Druhý test z predmetu Základy kryptografie

8.11.2017

Inštrukcie:

- Na vypracovanie písomky máte 90 minút.
- Príklady vypracujte aj s postupom, aby bolo jasné, ako ste dané výsledky dostali.
- Na každom papieri na odovzdanie uveďte svoje meno, číslo z AIS a meno fakulty, ktorú navštevujete (FEI alebo FIIT). Na prvú stranu tiež uveďte, koľko papierov odovzdávate.
- Zadanie si môžete nechať.

Úlohy:

1. Uvažujme funkciu $f: \mathbb{Z}_2^3 \to \mathbb{Z}_2$ danú nasledujúcou tabuľkou:

x_1	x_2	x_3	$f(x_1, x_2, x_3)$
0	0	0	0
1	0	0	1
0	1	0	0
1	1	0	0
0	0	1	0
1	0	1	1
0	1	1	0
1	1	1	1

- (a) (4 body) Nájdite algebraickú normálnu formu funkcie f a určite jej nelineárny rád.
- (b) (4 body) Vypočítajte nelinearitu (t.j. stupeň nelinearity) funkcie f.
- (c) (1 bod) Určite, či je funkcia f balancovaná.
- (d) (4 body) Zistite, či je funkcia f úplná a či spĺňa kritérium SAC.

(Pozor, úlohy (b)-(d) môžete riešiť, aj keď neviete vyriešiť úlohu (a).)

- 2. Uvažujme dvojkolovú feistalovskú šifru s veľkosťou bloku 6 bitov. V šifre sa používa funkcia $f: \mathbb{Z}_2^3 \times \mathbb{Z}_2^3 \to \mathbb{Z}_2^3$, $f(\mathbf{x}, \mathbf{K}) = \mathbf{x} \oplus \mathbf{K}$.
 - (a) (4 body) Pomocou takto definovanej šifry zašifrujte správu 101101101101 v móde CBC. Použite sub-kľúče $\mathbf{K}_1=001,\,\mathbf{K}_2=010$ a inicializačný vektor 111111.
 - (b) (4 body) Zašifrovanú správu z prvej časti následne dešifrujte.
- 3. (a) (1 bod) Čo znamená, že šifra je perfektne bezpečná?
 - (b) (1 bod) Uveďte tvrdenie Shannonovej pesimistickej vety.
 - (c) (2 body) Popíšte Vernamovu šifru. Ako súvisí Vernamova šifra so Shannonovou pesimistickou vetou?
- 4. (Prémia 1) Nech X, Y sú náhodné premenné s pravdepodobnostným rozdelením daným nasledujúcou tabuľkou:

P(X=x,Y=y)	X=0	X=1
Y=0	1/5	1/5
Y=1	1/5	2/5

- (a) (1 bod) Vypočítajte H(Y).
- (b) (1 bod) Vypočítajte H(X,Y).
- (c) (1 bod) Vypočítajte H(X/Y).
- 5. (Prémia 2) (2 body) Vypočítajte nelinearitu funkcie z príkladu 1 pomocou Walsh-Hadamardovej transformácie. Využite, že pre nelinearitu funkcie f platí $N_f = \min_{u \in \mathbb{Z}_2^n} \frac{1}{2} \{2^n \pm \hat{f}(u)\}$, kde \hat{f} je definovaná vzťahom $\hat{f}(u) = \sum_{v \in \mathbb{Z}_2^n} (-1)^{u.v+f(v)}, \quad u \in \mathbb{Z}_2^n$.