ABOV SEMICONDUCTOR 8 SEGMENT X 5 GRID LED DRIVER WITH KEYSCAN

MC2003

Data Sheet (Ver. 1.20)

Version 1.20 Published by FAE Team ©2008 ABOV Semiconductor Co., Ltd. All right reserved Additional information of this data sheet may be served by ABOV Semiconductor offices in Korea or Distributors.

ABOV Semiconductor reserves the right to make changes to any information here in at any time without notice.

responsible for any violations of patents or other rights of the third party generated by the use of this manual.

The information, diagrams and other data in this manual are correct and reliable, however, ABOV Semiconductor is in no way

REVISION HISTORY

VERSION 1.20 (2010. 01. 07)

Modified the Operating Temperature on page 9.

VERSION 1.10 (2009. 04. 20) This Book.

Modified the Dout of Transmission (Data Read) FORMAT.

Modified the Key scan data read sequence.

VERSION 1.00 (2008. 12. 15)

The first Edition

DESCRIPTION

The MC2003 is specifically designed for LED and LED DISPLAY driver.

The MC2003 has max 9 segment output lines, max 5 grid output lines, one display memory, control circuit, 4 line serial data interface, and max 8 x 2 matrix key scan.

The more detail spec is listed below as Table 1.1.

Those functions are all incorporated into a single chip to build a highly reliable peripheral device for a single chip microcomputer.

It is very convenient to control for numeric display.

MC2003's pin assignments and application circuit are optimized for easy PCB Layout and cost saving advantages.

FEATURES

- CMOS Technology
- Segment output line selection by command: 10 ~ 13
- Grid output line selection by command: 4~7
- Operation voltage: 2.7V ~ 5.5V
- Low Power Consumption
- 8-Step Dimming control by command
- · Serial Interface for Clock, Data Input, Strobe Pins, Data output
- 20-pin SOP Package

APPLICATION

Segment LED display: VCR, DVD, MWO

Device 명 Segment 수		Grid 수	Key Scanning	PKG TYPE	
MC2003	8~9 Segment	4~5 Grid	8 X 2 Matrix	20pin, SOP	

(Table 1.1)

PIN DESCRIPTION

PIN NAME	I/O	DESCRIPTION	PIN No.
DIO	I/O	Serial Data Input / Output Pin This pin outputs at CLK falling edge. This pin inputs serial data at the rising edge of CLK signal.	1
CLK	I	Serial clock input pin. Input data is trigger at rising edge. Output data is trigger at falling edge.	2
STB	I	When this pin is HIGH, CLK signal is ignored. The data input after the STB has fallen is processed as a command.	3
K1,K2	I	Key scan input pins. This pins are operated with SEG1/KS1 to SEG10/KS10 pins. This pins have Pull down resistor internally.	4,5
VDD	-	Power Supply	6
SEG1/KS1 to SEG8/KS8	0	Segment output pins. (P-channel open drain) Also key scan source pins.	7~14
SEG14/GR5	0	Segment / Grid output pin.	15
GR4 to GR1	0	Grid output pin.	16,17 19,20
GND	-	Ground pin.	18

BLOCK DIAGRAM

PIN CONFIGURATION

INPUT/OUTPUT PINS SCHEMATIC DIAGRAM

Input pins: CLK,STB

Input pins : K1,K2

Output pins : GR1 to GR4

Input / Output pins : DIO

Output pins: SEG1/KS1 to SEG8/KS8

Output pin: SEG14/GR5

ABSOLUTE MAXIMUM RATINGS

(Ta=25℃, GND=0V)

PARAMETER	SYMBOL	RATING	UNIT
Supply Voltage	VDD	-0.5 to +7.0	V
Logic Input Voltage	VI	-0.5 to VDD+0.5	V
Driver Output Current/Din	IOLGR	+250	mA
Driver Output Current/Pin	IOHSG	-50	mA
Maximum Driver Output Current/Total	ITOTAL	400	mA

