Group B Assignment No: 7

Course: Laboratory Practice-III

Title of the Assignment: Predict the price of the Uber ride from a given pickup point to the agreed drop-off location. Perform following tasks:

- 1. Pre-process the dataset.
- 2. Identify outliers.
- 3. Check the correlation.
- 4. Implement linear regression and random forest regression models.
- 5. Evaluate the models and compare their respective scores like R2, RMSE, etc.

Dataset Description: The project is about on world's largest taxi company Uber inc. In this project, we're looking to predict the fare for their future transactional cases. Uber delivers service to lakhs of customers daily. Now it becomes really important to manage their data properly to come up with new business ideas to get best results. Eventually, it becomes really important to estimate the fare prices accurately.

Link for Dataset:https://www.kaggle.com/datasets/yasserh/uber-fares-dataset

Objective of the Assignment:

Students should be able to preprocess dataset and identify outliers, to check correlation and implement linear regression and random forest regression models. Evaluate them with respective scores like R2, RMSE etc.

Prerequisite:

- 1. Basic knowledge of Python
- 2. Concept of preprocessing data
- 3. Basic knowledge of Data Science and Big Data Analytics.

Contents of the Theory:

- 1. Data Preprocessing
- 2. Linear regression
- 3. Random forest regression models
- 4. Box Plot
- 5. Outliers
- 6. Haversine
- 7. Mathplotlib
- 8. Mean Squared Error

Data Preprocessing:

Data preprocessing is a process of preparing the raw data and making it suitable for amachine learning model. It is the stand crucial step while creating a machine learning model.

When creating a machine learning project, it is not always a case that we come across the clean and formatted data. And while doing any operation with data, it is mandatory to clean it and put in a formatted way. So for this, we use data preprocessing task.

Course: Laboratory Practice-III

Why do we need Data Preprocessing?

A real-world data generally contains noises, missing values, and maybe in an unusable format which cannot be directly used for machine learning models. Data preprocessing is required tasks for cleaning the data and making it suitable for a machine learning model which also increases the accuracy and e ciency of a \overline{m} achine learning model.

It involves below steps:

- Getting the dataset
- Importing libraries
- Importing datasets
- Finding Missing Data
- Encoding Categorical Data
- Splitting dataset into training and test set
- Feature scaling

Linear Regression:

Linear regression is one of the easiest and most popular Machine Learning algorithms. It is a statistical method that is used for predictive analysis. Linear regression makes predictions for continuous/real or numeric variables such assales, salary, age, product price, etc.

Course: Laboratory Practice-III

Linear regression algorithm shows a linear relationship between a dependent (y) and one or more independent (y) variables, hence called as linear regression. Since linear regression shows the linear relationship, which means it $n\overline{d}s$ how the value of the dependent variable is changing according to the value of the independent variable.

The linear regression model provides a sloped straight line representing the relationship between the variables. Consider the below image:

Random Forest Regression Models:

Random Forest is a popular machine learning algorithm that belongs to the supervisedlearning technique. It can be used for both Classi cation and Regression problems in ML. It is based on the concept of ensemble learning, which is a process of combining multiple classi ers to solve a complex problem and to improve the performance of the model.

As the name suggests, "Random Forest is a classi or that contains a number of decision trees on various subsets of the given dataset and takes the average to improve the predictive accuracy of that dataset." Instead of relying on one decision tree, the random forest takes the

Course: Laboratory Practice-III

prediction from each tree and based on the majority votes of predictions, and it predicts the land output.

The greater number of trees in the forest leads to higher accuracy and prevents the problem of over Itting.

Boxplot:

Boxplots are a measure of how well data is distributed across a data set. This divides thedata set into three quartiles. This graph represents the minimum, maximum, average, \bar{r} st quartile, and the third quartile in the data set. Boxplot is also useful in comparing the distribution of data in a data set by drawing a boxplot for each of them.

