

Feature detection on meshes

Geometric Modeling - Saarland University

Christen Millerdurai Javier Usón Peirón Marco Schichtel February 10. 2022

Slide 1 Feature detection on meshes GeoMod 2022

Introduction

- Meshes are piecewise linear surfaces, finding continuous normals, curvatures is difficult.
- Discrete Differential-Geometry Operators for Triangulated 2-Manifolds, Meyer et al, a robust framework to approximate the discretized properties of shapes.
- > Feature detection and extraction on meshes.
- Extracted features can be used to perform downstream tasks.

Slide 2 Feature detection on meshes

Features

- Gaussian Curvature k_G.
 - Allows to determine if shape is elliptic or hyperbolic, parabolic.

$$\kappa_G(\mathbf{x}_i) = (2\pi - \sum_{j=1}^{\#f} \theta_j) / \mathcal{A}_{\text{Mixed}}$$

- Mean Curvature k_H
 - Average of the normal curvatures

$$\mathbf{K}(\mathbf{x}_i) = \frac{1}{2\mathcal{A}_{\text{Mixed}}} \sum_{j \in N_1(i)} (\cot \alpha_{ij} + \cot \beta_{ij}) \ (\mathbf{x}_i - \mathbf{x}_j)$$

Features

- ➤ Principal Curvature k₁ and k₂
 - Extremum values for normal curvature

$$k_1(x_i) = k_H(x_i) + \sqrt{k_H^2(x_i) - k_G}$$
 $k_2(x_i) = k_H(x_i) - \sqrt{k_H^2(x_i) - k_G}$

- ➤ Principal Directions e₁ and e₂
 - Directions for principal curvature
 - ightharpoonup Least-Square minimization for curvature tensor B: $\sum_i w_j \left(\mathbf{d}_{i,j}^T \ B \ \mathbf{d}_{i,j} \kappa_{i,j}^N \right)^2$
 - > Eigenvectors for B are principal directions

Implementation

- Straight forward implementation of previous formulas.
- For Mean Curvature: sum by triangle not vertex.

Let us test them!

Slide 6 Feature detection on meshes GeoMod 2022

Let us test them!

Applications - Noise detection

Use curvatures for mesh smoothing (noise removal)

Slide 8 Feature detection on meshes GeoMod 2022

Applications - Classifier

- Something corrupted our meshes!
- We develop a classifier to trace them back
- Calculate the normalized histogram of principal curvatures for each mesh (It will act as a probability density function)
- Compare them using Wasserstein distance

Corrupted mesh

Applications - Classifier

Original	Cube	Eightparam	Fandisk	Hand	Head	Mushroom	Pig	Pumpkin
Cube	0.0000	0.3725	0.0931	0.3611	0.0618	0.3418	0.2534	0.2977
Eightparam	0.3725	0.0000	0.2794	0.0114	0.4344	0.0307	0.1191	0.0748
Fandisk	0.0931	0.2794	0.0000	0.2679	0.1549	0.2486	0.1603	0.2045
Hand	0.3611	0.0114	0.2679	0.0000	0.4229	0.0193	0.1076	0.0634
Head	0.0618	0.4344	0.1549	0.4229	0.0000	0.4036	0.3152	0.3595
Mushroom	0.3418	0.0307	0.2486	0.0193	0.4036	0.0000	0.0883	0.0440
Pig	0.2534	0.1191	0.1603	0.1076	0.3152	0.0883	0.0000	0.0442
Pumpkin	0.2977	0.0748	0.2045	0.0634	0.3595	0.0440	0.0442	0.0000

Slide 10

GeoMod 2022

Applications - Classifier

Corrupted	Cube	Eightparam	Fandisk	Hand	Head	Mushroom	Pig	Pumpkin
Cuba								
Cube	0.0625	0.3100	0.031	0.2987	0.1243	0.2793	0.1909	0.2352
Eightparam	0.3726	0.0019	0.2794	0.0114	0.4344	0.0307	0.1191	0.07486
Fandisk	0.1367	0.2359	0.0435	0.2244	0.1985	0.2051	0.1167	0.1610
Hand	0.3624	0.0101	0.2693	0.0013	0.4242	0.0206	0.1089	0.0647
Head	0.0652	0.4378	0.1583	0.4263	0.0033	0.4070	0.3186	0.3629
Mushroom	0.3440	0.0285	0.2508	0.0171	0.4058	0.0022	0.0905	0.0462
Pig	0.2716	0.1009	0.1784	0.0895	0.3334	0.0701	0.0181	0.0261
Pumpkin	0.2932	0.0793	0.200	0.0679	0.3550	0.0485	0.0397	0.0044

Slide 11

Feature detection on meshes

Conclusion

- The meshes are just discretizations of the surface (approximations).
- Principle, Gaussian, mean curvatures provide an quantitative way to describe the surface, unlike connectivity of the meshes.
- Hence, we have successfully acquired the features of the underlying surface and demonstrate classification using these features.

GeoMod 2022 Slide 12 Feature detection on meshes

Future work

- Extending to higher order mesh structures. (Hexagonal or arbitrary number of vertices per face)
- Applications: Denoising, extension to n-d surface properties.

Slide 13 Feature detection on meshes GeoMod 2022

Thank you

Questions?

Slide 14