Devoir surveillé n° 03

Durée : 3 heures, calculatrices et documents interdits

I. Un exercice vu en TD.

Soient E, F deux ensembles, soit $f: E \to F$. Montrer que f est injective si et seulement si :

$$\forall A, A' \in \mathscr{P}(E), \ f(A \cap A') = f(A) \cap f(A').$$

II. Étude de trois fonctions

On étudie dans ce problème les fonctions :

$$f: \left\{ \begin{array}{l} \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\begin{array}{c} \to & \mathbb{R} \\ t \end{array} \right., \qquad g: x \mapsto \operatorname{Arcsin} \left(\sqrt{\frac{x}{1+x}} \right) \qquad \text{et} \qquad h: x \mapsto \operatorname{Arctan} \left(\sqrt{x} \right). \end{array} \right.$$

- 1) Déterminer le domaine de définition de g et de h.
- 2) Étudier les variations de f.
- 3) Déterminer les asymptotes éventuelles à la courbe représentative de f.
- 4) Tracer la courbe représentative de f dans un repère orthonormé (faire figurer les tangentes ou asymptotes remarquables).
- 5) Montrer que quel que soit $x \ge 0$, il existe un unique $t \in \left[0, \frac{\pi}{2}\right[$ tel que x = f(t).
- 6) Soit $x \in \mathbb{R}_+$. Exprimer le réel $t \in \left[0, \frac{\pi}{2}\right[$ tel que x = f(t) en fonction de x au moyen des fonctions usuelles.
- 7) Soit $t \in \left[0, \frac{\pi}{2}\right[$. Montrer que $1 + \tan^2 t = \frac{1}{\cos^2 t}$.
- 8) On considère $x \ge 0$ et l'unique réel t correspondant obtenu à la question 6). Écrire g(x) en fonction de t, et simplifier cette expression. En déduire que les fonctions g et h sont égales sur l'intersection de leurs ensembles de définition.
- 9) Étudier les variations de h.
- 10) Déterminer les asymptotes éventuelles à la courbe représentative de h.
- 11) Tracer la courbe représentative de h dans un repère orthonormé.

III. Une équation fonctionnelle

On note \mathscr{E} l'ensemble des fonctions $f: \mathbb{R} \to \mathbb{R}$ vérifiant :

- f est continue;
- $\forall x, y \in \mathbb{R}, f(xy) = xf(y) + yf(x).$
- 1) Question préliminaire.
 - a) Étudier les variations de la fonction $g: x \mapsto \ln(x) + \frac{2}{\sqrt{x}} \text{ sur }]0,1].$
 - **b)** En déduire que $x \ln(x) \xrightarrow[x \to 0]{} 0$.
- 2) Soit $f: \mathbb{R} \to \mathbb{R}$ un élément de \mathscr{E} .
 - a) Déterminer f(0) et f(1).
 - b) En déduire que f(-1) = 0.
 - c) Montrer que f est impaire.
- 3) Soit $f: \mathbb{R} \to \mathbb{R}$ un élément de \mathscr{E} . On suppose dans cette partie uniquement que f est dérivable sur \mathbb{R}_+^* .
 - a) Démontrer que

$$\forall x \in \mathbb{R}_+^*, \ xf'(x) - f(x) = f'(1)x.$$

b) Soit $k \in \mathbb{R}$, résoudre sur \mathbb{R}_+^* l'équation différentielle

$$xy' - y = kx. (1)$$

- c) En déduire la valeur de f(x) pour tout $x \in \mathbb{R}$.
- d) En déduire que, pour tout $k \in \mathbb{R}$, il existe une unique $f : \mathbb{R} \to \mathbb{R}$ élément de \mathscr{E} , dérivable sur \mathbb{R}_+^* et vérifiant f'(1) = k.
- 4) Soit $f_1: \mathbb{R} \to \mathbb{R}$ l'unique élément de \mathscr{E} dérivable sur \mathbb{R}_+^* et telle que f'(1) = 1.
 - a) La fonction f_1 est-elle dérivable en 0?
 - **b)** Étudier les variations de f_1 .
 - c) Donner l'allure du graphe de f_1 (unité de longueur : 4 centimètres). On fera notamment attention au comportement de f_1 au voisinage de 0 et l'on tracera les tangentes remarquables à sa courbe.
- 5) Soit $f: \mathbb{R} \to \mathbb{R}$ un élément de \mathscr{E} , que l'on suppose juste continue. Soit F l'unique primitive de f s'annulant en 0.
 - a) Montrer que

$$\forall x, y \in \mathbb{R}, \ F(xy) = x^2 F(y) + \frac{xy^2}{2} f(x).$$

b) En déduire que f est dérivable sur \mathbb{R}_+^* et en déduire \mathscr{E} .

— FIN —