← Homework for Module 3 Part 1

Quiz, 9 questions

1 point

1.

(Difficulty: \star) Write out the phase of the complex numbers $a_1=1-{
m j}$ and $a_2=-1-{
m j}$.

Express the phase in degrees and separate the two phases by a single white space. Each phase should be a number in the range [-180, 180].

-45 -135

1 point

2

(Difficulty: \star) Let $W_N^k=e^{-\mathrm{j} \frac{2\pi}{N} \frac{k}{N}}$ and N>1. Then $W_N^{N/2}$ is equal to...

- -
- _
- $e^{-\mathrm{j}(2\pi/N)+N}$

1 point

3.

(Difficulty: *) Which of the following signals (continuous- and discrete-time) are periodic signals?

Note that $t \in \mathbb{R}$ and $n \in \mathbb{Z}$.

- x(t) = t floor(t).
- $\boxed{ \qquad } x[n] = (-1)^n.$
- $x(t) = (t + 2\pi)^2.$
- $x(t)=\cos(2\pi f_0 t + \phi)$ with $f_0\in\mathbb{R}.$

2 points

4.

(Difficulty: $\star\star\star$) Choose the correct statements from the choices below.

- Consider the length-N signal $x[n]=(-1)^n$ with N odd. Then X[k]=0 for all k except k=N/2
- If we apply the DFT twice to a signal x[n], we obtain the time reversed signal, i.e. x[N-n].
- Consider the length-N signal $x[n] = \cos(\frac{2\pi}{N}Ln + \phi)$ where L is an integer and $L \neq N/2$. Then $X[k] = \begin{cases} \frac{N}{2}e^{j\phi} & \text{for } k = L \\ \frac{N}{2}e^{-j\phi} & \text{for } k = N L \\ 0 & \text{otherwise} \end{cases}$

otner)

1 point

5.

(Difficulty: \star) Consider the Fourier basis $\{\mathbf{w}^k\}_{k=0,\ldots,N-1}$, where $\mathbf{w}^k[n]=e^{-j\frac{2\pi}{N}nk}$ for $0\leq n\leq N-1$.

Select the correct statement below.

The orthogonality of the vectors depends on the length N of the elements of the basis.

The elements of the basis are orthonormal:

The elements of the basis are orthogonal:

$$\langle \mathbf{w}^i, \mathbf{w}^j
angle = egin{cases} N & ext{for } i=j \ 0 & ext{otherwise.} \end{cases}$$

(Difficulty: $\star\star$) Consider the three sinusoids of length N=64 as illustrated in the above figure; note that the signal values are shown from n=0 to n=63.

Call $y_1[n]$ the blue signal, $y_2[n]$ the green and $y_3[n]$ the red. Further, define $x[n]=y_1[n]+y_2[n]+y_3[n]$.

Choose the correct statements from the list below. Note that the capital letters indicate the DFT vectors.

$$Y_3[k] = egin{cases} 32 & ext{for } k=0 \ 32 & ext{for } k=64 \ 0 & ext{otherwise} \end{cases}$$

$$Y_1[k] = egin{cases} 64 & ext{ for } k=4,60 \ 0 & ext{ otherwise} \end{cases}$$

$$Y_2[k] = egin{cases} -16j & ext{for } k=8 \ 16j & ext{for } k=56 \ 0 & ext{otherwise} \end{cases}$$

$$\Vert x \Vert_2^2 = 200$$
 and $\Vert X \Vert_2^2 = 12800$

1 point

7.

(Difficulty: $\star\star\star$) Consider the length-N signal

$\leftarrow x[n]$ Hemew	brk for	Module 3	Part 1
$-x_{ n } = 6081/2$	yan ivi	module 5	- 1 a. t. 1

Quiz, 9 questions where M and L are integer parameter with $0 < L \leq N-1$, $0 < M \leq N$.

Choose the correct statements among the choices below.

- In general, it will be easier to compute the norm of the signal $\|\mathbf{x}\|_2$ in the Fourier domain, using the Parseval's Identity.
- Consider the circularly shifted signal $y[n]=x[(n-D)\mod N]$. In the Fourier domain, the two DFTs related by a modulation factor: $Y[k]=X[k]e^{-j2\pi k\frac{D}{N}}$.
- lacksquare If M=N and 2L < N, the signal has exactly L periods for $0 \le n < N$
- The DFT X[k] has two elements different from zero if N=M and N
 eq 2L.

1 point

8

(Difficulty: \star) Consider an orthogonal basis $\{\phi_i\}_{i=0,\dots,N-1}$ for \mathbb{R}^N . Select the statements that hold for any vector $\mathbf{x}\in\mathbb{R}^N$.

- $\|\mathbf{x}\|_2^2 = \sum_{i=0}^{N-1} |\langle x, \phi_i
 angle|^2.$
- $\|\mathbf{x}\|_2^2 = rac{1}{P} \sum_{i=0}^{N-1} |\langle x, \phi_i
 angle|^2 ext{ if and only if } \|\phi_i\|_2^2 = P \ orall i.$
- $\|\mathbf{x}\|_2^2 = rac{1}{P} \sum_{i=0}^{N-1} |\langle x, \phi_i
 angle|^2$

if and only if $\|\phi_i\|_2 = P \ \forall i.$

 $\|\mathbf{x}\|_2^2 = \sum_{i=0}^{N-1} |\langle x, \phi_i
angle|^2$ if and only if $\|\phi_i\|_2 = 1 \ orall i.$

1 point

9

(Difficulty: $\star\star$) Pick the correct sentence(s) among the following ones regarding the DFT $\mathbf X$ of a signal $\mathbf x$ of length N, where N is odd.

Remember the following definitions for an arbitrary signal (asterisk denotes conjugation):

hermitian-symmetry: x[0] real and $x[n] = x[N-n]^*$ for $n=1,\ldots,N-1$.

hermitian-antisymmetry: x[0]=0 and $x[n]=-x[N-n]^*$ for $n=1,\dots,N-1$.

- If the signal ${f x}$ is hermitian-symmetric, then the DFT ${f X}$ is also hermitian-symmetric.
- If the signal ${f x}$ is purely real, then the DFT ${f X}$ is purely imaginary.
- If the signal ${f x}$ is hermitian-symmetric, then its DFT is real.
- If the signal ${f x}$ is hermitian antisymmetric, then its DFT ${f X}$ is purely imaginary.

I, **Mark R. Lytell**, understand that submitting work that isn't my own may result in permanent failure of this course or deactivation of my Coursera account.

Learn more about Coursera's Honor Code

Submit Quiz

