

## Synapse Product Development LLC

### Kezar

FCC 15.407:2014

**Report #: SYNA0151.3** 



Report Prepared By Northwest EMC Inc.

NORTHWEST EMC – (888) 364-2378 – www.nwemc.com

California – Minnesota – Oregon – New York – Washington



### **CERTIFICATE OF TEST**

Last Date of Test: March 25, 2014 Synapse Product Development LLC Model: Kezar

### **Emissions**

| Test Description     | Specification   | Test Method      | Pass/Fail |
|----------------------|-----------------|------------------|-----------|
| Move Time            | FCC 15.407:2013 | ANSI C63.10:2009 | Pass      |
| Closing Time         | FCC 15.407:2013 | ANSI C63.10:2009 | Pass      |
| Non Occupancy Period | FCC 15.407:2013 | ANSI C63.10:2009 | Pass      |

### **Deviations From Test Standards**

None

Approved By:

Kyle Holgate, Operations Manager



NVLAP Lab Code: 200676-0

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test.



## **REVISION HISTORY**

| Revision<br>Number | Description | Date | Page Number |
|--------------------|-------------|------|-------------|
|                    |             |      |             |
| 00                 | None        |      |             |

### **Barometric Pressure**

The recorded barometric pressure has been normalized to sea level.



## ACCREDITATIONS AND AUTHORIZATIONS

### **United States**

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

**A2LA** - Accredited by A2LA to ISO / IEC Guide 65 as a product certifier. This allows Northwest EMC to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

### Canada

IC - Recognized by Industry Canada as a Certification Body (CB). Certification chambers and Open Area Test Sites are filed with IC.

### **European Union**

**European Commission** – Validated by the European Commission as a Conformity Assessment Body (CAB) under the EMC directive and as a Notified Body under the R&TTE Directive.

### Australia/New Zealand

**ACMA** - Recognized by ACMA as a CAB for the acceptance of test data.

### Korea

KCC / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

### Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

### Taiwan

**BSMI** – Recognized by BSMI as a CAB for the acceptance of test data.

**NCC** - Recognized by NCC as a CAB for the acceptance of test data.

### Singapore

**IDA** – Recognized by IDA as a CAB for the acceptance of test data.

### Hong Kong

OFTA - Recognized by OFTA as a CAB for the acceptance of test data.

### Vietnam

MIC - Recognized by MIC as a CAB for the acceptance of test data.

### Russia

**GOST** – Accredited by Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC to perform EMC and Hygienic testing for Information Technology products to GOST standards.

### SCOPE

For details on the Scopes of our Accreditations, please visit: http://www.nwemc.com/accreditations/



## **FACILITIES**





| Oregon<br>Labs EV01-12<br>22975 NW Evergreen Pkwy<br>Hillsboro, OR 97124<br>(503) 844-4066 | California<br>Labs OC01-13<br>41 Tesla<br>Irvine, CA 92618<br>(949) 861-8918 | New York<br>Labs NY01-04<br>4939 Jordan Rd.<br>Elbridge, NY 13060<br>(315) 685-0796 | Minnesota<br>Labs MN01-08<br>9349 W Broadway Ave.<br>Brooklyn Park, MN 55445<br>(763) 425-2281 | Washington<br>Labs NC01-05,SU02,SU07<br>19201 120 <sup>th</sup> Ave. NE<br>Bothell, WA 98011<br>(425) 984-6600 |  |
|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--|
|                                                                                            | VCCI                                                                         |                                                                                     |                                                                                                |                                                                                                                |  |
| A-0108                                                                                     | A-0029                                                                       |                                                                                     | A-0109                                                                                         | A-0110                                                                                                         |  |
|                                                                                            | Industry Canada                                                              |                                                                                     |                                                                                                |                                                                                                                |  |
| 2834D-1, 2834D-2                                                                           | 2834B-1, 2834B-2, 2834B-3                                                    |                                                                                     | 2834E-1                                                                                        | 2834F-1                                                                                                        |  |
| NVLAP                                                                                      |                                                                              |                                                                                     |                                                                                                |                                                                                                                |  |
| NVLAP Lab Code: 200630-0                                                                   | NVLAP Lab Code: 200676-0                                                     | NVLAP Lab Code: 200761-0                                                            | NVLAP Lab Code: 200881-0                                                                       | NVLAP Lab Code: 200629-0                                                                                       |  |









### PRODUCT DESCRIPTION

### Client and Equipment Under Test (EUT) Information

| Company Name:           | Synapse Product Development LLC |
|-------------------------|---------------------------------|
| Address:                | 1511 6th Ave. 4th Floor         |
| City, State, Zip:       | Seattle, WA 98101               |
| Test Requested By:      | Adrian Fox                      |
| Model:                  | Kezar                           |
| Equipment Design Stage: | Pre-production                  |
| Equipment Condition:    | No Damage                       |

