课外练习题 4

- 1. 设 3 阶矩阵 \boldsymbol{A} 的秩 $\boldsymbol{R}(\boldsymbol{A}) = 1$, $\boldsymbol{\eta}_1 = (-1,3,0)^T$, $\boldsymbol{\eta}_2 = (2,-1,1)^T$, $\boldsymbol{\eta}_3 = (5,0,k)^T$ 是方程组 $\boldsymbol{A}\boldsymbol{x} = \boldsymbol{0}$ 的 3 个解向量,则常数 $k = \underline{\hspace{1cm}}$.
- 2. 若齐次线性方程组 $\begin{cases} \lambda x_1 + x_2 + x_3 = 0, \\ x_1 + \lambda x_2 + x_3 = 0, & (\lambda \neq 1) \text{ 有非零解,则 } \lambda = \underline{\hspace{1cm}}. \\ x_1 + x_2 + \lambda x_3 = 0 \end{cases}$
- 3. 设齐次线性方程组 $\begin{cases} x_1 + kx_2 + x_3 = 0, \\ 2x_1 + x_2 + x_3 = 0, \\ kx_2 + 3x_3 = 0 \end{cases}$ 只有零解,则 k 应满足条件______.
- 4. 已知四元非齐次线性方程组 Ax = b 中,R(A) = 3. 而 $\alpha_1, \alpha_2, \alpha_3$ 为它的三个解向量,且 $\alpha_1 + \alpha_2 = (1,1,0,2)^T, \alpha_2 + \alpha_3 = (1,0,1,3)^T, \quad \text{则 } Ax = b \text{ 的通解为}_{\underline{\hspace{1cm}}}.$
- 6. A 为 2×3 阶矩阵,R(A)=2,已知非齐次线性方程组Ax=b 有解 α_1,α_2 ,且

- 7. 设A 是 4×5 矩阵,B 是 5×4 矩阵,且R(A) = 2,B 的列向量都是Ax = 0 的解,则 $\max_{B} \{R(B)\} = \underline{\hspace{1cm}}.$
- 8. 设 η_1, η_2 是四元线性非齐次方程组Ax = b的两个不同的解,R(A) = 3,则Ax = b的通解为 $x = ______$.
- 9. 设 $A = (a_{i \times j})_{3 \times 3}$ 是实正交矩阵,且 $a_{11} = 1$, $b = (1,0,0)^T$,则线性方程组Ax = b的解是
- 11. 设向量组[I]是向量组[II]的线性无关的部分向量组,则().

