### **Logistic Regression**

### AIM:

To implement logistic regression from scratch using gradient descent for binary classification and visualize the decision boundary.

#### **ALGORITHM:**

- **Step 1:** Generate synthetic 2D data for two classes.
- **Step 2:** Add a bias term to the feature matrix.
- **Step 3:** Define the sigmoid activation function.
- **Step 4:** Define the binary cross-entropy loss function.
- **Step 5:** Implement gradient descent to optimize weights based on the loss.
- **Step 6:** Train the logistic regression model on the data.
- Step 7: Predict class labels using the learned weights.
- **Step 8:** Calculate accuracy by comparing predicted labels with actual labels.
- **Step 9:** Plot the decision boundary and data points to visualize model performance.

### **SOURCE CODE:**

```
import numpy as np
import matplotlib.pyplot as plt

# 1. Simulate Data (2D binary classification)
np.random.seed(0)
X1 = np.random.randn(50, 2) + np.array([2, 2])
X2 = np.random.randn(50, 2) + np.array([-2, -2])
X = np.vstack((X1, X2))
y = np.hstack((np.ones(50), np.zeros(50)))

# 2. Add bias term (intercept)
X_b = np.c_[np.ones((X.shape[0], 1)), X] # shape: (100, 3)

# 3. Sigmoid Function
def sigmoid(z):
    return 1 / (1 + np.exp(-z))

# 4. Loss Function (Binary Cross Entropy)
```

```
def loss(y, y pred):
  return -np.mean(y * np.log(y pred + 1e-10) + (1 - y) * np.log(1 - y pred + 1e-10))
# 5. Gradient Descent
def train(X, y, lr=0.1, epochs=1000):
  weights = np.zeros(X.shape[1])
  for epoch in range(epochs):
     z = X @ weights
    y pred = sigmoid(z)
    gradient = \bar{X}.T @ (y pred - y) / y.size
     weights -= lr * gradient
     if epoch \% 100 == 0:
       print(f"Epoch {epoch}: Loss = {loss(y, y pred):.4f}")
  return weights
# 6. Train the model
weights = train(X b, y)
#7. Predict
def predict(X, weights):
  return sigmoid(X @ weights) \geq = 0.5
y pred = predict(X b, weights)
accuracy = np.mean(y pred == y)
print(f"\nFinal Accuracy: {accuracy * 100:.2f}%")
#8. Plot Decision Boundary
x1 \text{ min}, x1 \text{ max} = X[:,0].min() - 1, X[:,0].max() + 1
x2 \text{ min}, x2 \text{ max} = X[:,1].min() - 1, X[:,1].max() + 1
xx1, xx2 = np.meshgrid(np.linspace(x1 min, x1 max, 100),
              np.linspace(x2 min, x2 max, 100))
grid = np.c_[np.ones(xx1.ravel().shape), xx1.ravel(), xx2.ravel()]
probs = sigmoid(grid @ weights).reshape(xx1.shape)
plt.figure(figsize=(6,4))
plt.contourf(xx1, xx2, probs, levels=[0, 0.5, 1], alpha=0.3, colors=['blue', 'red'])
plt.scatter(X1[:, 0], X1[:, 1], color='red', label='Class 1')
plt.scatter(X2[:, 0], X2[:, 1], color='blue', label='Class 0')
plt.title("Logistic Regression Decision Boundary")
plt.xlabel("Feature 1")
plt.ylabel("Feature 2")
plt.legend()
plt.show()
```

# OUTPUT:



# **RESULT:**

Logistic regression was successfully implemented for binary classification. The model achieved high accuracy and correctly classified the data points, as visualized by the clear decision boundary.