Calculus: Single Variable, Multivariable, Differential Equations, and Vector Calculus Summary

Shereen Elaidi

8 June 2020

Abstract

The purpose of this document is to review Calculus. The content here should be equivalent to Math 140, Math 141, Math 222, and Math 248/358 at McGill.

Contents

1	Sing	gle Variable Calculus	
	1.1	Limits and Derivatives	
	1.2	Differentiation Rules	
	1.3	Applications of Differentiation	
	1.4	Integrals	
	1.5	Applications of Integration	
	1.6	Integration Techniques	
	1.7	Further Applications of Integration	
	1.8	Parameter Equations and Polar Coordinates	
	1.9	Infinite Sequences and Series	
	1.10	Strategy for Testing Series	
	1.11	Power Series	
2	Mul	lti Variable Calculus	
	2.1	Vectors and Geometry of Space	
	2.2	Partial Derivatives	
	2.3	Multiple Integrals	
	2.4	Triple Integrals	
3	Vector Calculus 20		
U	3.1	Vector Fields	
	3.2	Line Integrals	
	3.3	Green's Theorem	
	3.4	Curl and Divergence	
	3.5	Parametric Surfaces and their Areas	
	0 1		
4		linary Differential Equations 23	
	4.1	Basic Concepts	
	4.2	Classification of First Order Differential Equations	
	4.3	Separable First Order Differential Equations	
		4.3.1 Reduction of a Homogeneous Equation	

1 Single Variable Calculus

1.1 Limits and Derivatives

- Precise Definition of a Limit: Let f be a function defined on an open interval]a,c[that contains the number a. Then, we say that the limit of f(x) as x approaches a is L, and we write $\lim_{x\to a} f(x) = L$ if for every $\varepsilon > 0$, $\exists a \delta > 0$ such that $0 < |x a| < \delta \Rightarrow |f(x) L| < \varepsilon$.
 - Heuristically, this means that if any small interval $]L \varepsilon, L + \varepsilon[$ is given around L, then we can find an interval $]a \delta, a + \delta[$ around a such that f maps the points in $]a \delta, a + \delta[$ (except possibly a) into the interval $]L \varepsilon, L + \varepsilon[$.
- Continuous: A function f is said to be continuous at a number $a \in \mathbb{R}$ if $\lim_{x\to a} f(x) = f(a)$.
- Intermediate Value Theorem: Let f be continuous on the interval [a, b] and let N be any number between f(a) and f(b) where $f(a) \neq f(b)$. Then, there exists a number $c \in]a, b[$ for which f(c) = N.
- Tangent Line: The tangent line to the curve y = f(x) at the point P = (a, f(a)) is the line through P with the slope

$$m = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} \iff m = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} \tag{1}$$

• Velocity / Instantaneous Velocity: the instantaneous velocity v(a) at the time t = a is the limit of the average velocities:

$$v(a) := \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$
 (2)

• **<u>Derivative</u>**: The <u>derivative</u> of a function f at a number $a \in \mathbb{R}$, denoted by f'(a), is

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = f'(a) \tag{3}$$

1.2 Differentiation Rules

- Derivative of a constant function: $\frac{d}{dx}[c] = 0$.
- Power Rule: if $n \in \mathbb{R}$, $\frac{d}{dx}[x^n] = nx^{n-1}$. One can prove this using geometric series.
- Constant Multiple Rule: if $c \in \mathbb{R}$ and f differentiable, then $\frac{d}{dx}[cf(x)] = cf'(x)$.
- Constant Sum Rule: if f, g are differentiable, then $\frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]$.
- The rate of change of any exponential function is proportional to the function itself: for $f(x) := b^x$:

$$f'(x) = f'(0)b^x \tag{4}$$

• Derivative of the Natural Exponential Function:

$$\frac{d}{dx}\left[e^x\right] = e^x\tag{5}$$

• **Product Rule**: if f, g are differentiable, then:

$$\frac{d}{dx}\left[f(x)g(x)\right] = f(x)\frac{d}{dx}\left[g(x)\right] + g(x)\frac{d}{dx}\left[f(x)\right] \tag{6}$$

• Quotient Rule: If f, g are differentiable, then:

$$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x) \frac{d}{dx} \left[f(x) \right] - f(x) \frac{d}{dx} \left[g(x) \right]}{\left[g(x) \right]^2} \tag{7}$$

• Derivatives of Trigonometric Functions:

$$\begin{array}{l} -\frac{d}{dx}\left[\sin(x)\right] = \cos(x), \ \frac{d}{dx}\left[\csc(x)\right] = -\csc(x)\cot(x) \\ -\frac{d}{dx}\left[\cos(x)\right] = -\sin(x), \ \frac{d}{dx}\left[\sec(x)\right] = \sec(x)\tan(x) \\ -\frac{d}{dx}\left[\tan(x)\right] = \sec^2(x), \ \frac{d}{dx}\left[\cot(x)\right] = -\csc^2(x). \end{array}$$

• Chain Rule: If g is differentiable at x and if f is differentiable at g(x), then the composite function $F:=f\circ g$ defined by F(x):=f(g(x)) is differentiable at x and F' is given by the product:

$$F'(x) = f'(g(x)) \cdot g'(x) \tag{8}$$

or, in Leibnitz notation.

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} \tag{9}$$

- Method of Implicit Differentiation: Differentiating both sides of the equation with respect to x, and then solving the resulting equation for y'.
 - Application: finding the derivatives of inverse trigonometric functions:
 - * $\frac{d}{dx}\left[\arcsin(x)\right] = \frac{1}{\sqrt{1-x^2}}, \frac{d}{dx}\left[\operatorname{arcsec}(x)\right] = \frac{-1}{x\sqrt{x^2-1}}$
 - * $\frac{d}{dx}\left[\operatorname{arccos}(x)\right] = \frac{-1}{\sqrt{1-x^2}}, \frac{d}{dx}\left[\operatorname{arcsec}(x)\right] = \frac{1}{x\sqrt{x^2-1}}$ * $\frac{d}{dx}\left[\operatorname{arctan}(x)\right] = \frac{1}{1+x^2}, \frac{d}{dx}\left[\operatorname{arccot}(x)\right] = \frac{-1}{x^2+1}$
 - Application: derivatives of logarithmic functions, $y = \log_b(x)$ and $y = \ln(x)$.
 - $* \frac{d}{dx} [\log_b(x)] = \frac{1}{x \ln(b)}$ $* \frac{d}{dx} [\ln(x)] = \frac{1}{x}$
 - Method of Logarithmic Differentiation: the calculation of complex functions involving products, quotients, or powers can be simplified by taking logarithms.
- Hyperbolic Trigonometric Functions: hyperbolic functions ~ hyperbola like trigonometric functions \sim circle. They are defined as:

 - $$\begin{split} &-\sinh(x) := \frac{e^x e^{-x}}{2}, \, \operatorname{csch}(x) := \frac{1}{\sinh(x)} \\ &-\cosh(x) := \frac{e^x + e^{-x}}{2}, \, \operatorname{sech}(x) := \frac{1}{\cosh(x)} \\ &-\tanh(x) := \frac{\sinh(x)}{\cosh(x)}, \, \coth(x) := \frac{\cosh(x)}{\sinh(x)} \\ &- \operatorname{Applications: \ whenever \ an \ entity \ such \ as \ light, \ velocity, \ electricity, \ or \ radioactivity \ is \ gradually} \end{split}$$
 absorbed or extinguished.
 - Hyperbolic identities:
 - $* \sinh(-x) = -\sinh(x)$, $\cosh(-x) = \cosh(x)$
 - $* \cosh^2(x) \sinh^2(x) = 1, 1 \tanh^2(x) = \operatorname{sech}^2(x)$
 - $* \sinh(x + y) = \sinh(x)\cosh(y) + \cosh(x)\sinh(y)$
 - $* \cosh(x+y) = \cosh(x)\cosh(y) + \sinh(x)\sinh(y)$
 - Derivatives of Hyperbolic Functions:

 - $\begin{array}{l} * \quad \frac{d}{dx} \left[\sinh(x) \right] = \cosh(x), \ \frac{d}{dx} \left[\operatorname{csch}(x) \right] = \operatorname{csch}(x) \coth(x), \\ * \quad \frac{d}{dx} \left[\cosh(x) \right] = \sinh(x), \ \frac{d}{dx} \left[\operatorname{sech}(x) \right] = \operatorname{sech}(x) \tanh(x), \\ * \quad \frac{d}{dx} \left[\tanh(x) \right] = \operatorname{sech}^2(x), \ \frac{d}{dx} \left[\coth(x) \right] = \operatorname{csch}^2(x). \end{array}$
 - Inverse Hyperbolic Functions:
 - * $\operatorname{arcsinh}(x) := \ln(x + \sqrt{x^2 + 1})$ for $x \in \mathbb{R}$.
 - * $\operatorname{arccosh}(x) := \ln(x + \sqrt{x^2 1})$ for $x \ge 1$.
 - * $\operatorname{arctanh}(x) := \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right)$ for $x \in [-1, 1]$
 - Derivatives of Inverse Hyperbolic Functions:

 $\begin{array}{l} * \ \frac{d}{dx}\left[\operatorname{arcsinh}(x)\right] = \frac{1}{\sqrt{1+x^2}}, \ \frac{d}{dx}\left[\operatorname{arccsch}(x)\right] = \frac{-1}{|x|\sqrt{x^2+1}} \\ * \ \frac{d}{dx}\left[\operatorname{arccosh}(x)\right] = \frac{1}{\sqrt{x^2-1}}, \ \frac{d}{dx}\left[\operatorname{arcsech}(x)\right] = \frac{-1}{x\sqrt{1-x^2}} \\ * \ \frac{d}{dx}\left[\operatorname{arctanh}(x)\right] = \frac{1}{1-x^2}, \ \frac{d}{dx}\left[\operatorname{arccoth}(x)\right] = \frac{1}{1-x^2} \end{array}$

1.3 Applications of Differentiation

- Extreme Value Theorem: Let f be continuous on the closed and bounded interval [a, b]. Then, f attains an absolute maximum value f(x) and an absolute minimum value f(d) at some numbers $c, d \in [a, b]$.
- Fermat's Theorem: If f has a local maximum or minimum at c, and if f'9x) exists, then f'(x) = 0.
- Closed Interval Method: To find the absolute maximum and minimum values of a continuous function f on a closed interval [a, b],
 - 1. Find the values of f at the critical points of f in the open interval [a, b[.
 - 2. Compute f(a) and f(b).
 - 3. The max between (1) and (2) is the absolute max; the min between (1) and (2) is the absolute min.
- Rolle's Theorem: Let $f : [a, b] \to \mathbb{R}$ satisfy:
 - 1. f is continuous on [a, b]
 - 2. f is differentiable on a, b
 - 3. f(a) = f(b).

Then, there exists a number $c \in]a, b[$ such that f'(c) = 0.

- Mean Value Theorem: Let $f : [a, b] \to \mathbb{R}$ satisfy:
 - 1. f is continuous on [a, b]
 - 2. f is differentiable on a, b

Then, there exists a number $c \in]a, b[$ such that

$$f'(c) = \frac{f(b) - f(a)}{b - a} \iff f(b) - f(a) = f'(c)[b - a]$$
 (10)

- Theorem (Consequence of MVT): If $f'(x) = 0 \ \forall x \in]a,b[$, then f is constant on]a,b[.
 - Corollary: If $f'(x) = g'(x) \ \forall x \in]a, b[$, then f g is constant on]a, b[, i.e., $\exists c \in \mathbb{R}$ such that f(x) = g(x) + c.
- L'Hopital's Rule: Suppose f and g are differentiable and that $g(x) \neq 0$ on an open interval containing a. Suppose that

$$\lim_{x \to a} f(x) = 0 \text{ and } \lim_{x \to a} g(x) = 0$$
 (11)

or

$$\lim_{x \to a} f(x) = \pm \infty \text{ and } \lim_{x \to a} f(x) = \pm \infty$$
 (12)

then

$$\lim_{x \to a} \left(\frac{f(x)}{g(x)} \right) = \lim_{x \to a} \left(\frac{f'(x)}{g'(x)} \right) \tag{13}$$

• <u>Antiderivative</u>: A function F is called an <u>anti-derivative</u> of f on an interval I if F'(x) = f(x) $\forall x \in I$.

1.4 Integrals

• Area: The area A of a region S that lies under the graph of a continuous function f is the limit of the sum of the approximating rectangles

$$A = \lim_{n \to \infty} R_n = \lim_{n \to \infty} [f(x_1)\Delta x + \dots + f(x_n)\Delta x]$$
(14)

• **Definite Integral**: Let $f:[a,b] \to \mathbb{R}$. Divide [a,b] into n subintervals of equal width $\Delta x = \frac{b-a}{n}$. Let $a = x_0 < x_1 < ... < x_n = b$ be the endpoints and let $x_1^*, ..., x_n^*$ be any sample points in these subintervals such that $x_i^* \in [x_{i-1}, x_i]$. Then, the definite integral of f from a to b is:

$$\int_{a}^{b} f(x)dx := \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i^*) \Delta x \tag{15}$$

provided that the limit exists and is the same for all possible choices of sample points. If it does exist, then we say that f is **integrable** on [a, b].

- Formulae for the sums of positive integers:
 - $-\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$ $-\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$ $-\sum_{i=1}^{n} i^3 = \left\lceil \frac{n(n+1)}{2} \right\rceil^2$
- <u>Fundamental Theorem of Calculus</u> connects differential calculus and integral calculus. Deals with equations of the form

$$g(x) = \int_{a}^{x} f(t)dt \tag{16}$$

- <u>Fundamental Theorem of Calculus Part 1</u>: let $f:[a,b] \to \mathbb{R}$ be continuous on [a,b]. Then, the function g defined by

$$g(x) := \int_{a}^{x} f(t)dt \tag{17}$$

is continuous on [a, b] and differentiable on [a, b]. Moreover, g'(x) = f(x).

- Fundamental Theorem of Calculus Part 2: If f is continuous on [a, b], then

$$\int_{a}^{b} f(x)dx = F(b) - F(a) \tag{18}$$

where F is any anti-derivative of f.

- Alternative expression for the FoC Part 1:

$$\frac{d}{dx} \left[\int_{a}^{x} f(t)dt \right] = f(x) \tag{19}$$

• Table of Integration Formulae:

$$-\int x^n dx = \frac{x^{n+1}}{n+1} \text{ for } n \neq -1.$$

$$-\int e^x dx = e^x$$

$$-\int \sin(x) dx = -\cos(x)$$

$$-\int \sec^2(x) dx = \tan(x)$$

$$-\int \sec(x) \tan(x) dx = \sec(x)$$

$$-\int \sec(x) \tan(x) dx = \sec(x)$$

$$-\int \sec(x) dx = \ln|\sec(x)| + \tan(x)|$$

$$-\int \cot(x) dx = \ln|\sin(x)|$$

$$-\int \sinh(x) dx = \cosh(x)$$

$$-\int \cosh(x) dx = \sinh(x)$$

$$-\int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \arctan\left(\frac{x}{a}\right)$$

$$-\int \frac{1}{\sqrt{x^2 \pm a^2}} dx = \ln|x|$$

$$-\int \frac{1}{\sqrt{x^2 \pm a^2}} dx = \ln|x|$$

$$-\int \frac{1}{\sqrt{x^2 \pm a^2}} dx = \ln|x|$$

$$-\int \cot(x) dx = -\cot(x)$$

$$-\int \cot(x) dx = -\cot(x)$$

$$-\int \cot(x) dx = \ln|\sin(x)|$$

$$-\int \sinh(x) dx = \cosh(x)$$

$$-\int \cosh(x) dx = \sinh(x)$$

$$-\int \frac{1}{\sqrt{a^2 - x^2}} dx = \arcsin\left(\frac{x}{a}\right) a > 0$$

$$-\int \frac{1}{\sqrt{x^2 \pm a^2}} dx = \ln|x + \sqrt{x^2 \pm a^2}|$$

1.5 Applications of Integration

• The average value of f on the interval [a, b] is:

$$f_{avg} := \frac{1}{b-a} \int_a^b f(x) dx \tag{20}$$

• Mean Value Theorem for Integrals: If f is continuous on [a, b] then there exists a $c \in [a, b]$ such that

$$f(x) = f_{avg} = \frac{1}{b-a} \int_a^b f(x)dx \iff \int_a^b f(x)dx = f(c)(b-a)$$
 (21)

1.6 Integration Techniques

• Integration by Parts:

$$\int f(x)g'(x)dx = f(x)g(x) - \int g(x)f'(x)dx \tag{22}$$

- Trigonometric Integrals:
 - 1. Strategy for evaluating $\int \sin^m(x) \cos^n(x) dx$:
 - (a) If n is odd: save one cosine, use $\cos^2(x) = 1 \sin^2(x)$ to express the remaining factors in terms of sine:

$$\int \sin^{m}(x)\cos^{2k+1}(x)dx = \int \sin^{m}(x)(1-\sin^{2}(x))^{k}\cos(x)dx$$
 (23)

and make the substitution $u = \sin(x)$.

