

TRANSMITTAL LETTER TO THE UNITED STATES
DESIGNATED/ELECTED OFFICE (DO/EO/US)
CONCERNING A FILING UNDER 35 U.S.C. 371

PATENT & TRADEMARK OFFICE
DOCKET NUMBER
OHS-104

U.S. APPLICATION NO. (If applicable) 09/762920

INTERNATIONAL APPLICATION NO. PCT/JP00/03780	INTERNATIONAL FILING DATE 09 June 2000	PRIORITY DATE CLAIMED 14 June 1999
---	---	---------------------------------------

TITLE OF INVENTION
BIAXIALLY ORIENTED POLYESTER FILM AND MAGNETIC RECORDING MEDIUM

APPLICANT(S) FOR DO/EO/US
Ieyasu KOBAYASHI and Toshifumi OSAWA

Applicant herewith submits to the United States Designated/Elected Office (DO/EO/US) the following items and other information:

1. This is a FIRST submission of items concerning a filing under 35 U.S.C. 371.
 2. This is a SECOND or SUBSEQUENT submission of items concerning a filing under 35 U.S.C. 371.
 3. This express request to begin national examination procedures (35 U.S.C. 371(f) at any time rather than delay examination until the expiration of the applicable time limit set in 35 U.S.C. 371(b) and PCT Articles 22 and 39(I).
 4. A proper Demand for International Preliminary Examination was made by the 19th month from the earliest claimed priority date.
 5. A copy of the International Application as filed (35 U.S.C. 371(c)(2))
 - a. is transmitted herewith (required only if not transmitted by the International Bureau).
 - b. has been transmitted by the International Bureau
 - c. is not required, as the application was filed in the United States Receiving Office (RO/US).
 6. A translation of the International Application into English (35 U.S.C. 371(c)(2)).
 7. Amendment to the claims of the International Application under PCT Article 19 (35 U.S.C. 371(c)(3)).
 - a. are transmitted herewith (required only if not transmitted by the International Bureau).
 - b. have been transmitted by the International Bureau.
 - c. have not been made; however, the time limit for making such amendment has NOT expired.
 - d. have not been made and will not be made.
 8. A translation of the amendments to the claims under PCT Article 19 (35 U.S.C. 371(c)(3)).
 9. An oath or declaration of the inventor(s) (35 U.S.C. 371(c)(4)).
 10. A translation of the annexes to the International Preliminary Examination Report under PCT Article 36 (35 U.S.C. 371(c)(5)).
- Items 11 to 16 below concern either document(s) or information included:
11. In Information Disclosure Statement under 37 CFR 1.97 and 1.98.
 12. An assignment document for recording. A separate cover sheet in compliance with 37 CFR 3.28 and 3.31 is included.
 13. A FIRST preliminary amendment.
 - A SECOND or SUBSEQUENT preliminary amendment.
 14. A substitute specification.
 15. A change of power of attorney and/or address letter.
 16. Petition for Revival of an International Application for Patent Designating the U.S. Abandoned Unintentionally Under 37 CFR 1.137(b)

U.S. APPLICATION NO. (If known) <u>09/782920</u>		INTERNATIONAL APPLICATION NO. PCT/JP00/03780	ATTORNEY'S DOCKET NUMBER OHS-104																					
17. <input checked="" type="checkbox"/> The following fees are submitted:																								
Basic National Fee (37 CFR 1.49(a)(1)-(5): Search Report has been prepared by the EPO or JPO.....		\$ 860.00																						
International preliminary examination fee paid to USPTO (37 CFR 1.482) No international preliminary examination fee paid to USPTO (37 CFR 1.482) but international search fee paid to USPTO (37 CFR 1.445(a)(2)).....																								
Neither international preliminary examination fee (37 CFR 1.482) nor international search fee (37 CFR 1.445(a)(2)) paid to USPTO.....																								
International preliminary examination fee paid to USPTO (37 CFR 1.482) and all claims satisfied provisions of PCT Article 33(2)-(4).....																								
ENTER APPROPRIATE BASIC FEE AMOUNT = \$ 860.00																								
Surcharge of \$130.00 for furnishing the oath or declaration later than <input type="checkbox"/> 20 <input type="checkbox"/> 30 months from the earliest claimed priority date (37 CFR 1.49(e)).																								
<table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th style="text-align: left;">Claims</th> <th style="text-align: left;">Number Filled</th> <th style="text-align: left;">Number Extra</th> <th style="text-align: left;">Rate</th> <th></th> </tr> </thead> <tbody> <tr> <td>Total Claims</td> <td>11-20=</td> <td>0</td> <td>X \$18</td> <td>\$</td> </tr> <tr> <td>Independent Claims</td> <td>2-3=</td> <td>0</td> <td>X \$80</td> <td>\$</td> </tr> <tr> <td>Multiple dependent claim(s) (if applicable)</td> <td></td> <td></td> <td>+ \$270</td> <td>\$</td> </tr> </tbody> </table>					Claims	Number Filled	Number Extra	Rate		Total Claims	11-20=	0	X \$18	\$	Independent Claims	2-3=	0	X \$80	\$	Multiple dependent claim(s) (if applicable)			+ \$270	\$
Claims	Number Filled	Number Extra	Rate																					
Total Claims	11-20=	0	X \$18	\$																				
Independent Claims	2-3=	0	X \$80	\$																				
Multiple dependent claim(s) (if applicable)			+ \$270	\$																				
TOTAL OF ABOVE CALCULATIONS = \$ 860.00																								
Reduction by $\frac{1}{2}$ for filing by small entity, if applicable. Verified Small Entity statement must also be filed. <input type="checkbox"/> (Note 37 CFR 1.9, 1.27, 1.28)																								
SUBTOTAL = \$ 860.00																								
Processing fee of \$130.00 for furnishing the English translation later than <input type="checkbox"/> 20 <input type="checkbox"/> 30 months from the earliest claimed priority date (37 CFR 1.49(f)). <input type="checkbox"/>																								
TOTAL NATIONAL FEE = \$																								
Fee for recording the enclosed assignment (37 CFR 1.21(h)). The assignment must be accompanied by an appropriate sheet (37 CFR 3.28, 3.31). \$40.00 per property <input type="checkbox"/>																								
TOTAL FEES ENCLOSED = \$																								
<table style="margin-left: auto; margin-right: 0;"> <tr> <td>Amount to be refunded:</td> <td style="text-align: right;">\$</td> </tr> <tr> <td>charged:</td> <td style="text-align: right;">\$ 860.00</td> </tr> </table>					Amount to be refunded:	\$	charged:	\$ 860.00																
Amount to be refunded:	\$																							
charged:	\$ 860.00																							
<p>a. <input type="checkbox"/> A check in the amount of \$ _____ to cover the above fees is enclosed.</p> <p>b. <input checked="" type="checkbox"/> Please charge my Deposit Account No. <u>18-0013</u> in the amount of \$860.00 to cover the above fees. A duplicate of this sheet is enclosed.</p> <p>c. <input checked="" type="checkbox"/> The Commissioner is hereby authorized to charge any additional fees which may be required, or credit any overpayment to Deposit Account No. <u>18-0013</u>. A duplicate copy of this sheet is enclosed.</p>																								
<p>NOTE: Where an appropriate time limit under 37 CFR 1.494 or 1.495 has not been met, a petition to revive (37 CFR 1.137(a) or (b)) must be filed and granted to restore the application to pending status.</p>																								
<p>SEND ALL CORRESPONDENCE TO:</p> <p>Rader, Fishman & Grauer, L.P.P.C. 1233 20th Street, N.W., Suite 501 Washington, DC 20036</p> <p>Robert S. Green NAME 41,800 REGISTRATION NUMBER</p>																								
<p>Dated: February 14, 2001</p>																								

DESCRIPTION

BIAXIALLY ORIENTED POLYESTER FILM AND
MAGNETIC RECORDING MEDIUM

5

Field of the Invention

The present invention relates to a biaxially oriented polyester film for magnetic recording media, particularly digital data storage tapes, and to a magnetic recording medium comprising the same as a base film.

Description of the Prior Art

Polyester films are used in a wide range of fields such as magnetic recording media and electric insulation because they have excellent thermal and mechanical properties.

