OCP-place beyond phonotactics: sandhi place restrictions in Croatian

Aljoša Milenković Harvard University

The 31st Manchester Phonology Meeting May 30, 2025

Antigemination

- Ban on adjacent identical (or sufficiently similar) consonants (McCarthy 1986; Yip 1988; Odden 1988)
 - ❖ PROCEDURAL: no phon. rule may result in a geminate (McCarthy 1986; Yip 1988; Côté 1997, 2004)
 - **PHONOTACTIC:** ban on cooccurrence within morphemes (Pierrehumbert 1993; Frisch et al. 2004)
- Unified phenomenon or two separate phenomena?

Antigemination & OCP

- In OT, procedural and phonotactic antigemination captured using different machinery
- Status of OCP-place? (Rose 2000; Baković 2005)
- assimilation-antigemination link (Baković 2005, 2006, 2017; Pająk & Baković 2010)
- Consequence: near-geminates avoided without OCP-place (Baković 2005: 292)
- OCP-place still used for phonotactic antigemination (Pierrehumbert 1993; Frisch et al. 2004; Coetzee & Pater 2008)

Today's talk

1. similarity avoidance without assimilation in Croatian allomorph selection

2. OCP-place effect in procedural antigemination (needed in both types)

Mobile *a*-alternations in Croatian

- free variation between C-final and CV-final allomorphs
- 1. proclitics: $[s] \sim [sa]$ 'with', $[k] \sim [ka]$ 'towards',
- 2. suffix: [-ɔːg]~[-ɔːga] 'gen.sg'
 - (1) a. [k prɔmjɛni] 'towards the change' (24%) b. [ka prɔmjɛni] 'towards the change' (76%)
- this study: corpus data from hrWaC 2.0 (100,018 bigrams, 8,339 unique lemmas)
- similar phenomena in other Slavic languages:
 - 1. Polish (Pająk & Baković 2010)
 - 2. Russian (Linzen et al. 2013)

Mobile *a*-alternation

- phonological effects (markedness constraints, prosodic alignment)
- morpheme-specificity
 (CV rates vary across morphemes: s~sa 'with' vs. k~ka 'towards')
- 3. lexical exceptions (CV rates vary across lemmas)

phonological factors

- 2. [k=a]: Align(ω ,L, σ ,L)
- 3. [k=ta]: *k+obstruent
- 4. [k=ka]: NoGeminate

Segmental Environment

phonological factors: logistic regression

brm(realization ~ environment + (1 | lemma))

Environment (baseline: sonorant)	Estimate	1-95% CI	u-95% CI
(Intercept)	-0.39	69	-0.10
vowel	0.36	0.28	0.43
non-velar obstruent	0.23	0.17	0.29
velar obstruent	1.67	1.54	1.80

phonological factors: missing comparisons

emmeans(model, ~ environment, type = "response")

Comparison	Odds Ratio	95% CI
vowel vs. non-velar obs	1.14	[1.06, 1.21]
vowel vs. velar obs	0.27	[0.24, 0.31]
non-velar obs vs. velar obs	0.24	[0.21, 0.27]

<u>velar obs</u> > vowel > non-velar obs > sonorant

antigemination environments:

which velars?

- strong avoidance of [k] before velars
- 3 velars in Croatian: k, g, x
- [k]-avoidance in [k=k],
 /k=g/ → [g=g] expected
- no assimilation in [k=x]
- no avoidance expected before x!

antigemination environments: which velars?

- C~CV before obstruent-initial words (60,722 bigrams, 4,699 lemmas)
- •brm(realization ~ initial_seg + (1 | lemma))
- initial_seg: reference level set to "x"
- negative effects for all non-velars relative to x (non-velars less likely than [x] to trigger CV realization)
- **positive** effects for velar stops relative to x (*more* likely than x to trigger CV realization)

```
{labials, coronals} < x < {k,g}
```

taking stock

- Finding: similarity avoidance in a non-assimilating cluster (k=x) in corpus data, BUT
- less so than in assimilating clusters (k=k, k=g)

alternative: phonotactics

- alternative: [k=x] is avoided because it's phonotactically undesirable
- Indeed, [kx] is impossible word-initially and severely underrepresented word-internally
- other k-obstruent clusters are avoided as well
- [k=x] still avoided more robustly than other phonotactically banned clusters
- place cooccurrence effect

maxent analysis

- variation; subtle, gradient phonological effects on CV
- maxent Harmonic Grammar: Harmony → probability (Johnson & Goldwater 2003; Hayes & Wilson 2008)
- superior to other stochastic frameworks (Zuraw & Hayes 2017; Smith & Pater 2020; Flemming 2021; Hayes 2022)
- maxent.ot R package (Mayer et al. 2024)
- two models compared:
 - 1. baseline
 - 2. OCP
- goal: determine whether OCP-place is needed