(b) If m is odd: save one sine, use $\sin^2(x) = 1 - \cos^2(x)$ to express the remaining factors in terms of cosine:

$$\int \sin^{2k+1}(x)\cos^{n}(x)dx = \int (1-\cos^{2}(x))^{k}\cos^{n}(x)\sin(x)dx$$
 (24)

and make the substitution $u = \cos(x)$.

(c) If sine and cosine are even, then use the half-angle identities:

$$\sin^2(x) = \frac{1}{2}(1 - \cos(2x)) \text{ and } \cos^2(x) = \frac{1}{2}(1 + \cos(2x))$$
 (25)

A helpful identity is $\sin(x)\cos(x) = \frac{1}{2}\sin(2x)$.

- 2. Strategy for evaluating $\int \tan^m(x) \sec^n(x) dx$:
 - (a) If n is even: save one secant squared, use the identity $\sec^2(x) = 1 + \tan^2(x)$ to express the remaining factors in terms of $\tan(x)$:

$$\int \tan^{m}(x) \sec^{2k}(x) dx = \int \tan^{m}(x) (1 + \tan^{2}(x))^{k-1} \sec^{2}(x) dx$$
 (26)

and make the substitution $u = \tan(x)$.

(b) If m is odd: save one $\sec(x)\tan(x)$, use $\tan^2(x) = \sec^2(x) - 1$ to express the remaining factors in terms of $\sec(x)$:

$$\int \tan^{2k+1}(x) \sec^{n}(x) dx = \int (\sec^{2}(x) - 1)^{k} \sec^{n-1}(x) \sec(x) \tan(x) dx$$
 (27)

substitute $u = \sec(x)$.

- 3. Important product identities to remember:
 - (a) $\sin(A)\cos(B) = \frac{1}{2}[\sin(A-B) + \sin(A+B)]$
 - (b) $\sin(A)\sin(B) = \frac{1}{2}[\cos(A-B) + \cos(A+B)]$
 - (c) $\cos(A)\cos(B) = \frac{1}{2}[\cos(A-B) + \cos(A+B)]$
- Trigonometric Substitution

$$-\sqrt{a^2-x^2} \to x = a\sin(\theta), \ \theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to 1 - \sin^2(\theta) = \cos^2(\theta).$$

$$-\sqrt{a^2+x^2} \to x = a \tan(\theta), \ \theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to 1 + \tan^2(\theta) = \sec^2(\theta).$$

$$-\sqrt{a^2+x^2} \to x = a\tan(\theta), \ \theta \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\to 1 + \tan^2(\theta) = \sec^2(\theta).$$
$$-\sqrt{x^2-a^2} \to x = a\sec(\theta), \ \theta \in \left[0, \frac{\pi}{2}\right] \cup \left[\pi, \frac{3\pi}{2}\right] \to \sec^2(\theta) - 1 = \tan^2(\theta).$$

• Partial Fractions:

1. Case I: Denominator Q(x) is a product of distinct linear factors:

$$\frac{R(x)}{Q(x)} = \frac{A_1}{a_1 x + b_1} + \dots + \frac{A_k}{a_k x + b_k}$$
 (28)

2. Case II: Denominator Q(x) is a product of linear factors, some of which are repeated r times:

$$\frac{R(x)}{Q(x)} = \frac{A_1}{a_1 x + b_1} + \dots + \frac{A_k}{(a_1 x + b_1)^r}$$
(29)

3. Case III: Q(x) contains irreducible quadratic factors, none of which is repeated. Then, expression will have a term of the form

$$\frac{Ax+B}{ax^2+bx+c} \tag{30}$$

which can be integrated by completing the square and using the formula:

$$\int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \arctan\left(\frac{x}{a}\right) + C \tag{31}$$

4. Case IV: Q(x) contains a repeated irreducible factor. Then, the expression will have a term of the form:

$$\frac{A_1x + B_1}{ax^2 + bx + c} + \dots + \frac{A_rx + B_r}{(ax^2 + bx + c)^r}$$
(32)

- General Strategy for Integrating:
 - 1. Simplify the integrand if possible using algebraic manipulation and trigonometric identities.
 - 2. Look for obvious substitutions.
 - 3. Classify integrand according to its form
 - (a) Trigonometric functions
 - (b) Rational functions (\rightarrow partial fractions)
 - (c) Integration by parts
 - (d) Radicals
 - i. $\sqrt{\pm x^2 \pm a^2} \rightarrow \text{trigonmetric substitution}$
 - ii. $(ax+b)^{1/n} \to \text{rationalising substitution } u = (ax+b)^{1/n}$
- Improper Integral: if in the definite integral, $\int_a^n f(x)dx$, either [a,b] is an unbounded interval or f(x) has an infinite discontinuity in [a,b]

1.7 Further Applications of Integration

• Arc-length formula: If f' is continuous on [a, b], then the length of the curve y = f(x), $a \le x \le b$ is:

$$L = \int_{a}^{b} \sqrt{1 + [f'(x)]^2}$$
 (33)

• Arc-Length Function: If a smooth curve C has the equation y = f(x), $a \le x \le b$, let s(x) be the distance along C from the initial point $P_0(a, f(a))$ to the point Q(x, f(x)). Then, s is a function given by:

$$s(x) = \int_{a}^{x} \sqrt{1 + [f'(t)]^2} dt \tag{34}$$

1.8 Parameter Equations and Polar Coordinates

Motivation: some curves are best handeled when both x and y are given as a function of a third variable t: x = f(t), y = g(t).

• Suppose f, g are differentiable functions and suppose we want to find the tangent line at a point on the parametric curve x = f(t), y = g(t), where y is also a differentiable function of x. If $\frac{dx}{dt} \neq 0$, then the slope of the parametric curve is given by:

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} \tag{35}$$

– We can consider $\frac{d^2y}{d^2x}$:

$$\frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{\frac{d}{dt}\left(\frac{dy}{dx}\right)}{\frac{dx}{dt}}$$
(36)

- <u>Areas</u>: if a curve is traced out by the parametric equations x = f(t) and y = g(t) for $t \in [\alpha, \beta]$, then using the substitution rule for integrals one has the following formula:

$$\mathcal{A} = \int_{a}^{b} y dx = \int_{\alpha}^{\beta} g(t) f'(t) dt \tag{37}$$

- <u>Arc Length</u> if a curve C is described by parametric equations x = f(t), y = g(t), $\alpha \le t \le \beta$, where f' and g' are continuous on [a, b] and C is traversed exactly once as t travels from α to β , then the length of C is:

$$L = \int_{\alpha}^{\beta} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt \tag{38}$$

- <u>Surface Area</u>: similar to the conditions in the previous theorem, the surface area of a curve obtained by rotating it about the x-axis is given by:

$$S = \int_{\alpha}^{\beta} 2\pi y \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} \tag{39}$$

• Equations to convert between cartesian and polar coordinates:

$$x = r\cos(\theta) \ y = r\sin(\theta) \tag{40}$$

$$r^2 = x^2 + y^2 \tan(\theta) = \frac{y}{x}$$
 (41)

• If $r = f(\theta)$ is a polar curve, then we can find the tangent line to a polar curve by regarding θ as a parameter:

$$x = f(\theta)\cos(\theta)$$
$$y = f(\theta)\sin(\theta)$$

and the tangent is given by:

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{\frac{dr}{d\theta}\sin(\theta) + r\cos(\theta)}{\frac{dr}{d\theta}\cos(\theta) - r\sin(\theta)}$$
(42)

- Areas and lengths in polar coordinates
 - The area of a sector of a circle: $A = \frac{1}{2}r^2\theta$. The area of a polar region \mathcal{R} :

$$A(\mathcal{R}) = \int_{a}^{b} \frac{1}{2} [f(\theta)]^{2} d\theta \tag{43}$$

- The arc-length of a polar curve with the equation $r = f(\theta)$, $a \le \theta \le b$ is:

$$L = \int_{a}^{b} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta \tag{44}$$

1.9 Infinite Sequences and Series

• A **Sequence** is a list of numbers written in a definite order

$$a_1, a_2, a_3, \dots$$
 (45)

• A sequence has a **limit** L and we write

$$\lim_{n \to \infty} a_n = L$$

if we can make the terms a_n as close to L as we'd like by taking n sufficiently large. if $\lim_{n\to\infty} a_n$ exists, then we say that $\{a_n\}$ is **convergent**. Else, it is **divergent**.

