MAINS FREQUENCY MONITORING UNIT

Netzfrequenzmessung- und Überwachung für den RaspberryPi (und USB-TTL)

erweiterte Dokumentation

(Extendend Version)

Der Blick in unser Stromnetz

Projektbeschreibung MAINS FREQUENCY MONITORING V2.0 **Extended Version**

Messen und beobachten Sie Ihre Netzfrequenz. Die Abweichung vom Sollwert stellt einen direkten Qualitätsindikator über die angebotene Momentanleistung der Kraftwerke und die Abnahme der Verbraucher dar. Die Netzfrequenz ist somit ein Garant der Netzstabilität und zeigt Effekte des Intraday- Stromhandels

Inhaltsverzeichnis

Lizenz	3
Dokumentation	3
Creative-Commons-Lizenz	3
OpenHardware (OSHWA)	3
Software / Quellcode	
Hintergrund	4
Unser Stromnetz	
Netzfrequenz als Qualitätsindikator	4
Einsatz der Netzfrequenzplatine	6
Software	6
Messspannung	6
Frequenzmessung	7
Messbereichserkennung bei Programmstart	7
Einstellungen für das Prescale-Messverfahren	8
Messung der Netzfrequenz	10
Berechnung der Netzfrequenz	10
Detaillierte Beschreibung der Messung	
Eingangsbeschaltung Schmitt-Trigger	11
Schematischer Programmablauf Messauswertung	
Arduino-Programm Ablauf (extended Version)	
Differenz-Komparator-Filter	16
Kalibrierung	17
Netzfrequenzmessung Extended-Version	
Alternierende Messdatenausgabe A- und B-Messung	
Erweiterte Einstellungen im Arduino-Quellcode	
Ausgabe der Netzlastdifferenz	
MW-Funktion	20
Kennlinientyp	
Tabelle Warnstufen Netzfrequenz	
J6 Ausgabeverhalten	
Ausgabe High/Low-Aktiv	
Blinkende Ausgabe	
Ausgang mit LED-Beschaltung	
Beispiel: Ausgang mit Relais-Beschaltung	25
Verwendung mit einem USB-TTL-Konverter	
Auswahl der Protokolle	27
Nachbau	
Schaltbild Netzfrequenzplatine mfm V1.0	32
Aufbauskizze	
Platinen-Layout	
Bauteile:	
Einbauhinweise:	
Infos zum Quarz	
Gehäuseempfehlung	37

Software / Quellcode	38
μController-Fusebits	38
Übertragung / Programmierung	38
Programmierservice	38
Arduino Quellcode compilieren	39
SPI - Vorbereitung des RaspberryPi	40
Übertragung über den RaspberryPi mit AVRDude (Hex-File über Raspi ISP-Port)	41
Messung / Ausgabetest	42
Kommunikation der Netzfrequenzplatine	43
Infos / Bestellmöglichkeit	44
Hinweis / Gewährleistungsausschluss	4 4

Lizenz

Dokumentation

Creative-Commons-Lizenz

Diese Projektdokumentation steht unter der Creative-Commons-Lizenz Namensnennung - Weitergabe unter gleichen Bedingungen 4.0 International. Um eine Kopie dieser Lizenz zu sehen, besuchen Sie http://creativecommons.org/licenses/by-sa/4.0/

OpenHardware (OSHWA)

Die Hardware ist unter einer CERN-Lizenz veröffentlicht als OpenHardware (Open-Source-Hardware)

Das Projekt ist OSHWA- zertifiziert unter Nr. DE000086.

Gesamte Projektdokumentation und alle Lizenzen unter

https://gitlab.com/jm wtal/mains-frequency-measure

OSHWDE000086

Infos zu Oshwa: https://www.oshwa.org/definition/german

Software / Quellcode

Der Quellcode steht unter der GNU GPL 3-Lizenz:

- Freiheit das Programm für jeden Zweck auszuführen
- Freiheit den Quellcode zu studieren und anzupassen
- Freiheit, das Programm zu kopieren
- Freiheit, das veränderte Programm zu kopieren

Diese Freiheiten sollten auch langfristig sichergestellt werden. Zu diesem Zweck enthält die GPL zwei wesentliche Klauseln:

- Jedes Derivat muss ebenfalls vollständig unter der GPL lizenziert werden.
- Bei Weitergabe des Programmes in Binärform muss der Quellcode des gesamten Programms mitgeliefert oder auf Anfrage ausgehändigt werden.

Hintergrund

Unser Stromnetz

Die Netzfrequenz in Europa beträgt 50Hz. Eine Abweichung vom Nennwert ist ein direktes Fenster der elektrischen Erzeugung und dem Verbrauch. Der abgegebenen Leistung muss zu jedem Zeitpunkt eine gleich große Leistungsaufnahme gegenüberstehen.

Kommt es zu Abweichungen, führt das zu einer Veränderung der Netzfrequenz: Bei einem Überangebot von elektrischer Leistung kommt es zu einer Steigerung der Netzfrequenz, bei einem Unterangebot zu einer Absenkung. Normalerweise sind diese Abweichungen im westeuropäischen Verbundnetz minimal und bewegen sich im Bereich von 49,80Hz - 50,20Hz. Die Aufgabe der so genannten Leistungsregelung im Stromnetz ist es, die Lastschwankungen auszugleichen und so die Netzfrequenz auf konstantem Nennwert zu halten.

In Europa, Asien, Australien, dem Großteil von Afrika und Teilen von Südamerika wird für das allgemeine Stromnetz, in sogenannten Verbundnetzen, eine Netzfrequenz von 50 Hz verwendet. In Nordamerika verwendet man im öffentlichen Stromnetz eine Netzfrequenz von 60 Hz. Die Unterschiede sind durch die historische Entwicklungsgeschichte der ersten Stromnetze in den 1880er und 1890er Jahren bedingt und haben heute keinen technischen Grund.

Einige Eisenbahnen wie die ÖBB, SBB und die Deutsche Bahn nutzen für ihre Bahnstromversorgung eine nominale Frequenz von 16,7 Hz. Früher betrug die nominale Bahnnetzfrequenz 16 $^2/_3$ Hz, was genau einem Drittel der im Verbundnetz verwendeten 50 Hz entspricht. Einige Eisenbahnen und auch industrielle Abnehmer in Nordamerika werden aus historischen Gründen mit einer Netzfrequenz von 25 Hz versorgt. Die vergleichsweise niedrigen Netzfrequenzen resultieren aus der technologischen Entwicklung der ersten elektrischen Maschinen: Anfang des 20. Jahrhunderts konnte man elektrische Maschinen größerer Leistung nur mit diesen niedrigen Frequenzen bauen. Wegen des großen Umstellungsaufwandes werden jedoch die damals eingeführten niedrigen Netzfrequenzen auch noch heute beibehalten.

In speziellen Bereichen, z. B. im Bordnetz von Flugzeugen, sind höhere Netzfrequenzen üblich, z. B. 400 Hz, da sich dafür kleinere und leichtere Transformatoren bauen lassen und die Leitungslängen kurz sind.

Netzfrequenz als Qualitätsindikator

Die Netzfrequenz und deren Abweichung vom Nennwert ist ein direkter Qualitätsindikator über die Relation der über Erzeuger wie Kraftwerke angebotenen elektrischen Momentanleistung und der Abnahme der elektrischen Momentanleistung durch Verbraucher. Elektrische Energie kann in Verbundnetzen kaum gespeichert, sondern nur zwischen Erzeuger und Verbraucher verteilt werden. Der abgegebenen Leistung muss, bis auf die Blindleistung bei Wechselstrom, zu jedem Zeitpunkt eine gleich große Leistungsaufnahme gegenüberstehen.

