UML and Design Patterns

Course Objectives:

The focus of this course is on design rather than implementation.

- 1. Introducing the Unified Process and showing how UML can be used within the process.
- 2. Presenting a comparison of the major UML tools for industrial-strength development.
- 3. introduction to design patterns, practical experience with a selection of central patterns.

Course Outcomes:

Students successfully completing this course will be able to:

- 1. identify the purpose and methods of use of common object-oriented design patterns
- 2. select and apply these patterns in their own designs for simple programs
- 3. represent the data dependencies of a simple program using UML
- 4. represent user and programmatic interactions using UML
- 5. create design documentation outlining the testable and complete design of a simple program
- 6. produce and present documents for the purpose of capturing software requirements and specification
- 7. produce plans to limit risks specific to software designed for use in a particular social context

Syllabus:

Unit I: Introduction : Introduction to OOAD; typical activities / workflows / disciplines in OOAD, Introduction to iterative development and the Unified Process, Introduction to UML; mapping disciplines to UML artifacts, Introduction to Design Patterns - goals of a good design, Introducing a case study & MVC architecture

Unit II: Inception: Artifacts in inception, Understanding requirements - the FURPS model, Understanding Use case model - introduction, use case types and formats, Writing use cases - goals and scope of a use case, elements / sections of a use case, Use case diagrams, Use cases in the UP context and UP artifacts, Identifying additional requirements, Writing requirements for the case study in the use case model

Unit III: Elaboration: System sequence diagrams for use case model, Domain model: identifying concepts, adding associations, adding attributes, Interaction Diagrams, Introduction to GRASP design Patterns, Design Model: Use case realizations with GRASP patterns, Design Class diagrams in each MVC layer Mapping Design to Code, Design class diagrams for case study and skeleton code

Unit 4: More Design Patterns: Fabrication, Indirection, Singleton, Factory, Facade, Publish-Subscribe

Unit 5: More UML diagrams : State-Chart diagrams, Activity diagrams, Component Diagrams, Deployment diagrams, Object diagrams

Unit 6: Advanced concepts in OOAD : Use case relationships, Generalizations Domain Model refinements, Architecture, Packaging model elements

Textbooks:

- 1. 'Applying UML and patterns' by Craig Larman, Pearson
- 2. Object-Oriented Analysis & Design with the Unified Process by Satzinger, Jackson & Burd Cengage Learning
- 3. 'UML distilled' by Martin Fowler, Addison Wesley, 2003

Reference:

- 1. O'reilly 's 'Head-First Design Patterns' by Eric Freeman et al, Oreilly
- 2. UML 2 Toolkit, by Hans-Erik Eriksson, Magnus Penker, Brian Lyons, David Fado: WILE\'-Dreamtech India Pvt. Lid.

Mobile Computing

Course Objective:

- 1) To make the student understand the concept of mobile computing paradigm, its novel applications and limitations.
- 2) To understand the typical mobile networking infrastructure through a popular GSM protocol
- 3) To understand the issues and solutions of various layers of mobile networks, namely MAC layer, Network Layer & Transport Layer
- 4) To understand the database issues in mobile environments & data delivery models.
- 5) To understand the ad hoc networks and related concepts.
- 6) To understand the platforms and protocols used in mobile environment.

Course Outcomes:

- 1) Able to think and develop new mobile application.
- 2) Able to take any new technical issue related to this new paradigm and come up with a solution(s).
- 3) Able to develop new ad hoc network applications and/or algorithms/protocols.
- 4) Able to understand & develop any existing or new protocol related to mobile environment

Syllabus:

UNIT I

Introduction: Mobile Communications, Mobile Computing – Paradigm, Promises/Novel Applications and Impediments and Architecture; Mobile and Handheld Devices, Limitations of Mobile and Handheld Devices.

GSM – Services, System Architecture, Radio Interfaces, Protocols, Localization, Calling, Handover, Security, New Data Services, GPRS.

UNIT-II

(Wireless) Medium Access Control (MAC): Motivation for a specialized MAC (Hidden and exposed terminals, Near and far terminals), SDMA, FDMA, TDMA, CDMA, Wireless LAN/(IEEE 802.11)

UNIT-III

Mobile Network Layer: IP and Mobile IP Network Layers, Packet Delivery and Handover Management, Location Management, Registration, Tunneling and Encapsulation, Route Optimization, DHCP.

