Tutorial 2

Mohamed Anwar

October 14, 2018

1. Find the minimal polynomial of the following complex numbers:

(a)
$$\sqrt[4]{2}$$
, $\sqrt[5]{4}$, $\sqrt[3]{2} + 1$, $\frac{\sqrt[4]{2}}{\sqrt{2} + 1}$ over \mathbb{Q} .

(b)
$$\sqrt[3]{2} + \sqrt{2}$$
 over $\mathbb{Q}(\sqrt{2})$.

$$(c)\sqrt{2} + \sqrt{5}$$
 over $\mathbb{Q}(\sqrt{10})$.

$$(d)\zeta_{16}$$
 over $\mathbb{Q}(i)$.

2. Calculate the degree of the following extensions:

$$\mathbb{Q} \subset \mathbb{Q}(\sqrt{7}, \sqrt{13}), \quad \mathbb{Q} \subset \mathbb{Q}(\sqrt{12}, \sqrt{15}), \quad \mathbb{Q} \subset \mathbb{Q}(\sqrt{2}, i), \quad \mathbb{Q} \subset \mathbb{Q}(\sqrt{3}, \sqrt{5}, \sqrt{60}),$$

$$\mathbb{Q}(\sqrt{3}) \subset \mathbb{Q}(\sqrt{3}, \sqrt{6}), \quad \mathbb{Q} \subset \mathbb{Q}(\frac{2}{3}\sqrt[3]{2}, \sqrt[3]{2} - 1), \quad \mathbb{Q}(\pi) \subset \mathbb{Q}(\pi, \sqrt[3]{7}), \quad \mathbb{Q}(\pi) \subset \mathbb{Q}(\pi^4).$$

- 3. Calculate the minimal polynomial of $\cos \frac{2\pi}{7}$ and $\cos \frac{2\pi}{9}$ over \mathbb{Q}
- 4. Describe the lattice of the subfields of $\mathbb{Q}(\zeta_5)$, $\mathbb{Q}(\zeta_7)$, $\mathbb{Q}(\zeta_9)$, $\mathbb{Q}(\zeta_{11})$.
- 5. Let $\mathbb{Q} \subseteq K$ be a field extension such that $[K : \mathbb{Q}] = 10$. Explain why $\sqrt[3]{2} \notin K$.
- 6. Given $f(x) = x^5 x^3 6x \frac{1}{3}x^4 + \frac{1}{3}x^2 + 2 \in \mathbb{Q}[X]$. Which of the following rings is an integral domain and/or a field:

$$\frac{\mathbb{Q}[X]}{(f(X))}, \quad \frac{\mathbb{R}[X]}{(f(X))}, \quad \frac{\mathbb{C}[X]}{(f(X))}$$
?

(Repeat the exercise for $f(x) = x^3 - 5x + 3$.)

- 7. Check whether $\pi + \frac{1}{\pi}$ is algebraic or transendental over \mathbb{Q} and $\mathbb{Q}(\pi^2)$.
- 8. Let $\alpha = \sqrt[4]{3}$ and $K = \mathbb{Q}(\alpha)$.
 - (a) Determine the minimal polynomial of α .
 - (b) Verify that $\mathbb{Q}(\sqrt{3}) \subset K$ and determine the minimal polynomial of α over $\mathbb{Q}(\sqrt{3})$.

1

- (c) Put $\beta = \sqrt{3} + \sqrt[4]{27} 2$, why $\beta \in K$?
- 9. Let $f(x) = x^3 5x 1 \in \mathbb{Q}[x]$.

 (a) Check whether $\frac{\mathbb{Q}[X]}{(f(X))}$ is an integral domain and/or a field.

 (b) Let $\alpha \in \mathbb{C} : f(\alpha) = 0$. Determine $[\mathbb{Q}(\alpha) : \mathbb{Q}]$ and describe $\mathbb{Q}(\alpha)$.

- (c) Find the inverse of $\alpha + 1$, $\alpha^2 + \alpha + 1$, $2 + \alpha$ and $\alpha^3 5\alpha$ in $\mathbb{Q}(\alpha)$.
- 10. Determine the splitting field in \mathbb{C} of the following polynomials and calculate their degree:
 - (a) $(x^2 5)(x^3 7)$ over \mathbb{Q} . (b) $x^4 + 30x^2 + 45$ over \mathbb{Q} . (c) $x^4 x^2 + 5$ over \mathbb{Q} .