TWO STATE TOTALISTIC FREEZING CELLULAR AUTOMATA

{DIEGO.MALDONADO, PEDRO.MONTEALEGRE AND NICOLAS.OLLINGER }@UNIV-ORLEANS.FR ERIC.CHACC@UAI.CL

CELLULAR AUTOMATA (CA)

Is a function over the colored grid \mathbb{Z}^2 defined locally by the syncrhonous application of a local rule f. Formally, is $F:Q^{\mathbb{Z}^2} \to Q^{\mathbb{Z}^2}$:

$$\forall z \in \mathbb{Z}^2, F(c)_z = f(c_{N+z})$$

Where $N \subset \mathbb{Z}^2$ is called the neighborhood.

FREEZING

A freezing CA (FCA) is a CA F compatible with a partial order ≥ on states:

$$F(c)_z \geqslant c_z \qquad \forall z \in \mathbb{Z}^2 \quad \forall c \in Q^{\mathbb{Z}^2}$$

Example: Life without death.

FREEZING+TOTALISTIC

The family of FTCA with 2 states and five neighbors is given by:

$$f\left(\begin{array}{c|c} n_1 & if c = 1 \\ \hline n_4 & c & n_2 \\ \hline n_3 & otherwise \end{array}\right) = \begin{cases} 1 & \text{if } c = 1 \\ 1 & \sum_{j=1}^4 n_j \in I \\ 0 & \text{otherwise} \end{cases}$$

Where $I \subseteq \{0, 1, 2, 3, 4\}$. **Notation:** We call a TFCA by a number, representing the elements of I.

There are 32 possible TFCA.

Example The TFCA 24 is the TFCA that change to 1 with exactly 2 or 4 neighbors in state 1.

EXAMPLE CA: LIFE WITHOUT DEATH

 $f: \square \to \blacksquare$ with exactly 3 alive neighbors (\blacksquare).

TOTALISTIC

A totalistic CA (TCA) is a CA F where the LF only depend of the center cell and the total neighborhood:

$$F(c)_z = f\left(c_z, \sum_{z \in N} c_z\right) \quad \forall z \in \mathbb{Z}^d, \ \forall c \in Q^{\mathbb{Z}^d}$$

DYNAMICS, FIFTH ITERATION

Rule 1

Rule 14

Rule 3

Rule 13

Rule 134

Rule 2

Rule 12

Rule 24

Rule 124

Rule 23

Rule 123

Rule 1234

CASES 12, 123, 124

The diagonals with 1s spread to the south west. We can compute this as a prefix sum (∀) in **NC**.

Algorithm 1 STABLE for cases 12, 123, 124.

Find the smallest blue square containing cells in state 1 in its boundary.

Compute red cells Compute green cells

Output: Value in the center cell.

COMPLEXITY

		$1 \bullet A$ stable call (SC) is a
F	STABLE	•A stable cell (SC) is a
4	$\mathcal{O}(1)$	cell that never changes.
3	in NC	Decision problem
34	in NC	STABLE:
2	P-Complete	Inputs: TFCA F and
24	P-Complete	$c \in \{0,1\}^{\mathbb{Z}^2}$ a finite con-
23	?	figuration.
234	in NC	
1 1	?	Question:
14	?	Is $(0,0)$ a SC?
13	?	•P: Problems solvable
134	?	in polynomial time in a
12	in NC	sequential machine.
124	in NC	•NC: Problems solv-
123	in NC	able in poly-log time in
1234	in NC	a parallel machine.

CASE 234

A stable cell (SC) has 3 stable neighbors in state 0, then has 3 paths to the border.

A pair of SC have 3 paths joining them, then they are a triply connected component (TCC) (computable in NC).

Algorithm 2 STABLE for case 234.

Find tri-connected components in the graph induced by cells initially in state 0. if (0,0) is in a TCžC component then return no change

else

return change

end if

The problem of to know the output in a monotone circuit is **P**-complete (MCVP). Using this logic gates is possible to reduce MCVP to STABLE.