Домашнее задание 1 "Дискретная математика" для специальности ОПД (2 курс).

Задание 1. Доказать или опровергнуть утверждение

1.
$$(A\Delta B) \setminus (A \cup \overline{C}) = (B \cap C) \setminus A;$$

$$2. (A \cup C) \setminus (\overline{A}\Delta B) = (A \setminus B) \cup ((B \cap C) \setminus A);$$

3.
$$(A\Delta \overline{B}) \cup (C \setminus A) = (A \cap B) \cup \overline{A \cup (B \setminus C)};$$

4.
$$(\overline{B} \setminus A)\Delta(A \cup C) = \overline{(B\Delta C) \setminus A};$$

5.
$$(\overline{A} \setminus \overline{C}) \cup (A \triangle B) = (A \setminus B) \cup ((B \cup C) \setminus A);$$

6.
$$(A \Delta \overline{B}) \setminus (A \cap C) = ((A \cap B) \setminus C) \cup (\overline{B} \setminus A);$$

7.
$$(\overline{A} \cup \overline{C}) \setminus (A \triangle B) = ((A \cap B) \setminus C) \cup \overline{A \cup B};$$

8.
$$(\overline{A}\Delta B) \cap (B \setminus \overline{C}) = \overline{\overline{A} \cup \overline{B} \cup \overline{C}};$$

9.
$$(A \setminus B)\Delta(A \cap \overline{C}) = A \cap (B\Delta C);$$

10.
$$(\overline{A} \setminus \overline{B}) \cup (A \Delta \overline{C}) = (A \cap C) \cup \overline{C \cup (A \setminus B)};$$

11.
$$(A\Delta B) \setminus (\overline{A} \cap \overline{C}) = (A \setminus B) \cup ((B \cap C) \setminus A);$$

12.
$$(A \cap \overline{C}) \setminus (A \Delta B) = (A \cap B) \setminus C$$
;

13.
$$(A\Delta B) \setminus (\overline{B} \setminus C) = A \setminus (B \cup C);$$

14.
$$(\overline{B} \setminus A)\Delta(\overline{A} \cap C) = \overline{A \cup (B\Delta C)};$$

15.
$$A\Delta(B\setminus (A\Delta C))=(A\setminus B)\cup (B\setminus C);$$

16.
$$(\overline{A}\Delta B) \setminus (\overline{B} \cup \overline{C}) = A \cap B \cap C$$
;

17.
$$(A \setminus \overline{C}) \cap (A \triangle B) = (A \cap C) \setminus B$$
;

18.
$$(A\Delta \overline{B}) \cup (B \setminus C) = \overline{A \cup B} \cup (B \setminus (C \setminus A));$$

19.
$$(A \setminus B)\Delta(\overline{A} \cup \overline{C}) = \overline{A \setminus (B\Delta C)};$$

20.
$$C\Delta(B \setminus (A\Delta C)) = (C \setminus B) \cup (B \setminus A)$$
.

Задание г. Построить рефискенные, симистричное и гранда. Tubuce zameranne que exumenne, zagannoro marpuyen.

1) (0001)
9) (0110) 18) (1110)
0000 1110 0010, 0100 19) / 1 0 0 0 0100 0101 $\begin{array}{c}
3) & (1001) \\
1110 \\
0010
\end{array}$ 20/1111 1100 1011 0000 5) (0000 1110 1110 1000, 1100 0100 0111 1111 17) /1111 1100 0010

Baganne 3 Oupegenist, exoloro femeinni в неотричательных уельях пинах инеет уравнение $x_1+x_2+x_3=K$, если першение x_1,x_2,x_3 удовнетворенот заданиями перавенствами:

