Randomized matrix-free quadrature

Tyler Chen (joint with Tom Trogdon and Shashanka Ubaru)

https://chen.pw/slides.pdf

Randomized matrix-free quadrature

Tyler Chen (joint with Tom Trogdon and Shashanka Ubaru)

https://chen.pw/slides.pdf

What is a matrix function?

An $n \times n$ symmetric matrix **A** has real eigenvalues and orthonormal eigenvectors:

$$\mathbf{A} = \sum_{i=1}^{n} \lambda_i \mathbf{u}_i \mathbf{u}_i^{\mathsf{T}}.$$

The matrix function $f(\mathbf{A})$, induced by $f: \mathbb{R} \to \mathbb{R}$ and \mathbf{A} , is defined as

$$f(\mathbf{A}) := \sum_{i=1}^n f(\lambda_i) \mathbf{u}_i \mathbf{u}_i^{\mathsf{T}}.$$

Common functions are 1/x, $\exp(-\beta x)$, \sqrt{x} , $\ln(x)$, etc.

Spectral sums and spectral measures

Spectral sums are integrals against a cumulative empirical spectral measure¹ (CSEM):

$$\operatorname{tr}(f(\mathbf{A})) = n \int f \, d\Phi, \qquad \Phi(x) = \sum_{i=1}^{n} n^{-1} \mathbb{1}[\lambda_i \le x].$$

¹also called density of states in physics

²Girard 1987; Hutchinson 1989; Skilling 1989, etc.

Spectral sums and spectral measures

Spectral sums are integrals against a cumulative empirical spectral measure¹ (CSEM):

$$\operatorname{tr}(f(\mathbf{A})) = n \int f \, d\Phi, \qquad \Phi(x) = \sum_{i=1}^{n} n^{-1} \mathbb{1}[\lambda_i \leq x].$$

Quadratic forms of matrix functions are integrals against a weighted spectral measure (wCSEM):

$$\mathbf{v}^{\mathsf{T}} f(\mathbf{A}) \mathbf{v} = \int f \, d\Psi, \qquad \Psi(x) = \sum_{i=1}^{n} |\mathbf{v}^{\mathsf{T}} \mathbf{u}_{i}|^{2} \mathbb{1}[\lambda_{i} \leq x].$$

¹also called density of states in physics

²Girard 1987; Hutchinson 1989; Skilling 1989, etc.

Spectral sums and spectral measures

Spectral sums are integrals against a cumulative empirical spectral measure¹ (CSEM):

$$\operatorname{tr}(f(\mathbf{A})) = n \int f \, d\Phi, \qquad \Phi(x) = \sum_{i=1}^{n} n^{-1} \mathbb{1}[\lambda_i \leq x].$$

Quadratic forms of matrix functions are integrals against a weighted spectral measure (wCSEM):

$$\mathbf{v}^{\mathsf{T}} f(\mathbf{A}) \mathbf{v} = \int f \, d\Psi, \qquad \Psi(x) = \sum_{i=1}^{n} |\mathbf{v}^{\mathsf{T}} \mathbf{u}_{i}|^{2} \mathbb{1}[\lambda_{i} \leq x].$$

If $\mathbb{E}[\mathbf{v}\mathbf{v}^{\mathsf{T}}] = n^{-1}\mathbf{I}$, then $\Psi(x)$ is an unbiased estimator for $\Phi(x)$; see also quadratic trace estimation²: $\mathbb{E}[\mathbf{v}^{\mathsf{T}}\mathbf{B}\mathbf{v}] = n^{-1}\operatorname{tr}(\mathbf{B})$.

¹also called density of states in physics

²Girard 1987; Hutchinson 1989; Skilling 1989, etc.

Example: CSEM vs wCESM

Legend: CESM Φ (——), samples of weighted CESM Ψ corresponding to random \mathbf{v} (——).

