Assignment on Monte-Carlo techniques
<pre>import numpy as np import matplotlib.pyplot as plt #part (a) #N_0 = 100, a = 0.01 s^{-1}, \Delta t = 1 sec alph = 0.01 # it is the decay constant p = alpn # decay probability for delta t = 1 q = 1-p # survival probability N_ini = 100 T = 300 def decay(N): population = [] for t in range(T): r = np.random.random(N) survive = np.sum(r<q) #="" atoms="" n="survive" number="" of="" population.append(survive)="" population<="" pre="" return="" survived=""></q)></pre>
<pre>plt.figure(figsize =(12,5)) # Plots plt.subplot(1,2,1) plt.plot(range(T), decay(N_ini), 'r.', label = 'Numerical \$t\$ vs \$N/N_0\$') analyticals = [] for i in range(T): analyticals.append(N_ini*np.exp(-alph*i)) plt.plot(range(T), analyticals, label = 'Exact \$t\$ vs \$N/N_0\$') plt.xlabel('Time, \$t\$') plt.ylabel('SN/N_0\$ (disintegrations per second)') plt.legend() plt.grid() plt.subplot(1,2,2)</pre>
<pre>plt.semilogy() # Linear plt.plot(range(T), decay(N_ini), 'g.', label = 'Numerical \$t\$ vs \$\log(N/N_0)\$ - Log scale (slope= -\$\lambda\$)') plt.semilogy() plt.plot(range(T), analyticals, label = 'Exact \$t\$ vs \$\log(N/N_0)\$') plt.xlabel('Time, \$t\$') plt.ylabel('\$\log(N/N_0)\$ (disintegrations per second)') plt.legend() plt.grid()</pre> Numerical tys N/N ₀ Numerical tys N/N ₀ 102
Exact t vs N/N ₀ Description Descripti
$N_0 = 5000, \alpha = 0.03 s^{-1}, \Delta t = 1 \mathrm{sec}$ In []:
<pre>return population plt.figure(figsize =(12,5)) plt.subplot(1,2,1) plt.plot(range(T),decay(N_ini),'r.',label = 'Numerical \$t\$ vs \$N/N_0\$') analyticals = [] for i in range(T): analyticals.append(N_ini*np.exp(-alpha2*i)) plt.plot(range(T),analyticals,label = 'Exact \$t\$ vs \$N/N_0\$') plt.xlabel('Time, \$t\$') plt.ylabel('\$N/N_0\$\$ (disintegrations per second)') plt.legend() plt.grid() plt.subplot(1,2,2)</pre>
<pre># Linear plt.plot(range(T), decay(N_ini), 'g-', label = 'Numerical \$t\$ vs \$\log(N/N_0)\$ - Log scale (slope= -\$\lambda\$)') plt.semilogy() plt.plot(range(T), analyticals, label = 'Exact \$t\$ vs \$\log(N/N_0)\$') plt.grid() plt.xlabel('Time, \$t\$') plt.ylabel('\$\log(N/N_0)\$ (disintegrations per second)') plt.legend()</pre>
Out[]: <matplotlib.legend.legend 0x2078c920889="" at=""> South South </matplotlib.legend.legend>
Question 2 $N_0 = 500, \alpha = 4 \times 10^{-5} s^{-1}, \Delta t = 10 \mathrm{sec}, T = 100 \mathrm{sec}$ In []: $ \begin{aligned} &\operatorname{distri} &= [] \\ &\mathrm{N} &= 500 \\ &\operatorname{def} \operatorname{decays}(\mathrm{N}): \\ &\operatorname{alphas} &= 4*10**(-5) \end{aligned} \text{$\#$ it is the decay constant} \\ &\operatorname{delta}_{\perp} t = 10 \end{aligned} $
<pre>delta_t*alphas # decay probablity for delta t =1 q = 1-p # survival probablity T=100 jump = int(T/delta_t) populations = [] for t in range(jump): r = np.random.random(N) survive = np.sum(req) # number of atoms survived populations.append(survive) N = survive return populations for i in range(1000): p = decays(N) distri.append(N-p[-1])</pre>
