

Mutual counterfeeding in Bari as two separate counterfeeding interactions

Rosa Fritzsche Universität Leipzig r.fritzsche@uni-leipzig.de January 28/29, 2021

Table of Contents

- Overview
- 2 Mutual counterfeeding
- 3 Reported Mutual Counterfeeding in Bari
- 4 Reinterpretation of Bari interactions
 - Analysis
 - Derivations
 - Summary
- Conclusion

Overview

- A supposed mutual counterfeeding interaction in Bari (Eastern Nilotic; Yokwe 1987) can be reinterpreted into two separate counterfeeding interactions
- Bari interactions can be generated by theories that can handle simple counterfeeding but not mutual counterfeeding:
 - Serial rule based phonology
 - OT with Local Constraint Conjunction
- Bari interactions are not an argument in favour of theories that can generate mutual counterfeeding

© RF 2023, U Leipzig 2/21

Table of Contents

- 1 Overview
- 2 Mutual counterfeeding
- 3 Reported Mutual Counterfeeding in Bar
- 4 Reinterpretation of Bari interactions
 - Analysis
 - Derivations
 - Summary
- 5 Conclusion

© RF 2023, U Leipzig 3/21

Mutual counterfeeding

- Mutual counterfeeding (Wolf 2011) involves two rules that each can create the environment of the other rule, but neither applies to the output of the other rule.
- Ordering paradox in serial theories: Neither rule feeds the other, while simultaneous application can generate mutual counterfeeding (Chomsky & Halle 1968: fn. 5)

4/21 © RF 2023, U Leipzig

Hypothetical example (Wolf 2011: 89)

- Schwa-syncope (1a) deletes /ə/ except if it would create a cluster of more than two consonants.
- H-deletion (1b) deletes /h/ before consonants, glides or word-finally.
- (1) a. Schwa-syncope $/\partial/\partial \neq \emptyset$ / $\{V,\#\}$ (C)_(C) $\{V,\#\}$
 - b. **H-deletion** $/h/ \rightarrow \emptyset / \{[-voc], \#\}$
 - Schwa-syncope and H-deletion can feed each other:

(2) Feeding and counterfeeding interactions

a.	UR	/ehtəmu/	/ahəpi/
	ə-syn	_	ahpi
	H-del	etəmu	api
	CD	[otomas]	[]

UR	/ehtəmu/	/ahəpi/
H-del	etəmu	_
ə-syn	etmu	ahpi
SR	[etmu]	[ahpi]

© RF 2023, U Leipzig 5/21

b.

Hypothetical example (Wolf 2011: 89)

- Suppose that both rules apply simultaneously, we would get mutual counterfeeding:
 - H-deletion applies and creates the input for schwa-syncope, which underapplies ((3a))
 - Schwa-syncope applies and creates the input for h-deletion, which does not apply (3b)
- (3) a. H-deletion counterfeeds Schwa-syncope /ehtəmu/ → [etəmu]
 - b. Schwa-syncope counterfeeds H-deletion $/\mathrm{ahepi}/ \to [\mathrm{ahpi}]$

© RF 2023, U Leipzig 6/21

Table of Contents

- 1 Overview
- 2 Mutual counterfeeding
- 3 Reported Mutual Counterfeeding in Bari
- 4 Reinterpretation of Bari interactions
 - Analysis
 - Derivations
 - Summary
- 5 Conclusion

© RF 2023, U Leipzig 7/21

H-Dissimilation

■ Word-initial high tones dissimilate to low tones after a word-final high tone (Yokwe 1987: 207;224):

(4) $H\#HL \rightarrow H\#LL$: $dók + kópò \rightarrow dók kòpò 'fetched the cup'$

