POLS 7012: Practice Midterm (Answer Key)

Joe Ornstein

Create an R project, an R script, load tidyverse, and read in the ANES 2019 Pilot data from Problem Set 1.

```
# Load the ANES dataset load('data/anes_pilot_2019.RData')
```

Tidy the Data

- 1. Recode the vote20jb variable with the actual responses rather than the numeric codes (see the codebook).
- 2. Recode gender as "Male" or "Female" instead of 1 or 2.
- 3. Create a new variable called age, equal to 2019 minus the respondent's birth year.
- 4. Filter out the respondents who say they will "probably not vote".
- 5. Select only the caseid, gender, age, and vote20jb variables.
- 6. Save the cleaned up dataset to your data/ folder as a .csv file called anes_2019_pilot_clean.csv.

Visualize and Summarize the Data

1. Visualize the age distribution for Biden vs. Trump voters, faceting by gender.

```
figure1 <- data %>%
  filter(vote20jb %in% c('Donald Trump', 'Joe Biden')) %>%
  ggplot +
  geom_violin(mapping = aes(x=age, y=vote20jb, fill = vote20jb)) +
  facet_wrap(~gender) +
  labs(x = 'Age', y = 'Intended Presidential Vote (2020)') +
  theme_minimal() +
  theme(legend.position = 'none')
figure1
```


2. Group by vote20jb and gender. What is the mean age and number of respondents for each group?

vote20jb	gender	mean_age	num
Donald Trump	Female	55.1	579
Donald Trump	Male	56.7	694
Joe Biden	Female	50.4	696
Joe Biden	Male	50.3	592
Someone Else	Female	43.5	181
Someone Else	Male	46.0	140

Make Inferences

1. Compute a 95% confidence interval for the average age.

```
confidence_interval
## [1] 51.56400 52.80311
\# Approach 2: Confidence Interval reported with the t.test function
t.test(data$age)
##
##
   One Sample t-test
##
## data: data$age
## t = 165.09, df = 2881, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 51.56375 52.80336
## sample estimates:
## mean of x
## 52.18355
  2. Is the difference in age between Trump and Biden supporters statistically significant? Compute a
    p-value and 95% confidence interval.
test1 <- data %>%
  filter(vote20jb %in% c('Donald Trump', 'Joe Biden')) %>%
  t.test(age ~ vote20jb, data = .)
test1
##
   Welch Two Sample t-test
##
##
## data: age by vote20jb
## t = 8.6957, df = 2557.5, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 4.388284 6.943648
## sample estimates:
## mean in group Donald Trump
                                  mean in group Joe Biden
                     55.98429
                                                 50.31832
##
# I didn't show you this before, but if you save the test to an object,
# you can extract the relevant values like so.
test1$p.value
## [1] 6.049895e-18
test1$conf.int
## [1] 4.388284 6.943648
## attr(,"conf.level")
## [1] 0.95
  3. Are men significantly more likely than women to support Trump? Compute the associated p-value.
test2 <- data %>%
  filter(vote20jb %in% c('Donald Trump', 'Joe Biden')) %>%
  select(vote20jb, gender) %>%
 table %>%
```

```
chisq.test
test2
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: .
## X-squared = 18.399, df = 1, p-value = 1.792e-05
# Here's the expected table if the two variables were independent
test2$expected
                gender
##
## vote20jb
                   Female
                              Male
##
    Donald Trump 633.7661 639.2339
##
     Joe Biden 641.2339 646.7661
# Here's the actual table
test2$observed
                gender
## vote20jb
                Female Male
##
   Donald Trump
                    579 694
##
     Joe Biden
                    696 592
# Here's the p-value
test2$p.value
## [1] 1.791662e-05
```