TD3 Algorithm

2: Initialize target networks $\theta'_1 \leftarrow \theta_1, \; \theta'_2 \leftarrow \theta_2, \; \phi' \leftarrow \phi$ 3: Initialize replay buffer B

1: Initialize critic networks Q_{θ_1} , Q_{θ_2} , and actor network π_{ϕ} with random parameters θ_1 , θ_2 , ϕ_2

4: **for** t = 1 to T **do**

Store transition tuple (s, a, R, s') in B Sample mini-batch of N transitions (s, a, R, s') from B

Sample mini-batch of N transitions
$$(s, a, R, s')$$
 from B
 $\tilde{a} \leftarrow \pi_{\phi'}(s') + \epsilon, \ \epsilon \sim \text{clip}(\mathcal{N}(0, \tilde{\sigma}), -c, c)$

 $y \leftarrow R + \gamma \min_{i=1,2} Q_{\theta'_i}(s', \tilde{a})$

Update critics
$$\theta_i \leftarrow \arg\min_{\theta_i} N^{-1} \sum (y - Q_{\theta_i}(s, a))^2$$

 $\nabla_{\phi} J(\phi) = N^{-1} \sum \nabla_{a} Q_{\theta_{1}}(s, a)|_{a=\pi_{\phi}(s)} \nabla_{\phi} \pi_{\phi}(s)$

if $t \mod d$ then Update ϕ by the deterministic policy gradient:

Update critics
$$\theta_i \leftarrow \arg\min_{\theta_i} N^{-1} \sum (y - Q_{\theta_i})$$

11: **if** $t \mod d$ **then**

Update target networks:

 $\theta_i' \leftarrow \tau \theta_i + (1-\tau)\theta_i'$

 $\phi' \leftarrow \tau \phi + (1 - \tau) \phi'$

$$\leftarrow R + \gamma \min_{i=1,2} Q_{\theta'_i}(s', \tilde{a})$$

pdate critics $\theta_i \leftarrow \arg \min_{\theta_i} N^{-1} \sum (y - Q_{\theta_i}(s, a))^2$

$$(a, R, s')$$
 from B

7:

8: 9:

12:

13:

14:

15:

16:

17:

18: end for

end if