CE40282-1: Linear Algebra Hamid R. Rabiee and Maryam Ramezani Sharif University of Technology

Symmetric Matrix

A **symmetric** matrix is a matrix A such that $A^T = A$. Such a matrix is necessarily square. Its main diagonal entries are arbitrary, but its other entries occur in pairs—on opposite sides of the main diagonal.

Symmetric:
$$\begin{bmatrix} 1 & 0 \\ 0 & -3 \end{bmatrix}$$
, $\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & 8 \\ 0 & 8 & 7 \end{bmatrix}$, $\begin{bmatrix} a & b & c \\ b & d & e \\ c & e & f \end{bmatrix}$

Nonsymmetric:
$$\begin{bmatrix} 1 & -3 \\ 3 & 0 \end{bmatrix}$$
, $\begin{bmatrix} -4 & 0 \\ -6 & 1 \end{bmatrix}$, $\begin{bmatrix} 5 & 4 & 3 & 2 \\ 4 & 3 & 2 & 1 \\ 3 & 2 & 1 & 0 \end{bmatrix}$

A quadratic form is any homogeneous polynomial of degree two in any number of variables. In this situation, **homogeneous** means that all the terms are of degree two. For example, the expression $7x_1x_2 + 3x_2x_4$ is homogeneous, but the expression $x_1 - 3x_1x_2$ is not. The square of the distance between two points in an inner-product space is a quadratic form. Quadratic forms were introduced by Hermite, and 70 years later they turned out to be essential in the theory of quantum mechanics! The formal definition follows.

- A quadratic form on \mathbb{R}^n is a function Q defined on \mathbb{R}^n whose value at a vector \mathbf{x} in \mathbb{R}^n can be computed by an expression of the form $Q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$, where A is an $n \times n$ symmetric matrix. The matrix A is called the **matrix of the quadratic form**.
- Simplest example of a nonzero quadratic form is

Without cross-product term

$$A = \begin{bmatrix} 4 & 0 \\ 0 & 3 \end{bmatrix}$$

$$\begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$\begin{bmatrix} 4 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

With cross-product term

$$A = \begin{bmatrix} 3 & -2 \\ -2 & 7 \end{bmatrix}$$

$$\begin{array}{c|c} (x_1) & x_2 \\ \hline \end{array}$$

3×12+7×2-4×1×2

Example

For
$$\mathbf{x}$$
 in \mathbb{R}^3 , let $Q(\mathbf{x}) = 5x_1^2 + 3x_2^2 + 2x_3^2 - x_1x_2 + 8x_2x_3$.
Write this quadratic form as $\mathbf{x}^T A \mathbf{x}$.

$$\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}$$

$$A = \begin{bmatrix}
5 & \frac{1}{2} \\
-\frac{1}{2} & \frac{3}{4} \\
0 & 4 & 2
\end{bmatrix}$$

 Quadratic forms are easier to use when they have no cross-product terms—that is, when the matrix of the quadratic form is a diagonal matrix

If **A** and **B** are $n \times n$ real matrices connected by the relation

$$= \frac{1}{2}(\mathbf{A} + \mathbf{A}^T)$$

then the corresponding quadratic forms of A and B are identical, and B is symmetric.

and B is symmetric.

$$(xTAx) = xTAx = 5$$
 $(xTAx) = \frac{1}{2}xTAx$
 $(xTAx) = \frac{1}{2}xTAx$

Classifying Quadratic Forms

When A is an $n \times n$ matrix, the quadratic form $Q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$ is a real-valued function with domain \mathbb{R}^n .

point
$$(x_1, x_2, z)$$
 where $z = Q(\mathbf{x})$ $\times \left\{ \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{pmatrix} \right\}$