UNIT-IV

Mobile Transport Layer: Conventional TCP/IP Protocols, Indirect TCP, Snooping TCP, Mobile TCP, Other Transport Layer Protocols for Mobile Networks.

Database Issues : Database Hoarding & Caching Techniques, Client-Server Computing & Adaptation, Transactional Models, Query processing, Data Recovery Process & QoS Issues.

UNIT V

Data Dissemination and Synchronization : Communications Asymmetry, Classification of Data Delivery Mechanisms, Data Dissemination, Broadcast Models, Selective Tuning and Indexing Methods, Data Synchronization – Introduction, Software, and Protocols.

UNIT VI

Mobile Ad hoc Networks (MANETs): Introduction, Applications & Challenges of a MANET, Routing, Classification of

Routing Algorithms, Algorithms such as DSR, AODV, DSDV, etc., Mobile Agents, Service Discovery. **Protocols and Platforms for Mobile Computing:** WAP, Bluetooth, XML, J2ME, JavaCard, PalmOS, Windows CE, SymbianOS, Linux for Mobile Devices, Android.

Text Books:

1. Jochen Schiller, "Mobile Communications", Addison-Wesley, Second Edition, 2009.

2. Raj Kamal, "Mobile Computing", Oxford University Press, 2007, ISBN: 0195686772

Reference Book:

- 1. ASOKE K TALUKDER, HASAN AHMED, ROOPA R YAVAGAL, "Mobile Computing, Technology Applications and Service Creation" Second Edition, Mc Graw Hill.
- 2. UWE Hansmann, Lother Merk, Martin S. Nocklous, Thomas Stober, "Principles of Mobile Computing," Second Edition, Springer.

Elective - 1

3+1

3

Embedded ad Real Time Systems

Course Objectives:

Develop an understanding of the technologies behind the embedded computing systems

- 1. technology capabilities and limitations of the hardware, software components
- 2. methods to evaluate design tradeoffs between different technology choices.
- 3. design methodologies

Course Outcomes:

Understand the basics of an embedded system

- 1. Program an embedded system
- 2. Design, implement and test an embedded system.

Identify the unique characteristics of real-time systems

- 1. Explain the general structure of a real-time system
- 2. Define the unique design problems and challenges of real-time systems

Syllabus:

Unit-I:

Introduction to Embedded systems: What is an embedded system Vs. General computing system, history, classification, major application areas, and purpose of embedded systems. Core of embedded system, memory, sensors and actuators, communication interface, embedded firmware, other system components, PCB and passive components.

UNIT-II:

8—bit microcontrollers architecture: Characteristics, quality attributes application specific, domain specific, embedded systems. Factors to be considered in selecting a controller, 8051 architecture, memory organization, registers, oscillator unit, ports, source current, sinking current, design examples.

UNIT-III:

RTOS and Scheduling, Operating basics, types, RTOS, tasks, process and threads, multiprocessing and multitasking, types of multitasking, non preemptive, preemptive scheduling.

UNIT-IV:

Task communication of RTOS, Shared memory, pipes, memory mapped objects, message passing, message queue, mailbox, signaling, RPC and sockets, task communication/synchronization issues, racing, deadlock, live lock, the dining philosopher's problem.

UNIT-V:

The producer-consumer problem, Reader writers problem, Priority Inversion, Priority ceiling, Task Synchronization techniques, busy waiting, sleep and wakery, semaphore, mutex, critical section objects, events, device, device drivers, how to clause an RTOS, Integration and testing of embedded hardware and fire ware.

UNIT-VI:

Simulators, emulators, Debuggers, Embedded Product Development life cycle (EDLC), Trends in embedded Industry, Introduction to ARM family of processor.

TEXT BOOK:

1. Introduction to embedded systems Shibu. K.V, TMH, 2009.

REFERENCE BOOKS:

- 1. Ayala & Gadre: The 8051 Microcontroller & Embedded Systems using Assembly and C, CENGAGE
- Embedded Systems, Rajkamal, TMH, 2009.
 Embedded Software Primer, David Simon, Pearson.
- 4. The 8051 Microcontroller and Embedded Systems, Mazidi, Mazidi, Pearson,.

