MPC for Group Reconstruction Circuits

Lúcás Críostóir Meier

June 9, 2022

Abstract

In this paper, we present a thing.

1 Introduction

Write the introduction

2 Background

Throughout this paper, we let \mathbb{G} denote a group of prime order q, with generators G and H. Let \mathbb{F}_q denote the scalar field associated with this group, and let $\mathbb{Z}/(q)$ denote the additive group of elements in this field.

We make heavy use of group homomorphisms throughout this paper. We let

$$\varphi(P_1,\ldots,P_m):\mathbb{A}\to\mathbb{B}$$

denote a homomorphism from \mathbb{A} to \mathbb{B} , parameterized by some public values P_1, \ldots, P_m . Commonly \mathbb{A} will be a product of several groups $\mathbb{G}_1, \ldots, \mathbb{G}_n$, in which case we'd write:

$$\varphi(P_1,\ldots,P_m)(x_1,\ldots,x_n)$$

to denote the application of φ to an element (x_1, \ldots, x_n) of the product group. The public values P_i are often left implicit.

We often write products (x_1, \ldots, x_n) as a single vector $\mathbf{x} \in \mathbb{A}^n$. Operations between these vectors are done element-wise, so we write $\mathbf{x} + \mathbf{y}$ for $(x_1 + y_1, \ldots, x_n + y_n)$, as well as $\mathbf{x} \cdot G$ for $(x_1 \cdot G, \ldots, x_n \cdot G)$.

2.1 Pedersen Commitments

A key component of our scheme are Pedersen commitments [Ped92]. In their basic form, they allow one to commit to a value in $x \in \mathbb{Z}/(q)$. This is done by sampling a random $r \stackrel{R}{\leftarrow} \mathbb{Z}/(q)$, and forming the commitment:

$$Com(x, r) := x \cdot G + r \cdot H$$

where H is a generator of \mathbb{G} , independent from G.

This scheme is *perfectly hiding*, because $r \cdot H$ acts like a random element of \mathbb{G} , and completely masks $x \cdot G$.

On the other hand, this scheme is only *computationally* binding. This is because the discrete logarithm H with respect to G must be kept hidden. If the discrete logarithm of H is known, then it becomes possible to *equivocate*, by finding two inputs (x, r) and (x', r') with equal commitments, i.e. Com(x, r) = Com(x', r').

In fact, we can more precisely characterize this property: knowing the discrete logarithm of H is necessary in order to be able to equivocate.

Claim 2.1. Given two inputs (x, r) and (x', r') such that Com(x, r) = Com(x', r'), it's possible to efficiently compute a value h such that $h \cdot G = H$.

The proof is just a matter of algebra:

$$x \cdot G + r \cdot H = x' \cdot G + r' \cdot H$$
$$(x - x') \cdot G = (r' - r) \cdot H$$
$$\frac{(x - x')}{(r' - r)} \cdot G = H$$

Thus (x - x')/(r' - r) is our discrete logarithm.

2.2 Sigma Protocols

2.3 Maurer's φ -Proof

In [Mau09], Maurer generalized Schnorr's sigma protocol for knowledge of the discrete logarithm [Sch90] to a much larger class of relations. In particular, Maurer provided a sigma protocol for proving knowledge of the pre-image of a group homomorphism φ . We denote this protocol as a " φ -proof", and recapitulate the scheme here.

