	**	
姓名		H
李		1
班	採	}
级		4
平 辛	後去	1
	砂	

四川轻化工大学试卷(2022至 2023学年第一学期)

课程名称: 高等数学 A1(A卷)

命题教师: 张海燕

适用班级: 22 级理工科本科

考试(考查):	考试	20	023年	月	目	共	6 页
题 号	_	二	11	四		总分		F阅(统分) 数 师
得								
分								

注意事项:

- 1、 满分 100 分。要求卷面整洁、字迹工整、无错别字。
- 2、 考生必须将姓名、班级、学号完整、准确、清楚地填写在试卷规定的地方,否则 视为废卷。
- 3、 考生必须在签到单上签到, 若出现遗漏, 后果自负。
- 4、 如有答题纸, 答案请全部写在答题纸上, 否则不给分; 考完请将试卷和答题卷分 别一同交回, 否则不给分。

得分	评阅教师

一、单选题(请将正确答案的编号填在**对应表格**内,每小题 3 分,共 21 分)

题号	1	2	3	4	5	6	7
选项							

1.设
$$f(x) = \begin{cases} x \sin \frac{1}{x} & x < 0 \\ 1 + e^x & x \ge 0 \end{cases}$$
 , 则 $x = 0$ 是函数 $f(x)$ 的 ().

- (A) 连续点; (B) 无穷间断点; (C) 可去间断点; (D) 跳跃间断点.

- 2. 下列说法错误的是().
 - (A) 两个无穷大量的和一定是无穷大量;

 - (C) 若f'(a)存在且f(x)在x = a取得极值,则f'(a) = 0;
 - (D) 若 f(x)在[a,b]上连续,则f(x)在该区间上一定存在原函数.

- 3. 当 $x \to 0$ 时, $\ln(1+x^3)$ 是比 x^n 高阶无穷小,而 x^n 是比 $e^x 1$ 高阶无穷小,则正整数n =().
 - (A) 1
- (B) 2
- (C) 3
- (D) 4
- 4. $\varphi(x)$ 在[a,b]上连续, $f(x)=(x-b)\int_a^x \varphi(t)dt$,则由罗尔定理,必有 $\xi\in(a,b)$,
 - 使 $f'(\xi)$ = ().

 - (A) 1 (B) -1 (C) 0
- (D) $\varphi(\xi)$
- 5. 设函数f(x)在 (-∞,+∞)上可导,图 1 是f''(x)的图形,根据图 1,下列说法**错误**的是
- ().
- (A) 曲线f(x)在(1,2)上的图形是向上凸的;
 - (B) (1, f(1))是曲线f(x)的拐点;
 - (C) 函数f'(x)在(1,2)内单增;
 - (D) f'(0) > f(1) f(0) > f'(1).

- 图 1
- 6. 已知 f(x) 的一个原函数为 $\cos x$,则 f(x) 的导函数为 ().
- (A) $-\sin x$ (B) $-\sin x + C$ (C) $-\cos x$ (D) $\cos x$
- 7. 记 $I_1 = \int_0^{\frac{\pi}{2}} \sin x \, dx$, $I_2 = \int_0^{\frac{\pi}{2}} x dx$,则 ().

- (A) $I_1 > I_2$; (B) $I_1 < I_2$; (C) $I_1 = I_2$; (D) 不能比较大小

姓名	线	
- - - - - - - - - - - - - -		要 答 题
班	抓	内不
談	棰	线
 		密對
小	後至	

得分	评阅教师

二、填空题(请将正确的结果填在横线上.每空3分,共24分)

1.
$$\lim_{x\to 0} (1-x)^{\frac{2}{x}} =$$
______.

2. 设
$$f(x) = x(x-1)(x-2)\cdots(x-2022)$$
,则 $f'(0) =$ ______

3. 已知
$$y = xe^x$$
,则 $f^{(6)}(0) = _____.$

4. 曲线
$$\begin{cases} x = t^2 \\ y = 1 + t^4$$
在 $t = 0$ 对应点的曲率 $K = ____.$

5. 定积分
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (x + \sin^2 x) dx =$$
_____.

$$6. \int_0^{+\infty} e^{-x} dx = \underline{\qquad}.$$

8. 微分方程y'' - y' - 2y = 0的通解为______.

得分	评阅教师

- 三、计算题(每题8分,共32分)
 - 1. 计算极限 $\lim_{x\to 0} \frac{x-arctanx}{2x(cosx-1)}$

2. 设方程 $x-y+e^{xy}=0$ 确定y为x的函数,求dy与y'(0).

3. 计算不定积分 $\int \frac{1}{x(x^5+6)} dx$.

4. 求微分方程 $\frac{dy}{dx} - y \tan x = x$, 在条件 $y|_{x=0} = 0$ 下的特解.

姓名	鉄	
		题
李号		忽
ঝা		搟
班	本	K
		乜
談		线
		福
派争		例
学院	後王	

得分	评阅教师

四、综合应用题(三个小题,共23分)

1. 求函数 $y = x^4 - 6x^3 + 12x^2 - x - 4$ 的凹凸区间及拐点. (本题 8 分,要求列表解答)

- 2. 曲线 $y = e^x$ 与该曲线过原点的切线以及y轴所围图形为D,
- (1)求**D**的面积;
- (2) 求D绕x轴旋转一周所产生的旋转体体积.

