Esercitazione 5 - Complessità

10-05-2019

Antonio Cruciani antonio.cruciani@alumni.uniroma2.eu

Esercizi a lezione

Esercizio 1:

Per ognuna delle seguenti affermazioni dimostrarne la veridicità o meno. Si ricordi l'operazione di riduzione polinomiale \leq_p .

- 1) Essa gode della proprietà transitiva, ovvero siano A,B,C se $A\leq_p B$ e $B\leq_p C$ allora $A\leq_p C$
- 2) Essa gode della proprietà riflessiva, ovvero, sia A allora $A \leq_p A$.
- 3 Essa gode della proprietà commutativa, ovvero, siano $A, B \in A \leq_p B$ allora $B \leq_p A$.

Esercizio 2:

Dato un grafo G=(V,E), sia $\chi(G)=\langle M,P\rangle$ una sua codifica in cui M è la matrice di adiacenza di G e

$$P = \{ \langle V_1, V_2, V_3 \rangle : V_1, V_2, V_3 \subseteq V \land V_1 \cup V_2 \cup V_3 = V \land V_1 \cap V_2 = \emptyset \land V_1 \cap V_3 = \emptyset \land V_2 \cap V_3 = \emptyset \}$$

Si consideri il seguente problema decisionale:

Dato un grafo non orientato G = (V, E), esiste una partizione $\langle V_1, V_2, V_3 \rangle$ di V tale che per ogni i = 1, 2, 3 e per ogni $u, v \in V_i, (u, v) \notin E$?

Dopo aver formalizzato la definizione del suddetto problema mediante $\langle I, S, \pi \rangle$ descrivere un algoritmo che presa in input $\chi(G)$ decide se $\langle G \rangle$ è un'istanza si del problema in tempo $\operatorname{\boldsymbol{Poly}}(|\chi(G)|)$ (polinomiale nella dimensione della codifica).

Rispondere infine, alla seguente domanda:

"L'esistenza di tale algoritmo è sufficiente per dimostrare l'appartenenza del problema alla classe di complessità ${f P}$?" .

Esercizi per casa

Esercizio 1:

Siano $L \in \mathbf{NPC}$ ed $a \in L$. Dimostrare che se $\mathbf{P} \neq \mathbf{NP} \Rightarrow L - \{a\} \notin \mathbf{P}$

Esercizio 2:

Siano L_1 e L_2 due linguaggi tali che:

1.
$$L_1 - L_2 = \{a_1, a_2, a_3\}$$

2.
$$L_2 - L_1 = \{b_1, b_2\}$$

3.
$$L_2 \in \mathbf{NPC}$$

Dimostrare che in questa ipotesi $L_1 \in \mathbf{NPC}$

Soluzioni esercizi a lezione

Esercizio 1:

1)

Vero, la chiave di questa osservazione è la seguente: siano p,q due funzioni che hanno una crescita polinomiale allora la loro composizione p(q(n)) ha una crescita polinomiale.

Se f_1 è una riduzione polinomiale da A a B e f_2 è una riduzione da B a C allora il mapping $x \mapsto f_2(f_1(x))$ è una riduzione polinomiale da A a C poiché $f_2(f_1(x))$ richiede tempo polinomiale per calcolare x e $f_2(f_1(x)) \in C \iff x \in A$.

2)

Vero, sia I_A l'alfabeto utilizzato per definire tutte le istanze di A, sia T una TM che su input $x \in I_A$ scrive sul nastro di output x. Quindi se x era una istanza si di I_A allora anche $f_T(x)$ è una istanza si se x è una istanza no di I_A allora anche $f_T(x)$ è una istanza no. Allora T riduce A ad A.

3) Falso.

Sia A un qualsiasi problema in \mathbf{P} e sia B un problema \mathbf{EXPC} . Poiché B è \mathbf{EXPC} (EXP Completo) A è riducibile a B. Ora, se B fosse riducibile ad A avremmo quello che è, sostanzialmente, un algoritmo deterministico polinomiale per decidere B e (poiché $B \in \mathbf{EXPC}$) per decidere qualsiasi problema in \mathbf{EXP} contraddicendo il teorema della gerarchia polinomiale, quindi tale algoritmo non può esistere e quindi l'operazione di riduzione polinomiale, in generale, non gode della commutatività.

