Лекции № 16¹ –17 (28 апреля 2022)

Заключение по главе III

Связь характеристик динамического звена (системы):

$$W(t) \stackrel{\int}{\rightleftharpoons} h(t)$$
 Другие частотные характеристики.... $W(t) \stackrel{\int}{\rightleftharpoons} h(t)$ Другие частотные характеристики.... $W(t) \stackrel{L}{\rightleftharpoons} h(t)$ Другие частотные характеристики.... $W(t) \stackrel{L}{\rightleftharpoons} W(t) \stackrel{D}{\rightleftharpoons} W(t$

(где L — оператор прямого преобразования Лапласа, $L^{\text{-}I}$ — оператор обратного преобразования Лапласа)

Т.о., для минимально-фазового звена (или системы) по ЛАЧХ можно найти все частотные характеристики звена (системы) и передаточную функцию и, следовательно, полностью охарактеризовать поведение звена (системы) при любых входных сигналах.

Глава V. Устойчивость линейных непрерывных систем автоматического управления (ЛНСАУ).

5.1. Понятие устойчивости. Необходимое и достаточное условие устойчивости ЛНСАУ.

Устойчивость является одним из основных требований к системе автоматического управления. Поэтому важно уметь определять, является ли исследуемая САУ устойчивой, а также уметь обеспечивать устойчивость системы путем соответствующего выбора ее параметров и структуры.

<u>САУ является устойчивой</u>, если она возвращается к исходному состоянию после кратковременного внешнего воздействия.

Формализуем понятие устойчивости. Существует 2 определения.

Рассматривается система, структурная схема которой имеет вид:

¹ на лекции 15 была контрольная работа № 1

-

Опр. 1. Систему называют устойчивой по входному воздействию (устойчивой по входу), если при любом ограниченном входном воздействии x(t) и нулевых предначальных условиях реакция системы y(t) также ограничена, и называют неустойчивой по входу в противном случае.

Onp. 2. <u>Система</u> называется <u>устойчивой по начальным условиям</u>, если при отсутствии внешнего воздействия и ненулевых начальных условиях реакция системы с течением времени стремится к нулю.

Замечание 1. Нулевые предначальные условия в определении 1 физически означают, что до момента времени t=0 внешнее воздействие на систему отсутствовало. А значит, отсутствовала и реакция системы y(t), т.е. система находилась в состоянии покоя.

(предначальные условия – это НУ «слева от нуля», они в опр. 1 должны быть нулевыми: $y(-0)=0,y'(-0)=0,...,y^{(n-1)}(-0)=0;$

также должны равняться нулю значения входного сигнала и его производных до (m-1)-го порядка включительно: $x \cdot v$

$$x(-0) = 0, x'(-0) = 0, ..., x^{(m-1)}(-0) = 0$$

иллюстрация к определению 1:

при любом ограниченном входном воздействии в устойчивой системе реакция тоже должна быть ограничена (т.е. процесс у не будет расходящимся)

Говоря о том, что при отсутствии внешнего воздействия отсутствует и реакция системы, мы сталкиваемся с

понятием физической реализуемости: реакция системы (y) не может опережать входное воздействие (x), т.е. следствие не может опережать причину.

Условием физической реализуемости является выполнение неравенства:

$$m \le n$$

(степень полинома в числителе передаточной функции $W(p) = \frac{B(p)}{A(p)}$ не должна превышать степень полинома в знаменателе).

Напоминание: степень n полинома A(p) называется порядком передаточной функции (и порядком системы, описываемой данной передаточной функцией)

Пример. Идеальное дифференцирующее звено: $W(p) = K \cdot p$ — физически нереализуемое звено (т.к. m = 1, а n = 0).

