```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
sns.set style('darkgrid')
sns.set(font scale=1.3)
df=pd.read csv("/content/drive/MyDrive/IBM/Assignment - 2
/Churn Modelling.csv")
df.head()
  RowNumber CustomerId
                          Surname CreditScore Geography Gender Age
0
               15634602 Hargrave
                                           619
                                                  France Female
                                                                   42
               15647311
                             Hill
                                           608
                                                   Spain Female
                                                                   41
2
               15619304
                             Onio
                                           502
                                                  France Female
                                                                   42
3
          4
               15701354
                             Boni
                                           699
                                                  France Female
                                                                   39
4
          5
               15737888 Mitchell
                                           850
                                                   Spain Female
                                                                   43
            Balance NumOfProducts HasCrCard IsActiveMember
   Tenure
               0.00
0
       2
                                            1
          83807.86
1
       1
                                 1
                                            0
                                                            1
2
                                 3
                                            1
       8 159660.80
                                                            0
3
       1
               0.00
                                 2
                                            0
                                                            0
       2 125510.82
                                 1
                                            1
                                                            1
  EstimatedSalary Exited
        101348.88
0
1
        112542.58
2
        113931.57
                        1
3
         93826.63
         79084.10
4
                        0
df.drop(["RowNumber","CustomerId","Surname"],axis=1,inplace=True)
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 11 columns):
    Column
                     Non-Null Count
                                     Dtype
____
                     _____
 0
    CreditScore
                     10000 non-null int64
                     10000 non-null object
 1
    Geography
    Gender
                     10000 non-null object
```

```
3
     Age
                      10000 non-null int64
 4
     Tenure
                      10000 non-null int64
 5
                      10000 non-null float64
     Balance
 6
    NumOfProducts
                      10000 non-null int64
 7
                      10000 non-null
                                      int64
     HasCrCard
     IsActiveMember
                      10000 non-null
                                      int64
     EstimatedSalary 10000 non-null float64
 10
    Exited
                      10000 non-null
                                      int64
dtypes: float64(2), int64(7), object(2)
memory usage: 859.5+ KB
#Perform Univariate Analysis
plt.figure(figsize=(8,8))
sns.countplot(x='Tenure',data=df)
plt.xlabel('0:Customers with Bank, 1: exited from bank')
plt.ylabel('No.of.Customers')
plt.title("Bank Customers viz")
plt.show()
```



```
#Perform Univariate Analysis
plt.figure(figsize=(8,8))
sns.kdeplot(x=df['Balance'])
```

<matplotlib.axes. subplots.AxesSubplot at 0x7fa0c03906d0>

#Perform Bivariate Analysis
plt.scatter(df.Age,df.Balance)

 ${\tt <matplotlib.collections.PathCollection}$ at 0x7fa0d35a7dd0>

#Perform Bivariate Analysis
df.corr()

Dalance	CreditScore	Gender	Age	Tenure	
Balance \ CreditScore	1.000000	0.007888	-0.003965	0.000842	0.006268
Gender	0.007888	1.000000	0.022812	0.003739	0.069408
Age	-0.003965	0.022812	1.000000	-0.009997	0.028308
Tenure	0.000842	0.003739	-0.009997	1.000000	-0.012254
Balance	0.006268	0.069408	0.028308	-0.012254	1.000000
NumOfProducts	0.012238	0.003972	-0.030680	0.013444	-0.304180
HasCrCard	-0.005458	-0.008523	-0.011721	0.022583	-0.014858
IsActiveMember	0.025651	0.006724	0.085472	-0.028362	-0.010084
EstimatedSalary	-0.001384	-0.001369	-0.007201	0.007784	0.012797
Exited	-0.027094	0.035943	0.285323	-0.014001	0.118533

