Package 'parseGBIF'

July 10, 2023

```
Type Package
Title An R package for parsing species occurrence records
Version 0.0.1
Date 2023-06-04
Maintainer Pablo Melo <pablopains@yahoo.com.br>
Description parseGBIF package is designed to convert GBIF species occurrence data to a more com-
      prehensible format to be used for further analysis, e.g. spatial.
      The package provides tools for verifying and standardizing species scientific names and for se-
      lecting the most informative species records when duplicates are available.
License GPL (>= 2) | file LICENSE
Encoding UTF-8
LazyData true
LazyDataCompression xz
Roxygen list(markdown = TRUE)
RoxygenNote 7.2.3
Imports plyr,
      readxl,
      dplyr,
      tidyr,
      readr,
      stringr,
      textclean,
      googledrive,
      rvest,
     lubridate,
      rnaturalearthdata,
     jsonlite,
      sqldf,
      DT,
      downloader,
      tidyselect,
      utils
Remotes github::pablopains/parseGBIF
Depends R (>= 3.5.0)
```

2 collectors_get_name

R topics documented:

	collectors_get_name	2
	collectors_prepare_dictionary	
	collectors_update_dictionary	
	EnumOccurrenceIssue	
	export_data	6
	extract_gbif_issue	8
	prepare_gbif_occurrence_data	9
	select_digital_voucher	10
	select_gbif_fields	12
	standardize_scientificName	20
	wcvp_check_name	21
	wcvp_check_name_batch	23
	wcvp_get_data	25
Index		27

collectors_get_name

Get the last name of the main collector in recordedBy field

Description

Returns the last name of the main collector

Usage

```
collectors_get_name(x)
```

Arguments

Χ

recordedBy field

Details

Returns the last name of the main collector in recordedBy field

Value

last name of the main collector

Author(s)

Pablo Hendrigo Alves de Melo, Nadia Bystriakova & Alexandre Monro

See Also

 $\verb|collectors_prepare_dictionary|, \verb|collectors_update_dictionary||$

Examples

```
help(collectors_get_name)
collectors_get_name('Melo, P.H.A & Monro, A.')
collectors_get_name('Monro, A. & Melo, P.H.A')
```

```
collectors_prepare_dictionary
```

Prepare the list with the main collector's last name

Description

Returns the list with the last name of the main collector associated with the unique key recorded By.

Usage

```
collectors_prepare_dictionary(
  occ = NA,
  collectorDictionary_file =
   "https://raw.githubusercontent.com/pablopains/parseGBIF/main/collectorDictionary/CollectorsDi
)
```

Arguments

Collector dictionary file - point to a file on your local disk or upload via git at https://raw.githubusercontent.com/pablopains/parseGBIF/main/collectorDictionary/CollectorsDictio

Details

If recordedBy is present in the collector's dictionary, it returns the checked name, if not, it returns the last name of the main collector, extracted from the recordedBy field. If recordedBy is present in the collector's dictionary, returns the main collector's last name associated with the single recordedBy key, otherwise, returns the main collector's last name, extracted from the recordedBy field. It is recommended to curate the main collector's surname, automatically extracted from the recordedBy field. The objective is to standardize the last name of the main collector. That the primary botanical collector of a sample is always recognized by the same last name, standardized in capital letters and non-ascii characters replaced

Value

Ctrl_nameRecordedBy_Standard, Ctrl_recordedBy, Ctrl_notes, collectorDictionary, Ctrl_update, collectorName, Ctrl_fullName, Ctrl_fullNameII, CVStarrVirtualHerbarium_PersonDetails

Author(s)

Pablo Hendrigo Alves de Melo, Nadia Bystriakova & Alexandre Monro

See Also

```
collectors_get_name, update_collectorsDictionary
```

Examples

collectors_update_dictionary

Create a key to group duplicates of a sample

Description

Include recordedByStandardized field with verified main collector's last name. Include recordNumber_Standard field with only numbers from recordNumber. Create a key to group duplicates in the key_family_recordedBy_recordNumber field, composed of the fields: family + recordedByStandardized + recordNumber_Standard.

