

Vorlesung: Statistik I

Prof. Dr. Simone Abendschön

3. Vorlesung am 2.11.23

Video:

- Kenntnis und Verständnis des Begriffs "Statistik"
- Wiederholung statistischer Grundbegriffe
- Kenntnis und Anwendung von Skalenniveaus

Plan für heute

- Univariate Statistik 1:
 - Urliste/ Datenmatrix
 - Häufigkeiten in der Statistik (und Notation)
- Übungen Grundbegriffe letzte Woche

- Verständnis des Aufbaus einer Datenmatrix
- Grundlegende Kenntnis tabellarischer und grafischer Darstellungsformen von univariaten statistischen Informationen
- Kenntnis des Summenzeichens

Forschungsprozess, "klassisch"

-Datenerhebung:

- Beispiel: Studierende wurden mit einem standardisierten Fragebogen über verschiedene Aspekte ihres Studiums befragt
- Wie liegen uns die Daten vor?

Vom Fragebogen zur Datenmatrix

- Datenerhebung:

- Beispiel: Studierende wurden mit standardisierten Fragebogen über verschiedene Aspekte ihres Studiums befragt
- Wie liegen uns die Daten vor?
- → die Daten liegen als Antworten zu den Fragen des Fragebogens vor

Wh: zentrale Begriffe

Kurzes Quiz über Pingo

- Was sind (sozialwissenschaftliche) Daten?
- Was ist eine Grundgesamtheit bzw. eine Population?
- Was ist eine Stichprobe?
- Was sind Beobachtungseinheiten bzw. Merkmalsträger?
- Was ist ein Merkmal? Was ist eine Variable?
- Was ist eine Messung?
- Welche Skalenniveaus werden i.d.R. unterschieden?

Wh: zentrale Begriffe

Kurzes Quiz über Pingo

https://pingo.coactum.de

Zugang: 360336

Vom Fragebogen zur Datenmatrix

Auflistung und Erfassung der Daten → Urliste /Datenmatrix

- Urliste:
 - Entsteht, wenn nacheinander für jede Beobachtungseinheit notiert wird, welchen Wert sie bei einer Variablen aufweist → Rohdaten
 - Häufig wird der Begriff Urliste auch mit der Datenmatrix gleichgesetzt.
 - In der Urliste sind dann die jeweiligen Merkmale eingetragen und die zugehörigen Ausprägungen Zeile für Zeile festgehalten

Vom Fragebogen zur Datenmatrix

Datenerfassung in Datenmatrix (Excel, Statistikprogramm)

- Die Daten aus allen Fragebogen werden in Form einer Datenmatrix aufbereitet:
 - Für jedes erfragte Merkmal wird dazu eine Spalte benutzt und das Merkmal mit einer Kurzbezeichnung (z.B. V1) charakterisiert
 - Merkmalsausprägungen werden als Zahlenwerte erfasst (kodiert)
 - Die Antworten der Befragten werden in je einer Zeile festgehalten; die Rohdaten einer Datenerhebung werden kodiert, d.h. die Ausprägungen der Merkmale werden als Zahlen dargestellt
 - Index: Zur Kennzeichnung der Zeilen wird dem Datensatz eine Indexspalte vorangestellt (laufende Nummer)

V1	V2 (Geschlecht)	V2 (Alter)	V3 (Schulabschluss)	V4 (Lebens- zufriedenheit)
001	1	24	1	2
002	2	34	3	6
003	2	45	2	1
004	1	67	2	7

V1	V2 (Geschlecht)	V2 (Alter)	V3 (Schulabschluss)	V4 (Lebens- zufriedenheit)
001	1	24	1	2
002	2	34	3	6
003	2	45	2	1
004	1	67	2	7

Wie könnten die dazugehörigen Fragen und Antwortmöglichkeiten konkret lauten?