- A sequence $\{a_n\}$ has a limit L if $\forall \varepsilon > 0$, \exists an $N \in \mathbb{N}$ such that $\forall n \geq N$, one has that $|a_n L| < \varepsilon$.
- Squeeze Theorem: if $a_n \leq b_n \leq c_n \ \forall n \geq n_0$, and if $\lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n = L$, then $\lim_{n\to\infty} b_n = L$.
 - If $\lim_{n\to\infty} |a_n| = 0$, then $\lim_{n\to\infty} a_n = 0$.
 - If $\lim_{n\to\infty} a_n = L$ and if f is a continuous function at L, then

$$\lim_{n \to \infty} f(a_n) = f(L)$$

• The sequence $\{r^n\}$ is convergent if $r \in]-1,1]$ and divergent for all other values of r. If $r \in]-1,1]$:

$$\lim_{n \to \infty} r^n = \begin{cases} 0 & \text{if } r \in]-1,1[\\ 1 & \text{if } r=1 \end{cases}$$

• Monotonic Sequence Theorem: every bounded, monotonic sequence converges.

• Series: Given a series

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + a_4 + \dots$$

let s_n denote the *n*th partial sum:

$$s_n := \sum_{i=1}^n a_i = a_1 + \dots + a_n$$

if the sequence $\{s_n\}$ is convergent and $\lim_{n\to\infty} s_n = s \in \mathbb{R}$, then the series $\sum_{n=1}^{\infty} a_n$ is convergent.

• Geometric Series: is an important example of an infinite series.

$$a + ar + ar^{2} + \dots + ar^{n-1} + \dots = \sum_{n=1}^{\infty} ar^{n-1} \ (a \neq 0)$$
 (46)

- If r=1, then $s_n=na\to\infty$. - If $r\neq 1$, then $s_n=\frac{a(1-r^n)}{1-r}$. If $r\in]-1,1[$, then $r^n\to 0$ as $n\to\infty$, and so

$$\lim_{n \to \infty} s_n = \frac{a}{1 - r} \tag{47}$$

otherwise the geometric series diverges.

- Harmonic Series is defined as ∑_{n=1}[∞] 1/n. It's divergent.
 If the series ∑_{n=1}[∞] a_n is convergent, then lim_{n→∞} a_n = 0.
- - Test for Divergence: if $\lim_{n\to\infty} a_n$ does not exist or if $\lim_{n\to\infty} a_n \neq 0$, then the series $\sum_{n=1}^{\infty} a_n$ is divergent.
- Integral Test: Suppose f is a continuous, positive, decreasing function on $[1, \infty[$ and let $a_n = f(n)$. Then, the series $\sum_{n=1}^{\infty} a_n$ is convergent \iff the improper integral $\int_1^{\infty} f(x) dx$ is convergent.
 - **p-series**: the *p*-series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges $\iff p > 1$.
- Remainder Estimate for the Integral Test: Suppose that $f(k) = a_k$, where f is a continuous, decreasing, positive function for $x \ge \overline{n}$ and suppose that $\sum a_n$ is convergent. If $R_n := S - S_n$, then

$$\int_{n+1}^{\infty} f(x)dx \le R_n \le \int_n^{\infty} f(x)dx \tag{48}$$

- Comparison Test: Suppose that $\sum a_n$ and $\sum b_n$ are series with positive terms.
 - 1. If $\sum b_n$ is convergent and $a_n \leq b_n \ \forall n$, then $\sum a_n$ converges.
 - 2. If $\sum b_n$ is divergent and $b_n \leq a_n \ \forall n$, then $\sum a_n$ diverges.
- Limit Comparison Test: Suppose $\sum a_n$ and $\sum b_n$ are series with positive terms. If

$$\lim_{n \to \infty} \frac{a_n}{b_n} = c$$

where $c \in]0, \infty[$, then both series have the same behaviour; i,e, either both series converge or both

- Alternating Series Test: If the alternating series $\sum_{n=1}^{\infty} (-1)^{n-1} b_n$ for $b_n > 0$ satisfies:
 - 1. $b_{n+1} \leq b_n \ \forall n \in \mathbb{N}$
 - $2. \lim_{n\to\infty} b_n = 0$

then, the series converges.

- Absolutely Convergent: A series $\sum a_n$ is called absolutely convergent if the series of absolute values $\sum |a_n|$ is convergent.
- Conditionally Convergent: A series $\sum a_n$ is called conditionally convergent if its convergent but not absolutely convergent.
- If $\sum a_n$ is absolutely convergent then it is convergent.
- Ratio Test Let $\{a_n\}$ be a sequence.

 - 1. If $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L < 1$, then $\sum_{n=1}^{\infty} a_n$ absolutely converges (and thus converges). 2. If $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L > 1$ or $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| L = \infty$, then $\sum_{n=1}^{\infty} a_n$ diverges. 3. If $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L = 1$ then the Ratio test is inconclusive.
- Root Test Let $\{a_n\}$ be a sequence.
 - 1. If $\lim_{n\to\infty} \sqrt[n]{|a_n|} = L < 1$, then the series absolutely converges (and therefore converges).
 - 2. If $\lim_{n\to\infty} \sqrt[n]{|a_n|} = L > 1$ or if $\lim_{n\to\infty} \sqrt[n]{|a_n|} = \infty$ then the series diverges.
 - 3. If $\lim_{n\to\infty} \sqrt[n]{|a_n|} = L = 1$, then the root test will be inconclusive.

Strategy for Testing Series 1.10

- 1. If the series is of the form $\sum \frac{1}{n^p}$, then apply the p-series rule. 2. If the series is of the form $\sum ar^{n-1}$ or $\sum ar^n$, then apply the geometric series rule.
- 3. If the series is similar to a p-series or a geometric series, then use a comparison test.
- 4. If $\lim_{n\to\infty} a_n \neq 0$, use the divergence test to conclude that the series diverges.
- 5. If the series is of the form $\sum (-1)^{n-1}b_n$ or $\sum (-1)^n b_n$, then use the alternating series test.
- 6. If the series has factorials in it, consider applying a ratio test.
- 7. If the series is of the form $(b_n)^n$, then consider the root test.
- 8. If $a_n = f(n)$ where $\int_1^\infty f(x)dx$ is easily evaluated, then consider the integral test.

1.11 Power Series

• **Power Series**: a power series is of the form

$$\sum_{n=0}^{\infty} c_n x^n = c_0 + c_1 x + c_2 x^2 + \dots$$
 (49)

A series of the form

$$\sum_{n=0}^{\infty} c_n (x-a)^n = c_0 + c_1 (x-a) + c_2 (x-a)^2$$
(50)

- is called a **power series in** (x-a)• **Theorem**: for a given power series $\sum_{n=0}^{\infty} c_n (x-a)^n$, there are only three possibilities:
 - 1. The series converges only when x = a.
 - 2. The series converges for all x.
 - 3. \exists an R > 0 such that the series converges if |x a| < R and diverges if |x a| > R.
- Theorem (Term-by-term Differentiation and Integration): If the power series $\sum c_n(x-a)^n$ has a radius of convergence R > 0, then the function defined by:

$$f(x) := c_0 + c_1(x - a) + c_2(x - a)^2 + \dots = \sum_{n=0}^{\infty} c_n(x - a)^n$$
 (51)

is differentiable (and thus continuous) on the interval |a - R, a + R| and:

- 1. $f'(x) = c_0 + 2c_s(x-a) + 3c_3(x-a)^2 + \dots = \sum_{n=1}^{\infty} nc_n(x-a)^{n-1}$. 2. $\int f(x)dx = c + c_0(x-a) + c_a \frac{(c-a)^2}{2} + c_2 \frac{(x-a)^3}{3} + \dots$

$$\int f(x)dx = c + \sum_{n=0}^{\infty} c_n \frac{(x-a)^{n+1}}{n+1}$$
 (52)

The radius of convergence of both (1) and (2) remain R.

• Theorem (Taylor Series Representation): If f has a power series representation (expansion) at a, that is, if

$$f(x) = \sum_{n=0}^{\infty} c_n (x - a)^n$$
 (53)

for |x-a| < R, then the coefficients are given by the formula:

$$c_n = \frac{f^{(n)}(a)}{n!} \tag{54}$$

Then, the **Taylor Series** for f about a is given by:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n$$
 (55)

For the special case of a=0, then the above becomes:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = f(0) + \frac{f'(0)}{1!} x + \frac{f''(0)}{2!} x^2 + \dots$$
 (56)

• Theorem (Remainder): Define the remainder of the Taylor series by $R_n := f(x) - T_n(x)$. If $\overline{f(x)} = T_n(x) + R_n(x)$, where T_n is the nth degree Taylor polynomial of f at a and

$$\lim_{n \to \infty} R_n(x) = 0 \tag{57}$$

for |x - a| < R, then f is equal to the sum of its Taylor series on the interval |x - a| < R.

