15-213 "The Class That Gives CMU Its Zip!"

Bits, Bytes, and Integers September 1, 2006

Topics

- Representing information as bits
- Bit-level manipulations
 - Boolean algebra
 - Expressing in C
- Representations of Integers
 - Basic properties and operations
 - Implications for C

class02.ppt 15-213 F'06

Binary Representations

Base 2 Number Representation

- Represent 15213₁₀ as 11101101101101₂
- Represent 1.20₁₀ as 1.0011001100110011[0011]...₂
- Represent 1.5213 X 10⁴ as 1.1101101101101₂ X 2¹³

Electronic Implementation

- Easy to store with bistable elements
- Reliably transmitted on noisy and inaccurate wires

- 2 - 15-213, F'06

Encoding Byte Values

Byte = 8 bits

- Binary 00000000₂ to 11111111₂
- Decimal: 0₁₀ to 255₁₀
 - First digit must not be 0 in C
- Hexadecimal 00₁₆ to FF₁₆
 - Base 16 number representation
 - Use characters '0' to '9' and 'A' to 'F'
 - Write FA1D37B₁₆ in C as 0xFA1D37B

» Or 0xfald37b

He	t De	cimal Binary
0	0	0000
0 1 2 3	1 2 3	0001
2	2	0010
3	3	0011
4	4	0100
5 6 7 8	4 5 6 7	0101
6	6	0110
7	7	0111
	8	1000
9	9	1001
Α	10	1010
В	11	1011
С	12	1100
D	13	1101
Е	14	1110
F	15	1111

Byte-Oriented Memory Organization

Programs Refer to Virtual Addresses

- Conceptually very large array of bytes
- Actually implemented with hierarchy of different memory types
- System provides address space private to particular "process"
 - Program being executed
 - Program can clobber its own data, but not that of others

Compiler + Run-Time System Control Allocation

- Where different program objects should be stored
- All allocation within single virtual address space

- 3 - 15-213, F'06 - 4 - 15-213, F'06

Machine Words

Machine Has "Word Size"

- Nominal size of integer-valued data
 - Including addresses
- Most current machines use 32 bits (4 bytes) words
 - Limits addresses to 4GB
 - » Users can access 3GB
 - Becoming too small for memory-intensive applications
- High-end systems use 64 bits (8 bytes) words
 - Potential address space ≈ 1.8 X 10¹⁹ bytes
 - x86-64 machines support 48-bit addresses: 256 Terabytes
- Machines support multiple data formats
 - Fractions or multiples of word size
 - Always integral number of bytes

-5-

Word-Oriented Memory Organization 32-bit 64

Addresses Specify Byte Locations

- Address of first byte in word
- Addresses of successive words differ by 4 (32-bit) or 8 (64-bit)

Data Representations

Sizes of C Objects (in Bytes)

C Data Type	Typical 32-bit	Intel IA32	x86-64
unsigned	4	4	4
• int	4	4	4
long int	4	4	4
• char	1	1	1
short	2	2	2
float	4	4	4
double	8	8	8
 long double 	e –	10/12	10/12
• char *	4	4	8

» Or any other pointer

Byte Ordering

How should bytes within multi-byte word be ordered in memory?

Conventions

-6-

- Big Endian: Sun, PPC Mac
 - Least significant byte has highest address
- Little Endian: x86
 - Least significant byte has lowest address

-7- 15-213, F'06 -8- 15-213, F'06

Byte Ordering Example

Big Endian

Least significant byte has highest address

Little Endian

Least significant byte has lowest address

Example

- Variable x has 4-byte representation 0x01234567
- Address given by &x is 0x100

– 9 – 15-213, F'06

Reading Byte-Reversed Listings

Disassembly

- Text representation of binary machine code
- Generated by program that reads the machine code

Example Fragment

```
        Address
        Instruction Code
        Assembly Rendition

        8048365:
        5b
        pop %ebx

        8048366:
        81 c3 ab 12 00 00
        add $0x12ab,%ebx

        804836c:
        83 bb 28 00 00 00 00 cmpl $0x0,0x28(%ebx)
```

