CIT 103 & CIT 104

Object Oriented Programming

By

Md. Palash Uddin Lecturer Dept. of CIT

Hajee Mohammad Danesh Science and Technology University, Dinajpur.

Lecture Objective

- > To know the revolution of computer
- > To know the revolution of programming language
- > To provide inspiration for invention and innovation

What is a Programming Language?

- > A tool for instructing machines
- A notation for algorithms
- > A means for communication among programmers
- > A tool for experimentation
- > A means for controlling computer-controlled gadgets
- > A means for controlling computerized devices
- > A way of expressing relationships among concepts
- > A means for expressing high-level designs
- All of the above!
 - And more

What is a Programming Language?

- A programming language is a tool for developing executable models for a class of problem domains.
- A programming language is a notational system for describing computation in a machine-readable and human-readable form.

— Louden

Early History: John Napier and Blase Pascal

- The first mechanical calculating device is the **abacus** used around **2500 BC** to add and subtract.
- ➤In 1610, Scottish mathematician John Napier developed a series of rods made of bones that could be arranged to generate the **products of selected** numbers.
- ➤In **1865**, French mathematician **Blase Pascal** improved on this concept and produced a mechanical calculator called **Pascaline** performing addition and subtraction.
- ➤In 1920, Thomas de Colmar of France produced the arithmometer, the first four-arithmetic function practical mechanical calculator.

Early History: Johann Helfrich von Müller

- **▶Johann Helfrich von Müller** (January 16, 1746 1830)
- ➤ An engineer in the Hessian army
- Conceived of the idea of a **difference machine**
- This was described in a book published in 1786
- ➤ But Müller was unable to obtain funding to progress with the idea

Early History: Joseph Marie Jacquard

- Joseph Marie Jacquard (1752–1834)
- Jacquard Loom of early 1800s
 - Translated punch card patterns into cloth designs

Early History: Joseph Marie Jacquard

Early History: Joseph Marie Jacquard

Early History: Charles Babbage

- ➤ Charles Babbage (26 December 1791 18 October 1871)
- English Mathematician Philosopher, mechanical engineer
- ➤ Invented the first mechanical computer
- ➤ Considered "father of the computer"
- **>**Difference engine
- **≻**Analytical engine

Early History: Charles Babbage

Difference Engine

- > Based on Johann Helfrich von Müller's Difference machine.
- ➤ Mechanical calculator designed to tabulate polynomial functions (logarithmic and trigonometric functions)
- > On June 14, 1822, Charles Babbage proposed the use of such a machine
- ➤ In 1823, the British government gave Babbage £17000 to start work on the project
- Although Babbage's design was **technically feasible**, **no one** had built a mechanical device
- > By the time the government killed the project in 1842 because
 - ✓ Babbage had moved on to an **analytical engine**
 - ✓ Babbage had conflicts with his chief engineer, Joseph Clement

Early History: Charles Babbage

Difference Engine

- Later an improved "Difference Engine No. 2" has been produced between 1847 and 1849
- ➤ Per Georg Scheutz built several difference engines from 1855 onwards, one of which was sold to the British government in 1859.
- ➤ Martin Wiberg improved Scheutz's construction but used his device only for producing and publishing printed logarithmic tables.

The London Science Museum's difference engine

Early History: Charles Babbage Analytical engine

- First mechanical general-purpose computer described in 1837
- Arithmetic logic unit, control flow/conditional branching, loops, and integrated memory
- > Programs in cards with data and operations directed by **Jacquard loom**
- >employed ordinary base-10 fixed-point arithmetic
- A memory capable of holding 1,000 numbers of 40 decimal digits each (ca. 16.7 kB).
- ➤ All four arithmetic operations, comparisons and optionally square roots.
- The programming language to be employed by users was akin to modern day **assembly languages**.

