## CS 2601 Linear and Convex Optimization

9. Lagrange condition

Bo Jiang

John Hopcroft Center for Computer Science Shanghai Jiao Tong University

Fall 2022

#### Outline

Convex problems with equality constraints

General equality constrained problems

1

## Equality constrained convex problems

Consider the equality constrained convex optimization problem

$$\min_{\mathbf{x}} f(\mathbf{x})$$
 由等式约束的凸优化问题  
s.t.  $\mathbf{a}_i^T \mathbf{x} = b_i, \quad i = 1, 2, \dots, k$ 

where f is convex with  $dom f = \mathbb{R}^n$ .

In a more compact form,

$$\min_{\mathbf{x}} f(\mathbf{x})$$
s.t.  $A\mathbf{x} = \mathbf{b}$  (EC)

where 
$$A^T = (\boldsymbol{a}_1, \dots, \boldsymbol{a}_k) \in \mathbb{R}^{n \times k}, \boldsymbol{b} = (b_1, \dots, b_k)^T \in \mathbb{R}^k$$
.

We assume f is differentiable and the problem is feasible.

#### Feasible set

The feasible set is

$$X = \{ \boldsymbol{x} \in \mathbb{R}^n : A\boldsymbol{x} = \boldsymbol{b} \}$$

Given any  $x_0 \in X$ ,

$$X = x_0 + \text{Null}(A)$$

where  $\text{Null}(A) = \{x : Ax = 0\} = \{x : a_i^T x = 0, i = 1, ..., k\}$  is the null space of A.

 $\mathrm{Null}(A)$  is precisely the set of feasible directions (at any  $x_0 \in X$ )

$$\mathbf{x}_0 + \mathbf{d} \in X \iff \mathbf{a}_i^T \mathbf{d} = 0, \forall i$$

- a<sub>i</sub> is a normal vector to X
- $d \in \text{Null}(A)$  is a tangent vector to X, the velocity x'(0) of a path  $x(t) = x_0 + td \subset X$



$$\operatorname{Range}(\mathbf{A}^T) = \operatorname{span} \{\mathbf{a}_1, \dots, \mathbf{a}_k\}$$

### **Appendix**

Lemma.  $\operatorname{Null}(A)^{\perp} = \operatorname{Range}(A^T)$ , where  $\operatorname{Range}(A^T) = \{A^T \nu : \nu \in \mathbb{R}^k\}$  and  $\operatorname{Null}(A)^{\perp}$  is the orthogonal complement of  $\operatorname{Null}(A)$ , i.e.

$$x \in \text{Null}(A)^{\perp} \iff x \perp d, \quad \forall d \in \text{Null}(A)$$



Proof. Show  $\operatorname{Range}(A^T) \subset \operatorname{Null}(A)^{\perp}$  is a subspace with the same dimension, so  $\operatorname{Range}(A^T) = \operatorname{Null}(A)^{\perp}$ .

- $x \in \text{Range}(A^T) \implies x = A^T z$  for some z
- $\forall d \in \text{Null}(A), x^T d = z^T A d = z^T 0 = 0$ , i.e.  $x \perp d$ , so  $x \in \text{Null}(A)^{\perp}$ .
- $\dim \operatorname{Range}(A^T) = \operatorname{rank} A = n \dim \operatorname{Null}(A) = \dim \operatorname{Null}(A)^{\perp}$

### Optimality condition

Lemma.  $x^* \in X$  is optimal iff

$$\nabla f(\mathbf{x}^*) \perp \text{Null}(\mathbf{A})$$

Note. Geometrically,  $\nabla f(\mathbf{x}^*) \perp \mathrm{Null}(\mathbf{A})$  means  $\nabla f(\mathbf{x}^*)$  is perpendicular to all feasible directions, which are also tangent vectors at  $\mathbf{x}^*$ .

Proof. Recall (slide 7 of §5 part 1)  $x^* \in X$  is optimal iff

$$\nabla f(\mathbf{x}^*)^T(\mathbf{x} - \mathbf{x}^*) \ge 0, \quad \forall \mathbf{x} \in X$$

Note  $x \in X$  iff  $d = x - x^* \in \text{Null}(A)$ . The above condition becomes

$$\nabla f(\mathbf{x}^*)^T \mathbf{d} \ge 0, \quad \forall \mathbf{d} \in \text{Null}(\mathbf{A})$$

Since  $d \in \text{Null}(A) \iff -d \in \text{Null}(A)$ , the condition then reduces to

$$\nabla f(\mathbf{x}^*)^T \mathbf{d} = 0, \quad \forall \mathbf{d} \in \text{Null}(\mathbf{A})$$

Note. If f is nonconvex and  $x^*$  a local minimum, then  $\nabla f(x^*) \perp \text{Null}(A)$  is a necessary condition. For a proof, note t = 0 is a local minimum of  $g(t) = f(x^* + td)$ , so  $g'(0) = \nabla f(x^*)^T d = 0$ .

## Lagrange condition

Theorem.  $x^* \in X$  is optimal iff there exists  $\lambda^* = (\lambda_1^*, \dots, \lambda_k^*)^T \in \mathbb{R}^k$  s.t.

$$\nabla f(\mathbf{x}^*) + \mathbf{A}^T \mathbf{\lambda}^* = \mathbf{0},$$

or written out,

$$\nabla f(\mathbf{x}^*) + \sum_{i=1}^k \lambda_i^* \mathbf{a}_i = \mathbf{0}.$$

The constants  $\lambda_1^*, \dots, \lambda_k^*$  are called Lagrange multipliers.