R provides a boxplot() function to create a boxplot. There is the following syntax of boxplot()function:

boxplot(x, data, notch, varwidth, names, main)

Here,

1.	x	It is a vector or a formula.
2.	data	It is the data frame.
3.	notch	It is a logical value set as true to draw a notch.
4.	varwidth	It is also a logical value set as true to draw the width of the boxsame as the sample size.
5.	names	It is the group of labels that will be printed under each boxplot.
6.	main	It is used to give a title to the graph.

Course: Laboratory Practice-III

Outliers:

As the name suggests, "outliers" refer to the data points that exist outside of what is to be expected. The major thing about the outliers is what you do with them. If you are going to analyze any task to analyze data sets, you will always have some assumptions based on how this data is generated. If you nd some data points that are likely to contain some form of error, then these are de nitely outliers, and depending on the context, you want too vercome those errors. The data mining process involves the analysis and prediction of datathat the data holds. In 1969, Grubbs introduced the rst de nition of outliers.

Global Outliers

Global outliers are also called point outliers. Global outliers are taken as the simplest form of outliers. When data points deviate from all the rest of the data points in a given data set, it is known as the global outlier. In most cases, all the outlier detection procedures are targeted to determine the global outliers. The green data point is the global outlier.

Collective Outliers

In a given set of data, when a group of data points deviates from the rest of the data set is called collective outliers. Here, the particular set of data objects may not be outliers, but when you consider the data objects as a whole, they may behave as outliers. To identify thetypes of different outliers, you need to go through background information about the relationship between the behavior of outliers shown by different data objects. For example, in an Intrusion Detection System, the DOS package from one system to another is taken as normal behavior. Therefore, if this happens with the various computer simultaneously, it is considered abnormal behavior, and as a whole, they are called collective outliers. The greendata points as a whole represent the collective outlier.

Contextual Outliers

As the name suggests, "Contextual" means this outlier introduced within a context. For example, in the speech recognition technique, the single background noise. Contextual outliers are also known as Conditional outliers. These types of outliers happen if a data object deviates from the other data points because of any speci ccondition in a given data set. As we know, there are two types of attributes of objects of data: contextual attributes and behavioral attributes. Contextual outlier analysis enables the users to examine outliers in different contexts and conditions, which can be useful in various applications. For example, A temperature reading of 45 degrees Celsius may behave as an outlier in a rainy season. Still, it will behave like a normal data point in the context of a summer season. In the given diagram, a green dot representing the low-temperature value in June is a contextual outlier since the same value in December is not an outlier.

Haversine:

The Haversine formula calculates the shortest distance between two points on a sphere using their latitudes and longitudes measured along the surface. It is important for use in navigation.

Matplotlib:

Matplotlib is an amazing visualization library in Python for 2D plots of arrays. Matplotlib is a multiplatform data visualization library built on NumPy arrays and designed to work with the broader SciPy stack. It was introduced by John Hunter in the year 2002.

Course: Laboratory Practice-III

One of the greatest benefits of visualization is that it allows us visual access to huge amounts of data in easily digestible visuals. Matplotlib consists of several plots like line, bar, scatter, histogram etc.

Mean Squared Error;

The Mean Squared Error (MSE) or Mean Squared Deviation (MSD) of an estimator measures the average of error squares i.e. the average squared difference between the estimated values and true value. It is a risk function, corresponding to the expected value of the squared error loss. It is always non – negative and values close to zero are better. The MSE is the second moment of the error (about the origin) and thus incorporates both the variance of the estimator and its bias.

Code:- https://www.kaggle.com/code/proxzima/uber-fare-price-prediction

Conclusion:

In this way we have explored Concept correlation and implement linear regression andrandom forest regression models.

Assignment Questions:

- 1. What is data preprocessing?
- 2. Delne Outliers?
- 3. What is Linear Regression?
- 4. What is Random Forest Algorithm?
- 5. Explain: pandas, numpy?