Predicting Injury in a Vehicle -**Crash**

Table of Contents

01 Problem Statement

02 Target Audience

Brief Summary

Data Collection

05 Data Cleaning 06 EDA

7 Modeling

Conclusions & Recommendations

09 Model Deployment

02. Target Audience

Automobile insurance companies like Geico, Inshur, etc.

Arizona Department of State

VISION **NO TRAFFIC DEATHS BY 2030**

Programs like Vision Zero.

03. Brief Summary:

Automobile Insurance Companies:

- According to The Street, liability insurance fraud is staging an accident or injury in order to deliberately file a claim against someone's insurance.
- The FBI estimates that the total cost of insurance fraud (excluding health insurance) is more than \$40 billion per year. Insurance fraud costs the average U.S. family between \$400 and \$700 per year.

ADOT:

• Arizona Department of Transport, responsible for maintaining & constructing Arizona's highway infrastructure.

Vision Zero:

• **Vision Zero** is a multi-national road traffic project that aims to achieve a highway system with no fatalities or serious injuries involving road traffic (Wiki).

04. Data Collection:

- The dataset is collected from DATA.gov .
- It consist of around 40k observations of vehiclecrash in Tempe, Arizona.
- The set contains 35 features like age of drivers, drug/alcohol use, collision manner, weather, surface condition, etc.

0.5 Data Cleaning

1st

Filled null values

3rd

Set 'Datetime' as the index to organize dataset

5th

Used .map on many features to decrease unique values

2nd

Renamed columns

4rth

Dropped useless columns

6th

Used dummy variables

06.EDA

07. Modeling

	Model	Specificity Score
1	Logistic (GridSearch)	99.66%
2	Logistic (PCA)	99.61%
3	KNN (GridSearch)	98.36%
4	SVM	99.69%
5	Decision Tree	99.11%
6	Bagging Classifier	98.88%
7	Random Forest	98.85%
8	Extra Tree	99.05%
9	Naive Bayes (Bernoulli)	99.74%
10	ADA Boosting	99.75% B
11	Neural Netork (NN)	99.67%

Baseline Score = 69%

Best Score

08.a Conclusions:

- EDA graphs.
- Top positive correlated features to Injury: Alcohol_Use, Drug_Use, Injury_Severity.
- <u>Top negative correlated features</u>: Age_Drv, Surface condition, weather.
- Most of the collisions were vehicle to vehicle, very few crash reports on the vehicle to pedestrian/bicycle.
- Best Model: Ada Boosting (highest specificity score 99.75%).

08.b Recommendations:

- Higher fines/points on traffic violations (Alcohol, Drug).
- Installing video cameras at the top 5 streets and intersections where most accidents happened.
- Free driving lessons at any time.
- Requiring people to renew license every year and compulsory taking lessons to renew it.
- Our ADA Boosting can be used by automobile insurance companies to check for false injury claims.
- With all the above steps, we can help the <u>Arizona Department of</u>
 <u>Transportation (ADOT)</u> minimize crashes and contribute to the <u>Vision</u>
 <u>Zero</u> initiative.

09. Streamlit App

THANK YOU!

ANY QUESTIONS?

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, infographics & images by **Freepik** and illustrations by **Stories**