DSc

March 7, 2024

1 Initialisation

```
[1]: import pandas as pd
import numpy as np
from IPython.display import HTML, Markdown, Latex

def display_df(tp_df=None, index=False):
    tp_df = tp_df if tp_df is not None else df
    display(Markdown(tp_df.to_markdown(index=index)))
```

2 15/02/24

Given a dataset, print the following:

- 1) Records of index 1 & 3
- 2) Records where age >= 15
- 3) Records where age >= 12 and gender = Male
- 4) City and gender of people with age >= 12

```
[2]: data = {
                           [10,22,13,21,12,11,17],
         'age':
         'section':
                           ['A','B','C','B','B','A','A'],
         'city':
      →['Gurgaon','Delhi','Mumbai','Delhi','Mumbai','Delhi','Mumbai'],
                           ['M','F','F','M','M','M','F'],
         'favorite_color': ['red','black','yellow','pink','black','green','red']
     df = pd.DataFrame(data)
     print('\nOriginal data:')
     display_df()
     print('\n1) Records of index 1 & 3')
     display_df( df.iloc[ [1,3] , : ] )
     print('\n2) Records where age >= 15:')
     display_df( df.query('age >= 15') )
```

```
print('\n3) Records where age >= 12 and gender = Male:')
display_df( df.query('age >= 12 and gender == "M"') )
print('\n4) City and gender of people with age >= 12:')
display_df( df.query('age >= 12')[['city','gender']] )
```

Original data:

age	section	city	gender	favorite_color
10	A	Gurgaon	M	red
22	В	Delhi	\mathbf{F}	black
13	\mathbf{C}	Mumbai	\mathbf{F}	yellow
21	В	Delhi	M	pink
12	В	Mumbai	M	black
11	A	Delhi	M	green
17	A	Mumbai	F	red

1) Records of index 1 & 3

age	section	n city	gender	$favorite_color$
22	В	Delhi	F	black
21	В	Delhi	M	pink

2) Records where age >= 15:

age	section	city	gender	favorite_color
22	_	Delhi	F	black
21 17	B A	Delhi Mumbai	$egin{array}{c} \mathbf{M} \\ \mathbf{F} \end{array}$	pink red

3) Records where age >= 12 and gender = Male:

age	section	city	gender	favorite_color
21	В	Delhi	M	pink
12	В	Mumbai	M	black

4) City and gender of people with age >= 12:

city	gender
Delhi	F
Mumbai	\mathbf{F}
Delhi	M
Mumbai	\mathbf{M}
Mumbai	\mathbf{F}

$3 \quad 22/02/24$

Create a dataframe to store data of 10 students, with the columns being "Name", "Age", "Semester I marks out of 600", "Semester II marks out of 500", and "Attendance"

- 1) Display details of students who scored more than 560 marks in sem I
- 2) Display details of students who scored less than 250 marks in sem II
- 3) Display details of student who scored minimum marks in sem II
- 4) Display details of student who scored maximum marks in sem II
- 5) Display details of students whose attendance is more than 75
- 6) Display details of students whose attendance is less than 50
- 7) Insert 2 new records
- 8) Add a column corresponding to percentage of marks of both semesters
- 9) Add a new column corresponding to grades:

Percentage	Grade
>=90	О
>=75 and < 90	A+
>=60 and < 75	A
>=50 and <60	B+
>=40 and <50	В
>40	F

```
print('\n1) Students who scored more than 560 marks in sem I:')
ans = df.query('`Semester I marks out of 600` > 560')
display_df(ans, index=True)
print('\n2) Students who scored less than 250 marks in sem II:')
ans = df.query('`Semester II marks out of 500` < 250')
display_df(ans, index=True)
print('\n3) Student who scored minimum marks in sem II:')
min marks = min(df['Semester II marks out of 500'])
          = df.query('`Semester II marks out of 500` == @min_marks')
display_df( ans , index=True )
print('\n4) Student who scored maximum marks in sem II:')
ans = df.sort_values(by='Semester II marks out of 500',ascending=False).head(1)
display_df(ans, index=True)
print('\n5) Students whose attendance is more than 75:')
ans = df.query('Attendance > 75')
display_df(ans, index=True)
print('\n6) Students whose attendance is less than 50:')
ans = df.query('Attendance < 50')</pre>
display_df(ans, index=True)
print('\n7) Inserted two new records:')
new data = {
    'Name':
                                    ['K', 'L'],
    'Age':
                                    [22, 23],
    'Semester I marks out of 600': [300, 400],
    'Semester II marks out of 500': [400, 300],
    'Attendance':
                                    [80, 40]
}
new_df = pd.DataFrame(new_data)
     = pd.concat([df,new_df], ignore_index=True)
display_df(index=True)
print('\n8) Added the percentage column:')
df['Percentage'] = (df['Semester I marks out of 600'] + df['Semester II marks_
 out of 500']) / 11
df['Percentage'] = df['Percentage'].apply(lambda x: round(x,2))
display_df()
print('\n9) Added the grade column:')
def get_grade(x: float):
    if x \ge 90: return '0'
    elif x \ge 75: return 'A+'
```

```
elif x >= 60: return 'A'
elif x >= 50: return 'B+'
elif x >= 40: return 'B'
else: return 'F'
df['Grade'] = df['Percentage'].apply(get_grade)
display_df()
```

Original data:

Name	Age	Semester I marks out of 600	Semester II marks out of 500	Attendance
A	20	213	198	76
В	21	31	378	26
\mathbf{C}	20	57	133	53
D	22	406	450	32
${ m E}$	23	417	283	50
F	20	45	485	67
G	21	217	193	92
\mathbf{H}	22	200	283	62
I	20	588	236	44
J	21	319	191	85

1) Students who scored more than 560 marks in sem I:

			Semester I marks out of	Semester II marks out of	
	Name	Age	600	500	Attendance
8	I	20	588	236	44

2) Students who scored less than 250 marks in sem II:

			Semester I marks out of	Semester II marks out of	
	Name	Age	600	500	Attendance
0	A	20	213	198	76
2	\mathbf{C}	20	57	133	53
6	G	21	217	193	92
8	I	20	588	236	44
9	J	21	319	191	85

3) Student who scored minimum marks in sem II:

			Semester I marks out of	Semester II marks out of	
	Name	Age	600	500	Attendance
2	С	20	57	133	53

4) Student who scored maximum marks in sem II:

			Semester I marks out of	Semester II marks out of	
	Name	Age	600	500	Attendance
5	F	20	45	485	67

5) Students whose attendance is more than 75:

			Semester I marks out of	Semester II marks out of	
	Name	Age	600	500	Attendance
0	A	20	213	198	76
6	G	21	217	193	92
9	J	21	319	191	85

6) Students whose attendance is less than 50:

			Semester I marks out of	Semester II marks out of	
	Name	Age	600	500	Attendance
1	В	21	31	378	26
3	D	22	406	450	32
8	I	20	588	236	44

7) Inserted two new records:

			Semester I marks out of	Semester II marks out of	
	Name	Age	600	500	Attendance
0	A	20	213	198	76
1	В	21	31	378	26
2	\mathbf{C}	20	57	133	53
3	D	22	406	450	32
4	${ m E}$	23	417	283	50
5	\mathbf{F}	20	45	485	67
6	G	21	217	193	92
7	Η	22	200	283	62
8	I	20	588	236	44
9	J	21	319	191	85

			Semester I marks out of	Semester II marks out of	
	Name	Age	600	500	Attendance
10	K	22	300	400	80
11	L	23	400	300	40

8) Added the percentage column:

		Semester I marks out of	Semester II marks out of		
Name	Age	600	500	Attendance	Percentage
A	20	213	198	76	37.36
В	21	31	378	26	37.18
\mathbf{C}	20	57	133	53	17.27
D	22	406	450	32	77.82
\mathbf{E}	23	417	283	50	63.64
\mathbf{F}	20	45	485	67	48.18
G	21	217	193	92	37.27
Η	22	200	283	62	43.91
I	20	588	236	44	74.91
J	21	319	191	85	46.36
K	22	300	400	80	63.64
L	23	400	300	40	63.64

9) Added the grade column:

		Semester I marks out	Semester II marks out			
Name	Age	of 600	of 500	Attendance	Percentage	Grade
A	20	213	198	76	37.36	F
В	21	31	378	26	37.18	\mathbf{F}
\mathbf{C}	20	57	133	53	17.27	\mathbf{F}
D	22	406	450	32	77.82	A+
\mathbf{E}	23	417	283	50	63.64	A
F	20	45	485	67	48.18	В
G	21	217	193	92	37.27	\mathbf{F}
H	22	200	283	62	43.91	В
I	20	588	236	44	74.91	A
J	21	319	191	85	46.36	В
K	22	300	400	80	63.64	A
L	23	400	300	40	63.64	A

$4 \quad 29/02/24$

- 1. Create a DataFrame based on E-Commerce data and generate mean, mode, and median
- 2. Write a program to implement pivot() and pivot-table() on a DataFrame

- 3. Write a Program to read a CSV file and create its DataFrame
- 4. Consider the DataFrame QtrSales where each row contains the item category, item name and expenditure and group the rows by category, and print the average expenditure per category
- 5. Create a DataFrame having age, name, weight of five students. Write a program to display only the weight of first and fourth rows
- 6. Write a program to create a DataFrame to store weight, age and name of three people. Print the DataFrame and its transpose

```
[4]: # 1
    data = {
                         ['101', '102', '103', '104', '105'],
         'Order_ID':
         'Price':
                         [50, 20, 40, 50, 45],
                         [2, 3, 1, 2, 1]
         'Quantity':
    df = pd.DataFrame(data)
    print('\n\n1.1) Original dataframe:')
    display_df(df)
    mean_df = df.mean(numeric_only=True)
            = df.mode(numeric_only=True)
    mode df
    median_df = df.median(numeric_only=True)
    print('\n1.2) Means: ')
    display df(mean df, index=True)
    print('\n1.3) Modes: ')
    display df(mode df, index=True)
    print('\n1.4) Medians: ')
    display df(median df, index=True)
    # 2
    data = {
         'Day':
                        ['Monday', 'Monday', 'Tuesday', 'Tuesday', 'Wednesday', |
      ['Delhi', 'Mumbai', 'Delhi', 'Mumbai', 'Delhi', 'Mumbai'],
         'City':
         'Temperature': [32, 34, 33, 35, 34, 36],
    df = pd.DataFrame(data)
    print('\n\n2.1) Dataframe for pivot(): ')
    display_df(df)
    pivot_df = df.pivot(index='Day', columns='City', values='Temperature')
    print('\n2.2) pivot(): ')
    display_df(pivot_df, index=True)
    data = {
```

```
'Day':
                   ['Monday', 'Monday', 'Tuesday', 'Tuesday', 'Tuesday', |

    'Tuesday'],
    'City':
                   ['Delhi', 'Delhi', 'Mumbai', 'Delhi', 'Mumbai'],
    'Temperature': [32, 33, 36, 33, 36, 37],
}
df = pd.DataFrame(data)
print('\n2.3) Dataframe for pivot_table(): ')
display df(df)
pivot_table_df = df.pivot_table(index='Day', columns='City',__
⇔values='Temperature', aggfunc='count')
print('\n2.4) pivot table(): ')
display_df(pivot_table_df, index=True)
# 3
filename = 'data.csv'
print(f'\n\n3.1) Contents of {filename}:')
with open(filename) as f:
   print(f.read())
df = pd.read_csv(filename)
print('\n3.2) Dataframe:')
display_df(df)
# 4
QtrSales = pd.DataFrame({
                 ['Electronics', 'Electronics', 'Fashion', 'Fashion', '
    'category':
 ⇔'Electronics', 'Fashion'],
    'item_name': ['Laptop', 'Headphones', 'T-Shirt', 'Jeans', 'Smartphone', |
 'expenditure': [1200, 100, 31, 50, 800, 60]
})
print('\n\n4.1) Original dataframe:')
display_df(QtrSales)
grouped = QtrSales.groupby(by='category')['expenditure']
mean_df = grouped.mean()
print('\n4.2) Average expenditure per category:')
display_df(mean_df, index=True)
# 5
```

```
data = {
    'name':
              ['John', 'Emma', 'Michael', 'Sophia', 'William'],
            [20, 21, 22, 20, 23],
    'weight': [70, 65, 75, 68, 72]
}
df = pd.DataFrame(data)
print('\n\n5.1) Original dataframe:')
display_df(df, index=True)
weight_df = df.loc[ [0,3] , ['weight'] ]
print('\n5.2) Weight of the first and fourth rows:')
display_df(weight_df, index=True)
# 6
data = {
    'name': ['John', 'Emma', 'Michael', 'Sophia', 'William'],
    'age': [20, 21, 22, 20, 23],
    'weight': [70, 65, 75, 68, 72]
}
df = pd.DataFrame(data)
print('\n\n6.1) Original dataframe:')
display_df(df, index=True)
print('\n6.2) Transpose of the dataframe:')
display_df(df.T, index=True)
```

