Intro to Gradient Tree Boosting

Introduction

Goal

- Ensemble model
- Component models are diverse

Previous Strategies

- 1. Pick models that are different from each other in some way:
 - different model structure
 - different training sets (bagging)
 - different use of features
- 2. Estimate the models totally separately from each other
- 3. Put them together by averaging, majority vote, or stacking

Specific example: random forests

- Each tree used a different training set (bagged features)
- Each tree uses a random subset of features in searching for each split.
- The trees are all estimated separately, then predictions are averaged later.
- For example, for regression:

$$\hat{f}^{(ensemble)}(x_i) = \frac{1}{B} \sum_{b} \hat{f}^{(b)}(x_i)$$

Here, $\hat{f}^{(b)}(x_i)$ represents the prediction from one tree in the forest;

 $\hat{f}^{(ensemble)}(x_i)$ is the random forest prediction.

New Strategy: Boosting

Boosting takes a sequential approach to estimation:

- 1. Start with a simple initial model (e.g., for regression start by predicting the mean).
- 2. Repeat the following:
 - a. Fit a model that is specifically tuned to training set observations that the current ensemble does not predict well
 - b. Update the ensemble by adding in this new model

Why is this a good idea?

• Component models are specifically different from what's already in the ensemble!

A Specific Example: Gradient Tree Boosting

Let's start with building some intuition for the method, and define it more carefully later.

In this example, our component models will be "stumps": trees with only one split.

Here's a made up regression problem, and an initial prediction for each observation, given by the sample mean for the response variable.

Current Ensemble Predictions

Current Component Model Predictions

Current Ensemble Predictions

Current Component Model Predictions

Current Ensemble Predictions

Current Component Model Predictions

Current Ensemble Predictions

Current Component Model Predictions

Current Ensemble Predictions

Current Component Model Predictions

Current Ensemble Predictions

Current Component Model Predictions

Current Ensemble Predictions

Current Component Model Predictions

Current Ensemble Predictions

Current Component Model Predictions

Current Ensemble Predictions

Current Component Model Predictions

Current Ensemble Predictions

Current Component Model Predictions

Current Ensemble Predictions

Mathematical Details: Gradient Boosting for Regression

In step b of the gradient boosting process, we have a current "working" ensemble that gives predictions $\hat{y}_i = \hat{f}^{(ensemble,b)}(x_i)$.

Above, we motivated our procedure by fitting the next component model to the residuals from the current working ensemble. Let's see how we could arrive at that procedure from a more general approach (that will also be useful for classification problems).

Set up in terms of optimizing RSS

• We want to minimize the residual sum of squares

$$RSS = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

• ... but for our purpose now it's easier to think about maximizing the negative of the residual sum of squares:

$$-RSS = -\sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

- If a particular function $\hat{f}(x_i)$ gives predictions that minimize RSS on the training set, then
- $-\hat{f}(x_i)$ also maximizes -RSS on the training set
- For reasons of emotional convenience (making things look familiar for our first pass), let's instead maximize $-\frac{1}{2}RSS$

$$-\frac{1}{2}RSS = -\frac{1}{2}\sum_{i=1}^{n}(y_i - \hat{y}_i)^2$$

- If a particular function $\hat{f}(x_i)$ gives predictions that maximize -RSS on the training set, then
- $-\hat{f}(x_i)$ also maximizes $-\frac{1}{2}RSS$ on the training set

Derivatives of -RSS tell us how to change our current predictions

- Each step in the gradient boosting process makes a small change to the predicted value \hat{y}_i for each observation.
- How should we change the predicted values?
- The derivative of the negative RSS with respect to \hat{y}_{i^*} (for a particular observation index i^*) tells us the rate of change of -RSS if we make a small change to the predicted value \hat{y}_{i^*} for that observation.