Information Retrieval Systems

COURSE OBJECTIVES

- To provide the foundation knowledge in information retrieval.
- To equip students with sound skills to solve computational search problems.
- To appreciate how to evaluate search engines.
- To appreciate the different applications of information retrieval techniques in the Internet or Web environment.
- To provide hands-on experience in building search engines and/or hands-on experience in evaluating search engines.

COURSE OUTCOMES

After completing the course student will be able to:

- Identify basic theories in information retrieval systems
- Identify the analysis tools as they apply to information retrieval systems
- Understands the problems solved in current IR systems
- Describes the advantages of current IR systems
- Understand the difficulty of representing and retrieving documents.
- Understand the latest technologies for linking, describing and searching the web.
- Explain the concepts of indexing, vocabulary, normalization and dictionary in information retrieval.
- Evaluate information retrieval algorithms, and give an account of the difficulties of evaluation
- Use different information retrieval techniques in various application areas
- Apply IR principles to locate relevant information large collections of data
- Analyze performance of retrieval systems when dealing with unmanaged data sources
- Implement retrieval systems for web search tasks.
- Understand and apply the basic concepts of information retrieval;
- Appreciate the limitations of different information retrieval techniques;
- Write programs to implement search engines;
- Evaluate search engines;
- Develop skills in problem solving using systematic approaches;
- Solve complex problems in groups and develop group work.

SYLLLABUS:

Unit□:

Introduction to Information Storage and Retrieval System: Introduction, Domain Analysis of IR systems and other types of Information Systems, IR System Evaluation.

Introduction to Data Structures and Algorithms related to Information Retrieval \square Basic Concepts, Data structures, Algorithms

Unit II:

Inverted files: Introduction, Structures used in Inverted Files, Building Inverted file using a sorted array, Modifications to Basic Techniques.

Unit III:

Signature Files: Introduction, Concepts of Signature Files, Compression, Vertical Partitioning, Horizontal Partitioning.

Unit IV:

New Indices for Text: PAT Trees and PAT Arrays: Introduction, PAT Tree structure, algorithms on the PAT Trees, Building PAT trees as PATRICA Trees, PAT representation as arrays.

Unit V:

Stemming Algorithms: Introduction, Types of Stemming Algorithms, Experimental Evaluations of Stemming to Compress Inverted Files

Unit VI:

Thesaurus Construction: Introduction, Features of Thesauri, Thesaurus Construction, Thesaurus construction from Texts, Merging existing Thesauri

TEXT BOOK:

- 1. Frakes, W.B., Ricardo Baeza-Yates: Information Retrieval Data Structures and Algorithms, Prentice Hall, 1992
- 2. Modern Information Retrival By Yates Pearson Education.
- 3. Information Storage & Retieval By Robert Korfhage John Wiley & Sons.

REFERENCES:

- 1. Kowalski, Gerald, Mark T Maybury: Information Retrieval Systems: Theory and Implementation, Kluwer Academic Press, 1997.
- 2. Information retrieval Algorithms and Heuristics, 2ed, Springer

Multimedia Computing

Course objectives:

To provide the foundation knowledge of multimedia computing, e.g. media characteristics, compression standards, multimedia representation, data formats, multimedia technology development.

Course outcomes:

- 1. understand the characteristics of different media; understand the representations of different multimedia data; understand different data formats; be able to take into considerations in multimedia system designs;
- 2. understand the characteristics of human's visual system; understand the characteristics of human's audio system; be able to take into considerations in multimedia techniques design and implementation;
- 3. understand different compression principles; understand different compression techniques; understand different multimedia compression standards; be able to design and develop multimedia systems according to the requirements of multimedia applications.
- 4. program multimedia data and be able to design and implement media applications;

Syllabus:

UNIT-I:

Fundamental concepts in Text and Image: Multimedia and hypermedia, World Wide Web, overview of multimedia software tools. Graphics and image data representation graphics/image data types, file formats, Color in image and video: color science, color models in images, color models in video.

UNIT-II:

Fundamental concepts in video and digital audio: Types of video signals, analog video, digital video, digitization of sound, MIDI, quantization and transmission of audio.