- The following theorem is often used when trying to show that $\lim_{n\to\infty} R_n = 0$ for a specific function
 - Taylor's Inequality: If $|f^{(n+1)}(x)| \leq M \ \forall \ |x-a| \leq d$, then the remainder $R_n(x)$ of the Taylor series satisfies the following inequality:

$$|R_n(x)| \le \frac{M}{(n+1)!} |x-a|^{n+1}$$
 (58)

for $|x-a| \leq d$.

• Important MacLaurin Series and their Radii of Convergence:

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \dots (R=1)$$
 (59)

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots \quad (R = \infty)$$
(60)

$$\sin(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} \dots (R = \infty)$$
 (61)

$$\cos(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots (R = \infty)$$
 (62)

$$\arctan(x) = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)} = 1 - \frac{x^3}{3} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots (R=1)$$
 (63)

$$\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n} = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots (R=1)$$
 (64)

$$(1+x)^k = \sum_{n=0}^{\infty} \binom{k}{n} x^n = 1 + kx + \frac{k(k-1)}{2!} x^3 + \frac{k(k-1)(k-2)}{3!} x^3 + \dots (R=1)$$
 (65)

2 Multi Variable Calculus

2.1 Vectors and Geometry of Space

- If θ is the angle between vectors \mathbf{a} and \mathbf{b} , then $\mathbf{a} \cdot \mathbf{b} = ||\mathbf{a}|| ||\mathbf{b}|| \cos(\theta)$
 - Two vectors are orthogonal \iff $\mathbf{a} \cdot \mathbf{b} = 0$.
 - Scalar Projection of b onto a:

$$comp_{\mathbf{a}}(\mathbf{b}) : \frac{\mathbf{a} \cdot \mathbf{b}}{||\mathbf{a}||}$$
 (66)

Vector projection of b onto a:

$$\operatorname{proj}_{\mathbf{a}}(\mathbf{b}) := \left(\frac{\mathbf{a} \cdot \mathbf{b}}{||\mathbf{a}||}\right) \frac{\mathbf{a}}{||\mathbf{a}||}$$
(67)

• <u>Cross Product</u>: if $\mathbf{a} := \langle a_1, a_2, a_3 \rangle$ and $\mathbf{b} := \langle b_1, b_2, b_3 \rangle$, then their **cross product** is:

$$\mathbf{a} \times \mathbf{b} := \det \begin{bmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{bmatrix}$$
 (68)

- If θ is the angle between **a** and **b**, then

$$||\mathbf{a} \times \mathbf{b}|| := ||\mathbf{a}|| ||\mathbf{b}|| \sin(\theta) \tag{69}$$

- Two non-zero vectors \mathbf{a} and \mathbf{b} are parallel $\iff \mathbf{a} \times \mathbf{b} = 0$.
- The volume of the parallelepiped spanned by the vectors \mathbf{a} , \mathbf{b} , \mathbf{c} is $|\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})|$
- A parametric equation for a line going through the point (x_0, y_0, z_0) parallel to the direction vector $\langle a, b, c \rangle$ are:

$$x = x_0 + at$$
$$y = y_0 + bt$$
$$z = z_0 + ct$$

• The scalar equation of the plane through the point $P_0(x_0, y_0, z_0)$ with the normal vector $\mathbf{n} := \langle a, b, c \rangle$ is:

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0 (70)$$

• The distance D from a point $P_1(x_1, y_1, z_1)$ to the plane ax + by + cz + d = 0 is:

$$D = \frac{|ax_1 + by_1 + cz_1 + d|}{\sqrt{a^2 + b^2 + z^2}}$$
(71)

- <u>Vector-Valued Function</u>: a function whose domain is the set of real numbers and whose range is a set of vectors.
 - The $\underline{\mathbf{limit}}$ of a vector-valued function \mathbf{r} is defined by taking the limits of the component functions as follows:

$$\lim_{t \to a} \mathbf{r}(t) := \langle \lim_{t \to a} f(t), \lim_{t \to a} g(t), \lim_{t \to a} h(t) \rangle \tag{72}$$

- **Space-curve**: the set C of all points (x, y, z) in space where x = f(t), y = g(t), and z = h(t), where $t \in I$, is called a **space-curve**.
- ullet The **derivative** ${f r}'$ of a vector-valued function ${f r}$ is defined as:

$$\frac{d\mathbf{r}}{dt} = \mathbf{r}'(t) = \lim_{h \to 0} \frac{\mathbf{r}(t+h) - \mathbf{r}(t)}{h}$$
(73)

- The **unit tangent** vector $\mathbf{T}(t)$ is defined as:

$$\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{||\mathbf{r}'(t)||} \tag{74}$$

- The **definite integral** of a vector-valued function is exactly what one would expect:

$$\int_{a}^{b} \mathbf{r}(t)dt = \left(\int_{a}^{b} f(t)dt\right)\hat{\mathbf{i}} + \left(\int_{a}^{b} g(t)dt\right)\hat{\mathbf{j}} + \left(\int_{a}^{b} h(t)dt\right)\hat{\mathbf{k}}$$
 (75)

• The length L of a space-curve between the points a and b is parameterisation-independent and is given by:

$$L = \int_{a}^{b} ||\mathbf{r}'(t)|| dt \tag{76}$$

- The **arc-length function** of a curve, s, is defined as:

$$s(t) := \int_{a}^{t} ||\mathbf{r}'(u)|| du \tag{77}$$

We can use the above equation to parameterise a curve with respect to arc-length by differentiating both sides of the equation above with respect to t and applying the fundamental theorem of calculus:

$$\frac{ds}{dt} = ||\mathbf{r}'(t)|| \tag{78}$$

Advantages of an arc-length parametrisation include: it arises naturally from the shape of the curve and it's coordinate-system independent.

- <u>Smooth</u>: a parameterisation $\mathbf{r}(t)$ is called <u>smooth</u> on an interval I if \mathbf{r}' is continuous and $\mathbf{r}'(t) \neq 0$ on I.
- Curvature: the curvature of a curve is given by:

$$\kappa := \left| \left| \frac{d\mathbf{T}}{ds} \right| \right| \tag{79}$$

where \mathbf{T} is the unit tangent vector. We have three other formulae for curvature:

1.

$$\kappa(t) = \frac{||\mathbf{T}'(t)||}{||\mathbf{r}'(t)||} \tag{80}$$

2.

$$\kappa(t) = \frac{||\mathbf{r}'(t) \times \mathbf{r}''(t)||}{||\mathbf{r}'(t)||^3}$$
(81)

3. For plane curves, write $\mathbf{r}(x) = x\hat{\mathbf{i}} + f(x)\hat{\mathbf{j}}$

$$\kappa(x) = \frac{|f''(x)|}{[1 + (f'(x)^2)^{3/2}}$$
(82)

• When $\kappa(t) \neq 0$, one can define the **principle unit normal N**(t):

$$\mathbf{N}(t) = \frac{\mathbf{T}'(t)}{||\mathbf{T}'(t)||} \tag{83}$$

- Normal plane: the plane determined by the normal and binormal vectors. Consists of all lines orthogonal to the unit tangent vector T.
- Osculating circle: the plane determined by the vectors ${\bf T}$ and ${\bf N}$.
 - * Closest plane to containing the part of the curve near P.
 - * Osculating circle: the circle that lies on the osculating plane of C at P, has the same tangent as C at P, and lies on the concave side of C (towards where \mathbf{N} is pointing). This best describes the behaviour of C near P.
- The velocity vector $\mathbf{v}(t)$ at time t:

$$\mathbf{v}(t) := \lim_{h \to 0} \frac{\mathbf{r}(t+h) - \mathbf{r}(t)}{h} = \mathbf{r}'(t)$$
(84)

- **Speed**: the magnitude of the velocity vector $||\mathbf{v}(t)||$.

$$||\mathbf{v}(t)|| = ||\mathbf{r}'(t)|| = \frac{ds}{dt}$$
(85)

