

Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação (ICMC) SSC0903 - Computação de Alto Desempenho

Resultados para o Método Iterativo de Jacobi-Richardson com MPI e OMP

Matheus Yasuo Ribeiro Utino - 11233689 Pedro Ribas Serras - 11234328 Vinícius Silva Montanari - 11233709

Docente: Dr. Paulo Sérgio Lopes de Souza

São Carlos Julho de 2022

Sumário

1	Introdução	2
2	Resultados	2
3	Conclusão	8

Lista de Figuras

1	Tempo de resposta	6
2	Speedup	7
3	Eficiência	8

Lista de Tabelas

1	Tempos para um número de processos MPI igual a 4	3
2	Tempos para um número de processos MPI igual a 6	4
3	Tempos para um número de processos MPI igual a 8	5

1 Introdução

Agora serão analisados todos os resultados para o método iterativo de Jacobi-Richardson utilizando o MPI e OMP, sendo fixada uma matriz de dimensão (46000, 46000) para a realização das medidas. No caso, será variado o número de processos MPI que serão executados nos nós do *cluster*, sendo que no caso assumirá os valores de 4, 6 e 8. Além disso, também será variado o número de *threads* por nó do *cluster* entre os valores de 2, 4, 8 e 10.

Para o cálculo dos tempos será executado 30 vezes o algoritmo e posteriormente calcular a média dos valores, desvio padrão, *speedups* e eficiências. Após esses cálculos serão plotados gráficos do tempo de resposta, *speedups* e eficiências para facilitar a visualização dos dados.

Com isso, torna-se possível comparar efetivamente os resultados e tomar as conclusões sobre o uso do MPI com o OMP.

2 Resultados

Agora efetivamente serão demonstrados os resultados, em que será analisado para cada número de processos MPI, variando o número de *threads*.

A tabela 1 apresenta os tempos para o número de processos MPI igual a 4 e variando o número de threads.

Iteração	Sequencial	T = 2	T=4	T = 8	T = 10
1	69,40994	9,53754	7,225882	6,263154	5,746216
2	69,40676	9,490082	7,353652	6,101571	5,823271
3	69,41071	9,482243	7,303374	6,323701	5,851313
4	69,42166	9,438987	7,312773	6,27628	5,843283
5	69,3987	9,401808	7,242175	6,147652	5,777733
6	69,41102	9,494712	7,289908	6,156911	5,899059
7	69,39978	9,369517	7,378348	6,18884	5,870448
8	69,41352	9,302196	7,31825	6,221276	5,778396
9	69,40824	9,560286	7,320367	6,160599	5,844388
10	69,40366	9,613368	7,393567	6,137714	5,789154
11	69,40293	9,577331	7,449795	6,189169	5,785906
12	69,40708	9,595082	7,448398	6,248558	5,830461
13	69,39466	9,338438	7,373747	6,127777	5,803768
14	69,41123	9,609089	7,336248	6,271703	5,858882
15	69,40622	9,570893	7,255598	6,234943	5,82564
16	69,39614	9,612279	7,302385	6,181925	5,882553
17	69,40912	9,594929	7,340331	6,221872	5,826624
18	69,41157	9,568505	7,345963	6,186084	5,815929
19	69,41767	9,576404	7,327084	6,170474	5,843664
20	69,41295	9,603867	7,325783	6,231943	5,822723
21	69,4138	9,594088	7,26742	6,282355	5,786285
22	69,4118	9,618156	7,261766	6,260611	5,847738
23	69,40858	9,447492	7,343559	6,152757	5,806233
24	69,4949	9,194659	7,329044	6,161811	5,848434
25	69,36732	9,454428	7,331292	6,280762	5,796269
26	69,40684	9,619706	7,32557	6,214002	5,77936
27	69,36119	9,591366	7,358775	6,273567	5,876133
28	69,31601	9,388814	7,348525	6,080192	5,725816
29	69,42903	9,541509	7,342298	6,200932	5,811466
30	69,35498	9,543683	7,344787	6,249928	5,845384
Total	2082,118	285,3315	219,8967	186,1991	174,6425
Média	69,40841	9,511049	7,330168	6,207467	5,824456
Desvio	0,028509	0,109029	0,051079	0,059929	0,039937
Speedup	-	7,297661	9,46887	11,18144	11,91672
Eficiência	-	3,648831	2,367218	1,39768	1,191672

Tabela 1: Tempos para um número de processos MPI igual a 4.

