## 3th WEEK'S SUBMISSION

## 1. FINALIZING CLASS EXERCISE

A 3 M HIGHT AND 5 M WIDE WALL CONSIST OF LONG 16CM 22CM CROSS SECTION HORIZONTAL BRICKS (K= 0,72 W/m°C) SEPARATED BY A 3 CM THICK PLASTER LAYERS (K=0,22 W/m°C) THERE ARE ALSO 2 CM THICK PLASTER LAYERS ON EACH SIDE OF THE BRICK AND 3 CM THICK RIGID FOAM (K=0,026 W/m°C) ON INNER SIDE OF THE WALL

THE INDOOR AND OUTDOOR TEMPERATURE ARE 20° AND -10° AND THE CONVECTION HEAT TRANSFER COEFFICIENT ON THE INNER AND OUTSIDE ARE  $h_{1}=10~W/m^{2}$ °C AND  $h_{2}=40~W/m^{2}$ °C.

ASSUMING ONE DIMENSIONAL HEAT TRANSFER AND DISREGARDING RADIATION, DETERMINE THE RATE OF HEAT TRANSFER THROUGH THE WALL.



During the lesson we have calculate the R of the total wall, so now we have to finish the problem by calculating the total heat transfer by the wall.

$$R\ total = Ri + R\ f + R\ p1 + \frac{1}{Rplaster} + \frac{1}{Rbrick} + \frac{1}{Rplaster} + Rp2 + Ro$$

R total = 0.4+ 4.615+0.36+0.0206+0.990+0.0206+0.36+0.1

R total = 
$$6.81$$
 °C/W

Now we can calculate the total heat transfer:

$$Q = \frac{Ts - T\infty}{Rtotal}$$

$$\dot{Q} = \frac{20^{\circ}C - (-10^{\circ}C)}{6.81^{\circ}\frac{C}{W}} = 4.405 W$$

## 2. EXERCISE

A 3 M HIGH AND 5 M WIDE WALL CONSISTS OF LONG 32 CM 22 CM CROSS SECTION HORIZONTAL BRICKS (K = 0.72 W/m°C) SEPARATED BY 3 CM THICK PLASTER LAYERS (K = 0.22 W/m°C).

THERE ARE ALSO 2 CM THICK PLASTER LAYERS ON EACH SIDE OF THE BRICK AND A 3-CM-THICK RIGID FOAM (K =  $0.026~\text{W/m}^{\circ}\text{C}$ ) ON THE INNER SIDE OF THE WALL. THE INDOOR AND THE OUTDOOR TEMPERATURES ARE 20°C AND 10°C, AND THE CONVECTION HEAT TRANSFER COEFFICIENTS ON THE INNER AND THE OUTER SIDES ARE:

 $h_1 = 10 \text{ W/m}^2 ^{\circ} \text{C}$ 

 $h_2 = 25 \text{ W/m}^2 ^{\circ} \text{C}$ 

ASSUMING ONE-DIMENSIONAL HEAT TRANSFER AND DISREGARDING RADIATION, DETERMINE THE RATE OF HEAT TRANSFER THROUGH THE WALL.

$$A_1 = 1 \times 0,015 = 0,015 \text{ m}^2$$
  
 $A_2 = 1 \times 0,22 = 0,22 \text{ m}^2$ 

$$R_{\text{tot.parallel}} = \frac{1}{\frac{1}{R \text{ pc1}} + \frac{1}{R \text{ brick}} + \frac{1}{R \text{ pc2}}} = \frac{1}{\frac{1}{\frac{1}{L} + \frac{1}{L} + \frac{1}{L}} + \frac{1}{\frac{L}{L}}}$$

$$R_{pc1} = R_{pc2} = \frac{L}{k \times A1} = \frac{0.32}{0.22 \times 0.015} = 96,969 \frac{^{\circ}C}{W}$$

$$R_b = \frac{L}{k \times A1} = \frac{0.32}{0.72 \times 0.22} = 2.02 \frac{^{\circ}C}{W}$$