Along with marked progress made in the tape capacity and density of magnetic recording media, especially data storage magnetic recording media, higher and higher properties are now required of base films used in these media. In data storage magnetic recording media employing a linear track system such as QIC, DLT and large-capacity super DLT and LTO, the track pitch is made very narrow to increase the capacity of a tape. Therefore, when there is a dimensional change in the width direction of a tape, track dislocation occurs, thereby causing an error. This dimensional change is caused by temperature and humidity variations and also by time shrinkage in the width direction which occurs when the tape is caused to run repeatedly at a high temperature and high humidity under high tension. When this dimensional change is large, track dislocation occurs, thereby causing an error at the time of electromagnetic conversion. Particularly in the latter case, the dimensional change is marked when the thickness of a tape is reduced to increase the recording capacity of the tape. Therefore, this dimensional change must be improved. The time shrinkage in the width direction

TOP SECRET//COMINT

can be improved by increasing the Young's modulus in a longitudinal direction of the base film. However, the upper limit of Young's modulus in a transverse direction becomes smaller as the Young's modulus in a longitudinal direction increases according to the relationship between the characteristic properties and film formation properties of a polymer. As a result, the dimensional change caused by temperature and humidity variations in the former case becomes large, thereby making it difficult to reduce the dimensional changes in both cases at the same time.

JP-A 5-212787 (the term "JP-A" as used herein means an "unexamined published Japanese patent application") discloses a biaxially oriented polyethylene-2,6-naphthalene dicarboxylate film having a Young's modulus in a longitudinal direction (EM) of 550 kg/mm² or more and a Young's modulus in a transverse direction (ET) of 700 kg/mm² or more, a ratio of Young's moduli (ET/EM) of 1.1 to 2.0, a shrinkage factor in a longitudinal direction of 0.02 % or less when it is maintained at a relative humidity of 65 % at 70°C under no load for 1 hour, a temperature expansion coefficient (α_t) in a longitudinal direction of $10 \times 10^{-6}/^{\circ}\text{C}$ or less and a humidity expansion coefficient (α_h) in a longitudinal direction of $15 \times 10^{-6}/\%RH$ or less.

International Publication WO99/29488 discloses a biaxially oriented polyester film having a thickness of less than 7 μm , which has the following relationship among its thermal expansion coefficient α_t ($\times 10^{-6}/^{\circ}\text{C}$) in a transverse direction, humidity expansion coefficient α_h ($\times 10^{-6}/\%RH$) in a transverse direction and shrinkage factor P (ppm/g) in a transverse direction against a load applied in a longitudinal direction.

$$1 \leq P - (\alpha_t + \alpha_h)/10 \leq 10$$

Summary of the Invention

It is an object of the present invention to provide a

biaxially oriented polyester film which has solved the above problems, hardly produces an error caused by track dislocation due to a dimensional change in the width of a tape and can improve output characteristics as a base film 5 for digital data storage magnetic recording media of a linear track system.

It is another object of the present invention to provide a magnetic recording medium, especially a digital data storage magnetic recording medium comprising the biaxially 10 oriented polyester film of the present invention as a base film.

Other objects and advantages of the present invention will become apparent from the following description.

Firstly, according to the present invention, the above 15 objects and advantages of the present invention are attained by a biaxially oriented polyester film for magnetic recording media which has (1) a dimensional change between before treated and after treated in a direction perpendicular to a load application direction on the film plane of 0.40 % or 20 less when the film is treated at 49°C and 90 %RH under a load of 2.7 kg per 1 mm² of unit sectional area in a thickness direction of the film for 72 hours, (2) a crystallinity of 25 27 to 45 %, (3) a temperature expansion coefficient α in a direction perpendicular to the above load application direction on the film plane of -5×10^{-6} to $+20 \times 10^{-6}/^{\circ}\text{C}$ and a humidity expansion coefficient α_h in a direction 30 perpendicular to the above load application direction on the film plane of $+5 \times 10^{-6}$ to $+20 \times 10^{-6}/\% \text{RH}$, the value of ($\alpha + 2\alpha_h$) being $+45 \times 10^{-6}$ or less, (4) a heat shrinkage factor in a direction perpendicular to the above load application direction on the film plane of 0 to 0.7 %, and (5) a thickness of 3 to 7 pm.

Secondly, the above objects and advantages of the present invention are attained by a magnetic recording medium

1037601-02629760

comprising the biaxially oriented polyester film of the present invention and a magnetic layer formed on one side of the polyester film.

Brief Description of the Drawing

- 5 Fig. 1 is a diagram for explaining an apparatus for measuring the shrinkage factor of a film in a transverse direction.

The Preferred Embodiment of Invention

- 10 Examples of a polyester as a raw material for the biaxially oriented polyester film of the present invention include polyethylene terephthalate, polyethylene isophthalate, polybutylene terephthalate, polyethylene-2,6-naphthalene dicarboxylate, polyethylene- α,β -bis(2-chlorophenoxy)ethane-4,4'-dicarboxylate and copolymers of
- 15 two or more of the recurring units of these polyesters. Out of these, polyethylene terephthalate, polyethylene-2,6-naphthalene dicarboxylate and polyethylene- α,β -bis(2-chlorophenoxy)ethane-4,4'-dicarboxylate are preferred, and polyethylene-2,6-naphthalene dicarboxylate is particularly preferred.
- 20

The polyester in the present invention may be one of the above polymers or a mixture of two or more of the above polymers. Various additives may be added in limits not prejudicial to the effect of the present invention.

- 25 The above polyester has an intrinsic viscosity measured at 35°C in an o-chlorophenol solution of preferably 0.4 to 0.9, more preferably 0.5 to 0.7, particularly preferably 0.51 to 0.65.

surface roughness and added particles

- 30 The biaxially oriented polyester film of the present invention may be a single-layer film or laminated film. The surface roughness WRa (center plane average roughness) of the magnetic layer side of the film is preferably 1 to 10 nm, more preferably 2 to 10 nm, particularly preferably 2

to 8 nm. WRz (10-point average roughness) is preferably 30 to 250 nm, more preferably 30 to 200 nm, particularly preferably 30 to 150 nm. When the surface roughness WRa is larger than 10 nm or WRz is larger than 150 nm, the surface of the magnetic layer becomes rough and satisfactory electromagnetic conversion characteristics cannot be obtained. When the surface roughness WRa is smaller than 1 nm or WRz is smaller than 30 nm, the surface becomes too flat, the film does not slip over a pass roll or calendar smoothly or wrinkles, the magnetic layer cannot be formed well by coating, or calendering cannot be carried out well.

The surface roughness WRa (center plane average roughness) and WRz (10-point average roughness) of the no magnetic layer side (on which a back coat layer is formed) of the biaxially oriented polyester film are substantially the same as the surface roughnesses WRa and WRz of the above magnetic layer side when the film is a single-layer film. In this case, the values of surface roughnesses WRa and WRz are selected to achieve satisfactory electromagnetic conversion characteristics and running properties.

In the case of a laminated film, the surface roughness WRa (center plane average roughness) of the no magnetic layer side of the film is preferably 5 to 20 nm, more preferably 5 to 15 nm, particularly preferably 8 to 12 nm. WRz (10-point average roughness) is preferably 100 to 300 nm, more preferably 100 to 200 nm, particularly preferably 150 to 200 nm. When the surface roughness WRa is larger than 20 nm or WRz is larger than 300 nm, the tossing of the surface of the flat layer (magnetic layer) by protrusions and the transfer of surface irregularities to the surface of the magnetic layer at the time of winding a magnetic tape become marked, the surface of the magnetic layer becomes rough, and satisfactory electromagnetic conversion characteristics cannot be obtained. When the surface roughness WRa is smaller than 5

TOP SECRET 02629700

nm or WRz is smaller than 100 nm, the slipperiness of the film lowers, air squeezability deteriorates, and pimple or crease in a longitudinal direction are formed by slitting the film. Thus, satisfactory winding properties cannot be obtained.

