

Adaptive Methods for *Lecture* Data-based Decision Making *9*

IN-STK 5000 / 9000

Autumn 2022

slides by Dr. Anne-Marie George, UiO

Please let me know what you think...

Leave your feedback (for Anne-Marie's lectures) on Flinga:

https://flinga.fi/s/FDN2DC3

- Were the contents understandable? Relevant? Interesting?
- How was the lecturing style?
- How was the teaching material?
- What could be improved?
- Any other comments?

IFI søker gruppelærere til våren 2023...

Arbeidsoppgaver

- Planlegging og fasilitering av gruppearbeid
- Svare på henvendelser fra studenter
- Retting av obligatoriske oppgaver
- Deltagelse på ukentlig gruppelærermøte

Kvalifikasjoner

- Du har tatt minst ett emne ved institutt for informatikk
- Ambisjoner om å bli en trygg og dyktig formidler
- Engasjement for faget ditt som du ønsker å dele med medstudenter

Vil tilbyr

- Opplæring og oppfølging
- En relevant og spennende deltidsjobb
- Kort vei mellom jobb og studiested
- Fleksibel arbeidstid

Lønn

- Bachelorstudenter u/gruppelærerkurs: 196,30 kr
- Bachelorstudenter m/gruppelærerkurs: 198,50 kr 201,00 kr
- Masterstudenter u/gruppelærerkurs: 203,40 kr
- Masterstudenter m/gruppelærerkurs: 205,80 kr 208,50 kr

What we talk about today

"Any results should be documented by making all data and code available in such a way that the computations can be executed again with identical results."

Source:

"The Ethical Algorithm" (Chapter 4) by Kearns & Roth

Source:

Monya Baker, *Nature*, 2016: "1,500 scientists lift the lid on reproducibility"

1.576

The Reproducibility Crisis

Definition:

"The replication crisis (also called the replicability crisis and the reproducibility crisis) is an **ongoing**methodological crisis in which it has been found that the results of many scientific studies are difficult or
impossible to reproduce. [...] such failures undermine the credibility of theories building on them and
potentially call into question substantial parts of scientific knowledge." - Wikipedia

Scope:

Monya Baker, *Nature*, 2016: "1,500 scientists lift the lid on reproducibility"

"More than 70% of researchers have tried and failed to reproduce another scientist's experiments, and more than half have failed to reproduce their own experiments."

Causes:

p-hacking, poor study design /experimental technique, fraud and deception, "publish or parish" culture, ...

Things to keep in mind...

For someone else to be able to reproduce your results, you must publish:

Code + Documentation (e.g., code comments, parameter choices, random seed, ...)

Publish specifications and versions of machines, packages / libraries etc. that were used

Publish data or data generation method and experiment design

If randomness is involved:

Report the confidence / significance of your results! (cross-fold validation, averages, ...)

Reproducibility

"Any results should be documented by making all data and code available in such a way that the computations can be executed again with identical results."

- "The Ethical Algorithm" (Chapter 4) by Kearns & Roth

IT'S LIKE A SALAD RECIPE

KEEP IN MIND THAT I'M SELF-TAUGHT, SO MY CODE MAY BE A LITTLE MESSY. LEMME SEE-I'M SURE IT'S FINE.

THIS IS LIKE BEING IN A HOUSE BUILT BY A CHILD USING NOTHING BUT A HATCHET AND A PICTURE OF A HOUSE.

URITIEN BY A CORPORATE
LAWYER USING A PHONE
AUTOCORRECT THAT ONLY
KNEW EXCEL FORMULAS.

TRANSCRIPT OF A COUPLE ARGUING AT IKEA AND MADE RANDOM EDITS UNTIL IT COMPILED WITHOUT ERRORS.

OKAY, I'LL READ A STYLE GUIDE.

This Photo by Unknown Author is licensed under CC BY-SA-NC

Source: https://xkcd.com/1513

Consequences for Research

Several high ranked conferences:

- Adopt reproducibility as base criterium in review process
- Set standards by comprehensive guidelines

A. George <u>IN-STK5000, Autumn 2022</u> 9

Things to keep in mind...

