Circuitos Osciladores

Circuitos de Rádio-Frequência - 10 de Junho de 2025

Arthur Cadore M. Barcella

Sumário

Cristais Piezoelétricos	3
Modelo Elétrico do Cristal	6
Fator Q	14
Modos de Operação: Fundamental e Harmônicos	17
Circuito Oscilador	21

Cristais Piezoelétricos

Estrutura do Cristal Oscilador

Os cristais osciladores são dispositivos que convertem energia elétrica em energia mecânica e vice-versa.

Esses componentes são projetados a partir de materiais piezoelétricos, como quartzo, que possuem uma estrutura cristalina que permite o efeito piezoelétrico.

O cristal oscilador de quartzo é construído a partir de um cristal de quartzo natural ou sintético, que é cortado em uma forma específica e polarizado através de dois eletrodos, conforme apresentado na ilustração a direita.

Cristal de Quartzo

Efeito Piezoelétrico

O efeito piezoelétrico é a propriedade de certos materiais de gerar uma tensão elétrica quando submetidos a uma pressão mecânica.

Quando um cristal piezoelétrico é submetido a uma tensão elétrica, ele se deforma, podendo se contrair ou expandir, dependendo da polaridade da tensão aplicada. Quando a tensão é removida, o cristal retorna a sua forma original, gerando uma tensão elétrica oposta.

Assim, o tempo de contração e expansão do cristal determina a frequência de oscilação do cristal.

Efeito Piezoelétrico

Modelo Elétrico do Cristal

Modelo Elétrico

Um oscilador de cristal pode ser modelado como um circuito RLC série em paralelo com um capacitor, conforme apresentado a direita.

A equação de impedância do cristal é dada por:

$$Z(s) = \frac{1}{C_1} + L_1 + R_1) \parallel \left(\frac{1}{C_0}\right)$$

Onde:

- C_1 : Capacitância "Motional", elasticidade equivalente do cristal.
- L_1 : Indutância "Motional", massa equivalente do movimento do cristal.
- R_1 : Representa as perdas do cristal.
- C_0 : Representa a capacitância parasita do cristal, que é a capacitância entre os terminais

Modelo Elétrico Correspondente do Cristal

Oscilação em Modo Série

Um cristal pode ser conectado de duas maneiras ao circuito oscilador: em modo série ou em modo paralelo.

No modo série, o cristal é conectado em série com um resistor e um capacitor, formando um circuito RLC série.

A frequência de oscilação do circuito é determinada pela capacitância e indutância do circuito:

$$f_s = \frac{1}{2\pi\sqrt{L_1C_1}}$$

Oscilador de Cristal em Modo Série

Oscilação em Modo Pararelo

No modo paralelo, o cristal é conectado em paralelo com um resistor e um capacitor, formando um circuito RLC paralelo.

A frequência de oscilação do circuito é determinada pela capacitância e indutância do circuito:

$$f_p = \frac{1}{2\pi\sqrt{L_1C_1}} \cdot \left(1 + \frac{C_1}{2(C_0 + C_L)}\right)$$

Nesse segundo caso, a frequência de oscilação do circuito é maior que a frequência de ressonância do cristal, devido à capacitância de carga C_L que é vista pelo cristal.

Oscilador de Cristal em Modo Paralelo

Capacitância de Carga

A capacitância de carga é a capacitância que é vista pelo cristal quando ele está em operação em um circuito oscilador.

Na ilustração a direita, a capacitância de carga vista pelo cristal é dada por:

$$C_L = \frac{C_{\rm L1}.C_{\rm L2}}{C_{\rm L1} + C_{\rm L2}} + C_{\rm parasita}$$

Quando o cristal é projetado, o fabricante especifica a capacitância de carga C_L que deve ser utilizada para que o cristal opere na frequência desejada.

Capacitância de Carga

Resposta em Frequência do Cristal

Com base nos dois modos de operação do cristal, podemos observar a ressonância do cristal em modo série e paralelo, conforme apresentado a seguir:

Efeitos de temperatura

A temperatura afeta a frequência de oscilação do cristal, devido à variação da elasticidade e densidade do material piezoelétrico.

Dessa forma, o cristal possui um parâmetro denominado "aging" (ou envelhecimento), que indica a variação da frequência do cristal ao longo do tempo de acordo com a temperatura:

Especificações Técnicas

Especificação	Valor
Frequency Tolerance	± 10 ppm
Temperature Range	~40 ~+85°C
Aging (at 25℃)	± 5 ppm / year

Os parâmetros apresentados anteriormente são exemplos de um cristal oscilador comum, o HC-49S 9AC (JGHC) ilustrado a seguir:

Cristal Oscilador HC-49S 9AC (JGHC)

Especificações completas de um Cristal

Especificações de exemplo: Cristal HC-49S 9AC (JGHC)

Crystals specifications

ITEMS/TYPE	9AC
Frequency Range	3.2~64 MHz
Frequency Tolerance (at 25 ℃)	± 10 ppm, ± 20 ppm, or specify
Operating Temperature Range	~40~+85℃, or specify
Shunt Capacitance (C0)	7pF Max.
Drive Level	1~ 500μW (50 μW typical)
Load Capacitance	20pF, or specify
Aging (at 25℃)	± 5 ppm / year Max.
Storage Temperature Range	-40~+125℃

Fator Q

Fator Q

O principal motivo para o uso de cristais osciladores é a sua alta estabilidade de frequência, que é medida pelo fator Q do cristal.

O fator Q é definido como a razão entre a frequência de ressonância do cristal e a largura de banda da curva de ressonância:

$$Q = \frac{f_s}{\Delta f}$$

Onde f_s é a frequência de ressonância do cristal e Δf é a largura de banda da curva de ressonância.

Comparação Fator Q

Fator Q

16/21

Modos de Operação: Fundamental e

Harmônicos

Modo de operação Fundamental

Tipicamente, os cristais osciladores operam no modo fundamental, quando a frequência desejada está dentro da faixa de operação do cristal.

O modo fundamental significa que o oscilador irá operar na frequência de oscilação f_s quando ele é conectado em modo série ou f_p quando em paralelo, e é determinada pela capacitância e indutância do circuito, conforme visto anteriormente.

A direita é apresentada uma resposta em frequência do cristal oscilador considerando apenas o modo fundamental.

Comparação Fator Q

Modo de operação Harmônico

Em alguns casos, o cristal oscilador pode operar em harmônicos, quando a frequência desejada está fora da faixa de operação do cristal.

O modo harmônico significa que o oscilador irá operar em múltiplos inteiros da fundamental, como $3f_0$, $5f_0$, etc., onde f_0 é a frequência fundamental do cristal.

Isso permite que o oscilador opere em frequências mais altas, tipicamente acima de 66MHz, mas com uma menor estabilidade de frequência.

A direita é apresentada uma resposta em frequência do cristal oscilador considerando o modo harmônico.

Comparação Fator Q

Resposta em Frequência