Usage

```
collectors_update_dictionary(
  occ = NA,
  collectorDictionary_checked_file = NA,
  collectorDictionary_file =
   "https://raw.githubusercontent.com/pablopains/parseGBIF/main/collectorDictionary/CollectorsDi
)
```

Arguments

```
occ GBIF occurrence table with selected columns as select_gbif_fields(columns = 'standard')

collectorDictionary_checked_file

Verified collector dictionary file - point to a file on your local disk
```

EnumOccurrenceIssue 5

collectorDictionary_file

Collector dictionary file - point to a file on your local disk or upload via git at https://raw.githubusercontent.com/pablopains/parseGBIF/main/collectorDictionary/CollectorsDictio

Details

Fields created for each incident record: nameRecordedBy_Standard, recordNumber_Standard, key_family_recordedBy_key_year_recordedBy_recordNumber

Value

list with three data frames: occ_collectorsDictionary, with update result fields only, summary and CollectorsDictionary_add, with new collectors that can be added to the collector dictionary that can be reused in the future.

Author(s)

Pablo Hendrigo Alves de Melo, Nadia Bystriakova & Alexandre Monro

See Also

collectors_get_name, prepare_collectorsDictionary

Examples

EnumOccurrenceIssue

Enumeration GBIF issue An enumeration of validation rules for single occurrence records.

Description

There are many things that can go wrong and we continously encounter unexpected data. In order to help us and publishers improve the data, we flag records with various issues that we have encountered. This is also very useful for data consumers as you can include these issues as filters in occurrence searches. Not all issues indicate bad data. Some are merley flagging the fact that GBIF has altered values during processing. On the details page of any occurrence record you will see the list of issues in the notice at the bottom.

Usage

data(EnumOccurrenceIssue)

Format

A data frame with 69 rows and 9 columns

6 export_data

Details

```
constant GBIF issue constant
description GBIF issue description
definition Our definition for classifying geographic issues
type Type issue
priority Impact of the issue for the use of geospatial information
score Impact, in number, of the issue for the use of geospatial information
selection_score Value used to calculate the quality of the geospatial information according to the classification of the issue
reasoning Reasoning of the impact of the theme for the use of geospatial information
notes Notes
```

Source

- GBIF Infrastructure: Data processing
- · An enumeration of validation rules for single occurrence records

export_data

Export of results

Description

Separate records into three data frames Export of results:

- Useful data for spatial and taxonomic analysis
- Data in need of revision of spatial information or without identification
- Duplicates of the previous two datasets

Usage

```
export_data(
     occ_digital_voucher_file = "",
     occ_digital_voucher = NA,
      fields_to_merge = c("Ctrl_fieldNotes", "Ctrl_year", "Ctrl_stateProvince",
            "Ctrl_municipality", "Ctrl_locality", "Ctrl_countryCode", "Ctrl_eventDate",
            "Ctrl_habitat", "Ctrl_level0Name", "Ctrl_level1Name", "Ctrl_level2Name",
            "Ctrl_level3Name"),
     fields_to_compare = c("Ctrl_gbifID", "Ctrl_scientificName", "Ctrl_recordedBy",
            "Ctrl_recordNumber", "Ctrl_identifiedBy", "Ctrl_dateIdentified",
           "Ctrl_institutionCode", "Ctrl_collectionCode", "Ctrl_datasetName",
        "Ctrl_datasetName", "Ctrl_language", "wcvp_plant_name_id", "wcvp_taxon_rank",
          "wcvp_taxon_status", "wcvp_family", "wcvp_taxon_name", "wcvp_taxon_authors",
           "wcvp_reviewed", "wcvp_searchNotes"),
    fields_to_parse = c("Ctrl_gbifID", "Ctrl_bibliographicCitation", "Ctrl_language",
            \hbox{\tt "Ctrl\_institutionCode", "Ctrl\_collectionCode", "Ctrl\_datasetName",}\\
        "Ctrl\_basisOfRecord", "Ctrl\_catalogNumber", "Ctrl\_recordNumber", "Ctrl\_recordedBy", "Ct
        "Ctrl_occurrenceStatus", "Ctrl_eventDate", "Ctrl_year", "Ctrl_month", "Ctrl_day",
            "Ctrl_habitat", "Ctrl_fieldNotes", "Ctrl_eventRemarks", "Ctrl_countryCode",
```

