Conversion of entity relationship diagram to relational schema

Data representation in RDBMS(Revisit) Attributes/Columns/Fields **NULL** Rows/Records/Tuples custid custname custtype cardtype C1001 Regular Jeremy C1002 Larry Privileged Silver No. of Records/ Rows/ Tuples: Cardinality of the Relation C1003 Privileged Gold Henry Relation/ C1004 Liza Privileged **Platinum** Table C1005 Allen Regular Name of the relation No. of Attributes/Columns/Fields: Attributes of Degree of the Relation the relation Relation is usually represented as: customer (custid, custname, custtype, cardtype)

Conversion of ER model to relational schema

Schema

- A description of a database
- Specifies the relations, their attributes and the domains of the attributes

Conversion guidelines

- Each entity in ER diagram becomes a table in relational schema
- Each single-valued attribute in ER diagram becomes a column of the table
- Derived attributes of entities are ignored
- Composite attributes of an entity are represented by its equivalent parts
- Multi-valued attributes are kept in a separate table
- The key attribute of an entity is chosen as the primary key of the table
- Converting relationships is based on degree and cardinality of relationship

Example: Strong entity (1 of 2)

Relational Schema:

employee (<u>empid</u>, empname, dateofjoining)

Example: Strong entity (2 of 2)

Relational Schema:

employee(empid. empname, state, city)

employeequalification (empid. qualification)

Example: Weak entity

Relational Schema:

employee(empid, empname, designation, emailed)

dependent (empid, dname, relationship)

Example: Unary 1:1

Relational Schema:

customer(customerid, customername,...spouse)

Example: Unary 1:M

• The primary key of the table will itself become foreign key of the same table

Relational Schema:

employee(empid. empname, designation,, managerid)

Example: Unary M:N

Relational Schema:

```
employee(empid. empname, designation,....)

guaranty (guarantorid, beneficiaryid)
```

Example: Binary 1:1

 The key attribute of any of the participating entities in a relationship can become a foreign key in the other participating entity

Relational Schema:

employee(empid, empname, designation,, salary)

retailoutlet (<u>retailoutletid</u>, retailoutletlocation, <u>retailouletmanagerid</u>)

employee(<u>empid</u>, empname, designation,....,salary, <u>retailoutletid</u>)

retailoutlet (<u>retailoutletid</u>, retailoutletlocation)

Example: Binary 1:M

• The key attribute of entity on the "1" side of the relationship becomes a foreign key of entity towards the "M" side

Relational Schema:

supplier (supplierid, suppliername, suppliercontactno, supplieremailid)
quotation (quotationid, itemcode, quotedprice, supplierid)

Example: Binary M:N

Relational Schema:

Example: Ternary relationship

Requirements Logical design Physical design Implementation

Database life cycle – Logical design

Top down approach (Entity – Relationship (ER) model)

- •This approach is used when application requirements are clear
- •Represents the application requirements in a pictorial form
- •The real world objects and their corresponding attributes are identified from the requirements hence it is top down
- •This model helps in
 - analysis and design
 - re-validating the requirements

Bottom up approach (Normalization)

- •This approach is used when application requirements are not very clear
- •First define the required data items and then group the related data items
- •Further refinement may be carried out depending on the application need