CON-S2V: A Generic Framework for Incorporating Extra-Sentential Context into Sen2Vec

Tanay Kumar Saha¹ Shafiq Joty² Mohammad Al Hasan¹

¹Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA

²Nanyang Technological University, Singapore

September 22, 2017

Outline

- 1 Introduction and Motivation
- 2 Con-S2V Model
- Experimental Settings
- 4 Experimental Results
- 5 Conclusion

Outline

- 1 Introduction and Motivation
 - Introduction
 - Related Work
- Con-S2V Model
 - Modeling Content
 - Modeling Distributional Similarity
 - Modeling Proximity
 - Training Con-S2V

Experimental Settings

- Evaluation Tasks
- Metrics for Evaluation
- Baseline Models for Evaluation
- Optimal Parameter Settings
- 4 Experimental Results
 - Classification and Clustering Performance
 - Summarization Performance
- Conclusion

Sen2Vec (Model for representation of Sentences)

- Learn distributed representation of sentences from unlabeled data
 - ▶ v_1 : I eat rice \rightarrow [0.2 0.3 0.4]
 - $\phi: V \to \mathbb{R}^d$
- For many text processing tasks that involve classification, clustering, or ranking of sentences, vector representation of sentences is a prerequisite
- ▶ Distributed Representation has been shown to perform better than Bag-of-Words (BOW) based vector representation
- Proposed by Mikolov et. al

CON-S2V (Our Model)

- A novel approach to learn distributed representation of sentences from unlabeled data by jointly modeling both content and context of a sentence
 - \triangleright v_1 : I have an NEC multisync 3D monitor for sale
 - ▶ v₂: Looks new
 - ▶ v₃: Great Condition
- In contrast to the existing works, we consider context sentences as atomic linguistic units.
- ▶ We consider two types of context: discourse and similarity. However, our model can take any arbitrary type of context
- ▶ Our evaluation on these tasks across multiple datasets shows impressive results for our model, which outperforms the best existing models by up to 7.7 F₁-score in classification, 15.1 V-score in clustering, 3.2 ROUGE-1 score in summarization.
- Build on top of Sen2Vec

Context Types of a Sentence

- Discourse Context of a Sentence
 - It is formed by the previous and the following sentences in the text
 - Adjacent sentences in a text are logically connected by certain coherence relations (e.g., elaboration, contrast) to express the meaning
 - Lactose is a milk sugar. The enzyme lactase breaks it down. Here, the second sentence is an elaboration of the first sentence.
- Similarity Context of a Sentence
 - Based on more direct measures of similarity
 - Considers relations between all possible sentences in a document and possibly across multiple documents

Related Work

Sen2Vec

- Uses Sentence ID as a special token and learn the representation of the sentence by predicting all the words in a sentence
- For example, for a sentence, v_1 : I eat rice, it will learn representation for v_1 by learning to predict each of the words, i.e. I, eat, and rice correctly
- Shown to perform better than tf-idf

W2V-avg

- Uses word vector averaging
- A tough-to-beat baseline for most downstream tasks

SDAE

- ► Employs an encoder-decoder framework, similar to neural machine translation (NMT) to de-noise an original sentence (target) from its corrupted version (source)
- ▶ SAE is similar in spirit to SDAE but does not corrupt source

Related Work

C-Phrase

- ► C-PHRASE is an extension of CBOW (Continuous Bag of Words Model)
- The context of a word is extracted from a syntactic parse of the sentence
- Syntax tree for a sentence, A sad dog is howling in the park is: (S (NP A sad dog) (VP is (VP howling (PP in (NP the park)))))
- C-PHRASE will optimize context prediction for dog, sad dog, a sad dog, a sad dog is howling, etc., but not, for example, for howling in, as these two words do not form a syntactic constituent by themselves
- Uses word vector addition for representing sentences

Related Work

- Skip-Thought (Context Sensitive)
 - Uses the NMT framework to predict adjacent sentences (target) given a sentence (source)
- FastSent (Context Sensitive)
 - An additive model to learn sentence representation from word vectors
 - It predicts the words of its adjacent sentences in addition to its own words

Con-S2V

- ► A novel model to learn distributed representation of sentences by considering content as well as context of a sentence
- It treats the context sentences as an atomic unit
- ▶ Efficient to train compared to *compositional* methods like encoder-decoder models (e.g., SDAE, Skip-Thought) that compose a sentence vector from the word vectors