Proof. By the previous lemma,  $x^* \in X$  is optimal iff  $\nabla f(x^*) \perp \text{Null}(A)$ . Since

$$\mathrm{Null}(\mathbf{A})^{\perp} = \mathrm{Range}(\mathbf{A}^T)$$

 $x^*$  is optimal iff

$$\nabla f(\mathbf{x}^*) \in \text{Range}(\mathbf{A}^T)$$

i.e. there exists  $v^*$  s.t.  $\nabla f(x^*) = A^T v^* = -A^T \lambda^*$  with  $\lambda^* = -v^*$ .

## Lagrange condition (cont'd)

Define Lagrangian (or Lagrange function) by

$$\mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda}) = f(\boldsymbol{x}) + \boldsymbol{\lambda}^{T} (\boldsymbol{A}\boldsymbol{x} - \boldsymbol{b}) = f(\boldsymbol{x}) + \sum_{i=1}^{k} \lambda_{i} (\boldsymbol{a}_{i}^{T} \boldsymbol{x} - b_{i})$$

The optimality condition becomes the following Lagrange condition, aka KKT equations<sup>1</sup>

$$\begin{cases} \nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}^*, \boldsymbol{\lambda}^*) = \nabla f(\mathbf{x}^*) + \mathbf{A}^T \boldsymbol{\lambda}^* = \mathbf{0} \\ \nabla_{\boldsymbol{\lambda}} \mathcal{L}(\mathbf{x}^*, \boldsymbol{\lambda}^*) = \mathbf{A} \mathbf{x}^* - \mathbf{b} = \mathbf{0} \end{cases}$$

where  $\nabla_x$  and  $\nabla_\lambda$  are partial gradientw.r.t. x and  $\lambda$ , or

$$\nabla \mathcal{L}(\mathbf{x}^*, \boldsymbol{\lambda}^*) = \mathbf{0}$$

i.e.  $(x^*, \lambda^*)$  is a stationary point of  $\mathcal{L}$ .

<sup>&</sup>lt;sup>1</sup>KKT stands for Karush-Kuhn-Tucker. We'll see later why it is called as such.

### Example

Consider

$$\min_{x_1, x_2} f(x_1, x_2) = \frac{1}{2}x_1^2 + \frac{1}{2}x_2^2$$
s.t.  $x_1 + 2x_2 = 1$ 

Method 1. Reduction to an equivalent unconstrained problem.

$$g(x_2) \triangleq f(1 - 2x_2, x_2) = \frac{1}{2}(1 - 2x_2)^2 + \frac{1}{2}x_2^2$$

$$\min_{x_2} g(x_2) \implies g'(x_2^*) = 0 \implies x_2^* = \frac{2}{5} \implies x_1^* = 1 - 2x_2^* = \frac{1}{5}$$

Method 2. Lagrangian multipliers method. The Lagrangian is

$$\mathcal{L}(x_1, x_2, \lambda) = \frac{1}{2}x_1^2 + \frac{1}{2}x_2^2 + \lambda(x_1 + 2x_2 - 1)$$

By the Lagrange condition,

$$\begin{cases} \frac{\partial \mathcal{L}}{\partial x_1} = x_1 + \lambda = 0 \\ \frac{\partial \mathcal{L}}{\partial x_2} = x_2 + 2\lambda = 0 \\ \frac{\partial \mathcal{L}}{\partial \lambda} = x_1 + 2x_2 - 1 = 0 \end{cases} \implies \begin{cases} x_1^* = \frac{1}{5} \\ x_2^* = \frac{2}{5} \\ \lambda^* = -\frac{1}{5} \end{cases}$$

$$\min_{\substack{x_1, x_2 \\ \text{s.t.}}} f(x_1, x_2) = \frac{1}{2}x_1^2 + \frac{1}{2}x_2^2$$
s.t.  $x_1 + 2x_2 = 1$ 

normal vector to the feasible set X

$$a = (1, 2)^T$$

gradient

$$\nabla f(\mathbf{x}) = \mathbf{x}$$

• at  $x^*$ ,

$$\nabla f(\mathbf{x}^*) = -\lambda^* \mathbf{a} \perp X$$

Note *X* is parallel to  $Null(\boldsymbol{a}^T)$ .



## Example

$$\begin{aligned} & \min_{\pmb{x}} \quad f(\pmb{x}) = \frac{1}{2} \|\pmb{x}\|^2 \\ & \text{s.t.} \quad \pmb{A}\pmb{x} = \pmb{b} \end{aligned}, \quad \text{where } \pmb{A} = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 2 & 1 \end{bmatrix}, \pmb{b} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

### Method 1. Reduction to an equivalent unconstrained problem.

•  $\operatorname{rank} A = 2$ . Find two independent columns of A, e.g. the first and third columns, and solve for the corresponding  $x_i$ 's in terms of the others. Let  $A_1 = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$ ,  $A_2 = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$ . The constraints become

$$A_1 \begin{bmatrix} x_1 \\ x_3 \end{bmatrix} + A_2 x_2 = \boldsymbol{b} \implies \begin{bmatrix} x_1 \\ x_3 \end{bmatrix} = A_1^{-1} \boldsymbol{b} - A_1^{-1} A_2 x_2 = \begin{bmatrix} 1 - 2x_2 \\ 2x_2 - 1 \end{bmatrix}$$

Substitution into f yields

$$g(x_2) = f(1 - 2x_2, x_2, 2x_2 - 1) = (2x_2 - 1)^2 + \frac{1}{2}x_2^2 \implies x_2^* = \frac{4}{9}$$

• 
$$x_1^* = 1 - 2x_2^* = \frac{1}{9}, x_3^* = 2x_2^* - 1 = -\frac{1}{9}$$

$$\begin{aligned} & \min_{\pmb{x}} \quad f(\pmb{x}) = \frac{1}{2} \|\pmb{x}\|^2 \\ & \text{s.t.} \quad \pmb{A} \pmb{x} = \pmb{b} \end{aligned}, \quad \text{where } \pmb{A} = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 2 & 1 \end{bmatrix}, \pmb{b} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