UNIT-III:

Multimedia data compression I: Lossless compression algorithm: Run-Length Coding, Variable Length Coding, Dictionary Based Coding, Arithmetic Coding, Lossless Image Compression,

UNIT-IV:

Multimedia data compression II: Lossy compression algorithm: Quantization, Transform Coding, Wavelet-Based Coding, Embedded Zerotree of Wavelet Coefficients Set Partitioning in Hierarchical Trees (SPIHT).

UNIT-V:

Basic Video Compression Techniques: Introduction to video compression, video compression based on motion compensation, search for motion vectors, MPEG, Basic Audio Compression Techniques.

UNIT-VI:

Multimedia Networks: Basics of Multimedia Networks, Multimedia Network Communications and Applications: Quality of Multimedia Data Transmission, Multimedia over IP, Multimedia over ATM Networks, Transport of MPEG-4, Media-on-Demand (MOD).

TEXT BOOKS:

1. Fudamentals of Multimedia by Ze-Nian Li and Mark S. Drew Pearson Education.

REFERENCE BOOKS:

- 1. Digital Multimedia, Nigel chapman and jenny chapman, Wiley-Dreamtech
- 2. Macromedia Flash MX Professional 2004 Unleashed, Pearson.
- 3. Multimedia and communications Technology, Steve Heath, Elsevier (Focal Press).
- 4. Multimedia Applications, Steinmetz, Nahrstedt, Springer.
- 5. Multimedia Basics by Weixel Thomson
- 6. Multimedia Technology and Applications, David Hilman, Galgotia

3+1 0 3

Elective - II Hadoop and Big Data

Course Objectives:

- Optimize business decisions and create competitive advantage with Big Data analytics
- Introducing Java concepts required for developing map reduce programs
- Derive business benefit from unstructured data
- Imparting the architectural concepts of Hadoop and introducing map reduce paradigm
- To introduce programming tools PIG & HIVE in Hadoop echo system.

Course Outcomes:

- Preparing for data summarization, query, and analysis.
- Applying data modelling techniques to large data sets
- Creating applications for Big Data analytics
- Building a complete business data analytic solution

Unit 1:

Data structures in Java: Linked List, Stacks, Queues, Sets, Maps; Generics: Generic classes and Type parameters, Implementing Generic Types, Generic Methods, Wrapper Classes, Concept of Serialization

Reference:

Big Java 4th Edition, Cay Horstmann, Wiley John Wiley & Sons, INC

Unit 2:

Working with Big Data: Google File System, Hadoop Distributed File System (HDFS) – Building blocks of Hadoop (Namenode, Datanode, Secondary Namenode, JobTracker, TaskTracker), Introducing and Configuring Hadoop cluster (Local, Pseudo-distributed mode, Fully Distributed mode), Configuring XML files.

References

Hadoop: The Definitive Guide by Tom White, 3rd Edition, O'reilly Hadoop in Action by Chuck Lam, MANNING Publ.

Unit 3:

Writing MapReduce Programs: A Weather Dataset, Understanding Hadoop API for MapReduce Framework (Old and New), Basic programs of Hadoop MapReduce: Driver code, Mapper code, Reducer code, RecordReader, Combiner, Partitioner

Reference

Hadoop: The Definitive Guide by Tom White, 3rd Edition, O'reilly

Unit 4:

Hadoop I/O: The Writable Interface, WritableComparable and comparators, Writable Classes: Writable wrappers for Java primitives, Text, BytesWritable, NullWritable, ObjectWritable and GenericWritable, Writable collections, Implementing a Custom Writable: Implementing a RawComparator for speed, Custom comparators

Reference

Hadoop: The Definitive Guide by Tom White, 3rd Edition, O'reilly

Unit 5:

Pig: Hadoop Programming Made Easier

Admiring the Pig Architecture, Going with the Pig Latin Application Flow, Working through the ABCs of Pig Latin, Evaluating Local and Distributed Modes of Running Pig Scripts, Checking out the Pig Script Interfaces, Scripting with Pig Latin

Reference:

Hadoop for Dummies by Dirk deRoos, Paul C.Zikopoulos, Roman B.Melnyk, Bruce Brown, Rafael Coss

