Θεωρία Iwasawa

Νούλας Δημήτριος dnoulas@math.uoa.gr

Περιεχόμενα

1	Εισ	αγωγή	3
2	Προ	οαπαιτούμενα	4
	$2.\dot{1}$	Άλγεβρική Θεωρία Αριθμών	4
	2.2	Κυκλοτομικά Σώματα	6
	2.3	Άπειρη Θεωρία Galois	9
	2.4	Θεωρία Κλάσεων Σωμάτων	9

Κεφάλαιο 1 Εισαγωγή

Κεφάλαιο 2

Προαπαιτούμενα

2.1 Άλγεβρική Θεωρία Αριθμών

Έστω L/K μια πεπερασμένη επέκταση σωμάτων αριθμών με δακτύλιους ακεραίων \mathcal{O}_L και \mathcal{O}_K αντίστοιχα.

Θεώρημα 2.1. Κάθε γνήσιο μη-μηδενικό πρώτο ιδεώδες $\mathfrak{a} \subset \mathcal{O}_K$ έχει μοναδική παραγοντοποίηση:

$$\mathfrak{a} = \mathfrak{p}_1^{e_1} \cdots \mathfrak{p}_r^{e_r}$$

 $\mu \epsilon e_i > 0$ και τα \mathfrak{p}_i είναι πρώτα ιδεώδη.

 Δ οθέντος ενός πρώτου ιδεωδούς $\mathfrak{p}\subset\mathcal{O}_K$, μπορούμε να θεωρήσουμε το ιδεώδες $\mathfrak{p}\mathcal{O}_L$ στον δακτύλιο \mathcal{O}_L . Με βάση το προηγούμενο θεώρημα μπορούμε να το παραγοντοποιήσουμε σε γινόμενο πρώτων ιδεωδών:

$$\mathfrak{p}\mathcal{O}_L = \mathfrak{p}_1^{e_1} \cdots \mathfrak{p}_r^{e_r} \tag{2.1}$$

με τα \mathfrak{p}_i να είναι πρώτα ιδεώδη του \mathcal{O}_L .

Ορισμός 2.2. Σε μια παραγοντοποίηση όπως στην 2.1, λεμε το $e_i = e(\mathfrak{p}_i/\mathfrak{p})$ δείκτη διακλάδωσης του \mathfrak{p} στο \mathfrak{p}_i . Θα λέμε ότι το πρώτο ιδεώδες \mathfrak{p} διακλαδίζεται στο L αν ισχύει $e_i > 1$ για κάποιο i. Ο βαθμός αδράνειας $f_i = f(\mathfrak{p}_i/\mathfrak{p})$ είναι η διάσταση του διανυσματικού χώρου $\mathcal{O}_L/\mathfrak{p}_i$ πάνω από το πεπερασμένο σώμα $\mathcal{O}_K/\mathfrak{p}$.

Πρόταση 2.3. Ένα πρώτο ιδεώδες \mathfrak{p} στο \mathcal{O}_K διακλαδίζεται στο \mathcal{O}_L αν και μόνο αν $\mathfrak{p} \mid \mathrm{disc}(\mathcal{O}_L/\mathcal{O}_K)$.

!Τι σημαίνει $disc(\mathcal{O}_L/\mathcal{O}_K)$ · η διακρίνουσα ορίζεται για σώματα αριθμών. Λογικά:

$$disc_{\mathcal{O}_K}(\mathcal{O}_L) = \det(T_{L/K}(a_i a_j))$$

όπου a_i βάση του \mathcal{O}_L ως \mathcal{O}_K -πρότυπο, που σημαίνει τα a_i είναι βάση του L υπεράνω του K (σωστό με βάση Milne)

Θεώρημα 2.4. Με βάση τα παραπάνω έχουμε:

$$\sum_{i=1}^{r} e(\mathfrak{p}_i/\mathfrak{p}) f(\mathfrak{p}_i/\mathfrak{p}) = \sum_{i=1}^{r} e_i f_i = [L:K]$$
(2.2)

Στο εξής θα θεωρούμε ότι η επέχταση L/K είναι Galois. Έτσι μπορούμε να απλοιποιήσουμε το προηγούμενο θεώρημα αρχετά. Ξεχινάμε με την αχόλουθη πρόταση.

