Gradient Descent Method

Data Intelligence and Learning (<u>DIAL</u>) Lab Prof. Jongwuk Lee

Gradient Descent Method

Solving the Error Function

 \triangleright How to minimize the error between $f(\mathbf{x})$ and y?

$$E(\mathbf{w}) = \frac{1}{n} \sum_{(\mathbf{x}, y) \in \mathcal{D}} (y - f(\mathbf{x}; \mathbf{w}))^{2}$$

 $\triangleright E(w)$ is minimum where the derivative of E(w) is zero.

Finding **w** satisfying these equations

Solving the Error Function

 \succ Consider a simple linear regression with w_0 and w_1 .

$$\underset{w_0, w_1 \in [-\infty, \infty]}{\operatorname{argmin}} E(w_0, w_1) = \frac{1}{n} \sum_{i=1}^n \left(y^{(i)} - \left(\frac{w_1}{v^{(i)}} + \frac{w_0}{v^{(i)}} \right) \right)^2$$

Solving the Error Function

- Does the solution always exist?
- > Yes, because the error function is quadratic.

$$E(\mathbf{w}) = \frac{1}{n} \sum_{(\mathbf{x}, y) \in \mathcal{D}} (y - f(\mathbf{x}; \mathbf{w}))^{2}$$

- Can we solve it if we choose more complex models?
- No, we may not.
- > What should we do if we cannot solve it?

Solving the Optimization Problem

➤ The ML models can be trained analytically (e.g., normal equation) or are solved numerically (e.g., gradient descent).

Analytical solution

- ◆ It involves framing the problem in a well-understood form and calculating the exact solution.
- In general, it is preferred because it is faster, and the solution is exact.

Numerical solution

- Make guesses for the solution.
- It is necessary to validate whether it is solved well or not.

Challenge of Optimization Problems

- > Finding the minimum value by the closed-form solution is often difficult or impossible.
 - Quadratic functions in many variables
 - System of equations for partial derivatives may be **ill-conditioned**.

Other convex functions

- Global minimum exists, but there is no closed-form solution.
- E.g., logistic regression

Nonlinear functions

- Partial derivatives are not linear.
- E.g., $f(x_1, x_2) = x_1(\sin(x_1 x_2)) + x_2^2$
- E.g., sum of transfer functions in neural networks

Solutions for Optimization Problems

> Several approximation methods

- Gradient descent method
- Newton method
- Gauss-Newton
- Levenberg-Marquardt
- BFGS
- Conjugate gradient

What is the Gradient?

- ➤ The gradient of a function *f* is the collection of all its partial derivatives into a vector.
 - It is denoted as $\nabla f(\mathbf{w})$.
 - Each element in the gradient is the **slope of the function** along the direction of one of the variables.

$$\nabla f(\mathbf{w}) = \nabla f(w_1, w_2, \dots, w_d) = \begin{bmatrix} \frac{\partial f(\mathbf{w})}{\partial w_1} \\ \frac{\partial f(\mathbf{w})}{\partial w_2} \\ \vdots \\ \frac{\partial f(\mathbf{w})}{\partial w_d} \end{bmatrix}$$

 \triangleright Randomly choose an initial point w^0 .

- \triangleright We want to update w satisfying $E(\mathbf{w}_{new}) < E(\mathbf{w})$.
 - When $\mathbf{w}_{\text{new}} = \mathbf{w} + \epsilon$, $E(\mathbf{w}_{\text{new}}) < E(\mathbf{w})$
- > The slope at a position == differential value at a position
 - If $E(\mathbf{w})$ is differentiable, it is easy to find out the slope.

- > Move the reverse direction of the gradient.
 - If the slope is positive, move w to the negative direction.
 - If the slope is negative, move w to the positive direction.

> When
$$\mathbf{w}_{\text{new}} = \mathbf{w} - \frac{\partial E}{\partial \mathbf{w}}$$
, $E(\mathbf{w}_{\text{new}}) < E(\mathbf{w})$

- \triangleright Suppose that w is a vector and so is ϵ .
- \succ When the sum of two vectors can be quite large, we need to control the size of ϵ .
 - This is important because if we make a large update ϵ to \mathbf{w} , we **might** miss out the global minimum of error function $E(\mathbf{w})$.

Without the learning rate

With the learning rate

> Using a learning rate that limits the size of update for w

learning rate: controlling the step size

 \triangleright Move until the gradient of $E(\mathbf{w})$ is zero.