Classifying Quadratic Forms

Q(x)>0 X =0

- A symmetric matrix $A \in \mathbb{S}^n$ is **positive definite** (PD) if for all non-zero vectors $x \in \mathbb{R}^n$ $x^T A x > 0$. This is usually denoted $A \succ 0$, and often times the set of all positive definite matrices is denoted \mathbb{S}^n_{++} .
- A symmetric matrix $A \in \mathbb{S}^n$ is **positive semidefinite** (PSD) if for all vectors $x^T A x \ge 0$. This is written $A \succeq 0$, and the set of all positive semidefinite matrices is often denoted \mathbb{S}^n_+ .
- Likewise, a symmetric matrix $A \in \mathbb{S}^n$ is **negative definite** (ND), denoted $A \prec 0$ if for all non-zero $x \in \mathbb{R}^n$, $x^T A x < 0$.
- Similarly, a symmetric matrix $A \in \mathbb{S}^n$ is **negative semidefinite** (NSD), denoted $A \leq 0$ if for all $x \in \mathbb{R}^n$, $x^T A x \leq 0$.
- Finally, a symmetric matrix $A \in \mathbb{S}^n$ is *indefinite*, if it is neither positive semidefinite nor negative semidefinite i.e., if there exists $x_1, x_2 \in \mathbb{R}^n$ such that $x_1^T A x_1 > 0$ and $x_2^T A x_2 < 0$.

Properties

 Positive definite and negative definite matrices are always full rank, and hence, invertible.

For $A \in \mathbb{R}^{m \times n}$ gram matrix is always positive semidefinite. Further, if $m \ge n$ (and we assume for convenience that A is full rank), then gram matrix is positive definite.

Vector and matrix derivatives

CE40282-1: Linear Algebra Hamid R. Rabiee and Maryam Ramezani Sharif University of Technology

Motivation

- Machine Learning training requires one to evaluate how one vector changes with respect to another
 - How output changes with respect to parameters
- How do we find minimum of a scalar function?

How do we find minimum of two variables?

Good Resource

- http://en.wikipedia.org/wiki/Matrix_calculus
- https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
- http://www.kamperh.com/notes/kamper_matrixcalculus13.pdf

Definitions

• Derivative of a scalar function $f: \mathbb{R}^N \to \mathbb{R}$ with respect to vector $\mathbf{x} \in \mathbb{R}^N$:

$$\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}} \triangleq \begin{bmatrix} \frac{\partial f(\mathbf{x})}{\partial x_1} \\ \frac{\partial f(\mathbf{x})}{\partial x_2} \\ \vdots \\ \frac{\partial f(\mathbf{x})}{\partial x_N} \end{bmatrix}$$

• Derivative of a vector function $f: \mathbb{R}^N o \mathbb{R}^M$ with respect to vector $\mathbf{x} \in \mathbb{R}^N$:

$$\frac{\partial \boldsymbol{f}(\mathbf{x})}{\partial \mathbf{x}} \triangleq \begin{bmatrix} \frac{\partial \boldsymbol{f}(\mathbf{x})}{\partial x_1} \\ \frac{\partial \boldsymbol{f}(\mathbf{x})}{\partial x_2} \\ \vdots \\ \frac{\partial \boldsymbol{f}(\mathbf{x})}{\partial x_N} \end{bmatrix} = \begin{bmatrix} \frac{\partial f_1(\mathbf{x})}{\partial x_1} & \frac{\partial f_2(\mathbf{x})}{\partial x_1} & \cdots & \frac{\partial f_M(\mathbf{x})}{\partial x_1} \\ \frac{\partial f_1(\mathbf{x})}{\partial x_2} & \frac{\partial f_2(\mathbf{x})}{\partial x_2} & \cdots & \frac{\partial f_M(\mathbf{x})}{\partial x_2} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial f_1(\mathbf{x})}{\partial x_N} & \frac{\partial f_2(\mathbf{x})}{\partial x_N} & \cdots & \frac{\partial f_M(\mathbf{x})}{\partial x_N} \end{bmatrix}$$

Definitions

Derivative of a scalar function $f: \mathbb{R}^{M \times N} \to \mathbb{R}$ with respect to matrix $\mathbf{X} \in \mathbb{R}^{M \times N}$:

$$\frac{\partial f(\mathbf{X})}{\partial \mathbf{X}} \triangleq \begin{bmatrix} \frac{\partial f(\mathbf{X})}{\partial X_{1,1}} & \frac{\partial f(\mathbf{X})}{\partial X_{1,2}} & \cdots & \frac{\partial f(\mathbf{X})}{\partial X_{1,N}} \\ \frac{\partial f(\mathbf{X})}{\partial X_{2,1}} & \frac{\partial f(\mathbf{X})}{\partial X_{2,2}} & \cdots & \frac{\partial f(\mathbf{X})}{\partial X_{2,N}} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial f(\mathbf{X})}{\partial X_{M,1}} & \frac{\partial f(\mathbf{X})}{\partial X_{M,2}} & \cdots & \frac{\partial f(\mathbf{X})}{\partial X_{M,N}} \end{bmatrix}$$

