Learning from Mistakes:

Expanding Pronunciation Lexicons using Word Recognition Errors

Sravana Reddy The University of Chicago

Joint Work with Evandro Gouvêa

Sane visitor

Mary and the fable

This Work

Mariano DiFabio

Previous Work

Previous Work

- Wooters and Stolcke (ICASSP 1994)
- Sloboda and Waibel (ICSLP 1996)
- ▶ Fossler-Lussier (Ph.D. Thesis 1999)
- Maison (Eurospeech 2003)
- ► Tan and Bessacier (Interspeech 2008)
- ▶ Bansal et al (ICASSP 2009)
- Badr et al (Interspeech 2010) etc.

Why assume black-box access?

- Practical: What if ASR engine is a black box? (proprietary speech recognition tools, etc.)
 - Example possible use of our approach: Third-party app analyzes results of black-box recognition engine, returns OOV pronunciations

Scientific: How much pronunciation information can we get from only word recognition errors?

Our Generative Model...

... for input word w and output recognition hypothesis e

- I. Generate word w with Pr(w)
- 2. Generate pronunciation baseform b with Pr(b|w)
- 3. Generate phoneme sequence p with Pr(p|b, w) by passing through phonetic confusion channel
- 4. Generate hypothesis word or phrase e with Pr(e|p, b, w)

$$Pr(w,e) = \sum_{b,p} Pr(w) Pr(b \mid w) Pr(p \mid b,w) Pr(e \mid p,b,w)$$

Our Generative Model...

... for input word w and output recognition hypothesis e

- I. Generate word w with Pr(w)
- 2. Generate pronunciation baseform b with Pr(b|w)
- 3. Generate phoneme sequence p with Pr(p|b, w) by passing through phonetic confusion channel
- 4. Generate hypothesis word or phrase e with Pr(e|p, b, w)
- 5. Repeat steps 2-4 to generate more e

Learning Algorithm

GOAL: find best pronunciation for input word w

$$\operatorname{argmax}_b \Pr(b \mid w)$$

Given

- Current guess about Pr(baseform b|w)
- Pr(transformed phonemes p|b, w)

Phonetic Confusions

-- will explain later

▶ $Pr(word\ recognition\ output\ e|p, b, w) = Pr(e|p)$

Current Lexicon

Learning Algorithm

▶ Compute posterior probability of baseform b given w and e

Phonetic Current Lexicon
$$Pr(b \mid e, w) = \frac{Pr(b \mid w)Pr(p \mid b, w)Pr(e \mid p, b, w)}{\sum_{c} Pr(c \mid w)Pr(p \mid c, w)Pr(e \mid p, c, w)}$$

Sum over all e in n-best word recognition lists over all utterances of w

$$\Pr(b \mid w) = \sum_{e \in E_{w}} \Pr(b \mid e, w) \Pr(e)$$

Expectation Maximization Iterate

Initial Guess for Pr(b | w)

Limit to reasonable candidates

Initialize

$$\Pr(b \mid w) = \frac{1}{\mid B_{w} \mid} \text{ if } b \in B_{w}$$

$$0 \quad \text{otherwise}$$

^{*} Bisani and Ney (2008)

Modeling Phonetic Confusions

Data

- CSLU Names Corpus
- Only use single-word names (isolated-word experiments)
- ▶ 20423 utterances, 7771 unique names
- Train (learn OOV pronunciations):
 Random 50% of utterances for each name
- Test (evaluate new lexicon):
 Remaining utterances

Setup

- Sphinx 3
- MFCCs extracted using Sphinx's default parameters
- Acoustic Models trained on TIMIT
- Original Lexicon: CMU Dictionary, CSLU names removed
- Language Model: unigrams over names, add-one smoothing to include all CMU Dictionary words

Evaluation

- Word Error Rate of ASR recognition with learned lexicon
- Baseform Error Rate: proportion of learned baseforms different from corpus transcriptions
- Phoneme Error Rate: proportion of insertions, deletions, and substitutions of learned baseforms against corpus transcriptions
- Baselines:
 - State of the art g2p: Sequitur, multigrams of order 6 (SEQUITUR)
 - CMU Dictionary pronunciations for names in dictionary (CMUGOLD)

Can we get better pronunciations than a grapheme-to-phoneme system?

How does ASR recognition with gold standard pronunciations compare?

What Works?

Dense phonetic neighborhood

Sparse phonetic neighborhood

Conclusion

- Can we learn pronunciations from word recognition errors?
 - Yes!
 - Learned pronunciations are better than grapheme-to-phoneme results
- ▶ Preliminary work lots more to be done
 - Extend EM to also learn (or augment) phonetic confusions
 - Learn pronunciation variants of words in lexicon
 - Adapt to continuous speech (not just isolated words)
 - Seed Pr(b|w) independent of Sequitur or other g2p
 - Combine phone lattice information and word recognition output as cues for pronunciation

Dank Yu!