Berthoulat Rémi Sanchez Arnaud Thévenoux Rémi Werlen Maxime

Automatisation d'un système de production Dossier de synthèse

Date de création	27/12/08	Version	1	
Date de dernière modification	05/01/09	Révision	12	
Titre	Automatisation	Automatisation d'un système de production		
Sujet	Dossier de synt	Dossier de synthèse		
Mots-clés	Présentation de la solution ; synthèse ; choix effectués			
Validé par le CdP et le RQ				

INSA LYON - IF P.1/21

Table des matières

I - Introduction	3
II - Rappel du contextea . Position du projetb . Contraintes liées au projet	4
III - Synthèse des choix retenus	5 6 7
IV - Bilan de la solutiona . Évaluation de la solutionb . Évaluation des coûts	11 12
V - Annexes : règles de gestion	131415161717
m . Système de pilotagen . Gestion des données	

I Introduction

Ce dossier présente le projet dans son ensemble. Il rappelle les objectifs et contraintes du) projet ainsi que les principaux choix retenus au fil du projet. Il analyse la solution retenue en présentant ses avantages et inconvénients, et explique en quoi la solution répond aux contraintes du projet.

Ce dossier synthétise les précédents documents réalisés :

- Dossier d'aide au choix
- Dossier de spécification détaillée
- Dossier de conception détaillée
- Dossier de découpage en sous-projets
- Dossier de choix du réseau

INSA LYON - IF P.3/21

II Rappel du contexte

a Position du projet

Le projet constitue une étude détaillée (au niveau système) du système d'information du pilotage d'un atelier flexible dans une entreprise de production de pièces automobiles. Le but du projet est de faire une proposition d'organisation de l'atelier, tant au niveau physique qu'au niveau informatique et réseaux.

b Contraintes liées au projet

Pour mener à bien le projet plusieurs exigences, de type non-fonctionnelles, doivent être atteintes :

- La flexibilité: ce point est particulièrement important, c'est sur lui que repose tout l'intérêt et les performances de l'atelier. Un atelier flexible permettant en effet de produire un grand nombre de pièces distinctes, l'entreprise est en grande partie protégée contre les cas de pannes provoquant des arrêts de production.
- La disponibilité (un des attributs de la sûreté de fonctionnement): Cet atelier devra fonctionner avec un objectif de disponibilité afin de rentabiliser l'investissement, 24/24h et 6/7 jours (le 7ème jour pouvant être utilisé pour la maintenance des machines, le nettoyage de l'atelier et éventuellement pour rattraper le retard qui aurait pu se produire les jours précédents). Une attention particulière sera faite au mode dégradé lors de la conception.
- La productivité: la mise en place de l'atelier ne doit bien sûr pas être qu'un challenge technique. Les solutions proposées doivent être justifiées par un gain de production notoire.
- La **traçabilité** : le rapatriement de la production doit avoir pour intérêt d'avoir une meilleure traçabilité des pièces produites. Par conséquent cet aspect devra être pris en compte dans le choix des solutions.
- La **qualité** : la qualité de la production reste toujours un point décisif. Inutile de rapatrier la production si elle est de meilleure qualité en extérieur.
- L'évolutivité et la maintenabilité: rapatrier la production implique de la contrôler dans son ensemble. En particulier pour les tâches de maintenance qui sont extrêmement importantes en milieu industriel. Par conséquent les possibilités et les contraintes des solutions en matière de maintenabilité, et d'évolutivité devront être étudiées en détails.

INSA LYON - IF P.4/21

III Synthèse des choix retenus

a Choix des chariots

1 Évaluation des solutions

Les solutions étudiées étaient un système de convoyage soit par chariot filoguidé soit par chariot à guidage laser.

Critères	Poids	Solution 1 (filoguidage)	Solution 2 (guidage laser)
Flexibilité	5	1	5
Disponibilité	4	3	4
Simplicité	3	2	4
Maîtrise des risques	4	3	3
Temps de remise en fonctionnement	2	2	3
Coût de maintenance	1	4	2
Coût installation	1	4	3
Moyenne pondérée	20	2,35	3,80

2 Choix de la solution

Après une comparaison des deux solutions envisagées, basée sur une étude des alternatives et une étude des risques, nous préconisons la solution avec chariots par guidage laser qui malgré un coût plus élevé, répond mieux aux objectifs de flexibilité attendus. La réactivité de l'atelier sera optimisée grâce à cette solution très modulable.

