Обработка на изображения чрез реакционно-дифузни модели

Пламен Никифоров, Християн Марков, Стефан Велинов $31~{\rm ma\"{n}}~2017\,{\rm r}.$

Съдържание

1	Въведение	1
2	Дифузия	2
3	Реакция	3
4	Реакционно-дифузни системи 4.1 Двукомпонентни системи	3
5	Постановка на задачата 5.1 Модел на FitzHugh-Nagumo 5.2 Поведение на елементите 5.3 Оформяне на образи от реакционно-дифузния модел	4
6	Обработка на изображения 6.1 Начални условия	7 7
Π_1	итература	9

1 Въведение

В този проект се запознаваме с и реализираме няколко метода за обработка на изображения, предложени от Ebihara et.al [1]. Използвайки

реакционно-дифузен модел (и по-конкретно този на Fitz-Hugh & Nagumo) при условията на Тюрингова нестабилност могат да се намерят ръбове на обекти, да се сегментират изображения, намалява шума и увеличава контраста. В сравнение с конвенционалните модели, разглежданият тук дава по-добри резултати при наличие на шум.

Всички тестове и симулации са извършени с МАТLAВ.

Проектът е изготвен във връзка с дисциплината *Приложения на ма*тематиката за моделиране на реални процеси.

2 Дифузия

Нека първо добием представа какво представлява дифузията. Най-просто казано дифузията е процес, при който някакво вещество или енергия се разпространява от зони с по-висока концентрация, към такива с пониска. Това явление се подчинява на едни и същи закони, независимо от същността на пренасяното вещество. За да стане по-ясно как точно работи дифузията разглеждаме следните примери:

- 1. Представете си, че имаме метален прът и започнем да нагряваме единия му край. Нагрятият край ще има по-висока концентрация на топлина и посредством дифузията, топлината ще започне да се пренася по дължината на пръта, към края с по-ниска концентрация на топлина, до достигане на равновесно положение в което ще имаме една и съща температура по целия прът.
- 2. Нека имаме аквариум пълен с вода. Пускайки количество мастило в аквариума, ние увеличаваме концентрацията на мастило там, където сме го пуснали спрямо останалата част на аквариума. Мастилото ще започне да се разнася към тези части с по-ниска концентрация, до достигане на положение, в което концентрацията на мастило във водата е равномерно разпределена.

Вече имайки тази интуитивна представа за това какво представлява дифузията, нека разгледаме процеса по-строго от научна гледна точка и да го опишем математически. За да постигнем тази цел, ще трябва да разгледаме Закона за запазване на енергията и Закона на Фик.

3 Реакция

4 Реакционно-дифузни системи

Реакционно-дифузните системи са математически модели, които описват няколко физически явления: най-честосрещаният от които е промяната във времето и пространството на конценцтрацията на едно или повече вещества. Локални реакции карат субстанциите да се изменят една към друга, а дифузията ги разпространява из пространството.

Такива системи се използват предимно в химията, но могат да опишат и динамични процеси от други природни области. Примери могат да се намерят в биологията, геологията, физиката, екологията и т.н. Математически погледнато, реакционно-дифузните системи са линейни параболични частни диференциални уравнения. Решенията им пък описват различни поведения - например вълни, себе-организиращи се структури като ивици, шестоъгълници или по-сложни.

4.1 Двукомпонентни системи

Двукомпонентните системи позволяват описване на много по-голям диапазон феномени, за разлика от еднокомпонентния си аналог. Една от най-важните идеи, свързани с тях, е предложена от Алан Тюринг. Той твърди, че едно състояние, което е стабилно в локална система, може да изгуби това си качество при наличието на дифузия.

Разглежданите в този проект системи са активатор-инхибиторните, в които един компонент стимулира собственото си и на другите компоненти възпроизвеждане, а другия инхибира (възпира) растежа им. Най-известният представител е уравнението на FitzHugh-Nagumo, който е представен в 5.1

5 Постановка на задачата

5.1 Модел на FitzHugh-Nagumo

Моделът на FitzHugh-Nagumo (FHN) е опростена версия на модела на Hodgkin-Huxley, който описва детайлно активацията и деактивацията на неврони.

Този модел се задава чрез уравненията

$$\frac{\partial u}{\partial t} = D_u \nabla^2 u + \frac{1}{\varepsilon} \cdot u(1 - u)(u - a) - v)
\frac{\partial v}{\partial t} = D_v \nabla^2 v + u - bv,$$
(1)

където u и v са концентрациите на активатор и инхибитор, D_u и D_v са съответните коефициенти на дифузия, а $\varepsilon(0<\varepsilon<<1), a(0< a<0.5)$ и b(b>0) са константни параметри.

Уравненията 1 определят поведението на u и v с течение на времето.

