Finite Volume Method

(Stokes Equation)

Hoàng Trung Hậu - Đặng Thanh Vương

Finite Volume Method

School-year 2017-2018, Ho Chi Minh City

Giới thiệu bài toán

Cho $\Omega \in \mathbb{R}^{\mathbb{N}}$, $\partial \Omega$ trơn, bị chặn. $f: \Omega \times \mathbb{R} \longrightarrow \mathbb{R}$, f là hàm Carathéodory, và $L: D(L) \subset X \longrightarrow X$ khi X là không gian Hilbert, D(L) là không gian con của X, L là ánh xạ tuyến tính xác định trên D(L).

Xét bài toán phi tuyến Dirichlet:

$$\begin{cases} Lu = f(x, u) & \text{trong} \quad \Omega \\ u = 0 & \text{trên} \quad \partial \Omega \end{cases}$$

Và kí hiệu

$$F(x,t)=\int_0^t f(x,s)ds.$$

Một vài tóm tắt định lý điểm dừng và ứng dụng

Đinh Lý 2.1(Định lý 2 trong [?])

Cho E không gian Hilbert, $\Phi \to R$, V không gian vector con hữu hạn chiều của E, W phần bù trực giao của V, thỏa các tính chất sau đây

- (i) Φ thuộc lớp C^1
- (ii) Φ coercive trên W.
- (iii) Φ lõm trên w + V với mọi $w \in W$.
- (iv) $\Phi(v+w) \to -\infty$ khi $||v|| \to \infty$ và hội tụ trên là đều trên tập bị chặn trên W.
- (v) Φ nữa liên tục dưới yếu trên v + W với mọi $v \in V$.

Khi đó Φ có điểm dừng trên E.

Chứng minh

Một vài tóm tắt định lý điểm dừng và ứng dụng

Bổ Đề 2.1(Bổ đề 3 trong [?])

Với mọi $w \in W$, tồn tại $v = v(w) \in V$ sao cho

$$\Phi(v+w) = \max_{g \in V} \Phi(v+w)$$

Chứng minh: ta chứng minh $v_n \in V$ thỏa:

$$\Phi\left(v_{n}+w\right)\rightarrow\max_{g\in V}\Phi\left(v+w\right)$$

là bị chặn và kết luận nhờ tính hữu hạn chiều của V.

Ta kí hiệu:

$$V(w) = \{v \in V | \Phi(v+w) = \max_{g \in V} \Phi(g+w) \}$$

Và

$$S = \{u = v + w | w \in W, v \in V(w)\}$$

Bổ Đề 2.2(Bổ đề 4 trong [?])

Tồn tại $u \in S$ sao cho

$$\Phi(u) = \inf_{S} \Phi \tag{1.1}$$

Chứng minh: Lấy $u_n \in S$ sao cho: $\Phi(u_n) \to \inf_S \Phi$, ta chứng minh tồn tại dãy con $u_{n_k} \in S$, $w \in W$, sao cho:

$$\Phi(v+w) \leq \lim_{n\to\infty} \inf \Phi(u_{n_k}) = \inf_{S} \Phi, \forall v \in V$$

và từ đó kết luân

Một vài tóm tắt định lý điểm dừng và ứng dụng

Bổ Đề 2.3(Bổ đề 5 trong [?])

Ta định nghĩa P phép chiếu vuông góc từ E vào W, và I ánh xạ đồng nhất trên E. Với $u \in S$ thỏa $\Phi(u) = \inf_S \Phi$ khi đó

$$(I - P)\nabla\Phi(u) = 0 \tag{1.2}$$

Ta dùng Riez để có

$$D\Phi(u)(e) = \langle \nabla \Phi(u), e \rangle \quad \forall e \in E$$

Ta sẽ chứng minh là:

$$\langle \nabla \Phi(u), g \rangle = 0 \quad \forall g \in V.$$

Và từ đó kết luân.

Bổ Đề 2.4(Bổ đề 6 trong [?])

Với mỗi $w \in W$. Chứng minh V(w) lồi.

