GROUP 10

CONNECT FOUR

AI PROJECT IIT'Dh 2024

PROBLEM FORMULATION

WISE MOVE

Since our childhood, we've been losing to our elder siblings in the game of Connect 4. Now that we have a chance to build an Al model which takes the most optimal moves, we think we've got a chance to finally pay back!

RANDOM WALK

In Maths, a random walk, sometimes known as a drunkard's walk, is a random process that describes a path that consists of a succession of random steps on some mathematical space. We'll try to verify this theory with our random moves

METHOD

2> Define a concise and comprehensive representation of the game state that captures all essential information.

Understanding

Game State

1> Ensure a clear grasp of the Minimax algorithm for two-player games, where the Al aims to maximize its advantage while minimizing the opponent's gain.

Implementation

4> Develop an evaluation function to assign numerical values to game states, aiding decision-making in the Minimax algorithm based on game rules and objectives.

Evaluation

Testing

3> Create a recursive Minimax function that explores possible moves for both players while incorporating alpha-beta pruning for efficiency.

5> Thoroughly test and fine-tune your Minimax-based Al, adjusting the evaluation function and parameters to improve performance and balance optimal and random moves as needed for player experience.

CONCLUSION.

Strategic Fusion

We combine Minimax with stochastic elements, using random moves to validate the theory of random walk in gaming, resulting in a versatile approach.

Balanced Optimal Play

Our Al maintains equilibrium between Minimax's optimal strategies and random moves for empirical validation, enriching both the gaming experience and game theory.

Iterative Improvement

Through iterative testing and parameter tuning, we achieve dynamic gameplay while advancing our understanding of random walk theory in gaming.