

UNIVERSITÉ ASSANE SECK DE ZIGUINCHOR UFR DES SCIENCES ET TECHNOLOGIES DÉPARTEMENT INFORMATIQUE

# CHAPITRE II REQUÊTES AVANCÉES

ANNÉE ACADÉMIQUE: 2022 – 2023

FILIÈRE: INGÉNIERIE INFORMATIQUE

**NIVEAU: LICENCE 3** 

SEMESTRE: 5

DR SERIGNE DIAGNE

# PLAN DU COURS

#### Introduction

- I. Operations dérivées
  - 1. L'intersection
  - 2. Le complément
  - 3. La division
  - 4. Le thêta-jointure

### II. Opérations supplémentaires

- 1. Les jointures externes
- 2. La semi-Jointure
- 3. L'éclatement
  - a. L'éclatement horizontal
  - b. L'éclatement vertical

#### III.Exercice d'application

## **INTRODUCTION**

- L'algèbre relationnelle est une collection d'opérations formelles qui agissent sur des relations et produisent des relations en résultats ;
- C'est un ensemble d'opérations élémentaires associées au modèle relationnel;
- À l'origine, les opérations étaient au nombre de *huit*, dont certaines peuvent être déduites à partir des autres :
  - ✓ Parmi elles il y a *six opérations* permettant de déduire les autres et qui sont appelées *opérations de base* ;
  - ✓ Les opérations déduites à partir d'autres opérations sont appelées opérations dérivées
  - À ces 8 opérations s'ajoutent quelques *opérations additionnelles* qui sont parfois utilisées dans l'écriture de requêtes en algèbre relationnelle.

### **INTRODUCTION**

- Les opérations de base peuvent être classées en deux types :
  - Les opérations ensemblistes qui sont des opérations binaires, c'est-à-dire qu'à partir de deux relations elles en construisent une troisième :
    - ☐ l'union ;
    - □ la différence ;
    - le produit cartésien ;
  - ✓ Les opérations spécifiques sont :
    - les opérations unaires :
      - la projection ;
      - la sélection
    - l'opération binaire de jointure.

### I. 1. L'intersection

- L'intersection est une opération redondante avec les opérations de base en ce sens qu'il est possible de l'obtenir à partir de la différence ;
- La formule permettant de transformer l'intersection de deux relation en une succession de différences est la suivante :

 $Relation_1 \cap Relation_2 = Relation_1 - (Relation_1 - Relation_2)$ 

L'intersection étant commutative, on a également :

 $Relation_1 \cap Relation_2 = Relation_2 - (Relation_2 - Relation_1)$ 

### I. 1. L'intersection

### Exemple:

Soient T<sub>1</sub> et T<sub>2</sub> des relations de schéma (Numero, Date, Pays) avec les instances suivantes :

|  | Ŧ | ٠ |
|--|---|---|
|  |   |   |
|  |   |   |
|  | _ | - |

| Numero | Date       | Pays    |
|--------|------------|---------|
| 1      | 25/03/2022 | Sénégal |
| 2      | 18/04/2023 | Mali    |
| 3      | 15/08/2021 | Gambie  |
| 4      | 30/03/2023 | Guinée  |

#### $T_{3}$

| Numero | Date       | Pays       |
|--------|------------|------------|
| 1      | 25/03/2022 | Sénégal    |
| 3      | 15/08/2021 | Gambie     |
| 5      | 16/12/2022 | Mauritanie |

### I. 1. L'intersection

$$T = T_1 \cap T_2$$

| Numero | Date       | Pays    |
|--------|------------|---------|
| 1      | 25/03/2022 | Sénégal |
| 3      | 15/08/2021 | Gambie  |

$$T_2 = T_1 - T_2$$

| Numero | Date       | Pays   |
|--------|------------|--------|
| 2      | 18/04/2023 | Mali   |
| 4      | 30/03/2023 | Guinée |

$$T_{\perp} = T_{\perp} - T_{2}$$

| Numero | Date       | Pays    |
|--------|------------|---------|
| 1      | 25/03/2022 | Sénégal |
| 3      | 15/08/2021 | Gambie  |