Kommt es zu Abweichungen, führt das in Wechselspannungsnetzen zu einer Veränderung der Netzfrequenz: Bei einem Überangebot von elektrischer Leistung kommt es zu einer Steigerung der Netzfrequenz, bei einem Unterangebot zu einer Absenkung. Im Normalfall sind diese Abweichungen im westeuropäischen Verbundnetz minimal und bewegen sich unter 0,2 Hz. Eine Frequenzabweichung von 0,2 Hz entspricht im europäischen Verbundsystem einer Leistungsdifferenz von ca. 3 GW. Diese 3 GW Leistungspuffer sind als Referenzausfall (dem Continental Europe Operation Handbook) als Richtwert vorgegeben und beschreibt den ungeplanten Ausfall von zwei größeren Kraftwerksblöcken im europäischen Verbundnetz RG-CE (vormals UCTE). Die Aufgabe der Leistungsregelung in Verbundnetzen

ist es, die zeitlichen Schwankungen auszugleichen und so die Netzfrequenz auf konstantem Nennwert zu halten. Je kleiner ein Stromversorgungsnetz ist und je schlechter die Netzregelung funktioniert, desto stärkere Schwankungen treten bei der Netzfrequenz auf.

Unterangebot der Energie

Überangebot der Energie

Diese Schwankung kann man messen:

Ich möchte mit meinem Projekt die Dynamik des Stromnetzes sichtbar machen. Die Elektronik erfasst die Netzfrequenz und ermöglicht, abgeleitet über eine mathematische Funktion, die Anzeige der Netzlastdifferenz in MW (Megawatt). Diese Netzlastdifferenz entspricht der **primären Regelleistung**.

Bild: Netzfrequenzmessung (Beispiel grafische Auswertung mit Grafana®)

Es handelt sich um ein privates, nicht kommerzielles Projekt. Die Elektronik, μ Controller- und Projektsoftware ist von mir entwickelt (siehe auch Creativ-Commons-Lizenz).

Platinen, Programmierservice und Bauteile siehe Bestellmöglichkeit.

Einsatz der Netzfrequenzplatine

Messplatine zur Aufzeichnung, Informations-, Meldungs-, Alarmierungs-und Beobachtungszwecken der Netzfrequenz.

Das Gerät kann flexibel an die Kenndaten eines Stromnetzes angepasst werden (z.B. 60Hz-Netz). Eine Berechnung und Ausgabe der Netzlastdifferenz (primäre Regelleistung) ist vorbereitet (ENTSO-E RG-CE).

Die Ausgabe erfolgt über die serielle Schnittstelle. Die Platine ist für den RaspberryPi konzipiert, kann aber alternativ auch problemlso mit einen USB-TTL-Wandler verwendet werden.

Außerdem sind Output-Ausgaben für Alarmierungs- und Meldesysteme vorbereitet.

Eine Bereitstellung der Messwerte über eine Modbus-TCP-Software steht in Kürze zur Verfügung, weitere Protokolle z.B. MQTT (IoT), WebAPI (Influx-DB), IEC60870-4-104 FW-Protokoll oder als Logic-Device einer IEC61850-Anlage sind geplant.

Bauteile (Info)

Es ist keine smd-Technik verwendet, um die Nachbaubarkeit so einfach wie möglich zu gestalten. Die entsprechenden Nachbauanleitungen und <u>Bauteillisten</u> sind ab Seite 34 zu finden (Bestellmöglichkeit der Platine und der Bauteile siehe Seite 44). Eine teilbestückte Platine mit SMD ist in Vorbereitung.

Software

(μController ATMEGA328p-16PU DIP-28 8-Bit 10 MHz (Arduino - Kompatibel)

Die aktuelle Software steht auf der Gitlab-Seite als Download bereit.

Weitere Infos unter www.pc-projekte.de bzw. http://www.netzfrequenzanzeige.de.

Messspannung

Warnung: Verwenden Sie NIEMALS direkte 230V Netzspannung zur Netzfrequenzmessung!

Messspannung: Netzteil (oder Trafo) mit Wechselspannungsausgang

Bild: Beispiele für Klingeltrafos

Bild: Steckernetzteil (AC-AC)

Bild: Printtrafo

Siehe auch Hinweis / Gewährleistungsausschluss.

Frequenzmessung

Kurzbeschreibung Messablauf

Die Frequenzmessung erfolgt über eine Flankenauswertung des Wechselspannungssignals. Das Signal wird über zwei Optokoppler und einem RS-FlipFlop (4093-Nand-Gatter als RS-FlipFlop) dem μ Controller zugeführt und mit dem 10MHz-Quarz-Takt und des Timer1 und Timer2 (als Counter) des μ Controllers ausgewertet.

Genauigkeit

Die Messgenauigkeit der Netzfrequenzmessung ist auch ohne Kalibrierung sehr hoch. Ausschlaggebend ist die Genauigkeit des Quarz Q_1 (und die korrekte Größe C_1 und C_2 , abgestimmt auf den Q_1). Der Messfehler der Frequenzmessung (ohne Kalibrierung oder Netzfrequenztrigger-Vorschaltplatine) liegt unter ± 1 mHz.

Eine Kalibrierung der Messung ist über eine Quellcode-Einstellung möglich.

Temperaturbereich

Die Netzfrequenzanzeige sollte bei Raumtemperatur verwendet werden. Direkte Sonneneinstrahlung auf das Gehäuse oder die Platine und die damit verbundene Temperatureinwirkung können das Messergebnis verfälschen.

Netzrückwirkungen

Die Netzfrequenzanzeige ist im Normalfall unempfindlich gegenüber in der EN50160 beschriebenen Netzrückwirkungen.

Sehr starke elektrische Impulse in der Umgebungen, ungewöhnlich hohe Oberwellenanteile oder Rundsteuersignale in der Messspannung (Netzrückwirkung) können das Messergebnis verfälschen.

Siehe auch Messdatenaufbereitung

Messbereichserkennung bei Programmstart

Beim Programmstart wird eine automatische Netzfrequenzerkennung durchgeführt.

Nach der erfolgreichen Erkennung werden die entsprechenden Grenzbereiche der erkannten Netzfrequenz in den Filterstufen verwendet.

Min/Max	50Hz-Netz	60Hz-Netz	16,7 Hz*
Max f	45 Hz	55 Hz	22 Hz
Min f	55 Hz	65 Hz	12 Hz

^{*) 16,7} Hz-Bahnnetzfrequenz z.B. Deutschland, Österreich und Schweiz (Normalspur)

16,7 Hz-Messung ist grundsätzlich möglich, ist aber momentan nicht integriert

Durch die manuelle Einstellung kann die entsprechende Netzfrequenz vorgegeben werden

Automatische Erkennung	50 Hz / 60 Hz (16,6 Hz)	FA = 0
50 Hz-Netz	45,000 Hz – 55,000 Hz	FA = 50
60 Hz-Netz	55,000 Hz – 65,000 Hz	FA = 60
Eine Version für 16,7 Hz ist vorbereitet	12,000 Hz – 22,000 Hz	FA = 16

Einstellungen für das Prescale-Messverfahren

Für das Messverfahren können einige Einstellungen vorgenommen werden, um Messdauer und Messperioden an den μ Controller anzupassen bzw. zu optimieren.

Dazu können im µController-Programm einige Parameter einstellt oder geändert werden.

Grundeinstellungen im Arduino-Quellcode:

Einstellung	Voreinstellung (Empfehlung)	Funktion
Prescaler	64	Interner Teiler des μC-Taktes (ATMega328-Takt)
Messperiode	18	Maximale Periodenzählung (Flankenzähler bis nächste Frequenzberechnung)
Dividend	2812500	Konstanter Wert für Frequenzumrechnung (ergibt sich aus dem Prescaler und der Messperiode)
Sperr	2400	Sperrzeit nach erkannter Eingangsflanke zur Unterdrückung von Signalprellung
UBRR	0X40	Korrekturwert für serielle Schnittstelle (Anpassung der Baud-Rate an den 10MHz-Takt)
DiffMAX	60	Maximalwert der zulässigen Frequenzänderung (siehe Differenz-Komperator-Filter)
FA	0	Automatische oder manuelle Frequenzbereichseinstellung (Automatische Netzfrequenzerkennung bei Programmstart)
Calibration	0	Messwert-Kalibrierung, falls benötigt

Auf den nachfolgenden Seiten sind die Einstellungen detailliert beschrieben.

