ΚΑΤΑΣΚΕΥΕΣ ΟΠΛΙΣΜΕΝΟΥ ΣΚΥΡΟΔΕΜΑΤΟΣ ΙΙ

- Γ. Παναγόπουλος, Λέκτορας Εφαρμογών
- Δ. Κακαλέτσης, Καθηγητής

Εφαρμογή – Σχεδιασμός υποστυλώματος

Ζητείται ο σχεδιασμός του υποστυλώματος ορθογωνικής διατομής με πλευρά b=30cm και ύψος h=70cm (σχ. 5.1) το οποίο αποτελεί μέρος ενός μονώροφου πλαισίου από ωπλισμένο σκυρόδεμα. Δίδεται καθαρό ύψος ορόφου 3,0 m.

Σχ. 5.1 Γεωμετρικά στοιχεία υποστηλώματος

Ο σχεδιασμός θα γίνει σύμφωνα με τις διατάξεις των ΕC2 και ΕC8 για κατασκευή με μέσο επίπεδο πλαστιμότητας (κατασκευή DCM).

Υλικά: Σκυρόδεμα C30, Χάλυβας διαμήκων οπλισμών και συνδετήρων B500C (S500)

Εντατικά μεγέθη

Σχ. 5.2 Εντατικά μεγέθη για κατακόρυφα φορτία (Συνήθεις δράσεις)

Σχ. 5.3 Εντατικά μεγέθη για οριζόντια ισοδύναμη φόρτιση (Σεισμικές δράσεις)

Διαστασιολόγηση σε κάμψη

1. Υπολογισμός διαμήκων οπλισμών (κύριου οπλισμού)

1.1. Μεγέθη σχεδιασμού

Συνδυασμοί δράσεων:

- χωρίς σεισμό
$$S_d = S (1.35G + 1.50Q)$$
 (1ος συνδυασμός)

- με σεισμό
$$S_d = S (G + 0.3Q \pm E)$$
 (2ος και 3ος συνδυασμός)

Πίνακα 1. Κρίσιμος συνδυασμός τιμών M_{sd} και N_{sd}

Διατομή	Συνδυασμός δράσεων χωρίς σεισμό		Συνδυασμοί δράσεων με σεισμό	
	(1ος συνδυασμός)		(2ος και 3ος συνδυασμός)	
	$S_d = S (1.35G + 1.50Q)$		$S_d = S (G + 0.3Q \pm E)$	
	min/max		min/max	
	Ακραία Μy	Ταυτόχρονη Ν	Ακραία Μу	Ταυτόχρονη Ν
Κάτω	-	-	-117,5	-460,3
	-	-	125,8	-555,7
Ανω	-106,0	-756,9	-	-
	-43,9	-460,3	-	-

Διαστασιολόγηση σε κάμψη

Επικάλυψη οπλισμών

Στους υπολογισμούς λαμβάνεται επικάλυψη 1.5cm. Άρα θεωρώντας συνδετήρες Ø8 και διαμήκεις οπλισμούς Ø18 η συνολική απόσταση του κέντρου βάρους του οπλισμού από την άκρη της διατομής θα είναι

$$d_1 = d_2 = 15 + \emptyset_{\sigma} + \emptyset_{L}/2 = 15 + 8 + 18/2 = 32 \text{ mm}$$

Επειδή ο οπλισμός είναι συμμετρικός $d_1 = d_2$

Διαστασιολόγηση σε κάμψη

Διαγράμματα αλληλεπίδρασης

- Άνω

1ος συνδυασμός - min My

$$M_{sd} = 106,00 \rightarrow \mu_d = \frac{M_d}{bh^2 f_{cd}} = \frac{106 \cdot 10^{-3}}{0,30 \cdot 0,70^2 \cdot \frac{30}{1.5}} = 0,036$$

$$N_{sd} = 756,90 \rightarrow v_d = \frac{N_d}{bh f_{cd}} = \frac{756,9 \cdot 10^{-3}}{0,30 \cdot 0,70 \cdot \frac{30}{1.5}} = 0,18$$

$$\omega_{tot} = 0$$

1ος συνδυασμός - max My

$$\begin{split} M_{sd} &= 43.9 \rightarrow \mu_d = \frac{M_d}{bh^2 f_{cd}} = \frac{43.9 \cdot 10^{-3}}{0.30 \cdot 0.70^2 \cdot \frac{30}{1.5}} = 0.015 \\ N_{sd} &= 460.3 \rightarrow v_d = \frac{N_d}{bh f_{cd}} = \frac{460.3 \cdot 10^{-3}}{0.30 \cdot 0.70 \cdot \frac{30}{1.5}} = 0.109 \end{split}$$

