Universidade Federal do Rio Grande do Norte
Unidade Acadêmica Especializada em Ciências Agrárias
Escola Agrícola de Jundiaí
Curso de Análise e Desenvolvimento de Sistemas
TAD0006 - Sistemas Operacionais - Turma 01

Paginação

Antonino Feitosa antonino.feitosa@ufrn.br

Macaíba, maio de 2025

Aula Passada

- Espaço de Endereçamento
 - Proteção e Realocação
 - Realocação Dinâmica
- Swapping
- Memória Virtual

Roteiro

- Paginação
- Algoritmos de Substituição de Páginas
 - Ótimo
 - Não Usadas Recentemente (NRU)
 - Primeiro a Entrar, Primeiro a Sair
 - Segunda Chance
 - Relógio
 - Usadas Menos Recentemente
 - LRU
 - Conjunto de Trabalho
 - o WSClock

- A maioria dos sistemas de memória virtual usam a técnica de paginação.
- Programas referenciam um conjunto de endereços de memória.
 - Endereços virtuais: gerados por computadores e formam o espaço de endereçamento virtual.
 - Endereços virtuais não vão diretamente para o barramento da memória.
 - Eles vão para uma MMU (Memory Management Unit unidade de gerenciamento de memória) que mapeia os endereços virtuais em endereços de memória física.

FIGURA 3.8 A posição e função da MMU. Aqui a MMU é mostrada como parte do chip da CPU porque isso é comum hoje. No entanto, logicamente, poderia ser um chip separado, como era no passado.

- Páginas: unidade de tamanho fixo do espaço de endereçamento virtual.
- Quadros de páginas: unidades correspondentes na memória física.
- Geralmente, as páginas e os quadros de páginas possuem o mesmo tamanho.
- Transferências entre a memória RAM e o disco são sempre em páginas inteiras.

- Observe que uma página pode ser mapeado para qualquer quadro de página.
- No hardware real, um bit Presente/ausente controla quais páginas estão fisicamente presentes na memória.
- O que ocorre ao acessar um endereço de uma página que não está mapeada?

FIGURA 3.9 A relação entre endereços virtuais e endereços de memória física é dada pela tabela de páginas. Cada página começa com um múltiplo de 4096 e termina 4095 enderecos acima; assim, 4K a 8K na verdade significa 4096-8191 e 8K a 12K significa 8192-12287.

Espaço de endereçamento virtual

Quadro de página

- O que ocorre ao acessar um endereço de uma página que não está mapeada?
- A MMU observa que a página não está mapeada e faz a CPU desviar para o sistema operacional.
 - Essa interrupção é chamada de falta de página (page fault).
 - O SO escolhe um quadro de página pouco usado e escreve seu conteúdo de volta para o disco.
 - A página recém-referenciada no quadro de página recém-liberado, muda o mapa e reinicia a instrução que causou a interrupção.

Algoritmos de Substituição de Páginas

Algoritmos de Substituição de Páginas

- Sabemos que a memória física é menor que a memória virtual.
 - Temos mais páginas (endereçamento virtual) do que quadros de páginas (correspondência no endereçamento físico).
- Na ocorrência de uma falta de página, o SO deve efetuar a substituição de uma das páginas.
 - Uma página será armazenada no disco.
 - A página acessada (causou a falta) será carregada do disco para a RAM.

Algoritmos de Substituição de Páginas

- Se uma página intensamente usada for substituída, ela provavelmente terá de ser trazida logo de volta, resultando em um custo extra.
 - Solução: remover uma página pouca usada ou que não será mais usada.
 - Mesmo problema da substituição de dados na memória cache.
 - Mesmo problema que a substituição de de conteúdo web em um servidor.

Algoritmo Ótimo

Algoritmo Ótimo

- Remova a página que demora mais para causar uma falta de página.
 - Para cada página é contada a quantidade de instruções que serão executadas antes da falta.
 - A página com o maior número de instruções deve ser removida.
- É irrealizável!
 - Em um ambiente real, não há como saber quando ocorrerá uma falta de página.
 - Serve de referência para comparação do desempenho dos algoritmos.

