Proof of the Arnol'd Liouville Theorem - Required Concepts

Symplectic Manifold

Let M be a 2n-dimensional manifold and ω^2 a differential 2-form on M that is closed and non-degenerate. Then the pair (M,ω^2) is called a **symplectic** manifold.

Ι

On any symplectic manifold there is a natural isomorphism between the cotangent space and tangent space at a point $x \in M$, $I: T_x^*M \to T_xM$, given by for $\omega^1 \in T_x^*M$, $\forall v \in T_xM$

$$\omega^1(v) = \omega^2(v, I\omega^1)$$

It can be seen that I is a linear map as ω^2 is, and that injectivity follows from the non-degeneracy of ω^2 . By counting dimensions we then know I is an isomorphism.

Phase Flow

To $F:M\to\mathbb{R}$ we may associate the 1-parameter group of diffeomorphism $\phi^t_F:M\to M$ defined by

$$\frac{d}{dt}\Big|_{t=0}\phi_F^t x = (IdF)(x)$$

Such a 1-parameter group is called the **phase flow**.

Poisson Bracket

Given $F, G: M \to \mathbb{R}$ we may define the **Poisson bracket** $\{F, G\}: M \to \mathbb{R}$ by

$$\{F,G\}(x) = \frac{d}{dt} \Big|_{t=0} F(\phi_G^t x)$$

$$= dF(IdG(x)) \text{ by the chain rule}$$

$$= \omega^2(IdF, IdG)(x)$$

Canonical Sympletic Form

Given coordinates (q, p) on a manifold, the **canonical symplectic form** is

$$\omega^2 = d\boldsymbol{p} \wedge d\boldsymbol{q}$$