Criptografie și securitate CTI

Laborator 12

Sisteme de partajare a secretelor

- 1. Să se partajaze secretul S=13, pentru o schemă majoritară k=3 din n=5 participanți, utilizând algoritmul lui Shamir în grupul (\mathbb{Z}_{17} , ·) și valorile publice $x_i=i, i=1,\ldots,5$ și valorile aleatoare $a_1=10, a_2=2$.
- 2. Să se reconstituie secretul S, din valorile $\{12,4,15\}$, știind că acestea au fost obținute cu ajutorul schemei majoritare (5,3) a lui Shamir specificată de grupul (\mathbb{Z}_{17},\cdot) și valorile publice $\{1,4,5\}$.

Link suplimentar

https://en.wikipedia.org/wiki/Shamir%27s_secret_sharing https://en.wikipedia.org/wiki/Lagrange_polynomial

- 3. (a) Folosind schema de partajare a secretelor a lui Goldreich, Ron și Sudan, partajați secretul S=789 folosind numerele $p_1=7, p_2=11, p_3=13, p_4=19, p_5=23$ și arătați calculând pe hârtie cum utilizatorii 2,3 și 5 pot reconstrui secretul.
 - (b) Ar fi corect să considerăm încă un utilizator pentru care $p_0=5$? Link suplimentar https://en.wikipedia.org/wiki/Secret_sharing_using_the_Chinese_remainder_theorem
- 4. De ce în problema utilizatorilor "secretoși și zgârciți"
 - (a) cei n-1 utilizatori nu pot să determine suma de bani a celui de-al n-lea utilizator decât după ce suma totală este dezvăluită?
 - (b) n-2 utilizatori nu pot determina niciodată suma de bani a celorlalți 2 utilizatori.
- 5. Implementați două din cele 3 scheme de partajare ale secretelor prezentate la curs.