Outline

- Introduction and Motivation
 - Introduction
 - Related Work
 - CON-S2V Model
 - Modeling Content
 - Modeling Distributional Similarity
 - Modeling Proximity
 - Training Con-S2V
 - **Experimental Settings**
 - Evaluation Tasks
 - Metrics for Evaluation
 - Baseline Models for Evaluation
 - Ontine of Days me stay Cattings
- 4 Experimental Results
 - Classification and Clustering Performance
 - Summarization Performance
- Conclusion

CON-S2V Model

- ► The model for learning the vector representation of a sentence comprises three components
- ► The first component models the content by asking the sentence vector to predict its constituent words (modeling content)
- The second component models the distributional hypotheses of a context (modeling context)
- ► Third component models the proximity hypotheses of a context, which also suggests that sentences that are proximal should have similar representations (modeling context)

CON-S2V Model

Figure: Two instances (see **(b)** and **(c)**) of our model for learning representation of sentence \mathbf{v}_2 within a context of two other sentences: \mathbf{v}_1 and \mathbf{v}_3 (see **(a)**). Directed and undirected edges indicate prediction loss and regularization loss, respectively, and dashed edges indicate that the node being predicted is randomly sampled. (Collected from: 20news-bydate-train/misc.forsale/74732. The central topic is "forsale".)

CON-S2V Model

We minimize the following loss function for learning representation of sentences:

$$J(\phi) = \sum_{\mathbf{v}_i \in V} \sum_{\substack{v \in \langle v_i \rangle_t^l \\ j \sim \mathcal{U}(1, C_i)}} \left[\mathcal{L}_c(\mathbf{v}_i, v) + \mathcal{L}_g(\mathbf{v}_i, \mathbf{v}_j) + \mathcal{L}_g(\mathbf{v}_i, \mathbf{v}_i) \right]$$
(1)

- \triangleright \mathcal{L}_c : Modeling Content (First Component)
- L_g: Modeling Context with Distributional Hypothesis (Second Component). The distributional hypothesis conveys that the sentences occurring in similar contexts should have similar representations
- \mathcal{L}_r : Modeling Context with Proximity Hypothesis (Third Component). Proximity hypotheses of a context, which also suggests that sentences that are proximal should have similar representations

Modeling Content

- Our approach for modeling content of a sentence is similar to the distributed bag-of-words (DBOW) model of Sen2Vec
- ▶ Given an input sentence \mathbf{v}_i , we first map it to a unique vector $\phi(\mathbf{v}_i)$ by looking up the corresponding vector in the sentence embedding matrix ϕ
- We then use $\phi(\mathbf{v}_i)$ to predict each word v sampled from a window of words in \mathbf{v}_i . Formally, the loss for modeling content using negative sampling is:

$$\mathcal{L}_{c}(\mathbf{v}_{i}, \mathbf{v}) = -\log \sigma \left(\mathbf{w}_{v}^{T} \phi(\mathbf{v}_{i})\right)$$
$$-\log \sum_{i=1}^{S} \mathbb{E}_{\mathbf{v}^{s} \sim \psi_{c}} \sigma \left(-\mathbf{w}_{v^{s}}^{T} \phi(\mathbf{v}_{i})\right)$$
(2)

Modeling Distributional Similarity

- Our sentence-level distributional hypothesis is that if two sentences share many neighbors in the graph, their representations should be similar
- We formulate this in our model by asking the sentence vector to predict its neighboring nodes
- Formally, the loss for predicting a neighboring node $\mathbf{v}_j \in \mathcal{N}(\mathbf{v}_i)$ using the sentence vector $\phi(\mathbf{v}_i)$ is:

$$\mathcal{L}_{g}(\mathbf{v}_{i}, \mathbf{v}_{j}) = -\log \sigma \left(\mathbf{w}_{j}^{T} \phi(\mathbf{v}_{i})\right)$$
$$-\log \sum_{s=1}^{S} \mathbb{E}_{j^{s} \sim \psi_{g}} \sigma \left(-\mathbf{w}_{j^{s}}^{T} \phi(\mathbf{v}_{i})\right)$$
(3)

Modeling Proximity

- ► According to our proximity hypothesis, sentences that are proximal in their contexts, should have similar representations
- ▶ We use a Laplacian regularizer to model this
- ▶ The regularization loss for modeling proximity for a sentence \mathbf{v}_i in its context $\mathcal{N}(\mathbf{v}_i)$ is

$$\mathcal{L}_r(\mathbf{v}_i, \mathcal{N}(\mathbf{v}_i)) = \frac{\lambda}{C_i} \sum_{\mathbf{v}_k \in \mathcal{N}(\mathbf{v}_i)} ||\phi(\mathbf{v}_i) - \phi(\mathbf{v}_k)||^2$$
(4)