What is the Learning Rate?

- $> \eta$ is used to control the step size or step length.
- \triangleright Too small η can incur slow convergence.
- \succ Too large η can incur overshoot the minima and diverge.

Example: Choosing the Learning Rate

> Demo: https://developers.google.com/machine-learning/crash-course/fitter/graph

Gradient Descent (GD)

learning rate: controlling the step size

Randomly choose an initial solution w⁰,

Repeat

$$\mathbf{w^{t+1}} = \mathbf{w^t} - \frac{dE}{d\mathbf{w}} \bigg|_{\mathbf{w} = \mathbf{w^t}}$$

- Fixed number of iterations
- $|E(\mathbf{w^{t+1}}) E(\mathbf{w^t})|$ is very small.

Finding Some Minimal Positions

- \triangleright How to minimize the error between $f(\mathbf{x})$ and y?
- \triangleright Depending on w^0 , it can find different minimums.

Example: Gradient Descent Method

Simple Linear Model

> Finding a linear model that fits a given data

$$f(x; w_0, w_1) = w_1 x + w_0$$

$$Data = \{(0.0, 0.0), (1.0, 1.0), (1.0, 2.0)\}$$

Solving the Optimization Problem

- Finding $\mathbf{w} = (w_0, w_1)$ that minimize $E(w_0, w_1)$
 - For simplicity, we use sum instead of mean.

$$E(w_0, w_1) = \sum_{(x,y) \in \mathcal{D}} (y - f(x; w_0, w_1))^2$$

$$f(x; w_0, w_1) = w_1 x + w_0$$

$$Data = \{(0.0, 0.0), (1.0, 1.0), (1.0, 2.0)\}$$

$$E(w_0, w_1) = (0.0 - f(0.0; w_0, w_1))^2 + (1.0 - f(1.0; w_0, w_1))^2 + (2.0 - f(1.0; w_0, w_1))^2$$

$$E(w_0, w_1) = (0.0 - w_0)^2 + (1.0 - (w_0 + w_1))^2 + (2.0 - (w_0 + w_1))^2$$

$$E(w_0, w_1) = 2w_1^2 + 3w_0^2 - 6w_1 - 6w_0 + 4w_1w_0 + 5$$

Calculating the Gradient

> Calculate the gradient for a given error function.

$$E(w_0, w_1) = 2w_1^2 + 3w_0^2 - 6w_1 - 6w_0 + 4w_1w_0 + 5$$

Randomly choose an initial solution, w_0^0 , w_1^0 .

$$\frac{\partial E}{\partial w_1} = 4w_1 + 4w_0 - 6$$

$$\frac{\partial E}{\partial w_0} = 4w_1 + 6w_0 - 6$$

Repeat

$$\begin{aligned} w_0^{t+1} &= w_0^t - \eta \left. \frac{\partial E}{\partial w_0} \right|_{w_0 = w_0^t, w_1 = w_1^t} \\ w_1^{t+1} &= w_1^t - \eta \left. \frac{\partial E}{\partial w_1} \right|_{w_0 = w_0^t, w_1 = w_1^t} \end{aligned}$$

Calculating the Gradient

- \triangleright Find w_0 , w_1 that minimizes the error function.
 - Choose a learning rate η , e.g., $\eta = 0.1$.
 - Initialize w_0^0 , w_1^0 as random values, e.g., $w_0^0 = 1$, $w_1^0 = 1$

Randomly choose an initial solution, w_0^0 , w_1^0 .

Repeat

$$w_0^{t+1} = w_0^t - \eta(4w_1^t + 6w_0^t - 6)$$

$$w_1^{t+1} = w_1^t - \eta(4w_1^t + 4w_0^t - 6)$$

How does the GD Work?

> Update w_0^t , w_1^t iteratively.

Randomly choose an initial solution, w_0^0 , w_1^0 .

Repeat

$$w_0^{t+1} = w_0^t - \eta(4w_1^t + 6w_0^t - 6)$$

$$w_1^{t+1} = w_1^t - \eta(4w_1^t + 4w_0^t - 6)$$

$w_0^0 = 1$ $w_1^0 = 1$

$$w_0^1 = 1 - 0.1(4 \times 1 + 6 \times 1 - 6) = 0.6$$

 $w_1^1 = 1 - 0.1(4 \times 1 + 4 \times 1 - 6) = 0.8$

$$w_0^2 = 0.6 - 0.1(4 \times 0.8 + 6 \times 0.6 - 6) = 0.54$$

$$w_1^2 = 0.8 - 0.1(4 \times 0.8 + 4 \times 0.6 - 6) = 0.84$$

$$w_0^3 = 0.54 - 0.1(4 \times 0.84 + 6 \times 0.54 - 6) = 0.480$$

$$w_1^3 = 0.84 - 0.1(4 \times 0.84 + 4 \times 0.54 - 6) = 0.888$$

How does the GD Work?

