ECE 375 Computer Organization and Assembly Language Programming Winter 2022 Assignment #4

The following questions are based on the enhanced AVR datapath (see Figures 8.24 and 8.26 in the text). The microoperation for the Fetch cycle is shown below.

Stage	Micro-operations
IF	$IR \leftarrow M[PC], PC \leftarrow PC + 1, NPC \leftarrow PC + 1, RAR \leftarrow PC + 1$

[25 pts]

- 1- Consider the implementation of the PUSH Rr (*Push Register on Stack*) instruction on the enhanced AVR datapath.
 - (a) List and explain the sequence of microoperations required to implement PUSH Rr.
 - (b) List and explain the control signals and the Register Address Logic (RAL) output for the PUSH Rr instruction.

Note that this instruction takes one execute cycle (EX) (despite the fact that the datasheet indicates 2 execute cycles). Control signals for the Fetch cycle are given below. Clearly explain your reasoning

		PUSH
Control	IF	Rr
Signals	11	EX
MJ	0	211
MK	0	
ML	0	
IR en	1	
PC en	1	
PCh en	0	
PCl_en	0	
NPC_en	1	
SP_en	0	
DEMUX	X	
MA	X	
MB	X	
ALU_f	XXXX	
MC	XX	
RF_wA	0	
RF_wB	0	
MD	X	
ME	X	
DM_r	X	
DM_w	0	
MF	X	
MG	X	
Adder f	XX	
Inc_Dec	X	
MH	X	
MI	X	

RAL	PUSH
	Rr
Output	EX1
wA	
wB	
rA	
rB	

- [25 pts]2- Consider the implementation of the LD Rd, Y+ (Load Indirect and Post-Increment) instruction on the enhanced AVR datapath.
 - (a) List and explain the sequence of microoperations required to implement LD Rd, Y+.
 - (b) List and explain the control signals and the Register Address Logic (RAL) output for the LD Rd, Y+ instruction.

Note that this instruction takes two execute cycles (EX1 and EX2). Control signals for the Fetch cycle are given below. Clearly explain your reasoning.

Control		LD Rd, Y+		
Control	IF	EX1	EX2	
Signals		EAI	EAZ	
MJ	0			
MK	0			
ML	0			
IR_en	1			
PC_en	1			
PCh_en	0			
PCl_en	0			
NPC_en	1			
SP_en	0			
DEMUX	X			
MA	X			
MB	X			
ALU_f	XXXX			
MC	XX			
RF_wA	0			
RF_wB	0			
MD	X			
ME	X			
DM_r	X			
DM_w	0			
MF	X			
MG	X			
Adder_f	XX			
Inc_Dec	X			
MH	X			
MI	Х			

RAL	LD Rd, Y+		
Output	EX1	EX2	
wA			
wB			
rA			
rB			

- [25 pts]3- Consider the implementation of the RET (*Return from subroutine*) instruction on the enhanced AVR datapath.
 - (a) List and explain the sequence of microoperations required to implement RET.
 - (b) List and explain the control signals and the Register Address Logic (RAL) output for the RET instruction. Note that this instruction takes three execute cycles (EX1, EX2, and EX3). Control signals for the Fetch cycle are given below. Clearly explain your reasoning.

Control		1	RET	
Signals	IF	EX1	EX2	EX3
	0	EAI	EAZ	EAS
MJ	0			
MK	0			
ML	0			
IR_en	1			
PC_en	1			
PCh_en	0			
PCl_en	0			
NPC_en	1			
SP en	0			
DEMUX	X			
MA	X			
MB	X			
ALU_f	XXXX			
MC	XX			
RF_wA	0			
RF_wB	0			
MD	X			
ME	X			
DM_r	X			
DM_w	0			
MF	X			
MG	X			
Adder_f	XX			
Inc_Dec	X			
MH	X			
MI	X			

RAL	RET		
Output	EX1	EX2	EX3
wA			
wB			
rA			
rB			

[25 pts]

- 4- Consider the implementation of the LPM R16, Z+ (Load Program Memory) instruction on the enhanced AVR datapath.
 - (a) List and explain the sequence of microoperations required to implement LPM R16, Z+. Note that this instruction takes three execute cycles (EX1, EX2, and EX3).
 - (b) List and explain the control signals and the Register Address Logic (RAL) output for the LPM instruction. Control signals for the Fetch cycle are given below. Clearly explain your reasoning.

Control	Control LPM R16, Z+		+	
Signals	IF	EX1	EX2	EX3
MJ	0			
MK	0			
ML	0			
IR_en	1			
PC_en	1			
PCh_en	0			
PCl_en	0			
NPC en	1			
SP_en	0			
DEMUX	X			
MA	Х			
MB	X			
ALU_f	XXXX			
MC	XX			
RF_wA	0			
RF wB	0			
MD	X			
ME	X			
DM_r	X			
DM w	0			
MF	X			
MG	X			
Adder_f	XX			
Inc_Dec	X			
MH	X			
MI	v			_

RAL	LPM R16, Z+			
Output	EX1	EX2	EX3	
wA				
wB				
rA				
rB				