实验一 晶体管共射极单管放大电路

一、实验目的

- 1. 掌握放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响;
- 2. 学习放大器电压放大倍数、输入电阻、输出电阻等动态参数的测量方法;
- 3. 熟悉常用电子仪器及模拟电路实验设备的使用。

二、实验仪器设备

序号	设备名称	型号与规格	数量
1	双踪示波器	GDS-1102B	1台
2	函数信号发生器	AFG-2225	1台
3	数字交流毫伏表	SM2030A	1个
4	模拟电路实验箱	THM-6A	1台
5	数字万用表	MY65	1 块
6	单管放大器实验板板		1 块

三、实验预习要点

- 1. 阅读教材中有关单管放大电路的内容并估算实验电路的性能指标。假设: 3DG6的 β =100, R_{BI} =20K Ω , R_{B2} =60K Ω , R_{C} =2.4K Ω , R_{L} =2.4K Ω ,估算放大器的静态工作点,电压放大倍数 $A_{\rm u}$,输入电阻 $R_{\rm i}$ 和输出电阻 $R_{\rm o}$ 。
- 2. 调节偏置电阻 $R_{\rm B2}$,放大器输出波形出现饱和或截止失真时,晶体管的管压降 $U_{\rm CE}$ 怎样变化?

四、实验原理

阻容耦合共射极放大器如图 2-3-1 所示,采用分压式电流负反馈工作点稳定电路。

图 1 共射极单管放大器实验电路

静态工作点是否合适,对放大器的性能和输出波形都有很大影响。如 Q 点偏高,放大器在加入交流信号以后易产生饱和失真,此时 U_0 的负半周将被削底,如图 2-3-2 (a) 所示;如 Q 点偏低则易产生截止失真,即 U_0 的正半周被缩顶(一般截止失真不如饱和

失真明显),如图 2-3-2(b)所示。为了得到最大不失真输出幅度,其静态工作点最好靠近交流负载线的中间位置。另外,放大器静态工作点的选择还影响放大器的增益,工作点不同放大器的放大倍数也将不同。

图 2 静态工作点对 Uo 波形失真的影响

电子器件性能的分散性比较大,因此在设计和制作晶体管放大电路时,必须进行测量和调试。放大器的测量和调试一般包括:放大器静态工作点的测量与调试,消除干扰与自激振荡及放大器各项动态参数的测量与调试等。

1. 放大器静态工作点的测量与调试

(1) 静态工作点的测量

静态工作点是由各级电流和电压来确定的。即 I_B 、 U_{BE} (从输入特性上看,忽略 U_{CE} 的影响)、 I_C 、 U_{CE} 、 I_B (从输出特性上看)。测量静态工作点只要把以上数值测量出来即可,但在测量时应注意以下几点。第一,为了避免断开电路,应采用测量电压 U_E 或 U_C ,然后算出电流的方法,例如,只要测出 U_E 就可通过已知 R_E 把 I_C 求出。即:

$$I_C pprox I_E = \frac{U_E}{R_E}$$
算出 I_C (也可根据 $I_C = \frac{U_{CC} - U_C}{R_C}$,由 U_C 确定 I_C)。

第二,为防止测量仪器引入干扰,产生测量误差,应使测量仪器与放大器"共地"连接。例如要测 U_{CE} ,可测出 C、E 两点电位 U_{C} 、 U_{E} ,而 $U_{CE}=U_{C}-U_{E}$ 。

第三,为了减小误差,提高测量精度,注意使用仪表的内阻(选大内阻的量程但也要考虑选择合适的量程)。另外,为了在测量静态工作点时减少外界的干扰,原则上应使输入端交流短路。

(2) 静态工作点的调试

放大器静态工作点的调试是指对管子集电极电流 I_C (或 U_{CE})的调整与测试。改变电路参数 U_{CC} 、 R_C 、 R_B (R_{B1} 、 R_{B2})都会引起静态工作点的变化,如图 2-3-3 所示。但通常多采用调节偏置电阻 R_{B2} 的方法来改变静态工作点,如减小 R_{B2} ,则可使静态工作点提高等。

图 3 电路参数对静态工作点的影响

注意,前面所说的工作点"偏高"或"偏低"不是绝对的,应该是相对信号的幅度 而言,如输入信号幅度很小,即使工作点较高或较低也不一定会出现失真。所以确切地

- 说,产生波形失真是信号幅度与静态工作点设置配合不当所致。
 - 2. 放大器动态指标测试

放大器动态性能指标包括电压放大倍数、输入电阻、输出电阻、最大不失真输出电压、通频带等。

(1) 电压放大倍数 Au 的测量

调整放大器到合适的静态工作点,然后加入输入电压 U_i ,在输出电压 U_o 不失真的情况下,用交流毫伏表测出 U_i 和 U_o 的有效值,则

$$A_u = \frac{U_o}{U_i}$$

(2) 输入电阻 R_i 的测量

为了测量放大器的输入电阻,接图 2-2-4 电路在被测放大器的输入端与信号源之间 串入一已知电阻 R,在放大器正常工作的情况下,用交流毫伏表测出 U_s 和 U_i ; ,则根据输入电阻的定义可得