<i>></i> ■	<u>a</u> <u>e</u>	50	<u> </u>	¶ů	# 4	= S	Ø •				
0:											
	VPN	Expertise	Redundanz	FAM1_	FAM2_	behalten	verständnis			behalten	verständnis C
				mw	mw	_phase1	_phase1	_phase2	_phase2	_gesamt	
1	1	0		4,56		4	4	10	8	14	12
2	2	0		3,28	3,94	1	0	0	1	1	1
3	3	0	1	4,00	3,33	0	2	2	0	2	2
4	4	1	1	3,50	3,50	4	2	10	6	14	8
5	5	1	0	3,78	3,56	4	4	10	7	14	11
6	6	0	0	3,89	3,56	5	4	10	8	15	12
7	7	1	0	4,17	4,44	4	3	10	8	14	11
8	8	0	1	3,39	4,00	3	0	8	8	11	8
9	9	0	1	4,06	3,89	4	4	10	8	14	12
10	10	0	0	3,39	3,22	3	1	7	5	10	6
11	11		1	3,33	3,00	2	1	5	7	7	8
12	12	1	1	2,94	3,72	0	3	4	3	4	6
13	13	1	0	3,33	3,22	4	3	9	8	13	11
14	14	0	0	3,28	3,39	2	2	9	7	11	9
15	15	1	0	3,39	3,33	3	1	9	9	12	10
16	16	0	1	3,72	3,22	3	2	9	8	12	10
17	17	1	1	4,00	3,94	2	1	9	6	11	7
18	18	0	0	1,89	2,89	2	1	9	7	11	8
19	19	0	0	3,89	3,72	4	3	10	8	14	11
20	20	0	1	3,06	4,22	3	4	10	9	13	13

Erhobene Variablen und gemessene Ausprägungen werden in einer **Datenmatrix** organisiert: Tabelle aller erhobenen Merkmale für alle Beobachtungseinheiten

	Variable 1	Variable 2
Fall 1	Wert von Fall 1 auf Variable 1	Wert von Fall 1 auf Variable 2
Fall 2	Wert von Fall 2 auf Variable 1	Wert von Fall 2 auf Variable 2
Fall 3	Wert von Fall 3 auf Variable 1	Wert von Fall 3 auf Variable 2
Fall 4	Wert von Fall 4 auf Variable 1	Wert von Fall 4 auf Variable 2

Beispiel mit Übung: Urliste (n=160)

ID	Studiengang	Semesterzahl	Abinote	Studienzufriedenheit
1	BA SocSc (1)	1	2,0	8
2	BA SocSc (1)	3	3,1	7
3	Medizin (3)	4	1,1	7
4	BA SocSc (1)	2	1,7	9
5	BA Psycho (4)	6	1,5	6
6	Jura (2)	5	2,4	8

 Wie viele Variablen sehen Sie? Wie viele Beobachtungseinheiten hat die vollständige Datenerhebung?

Beispiel mit Übung: Urliste (n=160)

ID	Studiengang	Semesterzahl	Abinote	Studienzufriedenheit
1	1	1	2,0	8
2	1	3	3,1	7
3	3	4	1,1	7
4	1	2	1,7	9
5	4	6	1,5	6
6	2	5	2,4	8

- Wie viele Variablen sehen Sie? (5)
- Wie viele Beobachtungseinheiten hat die vollständige Datenerhebung? (n=160)

Von der Datenmatrix zur statistischen Auswertung

- Urliste bzw. Datenmatrix als Basis der statistischen Auswertung
- Aber: Aus Datenmatrix lässt sich nur eingeschränkt erkennen, wie sich die Beobachtungseinheiten auf die verschiedenen Merkmalsausprägungen verteilen
- Soll z.B. nur untersucht werden, wie zufrieden die Studierenden mit dem Studium sind, interessiert nur eine Merkmalsdimension

→ univariate Auswertung: eine interessierende Variable wird in ihrem Auftreten in unseren Daten betrachtet

Univariate Datenanalyse

Wie verteilen sich die Befragten auf die Studiengänge?

ID	Studiengang	Semesterzahl	Abinote	Studienzufriedenheit
1	BA SocSc	1	2,0	8
2	BA SocSc	3	3,1	7
3	Medizin	4	1,1	7
4	BA SocSc	2	1,7	9
5	BA Psycho	6	1,5	6
6	Jura	5	2,4	8

Bivariate Datenanalyse

Zusammenhänge zwischen 2 Variablen (ab der 6. Einheit geplant), z.B.
 Hängt die Studienzufriedenheit mit der Semesterzahl zusammen?

