5. ВАРИАЦИОННЫЕ ЗАДАЧИ С ПОДВИЖНЫМИ ГРАНИЦАМИ

Рассмотрим вариационную задачу о нахождении экстремума функционала

$$J = \int_{t_0}^{t_1} F(x, \dot{x}, t) dt, \qquad (5.1)$$

зависящего от скалярной функции $\mathit{x}(t)$, на которую не накладываются краевые условия. Определим необходимые условия экстремума функционала (5.1) в данной задаче с подвижными границами.

При этом в данном случае, при включении всех близких к экстремали кривых в однопараметрическое семейство

$$\tilde{x}(t,\alpha) = x(t) + \alpha \eta(t),$$

функционал будет зависеть не только от параметра α , но и от изменения краевых значений $t_0 + \delta t_0$ и $t_1 + \delta t_1$. Поэтому условия

$$\delta J = \frac{dJ}{d\alpha}\Big|_{\alpha=0} = 0$$
 здесь недостаточно. Необходимо использовать бо-

лее общие условия экстремума, которые выражаются в том, что если функционал достигает экстремума, то обращается в ноль первая вариация функционала δJ .

Вычислим вначале приращение ΔJ , которое получает функционал при условии, что функция x(t) получает приращение h(t), левой граничной т очки t_0 получает приращение δt_0 абсцисса и абсцисса правой граничной точки t_1 получает приращение δt_1 (рис. 5.1).

В этих условиях

$$\Delta J = \int_{t_0 + \delta t_0}^{t_1 + \delta t_1} F(x + h, \dot{x} + \dot{h}, t) dt - \int_{t_0}^{t_1} F(x, \dot{x}, t) dt.$$

Обозначим $F(x+h,\dot{x}+\dot{h},t)=\ddot{F}$

Разбивая весь интервал интегрирования на части, получим

$$\Delta J = \int\limits_{t_0}^{t_1} (\tilde{F} - F) dt + \int\limits_{t_1}^{t_1 + \delta t_1} \tilde{F} dt - \int\limits_{t_0}^{t_0 + \delta t_0} \tilde{F} dt \,. \tag{5.2}$$
 В этом выражении в виду малости δt_0 и δt_1 можно принять

$$\int_{t_0}^{t_0+\delta} \tilde{F}dt = F\big|_{t=t_0} \delta t_0 + O(\delta t_0^2), \quad \int_{t_1}^{t_1+\delta} \tilde{F}dt = F\big|_{t=t_1} \delta t_1 + O(\delta t_1^2). \quad (5.3)$$

где $O(\delta \, t_0^2), \; O(\delta \, t_1^2)$ - малые более высоких порядков малости, чем δt_0 и δt_1 .

Замечание. $\Delta J = J[\tilde{x}(t)] - J[x(t)]$. Так, если приращение функобусловлено только вариацией функции x(t)в семействе $\tilde{x}(t,\alpha)$, то

$$\Delta J(\alpha) = \frac{dJ}{d\alpha}\bigg|_{\alpha=0} \alpha + \frac{d^2J}{d\alpha^2}\bigg|_{\alpha=0} \frac{\alpha^2}{2!} + \dots$$

и тогда первая вариация функционала есть $\delta J = \frac{dJ}{d\alpha}\bigg|_{\alpha=0} \alpha$.

ционала

Откуда и следовало необходимое условие экстремума в задаче с закрепленными концами в виде $\frac{dJ}{d\alpha} = 0$.

Таким образом, для определения необходимых условий экстремума в данной задаче необходимо определить выражение для полной вариации функционала (5.1), вызванное не только вариацией функции x(t), но и вариацией концов траектории.

Разложим функцию \tilde{F} в первом слагаемом в ряд Тейлора в окрестности экстремали.

Тогда будем иметь

$$\tilde{F} = F + \frac{\partial F}{\partial x}h + \frac{\partial F}{\partial \dot{x}}\dot{h} + O(h^2), \qquad (5.4)$$

где $O(h^2)$ члены разложения более высоких порядков малости, чем h(t).