Unit 6:

Applying Structure to Hadoop Data with Hive:

Saying Hello to Hive, Seeing How the Hive is Put Together, Getting Started with Apache Hive, Examining the Hive Clients, Working with Hive Data Types, Creating and Managing Databases and Tables, Seeing How the Hive Data Manipulation Language Works, Querying and Analyzing Data

References:

Hadoop for Dummies by Dirk deRoos, Paul C.Zikopoulos, Roman B.Melnyk, Bruce Brown, Rafael Coss

Text Books:

- 1. Big Java 4th Edition, Cay Horstmann, Wiley John Wiley & Sons, INC
- 2. Hadoop: The Definitive Guide by Tom White, 3rd Edition, O'reilly
- 3. Hadoop in Action by Chuck Lam, MANNING Publ.
- 4. Hadoop for Dummies by Dirk deRoos, Paul C.Zikopoulos, Roman B.Melnyk, Bruce Brown, Rafael Coss

References:

- 1. Hadoop in Practice by Alex Holmes, MANNING Publ.
- 2. Hadoop MapReduce Cookbook, Srinath Perera, Thilina Gunarathne

Software Links:

- 1. Hadoop: http://hadoop.apache.org/
- 2. Hive https://cwiki.apache.org/confluence/display/Hive/Home

 $Piglatin \square \underline{http://pig.apache.org/docs/r0.7.0/tutorial.html}$

Software Project Management

Course Objectives:

- 1. To study how to plan and manage projects at each stage of the software development life cycle (SDLC)
- 2. To train software project managers and other individuals involved in software project planning and tracking and oversight in the implementation of the software project management process.
- 3. To understand successful software projects that support organization's strategic goals

Course Outcomes:

- 1. To match organizational needs to the most effective software development model
- 2. To understand the basic concepts and issues of software project management
- 3. To effectively Planning the software projects
- 4. To implement the project plans through managing people, communications and change
- 5. To select and employ mechanisms for tracking the software projects
- 6. To conduct activities necessary to successfully complete and close the Software projects
- 7. To develop the skills for tracking and controlling software deliverables
- 8. To create project plans that address real-world management challenges

Syllabus:

Unit I: Introduction

Project, Management, Software Project Management activities, Challenges in software projects, Stakeholders, Objectives & goals

Project Planning: Step-wise planning, Project Scope, Project Products & deliverables, Project activities, Effort estimation, Infrastructure

Unit II: Project Approach

Lifecycle models, Choosing Technology, Protoyping

Iterative & incremental Process Framework: Lifecycle phases, Process Artifacts, Process workflows (Book 2)

Unit III: Effort estimation & activity Planning

Estimation techniques, Function Point analysis, SLOC, COCOMO, Usecase-based estimation, Activity Identification Approaches, Network planning models, Critical path analysis

Unit IV: Risk Management

Risk categories, Identification, Assessment, Planning and management, PERT technique, Monte Carlo approach

Unit V: Project Monitoring & Control, Resource Allocation

Creating a framework for monitoring & control, Progress monitoring, Cost monitoring, Earned value Analysis, Defects Tracking, Issues Tracking, Status reports, Types of Resources, Identifying resource requirements, Resource scheduling

Unit VI: Software Quality

Planning Quality, Defining Quality - ISO 9016, Quality Measures, Quantitative Quality Management Planning, Product Quality & Process Quality

Metrics, Statistical Process Control Capability Maturity Model, Enhancing software Quality (Book3)

Text Books:

- 1. Software Project Management, Bob Hughes & Mike Cotterell, TATA Mcgraw-Hill
- 2. Software Project Management, Walker Royce: Pearson Education, 2005.
- 3. Software Project Management in practice, Pankaj Jalote, Pearson.

Reference Book:

1. Software Project Management, Joel Henry, Pearson Education.

Computer Vision

Course Objectives:

To make the students to understand

- 1. The fundamentals of Computer Graphics and Image Processing
- 2. The concepts related edge detection, segmentation, morphology and image compression methods.

