Problem 1. Rotational Partition Functions

- (a) Consider HCl gas, which is composed of Hydrogen of mass m_H and chlorine Cl
 - (i) Give a typical distance between the Hydrogen and the Chlorine atoms, r_0 (in meters). We will assume this distance is fixed.
 - (ii) Use classical considerations, to find the center of mass of the two atoms, and compute the moment of inertia of the two atoms around the center of mass exactly. Assume that the HCl is rotating in the xy plane. Show that

$$I = m_H r_0^2 \left(1 - \left(\frac{m_H}{m_{Cl}} \right) + \dots \right) \tag{1}$$

up to terms further suppressed by terms of order $(m_H/m_{Cl})^2$. We will keep the leading term only $m_H r_0^2$ in what follows.

(iii) The rotational energy levels are

$$\epsilon_{\rm rot} = \left\langle \frac{L^2}{2I} \right\rangle = \frac{\ell(\ell+1)\hbar^2}{2I} = \ell(\ell+1)\Delta$$
(2)

where $\Delta = \hbar^2/2I$. Estimate Δ in eV and in GHz (i.e. $f = \Delta/h$). Estimate Δ/kT at room temperature, you should find that kT/Δ is around 12.

(b) (i) Show that for any system that C_V is directly determined by the variance in the energy

$$C_V = k_B \beta^2 \left(\left\langle E^2 \right\rangle - \left\langle E \right\rangle^2 \right) \tag{3}$$

(ii) Recall that the partition function of N molecules of H HCl consists of a translational partition function, and a rotational one:

$$Z_{\rm tot} \simeq \left(\frac{eZ_{\rm trans}}{N}\right)^N Z_{\rm rot}^N$$
 (4)

(Where does the factor $(e/N)^N$ come from?). Show that

$$C_V = \frac{3}{2}Nk_B + Nk_B \beta^2 [\langle \epsilon_{\rm rot}^2 \rangle - \langle \epsilon_{\rm rot} \rangle^2]$$
 (5)

where

$$\beta^2 \left\langle \epsilon_{\text{rot}}^2 \right\rangle = \frac{1}{Z_{\text{rot}}(\beta \Delta)} \sum_{\ell=0}^{\infty} (2\ell+1) \left(\ell(\ell+1)\beta \Delta \right)^2 e^{-\ell(\ell+1)\beta \Delta} \tag{6}$$

$$\beta \left\langle \epsilon_{\text{rot}} \right\rangle = \frac{1}{Z_{\text{rot}}(\beta \Delta)} \sum_{\ell=0}^{\infty} (2\ell+1) \left(\ell(\ell+1)\beta \Delta \right) e^{-\ell(\ell+1)\beta \Delta} \tag{7}$$

(c) Write a program to sum from $\ell = 0$ up to 20 and to compute

$$\beta^2 \left\langle \epsilon_{\text{rot}}^2 \right\rangle, \qquad \beta^2 \left\langle \epsilon_{\text{rot}} \right\rangle^2 \qquad C_V / k_B$$
 (8)

Make a graph of C_v/R vs. kT/Δ for one mole of substance. You should find something analogous to Figure. 1.

Figure 1: Left: the rotational contribution to the partition function (per particle), i.e. $\beta^2(\langle \epsilon_{\rm rot}^2 \rangle - \langle \epsilon_{\rm rot} \rangle^2)$. Right: the full partition function for one mole.

(d) For HCl, use your graph estimate the temperature (in Kelvin) where the classical approximation for the rotational partition function works at the 20% level. What would be the corresponding temperature for diatomic hydrogen H_2 .

Problem 2. A solid and a gas with degeneracy

Consider a solid of N atoms at temperature T. The atoms are independent of each other and can be in one five states: the first two states have the same energy level, called 0, while the remaining three states have a higher energy level, Δ . The level scheme is shown below. To keep the problem general let's denote the degeracy of the ground state, $g_0 = 2$, and the degeracy of the excited state, $g_1 = 3$.

0

- (a) What is the probability of being in the excited state?
- (b) Determine the entropy of the system, and sketch S/N_Ak_B versus Δ/kT for $g_0=2$ and $g_1=3$.
- (c) Explain the value S/Nk_B physically in the low temperature limit $k_BT \ll \Delta$, and the high temperature limit $k_BT \gg \Delta$.
- (d) Show that the specific heat of the solid is

$$C_V = Nk_B \frac{g_0 g_1 (\beta \Delta)^2 e^{-\beta \Delta}}{(g_0 + g_1 e^{-\beta \Delta})^2}$$
(9)

(e) Now consider a gas of the same N atoms. What is the specific heat in this case?