RECOMMENDED OPERATING RANGE

(Ta= -40 to +85 °C, GND=0V)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Logic Supply Voltage	VDD	2.7	5	5.5	V
Dynamic Current (see Note)	IDDdyn	-	-	5	mA
High-Level Input Voltage	VIH	0.6VDD	-	VDD	V
Low-Level Input Voltage	VIL	0	-	0.4 VDD	V

[•] Note: Test Condition: Set Display Control Commands = 80H (Display Turn OFF State)

ELECTRICAL CHARACTERISTICS

($V_{DD}=5V$, GND=0V, Ta=25 $^{\circ}$ C)

PARAMETER	SYMBOL	Test Condition	Min.	TYP.	MAX.	UNIT
High-Level	IOHSG1	$V_O = V_{DD} - 2V$ SEG1 to SEG11. SEG12/GR7 to SEG14/GR5	-20	-25	-40	mA
Output Current	IOHSG2	$V_O = V_{DD} - 3V$ SEG1 to SEG11. SEG12/GR7 to SEG14/GR5	-25	-30	-50	mA
Low-Level Output Current	IOLGR	V _O = 0.3V GR1 TO GR4 SEG12/GR7 TO SEG14/GR5	100	140	-	mA
Low-Level Output Current	IOLDOU T	V _O = 0.4V DOUT	4	-	-	mA
Segment High-Level Output Current Tolerance	ITOLSG	$V_O = V_{DD} - 3V$ SEG1 TO SEG11. SEG12/GR7 to SEG14/GR5	•	-	±5	%
High-Level Input Voltage	· I VIH I - I		0.6VDD	-	VDD	V
Low-Level Input Voltage	VIL	-	0	-	0.4VDD	V
Oscillation Frequency	I fOSC I		350	500	650	kHz
K1 to K3 Pull Down Resistor	KSR	VDD=5V	40	-	100	kΩ

SWITCHING CHARACTERISTIC WAVEFORM

MC2003 Switching Characteristics Waveform is given below.

PW _{CLK} (Clock Pulse Width) \geq 400ns t setup (Data Setup Time) \geq 100ns t _{CLK-STB} (Clock - Strobe Time) \geq 1 μ S t _{TZH} (Rise Time) \leq 1 μ S t _{TZL} <1 μ S

PW_{STB} (Strobe Pulse Width) ≥ 1μ S thold (Data Hold Time) ≥ 100ns t_{THZ} (Fall Time) ≤ 10μ S fosc = Oscillation Frequency t_{TIZ} < 10μ S t_{PZL} (Propagation Delay Time) ≤ 100ns t_{PLZ} (Propagation Delay Time) ≤ 300ns

SEG PIN Resistance

FUNCTIONAL DESCRIPTION COMMANDS

The MC2003 has 4 kind of commands. The first command is display setting commands, the second command is data setting command. The third command is address setting command and the fourth command is display control command.

COMMAND 1: DISPLAY MODE SETTING COMMAND

The Display mode setting command has 2bit (b1,b0) for display mode setting and 2bit (b7,b6) for commands. And 2bits(b5 \sim b4) should be fixed '00' at any case. The 2bits (b3 \sim b2) are don't care bit. The command bits (b7,b6) are "0","0" for COMMAND1.

The display mode setting command determines the number of segments and grids. This command should be executed for display off. If b1,b0 are "0","1" then 5 grid 8 segments and key scan enable selected. If b1, b0 are "0","0" then 4 grids 9 segments and key scan enable selected.

COMMAND 2: DATA SETTING COMMAND

The data setting command consists of data write mode setting, address increment mode setting and mode setting. And the default of b3 to b0 are all "0" for power on.

The Data write mode settings have 2bit (b1,b0) for writing data to display mode and read key scan data. Address increment mode setting has 1bit (b2) for selecting address Increment or fixed.

