Capítulo 1

Los números reales

1.1. Definicion

El conjunto de los números reales, \mathbb{R} , verifica la siguientes propiedades.

Suma

1) Propiedad asociativa:

$$(a+b)+c=a+(b+c), \quad \forall a,b,c \in \mathbb{R}.$$

2) Existe elemento neutro, 0:

$$a + 0 = 0 + a = a$$
, $\forall a \in \mathbb{R}$.

3) Todo elemento tiene opuesto:

dado
$$a \in \mathbb{R}$$
, existe un único $b \in \mathbb{R}$ tal que $a + b = 0$.

Usaremos la notación usual b = -a.

4) Propiedad conmutativa:

$$a + b = b + a$$
, $\forall a, b \in \mathbb{R}$.

Producto

5) Propiedad asociativa:

$$(ab)c = a(bc), \quad \forall \, a,b,c \in \mathbb{R}.$$

6) Existe elemento neutro, 1:

$$a1 = 1a = a$$
, $\forall a \in \mathbb{R}$.

7) Todo elemento no nulo tiene inverso:

dado $a \in \mathbb{R}$, $a \neq 0$, existe un único $b \in \mathbb{R}$ tal que ab = ba = 1.

Usaremos la notación habitual $b = \frac{1}{b} = b^{-1}$.

8) Propiedad conmutativa:

$$ab = ba$$
, $\forall a, b \in \mathbb{R}$.

9) Propiedad distributiva:

$$a(b+c) = ab + ac$$
, $\forall a, b, c \in \mathbb{R}$.

Orden

10) Reflexiva:

$$a \le a$$
, $\forall a \in \mathbb{R}$.

11) Antisimétrica

$$\left. \begin{array}{l} a \leq b \\ b \leq a \end{array} \right\} \implies a = b.$$

12) Transitiva

$$\left. \begin{array}{l} a \leq b \\ b \leq c \end{array} \right\} \implies a \leq c.$$

13) Relación con la suma:

$$a \le b \implies a + c \le b + c, \quad \forall c.$$

14) Relación con el producto

$$a \le b \implies ac \le bc, \quad \forall c \ge 0.$$

15) Todos los elementos son comparables:

dados
$$a, b \in \mathbb{R}$$
 se cumple que $a \le b$ o que $b \le a$.

16) Dados A, B $\subset \mathbb{R}$ verificando que $a \leq b$ para cualquier $a \in A$, $b \in B$, existe $c \in \mathbb{R}$ tal que $a \leq c \leq b$, $\forall a \in A$, $\forall b \in B$.

Ejemplo 1.1.1. Podemos usar estas propiedades para describir conjuntos sencillos. Por ejemplo, ¿qué números verifican la desigualdad $x^3 - 2x^2 - x + 2 \ge 0$?

Usando que las raíces del polinomio son ±1 y 2,

$$x^3 - 2x^2 - x + 2 = (x+1)(x-1)(x-2)$$

tenemos cuatro intervalos en los que podemos dividir para discutir el signo de dicho polinomio.

1.1 Definicion 11

• Si
$$x \le -1$$
, $\underbrace{(x+1)}_{-}\underbrace{(x-1)}_{-}\underbrace{(x-2)}_{-} \le 0$

• Si
$$-1 \le x \le 1$$
, $\underbrace{(x+1)(x-1)(x-2)}_{-} \ge 0$

• Si
$$1 \le x \le 2$$
, $\underbrace{(x+1)}_{+}\underbrace{(x-1)}_{+}\underbrace{(x-2)}_{-} \le 0$

• Si
$$2 \le x$$
, $\underbrace{(x+1)}_{+}\underbrace{(x-1)}_{+}\underbrace{(x-2)}_{+} \ge 0$

También es usual escribir los cambios de signo en forma de tabla. En este caso "+" está indicando mayor o igual que cero:

	$x \le -1$	$-1 \le x \le 1$	$1 \le x \le 2$	$2 \le x$
x+1	_	+	+	+
x-1	_	_	+	+
x-2	_	_	_	+
$x^3 - 2x^2 - x + 2$	_	+	_	+

1.1.1. Subconjuntos destacados

Números naturales, enteros y racionales

- El conjunto de los *números naturales*¹, $\mathbb{N} = \{1, 2, ...\}$, es el menor conjunto que verifica las dos siguientes propiedades:
 - 1) $1 \in \mathbb{N}$, y
 - 2) si $n \in \mathbb{N}$, entonces $n + 1 \in \mathbb{N}$.