NumOfProducts HasCrCard IsActiveMember EstimatedSalary \

CreditScore 0.001384	0.012238	-0.005458	0.025651	-
Gender 0.001369	0.003972	-0.008523	0.006724	-
Age	-0.030680	-0.011721	0.085472	-
0.007201 Tenure	0.013444	0.022583	-0.028362	
0.007784 Balance	-0.304180	-0.014858	-0.010084	
0.012797 NumOfProducts	1.000000	0.003183	0.009612	
0.014204 HasCrCard	0.003183	1.000000	-0.011866	-
0.009933 IsActiveMember	0.009612	-0.011866	1.000000	-
0.011421 EstimatedSalary	0.014204	-0.009933	-0.011421	
1.000000 Exited 0.012097	-0.047820	-0.007138	-0.156128	
CreditScore Gender Age Tenure Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary Exited	-0.007138 -0.156128 0.012097 1.000000			
#Perform Bivari import statsmod				
<pre>#define respons y = df['CreditS</pre>				
<pre>#define explana x = df[['Estima</pre>				

#add constant to predictor variables

 $x = sm.add_constant(x)$

#view model summary
print(model.summary())

#fit linear regression model
model = sm.OLS(y, x).fit()

OLS Regression Results

======					
Dep. Variable:	C	CreditScore	R-squared:		
0.000 Madal.		OT C	7 di Diagna	70 d •	
Model: -0.000		OLS	Adj. R-squa	rea:	
Method:	Tiea	st Squares	F-statistic	•	
0.01916	100	ise squares	1 504015010	•	
Date:	Sat, 2	4 Sep 2022	Prob (F-sta	tistic):	
0.890					
Time:		05:06:19	Log-Likelih	ood:	
-59900.					
No. Observations	3:	10000	AIC:		
1.198e+05		0000	7.70		
Df Residuals: 1.198e+05		9998	BIC:		
Df Model:		1			
DI MOdel.		1			
		nonrobust			
Covariance Type:		HOHLODUSC			
Covariance Type:		Homobuse			
Covariance Type:			========	=======	
Covariance Type:				=======	======
	 coef	:=======	======= t	======= P> t	======
	 coef	:=======			
	coef	std err			
[0.025 0.97	coef	std err	t		
[0.025 0.97	coef '5]	std err	t	P> t	
======================================	coef '5] 	std err	t 	P> t	
======================================	coef 75] 650.7617	std err	t 335.407	P> t 0.000	
[0.025 0.97	coef 75] 650.7617	std err	t 335.407	P> t 0.000	
[0.025 0.97	coef 75] 650.7617	std err	t 335.407	P> t 0.000	
[0.025 0.97	coef 75] 650.7617	std err 1.940 1.68e-05	t 335.407 -0.138	P> t 0.000 0.890	
[0.025 0.97 const 646.958 654. EstimatedSalary 05 3.06e-05 ======== Omnibus:	coef 75] 650.7617	std err 1.940 1.68e-05	t 335.407	P> t 0.000 0.890	
[0.025 0.97	coef 75] 650.7617	std err 1.940 1.68e-05	t 335.407 -0.138 Durbin-Wats	P> t 0.000 0.890 =======	
[0.025 0.97	coef 75] 650.7617	std err 1.940 1.68e-05	t 335.407 -0.138	P> t 0.000 0.890 =======	
======================================	coef 75] 650.7617	std err 1.940 1.68e-05 132.939 0.000	t 335.407 -0.138 Durbin-Wats Jarque-Bera	P> t 0.000 0.890 =======	
[0.025 0.97	coef 75] 650.7617	std err 1.940 1.68e-05	t 335.407 -0.138 Durbin-Wats	P> t 0.000 0.890 =======	
[0.025 0.97 const 646.958 654. EstimatedSalary 05 3.06e-05 ======= Omnibus: 2.014 Prob(Omnibus): 84.242 Skew:	coef 75] 650.7617	std err 1.940 1.68e-05 132.939 0.000	t 335.407 -0.138 Durbin-Wats Jarque-Bera	P> t 0.000 0.890 =======	

Notes:

^[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

^[2] The condition number is large, 2.32e+05. This might indicate that

there are strong multicollinearity or other numerical problems.