export_data 7

```
"Ctrl_stateProvince", "Ctrl_municipality", "Ctrl_county", "Ctrl_locality",
    "Ctrl_level0Name", "Ctrl_level1Name", "Ctrl_level2Name",
    "Ctrl_level3Name",
    "Ctrl_identifiedBy", "Ctrl_dateIdentified", "Ctrl_scientificName",
    "Ctrl_decimalLatitude", "Ctrl_decimalLongitude", "Ctrl_nameRecordedBy_Standard",
    "Ctrl_recordNumber_Standard", "Ctrl_key_family_recordedBy_recordNumber",
    "Ctrl_geospatial_quality", "Ctrl_verbatim_quality", "Ctrl_moreInformativeRecord",
    "Ctrl_coordinates_validated_by_gbif_issue", "wcvp_plant_name_id", "wcvp_taxon_rank",
    "wcvp_taxon_status", "wcvp_family", "wcvp_taxon_name", "wcvp_taxon_authors",
    "wcvp_reviewed",
    "wcvp_searchNotes", "parseGBIF_digital_voucher",
    "parseGBIF_duplicates", "parseGBIF_duplicates_grouping_status")
)
```

Arguments

```
occ_digital_voucher_file

CSV fila result of function select_digital_voucher()$occ_digital_voucher

occ_digital_voucher

data frame result of function select_digital_voucher()$occ_digital_voucher
```

Details

Each data frame should be used as needed

Value

list with three data frames: occ_in, Useful data for spatial and taxonomic analysis, occ_out_to_recover, data in need of spatial data revision or without identification and occ_dup, duplicates.

Author(s)

Pablo Hendrigo Alves de Melo, Nadia Bystriakova & Alexandre Monro

See Also

```
batch_checkName_wcvp, extract_gbif_issue
```

```
help(export\_data)
```

8 extract_gbif_issue

extract_gbif_issue

Extract GBIF ussue occurrence records

Description

Extract GBIF validation rules for occurrence records

Usage

```
extract_gbif_issue(occ = NA, enumOccurrenceIssue = NA)
```

Arguments

occ GBIF occurrence table with selected columns as select_gbif_fields(columns = 'standard')

enumOccurrenceIssue

An enumeration of validation rules for single occurrence records by GBIF file, if NA, will be used, data(EnumOccurrenceIssue)

Details

https://gbif.github.io/parsers/apidocs/org/gbif/api/vocabulary/OccurrenceIssue.html

Value

list with two data frames: summary, with the frequency of issues in the records and occ_gbif_issue, with issues in columns with TRUE or FALSE for each record.

Author(s)

Pablo Hendrigo Alves de Melo, Nadia Bystriakova & Alexandre Monro

See Also

```
prepare_gbif_occurrence_data, select_gbif_fields
```

Examples

head(EnumOccurrenceIssue)

```
occ_gbif_issue <- extract_gbif_issue(occ = occ)</pre>
names(occ_gbif_issue)
head(occ_gbif_issue$summary)
colnames(occ_gbif_issue$occ_gbif_issue)
head(occ_gbif_issue$occ_gbif_issue)
```

prepare_gbif_occurrence_data

Prepare occurrence data from GBIF to use in package

Description

Prepare occurrence data downloaded from GBIF to be used by ParsGBIF functions

Usage

```
prepare_gbif_occurrence_data(gbif_occurrece_file = "", columns = "standard")
```

Arguments

gbif_occurrece_file

The name of the file from which the with occurrence data downloaded from

GBIF (by default "occurrence.txt")

columns

Character vector of strings to indicate column names of the GBIF occurrence file. Use 'standard' to select basic columns for use in the package, 'all' to select all available columns. The default is 'standard'

Details

Select data fields and rename field names prefixed with "Ctrl_"

Value

data.frame with renamed selected fields with prefix "Ctrl_"

Author(s)

Pablo Hendrigo Alves de Melo, Nadia Bystriakova & Alexandre Monro

See Also

```
select_gbif_fields, extract_gbif_issue
```

Examples

Description

To group duplicates and choose the digital voucher:

- 1. If the key for grouping duplicates is complete with collector information and collection number, sample duplicates can be grouped. In this case, the voucher with the highest score is selected among the duplicates in the sample.
- 2. If the key to group duplicates is incomplete, sample duplicates cannot be grouped due to missing collector information and/or collection number. In this case, each record is considered a sample, without duplicates, and a voucher is selected for each sample.

How is the information score calculated?

moreInformativeRecord = sum of textual quality + quality of geospatial information.

How is the quality of textual information calculated?

The Text quality is the sum of the number of flags with text quality equal to TRUE.

Is there information about the collector? Is there information about the collection number? Is there information about the year of collection? Is there information about the institution code? Is there information about the catalog number? Is there information about the collection site? Is there information about the municipality of collection? Is there information about the state/province of collection? Is there information about the bibliographic citation?