Замечание 2. В определении 2 имеется в виду асимптотическая устойчивость

иллюстрация к определению 2: (при x(t) = 0 в устойчивой системе процесс y(t) с течением времени будет стремиться к нулю)

Необходимое и достаточное условие устойчивости линейной системы по входу

Пусть САУ описывается уравнением:

$$a_0 y^{(n)}(t) + a_1 y^{(n-1)}(t) + \dots + a_n y(t) = b_0 x^{(m)}(t) + \dots + b_m x(t)$$
(1)

Выведем *необходимое и достаточное* условие, при котором y(t) является ограниченной при любом ограниченном входном воздействии x(t) и $\Pi H Y = 0$.

Известно, что об ограниченности функции f(t) можно судить по её изображению по Лапласу F(p), а именно:

Теорема. Пусть
$$f(t) \div F(p) = \frac{F_1(p)}{F_2(p)}$$

- 1) Если все полюса изображения F(p) являются <u>левыми</u>, т.е. корни $p_i = \alpha_i + j\beta_i$, i = 1, n, уравнения $F_2(p) = 0$ лежат строго слева от мнимой оси (~ вещественные части корней уравнения $F_2(p) = 0$ отрицательны: $\alpha_i < 0$, i = 1, n), то f(t) ограничена и с течением времени стремится к нулю.
- 2) <u>Если</u> изображение $\underline{F(p)}$ имеет простые полюса на мнимой оси, а остальные <u>строго</u> <u>левые, то</u> оригинал $\underline{f(t)}$ является ограниченной функцией.
- 3) Если F(p) имеет правые полюса или кратные полюса на мнимой оси, то оригинал f(t) с течением времени стремится к бесконечности.

Условия 1-3 являются необходимыми и достаточными.

Т.о., для устойчивости системы по входу полюса Y(p) должны быть левыми или простыми на мнимой оси.

Применим к обеим частям уравнения (1) преобразование Лапласа. Получим:

$$A(p)Y(p) - N_Y(p) = B(p)X(p) - N_X(p),$$

где $N_Y(p)$ — полином степени (n-1) с коэффициентами, зависящими от НУ $(y(+0),...,y^{(n-1)}(+0))$ и коэффициентов a_i ,

 $N_x(p)$ — полином степени (m-1) с коэффициентами, зависящими от начальных значений $x(+0),\dots,x^{(m-1)}(+0)$ и коэффициентов b_i .

(те, кто не помнит, откуда берутся $N_Y(p)$ и $N_X(p)$, — см. п. 2.1 свойство 2° преобразования Лапласа (теорема о дифференцировании оригинала))

При нулевых предначальных условиях можно показать, что $N_Y(p) = N_X(p)$ \rightarrow

некоторая дробно-рациональная функция, $X_i(p)$ - полиномы

$$Y(p) = W(p)X(p) = \frac{B(p)}{A(p)} \cdot \frac{X_1(p)}{X_2(p)}$$

Полюса изображения Y(p) = 0 есть корни его знаменателя, т.е. корни уравнения $A(p)X_2(p) = 0$.

Они распадаются на:

• p_i , $i = \overline{1,n}$, – корни уравнения A(p) = 0

И

•
$$p_j$$
, $j = \overline{1,s}$, – корни уравнения $X_2(p) = 0$

Чтобы y(t) была ограниченной, необходимо и достаточно, чтобы полюса Y(p) были левыми или простыми, лежащими на мнимой оси. Но, по определению, устойчивость по входу рассматривается при любом ограниченном входном воздействии. Следовательно, уравнение $X_2(p)=0$ может иметь левые корни и простые на мнимой оси. А значит, корни уравнения A(p)=0 должны быть строго левыми.

 \rightarrow

Необходимым и достаточным условием устойчивости линейной системы *по входу* является требование, чтобы все корни её характеристического уравнения (A(p)=0) были левыми (т.е. имели отрицательную вещественную часть).

Необходимое и достаточное условие устойчивости линейной системы по начальным условиям

Выведем условие (необходимое и достаточное), при котором $y(t)|_{t\to\infty}\to 0$ при отсутствии внешнего воздействия и ненулевых начальных условиях.

