)	50 Units /Rail
MC7805ACD2T		T = 0°C to +125°C	D ² PAK	50 Units /Rail
MC7805ACD2TG	-		D ² PAK (Pb-free)	50 Units /Rail
MC7805ACD2TR4			D ² PAK	800 / Tape & Reel
MC7805ACD2TR4G	ania.	C A	D ² PAK (Pb-free)	800 / Tape & Reel
MC7805ACT	O nice		TO 220	50 Units /Rail
MC7805ACTG			TO 220 (Pb-free)	50 Units /Rail
MC7805BD2T		$T = -40^{\circ}C \text{ to } +125^{\circ}C$	D ² PAK	50 Units /Rail
MC7805BD2TG			D ² PAK (Pb-free)	50 Units /Rail
MC7805BD2TR4			D ² PAK	800 / Tape & Reel
MC7805BD2TR4G			D ² PAK (Pb-free)	800 / Tape & Reel
MC7805BDT			DPAK	75 Units / Rail
MC7805BDTG			DPAK (Pb-free)	75 Units / Rail
MC7805BDTRK			DPAK	2500 / Tape & Reel
MC7805BDTRKG			DPAK (Pb-free)	2500 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{*}NCV devices: T_{low} = -40°C, T_{high} = +125°C. Guaranteed by design. NCV prefix is for automotive and other applications requiring site and change control.

Device	Nominal Voltage	Operating Temperature Range	Package	Shipping [†]
MC7805BT			TO 220	50 Units /Rail
MC7805BTG			TO 220 (Pb-free)	50 Units /Rail
NCV7805BD2T*			D ² PAK	50 Units /Rail
NCV7805BD2TG*			D ² PAK (Pb-free)	50 Units /Rail
NCV7805BD2TR4*			D ² PAK	800 / Tape & Reel
NCV7805BD2TR4G*		a	D ² PAK (Pb-free)	800 / Tape & Reel
NCV7805BT*			TO 220	50 Units /Rail
NCV7805BTG*			TO 220 (Pb-free)	50 Units /Rail
MC7805CD2T	//	T = 0°C to +125°C	D ² PAK	50 Units /Rail
MC7805CD2TG			D ² PAK (Pb-free)	50 Units /Rail
MC7805CD2TR4			D ² PAK	800 / Tape & Reel
MC7805CD2TR4G			D ² PAK (Pb-free)	800 / Tape & Reel
MC7805CDT			DPAK	75 Units / Rail
MC7805CDTG			DPAK (Pb-free)	75 Units / Rail
MC7805CDTRK		//	DPAK	2500 / Tape & Reel
MC7805CDTRKG			DPAK (Pb-free)	2500 / Tape & Reel
MC7805CT			TO 220	50 Units /Rail
MC7805CTG			TO 220 (Pb-free)	50 Units /Rail
MC7806ACT	6.0 V	T = 0°C to +125°C	TO 220	50 Units /Rail
MC7806ACTG	mece	$l \supset A$	TO 220 (Pb-free)	50 Units /Rail
MC7806BD2T		$T = -40^{\circ}C \text{ to } +125^{\circ}C$	D ² PAK	50 Units /Rail
MC7806BD2TG			D ² PAK (Pb-free)	50 Units /Rail
MC7806BD2TR4			D ² PAK	800 / Tape & Reel
MC7806BD2TR4G			D ² PAK (Pb-free)	800 / Tape & Reel
MC7806BT			TO 220	50 Units /Rail
MC7806BTG			TO 220 (Pb-free)	50 Units /Rail
MC7806CT		T = 0°C to +125°C	TO 220	50 Units /Rail
MC7806CTG			TO 220 (Pb-free)	50 Units /Rail

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifi-

cations Brochure, BRD8011/D. *NCV devices: $T_{low} = -40^{\circ}$ C, $T_{high} = +125^{\circ}$ C. Guaranteed by design. NCV prefix is for automotive and other applications requiring site and change control.

