图像生成实践报告

- ▲ 饶翔云,520030910366

0. VAE原理

VAE (Variational AutoEncoder) 是一种根据概率分布的生成式模型。要理解VAE模型的原理,首先要从最基本的AutoEncoder开始理解。

AutoEncoder的设计初衷是为了数据降维,假设原始特征x维度过高,那么我们希望通过编码器E将 其编码成低维特征向量z=E(x),编码的原则是尽可能保留原始信息,因此我们再训练一个解码器D,希 望能通过z重构原始信息,即x≈D(E(x))。而他的目标优化函数可以被以下公式表示:

$$\min_{E,D} f(X,E,D) = \left|\left|X - D(E(X))\right|\right|^2$$

即我们所谓的重建误差(Reconstruct Loss)。在VAE中,这种重建的思想被保留下来。

因为我们想要使得隐向量服从标准正态分布,即均值为0,标准差为1的正态分布,所以需要通过优化KL散度来使得分布逼近标准正态分布。其中KL散度的计算公式为:

$$KLD(p,q) = \log rac{\sigma_2}{\sigma_1} + rac{\sigma_1^2 + (\mu_1^2 + \mu_2^2)}{2\sigma_2^2}$$

而VAE与AE不同的地方在于,VAE充分利用了中间的Bottleneck(记为z),并采取了随机性的思想。VAE的前提假设是输入变量X通过Encoder部分得到了一个隐变量z,这个z被认为是从标准正态分布中采样获得(随机性所在),decoder根据这个隐变量来重建信息。换而言之,z其实是一个条件变量,根据z的不同,环境条件不同,生成的X也不同。即:

$$P(X) = \sum_{z} P(X|z)P(z)$$

VAE颇具魅力的一点就在于随机性。但由于重构过程受到噪声的影响,因为Z是重新采样过的,不是直接由encoder算出来的。显然噪声会增加重构的难度,不过好在这个噪声强度(也就是方差)通过一个神经网络算出来的,所以最终模型为了重构得更好,肯定会想尽办法让方差为0。而方差为0的话,也就没有随机性了。但是VAE为了避免随机性丧失,它采用了让采样后的z服从标准正态分布的方法,即 $P(z|X)\sim N(0,1)$ 。如果满足该条件,那么 $P(z)=\sum_z P(X)P(z|X)\sim N(0,1)$ 。由此,VAE保证了模型的随机性不会消失,他会根据不同的输入生成不同的结果。

总而言之,VAE通过Encoder,生成 μ 和 σ ,然后通过采样得到z向量,让Decoder在由z向量所对应的概率空间生成重建后的结果。值得一提的是,VAE的优化目标是最小化重建误差和z服从的高斯分布($N(\mu,\sigma^2)$)与标准正态分布之间的KL散度。为了实现KL散度可微,我采取了一点小trick。

1 z = mu + logvar * torch.rand_like(logvar)

1. 模型架构

我设计的模型结构如下:

模型参数如下:

	fc1	fc2	fc3			
Encoder	28*28, 256	256,1024	1024,z_dim			
Decoder	z_dim,28*28	28*28, 28*28	None			

2. 实验过程

使用超参数:

lr	epochs	optimizer	batch-size				
1e-3	100	Adam	32				

使用BCEloss和KLDloss混合的新loss进行训练。即:

$$loss = BCEloss + KLDloss \\$$

$$KLDloss(\mu,\sigma) = -rac{1+\sigma-\mu^2-\sigma^2}{2}$$

3. **实验结果**(best):

当隐层维度设为20的时候,重建获得了最佳效果:

7.7	2.2	7.7	00	44	7.7	44	٩٩	66	99	0.0	66	99	0.0	111	5.5	99	77	33	4 4
esults 0.j	results 1.j	results 2.j	results 3.j	results 4.j	results 5.j	results 6.j	results 7.j	results 8.j	results 9.j	results 10.	results 11.		results 13.	results 14.	results 15.		results 17.	results 18.	results 19
pg		pg	pg		pg	pg		pg	pg	jpg	jpg								
7.7	6 6	66	55	4.4	00	27	44	0.0	1.1	3.3	1.1	3 3	ULI	7.7	22	77	1.1	22	1.1
esults_20.	results_21.	results_22.	results_23.	results_24.	results_25.	results_26.	results_27.	results_28.	results_29.	results_30.	results_31.	results_32.	results_33.	results_34.	results_35.	results_36.	results_37.	results_38.	results_3
jpg	jpg	jpg	jpg	jpg	jpg	jpg	jpg	jpg	jpg	jpg	jpg	jpg	jpg	jpg	jpg	jpg	jpg	jpg	jpg
	7.7	44	ノエ	3.3	5 5	٧.٧	2.2	44	ųч	6 6	33	55	5.5	66	0 0	44	7.7	99	55
esults_40.	results_41.	results_42.	results_43.	results_44.	results_45.	results_46.	results_47.	results_48.	results_49.	results_50.	results_51.	results_52.	results_53.	results_54.	results_55.	results_56.	results_57.	results_58.	results_5
jpg	jpg	jpg	jpg	jpg	jpg	jpg	jpg	jpg	jpg	jpg	jpg	jpg	jpg	jpg	jpg	jpg	jpg	jpg	jpg
רר	28	99	3.3	77	1.1	66	44	3 3	00	77	00	22	22	1.1	77	3 3	2. 2.	f f	77
esults_60.	results_61.	results_62.	results_63.	results_64.	results_65.	results_66.	results_67.	results_68.	results_69.	results_70.	results_71.	results_72.	results_73.	results 74.	results 75.	results_76.	results_77.	results_78.	results_7
				jpg				jpg			jpg								
7.7	66	22	7.7	88	44	7 7	3.3	66	7.7	3.3	6 6	4 9	3 3	1.1	44	1.1	7.7	GG	9 9
esults_80.	results 81.	results_82.	results_83.	results 84.	results_85.	results_86.	results 87.	results 88.	results_89.	results_90.	results 91.	results_92.	results_93.	results 94.	results 95.	results_96.	results 97.	results 98.	results_9
				jpg															
66	0.0	55	44	99	99	22	7.7	11	44	88	11	3.3	99	? ?	9 9	4 4	44	99	22
esults_10	results 10	results_10	results_10	results_10	results_10	results_10	results 10	results_10	results_10	results_11	results 11	results_11	results						
0.jpg	1.jpg	2.jpg	3.jpg	4.jpg	5.jpg	6.jpg	7.jpg	8.jpg	9.jpg	0.jpg	1.jpg	2.jpg	3.jpg	4.jpg	5.jpg	6.jpg	7.jpg	8.jpg	9.jpg
5.5	44	וו	66	77	4 4	۵۵	55	8.8	5 5	66	66	SS	77	8 8	1.1	0 0	//	66	44
esults_12	results_12	results_12	results_12	results_12	results_12	results_12	results 12	results_12	results_12	results_13	results_1								
0.jpg	1.jpg	2.jpg	3.jpg	4.jpg	5.jpg	6.jpg	7.jpg	8.jpg	9.jpg	0.jpg	1.jpg	2.jpg	3.jpg	4.jpg	5.jpg	6.jpg	7.jpg	8.jpg	9.jpg
66	77	3.3	1.1	77	1.1	88	22	0 0	人人	99	6 6	55	5.5	1.1	55	66	0 0	2.2	4.4
esults_14	results_14	results_15	results_																
0.jpg	1.jpg	2.jpg	3.jpg	4.jpg	5.jpg	6.jpg	7.jpg	8.jpg	9.jpg	0.jpg	1.jpg	2.jpg	3.jpg	4.jpg	5.jpg	6.jpg	7.jpg	8.jpg	9.jpg
4.4	66	5.5	44	ط فا	5.5	44	55	1.1	4.4	44	27	22	33	2.2	1.1	111	8 8		8.8
esults_16 0.jpq	results_16 1.jpq	results_16 2.jpq	results_16 3.jpq	results_16 4.jpq	results_16 5.jpq	results_16 6.jpq	results_16 7.jpq	results_16 8.jpq	results_16 9.jpq	results_17 0.jpq	results_17 1.jpq	results_17 2.jpq	results_17 3.jpq	results_17 4.jpq	results_17 5.jpq	results_17 6.jpq	results_17 7.jpq	results_17 8.jpq	results_1 9.jpq
				4.jpg 3.8		6.jpg 2. 2.										o.jpg	7.Jpg 6.6		
H	8 8 results 18	5.5	OO results 18		99		S S results 18	00	1.1	results 19	1.1	0 0 results 19	9 9 results 19	0.0	3.3	results 19	results 19	4.4	2.2
esults_18 0.jpq	results_18 1.jpq	results_18 2.jpq	results_18 3.jpq	results_18 4.jpq	results_18 5.jpq	results_18 6.jpq	results_18 7.jpq	results_18 8.jpq	results_18 9.jpq	results_19 0.jpq	results_19 1.jpq	results_19 2.jpq	results_19 3.jpq	results_19 4.jpq	results_19 5.jpq	results_19 6.jpq	results_19 7.jpq	results_19 8.jpg	results_ 9.jpq
8.3	66							2.2											
		/ /	111	/ /	3 3	9 9	5.5		5 5	99	5' 5'	9 9	3.3	9 9	0.0	3.3	66	5.5	55
esults_20	results_20	results_21	results_i																

