Package 'jacobi'

November 19, 2023

Type Package

Title Jacobi Theta Functions and Related Functions

Version 3.1.1

Description Evaluation of the Jacobi theta functions and related functions: Weierstrass elliptic function, Weierstrass sigma function, Weierstrass zeta function, Klein j-function, Dedekind eta function, lambda modular function, Jacobi elliptic functions, Neville theta functions, Eisenstein series, lemniscate elliptic functions, elliptic alpha function, Rogers-Ramanujan continued fractions, and Dixon elliptic functions. Complex values of the variable are supported.

License GPL-3

URL https://github.com/stla/jacobi

BugReports https://github.com/stla/jacobi/issues

Imports Carlson, Rcpp (>= 1.0.8), rgl, Rvcg

Suggests testthat (>= 3.0.0), elliptic, RcppColors

LinkingTo Rcpp

Config/testthat/edition 3

Encoding UTF-8

RoxygenNote 7.2.3

NeedsCompilation yes

Author Stéphane Laurent [aut, cre],

Mikael Fremling [aut] (author of the original Fortran code for the theta functions)

Maintainer Stéphane Laurent < laurent_step@outlook.fr>

Repository CRAN

Date/Publication 2023-11-18 23:50:03 UTC

2 agm

R topics documented:

agm	Arith	nmetic-geometric mean	
Index			24
	wzeta		23
	O		
	•		
	1		
			20
	1		
	1		18
	lemniscate		
	kleinj		14
	jtheta_ab		13
	jtheta4		12
	jtheta3		11
	jtheta2		11
	J 1		
	1		
	agiii		

Description

Evaluation of the arithmetic-geometric mean of two complex numbers.

Usage

agm(x, y)

Arguments

x, y complex numbers

am 3

Value

A complex number, the arithmetic-geometric mean of x and y.

Examples

```
agm(1, sqrt(2))
2*pi^(3/2)*sqrt(2) / gamma(1/4)^2
```

am

Amplitude function

Description

Evaluation of the amplitude function.

Usage

```
am(u, m)
```

Arguments

u complex number

m square of elliptic modulus, a complex number

Value

A complex number.

```
library(Carlson)
phi <- 1 + 1i
m <- 2
u <- elliptic_F(phi, m)
am(u, m) # should be phi</pre>
```

4 disk2H

CostaMesh

Costa surface

Description

Computes a mesh of the Costa surface.

Usage

```
CostaMesh(nu = 50L, nv = 50L)
```

Arguments

nu, nv

numbers of subdivisions

Value

A triangle **rgl** mesh (object of class mesh3d).

Examples

```
library(jacobi)
library(rgl)

mesh <- CostaMesh(nu = 250, nv = 250)
open3d(windowRect = c(50, 50, 562, 562), zoom = 0.9)
bg3d("#15191E")
shade3d(mesh, color = "darkred", back = "cull")
shade3d(mesh, color = "orange", front = "cull")</pre>
```

disk2H

Disk to upper half-plane

Description

Conformal map from the unit disk to the upper half-plane. The function is vectorized.

Usage

```
disk2H(z)
```

Arguments

Z

a complex number in the unit disk

disk2square 5

Value

A complex number in the upper half-plane.

Examples

```
# map the disk to H and calculate kleinj
f <- function(x, y) {</pre>
  z <- complex(real = x, imaginary = y)</pre>
  K <- rep(NA_complex_, length(x))</pre>
  inDisk <- Mod(z) < 1
  K[inDisk] <- kleinj(disk2H(z[inDisk]))</pre>
  Κ
n <- 1024L
x <- y <- seq(-1, 1, length.out = n)
Grid <- expand.grid(X = x, Y = y)
K <- f(Grid$X, Grid$Y)</pre>
dim(K) \leftarrow c(n, n)
# plot
if(require("RcppColors")) {
  img <- colorMap5(K)</pre>
} else {
  img <- as.raster(1 - abs(Im(K))/Mod(K))
}
opar <- par(mar = c(0, 0, 0, 0))
plot(NULL, xlim = c(0, 1), ylim = c(0, 1), asp = 1,
     axes = FALSE, xaxs = "i", yaxs = "i", xlab = NA, ylab = NA)
rasterImage(img, 0, 0, 1, 1)
par(opar)
```

disk2square

Disk to square

Description

Conformal map from the unit disk to the square $[-1,1] \times [-1,1]$. The function is vectorized.

