Lambda-Calcul et Catégories

Paul-André Mellies

21 octobre 2024

Table des matières

1	Introduction						
	1.1 Introduction Historique		2				
	1.2 Notion de Catégorie : Premiers Exemples		3				
2	Catégories Cartésiennes						
3	La 2-catégorie des catégories, foncteurs et transformations naturelles		6				
	3.1 Foncteurs entre Catégories		6				
	3.2 Transformations entre Foncteurs		7				
	3.2.1 Transformation		7				
	3.2.2 Action à Gauche de Post-Composition		8				
	3.2.3 Action à droite de Pré-Composition		9				
4	Diagrammes de Corde pour 2-Catégories						
	4.1 2-Catégories		12				
	1.2 Diagrammes de Cordes		14				
5	Lambda-Calcul Simplement Typé						
	5.1 La notion d'occurence		15				
	5.2 Betared et Etaexp		18				
6	ΓD 1		21				
	3.1 Catégories et Foncteurs		21				
	5.2 Catégories Cartésiennes		21				
7	ΓD 2		22				
	7.1 Produits Fibrés		22				
	7.2 Monomorphismes et Épimorphismes						
	7.3 Catégories Quotients et Catégories Sous-Objets		25				

8 TD 3					
	8.1	Égaliseurs et Coégaliseurs	26		
	8.2	Factorisation Epi-Mono	26		

1 Introduction

1.1 Introduction Historique

Le λ -calcul a été introduit dans les années 1930 par Church. Il est en lien avec des questions de linguistique, de logique et de calculabilité.

Définition 1.1 Le λ -calcul est un langage de preuves pour une logique intuitionniste minimale (ou pour la théorie simple des types).

Le λ -calcul non typé a la puissance des machines de Turing.

Définition 1.2 Les catégories sont des structures algébriques (parfois appelées monoïdes à plusieurs objets)

Historiquement, les catégories ont été introduites pour la topologie algébriques dans les années 1940 avec les travaux de Eilenberg et Maclane. Leur objectif était de comprendre les propriétés fondamentales des espaces en s'intéressant aux morphismes entre espaces (les fonctions continues).

Il y a une connexion forte au niveau de la théorie des preuves entre λ -calcul et théorie, qui est très similaire à ce qui s'était passé lors de la définition des algèbres de Boole. Dans ce deuxième cas, Boole montre qu'on peut mettre un ordre partiel sur les formules de la logique classique :

$$\varphi \leq \Psi$$
si et seulement si $\varphi \Rightarrow \Psi$

Une algèbre de Boole $(A, \leq, \land, \lor, \neg, \top, \bot)$ est un ensemble ordonnée A, \leq muni de fonctions préservant l'ordre \land, \lor :

$$\varphi_1 \leq \Psi_1 \land \varphi_2 \leq \Psi_2 \Longrightarrow \varphi_1 \land \varphi_2 \leq \Psi_1 \land \Psi_2, \varphi_1 \lor \varphi_2 \leq \Psi_1 \lor \Psi_2$$

et d'une fonction inversant l'ordre $\neg: A \times A:$

$$\varphi \leq \Psi \Rightarrow \neg \Psi \leq \neg \varphi$$

vérifiant un certain nombre d'axiomes :

• Associativité :

$$(\varphi_1 \wedge \varphi_2) \wedge \varphi_3 = \varphi_1 \wedge (\varphi_2 \wedge \varphi_3)$$
$$(\varphi_1 \vee \varphi_2) \vee \varphi_3 = \varphi_1 \vee (\varphi_2 \vee \varphi_3)$$

• Neutralité :

$$\varphi \wedge \top = \top \wedge \varphi = \varphi$$
$$\varphi \vee \bot = \bot \vee \varphi = \varphi$$

 $\varphi \wedge \Psi = \Psi \wedge \varphi, \varphi \vee \Psi = \Psi \vee \varphi$

• Commutativité :

• Distributivité :

$$\begin{split} \varphi \wedge (\Psi_1 \vee \Psi_2) &= (\varphi \wedge \Psi_1) \vee (\varphi \wedge \Psi_2) \\ \varphi \vee (\Psi_1 \wedge \Psi_2) &= (\varphi \vee \Psi_1) \wedge (\varphi \vee \Psi_2) \\ \neg (\varphi \wedge \Psi) &= \neg \varphi \vee \neg \Psi, \neg \top = \bot \end{split}$$

• Idempotence :

$$\varphi = \neg \neg \varphi$$
$$\varphi \land \varphi = \varphi, \varphi \lor \varphi = \varphi$$

Dans une algèbre de Boole, $\varphi \wedge \psi$ est le plus grand minorant de φ et de ψ et $\varphi \vee \psi$ est le plus petit majorant de φ et ψ

On peut définir l'implication dans les algèbres de Boole comme $\varphi \Longrightarrow \psi = \neg \varphi \lor \psi$

On va passer du système des algèbres de Boole ($\varphi \leq \psi$ s'il existe une preuve que φ implique ψ) au système de catégories comme proposé par Lambek.

Définition 1.3 On peut voir une catégorie comme un graphe dont les noeuds sont appelés objets et les arêtes sont appelées morphismes, maps ou flèches. On peut composer les arêtes d'une catégorie, comme pour se déplacer sur le graphe.

Ici on considère une catégorie dont les objets sont des formules logiques, et les morphismes sont des preuves d'implication. Il y a donc des liens très forts entre les catégories obtenues avec des formules et des preuves et celles obtenues par des types et des programmes fonctionnels entre les types. On va ici étudier les catégories à travers leurs représentations : on peut mieux comprendre une catégorie en la représentant comme une famille d'actions au moyen d'un foncteur.

1.2 Notion de Catégorie : Premiers Exemples

Définition 1.4 — Catégorie. Une *catégorie* est décrite par les données suivantes :

- 0 Une classe ^a d'objets (les noeuds d'un graphe). On appelle les catégories dont les objets définissent un ensemble des *petites catégories*.
- 1 Pour toute paire d'objets A, B, un ensemble Hom(A, B) de fonctions de A vers B appelées morphismes ou maps. On note ceci : $f: A \to B$ ou $A \xrightarrow{f} B$.
- 2 Pour tous objets A, B, C, une loi de composition $\circ_{A,B,C}$:

$$\begin{array}{ccc} \operatorname{Hom}(B,C) \times \operatorname{Hom}(A,B) & \to & \operatorname{Hom}(A,C) \\ (g,f) & \mapsto & g \circ f \end{array}$$

- 2 Pour tout objet A, une fonction identité $id_A \in Hom(A, A)$
- 3 Associativité:

On peut aussi voir la composition comme la couverture de l'aire entre les noeuds du graphe :

ou encore:

R

- 3 Neutralité : $f \circ id_A = f = id_B \circ f$.
- a. propriété non incarnée par un ensemble
 - Voir nerf d'une catégorie pour voir la notion d'ensemble simplicial.
- **Exemple 1.1** PoSet On considère d'abord les ensembles partiellement ordonnés comme des catégories :

Proposition 1.1 Chaque ensemble partiellement ordonné (A, \leq) définit une catégorie dont les objets sont des éléments a, b, c de A avec une map $a \to b$ si et seulement si $a \leq b$ et Hom(a, b) un singleton si $a \leq b$ et \varnothing sinon.

