

Project Description

Introduction

Fully Homomorphic Encryption

Fully Homomorphic Encryption

XZDDF Bootstrapping

Modification of XZDDF

Benchmark Tests

Conclusions

NAME OF THE PARTY OF THE PARTY

UNIVERSITY

- Study Fully Homomorphic Encryption (FHE)
 - How does it work?
 - What are the main problems?
- Investigate XZDDF¹ bootstrapping
- Implement XZDDF¹ bootstrapping

¹ https://eprint.iacr.org/2023/1564 Simon Ljungbeck XZDDF Bootstrapping

Outline

Introduction

Fully Homomorphic Encryption

Fully Homomorphic Encryption

XZDDF Bootstrapping

Modification of XZDDF

Benchmark Tests

Conclusions

- Introduction to FHE
- XZDDF bootstrapping
- Modification of XZDDF bootstrapping
- Benchmark tests of XZDDF implementation

Introduction

Fully Homomorphic Encryption

Fully Homomorphic Encryption

XZDDF Bootstrapping

Modification of XZDDF

Benchmark Tests

Conclusions

Fully Homomorphic Encryption

What is Fully Homomorphic Encryption (FHE)?

Introduction

Fully Homomorphic Encryption

Fully Homomorphic Encryption

XZDDF Bootstrappin

Modification of XZDDF

Benchmark Tests

. . .

Conclusions

- Let $c_1 = \text{Enc}(m_1)$ and $c_2 = \text{Enc}(m_2)$ be two ciphertexts
- Assume we want to compute $c_3 = \text{Enc}(m_1 + m_2)$
 - Normally: $c_3 = \text{Enc}(\text{Dec}(c_1) + \text{Dec}(c_2))$
 - FHE: $c_3 = c_1 + c_2$
- FHE: $\operatorname{Enc}(f(m_1, \ldots, m_t)) = f(\operatorname{Enc}(m_1), \ldots, \operatorname{Enc}(m_t))$

Why FHE?

Introduction

Fully Homomorphic Encryption

Fully Homomorphic Encryption

XZDDF Bootstrapping

Modification of XZDDF

Benchmark Tests

Conclusions

- Keep privacy when third parties do computations on data
 - Cloud services
 - Fog computing
- Ex: training an ML model with sensitive data
- Today's problem: FHE too inefficient

Noise-based FHE

Introduction

Fully Homomorphic Encryption

Fully Homomorphic Encryption

XZDDF Bootstrapping

Modification of XZDDF

Benchmark Tests

Conclusions

FHE ciphertexts usually contain some noise

Learning With Errors (LWE):

Enc: $\mathbb{Z}_q \ni m \mapsto \mathsf{LWE}_q(m) := (\mathbf{a}, b = \langle \mathbf{a}, \mathbf{s} \rangle + m + e \mod q) \in \mathbb{Z}_q^n \times \mathbb{Z}_q$

■ Dec: $c = (\mathbf{a}, b) \mapsto b - \langle \mathbf{a}, \mathbf{s} \rangle = m + e \approx m$

The noise grows...

Introduction

Fully Homomorphic Encryption

Fully Homomorphic Encryption

XZDDF Bootstrapping

Modification of XZDDF

Benchmark Tests

Conclusions

Homomorphic property of LWE:

$$c_1 + c_2 = (\mathbf{a}_1, b_1) + (\mathbf{a}_2, b_2)$$

$$= (\mathbf{a}_1 + \mathbf{a}_2, \langle \mathbf{a}_1, \mathbf{s} \rangle + \langle \mathbf{a}_2, \mathbf{s} \rangle + m_1 + m_2 + e_1 + e_2)$$

$$= (\mathbf{a}_1 + \mathbf{a}_2, \langle \mathbf{a}_1 + \mathbf{a}_2, \mathbf{s} \rangle + (m_1 + m_2) + (e_1 + e_2))$$

Figure: From Xiang et al.2

² https://iacr.org/cryptodb//data/paper.php?pubkey=33119 Simon Ljungbeck XZDDF Bootstrapping

Why is FHE slow?

