PRAWO AMPERE'A

Z prawa Ampère'a możemy obliczyć wartość pola B wokół przewodnika z prądem!

Prawo Ampere'a (dla próżni):

$$\oint \vec{B} \cdot \vec{dl} = \mu_0 I$$

Gdzie:

 μ_0 — stała magnetyczna próżni, przenikalność magnetyczna próżni,

$$\mu_0 = 12,57 \cdot 10^{-7} \frac{H}{m}$$

- 1. Całka po krzywej zamkniętej z iloczynu skalarnego $\overrightarrow{B}\cdot\overrightarrow{dl}$ równa jest całkowitemu prądowi I otoczonemu przez dowolną krzywą zamkniętą (niezależnie od kształtu konturu) wymnożonemu przez μ_0 .
- 2. Krążenie wektora B po dowolnej krzywej zamkniętej jest proporcjonalne do całkowitego natężenia prądu objętego konturem.

Prawo Ampere'a (dla dowolnego ośrodka):

$$\oint \vec{B} \cdot \vec{dl} = \mu_0 \mu_r I$$

Gdzie:

 μ_r — względna przenikalność magnetyczna ośrodka.

Względne przenikalności magnetyczne wybranych substancji

Materiał	Względna przenikalność magnetyczna
Próżnia	1
Powietrze	1,000004
Woda	0,999991
Miedź	0,99999
Nikiel	250
Kobalt	600
Żelazo	4000 - 1500000
Monokrystaliczny stop (Fe ₉₇ Si ₃)	3800000

POLE MAGNETYCZNE PRZEWODNIKA LINIOWEGO

Linie pola wytwarzanego przez przewodnik liniowy są współśrodkowymi okręgami!

Jako kontur całkowania wybieramy okrąg o promieniu r równym odległości, dla jakiej chcemy policzyć pole!

$$\oint \vec{B} \cdot \vec{dl} = \mu_0 I$$

Wektory \vec{B} i \vec{dl} sq do siebie równoległe ($cos0^{\circ} = 1$)!

$$\oint B \cdot dl = \mu_0 I$$

W określonej odległości od przewodnika wektor \vec{B} ma stałą wartość!

$$B \oint dl = \mu_0 I$$

$$B \cdot 2\pi r = \mu_0 I$$

$$B = \frac{\mu_0 I}{2\pi r}$$

POLE MAGNETYCZNE CEWKI

<u>Solenoid</u> – cewka o przylegających zwojach, której długość jest znacznie większa od średnicy. Pole magnetyczne wewnątrz solenoidu jest jednorodne (wektor $\vec{B} = const$), a na zewnątrz równe zeru.

Prawo Ampere'a dla konturu ABCD:

$$\oint \vec{B} \cdot \vec{dl} = \oint_A^B \vec{B} \cdot \vec{dl} + \oint_B^C \vec{B} \cdot \vec{dl} + \oint_C^D \vec{B} \cdot \vec{dl} + \oint_D^A \vec{B} \cdot \vec{dl}$$

Dla konturów BC i DA wektory \overrightarrow{B} i \overrightarrow{dl} są do siebie prostopadłe!

$$\oint_{B}^{C} \vec{B} \cdot \vec{dl} = \oint_{D}^{A} \vec{B} \cdot \vec{dl} = 0$$

Na zewnątrz solenoidu pole \overrightarrow{B} wynosi 0!

$$\oint_{A} \vec{B} \cdot \vec{dl} = 0$$

$$\mu_{0} I_{ABCD} = \oint_{C} \vec{B} \cdot \vec{dl} = -B \cdot x$$

Liczba zwojów na jednostkę długości:

$$n = \frac{N}{l} = \frac{N_{ABCD}}{x}$$

Liczba zwojów w konturze:

$$N_{ABCD} = n \cdot x$$

Prąd przepływający przez kontur:

$$I_{ABCD} = N_{ABCD} \cdot I = n \cdot x \cdot I$$

$$\mu_0 I_{ABCD} = B \cdot x$$

$$\mu_0 \cdot n \cdot x \cdot I = B \cdot x$$

$$B = \mu_0 \cdot n \cdot I = \mu_0 \cdot \frac{N}{I} \cdot I$$

Przykład 1.