### Method 2. Lagrange multipliers method.

• The Lagrangian is

$$\mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda}) = \frac{1}{2} \|\boldsymbol{x}\|^2 + \boldsymbol{\lambda}^T (\boldsymbol{A}\boldsymbol{x} - \boldsymbol{b})$$

Lagrange condition

$$\begin{cases} \nabla_{x} \mathcal{L}(x, \lambda) = x + A^{T} \lambda = \mathbf{0} \\ \nabla_{\lambda} \mathcal{L}(x, \lambda) = Ax - b = \mathbf{0} \end{cases} \text{ or } \begin{bmatrix} I & A^{T} \\ A & O \end{bmatrix} \begin{bmatrix} x \\ \lambda \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ b \end{bmatrix}$$

• Solve for  $x, \lambda$  e.g. by substitution or block Gaussian elimination,

$$\begin{cases} \boldsymbol{x}^* = -\boldsymbol{A}^T \boldsymbol{\lambda}^* = \boldsymbol{A}^T (\boldsymbol{A} \boldsymbol{A}^T)^{-1} \boldsymbol{b} \\ \boldsymbol{\lambda}^* = -(\boldsymbol{A} \boldsymbol{A}^T)^{-1} \boldsymbol{b} \end{cases} \implies \begin{cases} \boldsymbol{x}^* = (\frac{1}{9}, \frac{4}{9}, -\frac{1}{9})^T \\ \boldsymbol{\lambda}^* = (-\frac{1}{3}, \frac{1}{9})^T \end{cases}$$

11

#### Block Gaussian elimination.

The augmented matrix is

$$\begin{bmatrix} I & A^T & \mathbf{0} \\ A & O & b \end{bmatrix}$$

Left multiply the first "row" by −A and add to the second "row",

$$\begin{bmatrix} I & A^T & \mathbf{0} \\ \mathbf{0} & -AA^T & \mathbf{b} \end{bmatrix}$$

• Left multiply the second "row" by  $-(AA^T)^{-1}$  (why invertible?),

$$\begin{bmatrix} \boldsymbol{I} & \boldsymbol{A}^T & \boldsymbol{0} \\ \boldsymbol{O} & \boldsymbol{I} & -(\boldsymbol{A}\boldsymbol{A}^T)^{-1}\boldsymbol{b} \end{bmatrix}$$

• Left multiply the second "row" by  $-A^T$  and add to the first "row",

$$\begin{bmatrix} \mathbf{I} & \mathbf{O} & \mathbf{A}^T (\mathbf{A} \mathbf{A}^T)^{-1} \mathbf{b} \\ \mathbf{O} & \mathbf{I} & -(\mathbf{A} \mathbf{A}^T)^{-1} \mathbf{b} \end{bmatrix}$$

$$\begin{aligned} & \min_{\pmb{x}} \quad f(\pmb{x}) = \frac{1}{2} \|\pmb{x}\|^2 \\ & \text{s.t.} \quad \pmb{A} \pmb{x} = \pmb{b} \end{aligned}, \quad \text{where } \pmb{A} = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 2 & 1 \end{bmatrix}, \pmb{b} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

vectors normal to the feasible set X

$$\mathsf{span}\,\{\pmb{a}_1,\pmb{a}_2\}$$

with  $a_1 = (1, 2, 0)^T$ ,  $a_2 = (2, 2, 1)^T$ .

gradient

$$\nabla f(\mathbf{x}) = \mathbf{x}$$

• at  $x^*$ ,

$$\nabla f(\mathbf{x}^*) = -\lambda_1^* \mathbf{a}_1 - \lambda_2^* \mathbf{a}_2 \perp X$$

Note X is parallel to  $\text{Null}(A^T)$ .



#### Outline

Convex problems with equality constraints

General equality constrained problems

### Optimization on 2D circle

Consider the constraint in  $\mathbb{R}^2$ ,

$$h(x) = ||x||^2 - 1 = 0$$

Feasible set  $X = \{x : ||x|| = 1\}$ . At  $x_0 \in X$ ,

• A tangent vector is the initial velocity x'(0) of a feasible local path x(t) starting at  $x_0$ , i.e.  $x(0) = x_0$ , h(x(t)) = 0 for small t. Note

$$x'(0)$$
 $x_0$ 
 $x_0$ 

$$Dh(x_0)x'(0) = \nabla h(x_0)^T x'(0) = 0$$
 i.e.  $x'(0) \in \text{Null}(Dh(x_0))$ 

- A tangent vector  $\mathbf{d}$  is a feasible direction in the sense that there is a feasible path  $\mathbf{x}(t)$  in that direction, i.e.  $\mathbf{d} = \mathbf{x}'(0)$ .
- The tangent space  $T_{x_0}X$  is the set of tangent vectors. It turns out

$$T_{\mathbf{x}_0}X = \text{Null}(Dh(\mathbf{x}_0)) = \{\mathbf{d} : \nabla h(\mathbf{x}_0)^T \mathbf{d} = 0\}$$

• Think of the tangent line  $\tilde{T}_{x_0}X$  as  $T_{x_0}X$  attached at  $x_0$ 

### Optimization on 2D circle

Consider the smooth nonconvex (why?) problem

$$\min_{\mathbf{x}} f(\mathbf{x})$$
s.t.  $h(\mathbf{x}) = ||\mathbf{x}||^2 - 1 = 0$ 
tangent

Let  $x^* \in X$  be a local minimum. Given  $d \in \text{Null}(Dh(x^*))$ , let x(t) be a feasible local path<sup>2</sup> with  $x(0) = x^*$ , x'(0) = d and h(x(t)) = 0 for small t.

