Interactions among frontal-parietal and cingulo-opercular networks supporting cognitive control

STATE UNIVERSITY OF THE PROPERTY OF THE PROPER

Jessica L. Wood and Derek Evan Nee | Department of Psychology, Florida State University

BACKGROUND

Cognitive Control involves directing one's actions based on current and future relevant demands. It can be broken down into processes of:

Sensory-Motor Control

Linking stimulus to action

Contextual Control

Adapting behavior based on rules

Temporal Control

Future-Oriented Planning

PURPOSE

Frontoparietal Control Network (FPCN)

Cinguloopercular Network (CON)

The interactions between these networks have yet to be empirically tested, and specifically, the CON's distribution and function during cognitive control is currently unclear

Question 1: What is the distribution of the CON during specific cognitive control demands?

dACC/msFC

Image: Dosenbach et al., 2007, PNAS

Question 2: Does the CON function in a sustained or transient

manner during cognitive control?

Image Left: Dosenbach et al., 2008, TICS; Right: Menon & Uddin, 2010, Brain Struct Funct

Question 3: Does the CON motivate the FPCN in the procession of activity towards behavior?

Image: Egner, 2009, Nature Neuro; Kouneiher et al., 2009, Nature Neuro

- Previously collected data-set from Nee & D'Esposito 2016 & 2017, eLife
- Two separate samples of young, healthy participants (n=24 and n=25) completed the task during fMRI
- fMRI contrasts compared control demand conditions
- Peak activations identified in one sample, used as ROI on remaining sample and vice versa

Temporal Control

Contextual Control

RESULTS: CON and FPCN distributed based on control demands

Previously reported FPCN Distribution:

Nee & D'Esposito, 2016 & 2017, eLife; Nee, 2021, eLife

Functional subnetworks observed are consistent between the FPCN and CON:

- Temporal Control Subnetwork rostral regions of the lateral and medial PFC and ventral al
- Contextual Control Subnetwork mid regions of the lateral and medial PFC and dorsal al

Temporal Control Contextual Control

Evidence for CON as playing a more transient role than the FPCN

Step 1 RESULTS: CON Brain-Behavior Relationships mirror FPCN findings

- Contextual Control
 Subnetwork correlated
 with present behavior RT
 across samples
- Temporal Control
 Subnetwork is correlated
 only with future behavior
 RT

Future Behavior

Present Behavior

^{*}p < 0.05 **p < 0.001

Question 3: CON motivates the FPCN

Step 2 RESULTS: Mediation analysis between-networks shows FPCN fully mediating the CON relationship with behavior

Contextual Control

Sample 1 data shown: findings replicated in sample 2

Step 3 RESULTS: Separating CON regions show mediation to behavior

Provides evidence for a directed relationship from the CON regions – al to dmPFC, to the FPCN to behavior

al dmPFC > FPCN > Behavior

SUMMARY

 CON and FPCN can be separated into functional subnetworks based on control demands

- CON plays a more transient role in processing
- Together there is evidence for the CON motivating the FPCN in a directional framework from the al to dmPFC to FPCN onto behavior

Thank you!

NIMH R01 MH121509, PI: Derek Nee

FLORIDA STATE UNIVERSITY