Fundamental of Power Systems Part II EEE210

Francis Ting

Xi'an Jiaotong-Liverpool University

Email: toting@xjtlu.edu.cn Room: EE324

April 16, 2018

Overview

- Balanced Three-Phase Circuits
- 2 Y-Connected Loads
- 3 Delta Connected Loads
- 4 Δ -Y Transformation for Balanced Loads
- Per-Phase Analysis
- 6 Balanced Three-Phase Power

Table of Contents

- Balanced Three-Phase Circuits
- 2 Y-Connected Loads
- 3 Delta Connected Loads
- Φ Δ -Y Transformation for Balanced Loads
- Per-Phase Analysis
- 6 Balanced Three-Phase Power

- The generation, transmission, and distribution of electric power is accomplished by means of three-phase circuits.
- A power system has Y-connected generators and usually includes both Δ and Y-connected loads.
- Generators are rarely Δ -connected , because if the voltages are not perfectly balanced, there will be net voltage, and consequently a circulating current, around the Δ .

 Assuming a positive phase sequence (phase order ABC) the generated voltages are, as shown in Figure 1:

$$E_{An} = |E_p| \angle 0^{\circ}$$

$$E_{Bn} = |E_p| \angle - 120^{\circ}$$

$$E_{Cn} = |E_p| \angle - 240^{\circ}$$

 In power systems, great care is taken to ensure that the loads of transmission lines are balanced

Figure 1: (a) Positive, or ABC, phase sequence. (b) Negative, or ACB, phase sequence.

Figure 2: A Y-connected generator supplying a Y-connected load.

7 / 33

Table of Contents

- Balanced Three-Phase Circuits
- 2 Y-Connected Loads
- 3 Delta Connected Loads
- 4 Δ -Y Transformation for Balanced Loads
- Per-Phase Analysis
- 6 Balanced Three-Phase Power

2.8 Y-Connected Loads

• To find the relationship between the line voltages (line-to-line voltages) and the phase voltages (line-to-neutral voltages), we choose the line-to-neutral voltage of the *a*-phase as the reference, thus

$$\begin{aligned} V_{an} &= |V_p| \angle 0^{\circ} \\ V_{bn} &= |V_p| \angle - 120^{\circ} \\ V_{cn} &= |V_p| \angle - 240^{\circ} \end{aligned}$$

 The line voltages at the load terminals in terms of phase voltages are found by the application of Kirchhoff's voltage law

$$V_{ab} = V_{an} - V_{bn} = \sqrt{3}|V_p| \angle 30^{\circ}$$

 $V_{bc} = V_{bn} - V_{cn} = \sqrt{3}|V_p| \angle -90^{\circ}$
 $V_{ca} = V_{cn} - V_{an} = \sqrt{3}|V_p| \angle 150^{\circ}$

Tutorial

Assuming that $V_{an}=|V_p|\angle 0^\circ$ and $V_{bn}=|V_p|\angle -120^\circ$, calculate the value of V_{ab}

2.8 Y-Connected Loads

The relationship between the line voltages and phase voltages is illustrated in Figure 3.

Figure 3: Phasor diagram showing phase and line voltages

2.8 Y-Connected Loads

ullet If the rms value of any of the line voltages is denoted by V_L , then one of the important characteristics of the Y-connected three-phase load is

$$V_L = \sqrt{3}|V_p| \angle 30^\circ,$$

with three-phase currents as

$$I_a = \frac{V_{an}}{Z_p} = |I_p| \angle - \theta,$$

$$I_b = \frac{V_{bn}}{Z_p} = |I_p| \angle - 120^\circ - \theta,$$

$$I_c = \frac{V_{cn}}{Z_p} = |I_p| \angle - 240^\circ - \theta.$$

where θ is the impedance phase angle.

• Line currents are similar to phase currents. Thus

$$I_L = I_p$$

Table of Contents

- Balanced Three-Phase Circuits
- 2 Y-Connected Loads
- 3 Delta Connected Loads
- 4 Δ -Y Transformation for Balanced Loads
- Per-Phase Analysis
- Balanced Three-Phase Power

A balanced Δ -connected load with (with equal phase impedances) is shown in Figure 4.

Figure 4: A Δ -connected load.

From Figure 4, it is clear that line voltages are the same as phase voltages,

$$V_L = V_p$$

with the following line currents,

$$I_{ab} = |I_p| \angle 0^{\circ},$$

 $I_{bc} = |I_p| \angle -120^{\circ},$
 $I_{ca} = |I_p| \angle -240^{\circ},$

where $|I_p|$ represents the magnitude of the phase current.