Deciphering Numbers

- Value:
- Pad to 4 bytes:
- Split into bytes:
- Reverse:
- 0x000012ab 00 00 12 ab
- ab 12 00 00

0x12ab

– 10 – 15-213, F'06

Examining Data Representations

Code to Print Byte Representation of Data

■ Casting pointer to unsigned char * creates byte array

Printf directives:

%p: Print pointer
%x: Print Hexadecimal

show_bytes Execution Example

```
int a = 15213;
printf("int a = 15213;\n");
show_bytes((pointer) &a, sizeof(int));
```

Result (Linux):

```
int a = 15213;
0x11ffffcb8  0x6d
0x11ffffcb9  0x3b
0x11ffffcba  0x00
0x11ffffcbb  0x00
```

Representing Integers

int A = 15213; int B = -15213;long int C = 15213; Decimal: 15213

IA32, x86-64 A Sun A

IA32, x86-64 B Sun B

Two's complement representation (Covered later)

Binary: 0011 1011 0110 1101 Hex: 3 D в 6

15-213, F'06

Representing Pointers

int B = -15213;int *P = &B;

Sun P

IA32 P

x86-64 P

Different compilers & machines assign different locations to objects

- 14 -15-213, F'06

Representing Strings

Strings in C

- 13 -

char S[6] = "15213";

- Represented by array of characters
- Each character encoded in ASCII format
 - Standard 7-bit encoding of character set
 - Character "0" has code 0x30
 - » Digit i has code 0x30+i
- String should be null-terminated
 - Final character = 0

Compatibility

■ Byte ordering not an issue

Linux/Alpha s Sun s

Boolean Algebra

Developed by George Boole in 19th Century

- Algebraic representation of logic
- Encode "True" as 1 and "False" as 0

And

Or

■ A&B = 1 when both A=1 and

■ A|B = 1 when either A=1 or

Not

■ ~A = 1 when A=0

~	
0	1
1	0

- **Exclusive-Or (Xor)**
 - A^B = 1 when either A=1 or B=1. but not both

Application of Boolean Algebra

Applied to Digital Systems by Claude Shannon

- 1937 MIT Master's Thesis
- Reason about networks of relay switches
 - Encode closed switch as 1, open switch as 0

General Boolean Algebras

Operate on Bit Vectors

Operations applied bitwise

	01101001	01101001	01101001		
&	01010101	01010101	<u>^ 01010101</u>	~	01010101
	01000001	01111101	00111100		10101010

All of the Properties of Boolean Algebra Apply

- 17 - 15-213, F'06 - 18 - 15-213, F'06

Representing & Manipulating Sets

Representation

- Width w bit vector represents subsets of {0, ..., w-1}
- $a_j = 1$ if $j \in A$ 01101001 {0, 3, 5, 6} 76543210 01010101 {0, 2, 4, 6} 76543210

Operations

- Intersection 01000001 { 0, 6 }
 Union 01111101 { 0, 2, 3, 4, 5, 6 }
 Symmetric difference 00111100 { 2, 3, 4, 5 }
- Complement 10101010 { 1, 3, 5, 7 }

Bit-Level Operations in C

Operations &, |, ~, ^ Available in C

- Apply to any "integral" data type
 - long, int, short, char, unsigned
- View arguments as bit vectors
- Arguments applied bit-wise

Examples (Char data type)

- ~0x41 --> 0xBE ~01000001₂ --> 10111110₂ ■ ~0x00 --> 0xFF
- -0x00 --> 0xFF -00000000₂ --> 11111111₂
- 0x69 & 0x55 --> 0x41 01101001₂ & 01010101₂ --> 01000001₂
- 0x69 | 0x55 --> 0x7D 01101001₂ | 01010101₂ --> 01111101₂

Contrast: Logic Operations in C

Contrast to Logical Operators

- **&&.** | |, !
 - View 0 as "False"
 - Anything nonzero as "True"
 - Always return 0 or 1
 - Early termination

Examples (char data type)

- !0x41 --> 0x00
- !0x00 --> 0x01
- !!0x41 --> 0x01
- 0x69 && 0x55 --> 0x01
- 0x69 || 0x55 --> 0x01
- p && *p (avoids null pointer access)

