import pandas as pd

Load dataset

file_path = "/content/Global_Cybersecurity_Threats_2015-2024.csv"

df = pd.read_csv(file_path)

df=pd.DataFrame(df)

df

•	_
-	ᄬ

→		Country	Year	Attack Type	Target Industry	Financial Loss (in Million \$)	Number of Affected Users	Attack Source	Security Vulnerability Type	Defense Mechanism Used	Incident Resolution Time (in Hours)	11.
	0	China	2019	Phishing	Education	80.53	773169	Hacker Group	Unpatched Software	VPN	63	*/
	1	China	2019	Ransomware	Retail	62.19	295961	Hacker Group	Unpatched Software	Firewall	71	
	2	India	2017	Man-in-the- Middle	IT	38.65	605895	Hacker Group	Weak Passwords	VPN	20	
	3	UK	2024	Ransomware	Telecommunications	41.44	659320	Nation- state	Social Engineering	Al-based Detection	7	
	4	Germany	2018	Man-in-the- Middle	IT	74.41	810682	Insider	Social Engineering	VPN	68	
	2995	UK	2021	Ransomware	Government	51.42	190694	Unknown	Social Engineering	Firewall	52	
	2996	Brazil	2023	SQL Injection	Telecommunications	30.28	892843	Hacker Group	Zero-day	VPN	26	
	2997	Brazil	2017	SQL Injection	IT	32.97	734737	Nation- state	Weak Passwords	Al-based Detection	30	
	2998	UK	2022	SQL Injection	IT	32.17	379954	Insider	Unpatched Software	Firewall	9	
	2999	Germany	2021	SQL Injection	Retail	48.20	480984	Unknown	Zero-day	VPN	64	
4												▶

Next steps: Generate code with df

View recommended plots

New interactive sheet

df.head()

3	,	Country	Year	Attack Type	Target Industry	Financial Loss (in Million \$)	Number of Affected Users	Attack Source	Security Vulnerability Type	Defense Mechanism Used	Incident Resolution Time (in Hours)	11.
	0	China	2019	Phishing	Education	80.53	773169	Hacker Group	Unpatched Software	VPN	63	
	1	China	2019	Ransomware	Retail	62.19	295961	Hacker Group	Unpatched Software	Firewall	71	
	2	India	2017	Man-in-the- Middle	IT	38.65	605895	Hacker Group	Weak Passwords	VPN	20	
	3	UK	2024	Ransomware	Telecommunications	41.44	659320	Nation- state	Social Engineering	Al-based Detection	7	
4	4 (Germanv	2018	Man-in-the-	IT	74 41	810682	Insider	Social	VPN	68	>

Next steps: Generate code with df

View recommended plots

New interactive sheet

df.tail()

	Country	Year	Attack Type	Target Industry	Financial Loss (in Million \$)	Number of Affected Users	Attack Source	Security Vulnerability Type	Defense Mechanism Used	Incident Resolution Time (in Hours)	11.
2995	UK	2021	Ransomware	Government	51.42	190694	Unknown	Social Engineering	Firewall	52	
2996	Brazil	2023	SQL Injection	Telecommunications	30.28	892843	Hacker Group	Zero-day	VPN	26	
2997	Brazil	2017	SQL Injection	IT	32.97	734737	Nation- state	Weak Passwords	Al-based Detection	30	
2998	UK	2022	SQL Injection	IT	32.17	379954	Insider	Unpatched Software	Firewall	9	
2999	Germanv	2021	SQL	Retail	48 20	480984	l Inknown	7ero-dav	VPN	64	>

df.shape

→ (3000, 10)

df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 3000 entries, 0 to 2999 Data columns (total 10 columns):

Data	columns (cocal to columns).		
#	Column	Non-Null Count	Dtype
0	Country	3000 non-null	object
1	Year	3000 non-null	int64
2	Attack Type	3000 non-null	object
3	Target Industry	3000 non-null	object
4	Financial Loss (in Million \$)	3000 non-null	float64
5	Number of Affected Users	3000 non-null	int64
6	Attack Source	3000 non-null	object
7	Security Vulnerability Type	3000 non-null	object
8	Defense Mechanism Used	3000 non-null	object
9	<pre>Incident Resolution Time (in Hours)</pre>	3000 non-null	int64
dtype	es: float64(1), int64(3), object(6)		

memory usage: 234.5+ KB

df.describe()


```
# Fill missing categorical values with "Unknown"
categorical_cols = df.select_dtypes(include=['object']).columns
df[categorical_cols] = df[categorical_cols].fillna("Unknown")
```

Fill missing numerical values with the median numerical_cols = df.select_dtypes(include=['number']).columns df[numerical_cols] = df[numerical_cols].fillna(df[numerical_cols].median())

