Architektura systemów informatycznych

Był też system binarny

- Chińskie trygramy
 - 8 trygramów
 - liczby 3-bitowe

- Chińskie heksagramy
 - 64 heksagramy
 - liczby 6-bitowe
 - np. 1, 8, 32, 64

Skuteczne wdrażanie projektów informatycznych

Euklides

- Euklides, przed 323 po 283 BC
- Algorytm Euklidesa
 - algorytm znajdujący największy wspólny dzielnik dwóch liczb
 z przestrzeni Euklidesowej (np. liczb całkowitych)
 - // definicja oryginalna
 - function nwd(a, b)
 - while $b \neq 0$
 - if a > b
 - a := a b
 - else
 - b := b a
 - return a
 - // współczesna implementacja rekurencyjna
 - function nwd(a, b)
 - if b = 0 return a
 - else return nwd(b, a mod b)
- Pojecie *algorytm* wiąże się z nazwiskiem Al-Khwārizmī
 - perski astronom i matematyk żyjący pod koniec pierwszego tysiąclecia naszej ery
 - do dziś brak generalnie akceptowanej definicji algorytmu

Pascal i Leibniz

- Blaise Pascal, 1623–1662
 - kalkulator mechaniczny (*Pascaline*)
 - dodawanie, odejmowanie

- nie wzbudził komercyjnego zainteresowania
- Leibniz [1646–1716]
 - zdefiniował system binarny
 - opisał koncepcję Calculus Ratiocinator

5

Skuteczne wdrażanie projektów informatycznych

Boole i Shannon

- George Boole, 1815-1864
 - system binarny
 - algebra Boole'a
 - podstawa współczesnej arytmetyki komputerowej
- Claude Shannon, 1916-2001
 - system binarny
 - układy przełączające
 - praca magisterska
 - algebra Boole'a i arytmetyka binarna mogą być wykorzystane do uproszczenia organizacji elektromechanicznych przełączników wykorzystywanych w centralach telefonicznych (routerach)
 - możliwość wykonywania operacji logicznych za pomocą przełączników elektrycznych jest fundamentem na którym zbudowano wszystkie współczesne urządzenia elektroniczne

Babbage

- Charles Babbage, 1791–1871
- Maszyna różnicowa
 - kolumny k₁, k₂, ..., k_N
 - w każdej liczba dziesiętna
 - k_N = const
 - $\bullet \ k_n := k_n + k_{n+1}$
 - k₁ = wynik iteracji
- Programowanie
 - ustalanie wartości kolumn
- Wykonanie
 - iterowanie obliczenia

/

Skuteczne wdrażanie projektów informatycznych

Babbage – maszyna różnicowa

Weierstrass:

- każda funkcja ciągła może być aproksymowana przez wielomian
- każdy wielomian można obliczyć z tablic różnicowych

Przykład

- f(n) = n2+n+41
- d1(n) = f(n) f(n-1) = 2n
- d2(n) = d1(n) d1(n-1) = 2
- f(n) = f(n-1) + d1(n) = f(n-1) + (d1(n-1) + 2)

n	0	1	2	3	4
d2(n)			2	2	2
d1(n)		2	→ 4 -	→ 6 -	→ 🕴
f(n)	41 -	→ 43 ·	→ 47 -	→ 53 -	→ 61

Wystarczy umieć dodawać!

Babbage – maszyna różnicowa

- 1823
 - Babbage publikuje pracę w której opisuje maszynę różnicową
- **1834**
 - w Szwecji Scheutz & syn czytają pracę
- 1842
 - Babbage porzuca prace nad maszyną różnicową, zajmuje się maszyną analityczną

- 1859
 - Scheutz pokazuje maszynę na Targach Światowych w Paryżu
 - Maszyna oblicza dowolny wielomian 6-tego rzędu
 - Szybkość: przelicza 33 do 44 32-cyfrowych liczb na minutę!

9

Skuteczne wdrażanie projektów informatycznych

Babbage – maszyna analityczna

- **1833**
 - Babbage publikuje pracę w której opisuje maszynę analityczną
- Inspiracja: krosna Jacquard-a
 - krosna były kontrolowane przez karty perforowane
 - zestaw kard z ustalonymi dziurkami określał wzór
 - program
 zestaw kart można było wykorzystywać dla różnych kolorów włókien
 - dane
- **1871**
 - Babbage umiera
 - Maszyna pozostaje niezrealizowana
- Nie jest jasne, czy nawet dziś udałoby się dokładnie taką maszynę zbudować tylko z wykorzystaniem technologii mechanicznych
 - natomiast
- Harvard Mark I zbudowany w 1944 jest bardzo zbliżony pomysłem do maszyny analitycznej

