A Tiny Example

Andrew Mertz and William Slough

June 15, 2005

Suppose we have an (infinite) collection of sets \mathcal{F} . We define a shatter function $\pi_{\mathcal{F}}(n)$

$$\pi_{\mathcal{F}}(n) = \max\{\# \text{ of atoms in boolean algebra generated by } S$$

$$\mid S \subset \mathcal{F} \text{ with } |S| = n\}$$

Example: Let $\mathcal F$ consist of all discs on a plane.

$$\pi_{\mathcal{F}}(1) = 2$$
 $\pi_{\mathcal{F}}(2) = 4$ $\pi_{\mathcal{F}}(3) = 8$ $\pi_{\mathcal{F}}(4) = 14$ $\pi_{\mathcal{F}}(n) = n^2 - n + 2$

More examples:

- 1. Lines on a plane $\pi_{\mathcal{F}}(n) = n^2/2 + n/2 + 1$
- 2. Disks on a plane $\pi_{\mathcal{F}}(n) = n^2 n + 2$
- 3. Balls in $\mathbb{R}^3 \pi_{\mathcal{F}}(n) = n^3/3 n^2 + 8n/3$
- 4. Intervals on a line $\pi_{\mathcal{F}}(n) = 2n$
- 5. Half-planes on a plane $\pi_{\mathcal{F}}(n) = n(n+1)/2 + 1$
- 6. Finite subsets of \mathbb{N} $\pi_{\mathcal{F}}(n) = 2^n$
- 7. Polygons in a plane $\pi_{\mathcal{F}}(n) = 2^n$

Theorem (Sauer-Shelah)

Shatter function is either 2^n or bounded by a polynomial.

Definition

Suppose growth of shatter function for \mathcal{F} is polynomial. Let r be the smallest real such that

$$\pi_{\mathcal{F}}(n) = O(n^r)$$

We define such r to be the vc-density of \mathcal{F} , vc(\mathcal{F}). If shatter function grows exponentially, we let the vc-density to be infinite.

Applications

- VapnikChervonenkis Theorem in probability
- Computability
- NIP theories

Model Theory

Model Theory studies definable sets in first-order structures.

$$(\mathbb{Q},0,1,+,\cdot,\leq)$$

$$\phi(x) = \exists y \ y \cdot y = x$$

In the structure above $\phi(x)$ defines a set of numbers that are a square.

$$\big(\mathbb{R},0,1,+,\cdot,\leq\big)$$

$$\phi(x) = \exists y \ y \cdot y = x$$

In the structure above $\phi(x)$ defines the set $[0, \infty)$.

$$(\mathbb{R},0,1,+,\cdot,\leq)$$

$$\psi(x_1, x_2) = (x_1 \cdot x_1 + x_2 \cdot x_2 \le 1.5) \wedge (x_1^2 \le x_2)$$

This defines a set in \mathbb{R}^2 .

We work with families of uniformly definable sets. Fix a formula $\phi(x_1 \dots x_n, y_1, \dots y_m)$. Plug in elements from the model for y variables to get a family of definable sets in M^n .

$$\mathcal{F}_{\phi}^{M} = \{\phi(x_1,\ldots,x_n,a_1,\ldots a_n) \mid a_1,\ldots a_n \in M\}$$

Define $\mathrm{vc}^M(\phi)$ to be the vc-density of the family \mathcal{F}_ϕ^M

$$\phi(x_1, x_2, y_1, y_2, y_3) = (x_1 - y_1)^2 + (x_2 - y_2)^2 \le y_3^2$$

In structure $(\mathbb{R},+,\cdot,\leq)$ given $a,b,r\in\mathbb{R}$ the formula $\phi(x_1,x_2,a,b,r)$ defines a disk in \mathbb{R}^2 with radius r with center (a,b). Thus $\mathcal{F}_{\phi}^{\mathbb{R}}$ is a collection of all disks in \mathbb{R}^2 .

A model M is said to have NIP property if all uniformly definable families in it have finite vc-density.

- Examples
 - $\blacktriangleright (\mathbb{R},0,1,+,\cdot,\leq)$
 - $ightharpoonup (\mathbb{C},0,1,+,\cdot)$
 - $\qquad \qquad \bullet \ \, \left(\mathbb{Q}_p,0,1,+,\cdot,|\right)$
- Non-examples
 - \triangleright (\mathbb{Q} , 0, 1, +, \cdot)
 - ightharpoonup Random graph (V, R).
 - Pseudo-finite fields.