ตอนที่ 2: การทดลองการลดมิติของข้อมูลด้วยค่า Principle Component Analysis

1. เตรียมชุดข้อมูล feature3 ค่า X (accelerateX, accelerateY, accelerateZ)

```
In [1]: | import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        from mpl_toolkits.mplot3d import Axes3D
        import seaborn as sns
df['uts'] = pd.to_datetime(df['uts'])
df = df.fillna(df.mean())
In [5]: N accelerator_df = df[['accelerateX', 'accelerateY', 'accelerateZ']].copy()
        accelerator_df
```

- ทำการ import library ที่จำเป็นต่อการทดลอง In [1]
- อ่านไฟล์จาก .csv โดยใช้ pandas แล้วเก็บลง df แล้วแปลง format ของ feature "uts" จาก In [2] string เป็น datetime และทำการ copy ข้อมูลไว้เพื่อใช้งานในการplot GPS จากค่าจริง
- ทำการลบข้อมูลที่มีค่าซ้ำซ้อน ln [3]

Out[5]:

- กำหนด index เป็น feature ของ uts เพราะ ข้อมูลถูกเก็บแบบ timestamp แล้วแทนข้อมูลที่ ln [4] หายไป หรือ NaN ด้วย mean ของแต่ละ feature
- ln [5] จัด array ให้มี feature 3 คือ [accelerateX, accelerateY, accelerateZ]

	accelerateX	accelerateY	accelerateZ
uts			
2018-11-18 08:18:41+07:00	-3.957379	-14.204506	2.303692
2018-11-18 08:19:03+07:00	-0.038236	-1.156625	1.883101
2018-11-18 08:19:45+07:00	1.906998	-4.394027	-4.358852
2018-11-18 08:20:13+07:00	-0.265259	-10.149148	3.042116
2018-11-18 08:20:33+07:00	-2.098175	-11.195846	1.754056
2018-11-18 16:07:32+07:00	4.803340	0.050184	-8.263658
2018-11-18 16:07:58+07:00	1.780343	-6.609970	2.081448
2018-11-18 16:08:19+07:00	0.399084	-8.364026	-5.357756
2018-11-18 16:08:42+07:00	0.745593	-8.820463	-5.106835
2018-11-18 16:09:04+07:00	0.480334	-8.700976	-4.669516

271 rows × 3 columns

2. ปรับให้เป็น Zero Mean และ คำนวณค่า covariance

In [6]: accelerator_df = accelerator_df - accelerator_df.mean()
In [7]: accelerator_df

Out[7]:

	accelerateX	accelerateY	accelerateZ
uts			
2018-11-18 08:18:41+07:00	-5.618468	-9.810479e+00	-1.596343
2018-11-18 08:19:03+07:00	-1.699325	3.237402e+00	-2.016934
2018-11-18 08:19:45+07:00	0.245909	1.776357e-15	-8.258887
2018-11-18 08:20:13+07:00	-1.926348	-5.755121e+00	-0.857919
2018-11-18 08:20:33+07:00	-3.759265	-6.801819e+00	-2.145979
2018-11-18 16:07:32+07:00	3.142251	4.444211e+00	-12.163693
2018-11-18 16:07:58+07:00	0.119253	-2.215943e+00	-1.818587
2018-11-18 16:08:19+07:00	-1.262006	-3.969999e+00	-9.257791
2018-11-18 16:08:42+07:00	-0.915496	-4.426436e+00	-9.006870
2018-11-18 16:09:04+07:00	-1.180755	-4.306949e+00	-8.569551

271 rows × 3 columns

กลุ่ม เด็กดีขี้เมา

60010113 คณิศร พิทักษ์วงศ์, 60010479 ธีระสาร มินทะขัด

```
accelerator = accelerator df.to numpy()
In [9]:
         cov = accelerator.T.dot(accelerator)/(len(accelerator) - 1)
In [10]:
         eigen_values, eigen_vectors = np.linalg.eig(cov)
         eigen_values, eigen_vectors
Out[10]: (array([13.15046863, 25.75818909, 29.22011425]),
          array([[ 0.26701286, -0.87106272, 0.41225462],
                 [-0.60926567, 0.17885949, 0.77253131],
                 [0.74665888, 0.45744838, 0.48295082]]))
In [11]: sorted_indexes = np.argsort(eigen_values)[::-1]
         eigen_values = eigen_values[sorted_indexes]
         eigen_vectors = eigen_vectors[:, sorted_indexes]
         eigen_values, eigen_vectors
Out[11]: (array([29.22011425, 25.75818909, 13.15046863]),
          array([[ 0.41225462, -0.87106272, 0.26701286],
                 [ 0.77253131, 0.17885949, -0.60926567],
                 [ 0.48295082, 0.45744838, 0.74665888]]))
     ln [9] คำนวณค่า covariance matrix ของชุดข้อมูล
     ln [10] คำนวณค่า eigenvalue / eigenvector จาก covariance matrix ที่คำนวนได้จาก
          ln [9]
     ln [11] sort array ที่ได้จาก ln [10] เพื่อเตรียม plot graph ในขั้นต่อไป
```

3. แสดงกราฟ Eigen Space (Eigenvalue, Eigenvector)

```
In [12]: plt.bar(np.arange(len(eigen_values)), eigen_values)
```

Out[12]: <BarContainer object of 3 artists>

ln [12] แสดงกราฟแท่ง (Bar graph) ของค่า Eigenvalue ที่จัดเรียงค่าจากมากไปน้อย

ln [15] ปรับขนาดของ Eigenvector ด้วยค่า Eigenvalue จากสูตร

Eigenvector * $\sqrt{Eigenvalue}$

```
In [16]: scale = 2
ev1, ev2, ev3 = eigen_vectors.T * scale
```


ln [16] เตรียมค่าเพื่อนำในสร้าง graph ตามสูตรค้านล่าง

ln [17] แสดงกราฟความสัมพันธ์ของ feature และ eigen vector จาก ln [16]

ln [18] ลดมิติของข้อมูลจาก 3D features **X** (accelerateX, accelerateY, accelerateZ) ลงเหลือ 2D โดย เลือก eigenvector 2 vector แรก ที่สัมพันธ์กับ eigenvalue ที่มีค่าสูงสุด 2 อันดับแรก [np.dot()]

Out[20]: <matplotlib.axes._subplots.AxesSubplot at 0x1e2b732d7c8>

ln [20] แสดง graph heatmap จากข้อมูลที่ได้ใน ln [18]