Training Con-S2V

Algorithm 1: Training Con-S2V with SGD

```
Input: set of sentences V, graph G = (V, E)
Output: learned sentence vectors \phi
1. Initialize model parameters: \phi and \mathbf{w}'s;
2. Compute noise distributions: \psi_c and \psi_g
3. repeat
     for each sentence \mathbf{v}_i \in V do
          for each content word v \in \mathbf{v}; do
             a) Generate a positive pair (\mathbf{v}_i, \mathbf{v}) and S negative pairs
                 \{(\mathbf{v}_i, \mathbf{v}^s)\}_{s=1}^S using \psi_c:
             b) Take a gradient step for \mathcal{L}_c(\mathbf{v}_i, \mathbf{v});
             c) Sample a neighboring node \mathbf{v}_i from \mathcal{N}(\mathbf{v}_i);
             d) Generate a positive pair (\mathbf{v}_i, \mathbf{v}_i) and S negative pairs
                 \{(\mathbf{v}_i, \mathbf{v}_i^s)\}_{s=1}^S using \psi_g;
             e) Take a gradient step for \mathcal{L}_{\sigma}(\mathbf{v}_i, \mathbf{v}_i);
             f) Take a gradient step for \mathcal{L}_r(\mathbf{v}_i, \mathcal{N}(\mathbf{v}_i));
          end
     end
```

until convergence;

Training Details

- ► CON-S2V is trained with stochastic gradient descent (SGD), where the gradient is obtained via backpropagation
- ▶ The number of noise samples (S) in negative sampling was 5
- In all our models, the embeddings vectors (ϕ, ψ) were of 600 dimensions, which were initialized with random numbers sampled from a small uniform distribution, $\mathcal{U}(-0.5/d, 0.5/d)$
- ▶ The weight vectors ω 's were initialized with zero

Outline

- Introduction and Motivation
 - Introduction
 - Related Work
- 2 Con-S2V Model
 - Modeling Content
 - Modeling Distributional Similarity
 - Modeling Proximity
 - Training Con-S2V
- 3 Experimental Settings
 - Evaluation Tasks
 - Metrics for Evaluation
 - Baseline Models for Evaluation
 - Optimal Parameter Settings
- 4 Experimental Results
 - Classification and Clustering Performance
 - Summarization Performance
- Conclusion

Evaluation Tasks and Dataset

- \blacktriangleright We evaluate Con-S2V on Summarization, Classification and Clustering Task
- ► Con-S2V learns representation of a sentence by exploiting contextual information in addition to the content
- ► For this reason, we did not evaluate our models on tasks (Sentiment Classification) previously used to evaluate sentence representation models
- ► For Classification and Clustering evaluation, it require a corpora of annotated sentences with ordering and document boundaries preserved, i.e., documents with sentence-level annotations

Evaluation Tasks (Summarization)

- ► The goal is to select the most important sentences to form an abridged version of the source document(s)
- ▶ We use the popular graph-based algorithm LexRank
- ► The input to LexRank is a graph, where nodes represent sentences and edges represent cosine similarity between *vector representations* (learned by models) of the two corresponding sentences
- ▶ We use the benchmark datasets from DUC-2001 and DUC-2002 dataset for evaluation

Dataset	#Doc.	#Avg. Sen.	#Avg. Sum.
DUC 2001	486	40	2.17
DUC 2001 DUC 2002	471	28	2.04

Table: Basic statistics about the DUC datasets

Evaluation Tasks (Classification and Clustering)

- We evaluate our models by measuring how effective the learned vectors are when they are used as features for classifying or clustering the sentences into topics
- ▶ We use a MaxEnt classifier and a K-means++ clustering algorithm for classification and clustering tasks, respectively
- ▶ We use the standard text categorization corpora: Reuters-21578 and 20-Newsgroups.
- ▶ Reuters-21578 (henceforth Reuters) is a collection of 21,578 news documents covering 672 topics.
- ▶ 20-Newsgroups is a collection of about 20,000 news articles organized into 20 different topics.

