Прикладная Криптография: Симметричные криптосистемы nonce CPA, det-CPA

Макаров Артём МИФИ 2023

Тест.

4 вопроса.

Краткие ответы.

- Положить телефон экраном вниз справа от себя
- Не разговаривать с соседями
- Не пользоваться конспектами и электронными устройствами
- Написать номер (по таблице) и ФИО на листочке
- Написать краткий ответ на вопрос
- Дождаться окончания теста

Тест.

- 1 режим СГВ, как следует выбирать ключ?
- 2 режим **СВС**, как следует выбирать IV?
- 3 режим **CBC**, можно ли для шифрования сообщения m_i в качестве IV использовать последний блок шт. предыдущего сообщения m_{i-1} ? **Почему**?
- 4 Режим **CTR**, можно ли для шифрования двух различных сообщений одинаковой длинны использовать одинаковое начальное заполнение счётчика (под счётчиком понимается вектор длинны равно размеру блок, который инкрементируется для каждого блока O.T.)? **Почему**?

CPA

- Шифр называется СРА стойким, если для любого противника A величина $CPA_{adv}[A, E] = |\Pr[W_0] \Pr[W_1]| \le \epsilon, \epsilon$ пренебрежимо малая величина.
- Детерминированный шифр не может быть СРА стойким

Вероятностное шифрование

- Как показано ранее, для СРА стойкости необходима «рандомизация» шифртекстов
- Подход 1 рандомизация функции зашифрования

- Зашифрование одного и того же сообщения даст разные шифртексты
- Необходим внешний источник энтропии
- Шифртексты всегда длиннее открытых текстов, так как необходимо также передать энтропию, необходимую для восстановления открытого текста

Вероятностное шифрование

- Подход 2 использование уникальных, неповторяющихся величин (nonce)
- $m \to E(k,*,n) \to c \to D(k,*,n) \to m$
- Nonce должна быть уникально для каждого сообщения, пара (nonce, key) не должна повторяться при жизни ключа.
- В качестве nonce можно использовать счётчик, строго возрастающую последовательность, случайные величины (большой длины)
- Nonce может не пересылаться в явном виде, обе стороны могут синхронно обновлять его.
- Не любое использование nonce даёт стойкие схемы!

CBC vs CTR

$$CPA_{adv}[A, E_{ctr}] \le \frac{4Q^2l}{N} + 2 * PRF_{adv}[B, F]$$

 $CPA_{adv}[A, E_{cbc}] \le \frac{2Q^2l^2}{N} + 2 * BC_{adv}[B, E]$

- CTR режим имеет большую стойкость для фиксированных параметров и блочного шифра
- CTR может использоваться в параллельном режиме, так как зашифрование блоков производит независимо
- Для коротких сообщений СТR может иметь длины шифртекстов значительно короче, чем СВС, так как нет необходимости в дополнении до длины блока.
- CTR использует только функцию зашифрования блочного шифра.
- IV должны быть случайными!

Nonce based encryption

- Для всех рассмотренных ранее схем СРА шифрования длина результирующего шифртекста была больше длины открытых тестов из за добавления вектора инициализации.
- Длина вектора инициализации не зависит от длины сообщения
- Для больших сообщений не является проблемой (добавление 16 байт к мегабайту несущественно)
- Может являться проблемой для небольших шифтекстов, сравнимых с длинной блока (добавление 16 байт к сообщению длинны меньше 16 байт)
- Возможно ли уйти от случайных векторов инициализации?

Nonce based encryption

- Первый подход хранить некоторое состояние на стороне получателя и отправителя, которое явно или не явно синхронизируется перед процедурой шифрования. Затем обновлять эти значения после приёма-отправления сообщений.
 - Необходима полная синхронизация, при рассинхронизации необходимо заново проводить процедуру синхронизации
- Второй подход использование nonce. Вместо использования внутренних состояний использовать уникальные неповторяющиеся величины (nonce).