English

Early History: Charles Babbage Analytical engine

- ➤In 1842, the Italian mathematician **Luigi Menabrea** (Babbage had met while travelling in Italy) wrote a description of the engine in French
- ➤In 1843, Ada Byron or Ada Lovelace (Countess of Lovelace) translate into
- >She has been described as the first computer programmer.
- Late in his life, Babbage sought ways to build a simplified version of the machine, and assembled a small part of it before his death in **1871**.
- In 1878, a committee of the British Association for the Advancement of
- Science recommended against constructing the Analytical Engine.

mill and the printing apparatus had been constructed.

➤In 1910, Babbage's son Henry Prevost Babbage reported that a part of the

Early History: Ada Lovelace

- ➤ Ada Lovelace (10 Dec 1815 27 Nov 1852)
- **➤**World's first computer programmer
- "The engine can arrange and combine its numerical quantities exactly as if they were letters or any other general symbols; And in fact might bring out its results in algebraic notation, were provision made."
- The modern computer programming language **Ada** is named in her honor

Early History: Konrad Zuse

- ➤ Konrad Zuse (22 June 1910 18 December 1995)
- ➤ Designed **Z3**, an electromechanical computer
- The world's first working programmable, fully automatic digital computer in 1941
- > lacked of the conditional branch.
- From 1943-1945, designed **Plankalkül**, first high-level non-von Neumann programming language
- ➤ This notation (**never implemented**) has features than can be found in many existing programming languages.

Early History: John von Neumann

- ➤ December 28, 1903 February 8, 1957
- Led a team that built computers with stored programs and a central processor
- ➤ Based on **von Neumann architecture**
- > Electronic Numerical Integrator And
- Computer, ENIAC first electronic general-
- purpose computer in 1946
- however, was also programmed with patch cords.

Von Neuman with ENIAC

Computer History Year/Enter	Computer History Inventors/Inventions	Computer History Description of Event
<u>1822</u>	Charles Babbage- Difference Engine (Never Built until 1990s)	No Programming
<u>1837</u>	Charles Babbage Analytical Engine (Never Built)	Program-controlled by punched cards
<u>1936</u>	Konrad Zuse - Z1 Computer (Germany)	First freely programmable computer.
<u>1942</u>	John Atanasoff & Clifford Berry Atanasoff—Berry Computer ABC (US)	Who was first in the computing biz is not always as easy as ABC.
<u>1944</u>	Howard Aiken & Grace Hopper Harvard Mark I Computer (US)	The Harvard Mark 1 computer.
<u>1946</u>	John Presper Eckert & John W. Mauchly ENIAC 1 Computer (US)	20,000 vacuum tubes later
<u>1948</u>	Frederic Williams & Tom Kilburn Manchester Baby Computer & The Williams Tube	Baby and the Williams Tube turn on the memories.

Computer History Year/Enter	Computer History Inventors/Inventions	Computer History Description of Event
<u>1947/48</u>	John Bardeen, Walter Brattain & Wiliam Shockley The Transistor	No, a transistor is not a computer, but this invention greatly affected the history of computers.
<u>1951</u>	John Presper Eckert & John W. Mauchly UNIVAC Computer	First commercial computer & able to pick presidential winners.
<u>1953</u>	International Business Machines IBM 701 EDPM Computer	IBM enters into 'The History of Computers'.
<u>1954</u>	John Backus & IBM FORTRAN Computer Programming Language	The first successful high level programming language.
<u>1955</u> (<u>In Use 1959)</u>	Stanford Research Institute, Bank of America, and General Electric ERMA and MICR	The first bank industry computer - also MICR (magnetic ink character recognition) for reading checks.

