1) Loading the dataset

```
import pandas as pd
# Load the dataset
df = pd.read_csv('/content/sample_data/rain (1).csv')
2) EDA
# Dimensions of the dataframe
# Datatypes of all the attributes
df.dtypes
#first five rows of the dataframe
df.head()
# basic stats
df.describe()
# Summary of dataframe
df.info()
<class 'pandas.core.frame.DataFrame'>
     RangeIndex: 4116 entries, 0 to 4115
     Data columns (total 19 columns):
                   Non-Null Count Dtype
     # Column
     ---
         -----
                       -----
         SUBDIVISION 4116 non-null object
      1
         YEAR 4116 non-null int64
      2
         JAN
                      4112 non-null
                                       float64
                     4113 non-null float64
4110 non-null float64
      3
         FEB
      4
         MAR
                     4112 non-null float64
                     4113 non-null float64
4111 non-null float64
      6
         MAY
         JUN
                     4109 non-null
4112 non-null
      8
         JUL
                                       float64
      9
         AUG
                                      float64
                     4110 non-null
4109 non-null
      10 SEP
                                       float64
      11 OCT
                                       float64
      12 NOV
                     4105 non-null float64
      13 DEC
                      4106 non-null
                                       float64
                   4090 non-null
      14 ANNUAL
                                      float64
      15 Jan-Feb
                      4110 non-null
                                       float64
      16 Mar-May
                    4107 non-null float64
      17 Jun-Sep
                      4106 non-null
                                       float64
                     4103 non-null float64
     18 Oct-Dec
    dtypes: float64(17), int64(1), object(1) memory usage: 611.1+ KB
3) Handling missing values
# Check missing values in each attributes
print(df.isnull().sum())
\ensuremath{\text{\#}} Mean imputation to fill missing values
for column in df.columns:
 if df[column].dtype == 'object':
    {\tt df[column].fillna(df[column].mode()[0],\ inplace=True)}
 else:
    df[column].fillna(df[column].mean(), inplace=True)
# Try using this also
# df = df.fillna(df.select_dtypes(include='number').mean())
# After imputing missing values
print(df.isnull().sum())
    SUBDIVISION
₹
     YEAR
     JAN
                     4
     FEB
                     3
     MAR
     APR
                     4
     MAY
                     3
     JUN
                     5
     JUL
                     7
     AUG
                     4
```

```
OCT
NOV
                11
DEC
                10
ANNUAL
                26
Jan-Feb
                 6
Mar-May
Jun-Sep
                10
Oct-Dec
                13
dtype: int64
SUBDIVISION
                0
YEAR
                0
JAN
                0
FEB
                0
MAR
                0
APR
                0
MAY
                0
                0
JUN
JUL
                0
AUG
                0
SEP
                0
OCT
                0
                0
NOV
DEC
                0
ANNUAL
                0
Jan-Feb
                0
Mar-May
Jun-Sep
                0
Oct-Dec
                0
dtype: int64
```

4) Standardization

 $\mbox{\tt\#}$ Standardization transforms the data to have a mean of 0 and a standard deviation of 1

from sklearn.preprocessing import StandardScaler
Select columns for standardization (excluding 'SUBDIVISION' and 'YEAR')
rainfall_columns = df.columns[2:]

Apply standardization
scaler = StandardScaler()
df[rainfall_columns] = scaler.fit_transform(df[rainfall_columns])
df

→	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	
0	ANDAMAN & NICOBAR ISLANDS	1901	0.901019	1.819197	0.039233	-0.602264	3.596952	1.224806	0.066421	1.011559	0.999593	2.946952	7.5
1	ANDAMAN & NICOBAR ISLANDS	1902	-0.564795	3.844716	-0.323090	-0.636192	2.925549	1.308374	-0.439377	2.456519	3.465350	1.022838	4.6
2	ANDAMAN & NICOBAR ISLANDS	1903	-0.186424	3.404507	-0.583110	-0.621441	1.212540	1.064492	1.415586	0.193137	1.046898	0.861909	3.5
3	ANDAMAN & NICOBAR ISLANDS	1904	-0.284741	-0.197964	-0.583110	2.349501	1.775966	1.129300	0.574818	-0.689952	4.605097	1.274291	3.9
4	ANDAMAN & NICOBAR ISLANDS	1905	-0.526064	-0.607525	-0.512776	-0.239378	1.573002	1.698926	0.079790	0.213280	0.736461	1.661527	-0.2
4111	LAKSHADWEEP	2011	-0.412851	-0.529514	-0.517039	0.630957	0.174180	-0.326744	0.011088	-0.192220	0.427502	0.220202	2.1
4112	LAKSHADWEEP	2012	0.007230	-0.604739	-0.549009	0.496719	-0.524014	0.412577	-0.429721	0.482023	-0.129806	0.506858	-0.4
4113	LAKSHADWEEP	2013	0.215781	0.350904	0.216132	-0.558009	0.020739	0.835533	-0.188706	-0.720166	-0.128328	-0.228389	0.5
4114	LAKSHADWEEP	2014	1.020191	-0.158958	-0.489332	-0.416395	-0.230123	0.059118	-0.858275	0.932049	-0.481635	0.741211	0.2
4115	LAKSHADWEEP	2015	-0.499250	-0.593595	-0.504251	0.648659	0.384450	0.282961	-0.333167	-0.762571	-0.273199	0.702991	2.7
4116 rd	ows × 19 columns												

