(19) World Intellectual Property Organization International Bureau

macona Baroas

: 1818 ANNOEN DE SOUR HAN GOAR GOARD DOAR IN HER BOARD GOARD DE LE GOARD DOAR HAN DE GOARD DOAR HAN DE LE GOARD

(43) International Publication Date 4 November 2004 (04.11.2004)

PCT

(10) International Publication Number WO 2004/095887 A1

(51) International Patent Classification⁷: G01R 19/00

H05B 33/08,

(21) International Application Number:

PCT/GB2004/001670

(22) International Filing Date: 16 April 2004 (16.04.2004)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 0308815.0

(71) Applicants and

16 April 2003 (16.04.2003) GB

(72) Inventors: LANGMEAD, Peter [GB/GB]; 8 Squires Bridge Road, Shepperton, Middlesex TW17 0LB (GB). OSBORNE, Raymond [GB/GB]; Martlets, Isle of Oxney, Kent TN30 7NT (GB).

(74) Agents: MERRIFIELD, Sarah, Elizabeth et al.; Boult Wade Tennant, Verulam Gardens, 70 Gray's Inn Road, London WC1X 8BT (GB).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declaration under Rule 4.17:

of inventorship (Rule 4.17(iv)) for US only

Published:

with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: APPARATUS AND METHOD FOR OPERATING CURRENT DEPENDENT ELECTRONIC DEVICES

(57) Abstract: An apparatus for operating one or more electronic devices requiring a given current is described, which comprises a regulator device (10) providing voltage output, and a feedback loop having a reference device connected to the voltage output and requiring the same current as the electronic devices, a measuring and conversion device operable to measure the current through the reference device and convert it to a voltage value and return it to the regulator device (10), wherein the regulator device (10) is operable to adjust the output voltage in response to the voltage value until the measured current is equal to the given current required.

2004/095887 A1

WO 2004/095887

10/553567JC12 Rec'd PCT/PTC 1 7 OCT 2005

APPARATUS AND METHOD FOR OPERATING CURRENT DEPENDENT ELECTRONIC DEVICES

The present invention relates to an apparatus and method for operating one or more electronic devices which require a constant given current. In particular, the invention concerns operating a number of current devices such as light emitting diodes (LEDs) mounted on conductive strip to provide an elongate lighting strip.

10

Such lighting strips are well-known for example to mark the way to emergency exits on aircraft. They comprise a plurality of LEDs mounted at intervals along a conductive strip encased in plastic. LEDs, in common with a number of other electrical devices, are current devices, that is they rely on a constant current to operate, rather than a constant voltage.

The life and brightness of a LED can be maximised by accurately controlling the current.

20

30

Known lighting strips have a driver apparatus which is designed to operate a given number and a particular type of LED. If the driver is used on a strip having a different number of LEDs or a different type of LED, then the drive apparatus must be completely reset which is a time-consuming, awkward and inefficient process.

The present invention provides an apparatus for operating one or more electronic devices requiring a given current, comprising a regulator device providing a voltage output, and a feedback loop having a reference device connected to the voltage

- 2 -

output and requiring the same current as the electronic devices, a measuring and conversion device operable to measure the current through the reference device and convert it to a voltage value and return it to the regulator device, wherein the regulator device is operable to adjust the output voltage in response to the voltage value until the measured current is equal to the given current required.

In the present invention, use of a reference device of the same type as the electronic device that is to be operated allows the regulator automatically to adjusted to produce an absolute voltage of the appropriate level to drive the remaining devices. In this way, the apparatus is able to produce the correct voltage, automatically compensating for both short and long term drift, for any type and number of electronic devices being used.

20 Preferably, the measurement and conversion device consists of a resistor and a current monitor.

The electronic devices are typically light emitting diodes, mounted on a conductive strip having a plurality of conductive elements.

The electronic devices may be parallel connected devices which are polarity sensitive, and the regulator may be connected to a three phase bridge to operate the conductive elements in the strip, and a micro controller operable to control the sequence in which the LEDs on the strip are operated.

- 3 -

Preferably, the regulator comprises a steady state DC device.

In a further aspect, the invention also provides apparatus for emitting electromagnetic radiation (EMR) comprising a plurality of electronic devices operable to produce EMR when provided with a given current mounted on a conductive strip which is connected to an apparatus of the type described above.

10

20

25

The present invention also provides a method for operating one or more electronic devices requiring a given current, comprising the steps of providing a voltage output, supplying the voltage output to a reference device requiring the same current as the electronic devices, measuring the current in the reference device, converting the measured current to a voltage value and adjusting the voltage output in response to the voltage value until the measured current in the reference device is equal to the given current required by the electronic devices.