ID	Studiengang	Semesterzahl	Abinote	Studienzufriedenł	eit
1	BA SocSc	1	2,0	8	
2	BA SocSc	3	3,1	7	
3	Medizin	4	1,1	7	
4	BA SocSc	2	1,7	9	
5	BA Psycho	6	1,5	6	
6	Jura	5	2,4	8	

Univariate Datenanalyse

- Wertet einzelne Variablen aus
- 1. Schritt: Häufigkeitsverteilung der einzelnen Ausprägungen (tabellarisch und grafisch)
- 2. Schritt: Informationsmenge vieler Beobachtungen auf wenige Kennzahlen verdichten
 - Dabei lassen sich Lage-, Streuungs- und Formmaße unterscheiden (ab nächste Woche)

Univariate Häufigkeitsverteilung

- Eine univariate Häufigkeitsverteilung ist eine Methode zur (statistischen) Beschreibung einer Variablen:
 - wie verteilen sich die Beobachtungseinheiten auf die Merkmalsausprägungen des Merkmals?
 - Oder: Wo "häufen" sich die Beobachtungseinheiten auf die Merkmalsausprägungen eines Merkmals?
- Univariate Datenanalyse in tabellarischer oder grafischer Form

Anmerkungen zur Notation

- Eine Variable bzw. ein Merkmal wird per Konvention mit einem X gekennzeichnet; Beispiel: Studiengang
- X kann wiederum verschiedene **Ausprägungen** annehmen, die als x_k gekennzeichnet werden; Beispiel: *BA Social Sciences* (1), *Jura*, ...
- x_k wird als Laufindex bezeichnet, er reicht von Ausprägung 1 bis zur maximalen Ausprägung m

Häufigkeitstabelle

Häufigkeitstabelle enthält (meist) mindestens die folgenden Angaben:

- Absolute Häufigkeiten: Anzahl der Beobachtungseinheiten, bei der die jeweilige Kategorie auftritt, fx_k bzw. Hx_k
- Relative Häufigkeiten: Häufigkeit in Bezug zur Gesamtzahl der Fälle n, Anteilswerte $hx_k = \frac{Hx_k}{n} = \frac{fx_k}{n}$
- **Prozentuale Häufigkeiten**: Multiplikation der relativen Häufigkeiten mit 100 ergibt die prozentualen Häufigkeiten einer Ausprägung, $hx_k \times 100$

Beispiel Häufigkeitstabelle

Studiengang x_k	Absolute Häufigkeit fx_k bzw . Hx_k	Relative Häufigkeit $hx_k = \frac{Hx_k}{n} = \frac{fx_k}{n}$	Prozentuale Häufigkeit $hx_k \times 100$
BA Social Sciences (1)	80	0,5	50
Jura (2)	10	0,0625	6,25
Medizin (3)	40	0,25	25
BA Psycho (4)	30	0,1875	18,75
Summe	160	1	100

Häufigkeitstabelle

Gruppierte Häufigkeitstabelle:

- Metrische Variablen haben häufig sehr viele Ausprägungen (z.B. Alter, Abiturnote, Einkommen) → Darstellung in einer "normalen" Häufigkeitstabelle sehr unübersichtlich
- Lösung: gruppierte Häufigkeitstabelle, Merkmale werden in "Klassen" eingeteilt (z.B. Altersgruppen, Einkommensgruppen)
- Nachteil: Informationsverlust, dafür aber anschaulich

- Je nach Beschaffenheit eines Merkmals lassen sich verschiedene Stufen der Skalierbarkeit unterscheiden
- Grundunterscheidung: kategoriale vs. metrische Daten
- Klassischerweise 4 Skalenniveaus (Stevens 1946):
 - Nominalskala
 - Ordinalskala
 - Intervallskala
 - Verhältnis-/Ratioskala
- Das jeweilige Skalenniveau entscheidet darüber, welche statistischen Verfahren zulässig sind!

