Mathematisches Seminar Prof. Dr. Jan Kallsen Mark Feodoria

Sheet 11

Computational Finance

Exercises for participants of mathematical programmes

C-Exercise 40

Write a scilab function

that computes the price of an up-and-out call option in the Black-Scholes model via Monte-Carlo simulation with Richardson extrapolation. Use *m* resp. 2*m* points on the coarse resp. on the fine grid for the Euler method.

Test your function with the data of C-Exercise 31.

C-Exercise 41

Consider a Black-Scholes model as in C-Exercise 16. The goal is to price a forward start call option with strike S_{T_0} for $0 < T_0 < T$, i.e., with payoff $(S_T - S_{T_0})^+$ at maturity T. Write a Scilab function

that approximates the fair price V_0 of the forward start call option via Monte-Carlo based on $N \in \mathbb{N}$ samples of (S_{T_0}, S_T) .

Write a second function to approximate the price via Monte-Carlo basing only on samples of S_{T_0} . To this end, exploit that in the Black-Scholes model

$$e^{-r(T-T_0)} \mathbb{E}\left(\left(S_T - S_{T_0}\right)^+ \middle| \mathscr{F}_{T_0}\right) = C(T_0, S_{T_0}, r, \sigma, T, S_{T_0})$$

for the pricing function C from C-Exercise 16. Compare the width of the confidence intervals for both approaches using the test data $S_0 = 100$, r = 0.05, $\sigma = 0.2$, $T_0 = 0.5$, T = 1, N = 10000.

T-Exercise 42

Let $A \in \mathbb{R}^{d \times d}$ be a symmetric matrix. Show that the following properties are equivalent:

- (a) $\lim_{v \to \infty} A^v z = 0$ for any $z \in \mathbb{R}^d$.
- (b) $\lim_{v \to \infty} (A^v)_{ij} = 0$ for any $i, j \in \{1, ..., d\}$.
- (c) The spectral radius of A satisfies $\rho(A) < 1$.

C-Exercise 43

Write a Scilab function

```
V0 = EuCall_BS_FiDi (r, sigma, a, b, m, nu_max, T, K, type)
```

that approximates the option values $v(0,x_1),\ldots,v(0,x_{m-1})$ of a European call option with strike K>0 and maturity T>0 in the Black-Scholes model using one of the three finite difference schemes. Here, $x_i=K\exp(a+i\frac{b-a}{m})$ denote the initial stock prices and a,b,m,v_{max} are the parameters of the algorithm presented in the course. If type=0 the function is supposed to use the explicit scheme, if type=1 the implicit scheme, and if type=2 the Crank-Nicholson scheme. Test your function for

$$r = 0.05$$
, $\sigma = 0.2$, $a = -0.7$, $b = 0.4$, $m = 100$, $v_{max} = 2000$, $T = 1$, $K = 100$.

Please save your solution of each C-Exercise in a file named Exercise_##.sce, where ## denotes the number of the exercise. Please include your name(s) as comment in the beginning of the file.

Submit until: Thursday, 07.07.2016, 08:30 **Discussion:** in the tutorial on Mon, 11.07.2016