

planetmath.org

Math for the people, by the people.

lecture notes on polynomial interpolation

Canonical name LectureNotesOnPolynomialInterpolation

Date of creation 2013-03-22 16:51:59 Last modified on 2013-03-22 16:51:59

Owner rmilson (146) Last modified by rmilson (146)

Numerical id 7

Author rmilson (146)

Entry type Topic

Classification msc 41A05

Related topic EvaluationHomomorphism Related topic LagrangeInterpolationFormula

Related topic VanderMondeMatrix

Defines multi-evaluation mapping
Defines interpolation mapping
Defines polynomial interpolation

1 Summary of notation and terminonlogy

- multi-evaluation mapping: $\operatorname{ev}_{\mathbf{x}}: \mathcal{P}_m \to \mathbb{R}^n$, $\mathbf{x} \in \mathbb{R}^n$. Here \mathcal{P}_m is the vector space of polynomials of degree m or less.
- interpolation mapping: $\operatorname{pol}_{\mathbf{x}} : \mathbb{R}^n \to \mathcal{P}_{n-1}, \ \mathbf{x} \in \mathbb{R}^n \text{ where } x_1, \dots, x_n \text{ are distinct;}$
- Vandermonde matrix and polynomial;
- overdetermined and underdetermined linear system;
- overdetermined and underdetermined interpolation problem

2 The polynomial interpolation problem

Definition 1. Let $\mathbf{x} \in \mathbb{R}^n$ be given. Define $\operatorname{ev}_{\mathbf{x}} : \mathcal{P}_m \to \mathbb{R}^n$, the multi-evaluation mapping, to be the linear transformation given by

$$\operatorname{ev}_{\mathbf{x}}: p \to \begin{bmatrix} p(x_1) \\ \vdots \\ p(x_n) \end{bmatrix}, \quad p \in \mathcal{P}_m.$$

Problem 2 (Polynomial interpolation). Given $(x_1, y_1), \ldots, (x_n, y_n) \in \mathbb{R}^2$ to find a polynomial $p \in \mathcal{P}_m$ such that $p(x_i) = y_i, i = 1, \ldots, n$. Equivalently, given $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ to find the preimage $\operatorname{ev}_{\mathbf{x}}^{-1}(\mathbf{y})$.

Theorem 3. Fix $\mathbf{x} \in \mathbb{R}^n$. The multi-evaluation mapping $\operatorname{ev}_{\mathbf{x}} : \mathcal{P}_{n-1} \to \mathbb{R}^n$ is an isomorphism if and only if the components x_1, \ldots, x_n are distinct.

3 Vandermonde matrix, polynomial, and determinant

Definition 4. For a given $\mathbf{x} \in \mathbb{R}^n$, the following matrix

$$VM(\mathbf{x}) = VM(x_1, \dots, x_n) = \begin{bmatrix} 1 & x_1 & x_1^2 & \dots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \dots & x_2^{n-1} \\ 1 & x_3 & x_3^2 & \dots & x_3^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^{n-1} \end{bmatrix}$$

is called the *Vandermonde matrix*. The expression,

$$V(\mathbf{x}) = V(x_1, \dots, x_n) = \prod_{1 \le i < j \le n} (x_j - x_i)$$

is called the Vandermonde polynomial. Note: we define $V(x_1) = 1$; the usual convention is that the empty product is equal to 1.

Proposition 5. The Vandermonde matrix is the transformation matrix of $\operatorname{ev}_{\mathbf{x}}$ with the monomial basis $[1, x, \ldots, x^n]$ as the input basis and the standard basis $[\mathbf{e}_1, \ldots, \mathbf{e}_{n+1}]$ as the output basis.