INSA LYON - IF P.5/21

b Organisation de l'atelier

1 Site de supervision

C'est le cœur de l'atelier dans le sens où on y retrouve les équipements informatiques nécessaires à la supervision de l'activité de l'atelier : système de gestion des déplacements, de suivi de la production, ...

2 Site de stockage

La zone de stockage contient une capacité de 120 palettes facilement extensible à 500. Il est organisé en cathédrales de stockage (étagères hautes de 12m maximum) où sont rangées les pièces stockées.

Les palettes sont acheminées jusqu'au site de stockage grâce aux chariots guidés par laser. Ce sont les mêmes chariots qui permettent de déposer les palettes dans les emplacements de stockage.

INSA LYON - IF P.6/21

3 Site d'usinage

Le site d'usinage est organisé en 3 îlots composés de 2 MOCN chacun et une zone de circulation des chariots guidés par laser. Les chariots en provenance des autres sites circulent dans le site d'usinage selon des chemins préétablis et dictés par le site de supervision. Ils permettent d'acheminer les palettes jusqu'aux îlots mais aussi de les transporter sur un autre site.

Chaque îlot est organisé de la même façon avec une table d'entrée/sortie physiquement représentée par un tapis roulant, deux MOCN et un opérateur. Le rôle de l'opérateur est de placer les pièces sur les palettes vides, de retourner les pièces entre deux phases d'usinage et de superviser son îlot.

4 Site de contrôle des pièces

Le site de contrôle des pièces est équipé d'une machine de contrôle permettant de réaliser des mesures de conformité de la pièce. La machine est équipée d'un magasin permettant de stocker jusqu'à 7 palettes en attente d'usinage.

Ce sont les chariots qui amènent et emportent les palettes.

5 Site d'affûtage des outils

Le site d'affûtage des outils est équipé d'une table d'échange sur laquelle les chariots déposent les palettes d'outils à affûter. Un robot manipulateur saisit les palettes et range les outils dans des casiers. Un opérateur se charge alors de l'affûtage et de l'approvisionnement des outils.

c Architecture technique retenue

1 Choix de l'architecture

Après une étude de différentes alternatives, nous avons choisi une architecture répartie. Cette architecture est une architecture intermédiaire entre une architecture centralisée et une architecture distribuée. Elle garde une grande partie de la simplicité de la solution centralisée qui permet une installation et une maintenance relativement aisée, mais elle garde une partie de la sécurité mais surtout de la flexibilité fournie par la solution distribuée.

2 Répartition par zones

L'architecture répartie découpe le système d'informations en trois zones :

Zone d'usinage

La zone d'usinage correspond au cœur de métier de l'atelier, c'est à dire au différents usinages sur les pièces et les contrôles associés à ces usinages. Cette zone comprend donc les modules fonctionnels d'usinage et de contrôle.

Le module de gestion des outils est lui aussi intégré dans cette zone car le contrôle des outils se fait pendant les phases d'usinage et donc que la gestion des outils est intimement

INSA LYON - IF P.7/21

liée avec la phase d'usinage des pièces.

ZONE DE DÉPLACEMENT ET STOCKAGE

La zone de déplacement et stockage correspond à la fonction logistique de l'atelier flexible, en support des activités d'usinage. Cette zone comprend donc le module fonctionnel déplacement ainsi que le module stockage.

ZONE DE SUPERVISION

La zone de supervision correspond au module fonctionnel Supervision, qui s'occupe de coordonner les deux précédentes zones.

3 Schéma simplifié de l'architecture

Machine de contrôle

INSA LYON - IF P.8/21

d Découpage en sous-projets

Nous avons découpé l'ensemble du projet en sous-projets cohérents afin de pouvoir **structurer** le déroulement du projet. Un découpage en sous-projet permet de **simplifier** le projet en cloisonnant les différentes problématiques tout en conservant une vision globale. Cela permet en outre une bonne **évolutivité et flexibilité** de l'ensemble du projet.

