CSE 221: Algorithms

Sorting lower bounds and Linear time sorting

Mumit Khan

Computer Science and Engineering BRAC University

References

- T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, Second Edition. The MIT Press, September 2001.
- Erik Demaine and Charles Leiserson, 6.046J Introduction to Algorithms. MIT OpenCourseWare, Fall 2005. Available from: ocw.mit.edu/OcwWeb/Electrical-Engineering-and-Computer-Science/ 6-046JFall-2005/CourseHome/index.htm

Last modified: October 27, 2009

This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported License.

Contents

- Sorting lower bounds
 - What's the best we can do?
 - Lower bound
- Sorting in linear time
 - Counting sort
 - Radix sort
 - Conclusion

Mumit Khan

3/19

Contents

- Sorting lower bounds
 - What's the best we can do?
 - Lower bound
- Sorting in linear time
 - Counting sort
 - Radix sort
 - Conclusion

- Bubble, selection, insertion, quicksort ... $O(n^2)$
- Heapsort, mergesort ... $O(n \lg n)$

- Bubble, selection, insertion, quicksort ... $O(n^2)$
- Heapsort, mergesort ... $O(n \lg n)$

Mumit Khan Licensed under [™] CSE 221: Algorithms 4 / 19

- Bubble, selection, insertion, quicksort ... $O(n^2)$
- Heapsort, mergesort ... $O(n \lg n)$

Mumit Khan Licensed under [™] CSE 221: Algorithms 4 / 19

- Bubble, selection, insertion, quicksort ... $O(n^2)$
- Heapsort, mergesort ... $O(n \lg n)$

Question

Can a sorting algorithm do better than $O(n \lg n)$ in the worst-case?

Mumit Khan Licensed under [™] CSE 221: Algorithms 4 / 19

4/19

What's the best we can do?

- Bubble, selection, insertion, quicksort ... $O(n^2)$
- Heapsort, mergesort ... $O(n \lg n)$

Question

Can a sorting algorithm do better than $O(n \lg n)$ in the worst-case?

We can use a decision tree to answer this question.

Sequence $A = \langle 9, 4, 6 \rangle$

Question

What is the best that we can do with comparison-based sorting?

- n! possible permutations, one of which is the sorted sequence.
- Minimum number of comparisons is the path from root of the
- Height of a binary tree with n! leaves is $\lceil \lg n! \rceil$. (Note: by

$$h = \lceil \lg n! \rceil \ge \lceil \lg((n/e)^n) \rceil = \lceil n \lg n - n \lg e \rceil$$
$$= \Omega(n \lg n)$$

Question

What is the best that we can do with comparison-based sorting?

- n! possible permutations, one of which is the sorted sequence.
- Minimum number of comparisons is the path from root of the
- Height of a binary tree with n! leaves is $\lceil \lg n! \rceil$. (Note: by

$$h = \lceil \lg n! \rceil \ge \lceil \lg((n/e)^n) \rceil = \lceil n \lg n - n \lg e \rceil$$
$$= \Omega(n \lg n)$$

Question

What is the best that we can do with comparison-based sorting?

- n! possible permutations, one of which is the sorted sequence.
- Minimum number of comparisons is the path from root of the decision tree to one of the n! leaves.
- Height of a binary tree with n! leaves is $\lceil \lg n! \rceil$. (Note: by

$$h = \lceil \lg n! \rceil \ge \lceil \lg((n/e)^n) \rceil = \lceil n \lg n - n \lg e \rceil$$
$$= \Omega(n \lg n)$$

Question

What is the best that we can do with comparison-based sorting?

- *n*! possible permutations, one of which is the sorted sequence.
- Minimum number of comparisons is the path from root of the decision tree to one of the n! leaves.
- Height of a binary tree with n! leaves is $\lceil \lg n! \rceil$. (Note: by Stirling's approximation $n! \ge (n/e)^n$, where e is Euler's constant.)

$$h = \lceil \lg n! \rceil \ge \lceil \lg((n/e)^n) \rceil = \lceil n \lg n - n \lg e \rceil$$
$$= \Omega(n \lg n)$$

Question

What is the best that we can do with comparison-based sorting?