从图中可以看出, 重建没有出现离谱错误, valid数据集基本都被重建出来。

4. 探究部分:

a. 对z_dim的探究。

我分别取z_dim为[1,2,5,10,20],进行模型训练并检查重建结果。

loss曲线分别如下:

可以从中看出,当z_dim高的时候,总loss可以得到一个较低的值,而z_dim低的时候,总loss高,而且波动大。而且根据我对重建结果的观察,当z_dim取高值的时候,重建结果非常的好,而当z_dim低的时候,得到的重建结果就会变得没有意义(一般只能还原出0,1等简单数字)。

b. 将隐层向量z维度设置为1,比较VAE训练完成后不同的z值对应的生成图片效果。

根据我的观察,我做出以下总结:

z值在0附近, Decoder会倾向于生成像4的图形;在0.1附近, Decoder会倾向于生成像9 (7) 的图形;在0.25或0.55附近, Decoder会倾向于生成像0的图形;在0.45附近, Decoder会倾向于生成像5的图形;在0.6或-0.5附近, Decoder会倾向于生成像3的图形;在0.75附近, Decoder会倾向于生成像8的图形等等。

445055338879

总而言之,图片的效果和z相关度极大。且根据z的分布来生成图片效果的分布。这符合我们对模型的直觉,因为重建这部分工作是Decoder来进行的,Decoder只需要一个输入z。而Encoder进行的工作是从输入图片中提取并采样得到z。我们在这个探究部分所关心的只是z如何通过Decoder生成重建图片。

c. 将隐层向量z维度设置为2, 找出隐层向量的两个维度[-5, 5]值区间内对应的图片生成效果。

我随机采样了100张图片,根据他们的z值进行二维空间排序,最后得到如下结果:

如图所示,两维度处于[-5, 5]值区间内对应的生成图片基本包含了从0-9的所有手写数字。虽然作图效果没有ppt上演示的那么好,但是可以大致看出每个数字各自都有自己所处的概率空间区间。这非常符合我们对模型的预期。

d. 最小化重构误差。

根据我的探究,当z_dim高的时候,相应的重构误差就小。当z_dim达到10及以上的时候,重构误差基本降低到最小了。

实验总结:

本实验提供了最基础的VAE代码,可读性较强,但是整体框架尚需学生搭建,具有较强的挑战性。 但是由于网络结构较易搭建,且训练时间短,可完成性还是很强的。不过在没有阅读论文之前,隐层 向量维度作为超参数的意义一直让我摸不清头脑。此次实验让我理解了通过拟合正态分布,将图像编 码并解码,从而得到新图片的方法,让我理解了一部分图像生成的知识。