Esercizio 2:

Il problema decisionale considerato, che chiameremo Γ , può essere formalizzato come segue:

```
\begin{split} I_{\Gamma} &= \{ \langle G = (V, E) \rangle : \text{ $G$ \`{E} un grafo non orientato } \} \\ S_{\Gamma}(G) &= \{ \langle V_1, V_2, V_3 \rangle : V_1, V_2, V_3 \subseteq V \} \\ \pi_{\Gamma}(G, S_{\Gamma}(G)) &= \exists \langle V_1, V_2, V_3 \rangle \in S_{\Gamma}(G) : V_1 \cup V_2 \cup V_3 = V \wedge V_1 \cap V_2 = \emptyset \\ \wedge V_1 \cap V_3 &= \emptyset \wedge V_2 \cap V_3 = \emptyset \wedge \forall i = 1, 2, 3 \forall u, v \in V_i[(u, v) \notin E] \end{split}
```

Osservazione: L'insieme P in $\chi(G)$ è un sottoinsieme di $S_{\Gamma}(G)$. In particolare il predicato π_{Γ} può essere espresso nel seguente modo:

$$\exists \langle V_1, V_2, V_3 \rangle \in P : \forall i = 1, 2, 3 \forall u, v \in V_i[(u, v) \notin E]$$

Dopo questa breve osservazione forniamo l'algoritmo che prende in input la codifica $\chi(G)$ composta dalla matrice di adiacenza M e l'insieme P di tutte le partizioni di V e restituisce **True** se esiste una partizione di G in tre sottoinsiemi tali che inducono un'istanza si di Γ :

Algorithm 1

```
1: Input: \chi(G)
2: found \leftarrow False
3: while (P \neq \emptyset \land \text{found} = \text{False}) do Begin
        Extract one element \langle V_1, V_2, V_3 \rangle from P
        found \leftarrow True
5:
        for (i \leftarrow 1 \ to \ 3 \ step \ 1) do
6:
            for u \in V_i do
7:
                 for v \in V_i do
8:
9:
                     if (M[u,v]=1) then
                          found \leftarrow False
   return found
```

Analizziamo, ora, la complessità dell'algoritmo proposto.

L'accesso alla coordinata u, v della matrice di adiacenza M richiede tempo costante.

Per ogni $\langle V_1, V_2, V_3 \rangle \in P$ la cardinalità di V_1, V_2, V_3 è al più V, il doppio ciclo for alle linee 7 e 8 richiede tempo $O(|V|^2)$.

Il numero di iterazioni del ciclo **for** alla riga 6 è costante, il numero di iterazioni del ciclo **while** è |P|, quindi la complessità computazionale dell'algoritmo è $O(|P| \cdot |V|^2)$ è quindi è polinomiale nella dimensione dell'input, ovvero è $Poly(|\chi(G)|)$.

Osserviamo esplicitamente che la codifica $\chi(G)$ non è una codifica ragionevole, in quanto $|P|=3^{|V|}$ e quindi la codifica di G mediante la sola matrice di adiacenza (la quale codifica perfettamente tutte le informazioni necessarie ad individuare un grafo e che ha dimensione $|V|^2$) è esponenzialmente più corta di $\chi(G)$.

Possiamo, ora, rispondere all'ultima domanda:

Ricordiamo che un problema è in ${\bf P}$ se esiste un algoritmo deterministico che richiede tempo polinomiale nella dimensione di una codifica ragionevole delle sue istanze, l'algoritmo proposto non è sufficiente a dimostrate l'appartenenza a ${\bf P}$ del problema Γ .