### Information Provided by the Party Requesting the Test

### **Functional Description of the EUT (Equipment Under Test):**

WLAN 802.11an SISO radio device with 1 antenna

### Hardware, Firmware, and OS Versions:

Hardware version: 606-100519-01 (Main Board), 601-100517-00 (Antenna Board)

Firmware version: TI wl12XX 6.3.10.0

OS versions: Angstrom v2012.12 distribution (and vocto1.3), Linux Kernel Version 3.2, Phytec Linux BSP-

PD13.1.0 for PhyCORE-AM335x

### The operating frequency band(s) of the equipment.

5150 – 5250 MHz

5250 - 5350 MHz (DFS Band)

5470 - 5600 MHz (DFS Band)

5650 - 5725 MHz (DFS Band)

5725 – 5825 MHz

### The operating modes (Master and/or Client) of the U-NII device.

Client device with no ad-hoc capability with 20 MHz channels

## For Client devices, indicate whether or not it has DFS capabilities and indicate the FCC (and IC) identifier for the Master U-NII Device that is used with it for DFS testing.

The client device has no radar detection and no ad-hoc capability. A DFS-compliant Master device was used for testing.

## List the highest and the lowest possible power level (equivalent isotropic radiated power (EIRP) of the equipment.

The maximum EIRP of the 5GHz equipment is 15.8 dBm

## Test sequences or messages that should be used for communication between Master and Client Devices, which are used for loading the Channel.

- 1. Stream the test file from the Master Device to the Client Device for IP based systems or frame based systems which dynamically allocate the talk/listen ratio.
- 2. For frame based systems with fixed talk/listen ratio, set the ratio to 45%/55% and stream the test file from the Master to the Client.
- 3. For other system architectures, supply appropriate Channel loading methodology.

The specified NTIA MPEG file was used to exercise the channel

### **Transmit Power Control description.**

This device does not exceed 27dBm EIRP, so no transmit power control is implemented.



### PRODUCT DESCRIPTION

### System architectures, data rates, U-NII Channel bandwidths.

1. Indicate the type(s) of system architecture (e.g. IP based or Frame based) that the U-NII device employs. Each type of unique architecture must be tested.

The client device (EUT) employs IP based system architecture

### The time required for the Master Device and/or Client Device to complete its power-on cycle.

The client device (EUT) does not have radar detection, so its power-on time is not applicable, but was measured at approximately 30 seconds.

## Manufacturer statement confirming that information regarding the parameters of the detected Radar Waveforms is not available to the end user.

The client device (EUT) does not have radar detection, so this requirement is not applicable.

Uniform Channel Spreading requirement for Master Devices. For Master Devices, indicate how the master provides, on aggregate, uniform Channel loading of the spectrum across all Channels.

The client device (EUT) does not have radar detection, so this requirement is not applicable.

### List all antenna assemblies and their corresponding gains.

- 1. If radiated tests are to be performed, the U-NII Device should be tested with the lowest gain antenna assembly (regardless of antenna type). The report should indicate which antenna assembly was used for the tests. For devices with adjustable output power, list the output power range and the maximum EIRP for each antenna assembly.
- 2. If conducted tests are to be performed, indicate which antenna port/connection was used for the tests and the antenna assembly gain that was used to set the DFS Detection Threshold level during calibration of the test setup.
  - a. Indicate the calibrated conducted DFS Detection Threshold level.
  - b. For devices with adjustable output power, list the output power range and the maximum EIRP for each antenna assembly.
  - c. Indicate the antenna connector impedance. Ensure that the measurement instruments match (usually 50 Ohms) or use a minimum loss pad and take into account the conversion loss.
- 3. Antenna gain measurement verification for tested antenna.
  - a. Describe procedure
  - b. Describe the antenna configuration and how it is mounted
  - c. If an antenna cable is supplied with the device, cable loss needs to be taken into account. Indicate the maximum cable length and either measure the gain with this cable or adjust the measured gain accordingly. State the cable loss.

The client device (EUT) has one non-user accessible 50 ohm antenna port which was used for conducted RF measurements.

The antenna is located on a separate board. The antenna gain of the client device was measured by the antenna manufacturer. For reference, the maximum gain in the 5 GHz bands is 3 dBi. The cable loss is measured at 2dB from the WIFI module to the antenna board.