> Update w_0^t , w_1^t iteratively.

$$w_0^3 = \mathbf{0.480}$$

 $w_1^3 = \mathbf{0.888}$

Randomly choose an initial solution, w_0^0 , w_1^0 .

Repeat

$$w_0^{t+1} = w_0^t - \eta(4w_1^t + 6w_0^t - 6)$$

$$w_1^{t+1} = w_1^t - \eta(4w_1^t + 4w_0^t - 6)$$

Until the stopping condition is satisfied

$$w_0^4 = 0.480 - 0.1(4 \times 0.888 + 6 \times 0.480 - 6) = 0.4368$$

 $w_1^4 = 0.888 - 0.1(4 \times 0.888 + 4 \times 0.480 - 6) = 0.9408$

• • •

$$w_0^{100} = \mathbf{0.00007713}$$

 $w_1^{100} = \mathbf{1.49989171}$

Solution of the Linear Model

> Finding a linear model that fits a given data

$$f(x; w_0, w_1) = 1.49989171x + 0.00007713$$

$$Data = \{(0.0, 0.0), (1.0, 1.0), (1.0, 2.0)\}$$

Details: Gradient Descent Method

Taylor Series Expansion

- > Taylor series function is an infinite sum of terms that are expressed by the function's derivatives at a single point.
 - $f^{(k)}(a)$: k-th derivative of the function

$$f(x) = f(a) + \frac{f^{(1)}(a)}{1!}(x - a) + \frac{f^{(2)}(a)}{2!}(x - a)^2 + \dots + \frac{f^{(k)}(a)}{k!}(x - a)^k + \dots$$

$$f(x) = \sum_{i=0}^{\infty} \frac{f^{(i)}(\mathbf{a})}{i!} (x - \mathbf{a})^{i}$$

Example: Taylor Series Expansion

$$rightarrow f(x) = e^x$$
 and $a = 0$

$$e^{x} = f(\mathbf{0}) + \frac{f^{(1)}(\mathbf{0})}{1!}(x - 0) + \frac{f^{(2)}(\mathbf{0})}{2!}(x - 0)^{2} + \dots + \frac{f^{(k)}(\mathbf{0})}{k!}(x - 0)^{k} + \dots$$

$$e^x = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^k}{k!} + \dots$$

Taylor Series Expansion for $f(x + \epsilon)$

> Suppose that $x = x_1 + \epsilon$ and $a = x_1$

$$f(x) = f(\mathbf{a}) + \frac{f^{(1)}(\mathbf{a})}{1!}(x - \mathbf{a}) + \frac{f^{(2)}(\mathbf{a})}{2!}(x - \mathbf{a})^2 + \dots + \frac{f^{(k)}(\mathbf{a})}{k!}(x - \mathbf{a})^k + \dots$$

$$(x-a)=(x_1+\epsilon-x_1)=\epsilon$$

$$f(x_1 + \epsilon) = f(x_1) + \frac{f^{(1)}(x_1)}{1!} \epsilon + \frac{f^{(2)}(x_1)}{2!} \epsilon^2 + \dots + \frac{f^{(k)}(x_1)}{k!} \epsilon^k + \dots$$

$$f(\mathbf{x}_1 + \boldsymbol{\epsilon}) = f(\mathbf{x}_1) + \boldsymbol{\epsilon} f^{(1)}(\mathbf{x}_1) + O(\boldsymbol{\epsilon}^2)$$

The rest of the terms are restricted by $O(\epsilon^2)$.