– 21 – 15-213, F'06

Shift Operations

Left Shift: $x \ll y$

- Shift bit-vector x left y positions
 - » Throw away extra bits on left
 - Fill with 0's on right

Right Shift: $x \gg y$

- Shift bit-vector x right y positions
 - Throw away extra bits on right
- Logical shift
 - Fill with 0's on left
- Arithmetic shift
 - Replicate most significant bit on right

Argument x	01100010	
<< 3	00010 <i>000</i>	
Log. >> 2	00011000	
Arith. >> 2	00011000	

Argument x	10100010	
<< 3	00010 <i>000</i>	
Log. >> 2	00101000	
Arith. >> 2	11101000	

Strange Behavior

Shift amount > word size

15-213, F'06

Integer C Puzzles

- Assume 32-bit word size, two's complement integers
- For each of the following C expressions, either:
 - Argue that is true for all argument values
 - Give example where not true

• x < 0	$\Rightarrow ((x*2) < 0)$
• ux >= 0	
• x & 7 == 7	\Rightarrow (x<<30) < 0
• ux > -1	
• x > y	⇒ -x < -y

Initialization

- x * x >= 0
 x > 0 && y > 0 ⇒ x + y > 0
 x >= 0 ⇒ -x <= 0
 x <= 0 ⇒ -x >= 0
- (x|-x)>>31 == -1
 ux >> 3 == ux/8
- x >> 3 == x/8
- x & (x-1) != 0

15-213, F'06

Encoding Integers

Unsigned

Two's Complement

$$B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i \qquad B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i$$
short int x = 15213;
short int y = -15213;
Bign
Bit

■ C short 2 bytes long

	Decimal	Hex	Binary
х	15213	3B 6D	00111011 01101101
У	-15213	C4 93	11000100 10010011

Sign Bit

- For 2's complement, most significant bit indicates sign
 - 0 for nonnegative
 - 1 for negative

Encoding Example (Cont.)

x = 15213: 00111011 01101101 y = -15213: 11000100 10010011

Weight	152	13	-152	213
1	1	1	1	1
2	0	0	1	2
4	1	4	0	0
8	1	8	0	0
16	0	0	1	16
32	1	32	0	0
64	1	64	0	0
128	0	0	1	128
256	1	256	0	0
512	1	512	0	0
1024	0	0	1	1024
2048	1	2048	0	0
4096	1	4096	0	0
8192	1	8192	0	0
16384	0	0	1	16384
-32768	0	0	1	-32768
Sum		15213		-15213

Numeric Ranges

Unsigned Values

■ *UMin* = 0 **000...0**

■
$$UMax$$
 = $2^w - 1$ 111...1

Two's Complement Values

■ TMin = -2^{w-1}

100...0

■ TMax = $2^{w-1} - 1$ 011...1

Other Values

■ Minus 1

111...1

Values for W = 16

	Decimal	Hex	Binary	
UMax	65535	FF FF	11111111 11111111	
TMax	32767	7F FF	01111111 11111111	
TMin	-32768	80 00	10000000 00000000	
-1	-1	FF FF	11111111 11111111	
0	0	00 00	00000000 00000000	

- 26 - 15-213, F'06

Values for Different Word Sizes

	W			
	8	16	32	64
UMax	255	65,535	4,294,967,295	18,446,744,073,709,551,615
TMax	127	32,767	2,147,483,647	9,223,372,036,854,775,807
TMin	-128	-32,768	-2,147,483,648	-9,223,372,036,854,775,808

Observations

- 25 -

■ |*TMin*| = *TMax* + 1

Asymmetric range

 \blacksquare UMax = 2 * TMax + 1

C Programming

#include <limits.h>

15-213, F'06

• K&R App. B11

■ Declares constants, e.g.,

ULONG MAX

LONG MAX

LONG MIN

Values platform-specific

Unsigned & Signed Numeric Values

Χ	B2U(X)	B2T(X)
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	-8
1001	9	- 7
1010	10	-6
1011	11	- 5
1100	12	-4
1101	13	-3
1110	14	-2
1111	15	-1

- 28 -

Equivalence

Same encodings for nonnegative values

Uniqueness

- Every bit pattern represents unique integer value
- Each representable integer has unique bit encoding

