

Dokumentacja Projektu grupowego

Dokumentacja techniczna projektu

Wydział Elektroniki, Telekomunikacji i Informatyki Politechnika Gdańska

Nazwa i akronim projektu:	Zleceniodawca:	
Kalkulator centylowy - KC	dr. inż. Barbara Stawarz-Graczyk	
Numer zlecenia: 14@KMIO'2023	Kierownik projektu: Aleksandra Rykowska	Opiekun projektu: dr. inż. Barbara Stawarz- Graczyk

Nazwa / kod dokumentu: Dokumentacja techniczna produktu – DTP	Nr wersji: 1.30
Odpowiedzialny za dokument: Piastka Aleksandra	Data pierwszego sporządzenia: 04.01.2022r.
Szarafiński Radosław	Data ostatniej aktualizacji: 19.05.2022r.
	Semestr realizacji Projektu grupowego: 1 i 2

Historia dokumentu

Wersja	Opis modyfikacji	Rozdział / strona	Autor modyfikacji	Data
1.00	Wstępna wersja	całość	Piąstka Aleksandra Szarafiński Radosław	04.01.2022r.
1.10	Poprawka w pkt. 2	pkt. 2	Piąstka Aleksandra Szarafiński Radosław	06.01.2022r.
1.20	Poprawka w pkt. 2.2 i 2.3	pkt 2.2 i 2.3	Piąstka Aleksandra	07.01.2022r.
1.30	Rozszerzenie dokumentacji o pracę wykonaną w II części projektu.	całość	Piąstka Aleksandra Szarafiński Radosław Myćka Kamil	19.05.2023r.

{UWAGA: w II semestrze dokumentacja może być rozszerzeniem dokumentacji z semestru I (nowa wersja dokumentu), może być też nowym plikiem}

Spis treści

1	VV	prowadzenie - o dokumencie	.:			
	1.1	Cel dokumentu	.:			
	1.2	Zakres dokumentuOdbiorcy	.:			
	1.3	Odbiorcy	.:			
	1.4	Terminologia	.:			
2	Do	kumentacja techniczna projektu	.:			
	2.1					
	2.2	Parametry techniczne	.:			
		2.1 Wymagany system operacyjny				
	2.2	2.2 Wymagane oprogramowanie	.:			
	2.2	2.3 Wymagania sprzętowe	. :			
	2.2	2.4 Wymagane miejsce na dysku	. 3			
	2.2	2.5 Lićencja				
	2.2	l.6 Jezyk	.:			
	2.3	Oprogramowanie	. 4			
	2.3.1 Języki programowania					
		3.2 Biblioteki				
	2.3	3.3 Wykorzystane funkcje	. 4			
		Wyniki działania aplikacji				
		.1 Zdjęcie produktu	. 7			
		2 Wyniki pomiarów, testów	3.			

1 Wprowadzenie - o dokumencie

1.1 Cel dokumentu

Celem dokumentu jest udokumentowanie informacji dotyczących produktu, jego cech funkcjonalnych, parametrów technicznych, schematów blokowych, oprogramowania, wyników działania, zdjęć produktu, pomiarów, testów oraz innych elementów wymaganych przez opiekuna i klienta.

1.2 Zakres dokumentu

W zakres dokumentu wchodzą informacje dotyczące ostatecznej wersji produktu, opis jego cech funkcjonalnych, parametrów technicznych, oprogramowania oraz wyniki działania (zdjęcia produktu, testy). W dokumencie nie są uwzględnione rozważania teoretyczne tzn. rozeznanie rynku, analiza ryzyka itp.

1.3 Odbiorcy

zleceniobiorca: Katedra Metrologii i Optoelektroniki zleceniodawca: dr. inż. Barbara Stawarz-Graczyk członkowie zespołu projektowego: Aleksandra Rykowska Magdalena Podlińska Kamil Myćka Aleksandra Piąstka

Radosław Szarafiński 1.4 Terminologia

Brak terminologii wymagającej objaśnienia.

2 Dokumentacja techniczna projektu

2.1 Cechy funkcjonalne

- 2.1.1 Prosty interfejs, który umożliwia wprowadzenie danych o dziecku.
- 2.1.2 Możliwość dodania profilu dziecka do bazy danych oraz jego usuniecia.
- 2.1.3 Wykreślenie wykresów na podstawie tych danych.

