情報工学科	科	ディジタル回路 A		1単位	担	木村 勉
平成28年度2学年	目	コード: 32124	履修単位	前学期	当	クトイラ 光辺
本校教育目標: ①	JABE	正 学習·教育到達目標:	プロク	ブラム学習・	教育	到達目標:

科目概要: 情報工学概論A、情報工学概論B(1年)を基礎に、ディジタル回路を設計するための基本的なことを学ぶ。論理式の簡単化の方法や基本素子の回路特性を学び、その応用回路についても学習する。コンピュータや機械制御のために用いられる組み合わせ回路、2進演算回路などについても学ぶ。さらに、TTL や CMOS といった素子の特性についても学習する。

教科書:「基礎からわかる論理回路」松下俊介 (森北出版) ISBN:978-4627828414

その他:

評価方法: 中間試験(35%) 定期試験(55%) / 課題(10%)

授 業 内 容	授業 時間			
(1) ガイダンス:シラバスの説明	1			
(2) 論理式の簡単化	5			
(3) 論理記号: AND、OR、NOT、XOR	1			
(4) 論理式と論理回路の相互変換	3			
(5) AND と OR の相互変換	3			
(6) 論理の一致: MIL 記法	2			
(7) 中間試験	1			
(8) 半導体素子(ダイオード、トランジスタ、CMOS)と簡単な論理ゲートの構成と特性				
(9) 組み合わせ回路 1:マルチプレクサとデマルチプレクサ	4			
(10) 組み合わせ回路 2:エンコーダとデコーダ	3			
(11) 2 進演算回路:2 進加算回路、2 の補数による減算回路	4			
(12) 総まとめ	2			

達成度目標

- (ア) 論理式の簡単化の概念を説明できる。
- (イ) 論理ゲートを用いて論理式を組合せ論理回路として表現することができる。
- (ウ) 論理回路から論理式を表現することができる。
- (エ) AND と OR の相互変換ができる。
- (オ) 論理を一致させる重要性について理解できる。
- (カ) 半導体素子の簡単な仕組みとそれらを利用した論理ゲートの構成や特性が理解できる。
- (キ) 簡単な組み合わせ回路の設計ができる。
- (ク) 与えられた簡単な組合せ論理回路の機能を説明することができる。
- (ケ) 2 進加減算回路が理解できる。

特記事項: 情報工学概論A、情報工学概論B(1年)を修得していることを前提に授業を進める。