Chứng minh: Ta sẽ dùng tính lõm của Φ trên w+V để chứng minh là: Với $\lambda \in [0,1], v_1, v_2 \in V(w)$

$$\Phi(\lambda v_1 + (1-\lambda)v_2 + w) \ge \lambda \Phi(v_1 + w) + (1-\lambda)\Phi(v_2 + w) = \max_{v \in V} \Phi(v + w)$$

và từ đó kết luân.

Một vài tóm tắt định lý điểm dừng và ứng dụng

Bổ Đề 2.5(Bổ đề 7 trong [?])

Chứng minh với mọi $w \in W$, ta có L(w) lồi, với

$$L(w) = \{P\nabla\Phi(v+w) \mid v \in V(w)\}$$

Chứng minh: Với $v_1, v_2 \in V(w), \lambda \in [0, 1], v_{\lambda} = (\lambda v_1 + (1 - \lambda)v_2.$ Ta sẽ chứng minh là:

$$\lambda(\Phi(v_1+w+th)-\Phi(v_1+w))+(1-\lambda)(\Phi(v_2+w+th)-\Phi(v_2+w))$$

$$\leq \Phi(v_{\lambda}+w+th)-\Phi(v_{\lambda}+w)$$

Từ đó ta có là (chia hai trường hợp t>0 và t<0) :

$$\lambda P \nabla \Phi(v_1 + w) + (1 - \lambda) P \nabla \Phi(v_2 + w) = P \nabla \Phi(v_\lambda + w)$$

và từ đó kết luận

Bổ Đề 2.6

Chứng minh L(w) đóng với mọi $w \in W$ (Bổ sung của chứng minh)

Ta sẽ chứng minh là V(w) là tập đóng trước rồi kết luận nhờ tính hữu hạn chiều của V và Φ là lớp C^1 .

Một vài tóm tắt định lý điểm dừng và ứng dụng

Bổ Đề 2.7(Bổ đề 8 trong [?])

Cho $u \in S$ thỏa (??) và w = Pu khi đó L(w) chứa 0. Và do đó tồn tại $v \in V(w)$ sao cho

$$\nabla\Phi(\nu+w)=0$$

Chứng minh: Ta sẽ phản chứng và dùng tính chất lồi đóng của L(w), tồn tại $h_1 \in L(w)$ sao cho:

$$||h_1|| \neq 0$$

Đặt $w_t=w+th_1, |t|\leq 1$. Và $v_t\in V(w_t)$. Ta sẽ lần lượt chứng minh là w_t bị chặn, v_t bị chặn. Cuối cùng ta sử dụng định lý trung bình trên $\mathbb R$ để kết luận là $h_1=0$. Suy ra mâu thuẫn và từ đó kết luân.

Chứng minh định lý 2.1:

Do đó $0 \in L(w)$. Vậy tồn tại $v \in V(w)$ sao cho $P \nabla \Phi(v+w) = 0$. Hay

$$\langle \nabla \Phi(v+w), h \rangle = 0 \quad h \in W$$

Mặc khác theo bổ đề 2.3, ta lại có:

$$\langle \nabla \Phi(v+w), g \rangle = 0 \quad g \in V$$

Vậy nên ta có

$$\langle \nabla \Phi(v+w), e \rangle = 0 \quad e \in E$$

Hay

$$\nabla \Phi(v+w)=0$$

Và u = v + w chính là điểm dừng của Φ cần tìm.

Một số biến thể của các kết quả trên

Ta nói
$$\Phi: X = V \oplus W \to R$$
 có dạng \jmath nếu

- $j_1 \quad \Phi = q + \Psi$
- _{J2} Ψ liên tục yếu
- $g_3 \quad q(v+w) = q(w) + q(v)$ với mọi $v \in V$ và $w \in W$
- \jmath_4 q nửa liên tục yếu trên V

Một số biến thể của các kết quả trên

Đinh Lý 2.2(Đinh lý 11 trong [?])