Gradient Descent in One Dimension

> The first-order approximation $f(x + \epsilon)$ is given by f(x) and $f^{(1)}(x)$ at x.

$$f(\mathbf{x} + \boldsymbol{\epsilon}) = f(\mathbf{x}) + \boldsymbol{\epsilon} f^{(1)}(\mathbf{x}) + O(\boldsymbol{\epsilon}^2)$$

 \triangleright We want to choose ϵ to preserve $f(\mathbf{x} + \epsilon) \lesssim f(\mathbf{x})$

$$f(\mathbf{x} + \boldsymbol{\epsilon}) - f(\mathbf{x}) = \boldsymbol{\epsilon} f^{(1)}(\mathbf{x}) + O(\boldsymbol{\epsilon}^2) \lesssim 0$$

Assuming ϵ is too small, $O(\epsilon^2)$ is negligible.

$$f(\mathbf{x} + \boldsymbol{\epsilon}) - f(\mathbf{x}) \approx \boldsymbol{\epsilon} f^{(1)}(\mathbf{x}) \lesssim 0$$

Gradient Descent in One Dimension

- \gt Pick a fixed step size $\eta > 0$ and choose $\epsilon = -\eta f^{(1)}(x)$.
 - If $f^{(1)}(x) \neq 0$, then $\epsilon f^{(1)}(x) = -\eta \left(f^{(1)}(x)\right)^2 < 0$, where $\left(f^{(1)}(x)\right)^2$ is always positive.
- \succ When we choose η small enough,

$$f(\mathbf{x} + \boldsymbol{\epsilon}) - f(\mathbf{x}) \approx \boldsymbol{\epsilon} f^{(1)}(\mathbf{x}) \lesssim 0$$

$$f\left(x - \eta f^{(1)}(x)\right) - f(x) \approx -\eta \left(f^{(1)}(x)\right)^2 \lesssim 0$$

Note that η is a small positive number.

Gradient Descent in One Dimension

> Finally, we arrive at

$$f(x - \eta f^{(1)}(x)) - f(x) \approx -\eta \left(f^{(1)}(x)\right)^2 \lesssim 0$$

$$f(x - \eta f^{(1)}(x)) \lesssim f(x)$$

> This means that, if we use

$$x \leftarrow x - \eta f^{(1)}(x)$$

 \triangleright The value of f(x) might decline.

Gradient Descent in Multi-Dimension

 \succ Let us consider the situation $\mathbf{x} \in \mathbb{R}^d$.

$$f(\mathbf{x} + \boldsymbol{\epsilon}) = f(\mathbf{x}) + \boldsymbol{\epsilon}^{\mathsf{T}} \nabla f(\mathbf{x}) + O(\boldsymbol{\epsilon}^{\mathsf{2}}) \approx f(\mathbf{x}) + \boldsymbol{\epsilon}^{\mathsf{T}} \nabla f(\mathbf{x})$$

- \succ Up to second order terms in ϵ , the direction of steepest decent is given by the negative gradient $-\nabla f(\mathbf{x})$.
- \succ Choosing a suitable learning rate $\eta>0$ yields the gradient descent algorithm.

$$\mathbf{x} \leftarrow \mathbf{x} - \eta \nabla f(\mathbf{x})$$

Convex Function

What is the Convex Function?

> A function f is convex \Leftrightarrow the function f is below any line segment between two points on f.

$$f(tx + (1-t)x') \le tf(x) + (1-t)f(x')$$
 for any $x, x' \in X$ and $t \in [0,1]$

What is the Convex Function?

ightharpoonup A function $f: X \to \mathbb{R}$ is defined as a convex function if

$$f(tx + (1-t)x') \le tf(x) + (1-t)f(x')$$
 for any $x, x' \in X$ and $t \in [0,1]$

$$f\left(\frac{x+x'}{2}\right) \le \frac{f(x)+f(x')}{2}$$
 for any $x, x' \in X$ and $t = 0.5$

Midpoint convex

Examples of Convex Functions

- \triangleright Quadratic function: $f(x) = x^2$
- **Exponential functions:** $f(x) = 2^x$
- > Negative logarithm function: $f(x) = -\ln x$

- Convex optimization overview
 - http://web.stanford.edu/class/cs224n/readings/cs229-cvxopt.pdf

Convex vs. Non-convex Function

> Convex function

- $\nabla f(\mathbf{w}^*) = \mathbf{0} \iff \mathbf{w}^*$ is a global minimum.
- Example: linear regression, logistic regression

Non-convex function

- $\nabla f(\mathbf{w}^*) = \mathbf{0} \iff \mathbf{w}^*$ is a global min, local min or saddle point (also called stationary points.)
- Most algorithms only converge to stationary points.
- Example: neural networks

Convex vs. Non-convex Function

Figure $y = x_1^4 - 2x_1^2 + x_2^2$, it has two symmetric local min (-1,0) and (1,0), and a saddle point (0,0) between them.

Convex

Non-convex

Q&A

