MapReduce and Frequent Itemsets Mining

Yang Wang

MapReduce (Hadoop)

Programming model designed for:

- Large Datasets (HDFS)
 - Large files broken into chunks
 - Chunks are replicated on different nodes
- Easy Parallelization
 - Takes care of scheduling
- Fault Tolerance
 - Monitors and re-executes failed tasks

MapReduce

3 Steps

Map:

- Apply a user written map function to each input element.
- The output of Map function is a set of keyvalue pairs.

• GroupByKey:

 Sort and Shuffle: Sort all key-value pairs by key and output key-(list of value pairs)

Reduce

 User written reduce function applied to each key-[list of value] pairs

Map-Reduce: A diagram

1/21/18

Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

4

Coping with Failure

MapReduce is designed to deal with compute nodes failing

Output from previous phases is stored. Reexecute failed tasks, not whole jobs.

Blocking Property: no output is used until the task is complete. Thus, we can restart a Map task that failed without fear that a Reduce task has already used some output of the failed Map task.

Data Flow Systems

- MapReduce uses two ranks of tasks:
 - One is Map and other is Reduce
 - Data flows from first rank to second rank
- Data Flow Systems generalise this:
 - Allow any number of tasks
 - Allow functions other than Map and Reduce
- Spark is the most popular data-flow system.
 - RDD's : Collection of records
 - Spread across clusters and read-only.

Frequent Itemsets

- The Market-Basket Model
 - Items
 - Baskets
 - Count how many baskets contain an itemset
 - Support threshold => frequent itemsets
- Application
 - Confidence
 - Pr(D | A, B, C)

Computation Model

- Count frequent pairs
- Main memory is the bottleneck
- How to store pair counts?
 - Triangular matrix/Table
- Frequent pairs -> frequent items
- A-Priori Algorithm
 - Pass 1 Item counts
 - Pass 2 Frequent items + pair counts
- PCY
 - Pass 1 Hash pairs into buckets
 - Infrequent bucket -> infrequent pairs
 - Pass 2 Bitmap for buckets
 - Count pairs w/ frequent items and frequent bucket

Main-Memory: Picture of A-Priori

Green box represents the amount of available main memory. Smaller boxes represent how the memory is used.

Main-Memory: Picture of PCY

All (Or Most) Frequent Itemsets

- Handle Large Datasets
- Simple Algorithm
 - Sample from all baskets
 - Run A-Priori/PCY in main memory with lower threshold
 - No guarantee
- SON Algorithm
 - Partition baskets into subsets
 - Frequent in the whole => frequent in at least one subset
- Toivonen's Algorithm
 - Negative Border not frequent in the sample but all immediate subsets are
 - Pass 2 Count frequent itemsets and sets in their negative border
 - What guarantee?

Locality Sensitive Hashing and Clustering

Hongtao Sun

Main idea:

- What: hashing techniques to map similar items to the same bucket → candidate pairs
- Benefits: O(N) instead of O(N²): avoid comparing all pairs of items
 Downside: false negatives and false positives
- Applications: similar documents, collaborative filtering, etc.

For the similar document application, the main steps are:

- **1.Shingling** converting documents to set representations
- **2. Minhashing** converting sets to short signatures using random permutations
- **3.Locality-sensitive hashing** applying the "b bands of r rows" technique on the signature matrix to an "s-shaped" curve

Shingling:

- Convert documents to set representation using sequences of *k* tokens
- Example: abcabc with k = 2 shingle size and character tokens → {ab, bc, ca}
- Choose large enough $k \rightarrow$ lower probability shingle s appears in document
- Similar documents → similar shingles (higher Jaccard similarity)

Jaccard Similarity: $J(S_1, S_2) = |S_1 \cap S_2| / |S_1 \cup S_2|$

Minhashing:

 Creates summary signatures: short integer vectors that represent the sets and reflect their similarity

General Theory:

- Distance measures d (similar items are "close"):
 - o Ex) Euclidean, Jaccard, Cosine, Edit, Hamming
- LSH families:
 - A family of hash functions H is (d₁, d₂, p₁, p_2)-sensitive if for any x and y:
 - If $d(x, y) \le d_1$, $Pr[h(x) = h(y)] >= p_1$; and If $d(x, y) >= d_2$, $Pr[h(x) = h(y)] <= p_2$.
- Amplification of an LSH families ("bands" technique):
 - AND construction ("rows in a band")
 - OR construction ("many bands")
 - AND-OR/OR-AND compositions

Suppose that two documents have Jaccard similarity s.