Computer History Year/Enter	Computer History Inventors/Inventions	Computer History Description of Event
<u>1958</u>	Jack Kilby & Robert Noyce The Integrated Circuit	Otherwise known as 'The Chip'
<u>1962</u>	Steve Russell & MIT Spacewar Computer Game	The first computer game invented.
<u>1964</u>	Douglas Engelbart Computer Mouse & Windows	Nicknamed the mouse because the tail came out the end.
<u>1969</u>	ARPAnet	The original Internet.
<u>1970</u>	Intel 1103 Computer Memory	The world's first available dynamic RAM chip.
<u>1971</u>	Faggin, Hoff & Mazor Intel 4004 Computer Microprocessor	The first microprocessor.
<u>1971</u>	Alan Shugart &IBM The ''Floppy'' Disk	Nicknamed the "Floppy" for its flexibility.

Computer History	Computer History	Computer History
Year/Enter	Inventors/Inventions	Description of Event
<u>1973</u>	Robert Metcalfe & Xerox The Ethernet Computer Networking	Networking.
<u>1974/75</u>	Scelbi & Mark-8 Altair & IBM 5100 Computers	The first consumer computers.
<u>1976/77</u>	Apple I, II & TRS-80 & Commodore Pet Computers	More first consumer computers.
<u>1978</u>	Dan Bricklin & Bob Frankston VisiCalc Spreadsheet Software	Any product that pays for itself in two weeks is a surefire winner.
<u>1979</u>	Seymour Rubenstein & Rob Barnaby WordStar Software	Word Processors.
<u>1981</u>	IBM The IBM PC - Home Computer	From an "Acorn" grows a personal computer revolution
<u>1981</u>	Microsoft MS-DOS Computer Operating System	From "Quick And Dirty" comes the operating system of the century.
<u>1983</u>	Apple Lisa Computer	The first home computer with a GUI, graphical user interface.
<u>1984</u>	Apple Macintosh Computer	The more affordable home computer with a GUI.
<u>1985</u>	Microsoft Windows	Microsoft begins the friendly war with Apple.

http://inventors.about.com/library/blcoindex.htm

http://www.computerhistory.org/timeline/?category=cmptr

A Brief Chronology

Early 1950s		"order codes" (primitive assemblers)
1957	FORTRAN the first high-level programming language	
1958	ALGOL	the first modern, imperative language
1960	LISP, COBOL	Interactive programming; business programming
1962	APL, SIMULA	the birth of OOP (SIMULA)
1964	BASIC, PL/I	
1966	ISWIM	first modern functional language (a proposal)
1970	Prolog, Pascal	logic programming is born
1972	С	the systems programming language
1975	Scheme	teaching languages
1978	Modula-2, CSP	Concurrency matures
1978	FP	Backus' proposal
1983	Smalltalk-80, Ada	OOP is reinvented
1984	Standard ML	FP becomes mainstream (?)
1986	C++, Eiffel	OOP is reinvented (again)
1988	CLOS, Oberon, Mathematica	
1990	Haskell	FP is reinvented
1990s	Perl, Python, Ruby, JavaScript	Scripting languages become mainstream
1995	Java	OOP is reinvented for the internet
2000	C#	

FORTRAN

- > FORmula TRANslator (1953-57) arrived for IBM 70x
- > Developed at IBM under the guidance of **John Backus**

- > John Backus (1953) sought to write programs in conventional mathematical notation, and generate code comparable to good assembly programs
- > continued to evolve, adding new features & concepts.
- FORTRAN II, FORTRAN IV, FORTRAN 66, FORTRAN 77, FORTRAN 90
- > FORTRAN I released April 1957; working by April 1958
- > The current standards: FORTRAN 2003, FORTRAN 2008
- > Still popular, e.g. for **supercomputers**
- **Backus-Naur Form (BNF)**, a standard notation to describe the syntax of a high level programming language

FORTRAN

Innovations

- > Symbolic notation for subroutines and functions
- > Assignments to variables of complex expressions
- DO loops
- Comments
- Input/output formats
- Machine-independence

Successes

- Easy to learn; high level
- Promoted by IBM; addressed large user base
- scientific computing