Démonstration. On doit montrer l'existence d'une identité, d'une loi de composition, et les propriétés d'associativité et de neutralité :

- \bullet Par réflexivité de l'ordre : $a \leq a$ et donc $a \xrightarrow{\operatorname{id}_a} a$ existe.
- Par transitivité : si $a \le b$ et $b \le c$ alors $a \le c$ et on peut donc voir la transitivité comme une composition :
- L'associativité et la neutralité découlent immédiatement du fait que chaque $\operatorname{Hom}(a,b)$ contient au plus un élément.

Réciproquement, une catégorie φ telle que chaque ensemble d'homomorphismes contienne au plus un élément est la même chose qu'un préordre :

$$id=g \circ f \stackrel{\longrightarrow}{\longrightarrow} a \stackrel{f}{\longleftrightarrow} b \rightleftharpoons f \circ g = id$$

Monoïde On considère maintenant les Monoïdes comme des catégories.

Proposition 1.2 Chaque monoïde (M, m, e) définit une catégorie notée $\mathcal{B}M$ appelée sa suspension avec un seul objet * tel que : $\operatorname{Hom}(*,*) = M$ et $\circ : m, n \mapsto n \cdot m$.

L'associativité et la neutralité de la catégorie $\mathcal{B}M$ sont des conséquences directes de l'associativité et de la neutralité du monoïde.

En prenant $M = (\mathbb{N}, +, 0)$, la représentation ainsi obtenue des entiers a un lien direct avec la théorie de l'homotopie : c'est le groupe de Poincaré (ou groupe fondamental) d'un espace topologique pointé. Tout espace topologique définit une catégorie dont les objets sont les éléments de l'espace topologique et les flèches sont les chemins, à homotopie près.

Types On considère la catégorie cartésienne fermée des types simples comme objets et des λ -termes simplement typés (module $\beta\eta$ -équivalence) comme morphismes :

$$A \xrightarrow{x:A \models t:B} B \xrightarrow{y:B \models u:C} C$$

$$x:A \models a[t/y]:C$$

 $A \xrightarrow{x:A \models t:B} B \xrightarrow{y:B \models u:C} C$ flèche dessous $(x:A \models u[t/y]:C)$ Cette catégorie jouera le rôle en théorie de la démonstration de l'algèbre de Boole des formules

2 Catégories Cartésiennes

Définition 2.1 Un produit cartésien de deux objets A et B dans un catégorie φ est la donnée d'un triplet

$$(A \times B, \pi_1 : A \times B \to A, \pi_2 : A \times B \to B)$$

tel que pour toute paire de flèches : $X \xrightarrow{f} A$ et $X \xrightarrow{g} B$, il existe un et une seule flèche : $h: X \to A \times B$ telle que

$$f=\pi_1\circ h, g=\pi_2\circ h. \text{ Pour } \varphi=Set, \text{ par exemple, } A\times B=\{(a,b)\mid a\in A, b\in B\} \text{ et } \pi_1:(a,b)\mapsto a \text{ et } h:x\mapsto (fx,gx).$$

■ Exemple 2.1 Dans une catégorie définie par une relation d'ordre sur A, \leq , le produit cartésien de $a, b \in A$ c'est la même chose que la borne inférieure $a \wedge b$ de a et b définie comme le plus grand des minorants de a et b.

Définition 2.2 — Objet Terminal. Un objet terminal $\mathbbm{1}$ dans une catégorie \mathcal{C} est un objet tel que pour tout objet A de \mathcal{C} , $\operatorname{Hom}(A, \mathbbm{1})$ est une singleton.

Un objet initial est un objet terminal dans la catégorie duale (catégorie ou on renverse les flèches).

Définition 2.3 Une catégorie cartésienne est une catégorie \mathcal{C} munie d'un produit cartésien $(A \times B, \pi_1, \pi_2)$ et munie d'un objet terminal.

Définition 2.4 Une paire $\mathbb{I} \xrightarrow{f} \mathbb{J}$ et $\mathbb{J} \xrightarrow{g} \mathbb{I}$ telle que $f \circ g = \mathrm{id}_{\mathbb{J}}$ et $g \circ f = \mathrm{id}_{\mathbb{I}}$ est appelée isomorphisme

Proposition 2.1 Deux objets terminaux sont isomorphes. Deux produits cartésiens d'une même paire d'objets sont isomorphes.

Démonstration. Soit \mathbb{I} , \mathbb{J} deux objets terminaux d'une même catégorie. Il existe un unique morphisme f (resp. g) de \mathbb{I} (resp. \mathbb{J}) vers \mathbb{J} (resp. \mathbb{I}). De même, il existe un unique morphisme id \mathbb{J} de \mathbb{J} vers lui-même. Le diagramme ci-dessous commute donc :

En particulier, on a bien $f \circ g = \mathrm{id}_{\mathbb{J}}$. Puisque la situation est symétrique, $g \circ f = \mathrm{id}_{\mathbb{I}}$ et donc deux objets terminaux sont isomorphes. Si on a deux produits cartésiens $A \times B$, $A \otimes B$ de deux objets A, B, alors :

En particulier, par définition du produit cartésien, puisqu'il existe deux applications de $A \times B$ vers A, B, il existe une unique application $h_{1,2}$ de $A \times B$ vers $A \otimes B$ telle que $\pi_{A,2} \circ h_{1,2} = \pi_{A,1}$:

Il suffit donc de montrer que l'identité fait commuter le diagramme pour que avoir $f \circ g = \mathrm{id}_{A \times B}$ et donc le résultat :

On aurait aussi pu construire une catégorie Span(A, B):

• Les objets sont des triplets $\langle f, X, g \rangle$:

 \bullet Les flèches sont des $\langle f,X,g\rangle \xrightarrow{h} \langle f',Y,g'\rangle$:

Alors, $A \times B, \pi_1, \pi_2$ est un produit cartésien dans \mathcal{C} si et seulement si $\langle \pi_1, A \times B, \pi_2 \rangle$ est un objet terminal dans Span(A, B).

3 La 2-catégorie des catégories, foncteurs et transformations naturelles

3.1 Foncteurs entre Catégories

Définition 3.1 Soient \mathcal{A}, \mathcal{B} deux catégories. Un foncteur $\mathcal{F}: \mathcal{A} \to \mathcal{B}$ est la donnée de :

- 0 Un objet $F(A) \in \mathcal{B}$ pour tout objet A de \mathcal{A} .
- 1 Pour toute paire d'objets $A_1, A_2 \in \mathcal{A}$, une fonction :

$$F_{A_1,A_2}: \operatorname{Hom}_{\mathcal{A}}(A_1,A_2) \to \operatorname{Hom}_{\mathcal{B}}(FA_1,FA_2)$$

 $f \mapsto F(f)$

2 On demande que les équations suivantes soient satisfaites :

• $F(g \circ f) = F(g) \circ F(f)$ où

C'est à dire :

• Si
$$A \xrightarrow{\mathrm{id}_A} A$$
, $F(\mathrm{id}_A) = \mathrm{id}_{F(A)}$

Autrement dit, l'image de la composée est égale à la composée des images.