Theorem 6. The Vandermonde polynomial gives the determinant of the Vandermonde matrix:

$$\begin{vmatrix} 1 & x_1 & \dots & x_1^{n-1} \\ 1 & x_2 & \dots & x_2^{n-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & \dots & x_n^{n-1} \end{vmatrix} = \prod_{1 \le i < j \le n+1} (x_j - x_i), \tag{1}$$

or more succinctly,

$$\det VM(\mathbf{x}) = V(\mathbf{x}).$$

Proof. We will prove formula (??) by induction on n. Note that

$$VM(x_1) = [1], V(x_1) = 1.$$

Evidently then, the formula works for n = 1. Next, suppose that we believe the formula for a given n. We show that the formula is valid for n + 1. For $x_1, \ldots, x_n \in \mathbb{R}$ and a variable x, and consider the nth degree polynomial

$$p(x) = \det \mathsf{VM}(x_1, \dots, x_n, x) = \begin{vmatrix} 1 & x_1 & \dots & x_1^{n-1} & x_1^n \\ 1 & x_2 & \dots & x_2^{n-1} & x_2^n \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & x_n & \dots & x_n^{n-1} & x_n^n \\ 1 & x & \dots & x^{n-1} & x^n \end{vmatrix}$$

By the properties of determinants, x_1, \ldots, x_n are roots of p(x). Taking the cofactor expansion along the bottom row, we see that the coefficient of x^n is $V(x_1, \ldots, x_n)$. Therefore,

$$p(x) = V(x_1, \dots, x_n)(x - x_1) \cdots (x - x_n) = V(x_1, \dots, x_n, x),$$

as was to be shown.

4 Lagrange interpolation formula

Let $x_1, \ldots, x_n \in \mathbb{R}$ be distinct. We know that $\operatorname{ev}_{\mathbf{x}} : \mathcal{P}_{n-1} \to \mathbb{R}^n$ is invertible. Let $\operatorname{pol}_{\mathbf{x}} : \mathbb{R}^n \to \mathcal{P}_{n-1}$ denote the inverse. In principle, this inverse is described by the inverse of the Vandermonde matrix. Is there another way to solve the interpolation problem? For $i = 1, \ldots, n$ let us define the polynomial

$$p_i(x) = \prod_{j \neq i} \frac{x - x_j}{x_i - x_j}.$$

These n-1 degree polynomials have been "engineered" so that $p_i(x_i) = 1$ and so that $p_i(x_i) = 0$ for $i \neq j$

Theorem 7 (Lagrange interpolation formula). Let $x_1, \ldots, x_n \in \mathbb{R}$ be distinct. Then,

$$pol_{\mathbf{x}}(\mathbf{y}) = y_1 p_1 + \dots + y_n p_n.$$

5 Underdetermined and overdetermined interpolation

Definition 8. Let $T: \mathcal{U} \to \mathcal{V}$ be a linear transformation of finite dimensional vector spaces. A linear problem is an equation of the form

$$T(\mathbf{u}) = \mathbf{v},$$

where $\mathbf{v} \in \mathcal{V}$ is given, and $\mathbf{u} \in \mathcal{U}$ is the unknown. To be more precise, the problem is to determine the preimage $T^{-1}(\mathbf{v})$ for a given $\mathbf{v} \in \mathcal{V}$. We say that the problem is overdetermined if $\dim \mathcal{V} > \dim \mathcal{U}$, i.e. if there are more equations than unknowns. The linear problem is said to be underdetermined if $\dim \mathcal{V} < \dim \mathcal{U}$, i.e., if there are more variables than equations.

Remark 9. By the rank-nullity theorem, an underdetermined linear problem will either be inconsistent, or will have multiple solutions. Thus, an underdetermined system arises when T is not one-to-one; i.e., the kernel $\ker(T)$ is non-trivial. An overdetermined linear system is inconsistent, unless \mathbf{v} satisfies a number linear compatibility constraints, equations that describe the image $\operatorname{Im}(T)$. To put it another way, an overdetermined system arises when T is not onto.

Definition 10. Let $x_1, \ldots, x_n \in \mathbb{R}$ be distinct and let $\text{ev}_{\mathbf{x}} : \mathcal{P}_m \to \mathbb{R}^n$ be the corresponding multi-evaluation mapping. Let $\mathbf{y} \in \mathbb{R}^n$ be given. The linear equation

$$\operatorname{ev}_{\mathbf{x}}(p) = \mathbf{y}, \quad p \in \mathcal{P}_m$$

is called an underdetermined interpolation problem if $m \geq n$. If $m \leq n-2$, we call the above equation an overdetermined interpolation problem. Note that if m = n - 1, the interpolation problem is "just right"; there is exactly one solution, namely the polynomial $\operatorname{pol}_{\mathbf{x}}(\mathbf{y})$ given by the Lagrange interpolation formula.

