

Master Eii

Fiche Algorithme de Diffie-Hellman

Alice et Bob veulent echanger une clef secrète à utiliser dans un cryptosystème classique.

- 1. Ils choisissent ensemble un premier p assez grand et un générateur g de $(\mathbb{Z}/p\mathbb{Z})^*$. Ces informations sont publiques.
- 2. Alice choisit au hasard $a \in \{2, \dots, p-1\}$ et elle calcule $A = g^a$. Alice rend public A.
- 3. Bob choisit au hasard $b \in \{2, \dots, p-1\}$ et il calcule $B = g^b$. Bob rend public B.
- 4. Tous les deux calculent $C=g^{ab}=(g^a)^b=(g^b)^a$, qui sera leur clef secrète.

Dans la communication on a transmis seulement A et B. Si un intrus, Charles veut connaître C, il devrait résoudre le problème de Diffie-Hellmann:

$$p$$
 premier, g générateur de $(\mathbb{Z}/p\mathbb{Z})^*$, g^a, g^b donnés, \Rightarrow calculer g^{ab}

On conjecture que ce problème est équivalent au problème du logarithme discret:

$$p$$
 premier, g génerateur de $(\mathbb{Z}/p\mathbb{Z})^*$, $a=g^x$ donnés, \Rightarrow calculer x

Pour ce dernier problème on ne connait pas d'algorithme polynomial,

Master Eii

Fiche Algorithme de Diffie-Hellman

APPLICATION 1:

APPLICATION 2:

Chez Alice	Publique (internet)	Chez Bob
	On choisit un nombre premier arbitraire commun: $p = 419$	
	On choisit un nombre aléatoire commun inférieur à p: $\mathbf{g} = 7$	
Alice choisit un nombre aléatoire secret: Ax = 178		Bob choisit un nombre aléatoire secret: $\mathbf{B}\mathbf{x} = 344$
Ay = 7 ¹⁷⁸ modulo 419 = 208		By = 7 ³⁴⁴ modulo 419 = 49
Ay = 208	-	Ay = 208
By = 49	*	By = 49
s = 49 ¹⁷⁸ modulo 419 = 107		s = 208 ³⁴⁴ modulo 419 = 107
	échange de données chiffrées avec 5	