

STB150NF55 STP150NF55 - STW150NF55

N-channel 55V - 0.005Ω - 120A - D²PAK/TO-220/TO-247 STripFET™ II Power MOSFET

General features

Туре	V _{DSS}	R _{DS(on)}	I _D
STB150NF55	55V	<0.006Ω	120A ⁽¹⁾
STP150NF55	55V	<0.006Ω	120A ⁽¹⁾
STW150NF55	55V	<0.006Ω	120A ⁽¹⁾

- 1. Current limited by package
- 100% avalanche tested

Description

This Power MOSFET is the latest development of STMicroelectronis unique "Single Feature SizeTM" strip-based process. The resulting transistor shows extremely high packing density for low onresistance, rugged avalanche characteristics and less critical alignment steps therefore a remarkable manufacturing reproducibility.

Applications

Switching application

Internal schematic diagram

Order codes

Sales type	Sales type Marking		Packaging
STB150NF55T4	B150NF55	D ² PAK	Tape & reel
STP150NF55	P150NF55	TO-220	Tube
STW150NF55	W150NF55	TO-247	Tube

Contents

1	Electrical ratings	3
2	Electrical characteristics	
3	Spice thermal model	. 10
4	Test circuit	. 11
5	Package mechanical data	. 13
6	Packaging mechanical data	. 17
7	Revision history	18

1 Electrical ratings

Table 1. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage (V _{GS} = 0)	55	V
V _{DGR}	Drain-gate voltage (R_{GS} = 20 kΩ)	55	V
V _{GS}	Gate- source voltage	± 20	V
I _D ⁽¹⁾	Drain current (continuous) at T _C = 25°C	120	Α
I _D ⁽¹⁾	Drain current (continuous) at T _C = 100°C	106	Α
I _{DM} ⁽²⁾	Drain current (pulsed)	480	Α
P _{tot}	Total dissipation at T _C = 25°C	300	W
	Derating Factor	2	W/°C
dv/dt (3)	Peak diode recovery voltage slope	8	V/ns
E _{AS} (4)	Single pulse avalanche energy	850	mJ
T _{stg}	Storage temperature	55 to 175	°C
Tj	Max. operating junction temperature	-55 to 175	C

- 1. Value limited by wire bonding
- 2. Pulse width limited by safe operating area.
- 3. $I_{SD} \leq 20A$, di/dt $\leq 200A/\mu s$, $V_{DD} \leq V_{(BR)DSS}$, $Tj \leq T_{JMAX}$
- 4. Starting $T_i = 25$ °C, $I_D = 60A$, $V_{DD} = 30V$

Table 2. Thermal data

		TO-220	D ² PAK	TO-247	
Rthj-case	Thermal resistance junction-case max	0.5			°C/W
Rthj-amb	Thermal resistance junction-ambient max	62.5		50	°C/W
Rthj-pcb	Thermal resistance junction-pcb max	see Figure 15 and Figure 16			°C/W
T _J	Maximum lead temperature for soldering purpose ⁽¹⁾	300			°C

1. for 10 sec. 1.6mm from case

2 Electrical characteristics

(T_{CASE}=25°C unless otherwise specified)

Table 3. On/off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$I_D = 250 \mu A, V_{GS} = 0$	55			V
I _{DSS}	Zero gate voltage drain current (V _{GS} = 0)	V_{DS} = max ratings V_{DS} = max ratings, T_{C} = 125°C			1 10	μ Α μ Α
I _{GSS}	Gate-body leakage current (V _{DS} = 0)	V _{GS} = ± 20V			±100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2		4	V
R _{DS(on)}	Static drain-source on resistance	$V_{GS} = 10V, I_D = 60A$		0.005	0.006	Ω

Table 4. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
9 _{fs} ⁽¹⁾	Forward transconductance	V _{DS} = 15V, I _D = 60A		160		S
C _{iss} C _{oss} C _{rss}	Input capacitance Output capacitance Reverse transfer capacitance	$V_{DS} = 25V, f = 1MHz,$ $V_{GS} = 0$		4400 1050 350		pF pF pF
t _{d(on)} t _r t _{d(off)} t _f	Turn-on delay time Rise time Turn-off delay time Fall time	V_{DD} = 27.5V, I_D = 60A R_G = 4.7 Ω V_{GS} = 10V (see <i>Figure 19</i>)		35 180 140 80		ns ns ns
Q _g Q _{gs} Q _{gd}	Total gate charge Gate-source charge Gate-drain charge	V_{DD} = 27.5V, I_{D} = 120A, V_{GS} = 10V (see <i>Figure 20</i>)		140 35 70	190	nC nC nC

^{1.} Pulsed: Pulse duration = 300 μ s, duty cycle 1.5 %.

Table 5. Source drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current Source-drain current (pulsed)				120 480	A A
V _{SD} ⁽²⁾	Forward on voltage	I _{SD} = 120A, V _{GS} = 0			1.5	V
t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	$I_{SD} = 120A$, $di/dt = 100A/\mu s$, $V_{DD} = 25V$, $T_j = 150^{\circ}C$ (see <i>Figure 21</i>)		130 350 7.5		ns nC A

^{1.} Pulse width limited by safe operating area.