- n! possible permutations, one of which is the sorted sequence.
- Minimum number of comparisons is the path from root of the decision tree to one of the n! leaves.
- Height of a binary tree with n! leaves is $\lceil \lg n! \rceil$. (Note: by Stirling's approximation $n! \geq (n/e)^n$, where e is Euler's constant.)

$$h = \lceil \lg n! \rceil \ge \lceil \lg((n/e)^n) \rceil = \lceil n \lg n - n \lg e \rceil$$
$$= \Omega(n \lg n)$$

Mumit Khan Licensed I

6/19

Lower bound on comparison based sorting

Question

What is the best that we can do with comparison-based sorting?

- n! possible permutations, one of which is the sorted sequence.
- Minimum number of comparisons is the path from root of the decision tree to one of the n! leaves.
- Height of a binary tree with n! leaves is $\lceil \lg n! \rceil$. (Note: by Stirling's approximation $n! \ge (n/e)^n$, where e is Euler's constant.)

$$h = \lceil \lg n! \rceil \ge \lceil \lg((n/e)^n) \rceil = \lceil n \lg n - n \lg e \rceil$$
$$= \Omega(n \lg n)$$

Question

What is the best that we can do with comparison-based sorting?

- n! possible permutations, one of which is the sorted sequence.
- Minimum number of comparisons is the path from root of the decision tree to one of the n! leaves.
- Height of a binary tree with n! leaves is $\lceil \lg n! \rceil$. (Note: by Stirling's approximation $n! \ge (n/e)^n$, where e is Euler's constant.)

$$h = \lceil \lg n! \rceil \ge \lceil \lg((n/e)^n) \rceil = \lceil n \lg n - n \lg e \rceil$$

= $\Omega(n \lg n)$

Mumit Khan

Question

What is the best that we can do with comparison-based sorting?

- n! possible permutations, one of which is the sorted sequence.
- Minimum number of comparisons is the path from root of the decision tree to one of the n! leaves.
- Height of a binary tree with n! leaves is $\lceil \lg n! \rceil$. (Note: by Stirling's approximation $n! \ge (n/e)^n$, where e is Euler's constant.)

$$h = \lceil \lg n! \rceil \ge \lceil \lg((n/e)^n) \rceil = \lceil n \lg n - n \lg e \rceil$$

= $\Omega(n \lg n)$

Theorem

The worst-case asymptotic time complexity for any comparison-based sorting algorithm is $\Omega(n \lg n)$.

Licensed under Mumit Khan CSE 221: Algorithms 6/19

Contents

- Sorting lower bounds
 - What's the best we can do?
 - Lower bound
- 2 Sorting in linear time
 - Counting sort
 - Radix sort.
 - Conclusion

Mumit Khan

Sorting in linear time: Counting sort

Counting sort: No comparisons between elements.

- **Input**: A[1..n], where $A[j] \in \{1, 2, ..., k\}$.
- Output: B[1..n], sorted.
- Auxiliary storage: C[1...k].

Sorting in linear time: Counting sort

Counting sort: No comparisons between elements.

- **Input**: A[1...n], where $A[j] \in \{1, 2, ..., k\}$.
- Output: B[1..n], sorted.
- Auxiliary storage: C[1...k].