## **CONFIGURATIONS**

### Configuration SYNA0151- 2

| Software/Firmware Running during test |         |  |
|---------------------------------------|---------|--|
| Description                           | Version |  |
| Windows                               | 7       |  |
| NTIA Test File.MPEG                   | None    |  |

| EUT                |                                 |                   |               |
|--------------------|---------------------------------|-------------------|---------------|
| Description        | Manufacturer                    | Model/Part Number | Serial Number |
| Kezar Access Point | Synapse Product Development LLC | Kezar             | 1             |

| Peripherals in test setup boundary |                  |                   |               |  |
|------------------------------------|------------------|-------------------|---------------|--|
| Description                        | Manufacturer     | Model/Part Number | Serial Number |  |
| AC/DC Power Supply                 | ITE Power Supply | None              | None          |  |
| Master Access Point                | Cisco            | Cisco             | TIR           |  |
| Master PC                          | Lenovo           | Lenovo            | DFS1          |  |
| Client PC                          | Lenovo           | Lenovo            | DFS2          |  |

| Cables                                                                                                 |        |            |         |                    |              |
|--------------------------------------------------------------------------------------------------------|--------|------------|---------|--------------------|--------------|
| Cable Type                                                                                             | Shield | Length (m) | Ferrite | Connection 1       | Connection 2 |
| Ethernet Cable                                                                                         | No     | 1m         | No      | Kezar Access Point | Client PC    |
| Serial Cable                                                                                           | No     | 1m         | No      | Kezar Access Point | Client PC    |
| PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown. |        |            |         |                    |              |



## **MODIFICATIONS**

### **Equipment Modifications**

| Item | Date      | Test         | Modification  | Note                       | Disposition of EUT  |
|------|-----------|--------------|---------------|----------------------------|---------------------|
|      |           |              | Tested as     | No EMI suppression         | EUT remained at     |
| 1    | 3/25/2014 | Move Time    | delivered to  | devices were added or      | Northwest EMC       |
|      |           |              | Test Station. | modified during this test. | following the test. |
|      |           |              | Tested as     | No EMI suppression         | EUT remained at     |
| 2    | 3/25/2014 | Closing Time | delivered to  | devices were added or      | Northwest EMC       |
|      |           |              | Test Station. | modified during this test. | following the test. |
|      |           | Non          | Tested as     | No EMI suppression         | Scheduled testing   |
| 3    | 3/25/2014 | Occupancy    | delivered to  | devices were added or      | was completed.      |
|      |           | Period       | Test Station. | modified during this test. | was completed.      |



# INTRODUCTION & CLIENT DEVICE DFS CONFORMANCE

### Overview

For a Client Device without DFS, the Channel Move Time and Channel Closing Transmission Time requirements are verified with one Short Pulse Radar and one Long Pulse Radar. Non-occupancy period can be confirmed with either short or long pulses.

Channel Closing Transmission Time: The total duration of transmissions, consisting of data signals and the aggregate of control signals, by a U-NII device during the Channel Move Time.

Channel Move Time: The time to cease all transmissions on the current Channel upon detection of a Radar Waveform above the DFS Detection Threshold. A Client Device will not transmit before having received appropriate control signals from a Master Device. A Client Device will stop all its transmissions whenever instructed by a Master Device to which it is associated and will meet the Channel Move Time and Channel Closing Transmission Time requirements. The Client Device will not resume any transmissions until it has again received control signals from a Master Device.

Non-Occupancy Period: Time during which both the client and master device shall not make any transmissions on a channel after a radar signal was detected on that channel. It should at least the minimum requirements but it can be more.

### Applicability of DFS Requirements Prior to Use of a Channel

| Requirement                     | Operational Mode |                      |                   |
|---------------------------------|------------------|----------------------|-------------------|
|                                 | Master           | Client (without DFS) | Client (with DFS) |
| Non-Occupancy Period            | Yes              | Yes                  | Yes               |
| DFS Detection Threshold         | Yes              | Not required         | Yes               |
| Channel Availability Check Time | Yes              | Not required         | Not required      |
| Uniform Spreading               | Yes              | Not required         | Not required      |
| U-NII Detection Bandwidth       | Yes              | Not required         | Yes               |

### Applicability of DFS requirements during normal operation

| Requirement                       |        | Operational Mode     |                   |  |
|-----------------------------------|--------|----------------------|-------------------|--|
|                                   | Master | Client (without DFS) | Client (with DFS) |  |
| DFS Detection Threshold           | Yes    | Not required         | Yes               |  |
| Channel Closing Transmission Time | Yes    | Yes                  | Yes               |  |
| Channel Move Time                 | Yes    | Yes                  | Yes               |  |
| U-NII Detection Bandwidth         | Yes    | Not required         | Yes               |  |