How is the quality of geospatial information calculated?

The quality of geospatial information is based on geographic issues made available by GBIF.

GIBF issues on the quality of geospatial information were classified into three levels.

- Not applicable, with selection_score equal to 0
- Does not affect coordinating accuracy, with selection_score equal to -1
- Potentially affect coordinate accuracy, with selection_score equal to -3
- Records to be excluded from spatial analysis, with selection_score equal to -9

select_digital_voucher

How is the taxonomic identification of the sample chosen?

1. When the key to group the duplicates is complete: The accepted TAXON_NAME identified at or below the specified level and the most frequent among the duplicates is chosen.

11

In case of a tie in frequency, in alphabetical order, the first accepted TAXON_NAME identified up to or below the specific level is chosen.

If there is no identification, equal to or less than the specific level, for the sample, the sample is indicated as unidentified.

1. When the key to group the duplicates is incomplete: If so, the accepted TAXON_NAME identified at or below the specified level is used. If there is no identification, equal to or less than the specific level, the sample is indicated as unidentified.

Usage

```
select_digital_voucher(
  occ = NA,
  occ_gbif_issue = NA,
  occ_wcvp_check_name = NA,
  occ_collectorsDictionary = NA,
  enumOccurrenceIssue = NA
```

Arguments

```
occ GBIF occurrence table with selected columns as select_gbif_fields(columns = 'standard')

occ_gbif_issue = result of function extract_gbif_issue()$occ_gbif_issue

occ_wcvp_check_name = result of function batch_checkName_wcvp()$occ_wcvp_check_name

occ_collectorsDictionary = result of function update_collectorsDictionary()$occ_collectorsDictionary

enumOccurrenceIssue
```

An enumeration of validation rules for single occurrence records by GBIF file, if NA, will be used, data(EnumOccurrenceIssue)

Details

- matchStatusDuplicates "groupable", "not groupable: no recordedBy and no recordNumber", "not groupable: no recordNumber" or "not groupable: no recordedBy"
- numberTaxonNamesSample count of the different accepted scientific names, identified up to or below the specific level, listed in the sample duplicates, or Zero, if there is no identification, equal to or below the specific level, for the sample.
- sampleTaxonName TAXON_name accepted and identified up to or below the specific level selected for the sample.
- sampleIdentificationStatus 'Identified', 'divergent identifications', or 'unidentified'

Value

list with two data frames: occ_digital voucher_and: occ_digital_voucher, only with selection result fields and occ_join_results, with all data processing fields.

Author(s)

Pablo Hendrigo Alves de Melo, Nadia Bystriakova & Alexandre Monro

See Also

```
batch_checkName_wcvp, extract_gbif_issue
```

Examples

```
select_gbif_fields
```

Description

Select columns in GBIF occurrence data

Usage

```
select_gbif_fields(columns = "standard")
```

Arguments

columns

'standard' basic columns about what, when, where, and who collected, 'all' all available columns or list column names

Details

```
"standard": indicated by (standard) or 'all':
```

• 'gbifID' (standard)

- 'abstract'
- 'accessRights'
- · 'accrualMethod'
- · 'accrualPeriodicity'
- · 'accrualPolicy'
- · 'alternative'
- 'audience'
- 'available'
- 'bibliographicCitation' (standard)
- 'conformsTo'
- 'contributor'
- · 'coverage'
- · 'created'
- · 'creator'
- 'date'
- · 'dateAccepted'
- 'dateCopyrighted'
- · 'dateSubmitted'
- · 'description'
- 'educationLevel'
- 'extent'
- 'format'
- 'hasFormat'
- · 'hasPart'
- 'hasVersion'
- 'identifier'
- 'instructionalMethod'
- 'isFormatOf'
- 'isPartOf'
- · 'isReferencedBy'
- 'isReplacedBy'
- 'isRequiredBy'
- 'isVersionOf'
- 'issued'
- 'language' (standard)
- 'license'
- 'mediator'
- 'medium'
- 'modified'
- 'provenance'