Rtot.parallel = 
$$\frac{1}{\frac{1}{96,969} + \frac{1}{2,02} + \frac{1}{96,969}} = \frac{1}{0,01 + 0,495 + 0,01} = 1,942 \frac{^{\circ}C}{W}$$

$$R_f = \frac{Lfoam}{kf \times Af} = \frac{0.03}{0.026 \times 0.25} = 4.615 \frac{^{\circ}C}{W}$$

$$R_i = \frac{1}{h_1 \times A} = \frac{1}{10 \times 0.25} = 0.4 \frac{^{\circ}C}{W}$$

$$R_0 = \frac{1}{h2 \times A} = \frac{1}{40 \times 0.25} = 0.1 \frac{^{\circ}C}{W}$$

$$R_{p1} = R_{p2} = \frac{Lp}{kp \times Ap} = \frac{0.02}{0.22 \times 0.25} = 0.363 \frac{^{\circ}C}{W}$$



$$R_{total} = R_{f+} R_{i+} R_{o+} R_{p1+} R_{p2+} R_{tot,parallel} = 4,615 + 0,4 + 0,1 + 0,363 + 0,363 + 1,942 = 7,783 \frac{^{\circ}C}{W}$$

$$\dot{Q} = \frac{Ts - T\infty}{Rtotal} = \frac{20 - (-10)}{7,783} = 3,855 \text{ W}$$

From the exercise we did during the class, where the thickness of the brick was 16 cm, we knew that:

$$R_{total} = 6.81 \frac{^{\circ}C}{W}$$
  
 $\dot{Q} = 4.405 W$ 

We can see that there isn't a big discrepancy and that the wall's thermal resistance has not increased considerably. Consequently also the rate of heat transfer through the wall has not substantially decreased.

## 3. EXERCISE

DETERMINE THE OVERALL UNIT THERMAL RESISTANCE (THE *R*-VALUE) AND THE OVERALL HEAT TRANSFER COEFFICIENT (THE *U*-FACTOR) OF A WOOD FRAME WALL THAT IS BUILT AROUND 38-MM 90-MM WOOD STUDS WITH A CENTER-TO-CENTER DISTANCE OF 400 MM. THE 90-MM-WIDE CAVITY BETWEEN THE STUDS IS FILLED WITH URETHANE RIGIF FOAM. THE INSIDE IS FINISHED WITH 13-MM GYPSUM WALLBOARD AND THE OUTSIDE WITH 13 MM PLYWOOD AND 13-MM 200-MM WOOD BEVEL LAPPED SIDING. THE INSULATED CAVITY CONSTITUTES 75 PERCENT OF THE HEAT TRANSMISSION AREA WHILE THE STUDS, PLATES, AND SILLS CONSTITUTE 21 PERCENT. THE HEADERS CONSTITUTE 4 PERCENT OF THE AREA, AND THEY CAN BE TREATED AS STUDS.

FIND THE TWO Runit VALUES.

|                            | Wood  | Insulation              |
|----------------------------|-------|-------------------------|
| Outside air                | 0.03  | 0.03                    |
| Wood bevel (13x200mm)      | 0.14  | 0.14                    |
| Plywood (13mm)             | 0.11  | 0.11                    |
| Urethane rigif foam (90mm) | no    | (0.98x90)/25 =<br>3.528 |
| Wood studs (90mm)          | 0.63  | no                      |
| Gypsum board (13mm)        | 0.079 | 0.079                   |
| Inside surface             | 0.12  | 0.12                    |