Given a homomorphism $\varphi: \mathbb{A} \to \mathbb{B}$, and a public value $X \in \mathbb{B}$, the prover wants to demonstrate knowledge of a private value $x \in \mathbb{A}$ such that $\varphi(x) = X$. The prover does this by means of Protocol 2.1:

Protocol 2.1:
$$\varphi$$
-Proof

Prover Verifier

knows $x \in \mathbb{A}$ public $X \in \mathbb{B}$

$$k \stackrel{R}{\leftarrow} \mathbb{A}$$

$$K \leftarrow \varphi(k)$$

$$\stackrel{K}{\longrightarrow}$$

$$c \stackrel{R}{\leftarrow} \mathbb{Z}/(p)$$

$$\stackrel{c}{\longleftarrow}$$

$$s \leftarrow k + c \cdot x$$

$$\stackrel{s}{\longrightarrow}$$

$$\varphi(s) \stackrel{?}{=} K + c \cdot X$$

Here, p is chosen such that $\forall B \in \mathbb{B}$. $p \cdot B = 0$. In practice, we'll set p = q, which will work perfectly for the groups we use, which are all products of \mathbb{G} or $\mathbb{Z}/(q)$.

Claim 2.2. Protocol 2.1 is a valid sigma protocol.

Completeness follows directly from the fact that φ is a homomorphism.

For the HVZK property, the simulator S(X, c) works by generating a random $s \stackrel{R}{\leftarrow} A$, and then setting $K := \varphi(S) - c \cdot X$.

Finally, we prove 2-extractability. Given two verifying transcripts (K, c, s) and (K, c', s') sharing the first message, we extract a value \hat{x} satisfying $\varphi(\hat{x}) = X$ as follows:

$$\varphi(s) - c \cdot X = K = \varphi(s') - c' \cdot X$$
$$\varphi(s) - \varphi(s') = c \cdot X - c' \cdot X$$
$$\frac{1}{c - c'} \cdot \varphi(s - s') = X$$
$$\varphi\left(\frac{s - s'}{c - c'}\right) = X$$

Thus, defining $\hat{x} := (s - s')/(c - c')$, we successfully extract a valid preimage.

We conclude that the protocol is a valid sigma protocol.

Maurer's protocol can also work even in the case where the order of the groups are not known, but this makes the challenge generation a bit more complicated, and we don't need this functionality in this work.

2.4 UC Security and the Hybrid Model

2.5 Ideal Functionalities for Sigma Protocols

Functionality 2.1: Zero-Knowledge Functionality $\mathcal{F}(\mathtt{ZK},\varphi)$

A functionality \mathcal{F} for parties P_1, \ldots, P_n .

On input (prove, sid, x) from P_i :

 \mathcal{F} checks that sid has not been used by P_i before.

 \mathcal{F} generates a new token π , and sets $x_{\pi} \leftarrow x$.

 \mathcal{F} replies with (\mathtt{proof}, π) .

On input (verify, X, π):

 \mathcal{F} replies with (verify-result, $\varphi(x_{\pi}) \stackrel{?}{=} X$).

2.6 Broadcast Functionalities

Functionality 2.2: Authenticated Broadcast Functionality C

A functionality C for parties P_1, \ldots, P_n .

On receiving (broadcast-in, sid, m) from P_i :

 \mathcal{C} checks that sid has not been used by P_i before.

 \mathcal{C} sends (broadcast-out, pid, sid, m) to every party P_i .

3 Group Reconstruction Circuits

- 3.1 Formal Definition
- 3.2 Normalized Form

4 MPC Protocol for GRCs

4.1 Ideal Functionality

Functionality 4.1: GRC functionality $\mathcal{F}(\mathtt{GRC}, \Phi, \mathbf{X}^j, \mathbf{Y}^j)$

A functionality \mathcal{F} for parties P_1, \ldots, P_n .

After receiving (input, sid, \mathbf{x}^j , \mathbf{y}^j , $\boldsymbol{\alpha}^j$, \mathbf{k}^j) from every party P_j : \mathcal{F} checks, for every $j \in [n]$, that:

$$\mathbf{X}^{j} \stackrel{?}{=} \mathbf{x}^{j} \cdot G$$

$$\mathbf{Y}^{j} \stackrel{?}{=} \mathbf{y}^{j} \cdot G + \boldsymbol{\alpha}^{j} \cdot H$$

 \mathcal{F} computes, for each round $r \in [d]$:

$$\mathbf{V}_r^j := \varphi_r(\mathbf{V}_1, \dots, \mathbf{V}_{r-1})(\mathbf{x}^j, \mathbf{y}^j, \mathbf{k}^j)$$

$$\mathbf{V}_r := \sum_j \mathbf{V}_r^j$$

 \mathcal{F} sends (output, sid, $\mathbf{V}_1^1, \dots, \mathbf{V}_d^n$) to every party P_j .