Step-by-step analysis of the banding technique (b bands of r rows each)

- Probability that signatures agree in **all** rows of a particular band:
 - \circ s^r
- Probability that signatures disagree in at least one row of a particular band:
 - \circ 1 s^r
- Probability that signatures disagree in at least one row of all of the bands:
 - \circ (1 s^r)^b
- Probability that signatures agree in all rows of a particular band
 - ⇒ Become candidate pair:
 - 1 (1 s^r)^b

A general strategy for **composing families** of minhash functions:

AND construction (over r rows in a single band):

- (d_1, d_2, p_1, p_2) -sensitive family $\Rightarrow (d_1, d_2, p_1, p_2)$ -sensitive family
- Lowers all probabilities

OR construction (over b bands):

- (d_1, d_2, p_1, p_2) -sensitive family \Rightarrow $(d_1, d_2, 1 (1 p_1)^b, 1 (1 p_2)^b)$ -sensitive family
- Makes all probabilities rise

We can try to make $p_1 \rightarrow 1$ (lower false negatives) and $p_2 \rightarrow 0$ (lower false positives), but this can require many hash functions.

Clustering

What: Given a set of points and a distance measure, group them into "clusters" so that a point is more similar to other points within the cluster compared to points in other clusters (unsupervised learning - without labels)

How: Two types of approaches

Point assignments

- Initialize centroids
- Assign points to clusters, iteratively refine

• Hierarchical:

- Each point starts in its own cluster
- Agglomerative: repeatedly **combine** nearest clusters

Point Assignment Clustering Approaches

Best for spherical/convex cluster shapes

- k-means: initialize cluster centroids, assign points to the nearest centroid, iteratively refine estimates of the centroids until convergence

 - Euclidean space
 Sensitive to initialization (K-means++)
 Good values of "k" empirically derived
 Assumes dataset can fit in memory
- BFR algorithm: variant of k-means for very large datasets (residing on disk)

 - Keep running statistics of previous memory loads
 Compute centroid, assign points to clusters in a second pass

Hierarchical Clustering

- Can produce clusters with unusua
 - o e.g. concentric ring-shaped clusters

• Agglomerative approach:

- Start with each point in its own cluster
- Successively merge two "nearest" clusters until convergence

Dendrogram

• Differences from Point Assignment:

- Location of clusters: centroid in Euclidean spaces, "clustroid" in non-Euclidean spaces
- Different intercluster distance measures: e.g. merge clusters with smallest *max* distance (worst case), *min* distance (best case), or *average* distance (average case) between points from each cluster
- Which method works best depends on cluster shapes, often trial and error

Dimensionality Reduction and Recommender Systems

Jayadev Bhaskaran

Dimensionality Reduction

- Motivation
 - Discover hidden structure
 - Concise description
 - Save storage
 - Faster processing
- Methods
 - SVD
 - $\blacksquare M = U\Sigma V^{\mathsf{T}}$
 - U user-to-concept matrix
 - V movie-to-concept matrix
 - Σ "strength" of each concept
 - CUR Decomposition
 - M = CUR

SVD

- $M = U\Sigma V^T$
 - \circ U^TU = I, V^TV = I, Σ diagonal with non-negative entries
 - Best low-rank approximation (singular value thresholding)
 - Always exists for any real matrix M

Algorithm

- Find Σ, V
 - Find eigenpairs of $M^TM \rightarrow (D, V)$
 - \blacksquare Σ is square root of eigenvalues D
 - V is the right singular vectors
 - Similarly U can be read off from eigenvectors of MM^T
- Power method: random init + repeated matrix-vector multiply (normalized) gives principal evec
- Note: Symmetric matrices
 - M^TM and MM^T are both real, symmetric matrices
 - Real symmetric matrix: eigendecomposition QAQ^T

CUR

- M = CUR
- Non-uniform sampling
 - Row/Column importance proportional to norm
 - U: pseudoinverse of submatrix with sampled rows
 R & columns C
- Compared to SVD
 - Interpretable (actual columns & rows)
 - Sparsity preserved (U,V dense but C,R sparse)
 - May output redundant features

Recommender Systems: Content-Based

What: Given a bunch of users, items and ratings, want to predict missing ratings

How: Recommend items to customer x similar to previous items rated highly by x

- Content-Based
 - Collect user profile x and item profile i
 - Estimate utility: u(x,i) = cos(x,i)