Zentrale Begriffe: Skalenniveaus

Grundunterscheidung: kategoriales vs. metrisches Skalenniveau

Kategoriale Skalenniveaus

- Ergebnis einer Messung erfolgt durch Klassifikation / Einteilung in Kategorien
- ➤Können Wörter, Zahlen oder andere Zeichen sein
- nominales und ordinales Skalenniveau
 - * nominal: ungeordnete Merkmale
 - * ordinal: geordnete Merkmale

1. Nominales Skalenniveau

- "niedrigstes" Skalenniveau
- Ausprägungen lassen sich nur danach unterscheiden, ob sie gleich oder ungleich sind
- Keine Rangfolge der Kategorien
- Beispiele: Augenfarbe, Automarke, Konfessionszugehörigkeit, Parteipräferenz
- Werden in der quantitativen Forschung dennoch durch Zahlen dargestellt
- Diese Zahlen bieten jedoch keine quantitative Information, man weiß nur, dass bspw. die Parteipräferenz CDU mit einer "1" "kodiert" ist

Wie war das mit den Skalenniveaus?

2. Ordinales Skalenniveau

- Nächst höheres Skalenniveau
- Ausprägungen lassen sich auch danach unterscheiden, ob sie ein "mehr" oder "weniger" anzeigen
- Abstände nicht konstant, aber klare Reihenfolge
- Bsp: Schulbildung (Hauptschulabschluss, Mittlere Reife, Abitur),
 Kleidergröße (S, M, L, XL)

Metrische Skalenniveaus

- Ergebnis einer Messung durch "Zählen", Messung quantitativer Eigenschaften
- ➤ Unterscheidung zwischen Intervall- und Ratioskalenniveau für die sozialwissenschaftliche Statistik kaum relevant:
 - * Intervall: unterteilt die Skala in gleich große Abschnitte
 - * Ratio: hat zusätzlich natürlichen Nullpunkt

3. Intervallskalenniveau

- Nächst höheres Skalenniveau
- Ausprägungen lassen sich nicht nur danach unterscheiden, ob sie ein "mehr" oder "weniger" anzeigen, sondern auch, wie groß der Unterschied ist
- Kein natürlicher Nullpunkt, aber konstante Abstände
- Bsp: Temperatur in Celsius, Zeitrechnung nach Christi Geburt

4. Ratio-Skalenniveau

- "höchstes" Skalenniveau
- Natürlicher Nullpunkt, Verhältnis zwischen Messwerten interpretierbar
- Bsp: Stimmenanteil eines Kandidaten, Lebensalter in Jahren

- Skalenniveaus sind abwärtskompatibel: Alle Eigenschaften einer niederwertigen Skala gelten auch für eine höherwertige Skala
- In der sozialwissenschaftlichen Forschungspraxis werden ordinale Skalenniveaus häufig als intervallskaliert behandelt (z.B. Fragebogendaten, Einstellungsmessung) → "pseudo-/quasi-"metrisches Skalenniveau

Skalenniveau	Relation zwischen Ausprägungen	Beispiele
Nominal	Klassifikation (gleich/ungleich)	Familienstand, Parteipräferenz
Ordinal	Rangordnung (Reihenfolge möglich, Abstände nicht interpretierbar)	Bildungsabschluss, Schulnoten
Intervall	Abstand (Abstände sind äquidistant und deshalb inhaltlich interpretierbar)	Aktuelle Zeitrechnung
Ratio/Verhältnis	Verhältnis (Skala hat echten Nullpunkt, Verhältnisse können berechnet werden)	Einkommen, Alter

Häufigkeitstabelle

Gruppierte Häufigkeitstabelle bei metrischen Daten

- Metrische Variablen haben häufig sehr viele Ausprägungen (z.B. Alter, Abiturnote, Einkommen) → Darstellung in einer "normalen" Häufigkeitstabelle sehr unübersichtlich
- Lösung: gruppierte Häufigkeitstabelle, Merkmale werden in "Klassen" eingeteilt (z.B. Altersgruppen, Einkommensgruppen)
- Nachteil: Informationsverlust, dafür aber anschaulich