Alors,

$$\checkmark$$
T<sub>A</sub> = T

$$✓ T_4 = T$$
 $✓ T_1 - (T_1 - T_2) = T_1 \cap T_2$ 

## I. 2. Le complément

- Le complément est l'ensemble des tuples du produit cartésien des domaines des attributs d'une relation n'appartenant pas à cette relation;
- C'est une opération peu utilisée du fait qu'elle permet de générer des tuples qui ne sont pas dans la base, en général très nombreux ;
- Le complément d'une relation Relation1 de schéma  $(A_1, A_2, ..., A_n)$  est obtenu à partir du produit et de la différence comme suit :
  - Relation1 =  $(D_1 \times D_2 \times D_3 \times ... \times D_n)$  Relation1

## I. 2. Le complément

#### Remarque:

Dans le domaine on ne considère que les valeurs déjà prises par des enregistrements appartement à l'instance de la relation.

#### Exemple:

En considérant la table T<sub>4</sub> de la diapositive 7 ci-dessus, on a :

- ✓ Domaine de l'attribut **Numero** :  $D_1 = \{1, 3\}$  ;
- ✓ Domaine de l'attribut **Date** :  $D_2 = \{'25/03/2022', '15/08/2021'\}$  ;
- ✓ Domaine de l'attribut Pays:  $D_3 = \{'Sénégal', 'Gambie'\}$ ;

## I. 2. Le complément

$$T_5 = D_1 X D_2 X D_3$$

| Numero | Date 2     | Pays    |
|--------|------------|---------|
| 1      | 25/03/2022 | Sénégal |
| 1      | 25/03/2022 | Gambie  |
| 1      | 15/08/2021 | Sénégal |
| 1      | 15/08/2021 | Gambie  |
| 3      | 25/03/2022 | Sénégal |
| 3      | 25/03/2022 | Gambie  |
| 3      | 15/08/2022 | Sénégal |
| 3      | 15/08/2021 | Gambie  |

### I. 2. Le complément

 $T_6 = T_5 - T_4$ 

| Numero | Date       | Pays    |
|--------|------------|---------|
| 1      | 25/03/2022 | Gambie  |
| 1      | 15/08/2021 | Sénégal |
| 1      | 15/08/2021 | Gambie  |
| 3      | 25/03/2022 | Sénégal |
| 3      | 25/03/2022 | Gambie  |
| 3      | 15/08/2022 | Sénégal |

Son instance contient donc les enregistrements qui pouvaient appartenir à  $^{\circ}$ l'instance de  $T_{4}$ , qui n'y sont pas et dont toutes valeurs sont déjà prises. 11

#### I. 3. La division

- La division peut être réécrite en combinant le produit, la projection et la différence ;
- Si on a deux relation  $Tab_1$  et  $Tab_2$  avec les schémas (X, Y) et (Y) respectivement, alors la formule :

$$Tab_1 \div Tab_2 = \prod_X (Tab_1) - \prod_X ((\prod_X (Tab_1) \times Tab_2) - Tab_1)$$

### Exemple:

Soient  $R_1$  et  $R_2$  de schémas respectifs (Numero, Date, Pays), (Numero, Pays) avec les instances suivantes :

### I. 3. La division

 ${
m R}_1$ 

| Numero | Date       | Pays    |
|--------|------------|---------|
| 1      | 25/03/2022 | Sénégal |
| 2      | 18/04/2023 | Mali    |
| 2      | 25/03/2022 | Mali    |
| 4      | 15/08/2021 | Gambie  |
| 4      | 25/03/2022 | Gambie  |
| 4      | 18/04/2023 | Gambie  |

 $R_2$ 

| Numero | Pays    |
|--------|---------|
| 1      | Sénégal |
| 2      | Mali    |
| 4      | Gambie  |

### I. 3. La division

$$R = R_1 \div R_2$$

**Date** 

25/03/2022

On a alors: 
$$R_1 \div R_2 = \Pi_{Date}(R_1) - \Pi_{Date}((\Pi_{Date}(R_1) \times R_2) - R_1)$$

