МИНОБРНАУКИ РОССИИ ФГБОУ ВО «СГУ ИМЕНИ Н. Г. ЧЕРНЫШЕВСКОГО»

СЧЁТЧИКИ

ЛАБОРАТОРНАЯ РАБОТА

студентов 3 курса 331 группы	
специальности 10.05.01 — Компьютерная безопасность	
факультета КНиИТ	
Стаина Романа Игоревича и Токарева Никиты Сергееви	ча
Проверил	
аспирант	А. А. Мартышкин

Цель работы:

Ознакомление с устройством и функционированием счётчиков и испытание синхронного суммирующего, реверсивного и десятичного счётчиков.

Задание 1. Построим схему синхронного двоичного счётчика.

Рассмотрим схему при разомкнутом ключе Space.

При замкнутом ключе схема выдает шестнадцатеричные цифры в последовательности от 0 до ${\cal F}.$

Задание 2.

При установке ключей в различные положения, получим последовательность 0 и 1 на экране.

Задание 3. Построим схему реверсивного двоичного счётчика.

При замыкании ключей A и размыкании ключей B наблюдаем последовательное изображение шестнадцатеричных чисел на экране в обратном порядке (от F до 0).

Введем указанные данные, получим следующий результат:

Рассмотрим обратную ситуацию с ключами.

Задание 4. Построим схему десятичного счётчика.

Запустим программу и в окне анализатора получим следующие результаты моделирования.

Вывод: ознакомились с устройством и функционированием счётчиков и испытали синхронный суммирующий, реверсивный и десятеричный счётчики.

Тестовые задание к работе 34:

1. Укажите, в каком виде фиксируется в счетчике число поступивших на его входи импульсов:

Ответ: в виде двоичного кода, хранящегося в триггерах.

2. Укажите необходимое число выходов двоичного счетчика для выдачи результатов счета 28 импульсов:

Ответ: 4.

3. Укажите, в **какой момент** 5-разрядный двоичный счетчик возвращается в начальное состояние:

Ответ: при подаче на вход 32-го импульса.

- 4. На 7-сегментном индикаторе десятичного счетчика высвечивается число
 - 5. Укажите, какое **число** будет высвечиваться на индикаторе при подаче на вход еще шести импульсов:

Ответ: 3.

5. Укажите, каким путем передаются сигналы от разряда к разряду в синхронном счетчике:

Ответ: посредством специальной переключающей схемы.

- 6. Укажите, что понимают под **коэффициентом пересчета** счетчика: Ответ: это модуль счета, характеризуемый числом устойчивых состояний счетчика.
- 7. Укажите, чему равен **модуль** M **пересчета** двоичного n-разрядного счетчика:

Ответ: $M = 2^n$.

8. Укажите, сколько **триггеров** должен иметь двоично-кодированный счетчик с коэффициентом пересчета M=8:

Ответ: 3.

9. Укажите **пути и средства**, с помощью которых изменяется направление счета в реверсивном счетчике:

Ответ: направление счета изменяется путем изменения вида межразрядных связей.