- · 'publisher'
- · 'references'
- 'relation'
- · 'replaces'
- 'requires'
- 'rights'
- · 'rightsHolder'
- 'source'
- 'spatial'
- 'subject'
- · 'tableOfContents'
- · 'temporal'
- 'title'
- 'type'
- · 'valid'
- 'institutionID'
- 'collectionID'
- · 'datasetID'
- 'institutionCode' (standard)
- 'collectionCode' (standard)
- 'datasetName' (standard)
- 'ownerInstitutionCode'
- 'basisOfRecord' (standard)
- 'informationWithheld' (standard)
- 'dataGeneralizations' (standard)
- · 'dynamicProperties'
- 'occurrenceID' (standard) # occ_search(occurrenceId='BRA:UNEMAT:HPAN:6089')
- 'catalogNumber' (standard)
- 'recordNumber' (standard)
- 'recordedBy' (standard)
- · 'recordedByID'
- 'individualCount'
- · 'organismQuantity'
- 'organismQuantityType'
- 'sex'
- · 'lifeStage'
- 'reproductiveCondition'
- 'behavior'
- 'establishmentMeans'
- 'degreeOfEstablishment'

- 'pathway'
- 'georeferenceVerificationStatus' (standard)
- 'occurrenceStatus' (standard)
- · 'preparations'
- · 'disposition'
- · 'associatedOccurrences'
- · 'associatedReferences'
- 'associatedSequences'
- · 'associatedTaxa'
- 'otherCatalogNumbers'
- 'occurrenceRemarks'
- 'organismID'
- · 'organismName'
- · 'organismScope'
- · 'associatedOrganisms'
- 'previousIdentifications'
- · 'organismRemarks'
- · 'materialSampleID'
- 'eventID'
- 'parentEventID'
- 'fieldNumber'
- 'eventDate' (standard)
- 'eventTime'
- · 'startDayOfYear'
- · 'endDayOfYear'
- 'year' (standard)
- 'month' (standard)
- 'day' (standard)
- 'verbatimEventDate'
- 'habitat' (standard)
- 'samplingProtocol'
- 'sampleSizeValue'
- 'sampleSizeUnit'
- · 'samplingEffort'
- 'fieldNotes' (standard)
- 'eventRemarks' (standard)
- 'locationID' (standard)
- 'higherGeographyID'
- 'higherGeography' (standard)
- 'continent'

- · 'waterBody'
- 'islandGroup' (standard)
- 'island' (standard)
- 'countryCode' (standard)
- 'stateProvince' (standard)
- 'county' (standard)
- 'municipality' (standard)
- 'locality' (standard)
- 'verbatimLocality' (standard)
- 'verbatimElevation'
- · 'verticalDatum'
- · 'verbatimDepth'
- 'minimumDistanceAboveSurfaceInMeters'
- 'maximumDistanceAboveSurfaceInMeters'
- 'locationAccordingTo'
- 'locationRemarks' (standard)
- 'decimalLatitude' (standard)
- 'decimalLongitude' (standard)
- 'coordinateUncertaintyInMeters'
- 'coordinatePrecision'
- 'pointRadiusSpatialFit'
- 'verbatimCoordinateSystem' (standard)
- 'verbatimSRS'
- 'footprintWKT'
- 'footprintSRS'
- 'footprintSpatialFit'
- 'georeferencedBy'
- · 'georeferencedDate'
- 'georeferenceProtocol'
- 'georeferenceSources'
- 'georeferenceRemarks'
- 'geologicalContextID'
- 'earliestEonOrLowestEonothem'
- 'latestEonOrHighestEonothem'
- 'earliestEraOrLowestErathem'
- 'latestEraOrHighestErathem'
- · 'earliestPeriodOrLowestSystem'
- 'latestPeriodOrHighestSystem'
- 'earliestEpochOrLowestSeries'
- 'latestEpochOrHighestSeries'

- 'earliestAgeOrLowestStage'
- 'latestAgeOrHighestStage'
- 'lowestBiostratigraphicZone'
- 'highestBiostratigraphicZone'
- 'lithostratigraphicTerms'
- 'group'
- 'formation'
- 'member'
- · 'bed'
- · 'identificationID'
- 'verbatimIdentification' (standard)
- 'identificationQualifier' (standard)
- 'typeStatus' (standard)
- 'identifiedBy' (standard)
- 'identifiedByID'
- 'dateIdentified' (standard)
- 'identificationReferences'
- 'identificationVerificationStatus'
- 'identificationRemarks'
- 'taxonID'
- · 'scientificNameID'
- 'acceptedNameUsageID'
- 'parentNameUsageID'
- 'originalNameUsageID'
- 'nameAccordingToID'
- 'namePublishedInID'
- 'taxonConceptID'
- 'scientificName' (standard)
- 'acceptedNameUsage'
- 'parentNameUsage'
- 'originalNameUsage'
- 'nameAccordingTo'
- · 'namePublishedIn'
- 'namePublishedInYear'
- · 'higherClassification'
- · 'kingdom'
- 'phylum'
- · 'class'
- · 'order'
- 'family' (standard)