 χ. 4 Διάγραμμα αλληλεπίδρασης ροπών - αξονικών δυνάμεων σε ορθογωνική διατομή συμμετρικά οπλισμένη (S500, d₁/h=0,05).

Διαστασιολόγηση σε κάμψη

Διαγράμματα αλληλεπίδρασης

- Κάτω

2ος και 3ος συνδυασμός- min My

$$M_{sd} = 117,5 \rightarrow \mu_d = \frac{M_d}{bh^2 f_{cd}} = \frac{117,5 \cdot 10^{-3}}{0,30 \cdot 0,70^2 \cdot \frac{30}{1.5}} = 0,04$$

$$N_{sd} = 460,3 \rightarrow v_d = \frac{N_d}{bh f_{cd}} = \frac{460,3 \cdot 10^{-3}}{0,30 \cdot 0,70 \cdot \frac{30}{1.5}} = 0,109$$

$$\omega_{tot} = 0$$

2ος και 3ος συνδυασμός- max My

$$\begin{split} M_{sd} &= 125,8 \rightarrow \mu_d = \frac{M_d}{bh^2 f_{cd}} = \frac{125,8 \cdot 10^{-3}}{0,30 \cdot 0,70^2 \cdot \frac{30}{1.5}} = 0,043 \\ N_{sd} &= 555,7 \rightarrow v_d = \frac{N_d}{bh f_{cd}} = \frac{555,7 \cdot 10^{-3}}{0,30 \cdot 0,70 \cdot \frac{30}{1.5}} = 0,132 \end{split}$$

- Στους συνδυασμούς δράσεων με σεισμό ισχύει παντού η απαίτηση για πλαστιμότητα: $v_d \le 0.65$

 χ. 4 Διάγραμμα αλληλεπίδρασης ροπών - αξονικών δυνάμεων σε ορθογωνική διατομή συμμετρικά οπλισμένη (S500, d₁/h=0,05).

Διαστασιολόγηση σε κάμψη

Επιλογή οπλισμού

- Ο 1ος συνδυασμός φορτίσεων στην άνω διατομή απαιτεί τον περισσότερο συνολικό οπλισμό (το μεγαλύτερο ω_{tot}= 0,02). Με βάση το αποτέλεσμα αυτό υπολογίζονται οι απαιτούμενοι οπλισμοί:

$$A_{s,tot} = \omega_{tot} \frac{bh}{f_{yd}/f_{cd}} = 0.02 \frac{30 \text{cm} \cdot 70 \text{cm}}{\frac{500}{1.15} / \frac{30}{1.5}} = 1.93 \text{ cm}^2$$

Ο ελάχιστος απαιτούμενος οπλισμός είναι 1% και προκύπτει από την σχέση

$$A_{s,tot} = 0.01 \text{ bh } = 0.01 \cdot 30 \cdot 70 = 21 \text{ cm}^2 > 1.93 \text{ cm}^2$$

Τελικά τοποθετούνται $8 \underline{\varnothing} 18$ (20,36 cm² ≈ 21 cm²) συνολικός οπλισμός (Σχ. 5.6). Δηλαδή τοποθετούνται $4 \underline{\varnothing} 18$ ανά πλευρά κατά τη διεύθυνση της καταπόνησης.