Counting sort algorithm

```
for i \leftarrow 1 to k
            do C[i] \leftarrow 0
3
    for i \leftarrow 1 to n
             do C[A[j]] \leftarrow C[A[j]] + 1
                                                                 \triangleright C[i] = |\{key = i\}|
5
    for i \leftarrow 2 to k
6
             do C[i] \leftarrow C[i] + C[i-1]
                                                                 \triangleright C[i] = |\{key < i\}|
7
    for i \leftarrow n downto 1
8
             do B[C[A[i]]] \leftarrow A[i]
9
                  C[A[i]] \leftarrow C[A[i]] - 1
```

Counting sort example

B:

Mumit Khan Licensed under [™] CSE 221: Algorithms 9 / 19

 $A \cdot \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 1 & 3 & 4 & 3 \end{bmatrix}$

1 2 3 4 0 0 0 0

B:

for
$$i \leftarrow 1$$
 to k
do $C[i] \leftarrow 0$

A:

for
$$j \leftarrow 1$$
 to n
do $C[A[j]] \leftarrow C[A[j]] + 1$

$$\triangleright C[i] = |\{key = i\}|$$

for
$$j \leftarrow 1$$
 to n
do $C[A[j]] \leftarrow C[A[j]] + 1$

$$\triangleright C[i] = |\{key = i\}|$$

for
$$j \leftarrow 1$$
 to n
do $C[A[j]] \leftarrow C[A[j]] + 1$

$$\triangleright C[i] = |\{key = i\}|$$

for
$$j \leftarrow 1$$
 to n
do $C[A[j]] \leftarrow C[A[j]] + 1$

$$\triangleright C[i] = |\{key = i\}|$$

1 2 3 4 5

1 2 3 4

B:

for
$$j \leftarrow 1$$
 to n
do $C[A[j]] \leftarrow C[A[j]] + 1$

$$\triangleright C[i] = |\{key = i\}|$$

11 / 19

1 2 3 4 5

C: 1 0 2 2

B:

C': 1 1 2 2

for
$$i \leftarrow 2$$
 to k
do $C[i] \leftarrow C[i] + C[i-1]$

$$\triangleright C[i] = |\{key \leq i\}|$$

Mumit Khan

Licensed under

CSE 221: Algorithms

1 2 3 4 5 A: 4 1 3 4 3 C: 1 0 2 2

B:

C': 1 1 3 2

for
$$i \leftarrow 2$$
 to k
do $C[i] \leftarrow C[i] + C[i-1]$

$$\triangleright C[i] = |\{key \leq i\}|$$

Mumit Khan

1 2 3 4 5 A: 4 1 3 4 3

B:

C': 1 1 3 5

for
$$i \leftarrow 2$$
 to k
do $C[i] \leftarrow C[i] + C[i-1]$

$$\triangleright C[i] = |\{key \leq i\}|$$

Mumit Khan

for
$$j \leftarrow n$$
 downto 1
do $B[C[A[j]]] \leftarrow A[j]$
 $C[A[j]] \leftarrow C[A[j]] - 1$

for
$$j \leftarrow n$$
 downto 1
do $B[C[A[j]]] \leftarrow A[j]$
 $C[A[j]] \leftarrow C[A[j]] - 1$

Mumit Khan Licensed under [™] CSE 221: Algorithms 13 / 19

Counting sort example: loop 4

for
$$j \leftarrow n$$
 downto 1
do $B[C[A[j]]] \leftarrow A[j]$
 $C[A[j]] \leftarrow C[A[j]] - 1$

Mumit Khan Licensed under [™] CSE 221: Algorithms 13 / 19

Counting sort example: loop 4

	1	2	3	4
C:	1	1	1	4
	_			_

for
$$j \leftarrow n$$
 downto 1
do $B[C[A[j]]] \leftarrow A[j]$
 $C[A[j]] \leftarrow C[A[j]] - 1$

Licensed under @@@@ Mumit Khan CSE 221: Algorithms 13 / 19

B: 3 3 4

for
$$j \leftarrow n$$
 downto 1
do $B[C[A[j]]] \leftarrow A[j]$
 $C[A[j]] \leftarrow C[A[j]] - 1$

Licensed under @@@@ Mumit Khan CSE 221: Algorithms 13 / 19 Sorting lower bounds Sorting in linear time Counting sort Radix sort Conclusion

Sort stability

Counting sort is stable, ie., it preserves the relative order of "equal" elements in the input.

Mumit Khan Licensed under CSE 221: Algorithms 14/19

Sort stability

Counting sort is stable, ie., it preserves the relative order of "equal" elements in the input.