Применим к обеим частям уравнения (1) преобразование Лапласа. Получим:

$$A(p)Y(p) - N_Y(p) = B(p)X(p) - N_X(p),$$

где $N_Y(p)$ — полином степени (n-1) с коэффициентами, зависящими от НУ $(y(+0),...,y^{(n-1)}(+0))$ и коэффициентов a_i ,

 $N_x(p)$ — полином степени (m-1) с коэффициентами, зависящими от начальных значений $x(+0),\dots,x^{(m-1)}(+0)$ и коэффициентов b_i .

С учетом того, что x(t) = 0 (т.к. система рассматривается при отсутствии внешнего воздействия), имеем:

$$X(p)=0, N_X(p)=0.$$

Отсюда
$$Y(p) = \frac{N_Y(p)}{A(p)}$$

Для того чтобы $y(t)|_{t\to\infty}\to 0$, согласно вышеприведенной теореме (случай 1), необходимо и достаточно, чтобы выполнялось условие: полюса Y(p) являются левыми. В данном случае полюса Y(p) являются полюсами Y(p).

 \rightarrow

<u>Необходимым и достаточным условием устойчивости линейной системы *по начальным* условиям является требование, чтобы все корни её характеристического уравнения были левыми.</u>

Как можно заметить, приведенный критерий устойчивости по начальным условиям совпадает с критерием устойчивости по входу. Поэтому для линейных систем употребляется более краткий термин – критерий устойчивости линейной системы:

<u>Необходимым и достаточным</u> условием устойчивости линейной системы является требование, чтобы все корни ее характеристического уравнения (XV) были левыми.

Пример. Являются ли устойчивыми звенья:

а) интегратор:

 $W(p) = \frac{k}{p}$ \rightarrow характеристическое уравнение A(p) = 0 имеет один вещественный корень на мнимой оси (p = 0)

→ звено не является устойчивым.

Это ясно и из вида переходной функции h(t):

h(t) неограниченно возрастает при ограниченном входном воздействии.

б) колебательное звено:

$$W(p) = \frac{k}{T^2 p^2 + 2\xi T p + 1}$$
 , $0 < \xi < 1$

ХУ A(p) = 0 имеет 2 комплексно-сопряженных корня с отрицательными вещественными частями \rightarrow колеб. звено является устойчивым.

<u>Замечание.</u> Возможно еще одно доказательство критерия устойчивости по начальным условиям:

Общее решение (1) имеет вид: $y = y_{\text{своб.}}(t) + y_{\text{вынуж.}}(t)$ (сумма свободной и вынужденной составляющих). При x(t) = 0 составляющая $y_{\text{вынуж.}}(t)$ тоже равна нулю (т.к. $y_{\text{вынуж.}}(t)$ – это частное решение неоднородного уравнения).

Значит, для устойчивости САУ необходимо и достаточно, чтобы:

$$\lim_{t\to\infty} y_{\rm cBo6}(t) = 0 \qquad (V)$$

А так как $y_{\text{своб}}(t) = \sum_{i=1}^n \mathcal{C}_i(t) e^{p_i t}$ **, то (V) выполняется тогда и только тогда, когда

$$Re \lambda_i < 0$$
 , $i = 1, n$.

_

 $^{^{**}}$ $C_i(t)$ — либо константы (если все корни p_i XУ A(p)=0 различны), либо многочлены от t: $C_i(t)=C_1^{(i)}+C_2^{(i)}t+\cdots+C_{k_i}^{(i)}t^{k-1}$, k_i — кратность корня p_i , $C_j^{(i)}$ — константы интегрирования.

5.2. Постановка задачи исследования устойчивости. Необходимое условие устойчивости.