Introduction

Fully Homomorphic Encryption

Fully Homomorphic Encryption

XZDDF Bootstrapping

Modification of XZDDF

Benchmark Tests

Conclusions

Bootstrapping:

■ LWE : $Dec(c) = b - \langle \mathbf{a}, \mathbf{s} \rangle \mod q$

Introduction

Fully Homomorphic Encryption

Fully Homomorphic Encryption

XZDDF Bootstrapping

Modification of XZDDF

Benchmark Tests

Conclusions

XZDDF Bootstrapping

XZDDF Bootstrapping Modification of XZDDE

Benchmark Tests

UNIVERSITY

- Assume first-layer: $(\mathbf{a}, b = \sum_{i=0}^{n-1} a_i s_i \text{noised}(m)) \in \mathbb{Z}_q^n \times \mathbb{Z}_q$
 - applicable with Regev, BGV, CKKS
 - \implies noised $(m) = \sum_{i=0}^{n-1} a_i s_i b \mod q$
- $\blacksquare \mathcal{R}_O := \mathbb{Z}_O[X]/(X^N+1)$ where $N=2^k \implies X^{2N} \equiv 1$
- Assume $q=2N \implies X^{\mathsf{noised}(m)} = X^{\sum_{i=0}^{n-1} a_i s_i b \mod q} = X^{\sum_{i=0}^{n-1} a_i s_i b}$
 - Let $r(X) = \sum_{i=0}^{q-1} iX^{-i} \implies \operatorname{noised}(m) = \operatorname{coeff}_0\left(r(X) \cdot X^{\sum_{i=0}^{n-1} a_i s_i b}\right)$
- If a 2N instead:

Introduction

Fully Homomorphic Encryption

Fully Homomorphic Encryption

XZDDF Bootstrapping

Modification of XZDDF

Benchmark Tests

Conclusion

More XZDDF Bootstrapping

XZDDF Bootstrapping

Introduction

Fully Homomorphic Encryption

Fully Homomorphic Encryption

XZDDF Bootstrapping

Modification of XZDDF

Benchmark Tests

Conclusions

TO STILL

UNIVERSITY

- Assume $c_i(X)$ encrypts X^{s_i} under f(X)
- Automorphism: $c_i(X^{a_i})$ encrypts $X^{a_is_i}$ under $f(X^{a_i})$
- Problem 1: might have $2|a_i \implies a_i$ and 2N not coprime
 - Solution: q|N instead of q|2N

$$\implies X^{\frac{2N}{q}a_is_i} = X^{(\frac{2N}{q}a_i+1)s_i-s_i} = X^{w_is_i}X^{-s_i}, \text{ where } w_i \text{ is odd}$$

- Problem 2: want key f(X), not $f(X^{a_i})$
 - Solution: use NTRU encryption...

NTRU Encryption

Introduction

Fully Homomorphic Encryption

Fully Homomorphic Encryption

XZDDF Bootstrapping

Modification of XZDDF

Benchmark Tests

Conclusions

LUND

Define

$$(au, \Delta) := egin{cases} \left(1, \left\lfloor rac{Q}{t}
ight
ceil
ight), & ext{if noised}(m) = e + \left\lfloor rac{q}{t}
ight
ceil \cdot m \ (t, 1), & ext{if noised}(m) = t \cdot e + m \ (1, 1), & ext{if noised}(m) = e + m. \end{cases}$$

- Scalar NTRU encryption: $NTRU_{Q,f,\tau,\Delta}(u) := \tau \cdot g/f + \Delta \cdot u/f \in \mathcal{R}_Q$
- Vector NTRU encryption:

$$\mathrm{NTRU}_{Q,f,\tau}'(v) := (\tau \cdot g_0/f + B^0 \cdot v, \dots, \tau \cdot g_{d-1}/f + B^{d-1} \cdot v) \in \mathcal{R}_Q^d$$

Homomorphic Multiplication for NTRU

XZDDF Bootstrapping

Modification of XZDDF

Benchmark Tests

$$lackbox{\textbf{c}} c \odot lackbox{\textbf{c}}' := \langle \mathsf{BitDecom}_B(c), lackbox{\textbf{c}}'
angle = \sum_{i=0}^{d-1} c_i c_i' = au \cdot \sum_{i=0}^{d-1} c_i g_i / f + c v \in \mathcal{R}_Q$$

Lemma 4.1 (Homomorphic multiplication). Assume that $c = \text{NTRU}_{Q, t, \tau, \Delta}(u)$ and $\mathbf{c}' = \text{NTRU}_{Q, t, \tau}'(v)$. Then $\hat{c} = c \odot \mathbf{c}'$ is a scalar NTRU ciphertext of uv.

