Consistent Multitask Learning with Nonlinear Output Constraints

Carlo Ciliberto
Department of Computer Science, UCL

joint work w/ Alessandro Rudi, Lorenzo Rosasco and Massi Pontil

Multitask Learning (MTL)

MTL Mantra:

leverage the similarities among multiple learning problems (tasks) to reduce the complexity of the overall learning process.

Prev. Literature:

investigated linear tasks relations (more on this in a minute).

This work:

we address the problem of learning multiple tasks that are **nonlinearly** related one to the other

MTL Setting

Given T datasets $S_t = (x_{it}, y_{it})_{i=1}^{n_t}$ learn $\hat{f}_t : \mathcal{X} \to \mathbb{R}$ by solving

$$(\hat{f}_1, \dots, \hat{f}_T) = \underset{f_1, \dots, f_T \in \mathcal{H}}{\operatorname{argmin}} \frac{1}{T} \sum_{t=1}^{T} \mathcal{L}(f_t, S_t) + R(f_1, \dots, f_T)$$

- H space of hypotheses.
- ▶ $\mathcal{L}(f_t, S_t) = \frac{1}{n_t} \sum_{i=1}^{n_t} \ell(f_t(x_{it}, y_{it}))$ Data fitting term. Loss $\ell : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ (e.g. leas squares, logistic, hinge, etc.).
- $ightharpoonup R(f_1,\ldots,f_T)$ a **joint** tasks-structure regularizer

Previous Work: Linear MTL

For example $R(f_1, \ldots, f_T) =$

$$lacksquare$$
 Single task learning $\lambda \sum_{t=1}^T \left\| f_t
ight\|_{\mathcal{H}}^2$

Variance Regularization
$$\lambda \sum_{t=1}^T \|f_t - \bar{f}\|_{\mathcal{H}}^2$$
 with $\bar{f} = \frac{1}{T} \sum_{t=1}^T$

$$\lambda_1 \sum_{t \in \mathcal{C}(c)}^{|\mathcal{C}|} \left\| f_t - \bar{f}_c \right\|_{\mathcal{H}}^2 + \lambda_2 \sum_{c=1}^{|\mathcal{C}|} \left\| \bar{f}_c - \bar{f} \right\|_{\mathcal{H}}^2$$

Similarity regularizer
$$\lambda \sum_{t=0}^T |W_{s,t}| |f_t - f_s|_{\mathcal{H}}^2 \qquad W_{s,t} \geq 0$$

Why "Linear"? Because the tasks relations are encoded in a matrix.

$$R(f_1, \dots, f_T) = \sum_{t=1}^{T} A_{t,s} \langle f_t, f_s \rangle_{\mathcal{H}} \quad \text{with} \quad A \in \mathbb{R}^{T \times T}$$

Nonlinear MTL: Setting

What if relations are **nonlinear?** We study the case where tasks satisfy a set of k equations $\gamma(f_1(x), \cdots, f_T(x)) = 0$ identified by $\gamma : \mathbb{R}^T \to \mathbb{R}^k$.

Examples

- ► Manifold-valued learning
- ► Physical systems (e.g. robotics)
- Logical constraints (e.g. ranking)

Nonlinear MTL: Setting

NL-MTL Goal: approximate $f^*: \mathcal{X} \to \mathcal{C}$ minimizer the **Expected Risk**

$$\min_{f:\mathcal{X}\to\mathcal{C}} \mathcal{E}(f), \qquad \qquad \mathcal{E}(f) = \frac{1}{T} \int \ell(f_t(x), y) \ d\rho_t(x, y)$$

where

- ▶ $f: \mathcal{X} \to \mathcal{C}$ is such that $f(x) = (f_1(x), \dots, f_T(x))$ for all $x \in \mathcal{X}$.
- $C = \{c \in \mathbb{R}^T \mid \gamma(c) = 0\}$ is the constraints set induced by γ .
- $\rho_t(x,y) = \rho_t(y|x)\rho_{\mathcal{X}}(x)$ is the *unknown* data distribution.

Nonlinear MTL: Challenges

Why not try Empirical Risk Minimization?

$$\hat{f} = \operatorname*{argmin}_{\substack{\mathcal{H} \subset \{f: \mathcal{X} \to \mathcal{C}\}\\ f \in \mathcal{H}}} \frac{1}{T} \sum_{t=1}^{T} \mathcal{L}(f_t, S_t)$$

Problems:

- ▶ Modeling: $f_1, f_2 : \mathcal{X} \to \mathcal{C}$ does not guarantee $f_1 + f_2 : \mathcal{X} \to \mathcal{C}$. \mathcal{H} not a linear space. How to choose a "good" \mathcal{H} in practice?
- ▶ Computations: Hard (non-convex) optimization. How to solve it?
- **Statistics**: How to study the generalization properties of \hat{f} ?