FORTRAN

```
PROGRAM HELLO
DO 10, I=1,10
PRINT *,'Hello World'
10 CONTINUE
STOP
END
```

All examples from the ACM "Hello World" project: www2.latech.edu/~acm/HelloWorld.shtml

ALGOL

History

- > ALGO rithmic Language
- Designed by Committee of PL experts (international team) formed in 1955
- First version (ALGOL 58) never implemented; criticisms led to ALGOL 60 and ALGOL 60

Innovations

- Universal, and machine-independent
- ➤ BNF (Backus-Naur Form) introduced to define syntax (led to syntax-directed compilers)
- > First block-structured language; variables with local scope
- Structured control statements
- Recursive procedures
- Variable size arrays
- > Semicolon as a statement separator
- Assignment operator was :=

Successes

- > Highly influenced design of other PLs but never displaced FORTRAN
- Had strong influence on subsequent languages, especially Pascal, C, and Ada

ALGOL

"Hello World" in ALGOL

```
BEGIN

FILE F (KIND=REMOTE);

EBCDIC ARRAY E [0:11];

REPLACE E BY "HELLO WORLD!";

WHILE TRUE DO

BEGIN

WRITE (F, *, E);

END;

END.
```

COBOL

History

- > <u>COmmon Business-Oriented Language</u>)
- > US Dept of Defense (DOD) wanted
- > CODASYL committee (Conference on Data Systems Languages) Result was COBOL in 1960
 - **Grace Hopper** was involved in development and wrote 1st compiler

Innovations

>

- > Separate descriptions of environment, data, and processes
 - Designed to be machine independent, unlike FORTRAN
- > Influenced by Fortran, ALGOL58, and English.
- > introduced Hierarchical data structures (records) for the first time
- > Targeted business applications
- > Intended to be readable by managers (!)

Successes

- > Adopted as de facto standard by US DOD
- > Stable standard for 25 years
- > Still *the most widely used PL* for business applications (!)

COBOL

- Continuous evolution: 60, 61, 65, 68, 74, 85, 02
- Used to be very popular in business and government, much less at universities.
- Example:

Multiply A by B giving C

Perform <loop body>

Varying J from 2 by 1

Until J > N.

COBOL

- > Dr. Grace Murray Hopper (1906-1992), Rear Admiral-US Navy
- a remarkable woman who grandly rose to the challenges of programming the first computers.
- During her lifetime as a leader in the field of software development concepts, she contributed to the transition from primitive programming techniques to the use of sophisticated compilers.
- > She believed that 'we've always done it that way' was not necessarily a good reason to continue to do so."

"Hello World" in COBOL

100800

EXIT.

```
000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. HELLOWORLD.
000300 DATE-WRITTEN. 02/05/96
                                21:04.
000400* AUTHOR BRIAN COLLINS
000500 ENVIRONMENT DIVISION.
000600 CONFIGURATION SECTION.
000700 SOURCE-COMPUTER, RM-COBOL.
000800 OBJECT-COMPUTER. RM-COBOL.
001000 DATA DIVISION.
001100 FILE SECTION.
100000 PROCEDURE DIVISION.
100200 MAIN-LOGIC SECTION.
100300 BEGIN.
100400
            DISPLAY " " LINE 1 POSITION 1 ERASE EOS.
100500
            DISPLAY "HELLO, WORLD." LINE 15 POSITION 10.
100600
            STOP RUN.
100700 MAIN-LOGIC-EXIT.
```

LISP (1960)

- ➤ LISt Processing language
- ➤ Designed at MIT by John McCarthy IBM 704 by
- ➤ Artificial Intelligence (*AI*) research needed a language that:
 - Process data in lists (rather than arrays)
 - > Handles symbolic computation (rather than numeric)
- > Pioneered Interactive Functional programming
 - > No need for variables or assignment
 - Control via recursion and conditional expressions
- > Status
 - > Still the dominant language for AI
 - ➤ COMMON LISP and Scheme are contemporary dialects
 - Meta language (ML), Miranda, and Haskell are related languages

