Logistic regression

Predict binary outcomes (success/failure) from numerical or categorical predictors.

Linear vs. logistic regression

Linear regression:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n + \varepsilon$$

Linear vs. logistic regression

Linear regression:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n + \varepsilon$$

Logistic regression:

$$Pr(success) = \frac{e^t}{1 + e^t}$$
$$t = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n + \varepsilon$$

Linear vs. logistic regression

Linear regression:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n + \varepsilon$$

Logistic regression:

$$Pr(success) = \frac{e^t}{1 + e^t}$$
$$t = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n + \varepsilon$$

(generalized linear model, GLM)

The logistic equation

Example: Pr(malignant) in biopsy data set

Let's do this step by step...

Recall the biopsy data set

```
clump_thickness uniform_cell_size uniform_cell_shape marg_adhesion
1
2
5
                                  10
                                                      10
 epithelial_cell_size bare_nuclei bland_chromatin normal_nucleoli mitoses
                                 10
5
                                 10
    outcome
     benign
     benign
     benign
     benign
     benign
6 malignant
```

We do logistic regression with the glm() function

```
> glm out <- glm(</pre>
    outcome ~ clump thickness +
      uniform cell size +
      uniform cell shape +
      marg adhesion +
      epithelial cell size +
      bare nuclei +
      bland chromatin +
      normal_nucleoli +
      mitoses,
    data = biopsy,
    family = binomial
```

> summary(glm out)

Call:

```
glm(formula = outcome ~ clump_thickness + uniform_cell_size +
    uniform_cell_shape + marg_adhesion + epithelial_cell_size +
    bare_nuclei + bland_chromatin + normal_nucleoli + mitoses,
    family = binomial, data = biopsy)
```

Deviance Residuals:

```
Min 1Q Median 3Q Max -3.4841 -0.1153 -0.0619 0.0222 2.4698
```

Coefficients:

	Estimate	Std. Error	z value	Pr(> z)	
(Intercept)	-10.10394	1.17488	-8.600	< 2e-16	***
clump_thickness	0.53501	0.14202	3.767	0.000165	***
uniform_cell_size	-0.00628	0.20908	-0.030	0.976039	
uniform_cell_shape	0.32271	0.23060	1.399	0.161688	
marg_adhesion	0.33064	0.12345	2.678	0.007400	**
epithelial_cell_size	0.09663	0.15659	0.617	0.537159	
bare_nuclei	0.38303	0.09384	4.082	4.47e-05	***
bland_chromatin	0.44719	0.17138	2.609	0.009073	**
normal_nucleoli	0.21303	0.11287	1.887	0.059115	•
mitoses	0.53484	0.32877	1.627	0.103788	
01 1 0 / do	h.h. / 0 001	4			, 1

> summary(glm out)

Call:

glm(formula = outcome ~ clump_thickness + uniform_cell_size +
 uniform_cell_shape + marg_adhesion + epithelial_cell_size +
 bare_nuclei + bland_chromatin + normal_nucleoli + mitoses,
 family = binomial, data = biopsy)

Deviance Residuals:

Min 1Q Median 3Q Max -3.4841 -0.1153 -0.0619 0.0222 2.4698

Coefficients:

	Estimate	Std. Error z	value	Pr(> z)	
(Intercept)	-10.10394	1.17488	-8.600	< 2e-16	***
clump_thickness	0.53501	0.14202	3.767	0.000165	***
uniform coll size	0.00628	0.20908	0.030	0.976039	
uniform_cell_shape	0.32271	0.23060	1.399	0.161688	
marg_adhesion	0.33064	0.12345	2.678	0.007400	**
epithelial_cell_size	0.09663	0.15659	0.617	0.537159	
bare_nuclei	0.38303	0.09384	4.082	4.47e-05	***
bland_chromatin	0.44719	0.17138	2.609	0.009073	**
normal_nucleoli	0.21303	0.11287	1.887	0.059115	•
mitoses	0.53484	0.32877	1.627	0.103788	
Signif. codes: 0 '*	**' 0.001 '	**' 0.01 '*'	0.05	·· · · 0.1 ·	' 1

```
> glm_out <- glm(
   outcome ~ clump_thickness +
     uniform_cell_shape +
     marg_adhesion +
     epithelial_cell_size +
     bare_nuclei +
     bland_chromatin +
     normal_nucleoli +
     mitoses,
   data = biopsy,
   family = binomial</pre>
```

```
> summary(glm out)
Call:
glm(formula = outcome ~ clump thickness + uniform cell shape +
   marg adhesion + epithelial cell size + bare nuclei +
bland chromatin +
   normal nucleoli + mitoses, family = binomial, data = biopsy)
Deviance Residuals:
           10 Median
   Min
                      30
                               Max
-3.4823 -0.1154 -0.0620 0.0222 2.4694
Coefficients:
                 Estimate Std. Error z value Pr(>|z|)
                -10.09765 1.15546 -8.739 < 2e-16 ***
(Intercept)
clump thickness
                  uniform cell shape
                  0.31816 0.17424 1.826 0.067847 .
marg_adhesion
              0.32993 0.12115 2.723 0.006465 **
epithelial cell size 0.09612 0.15564 0.618 0.536876
                  bare nuclei
bland chromatin
                  normal nucleoli
                  0.21255 0.11174 1.902 0.057149 .
mitoses
                  0.53406 0.32761 1.630 0.103064
```

```
> summary(glm_out)
```

Call:

Deviance Residuals:

Min 1Q Median 3Q Max -3.4823 -0.1154 -0.0620 0.0222 2.4694

Coefficients:

	Estimate	Std. Error	z value	Pr(> z)	
(Intercept)	-10.09765	1.15546	-8.739	< 2e-16	***
clump_thickness	0.53456	0.14125	3.784	0.000154	* * *
uniform_cell_shape	0.31816	0.17424	1.826	0.067847	•
marg_adhesion	0.32993	0.12115	2.723	0.006465	* *
epitholial coll size	0.09612	0.15564	0.619	0.536976	
bare_nuclei	0.38308	0.09384	4.082	4.46e-05	***
bland_chromatin	0.44648	0.16986	2.628	0.008578	**
normal_nucleoli	0.21255	0.11174	1.902	0.057149	•
mitoses	0.53406	0.32761	1.630	0.103064	

```
> glm_out <- glm(
   outcome ~ clump_thickness +
      uniform_cell_shape +
      marg_adhesion +
      bare_nuclei +
      bland_chromatin +
      normal_nucleoli +
      mitoses,
   data = biopsy,
   family = binomial</pre>
```

```
> summary(glm out)
Call:
glm(formula = outcome ~ clump thickness + uniform cell shape +
   marg adhesion + bare nuclei + bland chromatin +
normal nucleoli +
   mitoses, family = binomial, data = biopsy)
Deviance Residuals:
   Min
            10 Median 30
                                   Max
-3.5235 -0.1149 -0.0627 0.0219 2.4115
Coefficients:
                 Estimate Std. Error z value Pr(>|z|)
                           1.12610 -8.865 < 2e-16 ***
(Intercept)
                 -9.98278
clump thickness 0.53400 0.14079 3.793 0.000149 ***
uniform cell shape 0.34529 0.17164 2.012 0.044255 *
marg adhesion
             0.34249 0.11922 2.873 0.004068 **
bare nuclei
           0.38830 0.09356 4.150 3.32e-05 ***
bland chromatin 0.46194 0.16820 2.746 0.006025 **
normal nucleoli 0.22606
                           0.11097 2.037 0.041644 *
                           0.32446 1.637 0.101598
mitoses
                 0.53119
```

```
> summary(qlm.out)
Call:
glm(formula = outcome ~ clump thickness + uniform cell shape +
   marg adhesion + bare nuclei + bland chromatin +
normal nucleoli +
   mitoses, family = binomial, data = biopsy)
Deviance Residuals:
             10 Median
   Min
                         30
                                     Max
-3.5235 -0.1149 -0.0627 0.0219 2.4115
Coefficients:
                 Estimate Std. Error z value Pr(>|z|)
                            1.12610 -8.865 < 2e-16 ***
(Intercept)
                 -9.98278
                            0.14079 3.793 0.000149 ***
                            0.17164 2.012 0.044255 *
              0.34249 0.11922 2.873 0.004068 **
```

```
clump thickness 0.53400
uniform cell shape 0.34529
marg adhesion
            0.38830 0.09356 4.150 3.32e-05 ***
bare nuclei
bland chromatin 0.46194
                            0.16820 2.746 0.006025 **
normal nucleoli 0.22606
                            0.11097 2.037 0.041644 *
                  0 52110 0 22//6 1 627 0 101500
mi + \alpha \alpha \alpha \alpha
```

```
> glm_out <- glm(
   outcome ~ clump_thickness +
     uniform_cell_shape +
     marg_adhesion +
     bare_nuclei +
     bland_chromatin +
     normal_nucleoli,
   data = biopsy,
   family = binomial</pre>
```

```
> summary(glm out)
Call:
glm(formula = outcome ~ clump thickness + uniform cell shape +
   marg adhesion + bare nuclei + bland chromatin +
normal nucleoli,
   family = binomial, data = biopsy)
Deviance Residuals:
           10 Median
   Min
                           30
                                  Max
-3.5201 -0.1186 -0.0570 0.0250 2.4055
Coefficients:
                Estimate Std. Error z value Pr(>|z|)
                          1.08506 -9.001 < 2e-16 ***
(Intercept)
                -9.76708
clump thickness 0.62253 0.13712 4.540 5.62e-06 ***
uniform cell shape 0.34951 0.16503 2.118 0.03419 *
marg adhesion
             0.37855 0.09381 4.035 5.45e-05 ***
bare nuclei
bland chromatin 0.47134 0.16612 2.837 0.00455 **
```