Further, the relationship between phase and line currents can be obtained by applying KCL at the corners of Δ .

$$\begin{split} I_{a} &= I_{ab} - I_{ca} = \sqrt{3}I_{p}\angle - 30^{\circ}, \\ I_{b} &= I_{bc} - I_{ab} = \sqrt{3}I_{p}\angle - 150^{\circ}, \\ I_{c} &= I_{ca} - I_{bc} = \sqrt{3}I_{p}\angle 90^{\circ}. \end{split}$$

In other words, if the rms line current is denoted by I_L , we have

$$I_L = \sqrt{3}|I_p|\angle - 30^{\circ}$$

Relevant phasor diagram is illustrated in Figure 5.

Tutorial

Referring Figure 4, calculate current I_a .

Figure 5: Phasor diagram showing phase and line currents

Table of Contents

- Balanced Three-Phase Circuits
- 2 Y-Connected Loads
- Open Connected Loads
- Per-Phase Analysis
- 6 Balanced Three-Phase Power

2.10 Δ -Y Transformation for Balanced Loads

Consider the fictictious Y-connected circuit of $Z_Y \Omega/\mathrm{phase}$ which is equivalent to a balanced Δ -connected circuit of $Z_\Delta \Omega/\mathrm{phase}$, as shown in Figure 6.

Figure 6: (a) Δ to (b) Y-connection.

2.10 \triangle -Y Transformation for Balanced Loads

From circuit analysis, it is found that

$$Z_Y = \frac{Z_\Delta}{3},$$

or,

$$Z_{\Delta} = 3Z_{Y}$$
.

Table of Contents

- Balanced Three-Phase Circuits
- 2 Y-Connected Loads
- 3 Delta Connected Loads
- $oldsymbol{4}$ Δ -Y Transformation for Balanced Loads
- Per-Phase Analysis
- 6 Balanced Three-Phase Power

2.11 Per-Phase Analysis

- 1. It is assumed that everything is "balanced."
- 2. Change all Δ -connected loads/sources to Y connections, this provides a neutral point.
- 3. All neutral points are at the same potential, hence, all the neutral points may be connected.
- 4. This breaks up the circuit into three separate circuits, one for each phase.
- 5. Solve the single-phase circuit. The other phases are the same after a phase shift of $\pm 120^{\circ}$.

Table of Contents

- Balanced Three-Phase Circuits
- 2 Y-Connected Loads
- 3 Delta Connected Loads
- $oldsymbol{4}$ Δ -Y Transformation for Balanced Loads
- Per-Phase Analysis
- 6 Balanced Three-Phase Power

2.12 Balanced Three-Phase Power

• The three-phase instantaneous power is

$$P_{3\phi} = 3|V_p||I_p|\cos\theta, \tag{1}$$

$$S_{3\phi} = 3|V_p||I_p|\sin\theta. \tag{2}$$

Thus the complex three-phase power is

$$S_{3\phi} = P_{3\phi} + jQ_{3\phi} = 3V_p I_p^*$$

2.12 Balanced Three-Phase Power

- In a Y-connected load, the phase voltage $|V_p|=|V_L|/\sqrt{3}$ and the phase current $I_p=I_L$.
- And, in a Δ -connected load, $V_p = V_L$ and $|I_p| = |I_L|/\sqrt{3}$.
- Substituting both into (1) and (2), the real and reactive powers for either connection are given by

$$P_{3\phi} = \sqrt{3}|V_L||I_L|\cos\theta$$

and

$$Q_{3\phi} = \sqrt{3}|V_L||I_L|\sin\theta$$

Figure 7: Three-phase circuit diagram for Example 2.7

Figure 8: Single-phase circuit diagram for Example 2.7

Examples (2.7)

A three-phase line has an impedance of 2+j4 Ω as shown in Figure 7. The line feeds two balanced three-loads that are connected in parallel. The first load is Y-connected and has an impedance of 30+j40 Ω per phase. The second load is $\Delta-$ connected and has an impedance of 60-j45 Ω . The line is energized at the sending end from a three-phase balanced supply of line voltage 207.85 V. Taking the phase voltage V_a as reference, determine:

- (a) The current, real power, and reactive power drawn from the supply.
- (b) The line voltage at the combined loads.
- (c) The current per phase in each load.
- (d) The total real and reactive powers in each load and the line.

Tutorial: Write down your solution here

Tutorial: Write down your solution here

Important Summary

Y-connected	Δ -connected
$V_L = \sqrt{3} V_p \angle 30^\circ$	$V_L = V_p$
$I_L = I_p$	$I_L = \sqrt{3} I_p \angle - 30^{\circ}$

The End