© RF 2023, U Leipzig 8/21

H-Spreading & Feeding

- Word-final high tones can spread to a following noun with an initial low tone (Yokwe 1987: 209-210):
- (5) a. $\mathbf{H} \# \mathbf{L} \mathbf{L} \to \mathbf{H} \# \mathbf{H} \mathbf{L}$: bék + ràbà \to bék rábà 'fixed the platform'
 - b. $H\#LH \rightarrow H\#HH$: tór + bòngó \rightarrow tór bóngó 'tied the dress'
 - c. $H\#LF \rightarrow H\#HF$: mát + wìnî \rightarrow mát wínî 'drank the medicine'
 - Dissimilation can feed spreading (Yokwe 1987: 206):
- (6) $H\#HH \rightarrow H\#LL \rightarrow H\#HL$: $dép + kéré \rightarrow dép kèrè \rightarrow dép kérè 'held the gourd'$

© RF 2023, U Leipzig 9/21

Mutual counterfeeding

H-spreading counterfeeds H-Dissimilation:

- (7) H#LH → H#HH: tór + bòngó → tór bóngó *→ tór bóngò 'tied the dress'
 - H-Dissimilation counterfeeds H-Spreading:
- (8) $H\#HL \rightarrow H\#LL$: $dók + kópò \rightarrow dók kòpò * \rightarrow dók kópò 'fetched the cup'$

© RF 2023, U Leipzig 10/21

Observation

- In /LL/ (5a) and /HH/ \rightarrow /LL/ (6), L is multiply linked to two syllables (9a)
- lacktriangle In /HL/ ightarrow /LL/ sequences, there are two distinct Ls (9b)
- In /LH/ (5b) and /LF/ (5c), there is a distinct L followed by an H (9c)

→ Spreading applies to /LL/ only if the sequence consists of one multiply associated L

© RF 2023, U Leipzig 11/21

Table of Contents

- 1 Overview
- 2 Mutual counterfeeding
- 3 Reported Mutual Counterfeeding in Bar
- 4 Reinterpretation of Bari interactions
 - Analysis
 - Derivations
 - Summary
- 5 Conclusion

© RF 2023, U Leipzig 12/21

Dissimilation

Dissimilation changes an High tone to a low tone after a word-final high tone:

(10)Dissimilation:

Spreading and falling tones

Spreading would create a falling tone but there is a general restriction against falling tones on non-final syllables in Bari (Yokwe 1987: 209):

(11) a. bék + ràbà \rightarrow * bék râbà 'fixed the platform'

© RF 2023, U Leipzig 14/21

Spreading and falling tones

- What looks like spreading involves actually two operations: Linking H and de-linking L
- (12) High Tone Spread (Yokwe 1987: 210):

(13) Contour Simplification (Yokwe 1987: 210):

© RF 2023, U Leipzig 15/21

Retraction

- Splitting "H-spreading" into two rules allows us to order a additional rule in between
- According to the earlier observation: Spreading to a TBU that was (not multiply) linked to an underlying H is not allowed:
- (14) $H\#HL \to H\#LL *\to H\#HL:$ $dók + kópò \to dók kòpò *\to dók kópò 'fetched the cup'$
 - In some environments, H is de-linked from a HL contour syllable (instead of L as with Contour Simplification)
 - Retraction (cf. Bresnan & Kanerva 1989) reverses the effect of spreading (similar to *|_{HH} in Trommer 2017)
- (15) Retraction:

H L L

© RF 2023, U Leipzig 16/21

$H\#HH \rightarrow H\#HL$

(16) $\operatorname{d\acute{e}p} + \operatorname{k\acute{e}r\acute{e}} \to \operatorname{d\acute{e}p} \operatorname{k\acute{e}r\acute{e}} \to \operatorname{d\acute{e}p} \operatorname{k\acute{e}r\acute{e}}$ 'held the gourd'

© RF 2023, U Leipzig 17/21

$H\#LH \rightarrow H\#HH$

(18) $t\acute{o}r + b\grave{o}ng\acute{o} \rightarrow t\acute{o}r b\acute{o}ng\acute{o} * \rightarrow t\acute{o}r b\acute{o}ng\grave{o}$ 'tied the dress'