Deplo	yment	μC Oscillating Quartz	Prescaler	Period	Dividend	Lock- Counts	UBRR (U2X=1)	Approxinate measuring time at 50Hz
		20 MHz	256	37	2890625	1200	0x81	0,74 s
		20 MHz	64	9	2812500	4800	0x81	0,18 s
		20 MHz	8	1	2500000	38402	0x81	0,02 s
		16 MHz	256	47	2937500	960	0x67	0,94 s
		16 MHz	64	11	2750000	3840	0x67	0,22 s
		16 MHz	8	1	2000000	30721	0x67	0,02 s
		12 MHz	256	62	2906250	720	0x4d	1,24 s
		12 MHz	64	15	2812500	2880	0x4d	0,3 s
		12 MHz	8	1	1500000	23041	0x4d	0,02 s
γ.		10 MHz	256	75	2929688	600	0x40	1,5 s
er (5		10 MHz	64	18	2812500	2400	0x40	0,36 s
dapt		10 MHz	8	2	2500000	19201	0x40	0,04 s
USB-TTL Adapter (5V)		8 MHz	256	94	2937500	480	0x33	1,88 s
SB-T		8 MHz	64	23	2875000	1920	0x33	0,46 s
Ö	(/)	8 MHz	8	2	2000000	15360	0x33	0,04 s
	Rspberry Pi (3,3V)	6 MHz	256	125	2929688	360	0x26	2,5 s
	rry P	6 MHz	64	31	2906250	1440	0x26	0,62 s
	spbe	6 MHz	8	3	2250000	11520	0x26	0,06 s
	ä	4 MHz	256	188	2937500	240	0x19	3,76 s
		4 MHz	64	47	2937500	960	0x19	0,94 s
		4 MHz	8	5	2500000	7680	0x19	0,1 s
		2 MHz	256	377	2945313	120	Охс	7,54 s
		2 MHz	64	94	2937500	480	0хс	1,88 s
		0.141		4.4	0750000	0040		0.00

<== Empfohlene Einstellung Raspberry Pi</p>

Quarz 10MHz
Prescaler 64
Period 18
Dividend 2812500
Lock-Counts 2400
UBRR 0x40
(Programmierung über ISP-Port)

Tabelle: Übersicht optimierte Einstelldaten für die Netzfrequenzmessung

11

2750000

Einstellungen im Arduino-Programmcode (Basisquellcode):

8

2 MHz

```
// Basic-Settings / Grundeinstellungen
#define F_CPU 10000000
const word Prescaler = 64;
                                        // Prescaler (0,8,64,256,1024)
const byte Messperiode = 18;
                                        // Period
const unsigned long Dividend = 2812500;
                                        // DIVIDEND Calculation constant
const word Sperr = 2400;
                                        // Lock-Counts
const int UBRR = 0x40;
                                        // Correction serial baud/clock
const int DiffMAX = 60;
                                        // DifferenzMAX
byte FA = 0;
                                        // Selection 0 = Auto, 50=50Hz, 60=60Hz
const short Calibration = 0;
                                        // MeasureCalibration
```

3840

Охс

0,22 s

Alle Programmeinstellungen sind in den Zeilen 10 – 80 im Arduino-Quellcode (Basiscode und Extenden Version) zu finden.

Messung der Netzfrequenz

Grundprinzip sind die Timer T1 und T2 (T2 als virtueller 16-Bit-Counter) des μ Controllers, die ohne weitere Verarbeitung mit dem Start des μ Controllers auf den festen Takt 10MHz DIV **64** eingestellt sind. Die Timer werden mit dieser Einstellung der Referenztakt, aus dem die Netzfrequenz nun abgeleitet wird. Die zeitliche Gesamtlänge eines durchlaufenden Timers (0... 65535) beträgt ca 360ms (bei 50Hz). Die dadurch optimierte Periodenanzahl der Netzfrequenzmessung (für 45 Hz) beträgt **18**. Durch die alternierende Auswertung wird eine serielle Ausgabe der Netzfrequenz von ca. 180ms erreicht.

Berechnung der Netzfrequenz

Die Timer laufen im eingestellten Prescale-Verfahren mit dem (geteilten) Takt des μ Controllers als Counter.

Die Netzfrequenz wird über den Optokoppler und dem Schmitt-Trigger dem INT0 und INT1 des μ Controller zugeführt. Ein erkanntes Triggerereignis führt zum internen Hochzählen des zugehörigen Periodenzählers.

Die Trigger-Sperrzeit (Sperr/ LockCounts **2400**) verhindert dabei eine zu schnelle Mehrfachauswertung der Flanke (z.B. durch ein Störsignal).

Ist der maximale Periodenzählwert erreicht, erfolgt die Übernahme des Zählwerts aus Timer1 oder Timer2 (T2 als virtueller 16Bit-Counter)

Der Counterwert der Timer wird als Divisor mit dem konstanten Dividend (**2812500**) die Berechnungsgrundlage für die Netzfrequenz. Zusätzlich wird noch der **Faktor 1000** multipliziert. Die Ausgabe der Netzfrequenz erfolgt dann in **mHz**. Das hat den Vorteil, dass sämtliche Netzfrequenzberechnungen bis zu diesem Zeitpunkt *ausschließlich in Festkomma-Arithmetik* ausgeführt werden. Dieser Vorgang wird daher im μ C sehr schnell ausgeführt (dadurch ist das Grundprogramm sogar lauffähig auf einem ATTiny).

Berechnung:

$$\frac{50Hz}{56250 \ Counts} = \frac{fMess}{Counts} \longrightarrow \frac{2812500*1000}{Counts} = fMess$$

fMess (Variablenbezeichnung im Quellcode) in mHz (Bsp. 50021 = 50,021 Hz)

Der vorläufige Frequenzmesswert fMess (MessA / MessB) wird nun über einige Filterstufen geführt.

Die Ausgabe (Frequenz) erfolgt als serielles Protokoll auf dem TxD-Port des μ Controllers als alternierende Ausgabe der Ergebnisse T1 und T2.

UBRR (Anpassung an 10MHz)

Um die 19200Bd-Ausgabe der seriellen Schnittstelle auf den 10MHz-Quarz anzupassen, muss über die Eingabe der UBRR-Registerwert angepasst werden.

Für einen 10MHz-Quarz muss **UBRR = 0x40** eingestellt werden.

Detaillierte Beschreibung der Messung

Eingangsbeschaltung Schmitt-Trigger

Die Eingangsbeschaltung (Netzfrequenz-Messeingang) ist über 2 Optokoppler galvanisch getrennt. Die Messspannung wird über ein Trafo zugeführt und sollte zwischen **7V- 15 V ~ AC** liegen. Der Strom der verwendeten Messspannung beträgt nicht mehr als 20mA. Zur Messung sollte ein kurzschlussfester Trafo oder ein Klingeltrafo verwendet werden. Die Eingangsbeschaltung der Optokoppler U1 (U1a/U1b) wird durch R₁ **strombegrenzt** (siehe auch Informationen Bauteile Seite 34).

Die Optokoppler steuern über ein NAND-Gatter aufgebauten Schmitt-Trigger an (CMOS 4093, IC U3), der dann das Messsignal als Rechtecksignal dem INT0- und INT1- Eingang des μControllers weiterleitet.

Bild: Schematische Darstellung der Flankenauswertung (Schmitt-Trigger)

Vorteil dieser Messdatenaufbereitung ist, dass auch ein sehr verrauschtes Eingangssignal sicher erfasst wird.

