Laboratório 5 - Projeto de Controladores (Parte 3)

Controlador PID

Uma vez que o controlador P não elimina o erro de regime permanente, um controlador PID será implementado nesta prática para zerar esse erro.

Nesta prática, utilizaremos os seguintes valores que foram obtidos das experiências anteriores:

- Período de amostragem para a malha fechada com controlador proporcional com K=8: $T_{08} = 0.1874s$
- Planta do sistema discretizada com retentor de ordem zero para o período de amostragem T₀₈:

$$G_p(s) = k \frac{\omega_n^2}{s^2 + 2\zeta \omega_n s + \omega_n^2}$$

onde para este sistema:

- k = 8
- $w_n = 1,049820150401$
- $\zeta = 1,030083531574$

Assim, obtemos:

$$G_p(z) = \frac{0.1183201 + 0.135437z}{0.6667703 - 1.6350507z + z^2}$$
$$G_p(z) = \frac{0.135437z^{-1} + 0.1183201z^{-2}}{1 - 1.6350507z^{-1} + 0.6667703z^{-2}}$$

- Tempo de subida, t_{r1} , do sinal de saída da planta obtido com o sistema de malha fechada com controlador proporcional K=1: $t_{r1}=1.496s$
- Tempo de acomodação t_{s1} , do sinal de saída da planta obtido com o sistema de malha fechada com controlador proporcional K=1: $t_{s1}=2.774s$

Assim, com os valores acima, podemos responder às seguintes perguntas:

1. Projete um controlador PID discreto que proporcione além do erro de regime nulo, um tempo de subida semelhante (não mais que 20% maior) ou melhor que t_{r1} , um sobressinal máximo M_p de 6% ou menor, e um tempo de acomodação t_{s1} de aproximadamente $2.4t_{r1}$. Caso não consiga atender os três requisitos ao mesmo tempo, dê preferência para M_p , depois para t_{s1} , e então para t_{r1} . Algumas sugestões de como fazer o projeto:

Requisitos: P3 **Tempo de subida** até 20% de t_{r1} = 1,7952

P1 Sobresinal até 6% de M_n

P2 Tempo de acomodação aproximadamente 2.4*t_{r1} = 3,5904

a. Utilize a seguinte função de transferência para o controlador PID:

$$G_{PID}(z) = \frac{q_0 z^2 + q_1 z + q_2}{z^2 - z}$$

Escolha por tentativa e erro os parâmetros do controlador obedecendo às restrições: $q_0 \le 10$; $q_1 \le -q_0(1-q_0b_1)$; $-(q_0+q_1) \le q_2 \le q_0$.

Lembre-se que o componente **proporcional** do controlador é $K = q_0 - q_2$, o componente **integrativo** é $c_i = (q_0 + q_1 + q_2)/K$, e o componente **derivativo** é $c_d = q_2/K$. Portanto, ao variar o parâmetro q_2 altera-se todos os parâmetros, mas principalmente o componente derivativo c_d . Também nota-se que q_1 influencia apenas o componente integrativo.

Utilizando o método de tentativa e erro, foram obtidos diversas combinações envolvendo \mathbf{q}_0 , \mathbf{q}_1 e \mathbf{q}_2 , a maioria não atendendendo nenhuma das condições pedidas no enunciado. Em nossa última tentativa, conseguimos um valor de sobressinal máximo com menos de 6%, apesar de o tempo de acomodação e subida não terem sido atendidos, e optamos por utilizar esses valores.

Tabela com os testes de valores para encontrar o melhor possível de q₀, q₁ e q₂									
q0	q1	q2	Valor final	Mp_pico	Mp (%)	Ts	Tr1x1	Tr2x2	Tr
0,4	-0,3	0,1	1,006	1,483	47,7	2,624	0,936	2,415	1,479
0,4	-0,35	0,1	0,999	1,332	33,3	11,432	0,936	2,998	2,062
0,35	-0,35	0,1	1	1,179	17,9	8,996	0,937	3,748	2,811
0,35	-0,36	0,1	1	1,14	14	9,37	0,937	4,122	3,185
0,35	-0,36	0,15	0,997	1,349	35,2	14,43	0,937	3,185	2,248
0,35	-0,36	0,09	1	1,097	9,7	9,558	0,937	4,497	3,56
0,35	-0,33	0,09	1	1,213	21,3	8,621	0,937	3,56	2,623
0,37	-0,36	0,09	1	1,166	16,6	8,995	0,937	3,748	2,811
0,37	-0,36	0,06	1	1,042	4,2	5,435	0,937	4,873	3,936
0,375	-0,35	0,05	1	1,054	5,4	8,433	0,937	4,684	3,747

Abaixo, vemos o gráfico da saída para q_0 = 0.375, q_1 = -0.35 e q_2 = 0.05:

Figura 1 - Tempo de acomodação, sobressinal e valor final

Figura 2 - 10% e 90% do valor final, usados para obter o tempo de subida.