- Exemple 3.1 1. Un foncteur $F : A \to B$ entre catégories de préordre est la même chose qu'une fonction croissante (order preserving).
 - 2. Un foncteur $F: \mathcal{A} \to \mathcal{B}$ entre catégories à un objet est la même chose qu'un homomorphisme $M \to N$ si $\mathcal{A} = \Sigma M$ et $\mathcal{B} = \Sigma N$.
 - 3. Si M est un monoïde, $\mathcal{A} = \Sigma M$ la catégorie à un objet associée, un foncteur $F: \mathcal{A} \to \operatorname{Set}$ la catégorie des ensembles et fonctions est la donnée d'un ensemble X (l'image de M) et d'une action à gauche de M sur X. En effet, puisque chaque élément de M est une flèche de ΣM de l'objet dans lui même, pour tous $m, n \in M$, on a une flèche de $F(*) \to F(*)$ telles que $F(m \cdot n) = F(m) \circ F(n)$. On vérifie alors bien les propriétés d'une action à gauche.

Similairement, si M est le monoïde libre engendré par un alphabet A, l'action à droite $X \times A^* \to X$ étant une famille de fonctions $\delta_a : X \to X$ pour $a \in A$, i.e. un automate déterministe et total dont l'ensemble des états est X.

4. Soit G la catégorie à deux objets et quatre morphismes :

$$\begin{array}{c}
1 \rightleftharpoons \mathrm{id}_1 \\
t \downarrow \downarrow s \\
0 \rightleftharpoons \mathrm{id}_0
\end{array}$$

Un foncteur $F: \mathbb{G} \to \operatorname{Set}$ est une paire d'ensembles E = F(1), V = F(0), et de deux fonctions $F(s), F(t): E \to V$. En voyant E comme un ensemble d'arêtes et V comme un ensemble de sommets, F(s) peut être vue comme une fonction ∂_0 qui à une arête (x,y) associe x. Rajouter un élément 2 avec deux morphismes vers 1 permettrait de définir des graphes avec des 2-arêtes entre arêtes. En prenant la catégorie des faces d'un triangle on obtiendrait la catégorie des ensembles simpliciaux.

3.2 Transformations entre Foncteurs

3.2.1 Transformation

On va essayer de suivre l'intuition selon laquelle la théorie des catégories préserve l'ordre.

On a alors $f \leq g \Leftrightarrow \forall a \in A, fa \leq ga$.

On va essayer de généraliser cette définition. On se donne deux foncteurs F, G de $\mathcal A$ dans $\mathcal B$ et on va définir une transformation point à point de F vers G:

Définition 3.2 Une transformation $\theta: F \Rightarrow G$ est une famille $(\theta_A: FA \to GA)_{A \in \text{Obj}\mathcal{A}}$ de flèches de \mathcal{B} indicée par les objets de \mathcal{A} . On note ceci :

Définition 3.3 La catégorie $\operatorname{Trans}(\mathcal{A}, \mathcal{B})$ a pour objet les foncteurs $\mathcal{A} \xrightarrow{F} \mathcal{B}$ et pour flèches les transformations $\theta : F \Rightarrow G$.

- La transformation $\mathrm{id}_F: F\Rightarrow F$ est définie par $\mathrm{id}_F=\left(FA\xrightarrow{\mathrm{id}_{FA}}FA\right)_{A\in\mathrm{Obj}\mathcal{A}}$
- La transformation $\psi \cdot \varphi : F \Rightarrow H$ composée de $\varphi : F \Rightarrow G$ et $\psi : G \Rightarrow H$ telle que : $(\psi \cdot \varphi)_A = \psi_A \circ_{\mathcal{B}} \varphi_A$.

3.2.2 Action à Gauche de Post-Composition

Supposons qu'on ait la situation suivante :

$$\mathcal{A} \xrightarrow{G} \mathcal{B} \xrightarrow{H} \mathcal{C}$$

où $\mathcal{A}, \mathcal{B}, \mathcal{C}$ sont des catégories, $F, G : \mathcal{A} \to \mathcal{B}$ et $H : \mathcal{B} \to \mathcal{C}$ sont des foncteurs et $\theta : F \to G$ est une transformation.

Définition 3.4 La transformation (dite d'action à gauche) $H \circ_L \theta : H \circ F \Rightarrow H \circ G$ est définie par $(H \circ \theta)_A = H(\theta_A) : HFA \to HGA$

Autrement dit, une transformation est la donnée pour tout objet de la catégorie de départ d'une flèche dans la catégorie d'arrivée.

Proposition 3.1 On a alors une série d'équations :

1. On a:

$$H \circ_L (\psi \cdot \varphi) = (H \circ_L \psi) \cdot (H \circ_L \varphi)$$

et de même :

$$H \circ_L \mathrm{Id}_F = \mathrm{Id}_{H \circ F}$$

Autrement dit:

 $H \circ_L$ – est un foncteur. On dit que l'action est fonctorielle.

2. On a:

$$(H' \circ H) \circ_L \theta = H' \circ_L (H \circ_L \theta)$$

et de même :

$$\operatorname{Id}_{\mathcal{B}} \circ_L \theta = \theta$$

Démonstration. 1. La première propriété est immédiate par la composition des foncteurs.

2. On a:

$$\begin{split} ((H' \circ H) \circ_L \theta)_{A \in \mathrm{Obj}\,\mathcal{A}} = & H' \circ H \left(\theta_A : FA \to GA\right) \\ = & H' \left(H\theta_A\right) \\ = & H' \circ \left(H \circ \theta_A\right) \\ = & \left(H' \circ_L \left(H \circ_L \theta\right)\right)_{A \in \mathrm{Obj}\,\mathcal{A}} \end{split}$$

D'où la deuxième propriété.

