stepped,

uniform

@ IR Parrow

Approximations:

parabolic,

linear.

GEOMETRY AND AREA PROPERTIES

Approximations:

Compound areas:

Graphical integration:

$$\bar{\pi} = \int x dA \int dA$$
, $\bar{y} = \int y dA \int dA$

or
$$\bar{z} = \bar{z}_{x_i A_i}$$
, $\bar{y} = \bar{z}_{y_i A_i}$
 \bar{z}_{A_i}

 $I_{NA} = \int y^2 dA$ Accounting only for vertical lift Second moment of area

Effective shear area

As < A Just claim box area for As and for J

Torsional constant
$$J \rightarrow I_J = K_T \approx I_{zz} + I_{yy}$$
 Circle: $I d^4$ thin rectangle: $b t^3$

© IR Forms is. for solid rectangle: $\frac{db^2}{12} + \frac{bd^2}{12} \rightarrow Z - \frac{d^2}{2} + \frac{d^2}{2} \rightarrow Z - \frac{d^2}{2} \rightarrow Z -$

MATERIAL PROPERTIES

Density

$$P = 32 - 33 \text{ kg/m}^3$$

Revised values 14.3.2012

Youngs Modulus

$$E = 25 * N/mm^2$$
 tension or compression

Shear modulus

$$G = 13.5 * N/mm^{2}$$

Tensile strength
$$\sigma_{-}^{*} = 0.45 - 0.50 ** N/mm^2$$

Compressive stress $\sigma = 0.25 - 0.30 ** N/mm² @10% deformation$

Shear strength

** Conservative allowable values

(3)

