BALTIMORE Crimes

Overview

Problem: Excessive occurrence of crime reported in Baltimore City

Management: Analyze the crime data via random forest and decision trees in order to find correlations in the data.

Results: Crime possibly correlates to different measure of time (day of week, month, etc.) and location.

Next Steps: Further analysis with better accuracy. Once completed: Implementation of guided tasks force; development of new protocols with respect to findings in time-related crime.

Question

Can crime in Baltimore be correlated to certain measures of time and/or location?

If crime in Baltimore can be correlated to certain measures of time and/or location, then preventive methods could be installed to reduce crime based on this data

Presentation of the Dataset

276,202 crimes

Recorded from Jan-2014 to Sept-2019

Date of crime

Geographical area

Categories of crime

Time of day

Sanitizing of the data Exploring the data

- Inconsistent data before
 2014
- Information for Year 2019 only until 21st of September
- 1. Consolidate categories of crime (from 14 to 7)

Data Exploration

Types of analysis/Analysis Methods:

- Plotting with ggplots
- Decision Tree
- Classification
- Alternative methods of analysis:
- Random forest

Data Analysis Evolution of crimes through years

Hypothesis:

Correlation between years and total crimes

- Total number of crimes of have at a steady pace, although not uniformly
- No immediate observable trend across the identified years

Evolution of crimes throughout the year

Hypothesis:

 Correlation between the month and number of crimes

- Months with most crimes: July and August
- Less crimes during winter than summer

Evolution of crimes throughout the week

Hypothesis:

 Correlation between day of the week and number of crimes

- Number of crimes almost constant
- Day with the most crimes: Friday
- Less crimes on the week-end than during the week

Evolution of crimes based on the District

Hypothesis:

 Correlation between the area and the number of crimes

- Number of crimes vary amongst the districts
- District with the most crimes: Northeast
- Less crimes within the Western and Eastern

Classification of Crimes Based on Weapon Used

Hypothesis:

 Classifying the number of crimes based on weapon used

- Most crimes committed without any weapon
- Subsequently, 'Firearm' dominates the crime count

Evolution of crimes based on the time

Hypothesis:

 Correlation between the respective hour of the day and the types of crimes

- Data indicates that crime increases throughout the day.
- Crime spikes after 09:00.
- Crime is at it's highest at 20:00.