Es sólo una convención el incluir o no el cero entre los elementos del conjunto de los números naturales. Por comodidad, nosotros no lo vamos a incluir.

- El conjunto de los números enteros $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$
- Los números racionales $\mathbb{Q} = \left\{ \frac{p}{q} : p \in \mathbb{Z}, \ q \in \mathbb{N} \right\}$
- Los números que no son racionales, los irracionales, $\mathbb{R} \setminus \mathbb{Q}$.

Intervalos

Los intervalos van a ser los conjuntos más usados a lo largo de estas notas. Es más sencillo enumerar todos los tipos posibles de intervalos que definir qué es un intervalo. De todas formas, incluimos la definición posteriormente.

$$[a,b] = \{x \in \mathbb{R} : a \le x \le b\}$$

$$(a,b] = \{x \in \mathbb{R} : a < x \le b\}$$

$$(a,+\infty) = \{x \in \mathbb{R} : a < x\}$$

$$(a,+\infty) = \{x \in \mathbb{R} : a < x\}$$

$$(a,+\infty) = \{x \in \mathbb{R} : a < x\}$$

$$(-\infty,b] = \{x \in \mathbb{R} : x \le b\}$$

$$(a,b) = \{x \in \mathbb{R} : x \le b\}$$

$$(-\infty,b) = \{x \in \mathbb{R} : x < b\}$$

¹ No hemos incluido el cero en el conjunto de los números naturales por una cuestión de comodidad, pero es habitual considerarlo como tal.

Definición 1.1.2. Un conjunto $A \subset \mathbb{R}$ es un *intervalo* si dados x e $y \in A$, se cumple que $(x, y) \subset A$.

Observación 1.1.3. Utilizaremos la notación (a, b) o]a, b[indistintamente para denotar un intervalo abierto.

1.2. Desigualdades

1.2.1. Acotación

Definición 1.2.1. Un conjunto A de números reales está *acotado superiormente* si existe $M \in \mathbb{R}$ tal que $a \leq M$, para cualquier $a \in A$. En ese caso, diremos que M es una cota superior de A.

Observación 1.2.2. Si M es una cota superior de A, cualquier número mayor o igual también es una cota superior. Por tanto, si un conjunto está acotado superiormente, el conjunto de las cotas es infinito.

Definición 1.2.3. Sea $A \subset \mathbb{R}$. Diremos que $a_0 \in A$ es el máximo de A si $a \leq a_0$, para todo $a \in A$.

Observación 1.2.4. El máximo, si es que existe, es una cota superior, la única que pertenece al conjunto y la más pequeña de todas.

- **Ejemplo 1.2.5.** 1) El conjunto de los números naturales está acotado inferiormente; de hecho, tiene mínimo: $1 \le n$ para cualquier número natural n. En cambio, no está acotado superiormente y, en particular, no tiene máximo.
 - 2) Ni el conjunto de los números enteros, ni el conjunto de los números racionales están acotados.
 - 3) Los intervalos tienen máximo si, y sólo si, el extremo superior pertenece al intervalo.

Sí que están acotados los dos intervalos anteriores, tanto superior como inferiormente.

1.2.2. Valor absoluto

El valor absoluto de un número real x es su distancia al cero. Algebraicamente es una función a trozos.

$$|x| = \begin{cases} x, & \text{si } x \ge 0, \\ -x, & \text{si } x < 0. \end{cases}$$

Sus propiedades se deducen de forma sencilla de la definición, como que $|x| = |-x| \ge 0$.

Proposición 1.2.6 (Propiedades del valor absoluto). *Sean* $x, y \in \mathbb{R}$.

