1 Basic SGD

1.1 Constant step size

Figure 1: (MNIST objective on train data n = 60000.)

Problem : Does not converge exactly .

- large step \Rightarrow fast but doesn't converge up to some minimal error ϵ (fast but rough).
- Small step $\Rightarrow \epsilon$ decreases but longer convergence (accurate but slow).

Trade-off has to be made between accuracy and convergence speed, through the fixed step size parameter η .

1.2 Decreasing step size

Let $\eta(t) = \frac{1}{\lambda t}$. η is no more a parameter.

Figure 2: (MNIST objective on train data n=60000.)