baseline model

constraint	definition	type
*Mobile-a	Penalizes [ka]	markedness
BeMoraic	Penalizes [k]	markedness
NoGeminate	Penalizes [k=k], [g=g]	markedness
*StopObs	Penalizes [k=t], [k=s], [k=k] etc.	markedness
Align(ω ,L, σ ,L)	Penalizes [k=a], [k=i], [k=u] etc.	markedness
Agree-voice	Penalizes [k=b], [k=d], [k=g] etc.	markedness
Ident-voice	Penalizes $/k=d/ \rightarrow [g=d]$ etc.	faithfulness
*Hiatus	Penalizes [ka=a], [ka=i] etc.	markedness

maxent analysis

- OCP model: Baseline constraints + OCP-dorsal
 - (2) OCP-dorsal Assess a violation for every instance of adjacent dorsal obstruents.
- **observed probability**: sum of by-lemma candidate rates by environment
- nebo 'sky': 31% [ka], 69% [k]; nov 'new': 61% [ka], 39% [k]
- k=n:.69 + .39 = 1.08; ka=n:.31 + .61 = .92
- rationale: suppress the contribution of high-frequency lemmas (*token-heavy model)

model comparison

• OCP-dorsal significantly improves model fit: $\chi^2(1) = 5.52$, p < .05*

metric	score	interpretation
Δloglik loglik _{Baseline} - loglik _{OCP}	2.76	> 0: OCP improves model fit
Δ AIC AIC _{Baseline} - AIC _{OCP}	-3.52	< -2: OCP significantly improves model fit
ΔΑΙCc AICc _{Baseline} - AICc _{OCP}	-3.51	< -2: OCP significantly improves model fit

desirable prediction: x vs. {k, g} contrast

- OCP model not only captures the avoidance of [k=x], but also explains why avoidance before [x] is weaker than before {k, g}
- propensity for [ka] (ascending):

sonorant < non-velar obs < velar fricative < velar stop

- cumulativity (Jäger & Rosenbach 2006; Pater 2009):
 - [k=x] only violates OCP-dorsal
 - [k=k], [g=g] violate both OCP-dorsal and NoGeminate

deriving the scale

Str Que Str							
	*0	HAYE					
/k~ka=r/	1.12	1.39	.44	1.15	Н	eН	p
a. k=r		-1			-1.39	.25	.43
b. ka=r	-1				-1.12	.33	.57

*a HAVE OCT TO SEEM								
		*0	AM		40			
/k~	-ka=x/	1.12	1.39	.44	1.15	Н	eН	p
a.	k=x		-1	-1		-1.83	.16	.33
b.	ka=x	-1				-1.12	.33	.67

*0 AMERICO CP. DE COEIX								
		*0	ALA		$ \Rightarrow_{\mathcal{O}} $			
/k~	-ka=k/	1.12	1.39	.44	1.15	Н	eН	p
a.	k=k		-1	-1	-1	-2.98	.05	.13
b.	ka=k	-1				-1.12	.33	.87

more constraints, simpler theory!?

- 1. Baković (2005): assimilation-antigemination correlation essentially borne out in Croatian
- 2. [k=x] avoidance driven by OCP-place Croatian data suggest more constraints are needed
- 3. more constraints = consistent constraint set unifies the OT/HG accounts of phonotactic and procedural antigemination
- 4. inductionist approach (Hayes & Wilson 2008) OCP-place induced as needed (language-specific)

further steps

- ongoing: experiment w/ nonce words
- future:
 - 1. full model (including other mobile *a*-morphemes)
 - 2. lexical exceptions (Nazarov & Smith 2022 learner)

Thank you!

aljosamilenkovic@g.harvard.edu amilenkovic@umass.edu

Replication data:

appendix: results of the obstruent-only model (fixed effects)

Environment (baseline: x)	Estimate	1-95% CI	u-95% CI
Intercept	0.34	-0.12	0.81
t∫	-0.41	-0.79	-0.02
3	-0.84	-1.19	-0.49
\int	-0.41	-0.77	-0.05
b	-0.73	-0.99	-0.47
ts	-0.52	-0.85	-0.18
d	-0.42	-0.67	-0.16
f	-0.57	-0.87	-0.26
g	0.5	0.21	0.8
k	2.24	1.89	2.61
p	-0.34	-0.59	-0.1
S	-0.35	-0.59	-0.11
t	-0.5	-0.77	-0.24
Z	-0.3	-0.57	-0.04