Crime distribution

Graphical representation of crime throughout Baltimore City

```
72 #DATA ANALYSIS
73
74 #Data Cleaning
75 #Subsetting rows contatining missing values
76 crime_dat_miss <- subset(crime_dat, select = c(CrimeDate, CrimeTime, Location, Description, District, Longitude, Latitude, year, month))
    crime_dat_miss <- crime_dat_miss[complete.cases(crime_dat_miss), ]</pre>
78
    crime_dat_miss$hour<-substring(crime_dat_miss$CrimeTime,1,2)</pre>
    #crime_dat_miss$TimeOfDay <- with(crime_dat_miss, ifelse(hour >= 5 & hour<12, "Morning",</pre>
81
    #
                                                                 ifelse(hour>=12 & hour<=17, "Afternoon", ifelse(hour>=17 & hour<=22, "Evening", "Night"))))
    crime_dat_miss$TimeOfDay <- with(crime_dat_miss, ifelse(hour >= 5 & hour<6, "Day","Night"))</pre>
83
    crime_dat_miss$hour<- as.factor(crime_dat_miss$hour)</pre>
85
    crime_dat_miss$CrimeDate <- as.Date(crime_dat_miss$CrimeDate,format="%m/%d/%Y")</pre>
    crime_dat_miss$day <- weekdays(as.Date(crime_dat_miss$CrimeDate))</pre>
88
    crime_dat_miss$DayOfWeek <- with(crime_dat_miss, ifelse(day=="Monday", "1",</pre>
91
                                                                ifelse(day=="Tuesday", "2",
92
                                                                        ifelse(day=="Wednesday", "3",
                                                                               ifelse(day=="Thursday", "4",
93
94
                                                                                       ifelse(day=="Friday", "5",
                                                                                              ifelse(day=="Saturday", "6", "7")))))))
95
    #crime_dat_miss$HourOfDay <-</pre>
    #crime_dat_miss$Location <- as.character(crime_dat_miss$Location)</pre>
99
```

```
23 install.packages("cluster")
24 library(cluster)
    crime_dat<-read.csv("BCD.csv",header = TRUE, sep = ",")
26
27
    #Extracting and making new columns for year and month
   crime_dat$year<-substring(crime_dat$CrimeDate,7,11)</pre>
    crime_dat$month<-substring(crime_dat$CrimeDate.1.2)</pre>
    temporary_dataset<-crime_dat[,c("year","CrimeCode","Description")]</pre>
31
32
33
    #ddply(crime_dat, "crime_dat", summarize)
34
    #Count of crimes by type of crime
35
    crime_count<-temporary_dataset %>% group_by(Description) %>% tally() %>% arrange(desc(n))
36
37
38 #unique(crime_dat$year)
39 #Count of crimes by type of crime, yearwise
  crime_year <- temporary_dataset %>% group_by(year, Description) %>% filter(year > "2013") %>% tally()
    ggplot(crime_year,aes(year,n,colour = Description, group=1))+geom_point() +xlab("Year")+ylab("Count")
42
    #Count of crimes by year
43
    crime_count_year <- temporary_dataset %>% group_by(year) %>% filter(year > "2013") %>% tally() %>% arrange(desc(n))
    ggplot(crime_count_year,aes(year,n,fill = year)) + geom_bar(stat="identity")
46
47
    unique(crime_dat$District)
    #Bar Plot of description and count per year
    ggplot(crime_count,aes(Description,n)) + geom_bar(stat="identity")
51
    #Analyzing by district
53
    crime_district<-crime_dat[,c("District","year","CrimeCode","Description")] %>% group_by(District)
54
55 #Crime count by district
    crime_count_district<-crime_district %>% group_by(District) %>% tally() %>% arrange(desc(n))
57
    ggplot(crime_count_district,aes(District,n,fill=District)) + geom_bar(stat="identity")
58
59 #Crime count by month
   temporary_dataset<-crime_dat[,c("month","CrimeCode","Description")]</pre>
    crime_month <- temporary_dataset %>% group_by(month) %>% tally()
    ggplot(crime_month,aes(month,n,fill=month)) + geom_bar(stat="identity")
63
```

```
23 install.packages("cluster")
24 library(cluster)
25 crime_dat<-read.csv("BCD.csv",header = TRUE, sep = ",")
26
   #Extracting and making new columns for year and month
27
    crime_dat$year<-substring(crime_dat$CrimeDate,7,11)</pre>
29 crime_dat$month<-substring(crime_dat$CrimeDate,1,2)</pre>
    temporary_dataset<-crime_dat[,c("year","CrimeCode","Description")]</pre>
31
32
    #ddply(crime_dat, "crime_dat", summarize)
33
34
35
    #Count of crimes by type of crime
    crime_count<-temporary_dataset %>% group_by(Description) %>% tally() %>% arrange(desc(n))
36
37
    #unique(crime_dat$year)
38
   #Count of crimes by type of crime, yearwise
40 crime_year <- temporary_dataset %>% group_by(year,Description) %>% filter(year > "2013") %>% tally()
    ggplot(crime\_year, aes(year, n, colour = Description, \ group=1)) + geom\_point() + xlab("Year") + ylab("Count")
