UFRGS – INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT01168 - Turma A - 2015/2 Prova da área II

1-6	7	8	Total

Nome:	Cartão:	

Regras Gerais:

- Não é permitido o uso de calculadoras, telefones ou qualquer outro recurso computacional ou de comunicação.
- Trabalhe individualmente e sem uso de material de consulta além do fornecido.
- Devolva o caderno de questões preenchido ao final da prova.

Regras para as questões abertas

- Seja sucinto, completo e claro.
- Justifique todo procedimento usado.
- Indique identidades matemáticas usadas, em especial, itens da tabela.
- Use notação matemática consistente.

COORDENADAS CILÍNDRICAS E ESFÉRICAS

a) Coordenadas cilíndricas : ρ,φ,z

b) Coordenadas esféricas : r, θ, ϕ

Tabela do operador $\vec{\nabla}$:

f=f(x,y,z) e g=g(x,y,z) são funções escalares; $\vec{F}=\vec{F}(x,y,z)$ e $\vec{G}=\vec{G}(x,y,z)$ são funções vetoriais.

1.	$\vec{\nabla} \left(f + g \right) = \vec{\nabla} f + \vec{\nabla} g$
2.	$ec{ abla} \cdot \left(ec{F} + ec{G} ight) = ec{ abla} \cdot ec{F} + ec{ abla} \cdot ec{G}$
3.	$ec{ abla} imes\left(ec{F}+ec{G} ight)=ec{ abla} imesec{F}+ec{ abla} imesec{G}$
4.	$\vec{\nabla} \left(fg \right) = f \vec{\nabla} g + g \vec{\nabla} f$
5.	$\vec{\nabla} \cdot \left(f \vec{F} \right) = \left(\vec{\nabla} f \right) \cdot \vec{F} + f \left(\vec{\nabla} \cdot \vec{F} \right)$
6.	$ec{ abla} imes\left(fec{F} ight)=ec{ abla}f imesec{F}+fec{ abla} imesec{F}$
7.	$\vec{\nabla} \cdot \vec{\nabla} f = \vec{\nabla}^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2},$
	onde $\vec{\nabla}^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ é o operador laplaciano
8.	$\vec{\nabla} \times \left(\vec{\nabla} f \right) = 0$
9.	$ec{ abla}\cdot\left(ec{ abla} imesec{F} ight)=0$
10.	$ec{ abla} imes\left(ec{ abla} imesec{F} ight)=ec{ abla}\left(ec{ abla}\cdotec{F} ight)-ec{ abla}^2ec{F}$
11.	$\vec{\nabla} \cdot \left(\vec{F} \times \vec{G} \right) = G \cdot \left(\vec{\nabla} \times \vec{F} \right) - F \cdot \left(\vec{\nabla} \times \vec{G} \right)$
12.	$\vec{\nabla} \times \left(\vec{F} \times \vec{G} \right) = \left(\vec{G} \cdot \vec{\nabla} \right) \vec{F} - \vec{G} \left(\vec{\nabla} \cdot \vec{F} \right) - \left(\vec{F} \cdot \vec{\nabla} \right) \vec{G} + \vec{F} \left(\vec{\nabla} \cdot \vec{G} \right)$
13.	$\vec{\nabla} \left(\vec{F} \cdot \vec{G} \right) = \left(\vec{G} \cdot \vec{\nabla} \right) \vec{F} + \left(\vec{F} \cdot \vec{\nabla} \right) \vec{G} + \vec{F} \times \left(\vec{\nabla} \times \vec{G} \right) + \vec{G} \times \left(\vec{\nabla} \times \vec{F} \right)$

- \bullet Questão 1 (1.0 ponto) A curvatura da curva $y=2x^2+1$ no ponto (0,1) é:
 - () 6.
 - () 5.
 - (X) 4.
 - () 3.
 - () 2.
 - () 1.

- ullet Questão 2 (1.0 ponto) Dado o campo vetorial $ec{F}$ e o campo escalar f é correto afirmar que:
 - $(\quad) \ \, \vec{\nabla} f \times \vec{F} = (\vec{F} \times \vec{\nabla}) f.$
 - $(\)\ \vec{\nabla}\times(f\vec{F})=\vec{F}\times\vec{\nabla}f+f(\vec{\nabla}\times\vec{F}).$
 - () $\vec{\nabla} \times \vec{F} = 0$.
 - $(\quad) \quad \vec{\nabla}^2 f = \vec{\nabla} \cdot (\vec{\nabla} f) = \vec{\nabla} (\vec{\nabla} \cdot \vec{F}).$
 - $(\mathbf{X}) \ \vec{\nabla} \times (\vec{F}(\vec{\nabla} \cdot \vec{F})) = \vec{\nabla}(\vec{\nabla} \cdot \vec{F}) \times \vec{F} + (\vec{\nabla} \cdot \vec{F}) \vec{\nabla} \times \vec{F}.$
 - $(\quad) \ \, \vec{\nabla} \left(\vec{\nabla} \cdot \vec{F} \right) = \vec{\nabla}^2 \vec{F}.$

- Questão 3 (1.0 ponto) Dado o campo conservativo $\vec{F} = 2xy^3\vec{i} + (1+3x^2y^2)\vec{j} + \vec{k}$, a função potencial é:
 - (X) $\varphi(x, y) = z + x^2 y^3 + y$.
 - () $\varphi(x,y) = 1 + x^2y^3 + y$.
 - () $\varphi(x,y) = 1 + x^2y^3 + 1$.
 - () $\varphi(x,y) = z + x^3y^2 + y$.
 - () $\varphi(x,y) = 1 + x^3y^2 + y$.
 - () $\varphi(x,y) = x^2y^3 + y$.

