1. Two long coaxial solenoids each carry current I, but in opposite directions, as shown in figure 1. The inner solenoid (radius a) has n_1 turns per unit length, and the outer one (radius b) has n_2 . Find \vec{B} in each of the three regions: (i) inside the inner solenoid, (ii) between them, and (iii) outside both.

Figure 1: Figure for problem 1.

- 2. Just as $\vec{\nabla} \cdot \vec{B} = 0$ allows us to express \vec{B} as the curl of a vector potential $(\vec{B} = \vec{\nabla} \times \vec{A})$, so $\vec{\nabla} \cdot \vec{A} = 0$ permits us to write \vec{A} itself as the curl of a higher potential: $\vec{A} = \vec{\nabla} \times \vec{W}$. (a) Find the general formula for \vec{W} (as an integral over \vec{B}), which holds when $\vec{B} \to 0$ at ∞ .
 - (b) Determine \vec{W} for the case of a uniform magnetic field \vec{B} .
 - (c) Find \vec{W} inside and outside an infinite solenoid.

Figure 2: Figure for problem 3.

3. Calculate the magnetic force of attraction between the northern and southern hemispheres of a spinning charged spherical shell, shown in figure 2. Hint: The magnetic force on a surface current \vec{K} is given by

$$\vec{F} = \int (\vec{K} \times \vec{B}_{\text{avg}}) da, \ \vec{B}_{\text{avg}} = \frac{1}{2} (\vec{B}_{\text{inside}} + \vec{B}_{\text{outside}})$$

- 4. A uniformly charged solid sphere of radius R carries a total charge Q, and is set spinning with angular velocity ω about the z axis.
 - (a) What is the magnetic dipole moment of the sphere?
 - (b) Find the magnetic field at a point (r, θ) inside the sphere.
 - (c) Using the results of (b) find the average magnetic field within the sphere. Hint: Average magnetic field is defined as

$$\vec{B}_{\rm avg} = \frac{1}{\frac{4}{3}\pi R^3} \int \vec{B} d\tau$$

Compare this result with the result of (a) and show that the average magnetic field is related to the magnetic dipole moment as

$$\vec{B}_{\text{avg}} = \frac{\mu_0}{4\pi} \frac{2\vec{m}}{R^3}$$

- 5. A thin uniform donut, carrying charge Q and mass M, rotates about its axis as shown in the figure 3.
 - (a) Find the gyromagnetic ratio (g), i.e. the ratio of its magnetic dipole moment to its angular momentum.
 - (b) What is the gyromagnetic ratio a uniform spinning sphere?
 - (c) According to quantum mechanics, the angular momentum of a spinning electron is $\frac{\hbar}{2}$, where \hbar is Planck's constant. What, then, is the electron's magnetic dipole moment (in units of $A.m^2$)?

Figure 3: Figure for problem 5.

6. A thin glass rod of radius R and length L carries a uniform charge σ . It is spinning about its axis, at an angular velocity ω . Find the magnetic field at a distance $s \gg R$

from the center of the rod (see figure 4).

Figure 4: Figure for problem 6.

- 7. A uniform current density $\vec{J} = J_0 \hat{z}$ fills a slab straddling the yz plane as shown in figure 5, from x = -a to x = +a. A magnetic dipole $\vec{m} = m_0 \hat{x}$ is situated at the origin.
 - (a) Find the force on the dipole.
 - (b) Do the same for a dipole pointing in the y direction: $\vec{m} = m_0 \hat{y}$.
 - (c) In the electrostatic case, the expressions $\vec{F} = \vec{\nabla}(\vec{p}.\vec{E})$ and $\vec{F} = (\vec{p}.\vec{\nabla})\vec{E}$ are equivalent (prove it), but this is not the case for the magnetic analogs (explain why). As an example, calculate $(\vec{m}.\vec{\nabla})\vec{B}$ for the configurations in (a) and (b).

Figure 5: Figure for problem 7.