6. Exploring Data with ggplot2 (1)

CT1100 - J. Duggan

Data Exploration

"Data exploration is the art of looking at your data, rapidly generating hypotheses, quickly testing them, then repeating again and again and again." (Wickham and Grolemund 2017).

Data visualisation with ggplot2

d <- ggplot2::mpg # get a copy of mpg

CT1100 - J. Duggan

"The simple graph has brought more information to the data analyst's mind that any other device." – John Tukey

```
glimpse(d) # show structure and some data
## Observations: 234
## Variables: 11
## $ manufacturer <chr> "audi", "audi", "audi", "audi", "audi", "audi
                                                                                 <chr> "a4", 
## $ model
## $ displ
                                                                                 <dbl> 1.8, 1.8, 2.0, 2.0, 2.8, 2.8, 3.1, 1.8
## $ year
                                                                                 <int> 1999, 1999, 2008, 2008, 1999, 1999, 20
                                                                                 <int> 4, 4, 4, 4, 6, 6, 6, 4, 4, 4, 4, 6, 6
## $ cyl
## $ trans
                                                                                 <chr> "auto(15)", "manual(m5)", "manual(m6)"
                                                                                 <chr> "f", "f", "f", "f", "f", "f", "f", "4"
## $ drv
                                                                                 <int> 18, 21, 20, 21, 16, 18, 18, 18, 16, 20
## $ cty
## $ hwv
                                                                                 <int> 29, 29, 31, 30, 26, 26, 27, 26, 25, 28
```

6. Exploring Data with ggplot2 (1)

3/16

Fuel Economy Data Set (ggplot2::mpg)

This dataset contains a subset of the fuel economy data that the EPA makes available on http://fueleconomy.gov. It contains only models which had a new release every year between 1999 and 2008 - this was used as a proxy for the popularity of the car.

manufacturer	car manufacturer	drv	drive type
model displ year model cyl trans	model name engine disp (I) year of make model name number of cylinders type of transm.	cty hwy fl cty class	city miles per gallon highway miles per gallon fuel type city miles per gallon "type" of car

Exploring Data

Generate a first graph to help answer the following question

- Do cars with big engines use more fuel than cars with small engines
- What might the relationship between engine size and fuel efficiency look like?
 - Positive or negative?
 - Linear or non-linear?
- Variable (scatter plot)
 - **displ**, a car engine size in litres (x)
 - hwy, a car's fuel efficiency on highway (y)
- ggplot2: layered approach
 - ggplot(data=tibble_name) + geom_point(mapping=aes(x=col1,y=col2))

Plotting with ggplot2

```
ggplot(data = d) + # specify the source tibble
geom_point(mapping=aes(x=displ, # map x, y vars
y=hwy))
```


Interpreting the plot

- The plot shows a negative relationship between engine size (displ) and fuel efficiency (hwy)
- Cars with big engines use more fuel
- Does this confirm or refute your hypothesis about fuel efficiency and engine size?

Aesthetic Mappings

- A third variable can be added to a 2-D plot by mapping it to an aesthetic.
- An aesthetic is a visual property of the plot's objects.
- An aesthetic's level could be colour, size or shape

```
unique(d$class)
```

```
## [1] "compact" "midsize" "suv" "2seater" "midsize" "suv" "2seater" "midsize" "subcompact"
```

In ggplot2 - Adding the third variable

```
ggplot(data=d)+
    geom_point(aes(x=displ,y=hwy,colour=class))
                                                         class
    40 -
                                                              2seater
                                                              compact
√ 30 ÷
                                                              midsize
                                                              minivan
                                                              pickup
    20 -
                                                              subcompact
                                                              suv
```

displ

Exploring Data Relationships

Input (X)	Output (Y)	Hypothesis?	Reason
Displacement	City MPG	Negative?	Bigger cars,less efficient
Highway MPG	City MPG	Positive?	Should be closely related
Cylinders	Highways MPG	Negative?	More cylinders, less eff.
Cylinders	Displacement	Negative?	More cylinders, bigger eng.

x=displ, y=cty

x=hwy, y=cty

x=cyl, y=cty

x=cyl, y=displ

Challenge 6.1

- Redraw the graphs, and colour by car class
- Vary the size of the point by using the number of cylinders

Input (X)	Output (Y)	Hypothesis?	Reason
Displacement	City MPG	Negative?	Bigger cars,less efficient
Highway MPG	City MPG	Positive?	Should be closely related
Cylinders	Highways MPG	Negative?	More cylinders, less eff.
Cylinders	Displacement	Negative?	More cylinders, bigger eng.

Summary

- "The simple graph has brought more information to the data analyst's mind that any other device." John Tukey]
- "Data exploration is the art of looking at your data, rapidly generating hypotheses, quickly testing them, then repeating again and again and again." (Wickham and Grolemund 2017).
- ggplot2 provides a layered approach to building charts