Στις άλλες δύο πλευρές τοποθετούται ανα $(70-2\cdot3,2)/4=15,9$ cm $3 \varnothing 14$ με τους αντίστοιχους κατά y πολλαπλούς συνδετήρες, σύμφωνα με τον περιορισμό ότι σε κάθε πλευρά θα πρέπει να τοποθετούνται τουλάχιστον 3 ράβδοι ανα αποστάσεις bi<20 cm. Κατά x δεν απαιτείται ενδιάμεσος συνδετήρας, αφού $30-2\cdot3,2=23,6\approx20$ cm = bi

Διαστασιολόγηση σε διάτμηση

2.1. Κρίσιμες περιοχές

Το μήκος των ακραίων κρισίμων περιοχών του υποστυλώματος δίδεται από τη σχέση:

$$l_{cr} = \max \left\{ \begin{array}{c} h_c \\ l_{cl}/6 \\ 0,45 \text{ m} \end{array} \right\} = \max \left\{ \begin{array}{c} h_c = 0,70 \\ l_{cl}/6 = 3/6 = 0,50 \\ 0,45 \text{ m} \end{array} \right\} = 0,70$$

2.2 Συνδυασμοί φορτίσεων - Τέμνουσες σχεδιασμού εντός κρισίμων περιοχών

2.2.1 Τέμνουσες από συνδυασμούς φορτίσεων (Σχ. 5.2, 5.3)

Συνδυασμοί δράσεων:

-χωρίς σεισμό
$$S_d = S (1.35G + 1.50Q)$$
 (1ος συνδυασμός)

- με σεισμό
$$S_d = S (G + 0.3Q) \pm E)$$
 (2ος και 3ος συνδυασμός)

οπότε

1ος συνδυασμός

$$V_{sd} = (1,35V_g + 1,5V_q) = 37,4 \text{ kN}$$

2ος και 3ος συνδυασμός

$$V_{sd} = (V_g + 0.3 V_q + V_E) = 69,6 \text{ kN}$$

Διαστασιολόγηση σε διάτμηση

2.2.2. Τέμνουσες από Ικανοτικό σχεδιασμό

Επί πλέον, σύμφωνα με τον αντισεισμικό κανονισμό (ΕC8) για αποφυγή ψαθυρών μορφών αστοχίας (διατμητική αστοχία) θα πρέπει η τέμνουσα σχεδιασμού των υποστυλωμάτων να προσδιορίζεται και από τις ροπές αντοχής στα άκρα τους.

Σχ. 5.4 Υπολογισμός ικανοτικής τέμνουσας υποστηλώματος

Για ενιαίο συμμετρικό οπλισμό $8\emptyset18$ (20,36 cm²) σε όλο το μήκος του υποστυλώματος προσδιορίζονται οι σχεδιαστικές τιμές των ροπών αντοχής $M_{Rd,c1}$ και $M_{Rd,c2}$. Κατά τον υπολογισμό των $M_{Rd,c1}$ και $M_{Rd,c2}$ χρησιμοποιείται η μέγιστη τιμή N_d του συνδυασμού με σεισμό διότι αυτή δίνει τις μεγαλύτερες ροπές αντοχής. Γιατί;

Διαστασιολόγηση σε διάτμηση

$$\omega_{tot} = \frac{A_{s,tot}}{bh} \frac{f_{yd}}{f_{cd}} = \frac{20,36}{30\cdot70} \frac{500/1.15}{30/1.5} = 0,21$$

$$N_{sd} = 555,7 \rightarrow v_d = \frac{N_d}{bh} \frac{1}{f_{cd}} = \frac{555,7 \cdot 10^{-3}}{0,30 \cdot 0,70} = 0,132$$

$$M_{Rd,c1} = M_{Rd,c2} = \mu_{Rd} bh^2 f_{cd} = 0,15 \cdot 0,30 \cdot 0,70^2 \cdot 30 \cdot 10^3/1.50 = 441,00 \text{ kNm}$$

$$\Theta \text{ewroime epi to dustivestero oti } \Sigma M_{Rb} \geq \Sigma M_{Rc} \text{ optition oti } M_{i,d} = \gamma_{Rd} M_{Rc,i} \text{ optition of } \gamma_{Rd} = 1,1$$

$$\alpha \rho \alpha$$

$$V_{Rd,max,i} = 1,1(M_{Rc,1} + M_{Rc,2})/l_c = 1,1(441 + 441)/3.0 = 323,4 \text{kN}$$

