Lecture 05 Dynamic programming

Spring 2023

Zhihua Jiang

Dynamic Programming I:

Memoization, Fibonacci, Shortest Paths, Guessing

- Memoization and subproblems
- Examples
 - Fibonacci
 - Shortest Paths
- Guessing & DAG View

Dynamic Programming (DP)

Big idea, hard, yet simple

- Powerful algorithmic design technique
- Large class of seemingly exponential problems have a polynomial solution ("only")
 via DP
- Particularly for optimization problems (min/max) (e.g., shortest paths)
- * DP ≈ "controlled brute force"
- * DP \approx recursion + re-use

History

Richard E. Bellman (1920-1984)

Richard Bellman received the IEEE Medal of Honor, 1979. "Bellman . . . explained that he invented the name 'dynamid programming' to hide the fact that he was doing mathematical research at RAND under a Secretary of Defense who 'had a pathological fear and hatred of the term, research'. He settled on the term 'dynamic programming' because it would be difficult to give a 'pejorative meaning' and because 'it was something not even a Congressman could object to' " [John Rust 2006]

Fibonacci Numbers

$$F_1 = F_2 = 1;$$
 $F_n = F_{n-1} + F_{n-2}$

Goal: compute F_n

Naive Algorithm

follow recursive definition

$$\begin{split} & \underline{\text{fib}}(n) \text{:} \\ & \text{if } n \leq 2 \text{: return } f = 1 \\ & \text{else: return } f = \text{fib}(n-1) + \text{fib}(n-2) \\ & \Longrightarrow T(n) = T(n-1) + T(n-2) + O(1) \\ & \geq 2T(n-2) + O(1) \geq 2^{n/2} \\ & \underline{\text{EXPONENTIAL} - \text{BAD!}} \end{split}$$

Memoized DP Algorithm

Remember, remember

```
\begin{aligned} & \text{memo} = \{ \ \} \\ & \text{fib}(n) \text{:} \\ & \text{if } n \text{ in memo: return memo}[n] \\ & \text{else: if } n \leq 2 \text{ : } f = 1 \\ & \text{else: } f = \text{fib}(n-1) + \text{fib}(n-2) \\ & \text{memo}[n] = f \\ & \text{return } f \end{aligned}
```


- \Longrightarrow fib(k) only recurses first time called, $\forall k$
- \implies only *n* nonmemoized calls: $k = n, n 1, \dots, 1$
- memoized calls free $(\Theta(1))$ time
- $\Longrightarrow \Theta(1)$ time per call (ignoring recursion)

POLYNOMIAL — GOOD!

- * DP \approx recursion + memoization
 - memoize (remember) & re-use solutions to subproblems that help solve problem
 - in Fibonacci, subproblems are F_1, F_2, \ldots, F_n
- * ⇒ time = # of subproblems · time/subproblem
 - Fibonacci: # of subproblems is n, and time/subproblem is $\Theta(1) = \Theta(n)$ (ignore recursion!).

Bottom-up DP Algorithm

```
\begin{array}{l} \text{fib} = \{\} \\ \text{for } k \text{ in } [1, 2, \ldots, n] \text{:} \\ \text{if } k \leq 2 \text{: } f = 1 \\ \text{else: } f = \text{fib}[k-1] + \text{fib}[k-2] \\ \text{fib}[k] = f \\ \text{return } \text{fib}[n] \end{array} \right\} \quad \begin{array}{c} \Theta(n) \\ \end{array}
```

- exactly the same computation as memoized DP (recursion "unrolled")
- in general: topological sort of subproblem dependency DAG

- practically faster: no recursion
- analysis more obvious
- can save space: just remember last 2 fibs $\implies \Theta(1)$

[Sidenote: There is also an $O(\lg n)$ -time algorithm for Fibonacci, via different techniques]

Is there a faster way to compute the nth Fibonacci number than by fib2 (page 13)? One idea involves matrices.