A prototypical algorithm for randomized matrix free quadrature

Many standard algorithms approximate the CESM Φ in two stages:

- 1. approximate Φ by weighted CESM Ψ by sampling \mathbf{v}
- 2. approximate Ψ by a polynomial quadrature $[\Psi]_s^{\circ q}$

A prototypical algorithm for randomized matrix free quadrature

Many standard algorithms approximate the CESM Φ in two stages:

- 1. approximate Φ by weighted CESM Ψ by sampling \mathbf{v}
- 2. approximate Ψ by a polynomial quadrature $[\Psi]_s^{\circ \mathbf{q}}$

We need to enforce that low-degree polynomials are integrated exactly. This can be done with knowledge of polynomial moments

$$m_i = \int p_i d\Psi = \mathbf{v}^\mathsf{T} p_i(\mathbf{A}) \mathbf{v}.$$

A prototypical algorithm for randomized matrix free quadrature

Many standard algorithms approximate the CESM Φ in two stages:

- 1. approximate Φ by weighted CESM Ψ by sampling \mathbf{v}
- 2. approximate Ψ by a polynomial quadrature $[\Psi]_s^{\circ \mathbf{q}}$

We need to enforce that low-degree polynomials are integrated exactly. This can be done with knowledge of polynomial moments

$$m_i = \int p_i d\Psi = \mathbf{v}^\mathsf{T} p_i(\mathbf{A}) \mathbf{v}.$$

Moments m_0, m_1, \dots, m_{2k} can be computed from the Krylov subspace

$$K_k(\mathbf{A}, \mathbf{v}) := \operatorname{span}\{\mathbf{v}, \mathbf{A}\mathbf{v}, \dots, \mathbf{A}^k\mathbf{v}\}.$$

Polynomial quadrature

Fix a reference measure μ .

Examples of choices of $[f]_s^{\circ p}$:

- truncated μ -orthogonal polynomial series of f
 - **Kernel polynomial method**³: μ fixed (e.g. arcsin), possibly apply damping kernel
- polynomial interpolate at roots of an orthogonal polynomial of μ
 - **Stochastic Lanczos quadrature**⁴: $\mu = \Psi$ (Gaussian quadrature)

KPM and SLQ are probably the most widely used⁵ algorithms for spectrum and spectral sum approximation.

³Skilling 1989; Silver and Röder 1994; Weiße, Wellein, Alvermann, and Fehske 2006.

⁴Bai, Fahey, and Golub 1996; Golub and Meurant 2009.

⁵Weiße, Wellein, Alvermann, and Fehske 2006; Lin, Saad, and Yang 2016; Ubaru, Chen, and Saad 2017; Martinsson and Tropp 2020; Murray et al. 2023.

Choosing the reference measure/approximation

Legend: KPM with correct support (→), 5% too large (→), 5% too small (→).

Computing moments

Let p_i be the orthogonal polynomials of μ with three-term recurrence:

$$xp_i(x) = \beta_{i-1}p_{i-1}(x) + \alpha_i p_i(x) + \beta_i p_{i+1}(x).$$

⁶Skilling 1989; Weiße, Wellein, Alvermann, and Fehske 2006.

Computing moments

Let p_i be the orthogonal polynomials of μ with three-term recurrence:

$$xp_i(x) = \beta_{i-1}p_{i-1}(x) + \alpha_i p_i(x) + \beta_i p_{i+1}(x).$$

We can run a matrix version of the recurrence to compute $p_i(\mathbf{A})\mathbf{v}$. Then, to get moments:

- Compute $m_i = \mathbf{v}^\mathsf{T} p_i(\mathbf{A}) \mathbf{v}$ as you go.
 - This works fine, but we only get degree *k* not 2*k*.
- Instead store basis $\mathbf{B} = [p_0(\mathbf{A})\mathbf{v}, \dots, p_k(\mathbf{A})\mathbf{v}]$ and compute $\mathbf{B}^\mathsf{T}\mathbf{B}$.
 - This gets degree 2k, but requires high memory.