Course Outcomes:

- 1. understanding of digital image processing fundamentals: hardware and software, digitization, enhancement and restoration, encoding, segmentation, feature detection
- 2. ability to apply image processing techniques in both the spatial and frequency (Fourier) domains
- 3. Ability To understand (i.e., be able to describe, analyse and reason about) how digital images are represented, manipulated, encoded and processed, with emphasis on algorithm design, implementation and performance evaluation

SYLLABUS:

UNIT I:

Introduction: Applications of Computer Graphics and Image Processing, Fundamentals on Pixel concepts, effect of Aliasing and Jaggles, Advantages of high resolution systems

DDA line algorithms: Bresenhams line and circle derivations and algorithms

UNIT II:

2-D Transformations: Translations, Scaling, rotation, reflection and shear transformations, Homogeneous coordinates, **Composite Transformations**- Reflection about an arbitrary line; Windowing and clipping, viewing transformations, Cohen- Sutherland clipping algorithm

UNIT III:

Digital Image Properties: Metric and topological properties of Digital Images, Histogram, entropy, Visual Perception, Image Quality, Color perceived by humans, Color Spaces, Palette Images, color Constancy **Color Images:** Pixel brightness transformations, Local Preprocessing, image smoothing, Edge detectors, Robert Operators, Laplace, Prewitt, Sobel, Fri-chen, Canny Edge detection

UNIT IV:

Mathematical Morphology: Basic Mathematical Concepts, Binary dilation and Erosion, Opening and closing, Gray Scale dilation and erosion, Skeleton, Thinning, Thickening Ultimate erosion, Geodesic transformations, Morphology and reconstruction, Morphological Segmentation

UNIT V:

SEGMENTATION: Threshold detection methods, Optimal Thresholding, Edge based Segmentation-Edge image thresholding, Edge relaxation, Border tracing, Hough Transforms, Region based segmentation: Region Mergingm Region Splitting, Splitting and Merging, Watershed Segmentation.

UNIT VI:

Image Data Compression: Image data Properties, Discrete Image Transformations in data compression, Discrete Cosine and Wavelet Transforms, Types of DWT and merits; Predicative Compression methods, Hierarchical and Progressive Compression methods, Comparison of Compression methods, JPEG- MPEG Image Compression methods.

Text Books:

- 1. Computer Graphics C Version, Donald Hearn, M Paulli Baker, Pearson (Uniit I and Unit II)
- 2. Image Processing, Analysis and Machine Vision, Millan Sonka, Vaclov Halvoc, Roger Boyle, Cengage Learning, 3ed, (Unit III, Unit IV, Unit V and Unit VI)

References:

- 1. Computer & Machine Vision, Theory, Algorithms, Practicles, E R Davies, Elsevier, 4ed
- 2. Digital Image Processing with MATLAB and LABVIEW, Vipul Singh, Elsevier
- 3. Digital Image Processing, R C Gonzalez &R E woods, Addison Pearson, 3ed.

Advanced Databases

Course Objectives:

- 1. Be able to design high-quality relational databases and database applications.
- 2. Have developed skills in advanced visual& conceptual modeling and database design.
- 3. Be able to translate complex conceptual data models into logical and physical data
- 4. Base designs.
- 5. Have developed an appreciation of emergingdatabase trends as theyapplyto semi-structured data, the internet, and object-oriented databases

Course Outcomes:

- 1. Identify, describe, and categorize database objects
- 2. Design and implement advanced queries using Structured Query Language
- 3. Design, construct and maintain a database and various database objects using procedural language constructs, forms and reports to solve problems
- 4. Administer a database by recommending and implementing procedures including database tuning, backup and recovery
- 5. Propose, implement and maintain database security mechanisms
- 6. Explore non-relational database systems and structures

Syllabus:

UNIT - I:

Algorithms for Query Processing and Optimization: Translating SQL queries into relational algebraalgorithms for external sorting-algorithms for select and join operations-algorithms for project and set operations-implementing aggregate operations and outer joins-combining operations using pipelining-using heuristics in query optimization.

UNIT -II:

Data base systems architecture and the system Catalog: System architectures for DBMSs, Catalogs for Relational DBMSs, System catalog information in oracle.

Practical database design and tuning:Physical Database Design in Relational Databases-an overview of Database Tuning in Relational systems.