Bild: Schematische Darstellung eines verrauschtes Eingangssignal und mit Ausgangssignal (hinter dem Schmitt-Trigger)

Auswertung mit dem µController INTO und INT1

Flankenerkennung und Triggersignal-Sperre eines Timers:

Erkennt der μ Controller eine Flanke, wird sofort eine Sperrzeit (ca. 15ms) gestartet, um nachfolgende Messspitzen zu unterdrücken. Eine mögliche zu frühe Flanke wird durch die nachfolgende Stufe sofort kompensiert, da nun eine Mittelwertbildung folgt.

Bild: Schematische Darstellung der Trigger-Sperrzeit (T1)

Sperrzeit / Lock-Counts

Die Sperrzeit nach einem Impuls ist so gewählt, dass das nächste Triggersignal nur mit einer Frequenz unter 65 Hz passen würde.

Counter T2 als virtueller 16Bit-Counter

Der Counter T2 des ATMega328p ist ein 8-Bit-Counter. Über eine erweiterte Zählfunktion, bei dem die Überlaufereignisse des Counters T2 gezählt und in einem virtuellen T2-Zählerspeicher addiert werden, steht ein weiterer 16Bit-Counter zur Verfügung.

Bild: Schematische Darstellung "virtueller 16-Bit-Counter T2"

Auswertung der Messcounts T1 und T2 (virtuell)

Plausibilitätsfilter

Bevor der gemessene Netzfrequenzwert weiterverarbeitet wird, durchläuft der vorläufige neue Messwert noch eine zweistufige Prüfung: Dabei wird festgestellt, ob der gemessene Netzfrequenzwert grundsätzlich im zulässigen Bereich liegt:

Messung	50 Hz-Messung	60Hz-Messung	16,7 Hz*
Prüfung f>	f > 45 Hz	f > 55 Hz	22 Hz
Prüfung f<	f < 55 Hz	f < 65 Hz	12 Hz

Nach dieser ersten Überprüfung, der unplausible Messwerte ausschließt, geht es weiter zum Differenz-Filter

Differenz-Komparator-Filter Funktionsweise des Differenz-Komparator-Filters:

Der Differenz-Komparator-Filter verwendet prinzipiell die **Vorgabe der maximalen Netzgradiente**. Eine Netzfrequenzänderung über der maximalen Netzgradiente wird nur bedingt berücksichtig.

Sollten aber zwei aufeinanderfolgende Messungen an der Gültigkeitsprüfung auflaufen, wird auch eine sehr schnelle Änderung sofort übernommen. Die Voreinstellung DiffMAX (100mHz/s) ist zugleich auch die maximale Frequenzausgabeänderung.

Beim letzten großen Frequenzeinbruch am 8.1.2021 lag die Frequenzänderung von 50,020 Hz auf 49.739 Hz innerhalb 13s bei ca. **22mHz/s**.

Ablauf: Der vorläufige (neue) Messwert wird mit dem letzten gültigen Messwert verglichen. Durch die Differenzbildung der beiden Messwerte wird die Differenzgröße ermittelt.

$$Diff = ABS (f_{preliminary} - f_{Mess})$$

Ist die Differenz (Absolutwert) kleiner der Voreinstellung DiffMAX, wird der neue Wert (Preliminary Value) zum gültigen Messwert f_{Mess}.

Ist die Differenz größer, wird der aktuelle Messwert f_{Mess} in Höhe der Voreinstellung DiffMAX dem neue Wert (Preliminary Value) nachgeführt.

Bild: schematische Darstellung Verlauf Messdaten Differenz-Komparator-Filter

Die Netzgradiente hängt von vielen Netz-Schaltungszuständen, Einspeisungen, Netzlastsituationen und des Messortes ab. Deshalb ist der DiffMAX-Wert vom 100mHz/s eine Einstellungsempfehlung für das RG-CE (UCTE)-Netz.

Die Voreinstellung des DiffMAX-Filters beträgt 100mHz/s (Empfehlung).

Kalibrierung

Normalerweise braucht die Netzfrequenzplatine keine Kalibrierung.

Sollte aber eine Kalibrierung doch erforderlich sein, kann in der Einstellung ein Kalibrierungswert beigefügt werden. In Kürze können verschiedene Einstellungen ein Softwaretool (über eine EEP-Datei) geänderte Einstellung ins EEProm des ATMega328 übertragen werden. Nach einen Neustart werden die geänderten Einstellungen verwendet.

Frequenz + Calibration → Ausgabe zur seriellen Schnittstelle

Einstrellung serielle Schnittstelle

Einstellung der seriellen Schnittstelle

Baudrate: 19200 Baud Parity: None Stoppbit: 1 Handshake: None

UBRR = 0x40

Um die Ausgabe der seriellen Schnittstelle auf den 10MHz-Quarz anzupassen, muss über die Eingabe der UBRR-Registerwert angepasst werden. Für einen 10MHz-Quarz muss UBRR = 0x40 eingestellt werden.

Netzfrequenzmessung Extended-Version

Alternierende Messdatenausgabe A- und B-Messung

Die Ausgabe der Messdaten der A- und B-Messung erfolgt alternierend. Während die A-Messung die Berechnung und Ausgabe ausführt, misst die B-Messung bereits im Hintergrund den nächsten Messwert.

Beide Messungen kontrollieren sich gegenseitig und überwachen somit die messfehlerfreie Ausgabe. Zu große Abweichungen im Messdatenvergleich A-Messung/B-Messung blockiert die Ausgabe zur weiteren Verarbeitung.

A-Messung (mHz)	B-Messung (mHz)	Ausgabe (mHz)	
50000		50000	A-Messung
	49999	49999	B-Messung
49998		49998	A-Messung
	49997	49997	B-Messung
49996		49996	A-Messung
	49995	49995	B-Messung
49994		49994	A-Messung
	49993	49993	B-Messung
49992		49992	A-Messung
	49991	49991	B-Messung
49990		49990	A-Messung
	49989	49989	B-Messung

Erweiterte Einstellungen im Arduino-Quellcode

Einstellung	Variable (Name)	Voreinstellung (Empfehlung)	Funktion
Kennlinientyp	Тур	1	Auswahl Kennlinientyp für die Ausgabe der Netzlastdifferenz
Netzlastdifferenz λ	Lamda	15,333	Steigung Netzlastdiffernz-Kennlinie
Offset (in mHz)	Offset	10 (±)	Offset Netzlastdifferenz-Kennlinie
Negierung Kennlinie	Neg	false	Vorzeichennegierung Ausgabe Netzlastdifferenz
f1 > (in mHz)	f1g	50100	Frequenzalarm 1 (=> 50,100 Hz)
f1 < (in mHz)	f1k	49900	Frequenzalarm 1 (=> 49,900 Hz)
f1 Haltezeit nach Rückfall (in s)	tf1	10	Haltezeit Alarmausgabe nach Anrege-Rückfall Alarm f1
f2 > (in mHz)	f2g	50200	Frequenzalarm 2
f2 < (in mHz)	f2k	49800	Frequenzalarm 2
f2 Haltezeit nach Rückfall (in s)	tf2	10	Haltezeit Alarmausgabe nach Anrege-Rückfall Alarm f2
f3 > (in mHz)	f3g	51000	Frequenzalarm 3
f3 < (in mHz)	f3k	49000	Frequenzalarm 3
f3 Haltezeit nach Rückfall (in s)	tf3	10	Haltezeit Alarmausgabe nach Anrege-Rückfall Alarm f3
f4 > (in mHz)	f4g	52000	Frequenzalarm 4
f4 < (in mHz)	f4k	48000	Frequenzalarm 4
f4 Haltezeit nach Rückfall (in s)	tf4	10	Haltezeit Alarmausgabe nach Anrege-Rückfall Alarm f4
LowAktiv	LowAktiv	true	Änderungsmöglichkeit für eine HighAkive Meldungsausgabe (Binärausgabe J6)
BlinkON	BlinkON	false	Ausgangssignale J6 werden als Blinksignale ausgeführt (z.B. für eine Warnmeldung /Warnlampe usw.)