4)
$$x_1 + x_2 + x_3 = 17$$
, $x_1 > 3$, $x_2 < 7$, $x_3 \le 4$

2)
$$x_1 + x_2 + x_3 = 20$$
, $x_1 \le 5$, $x_2 > 6$, $x_3 < 5$

3)
$$x_1 + x_2 + x_3 = 16$$
, $x_1 < 4$, $x_2 \le 5$, $x_3 > 4$

4)
$$x_1 + x_2 + x_3 = 17$$
, $x_1 > 3$, $x_2 < 7$, $x_3 \le 4$

$$5)$$
 $x_1 + x_2 + x_3 = 18$, $x_1 \le 6$, $x_2 > 4$, $x_3 < 5$

6)
$$x_1 + x_2 + x_3 = 19$$
, $x_1 < 7$, $x_2 \leq 5$, $x_3 > 4$

7)
$$x_1 + x_2 + x_3 = 19$$
, $x_1 > 5$, $x_2 < 6$, $x_3 \le 6$

8)
$$x_1 + x_2 + x_3 = 20$$
, $x_1 \le 6$, $x_2 < 5$, $x_3 > 6$

9)
$$x_1 + x_2 + x_3 = 18$$
, $x_1 < 7$, $x_2 > 4$, $x_3 \le 4$

10)
$$x_1 + x_2 + x_3 = 19$$
, $x_1 > 6$, $x_2 \le 5$, $x_3 < 7$

11)
$$x_1 + x_2 + x_3 = 21$$
, $x_1 \leq 5$, $x_2 > 7$, $x_3 < 5$

$$(12)$$
 $(x_1 + x_2 + x_3 = 21)$ $(x_1 < 4)$ $(x_2 \le 8)$ $(x_3 > 3)$

13)
$$x_1 + x_2 + x_3 = 20$$
, $x_1 > 2$, $x_2 \le 6$, $x_3 < 8$

14)
$$x_1 + x_2 + x_3 = 18$$
, $x_4 < 8$, $x_5 > 3$, $x_3 \le 3$

15)
$$x_1 + x_2 + x_3 = 19$$
, $x_1 \leq 6$, $x_2 \leq 6$, $x_3 > 4$

16)
$$x_1 + x_2 + x_3 = 22$$
, $x_1 > 5$, $x_2 < 7$, $x_3 \le 6$

18)
$$x_1 + x_2 + x_3 = 20$$
, $x_1 > 3$, $x_2 \le 6$, $x_3 < 7$

19)
$$x_1 + x_2 + x_3 = 19$$
, $x_1 > 4$, $x_2 < 6$, $x_3 \le 5$

20)
$$x_1 + x_2 + x_3 = 23$$
, $x_1 < 7$, $x_2 \le 5$, $x_3 > 4$

Задание 4. Построить таблицу истинности для высказывания

1.
$$((a \rightarrow b) \oplus c) \leftrightarrow \overline{b};$$

2.
$$((a \oplus b) \to \overline{c}) \leftrightarrow \overline{b};$$

3.
$$((b \leftrightarrow \overline{a}) \lor \overline{c}) \oplus c;$$

4.
$$\overline{(a \leftrightarrow b)c} \oplus \overline{a}$$
;

5.
$$\overline{a \to (b \oplus c)} \leftrightarrow \overline{a}$$
;

6.
$$\overline{a \leftrightarrow (b \rightarrow c)} \oplus \overline{b}$$
;

7.
$$(a \leftrightarrow b) \oplus \overline{b \rightarrow c}$$
;

8.
$$\overline{(a \oplus c) \to (b \leftrightarrow \overline{a})};$$

9.
$$(a \leftrightarrow c) \oplus (b \rightarrow \overline{a});$$

10.
$$\overline{a \to (c \oplus (b \leftrightarrow \overline{a}))};$$

11.
$$(ab \oplus c) \rightarrow (b \leftrightarrow \overline{a});$$

12.
$$(a \to a\overline{b}c) \to (ab \oplus \overline{b}\overline{c});$$

13.
$$(a \oplus b \oplus \overline{c}) \leftrightarrow (\overline{a} \to b)$$
;

14.
$$(a \leftrightarrow bc) \oplus (b \rightarrow \overline{ac});$$

15.
$$(a \oplus c) \leftrightarrow (bc \rightarrow a\overline{c});$$

16.
$$\overline{a \to (b \oplus c)} \leftrightarrow b\overline{c}$$
;

17.
$$\overline{a \oplus (b \to c)} \leftrightarrow \overline{b}$$
;

18.
$$(a\overline{c} \oplus bc) \leftrightarrow (a \rightarrow b);$$

19.
$$a \leftrightarrow (\overline{bc \oplus a} \rightarrow b);$$

20.
$$b \oplus (\overline{ac} \rightarrow (b \leftrightarrow \overline{a}))$$
.

