Jayathilaka H.A.D.T.T.

E/16/156

CO542 – Neural Networks and Fuzzy Systems

<u>Lab2 – Fuzzy Logic</u>

1. Define the rule-base for the scenario.

	Angle(θ)					
		NH	NL	Z	PL	PH
Angular Velocity	NH	NH	NH	NH	NL	Z
Velocity (ω)	NL	NH	NH	NL	Z	PL
	Z	NH	NL	Z	PL	PH
	PL	NL	Z	PL	PH	PH
	PH	Z	PL	PH	PH	PH

2. Membership values

Angle

- Zero 0.75
- Positive Low 0.25

Angular Velocity

- Zero 0.4
- Negative Low 0.6

Step 1:

- 1. If $angle(\Theta)$ is zero and $velocity(\omega)$ is zero then force is zero $Zero(Angle)^Zero(Velocity) => Zero(Force)$
- 2. If $angle(\Theta)$ is zero and $velocity(\omega)$ is NL then force is NL NegativeLow(Angle)^Zero(Velocity) => NegativeLow(Force)
- 3. If $angle(\Theta)$ is PL and $velocity(\omega)$ is zero then force is PL PositiveLow(Angle)^Zero(Velocity) => PositiveLow(Force)
- 4. If $angle(\Theta)$ is PL and $velocity(\omega)$ is NL then force is zero PositiveLow(Angle)^ NegativeLow(Velocity) => Zero(Force)

Step 2:

Membership function value calculation

$$\mu ij = \mu i(X) \cdot \mu j(X)$$

$$\mu_{23} = 0.75 \times 0.6 = 0.45$$

$$\mu_{24} = 0.25 \times 0.6 = 0.15$$

$$\mu_{33} = 0.75 \times 0.4 = 0.3$$

$$\mu_{34} = 0.25 \times 0.4 = 0.1$$

Illustrate each μij with the help of the figure

Step 3:

Defuzzification using the Centroid Defuzzification Method

$$f(x) = \frac{\sum_{i=1}^{N} z^{i} \prod_{j=1}^{n} \mu_{ij}(x_{j})}{\sum_{i=1}^{N} \prod_{j=1}^{n} \mu_{ij}(x_{j})}$$

From the above formula,

Force =
$$\frac{[NL \times (\mu_{23})] + [Z \times (\mu_{24})] + [Z \times (\mu_{33})] + [PL \times (\mu_{34})]}{(\mu_{23} + \mu_{24} + \mu_{33} + \mu_{34})}$$
=
$$\frac{[-0.45] + [0] + [0] + [0.1]}{(0.45 + 0.15 + 0.3 + 0.1)}$$
=
$$-0.35 \text{ N}$$

3. Use Fuzzy Logic tool box in MATLAB


```
Command Window
                                                                                                                       ூ
  >>
  >> fuzzy
  >> fis =readfis('Inverted_Pendulum');
  >> out = evalfis([65 -0.1], fis)
  out =
      0.3873
  >> surfview(fis)
  >>
  >>
  >>
  >>
  >>
  >>
  >>
  >>
  >>
  >>
  >>
  >>
  >>
  >>
  >>
f_{x} >>
```

Input Membership Function

Output Membership Function

Rule Base

Surface Map