Πρόταση 2.5. Η ομάδα Gal(L/K) δρα μεταβατικά στο σύνολο των πρώτων ιδεωδών \mathfrak{p}_i του \mathcal{O}_L που βρίσκονται υπεράνω του \mathfrak{p} .

Aπόδειξη. Προς άτοπο, έστω ότι $σ(\mathfrak{p}_i) \neq \mathfrak{p}_j$ για κάθε $σ \in \operatorname{Gal}(L/K)$. Υπενθυμίζουμε ότι το $σ(\mathfrak{p}_i)$ θα είναι και αυτό πρώτο ιδεώδες που θα στέκεται πάνω από το \mathfrak{p} . Καθώς είμαστε σε περιοχές Dedekind τα \mathfrak{p}_i και $σ(p_i)$ θα είναι μεγιστικά. Άρα $\mathfrak{p}_i \not\subseteq σ(\mathfrak{p}_i)$. Από το αντιθετοαντίστροφο του λήμματος αποφυγής πρώτων παίρνουμε ότι

$$\mathfrak{p}_i \not\subseteq \bigcup_{\sigma \in \mathrm{Gal}(L/K)} \sigma(\mathfrak{p}_i)$$

δηλαδή, υπάρχει $x \in \mathfrak{p}_i$ που αποφεύγει όλα τα $\sigma(\mathfrak{p}_i)$. Για την νόρμα, παρατηρούμε ότι:

$$N_{L/K}(x) = \prod_{\sigma \in Gal(L/K)} \sigma(x)$$

βρίσκεται μέσα στο $\mathfrak{p}=\mathcal{O}_K\cap\mathfrak{p}_i$, διότι η νόρμα θα βρίσκεται μέσα στο \mathcal{O}_K καθώς και στο παραπάνω γινόμενο εμφανίζεται το x που ανήκει στο ιδεώδες \mathfrak{p}_i . Έχουμε ότι $x\not\in\sigma(p_i)$ και άρα $\sigma^{-1}(x)\not\in\mathfrak{p}_i$ για κάθε $\sigma\in\mathrm{Gal}(L/K)$. Άρα $\prod\sigma^{-1}(x)=\prod\sigma(x)\not\in\mathfrak{p}_i\cap\mathcal{O}_K=\mathfrak{p}$, το οποίο είναι άτοπο.

Πόρισμα 2.6. Έστω L/K Galois επέκταση και $0 \neq \mathfrak{p} \subset \mathcal{O}_K$ πρώτο ιδεώδες. Τότε $e(\mathfrak{p}_i/\mathfrak{p}) = e(\mathfrak{p}_j/\mathfrak{p}) = e$ και $f(\mathfrak{p}_i/\mathfrak{p}) = f$ για κάθε i,j της εξίσωσης 2.1. Ειδικότερα, έχουμε [L:K] = ref.

Απόδειξη. Ο αυτομορφισμός σ διατηρεί τις αλγεβρικές σχέσεις:

$$\sigma(\mathfrak{p}\mathcal{O}_L) = \prod_{i=1}^r \sigma(p_i)^{e_i} = \prod_{i=1}^r \mathfrak{p}_i^{e_i} = \mathfrak{p}\mathcal{O}_L$$

και συγκρίνουμε τους εκθέτες για να πάρουμε ότι είναι ίδιοι. Αν $\sigma(\mathfrak{p}_i) = \mathfrak{p}_j$ τότε παίρνουμε $f_i = f_j$ από τον ισομορφισμό πεπερασμένων σωμάτων:

$$\mathcal{O}_L/\mathfrak{p}_i\simeq\mathcal{O}_L/\mathfrak{p}_i$$

από τον επιμορφισμό που επάγει ο σ:

$$\mathcal{O}_L \longrightarrow \mathcal{O}_L/\mathfrak{p}_j$$

$$x \longmapsto \sigma(x) + \mathfrak{p}_i$$

Για [L:K] = n υπενθυμίζουμε την ορολογία:

	e	f	r
αδρανές	1	n	1
πλήρως διακλαδιζόμενο	n	1	1
πλήρως διασπώμενο	1	1	$\mid n \mid$

Ορισμός 2.7. Έστω \mathfrak{q} ένα πρώτο ιδεώδες του \mathcal{O}_L . Η υποομάδα $D_{\mathfrak{q}} = \{ \sigma \in \operatorname{Gal}(L/K) : \sigma(\mathfrak{q}) = \mathfrak{q} \}$ λέγεται \mathfrak{q} ομάδα διάσπασης του \mathfrak{q} υπεράνω του K.