Δηλαδή $V_{Rd,max,i} = 323,4$ και $V_{Rd,min,i} = -323,4$ και παρατηρείται τελικά ότι η ικανοτική τέμνουσα είναι μεγαλύτερη από τις αντίστοιχες δρώσες τέμνουσες σχεδιασμού που προκύπτουν από τους συνδυασμούς φορτίσεων και άρα οι υπολογισμοί για συνδετήρες θα γίνουν με βάση την τέμνουσα αυτή: $V_{Ed} = max(37.4, 69.6, 323.4) = 323,4$ kN

Διαστασιολόγηση σε διάτμηση

1ος έλεγχος

- Αντογή σχεδιασμού σε τέμνουσα χωρίς οπλισμό διάτμησης

Η αντοχή δίδεται από τη σχέση

$$V_{Rd,c} = \left[C_{Rd,c} k (100 \rho_l f_{ck})^{\frac{1}{3}} + k_1 \sigma_{cp} \right] b_w d$$

όπου

 $C_{Rd,c}$ = συντελεστής από δοκιμές, $C_{Rd,c}$ = 0.18/ γ_c =0.18/1.5=0.12

$$k_1 = 0.15$$

$$k = 1 + \sqrt{\frac{200}{d}} = 1 + \sqrt{\frac{200}{668}} = 1,547 \le 2,0 \quad (d \sigma \varepsilon mm)$$
 $b_w : μικρότερο πλάτος κορμού στην εφελκυόμενη περιοχή=0,30m d : ενεργό ύψος διατομής=0,668m$

ρι: ποσοστό εφελκυομένου χάλυβα, Α_{sl} =4Ø18

$$\rho_1 = \frac{A_{sl}}{b_w d} = \frac{10,18}{30 \cdot 66,8} = 0,005$$

f_{ck}: χαρακτηριστική θλιπτική αντοχή του σκυροδέματος =30 MPa

d : ενεργό ύψος διατομής=0.668m

 $\sigma_{co} = N_{Ed} / A_c < 0.20 \text{ } f_{cd} = 0.2 \cdot 30/1.5 = 4 \text{MPa}$ όπου N_{Ed} είναι το αξονικό φορτίο διατομής λόγω φόρτισης ή προέντασης

$$\sigma_{\rm cp} = \frac{460,3 \cdot 10^{-3}}{0,30 \cdot 0,70} = 2,19 \text{MP}\alpha \le 0,20 \text{ f}_{\rm cd} = 4 \text{ MPa}$$

Με βάση τις παραπάνω τιμές η αντοχή V_{Rd.c} υπολογίζεται ως εξής

$$V_{Rd,c} = [0.12 \cdot 1.547 \cdot (100 \cdot 0.005 \cdot 30)^{1/3} + 0.15 \cdot 2.19] \ 0.30 \cdot 0.668 \cdot 10^3 = 157.72 \ kN$$

Ο έλεγχος $V_{Ed} < V_{Rd,c}$ γίνεται στις παρειές για τέμνουσα με και χωρίς σεισμό και για την

τέμνουσα από ικανοτικό έλεγγο η οποία συνήθως είναι η δυσμενέστερη. Σε κάθε περίπτωση

ισχύει $V_{Rd,c}$ =157,72 kN < V_{Ed} =323,4 kN και άρα απαιτείται οπλισμός διάτμησης.