Установим необходимое условие устойчивости:

Для того чтобы линейная система являлась устойчивой, <u>необходимо</u>, чтобы все коэффициенты характеристического уравнения были положительными: $a_0 > 0$, $a_1 > 0$, ..., $a_n > 0$.

Доказательство:

Пусть ХУ рассматриваемой САУ имеет вид:

$$a_0 p^n + a_1 p^{n-1} + \ldots + a_n = 0$$

По следствию из теоремы Безу характеристический полином A(p) можно представить в виде:

$$A(p) = a_0 (p - p_1) (p - p_2) \cdot \dots \cdot (p - p_n)$$

Каждому вещественному корню $p_i = \alpha_i$ соответствует множитель $(p-\alpha_i)$ — двучлен, коэффициенты которого положительны при $\alpha_i < 0$. А паре комплексно-сопряжённых корней $p_{i,k} = \alpha_i \pm j\beta_i$ соответствует множитель $(p-\alpha_i-j\beta_i)(p-\alpha_i+j\beta_i) = (p-\alpha_i)^2 + \beta_i^2$ — полином второй степени, коэффициенты которого положительны при $\alpha_i < 0$.

Следовательно, если САУ устойчива (т.е. если все корни характеристического уравнения имеют отрицательные вещественные части $\alpha_i < 0$), то коэффициенты полиномов во всех полученных множителях положительны, а следовательно, все коэффициенты A(p) тоже положительны.

Постановка задачи исследования устойчивости

Пусть имеется линейная система с передаточной функцией $W(p) = \frac{B(p)}{A(p)}$

Характеристическое уравнение системы: A(p) = 0 имеет n корней $p_i = \alpha_i + j\beta_i$, $i = \overline{1, n}$.

Корни вещественного полинома A(p) (с коэффициентами a_i — вещественными числами) могут быть:

- вещественными,
- комплексными попарно сопряжёнными,
- мнимыми попарно сопряжёнными,
- нулевыми.

Возможные расположения корней на комплексной плоскости:

<u>Для определения устойчивости линейной САУ нужно знать знаки вещественных частей корней XV.</u>

 $p_1, p_3, p_4 \rightarrow$ система устойчива

 $p_2, p_5, p_6 \to$ система неустойчива (если есть такие корни)

 $p_9, p_7, p_8 \to$ система находится на границе устойчивости (предполагается, что остальные корни - левые)

Корню p_1 соответствует слагаемое $c_1 e^{p_1 t} = c_1 e^{\alpha_1 t}$:

система устойчива (<u>апериодическая устойчивость</u>)
 (если все процессы такие)

[на рисунке показан вид составляющей общего решения системы, соответствующей данному корню]

Корню p_2 соответствует процесс:

система неустойчива (апериодическая неустойчивость)

(если хотя бы один процесс такого вида)

Корням p_3 и p_4 соответствуют вещественные решения $c_3e^{\alpha t}\cos\beta t+c_4e^{\alpha t}\sin\beta t=e^{\alpha t}(c_3\cos\beta t+c_4\sin\beta t)=A_3e^{\alpha t}\sin(\beta_3 t+\psi_3)$, где A_3 и ψ_3 – произвольные константы:

система устойчива (колебательная устойчивость)

Корням p_5 и p_6 соответствует процесс:

система неустойчива (колебательная неустойчивость) -

Корням p_7 и p_8 соответствует процесс:

Анализ устойчивости линейных САУ **путем нахождения корней ХУ** наталкивается на **трудности**, связанные с отсутствием аналитических выражений для корней уравнений степени выше четвертой, для уравнений 3-й и 4-й степени существующие выражения для корней являются громоздкими. При численных расчетах быстро накапливаются ошибки.

Поэтому <u>ставится вопрос</u>: можно ли судить об устойчивости системы без вычисления корней?

Ответ на этот вопрос положительный. Известно много <u>критериев устойчивости</u> – условий, позволяющих судить о расположении корней характеристического уравнения в левой полуплоскости без нахождения их значений.