Using the above definitions, we can generalise the chain rule. Given ${\bf u}={m h}({\bf x})$ (i.e. ${\bf u}$ is a function of x) and g is a vector function of u, the vector-by-vector chain rule states:

$$\frac{\partial g(\mathbf{u})}{\partial \mathbf{x}} = \frac{\partial \mathbf{u}}{\partial \mathbf{x}} \frac{\partial g(\mathbf{u})}{\partial \mathbf{u}}$$

Scalar and vectors

$$\frac{\partial a'''}{\partial x} = \frac{\partial a}{\partial x} \qquad \alpha = \begin{bmatrix} x \\ x \\ x \\ x \end{bmatrix} \qquad \frac{\partial a}{\partial x} = \begin{bmatrix} xx \\ 5x \end{bmatrix}$$

$$\frac{\partial x}{\partial x} = \begin{bmatrix} x \\ x \\ x \end{bmatrix} \qquad \frac{\partial x}{\partial x} = \begin{bmatrix} x \\ x \\ x \end{bmatrix}$$

$$\frac{\partial x}{\partial x} = \begin{bmatrix} x \\ x \\ x \end{bmatrix}$$

$$\frac{\partial x}{\partial x} = \begin{bmatrix} x \\ x \\ x \end{bmatrix}$$

$$\frac{\partial x}{\partial x} = \begin{bmatrix} x \\ x \\ x \end{bmatrix}$$

$$\frac{\partial x}{\partial x} = \begin{bmatrix} x \\ x \\ x \end{bmatrix}$$

$$\frac{\partial x}{\partial x} = \begin{bmatrix} x \\ x \\ x \end{bmatrix}$$

$$\frac{\partial x}{\partial x} = \begin{bmatrix} x \\ x \\ x \end{bmatrix}$$

$$\frac{\partial x}{\partial x} = \begin{bmatrix} x \\ x \\ x \end{bmatrix}$$

$$\frac{\partial x}{\partial x} = \begin{bmatrix} x \\ x \\ x \end{bmatrix}$$

$$\frac{\partial x}{\partial x} = \begin{bmatrix} x \\ x \\ x \end{bmatrix}$$

$$\frac{\partial x}{\partial x} = \begin{bmatrix} x \\ x \\ x \end{bmatrix}$$

$$\frac{\partial x}{\partial x} = \begin{bmatrix} x \\ x \\ x \end{bmatrix}$$

$$\frac{\partial x}{\partial x} = \begin{bmatrix} x \\ x \\ x \end{bmatrix}$$

$$\frac{\partial x}{\partial x} = \begin{bmatrix} x \\ x \\ x \end{bmatrix}$$

$$\frac{\partial x}{\partial x} = \begin{bmatrix} x \\ x \\ x \end{bmatrix}$$

$$\frac{\partial x}{\partial x} = \begin{bmatrix} x \\ x \\ x \end{bmatrix}$$

$$\frac{\partial x}{\partial x} = \begin{bmatrix} x \\ x \\ x \end{bmatrix}$$

$$\frac{\partial x}{\partial x} = \begin{bmatrix} x \\ x \\ x \end{bmatrix}$$

$$\frac{\partial x}{\partial x} = \begin{bmatrix} x \\ x \\ x \end{bmatrix}$$

$$\frac{\partial x}{\partial x} = \begin{bmatrix} x \\ x \\ x \end{bmatrix}$$

$$\frac{\partial x}{\partial x} = \begin{bmatrix} x \\ x \\ x \end{bmatrix}$$

$$\frac{\partial x}{\partial x} = \begin{bmatrix} x \\ x \\ x \end{bmatrix}$$

$$\frac{\partial x}{\partial x} = \begin{bmatrix} x \\ x \\ x \end{bmatrix}$$

$$\frac{\partial x}{\partial x} = \begin{bmatrix} x \\ x \\ x \end{bmatrix}$$

$$\frac{\partial x}{\partial x} = \begin{bmatrix} x \\ x \\ x \end{bmatrix}$$

$$\frac{\partial x}{\partial x} = \begin{bmatrix} x \\ x \\ x \end{bmatrix}$$

$$\frac{\partial x}{\partial x} = \begin{bmatrix} x \\ x \\ x \end{bmatrix}$$

$$\frac{\partial x}{\partial x} = \begin{bmatrix} x \\ x \\ x \end{bmatrix}$$

$$\frac{\partial x}{\partial x} = \begin{bmatrix} x \\ x \\ x \end{bmatrix}$$