For someone else to be able to reproduce your results, you must publish:

Code + Documentation (e.g., code comments, parameter choices, random seed, ...)

Publish specifications and versions of machines, packages / libraries etc. that were used

Publish data or data generation method and experiment design

If randomness is involved:

Report the confidence / significance of your results! (cross-fold validation, averages, ...)

10

Reporting Uncertainty of Results

- 1. Average performance together with variance or standard deviation
- 2. Confidence Intervals
 - Over different train/test splits (cross validation)
 - Over bootstrapped sets
- 3. P-values

A. George IN-STK5000, Autumn 2022

11

Sample Versions of Standard Notions

	General: $x \sim p, \ p: R \longrightarrow [0,1], \ R \subseteq \mathbb{R}$	Samples $x_1, \dots, x_N \in \mathbb{R}$
Expectation / Mean	$\mu_x = \mathbb{E}_p[x] = \int_{r \in R} r dp(r)$ (<i>R</i> continuous) or $= \sum_{r \in R} p(r) \cdot r$ (<i>R</i> discrete)	$\bar{x} = \frac{1}{N} \sum_{i=1,\dots,N} x_i$
Variance	$\mathbb{V}[x] = var(x) = \mathbb{E}_p[x^2] - (\mathbb{E}_p[x])^2 = \sigma^2$	$\bar{\sigma}^2 = \frac{1}{N-1} \sum_{i=1,\dots,N} (x_i - \bar{x})^2$
Standard Deviation	$\sigma = \sqrt{\mathbb{V}[x]}$	$\bar{\sigma} = \sqrt{sample \ variance}$

A. George IN-STK5000, Autumn 2022

13

Confidence Intervals

- Let x be a random variable and $x \sim P$ for probability distribution P.
- <u>Definition</u>: [a, b] is a γ -confidence interval for x if $P(a \le x \le b) = P(x \in [a, b]) = \gamma$

Multi-armed Bandits: Setting

• The Bandits:

Actions: At any time step choose one arm to pull.

• Loop: Select action A_t , observe feedback

(reward) R_t from unknown distribution P_{A_t} .

• Goal: Maximise rewards over time.

 $R_t \sim P_{A_t}$ environment A_t

16

What is a confidence bound?

• Suppose we have the following rewards from pulling arm a_i : 3, 5, 6, -1, 2, -3

 $Arm a_i$

- \rightarrow The sample average (=est. arm value) is: $Q^6(a_i) = 2$ (if $Q^0(a_i) = 0$)
- How confident are we that this is the correct mean of P_{a_i} ?
 - With which probability is the true value $q^*(a_i) \in [Q(a_i) c, Q(a_i) + c]$?

$$Q(a_i) - c \qquad Q(a_i) \qquad Q(a_i) + c \qquad \mathbb{P}\left[q^*(a_i) \in \left[Q(a_i) - c, \ Q_{a_i} + c\right]\right] = ?$$

• In which interval does $q^*(a_i)$ lie with 95% certainty?

Upper-Confidence-Bound Action Selection

• Idea: Select actions that are "uncertain", but "promising".

• <u>Principle</u>: Optimism in the face of uncertainty!

Find upper confidence bounds (by Hoeffding Inequality) of value estimates and choose the arm with the best bound:

$$A_t = \arg\max_{a} Q^t(a) + c \sqrt{\frac{\ln(t)}{N_t(a)}}.$$

$$Q(a_1) \qquad \qquad Q(a_2) \ Q(a_3)$$

Upper-Confidence-Bound Action Selection

- Select actions that are "uncertain", but "promising". • Idea:
- Principle: Optimism in the face of uncertainty!
 - Find upper confidence bounds (by Hoeffding Inequality) of value estimates and choose the arm with the best bour We can use

$$A_t = \arg\max_a Q^t(a) + c\sqrt{\frac{\ln(t)}{N_t(a)}}$$
. Inequalities to

intervals!

Concentration

find confidence

- Upper confidence bounds get tighter provided more data!
- Intuitively, we will not select a suboptimal arm too often.
- Can implement this with almost optimal regret $0(\sqrt{k \cdot T \cdot \log(T)} + \sum_{a \in [k]} q^{max} q^*(a))$.

