Dense Associative Memory training Krotov - Hopfield - Fórmulas y comentarios

Thursday, September 28, 2023 3:15 PM

M = (784 60000) (M: train data)

(pixels in rows; train data in each column)

Pixels↓/data →	1	2	 60.000
р			
i			
x			
e			
I			
S			

MT = (784,10000) (M: test data)

The corresponding label is indicated with a value of 1 in the corresponding classification neuron (rows).

		Samples		
digit	Class. Neuron ↓/ samples →	1	2	 60.000
0	-1	-1	1	-1
1	-1	-1	-1	1
2	-1	1	-1	-1
3	1	-1	-1	-1
4	-1	-1	-1	-1
9	-1	-1	-1	-1

LabT = (10,10000) - labels from test ds

mini_code_tests.py

N=784 # number o pixels (= number of visible neurons) Nc=10 # number of classification neurons Ns=6000 # size of train dataset (number of samples) NsT=10000 # size of test dataset (number of samples)

Kx=10

Kx=10 Ky=10 K=Kx*Ky n=20 m=30 eps0=4.0e-2 f=0.998 p=0.6 # Nep=300

Number of memories per row on the weights plot
Number of memories per column on the weights plot
Number of memories
Power of the interaction vertex in the DAM energy function | power of x^n in F(x)?
Power of the loss function
Initial learning rate
Damping parameter for the learning rate
Momentum
Number of epochs
Number of epochs
Initial temperature
Final temperature

Nep=300 Nep=1 Temp_in=540. Temp_f=540. thresh_pret=200 Num=1000 NumT=5000 mu=-0.3 sigma=0.3 prec=1.0e-30 # Initial temperature
Final temperature
Length of the temperature ramp
Size of training minibatch
Size of test minibatch
Weights initialization mean
Weights initialization std
Precision of weight update

KS = (100,794) | 794 = 784 (pixels) + 10 (classif neuron states - x_alpha) KS # weights initialization (including the 10 classificacion neurons). VKS # auxiliary matrix variable for weight update calculation

$$E = -\frac{1}{2} \sum_{i,j=1}^N \sigma_i T_{ij} \sigma_j, \quad T_{ij} = \sum_{\mu=1}^K \xi_i^\mu \xi_j^\mu,$$

(1)

Aquí está implícita una realimentación (de x_alpha a c_alpha): es decir, se realimentan Los estados de las neuronas

$$E = -\sum_{\mu=1}^{K} F\left(\xi_i^{\mu} \sigma_i\right) \tag{2}$$

rectified polynomial energy function

$$F(x) = \begin{cases} x^n, & x \ge 0\\ 0, & x < 0 \end{cases} \tag{3}$$

$$\sigma_i^{(t+1)} = Sign \bigg[\sum_{\mu=1}^K \bigg(F \Big(\xi_i^\mu + \sum_{j \neq i} \xi_j^\mu \sigma_j^{(t)} \Big) - F \Big(- \xi_i^\mu + \sum_{j \neq i} \xi_j^\mu \sigma_j^{(t)} \Big) \bigg) \bigg], \tag{4} \label{eq:definition}$$

$$c_{\alpha} = g \bigg[\beta \sum_{\mu=1}^{K} \bigg(F \left(-\xi_{\alpha}^{\mu} x_{\alpha} + \sum_{\gamma \neq \alpha}^{\chi} \xi_{\gamma}^{\mu} x_{\gamma} + \sum_{i=1}^{N} \xi_{i}^{\mu} v_{i} \right) - F \left(\xi_{\alpha}^{\mu} x_{\alpha} + \sum_{\gamma \neq \alpha}^{\chi} \xi_{\gamma}^{\mu} x_{\gamma} + \sum_{i=1}^{N} \xi_{i}^{\mu} v_{i} \right) \bigg) \bigg], \ (9)$$

$$c_{\alpha} \approx g \Big[\beta \sum_{\mu=1}^K F' \Big(\sum_{i=1}^N \xi_i^{\mu} v_i \Big) \left(-2 \xi_{\alpha}^{\mu} x_{\alpha} \right) \Big] = g \Big[\sum_{\mu=1}^K \xi_{\alpha}^{\mu} \, F' \big(\xi_i^{\mu} v_i \big) \Big] = g \Big[\sum_{\mu=1}^K \xi_{\alpha}^{\mu} \, f \big(\xi_i^{\mu} v_i \big) \Big], \quad (10)$$

$$\varepsilon(t) = \varepsilon_0 f^t, \quad f = 0.998,$$
 (12)

Creo que este gráfico solo muestra que una neurona de clasificación Se le hace un flip, para luego evaluar el cambio de energía y actualizar la red

u = np.concatenate((v, -np.ones((Nc,Num))),axis=0)

effective temperature $\beta = 1/T^n$

$$V_I^{\mu}(t) = pV_I^{\mu}(t-1) - \partial_{\xi_I^{\mu}}C$$

$$\xi_I^{\mu}(t) = \xi_I^{\mu}(t-1) + \varepsilon \frac{V_I^{\mu}(t)}{\max_J |V_J^{\mu}(t)|},$$

$$C = \sum_{\substack{\text{training} \\ \text{examples}}} \sum_{\alpha=1}^{N_c} \left(c_{\alpha} - t_{\alpha}\right)^{2m},$$
(14)

$$\partial_{\xi_{I}^{\mu}C} = (2m\beta n) \sum_{A=1}^{M} \sum_{\alpha=1}^{N_{c}} \left(c_{\alpha}^{A} - t_{\alpha}^{A} \right)^{2m-1} \left[1 - \left(c_{\alpha}^{A} \right)^{2} \right] \left[F_{n-1} (\xi_{J}^{\mu} V_{J}^{\alpha A}) V_{I}^{\alpha A} - F_{n-1} (\xi_{J}^{\mu} U_{J}^{\alpha A}) U_{I}^{\alpha A} \right] \tag{17}$$

(13)

$$c_{\alpha}^{A} = g \left[\beta \left(\sum_{\mu=1}^{K} F_{n}(\xi_{J}^{\mu} V_{J}^{\alpha A}) - F_{n}(\xi_{J}^{\mu} U_{J}^{\alpha A}) \right) \right], \tag{16}$$

$$c_{\alpha} = g \left[\beta \sum_{\mu=1}^{K} \left(F \left(-\xi_{\alpha}^{\mu} x_{\alpha} + \sum_{\gamma \neq \alpha} \xi_{\gamma}^{\mu} x_{\gamma} + \sum_{i=1}^{N} \xi_{i}^{\mu} v_{i} \right) - F \left(\xi_{\alpha}^{\mu} x_{\alpha} + \sum_{\gamma \neq \alpha} \xi_{\gamma}^{\mu} x_{\gamma} + \sum_{i=1}^{N} \xi_{i}^{\mu} v_{i} \right) \right) \right], (9)$$

$$\partial_{\xi_{I}^{\mu}}C = (2m\beta n) \sum_{A=1}^{M} \sum_{\alpha=1}^{N_{c}} \left(c_{\alpha}^{A} - t_{\alpha}^{A}\right)^{2m-1} \left[1 - \left(c_{\alpha}^{A}\right)^{2}\right] \left[F_{n-1}(\xi_{J}^{\mu}V_{J}^{\alpha A})V_{I}^{\alpha A} - F_{n-1}(\xi_{J}^{\mu}U_{J}^{\alpha A})U_{I}^{\alpha A}\right] \tag{17}$$