Black-Box Optimization Benchmarking Comparison of Two Algorithms on the Noiseless Testbed

An Example BBOB 2010 Workshop Paper*

The BBOBies

ABSTRACT

This example paper shows results from the BBOB experimental procedure when comparing two algorithms. Two templates for comparing two algorithms are available: one for the noiseless and one for the noise BBOB testbed. In this example, results on the noiseless testbed are shown, comparing NEWUOA with BIPOP-CMA-ES.

Categories and Subject Descriptors

G.1.6 [Numerical Analysis]: Optimization—global optimization, unconstrained optimization; F.2.1 [Analysis of Algorithms and Problem Complexity]: Numerical Algorithms and Problems

General Terms

Algorithms

Keywords

Benchmarking, Black-box optimization

1. INTRODUCTION

This is an example paper comparing the performance of NEWUOA [6] to BIPOP-CMA-ES [2].

2. PARAMETER TUNING

The parameter settings of NEWUOA and BIPOP-CMA-ES are described in [6] and [2]. Both algorithm have a crafting effort [3] equal to zero.

3. RESULTS

Results from experiments according to [3] on the benchmark functions given in [1, 4] are presented in Figures 1, 2 and 3 and in Table 1. The **expected running time**

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

GECCO'10, July 7–11, 2010, Portland, Oregon, USA. Copyright 2010 ACM 978-1-4503-0073-5/10/07 ...\$10.00. (ERT), used in the figures and table, depends on a given target function value, $f_{\rm t} = f_{\rm opt} + \Delta f$, and is computed over all relevant trials as the number of function evaluations executed during each trial while the best function value did not reach $f_{\rm t}$, summed over all trials and divided by the number of trials that actually reached $f_{\rm t}$ [3, 5]. Statistical significance is tested with the rank-sum test for a given target $\Delta f_{\rm t}$ (10⁻⁸ in Figure 1) using, for each trial, either the number of needed function evaluations to reach $\Delta f_{\rm t}$ (inverted and multiplied by -1), or, if the target was not reached, the best Δf -value achieved, measured only up to the smallest number of overall function evaluations for any unsuccessful trial under consideration.

NEWUAO outperforms BIPOP-CMA-ES on f_1 by a factor of about 30 and on the Linear and the Rosenbrock function by a factor of about three. On the other unimodal functions the picture is comparatively mixed, presumably due to local deformations in the function topographies: besides f_1 , all function deviate significantly from a quadratic form. The most surprising results can be observed on the multimodal functions f_{21} and f_{22} , where NEWUAO consistenly outperforms the BIPOP-CMA-ES, for larger dimension and the more difficult target values even by a factor between 10 and 100. The applied independent restarts of NEWUOA appear to be more effective than the large population size of BIPOP-CMA-ES, which is in turn more helpful on the remaining multi-modal functions.

4. CPU TIMING EXPERIMENTS

For the timing experiments, both algorithms were run on f_8 and restarted until at least 30 seconds (according to [3]. The experiments for NEWUOA has been conducted on a Intel Core 2 6700 processor (2.66 GHz) on Linux 2.6.24.7. The results were 8.1; 11; 21; 58; 170; 620 and 2500 $\times 10^{-6}$ seconds per function evaluations for NEWUOA in dimensions 2; 3; 5; 10; 20; 40 and 80 respectively. The experiments for BIPOP-CMA-ES has been conducted on a Intel Core 2 6700 processor (2.66 GHz) on Linux 2.6.24.7 using Matlab R2008a. The results were 6.2; 5.8; 5.6; 5.7; 5.8; 5.9 and 6.3 $\times 10^{-4}$ seconds per function evaluation for BIPOP-CMA-ES in dimensions 2; 3; 5; 10; 20; 40 and 80 respectively.

5. REFERENCES

 S. Finck, N. Hansen, R. Ros, and A. Auger.
 Real-parameter black-box optimization benchmarking 2009: Presentation of the noiseless functions. Technical

^{*}Submission deadline: March 25th.

Figure 1: ERT ratio of NEWUOA divided by BIPOP-CMA versus $\log_{10}(\Delta f)$ for f_1-f_{24} in 2, 3, 5, 10, 20, 40-D. Ratios $<10^0$ indicate an advantage of NEWUOA, smaller values are always better. The line gets dashed when for any algorithm the ERT exceeds thrice the median of the trial-wise overall number of f-evaluations for the same algorithm on this function. Symbols indicate the best achieved Δf -value of one algorithm (ERT gets undefined to the right). The dashed line continues as the fraction of successful trials of the other algorithm, where 0 means 0% and the y-axis limits mean 100%, values below zero for NEWUOA. The line ends when no algorithm reaches Δf anymore. The number of successful trials is given, only if it was in $\{1\dots 9\}$ for NEWUOA (1st number) and non-zero for BIPOP-CMA (2nd number). Results are significant with p=0.05 for one star and $p=10^{-\#*}$ otherwise, with Bonferroni correction within each figure.