Критерии устойчивости делятся на 2 группы: алгебраические и частотные критерии.

Однако при исследовании устойчивости прежде всего следует проверить выполнение необходимого условия устойчивости (поскольку это не требует вычислений).

5.3. Алгебраические критерии устойчивости.

5.3.1. Критерий Гурвица.

Алгебраические критерии устойчивости позволяют судить об устойчивости системы <u>по</u> коэффициентам характеристического уравнения (XУ).

Пусть ХУ рассматриваемой системы имеет вид:

$$a_0 p^n + a_1 p^{n-1} + \dots + a_n = 0 (1)$$

Из коэффициентов XV составляется определитель n-го порядка (главный определитель Гурвица)

$$\Delta_{n} = \begin{bmatrix} a_{1}a_{3} & a_{5} & \cdots & 0 \\ a_{0}a_{2} & a_{4} & \cdots & 0 \\ 0 & a_{1} & a_{3} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_{n} \end{bmatrix}$$

<u>Правило составления:</u> на главной диагонали выписываются элементы $a_1, a_2, ..., a_n$. Затем при движении от этих элементов вверх размещаются коэффициенты XУ в порядке возрастания индексов, при движении вниз — в порядке убывания. При этом на место коэффициентов с индексами, большими n или меньшими 0, записываются нули.

Вводится понятие частных определителей Гурвица:

 $\Delta_1 = a_1, \ \Delta_2 = \begin{vmatrix} a_1 & a_3 \\ a_0 & a_2 \end{vmatrix}, \dots$ — получаются из главного определителя отчерчиванием в левом верхнем углу k строк и k столбцов (главные диагональные миноры).

Критерий Гурвица (Адольф Гурвиц, 1895 г.):

Для того чтобы система с характеристическим уравнением (1) была устойчива, необходимо и достаточно, чтобы при $a_0 > 0$ все частные определители Гурвица до n-го порядка включительно были положительны.

Будем считать, что исходное XУ приведено к виду с $a_0 > 0$. Выпишем условия устойчивости по критерию Гурвица систем 1-го, 2-го и 3-го порядков.

1) Система 1-го порядка (n = 1):

XУ имеет вид: $a_0p + a_1 = 0$

Определитель Гурвица: $\Delta = |a_1|$

Условия устойчивости: $a_0 > 0$, $a_1 > 0$.

2) Система **2**-го порядка (n = 2):

XY:
$$a_0p^2 + a_1p + a_2 = 0$$

Определитель Гурвица:
$$\Delta_2 = \begin{vmatrix} a_1 & 0 \\ a_0 & a_2 \end{vmatrix}$$

Условия устойчивости:
$$a_0 > 0$$
, $\Delta_1 = a_1 > 0$ (a), $\Delta_2 = a_1 a_2 > 0$ (б)

Из (б) с учетом (a) следует: $a_2 > 0$

Т.о., условия устойчивости для системы 2-го порядка сводятся к требованию:

$$a_i > 0, i = \overline{0,2}.$$

3) Система 3-го порядка (n = 3):

XУ:
$$a_0p^3 + a_1p^2 + a_2p + a_3 = 0$$
.

Определитель Гурвица
$$\Delta_3 = \begin{bmatrix} a_1 & a_3 & 0 \\ a_0 & a_2 & 0 \\ 0 & a_1 & a_3 \end{bmatrix}$$

Условия устойчивости:

$$a_0 > 0 \tag{a}$$

$$\Delta_1 = a_1 > 0 \tag{6}$$

$$\Delta_2 = a_1 a_2 - a_0 a_3 > 0$$
 (8)

$$\Delta_3 = a_3 \Delta_2 > 0 \tag{2}$$

TI ()

Из (г) с учетом (в) следует, что $a_3 > 0$.

Из (s) с учетом того, что $a_0>0$ $(a),\ a_1>0$ (6) и $a_3>0$ (показано выше), следует: $a_2>0$.

