

Satellite Geodesy and Global Navigation Satellite System (GNSS)

Surfaces, Projections, Reference Systems and Reference Frames

Mission Statement: "To establish precise and accessible geodetic infrastructures"

Er. Mahesh Thapa MSc. in Geospatial Technologies Geodetic Survey Branch, Survey Department

mahesh100thapa@gmail.com, mahesh.thapa@mail.gov.np

The Mathematics of "Where"

"....because the earth is not flat and is non-homogeneous."

Surfaces

Model of the Earth

Projection

Projection

Projection used in Nepal

Transverse Mercator (TM)

Lambert Conformal Conic (LCC)

Reference Systems and Reference Frames used in Satellite Geodesy

Reference

Simply put, reference is answer of "From where?"

Ill-defined reference implies ill position.

Terrestrial Reference System

Classical Terrestrial Reference System

Modern Terrestrial Reference System

Modern Terrestrial Reference System

Er. Mahesh Thapa, Geodetic Survey Division, Survey Department, mahesh100thapa@gmail.com, mahesh.thapa@nepal.gov.np

Er. Mahesh Thapa, Geodetic Survey Division, Survey Department, mahesh100thapa@gmail.com, mahesh.thapa@nepal.gov.np

Er. Mahesh Thapa, Geodetic Survey Division, Survey Department, mahesh100thapa@gmail.com, mahesh.thapa@nepal.gov.np

Er. Mahesh Thapa, Geodetic Survey Division, Survey Department, mahesh100thapa@gmail.com, mahesh.thapa@nepal.gov.np

Steps to defining a terrestrial reference system

- Location and orientation of the three coordinate axes
- 2. Unit of length
- 3. Auxiliary geometric surface that approximates the size and shape of earth

Steps to defining a terrestrial reference system

- Location and orientation of the three coordinate axes
- 2. Unit of length
- Auxiliary geometric surface that approximates the size and shape of earth

Common Reference Systems for GNSS

International Terrestrial Reference System (ITRS)

World Geodetic System 84

	Semi-major	Inverse of
	axis	flattening
GRS80	6378137	298.257222101

	Semi-major axis	Inverse of flattening
WGS84	6378137	298.257223563

Realization of Reference System

Reference Frame

International Terrestrial Reference System (ITRS)

International Terrestrial Reference Frame (ITRF)

World Geodetic System 84

GPS Tracking Stations

Does the realization change?

International Terrestrial Reference Frame (ITRF)

WGS84

ITRF89

ITRF90

ITRF91

ITRF92

ITRF93

ITRF94

ITRF96

ITRF97

ITRF2000

ITRF2005

ITRF2008

ITRF2014

WGS84 WGS84(G730) WGS84(G873) WGS84(G1150) WGS84(G1674) WGS84(G1762)

https://confluence.qps.nl/qinsy/latest/en/world-geodetic-system-1984-wgs84-182618391.html#id-...WorldGeodeticSystem1984(WGS84)v9.1-WGS84realizations

http://itrf.ensg.ign.fr/

Queries