Package 'Homework1'

November 9, 2013

Type Package					
Title PH140.77	78 Advanced	d Statistical Computi	ng HW1		
Version 1.0					
Date 2013-11-	09				
Author Lu Li					
Maintainer Lu	ı Li<11i48@	@jhu.edu>			
Description That at a normal		gives faster ways to	fit a linear regres	ssion model and o	compute the multivari-
License GPL					
R topics d	ocumen	ited:			
dmvno	_	cage			
Index					6
Homework1-p	oackage	PH140.778 Hom	ework1		
Description					
This packa normal den		ster algorithms to fit	a linear regressio	on model and con	mpute the multivariate
Details					
		Package Type: Version Date: License	Package 1.0 2013-11-08		

2 dmvnorm

This package mainly uses Cholesky decomposition when computing the inverse matrix and takes advanges of matrix properties as well.

Author(s)

Lu Li

Maintainer Lu Li <lli>48@jhu.edu>

References

PH140.778 Advanced Statistical Computing Dr.Peng

dmvnorm

Computing the Multivariate Normal Density MORE Efficiently

Description

This function dmvnorm() evaluates the k-dimensional multivariate Normal density with mean mu and covariance S

Usage

```
dmvnorm(x, mu, S, log = TRUE)
```

Arguments

x a n*k matrix of points to be evaluated

mu a length k vector of means for the k-dimensional Normal

S a k*k covariance matrix

log whether the return should be the log density. Default is TRUE

Value

This funtion returns a vector of length n containing the values of the multivariate Normal density evaluated at the n points. If log = TRUE, it returns the log density at those points. If log is NOT TRUE, it will return the density values.

Author(s)

Lu Li

References

PH140.778 Advanced Statistical Computing Dr.Peng

fastlm 3

Examples

```
dmvnorm <- function(x, mu, S, log=TRUE) {</pre>
  #k dimension multivariate normal
        k=length(mu)
        if(is.matrix(x)==FALSE){
        x=as.matrix(t(x))
        }
  #n data points
        n=nrow(x)
  #check positive definite by trying to Cholesky decomposition
        Q=tryCatch({chol(S)},
             error=function(li){
               message("S cannot be a covariance matrix")
  #compute Q_inverse*(x-mu)
  #note that t(x-mu)%*%inv(Q%*%t(Q))%*%(x-mu)=crossprod(inv(Q)%*%(x-mu))
  #the easiest way to compute that is to solve t(Q)\%\%(inv(Q)\%\%(x-mu))=x-mu
        temp1=x-rep(1,n)%*%t(mu)
        A=forwardsolve(t(Q),t(temp1))
        temp2=diag(crossprod(A))
  #compute density
        density=(-k/2)*log(2*pi)-(1/2)*2*sum(log(diag(Q)))-(1/2)*temp2
  #check if log argument
        if(log!=TRUE){
            density=exp(density)
        }
        return(density)
}
n <- 10
n2 <- n^2
xg \leftarrow seq(0, 1, length = n)
g <- data.matrix(expand.grid(xg, yg))</pre>
D <- as.matrix(dist(g))</pre>
phi <- 5
S <- exp(-phi * D)
mu <- rep(0, n2)
set.seed(1)
x <- matrix(rnorm(n2), byrow = TRUE, ncol = n2)</pre>
dmvnorm(x, mu, S, log = TRUE)
```

4 fastlm

Description

Comparing to the lm.fit() function in R, this fastlm() function presents a much faster way to fit a linear regression model.

Usage

```
fastlm(X, y, na.rm = FALSE)
```

Arguments

X predictor variable, a n*k matrix
y response variable, a vector of length n
na.rm argument indicating that whether missing values in X or y should be removed.
Default is FALSE

Details

fastlm() takes the advantages of Cholesky decomposition to compute the inverse matrices, which makes a huge improvement in the efficiency of fitting linear regression models.

Value

Author(s)

Lu Li

References

PH140.778 Advanced Statistical Computing Dr.Peng

Examples

fastlm 5

```
Q<-chol(A)
    #solve betahat
        temp1<-forwardsolve(t(Q),C)</pre>
        betahat<-backsolve(Q,temp1)</pre>
    #calculate covirance of beta
    #note that t(e)\%*\%e=t(e)\%*\%y=t(y)\%*\%y-t(y)\%*\%X\%*\%betahat
        cov_beta<-chol2inv(Q)*as.numeric(crossprod(y-X%*%betahat,y))/(n-p)</pre>
        return(list(coefficients=betahat,vcov=cov_beta))
}
    set.seed(2)
## Generate predictor matrix
    n <- 100
    p <- 5
    X \leftarrow cbind(1, matrix(rnorm(n * (p - 1)), n, p - 1))
## Coefficents
    b <- rnorm(p)
## Response
    y <-X**b + rnorm(n)
    fit <- fastlm(X, y)</pre>
    str(fit)
```

Index

```
*Topic Cholesky decomposition
fastlm, 3
*Topic Linear Regression Model
fastlm, 3
*Topic package
Homework1-package, 1

dmvnorm, 2

fastlm, 3

Homework1 (Homework1-package), 1
Homework1-package, 1
```