/usr/local/lib/python3.7/dist-packages/statsmodels/tsa/tsatools.py:142: FutureWarning: In a future version of pandas all arguments of concat except for the argument 'objs' will be keyword-only

x = pd.concat(x[::order], 1)

#Perform Multivariate Analysis plt.figure(figsize=(4,4))
sns.pairplot(data=df[["Balance","CreditScore","EstimatedSalary","NumOf
Products","Tenure","Exited"]],hue="Exited")

<seaborn.axisgrid.PairGrid at 0x7fa0b00a1b10>

<Figure size 288x288 with 0 Axes>


```
#Perform Descriptive Statistics
df=pd.DataFrame(df)
print(df.sum())
CreditScore
                                                       6505288
              {\tt FranceSpainFranceFranceSpainSpainFranceGermany...}
Geography
Gender
                 FemaleFemaleFemaleFemaleMaleMaleFemaleMa...
Age
                                                        389218
                                                         50128
Tenure
Balance
                                                   764858892.88
NumOfProducts
                                                         15302
HasCrCard
                                                          7055
IsActiveMember
                                                          5151
                                                  1000902398.81
EstimatedSalary
                                                          2037
Exited
dtype: object
#Perform Descriptive Statistics
print("----Sum Value----")
print(df.sum(1))
print("----")
print("----Product Value----")
print(df.prod())
print ("----")
----Sum Value----
   102015.88
1
      197002.44
     274149.37
3
      94567.63
     205492.92
9995 97088.64
9996 159633.38
9997
      42840.58
9998 168784.83
9999 169159.57
Length: 10000, dtype: float64
_____
----Product Value----
CreditScore 0.0
               0.0
Age
Tenure
               0.0
Balance
               0.0
NumOfProducts
               0.0
HasCrCard
               0.0
IsActiveMember 0.0
EstimatedSalary inf
                0.0
Exited
dtype: float64
```

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:3: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.

This is separate from the ipykernel package so we can avoid doing imports until

/usr/local/lib/python3.7/dist-packages/numpy/core/_methods.py:52: RuntimeWarning: overflow encountered in reduce

return umr_prod(a, axis, dtype, out, keepdims, initial, where) /usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:6: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.

```
#Perform Descriptive Statistics
print("-----")
print(df.mean())
print("----")
print("-----")
print(df.median())
print("----")
print("----")
print(df.mode())
print("----")
-----Mean Value-----
CreditScore 650.528800
                38.921800
Age
                 5.012800
Tenure
             76485.889288
Balance
NumOfProducts
                1.530200
HasCrCard
                0.705500
IsActiveMember 0.515100
EstimatedSalary 100090.239881
IsActiveMember
Exited
              0.203700
dtype: float64
_____
-----Median Value-----
CreditScore
               652.000
Age
                37.000
                 5.000
Tenure
Balance
             97198.540
NumOfProducts
                1.000
                1.000
HasCrCard
IsActiveMember
                1.000
EstimatedSalary 100193.915
Exited
                 0.000
```

dtype: float64

-----Mode Value-----

CreditScore Geography Gender Age Tenure Balance

NumOfProducts \

0 850 France Male 37 2 0.0

HasCrCard IsActiveMember EstimatedSalary Exited

1 1 24924.92 0

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:3: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.

1

This is separate from the ipykernel package so we can avoid doing imports until

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:6: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.