0.10855 2.240 0.02509 *

normal nucleoli 0.24317

The fitted logistic model

We can extract fitted probabilities from glm out\$fitted.values

> glm_out\$fitted.values						
1	2	3	4	5	6	
0.0192341317	0.8925583864	0.0081774737	0.8496854505	0.0202506282	0.9999854554	
7	8	9	10	11	12	
0.0467606911	0.0042790664	0.0011789931	0.0065253423	0.0016231293	0.0018875638	
13	14	15	16	17	18	
0.3544332567	0.0034543023	0.9993353305	0.7371582761	0.0065253423	0.0104135504	
19	20	21	22	23	24	
0.9989353409	0.0352597948	0.9969203982	0.9994994519	0.0035120154	0.0016231293	
25	26	27	28	29	30	
0.7802514369	0.0035120154	0.0120927435	0.0018875638	0.0012725934	0.0035120154	
31	32	33	34	35	36	
0.0030206952	0.9977220579	0.0042283384	0.0049740412	0.0018875638	0.9998755391	
37	38	39	40	41	42	
0.1940709471	0.9954253327	0.6691128086	0.9536389392	0.9974078013	0.3002866244	
43	44	45	46	47	48	
0.9996235802	0.0010137236	0.9583091930	0.0010137236	0.0202506282	0.9836985106	
49	50	51	52	53	54	
0.7842860362	0.4122043566	0.9956800184	0.9922376046	0.9988895968	0.9870508267	
55	56	57	58	59	60	
0.9927513406	0.6585108620	0.7534314353	0.8341431018	0.9032183182	0.0014795146	
61	62	63	64	65	66	
0.9921570845	0.5158282353	0.0010137236	0.7040691331	0.0104135504	0.9498144607	