Babbage – maszyna analityczna

- Pierwsza koncepcja komputera ogólnego przeznaczenia
- Magazyn
 - w którym przechowywane są wszystkie zmienne na których operujemy oraz wartości powstałe w wyniku operacji
- Silnik
 - do którego przenoszone są zawsze wartości, na których będziemy operować i który je przetwarza
- Operacja
 - w silniku wymagała włożenia dwóch kart
 - i tworzyła nową kartę do odłożenia w magazynie

11

Skuteczne wdrażanie projektów informatycznych

Ada Byron

- Ada Byron, Lady Lovelace, 1815 – 1852
- Pierwszy programista!
 - nie czekając na zbudowanie tej maszyny zaczęła pisać dla niej programy
- Pomysły Babbage'a zyskały rozgłos dzięki:
 - Luigi Menabrea
 - opublikował notatki z wykładów Babbage'a we Włoszech
 - Lady Lovelace
 - przetłumaczyła notatki Menabrea na angielski
 - w dużym stopniu je uzupełniła i rozszerzyła

Turing

- Alan Turing, 1912–1954
 - W 1936 roku opisał maszynę Turinga
 - bardzo prosta maszyna operująca za pomocą głowicy na symbolach zapisanych na taśmie
 - zestaw reguł:
 - stan + symbol
 - ->
 - symbol + stan
 - + przesunięcie taśmy
 - jeszcze przed zbudowaniem pierwszego elektronicznego komputera
 - dziś stanowi uniwersalny model komputera i obliczeń
- uczestniczył w pracach nad złamaniem maszyn szyfrujących Enigma

13

Skuteczne wdrażanie projektów informatycznych

Zuse

- Konrad Zuse, 1910–1995
 - komputer Z3
 - pierwszy funkcjonalny komputer kontrolowany przez program przechowywany na taśmie
 - częstotliwość zegara
 - ~5-10 Hz
 - długość słowa
 - 22 bity
 - operacje wykonywane były binarnie w pełnej arytmetyce zmiennopozycyjnej
 - w 1998 dowiedziono kompletności Z3 w sensie maszyny Turinga
 - moc obliczeniowa równoważna uniwersalnej maszynie Turinga

Atanasoff

- John Atanasoff, 1903–1995
 - 1930: Linear Equation Solver
 - obliczenia binarne
 - logika Boolea
 - 1937: Atanasoff-Berry Computer (ABC)
 - pierwsze "elektroniczne cyfrowe urządzenie obliczające"
 - rozwiązywanie równań liniowych i różniczkowych
 - współtwórcą Mauchly, który później pracował nad ENIAC
 - w sporze prawnym dotyczącym patentu ENIAC podważono patent wskazując urzadzenie Atanasoffa jako wcześniejszy "komputer"

15

Skuteczne wdrażanie projektów informatycznych

von Neumann

- John von Neumann, 1903-1957
 - postać numer 1 w historii informatyki
 - w 1946 roku zainspirował prace w projekcie EDVAC, których celem było zbudowanie komputera bez wad ENIAC
 - zaproponował architekturę komputerów, według której buduje się te maszyny do dzisiaj
 - dane oraz program są ładowane do wspólnej przestrzeni adresowej
 - tak naprawdę zastosowali to już twórcy ENIAC-a
 - ekonomia
 - teoria gier

Skuteczne wdrażanie projektów informatycznych Krótkie podsumowanie Binary Electronic Computer Shown working Programmable Turing complete By punched film stock 7use 73 May 1941 Nο Yes (1998) Atanasoff-Berry Computer Summer 1941 Yes December 1943 / January 1944 Yes Yes Partially, by rewiring Harvard Mark I/IBM ASCC 1944 By punched paper tape No Yes Partially, by rewiring Yes By Function Table ROM Yes 17

Harvard Mark I [1944]

- laboratoria IBM Endicott
- obliczenia głównie mechaniczne
- niektóre przekładnie i tuby próżniowe kontrolowane elektromechanicznie
- waga 5 ton
- 750.000 komponentów
- zegar synchronizowany taktujący co 0.015 sek.
- Wydajność
 - 0.3 sekundy na dodawanie
 - 6 sekund na mnożenie
 - 1 minuta na obliczenie sinusa
- Psuł się raz w tygodniu!

19

Skuteczne wdrażanie projektów informatycznych

ENIAC [1944]

- pierwszy w pełni elektroniczny, operacyjny kalkulator analityczny ogólnego przeznaczenia
 - 30 ton, 72 metry kwadratowe
- wydajność
 - wczytywał 120 kart na minutę
 - dodawanie 200 µs
 - dzielenie 6 ms
 - 1000 razy szybszy niż Mark I
- Nie był niezawadny!
- Zastosowania
 - Obliczenia balistyczne
- kąt = f (położenie, wiatr wzdłuż, wiatr poprzeczny, gęstość powietrza, temperatura, waga pocisku, siła ładunku wybuchowego,

20 ...)