Cho H không gian HIlbert $H=V\oplus W$ với V không gian vector con đóng của H và $W=V^\perp$. Φ thỏa điều kiện \jmath và thỏa các điều kiện sau đây

- (i) q và Ψ thuộc lớp C^1
- (ii) Φ coercive trên W
- (iii) Φ lõm trên w + V với mọi $w \in W$
- (iv) $\Phi(v+w) \to -\infty$ khi $\|v\| \to \infty$ và hội tụ trên là đều trên tập bị chặn trên W
- (v) Φ nữa liên tục dưới yếu trên v + W với mọi $v \in V$.
- (vi) Đạo hàm Φ liên tục yếu trên H.

Khi đó Φ có điểm dừng trên H.

Chứng minh Định Lý 2.2

Phần lớn chứng minh là tương tự với định lý 2.1. Chỉ khác phần chứng minh L(w) đóng do lúc này ta chỉ có V đóng mà không có tính hữu hạn chiều nên chỉ có tính hội tụ yếu và do đó ta cần tính chất là:

Nếu $v_n \rightharpoonup v$ thì

$$(\nabla\Phi(v_n+w),h)\to(\nabla\Phi(v_0+w),h), \forall h\in H$$

Một số biến thể của các kết quả trên

Đinh Lý 2.3(Đinh lý 13 trong [?])

Cho E không gian Hilbert, $\Phi \to R$, V không gian vector con hữu hạn chiều của E, W phần bù trực giao của V, thỏa các tính chất sau đây

- (i) Φ thuộc lớp C^1
- (ii) Φ coercive trên W.
- (iii) Φ strictly quasi concave trên w+V với mọi $w \in W$ i.e: $\forall x,y \in w+V, \lambda \in (0,1)$ thì : $\Phi(\lambda x + (1-\lambda)v) > min\{\Phi(x),\Phi(v)\}$
- (iv) $\Phi(v+w) \to -\infty$ khi $\|v\| \to \infty$ và hội tụ trên là đều trên tập bị chăn trên W.
- (v) Φ nữa liên tục dưới yếu trên v+W với mọi $v\in V$.
- Khi đó Φ có điểm dừng trên E.

Chứng minh Định Lý 2.3

Trong trường hợp này thì L(w) và V(w) chỉ có 1 phần tử bằng cách:

Gia sử: $\exists v_1, v_2 \in V(w), v_1 \neq v_2$ thì áp dụng (iii), ta có là:

$$\Phi(\lambda v_1 + (1 - \lambda)v_2 + w) = \Phi(\lambda(v_1 + w) + (1 - \lambda)(v_2 + w))$$

$$> \min\{\Phi(v_1 + w), \Phi(v_2 + w)\} = \max_{g \in V} \Phi(g + w)$$

. Còn lại thì tương tự hai định lý trên!

Cho $\Omega \subset \mathbb{R}^m$, mở biên trơn bị chặn . Xét :

$$\begin{cases}
-\Delta u(x) = \lambda_k u(x) + D_u F(x, u(x)) & \text{trong} \quad \Omega \\
u = 0 & \text{trên} \quad \partial \Omega
\end{cases}$$
(P)

Chứng minh là phương trình trên có nghiệm yếu .

Ta có là:

$$V_1 = H_0^1(\Omega).$$
 $D(L) = H^2(\Omega) \cap H_0^1(\Omega).$
 $L = -\Delta - \lambda_k Id$

 $(\lambda_k \text{ là trị riêng thứ } k \text{ của } -\Delta).$

Lúc đó thì:

$$L: D(L) \subset V_1 \longrightarrow L^2(\Omega)$$

Xét hàm $F: \Omega \times \mathbb{R} \longrightarrow \mathbb{R}$ có dạng : F(x, u) là hàm thỏa:

- (i) F là lồi và khả vi theo u với hầu hết $x \in \Omega$.
- (ii) F là đo được với mọi $u \in \mathbb{R}$.