Soluzioni esercizi per casa

Esercizio 1:

Assumiamo per assurdo che $L' = L - \{a\} \in \mathbf{P}$. $\Rightarrow \exists T' \text{ (deterministica) } \land k \in \mathbb{N}[\forall y \in \Sigma^*, T'(y) \text{ termina in tempo } \mathbf{O}(|y|^k) \land O_{T'(y)} = q_a \iff y \in L']$. Allora, sfruttando T', possiamo definire una nuova macchina di Turing deterministica che decide L:

- Su input x
- 1) Se $x = a \Rightarrow$ Accetta
- 2) Altrimenti, simula T'(x), se $O_{T'(x)} = q_a \Rightarrow \mathbf{Accetta}$
- 3) Altrimenti, Rigetta

Analizziamo la complessità computazionale di questa macchina di Turing T': Il passo 2) richiede tempo $O(|x|^k)$ ovvero $Poly(|x|) \Rightarrow L \in P$. Ma $L \in NPC \Rightarrow P = NP$ contraddicendo $P \neq NP$ allora, $L' \notin P$.

Esercizio 2:

Per dimostrare che $L_1 \in \mathbf{NPC}$ dobbiamo:

- 1. Dimostrare che $L_1 \in \mathbf{NP}$
- 2. Dimostrare che L_1 è completo per \mathbf{NP}

Per prima cosa, quindi, dimostriamo l'appartenenza di L_1 ad **NP**: poiché non abbiamo nessuna informazione circa la struttura di L_1 , non possiamo progettare un algoritmo non deterministico per decidere L_1 . Allora facciamo una riduzione polinomiale, riducendo L_1 a L_2 ($L_1 \leq_p L_2$). Assumiamo che $L_1, L_2 \subseteq \Sigma^*$ e consideriamo la seguente funzione di riduzione polinomiale:

$$\forall x \in \Sigma^*, f(x) = \left\{ \begin{array}{ll} x & \text{ se } x \notin \{a_1, a_2, a_3, b_1, b_2\} \\ a_1 & \text{ se } x \in \{b_1, b_2\} \\ b_1 & \text{ se } x \in \{a_1, a_2, a_3\} \end{array} \right.$$

Chiaramente $f \in \mathbf{FP}$ poiché calcolare f(x) richiede tempo costante.

Osserviamo che $x \in L_1 \iff f(x) \in L_2$, ovvero:

se
$$x \in L_1 \Rightarrow (x \in \{a_1, a_2, a_3\} \land f(x) = b_1 \in L_2) \lor (x \in L_1 - \{a_1, a_2, a_3\} \subsetneq L_2 \land f(x) = x \in L_2)$$

se $x \notin L_1 \Rightarrow (x \in \{b_1, b_2\} \land f(x) = a_1 \notin L_2) \lor$
 $(x \in \Sigma^* - (L_1 \cup \{b_1, b_2\}) \subsetneq \Sigma^* - L_2 \land f(x) = x \notin L_2)$

$$\Rightarrow L_1 \leq_p L_2 \Rightarrow L_1 \in \mathbf{NP}$$

Per dimostrare che $L_1 \in \mathbf{NPC}$ dobbiamo dimostrare che $L_2 \leq_p L_1$, poiché $L_1, L_2 \subseteq \Sigma^* \Rightarrow f(\cdot)$ per come è definita è anche una riduzione da L_2 a L_1 . Nella maniera analoga a quella sopra possiamo mostrare che

$$x \in L_2 \iff f(x) \in L_1 \Rightarrow L_2 \leq_p L_1 \Rightarrow L_1 \in \mathbf{NPC}$$

se
$$x \in L_2 \Rightarrow (x \in \{b_1, b_2\} \land f(x) = a_1 \in L_1) \lor (x \in L_2 - \{b_1, b_2\} \subsetneq L_1 \land f(x) = x \in L_2)$$

se $x \notin L_2 \Rightarrow (x \in \{a_1, a_2, a_2\} \land f(x) = b_1 \notin L_1) \lor$
 $(x \in \Sigma^* - (L_2 \cup \{a_1, a_2, a_3\}) \subsetneq \Sigma^* - L_1 \land f(x) = x \notin L_1)$

E quindi $L_2 \leq_p L_1 \Rightarrow L_1 \in \mathbf{NPC}$.