

LGS GROUP OF COLLEGES

TEST#

W-T-5

[XI MATHEMATICS] Ex. # 2.7,2.8,3.1

Class: FSC	C/ICS Part 1 Code:2424	Session: 2024	
Subject: Mathematics	Name:	Roll No:	
Time: 35 Minutes	Weekly Test	Marks = 15	

OBJECTIVE TYPE

Note: Four possible answers A, B, C and D to each question are given. The choice which you think is correct, fill that circle in front of that question with Marker or Pen ink in the answer-book. Cutting or filling two or more circles will result in zero mark in that anestion $(1 \times 4 - 4)$

	question.				$(1 \times 4 = 4)$
1	If order of a matrix A is 2×3 and of matrix B is 3×3 , then order of AB is:			-	
	A. 3 × 3	B. 2 × 2	C. 3×2	D. 2 × 3	
2	The set N w.r.t addition is a:-				
	A. Group	B. Monoid	C. Null Set	D. Semi-Group	
3	Inverse of a square matrix A does not exist if A is:				
	A. Diagonal	B. Non-Singular	C. Unit	D. Singular	8
4	If a and b are elements of group G, then solution of equation $ax = b$ will be:				
	1 7/05				
	A. $a^{-1}b$	B. $b^{-1}a$	C. ab^{-1}	D. ba^{-1}	

SUBJECTIVE TYPE

SECTION - 1

Q# 2. Attempt ALL SHORT Questions:

 $(2 \times 3 = 6)$

i	Define Semi Group		
ii	Prepare a table of multiplication of the elements of the set of residue classes modulo 5		
iii	If $A = \begin{bmatrix} i & 0 \\ 1 & -i \end{bmatrix}$, Show that $A^4 = I_2$		

SECTION - II

Attempt LONG Question:

 $(5 \times 1 = 5)$

Prove that all 2×2 non-singular matrices over the real field form a non abelian group O# 3. under multiplication