Computer Systems

Abstraction

- Suppression of detail to show the essence of the matter
- An outline structure
- Division of responsibility through a chain of command
- Subdivision of a system into smaller subsystems

(b) A nesting diagram.

(c) A hierarchy, or tree, diagram.

Henri Matisse

The Back I 1909

The Back II

The Back III 1917

The Back IV 1930

United States Constitution
Article I. Legislative Department
Section I. Congress

• • •

Section 10. Powers Prohibited to States Article II. Executive Department

• • •

Article III. Judicial Department
Article IV. The States and the Federal
Government
Article V. Amendments
Article VI. General Provisions

Article VII. Ratification of the Constitution

Some HOL6 languages

FORTRAN Formula Translator

BASIC Beginners All-purpose Symbolic

Instruction Code

C++
 A popular general-purpose

language

LISP List processing

Java
 For World Wide Web browsers

Multiple	Prefix	Abbrev.
$10^{15} \\ 10^{12}$	peta- tera-	P T
10°	giga-	G
10^{6} 10^{3}	mega- kilo-	M K
$10^{-3} \\ 10^{-6}$	milli- micro-	m μ
$10^{-9} \\ 10^{-12}$	nano- pico-	n p

Prefix	Computer science value
peta-	$2^{50} = 1,125,899,906,842,624$
tera-	$2^{40} = 1,099,511,627,776$
giga-	$2^{30} = 1,073,741,824$
mega-	$2^{20} = 1,048,576$
kilo-	$2^{10} = 1,024$

(b) Computer science values of the large prefixes.

Input devices

- Keyboards
- Disk drives
- Magnetic tape drives
- Mouse devices
- Bar code readers

In input devices

CPU central processing unit

Mem main memory

Out output devices

(a) Storage for an eight-bit byte.

(b) The bit pattern for the character 'k.'

Output devices

- Disk drives
- Magnetic tape drives
- Screens
- Printers

(a) First data flows from the input device into main memory.

(c) Then the CPU sends the processed data back to memory.

(b) Next the CPU brings the data into its registers for processing.

(d) Finally the results go to the output device.

Software

- Algorithm
 - A set of instructions that, when carried out in the proper sequence, solves a problem in a finite amount of time
- Program
 - An algorithm written for execution on a computer

Ingredients

3 slightly beaten eggs

 $\frac{1}{4}$ cup sugar

2 cups milk, scalded

 $\frac{1}{2}$ teaspoon vanilla

Algorithm

Combine eggs, sugar, and $\frac{1}{4}$ teaspoon salt.

Slowly stir in slightly cooled milk.

Cook in double boiler over hot, not boiling, water, stirring constantly.

As soon as custard coats metal spoon, remove from heat.

Cool at once—place pan in cold water and stir a minute or two.

Add vanilla.

Chill.

Functions of an operating system

- File management
- Memory management
- Processor management

Types of information contained in files

- Documents
- Programs
- Data

Typical operating system commands

- List the names of the files from the directory
- Delete a file from the disk
- Change the name of a file
- Print the contents of a file
- Execute an applications program

(a) Analysis—The input and processing are given. The output is to be determined.

(b) Design—The input and desired output are given. The processing is to be determined.

Relational database systems

- Relation A table
- Attribute A column
- Tuple A row
- Domain The set of all possible values of an attribute

Sor

S.Name	S.Class	S.Major	S.State
Beth	Soph	Hist	TX
Nancy	Jr	Math	NY
Robin	Sr	Hist	CA
Allison	Soph	Math	AZ
Lulwa	Sr	CompSci	CA

Frat

F.Name	F.Major	F.State
Emile	PolySci	CA
Sam	CompSci	WA
Ron	Math	OR
Mehdi	Math	CA
David	English	AZ
Jeff	Hist	TX
Craig	English	CA
Gary	CompSci	CA

• List Ron's home state

Result

F.State

OR

List all the sophomores in the sorority

Result2

S.Name

Beth

Allison

 List those sorority and fraternity members who have the same major, and what that common major is

Result3

S.Name	F.Name	Major
Beth	Jeff	Hist
Nancy	Ron	Math
Nancy	Mehdi	Math
Robin	Jeff	Hist
Allison	Ron	Math
Allison	Mehdi	Math
Lulwa	Sam	CompSci
Lulwa	Gary	CompSci

Database operators

select Takes a set of rows

project Takes a set of columns

join Combines tuples from two tables
 with a common column

• select Frat where F.Major =
 English giving Temp1

Temp I

F.Name	F.Major	F.State
David	English	AZ
Craig	English	CA

• project Sor over S.Name giving Temp2

Temp2

F.Name

David

Craig

project Sor over (S.Class, S.State) giving Temp3

Temp3

S.Class	S.State
Soph	TX
lr	NY
ار Sr	CA
Soph	AZ

• join Sor and Frat over Major giving Temp4

Temp4

S.Name	S.Class	S.State	Major	F.Name	F.State
Beth	Soph	TX	Hist	Jeff	TX
Nancy	Jr	NY	Math	Ron	OR
Nancy	Jr	NY	Math	Mehdi	CA
Robin	Sr	CA	Hist	Jeff	TX
Allison	Soph	AZ	Math	Ron	OR
Allison	Soph	AZ	Math	Mehdi	CA
Lulwa	Sr	CA	CompSci	Sam	WA
Lulwa	Sr	CA	CompSci	Gary	CA

List Ron's home state

```
select Frat where F.Name = Ron
giving Temp5
```

project Temp5 over F.State giving Result1

List all the sophomores in the sorority

```
select Sor where S.Class = Soph
giving Temp6
```

project Temp6 over S.Name giving Result2

 List those sorority and fraternity members who have the same major, and what that common major is

```
join Sor and Frat over Major giving Temp4
```

```
project Temp4 over (S.Name, F.Name, Major) giving Result3
```