Classification and Clustering (Generating Sentence-level Topic Annotations)

- One option is to assume that all the sentences of a document share the same topic label as the document
- ► This naive assumption induces a lot of noise
- Although sentences in a document collectively address a common topic, not all sentences are directly linked to that topic, rather they play supporting roles
- ▶ To minimize this noise, we employ our extractive summarizer to select the top 20% sentences of each document as representatives of the document, and assign them the same topic label as the topic of the document
- Note that the sentence vectors are learned independently from an entire dataset

DataSet Statistics for Classification and Clustering

Dataset	#Doc.	Annot. #sen		#Class
Reuters Newsgroups		13,305 22,374		8

Table: Statistics about Reuters and Newsgroups.

Metrics for Evaluation

- ► For Summarization, We use the widely used automatic evaluation metric ROUGE to evaluate the system-generated summaries.
- ▶ ROUGE computes *n*-gram recall between a system-generated summary and a set of human-authored reference summaries
- We report raw **acc**uracy, macro-averaged F_1 -score, and Cohen's κ for comparing classification performance
- ► For clustering, we report V-measure and adjusted mutual information or AMI

Models Compared

- ► Existing Distributed Models: Sen2Vec, W2V-avg, C-PHRASE, FastSent, and Skip-Thought
- Non-distributed Model: Tf-ldf
- ▶ Retrofitted Models: Retrolis, Retrolin
- Regularized Models: Reg-dis, Reg-sim: We compare with a variant of our model, where the loss to capture distributional similarity $\mathcal{L}_g(\mathbf{v}_i, \mathbf{v}_j)$ is turned off
- ▶ Our Model: Con-S2V-dis, Con-S2V-sim

Similarity Network Construction

- Our similarity context allows any other sentence in the corpus to be in the context of a sentence depending on how similar they are
- ▶ we first represent the sentences with vectors learned by Sen2Vec , then we measure the cosine distance between the vectors
- ▶ We restrict the context size of a sentence for computational efficiency
- First, we set thresholds for intra- and across-document connections: sentences in a document are connected only if their similarity value is above a pre-specified threshold δ , and sentences across documents are connected only if their similarity value is above another pre-specified threshold γ
- ▶ we allow up to 20 most similar neighbors. We call the resulting network *similarity network*

Optimal Parameter Settings

- ► For each dataset that we describe earlier, we randomly selected 20% documents from the training set to form a held-out validation set on which we tune the hyper-parameters
- we optimized F_1 for classification, AMI for clustering, and ROUGE-1 for summarization
- \blacktriangleright For RET-sim, and RET-dis, the number of iteration was set to 20
- For the similarity context, the intra- and across-document thresholds δ and γ were set to 0.5 and 0.8
- Optimal Parameter values are given in the following table:

Dataset	Task	Sen2Vec	FastSent (win. size)	W2V-avg		REG-dis reg. str.)	Con-S2V-sim (win. size,	Con-S2V-dis reg. str.)
Reuters	clas.	8 12	10 8	10 12	(8, 1.0) (12, 0.3)	(8, 1.0) (12, 1.0)	(8, 0.8) (12,0.8)	(8, 1.0) (12, 0.8)
Newsgroups	clas.	10 12	8 12	10 12	(10, 1.0) (12, 1.0)	(10, 1.0) (12, 1.0)	(10, 1.0) (12, 0.8)	(10, 1.0) (10, 1.0)
DUC 2001 DUC 2002	sum.	10 8	12 8	12 10	(10, 0.8) (8, 0.8)	(10, 0.5) (8, 0.3)	(10, 0.3) (8, 0.3)	(10, 0.3) (8, 0.3)

Table: Optimal values of the hyper-parameters for different models on different tasks.

Outline

- Introduction and Motivation
 - Introduction
 - Related Work
- 2 Con-S2V Model
 - Modeling Content
 - Modeling Distributional Similarity
 - Modeling Proximity
 - Training Con-S2V

Experimental Settings

- Evaluation Tasks
- Metrics for Evaluation
- Baseline Models for Evaluation
- Ontimal Parameter Settings
- Experimental Results
- Classification and Clustering Performance
- Summarization Performance
- Conclusion