⇒ Can Invert Mappings

■ U2B(x) = B2U⁻¹(x)

 Bit pattern for unsigned integer

■ $T2B(x) = B2T^{-1}(x)$

• Bit pattern for two's comp integer 15-213. F'06

Relation between Signed & Unsigned

Maintain Same Bit Pattern

Large negative weight

Large positive weight

– 29 – 15-213, F'06

Signed vs. Unsigned in C

Constants

- By default are considered to be signed integers
- Unsigned if have "U" as suffix 0U, 4294967259U

Casting

 Explicit casting between signed & unsigned same as U2T and T2U

```
int tx, ty;
unsigned ux, uy;
tx = (int) ux;
uy = (unsigned) ty;
```

Implicit casting also occurs via assignments and procedure calls

– 30 – 15-213, F'06

Casting Surprises

Expression Evaluation

- If mix unsigned and signed in single expression, signed values implicitly cast to unsigned
- Including comparison operations <, >, ==, <=, >=
- **■** Examples for *W* = 32

Con	stant₁	Constant ₂	Relation	Evaluation
	0	0U	==	unsigned
	-1	0	<	signed
	-1	0υ	>	unsigned
	2147483647	-2147483648	>	signed
	2147483647U	-2147483648	<	unsigned
	-1	-2	>	signed
	(unsigned) -1	-2	>	unsigned
	2147483647	2147483648U	<	unsigned
31 –	2147483647	(int) 2147483648U	>	signed, F'06

Explanation of Casting Surprises

Sign Extension

Task:

- Given w-bit signed integer x
- Convert it to w+k-bit integer with same value

Rule:

- Make *k* copies of sign bit:

- 33 -

15-213, F'06

15-213. F'06

Sign Extension Example

short int x = 15213;
int ix = (int) x;
short int y = -15213;
int iy = (int) y;

	Decimal	Hex				Binary			
x	15213			3В	6D			00111011	01101101
ix	15213	00	00	3B	6D	00000000	00000000	00111011	01101101
У	-15213			C4	93			11000100	10010011
iy	-15213	FF	FF	C4	93	11111111	11111111	11000100	10010011

- Converting from smaller to larger integer data type
- C automatically performs sign extension

- 34 - 15-213, F'06

Why Should I Use Unsigned?

Don't Use Just Because Number Nonzero

■ Easy to make mistakes

■ Can be very subtle

Do Use When Performing Modular Arithmetic

■ Multiprecision arithmetic

Do Use When Need Extra Bit's Worth of Range

■ Working right up to limit of word size

Negating with Complement & Increment

Claim: Following Holds for 2's Complement

$$\sim x + 1 == -x$$

Complement

Increment

Warning: Be cautious treating int's as integers

-36 - **■ OK here** 15-213, F'06

Comp. & Incr. Examples

x = 15213

	Decimal	Hex	Binary		
х	15213	3B 6D	00111011 01101101		
~x	-15214	C4 92	11000100 10010010		
~x+1	-15213	C4 93	11000100 1001001 1		
У	-15213	C4 93	11000100 10010011		

0

	Decimal	Hex	Binary	
0	0	00 00	00000000 00000000	
~0	-1	FF FF	11111111 11111111	
~0+1	0	00 00	00000000 00000000	

– 37 – 15-213, F'06

Unsigned Addition

Standard Addition Function

■ Ignores carry output

Implements Modular Arithmetic

$$s = UAdd_w(u, v) = u + v \mod 2^w$$

$$UAdd_{w}(u,v) = \begin{cases} u+v & u+v < 2^{w} \\ u+v-2^{w} & u+v \ge 2^{w} \end{cases}$$

- 38 - 15-213, F'06

Visualizing Integer Addition

Integer Addition

- 4-bit integers *u*, *v*
- Compute true sum Add₄(*u*, *v*)
- Values increase linearly with u and v
- Forms planar surface

