

Language: Afrikaans

Day: **1**

Vrydag 10 Julie 2015

Probleem 1. Ons noem 'n eindige versameling punte in die vlak S gebalanseerd as daar vir elke twee verskillende punte A en B in S, 'n punt C in S is só dat AC = BC. Ons sê dat S middelpuntvry is as, vir elke drietal verskillende punte A, B en C in S, daar geen punt P is só dat PA = PB = PC.

- (a) Bewys dat daar vir alle heelgetalle $n \ge 3$ 'n gebalanseerde versameling bestaan wat presies n punte bevat.
- (b) Bepaal alle heelgetalle $n \ge 3$ waarvoor daar 'n middelpuntvrye, gebalanseerde versameling bestaan wat presies n punte bevat.

Probleem 2. Bepaal alle drietalle positiewe heelgetalle (a, b, c) só dat elkeen van die getalle

$$ab-c$$
, $bc-a$, $ca-b$

'n mag van twee is.

('n Mag van twee is 'n getal van die vorm 2^n , waar n 'n heelgetal is en $n \ge 0$.)

Probleem 3. Laat ABC 'n skerphoekige driehoek met AB > AC wees. Laat Γ sy omgeskrewe sirkel, H sy hoogtepunt en F die voet van die hoogtelyn vanuit A wees. Laat M die middelpunt van BC wees. Laat Q die punt op Γ wees só dat $\angle HQA = 90^{\circ}$ en K die punt op Γ wees só dat $\angle HKQ = 90^{\circ}$. Veronderstel dat die punte A, B, C, K en Q almal verskillend is en in hierdie volgorde op Γ lê.

Bewys dat die omgeskrewe sirkels van driehoeke KQH en FKM aan mekaar raak.

Language: Afrikaans

Tyd: 4 uur en 30 minute Elke probleem is 7 punte werd

Language: Afrikaans

Day: 2

Saterdag 11 Julie 2015

Probleem 4. Driehoek ABC het omgeskrewe sirkel Ω en ommiddelpunt O. 'n Sirkel Γ met middelpunt A sny die segment BC in punte D en E só dat B, D, E en C almal verskillend is, en in hierdie volgorde op die lyn BC lê. Laat F en G die snypunte van Γ en G wees, só dat G, G, G en G in hierdie volgorde op G lê. Laat G die tweede snypunt van die omgeskrewe sirkel van driehoek G en die segment G wees. Laat G die tweede snypunt van die omgeskrewe sirkel van driehoek G en die segment G wees.

Veronderstel dat die lyne FK en GL verskillend is en mekaar in die punt X sny. Bewys dat X op die lyn AO lê.

Probleem 5. Laat \mathbb{R} die versameling reële getalle wees. Bepaal alle funksies $f: \mathbb{R} \to \mathbb{R}$ wat die vergelyking

$$f(x + f(x + y)) + f(xy) = x + f(x + y) + yf(x)$$

vir alle reële getalle x en y bevredig.

Probleem 6. Die ry heelgetalle a_1, a_2, \ldots bevredig die volgende voorwaardes:

- (i) $1 \leqslant a_i \leqslant 2015$ vir alle $j \geqslant 1$;
- (ii) $k + a_k \neq \ell + a_\ell$ vir alle $1 \leq k < \ell$.

Bewys dat daar twee positiewe heelgetalle b en N bestaan só dat

$$\left| \sum_{j=m+1}^{n} (a_j - b) \right| \leqslant 1007^2$$

vir alle heelgetalle m en n waarvoor $n > m \ge N$.

Language: Afrikaans

Tyd: 4 uur en 30 minute Elke probleem is 7 punte werd