- · 'subfamily'
- 'genus'
- 'genericName'
- 'subgenus'
- 'infragenericEpithet'
- 'specificEpithet'
- · 'infraspecificEpithet'
- 'cultivarEpithet'
- 'taxonRank' (standard)
- 'verbatimTaxonRank'
- · 'vernacularName'
- 'nomenclaturalCode' (standard)
- 'taxonomicStatus' (standard)
- 'nomenclaturalStatus'
- · 'taxonRemarks'
- 'datasetKey'
- 'publishingCountry'
- · 'lastInterpreted'
- · 'elevation'
- · 'elevationAccuracy'
- · 'depth'
- · 'depthAccuracy'
- 'distanceAboveSurface'
- 'distanceAboveSurfaceAccuracy'
- 'issue' (standard)
- 'mediaType' (standard)
- 'hasCoordinate' (standard)
- 'hasGeospatialIssues' (standard)
- 'taxonKey'
- · 'acceptedTaxonKey'
- · 'kingdomKey'
- 'phylumKey'
- · 'classKey'
- · 'orderKey'
- 'familyKey'
- 'genusKey'
- 'subgenusKey'
- 'speciesKey'
- · 'species'
- 'acceptedScientificName'

- 'verbatimScientificName' (standard)
- 'typifiedName'
- · 'protocol'
- 'lastParsed'
- 'lastCrawled'
- · 'repatriated'
- 'relativeOrganismQuantity'
- 'level0Gid'
- 'level0Name' (standard)
- 'level1Gid'
- 'level1Name' (standard)
- · 'level2Gid'
- 'level2Name' (standard)
- · 'level3Gid'
- 'level3Name' (standard)
- 'iucnRedListCategory'

Value

list of the columns names

Author(s)

Pablo Hendrigo Alves de Melo, Nadia Bystriakova & Alexandre Monro

See Also

```
extract_gbif_issue, prepare_gbif_occurrence_data
```

```
# select_gbif_fields()
help(select_gbif_fields)
col_sel <- select_gbif_fields(columns = 'all')
col_sel <- select_gbif_fields(columns = 'standard')</pre>
```

```
standardize_scientificName
```

standardize_scientificName

Description

standardize binomial name, variety, subspecies, form and hybrids, authorship to allow comparison with names of taxa in the World Checklist of Vascular Plants (WCVP) database

Usage

```
standardize_scientificName(
  searchedName = "Alomia angustata (Gardner) Benth. ex Baker"
)
```

Arguments

searchedName scientific name, with or without author

Details

Standardize scientific name according to WCVP format. Separate generic epithet, specific epithet, variety, subspecies, form, hybrid and author, in the scientific name, if any. Standardize, according to WCVP, abbreviation of infrataxon, if any: variety to var., subspecies to subsp., FORM to f., hybrid separator separate x from the specific epithet.

Value

 $searched Name, \, standardize Name, \, taxon Authors, \, taxon Authors_last$

Author(s)

Pablo Hendrigo Alves de Melo, Nadia Bystriakova & Alexandre Monro

See Also

```
get_wcvp, checkName_wcvp
```

```
# standardize_scientificName()
help(standardize_scientificName)
standardize_scientificName('Leucanthemum *superbum (Bergmans ex J.W.Ingram) D.H.Kent')
standardize_scientificName('Alomia angustata (Gardner) Benth. ex Baker')
standardize_scientificName('Centaurea *aemiliae Font Quer')
```

wcvp_check_name 21

wcvp_check_name	Use the World Checklist of Vascular Plants (WCVP) database to check
	accepted names and update synonyms

Description

Use the World Checklist of Vascular Plants database (about WCVP) to check accepted names and update synonyms.