The surface roughnesses WRa and WRz can be controlled by containing inert fine particles such as inorganic particles containing in the film the group IIIA, IIB, IVA or IVB element of the periodic table (such as kaolin, alumina, titanium oxide, calcium carbonate or silicon dioxide) or polymer fine particles having high heat resistance such as crosslinked silicone resin, crosslinked polystyrene or crosslinked acrylic resin particles, or by carrying out a surface treatment for forming fine irregularities, for example, coating a slippery coating agent. When inert fine particles are contained, the fine particles have an average particle diameter of preferably 0.05 to 0.8 µm, more preferably 0.1 to 0.6 µm, particularly preferably 0.1 to 0.4 µm. The amount of the inert fine particles is preferably 0.001 to 1.0 wt%, more preferably 0.01 to 0.5 wt%, particularly preferably 0.02 to 0.3 wt% based on the polymer. The inert fine particles contained in the film may be a single-component particles or multi-component particles. In order to achieve electromagnetic conversion characteristics for a tape and winding properties for a film at the same time, it is preferred to contain two or more component inert fine particles in the polymer for the no magnetic layer side. The control of WRa and WRz of the film surface may be carried out by suitably selecting the average particle diameter and the amount of the fine particles from the above ranges. WRz is preferably controlled by making sharp the particle diameter of the fine particles or using a means of removing coarse particles.

Although the biaxially oriented polyester film of the

TOP SECRET//DESE33750

present invention may be a single-layer film or laminated film, it is preferably a laminated film because it is easy to achieve electromagnetic conversion characteristics for a tape and winding properties for a film at the same time.

- 5 The laminated film is a laminate consisting of two or more polyester layers. The two or more polyesters of the each layer of the laminated film may be the same or different but preferably the same.

The biaxially oriented polyester film of the present invention includes a biaxially oriented polyester film coated with a coating layer on one side or both sides to improve adhesion or slipperiness. The coating layer preferably contains a polyester-based, polyurethane-based or polyacryl-based aqueous resin (such as a water-soluble resin, water dispersible resin, etc.) in an amount of 50 wt% or more based on the total solid content. Any known coating film forming aqueous resin may be used as the aqueous resin. To improve slipperiness, the coating layer may contain inert particles. Examples of the inert particles include inorganic particles such as colloidal silica and organic particles such as crosslinked acrylic resin particles, silicone resin particles and polystyrene particles. Out of these, organic particles are more preferred than inorganic particles from the viewpoint of chipping resistance. The average particle diameter of the particles is preferably 5 to 100 nm, more preferably 5 to 50 nm, particularly preferably 5 to 30 nm. The content of the particles is preferably 0.5 to 40 wt%, more preferably 1 to 30 wt%, particularly preferably 5 to 20 wt% based on the total solid content of the coating. The particles are preferably as spherical as possible and as uniform in size as possible. It is desired that the coating layer should contain a surfactant in an amount of preferably 1 to 30 wt%, more preferably 5 to 20 wt%, particularly preferably 5 to 15 wt% based on the total

02635700

solid content. The thickness (solid content) of the coating layer is preferably 1 to 50 nm, more preferably 1 to 30 nm, particularly preferably 3 to 20 nm.

The formation of the coating layer may be carried out
5 by an in-line coating system that a polyester film in the formation step is uniaxially stretched, coated, stretched in a direction perpendicular to the above stretching direction and then dried, or an off-line coating system that a biaxially oriented film is coated. The in-line coating
10 system is more preferred from the viewpoint of the formation of a coating layer.

thickness of film

The biaxially oriented polyester film of the present invention has a total thickness of 3 to 7 μm , preferably 4
15 to 6 μm . When the thickness is larger than 7 μm , the obtained tape becomes too thick, whereby the length of the tape stored in a cassette becomes too small, thereby making it impossible to obtain a sufficient magnetic recording capacity. When the thickness is smaller than 3 μm , the film often breaks at the
20 time of film formation and the winding properties of the film become unsatisfactory because the film is too thin, thereby making it impossible to obtain a nice film roll.

dimensional change in direction perpendicular to load

application direction caused by temperature and humidity

25 treatment under load

When the biaxially oriented polyester film of the present invention is treated at 49°C and 90 %RH under a load of 2.7 kg per 1 mm^2 of unit sectional area in a film thickness direction for 72 hours, its dimensional change in a direction
30 (width direction) perpendicular to the above load application direction on the film plane before and after the treatment is 0.40 % or less. The dimensional change is preferably 0.35 % or less, particularly preferably 0.3 % or less. When this dimensional change is larger than 0.4 % and

the obtained tape is caused to run repeatedly under high tension at a high temperature and high humidity, its dimensional change in a width direction becomes large, thereby causing track dislocation with the result of the occurrence of recording and reproduction errors.

crystallinity

The biaxially oriented polyester film of the present invention has a crystallinity of 27 to 45 %, preferably 30 to 40 %, particularly preferably 30 to 45 %. When this crystallinity is lower than 27 %, the dimensional change in a width direction caused by the application of a load in a longitudinal direction becomes large, thereby causing track dislocation. When the crystallinity is larger than 45 %, the reversible dimensional change in a width direction caused by temperature and humidity variations becomes large, thereby causing track dislocation.

heat shrinkage factor

The biaxially oriented polyester film of the present invention has a heat shrinkage factor in the above width direction of preferably 0 to 0.7 %, more preferably 0 to 0.5 %, particularly preferably 0 to 0.3 %. When the heat shrinkage factor is smaller than 0 %, the film elongates, becomes wavy, is not wound well or is chipped in the film formation step or the like. When the heat shrinkage factor is larger than 0.7 %, the dimensional change in the width direction becomes large, thereby causing track dislocation.

expansion coefficient

The biaxially oriented polyester film of the present invention has a temperature expansion coefficient α_t in the above width direction on the film plane of -5×10^{-6} to $+20 \times 10^{-6}/^{\circ}\text{C}$, and a humidity expansion coefficient α_h in the above width direction on the film plane of $+5 \times 10^{-6}$ to $+20 \times 10^{-6}/\%\text{RH}$, the value of ($\alpha_t + 2\alpha_h$) being $+45 \times 10^{-6}$ or less. The value of ($\alpha_t + 2\alpha_h$) is preferably $+40 \times 10^{-6}$ or less, more preferably

2025000-02629460

+35 x 10⁻⁶ or less. When the value of (at + 2 oh) is larger than 45 x 10⁻⁶, the dimensional change caused by temperature and humidity variations becomes large, causing track dislocation with the result of the occurrence of recording and reproduction errors.

heat absorption peak

Preferably, the biaxially oriented polyester film of the present invention has an endothermal peak of 0.05 mJ/mg or more at a temperature range of 120 to 160°C when measured

- 10 by a differential scanning calorimeter (DSC). When the heat absorption peak is lower than 0.05 mJ/mg, the creep of the tape is not improved and the dimensional change in the width direction of the film which is caused to run repeatedly at a high temperature and high humidity under high tension
- 15 becomes large, thereby causing track dislocation with the result of the occurrence of recording and reproduction errors.

The heat absorption peak is preferably 0.1 mJ/mg or more, more preferably 0.2 mJ/mg or more.

Young's modulus

The biaxially oriented polyester film of the present invention has a Young's modulus in the above load application direction (longitudinal direction) of preferably 6 GPa or more, more preferably 7 GPa or more, particularly preferably

- 25 8 GPa or more. When the Young's modulus in the longitudinal direction is smaller than 6 GPa, the strength in a longitudinal direction of a magnetic tape lowers, whereby the tape easily breaks when great force is applied in the longitudinal direction at the time of recording and
- 30 reproduction. The Young's modulus in a direction (transverse direction) perpendicular to the above load application direction is preferably 4 GPa or more, more preferably 5 GPa or more, particularly preferably 6 GPa or more. When the Young's modulus in the transverse direction

is smaller than 4 GPa, the dimensional change in the transverse direction of a magnetic tape of a linear track system becomes large at the time of temperature and humidity variations, thereby causing track dislocation with the 5 result of the occurrence of recording and reproduction errors.

