Permit Number 73394

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities, sources, and related activities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

Air Contaminants Data

Emission Point No. (1)	Source Name (2)	Air Contaminant Name (3)	Emission Rates	
		wanie (5)	lbs/hour	TPY (4)
ENG-1	Superior 8G825 800 bhp	NO _x	3.53	15.45
	000 Ship	СО	5.29	23.18
		VOC	1.76	7.73
		PM	0.12	0.53
		PM ₁₀	0.12	0.53
		PM _{2.5}	0.12	0.53
		SO ₂	<0.01	0.02
		Formaldehyde	0.03	0.13
ENG-2	Superior 8G825 800 bhp	NO _x	3.53	15.45
		СО	5.29	23.18
		VOC	1.76	7.73
		PM	0.12	0.53
		PM ₁₀	0.12	0.53
		PM _{2.5}	0.12	0.53
		SO ₂	<0.01	0.02
		Formaldehyde	0.03	0.13

ENG-3	Superior 6G825 500 bhp	NO _x	2.20	9.66
	CCC SIIP	СО	3.31	14.48
		VOC	1.10	4.83
		PM	0.08	0.33
		PM ₁₀	0.08	0.33
		PM _{2.5}	0.08	0.33
		SO ₂	<0.01	0.01
		Formaldehyde	0.02	0.08
ENG-4	Superior 6G825 500 bhp	NO _x	2.20	9.66
	300 brip	СО	3.31	14.48
		VOC	1.10	4.83
		PM	0.08	0.33
		PM ₁₀	0.08	0.33
		PM _{2.5}	0.08	0.33
		SO ₂	<0.01	0.01
		Formaldehyde	0.02	0.08
ENG-7	Waukesha L7040 687 bhp	NO _x	3.03	13.27
		СО	4.54	19.90
		VOC	1.51	6.63
		PM	0.09	0.40
		PM ₁₀	0.09	0.40
		PM _{2.5}	0.09	0.40
		SO ₂	<0.01	0.01
		Formaldehyde	0.02	0.10
ENG-8A	Waukesha L7042G 687 bhp	NO _x	3.03	13.27

		СО	4.54	19.90
		VOC	1.51	6.63
		РМ	0.09	0.40
		PM ₁₀	0.09	0.40
		PM _{2.5}	0.09	0.40
		SO ₂	<0.01	0.01
		Formaldehyde	0.02	0.10
ENG-9	Superior 8G825 667 bhp	NO _x	2.94	12.88
	007 BHp	СО	4.41	19.32
		VOC	1.47	6.44
		РМ	0.10	0.44
		PM ₁₀	0.10	0.44
		PM _{2.5}	0.10	0.44
		SO ₂	<0.01	0.01
		Formaldehyde	0.03	0.11
ENG-17	Cooper Bessemer GMV-10 1,100 bhp	NO _x	43.65	191.19
	1,100 611p	СО	19.40	84.98
		VOC	2.43	10.62
		РМ	0.48	2.12
		PM ₁₀	0.48	2.12
		PM _{2.5}	0.48	2.12
		SO ₂	0.01	0.03
		Formaldehyde	0.55	2.42

ENG-18	Cooper Bessemer GMV-10 1,100 bhp	NO _x	43.65	191.19
	1,100 8116	СО	19.40	84.98
		voc	2.43	10.62
		PM	0.48	2.12
		PM ₁₀	0.48	2.12
		PM _{2.5}	0.48	2.12
		SO ₂	0.01	0.03
		Formaldehyde	0.55	2.42
ENG-19	Clark HBAT-10 2,600 bhp	NO _x	91.71	401.70
	2,000 1111	СО	57.32	251.06
		VOC	5.73	25.11
		PM	0.97	4.23
		PM ₁₀	0.97	4.23
		PM _{2.5}	0.97	4.23
		SO ₂	0.01	0.05
		Formaldehyde	1.10	4.84
ENG-20	Clark HBAT-10 2,600 bhp	NO _x	91.71	401.70
		СО	57.32	251.06
		voc	5.73	25.11
		PM	0.97	4.23
		PM ₁₀	0.97	4.23
		PM _{2.5}	0.97	4.23
		SO ₂	0.01	0.05
		Formaldehyde	1.10	4.84
ENG-21	Clark HBAT-10 2,600 bhp	NO _x	91.71	401.70