Figure 2: Expected running time (ERT in log10 of number of function evaluations) of NEWUOA versus BIPOP-CMA for 46 target values $\Delta f \in [10^{-8}, 10]$ in each dimension for functions $f_1 - f_{24}$. Markers on the upper or right egde indicate that the target value was never reached by NEWUOA or BIPOP-CMA respectively. Markers represent dimension: 2:+, $3:\triangledown$, $5:\star$, $10:\bigcirc$, $20:\square$, $40:\bigcirc$.

Figure 3: Empirical cumulative distributions (ECDF) of run lengths and speed-up ratios in 5-D (left) and 20-D (right). Left sub-columns: ECDF of the number of function evaluations divided by dimension D (FEvals/D) to reach a target value $f_{\rm opt} + \Delta f$ with $\Delta f = 10^k$, where $k \in \{1, -1, -4, -8\}$ is given by the first value in the legend, for NEWUOA (solid) and BIPOP-CMA (dashed). Light beige lines show the ECDF of FEvals for target value $\Delta f = 10^{-8}$ of algorithms benchmarked during BBOB-2009. Right sub-columns: ECDF of FEval ratios of NEWUOA divided by BIPOP-CMA, all trial pairs for each function. Pairs where both trials failed are disregarded, pairs where one trial failed are visible in the limits being > 0 or < 1. The legends indicate the number of functions that were solved in at least one trial (NEWUOA first).

