Introduction

A Robust Decision Making (RDM) analysis

Pedro Nascimento de Lima¹, Maria Isabel Wolf Motta Morandi¹. Daniel Pacheco Lacerda¹

¹ GMAP Research Group, UNISINOS University, RS, Brazil

November 14, 2018

Introduction

Motivation - DMDU and Business Decisions

- Decision Makers in Business are faced with uncertainty, but...
- Testing quotation: (Lima 2018, Gong et al. (2017), Wholers (2016))

Key Features of 3D printing

- 3D printing allows us to manufacture parts with unprecedented complexity, in low volume;
- By doing so, entire manufacturing industries might be disrupted by AM, presenting challenges to . . .

Two Column Layout

- 3D printing allows us to manufacture parts with unprecedented complexity, in low volume;
- By doing so, entire manufacturing industries might be disrupted by AM, presenting challenges to . . .

Why 3D Printing?

3D Printing is an emergint technology, but decision makers face uncertainty.

Positive Evidence: - 3D printing Industry has seen two digits growth consistently in the last few years; - 3D printing is already reshaping supply chains across industries (e.g.: prothesis, aerospace, etc.);

Negative Evidence: - Major players have been observing declining profitability (e.g.: Stratasys, 3D Systems); - Estimates of 3D printing growth diverge;

Shaping events in the 3D Printing Industry

- Patent Dynamics & Patent Expiration (e.g. FDM Patent);
- Fierce Competition;
- After the 3D printing Bubble, major players refocused their operations on industrial-grade printers;

Model Boundaries

Outside the Scope of the model

- 3D Printers models disaggregation; . 3D Printing market disaggregation: •
- Mergers and Acquisitions;
- Patent Licensing:
- Disaggregated New Entrants; Competition w/ competing
- Technologies (e.g.: machining); · 3D printing service industry:
- · 3D Printing supplies sales; · Interactions with non-professional
- 3D printing Market;

Figure 1: Model Structure & Boundaries

Design of Experiments

 Full factorial design of these variables, resulting in 54 strategies:

Variable	Meaning	Levels
$\overline{S_1}$	Market & Pricing Strategy. Defines wether the player pursue an agressive marketing strategy to gain market share (by cutting prices and accepting excess capacity), or pursue a conservative	Agressive (1); Conservative (2)
S_1^{max} or S_1^{min}	strategy, Desired Market Share. For a Conservative Strategy, the player adopts the S_1^{max} , and	20%; 30%; 40%

Candidate Strategy NPV across scenarios

Global Demand across scenarios

4 Players Net Present Value in a given scenario

Net Present Value across strategies and Scenarios

Regret across strategies and Scenarios

Ranking Strategies by Regret

Scenario Discovery

Conclusions