Διαστασιολόγηση σε διάτμηση

20ς έλεγχος

Οι διαστάσεις του κορμού πρέπει να είναι τέτοιες ώστε να ικανοποιείται σε όλο το μήκος της δοκού η σχέση $V_{\text{Ed}} \leq V_{\text{Rd,max}}$

Τέμνουσες Ved

$$V_{Ed} = max(37.4, 69.6, 323.4) = 323.4 \text{ kN}$$

Αντοχή σχεδιασμού λοξού θλιπτήρα V_{Rd,max}

Η αντοχή V_{Rd,max} δίδεται από τη σχέση

$$V_{Rd,max} = \frac{\alpha_{cw} b_w z v_1 f_{cd}}{\cot \theta + \tan \theta}$$

όπου

α_{cw} = 1,0 (για μη προεντεταμένη κατασκευή)

 $v_1 = 0.60$ για fck ≤ 60 MPα

$$z = 0.9d = 0.9 \cdot 66.8 = 60.12 \text{ cm} = 0.60\text{m}$$

και

$$V_{Rd,max} = \frac{\alpha_{cw} b_w z v_1 f_{cd}}{\cot \theta + \tan \theta} = \frac{1.0 \cdot 0.30 \cdot 0.60 \cdot 0.60 \cdot (\frac{30}{1.5}) \cdot 10^3}{2.5 + 0.40} = 744.83 \text{kN}$$

 $V_{Rd,max}$ =744,38 kN > V_{Ed} =323,4 kN και άρα ο έλεγχος ικανοποιείται.

Διαστασιολόγηση σε διάτμηση

3ος έλεγχος – Υπολογισμός συνδετήρων

Ο οπλισμός (συνδετήρες) εξάγεται από τη σχέση $V_{Rd,s} \geq V_{Ed}$

όπου $V_{Rd,s}$ η αντοχή για υποστυλώματα με οπλισμό διάτμησης η οποία προκύπτει από τη σχέση

$$V_{Rd,s} = \frac{A_{sw}}{s} z f_{ywd} \cot \theta$$

και άρα οι συνδετήρες προκύπτουν από τη σχέση

$$V_{Rd,s} \ge V_{Ed} \rightarrow V_{Rd,s} = \frac{A_{sw}}{s} z f_{ywd} \cot \vartheta \ge V_{Ed} \rightarrow \frac{A_{sw}}{s} \ge \frac{V_{Ed}}{z f_{ywd} \cot \vartheta}$$

όπου

z = 0.9 d κατά EC2

 f_{ywd} θα πρέπει να μειώνεται σε f_{ywd} = 0.8 f_{yk} σύμφωνα με EC2

• $f_{ywd} = \frac{f_{ywk}}{\gamma_s}$ η τιμή σχεδιασμού της αντοχής του οπλισμού διάτμησης Αν η τάση σχεδιασμού του οπλισμού διάτμησης είναι μικρότερη του 80% της χαρακτηριστικής τιμής της τάσης διαρροής (βλ. εξ. 6.25) τότε $f_{ywd} = 0.8 \cdot f_{ywk}$

Στην εφαρμογή αυτή επιλέγεται η γωνία $\theta = 45^{\circ} \rightarrow \cot \theta = 1.0$

Διαστασιολόγηση σε διάτμηση

3ος έλεγχος – Υπολογισμός συνδετήρων

Η δυσμενέστερη τιμή τέμνουσας σχεδιασμού είναι η ικανοτική τέμνουσα:

$$V_{Ed} = 323.4 \text{ kN}$$

$$\frac{A_{sw}}{s} \ge \frac{V_{Ed}}{zf_{vwd} \cot \theta} = \frac{323.4 \cdot 10^{-3}}{0.90 \cdot 0.668 \cdot 0.80 \cdot 500 \cdot 1.00} = 0.00134 \text{ m} = 0.134 \text{ cm}$$

$$\rightarrow \frac{A_{sw}}{s} \ge 0,134 \text{ cm}.$$
 Έστω Ø8 δίτμητοι ($A_{sw} = 2x0,505 = 1,01 \text{ cm}^2$)

$$Aρα s ≤ \frac{A_{sw}}{0,134} = \frac{1,01}{0,134} → s ≤ 7,54 cm$$

Επομένως απαιτούνται Ø8/7,5 τουλάχιστον

2.5 Ελάχιστοι συνδετήρες κρίσιμων περιοχών

-Μέγιστη απόσταση

$$s_{max} \le \begin{cases} b_o/2 = [300\text{-}2(15+8/2)]/2 = 131 \text{ mm} \\ 8d_{bL,min} = 8\cdot14 = 112 \text{ mm} \\ 175 \text{ mm} \end{cases} \rightarrow s_{max} = 11 \text{ cm}$$