Итак, с учетом выражений (5.3) и (5.4), линейная часть разложения функции ΔJ , то есть первая вариация функционала будет

иметь вид
$$\delta J = \int_{t_0}^{t_1} \left(\frac{\partial F}{\partial x} h + \frac{\partial F}{\partial \dot{x}} \dot{h} \right) dt - F \Big|_{t=t_0} \delta t_0 + F \Big|_{t=t_1} \delta t_1$$
 (5.5)

Интегрируя второе слагаемое в скобках по частям, находим

$$\delta J = \int_{t_0}^{t_1} \left(\frac{\partial F}{\partial x} - \frac{d}{dt} \frac{\partial F}{\partial \dot{x}} \right) h dt + \frac{\partial F}{\partial \dot{x}} h \Big|_{t_0}^{t_1} + F \Big|_{t_1} \delta t_1 - F \Big|_{t_0} \delta t_0.$$

С точностью до бесконечно малых высшего порядка можно принять $h(t_0) = \delta x_0 - \dot{x} \delta t_0$, $h(t_1) = \delta x_1 - \dot{x} \delta t_1$.

Пояснение следует из рис.5.2.

Рис.5.2

Из рис. 5.2 видно, что

$$FC = \delta x_1$$
, $BD = h(t_1)$, $tg\alpha = \dot{x} = \frac{AE}{\delta t_1} \rightarrow AE = \dot{x}\delta t_1$,

$$BD = FC - EC \approx FC - AE$$
 или $h(t_1) \approx \delta x_1 - AE = \delta x_1 - \dot{x}\delta t_1$.

Аналогично получается выражение для $h(t_0)$.

Тогда окончательно можно записать следующее выражение для первой вариации функционала

$$\delta J = \int_{t_0}^{t_1} \left(\frac{\partial F}{\partial x} - \frac{d}{dt} \frac{\partial F}{\partial \dot{x}} \right) h(t) dt + \frac{\partial F}{\partial \dot{x}} \bigg|_{t=t_1} \delta x_1 - \frac{\partial F}{\partial \dot{x}} \bigg|_{t=t_0} \delta x_0 + \left(F - \dot{x} \frac{\partial F}{\partial \dot{x}} \right) \bigg|_{t=t_1} \delta t_1 - \left(F - \dot{x} \frac{\partial F}{\partial \dot{x}} \right) \bigg|_{t=t_0} \delta t_0.$$
(5.6)

Если выбор граничных точек не стеснен никакими дополнительными условиями, то вариации координат этих точек δt_0 , δx_0 , δt_1 , δx_1 независимы и тогда из необходимого условия экстремума $\delta J = 0$ вытекают следующие соотношения:

$$\frac{\partial F}{\partial x} - \frac{d}{dt} \frac{\partial F}{\partial \dot{x}} = 0; ag{5.7}$$

$$\left. \frac{\partial F}{\partial \dot{x}} \right|_{t=t_1} = 0 \; ; \; \left. \left(F - \dot{x} \frac{\partial F}{\partial \dot{x}} \right) \right|_{t=t_1} = 0 \; ; \tag{5.8}$$

$$\left. \frac{\partial F}{\partial \dot{x}} \right|_{t=t_0} = 0; \left. \left(F - \dot{x} \frac{\partial F}{\partial \dot{x}} \right) \right|_{t=t_0} = 0.$$
 (5.9)

Первое уравнение представляет собой уравнение Эйлера для экстремалей. Решение его зависит от двух постоянных интегрирования, которые в задаче с закрепленными концами выбирались из граничных условий.

В данной задаче граничные условия отсутствуют и выбор граничных точек необходимо производить на основании соотношений (5.8), (5.9). Причем (5.8) определяют условия на правом конце, а (5.9) – на левом.

Рассмотрим один частный случай, когда граничные точки должны лежать на некоторых кривых $\varphi_0(t)$ и $\varphi_1(t)$

$$x_1 = \varphi_1(t), \quad x_0 = \varphi_0(t).$$
 (5.10)

В этом случае вариации δt и δx оказываются связанными между собой. С точностью до малых высшего порядка можно принять

$$\delta x_1 = \dot{\varphi}_1 \delta t_1$$
; $\delta x_0 = \dot{\varphi}_0 \delta t_0$;

Если считать δt_0 и δt_1 произвольными, то на основе выражения (5.6) получим

$$\left[F - \frac{\partial F}{\partial \dot{x}}(\dot{x} - \dot{\varphi}_1)\right]_{t=t_1} = 0; \qquad (5.11)$$

$$\left[F - \frac{\partial F}{\partial \dot{x}}(\dot{x} - \dot{\varphi}_0)\right]_{t=t_0} = 0.$$
 (5.12)

Соотношения (5.11), (5.12) называются условиями трансверсальности. Они устанавливают связь между угловыми коэффициентами $\dot{\varphi}$ и \dot{x} кривых φ_0, φ_1, x в граничных точках. Совместно с уравнениями заданных кривых (5.10) эти условия определяют постоянные интегрирования в уравнении Эйлера и дают возможность найти положение концов экстремали и их наклон по отношению к заданным кривым.