$$\frac{\partial}{\partial \hat{y}_{i^*}} - \frac{1}{2}RSS = \frac{\partial}{\partial \hat{y}_{i^*}} \left[-\frac{1}{2} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 \right]
= \frac{\partial}{\partial \hat{y}_{i^*}} - \frac{1}{2} \left[(y_1 - \hat{y}_1)^2 + \dots + (y_{i^*} - \hat{y}_{i^*})^2 + \dots + (y_n - \hat{y}_n)^2 \right]
= -\frac{1}{2} 2(y_{i^*} - \hat{y}_{i^*})(-1)
= (y_{i^*} - \hat{y}_{i^*})$$

Interpretation: The (partial) derivative is equal to the residual.

- Suppose our current prediction is too small:
 - $-y_{i^*} > \hat{y}_{i^*}$
 - $-y_{i^*} \hat{y}_{i^*} > 0$
 - Derivative is positive: We can increase -RSS by increasing \hat{y}_{i^*}
 - Larger difference between observed and predicted means larger derivative.
- Suppose our current prediction is too large:
 - $-y_{i^*} < \hat{y}_{i^*}$
 - $-y_{i^*} \hat{y}_{i^*} < 0$
 - Derivative is negative: We can increase -RSS by decreasing \hat{y}_{i^*}
 - Larger difference between observed and predicted means larger (magnitude) derivative.

Estimation of the next component model

1. Calculate the **gradient vector** of our objective function with respect to the predicted values, evaluated at the current predictions from our ensemble:

$$\nabla_{\hat{y}}\left(-\frac{1}{2}RSS\right) = -\frac{1}{2}\left(\frac{\partial}{\partial \hat{y}_1}RSS, \dots, \frac{\partial}{\partial \hat{y}_n}RSS\right) = (r_1, \dots, r_n)$$

- 2. Fit a component model using the vector (r_1, \ldots, r_n) as the response
- 3. Add the new component model to the ensemble.

Opportunities for Regularization/Preventing Overfitting

• Learning Rate: Multiply predictions from our new component model by a small weight like 0.01. Prevents us from immediately overfitting training data. Comparing step 1 with learning rate 1 and learning rate 0.1:

- Number of boosting iterations: The more boosting iterations we run, the more we run the risk of overfitting.
- Minimum Reduction in RSS: How big does a gain from a split need to be, in order to make that split?
- Tree Depth: Above we fit "decision stumps": 1 split only. Allowing deeper trees allows more flexible models.
- Train on Fewer Observations: Each tree trained using a subset of training set observations.
- Train on Fewer Features: Each component model trained using a subset of available explanatory variables.

Miscellaneous Notes:

- The scaling factor of 1/2 is arbitrary especially if we use a small learning rate.
- At some point we will need to deal with a negative sign: either to get an objective function to maximize, or to indicate the direction to move to minimize RSS.

Estimation with xgboost ("eXtreme Gradient Boosting")

- Data scientists have gotten better at catchy names since the days of Type I/Type II errors.
- One of several commonly used implementations of gradient boosting. Written in C, interfaces to other languages like python
- Second-most-commonly used option is lightgbm
- Estimation can be done via the train function in the caret package.

