Gradient Boosting: inside a black box

Vitalii Duk

Agenda

- Decision Trees
- Ensembles: bootstrap aggregating
- Random Forest
- Ensembles: boosting
- AdaBoost
- Gradient Boosting
- Gradient Boosted Trees
- XGBoost

Decision Trees: overview

- **Supervised** learning algorithm
- **Binary tree** as the underlying data structure
- Works for both **regression** and **classification** tasks
- Uses **impurity measure** to decide where split and how to build a tree

Advantages:

- Simple to understand
- Can be easily visualized
- Don't require heavy computations while predicting results
- Can handle categorical and numerical data

Disadvantages:

- Can be easily overfitted
- Can be biased if the dataset is skewed
- Learning decision tree structure is NP-complete task
- Can't guarantee finding globally optimal decision tree

Decision Trees: visualization

Decision Trees: split

How do we know where to split?

15	31	83	19	27	33	56	23	12	78
1	0	0	1	1	0	1	0	1	0
+									
12	15	19	23	27	31	33	56	78	83
1	1	1	0	1	0	0	1	0	0
♦									
12	15	19	23	27	31	33	56	78	83
1	1	1	0	1	0	0	1	0	0

1. Sort unique features values in ascending order.

- 2. Try to split at each unique value and calculate the impurity of left and right leaf.
- 3. Select the threshold value with the lowest impurity score.

Decision Trees: tree construction

Alghorithm	Impurity measure	Impurity measure equation	Features		
CART	Gini Index	$1 - \sum_{i}^{K} p_i^2$	Use complexity-based pruning, handles numerical and categorical values, handle missing values.		
ID3	Information Gain	$H = -\sum_{i=1}^{K} p_k \log_2 p_k$ $\Delta H = H - \frac{m_L}{m} H_L - \frac{m_R}{m} H_R$	No pruning is done, handles only categorical values, can't handle missing values.		
C4.5	Information Gain Ratio	$GR(S, A) = \frac{Gain(S, A)}{IntI(S, A)}$	Use error-based pruning, handles numerical and categorical values, handle missing values.		

Decision Trees: regularization

- **Pre-pruning** stop growing tree when:
 - number of elements in a leaf node is less than user-defined threshold
 - o current node don't improve impurity measure
 - o maximum tree depth or maximum number of leafs is reached
 - leaf node contains same/similar items

- **Post-pruning** grow decision tree as much as possible:
 - start trimming tree nodes from the bottom
 - check if generalization of the model improves after each pruning iteration using cross-validation

Decision Trees: tuning parameters

Parameters to tune:

- o max_depth
- o max_leaf_nodes
- min_samples_split
- min_impurity_spiitimpurity value

- maximum depth of the tree
- maximum number of nodes of each leaf
- minimum number of samples to split the leaf
- min_impurity_split continue to split if this value is less than node's

Bootstrap aggregating: overview

Bootstrapping in statistics means *random sampling with replacement*

- Assume we have a dataset of size n
- Let's create *k* subsets of original dataset
- Each subset k_i consist of m elements uniformly sampled from original dataset with replacements
- Train separate "weak models/learners" on each of k subsets
- Regression: output average value of *k* learners
- Classification: output most common label of *k* learners

Bootstrap aggregating: visualization

Random Forest

- *Supervised* learning algorithm
- Based on idea of *bagging* (bootstrap aggregating)
- Uses *Decision Trees* as a base learner
- Train each base learner using a *subsample* of data with replacements

Tuning parameters:

- **n_estimators** number of base learners to fit
- max_features percentage of features to consider while building a tree
- o max_depth maximum depth of the tree
- max_leaf_nodes- maximum number of nodes of each leaf

Boosting

- Based on a ensemble of base learners
- Base learners are stacked, one after another
- Any input item X has a weight, initially uniformly distributed
- Each base learner is trying to predict the output value y based on input X
- Weights of poorly predicted items are increased
- Next base learner is taking re-weighted input X from his predecessor and is trying to improve predictions

AdaBoost

- AdaBoost stands for Adaptive Boosting
- Minimizes exponential loss
- Works only for binary classification *
- Desired outputs should be *{-1, 1}*

AdaBoost

- Take a dataset $x_1, x_2, ..., x_n$ as a input
- Set initial weights $w_1, w_2, ..., w_n$ of each training example as 1/n
- Define *k* as a number of *weak learners* (usually: decision tree of depth 1)

for each weak learner *do*:

- Train a weak learner using weighted samples
- Make predictions using current trained learner
- Calculate the error made by current learner
- Add more weight to wrongly predicted items

end for

Gradient Boosting

Same idea as behind **Boosting**:

- build ensemble of **k** stacked base learners
- o additive learning approach to predict final output

Differences:

- \circ start with the initial guess $f_0(x)$ which is usually 0, next steps will continuously improve that
- on each step base learner predicts pseudo-residuals instead of original target value

$$r_{im} = -iggl[rac{\partial L(y_i,F(x_i))}{\partial F(x_i)}iggr]_{F(x)=F_{m-1}(x)} \quad ext{for } i=1,\ldots,n.$$

o any differentiable loss function $L(y_i, F(x_i))$ can be used

Gradient Boosted Trees

- How can we use Decision Trees as a base learner now?
- How we can calculate gradient of a Decision Tree?
- Few changes to make:
 - regression trees used internally to predict pseudo-residuals for both classification and regression
 - select split point which minimizes the loss

$$Gain = \frac{1}{2} \left[\frac{G_L^2}{H_L + \lambda} + \frac{G_R^2}{H_R + \lambda} - \frac{(G_L + G_R)^2}{H_L + H_R + \lambda} \right] - \gamma$$

Gradient Boosted Trees: residuals fitting

Gradient Boosted Trees

How to calculate a final predicted value?

H(model=Toyota, mileage=6000, age=2, specs=GCC) = (+10000 * α_1) + (+3000 * α_2) α_n - learning rate

Gradient Boosted Trees

- How to predict the output for a binary classification?
 - uses Regression Trees as a base learner
 - even for classification fits each base learner regressor to predict pseudo-residuals
 - use Logistic Loss instead of Squared Loss
 - apply inverse logit transformation to the outputs to get probabilities

XGBoost

- What is XGBoost?
 - One of the implementations of **Gradient Boosting** algorithm
 - Written in **C++** with **bindings** in **Python, R, Julia, Scala**
 - Internal **DMatrix** data structure to speed-up computational process
 - A lot of **built-in objectives** for classification, regression and ranking
 - Supports **distributed training** on several machines in the cloud
 - A lot of performance tricks to speed-up learning process

XGBoost tuning parameters

```
- learning rate which makes fitting process more conservative
eta
             - minimum loss reduction required to make a new split in a tree
gamma
max depth - control regression tree depth
max leaves - limit maximum number of leaves instead of overall tree depth
tree method:
    approx - apply binning of continuous variables into percentile buckets
    exact - use all unique values of each feature
    hist* - cache and reuse bins on each iteration
subsample
                      - percentage of data to use while fitting new tree
colsample bytree - percentage of features to use while fitting new tree
colsample_bylevel - percentage of features to use while making a new split
```

XGBoost: quick example

https://github.com/root-ua/gbm-intro-meetup