<pre>plt.hist(distri) avg_distri = np.mean(distri) from scipy.stats import poisson x = np.arange(0,7,1) y = 1000*poisson.pmf(x, mu =avg_distri) plt.plot(x,y) Out[]: [<matplotlib.lines.line2d 0x2078e596e50="" at="">]</matplotlib.lines.line2d></pre>
200- 150- 50- 0 1 2 3 4 5 6 7 8 Part (b)
$N_0 = 500, \alpha = 2 \times 10^{-5} s^{-1}, \Delta t = 10 \mathrm{sec}, T = 100 \mathrm{sec}$ In []: $ \begin{aligned} & \operatorname{distri} = [] \\ & \operatorname{def} \operatorname{decays}(N): \\ & \operatorname{alphas} = 2^* 10^{**}(-5) & \text{ if is the decay constant} \\ & \operatorname{delta}_{L} t = 10 \\ & \operatorname{p} = \operatorname{delta}_{L} t^* \operatorname{alphas} & \text{ # decay probablity for delta } t = 1 \\ & \operatorname{q} = 1 - \operatorname{p} & \text{ # survival probablity} \end{aligned}$ $T = 100 \\ & \operatorname{jump} = \operatorname{int}(T/\operatorname{delta}_{L}t) \\ & \operatorname{populations} = [] \\ & \operatorname{for t in range(jump):} \\ & \operatorname{r = np.random.random(N)} \\ & \operatorname{survive} = \operatorname{np.sum}(r < \operatorname{q}) & \text{ # number of atoms survived} \\ & \operatorname{populations.append(survive)} \\ & \operatorname{N} = \operatorname{survive} \end{aligned}$
<pre>for i in range(1000): p = decays(N) distri.append(N-p[-1]) plt.hist(distri) avg_distri = np.mean(distri) from scipy.stats import poisson x = np.arange(0,7,1) y = 1000*poisson.pmf(x, mu =avg_distri) plt.plot(x,y)</pre>
Out[]: [<matplotlib.lines.line2d 0x2078e60a700="" at="">] 400 350 250 200 150 100 50 50 50 50 50 50 50 50 50 50 50 50 5</matplotlib.lines.line2d>
Question 3
By Inversion technique In []: fig, axt=plt.subplots()
plt.show() 700 600 175 150 150 125 Duly 100 200 100 000 000 000 000 00
By Acception-Rejection technique In []: U1= np.random.rand(10000) U2= np.random.rand(10000) V=[] for i in range(10000): if Func1(np.pi*U1[i])>=U2[i]*2.25: Y.append(np.pi*U1[i]) if, axi=plt.subplots() axi.hist(Y,edgecolor='black',bins=20) axi.set_xlabel('occurances') axi.set_xlabel('bistribution') ax2-axi.twinx() X=np.arange(0, 3.05, 0.01) Curve=Func1(X) ax2.plot(X,Curve,linestyle='-',color='red') ax2.set_ylim(0, 2.2) ax2.set_ylabel('siven function')
plt.show()
Part (b) for $a=0.001$ In []: $ \frac{\text{def DistFunction2(u):}}{\text{return(np.arctan(np.sqrt(0.001)*np.tan((u-1)*np.pi)))}} $ $ \frac{\text{DistFunction2(0)}}{\text{#DistFunction(1)}} $ $ \text{N=np.random.rand(10000)} $ $ \frac{\text{#print(Y)}}{\text{def Func2(th):}} $ $ \frac{\text{return(1/(np.sin(th)**2+0.001*np.cos(th)**2))}}{\text{return(1/(np.sin(th)**2+0.001*np.cos(th)**2))}} $
By Inversion technique In []: fig, ax1=plt.subplots() Y=bistFunction2(np.random.rand(10000)) for 1 in range(10000): if Y[i]=0:
plt.show() 4000 -175 -150 -125 by -100 y -075 by -0.50 -0.25 -0.50 -0.25 -0.00
<pre>By Acception-Rejection technique In []:</pre>
200 175 150 125 125 100 100 100 100 100 100 100 10