Usage

```
disk2square(z)
```

Arguments

Z

a complex number in the unit disk

Value

A complex number in the square $[-1, 1] \times [-1, 1]$.

6 Dixon

Examples

```
n <- 70L
r \leftarrow seq(0, 1, length.out = n)
theta <- seq(0, 2*pi, length.out = n+1L)[-1L]
Grid <- transform(</pre>
  expand.grid(R = r, Theta = theta),
  Z = R*exp(1i*Theta)
s <- vapply(Grid$Z, disk2square, complex(1L))</pre>
plot(Re(s), Im(s), pch = ".", asp = 1, cex = 2)
# a more insightful plot ####
r_{-} \leftarrow seq(0, 1, length.out = 10L)
theta_ <- seq(0, 2*pi, length.out = 33)[-1L]
  NULL, x \lim = c(-1, 1), y \lim = c(-1, 1), asp = 1, x lab = "x", y lab = "y"
)
for(r in r_) {
  theta <- sort(
    c(seq(0, 2, length.out = 200L), c(1/4, 3/4, 5/4, 7/4))
  z <- r*(cospi(theta) + 1i*sinpi(theta))</pre>
  s <- vapply(z, disk2square, complex(1L))</pre>
  lines(Re(s), Im(s), col = "blue", lwd = 2)
}
for(theta in theta_) {
  r \leftarrow seq(0, 1, length.out = 30L)
  z <- r*exp(1i*theta)</pre>
  s <- vapply(z, disk2square, complex(1L))</pre>
  lines(Re(s), Im(s), col = "green", lwd = 2)
}
```

Dixon

Dixon elliptic functions

Description

The Dixon elliptic functions.

Usage

sm(z)

cm(z)

Arguments

Z

a real or complex number

EisensteinE 7

Value

A complex number.

Examples

```
# cubic Fermat curve x^3+y^3=1
pi3 <- beta(1/3, 1/3)
epsilon <- 0.7
t_ <- seq(-pi3/3 + epsilon, 2*pi3/3 - epsilon, length.out = 100)
pts <- t(vapply(t_, function(t) {
   c(Re(cm(t)), Re(sm(t)))
}, FUN.VALUE = numeric(2L)))
plot(pts, type = "1", asp = 1)</pre>
```

EisensteinE

Eisenstein series

Description

Evaluation of Eisenstein series with weight 2, 4 or 6.

Usage

```
EisensteinE(n, q)
```

Arguments

n the weight, can be 2, 4 or 6

q nome, complex number with modulus smaller than one

Value

A complex number, the value of the Eisenstein series.

ellipticAlpha

Elliptic alpha function

Description

Evaluates the elliptic alpha function.

```
ellipticAlpha(z)
```

8 eta

Arguments

z a complex number

Value

A complex number.

References

Weisstein, Eric W. "Elliptic Alpha Function".

ellipticInvariants

Elliptic invariants

Description

Elliptic invariants from half-periods.

Usage

```
ellipticInvariants(omega1omega2)
```

Arguments

omega1omega2 the half-periods, a vector of two complex numbers

Value

The elliptic invariants, a vector of two complex numbers.

eta

Dedekind eta function

Description

Evaluation of the Dedekind eta function.

Usage

eta(tau)

Arguments

tau

a vector of complex numbers with strictly positive imaginary parts

halfPeriods 9

Value

A vector of complex numbers.

Examples

```
eta(2i)
gamma(1/4) / 2^(11/8) / pi^(3/4)
```

halfPeriods

Half-periods

Description

Half-periods from elliptic invariants.

