3 October 2022

2.4 Homework: Modeling with algebra, "Do Not Solve!"

- 1. Do Not Solve. Circle the appropriate equation, cite a justification:
 - "definition of bisector"
 - "linear pairs sum to 180°"
 - "vertical \angle s are \cong "
 - "alternate interior \angle s are \cong "

- "corresponding \angle s of \parallel lines are \cong "
- "same-side interior ∠s are supplementary"
- " \perp rays with complementary \angle s adding to 90°"

(a) \overrightarrow{RPU} with ray \overrightarrow{PS} .

 $\angle RPS \cong \angle SPU \quad m \angle RPS + m \angle SPU = 180^{\circ}$

(b) Given $m \angle R = m \angle U = 65$, and $m \angle UST = 130$. Find $m \angle RSU$. $\angle UST \cong \angle RSU$ $m \angle UST + m \angle RSU = 180$

(c) Given $m \angle 1 = 4x + 6$, $m \angle 2 = 6x - 32$. Find $m \angle 1$.

 $m \angle 1 + m \angle 2 = 180$ $\angle 1 \cong \angle 2$

(d) Given two parallel lines and a transversal, as shown.

 $m \angle 3 + m \angle 6 = 180$ $\angle 4 \cong \angle 5$

(e) Given
$$\overrightarrow{BA} \perp \overrightarrow{BC}$$
, $m \angle ABD = 2x - 5$, and $m \angle DBC = x - 10$.

$$\angle ABD \cong \angle DBC \qquad m \angle ABD + m \angle DBC = 90$$