Figure 2: Artists conception of problem 3

Problem 3. Carbon Monoxide Poisoning

A model for carbon monoxide poisoning is the following. Consider a gas which is mixture of diatomic oxygen O_2 and carbon monoxide CO. The hemoglobin molecule contained in red blood cells are responsible for capturing O_2 from the air and delivering the oxygen to the tissues The sites on the hemoglobin molecule can either be unoccupied, with energy E=0, occupied by an O_2 molecule with energy $E=-0.65\,\mathrm{eV}$, or occupied by a carbon monoxide molecule with energy $E=-0.85\,\mathrm{eV}$, see figure. In this problem you will calculate the probability that the hemoglobin site will be occupied by an O_2 (what we want!). This depends on the concentration of O_2 and sensitively on the concentration of carbon monoxide.

The questions below refer to the surrounding O_2 gas at a temperature of 295 K and a pressure of 0.2 bar. From the temperature and pressure of O_2 , the corresponding concentration n = N/V of the gas can be found, as can its quantum concentration¹, $n_Q \equiv \lambda_{\rm th}^{-3}$. The quantum concentration of CO can be found similarly. These values and the atomic numbers of the two atoms are given in the table below.

 $^{^{1}\}lambda_{\rm th}$ is the thermal de Broglie wavelength.

quantity	value
T	295 K
p	$0.2\mathrm{bar}$
n	$0.005{\rm nm^{-3}}$
$(n_Q)_{O_2}$	$1.68 \times 10^{5} \mathrm{nm^{-3}}$
$(n_Q)_{CO}$	$1.37 \times 10^5 \mathrm{nm}^{-3}$
atomic number O	16
atomic number C	12

- (a) Explain the ratio of quantum concentrations for the two gasses, O_2 and CO.
- (b) The CO and O_2 molecules in the surrounding gas rotate with moment of inertia I. Their rotational constants, i.e. $\Delta \equiv \hbar^2/2I$, are $\Delta_{CO} = 0.00024\,\mathrm{eV}$ and $\Delta_{O_2} = 0.00018\,\mathrm{eV}$ respectively. Show that the rotational constant of O_2 is roughly consistent with an order of magnitude estimate for Δ .
- (c) Recall that the rotational energy levels are

$$\epsilon_{\rm rot} = \ell(\ell+1)\Delta \quad \text{with} \quad \ell = 0, 1, 2, \dots \infty$$
(10)

and that the rotational partition function (i.e. an appropriate sum over these levels) is $Z_{\rm rot} \simeq kT/\Delta$ in a classical approximation. Estimate the typical value of ℓ for the CO gas. Based on this estimate how accurate is the classical approximation?

(d) Recall that the partition function of the classical diatomic gas is

$$Z_{\text{tot}} = \frac{1}{N!} (Z_{\text{trans}} Z_{\text{rot}})^N \tag{11}$$

where $Z_{\rm rot} \equiv kT/\Delta$ with $\Delta = \hbar^2/2I$, and $Z_{\rm trans}$ describes the translational motion.

(i) Show the chemical potential of the classical diatomic gas as a function of the concentration n and the rotational constant Δ is

$$\mu = kT \ln(n/n_Q) + kT \ln(\beta \Delta)$$
 (12)

- (ii) Numerically evaluate the chemical potential μ_{O_2} of the O_2 gas. Ans: $-0.5569 \,\text{eV}$ Note: The numbers need to be evaluted with a lot of precision here, use $k_B = 0.02542 \,\text{eV}/(295 \,\text{Kelvin})$.
- (iii) Numerically evaluate the chemical potential μ_{CO} of the surrounding CO gas, assuming that the concentration of CO is a thousand times smaller than O_2 . Ans: $-0.7173\,\mathrm{eV}$
- (e) Now return to the hemoglobin sites. By considering the grand partition function of the site, determine the probability that the site is occupied by O_2 . Evaluate this probability numerically, using the numerical results of previous parts. Ans: P = 0.17
- (f) Determine how the probability of (e) would change if the concentration of CO was negligibly small. Ans: P=0.975