$$\frac{\partial x}{\partial x} = \begin{bmatrix} x \\ x \\ x \end{bmatrix}$$

$$\frac{\partial x}{\partial x} = \begin{bmatrix} x \\ x \\ x \end{bmatrix}$$

$$\frac{\partial x}{\partial x} = \begin{bmatrix} x \\ x \\ x \end{bmatrix}$$

$$\frac{\partial x}{\partial x} = \begin{bmatrix} x \\ x \\ x \end{bmatrix}$$

$$\frac{\partial x}{\partial x} = \begin{bmatrix} x \\ x \\ x \end{bmatrix}$$

$$\frac{\partial x}{\partial x} = \begin{bmatrix} x \\ x \\ x \end{bmatrix}$$

$$\frac{\partial x}{\partial x} = \begin{bmatrix} x \\ x \\ x \end{bmatrix}$$

$$\frac{\partial x}{\partial x} = \begin{bmatrix} x \\ x \\ x \end{bmatrix}$$

$$\frac{\partial x}{\partial x} = \begin{bmatrix} x \\ x \\ x \end{bmatrix}$$

$$\frac{\partial x}{\partial x} = \begin{bmatrix} x \\ x \\ x \end{bmatrix}$$

$$\frac{\partial x}{\partial x} = \begin{bmatrix} x \\ x \\ x \end{bmatrix}$$

$$\frac{\partial x}{\partial x} = \begin{bmatrix} x \\ x \\ x \end{bmatrix}$$

$$\frac{\partial x}{\partial x} = \begin{bmatrix} x \\ x \\ x \end{bmatrix}$$

$$\frac{\partial x}{\partial x} = \begin{bmatrix} x \\ x \\ x \end{bmatrix}$$

$$\frac{\partial x}{\partial x} = \begin{bmatrix} x \\ x \\ x \end{bmatrix}$$

$$\frac{\partial x}{\partial x} = \begin{bmatrix} x \\ x \\ x \end{bmatrix}$$

$$\frac{\partial x}{\partial x} = \begin{bmatrix} x \\ x \\ x \end{bmatrix}$$

$$\frac{\partial x}{\partial x} = \begin{bmatrix} x \\ x \\ x \end{bmatrix}$$

$$\frac{\partial x}{\partial x} = \begin{bmatrix} x \\ x \\ x \end{bmatrix}$$

$$\frac{\partial x}{\partial x} = \begin{bmatrix} x \\ x \\ x \end{bmatrix}$$

$$\frac{\partial x}{\partial x} = \begin{bmatrix} x \\ x \\ x \end{bmatrix}$$

$$\frac{\partial x}{\partial x} = \begin{bmatrix} x \\ x \\ x \end{bmatrix}$$

$$\frac{\partial x}{\partial x} = \begin{bmatrix} x \\ x \\ x \end{bmatrix}$$

$$\frac{\partial x}{\partial x} = \begin{bmatrix} x \\ x \\ x \end{bmatrix}$$

$$\frac{\partial x}{\partial x} = \begin{bmatrix} x \\ x \\ x \end{bmatrix}$$

$$\frac{\partial x}{\partial x} = \begin{bmatrix} x \\ x \\ x \end{bmatrix}$$

$$\frac{\partial x}{\partial x} = \begin{bmatrix} x \\ x \\ x \end{bmatrix}$$

$$\frac{\partial x}{\partial x} = \begin{bmatrix} x \\ x \\ x \end{bmatrix}$$

$$\frac{\partial x}{\partial x} = \begin{bmatrix} x \\ x \\ x \end{bmatrix}$$

$$\frac{\partial x}{\partial x} = \begin{bmatrix} x \\ x \\ x \end{bmatrix}$$

$$\frac{\partial x}{\partial x} = \begin{bmatrix} x \\ x \\ x \end{bmatrix}$$

$$\frac{\partial x}{\partial$$

Vectors and vectors

Matrices and vectors

$$\frac{\partial AB}{\partial x} = \frac{\partial A}{\partial x} B + A \frac{\partial B}{\partial x} \text{ chain rule}$$

$$\frac{\partial AB}{\partial x} = \frac{\partial A}{\partial x} B + \frac{\partial B}{\partial x} \text{ chain rule}$$

$$\frac{\partial AB}{\partial x} = \frac{\partial A}{\partial x} B + \frac{\partial B}{\partial x} \text{ chain rule}$$

