- (10) Sean $a, b \in \mathbb{C}$. Decidir si existe $z \in \mathbb{C}$ tal que:
 - a) $z^2 = b$. ¿Es único? ¿Para qué valores de b resulta z ser un número real?
 - b) z es imaginario puro y $z^2 = 4$.
 - c) z es imaginario puro y $z^2 = -4$.

a) Si b=0, entonces z=0 es la única advación. Si b\$0, usaremos la forma polar de b. Si b=reio con r\$0, entonces $z=\pm \sqrt{r}e^{i\theta/2}$ son los dos posibles valores de z tal que $z^2=b$. Alhora bien,

ZER == e10/2 E{0,51}+211Z => 0E{0,211}+411Z.

Como ul argumento de b es 0, conclumos que ZER si y sólo si el argumento de b es un múltiple entero de 21x, es decr si b es real positivo.

b) Si Z es imaginario puro, entonces Z=ia para algún $a \in \mathbb{R}$. Luego, $Z^2 = -3^2 = 4$, y por lo canto $a^2 = -4$, lo que no tiene solución en \mathbb{R} .

c) Si z es imaginario puro, entonces Z=ia para algún $a \in \mathbb{R}$. Luego, $Z^2=-a^2=-4$, y por lo canto $a^2=4$, lo que tiene solución en \mathbb{R} , $a=\pm 2$.