© RF 2023, U Leipzig 18/21

$H\#HL \rightarrow H\#LL$

(20) $dók + kópò \rightarrow dók kòpò * \rightarrow dók kópò 'fetched the cup'$

(21)UR Dissimilation High tone spread Retraction Н Contour Simplification

© RF 2023, U Leipzig 19/21

Summary of the Analysis

- Re-interpretation of mutual counterfeeding is successful:
 - 1. The possibility of multiply linked tones can differentiate between contexts (This differentiates Bari from the Wolf 2011 example)
 - 2. Spreading can be split into two operations: Linking and de-linking a tone
- \blacksquare More derivation steps are not necessarily needed for a reanalysis \rightarrow OT-LCC can also deal with Bari interactions (see appendix)

© RF 2023, U Leipzig 20/21

Conclusion

- Bari interactions can be reinterpreted as two separate cases of counterfeeding
- Serial rule based phonology can derive the data
- Bari interactions should be amenable to other theories that can derive counterfeeding but not mutual counterfeeding, e.g. OT-Containment (Trommer 2017), OT-LCC (appendix)
- Bari interactions cannot be accounted for by simultaneous rule application

© RF 2023, U Leipzig 21/21

References

- Bresnan, Joan & Jonni M. Kanerva. 1989. Locative inversion in Chicheŵa: A case study of factorization in grammar. *Linguistic Inquiry* 20(1). 1–50.
- Chomsky, Noam & Morris Halle. 1968. *The sound pattern of English*. New York, NY: Harper & Row.
- Prince, Alan & Paul Smolensky. 1993. *Optimality theory: Constraint interaction in generative grammar* Rutgers University Center for Cognitive Science technical report 2. [ROA Version, 8/2002].
- Trommer, Jochen. 2017. Mutual counterfeeding and Duke-of-York blocking in Bari. Talk presented at Old World Conference on Phonology 2017, Düsseldorf.
- Wolf, Matthew. 2011. Limits on global rules in Optimality Theory with candidate chains. *Phonology* 28(1). 87–128.
- Yokwe, Eluzai Moga. 1987. *The tonal grammar of Bari*: University of Illinois at Urbana-Champaign dissertation.

Monosyllabic nouns

- Yokwe (1987: 223) observes that on the surface there appear to be three different types of monosyllabic nouns: H, L and HL
- However, with regard to their behaviour in post-verbal environment there are five different patterns:

(22) Post-verbal Monosyllabic nouns (Yokwe 1987: 224–226)

- a. $\mathbf{H}\#\mathbf{H}_1 \to \mathbf{H}\#\mathbf{L}$ ryák + túr \to ryák tùr 'robbed the village'
- b. $\mathbf{H}\#\mathbf{H_2} \to \mathbf{H}\#\mathbf{F}$ $\mathrm{mát} + \mathrm{l\acute{e}} \to \mathrm{m\acute{a}t} \ \mathrm{l\^{e}} \ \mathrm{'drank} \ \mathrm{the} \ \mathrm{milk'}$
- c. $\mathbf{H} \# \mathbf{L}_1 \to \mathbf{H} \# \mathbf{L}$ $\mathsf{lók} + \mathsf{mòk} \to \mathsf{lók} \; \mathsf{mòk} \; \mathsf{`trapped} \; \mathsf{the} \; \mathsf{antbear'}$
- d. $\mathbf{H} \# \mathbf{L_2} \to \mathbf{H} \# \mathbf{F}$ $\text{mét} + \text{dàk} \to \text{mét}$ dâk 'saw the pipe'
- e. $\mathbf{H} \# \mathbf{F} \to \mathbf{H} \# \mathbf{L}$ rík + têng \to rík tèng 'chased the herd'

Monosyllabic nouns: towards an analysis

■ **Idea:** The difference between H_1 or L_1 and H_2 or L_2 is that H_1 and L_1 have two underlying tones of the same kind (HH and LL, respectively)

(23) a. H H C. L L e. H I
$$\sigma$$
 d. L σ σ

Assumption: Dissimilation does not make reference to word boundaries:

(24) **Dissimilation (reformulation):**

$H\#H_1 \rightarrow H\#L$

(25) ryák + túr o ryák tùr 'robbed the village'