Substituição de Páginas

Não Usadas Recentemente (NRU)

Substituição de Páginas Não Usadas Recentemente

- Memória virtual usa dois bits de estado das páginas:
 - R indica se a página foi referenciada (lida ou escrita).
 - M indica se a página foi modificada (escrita).
 - Precisam ser atualizados pelo hardware para desempenho.
 - Pode ser implementado por software gerenciando as faltas de páginas.
 - Controle somente leitura e leitura/escrita.

Substituição de Páginas Não Usadas Recentemente

- Para um processo, todos os bits iniciam em 0
- O bit R é limpo a cada interrupção do relógio
 - Não limpa o bit M, pois indica se a página precisa ser reescrita no disco.
- Em uma falta, as páginas são classificadas como:
 - Classe 0: não referenciada, não modificada.
 - Classe 1: não referenciada, modificada.
 - Classe 2: referenciada, não modificada.
 - Classe 3: referenciada, modificada.

Substituição de Páginas Não Usadas Recentemente

- Remove uma página ao acaso de sua classe de ordem mais baixa que não esteja vazia.
 - Ideia: é melhor remover uma página modificada, mas não referenciada, a pelo menos um tique do relógio do que uma página não modificada que está sendo usada intensamente.
- Fácil de entender e de implementar.
- Apresenta desempenho razoável.

Substituição de Páginas

Primeiro a Entrar, Primeiro a Sair

Primeiro a Entrar, Primeiro a Sair (FIFO)

- As páginas são organizadas em uma fila.
- Em uma falta, a primeira página é removida e a nova é inserida no final.
- Observe que a primeira página pode ser usada frequentemente.
- Apresenta simples implementação, porém baixo desempenho.

Substituição de Páginas

Segunda Chance

Substituição de Páginas Segunda Chance

- Algoritmo do primeiro entrar, primeiro a sair com verificação do bit R.
- Visa solucionar o problema do algoritmo anterior ao dar uma segunda chance para uma página referenciada recentemente.
- Procurar por uma página antiga que não esteja referenciada no intervalo de relógio mais recente.

Substituição de Páginas Segunda Chance

- Na ocorrência de uma falta, verifica-se o bit R da primeira página da fila:
 - Se R for 0 então a página é removida.
 - Será gravado no disco somente de M for 1.
 - Se R for 1, então ele será movido para o final da fila.
 - A busca continua analisando a página na primeira posição da fila.
- Observe que o algoritmo sempre encerra.
- Se todas as páginas foram referenciadas, a segunda chance degenera-se em um FIFO puro.

Substituição de Páginas Segunda Chance

FIGURA 3.15 Operação de segunda chance. (a) Páginas na ordem FIFO. (b) Lista de páginas se uma falta de página ocorrer no tempo 20 e o bit *R* de *A* possuir o valor 1. Os números acima das páginas são seus tempos de carregamento.

Página carregada primeiro O 3 7 8 12 14 15 18 Página carregada mais recentemente (a) A é tratada com uma página recém-carregada

(b)

- O algoritmo de segunda chance ainda é ineficiente.
 - Por mover as páginas para o final da fila.
- Solução óbvia: manter as páginas em uma estrutura de fila circular, alterando somente a referência para o primeiro elemento.

- Quando uma falta de página ocorre:
- A página referenciada como primeira da fila é inspecionada:
 - Se R for 0, então a página é substituída.
 - A referência do primeiro elemento passa para a próxima página na fila.
 - Esse processo é repetido até encontrar uma página com R = 0.

FIGURA 3.16 O algoritmo de substituição de páginas do relógio.

