23W-EC ENGR-131A-LEC-1 Homework 3

SANJIT SARDA

TOTAL POINTS

100 / 100

QUESTION 1

- 1 Question 1 15 / 15
 - √ 0 pts All parts correct
 - 2 pts Missing sketch for part a
 - 5 pts Inorrect part a
 - 5 pts Incorrect part b
 - **5 pts** Incorrect part c

QUESTION 2

- 2 Question 2 20 / 20
 - √ 0 pts Correct
 - 10 pts Missing part a
 - 10 pts Missing part b

QUESTION 3

- 3 Question 3 20 / 20
 - ✓ 0 pts Correct
 - 10 pts Missing part a
 - 10 pts Missing part b

QUESTION 4

- 4 Question 4 20 / 20
 - √ 0 pts Correct
 - 10 pts Missing part a
 - 10 pts Missing part b

QUESTION 5

5 Question 5 25 / 25

- √ 0 pts Correct
 - 8 pts Missing part a
 - 8 pts Missing part b
 - 9 pts Missing part c

ECE 131A HW#3

$$P_{X}(X=0) = P(Insured)^{X}P(Ilot Insured)^{Y-X}\begin{pmatrix} Y \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}\begin{pmatrix} 3 \\ 4 \end{pmatrix}, 1 = \frac{81}{256}$$

$$P_{X}(X=1) = P(Insured)^{X}P(Ilot Insured)^{Y-X}\begin{pmatrix} Y \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}^{2}\begin{pmatrix} 3 \\ 1 \end{pmatrix}^{2}, Y = \frac{108}{256}$$

$$P_{X}(X=2) = P(Insured)^{X}P(Ilot Insured)^{Y-X}\begin{pmatrix} Y \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}^{2}\begin{pmatrix} 3 \\ 1 \end{pmatrix}^{2}, G = \frac{54}{256}$$

$$P_{X}(X=3) = P(Insured)^{X}P(Ilot Insured)^{Y-X}\begin{pmatrix} Y \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}^{3}\begin{pmatrix} 3 \\ 1 \end{pmatrix}, Y = \frac{12}{256}$$

$$P_{X}(X=1) = P(Insured)^{X}P(Ilot Insured)^{Y-X}\begin{pmatrix} Y \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}^{Y}\begin{pmatrix} 3 \\ 1 \end{pmatrix}^{Y} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}^{Y}\begin{pmatrix} 3 \\ 1 \end{pmatrix}^{Y} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}^{Y}\begin{pmatrix} 3 \\ 1 \end{pmatrix}^{Y} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}^{Y}\begin{pmatrix} 3 \\ 1 \end{pmatrix}^{Y} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}^{Y}\begin{pmatrix} 3 \\ 1 \end{pmatrix}^{Y} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}^{Y}\begin{pmatrix} 3 \\ 1 \end{pmatrix}^{Y} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}^{Y}\begin{pmatrix} 3 \\ 1 \end{pmatrix}^{Y} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}^{Y}\begin{pmatrix} 3 \\ 1 \end{pmatrix}^{Y} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}^{Y}\begin{pmatrix} 3 \\ 1 \end{pmatrix}^{Y} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}^{Y}\begin{pmatrix} 3 \\ 1 \end{pmatrix}^{Y} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}^{Y}\begin{pmatrix} 3 \\ 1 \end{pmatrix}^{Y} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}^{Y}\begin{pmatrix} 3 \\ 1 \end{pmatrix}^{Y} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}^{Y}\begin{pmatrix} 3 \\ 1 \end{pmatrix}^{Y} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}^{Y}\begin{pmatrix} 3 \\ 1 \end{pmatrix}^{Y} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}^{Y}\begin{pmatrix} 3 \\ 1 \end{pmatrix}^{Y} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}^{Y}\begin{pmatrix} 3 \\ 1 \end{pmatrix}^{Y} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}^{Y}\begin{pmatrix} 3 \\ 1 \end{pmatrix}^{Y} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}^{Y}\begin{pmatrix} 3 \\ 1 \end{pmatrix}^{Y} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}^{Y}\begin{pmatrix} 3 \\ 1 \end{pmatrix}^{Y} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}^{Y}\begin{pmatrix} 3 \\ 1 \end{pmatrix}^{Y} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}^{Y}\begin{pmatrix} 3 \\ 1 \end{pmatrix}^{Y} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}^{Y}\begin{pmatrix} 3 \\ 1 \end{pmatrix}^{Y} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}^{Y}\begin{pmatrix} 3 \\ 1 \end{pmatrix}^{Y} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}^{Y}\begin{pmatrix} 3 \\ 1 \end{pmatrix}^{Y} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}^{Y}\begin{pmatrix} 3 \\ 1 \end{pmatrix}^{Y} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}^{Y}\begin{pmatrix} 3 \\ 1 \end{pmatrix}^{Y} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}^{Y}\begin{pmatrix} 3 \\ 1 \end{pmatrix}^{Y} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}^{Y}\begin{pmatrix} 3 \\ 1 \end{pmatrix}^{Y} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}^{Y}\begin{pmatrix} 3 \\ 1 \end{pmatrix}^{Y} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}^{Y}\begin{pmatrix} 3 \\ 1 \end{pmatrix}^{Y} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}^{Y}\begin{pmatrix} 3 \\ 1 \end{pmatrix}^{Y} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}^{Y}\begin{pmatrix} 3 \\ 1 \end{pmatrix}^{Y} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}^{Y}\begin{pmatrix} 3 \\ 1 \end{pmatrix}^{Y} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}^{Y}\begin{pmatrix} 3 \\ 1 \end{pmatrix}^{Y} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}^{Y}\begin{pmatrix} 3 \\ 1 \end{pmatrix}^{Y} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}^{Y}\begin{pmatrix} 3 \\ 1 \end{pmatrix}^{Y} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}^{Y}\begin{pmatrix} 3 \\ 1 \end{pmatrix}^{Y} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}^{Y}\begin{pmatrix} 3 \\ 1 \end{pmatrix}^{Y} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}^{Y}\begin{pmatrix} 3 \\ 1 \end{pmatrix}^{Y} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}^{Y}\begin{pmatrix} 3 \\ 1 \end{pmatrix}^{Y} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}^{Y}\begin{pmatrix} 3 \\ 1 \end{pmatrix}^{Y} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}^{Y}\begin{pmatrix} 3 \\ 1 \end{pmatrix}^{Y} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}^{Y}\begin{pmatrix} 3 \\ 1 \end{pmatrix}^{Y} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}^{Y}\begin{pmatrix} 3 \\ 1 \end{pmatrix}^{Y} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}^{Y}\begin{pmatrix} 3 \\ 1 \end{pmatrix}^{Y} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}^{Y}\begin{pmatrix} 3 \\ 1 \end{pmatrix}^{Y} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}^{Y}\begin{pmatrix} 3 \\ 1 \end{pmatrix}^{Y} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}^{Y}\begin{pmatrix} 3 \\ 1 \end{pmatrix}^{Y} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}^{Y}\begin{pmatrix} 3 \\ 1 \end{pmatrix}^{Y} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}^{Y}\begin{pmatrix} 3 \\ 1 \end{pmatrix}^{Y} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}^{Y}\begin{pmatrix} 3 \\ 1 \end{pmatrix}^{Y} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}^{Y}\begin{pmatrix} 3 \\ 1 \end{pmatrix}^{Y} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}^{Y}\begin{pmatrix} 3 \\ 1 \end{pmatrix}^{Y} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}^{Y}\begin{pmatrix} 3 \\ 1 \end{pmatrix}^{Y} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

