Exercise 3.1

Nolan Hauck

Last updated Wednesday 28th February, 2024 at 15:35

Prove Proposition 3.1, which states: Let ν be a signed measure on (X, \mathcal{M}) . If $\{E_j\}$ is an increasing sequence in \mathcal{M} , then $\nu(\bigcup_{j=1}^{\infty} E_j) = \lim_{j \to \infty} \nu(E_j)$. If $\{E_j\}$ is a decreasing sequence in \mathcal{M} and $\nu(E_1)$ is finite, then $\nu(\bigcap_{j=1}^{\infty} E_j) = \lim_{j \to \infty} \nu(E_j)$.

Solution. Let $\{E_j\}$ be an increasing sequence of measurable functions. First we rewrite $\bigcup_{j=1}^{\infty} E_j$ as a disjoint union like so: $\bigcup_{j=1}^{\infty} (E_j \setminus E_{j-1})$ assuming that $E_0 = \emptyset$. These unions are the same and the latter is disjoint because $\{E_j\}$ is increasing. Then we can apply the additivity of ν to get

$$\nu\left(\bigcup_{j=1}^{\infty} E_{j}\right) = \nu\left(\bigcup_{j=1}^{\infty} (E_{j} \setminus E_{j-1})\right)$$

$$= \sum_{j=1}^{\infty} \nu(E_{j} \setminus E_{j-1})$$

$$= \lim_{j \to \infty} \sum_{k=1}^{j} \nu(E_{k} \setminus E_{k-1})$$

$$= \lim_{j \to \infty} \nu\left(\bigcup_{k=1}^{j} E_{k}\right)$$

$$= \lim_{j \to \infty} \nu(E_{j})$$
(1)

Now let $\{E_j\}$ be a decreasing sequence and let $\nu(E_1) < \infty$. Consider the collection $\{E_1 \setminus E_j\}$. Since $\nu(E_1)$ is finite and ν is additive over disjoint sets, we have $\nu(E_1 \setminus E_j) = \nu(E_1) - \nu(E_j)$ for all j. Also $E_1 \setminus E_1 \subset E_1 \setminus E_2 \subset E_1 \setminus E_3 \subset \ldots$ since $\{E_j\}$ is decreasing. Then we can apply the first part to get

$$\nu(\bigcup_{j=1}^{\infty} (E_1 \setminus E_j)) = \lim_{j \to \infty} \nu(E_1 \setminus E_j) = \nu(E_1) - \lim_{j \to \infty} \nu(E_j). \tag{2}$$

Then notice that $\bigcup_{j=1}^{\infty} (E_1 \setminus E_j) = E_1 \setminus (\bigcap_{j=1}^{\infty} E_j)$ so that

$$\nu(E_1) - \lim_{j \to \infty} \nu(E_j) = \nu(E_1 \setminus (\bigcap_{j=1}^{\infty} E_j)) = \nu(E_1) - \nu(\bigcap_{j=1}^{\infty} E_j)$$
(3)

and we are done.