For Chebyshev polynomials, can get both from⁶:

$$T_{2i}(x) = 2T_i(x)^2 - 1, T_{2i+1}(x) = 2T_i(x)T_{i+1}(x) - x.$$

⁶Skilling 1989; Weiße, Wellein, Alvermann, and Fehske 2006.

Connection coefficients for more modified moments

The connection coefficient matrix $\mathbf{C} = \mathbf{C}_{\mu \to \nu}$ is the upper triangular matrix representing a change of basis between the orthogonal polynomials $\{p_i\}_{i=1}^{\infty}$ with respect to μ and the orthogonal polynomials $\{q_i\}_{i=1}^{\infty}$ with respect to ν , whose entries satisfy,

$$p_s(x) = [\mathbf{C}]_{0,s}q_0(x) + [\mathbf{C}]_{1,s}q_1(x) + \dots + [\mathbf{C}]_{s,s}q_s(x).$$

- Connection coefficient matrix can be computed recursively⁷ from recurrence formulas for orthogonal polynomials of μ and ν .
- If we have moments with respect to v, we can get moments with respect to μ .

⁷Sack and Donovan 1971; Wheeler 1974; Webb and Olver 2021.

The Lanczos algorithm

The Lanczos algorithm (efficiently) computes an orthonormal basis for the Krylov subspace $K_k(\mathbf{A}, \mathbf{v})$.

Equivalently, Lanczos computes the orthogonal polynomials of Ψ ! Resulting Gaussian quadrature integrates polynomials of degree 2k-1 exactly.

This can be done efficiently with a three term recurrence:

$$\mathbf{A}\mathbf{q}_i = \beta_{i-1}\mathbf{q}_{i-1} + \alpha_i\mathbf{q}_i + \beta_i\mathbf{q}_{i+1}.$$

Compared with explicit polynomials: we already know the modified moments, but need to compute the recurrence coefficients.

Example: instability of Lanczos

In finite precision arithmetic, the Lanczos algorithm behaves extremely differently than in exact arithmetic.

Toy example⁸:

$$\mathbf{A} = \begin{bmatrix} 0 & & & & & \\ & 0.00025 & & & & \\ & & & 0.0005 & & \\ & & & & & 0.0001 \\ & & & & & & 10 \end{bmatrix}, \qquad \mathbf{v} = \frac{1}{\sqrt{6}} \begin{bmatrix} 1\\1\\1\\1\\1\\1\\1 \end{bmatrix}$$

⁸Parlet and Scott 1979.

Example: instability of Lanczos

Denote by T, Q the finite precision arithmetic output of Lanczos and \tilde{T} , \tilde{Q} the "exact" arithmetic output. How many digits of accuracy do we have for the following quantities:

Example: instability of Lanczos

Denote by T, Q the finite precision arithmetic output of Lanczos and \tilde{T} , \tilde{Q} the "exact" arithmetic output. How many digits of accuracy do we have for the following quantities:

	$\tilde{\mathbf{Q}} - \mathbf{Q}$					$\tilde{\mathbf{T}} - \mathbf{T}$						$\mathbf{Q}^{T}\mathbf{Q}-\mathbf{I}$					
Г	_	_	12	7	11	Γ-	_				1	$\begin{bmatrix} 16 \\ 16 \\ 17 \end{bmatrix}$	16	17	8	4	0 1
	_	_	12	7	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	-	_	_			- 1	16	16	12	8	3	0
	_	17	13	11	0		_	_	19			17	12	16	15	7	4
1	_	_		7	0			19	19 14 10	10	- 1	17 8	8	15	15	15	9
	_	_	12	7	1				10	5	2	$\begin{bmatrix} 4 \\ 0 \end{bmatrix}$	3	7	15	_	17
L	_	17	8	3	0]	Ĺ				2	0]	Lο	0	4	9	17	_]

Stability of matrix-free quadrature

Practitioners (and theorists) are wary of using Lanczos-based methods ($\mu = \Psi$), at least without reorthogonalization⁹ (expensive)!