Mumit Khan Licensed under CSE 221: Algorithms 14/19

Sort stability

Counting sort is stable, ie., it preserves the relative order of "equal" elements in the input.

Questions

• Would it still be stable if we had used for $j \leftarrow 1$ to n instead of for $j \leftarrow n$ downto 1?

Mumit Khan Licensed under © CSE 221: Algorithms 14 / 19

Sort stability

Counting sort is stable, ie., it preserves the relative order of "equal" elements in the input.

Questions

- Would it still be stable if we had used for $j \leftarrow 1$ to n instead of for $j \leftarrow n$ downto 1?
- What other sort algorithms that you've seen so far are stable?

Mumit Khan Licensed under CSE 221: Algorithms 14/19

$$\begin{array}{c} \mathbf{for} \ i \leftarrow 1 \ \mathbf{to} \ k \\ \mathbf{do} \ C[i] \leftarrow 0 \\ \mathbf{for} \ j \leftarrow 1 \ \mathbf{to} \ n \\ \mathbf{do} \ C[A[j]] \leftarrow C[A[j]] + 1 \\ \mathbf{for} \ i \leftarrow 2 \ \mathbf{to} \ k \\ \mathbf{do} \ C[i] \leftarrow C[i] + C[i-1] \\ \mathbf{for} \ j \leftarrow n \ \mathbf{downto} \ 1 \\ \mathbf{do} \ B[C[A[j]]] \leftarrow A[j] \\ C[A[j]] \leftarrow C[A[j]] - 1 \end{array}$$

Mumit Khan Licensed under CSE 221: Algorithms 15 / 19

$$\Theta(k) \quad \begin{cases} \quad \textbf{for } i \leftarrow 1 \textbf{ to } k \\ \quad \textbf{do } C[i] \leftarrow 0 \end{cases}$$

$$\quad \textbf{for } j \leftarrow 1 \textbf{ to } n$$

$$\quad \textbf{do } C[A[j]] \leftarrow C[A[j]] + 1$$

$$\quad \textbf{for } i \leftarrow 2 \textbf{ to } k$$

$$\quad \textbf{do } C[i] \leftarrow C[i] + C[i-1]$$

$$\quad \textbf{for } j \leftarrow n \textbf{ downto } 1$$

$$\quad \textbf{do } B[C[A[j]]] \leftarrow A[j]$$

$$\quad C[A[j]] \leftarrow C[A[j]] - 1$$

Mumit Khan Licensed under CSE 221: Algorithms 15/19

$$egin{aligned} \Theta(k) & \left\{ egin{array}{ll} \mathbf{for} \ i \leftarrow 1 \ \mathbf{to} \ k \ \mathbf{do} \ C[i] \leftarrow 0 \end{array}
ight. \\ \Theta(n) & \left\{ egin{array}{ll} \mathbf{for} \ j \leftarrow 1 \ \mathbf{to} \ n \ \mathbf{do} \ C[A[j]] \leftarrow C[A[j]] + 1 \ \mathbf{for} \ i \leftarrow 2 \ \mathbf{to} \ k \ \mathbf{do} \ C[i] \leftarrow C[i] + C[i-1] \end{array}
ight. \\ \mathbf{do} \ C[i] \leftarrow n \ \mathbf{downto} \ 1 \ \mathbf{do} \ B[C[A[j]]] \leftarrow A[j] \ C[A[j]] \leftarrow C[A[j]] - 1 \end{aligned}$$