Recommender Systems: Collaborative Filtering

user-user CF vs item-item CF

 user-user CF: estimate a user's rating based on ratings of similar users who have rated the item; similar definition for item-item CF

Similarity metrics

- Jaccard similarity: binary
- Cosine similarity: treats missing ratings as "negative"
- Pearson correlation coeff: remove mean of non-missing ratings (standardized)
- Prediction of item i from user x: $(s_{xy} = sim(x,y))$

$$r_{xi} = \frac{\sum_{y \in N} s_{xy} \cdot r_{yi}}{\sum_{y \in N} s_{xy}}$$

 Remove baseline estimate and only model rating deviations from baseline estimate, so that we're not affected by user/item bias

Recommender Systems: Latent Factor Models

Motivation: Collaborative filtering is a local approach to predict ratings based on finding neighbors. Matrix factorization takes a more global view.

<u>Intuition:</u> Map users and movies to (lower-dimensional) latent-factor space. Make prediction based on these latent factors.

Model: $\hat{r}_{xi} = p_x \cdot q_i$

for user x and movie i

Recommender Systems: Latent Factor Models

$$\min_{P,Q} \sum_{(x,i) \in \text{training}} (r_{xi} - p_x \cdot q_i)^2 + \lambda_1 \sum_{x} \|p_x\|^2 + \lambda_2 \sum_{i} \|q_i\|^2$$

- Only sum over observed ratings in the training set
- Use regularization to prevent overfitting
- Can solve via SGD (alternating update for P, Q)
- Can be extended to include biases (and temporal biases)

$$\hat{r}_{xi} = \mu + b_x + b_i + p_x \cdot q_i$$

PageRank

Lantao Mei

PageRank

- PageRank is a method for determining the importance of webpages
 - Named after Larry Page
- Rank of a page depends on how many pages link to it
- Pages with higher rank get more of a vote
- The vote of a page is evenly divided among all pages that it links to

Example

•
$$r_a = r_y/2 + r_m$$

•
$$r_y = r_y/2 + r_a/2$$

•
$$r_m = r_a / 2$$

Example

Deal with pathological situations by adding a random teleportation term

•
$$r_a = 0.8(r_y/2 + r_m) + 0.2/3$$

•
$$r_y = 0.8(r_y/2 + r_a/2) + 0.2/3$$

•
$$r_m = 0.8 (r_a / 2) + 0.2/3$$

PageRank

If
$$i \to j$$
, then $M_{ji} = \frac{1}{d_i}$ else $M_{ji} = 0$

PageRank equation [Brin-Page, '98]

$$r_j = \sum_{i \to j} \beta \frac{r_i}{d_i} + (1 - \beta) \frac{1}{N}$$

The Google Matrix A:

[1/N]_{NxN}...N by N matrix where all entries are 1/N

$$A = \beta M + (1 - \beta) \left[\frac{1}{N} \right]_{N \times N}$$

• We have a recursive problem: $r = A \cdot r$

Topic-specific PageRank

- Teleport can only go to a topic-specific set of "relevant" pages (teleport set)
- To make this work all we need is to update the teleportation part of the PageRank formulation:

$$A_{ij} = \begin{cases} \beta M_{ij} + (1 - \beta)/|S| & \text{if } i \in S \\ \beta M_{ij} + 0 & \text{otherwise} \end{cases}$$

A is a stochastic matrix!

Social Network Algorithms

Ansh Shukla

Graph Algorithms

- **Problem:** Finding "communities" in large graphs
 - A community is any structure we're interested by in the graph.
 - Examples of properties we might care about: overlap, triangles, density.

- Problem: Finding densely linked, non-overlapping communities.
- Intuition: Give a score to all nodes, rank nodes by score, and then partition the ranked list into clusters.
- What to know:

(Algorithm) Approximate Personalized PageRank –

- Frame PPR in terms of lazy random walk
- While error measure is too high
 - Run one step of lazy random walk

$$egin{aligned} r_u^{(t+1)} &= rac{1}{2} r_u^{(t)} + rac{1}{2} \sum_{i o u} rac{1}{d_i} r_i^{(t)} \ q_u &= p_u - r_u \quad \max_{u \in V} rac{q_u}{d_u} \geq \epsilon \end{aligned}$$

