THEORETICAL PART:

Definition:

A quadratic equation in one variable, say the variable x, is an equation that can be transformed into the form

$$ax^2 + bx + c = 0.$$

where $a, b, c \in \mathbb{R}$ and $a \neq 0$.

We also call such equations as **second-degree** equations.

Completing the Square Procedure:

- Step 1. Write the equation $ax^2 + bx + c = 0$ in the form $ax^2 + bx = -c$.
- Step 2. Divide by $a \ne 1$, so that the coefficient of x^2 is 1: $x^2 + \frac{b}{a}x = -\frac{c}{a}$.
- Step 3. Divide the coefficient of x by 2, square the result, and add this to both sides:

$$x^2 + \frac{b}{a}x + \left(\frac{b}{2a}\right)^2 = -\frac{c}{a} + \left(\frac{b}{2a}\right)^2.$$

Step 4. The trinomial on the left side will now be a perfect square trinomial. That is, it can be written as the square of a binomial.

The Quadratic Formula:

The solutions of the general quadratic equation $ax^2 + bx + x = 0$, with $a \ne 0$, are given by the quadratic formula:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

We call $D = b^2 - 4ac$ the **discriminant**. Its value determines the number and type (real or complex) of solutions.

- $b^2 4ac > 0$: we have 2 real distinct solutions.
- $b^2 4ac = 0$: we have 1 repeated real solution.
- $b^2 4ac < 0$: we have 2 complex solutions (complex conjugate).

Definition: An equation is quadratic-like, or quadratic in form, if it can be written in the form

$$aA^2 + bA + c = 0,$$

where a, b, c are constants, $a \neq 0$, and A is an algebraic expression. Such equations can be solved by using a **substitution** method.

PRACTICAL PART:

- 1. Solve the quadratic equation by factoring:
 - $s^2 + 9 = 6s$

- 2. Solve the quadratic equation by taking square roots:
 - $(2x + 3)^2 = 8$
- 3. Solve the quadratic equation by completing the square:
 - $x^2 2x 6 = 0$
- 4. Solve the quadratic equation using the quadratic formula:
 - $8x^2 4x = 1$

5. For each of the following quadratic equations, calculate the discriminant and determine the number and type of solutions:

$$-2x^2 + 12x - 18 = 0$$

•
$$5x^2 + 7x + 2 = 0$$

•
$$x^2 - 4x + 9 = 0$$

- 6. Solve the quadratic-like equation:
 - $(x^2 + 2x)^2 7(x^2 + 2x) 8 = 0$
 - $y^{\frac{2}{3}} + 4y^{\frac{1}{3}} 5 = 0$

- 7. Solve the equation by factoring:
 - $8t^3 27 = 0$
 - $x^{\frac{7}{3}} + x^{\frac{4}{3}} 2x^{\frac{1}{3}} = 0$