UNIVERSITY

NTRU Key Switching

XZDDF Bootstrapping

Modification of XZDDF

Benchmark Tests

Lemma 4.2 (NTRU key switching). The product $c \odot \mathbf{ksk}_{f_0,f_0}$ is a scalar NTRU encryption of the same message as c but under the new private key $f_2 \in \mathcal{R}_O$. ⇒ Problem 2 solved

Generating the Blind Rotation Key

Introduction

Fully Homomorphic Encryption

Fully Homomorphic Encryption

XZDDF Bootstrapping

Modification of XZDDF

Benchmark Tests

Conclusions

Algorithm 10 XZDDF.BRKGen

```
Require:
   q, n \in \mathbb{N}^*
                                                                         first-layer parameters
   \mathbf{s} \in \mathbb{Z}_q^n
                                                                          first-layer private key
   Q, N, \tau, \Delta \in \mathbb{N}^*
                                                                          second-layer parameters
   f \in \mathcal{R}_O
                                                                          second-layer private key
Ensure: EVK_{\tau, \Lambda}
                                                                          blind rotation evaluation keys
   \mathbf{evk}_0 \leftarrow \mathrm{NTRU}'_{O,f,\tau}(X^{s_0}/f)
   for i = 1 ... (n-1) do
         \mathbf{evk}_i \leftarrow \mathrm{NTRU}'_{O,f,\tau}(X^{s_i})
   end for
  \mathbf{evk}_n \leftarrow \text{NTRU}'_{Q,f,\tau}(X^{-\sum_{i=0}^{n-1} s_i})S \leftarrow \left\{\frac{2N}{q}i + 1\right\}_{i=1}^{q-1}
                                                                    // all elements j \in S are odd
   for j \in S do
          \mathbf{ksk}_i \leftarrow \mathsf{NTRU}.\mathsf{AutoKGen}(j,f)
   end for
    \mathbf{EVK}_{\tau,\Delta} \leftarrow (\mathbf{evk}_0, \dots, \mathbf{evk}_n, \{\mathbf{ksk}_i\}_{i \in S})
```

Performing the Blind Rotation

Introductior

Fully Homomorphic Encryption

Fully Homomorphi Encryption

XZDDF Bootstrapping

Modification of XZDDF

Benchmark Tests

Conclusions


```
Algorithm 11 XZDDF.BREval
```

```
Require:
    (\mathbf{a},b) = \mathsf{LWE}_{\mathbf{s},q}(m) \in \mathbb{Z}_q^n \times \mathbb{Z}_q
    r(X) \in \mathcal{R}_{\mathcal{O}}
                                                                                                               // rotation polynomial
\begin{aligned} \mathbf{EVK}_{\tau,\Delta} &= (\mathbf{evk}_0, \dots, \mathbf{evk}_n, \{\mathbf{ksk}_j\}_{j \in S}) \\ \mathbf{Ensure:} \ \ \mathsf{ACC} &= \mathrm{NTRU}_{Q,f,\tau,\Delta} \left( r(X^{\frac{2N}{q}}) \cdot X^{\frac{2N}{q}(-b + \sum_{i=0}^{n-1} a_i s_i)} \right) \end{aligned}
    for i = 1 ... (n-1) do
           w_i \leftarrow \frac{2N}{a}a_i + 1
           w_i' \leftarrow w_i^{-1} \mod 2N
    end for
    w'_n \leftarrow 1
    \mathsf{ACC} \leftarrow \Delta \cdot r(X^{\frac{2N}{q}w_0'}) \cdot X^{-\frac{2N}{q}bw_0'}
    for i = 1 ... (n-1) do
           ACC \leftarrow ACC \odot evk_i
            if w_i w'_{i+1} \neq 1 then
                 ACC \leftarrow NTRU.EvalAuto(ACC, \mathbf{ksk}_{w_sw'...})
            endif
    end for
    ACC \leftarrow ACC \odot evk_n
```

Extraction

Introduction

Fully Homomorphic Encryption

Fully Homomorphic Encryption

XZDDF Bootstrapping

Modification of XZDDF

Benchmark Tests

Conclusions

LUND

After the blind rotation, we get a ciphertext

$$c = \operatorname{NTRU}_{Q,f,\tau,\Delta}\left(r(X^{\frac{2N}{q}}) \cdot X^{\frac{2N}{q}(-b + \sum_{i=0}^{n-1} a_i s_i)}\right)$$

Define

$$\mathbf{f} = (f_0, \dots, f_{N-1}) \in \mathbb{Z}_Q^N$$

 $\hat{\mathbf{c}} = (c_0, -c_{N-1}, \dots, -c_1) \in \mathbb{Z}_Q^N$

Then

$$(\hat{\mathbf{c}},0) \in \mathbb{Z}_Q^N imes \mathbb{Z}_Q = \mathsf{LWE}_{Q,\mathbf{f}}(m)$$

Introduction

Fully Homomorphic Encryption

Fully Homomorphic Encryption

XZDDF Bootstrapping

Modification of XZDDF

Benchmark Tests

Conclusions

Modification of XZDDF

The Problem...