Если свободна одна граничная точка, например правая, то координаты δt_0 , δx_0 не варьируются и $\delta x_0 = \delta t_0 = 0$. Для определения постоянных интегрирования используются граничные условия, а левой точке и условия трансверсальности для правой точки.

Если левая кривая задана уравнением $\omega_0(x,t)=0$, а правая – уравнением $\omega_1(x,t)=0$, то условия трансверсальности принимают вид:

$$\frac{F - \dot{x}F_{\dot{x}}}{\omega_{0t}} = \frac{F_{\dot{x}}}{\omega_{0x}}$$
 (на левом конце экстремали); (5.13)

$$\frac{\omega_{0t}}{\omega_{1t}} = \frac{\omega_{0x}}{\omega_{1x}}$$
 (на правом конце экстремали), (5.14)

где
$$\omega_{it} = \frac{\partial \omega_i(\mathbf{x},t)}{\partial t}$$
, $\omega_{i\mathbf{x}} = \frac{\partial \omega_i(\mathbf{x},t)}{\partial \mathbf{x}}$, $i = 0,1$.

Если перемещение концов экстремали не обусловлено какими – либо ограничениями, то на концах экстремали выполняются условия F = 0, $F_{\dot{\mathbf{x}}} = 0$. (5.15)

Из условий трансверсальности и определяются две произвольные постоянные c_1, c_2 , входящие в уравнение Эйлера.

Пример 5.1. Найти условия трансверсальности в точках t_0, t_1 для функционала вида $J = \int\limits_{t_0}^{t_1} A(t,x) \sqrt{1+\dot{x}^2} dt \,.$

Условие трансверсальности (5.12)

$$[F + F_{\dot{x}}(\dot{\varphi}_0 - \dot{x})]\Big|_{t=t_0} = 0$$

имеет в данном случае вид

$$\left[A(t,x)\sqrt{1+\dot{x}^{2}} + \frac{A(t,x)\dot{x}}{\sqrt{1+\dot{x}^{2}}} (\dot{\Box}_{0} - \dot{x}) \right] \Big|_{t=t_{0}} = 0$$

$$\left[\frac{A(t,x)(1+\dot{\varphi}_{0}\dot{x})}{\sqrt{1+\dot{x}^{2}}} \right] \Big|_{t=t_{0}} = 0.$$

или

Предполагая, что $A(t,x) \neq 0$ в граничной точке, получим

$$[1+\dot{\varphi}_0\dot{x}]igg|_{t=t_0}=0$$
 или $\dot{x}(t_0)=-rac{1}{\dot{\varphi}_0(t_0)}$. (5.16)

Аналогично на втором конце
$$\dot{x}(t_1) = -\frac{1}{\dot{\varphi}_1(t_1)}$$
. (5.17)

Условия (5.16), (5.17) означают, что экстремаль ортогональна к кривым $\varphi_0(t)$, $\varphi_1(t)$, то есть пересекает их под прямым углом.

Пример 5.2. Исследовать на экстремум функционал

$$J=\int_{0}^{t_{1}}\frac{\sqrt{1+\dot{x}^{2}}}{t}dt,$$

причём x(0) = 0, а $x_1 = t - 10$.

Функция F зависит лишь от \dot{x} и t: $F = F(t, \dot{x})$.