### **DFS Response Requirement Values**

| Parameter                         | Value                                                             |
|-----------------------------------|-------------------------------------------------------------------|
| Non-occupancy                     | Minimum 30 minutes                                                |
| Channel Availability Check Time   | 60 seconds                                                        |
| Channel Move Time                 | 10 seconds (See Note 1)                                           |
| Channel Closing Transmission Time | 200 milliseconds + an aggregate of 60 milliseconds over remaining |
|                                   | 10 second period. (See Notes 1 and 2).                            |
|                                   | Minimum 80% of the UNII 99% transmission power bandwidth.         |
| U-NII Detection Bandwidth         | (See Note 3).                                                     |



# INTRODUCTION & CLIENT DEVICE DFS CONFORMANCE

Note 1: The instant that the Channel Move Time and the Channel Closing Transmission Time begins is as follows:

- For the Short Pulse Radar Test Signals this instant is the end of the Burst.
- For the Frequency Hopping radar Test Signal, this instant is the end of the last radar Burst generated.
- For the Long Pulse Radar Test Signal this instant is the end of the 12 second period defining the Radar Waveform.

Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the U-NII Detection Bandwidth detection test, radar type 1 is used and for each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

# INTRODUCTION & CLIENT DEVICE DFS CONFORMANCE

### DFS Detection Thresholds for Master or Client Devices Incorporating DFS

| Maximum Transmit Power | Value (See Notes 1 and 2) |
|------------------------|---------------------------|
| ≥ 200 milliwatt        | -64 dBm                   |
| < 200 milliwatt        | -62 dBm                   |

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.

Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

### **Short Pulse Radar Test Waveforms**

| Radar Type       | Pulse Width<br>(µsec) | PRI<br>(µsec) | Number<br>of<br>Pulses | Minimum Percentage of Successful Detection | Minimum<br>Number of<br>Trials |
|------------------|-----------------------|---------------|------------------------|--------------------------------------------|--------------------------------|
| 1                | 1                     | 1428          | 18                     | 60%                                        | 30                             |
| 2                | 1 - 5                 | 150 - 230     | 23 - 29                | 60%                                        | 30                             |
| 3                | 6 -10                 | 200 - 500     | 16 – 18                | 60%                                        | 30                             |
| 4                | 11 - 20               | 200 - 500     | 12 -16                 | 60%                                        | 30                             |
| Aggregate (Radar | Types 1-4)            | _             |                        | 80%                                        | 120                            |

### **Long Pulse Radar Test Waveforms**

| Radar<br>Type | Pulse<br>Width<br>(µsec) | Chirp<br>Width<br>(MHz) | PRI<br>(µsec) | Number<br>of<br>Pulses per<br>Burst | Number<br>of<br>Bursts | Minimum Percentage of Successful Detection | Minimum<br>Number of<br>Trials |
|---------------|--------------------------|-------------------------|---------------|-------------------------------------|------------------------|--------------------------------------------|--------------------------------|
| 5             | 50 - 100                 | 5 - 20                  | 1000 - 2000   | 1 - 3                               | 8 - 20                 | 80%                                        | 30                             |

### **Frequency Hopping Radar Test Waveform**

| Radar<br>Type | Pulse<br>Width<br>(µsec) | PRI<br>(µsec) | Pulses per<br>Hop | Hopping<br>Rate (kHz) | Hopping<br>Sequence<br>Length<br>(msec) | Minimum Percentage of Successful Detection | Minimum<br>Number of<br>Trials |
|---------------|--------------------------|---------------|-------------------|-----------------------|-----------------------------------------|--------------------------------------------|--------------------------------|
| 6             | 1                        | 333           | 9                 | 0.333                 | 300                                     | 70%                                        | 30                             |

### **Setting the Test Signal Level**

The radar test signal level is set at the Master Device, or the Client Device with In-Service Monitoring, as appropriate for the particular test. This device is known as the Radar Detection Device (RDD).

- When a Client Device without In-Service Monitoring is the UUT, the Master Device is the RDD.
- When a Client Device with In-Service Monitoring is the UUT, and is tested for response to the Master Device detections, the Master Device is the RDD.
- When a Client Device with In-Service Monitoring is the UUT, and is tested for independent response to detections by the Client Device, the Client Device is the RDD.

A spectrum analyzer is used to establish the test signal level for each radar type. During this process, there are no transmissions by either the Master Device or Client Device. The spectrum analyzer is switched to the zero span (time domain) mode at the frequency of the Radar Waveform generator. The peak detector function of the spectrum analyzer is utilized. The spectrum analyzer resolution bandwidth (RBW) and video bandwidth (VBW) are set to at least 3 MHz. The signal generator amplitude and/or step attenuators are set so that the power level measured at the spectrum analyzer is equal to the DFS Detection Threshold that is required for the tests. The signal generator and attenuator settings are recorded for use during the test.