EDVAC [1948]

- System programowania ENIAC był zewnętrzny
 - sekwencje instrukcji były wykonywane niezależnie od wyników obliczeń
 - wymagana była ludzka interwencja by pominąć "niepotrzebne" instrukcje
- Eckert, Mauchly, von Neumann i inni zaprojektowali EDVAC by usunąć ten problem
 - Rozwiązaniem był: przechowywany program komputerowy
 - "Programem można było manipulować tak jak danymi"
- Pierwszy draft raportu o EDVAC był opublikowany w 1945 ale tylko miał podpis von Neumann'a
- W 1973 sąd Minneapolis wskazał Johna Atanasoff jako wynalazcę pierwszego komputera

Skuteczne wdrażanie projektów informatycznych

Komputer z przechowywanym programem

- Program = Sekwencja instrukcji
- Jak kontrolowano sekwencjonowanie instrukcji?
- ręcznie
 - kalkulatory
- automatycznie
 - zewnętrznie (papierowa taśma)
 - Harvard Mark I
 - Zuse: Z1, WW2
 - wewnętrznie
 - tablica przełączników
 - ENIAC, 1946
 - pamięć read-only
 - ENIAC, 1948
 - pamięć read-write
 - EDVAC, 1947 (koncept)
- współdzielenie pamięci przez program i dane
 - Maurice Wilkes, 1950 EDSAC

22

Rozprzestrzenienie się idei

_	FΝ	IΙΑ		ጼ	FΓ	١(/Δ	$\boldsymbol{\cap}$
		4 T 🖊	\sim	LX.	-	JV	$\overline{}$	_

IAS	Princeton	1946-52
EDSAC	Cambridge	1946-50
MANIAC	Los Alamos	1949-52
JOHNIAC	Rand	1950-53
ILLIAC	Illinois	1949-52
Argonne		1949-53
SWAC	UCLA-NBS	

UNIVAC 1951

pierwszy komputer komercyjny

Historycy ciągle debatują nad wpływem prac Alana Turinga na te przedsięwzięcia

23

Skuteczne wdrażanie projektów informatycznych

Główny problem: niezawodność

- MTBF (Mean time between failures)
 - średni czas pomiędzy awariami
 - MTBF = 20 min. był bardzo dobrym wynikiem!
- Przyczyny:
 - tuby próżniowe
 - media do przechowywania informacji
 - acoustic delay lines
 - mercury delay lines
 - Williams tubes
 - selections

IBM SSEC (Selective Sequence Electronic Calculator)

- działalność komercyjna 1948-52
- magazyn 150 słów
- instrukcje, ograniczenia, tabele danych
 - wczytywane z taśm papierowych
- 66 stacji czytających taśmy
- taśm można było sklejać w pętle!
- dane wyliczone w jednej fazie obliczenia można było wczytać w kolejnej fazie

25

Skuteczne wdrażanie projektów informatycznych

IBM 701, IBM 650

- IBM 701
 - w latach 1953-54 sprzedano 30 maszyn
- IBM 650
 - tańszy
 - w roku 1954 sprzedano 120 maszyn
 - były zamówienia na 750 kolejnych
- użytkownicy przestali budować własne maszyny!
- Dlaczego IBM tak późno uaktywnił się w przemyśle komputerowym?
- IBM zarabiał za dużo!
 - Nawet bez komputerów, zyski IBM podwajały się co 4-5 lat w latach 1940' i 1950'

Rozwój oprogramowania

- Do roku 1955
 - Biblioteki funkcji numerycznych
 - Operacje zmiennopozycyjne
 - Operacje na macierzach
 - Rozwiązywanie równań
 -
- Lata 1955-60
 - Języki wyższego poziomu
 - Fortran 1956
 - Systemy operacyjne
 - Assemblery, Loadery, Linkery, Kompilatory
 - Programy księgowe śledzące wykorzystanie komputera i naliczające opłaty!
- Komputery wymagały doświadczonych operatorów
 - Od większości użytkowników nie wymagano rozumienia programów, nie mówiąc o ich pisaniu
 - Komputery sprzedawano wraz z mnóstwem oprogramowania

27

Skuteczne wdrażanie projektów informatycznych

Przykłady architektur

- Mainframe
- Distributed computing
- Object-oriented
- Blackboard
- Implicit invocation
- Plugin
- Monolithic system
- Process-control
- State-machine
- Structured
- Software componentry

- Model-view-controller
- Pipe-and-filter
- Client-server
- Peer-to-peer
- Three-tier model
- N-tier model
- Service-oriented
- Search-oriented