We can extract linear predictors from glm out\$linear.predictors

```
> glm out$linear.predictors
-3.93164737 2.11714436 -4.79816093 1.73213613 -3.87911098 11.13827708
       7 8 9 10
-3.01482307 -5.44973218 -6.74191480 -5.02551514 -6.42177489 -6.27057890
      13 14 15 16 17
-0.59960855 -5.66467448 7.315555568 1.03125059 -5.02551514 -4.55417925
        20
                 21 22
6.84403543 -3.30911549 5.77987063 7.59930618 -5.64804702 -6.42177489
      25 26 27 28
1.26713222 -5.64804702 -4.40298326 -6.27057890 -6.66542501 -5.64804702
        32
                 33 34 35
-5.79924301 6.08220228 -5.46170888 -5.29853619 -6.27057890 8.99139484
         38
                 39 40 41
      37
-1.42377192 5.38263613 0.70417516 3.02382523 5.95265328 -0.84593335
         44
                       45 46
7.88442916 -6.89311078 3.13488983 -6.89311078 -3.87911098 4.10006298
                 51 52
      49 50
                                                 54
1.29082051 -0.35486010 5.44017479 4.85067163 6.80192104 4.33368959
               56
                 57 58
4.91966368 0.65666514 1.11699791 1.61527962 2.23350656 -6.51456058
                 63 64 65
               62
4.84027081 0.06333410 -6.89311078 0.86675068 -4.55417925 2.94053974
```

The linear predictor clearly separates benign and malignant outcomes

The linear predictor clearly separates benign and malignant outcomes


```
> patient1 <- data.frame(
    clump_thickness = 1,
    uniform_cell_size = 1,
    uniform_cell_shape = 1,
    marg_adhesion = 1,
    epithelial_cell_size = 4,
    bare_nuclei = 3,
    bland_chromatin = 1,
    normal_nucleoli = 1,
    mitoses = 1
)</pre>
```

```
> patient1 <- data.frame(</pre>
    clump thickness = 1,
    uniform cell size = 1,
    uniform cell shape = 1,
    marg adhesion = 1,
    epithelial cell size = 4,
    bare nuclei = 3,
    bland chromatin = 1,
    normal nucleoli = 1,
    mitoses = 1
> predict(glm out, patient1) # linear predictor
-6.607346
```

```
> patient1 <- data.frame(</pre>
    clump thickness = 1,
    uniform cell size = 1,
    uniform cell shape = 1,
    marg adhesion = 1,
    epithelial cell size = 4,
    bare nuclei = 3,
    bland chromatin = 1,
    normal nucleoli = 1,
    mitoses = 1
> predict(glm out, patient1) # linear predictor
-6.607346
> predict(glm out, patient1, type="response") # probability
0.00134859
```

```
> patient2 <- data.frame(
    clump_thickness = 4,
    uniform_cell_size = 5,
    uniform_cell_shape = 5,
    marg_adhesion = 10,
    epithelial_cell_size = 4,
    bare_nuclei = 10,
    bland_chromatin = 7,
    normal_nucleoli = 5,
    mitoses = 8
)</pre>
```

```
> patient2 <- data.frame(</pre>
    clump thickness = 4,
    uniform cell size = 5,
    uniform cell shape = 5,
    marg adhesion = 10,
    epithelial cell_size = 4,
    bare nuclei = 10,
    bland chromatin = 7,
    normal nucleoli = 5,
    mitoses = 8
> predict(glm out, patient2) # linear predictor
        1
6.14665
```

```
> patient2 <- data.frame(</pre>
    clump thickness = 4,
    uniform cell size = 5,
    uniform cell shape = 5,
    marg adhesion = 10,
    epithelial cell size = 4,
    bare nuclei = 10,
    bland chromatin = 7,
    normal nucleoli = 5,
    mitoses = 8
> predict(glm out, patient2) # linear predictor
6.14665
> predict(glm out, patient2, type = "response") # probability
0.9978639
```