### **MOVE TIME**

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

### **TEST EQUIPMENT**

| Description                     | Manufacturer             | Model             | ID  | Last Cal.  | Interval |
|---------------------------------|--------------------------|-------------------|-----|------------|----------|
| Power Divider/Combiner          | Fairview Microwave       | MP0208-2          | IAI | NCR        | 0        |
| Power Divider/Combiner          | Fairview Microwave       | MP0208-2          | IAJ | NCR        | 0        |
| DFS Access Point                | Cisco                    | AIR-SAP2602E-A-K9 | TIR | NCR        | 0        |
| DFS Signal Generator            | Benchforge Manufacturing | Colt              | TIN | NCR        | 0        |
| Step Attenuator                 | Aeroflex/Weinschel       | 3053              | RKG | NCR        | 0        |
| Step Attenuator                 | Aeroflex/Weinschel       | 3053              | RKF | NCR        | 0        |
| EV06 Direct Connect Cable       | ESM Cable Corp.          | TT                | ECA | NCR        | 0        |
| 40GHz DC Block                  | Miteq                    | DCB4000           | AMD | 5/16/2013  | 12       |
| Attenuator 20 dB, SMA M/F 26GHz | S.M. Electronics         | SA26B-20          | AUY | 7/30/2013  | 12       |
| Attenuator, 6dB                 | S.M. Electronics         | 18N-06            | AWN | 2/3/2014   | 12       |
| RF Vector Signal Generator      | Agilent                  | V2920A            | TIH | NCR        | 0        |
| Power Meter                     | Gigatronics              | 8651A             | SPM | 11/26/2013 | 24       |
| Power Sensor                    | Gigatronics              | 80701A            | SPL | 7/8/2011   | 36       |
| Spectrum Analyzer               | Agilent                  | E4440             | AFE | 11/4/2013  | 24       |

### **TEST DESCRIPTION**

FCC KDB 905462 describes the compliance measurement procedures including acceptable instrument system configurations for performing Dynamic Frequency Selection (DFS) tests under FCC Part 15 Subpart E Rules required for Unlicensed - National Information Infrastructure (U-NII) equipment that operates in the frequency bands 5.25 GHz to 5.35 GHz and/or 5.47 GHz to 5.725 GHz. The master and client were connected using the conducted method described in the procedure via a series of splitters and attenuators which allows the radar signals to be injected and monitored. Where required, an approved Media file was streamed through the master and client or an alternative method to load the channel may be used instead. Configuration and status of the master and client devices were monitored. The Move Time test was performed by starting a transmission between the Master and Slave device, and then injecting the appropriate radar signals and making sure both the Master and Slave device vacate the DFS channel within the time specified by the standard.



| EUT: Kezar                                                    | Work Order:       |          |        |
|---------------------------------------------------------------|-------------------|----------|--------|
| Serial Number: 1                                              |                   | 03/25/14 |        |
| Customer: Synapse Product Development LLC                     | Temperature:      | 22.1°C   |        |
| Attendees: Juha Kuikka                                        | Humidity:         | 40%      |        |
| Project: Kezar                                                | Barometric Pres.: | 1004     |        |
| Tested by: Jared Ison, Rod Peloquin Power: 110VAC/60Hz        | Job Site:         |          |        |
| TEST SPECIFICATIONS Test Method                               |                   |          |        |
| FCC 15.407:2014 ANSI C63.10:2009                              |                   |          |        |
|                                                               |                   |          |        |
| COMMENTS                                                      |                   |          |        |
| Streaming NTIA MPEG from Master Server to Client attached PC. |                   |          |        |
| DEVIATIONS FROM TEST STANDARD                                 |                   |          |        |
| Configuration # 2 Rocky be Fieleys Signature                  |                   |          |        |
|                                                               | Value             | Limit    | Result |
| 20MHz                                                         |                   |          |        |
| Ch. 60, 5300 MHz                                              |                   |          |        |
| Radar1                                                        | 7.285 s           | < 10 s   | Pass   |
| Ch. 112, 5560 MHz                                             |                   |          |        |
| OII. 112, 3300 WHZ                                            |                   |          |        |

### **MOVE TIME**





|  |  | 20MHz, C | h. 112, 5560 MH: | z, Radar1 |        |        |
|--|--|----------|------------------|-----------|--------|--------|
|  |  |          |                  | Value     | Limit  | Result |
|  |  |          |                  | 7.308 s   | < 10 s | Pass   |