4.2 Protocol

 $\psi_r(\mathbf{x}, \mathbf{y}, \boldsymbol{\alpha}, \mathbf{k}, \boldsymbol{\beta}) := (\varphi_r(\mathbf{x}, \mathbf{y}, \mathbf{j}), \mathbf{x} \cdot G, \text{Commit}(\mathbf{y}, \boldsymbol{\alpha}), \text{Commit}(\mathbf{k}, \boldsymbol{\beta}))$

Protocol 4.1: MPC protocol for $\Phi, \mathbf{X}^j, \mathbf{Y}^j$

Each party P_j has inputs \mathbf{x}^j and \mathbf{y}^j , committed to by \mathbf{X}^j and \mathbf{Y}^j . They also have decommitments $\boldsymbol{\alpha}^j$ for \mathbf{Y}^j . Each party P_j also has a vector \mathbf{k}^j , which honest parties will have generated randomly.

Round 0

Each party P_j generates a random vector $\boldsymbol{\beta}^j$, and creates a commitment to \mathbf{k}^j with:

$$\mathbf{K}^j := \operatorname{Commit}(\mathbf{k}^j, \boldsymbol{\beta}^j)$$

 P_j sends (broadcast-in, sid, \mathbf{K}^j) to the broadcast functionality \mathcal{C} . P_i waits to receive (broadcast-out, sid, \mathbf{K}^i) for each other party i.

Round r

Each party P_j computes $\mathbf{V}_r^j := \varphi_r(\mathbf{V}_1, \dots, \mathbf{V}_{r-1})(\mathbf{x}^j, \mathbf{y}^j, \mathbf{k}^j)$. Each party P_j sends (prove, sid, $(\mathbf{x}^j, \mathbf{y}^j, \boldsymbol{\alpha}^j, \mathbf{k}^j, \boldsymbol{\beta}^j)$) to $\mathcal{F}(\mathsf{ZK}, \psi_r)$, receiving π_r^j in return.

Each party P_i sends $(\mathbf{V}_r^j, \pi_r^j)$ to every other party.

After receiving $(\mathbf{V}_r^i, \pi_r^i)$ from all other parties, P_j checks, for each i, that the proof is valid, by sending (verify, $(\mathbf{V}_r^i, \mathbf{X}^i, \mathbf{Y}^i, \mathbf{K}^i), \pi_r^i)$ to $\mathcal{F}(\mathsf{ZK}, \psi_r)$, and aborting if the functionality returns 0. Each party P_j then stores each \mathbf{V}_r^i as part of its output.

Claim 4.1. Provided that the discrete logarithm is hard in \mathbb{G} , Protocol 4.1 securely implements Functionality 4.1, in the hybrid model of universally composable security, given a zk functionality $\mathcal{F}(ZK,\varphi)$ (for arbitrary φ), a broadcast functionality \mathcal{C} , as well as a common reference string $(G,H) \in \mathbb{G}^2$.

Proof:

We prove this by constructing a simulator S which uses the ideal functionality $\mathcal{F}(GRC)$ to perfectly simulate an execution of the hybrid protocol against an adversary A.

We also work in the common reference string model, where the simulator S chooses the bases (G, H) for the Pedersen commitments.

We use this simulator \mathcal{S} to construct an adversary against the discrete logarithm game.