Preferably, the method involves initially providing a voltage output sufficient to produce a current lower than the given current and gradually increasing the voltage output until the given current is obtained in the reference device.

The present invention will now be described in more detail, by way of example only, with reference to Figure 1, which is a circuit diagram of one embodiment of apparatus in accordance with the present invention.

- 4 -

The principal feature of the present invention is that an electronic device of the same type as those to be operated is incorporated into a feedback loop of the apparatus. As shown in Figure 1 a regulator device 10 is connected to the electronic devices to be driven. regulator 10 is preferably, but not exclusively, a steady state DC device for accuracy. In this example, the electronic devices are LEDs (not shown) mounted on a conductive strip having three conductors 12. A threephase bridge 14 is connected between the regulator device 10 and the conductors 12. The regulator 10 may also be connected to a micro controller 16, itself connected to the three-phase bridge 14, for example to control the sequence of operation of the LEDs in the conductive strip. 15

The regulator 10 is also provided with a feedback loop. The voltage output from the regulator 10 also passes through a current measuring device such as a resistor 18 and a reference LED 20 of the same type as those in the strip which are to be driven. The resistor 18 is also connected to a current monitor device 22. Together the resistor 18 and the current monitor 22 act to measure the current passing through the reference LED This is passed back 20 and to convert it to a voltage. to the regulator 10. Since the desired current for the LEDs in the conductive strip is known from the outset and the reference LED 20 is of the same type as the LEDs to be operated, this feedback loop allows the voltage output from the regulator 10 to be adjusted to the appropriate level so that the desired current is achieved.

2.5

- 5 -

In operation, the regulator 10 will initially be set to produce a voltage output which is lower than that required to provide the desired current. The current through the reference LED 20 is then measured as the voltage output is gradually increased until the desired current through the reference LED 20 is achieved. At this point, the voltage output from the regulator 10 will be at the right level to operate the LEDs in the lighting strip in an optimum manner.

10

Another important feature of the lighting strip of the preferred embodiment of the present invention is that it is directly driven by a controlled voltage source thus removing the requirement for resistors within the lighting strip itself. Removal of the resistors from the lighting strip reduces the capacity for the lighting strip to heat up and consequently reduces the power consumption of the lighting strip.

Certain applications may also require minimisation of Electro Magnetic Compatability (EMC) interference for use in particularly sensitive environments. The present invention can significantly reduce such interference by providing a standing DC voltage just below the threshold level required to operate the LEDs and superimposing small pulses which raise the voltage above the threshold in order to switch the LEDs on. The switching voltage is thus a fraction of the full operating voltage then and the electro magnetic interference can be significantly reduced. For optimum performance the voltage pulses can have soft edges.

- 6 -

It will be appreciated that a number of modifications and variations to the details described above can be made. For example, if the lighting strip includes LEDs of different colours, the regulator 10 may be provided with separate feedback loops with a reference LED of each colour and the micro controller may be used to control which LEDs are to operate at a given time. In addition, it will be appreciated that the present invention is not restricted to use with conductive strips having LEDs, or indeed to conductive strips having devices which emit visible light. The invention is equally applicable to use with devices producing other wavelengths in the electromagnetic spectrum, whether producing visible light or not.

15

The invention provides a simple and efficient manner in which to operate current devices, which is easily adaptable to operating different types and numbers of devices.

WO 2004/095887

CLAIMS

1. Apparatus for operating one or more electronic devices requiring a given current, comprising a regulator device providing voltage output, and a feedback loop having a reference device connected to the voltage output and requiring the same current as the electronic devices, a measuring and conversion device operable to measure the current through the reference device and convert it to a voltage value and return it to the regulator device, wherein the regulator device is operable to adjust the output voltage in response to the voltage value until the measured current is equal to the given current required.

- 7 -

PCT/GB2004/001670

15

- 2. Apparatus as claimed in claim 1, wherein the measurement and conversion device comprises a resistor and a current monitor.
- 20 3. Apparatus as claimed in claim 1 or claim 2, wherein the electronic devices comprises light emitting diodes mounted on a conductive strip having a plurality of conductive elements.
- 25 4. Apparatus as claimed in any preceding claim, wherein the electronic devices are parallel connected and polarity sensitive, and the regulator is connected to a three-phase bridge and a micro controller operable to control the sequence in which the LEDs on the conductive strip are operated.