	5-D	20-D
Δf 1e+1 1e+0 1e-1		#succ Δf 1e+1 1e+0 1e-1 1e-3 1e-5 1e-7 #succ
f ₁ 11 12 12 0: CMA 3.2 9 15	27 40 53 1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
1: NEW 1.1 1*3 1*3	1*3 1*3 1*3 1	15/15 1: NEW 1*3 1*3 1*3 1*3 1*3 1*3 1*3 15/15
f ₂ 83 87 88 0: CMA 13 16 18 *		$ \frac{15/15}{15/15} $ $ \frac{\mathbf{f_2}}{0: \text{CMA}} $ $ \frac{380}{35} $ $ \frac{390}{40} $ $ \frac{390}{44^{\star 2}} $ $ \frac{390}{48^{\star 3}} $ $ \frac{390}{50^{\star 3}} $ $ \frac{15/15}{15/15} $
0: CMA 13 16 18* 1: NEW 5.7* ² 22 45		15/15 0: CMA 35 40 44*2 47*3 48*3 50*3 15/15 15/15 1: NEW 18*3 42 71 130 170 220 15/15
f ₂ 720 1600 1600	1600 1700 1700 1	15/15 f ₃ 5100 7600 7600 7600 7600 7700 15/15
0: CMA 1.4 16^{*3} 140^{*2} 1: NEW 6.1 230 ∞		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
f ₄ 810 1600 1700		15/15 f ₄ 4700 7600 7700 7700 7800 1.4e5 9/15
0: CMA $2.7^{\star 3}$ ∞ ∞ 1: NEW27 300 ∞		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
f ₅ 10 10 10	10 10 10 1	15/15 f ₅ 41 41 41 41 41 41 15/15
0: CMA 4.5 6.5 6.6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1: NEW 1.3*3 1.5*3 1.5*3 f ₆ 110 210 280	580 1000 1300 1	$\frac{15/15}{15}$ f ₆ 1300 2300 3400 5200 6700 8400 15/15
0: CMA 2.3 2.1 2.2		15/15 0: CMA 1.5 1.3 1.2 1.1 1.2 1.2 15/15 15/15 1: NEW 1*2 1 1 1.1 1.3 1.3 15/15
1: NEW 1.7 2.4 3.6 f ₇ 24 320 1200	1600 1600 1600 1	f ₇ 1400 4300 9500 1.7e4 1.7e4 1.7e4 15/15
0: CMA 5 1.5 1*3	1*3 1*3 1*3 1	$15/15$ 0: CMA 1^{*3} 4.9*3 3.5*3 2.2*3 2.2*3 2.1^{*3} $15/15$
1: NEW 9.9 13 60 f ₈ 73 270 340		f ₈ 2000 3900 4000 4200 4400 4500 15/15
0: CMA 3.2 3.7 4.5	4.8 5.1 5.4 1.	15/15 0: CMA 4 4 4.3 4.5 4.6 4.6 15/15
1: NEW 1*2 1.1*2 1.2*3 fg 35 130 210		$\frac{15/15}{15/15} = \frac{1: \text{NEW}}{1} = \frac{1 \cdot 3}{1 \cdot 0} = \frac{1 \cdot 3}{1$
0: CMA 5.8 8.7 7.2	6.4 6.3 6.2 1	$\frac{15}{15}$ 0: CMA 4.7 5.7 6 6.1 6.1 6.1 15/15
1: NEW 1.8*3 3.6 2.5*2 f ₁₀ 350 500 570		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
f ₁₀ 350 500 570 0: CMA 3.5 2.9 2.7		$^{15/15}_{15/15}$ 0: CMA 1.9 1.8*2 1.6*3 1.2*3 1.1*3 1.1*3 15/15
1: NEW 3.1 5.5 8.1	14 16 21 1	$\frac{15/15}{15/15}$ $\frac{1: \text{NEW}}{\mathbf{f_{11}}}$ $\frac{1.7}{1000}$ $\frac{2.6}{2200}$ $\frac{3.3}{6300}$ $\frac{4}{9800}$ $\frac{4.7}{1.2e4}$ $\frac{5.8}{1.5e4}$ $\frac{15/15}{15/15}$
f ₁₁ 140 200 760 0: CMA 8.4 7.2 2.2		$_{15/15}$ 0: CMA $_{10^{*3}}$ 5.1*3 1.9*3 1.4*3 1.2*3 1*3 $_{15/15}$
1: NEW 3.5*3 4.7* 1.8	1.8 2 2.2 1	15/15 1: NEW 15 13 5.8 6.1 6.6 6.5 15/15
f ₁₂ 110 270 370 0: CMA 11 7.4 7.4	77 33 33 1.	15/15 0 CMA 3 4 45 45 19 2 15/15
1: NEW 3.5 2.6* 2.5*	2.6 ^{*2} 1.1 ^{*2} 1.1 [*] 1	15/15 1: NEW 3 3 3 2.5 1*2 1*3 15/15
f ₁₃ 130 190 250	1300 1800 2300 1	15/15 0: CMA 4.3 2.7 5.1 1.5*2 2.3*3 3*3 15/15
0: CMA 3.9 5.4 5.9 1: NEW 3.1 9.3 35	$54 330 \infty 4.0e4$	$0/15$ 1: NEW 1* 3 9.3 19 ∞ $\infty 1.8e5$ $0/15$
f ₁₄ 9.8 41 58	140 250 480 1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
0: CMA 1.1 2.8 3.7 1: NEW 1.7 1*3 1*3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0/15 1: NEW 1.5*3 1*3 1*3 9.1 43 0/15
f ₁₅ 510 9300 1.9e4	2.0e4 2.1e4 2.1e4 1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
0: CMA 1.6 1.5*3 1.2*2 1: NEW 5.8 41 ∞	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$0/15$ 1: NEW ∞ ∞ ∞ ∞ ∞ ∞ $0/15$
fie 120 610 2700	1.0e4 1.2e4 1.2e4 1.	$15/15$ f_{16} 1400 $2.7e4$ $7.7e4$ $1.9e5$ $2.0e5$ $2.2e5$ $15/15$
0: CMA 3 3.6*2 2.6*3 1: NEW 2.1 29 ∞		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
f ₁₇ 5.2 210 900	3700 6400 7900 1	$\frac{15/15}{15/15}$ f ₁₇ 63 1000 4000 3.1e4 5.6e4 8.0e4 15/15
0: CMA 3.4 1* 1*3 1: NEW 2.3 40 620		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
f ₁₈ 100 380 4000	9300 1.1e4 1.2e4 1	f ₁₈ 620 4000 2.0e4 6.8e4 1.3e5 1.5e5 15/15
0: CMA 1 3.4*5 1*5		15/15 1. NEW 1 204 20 20 20 20 20 1666 0/15
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.2e5 1.2e5 1.2e5 1	$\frac{0/15}{15/15}$ $\frac{1.1824}{\mathbf{f_{19}}}$ $\frac{1}{1}$ $\frac{1}{3.4e5}$ $\frac{3.4e5}{6.2e6}$ $\frac{6.2e6}{6.7e6}$ $\frac{6.7e6}{6.7e6}$ $\frac{15/15}{15/15}$
0: CMA 20 2.8e3 160		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
1: NEW 14 2.7e4 1.4e3 f ₂₀ 16 850 3.8e4	∞ ∞ $\infty 5.0e5$ $0.5e4$ $0.5e4$ $0.5e4$ $0.5e4$ $0.5e4$	14/15 f ₂₀ 82 4.6e4 3.1e6 5.5e6 5.6e6 5.6e6 14/15
0: CMA 3.3 8.2 2.8	2.1 2.2 2.2 1	$_{15/15}$ 0: CMA 4.3 9.2 1 1 1 1 14/15
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$ \frac{0/15}{14/15} \frac{1: \text{NEW}}{\mathbf{f_{21}}} \frac{1^{*3}}{560} \frac{15}{6500} \frac{\infty}{1.4\text{e4}} \frac{\infty}{1.5\text{e4}} \frac{\infty}{1.6\text{e4}} \frac{3.8e5}{1.8\text{e4}} \frac{0/15}{15} $
0: ČMA 2.3 14 24	25 25 25 1	15/15 0: CMA 3.2 55 48 46 43 39 13/15
1: NEW 1.1 2.2 1.8 f ₂₂ 71 390 940		f ₂₂ 470 5600 2.3e4 2.5e4 2.7e4 1.3e5 12/15
0: CMA 6.9 20 45	42 41 40 1	15/15 0: CMA 6.8 13 210 200 190 37 5/15
1: NEW 2.1 2.1 2 f ₂₃ 3 520 1.4e4		15/15 fog 3.2 1600 6.7e4 4.9e5 8.1e5 8.4e5 15/15
0: CMA 1.7 ^{*2} 13 3.7	1.8 1.8 1.8 1	$15/15$ 0: CMA 4.3 32 1^{*3} 2^{*2} 1.2^{*2} 1.2^{*2} $15/15$
1: NEW 6.2 2.4 7.1 f ₂₄ 1600 2.2e5 6.4e6		3/15 f ₂₄ 1.3e6 7.5e6 5.2e7 5.2e7 5.2e7 5.2e7 3/15
0: CMA 2.1 1.6 1	1 1 1 [$3/15$ 0: CMA 1^{*2} 1^{*2} 1^{*2} 1^{*2} 1^{*2} 1^{*2} 1^{*2} 1^{*2} 1^{*2}
1: NEW 2.9 2.1 ∞	∞ ∞ $\infty 3.0e4$	$0/15$ 1: NEW ∞ ∞ ∞ ∞ ∞ ∞ ∞ $0/15$

