24. Considere os autómatos \mathcal{A}_1 e \mathcal{A}_2 representados respetivamente por

- (a) Calcule um autómato determinista completo e acessível que lhe seja equivalente.
- (b) Determine o autómato minimal que lhe é equivalente

$$\delta(1,a) \cup \delta(2,a) = \{1,2\} \cup \emptyset = \{1,2\}$$
 $\delta(1,b) \cup \delta(2,b) = \{1,2\} \cup \{3\} = \{1,3\}$
 $\delta(1,c) \cup \delta(2,c) = \{1,2\} \cup \cup \emptyset = \{1\}$
 $\delta(1,a) \cup \delta(3,a) = \{1,2,3\}$
 $\delta(1,b) \cup \delta(3,b) = \{1,3\}$
 $\delta(1,c) \cup \delta(3,c) = \{1,3\}$

$$\begin{cases} (1,a) \cup \delta(2,a) \cup \delta(3,a) = \{1,2,3\} \\ \delta(1,b) \cup \delta(2,b) \cup \delta(3,b) = \{1,3\} \\ \delta(1,c) \cup \delta(2,c) \cup \delta(3,c) = \{1,3\} \end{cases}$$

b) Vamo calcular a mas N.

A, e DCA e equivalente da.

Para simplificar $q_1 - 415
 q_2 - 41,25
 q_3 - 41,35
 q_4 - 41,2,35$

 $q_3 \sim_0 q_4$, $\delta(q_3, c) = q_4 = \delta(q_4 a)$, $\delta(q_3, b) = q_3 = \delta(q_4, b)$ e $\delta(q_3, c) = q_3 = \delta(q_4, c)$

Logo 93 NA 94

 $q_1 \sim_0 q_2$, $\delta(q_1, a) = q_2 = \delta(q_2, a)$, $\delta(q_1 b) = q_1 \not\sim_0 q_3 = \delta(q_2, b)$ Entax $q_1 \not\sim_1 q_2$.

Como $5(9_{3_1}a) = 5(9_{4_1}a)$, $5(9_{3_1}b) = 5(9_{4_1}b)$ e $5(9_{3_1}c) = 5(9_{4_1}c)$, en $\sqrt{5}$ -leviamon $9_3 \sim 9_4$

25. Considere o alfabeto $A=\{a,b,c\}$ e o autómato $\mathcal A$ descrito na figura abaixo.

- (a) Determine L(A), utilizando o método das equações lineares
- (b) Indique um autómato determinista e acessível que reconheça $L(A)^*$.
- (c) Determine o autómato minimal que reconhece $L(A)^*$.

a)
$$\begin{cases} x_1 = ax_4 + ax_5 \\ x_2 = bx_1 + \epsilon \end{cases}$$
 $\begin{cases} x_2 = bx_1 + \epsilon \\ x_3 = x_2 \end{cases}$
 $\begin{cases} x_3 = x_2 \\ x_4 = (cx_1 + b)x_3 + ax_4 \\ x_5 = (cx_2 + b)x_3 \end{cases}$

$$\begin{cases} x_1 = ax_4 + ax_5 \\ x_2 = x_2 \\ x_4 = (c+b)x_2 + ax_4 = x_5 + ax_4 \end{cases}$$

$$\begin{cases} x_1 = ax_4 + ax_5 \\ x_2 = x_2 \\ x_4 = (c+b)x_2 + ax_4 = x_5 + ax_4 \end{cases}$$

$$\begin{cases} x_1 = ax_4 + ax_5 \\ x_2 = x_2 \\ x_4 = (c+b)x_2 + ax_4 = x_5 + ax_4 \end{cases}$$

$$\begin{cases} x_1 = ax_4 + ax_5 \\ x_2 = x_2 \\ x_4 = (c+b)x_2 + ax_4 = x_5 + ax_4 \end{cases}$$

$$\begin{cases} x_1 = ax_4 + ax_5 \\ x_2 = x_2 \\ x_4 = (c+b)x_2 + ax_4 = x_5 + ax_4 \end{cases}$$

$$\begin{cases} x_1 = ax_4 + ax_5 \\ x_2 = x_2 \\ x_4 = (c+b)x_2 + ax_4 = x_5 + ax_4 \end{cases}$$

$$\begin{cases} x_1 = ax_4 + ax_5 \\ x_2 = x_2 \\ x_4 = (c+b)x_2 + ax_4 = x_5 + ax_4 \end{cases}$$

$$\begin{cases} x_1 = ax_4 + ax_5 \\ x_2 = x_2 \\ x_4 = (c+b)x_2 + ax_4 = x_5 + ax_4 \end{cases}$$

$$\begin{cases} x_1 = ax_4 + ax_5 \\ x_2 = x_2 \\ x_4 = (c+b)x_2 + ax_4 = x_5 + ax_4 \end{cases}$$