1.1) Original dataframe:

Order_ID	Price	Quantity
101	50	2
102	20	3
103	40	1
104	50	2
105	45	1

1.2) Means:

	(
Price	41
Quantity	1.8

1.3) Modes:

	Price	Quantity
0	50	1
1	nan	2

1.4) Medians:

	0
Price	45
Quantity	2

2.1) Dataframe for pivot():

Day	City	Temperature
Monday	Delhi	32
Monday	Mumbai	34
Tuesday	Delhi	33
Tuesday	Mumbai	35
Wednesday	Delhi	34
Wednesday	Mumbai	36

2.2) pivot():

Day	Delhi	Mumbai
Monday	32	34
Tuesday	33	35
Wednesday	34	36

2.3) Dataframe for pivot_table():

Day	City	Temperature
Monday	Delhi	32
Monday	Delhi	33
Monday	Mumbai	36
Tuesday	Delhi	33

Day	City	Temperature
·	Mumbai	36
Tuesday	Mumbai	37

2.4) pivot_table():

Day	Delhi	Mumbai
Monday	2	1
Tuesday	1	2

3.1) Contents of data.csv:

Name, Age, Gender

Ram,16,M

Manish, 18, M

Sahil,15,M

Amrit,20,F

Mark,19,M

3.2) Dataframe:

Name	Age	Gender
Ram	16	M
Manish	18	M
Sahil	15	M
Amrit	20	\mathbf{F}
Mark	19	\mathbf{M}

4.1) Original dataframe:

category	item_name	expenditure
Electronics	Laptop	1200
Electronics	Headphones	100
Fashion	T-Shirt	31
Fashion	Jeans	50
Electronics	Smartphone	800
Fashion	Shoes	60

4.2) Average expenditure per category:

category	expenditure
Electronics	700
Fashion	47

5.1) Original dataframe:

	name	age	weight
0	John	20	70
1	Emma	21	65
2	Michael	22	75
3	Sophia	20	68
4	William	23	72

5.2) Weight of the first and fourth rows:

	weight
0	70
3	68

6.1) Original dataframe:

	name	age	weight
0	John	20	70
1	Emma	21	65
2	Michael	22	75
3	Sophia	20	68
4	William	23	72

6.2) Transpose of the dataframe:

	0	1	2	3	4
name	John	Emma	Michael	Sophia	William

	0	1	2	3	4	
age	20	21	22	20	23	
weight	70	65	75	68	72	