On pose les hypothèses suivantes :

$$\checkmark R_3 = \Pi_{Date}(R_1);$$

$$\checkmark$$
R<sub>4</sub> = R<sub>3</sub> X R<sub>2</sub>;

$$\checkmark R_5 = R_4 - R_1;$$

$$\checkmark R_6 = \Pi_{Date}(R_5);$$

$$\checkmark R_7 = R_3 - R_6.$$

#### I. 3. La division

Alors, on a les instances suivantes :

| R | 3 |
|---|---|
|   |   |

**Date**25/03/2022
18/04/2023
15/08/2021

 $R_4$ 

| 4      |         |            |
|--------|---------|------------|
| Numero | Pays    | Date       |
| 1      | Sénégal | 25/03/2022 |
| 2      | Mali    | 25/03/2022 |
| 4      | Gambie  | 25/03/2022 |
| 1      | Sénégal | 18/04/2023 |
| 2      | Mali    | 18/04/2023 |
| 4      | Gambie  | 18/04/2023 |
| 1      | Sénégal | 15/08/2021 |
| 2      | Mali    | 15/08/2021 |
| 4      | Gambie  | 15/08/2021 |

 $R_5$ 

 Numero
 Pays
 Date

 1
 Sénégal
 18/04/2023

 1
 Sénégal
 15/08/2021

 2
 Mali
 15/08/2021

 $R_6$ 

**Date**18/04/202
3
15/08/202
1

### I. 3. La division

Alors,  $R_7 = R_3 - R_6$  a pour instance :

 $R_{7}$ 

Date

25/03/2022

Ainsi,

$$\checkmark$$
 R<sub>7</sub> = R

d'où,

$$\checkmark R_1 \div R_2 = \Pi_{Date}(R_1) - \Pi_{Date}((\Pi_{Date}(R_1) \times R_2) - R_1)$$

### I. 4. Le théta-jointure

- Le théta-jointure entre deux relations Relation<sub>1</sub> et Relation<sub>2</sub> est une opération binaire obtenue en appliquant une condition (comparaison de deux attributs) au résultat du produit de ces deux relations.
- La formule est la suivante :

Relation<sub>1</sub> 
$$\Theta_{\text{Condition}}$$
 Relation<sub>2</sub> =  $\bigcirc_{\text{Condition}}$  (Relation<sub>1</sub> X Relation<sub>2</sub>)

Exemple: Soient les tables Personne et voiture avec les instances suivantes?

## I. 4. Le théta-jointure

#### Personne

| Numero | Nom    | Prenom       | Age |
|--------|--------|--------------|-----|
| 1      | Suzuki | Yao          | 48  |
| 2      | Ahmed  | Moustapha    | 62  |
| 3      | Ford   | Jean Jacques | 75  |

#### Voiture

| Matricule | Marque   | Annee |
|-----------|----------|-------|
| ZG 2154 A | Ford     | 2016  |
| ZG 1987 A | Mercedes | 2022  |
| ZG 1452 A | Suzuki   | 2020  |

# $R = Personne \Theta_{Nom = Marque} Voiture$

| Numero | Nom    | Prenom       | Age | Matricule | Marque | Annee |
|--------|--------|--------------|-----|-----------|--------|-------|
| 1      | Suzuki | Yao          | 48  | ZG 1452 A | Suzuki | 2020  |
| 3      | Ford   | Jean Jacques | 75  | ZG 2154 A | Ford   | 2016  |

# I. 4. Le théta-jointure

### $R_1$ = Personne X Voiture

| Numero | Nom    | Prenom       | Age | Matricule | Marque   | Annee |
|--------|--------|--------------|-----|-----------|----------|-------|
| 1      | Suzuki | Yao          | 48  | ZG 2154 A | Ford     | 2016  |
| 1      | Suzuki | Yao          | 48  | ZG 1987 A | Mercedes | 2022  |
| 1      | Suzuki | Yao          | 48  | ZG 1452 A | Suzuki   | 2020  |
| 2      | Ahmed  | Moustapha    | 62  | ZG 2154 A | Ford     | 2016  |
| 2      | Ahmed  | Moustapha    | 62  | ZG 1987 A | Mercedes | 2022  |
| 2      | Ahmed  | Moustapha    | 62  | ZG 1452 A | Suzuki   | 2020  |
| 3      | Ford   | Jean Jacques | 75  | ZG 2154 A | Ford     | 2016  |
| 3      | Ford   | Jean Jacques | 75  | ZG 1987 A | Mercedes | 2022  |
| 3      | Ford   | Jean Jacques | 75  | ZG 1452 A | Suzuki   | 2020  |