В этом случае уравнение Эйлера приобретает вид $\frac{d}{dt}F_{\dot{\chi}}(t,\dot{\chi})=0 \text{ и, следовательно, имеет первый интеграл } F_{\dot{\chi}}(t,\dot{\chi})=c_1.$

В рассматриваемом случае получим

$$\frac{\dot{x}}{t\sqrt{1+\dot{x}^2}} = c_1. \tag{5.18}$$

Это уравнение проще всего интегрируется, если ввести параметр, полагая $\dot{x} = tg\ u$, тогда

$$t = \frac{\dot{x}}{c_1 \sqrt{1 + \dot{x}^2}} = \frac{1}{c_1} \frac{tg \ u}{\sqrt{1 + tg^2 \ u}} = \frac{1}{c_1} \sin u$$

$$t = \overline{c}_1 \sin u \,, \tag{5.19}$$

или

где
$$\overline{c}_1 = \frac{1}{c_1}$$
.

Так как
$$\frac{dx}{dt} = tg \ u$$
, то $dx = tg \ u \cdot dt$. (5.20)

Из равенства (5.19) следует, что $dt = \overline{c}_1 \cos u \, du$. Подставим это выражение в (5.20)

$$dx = tgu \cdot \overline{c_1} \cdot \cos udu = \overline{c_1} \cdot \sin udu.$$

Интегрируя, получаем $x=-\overline{c}_1\cos u+c_2$. Итак,

$$t = \overline{c}_1 \sin u, \ x - c_2 = -\overline{c}_1 \cos u. \tag{5.21}$$

Исключим u, возведя обе части соотношений (5.21) в квадрат и складывая их: $t^2 + (x - c_2)^2 = \overline{c_1}^2$. (5.22)

Итак, интегральными кривыми уравнения Эйлера являются окружности $t^2 + (x - c_2)^2 = \overline{c}_1^2$.

Определим c_1,c_2 . Первое ограничение x(0)=0 даёт $c_1=c_2$ (впредь вместо \overline{c}_1 будем писать c_1).

Так как условие трансверсальности для данного функционала сводится к условию ортогональности (см. пример 5.1), то прямая $x_1 = t - 10$ должна быть диаметром окружности и, следовательно, центр искомой окружности находится в точке пересечения этой прямой с осью абсцисс. Следовательно, $(t-10)^2 + x^2 = 100$ или $x = \pm \sqrt{20t - t^2}$.

Итак, экстремум может достигаться лишь на дугах окружности

$$x = \sqrt{20t - t^2}$$
 u $x = -\sqrt{20t - t^2}$.

Пример 5.3. Пусть задан функционал

$$J = \int_{0}^{t} (x^2 + \dot{x}^2) dt \tag{5.23}$$

(определённый интеграл с переменным верхним пределом).

Нужно определить экстремали этого функционала, удовлетворяющие начальному условию (неподвижная граница на левом конце)

$$x(0) = 0 (5.24)$$

и подвижной границе на правом конце $\varphi_1(t) = t^2$. (5.25)

Решение уравнения Эйлера, составленного для функционала (5.23), имеет вид $x(t) = c_1 e^{-t} + c_2 e^t$. (5.26)

Условие (5.24) позволяет найти связь между произвольными постоянными в выражении (5.26) из равенства $x(0) = c_1 + c_2 = 0$, от-куда следует $c_2 = -c_1$. (5.27)

Для отыскания аналитического представления для произвольных постоянных следует использовать условие трансверсальности. Поскольку подвижная граница на правом конце является функцией времени и не зависит от x, условие трансверсальности (5.11) в рассматриваемом случае имеет вид:

$$x^2 + \dot{x}^2 + (2t - \dot{x}) \cdot 2\dot{x} = 0 \tag{5.28}$$

На основании соотношений (5.26) и (5.27) представим выражение (5.28) в виде

$$-4c_1[c_1+t(e^{-t}+e^t)]=0. (5.29)$$

Исключая тривиальное решение $c_1=0$, получим

$$c_1 = -c_2 = -t(e^{-t} + e^t).$$
 (5.30)

Окончательно экстремали функционала (5.23), удовлетворяющие условиям на концах (5.24), (5.25), можно записать в виде

$$x = -t(e^{-2t} + 1) + t(e^{2t} + 1). (5.31)$$

Пример 5.4. Решить задачу примера 5.3 при условии, что подвижная граница на правом конце определяется уравнением

$$\omega_1 = x - t^2 = 0, (5.32)$$

то есть, вместо условия (5.25) имеем условие (5.32).