#Handling with missing Values df.isnull()#Checking values are null

	CreditScore	Geography	Gender	Age	Tenure	Balance
NumOi.	Products \ False	False	False	False	False	False
False	raise	raise	raise	raise	raise	raise
1	False	False	False	False	False	False
False						
2	False	False	False	False	False	False
False						
3	False	False	False	False	False	False
False	False	False	False	False	False	False
False	raise	raisc	raisc	raisc	raisc	raisc
9995	False	False	False	False	False	False
False						
9996	False	False	False	False	False	False
False						
9997	False	False	False	False	False	False
False						
9998	False	False	False	False	False	False

False 9999 False	Fals	e False F	alse	False	Fal	se	False
0 1 2 3 4 9995 9996	HasCrCard False False False False False False False	IsActiveMember False False False False False False False	Esti	Fa Fa Fa Fa Fa	alse alse alse alse alse alse	Exite Fals Fals Fals Fals Fals Fals	e e e e e e e e
9997	False	False			alse	Fals	_
9998	False	False			alse	Fals	
9999	False	False		Fa	alse	Fals	е

[10000 rows x 11 columns]

#Handling with missing Values

df.notnull() #Checking values are not null

	CreditScore	Geography	Gender	Age	Tenure	Balance
	Products \					m
0 True	True	True	True	True	True	True
1	True	True	True	True	True	True
True 2	True	True	True	True	True	True
True						
3	True	True	True	True	True	True
True 4	True	True	True	True	True	True
True						
• • •	• • •	• • •	• • •	• • •	• • •	• • •
9995	True	True	True	True	True	True
True						
9996	True	True	True	True	True	True
True 9997	True	True	True	True	True	True
True						
9998	True	True	True	True	True	True
True	_	_	_	_	_	_
9999 True	True	True	True	True	True	True
	HasCrCard	IsActiveMemb	or Feti	matade	alaru P	vitad
0	True	r Tr		.ma ceus	True	True
1	True	Tr			True	True

2	True	True	True	True
3	True	True	True	True
4	True	True	True	True
9995	True	True	True	True
9996	True	True	True	True
9997	True	True	True	True
9998	True	True	True	True
9999	True	True	True	True

[10000 rows x 11 columns]

#Find outliers & replace the outliers
sns.boxplot(df['Balance'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

<matplotlib.axes. subplots.AxesSubplot at 0x7fa0af6dcf90>

0 50000 100000 150000 200000 250000 Balance

```
#Find outliers & replace the outliers
print(np.where(df['Balance']>100000))

(array([ 2,  4,  5, ..., 9987, 9993, 9999]),)
```

```
#Find outliers & replace the outliers
from scipy import stats
import numpy as np
z = np.abs(stats.zscore(df["EstimatedSalary"]))
print(z)
0
        0.021886
        0.216534
1
2
        0.240687
3
        0.108918
        0.365276
       0.066419
9995
9996
       0.027988
9997
        1.008643
9998
        0.125231
9999
        1.076370
Name: EstimatedSalary, Length: 10000, dtype: float64
#Check for categorical columns & performs encoding
from sklearn.preprocessing import LabelEncoder
df['Gender'].unique()
array(['Female', 'Male'], dtype=object)
#Check for categorical columns & performs encoding
df['Gender'].value counts()
          5457
Male
Female
          4543
Name: Gender, dtype: int64
#Check for categorical columns & performs encoding
encoding=LabelEncoder()
df["Gender"] = encoding.fit transform(df.iloc[:,1].values)
df
      CreditScore Geography Gender Age Tenure
                                                     Balance
NumOfProducts \
0
              619
                     France
                                  0
                                       42
                                                2
                                                        0.00
1
1
              608
                                   2
                                       41
                                                    83807.86
                      Spain
                                                1
1
2
              502
                     France
                                   0
                                       42
                                                8 159660.80
3
3
              699
                                   0
                                       39
                                                        0.00
                     France
                                                1
2
4
              850
                                   2
                                       43
                                                2 125510.82
                      Spain
1
                                              . . .
                                    . . .
```