- **Problem:** Finding densely linked, non-overlapping communities.
- **Intuition:** Give a score to all nodes, rank nodes by score, and then partition the ranked list into clusters.
- What to know:

Cut: Set of edges with only one node in the cluster: $cut(A) = \sum_{i \in A, j \notin A} w_{ij}$ Note: This works for weighed and unweighted (set all $\mathbf{w}_{ij} = 1$) graphs

- **Problem:** Finding densely linked, non-overlapping communities.
- **Intuition:** Give a score to all nodes, rank nodes by score, and then partition the ranked list into clusters.
- What to know: Criterion: Conductance:

Connectivity of the group to the rest of the network relative to the density of the group

$$\phi(A) = \frac{|\{(i, j) \in E; i \in A, j \notin A\}|}{\min(vol(A), 2m - vol(A))}$$

- **Problem:** Finding densely linked, non-overlapping communities.
- **Intuition:** Give a score to all nodes, rank nodes by score, and then partition the ranked list into clusters.
- What to know:

Sweep:

- Sort nodes in decreasing PPR score $r_1 > r_2 > \cdots > r_n$
- For each i compute $\phi(A_i = \{r_1, ... r_i\})$
- **Local minima** of $\phi(A_i)$ correspond to good clusters

Motif-based spectral clustering

- **Problem:** Finding densely linked, non-overlapping communities (as before), but changing our definition of "densely linked".
- **Intuition:** Modify graph so edge weights correspond to our notion of density, modify conductance criteria, run PPR w/ Sweep.
- What to know:

Motif-based spectral clustering

- **Problem:** Finding densely linked, non-overlapping communities (as before), but changing our definition of "densely linked".
- **Intuition:** Modify graph so edge weights correspond to our notion of density, modify conductance criteria, run PPR w/ Sweep.
- What to know:

$$\phi_M(S) = \frac{\#(\text{motifs cut})}{\text{vol}_M(S)}$$

Searching for small communities (trawling)

- Problem: Finding complete bipartite subgraphs K_{s,t}
- Intuition: Reframe the problem as one of finding frequent itemsets: think of each vertex as a basket defined by its neighbors. Run A-priori with frequency threshold s to get item sets of size t.
- What to know:

- **Problem:** Want to represent nodes in graph in vector space while capturing relevant properties like graph topology.
- Intuition: Define a mapping from nodes to embeddings.
- Define a node similarity function (dot product)
- Optimize the parameters of the encoder so that: similarities in one representation (graph) match similarities in another (embedding)

- **Problem:** Want to represent nodes in graph in vector space while capturing relevant properties like graph topology.
- Intuition: Define a mapping from nodes to embeddings.

- **Problem:** Want to represent nodes in graph in vector space while capturing relevant properties like graph topology.
- Intuition:
- Select a random walk

- p, q model transition probabilities
 - p ... return parameter
 - q ... "walk away" parameter

- Problem: Want to represent nodes in graph in vector space while capturing relevant properties like graph topology.
- Intuition:
- Optimize embedding

- **Problem:** Want to represent nodes in graph in vector space while capturing relevant properties like graph topology.
- Intuition:
- Optimize embedding

$$\mathcal{L} = \sum_{u \in V} \sum_{v \in N_R(u)} -\log(P(v|\mathbf{z}_u))$$

Large-Scale Machine Learning

Jerry Zhilin Jiang

Large-scale machine learning

Overview

Supervised learning

- given training set with labels (x_i, y_i)
- Learn the function f that predicts y given x, f(x) = y
- Why Hard? Need to generalize well to unseen data

Classification vs. Regression

- Classification: Label y belongs to a discrete set
- Regression: Label y is continuous

Methods covered in this course

- Decision Tree
- Support Vector Machine (SVM)

Decision Tree

- Input: d attributes (features) $x^{(1)}, x^{(2)}, \dots, x^{(d)}$ Can be numerical or categorical
- Output: y (label)
 Either numerical (regression)
 or categorical (classification)
- Given data point x_i
 Start from root, "drop" it down the tree until it hits a leaf node
- Make prediction accordingly after reaching the leaf node

Three problems:

- How to split?
- When to stop?
- How to predict?

How to split?