3.2.3 Action à droite de Pré-Composition

On suppose qu'on à :

$$A \xrightarrow{H} B \xrightarrow{G} C$$

Ceci permet de définir une transformation, dite d'action à droite :

Définition 3.5 La transformation (d'action à droite) $\theta \circ_R H : F \circ H \Rightarrow G \circ H$ est définie par $: (\theta \circ_R H)_{C \in \text{Obj } \mathcal{C}} = \theta_{HC}.$

Proposition 3.2 \circ_H définit un foncteur :

Trans
$$(\mathcal{A}, \mathcal{B}) \longrightarrow \operatorname{Trans} (\mathcal{A}, \mathcal{C})$$

Si on a:

$$\mathcal{C} \xrightarrow{H} \mathcal{A} \xrightarrow{\theta_2 \uparrow} \mathcal{B}$$

Alors $(\theta_2 \circ_R H) \cdot (\theta_1 \circ_R H) = (\theta_2 \cdot \theta_1) \circ_R H$ De même, on a :

$$id_F \circ_R H = id_{F \circ H}$$

Proposition 3.3 Les actions à gauche et à droite sont compatibles au sens où :

$$\mathcal{A}' \xrightarrow{H_{\mathcal{A}'}} \mathcal{A} \xrightarrow{\mathcal{B}} \mathcal{B} \xrightarrow{H_B} \mathcal{B}'$$

En particulier:

$$(H_{\mathcal{B}} \circ_L \theta) \circ_R H_{\mathcal{A}} = H_{\mathcal{B}} \circ_L (\theta \circ_R H_{\mathcal{A}})$$

cette transformation étant définie en $A' \in \text{Obj}\mathcal{A}'$ par :

$$H_{\mathcal{B}}(\theta_{H_{\mathcal{A}}A'}): H_{\mathcal{B}}FH_{\mathcal{A}}A' \to H_{\mathcal{B}}GH_{\mathcal{A}}A'$$

Ces équations assurent que tout diagramme de la forme :/

$$\mathcal{A}''' \longrightarrow \mathcal{A}'' \longrightarrow \mathcal{A}' \xrightarrow{H_{\mathcal{A}'}} \mathcal{A} \xrightarrow{f_{\mathcal{A}'}} \mathcal{B} \xrightarrow{H_{\mathcal{B}}} \mathcal{B}' \longrightarrow \mathcal{B}''$$

définit une transformation de manière unique.

Proposition 3.4 Toutefois, si on se donne deux transformations :

$$\mathcal{A} \underbrace{\theta_1 \prod_{F_1}^{G_1} \mathcal{B} \underbrace{\theta_2 \prod_{F_2}^{G_2}}_{F_2} \mathcal{C}}$$

on a deux manières de composer, qui donnent en général des transformations différentes.

$$G_2 \circ G_1$$
 $G_2 \circ G_1$
 $\theta_2 \circ_R G_1$ $G_2 \circ_L \theta_1$
 $F_2 \circ G_1$ $G_2 \circ_F F_1$
 $F_2 \circ_L \theta_1$ $\theta_2 \circ_R F_1$
 $F_2 \circ_L \theta_1$ $F_2 \circ_L \theta_2$

 $D\acute{e}monstration$. On considère les catégories $\mathcal{A}=\mathbb{1}$ à un élément, \mathcal{B} définie par :

et $\mathcal C$ définie par le diagramme non commutatif suivant :

$$\begin{array}{ccc}
b & \xrightarrow{g'} & d \\
g \uparrow & \neq & \uparrow f \\
a & \xrightarrow{f} & c
\end{array}$$

On considère alors le diagramme suivant :

On pose:

$$\theta_1(1) = j$$

$$F_2(0) = a, G_2(0) = c$$

$$F_2(j) = g, G_2(j) = f'$$

$$\theta_2(0) = f, \theta_2(1) = g'$$

Les propriétés et équations des actions définissent une sesquicatégorie des catégories, foncteurs et transformations.

Définition 3.6 Une transformation $\theta: F \Rightarrow G$ est dite naturelle lorsque le diagramme suivant commute :

$$\begin{array}{ccc} GA & \xrightarrow{Gf} & GA' \\ \xrightarrow{\theta_A} & & \uparrow^{\theta_{A'}} \\ FA & \xrightarrow{Ff} & FA' \end{array}$$

pour toute flèche f de la catégorie \mathcal{A} .

Définition 3.7 — Catégorie des Transformations Naturelles. La transformation id_F est naturelle :

$$id_F: F \Rightarrow F, (id_F) = id_{FA}$$

On note $Nat(\mathcal{A}, \mathcal{B})$ la catégorie dont les objets sont les foncteurs $F : \mathcal{A} \to \mathcal{B}$ et dont les flèches sont les transforamtions naturelles.

Proposition 3.5 La composée verticale de deux transformations naturelles est une transformation naturelle :

Démonstration. Le diagramme suivant commute :

$$\begin{array}{ccc} HA & \stackrel{Hf}{\longrightarrow} & HA' \\ \downarrow^{\psi_A} & & \uparrow^{\psi_{A'}} \\ GA & \stackrel{Gf}{\longrightarrow} & GA' \\ \downarrow^{\varphi_A} & & \uparrow^{\varphi_{A'}} \\ FA & \stackrel{Ff}{\longrightarrow} & FA' \end{array}$$

Proposition 3.6 Les actions à gauche et à droite d'un foncteur préservent la naturalité des transformations.

 $D\acute{e}monstration.$ Tout foncteur $H:\mathcal{B}\to\mathcal{B}'$ définit un foncteur

$$H \circ_L : \operatorname{Nat}(\mathcal{A}, \mathcal{B}) \to \operatorname{Nat}(\mathcal{A}, \mathcal{B}')$$

Tout foncteur $H: \mathcal{A}' \to \mathcal{A}$ définit un foncteur

$$\circ_R H : \operatorname{Nat}(\mathcal{A}, \mathcal{B}) \to \operatorname{Nat}(\mathcal{A}', \mathcal{B})$$

Proposition 3.7 Si θ_1, θ_2 sont des transformations naturelles :

$$\mathcal{A} \underbrace{ \theta_1 \prod_{F_1}^{G_1} \mathcal{B} \underbrace{ \theta_2 \prod_{F_2}^{G_2} \mathcal{C}}_{F_2} \mathcal{C}}_{\text{"Higher pasting diagram"}}$$

alors les transformations naturelles " θ_1 puis θ_2 " et " θ_2 puis θ_1 " coïncident.

■ Vocabulaire 3.1 $\theta_2 \circ \theta_1$ désigne la transformation naturelle obtenue de la composition horizontale de transformations naturelles

Définition 3.8 Une 2-catégoprie est une sesquicatégorie où la loi 3.7 est satisfaite.

Théorème 3.1 Les catégories, foncteurs et tranformations naturelles définissent une 2-catégorie.

■ Exemple 3.2 On réétudie la catégorie G :

Ici, F et G définissent deux graphes $\langle F \rangle$ et $\langle G \rangle$.

L'ensemble des sommets de $\langle F \rangle$ $FV \xrightarrow{\theta_V} GV$ L'ensemble des sommets de $\langle G \rangle$

L'ensemble des arêtes de $\langle F \rangle$ $FE \xrightarrow{\theta_E} GE$ L'ensemble des arêtes de $\langle G \rangle$

Une transformation $\theta \in \text{Trans}(\mathbb{G}, \text{Set})$ définit deux fonctions.

Proposition 3.8 Un homomorphisme de graphe :

$$\langle F \rangle \to \langle G \rangle$$

est la même chose qu'une transformation naturelle :

$$\theta: F \Rightarrow G$$

 $D\'{e}monstration$. On a deux diagrammes :

Le fait que 1 et 2 commutent signifie que l'image de la source est la source de l'image.