I			
	СО	57.32	251.06
	VOC	5.73	25.11
	PM	0.97	4.23
	PM ₁₀	0.97	4.23
	PM _{2.5}	0.97	4.23
	SO ₂	0.01	0.05
	Formaldehyde	1.10	4.84
Clark HBAT-10	NO _x	91.71	401.70
2,000 511p	СО	57.32	251.06
	VOC	5.73	25.11
	РМ	0.97	4.23
	PM ₁₀	0.97	4.23
	PM _{2.5}	0.97	4.23
	SO ₂	0.01	0.05
	Formaldehyde	1.10	4.84
Clark HBAT-10	NO _x	91.71	401.70
2,000 8119	СО	57.32	251.06
	VOC	5.73	25.11
	РМ	0.97	4.23
	PM ₁₀	0.97	4.23
	PM _{2.5}	0.97	4.23
	SO ₂	0.01	0.05
	Formaldehyde	1.10	4.84
	2,600 bhp	$\begin{tabular}{ c c c c c } \hline VOC \\ \hline PM \\ \hline PM_{10} \\ \hline PM_{2.5} \\ \hline SO_2 \\ \hline Formaldehyde \\ \hline \hline \\ Clark HBAT-10 \\ 2,600 bhp \\ \hline \\ \hline \\ CO \\ \hline \\ VOC \\ \hline PM \\ \hline PM_{10} \\ \hline \\ PM_{2.5} \\ \hline \\ SO_2 \\ \hline \\ Formaldehyde \\ \hline \\ CO \\ \hline \\ VOC \\ \hline \\ PM \\ \hline \\ PM_{2.5} \\ \hline \\ SO_2 \\ \hline \\ Formaldehyde \\ \hline \\ CO \\ \hline \\ VOC \\ \hline \\ PM \\ \hline \\ PM_{2.5} \\ \hline \\ SO_2 \\ \hline \\ Formaldehyde \\ \hline \\ CO \\ \hline \\ VOC \\ \hline \\ PM \\ \hline \\ PM_{10} \\ \hline \\ PM_{2.5} \\ \hline \\ SO_2 \\ \hline \\ Formaldehyde \\ \hline \\ SO_2 \\ \hline \\ \hline \\ PM \\ \hline \\ PM_{10} \\ \hline \\ PM_{2.5} \\ \hline \\ SO_2 \\ \hline \\ \hline \\ PM \\ \hline \\ PM_{10} \\ \hline \\ PM_{2.5} \\ \hline \\ SO_2 \\ \hline \\ \hline \\ PM \\ \hline \\ PM_{2.5} \\ \hline \\ SO_2 \\ \hline \\ \hline \\ \hline \\ SO_2 \\ \hline \\ \hline \\ \hline \\ \hline \\ PM \\ \hline \\ \hline \\ PM_{2.5} \\ \hline \\ SO_2 \\ \hline \\ \hline \\ \hline \\ \hline \\ SO_2 \\ \hline \\ $	VOC 5.73 PM 0.97 PM ₁₀ 0.97 PM ₂₅ 0.97 SO ₂ 0.01 Formaldehyde 1.10 Clark HBAT-10 2,600 bhp Clark HBAT-10 2,600 bhp CO 57.32 VOC 5.73 PM 0.97 PM ₂₅ 0.97 SO ₂ 0.01 Formaldehyde 1.10 Clark HBAT-10 2,600 bhp Clark HBAT-10 2,600 bhp SO ₂ 0.01 Formaldehyde 1.10 CO 57.32 VOC 5.73 PM 0.97 PM ₂₅ 0.97 SO ₂ 0.01 FORMAL OPT PM ₁₀ 0.97 PM ₁₀ 0.97 PM ₂₅ 0.97 SO ₂ 0.01

ENG-31a	Superior 8G825 667 bhp	NO _x	2.94	12.88
		СО	4.41	19.32
		VOC	1.47	6.44
		PM	0.10	0.44
		PM ₁₀	0.10	0.44
		PM _{2.5}	0.10	0.44
		SO ₂	<0.01	0.01
		Formaldehyde	0.03	0.11
ENG-32a	Superior 8G825 667 bhp	NO _x	2.94	12.88
	007 blip	СО	4.41	19.32
		VOC	1.47	6.44
		PM	0.10	0.44
		PM ₁₀	0.10	0.44
		PM _{2.5}	0.10	0.44
		SO ₂	<0.01	0.01
		Formaldehyde	0.03	0.11
ENG-33a	Superior 8G825 667 bhp	NO _x	2.94	12.88
		СО	4.41	19.32
		VOC	1.47	6.44
		PM	0.10	0.44
		PM ₁₀	0.10	0.44
		PM _{2.5}	0.10	0.44
		SO ₂	<0.01	0.01
		Formaldehyde	0.03	0.11
ENG-34	Superior 6G510 400 bhp	NO _x	1.76	7.73