LISP (1960)

John McCarthy (1927-2011)

- Stanford University
- AI pioneer

SIMULA (1962)

History

- SIMULAtion programming languages
- ➤ Designed and built by **Ole-Johan Dahl** and **Kristen Nygaard** at the Norwegian Computing Centre (NCC) in **Oslo University** between 1962-1967
- ➤ An extension of **ALGOL** 60 designed for simulation of concurrent processes
- ➤ Introduced the central concepts of **OOP**: classes and encapsulation
- Originally designed and implemented as a language for discrete event simulation
- Predecessor of Smalltalk and C++
- Now unused
- SIMULA I and SIMULA 67

SIMULA (1962)

Ole-Johan Dahl and Kristen Nygaard

PL/I (1964)

History

- Programming Language One in 1964
- A combination of features believed (at the time) best in FORTRAN, ALGOL 60, COBOL
- > Designed by committee of IBM and SHARE Inc.
- Intended as (large) general-purpose language for broad classes of applications

Innovations

- Support for concurrency (but not synchronization)
- Exception-handling on conditions
- good for all possible applications

Successes

- Achieved both run-time efficiency and flexibility (at expense of complexity)
- First "complete" general purpose language

"Hello World" in PL/1

HELLO: PROCEDURE OPTIONS (MAIN);

/* A PROGRAM TO OUTPUT HELLO WORLD */

FLAG = 0;

LOOP: DO WHILE (FLAG = 0);

PUT SKIP DATA('HELLO WORLD!');

END LOOP;

END HELLO;

BASIC (1964)

- **B**eginner's **A**ll-purpose **S**ymbolic **I**nstructional **C**ode
- Developed at Dartmouth in by Tom Kurtz, John Kemeny, and a succession of undergraduates; first ran in 1964
- Intended to introduce students in non-scientific disciplines to computing
- Influenced by FORTRAN and ALGOL
 - Major goal to simplify user interface:
 - Simplicity chosen over efficiency
 - Time sharing over punched cards
 - > Distinctions such as int vs real eliminated
 - Automatic defaults for declarations, values, arrays, output format, etc.
 - Clear error messages
 - > Students had access to computers at all times
- No universal BASIC standard:
 - > ANSI (American National Standards Institute) is a minimal standard
 - ➤ True Basic Kemeny's company
 - Current popular dialects: Visual BASIC

ISWIM Language (1966)

- > ISWIM (If you See What I Mean)
- > Peter Landin (1966) paper proposal

Prolog: Logic Programming (1970)

- Developed at the University of Aix Marseille, by Comerauer and Roussel, with some help from Kowalski at the University of Edinburgh
- ➤ A very high-level programming language.
- ➤ Based on formal logic
- ➤In skilled hands, it is a very strong tool.
- ➤ Non-procedural
- Can be summarized as being an intelligent database system that uses an inferencing process to infer the truth of given queries
- ➤ Prolog is 12 years younger than LISP

"Hello World" in Prolog

```
hello :- printstring("HELLO WORLD!!!!").

printstring([]).
printstring([H|T]) :- put(H), printstring(T).
```

Pascal (1970)

- Designed by Niklaus Wirth
 - ➤ (member of ALGOL committee; he proposed a revision known as ALGOL-W in 1965)
- A conceptually simplified and cleaned-up successor of ALGOL 60.
- Pascal first implemented in 1970.
- Named after 17th century French philosopher and mathematician Blaise Pascal.
- A *great* language for teaching structured programming. ~ 1980-1995.
- Widely used in academic community
- Interesting features:
 - > Case statement
 - ➤ Facility for user-defined data types
 - Record structure

C (1972)