Auf den nachfolgenden Seiten sind die Einstellungen detailliert beschrieben.

Ausgabe der Netzlastdifferenz

MW-Funktion

Funktionsgleichung MW / mHz mit oder

Unempfindlichkeitsbereich (Offset)

$$\lambda = \frac{\Delta P(MW)}{\Delta f \pm Offset (mHz)}$$

Die Funktion entspricht einer linearen Gleichung, allerdings mit einem Unempfindlichkeitsbereich (Offset / Totbereich), der ebenfalls eingestellt werden kann. Zur besseren Übersicht und Einstellung ist die Kennlinie als Grafik sichtbar.

Kennlinientyp

Die Voreinstellung ist **Kennlinientyp 1, \lambda = 15,333** (Europa)

1. Unempfindlichkeitsbereich I / offset range I:

Die lineare Funktion startet außerhalb des Unempfindlichkeitsbereichs (Tot-Bereich) und verläuft parallel zur

$$\lambda = \frac{\Delta P(MW)}{\Delta f (mHz) \pm Offset(mHz)}$$

in Vorbereitung, noch nicht integriert:

2. Unempfindlichkeitsbereich II / offset range II:

Die lineare Funktion startet außerhalb des Unempfindlichkeitsbereichs (Tot-Bereich)

$$\lambda = \frac{\Delta P(MW)}{\Delta f (mHz) \pm Offset(mHz)}$$

(frequency offset / sensitivity range or step behave).

3. Rampenfunktion / step behave:

Die Lineare Funktion enthält eine Rampe. Der Offset-Bereich wird nicht zur Berechnung verwendet.

$$\lambda = \frac{\Delta P \; (MW)}{\Delta f \; (mHz)}$$
 , Rampe im Offset-Bereich

Kennlinieninvertierung / Invert characteristic

Bei der Aktivierung wird die Leistungskennlinie invertiert, auf der Anzeige wird das Vorzeichen invertiert. Leistungen unter 50 Hz werden negativ dargestellt, über 50Hz positiv.

Diese Art der Darstellung zeigt die Erzeugersicht bzw. die Anforderung an die Erzeugung.

- Kennlinientyp
 Auswahl Kennlinientyp für die Ausgabe der Netzlastdifferenz
- Netzlastdifferenz λ
 15,333 Steigung Netzlastdiffernz-Kennlinie
- Offset (in mHz) ±
 Offset Netzlastdifferenz-Kennlinie
- Negierung Kennlinie false Vorzeichennegierung Ausgabe Netzlastdifferenz

Einstellungen im Arduino-Programm:

```
// mains load differenz / Netzlastdifferenz
byte Typ = 1;
float Lamda = 15.33333333;
float Offset = 10;
bool Neg = false;
```

Tabelle Warnstufen Netzfrequenz

Reaktionen / Meldungen: Netzfrequenz (UCTE Continental Europe, 50Hz)

Hz	Messbereichsende Netzfrequenzanzeige	Stabilitätsgrenze überschritten	Warnmeldung Netzfrequenzanzeige Stufe 3	Warnmeldung Netzfrequenzanzeige Stufe 2	Warnmeldung Netzfrequenzanzeige Stufe 1	Beginn Einspeiseabwurf EEG	positive primäre Regelleistung (Netzsicht)	Nennfrequenz	negative primäre Regelleistung (Netzsicht)	Warnmeldung Netzfrequenzanzeige Stufe 1	Warnmeldung Stromnetze (ÜNBs / VNBs)	Warnmeldung Netzfrequenzanzeige Stufe 2	Lastabwurf nach Frequenzabwurfplan	Stabilitätsgrenze unterschritten	Warnmeldung Netzfrequenzanzeige Stufe 3	Messbereichsende Netzfrequenzanzeige	Alarmausgabe Netzfrequenzmessung
55,00	×																
52,00		×	×														f4
51,00				×													f3
50,20					×												f2
50,10						X											f1
50,02							X										
50,00								X									
49,98									×								
49,90										×							f1
49,80											×						f2
49,00												×	×				f3
48,00														×	×		f4
45,00																×	

Einstellung Frequenzmeldungen

Alarm	Einstellung *)	Alarm-Byte	Relaisausgabe	
f1 >	50,100 Hz	Dit O	Relais 1	
f1 <	49,900 Hz	Bit 0	Reidis 1	
f2 >	50,200 Hz	D:+ 1	Dalaia 2	
f2 <	49,800 Hz	Bit 1	Relais 2	
f3 >	51,000 Hz	D:+ 2	Dalaia 2	
f3 <	49,000 Hz	Bit 2	Relais 3	
f4 >	52,000 Hz	D:+ 2	Dolois 4	
f4 <	48,000 Hz	Bit 3	Relais 4	
Res.	Vorbereitet für Alarm Netzfrequenzsprung	Bit 4		
Res.	Vorbereitet für Alarm Netzfrequenzpendelung	Bit 5		
Res.		Bit 6		
Sammelalarm	Sammelalarm (alle Meldungen)	Bit 7	Relais 5	

// Alert mains frequency / Frequenzalarme word f1g = 50020; // fmax Alert word f1k = 49980; // fmin Alter

word tf1 = 10; // Alert RelapseTime

Alarmausgabe im Protokoll

Byte	Sammelalarm	Res.	Res.	Res.	Alarm f4	Alarm f3	Alarm f2	Alarm f1
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Wert	2^7 = 128	64	32	16	8	4	2	1
0	-		ı		-	ı	ı	ı
129	Х							Х
147	Х			Х			Х	Х
135	Х					Х	Х	Х
143	Х				Х	Х	Х	Х
161	X		X					Х

Tabelle: Berechnungsbeispiele für Alarmmeldungen

*) 60 Hz Trigger:

Die Anpassungen der Trigger-Einstellungen für 60Hz-Netze erfolgt im Unterprogramm "Settings_60Hz()".

Alarmausgabe J6

J6 vorbereitet als universelle Ausgabe-Schnittstelle (Low-Aktiv, z.B. Relaisausgabe)

Einsatz als Melde/Alarmierungssystem

Die Ausgabe sollte ausschließlich zu Meldungs- oder Alarmierungszwecken dienen. Netzschutzfunktionalitäten (z.B. Unterfrequenzabwurf) sollte nicht über die Netzfrequenzmessung ausgeführt werden.

Funktion der Schnittstelle J6:

Ausgänge:

SP1 als Ausgang.

Im Einstellprogramm sind die Alarmausgänge aktiviert. Alarme werden als Binärinformation an den Ausgängen bereitgestellt. Angeschlossene Relais, LED's oder Optokoppler können die Alarme an Meldesysteme übergeben.

Alarm	J6	Piı	n	
f1	Rel1 Pin14 (Port PB.0)	2	1	GND
f2	Rel2 Pin13 (Port PD.7)	4	3	GND
f3	Rel3 Pin23 (Port PC.0)	6	5	GND
f4	Rel4 Pin15 (Port PB.1)	8	7	GND
SA	Rel5 Pin16 (Port PB.2)	10	9	GND

f <> Alarmausgabe mit Rückfallverhalten (J6 und Protokoll)

Skizze: Beispielhafte Alarmausgabe mit Rückfallverhalten

Die Haltezeit (das Rückfallverhalten) verhindert ein "Meldungsflattern" im Anregebereich z.B. bei angeschlossenen Relais.