We start by writing the equations $F_1 = F_1$ and $F_2 = F_0 + F_1$ in matrix notation:

$$\begin{pmatrix} F_1 \\ F_2 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} F_0 \\ F_1 \end{pmatrix}.$$

Similarly,

$$\begin{pmatrix} F_2 \\ F_3 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} F_1 \\ F_2 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^2 \cdot \begin{pmatrix} F_0 \\ F_1 \end{pmatrix}$$

and in general

$$\begin{pmatrix} F_n \\ F_{n+1} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^n \cdot \begin{pmatrix} F_0 \\ F_1 \end{pmatrix}.$$

So, in order to compute F_n , it suffices to raise this 2×2 matrix, call it X, to the nth power.

(a) Show that two 2×2 matrices can be multiplied using 4 additions and 8 multiplications.

But how many matrix multiplications does it take to compute X^n ?

(b) Show that $O(\log n)$ matrix multiplications suffice for computing X^n . (*Hint:* Think about computing X^8 .)

a) For any 2×2 matrices X and Y:

$$XY = \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} \begin{pmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{pmatrix} = \begin{pmatrix} x_{11}y_{11} + x_{12}y_{21} & x_{11}y_{12} + x_{12}y_{22} \\ x_{21}y_{11} + x_{22}y_{21} & x_{21}y_{12} + x_{22}y_{22} \end{pmatrix}$$

This shows that every entry of XY is the addition of two products of the entries of the original matrices. Hence every entry can be computed in 2 multiplications and one addition. The whole matrix can be calculated in 8 multiplications and 4 additions.

b) First, consider the case where $n=2^k$ for some positive integer k. To compute, X^{2^k} , we can recursively compute $Y=X^{2^{k-1}}$ and then square Y to have $Y^2=X^{2^k}$ Unfolding the recursion, this can be seen as repeatedly squaring X to obtain $X^2, X^4, \dots, X^{2^k} = X^n$. At every squaring, we are doubling the exponent of X, so that it must take $k = \log n$ matrix multiplications to produce X^n . This method can be easily generalized to numbers that are not powers of 2, using the following recursion:

$$X^{n} = \begin{cases} (X^{\lfloor n/2 \rfloor})^{2} & \text{if } n \text{ is even} \\ X \cdot (X^{\lfloor n/2 \rfloor})^{2} & \text{if } n \text{ is odd} \end{cases}$$

The algorithm still requires $O(\log n)$ matrix multiplications, of which $\log n$ are squares and at most $\log n$ are multiplications by X.

i. The input is x_1, x_2, \ldots, x_n and a subproblem is x_1, x_2, \ldots, x_i .

$$\begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \end{bmatrix} x_7 x_8 x_9 x_{10}$$

The number of subproblems is therefore linear.

ii. The input is x_1, \ldots, x_n , and y_1, \ldots, y_m . A subproblem is x_1, \ldots, x_i and y_1, \ldots, y_j .

$$y_1$$
 y_2 y_3 y_4 y_5 y_6 y_7 y_8

The number of subproblems is O(mn).

iii. The input is x_1, \ldots, x_n and a subproblem is $x_i, x_{i+1}, \ldots, x_j$.

$$x_1$$
 x_2 x_3 x_4 x_5 x_6 x_7 x_8 x_9 x_{10}

The number of subproblems is $O(n^2)$.

iv. The input is a rooted tree. A subproblem is a rooted subtree.

Chain matrix multiplication

• Problem: multiply four matrices

Figure 6.6
$$A \times B \times C \times D = (A \times (B \times C)) \times D$$
.

Chain matrix multiplication

- Matrix multiplication is associative.
- Compute the product of four matrices in many different ways, depending on how parenthesize it.
- Multiplying an $m \times n$ matrix by an $n \times p$ matrix takes mnp number multiplications.
- The order of multiplications makes a big difference in the final running time.