Instead, they prefer methods based on explicit polynomails (μ fixed) such as the Chevyshev polynomails.

⁹Jaklič and Prelovšek 1994; Aichhorn, Daghofer, Evertz, and Linden 2003; Weiße, Wellein, Alvermann, and Fehske 2006; Ubaru, Chen, and Saad 2017; Granziol, Wan, and Garipov 2019.

Stability of matrix-free quadrature

Practitioners (and theorists) are wary of using Lanczos-based methods ($\mu = \Psi$), at least without reorthogonalization⁹ (expensive)!

Instead, they prefer methods based on explicit polynomails (μ fixed) such as the Chevyshev polynomails.

However...

⁹Jaklič and Prelovšek 1994; Aichhorn, Daghofer, Evertz, and Linden 2003; Weiße, Wellein, Alvermann, and Fehske 2006; Ubaru, Chen, and Saad 2017; Granziol, Wan, and Garipov 2019.

Stability of matrix-free quadrature

Practitioners (and theorists) are wary of using Lanczos-based methods ($\mu = \Psi$), at least without reorthogonalization⁹ (expensive)!

Instead, they prefer methods based on explicit polynomails (μ fixed) such as the Chevyshev polynomails.

However...

- Explicit methods are not adaptive to the spectrum
- Explicit methods are exponentialy unstable unless certain hyperparemeters are selected properly

⁹Jaklič and Prelovšek 1994; Aichhorn, Daghofer, Evertz, and Linden 2003; Weiße, Wellein, Alvermann, and Fehske 2006; Ubaru, Chen, and Saad 2017; Granziol, Wan, and Garipov 2019.

Lanczos in finite precision arithmetic

A lot is known: Perturbed Lanczos recurrence¹⁰, CG/Backwards stability¹¹, Matrix functions¹².

¹⁴technically, it just shows the Chebyshev moments can still be obtained accurately

¹⁰Paige 1970; Paige 1972; Paige 1976; Paige 1980.

¹¹Greenbaum 1989.

¹²Druskin and Knizhnerman 1992; Knizhnerman 1996; Musco, Musco, and Sidford 2018.

¹³Unfortunately this paper is hard to find, so we included similar proofs in Chen and Trogdon 2023.

Lanczos in finite precision arithmetic

A lot is known: Perturbed Lanczos recurrence¹⁰, CG/Backwards stability¹¹, Matrix functions¹².

Knizhnerman 1996^{13} shows that finite precision Lanczos approximates Chebyshev moments accurately:

$$\|\underbrace{\mathbf{v}^{\mathsf{T}}T_{i}(\mathbf{A})\mathbf{v}}_{\text{true moment}} - \underbrace{\mathbf{e}_{1}^{\mathsf{T}}T_{i}(\mathbf{T})\mathbf{e}_{1}}_{\text{Lanczos version}}\| \leq \epsilon_{\text{mach}} \cdot \text{poly}(k).$$

Proofs straightforward given Paige 1976 and Paige 1980.

Knizhnerman 1996 implies¹⁴ that KPM can be implemented stably using Lanczos.

¹⁰Paige 1970; Paige 1972; Paige 1976; Paige 1980.

¹¹Greenbaum 1989.

¹²Druskin and Knizhnerman 1992; Knizhnerman 1996; Musco, Musco, and Sidford 2018.

¹⁵Unfortunately this paper is hard to find, so we included similar proofs in Chen and Trogdon 2023.

¹⁴technically, it just shows the Chebyshev moments can still be obtained accurately

Choosing the reference measure/approximation revisited

Legend: KPM with correct support (→), 5% too large (→), 5% too small (→).

The big picture

The ideas we described here are old^{15}

¹⁵Gautschi 1970; Sack and Donovan 1971; Wheeler 1974; Golub and Meurant 1994; Gautschi 2006; Golub and Meurant 2009.