Markov's Inequality

Let $\omega \in \mathbb{R}_{\geq 0}$ be a random variable with distribution $P(\omega)$ and t > 0. Then $P(\omega \geq t) \leq \mathbb{E}[\omega]/t$.

• Here, we interpret $P(\omega \ge t)$ as $P(\omega \in [t, \infty]) = \int_{t}^{\infty} p(\omega) \ d\omega$.

Because
$$\omega \in \mathbb{R}_{\geq 0}$$
 ——and thus

$$\int_0^t \omega \cdot p(\omega) \ d\omega \ge 0$$

$$\mathbb{E}[\omega] := \int_0^\infty \omega \cdot p(\omega) \ d\omega \quad \underline{\text{Probability density function }} f(x)$$

$$= \int_0^t \omega \cdot p(\omega) \ d\omega + \int_t^\infty \omega \cdot p(\omega) \ d\omega$$

$$\geq \int_{t}^{\infty} \omega \cdot p(\omega) \ d\omega$$

$$\geq \int_{t}^{\infty} t \cdot p(\omega) \ d\omega$$

$$=t\cdot\int_{t}^{\infty}p(\omega)\ d\omega$$

$$= t \cdot P(\omega \ge t)$$

Markov's Inequality: Application Example

Markov's Inequality:

Let $\omega \in \mathbb{R}_{\geq 0}$ be a random variable with distribution $P(\omega)$ and t > 0.

Then $P(\omega \ge t) \le \mathbb{E}[\omega]/t$.

• Example:

• Let $\xi = Beta(\alpha, \beta)$ be the Beta distr. with $\alpha = 1, \beta = 3$ and expectation $\mathbb{E}_{\omega \sim \xi}[\omega] = \frac{\alpha}{\alpha + \beta}$.

What if we want to lower-bound the probability? / Have a closed interval?

- Q: If we want to be 90% certain, what upper bound can we put on ω ?
- A: The probability that $\omega \geq t$ is $\xi(\omega \geq t) \leq 1/t \cdot \mathbb{E}_{\omega \sim \xi}[\omega] = \frac{1 \cdot 1}{t \cdot 4} = 0.1 \quad \Rightarrow \quad t = \frac{1}{0.1 \cdot 4} = 2.5$ $\Rightarrow \quad \omega \leq 2.5$ with probability at least 0.90

Chebyshev Inequality

Chebyshev Inequality:

Let ω be a random variable with distribution $P(\omega)$ and k>0. Then $P(|\omega - \mu| \ge k \cdot \sigma) \le \frac{1}{k^2}$, with expectation $\mu = \mathbb{E}[\omega] < \infty$ and variance $\sigma^2 = \mathbb{E}[(\omega - \mu)^2] < \infty$.

•
$$|\omega - \mu| \ge k \cdot \sigma$$
 $\iff \omega \notin (\mu - k \cdot \sigma, \mu + k \cdot \sigma)$

- if $\omega > \mu$: $\omega \mu \geq k \cdot \sigma$ $\omega \geq k \cdot \sigma + \mu$ if $\omega < \mu$: $\mu \omega \geq k \cdot \sigma$
- $\omega \leq -k \cdot \sigma + \mu$

$$ightarrow$$
 $[\mu-k\cdot\sigma,\mu+k\cdot\sigma]$ is a $(1-\frac{1}{k^2})$ - confidence interval for ω

Chebyshev Inequality

Chebyshev Inequality:

Let $\omega \in \mathbb{R}_{\geq 0}$ be a random variable with distribution $P(\omega)$ and k > 0. Then $P(\omega \notin (\mu - k \cdot \sigma, \mu + k \cdot \sigma)) \leq \frac{1}{k^2}$, with expectation $\mu = \mathbb{E}[\omega]$ and variance $\sigma^2 = \mathbb{V}(\omega) \coloneqq \mathbb{E}[(\omega - \mu)^2]$.

