Universidade Federal do Pará Instituto de Ciências Exatas e Naturais Programa de Pós-Graduação em Ciência da Computação Projeto e Análise de Algoritmos

Exercícios Capítulos 1, 2 e 3 do Livro Texto

- 1. Considere duas funções $f(n) = 0, 5n^2 3n$ e $g(n) = n^2$. Agora, usando a notação Big-O, mostre que f(n) é O(g(n)).
- 2. Dado dois algoritmos A e B que resolvem o mesmo problema e possuem complexidade no tempo $8n^2$ e n^3 , respectivamente, responda os itens abaixo:
- a. Qual é o maior valor de entrada n para o qual o algoritmo B é mais eficiente que o algoritmo A?
 - b. Na sua opinião, qual algoritmo é mais eficiente?
- 3. Determine a complexidade no tempo do algoritmo abaixo que promete encontrar os elementos mínimo e máximo do vetor de entrada V de tamanho n e responda os itens a seguir. Todas as respostas devem ser devidamente justificadas.

```
MaxMin (V, n)
1. max = V[1]
2. min = V[1]
3. para i = 2 até n faça
4. se V[i] > max então max = V[i]
5. se V[i] < min então min = V[i]</pre>
```

- a. Podemos dizer que o algoritmo MaxMin para e é correto?
- b. Existe melhor e pior caso?
- c. O algoritmo MaxMin é eficiente?

4. Usando notação assintótica, descreva a complexidade no tempo do algoritmo abaixo. Ele recebe dois vetores A e V de tamanhos n e w, respectivamente.

```
TESTE (A, V, n, w)
1. para i = 1 até n faça
2. para j = 1 até w faça
3. V[j] = A[i] + 2
4. max = V[1]
5. para j = 2 até w faça
6. se max < V[j] então max = V[j]</pre>
```

5. Observe as funções representadas no gráfico abaixo.

Assinale a afirmativa correta sobre o crescimento assintótico dessas funções.

(a)
$$f(n) = O(h(n))$$
 e $f(n) = w(g(n))$.

(b)
$$g(n) = \Omega(f(n))$$
 e $f(n) = \Theta(h(n))$.

(c)
$$h(n) = w(g(n))$$
 e $g(n) = \Theta(f(n))$.

(d)
$$g(n) = O(f(n))$$
 e $g(n) = \Omega(h(n))$.

(e)
$$h(n) = \Omega(f(n))$$
 e $h(n) = O(g(n))$.

- 6. Mostre que $7x^2$ é $O(x^3)$. Também é verdade que x^3 é $O(7x^2)$? São equivalentes?
- 7. Mostre que x^2 é $\Omega(x)$. Também é verdade que x é $\Omega(x^2)$? São equivalentes?
- 8. As afirmações abaixo são verdadeiras ou falsas? Justifique.
 - a. $2n^2 + 1000 \notin \Omega(n^2)$.
 - b. $log(n^2)$ é w(log(n)).
 - c. 2^{n+1} é $O(2^n)$.
 - d. $2^{2n} \notin O(2^n)$.
 - e. $log(n) + \sqrt{n}$ é O(n).
- 9. Considere dois algoritmos A1 e A2, cujas funções de custo são, respectivamente, $T1(n) = n^2 n + 1$ e $T2(n) = 6nlog_2n + 2n$. Para simplificar a análise, assuma que n > 0 é sempre uma potência de 2. Com relação ao enunciado, assinale a alternativa correta.
 - (a) $T1(n) = \Theta(n^2)$ e $T2(n) = \Theta(nlogn)$, então A2 é sempre mais eficiente que A1.
 - (b) O limite superior $T1(n) = O(n^3)$ é correto e assintoticamente restrito.
 - (c) O limite inferior $T2(n)=\Omega(n^3)$ é correto e assintoticamente restrito.
 - (d) T1 e T2 são assintoticamente equivalentes.
 - (e) A1 é mais eficiente que A2, para n suficientemente pequeno.
- 10. Sejam $T_A(n)$ e $T_B(n)$ os tempos de execução de pior caso de dois algoritmos A e B propostos para um mesmo problema computacional, em função de um certo parâmetro n. Dizemos que o algoritmo A é mais eficiente que o algoritmo B assintoticamente no pior caso quando
 - (a) $T_A(n) = o(T_B(n))$.
 - (b) $T_B(n) = o(T_A(n))$.
 - (c) $T_A(n) = O(T_B(n))$.
 - (d) $T_B(n) = O(T_A(n))$.
 - (e) $T_A(n) = \Theta(T_B(n))$.