The big picture

The ideas we described here are old¹⁵, so what's the point?

More interaction with application domains is needed.

- Practitioners have lots of good algorithms (that we'll re-discover in 10 years)
- We have the tools to improve their algorihms

¹⁵Gautschi 1970; Sack and Donovan 1971; Wheeler 1974; Golub and Meurant 1994; Gautschi 2006; Golub and Meurant 2009.

The big picture

The ideas we described here are old¹⁵, so what's the point?

More interaction with application domains is needed.

- Practitioners have lots of good algorithms (that we'll re-discover in 10 years)
- We have the tools to improve their algorihms

This talk:

- We can cheaply try out lots of different quadrature rules (decouple computation from approximation) once we've run Lanczos.
 - This allows variants of KPM which are spectrum adaptive
 - We do not need to know hyperparemeters ahead of time!
 - This avoids potential instabilities of KPM with bad parameter choices
- Better explanation of stability of Lanczos-based methods

¹⁵Gautschi 1970; Sack and Donovan 1971; Wheeler 1974; Golub and Meurant 1994; Gautschi 2006; Golub and Meurant 2009.

Example: smooth spectrum with spike

Legend: limiting density (——), kernel polynomial method: $\mu = (1-p)\mu_{a,b}^U + p \, \delta(x-z)$ (——), kernel polynomial method: $\mu = \mu_{a,b}^U$ (——).

Example: spectrum with disjoint support

Legend: kernel polynomial method: $\mu = \mu^U_{a_1,b_2}($ —), damped kernel polynomial method: $\mu = \frac{1}{2}\mu^U_{a_1,b_1} + \frac{1}{2}\mu^U_{a_2,b_2}($ —).

Example: heat capacity of quantum spin system¹⁶

Legend: exact diagonalization (----), stochastic Lanczos quadrature (----), kernel polynomial method (----), and damped kernel polynomial method (----).

¹⁶Schlüter, Gayk, Schmidt, Honecker, and Schnack 2021.

Example: a sparse spectrum

Legend: true spectrum (□), stochastic Lanczos quadrature k=12 (•), kernel polynomial method k=250 (---)

References I

- Aichhorn, Markus et al. (Apr. 2003). "Low-temperature Lanczos method for strongly correlated systems". In: *Physical Review B* 67.16.
- Bai, Zhaojun, Gark Fahey, and Gene Golub (Nov. 1996). "Some large-scale matrix computation problems". In: Journal of Computational and Applied Mathematics 74.1-2, pp. 71-89.
- Chen, Tyler and Thomas Trogdon (2023). Stability of the Lanczos algorithm on matrices with regular spectral distributions.
- Druskin, Vladimir and Leonid Knizhnerman (July 1992). "Error Bounds in the Simple Lanczos Procedure for Computing Functions of Symmetric Matrices and Eigenvalues". In: Comput. Math. Math. Phys. 31.7, pp. 20–30.
- Gautschi, Walter (Apr. 1970). "On the Construction of Gaussian Quadrature Rules from Modified Moments". In:

 Mathematics of Computation 24.110. p. 245.
- (2006). "Orthogonal Polynomials, Quadrature, and Approximation: Computational Methods and Software (in Matlab)". In: Lecture Notes in Mathematics. Springer Berlin Heidelberg, pp. 1–77.
- Girard, Didier (1987). Un algorithme simple et rapide pour la validation croisée généralisée sur des problèmes de grande taille.
- Golub, Gene H and Gérard Meurant (2009). Matrices, moments and quadrature with applications. Vol. 30. Princeton University Press.
- (1994). "Matrices, moments and quadrature". In.
- Granziol, Diego, Xingchen Wan, and Timur Garipov (2019). Deep Curvature Suite.
- Greenbaum, Anne (1989). "Behavior of slightly perturbed Lanczos and conjugate-gradient recurrences". In: Linear Algebra and its Applications 113, pp. 7–63.
- Hutchinson, M.F. (Jan. 1989). "A Stochastic Estimator of the Trace of the Influence Matrix for Laplacian Smoothing Splines". In: Communications in Statistics Simulation and Computation 18.3, pp. 1059–1076.
- Jaklič, J. and P. Prelovšek (Feb. 1994). "Lanczos method for the calculation of finite-temperature quantities in correlated systems". In: *Physical Review B* 49.7, pp. 5065–5068.
- Knizhnerman, L. A. (Jan. 1996). "The Simple Lanczos Procedure: Estimates of the Error of the Gauss Quadrature Formula and Their Applications". In: Comput. Math. Math. Phys. 36.11, pp. 1481–1492.

