1 Information gain calculation:

For our problem the information gain is defined as:

$$EIG(\Phi) = \int P(x|\Phi) \Big[H[P(\theta) - H[P(\theta|x,\Phi)] \Big] dx \tag{1}$$

to compute that we need to sample from $P(x|\Phi)$ and know $P(\theta|x,\Phi)$.

• We don't have $P(x|\Phi)$ because the data of the experiment is conditioned on θ as well, consequently we can only sample from the distribution $P(x|\theta,\Phi)$. But we can calculate it using the following:

$$P(x|\Phi) = \int P(x,\theta|\Phi)d\theta = \int P(x|\theta,\Phi)P(\theta|\Phi)d\theta = E[P(x|\theta,\Phi)] \quad (2)$$

Where the last equality is the expected value of $P(x|\theta, \Phi)$ under the distribution $P(\theta|\Phi)$. Discretising the integral:

$$P(x|\Phi) = \sum_{i=1}^{n} P(x|\theta_i, \Phi) P(\theta_i|\Phi) = \frac{1}{n} \sum_{i=1}^{n} P(x|\theta_i, \Phi)$$
(3)

Where in the last equality we are assuming to have an uniform distribution $P(\theta_i|\Phi) = 1/n$. We use the black box to generate the distributions $P(x|\theta_i,\Phi)$ for n values of θ :

$$\theta_{1} \to P(x|\theta_{1}, \Phi)
\theta_{2} \to P(x|\theta_{2}, \Phi)
\dots
\theta_{n} \to P(x|\theta_{n}, \Phi)$$
(4)

each of these distribution is obtained from a histogram of the sampled data. Using these we can compute $P(x|\Phi)$.

Since $P(x|\Phi)$ is now discretized because of the histogram, we sample from a multinomial with the parameters, x_i 's given by the bin centers and the probability computed from the normalized histogram.

This is done from lines 92 to 107 in the code.

• To calculate the posterior $P(\theta|x_j, \Phi)$ where x_j is sampled using the method described above, we can use Bayes theorem:

$$P(\theta|x_j, \Phi) = \frac{P(x_j|\theta, \Phi)P(\theta|\Phi)}{P(x_j|\Phi)}$$
 (5)

• After doing this, we average out $-H[P(\theta|x_j, \Phi)]$ across all x_j 's to calculate the Expected Information Gain.