Bitcoin Volatility Prediction

Hammer Capital

The Problem

- Want money
- Know financial markets are a great place to make money
- Bitcoin volatility is a somewhat liquid yet underdeveloped market
- Stocks act like Brownian motion, realized volatility likely does not

Volatility Explanation

The Thesis

 A machine learning model for future volatility based on past data can add predictive value on the trading floor and assist Hammer Capital in capturing edge

The Data

- Bitstamp Bitcoin data
- Sampled once per day (for volatility this is the frequency we need as we can trade this way)
- Sept 2017 Nov 2023

Daily Realized Volatility

<pre>print(df.nlargest(5,</pre>		<pre>'realized_absolute_vol'))</pre>
	close	realized_absolute_vol
datetime		
2020-03-12	4841.67	38.980058
2017-12-07	16599.99	21.848203
2021-02-08	46416.45	19.450265
2019-04-02	4899.63	18.453843
2017-12-06	13623.50	16 669521

Bitcoin Price Since 2017

Model

LSTM

Long short-term memory (LSTM) network is a recurrent neural network (RNN), aimed to deal with the vanishing gradient problem present in traditional RNNs. Its relative insensitivity to gap length is its advantage over other RNNs, hidden Markov models and other sequence learning methods.

Classic RNN vs LSTM

Nov 12 is first day of prediction

Note we likely would have bought/sold correctly based on our predictions relative to market prices

```
Predictions for the next 10 elements:
[[1.2299799]
[1.8996669]
[2.0241373]
[3.0054111]
[1.8073826]
[2.350042]
[1.8226259]
[2.018779]
[2.5403645]
[2.4648616]]
```


Final Model RMSE

Train: 2.51 RMSE

Test: 2.52 RMSE

$$RMSE = \sqrt{\sum_{i=1}^{n} \frac{(\hat{y}_i - y_i)^2}{n}}$$

 $\hat{y}_1, \hat{y}_2, \dots, \hat{y}_n$ are predicted values y_1, y_2, \dots, y_n are observed values n is the number of observations

Next Steps

- Multivariate model intaking factors such as where the market is pricing forward vols
- Add day of week explicitly to model, add up/down move explicitly to the model
- Add calendar data such as CPI/FOMC, US market holiday etc.
- Consider dampening the fat tails in training data such that the model can better predict and tails don't overly impact RMSE results

Contact Information

Michael Hammer

Email: michaelhammerb@gmail.com

Github: https://github.com/michaelhammer1

LinkedIn: https://www.linkedin.com/in/michaelhammerb/

```
df[['close','realized_absolute_vol']].mean()
```

close 20812.966010 realized_absolute_vol 2.576125 dtype: float64

Monday average vol 3.081390495122366
Tuesday average vol 2.6493359499267495
Wednesday average vol 2.8456509522497555
Thursday average vol 3.010997561565898
Friday average vol 2.6121494403229177
Saturday average vol 1.7429630215841305
Sunday average vol 2.090389113211396

Goal?

- Build a model to predict future realized volatility that is better than average vol / the previous days vol
- Show real life prediction and what happened
- Get a measurable day-of-week effect