Usage

```
halfPeriods(g2g3)
```

Arguments

g2g3

the elliptic invariants, a vector of two complex numbers

Value

The half-periods, a vector of two complex numbers.

jellip

Jacobi elliptic functions

Description

Evaluation of the Jacobi elliptic functions.

```
jellip(kind, u, tau = NULL, m = NULL)
```

jtheta1

Arguments

kind	a string with two characters among "s", "c", "d" and "n"; this string specifies the function: the two letters respectively denote the basic functions sn,cn,dn and 1, and the string specifies the ratio of two such functions, e.g. $ns=1/sn$ and $cd=cn/dn$
u	a complex number, vector or matrix
tau	complex number with strictly positive imaginary part; it is related to m and only one of them must be supplied
m	the "parameter", square of the elliptic modulus; it is related to tau and only one of them must be supplied

Value

A complex number, vector or matrix.

Examples

```
u \leftarrow 2 + 2i tau \leftarrow 1i jellip("cn", u, tau)^2 + jellip("sn", u, tau)^2 # should be 1
```

jtheta1

Jacobi theta function one

Description

Evaluates the first Jacobi theta function.

Usage

```
jtheta1(z, tau = NULL, q = NULL) ljtheta1(z, tau = NULL, q = NULL)
```

Arguments

Z	complex number, vector, or matrix
tau	lattice parameter, a complex number with strictly positive imaginary part; the two complex numbers tau and q are related by $q = exp(1i*pi*tau)$, and only one of them must be supplied
q	the nome, a complex number whose modulus is strictly less than one, but not

Value

A complex number, vector or matrix; jtheta1 evaluates the first Jacobi theta function and ljtheta1 evaluates its logarithm.

jtheta2

Examples

```
jtheta1(1 + 1i, q = exp(-pi/2))
```

jtheta2

Jacobi theta function two

Description

Evaluates the second Jacobi theta function.

Usage

```
jtheta2(z, tau = NULL, q = NULL) ljtheta2(z, tau = NULL, q = NULL)
```

Arguments

Z	complex number, vector, or matrix
tau	lattice parameter, a complex number with strictly positive imaginary part; the
	two complex numbers tau and q are related by $q = exp(1i*pi*tau)$, and only
	one of them must be supplied

q the nome, a complex number whose modulus is strictly less than one, but not

zero

Value

A complex number, vector or matrix; jtheta2 evaluates the second Jacobi theta function and ljtheta2 evaluates its logarithm.

Examples

```
jtheta2(1 + 1i, q = exp(-pi/2))
```

jtheta3

Jacobi theta function three

Description

Evaluates the third Jacobi theta function.

```
jtheta3(z, tau = NULL, q = NULL)
ljtheta3(z, tau = NULL, q = NULL)
```

12 jtheta4

Arguments

Z	complex number, vector, or matrix
tau	lattice parameter, a complex number with strictly positive imaginary part; the two complex numbers tau and q are related by $q = \exp(1i*pi*tau)$, and only one of them must be supplied
q	the nome, a complex number whose modulus is strictly less than one, but not zero

Value

A complex number, vector or matrix; jtheta3 evaluates the third Jacobi theta function and ljtheta3 evaluates its logarithm.

Examples

```
jtheta3(1 + 1i, q = exp(-pi/2))
```

jtheta4

Jacobi theta function four

Description

Evaluates the fourth Jacobi theta function.

Usage

```
jtheta4(z, tau = NULL, q = NULL)
ljtheta4(z, tau = NULL, q = NULL)
```

Arguments

Z	complex number, vector, or matrix
tau	lattice parameter, a complex number with strictly positive imaginary part; the two complex numbers tau and q are related by $q = exp(1i*pi*tau)$, and only one of them must be supplied
q	the nome, a complex number whose modulus is strictly less than one, but not zero

Value

A complex number, vector or matrix; jtheta4 evaluates the fourth Jacobi theta function and ljtheta4 evaluates its logarithm.

```
jtheta4(1 + 1i, q = exp(-pi/2))
```

jtheta_ab 13

		- 1
ıtr	neta	an

Jacobi theta function with characteristics

Description

Evaluates the Jacobi theta function with characteristics.