В итоге получаем необходимое и достаточное условие устойчивости (по критерию Гурвица) системы 3-го порядка:

 $a_i > 0$, $i = \overline{0.3}$ и выполнение неравенства (в).

Таким образом, для систем 1-го и 2-го порядков положительность коэффициентов характеристического уравнения является не только необходимым, но и достаточным условием устойчивости. Для систем более высокого порядка при проверке устойчивости, кроме выполнения необходимого условия устойчивости, нужно проверять выполнение *дополнительных неравенств*, число которых возрастает с увеличением порядка системы (степени XУ). Поэтому критерий Гурвица обычно применяют при $n \le 4$. При $n \ge 5$ применяют критерий Льена́ра-Шипа́ра или критерий Ра́уса.

Примечание.

Рассмотрим, <u>что будет, когда</u> выполнены условия $\Delta_i > 0$ при $i = \overline{1, n-2}$, а $\Delta_n = 0$.

Последнее равенство возможно в двух случаях (т.к. $\Delta_n = a_n \cdot \Delta_{n-1}$ (поскольку в последнем столбце главного определителя Гурвица отличен от нуля только коэффициент a_n):

1) $a_n = 0$ (тогда очевидно, что один из корней XУ равен нулю) \rightarrow система находится на границе апериодической устойчивости:

2) $\Delta_{n-1} = 0$ (в этом случае XУ имеет пару сопряженных чисто мнимых корней) \rightarrow система находится на границе колебательной устойчивости:

Пример 1: Устойчива ли данная система?

$$W_p(p) = \frac{k}{p^5 + 3p^4 + 2p^3 + p + 6}$$

T.к. коэффициент при p^2 равен нулю, то система неустойчива (поскольку не выполнено необходимое условие устойчивости).

Пример 2: САУ задана структурной схемой:

Определить предельный коэффициент усиления (K_{nped}) — значение коэффициента усиления разомкнутой системы, при котором замкнутая система находится на границе устойчивости.

В рассматриваемом примере коэффициент усиления разомкнутой системы равен

$$K = K_1 K_2 K_3$$

Предельный коэффициент усиления – это, как следует из введенного определения, такой K, что имеют место следующие неравенства:

 $K < K_{nped} \rightarrow$ замкнутая система устойчива; $K > K_{nped} \rightarrow$ замкнутая система неустойчива;

 $K=K_{nped}$ \rightarrow замкнутая система находится на границе устойчивости.

Решение:

Передаточная функция разомкнутой системы равна

$$W_p(p) = \frac{B(p)}{A(p)} = \frac{K}{(1 + pT_1)(1 + pT_2)(1 + pT_3)}$$

(в данном примере это просто произведение передаточных функций трех последовательно соединенных инерционных звеньев).

Заметим, что *разомкнутая* система устойчива, т.к. все корни ее характеристического уравнения $A(p)=0 \rightarrow p_i=\frac{-1}{T_i}$, $i=\overline{1,3}$, — левые (само ХУ имеет вид: $(1+p\mathrm{T}_1)(1+p\mathrm{T}_2)(1+p\mathrm{T}_3)=0$).

Найдем передаточную функцию замкнутой системы (см. формулу для соединения звеньев в цепь обратной связи в п. 4.1):

$$W_3(p) = \frac{W_p(p)}{1 + W_p(p)} = \frac{\frac{B(p)}{A(p)}}{1 + \frac{B(p)}{A(p)}} = \frac{B(p)}{B(p) + A(p)} = \frac{B(p)}{D(p)}$$

XУ замкнутой системы: D(p) = 0

или, если подставить параметры:

$$\underbrace{T_1 T_2 T_3 p^3 + (T_1 T_2 + T_1 T_3 + T_2 T_3) p^2 + (T_1 + T_2 + T_3) p + 1 + K}_{a_0} = 0$$

По критерию Гурвица система с данным характеристическим уравнением будет устойчива тогда и только тогда, когда все коэффициенты $a_i > 0$ и выполняется неравенство

 $a_1a_2 - a_0a_3 > 0$ (т.к. система 3-го порядка).