(A) 向量组[I]是[II]的极大线性无关组
(B) 向量组[I]与[II]的秩相等
(C) 当[I]中向量均可由[II]线性表示时,向量组[I],[II]等价
(D) 当 $[II]$ 中向量均可由 $[I]$ 线性表示时,向量组 $[I]$, $[II]$ 等价
12. 设 n 阶矩阵 A 的伴随矩阵 $A^* \neq O$,若 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 是非齐次线性方程组 $Ax = b$ 的互
不相等的解,则对应的齐次线性方程组 $\mathbf{A}\mathbf{x} = 0$ 的基础解系().
(A) 不存在. (B) 仅含有一个非零解向量.
(C) 含有两个线性无关的解向量. (D) 含有三个线性无关的解向量.
13.设 \boldsymbol{A} 为正交矩阵,且 $ \boldsymbol{A} = -1$,则必有 $\boldsymbol{A}^* = ($).
(A) \boldsymbol{A}^T (B) $-\boldsymbol{A}^T$ (C) \boldsymbol{A} (D) $-\boldsymbol{A}$
14. 设 A 为 $m \times n$ 矩阵,则下述命题正确的是 ().
(A) 若 $Ax = 0$ 只有零解,则 $Ax = b$ 有唯一解
(B) $\mathbf{A}\mathbf{x} = 0$ 有非零解的充要条件是 $ \mathbf{A} = 0$
(C) $\mathbf{A}\mathbf{x} = \mathbf{b}$ 有唯一解的充要条件是 $\mathbf{R}(\mathbf{A}) = \mathbf{n}$
(D) 若 $Ax = b$ 有两个不同的解,则 $Ax = 0$ 有非零解
15. 设 A 为 n 阶矩阵,且 $ A =0$,则().
(A) A 的秩为零
(B) A 的行秩为零
(C) 非齐次线性方程组 $Ax = b$ 有无穷多解
(D) 齐次线性方程组 $Ax = 0$ 有非零解
16. 设 A 为 5×4 矩阵, $m{eta}_1, m{eta}_2$ 为非齐次方程组 $Ax = m{b}$ 的两个不同的特解, $m{lpha}_1, m{lpha}_2$ 是对应齐
次方程组 $\mathbf{A}\mathbf{x}=0$ 的基础解系,对任意常数 k_1,k_2 ,则下列正确的是().
(A) $\mathbf{A}\mathbf{x} = \mathbf{b}$ 的通解是 $k_1 \boldsymbol{\alpha}_1 + k_2 \boldsymbol{\alpha}_2 + \frac{1}{2} (\boldsymbol{\beta}_2 - \boldsymbol{\beta}_1)$
(B) $\mathbf{A}\mathbf{x} = \mathbf{b}$ 的通解是 $k_1(\boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2) + k_2(\boldsymbol{\alpha}_1 - \boldsymbol{\alpha}_2) + 2\boldsymbol{\beta}_2 - \boldsymbol{\beta}_1$
(C) $\mathbf{A}\mathbf{x} = 0$ 的通解是 $k_1(\boldsymbol{\alpha}_2 - \boldsymbol{\alpha}_1) + k_2(\boldsymbol{\beta}_2 - \boldsymbol{\alpha}_1)$
(D) $AX = O$ 的通解是 $k_1 \alpha_1 + k_2 (\beta_2 - \beta_1)$