UNIT – III:

Distributed DBMS Concepts and Design:Introduction-function and architecture of a Distributed DBMS-Distributed Relational Database Design-

transparencies in a Distributed DBMS-Date's Twelve Rules for Distributed DBMS.

Distributed DBMS-Advanced Concepts: Distributed Transaction Management-Distributed Concurrency Control-Distributed Deadlock Management-Distributed Database Recovery-The X/Open Distributed Transaction processing model-Replication Servers.

UNIT - IV:

Introduction to Object DBMSs:Advanced Database Applications-Weaknesses of RDBMSs-Object oriented Concepts-Storing objects in a Relational Database-Next generation Database systems.

Object-Oriented DBMSs-Concepts and Design :Introduction to Object-Oriented Data Models and DBMSs-OODBMS perspectives-Persistence-Issues in OODBMSs-The object Oriented Database System Manifesto-Advantages and Disadvantages of OODBMSs-Object oriented Database Design.

UNIT V:

Object-Oriented DBMSs-Standards and Systems:Object management group-Object Database Standard ODMG3.0, 1999-Object store.

Object relational DBMSs:Introduction to Object-relational Database systems- third generation Database manifesto-Postgres-an early ORDBMS-SQL3.

UNIT - VI:

Emerging database technologies and applications: Hadoop, BIg Data characteristics, NO SQL databases, BASE, Brewer's theorem, Relationship between CAP, ACID and No SQL databases, comparison with Relational databases, No SQL databases types, Comparative study of NoSQL products, Case studies using MangoDB and Cassandra

TEXT BOOK:

- 1. "Fundamentals of Database Systems", ElmasriNavate, 5/e, Pearson Education.
- 2. Principles of distributed databases S Ceri and Palgettgi TMH
- 3. Getting started with No SQL Databases, Gaurav Vaish

REFERENCES BOOKS:

1. "Principles of Distributed Database Systems", Ozsu, 2/e, PHI.

0 3 UML and Design Patterns Lab

2

(<u>Textbook no.2 i.e.</u> Object-Oriented Analysis & Design with the Unified Process by Satzinger, Jackson & Burd Cengage Learning will be the primary source for finding templates for developing different artifacts / diagrams)

Take three case studies:

- Customer Support System (in the Object-Oriented Analysis & Design with the Unified Process by Satzinger, Jackson & Burd Cengage Learning)
- Point-Of-Sale Terminal (in Larman textbook)
- Library Management System (in the reference book no. 2 i.e. UML toolkit)

Week 1:

Familiarization with Rational Rose or Umbrello

For each case study:

Week 2, 3 & 4:

For each case study:

- a) Identify and analyze events
- b) Identify Use cases
- c) Develop event table
- d) Identify & analyze domain classes
- e) Represent use cases and a domain class diagram using Rational Rose
- f) Develop CRUD matrix to represent relationships between use cases and problem domain classes

Week 5 & 6:

For each case study:

- a) Develop Use case diagrams
- b) Develop elaborate Use case descriptions & scenarios
- c) Develop prototypes (without functionality)
- d) Develop system sequence diagrams

Week 7, 8, 9 & 10:

For each case study:

- a) Develop high-level sequence diagrams for each use case
- b) Identify MVC classes / objects for each use case
- c) Develop Detailed Sequence Diagrams / Communication diagrams for each use case showing interactions among all the three-layer objects
- d) Develop detailed design class model (use GRASP patterns for responsibility assignment)
- e) Develop three-layer package diagrams for each case study

Week 11 & 12:

For each case study:

- a) Develop Use case Packages
- b) Develop component diagrams
- c) Identify relationships between use cases and represent them
- d) Refine domain class model by showing all the associations among classes

Week 13 onwards:

For each case study:

a) Develop sample diagrams for other UML diagrams - state chart diagrams, activity diagrams and deployment diagrams