### **MOVE TIME**



### Attenuation

| Master    | Master      | Client      | Client    | Master | Radar Sim   |
|-----------|-------------|-------------|-----------|--------|-------------|
| Radar Sim | Spec. Anal. | Spec. Anal. | Radar Sim | Client | Spec. Anal. |
| 3         | 3           | 40          | 40        | 3      | 6           |
| 3         | 3           | 5           | 5         | 3      | 3           |
| 6         | 6           | 6           | 6         | 6      | 6           |
| 3         | 18          | 3           | 18        | 3      | 6           |
| 6         | 6           | 6           | 6         | 6      | 3           |
| 6         |             | 6           |           | 6      | 6           |
| 3         |             | 3           |           | 3      |             |
| 6         |             | 6           |           | 6      |             |
|           |             |             |           | 5      |             |
|           |             |             |           | 40     |             |
| =======   | =======     | =======     | =======   | ====== | ======      |
| 36        | 36          | 75          | 75        | 81     | 30          |



Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

### **TEST EQUIPMENT**

| Description                     | Manufacturer             | Model             | ID  | Last Cal.  | Interval |
|---------------------------------|--------------------------|-------------------|-----|------------|----------|
| DFS Access Point                | Cisco                    | AIR-SAP2602E-A-K9 | TIR | NCR        | 0        |
| Step Attenuator                 | Aeroflex/Weinschel       | 3053              | RKG | NCR        | 0        |
| Step Attenuator                 | Aeroflex/Weinschel       | 3053              | RKF | NCR        | 0        |
| Power Divider/Combiner          | Fairview Microwave       | MP0208-2          | IAJ | NCR        | 0        |
| Power Divider/Combiner          | Fairview Microwave       | MP0208-2          | IAI | NCR        | 0        |
| DFS Signal Generator            | Benchforge Manufacturing | Colt              | TIN | NCR        | 0        |
| Attenuator, 6dB                 | S.M. Electronics         | 18N-06            | AWN | 2/3/2014   | 12       |
| RF Vector Signal Generator      | Agilent                  | V2920A            | TIH | NCR        | 0        |
| Power Meter                     | Gigatronics              | 8651A             | SPM | 11/26/2013 | 24       |
| Power Sensor                    | Gigatronics              | 80701A            | SPL | 7/8/2011   | 36       |
| 40GHz DC Block                  | Miteq                    | DCB4000           | AMD | 5/16/2013  | 12       |
| Attenuator 20 dB, SMA M/F 26GHz | S.M. Electronics         | SA26B-20          | AUY | 7/30/2013  | 12       |
| EV06 Direct Connect Cable       | ESM Cable Corp.          | TT                | ECA | NCR        | 0        |
| Spectrum Analyzer               | Agilent                  | E4440             | AFE | 11/4/2013  | 24       |

### **TEST DESCRIPTION**

FCC KDB 905462 describes the compliance measurement procedures including acceptable instrument system configurations for performing Dynamic Frequency Selection (DFS) tests under FCC Part 15 Subpart E Rules required for Unlicensed - National Information Infrastructure (U-NII) equipment that operates in the frequency bands 5.25 GHz to 5.35 GHz and/or 5.47 GHz to 5.725 GHz. The master and client were connected using the conducted method described in the procedure via a series of splitters and attenuators which allows the radar signals to be injected and monitored. Where required, an approved Media file was streamed through the master and client or an alternative method to load the channel may be used instead. Configuration and status of the master and client devices were monitored. The Closing Time test was performed by starting a transmission between the Master and Client device, and then injecting the appropriate radar signals. All transmission signals between the Master and Client in the first 200mS are allowed. After this time period, the number of transmissions signals are counted and multiplied by the pulse width value. This aggregate is then added to the 200mS allowance for the final value.



