Problem Min-cost Max-flow

Programowanie funkcyjne

Grzegorz Swatowski 09.01.2012

Problem Max-flow - definicja

```
Dana jest <u>sieć przepływowa</u> (G, c, s, t):
```

- c: E -> R>=0 gdzie c((u, v)) nazywamy przepustowością krawędzi (u, v).
 Rozszerzamy notację: c: V*V -> R>=0
- s, t dwa wyróżnione wierzchołki, odp. źródło, ujście

Przepływ sieci (G, c, s, t) to dowolna funkcja f: V*V->R t. $\dot{z}e$

- (warunek przepustowości)
 f(u, v) <= c(u, v) dla każdego u,v in V
- (warunek skośnej symetryczności) f(u, v) = -f(v, u) dla każdego u,v in V
- (warunek zachowania przepływu) sum(x in V, f(v, x)) = 0 dla każdego v in $V/\{s, t\}$

Wartość przepływu:

```
|f| = sum(x in V, f(s, x))
```

Problem Max-flow - przykład

Sieć przepływowa:

Problem Max-flow - przykład

Sieć przepływowa i przepływ:

|f| = 10

Problem Max-flow - zastosowania

- znajdowanie maksymalnego skojarzenia w grafie dwudzielnym
- znajdowanie najmniejszego pokrycia wierzchołkowego w grafie dwudzielnym (tw. Koniga-Egervary'ego)
- znajdowanie minimalnego przekroju
- znajdowanie największej liczby niezależnych wierzchołkowo ścieżek od s do t
- znajdowanie największej liczby niezależnych krawędziowo ścieżek od s do t

Problem Max-flow - złożoności algorytmów

- Algorytm Forda-Fulkersona
- Algorytm Edmonsa-Karpa
- Algorytm Dinica
- Algorytm trzech Hindusów

Problem Min-cost Max-flow - definicja

```
Dana jest <u>sieć przepływowa</u> (G, c, s, t, a)
```

- c, s, t jak wcześniej
- a : E -> R \rightarrow gdzie a((x, y)) koszt przesłania jednostki przepływu po (x, y)

Przepływ sieci (G, c, s, t, a) to dowolna funkcja f : V*V->R>=0 t. że :

- (warunek przepustowości)
 f(u, v) <= c(u, v) dla każdego u,v in V
- (warunek zachowania przepływu) sum((v, w) in E, f(v, w)) = sum((w, v) in E, f(w, v)) dla każdego w in V

Koszt przepływu:

cost(f) = sum(e in E, a(e) * f(e))

Sieć przepływowa:

Sieć przepływowa i przepływ:

Sieć przepływowa:

Sieć przepływowa i przepływ:

Problem Min-cost Max-flow - algorytm

Problem Min-cost Max-flow - złożoność

```
f <- 0 {pusty przepływ}</pre>
oblicz potencjał PI(v) := d(s, v) {obliczony algorytmem Bellmana-
                                                             O(|E|*|V|)
                                                Forda }
dopóki istnieje ścieżka powiększająca:
                                                                 O(|f*|)
     { PI jest potencjałem }
     P <- najtańsza ścieżka powiększająca {Alg. Dijkstry
            w grafie z wagami \mathbf{a}_{\mathbf{pi}}(\mathbf{u},\mathbf{v}) = \mathbf{a}(\mathbf{u},\mathbf{v}) + \mathbf{PI}(\mathbf{u}) - \mathbf{PI}(\mathbf{v}). To będzie
            najtańsza ścieżka także względema} O(|V|*log|V|+|E|)
     powiększ f wzdłuż P
                                                        O(|E|)
                                                        0(|V|)
     for x in V:
           PI(x) := PI(x) + d_pi(s,x)
           { d pi - odległość w sensie wag a pi obliczona alg. Dijkstry}
```

Całość: O(|V|*|E| + |f*|*(|V|*log|V| + |E|))

Problem Min-cost Max-flow - moduły

Problem Min-cost Max-flow - moduly

- Moduł szukający najkrótszą ścieżkę
 - Algorytm Dijkstry
 - kolejka priorytetowa (zaimplementowana na AVLu)
 - Algorytm Bellmana Forda
- Mapa (zaimplementowana na AVLu)
- Kolejka priorytetowa (zaimplementowana na AVLu)
- Moduł rozwiązujący problem Min-cost Max-Flow

Problem Min-cost Max-flow - funktory

- SHORTEST_PATH_SEEKER
 = functor(Queue : PRIORITY_QUEUE) -> functor(AvIMap : MAP)
- PRIORITY_QUEUE = functor(Order: LINEAR_ORDER)
- MAP = functor(Order : LINEAR_ORDER_TUPLE)
- MAX_FLOW_MIN_COST
 - = functor(AvlMap : MAP) ->
 - functor(Dijkstra: SHORTEST_PATH_FINDER) ->
 - functor(BellmanFord: SHORTEST_PATH_FINDER)

Dziękuję Pytania?