The total of Young's moduli in longitudinal and transverse directions is preferably 10 to 20 GPa, more preferably 12 to 16 GPa. Further, when the biaxially 10 oriented polyester film of the present invention is used for a magnetic tape of a linear track system, its Young's modulus in a longitudinal direction is preferably larger than its Young's modulus in a transverse direction to suppress the elongation of the film in a longitudinal direction. When the 15 total of Young's moduli in longitudinal and transverse directions is smaller than 10 GPa, the obtained magnetic tape easily breaks due to reduced strength and recording and reproduction errors occur due to track dislocation caused by a large dimensional change at the time of temperature and 20 humidity variations. Therefore, a satisfactory high-density magnetic medium cannot be obtained. When the total of Young's moduli is larger than 20 GPa, the draw ratio becomes large at the time of film formation and the film often breaks, thereby greatly reducing the yield of products.

25 film formation process

The biaxially oriented polyester film of the present invention is preferably produced by the following process.

A single-layer film can be produced as follows. A molten polyester is extruded into a film form from a die 30 preferably at a temperature of the melting point (T_m : °C) of the polyester to $(T_m + 70)$ °C and solidified by quenching to obtain an unstretched film which is then stretched to a predetermined draw ratio in a uniaxial direction (longitudinal or transverse direction) at a temperature of

($T_g - 10$) to ($T_g + 70$)°C (T_g : glass transition temperature of the polyester) and then to a predetermined draw ratio in a direction perpendicular to the above stretching direction (transverse direction when the film was first stretched in a longitudinal direction) at a temperature of T_g to ($T_g + 70$)°C and further heat set. The draw ratios, stretching temperatures and heat setting conditions are selected and determined based on the characteristic properties of the above film. The area draw ratio is preferably 15 to 35 times, more preferably 20 to 30 times. The heat setting temperature may be selected from a range of 190 to 250°C and the treatment time may be selected from a range of 1 to 60 seconds.

Simultaneous biaxial orientation may be employed in addition to the above sequential biaxial orientation. The number of times of stretching in each of the longitudinal and transverse directions is not always one and may be plural in the sequential biaxial orientation. The present invention is not limited by the number of times. For example, in order to improve mechanical properties, the above biaxially oriented film before heat setting is heated at a temperature of $(T_g + 20)$ to $(T_g + 70)^\circ C$ and further stretched in a longitudinal or transverse direction at a temperature 10 to $40^\circ C$ higher than the above heat treatment temperature and then in a transverse or longitudinal direction at a temperature 20 to $50^\circ C$ higher than the above stretching temperature. In this case, the total draw ratio in the longitudinal direction is preferably 4.0 to 6.0 times and the total draw ratio in the transverse direction is preferably 3.0 to 6.0 times.

30 To produce a laminated film by a co-extrusion method, two or more molten polyesters are laminated together in a die and coextruded in a film form preferably at a temperature of the melting point of each polyester (T_m : °C) to ($T_m + 70$)°C, or two or more molten polyesters are extruded from respective

dies and then laminated together. Thereafter, the laminated film is solidified by quenching to obtain a laminated unstretched film which is then biaxially oriented and heated by the same process and conditions as the single-layer film

5 to obtain a laminated biaxially oriented film.

To produce a laminated film by a coating method, a desired coating solution is coated on one side or both sides of the above (laminated) unstretched film or (laminated) uniaxially stretched film.

10 magnetic recording medium

According to the present invention, there is also provided a magnetic recording medium comprising the above biaxially oriented polyester film of the present invention as a base film and a magnetic layer formed on one side of

15 the film.

The magnetic recording medium is not particularly limited if it comprises the biaxially oriented polyester film of the present invention as a base film. Examples of the magnetic recording medium include data storage tapes of a

20 linear track system such as QIC, DLT, and large-capacity S-DLT and LTO. Since the base film has an extremely small dimensional change caused by temperature and humidity variations and an extremely small dimensional change caused by time shrinkage (creep) in a width direction due to time elongation (creep) in a longitudinal direction which occurs when the film is caused to run repeatedly at a high temperature and high humidity under high tension, there is obtained a magnetic recording medium which is suitable for high-density and high-capacity recording and rarely causes track

25 dislocation even when the track pitch is narrowed to increase the capacity of the tape.

Examples

The following examples are given to further illustrate

TOP SECRET 02529760

the present invention. Various physical property values and characteristic properties in the present invention were measured and defined as follows.

(1) Young's modulus

The film is cut to a sample width of 10 mm and a length of 15 cm and the obtained sample is pulled by an Instron universal tension tester at a chuck interval of 100 mm, a pulling speed of 10 mm/min and a chart speed of 500 mm/min to calculate a Young's modulus from the tangent line of a rising portion in the obtained load-elongation curve.

(2) surface roughness (WRa, WRz)

The surface roughness is measured 10 times or more (n) by the non-contact 3-D roughness meter (NT-2000) of WYKO Co., Ltd. at a measurement magnification of 25X and a measurement area of 246.6 $\mu\text{m} \times 187.5 \mu\text{m}$ (0.0462 mm^2) to obtain a center plane average roughness (WRa) and a 10-point average roughness (WRz) with surface analytical software incorporated in the roughness meter.

(A) center plane average roughness (WRa)

$$20 \quad \text{WRa} = \sum_{k=1}^m \sum_{j=1}^n |Z_{jk} - \bar{Z}| / (m \cdot n)$$

$$\text{wherein } \bar{Z} = \sum_{k=1}^m \sum_{j=1}^n Z_{jk} / (m \cdot n)$$

Z_{jk} is the height of a 3-D roughness chart at a j-th and k-th position in respective directions when the measurement direction (246.6 μm) and a direction (187.5 μm) perpendicular to the measurement direction are divided into m and n sections.

30 (B) 10-point average roughness (WRz)

The average roughness is obtained from five highest peaks (Hp) and five lowest valleys (Hv) and taken as WRz.

$$\text{WRz} = \frac{(H_{p1} + H_{p2} + H_{p3} + H_{p4} + H_{p5}) - (H_{v1} + H_{v2} + H_{v3} + H_{v4} + H_{v5})}{5}$$

(3) average particle diameter of inert particles

This is measured using the CP-50 centrifugal particle size analyzer of Shimadzu Corporation. The particle diameter equivalent to 50 mass percent is read from the accumulative curve of the particle diameter and amount of particles of each size calculated from the obtained centrifugal sedimentation curve and taken as average particle diameter.

(4) heat shrinkage factor in width direction

A film sample having a length of about 30 cm and a width of 1 cm prepared by cutting in a width direction of a film whose length has been accurately measured is placed in a thermostatic chamber maintained at a temperature of 105°C under no load, kept for 30 minutes, taken out from the chamber and returned to room temperature to read its dimensional change. The heat shrinkage factor of the film sample is obtained from the length (L_0) before the heat treatment and the length (L_1) after the heat treatment according to the following expression.

heat shrinkage factor = $(L_0 - L_1)/L_0 \times 100 [\%]$

(5) temperature expansion coefficient (at)

A film sample having a length of 15 mm and a width of 5 mm prepared by cutting in a width direction of a film is set in the TMA3000 of Shinku Riko Co., Ltd., kept under a nitrogen atmosphere at 60°C for 30 minutes and cooled to room temperature. Thereafter, the length of the film sample is measured at each temperature by increasing from 25°C to 70°C at a rate of 2°C/min to calculate the temperature expansion coefficient (at) of the film from the following expression.

at = $\{(L_2 - L_1)/(L_1 \times \Delta T)\} + 0.5 \times 10^{-6}$ (note)

L₁: sample length (mm) at 40°C

L₂: sample length (mm) at 60°C

ΔT: 20 (= 60 - 40°C)

Note: temperature expansion coefficient of quartz glass

2011-09-20 02629760

(6) humidity expansion coefficient (α_h)

A film sample having a length of 15 mm and a width of 5 mm prepared by cutting in a width direction of a film is set in the TMA3000 of Shinku Riko Co., Ltd. and kept under 5 a nitrogen atmosphere at a humidity of 30 %RH and then 70 RH% to measure the length of the sample so as to calculate the humidity expansion coefficient of the film from the following expression.

$$\alpha_h = \{(L_2 - L_1)/(L_1 \times \Delta H)\}$$

10 L1: sample length (mm) at 30 %RH

L2: sample length (mm) at 70 %RH

ΔH : 40 (= 70 - 30 %RH)

(7) residual shrinkage in width direction after load application in longitudinal direction of film

15 A film sample (length of 30 cm) slit to a width of 12.65 mm (1/2 inch) is set as shown in Fig. 1 at a temperature of 23°C and a humidity of 50 %. Gold is deposited on the surface of the film sample slit to 12.65 mm by sputtering so that the size in a width direction of the film sample can be 20 measured by a detector. In this state, a 2.7 kg weight per unit section in a thickness direction of the film is placed on one side (the other side is fixed) of the film sample to measure the width (L1) of the film sample by the laser outer diameter measuring instrument (controller: model 3100, sensor: model 3060) of Keyence Corporation.

