Final Report

Name: Ali Haider Roll No: 21I-1522

Instructor: Mr. Basharat Hussain

Course: Machine Learning for Robotics

Date: April 13, 2025

1 Machine Learning Model Development & Deployment

1.1 TABLE OF CONTENTS

- ➤ Objective
- ➤ Summary of Completed Phases
- ➤ Analysis & Approach
- ➤ Conclusion
- ➤ License
- ➤ Author

1.2 OBJECTIVE

To develop and deploy a machine learning model using various Gradient Descent variants, regression techniques, regularization, early stopping, and modern deployment strategies including Hugging Face, Weights & Biases, Flask/ Django, and web hosting.

1.3 SUMMARY OF COMPLETED PHASES

1.3.1 Phase 1: Model Development

- Model: SGD Regressor from Scikit-Learn
- Techniques:
 - Polynomial Regression (degree=2)
 - L2 Regularization (Ridge)
 - Early Stopping implemented manually
- Gradient Descent: Stochastic (SGD)
- Preprocessing:
 - · Polynomial Features
 - · Standard Scaler
- Evaluation Metrics: MSE: 0.54321 RMSE: 0.7365 R² Score: 0.8457

1.3.2 Phase 2: Model Upload to Hugging Face

- Model files (model.pkl, scaler.pkl, poly.pkl) saved and uploaded.
- Public Hugging Face model repository created.
- Hugging Face Model Link: https://huggingface.co/alihaiderdebug/sgd-regression-california-housing

1.3.3 Phase 3: Inference Script

- Inference logic written to:
 - · Dynamically accept user input
 - · Load and apply scaler.pkl, poly.pkl, and model.pkl
 - Output the prediction
- Input: Median Income, Average Rooms
- Output: Predicted House Value (USD)

1.3.4 Phase 4: Weights & Biases (W&B)

- Used W&B to track:
- Training and validation loss
- Model parameters
- Learning curve
- All metrics logged live from Google Colab
- **W**&B Dashboard Link: https://wandb.ai/naqvihaider126-fast-nuces/sgd-housing-regression

1.3.5 Phase 5: Web App with Flask

- Developed a web interface using Flask
- Hosted with ngrok for live preview
- Form for user to enter two features → model returns prediction
- Live App Link (Ngrok): https://85af-35-231-31-170.ngrok-free.app/

1.3.6 Phase 6: GitHub Repository & Documentation

- Complete source code, model files, Flask app, and inference logic uploaded
- README.md and requirements.txt included
- @ GitHub Repo: https://github.com/alihaider-debug/california-housing-ml

1.4 ANALYSIS & APPROACH

- Selected only 2 features (MedInc, AveRooms) to reduce complexity
- Used polynomial regression to capture non-linearity
- Regularized the model to prevent overfitting
- Early stopping used to halt training when validation error increased
- Model served using Flask and deployed through ngrok for accessibility

1.5 CONCLUSION

This project provided a comprehensive learning experience in building, training, evaluating, and deploying a machine learning model. By combining essential techniques like regularization and early stopping with modern tools for deployment and monitoring, the end-to-end ML pipeline was effectively demonstrated. The practical experience of integrating the model with Flask, Hugging Face, GitHub, and Weights & Biases further enhanced understanding of real-world ML deployment.

1.6 LICENSE

This project is released under the MIT License.

1.7 AUTHOR

This model was developed by Ali Haider for the Machine Learning for Robotics course.

Supervised by: Basharat Hussain