|                  | Radar 1 200n               |                        |       |        |                  | 0.5584    | 203.9                          | 260                                     | Pass   |
|------------------|----------------------------|------------------------|-------|--------|------------------|-----------|--------------------------------|-----------------------------------------|--------|
|                  |                            | rol Signal Pulse Width |       |        | N/A              | 0.5584    | N/A                            | N/A                                     | N/A    |
|                  | Ch. 112, 5560 MHz          |                        |       |        |                  |           |                                |                                         |        |
|                  | Radar 1 200n               | ns + Aggregate         |       |        | 8                | 0.5594    | 204.5                          | 260                                     | Pass   |
|                  | Radar 1 Cont               | rol Signal Pulse Width |       |        | N/A              | 0.5594    | N/A                            | N/A                                     | N/A    |
|                  | Ch. 60, 5300 MHz           |                        |       |        |                  |           |                                |                                         |        |
| 20MHz            |                            |                        |       |        |                  | , 1955/   | (···)                          | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |        |
|                  |                            |                        |       |        | # of Pulses      | PW (mSec) | Value (mSec)                   | Limit (mSec)                            | Result |
| Configuration #  | 2                          | Signature              | Rocky | , le   | Releng           |           |                                |                                         |        |
| DEVIATIONS PRO   | III ILGI GIANDARD          | -                      |       |        |                  |           |                                | <u> </u>                                |        |
| DEVIATIONS FRO   | M TEST STANDARD            |                        |       |        |                  |           |                                |                                         |        |
| Streaming NTIA M | PEG from Master Server to  | Client attached PC.    |       |        |                  |           |                                |                                         |        |
| COMMENTS         |                            |                        |       |        |                  |           |                                |                                         |        |
|                  |                            |                        |       |        |                  |           |                                |                                         |        |
| FCC 15.407:2014  |                            |                        |       |        | ANSI C63.10:2009 |           |                                |                                         |        |
| TEST SPECIFICAT  |                            |                        |       |        | Test Method      |           | i con cho.                     | 1                                       |        |
|                  | : Jared Ison, Rod Peloquin | <u> </u>               |       | Power: | 110VAC/60Hz      |           | Job Site:                      |                                         |        |
|                  | : Juha Kuikka<br>: Kezar   |                        |       |        |                  |           | Humidity:<br>Barometric Pres.: |                                         |        |
|                  | : Synapse Product Develop  | pment LLC              |       |        |                  |           | Temperature:                   |                                         |        |
| Serial Number    |                            |                        |       |        |                  |           |                                | 03/25/14                                |        |
|                  | : Kezar                    |                        |       |        |                  |           | Work Order:                    |                                         |        |





|   |             | 20MHz, 5300 M | IHz, Radar 1 200 | ms + Aggregate |              |        |
|---|-------------|---------------|------------------|----------------|--------------|--------|
|   | # of Pulses | PW (mSec)     |                  | Value (mSec)   | Limit (mSec) | Result |
| [ | 8           | 0.5594        |                  | 204.5          | 260          | Pass   |







|                 | 20MHz, 5560 M | MHz, Radar 1 200ms + Aggregate |              |        |
|-----------------|---------------|--------------------------------|--------------|--------|
|                 |               |                                |              |        |
| <br># of Pulses | PW (mSec)     | Value (mSec)                   | Limit (mSec) | Result |
| 7               | 0.5584        | 203.9                          | 260          | Pass   |









### Attenuation

| Master    | Master      | Client      | Client    | Master  | Radar Sim   |
|-----------|-------------|-------------|-----------|---------|-------------|
| Radar Sim | Spec. Anal. | Spec. Anal. | Radar Sim | Client  | Spec. Anal. |
| 3         | 3           | 40          | 40        | 3       | 6           |
| 3         | 3           | 5           | 5         | 3       | 3           |
| 6         | 6           | 6           | 6         | 6       | 6           |
| 3         | 18          | 3           | 18        | 3       | 6           |
| 6         | 6           | 6           | 6         | 6       | 3           |
| 6         |             | 6           |           | 6       | 6           |
| 3         |             | 3           |           | 3       |             |
| 6         |             | 6           |           | 6       |             |
|           |             |             |           | 5       |             |
|           |             |             |           | 40      |             |
| ======    | ======      | =======     | =======   | ======= | =======     |
| 36        | 36          | 75          | 75        | 81      | 30          |



### NON OCCUPANCY PERIOD

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

### **TEST EQUIPMENT**

| Description                     | Manufacturer             | Model             | ID  | Last Cal.  | Interval |
|---------------------------------|--------------------------|-------------------|-----|------------|----------|
| DFS Signal Generator            | Benchforge Manufacturing | Colt              | TIN | NCR        | 0        |
| Step Attenuator                 | Aeroflex/Weinschel       | 3053              | RKG | NCR        | 0        |
| Step Attenuator                 | Aeroflex/Weinschel       | 3053              | RKF | NCR        | 0        |
| Power Divider/Combiner          | Fairview Microwave       | MP0208-2          | IAJ | NCR        | 0        |
| Power Divider/Combiner          | Fairview Microwave       | MP0208-2          | IAI | NCR        | 0        |
| DFS Access Point                | Cisco                    | AIR-SAP2602E-A-K9 | TIR | NCR        | 0        |
| Power Meter                     | Gigatronics              | 8651A             | SPM | 11/26/2013 | 24       |
| Power Sensor                    | Gigatronics              | 80701A            | SPL | 7/8/2011   | 36       |
| Attenuator, 6dB                 | S.M. Electronics         | 18N-06            | AWN | 2/3/2014   | 12       |
| RF Vector Signal Generator      | Agilent                  | V2920A            | TIH | NCR        | 0        |
| 40GHz DC Block                  | Miteq                    | DCB4000           | AMD | 5/16/2013  | 12       |
| Attenuator 20 dB, SMA M/F 26GHz | S.M. Electronics         | SA26B-20          | AUY | 7/30/2013  | 12       |
| EV06 Direct Connect Cable       | ESM Cable Corp.          | TT                | ECA | NCR        | 0        |
| Spectrum Analyzer               | Agilent                  | E4440             | AFE | 11/4/2013  | 24       |