Since  $x^* = x(0)$  is a local minimum of the constrained problem, t = 0 is a local minimum of g(t) = f(x(t)), so

$$0 = g'(0) = \nabla f(\mathbf{x}^*)^T \mathbf{x}'(0) = \nabla f(\mathbf{x}^*)^T \mathbf{d}$$

Since  $d \in \text{Null}(Dh(x^*))$  is arbitrary,

$$\nabla f(\mathbf{x}^*) \perp \text{Null}(Dh(\mathbf{x}^*))$$

For example, if  $x^* = (\cos \phi_0, \sin \phi_0)$ , then  $d = (-a \sin \phi_0, a \sin \phi_0)$  for some  $a \in \mathbb{R}$ . Then  $x(t) = (\cos(at + \phi_0), \sin(at + \phi_0))$  satisfies the requirement.

## Optimization on 2D circle (cont'd)

By 
$$\text{Null}(\mathbf{A})^{\perp} = \text{Range}(\mathbf{A}^T)$$
,

$$\nabla f(\mathbf{x}^*) \in \text{Range}(Dh(\mathbf{x}^*)^T) = \text{span}\left\{\nabla h(\mathbf{x}^*)\right\}$$

so there exists a  $\lambda^*$  s.t.

$$\nabla f(\mathbf{x}^*) + \lambda^* \nabla h(\mathbf{x}^*) = \mathbf{0}$$

Define the Lagrangian by

$$\mathcal{L}(\mathbf{x},\lambda) = f(\mathbf{x}) + \lambda h(\mathbf{x})$$

Lagrange condition.  $x^*$  is a local optimum only if there exists  $\lambda^*$  s.t.

$$abla \mathcal{L}(\mathbf{x}^*, \lambda^*) = \mathbf{0}, \quad \text{i.e.} \quad egin{dcases} 
abla_{\mathbf{x}} \mathcal{L}(\mathbf{x}^*, \lambda^*) &= 
abla f(\mathbf{x}^*) + \lambda^* 
abla h(\mathbf{x}^*) \\
abla_{\lambda} \mathcal{L}(\mathbf{x}^*, \lambda^*) &= h(\mathbf{x}^*) = 0 
abla h(\mathbf{x}^*) 
abla h(\mathbf{x}$$

Note. This is only a necessary condition for nonconvex problems.

## Example

$$\min_{\mathbf{x}} f(\mathbf{x}) = x + 2y$$
  
s.t.  $h(\mathbf{x}) = ||\mathbf{x}||^2 - 1 = 0$ 

Lagrange condition

$$\begin{cases} \frac{\partial f(\mathbf{x})}{\partial x} + \lambda \frac{\partial h(\mathbf{x})}{\partial x} = 1 + 2\lambda \mathbf{x} = 0 \implies \mathbf{x} = -\frac{1}{2\lambda} \\ \frac{\partial f(\mathbf{x})}{\partial y} + \lambda \frac{\partial h(\mathbf{x})}{\partial y} = 2 + 2\lambda y = 0 \implies y = -\frac{1}{\lambda} \\ h(\mathbf{x}^*) = \mathbf{x}^2 + \mathbf{y}^2 - 1 = 0 \end{cases}$$

solutions to the above equations

(1) 
$$\begin{cases} x = -\frac{\sqrt{5}}{5} \\ y = -\frac{2\sqrt{5}}{5} \\ \lambda = \frac{\sqrt{5}}{2} \end{cases}$$
 (2) 
$$\begin{cases} x = \frac{\sqrt{5}}{5} \\ y = \frac{2\sqrt{5}}{5} \\ \lambda = -\frac{\sqrt{5}}{2} \end{cases}$$

- (1) global minimum, (2) global maximum
- at all extrema,  $\nabla f \parallel \nabla h$  and  $\nabla f \perp X$



### Example

$$\min_{\mathbf{x}} f(\mathbf{x}) = x^2 - y$$
  
s.t.  $h(\mathbf{x}) = ||\mathbf{x}||^2 - 1 = 0$ 

Lagrange condition

$$\begin{cases} \frac{\partial f(\mathbf{x})}{\partial x} + \lambda \frac{\partial h(\mathbf{x})}{\partial x} = 2x + 2\lambda x = 0\\ \frac{\partial f(\mathbf{x})}{\partial y} + \lambda \frac{\partial h(\mathbf{x})}{\partial y} = -1 + 2\lambda y = 0\\ h(\mathbf{x}^*) = x^2 + y^2 - 1 = 0 \end{cases}$$

solutions to above equations

$$(1) \begin{cases}
 x = 0 \\
 y = 1 \\
 \lambda = \frac{1}{2}
 \end{cases}
 (2) \begin{cases}
 x = 0 \\
 y = -1 \\
 \lambda = -\frac{1}{2}
 \end{cases}
 (3) \begin{cases}
 x = \frac{\sqrt{3}}{2} \\
 y = -\frac{1}{2} \\
 \lambda = -1
 \end{cases}
 (4) \begin{cases}
 x = -\frac{\sqrt{3}}{2} \\
 y = -\frac{1}{2} \\
 \lambda = -1
 \end{cases}$$

- (1) global minimum, (2) local minimum, (3)(4) global maxima
- at all extrema (and certain other points),  $\nabla f \parallel \nabla h$  and  $\nabla f \perp X$

Exercise. Solve equivalent problem  $g(y) = 1 - y^2 - y$  s.t.  $|y| \le 1$ .