• Example:

- Let $P = \mathcal{N}(\mu = 1.5, \sigma = 0.5)$ be a normal distribution.
- Q: What is the probability that $\omega \in [0.5, 2.5]$ (k = 2)?
- A: We have $P(\omega \notin (0.5, 2.5)) \le \frac{1}{2^2} = 0.25$ $\Rightarrow P(\omega \in [0.5, 2.5]) \ge P(\omega \in (0.5, 2.5)) = 1 - P(\omega \notin (0.5, 2.5)) \ge 0.75.$

Hoeffding Inequality

Let $x_1, ..., x_n \in [0,1]$ be random variables, Hoeffding Inequality: $\omega = \sum x_i$ with distr. $P(\omega)$ and $\mu = \mathbb{E}[\omega]$. Then $P(|\omega - \mu| \ge \epsilon) \le e^{-\frac{2\epsilon^2}{n}} \triangleq \delta$.

• Remark: We have $\ln\left(\frac{1}{\delta}\right) = 2\epsilon^2/n \Leftrightarrow \epsilon = \sqrt{\frac{n \cdot \ln\left(\frac{1}{\delta}\right)}{2}}$.

Thus,
$$P\left(|\omega - \mu| \ge \sqrt{\frac{n \cdot \ln\left(\frac{1}{\delta}\right)}{2}}\right) \le \delta$$
, i.e., $P\left(\left|\frac{\omega}{n} - \frac{\mu}{n}\right| \ge \sqrt{\frac{\ln\left(\frac{1}{\delta}\right)}{2 \cdot n}}\right) \le \delta$

IN-STK5000, Autumn 2022

Hoeffding Inequality

Hoeffding Inequality:

Let
$$x_1, ..., x_n \in [0,1]$$
 be random variables, $\omega = \sum x_i$ with distr. $P(\underline{\omega})$ and $\mu = \mathbb{E}[\omega]$.
Then $P\left(\left|\frac{\omega}{n} - \frac{\mu}{n}\right| \ge \sqrt{\frac{\ln(\frac{1}{\delta})}{2 \cdot n}}\right) \le \delta$.

• Example: Samples 0, 0.5, 1, 0, 1, 0, 0.5, 1 from pulls of bandit arm a.

• Sample average is Q(a) = 1/2. What is the 95% confidence interval?

•
$$P\left(|Q(a) - q^*(a)| \ge \sqrt{\frac{\ln(\frac{1}{0.05})}{2 \cdot 8}}\right) \le 0.05$$
 and $\sqrt{\frac{\ln(\frac{1}{0.05})}{2 \cdot 8}} < 0.44$
• $q^*(a) \in [Q(a) - 0.44, Q(a) + 0.44]$ with (at least) 95% confidence

Let's take a Quiz...

... go to Mentimeter!

Let's take a break...

Back on in 5 min!

Hoeffding Inequality

The larger the test set, the surer we can be of the accuracy on the test data. What if we have more train-test splits?

Hoeffding Inequality:

Let
$$x_1, ..., x_n \in [0,1]$$
 be random variables, $\omega = \sum x_i$ with distr. $P(\underline{\omega})$ and $\mu = \mathbb{E}[\omega]$.

$$\omega = \sum x_i \text{ with distr. } P(\underline{\omega}) \text{ and } \mu = \mathbb{E}[\underline{\omega}].$$
 Then $P\left(\left|\frac{\omega}{n} - \frac{\mu}{n}\right| \ge \sqrt{\frac{\ln(\frac{1}{\delta})}{2 \cdot n}}\right) \le \delta.$

- $\frac{\dot{T}rue\ Predictions}{Total\ Predictions} = \frac{89}{100}$ on test data. • Example: Classifier has $acc_{test} = \frac{1}{\pi}$
 - What is the 95% confidence interval?

•
$$P\left(|acc_{test} - acc_{true}| \ge \sqrt{\frac{\ln\left(\frac{1}{0.05}\right)}{2 \cdot 100}}\right) \le 0.05 \text{ and } \sqrt{\frac{\ln\left(\frac{1}{0.05}\right)}{2 \cdot 100}} < 0.13$$

• $acc_{true} \in [0.89 - 0.13, 0.89 + 0.13] = [0.76, 1.0] \text{ with (at least) } 95\% \text{ confidence}$

Multiple Train-Test Splits: k-Fold Cross Validation

- Get performance scores *scores* (e.g. accuracy) for every fold
- Report mean and standard dev.: scores.mean(), scores.std() or...
- Report (clipped) confidence interval:

- Works if enough data for cross validation is available.
- → For less data use bootstrapping!