2. Mostre no relatório a função de transferência discreta do controlador projetado $G_{PID}(\mathbf{z})$.

Como $q_0 = 0.375$, $q_1 = -0.35$ e $q_2 = 0.05$, temos:

$$G_{PID}(z) = \frac{0.375z^2 - 0.35z + 0.05}{z^2 - z}$$

 Mostre no relatório a função de transferência discreta do sistema de malha fechada (desconsiderando o distúrbio).

Figura 3 - Malha com realimentação unitária

Desconsiderando o distúrbio na entrada da planta, a função contínua de malha fechada do sistema é dada por:

$$G_{MF}(s) = \frac{Y(s)}{R(s)} = \frac{C(s)G_p(s)}{1 + C(s)G_p(s)}$$

Onde C(s) é $G_{PID}(z)$:

$$G_{MF}(z) = \frac{G_{PID}(z)G_{P}(z)}{1 + G_{PID}(z)G_{P}(z)}$$

Assim, substituindo $G_{PID}(z)$ e $G_{P}(z)$, que são conhecidos, temos:

$$G_{MF}(z) = \frac{0.0007395 - 0.00433z - 0.0003791z^2 + 0.0063486z^3}{0.0007395 - 0.6711003z + 2.3014419z^2 - 2.6287021z^3 + z^4}$$

$$G_{MF}(z) = \frac{0.0063486z^{-1} - 0.0003791z^2 - 0.00433z^{-3} + 0.0007395z^{-4}}{1 - 2.6287021z^{-1} + 2.3014419z^{-2} - 0.6711003z^{-3} + 0.0007395}$$

4. Mostre no relatório os pólos de malha fechada em z.

Figura 4 - Pólos e zeros de malha fechada em z.

Assim, temos o polo 0, os polos conjugados $0.928 \pm 0.072j$ e o polo 0.772.

5. Implemente no xcos o sistema de malha fechada com controlador discreto projetado, e mostre no relatório apenas as curvas discretas de resposta do sistema (sinal de erro, sinal de controle, e sinal de saída do sistema).

Figura 5 - Implementação no xcos do sistema de malha fechada com o controlador projetado.

Figura 6 - Curva discreta de controle do sistema.

Figura 7 - Curva discreta do erro do sistema.

Figura 8 - Curva discreta da saída do sistema.

6. Quais os valores do erro de regime permanente antes do distúrbio e após o distúrbio?

Aplicamos o distúrbio adicionando uma entrada degrau com as seguintes propriedades, incluindo o valor *d* referente ao nosso grupo:

Figura 9 - Propriedades do distúrbio.

Os erros antes e depois do distúrbio são 0, o que pode ser comprovado pelas Figuras 7 e 10.

Figura 10 - Curva discreta do erro do sistema após o distúrbio.

É interessante notar que em no instante 12s o erro aumenta um pouco devido a aplicação do distúrbio, porém pode-se ele tende a 0 (assim como antes do distúrbio).

- **7.** Quais os tempos de subida e de acomodação (5%) da saída do sistema de malha fechada antes do distúrbio? Qual o sobressinal do sinal de saída antes do distúrbio?
 - **a.** Tempo de subida:

$$T_r = 3.747s$$

b. Tempo de acomodação:

$$T_s = 8.433s$$

c. Sobressinal:

$$M_p = 5.4\%$$

Anexo:

Foi utilizado o seguinte código durante o processo.

```
s = poly(0, 's');
z = poly(0, 'z');
wn = 1.049820150401;
zeta = 1.030083531574;
TF = syslin("c", (wn^2)/(s^2 + 2*zeta*wn*s + wn^2))
T0 = 0.1874
Gz = ss2tf(dscr(tf2ss(TF),T0))
b1 = 0.135437
q0 = 0.375
q1 = -0.35
q2 = 0.05
q1_min = -(q0*(1-(q0*b1)))
q2_min = -(q0+q1)
q2_max = q0
Gpid = syslin("d",(q0*z^2+q1*z+q2)/(z^2-z))
transf = ((Gz*Gpid)/(1+Gz*Gpid))
plzr(transf) // calculo dos polos e zeros
```