- **Acceleration**: the derivative of the velocity

$$\mathbf{a}(t) = \mathbf{v}'(t) = \mathbf{r}''(t) \tag{86}$$

• Often times it can be useful to resolve the acceleration of a particle into its tangential and normal components:

$$\mathbf{a} = \underbrace{v'}_{:=\mathbf{a}_T} \mathbf{T} + \underbrace{\kappa v^2}_{:=\mathbf{a}_N} \mathbf{N} \tag{87}$$

where $v := ||\mathbf{r}'(t)||$. One can re-write Equation (87) so that it only depends on \mathbf{r} , \mathbf{r}' , and \mathbf{r}'' :

$$\mathbf{a}_T = \frac{\mathbf{r}'(t) \cdot \mathbf{r}''(t)}{||\mathbf{r}'(t)||} \tag{88}$$

$$\mathbf{a}_N = \frac{||\mathbf{r}'(t) \times \mathbf{r}''(t)||}{||\mathbf{r}'(t)||} \tag{89}$$

2.2 Partial Derivatives

- Graph: let f be a function in two variables with domain Ω . Then, the graph of f is the set of all points $(x, y, z) \in \mathbb{R}^3$ such that z = f(x, y) for $(z, y) \in \Omega$.
- <u>Level Curves</u>: The <u>level curves</u> of a function f in two variables are the curves with equations f(x,y) = k, where $k \in \mathbb{R}$ is a constant.
- <u>Limit</u>: Let f be a function of two variables whose domain Ω includes points arbitrarily close to (a,b). Then, we say that the **limit of** f(x,y) **as** $(x,y) \to (a,b)$ is L and we write:

$$\lim_{(x,y)\to(a,b)} f(x,y) = L \tag{90}$$

if $\forall \ \varepsilon > 0, \ \exists \delta > 0$ such that if $(x,y) \in \Omega, \ 0 < \sqrt{(x-a)^2 + (y-b)^2} < \delta$, then $|f(x,y) - L| < \varepsilon$.

• Partial Derivative: the partial derivative of f with respect to x at (a,b) is:

$$f_x(a,b) := \lim_{h \to 0} \frac{f(a+h) - f(a,b)}{h} \tag{91}$$

• <u>Claircut's Theorem</u>: suppose f is defined on a disk D that contains the point (a,b). If the functions f_{xx} and f_{yy} are both continuous on D, then,

$$f_{xy}(a,b) = f_{yx}(a,b) \tag{92}$$

• Tangent Plane: Suppose f has continuous partial derivatives. An equation for the tangent plane to the surface z = f(x, y) at the point $P(x_0, y_0, z_0)$ is given by:

$$z - z_0 = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$
(93)

- <u>Linearisation</u>: an equation for the tangent plane to the graph f at the point (a, b, f(a, b)) is given by:

$$z = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$$
(94)

the graph of this tangent plane is called the **linearisation** of f at (a,b):

$$L(x,y) := f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$$
(95)

• <u>Differentiable</u>: If z = f(x, y), then f is <u>differentiable</u> at (a, b) if Δz can be expressed in the form:

$$\Delta z = f_x(a, b)\Delta x + f_y(a, b)\Delta y + \varepsilon_1 \Delta x + \varepsilon_2 \Delta y \tag{96}$$

where $\varepsilon_1, \varepsilon_2 \to 0$ as $(\Delta x, \Delta y) \to (0, 0)$.

- If the partial derivatives f_x and f_y exist near (a,b), and are continuous at (a,b), then f is differentiable at (a,b).
- <u>Total Differential</u>: for a differentiable function of two variables z = f(x, y), then the <u>total</u> differential is defined as:

$$dz := f_x(x, y)dx + f_y(x, y)dy$$
$$= \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy$$

and so in the language of differentials, we write:

$$f(x,y) \approx f(a,b) + dz$$

• Chain Rule (1. Case): Suppose that z = f(x, y) is a differentiable function of x and y, and suppose that both x and y are differentiable functions of t (i.e, x = x(t), y = y(t)) so that z = (f(x(t), y(t))). Then, z is a differentiable function of t and:

$$\frac{dz}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt} \tag{97}$$

• Chain Rule (General Version): Suppose that u is a differentiable function of n variables $(x_1, ..., x_n)$ and each x_j is a differentiable function of m variables $t_1, ..., t_m$. Then, u is a function of $t_1, ..., t_m$ and one has:

$$\frac{\partial u}{\partial t_i} = \frac{\partial u}{\partial x_i} \frac{\partial x_1}{\partial t_i} + \frac{\partial u}{\partial x_i} \frac{\partial x_2}{\partial t_i} + \dots + \frac{\partial u}{\partial x_i} \frac{\partial x_n}{\partial t_i}$$
(98)

 $\forall i = 1, 2, ..., m.$

• Implicit Function Theorem: Let y = f(x). If F is defined on a disc containing (a, b), where $\overline{F(a, b)} = 0$ $\overline{F_y(a, b)} \neq 0$, and $\overline{F_y}$ and $\overline{F_x}$ are continuous on the disc, then the equation F(x, y) = 0 defines y as a function of x near the point (a, b) whose derivative is given by:

$$\frac{dy}{dx} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}} = -\frac{F_x}{F_y} \tag{99}$$

Now, for z = f(x, y), if z is implicitly given as a function by an equation of the form F(x, y, z) = 0, then the derivative of the implicitly defined function is:

$$\frac{\partial z}{\partial x} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial z}} \tag{100}$$

$$\frac{\partial z}{\partial y} = -\frac{\frac{\partial F}{\partial y}}{\frac{\partial F}{\partial z}} \tag{101}$$

• <u>Directional Derivative</u>: the <u>directional derivative</u> of f at (x_0, y_0) in the direction of the unit vector $\mathbf{u} = \langle a, b \rangle$ is:

$$D_u f(x_0, y_0) := \lim_{h \to 0} \frac{f(x_0 + ha, y_0 + hb) - f(x_0, y_0)}{h}$$
(102)

- If f is a differentiable function of x and y, then f has a directional derivative in the direction of any unit vector $\mathbf{u} = \langle a, b \rangle$ and

$$D_f(x,y) = f_x(x,y)a + f_y(x,y)b (103)$$

• <u>Gradient</u>: Let $f : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be a function of two variables. Then, the <u>gradient</u> of f is the vector function ∇f defined by:

$$\nabla f(x,y) := \langle f_x(x,y), f_y(x,y) \rangle$$
$$= \frac{\partial f}{\partial x} \hat{\mathbf{i}} + \frac{\partial f}{\partial y} \hat{\mathbf{j}}$$

Using this notation, we can re-write the directional derivative as a dot product:

$$D_u f(x,y) = \nabla f(x,y) \cdot \mathbf{u}$$

Thus, we can interpret the directional derivative as the scalar projection of the gradient function onto \mathbf{u} .

- Let $f: \mathbb{R}^n \to \mathbb{R}$ be a differentiable function of n variables. The maximum value of the directional derivative $D_u f(x)$ is $||\nabla f(x)||$; this occurs when \mathbf{u} is parallel to $\nabla f(x)$.
- The tangent planet to the level surface F(x, y, z) = k at the point $P(x_0, y_0, z_0)$ is the plane that passes through P with the normal vector $\nabla F(x_0, y_0, z_0)$. This is written as:

$$F_x(x_0, y_0, z_0)(x - x_0) + F_y(x_0, y_0, z_0)(y - y_0) + F_z(x_0, y_0, z_0)(z - z_0) = 0$$
(104)

2.3 Multiple Integrals

• Double Integral: the double integral of f over the rectangle \mathcal{R} is:

$$\iint_{\mathcal{R}} f(x,y)dA := \lim_{m,n \to \infty} \sum_{i=1}^{m} \sum_{j=1}^{n} f(x_{i,j}^*, y_{i,j}^*) \Delta A$$
 (105)

if the limit exists.