Bootstrapping

"To pull oneself up by one's bootstraps"

Meaning: Improve one's situation without outside help.

Sample

Compute Average Approximation for Population Average

Problem:

A. George

We don't know the true population

→ We don't know how good our estimate is!

Bootstrapping idea:

Resample with replacement (several times) from the given sample population uniformly at random. → Get a distribution of estimates!

Resample

Compute Average Approximation for Sample Population Average

Example

Determine the average IQ of all students in UiO

- ... While only knowing part of the IQs!
- → Could take the average only over the these...
 ... but we don't know how close this average is to the true one?!?

A. George IN-STK5000, Autumn 2022

32

Resampling

• Sample of 10 student's IQs:

Resample 10 students uniformly at random (with replacement)

Average:

Analysing Bootstrap Estimates

A. George IN-STK5000, Autumn 2022

34

Binomial Proportion Confidence Interval

<u>Confidence interval for probability of success</u> calculated from the outcome of a series of success—failure experiments (Bernoulli trials):

- Bernoulli samples $x_1, ... x_n$, e.g., true/false prediction on test set
- Estimated success probabilities, e.g., from k-fold CV / bootstr.: A_i proportion of true predictions in i-th test
- Assumption: A_1, \dots, A_k are normally distributed with mean \bar{A}
- True success probability:

$$A \in \bar{A} \pm z \sqrt{\frac{\bar{A}(1-\bar{A})}{k}}$$
, with $z = z$ -value (incl. confidence)

35

A Word of Caution... Bias in Data Collection

- Any data set is only a sample from the real population.
- Bias in data collection:
 - Intentional bias
 - Faulty or inaccurate measurement tools
 - High variance in minorities of population
 - Over- or under-sampling
 - Labelling bias
- Even with bootstrapping or other sampling techniques...
- ... we cannot expect a model to perform as in the tests when it is employed on the true population if the data is biased!

A. George IN-STK5000, Autumn 2022

36

Null Hypothesis Testing

• Null Hypothesis: H_0 The hypothesis we want to test.

"A does not have a causal effect on B", i.e., P(B|A) = P(B)

• Alternate Hypothesis: Negation of null-hypothesis

"A has a causal effect on B", i.e., $P(B|A) \neq P(B)$

Desired value for $P(rejecting H_0 \mid H_0 \ true)$. Typically, $\alpha = 0.05$.

- Perform a Hypothesis Test: t-test, Z-test, Chi-sq. ... \rightarrow get p-value \leftarrow least as extreme,
 - If $p < \alpha$: Reject the null hypothesis!

(Enough evidence to say that "A has a causal effect on B"!)

• If $p \ge \alpha$: Cannot reject the null hypothesis! (Not enough evidence to say whether A has a causal effect on B, or not!)

Probability of obtaining data at least as extreme, given that the null hypothesis is true.

(result significant)

The Reproducibility Crisis

Definition:

"The replication crisis (also called the replicability crisis and the reproducibility crisis) is an **ongoing**methodological crisis in which it has been found that the results of many scientific studies are difficult or
impossible to reproduce. [...] such failures undermine the credibility of theories building on them and
potentially call into question substantial parts of scientific knowledge." - Wikipedia

Scope:

Monya Baker, *Nature*, 2016: "1,500 scientists lift the lid on reproducibility"

"More than 70% of researchers have tried and failed to reproduce another scientist's experiments, and more than half have failed to reproduce their own experiments."

Causes:

p-hacking) poor study design /experimental technique, fraud and deception, "publish or parish" culture, ...

P-Hacking

WE FOUND NO LINK BETWEEN PURPLE JELLY BEANS AND ACNE (P > 0.05).

WE FOUND NO LINK BETWEEN BROWN JELLY BEANS AND ACNE (P > 0.05), WE FOUND NO LINK BETWEEN PINK JELLY BEANS AND ACNE (P > 0.05).