Measure the quality of potential splits based on some criterion

Regression: Purity Split on node $(x^{(i)}, v)$, create D, D_L , D_R (parent / left child/ right child dataset)

$$|D| \cdot Var(D) - (|D_L| \cdot Var(D_L) + |D_R| \cdot Var(D_R))$$

Classification: Information Gain IG(Y|X)

How much information about Y is contained in X.

$$IG(Y|X) = H(Y) - H(Y|X)$$

Entropy
$$H(x) = -\sum_{j=1}^{n} p_j \log p_j$$

Conditional entropy

$$H(Y|X) = \sum_{j=1}^{n} P(X = v_j) H(Y|X = v_j)$$

When to stop?

- When the leaf is "pure" (variance below threshold)
- When # of examples in a leaf node is too small

How to predict?

Regression

- predict average y_i of examples in the leaf
- Build linear regression model on the example points

Classification

• Predict most common y_i in the leaf

Building decision trees with MapReduce: PLANET

- Tree small (in memory), data too large to keep in memory
- Hundreds of numerical (discrete or continuous) attributes
- Target variable is numerical (i.e. regression)

Build the decision tree one level at a time

Master Node

Keeps track of the model and decides how to grow the tree

MapReduce

Do the actual work on data

3 Types of MapReduce jobs:

- Initialization (run once first)
 - Find candidate splits (node n, attribute X^(j), value v)
 - Ideally divide data into similar-sized buckets
- FindBestSplit (run multiple times)
 - For a split node j find $X^{(j)}$ and v that **maximizes** purity
- InMemoryBuild (run once last)
 - If there is little data entering a tree node, Master runs an InMemoryBuild MapReduce job to grow the entire subtree below that node, including leaves

Learning Ensembles

Bagging

- Learn **multiple trees**, each using an independently sampled subset of the training data (sampled with replacement)
- Predictions from all trees are aggregated (e.g. majority vote, average) to compute the final model prediction

Improvement: Random Forests

- At each candidate split, consider only a random subset of all available features
- Avoids cases where all trees select the same few strong features (Breaks correlation between different decision trees)
- Achieves state-of-the-art results in many classification problems

SVM

Given training data

$$(x_1, y_1) \dots (x_n, y_n)$$

x: d-dimensional, real valued

$$x_i = (x_i^{(1)}, x_i^{(2)}, \dots, x_i^{(d)})$$

 $y_i = -1 \text{ or } +1$

A, B, C: support vectors, uniquely define the decision boundary

Margin γ : distance of closest example from the decision line (hyperplane)

Goal: maximize margin γ , find separating hyperplane with the largest distance possible from both positive / negative point

From maximize γ to minimize $\frac{1}{2} ||w||^2$

A lying on support plane

Goal: Maximize distance |AH|

$$\mathbf{MA} \cdot \mathbf{w} = ||\mathbf{w}|| \times ||\mathbf{AM}|| \times \cos \theta$$
$$\mathbf{w} \cdot \mathbf{A} + b = \gamma$$

$$\mathbf{w} \cdot \mathbf{M} + b = 0$$

$$||\mathbf{A}\mathbf{H}|| = ||\mathbf{A}\mathbf{M}|| \times \cos \theta$$

$$= \frac{|\mathbf{A}\mathbf{M} \cdot \mathbf{w}|}{||\mathbf{w}||}$$

$$= \frac{|(\mathbf{A} - \mathbf{M}) \cdot \mathbf{w}|}{||\mathbf{w}||}$$

$$= \frac{|\mathbf{A} \cdot \mathbf{w} - \mathbf{M} \cdot \mathbf{w}|}{||\mathbf{w}||}$$

$$= \frac{|\mathbf{A} \cdot \mathbf{w} - \mathbf{M} \cdot \mathbf{w}|}{||\mathbf{w}||}$$

- Distance from A to H: γ measured in ||w||
- $= \frac{|\mathbf{A} \cdot \mathbf{w} \mathbf{M} \cdot \mathbf{w}|}{||\mathbf{w}||} \quad \text{Scale } \gamma \text{ and } ||\mathbf{w}|| \text{ both by 2, nothing changes, thus we can either}$ changes, thus we can either
- $=\frac{|(\gamma-b)-(-b)|}{||\mathbf{w}||} \quad \text{Normalize w, i.e } \big||w|\big|=1 \text{, maximize } \gamma \Leftrightarrow \\ \quad \text{Fix margin } \gamma=1 \text{, minimize length of w}$