J6 Ausgabeverhalten

Ausgabe High/Low-Aktiv

Die Voreinstellung LowAktiv = false negiert die Ausgabe, die Pins sind dann im Alarmzustand HighAktiv;

Blinkende Ausgabe

BlinkON = true erzeugt bei einer aktiven Meldung ein Blinksignal am Ausgangsport JP1 (für alle Ausgänge)

//Alert Output // Alarmausgaben

bool LowAktiv = true; // Output Alarmausgabe LowAktiv bool BlinkON = true; // Blinkende Ausgabe z. B. LEDs

Ausgang mit LED-Beschaltung

Beispiel für den Anschluss von LowCurrent-LED's an der Schnittstelle J6

Die Ausgabe der LED's in diesem Beispiel erfolgt LOW-Aktiv.

- ⇒ "0" => 0V Meldung Aktiv,
- ⇒ "1" => 5V Meldung nicht Aktiv

Beispiel: Ausgang mit Relais-Beschaltung

Die Ausgabe der Relais in diesem Beispiel erfolgt LOW-Aktiv (Voreinstellung).

- ⇒ "0" => 0V Meldung Aktiv,
- ⇒ "1" => 5V Meldung nicht Aktiv

Hinweis:

Ich empfehle, eine angeschlossene Relaisplatine über eine externe Stromversorgung zu versorgen.

LEDs

LED 1: RUN-LED

LED1 (RUN) Zustandswechsel (toggle) bei jedem erfolgreichen Filterdurchlauf.

(toggle= wechselt den binären Zustand)

Arduino-Ausgabe: 4 (=Pin6, PD4)

LED 2: RPi-Led

Die LED 2 kann durch ein Programm auf dem RaspberryPi angesteuert werden.

RaspberryPi Ausgabe: GPIO5 (=Pin12)

Verwendung mit einem USB-TTL-Konverter

Die Netzfrequenzplatine kann auch ohne einem RaspberryPi zur Netzfrequenzmessung verwendet werden. Die Datenausgabe und die Stromversorgung ist dann über die USB-Schnittstelle (USB-TTL-Konverter) realisiert.

Für diese Betriebsart ist der Anschluss J4 vorbereitet.

JP4: Dieser Port stellt das serielle Telegramm bereit (Details siehe "serielles Protokoll")

Pin	Bezeichnung	Funktion	Hinweis
1	GND	Masse / GND	
2	RxD	Empfangsrichtung (zur USB), TTL-Pegel*	Vom μC (TxD)
3	TxD	Empfangsrichtung (von USB), TTL-Pegel*	Zum μC (RxD)
4	+5V	Versorgungsspannung 5V DC	

^{*)} siehe TTL-Pegel

Auswahl der Protokolle

J5.1 und J5.2 vorbereitet für Protokollauswahl (serielle Schnittstelle)

Für die Protokollverarbeitung stehen in kürze einige Beispielprogramme bereit.

Protokoll	Frequenz	Netzlastdifferenz*	f <> Alarm*	Netzfrequenz- Server-Tool*	
1 : 7-Byte	Ja	Nein	Nein	RPi	Ja
2 : 17-Byte	Ja	Ja	Ja	RPi	Ja
3 : 24-Byte	Ja	Ja	Ja	RPi + NFA	Ja
4 : 29.Byte	Ja	Ja	Ja	RPi	Nein

^{*)} Eine softwareseite Auswertung der Netzlastdifferenz, der Frequenzalarme und der Netzpendelerkennung ist mit dem gewählten Netzfrequenz-Protokoll auch auf dem Modbus/MQTT-Server möglich.

Basisprotokoll 7-Byte-Protokoll (5+2)

Protokollauswahl 1

Jumperstellung J5:

Protokoll

Byte								
1	2	3	4	5	6	7		
5	0	0	0	0	\r	\n	=>	50,000 Hz

Bild: Aufbau und Telegrammverlauf 6-Byte-Protokoll

(Byte 6 und 7 sind ASCII- bzw. C0-Steuerzeichen: \n = LineFeed \r = Carriage Return)

Aus Ausgabe des Basisprotokolls auf der seriellen Schnittstelle erfolgt in mHz.

Protokoll 17-Byte-Protokoll

Protokollauswahl 2

Jumperstellung J5:

Protokoll

Bild: Aufbau und Telegrammverlauf 17-Byte-Protokoll

Byte 7:

f < 50000 mHz	f = 50000 mHz	f > 50000 mHz
Byte 7 = "-"	Byte 7 = "0"	Byte 7 = "+"

(Byte 16 und 17 sind ASCII- bzw. CO-Steuerzeichen: \n = LineFeed \r = Carriage Return)

Das 17-Byte-Protokoll benötigt die Angabe des Netzlastkoeffizienten, Energierichtung (Kennlinieninvertierung), Ptot und der Grenzwerte der Alarmierungsfunktion.

Das Protokoll ermöglicht die einfache Weiterverarbeitung (z.B. mit einem Zeitstempel) zur Speicherung in eine CSV-Datei und späteren Auswertung z.B. mit Excel.

Protokoll 24-Byte-Protokoll

Protokollauswahl 3

Jumperstellung J5:

Protokoll

Byte

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
N	F	Α	5	0	0	0	0	f	<u>±</u>	9	9	9	9	Р	2	5	5	M	2	5	С	\r	\n
Не	eade	r			Hz			f		1	MV	V		Р	A	larn	า	М	Pai	rity	С	\r	\n
Parity Prüfsummenberechnung										Par	tity												
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16										9	10	16										

Bild: Aufbau und Telegrammverlauf 24-Byte-Protokoll

Byte 10:

f < 50000 mHz	f = 50000 mHz	f > 50000 mHz
Byte 10 = "-"	Byte 10 = "0"	Byte 10 = "+"

(Byte 23 und 24 sind ASCII- bzw. C0-Steuerzeichen: \n = LineFeed \r = Carriage Return)

Das 24-Byte-Protokoll benötigt die Angabe des Netzlastkoeffizienten, Energierichtung (Kennlinieninvertierung), Ptot und der Grenzwerte der Alarmierungsfunktion.

LED- 7-Seg Netzfrequenzanzeige V4

Das 24-Byte-Protokoll wird auch von der Netzfrequenzanzeige V4 Ausgabe unterstützt.

Protokoll 29-Byte-Protokoll

Protokollauswahl 4

Jumperstellung J5:

Protokoll

Byte 7:

f < 50000 mHz	f = 50000 mHz	f > 50000 mHz
Byte 10 = "-"	Byte 10 = "0"	Byte 10 = "+"

f1 = Frequenzalarm 1 (Zusätzlich auch Ausgabe Bin/Rel. 1)

f2 = Frequenzalarm 2 (Zusätzlich auch Ausgabe Bin/Rel. 2)

f3 = Frequenzalarm 3 (Zusätzlich auch Ausgabe Bin/Rel. 3)

f4 = Frequenzalarm 4

FS = Frequenzsprung (vorbereitet)

PA = Pendelalarm (vorbereitet)

SA = Sammelalarm

(Byte 28 und 29 sind ASCII- bzw. C0-Steuerzeichen: \n = LineFeed \r = Carriage Return)

Die Ausgabe der Alarmmeldungen im Protokoll erfolgt "High-Aktiv"

=> "1" = Alarm aktiv, "0" = kein Alarm

Dieses Protokoll ist für eine Aufzeichnung der Messdaten z.B. durch ein Terminalprogramm vorgesehen. Die Auswertung ist als CSV-Datei möglich.

HINWEIS: Zur weiteren genauen Verarbeitung muss ein zusätzlicher Zeitstempel eingefügt werden.

