ориентацията на кривата γ . Ако сменим ориентацията на γ , то допирателният вектор си променя посоката, $\mathbf{\tau}_{\gamma^{-1}} = -\mathbf{\tau}_{\gamma}$, следователно интегралът си променя знака,

$$\int_{\gamma} \mathbf{F} d\mathbf{r} = -\int_{\gamma^{-1}} \mathbf{F} d\mathbf{r} .$$

3. Формула на Грийн. В този раздел ще разглеждаме равнинни криволинейни интеграли от втори род

$$\int_{Y} \mathbf{F} d\mathbf{r} = \int_{Y} P(x, y) dx + Q(x, y) dy,$$

където $\mathbf{F} = (P,Q)$, $d\mathbf{r} = (dx,dy)$. Ще разглеждаме само гладки или частично гладки криви. Кривата $\gamma: \mathbf{r} = \mathbf{r}(t)$, $\alpha \le t \le \beta$, се нарича *проста*, когато няма точки на самопресичане и *затворена*, когато крайната и началната точка съвпадат. Съвпадението на началната и крайната точка не се счита за самопресичане. Когато кривата е едновременно проста и затворена, се нарича *жорданова*. Една жорданова крива γ разделя равнината на две области по очевиден признак (Рис. 6.6).

Рис. 6.6.

Едната област γ_i се нарича *вътрешност* на кривата, а другата γ_e се нарича *външност* на кривата. По този начин $\mathsf{R}^2 = \gamma \bigcup \gamma_i \bigcup \gamma_e$, което е съдържанието на една важна и изненадващо сложна за (строго) доказване *теорема на Жордан*. На рис. 6.6, вътрешността γ_i е оцветена в сиво. Жордановите криви ще предполагаме положително ориентирани, освен ако изрично не е указано противното, което означава движение на текущата точка при нарастване на параметъра в посока обратна на въртенето на часовниковата стрелка. При положителна ориентация на γ , единичният нормален вектор \mathbf{n} към γ (който образува заедно с допирателния вектор $\mathbf{\tau}$ дясна локална координатна система) е насочен към вътрешността на кривата (Рис. 6.6).

Ориентацията на една крива е относително понятие и зависи от ориентацията на координатната система. На рис. 6.6 кривата γ е положително ориентирана, понеже самата координатна система Oxy се разглежда като положително ориентирана.

Област $D \subset \mathbb{R}^2$ се нарича отворено и линейно свързано множество, а затворена област $\overline{D} = D \cup \partial D$ се нарича обединението на областта с нейната граница. Ако областта представлява вътрешност на дадена жорданова крива γ , $D = \gamma_i$, то нейната граница е самата крива, $\partial D = \gamma$. Векторното поле $\mathbf{F}(P,Q)$ се нарича *гладко* в множеството E, когато координатните функции P(x,y) и Q(x,y) имат непрекъснати частни производни в някакво отворено множество, което съдържа E. Символът ϕ означава, че интегралът е по затворена крива.

Теорема 6.1 (*Грийн*). Нека γ е жорданова крива с вътрешност областта D и нека векторното поле $\mathbf{F}(P,Q)$ е гладко в затворената област $\overline{D} = D \cup \gamma$. Тогава е в сила равенството (формула на Грийн)

(6.9)
$$\oint_{\gamma} P dx + Q dy = \iint_{D} \left[\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right] dx dy.$$

(6.10)
$$\begin{vmatrix} a \le x \le b \\ \varphi(x) \le y \le \psi(x) \end{vmatrix}$$

и като крайно обединение на криволинейни трапеци от вида

(6.11)
$$\begin{vmatrix} c \le y \le d \\ \varphi(y) \le x \le \psi(y) \end{vmatrix}.$$

Да разгледаме отначало случая когато $Q(x,y) \equiv 0$. Тогава (6.9) се свежда до

(6.12)
$$\oint_{\mathcal{X}} P(x, y) dx = -\iint_{\mathcal{D}} \frac{\partial P(x, y)}{\partial y} dx dy.$$

Да предположим отначало, че областта D е криволинейния трапец (6.10) (Рис. 6.7). В този случай контурът γ се състои от четири дъги, $\gamma: PQ \bigcup QR \bigcup RS \bigcup SP$.

За дъгите PQ и $SR = RS^{-1}$ имаме следната параметризация $y = \psi(x)$

$$PQ: \begin{vmatrix} x = x \\ y = \varphi(x) & \text{и } RS^{-1} \\ a \le x \le b \end{vmatrix} = \begin{cases} x = x \\ y = \psi(x) \\ a \le x \le b \end{cases}$$

а по вертикалните дъги QR и SP имаме dx=0, следователно

$$\int_{QR} P(x, y) dx = \int_{SP} P(x, y) dx = 0,$$

откъдето за интеграла в лявата страна на (6.12) намираме

(6.13)
$$\oint_{PQ} P(x,y)dx = \int_{PQ} P(x,y)dx + \int_{QR} P(x,y)dx + \int_{RS} P(x,y)dx + \int_{SP} P(x,y)dx = \int_{PQ} P(x,y)dx - \int_{SR} P(x,y)dx = \int_{RS} P(x,y)dx - \int_{RS} P(x,y)dx = \int_{RS} P(x,y)dx + \int_{RS} P(x,y)dx + \int_{RS} P(x,y)dx = \int_{RS} P(x,y)dx + \int_$$

От друга страна съгласно правилото за свеждане на двойния интеграл към повторен имаме

$$-\iint_{D} \frac{\partial P(x,y)}{\partial y} dx dy = -\int_{a}^{b} \left[\int_{\varphi(x)}^{\psi(x)} \frac{\partial P(x,y)}{\partial y} dy \right] dx = -\int_{a}^{b} \left[P(x,y) \Big|_{\varphi(x)}^{\psi(x)} \right] dx =$$

$$= -\int_{a}^{b} \left[P(x,\psi(x)) - P(x,\varphi(x)) \right] dx = \int_{a}^{b} P(x,\varphi(x)) dx - \int_{a}^{b} P(x,\psi(x)) dx$$

което заедно с (6.13) доказва верността на формулата (6.12) в този случай. В общия случай областта D по предположение може да се представи като крайно обединение на криволинейни трапеци, както е показано например на рис. 6.8.

Рис. 6.8.

Тук верността на (6.12) се получава след прилагане адитивното свойство както на криволинейния интеграл от втори род така и на двойния интеграл, отчитайки, че криволинейните интеграли по допълнителните дъги взаимно се съкращават.

Разсъждавайки по аналогичен начин намираме, че

(6.14)
$$\oint_{\gamma} Q(x,y)dy = \iint_{D} \frac{\partial Q(x,y)}{\partial x} dxdy.$$

Сега за да получим доказателство на теоремата е достатъчно да съберем почленно формулите (6.12) и (6.14). ■

Формулата (6.9) може да се използва например за намиране лица на области. Ако положим Q=x и $P\equiv 0$, то (6.9) дава

$$\oint_{\gamma} x dy = \iint_{D} dx dy = \mu(D).$$

Аналогично полагайки P = -y и $Q \equiv 0$, получаваме друга формула

$$\oint_{\gamma} - y dx = \iint_{D} dx dy = \mu(D)$$
, и т.н.

4. Независимост на интеграла от пътя. Формулата на Грийн е валидна при значително по-общи предположения за областта D и кривата γ . Например нека областта D е между кривите γ_1 и γ_2 , както е показано на рис. 6.9.

Рис. 6.9.