图 4 输入、输出电阻测量电路

测量时应注意下列几点:

- ① 由于电阻 R 两端没有电路公共接地点,所以测量 R 两端电压 U_R 时必须分别测出 U_s 和 U_i ,然后接 $U_R=U_s$ - U_i 求出 U_R 值。
- ② 电阻 R 的值不宜取得过大或过小,以免产生较大的测量误差,通常取 R 与 R_i 为同一数量级为好,本实验可取 R=1k Ω 。
 - (3)输出电阻 R_o的测量

接图 2-7-4 连接电路,在放大器正常工作条件下,测出输出端不接负载 R_L 的输出电压 U_0 和接入负载后的输出电压 U_L ,根据

$$U_L = \frac{R_L}{R_o + R_L} U_o$$

即可求出

$$R_o = \left(\frac{U_o}{U_L} - 1\right) R_L$$

在测试中应注意,必须保持 R_L 接入前后输入信号的大小不变。

(4) 最大不失真输出电压 *Uopp* 的测量(最大动态范围)

如上所述,为了得到最大动态范围,应将静态工作点调在交流负载线的中点。为此

在放大器正常工作情况下,逐步增大输入信号的幅度,并同时调节 R_W (改变静态工作点),用示波器观察 U_o ,当输出波形同时出现削底和缩顶现象(如图 2-3-5 所示)时,说明静态工作点己调在交流负载线的中点。然后反复调整输入信号,使波形输出幅度最大,且无明显失真时,用交流毫伏表测出 U_o (有效值),则动态范围等于 $2\sqrt{2}U_o$,或用示波器直接读出 U_{opp} 来。

图 5 静态工作点正常,输入信号太大引起的失真

五、实验内容与步骤

1. 调试静态工作点

实验电路如图 2-3-1 所示。为防止干扰,各电子仪器的公共端和实验电路的"地"端必须连接在一起。

(1) 静态工作点的静态测试

模拟电路实验箱接通电源前,将+12V 直流电源连接到放大器实验板的+ U_{cc} 与"地"之间,接通直流电源,放大电路不加输入信号,用万用表测量晶体管 C 和 E 之间的电压 U_{CE} (俗称管压降)。正常情况下, U_{CE} 应为正几伏,说明晶体管工作在放大状态。若 $U_{CE} \sim U_{cc}$,说明晶体管工作在截止状态;若 $U_{CE} < 0.5$ V,说明晶体管已进入饱和状态。上述两种情况说明,所设置的静态工作点偏离较大,应调节 R_{W} 使 U_{CE} 为几伏。

(2) 静态工作点的动态测试

给放大器输入频率为 1kHz、峰-峰值 U_{pp} =28mV(有效值 U_{i} =10mV)的正弦信号。 在放大器不加负载时,用示波器观察输出电压 U_{o} 的波形,调节 R_{W} ,使输出电压波形幅值最大且不失真,便获得最佳静态工作点。然后拆掉放大器的输入信号,用数字万用表直流电压 20V 档按表 2-3-1 要求测量并计算。

VV SERVICE STATE						
测量值			计算值			
$U_{\mathcal{C}}\left(\mathbf{V}\right)$	U_B (V)	U_E (V)	U_{BE} (V)	U_{CE} (V)	I_C (mA)	I _B (mA)

表1(晶体管β取 100)

2. 测量电压放大倍数

保持上述静态工作点不变,把调好的频率为 1kHz、峰-峰值 $U_{opp}=28mV$ (有效值 $U_{i=1}0mV$)的正弦信号加到放大器的输入端,用交流毫伏表和示波器分别测量下述三种情况下的 U_o 值(示波器上为均方根值),记入表 2-3-2 中并计算 A_u 值。

表 2

R_C (k Ω)	R_L (k Ω)	示波器测量值 <i>U_o</i> (V)	毫伏表测量值 <i>U_o</i> (V)	A_u
2.4	∞			
1.2	∞			
2.4	2.4			

3. 观察静态工作点对输出波形失真的影响

置 R_C =2.4k Ω , R_L = ∞ ,再逐步加大输入信号 U_i ,使输出电压 U_o 足够大但不失真。然后保持输入信号不变,分别减小和增大 R_W ,使波形出现失真,绘出 U_o 的波形,并测出失真情况下 U_{CE} 值,记入表 2-3-3 中。

表3

工作点设置	U_{CE} (V)	U。波形	失真情况	管子工作状态
Rw值减少				
Rw值增大		0 t		

六、实验注意事项

- 1. 直流电源的"地"应与实验板的"地"接在一起。
- 2. 观察放大电路的失真情况时,应缓慢调节 Rw值。

七、实验研究与思考

- 1. 试说明分压式偏置电路能稳定静态工作点的原理。
- 2. 分析静态工作点变化对放大器输出波形的影响。

八、实验报告要求

- 1. 试说明分压式电流负反馈电路静态工作点稳定的原理。
- 2. 总结 R_C , R_L 对放大器电压放大倍数的影响。
- 3. 查找相关资料,分析比较共射极、共基极、共集电极放大电路的性能特点。
- 4. 分析实验过程中出现的问题及解决办法。