Let's look at our favorite lidar data set:

```
library(readr)
lidar <- read_table2("http://www.evanlray.com/data/all-of-nonparametric-stat/lidar.dat")

## Parsed with column specification:
## cols(
## range = col_integer(),
## logratio = col_double()
## )

tt_split <- caret::createDataPartition(lidar$logratio, p = 0.8)
lidar_train <- lidar %>% slice(tt_split[[1]])
lidar_test <- lidar %>% slice(-tt_split[[1]])

ggplot(data = lidar_train, mapping = aes(x = range, y = logratio)) +
    geom_point()

0.00-
```



```
library(caret)
xgb_fit <- train(</pre>
  logratio ~ range,
  data = lidar_train,
  method = "xgbTree",
  trControl = trainControl(method = "cv", number = 10, returnResamp = "all"),
  tuneGrid = expand.grid(
   nrounds = c(10, 50, 100),
    eta = 0.3, # learning rate; 0.3 is the default
    gamma = 0, # minimum loss reduction to make a split; O is the default
   max depth = 1:5, # how deep are our trees?
    subsample = c(0.8, 1), # proportion of observations to use in growing each tree
    colsample_bytree = 1, # proportion of explanatory variables used in each tree
    min_child_weight = 1 # think of this as how many observations must be in each leaf node
  )
)
```

```
##
      nrounds max_depth subsample
## 1
           10
                       1
                                0.8 0.08053794
## 4
           10
                       1
                                1.0 0.08132399
                       2
## 7
           10
                                0.8 0.08405485
## 10
           10
                       2
                                1.0 0.08342368
                       3
## 13
           10
                                0.8 0.08232797
## 16
           10
                       3
                                1.0 0.08722215
## 19
           10
                       4
                                0.8 0.08792820
## 22
           10
                       4
                                1.0 0.08608794
## 25
           10
                       5
                                0.8 0.08926086
## 28
           10
                       5
                                1.0 0.08928720
## 2
           50
                       1
                                0.8 0.08238081
## 5
           50
                       1
                                1.0 0.08267746
## 8
           50
                       2
                                0.8 0.09365501
## 11
                       2
           50
                                1.0 0.09422426
## 14
           50
                       3
                                0.8 0.10030162
## 17
           50
                       3
                                1.0 0.10126625
## 20
                       4
                                0.8 0.10810732
           50
## 23
           50
                       4
                                1.0 0.10385971
## 26
           50
                       5
                                0.8 0.11049344
## 29
                       5
           50
                                1.0 0.10715467
##
  3
          100
                       1
                                0.8 0.08481607
## 6
          100
                       1
                                1.0 0.08458801
## 9
          100
                       2
                                0.8 0.10224549
                       2
## 12
          100
                                1.0 0.10258051
## 15
          100
                       3
                                0.8 0.10655722
                       3
## 18
          100
                                1.0 0.10661587
## 21
                       4
          100
                                0.8 0.11329340
##
  24
          100
                       4
                                1.0 0.10920066
## 27
          100
                       5
                                0.8 0.11512836
## 30
                       5
                                1.0 0.11186667
          100
```

Looks like we may be overfitting; our best RMSE is with the lowest values of max depth and nrounds. Let's try a lower learning rate. Also, subsample wasn't helpful. Let's just stick with subsample = 1.

```
library(caret)
xgb_fit <- train(</pre>
 logratio ~ range,
  data = lidar_train,
 method = "xgbTree",
  trControl = trainControl(method = "cv", number = 10, returnResamp = "all"),
  tuneGrid = expand.grid(
   nrounds = c(5, 10, 20, 30, 40),
   eta = c(0.1, 0.2, 0.3), # learning rate; 0.3 is the default
   gamma = 0, # minimum loss reduction to make a split; 0 is the default
   max_depth = 1:2, # how deep are our trees?
    subsample = 1, # proportion of observations to use in growing each tree
    colsample_bytree = 1, # proportion of explanatory variables used in each tree
   min_child_weight = 1 # think of this as how many observations must be in each leaf node
  )
)
xgb_fit$results %>% filter(RMSE == min(RMSE))
```

The best tuning parameter values were the middle of the ranges of values we tried (or at the edge of possible values, in the case of max_depth); seems OK.

Let's look at the predictions:

```
lidar_test <- lidar_test %>%
  mutate(
    logratio_hat = predict(xgb_fit, lidar_test)
)

ggplot() +
  geom_point(data = lidar_train, mapping = aes(x = range, y = logratio)) +
  geom_point(data = lidar_test, mapping = aes(x = range, y = logratio), color = "orange") +
  geom_line(data = lidar_test, mapping = aes(x = range, y = logratio_hat), color = "orange")
```

