Periferiche di Input/Output

Servono per comunicare dall'esterno con il sistema e viceversa. Sono collegate al sistema attraverso particolari circuiti, detti **interfaccia**. Ogni periferica necessita di un dispositivo hardware (**controller**) e di software specifici (**driver**).

Nota bene

Con Input/Output (Ingresso/Uscita, In/Out) sono denotate le interfacce che permettono lo scambio di informazioni tra il PC e il mondo esterno. Alle interfacce sono collegate le periferiche di I/O quali tastiere, mouse, monitor, touchscreen, modem ecc.

Porte seriali e parallele

La scheda di interfaccia è collegata al bus tramite porte che possono essere **seriali**, quando i dati vengono trasmessi un bit dopo l'altro, oppure **paralleli**, quando i bit dei dati vengono trasmessi contemporaneamente.

Periferiche plug and play

Termine che tradotto dall'inglese vuol dire "connetti e utilizza" e denota le periferiche che possono essere connesse a caldo (hot swap): ciò significa che in qualsiasi istante il sistema le riconoscerà e le configurerà automaticamente.

BIOS PnP: si tratta di un software implementato in ROM del sistema che abilita e determina quando una periferica si è connessa.

ESCD (Extended System Configuration Data): si tratta di un file che contiene tutte le informazioni necessarie per l'installazione delle periferiche plug and play.

Sistema operativo PnP: è il sistema operativo (da Windows 95 in poi) capace di supportare la gestione dei driver per le periferiche plug and play.

Driver: insieme delle procedure, spesso scritte in Assembly, che consente al sistema operativo di pilotare un dispositivo hardware.

USB (Universal Serial BUS)

E' una **porta seriale** progettata per consentire a più periferiche di essere connesse usando una sola interfaccia e un solo tipo di connettore e possono collegare fino a 127 periferiche senza dover spegnere il computer. Lo standard USB consente di **collegare** e **configurare** le periferiche plug and play al computer.

Tabella. Velocità di trasmissione dello standard USB.

Standard USB	Anno di uscita	Velocità
USB 1.0	1996	1,5Mbps
USB 2.0	2000	480 Mbps
USB 3.1	2017	20 Gbps

Struttura di un I/O

Un sistema di I/O è costituito da **dispositivi programmabili** che gestiscono le porte seriali (SIO – Serial Input Output) e parallele (PPI – Parallel Port Interface). Il dispositivo contiene un **buffer di dati**, un **registro di controllo** e un **registro di stato**. Questi registri sono gestiti dalla CPU mediante particolari istruzioni.

Controllore programmabile Ingresso/Uscita Contiene bit che indicano lo stato del dispositivo. Registro di stato Memoria tampone Porta per memorizzare i dati in transito. di uscita bus dati Buffer Mondo bus dati esterno Programmazione del dispositivo. NGRESSO **RD** Porta di ingresso **WR** bus di Registro di controllo controllo bus indirizzi

Tecniche per la gestione delle periferiche

Per accedere ai registri della periferica e di conseguenza eseguire un trasferimento di dati, la CPU può utilizzare tre tecniche di gestione: polling, interrupt, DMA.

■ La tecnica del polling (o controllo da programma)

- Gestione prettamente software in polling.
- La CPU verifica ciclicamente lo stato della periferica tramite il registro di stato.
- Qualora la periferica è pronta a inviare o ricevere un dato, viene eseguito il codice relativo al trasferimento del dato.
- Incoveniente: spreco di tempo della CPU per interrogazione ciclica.

■ La tecnica dell'interrupt (interruzione)

Schema di funzionamento della **gestione di periferica attraverso interrupt**. La periferica chiama la CPU, che passa all'esecuzione della routine di servizio.

■ La tecnica del DMA (Direct Memory Access)

La CPU rimane bloccata nello stato di attesa (WAIT) fino a quando la periferica non completa il trasferimento dei dati. La tecnica del DMA è comunemente utilizzata per il trasferimento di dati ad alta velocità tra interfaccia di I/O e memoria centrale.

Nel caso di accesso diretto alla memoria (DMA), i dati transitano direttamente tra interfaccia e memoria. In questo caso la CPU "si stacca" dal bus rimanendo in attesa fino alla fine dell'operazione di trasferimento di dati (percorso tracciato in verde). In caso contrario, senza DMA, i dati transitano dall'interfaccia di I/O alla memoria centrale sotto il controllo della CPU (percorso tracciato in rosso).

Verifica delle abilità

1 Che cosa si intende per Input?

Ciò che dall'esterno entra nel sistema.

2 Che cosa si intende per Output?

Ciò che viene elaborato dal sistema e che viene fornito in output.

3 Che differenza c'è tra un'interfaccia di I/O e una periferica di I/O?

La periferica è un dispositivo che serve per inserire dati e programmi (input) o fornire all'utente il risultato dell'elaborazione (output). L'interfaccia è un circuito elettrico che collega il sistema di elaborazione e la periferica. L'interfaccia fa parte del sistema, la periferica no.

4 Fai almeno tre esempi di periferica di Input.

Tastiera, mouse, microfono.

5 Fai almeno tre esempi di periferica di Output.

Monitor, stampante, cassa audio.

6 Descrivi l'architettura interna di una generica interfaccia di I/O.

Un interfaccia di I/O contiene un registro dati, un registro di controllo e un registro di stato. Tali registri sono gestiti dalla CPU tramite opportune istruzioni.

7 Quali sono i motivi per cui è necessario collegare le periferiche tramite interfacce?

E' necessario perchè la velocità delle periferiche di I/O e quella del processore sono diverse, per le caratteristiche elettriche e meccaniche differenti (le periferiche utilizzano elementi meccanici che ne limitano fisicamente il funzionamento) e dal tipo di informazioni elaborate: digitali per il computer, analogiche per il mondo esterno.