$$\frac{\partial AB}{\partial x} = \frac{\partial A}{\partial x} B + \frac{\partial B}{\partial x} \text{ chain rule}$$

$$\frac{\partial AB}{\partial x} = \frac{\partial A}{\partial x} B + \frac{\partial B}{\partial x} \text{ chain rule}$$

$$\frac{\partial AB}{\partial x} = \frac{\partial A}{\partial x} B + \frac{\partial B}{\partial x} \text{ chain rule}$$

$$\frac{\partial AB}{\partial x} = \frac{\partial A}{\partial x} B + \frac{\partial B}{\partial x} \text{ chain rule}$$

$$\frac{\partial AB}{\partial x} = \frac{\partial A}{\partial x} B + \frac{\partial B}{\partial x} \text{ chain rule}$$

$$\frac{\partial AB}{\partial x} = \frac{\partial A}{\partial x} B + \frac{\partial B}{\partial x} \text{ chain rule}$$

$$\frac{\partial AB}{\partial x} = \frac{\partial A}{\partial x} B + \frac{\partial B}{\partial x} \text{ chain rule}$$

$$\frac{\partial AB}{\partial x} = \frac{\partial A}{\partial x} B + \frac{\partial B}{\partial x} \text{ chain rule}$$

$$\frac{\partial AB}{\partial x} = \frac{\partial A}{\partial x} B + \frac{\partial B}{\partial x} B + \frac{\partial B}{$$

Another View

Finding the Derivative

To find f'(x), we use a four-step process:

Step 1. Find
$$f(x+h)$$

Step 2. Find
$$f(x+h)-f(x)$$

Step 3. Find
$$\frac{f(x+h) - f(x)}{h}$$

Step 4. Find
$$\lim_{h \to \infty} \frac{f(x+h)-f(x)}{h}$$

Example: find the derivation of quadratic form

Conclusion

$$\frac{\partial (\mathbf{u}(\mathbf{x}) + \mathbf{v}(\mathbf{x}))}{\partial \mathbf{x}} = \frac{\partial \mathbf{u}(\mathbf{x})}{\partial \mathbf{x}} + \frac{\partial \mathbf{v}(\mathbf{x})}{\partial \mathbf{x}}$$
$$\frac{\partial \mathbf{A}\mathbf{x}}{\partial \mathbf{x}} = \mathbf{A}^{\top}$$
$$\frac{\partial \mathbf{x}^{\top} \mathbf{a}}{\partial \mathbf{x}} = \mathbf{a}$$
$$\frac{\partial \mathbf{x}^{\top} \mathbf{A}\mathbf{x}}{\partial \mathbf{x}} = (\mathbf{A} + \mathbf{A}^{\top})\mathbf{x}$$
$$\frac{\partial \mathbf{x}^{\top} \mathbf{A}\mathbf{x}}{\partial \mathbf{x}} = 2\mathbf{A}\mathbf{x} \text{ if } \mathbf{A} \text{ is symmetric}$$
$$\frac{\partial |\mathbf{X}|}{\partial \mathbf{X}} = |\mathbf{X}|(\mathbf{X}^{-1})^{\top}$$
$$\frac{\partial \ln |\mathbf{X}|}{\partial \mathbf{X}} = (\mathbf{X}^{-1})^{\top}$$

Conclusion

1. Derivative of a linear function:

$$\frac{\partial}{\partial \vec{x}} \vec{a} \cdot \vec{x} = \frac{\partial}{\partial \vec{x}} \vec{a}^{\top} \vec{x} = \frac{\partial}{\partial \vec{x}} \vec{x}^{\top} \vec{a} = \vec{a}$$

(If you think back to calculus, this is just like $\frac{d}{dx} ax = a$).

2. Derivative of a quadratic function: if A is symmetric, then

$$\frac{\partial}{\partial \vec{x}} \, \vec{x}^{\mathsf{T}} \! A \vec{x} = 2A \vec{x}$$

(Again, thinking back to calculus this is just like $\frac{d}{dx} ax^2 = 2ax$).

If you ever need it, the more general rule (for non-symmetric A) is:

$$\frac{\partial}{\partial \vec{x}} \vec{x}^{\mathsf{T}} A \vec{x} = (A + A^{\mathsf{T}}) \vec{x},$$

which of course is the same thing as $2A\vec{x}$ when A is symmetric.