Các tính chất của F:

(F1) Tồn tại $I \in L^2(\Omega), \beta \in L^2(\Omega), \beta > 0$ sao cho :

$$F(x, u) \ge I(x)u - \beta(x)$$

với mọi $u \in \mathbb{R}$, hấu hết x trên Ω

(F2) $D_uF(.,u(.)) \in V_1$ với mọi $u \in D(L)$

Các tính chất của F:

(F3) Với mọi $\eta>0$, tồn tại $\beta_{\eta}\in L^2(\Omega), \beta_{\eta}\geq 0$ sao cho :

$$F(x,u) \leq (\alpha(x) + \eta) \frac{|u|^2}{2} + \beta_{\eta}(x)$$

với hầu hết $x\in\Omega$ với mọi $u\in\mathbb{R}$, $\alpha\in L^\infty(\Omega)$ với inf $ess\alpha(x)>0$ và $\alpha(x)\leq\mu_1$ và lớn hơn hẳn trên các tập đo đo dương $.\mu_1$ là trị riêng dương đầu tiên của L .

(F4) $\int_{\Omega} F(x, \widehat{u}(x)) dx \to \infty$ khi $||\widehat{u}|| \to \infty$ khi \widehat{u} trong Ker(L).

Kí hiệu $D_u F(x, u)$ là chỉ đạo hàm theo biến thứ 2 của F.

Ta đưa bài toán về nghiệm yếu (bỏ qua vài bước):

$$\int_{\Omega} \nabla u(x) \nabla v(x) dx = \int_{\Omega} \lambda_k u(x) v(x) dx + \int_{\Omega} D_u F(x, u(x)) v(x) dx$$

$$\int_{\Omega} \nabla u(x) \nabla v(x) dx - \lambda_k \int_{\Omega} u(x) v(x) dx = \int_{\Omega} D_u F(x, u(x)) v(x) dx$$

$$\forall v \in V_1$$

Bài toán biến phân của nó là :

$$\Phi(u) = \frac{1}{2} \int_{\Omega} |\nabla u(x)|^2 dx - \frac{\lambda_k}{2} \int_{\Omega} |u(x)|^2 dx - \int_{\Omega} F(x, u(x)) dx$$

với $u \in V_1$

Các Chuẩn

Chuẩn của $L^2(\Omega)$ là :

$$||u||_{L^2}=\sqrt{\int_{\Omega}|u(x)|^2dx}.$$

Chuẩn của $H^1_0(\Omega)$ là

$$||u||_{H_0^1} = \sqrt{\int_{\Omega} |\nabla u(x)|^2 dx}.$$

Ta cần tính chất sau :

Tồn tại $\{e_n\} \in C^\infty(\overline{\Omega})$ là họ trực giao tối đại (họ trực giao này khác 0 với mọi n) trong L^2 (thậm chí họ này còn là trực giao tối đại trên H^1_0) và 1 dãy $0 < \lambda_n$ tăng ngặt về vô cùng sao cho:

$$\begin{cases} -\Delta u(x) = \lambda_n e_n(x) & \text{trong} \quad \Omega \\ e_n = 0 & \text{trên} \quad \partial \Omega \end{cases}$$

Các không gian sinh bởi các trị riêng này là E_i và $dimE_i=1$. Lúc đó:

$$Ker(L) = E_k, A = \{u \in V \setminus \{0\} | \exists \lambda < 0 - \Delta u = (\lambda + \lambda_k)u\}$$

Tính chất của E_i :

Ta có :

$$\langle A \rangle = \bigoplus_{i=1}^{k-1} E_i$$

Và đặt

$$H^{-} = \bigoplus_{i=1}^{k-1} E_i$$

$$B = \{u \in V | \exists \lambda > 0, -\Delta u = (\lambda + \lambda_k)u\}$$

Tương tự ta có là :

$$B = \bigoplus_{i=k+1}^{\infty} E_i, H^+ = \overline{\langle B \rangle}_{L^2}$$

Bổ đề 2.9(Bổ đề nhỏ)

Cho $A \subset H^1_0(\Omega)$, lúc đó $A \subset L^2(\Omega)$. Gia sử A đóng trong L^2 với chuẩn L^2 . Chứng minh là A đóng trong H^1_0 với chuẩn H^1_0 .