Les sous-projets sont les suivants :

1 Sous-projets matériels

SOUS-PROJET MACHINES

Sous-projet chariot à guidage Laser

Sous-projet matériel informatique

SOUS-PROJET RÉSEAU

2 Sous-projets logiciels

SOUS-PROJET QUALITÉ ET GESTION DES STOCKS

SOUS-PROJET PROGRAMMATION MACHINE

SOUS-PROJET SUPERVISION

Sous-projet communication

SOUS-PROJET TRAÇABILITÉ

3 Sous-projets auxiliaires

Sous-projet gestion de projet

SOUS-PROJET MAINTENANCE

INSA LYON - IF P.9/21

e Choix du réseau

CHOIX DU RESEAU LOCAL

P.10/21 Insa Lyon - IF

IV Bilan de la solution

a Évaluation de la solution

1 Maîtrise des risques

Grâce à l'application de notre « best practice » Analyse des risques, nous avons pu identifier les principaux risques et proposer des solutions de prévention à tous les niveaux de l'étude. Même si la maîtrise des risques reste globale, une étude plus détaillée pourra facilement être réalisée grâce à ces études macroscopiques.

2 Avantage de la solution

Lors de notre étude, l'accent a été mis sur la recherche de trois critères fondamentaux : **flexibilité**, **évolutivité** et simplicité

FLEXIBILITÉ

- Trajet des chariots facilement modifiable
- Gestion des incidents
- Fonctionnement en mode dégradé
- Maîtrise des risques

EVOLUTIVITÉ

- Découpage en sous-projets indépendants
- Découpage de l'atelier en zones facilement redimensionnables
- Ajout de matériel possible sans modification majeure

SIMPLICITÉ

- Architecture technique efficace
- Réseau dimensionné avec des solutions adaptés et standards
- Atelier facilement maintenable grâce au découpage

Notre solution répond au but « automatiser le système de production » en tenant compte des contraintes imposées.

3 Limites de la solution

- Certains points ne sont pas assez développés et mériteraient une étude plus approfondie (architecture technique).
- L'analyse des risques n'est pas exhaustive.
- Certaines règles de gestion pourraient être précisées plus en détail.

INSA LYON - IF P.11/21

b Évaluation des coûts

1 Coûts matériels

Coûts matériels			
Élément	Prix unitaire	Quantité	Total
Palette	1 500 €	150	225 000 €
Chariot laser	170 000 €	3	510 000 €
Machine d'usinage	150 000 €	6	900 000 €
Machine de contrôle	110 000 €	1	110 000 €
Machine d'affûtage	200 000 €	1	200 000 €
Table d'entrée sortie	1 500 €	6	9 000 €
Robot	80 000 €	1	80 000 €
Serveurs informatiques	10 000 €	7	70 000 €
Postes informatiques	1 500 €	6	9 000 €
Réseau	15 000 €	1	15 000 €
Consommable	15 000 €	1	15 000 €
Total			2 143 000,00 €

2 Coûts logiciels

COÛTS LOGICIELS ET MISE EN PLACE		
Phases	Coût	
Étude préalable	50 000 €	
Étude détaillée	150 000 €	
Réalisation des modules	150 000 €	
Installation	20 000 €	
Gestion de projet	30 000 €	
Total	400 000 €	

Le coût total de la solution retenue s'élève à 2.550.000 euros

INSA LYON - IF P.12/21

V Annexes : règles de gestion

a Personnel

5IF

QUESTION: NOMBRE D'ÉQUIPES?

Règles et conséquences	Justification du choix	Description en termes d'incidents qu'il faudra reprendre au moment de l'analyse de risques
Une seule équipe. Les opérateurs seront plus motivés et impliqués, les conditions de travail seront plus agréables	Appui sur la culture de l'entreprise	

QUESTION: HORAIRES DE L'ÉQUIPE?

