Computer-assisted content analysis

Will Lowe Princeton University

James Lo University of Southern California

Menu

Session 0: How could this possibly work?

Session 1: Dictionary-based 'classical' content analysis and topic models

Session 2: Classification and evaluation

Session 3: Scaling models

Documents in space

Modeling relative emphasis

Validating human judgement

Dimensionality

Documents in (ideological) space

	neue	vor	Menschen	wie	nur	Arbeitsplätze	•••
FDP-2005	11	20	6	22	31	17	
FDP-2002	17	17	27	30	35	9	
PDS-2005	5	10	17	10	9	12	
PDS-2002	15	19	8	9	3	9	
GREENS-2005	42	21	47	46	19	17	
GREENS-2002	27	18	27	28	22	21	
SPD-2005	8	15	26	11	13	10	
SPD-2002	16	18	16	16	9	7	
CDU-2005	21	12	10	13	19	22	
CDU-2002	20	20	14	15	18	7	

Manifestos as bags of words

Documents in (ideological) space

e.g. the CMP (Budge et al. 1983).

Topic code	Meaning				
403	Market Regulation				
404	Economic Planning				
405	Corporatism				
:					
601	National Way of Life: Positive				
602	National Way of Life: Negative				
603	Traditional Morality: Positive				
604	Traditional Morality: Negative				
605	Law and Order				

Documents in (ideological) space

e.g. the CMP (Budge et al. 1983).

	201	202	403	404	405	601	
FDP-1990	2	19	28	0	0	0	
FDP-1994	0	11	17	0	0	0	
FDP-1998	6	0	8	0	10	20	
FDP-2002	26	11	31	1	0	10	
FDP-2005	12	27	55	8	0	7	
FDP-2009	10	38	16	21	0	10	

Manifestos as bags of topics

Back to the (contingency) table

Recall our two assumptions:

- A matrix of document by word/topic counts is a contingency table generated by unobserved positions
- Words occur at a rate determined by the content they are being used to express

$$C_{ij} \sim \mathsf{Poisson}(\lambda_{ij})$$

Back to the (contingency) table

How to connect the rates of each word in a document to θs (and βs)

	neue	vor	Menschen	wie	nur	Arbeitsplätze	
FDP-2005	11	20	6	22	31	17	 $\theta_{\text{FDP-2005}}$
FDP-2002	17	17	27	30	35	9	 $\theta_{\text{FDP-2002}}$
PDS-2005	5	10	17	10	9	12	 $\theta_{PDS-2005}$
PDS-2002	15	19	8	9	3	9	 $\theta_{PDS-2002}$
GREENS-2005	42	21	47	46	19	17	 $\theta_{GREENS-2005}$
GREENS-2002	27	18	27	28	22	21	 $\theta_{GREENS-2002}$
SPD-2005	8	15	26	11	13	10	 $\theta_{SPD-2005}$
SPD-2002	16	18	16	16	9	7	 $\theta_{\text{SPD-2002}}$
CDU-2005	21	12	10	13	19	22	 $\theta_{\text{CDU-2005}}$
CDU-2002	20	20	14	15	18	7	 $\theta_{\text{CDU-2002}}$
							353 2002
	β_{neue}	β_{vor}	$\beta_{Menschen}$	$\beta_{\rm wie}$	β_{nur}	$eta_{Arbeitspl\"{atze}}$	

Back to the (contingency) table

How to connect the rates of each word in a document to θs (and βs)

Simple models of count data

There are two log-linear models of any contingency table

$$\log \mu_{ij} = a_i + \psi_j$$
 (boring)
= $a_i + \psi_j + \lambda_{ij}$ (pointless)

Where's the relative emphasis?

Two models: There are two *log-linear models* of any contingency table

$$\log \mu_{ij} = a_i + \psi_j$$
 (independence)
= $a_i + \psi_j + \lambda_{ij}$ (saturated)

All the relative emphasis (and all the political position-taking) is in λ

Scaling models give dimensional structure to λ .

Infer dimensional structure

Intuition: λ has an orthogonal decomposition

$$\lambda = \Theta \Sigma B^{T}$$

$$= \sum_{m}^{M} \theta_{(m)} \sigma_{(m)} \beta_{(m)}^{T}$$

$$\approx \theta \sigma \beta^{T}$$
(Rank 1 approx.)