Mumit Khan Licensed under CSE 221: Algorithms 15/19

$$egin{aligned} \Theta(k) & \left\{ egin{array}{ll} \mathbf{for} \ i \leftarrow 1 \ \mathbf{to} \ k \ \mathbf{do} \ C[i] \leftarrow 0 \end{array}
ight. \ & \left\{ egin{array}{ll} \mathbf{for} \ j \leftarrow 1 \ \mathbf{to} \ n \ \mathbf{do} \ C[A[j]] \leftarrow C[A[j]] + 1 \end{array}
ight. \ & \left\{ egin{array}{ll} \mathbf{for} \ i \leftarrow 2 \ \mathbf{to} \ k \ \mathbf{do} \ C[i] \leftarrow C[i] + C[i-1] \end{array}
ight. \ & \left\{ egin{array}{ll} \mathbf{for} \ j \leftarrow n \ \mathbf{downto} \ 1 \ \mathbf{do} \ B[C[A[j]]] \leftarrow A[j] \ C[A[j]] \leftarrow C[A[j]] - 1 \end{array}
ight. \end{aligned}$$

Licensed under CSE 221: Algorithms 15/19

$$egin{aligned} \Theta(k) & \left\{ egin{array}{ll} \mathbf{for} \ i \leftarrow 1 \ \mathbf{to} \ k \ \mathbf{do} \ C[i] \leftarrow 0 \end{array}
ight. \\ \Theta(n) & \left\{ egin{array}{ll} \mathbf{for} \ j \leftarrow 1 \ \mathbf{to} \ n \ \mathbf{do} \ C[A[j]] \leftarrow C[A[j]] + 1 \end{array}
ight. \\ \Theta(k) & \left\{ egin{array}{ll} \mathbf{for} \ i \leftarrow 2 \ \mathbf{to} \ k \ \mathbf{do} \ C[i] \leftarrow C[i] + C[i-1] \end{array}
ight. \\ \Theta(n) & \left\{ egin{array}{ll} \mathbf{for} \ j \leftarrow n \ \mathbf{downto} \ 1 \ \mathbf{do} \ B[C[A[j]]] \leftarrow A[j] \ C[A[j]] \leftarrow C[A[j]] - 1 \end{array}
ight. \end{cases}$$

Mumit Khan Licensed under CSE 221: Algorithms 15 / 19

$$egin{aligned} \Theta(k) & \left\{ egin{array}{ll} \mathbf{for} \ i \leftarrow 1 \ \mathbf{to} \ k \ \mathbf{do} \ C[i] \leftarrow 0 \end{array}
ight. \\ \Theta(n) & \left\{ egin{array}{ll} \mathbf{for} \ j \leftarrow 1 \ \mathbf{to} \ n \ \mathbf{do} \ C[A[j]] \leftarrow C[A[j]] + 1 \end{array}
ight. \\ \Theta(k) & \left\{ egin{array}{ll} \mathbf{for} \ i \leftarrow 2 \ \mathbf{to} \ k \ \mathbf{do} \ C[i] \leftarrow C[i] + C[i-1] \end{array}
ight. \\ \Theta(n) & \left\{ egin{array}{ll} \mathbf{for} \ j \leftarrow n \ \mathbf{downto} \ 1 \ \mathbf{do} \ B[C[A[j]]] \leftarrow A[j] \ C[A[j]] \leftarrow C[A[j]] - 1 \end{array}
ight. \end{cases}$$

Mumit Khan Licensed under CSE 221: Algorithms 15/19

The worst-case running time of Counting sort is O(n + k).

Mumit Khan Licensed under [™] CSE 221: Algorithms 16 / 19

Running time of Counting sort

The worst-case running time of Counting sort is O(n + k).

Observations

• If k = O(n), then the worst case running time is $\Theta(n)$.

Mumit Khan Licensed under © CSE 221: Algorithms 16 / 19

Running time of Counting sort

The worst-case running time of Counting sort is O(n + k).

Observations

- If k = O(n), then the worst case running time is $\Theta(n)$.
- But didn't we just prove that sorting takes $\Omega(n \lg n)$ time?

Mumit Khan Licensed under CSE 221: Algorithms 16 / 19

16 / 19

Running time of Counting sort

The worst-case running time of Counting sort is O(n + k).

Observations

- If k = O(n), then the worst case running time is $\Theta(n)$.
- But didn't we just prove that sorting takes $\Omega(n \lg n)$ time?
- So what's wrong with this picture?