Table 1: Expected running time (ERT in number of function evaluations) divided by the best ERT measured during BBOB-2009 (given in the respective first row) for different Δf values for functions f_1-f_{24} . The median number of conducted function evaluations is additionally given in *italics*, if $\text{ERT}(10^{-7}) = \infty$. #succ is the number of trials that reached the final target $f_{\text{opt}} + 10^{-8}$. 0: CMA is BIPOP-CMA and 1: NEW is NEWUOA. Bold entries are statistically significantly better compared to the other algorithm, with p = 0.05 or $p = 10^{-k}$ where k > 1 is the number following the \star symbol, with Bonferroni correction of 48.

- Report 2009/20, Research Center PPE, 2009. Updated February 2010.
- [2] N. Hansen. Benchmarking a bi-population CMA-ES on the BBOB-2009 function testbed. In Rothlauf [7], pages 2389–2396.
- [3] N. Hansen, A. Auger, S. Finck, and R. Ros. Real-parameter black-box optimization benchmarking 2010: Experimental setup. Technical Report RR-7215, INRIA, 2010.
- [4] N. Hansen, S. Finck, R. Ros, and A. Auger. Real-parameter black-box optimization benchmarking 2009: Noiseless functions definitions. Technical Report RR-6829, INRIA, 2009. Updated February 2010.
- [5] K. Price. Differential evolution vs. the functions of the second ICEO. In Proceedings of the IEEE International Congress on Evolutionary Computation, pages 153–157, 1997
- [6] R. Ros. Benchmarking the NEWUOA on the BBOB-2009 function testbed. In Rothlauf [7], pages 2421–2428.
- [7] F. Rothlauf, editor. Genetic and Evolutionary Computation Conference, GECCO 2009, Proceedings, Montreal, Québec, Canada, July 8-12, 2009, Companion Material. ACM, 2009.