MuJoCo: Projectile Launch Optimization (I)

MuJoCo: Projectile Launch Optimization (2)*

Using template_projectile.zip to get started

- I. From <u>tiny.cc/mujoco</u> download <u>template_projectile.zip</u> and unzip in myproject
- 2. Rename folder template_projectile to projectile_opt
- 3. Make these three changes
 - 1. main.c line 28, change template_projectile/ to projectile_opt/
 - makefile change ROOT = template_writeData to ROOT = projectile_opt also UNCOMMENT (del #) appropriate to your OS
 - 3. run_unix / run_win.bat change <template_projectile > to < projectile_opt >
- 4. In the shell, navigate to projectile_opt and type ./run_unix (unix)
- * I don't have instructions for Windows. For Windows, use Ubuntu via Virtualbox.

MuJoCo: Non-linear root finding(I)

Inputs: v, theta, time of flight

Outputs: x_end, z_end

MuJoCo: Nonlinear root-finding (2)

$$\min_{x} f(x) = 0$$

Cost needs to defined so we set it to 0

subject to:

$$0.1 \le v \le \infty$$

$$0.1 \le \theta \le \pi/2$$

$$0.1 \le t \le \infty$$

$$x_{end} - x_{target} = 0$$

$$z_{end} - z_{target} = 0$$

MuJoCo: Nonlinear optimization (3)

$$\min_{x} f(x) = t$$

Minimize time

subject to:

$$0.1 \le v \le \infty$$

$$0.1 \le \theta \le \pi/2$$

$$0.1 < t < \infty$$

$$x_{end} - x_{target} = 0$$

$$z_{end} - z_{target} = 0$$