5.Для булевой функции $f(x_1,x_2,x_3)$ составить совершенную дизъюнктивную пормальную форму и минимизировать её, используя единичный куб, карты Карно и алгоритм Квайна - Маккласки.

lakk	ласк	и.																				
	x_1	x_2	x_3	$\int f$		x_1	x_2	x_3	f		x_1	x	2	v_3	f		x	x_2	x_3	$\int f$		
1.	0	0	0	0		0	0	0	0	3.	0	()	0	0		0	0	0	1		
	0	0	1	1	2.	0	0	1	1		0	()	1	1		0	0	1	1		
	0	1	0	0		0	1	0	0		0]	l	0	1	4.	0	1	0	0		
	0	1	1	1		0	1	1	1		0	1	1	1	0		0	1	1	0		
	1	0	0	0		1	0	0	1		1	()	0	1		1	0	0	0		
	1	0	1	1		1	0	1	1		1		- 1	1	0		1	0	1	1		
	1	1	0	0		1	1	0	1		1	1		0	1		1	1	0	1		
	1	1	1	$\begin{bmatrix} 0 \end{bmatrix}$		1	1	1	0		1	1		1	0		1	1	1	0		
		1	_		l																	
5.	x_1	$\begin{array}{c cc} x_2 & x_3 \\ \hline 0 & 0 \end{array}$	x_3	f		x_1	x_2	x_3	f		x_1	$\perp x$	2 3	Ľ3	f		x	x_2	x_3	$\int f$		
	0		0		0	0	0	1		()	())	0	1		0	0	0	1			
	0	0	1	0		0	0	1	0		0	()	1	0		0	0	1	1		
	0	1	0	1	6.	0	1	0	0	7.	0	1	.	0	1		0	1	0	0		
	0	1	1	0		0	1	l 1	0		0	1		1	0	8.	0	1	1	0		
	1	0	0	0		1	0	0	1		1)	0	0		1	0	0	1		
	1	0	1	0		1	0	1	0		1			1	1		1	0	1	0		
	1	1	0	1		1	1	0	1		1	1		0	1		1	1	0	1		
	1	1	1	1		1	1	1	0		1	1		1	1		1	1	1	0		
					ι	_				_						_				بنا		
9.	x_1	x_2	x_3	f		x_1	$ x_2 $	$ x_3 $	$\int f$			x_1	x_2	x	$\int f$	•		x_1	x_2	x_3	f	
	0	0	0	0		0	0	0	1			0	0	0	1			0	0	0	1	
	0	0	1	0		0	0	1	1			0	0	1	0			0	0	1	1	
	0	1	0	1	10.	0	1	0	0			0	1	0	0			0	1	0	1	
	0	1	1	1		0	1	1	1	1	1.	0	1	1	1		12.	0	1	1	0	
	1	0	0	0		1	0	0	1			1	0	0	1			1	0	0	0	
	1	0	1	1		1	0	1	1			1	0	1	0			1	0	1	0	
	1	1	0	0		1	1	0	1			1	1	0	1			1	1	0	0	
	1	1	1	1		1	1	1	1			1	1	1	1			1	1	1	0	
					_								_			_						
13.	x_1	x_2	x_3	$\int f$		x	$x_1 \mid x$		$f_3 \mid f$			x_1	x_2			f		x_1	x_2	x_3	$\int f$	
	0	0	0	0) (0	0	- 1	- 1	1		0	0	0	0	
	0	0	1	1			- 1	- 1	L C	- 1		0	0			0		0	0	1	1	
	0	1	0	0		()]	L () 0			0	1		()	0		0	1	0	0	
	0	1	1	1	14	1. () 1	L I	l 1		15.	0	1		1	1	16	. 0	1	1	0	
	1	0	0	0		1	. () () 1			1	0		0	1		1	0	0	0	
	1	0	1	1		1) :	L C)		1	0		1	0		1	0	1	0	
	1	1	0	0		1	. 1	L () 0)		1	1		0	0		1	1	0	1	
	1	1	1	1		1	. 1		l 1			1	1		1	0		1	1	1	1	
		_			_					_												J
17.	x_1	x_2		f	18	x						x_1	x_2	_		f		x_1	x_2	x_3	$\int f$	
	0	0	0	1		C) (0 0			0	0		0	1		0	0	0	0	
	0	0	1	1) () 1	. 1			0	0	- 1	- 1	1		0	0	1	0	
	0	1	0	0		() 1	. () 1			0	1		0	0		0	1	0	0	
	0	1	1	1		3. C) 1	. 1	. 0		19.	0	1		1	0	20	. 0	1	1	0	
	1	0	0	0		1	. 0) () 1			1	0		0	0		1	0	0	0	
	1	0	1	0		1	. 0) 1	. 1	1		1	0		1	1 0		1	0	1	0	
	1	1	0	0		1	- 1		0 0			1	1		0			1	1	0	1	
	1	1	1	1		1	- 1					1	1	- 1		0		1	1	1	1	