### I. 4. Le théta-jointure

$$R_2 = \bigcirc$$
 (Personne X Voiture)

Nom = Marque

| Numero | Nom    | Prenom       | Age | Matricule | Marque | Annee |
|--------|--------|--------------|-----|-----------|--------|-------|
| 1      | Suzuki | Yao          | 48  | ZG 1452 A | Suzuki | 2020  |
| 3      | Ford   | Jean Jacques | 75  | ZG 2154 A | Ford   | 2016  |

#### Alors,

$$\checkmark$$
R = R<sub>2</sub>

d'où

✓ Personne 
$$\Theta_{\text{Nom = Marque}}$$
 Voiture =

## II. 1. Les jointures externes

- Une jointure perd des tuples d'au moins une relation quand les relations jointes n'ont pas de projections identiques sur l'attribut de jointure ;
- Pour préserver toutes les informations dans tous les cas, il est nécessaire de définir des jointures qui conservent les tuples sans correspondant ;
- Pour ces tuples, on associe des valeurs nulles à des attributs quand c'est nécessaire ;
  - C'est dans ce but que les jointures externes sont introduites.

### II. 1. Les jointures externes

- C'est une opération générant une relation  $R_3$  à partir de deux relations  $R_1$  et  $R_2$  par :
  - ✓ jointure de ces deux relations ;
  - ✓ ajout des tuples de  $R_1$  et  $R_2$  ne participant pas à la jointure avec des valeurs nulles pour les attributs de l'autre relation.
- Elle est représentée en général comme suit :
  - $R = JOINTURE-EXTERNE (R_1, R_2, condition)$ 
    - R = EXTERNAL-JOIN ( $R_1$ ,  $R_2$ , condition)

### II. 1. Les jointures externes

- La jointure externe permet, par exemple, de joindre des tables Personne et Voiture en gardant :
  - les personnes dont le nom de famille ne coïncide avec aucune marque de voiture
  - les voiture dont la marque ne coïncide avec aucun nom de famille.
- Elle est donc en pratique très utile pour conserver l'intégralité des instances des deux tables.

### II. 1. Les jointures externes

### Exemple:

La jointure externe entre Personne et Voiture sur la même condition a pour instance :

### JOINTURE-EXTERNE (Personne, Voiture, Nom = Marque)

| Numero | Nom    | Prenom       | Age  | Matricule | Marque   | Annee |
|--------|--------|--------------|------|-----------|----------|-------|
| 1      | Suzuki | Yao          | 48   | ZG 1452 A | Suzuki   | 2020  |
| 2      | Ahmed  | Moustapha    | 62   | Null      | Null     | Null  |
| 3      | Ford   | Jean Jacques | 75   | ZG 2154 A | Ford     | 2016  |
| Null   | Null   | Null         | Null | ZG 1987 A | Mercedes | 2022  |

II. 1. Les jointures externes

#### Remarque:

- ✓ Il est possible de garder les tuples d'une des tables (de table de gauche) qui ne sont en relation avec aucun tuple de l'autre (table de droite) ;
- ✓ Dans ce cas, on ignore ceux de l'autre table (table de droite) qui ne sont en relation avec aucun tuple de la première (table de gauche);
- ✓ On parle alors de jointure externe gauche ou jointure externe droite.