Gruppierte Häufigkeitstabelle:

- Beispiel: Häufigkeiten der Altersgruppen (Altersklassen) in einer großen Bevölkerungsumfrage
 - Klassengrenzen dürfen nicht überlappen
 - Klassenbreiten können, müssen aber nicht gleich groß sein
 - Klassen sollten lückenlos aufeinander folgen

		Häufigkeit	Prozent
Gültig	15 - 24 years	1902	8,6
	25 - 39 years	4713	21,4
	40 - 54 years	5610	25,5
	55 years and older	9802	44,5
	Gesamtsumme	22027	100,0

- Meistens ebenfalls in Häufigkeitstabelle
- Zeigen, wie häufig eine bestimmte Ausprägung und alle niedrigeren Ausprägungen eines Merkmals beobachtet wurden (Prozentränge)
- Bei ordinalskalierten Merkmalen bieten die kumulierten Prozentsätze eine anschauliche Interpretationsmöglichkeit

Mögliche Anwendungsfragen:

- "Wie viel Prozent der Befragten sind unter 40 Jahre alt?"
- "Wie viel Prozent der Schüler*innen haben mindestens die Note 'gut' erhalten?"
- "Welcher Anteil der Befragten hat ein Einkommen von weniger als 1500€?"
- "Wie viel Prozent aller Bewerber*innen haben mindestens einen Realschulabschluss erworben?"

Beispiel Altersgruppen in einer Befragung dargestellt in SPSS

		Häufigkeit	Prozent	Gültige Prozent	Kumulative Prozente
Gültig	15 - 24 years	1902	8,6	8,6	8,6
	25 - 39 years	4713	21,4	21,4	30,0
	40 - 54 years	5610	25,5	25,5	55,5
	55 years and older	9802	44,5	44,5	100,0
	Gesamtsumme	22027	100,0	100,0	

Beispiel politisches Interesse

Kategorie	absolute Häufigkeit	relative Häufigkeit	prozentuale Häufigkeit	kumulierte prozentuale Häufigkeit
sehr stark	425	0,122	12,2	12,2
stark	877	0,251	25,1	37,3
mittel	1437	0,412	41,2	78,5
wenig	564	0,162	16,2	94,7
überhaupt nicht	186	0,053	5,3	100,0
Gesamt	3490	1,000	100,0	

Daten: ALLBUS 2016. Eigene Berechnungen

Beispiel politisches Interesse

Kategorie	absolute Häufigkeit	relative Häufigkeit	prozentuale Häufigkeit	kumulierte prozentuale Häufigkeit
sehr stark	425	0,122	12,2	12,2
stark	877	0,251	25,1	37,3
mittel	1437	0,412	41,2	18,5
wenig	564	0,162	16,2	94,7
überhaupt nicht	186	0,053	5,3	100,0
Gesamt	3490	1,000	100,0	

Daten: ALLBUS 2016. Eigene Berechnungen

Interpretation: 37,3% der Befragten sind mind. "stark" politisch interessiert

Berechnung:

- geben an, wie groß der relative Anteil der Fälle kleiner oder gleich der Merkmalsausprägung x_k ist
- kumulierter Prozentsatz summiert zeilenweise die prozentuale Häufigkeit der Fälle auf
- → schrittweise Addition (Kumulation) der Prozentsätze der Merkmalsausprägungen

Beispiel: Kumulierte relative Häufigkeiten

Wie hoch ist der prozentuale Anteil der Personen, die **höchstens** 39 Jahre alt sind?