Chứng minh Bổ đề 2.9

Lấy $u_n \in A$ sao cho : $u_n \to u$ trong H_0^1 . Chứng minh là $u \in A$. Do bất đẳng thức Poincare :

$$\int_{\Omega} |w(x)|^2 dx \le \frac{1}{\lambda_1} \int_{\Omega} |\nabla w(x)|^2 dx, \forall w \in H_0^1$$

Nên ta có là $u_n \to u$ trong L^2 .Do tính đóng của A trong L^2 nên ta có là $u \in A$. Từ đó ta có là A đóng trong H^1_0 .

Bổ đề 2.10 (Bổ đề về dạng toàn phương)

Cho H là không gian Hilbert. Cho $a: H \times H \to \mathbb{R}$ là song tuyến tính .Gía sứ là

$$a(u,u) \geq 0, \forall u$$

Lúc đó đặt f(u) = a(u, u) thì f lồi !.

f còn gọi là dạng toàn phương . Và $f(u) \geq 0$ là dạng toàn phương dương .

Chứng minh Bổ đề 2.10

Ta chỉ cần chứng minh được là :

$$f(tu + (1-t)v) - tf(u) - (1-t)f(v) = -t(1-t)a(u-v, u-v)$$

Từ đó ta có H^+ đóng trong cả L^2 và H^1_0 theo cả hai chuẩn khác nhau .

Ta có thể chứng minh nhờ tính tối đại của họ trực giao và tính đóng của ${\cal H}^+$ là:

$$H_0^1 = Ker(L) \oplus H^- \oplus H^+$$

$$L^2 = Ker(L) \oplus H^- \oplus H^+$$

Và $(Ker(L) \oplus H^-)^{\perp} = H^+$ (theo chuẩn H_0^1 lẫn L^2) Từ đây ta có thể chỉ ra là :

$$\mu_1 = \lambda_{k+1} - \lambda_k$$

Gọi $\{\mu_n\}_{n\in B}$,B đếm được nào đó là các trị riêng của L thì ta có là : Các trị riêng âm là : $\mu_{-1}=\lambda_{k-1}-\lambda_k$ (trị riêng âm đầu tiên),.... $\mu_{-k+1}=\lambda_1-\lambda_k$.

Trị riêng 0 là : $\mu_0=\lambda_k-\lambda_k=0$. Các trị riêng dương là : $\mu_1=\lambda_{k+1}-\lambda_k,...,\mu_n=\lambda_{k+n}-\lambda_k,...$ Bây giờ ta sẽ áp dụng định lý 1 để giải bài này . Chọn :

$$H = V_1 = H_0^1,$$

$$V = ker(L) \oplus H^-,$$

$$W = H^+.$$

Ta có thể kiểm tra $\ker(L) \oplus H^-$ hữu hạn chiều phù hợp với định lý 2.1.

Ta chỉ cần chứng minh các tính chất trên cho Φ là đủ . Chứng minh (Chia làm nhiều phần):

Φ là một hàm C^1 .

Ta cần chứng minh là : Có $d \in L^1, h \in L^2$ và hai hằng số $c, g \ge 0$:

$$|F(x, u_2)| \le c \frac{|u_2|^2}{2} + d(x)$$

$$|D_u F(x, u_1)| \le g|u_1| + h(x), \forall u_1 \in \mathbb{R}, \forall x \in \Omega.$$

Φ lõm trên w + V với $w \in W$.

Ta chia Φ thành 2 phần là : $\Lambda(u) = \int_{\Omega} F(x, u(x)) dx$ và $q(u) = \frac{1}{2} \int_{\Omega} |\nabla u(x)|^2 dx - \frac{\lambda_k}{2} \int_{\Omega} |u(x)|^2 dx$ và Φ = $q - \Lambda$ và sẽ chứng minh lõm trên từng phần.

Φ là hàm nửa liên tục yếu trên v + W với $v \in V$.

Phần q ta sẽ dùng tính lồi trên v+W và liên tục là có nửa liên tục yếu !