Introduction

Fully Homomorphic Encryption

Fully Homomorphic Encryption

XZDDF Bootstrapping

Modification of XZDDF

Benchmark Tests

Conclusions

UNIVERSITY

Want to compute

$$\mathsf{noised}(\mathit{m}) = \mathsf{coeff}_0\left(\mathit{r}(\mathit{X}^{\frac{2\mathit{N}}{\mathit{q}}}) \cdot \mathit{X}^{\frac{2\mathit{N}}{\mathit{q}}(-\mathit{b} + \sum_{i=0}^{\mathit{n}-1} \mathit{a}_i \mathit{s}_i)}\right),$$

where
$$r(X^{\frac{2N}{q}}) = \sum_{i=0}^{q-1} iX^{-\frac{2N}{q}\cdot i}$$

■ But in $\mathcal{R}_Q = \mathbb{Z}_Q[X]/(X^N + 1)$ we have that

$$X^{-i} = \begin{cases} 1, & \text{if } i = 0 \\ -X^{N-i}, & \text{if } 1 \le i \le N \\ X^{2N-i}, & \text{if } N+1 \le i \le 2N-1. \end{cases}$$

The Problem...

Introduction

Fully Homomorphic Encryption

Fully Homomorphi Encryption

XZDDF Bootstrapping

Modification of XZDDF

Benchmark Tests

Conclusions

LUND

If for example q = 2N, we get

$$r(X) = \sum_{i=0}^{q-1} iX^{-i}$$

$$= -1 \cdot X^{N-1} - 2 \cdot X^{N-2} - \dots - N + + (N+1) \cdot X^{N-1} + (N+2) \cdot X^{N-2} + \dots + (2N-1) \cdot X$$

$$= -N + N \cdot X + N \cdot X^{2} + \dots + N \cdot X^{N-1}.$$

Same problem for any q|N

Introduction

Fully Homomorphic Encryption

Fully Homomorphi Encryption

XZDDF Bootstrapping

Modification of XZDDF

Benchmark Tests

Conclusions

LUND

Assume Boolean operations

Binary messages

Regev-like first-layer encryption

$$= \mathsf{LWE}_{q,\mathbf{s}}^{\mathsf{Regev}}(m) = \left(\mathbf{a}, b = \langle \mathbf{a}, \mathbf{s} \rangle + m \cdot \tfrac{q}{t} + e\right) \in \mathbb{Z}_q^n \times \mathbb{Z}_q$$

■ We will use t = 4

Introduction

Fully Homomorphic Encryption

Fully Homomorphi Encryption

XZDDF Bootstrapping

Modification of XZDDF

Benchmark Tests

Conclusions

UNIVERSITY

- Let ◊ denote a binary operation
- Let $c_1 = (\mathbf{a}_1, b_1)$ and $c_2 = (\mathbf{a}_2, b_2)$
- Start by computing $c = c_1 + c_2 = (\mathbf{a}_1 + \mathbf{a}_2, b_1 + b_2) =: (\mathbf{a}, b)$

$$\implies \mathsf{Dec}(c) = \begin{cases} 0, & \mathsf{if}\ (m_1, m_2) = (0, 0) \\ 1, & \mathsf{if}\ (m_1, m_2) = (0, 1) \ \mathsf{or}\ (1, 0) \\ 2, & \mathsf{if}\ (m_1, m_2) = (1, 1) \end{cases}$$