WE FOUND NO LINK BETWEEN BLUE JELLY BEANS AND ACNE (P > 0.05).

WE FOUND NO LINK BETWEEN TEAL JELLY BEANS AND ACNE (P > 0.05).

IN-STK5000, Autumn 2022

40

If you torture the data ...

Ronald Coase, Nobel Prize—winning British economist: "If you torture the data for long enough, it will confess to anything."

Source: https://xkcd.com/882

41

P-hacking

P-hacking = Testing many null hypothesis / statistics on same data and only reporting the ones that are significant

Cause

Non-significant results less interesting / not publishable

Example

"Green Jelly Beans cause acne"

- → Splitting data up by colors of jelly beans and finding correlations to acne
- → The more colors, the more likely to find a correlation

42

Multiple Comparisons Problem

• The Problem: Run an experiment repeatedly and only report the "interesting" findings.

- Example:
 - Experiment: Flipping a coin 100 times (bias=b).
 - Observing 100× Heads is unlikely: b^{100} .
 - Repeating the experiment k times
 - \rightarrow more likely to observe 100× Heads in one of them: $k \cdot b^{100}$
 - → reporting that 100× Heads occurred (in one of the experiments) paints a very incomplete picture!

Bonferroni-Correction

- Testing m null-hypothesis H_1 , ... H_m
- We can observe:

	Null Hypothesis True	Alternative True	Total
Test significant $p < lpha$	V	S	R
Test non-significant	U	T	m-R
Total	m_0	$m-m_0$	m

- Significance for independent tests: $\bar{\alpha} = 1 (1 \alpha)^m$ (increasing with m) for non-independence: $\bar{\alpha} \leq m \cdot \alpha$
- **Bonferroni-correction**: Report significance α/m

Bonferroni-Correction

• Bonferroni-correction: Report significance $\frac{\alpha}{m}$

→ Counteracts multiple-comparisons

Conservative method: Only reject null-hypothesis when very certain!

Non-Adaptive: We assume that the experiment is set

beforehand and not adjusted depending on

45

the findings!

Bonferroni-Correction & Adaptivity

Example: Building a binary classifier based on d binary features.

- 1. Identify (anti-) correlations of features with target → relevant features Age 60+, Tattoos, blue eyes, ...: appear *slightly* correlated with "likes Spaghetti" in dataset
- 2. Classify as Yes if at least half of the relevant features are positive

Problem:

- → Features can be randomly distr. & actually uncorrelated with target
- → The classifier can't perform better than random
- → But we could find slight correlations and classifier performs well on data!

Bonferroni-Correction & Adaptivity

• Target: "Likes spaghetti"

Correlations: Blue eyes, owns cat

Anti-correlations: Age 60+, Tattoos

 Bonferroni-Correction only corrects the multiple correlation tests considered

• ... does not account for **every possible sets** of correlated features, i.e., all classifiers!

⇒ dloes motgliketsipaghetti

Fig. 26. Tree illustrating the dangers of adaptive data analysis and *p*-hacking. Each level of the tree corresponds to a feature that could be correlated (left) or anti-correlated (right) with the label. The gray path (LRRL) represents the outcomes of the correlation tests. Each leaf corresponds to a classifier that results from a sequence of correlation tests.

Source: "The Ethical Algorithm" (Chapter 4) by Kearns & Roth

IN-STK5000, Autumn 2022

Further reading

- Chapter 3&4 The Ethical Algorithm [Video] (oreilly.com)
- 3. Model selection and evaluation scikit-learn 1.1.2 documentation
- Chapter 8 Bootstrapping and Confidence Intervals | Statistical Inference via Data Science (moderndive.com)
- The resources of last years' courses (see Canvas links)
- <u>Lecture 4</u> from IN-STK 5100 in 2022

What did we talk about today?

Discuss with your neighbor!

Please let me know what you think...

Leave your feedback (for Anne-Marie's lectures) on Flinga:

https://flinga.fi/s/FDN2DC3

- Were the contents understandable? Relevant? Interesting?
- How was the lecturing style?
- How was the teaching material?
- What could be improved?
- Any other comments?

A. George IN-STK5000, Autumn 2022

50