Поскольку подвижная граница на правом конце является функцией x,t, то условие трансверсальности (5.14) в рассматриваемом случае имеет вид

$$\frac{x^2 + \dot{x}^2 - \dot{x}2\dot{x}}{-2t} = \frac{2\dot{x}}{1},\tag{5.33}$$

так как $F_{\dot{X}}=2\dot{X},\,\omega_{1t}=rac{\partial\omega_{1}}{\partial t}=-2t,\,\omega_{1X}=rac{\partial\omega_{1}}{\partial x}=1.$

Откуда следует

$$-c_1[c_1+t(e^{-t}+e^t)]=0. (5.34)$$

Исключая тривиальное решение (5.34) $c_1 = 0$, получим

$$c_1 = -c_2 = -t(e^t + e^{-t}).$$

Таким образом, экстремаль функционала (5.23), удовлетворяющая условиям на концах (5.24), (5.32), имеет вид

$$x = -t(e^{-2t} + 1) + t(e^{2t} + 1). (5.35)$$

Пример 5.5. Найти экстремали функционала

$$J = \int_{0}^{t} (x_1^2 + \dot{x}_1^2 + x_2^2 + \dot{x}_2^2) dt, \ X \in \mathbb{R}^2, \quad (5.36)$$

удовлетворяющие неподвижным границам на левом конце

$$x_1(0) = x_2(0) = 0 (5.37)$$

и подвижным границам на правом конце

$$\varphi_{11}(t) = t^2, \, \varphi_{21}(t) = t^3 \,.$$
 (5.38)

Экстремаль $x_1(t)$, являющаяся компонентой вектора

$$X(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix},$$

получена при решении примера 5.3 в виде (5.31).

Выполняя выкладки, аналогичные проделанным при решении примера 5.3, получим экстремаль $x_2(t)$, определяемую следующим выражением

$$x_2(t) = 1.5[-t^2(e^{-2t} + 1) + t^2(e^{2t} + 1)].$$
 (5.39)

Соотношения (5.31), (5.39) и решают поставленную задачу.

Пример 5.6. Найти экстремаль функционала

$$J = \int_{0}^{T} (\dot{x}^{2} - x + 1)dt$$
 (5.40)

при условии

$$x(0) = 0. (5.41)$$

В данном случае перемещение правой границы экстремали не обусловлено какими-либо ограничениями, поэтому на правом конце выполняются условия:

$$F(T) = 0, F_{\dot{x}}(T) = 0.$$
 (5.42)

Уравнение Эйлера в данном случае имеет вид $2\ddot{x} + 1 = 0$ или

$$\ddot{x} = -\frac{1}{2}. (5.43)$$

Общее решение этого дифференциального уравнения

$$x(t) = -\frac{t^2}{4} + c_1 t + c_2. ag{5.44}$$

Из условия на левом конце (5.41) x(0) = 0 получаем, что $c_2 = 0$.

Для определения неизвестных c_1 и T имеем два условия (5.42). Первое соотношение (5.42) даёт

$$\dot{x}^2(T) - x(T) + 1 = 0. (5.45)$$

Второе условие (5.42) даёт $2\dot{x}(T) = 0 \rightarrow \dot{x}(T) = 0$. (5.46)

Так как $\dot{x} = -\frac{1}{2}t + c_1$, то $\dot{x}^2 = \left(-\frac{1}{2}t + c_1\right)^2$ и выражение (5.45) при-

нимает вид

$$\left(-\frac{1}{2}T+c_1\right)^2-\left(-\frac{T^2}{4}+c_1T+c_2\right)+1=0.$$
 (5.47)

Из выражения (5.47) получаем $-\frac{1}{2}T + c_1 = 0$. (5.48)

Решая совместно уравнения (5.47), (5.48), получим $c_1=1,\,T=2$.

Таким образом, в задаче имеется единственная экстремаль

$$x(t) = -\frac{t^2}{4} + t \,, \tag{5.49}$$

рассматриваемая на отрезке времени [0,2].

Значение функционала на этой экстремали

$$J = \int_{0}^{T} (\dot{x}^{2} - x + 1) dt = \int_{0}^{2} \left[\left(1 - \frac{t}{2} \right)^{2} - \left(t - \frac{t^{2}}{4} \right) + 1 \right] dt = \frac{(T - 2)^{3}}{6} + \frac{4}{3}. \quad (5.50)$$

Пример 5.7. Рассмотрим корабль, терпящий аварию; ему важно в кратчайший срок достичь берега, любой точки береговой черты. Здесь положение второго конца экстремали, точки встречи корабля с берегом, заранее неизвестно и должно быть определено в ходе решения.