Usage

```
jtheta_ab(a, b, z, tau = NULL, q = NULL)
```

Arguments

a, b	the characteristics, two complex numbers
Z	complex number, vector, or matrix
tau	lattice parameter, a complex number with strictly positive imaginary part; the two complex numbers tau and q are related by $q = \exp(1i*pi*tau)$, and only one of them must be supplied
q	the nome, a complex number whose modulus is strictly less than one, but not zero

Details

The Jacobi theta function with characteristics generalizes the four Jacobi theta functions. It is denoted by $\theta[a,b](z|\tau)$. One gets the four Jacobi theta functions when a and b take the values 0 or 0.5:

```
if a=b=0.5 then one gets \vartheta_1(z|\tau) if a=0.5 and b=0 then one gets \vartheta_2(z|\tau) if a=b=0 then one gets \vartheta_3(z|\tau) if a=0 and b=0.5 then one gets \vartheta_4(z|\tau)
```

Both $\theta[a,b](z+\pi|\tau)$ and $\theta[a,b](z+\pi\tau|\tau)$ are equal to $\theta[a,b](z|\tau)$ up to a factor - see the examples for the details.

Value

A complex number, vector or matrix, like z.

Note

Different conventions are used in the book cited as reference.

References

Hershel M. Farkas, Irwin Kra. *Theta Constants, Riemann Surfaces and the Modular Group: An Introduction with Applications to Uniformization Theorems, Partition Identities and Combinatorial Number Theory.* Graduate Studies in Mathematics, volume 37, 2001.

14 kleinj

Examples

```
a <- 2 + 0.3i
b <- 1 - 0.6i
z <- 0.1 + 0.4i
tau <- 0.2 + 0.3i
jab <- jtheta_ab(a, b, z, tau)
# first property ####
jtheta_ab(a, b, z + pi, tau) # is equal to:
jab * exp(2i*pi*a)
# second property ####
jtheta_ab(a, b, z + pi*tau, tau) # is equal to:
jab * exp(-1i*(pi*tau + 2*z + 2*pi*b))</pre>
```

kleinj

Klein j-function and its inverse

Description

Evaluation of the Klein j-invariant function and its inverse.

Usage

```
kleinj(tau, transfo = FALSE)
kleinjinv(j)
```

Arguments

tau a complex number with strictly positive imaginary part, or a vector or matrix of such complex numbers; missing values allowed

transfo
Boolean, whether to use a transformation of the values of tau close to the real line; using this option can fix some failures of the computation (at the cost of speed), e.g. when the algorithm reaches the maximal number of iterations

j
a complex number

Value

A complex number, vector or matrix.

Note

The Klein-j function is the one with the factor 1728.

```
( j <- kleinj(2i) )
66^3
kleinjinv(j)</pre>
```

lambda 15

lambda	Lambda modular function
--------	-------------------------

Description

Evaluation of the lambda modular function.

Usage

```
lambda(tau, transfo = FALSE)
```

Arguments

tau a complex number with strictly positive imaginary part, or a vector or matrix of

such complex numbers; missing values allowed

transfo Boolean, whether to use a transformation of the values of tau close to the real

line; using this option can fix some failures of the computation (at the cost of speed), e.g. when the algorithm reaches the maximal number of iterations

Value

A complex number, vector or matrix.

Note

The lambda function is the square of the elliptic modulus.

Examples

```
x \leftarrow 2 lambda(1i*sqrt(x)) + lambda(1i*sqrt(1/x)) # should be one
```

 $lemniscate \qquad \qquad Lemniscate \ functions$

Description

Lemniscate sine, cosine, arcsine, arccosine, hyperbolic sine, and hyperbolic cosine functions.

nome

Usage

sl(z)

cl(z)

asl(z)

acl(z)

slh(z)

clh(z)

Arguments

z

a real number or a complex number

Value

A complex number.