Nonliner MTL: a Structured Prediction Perspective

Idea: formulate NL-MTL as a structured prediction problem.

Structured Prediction: originally designed for discrete outputs, but recently genearlized to any set $\mathcal C$ within the **SELF** framework [Ciliberto et al. 2016].

We propose to approximate f^* via the estimator $\hat{f}:\mathcal{X} \to \mathcal{C}$ such that

$$\hat{f}(x) = \underset{c \in \mathcal{C}}{\operatorname{argmin}} \frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{n_t} \alpha_{it}(x) \ell(c_t, y_{it})$$

where the weights are obtained in closed form as

$$(\alpha_{i1}(x), \cdots, \alpha_{in_t}(x)) = (K_t + \lambda I)^{-1} v_t(x)$$

with K_t the kernel matrix $(K_t)_{ij} = k(x_{it}, x_{jt})$ of t-th dataset and $v_t(x) \in \mathbb{R}^n$ with $v_t(x)_i = k(x_{it}, x)$. $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ a **kernel**.

Note. evaluating $\hat{f}(x)$ requires solving an optimization over \mathcal{C} (e.g. for ℓ least squares it \hat{f} reduces to a projection onto \mathcal{C}).

Theoretical Results

Thm. 1 (Universal Consistency)

$$\mathcal{E}(\hat{f}) - \mathcal{E}(f^*) \to 0$$
 with probability 1.

Thm. 2 (Rates). Let
$$n=n_t$$
 and $g_t^* \in \mathcal{G}$ for all $t=1,\ldots,T$. Then

$$\mathcal{E}(\hat{f}) - \mathcal{E}(f^*) \le O(n^{-1/4})$$
 with high probability

Thm. 3 (Benefits of MTL). Let $\mathcal{C} \subset \mathbb{R}^T$ radius 1 sphere. Let N = nT.

Then
$$\mathcal{E}(\hat{f}) - \mathcal{E}(f^*) \leq O(N^{-1/2})$$
 with high probability

Intuition

Ok... but how did we get there?

Structure Encoding Loss Function (SELF)

Ciliberto et al. 2016

Def. $\ell: \mathcal{C} \times \mathcal{Y} \to \mathbb{R}$ is a *structure encoding loss function (SELF)* if there exist \mathcal{H} Hilbert space and $\psi: \mathcal{C} \to \mathcal{H}$, $\varphi: \mathcal{Y} \to \mathcal{H}$ such that

$$\ell(c,y) = \langle \psi(c), \varphi(y) \rangle_{\mathcal{H}} \quad \forall c \in \mathcal{C}, \ \forall y \in \mathcal{Y}.$$

Abstract definition... BUT "most" loss functions used in MTL settings are SELF! More precisely any Lipschitz continuous function differentiable almost everywhere (e.g. least squares, logistic, hinge).

Minimizer of the expected risk

$$f^*(x) = \underset{c \in \mathcal{C}}{\operatorname{argmin}} \frac{1}{T} \sum_{t=1}^{T} \int \ell(c_t, y) \rho_t(y|x)$$

Minimizer of the expected risk

$$f^*(x) = \underset{c \in \mathcal{C}}{\operatorname{argmin}} \frac{1}{T} \sum_{t=1}^{T} \int \langle \psi(c_t), \varphi(y) \rangle_{\mathcal{H}} \rho_t(y|x)$$

Minimizer of the expected risk

$$f^*(x) = \underset{c \in \mathcal{C}}{\operatorname{argmin}} \frac{1}{T} \sum_{t=1}^{T} \left\langle \psi(c_t), \int \varphi(y) \rho_t(y|x) \right\rangle_{\mathcal{H}}$$

Minimizer of the expected risk

$$f^*(x) = \underset{c \in \mathcal{C}}{\operatorname{argmin}} \frac{1}{T} \sum_{t=1}^{T} \langle \psi(c_t), \boldsymbol{g}_t^*(\boldsymbol{x}) \rangle_{\mathcal{H}}$$

where $g_t^*: \mathcal{X} \to \mathcal{H}$ is such that $g_t^*(x) = \int \varphi(y) \rho_t(y|x)$.

