

Robert Haase

Reusing Materials from Jan Ewald and Mara Lampert (ScaDS.AI, Uni Leipzig)

These slides can be reused under the terms of the <u>CC-BY 4.0</u> license unless mentioned otherwise.

Take home message: choose plots wisely

Robert Haase

@haesleinhuepf
October 2025

First things first.

Distribution of data

Leibnitz IOM

Robert Haase

October 2025

@haesleinhuepf

Composition of data Composition **Static Changing Over Time** Many Periods Few Periods Simple Share Accumulation or Components of of Total Subtraction to **Components** Total Only Relative Relative and Relative and Only Relative *Absolute* **Differences** *Absolute* **Differences Differences Matter** Matter Differences Matter Matter Stacked 100% Stacked Area Stacked 100% Stacked Stacked 100% Pie Chart Waterflow Column Chart with Chart Column Chart Column Chart **Area Chart** Chart Subcomponents

Al School Leibnitz IOM Robert Haase @haesleinhuepf October 2025

Relationships between aspects of data

Al School Leibnitz IOM

Robert Haase

October 2025

@haesleinhuepf

Basic elements of data visualization

			Characteristics					
			Selective	Associative	Quantitative	Or der	Length	
Visual Variables	Position	1 · · .	yes	yes	yes	yes	infinite	
	Size	•••	yes	no	partially	yes	Selection: ~ 5 Distinction: ~ 20	
	Shape		no	mostly	no	no	Infinite	
	Value	000	yes	no	no	yes	Selection: < 7 Distinction: ~ 10	
	Color	000	yes	yes	no	no	Selection: < 7 Distinction: ~ 10	
	Orientation	\ /	yes	yes	no	no	infinite	
	Texture	000	yes	yes	no	mu Iti	infinite	

Al School Leibnitz IOM Robert Haase @haesleinhuepf October 2025

Color maps / lookup tables

Choose visualization of your color tables wisely!

Think of people with red/green blindness!

Default view

October 2025

Al School

Colour theory

- Humans may not see the difference between adjacent colors properly
- Use opposite colours instead.

Data visualization using seaborn

Seaborn is a community standard library for advanced data visualization, based on matplotlib.

We strongly discourage data scientists from using plain matplotlib.

https://seaborn.pydata.org/tutorial/introduction.html

https://seaborn.pydata.org/examples/index.html

API comparison & philosophies

seaborn.objects

Plot type driven ←

→ Data and geometry driven

API comparison & philosophies

Data:

Plot:


```
x=data['a']
y=data['b']
yerr = sd(y)
errorbar(x,y, yerr)
```


seaborn.objects

- 1) Choose plot type
- 2) Extract or calculate variables
- 3) Stuff into plot API

- 1) Choose basic type
- 2) Define data and variables
- 1) Define data and variables
- 2) Choose plot geometries
- 3) Define statistics

Plot type driven ←

→ Data and geometry driven

Concepts behind seaborn

Comparison based on categories

Easy to switch plot type

Al School Leibnitz IOM

Robert Haase

@haesleinhuepf

Comparison based on categories

Seaborn plotting is based on DataFrames (df)

Seaborn functions take a df and:

- Hue
- Size

Alternative views for comparison

sns.histplot(data=data, x='value', hue='series')

Inspection relationships

sns.scatterplot(data=df, x="aspect_ratio", y="area");

October 2025

Al School

Inspection relationships

Pairplots are great for getting an overview

	area	intensity_mean	major_axis_length	minor_axis_length	aspect_ratio	file_name
0	139	96.546763	17.504104	10.292770	1.700621	20P1_POS0010_D_1UL
1	360	86.613889	35.746808	14.983124	2.385805	20P1_POS0010_D_1UL
2	43	91.488372	12.967884	4.351573	2.980045	20P1_POS0010_D_1UL
3	140	73.742857	18.940508	10.314404	1.836316	20P1_POS0010_D_1UL
4	144	89.375000	13.639308	13.458532	1.013432	20P1_POS0010_D_1UL
106	305	88.252459	20.226532	19.244210	1.051045	20P1_POS0007_D_1UL
107	593	89.905565	36.508370	21.365394	1.708762	20P1_POS0007_D_1UL
108	289	106.851211	20.427809	18.221452	1.121086	20P1_POS0007_D_1UL
109	277	100.664260	20.307965	17.432920	1.164920	20P1_POS0007_D_1UL
110	46	70.869565	11.648895	5.298003	2.198733	20P1_POS0007_D_1UL

111 rows × 6 columns

sns.pairplot(data=df);

imshow originates from Matlab and has been implemented many times.

matplotlib

scikit-image

[4]: io.imshow(image)

C:\Users\rober\AppData\Local\Temp
\ipykernel_46732\2038164919.py:1:

\ipykernel_46732\2038164919.py:1: FutureWarning: `imshow` is depreca ted since version 0.25 and will be removed in version 0.27. Please us e `matplotlib`, `napari`, etc. to visualize images.

io.imshow(image)

[4]: <matplotlib.image.AxesImage at 0x1
fa580cbc50>

import matplotlib.pyplot as plt
import stackview
from skimage import io

stackview

[5]: stackview.imshow(image)

200

Al School Leibnitz IOM Robert Haase @haesleinhuepf October 2025

100

150

imshow originates from Matlab and has been implemented many times.

matplotlib

[6]: plt.imshow(labels)

[6]: <matplotlib.image.AxesImage at 0x1
fa5b6df210>

scikit-image

[7]: io.imshow(labels)

C:\Users\rober\AppData\Local\Temp\ipykernel_46732\28416559.py:1: FutureWarning: `imshow` is deprecated since version 0.25 and will be removed in version 0.27. Please use `matplotlib`, `napari`, etc. to visualize images.

io.imshow(labels)

C:\Users\rober\miniforge3\envs\bob
-env\Lib\site-packages\skimage\io
_plugins\matplotlib_plugin.py:15
8: UserWarning: Low image data ran
ge; displaying image with stretche
d contrast.
lo. hi cman = get display rang

lo, hi, cmap = _get_display_rang
e(image)

[7]: <matplotlib.image.AxesImage at 0x1
fa5b67b410>

import matplotlib.pyplot as plt import stackview from skimage import io

stackview

[8]: stackview.imshow(labels)

Al School Leibnitz IOM Robert Haase @haesleinhuepf October 2025

... using *stackview*

Disclosure: I maintain this

[3]: import stackview
stackview.imshow(image)

[5]:

stackview.imshow(image, colormap="pure_red")

[6]:

stackview.imshow(image, colormap="seismic")

Al School Leibnitz IOM Robert Haase @haesleinhuepf October 2025 https://github.com/haesleinhuepf/stackview https://github.com/ScaDS/BIDS-lecture- 22 2025/blob/main/02a image processing/02 opening visualizing

... using stackview

[6]: stackview.slice(mri_image)

Leibnitz IOM

Robert Haase

October 2025

@haesleinhuepf

... using *stackview*

[6]: stackview.slice(mri_image)

Al School Leibnitz IOM

Robert Haase

October 2025

@haesleinhuepf

[8]: stackview.histogram(image)

Selecting objects according to their properties

Understanding what certain measurements *mean* may require interactive user interfaces

