Álgebra II. Hoja de ejercicios 6: Aritmética Universidad de El Salvador, ciclo par 2018

Por cualquier pregunta, no duden en escribir al grupo ues-algebra-2@googlegroups.com.

Ejercicio 1. Hemos notado que el anillo $\mathbb{Z}[\sqrt{-5}]$ no es un dominio de factorización única. En este ejercicio vamos a probar que en efecto $\mathbb{Z}[\sqrt{-5}]$ no es un dominio de ideales principales. De nuevo, nos va a servir la norma

$$N(a+b\sqrt{-5}) := (a+b\sqrt{-5}) (a-b\sqrt{-5}) = a^2 + 5b^2.$$

Consideremos el ideal $I=(3,2+\sqrt{-5})$. Supongamos que $I=(\alpha)$ para algún $\alpha\in\mathbb{Z}[\sqrt{-5}]$. En particular, existen $\beta,\gamma\in\mathbb{Z}[\sqrt{-5}]$ tales que

$$3 = \beta \alpha$$
, $2 + \sqrt{-5} = \gamma \alpha$.

Analice las normas y obtenga una contradicción. Concluya que el ideal I no es principal.

Ejercicio 2. Sea $n \ge 3$ un entero libre de cuadrados. En este ejercicio vamos a probar que el anillo $\mathbb{Z}[\sqrt{-n}]$ no es un dominio de factorización única. (Los anillos $\mathbb{Z}[\sqrt{-1}]$ y $\mathbb{Z}[\sqrt{-2}]$ son dominios euclidianos y por ende sí son dominios de factorización única.) Consideremos la norma

$$N(a + b\sqrt{-n}) := (a + b\sqrt{-n}) (a - b\sqrt{-n}) = a^2 + n b^2.$$

- 1) Demuestre que 2 es irreducible en $\mathbb{Z}[\sqrt{-n}]$.
- 2) Demuestre que $1 \pm \sqrt{-n}$ es irreducible en $\mathbb{Z}[\sqrt{-n}]$. Indicación: si $1 \pm \sqrt{-n} = xy$ para $x, y \notin \mathbb{Z}[\sqrt{-n}]^{\times}$, analice las normas.
- 3) Si n es par, demuestre que $2 \mid (\sqrt{-n})^2$, pero $2 \nmid \sqrt{-n}$.
- 4) Si n es impar, demuestre que $2 \mid (1+\sqrt{-n}) (1-\sqrt{-n})$, pero $2 \nmid (1\pm\sqrt{-n})$.

Concluya que 2 es un elemento irreducible, pero no es primo, así que $\mathbb{Z}[\sqrt{-n}]$ no puede ser un dominio de factorización única.

Ejercicio 3. Ya sabemos que los enteros de Gauss $\mathbb{Z}[\sqrt{-1}]$ forman un dominio de factorización única. En este ejercicio vamos a describir los elementos primos (irreducibles) en $\mathbb{Z}[\sqrt{-1}]$. Para encontrarlos, hay que factorizar los enteros primos $p = 2, 3, 5, 7, 11, \ldots$ en $\mathbb{Z}[\sqrt{-1}]$.

- 1) Demuestre que si para un elemento $\pi = a + b\sqrt{-1} \in \mathbb{Z}[\sqrt{-1}]$ la norma $N(\pi) = a^2 + b^2 = p$ es un número entero primo, entonces π es un elemento primo en $\mathbb{Z}[\sqrt{-1}]$.
- 2) Sea π un elemento primo en $\mathbb{Z}[\sqrt{-1}]$. Demuestre que $\pi \mid p$ donde p es un número entero primo. Factorice 2,3,5 en elementos primos en $\mathbb{Z}[\sqrt{-1}]$. Sugerencia: note que $\pi \mid N(\pi)$.
- 3) Sea $p \in \mathbb{Z}$ un número entero primo. Demuestre que p es compuesto en $\mathbb{Z}[\sqrt{-1}]$ si p solamente si $p = a^2 + b^2$ para algunos p, p en este caso p se descompone en dos factores primos conjugados.

Comentario. En la teoría de números elemental se demuestra que un primo $p \in \mathbb{Z}$ puede ser escrito como una suma de dos cuadrados $a^2 + b^2$ si y solamente si p = 2 o $p \equiv 1 \pmod{4}$.

Ejercicio 4. Demuestre que el anillo $\mathbb{Z}[\sqrt{-2}]$ es un dominio euclidiano respecto a la norma habitual

$$N(a+b\sqrt{-2}) := (a+b\sqrt{-2}) (a-b\sqrt{-2}) = a^2 + 2b^2.$$

Ejercicio 5. Demuestre que el anillo $\mathbb{Z}[\omega]$ donde $\omega:=\frac{1+\sqrt{-3}}{2}$ es un dominio euclidiano respecto a la norma habitual

$$N(a + b\omega) := (a + b\omega)(a + b\overline{\omega}) = a^2 + ab + b^2.$$

Ejercicio 6. Sea p un número primo. Para el anillo $\mathbb{Z}_{(p)}:=\left\{rac{a}{b}\mid a,b\in\mathbb{Z},\;p\nmid b
ight\}$ definamos

$$v_p\left(\frac{a}{h}\right) := \max\{k \mid p^k \mid a\}, \quad v_p(0) := +\infty.$$

1) Demuestre que para cualesquiera $x,y \in \mathbb{Z}_{(p)}$ se cumple

$$v_p(xy) = v_p(x) + v_p(y).$$

- 2) Demuestre que todo elemento no nulo $x \in \mathbb{Z}_{(p)}$ puede ser escrito como up^n donde $u \in \mathbb{Z}_{(p)}^{\times}$ y $n = v_p(x)$.
- 3) Demuestre que todo elemento irreducible en $\mathbb{Z}_{(p)}$ está asociado con p.
- 4) Demuestre que $\mathbb{Z}_{(p)}$ es un dominio euclidiano respecto a v_p .

Ejercicio 7. Sea k un cuerpo. Consideremos el anillo de las series de potencias k[X]. Definamos para $f = \sum_{i>0} a_i X^i \in k[X]$

$$v_X(f) := \max\{i \mid a_i = 0\}, \quad v_X(0) := +\infty.$$

1) Demuestre que para cualesquiera $f, g \in k[X]$ se cumple

$$v_X(fg) = v_X(f) + v_X(g).$$

- 2) Demuestre que toda serie no nula $f \in k[X]$ puede ser escrita como $g X^n$ donde $g \in k[X] \times y$ $n = v_X(f)$.
- 3) Demuestre que todo elemento irreducible en k[X] está asociado con X.
- 4) Demuestre que k[X] es un dominio euclidiano respecto a v_X .

Comentario. $\mathbb{Z}_{(p)}$ y k[X] son ejemplos de anillos de valuación discreta.

Ejercicio 8. Sea R un dominio de integridad. Una **norma de Dedekind** es una función $\delta \colon R \setminus \{0\} \to \mathbb{N}$ que satisface la siguiente propiedad: para cualesquiera $x, y \in R \setminus \{0\}$, si $x \nmid y$, entonces existen $a, b \in R$ tales que

$$ax + by \neq 0$$
, $\delta(ax + by) < \delta(x)$.

Demuestre que si sobre R existe una norma de Dedekind, entonces R es un dominio de ideales principales.