Introduction

Fully Homomorphic Encryption

Fully Homomorphic Encryption

XZDDF Bootstrapping

Modification of XZDDF

Benchmark Tests

Conclusions

■ Define *t* intervals $I_i = \left[i \cdot \frac{q}{t} - \frac{q}{2t}, i \cdot \frac{q}{t} + \frac{q}{2t}\right] \subset \mathbb{Z}_q$ for i = 0, 1, 2, t - 1

$$\begin{split} I_0 &= \left[-\frac{q}{8} = \frac{7q}{8}, \frac{q}{8} \right), \\ I_1 &= \left[\frac{q}{8}, \frac{3q}{8} \right), \\ I_2 &= \left[\frac{3q}{8}, \frac{5q}{8} \right), \\ I_3 &= \left[\frac{5q}{8}, \frac{7q}{8} \right). \end{split}$$

Introduction

Fully Homomorphic Encryption

Fully Homomorphi Encryption

XZDDF Bootstrapping

Modification of XZDDF

Benchmark Test

Conclusions

LUND

If for example $\diamond = OR$, we now want a function f_{OR} that maps

$$f_{\mathsf{OR}}: \left(X^{\frac{2N}{q}}\right)^{\mathsf{noised}(m)} \mapsto egin{cases} 0, & \mathsf{if} \ \mathsf{noised}(m) \in \mathit{I}_0 \\ 1, & \mathsf{if} \ \mathsf{noised}(m) \in \mathit{I}_1 \\ 1, & \mathsf{if} \ \mathsf{noised}(m) \in \mathit{I}_2 \\ 0, & \mathsf{if} \ \mathsf{noised}(m) \in \mathit{I}_3. \end{cases}$$

XZDDF Bootstrapping

Modification of XZDDF

If for example $\diamond = \mathsf{AND}$, we now want a function f_{AND} that maps

$$f_{\mathsf{AND}}: \left(X^{\frac{2N}{q}}\right)^{\mathsf{noised}(m)} \mapsto egin{cases} 0, & \mathsf{if} \ \mathsf{noised}(m) \in I_0 \\ 0, & \mathsf{if} \ \mathsf{noised}(m) \in I_1 \\ 1, & \mathsf{if} \ \mathsf{noised}(m) \in I_2 \\ 1, & \mathsf{if} \ \mathsf{noised}(m) \in I_3. \end{cases}$$

Introduction

Fully Homomorphic Encryption

Fully Homomorphi Encryption

XZDDF Bootstrapping

Modification of XZDDF

Benchmark Tests

Conclusions

■ It turns out (see OpenFHE) that [0, q) can always be split into two intervals

$$I^0 = I_k \cup I_{(k+1 \mod 4)}$$

 $I^1 = I_{(k+2 \mod 4)} \cup I_{(k+3 \mod 4)}$

$$lacksquare$$
 Let $I^0=[q_0,q_1)$ and $I^1=[q_1,q_0)$

Modification of XZDDF

Benchmark Tests

- Negacyclical property of \mathcal{R}_{Ω} : $aX^{i} \equiv -aX^{i+N} \mod (X^{N}+1)$
- Use

$$r(X^{\frac{2N}{q}}) = -1 \cdot \left(X^{-\frac{2N}{q}}\right)^0 - 1 \cdot \left(X^{-\frac{2N}{q}}\right)^1 - \dots - 1 \cdot \left(X^{-\frac{2N}{q}}\right)^{\frac{q}{4}-1} +$$

$$+ 1 \cdot \left(X^{-\frac{2N}{q}}\right)^{\frac{q}{4}} + \dots + 1 \cdot \left(X^{-\frac{2N}{q}}\right)^{\frac{q}{2}-1}.$$

$$\implies m' := \operatorname{coeff}_0\left(r(X^{\frac{2N}{q}}) \cdot \left(X^{\frac{2N}{q}}(\operatorname{noised}(m) + (\frac{q}{4} - q_1))\right)\right) = \\ = \begin{cases} -1, & \text{if noised}(m) \in [q_0, q_1) = I^0 \\ 1, & \text{if noised}(m) \in [q_1, q_0) = I^1. \end{cases}$$

Introduction

Fully Homomorphic Encryption

Fully Homomorphi Encryption

XZDDF Bootstrapping

Modification of XZDDF

Benchmark Tests

Conclusions

Now, we just want to map

$$m' \mapsto \begin{cases} 0, & \text{if } m' = -1 \\ 1, & \text{if } m' = 1. \end{cases}$$

