Visualização

(Aula prática 2)

Computação Gráfica

Davi Santos Luiz Marcos Emerson Vilar

Visualização

- Exemplos:
 - o 3-1 (cube.c)
 - o 3-5 (clip.c)
- Explicação básica das funções utilizadas.
- Tempo para execução individual.
- Análise do código fonte.
- Implementação das modificações propostas.
- Tempo para execução das modificações individuais.

- **gluLookAt():** cria uma matriz de visualização derivada de um *view point*, um ponto de referência indicando o centro da cena e um *UP vector*.
 - eyeX, eyeY, eyeZ:
 - Especifica a posição do view point.
 - o centerX, centerY, centerZ:
 - Especifica a posição do ponto de referência.
 - o upX, upY, upZ:
 - Especifica a posição do *UP vector*.

- glTranslatef(): multiplica a matriz atual de coordenadas por um vetor de translação definido pelos argumentos da função.
 - o X, Y, Z:
 - Especifica as coordenadas x, y, e z do vetor de translação.

1. Troque o comando gluLookAt() no Example 3-1 (cube.c) para a transformação de modelagem glTranslatef() com parâmetros (0.0, 0.0, -5.0). Obs: o resultado deve ser exatamente o mesmo que usando o gluLookAt(). Pense: por que os efeitos são o mesmo? Mude também os parâmetros do gluLookAt() (lookfrom, lookat e vup) para ver seus efeitos.

- **glFrustum():** descreve uma matriz de perspectiva que produz uma projeção em perspectiva. A matriz atual é multiplicada por esta matriz e o resultado substitui a matriz atual.
 - left, right:
 - Especifica as coordenadas para os planos de recorte vertical esquerdo e direito
 - o bottom, top:
 - Especifica as coordenadas para os planos de recorte horizontal inferior e superior.
 - o nearVal, farVal:
 - Especifica as distâncias para os planos de corte de profundidade near e far (obrigatoriamente positivas).

- **gluPerspective():** especifica um *viewing frustum* no sistema de coordenadas de mundo. A matriz gerada é multiplicada pela matriz atual. Para carregar a matriz de perspectiva na pilha de matrizes atual, chame o **glLoadIdentity()** antes do **gluPerspective()**.
 - o fovy:
 - Especifica o campo do ângulo de visão, em graus, na direção y.
 - o aspect:
 - Especifica a proporção da imagem que determina o campo de visão na direção x. A proporção da imagem é a proporção de x (largura) para y (altura).
 - o *zNear*, *zFar*:
 - Especifica as distâncias dos visualizadores aos plano de recorte *near* e *far*, respectivamente (sempre positivo).
- 1. Mude o **glFrustum()** no Example 3-1 (cube.c) para o **gluPerspective()** com parâmetros (60.0, 1.0, 1.5, 20.0). Então, experimente usar diferentes valores, especialmente para *fovy* e *aspect*.

Exemplo 3-5 (clip.c)

- **glClipPlane():** especifique um plano contra o qual toda a geometria é cortada.
 - o plane:
 - Especifica qual plano de recorte está sendo posicionado. Nomes simbólicos na forma GL_CLIP_PLANEi, onde i é um número inteiro entre 0 e GL_MAX_CLIP_PLANES -1, são aceitos.
 - o equation:
 - Especifica o endereço de uma matriz de quatro valores de ponto flutuante do tipo double. Esses valores são interpretados como uma equação plana.

Permite a especificação de até 6 planos adicionais, não necessariamente perpendiculares aos eixos x, y ou z, contra os quais toda a geometria é cortada. A equação é transformada pelo inverso da matriz *modelview* e armazenada nas coordenadas de olho resultantes. As alterações subsequentes na matriz de visualização do modelo não têm efeito nos componentes da equação de plano armazenados. Chame glEnable() e glDisable() com o argumento GL_CLIP_PLANEi.

Exemplo 3-5 (clip.c)

- **glRotate():** multiplica a matriz atual por uma matriz de rotação. Gera uma rotação de *angle* graus em torno do vetor x y z.
 - o angle:
 - Especifica o ângulo de rotação, em graus.
 - \circ X, Y, Z:
 - Especifica as coordenadas x, y e z de um vetor para a rotação, respectivamente.
- **glutWireSphere():** Renderiza uma esfera vazada, centrada na origem das coordenadas com o raio especificado. A esfera é subdividida em torno do eixo Z em *slices* e ao longo do eixo Z em *stacks*.
 - radius:
 - O raio da esfera.
 - slices:
 - O número de subdivisões em torno do eixo Z (longitude).
 - stacks:
 - O número de subdivisões ao longo do eixo Z (latitude).

Exemplo 3-5 (clip.c)

1. Tente mudar os coeficientes que descrevem os planos de corte no Examplo 3-5. Aplique uma transformação de modelagem, tal como glRotate*(), para alterar glClipPlane(). Faça o plano de corte mover independentemente dos objetos na cena.

Obrigado!