Infer dimensional structure

Intuition: λ has an orthogonal decomposition

$$\lambda = \Theta \Sigma B^{T}$$

$$= \sum_{m}^{M} \theta_{(m)} \sigma_{(m)} \beta_{(m)}^{T}$$

$$\approx \theta \sigma \beta^{T}$$
(SVD)
(Rank 1 approx.)

 θ are document positions, β are word positions

Left-Right Positions in Germany, 1990-2005 including 95% confidence intervals

Infer dimensional structure

Intuition: λ has a orthogonal decomposition

$$\lambda = \Theta \Sigma B^{T}$$
 (SVD)
$$= \sum_{m}^{M} \theta_{(m)} \sigma_{(m)} \beta_{(m)}^{T}$$

$$\approx \theta \sigma \beta^{T}$$
 (Rank 1 approx.)

 σ says how much relative emphasizing is happening in this dimension

Infer dimensional structure

Intuition: λ has a orthogonal decomposition

$$\lambda = \Theta \Sigma B^{T}$$
 (SVD)
$$= \sum_{m}^{M} \theta_{(m)} \sigma_{(m)} \beta_{(m)}^{T}$$

$$\approx \theta \sigma \beta^{T}$$
 (Rank 1 approx.)

 σ says how much relative emphasizing is happening in this dimension

Right now, there's only one dimension so it's not so interesting...

Intuition

What are we doing when we fit such a model?

A generative model of positioning text

$$\log \mu_{ij} = r_i + c_j + \frac{(p_i - b_j)^2}{v}$$

This is just our model with a false moustache and hat

Quadratic unfolding (Elff 2013, Heiser 1986) has the model as a reduced form

$$\log \mu_{ij} = r_i + c_j + \frac{(p_i - b_j)^2}{v}$$

$$= r_i + c_j + (p_i^2 - 2p_ib_j + b_j^2)/v$$

$$= [r_i + p_i^2/v] + [c_j + b_j^2/v] + [p_i][1/v][-2b_j]$$

$$= \alpha_i + \psi_j + \theta_i \quad \sigma \quad \beta_j$$

Two words/topics, e.g. 'benefits' and 'assets', with scores β_1 and β_2 in a document of length N_i

otherwise. Legislators are assumed to have quadratic utility functions over the policy space, $U_i(\zeta_j) = -\|\mathbf{x}_i - \zeta_j\|^2 + \eta_{ij}$, and $U_i(\psi_j) = -\|\mathbf{x}_i - \psi_j\|^2 + \nu_{ij}$, where $\mathbf{x}_i \in \mathbb{R}^d$ is the *ideal point* of legislator i, η_{ij} and ν_{ij} are the errors or stochastic elements of utility, and $\|\cdot\|$ is the Euclidean norm. Utility maximization implies that $y_{ij} = 1$ if $U_i(\zeta_j) > U_i(\psi_j)$ and $y_{ij} = 0$ otherwise. The specification is completed by assigning a distribution to the errors. We assume that the errors η_{ij} and ν_{ij} have a joint normal distribution with $E(\eta_{ij}) = E(\nu_{ij})$, $\mathrm{var}(\eta_{ij} - \nu_{ij}) = \sigma_j^2$ and the errors are independent across both legislators and roll calls. It follows that

$$P(y_{ij} = 1) = P(U_i(\zeta_j) > U_i(\psi_j))$$

$$= P(v_{ij} - \eta_{ij} < ||\mathbf{x}_i - \psi_j||^2 - ||\mathbf{x}_i - \zeta_j||^2),$$

$$= P(v_{ij} - \eta_{ij} < 2(\zeta_j - \psi_j)'\mathbf{x}_i + \psi_j'\psi_j - \zeta_j'\zeta_j)$$

$$= \Phi(\beta_j'\mathbf{x}_i - \alpha_j), \qquad (1)$$

where $\beta_j = 2(\zeta_j - \psi_j)/\sigma_j$, $\alpha_j = (\zeta_j'\zeta_j - \psi_j'\psi_j)/\sigma_j$, and