- 11. Qual é o número mínimo de comparações necessário para encontrar o menor elemento de um conjunto qualquer não ordenado de n elementos?
 - (a) 1.
 - (b) n-1.
 - (c) n.
 - (d) n+1.
 - (e) $n \log n$.
- 12. Um algoritmo tradicional e muito utilizado possui complexidade $n^{1,5}$, enquanto um novo algoritmo proposto é da ordem de nlogn:

$$f(n) = n^{1.5}$$
$$g(n) = nlogn$$

Qual algoritmo adotar? Por quê?

- 13. A função SORT abaixo ordena de forma crescente um vetor A de n elementos.
- SORT (A, n)
- 1. para j = 1 até n 1 faça
- 2. menor = j
- 3. para i = j + 1 até n faça
- 4. se A[i] < A[menor] então menor = i
- 5. aux = A[menor]
- 6. A[menor] = A[j]
- 7. A[j] = aux

Dado que T(n) é o tempo de execução da função SORT para as entradas A e n, é possível afirmar que a ordem de T(n) é

- (a) T(n) = O(1).
- (b) $T(n) = O(\log(n))$.
- (c) T(n) = O(n).
- (d) $T(n) = o(n^2)$.
- (e) $T(n) = O(n^2)$.

14. Considerando $f\equiv f(n),\,g\equiv g(n)$ e k uma constante, determine se as sentenças abaixo são verdadeiras ou falsas. Caso sejam falsas reescreva corretamente.

a.
$$O(f + g) = O(f) + O(g)$$
.

b.
$$O(f.g) = O(f).O(g)$$
.

c.
$$O(k.g) = k.O(g) = O(g)$$
.

d.
$$5n + 8n^2 + 100n^3 = O(n^4)$$
.

e.
$$5n + 8n^2 + 100n^3 = O(n^2 log(n))$$
.

15. Assumindo que cada expressão representa o tempo de processamento de um algoritmo para resolver um problema de tamanho n. Selecione o termo dominante e especifique a complexidade no pior caso.

Expression	Dominant term(s)	O()
$5 + 0.001n^3 + 0.025n$, ,	
$500n + 100n^{1.5} + 50n \log_{10} n$		
$0.3n + 5n^{1.5} + 2.5 \cdot n^{1.75}$		
$n^2 \log_2 n + n(\log_2 n)^2$		
$n \log_3 n + n \log_2 n$		
$3\log_8 n + \log_2\log_2\log_2 n$		
$100n + 0.01n^2$		
$0.01n + 100n^2$		
$2n + n^{0.5} + 0.5n^{1.25}$		
$0.01n\log_2 n + n(\log_2 n)^2$		
$100n \log_3 n + n^3 + 100n$		
$0.003\log_4 n + \log_2\log_2 n$		

