Space Station Freedom

Mr. Gilbert Keyes
President, Program Manager
Space Exploration Initiative
Boeing Commercial Space Development Company

ACCESS TO SPACE SPACE STATION FREEDOM AND COMMERCIALIZATION

May 14, 1991

SPACE STATION FREEDOM

BALANCED COMMERCIAL ACCESS TO SPACE **EVOLUTIONARY APPROACH**

- Drop Tubes/Towers (MSFC, LeRC)
- Microgravity Aircraft (KC 135)
- Suborbital Sounding Rockets (Joust, Consort)
- Orbital Rockets (COMET)
- Shuttle Based Facilities (Middeck, SPACEHAB, Wakeshield)
- Space Station Freedom

NSTS/SS attachment systems

· Internal thermal control

· ICLSS Systems:

Internal audio/video

Phased Space Station Freedom Program

Future evolution

Restructuring

1995 – First element launch

Man-Tenued Capability

Science mode like Spacelab with equipment on orbit all year

Shuttle-based crew operates experiments during two 2-week visits per year

ion Add power, truss, logistics, and international modules during this phase

		Man-Tended
	Spacelab	Spacelab Capability Station
User racks on orbit	9	15
Days/year of operation	39	365
Available crew	9	9
Average user power (kW)	2.5-3.5	12-45

Permanently Manned Capability

Science mode like Skylab or Mir with more power, international laboratories, and logistics

4-person crew rotates every 2 to 3 months

	Skylab	Mir* (estimated)	Permanently Manned Capability Station
User racks on orbit	295 m ³ workshop	10-25	14-45
Available crew	2-3	2-3	2-3
Average user power (kW)	7.5	5-10	31-54

Add habitation modules, environmental control systems, and user systems during this phase

Eight-Man Crew Capability

Full power and three laboratories with 8-person international crew

8-person crew rotates every 2 to 3 months

	Mir*	Freedom	• Rea
	(estimated)	Station	•
User racks	10-25	09	• (
Available crew	2-3	9	
Average user power (kW)	5-10	30	

missions	•
growth	•
Ready for	{

- Commercial processing
 - Life sciences
- Missions from planet
 Earth

Standard Payload Rack Dimensions

Resource Capabilities

	Man Tended	Permanently Manned	Eight-Man Crew
Crew Size	7 with Orbiter docked	4	*
Power, kW	18.75	56.25	75
Pressurized Volume, m ³	100	009	800
User Racks	15	46	09
Thermal Control	3° C	3°C and 17°C	3°C and 17°C
Process Fluids	Vacuum vent	Vacuum vent	Vacuum + Ultrapure
Pressurized Logistics Modules	8-rack	8-rack + 20-rack	water 8-rack + 20-rack

(JOINT ENDEAVOR AGREEMENT) **BOEING COMMERCIAL PROJECT**

CRYSTALS BY VAPOR TRANSPORT EXPERIMENT (CVTE)

- Joint Endeavor Agreement signed with NASA May 1986
- Entitles Boeing to three Shuttle experiment flights and options for two more
- Quid pro quo entitles NASA to samples in CVTE furnaces
- Purpose of CVTE is to investigate materials processing technologies in microgravity
- Build and integrate hardware
- Initial investigations focus on vapor transport processing of electro-optic matierials
- Assess commercial viability of materials processing
- First flight scheduled for STS-49 April 1992
- Program challenges
- Integration to a manned flight system
- Interface requirements and schedule changes

CVTE - A Cooperative Venture

NASA - A

L. Undon B. Johnson Space Care

ORIGINAL PAGE IS

ORIGINAL PAGE IS OF POOR QUALITY

COMMERCIAL SPACE PROJECTS INTERFACES

LESSONS LEARNED

ESSENTIAL ELEMENTS FOR SPACE STATION COMMERCIALIZATION **LESSONS LEARNED**

- Stable and Encouraging Pricing Policy
- Firm Commitments for Manifesting Payloads and Use of Infrastructure
- **Established Requirements and Specifications**
- Streamlined Management and Documentation
- Coordinated Interfaces Between NASA, Industry and Academia

STABLE AND ENCOURAGING PRICING POLICY

- Early establishment of pricing policy for SSF needed to permit commercial business analysis (cost/benefit)
- Pricing policy should be encouraging to commercial interests
- Options may include initial reimbursement for direct services only, deferred payments, payments from revenue, and quid pro quo arrangements (such as used with Joint Endeavor Agreements for the Shuttle)
- May not be able to provide long term pricing policy today, but NASA should establish "limited period" pricing policy

FIRM COMMITMENTS FOR MANIFESTING PAYLOADS AND USE OF INFRASTRUCTURE

- Important to know that you have guaranteed opportunity to fly within certain time period
- Investment decisions based on prospective returns and payback periods
- If opportunity to fly in space is in question, business interests will not support project
- power, volume, time) on orbit is critical to commercialization Similarly, guaranteed access to adequate resources (eg -

ESTABLISHED REQUIREMENTS AND SPECIFICATIONS

- Designers, developers and users of Space Station Freedom specifications early to efficiently take full advantage of its based hardware need baselined requirements and resources
- Unclear or changing requirements results in inefficient and costly designs and redesigns
- Restructured Space Station Freedom presents opportunity to establish and disseminate user requirements
- knowledgeable of the requirements so they scope their Academic and industrial users need to become projects properly

STREAMLINED MANAGEMENT AND **DOCUMENTATION**

- documents are crucial to efficient, lower cost, and timely Single layer of both management and requirements development of commercial projects
- prepared by multiple offices and NASA Centers causes Interface, integration and safety documents for users confusion

COORDINATED INTERFACES BETWEEN NASA, INDUSTRY AND ACADEMIA

- resources and economize the commercialization project are **Coordinate hardware and programmatic requirements and** interfaces to optimize use of Space Station Freedom needed early
- Coordination applies to both government provided hardware projects as well as commercially developed hardware
- In the case of government procurement programs, input important to meaningful capability built into hardware from science and industrial user communities is
- requirements due to lack of NASA incentive to Industry funded programs overlook important communicate

RECOMMENDATIONS & SUMMARY

RECOMMENDATIONS

- NASA needs to establish early pricing policies, administrative procedures, and cooperative agreements to encourage commercialization
- System for "guaranteeing "access to Space Station Freedom needs to be developed; otherwise, business risk is too high
- books need to be published early to permit designers and users Interface control documentation and payload accommodations to properly scope their projects
- Integration management and documentation should be out of one allowing cross-referencing, duplication or modification by other office or Center (eg - Space Station Freedom Office) without offices or NASA Centers
- Coordinate and develop interface requirements, pricing policies, procedures, etc. to encourage cooperation between NASA, commercial, and academic communities

SUMMARY

- Space Station Freedom has abundant resources and can serve as important element in commercialization of space
- NASA, Industry and Academia cooperation is key to successful commercial ventures - CCDS's serve as a role model
- incorporated into Space Station Freedom commercialization Lessons learned to date, by Boeing and others, ought to be planning
- NASA can best stimulate commercialization with early pricing and use policy and early documentation of interfaces and requirements for Space Station Freedom use
- Commercial space strategy should include consideration of commercialization of Space Station Freedom systems and services