Usage

```
wcvp_check_name(
  searchedName = "Hemistylus brasiliensis Wedd.",
  wcvp_names = "",
  if_author_fails_try_without_combinations = TRUE
)
```

Arguments

searchedName scientific name, with or without author

wcvp_names WCVP table, wcvp_names.csv file from http://sftp.kew.org/pub/data-repositories/WCVP/

If NA, automatically load the latest version of the database by the function parseGBIF::wcvp_get_data(read_only_to_memory = TRUE)\$wcvp_names.

if_author_fails_try_without_combinations

option for partial verification of the authorship of the species. Remove the au-

thors of combinations, in parentheses

Details

About the World Checklist of Vascular Plants https://powo.science.kew.org/about-wcvp search-Notes values:

- Accepted When only one authorless scientific name is present in the list of TAXON_name with and TAXON_STATUS equal to "Accepted", verified_speciesName = 100.
- Accepted among homonyms When more than one authorless scientific name is present in the TAXON_name list, but only one of the homonyms displays TAXON_STATUS equal to "Accepted", verified_speciesName = number of matches/100.
- Homonyms When more than one authorless scientific name is present in the TAXON_name list and more than one, or none among the homonyms, display TAXON_STATUS equal to "Accepted", verified_speciesName = number of matches/100. Before searching for homonyms, there was a failure in trying to find the matching match between authorless scientific name in TAXON_name and author in TAXON_AUTHORS, in these cases verified_author equal to 0 (zero),
- Not Found: When the authorless scientific name is not present in the TAXON_NAME LIST
- Unplaced: o When only one authorless scientific name is present in the list of TAXON_name with and TAXON_STATUS = "Unplaced"
- Updated: When only one authorless scientific name is present in the list of TAXON_name and ACCEPTED_PLANT_NAME_ID are not empty (and ACCEPTED_PLANT_NAME_ID is different from the ID of the species consulted) taxon_status_of_searchedName, plant_name_id_of_searchedName and taxon_authors_of_searchedName values:

22 wcvp_check_name

 When searchNotes equals "Updated" – The fields record the information of the scientific name originally consulted.

- When searchNotes equals "Homonyms" Fields record the information of homonymous synonyms separated by "I".
- · verified author values:
 - When value equal to 100 when there is matched match between authorless scientific name in TAXON_name and author in TAXON_AUTHORS.
 - When value equal to 50 when there is combined correspondence between authorless scientific name in TAXON_name and author, without (combination), in TAXON_AUTHORS.
 - When value equal to 0 regardless of the correspondence between authorless scientific name in TAXON_name, author is not present in TAXON_AUTHORS.

Value

Data frame with WCVP fields

Author(s)

Pablo Hendrigo Alves de Melo, Nadia Bystriakova & Alexandre Monro

These examples take >10 seconds to run and require 'parseGBIF::wcvp_get_data()'

See Also

```
wcvp_check_name_batch, wcvp_get_data
```

```
library(parseGBIF)
help(wcvp_check_name)
wcvp_names <- wcvp_get_data(read_only_to_memory = TRUE)$wcvp_names</pre>
# 1) Updated
wcvp_check_name(searchedName = 'Hemistylus brasiliensis Wedd.',
               wcvp_names = wcvp_names,
               if_author_fails_try_without_combinations = TRUE)
# 2) Accepted
wcvp_check_name(searchedName = 'Hemistylus boehmerioides Wedd. ex Warm.',
               wcvp_names = wcvp_names,
               if_author_fails_try_without_combinations = TRUE)
# 3) Unplaced - taxon_status = Unplaced
wcvp_check_name(searchedName = 'Leucosyke australis Unruh',
               wcvp_names = wcvp_names,
               if_author_fails_try_without_combinations = TRUE)
# 4) Accepted among homonyms - When author is not informed. In this case, one of the homonyms, taxon_status is ac
wcvp_check_name(searchedName = 'Parietaria cretica',
               wcvp_names = wcvp_names,
               if_author_fails_try_without_combinations = TRUE)
# When author is informed
```

```
wcvp_check_name(searchedName = 'Parietaria cretica L.',
               wcvp_names = wcvp_names,
               if_author_fails_try_without_combinations = TRUE)
# When author is informed
wcvp_check_name(searchedName = 'Parietaria cretica Moris',
               wcvp_names = wcvp_names,
               if_author_fails_try_without_combinations = TRUE)
# 5) Homonyms - When author is not informed. In this case, none of the homonyms, taxon_status is Accepted
wcvp_check_name(searchedName = 'Laportea peltata',
               wcvp_names = wcvp_names,
               if_author_fails_try_without_combinations = TRUE)
# When author is informed
wcvp_check_name(searchedName = 'Laportea peltata Gaudich. & Decne.',
               wcvp_names = wcvp_names,
               if_author_fails_try_without_combinations = TRUE)
# When author is informed
wcvp_check_name(searchedName = 'Laportea peltata (Blume) Gaudich.',
               wcvp_names = wcvp_names,
               if_author_fails_try_without_combinations = TRUE)
```