- 16. Sejam f, g e h funções reais positivas da variável inteira n, assinale a alternativa **INCORRETA** de acordo com os conceitos de notações assintóticas.
- (a) Por exemplo, se $f = n^2 1$, $g = n^2$ e $h = n^3$, então $f \in O(g)$, $f \in O(h)$, $g \in O(f)$, mas h não é O(f). Consequentemente, $f \in \Theta(g)$, mas f não é $\Theta(h)$.
- (b) A notação ⊖ exprime o fato de que duas funções possuem a mesma ordem de grandeza assintótica.
- (c) Por exemplo, se f = 5 + 2log(n) + nlog(n) e $g = n^2$, então $f \in O(g)$, porém f não é $\Theta(g)$. No caso, $f \in \Theta(n)$.
- (d) Assim como a notação O é útil para descrever limites superiores assintóticos, a notação Ω é empregada para limites inferiores assintóticos.
- (e) Por exemplo, se $f=n^2-1$, então são válidas as igualdades $f=\Omega(n^2)$, $f=\Omega(n)$ e $f=\Omega(1)$, mas não vale $f=\Omega(n^3)$.
- 17. Um algoritmo quadrático com tempo de processamento $T(n)=cn^2$ consome T(N) segundos para processar N itens. Assumindo N=100 e T(N)=1ms, quanto tempo este algoritmo consome para processar uma entrada de 5.000 itens?
- 18. Os algoritmos A e B, para uma entrada de tamanho n, consomem exatamente $T_A = 5nlog(n)$ e $T_B = 25n$ microssegundos. Qual algoritmo apresenta a melhor complexidade no pior caso? Para quais tamanhos de entrada um é melhor que o outro?
- 19. Os algoritmos A e B, para uma entrada de tamanho n, consomem exatamente $T_A=0,1n^2log(n)$ e $T_B=2,5n^2$ microssegundos. Informe qual algoritmo apresenta a melhor complexidade no pior caso e encontre o valor k tal que para qualquer n>k o algoritmo informado apresente melhor desempenho. Se o problema apresenta entradas $n\leq 10$, qual algoritmo você recomendaria para resolver o problema?
- 20. Os algoritmos A e B, para uma entrada de tamanho n, consomem exatamente $T_A=c_Anlog(n)$ e $T_B=c_Bn^2$ microssegundos. Diga qual o melhor algoritmo para processar uma entrada de tamanho $n=2^{20}$ se o algoritmo A consome 10 microssegundos para processar 1.024 itens e o algoritmo B consome 1 microssegundo para processar a mesma quantidade.

21. Quais das seguintes igualdades são verdadeiras?

I.
$$n^2 = O(n^3)$$

II.
$$2n + 1 = O(n^2)$$

III.
$$n^3 = O(n^2)$$

IV.
$$3n + 5nlog(n) = O(n)$$

- (a) Somente I e II.
- (b) Somente II, III e IV.
- (c) Somente III e IV.
- (d) Somente I, II e III.
- (e) Somente I, III e IV.
- 22. Qual das seguintes afirmações sobre crescimento assintótico de funções **NÃO** é verdadeira?
 - (a) $2n^2 + 3n + 1 = O(n^2)$.
 - (b) Se f(n) = O(g(n)), então g(n) = O(f(n)).
 - (c) $log(n^2) = O(log(n))$.
 - (d) Se f(n) = O(g(n)) e g(n) = O(h(n)), então f(n) = O(h(n)).
 - (e) $2^{n+1} = O(2^n)$.
- 23. Sejam $T_1(n)=100n+15$, $T_2(n)=10n^2+2n$ e $T_3(n)=n^3+n^2+3$ as equações que descrevem a complexidade de tempo dos algoritmos Alg1, Alg2 e Alg3, respectivamente, para entradas de números inteiros de tamanho n>0. Assinale a alternativa correta.
- (a) As complexidades assintóticas de Alg1, Alg2 e Alg3 em notação Big-O estão, respectivamente, em O(100), O(10), O(1).
 - (b) Alg1, Alg2 e Alg3 são assintoticamente equivalentes.
 - (c) Alg1 é sempre mais eficiente que Alg2.
 - (d) A complexidade assintótica de Alg3 está em $o(n^3)$.
 - (e) Alg1 é assintoticamente mais eficiente que Alg3.