Nachbau

DIL-Version V1.0

Bild: Platine Netzfrequenzmessung mfm V1.0 RaspPi

Aufbauskizze

Bild: Aufbau Bauteile

Foto: bestückte Platine auf dem RaspberryPi mit angeschlossenem ISP-Programmer

Platinen-Layout

Bild: Platinenlayout Vorderseite

Bauteile:

Bauteile	Wert	Funktion	Info
C1,C2	22pF	Kondensator	siehe auch <i>Quarz und C1 / C2</i>
D1,D2	LED	LowCurrent-LED	
R1*	1k (1000 Ω)	Widerstand siehe Unten	Anpassung an Eingangsspannung
R2,R3,R4	1k (1000 Ω)	Widerstand	
R5,R6	R100 (100 Ω)	Widerstand	
U1	PC827	Optokoppler	Alternativ: 2 Stk. PC817
U2	ATMega328P	Atmel μController	(Arduino - Kompatibel)
U3	CMOS4093	SchmittTrigger (NAND-Gatter)	
Q1	10MHz	Quarz (HC49U)	Q-Lastkapazität: 30pF
J1	2-Pol Schraubklemme	Klemme	Lötbare Schraubklemme 5mm
J2	Wannenstecker 6-Pol	ISP-Port für ISP-Programmer	WSL 6G gerade (2X3-Pol)
J3 *	Buchsenleiste 2X40 Pol	RaspberrPi Buchsenleiste	RaspPi Connector Pin 1-40
(U1)	IC-Sockel 8-polig	IC-Sockel für U1	Empfohlenes Zubehör für U1
(U2)	IC-Sockel 28-polig	IC-Sockel für U2	Empfohlenes Zubehör für U2
(U3)	IC-Sockel 14-polig	IC-Sockel für U3	Empfohlenes Zubehör für U3
Trafo	7 – 15 V AC ~	Netzteil / Trafo	Messsignal-Trafo
J4	4-Pol Schraubklemme	Klemme (2X2 Schraubklemme)	Bei USB-TTL-Verwendung
J5	Stiftleiste 2X3-Pol	Jumper	Universelle Eingabe-Erweiterung
J5.1, J5.2	Jumper	Jumper (Kurzschlussbrücke)	Für die Auswahl Protokollausgabe
J6	Stiftleiste 2X5Pol	Relais-OUT	Universelle Ausgabe-Erweiterung

^{*)} bei der Anwendung für den RaspberryPi

Außerdem

- RaspberryPi 3 oder 4 *oder* USB-TTL-Konverter
- Abstandshalter für die Netzfrequenzplatine: M2,5 X 12mm, Female-Female + Schrauben 2,5mm X 5
- Gehäuse
- *) Empfehlung / Berechnung Eingangswiederstand R₁

Eingangsspannung (AC)	Empfohlene Größe: R ₁
5V ~ - 7V ~	470 Ω
7V ~ - 15V ~	1k Ω
15V ~ - 25V ~	1,5k Ω

$$R_1 pprox rac{(U\sim)-\ U_{Led}}{I_{Led}} = rac{U_{Mess}-2V}{10mA}$$

Bei Verwendung mit USB (ohne RPi)

- USB zu TTL serieller UART-Wandler mit 5V (oder 3,3V)

Bild: USB-TTL-Konverter

Bild: Anschlussbeispiel USB-TTL-Konverter (ohne RPi)

Bild: Anschlussschema USB-TTL-Konverter

Einbauhinweise:

U1 Optokoppler

Statt eines PC827 (U1) können auch zwei PC817 (U1a, U1b) verwendet werden.

Die Bestückung muss dann erfolgen wie in auf dem Bild:

Bild: alternative Bestückung 2 Stk. PC817 statt 1 Stk. PC827

Einbaulage LED 1 und LED 2

Die Bestückung / Einbaulage der LEDs muss wie im Bild rechts angegeben erfolgen.

Einbaulage J2

Abstand des Quarz zur Platine

Beim Bestücken unbedingt Abstand zur Platine halten, um Kurzschlüsse zu vermeiden

Bild: Quarzabstand zur Platine

Bauteilinformation: Quarz und C1 / C2

10,0000-HC49U-S, Standardquarz im Gehäuse HC49/U-S.

• Frequenz: 10,0000 MHz

• CI: 32 pF ==> $C_1 / C_2 = 22pF$ Lastkapazität im Datenblatt beachten!

• Rsmax: 50 Ohm

Temperaturkoeffizient: ± 30 ppm
Frequenztoleranz: ± 30 ppm

Gehäuseempfehlung

Die Netzfrequenz-Platine ist für den Einsatz in einem Hutschienengehäuse vorbereitet

Bild: Hutschienengehäuse für RaspberryPi 4 und RaspberryPi 3

Software / Quellcode

Das Basisprogramm und die extended-Version stehen in der Arduino-IDE –Variante (C / C++) und als HEX-Code zum Download bereit:

Wichtiger Hinweis zur Arduino-Kompatiblität:

Die Netzfrequenzplatine V1.0 arbeitet mit 3,3V (RaspberryPi). Durch die 3,3V kann der ATMega328p nur ein maximaler Quarz von 10MHz verwenden. Deshalb müssen einige **Controller-Fuses** umgestellt werden. Eine direkte Arduino-Programmierung über die serielle Schnittstelle (USB) ist deshalb in dieser Hardware-Version nicht möglich. Eine Programmierung des ATMega328p ist über den vorbereiteten ISP-Port oder über den RaspberryPi (ISP-Schnittstelle) möglich.

Ein 100% kompatibles Arduino-"Netzfrequenzboard" (mit serieller Übertragung) ist in Vorbereitung.

μController-Fusebits

Die "System Clock" und "Clock Otions" - Fusebits des ATMega328 müssen folgende Einstellungen haben:

LOW Fuses = 0xFF	HIGH Fuses = 0xDA	EXTENDED Fuses = 0xFF
------------------	-------------------	-----------------------

Die korrekten Fusebits können mit *AVRDude* oder *Atmel AVR-Studio eingestellt und* übertragen werden. Ohne die korrekte Einstellung läuft das Netzfrequenz-Programm mit 3,3V Betreibspannung nicht.

Übertragung / Programmierung

Die Übertragung des Quellcodes kann über mehrere Wege erfolgen. Ich beschreibe auf der nächsten Seite eine beispielhafte Möglichkeit. Weitere Programmiermöglichkeiten siehe Projektseite.

Programmierservice

Wer nicht selbst programmieren möchte, für den biete ich einen Programmierservice an.

Arduino Quellcode compilieren

Das aktuelle oder geänderte Arduino-Projekt (Quellcode) kann einfach als Hex-Datei kompiliert werden.

Im Arduino-Projektordner stehen nun (nach der fehlerfreien Comilierung) zwei kompilierte Hex-Files zur Verfügung.

Bitte verwenden Sie **nicht** das Hexfile mit dem vorbereiteten Arduino-Bootloader, sondern das File mit der Bezeichung "projektname.ino.standard.hex".

Dieses Hexfile kann nun über die ISP-Schnittstelle auf den µController übertragen werden.

Zur Vereinfachung sollten sie das neue Arduino-Hexfile umbenennen z.B. "mfm_2.hex"

Die nächste Seite beschreibt die Vorbereitung der ISP(SPI)-Schnittstelle, Installation und Übertagung von AVRDude und dem RaspberryPi

SPI - Vorbereitung des RaspberryPi

Freigabe SPI-Schnittstelle (RaspberryPi)
 Raspi-config öffnen

sudo raspi-config

2. Freigabe SPI-Schnittstelle

```
Raspberry Pi Software Configuration Tool (raspi-config)
               Enable/Disable connection to the Raspberry Pi Camera
P1 Camera
P2 SSH
               Enable/Disable remote command line access to your Pi using SSH
P3 VNC
               Enable/Disable graphical remote access to your Pi using RealVNC
P4 SPI
              Enable/Disable automatic loading of SPI kernel module
              Enable/Disable automatic loading of I2C kernel module
P5 I2C
P6 Serial
               Enable/Disable shell and kernel messages on the serial connection
P7 1-Wire
               Enable/Disable one-wire interface
P8 Remote GPIO Enable/Disable remote access to GPIO pins
            <Select>
                                                            <Back>
```

3. Auswahl bestätigen

4. "raspi-config" schliessen

Der RaspberryPi ist nun für die SPI-Kommunikation vorbereitet.

Zur Übertragung der Software auf den ATMega328p muss noch das Tool "avrdude" installiert werden.

