

PARALLEL COMPUTING

MATRIX MULTIPLICATION USING MPI

INSTRUCTOR: DR. RUSS MILLER PRESENTED BY: NEEL DUNGARANI

CONTENT

- Problem definition
- Sequential algorithm
- Parallel Model
- Performance readings
- Observation & Conclusion

PROBLEM DEFINITION

▶ Given a matrix A(n x m) n rows and m columns, where each of its elements is denoted Aij with $1 \le i \le n$ and $1 \le j \le m$, and a matrix B(m × p) of m rows and p columns, where each of its elements is denoted Bij with $1 \le i \le m$, and $1 \le j \le p$, the matrix C resulting from the operation of multiplication of matrices A and B, C = A × B, is such that each of its elements is denoted Cij with $1 \le i \le n$ and $1 \le j \le p$, and is calculated follows

$$C_{r,c} = AB_{r,c} = \sum_{i=1}^{n} A_{r,i} * B_{i,c}$$

SEQUENTIAL IMPLEMENTATION

```
The sequential algorithm for C = A \times B C_{ij} = 0 for(i = 0; i < n; i + +) for(j = 0; j < n; j + +) for(k = 0; k < n; k + +) C_{ij} = C_{ij} + A_{ik} \times B_{kj}
```

Remark: The algorithm performs n^3 scalar multiplications

PARALLEL MATRIX-MATRIX MULTIPLICATION IN CASE OF BLOCK-STRIPED DATA DECOMPOSITION

PARALLEL APPROACH

- Data decomposition: Partition matrices in such a way that each processor holds n/p number of rows from first matrix and m/p number of columns from second matrix. P is the number of processors
- This is an iterative approach, at each iteration for each processor the scalar products of rows and columns are computed and corresponding elements of resultant matrix is obtained
- After completing all computations the columns of second matrix are transmitted so that processor will have new columns of second matrix and new corresponding elements of the resultant matrix could be calculated
- Iterations are performed until each processor does computation with each column set
- This transmission of columns should be done sequentially and for that we can use ring topology
- We can also perform the same algorithm by taking the row sets of both matrices with little change in generating resultant matrix

PARALLEL APPROACH

PERFORMANCE READINGS

AMDAHL'S SPEED-UP

	200	400	600	800	1000	1200
2	1.106657791	7.973729563	26.76074004	64.41182442	124.0623418	213.9660168
4	0.6077876091	4.135692215	13.85184846	33.00653934	64.46088333	110.8799999
5	0.5182656765	3.364183807	11.09117699	26.85750055	52.27072926	88.86877859
10	0.3023694515	1.948149443	5.960002613	13.88259749	26.88257751	46.55224848
20	0.3562928677	1.353176594	4.222823381	8.31398592	15.82262983	26.83699918
25	0.441633749	1.381597185	3.886276817	8.772104883	14.54656553	24.24991018
40	2.86203618	3.995437574	7.586402416	13.83137565	23.78692217	35.19278491

AMDAHL'S SPEED-UP

FOR 2000X2000 MATRICES

OBSERVATIONS

- Cannot plot Gustafson's plot
- Works fine only for smaller data: Data decomposition
- You can multiply non-square matrices
- Too much communication overhead
- Number of columns in each processor must be same

THANK YOU..!!

NEEL DUNGARANI