Math 239 - Introduction to Combinatorics

Spring 2017

Lecture 33: July 17th, 2017

Lecturer: Alan Arroyo Guevara

Notes By: Harsh Mistry

Definition 33.1 Consider a matching M. Given a unsaturated vertex $a \in A$ and $x \in A \cup B$, then x is M-Reachable or just Reachable from a, if there is a alternating path connecting a to x

Notation:

• x_o = vertices in A that are unsaturated

• $x = \text{vertices in A that are M-Reachable for some } a \in x_o$

• y = vertices in B that are M-Reachable for some $a \in x_o$

33.1 Algorithm For Finding M-Reachable Vertices

Input: Bipartite g and matching M **Output**: X, Y and for every $v \in X \cup Y$ an alternating path P_x

Initialize: $x_0 \leftarrow \emptyset$ and $P_v \leftarrow \emptyset$ **Input**: Bipartite g and matching M **Output**: X, Y and for every $v \in X \cup Y$ an alternating path P_x

Initialize: $x_0 \leftarrow \emptyset$ and $P_v \leftarrow \emptyset$

• For each unsaturated $v_0 \in A$

$$-x_0 \leftarrow x_0 \cup \{V_0\}$$

$$-P_x \leftarrow V_0$$

• For $i = 1, 2, 3, \dots$

– For each vertex $v_i \in \bigcup X_i$ for which $\exists V_{i-1} \in X_{i-1}$

*
$$X_i \leftarrow X_i \cup \{V_i\}$$

*
$$P_{vi} \leftarrow P_{vi-1}, V_i$$

•
$$X \leftarrow X_0 \cup X_2 \cup X_4 \cup \dots$$

•
$$Y \leftarrow X_1 \cup X_3 \cup X_5 \cup \dots$$