From Clinton et al. (2004)

$$[C_{i1}, C_{i2}] \sim \text{Binomial}([\pi_{i1}, \pi_{i2}], N_i)$$

$$\pi_{i1} = \mu_{i1}/(\mu_{i1} + \mu_{i2})$$

$$\log\left(\frac{\pi_{i1}}{\pi_{i2}}\right) = \log \pi_{i1} - \log \pi_{i2}$$

$$= (a_i - a_i) + (\psi_1 - \psi_2) + \frac{\theta_i}{\theta_i}(\beta_1 - \beta_2)$$

$$= \psi_{1/2} + \theta_i \quad \beta_{1/2}$$

$$\begin{split} [C_{i1}, C_{i2}] &\sim \mathsf{Binomial}([\pi_{i1}, \pi_{i2}], N_i) \\ \pi_{i1} &= \mu_{i1} / (\mu_{i1} + \mu_{i2}) \\ \log \left(\frac{\pi_{i1}}{\pi_{i2}}\right) &= \log \pi_{i1} - \log \pi_{i2} \\ &= (\alpha_i - \alpha_i) + (\psi_1 - \psi_2) + \frac{\theta_i}{\theta_i} (\beta_1 - \beta_2) \\ &= \psi_{1/2} + \theta_i \quad \beta_{1/2} \end{split}$$

Look Ma, a logit!

Special case: logit scores

Identify left L and right R topic and compute (Lowe et al. 2011)

$$\hat{\theta}_i = \log \frac{\sum_{j \in R} C_{ij}}{\sum_{k \in L} C_{ik}}$$

Special case: logit scores

Identify left L and right R topic and compute (Lowe et al. 2011)

$$\hat{\theta}_i = \log \frac{\sum_{j \in R} C_{ij}}{\sum_{k \in L} C_{ik}}$$

Position is relative *proportional* emphasis, with a psychophysical motivation

Revisiting human judgement

(Budge et al. 1983, Baumgartner and Jones)

Validating what comes out of the smoky room

The CMP project have performed a huge manual content analysis and *chosen* some right and left topics for us.

This kind of thing is a popular exercise (unless you're the coder)

We're supposed to add both sides up and subtract to get a position measure for documents

Validating what comes out of the smoky room

The CMP project have performed a huge manual content analysis and *chosen* some right and left topics for us.

This kind of thing is a popular exercise (unless you're the coder)

We're supposed to add both sides up and subtract to get a position measure for documents

Are these topics really used by parties on right and left?

Let's run our model on the topic output and check Turns out our $\hat{\theta}$ s correlate 0.94 with their scale We're more interested in β s

Dimension issues

 $\mbox{What the heck is θ?} \\ \mbox{How can we be sure that there is only one of them?}$

What is θ ?

Whatever maximizes the Likelihood...

What is θ ?

Whatever maximizes the Likelihood...

Like all scaling techniques (e.g. NOMINATE), this model is *exploratory - you* have to figure out what the dimension really is.

One dimensional world

How do we know that positions on only one dimension are being expressed?

Relatedly: how do we get positions on a specific policy issue?

One dimensional world

How do we know that positions on only one dimension are being expressed?

Relatedly: how do we get positions on a specific policy issue?

Three possibilities

- Use only those texts (or sections thereof) that are guaranteed to be on the same topic and scale them separately (Slapin and Proksch, 2008)
- Learn items from just a subset of relevant documents (Laver et al. 2003)
- Work with topic counts rather than word counts (Baerg and Lowe, MS)

Heroic assumptions are (closer to being) true

Multidimensional world

Allow for more dimensions! θ_i^1 , θ_i^2 , ...

We need to move to a computationally cheaper model:

Correspondence analysis (Greenacre 2007)

For identification, a K-dimensional model has K sets of θ and K sets of β

and they'll be orthogonal...

Multidimensional world

Allow for more dimensions! θ_i^1 , θ_i^2 , ...

We need to move to a computationally cheaper model:

Correspondence analysis (Greenacre 2007)

For identification, a K-dimensional model has K sets of θ and K sets of β

and they'll be orthogonal...

Fit this model to the German topic counts...

(Graduate student) life skills

How to read a biplot:

- Documents points are closer when using words/topics similarly
- Words points are closer with similar document profiles
- 0,0: a document or word/topic used exactly as often as we would expect by chance
- Document vector: arrow from 0,0 to a document point
- Word/topic vector: arrow from 0,0 to a word/topic point
- Vectors are *longer* the more their usage diverges from chance
- Angle between a word vector and document vector: how much a document preferentially uses the word

(Graduate student) life skills

There is nothing special to text about a biplot

This interpretation works for *all kinds* of cross-tables.

Use it for good!

Dimensions and topic change

What if the political lexicon changes over time? (it does)

New issues appear, old issues disappear

Then scaling algorithms pick up shifts in the policy agenda rather than shifts in party positions.

Worst Case Scenario

Lab Time