$$R_{\text{withwood}} = 0.03 \text{ m}^2 \frac{^{\circ}C}{w} + 0.14 \text{ m}^2 \frac{^{\circ}C}{w} + 0.11 \text{ m}^2 \frac{^{\circ}C}{w} + 0.63 \text{ m}^2 \frac{^{\circ}C}{w} + 0.079 \text{ m}^2 \frac{^{\circ}C}{w} + 0.12 \text{ m}^2 \frac{^{\circ}C}{w} = 1.109 \text{ m}^2 \frac{^{\circ}C}{w} + 0.079 \text{ m}^2 \frac{^{\circ}C}{w} + 0.12 \text{ m}^2 \frac{^{\circ}C}{w} = 1.109 \text{ m}^2 \frac{^{\circ}C}{w} + 0.079 \text{ m}^2 \frac{^{\circ}C}{w} + 0.12 \text{ m}^2 \frac{^{\circ}C}{w} = 1.109 \text{ m}^2 \frac{^{\circ}C}{w} + 0.079 \text{ m}^2 \frac{^{\circ}C}{w} + 0.079 \text{ m}^2 \frac{^{\circ}C}{w} = 1.109 \text{ m}^2 \frac{^{\circ}C}{w} + 0.079 \text{ m}^2 \frac{^{\circ}C}{w} + 0.079 \text{ m}^2 \frac{^{\circ}C}{w} = 1.109 \text{ m}^2 \frac{^{\circ}C}{w} + 0.079 \text{ m}^2 \frac{^{\circ}C}{w} + 0.079 \text{ m}^2 \frac{^{\circ}C}{w} = 1.109 \text{ m}^2 \frac{^{\circ}C}{w} + 0.079 \text{ m}^2 \frac{^{\circ}C}{w} + 0.079 \text{ m}^2 \frac{^{\circ}C}{w} = 1.109 \text{ m}^2 \frac{^{\circ}C}{w} + 0.079 \text{ m}^2 \frac{^{\circ}C}{w} = 1.109 \text{ m}^2 \frac{^{\circ}C}{w} + 0.079 \text{ m}^2 \frac{^{\circ}C}{w} = 1.109 \text{ m}^2 \frac{^{\circ}C}{w} + 0.079 \text{ m}^2 \frac{^{\circ}C}{w} = 1.109 \text{ m}^2 \frac{^{\circ}C}{w} + 0.079 \text{ m}^2 \frac{^{\circ}C}{w} = 1.109 \text{ m}^2 \frac{^{\circ}C}{w} + 0.079 \text{ m}^2 \frac{^{\circ}C}{w} = 1.109 \text{ m}^2 \frac{^{\circ}C}{w} + 0.079 \text{ m}^2 \frac{^{\circ}C}{w} = 1.109 \text{ m}^2 \frac{^{\circ}C}{w} + 0.079 \text{ m}^2 \frac{^{\circ}C}{w} = 1.109 \text{ m}^2 \frac{^{\circ}C}{w} + 0.079 \text{ m}^2 \frac{^{\circ}C}{w} = 1.109 \text{ m}^2 \frac{^{\circ}C}{w} + 0.079 \text{ m}^2 \frac{^{\circ}C}{w} = 1.109 \text{ m}^2 \frac{^{\circ}C}{w} + 0.079 \text{ m}^2 \frac{^{\circ}C}{w} = 1.109 \text{ m}^2 \frac{^{\circ}C}{w} + 0.079 \text{ m}^2 \frac{^{\circ}C}{w} = 1.109 \text{ m}^2 \frac{^{\circ}C}{w} + 0.079 \text{ m}^2 \frac{^{\circ}C}{w} = 1.109 \text{ m}^2 \frac{^{\circ}C}{w} + 0.079 \text{ m}^2 \frac{^{\circ}C}{w} = 1.109 \text{ m}^2 \frac{^{\circ}C}{w} + 0.079 \text{ m}^2 \frac{^{\circ}C}{w} = 1.109 \text{ m}^2 \frac{^{\circ}C}{w} + 0.079 \text{ m}^2 \frac{^{\circ}C}{w} = 1.109 \text{ m}^2 \frac{^{\circ}C}{w} + 0.079 \text{ m}^2 \frac{^{\circ}C}{w} = 1.109 \text{ m}^2 \frac{^{\circ}C}{w} + 0.079 \text{ m}^2 \frac{^{\circ}C}{w} = 1.109 \text{ m}^2 \frac{^{\circ}C}{w} + 0.079 \text{ m}^2 \frac{^{\circ}C}{w} = 1.109 \text{ m}^2 \frac{^{\circ}C}{w} + 0.079 \text{ m}^2 \frac{^{\circ}C}{w} = 1.109 \text{ m}^2 \frac{^{\circ}C}{w} + 0.079 \text{ m}^2 \frac{^{\circ}C}{w} = 1.109 \text{ m}^2 \frac{^{\circ}C}{w} + 0.079 \text{ m}^2 \frac{^{\circ}C}{w} = 1.109 \text{ m}^2 \frac{^{\circ}C}{w} + 0.079 \text{ m}^2 \frac{^{\circ}C}{w} = 1.109 \text{ m}^2 \frac{^{\circ}C}{w} + 0.079 \text{ m}^2 \frac{^{\circ}C}{w} = 1.109 \text{ m}^2 \frac{^{\circ}C}{w} + 0.079 \text{ m}^2 \frac{^{\circ}C}{w} = 1.109 \text{ m}^2 \frac{^$$

$$R_{\text{withinsulation}} = 0.03 \text{ m}^2 \frac{^{\circ}C}{w} + 0.14 \text{ m}^2 \frac{^{\circ}C}{w} + 0.11 \text{ m}^2 \frac{^{\circ}C}{w} + 3.528 \text{ m}^2 \frac{^{\circ}C}{w} + 0.079 \text{m}^2 \frac{^{\circ}C}{w} + 0.12 \text{m}^2 \frac{^{\circ}C}{w} = 4.007 \text{ m}^2 \frac{^{\circ}C}{w} + 0.079 \text{m}^2 \frac{^{\circ}C}{w} + 0.007 \text{m}^2 \frac{^{\circ}C}$$