4 Diagrammes de Corde pour 2-Catégories

4.1 2-Catégories

Définition 4.1 Le produit $\mathcal{A} \times \mathcal{B}$ de deux catégories est la catégorie dont les objets sont les paires d'objets, les flèches sont les paires de flèches et la composition se fait point à point :

4.1 2-Catégories 13

Définition 4.2 — Définition équivalente de 2-catégorie. Une 2-catégorie $\mathcal W$ est la donnée :

- 0 D'une classe d'objets (ou 0-cellules)
- 1 Pour toute paire d'objets A, B d'une catégorie $\operatorname{Hom}(A, B)$ Notation :

$$A \stackrel{f}{\underset{g}{\longrightarrow}} B$$

2 Pour tout triplet d'objets A, B, C un foncteur :

$$\operatorname{Hom}(A, B) \times \operatorname{Hom}(B, C) \to \operatorname{Hom}(A, C)$$

- 2 Une identité $id_A: A \to A$
- 3 Associativité et Neutralité :

$$\operatorname{Hom}(C,D) \times \operatorname{Hom}(B,C) \times \operatorname{Hom}(A,B)$$

$$\operatorname{Hom}(B,D) \times \operatorname{Hom}(A,B) \xrightarrow{\circ_{BCD} \times \operatorname{id}_{\operatorname{Hom}(A,B)}} \xrightarrow{\operatorname{Hom}(C,D) \times \circ_{ABC}} \xrightarrow{\operatorname{Hom}(C,D) \times \circ_{ABC}} \xrightarrow{\operatorname{Hom}(A,C)}$$

Un objet f de Hom(A, B) est appelé une flèche ou 1-cellule et notée $f: A \to B$. Une flèche $\theta: f \to g$ de Hom(A, B) est appelée 2-cellule et notée :

$$A \xrightarrow{f} B$$

■ Exemple 4.1 — Espaces Topologiques. Si on définit sur $\mathcal{T}op$ la flèche $\theta: f \to g$

$$A \xrightarrow{f \atop g} B$$

comme une fonction continue : $\theta:[0,1]\times A\to B$ telle que :

$$\forall a \in A, \begin{cases} \theta(0, a) = f(a) \\ \theta(1, a) = g(a) \end{cases}$$

on définit une 2-catégorie.

R

Une transformation naturelle $\theta: f \to g$ de $\operatorname{Hom}(A, B):$

$$A \xrightarrow{f} B$$

est la même chose qu'un foncteur :

$$A \times \xrightarrow{H} B$$

où = $(0 \rightarrow 1)$ telle que : H(-,0) = F et H(-,1) = G.

4.2 Diagrammes de Cordes

L'idée fondamentale derrière les diagrammes 2-catégoriques : On représente une 2-cellule comme le sommet

C'est le dual de poincaré du diagramme précédent.

- \bullet $\,\theta$ dimension 2 donne un noeud de dimension 0
- f, g dimension 1 donnent de cordes de dimension 1
- \bullet A, B dimension 0 donnent des zones de dimension 2.

Pour représenter l'action à gauche :

On donne le diagramme de cordes suivant :

Pour ce qui est de l'action à droite, de manière similaire :

Pour la bimoustache :

Ainsi, la composition verticale (composition dans Hom(A, C)) peut se représenter en diagramme de cordes :

Le diagramme :

Le diagramme :

est une représentation de « θ_1 puis θ_2 »

est une représentation de « θ_2 puis θ_1 »

5 λ -Calcul Simplement Typé

L'idée du λ -calcul introduit par Church est de définir un calcul symbolique des fonctions. On se donne un ensemble infini Var de variables. On définit les termes du λ -calcul de manière inductive : Si x est une variable, c'est un lambda

$$\begin{array}{cccc} \mathbf{E} & ::= & x \in Var & (Variables) \\ & \mid & App(E,E) & (Application) \\ & \mid & \lambda x.E & (\acute{E}valuation) \end{array}$$

Table 1 – Termes du λ -calcul

terme. Si M,N sont des lambdas termes, MN ou App(M,N) (la composition de fonction) est un lambda-terme. Si $x \in Var$ et M est un lambda terme, $\lambda x.M$ est la fonction qu'on écrirait $x \mapsto M(x)$.

Une des difficultés de cette explication est l' α -conversion, que nous devrons définir de telle sorte à identifier des λ -termes tels que $\lambda x.x$ et $\lambda y.y$.

5.1 La notion d'occurence

Définition 5.1 Une occurrence est un mot sur l'alphabet {fun, arg, body}.

Définition 5.2 On définit l'ensemble Occ(M) des occurences d'un λ -terme M par induction structurelle sur M:

$$\begin{array}{lll} Occ(x) & ::= & \{\varepsilon\} \\ Occ(App(M,N)) & ::= & \{\varepsilon\} \sqcup \{\texttt{fun}.o \mid o \in Occ(M)\} \sqcup \{\texttt{arg}.o \mid o \in Occ(N)\} \\ Occ(\lambda x.M) & ::= & \{\varepsilon\} \sqcup \{\texttt{body}.o \mid o \in Occ(M)\} \end{array}$$

■ Exemple 5.1 — Codage des Entiers de Church. Les trois arbres ci-dessous sont les représentations dans le codage des entiers de Church de 0, de 1 et de 2.

5.1 La notion d'occurence

Pour 2, on a par exemple:

 $Occ(M) = \{\varepsilon, \mathtt{body}, \mathtt{bodybody}, \mathtt{bodybodyfun}, \mathtt{bodybodyarg}\}$

Définition 5.3 On définit VarOcc(M) l'ensemble des occurences de variables :

```
\begin{array}{lll} VarOcc(x) & ::= & \{\varepsilon\} \\ VarOcc(App(M,N)) & ::= & \mathtt{fun}.VarOcc(M) + \mathtt{arg}.VarOcc(N) \\ VarOcc(\lambda x.M) & ::= & \mathtt{arg}.VarOcc(M) \end{array}
```

Proposition 5.1 VarOcc(M) coïncide avec l'ensemble des mots maximaux pour l'ordre préfixe dans Occ(M).

Définition 5.4 On définit LamOcc(M) l'ensemble des occurences d'un lieur λ dans M.

```
\begin{array}{lll} LamOcc(x) & ::= & \varnothing \\ LamOcc(App(M,N)) & ::= & \mathtt{fun}.LamOcc(M) + \mathtt{arg}.LamOcc(N) \\ LamOcc(\lambda x.M) & ::= & \mathtt{body}.LamOcc(M) \\ \{\varepsilon\} \end{array} \tag{$+$}
```

Définition 5.5 On définit une fonction Lieur : $VarOcc(M) \to Occ(M) + Var, o \mapsto x$. On dira qu'une occurence de variable est libre lorsque Lieur $_M(o) \in Var$, $li\acute{e}e$ sinon La fonction Lieur $_M$ est définie par induction :

$$Lieur(x) : \varepsilon \mapsto x \in Var, VarOcc(x) = \{\varepsilon\}$$

Intuition : $x \models x$ où le premier désigne le contexte de variable et le second est un λ -terme.

.

