Submitted on time? (YES/NO): Yes

Task 01: Complete the Table 01.

50 points

Task 02: Attach screenshots of the simulated circuit of the experiment showing all Multimeter/simulation readings as mentioned in the class.

30 points

Task -03: Answer to the given question.

20 points

Name & ID: Md. Rifat Ahmed ~ 1931725042

Task: 01

Table 4.1: Data for I - V characteristics

V	V _R	Vz	$I_Z = V_R / R$
(volts)	(volts)	(volts)	(mA)
0.1	9.448 μV	99.991 mV	19.999 nA
0.7	66.13 μV	699.934 mV	139.988 nA
1.0	94.472 μV	999.906 mV	199.984 nA
3.0	283.414 μV	3 V	599.965 nA
5.0	92.521 mV	4.907 V	196.848 μΑ
6.0	1.044 V	4.956 V	2.221 mA
10.0	5.013 V	4.987 V	10.665 mA

Table 4.2: Data for Load Regulation

POT_R (k ohm)	$V_{220} (mV)$	V _L (volts)	$I_L (Amp) = V_{220}/220$
1 k	897.643 mV	4.978 V	4.08 mA
3 k	340.542 mV	4.984 V	1.548 mA
5k	210.119 mV	4.986 V	955.092 μΑ
9k	118.981 mV	4.986 V	540.828 μΑ
10k	107.341 mV	4.986 V	487.92 μΑ

<u>Table 4.3: Data for Line Regulation.</u>

V (volts)	V _L (volts)
1.0	721.844 mV
3.0	2.166 V
6.0	4.331 V
9.0	4.97 V
10.0	4.978 V
11.0	4.983 V
12.0	4.988 V

Task: 02

Figure 1: Reverse Biased Zener Circuit

Figure 2: Load Regulations Circuit

Figure 3: Line Regulations Circuit

Task: 03

1. What is the difference between a Zener Diode and a diode?

Ans: A normal diode only conducts in the forward bias region and does not conduct when reverse biased because they might be damaged if they're reverse biased. But on the other hand, a Zener diode can conduct in three regions: forward, leakage and breakdown. In forward bias region it acts like a normal silicon diode, in the leakage region it can conduct a small amount of reverse saturation current and in the breakdown region it works for a fixed amount of voltage.

2. What is called a Zener Voltage?

Ans: The voltage that causes a diode to enter the Zener region in the negative bias region is called Zener voltage (V_z) .