^{2.} Pulsed: Pulse duration = 300 μ s, duty cycle 1.5 %

2.1 Electrical characteristics (curves)

Figure 1. Safe operating area

Figure 2. Thermal impedance

Figure 3. Output characterisics

Figure 4. Transfer characteristics

Figure 5. Transconductance

Figure 6. Static drain-source on resistance

6/19

Figure 7. Gate charge vs gate-source voltage Figure 8. Capacitance variations

Figure 9. Normalized gate threshold voltage vs temperature

Figure 10. Normalized on resistance vs temperature

Figure 11. Source-drain diode forward characteristics

Figure 12. Normalized B_{VDSS} vs temperature

Figure 13. Power derating vs Tc

Figure 14. Max I_D current vs Tc

Figure 15. Thermal resistance R_{thj-a} vs PCB copper area

Figure 16. Max power dissipation vs PCB copper area

Figure 17. Allowable lav vs time in avalanche

The previous curve gives the safe operating area for unclamped inductive loads, single pulse or repetitive, under the following conditions:

$$P_{D(AVE)} = 0.5 * (1.3 * B_{VDSS} * I_{AV})$$

$$E_{AS(AR)} = P_{D(AVE)} * t_{AV}$$

Where:

I_{AV} is the allowable current in avalanche

P_{D(AVE)} is the average power dissipation in avalanche (single pulse)

t_{AV} is the time in avalanche

To derate above 25 $^{\circ}$ C, at fixed I_{AV} , the following equation must be applied:

$$I_{AV} = 2 * (T_{jmax} - T_{CASE}) / (1.3 * B_{VDSS} * Z_{th})$$

Where

 Z_{th} = K * R_{th} is the value coming from normalized thermal response at fixed pulse width equal to T_{AV} .

3 Spice thermal model

Table 6. Parameters

Parameter	Node	Value
CTHERM1	5 - 4	0.011
CTHERM2	4 - 3	0.0012
CTHERM3	3 - 2	0.05
CTHERM4	2 - 1	0.1
RTHERM1	5 - 4	0.09
RTHERM2	4 - 3	0.02
RTHERM3	3 - 2	0.11
RTHERM4	2 - 1	0.17

Figure 18. Scheme

4 Test circuit

Figure 19. Switching times test circuit for resistive load

Figure 20. Gate charge test circuit

Figure 21. Test circuit for inductive load switching and diode recovery times

Figure 22. Unclamped Inductive load test circuit

Figure 23. Unclamped inductive waveform

Figure 24. Switching time waveform

Figure 25. Diode recovery times waveform

5 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect . The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com

13/19

D²PAK MECHANICAL DATA

DIM		mm.			inch	
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α	4.4		4.6	0.173		0.181
A1	2.49		2.69	0.098		0.106
A2	0.03		0.23	0.001		0.009
В	0.7		0.93	0.027		0.036
B2	1.14		1.7	0.044		0.067
С	0.45		0.6	0.017		0.023
C2	1.23		1.36	0.048		0.053
D	8.95		9.35	0.352		0.368
D1		8			0.315	
E	10		10.4	0.393		
E1		8.5			0.334	
G	4.88		5.28	0.192		0.208
L	15		15.85	0.590		0.625
L2	1.27		1.4	0.050		0.055
L3	1.4		1.75	0.055		0.068
М	2.4		3.2	0.094		0.126
R		0.4			0.015	
V2	O _ō		4º			

TO-247 MECHANICAL DATA

DIM		mm.			inch	
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α	4.85		5.15	0.19		0.20
A1	2.20		2.60	0.086		0.102
b	1.0		1.40	0.039		0.055
b1	2.0		2.40	0.079		0.094
b2	3.0		3.40	0.118		0.134
С	0.40		0.80	0.015		0.03
D	19.85		20.15	0.781		0.793
Е	15.45		15.75	0.608		0.620
е		5.45			0.214	
L	14.20		14.80	0.560		0.582
L1	3.70		4.30	0.14		0.17
L2		18.50			0.728	
øΡ	3.55		3.65	0.140		0.143
øR	4.50		5.50	0.177		0.216
S		5.50			0.216	

5/

TO-220 MECHANICAL DATA

DIM.		mm.			inch	
DIWI.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α	4.40		4.60	0.173		0.181
b	0.61		0.88	0.024		0.034
b1	1.15		1.70	0.045		0.066
С	0.49		0.70	0.019		0.027
D	15.25		15.75	0.60		0.620
E	10		10.40	0.393		0.409
е	2.40		2.70	0.094		0.106
e1	4.95		5.15	0.194		0.202
F	1.23		1.32	0.048		0.052
H1	6.20		6.60	0.244		0.256
J1	2.40		2.72	0.094		0.107
L	13		14	0.511		0.551
L1	3.50		3.93	0.137		0.154
L20		16.40			0.645	
L30		28.90			1.137	
øΡ	3.75		3.85	0.147		0.151
Q	2.65		2.95	0.104		0.116

Packaging mechanical data 6

D²PAK FOOTPRINT

TAPE AND REEL SHIPMENT

7 Revision history

Table 7. Revision history

Date	Revision	Changes
21-Jun-2004	2	Preliminary version
26-Jun-2006	3	New template, no content change

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZE REPRESENTATIVE OF ST, ST PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS, WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2006 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com