(本题 10 分,要求作图)

3. 设f(x)在[a,b]上连续,且严格单调增加,证明:

$$(a+b)\int_a^b f(x)dx < 2\int_a^b x f(x)dx . \qquad (本题 5 分)$$

2022 级理工科本科高等数学 A1 (A 券)

2022 至 2023 学年第一学期期末参考答案及评分标准

单选题 (请将正确的答案填在对应括号内, 每题 3 分, 共 21 分)

3. B 4.C 5.A 6.C 7.B 2.A

二、填空题 (请将正确的结果填在横线上.每题 3 分, 共 24 分)

1. e^{-2} 2. 2022! 3. 6

4. 2

5. $\frac{\pi}{2}$

7. 10 8. $y = c_1 e^{-x} + c_2 e^{2x}$

三、解答计算题 (4 个小题, 每题 8 分, 共 32 分)

1、解: 原式 =
$$\lim_{x\to 0} \frac{x-\arctan x}{-x^3}$$
 3分

$$= \lim_{x \to 0} \frac{(x - arctanx)'}{(-x^3)'} = \lim_{x \to 0} \frac{1 - \frac{1}{1 + x^2}}{-3x^2}$$
 7 分

$$= -\lim_{x \to 0} \frac{1}{3(1+x^2)} = -\frac{1}{3}$$

2、**解:** 方程两边同时对
$$x$$
求导得: $1-y'+e^{xy}(y+xy')=0$ 4分

$$\frac{dy}{dx} = \frac{1 + ye^{xy}}{1 - xe^{xy}} \qquad (1) \qquad \therefore dy = \frac{1 + ye^{xy}}{1 - xe^{xy}} \cdot dx$$
 6分

将
$$x = 0$$
 代入原方程得 $y = 1$, 再代入①得: $y'(0) = 2$ **8分**

$$= -\frac{1}{30} \int \frac{1}{6t^5 + 1} d(6t^5 + 1) = -\frac{1}{30} ln|6t^5 + 1| + C$$
 7 分

$$= -\frac{1}{30}ln|6 + x^5| + \frac{1}{6}ln|x| + C$$
 8 \$\frac{4}{30}\$

4、解: 方程为一阶非齐次线性微分方程:
$$P(x) = -tanx$$
, $Q(x) = x$ 2分

由通解公式得:
$$y = e^{\int tan x dx} (\int x \cdot e^{-\int tan x dx} dx + C)$$
 5分

$$= \frac{1}{\cos x} (\int x \cos x \, dx + C) = \frac{1}{\cos x} (\int x d \sin x + C)$$

$$= \frac{1}{\cos x}(x\sin x - \int \sin x dx + C) = \frac{1}{\cos x}(x\sin x + \cos x + C)$$
 7 \(\forall \)

$$\exists y|_{x=0} = 0$$
,得 $C = -1$,故所求特解为: $y = xtanx + 1 - secx$ 8分

四、综合应用题 (三个小题, 1 小题各 8 分, 2 小题 10 分, 3 小题 5 分, 共 23 分)

1、解: 1)
$$y = x^4 - 6x^3 + 12x^2 - x - 4$$
定义域为($-\infty$, $+\infty$);

2)
$$y' = 4x^3 - 18x^2 + 24x - 1$$
, $y'' = 12x^2 - 36x + 24 = 12(x - 1)(x - 2)$
 $\Rightarrow y'' = 0$, $\exists x_1 = 1, x_2 = 2$

3) 列表讨论凹凸性和拐点:

х	(-∞,1)	1	(1,2)	2	(2,+∞)
f''(x)	+	0	_	0	+
f(x)	U	2	\cap	10	U

7分

4) 结论: 该函数的凸区间: [1,2], 凹区间: $(-\infty,1)$, $[2,+\infty]$;

8分

1分

4分

$$y = e^x \Rightarrow y' = e^x$$
, : 在任一点 $x = x_0$ 处的切线方程为 $y - e^{x_0} = e^{x_0}(x - x_0)$

而过(0,0)的切线方程就为:
$$y - e = e(x - 1)$$
, 即 $y = ex$

(1)
$$S_D = \int_0^1 (e^x - e^x) dx = e^x \Big|_0^1 - \frac{e}{2} x^2 \Big|_0^1 = \frac{e}{2} - 1$$
 7 \$\frac{\partial}{2}\$

(2)
$$V_x = \int_0^1 \pi e^{2x} dx - \int_0^1 \pi (ex)^2 dx = \frac{\pi}{2} e^{2x} \Big|_0^1 - \pi \frac{e^2}{3} x^3 \Big|_0^1 = \frac{\pi}{6} (e^2 - 3)$$
 10 \$\frac{\frac{1}}{3}}

3、证明:作辅助函数
$$F(x) = (a+x)\int_a^x f(t)dt - 2\int_a^x tf(t)dt$$
 2分

$$\mathbb{P}F'(x) = \int_{a}^{x} f(t)dt + (a+x)f(x) - 2xf(x) = \int_{a}^{x} f(t)dt + (a-x)f(x)$$
$$= \int_{a}^{x} f(t)dt - \int_{a}^{x} f(x)dt = \int_{a}^{x} [f(t) - f(x)]dt$$

f(x)在[a,b]上严格单调增加且连续,

$$t < x, \Rightarrow f(t) < f(x) \Rightarrow F'(x) = \int_{a}^{x} [f(t) - f(x)] dt < 0$$

所以 $F(x)$ 是严格减少,且 $F(a) = 0$, $F(b) < F(a) = 0$.
即 $(a + b) \int_{a}^{b} f(x) dx < 2 \int_{a}^{b} x f(x) dx$ 5 分

注:评分标准,中间段得分由每页阅卷老师统一;解题思路正确,酌情给分。