όπου

d_{bL,min} η μικρότερη διάμετρος των διαμήκων ράβδων

b₀ η μικρότερη πλευρά του πυρήνα σκυροδέματος υποστυλώματος έως τον άξονα των συνδετήρων (πυρήνας υπό περίσφιξη)

- Διάμετρος

$$d_{bw} \ge \left\{ \begin{array}{l} 6 \ mm \\ 1/4 d_{bL,max} = 18 mm/4 = 4,5 \ mm \end{array} \right.$$

όπου

d_{bw} η διάμετρος των συνδετήρων

d_{bL,max} η μεγαλύτερη διάμετρος των διαμήκων ράβδων.

Τοποθετούνται 2τμητοι Ø8/75mm

Οπλισμός περίσφιξης

- Υπάρχον Μηχανικό ογκομετρικό ποσοστό σχεδιασμού ω_{wd} των συνδετήρων Ø8/7,5

Μήκος σκέλους περιμετρικού συνδετήρα κατά x: 70,0-1,5-1,5-0,8/2-0,8/2 = 66,2 cm

Μήκος σκέλους περιμετρικού συνδετήρα κατά y: 30,0-1,5-1,5-0,8/2-0,8/2 = 26,2 cm

Μήκος σκέλους εσωτερικού συνδετήρα κατά x: 15,9 · 2= 31,8cm

Μήκος σκέλους εσωτερικού συνδετήρα κατά y: 26,2 cm

Επειδή Σlx =(66,2+31,8) · 2 = 196 cm > Σly = (26,2 + 26,2) · 2 = 104,8cm $\rightarrow \rho x > \rho y$ = $\rho min \rightarrow$

$$ω_{wd} = \frac{όγκος κλειστών συνδετήρων}{όγκος περισφιγμένου πυρήνα} \cdot \frac{f_{yd}}{f_{cd}} = \frac{(26.2 + 26.2 + 26.2) \cdot 2 \cdot 0.5}{(66.2 - 0.8) \cdot (26.2 - 0.8) \cdot 7.5} \cdot \frac{\frac{500}{1.15}}{\frac{30}{1.5}} = 0.185$$

Οπλισμός περίσφιξης

- Απαιτούμενο Μηχανικό ογκομετρικό ποσοστό σχεδιασμού ω_{wd} των συνδετήρων

Πρέπει οι κλειστοί συνδετήρες στη κρίσιμη περιοχή στη βάση του υποστυλώματος να ικανοποιούν την σχέση:

 $\alpha \omega_{\rm wd} \ge 30 \mu_{\rm o} \nu_{\rm d} \varepsilon_{\rm sv,d} (b_{\rm c}/b_{\rm o}) - 0.035$

και ελάχιστη απαίτηση στη βάση ω_{wd} ≥ 0.08

όπου

μο η απαιτούμενη τιμή του συντελεστή πλαστιμότητας καμπυλοτήτων, δίδεται από τις σχέσεις:

$$\mu_{\phi} = 2q_o \; \text{-} \; 1 \qquad \qquad \epsilon \acute{\alpha} \nu \; T_1 \geq T_c \label{eq:mu_phi}$$

και

$$\mu_{\phi}$$
= 1+2(q_o - 1)T_c/T₁ εάν T₁ < T_c

όπου

q₀ η βασική τιμή του συντελεστή συμπεριφοράς

Τ₁ η θεμελιώδης ιδιοπερίοδος του κτιρίου

Τ_c η μεγαλύτερη περίοδος στο ανώτατο σημείο της περιοχής σταθερής επιτάχυνσης του φάσματος

