Cours complet sur le LTE (Long Term Evolution)

Introduction

- LTE = 3,9G mais qualifié de 4G pour des raisons commerciales.
- Objectifs : simplifier les architectures, augmenter les débits, et unifier voix/données sur IP.
- Préparation à l'arrivée de la 5G.

Motivations

Limitations 3G/HSPA	Améliorations LTE
Saturation du réseau d'accès	Simplification de l'accès radio
Complexité ATM / AAL2	Architecture tout IP
Débits limités	Jusqu'à 100 Mbit/s DL / 50 Mbit/s UL
Gigue / QoS rigide	QoS plus souple et pragmatique

Architecture réseau LTE

- Fusion BTS + BSC → eNodeB
- Nouveau cœur de réseau : Evolved Packet Core (EPC)

Élément LTE	Rôle
eNodeB	Accès radio, MAC, RLC, RRC
MME	Mobilité, NAS, authentification
Serving Gateway	Transfert des paquets, tunnel GTP

Élément LTE	Rôle
PDN Gateway (PGW)	Accès Internet
HSS	Base de données abonnés

Interfaces

Interface	Rôle
LTE-Uu	Interface radio
S1-U	Données (eNodeB ↔ SGW)
S1-MME	Signalisation (eNodeB ↔ MME)
X2	Handover entre eNodeB
S5/S8	SGW ↔ PGW
S11	MME ↔ SGW

Couche physique (PHY)

- Bande passante adaptable
- OFDMA en downlink, SC-FDMA en uplink
- Modulation haute: 64-QAM, MIMO, FEC
- Support FDD et TDD

Protocoles LTE (Data/Control)

Plan de données :

• PDCP: compression en-tête (ROHC), chiffrement

RLC : ARQ, segmentationMAC : multiplexage, HARQ

• PHY: codage canal, modulation

Plan de contrôle :

NAS → RRC → S1AP → SCTP

• NAS : rattachement, sécurité, sessions

• RRC : contrôle accès radio

S1AP : messages NAS + gestion sessions
SCTP : transport orienté messages fiable

Canaux

Sens	Canaux
Descendant	Broadcast, Paging, Données, Multicast
Montant	Données, Accès aléatoire

Moins de canaux que la 3G, mais gestion plus dynamique.

Ordonnancement

• Cross-layer : QoS, qualité de canal, équité

Algorithme d'ordonnancement sur flux utilisateur

• UL : feedback des buffers, partage SC-FDMA

• DL: pavage OFDMA

Mobilité

- Handover break-before-make
- Piloté par le **MME** via S1-MME et X2
- Tunnels GTP maintenus entre SGW et eNodeB
- Supporte handovers diagonaux (3GPP ↔ non-3GPP)

Diagramme de handover LTE

Fiabilité : HARQ + ARQ

- HARQ niveau MAC (rapide, send & wait)
- ARQ niveau RLC (fenêtre coulissante)
- Optimisé car tout est sur eNodeB (pas de lien inter-contrôleur)

Overhead & efficacité

- Compression PDCP (ROHC)
- Exemple:

- \circ VoIP: paquet 33 octets \rightarrow fort gain
- TCP ACK : surcoût RLC compensé par ROHC

Qualité de Service (QoS)

Niveau	Description
Abonnement	Différence pro/perso, priorités
Flux	Flux IP "par défaut" sauf si besoin de QoS forte
Bearers	Agrègent flux avec même contrainte

- Moins complexe qu'UMTS
- Gigue gérée terminal ou PGW
- DPI pour analyse des flux (codec, protocole...)

- MIMO, agrégation de porteuses
- Relay nodes, femtocells
- **D2D (Device to Device)** → direct entre terminaux avec contrôle eNodeB