Running time of Counting sort

The worst-case running time of Counting sort is O(n + k).

Observations

- If k = O(n), then the worst case running time is $\Theta(n)$.
- But didn't we just prove that sorting takes $\Omega(n \lg n)$ time?
- So what's wrong with this picture?

And the answer is ...

• The $\Omega(n \lg n)$ is for comparison sorting.

The worst-case running time of Counting sort is O(n + k).

Observations

- If k = O(n), then the worst case running time is $\Theta(n)$.
- But didn't we just prove that sorting takes $\Omega(n \lg n)$ time?
- So what's wrong with this picture?

And the answer is ...

- The $\Omega(n \lg n)$ is for comparison sorting.
- Counting sort is **not** a comparison sort.

Mumit Khan

Running time of Counting sort

The worst-case running time of Counting sort is O(n + k).

Observations

- If k = O(n), then the worst case running time is $\Theta(n)$.
- But didn't we just prove that sorting takes $\Omega(n \lg n)$ time?
- So what's wrong with this picture?

And the answer is ...

- The $\Omega(n \lg n)$ is for comparison sorting.
- Counting sort is **not** a comparison sort.
- In fact, counting sort does not use a single comparison.

Mumit Khan

Radix sort

Radix sort basics

- Digit by digit sort.
- Can be either *most-significant* digit first, or *least-significant* digit first.
- A good way is to stably sort least-significant digit first.

3 2 9

4 5 7

6 5 7

8 3 9

4 3 6

7 2 0

3 5 5

Mumit Khan

Mumit Khan

Mumit Khan Licensed under [™] CSE 221: Algorithms 18 / 19

Mumit Khan Licensed under [™] CSE 221: Algorithms 18 / 19

3	2	9	7	2	0	7	2	0	3	2	
4	5	7	3	5	5	3	2	9	3	5	
6	5	7	4	3	6	4	3	6	4	3	
8	3	9	4	5	7	8	3	9	4	5	
4	3	6	6	5	7	3	5	5	6	5	
7	2	0	3	2	9	4	5	7	7	2	
3	5	5	8	3	9	6	5	7	8	3	
		J	-		•	T	★	-	•	-	

Mumit Khan Licensed under [™] CSE 221: Algorithms 18 / 19

Analysis: For numbers in the range $[0...n^d - 1]$, radix sort runs in $\Theta(dn)$ time.

Mumit Khan Licensed under CSE 221: Algorithms 18 / 19 Sorting lower bounds Sorting in linear time Counting

Counting sort Radix sort Conclusion

Conclusion

• Linear-time sorting algorithms beat the $\Omega(n \mid g \mid n)$ lower bound of comparison-based sorts by *not* doing any element comparison.

Mumit Khan Licensed under CSE 221: Algorithms 19 / 19

Conclusion

- Linear-time sorting algorithms beat the $\Omega(n \lg n)$ lower bound of comparison-based sorts by *not* doing any element comparison.
- Counting sort is a $\Theta(n)$ time algorithm if k = O(n), and it is stable.

Mumit Khan Licensed under [™] CSE 221: Algorithms 19 / 19

Conclusion

- Linear-time sorting algorithms beat the $\Omega(n \lg n)$ lower bound of comparison-based sorts by *not* doing any element comparison.
- Counting sort is a $\Theta(n)$ time algorithm if k = O(n), and it is stable.
- Radix sort is a $\Theta(dn)$ algorithm for numbers in $[0..2^d 1]$ range.

Mumit Khan Licensed under © CSE 221: Algorithms 19 / 19

- Linear-time sorting algorithms beat the $\Omega(n \mid g \mid n)$ lower bound of comparison-based sorts by *not* doing any element comparison.
- Counting sort is a $\Theta(n)$ time algorithm if k = O(n), and it is stable.
- Radix sort is a $\Theta(dn)$ algorithm for numbers in $[0...2^d-1]$ range.
- Radix sort is an excellent algorithm is trivial to implement, and works well for large inputs.