And 2bits(b5 ~ b3) should be fixed '000' at any case.

The command bits (b7,b6) are "0","1" for COMMAND2.

COMMAND 3: ADDRESS SETTING COMMAND

The display memory is addressed by Address Setting Command. The valid address range is "00H" to 0DH". If the address is set to 0EH to 0FH, the data is ignored until a valid address is set. When power is turned ON, the address is set at "00H".

Display Mode and RAM Address

Data transmitted from an external device to MC2003 via the serial interface are stored in the Display RAM and are assigned addresses. The RAM Addresses of MC2003 are given below in 8 bit unit.

SEG1	SEG4	SEG5	SEG8	SEG9	SEG14	
001	00H _L		00H _U		01H _m	
021	H _L	02H _U		03H _m		GR2
041	04H _L		04H _U		05H _m	GR3
061	⊣ ∟	06	Η _U	07H _m		GR4
081	08H _L		08H _U		09H _m	
0AI	0AH _L		0AH _U		0BH _m	GR6
0C	0CH _L		0CH _U		0DH _m	GR7
b0 b3		b4	b7	7 b0	b5	; -
xxH_{L}		xxH _U			xxH _m	
Lowe	r 4 bits	High	er 4 bits	L	ower 6bits	_

COMMAND 4: DISPLAY CONTROL COMMANDS

The Display Control Commands are used to turn ON or OFF a display. It is also used to set the pulse width. Please refer to the diagram below. When the power is turned ON, a 1/16 pulse width is selected and the display is turned OFF.

DISPLAY TIMING WAVEFORM

KEY SCAN

1) Key Scan Timing

The key scan period is 500us at oscillator=500Khz.

2) Key scan operation

- The key scan is operated always.
- Multiple key presses are recognized by determining whether multiple key data bits are set.

3) Key scan data read sequence

K1	K2	don't care	K1	K2	don't care			_
SEG1/	KS1	 	SEC	G2/KS2		0	1	1'st byte read
SEG3/	KS3	 	SEC	G4/KS4	 	0	1	2'nd byte read
SEG5/	SEG5/KS5		SEG6/KS6			0	1	3'rd byte read
SEG7/	SEG7/KS7		SEC	G8/KS8		0	1	4'th byte read
SEG9/	KS9	 	SEG	10/KS10	 	0	1	5'th byte read
SEG11/	KS11			X		0	1	6'th byte read
b0	b1	b2	b3	b4	b5	b6	b7	•

Key press = "1", Key no press = "0" read.

4) Key Scan Example

If SW switch is pressed, the K1 of $\,$ key input pin is high $\,$ by KS2 at key scan timing. So the K1 pin input is high.

SERIAL COMMUMICATION FORMAT

The following diagram shows the MC2003 serial communication format.

Transmission (Data Read)

CLK

Twait (waiting Time) ≥ 1 µs

SERIAL COMMUNICATION EXAMPLES

Serial communication timing diagram for initialization setting.

Where: Command 1: Display Mode Setting

Command 2 : Data Setting Command Command 3 : Address Setting Command

Data 1 to n : Transfer Display Data (14 Bytes max.)

Command 4: Display Control Command

Memory updating timing diagram.

Where: Command 2 -- Data Setting Command

Command 3 -- Address Setting Command

Data -- Display Data

RECOMMENDED SOFTWARE PROGRAMMING FLOW CHART

- Note: 1. Command 1: Display Mode Setting
 - 2. Command 2: Data Setting Commands
 - 3. Command 3: Address Setting Commands
 - 4. Command 4: Display Control Commands
 - 5. When IC power is applied for the first time, the contents of the Display RAM are not defined: thus, it is strongly suggested that the contents of the Display RAM must be cleared during the initial setting.

TYPICAL APPLICATION CIRCUIT

LED PANEL FOR CATHODE TYPE

PACKAGE INFORMATION

SOP 20