References II

- Lin, Lin, Yousef Saad, and Chao Yang (Jan. 2016). "Approximating Spectral Densities of Large Matrices". In: SIAM Review 58.1, pp. 34–65.
- Martinsson, Per-Ĝunnar and Joel A. Tropp (May 2020). "Randomized numerical linear algebra: Foundations and algorithms". In: *Acta Numerica* 29, pp. 403–572.
- Murray, Riley et al. (2023). Randomized Numerical Linear Algebra : A Perspective on the Field With an Eye to Software.
- Musco, Cameron, Christopher Musco, and Aaron Sidford (2018). "Stability of the Lanczos Method for Matrix Function Approximation". In: Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms. SODA '18. New Orleans, Louisiana: Society for Industrial and Applied Mathematics, pp. 1605–1624.
- Paige, C. C. (June 1970). "Practical use of the symmetric Lanczos process with re-orthogonalization". In: *BIT* 10.2, pp. 183–195.
- (1972). "Computational Variants of the Lanczos Method for the Eigenproblem". In: IMA Journal of Applied Mathematics 10.3, pp. 373–381.
- Paige, Christopher Conway (Dec. 1976). "Error Analysis of the Lanczos Algorithm for Tridiagonalizing a Symmetric Matrix". In: IMA Journal of Applied Mathematics 18.3, pp. 341–349.
- (1980). "Accuracy and effectiveness of the Lanczos algorithm for the symmetric eigenproblem". In: Linear Algebra and its Applications 34, pp. 235–258.
- Parlet, Beresford Neill and David St. Clair Scott (Jan. 1979). "The Lanczos algorithm with selective orthogonalization". In: Mathematics of Computation 33.145, pp. 217–238.
- Sack, R. A. and A. F. Donovan (Oct. 1971). "An algorithm for Gaussian quadrature given modified moments". In: Numerische Mathematik 18.5, pp. 465–478.
- Schlüter, Henrik et al. (June 2021). "Accuracy of the typicality approach using Chebyshev polynomials". In: Zeitschrift für Naturforschung A 76.9, pp. 823–834.
- Silver, R.N. and H. Röder (Aug. 1994). "Densities of states of mega-dimensional Hamiltonian matrices". In: International Journal of Modern Physics C 05.04, pp. 735–753.

References III

- Skilling, John (1989). "The Eigenvalues of Mega-dimensional Matrices". In: *Maximum Entropy and Bayesian Methods*. Springer Netherlands, pp. 455–466.
- Ubaru, Shashanka, Jie Chen, and Yousef Saad (2017). "Fast Estimation of tr(f(A)) via Stochastic Lanczos Quadrature". In: SIAM Journal on Matrix Analysis and Applications 38.4, pp. 1075–1099.
- Webb, Marcus and Sheehan Olver (Feb. 2021). "Spectra of Jacobi Operators via Connection Coefficient Matrices". In: Communications in Mathematical Physics 382.2, pp. 657–707.
- Weiße, Alexander et al. (Mar. 2006). "The kernel polynomial method". In: Reviews of Modern Physics 78.1, pp. 275-306.
- Wheeler, John C. (June 1974). "Modified moments and Gaussian quadratures". In: Rocky Mountain Journal of