Visualizing Unsigned Addition

Wraps Around

- If true sum ≥ 2^w
- At most once

Mathematical Properties

Modular Addition Forms an Abelian Group

Closed under addition

$$0 \leq \mathsf{UAdd}_{\mathsf{u}}(u, v) \leq 2^{\mathsf{w}} - 1$$

Commutative

$$UAdd_{w}(u, v) = UAdd_{w}(v, u)$$

Associative

$$UAdd_{w}(t, UAdd_{w}(u, v)) = UAdd_{w}(UAdd_{w}(t, u), v)$$

0 is additive identity

$$\mathsf{UAdd}_{\mathsf{w}}(u\,,\,0)\,=\,u$$

- Every element has additive inverse
 - Let $UComp_w(u) = 2^w u$ $UAdd_w(u, UComp_w(u)) = 0$

- 41 - 15-213, F'06

Two's Complement Addition

TAdd and UAdd have Identical Bit-Level Behavior

■ Signed vs. unsigned addition in C:

■ Will give s == t

Characterizing TAdd

Functionality

- True sum requires w+1 bits
- Drop off MSB
- Treat remaining bits as 2's comp. integer

$$TAdd_{w}(u,v) = \begin{cases} u+v+2^{w-1} & u+v < TMin_{w} \text{ (NegOver)} \\ u+v & TMin_{w} \leq u+v \leq TMax_{w} \\ u+v-2^{w-1} & TMax_{w} < u+v \text{ (PosOver)} \end{cases}$$

Visualizing 2's Comp. Addition

Values

- 44 -

- 42 -

- 4-bit two's comp.
- Range from -8 to +7

Wraps Around

- If sum ≥ 2^{w-1}
 - Becomes negative
 - At most once
- If sum < -2^{w-1}
 - Becomes positive
 - At most once

15-213, F'06

Mathematical Properties of TAdd

Isomorphic Algebra to UAdd

- $TAdd_w(u, v) = U2T(UAdd_w(T2U(u), T2U(v)))$
 - Since both have identical bit patterns

Two's Complement Under TAdd Forms a Group

- Closed, Commutative, Associative, 0 is additive identity
- Every element has additive inverse

$$TComp_w(u) = \begin{cases} -u & u \neq TMin_w \\ TMin_w & u = TMin_w \end{cases}$$

- 45 - 15-213, F'06

Multiplication

Computing Exact Product of w-bit numbers x, y

■ Either signed or unsigned

Ranges

- Unsigned: $0 \le x * y \le (2^w 1)^2 = 2^{2w} 2^{w+1} + 1$
 - Up to 2w bits
- Two's complement min: $x * y \ge (-2^{w-1})^*(2^{w-1}-1) = -2^{2w-2} + 2^{w-1}$
 - Up to 2w-1 bits
- Two's complement max: $x^* y \le (-2^{w-1})^2 = 2^{2w-2}$
 - Up to 2w bits, but only for (TMinw)2

Maintaining Exact Results

- Would need to keep expanding word size with each product computed
- Done in software by "arbitrary precision" arithmetic packages

– 46 – 15-213, F'06

Unsigned Multiplication in C

Standard Multiplication Function

■ Ignores high order w bits

Implements Modular Arithmetic

$$UMult_{w}(u, v) = u \cdot v \mod 2^{w}$$

Signed Multiplication in C

Standard Multiplication Function

- Ignores high order w bits
- Some of which are different for signed vs. unsigned multiplication
- Lower bits are the same

Power-of-2 Multiply with Shift

Operation

- $\mathbf{u} << \mathbf{k}$ gives $\mathbf{u} * 2^k$
- Both signed and unsigned

- **Examples**
 - u << 3
 - u << 5 u << 3
 - Most machines shift and add faster than multiply
- Compiler generates this code automatically **-49 -**

15-213, F'06

15-213, F'06

Compiled Multiplication Code

C Function

```
int mul12(int x)
 return x*12;
```

Compiled Arithmetic Operations

```
leal (%eax,%eax,2), %eax
sall $2, %eax
```

Explanation

```
t <- x+x*2
return t << 2;
```

C compiler automatically generates shift/add code when multiplying by constant

- 50 -15-213, F'06

Unsigned Power-of-2 Divide with Shift

Quotient of Unsigned by Power of 2

- \blacksquare u >> k gives \lfloor u / $2^k\rfloor$
- Uses logical shift

	Division	Computed	Hex	Binary
x	15213	15213	3B 6D	00111011 01101101
x >> 1	7606.5	7606	1D B6	0 0011101 10110110
x >> 4	950.8125	950	03 B6	00000011 10110110
x >> 8	59.4257813	59	00 3B	0000000 00111011

