Introduction	to High Performance Scientific Computing
	Autumn, 2016
	Lecture 4
I College	Pi 19 Oct

Functions

Basic idea: input → function → output

def function_name(input1,input2,inputN):
 #Code with operations involving input variables
 #that assigns values to output variables

return output1,output2,outputM

• Again: extent of function "block" set by colon and indentation

Imperial Colleg

Functions: an example

- Function name is sum3 and can be called from command line
- Typically include functions in scripts and import them into command line (or other scripts)

mperial Colleg

Functions: a few details

```
def example(x,y,z):
    '''Example of a python function,
    returns twice the first input variable
    and the product of the 2nd and 3rd input
    variables'''
    x2 = 2*x
    return x2,y*z

In [45]: from function_example import example

In [46]: example(1,2,3)
Out[46]: (2, 6)

    • Here, we have imported the function into the terminal and called it
    with input 1,2,3 generating output 2,6

    * x2 is a local variable and cannot be accessed from the terminal...

Imperial College
```

Functions: a few details

- Here, we have imported the function into the terminal and called it with input 1,2,3 generating output 2,6
- x2 is a *local* variable and cannot be accessed from the terminal...

Imperial College

Functions: a few details

 Be careful when sending a mutable object (e.g. a list) into a function; it can change!

```
function: it can change!

def example2(x,y,z):
    '''Another example of a python function which
    returns twice the first input variable
    and the product of the 2nd and 3rd input
    variables, but now we assume that x is a list and
    only double its 1st element.'''

x[0] = x[0]+1
    return x,y*z

In [98]: a=[1,2,3]
In [99]: example2(a,2,3)
Out[99]: ([2, 2, 3], 6)
In [100]: a
Out[100]: [2, 2, 3]
```

Functions: keyword arguments

Can easily set default values for optional input arguments

def example3(x,y,z=1):
 '''Example of a python function,
 returns twice the first input variable
 and the product of the 2nd and 3rd input
 variables, and z has a default value of 1'''
 return 2*x,y*z
In [105]: example3(1,2,3)
Out[105]: (2, 6)

In [106]: example3(1,2)
Out[106]: (2, 2)

Imperial College

Demo: computing sqrt with Newton's method

Newton's method: solve f(x)=0

- 1. guess solution x_1
- 2. compute $f(x_1)$
- 3. Is $f(x_1)$ sufficiently close to zero?
- 4. If not, compute df/dx and use Newton's formula to generate new guess, x_2
- 5. Repeat steps 2-4

Imperial College

Demo: computing sqrt with Newton's method

We want to solve: $x = \sqrt{a}$

Or:
$$x^2 - a = 0$$

with
$$\frac{df}{dx} = 2x$$

Imperial College

Demo: computing sqrt with Newton's method

We want to solve: $x = \sqrt{a}$

Or:
$$x^2 - a = 0$$

with
$$\frac{df}{dx} = 2x$$

General Newton's method: $x_1 = -f_0/\frac{df}{dx}|_{x_0} + x_0$

Here, x_0 is the initial guess

mandal Calles

Demo: computing sqrt with Newton's method

We want to solve: $x = \sqrt{a}$

Or:
$$x^2 - a = 0$$

with
$$\frac{df}{dx} = 2x$$

General Newton's method: $x_1 = -f_0/rac{df}{dx}|_{x_0} + x_0$

Here, x_0 is the initial guess

For our function, Newton's method becomes:

$$x_1 = \frac{a}{2x_0} + \frac{x_0}{2}$$

Let's code this!

Imperial College London

Demo: computing sqrt with Newton's method	
We want to solve: $x = \sqrt{a}$	
Or : $x^2 - a = 0$	
with $\frac{df}{dx} = 2x$	
General Newton's method: $x_1 = -f_0/rac{df}{dx} _{x_0} + x_0$	
Here, x_0 is the initial guess	-
For our function, Newton's method becomes:	
$x_1 = \frac{a}{2x_0} + \frac{x_0}{2}$	
Let's code this!: see mysqrt.py for details	
Imperial College	
London	