Mumit Khan Licensed under CSE 221: Algorithms 19 / 19

Conclusion

- Linear-time sorting algorithms beat the $\Omega(n \mid g \mid n)$ lower bound of comparison-based sorts by *not* doing any element comparison.
- Counting sort is a $\Theta(n)$ time algorithm if k = O(n), and it is stable.
- Radix sort is a $\Theta(dn)$ algorithm for numbers in $[0...2^d-1]$ range.
- Radix sort is an excellent algorithm is trivial to implement, and works well for large inputs.
- Radix sort often uses counting sort as the stable auxiliary sorting routine.

Mumit Khan

- Linear-time sorting algorithms beat the $\Omega(n \mid g \mid n)$ lower bound of comparison-based sorts by *not* doing any element comparison.
- Counting sort is a $\Theta(n)$ time algorithm if k = O(n), and it is stable.
- Radix sort is a $\Theta(dn)$ algorithm for numbers in $[0...2^d-1]$ range.
- Radix sort is an excellent algorithm is trivial to implement, and works well for large inputs.
- Radix sort often uses counting sort as the stable auxiliary sorting routine.

Questions to ask (and remember)

- Linear-time sorting algorithms beat the $\Omega(n \lg n)$ lower bound of comparison-based sorts by not doing any element comparison.
- Counting sort is a $\Theta(n)$ time algorithm if k = O(n), and it is stable.
- Radix sort is a $\Theta(dn)$ algorithm for numbers in $[0...2^d 1]$ range.
- Radix sort is an excellent algorithm is trivial to implement, and works well for large inputs.
- Radix sort often uses counting sort as the stable auxiliary sorting routine.

Questions to ask (and remember)

• What is the lower bound of comparison-based sorting algorithms?

Mumit Khan

Conclusion

- Linear-time sorting algorithms beat the $\Omega(n \lg n)$ lower bound of comparison-based sorts by not doing any element comparison.
- Counting sort is a $\Theta(n)$ time algorithm if k = O(n), and it is stable.
- Radix sort is a $\Theta(dn)$ algorithm for numbers in $[0...2^d 1]$ range.
- Radix sort is an excellent algorithm is trivial to implement, and works well for large inputs.
- Radix sort often uses counting sort as the stable auxiliary sorting routine.

Questions to ask (and remember)

- What is the lower bound of comparison-based sorting algorithms?
- Are there sorting algorithms that beat this lower bound?

Licensed under @

- Linear-time sorting algorithms beat the $\Omega(n \lg n)$ lower bound of comparison-based sorts by not doing any element comparison.
- Counting sort is a $\Theta(n)$ time algorithm if k = O(n), and it is stable.
- Radix sort is a $\Theta(dn)$ algorithm for numbers in $[0...2^d 1]$ range.
- Radix sort is an excellent algorithm is trivial to implement, and works well for large inputs.
- Radix sort often uses counting sort as the stable auxiliary sorting routine.

Questions to ask (and remember)

- What is the lower bound of comparison-based sorting algorithms?
- Are there sorting algorithms that beat this lower bound?
- How can you beat a proven lower bound?

Mumit Khan

- Linear-time sorting algorithms beat the $\Omega(n \lg n)$ lower bound of comparison-based sorts by not doing any element comparison.
- Counting sort is a $\Theta(n)$ time algorithm if k = O(n), and it is stable.
- Radix sort is a $\Theta(dn)$ algorithm for numbers in $[0...2^d 1]$ range.
- Radix sort is an excellent algorithm is trivial to implement, and works well for large inputs.
- Radix sort often uses counting sort as the stable auxiliary sorting routine.

Questions to ask (and remember)

- What is the lower bound of comparison-based sorting algorithms?
- Are there sorting algorithms that beat this lower bound?
- How can you beat a proven lower bound?
- Why do we recommend sorting least-significant digits first in radix sort?

Licensed under Mumit Khan CSE 221: Algorithms 19 / 19