Z jaką siłą przyciągają się wzajemnie jednometrowe odcinki dwóch równoległych, nieskończenie długich przewodników prostoliniowych, oddalonych od siebie o $d=1\ m$, jeżeli płyną w nich prądy $I_1=I_2=1\ A$ w kierunkach zgodnych?

$$\overrightarrow{F_{1\to 2}} = I_2 \cdot \overrightarrow{l} \times \overrightarrow{B_1}$$

$$F_{1\to 2} = I_2 \cdot l \cdot B_1 \cdot \sin 90^{\circ}$$

$$F_{1\to 2} = I_2 \cdot l \cdot B_1 = I_2 \cdot l \cdot \frac{\mu_0 I_1}{2\pi d}$$

$$F_{1\to 2} = \frac{\mu_0 I_1 \cdot I_2 \cdot l}{2\pi d}$$

$$F_{1\to 2} = \frac{12,57 \cdot 10^{-7} \cdot 1 \cdot 1 \cdot 1}{2 \cdot 3,14 \cdot 1} = 2 \cdot 10^{-7} N$$

DEFINICJA AMPERA

<u>1 amper</u> – natężenie prądu stałego, który płynąc w dwóch równoległych, prostoliniowych, nieskończenie długich przewodach o znikomo małym przekroju kołowym, umieszczonych w próżni w odległości $1 \, m$ od siebie, powoduje wzajemne oddziaływanie przewodów na siebie z siłą równą $2 \cdot 10^{-7} \, N$ na każdy metr długości przewodu.

PRAWO BIOTA-SAVARTA

Prawo Ampere'a stosuje się, gdy znana jest symetria pola!

W innej sytuacji dzielimy przewodnik z prądem na nieskończenie małe elementy i obliczamy pole jakie one wytwarzają w danym punkcie stosując prawo Biota-Savarta!

Prawo Biota-Savarta (dla próżni):

$$\overrightarrow{dB} = \frac{\mu_0 I}{4\pi} \cdot \frac{\overrightarrow{dl} \times \overrightarrow{r}}{r^3}$$

$$dB = \frac{\mu_0 I}{4\pi} \cdot \frac{dl \cdot r \cdot \sin\theta}{r^3} = \frac{\mu_0 I}{4\pi} \cdot \frac{dl \cdot \sin\theta}{r^2}$$

Przykład 2.

Znaleźć zależność na wartość wektora indukcji pola magnetycznego na osi przechodzącej przez środek przewodnika kołowego (o promieniu R) i prostopadłej do powierzchni na nim rozpiętej, jeżeli w przewodniku płynie prąd I. Po wyprowadzeniu, obliczenia wykonać dla $R=0.01\,m$, $I=2\,A$ i w odległości $y=0.5\,m$ od przewodnika.

$$\overrightarrow{dB} = \frac{\mu_0 I}{4\pi} \cdot \frac{\overrightarrow{dl} \times \overrightarrow{r}}{r^3}$$

$$dB = \frac{\mu_0 I}{4\pi} \cdot \frac{dl \cdot r \cdot \sin 90^{\circ}}{r^3} = \frac{\mu_0 I}{4\pi} \cdot \frac{dl}{r^2}$$

$$dB_{y} = \frac{\mu_{0}I}{4\pi} \cdot \frac{dl}{r^{2}} \cdot \cos\alpha = \frac{\mu_{0}I}{4\pi} \cdot \frac{dl}{r^{2}} \cdot \frac{R}{r} = \frac{\mu_{0}I \cdot R}{4\pi} \cdot \frac{dl}{r^{3}}$$

$$dB_{y} = \frac{\mu_{0}I \cdot R}{4\pi} \cdot \frac{dl}{\left(\sqrt{R^{2} + y^{2}}\right)^{3}} = \frac{\mu_{0}I \cdot R}{4\pi} \cdot \frac{dl}{(R^{2} + y^{2})^{\frac{3}{2}}}$$

$$dB_y = \frac{\mu_0 I \cdot R}{4\pi} \cdot \frac{dl}{(R^2 + y^2)^{\frac{3}{2}}}$$

$$B = \int dB_y = \int \frac{\mu_0 I \cdot R}{4\pi} \cdot \frac{dl}{(R^2 + y^2)^{\frac{3}{2}}}$$

$$B = \frac{\mu_0 I \cdot R}{4\pi} \cdot \frac{1}{(R^2 + y^2)^{\frac{3}{2}}} \int_0^{2\pi R} dl$$

$$B = \frac{\mu_0 I \cdot R}{4\pi} \cdot \frac{1}{(R^2 + y^2)^{\frac{3}{2}}} \cdot 2\pi R$$

$$B = \frac{\mu_0 I \cdot R^2}{2 \cdot (R^2 + y^2)^{\frac{3}{2}}}$$

$$B = \frac{\mu_0 I \cdot R^2}{2 \cdot (R^2 + y^2)^{\frac{3}{2}}}$$

Dla y = 0 (środek przewodu kołowego):

$$B = \frac{\mu_0 I \cdot R^2}{2 \cdot (R^2)^{\frac{3}{2}}} = \frac{\mu_0 I \cdot R^2}{2R^3} = \frac{\mu_0 I}{2R}$$

Pole w środku przewodnika kołowego:

$$B = \frac{\mu_0 I}{2R}$$