

S Nagasundari

Department of Computer Science and Engineering

Unit – 5 Link Layer and LAN Roadmap

- Introduction
- Error detection, correction
- Multiple access protocols
- LANs
 - addressing, ARP
 - Ethernet
 - switches
- A day in the life of a web request
- Physical layer
- Wireless LANs: IEEE 802.11

Class 48: Multiple Access Protocols: Learning Objectives

- Multiple Access
- Carrier Sense Multiple Access/Collision Detection

Multiple access links protocols

shared wire (e.g., cabled Ethernet)

shared radio: 4G/5G

shared radio: WiFi

shared radio: satellite

humans at a cocktail party (shared air, acoustical)

Two types of "links":

- point-to-point
 - point-to-point link between Ethernet switch, host
 - PPP for dial-up access
- broadcast (shared wire or medium)
 - old-fashioned Ethernet
 - upstream HFC in cable-based access network
 - 802.11 wireless LAN, 4G/4G. satellite

Multiple access problem

How to coordinate the access of multiple sending and receiving nodes to a shared broadcast channel

- Broadcast channels are often used in
 - LANs,
 - Networks that are geographically concentrated in a single building (or on a corporate or university campus).
- Can I say Television as an example for Broadcasting??
 - Traditional television-one-way broadcast
 - While nodes on a computer network- broadcast channel can both send and receive

Human Protocols for sharing Broadcast channel

- Give everyone a chance to speak.
- Don't speak until you are spoken to.
- Don't monopolize the conversation.
- Raise your hand if you have a question.
- Don't interrupt when someone is speaking.
- Don't fall asleep when someone is talking

Multiple access protocols

PES UNIVERSITY ONLINE

- Single shared broadcast channel
- Two or more simultaneous transmissions by nodes: interference
 - collision if node receives two or more signals at the same time

When multiple nodes are active in Broadcast channel,

 coordinate the transmissions of the active nodes.

Multiple access protocol

- Distributed algorithm that determines how nodes share channel, i.e., determine when node can transmit
- Communication about channel sharing must use channel itself!
 - no out-of-band channel for coordination

An ideal Multiple access protocol

Given: Multiple access channel (MAC) of rate R bps

Desirable characteristics:

- 1. when one node wants to transmit, it can send at rate *R*.
- 2. when M nodes want to transmit, each can send at average rate R/M
- 3. Fully decentralized:
 - no special node to coordinate transmissions
 - no synchronization of clocks, slots
- 4. simple

MAC protocols : Taxonomy

PES UNIVERSITY ONLINE

Three broad classes:

- Channel partitioning
 - divide channel into smaller "pieces" (time slots, frequency, code)
 - allocate piece to node for exclusive use
 - Eg: TDM,FDM,CDMA
- Random access
 - channel not divided, allow collisions
 - "recover" from collisions
 - Eg. ALOHA,CSMA deployed in Ethernet
- "Taking turns"
 - nodes take turns, but nodes with more to send can take longer turns

CSMA (Carrier Sense Multiple Access)

Simple CSMA: listen before transmit:(Carrier Sensing)

- if channel sensed idle: transmit entire frame
- if channel sensed busy: defer transmission
- Human analogy: don't interrupt others!

CSMA/CD: CSMA with collision detection

- collisions detected within short time
- colliding transmissions aborted, reducing channel wastage
- collision detection easy in wired, difficult with wireless
- human analogy: the polite conversationalist

CSMA: Collisions

- Collisions can still occur with carrier sensing:
 - Propagation delay means two nodes may not hear each other's juststarted transmission
- Collision: entire packet transmission time wasted
 - Distance & propagation delay play role in in determining collision probability

t

CSMA / CD

- CSMA/CD reduces the amount of time wasted in collisions
 - transmission aborted on collision detection

Ethernet CSMA / CD Algorithm

- 1. NIC receives datagram from network layer, creates frame
- 2. If NIC senses channel:

if idle: start frame transmission.

if busy: wait until channel idle, then transmit

- 3. If NIC transmits entire frame without collision, NIC is done with frame!
- 4. If NIC detects another transmission while sending: abort, send jam signal
- 5. After aborting, NIC enters binary (exponential) backoff:
 - after mth collision, NIC chooses K at random from {0,1,2, ..., 2^m-1}. NIC waits K·512 bit times, returns to Step 2
 - more collisions: longer backoff interval

CSMA / CD Efficiency

- T_{prop} = max prop delay between 2 nodes in LAN
- t_{trans} = time to transmit max-size frame

$$efficiency = \frac{1}{1 + 5t_{prop}/t_{trans}}$$

- efficiency goes to 1
 - as t_{prop} goes to 0
 - as t_{trans} goes to infinity
- better performance than ALOHA: and simple, cheap, decentralized!

THANK YOU

S Nagasundari

Department of Computer Science and Engineering

nagasundaris@pes.edu