Quando ocorre uma falta de página, a página indicada pelo ponteiro é inspecionada. A ação executada depende do bit R:

R = 0: Remover a página

R = 1: Zerar R e avançar o ponteiro

Substituição de Páginas

Usadas Menos Recentemente (LRU)

Usadas Menos Recentemente (LRU)

Ideia:

- Páginas que foram usadas intensamente nas últimas instruções provavelmente o serão em seguida de novo.
- Páginas que não foram usadas há eras provavelmente seguirão sem ser utilizadas por um longo tempo.
- Quando ocorre uma falta de página, jogue fora aquela que não tem sido usada há mais tempo.
 - Como implementar isso?

Usadas Menos Recentemente (LRU)

- Necessário manter uma lista ordenada das páginas.
 - A página mais recentemente usada na frente e a menos recentemente usada na parte de trás.
- A lista precisa ser atualizada a cada referência de memória!
 - Encontrar uma página na lista, deletá-la e então movê-la para a frente.
 - Custa tempo!

Usadas Menos Recentemente (LRU)

- Implementação por um contador incrementado a cada instrução (em hardware).
 - O contador é registrado para cada página sempre que for efetuado um acesso à memória.
 - Quando ocorre uma falta, todas as páginas são examinadas, removendo aquela com o menor valor do contador.
- Necessita de hardware especializado!

Simulando LRU em Software

- Simulação por software.
- Necessita de contador associado a cada página (software).
 - O bit R é adicionado ao contador a cada interrupção do relógio.
 - Quando ocorre uma falta, a página com o menor contador é substituída.
- Observe que o algoritmo nunca esquece.
 - Uma página que foi intensamente usada terá um contador alto, porém pode ser que nunca mais seja referenciada.

Simulando LRU em Software

- Aplicação do algoritmo de envelhecimento.
- Antes de adicionar o R ao contador, deslocamos o contador um bit para direita.
- O R é adicionado na posição mais à esquerda.
- Observe que a memória é limitada pela quantidade de bits do contador.
 - Qual o significado do contador ser 0?

Simulando LRU em Software

FIGURA 3.17 O algoritmo de envelhecimento simula o LRU em software. São mostradas seis páginas para cinco interrupções de relógio.

As cinco interrupções de relógio são representadas por (a) a (e).

	Bits R para as páginas 0–5, interrupção de relógio 0	Bits R para as páginas 0–5, interrupção de relógio 1	Bits R para as páginas 0–5, interrupção de relógio 2	Bits R para as páginas 0–5, interrupção de relógio 3	Bits R para as páginas 0–5, interrupção de relógio 4
Págin	a				
0	10000000	11000000	11100000	11110000	01111000
1	00000000	10000000	11000000	01100000	10110000
2	10000000	01000000	00100000	00010000	10001000
3	00000000	00000000	10000000	01000000	00100000
4	10000000	11000000	01100000	10110000	01011000
5	10000000	01000000	10100000	01010000	00101000
	(a)	(b)	(c)	(d)	(e)

Substituição de Páginas do

Conjunto de Trabalho

- Princípio da localidade de referência: significando que durante qualquer fase de execução o processo referencia apenas uma fração relativamente pequena das suas páginas.
 - O conjunto de páginas que um processo está atualmente usando é o seu conjunto de trabalho.
 - Conjunto de trabalho: é o conjunto de páginas usadas nas k mais recentes referências à memória.

- Paginação por demanda: processo inicia sem nenhuma de suas páginas, elas são carregadas sob demanda conforme a ocorrência das faltas.
 - Eventualmente, o processo terá a maior parte das páginas que precisa, sendo executado com poucas ocorrências de faltas.
- Processo ultrapaginando (thrashing): um programa causando faltas de páginas a todo o momento.

- Pré-paginação: carregar as páginas antes de deixar um processo ser executado.
 - Diminui as faltas de páginas iniciais.
 - Modelo do conjunto de trabalho.
 - Busca controlar o conjunto de trabalho de cada processo e certificar-se de que ele está na memória antes de deixar o processo ser executado.
 - Observe que o conjunto de trabalho muda com o passar do tempo.
 - Como isso afeta o swapping?