## General equality constraints

Consider a general equality constraint function h, where  $h : \mathbb{R}^n \to \mathbb{R}^k$  has smooth components  $h_1, \ldots, h_k$ . The feasible set is

$$X = \{ \boldsymbol{x} : \boldsymbol{h}(\boldsymbol{x}) = \boldsymbol{0} \}$$

A point  $x_0$  is a regular point of h if

$$m{h}'(m{x}_0) = egin{bmatrix} 
abla h_1(m{x}_0)^T \\
\vdots \\
abla h_k(m{x}_0)^T \end{bmatrix}$$

has full (row) rank k, or equivalently,  $\nabla h_1(\mathbf{x}_0), \dots, \nabla h_k(\mathbf{x}_0)$  are linearly independent; otherwise it is a critical point of  $\mathbf{h}$ .

At a regular point  $x_0$ , the local geometry of X can be well characterized by the first order information  $h'(x_0)$ , or  $\nabla h_1(x_0), \ldots, \nabla h_k(x_0)$ , and the derivation on slides 16-17 carries over.

## Tangent space and normal space

A tangent vector of X at  $x_0 \in X$  is the initial velocity x'(0) of a feasible local path x(t) starting at  $x_0$ , i.e.  $x(0) = x_0$ , h(x(t)) = 0 for small t. Note

$$\left. \frac{d}{dt} \pmb{h}(\pmb{x}(t)) \right|_{t=0} = \pmb{h}'(\pmb{x}_0) \pmb{x}'(0) = \pmb{0} \quad \text{i.e.} \quad \pmb{x}'(0) \in \mathrm{Null}(\pmb{h}'(\pmb{x}_0))$$

The tangent space  $T_{x_0}X$  of X at  $x_0$  is the set of all tangent vectors at  $x_0$ .

The normal space  $N_{x_0}X$  of X at  $x_0$  is the orthogonal complement of  $T_{x_0}X$ ,

$$N_{x_0}X=[T_{x_0}X]^{\perp}$$

Theorem. At a regular point  $x_0 \in X$ ,

$$T_{\mathbf{x}_0}X = \text{Null}(\mathbf{h}'(\mathbf{x}_0)) = \{\mathbf{d} : \nabla h_i(\mathbf{x}_0)^T \mathbf{d} = 0, \quad i = 1, 2, \dots, k\}$$

and

$$N_{\boldsymbol{x}_0}X = \mathsf{span}\left\{\nabla h_1(\boldsymbol{x}_0), \dots, \nabla h_k(\boldsymbol{x}_0)\right\}$$

#### **Proof**

We already know

$$T_{\boldsymbol{x}_0}X\subset \mathrm{Null}(\boldsymbol{h}'(\boldsymbol{x}_0))$$

For  $\operatorname{Null}(\mathbf{h}'(\mathbf{x}_0)) \subset T_{\mathbf{x}_0}X$ , we have the following

Lemma. If  $x_0$  is a regular point, then for any d s.t.  $h'(x_0)d = 0$ , there exists a local path x(t) s.t. h(x(t)) = 0,  $x(0) = x_0$  and x'(0) = d.

Proof. Let

$$ilde{m{x}}(t,m{lpha}) = m{x}_0 + tm{d} + m{h}'(m{x}_0)^Tm{lpha}, \ = m{x}_0 + tm{d} + \sum_{i=1}^k lpha_i 
abla h_i(m{x}_0)$$

and

$$F(t, \alpha) = h(\tilde{x}(t, \alpha))$$



## Proof of lemma (cont'd)

Note

$$F(0,\mathbf{0}) = h(x_0) = \mathbf{0}, \quad \frac{\partial F(0,\mathbf{0})}{\partial \alpha} = h'(x_0)h'(x_0)^T \succ \mathbf{0}$$

since  $h'(x_0)^T$  has full rank k by regularity at  $x_0$ .

By the Implicit Function Theorem, there exists  $\alpha=\phi(t)$  for small t s.t.  $\phi(0)=\mathbf{0}$ ,  $F(t,\phi(t))=\mathbf{0}$  and

$$\phi'(0) = -\left[\frac{\partial F(0,\mathbf{0})}{\partial \alpha}\right]^{-1} \frac{\partial F(0,\mathbf{0})}{\partial t} = -\left[\frac{\partial F(0,\mathbf{0})}{\partial \alpha}\right]^{-1} h'(x_0)d = 0$$

Then

$$\mathbf{x}(t) = \tilde{\mathbf{x}}(t, \phi(t)) = \mathbf{x}_0 + t\mathbf{d} + \mathbf{h}'(\mathbf{x}_0)^T \phi(t) = \mathbf{x}_0 + t\mathbf{d} + \sum_{i=1}^k \phi_i(t) \nabla h_i(\mathbf{x}_0)$$

satisfies the requirement.

## Appendix: Implicit function theorem

Write  $F: \mathbb{R}^{n+k} \to \mathbb{R}^k$  as F(x,y) with  $x \in \mathbb{R}^n$  and  $y \in \mathbb{R}^k$ . Let  $F = (F_1, \dots, F_k)^T$ , and

$$\frac{\partial \mathbf{F}}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial F_1}{\partial x_1} & \cdots & \frac{\partial F_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial F_k}{\partial x_1} & \cdots & \frac{\partial F_k}{\partial x_n} \end{bmatrix}, \quad \frac{\partial \mathbf{F}}{\partial \mathbf{y}} = \begin{bmatrix} \frac{\partial F_1}{\partial y_1} & \cdots & \frac{\partial F_1}{\partial y_k} \\ \vdots & \ddots & \vdots \\ \frac{\partial F_k}{\partial y_1} & \cdots & \frac{\partial F_k}{\partial y_k} \end{bmatrix}$$