- $lacksquare c' = \mathsf{LWE}_{Q,\mathbf{f}}(m') = (\mathbf{a},b' = \langle \mathbf{a},\mathbf{s}
 angle + \Delta \cdot m' + e)$
 - Choose $\Delta = \frac{Q}{4} \cdot \frac{1}{2} = \frac{Q}{8}$

$$\implies c' = \mathsf{LWE}_{Q,\mathbf{f}}(m') = \begin{cases} (\mathbf{a}, b' = \langle \mathbf{a}, \mathbf{s} \rangle - \frac{Q}{8} + \mathbf{e}), & \text{if } m' = -1 \\ (\mathbf{a}, b' = \langle \mathbf{a}, \mathbf{s} \rangle + \frac{Q}{8} + \mathbf{e}), & \text{if } m' = 1. \end{cases}$$

Introduction

Fully Homomorphic Encryption

Fully Homomorphic Encryption

XZDDF Bootstrapping

Modification of XZDDF

Benchmark Tests

Conclusions

Finally, add Q/8 to b'

$$c=(\mathbf{a},b)=\left(\mathbf{a},b'+rac{Q}{8}
ight)$$

$$\implies c = \mathsf{LWE}_{Q,\mathbf{f}}(m') = \begin{cases} (\mathbf{a}, b = \langle \mathbf{a}, \mathbf{s} \rangle + e), & \text{if } m' = -1 \\ (\mathbf{a}, b = \langle \mathbf{a}, \mathbf{s} \rangle + \frac{Q}{4} + e), & \text{if } m' = 1, \end{cases}$$

$$\implies m = \mathsf{Dec}(c) = \begin{cases} 0, & \text{if } m' = -1 \\ 1, & \text{if } m' = 1, \end{cases}$$

Introduction

Fully Homomorphic Encryption

Fully Homomorphic Encryption

XZDDF Bootstrapping

Modification of XZDDF

Benchmark Tests

Conclusions

Benchmark Tests

Implementation

Introduction

Fully Homomorphic Encryption

Fully Homomorphic Encryption

XZDDF Bootstrapping

Modification of XZDDF

Benchmark Tests

Conclusion

■ Implemented XZDDF in OpenFHE

■ See https://github.com/SL2000s/masters_thesis_xzddf

Tests

Introduction

Fully Homomorphic Encryption

Fully Homomorphic Encryption

XZDDF Bootstrapping

Modification of XZDDF

Benchmark Tests

Conclusions

Test Description

S1: Generating a bootstrapping key.

S2: Performing a single bootstrapping.

S3: Performing an OR operation on two ciphertexts c_0 and c_1 .

S4: Performing an AND operation on two ciphertexts c_0 and c_1 .

Results

roduction

Fully Homomorphic Encryption

Fully Homomorphic Encryption

XZDDF Bootstrapping

Modification of XZDDF

Benchmark Tests

Conclusions

Algorithm	Param.	S1 (ms)	S2 (ms)	S3 (ms)	S4 (ms)
AP	STD128	10541	182	175	175
GINX	STD128	2583	153	145	145
LMKCDEY	STD128L	2121	120	132	134
XZDDF	STD128	2438	174	184	185
XZDDF	P128T	6386	214	216	216
XZDDF	P128G	5820	194	195	195
AP	STD192	38489	651	662	645
GINX	STD192	8546	467	467	468
LMKCDEY	STD192	8833	493	512	435
XZDDF	STD192	8391	626	622	626
XZDDF	P192T	11808	700	699	699
XZDDF	P192G	9989	592	592	592

Conclusions

Introduction

Fully Homomorphic Encryption

Fully Homomorphi Encryption

XZDDF Bootstrapping

Modification of XZDDF

Benchmark Tests

Conclusions

NAME OF THE PROPERTY OF THE PR

UNIVERSITY

- XZDDF implementation performs quite well at key generation
- XZDDF implementation not as fast as it theoretically should
 - LMKCDEY still seems to be faster
- Bootstrapping is the main bottleneck in all FHE algorithms
- New rotation polynomial works, but only for a special case

Visions and Future Work

Introduction

Fully Homomorphic Encryption

Fully Homomorphic Encryption

XZDDF Bootstrapping

Modification of XZDDF

Benchmark Tests

Conclusions

Find a rotation polynomial r(X) for the general case?

More efficient XZDDF implementation?

FHE still needs to become more efficient

■ Bootstrapping 2010: 30 minutes

■ Today: 100 ms

Fully Homomorphic

XZDDF Bootstrapping

Modification of XZDDF

Benchmark Tests

Conclusions

Thank you for listening!

Questions?

Acknowledgments:

Supervisor: Qian Guo

Examiner: Thomas Johansson