Règles et conséquences	Justification du choix	Description en termes d'incidents qu'il faudra reprendre au moment de l'analyse de risques
8 heures par jour pendant 6 jours	Choix effectué lors de l'étude préalable	Regarder si un système d'astreinte pour les
		périodes sans personnel est nécessaire en cas de
		problème grave

QUESTION: NOMBRE DE PERSONNES DANS L'ÉQUIPE?

Règles et conséquences	Justification du choix	Description en termes d'incidents qu'il faudra
		reprendre au moment de l'analyse de risques
3 personnes. Il n'y a pas beaucoup de marge de	Choix effectué lors de l'étude préalable suite à	Regarder si l'emploi d'une quatrième personne
repos	une simulation	est nécessaire pour faire face aux moments de
		forte production et au risque de maladie

INSA LYON - IF P.13/21

b Palettes

5IF

QUESTION: NOMBRE DE PALETTES?

`		
Règles et conséquences	Justification du choix	Description en termes d'incidents qu'il faudra
		reprendre au moment de l'analyse de risques
La production est optimisée en utilisant 120 palettes	Choix effectué lors de l'étude préalable suite à une	
	simulation	

QUESTION: HOMOGÈNES?

Règles et conséquences	Justification du choix	Description en termes d'incidents qu'il faudra reprendre au moment de l'analyse de risques
Oui. Les traitements seront simplifiés et il y aura un plus traçage des pièces plus efficace	Choix effectué lors de l'étude préalable	

QUESTION: COMPLÈTES?

Règles et conséquences	Justification du choix	Description en termes d'incidents qu'il faudra
		reprendre au moment de l'analyse de risques
Non. Nécessité de déterminer la disposition des	Pouvoir fabriquer le nombre exact de pièces,	
pièces dans la palette. Possibilité d'enlever une	sachant que chaque pièce coûte cher à usiner	
pièce et de continuer les traitements		

c Tables d'entrée/sortie

QUESTION: NOMBRE DE TABLES?

Règles et conséquences	Justification du choix	Description en termes d'incidents qu'il faudra
		reprendre au moment de l'analyse de risques
5 tables (3 pour les MOCN, 1 pour l'affûtage, 1	Choix effectué lors de l'étude préalable suite à	Regarder si l'acquisition d'une table
pour la machine de contrôle)	une simulation	supplémentaire est un élément de sécurité

INSA LYON - IF P.14/21

QUESTION: REMPLISSAGE DES PALETTES?

Règles et conséquences		Description en termes d'incidents qu'il faudra
		reprendre au moment de l'analyse de risques
Soit utilisation d'une palette vide du stock, soit	Choix effectué lors de l'étude préalable	
utilisation d'une palette dont on vient de		
décharger les pièces, avec une préférence pour la		
deuxième possibilité.		

d Site de supervision

QUESTION: NOMBRE DE PC?

Règles et conséquences Justification du choix Description en termes d'incidents		
Un seul serveur relié aux	Ce choix fait suite à l'étude	La supervision est une pièce maîtresse dans l'architecture de l'atelier flexible
différents sites par le réseau	préalable qui a déterminé un seul	Regarder le comportement de l'atelier en cas de panne de ce serveur.
d'atelier.	serveur.	Regarder si l'acquisition d'un deuxième PC de secours est un élément de
		sécurité supplémentaire viable.

e Partie réseau de l'atelier

QUESTION : ÉLÉMENTS DE RÉSEAU (CE CHOIX PEUT-ÊTRE REMIS EN QUESTION)?

Règles et conséquences	Justification du choix	Description en termes d'incidents
Câblage BNC et logiciels de	Ce choix fait suite à l'étude et est	Regarder si les problèmes réseau sont bien écartés au maximum.
communication.	essentiellement fait par rapport à	Regarder si les cas de problème de communication sont correctement gérés.
	des habitudes!	Innovation?

INSA LYON - IF P.15/21

f Site de contrôle

5IF

QUESTION: NOMBRE DE MACHINE DE CONTRÔLE?