Implicit Function Theorem. If  $F: \mathbb{R}^{n+k} \to \mathbb{R}^k$  is continuously differentiable in a neighborhood  $(x_0, y_0)$ , and satisfies

$$F(\mathbf{x}_0, \mathbf{y}_0) = \mathbf{0}, \quad \det \frac{\partial F(\mathbf{x}_0, \mathbf{y}_0)}{\partial \mathbf{y}} \neq 0,$$

then there exists continuously differentiable function  $y = \phi(x)$  defined in a neighborhood of  $x_0$  s.t.

$$F(x, \phi(x)) = 0, \quad \frac{\partial \phi(x)}{\partial x} = -\left[\frac{\partial F(x, \phi(x))}{\partial y}\right]^{-1} \frac{\partial F(x, \phi(x))}{\partial x}$$

## Implicit function theorem in 2D

The derivation on slides 16-17 can be generalized to general h of n variables, provided  $\operatorname{Null}(Dh(x^*)) = T_{x^*}X$ , i.e. the tangent space can be fully characterized by  $Dh(x^*)$ . The Implicit Function Theorem guarantees that this is possible if  $\nabla h(x^*) \neq \mathbf{0}$ .

Implicit Function Theorem. If F(x, y) is continuously differentiable in a neighborhood of  $(x_0, y_0)$ , and satisfies

$$F(x_0, y_0) = 0, \quad \frac{\partial F(x_0, y_0)}{\partial y} \neq 0$$

then there exists a continuously differentiable function  $y = \phi(x)$  defined in a neighborhood of  $x_0$  s.t.

$$\phi(x_0) = y_0, \quad F(x, \phi(x)) = 0, \quad \phi'(x) = -\left[\frac{\partial F(x, \phi(x))}{\partial y}\right]^{-1} \frac{\partial F(x, \phi(x))}{\partial x}$$

### Local path

Lemma. If  $\nabla h(x_0) \neq \mathbf{0}$ , then for any d s.t.  $\nabla h(x_0)^T d = 0$ , there exists a local feasible path x(t) at  $x_0$  s.t. h(x(t)) = 0,  $x(0) = x_0$  and x'(0) = d.

Proof. Let

$$\tilde{\boldsymbol{x}}(t,\alpha) = \boldsymbol{x}_0 + t\boldsymbol{d} + \alpha \nabla h(\boldsymbol{x}_0)$$

and

$$F(t,\alpha) = h(\tilde{\mathbf{x}}(t,\alpha)) = h(\mathbf{x}_0 + t\mathbf{d} + \alpha \nabla h(\mathbf{x}_0))$$

Note

$$F(0,0) = h(\mathbf{x}_0) = 0, \quad \frac{\partial F(0,0)}{\partial \alpha} = \nabla h(\mathbf{x}_0)^T \nabla h(\mathbf{x}_0) = \|\nabla h(\mathbf{x}_0)\|^2 \neq 0$$

By the Implicit Function Theorem, there exists  $\alpha = \phi(t)$  for small t s.t.  $\phi(0) = 0$ ,  $F(t, \phi(t)) = 0$  and

$$\phi'(0) = -\left[\frac{\partial F(0,0)}{\partial \alpha}\right]^{-1} \frac{\partial F(0,0)}{\partial t} = -\left[\frac{\partial F(0,0)}{\partial \alpha}\right]^{-1} \nabla h(\mathbf{x}_0)^T \mathbf{d} = 0$$

Then  $x(t) = \tilde{x}(t, \phi(t)) = x_0 + td + \phi(t)\nabla h(x_0)$  satisfies the requirement.

# First-order necessary condition: single constraint case

A point x is called a regular point of a function h if  $\nabla h(x) \neq 0$ ; otherwise it is called a critical point.

Theorem. If  $x^*$  is a local extremum (maximum or minimum) of f s.t. h(x) = 0, and  $x^*$  is a regular point of h, then there exists  $\lambda^*$  s.t.

$$\nabla f(\mathbf{x}^*) + \lambda^* \nabla h(\mathbf{x}^*) = \mathbf{0}$$

Note.  $x^*$  satisfying the above Lagrange condition may be neither a maximum nor a minimum. E.g.

$$f(\mathbf{x}) = \|\mathbf{x}\|^2$$
$$h(\mathbf{x}) = y - x^3 - 1$$

At 
$$x^* = (0,1)^T$$
,

$$\nabla f(\mathbf{x}^*) = (0, 2)^T, \quad \nabla h(\mathbf{x}^*) = (0, 1)^T$$

Second-order conditions can help distinguish different cases ([CZ, LY])22



## Critical points

The Lagrange condition may fail at critical points.

Example. 
$$\min_{x,y} f(x,y) = x + y$$
s. t. 
$$h(x,y) = x^2 + y^2 = 0$$

The feasible set is  $X = \{\mathbf{0}\}$ , so  $\mathbf{x}^* = \mathbf{0}$  is the global minimum. There is no  $\lambda^* \in \mathbb{R}$  satisfying the Lagrange condition  $\nabla f(\mathbf{x}^*) + \lambda^* \nabla h(\mathbf{x}^*) = \mathbf{0}$ , as  $\nabla f(\mathbf{x}^*) = (1,1)^T$  and  $\nabla h(\mathbf{x}^*) = \mathbf{0}$ .

Example.

$$\min_{x,y} \quad f(x,y) = x$$
s.t. 
$$h(x,y) = y^2 + 1$$

s. t. 
$$h(x,y) = y^2 + x^4 - x^3 = 0$$



Note  $x^3 - x^4 = y^2 \ge 0$  implies  $x \in [0, 1]$ , so  $x^* = \mathbf{0}$  is the global minimum. Lagrange condition fails as  $\nabla f(x^*) = (1, 0)^T$ ,  $\nabla h(x^*) = \mathbf{0}$ .