25 Thereafter, a 2.7 kg weight per unit section in the thickness direction of the film is placed on one side (the other side is fixed) of the film sample at 49°C (120°F) and 90 %RH for 72 hours (3 days) and removed. After the film 30 sample is kept at a temperature of 23°C and a humidity of 50 % for 24 hours, a 170 g (6 oz) weight is placed on one side (the other side is fixed) of the film sample to measure the width (L2) of the film sample by the laser outer diameter measuring instrument (controller: model 3100, sensor: model

3060) of Keyence Corporation.

The dimensional change (αW) in a width direction before and after temperature and humidity treatment under load is calculated from the sizes measured before and after the 5 temperature and humidity treatment according to the following expression.

$$\alpha W = \{(L2 - L1)/L1\} \times 100 (\%)$$

(8) crystallinity

The density of a polyester film is measured by a density 10 gradient tube to calculate crystallinity from the following expression.

$$\text{crystallinity (\%)} = (d - da)/(dc - da) \times 100$$

d: film density

da: non-crystal density

15 dc: crystal density

In the case of polyethylene-2,6-naphthalene dicarboxylate, da: non-crystal density = 1.325 g/cm³ and dc: crystal density = 1.407 g/cm³.

(9) track dislocation (error rate)

20 The error rate is measured under the following conditions using the ML4500B QIC system of Media Logic Co., Ltd.

current: 15.42 mA

frequency: 0.25 MHz

25 location = 0

threshold: 40.0

bad/good/max: 1/1/1

number of tracks: 28

30 The error rate is expressed by the average value of measured tracks (= 28)

Measurements under conditions 1 and conditions 2 are carried out as follows.

conditions 1: Signals are recorded at 10°C and 10 %RH and then reproduced at 45°C and 80 %RH to measure the amount of

TOKYO 02629760

track dislocation caused by temperature and humidity variations.

conditions 2: Signals are recorded on a tape at 23°C and 50 %RH, the tape is caused to run repeatedly at 40°C and 60 %RH for 5 60 hours and maintained at 23°C and 50 %RH for 24 hours, and the recorded signals are reproduced to measure the amount of track dislocation caused by shrinkage in a width direction owing to running at a relatively high temperature and high humidity.

10 Evaluation criteria are as follows.

◎: no error rate

○: there is an error rate but there is no problem for practical use.

×: there is a problem for practical use due to a large error

15 rate

(10) glass transition point (Tg)

10 mg of a film is molten at 330°C in 5 minutes, set in the SSC5200 DSC220 heat analyzing system (differential scanning calorimeter) of Seiko Instruments Inc. and heated in a nitrogen air stream at a temperature elevation rate of 20°C/min. The temperature of the middle point of an area where the base line becomes discontinuous is taken as Tg.

(11) amount of endothermal energy of endothermal peak

10 mg of a film is set in the SSC5200 DSC220 heat 25 analyzing system (differential scanning calorimeter) of Seiko Instruments Inc. and heated in a nitrogen air stream at a temperature elevation rate of 20°C/min to obtain the amount of endothermal energy of an endothermal peak from an endothermal side area on a DSC chart corresponding to the 30 endothermal energy of the film. This area is shifted from the base line to the endothermal side by increasing the temperature. This area is an endothermal side area where the temperature keeps rising, reaches an endothermal peak and returns to the position of the base line. The position of

100-2420-0326293760

endothermal start temperature and the position of endothermal end temperature are connected by a straight line to obtain the area (A). In (indium) is measured under the same DSC measurement conditions and the amount of endothermal energy is obtained from the following expression under the condition that the area (B) of indium is 28.5 mJ/mg.

5 amount of endothermal energy = $(A/B) \times 28.5 \text{ mJ/mg}$

Example 1

Polyethylene-2,6-naphthalene dicarboxylate which 10 contained 0.02 wt% of calcium carbonate particles having an average particle diameter of 0.6 μm and 0.2 wt% of silica particles having an average particle diameter of 0.1 μm was dried at 180°C for 5 hours, supplied to the hopper of an extruder, molten at 300°C, extruded using a T shaped extrusion 15 die and solidified by quenching on a casting drum maintained at a surface finishing of 0.3 S and a surface temperature of 60°C to obtain an unstretched film.

This unstretched film was preheated at 75°C and stretched to 5.1 times between low-speed and high-speed rolls 20 by heating with an infrared heater having a surface temperature of 830°C from 14 mm above, quenched and supplied to a stenter to be stretched to 4.8 times in a transverse direction at 125°C. Thereafter, the film was heat set at 240°C for 10 seconds and relaxed by 1.0 % in a transverse 25 direction at 120°C to obtain a 4.5 μm thick biaxially oriented film. The obtained film had a Young's modulus in a longitudinal direction of 8 GPa and a Young's modulus in a transverse direction of 6.5 GPa.

The following composition was placed in a ball mill, 30 kneaded for 16 hours and dispersed, and 5 parts by weight of an isocyanate compound (Desmodule L of Bayer AG) was added and dispersed by high-speed shearing for 1 hour to prepare a magnetic coating.

composition of magnetic coating:

TOP SECRET - 02525760

	needle-like Fe particles	100 parts by weight
	vinyl chloride-vinyl acetate copolymer (Eslec 7A of Sekisui Chemical Co., Ltd.)	15 parts by weight
	thermoplastic polyurethane resin	5 parts by weight
5	chromium oxide	5 parts by weight
	carbon black	5 parts by weight
	lecithin	2 parts by weight
	fatty acid ester	1 parts by weight
	toluene	50 parts by weight
10	methyl ethyl ketone	50 parts by weight
	cyclohexanone	50 parts by weight

This magnetic coating was applied to one side of the above polyethylene-2,6-naphthalene dicarboxylate film to a coating thickness of 0.5 μm , and the resulting film was aligned in a DC magnetic field of 2,500 Gauss, dried by heating at 100°C, supercalendered (linear pressure of 2,000 N/cm, temperature of 80°C) and wound up. The wound roll was kept in an oven heated at 55°C for 3 days.

A coating material for back coating having the following composition was applied to a thickness of 1 μm and dried and the obtained film was cut to 12.65 mm (1/2 inch) to obtain a magnetic tape.

	coating material for back coating:	
	carbon black	100 parts by weight
25	thermoplastic polyurethane resin	60 parts by weight
	isocyanate compound (Colonate L of Nippon Polyurethane Kogyo Co., Ltd.)	18 parts by weight
	silicone oil	0.5 parts by weight
	methyl ethyl ketone	250 parts by weight
30	toluene	50 parts by weight

The characteristic properties of the obtained film and tape are shown in Table 1. As is obvious from this table, the obtained tape had a small error rate and excellent output characteristics.

Example 2

Polyethylene-2,6-naphthalene dicarboxylate for layer A which contained 0.13 wt% of crosslinked silicone resin particles having an average particle diameter of 0.3 μm and 5 0.25 wt% of spherical silica particles having an average particle diameter of 0.1 μm and polyethylene-2,6-naphthalene dicarboxylate for layer B which contained 0.1 wt% of spherical silica particles having an average particle diameter of 0.1 μm were prepared. Pellets of the polyethylene-2,6- 10 naphthalene dicarboxylates were dried at 180°C for 5 hours and supplied to the hoppers of two respective extruders and molten at 300°C so that layers A and layer B were laminated together and extruded using a multi-manifold co-extrusion die and solidified by quenching on a casting drum maintained 15 at a surface finishing of 0.3 S and a surface temperature of 60°C to obtain an unstretched film.