17. 已知 $\alpha_1, \alpha_2, \alpha_3$ 是 $Ax = 0$ 的一组基础解系,下列结论正确的是().
(A) $\boldsymbol{\alpha}_1 - \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_2 - \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_3 - \boldsymbol{\alpha}_1$ 也是 $\boldsymbol{A}\boldsymbol{x} = \boldsymbol{0}$ 的一组基础解系
(B) ξ_1, ξ_2, ξ_3 与 $\alpha_1, \alpha_2, \alpha_3$ 等秩,则 ξ_1, ξ_2, ξ_3 也是 $Ax = 0$ 的一组基础解系
(C) $\eta_1, \eta_2, \eta_3, \eta_4$ 与 $\alpha_1, \alpha_2, \alpha_3$ 等价,则 $\eta_1, \eta_2, \eta_3, \eta_4$ 也是 $Ax = 0$ 的一组基础解系
(D) $\boldsymbol{\xi}_1, \boldsymbol{\xi}_2, \boldsymbol{\xi}_3$ 与 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3$ 等价,则 $\boldsymbol{\xi}_1, \boldsymbol{\xi}_2, \boldsymbol{\xi}_3$ 也是 $\boldsymbol{A}\boldsymbol{x} = \boldsymbol{0}$ 的一组基础解系
18. 齐次线性方程组 $Ax = 0$ 和 $Bx = 0$ 同解的充分必要条件为 ().
(A) $\mathbf{A} \rightarrow \mathbf{B}$ 等价 (B) $\mathbf{A} \rightarrow \mathbf{B}$ 的秩相同
(C) \mathbf{A} 与 \mathbf{B} 的列向量组等价 (D) \mathbf{A} 与 \mathbf{B} 的行向量组等价
19. 设 A 为 $m \times n$ 阶矩阵, $R(A) = m < n$,则下列结论正确的是 ().
(A) A 的任意 m 个列向量线性无关 (B) A 的任意一个 m 阶子式不等于 0
(C) $\mathbf{A}\mathbf{x} = \mathbf{b}$ 一定有无穷多个解 (D) \mathbf{A} 经过初等行变换可化为(\mathbf{E}_{m} , \mathbf{O})形式
20. 设 A 是 4×3 矩阵, B 是 3×4 矩阵,则下列结论正确的是().
(A) $ABx = 0$ 必有非零解 (B) $ABx = 0$ 只有零解
(C) $BAx = 0$ 必有非零解 (D) $BAx = 0$ 只有零解
21. n 元线性方程组 $A_{m\times n}x = b$ 有唯一解的充要条件是 ().
(A) $R(A) = n$ (B) A 为方阵,且 $ A \neq 0$
(C) $R(A) = R(A,b) = n$ (D) $R(A) = m$
22. 设 A 是 $m \times n$ 矩阵,则().
(A) 当 $Ax = \beta$ 有惟一解时, $m = n$
(B) 当 $Ax = \beta$ 有惟一解时, $R(A) = n$
(C) 当 $Ax = \beta$ 有无穷多解时, $Ax = 0$ 只有零解
(D) 当 $Ax = \beta$ 有无穷多解时, $R(A) < m$
23. (10 分) 求向量组: $\boldsymbol{\alpha}_1 = (1,1,1)^T$, $\boldsymbol{\alpha}_2 = (0,2,5)^T$, $\boldsymbol{\alpha}_3 = (2,4,7)^T$, $\boldsymbol{\alpha}_4 = (-1,1,3)^T$ 的
个极大线性无关组,并指出 $oldsymbol{lpha}_4$ 能否被 $oldsymbol{lpha}_1,oldsymbol{lpha}_2,oldsymbol{lpha}_3$ 线性表示.
24. (10 分) 设 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 是某齐次线性方程组的基础解系,又 $\beta_1 = \alpha_1 + \alpha_2$,

 $\beta_2 = \alpha_2 + \alpha_3$, $\beta_3 = \alpha_3 + \alpha_4$, $\beta_4 = \alpha_4 - \alpha_1$, 问 β_1 , β_2 , β_3 , β_4 是否也可作为该方程组的基础解系? 为什么?

- 25. (10 分)设向量组 $\alpha_1, \alpha_2, \cdots, \alpha_m$ 线性无关,非零向量 β 与每个向量 α_i (1 \leq i \leq m)均正交,证明 $\alpha_1, \alpha_2, \cdots, \alpha_m, \beta$ 线性无关.
- 26.(17分)已知齐次线性方程组

$$\begin{cases} (a_1 + b)x_1 + a_2x_2 + a_3x_3 = 0, \\ a_1x_1 + (a_2 + b)x_2 + a_3x_3 = 0, \\ a_1x_1 + a_2x_2 + (a_3 + b)x_3 = 0, \end{cases}$$

其中 $a_1 + a_2 + a_3 \neq 0$,试讨论 a_1, a_2, a_3 和b满足何种关系时①方程组仅有零解;②方程组有非零解,并求其全部解.

27. (14 分) 对于线性方程组 $\begin{cases} x_1+x_2+x_3=1,\\ x_1+kx_2+x_3=k,\\ x_1+x_2+k^2x_3=k, \end{cases}$,问 k 取何值时,方程组无解、有惟一解 $x_1+x_2+k^2x_3=k,$

和无穷多组解?并在方程组有无穷多组解时,求其通解.

28. (10 分) 设A, B 都是n 阶方阵,且AB = O. 证明: $R(A) + R(B) \le n$.

(1)方程组有唯一解; (2)方程组无解; (3)方程组有无穷多解,并求出通解表示式.

30. (6分)设
$$n$$
方阵 A 满足 $A^TA = E$, 且 $|A| < 0$,证明 $|A + E| = 0$.