. . .

```
771 France 0 39 5 0.00
9995
2
9996
          516 France
                         0 35 10 57369.61
1
          709
              France 0 36 7
9997
                                          0.00
1
          772
                         1 42
                                  3 75075.31
9998
              Germany
          792
                         0 28 4 130142.79
9999
              France
1
    HasCrCard IsActiveMember EstimatedSalary Exited
                             101348.88
0
          1
                      1
                                          1
1
          0
                      1
                             112542.58
2
          1
                      0
                             113931.57
                                          1
3
                                         0
         0
                     0
                             93826.63
4
          1
                      1
                              79084.10
                                         0
                                 . . .
                                        . . .
         . . .
                     . . .
                             96270.64
         1
                     0
                                         0
9995
          1
                      1
                             101699.77
9996
9997
         0
                     1
                             42085.58
                     0
9998
          1
                              92888.52
                                         1
9999
          1
                     0
                              38190.78
[10000 rows x 11 columns]
#Check for categorical columns & performs encoding
#Split the data into Dependent & Independent Variables
print("-----Dependent Variables----")
X=df.iloc[:,1:4]
print(X)
print("----")
print("-----Independent Variables----")
Y=df.iloc[:, 4]
print(Y)
print("----")
-----Dependent Variables-----
    Age Tenure Balance
0
    42
          2
                 0.00
           1 83807.86
1
    41
2
    42
           8 159660.80
3
    39
           1
               0.00
    43
4
          2 125510.82
    ...
          . . .
                  . . .
. . .
          5
    39
9995
                 0.00
9996 35
          10 57369.61
          7 0.00
3 75075.31
9997 36
                 0.00
9998 42
9999 28 4 130142.79
```

```
[10000 rows x 3 columns]
-----
-----Independent Variables-----
0
       1
1
       1
2
       3
3
       2
       1
9995 2
9996
       1
9997
       1
9998
9999
Name: NumOfProducts, Length: 10000, dtype: int64
_____
#Scale the independent Variables
from sklearn.preprocessing import StandardScaler
object= StandardScaler()
# standardization
scale = object.fit transform(df)
print(scale)
[[-0.32622142 0.29351742 -1.04175968 ... 0.97024255 0.02188649
   1.977164681
 [-0.44003595 \quad 0.19816383 \quad -1.38753759 \quad \dots \quad 0.97024255 \quad 0.21653375
  -0.505774761
 [-1.53679418 \quad 0.29351742 \quad 1.03290776 \quad \dots \quad -1.03067011 \quad 0.2406869
   1.977164681
 [ 0.60498839 -0.27860412  0.68712986 ...  0.97024255 -1.00864308 ]
   1.97716468]
 [1.25683526 \quad 0.29351742 \quad -0.69598177 \quad \dots \quad -1.03067011 \quad -0.12523071
   1.97716468]
 [1.46377078 -1.04143285 -0.35020386 ... -1.03067011 -1.07636976
 -0.50577476]]
#Split the data into training & testing
from sklearn.model selection import train test split
#Split the data into training & testing
x train, x test, y train, y test = train test split(x, y,
test size=4, random state=4)
x train
     const EstimatedSalary
2558
      1.0 137903.54
7642
       1.0
                  121765.00
8912
       1.0
                  109470.34
```

```
1.0
3319
                    2923.61
6852
      1.0
                    7312.25
. . .
       . . .
                    7666.73
456
       1.0
6017
      1.0
                    9085.00
709
       1.0
                  147794.63
8366
      1.0
                  102515.42
1146
      1.0
                  54776.64
[9996 rows x 2 columns]
#Split the data into training & testing
x test
     const EstimatedSalary
1603
      1.0
                  23305.85
8713
      1.0
                  41248.80
4561
       1.0
                  143317.42
6600
      1.0
                  174123.16
#Split the data into training & testing
y train
2558
      727
7642
      811
8912
      623
3319
      430
6852
      600
      . . .
      733
456
6017
       487
709
      686
8366
       637
       614
Name: CreditScore, Length: 9996, dtype: int64
#Split the data into training & testing
y_test
1603
       576
8713
       786
4561
       562
6600
       505
Name: CreditScore, dtype: int64
```