Já os tempos para um número de processos MPI igual a 6 estão contidos na tabela 2.

Iteração	Sequencial	T = 2	T=4	T = 8	T = 10
1	69,40994	6,693527	5,012829	4,288168	3,901729
2	69,40676	6,409424	4,983071	4,187147	3,896993
3	69,41071	6,4517	5,055397	4,231734	3,966661
4	69,42166	6,406908	4,980781	4,286222	3,9414
5	69,3987	6,420923	5,030373	4,278118	3,94594
6	69,41102	6,416008	4,958022	4,27548	3,950693
7	69,39978	6,374606	5,041404	4,300758	3,89989
8	69,41352	6,394664	5,023082	4,304721	3,959405
9	69,40824	6,321871	5,083631	4,185889	3,919376
10	69,40366	6,486678	5,02703	4,222596	3,970886
11	69,40293	6,458529	4,98507	4,241773	3,947146
12	69,40708	6,483414	5,010628	4,313054	3,888223
13	69,39466	6,439104	4,997492	4,238317	3,973356
14	69,41123	6,448788	5,109449	4,241881	3,874204
15	69,40622	6,390803	5,064225	4,216728	3,934334
16	69,39614	6,435347	4,963846	4,236301	3,916139
17	69,40912	6,508991	5,009601	4,261135	3,886728
18	69,41157	6,485754	4,993606	4,253657	3,982818
19	69,41767	6,455571	4,969671	4,281202	3,93681
20	69,41295	6,494251	5,036146	4,276091	3,952518
21	69,4138	6,468901	5,006041	4,309337	3,947401
22	69,4118	6,44672	5,06072	4,256981	4,326963
23	69,40858	6,412407	5,011059	4,320353	3,939487
24	69,4949	6,445567	5,084901	4,233842	3,945982
25	69,36732	6,457562	5,138713	4,233606	3,952939
26	69,40684	6,483865	5,041335	4,243301	3,945498
27	69,36119	6,483038	5,007889	4,261122	3,916053
28	69,31601	6,489568	5,059492	4,30333	3,874835
29	69,42903	6,503361	5,063691	4,319141	4,178312
30	69,35498	6,455843	5,000893	4,277146	3,986996
Total	2082,118	193,6237	150,8101	127,8791	118,6597
Média	69,40841	6,454123	5,017956	4,261129	3,945719
Desvio	0,028509	0,061904	0,04333	0,036693	0,088661
Speedup	-	10,75412	13,83201	16,28874	17,59081
Eficiência	-	5,37706	3,458002	2,036092	1,759081

Tabela 2: Tempos para um número de processos MPI igual a 6.

Por fim, os dados relativos a um número de processos MPI igual a 8estão presentes na tabela $3.\,$

