Algoritmos II INF0002

Prof. Dr. Josenalde Barbosa de Oliveira

josenalde.oliveira@ufrn.br

Aulas: 35T12 - 4 CRDS - 60h

No caso bidimensional, pode-se imaginar vetores linha e vetores coluna integrados, constituindo uma matriz com n linhas e m colunas.

```
int X[4][4], y;
X[2][2] = 20;
/* atribuição do valor 20 ao índice [2,2] da matriz X */
y = X[2][2]; // acesso ao índice [2,2] de X
```

Índices – matriz com nXm elementos = 4x4=16

	0	1	2	3
0				
1				
2			20	
3				

Qual o espaço alocado na memória em bytes para armazenar esta estrutura de dados?

X:

Uma matriz pode ser declarada e inicializado com uma lista de valores

```
float X[3][2] = \{\{1,4\},\{5,3\},\{10,20\}\};
```

Pode inclusive armazenar caracteres, a denominada matriz de strings

Ou, usando STL e os tipos Vector e String:

```
vector<string> tadsComponentes = {"fundamentos", "algoritmos", "matematicaI"};
std::cout << tadsComponentes[2]; // ou .front() para primeiro e .back() para
último</pre>
```

No caso bidimensional, pode-se imaginar vetores linha e vetores coluna integrados, constituindo uma matriz com n linhas e m colunas.

```
int i2[5][7];
0,0 0,1 0,2 0,3 0,4 0,5 0,6
1,0 1,1 1,2 1,3 1,4 1,5 1,6
2,0 2,1 2,2 2,3 2,4 2,5 2,6
3,0 3,1 3,2 3,3 3,4 3,5 3,6
4,0 4,1 4,2 4,3 4,4 4,5 4,6
```

Você pode declarar matrizes multidimensionais que têm uma lista de inicializadores. Nessas declarações, a expressão constante que especifica os limites para a primeira dimensão pode ser omitida. Por exemplo:

Lendo as dimensões da matriz e inserindo valores

```
int L, C;
cin >> L >> C;
int v[L][C];
for (int i=0; i<L; i++)
    for (int j=0; j<C; j++)
        cin >> v[i][j];
```

```
int L, C;
cin >> L >> C;
int v[L][C];
for (int i=0; i<L; i++)
        for (int j=0; j<C; j++)
            cin >> v[i][j];
maior = v[0][0]; // assume o primeiro como maior
for (int i=0; i<L; i++)
        for (int j=0; j<C; j++)
        if (v[i][j] > maior) maior = v[i][j];
```

double multi[4][4][3]; // Declara matriz 3D. Para percorrer,
usar laço encadeado triplo (i,j,k)

https://data-flair.training/blogs/multi-dimensional-arrays-in-c-cpp/

```
int i, j, k, amostra[3][2][3], tamanho;
tamanho=3*2*3;
for(i = 0; i < 3; ++i) {
   for (j = 0; j < 2; ++j) {
       for(k = 0; k < 3; ++k) {
          cin >> amostra[i][j][k]);
for(i = 0; i < 3; i++) {
   for (j = 0; j < 2; j++) {
       for(k = 0; k < 3; k++) {
cout << "amostra " << i <<"," << j << "," << k << ":" << amostra[i][j][k]);</pre>
```

Matrizes especiais e algoritmos

MATRIZ QUADRADA - número de linhas igual ao número de colunas, definida por uma dimensão N (ou seja, N x N)

$$A_{3x3} = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 0 & 3 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow No \ matriz \ triangular.$$

$$A = \begin{bmatrix} A_{11} & A_{12} & A_{13} & \dots & A_{1n} \\ 0 & A_{22} & A_{23} & \dots & A_{2n} \\ 0 & 0 & A_{33} & \dots & A_{3n} \\ 0 & 0 & 0 & \dots & A_{4n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & A_{nn} \end{bmatrix}_{n \times n}$$

$$A^{t} = \begin{bmatrix} A_{11} & 0 & 0 & \dots & 0 \\ A_{12} & A_{22} & 0 & \dots & 0 \\ A_{13} & A_{23} & A_{33} & \dots & 0 \\ A_{14} & A_{24} & A_{34} & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & A_{3n} & \dots & A_{nn} \end{bmatrix}_{n \times n}$$

$$C_{3x3} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 2 \\ 3 & -2 & 1 \end{pmatrix} \rightarrow No \ matriz \ triangular.$$

$$D_{3x3} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix} \rightarrow Matriz \ triangular \ inferse$$

TRIANGULARES

$$\boldsymbol{B}_{3x3} = \begin{pmatrix} -1 & 1 & 1 \\ \mathbf{0} & 1 & 2 \\ \mathbf{0} & \mathbf{0} & 3 \end{pmatrix} \rightarrow Matriz\ triangular\ superior.$$

$$C_{3x3} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 2 \\ 3 & -2 & 1 \end{pmatrix} \rightarrow No \ matriz \ triangular$$

$$\mathbf{P}_{3x3} = \begin{pmatrix} 1 & \mathbf{0} & \mathbf{0} \\ 1 & 1 & \mathbf{0} \\ 1 & 1 & 1 \end{pmatrix} \rightarrow Matriz\ triangular\ inferior.$$

$$E_{3x3} = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{pmatrix} \rightarrow Matriz\ triangular\ superior.$$

Matrizes especiais e algoritmos

MATRIZ IDENTIDADE, DIAGONAL e NULA - diagonal principal com 1

→ Matriz diagonal

Apenas os elementos da diagonal principal são diferentes de zero

$$\begin{bmatrix} 2 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 7 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

→ Matriz identidade

A identidade é uma matriz diagonal cujo elementos da diagonal principal são todos iguais a um.

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad I_4 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Chamamos a matriz acima de l₃ (identidade de ordem 3)

No geral, In onde n é a ordem da matriz.

Operações com matrizes

Portanto, ao desenvolvedor de sistemas é importante conhecer tais conceitos e implementar algoritmos para percorrer as matrizes em sua totalidade ou em partes (como as diagonais), com operações de soma, subtração, média, seleção de valores, ordenação, etc.

Exemplos de aplicações

Exemplos de aplicações: robô (obi 2013)

https://olimpiada.ic.unicamp.br/pratique/p1/2013/f1/robo/

Exemplos de aplicações: quadrado mágico (obi 2011)

https://olimpiada.ic.unicamp.br/pratique/p2/2011/f2/magico/

Exemplos de aplicações: chuva (obi 2019)

https://olimpiada.ic.unicamp.br/pratique/p2/2019/f1/chuva/

Exemplos de aplicações: matriz super legal (obi 2019)

https://noic.com.br/materiais-informatica/comentario/2019-fase2-p1/

https://olimpiada.ic.unicamp.br/pratique/p2/2019/f2/matriz/