Device	Nominal Voltage	Operating Temperature Range	Package	Shipping [†]
MC7808ABD2T	8.0 V	$T = -40^{\circ}C \text{ to } +125^{\circ}C$	D ² PAK	50 Units /Rail
MC7808ABD2TG			D ² PAK (Pb-free)	50 Units /Rail
MC7808ABD2TR4			D ² PAK	800 / Tape & Reel
MC7808ABD2TR4G			D ² PAK (Pb-free)	800 / Tape & Reel
MC7808ABT			TO 220	50 Units /Rail
MC7808ABTG		a	TO 220 (Pb-free)	50 Units /Rail
MC7808ACT		T = 0°C to +125°C	TO 220	50 Units /Rail
MC7808ACTG			TO 220 (Pb-free)	50 Units /Rail
MC7808BD2T	116	$T = -40^{\circ}C \text{ to } +125^{\circ}C$	D ² PAK	50 Units /Rail
MC7808BD2TG			D ² PAK (Pb-free)	50 Units /Rail
MC7808BD2TR4			D ² PAK	800 / Tape & Reel
MC7808BD2TR4G			D ² PAK (Pb-free)	800 / Tape & Reel
MC7808BDT			DPAK	75 Units / Rail
MC7808BDTG			DPAK (Pb-free)	75 Units / Rail
MC7808BDTRK		1/2	DPAK	2500 / Tape & Reel
MC7808BDTRKG			DPAK (Pb-free)	2500 / Tape & Reel
MC7808BT			TO 220	50 Units /Rail
MC7808BTG			TO 220 (Pb-free)	50 Units /Rail
MC7808CD2T	2 - 3	T = 0°C to +125°C	D ² PAK	50 Units /Rail
MC7808CD2TG	ónico	$l \supset A$	D ² PAK (Pb-free)	50 Units /Rail
MC7808CD2TR4			D ² PAK	800 / Tape & Reel
MC7808CD2TR4G			D ² PAK (Pb-free)	800 / Tape & Reel
MC7808CDT			DPAK	75 Units / Rail
MC7808CDTG			DPAK (Pb-free)	75 Units / Rail
MC7808CDTRK			DPAK	2500 / Tape & Reel
MC7808CDTRKG			DPAK (Pb-free)	2500 / Tape & Reel
MC7808CT			TO 220	50 Units /Rail
MC7808CTG			TO 220 (Pb-free)	50 Units /Rail

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifi-

cations Brochure, BRD8011/D. *NCV devices: $T_{low} = -40^{\circ}$ C, $T_{high} = +125^{\circ}$ C. Guaranteed by design. NCV prefix is for automotive and other applications requiring site and change control.

Device	Nominal Voltage	Operating Temperature Range	Package	Shipping [†]
MC7809ACT	9.0 V	T = 0°C to +125°C	TO 220	50 Units /Rail
MC7809ACTG			TO 220 (Pb-free)	50 Units /Rail
MC7809BT		$T = -40^{\circ}C \text{ to } +125^{\circ}C$	TO 220	50 Units /Rail
MC7809BTG			TO 220 (Pb-free)	50 Units /Rail
MC7809CD2T		T = 0°C to +125°C	D ² PAK	50 Units /Rail
MC7809CD2TG			D ² PAK (Pb-free)	50 Units /Rail
MC7809CD2TR4			D ² PAK	800 / Tape & Reel
MC7809CD2TR4G			D ² PAK (Pb-free)	800 / Tape & Reel
MC7809CT	11000		TO 220	50 Units /Rail
MC7809CTG			TO 220 (Pb-free)	50 Units /Rail
MC7812ABD2T	12 V	$T = -40^{\circ}C \text{ to } +125^{\circ}C$	D ² PAK	50 Units /Rail
MC7812ABD2TG			D ² PAK (Pb-free)	50 Units /Rail
MC7812ABD2TR4			D ² PAK	800 / Tape & Reel
MC7812ABD2TR4G			D ² PAK (Pb-free)	800 / Tape & Reel
MC7812ABT		//	TO 220	50 Units /Rail
MC7812ABTG			TO 220 (Pb-free)	50 Units /Rail
MC7812ACD2T		T = 0°C to +125°C	D ² PAK	50 Units /Rail
MC7812ACD2TG			D ² PAK (Pb-free)	50 Units /Rail
MC7812ACD2TR4	2-19-1	S 67 4	D ² PAK	800 / Tape & Reel
MC7812ACD2TR4G	bnice	$l \supset A$	D ² PAK (Pb-free)	800 / Tape & Reel
MC7812ACT			TO 220	50 Units /Rail
MC7812ACTG			TO 220 (Pb-free)	50 Units /Rail
MC7812BD2T		$T = -40^{\circ}C \text{ to } +125^{\circ}C$	D ² PAK	50 Units /Rail
MC7812BD2TG			D ² PAK (Pb-free)	50 Units /Rail
MC7812BD2TR4			D ² PAK	800 / Tape & Reel
MC7812BD2TR4G			D ² PAK (Pb-free)	800 / Tape & Reel
MC7812BDT			DPAK	75 Units / Rail
MC7812BDTG			DPAK (Pb-free)	75 Units / Rail

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifi-

cations Brochure, BRD8011/D. *NCV devices: $T_{low} = -40^{\circ}$ C, $T_{high} = +125^{\circ}$ C. Guaranteed by design. NCV prefix is for automotive and other applications requiring site and change control.

