

ÍNDICE

ASIGNATURA	4
DATOS GENERALES	4
PROFESORES	4
Profesor coordinador del curso	4
INTRODUCCIÓN AL CURSO	4
OBJETIVOS	4
COMPETENCIAS	5
RESULTADOS DE APRENDIZAJE	6
TEMAS	6
PLAN DE TRABAJO	7
Metodología	7
Sesiones de teoría	7
Sesiones de práctica (laboratorio o taller)	7
SISTEMA DE EVALUACIÓN	8
REFERENCIAS BIBLIOGRÁFICAS	6

UNIVERSIDAD DE INGENIERÍA Y TECNOLOGÍA SILABO 2021-1

1. ASIGNATURA

CS2301 - Redes y Comunicaciones

2. DATOS GENERALES

Ciclo: 7°

Créditos: Tres (3) créditos

Horas de teoría: Una (1) semanal

Horas de práctica: Cuatro (4) semanales

Duración del período: Dieciséis (16) semanas

Condición: Obligatorio para Ciencia de la Computación

Modalidad: Virtual

Requisitos: CS2S01. Sistemas Operativos (5to Sem)

3. PROFESORES

3.1 Profesor coordinador del curso

Quinto Ancieta Javier Richard, (jquinto@utec.edu.pe)
Horario de atención: previa coordinación con el profesor

3.2 Profesor instructor del curso

Quinto Ancieta Javier Richard, (jquinto@utec.edu.pe)
Horario de atención: previa coordinación con el profesor

4. INTRODUCCIÓN AL CURSO

El siempre creciente desarrollo de las tecnologías de comunicación y la información hace que exista una marcada tendencia a establecer más redes de computadores que permitan una mejor gestión de la información.

En este curso se brindará a los participantes una introducción a los problemas que conlleva la comunicación entre computadores, a través del estudio e implementación de protocolos de comunicación como TCP/IP y la implementación de software sobre estos protocolos.

5. OBJETIVOS

- Sesión 1: Definir los principales conceptos del Internet y el modelo TCP/IP
- **Sesión 2**: Comprender el funcionamiento de los protocolos de aplicación y redes P2P y su aplicación en el Internet
- **Sesión 3**: Analizar los principios básicos de control de congestión y control de flujos en la capa de transporte. Definición de multiplexación y demultiplexación.
- **Sesión 4**: Definir los conceptos de enrutamiento y reenvío en los dispositivos de redes. Comprender las diferencias entre las redes de datagramas y los circuitos virtuales. Describir el comportamiento del protocolo IP e IPv6.
- **Sesión 5**: Analizar el comportamiento de los protocolos del internet en las redes VLAN. Comprender el funcionamiento básico de la virtualización en redes.
- **Sesión 6**: Analizar el comportamiento de las redes SDN en un entorno de virtualización usando Mininet.
- **Sesión 7**: Definir y comprender la automatización de redes y su aplicación en la práctica
- Sesión 8: Evaluar los proyectos de la clase.

6. COMPETENCIAS Y CRITERIOS DE DESEMPEÑO

Los criterios de desempeño que se van a trabajar en este curso son:

- **1.2**. Aplica conocimientos de ciencias apropiados para la solución de problemas definidos y sus requerimientos en la disciplina del programa (*nivel 3*).
- **3.1**. Diseña y evalúa sistemas, componentes o procesos que satisfacen las necesidades específicas (*nivel 3*).
- **7.2**. Analiza y valora el impacto local y global de la computación sobre las personas, las organizaciones y la sociedad (*nivel 2*).
- **8.1**. Entiende la ética y las responsabilidades profesionales (*nivel 3*).

7. RESULTADOS DE APRENDIZAJE

Al finalizar el curso de Redes y Comunicaciones se espera que el estudiante sea capaz de:

RA1. Evaluar protocolos de comunicación y estimar el desempeño en diferentes entornos de red.

- **RA2.** Planificar y modelar redes que satisfacen las necesidades específicas propuestas usando simuladores.
- **RA3.** Interpretar resultados de métricas obtenidas en un entorno de red y su impacto en el usuario final.
- **RA4.** Recomendar el adecuado uso de las herramientas tecnológicas aplicadas en redes con el fin de mantener la protección de datos del usuario final.

8. TEMAS

- 1. Introducción al Internet, modelo TCP/IP y Aplicaciones de Red
- 2. Protocolos Cliente-Servidor, Peer-to-Peer y Sockets de protocolos
- 3. Control de congestión y de flujo y entrega confiable de datos
- 4. Ruteo y reenvío en IPv4/IPv6
- 5. Virtualización en Redes
- 6. Redes Definidas por Software
- 7. Automatización en redes
- 8. Presentación de Proyectos en clase

9. PLAN DE TRABAJO

9.1 Metodología

La metodología activa del curso abarca el aprendizaje basado en problemas y el aprendizaje basado en proyectos. Ambos aumentan el interés del estudiante y promueven su compromiso en el aprendizaje.

9.2 Sesiones de teoría

Las sesiones teóricas serán desarrolladas bajo la estructura de clase magistral. El desarrollo de las sesiones teóricas está focalizado en el estudiante, a través de su participación activa, fomentando las preguntas de tipos abiertas y cerradas, resolviendo problemas relacionados al curso con los aportes individuales y discutiendo casos reales de la industria. La presentación de equipos y materiales reales utilizados en proyectos acompaña en las sesiones para familiarizarlos con ellos.

El proyecto a desarrollar será planteado durante las primeras semanas de clase o puede ser a libre criterio del alumno. El desarrollo es grupal y los alumnos contarán con asesorías previa coordinación por correo con el docente.

9.3 Sesiones de práctica (laboratorio o taller)

Las sesiones prácticas/laboratorio se desarrollarán a través de una metodología activa generando el aprendizaje práctico por parte del estudiante. Los laboratorios son del tipo individual debido a que la actividad requiere el logro de destreza en el manejo de herramientas.

10. SISTEMA DE EVALUACIÓN

Los laboratorios calificados serán realizados en las aulas y de forma grupal, donde se propondrán ejemplos aplicativos de redes y comunicaciones. Los alumnos resolverán los ejercicios utilizando las técnicas aprendidas en clase. La nota más baja de los tres laboratorios se elimina.

EVALUACIÓN	TEORÍA (T)	LABORATORIO (L)	
*La ponderación de la evaluación se hará si ambas partes están aprobadas	Evaluación Continua C1 (5%) Evaluación Continua C2 (5%) Examen Parcial E1 (20%) Examen Final E2 (20%)	Práctica Calificada PC1 (10%) Práctica Calificada PC2 (10%) Proyecto P1 (15%) Proyecto P2 (15%)	
*Para aprobar el curso hay que			
obtener 11 o más en la nota final NF.	50%	50%	
INF.	100%		

Las rúbricas que permitirán medir las actividades más significativas del curso y que, además se relacionan con la evaluación de las competencias del estudiante son:

PC: enlace
P: enlace

11. REFERENCIAS BIBLIOGRÁFICAS

- J.F. Kurose and K.W. Ross.Computer Networking: A Top-down Approach. 7th. Always learning. Pearson, 2013.isbn: 978-0133594140.
- Paresh Chayapathi Rajendra; Syed F. Hassan; Shah. Network Functions Virtualization (NFV) with a Touch of SDN. Addison-Wesley Professional; 1 edition, 2016.isbn: 978-0134463056.

 Mastering Python Networking: Your one-stop solution to using Python for network automation, programmability, and DevOps, 3rd Edition (Inglés). ISBN-13: 978-1839214677

