UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA UNIDADE ACADÊMICA DE ENGENHARIA ELÉTRICA DISCIPLINA: CIRCUITOS ELÉTRICOS 2

Simulação de Sistemas Elétricos por Quadripolos

ALUNO:	 														
ALUNO:															
ALUNO:															
ALUNO:	 														
ALUNO:															

Questão 1. Considerando o sistema elétrico da Figura 1, operando a 60 Hz, cujos parâmetros do sistema são conforme a seguir:

Figura 1: Sistema Elétrico

- Impedância série de Thévenin $Rf = 4\Omega$ e $Xf = 0,38\Omega$.
- Parâmetros das Linhas de Transmissão, de acordo com o modelo da Figura 2: $R=0,172\Omega/km,\,L=2,18mH/km$ e $C=0,0136\mu F/km$.
- Considere que as LT1, LT2 e LT3 possuem 80 km, a LT4 e LT5 possui 120 km e a LT6 possui 100 km.
- Considere os seguintes parâmetros para os Transformadores, conforme Figura 3: $R1 = 7,6m\Omega, X1 = 3,8m\Omega, R2 = 33,9m\Omega, X2 = 0,85m\Omega.$
- Para as cargas, considere:
 - $-R_1 = 8000\Omega e L_1 = 41H.$
 - $-R_2 = 1350.55\Omega e L_2 = 7,83H.$
 - $-R_3 = 649\Omega e L_3 = 3, 2H.$

Figura 2: Modelo π de Linha de Transmissão

Figura 3: Modelo de Transformador

Faça o que se pede:

- Crie funções no Matlab, Octave ou software de preferência, para criação das matrizes de transferência [T] de cada elemento do sistema a partir dos dados de entrada do modelo.
- Crie funções no Matlab, Octave ou software de preferência, para associação em cascata e em paralelo dessas matrizes de transferência.
- Modele o sistema no software desenvolvido.
- Obtenha a tensão fasorial de saída V_{ac} e a corrente fasorial no gerador necessários para que a tensão na carga Z_3 seja $69kV_{RMS}$.
- Obtenha a tensão e a corrente fasoriais nas impedâncias Z_1 e Z_2 .
- Simule o sistema no LTSpice utilizando o modelo de cada elemento do sistema. Compare o resultado com o obtido nos itens anteriores. A modelagem do sistema por quadripolos apresentou o mesmo resultado que a análise por elementos de circuitos?
- Qual é o ajuste do TAP dos transformadores T1, T2 e T3 para que as tensões nas cargas sejam, respectivamente, 500kV, 230kV e 69kV? Faça esse ajuste no modelo e apresente o resultado.