### **TEST DESCRIPTION**

FCC KDB 905462 describes the compliance measurement procedures including acceptable instrument system configurations for performing Dynamic Frequency Selection (DFS) tests under FCC Part 15 Subpart E Rules required for Unlicensed - National Information Infrastructure (U-NII) equipment that operates in the frequency bands 5.25 GHz to 5.35 GHz and/or 5.47 GHz to 5.725 GHz. The master and client were connected using the conducted method described in the procedure via a series of splitters and attenuators which allows the radar signals to be injected and monitored. Where required, an approved Media file was streamed through the master and client or an alternative method to load the channel may be used instead. Configuration and status of the master and client devices were monitored. The Move Time test was performed by starting a transmission between the Master and Slave device, and then injecting the appropriate radar signals and making sure both the Master and Slave device vacate the DFS channel within the time specified by the standard.



| EUT:             | Kezar                           |                   |                  | Work Order: | SYNA0151 |        |
|------------------|---------------------------------|-------------------|------------------|-------------|----------|--------|
| Serial Number:   | 1                               | Date:             | 03/25/14         |             |          |        |
| Customer:        | Synapse Product Development LLC | Temperature:      | 22.1°C           |             |          |        |
| Attendees:       | Juha Kuikka                     | Humidity:         | 36%              |             |          |        |
| Project:         | Kezar                           | Barometric Pres.: | 1004             |             |          |        |
| Tested by:       | Jared Ison, Rod Peloquin        | Power:            | 110VAC/60Hz      | Job Site:   | EV06     |        |
| TEST SPECIFICATI | ONS                             |                   | Test Method      |             |          |        |
| FCC 15.407:2014  |                                 |                   | ANSI C63.10:2009 |             |          |        |
|                  |                                 |                   |                  |             |          |        |
| COMMENTS         |                                 |                   |                  |             |          |        |
| DEVIATIONS FROM  | 1 TEST STANDARD 2 Signature     | Poeley le         | Relings          |             |          |        |
|                  |                                 |                   |                  | Value       | Limit    | Result |
| 20MHz            |                                 |                   |                  |             |          |        |
|                  | Ch. 60, 5300 MHz                |                   |                  |             |          |        |
|                  | 30min Non Occupancy Period      | > 30 min          | ≥30 min          | Pass        |          |        |
|                  | Ch. 112, 5560 MHz               |                   |                  |             |          |        |
|                  | 30min Non Occupancy Period      | > 30 min          | ≥30 min          | Pass        |          |        |

### **NON OCCUPANCY PERIOD**





| 20MHz, Ch. 112, 5560 MHz, 30min Non Occupancy Period |  |  |  |          |         |        |
|------------------------------------------------------|--|--|--|----------|---------|--------|
|                                                      |  |  |  | Value    | Limit   | Result |
|                                                      |  |  |  | > 30 min | ≥30 min | Pass   |



### **NON OCCUPANCY PERIOD**

1/0/1900



### Attenuation

| Master    | Master      | Client      | Client    | Master  | Radar Sim   |
|-----------|-------------|-------------|-----------|---------|-------------|
| Radar Sim | Spec. Anal. | Spec. Anal. | Radar Sim | Client  | Spec. Anal. |
| 3         | 3           | 40          | 40        | 3       | 6           |
| 3         | 3           | 5           | 5         | 3       | 3           |
| 6         | 6           | 6           | 6         | 6       | 6           |
| 3         | 18          | 3           | 18        | 3       | 6           |
| 6         | 6           | 6           | 6         | 6       | 3           |
| 6         |             | 6           |           | 6       | 6           |
| 3         |             | 3           |           | 3       |             |
| 6         |             | 6           |           | 6       |             |
|           |             |             |           | 5       |             |
|           |             |             |           | 40      |             |
| =======   | =======     | =======     | =======   | ======= | =======     |
| 36        | 36          | 75          | 75        | 81      | 30          |