Next steps: Generate code with df

View recommended plots

New interactive sheet

5) Normalization

[#] Normalization rescales the data to fit within a specific range, typically [0, 1]

from sklearn.preprocessing import MinMaxScaler
Apply normalization (to range [0,1])
normalizer = MinMaxScaler()
df[rainfall_columns] = normalizer.fit_transform(df[rainfall_columns])
df

→		SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV
	0	ANDAMAN & NICOBAR ISLANDS	1901	0.084290	0.215861	0.048217	0.003865	0.452507	0.321280	0.154520	0.289018	0.272117	0.409680	0.860225
	1	ANDAMAN & NICOBAR ISLANDS	1902	0.000000	0.396035	0.020145	0.000000	0.381739	0.333458	0.096877	0.452781	0.545135	0.207951	0.553244
	2	ANDAMAN & NICOBAR ISLANDS	1903	0.021758	0.356877	0.000000	0.001680	0.201181	0.297919	0.308278	0.196263	0.277355	0.191079	0.438280
	3	ANDAMAN & NICOBAR ISLANDS	1904	0.016104	0.036431	0.000000	0.340111	0.260568	0.307363	0.212460	0.096179	0.671332	0.234314	0.475728
	4	ANDAMAN & NICOBAR ISLANDS	1905	0.002227	0.000000	0.005449	0.045202	0.239175	0.390370	0.156044	0.198546	0.242982	0.274913	0.039143
4	1111	LAKSHADWEEP	2011	0.008737	0.006939	0.005119	0.144345	0.091734	0.095185	0.148214	0.152589	0.208773	0.123800	0.284019
4	112	LAKSHADWEEP	2012	0.032894	0.000248	0.002642	0.129054	0.018141	0.202920	0.097977	0.229004	0.147066	0.153854	0.019109
4	1113	LAKSHADWEEP	2013	0.044886	0.085254	0.061922	0.008906	0.075560	0.264554	0.125444	0.092755	0.147230	0.076769	0.120358
4	114	LAKSHADWEEP	2014	0.091143	0.039901	0.007266	0.025038	0.049119	0.151413	0.049137	0.280007	0.108110	0.178425	0.090923
4	1115	LAKSHADWEEP	2015	0.003769	0.001239	0.006110	0.146362	0.113897	0.184032	0.108981	0.087949	0.131189	0.174417	0.355987
41	116 ro	ows × 19 columns												

New interactive sheet

6) Log Transformation

Next steps:

Log transformation is used to stabilize variance and make the data more normally distributed, especially for skewed data.

View recommended plots

import numpy as np
Log transformation (adding 1 to avoid log(0))
df[rainfall_columns] = np.log1p(df[rainfall_columns])
df

Generate code with df

 $\overline{\Rightarrow}$

	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV
0	ANDAMAN & NICOBAR ISLANDS	1901	0.080925	0.195453	0.047090	0.003857	0.373291	0.278601	0.143685	0.253881	0.240683	0.343363	0.620697
1	ANDAMAN & NICOBAR ISLANDS	1902	0.000000	0.333636	0.019945	0.000000	0.323343	0.287775	0.092467	0.373480	0.435111	0.188926	0.440346
2	ANDAMAN & NICOBAR ISLANDS	1903	0.021524	0.305186	0.000000	0.001679	0.183305	0.260762	0.268712	0.179203	0.244791	0.174859	0.363448
3	ANDAMAN & NICOBAR ISLANDS	1904	0.015976	0.035783	0.000000	0.292752	0.231563	0.268012	0.192651	0.091831	0.513621	0.210515	0.389152
4	ANDAMAN & NICOBAR ISLANDS	1905	0.002225	0.000000	0.005434	0.044211	0.214446	0.329570	0.145004	0.181109	0.217514	0.242878	0.038396
4111	LAKSHADWEEP	2011	0.008699	0.006915	0.005106	0.134833	0.087767	0.090923	0.138208	0.142011	0.189606	0.116716	0.249995
4112	LAKSHADWEEP	2012	0.032364	0.000248	0.002639	0.121380	0.017979	0.184752	0.093469	0.206204	0.137207	0.143108	0.018929
4113	LAKSHADWEEP	2013	0.043908	0.081814	0.060081	0.008867	0.072842	0.234720	0.118178	0.088702	0.137350	0.073965	0.113648
4114	LAKSHADWEEP	2014	0.087226	0.039125	0.007239	0.024729	0.047950	0.140990	0.047968	0.246866	0.102656	0.164178	0.087024
4115	LAKSHADWEEP	2015	0.003762	0.001238	0.006091	0.136593	0.107865	0.168926	0.103441	0.084294	0.123269	0.160772	0.304530
4116 rc	ows × 19 columns												