5.1 La notion d'occurence

Définition 5.6 On dit que deux λ -termes M et N sont α -convertibles lorsque :

$$Occ(M) = Occ(N)$$

$$\mathrm{Lieur}(M) = \mathrm{Lieur}(N)$$

Dans ce cas, on écrit

$$M \equiv_{\alpha} N$$

■ Exemple 5.2 Identité On a :

$$\lambda x.x \equiv_{\alpha} \lambda y.y$$

En effet:

Je sais pas lol On a:

C'est pareil On a :

5.2 Betared et Etaexp 18

$$\begin{array}{ccc}
\lambda x & \lambda x \\
 & | \\
\lambda x & \equiv_{\alpha} & \lambda y \\
 & | \\
 x & y
\end{array}$$

Lieur(M) associe à une occurence $occ \in VarOcc(M)$ d'une variable x dans M ou bien $x \in Var$ (cas libre) ou bien l'occurence maximale d'un préfixe de occ étiqueté par λx (cas lié).

Définition 5.7 On définit le λ -terme $M_{|o}$ pour $o \in Occ(M)$, par induction sur M:

$$\begin{array}{lll} x_{\mid \varepsilon} & & ::= & x \\ App(M,N)_{\mid \varepsilon} & ::= & App(M,N) \\ App(M,N)_{\mid \mathbf{fun} \cdot occ} & ::= & M_{\mid occ} \\ App(M,N)_{\mid \mathbf{arg} \cdot occ} & ::= & N_{\mid occ} \\ (\lambda x.M)_{\mid \varepsilon} & ::= & \lambda x.M \\ (\lambda x.M)_{\mid \mathbf{body} \cdot occ} & ::= & M_{\mid occ} \end{array}$$

Définition 5.8 Si M, N sont des λ -termes et $x \in Var$, on définit M[x := N] par induction sur M, à α -conversion près :

$$\begin{array}{lll} x[x\coloneqq N] & ::= & N \\ y[x\coloneqq N] & ::= & y & (si \ y\neq x) \\ App(P,Q)[x\coloneqq N] & ::= & App(P[x\coloneqq N],Q[x\coloneqq N]) \\ (\lambda y.M) \ [x\coloneqq N] & ::= & \lambda y. \ (M \ [x\coloneqq N]) & (si \ y\neq x \ et \ y \ n'est \ pas \ libre \ dans \ N) \\ (\lambda x.M) \ [x\coloneqq N] & ::= & \lambda z.M' \ [x\coloneqq N] \end{array}$$

Dans le dernier cas, on a choisi $\lambda z.M' \equiv_{\alpha} \lambda x.M$ avec $z \neq x$ et z n'est pas libre dans N.

Proposition 5.2 La classe de α -équivalence de $M[x \coloneqq N]$ ne dépend pas des choix faits dans le cas $M = \lambda x.P$. De plus, si $M' \equiv_{\alpha} M$ et $N' \equiv_{\alpha} N$, alors $M[x \coloneqq N] = M'[x \coloneqq N']$.

Démonstration. On a $(\lambda x.M)$ $[x := N] = \lambda x.M$. On a :

$$Occ(M[x := N]) + \{occ_x \cdot occ \mid Lieur(M)(occ_x) = x \text{ et } occ \in Occ(N)\}$$

Par ailleurs:

$$VarOcc(M[x := N]) = VarOcc(M) \setminus \{occ_x \mid Lieur(M)(occ_x) = x\} \cup \{occ_x \mid Lieur(M)(occ_x) = x\} \cdot VarOcc(N)$$

La fonction Lieur (M[x := N]) est définie comme suit :

- 1. Si $occ_y \in VarOcc(M)$ alors Lieur $(M[x := N])(occ_y) = Lieur(M)(occ_y)$
- 2. Si $occ_y = occ_x \cdot occ_y'$ pour $occ_x \in VarOcc(M)$ telle que $Lieur(M)(occ_x) = x$, alors $Lieur(M[x := N])(occ_y) = occ_x \cdot Lieur(N)(occ_y')$ si $Lieur(N)(occ_y') \in Occ(N)$, $Lieur(N)(occ_y') \in Var$ sinon.

Cela montre que M[x := N] ne dépend pas du choix de M et N dans la classe d'équivalence à α -équivalence.

5.2 β -réduction et η -expension

5.2 Betared et Etaexp 19

Définition 5.9 La règle de β -réduction :

$$(\lambda x.M)\,N\longrightarrow M\,[x\coloneqq N]\,$$
 sur les classes d'équivalence à α -conversion près

La règle d' η -expension :

$$M \longrightarrow \lambda x.App(M,x)$$

Définition 5.10 Une β-redex d'un λ-terme M est une occurence $occ \in Occ(M)$ telle que $M_{|o}$ est de la forme $App(\lambda x.P,Q)$.

 $\textbf{D\'efinition 5.11} \textbf{--} \textbf{Contexte.} \ \textbf{Un contexte est d\'efini par induction:}$

$$C ::= \lambda x.C$$

$$\mid App(C, N)$$

$$\mid App(L, C)$$

$$\mid id \qquad (trou.)$$

Si C est un contexte et M est un λ -terme C[M] est défini par induction :

$$\begin{array}{lll} (\lambda x.C) \, [M] & ::= & \lambda x. \, (C[M]) \\ id[M] & ::= & M \\ App \, (C,Q) \, [M] & ::= & App \, (C[M],Q) \\ App \, (P,C) \, [M] & ::= & App \, (P,C[M]) \end{array}$$

R

$$\lambda x.[x] = \lambda x.x$$

$$\not\equiv_{\alpha} \lambda y.[x] = \lambda y.x$$

Définition 5.12 On notera Λ l'ensemble des λ -termes à α -conversion près.

R Chaque contexte définit une fonction $\Lambda \to \Lambda$:

Proposition 5.3 Pour toute occurrence $occ \in Occ(M)$, il existe un contexte C tel que $M = C[M_{|occ}]$.

Définition 5.13 Une β -redex (nouvelle définition) est un triplet (M, o, N) tel que $M_{occ} = App(\lambda x. P, Q), M = C[M_{|occ}]$ et N = C[P[x := Q]].

■ Vocabulaire 5.1 On note $M \xrightarrow{u} N$ pour un β -redex u = (M, occ, N).

5.2 Betared et Etaexp 20

On peut avoir :

$$M \xrightarrow{u} N$$

■ Exemple 5.3 En prenant par exemple : $\Delta = \lambda x. App(x,x)$. On a notamment $App(\Delta,P) \xrightarrow{\varepsilon} App(P,P)$. Notamment, si on note :

$$\Omega = App(\Delta, \Delta) \bigcirc \varepsilon$$

on a:

$$\operatorname{fun} \overset{}{ } \operatorname{App} \left(\Omega, \Omega \right) \overset{}{ } \operatorname{arg}$$

■ Exemple 5.4 En posant $I = \lambda x.x$, on a I(Ia)

Peut se réduire par ε et par \arg en :

Théorème 5.1 — de Church-Resser (confluence) Si $f:M\to P$ et $g:M\to Q$ sont deux chemins de β -réduction alors il existe un λ -terme N et deux chemins de β -réduction : $f':Q\to N$ et $g':P\to N$:

On montrera qu'il existe un choix canonique de N, f' et g' modulo permutation.