Proposition 11 (Underdetermined interpolation). Let $x_1, \ldots, x_n \in \mathbb{R}$ be distinct. Define

$$q(x) = (x - x_1) \cdots (x - x_n)$$

to be the n^{th} degree polynomial with the x_i as its roots. Suppose that $m \geq n$. Then, the multi-evaluation mapping $\operatorname{ev}_{\mathbf{x}} : \mathcal{P}_m \to \mathbb{R}^n$ is not one-to-one. A basis for the kernel is given by $q(x), xq(x), \ldots, x^{m-n}q(x)$. Let $y_1, \ldots, y_n \in \mathbb{R}$ be given. The solution set to the interpolation problem $\operatorname{ev}_{\mathbf{x}}(p) = \mathbf{y}$, is given by

$$\operatorname{ev}_{\mathbf{x}}^{-1}(\mathbf{y}) = \{r + sq : s \in \mathcal{P}_{m-n}\},\$$

where $r = \operatorname{pol}_{\mathbf{x}}(\mathbf{y})$ is the $n-1^{st}$ degree polynomial given by the Lagrange interpolation formula. To put it another way, the general solution of the equation

$$\operatorname{ev}_{\mathbf{x}}(p) = \mathbf{y}$$

is given by

$$p = r + sq$$
, $s \in \mathcal{P}_{n-m}$ free.

Proposition 12 (Overdetermined interpolation). Let $x_1, \ldots, x_n \in \mathbb{R}$ be distinct. Suppose that $m \leq n-2$. Then, the multi-evaluation mapping $\operatorname{ev}_{\mathbf{x}} : \mathcal{P}_m \to \mathbb{R}^n$ is not onto. If m = n-2, then $\mathbf{y} \in \mathbb{R}^4$ belongs to $\operatorname{Im}(\operatorname{ev}_{\mathbf{x}})$ if and only if

$$\begin{vmatrix} 1 & x_1 & \dots & x_1^m & y_1 \\ 1 & x_2 & \dots & x_2^m & y_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & x_{n-1} & \dots & x_{n-1}^m & y_{n-1} \\ 1 & x_n & \dots & x_n^m & y_n \end{vmatrix} = 0$$

More generally, for any $m \leq n-2$, the interpolation problem $\operatorname{ev}_{\mathbf{x}}(p) = \mathbf{y}, \ \mathbf{y} \in \mathbb{R}^n$ has a solution if and only if rank $M(\mathbf{x}, \mathbf{y}) = m+1$ where

$$M(\mathbf{x}, \mathbf{y}) = \begin{bmatrix} 1 & x_1 & \dots & x_1^m & y_1 \\ 1 & x_2 & \dots & x_2^m & y_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & x_{m+1} & \dots & x_{m+1}^m & y_{m+1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_n & \dots & x_n^m & y_n \end{bmatrix}$$

Remark 13. The compatibility constraints on y_1, \ldots, y_n for an overdetermined system amount to the condition that \mathbf{y} lie in the image of $\mathrm{ev}_{\mathbf{x}}$, or what is equivalent, belong to the column space of the corresponding transformation matrix. We can therefore obtain the constraint equations by row reducing the augmented matrix $M(\mathbf{x}, \mathbf{y})$ to echelon form. The back entries of the last n-m-1 rows will hold the constraint equations. Equivalently, we can solve the interpolation problem for $(x_1, y_1), \ldots, (x_m, y_m)$ to obtain a $p = y_1 p_1 + y_{m+1} p_{m+1} \in \mathcal{P}_m$. The additional equations

$$y_i = y_1 p_1(x_i) + \dots + y_{m+1} p_{m+1}(x_i), i = m+2,\dots, n$$

are the desired compatibility constraints on y_1, \ldots, y_n .