Device	Nominal Voltage	Operating Temperature Range	Package	Shipping [†]
MC7812BDTRK	12 V	$T = -40^{\circ}C \text{ to } +125^{\circ}C$	DPAK	2500 / Tape & Reel
MC7812BDTRKG			DPAK (Pb-free)	2500 / Tape & Reel
MC7812BT	1		TO 220	50 Units /Rail
MC7812BTG			TO 220 (Pb-free)	50 Units /Rail
NCV7812BD2T *	7		D ² PAK	50 Units /Rail
NCV7812BD2TR4 *	1		D ² PAK	800 / Tape & Reel
NCV7812BT *		N.	TO 220	50 Units /Rail
MC7812CD2T		T = 0°C to +125°C	D ² PAK	50 Units /Rail
MC7812CD2TG			D ² PAK (Pb-free)	50 Units /Rail
MC7812CD2TR4			D ² PAK	800 / Tape & Reel
MC7812CD2TR4G			D ² PAK (Pb-free)	800 / Tape & Reel
MC7812CDT			DPAK	75 Units / Rail
MC7812CDTG			DPAK (Pb-free)	75 Units / Rail
MC7812CDTRK			DPAK	2500 / Tape & Reel
MC7812CDTRKG			DPAK (Pb-free)	2500 / Tape & Reel
MC7812CT			TO 220	50 Units /Rail
MC7812CTG			TO 220 (Pb-free)	50 Units /Rail
MC7815ABD2T	15 V	$T = -40^{\circ}C \text{ to } +125^{\circ}C$	D ² PAK	50 Units /Rail
MC7815ABD2TG			D ² PAK (Pb-free)	50 Units /Rail
MC7815ABD2TR4	ónice	in Kar A	D ² PAK	800 / Tape & Reel
MC7815ABD2TR4G	preee	l D.A	D ² PAK (Pb-free)	800 / Tape & Reel
MC7815ABT			TO 220	50 Units /Rail
MC7815ABTG			TO 220 (Pb-free)	50 Units /Rail
MC7815ACD2T		T = 0°C to +125°C	D ² PAK	50 Units /Rail
MC7815ACD2TG			D ² PAK (Pb-free)	50 Units /Rail
MC7815ACT			TO 220	50 Units /Rail
MC7815ACTG			TO 220 (Pb-free)	50 Units /Rail
MC7815BD2T	1	$T = -40^{\circ}C \text{ to } +125^{\circ}C$	D ² PAK	50 Units /Rail
MC7815BD2TG			D ² PAK (Pb-free)	50 Units /Rail

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{*}NCV devices: T_{low} = -40°C, T_{high} = +125°C. Guaranteed by design. NCV prefix is for automotive and other applications requiring site and change control.

Device	Nominal Voltage	Operating Temperature Range	Package	Shipping [†]
MC7815BD2TR4	15 V	$T = -40^{\circ}C \text{ to } +125^{\circ}C$	D ² PAK	800 / Tape & Reel
MC7815BD2TR4G			D ² PAK (Pb-free)	800 / Tape & Reel
MC7815BDT	1		DPAK	75 Units / Rail
MC7815BDTG			DPAK (Pb-free)	75 Units / Rail
MC7815BDTRK			DPAK	2500 / Tape & Reel
MC7815BDTRKG			DPAK (Pb-free)	2500 / Tape & Reel
MC7815BT			TO 220	50 Units /Rail
MC7815BTG			TO 220 (Pb-free)	50 Units /Rail
MC7815CD2T	///	T = 0°C to +125°C	D ² PAK	50 Units /Rail
MC7815CD2TG			D ² PAK (Pb-free)	50 Units /Rail
MC7815CD2TR4			D ² PAK	800 / Tape & Reel
MC7815CD2TR4G			D ² PAK (Pb-free)	800 / Tape & Reel
MC7815CDT	7		DPAK	75 Units / Rail
MC7815CDTG			DPAK (Pb-free)	75 Units / Rail
MC7815CDTRK			DPAK	2500 / Tape & Reel
MC7815CDTRKG			DPAK (Pb-free)	2500 / Tape & Reel
MC7815CT			TO 220	50 Units /Rail
MC7815CTG			TO 220 (Pb-free)	50 Units /Rail
MC7818ACT	18 V	T = 0°C to +125°C	TO 220	50 Units /Rail
MC7818ACTG	onice	l S.A	TO 220 (Pb-free)	50 Units /Rail
MC7818BT	1	$T = -40^{\circ}C \text{ to } +125^{\circ}C$	TO 220	50 Units /Rail
MC7818BTG			TO 220 (Pb-free)	50 Units /Rail
MC7818CD2T	1	T = 0°C to +125°C	D ² PAK	50 Units /Rail
MC7818CD2TR4	7		D ² PAK	800 / Tape & Reel
MC7818CD2TR4G]		D ² PAK (Pb-free)	800 / Tape & Reel
MC7818CT			TO 220	50 Units /Rail
MC7818CTG			TO 220 (Pb-free)	50 Units /Rail