6 TD 1

6.1 Catégories et Foncteurs

	Catégorie	\mathbf{Objets}	Flèches
	Set	Ensembles	Fonctions
1. On a le tableau suivant :	Тор	Espaces Topologiques	Fonctions Continues
	VECT	Espaces Vectoriels	Applications Linéaires
	Grp	Groupes	Morphismes

- 2. Un foncteur est un morphisme entre catégories.
- 3. La catégorie CAT est la catégorie dont les objets sont des catégories et les flèches sont des foncteurs

6.2 Catégories Cartésiennes

Question 3, 4, 5 Voir la preuve de 2.1.

 ${\bf Question}~{\bf 6}~{\rm On}~{\rm a}~{\rm le}~{\rm diagramme}~{\rm commutatif}~{\rm suivant}:$

Donc $\pi_A \circ h = \mathrm{id}_A$.

De même pour $A \times \mathbb{1}$, par symétrie. On peut par ailleurs procéder de même que pour les produits cartésiens pour montrer que $A \times \mathbb{1} \simeq \mathbb{1} \times A$.

Question 7 On montre que $B \times A$ vérifie les propriétés de produit cartésien pour A et B:

$$B \xleftarrow{g} B \times A \xrightarrow{\pi_A} A$$

Question 8 On a le diagramme suivant :

On a donc un morphisme de $(A \times B) \times C \to B$ et un morphisme $(A \times B) \times C \to C$. Il existe donc un (unique) morphisme $(A \times B) \times C \to B \times C$ (faisant commuter le diagramme idoine). On a maintenant deux morphismes depuis $(A \times B) \times C$:

- \bullet un vers A
- un vers $B \times C$

On peut donc trouver un (unique) morphisme $h:(A\times B)\times C\to A\times (B\times C)$ (faisant toujours commuter le diagramme idoine). On construit de la même façon $\tilde{h}:A\times (B\times C)\to (A\times B)\times C$. On vérifie de façon similaire à la question précédente que $h\circ \tilde{h}=\operatorname{id}$ et $\tilde{h}\circ h=\operatorname{id}$. Donc $(A\times B)\times C\simeq A\times (B\times C)$.

Question 9 On notera A + B le coproduit de A et B. Il doit faire le diagramme commuter :

$$A \xrightarrow[i_{A}]{f} A \bigsqcup_{i_{2}} B \xleftarrow{g}$$

On remarque notamment que A+B est un coproduit de A et B dans C si et seulement si A+B est un produit de A et B dans C^{op} . En prenant pour A+B (si $A,B\in Set$) l'ensemble abstrait défini à isomorphisme près par :

$$\{(A, a) \mid a \in A\} \cup \{(B, b) \mid b \in B\}$$

avec i_A et i_B les inclusions. On a bien le résultat puisque si $f: A \to C$ et $g: B \to C$, la fonction $h: (A, x) \mapsto f(x); (B, y) \mapsto g(y)$ est unique car entièrement définie sur A + B. Formellement c'est l'union disjointe.

Question 10 L'objet terminal de Rel est l'ensemble vide. En effet, on a toujours une unique relation entre X et l'ensemble vide : la relation vide. Il est clair que $\operatorname{Rel}^{op} = \operatorname{Rel}$. L'union disjointe est le produit cartésien. On prend comme projection $\pi_A = \{((A, e), e) \mid e \in A\}$

Question 11 On prend pour objet terminal l'espace vectoriel nul. On prend comme produit cartésien la somme directe disjointe sur les bases. Par le même raisonnement que précédemment, on a le résultat.

Question 12 L'objet terminal est la catégorie triviale avec un objet et un morphisme. On définit le produit de cartésien par des couples d'objet et dont les flèches sont des couples de fonctions. La projection est alors similaire à celle de Set.

Question 13 De la même manière que précédemment, en considérant des couples de morphisme du produit cartésien de l'origine dans le produit cartésien de l'image. On a le résultat par propriété fondamentale.

$7 \quad TD \ 2$

7.1 Produits Fibrés

7.1 Produits Fibrés 23

Définition 7.1 Un diagramme commutatif dans C:

$$P \xrightarrow{p_2} Y$$

$$\downarrow^{p_1} (*) \qquad \downarrow^g$$

$$X \xrightarrow{f} Z$$

est un pullback, tiré en arrière ou produit fibré de X et Y au dessus de Z quand pour tout diagramme commutatif :

il existe un unique morphisme $h:Q\to P$ tel que le diagramme ci-dessous commute :

Question 1 On propose pour P l'ensemble des couples (x,y) dont les composantes sont dans les mêmes fibres, i.e., $P = \{(x,y) \in \hat{X} \times \hat{Y} \mid f(x) = g(y)\}$ où \hat{X} est un système de représentants des classes d'équivalence définies par les fibres de X sous f Les projections sont alors les projections sur la première et la deuxième composante.

On a donc une unique définition du morphisme h en considérant si $q \in Q$, $h(q) \in f^{-1}(f(q_1(q))) \cap \hat{X} \times g^{-1}(g(q_2(q))) \cap \hat{Y}$

Question 2 et 3 Ajouter un morphisme $Q \to Y''$ crée un diagramme commutatif avec les bords bas et droit de (c). Le carré au dessus de (a) ainsi créé a un morphisme vers Y' qui, puisque Y' est un pullback pour Y et X' au dessus de X, créé un diagramme carré commutant au dessus de $X'' \to X' \to X$ et $Y \to X$.

Finalement, le carré de gauche est un pullback si et seulement si le grand carré est un pullback.

Question 4 On considère l'ensemble $X = \{1\}$ et l'ensemble $Y = \{1,2\}$ ainsi que les fonctions $i: 1 \in X \mapsto 1 \in Y$ et $p: y \in Y \mapsto 1 \in X$. Alors :

$$\begin{array}{ccc} X & \xrightarrow{\mathrm{id}} & X & \xrightarrow{\mathrm{id}} & X \\ \downarrow_{\mathrm{id}} & & \downarrow_{i} & & \downarrow_{\mathrm{id}} \\ X & \xrightarrow{i} & Y & \xrightarrow{p} & X \end{array}$$

et donc on a le résultat.

7.2 Monomorphismes et Épimorphismes

Question 1 Trivial, je le ferai faire à un sup en khôlle.

Question 2 Trivial, je le ferai faire à un autre sup en khôlle.

Question 3 Si on a:

$$\forall a, b : X \to A, f \circ a = f \circ b \Rightarrow a = b$$

 $\forall a, b : X \to B, q \circ a = q \circ b \Rightarrow a = b$

En particulier, pour tous $a, b: X \to A$:

$$g\circ f\circ a=g\circ f\circ b\Longrightarrow g\circ (f\circ a)=g\circ (f\circ b)$$

(Par propriété de $g)\Longrightarrow f\circ a=f\circ b$
(Par propriété de $f)\Longrightarrow a=b$

On procède de même pour les épimorphismes.

