Algorithm 1 Algorithm for dictionary learning under global sparsity constraint (GDL) Given: The input data $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_n] \in \mathbb{R}^{d \times n}$, the global sparsity KExecute:

- 1. Initialize the dictionary $\mathbf{D} \in \mathbb{R}^{d \times m}$ and the coefficient matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ with sparsity K, respectively.
- 2. Repeat
 - 2.1 (Column updating). Update the column vector \mathbf{a}_i^c of \mathbf{A} by solving (??) for each $i = 1, \dots, n$.
 - 2.2 (Row updating). Update the row vector \mathbf{a}_i^r of \mathbf{A} and the atom \mathbf{d}_i of **D** by solving (??) for each $i = 1, \dots, m$.

Until the termination condition is satisfied

Return: the solution **D**, **A** of (P_K) .