Determinar el punto de funcionamiento del diodo zéner en el circuito de la figura.

Determinar el punto de funcionamiento del diodo zéner en el circuito de la figura.

$$i_{DZ}$$
= -10V/5 Ω = -2A<0A \rightarrow No puede ser

Vz = 5 V

Hip. 2: circuito abierto

$$v_{DZ}$$
= -10V< -5V \rightarrow No puede ser

Determinar el punto de funcionamiento del diodo zéner en el circuito de la figura.

Hip. 3: zona zener

$$i_{DZ}$$
= $(-10V+5V)/5\Omega$ = $-1A<0A \rightarrow OK$

Determinar la corriente que circula por la resistencia de 5Ω .

Determinar la corriente que circula por la resistencia de 5Ω .

$$Vz = 5 V$$

El diodo conduce (independientemente de que la corriente circule por la resistencia de 10Ω o por el zener).

El zener operará circuito abierto o en zona zener, pero está claro que no conduce polarizado directamente debido al sentido de la corriente entregada por la fuente.

Determinar la corriente que circula por la resistencia de 5Ω .

$$Vz = 5 V$$

Hip. 1: diodo ON y zener OFF

$$i_D = 10V/(10\Omega + 5\Omega) = 0.666A > 0A \rightarrow OK$$
 (para el diodo)
 $v_{DZ} = 10\Omega \cdot (-i_D) = -6.66V < 5V \rightarrow No$ puede ser

Determinar la corriente que circula por la resistencia de 5Ω .

$$Vz = 5 V$$

Hip. 2: diodo ON y zener en zona zener

$$i_D = (10V-5V)/5\Omega = 1A > 0A \rightarrow OK$$
 (para el diodo)

$$i_{DZ}$$
= (5V/10 Ω)-1A=-0,5A<0A \rightarrow OK (para el zener)

4V?

Indique cómo se comporta el MOSFET en el circuito de la figura y calcule I_D y V_{DS} . ¿Qué ocurre si se sustituye la fuente de tensión de 1V por una de

Indique cómo se comporta el MOSFET en el circuito de la figura y calcule I_D y V_{DS} . ¿Qué ocurre si se sustituye la fuente de tensión de 1V por una de 4V?

Circuito de entrada:

$$v_{GS} = 1V < 2V \text{ (ver gráfica) } \rightarrow Corte$$

Indique cómo se comporta el MOSFET en el circuito de la figura y calcule I_D y V_{DS} . ¿Qué ocurre si se sustituye la fuente de tensión de 1V por una de 4V?

$$i_D = 0A$$

$$v_{DS} = 10V$$

Indique cómo se comporta el MOSFET en el circuito de la figura y calcule I_D y V_{DS} . ¿Qué ocurre si se sustituye la fuente de tensión de 1V por una de 4V?

Circuito de entrada:

$$v_{GS} = 4V > 2V \text{ (ver gráfica) } \rightarrow \text{activa o saturación}$$

Indique cómo se comporta el MOSFET en el circuito de la figura y calcule I_D y V_{DS} . ¿Qué ocurre si se sustituye la fuente de tensión de 1V por una de 4V?

Circuito de salida:

Hip. 1: activa:

 i_D = 4A(ver gráfica, parte horizontal de la curva correspondiente a v_{GS} =4V)

 v_{DS} = 10V-1\O\cdot 4A=6V>3V (ver gr\(a\)fica: efectivamente es un punto perteneciente a la parte horizontal \(\rightarrow\) hip. correcta)

Indique cómo se comporta el MOSFET en el circuito de la figura y calcule $I_D y V_{DS}$. ¿Qué ocurre si se sustituye la fuente de tensión de 1V por una de 4V?

Circuito de salida:

Hip. 2: saturación:

 $R_{DS} = 3V/4A$ (ver gráfica, inversa de la pendiente de la curva correspondiente a $v_{GS}=4V$) $v_{DS} = 10V \cdot 0,75\Omega/(1,75\Omega) = 4,2V > 3V$ (ver gráfica: el punto NO pertenece a la