D) The most likely value for X is that I of them has insurance.

c)
$$P(X \ge 2) = P(X = 2) + P(X = 3) + P(X = 4) = \frac{54 + 12 + 1}{256} = \frac{67}{256}$$

1 Question 1 15 / 15

- ✓ 0 pts All parts correct
 - 2 pts Missing sketch for part a
 - 5 pts Inorrect part a
 - **5 pts** Incorrect part b
 - **5 pts** Incorrect part c

2) X is a Binomial RV with n= 4&P.

$$DPMF$$
; $P(X=x) = \begin{pmatrix} 4 \\ x \end{pmatrix} p^{x} (1-p)^{4-x}$

$$F\left[SIN\left(\frac{\pi X}{2}\right) - \sum_{x} SIN\left(\frac{\pi x}{2}x\right) \cdot P_{x}(x=2) = \sum_{k=0}^{4} SIN\left(\frac{x}{k}\right) P^{k}(1-P)^{4-k}$$

$$= \left[\left[Sin \left(\frac{\pi X}{2} \right) \right] = 0 + Sin \left(\frac{\pi}{2} \right) \cdot 4 \cdot p \left(1 - p \right)^{3} + \frac{1}{2} \cdot 4 \cdot p \left(1 - p \right)^{2} + \frac{1}{2} \cdot 4 \cdot p \left(1 - p$$

$$\int \left[\cos\left(\frac{\pi x}{2}\right)\right] = \sum_{x} \cos\left(\frac{\pi x}{2}\right) \cdot P(x=z) = \sum_{k=0}^{y} \cos\left(\frac{\pi x}{2}\right) \left(\frac{y}{k}\right) P^{k}(J-p)^{y-k}$$

$$= \cos(0)(4)p(1-p) + 0 + \cos(\pi)(4)p(1-p)^{2} + 0 + \cos(2\pi)(4)p(1-p)^{0}$$

$$= (1-p)^{4} - 6p^{2}(1-p)^{2} + p^{4}$$

2 Question 2 20 / 20

- **√ 0 pts** Correct
 - 10 pts Missing part a
 - 10 pts Missing part b

3) Two coins: $P(H_1) = P$ $P(H_2) = q$ $X_{15} \# r_0 \| s + i \| H_1 T_2 \| H_2 T_1$, At each toss P(sucess) = p(1-q) + q(1-p) $P(F_{all}) = pq + (1-p)(1-q)=1 - P(sucess)$ $P(F_{all}) = pq + (1-p)(1-p)=$