Classification and Clustering Performance

	Topic Classification Results						Topic Clustering Results			
	Reuters			Newsgroups			Reuters		Newsgroups	
	F ₁	Acc	κ	F ₁	Acc	κ	V	AMI	V	AMI
Sen2Vec	83.25	83.91	79.37	79.38	79.47	76.16	42.74	40.00	35.30	34.74
W2V-avg	(+) 2.06	(+) 1.91	(+) 2.51	(-) 0.42	(-) 0.44	(-) 0.50	(-) 11.96	(-) 10.18	(-) 17.90	(-) 18.50
C-Phrase	(-) 2.33	(-) 2.01	(-) 2.78	(-) 2.49	(-) 2.38	(-) 2.86	(-) 11.94	(-) 10.80	(-) 1.70	(-) 1.44
FastSent	(-) 0.37	(-) 0.29	(-) 0.41	(-) 12.23	(-) 12.17	(-) 14.21	(-) 15.54	(-) 13.06	(-) 34.40	(-) 34.16
Skip-Thought	(-) 19.13	(-) 15.61	(-) 21.8	(-) 13.79	(-) 13.47	(-)15.76	(-) 29.94	(-) 28.00	(-) 27.50	(-) 27.04
Tf-ldf	(-) 3.51	(-) 2.68	(-) 3.85	(-) 9.95	(-) 9.72	(-) 11.55	(-) 21.34	(-) 20.14	(-) 29.20	(-) 30.60
RET-sim RET-dis	(+) 0.92 (+) 1.66	(+) 1.28 (+) 1.79	(+) 1.65 (+) 2.30	(+) 2.00 (+) 5.00	(+) 1.97 (+) 4.91		(+) 3.72 (+) 4.56	(+) 3.34 (+) 4.12	(+) 5.22 (+) 6.28	(+) 5.70 (+) 6.76
	` '	• •	(' /		` '	(' /	1 ()	• /		• '
Reg-sim	(+) 2.53	(+) 2.53	(+) 3.28	(+) 3.31	(+) 3.29		(+) 4.76	(+) 4.40	(+) 12.78	(+) 12.18
Reg-dis	(+) 2.52	(+) 2.43	(+) 3.17	(+) 5.41	(+) 5.34	(+) 6.20	(+) 7.40	(+) 6.82	(+) 12.54	(+) 12.44
Con-S2V-sim	(+) 3.83	(+) 3.55	(+) 4.62	(+) 4.52	(+) 4.50	(+) 5.21	(+) 14.98	(+) 14.38	(+) 13.68	(+) 13.56
Con-S2V-dis	(+) 4.29	(+) 4.04	(+) 5.22	(+) 7.68	(+) 7.56	(+) 8.80	(+) 9.30	(+) 8.36	(+) 15.10	(+) 15.2

Table: Performance of our models on topic classification and clustering tasks in comparison to Sen2Vec.

Summarization Performance

	DUC'01	DUC'02
Sen2Vec	43.88	54.01
W2V-avg	(-) 0.62	(+) 1.44
C-Phrase	(+) 2.52	(+) 1.68
FastSent	(-) 4.15	(-) 7.53
Skip-Thought	(+) 0.88	(-) 2.65
Tf-ldf	(+) 4.83	(+) 1.51
Ret-sim	(-) 0.62	(+) 0.42
$\operatorname{Ret-dis}$	(+) 0.45	(-) 0.37
Reg-sim	(+) 2.90	(+) 2.02
$\operatorname{Reg\text{-}dis}$	(–) 1.92	(–) 8.77
Con-S2V-sim	(+) 3.16	(+) 2.71
Con-S2V-dis	(+) 1.15	(-) 4.46

Table: ROUGE-1 scores of the models on DUC datasets in comparison with Sen2Vec.

Outline

- Introduction and Motivation
 - Introduction
 - Related Work
- 2 CON-S2V Model
 - Modeling Content
 - Modeling Distributional Similarity
 - Modeling Proximity
 - Iraining Con-S2V

Experimental Settings

- Evaluation Tasks
- Metrics for Evaluation
- Baseline Models for Evaluation
- Optimal Parameter Settings
- Experimental Results
 - Classification and Clustering Performance
 - Summarization Performance
- 5 Conclusion

Conclusion and Future Work

- We have presented a novel model to learn distributed representation of sentences by considering content as well as context of a sentence
- One important property of our model is that it encodes a sentence directly, and it considers neighboring sentences as atomic units
- ▶ Apart from the improvements that we achieve in various tasks, this property makes our model quite efficient to train compared to compositional methods like encoder-decoder models (e.g., SDAE, Skip-Thought) that compose a sentence vector from the word vectors

Conclusion and Future Work

- ▶ It would be interesting to see how our model compares with compositional models on sentiment classification task
- ► However, this would require creating a new dataset of comments with sentence-level sentiment annotations
- We intend to create such datasets and evaluate the models in the future