Nonce based encryption

Для $k \in K, m \in M, c \in C, n \in N$ шифром на основе nonce называется пара алгоритмов E = (E, D) на (K, M, C, N):

- Зашифрование c = E(k, m, n)
- Расшифрование m = D(k, c, n)
- Корректность D(k, (E(k, m, n), n) = m

Nonce based CPA

• Шифр на основе nonce называется nCPA стойким, если для любого противника A величина $nCPA_{adv}[A, E] = |\Pr[W_0] - \Pr[W_1]| \le \epsilon, \epsilon - \epsilon$ пренебрежимо малая величина.

• Заметим, что противник полностью выбирает nonce. Единственное требование — уникальность.

Вспоминаем гибридную конструкцию

- Пусть E = (E, D) семантически стойкий шифр на (K, M, C). Попробуем построить CPA стойкий шифр E' на $(K', M, X \times C)$ используя PRF F на (K', X, K).
- Ключом k' для E' будет ключ для PRF F. Для шифрования сообщения m выбирается случайный вход для PRF x. Далее вычисляется ключ для E $k \leftarrow F(k',x)$. Затем m шифруется с использование ключа k: $c \leftarrow E(k,m)$. Шифртекстом является пара c' = (c,x).
- $E(k',m) = [\mathbf{x} \leftarrow^R X, k \leftarrow F(k',x), c \leftarrow E(k,m), \text{ output } c' = (\mathbf{x},c)]$
- $D(k',c') = [k \leftarrow F(k',x), m \leftarrow D(k,c), \text{ output } m]$
- Называется гибридная конструкция.

Игра на СРА стойкость гибридной конструкции

Стойкость гибридной конструкции

Теорема 7.1. Если F — стойкая PRF, E — семантически стойкий шифр, N = |X| - сверхполиномиальная, то введённый ранее шифр E' - CPA стойкий шифр. В частности для любого противника в CPA игре, делающим не более Q запросов к претенденту существует противник B_F в игре на стойкость PRF и противник B_E в игре на семантическую стойкость, причём

$$CPA_{adv}[A, E'] \le \frac{Q^2}{N} + 2 * PRF_{adv}[B_F, F] + Q * SS_{adv}[B_E, E]$$

Гибридная конструкция на основе nonce

Модифицируем гибридную конструкцию, заменив случайный элемент $x \in X$ на nonce.

Пусть E = (E, D) – семантически стойкий шифр на (K, M, C).

Для ключа $k' \in K, m \in M, c \in C \ x \in X$ определим E'(k', m, x) = E(k, m), k = F(k', x)

- $E(k',m) = [x \leftarrow X, k \leftarrow F(k',x), c \leftarrow E(k,m), \text{ output } (x,c)]$
- $D(k',c') = [k \leftarrow F(k',x), m \leftarrow D(k,c), \text{ output } m]$

Детерминированная гибридная конструкция

Теорема 8.1. Если F — стойкая PRF, E — семантически стойкий шифр, N = |X| - сверхполиномиальная, то введённый ранее шифр E' - nCPA стойкий шифр. В частности для любого противника в nCPA игре, делающим не более Q запросов к претенденту существует противник B_F в игре на стойкость PRF и противник B_E в игре на семантическую стойкость, причём

$$nCPA_{adv}[A, E'] \le 2 * PRF_{adv}[B_F, F] + Q * SS_{adv}[B_E, E]$$

hoАналогично **Теореме 7.1**, без необходимости добавления слагаемого Q^2/N , т.к. коллизии не возможно из за требования уникальности nonceho

Вспоминаем рандомизированный CTR режим

Рассмотрим ещё один способ построения – на основе CTR режима.