		СО	2.65	11.59
		VOC	0.88	3.86
		PM	0.07	0.30
		PM ₁₀	0.07	0.30
		PM _{2.5}	0.07	0.30
		SO ₂	<0.01	0.01
		Formaldehyde	0.02	0.08
ENG-35	Superior 6G510 400 bhp	NO _x	1.76	7.73
	400 brip	СО	2.65	11.59
		VOC	0.88	3.86
		PM	0.07	0.30
		PM ₁₀	0.07	0.30
		PM _{2.5}	0.07	0.30
		SO ₂	<0.01	0.01
		Formaldehyde	0.02	0.08
ENG-38B	Superior 8G825 667 bhp	NO _x	2.94	12.88
		СО	4.41	19.32
		VOC	1.47	6.44
		PM	0.10	0.44
		PM ₁₀	0.10	0.44
		PM _{2.5}	0.10	0.44
		SO ₂	<0.01	0.01
		Formaldehyde	0.03	0.11

ENG-39	Waukesha L7042G 687 bhp	NO _x	3.03	13.27
		СО	4.54	19.90
		VOC	1.51	6.63
		PM	0.09	0.40
		PM ₁₀	0.09	0.40
		PM _{2.5}	0.09	0.40
		SO ₂	<0.01	0.01
		Formaldehyde	0.02	0.10
ENG-40	Waukesha L7042G 687 bhp	NO _x	3.03	13.27
		СО	4.54	19.90
		VOC	1.51	6.63
		PM	0.09	0.40
		PM ₁₀	0.09	0.40
		PM _{2.5}	0.09	0.40
		SO ₂	<0.01	0.01
		Formaldehyde	0.02	0.10
ENG-41B	Waukesha L7042G 818 bhp	NO _x	3.61	15.80
		СО	5.41	23.70
		VOC	1.35	5.92
		PM	0.11	0.50
		PM ₁₀	0.11	0.50
		PM _{2.5}	0.11	0.50
		SO ₂	<0.01	0.02
		Formaldehyde	0.03	0.13
ENG-42	Caterpillar G-3408 425 bhp	NO _x	1.84	8.21

1	į.	-		
		СО	2.81	12.31
		VOC	0.94	4.10
		PM	0.03	0.14
		PM ₁₀	0.03	0.14
		PM _{2.5}	0.03	0.14
		SO ₂	<0.01	0.01
		Formaldehyde	0.17	0.75
ENG-43	Caterpillar C15 DITA 475 bhp	NO _x	3.53	2.65
	473 blip	СО	2.54	1.91
		VOC	0.30	0.23
		PM	0.34	0.25
		PM ₁₀	0.34	0.25
		PM _{2.5}	0.34	0.25
		SO ₂	0.97	0.73
		Formaldehyde	0.53	0.42
TK-1204	North Gravity Drain Tank 6,391 gallons	VOC	<0.01	<0.01
TK-1205	South Gravity Drain Tank 6,391 gallons	VOC	<0.01	<0.01
TK-1206	Oil Skimmer Tank 7,669 gallons	VOC	<0.01	<0.01
TK-1210	Used Oil Tank	VOC	15.92	9.90
L-1	Condensate Truck Loading	VOC	1.21	0.08
L-2	Used Oil/Sales Tank Loadout	VOC	45.19	2.30
L-3	Methanol Loading	VOC	4.51	0.16

FUG	Plant Fugitives (5)	VOC	7.40	32.41
		H ₂ S	0.02	0.09
FUG-VHP	Loadout Operations Fugitives	VOC	0.05	0.21

- (1) Emission point identification either specific equipment designation or emission point number from plot plan.
- (2) Specific point source name. For fugitive sources, use area name or fugitive source name.
- (3) VOC volatile organic compounds as defined in Title 30 Texas Administrative Code § 101.1

 NO_x - total oxides of nitrogen

SO₂ - sulfur dioxide

PM - total particulate matter, suspended in the atmosphere, including PM_{10} and $PM_{2.5}$, as represented PM_{10} - total particulate matter equal to or less than 10 microns in diameter, including $PM_{2.5}$, as represented

 PM_{10} - total particulate matter equal to or less than 10 microns in diam $PM_{2.5}$ - particulate matter equal to or less than 2.5 microns in diameter

CO - carbon monoxide H₂S - hydrogen sulfide

- (4) Compliance with annual emission limits (tons per year) is based on a 12-month rolling period.
- (5) Emission rate is an estimate and is enforceable through compliance with the applicable special condition(s) and permit application representations.