(26)

UR	H H H
Dissimilation	H L L L σ # σ
High tone spread	H L L Γ · · · · · · σ # σ
Retraction	H L L L σ # σ
Contour Simplification	_

$H\#H_2\to H\#F$

(27) $m ext{ at } + ext{ lé} o ext{ mát lê 'drank the milk'}$

$$H\#L_1\to H\#L$$

(29) $lók + mòk \rightarrow lók mòk 'trapped the antbear'$

$H\#L_2\to H\#F$

(31) $\text{m\'et} + \text{d\`ak} \rightarrow \text{m\'et} \ \text{d\'ak} \ \text{`saw the pipe'}$

$H\#F\to H\#L$

(33) $rik + teng \rightarrow rik teng$ 'chased the herd'

(34)

UR	H H L
Dissimilation	H L L L σ # σ
High tone spread	H L L Γ · · · · · · · · σ # σ
Retraction	H L L L σ # σ
Contour Simplification	_

- Appendix

Hypothetical language (Wolf 2011)

- Schwa-syncope (35a) deletes $/\partial/$ except if it would create a cluster of more than two consonants
- H-deletion (35b) deletes /h/ before consonants, glides or word-finally.
- (35) a. Schwa-syncope $/\Theta/\to\emptyset$ / $\{V,\#\}(C)_(C)\{V,\#\}$
 - b. **H-deletion** $/h/ \rightarrow \emptyset / _{{[-voc]},\#}$
- (36) a. H-deletion counterfeeds Schwa-syncope $/ \mathrm{eht} \partial \mathrm{mu} / \to [\mathrm{et} \partial \mathrm{mu}]$
 - b. Schwa-syncope counterfeeds H-deletion $/\mathsf{ah} \mathsf{əpi}/ \to [\mathsf{ahpi}]$

- Constraints (adopted from Wolf 2011):
 - [*hC]_P:

Assigns a violation for every sequence of h followed by a consonant in P

■ Parse(h):

Assigns a violation for every underlying h not realized in P

■ [*ə]_P:

Assigns a violation for every \ni in P

■ [*CCC]_P:

Assigns a violation for every sequence of three consonants in P

■ Parse(ə):

Assigns a violation for every underlying a not realized in P

OT with Containment (Prince & Smolensky 1993) cannot derive the hypothetical case of mutual counterfeeding, because there is no unambiguous ranking:

 $/\mathsf{ah} \mathsf{əpi}/ \to [\mathsf{ahpi}]$

/ahəpi/	[*CCC] _P	[*ə] _P	Parse(h)	[*hC] _P	Parse(ə)
a. ahəpi		*!	l	*	
ு b. ah<ə>pi				*	*
c. a <h><ə>pi</h>			*!		*
d. a <h>əpi</h>		*!	*!		

Rankings:

$$Parse(h) \gg [*hC]_P$$

 $[*a]_P \gg [*hC]_P$, $Parse(a)$

/ehtemu/
ightarrow [etemu]

/ *************************************					
/ehtəmu/	[*CCC] _P	[*ə] _P	PARSE(h)	$[*hC]_P$	Parse(ə)
		*	l	*	
b. e <h>təmu</h>		*!	*!		l
☞ c. e <h>t<ə>mu</h>			*		*
d. eht<ə>mu	*!		l L	*	*

This ranking does not derive at the correct output.

Re-Ranking:

$$PARSE(\partial) \gg [*\partial]_P$$

 $[*hC]_P \gg [*\partial]_P$, $PARSE(h)$

 $/ehtemu/ \rightarrow [etemu]$

	/ehtəmu/	[*CCC] _P	[*hC] _P	Parse(ə)	[*ə] _P	Parse(h)
	a. ehtəmu		*!	1	*	I
喝	b. e <h>təmu</h>			I .	*	*
	c. $e < h > t < \theta > mu$			*!		*
	d. eht<ə>mu	*!	*	*		1

Hypothetical language (Chomsky & Halle 1968)