Description

In batch, use the World Checklist of Vascular Plants database (about WCVP) to check accepted names and update synonyms

Usage

```
wcvp_check_name_batch(
  occ = NA,
  wcvp_names = "",
  if_author_fails_try_without_combinations = TRUE,
  wcvp_selected_fields = "standard"
)
```

Arguments

occ GBIF occurrence table with selected columns as select_gbif_fields(columns = 'standard')

wcvp_names get data frame in parseGBIF::wcvp_get_data(read_only_to_memory = TRUE)\$wcvp_names or configure function to save a copy on local disk to optimize loading, see details in help(wcvp_get_data)

```
if_author_fails_try_without_combinations
```

option for partial verification of the authorship of the species. Remove the authors of combinations, in parentheses.

```
wcvp_selected_fields
```

WCVP fields selected as return, 'standard' basic columns, 'all' all available columns. The default is 'standard'

Details

See help(checkName_wcvp) and about WCVP database

Value

list with two data frames: summary, species list and occ_wcvp_check_name, with WCVP fields

Author(s)

Pablo Hendrigo Alves de Melo, Nadia Bystriakova & Alexandre Monro

See Also

```
wcvp_get_data, wcvp_check_name
```

```
# These examples take >10 minutes to run and require 'parseGBIF::wcvp_get_data()'
library(parseGBIF)
help(wcvp_check_name_batch)
occ_file <- 'https://raw.githubusercontent.com/pablopains/parseGBIF/main/dataGBIF/Achatocarpaceae/occurrenc
occ <- prepare_gbif_occurrence_data(gbif_occurrece_file = occ_file,</pre>
                                     columns = 'standard')
# wcvp_names <- wcvp_get_data(read_only_to_memory = TRUE)$wcvp_names</pre>
data(wcvp_names_Achatocarpaceae)
head(wcvp_names)
res_wcvp_check_name_batch <- wcvp_check_name_batch(occ = occ,</pre>
                                                  wcvp_names = wcvp_names,
                                         if_author_fails_try_without_combinations = TRUE,
                                                  wcvp_selected_fields = 'standard',
                                                  show_process = TRUE)
names(res_wcvp_check_name_batch)
head(res_wcvp_check_name_batch$summary)
head(res_wcvp_check_name_batch$occ_wcvp_check_name)
```

wcvp_get_data 25

wcvp_get_data

Get WCVP database

Description

Download World Checklist of Vascular Plants (WCVP) database

Usage

```
wcvp_get_data(
  url_source = "http://sftp.kew.org/pub/data-repositories/WCVP/",
  read_only_to_memory = FALSE,
  path_results = "C:/parseGBIF",
  update = FALSE,
  load_distribution = FALSE
)
```

Arguments

Details

http://sftp.kew.org/pub/data-repositories/WCVP/ This is the public SFTP (Secure File Transfer Protocol) site of the Royal Botanic Gardens, Kew. This space contains data resources publicly accessible to the user 'anonymous'. No password required for access. Use of data made available via this site may be subject to legal and licensing restrictions. The README in the top-level directory for each data resource provides specific information about its terms of use.

Value

list with two data frames: wcvp_names and wcvp_distribution

Author(s)

Pablo Hendrigo Alves de Melo, Nadia Bystriakova & Alexandre Monro

See Also

```
wcvp_check_name, wcvp_check_name_batch
```

26 wcvp_get_data

Index

```
* datasets
    EnumOccurrenceIssue, 5
batch_checkName_wcvp, 7, 12
checkName_wcvp, 20
collectors_get_name, 2, 4, 5
collectors\_prepare\_dictionary, 2, 3
\verb|collectors_update_dictionary|, 2, 4|\\
EnumOccurrenceIssue, 5
export_data, 6
extract_gbif_issue, 7, 8, 9, 12, 19
get_wcvp, 20
prepare_collectorsDictionary, 5
prepare_gbif_occurrence_data, 8, 9, 19
select_digital_voucher, 10
select_gbif_fields, 8, 9, 12
\verb|standardize_scientificName|, 20|\\
update_collectorsDictionary, 4
wcvp_check_name, 21, 24, 25
wcvp_check_name_batch, 22, 23, 25
wcvp_get_data, 22, 24, 25
```