 - We use the second way

Optimization problem formalized

fix margin $\gamma = 1$, minimize length of w

$$\min_{w} \frac{1}{2} ||w||^2$$

$$s.t. \forall i, y_i (w \cdot x_i + b) \ge 1$$

In real world, data is often not linear separable - Introduce penalty

$$\underset{w,b}{\operatorname{arg\,min}} \quad \frac{1}{2} \underbrace{w \cdot w + C} \cdot \sum_{i=1}^{n} \max\{0, 1 - y_{i}(w \cdot x_{i} + b)\}$$
Regularization Empirical loss L (how well we fit training data)

hyperparameter

Penalize mis-predicted points AND correctly predicted points that fall within the margin

Cost Function

$$J(w,b) = \frac{1}{2} \sum_{j=1}^{d} (w^{(j)})^2 + C \sum_{i=1}^{n} \max \left\{ 0, 1 - y_i (\sum_{j=1}^{d} w^{(j)} x_i^{(j)} + b) \right\}$$

Minimizing cost function J

- Batch Gradient Descent
- Stochastic Gradient Descent
- Mini-batch Gradient Descent

$$\theta = \theta - \eta \cdot \nabla_{\theta} J(\theta; x^{(i)}; y^{(i)}).$$

Large-scale machine learning

Summary

Decision Tree

- Classification or Regression
- Numerical or categorical features, usually dense
- Complicated decision boundaries

Support Vector Machine (SVM)

- Classification (usually $y = \pm 1$)
- High-dimensional, sparse feature space
- Simple, linear decision boundary

Streaming Algorithms

Wensi Yin

Bloom filters - Problem

- You have a stream of ads. How to make sure a user doesn't see the same ad multiple times?
- Naïve approach: store the ads in a hash table.
 - This takes O(# ads) space!
- What if we want to use at most 100 slots of memory?
 - We can not have a deterministic answer, but we can answer it with high prob!

Bloom filters - Construction

- What if we want to use at most 100 slots of memory?
- Create a bit array B of size 100, initialized to all 0's
- Create a hash function that hashes ads to 100 different possible buckets
- When an ad is seen, hash the ad to a bucket (say, bucket 79), and set B[79] = 1

Bloom filters - Test

- How to check whether a new incoming ad has been seen?
- Suppose the ad hashes to bucket 89
- If B[89] = 0, you know the ad has NOT been seen
- If B[89] = 1, the ad might have been seen, but we also might have seen a different ad that happened to hash to the same bucket.
- **Prob false positive:** $1 \left(1 \frac{1}{100}\right)^m$, (m: # distcint ads seen so far)
- K number of hash functions: check if all of the k bits corresponding to the hash functions are set to 1.
- Reasonable number of hash functions will help reduce false positive prob.

Flajolet-Martin Algorithm

- Problem: a data stream consists of elements chosen from a set of size n. Maintain a count of the number of distinct elements seen so far.
- Pick a hash function h that element in set to log₂n bits.
- For each stream element a, let r(a) be the number of trailing 0's in h(a).
 - Record R = the maximum r(a) seen for any a in the stream.
 - Also known as the "tail length"
- Estimate of distinct elements = 2^R.
- Intuitively, seeing r trailing 0s is "unusual" (prob 1/(2^r))
 - More distinct elements leads to a higher chance of seeing this "unusual" event
- If we notice this "unusual" event, our estimate should be correspondingly higher

AMS method

- Problem: Suppose a stream has elements chosen from a set of n values. Let m be the number of times value i occurs. Estimate the k-th moment which is the sum of m_i^k over all i.
 - 0th moment = number of distinct elements in the stream.
 - 1st moment = sum of counts of the numbers of elements = length of the stream.
 - 2nd moment = measure of how uneven the distribution is.
- Algorithm for 2nd moment:
 - Assume stream seen so far has n elements
 - Pick a random starting and let the chosen time have element a in the stream.
 - Let X = # times a is seen in the stream from that point onward
 - Estimate of 2nd moment = n(2X -1)
- Application:
 - 2nd moment can be used to estimate self-join size in database.