Пусть F PRF на (K, X, Y). Пусть $X = \{0, ... N - 1\}, Y = \{0,1\}^n$. Для полиномиально ограниченной величины $l \ge 1$ определим шифр E = (E, D) на $(K, Y^{\le l}, X \times Y^{\le l})$ следующим образом:

Для $k \in K, m \in Y^{\leq l}$, $v = |m| = |c|, c' = (x, c) \in X \times Y^{\leq l}$

```
\begin{array}{ll} E(k,m) \coloneqq & D(k,c') \coloneqq \\ x \xleftarrow{\mathbb{R}} \mathcal{X} & \text{compute } m \in \mathcal{Y}^v \text{ as follows:} \\ \text{compute } c \in \mathcal{Y}^v \text{ as follows:} & \text{for } j \leftarrow 0 \text{ to } v - 1 \text{ do} \\ & \text{for } j \leftarrow 0 \text{ to } v - 1 \text{ do} \\ & c[j] \leftarrow F(k,x+j \text{ mod } N) \oplus m[j] & \text{output } m. \\ \text{output } (x,c); \end{array}
```

Игра на CPA стойкость рандомизированного CTR режима

Стойкость рандомизированного CTR режима

Теорема 7.2. Если F — стойкая PRF, N - сверхполиномиальная, l — полиномиально ограниченная, то введённый ранее шифр E - CPA стойкий шифр. В частности для любого противника в CPA игре, делающим не более Q запросов к претенденту существует противник B в игре на стойкость PRF причём

$$CPA_{adv}[A, E'] \le \frac{4Q^2l}{N} + 2 * PRF_{adv}[B, F]$$

Nonce based CTR

- Можно ли построить CTR режим, заменив случайный элемент на nonce?
- Нет! В отличии от гибридной конструкции, где нам была важна уникальность nonce, здесь нам важна не только уникальность «начальных состояний», но и уникальность «отрезков». (См лемму из Теоремы 7.2).
- Иными словами, если заменить $x_i \in X$ на nonce, то противник может выбрать такие $x_i \neq x_{i'}$: $\{x_i, ..., x_i + l 1\} \cap \{x_{i'}, ..., x_{i'} + l 1\} \neq \emptyset$, т.е. могут совпасть счётчики на каком то блоке для различных сообщений => имеем двухразовый блокнот.

Nonce based CTR

- Введём nonce по другому. Пусть l|N. Пусть $n \in \{0, ..., N \setminus l-1\}$ nonce, x = nl. Т.е. на вход PRF подаётся не nonce, а nonce умноженная на максимально допустимую длину сообщения в блоках.
- Т.е. два различных nonce n_1 и n_2 дают два входа для PRF $x_1=n_1l$, $x_2=n_2l$ в интервалах $\{x_1,\dots,x_1+l-1\}$ и $\{x_2,\dots,x_2+l-1\}$, которые не пересекаются.

Nonce based CTR

Теорема 8.2. Если F — стойкая PRF, N - сверхполиномиальная, l — полиномиально ограниченная, то введённый ранее шифр E - CPA стойкий шифр. В частности для любого противника в nCPA игре, делающим не более Q запросов к претенденту существует противник B в игре на стойкость PRF причём

$$nCPA_{adv}[A, E'] \le 2 * PRF_{adv}[B, F]$$

ightharpoonup Аналогично **Теореме 7.2**, без необходимости добавления слагаемого $\frac{4Q^2l}{N}$, т.к. коллизии не возможно из за требования уникальности nonce ightharpoonup

CBC

Пусть E = (E, D) блочный шифр на (K, X) где $X = \{0,1\}^n$, $N = |X| = 2^n$. Для полиномиально ограниченной величины $l \geq 1$ определим шифр E = (E', D') на $(K, X^{\leq l}, X^{\leq l+1} \setminus X^0)$. Зашифрование и расшифрование определены следующим образом:

Для
$$k \in K$$
, $m \in M$, $v = |m| = |c| - 1$

```
E'(k,m) := & D'(k,c) := \\ \text{compute } c \in \mathcal{X}^{v+1} \text{ as follows:} & \text{compute } m \in \mathcal{X}^v \text{ as follows:} \\ c[0] \xleftarrow{\mathbb{R}} \mathcal{X} & \text{for } j \leftarrow 0 \text{ to } v-1 \text{ do} \\ & for \ j \leftarrow 0 \text{ to } v-1 \text{ do} \\ & c[j+1] \leftarrow E(k,\ c[j] \oplus m[j]) & \text{output } m. \\ \text{output } c; & \text{output } m. \\ \end{cases}
```

Игра на СРА стойкость СВС

CBC

Теорема 7.3. Пусть E = (E, D) — семантически стойкий шифр на (K, C), N = |X| - сверхполиномиальная, $l \geq 1$ — полиномиально ограниченная. Тогда введенный ранее СВС шифр является СРА стойким, причём для любого противника A в игре на СРА стойкость, делающим не более Q запросов к оракулу, существует противник B в игре на стойкость блочных шифров, при чём

$$CPA_{adv}[A, E'] \le \frac{2Q^2l^2}{N} + 2 * BC_{adv}[B, E]$$

Nonce based CBC

- Можно ли построить СВС режим, заменив случайный элемент на nonce?
- Нет! Противник может сделать 2 запроса (m_{10},m_{11},n_1) , (m_{20},m_{21},n_2) : $m_{10}=n_1\neq n_2=m_{20},m_{11}=m_{21}$. В эксперименте 0 шифртексты будут одинаковые, в эксперименте 1 разными.

Nonce based CBC

- Идея заменить случайный IV на псевдослучайный, полученный из nonce с помощью PRF.
- Пусть F PRF на (K', N', X), где X множество блоков блочного шифра E = (E, D), отпрядённого на (K, X).
- Ключом является элемент из множества $K \times K'$, алгоритм зашифрования и расшифрования отличаются от СВС только в получении n[0] = F(k', n).

CBC

Теорема 8.3. Пусть E=(E,D) – семантически стойкий шифр на (K,C), N=|X| - сверхполиномиальная, $l\geq 1$ – полиномиально ограниченная. Тогда введенный ранее СВС шифр является СРА стойким, причём для любого противника A в игре на nCPA стойкость, делающим не более Q запросов к оракулу, существует противник B в игре на стойкость блочных шифров, и B_F в игре на стойкость PRF, при чём

$$nCPA_{adv}[A, E'] \le \frac{2Q^2l^2}{N} + 2 * BC_{adv}[B, E] + 2 * PRF[B_F, E]$$

⊳Аналогично **Теореме 7.3**, но с учётом использования не только блочного шифра, но и PRF⊲

Поиск в базе данных

- Рассмотрим пример хранение шифрованных файлов на удалённом сервере.
- При использовании СРА стойкого шифра имеем:

Поиск в базе данных

• Проблема – необходимость выкачивания всей информации для осуществления поиска (выборки)

Детерминированное шифрование

Рандомизированное шифрование не позволяет искать на стороне сервера. Хотелось бы реализовать такой сценарий:

- Пользователь отправляет зашифрованный файл на сервер, приписывая заголовок. Сервер записывает шифртекст без расшифровки
- Для получения файла из базы данных пользователь отправляет зашифрованный (тем же ключом) заголовок и получает шифртекст, который потом расшифровывает.

