"Theory of Computation"

Computation

Example:
$$f(x) = x^3$$

$$f(x) = x^3$$

temporary memory

$$f(x) = x^3$$

$$z = 2 * 2 = 4$$

$$f(x) = z * 2 = 8$$

input memory

$$x = 2$$

Program memory output memory

CPU

compute
$$x * x$$

compute
$$x^2 * x$$

temporary memory

$$f(x) = x^3$$

$$z = 2 * 2 = 4$$

$$f(x) = z * 2 = 8$$

input memory

$$x = 2$$

$$f(x) = 8$$

output memory

compute $x^2 * x$

compute X * X

CPU

Automaton

Different Kinds of Automata

Automata are distinguished by the temporary memory

• Finite Automata: no temporary memory

· Pushdown Automata: stack

• Turing Machines: random access memory

Finite Automaton

Example: Vending Machines (small computing power)

Pushdown Automaton

Example: Compilers for Programming Languages (medium computing power)

Turing Machine

Examples: Any Algorithm

(highest computing power)

Power of Automata

Solve more

computational problems