		Häufigkeit	Prozent	Gültige Prozent	Kumulative Prozente
Gültig	15 - 24 years	1902	8,6	8,6	8,6
	25 - 39 years	4713	21,4	21,4	30,0
	40 - 54 years	5610	25,5	25,5	55,5
	55 years and older	9802	44,5	44,5	100,0
	Gesamtsumme	22027	100,0	100,0	

Beispiel: Kumulierte relative Häufigkeiten

Wie hoch ist der prozentuale Anteil der Personen, die **älter als** 39 Jahre sind? (100% - 30% = 70%)

		Häufigkeit	Prozent	Gültige Prozent	Kumulative Prozente
Gültig	15 - 24 years	1902	8,6	8,6	8,6
	25 - 39 years	4713	21,4	21,4	30,0
	40 - 54 years	5610	25,5	25,5	55,5
	55 years and older	9802	44,5	44,5	100,0
	Gesamtsumme	22027	100,0	100,0	

Beispiel: Kumulierte relative Häufigkeiten

Wie hoch ist der prozentuale Anteil der Personen, die **älter** als 24 Jahre, aber **höchstens** 54 Jahre alt sind?

		Häufigkeit	Prozent	Gültige Prozent	Kumulative Prozente
Gültig	15 - 24 years	1902	8,6	8,6	8,6
	25 - 39 years	4713	21,4	21,4	30,0
	40 - 54 years	5610	25,5	25,5	55,5
	55 years and older	9802	44,5	44,5	100,0
	Gesamtsumme	22027	100,0	100,0	

Übung: (Kumulierte) relative Häufigkeiten

- 1) Bitte ergänzen Sie die Tabelle.
- 2) Wie viel Prozent aller Schüler*innen hat mindestens die Note "befriedigend" erreicht?
- 3) Wie hoch ist der prozentuale Anteil derjenigen Schüler*innen, die eine schlechtere Note als "gut" erreicht haben?

Schulnote	Absolute Häufigkeiten	Relativer Anteil (%)	Kumulierte relative Häufigkeit (%)
"sehr gut"	150		
"gut"	230		
"befriedigend"	400		
"ausreichend"	190		
"mangelhaft"	25		
"ungenügend"	5		
Gesamt	1000		

Grafische Darstellungen

- Können die Verteilung von Ausprägungen eines Merkmals auf einen Blick illustrieren
- Unterstützen dabei die tabellarische Darstellung
- Verschiedene Möglichkeiten der univariaten grafischen Darstellung;
- Am Häufigsten genutzt: Säulen-/Balkendiagramm, Kreisdiagramm, Histogramm

Säulendiagramm

- Die Häufigkeiten der Merkmalsausprägungen werden durch Säulen dargestellt (auch Linien- oder Stabdiagramm)
- Höhe der Säulen spiegelt die Anzahl von Beobachtungen (absolute Häufigkeiten) oder den prozentualen Anteil der Beobachtungen (relative Häufigkeiten) wider
- sowohl für nominal- wie ordinalskalierte Merkmale geeignet
- Für die Ausprägungen auf der X-Achse muss eine Reihenfolge festgelegt werden
- Variante: Balkendiagramm (Säulen waagrecht angeordnet)

Daten: ALLBUS 2016. Eigene Berechnungen

Daten: ALLBUS 2016. Eigene Berechnungen

- Auch Tortendiagramm oder Pie-Chart
- Ein Kreis wird so in Kreissektoren unterteilt, dass die Flächen der Kreissektoren zu den beobachteten Häufigkeiten der einzelnen Ausprägungen proportional sind
- vor allem f
 ür nominale Daten

Beispiel 1 Kreisdiagramm, absolute Häufigkeit

Quelle: Bundeswahlleiter (https://bundeswahlleiter.de/bundestagswahlen/2017/ergebnisse.html)

Histogramm

- Auch Flächendiagramm
- Der auffälligste Unterschied zu Säulen- und Balkendiagrammen ist, dass die Säulen eines Histogramms unmittelbar aneinander angrenzen
- Für metrisch skalierte Merkmale -> "Ausprägungskontinuum"
- Ausprägungskategorien schließen nahtlos aneinander an

Beispiel Histogramm Alter

Daten: ALLBUS 2016. Eigene Berechnungen

"Faustregeln" zur Auswahl des Grafiktyps:

- nominales, ordinales Skalenniveau
 - Kreisdiagramm (bis zu 6 Ausprägungen)
 - Säulen-/Balkendiagramm (bis zu 10 Ausprägungen)
- metrische Skala
 - Histogramm