In the claims:

Presented below are the claims, as amended, with changes entered and not marked.

- 21. 1 (Amended) A method comprising:
- generating a first test program to test the functionality of an integrated circuit 2
- (IC), the first test program including a test program population having a first set of 3
- instructions and data; 4
- executing the first test program; 5
- evaluating a first set of coverage data from the first test program to determine if 6
- the IC has been sufficiently tested, wherein evaluating the first set of coverage data 7
- comprises comparing the coverage data to a predetermined coverage requirement; and 8
- 9 generating a second program if the IC has not been sufficiently tested by the first
- test program, the second test program including an updated test program population 10
- having a second set of instructions and data being a mutation of the original population. 11
 - 22. (Amended) The method of claim \$\mathbb{Q}1\$, further comprising:
- executing the second test program.
 - The method of claim 22, wherein generating the first test program 23. (Amended)
- 2 comprises:
- generating a first abstract syntax tree (AST); 3
- generating the first set of instructions and data for the first AST; and
- 5 translating the first AST into a first executable test program.
- The method of claim 23, wherein generating the second test 24. (Amended) 1
- 2 program comprises:
- 3 generating a second abstract syntax tree (AST);
- 4 generating the second set of instructions and data for the second AST; and

translating the second-A-ST-into-a-second executable test program.

(Unchanged) The method of claim 24, further comprising mutating a selected 25. 1 AST. 2 26. (Unchanged). The method of claim 25, wherein mutating a selected AST 1 comprises: 3 selecting an AST; removing a segment of the selected AST; and inserting a replacement segment into the selected AST to form a mutated AST. 5 27. (Unchanged) The method of claim 26, further comprising: 1 generating a third set of instructions and data for the mutated AST; and 2 3 translating the mutated AST into a third executable test program. (Unchanged) The method of claim 25, wherein mutating a selected AST 28. 1 2 comprises: selecting the first AST and the second AST; and 3 combining a segment of the first AST with a segment of the second AST to form 4 a mutated AST. 5 29. (Unchanged) The method of claim 28, further comprising: 1 generating a third set of instructions and data for the mutated AST; and 2 translating the mutated AST into a third executable test-program. 3 30. 1 (Amended) The method of claim 23, further comprising: adding the first AST and the first set of coverage data into test program population after the first test program has been executed.

Docket No.: 042390.P6602 Application No.: 09/475,526

(Amended)

31.

A computer system comprising:

	•
2	a storage device coupled to a processor and having stored therein at least one
3	routine, which when executed by the processor, causes the processor to generate data, the
4	routine causing the processor to,
5	generate a first test program to test the functionality of an integrated circuit (IC)
6	the first test program including a test program population having a first set of instruction
7	and data;
8	execute the first test program;
9	evaluate a first set of coverage data from the first test program to determine if th
10	IC has been sufficiently tested, wherein evaluating the first set of coverage data
11	comprises comparing the coverage data to a predetermined coverage requirement; and
12	generate a second program if the IC has not been sufficiently tested by the first
13	test program, the second test program including an updated test program population
14	having a second set of instructions and data being a mutation of the original population.
1	32. (Amended) The computer system of claim 31, wherein the routine further
2	causes the processor to,
3	execute the second test program.
1	33. (Amended) The computer system of claim 32, wherein generating the first test
2	program comprises:
3	generating a first abstract syntax tree (AST);
4	generating the first set of instructions and data for the first AST; and
5	translating the first AST into a first executable test program.
1	34. (Amended) The computer system of claim 33, wherein generating the second
2	test program comprises:
3	generating a second abstract syntax tree (AST);
4	generating the second set of instructions and data for the second AST; and

Wir 5

translating the second AST into a second-executable test program.

- 1 35. (Unchanged) The computer system of claim 34, wherein the routine further
- 2 causes the processor to mutate a selected AST.
- 1 36. (Unchanged) The computer system of claim 35, wherein mutating a selected
- 2 AST comprises:
- 3 selecting an AST;
- 4 removing a segment of the selected AST; and
- inserting a replacement segment into the selected AST to form a mutated AST.
- 1 37. (Unchanged) The computer system of claim 36, wherein the routine further
- 2 causes the processor to,
- generate a third set of instructions and data for the mutated AST; and
- 4 translate the mutated AST into a third executable test program.
- 1 38. (Unchanged) The computer system of claim 35, wherein mutating a selected
- 2 AST comprises:
- selecting the first AST and the second AST; and
- 4 combining a segment of the first AST with a segment of the second AST to form
- 5 a mutated AST.
- 1 39. (Unchanged) The computer system of claim 38, wherein the routine further
- 2 causes the processor to,
- generating a third set of instructions and data for the mutated AST; and
- 4 translating the mutated AST into a third executable test program.
 - 40. (Amended) The computer system of claim 33, wherein the routine further
- 2 causes the processor to,

1

add the first AST the first set of coverage data into test program population after
the first test program has been executed.

41. (Amended) A validation test system comprising:

a test builder to generate test programs to test the functionality of an integrated

3 circuit (IC);

2

7

a test generator to translate the test programs into an executable test;

a test analyzer to execute the test programs; and

a feedback engine to build and update a population of test programs by generating

an abstract syntax tree (AST) for each test program.

1 42. (Unchanged) The system of claim 41, wherein the feedback engine determines

whether a predetermined test program population threshold has been reached after a test

3 program has been executed.

1 43. (Unchanged) The system of claim 42, wherein the feedback engine generates

one or more mutated ASTs if it is determined that the predetermined test program

3 population threshold has been reached.

1 44. (Unchanged) The system of claim 43, wherein the feedback engine generates a

2 mutated AST by selecting a first AST, removing a segment of the first AST and inserting

3 a replacement segment into the first AST.

1 45. (Unchanged) The system of claim 43, wherein the feedback engine generates a

2 mutated AST by selecting a first AST and a second AST and combining a segment of the

3 first AST with a segment of the second AST to form.