Verify missing values are handled print(df.isnull().sum())

```
→ Country

                                            0
    Attack Type
    Target Industry
    Financial Loss (in Million $)
    Number of Affected Users
                                            0
    Attack Source
                                            0
    Security Vulnerability Type
                                            0
    Defense Mechanism Used
                                            0
    Incident Resolution Time (in Hours)
```

plt.tight_layout()
plt.show()

```
dtype: int64

# Ensure column names are properly formatted
df.columns = df.columns.str.strip().str.lower()

# Check column names
print(df.columns)
```

```
Index(['country', 'year', 'attack type', 'target industry', 'financial loss (in million $)', 'number of affected users',
             'attack source', 'security vulnerability type', 'defense mechanism used', 'incident resolution time (in hours)'],
            dtype='object')
# Ensure the target column exists
if "attack type" in df.columns:
    target_column = "attack type"
else:
    raise ValueError("Target column 'Attack Type' not found in dataset.")
import matplotlib.pyplot as plt
import seaborn as sns
# Select categorical columns
categorical_cols = df.select_dtypes(include=['object']).columns
# Plot bar charts for categorical columns
plt.figure(figsize=(20, 15))
for i, col in enumerate(categorical_cols):
    plt.subplot(5, 4, i + 1) # Adjusting subplot grid dynamically
    df[col].value_counts().plot(kind='bar', color='skyblue')
    plt.title(f'Count of {col}')
    plt.xticks(rotation=45) # Rotate x-axis labels for readability
```



```
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np

numerical_cols = df.select_dtypes(include=[np.number]).columns
print("Numerical Columns:", numerical_cols)

# Plot histograms for numerical columns
plt.figure(figsize=(20, 15))

for i, col in enumerate(numerical_cols):
    plt.subplot(5, 4, i + 1) # Adjusting subplot grid dynamically
    sns.histplot(df[col], kde=True, bins=30)
    plt.title(f'Distribution of {col}')

plt.tight_layout()
plt.show()
```

Distribution of incident resolution time (in hours)

120

100

60

Count Count

```
incident resolution time (in hours)'],
           dtype='object')
                  Distribution of year
                                               Distribution of financial loss (in million $)
                                          120
                                                                            120
                                          100
                                                                            100
                                                                             80
                                                                           Count
                                                                             40
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
for col in categorical_cols:
    df[col] = le.fit_transform(df[col])
from sklearn.model_selection import train_test_split
X = df.drop(columns=[target_column]) # Features
y = df[target_column] # Target variable
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42, stratify=y)
print(f"Training Data: {X_train.shape}, Testing Data: {X_test.shape}")
→ Training Data: (2400, 9), Testing Data: (600, 9)
from \ sklearn.preprocessing \ import \ StandardScaler
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
from sklearn.metrics import accuracy_score, classification_report
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier, AdaBoostClassifier
from sklearn.svm import SVC
from sklearn.naive_bayes import GaussianNB
from \ sklearn.neighbors \ import \ KNeighbors Classifier
from \ xgboost \ import \ XGBClassifier
from lightgbm import LGBMClassifier
# Define models
classifiers = {
    "Logistic Regression": LogisticRegression(max_iter=1000),
    "Decision Tree": DecisionTreeClassifier(),
    "Random Forest": RandomForestClassifier(),
}
# Train, Predict, and Evaluate
results = {}
for name, clf in classifiers.items():
    print(f"\nTraining Model: {name}")
    # Train model
    clf.fit(X_train_scaled, y_train)
    # Predict
    y_pred = clf.predict(X_test_scaled)
    # Evaluate
    accuracy = accuracy_score(y_test, y_pred)
    print(f"Accuracy: {accuracy:.4f}")
    print(classification_report(y_test, y_pred))
    # Store results
    results[name] = accuracy
\overline{2}
     Training Model: Logistic Regression
     Accuracy: 0.1567
                    precision
                                 recall f1-score
                                                     support
                         0.17
                                   0.28
                                              0.21
```

Numerical Columns: Index(['year', 'financial loss (in million \$)', 'number of affected users',

1	0.13	0.06	0.08	97
2	0.15	0.05	0.08	92
3	0.16	0.25	0.20	106
4	0.15	0.18	0.16	99
5	0.15	0.08	0.10	100
accuracy			0.16	600
macro avg	0.15	0.15	0.14	600
weighted avg	0.15	0.16	0.14	600

Training Model: Decision Tree

Accuracy: 0.1733

Accuracy. 0.1	./ 33			
	precision	recall	f1-score	support
0	0.15	0.14	0.14	106
1	0.14	0.14	0.14	97
2	0.16	0.18	0.17	92
3	0.23	0.22	0.22	106
4	0.14	0.12	0.13	99
5	0.22	0.23	0.22	100
accuracy			0.17	600
macro avg	0.17	0.17	0.17	600
weighted avg	0.17	0.17	0.17	600

Training Model: Random Forest

Accuracy: 0.1767

Accuracy: 0	1/6/			
	precision	recall	f1-score	support
0	0.19	0.21	0.20	106
1	0.15	0.14	0.15	97
2	0.18	0.15	0.16	92
3	0.20	0.21	0.20	106
4	0.18	0.20	0.19	99
5	0.16	0.14	0.15	100
accuracy			0.18	600
macro avg	0.18	0.18	0.17	600
weighted avg	0.18	0.18	0.18	600

```
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix

for name, clf in classifiers.items():
    y_pred = clf.predict(X_test_scaled)
    cm = confusion_matrix(y_test, y_pred)

    plt.figure(figsize=(8, 6))
    sns.heatmap(cm, annot=True, fmt="d", cmap="Blues")
    plt.title(f'Confusion Matrix - {name}')
    plt.xlabel("Predicted")
    plt.ylabel("Actual")
    plt.show()
```