Let $\mathcal{M} \subseteq \mathcal{P}$ be the set of malicious parties, and $\mathcal{H} \subseteq \mathcal{P}$ be the set of honest parties. Naturally, we have $\mathcal{H} \cup \mathcal{M} = \mathcal{P}$ and $\mathcal{H} \cap \mathcal{M} = \emptyset$.

As an adversary against the discrete logarithm game, S receives (G, H) as an instance of the discrete logarithm problem.

The simulator then proceeds as follows:

 \mathcal{S} starts by setting (G, H) as the common reference string.

Round 0:

For each $j \in \mathcal{H}$, \mathcal{S} samples $\mathbf{K}^j \stackrel{R}{\leftarrow} \mathbb{G}$.

For each $j \in \mathcal{M}$, \mathcal{S} waits to receive (broadcast-in, sid, \mathbf{K}^j).

S then sends (broadcast-out, pid_j, sid, \mathbf{K}^{j}), to all parties, for every $j \in \mathcal{P}$, emulating C.

Interim:

 \mathcal{S} waits to receive (prove, sid, $(\mathbf{x}^j, \mathbf{y}^j, \boldsymbol{\alpha}^j, \mathbf{k}^j, \boldsymbol{\beta}^j)$) for each malicious $j \in \mathcal{M}$, playing the role of $\mathcal{F}(\mathsf{ZK}, \psi_1)$.

S checks, for each j, that:

$$\mathbf{X}^{j} \stackrel{?}{=} \mathbf{x}^{j} \cdot G$$

$$\mathbf{Y}^{j} \stackrel{?}{=} \mathbf{y}^{j} \cdot G + \boldsymbol{\alpha}^{j} \cdot H$$

$$\mathbf{K}^{j} \stackrel{?}{=} \mathbf{k}^{j} \cdot G + \boldsymbol{\beta}^{j} \cdot H$$

otherwise, S sets bad-values $_1^j \leftarrow 1$.

S records the values $\mathbf{x}^j, \mathbf{y}^j, \boldsymbol{\alpha}^j, \mathbf{k}^j, \boldsymbol{\alpha}^j$, for $j \in \mathcal{M}$.

Now, in the real execution against $\mathcal{F}(GRC)$, with real honest parties P_i , for each $j \in \mathcal{M}$, the parties \mathcal{S} controls, \mathcal{S} sends (input, sid, $\mathbf{x}^j, \mathbf{y}^j, \boldsymbol{\alpha}^j, \mathbf{k}^j$) to $\mathcal{F}(GRC)$.

 $\mathcal S$ receives (output, sid, $\mathbf V_1^1,\dots,\mathbf V_d^n$) in return, and records these values.

Round r:

For each round $r \in [d]$, \mathcal{S} proceeds as follows:

 \mathcal{S} generates a new π_r^i for each $i \in \mathcal{H}$, and sends $(\mathbf{V}_r^i, \pi_r^i)$ to every malicious P_i , with $j \in \mathcal{M}$.

Unless r = 1, \mathcal{S} waits to receive (prove, $\operatorname{sid}, \hat{\mathbf{x}}^j, \hat{\mathbf{y}}^j, \hat{\boldsymbol{\alpha}}^j, \hat{\mathbf{k}}^j, \hat{\boldsymbol{\beta}}^j$) from each malicious P_j , for $j \in \mathcal{M}$, playing the role of $\mathcal{F}(\operatorname{ZK}, \psi_r)$. \mathcal{S} then checks, for each j, that:

$$\mathbf{X}^{j} \stackrel{?}{=} \hat{\mathbf{x}}^{j} \cdot G$$

$$\mathbf{Y}^{j} \stackrel{?}{=} \hat{\mathbf{y}}^{j} \cdot G + \hat{\boldsymbol{\alpha}}^{j} \cdot H$$

$$\mathbf{K}^{j} \stackrel{?}{=} \hat{\mathbf{k}}^{j} \cdot G + \hat{\boldsymbol{\beta}}^{j} \cdot H$$

and sets bad-values_r^j $\leftarrow 1$ otherwise.