$$\begin{cases} x_1 = ax_4 + ax_5 \\ x_2 = x_2 \\ x_4 = (c+b)x_2 + ax_4 = x_5 + ax_4 \end{cases}$$

$$\begin{cases} x_1 = ax_4 + ax_5 \\ x_2 = x_2 \\ x_4 = (c+b)x_2 + ax_4 = x_5 + ax_4 \end{cases}$$

$$\begin{cases} x_1 = ax_4 + ax_5 \\ x_2 = x_2 \\ x_4 = (c+b)x_2 + ax_4 = x_5 + ax_4 \end{cases}$$

$$\begin{cases} x_1 = ax_4 + ax_5 \\ x_2 = x_2 \\ x_4 = (c+b)x_2 + ax_4 = x_5 + ax_4 \end{cases}$$

$$\begin{cases} x_1 = ax_4 + ax_5 \\ x_2 = x_2 \\ x_4 = (c+b)x_2 + ax_4 = x_5 + ax_4 \end{cases}$$

$$\begin{cases} x_1 = ax_4 + ax_5 \\ x_2 = x_2 \\ x_4 = (c+b)x_2 + ax_4 = x_5 + ax_4 \end{cases}$$

$$\begin{cases} x_1 = ax_4 + ax_5 \\ x_2 = x_4 + ax_4 = x_5 + ax_4 \end{cases}$$

$$\begin{cases} x_1 = ax_4 + ax_4 + ax_4 = x_5 + ax_4 + ax_4 + ax_4 + ax_4 = x_5 + ax_4 + ax_$$

Vamo agora determinar um autimati sincrono equivalente as antimati acima

 $\begin{cases} \text{fedne}_{\mathcal{E}}(9_{3}) = \frac{1}{3}9_{3}, i \end{cases}$ $\begin{cases} \text{fedne}_{\mathcal{E}}(i) = \frac{1}{3}i, 9_{4} \end{cases}$ $\begin{cases} \text{fedne}_{\mathcal{E}}(9_{2}) = \frac{1}{3}9_{2}, i \end{cases}$

agore determinar um autimati sincrono equiralente ao autimati

a cima:

Authmati sincrom, equinlink as autimate anterior by rumbea L*. (& estadon finan sas 1,92 e 93).

e aussiver equipalente a B autimati determinish Falle determinar um

e'um autimate DA

C) Queremo determinar um autimati minimal equivalente ao anterior.

- 28. Seja $A = \{a, b, c\}$ um alfabeto. Considere os seguintes autómatos finitos:
 - (i) $\mathcal{B}_1=(\{1,2,3,4\},A,\delta_1,1,\{2,3\})$ em que a função de transição δ_1 é definida pela tabela abaixo.

δ_1	1	2	3	4
a	$\{2, 4\}$	{3}	Ø	{4}
b	{1}	Ø	Ø	{1}
c	{1}	Ø	Ø	{1}

(ii) $\mathcal{B}_2=(\{1,2,3,4\},A,\delta_2,1,\{3,4\})$ em que a função de transição δ_2 é definida pela

δ_2	1	2	3	4
a	{3}	{2}	{4}	{2}
b	{1}	{1}	{1}	{1}
C	{1}	{1}	{1.}	{1}

(iii) $\mathcal{B}_3=(\{1,2,3,4\},A,\delta_3,1,\{3,4\})$ em que a função de transição δ_3 é definida pela tabela abaixo.

δ_3	1	2	3	4
a	{1}	$\{1, 3\}$	{4}	Ø
b	{2}	{1}	Ø	Ø
C	{2}	{1}	Ø	a

De entre as afirmações seguintes selecione $\underline{\underline{\mathsf{a}}}$ afirmação verdadeira.

(a) B₂ é um autómato minimal e B₂ é equivalente a B₁.

(b) \mathcal{B}_1 é um autómato minimal e \mathcal{B}_2 é equivalente a \mathcal{B}_1 .

 $(\mathcal{B}_1, \mathcal{B}_2 \in \mathcal{B}_3$ são autómatos equivalentes.

(d) \mathcal{B}_2 e \mathcal{B}_3 são autómatos e acessíveis e são equivalentes.

By nas e' complete, nas e' deterministe. Logo By to nos é minimal, pelv qui b) é falsa

deterministre e completé.

Da grafium son que Bre B3 sas automan a ressiven.

5 (a) for verdadeira, entes d) também e

Se (c) for verdadeira, enter d) também e' verdadeira. Como si produ haver um alínea verdadeira, enter (c) é falsa.

O autimata B, rucombica a palavea a man o antimata B3 nas rucombica a palavea a logo B2 nas é equivalente a B3. Logo (d) é falsa.

Finalmente, conclui-x que (a) é verdadeira.