Parenthesization	Cost computation	Cost
	$20 \cdot 1 \cdot 10 + 20 \cdot 10 \cdot 100 + 50 \cdot 20 \cdot 100$	
$(A \times (B \times C)) \times D$	$20 \cdot 1 \cdot 10 + 50 \cdot 20 \cdot 10 + 50 \cdot 10 \cdot 100$	60,200
$(A \times B) \times (C \times D)$	$50 \cdot 20 \cdot 1 + 1 \cdot 10 \cdot 100 + 50 \cdot 1 \cdot 100$	7,000

6.5 Chain matrix multiplication

- How to determine the optimal order for $A_1 \times A_2 \times ... \times A_n$, where A_i with dimension $m_{i-1} \times m_i$?
- A particular parenthesization = a binary tree
 - Leaf: matrix
 - Root: product
 - Interior node: intermediate product
 - The number of binary trees is exponential in n (n leaves)

Chain matrix multiplication

- The optimal substructure property: for a tree to be optimal, its subtree must also be optimal.
- Subproblem corresponding to a subtree: product of the form $A_i \times A_{i+1} \times ... \times A_j$
- For $1 \le i \le j \le n$, the optimal value array $C(i,j) = \text{minimum cost of multiplying } A_i \times A_{i+1} \times \ldots \times A_j$
- The splitting point k: split the product into two pieces, of the form $A_i \times ... \times A_k$ and $A_{k+1} \times ... \times A_j$
- The total cost is the cost of these two partial products plus the cost of combining them

$$C(i,j) = \min_{i \le k < j} \{C\{i,k\} + C(k+1,j) + m_{i-1} \cdot m_k \cdot m_j\}$$

How to determine the optimal order for $A_1 \times A_2 \times ... \times A_n$, where A_i with dimension $m_{i-1} \times m_i$?

A dynamic programming algorithm:

```
for i=1 to n: C(i,i)=0 for s=1 to n-1: for i=1 to n-s: j=i+s C(i,j)=\min\{C(i,k)+C(k+1,j)+m_{i-1}\cdot m_k\cdot m_j:i\leq k< j\} return C(1,n)
```

- The distance between two strings: the extent to which they can be aligned.
- Example: SNOWY vs. SUNNY

- <u>Cost</u> of an alignment: the number of columns in which the letters differ.
- <u>Edit distance</u>: the cost of their best possible alignment, i.e., the minimum number of edits insertions, deletions, and substitutions needed to transform the first string into the second.

- What are the subproblems?
 - Property: there is an ordering on the subproblems, and a relation that shows how to solve a subproblem given the answers to "smaller" subproblems, i.e., subproblems that appear earlier in the ordering.
 - <u>Subproblem E(i,j)</u>: the edit distance between some prefix of the first string x[1..i] and some prefix of the second y[1..j]

The subproblem E(7,5).

• Smaller problems for E(i,j): E(i-1,j), E(i,j-1), E(i-1,j-1)

$$x[i] \qquad - \qquad \text{or} \qquad \frac{x[i]}{y[j]}$$

$$E(i,j) = \min\{1 + E(i-1,j), 1 + E(i,j-1), diff(i,j) + E(i-1,j-1)\}$$

$$diff(i,j) = \begin{cases} 0, \text{if} \quad x[i] = y[j] \\ 1, \text{otherwise} \end{cases}$$

$$Try \text{ all and Pick best!}$$

$$E(4,3) = \min\{1 + E(3,3), 1 + E(4,2), 1 + E(3,2)\}.$$

• A dynamic programming solution

```
\begin{aligned} &\text{for } i = 0, 1, 2, \dots, m: \\ &E(i, 0) = i \\ &\text{for } j = 1, 2, \dots, n: \\ &E(0, j) = j \\ &\text{for } i = 1, 2, \dots, m: \\ &\text{for } j = 1, 2, \dots, m: \\ &E(i, j) = \min\{E(i - 1, j) + 1, E(i, j - 1) + 1, E(i - 1, j - 1) + \text{diff}(i, j)\} \\ &\text{return } E(m, n) \end{aligned}
```

- Fill a table row by row, and left to right within each row
- The time complexity: O(mn)