41
42
    #Count of crimes by year
43
    crime_count_year <- temporary_dataset %>% group_by(year) %>% filter(year > "2013") %>% tally() %>% arrange(desc(n))
    ggplot(crime_count_year,aes(year,n,fill = year)) + geom_bar(stat="identity")
46
47
    unique(crime_dat$District)
    #Bar Plot of description and count per year
    ggplot(crime_count,aes(Description,n)) + geom_bar(stat="identity")
51
    #Analyzing by district
    crime_district<-crime_dat[,c("District","year","CrimeCode","Description")] %>% group_by(District)
53
54
    #Crime count by district
    crime_count_district<-crime_district %>% group_by(District) %>% tally() %>% arrange(desc(n))
57
    ggplot(crime_count_district,aes(District,n,fill=District)) + geom_bar(stat="identity")
58
59 #Crime count by month
   temporary_dataset<-crime_dat[,c("month","CrimeCode","Description")]
    crime_month <- temporary_dataset %>% group_by(month) %>% tally()
    ggplot(crime_month,aes(month,n,fill=month)) + geom_bar(stat="identity")
63
```

```
116 #K Means Clustering
117 install.packages("fpc")
118 library(fpc)
119
120 set.seed(20)
121 CrimeCluster <- kmeans(crime_dat_miss[, 4:5], 9, nstart = 20)
122 crime_dat_miss$loc <- as.factor(CrimeCluster$cluster)</pre>
123 str(CrimeCluster)
124
125 library(ggmap)
126
127
     #ggmap
     BaltimoreMap <- get_map("Maryland", zoom = 10)
     ggmap(BaltimoreMap) + geom_point(aes(x = Longitude, y = Latitude, colour = as.factor(crime_dat_miss$loc)),data = crime_dat_miss) +
       ggtitle("NCrimes using KMean")
130
131
     qqplot(data = subset(states, region == c("maryland")), mapping = aes(x = long, y = lat, group = group)) + coord_fixed(1.3) +
       geom_polygon(color = "black", fill = "gray") +
133
       geom\_point(data=crime\_dat\_miss, aes(x = crime\_dat\_miss$Longitude, y = crime\_dat\_miss$Latitude, group=crime\_dat\_miss$loc), pch=21, size=1, alpha=I(0.005)) +
134
135
       coord_fixed(xlim = c(-76.71162, -76.5285), ylim = c(39.20041, 39.37293))
136
     register_google(key = "AIzaSyDjLgqH4IJJdmQyBIVHKlB7eaacFYS9fV4", write = TRUE)
138
139
     clusplot(CrimeCluster, CrimeCluster$cluster, color=TRUE, shade=TRUE,labels=2, lines=0)
     plotcluster(CrimeCluster, CrimeCluster$cluster)
142
```

```
143 #Decision Tree
144 set.seed(1000)
     #Creating training and testing datasets
146
     crime_dat_miss <- crime_dat_miss %>% filter(year > "2017")
147
     crime_dat_miss$hour <- as.numeric(crime_dat_miss$hour)</pre>
     crime_dat_miss$TimeOfDay <- with(crime_dat_miss, ifelse(hour >= 5 & hour<12, "Morning",</pre>
150
                                                               ifelse(hour>=12 & hour<=17, "Afternoon", ifelse(hour>=17 & hour<=20, "Evening", "Night"))))
151
     crime_dat_miss$DayOfWeek <- as.factor(crime_dat_miss$DayOfWeek)</pre>
152 ind <- sample.split(Y=crime_dat_miss$CrimeCode, SplitRatio = 0.75)
153 crime_dat_miss$CrimeCode <- as.numeric(crime_dat_miss$CrimeCode)
154 train_set <- crime_dat_miss[ind,]</pre>
155 test_set <- crime_dat_miss[!ind,]</pre>
156
157 CrimeTree <- rpart(District ~ TimeOfDay + DayOfWeek + hour + Description, data = train_set , method = "class")
158 par(xpd = NA) # Avoid clipping the text in some device
159 plot(CrimeTree)
160 text(CrimeTree)
161 predicted.classes <- CrimeTree %>% predict(test_set, type ="class")
     mean(predicted.classes == test_set$CrimeCode)
163
164 #KNN Classification
165 * normalize <- function(x) {
    return ((x - min(x)) / (max(x) - min(x)))
167 prc_n <- as.data.frame(lapply(crime_dat_miss[4:5], normalize))</pre>
168 train_set <- crime_dat_miss[ind,]
169 test_set <- crime_dat_miss[!ind,]</pre>
170 prc_test_pred <- knn(train = train_set, test = test_set,cl = train_set$Crime, k=10)
171
172
```

```
JUDS
/Documents/Academics/Term 1/Big Data/R Project/
 70470 11153 0.86335959
model <- randomForest(CrimeViolent ~ DayOfWeek + Season + La
iss, ntree=200)
model
all:
randomForest(formula = CrimeViolent ~ DayOfWeek + Season + Lat
ne_dat_miss, ntree = 200)
               Type of random forest: classification
                     Number of trees: 200
No. of variables tried at each split: 2
        OOB estimate of error rate: 25.12%
Confusion matrix:
       0 1 class.error
0 178329 14739 0.07634098
  54271 27352 0.66489837
```

Conclusions

Final Remarks

Clear indication from the data used that crime and location correlate, as well as certain measures of time.

Use the latitude and longitude in order to map the crimes $\ \square$ Correlation between road axes and crimes

THANK YOU