– If $f \ge 0$, then the volume V of the solid above the rectangle \mathcal{R} and below the surface z = f(x, y) is:

$$V = \iint_{\mathcal{R}} f(x, y) dA \tag{106}$$

• Fubini's Theorem: If f is continuous on the rectangle $\mathcal{R} := \{(x,y) \mid a \leq x \leq b, c \leq y \leq d\}$ then:

$$\iint_{\mathcal{R}} f(x,y)dA = \int_{a}^{b} \int_{c}^{d} f(x,y)dydx = \int_{c}^{d} \int_{a}^{b} f(x,y)dxdy$$
 (107)

• Average Value: the average value of a function f of two variables defined on the rectangle \mathcal{R} is defined to be:

$$f_{\text{avg}} := \frac{1}{A(\mathcal{R})} \iint_{\mathcal{R}} f(x, y) dA$$
 (108)

• **Double Integral of** f **over** D: let D be a bounded region in \mathbb{R}^n . Define the following function F; let \mathcal{R} be a rectangle such that $D \subseteq \mathcal{R}$ and

$$F(x,y) := \begin{cases} f(x,y) & (x,y) \in D\\ 0 & (x,y) \notin D \end{cases}$$
 (109)

then, the double integral of f over D is given by:

$$\iint_{\mathcal{D}} f(x,y)dA := \iint_{\mathcal{R}} F(x,y)dA \tag{110}$$

- We have various "types" of domains/regions:
 - <u>Type I</u>: A plane region D is Type I if it lies between the graphs of two continuous functions of x:

$$D := \{(x, y) \in \mathbb{R} \mid a \le x \le b, g_1(x) \le yg_2(x)\}$$
(111)

in this case, the double integral is given by:

$$\iint_{D} f(x,y)dA := \int_{a}^{b} \int_{q_{1}(x)}^{g_{2}(x)} f(x,y)dydx$$
 (112)

Type II: a plane region of Type II is:

$$D := \{(x, y) \in \mathbb{R}^2 \mid c \le y \le d, \ h_1(y) \le x \le h_2(y)\}$$
(113)

where $h_1, h_2 \in C(\mathbb{R})$. In this case, the double integral is given by:

$$\iint_D f(x,y)dA := \int_c^d \int_{h_1(y)}^{h_2(y)} f(x,y)dxdy$$

• If $m \le f(x,y) \le M \ \forall \ (x,y) \in D$, then:

$$mA(D) \le \iint_D f(x,y)dA \le MA(D)$$
 (114)

- Polar Rectangle: $\mathcal{R} := \{(r, \theta) \mid a \leq r \leq b, \alpha \leq \theta \leq \beta\}$
 - Change to Polar Coordinates in a Double Integral: Let $f : \mathbb{R} \to \mathbb{R}$ be continuous, \mathcal{R} a polar rectangle, f continuous. If \mathcal{R} is given by $0 \le a \le r \le b$, $\alpha \le \theta\beta$, $0 \le \beta \alpha \le 2\pi$. Then:

$$\iint_{\mathcal{R}} f(x,y)dA := \int_{\alpha}^{\beta} \int_{a}^{b} f(r\cos(\theta), r\sin(\theta))rdrd\theta \tag{115}$$

if f is continuous on a polar region of the form $D := \{(r, \theta) \mid \alpha \leq \theta \leq \beta, h_1(\theta) \leq r \leq h_2(\theta)\},$ then:

$$\iint_{D} f(x,y)dA = \int_{\alpha}^{\beta} \int_{h_{1}(\theta)}^{h_{2}(\theta)} f(r\cos(\theta), r\sin(\theta))rdrd\theta$$
 (116)

• <u>Surface Area</u>: the area of the surface z = f(x, y) for $(x, y) \in D$ where $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ are continuous is given by:

$$A(S) = \iint_{D} \sqrt{1 + \left(\frac{\partial z}{\partial x}\right) + \left(\frac{\partial z}{\partial y}\right)}$$
 (117)

2.4 Triple Integrals

• Triple Integrals over a Box: The triple integral of f over the box B is:

$$\iiint_{B} f(x, y, z)dV := \lim_{\ell, m, n \to \infty} \sum_{i=1}^{\ell} \sum_{j=1}^{m} \sum_{k=1}^{n} f(x_{ijk}^{*}, y_{ijk}^{*}, z_{ijk}^{*}) \Delta V$$
 (118)

• Cylindrical Coordinate System: a point $P \in \mathbb{R}^3$ is represented by the ordered triple (r, θ, z) ; the equations to convert are given by:

$$x = r\cos(\theta)$$
 $y = r\sin(\theta)$ $z = z$
 $r^2 = x^2 + y^2 + z^2$ $\tan(\theta) = y/z$ $z = z$

Often useful in problems involving symmetry about an axis.

• Triple Integration in Polar Coordinates: Suppose E is a Type I region whose projection D onto the xy-plane is described in polar coordinates:

$$E = \{(x, y, z) \mid (x, y) \in D \mid u_1(x, y) \le z \le u_2(x, y) \}$$

$$D = \{(r, \theta) \mid \alpha \le \theta \le \beta, \ h_1(\theta) \le r \le h_2(\theta) \}$$

Then,

$$\iint_{E} f(x,y,z)dV = \int_{\alpha}^{\beta} \int_{h_{1}(\theta)}^{h_{2}(\theta)} \int_{u_{1}(r\cos(\theta),r\sin(\theta))}^{u_{2}(r\cos(\theta),r\sin(\theta))} f(r\cos(\theta),r\sin(\theta))rdzdrd\theta$$
(119)

• Spherical Coordinates: the spherical coordinates (ρ, θ, φ) of a point $p \in \mathbb{R}^3$ are given by:

$$x = \rho \sin(\varphi) \cos(\theta), \ y = \rho \sin(\theta) \sin(\theta), \ z = \rho \cos(\varphi)$$

 $\rho^2 = x^2 + y^2 + z^2$

- The formula for a triple integral in spherical coordinates is given by:

$$\iiint_{E} f(x, y, z) dV = \int_{c}^{d} \int_{\alpha}^{\beta} \int_{a}^{b} f(\rho \sin(\varphi) \cos(\theta), \rho \sin(\theta) \sin(\theta), \rho \cos(\varphi)) \rho^{2} \sin(\varphi) d\rho d\theta d\varphi$$
(120)

• Jacobian: the Jacobian of a transformation T given by x = g(u, v) and y = h(u, v) is given by:

$$\frac{\partial(x,y)}{\partial(u,v)} = \det \begin{bmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{bmatrix}$$
(121)

– Suppose T is a C^1 -transformation whose Jacobian is non-zero and that T maps S in the uv-plane to region \mathcal{R} in the xy-plane. Suppose that f is continuous on \mathcal{R} and that both \mathcal{R} and S are Type I or Type II regions. Moreover, assume that T is bijective, except for potentially on ∂S . Then:

$$\iint_{\mathcal{R}} f(x,y)dA = \iint_{S} f(x(u,v),y(u,v))|\det(\mathbf{Jac})|dudv$$
 (122)

3 Vector Calculus

3.1 Vector Fields

• <u>Vector Field on \mathbb{R}^n </u>: Let $D \subseteq \mathbb{R}^n$. A <u>vector field</u> on \mathbb{R}^n is a function **F** that assigns to every point $(x_1, ..., x_n) \in D$ an n-dimensional vector $\mathbf{F}(x_1, ..., x_n)$. One can write this in terms of component functions, e.g. in \mathbb{R}^2 :

$$\mathbf{F}(x,y) = P(x,y)\mathbf{\hat{i}} + Q(x,y)\mathbf{\hat{j}} + Q(x,y)\mathbf{\hat{k}} = \langle P(x,y), Q(x,y), Q(x,y) \rangle$$
(123)

- <u>Gradient Vector Field</u>: if $f: \mathbb{R}^2 \to \mathbb{R}$, recall that ∇f is:

$$\nabla f(x,y) = f_x(x,y)\hat{\mathbf{i}} + f_y(x,y)\hat{\mathbf{j}}$$
(124)

which means that ∇f is a vector field on \mathbb{R}^2 (we call this vector field a **gradient vector field**).

• Conservative Vector Field: A vector field \mathbf{F} is a conservative vector field if there exists a scalar function f such that $\nabla f = \mathbf{F}$.