This unstretched film was preheated at 75°C, stretched to 5.4 times between low-speed and high-speed rolls by heating with an infrared heater having a surface temperature of 830°C 20 from 14 mm above, quenched and supplied to a stenter to be stretched to 3.9 times in a transverse direction at 125°C. Subsequently, the film was heat set at 220°C for 10 seconds and relaxed by 4.0 % in a transverse direction at 120°C to obtain a 4.5 μm thick biaxially oriented film. The obtained 25 film had a Young's modulus in a longitudinal direction of 9 GPa and a Young's modulus in a transverse direction of 6 GPa.

The film was heat set in the same manner as in Example 1, the same magnetic coating as in Example 1 was applied to 30 the layer B, and the same back coat as in Example 1 was applied to the layer A on the opposite side to obtain a magnetic tape which was evaluated. The results are shown in Table 1. The same good results as in Example 1 were obtained.

Example 3

A 4.5 μm thick biaxially oriented film was obtained in the same manner as in Example 2 except that the inert particles for layer A in Example 2 was changed to 0.25 wt% of spherical silica particles having an average particle diameter of 0.3
5 μm and 0.23 wt% of spherical silica particles having an average particle diameter of 0.1 μm , the inert particles for layer B was changed to 0.01 wt% of spherical silica having an average particle diameter of 0.1 μm , the heat setting temperature was changed to 200°C and the relaxation rate in
10 a transverse direction was changed to 2.0 %. The obtained film had a Young's modulus in a longitudinal direction of 9 GPa and a Young's modulus in a transverse direction of 6 GPa.

A magnetic tape was obtained by processing this
15 biaxially oriented film in the same manner as in Example 2. The results are shown in Table 1. The same good results as in Example 1 were obtained.

Comparative Examples 1 and 2

An unstretched film was obtained in the same manner as
20 in Example 2, stretched in the same manner as in Example 2, and heat set at a temperature shown in Table 1 for 10 seconds to obtain a 4.5 μm thick biaxially oriented film. A magnetic tape was obtained in the same manner as in Example 2.

Under conditions 1 or conditions 2, track dislocation
25 was large and bad results were obtained as shown in Table 1.

Comparative Examples 3 to 5

An unstretched film was obtained in the same manner as
in Example 2 and the draw ratios in longitudinal and
30 transverse directions of the film were controlled to achieve Young's moduli shown in Table 1. The film was then heat set at 205°C for 10 seconds to obtain a 4.5 μm thick biaxially oriented film. A magnetic tape was obtained in the same manner as in Example 2.

Under conditions 1 or conditions 2, track dislocation was large and bad results were obtained as shown in Table 1.

Table 1

type of polymer	direction	unit	Ex.1	Ex.2	Ex.3	C.Ex.1	C.Ex.2	C.Ex.3	C.Ex.4	C.Ex.5
thickness			PEN μm	PEN 4.5	PEN 4.5	PEN 8.0	PEN 4.5	PEN 9.0	PEN 9.0	PEN 7.0
Young's moduli	longitudinal direction	Gpa	Gpa	Gpa	Gpa	Gpa	Gpa	Gpa	Gpa	Gpa
heat setting temperature	transverse direction	°C	240	220	200	250	180	205	205	205
relaxation rate in width direction (toe-in)		%	1	4	2	0	0	0	0	0
crystallinity		%	43	36	29	46	25	33	33	33
heat shrinkage factor	transverse direction	%	0.2	0	0.5	0.2	0.8	0.3	0.2	0.4
temperature and humidity expansion coefficients										
temperature expansion coefficient (at)	transverse direction	$\times 10^{-6}/^{\circ}\text{C}$	14	15	11	19	9	3	19	-5
humidity expansion coefficient (ah)	transverse direction	$\times 10^5/\text{RH}$	14	13	13	16	11	9	17	7
ah+2 ah	transverse direction		42	41	37	51	31	21	53	9

Table 1 (continued)

	direction	unit	Ex. 1	Ex. 2	Ex. 3	C.Ex. 1	C.Ex. 2	C.Ex. 3	C.Ex. 4	C.Ex. 5
dimensional change in width before and after temperature and humidity treatment under load in longitudinal direction	transverse direction	%	0.18	0.20	0.35	0.15	0.50	0.41	0.20	0.58
surface roughness on magnetic layer side	WRa WRz	nm nm	6 200	6 80	2 30	6 80	6 80	6 80	6 80	6 80
on back coat side	WRa WRz	nm nm	6 200	11 150	11 110	11 150	11 150	11 150	11 150	11 150
track dislocation conditions 1			○	○	○	×	○	○	×	○
conditions 2			○	○	○	○	○	○	○	×
electromagnetic conversion characteristics			○	○	○	○	○	○	○	○

Example 4

Polyethylene-2,6-naphthalene dicarboxylate (intrinsic viscosity of 0.6) which contained 0.02 wt% of calcium carbonate particles having an average particle

- 5 diameter of 0.6 μm and 0.2 wt% of silica particles having an average particle diameter of 0.1 μm was dried at 180°C for 5 hours, melt extruded at 300°C and solidified by quenching on a casting drum maintained at a surface temperature of 60°C to obtain an unstretched film. This
10 unstretched film was stretched to 5.5 times between two rolls having different speeds at 120°C and supplied to a stenter to be stretched to 4.1 times in a transverse direction. Subsequently, the film was heat set at 205°C for 10 seconds to obtain a 5.0 μm thick biaxially oriented film.

- 15 The obtained film was slit to a width of 1,000 mm and a length of 5,000 m to prepare a sample roll. In this state, the film was heated to 120°C over 24 hours, maintained at that temperature for 24 hours and then cooled to room temperature over 24 hours. An endothermal peak different
20 from a peak indicating crystal melting heat was observed in the film after the above heat treatment by DSC measurement and the amount of this endothermal energy was 1.7 mJ/mg. The obtained film had a Young's modulus in a longitudinal direction of 900 kg/mm² and a Young's modulus in a transverse
25 direction of 600 kg/mm².

- The same magnetic coating as in Example 1 was applied to one side of the above biaxially oriented film to a coating thickness of 0.5 μm , and the resulting film was aligned in a DC magnetic field of 2,500 Gauss, dried by heating at 100°C, 30 supercalendered (linear pressure of 200 kg/cm, temperature of 80°C) and wound. This wound roll was left in an oven heated at 55°C for 3 days.

Further, the same back-coating layer coating as in Example 1 was applied to the other side (no magnetic layer

103740-02629260

side) of the film to a thickness of 1 μm and dried, and the obtained film was cut to 12.65 mm (= 1/2 inch) to obtain a magnetic tape.

The characteristic properties of the obtained film and 5 tape are shown in Table 2. As is obvious from this table, the obtained tape had a small error rate and excellent output characteristics.

Comparative Example 6

A tape was obtained in the same manner as in Example 10 4 except that the sample roll was not heated. The characteristic properties of the obtained film and tape are shown in Table 2. As is obvious from this table, the track dislocation under conditions 2 of the obtained tape was large.

Comparative Examples 7 and 8

15 A tape was obtained in the same manner as in Comparative Example 6 except that the draw ratios at the time of forming a biaxially oriented film were changed to achieve Young's moduli shown in Table 2. The characteristic properties of the obtained tape are shown in Table 2. The track dislocation 20 under conditions 1 of Comparative Example 7 was large and the track dislocation under conditions 2 of Comparative Example 8 was also large.

Example 5

Polyethylene-2,6-naphthalene dicarboxylate
25 (intrinsic viscosity of 0.6) for layer B which contained 0.13 wt% of crosslinked silicone resin particles having an average particle diameter of 0.3 μm and 0.25 wt% of spherical silica particles having an average particle diameter of 0.1 μm and polyethylene-2,6-naphthalene dicarboxylate (intrinsic
30 viscosity of 0.6) for layer A which contained 0.1 wt% of spherical silica particles having an average particle diameter of 0.1 μm were prepared. Pellets of these polyethylene-2,6-naphthalene dicarboxylates were dried at 180°C for 5 hours, supplied to the hoppers of two respective

extruders and molten at 300°C, and layer A was laminated on one side of layer B using a multi-manifold co-extrusion die and extruded onto a casting drum maintained at a surface finishing of 0.3 S and a surface temperature of 60°C to obtain
5 a laminated unstretched film. The thickness of each layer was controlled by the delivery rates of the two extruders to achieve surface roughness shown in Table 1.