Computational Advertising

Stefanie

Advertising: Bipartite Matching

M = {(1,a),(2,b),(3,d)} is a matching Cardinality of matching = |M| = 3

Advertising: Online Algorithms and Competitive Ratio

- Question: How to find a maximum matching for a given bipartite graph
- Polynomial offline algorithm exists, but what's the best we can do in online setting?

```
Competitive ratio = min_{all\ possible\ inputs\ l} (|M_{greedy}|/|M_{opt}|)
```

(greedy's worst performance over all possible inputs I)

- In maximization problem, competitive ratio <=1
- In minimization problem, competitive ratio >= 1
- Greedy bipartite matching algorithm: competitive ratio = 1/2.
 - Easy to find examples, proofs are more difficult

Advertising: Adwords and Click Through Rate

Adwords problem is example of online algorithm
 Instead of sorting advertisers by bid, sort by expected revenue

Advertiser	Bid	CTR	Bid * CTR
В	\$0.75	2%	1.5 cents
С	\$0.50	2.5%	1.125 cents
Α	\$1.00	1%	1 cent

Challenges:

- CTR of an ad is unknown
- Advertisers have limited budges and bid on multiple queries

Advertising: Greedy vs BALANCE Algorithm

- Simplified setting:
 - There is **1** ad shown for each query
 - All advertisers have the same budget B
 - All ads are equally likely to be clicked
 - Value of each ad is the same (=1)
- Greedy Algorithm: Pick any advertiser who has a bid for query
 - Competitive ratio is 1/2.
- BALANCE Algorithm: Pick advertiser with largest unspent budget
 - Competitive ratio is (1-1/e) = 0.63
 - No online algorithm can do better!

Advertising: 2 Case Analysis

Balance allocation

- Queries allocated to A_1 in optimal
- solution Queries allocated to A_2 in optimal solution Opt revenue = 2B

Balance revenue = 2B-x

We claim $x \le B/2$ => Competitive Ratio = 3/4.

Advertising: Generalized BALANCE Algorithm

- Generalized Scenario:
 - Arbitrary bids and arbitrary budgets
- BALANCE algorithm has arbitrary bad competitive ratio
 - competitive ratio -> 0
- Generalized BALANCE: consider query q, bidder i
 - Bid = x_i
 - Budget = b_i
 - Amount spent so far = m_i
 - Fraction of budget left over f_i = 1-m_i/b_i
 - Define $\psi_i(q) = x_i(1-e^{-fi})$
- Allocate query q to bidder i with largest value of $\psi_i(q)$
- Same competitive ratio (1-1/e) = 0.63

Learning Through Experimentation

Baige(Alice) Liu

Learning Through Experimentation

- Take action, get reward, learn from that reward.
- Approach: formalize as a Multiarmed Bandits. Take action = pull an arm.

Multiarmed Bandits

- K-armed bandit: |action| = K.
- Each arm a wins (reward = 1) with fixed (unknown) probability μ_a , and loses (reward = 0) with fixed (unknown) probability $1 \mu_a$.
- Want to maximize total reward, but need information about (unknown) μ_a .
- Every time we pull a, we learn a bit about a, so we can estimate μ_a (denoted as $\widehat{\mu_a}$).

Bandit Algorithm: Greedy and Epsilon-Greedy

- Tradeoff between exploration and exploitation.
- Exploration: pull arm haven't tried before. Exploitation: pull arm with current highest $\widehat{\mu_a}$.
- Greedy algorithm takes action with highest average reward based on samples seen so far $(\widehat{\mu_a})$. But it does not explore sufficiently.
- Epsilon-Greedy takes a random a with a decaying probability ε_t ($O(\frac{1}{t})$), and it takes the same action that Greedy would take with probability $1 \varepsilon_t$. During exploration time, it selects random a equally likely, which is suboptimal.

Bandit Algorithm: *UCB*₁

- Balances exploration and exploitation by taking confidence into consideration.
- A confidence interval is a range of values within which we are sure the mean lies with a certain probability.
- Let m_a = number of times a is pulled, δ = given confidence level.
- Then, confidence interval $b = \max(\mu_a | \delta)$ $\min(\mu_a|\delta) = 2\sqrt{\frac{2\ln T}{m_a}}.$ • $UCB(a) = \widehat{\mu_a} + \alpha\sqrt{\frac{2\ln T}{m_a}}.$

Bandit Algorithm: *UCB*₁

- The accuracy of $\widehat{\mu_a}$ is dependent on how many times we have tried a: trying a too few times means our estimate of μ_a could be very off from the true value μ_a , which means it has a large confidence interval. This interval shrinks as we try a more often.
- Strategy: try arm α with the highest upper bound on its confidence interval, i.e., action as good as possible given the available evidence. It is called an optimistic policy.

•
$$UCB(a) = \widehat{\mu_a} + \alpha \sqrt{\frac{2 \ln T}{m_a}}$$
.