5 Probability in Computing

5.1 A Monte-Carlo Primality Tester

The factoring problem seems very hard. But to test if a number has factors turns out to be much easier than to find them. It also helps if we supply the computer with a coin-flipping device. See: [Miller 76, Solovay, Strassen 77, Rabin 80]. We now consider a Monte Carlo algorithm, i.e. one that with high probability rejects any composite number, but never a prime.

Residue Arithmetic. p|x means p divides x. $x \equiv y \pmod{p}$ means p|(x-y). $y = (x \mod p)$ denotes the residue of x when divided by p, i.e. $x \equiv y \in [0, p-1]$. Residues can be added, multiplied and subtracted with the result put back in the range [0, p-1] via shifting by an appropriate multiple of p. E.g., -x means p-x for residues mod p. We use $\pm x$ to mean either x or -x.

The Euclidean Algorithm finds $\gcd(x,y)$ – the greatest (and divisible by any other) common divisor of x and y: $\gcd(x,0)=x$; $\gcd(x,y)=\gcd(y,(x\bmod y))$, for y>0. By induction, $g=\gcd(x,y)=A*x-B*y$, where integers $A=(g/x\bmod y)$ and $B=(g/y\bmod x)$ are produced as a byproduct of that algorithm. This allows division (mod p) by any r coprime with p, (i.e. $\gcd(r,p)=1$), and operations +,-,*,- obey all usual arithmetical laws. We also need to compute $(x^q\bmod p)$ in polynomial time. We cannot do $q>2^{\|q\|}$ multiplications. Instead we compute all numbers $x_i=(x_{i-1}^2\bmod p)=(x^{2^i}\bmod p), i<\|q\|$. Then we represent q in binary, i.e. as a sum of powers of 2 and multiply mod p the needed x_i 's.

Fermat Test. The Little Fermat Theorem for each prime $p \not| x$ says: $x^{(p-1)} \equiv 1 \pmod{p}$. Indeed, the sequence $(xi \bmod p)$ is a permutation of [1, p-1]. So, $1 \equiv (\prod_{i < p} (xi))/(p-1)! \equiv x^{p-1} \pmod{p}$. This test rejects typical composite p, including all $p = a^2b \neq b$: $(1+p/a)^{p-1} = 1 + (p/a)(p-1) + (p/a)^2c \equiv 1-p/a \not\equiv 1 \pmod{p}$. Other composite p (Carmichael numbers) can be actually factored by the following tests.

Square Root Test. For each y and prime p, $x^2 \equiv y \pmod{p}$ has at most one pair of solutions $\pm x$. **Proof.** Let x, x' be two solutions: $y \equiv x^2 \equiv x'^2 \pmod{p}$. Then $x^2 - x'^2 = (x - x')(x + x') \equiv 0 \pmod{p}$. So, $p \mid (x - x')(x + x')$. Thus p, if prime, divides either (x - x') or (x + x'), making $x \equiv \pm x'$. Otherwise p is composite, and $\gcd(p, x + x')$ actually gives its factor.

Random Choice. We say d **kills** \mathbb{Z}_p^* if $x^d \equiv 1 \pmod{p}$ for all x (in \mathbb{Z}_p^* , i.e. coprime with p). If $x^d \not\equiv 1$, then for all y either $y^d \not\equiv 1$ or $(xy)^d \not\equiv 1$. Same with $x^d \not\equiv \pm 1 \pmod{p}$. So existence of a single such x implies the same for **most** of randomly chosen y.

Miller-Rabin Test T_x factors a composite p given d that kills \mathbb{Z}_p^* . If d=p-1 does not, then Fermat Test confirms p is composite. Let $d=2^kq$, with odd q. T_x sets $x_0=(x^q \bmod p)$, $x_i=(x_{i-1}^2 \bmod p)=(x^{2^{iq}} \bmod p)$, $i\leq k$. $x_k=1$. If $x_0=1$, or one of x_i is -1, T_x gives up for this x. Otherwise $x_i\not\equiv \pm 1$ for some i< k, while $x_i^2\equiv x_{i+1}\equiv 1$, and the Square Root Test factors p. Now, for any coprime a,b,p=ab,T succeeds with some (thus most!) $x\in\mathbb{Z}_p^*$: Take the **greatest** i such that 2^iq does not kill \mathbb{Z}_p^* . It exists (as $(-1)^q\equiv -1$ for odd q) and has $x_i\not\equiv 1\equiv (x_i)^2\pmod p$. Then $x'=1+b(1/b\bmod a)(x-1)\equiv 1\equiv x_i'\pmod b$, while $x_i'\equiv x_i\not\equiv 1\pmod a$. So, $x_i'\not\equiv \pm 1\pmod p$.