(a)

		j - 1	j		n
i-1					
i		_	71		
m					GOAL

(b)					
			Р	О	L	Y
		_		-	_	_

		Р	O	L	Y	N	O	\mathbf{M}	Ι	Α	L
	0	1	2	3	4	5	6	7	8	9	10
\mathbf{E}	1	1	2	3	4	5	6	7	8	9	10
X	2	2	2	3	4	5	6	7	8	9	10
P	3	2	3	3	4	5	6	7	8	9	10
О	4	3	2	3	4	5	5	6	7	8	9
N	5	4	3	3	4	4	5	6	7	8	9
\mathbf{E}	6	5	4	4	4	5	5	6	7	8	9
N	7	6	5	5	5	4	5	6	7	8	9
T	8	7	6	6	6	5	5	6	7	8	9
Ι	9	8	7	7	7	6	6	6	6	7	8
Α	10	9	8	8	8	7	7	7	7	6	7
L	11	10	9	8	9	8	8	8	8	7	6

$$E(i, j) = \min\{1 + E(i - 1, j), 1 + E(i, j - 1), diff(i, j) + E(i - 1, j - 1)\}$$

$$diff(i, j) = \begin{cases} 0, & \text{if } x[i] = y[j] \\ 1, & \text{otherwise} \end{cases}$$

2

- Edits
 - Move down → deletion
 - Move right → insertion
 - Diagonal move → match or substitution

Knapsack

• Problem description: a total weight W, n items to pick, of weight w_1, \ldots, w_n and value v_1, \ldots, v_n , what is the most valuable combination of items which can fit into the bag?

- Example: *W*=10
 - Unlimited quantities of each item:

	optimal solution \$48	Item	Weight	Valuo
	$48 = 1 \times #1 + 2 \times #4$	#1	Weight	\$30
•	One of each item:	#2	3	\$14
	optimal solution \$46	#3	4	\$16
	46= 1 x #1+1 x #3	#4	2	\$9

Knapsack

- Knapsack with repetition
 - Subproblem: smaller knapsack capacities *w*≤*W*
 - K(w)=maximum value achievable with a knapsack of capacity w

$$K(w) = \max_{i:w_i \le w} \{K(w - w_i) + v_i\},$$

• A dynamic programming solution (W and all w need to be integers):

$$K(0) = 0$$
 for $w = 1$ to W :
$$K(w) = \max\{K(w - w_i) + v_i : w_i \leq w\}$$
 return $K(W)$

• The time complexity: O(nW)

6.4 Knapsack

- Knapsack without repetition
 - Subproblem: smaller knapsack capacities $w \le W$ and fewer items (items 1,2,...,j, for $j \le n$)
 - K(w, j)=maximum value achievable with a knapsack of capacity w and items 1, ..., j

$$K(w,j) = \max\{K(w-w_j, j-1) + v_j, K(w, j-1)\}.$$

• A dynamic programming solution:

```
Initialize all K(0,j)=0 and all K(w,0)=0 for j=1 to n: for w=1 to W: if w_j>w: K(w,j)=K(w,j-1) else: K(w,j)=\max\{K(w,j-1),K(w-w_j,j-1)+v_j\} return K(W,n)
```

• The time complexity: O(nW)

for
$$w = 1$$
 to W :

$$K(w) = \max\{K(w - w_i) + v_i : w_i \le w\}$$


```
for j=1 to n: for w=1 to W: if w_j>w: K(w,j)=K(w,j-1) else: K(w,j)=\max\{K(w,j-1),K(w-w_j,j-1)+v_j\}
```

Item	Weight	Value
1	6	\$30
2	3	\$14
3	4	\$16
4	2	\$9

j	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	Ō	0	0	0	0
1	0	0	0	0	0	0	30	30	30	30	30
2	0	0	0	14	14	14	30_	30	30	44	44
3	0	0	0	14	16	16	30	30	30_	44	46
4	0	0	9	14	16	23	30	30	39	44	46

Independent sets in trees

- Dependent set: subset of nodes $S \subset V$, and there are no edges between them
- Finding the largest independent set in a graph is intractable
- However, it can be solved in linear time when the graph is a tree, using dynamic programming
- Algorithm:
 - Start by rooting the tree at any node r. Each node defines a subtree.
 - The goal is I(r): I(u) = size of largest independent set of subtree hanging from u
 - If know I(w) for all descendants w of u, then compute I(u):

$$I(u) = \max\{1 + \sum_{grandchild} I(gc), \sum_{child} I(c)\}$$

Independent sets in trees

- The number of subproblems: O(|V|)
- The running time: O(|V|+|E|)

$$I(u) = \max\{1 + \sum_{grandchild} I(gc), \sum_{child} I(c)\}$$