- 8 -

- 5. Apparatus as claimed in any of the preceding claim, wherein the regulator device comprises a steady state DC device.
- 5 6. Apparatus for emitting electromagnetic radiation, comprising a plurality of electronic devices operable to emit electromagnetic radiation when provided with a given current mounted on a conductive strip and connected to apparatus as claimed in any claims 1 to 5.

10

15

20

25

- 7. A method for operating one or more electronic devices requiring a given current comprising the steps of providing a voltage output, supplying the voltage output to a reference device requiring the same current as the electronic devices measuring the current in the reference device, converting the measured current to a voltage value, and adjusting the voltage output in response to the voltage value until the measured current in the reference device is equal to the given current required by the electronic devices.
 - 8. A method as claimed in claim 7, further comprising the step of initially providing a voltage output sufficient to provide a current lower than the given current and gradually increasing the voltage output until the measured current in the reference device is equal to the given current.
- 9. Apparatus for operating one of more electronic
 30 devices requiring a given current substantially as
 hereinbefore described and with reference to the
 accompanying drawing.

- 9 -

10. Apparatus for producing electromagnetic radiation substantially as hereinbefore described and with reference to the accompanying drawing.

5

11. A method for operating electronic devices requiring given current as substantially hereinbefore described and with reference to the accompanying drawing.

1/1

FIG.1

INTERNATIONAL SEARCH REPORT

ational Application No
/GB2004/001670

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 H05B33/08 G01R G01R19/00 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 7 HO5B GO1R Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the International search (name of data base and, where practical, search terms used) EPO-Internal, WPI Data C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages EP 0 480 650 A (HEWLETT PACKARD CO) 1-3,5-7,χ 15 April 1992 (1992-04-15) 9-11 column 5, line 17 - column 8, line 1; figure 2 US 2002/014862 A1 (FREGOSO GILBERT) 9-11 X 7 February 2002 (2002-02-07) 1,2,7 paragraphs '0017! - '0019!; claim 6; Α figure 2 US 4 952 949 A (UEBBING JOHN J) 9-11 X 28 August 1990 (1990-08-28) column 3, line 4 - column 6, line 60; 1,7,8 Α figure 1 Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special categories of cited documents: 'T' later document published after the International filling date or priority date and not in conflict with the application but clied to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance *E* earlier document but published on or after the international "X" document of particular relevance; the claimed invention filing date cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) 'Y' document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-ments, such combination being obvious to a person skilled "O" document referring to an oral disclosure, use, exhibition or other means in the art. *P* document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 29/07/2004 21 July 2004 Authorized officer Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Waters, D Fax: (+31-70) 340-3016

INTERNATIONAL SEARCH REPORT

roughlestion No

		1-CT/GB2004/0016/0
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	Relevant to claim No.
Category *	Citation of document, with Indication, where appropriate, of the relevant passages	relevant to claim No.
A	GB 2 139 340 A (BOSCH GMBH ROBERT) 7 November 1984 (1984-11-07) page 2, line 61 - page 3, line 20; figures 3,4	3,4,6
А	US 4 271 408 A (KISHI YASUNORI ET AL) 2 June 1981 (1981-06-02) column 8, line 16 - column 9, line 4; figures 9,10	3,4,6

INTERNATIONAL SEARCH REPORT

La :/GB2004/001670

			/ @D2004/ 0010/ 0		
Patent document cited in search report		Publication date		Patent family member(s)	Publication date
EP 0480650	A	15-04-1992	US DE DE EP HK JP	5099192 A 69123544 D1 69123544 T2 0480650 A1 91897 A 6340114 A	24-03-1992 23-01-1997 10-04-1997 15-04-1992 01-08-1997 13-12-1994
US 2002014862	A1	07-02-2002	US US US AU WO	2004051482 A1 2002047649 A1 6611110 B1 2963201 A 0152605 A2	18-03-2004 25-04-2002 26-08-2003 24-07-2001 19-07-2001
US 4952949	Α	28-08-1990	NONE		
GB 2139340	A	07-11-1984	DE FR JP JP JP	3315785 A1 2545195 A1 1741955 C 4029575 B 59209931 A	08-11-1984 02-11-1984 15-03-1993 19-05-1992 28-11-1984
US 4271408	A	02-06-1981	JP JP JP JP JP JP JP	1194482 C 55053799 A 58026079 B 55053390 A 1194483 C 55053800 A 58026080 B 55053391 A 2941634 A1	12-03-1984 19-04-1980 31-05-1983 18-04-1980 12-03-1984 19-04-1980 31-05-1983 18-04-1980