The thus obtained laminated unstretched film was stretched to 5.5 times between two rolls having different
10 speeds at 120°C, supplied to a stenter to be stretched to 4.1 times in a transverse direction and heated at 205°C for 10 seconds.

The obtained laminated biaxially oriented film was slit to a width of 1,000 mm and a length of 5,000 m to prepare
15 a sample roll. In this state, the film was heated to 100°C over 24 hours, maintained at that temperature for 24 hours and then cooled to room temperature over 24 hours. An endothermal peak different from a peak indicating crystal melting heat was observed in the film after the above heat
20 treatment by DSC measurement and the amount of this an endothermal energy was 1.0 mJ/mg. The obtained film had a Young's modulus in a longitudinal direction of 900 kg/mm² and a Young's modulus in a transverse direction of 600 kg/mm².

A magnetic coating was applied to the layer A (magnetic
25 layer side) of this film and a back-coating layer coating was applied to the layer B (no magnetic layer side) in the same manner as in Example 4 and dried, and the obtained film was cut to 12.65 mm (= 1/2 inch) to obtain a magnetic tape.

The characteristic properties of the obtained
30 laminated film and tape are shown in Table 2. As is obvious from this table, the obtained tape had a small error rate and excellent output characteristics.

Example 6

A tape sample was obtained in the same manner as in

Example 5 except that the inert particles to be contained in the laminated polyester film was changed to 0.25 wt% of spherical silica particles having an average particle diameter of 0.3 μm and to 0.23 wt% of spherical silica
5 particles having an average particle diameter of 0.1 μm for polyethylene-2,6-naphthalene dicarboxylate for layer B, and to 0.01 wt% of spherical silica particles having an average
10 particle diameter of 0.1 μm for polyethylene-2,6-naphthalene dicarboxylate for layer A, and that the heat treatment
15 temperature of a roll sample of the obtained biaxially oriented film was changed to 80°C.

The characteristic properties of the obtained laminated film and tape are shown in Table 2. As is obvious from this table, the obtained tape had a small error rate
15 and excellent output characteristics.

Example 7
A film and tape were obtained in the same manner as in Example 1 except that the inert particles to be contained in the polyester was changed to 0.15 wt% of spherical silica
20 particles having an average particle diameter of 0.3 μm and that the heat treatment temperature of the obtained roll sample was changed to 60°C.

The characteristic properties of the obtained laminated film and tape are shown in Table 2. As is obvious
25 from this table, the obtained tape had a small error rate and excellent output characteristics.

Table 2

	direction	unit	Ex. 4	Ex. 5	Ex. 6	Ex. 7	C.Ex.6	C.Ex.8
thickness		µm	5.0	5.0	5.0	5.0	5.0	5.0
Young's moduli	longitudinal direction	GPa	9.0	9.0	9.0	9.0	9.0	12.0
	transverse direction	GPa	6.0	6.0	6.0	6.0	6.0	9.0
temperature and humidity expansion coefficients								
temperature expansion coefficient (at)	transverse direction	$\times 10^{-6}/^{\circ}\text{C}$	12	12	12	12	19	-5
humidity expansion coefficient (oh)	transverse direction	$\times 10^{-6}/\text{RH}$	10	10	10	10	17	7
ct+2ch	transverse direction		32	32	32	32	53	9
temperature of heat treatment of a sample roll		$^{\circ}\text{C}$	120	100	80	60	none	none
energy of heat absorption peak		mJ/mg	1.7	1.0	0.2	0.1	0.0	0.0
crystallinity		%	31	31	31	31	31	31
heat shrinkage factor	transverse direction	%	0.2	0.5	0.6	0.6	0.2	0.4

Table 2 (continued)

dimensional change in width before and after temperature and humidity treatment under load	direction transverse direction	unit %	Ex. 4 0.05	Ex. 5 0.08	Ex. 6 0.12	Ex. 7 0.28	C.Ex. 6 0.36	C.Ex. 7 0.18	C.Ex. 8 0.52
surface roughness on magnetic layer side		nm nm	6 200	6 80	2 30	8 130	6 200	6 200	6 200
on back coat side	WRa WRz	nm nm	6 200	11 150	11 110	8 130	6 200	6 200	6 200
track dislocation conditions 1			○	○	○	○	○	×	○
conditions 2			○	○	○	○	○	○	×
electromagnetic conversion characteristics			○	○	○	○	○	○	○

The present invention can provide a biaxially oriented polyester film for magnetic recording media, which is useful as a digital data storage tape free from an error caused by track dislocation and having excellent output
5 characteristics.

CLAIMS

1. A biaxially oriented polyester film for magnetic recording media, which has (1) a dimensional change in a direction perpendicular to a load application direction on the film plane of 0.40 % or less when the film is treated at 49°C and 90 %RH under a load of 2.7 kg per 1 mm² of unit sectional area in a thickness direction of the film for 72 hours, (2) a crystallinity of 27 to 45 %, (3) a temperature expansion coefficient α_t in a direction perpendicular to the above load application direction on the film plane of -5×10^{-6} to $+20 \times 10^{-6}/^{\circ}\text{C}$ and a humidity expansion coefficient α_h in a direction perpendicular to the above load application direction on the film plane of $+5 \times 10^{-6}$ to $+20 \times 10^{-6}/\%RH$, (4) the value of ($\alpha_t + 2\alpha_h$) being $+45 \times 10^{-6}$ or less, (5) a heat shrinkage factor in a direction perpendicular to the above load application direction on the film plane of 0 to 0.7 %, and (6) a thickness of 3 to 7 μm .
2. The film of claim 1 which has an endothermal peak of 0.05 mJ/mg or more at a temperature range of 120 to 160°C when measured by a differential scanning calorimeter (DSC).
3. The film of claim 1 which has a single-layer structure and at least one exposed surface of which has a center plane average roughness WR_a of 1 to 10 nm and a 10-point average roughness WR_z of 30 to 250 nm.
4. The film of claim 1 which has a laminate structure consisting of at least two layers and one exposed surface of which has a WR_a of 1 to 10 nm and a WR_z of 30 to 250 nm and the other exposed surface of which has a WR_a of 5 to 20 nm and a WR_z of 100 to 300 nm.

TOP SECRET//~~DEFENSE~~/~~NOFORN~~

5. The film of claim 1 which has a Young's modulus in the above load application direction of at least 6 GPa and a Young's modulus in a direction perpendicular to the above load application direction of at least 4 GPa and a total of
5 the Young's moduli in the two crossing directions of 10 to 20 GPa.

6. The film of claim 5, wherein the Young's modulus in the above load application direction is larger than the Young's
10 modulus in a direction perpendicular to the above load application direction.

7. The film of claim 1 which is made from polyethylene-2,6-naphthalene dicarboxylate.

15 8. A magnetic recording medium comprising the biaxially oriented polyester film of claim 1 and a magnetic layer formed on one side of the film.

20 9. The magnetic recording medium of claim 8, wherein the biaxially oriented polyester film has a single-layer structure, at least one exposed surface of the film has a center plane average roughness WR_a of 1 to 10 nm and a 10-point average roughness WR_z of 30 to 250 nm, and the above magnetic
25 layer is existent on the exposed surface.

10. The magnetic recording medium of claim 8, wherein the biaxially oriented polyester film has a laminate structure consisting of at least two layers, one exposed surface of
30 the film has a WR_a of 1 to 10 nm and a WR_z of 30 to 250 nm, the other exposed surface of the film has a WR_a of 5 to 20 nm and a WR_z of 100 to 300 nm, and the above magnetic layer is existent on the exposed surface having a WR_a of 1 to 10 nm and a WR_z of 30 to 250 nm.

092920-02442

11. The magnetic recording medium of claim 8 which is a magnetic recording media for digital recording.

09762920, 021401

ABSTRACT

A biaxially oriented polyester film for magnetic recording media, which has (1) a dimensional change between 5 before treated and after treated in a width direction of 0.40 % or less when the film is treated at 49°C and 90 %RH under a load of 170 (g/12.65 mm) in a longitudinal direction for 72 hours, (2) a crystallinity of 27 to 45 %, (3) a temperature expansion coefficient αt ($\times 10^{-6}/^{\circ}\text{C}$) and a humidity expansion 10 coefficient αh ($\times 10^{-6}/\%\text{RH}$) in a width direction of the film which satisfy the relationship $(\alpha t + 2\alpha h) \leq 45$, (4) a heat shrinkage factor in a width direction of the film of 0 to 0.7 %, and (5) a thickness of 3 to 7 μm .