The first check implies that $\hat{\mathbf{x}}^j = \mathbf{x}^j$. If it holds that $\hat{\mathbf{y}}^j \neq \mathbf{y}^j$ or $\hat{\mathbf{k}}^j \neq \mathbf{k}^j$,

then S has found a value h such that $h \cdot G = H$, as shown in reference previous section, and S aborts, returning h.

(Including when r=1) S generates a new π_r^j , and returns (proof, π_r^j), playing the role of $\mathcal{F}(\mathsf{ZK}, \psi_r)$.

Concurrently, \mathcal{S} plays the role of $\mathcal{F}(\mathsf{ZK}, \psi_r)$, responding to $(\mathsf{verify}, (\hat{\mathbf{V}}_r^i, \hat{\mathbf{X}}^i, \hat{\mathbf{Y}}^i, \hat{\mathbf{K}}^i), \pi)$ queries. \mathcal{S} checks that there exists some $j \in \mathcal{P}$ such that $\pi_r^j = \pi$. \mathcal{S} then returns:

$$\hat{\mathbf{V}}_r^i \overset{?}{=} \mathbf{V}_r^i \wedge \hat{\mathbf{X}}^i \overset{?}{=} \mathbf{X}^i \wedge \hat{\mathbf{Y}}^i \overset{?}{=} \mathbf{Y}^i \wedge \hat{\mathbf{K}}^i \overset{?}{=} \mathbf{K}^i \wedge \texttt{bad-values}_r^j \neq 1$$

 \mathcal{S} then waits to receive $(\hat{\mathbf{V}}^j, \hat{\pi}_r^j)$ for every malicious party P_j , with $j \in \mathcal{M}$. \mathcal{S} then checks if the query (verify, $(\hat{\mathbf{V}}_r^j, \mathbf{X}^j, \mathbf{Y}^j, \mathbf{K}^j), \hat{\pi}_r^j$) would yield 1, according to the logic in the section above. (If $\hat{\pi}_r^j$ doesn't match anything, the check is considered to fail). If this check fails, then \mathcal{S} simulates every honest P_i aborting, with $i \in \mathcal{H}$, to abort, as if they'd seen an invalid proof themselves.

This concludes the simulation.

If S aborts with a value h, then they've successfully solved an instance of the discrete logarithm problem. Under our assumption that this problem is hard, this happens with negligeable probability.

We argue that if S does not abort in this way, then the simulation is perfect. For the first round, because pedersen commitments are perfectly hiding, sampling a random \mathbf{K}^j has an identical distribution as an honest party generating a pedersen commitment. For the rest of the protocol, all of our checks are equivalent to those made by honest parties. This is because the \mathbf{V}^i_j values are necessarily computed correctly, and use the inputs provided by the parties the adversary \mathcal{A} controls.

Because our simulator S is perfect, and doesn't rewind the adversary A, we conclude that our protocol satisfies universally composable security, in the hybrid model.

- 4.3 Security Analysis
- 4.4 Practical Considerations
- 5 Applications
- 6 Limitations and Further Work
- 7 Conclusion

References

- [Mau09] Ueli Maurer. Unifying Zero-Knowledge Proofs of Knowledge. In AFRICACRYPT~2009, volume 5580 of LNCS, pages 272–286. Springer, Berlin, Heidelberg, 2009.
- [Ped92] Torben Pryds Pedersen. Non-Interactive and Information-Theoretic Secure Verifiable Secret Sharing. In *CRYPTO 91*, volume 576 of *LNCS*, pages 129–140. Springer, Berlin, Heidelberg, 1992.
- [Sch90] C. P. Schnorr. Efficient Identification and Signatures for Smart Cards. In CRYPTO 1989, volume 435 of LNCS, pages 239–252, New York, NY, 1990. Springer.