Данная схема возможна только при детерминированном шифровании

The need for det. Encryption (no nonce)

The need for det. Encryption (no nonce)

det. enc. enables later lookup

Детерминированное шифрование

- Проблема при детерминированном шифровании противник может проверять заголовки на равенство, т.к. одинаковые заголовки дают одинаковые зашифрования заголовков.
- Аналогично для шифртекстов. Если множество шифртекстов мало (например шифруются только слова, длины не более 6 символов), и распределение неравномерное, противник может провести частотный анализ и полностью расшифровать все шифртексты.
- Нужно новое определение. Основная идея новое требование: сообщения должны быть уникальными для фиксированного ключа.
 - Уникальный идентификаторы, которые не повторяются (номер в очереди, номер передаваемого пакета, уникальный для сессии id пользователя, индекс записи в б.д. и.т.д.)
 - Сообщения выбранные случайно из большого множества (например ключи)

Deterministic CPA security

Пусть E=(E,D) шифр на (K,M,C). Введём игру на СРА стойкость, в которой противник запрашифвает только уникальные сообщения, т.е. $m_{1,0},...,m_{q,0}$ и $m_{1,1},...,m_{q,1}$ различны.

E = (E, D), определённый на (K, M, C), называется детерминированно СРА стойким, если $\forall A : A$ — эффективный алгоритм в игре на стойкость Deterministic СРА величина $dCPA_{adv}[A, E] = |\Pr[W_0] - \Pr[W_1]| \le \epsilon$, где ϵ — пренебрежимо малая величина.

Фиксированный IV в CBC

Фиксировванный IV в СВС не даёт det-CPA стойкость!

Пусть $E\colon K\times\{0,1\}^n\ \longrightarrow\ \{0,1\}^n$ стойкая PRP в СВС

Фиксированный IV в CTR

Фиксировванный IV в CTR не даёт det-CPA стойкость!

Пусть $F\colon K imes \{0,1\}^n \longrightarrow \{0,1\}^n$ стойкая PRF в CTR

F(k, FIV) | | F(k, FIV+1) | | ... | | F(k, FIV+L)

ciphertext

 \oplus

Синтетический IV

Пусть E = (E, D) — СРА стойкий шифр на (K, M, C), E = (k, m; r) — функция зашифрования, использующая случайный вход $r \in_R R$. Пусть F — стойкая PRF на (K', M, R). Тогда детерминированный шифр E' = (E', D') на $(K \times K', M, C)$: $E' \big((k, k'), m \big) = E \big(k, m; F(k', m) \big),$ $D' \big((k, k'), c \big) = D(k, c)$

Называется детерминированным шифром, использующем синтетический IV.

NB: конструкция похожа на использование nonce в CTR и CBC, но случайность заменяется не шифрованием уникального nonce, а шифрованием уникального сообщения (сообщения уникальны для det-CPA).

Теорема 8.4. Описанный выше шифр является det-CPA стойким.

⊳без доказательства, или доказать самим⊲

Поиск с использованием маски

• Основания идея – после детерминированного шифрования накладывать на шифртекст некоторую маску, которая может быть использована для поиска

Поиск с использованием маски

• Пример – Song, Wagner, Perrig «Practical Techniques for Searches on Encrypted Data». $H: K \times I \rightarrow O$ – PRF.

Поиск с использованием маски

• Пример – Song, Wagner, Perrig «Practical Techniques for Searches on Encrypted Data». $H: K \times I \rightarrow O$ – PRF.

Выводы

- Шифры решают задачу конфиденциальности информации при пассивном противнике (противнике не влияющем на передаваемые сообщения)
- Абсолютная стойкость достижимая, но не удобная для построения шифров модель
- Ослабленная версия абсолютной стойкости семантическая стойкость (одноразовая семантическая стойкость) используется для построения и анализа шифров при однократном использовании ключа
- При шифровании нескольких сообщений используется СРА стойкость (многоразовая семантическая стойкость), позволяющая противнику получать зашифрования нескольких сообщений на одном ключе

Выводы

- Основные примитивы псевдослучайные генераторы, поточные шифры, блочные шифры.
- Для построения семантических и СРА стойких шифров из блочных шифров используют режимы шифрования.
- При использовании режимов шифрования, требующих случайный IV, он должен быть случайным!
- Шифры не должны использоваться для обеспечения целостности или аутентичности!
- Для ряда приложений могут использоваться и другие модели стойкости шифров.