Normalization Process

- Normalization Process is converting a relation from less restricted form to more restricted form.
- The level of restriction, is called Normal Form.

Unnormalized Form (UNF)

A table that contains one or more repeating groups.

FirstName	LastName	DoB	Position	Department	StoreID
John	Ford	1998/2/12	Manager Vice President	HR	#1506 #1545
Anne	Brand	2001/3/12	Intern Assistant	Marketing	#1546 #1506
David	Biden	2000/2/20	Assistant	Sales	#1524
William	Potter	2001/9/12	Senior Manager	HR	#1506

First Normal Form (1NF)

- A relation in which the intersection of each row and column contains one and only one value.
- This is the requirement of a relation.
 - Each cell of relation contains exactly one value.
- Relation R (A, B, C, D, E, F, G) has following FDs:
 - FD1: A, B, C → D, E, F, G
 - FD2: A → D
 - FD3: B, C → E
 - FD4: F → G
- Relation R is in 1NF.

UNF to 1NF

We need to eliminate the repeating values.

FirstName	LastName	DoB	Position	Department	StoreID
John	Ford	1998/2/12	Manager	HR	#1506
John	Ford	1998/2/12	Vice President	HR	#1545
Anne	Brand	2001/3/12	Intern	Marketing	#1546
Anne	Brand	2001/3/12	Assistant	Marketing	#1506
David	Biden	2000/2/20	Assistant	Sales	#1524
William	Potter	2001/9/12	Senior Manager	HR	#1506

Second Normal Form (2NF)

- A relation is in 2NF if:
 - It is in 1NF
 - Every non-primary-key attribute is fully functionally dependent on the primary key.
 - In other words, if there is any non-primary-key attribute is partially functionally dependent on the primary key, a relation is not in 2NF.

Example

- Relation R (A, B, C, D, E, F, G) has following FDs:
 - FD1: A, B, C → D, E, F, G
 - FD2: A → D
 - FD3: B, C → E
 - FD4: F → G
- Is R in 2NF?
- No.
 - Because FD2: A is a proper subset of primary key (A, B, C), and A → D. Thus, D is partially dependent on (A, B, C).
 - Also FD3: (B, C) is a proper subset of primary key (A, B, C), and B, C \rightarrow E. Thus, E is partially dependent on (A, B, C).

1NF to 2NF

- We need to eliminate the partial FDs.
- Since in relation R, FD2, and FD3 lead to partial FDs, we need to move them out to new relations.
- Determinants will be primary keys in new relations;
 and will be foreign keys in original relations.

1NF to 2NF

- Relation R (<u>A</u>, <u>B</u>, <u>C</u>, D, E, F, G):
 - FD1: A, B, C → D, E, F, G
 - FD2: A → D
 - FD3: B, C → E
 - FD4: F → G
- Relation R (A(fk), B(fk), C(fk), Θ , Θ , F, G):
 - FD1: A, B, C → D, E, F, G
 - FD2: A → D
 - FD3: B, $C \rightarrow E$
 - FD2: F → G

- Relation R1 (A, D):
 - FD1: A → D
- Relation R2 (<u>B</u>, <u>C</u>, E):
 - FD1: B, C → E

Third Normal Form (3NF)

- A relation is in 3NF if:
 - It is in 2NF
 - No non-primary-key attribute is transitively dependent on the primary key.
 - In other words, if there is any non-primary-key attribute is transitively dependent on the primary key, a relation is not in 3NF.

Example

- Relation R (A, B, C, F, G) has following FDs:
 - FD1: A, B, C → F, G
 - FD2: $F \rightarrow G$
- Is R in 3NF?
- No.
 - Because FD2: G is a non-primary-key attribute, A, B, C → F, and F → G. Thus, G is is transitively dependent on (A, B, C).

2NF to 3NF

- We need to eliminate the transitive FDs.
- Since in relation R, FD2 lead to transitive FDs, we need to move them out to new relations.
- Determinants will be primary keys in new relations;
 and will be foreign keys in original relations.

2NF to 3NF

- Relation R (A, B, C, F, G):
 - FD1: A, B, $C \rightarrow F$, G
 - FD2: $F \rightarrow G$
- Relation R (A(fk), B(fk), C(fk), F(fk), G):
 - FD1: A, B, C → F, G
 - FD2: $F \rightarrow G$

- Relation R3 (F, G):
 - FD1: F → G

Practice

Let's do more practice in Lab3.

Assignment

 Let's do the assignment to assess your understanding of Functional Dependencies, Normal Forms, and Normalization Process.

Congratulations

- Now you finished Module 3!
- You should be comfortable to lay out the Entity Relationship Model, convert it to a Relational Model, and normalize it to 3NF.
- Now you will be able to implement it as a database!
- Next module, we are going to do a case study.
- See you soon!