В качестве исходной схемы взята упрощенная принципиальная схема из домашнего задания №3 по курсу «Физико-технологические основы конструирования электронных аппаратов» (Рисунок 1.1).

Рисунок 1.1 – Исходная принципиальная схема

Составленная матрица связей к исходной принципиальной схеме (Рисунок 1.1) представлена в таблице 1.1. Для удобства обозначения ЭРЭ в таблице 1.1 используются такие же, как и на схеме.

Таблица 1.1 – Матрица связей

	X1	X2	X3	X4	DD1	DD2	DD3	DA1	DA2	DA3	DA4	DA5
3/1		0	0	0	9	9	1	0	0	1	0	0
X1	0	0	$\frac{0}{0}$	0	1	1	0	0	0	0	0	0
X2_	0		0	0	0	0	1	0	0	1	0	1
X3_	0	0	0	0	0	0	0	0	0	1	1	1
X4	0	0	0	0	0	0	0	8	0	0	0	0
DD1	9	1		0	0	0	0	0	8	0	0	0
DD2	9	1	0	0	0	0	0	0	0	2	1	1
DD3	1	0	1		8	0	0	0	1	0	1	0
DA1	0	0	0	0		8	0	1	0	1	0	0
DA2	0	0	0	0	0			0	1	0	1	2
DA3	1	0		1	0	0	2	1	0	1	1	1
DA4	0	0	0	1	0	0	1	1	0	1	0	0
DA5	0	0	1		0	0	2017	0	0	2	1	0

Исходная принципиальная схема содержит 12 элементов (вершин). Необходимо сформировать 4 подграфа G1, G2, G3 и G4 с количеством вершин $n_1 = n_2 = n_3 = n_4 = 3$.

2 ИТЕРАЦИОННЫЙ АЛГОРИТМ КОМПОНОВКИ

2.1 Итерация 01

	Т	T			_	Т	Т	T	_	Т	Т	T	_	T	T	T	T	Т
матрица А						II-VI				IV.III		-		VI-III	0	0	-2	
– Исходная матрица А – т _{х внутр}	IV-1	-	1	0	2					Ш-Ш	c	1	7	VI-II	-2	-	-2	
аолица 2.1.1 — Исходн т _{х внеш} — т _{х внутр}	111-11	-	- 0	0	1	II-III	0	000	0 00					VI-I	-	-2	-2	
I ao.	11-11	18	0 0	7	0	II-I	0	10	10	III-I	,		-					
	DAS	6			1	_	-	0	0	t	-	0	0	1000	2	1	0	Г
64	DA4 D	_			0	3	1	0	0	2	-		0	9	1	0	1	8
	-	-	+	-	_		_	-	-		_				0	_	2	
-	DA3	+-				_		0	0	L	2	0		L				
	DA2	-			0		0	0	∞		0	-	0		1	0	0	
G3	DAI	c			0	2	0	∞	0	16	0	0	1	2	0	1	0	9
	DD3	-	-		-		0	0	0		0	0	0		2	1	1	
	DD2	6	-	- 0	0		0	0	0		0	0	8		0	0	0	
G2	DD1	6	-	-	0	20	0	0	0	0	0	∞	0	16	0	0	0	3
	X4	0	0	0	5		0	0	0		0	0	0		1	1	1	
П	X3	0	c	0	>		0	0	0		1	0	0		1	0	1	
1 1	X2	0	0	0		0	0	1	1	20	0	0	0	2	0	0	0	3
1	X1	0	0				0	6	6		1	0	0		1	0	0	
一		X1	X2	X3	3 '	~	X4	DDI	DD2	Σ	DD3	DA1	DA2	Σ	DA3	DA4	DA5	Σ
	- 15				1	દ	70			ξ	3			7	<u>.</u>			

$$\Delta G = \frac{-11}{\Sigma v_{ij}} = \frac{10}{2(20+2+3+16+3+6)} = 10^{-1}$$

Изменение количества внешних связей между подграфами при перестановке вершин x_i и x_j местами определяется выражением (2.2).

$$\Delta m_{xi \leftrightarrow xj} = \left(m_{xi \text{ внеш}} - m_{xi \text{ внутр}} \right) + \left(m_{xj \text{ внеш}} - m_{xj \text{ внутр}} \right) - 2a_{xi xj} > 0 = max, \tag{2.2}$$

где $a_{xi \ xj}$ – количество связей между x_i и x_j элементами схемы.