Idea, learn a $\hat{g}_t: \mathcal{X} \to \mathcal{H}$ for each g_t^* . Then approximate

$$f^*(x) = \underset{c \in \mathcal{C}}{\operatorname{argmin}} \frac{1}{T} \sum_{t=1}^{T} \langle \psi(c_t), \boldsymbol{g}_t^*(x) \rangle_{\mathcal{H}}$$

with $\hat{f}:\mathcal{X} o \mathcal{C}$

$$\hat{f}(x) = \underset{c \in \mathcal{C}}{\operatorname{argmin}} \frac{1}{T} \sum_{t=1}^{T} \langle \psi(c_t), \hat{\boldsymbol{g}}_t(\boldsymbol{x}) \rangle_{\mathcal{H}}$$

This work: learn \hat{g}_t via kernel ridge regression. Let \mathcal{G}^1 be a reproducing kernel Hilbert space with kernel $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$.

$$\hat{g}_t = \underset{g \in \mathcal{G}}{\operatorname{argmin}} \quad \frac{1}{n_t} \sum_{i=1}^{n_t} \|g(x_{it}) - \varphi(y_{it})\|_{\mathcal{H}}^2 + \lambda \|g\|_{\mathcal{G}}^2$$

Then

$$\hat{g}_t(x) = \sum_{i=1}^{n_t} \alpha_{it}(x)\varphi(y_{it}) \qquad (\alpha_{i1}(x), \dots, \alpha_{in_t}(x)) = (K_t + \lambda I)^{-1}v_t(x)$$

where K_t kernel matrix of t-th dataset, $v_t(x) \in \mathbb{R}^n$ evaluation vector $v_t(x)_i = k(x_{it}, x)$.

 $^{^1}$ actually $\mathcal{G}\otimes\mathcal{H}$

Plugging into

$$\hat{f}(x) = \underset{c \in \mathcal{C}}{\operatorname{argmin}} \frac{1}{T} \sum_{t=1}^{T} \langle \psi(c_t), \hat{g}_t(x) \rangle_{\mathcal{H}}$$

by the SELF property we have

$$\hat{f}(x) = \operatorname*{argmin}_{c \in \mathcal{C}} \frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{n_t} \alpha_{it}(x) \left\langle \psi(c_t), \sum_{i=1}^{n_t} \alpha_{it}(x) \varphi(y_{it}) \right\rangle_{\mathcal{H}}$$

Plugging into

$$\hat{f}(x) = \underset{c \in \mathcal{C}}{\operatorname{argmin}} \frac{1}{T} \sum_{t=1}^{T} \langle \psi(c_t), \hat{g}_t(x) \rangle_{\mathcal{H}}$$

by the SELF property we have

$$\hat{f}(x) = \underset{c \in \mathcal{C}}{\operatorname{argmin}} \frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{n_t} \alpha_{it}(x) \langle \psi(c_t), \varphi(y_{it}) \rangle_{\mathcal{H}}$$

Plugging into

$$\hat{f}(x) = \underset{c \in \mathcal{C}}{\operatorname{argmin}} \frac{1}{T} \sum_{t=1}^{T} \langle \psi(c_t), \hat{g}_t(x) \rangle_{\mathcal{H}}$$

by the SELF property we have

$$\hat{f}(x) = \underset{c \in \mathcal{C}}{\operatorname{argmin}} \frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{n_t} \alpha_{it}(x) \ell(c_t, y_{it})$$

as desired.

Note that evaluating $\hat{f}(x)$ Does not require knowledge of \mathcal{H} , φ or $\psi!$

Empirical Results

Synthetic data

Inverse dynamics (Sarcos)

	STL	MTL[36]	CMTL[10]	MTRL[11]	MTFL[13]	FMTL[16]	NL-MTL[R]	NL-MTL[P]
Expl.	40.5	34.5	33.0	41.6	49.9	50.3	55.4	54.6
Var. (%)	± 7.6	± 10.2	± 13.4	±7.1	± 6.3	± 5.8	± 6.5	± 5.1

Logic constraints (Ranking Movielens100k)

	NL-MTL	SELF[21]	Linear [37]	Hinge [38]	Logistic [39]	SVMStruct [20]	STL	MTRL[11]
Rank Loss	$0.271 \\ \pm 0.004$	0.396 ± 0.003	$0.430 \\ \pm 0.004$	$0.432 \\ \pm 0.008$	0.432 ± 0.012	0.451 ±0.008	0.581 0.003	0.613 ±0.005