$$\frac{1}{\sqrt{16}} \sum_{k=0}^{2} \sum_{k=1}^{2} \sum_{$$

1. P(H1 T2 | Success) = P(H1 T2) = P(1-9) P(Success) = P(1-9)+9(1-P)

3 Question 3 20 / 20

- **√ 0 pts** Correct
 - 10 pts Missing part a
 - 10 pts Missing part b

$$p(N=0) = \frac{\left(\frac{1}{10} \cdot 100\right)^{k} e^{-\left(\frac{1}{10} \cdot 100\right)}}{k!} = \frac{10^{\circ} e^{-10}}{0!} = e^{-10}$$

D PMF for between 300 \$400ms =

$$P(N=R) = \frac{10.100)^{k}}{k!} e^{-(1/10.100)}$$
 $e^{-(1/10.100)}$
 $e^{-(1/10.100)}$

$$P(5 + 10 + 10^{6} - 10 + 10^{7} - 10^{10} +$$

4 Question 4 20 / 20

- **√ 0 pts** Correct
 - 10 pts Missing part a
 - 10 pts Missing part b

▼ ECE 131A HW 2 Programming Section

5. Use MATLAB to plot the pmfs of the following random variables. This question is to provide practice with MATLAB which you will use for the future project so do not provide hand-drawn plots.

```
# Imports
import numpy as np
import matplotlib.pyplot as plt
import scipy.io as sio

# a) Discrete Uniform Random Variable on the set {1,2,3,4}
x = np.array([1,2,3,4])
p = np.array([1/4,1/4,1/4])
plt.stem(x,p)
plt.title('PMF of a Discrete Uniform Random Variable on the set {1,2,3,4}')
plt.xlabel('x')
plt.ylabel('PMF(X=x)')
plt.show()
```



```
# b) Binomial Random Variable with n = 5 and p = 0.25
n = 5
p = 0.25
x = np.arange(0,6)
pmf = np.zeros(6)
for i in range(0,6):
    pmf[i] = np.math.factorial(n)/(np.math.factorial(i)*np.math.factorial(n-i))*p**i*(1-p)**(
plt.stem(x,pmf)
plt.title('PMF of a Binomial Random Variable with n = 5 and p = 0.25')
plt.xlabel('x')
plt.ylabel('PMF(X=x)')
plt.show()
```



```
# c) Geometric Random Variable with p = 0.5 and plot the PMF for values less than or equal to p = 0.5  x = np.arange(0,6) \\ pmf = np.zeros(6) \\ for i in range(0,6): \\ pmf[i] = p*(1-p)**i \\ plt.stem(x,pmf) \\ plt.title('PMF of a Geometric Random Variable with p = 0.5') \\ plt.xlabel('x') \\ plt.ylabel('PMF(X=x)') \\ plt.show()
```


5 Question 5 25 / 25

- **√ 0 pts** Correct
 - 8 pts Missing part a
 - 8 pts Missing part b
 - 9 pts Missing part c

3) Coin Tossed until heads
$$P(H) = P P(T) = Q$$

$$X = \# \text{ tosses till } H$$

$$-P_{X}(X \le 0) = 0$$

$$P_{X}(X = 1) = P$$

$$P_{X}(X = 2) = P9$$

$$P_{X}(X = 3) = P9^{2}$$

$$P_{X}(X = k) = P9^{k-1}$$

$$P_{X}(X = k) = P9^{k-1}$$

also p+q= 1

$$\Rightarrow F[x] = \sum_{k=0}^{\infty} K \cdot P_x(x=k) = \sum_{k=0}^{\infty} K \cdot P_q^{k-1} = \sum_{k=0}^{\infty} P_{qq}^{dq} q^{k}$$

$$= P_{qq}^{d} \sum_{k=0}^{\infty} q^{k} = P_{qq}^{d} \frac{1}{1-q} = P_{(p^2)}^{-1} = \frac{1}{p} = \frac{1}{1-q}$$

$$Var(X) = \sum_{k=0}^{\infty} k^{2} P_{k}(x=k) - (f(X))^{2}$$

$$= \sum_{k=0}^{\infty} k^{2} P_{k}(x=k) - (f(X))^{2}$$

$$= \sum_{k=0}^{\infty} k^{2} P_{k}(x=k) - (f(X))^{2}$$

$$= \sum_{k=0}^{\infty} k^{2} P_{k}(x=k) - P_{k}(x=k)$$

$$= P_{k=0}^{\infty} k^{2} P_{k}(x=k) - P_{k}(x=k)$$

$$= P_{k=0}^{\infty} (f(X))^{2} P_{k}(x=k)$$

$$= P_{k=0}^{\infty} (f(X$$