- Designed by Kenneth Thompson (born February 4, 1943 invented the B programming language, co-invented the GO programming language) and Dennis Ritchie ((1941-2011)) at Bell Labs in 1972.
- Evolved primarily from B, but also ALGOL 68
- > Designed for coding the routines of the **UNIX operating system**.
 - "High level" systems programming language which created the notion of a portable operating system
- Concise syntax programs somewhat hard to read, understand, debug, maintain
- No built-in operations for handling composite data types such as strings, sets, and lists.
- Not strongly typed. No run-time type checking. Easily leads to programming errors.
- Provides ability to code low-level operations in a high-level language (Relatively low-level.)
- Once fashionable, still in use, but usually superseded by C++.
- Associated with **Unix** and through that with **Linux** and the **open source movement**

C

Thompson (left) with Dennis Ritchie.

K. Thompson and D. Ritchie

- Doug McIlroy (b. 1932)
 - Bell Labs
 - Everybody's favorite critic, discussion partner, and ideas man (influenced C, C++, Unix, and much more)

C (1972)

Modula-2 (1978)

- A better, conceptually uniform successor of **Pascal**.
- designed and developed between 1977 and 1985 by Niklaus Wirth at ETH Zurich
- > to serve as the sole programming language for the operating system and application software for the personal workstation Lilith
- Mechanisms to **program concurrency** (many processes running in parallel)
- Not used as much as it deserves
- Its successors, **Modula-3 and Oberon**, are even more conceptually appealing, practically useful—and almost not used at all. (They lost the popularity contest with C++.)

Functional Languages (1978)

Functional Languages

➤ John Backus (1978) — Turing award lecture

ML

- **≻**Edinburgh
- initially designed as meta-language for theorem proving
- ➤ Hindley-Milner *type inference*
- ➤ "non-pure" functional language (with assignments/side effects)

Miranda, Haskell

> "pure" functional languages with "lazy evaluation"

"Hello World" in Functional Languages

SML

print("hello world!\n");

Haskell

hello() = print "Hello World"

Ada(1975 - 1985)

- Designed according to specifications developed by US Dept of Defense by a team led by Jean Ichbiah of CII Honeywell Bul
- Requirements stressed structural programming methodology and readability over writability
 - **Renamed Ada (OO) in May 1979** (Reference manual, Mil. Std. 1815 approved 10 December 1980. Ada Bryon was born 10/12/1815)
 - Development period 1975 1985
 - ➤ 1975: first requirements documents
 - ➤ 1980: complete language proposed
 - > 1983: final standardized version
 - ➤ 1985: working usable compilers appeared
 - Contains virtually all elements of PL design
 - Exception handling
 - Parallel processing
 - > Abstract data types
 - > There are, however, two standards: Ada 83 (the original), and Ada 95.

Smalltalk (1972-80)

- Developed at Xerox PARC by Alan Kay and colleagues (esp. Adele Goldberg) inspired by SIMULA 67
- First compilation in 1972 was written on a bet to come up with "the most powerful language in the world" in "a single page of code".
- ► It is the purest **object-oriented language** ever designed (till now), **cleaner than**Java, much cleaner than C++.
- ➤ In 1980, **SMALLTALK 80**, a uniformly object-oriented programming environment became available as the first commercial release of the Smalltalk language
- ➤ Pioneered the graphical user interface everyone now uses
- ➤ Industrial use continues to the present day

environment.

Comes complete with a graphical interface and an integrated programming

51

C++(1986)

- An *object-oriented* extension of the *imperative* language C 1985-1986
- Bjarne Stroustrup
 - AT&T Bell labs
 - Texas A&M University
- > Evolved from C and SIMULA 67
- > Facilities for object-oriented programming, taken partially from **SIMULA**

67, added to C

- > Also has exception handling
- > ANSI standard approved in November, 1997
- > Complicated syntax, difficult semantics
- > Very fashionable, very much in demand
 - Java did not (yet?) push it out.

