Ministerul Educației Naționale Centrul Naţional de Evaluare şi Examinare

Examenul de bacalaureat naţional 2014 Proba E. d) – 4 iulie 2014 **Fizică**

Filiera tehnologică – profilul tehnic și profilul resurse naturale și protecția mediului

• Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ, B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ Se acordă 10 puncte din oficiu.

Timpul de lucru efectiv este de 3 ore.

C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU

Varianta 4

- I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)
- 1. Mărimea fizică a cărei unitate de măsură în S.I. poate fi pusă sub forma: $\Omega \cdot A$ este:
- a. energia electrică
- b. tensiunea electrică
- c. intensitatea curentului
- d. puterea electrică

(3p)

2. O baterie este formată prin legarea serie a trei generatoare identice, fiecare cu t.e.m $E_0 = 2,4 \,\mathrm{V}$ şi rezistența interioară $r_0 = 1 \Omega$. Se leagă bornele bateriei printr-un fir cu rezistența electrică neglijabilă. Intensitatea curentului electric ce străbate firul este egală cu:

- **a.** 2,4 A
- **b.** 1,2 A
- **c.** 0,8 A
- **d.** 0,6 A

3. Simbolurile mărimilor fizice fiind cele utilizate în manualele de fizică, expresia energiei electrice consumate de un rezistor de rezistență R, parcurs de un curent electric de intensitate I, pe durata Δt , este:

- **b.** $W = R^2 I \Delta t$
- **c.** $W = UR\Delta t$
- **d.** $W = U^2 R \Delta t$

4. În figura alăturată sunt reprezentate cele patru baterii ale unui aparat de radio portabil. C este o plăcuţă metalică, iar A și B sunt contactele de conectare a bateriilor în circuitul aparatului. Cele patru baterii sunt grupate:

- a. toate patru în paralel
- **b.** toate patru în serie
- c. câte două în serie și grupările rezultate în paralel
- d. câte două în paralel și grupările rezultate în serie.

(3p)

5. Două fire conductoare confecționate din materiale cu rezistivitățile ρ_1 și respectiv $\rho_2 = 0.6 \cdot \rho_1$, au lungimile ℓ_1 , respectiv ℓ_2 = 1,5 · ℓ_1 şi secţiunile S_1 , respectiv S_2 = 1,8 · S_1 . Raportul R_1/R_2 dintre rezistenţele electrice ale celor două conductoare este egal cu:

- **a.** 1,5
- **b.** 1,75

d. 3

(3p)

II. Rezolvaţi următoarea problemă:

(15 puncte)

În figura alăturată este desenată schema unui circuit electric. Generatorul are t.e.m. E și rezistența interioară $r = 1\Omega$ şi alimentează patru rezistoare având rezistenţele electrice $R_1 = 4\Omega$, $R_2 = 30\Omega$,

 $R_3 = 50 \Omega$ şi $R_4 = 100 \Omega$. Între rezistoarele R_3 şi R_4 este conectat un întrerupător K inițial închis. Știind că intensitatea curentului ce trece prin rezistorul R_1 , când întrerupătorul K este închis, este egală cu $I_1 = 1,2 \,\mathrm{A}$, determinați:

- ${f a.}$ rezistența echivalentă a circuitului exterior când întrerupătorul ${f K}$ este
- **b.** valoarea t.e.m. a generatorului;
- **c.** intensitatea curentului electric ce străbate rezistorul R_2 întrerupătorul *K* este închis.
- **d.** tensiunea la bornele rezistorului R_1 dacă întrerupătorul K este deschis.

III. Rezolvati următoarea problemă: (15 puncte)

Un consumator cu puterea nominală $P_1 = 108 \,\mathrm{W}$ funcționează normal când este conectat în serie cu un rezistor având rezistența electrică $R_2 = 2,25\Omega$ la bornele unei generator. Tensiunea electromotoare a generatorului este $E = 48 \,\mathrm{V}$, iar rezistența interioară este r. Știind că intensitatea curentului debitat de sursă este I = 4 A, determinați:

- a. tensiunea la bornele consumatorului;
- **b.** puterea electrică disipată de rezistorul R_2 ;
- **c.** rezistenta interioară r a generatorului;
- d. randamentul circuitului.

