数季电路与逻辑设计

Digital circuit and logic design

● 第八章 可编程逻辑器件

主讲教师 何云峰

■提纲

PLD概述

低密度可编程逻辑器件

高密度可编程逻辑器件

■提纲

现场可编程门阵列FPGA

Vivado设计套件

高密度可编程逻辑器件

现场可编程门阵列FPGA

FPGA: Field Programmable Gate Array

20世纪80年代中后期发展起来

一种高密度可编程逻辑器件

可编程逻辑器件供应商Xilinx公司1985年推出

高密度可编程逻辑器件

现场可编程门阵列FPGA

基本结构

- 可编程配置块(Configurable Logic Block, 简称:**CLB**)
- 可编程输入/输出(Input/Output Block, 简称:**IOB**)
- 可编程互联资源(Interconnect Resource, 简称: IR)

基本结构

Xilinx公司的XC4062XL

- 2304个CLB(构成48×48 CLB矩阵)
- ₩ 62000个逻辑门
- 2 5376个触发器
- ₩ 最大用户I/O达384个

Xilinx公司的XC4000系列FPGA器件的结构示意

• 现场可编程门阵列FPGA 规划设计 .vhd 设计验证 设计流程 .Xmp 设计输入 .xco .v/.vhl 设计综合 综合后仿真 静态时序分析 设计实现 .edn .ngd .ncd/.pcf/.ngm 布局布线 .ncd/.ngn/pcf 实现后仿真 静态时序分析 FPGA器件编程 电路验证

设计流程

规划设计

架构阶段

进行需求的定义和分析

确定系统功能和模块划分

选择合适的设计方案和合适的器件类型

设计流程

设计输入

利用EDA工具将概念 设计转化为硬件描述

硬件描述语言(HDL)和 原理图

创建FPGA工程,并创 建或添加设计源文件、 约束文件等

设计流程

设计综合 (Synthesis)

将设计输入转换成由基本 门电路、RAM和触发器等 基本逻辑单元组成的逻辑 连接网表

设计流程

设计实现

通过翻译 (Translate)、映射 (Map)、布局布线(Place & Route)等过程来将逻辑设计进 一步转译为可以下载烧录到目 FPGA器件中的特定物理文件格 式的过程

设计流程

FPGA配置

芯片编程

生成位数据流文件

将编程数据下载到FPGA芯片中

调试

设计流程——下载验证

下载是在功能仿真与时序仿真正确的前提下,将综合后形成的位流下载到具体的 FPGA芯片中,也叫芯片配置

FPGA 设计有两种配置形式

直接由计算机经过专用下载电缆进行配置

由外围配置芯片进行上电时自动配置

现场可编程门阵列FPGA 规划设计 .vhd 设计验证 设计流程 .Xmp 设计输入 .xco .v/.vhl 功能仿真 设计综合 设计验证 综合后仿真 静态时序分析 仿真 设计实现 .edn .ngd 静态时 .ncd/.pcf/.ngm 序分析 布局布线 .ncd/.ngn/pcf 电路验证 实现后仿真 静态时序分析 FPGA器件编程 电路验证

设计流程——仿真

行为仿真, 又称功能仿真、 RTL级仿真, 是在编译之前对 用户所设计的电路进行逻辑 功能验证

实现后仿真,又称为时序仿真, 其目的和综合后仿真一致,但实 现后的时序仿真加入了走线延时 信息,使得仿真与FPGA本身运 行状态一致 综合后仿真,又称为门级仿真,目的在于检查综合结果 是否和原设计一致

设计流程

验证设计是否满足时序在综合设计或布局布线之后, 对设计进行快速时序检查

约束,并列举输入约束冲突,以分析部分或全部的布 局布线设计

作为最后的测试,验证设计在目标应用中的表现

在典型的运行条件下,验证测试电路

数季电路与逻辑设计

Digital circuit and logic design

● 谢谢,祝学习快乐!

主讲教师 何云峰