C++(1986)

Eiffel (1986)

- ➤ Eiffel a related language that supports OOP
 - Designed by **Bertrand Meyer** (B. 1950-)
 - Not directly derived from any other language
 - Smaller and simpler than C++, but still has most of the power

1990's: the Internet and Web

- During the **90's**, **Object-oriented languages** (mostly C++) became widely used in practical applications
 - The Internet and Web drove several phenomena:
 - Adding concurrency and threads to existing languages
 - Increased use of scripting languages such as Perl, Python and Tcl/Tk, Ruby, JavaScript

Java (1990-1995)

- Developed at **Sun** in the early 1990s with original goal of a language for embedded computers
- > Principals: Bill Joy, James Gosling, Mike Sheradin, Patrick Naughton
- Original name, Oak, changed for copyright reasons
- ➤ Based on C++ but significantly simplified
- Supports only OOP
- Has references, but not pointers
- Includes support for applets and a form of concurrency (i.e. threads)
- Designed for Internet programming, but general-purpose.
- > It is said (not quite correctly) to be slow.
- New fashion: maybe the next de-facto standard?

Generations of Programming Languages

1GL: machine codes

2GL: symbolic assemblers

3GL: (machine-independent) imperative languages (FORTRAN, Pascal, LISP, COBOL, ALGOL, Ada, Basic, C, C++, Java,, Smalltalk, ...)

4GL: domain specific application (generatorsMaple, Mathematica, Postscript, SPSS, SQL)

5GL: Solve problems using constraints rather than algorithms, used in Artificial Intelligence (Prolog)

How do Programming Languages Differ?

Common Constructs:

basic data types (numbers, etc.); variables; expressions; statements;
 keywords; control constructs; procedures; comments; errors ...

Uncommon Constructs:

type declarations; special types (strings, arrays, matrices, ...); sequential execution; concurrency constructs; packages/modules; objects; general functions; generics; modifiable state; ...

- Procedural: procedures, sequential execution of code are basic building blocks of program
 - FORTRAN (FORmula TRANslating; John Backus, IBM, 1957)
 - ALGOL (<u>ALGO</u>rithmic <u>L</u>anguage, 1958)
 - COBOL (<u>COmmon Business Oriented Language</u>, 1960)
 - BASIC (<u>Beginner's All-purpose Symbolic Instruction Code</u>,

 John Kemeny and Thomas Kurtz, Dartmouth, 1964)
 - Pascal (Niklaus Wirth, 1970)
 - C (Dennis Ritchie, Bell Labs, 1972)

- Object-Oriented: Program is designed around the *objects* required to solve the problem:
 - Smalltalk (Alan Kay, Xerox PARC, 1971)
 - Ada (US Dept of Defense, 1975-1993)
 - C++ (Bjarne Stroustrup, Bell Labs, 1983-1986)
 - Java (James Gosling, Sun Microsystems, 1990-1995)
 - C# (Microsoft, 2000)

Alan Kay

B. Stroustrup

J. Gosling

- Functional: Program is designed around the evaluation of *functions*, rather than modifying state
 - LISP (John McCarthy, MIT, 1960)
 - Common Lisp
 - Dylan
 - Logo
 - Scheme
 - ML (Robin Milner et al, Edinburgh, 1970s)
 - Haskell (purely functional language, 1990)

- Logic: Program is declarative, based on *mathematical logic*
 - Prolog (1970)

A program lists *facts* and *rules*, program execution is controlled deduction to answer a *query*.

- > Scripting languages (used for text processing, shells, HTML, CGI)
 - awk (Aho, Weinberger, Kerningham, Bell labs, 1978)
 - Perl (Larry Wall, NASA, 1987)
 - Tcl/Tk (John Ousterhout, 1988)
 - Python (Guido van Rossum, CWI, 1991)
 - PHP (Rasmus Lerdorf, 1995)
 - Ruby (Yukihiro Matsumoto, 1996)

A Family Tree Of Languages

A Family Tree of Languages

