Trabajo Practico Final Reproductor MP3

Gonzalo Ezequiel Linares Damián Ezequiel Sergi Agustín Luis Gullino Santiago Feldman

Instituto Tecnológico de Buenos Aires

Febrero 2024

Veámoslo en funcionamiento!!

Máquina de estados

Interfaz física

Display 16x2

PCF8574

SCPS068J - JULY 2001 - REVISED MARCH 2015

PCF8574 Remote 8-Bit I/O Expander for I²C Bus

Display 16x2

```
void displaySendPeriodicISR(){
     static int sendingState = 0;
4
     static uint8 t wordSend:
    switch (sendingState) {
6
     case 0:
     if (getFillLevel(&displayDataBuffer) != 0){
8
         wordSend = getNext(&displayDataBuffer);
Q
10
         WriteDriverByteIIC(&wordSend):
         sendingState=1;
    break:
14
    case 1:
15
       wordSend |= En:
16
       WriteDriverBvteIIC(&wordSend):
       sendingState=2;
18
     break:
19
    case 2:
20
       wordSend &= ~En;
       WriteDriverBvteIIC(&wordSend):
21
       sendingState = 0;
     break:
24
     default:
     break;
28
```


Uso de SDK

Uso de SDK: FATFS

Reproducción

Matriz LED

```
typedef union
{
      uint32_t hex;
      struct
      {
            uint8_t b, g, r, bright;
      };
} color_t;
```

```
typedef struct
{
        color_t color;
        uint8_t onoff : 1;
        uint8_t blink : 1;
} LED_t;

static LED_t LEDMatrix[NUMOFLEDS] = {0};
static uint16_t PWMLEDMatrix[NUMOFLEDS * RGBBITS + 2] = {0};
static uint8_t brightness = MAXBRIGHTNESS / 6;
static uint8_t refreshTimerID = 0;
static uint8_t blinkTimerID = 0;
```


Vúmetro


```
void initVumeter()
   {
     color_t aux;
6
     initLEDMatrix():
     for (int i = 0; i < COLS; i++)
9
       for (int j = 0; j < ROWS; j++)
11
          switch (i)
14
          case 0:
15
          case 1:
          case 2:
16
            aux.hex = YELLOW:
18
            changeColor(j, i, aux);
19
            break;
20
          case 3:
22
          case 4:
          case 5:
24
            aux.hex = RED;
25
            changeColor(j, i, aux);
26
            break:
28
          case 6:
29
          case 7:
30
            aux.hex = PURPLE;
31
            changeColor(j, i, aux);
            break;
34
     }
35
36
37
     adjustBrightness(2); vumeterOn();
38
39
```


Ecualizador

$$y[n] = \sum_{k=-\infty}^{\infty} x[k] h[n-k]$$

Ecualizador

IEEE SIGNAL PROCESSING LETTERS, VOL. X, NO. Y, DEC. 2016

Processing Letters

Accurate Cascade Graphic Equalizer

Vesa Välimäki, Fellow, IEEE, and Juho Liski

Abstract—A graphic equalizer is a high-order filter controlling the gain of several frequency bands. For good accuracy, graphic

independent of each other, but this makes the overall cascade graphic EQ a very large filter [12], [13]. Some researchers

$$H_{\mathcal{C}}(e^{j\omega T_{s}}) = G_{0} \prod_{m=1}^{M} H_{m}(e^{j\omega T_{s}})$$

$$\mathbf{g}_{\text{opt}} = \mathbf{A}^{-1}\mathbf{t}$$

$$H(z) = \frac{1 + G\beta - 2\cos(\omega_{\rm c})z^{-1} + (1 - G\beta)z^{-2}}{1 + \beta - 2\cos(\omega_{\rm c})z^{-1} + (1 - \beta)z^{-2}}$$

Calculo de potencia por bandas

Libreria DSP

Gracias