1)
$$|x| \ge 0$$
,

1.2 Designaldades 13

Figura 1.1: Interpretación geométrica del valor absoluto

- 2) $|x| = 0 \iff x = 0$,
- 3) $|x| \le y \iff -y \le x \le y$,
- 4) $|x + y| \le |x| + |y|$,
- 5) $||x| |y|| \le |x y|$
- 6) $|xy| = |x| \cdot |y|, \left| \frac{x}{y} \right| = \frac{|x|}{|y|}.$

Ejemplo 1.2.7. La ecuación |x-3|=2 podemos resolverla utilizando varios enfoques.

1) Geométricamente, la ecuación |x-3|=2 representa a los puntos x cuya distancia a 3 vale 2. Las posibles soluciones se obtienen trazando la circunferencia de centro 3 y radio 2

con lo que las soluciones de la ecuación son x = 1, 5.

2) Usando la definición,

$$|x-3| = 2 \iff x-3 = 2$$
 o $x-3 = -2$.

Resolviendo ambas ecuaciones obtenemos las mismas soluciones, x = 1, 5.

3) Usando que el cuadrado de un número siempre es positivo, se cumple que $|a|^2 = a^2$. Por tanto,

$$|x-3| = 2 \iff |x-3|^2 = 2^2 \iff (x-3)^2 = 4$$

 $\iff x^2 - 6x + 5 = 0 \iff x = 1.5.$

Utiliza alguno de estos métodos para resolver la ecuación |x-1| = |x+3|.

Ejemplo 1.2.8. En general, una ecuación con valores absolutos, se puede escribir como varias ecuaciones sin valores absolutos. Por ejemplo,

$$|2x-3|-1| = 5 \iff \begin{cases} |2x-3|-1=5\\ |2x-3|-1=-5 \end{cases} \iff \begin{cases} |2x-3|=6\\ |2x-3|=-4 \end{cases}$$

 $\iff 2x-3=\pm 6$

Con lo que nos quedan las soluciones x = 9/2 o x = -3/2.

Ejemplo 1.2.9. Si es necesario para conocer el valor absoluto, podemos distinguir casos. Por ejemplo, para resolver la ecuación |x-1|+2|x-3|=7, necesitaríamos saber si x-1 es positivo o no y lo mismo con x-3. Para esto, nos hace falta saber si x es mayor o menor que 1 y si es mayor o menor que 3. Tenemos, por tanto tres posibilidades.

1) Si $x \le 1$, entonces |x-1| = 1-x y |x-3| = 3-x, con lo que la ecuación que tenemos que resolver es

$$1 - x + 2(3 - x) = 7 \iff x = 0$$

- 2) Si $1 \le x \le 3$, entonces |x-1| = x-1 y |x-3| = 3-x. La ecuación a resolver es x-1+2(3-x)=7, pero su solución, x=-2, no está en este intervalo por lo que no es válida.
- 3) Si $x \ge 3$, la ecuación que tenemos que resolver es

$$(x-1)+2(x-3)=7 \iff x=\frac{14}{3}.$$

Por tanto, |x-1|+2|x-3|=7 si, y sólo si, x=0, 14/3.

Ejemplo 1.2.10. Encuentra aquellos valores de x que verifican que:

1)
$$\frac{1}{x} + \frac{1}{1-x} > 0$$
.

Resolvemos así:

$$0 < \frac{1}{x} + \frac{1}{1-x} = \frac{1}{x(1-x)} \iff 0 < x(1-x) \iff 0 < x < 1.$$

2) |x+1| < |x+3|.

Vamos a usar que, para números positivos, $0 < x < y \iff x^2 < y^2$.

$$|x+1| < |x+3| \iff |x+1|^2 < |x+3|^2$$

 $\iff (x+1)^2 < (x+3)^2$
 $\iff x^2 + 2x + 1 < x^2 + 6x + 9$
 $\iff -2 < x$.

Ejemplo 1.2.11. ¿Qué valores verifican que $||x+1|-|x-1|| \le 1/2$?