САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Кафедра вычислительной техники

Отчёт по лабораторной работе № 3 по дисциплине «Теория автоматов» Вариант №4

Студент: Куклина М. Р3301

Преподаватель: Ожиганов А.А.

Цель и постановка задачи

Цель

Освоение метода перехода от абстрактного автомата к структурному автомату.

Постановка задачи

Абстрактный автомат задан табличным способом. Причем абстрактный автомат Мили представлен таблицами переходов и выходов, а абстрактный автомат Мура - одной отмеченной таблицей переходов. Для синтеза структурного автомата использовать функционально полную систему логических элементов И, ИЛИ, НЕ и автомат Мура, обладающий полнотой переходов и полнотой выходов. Синтезированный структурный автомат представить в виде ПАМЯТИ и КОМБИНАЦИОННОЙ СХЕМЫ.

Исходный абстрактный автомат

δ	a_1	a_2	a_3	a_4
z_1	a_2	a_2	a_4	a_2
z_2	a_3	a_1	a_2	a_3

Таблица 1. Функция переходов

λ	a_1	a_2	a_3	a_4
z_1	w_2	w_2	w_1	w_1
z_2	w_2	w_1	w_2	w_2

Таблица 2. Функция выходов

Граф исходного автомата

Переход к структурному автомату

Кодирование абстрактного автомата

δ	x_0
z_1	0
z_2	1

Таблица 3. Кодирование входов автомата

δ	y_0
w_2	0
w_1	1

Таблица 4. Кодирование выходов автомата

λ	Q_0	Q_1
a_2	0	0
a_3	0	1
a_1	1	0
a_4	1	1

Таблица 5. Кодирование состояний автомата

Получившийся структурный автомат имеет один вход, один выход и четыре состояния.

$$x_0 \to CK \to y_0$$

Структурный автомат

Q_0Q_1	00	01	10	11
x_0				
0	00	11	00	00
1	10	00	01	01

Таблица 6. Функция переходов

Функция переходов автомата: $Q_0Q_1 = \delta(Q_0,Q_1,x_0)$.

Q_0Q_1	00	01	10	11
x_0				
0	0	1	0	1
1	1	0	0	0

Таблица 7. Функция выходов

Функция выходов автомата: $y_0 = \lambda(Q_0, Q_1, x_0)$.

По таблице выходов строим ДНФ: $y_0 = \bar{Q_0}\bar{Q_1}x_0 \lor \bar{Q_0}Q_1\bar{x_0} \lor Q_0Q_1\bar{x_0}$

Сигналы функции возбуждения для триггеров

D-триггер

На основе закона функционирования D-триггера по таблице переходов структурного автомата строим таблицу сигналов функции возбуждения.

Q	0	1
X		
0	0	0
1	1	1

Таблица 8. Закон функционирования D-триггера

Q_0Q_1	00	01	10	11
x_0				
0	00	11	00	00
1	10	00	01	01
	D_0D_1	D_0D_1	D_0D_1	D_0D_1

Таблица 9. Таблица сигналов функции возбуждения: $D_0D_1 = \mu(Q_0,Q_1,x_0)$

ДНФ для сигналов функции возбуждения:

 $D_0 = \bar{Q_0}\bar{Q_1}x_0 \vee \bar{Q_0}Q_1\bar{x_0}$

 $D_1 = \bar{Q_0}Q_1\bar{x_0} \lor Q_0\bar{Q_1}x_0 \lor Q_0Q_1x_0.$ Для построения функциональной схемы рассмотрим ДНФ:

 $y_0 = \bar{Q_0}\bar{Q_1}x_0 \vee \bar{Q_0}Q_1\bar{x_0} \vee Q_0Q_1\bar{x_0}$

 $\begin{array}{l} D_0 = \bar{Q_0} \bar{Q_1} x_0 \vee \bar{Q_0} Q_1 \bar{x_0} \\ D_1 = \bar{Q_0} Q_1 \bar{x_0} \vee Q_0 \bar{Q_1} x_0 \vee Q_0 Q_1 x_0. \end{array}$

 $y_0 = D_0 \vee Q_0 \phi$

 $D_0 = \bar{Q_0}(Q_1 \oplus x_0)$

 $D_1 = \bar{Q_0}\phi \vee Q_0 x_0.$

 $\phi = Q_1 \bar{x_0}$

Т-триггер

Q	0	1
X		
0	0	1
1	1	0

Таблица 10. Закон функционирования Т-триггера

На основе закона функционирования Т-триггера по таблице переходов структурного автомата строим таблицу сигналов функции возбуждения.

Q_0Q_1	00	01	10	11
$ x_0 $				
0	00	10	10	11
1	10	01	11	10
	T_0T_1	T_0T_1	T_0T_1	T_0T_1

Таблица 11. Таблица сигналов функции возбуждения: $T_0T_1=\mu(Q_0,Q_1,x_0)$

```
ДНФ для сигналов функции возбуждения: T_0 = \bar{Q_0}\bar{Q_1}x_0 \vee \bar{Q_0}Q_1\bar{x_0} \vee Q_0\bar{Q_1}\bar{x_0} \vee Q_0\bar{Q_1}x_0 \vee Q_0Q_1\bar{x_0} \vee Q_0Q_1x_0 T_1 = \bar{Q_0}Q_1x_0 \vee Q_0\bar{Q_1}x_0 \vee Q_0Q_1\bar{x_0}. Или: T_0 = \bar{Q_0}(Q_1 \oplus x_0) \vee Q_0 T_1 = \bar{Q_0}Q_1x_0 \vee Q_0(Q_1 \oplus x_0) Рассмотрим выведенные ДНФ: y_0 = \bar{Q_0}\bar{Q_1}x_0 \vee \bar{Q_0}Q_1\bar{x_0} \vee Q_0Q_1\bar{x_0} T_0 = \bar{Q_0}\bar{Q_1}x_0 \vee \bar{Q_0}Q_1\bar{x_0} \vee Q_0\bar{Q_1}\bar{x_0} \vee Q_0\bar{Q_1}x_0 \vee Q_0Q_1\bar{x_0} T_1 = \bar{Q_0}Q_1x_0 \vee Q_0\bar{Q_1}x_0 \vee Q_0Q_1\bar{x_0}.
```

Вывод