### II. 1. Les jointures externes

### Exemple:

#### JOINTURE-EXTERNE-GAUCHE (Personne, Voiture, Nom = Marque)

| Numero | Nom    | Prenom       | Age | Matricule | Marque | Annee |
|--------|--------|--------------|-----|-----------|--------|-------|
| 1      | Suzuki | Yao          | 48  | ZG 1452 A | Suzuki | 2020  |
| 2      | Ahmed  | Moustapha    | 62  | Null      | Null   | Null  |
| 3      | Ford   | Jean Jacques | 75  | ZG 2154 A | Ford   | 2016  |

### JOINTURE-EXTERNE-DROITE (Personne, Voiture, Nom = Marque)

| Numero | Nom    | Prenom       | Age  | Matricule | Marque   | Annee |
|--------|--------|--------------|------|-----------|----------|-------|
| 1      | Suzuki | Yao          | 48   | ZG 1452 A | Suzuki   | 2020  |
| 3      | Ford   | Jean Jacques | 75   | ZG 2154 A | Ford     | 2016  |
| Null   | Null   | Null         | Null | ZG 1987 A | Mercedes | 2022  |

### II. 2. La semi-jointure (Semi-Join)

- Dans certains cas, lors de l'exécution d'une jointure, il n'est pas nécessaire de conserver tous les attributs des deux relations en résultat ;
- Eseuls les attributs d'une des deux relations sont conservés ;
- Une opération spécifique de semi-jointure, très utile permet de le faire ;
- C'est une opération portant sur deux relations  $R_1$  et  $R_2$  donnant en résultat les tuples de  $R_1$  qui participent à la jointure des deux relations ;
- $\triangleright$  La semi-jointure de la relation  $R_1$  par relation  $R_2$  est notée :

 $R = SEMI-JOINTURE (R_1, R_2, Condition)$ 

II. 2. La semi-jointure (Semi-Join)

- Elle est équivalente à la jointure des relations  $R_1$  et  $R_2$  suivie par une projection du résultat sur les attributs de la relation  $R_1$ ;
- À noter que l'opération **n'est pas commutative** puisque seuls des tuples de la première relation sont conservés ;
- Elle peut être vue comme une restriction de la relation  $R_1$  par les valeurs des attributs de jointure figurant dans la relation  $R_2$ .

II. 2. La semi-jointure (Semi-Join)

### Exemple:

Semi-Join(Personne, Voiture, Nom = Marque)

| Numero | Nom    | Prenom       | Age |
|--------|--------|--------------|-----|
| 1      | Suzuki | Yao          | 48  |
| 3      | Ford   | Jean Jacques | 75  |

Semi-Join(Voiture, Personne, Nom = Marque)

| Matricule | Marque | Annee |
|-----------|--------|-------|
| ZG 1452 A | Suzuki | 2020  |
| ZG 2154 A | Ford   | 2016  |

II. 2. La semi-jointure (Semi-Join)

### Remarque:

- ✓ Personne  $SJ_{Nom = Marque}$  Voiture =  $\Pi_{Personne.*}$  (Personne  $\Theta_{Nom = Marque}$  Voiture)
- ✓ Voiture  $SJ_{Nom = Marque}$  Personne =  $\Pi_{Voiture.*}$  (Voiture  $\Theta_{Nom = Marque}$  Personne)

#### II. 3. L'éclatement

- L'éclatement est une opération qui n'appartient pas vraiment à l'algèbre relationnelle puisqu'il donne deux relations en résultats, à partir d'une ;
- Elle est cependant utile pour **partitionner** une relation en deux sous-relations ;
- À ce titre, elle est considérée comme une extension de l'algèbre relationnelle ;
- ► Il existe deux manière de partitionnement d'une relation :
  - ✓ L'éclatement horizontal ;
  - ✓ L'éclatement vertical

### II. 3. L'éclatement

#### II. 3. 1. L'éclatement horizontal

- C'est une opération consistant à créer deux relations à partir d'une relation :
  - ✓ La première contient les tuples de R vérifiant une condition de sélection ;
  - ✓ La deuxième ceux ne la vérifiant pas.
- Cette opération appliquée à la relation R génère donc deux relations  $R_1$  et  $R_2$  qui seraient obtenues par sélection comme suit:

$$R_1 = SELECTION (R, Condition)$$

$$R_2 = SELECTION (R, \neg(Condition))$$

II. 3. L'éclatement

II. 3. 1. L'éclatement horizontal

Exemple:

#### Visite

| Numero | Date       | Pays       |
|--------|------------|------------|
| 1      | 25/03/2022 | Sénégal    |
| 2      | 18/04/2023 | Mali       |
| 3      | 15/08/2021 | Gambie     |
| 4      | 30/03/2023 | Guinée     |
| 5      | 16/12/2022 | Mauritanie |

#### II. 3. L'éclatement

#### II. 3. 1. L'éclatement horizontal

L'éclatement horizontal de la table Visite ci-dessus suivant la condition « Les visites effectuées avant 2023 » donne les tables Visite\_1 et Visite\_2 suivantes :

Visite\_1 = 
$$\bigcirc$$
Date < '01/01/2023' (Visite)

| Numero | Date       | Pays       |
|--------|------------|------------|
| 1      | 25/03/2022 | Sénégal    |
| 3      | 15/08/2021 | Gambie     |
| 5      | 16/12/2022 | Mauritanie |

| Numero | Date       | Pays   |
|--------|------------|--------|
| 2      | 18/04/2023 | Mali   |
| 4      | 30/03/2023 | Guinée |

#### II. 3. L'éclatement

#### II. 3. 2. L'éclatement vertical

- C'est aussi une opération consistant à créer deux relations à partir d'une relation ;
  - ✓ La première contient les parties de tuples de R obtenues par projection sur les attributs cités
  - ✓ La deuxième les parties de tuples obtenues par projections sur les attributs non cités.
- Cette opération appliquée à la relation R ( $Att_1$ ,  $Att_2$ , ...,  $Att_n$ ) génère donc deux relations  $R_1$  et  $R_2$  qui seraient obtenues par projection comme suit 35  $\circ$

II. 3. L'éclatement

#### II. 3. 2. L'éclatement vertical

 $R_1 = \overline{PROJECTION(R, Att_1, Att_2, ..., Att_i)}$ 

 $R_2 = PROJECTION(R, Att_i, ..., Att_n)$ 

#### Avec:

$$\checkmark_{j>i};$$
 $\checkmark_{n>j}$ 

$$\checkmark_{n>j}$$

#### II. 3. L'éclatement

#### II. 3. 2. L'éclatement vertical

Exemple : L'éclatement vertical de la table Visite ci-dessus par la projection sur Numero et Pays donne les tables Visite\_3 et Visite\_4 suivantes :

Visite\_3 = 
$$\Pi_{\text{Numero, Pays}}$$
 (Visite)

| Numero | Pays       |  |
|--------|------------|--|
| 1      | Sénégal    |  |
| 2      | Mali       |  |
| 3      | Gambie     |  |
| 4      | Guinée     |  |
| 5      | Mauritanie |  |

| $Visite\_4 = \Pi_{Date}(Visite)$ | Visite_4 | $L = \prod_{\text{Date}}$ | (Visite) |
|----------------------------------|----------|---------------------------|----------|
|----------------------------------|----------|---------------------------|----------|

| Date       |  |  |
|------------|--|--|
| 25/03/2022 |  |  |
| 18/04/2023 |  |  |
| 15/08/2021 |  |  |
| 30/03/2023 |  |  |
| 16/12/2022 |  |  |

### III. EXERCICE D'APPLICATION

Immeuble (<u>Adresse</u>, Nb\_niveau, Annee)

Appartement (<u>Numero</u>, #<u>Immeuble</u>, Nb\_piece, Prix, Niveau)

Locataire (Numero, Nom, Prenom, Age, Sexe, Profession)

Louer (#Appartement, #Immeuble, #Locataire, Date, Duree)

Ecrivez de deux manières les requêtes suivantes :

- 1. Afficher la liste des appartements de même nombre de pièces, mais de prix différents et étant au même niveau.
- Quel(s) locataire(s) a(ont) loué tous les appartements du niveau 2 d'un immeuble situé au 25 Lindiane construit en 2000 ?
- B, Afficher les appartements déjà loués par quelqu'un.