Question Number	Answer		Mark
20(a)	Use of $A = 4\pi r^2$ Use of $I = P/A$ to calculate I $I = 1.3 \text{ W m}^{-2} < 4.5 \text{ W m}^{-2}$ so not dangerous	(1) (1) (1)	
	OR Use of $A = 4\pi r^2$ Use of $I = P/A$ to calculate A $r = 0.13 \text{ m} < 0.25 \text{ m}$ so not dangerous	(1) (1) (1)	3
	(For MP2 via second method, look for area of 0.22 m ²) Example of calculation $A = 4\pi (0.25 \text{ m})^2 = 0.79 \text{ m}^2$ $A = P/I \text{ so } 0.79 \text{ m}^2 = 1.00 \text{ W} / I, \text{ so } I = 1.27 \text{ W m}^{-2}$		
20(b)	Use of $E = hf$	(1)	
	Conversion from J to eV	(1)	
	Energy per photon = 3.7×10^{-6} (eV)	(1)	3
	Example of calculation $E = hf = (6.63 \times 10^{-34} \text{ Js}) \times (902 \times 10^{6} \text{ Hz}) = 5.98 \times 10^{-25} \text{ J}$ Energy per photon (in eV) = $(5.98 \times 10^{-25} \text{ J}) / (1.60 \times 10^{-19} \text{ J eV}^{-1})$ = $3.74 \times 10^{-6} \text{ eV}$.		
20(c)	Use of $P = E/t$ for kettle	(1)	
	Converts kWh to J for electricity usage Or converts J to kWh for kettle usage	(1)	
	Percentage = 0.61% so student is correct Or states that 150,000 J is less than 1% of 2.47×10^7 J so student is correct	(1)	3
	(Kettle energy in kW h is 0.042)		
	Example of calculation $E = P \times t$ (for kettle) = 1200 W × 125 s = 150,000 J Electricity usage = 6.85 kWh = 6.85 ×1000 W x 3600 s = 2.47 × 10 ⁷ J Kettle's percentage of daily usage = [(150,000J) / (2.47 × 10 ⁷ J)] × 100 Percentage = 0.61%		
	Total for Question 20		9