	Ulledh
Name:	
Roll No.:	To Daniely Exercising and Excitored
Invigilator's Signature :	

CS/B.Tech (CSE)/SEM-8/CS-801F/2010 2010 PATTERN RECOGNITION

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP – A (Objective Type Questions)

1. Answer *all* questions :

 $10 \times 1 = 10$

- i) Define Pattern Recognition.
 - ii) What is meant by an N-dimensional pattern space Ω_X ?
 - iii) What are likelihood functions?
 - iv) What is clustering?
 - v) What is feature vector?
 - vi) What do you mean by feature extractor?

8207 [Turn over

CS/B.Tech (CSE)/SEM-8/CS-801F/2010

- vii) What is feature selection?
- viii) What are the three learning paradigms in pattern recognition?
- ix) What are the approaches to pattern recognition?
- x) What do you mean by linear discriminant function?

GROUP - B

(Short Answer Type Questions)

Answer any *three* of the following. $3 \times 5 = 15$

- 2. Explain Linear Discriminant Analysis (LDA).
- 3. Why is it necessary to establish some rules in the PR problem? What is the way of representing rules? 3+2
- 4. Characterize the decision function when each class is characterized by several prototypes.
- 5. What are the different measures of similarity of the assignment of patterns for the domain of a particular cluster centre?
- 6. Explain maximum distance algorithm.

8207 2

GROUP - C

(Long Answer Type Questions)

- $3 \times 15 = 45$
- 7. a) Define the k-NN rule when the patterns of both the classes ω_1 and ω_2 are equally likely to occur.
 - b) What is the form of property of decision function when the classes are pair-wise separable? 8+7
- 8. a) Define performance index in cluster-seeking problem.
 - b) Describe the isodata algorithm to categorize points in different clusters. 3 + 12
- 9. a) Describe the basic steps involved in the design of pattern recognition system.
 - b) What is the maximum likelihood (ML) estimation ? Show that if the likelihood function is univariate Gaussian with unknowns the mean μ as well as variance σ^2 , then ML estimates are given by

$$\mu = \frac{1}{N} \sum_{k=1}^{N} X_k$$
 and $\sigma^2 = \frac{1}{N} (X_k - \mu)^2$,

where X_k is the kth pattern and N is the total number of training patterns.

c) Compare parametric and non-parametric techniques.

6 + 5 + 4

CS/B.Tech (CSE)/SEM-8/CS-801F/2010

- 10. a) What is Bayesian classifier? Prove that it is an optimal classifier.
 - b) In a two class problem with single feature X the pdfs are Gaussians with variance $\sigma^2 = \frac{1}{2}$ for both classes and mean value 0 and 1 respectively. If $P(\omega_1) = P(\omega_2) = \frac{1}{2}$, compute the threshold value X_0 for minimum error probability. 4 + 5 + 6
- 11. a) Write down the advantage of fuzzy-c means algorithm over k-means algorithm.
 - b) Can you indicate the shortcomings of fuzzy-c means algorithm?
 - c) Explain k-means algorithm in detail. 3 + 4 + 8

8207 4