Iteração	Sequencial	T = 2	T=4	T = 8	T = 10
1	69,40994	7,504289	3,90216	3,19256	2,944575
2	69,40676	4,816875	3,883471	3,269167	2,970035
3	69,41071	4,811737	3,830435	3,255878	2,922936
4	69,42166	4,823743	3,87274	3,22415	2,954809
5	69,3987	4,817317	3,851624	3,260803	2,938436
6	69,41102	4,852621	3,950705	3,19847	2,95267
7	69,39978	4,822675	3,842247	3,219462	2,972831
8	69,41352	4,825502	3,828994	3,233763	2,954544
9	69,40824	4,846453	3,920288	3,2138	2,95493
10	69,40366	4,829775	3,860883	3,157393	2,973758
11	69,40293	4,832767	3,879761	3,227983	2,965096
12	69,40708	4,822488	3,847993	3,309061	2,996995
13	69,39466	4,818275	3,855514	3,239797	2,973644
14	69,41123	4,810758	3,958213	3,194032	2,959549
15	69,40622	4,822176	3,84494	3,254959	2,993998
16	69,39614	4,836993	3,85598	3,24702	2,955295
17	69,40912	4,80779	3,776629	3,220298	2,932516
18	69,41157	4,80299	3,885778	3,24405	2,953586
19	69,41767	4,909809	3,818285	3,184712	2,96156
20	69,41295	4,845613	3,856074	3,229354	2,960909
21	69,4138	4,894422	3,864051	3,200465	2,981834
22	69,4118	4,747831	3,9328	3,248962	2,949232
23	69,40858	4,815418	3,850049	3,217117	3,01372
24	69,4949	4,81417	3,82262	3,202453	2,985476
25	69,36732	4,809728	3,874811	3,288032	2,943738
26	69,40684	4,885312	3,870139	3,23903	2,96587
27	69,36119	4,894462	3,808048	3,240598	2,936061
28	69,31601	4,852936	3,927079	3,176258	2,943544
29	69,42903	4,712517	3,839281	3,307927	2,924295
30	69,35498	4,802975	3,814805	3,228231	2,951358
Total	2082,118	147,4904	115,9264	96,92579	88,7878
Média	69,40841	4,916347	3,856027	3,228793	2,955113
Desvio	0,028509	0,49033	0,042613	0,035624	0,021043
Speedup	-	14,11788	17,99998	21,49671	23,48757
Eficiência	-	7,058941	4,499995	2,687088	2,348757

Tabela 3: Tempos para um número de processos MPI igual a 8.

Com esses dados é possível plotar um gráfico de barras do tempo de resposta para ter uma análise visual rápida do comportamento ao variar o número de *threads* para cada número de processos(np) MPI, conforme a figura 1.

Figura 1: Tempo de resposta.

Pela figura 1 é possível notar que o aumento do número de *threads* acarretou em uma redução do tempo de resposta, isso para todas as quantidades de processos MPI analisadas.

Além disso, também é possível exibir o *speedup* em função do número de *threads* para cada quantidade de processos MPI, como presenta na figura 2.

Figura 2: Speedup.

Observando a figura 2, nota-se que o speedup para todas as quantidades de processos MPI apresenta um comportamento linear até o número de threads igual a 8 e depois ocorre uma redução do coeficiente angular da reta. Assim, o comportamento encontrado é aproximadamente linear para a ordem de matriz de 46000. Ademais, conforme esperado o aumento do número de processos MPI acarreta em um ganho de desempenho, isso até um certo limiar, aumentar indiscriminadamente o número de processos pode levar até a queda de desempenho, pois o custo de comunicação começa a ser muito elevado, então deve ser devidamente testado para verificar sua eficacia.

Outra análise vital é da eficiência em relação ao número de *threads*, conforme presente na figura 3.

Figura 3: Eficiência.

Pela figura 3, nota-se que com o aumento do número de *threads* a eficiência acaba decaindo para os valores de número de processos MPI escolhidos.

3 Conclusão

Nota-se pelo valores analisados que, conforme esperado, para uma boa paralelização é vital saber a máquina que estamos rodando, assim como o número de *threads* e processos MPI gerados para maximizar o desempenho e evitar *overhead* de comunicação.

Para os casos analisados, ocorreu uma boa redução do tempo de resposta em função do número de *threads* e um aumento do *speedup* que apresentou um comportamento praticamente linear. Além disso, a eficiência começou a cair com o aumento do número de *threads* para todas as quantidades de processos MPIs analisados.

Dessa forma, a paralelização utilizando a combinação entre o OMP e MPI apresentou bons resultados que demonstram uma grande redução do tempo de resposta para uma ordem de matriz

 ${\rm de}\ 46000{\rm x}46000.$