New interactive sheet

7) Aggregation

 $\overline{\Rightarrow}$

Next steps:

Generate code with df

View recommended plots

Aggregating the data by 'SUBDIVISION' and 'YEAR' (calculating the mean for each group)
rain_aggregated = df.groupby(['SUBDIVISION','YEAR']).mean().reset_index()
rain_aggregated

	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	
0	ANDAMAN & NICOBAR ISLANDS	1901	0.080925	0.195453	0.047090	0.003857	0.373291	0.278601	0.143685	0.253881	0.240683	0.343363	0.620697	0.0
1	ANDAMAN & NICOBAR ISLANDS	1902	0.000000	0.333636	0.019945	0.000000	0.323343	0.287775	0.092467	0.373480	0.435111	0.188926	0.440346	0.2
2	ANDAMAN & NICOBAR ISLANDS	1903	0.021524	0.305186	0.000000	0.001679	0.183305	0.260762	0.268712	0.179203	0.244791	0.174859	0.363448	0.3
3	ANDAMAN & NICOBAR ISLANDS	1904	0.015976	0.035783	0.000000	0.292752	0.231563	0.268012	0.192651	0.091831	0.513621	0.210515	0.389152	0.0
4	ANDAMAN & NICOBAR ISLANDS	1905	0.002225	0.000000	0.005434	0.044211	0.214446	0.329570	0.145004	0.181109	0.217514	0.242878	0.038396	0.4
4111	WEST UTTAR PRADESH	2011	0.003591	0.025448	0.006419	0.004694	0.025014	0.103495	0.087438	0.130636	0.079873	0.000738	0.000770	0.0
4112	WEST UTTAR PRADESH	2012	0.024538	0.000248	0.002309	0.007867	0.000257	0.002234	0.059598	0.085784	0.053925	0.000527	0.000154	0.0
4113	WEST UTTAR PRADESH	2013	0.034353	0.158919	0.005763	0.002685	0.001795	0.111696	0.094394	0.159116	0.041755	0.062540	0.002616	0.0
4114	WEST UTTAR PRADESH	2014	0.079502	0.070330	0.036639	0.008867	0.009369	0.013331	0.062187	0.047513	0.066945	0.015279	0.000000	0.0

Next steps: Generate code with rain_aggregated

View recommended plots

New interactive sheet

[#] Aggregation is a way to group data and compute aggregate functions, such as the mean, sum, or count.

8) Discretization

Discretization involves converting continuous variables into discrete categories. For example, we can categorize the ANNUAL rainfall in # "medium", and "high" bins.

Discretizing the 'ANNUAL' rainfall into three categories: low, medium, and high
df['rainfall_category'] = pd.cut(df['ANNUAL'], bins=[-np.inf, 0.33, 0.66, np.inf],
labels=["low", "medium", "high"])
df

₹		SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV
	0	ANDAMAN & NICOBAR ISLANDS	1901	0.080925	0.195453	0.047090	0.003857	0.373291	0.278601	0.143685	0.253881	0.240683	0.343363	0.620697
	1	ANDAMAN & NICOBAR ISLANDS	1902	0.000000	0.333636	0.019945	0.000000	0.323343	0.287775	0.092467	0.373480	0.435111	0.188926	0.440346
	2	ANDAMAN & NICOBAR ISLANDS	1903	0.021524	0.305186	0.000000	0.001679	0.183305	0.260762	0.268712	0.179203	0.244791	0.174859	0.363448
	3	ANDAMAN & NICOBAR ISLANDS	1904	0.015976	0.035783	0.000000	0.292752	0.231563	0.268012	0.192651	0.091831	0.513621	0.210515	0.389152
	4	ANDAMAN & NICOBAR ISLANDS	1905	0.002225	0.000000	0.005434	0.044211	0.214446	0.329570	0.145004	0.181109	0.217514	0.242878	0.038396
	4111	LAKSHADWEEP	2011	0.008699	0.006915	0.005106	0.134833	0.087767	0.090923	0.138208	0.142011	0.189606	0.116716	0.249995
	4112	LAKSHADWEEP	2012	0.032364	0.000248	0.002639	0.121380	0.017979	0.184752	0.093469	0.206204	0.137207	0.143108	0.018929