Note. To find the minimum, we need to check both regular points satisfying the Lagrange condition and feasible critical points.

## First-order necessary condition: general case

Let  $x \in \mathbb{R}^n$  and  $n \ge k$ . Consider the equality constrained problem

$$\min_{\mathbf{x}} f(\mathbf{x})$$
s.t.  $h_i(\mathbf{x}) = 0, i = 1, 2, \dots, k$  (ECP)

A point  $x_0$  is a regular point of  $h = (h_1, \dots, h_k)^T$  if  $\nabla h_1(x_0), \dots, \nabla h_k(x_0)$  are linearly independent; otherwise it is a critical point of h.

Theorem. If  $x^*$  is a local extremum of f s.t. h(x) = 0, and  $x^*$  is a regular point of h, then there exist Lagrange multipliers  $\lambda_1^*, \ldots, \lambda_k^* \in \mathbb{R}$  s.t.

$$\nabla f(\mathbf{x}^*) + \sum_{i=1}^k \lambda_i^* \nabla h_i(\mathbf{x}^*) = \mathbf{0}$$

Define the Lagrangian of (ECP) by

$$\mathcal{L}(x, \lambda) = f(x) + \lambda^T h(x) = f(x) + \sum_{i=1}^k \lambda_i h_i(x)$$

Then the Lagrange condition is  $\nabla \mathcal{L}(x^*, \lambda^*) = \mathbf{0}$ .

## Geometric interpretation

If every  $x \in X$  is regular, then the feasible set  $X = \{x : h(x) = 0\}$  is a (n-k)-dimensional manifold (generalization of surfaces).

A tangent vector of X at  $x_0 \in X$  is the initial velocity d = x'(0) of a path  $x(t) \subset X$  and  $x(0) = x_0$ . By the chain rule, a tangent vector d satisfies

$$Dh(x)d = 0$$
 i.e.  $\nabla h_i(x^*)^T d = 0$ ,  $i = 1, 2, ..., k$ 

The tangent space  $T_{x_0}X$  of X at  $x_0$  is the set of all tangent vectors at  $x_0$ . It turns out  $T_{x_0}X$  is precisely the null space of  $Dh(x_0)$  if  $x_0$  is regular,

$$T_{\boldsymbol{x}_0}X = \{\boldsymbol{d} \in \mathbb{R}^n : D\boldsymbol{h}(\boldsymbol{x}_0)\boldsymbol{d} = \boldsymbol{0}\}.$$

The normal space  $N_{x_0}X$  of X at  $x_0$  is the range space of  $[Dh(x_0)]^T$ , i.e.

$$N_{\boldsymbol{x}_0}X = \operatorname{span}\left\{\nabla h_1(\boldsymbol{x}_0), \dots, \nabla h_k(\boldsymbol{x}_0)\right\}$$

Lagrange condition says at a local extremum  $x^*$ ,

$$\nabla f(\mathbf{x}^*) \in N_{\mathbf{x}^*} X = [T_{\mathbf{x}^*} X]^{\perp}.$$

# **Critical points**



#### Proof of theorem

Recall

$$D\boldsymbol{h}(\boldsymbol{x}^*)^T = [\nabla h_1(\boldsymbol{x}^*), \dots, \nabla h_k(\boldsymbol{x}^*)]$$

Given  $d \in \text{Null}(Dh(x^*))$ , i.e.  $\nabla h_i(x_0)^T d = 0, \forall i$ , let x(t) be a feasible local path at  $x^*$  with x'(0) = d, which exists by the lemma below.

Then t = 0 is a local minimum of g(t) = f(x(t)), so

$$0 = g'(0) = \nabla f(\mathbf{x}^*)^T \mathbf{d}$$

Thus

$$abla f(\mathbf{x}^*) \in [\operatorname{Null}(D\mathbf{h}(\mathbf{x}^*))]^{\perp} = \operatorname{Range}(D\mathbf{h}(\mathbf{x}^*)^T)$$

$$= \operatorname{span}\left\{\nabla h_1(\mathbf{x}^*), \dots, \nabla h_k(\mathbf{x}^*)\right\}$$

Lemma. If  $x_0$  is a regular point, then for any d s.t.  $\nabla h_i(x_0)^T d = 0, \forall i$ , there exists a local path x(t) s.t. h(x(t)) = 0,  $x(0) = x_0$  and x'(0) = d.

## Appendix: Proof of lemma

Let (cf. figure on slide 21)

$$\tilde{\mathbf{x}}(t, \boldsymbol{\alpha}) = \mathbf{x}_0 + t\mathbf{d} + D\mathbf{h}(\mathbf{x}_0)^T \boldsymbol{\alpha}, \quad \mathbf{F}(t, \boldsymbol{\alpha}) = \mathbf{h}(\tilde{\mathbf{x}}(t, \boldsymbol{\alpha}))$$

Note

$$F(0,\mathbf{0}) = h(x_0) = \mathbf{0}, \quad \frac{\partial F(0,\mathbf{0})}{\partial \alpha} = Dh(x_0)Dh(x_0)^T \succ \mathbf{0}$$

since  $Dh(x_0)^T$  has full rank k by regularity at  $x_0$ .