Règles et conséquences	Justification du choix	Description en termes d'incidents
Une machine de contrôle relié au PC	Ce choix fait suite à l'étude	Son prix d'acquisition est assez conséquent.
du site par un réseau à définir lors de	préalable.	➤ Bien observer la longévité du modèle observer et son service de maintenance.
l'étude détaillée (ou Conception		Regarder le comportement en cas de saturation de la machine.
détaillée du système)		Vérifier taux de carters contrôlés tolérable.
		Regarder si la durée de contrôle d'une pièce est bien optimisée.

g Chariots guidés par laser

QUESTION: NOMBRE DE CHARIOTS GUIDÉS PAR LASER?

Règles et conséquences	Justification du choix	Description en termes d'incidents
Le système possédera au moins 5 chariots à guidage laser permettant	Le nombre de chariots a été	Palette absente sur la table
d'acheminer les palettes :	déterminé par la simulation	d'échange lorsqu'un ordre de
 Des tables d'échange aux machines d'usinage (et vice versa) 	effectuée dans l'étude préalable et	déplacement est ordonné
 Des machines d'usinage à la table de contrôle des outils (et vice versa) 	par le nombre de chariots	Un chariot à guidage laser en
 Des machines d'usinage à la table de contrôle des pièces (et vice versa) 	filoguidés et transtockeurs prévus.	panne
Les chariots à guidage laser transportent deux types de palettes : les palettes		Un tronçon du circuit bloqué
supportant les outils et celles supportant les pièces. Les déplacements des	Le reste des règles fait aussi suite	Problème de transport
chariots à guidage laser sont déterminés par le superviseur. Le positionnement	à l'étude préalable.	Communication avec le
des chariots est donné par des capteurs, connu à tous moments de la		superviseur rompue
production.		

INSA LYON - IF P.16/21

h Machines-outils

5IF

QUESTION: NOMBRE DE MACHINES-OUTILS?

Règles et conséquences	Justification du choix	Description en termes d'incidents
Le système possédera 6 machines-outils, constituées d'un palpeur, d'un	Le nombre de machines-outils a été	Machine-outils en panne
magasin de 24 outils, d'une armoire à commande numérique.	déterminé par la simulation de l'étude	Palpeur en panne
	préalable.	Commande numérique en panne
Il n'est nécessaire que 18 types d'outils différents sur une même		Détection de pièces défectueuses
machine. On place en double dans les 6 emplacements vides, les 6	Les 6 outils en doublons sont déterminés	Détection d'outils usés
outils les plus utilisés pour produire les pièces sélectionnées. Ainsi les	suite à une étude de l'usinage des pièces	Communication avec le superviseur
changements d'outils usés seront limités. A ce propos, une règle de	et des outils étant nécessaires.	rompue
gestion du changement des outils usés de la machine est choisie parmi		
plusieurs possibilités.		

i Outils

QUESTION: CHOIX DES OUTILS?

Règles et conséquences	Justification du choix	Description en termes d'incidents	
18 types d'outils différents sont nécessaires. Ils sont utilisés par les	Le choix des outils a été fait avant	Communication avec le	
machines-outils pour usiner les pièces. Ils sont acheminés, stockés dans des	l'étude préalable.	superviseur rompue (demande de	
palettes d'outils, sur les machines-outils par les chariots filoguidés.		changement d'outils non	
	La règle de gestion de changement des	envoyée)	
Dès qu'un outil est usé, on vérifie s'il existe un doublon neuf sur la machine-	outils usés est choisie parmi trois	Bris d'outil	
outil. Si c'est le cas, le doublon est utilisé pour les usinages suivants, sinon,	solutions, elle semble présenter le		
on change les 24 outils de la machine.	meilleur compromis		

INSA LYON - IF P.17/21

j Palpeur

5IF

QUESTION: NÉCESSITÉ D'UN PALPEUR?

Règles et conséquences	Justification du choix	Description en termes d'incidents		
Chaque machine-outil possède un palpeur.	Ce sont les règles établies dans l'étude préalable,	Palpeur en panne		
Chaque opération élémentaire effectuée par la	l'usage amènera peut-être des modifications.	Détection d'une pièce défectueuse (plusieurs		
machine-outil est suivie par un contrôle du travail		traitements différents selon si le problème est		
effectué par le palpeur faisant l'objet d'un		détecté sur la dernière pièce de la palette)		
compte-rendu au superviseur.				

k Palette d'outils

QUESTION: COMPOSITION DES PALETTES D'OUTILS?