Длина кривой между точками a и b определяется функционалом

$$J = \int_{a}^{b} \sqrt{1 + \dot{x}^2} dt \,. \tag{5.51}$$

Данный функционал относится к типу функционалов, рассмотренных в примере 5.1 и, следовательно, к решению данного примера применимы результаты примера 5.1, а именно экстремаль (путь движения) ортогональна кривой на конце интервала (линия берега).

Таким образом, для достижения берега в кратчайший срок корабль должен двигаться по прямой, перпендикулярной к береговой черте.

Пример 5.8. Рассмотрим задачу поворота вала двигателя на заданный угол при минимальном расходе энергии:

$$\begin{cases} \dot{x}_1 = x_2; \\ \dot{x}_2 = u; \end{cases}$$

$$J = \int_{0}^{1} u^{2} dt \rightarrow \min;$$

$$x_1(0) = x_2(0) = 0$$
; $x_1(1) = 1$.

Задача относится к типу задач, рассмотренных в п. 3.2 и отличается только тем, что правый конец не закреплён: координата $x_2(1)$ не фиксирована (скорость в конечный момент не фиксирована).

Уравнения Эйлера-Лагранжа и их решения получаются такими же, что и в п. 3.2.

$$\lambda_{1} = c_{1};$$

$$\lambda_{2} = -c_{1}t + c_{2};$$

$$u = \frac{1}{2}(-c_{1}t + c_{2});$$

$$x_{2} = \frac{1}{2}(-c_{1}\frac{t^{2}}{2} + c_{2}t) + c_{3};$$

$$x_{1} = -\frac{c_{1}}{12}t^{3} + \frac{c_{2}}{4}t^{2} + c_{3}t + c_{4}.$$

$$(5.52)$$

В данном случае нужно использовать второе условие для переменной x_2

$$F_{\dot{x}}\Big|_{t=1}=0$$

(первое условие F=0 не используется, в отличие от примера 5.6, так как в данном случае верхний предел в функционале задан). Функция F в данном примере имеет вид (функция Лагранжа)

$$F = u^2 + \lambda_1(\dot{x}_1 - x_2) + \lambda_2(\dot{x}_2 - u).$$

Откуда

$$F_{\dot{x}_2} = \frac{\partial F}{\partial \dot{x}_2} = \lambda_2(t).$$

Поэтому условие трансверсальности $F_{\dot{x}_2}\Big|_{t=1} = 0$ принимает вид

$$\lambda_2(1) = 0$$
. (5.53)

В этом случае из второго уравнения (5.52) следует (t=1):

$$\lambda_2(1) = -c_1 \cdot 1 + c_2 = 0.$$
(5.54)

Откуда

$$c_1 = c_2$$
. (5.55)

С учётом выражения (5.55) имеем из системы уравнений (5.52):

$$\lambda_{2} = c_{1}(1-t); u = \frac{1}{2}c_{1}(1-t); x_{2} = \frac{1}{2}c_{1}(t-\frac{t^{2}}{2}) + c_{3};$$

$$x_{1} = \frac{1}{4}c_{1}(t^{2} - \frac{t^{3}}{3}) + c_{3}t + c_{4}.$$
(5.56)

Из последних двух выражений для x_1 и x_2 , используя начальное условие $x_1(0)=x_2(0)=0$, получим что $c_3=c_4=0$, поэтому

$$x_1 = \frac{c_1}{4} \left(t^2 - \frac{t^3}{3} \right); x_2 = \frac{c_1}{2} \left(t - \frac{t^2}{2} \right).$$

Используя граничное условие для x_1 : $x_1(1) = 1$, имеем

$$1 = \frac{c_1}{4} \left(1 - \frac{1}{3} \right)$$
 или $c_1 = 6$.

Окончательно, с учётом $c_1=c_2=6, c_3=c_4=0$, оптимальное управление и оптимальные траектории имеют вид

$$u^{0}(t) = 3(1-t);$$

$$x_{1}^{0}(t) = -\frac{1}{2}t^{3} + \frac{3}{2}t^{2};$$

$$x_{2}^{0}(t) = -\frac{3}{2}t^{2} + 3t.$$