Таблица 2.1.2 – Подграфы II-I

		Tuomin	553		
	X4	DD1	DD2		
	10	10	10		
X1	18				

Таблица 2.1.3 – Подграфы I-III

		Гаолица 2.1.5					
	X1	X2	X3				
DD3	1	2	l				

Таблица 2.1.4 – Подграфы III-II

		1 doshiqa 2000					
	DD3	DA1	DA2				
DD1	8	-1	15				
DD1	8	15	-1				
DDZ							

Таблица 2.1.5 – Подграфы IV-I

		Гаолица 2.1.5 – Подграфы 1					
	DA3	DA4	DA5				
V2	-1	0	-2				
X3							

Таблица 2.1.6 – Подграфы IV-II

DA4	DA5		
0	-1		
	DA4 0		

Таблица 2.1.7 – Подграфы IV-III

		I domina	дити подграфи		
	DA3	DA4	DA5		
DD3	0	2	0		
DD3					

Исходя из содержания таблиц 2.1.2-2.1.7 необходимо переставить местами вершины X1 и X4, поскольку изменение количества внешних связей при этом максимально ($\Delta m_{x1 \leftrightarrow x4} = 18$).

Scanned by CamScanner

2.2 Итерация 02

$ex1 \leftrightarrow x4$						11 / 11	II-AI	-17	6-	6-	III AI	111-11	4	0		M III	V 1-111	0	C	C	7_
оица А посл	m_{x} внутр	IV-I	, ,			7					111-111	III III	_	7	7	, II	11-11	7-	-2	י, ו	
Гаолица 2.2.1 — Матрица А после $x1 \leftrightarrow x4$	$m_{x \text{ внеш}} - m_{x \text{ внутр}}$	I-III			-	1 111	11-111	-11/	-	-1						V1-1		-	-	-	
Гаолица		I-II	O	,	10		11-11	-18	∞ -	8-	111-1		1	-	-1						
		DA5	<u> </u> -		-	-			0	0		-	_	0	0		Ç	7	_	0	
3	54	DA4	-			0			0	0	-	-	-	_	0	9	-	1	0	1]~
		DA3	-		, -	-	-	- -	0	0		C	7	0	1		C		-	2	
		DA2	c	0		,	c		0	∞		<		1	0		_	•	0	0	
55	3	DA1	0	C		-			∞	0	17	c		0		2	C	, ,	_	0	9
		DD3	0	0	-	•	-	-	0	0		0	,	0	0		2	,	-	1	
ſ		DD2	0	1	0		0		0	0		0	,	0	8		С		0	0	
69	70	DD1	0	1	0	2	0		0	0	36	0		×	0	17	0		0	0	-
		X1	0	0	0		c	0	4	6		L	•	>	0		1	<		0	
	ļ	X3	0	0	0		С		>	0		ŀ	•		0			<		1	
<u> </u>		X2	0	0	0	0	c	-	٠,		2	0			0	1	0	<		0	5
	;	X4	0	0	0		0	0		٥		0			0		1	-	-	-	
			X4	X2	X3	Σ	X1	ועע	100	700	Ω	DD3	144	DAI	DA2	Σ	DA3	740	DA4	DA5	Ω
				5	5				G2					G3)				G4)	

Scanned by CamScanner

Таблица 2.2.2 - Подграфы II-I

	X1	DD1	DD2
X2	-16	-8	-8

Таблица 2.2.3 - Подграфы I-III

	DD3	DA1	DA2		
Х3	0	0	0		

Таблица 2.2.4 – Подграфы II- III

	X1	DD1	DD2
DAI	-10	-10	6
DA2	-10	6	-10

Таблица 2.2.5 – Подграфы III-I

	X4	X2	X3
DD3	1	1	0

Таблица 2.2.6 – Подграфы IV-III

	DA3	DA4	DA5
DD3	0	2	0

Таблица 2.2.7 – Подграфы IV-I

	DA3	DA4	DA5
X4	0	0	0

Исходя из содержания таблиц 2.2.2-2.2.7 необходимо переставить местами вершины DA2 и DD1, поскольку изменение количества внешних связей при этом максимально ($\Delta m_{DD2 \leftrightarrow DD1} = 6$).