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{*}NCV devices: T_{low} = -40°C, T_{high} = +125°C. Guaranteed by design. NCV prefix is for automotive and other applications requiring site and change control.

ORDERING INFORMATION

Device	Nominal Voltage	Operating Temperature Range	Package	Shipping [†]
MC7824ACT	24 V	T = 0°C to +125°C	TO 220	50 Units /Rail
MC7824ACTG			TO 220 (Pb-free)	50 Units /Rail
MC7824BD2T		$T = -40^{\circ}C \text{ to } +125^{\circ}C$	D ² PAK	50 Units /Rail
MC7824BD2TG			D ² PAK (Pb-free)	50 Units /Rail
MC7824BD2TR4			D ² PAK	800 / Tape & Reel
MC7824BD2TR4G			D ² PAK (Pb-free)	800 / Tape & Reel
MC7824BT			TO 220	50 Units /Rail
MC7824BTG			TO 220 (Pb-free)	50 Units /Rail
MC7824CD2T	///	T = 0°C to +125°C	D ² PAK	50 Units /Rail
MC7824CD2TG			D ² PAK (Pb-free)	50 Units /Rail
MC7824CD2TR4			D ² PAK	800 / Tape & Reel
MC7824CD2TR4G			D ² PAK (Pb-free)	800 / Tape & Reel
MC7824CT	7		TO 220	50 Units /Rail
MC7824CTG			TO 220 (Pb-free)	50 Units /Rail

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MARKING DIAGRAMS

*This marking diagram also applies to NCV78xx family.

xx = 05, 06, 08, 09, 12, 15, 18, or 24

y = B or C

A = Assembly Location

WL, L = Wafer Lot Y = Year

WW = Work Week

^{*}NCV devices: T_{low} = -40°C, T_{high} = +125°C. Guaranteed by design. NCV prefix is for automotive and other applications requiring site and change control.

PACKAGE DIMENSIONS

TO-220-3 **T SUFFIX** CASE 221A-09 **ISSUE AA**

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
- DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

	INC	HES	MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
Α	0.570	0.620	14.48	15.75
В	0.380	0.405	9.66	10.28
С	0.160	0.190	4.07	4.82
D	0.025	0.035	0.64	0.88
F	0.142	0.147	3.61	3.73
G	0.095	0.105	2.42	2.66
Н	0.110	0.155	2.80	3.93
J	0.018	0.025	0.46	0.64
K	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
N	0.190	0.210	4.83	5.33
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.39
T	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
V	0.045		1.15	
Z		0.080		2.04

Electrónica S.A. de C.V.

NOTES:

MC7800, MC7800A, NCV7805

PACKAGE DIMENSIONS

D²PAK-3 D2T SUFFIX CASE 936-03 ISSUE B

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

DPAK-3 DT SUFFIX CASE 369C-01 **ISSUE O**

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH.

	INC	HES	MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.235	0.245	5.97	6.22	
В	0.250	0.265	6.35	6.73	
U	0.086	0.094	2.19	2.38	
D	0.027	0.035	0.69	0.88	
Е	0.018	0.023	0.46	0.58	
F	0.037	0.045	0.94	1.14	
G	0.180	BSC	4.58 BSC		
Н	0.034	0.040	0.87	1.01	
7	0.018	0.023	0.46	0.58	
K	0.102	0.114	2.60	2.89	
L	0.090	BSC	2.29 BSC		
R	0.180	0.215	4.57	5.45	
S	0.025	0.040	0.63	1.01	
ט	0.020		0.51		
٧	0.035	0.050	0.89	1.27	
Z	0.155		3.93		

SOLDERING FOOTPRINT*

SCALE 3:1

Elect $\left(\frac{\text{mm}}{\text{inches}}\right)$ *For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.