3.2 Line Integrals

• Line Integral: parameterise a smooth curve C by

$$x = x(t), y = y(t) \ t \in [a, b]$$

or, equivalently,

$$r(t) = x(t)\hat{\mathbf{i}} + y(t)\hat{\mathbf{j}}$$

then, the **line integral** of f along C is:

$$\int_{C} f(x,y)ds = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i^*, y_i^*) \Delta s_i$$
(125)

the line integral is given by:

$$\int_{C} f(x,y)ds = \int_{a}^{b} f(x(t),y(t))\sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}}dt$$
(126)

A more compact notation for line integrals can be given by:

$$\int_{a}^{b} f(\mathbf{r}(t))||\mathbf{r}'(t)||dt \tag{127}$$

• <u>Line Integrals over Vector Fields</u>: Let **F** be a continuous vector field defined on a smooth curve C be given by a vector function $\mathbf{r}(t)$, $t \in [a, b]$. Then, the **line integral of F along** C is:

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{a}^{b} F(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt = \int_{C} \mathbf{F} \cdot \mathbf{T} ds$$
(128)

Suppose a vector field \mathbf{F} on \mathbb{R}^3 is given in compact-form by the equation $\mathbf{F} = P\hat{\mathbf{i}} + Q\hat{\mathbf{j}} + R\hat{\mathbf{k}}$. Then,

$$\int_{C} \mathbf{F} \cdot dr = \int_{C} Pdx + Qdy + Kdz \tag{129}$$

• Fundamental Theorem for Line Integrals: Let C be a smooth curve given by the vector function $\mathbf{r}(t)$ for $t \in [a, b]$. Let f be a differentiable function f of two or three variables whose gradient vector ∇f is continuous on C. Then:

$$\int_{C} \nabla f \cdot d\mathbf{r} = f(\mathbf{r}(b)) - f(\mathbf{r}(a)) \tag{130}$$

- Path Independence
 - $-\int_C \mathbf{F} \cdot d\mathbf{r}$ is independent of path in $D \iff \int_C \mathbf{F} \cdot d\mathbf{r} = 0$ for every closed path C in D.
 - Let D be an open, connected domain. Suppose that F is a vector field on D. If $\int_C \mathbf{F} \cdot d\mathbf{r}$ is independent of path on D, then \mathbf{F} is a conservative vector field on D, that is, \exists an f such that $\nabla f = \mathbf{F}$.
 - Let $F(x,y) = P(x,y)\hat{\mathbf{i}} + Q(x,y)\hat{\mathbf{j}}$ be a conservative vector field, where P and Q have continuous first-order partial derivatives on a domain D. Then, throughout D, we have

$$\frac{\partial P}{\partial u} = \frac{\partial Q}{\partial x} \tag{131}$$

- Simple Curve: a curve that doesn't intersect itself anywhere between its endpoints.
- Simply-Connected Region: a connected region D such that every simple closed curve in D encloses points that are only in D.
- Let $\mathbf{F} = P\hat{\mathbf{i}} + Q\hat{\mathbf{j}}$ be a vector field of an open, simply-connected region D. Suppose that P and Q have continuous first-order partial derivatives and

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} \tag{132}$$

throughout D. Then, \mathbf{F} is conservative.

3.3 Green's Theorem

Counterpart of the Fundamental Theorem of Calculus for double integrals.

• Green's Theorem: Let C be a positively-oriented, piece-wise smooth simple closed curve in the plane and let D be a region bounded by C. If P and Q have continuous partial derivatives on an open region containing D, then:

$$\oint_C Pdx + Qdy = \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dA \tag{133}$$

• Can be used to calculate areas:

$$A(D) = \oint_C x dy = -\oint_C y dx = \frac{1}{2} \oint_C x dy - y dx \tag{134}$$

3.4 Curl and Divergence

Each of the following operations resemble differentiation, but one produces a vector field and the other produces a scalar field.

• <u>Curl</u>: Let $\mathbf{F} := P\hat{\mathbf{i}} + Q\hat{\mathbf{j}} + R\hat{\mathbf{k}}$ be a vector field on \mathbb{R}^3 . Assume that the partial derivatives P, Q, and R all exist. Then, the <u>curl</u> of \mathbf{F} is the vector field on \mathbb{R}^3 defined by:

$$\begin{aligned} \operatorname{curl}(F) &:= \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}\right) \hat{\mathbf{i}} + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}\right) \hat{\mathbf{j}} + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) \hat{\mathbf{k}} \\ &= \nabla \times \mathbf{F} \\ &= \det \begin{bmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{bmatrix} \end{aligned}$$

• If f is a function of three variables and has continuous, second-order partial derivatives, then:

$$\operatorname{curl}(\nabla f) = 0 \tag{135}$$

- Conservative vector fields have $\mathbf{F} = \nabla f$, and so $\operatorname{curl}(\mathbf{F}) = 0$ for conservative vector fields.
- Let **F** be a vector field defined on all of \mathbb{R}^3 whose component functions have continuous partial derivatives and $\operatorname{curl}(\mathbf{F}) = 0$. Then, **F** is a conservative vector field.
- We say that a vector field \mathbf{F} is irrotational if $\operatorname{curl}(\mathbf{F}) = 0$.
- <u>Divergence</u>: Let $\mathbf{F} := P\hat{\mathbf{i}} + Q\hat{\mathbf{j}} + R\hat{\mathbf{k}}$ be a vector field on \mathbb{R}^3 and assume that $\frac{\partial P}{\partial x}$, $\frac{\partial Q}{\partial y}$, and $\frac{\partial R}{\partial z}$ all exist. Then, the **divergence** of \mathbf{F} is defined by:

$$\operatorname{div}(\mathbf{F}) := \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \tag{136}$$

$$= \nabla \cdot \mathbf{F} \tag{137}$$

• If $\mathbf{F} := P\hat{\mathbf{i}} + Q\hat{\mathbf{j}} + R\hat{\mathbf{k}}$ be a vector field on \mathbb{R}^3 and if P, Q, and R have continuous second-order partial derivatives, then

$$\operatorname{div}(\operatorname{curl}(\mathbf{F})) = 0 \tag{138}$$

- A vector field **F** is called **incompressible** if $div(\mathbf{F}) = 0$.
- We can use what we've built up here to formulate Green's Theorem in terms of vector forms.

- The first vector form of Green's theorem is:

$$\oint_{C} \mathbf{F} \cdot d\mathbf{r} = \iint_{D} (\operatorname{curl}(\mathbf{F})) \cdot \hat{\mathbf{k}} dA \tag{139}$$

- The second vector form of Green's Theorem is:

$$\oint_C \mathbf{F} \cdot \hat{\mathbf{n}} ds = \iint_D \operatorname{div}(\mathbf{F}) dA \tag{140}$$

3.5 Parametric Surfaces and their Areas

4 Ordinary Differential Equations

4.1 Basic Concepts

- A <u>differential equation</u> is an equation that involves an unknown function and its derivatives. We say that a function is an <u>ordinary differential equation</u> if the unknown function depends only on one independent variable.
- The <u>order</u> of a differential equation is the order of the highest derivative appearing in the equation.
- A <u>solution</u> of an ODE in an unknown function y and an independent variable x on an interval I is a function y(x) satisfying the ODE for all $x \in I$.

4.2 Classification of First Order Differential Equations

First of all, the two forms that we can see ODEs come in:

- Standard Form: y' = f(x, y).
- Differential Form: M(x,y)dx + N(x,y)dy = 0.

And now, some types of first order differential equations that we will encounter:

• Linear Equation: If f(x,y) can be written as:

$$f(x,y) = -p(x)y + q(x) \tag{141}$$

then the ODE is <u>linear</u> and it can always be expressed as:

$$y' + p(x)y = q(x) \tag{142}$$

• Bernoulli Equation: A Bernoulli differential equation is an equation of the form:

$$y' + p(x)y = q(x)y^n (143)$$

• Homogeneous Equation: A differential equation in standard form is said to be homogeneous if:

$$f(tx, ty) = f(x, y) \tag{144}$$

• Separable Equation: A differential equation given in differential form

$$M(x,y)dx + N(x,y)dy = 0$$

is said to be **separable** if M(x, y) = A(x) and B(x, y) = B(y).

• Exact Equations: A differential equation in the differential form is called exact if:

$$\frac{\partial M(x,y)}{\partial y} = \frac{\partial N(x,y)}{\partial x} \tag{145}$$

• Separable ODE \Rightarrow exact ODE.

4.3 Separable First Order Differential Equations

Suppose our ODE is of the form:

$$A(x)dx + B(y)dy = 0 (146)$$

i.e., we have a separable first-order differential equation. Then, the solution is obtained by integrating:

$$\int A(x)dx + \int B(y)dy = c \tag{147}$$

where $c \in \mathbb{R}$ is our constant of integration. This is the **general solution**; if we have an initial value problem:

$$A(x)dx + B(y)dy = 0$$
$$y(x_0) = y_0$$

then we can obtain the particular solution by first obtaining the general solution, and then applying the initial condition to solve for $c \in \mathbb{R}$.

4.3.1 Reduction of a Homogeneous Equation

Suppose we have a homogeneous equation (i.e, $f(xt, yt) = f(x, t) \, \forall t$. Then, there are two transformations which we can apply to obtain a separable equation:

1. Make the following substitution: y = xv. This has the corresponding derivative:

$$\frac{dy}{dx} = v + x \frac{dv}{dx} \tag{148}$$

Then, the ODE is separable in v and x.

2. Re-write the differential equation as:

$$\frac{dx}{dy} = \frac{1}{f(x,y)} \tag{149}$$

and make the following substitution for x := yu, which gives the corresponding derivative:

$$\frac{dx}{dy} = u + y\frac{du}{dy}$$

and substitute back into the ODE.