Examples

```
sl(1+1i) * cl(1+1i) # should be 1
## | the lemniscate ####
# lemniscate parameterization
p <- Vectorize(function(s) {
    a <- Re(cl(s))
    b <- Re(sl(s))
    c(a, a * b) / sqrt(1 + b*b)
})
# lemnniscate constant
ombar <- 2.622 # gamma(1/4)^2 / (2 * sqrt(2*pi))
# plot
s_ <- seq(0, ombar, length.out = 100)
lemniscate <- t(p(s_))
plot(lemniscate, type = "1", col = "blue", lwd = 3)
lines(cbind(lemniscate[, 1L], -lemniscate[, 2L]), col="red", lwd = 3)</pre>
```

nome

Nome

Description

The nome in function of the parameter m.

```
nome(m)
```

Arguments

m

the parameter, square of elliptic modulus, real or complex number

Value

A complex number.

Examples

nome(-2)

 RR

Rogers-Ramanujan continued fraction

Description

Evaluates the Rogers-Ramanujan continued fraction.

Usage

RR(q)

Arguments

q

the nome, a complex number whose modulus is strictly less than one, and which is not zero

Value

A complex number

Note

This function is sometimes denoted by R.

18 square2disk

RRa

Alternating Rogers-Ramanujan continued fraction

Description

Evaluates the alternating Rogers-Ramanujan continued fraction.

Usage

RRa(q)

Arguments

q

the nome, a complex number whose modulus is strictly less than one, and which is not zero

Value

A complex number

Note

This function is sometimes denoted by S.

square2disk

Square to disk

Description

Conformal map from the unit square to the unit disk. The function is vectorized.

Usage

```
square2disk(z)
```

Arguments

Z

a complex number in the unit square $[0,1] \times [0,1]$

Value

A complex number in the unit disk.

square2H 19

Examples

```
x <- y <- seq(0, 1, length.out = 25L)
Grid <- transform(
   expand.grid(X = x, Y = y),
   Z = complex(real = X, imaginary = Y)
)
u <- square2disk(Grid$Z)
plot(u, pch = 19, asp = 1)</pre>
```

square2H

Square to upper half-plane

Description

Conformal map from the unit square to the upper half-plane. The function is vectorized.

Usage

```
square2H(z)
```

Arguments

z

a complex number in the unit square $[0,1] \times [0,1]$

Value

A complex number in the upper half-plane.

```
n <- 1024L
x <- y <- seq(0.0001, 0.9999, length.out = n)
Grid <- transform(</pre>
  expand.grid(X = x, Y = y),
  Z = complex(real = X, imaginary = Y)
K <- kleinj(square2H(Grid$Z))</pre>
dim(K) \leftarrow c(n, n)
# plot
if(require("RcppColors")) {
  img <- colorMap5(K)</pre>
} else {
  img <- as.raster((Arg(K) + pi)/(2*pi))
opar <- par(mar = c(0, 0, 0, 0))
plot(NULL, xlim = c(0, 1), ylim = c(0, 1), asp = 1,
     axes = FALSE, xaxs = "i", yaxs = "i", xlab = NA, ylab = NA)
rasterImage(img, 0, 0, 1, 1)
par(opar)
```

20 wp

theta.s

Neville theta functions

Description

Evaluation of the Neville theta functions.

Usage

```
theta.s(z, tau = NULL, m = NULL) theta.c(z, tau = NULL, m = NULL) theta.n(z, tau = NULL, m = NULL) theta.d(z, tau = NULL, m = NULL)
```

Arguments

z	a complex number, vector, or matrix
tau	complex number with strictly positive imaginary part; it is related to ${\bf m}$ and only one of them must be supplied
m	the "parameter", square of the elliptic modulus; it is related to tau and only one of them must be supplied

Value

A complex number, vector or matrix.

wp

Weierstrass elliptic function

Description

Evaluation of the Weierstrass elliptic function and its derivatives.

```
wp(z, g = NULL, omega = NULL, tau = NULL, derivative = 0L)
```

wpinv 21

Arguments

Z	complex number, vector or matrix
g	the elliptic invariants, a vector of two complex numbers; only one of ${\sf g}$, omega and tau must be given
omega	the half-periods, a vector of two complex numbers; only one of g, omega and tau must be given
tau	the half-periods ratio; supplying tau is equivalent to supply omega = $c(1/2, tau/2)$
derivative	differentiation order, an integer between 0 and 3

Value

A complex number, vector or matrix.