Compiled Unsigned Division Code

C Function

```
unsigned udiv8(unsigned x)
 return x/8;
```

Compiled Arithmetic Operations

```
shrl $3, %eax
```

Explanation

Logical shift return x >> 3;

Uses logical shift for unsigned

For Java Users

Logical shift written as >>>

Signed Power-of-2 Divide with Shift

Quotient of Signed by Power of 2

- $\mathbf{x} \gg \mathbf{k}$ gives $\left[\mathbf{x} / 2^k \right]$
- Uses arithmetic shift
- Rounds wrong direction when u < 0

	Division	Computed	Hex	Binary	
У	-15213	-15213	C4 93	11000100 10010011	
y >> 1	-7606.5	-7607	E2 49	1 1100010 01001001	
y >> 4	-950.8125	-951	FC 49	1111 1100 01001001	
y >> 8	-59.4257813	-60	FF C4	1111111 11000100	

– 53 – 15-213, F'06

Correct Power-of-2 Divide

Quotient of Negative Number by Power of 2

- Want $\lceil x / 2^k \rceil$ (Round Toward 0)
- Compute as $\lfloor (x+2^k-1)/2^k \rfloor$
 - In C: (x + (1<<k)-1) >> k
 - Biases dividend toward 0

Case 1: No rounding

Biasing has no effect

15-213, F'06

Correct Power-of-2 Divide (Cont.)

Case 2: Rounding

Compiled Signed Division Code

C Function

- 54 -

```
int idiv8(int x)
{
  return x/8;
}
```

Compiled Arithmetic Operations

```
testl %eax, %eax
js L4
L3:
sarl $3, %eax
ret
L4:
addl $7, %eax
jmp L3
```

Explanation

```
if x < 0
   x += 7;
# Arithmetic shift
return x >> 3;
```

Uses arithmetic shift for int

For Java Users

Arith. shift written as >>

Properties of Unsigned Arithmetic

Unsigned Multiplication with Addition Forms Commutative Ring

- Addition is commutative group
- Closed under multiplication $0 \le UMult_w(u, v) \le 2^w 1$
- Multiplication Commutative
 UMult_w(u, v) = UMult_w(v, u)
- Multiplication is Associative

 UMult_ $\omega(t, UMult_{\omega}(u, v)) = UMult_{\omega}(UMult_{\omega}(t, u), v)$
- 1 is multiplicative identity $UMult_w(u, 1) = u$

Initialization

int x = foo();

int y = bar();

unsigned ux = x;

unsigned uy = y;

■ Multiplication distributes over addtion $UMult_{w}(t, UAdd_{w}(u, v)) = UAdd_{w}(UMult_{w}(t, u), UMult_{w}(t, v))$

– 57 – 15-213, F'06

Properties of Two's Comp. Arithmetic

Isomorphic Algebras

- Unsigned multiplication and addition
 - Truncating to w bits
- Two's complement multiplication and addition
 - Truncating to w bits

Both Form Rings

■ Isomorphic to ring of integers mod 2^w

Comparison to Integer Arithmetic

- Both are rings
- Integers obey ordering properties, e.g.,

```
u>0 \Rightarrow u+v>v
u>0, v>0 \Rightarrow u\cdot v>0
```

■ These properties are not obeyed by two's comp. arithmetic

```
TMax + 1 == TMin
-58 - 15213 * 30426 == -10030 (16-bit words)
15-213, F'06
```

Integer C Puzzles Revisited

```
• x < 0 \Rightarrow ((x*2) < 0)
• ux >= 0
```

•
$$x \& 7 == 7$$
 $\Rightarrow (x << 30) < 0$

•
$$x \& / == / \Rightarrow (x < 30)$$
• $ux > -1$

•
$$x > 0 \&\& y > 0 \implies x + y > 0$$

- 59 - 15-213, F'06