Técnico em Eletrônica Eletrônica Digital II Maria Cláudia de Almeida Castro

Eletrônica Digital II - Atividade Prática

Latch e Flip-Flop

Objetivo: Verificar como é realizada a montagem de *Latches* e *Flip-Flops* com componentes eletrônicos, utilizando os conceitos conhecidos em aula.

Material Necessário: Software Logsim;

Parte 1: Introdução aos Latches

1) Simule no Logisim o Latch SR com portas NOR indicado no circuito lógico abaixo e preencha a tabela verdade:

Simulação					
SET	RESET	Q	\overline{Q}	AÇÃO	

Represente abaixo a simbologia adequada para o circuito lógico simulado.

A ativação das entradas nesse *Latch* é realizada em qual nível lógico? Justifique a sua resposta.

2) Simule no Logisim o Latch SR com portas NAND indicado no circuito lógico abaixo e preencha a tabela verdade:

	Simulação					
SET	RESET	Q	\overline{Q}	AÇÃO		

Represente a simbologia adequada para o circuito lógico simulado.

A ativação das entradas deste *Latch* é realizada em qual nível lógico? Justifique a sua resposta.

3) **Evitando o estado proibido**: simule no Logisim o Latch D com portas NOR indicado no circuito lógico abaixo e preencha a tabela verdade:

Simulação						
D	Q	\overline{Q}	AÇÃO			

Parte 2: Flip-Flops e Registradores

Simule no Logisim o Flip-Flop SR (memória > Flip Flop SR) indicado no circuito lógico abaixo e preencha a tabela verdade variando os níveis lógicos em CLK, S e R. Observe a mudança de nível do sinal de CLK.

a)

	Simulação							
CLK	S	R	Q	\overline{Q}	AÇÃO			

b)

Simulação							
CLK	S	R	Q	\overline{Q}	AÇÃO		

c)

	Simulação					
CLK	D	Q	\overline{Q}	AÇÃO		

5) Monte e simule o circuito abaixo. Sabendo que o FF tipo D é responsável pelo armazenamento de um bit (zero ou um), faça a seguinte montagem utilizando 4 FF's tipo D. Alterando os valores da entrada D, tente disponibilizar nos FFs a informação 1101.

- a) Quantos pulsos de clock são necessários para que a informação 1101 fique totalmente armazenada no circuito?
- b) Caso seja necessário armazenar uma informação de 1 byte, quantos FF's tipo D seriam necessários?