Phần Λ thì ta sẽ dùng tính nhúng compact của H_0^1 vào L^2 và tính liên tục trên L^2 để chứng mính Λ liên tục yếu theo dãy. Và từ đó có kết luận.

Φ corecive trên W

Ta đăt :

$$p(u) = \frac{1}{2} \int_{\Omega} |\nabla u(x)|^2 dx - \frac{\lambda_k}{2} \int_{\Omega} |u(x)|^2 dx - \frac{1}{2} \int_{\Omega} \alpha(x) |u(x)|^2 dx$$

Ta chứng minh là:

$$p(u) \ge \delta ||u||_{H_0^1}^2, \forall u \in W$$

/à từ đó ta có là với n thích hơn

 $\Phi(v+w) \to -\infty$ khi $||v|| \to \infty$ và hội tụ này là đều trên các tập bi chăn trên W.

TH1 .Với k = 1. $v \in V$ Ta sẽ chứng minh :

$$\Phi(v+w) \leq -2 \int_{\Omega} (F(x, \frac{1}{2}v(x))dx + C\frac{\mu_1+1}{2} + ||\beta||_{L^1}$$

TH2 .Với k>1. Xét $v\in V$ thì tồn tại $v^0\in \mathit{Ker}(L), v^-\in H^-$ sao cho :

$$v = v^0 + v^-$$

Ta sẽ cần bổ đề ở dưới để chứng minh :

Bổ Đề 2.11(Bổ đề 6 trong [?])

Với $F: \mathbb{R} \to \mathbb{R}$ lỗi thì với $v, w \in \mathbb{R}, n \in \mathbb{N}$ ta có là :

$$F(\frac{v}{2^{2n-1}}) \leq \frac{1}{2^{2n-1}}F(v+w) + \sum_{p=1}^{2n-1} \frac{1}{2^p}F(\frac{(-1)^p w}{2^{2n-1-p}})$$

$$-F(v+w) \le -2^{2n-1}F(\frac{v}{2^{2n-1}}) + \sum_{p=1}^{2n-1} \frac{2^{2n-1}}{2^p}F(\frac{(-1)^p w}{2^{2n-1-p}})$$

Chứng minh Bổ Đề 2.11

Bằng quy nạp ta có điều cần chứng minh.

Ứng dụng:

Chứng minh điều trên:

Ta sẽ dùng bổ đề trên để chứng minh là : tồn tại $T,\,G>0$

$$\Phi(v+w) \le -T||v^-||_{H_0^1}^2 - 2^{2n} \int_{\Omega} F(x, \frac{v^0(x)}{2^{2n-1}}) dx + G, \forall v \in V$$

Từ đây ta có:

Kết luân:

Áp dụng 2.1 và ta có điểm dừng của hàm Φ và đó là nghiệm yếu của bài toán cần tìm !

Kết Luận

Trong báo cáo tiểu luận này chúng tôi đã làm được những việc sau:

- 1. Giới thiệu lại các kiến thức cơ bản về không gian $L^p(\Omega)$, $W^{1,p}(\Omega)$, toán tử Nemytskii, hàm nửa liên tục dưới yếu và hàm lồi để phục vụ cho việc làm luận văn này.(Chi tiết xem bản đính kèm)
- Chúng tôi tập chung kiểm tra, chứng minh lại chi tiết các bổ đề trong bài báo [?] mà các tác giả đã bỏ qua chứng minh chi tiết.

References

- beame riconarl Brezis.: Functional Analysis, Sobolev spaces and Partial Differential Equatios, Springer, 2011.
- compactness and applications, Vol. 32, No. 3, pp. 363-380, 1998.
- principle with applications and detours, Tata institute of fundamental research, Bombay 1989
- beame icon article Mawhin, M. Willem.: Critical Point Theory and Hamiltonian Systems, Springer, Berlin (1989).
- beame iconar Walter Rudin, Real and Complex Analysis, third edition, international edition 1987.

Xin Cám Ơn Tất Cả Các Thầy,Cô và Các Bạn Đã Lắng Nghe

The End