2.2 Parametry techniczne

- 2.2.1 Wymagany system operacyjny
 - Linux
 - Windows
 - MacOS
- 2.2.2 Wymagane oprogramowanie
 - Python3
 - SQL
- 2.2.3 Wymagania sprzętowe
 - karta graficzna (nie jest to aplikacja konsolowa, wymagane jest jakiekolwiek środowisko graficzne)
- 2.2.4 Wymagane miejsce na dysku
 - 1 GB pamięci masowej
- 2.2.5 Licencja
 - GPLv2
- 2.2.6 Język
 - Polski

2.3 Oprogramowanie

- 2.3.1 Języki programowania
 - Python3
 - XAMPP
- 2.3.2 Biblioteki
 - tkinter
 - matplotlib
 - pandas
 - mysql.connector
- 2.3.3 Wykorzystane funkcje
 - Funkcja create_main_menu() odpowiadająca za okno początkowe aplikacji. Zawiera w sobie funkcje, które zczytują, dodają oraz usuwają profile pacjentów z bazy danych.

```
def create_main_menu(main):
  def read_patients():
    patient_list.delete(0, tk.END)
    patients = db_connection.read_patients_from_base()
    i = 1
    for x in patients:
       patient_list.insert(i, x[0] + " " + x[1] + " " + x[2])
       i += 1
  def add_patient():
    db_connection.save_new_patient([pesel_input.get(), first_name_input.get(), name_input.get(),
                         selected_gender.get(), father_name_input.get(), mother_name_input.get()])
    read_patients()
  def delete_patient():
    selected_patient = patient_list.get(patient_list.curselection())
    db_connection.delete_patient(selected_patient[0:11])
    read_patients()
    # print(selected_patient[0:11])
    # print(selected_patient[16:len(selected_patient)])
  def change_to_patient():
    selected = patient_list.get(patient_list.curselection())
    global_variables.selected_patient_gender = db_connection.check_gender(selected.split()[0])
    change_to_patient_view(selected.split()[0])
    # global_variables.imie_nazwisko_pacjenta = selected[14:len(selected)]
    # print(global_variables.imie_nazwisko_pacjenta)
```

• Funkcja *append_data()* pobierająca dane z bazy danych na podstawie peselu w formacie: płeć, wiek, wzrost,waga, obwód głowy. Każdy wiersz to oddzielny rekord.

• Funkcja draw_plot() odpowiadająca za rysowanie wykresów. Zaczyna ona od wczytania danych pacjenta z bazy. Funkcja wyrysowuje siatki centylowe na wykresach zgodnie z danymi umieszczonymi w plikach .csv. Następnie na podstawie danych z profilu dziecka generowane są wykresy, na których oś x oznacza wiek, a oś y odpowiada wzrostowi, wadze albo obwodzie głowy, w zależności od wykresu. Każdy wykres posiada swoją własną legendę oraz kolor, w celu łatwiejszego rozróżnienia.

```
def draw plot():
  # data = pd.read_csv("data.csv")
  data = db_connection.read_patient_data(pesel)
  # sort all data by second column (age)
  data = data.sort_values(by=[data.columns[1]])
  gender = data.iloc[:, 0]
  age = data.iloc[:, 1]
  height = data.iloc[:, 2]
  weight = data.iloc[:, 3]
  head = data.iloc[:, 4]
  print(height)
  # converse age to int
  age = [int(i) for i in age]
  # if data.tail(1).iloc[0, 0] == "boy":
  if global variables.selected patient gender == "boy":
     centyle_height = pd.read_csv("centyle/b_height.csv")
  else:
     centyle_height = pd.read_csv("centyle/g_height.csv")
  age_centyl = centyle_height.iloc[:, 0]
  height_2nd = centyle_height.iloc[:, 1]
  height_25th = centyle_height.iloc[:, 4]
```

```
height_50th = centyle_height.iloc[:, 5]
height_75th = centyle_height.iloc[:, 6]
height_98th = centyle_height.iloc[:, 9]
```

```
# create 3 plots
# (3, 1, 1) means 3 rows, 1 column, 1st plot
fig = plt.figure()
ax1 = fig.add_subplot(311)
ax2 = fig.add_subplot(312)
ax3 = fig.add_subplot(313)
ax1.plot(age, height, color="black", label="Wzrost")
ax1.plot(age_centyl, height_2nd, 'r--', label="2nd")
ax1.plot(age_centyl, height_25th, 'g--', label="25th")
ax1.plot(age_centyl, height_50th, 'b-.', label="50th")
ax1.plot(age_centyl, height_75th, 'g--', label="75th")
ax1.plot(age_centyl, height_98th, 'r--', label="98th")
ax1.grid(linestyle="--")
ax1.set_xlim(left=0)
if len(age) > 0:
  ax1.set_xlim(right=max(age))
else:
  ax1.set_xlim(right=24)
if len(height) > 0:
  ax1.set_ylim(bottom=min(height) - 0.1 * min(height))
  ax1.set_ylim(top=max(height) + 0.1 * max(height))
else:
  ax1.set_ylim(bottom=40)
  ax1.set_ylim(top=100)
ax1.set_title("Wzrost")
ax1.set_xlabel("Wiek [miesiące]")
ax1.set_ylabel("Wzrost [cm]")
ax1.yaxis.set_major_locator(plt.MaxNLocator(integer=True))
# show legend next to plot
ax1.legend(loc="center left", bbox_to_anchor=(1, 0.5), prop={'size': 8})
```

2.4 Wyniki działania aplikacji

2.4.1 Zdjęcie produktu

2.4.2 Wyniki pomiarów, testów

Po wybraniu odpowiedniego profilu zostają wyrysowane wykresy siatek centylowych dla danego dziecka wg wprowadzonych danych.