$A2 \leftrightarrow DD1$					IV-II	*	-7	-17	IV-III	4	<i>L</i> -	8-	VI-III	-1	0	-2
– Матрица А после L $m_{x \text{ внеш}} - m_{x \text{ внутр}}$	I-VI	3	0	2					III-II	_	-7	-	VI-II	-	-2	-3
Таблица 2.3.1 — Матрица А после $DA2 \leftrightarrow DD1$ $m_{x \text{ внеш}} - m_{x \text{ внугр}}$	I-III	0		1	III-III	1	-7	-17					VI-IV	-	-	1-
аблица 2.3.	I-II	0	-	0	I-II	6-	%	-16	I-III	-	<u>م</u>	<i>\-</i>				
G4	3 DA4 DA5	-	0		S	+	0	\dashv	2		-	-	ر ا	7		
63				+	+	0 1	+	+	11	+		>			1 0 0 0	+
\vdash	0 0	0	0 0 0	-	0 0	0	+	24		+	0	=	1 0	0 0 0	0 0 0	, ,
G1 X4 X2 X3	╁	0 0 0	0 0 0	0	0 0 0	0 0 0	0 1 0	1	0 0	0 0 0	0 1 0	2	1 0 1	1 0 0	1 0 1	5
	X4	X2	X	Σ	X1		DD2	Σ	DD3	DAI	DD1	Σ	DA3	DA4	DA5	Σ
		5	5			િ	<u> </u>			ξ	3			Č	5	

Scanned by CamScanner

	Xl	DA2	
710	-8	-7	-31
X2	-0		
		Таблица	1 2.3.3 – Подграфы I-
	X4	X2	X3
DD3	1	2	0
DD3		Тоблица	а 2.3.4 – Подграфы II
			DD1
	DD3	DA1	-8
X2	2	-7	-6
X3	0	-7	
		Таблица 2	.3.5 – Подграфы IV-
	DA3	DA4	DA5
	-1	2	0
DD3	-1		
		Таблица 2	2.3.6 – Подграфы III
	DD3	DA1	DD1
X1	0	-6	-16
Al			2.7 Hammadari II
			2.3.7 – Подграфы II- DD2
	X1	DA2	-16
DD3	0	-6	-16
DD1	-16	-6	-10
		Tofarmo	2.3.8 – Подграфы IV
	DA3	Таолица DA4	DA5

DA5 DA4 0

X4	0	0	U
Исходя из со вершины DD3 и DA максимально (Δm_{DD3} -	44, поскольку измене	3.2-2.3.8 необходимо ние количества внеш	переставить местами них связей при этом

D3 C D44	100 100						IV-II	-7	-7	17	1	IV-III	2	6-	8-	VI III	7		7-	7-
А после Д		x внутр	IV-I	2	0	3						111-111	-1	8-	-	VI-IV	5	1 (7 "	
1 – Матрипа	E	т внеш	III-II	1	-	0	II-III	0	-7	-17						AI-I	-2	c	1 -	
Таблица 2.4.1 – Матрица А после DD3 ↔ D44			I-II	0	1	0	II-I	6-	% -	-16	I I	1111-1	0	6-	-2					
T	G4		DD3 DA5	0 1	0 0	1	5	1 0	0 0	0 0	3	,	+	+	0 0	3	2 2	0	1 0	10
		┢	JI DAS	-	0	-	+	-		0 0		- -		+	0		0 0	0 2	0 2	
	G3	DA4 DA1 DE	ה ה ה	0 0	+	0 0	ŀ	6 0 0	+	0 0	10	ŀ		+	4	18	1 0 0	1 0	1 0 (3
00	6.5	X1 DA2 DD2	╀	+	+	 -			0	4	34	0 0	-		5	10	+	0 0	0 0 0	2
5	5 5	A4 X2 X3	0 0 0	+	+	c	0 0			- - -	1	1 0 0	0 0 0	+		7	0 0	0 0	1 0 1	5
			X4	X2	X	ω	X	DA2	DD2	-	7	DA4	DA1	DDI	۵	7 (DAS	caa	DAS	Σ
				(5			(25				Ć	3				G4		

Scanned by CamScanner

	Xl	DA2	DD2
X2	-8	-7	-17

Таблица 2.4.3 – Подграфы II-III

		1 do Higa	z riogipaqui ii iii
	X1	DA2	DD2
DD1	-17	-6	-16

Таблица 2.4.4 - Подграфы III-I

	1	
DA4	DA1	DD1
-1	-8	-6
-1	-8	-8
	DA4 -1 -1	DA4 DA1

Таблица 2.4.5 – Подграфы IV-III

DD3	DA5
-2	-2
	DD3 -2

Таблица 2.4.6 – Подграфы IV-I

DA3	DD3	DA5
-1	-1	0
	-1	-1 -1

Итерационный алгоритм компоновки завершен, поскольку в таблицах 2.4.2-2.4.6 содержаться нулевые, либо отрицательные значения изменения количества внешних связей.

2.5 Определение качества компоновки

Вычисление значения качества компоновке согласно формуле (2.1) представлено в выражении (2.5.2).

$$\Delta G = \frac{\Sigma v_{ii}}{\Sigma v_{ij}} = \frac{34 + 18 + 10}{2(1 + 2 + 5 + 10 + 3 + 3)} = \frac{31}{24}.$$
 (2.5.2)