Положительность коэффициентов вытекает из физического смысла величин T_i и K.

Поэтому система будет устойчива, если

$$a_1 a_2 > a_0 a_3 \sim$$

$$(T_1 T_2 + T_1 T_3 + T_2 T_3)(T_1 + T_2 + T_3) > T_1 T_2 T_3(1 + K) \quad |: T_1 T_2 T_3$$

(поделим левую и правую части неравенства на $T_1T_2T_3$, причем в л.ч. первую скобку — на T_1T_2 , а вторую — на T_3)

$$K < \left(1 + \frac{T_3}{T_2} + \frac{T_3}{T_1}\right) \left(1 + \frac{T_1}{T_3} + \frac{T_2}{T_3}\right) - 1$$

При K > (правой части) система будет неустойчива.

При K < (правой части) система будет устойчива.

$$K_{npeo} = \left(1 + \frac{T_3}{T_2} + \frac{T_3}{T_1}\right)\left(1 + \frac{T_1}{T_3} + \frac{T_2}{T_3}\right) - 1$$
 (значение коэффициента усиления разомкнутой САУ, при котором замкнутая система будет на границе устойчивости).

Omeem:
$$K_{npeo} = \left(1 + \frac{T_3}{T_2} + \frac{T_3}{T_1}\right) \left(1 + \frac{T_1}{T_3} + \frac{T_2}{T_3}\right) - 1.$$

Из последнего выражения видно, что $K_{npe\partial}$ определяется не абсолютными значениями постоянных времени, а их относительными значениями. Чем более резко постоянные времени отличаются друг от друга, тем больше $K_{npe\partial}$ (лучше). Наихудший вариант для системы – когда постоянные времени одинаковые: $T_1 = T_2 = T_3$ (тогда $K_{npe\partial} = 8$ – минимальное значение $K_{npe\partial}$).

Как ведет себя K_{nped} в зависимости от величины T_i (для определенности - T_1)?

Если $T_1 \to 0 \to$ свойства системы близки к свойствам системы 2-го порядка $=>K_{nped} \to \infty$. Если $T_1 \to \infty =>K_{nped} \to \infty$. (все это видно из полученного выражения для K_{nped})

Итоговая зависимость имеет примерно следующий вид:

5.3.2. Критерий Льена́ра-Шипа́ра.

Пусть ХУ исследуемой на устойчивость системы имеет вид:

$$a_0 p^n + a_1 p^{n-1} + \dots + a_n = 0 (1)$$

В 1914 г. французские ученые П. Льенар и Р. Шипар предложили модификацию критерия Гурвица. Доказано, что когда выполнено *необходимое* условие устойчивости ($a_0 >$ 0, $a_1 > 0$, ..., $a_n > 0$), то из того факта, что положительны все частные определители Гурвица с нечетными индексами Δ_1 , Δ_3 , ... следует и положительность частных определителей с четными индексами Δ_2 , Δ_4 , ..., и наоборот. Поэтому для проверки устойчивости нет необходимости раскрывать все определители.

Критерий Льена́ра-Шипа́ра (1914 г.):

Для того чтобы САУ с характеристическим уравнением (1) была устойчива, необходимо и достаточно, чтобы выполнялись следующие неравенства:

1)
$$a_0 > 0$$
, $a_1 > 0$, ..., $a_n > 0$ (необходимое условие устойчивости)

2)
$$\Delta_1 > 0$$
, $\Delta_3 > 0$, $\Delta_5 > 0$, ... (положительны все частные определители Гурвица c нечетными индексами)

или
$$\Delta_2>0,\ \Delta_4>0,\ \Delta_6>0,...$$
 (положительны все частные определители Гурвица c четными индексами)

(т.е. должно выполняться 1) и одно из условий 2))

Несмотря на сокращение числа неравенств, вычисление определителей высокого порядка трудоемкая задача.

