Portforio

Sangyun Park

Robot tool detection

Data analysis

INPUT

OUTPUT

Model Architecture

Performance comparison

Demo

Medical image segmentation

Background & Motivation

Foundation models (SAM) show promise in medical imaging

- Challenge
 - Domain specialization needed for specific tasks

- Current gap
 - Optimal adaptation strategy unclear

SAM's baseline performance in medical image segmentation needs improvement

Dataset

VinDr-RibCXR

245 Chest X-ray images

Training: 196 images

Validation: 49 images

VinDr-RibCXR Dataset: 245 chest X-rays for rib segmentation

Model Architecture

Model Architecture

Implementation

Model Architectures

ViT-B: 12 transformer blocks

ViT-H: 32 transformer blocks

Training Parameters

•50 epochs

• Batch size: 2

Optimizer: AdamW

Loss: IoU

Performance comparison: Across different adapter configurations

Performance comparison: Quantitative results

ViT-H	Number of Adapters	F1(dice) Metric			IoU Metric		
		Score	p-value (vs 0)	p-value (vs 32)	Score	p-value (vs 0)	p-value (vs 32)
	0 (0%)	0.770	-	<0.001	0.627	-	<0.001
	20 (63%)	0.847	<0.001	0.001	0.735	<0.001	0.002
	22 (69%)	0.843	<0.001	0.268	0.730	<0.001	0.266
	24 (75%)	0.847	<0.001	<0.001	0.735	<0.001	<0.001
	32 (100%)	0.837	<0.001	-	0.720	<0.001	-
ViT-B	Number of Adapters	F1 Metric			IoU Metric		
		Score	p-value (vs 0)	p-value (vs 12)	Score	p-value (vs 0)	p-value (vs 12)
	0 (0%)	0.777	-	<0.001	0.637	-	<0.001
	7 (59%)	0.824	<0.001	0.031	0.702	<0.001	0.029
	9 (75%)	0.826	<0.001	0.001	0.705	<0.001	0.001
	10 (83%)	0.823	<0.001	0.535	0.700	<0.001	0.514
	12 (100%)	0.821	<0.001	-	0.700	<0.001	-

Qualitative comparison: Segmentation results

ViT-B

Agentic Al

SimpleMind – Agentic ai

Generate a SimpleMind config for 'lung, ribs, and heart segmentation' and run it using SimpleMind

Okay, plan:

- 1. Call generator for 'lung, ribs, and heart segmentation'
- 2. Save the generated config file
- 3. Run Simplemind using the config

defined in the config

SimpleMind **Knowledge Graph**

YAML tool config file generated for 'lung, ribs, and heart segmentation'

Execute the workflow

PLAN: OpenManus LLM

EXECUTE: SimpleMind computer vision tools

User Prompt

task prompt

Computer vision

Key Technologites

- Al Agent Framework : OpenManus
- LLM: Qwen/QwQ-32B
- Medical Imaging Al Tool : SimpleMind
- Data Handling : DICOM 형식 처리 및 분석 결과물 처리 (JSON, CSV, 이미지 파일)
- Prompt Engineering : LLM을 통한 의료 분석 및 이미지 분석을 위한 파라미터 생성

Detailed system architecture

The Agentic Al approach