- lacksquare Rules lpha and eta can feed each other
- The derivations in (38) create an ordering paradox in Serial rule based phonology (\rightarrow mutual counterfeeding)

(37) a. Rule
$$\alpha$$
: B \rightarrow X / $_$ Y

b. Rule
$$\beta$$
: A \rightarrow Y / $_$ X

(38) a.
$$\langle ABY \rangle \rightarrow [AXY]$$

b.
$$/BAX/ \rightarrow [BYX]$$

(39)		/ABY/	[*BY] _P	Parse(A)	[*AX] _P	Parse(B)
		a. ABY	*!	l		ı
	rg-	b. AX ^B Y		I	*	*
		c. Y ^A X ^B Y		*!		*

(40) /BAX/ [*BY]_P PARSE(A) [*AX]_P PARSE(B)

a. BAX
b. BY^AX
c. X^BY^AY

*!

*!

*!

Constraints

- Spread(H): H tones should span a prosodic word boundary
- *F: F tones should not be associated with a non-final TBU
- OCP(H): H tones should not be adjacent
- Dep(|)
- Max(H)
- Max(L)
- IDENT(H)
- (IDENT(H) & MAX(L)) $_{\sigma\sigma}$: Violations on two adjacent TBUs
- $(Dep(|) \& Max(H))_{\sigma}$: Violations on the same TBU

$H\#HH\to H\#HL$

l:	Η σ	#	Η <i>σ σ</i>	$(IDENT(H) \\ \& \\ MAX(L))_{\sigma\sigma}$	$(Dep() \& Max(H))_{\sigma}$	Spread(H)	 LL	OCP(H)	DEP()	Max(H)	Max(L)	IDENT(H)
a.	Η σ	#	H		 	*!	 	*			 	
b.	Η σ	#	L			*!	 				 	*
C.	H 	#	$L \sim \sigma$		 		 *!		 	 	 	*
r⊠ d.	H Γ σ	#	L σ σ		 		 		 *	 	 	*

$H\#LH \rightarrow H\#HH$

l:	H σ	#	L σ	Η σ	$(IDENT(H) \& \\ MAX(L))_{\sigma\sigma}$	$(Dep() \& Max(H))_{\sigma}$	Spread(H)	 <u> </u>	ОСР(Н)	DEP()	Max(H)	Max(L)	IDENT(H)
	Н		L	Н		I		ı		i	ı	i	
						 		l		l 1	 	l I	
a.	σ	#	σ	σ		i	*!	i		i	I	i	
	Н		L	Н		1		ı		ı	ı	1	
			$ \bot $			i		ı		ı	I	İ	
b.	σ	#	σ	σ		 		*!		*	l I	 	
	Н			Н		I		I		I .	l	l	
		_	_			l I		! !		! !	 	! !	
I 3 C.	σ	#	σ	σ		I I		l I	*	*	l I	*	
	Н			L		i		ı		ı	ı	i	
			_			 		l I		l I	l I	l I	
d.	σ	#	σ	σ	*!	1		!		*	l	*	*

$H\#HL\to H\#LL$

l:	Η σ	#	Η σ	L σ	$(IDENT(H) \& \\ MAX(L))_{\sigma\sigma}$	$(Dep() \& Max(H))_{\sigma}$	Spread(H)	 <u> </u> <u> </u>	OCP(H)	DEP()	Max(H)	Max(L)	IDENT(H)
	Н		Н	L		I		i		ı	i	i	
						l I		l I		l I	l I	l I	
a.	σ	#	σ	σ		I	*	l	*!	l	l	l	
	Н		L	L		l				I I	 		
						1		l .		I	I .	I	
r⊠ b.	σ	#	σ	σ		l I	*	l I		l I	l I	l I	*
	Н		L	L		l I		1		I	l I	I	
						I		i			i I	İ	
C.	σ	#	σ	σ		I I		* 		· *!	l I	l I	*
	Н			L		I		ı		I	I	ı	
		_	_			I I		I I		l I	 	 	
d.	σ	#	σ	σ		· *!		1		*	*		