This film is useful particularly for digital data 15 storage of a linear track system, is almost free from an error caused by track dislocation due to a dimensional change in the width of a tape and improves output characteristics.

TOP SECRET 0262323230

Fig. 1

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

Declaration and Power of Attorney For Patent Application

特許出願宣言書及び委任状

Japanese Language Declaration

日本語宣言書

下記の氏名の発明者として、私は以下の通り宣言します。 As a below named inventor, I hereby declare that:

私の住所、私書箱、国籍は下記の私の氏名の後に記載された通りです。 My residence, post office address and citizenship are as stated next to my name.

下記の名称の発明に関して請求範囲に記載され、特許出願している発明内容について、私が最初かつ唯一の発明者（下記の氏名が一つの場合）もしくは最初かつ共同発明者であると（下記の名称が複数の場合）信じています。 I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled

BIAXIALLY ORIENTED POLYESTER FILM ANDMAGNETIC RECORDING MEDIUM

上記発明の明細書（下記の欄で x 印がついていない場合は、the specification of which is attached hereto unless the following 本書に添付）は、

- ____月____日に提出され、米国出願番号または特許協定条約
国際出願番号を_____とし、
(該当する場合) _____に訂正されました。 was filed on June 9, 2000
as United States Application Number or
PCT International Application Number
JP00/03780 and was amended on
_____ (if applicable).

私は、特許請求範囲を含む上記訂正後の明細書を検討し、内容を理解していることをここに表明します。

I hereby state that I have reviewed and understand the contents of the above identified specification, including the claims, as amended by any amendment referred to above.

私は、連邦規則法典第37編第1条56項に定義されるところ、特許資格の有無について重要な情報を示す義務があることを認めます。

I acknowledge the duty to disclose information which is material to patentability as defined in Title 37, Code of Federal Regulations, Section 1.56.

Japanese Language Declaration
(日本語宣言書)

私は、米国法典第35編119条(a)-(d)項又は365条(b)項に基づく下記の、米国以外の國の少なくとも一方國を指定している特許協力条約365(a)項に基づく國際出願、又は外国での特許出願もしくは発明者証の出願について外國優先権をここに主張するとともに、優先権を主張している、本出願の前に出願された特許または発明者証の外国出願以下に、枠内をマークすることで、示しています。

I hereby claim foreign priority under Title 35, United States Code, Section 119(a)-(d) or 365(b) of any foreign application(s) for patent or inventor's certificate, or 365(a) of any PCT International application which designated at least one country other than the United States, listed below and have also identified below, by checking the box, any foreign application for patent or inventor's certificate, or PCT International application having a filing date before that of the application on which priority is claimed.

Prior Foreign Application(s)

外国での先行出願

Priority Claimed
優先権主張

No. 11-166593

(Number)
(番号)

Japan

(Country)
(国名)

14/06/1999

(Day/Month/Year Filed)
(出願年月日)Yes
はいNo
いいえ

No. 11-347391

(Number)
(番号)

Japan

(Country)
(国名)

07/12/1999

(Day/Month/Year Filed)
(出願年月日)Yes
はいNo
いいえ

私は、第35編米国法典第119条(e)項に基いて下記の米國特許出願規定に記載された権利をここに主張いたします。

I hereby claim the benefit under Title 35, United States Code, Section 119(e) of any United States provisional application(s) listed below.

(Application No.)
(出願番号)(Filing Date)
(出願日)(Application No.)
(出願番号)(Filing Date)
(出願日)

私は、下記の米国法典第35編120条に基いて下記の米國特許出願に記載された権利、又は米国を指定している特許協力条約365条(c)に基づく権利をここに主張します。また、本出願の各請求範囲の内容が米国法典第35編112条第1項又は特許協力条約で規定された方法で先行する米国特許出願に開示されていない限り、その先行米国出願書提出日以降で本出願書の日本国内または特許協力条約国際提出日までの期間中に入手された、速報規則法典第37編1条5.6段で定義された特許資格の有無に関する重要な情報について開示義務があることを認識しています。

I hereby claim the benefit under Title 35, United States Code, Section 120 of any United States application(s), or 365(c) of any PCT International application designating the United States, listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States or PCT International application in the manner provided by the first paragraph of Title 35, United States Code Section 112, I acknowledge the duty to disclose information which is material to patentability as defined in Title 37, Code of Federal Regulations, Section 1.56 which became available between the filing date of the prior application and the national or PCT International filing date of application.

(Application No.)
(出願番号)(Filing Date)
(出願日)(Status: Patented, Pending, Abandoned)
(現況: 特許許可済、係属中、放棄済)(Application No.)
(出願番号)(Filing Date)
(出願日)(Status: Patented, Pending, Abandoned)
(現況: 特許許可済、係属中、放棄済)

私は、私自身の知識に基づいて本宣言書中で私が行なう表明が真実であり、かつ私の入手した情報と私の信じるところに基づく表明が全て真実であると信じてること、さらに故意になされた虚偽の表明及びそれと同等の行為は米国法典第18編第1001条に基づき、罰金または拘禁、もしくはその両方により処罰されることと、そしてそのような故意による虚偽の声明を行なえば、出願した、又は既に許可された特許の有効性が失われることを認識し、よってここに上記のごとく宣言を致します。

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

Japanese Language Declaration
(日本語宣言書)

委任状： 私は下記の発明者として、本出願に関する一切の手続きを米特許商標局に対して遂行する弁理士または代理人として、下記の者を指名いたします。（弁護士、または代理人の氏名及び登録番号を明記のこと）

John E. McGarry	22,360
Richard D. Grauer	22,388
Ronald P. Kananen	24,104
H. Lawrence Smith	24,900
Ralph T. Rader	28,772
Michael D. Fishman	31,251
Joel E. Bair	33,356
Joseph V. Coppola, Sr.	33,373
Shmuel Livnat	33,949
Michael B. Stewart	36,018
Mark A. Davis	37,118

POWER OF ATTORNEY: As a named inventor, I hereby appoint the following attorney(s) and/or agent(s) to prosecute this application and transact all business in the Patent and Trademark Office connected therewith : customer No. 23353 and :

Alexander D. Rabinovich	37,425
Kevin D. Rutherford	40,412
Glenn E. Forbis	40,610
Krislin L. Murphy	41,212
Matthew J. Russo	41,282
Christopher M. Tanner	41,518
Robert S. Green	41,800
G. Thomas Williams	42,228
David K. Benson	42,314
Brian K. Dutton	47,255

(21)

書類送付先

RADER, FISHMAN & GRAUER PLLC
1233 20th Street, N.W.
Suite 501
Washington, D.C. 20036

Send Correspondence to:

RADER, FISHMAN & GRAUER PLLC
1233 20th Street, N.W.
Suite 501
Washington, D.C. 20036

直接電話連絡先：（名前及び電話番号）

Direct Telephone Calls to: (name and telephone number)

(202) 955-3750

(202) 955-3750

唯一または第一発明者名	Full name of sole or first inventor Ieyasu KOBAYASHI		
発明者の署名	日付	Inventor's signature Ieyasu Kobayashi	Date January 26, 2001
住所	Residence Sagamihara-shi, KANAGAWA, JAPAN		
国籍	Citizenship Japanese		
私書箱	Post Office Address c/o Teijin Limited, Sagamihara Research Center,		
第二共同発明者	37-19, Oyama 3-chome, Sagamihara-shi, KANAGAWA, JAPAN		
第二共同発明者の署名	日付	Full name of second joint inventor, if any Toshiyumi OSAWA	
		Second inventor's signature Toshiyumi Osa wa	Date January 26, 2001
住所	Residence Sagamihara-shi, KANAGAWA, JAPAN		
国籍	Citizenship Japanese		
私書箱	Post Office Address c/o Teijin Limited, Sagamihara Research Center,		
	37-19, Oyama 3-chome, Sagamihara-shi, KANAGAWA, JAPAN		

(第三以降の共同発明者についても同様に記載し、署名すること)