Examples

```
omega1 <- 1.4 - 1i
omega2 <- 1.6 + 0.5i
omega <- c(omega1, omega2)
e1 <- wp(omega1, omega = omega)
e2 <- wp(omega2, omega = omega)
e3 <- wp(-omega1-omega2, omega = omega)
e1 + e2 + e3 # should be 0</pre>
```

wpinv

Inverse of Weierstrass elliptic function

Description

Evaluation of the inverse of the Weierstrass elliptic function.

Usage

```
wpinv(w, g = NULL, omega = NULL, tau = NULL)
```

Arguments

W	complex number
g	the elliptic invariants, a vector of two complex numbers; only one of g, omega and tau must be given
omega	the half-periods, a vector of two complex numbers; only one of g, omega and tau must be given
tau	the half-periods ratio; supplying tau is equivalent to supply omega = $c(1/2, tau/2)$

22 wsigma

Value

A complex number.

Examples

```
library(jacobi)
omega <- c(1.4 - 1i, 1.6 + 0.5i)
w <- 1 + 1i
z <- wpinv(w, omega = omega)
wp(z, omega = omega) # should be w</pre>
```

wsigma

Weierstrass sigma function

Description

Evaluation of the Weierstrass sigma function.

Usage

```
wsigma(z, g = NULL, omega = NULL, tau = NULL)
```

Arguments

Z	a complex number, vector or matrix
g	the elliptic invariants, a vector of two complex numbers; only one of g, omega and tau must be given
omega	the half-periods, a vector of two complex numbers; only one of g, omega and tau must be given
tau	the half-periods ratio; supplying tau is equivalent to supply omega = $c(1/2, tau/2)$

Value

A complex number, vector or matrix.

```
wsigma(1, g = c(12, -8))
# should be equal to:
sin(1i*sqrt(3))/(1i*sqrt(3)) / sqrt(exp(1))
```

wzeta 23

wzeta	Weierstrass zeta function	

Description

Evaluation of the Weierstrass zeta function.

Usage

```
wzeta(z, g = NULL, omega = NULL, tau = NULL)
```

Arguments

z	complex number, vector or matrix
g	the elliptic invariants, a vector of two complex numbers; only one of g, omega and tau must be given
omega	the half-periods, a vector of two complex numbers; only one of ${\sf g}$, omega and tau must be given
tau	the half-periods ratio; supplying tau is equivalent to supply $omega = c(1/2, tau/2)$

Value

A complex number, vector or matrix.

```
# Mirror symmetry property:
z <- 1 + 1i
g <- c(1i, 1+2i)
wzeta(Conj(z), Conj(g))
Conj(wzeta(z, g))</pre>
```

Index

acl (lemniscate), 15	RRa, 18
agm, 2 am, 3 asl (lemniscate), 15	sl (lemniscate), 15 slh (lemniscate), 15
cl (lemniscate), 15 clh (lemniscate), 15	sm(Dixon),6 square2disk,18 square2H,19
cm (Dixon), 6 CostaMesh, 4	theta.c (theta.s), 2 theta.d (theta.s), 2
disk2H, 4 disk2square, 5	theta.n(theta.s), 2 theta.s, 20
Dixon, 6 EisensteinE, 7 ellipticAlpha, 7 ellipticInvariants, 8 eta, 8	wp, 20 wpinv, 21 wsigma, 22 wzeta, 23
halfPeriods,9	
jellip, 9 jtheta1, 10 jtheta2, 11 jtheta3, 11 jtheta4, 12 jtheta_ab, 13	
kleinj, 14 kleinjinv (kleinj), 14	
lambda, 15 lemniscate, 15 ljtheta1 (jtheta1), 10 ljtheta2 (jtheta2), 11 ljtheta3 (jtheta3), 11 ljtheta4 (jtheta4), 12	
nome, 16	
RR, 17	