Με βάση τα παραπάνω

- για μονώροφο λαμβάνεται περίπου T≈ 0,1 άρα T<T_c
- για Κατηγορία εδάφους Α, T_c=0,2sec
- για μονώροφο πολύστυλο DCM από Πίνακα προσδιορίζεται: q=3,3 άρα

$$\mu_{\phi} = 1 + 2(q_0 - 1)T_0/T_1 = 1 + 2(3,3-1)0,2/0,1 = 10,2$$

Οπλισμός περίσφιξης

- Απαιτούμενο Μηχανικό ογκομετρικό ποσοστό σχεδιασμού ω_{wd} των συνδετήρων

Πρέπει οι κλειστοί συνδετήρες στη κρίσιμη περιοχή στη βάση του υποστυλώματος να ικανοποιούν την σχέση:

 $\alpha \omega_{wd} \ge 30 \mu_{\varphi} \nu_d \epsilon_{sy,d} (b_c/b_o) - 0.035$

να η ανηγμένη αξονική δύναμη, δίδεται από τη σχέση να = N_{Ed} / (A_cf_{cd})

$$v_d = N_{Ed} / (A_c f_{cd}) = 555, 1 \cdot 10^{-3} / (0.3 \cdot 0.7 \cdot 30 / 1.5) = 0.132$$

Ας εμβαδόν ολόκληρης της διατομής σκυροδέματος

ΝΕΙ η τιμή σχεδιασμού του θλιπτικού φορτίου κατά τη σεισμική δράση σχεδιασμού

ες, η τιμή σχεδιασμού της ανηγμένης εφελκυστικής παραμόρφωσης διαρροής του χάλυβα

b_c η διάσταση της διατομής κάθετα προς την οριζόντια διεύθυνση προς την οποία υπολογίζεται

η τιμή του μφ που λαμβάνεται υπόψη

b_o η αντίστοιχη της b_c διάσταση του υπό περίσφιξη πυρήνα (Σχ. 5.5)

Οπλισμός περίσφιξης

Για ορθογωνικές διατομές:

$$\alpha_n = 1 - \sum b_i^2 / 6b_o h_o$$
, $a_s = (1-s/2b_o) (1-s/2h_o)$

n είναι το συνολικό πλήθος διαμήκων ράβδων που συγκρατούνται από κλειστούς συνδετήρες ή μονοσκελείς συνδετήρες , και

b_i είναι η απόσταση μεταξύ διαδοχικών ράβδων που συγκρατούνται με συνδετήρες Επομένως

$$\alpha_{n} = 1 - \sum_{i} b_{i}^{2} / 6b_{o}h_{o} = 1 - \frac{15,9^{2} \cdot 8 + 23,6^{2} \cdot 2}{6 \cdot 65,4 \cdot 25,4} = 1 - \frac{2022,48 + 1113,92}{9966,96} = 0,685$$

$$\alpha_s = (1 - s/2b_o) (1 - s/2h_o) = [1 - 7, 5/(2 \cdot 25, 4)][1 - 7, 5/(2 \cdot 65, 4)] = 0,851 \cdot 0,943 = 0,802$$

$$\alpha = \alpha_n \alpha_s = 0.685 \cdot 0.802 = 0.549$$

Άρα πρέπει

$$\alpha \omega_{wd} \geq 30 \mu_{\phi} \ \nu_{d} \ \epsilon_{sy,d} \ (b_{c}/b_{o}) - 0.035 \rightarrow \omega_{wd} \ \geq (1/\alpha \)[30 \mu_{\phi} \ \nu_{d} \ \epsilon_{sy,d} \ (b_{c}/b_{o}) \ - \ 0.035]$$

$$\rightarrow \omega_{\rm wd} \ge \frac{1}{0.549} \left(30 \cdot 10.2 \cdot 0.132 \frac{500}{1.15 \cdot 200000} \left(\frac{30}{25.4} \right) - 0.035 \right) = 0.125$$

και επειδή οι συνδετήρες \emptyset 8/7,5 που έχουν τοποθετηθεί ως συνδετήρες των κρίσιμων περιοχών έχουν μηχανικό οπλισμό ω_{wd} =0,185 προκύπτει ότι ω_{wd} = 0,185 \geq 0,125

Ο έλεγχος ικανοποιείται και άρα οι συνδετήρες <u>Φ8/7,5</u> είναι ικανοποιητικοί και στην κρίσιμη περιοχή στη βάση του υποστυλώματος