Mobile Application Development Lab

2

- 1. Write a J2ME program to show how to change the font size and colour.
- 2. Write a J2ME program which creates the following kind of menu.
 - * cut
 - * copy
 - * past
 - * delete
 - * select all
 - * unselect all
- 3. Create a J2ME menu which has the following options (Event Handling):
 - cut can be on/off
 - copy can be on/off
 - paste can be on/off
 - delete can be on/off
 - select all put all 4 options on
 - unselect all put all
- 4. Create a MIDP application, which draws a bar graph to the display. Data values can be given at int[] array. You can enter four data (integer) values to the input text field.
- 5. Create an MIDP application which examine, that a phone number, which a user has entered is in the given format (Input checking):
- * Area code should be one of the following: 040, 041, 050, 0400, 044
- * There should 6-8 numbers in telephone number (+ area code)
- 6. Write a sample program to show how to make a SOCKET Connection from J2ME phone. This J2ME sample program shows how to how to make a SOCKET Connection from a J2ME Phone. Many a times there is a need to connect backend HTTP server from the J2ME application. Show how to make a SOCKET connection from the phone to port 80.
- 7. Login to HTTP Server from a J2ME Program. This J2ME sample program shows how to display a simple LOGIN SCREEN on the J2ME phone and how to authenticate to a HTTP server. Many J2ME applications for security reasons require the authentication of the user. This free J2ME sample program, shows how a J2ME application can do authentication to the backend server. Note: Use Apache Tomcat Server as Web Server and MySQL as Database Server.
- 8. The following should be carried out with respect to the given set of application domains: (Assume that the Server is connected to the well-maintained database of the given domain. Mobile Client is to be connected to the Server and fetch the required data value/information)
 - Students Marks Enquiry
 - Town/City Movie Enquiry
 - Railway/Road/Air (For example PNR) Enquiry/Status
 - Sports (say, Cricket) Update
 - Town/City Weather Update
 - Public Exams (say Intermediate or SSC)/ Entrance (Say EAMCET) Results Enquiry

Divide Student into Batches and suggest them to design database according to their domains and render information according the requests.

- 9. Write an Android application program that displays Hello World using Terminal.
- 10. Write an Android application program that displays Hello World using Eclipse.

- 11. Write an Android application program that accepts a name from the user and displays the hello name to the user in response as output using Eclipse.
- 12. Write an Android application program that demonstrates the following:
 - (i) LinearLayout
 - (ii) RelativeLayout
 - (iii) TableLayout
 - (iv) GridView layout
- 13. Write an Android application program that converts the temperature in Celsius to Fahrenheit.
- 14. Write an Android application program that demonstrates intent in mobile application development.

Software Engineering Lab

Objective:

• The Software Engineering lab will facilitate the students to develop a preliminary yet practical understanding of software development process and tools

Experiments:

Take any real time problem and do the following experiments

- 1. Do the Requirement Analysis and Prepare SRS
- 2. Using COCOMO model estimate effort.
- 3. Calculate effort using FP oriented estimation model.
- 4. Analyze the Risk related to the project and prepare RMMM plan.
- 5. Develop Time-line chart and project table using PERT or CPM project scheduling methods.
- 6. Draw E-R diagrams, DFD, CFD and structured charts for the project.
- 7. Design of Test cases based on requirements and design.
- 8. Prepare FTR
- 9. Prepare Version control and change control for software configuration items.

0 3 2 Hadoop & BigData Lab

Week 1,2:

1. Implement the following Data structures in Java a)Linked Lists b) Stacks c) Queues d) Set e) Map

Week 3, 4:

2. (i)Perform setting up and Installing Hadoop in its three operating modes:

Standalone,

Pseudo distributed,

Fully distributed

(ii)Use web based tools to monitor your Hadoop setup.

Week 5:

- 3. Implement the following file management tasks in Hadoop:
 - Adding files and directories
 - Retrieving files
 - Deleting files

Hint: A typical Hadoop workflow creates data files (such as log files) elsewhere and copies them into HDFS using one of the above command line utilities.

Week 6:

4. Run a basic Word Count Map Reduce program to understand Map Reduce Paradigm.

Week 7:

5. Write a Map Reduce program that mines weather data.

Weather sensors collecting data every hour at many locations across the globe gather a large volume of log data, which is a good candidate for analysis with MapReduce, since it is semi structured and record-oriented.

Week 8:

6. Implement Matrix Multiplication with Hadoop Map Reduce

Week 9,10:

7. Install and Run Pig then write Pig Latin scripts to sort, group, join, project, and filter your data.

Week 11,12:

8. Install and Run Hive then use Hive to create, alter, and drop databases, tables, views, functions, and indexes