- Se todo o conjunto de trabalho está na memória, o processo será executado sem causar muitas faltas.
- Se a memória disponível é pequena demais para conter todo o conjunto de trabalho, o processo causará muitas faltas de páginas.
 - Cada falta exige uma substituição, com uma possível operação de escrita na memória secundária.
 - Execução lenta!

- O algoritmo de substituição de páginas do conjunto de trabalho: quando ocorre uma falta de página, ele encontra uma página que não esteja no conjunto de trabalho e a remove.
 - Como determinar quais páginas estão no conjunto de trabalho?
 - Precisamos determinar o valor de k.
 - No entanto, não é viável ordenar as páginas pelos acessos à memória selecionando k páginas mais recentes.

- Implementação: aproximação pelo conjunto de páginas usadas nos último T intervalo de tempo de execução do processo.
 - Quantidade de tempo o processo realmente usou.
 - Tempo virtual.

FIGURA 3.19 Algoritmo do conjunto de trabalho. 2204 Tempo virtual atual Bit R (Referenciada) Informação sobre uma página 2084 2003 Instante do **→**1980 Varrer todas as páginas examinando o bit R: último uso se (R == 1) Página referenciada 1213 estabelecer Instante do último uso para o tempo virtual atual. desde a última interrupção do relógio 2014 se (R == 0 e idade > τ) remover esta página 2020 Página não se (R == 0 e idade $\leq \tau$) 2032 referenciada lembrar o menor tempo desde a última 1620 interrupção do relógio Tabela de páginas

- O que ocorre se todas as páginas estiverem no conjunto de trabalho na ocorrência de uma falta?
 - A página não referenciada de maior idade será removida (R = 0).
 - Caso contrário, uma página será removida ao acaso.

Substituição de Página

- Visa evitar a busca pela página fora do conjunto de trabalho no algoritmo básico do conjunto de trabalho.
- Baseado no algoritmo do relógio.
- Páginas em uma lista circular, registrando o instante do último uso.
 - Referência para a primeira página da lista.

- Quando ocorre uma falta de página:
- A página referenciada é examinada primeiro.
 - Se o bit R for 1, a página foi usada durante a interrupção de relógio atual, então ela não é uma candidata ideal para ser removida.
 - O bit R é então colocado em 0, o ponteiro avança para a próxima página, e o algoritmo é repetido para aquela página.

- Se o bit R for 0, se a idade é maior do que intervalo de trabalho e a página está limpa, ela não está no conjunto de trabalho e uma cópia válida existe no disco.
 - Ela é substituída.
- Se a página está suja, ela não pode ser reivindicada imediatamente, pois nenhuma cópia válida está presente no disco.
 - A escrita em disco é escalonada, mas o ponteiro é avançado e o algoritmo continua com a página seguinte.
 - Evita um chaveamento de processo.

- O que acontece se o ponteiro deu uma volta completa e voltou ao seu ponto de partida?
 - Há dois casos que precisamos considerar:
 - Pelo menos uma escrita foi escalonada.
 - O algoritmo continua procurando, eventualmente uma escrita finalizará, gerando uma página limpa a ser substituída.
 - Nenhuma escrita foi escalonada.
 - Uma página é escolhida ao acaso.

2204 Tempo virtual atual

Comparação

Comparação

FIGURA 3.21 Algoritmos de substituição de páginas discutidos no texto.

Algoritmo	Comentário
Ótimo	Não implementável, mas útil como um padrão de desempenho
NRU (não usado recentemente)	Aproximação muito rudimentar do LRU
FIFO (primeiro a entrar, primeiro a sair)	Pode descartar páginas importantes
Segunda chance	Algoritmo FIFO bastante melhorado
Relógio	Realista
LRU (usada menos recentemente)	Excelente algoritmo, porém difícil de ser implementado de maneira exata
NFU (não frequentemente usado)	Aproximação bastante rudimentar do LRU
Envelhecimento (aging)	Algoritmo eficiente que aproxima bem o LRU
Conjunto de trabalho	Implementação um tanto cara
WSClock	Algoritmo bom e eficiente

Dúvidas?