Experiment 4

Alm; To design and implement following:

1. 4:1 mun using 2:1 mux

2. 8:1 mun using 8:3 1 mun

3. 16:1 mux using 4:1 mun

4. Full added using HA

5. Full subtractor using HS.

Software Used: - Model Sim

Theory - 4:1 Mux Using 2:1 MUN:

A 4:1 mux consists of fowr data inputs lines as Do to D3,

2 select lines as So hand S1. And single output 4. When So & Si-o

then Y is Do, 11 by Y is D1 if S=1, & Si=0 & so on.

S1 S0 Y

1 01

02 03

GXI MUX wing 2x1 MUX

The truth table for 2:1 mux using 4:1 mun cs.

Sol	So	8
0	0	To
0	0	II
1	0	I2
X	0	I3

28:1 mux using 4:1 mux

In this configuration, 2 4x1 mux & 12x1 mux is required.

The two multiplexes in first stage in order to get 8data inputs and 2:1 Mux is second stage.

11 Using On gate & 4:1 Mux It contains 2 4x1 mux which will take 8 imputs & the outputs Of first stage is passed through the or gate to orgate to get the output

S2	Sic	So	Y
0	0	. 0	To
0	0	0	Ii Iz
0	1	1	I3
1	0	0	Iy
1	0	1	I5
1	1	0	I ₆
1	1	1	马

2 4:1 Mox & 12:1 Mux

T - I		0	Y
E	Si	So	7
0	Ô	0	Io
0	0.	215	II
.0	1	0.	I2
0	9	10	I3
101	0	0	Iy
01	0	1	IS
10	1	0	I6
01	1	1	巧
-	· Mik	606	or Griff

8:1 mux using 4:1 & 2:1 MUX

3: 16:1 Mux Using 4:1 Mux; It contains 16 inputs lines & 4 select lines. 5 :4x1 mux are used to get 16 input lines used out of which 4 '4x1' mux are used to get 16 input lines and the output of the mux & fed to another 4x1 mux to get clesvied out output.

\$000000	5,	S2 0 0	S3 0 1 0	Y
0	0	0	0	To
0	0	0	1	II
0	0	1		I2
0	0	OI	01	10 H 12 13 E
0,	1	0	0	14
61	1	0	10	IS I6
0	1.	001-00	0	16
0	1.	1	1	I7
1	0	0	0	Ig
1	0	0'	1	Iq
1	0	U	01	T10
1:	01	1 2	1,	III,
1	1	0	0	I12
1	1	0	1	II3
1	i	(0	IK IK
1	1	1	1	IK

1. Fill Adder Veing Half Adder: Full adder is adder which telds 3 input and pucchus two output. The first two inputs are A and B& threed input carry Gn. The output is Sum & Coat. To implement full adder 2 half adder & 2 orgate is required.

Full Sultractor using half Subtractor of Full subtractor is subtractor to subtractor using half subtractor of Full subtractor is subtractor which subtracts 3 inputs and produces two output. The first two inputs are parely and third input borrow as input. The output is 8 out & difference to implement full sub 2 half sub & or gate is required difference to implement full sub 2 half sub & or gate is required.

A	B	Cin	Sum	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	ı	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

A	B	Bin	DHACE	Bout
0	0	0	0	0
0	0	1	1	1
0	1.	0	1	1
0	L	1	0	1
1	0	0	1	0
1	0	1	0	0
1	10	0	0	0
1	1	1	1	1
			1	

