## Chapter 5 Applications in integration

5.3 Volumes by Cylindrical Shells

**EXAMPLE 1** Find the volume of the solid obtained by rotating about the y-axis the region bounded by  $y = 2x^2 - x^3$  and y = 0.



Approximation by spherical Shells.



The volume of the solid in Figure 3, obtained by rotating about the y-axis the region under the curve y = f(x) from a to b, is

$$V = \int_{a}^{b} 2\pi x f(x) dx \quad \text{where } 0 \le a < b$$



f(x)

 $\Delta x$ 



Rotation about the x-axis. (Find the radius of the cylindrical shell)

**EXAMPLE 3** Use cylindrical shells to find the volume of the solid obtained by rotating about the *x*-axis the region under the curve  $y = \sqrt{x}$  from 0 to 1.

## Rotation about another axis.

**EXAMPLE 4** Find the volume of the solid obtained by rotating the region bounded by  $y = x - x^2$  and y = 0 about the line x = 2.