5.2 Поведение на елементите

В нашия случай, елементите (пикселите на изображението) са разпределени в мрежа. Всеки елемент се състои от две субстанции. Единият е активаторът, а другият е инхибиторът. При стабилно състояние, елементите крепят баланса на концентрациите на двете субстанции. Но, при добавяне на дори малък стимул, равновесието се губи. Ако стимулът е над определена граница, концентрацията на активатора се увеличава автоматично с времето.

Сега ще проверим поведението на модела в стабилно състояние ($\frac{\partial u}{\partial t} = 0, \frac{\partial v}{\partial t} = 0$), без да прилагаме дифузията (т.е. $D_u = 0, D_v = 0$). Тогава получаваме следните изоклини:

$$v = u(1-u)(u-a),$$

$$v = (1/b)u$$
(2)

(а) Моноустойчива система

(б) Двуустойчива система

Фигура 1: Изоклини на уравненията на модела на FitzHugh-Nagumo

Фигура 1 показва изоклините на уравненията в модела. Поведението на u и v е различно в зависимост от това в коя област са. В пресечната точка изменението на u и v е статично (те се зануляват едно друго). В зависимост от стойностите на константите a и b, броят на устойчиви точки се мени и система показва различни типове. Един от тях е моноустойчивия (с една стабилна точка), другият е двуустойчивия (с две). При първия, състоянието се променя след добавяне на стимул, но в крайна сметка се връща към стабилно по посока на стрелките. От друга страна, двуустойчивата система има три устойчиви точки. Ако стимулът е над границата (u > a, v = 0) елементът отива в състояние B, в другия случай (u < a, v = 0) отива към A. В точка C нямаме стабилност, затова тази точка се нарича нестабилна устойчива точка.

Фигура 2: Разликата в поведението при добавяне на различни стойности на стимула

Фигура 2 изобразява разликата в поведението на моноустойчивата система, при добавяне на различна стойност на стимула. При u > a, v = 0, орбитата стига линията (1), а накрая u и v достигат състоянието A. В другия случай (u < a, v = 0), орбита стига линията (2). Така откриваме, че параметърът a от (1) действа като граница (threshold).

5.3 Оформяне на образи от реакционно-дифузния модел

Субстанциите (активатор и инхибитор) се разменят между елементите, благодарение на дифузионната част на уравненията (1). Ако един елемент се включи, т.е. концентрациите на u и v се увеличат, той отделя голямо количество от тях към съседите си. Те на своя страна ги получават и също се включват, ако концентрациите на активатор и инхибитор също са над границата.

Подобен феномен се наблюдава и в някои химични експерименти. Например, реакцията на Белусов-Жаботински се себеорганизира във формата на спирала или мишена. От подобни примери можем да заключим, че механизмът на Тюринговата нестабилност $(D_u << D_v)$ е важно условие за стабилно формиране на образи. При това условие $(D_u << D_v)$ ще представим няколко алгоритъма за обработка на изображения, като намиране на ръбове и сегментация.

6 Обработка на изображения

6.1 Начални условия

Фигура (3a) показва черно-бялото изображение, с което ще работим. То е с размери 200 × 200 пиксела и представлява сив квадрат с черен фон. Стойността на пикселите в средата е между 153 и 202 от възможни 256 нива на сивото. Всеки елемент (пиксел) получава собствена стойност на активатора чрез формулата

$$u_0(x,y) = \{f(x,y)/255\} \times (1+0.05) - 0.05,$$
 (3)

където f(x,y) е стойността на пиксела в ниво на сивото $(f(x,y) \in [0,255]$. За конкретния случай получаваме $u_0 = 0$ за фона (черния цвят) и $u_0 \in [0.58, 0.78]$ за обекта, т.е. сивия квадрат. Всички пиксели започват със стойност на инхибитора $v_0(x,y) = 0$.

Фигура 3: Резултати от обработката на изображение

В симулацията ни, извършена на МАТLAB, задаваме $D_u << D_v$, за да бъде изпълнено условието на Тюрингова нестабилност. Параметрите a и b са така избрани, че да получим стабилна система - моно или дву-устойчива. Параметърът ε контролира скоростта на u: при по-малки ε , u расте по-бързо. Избираме $\varepsilon = 0.0006$.

6.2 Резултати

Фигури (36) и (3в) показват резултатите от проведената симулация. Успешно сме реализирали сегментация и намиране на ръбове. Важно е да се отбележи, че коефициентите, използвани от модела, и по-конкретно h- 'разстоянието' между пикселите, стойностите на дифузионните коефициенти D_u и D_v , и стъпката по времето τ претърпяха редица промени.

В крайна сметка се спряхме на $h=1, D_u=2, D_v=8.$ За au трябваше да поставим следното ограничение:

$$\tau = \min\left\{\frac{h^2}{4 + D_v - h^2(1 - b)}, \frac{h^2 \varepsilon}{4\varepsilon D_u + ah^2}\right\}$$
 (4)

Литература

[1] Mayumi Ebihara, Hitoshi Mahara, Tatsunari Sakurai, Atsushi Nomura, Hidetoshi Miike. *Image Processing by a Discrete Reaction-Diffusion System*, 2002