Statistical Inference: Course Project

By Nirmal Labh [August 22, 2014]

Part 1: Simulation Exercise

We start off initializing a 20,000x40 matrix of exponential random samples with rate (lambda) of 0.2, each row representing a random sample of 40 observations:

```
lambda <- 0.2
m <- 40
n <- 20000
expMatrix <- matrix(rexp((m*n), lambda) , nrow=n, ncol=m)</pre>
```

Next, we take the mean and standard deviation of each of the 20,000 samples:

```
mean_per_sample <- apply(expMatrix,1,mean)
sd_per_sample <- apply(expMatrix,1,sd)</pre>
```

1. Show where the distribution is centered at and compare it to the theoretical center of the distribution.

Below are the calculated mean, followed by the theoritical mean (1/labmda):

```
me <- mean(mean_per_sample)
me

## [1] 5.005

1/lambda

## [1] 5
```

2. Show how variable it is and compare it to the theoretical variance of the distribution.

Below are the variances for our sample mean(s), calculated one followed by the theoritical one:

```
sd <- sd(mean_per_sample)
sd
## [1] 0.7899
sd^2</pre>
```

[1] 0.624

```
((1/lambda)/sqrt(m))^2
```

[1] 0.625

3. Show that the distribution is approximately normal.

Here is a histogram of the sample means with the Kernel Density Estimator superimposed. It is very easy to see the bell curve of the normal distribution our means are tending towards.

Histogram of Means: Approaching Bell Curve

4. Evaluate the coverage of the confidence intervali for 1/lambda: [mean +/- 1.96*sd/sqrt(sample size)]

```
ci_left <- mean_per_sample - 1.96*sd_per_sample/sqrt(m)
ci_right <- mean_per_sample + 1.96*sd_per_sample/sqrt(m)
mean(ci_left < 1/lambda & ci_right > 1/lambda)
```

[1] 0.9234

So, it appears that for about 92% of the simulated intervals the coverage is valid for the 95% Confidence Interval.