Question 4 Si m est un mono, le résultat est clair puisqu'alors toutes les flèches telles que $m \circ q_1 = m \circ q_2 = m \circ \mathrm{id} \circ h$ induisent $q_1 = q_2 = \mathrm{id} \circ h = h$.

Réciproquement, si on a le diagramme suivant :

en particulier, $h=q_1$ et $h=q_2$ conviennent, donc $q_1=q_2$ par unicité de h. Comme de plus, puisque le diagramme

$$\begin{array}{ccc}
A & \xrightarrow{\mathrm{id}} & A \\
\downarrow_{\mathrm{id}} & & \downarrow_{m} \\
A & \xrightarrow{m} & B
\end{array}$$

est un pullback, on a le diagramme précédent dès que $m \circ q_2 = m \circ q_1$ et donc m est un mono.

Question 5 Si on a le pullback suivant, on suppose que m est un monomorphisme :

$$\begin{array}{ccc} V & \stackrel{p}{\longrightarrow} U \\ {}^{m'} \!\!\!\! \downarrow & & \downarrow^m \\ B & \stackrel{f}{\longrightarrow} A \end{array}$$

Soit Q un objet et $h, h': Q \to V$ telles que $m' \circ h = m' \circ h'$.

En posant $q_1 = m' \circ h'$, $q_2 = p \circ h$, on a un pullback : il existe une unique application l telle que : $m \circ p \circ l = m \circ q_2$ et $f \circ m' \circ l = f \circ q_1$. l = h' et l = h conviennent, donc h = h'.

7.3 Catégories Quotients et Catégories Sous-Objets

Question 1 It is clear that the arrow $id_{(X,f)}:(X,f)\to (X,f)$ defined by the morphism $id_X:X\to X$ is an identity in \mathcal{C}/A . Clearly, since the following diagram commutes, the composition is associative:

$$X \xrightarrow{h_1} Y \xrightarrow{h_2} Z$$

$$\downarrow b \qquad \downarrow c$$

$$A$$

Thus, \mathcal{C}/A is a category.

Question 2 We have the above commutative diagram if and only if $g \circ p_2 = f \circ p_1$ i.e. if and only if there exists $u: P \to Z$ such that the following diagram commutes:

$$P \xrightarrow{p_2} Y$$

$$\downarrow p_1 \qquad \downarrow g$$

$$X \xrightarrow{f} Z$$

This is exactly equivalent to the fact that the two diagrams below commute:

That is, there is a diagram in \mathcal{C}/Z :

Moreover, if the first diagram is a pullback, if O is an object in \mathcal{C} and $q_1:O\to X$ and $q_2:O\to Y$ make the following diagramm commute:

then in particular, in \mathcal{C}/Z :

Thus, the first diagram defines a pullback if and only if the second diagram defines a cartesian product. In particular, pullbacks are defined up to isomorphism, since we can translate the existence of two pullbacks as the existence of two cartesian products and retranslate back the isomorphism.

Question 3 Since n is a mono, if we have :

then $n \circ h_1 = m = n \circ h_2$ and thus $h_1 = h_2$.

Question 4 We have a preorder on monos defined as : $i \leq j$ if and only if there exists k such that i = jk. Thus, seeing that monos are injective functions, there is an arrow from U to V if and only if $|U| \leq |V|$, thus, up to isomorphism : there is an arrow from U to V if and only if $U \subseteq V$.

Question 5 We have, for all $m: U \to A$ in Sub(A):

$$\begin{array}{ccc} V & \stackrel{p}{\longrightarrow} & U \\ {\scriptstyle m'} \downarrow & & \downarrow {\scriptstyle m} \\ B & \stackrel{f}{\longrightarrow} & A \end{array}$$

In Set, this is the fucking direct image.

8 TD 3

8.1 Égaliseurs et Coégaliseurs

Question 1 On prend pour E l'ensemble $\{s \in X \mid f(s) = g(s)\}$. On pose alors m l'injection $E \to X$. On a alors trivialement, si $f \circ n = g \circ n$, $Im(n) \subseteq E$ vu comme partie de X. D'où le résultat.

Question 2 Si on a $n: A \to E$, $m \circ n: A \to X$. Puisque fmn = gmn, la factorisation mn est unique par définition d'un égaliseur donc m est un monomorphisme.

Question 3 Un co-égaliseur de f, g est une flèche $m: Y \to Q$ telle que $m \circ f = m \circ g$ et pour toute flèche $n: Y \to F$ telle que $n \circ f = n \circ g$, on a une unique factorisation n = hm. Autrement dit, un co-égaliseur de f, g est un égaliseur des flèches duales de f, g dans la catégorie duale.

Question 4 Le co-égaliseur étant le dual d'un égaliseur, c'est le dual d'un mono, et donc un épimorphisme.

Question 5 Le co-égaliseur Q de deux fonctions dans Set est l'ensemble quotient par $m: f(x)\tilde{g}(x)$ avec m la projection. En effet, si $n \circ f = n \circ g$, alors en particulier, l'image de $x \in E$ est entièrement déterminée par sa classe d'équivalence sous m.

Question 6 Toute fonction surjective est la projection sur un ensemble de classe d'équivalences. En prenant pour f, g deux fonctions qui sont égales sur Y/e, on a le résultat.

8.2 Factorisation Epi-Mono

Question 1 On définit un ensemble U par U = X/f. Alors $e: X \to U, x \mapsto [f(x)]$ est surjective et $m: [f(x)] \to f(x)$ est injective puisque $|U| = |\Im(f)| = |\Im(m)|$.

Question 2 Si e est injective et m est surjective (en particulier e est un epi et m est un mono), et si u, v font commuter le diagramme suivant :

$$\begin{array}{ccc} A & \stackrel{u}{\longrightarrow} X \\ \downarrow^e & & \downarrow^m \\ B & \stackrel{v}{\longrightarrow} Y \end{array}$$

alors, puisque e est surjective, il existe s une section telle que $e \circ s = id$. En posant h = us, on a bien le résultat : si s' est une autre section, mus = ves = v = ves' = mus'.

Question 3 Puisque toute composée de fonctions surjectives (resp. injectives) est surjective (resp. injective), $(\mathcal{E}, \mathcal{M})$ définit un système de factorisation.

Question 4 On considère d'abord $e_2 \circ u$ et $v \circ m_1$:

$$X_1 \xrightarrow{e_1} U_1$$

$$U_2 \xrightarrow{w \circ m_1} U_2 \xrightarrow{w \circ m_2} Y$$

Il existe donc une unique flèche $h:U_1\to U_2$ qui fait commuter le diagramme :

$$\begin{array}{cccc} X_1 & \stackrel{e_1}{\longrightarrow} & U_1 & \stackrel{m_1}{\longrightarrow} & Y_1 \\ \downarrow u & & & \downarrow v \\ X_2 & \stackrel{e_2}{\longrightarrow} & U_2 & \stackrel{m_2}{\longrightarrow} & Y_2 \end{array}$$

<++>