Nested Quantifiers Think about it as a nested loop

If one is within the scope of the other

 $\forall x \exists y (x + y = 0)$ is the additive inverse

• The same as $\forall x \ Q(x)$ where $Q(x) \exists y \ P(x,y)$ where P(x,y) = (x + y = 0)

 $\forall x \ \forall y(x + y = y + x)$ commutative

 $\forall x \forall y \forall z(x + (y+z) = (x+y)+z)$ associative

• But what is the domain, does the order of the quantifier change the value??

Nested Loops

- $\forall x \forall y P(x, y)$ loop for every x and for each x we loop for y.
- $\forall x \exists y \ P(x, y) \ loop for every x$, we loop through the values of y till we find a y where P(x,y) is true

Attention:

Assume that Q(x, y) = x+y = 0, determine the truth value of (domain is real numbers):

- ∃y∀xQ(x,y)
- ∀x ∃yQ(x,y)

Assume Q(x, y, z) is x + y = z, determine the truth value of (domain is real numbers):

- ∀x ∀y ∃z Q(x, y, z)
- $\exists z \forall x \forall y Q(x, y, z)$

Statement	When True?	When False?
$\forall x \forall y \ P(x, y)$ $\forall y \forall x \ P(x, y)$	P(x, y) is true for every pair x, y .	There is a pair x , y for which $P(x, y)$ is false.
$\forall x \exists y \ P(x, y)$	For every x there is a y for which $P(x, y)$ is true.	There is an x such that $P(x, y)$ is false for all y .
$\exists x \forall y \ P(x, y)$	There is an x for which $P(x, y)$ is true for all y .	For every x there is a y for which $P(x, y)$ is false.
$\exists x \exists y \ P(x, y)$ $\exists y \exists x \ P(x, y)$	There is a pair x , y for which $P(x, y)$ is true.	P(x, y) is false for every pair x, y .

iClicker

Negating Nested Quantifiers

Let us learn it by example:

Negate: $\forall x \exists y (xy = 1)$

Nested Quantifiers **Dangerous situations**

Commutativity of quantifiers

- $\forall x \forall y p(x,y) \Leftrightarrow \forall y \forall x p(x,y)$?
 - Yes
- $\forall x \exists y p(x,y) \Leftrightarrow \exists y \forall x p(x,y)$?
 - No

Distributivity of quantifiers over operators

- $\forall x [P(x) \land Q(x)] \Leftrightarrow \forall x P(x) \land \forall x Q(x)$?
 - Yes
- $\forall x [P(x) \rightarrow Q(x)] \Leftrightarrow [\forall x P(x) \rightarrow \forall x Q(x)]$?
 - No

Remember:

- We can distribute a **universal quantifier** over a conjunction (and)
- We cannot distribute a universal quantifier over a disjunction (or)
- We can distribute an existential quantifier over a disjunction
- We cannot distribute an existential quantifier over a conjunction

Converting from English

Translate Every student in this class has studied calculus into logical expressions

- Rewrite to identify appropriate quantifier
 - For every student in this class, that student has studied calculus
- Introduce a variable x
 - For every student x in this class, x has studied calculus
 - For every person x, if person x is a student in this class then x has studied calculus
 - \forall x (s(x) \rightarrow Q(x, calculus))
- Read using quantifiers in System specifications

Examples

Assume that:

- F(x): x is a fun
- S(x): x is a sun
- T(x): x is a tum
- U={funs, suns, tums}

Translate:

- 1. Everything is (a) fun.
- 2. Nothing is a sun.
- 3. All funs are suns.
- 4. Some funs are tums.
- 5. No sun is a tum.
- 6. If any fun is a sun then it's also a tum.