1. Installation AVRDude auf dem RaspberryPi

sudo apt-get install avrdude

2. Anpassung der Einstellungen AVRDude an benötigte Hardwarepins

Öffne AVRDude Konfiguration:

```
sudo nano /etc/avrdude.conf
```

Suche Zeile:

```
# PROGRAMMER DEFINITION
#
```

Füge unterhalb folgende Zeilen ein:

```
#-----
programmer
id = "spi_mfm";
desc = "Use RPi SPI for mains frequency monitor unit";
type = "linuxspi";
reset = 25;
baudrate = 100000;
;
```

Speichere die geänderten Einstellungen

3. Test AVRDude / Auslesen der Fuses

```
sudo avrdude -c spi_mfm -p m328p -P /dev/spidev0.0 -U lfuse:r:-:b
```

4. Setzen der benötigten Fuses mit folgenden Kommandozeilen:

```
sudo avrdude -c spi_mfm -p m328p -P /dev/spidev0.0 -U lfuse:w:0b11111111:m
```

sudo avrdude –c spi_mfm -p m328p –P /dev/spidev0.0 -U hfuse:w:0b11011001:m

sudo avrdude -c spi_mfm -p m328p -P /dev/spidev0.0 -U efuse:w:0b11111111:m

5. Übertrage das aktuelle HEX-Programm

(aktualisiert mit Arduino-IDE oder als Download von der Projektseite)

```
sudo avrdude -p m328p -c spi_mfm -P /dev/spidev0.0 -U flash:w:"mfm_2.hex"
```

Hexprogramm "mfm_2.hex", oder eigener/neuer Quellcode

Getestet mit dem RaspberryPi 3 und einem ATMega328p

weitere Übertragungsmöglichkeiten finden Sie in Kürze auf der Projektseite...

Messung / Ausgabetest

Überprüfung der Funktion mit einem Terminalprogramm:

• Öffnen sie ein Terminalprogramm z.B. PUTTY

• Überprüfen Sie die Einstellungen der Serial-Schnittstelle

• Serial Line: /dev/ttyS0 (oder/dev/ttyAMA0)

Baud: 19200 Bd Databits: 8 Stopbits: 1 Parity: NONE Flow Control: NONE

Das Terminalprogramm zeigt nach dem Öffnen den Datenfluss der Netzfrequenzmessung.

Protokollausgabe 1	Protokollausgabe 2	Protokollausgabe 3	Protokollausgabe 4
/dev/ttyUSB0 - PuTT	/dev/ttyUSB0 - PuTTY	/dev/ttyUSB0 - PuTTY	/dev/ttyUSB0 - PuTTY
49993 49993 50000 50000 50000 50000 50000 50001 50002 50002 50002 50004 50002 50004 50005 50004 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000	49975;-0230;000 49973;-0260;000 49976;-0214;000 49976;-0214;000 49976;-0214;000 49976;-0214;000 49976;-0214;000 49976;-0214;000 49976;-0214;000 49978;-014;000 49978;-0184;000 49978;-0184;000 49979;-0168;000 49980;-0153;000 49980;-0153;000 49980;-0153;000 49981;-0138;000 49982;-0122;000 49983;-0107;000 49983;-0107;000 49984;-0092;000 49984;-0092;000 49984;-0092;000 49984;-0092;000	NFA49981f-0138P000M81C NFA49981f-0138P000M81C NFA49981f-0138P000M81C NFA49981f-0138P000M91C NFA49980f-0153P000M93C NFA49980f-0153P000M93C NFA49982f-0122P000M89C NFA49982f-0122P000M99C NFA49982f-0122P000M99C NFA49982f-0122P000M99C NFA49982f-0122P000M99C NFA49982f-0122P000M99C NFA49982f-0122P000M99C NFA49983f-0107P000M95C NFA49982f-0122P000M99C NFA49983f-0138P000M81C NFA49983f-0138P000M89C	49993;-0000;0;0;0;0;0;0;0;0 49998;-0000;0;0;0;0;0;0;0;0 49998;-0000;0;0;0;0;0;0;0;0 49998;-0000;0;0;0;0;0;0;0;0 49998;-0000;0;0;0;0;0;0;0;0 49998;-0000;0;0;0;0;0;0;0;0 49998;-0000;0;0;0;0;0;0;0;0 49998;-0000;0;0;0;0;0;0;0;0 49997;-0000;0;0;0;0;0;0;0;0 49997;-0000;0;0;0;0;0;0;0;0 49997;-0000;0;0;0;0;0;0;0;0 49997;-0000;0;0;0;0;0;0;0;0 49997;-0000;0;0;0;0;0;0;0;0 49997;-0000;0;0;0;0;0;0;0;0 49997;-0000;0;0;0;0;0;0;0;0 49997;-0000;0;0;0;0;0;0;0;0 49998;-0000;0;0;0;0;0;0;0;0 49998;-0000;0;0;0;0;0;0;0;0;0 49997;-0000;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;

Die Aufzeichnung habe ich an meinem Linux-Laptop und einem USB-TTL-Adapter mit der universellen Netzfrequenzmessung RPi/USB gemacht.

Kommunikation der Netzfrequenzplatine

Das Konsolenprogramm mfmServerTool ermöglicht die Aufzeichnung und die Bereitstellung der Netzfrequenzmessdaten für leittechnische Anbindung z.B. OPC-Server.

Das Konsolenprogramm ist lauffähig auf Windows und Linux (RaspberryPi).

Die Daten können auf dem Web-Server des ioBrokers, dem OpenHAB (Open Home Automation Bus) oder dem OpenMUC (Web-Interface zur Systemkonfiguration und Visualisierung) problemlos visualisiert werden.

Das ServerTool-Programm steht in Kürze zur Verfügung.

Details zur Projekterweiterung finden Sie auf der Webseite www.netzfrequenzanzeige.de.

Bild: Schema Netzfrequenzmessung und Anbindung an eine Leittechnik

Sonstiges: Freigabe GPIOs

Infos / Bestellmöglichkeit

- weitere Informationen unter www.netzfrequenzanzeige.de
- Anfrage privater Verkauf Platinen und Wechselspannungsnetzteile (Restposten)
 pc projekte.de@arcor.de
- Privater Programmierservice für μController
- Link für aktuelle Bauteileliste (bei Reichelt)
 https://www.reichelt.de/my/1689769

Hinweis / Gewährleistungsausschluss

Projekthinweis: Das gesamte Projekt ist ein privates, nicht kommerzielles Projekt.

Der Autor übernimmt keinerlei Gewähr für Funktionalität der vorgestellten Hard- und Software. Haftungsansprüche gegen den Autor, welche sich auf Schäden materieller oder ideeller Art beziehen, sind grundsätzlich ausgeschlossen. Die Inhalte der Homepage, der Projektbeschreibung oder der Software werden ohne Anspruch auf Richtigkeit veröffentlicht. Alle Angaben sind ohne Gewähr. Die Verwendung der Texte, Grafiken, Bilder und Programme sind im Rahmen der zum Projekt gehörenden OpenSource-Lizenzen erlaubt. Der Autor behält es sich ausdrücklich vor, Teile der Seiten ohne gesonderte Ankündigung zu verändern, zu ergänzen oder zu löschen.

- Verwendung der Soft- und Hardware auf eigene Verantwortung
- Jegliche Produkthaftung durch die Verwendung der Soft- und Hardware wird ausgeschlossen

Haftungsausschluss nach §1 Abs.2 Z.3 ProdHaftG , (BGBl. I S. 1474 m.W.v. 08.09.2015 der Bundesrepublik Deutschland)

Information zur Spannungsversorgung

Die Spannungsversorgung <u>muss</u> der Beschreibung entsprechen, da es sonst zu Zerstörung von Bauteilen kommen kann.

Jens Müller, 02'2021 <u>www.pc-projekte.de</u>