CÁLCULO AVANZADO

Departamento de Ingenería Mecánica Facultad Regional La Plata Universidad Tecnológica Nacional

Práctica: 7

Tema: Cálculo de raíces: soluciones de ecuaciones de una variable.

Profesor Titular: Manuel Carlevaro
Jefe de Trabajos Prácticos: Diego Amiconi
Ayudante de Primera: Lucas Basiuk

Ejercicio 1.

Realice tres iteraciones a mano del método de bisección aplicado a $f(x)=x^3-2$ en el intervalo a=0 y b=2.

Ejercicio 2.

Para cada una de las funciones siguientes, encuentre la raíz con una precisión de 0.1 usando una calculadora (debería tomar a lo sumo cinco iteraciones):

a)
$$f(x) = x - e^{-x^2}$$
, $[a, b] = [0, 1]$.

b)
$$f(x) = \ln x + x$$
, $[a, b] = [1/10, 1]$.

c)
$$f(x) = x^3 - 3$$
, $[a, b] = [0, 3]$.

Ejercicio 3.

Escriba un programa para resolver la ecuación $x=\cos x$. Elija el intervalo explorando el problema con una calculadora.

Ejercicio 4.

Escriba un programa para resolver la ecuación $x=e^{-x}$. Elija el intervalo explorando el problema con una calculadora.

Ejercicio 5.

La ecuación $x^3+4x^2-10=0$ tiene una raíz única en [1,2]. Existen muchas formas de cambiar la ecuación para la forma de punto fijo x=g(x) mediante una simple manipulación algebraica. Iterar en las siguientes representaciones de g y verifique que el (eventual) punto fijo obtenido es una raíz de la ecuación inicial.

a)
$$x = g_1(x) = x - x^3 - 4x^2 + 10$$

b)
$$x = g_2(x) = \left(\frac{10}{x} - 4x\right)^{1/2}$$

c)
$$x = g_3(x) = \frac{1}{2}(10 - x^3)^{1/2}$$

d)
$$x = g_4(x) = \left(\frac{10}{4+x}\right)^{1/2}$$

e)
$$x = g_5(x) = x - \frac{x^3 + 4x^2 - 10}{3x^2 + 8x}$$

Ejercicio 6.

Use el teorema de existencia y unicidad de punto fijo para mostrar que $g(x)=2^{-x}$ tiene un único punto fijo en [1/3,1]. Use una iteración de punto fijo para hallar el punto fijo con una precisión de 10^{-4} .

Ejercicio 7.

Use una iteración de punto fijo para determinar la solución de $x=\tan x$ con una precisión de 10^{-4} , para $x\in[4,5].$

Ejercicio 8.

Use el método de Newton-Raphson para encontrar las soluciones con precisión 10^{-4} de las siguientes funciones:

a)
$$x^3 - 2x^2 - 5 = 0$$
, [1, 4]

b)
$$x - \cos x = 0$$
, $[0, \pi/2]$

Use los intervalos como aproximaciones iniciales en a) y los puntos medios de esos intervalos en b). Compare la cantidad necesaria de iteraciones para cada caso.

Ejercicio 9.

La suma de dos números es 20. Si a cada número se le suma su raíz cuadrada, el producto de los dos sumas es 155.55. Determine los dos números con una precisión de 10^{-4} .