By the general Implicit Function Theorem, there exists  $\alpha=\phi(t)$  for small t s.t.  $\phi(0)=\mathbf{0}$ ,  $F(t,\phi(t))=\mathbf{0}$  and

$$\phi'(0) = -\left[\frac{\partial F(0,\mathbf{0})}{\partial \alpha}\right]^{-1} \frac{\partial F(0,\mathbf{0})}{\partial t} = -\left[\frac{\partial F(0,\mathbf{0})}{\partial \alpha}\right]^{-1} Dh(x_0)d = 0$$

Then

$$\boldsymbol{x}(t) = \tilde{\boldsymbol{x}}(t, \boldsymbol{\phi}(t)) = \boldsymbol{x}_0 + t\boldsymbol{d} + D\boldsymbol{h}(\boldsymbol{x}_0)^T \boldsymbol{\phi}(t) = \boldsymbol{x}_0 + t\boldsymbol{d} + \sum_{i=1}^k \phi_i(t) \nabla h_i(\boldsymbol{x}_0)$$

satisfies the requirement.

## Appendix: Implicit function theorem

Write  $F: \mathbb{R}^{n+k} \to \mathbb{R}^k$  as F(x,y) with  $x \in \mathbb{R}^n$  and  $y \in \mathbb{R}^k$ . Let  $F = (F_1, \dots, F_k)^T$ , and

$$\frac{\partial \mathbf{F}}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial F_1}{\partial x_1} & \cdots & \frac{\partial F_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial F_k}{\partial x_1} & \cdots & \frac{\partial F_k}{\partial x_n} \end{bmatrix}, \quad \frac{\partial \mathbf{F}}{\partial \mathbf{y}} = \begin{bmatrix} \frac{\partial F_1}{\partial y_1} & \cdots & \frac{\partial F_1}{\partial y_k} \\ \vdots & \ddots & \vdots \\ \frac{\partial F_k}{\partial y_1} & \cdots & \frac{\partial F_k}{\partial y_k} \end{bmatrix}$$

Implicit Function Theorem. If  $F : \mathbb{R}^{n+k} \to \mathbb{R}^k$  is continuously differentiable in a neighborhood  $(x_0, y_0)$ , and satisfies

$$F(\mathbf{x}_0, \mathbf{y}_0) = \mathbf{0}, \quad \det \frac{\partial F(\mathbf{x}_0, \mathbf{y}_0)}{\partial \mathbf{y}} \neq 0,$$

then there exists continuously differentiable function  $y = \phi(x)$  defined in a neighborhood of  $x_0$  s.t.

$$F(x, \phi(x)) = 0, \quad \frac{\partial \phi(x)}{\partial x} = -\left[\frac{\partial F(x, \phi(x))}{\partial y}\right]^{-1} \frac{\partial F(x, \phi(x))}{\partial x}$$

## Example

$$\min_{\mathbf{x} \in \mathbb{R}^3} \quad f(\mathbf{x}) = x_1 + 2x_2 + x_3$$
s.t. 
$$h_1(\mathbf{x}) = x_1 + x_2 + 2x_3 = 0$$

$$h_2(\mathbf{x}) = ||\mathbf{x}||^2 - 1 = 0$$

A critical point x satisfies  $\nabla h_2(x) \parallel \nabla h_1(x)$ , so  $x \propto (1, 1, 2)^T$ , infeasible.

$$\mathcal{L}(\mathbf{x}, \lambda) = x_1 + 2x_2 + x_3 + \lambda_1(x_1 + x_2 + 2x_3) + \lambda_2(x_1^2 + x_2^2 + x_3^2 - 1)$$

The Lagrange condition is

$$\begin{cases} \partial_{x_1} \mathcal{L} = 1 + \lambda_1 + 2\lambda_2 x_1 = 0 \\ \partial_{x_2} \mathcal{L} = 2 + \lambda_1 + 2\lambda_2 x_2 = 0 \\ \partial_{x_3} \mathcal{L} = 1 + 2\lambda_1 + 2\lambda_2 x_3 = 0 \\ \partial_{\lambda_1} \mathcal{L} = x_1 + x_2 + 2x_3 = 0 \\ \partial_{\lambda_2} \mathcal{L} = x_1^2 + x_2^2 + x_3^2 - 1 = 0 \end{cases}$$
(1)
$$(1)$$

$$(2)$$

$$(3)$$

$$(3)$$

$$(4)$$

$$(4)$$

$$\partial_{\lambda_2} \mathcal{L} = x_1^2 + x_2^2 + x_3^2 - 1 = 0 \tag{5}$$

(1)

•  $(1)+(2)+(3)\times 2$ ,

$$5 + 6\lambda_1 + 2\lambda_2(x_1 + x_2 + 2x_3) = 0$$

- Plugging (4) into (6) yields  $\lambda_1 = -\frac{5}{6}$ .
- Plugging  $\lambda_1$  into (1)(2)(3), and noting that  $\lambda_2 \neq 0$ ,

$$x_1 = -\frac{1}{12\lambda_2}, \quad x_2 = -\frac{7}{12\lambda_2}, \quad x_3 = \frac{1}{3\lambda_2}$$
 (7)

• Plugging (7) into (5) yields  $\lambda_2 = \pm \sqrt{\frac{33}{72}}$ , so

$$(1) \begin{cases} x_1 = -\frac{1}{\sqrt{66}} \\ x_2 = -\frac{7}{\sqrt{66}} \\ x_3 = \frac{4}{\sqrt{66}} \\ \lambda_1 = -\frac{5}{6} \\ \lambda_2 = \sqrt{\frac{33}{72}} \end{cases} \quad \text{or} \quad (2) \begin{cases} x_1 = \frac{1}{\sqrt{66}} \\ x_2 = \frac{7}{\sqrt{66}} \\ x_3 = -\frac{4}{\sqrt{66}} \\ \lambda_1 = -\frac{5}{6} \\ \lambda_2 = -\sqrt{\frac{33}{72}} \end{cases}$$

(1) global minimum, (2) global maximum

(6)

