Classification

T.L. Grobler

Outline

- Introduction to supervised classifiation (labelled data):
 - Generative: Naive-Bayes
 - Discriminative: Logistic Regression
- Introduction to unsupervised classification:
 - *k*-means
 - GMM

Data Sets & Preprocessing

- Dimensionality reduction:
 - PCA
 - LDA
- Data Sets:

- NB: Be careful-Splitting of data
- − Training Set: Train Classifier
- Validation Set: Hypeparameters (prevent overfitting).
- **Test Set:** Performance.

Performance

- Supervised:
 - confusion matrix
 - Accuracy
 - etc...
- Unsupervised:
 - GMM: likelihood
 - K-means: distortion

Supervised Classification (Chap 4)

Classification/Classifiers

Given x assign to one of k classes:

$$-C_{j}, j = 1,...,k$$

- Assign prob $P(C_j|\mathbf{x})$
- $-C^* = \operatorname{argmax}_{C_j} P(C_j | \mathbf{x})$
- Class prob, more useful than knowing max class prob.

Data Description

- $D: (\mathbf{x}_{j}, y_{j}), j = 1,...,N$
 - observation \mathbf{x}_{j} comes with class label y_{j}
 - $y_j = C_j \text{ if } \mathbf{x}_j \in C_j$
- Constructing $P(C_j|\mathbf{x})$ given D
- Two approaches: *generative* and *discriminative*

Example Training Data

Three Classes: Two Features

 $C_1 = r$, $C_2 = g$ and $C_3 = b$

Nearest Centroid Classifier

• Imports:

- from sklearn.neighbors.nearest_centroid import NearestCentroid
- from sklearn.metrics import confusion_matrix

• Train:

```
- clf = NearestCentroid()
```

```
- clf.fit(X, y)
```

• Predict:

```
- y_pred = clf.predict(X)
```

Confusion Matrix:

```
- cm = confusion_matrix(y,y_pred)
```

Decision Boundary

Confusion Matrix

 M_{ij} is % of observations in class i predicted to be in class j.

Generative Approach

- Estimate class-conditionals: $p(\mathbf{x}|C_j)$
- Posterior (Bayes Theorem):
 - $-P(C_j|\mathbf{x}) \propto p(\mathbf{x}|C_j)P(C_j)$
 - Introduce $P(C_i)$
- Probabilistic Generative Models (PGM)

Discriminative Approach

- Dispenses with: $p(\mathbf{x}|C_i)$
- Directly compute posterior $P(C_j|\mathbf{x})$
- Probabilistic Discriminitive Models (PDM)

Generative vs Discriminitive

Generative	Discriminitive
Wasteful	Unwasteful
Training Straightforward	Training Harder
Ignores Class Dependence	Incorporates Class Dependence
Class Data	All Data
Separate Classes	Max Class Differences

Supervised Classification

Naive Bayes

• Imports:

- from sklearn.naive_bayes import GaussianNB
- from sklearn.metrics import confusion_matrix

• Train:

- clf = GaussianNB()
- clf.fit(X, y)

• Predict:

```
- y_pred = clf.predict(X)
```

Confusion Matrix:

```
- cm = confusion_matrix(y,y_pred)
```

Decision Boundary

Confusion Matrix

Logistic Regression

• Imports:

- from sklearn.linear_model import LogisticRegression as logis
- from sklearn.metrics import confusion_matrix

• Train:

- clf = linear_model.LogisticRegression(C=1e5)
- clf.fit(X, y)

• Predict:

```
- y_pred = clf.predict(X)
```

Confusion Matrix:

```
- cm = confusion_matrix(y,y_pred)
```

Decision Boundary

Confusion Matrix

Unsupervised Classification (Chap 5)

Unsupervised Classification

• Clustering data into *k-clusters* without any class labels. Unlabelled data.

k-means

- Imports:
 - from sklearn.cluster import KMeans
 - from sklearn.metrics import confusion_matrix
- Train:
 - kmeans = KMean(n_clusters=3)
 - kmeans.fit(X) **No-labels**
- Predict:
 - y_pred = kmeans.predict(X)

Labels may need to be flipped

- Confusion Matrix:
 - cm = confusion_matrix(y,y_pred)

Decision Boundary

Confusion Matrix

Gaussian Mixture Model

- Imports:
 - from sklearn.mixture import GaussianMixture
 - from sklearn.metrics import confusion_matrix
- Train:
 - gmm = mixture.GaussianMixture(n_components=3)
- Predict:
 - y_pred = gmm.predict(X)

Labels may need to be flipped

- Confusion Matrix:
 - cm = confusion_matrix(y,y_pred)

Decision Boundary

Confusion Matrix

Conclussion

- Introduction to supervised classifiation (labelled data):
 - Generative: Naive-Bayes
 - Discriminative: Logistic Regression
- Introduction to unsupervised classification:
 - *k*-means
 - GMM