Règles et conséquences	Justification du choix	Description en termes d'incidents
Les palettes d'outils sont remplies de 24 outils de 18 types différents	Ce sont les règles tirées de l'étude	Stock d'outils épuisé
dans la zone de stockage d'outils. Une fois complétée, elles sont	préalable.	
placées sur la table pour les palettes d'outils. Elles sont ensuite		
acheminées par les chariots filoguidés de la table vers la machine		
d'usinage ayant demandé un changement d'outils.		

INSA LYON - IF P.18/21

l Pièces

5IF

QUESTION: PIÈCES SÉLECTIONNÉES?

Règles et conséquences	Justification du choix	Description en termes d'incidents
15 pièces ont été sélectionnées permettant de rendre les machines-outils	Les pièces ont été sélectionnées	
homogènes entre elles et interchangeables.	par les méthodes hiérarchiques	
	et non hiérarchiques de	
Les 15 pièces présentent donc des caractéristiques de production similaires.	l'utilitaire TGAO.	
Des pièces à usiner sont stockées dans des palettes puis dirigées vers les	Le reste des règles est issu de	
machines d'usinages. Après chaque opération d'usinage, les pièces sont	l'étude préalable.	
contrôlées. Dans un souci de traçabilité totale de la production, lorsqu'un		
problème d'usinage est détecté sur une ou plusieurs pièces de la palette, il est		
décidé de ne garder aucune pièce et de les mettre de côté. Cependant, si le		
problème survient alors qu'une partie des pièces de la palette ont été		
complétement usinées et qu'elles sont valides, elles sont récupérées car, étant		
terminées, elles sont traçables.		

m Système de pilotage

QUESTION : COMPOSITION DU SYSTÈME DE PILOTAGE POUR LES CHARIOTS FILOGUIDÉS?

Règles et conséquences	Justification du choix	Description en termes d'incidents
Le système de pilotage est composé d'un logiciel, de butée, d'un système	Ce choix fait suite à l'étude	Chariot atteignant une butée
de guidage laser, de bornes de guidage, d'un système hertzien. Les bornes	préalable.	Borne en panne
permettent de guider les chariots. Le système hertzien gère les		Système hertzien perturbé
déplacements des chariots. Les butées permettent d'arrêter les chariots		Logiciel planté
emportés par leur inertie.		

INSA LYON - IF P.19/21

n Gestion des données

5IF

QUESTION : COMMENT SONT RÉPARTIES LES DONNÉES (PROPOSITION DE L'ÉTUDE PRÉALABLE NON DÉFINITIVE ET REMISE EN QUESTION DANS L'ARCHITECTURE TECHNIQUE SUITE À UNE ÉTUDE DÉTAILLÉE INTÉGRANT LE MODE NON NOMINAL SUITE À UNE ANALYSE DES INCIDENTS/ANALYSE DES RISQUES)?

Règles et conséquences	Justification du choix		scription en termes
		d'ir	ncidents
Gestion des données de la zone de supervision : Les données globales sont partagées par plusieurs ou bien tous les sites. Les données de suivi de production, localisation et communication sont spécifiques au site de supervision. Gestion des données de la zone d'usinage. La base contient : Les données permettant la localisation des entités au sein du site. Les données concernant les différentes opérations d'usinage.	une base accessible par les différents sites et les données spécifiques au site de supervision dans une base privée.	<u>A</u> .	Il faudra veiller à la cohérence et à l'homogénéité des données. La gestion et l'administration de données réparties sont compliquées à mettre en œuvre.

INSA LYON - IF P.20/21

05/01/09
(

Règles et conséquences	Justification du choix	Description en termes
		d'incidents
Gestion des données de la zone de stockage :		
La base contient les données relatives à l'infrastructure propre au		
site (casier, pièces, armoires, transtockeurs, etc.)		
Gestion des données de la zone de contrôle :		
La base contient les données relatives à l'infrastructure propre au		
site.		

Insa Lyon - IF p.21/21