5.3.3. Критерий Рауса.

Пусть дано ХУ системы, исследуемой на устойчивость:

$$a_0 p^n + a_1 p^{n-1} + \dots + a_n = 0 (1)$$

(степень уравнения, а значит, и порядок САУ равны n)

Из коэффициентов ХУ составляется таблица Рауса.

Правило составления:

- элементами первой строки записываются коэффициенты ХУ с четными индексами,
- элементами второй строки записываются коэффициенты ХУ с нечетными индексами,
- элементы строк $\overline{3, n+1}$ вычисляются по формуле:

$$C_{ij} = C_{i-2,j+1} - r_i \cdot C_{i-1,j+1},$$
 (т.е. **через** элементы двух **предыдущих строк следующего столбца** ((j+1)-го))

где $r_i = \frac{C_{i-2,1}}{C_{i-1,1}}$ (отношение элементов предыдущих 2-х строк первого столбца).

Число строк таблицы Рауса равно (n+1).

Таблица Рауса:

Коэффи циент r_i	№ стол бца № стро ки	1	2	3	•••	
-	1	$C_{11} = a_0$	$C_{12}=a_2$	$C_{13} = a_4$		←коэфф-ты ХУ с чет. индексами
-	2	$C_{21} = a_1$	$C_{22} = a_3$	$C_{23} = a_5$		← коэфф-ты XУ с нечет. индексами
$r_3 = \\ = \frac{C_{11}}{C_{21}}$	3	$C_{31} = C_{12} - r_3 \cdot C_{22}$	$C_{32} = C_{13} - r_3 \cdot C_{23}$	$C_{33} = C_{14} - r_3 \cdot C_{24}$		
$r_{4} = \\ = \frac{C_{21}}{C_{31}}$	4	$C_{41} = C_{22} - r_4 \cdot C_{32}$	$C_{42} = C_{23} - r_4 \cdot C_{33}$	$C_{43} = C_{24} - r_4 \cdot C_{34}$		
	n+1	$C_{n+1,1} = C_{n-1,2} - r_{n+1} \cdot C_{n,2}$				

Критерий Ра́уса (Э. Ра́ус, 1877 г.):

Для того чтобы система с характеристическим уравнением (1) была устойчива, необходимо и достаточно, чтобы все элементы первого столбца таблицы Рауса были одного знака, т.е. при $a_0 > 0$ были положительными:

$$C_{11} > 0$$
, $C_{21} > 0$, ..., $C_{n+1,1} > 0$.

Если не все элементы первого столбца положительны, то система неустойчива.

Элементы второго и последующих столбцов следует вычислять по мере надобности при вычислении элементов 1-го столбца. При этом вычисление можно прекратить, как только какой-либо элемент 1-го столбца принимает отрицательное или нулевое значение.

Можно показать, что <u>число перемен знака в первом столбце</u> таблицы Рауса <u>равно числу правых корней</u> характеристического уравнения системы.

Например:

Критерий Рауса имеет <u>алгоритмический характер</u> (элементы таблицы появляются в процессе вычислений), причем форма алгоритма составления таблицы Рауса легко программируется. Поэтому его широко используют для анализа устойчивости системы с помощью компьютера. <u>При высоком порядке системы</u> для проверки устойчивости с помощью критерия Рауса <u>требуется меньший объем вычислений</u>, чем с помощью критерия Гурвица.

Однако критерием Гурвица удобнее пользоваться на практике при расчетах вручную (при малых n).

На следующей лекции — контрольная работа на алгебраические критерии устойчивости (критерий Гурвица и др.)! Повторить нахождение передаточных функций по структурной схеме!