- ullet Questullet a d(1.0 ponto)O trabalho realizado pelo campo da questullet a a longo da reta que liga a origem até o ponto P(1,2,-1) é:
 - () 5.
 - () 6.
 - () 7.
- () 8.
- (X) 9.
- () 10

• Questão 5 (1.0 ponto) O fluxo do campo $\vec{F} = x\vec{i} + y\vec{j} + z^2\vec{k}$ através da superfície dada pelo cone $z^2 = x^2 + y^2$, $0 \le z \le 1$ orientada no • Questão 5 (1.0 ponto) of sentido côncavo-convexo é () $-\frac{\pi}{3}$. () $-\frac{\pi}{6}$. () $-\frac{\pi}{12}$. () $\frac{\pi}{12}$. () $\frac{\pi}{6}$. () $\frac{\pi}{3}$.

• Questão 6 (1.0 ponto) Na figura abaixo é dada uma curva representada por um pedaço de uma hélice elíptica. É correto afirmar que:

- () A curva possui torção nula e curvatura positiva em todos os pontos.
- () A curva possui torção positiva e curvatura positiva em todos os pontos.
- (X) A curva possui torção negativa e curvatura positiva em todos os pontos.
- () A curva possui torção nula e curvatura nula em todos os pontos.
- () A curva possui torção positiva e curvatura nula em todos os pontos.
- () A curva possui torção negativa e curvatura nula em todos os pontos.
- () Não é possível saber o sinal da torção, pois a orientação positiva da curva não é informada.

• Questão 7 (2.0 pontos) Considere o campo vetorial \vec{F} dado na figura 1 e marque verdadeiro, falso ou não sei. Observação: item respondido corretamente vale 0.2, item respondido incorretamente vale -0.2 e item marcado como não sei vale 0.0.

Figura 1: Campo vetorial \vec{F}

- i) $\vec{\nabla} \cdot \vec{F}(0.4, 1) = 0.$
- ii) Se C é a reta que liga os pontos (0.5,0) e (0.5,1), então $\int_C \vec{F} \cdot d\vec{r} = 0$.
- iii) \vec{F} é um campo irrotacional.
- iv) \vec{F} é um campo central da forma $\vec{F}=f(r)\hat{r},$ onde $r=\sqrt{x^2+y^2}.$
- v) Para x>0 e y>0, \vec{F} é da forma $\vec{F}=f(x,y)\vec{i},$ $f(x,y)\geq0.$
- vi) Se y = 0, então $\vec{F}(x, y) = \vec{j}$.
- vii) Assumindo que os eixos x,y e z obedecem a regra da mão direita, então $\vec{\nabla} \times \vec{F} = g(x,y)\vec{k}$, onde $g \leq 0$.
- viii) O divergente de \vec{F} no ponto (0,0.2) é certamente nulo, pois $\vec{F}=\vec{0}.$
- ix) $\|\vec{F}(1,1)\| > \|\vec{F}(0.5,0.5)\|$.
- x) A integral de linha $\int_C \vec{F} \cdot d\vec{r}$, onde C é uma curva que liga os pontos (0,0) e (1,1), independe de C.

	Verdadeiro	Falso	Não Sei
i)		X	
ii)	X		
iii)		X	
iv)		X	
v)	X		

	Verdadeiro	Falso	Não Sei
vi)		X	
vii)	X		
viii)		X	
ix)	X		
x)		X	

• Questão 8 (2.0 pontos): Use o Teorema de Stokes para calcular o trabalho realizado pelo campo de força

$$\vec{F} = xz^2 \cos(y)\vec{i} + \cos(y)\vec{j} + \sin(yz)\vec{k}$$

ao deslocar uma partícula ao longo do quadrado contido no plano xz de vértices (0,0,0), (0,0,1), (1,0,1) e (1,0,0) orientado no sentido anti-horário

Solução: Primeiro calculamos o rotacional do campo \vec{F} :

$$\vec{\nabla} \times \vec{F} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ xz^2 \cos(y) & \cos(y) & \sin(yz) \end{vmatrix} = z \cos(yz) \vec{i} + 2xz \cos(y) \vec{j} - xz^2 \sin(y) \vec{k}.$$

Seja C o quadrado que limita a superfície $S:\ y=0,\ 0\leq x\leq 1,\ 0\leq z\leq 1.$ Pelo teorema de Stokes,

$$\begin{split} W &= \int_C \vec{F} \cdot d\vec{r} \\ &= \iint_S \vec{\nabla} \times \vec{F} \cdot \vec{j} dS \\ &= \int_0^1 \int_0^1 2xz \cos(y(x,z)) dx dz \\ &= \int_0^1 \int_0^1 2xz \cos(0) dx dz \\ &= \int_0^1 \int_0^1 2xz dx dz \\ &= \int_0^1 \left[x^2\right]_0^1 z dz \\ &= \frac{1}{2}. \end{split}$$