Από την πρόταση 2.5 και το θεώρημα orbit-stabilizer παίρνουμε το ακόλουθο πόρισμα.

Πόρισμα 2.8. Για L/K επέκταση όπως παραπάνω και $\mathfrak p$ πρώτο ιδεώδες του $\mathcal O_K$ έχουμε:

- (1) $[Gal(L/K): D_{\mathfrak{q}}] = r$ για κάθε $\mathfrak{q} \mid \mathfrak{p}$.
- (2) $D_{\mathfrak{q}} = 1$ αν και μόνο αν το $\mathfrak{p}\mathcal{O}_L$ διασπάται πλήρως.
- (3) $D_{\mathfrak{q}}=\mathrm{Gal}(L/K)$ αν και μόνο αν το $\mathfrak{p}\mathcal{O}_L$ διακλαδίζεται πλήρως, δηλαδή $\mathfrak{p}\mathcal{O}_L=\mathfrak{q}^n$ για n=[L:K].

(4)
$$|D_{\mathfrak{q}}| = ef$$
.

Έχουμε μια φυσική απεικόνιση:

$$D_{\mathfrak{q}} \longrightarrow \operatorname{Gal}\left((\mathcal{O}_L/\mathfrak{q})/(\mathcal{O}_K/\mathfrak{p})\right)$$

που ένα $\sigma \in D_{\mathfrak{q}}$ εφόσον κρατάει σταθερό το \mathfrak{q} επάγει έναν $\mathcal{O}_L/\mathfrak{q}$ -αυτομορφισμό $\overline{\sigma}$ ο οποίος κρατάει σταθερό το υπόσωμα $\mathcal{O}_K/\mathfrak{p}$, αφού ο σ κρατάει σταθερό το K. Αποδεικνύεται ότι αυτή η απεικόνιση είναι επί (S. Lang ANT prop 14).

Ορισμός 2.9. Ο πυρήνας $I_{\mathfrak{q}} \subseteq D_{\mathfrak{q}}$ του παραπάνω ομομορφισμού λέγεται ομάδα αδράνειας του \mathfrak{q} υπεράνω του K. Ισχύει ότι:

$$I_{\mathfrak{q}} = \{ s \in D_{\mathfrak{q}} : \ \sigma(x) = x \mod {\mathfrak{q}} \ \forall x \in L \}$$

Από το πόρισμα 2.8 έχουμε ότι:

Πόρισμα 2.10. Για L/K επέκταση όπως παραπάνω έχουμε ότι $|I_{\mathfrak{q}}|=e$.

Από την θεωρία πεπερασμένων σωμάτων, η ομάδα Galois πεπερασμένου σώματος είναι κυκλική και ένας γεννήτορας είναι ο $\sigma(x)=x^q$, όπου q είναι η τάξη του υποσώματος. Αυτός ο γεννήτορας είναι γνωστός ως ο αυτομορφισμός του Frobenius. Στην περίπτωσή μας με $q=|\mathcal{O}_K/\mathfrak{p}|$ και $\mathfrak{q}\mid\mathfrak{p}$ υπάρχει δηλαδή ένας αυτομορφισμός $\overline{\sigma_\mathfrak{q}}$ του $\mathcal{O}_L/\mathfrak{q}$ που σταθεροποιεί το $\mathcal{O}_K/\mathfrak{p}$ που δίνεται από την σχέση $\overline{\sigma_\mathfrak{q}}(x+\mathfrak{q})=x^q+\mathfrak{q}$. Άρα από τον ισομορφισμό:

$$D_{\mathfrak{q}}/I_{\mathfrak{q}} \simeq \operatorname{Gal}\left((\mathcal{O}_L/\mathfrak{q})/(\mathcal{O}_K/\mathfrak{p})\right)$$

Έχουμε ότι κάποιο σύμπλοκο $\sigma_{\mathfrak{q}}+I_{\mathfrak{q}}$ θα αντιστοιχεί στον αυτομορφισμό του Frobenius. Κάθε στοιχείο του συμπλόκου θα λέγεται αυτομορφισμός του Frobenius στο \mathfrak{q} και θα συμβολίζεται με $\operatorname{Frob}_{\mathfrak{q}}$. Αν \mathfrak{q} ομάδα αδράνειας $I_{\mathfrak{q}}$ είναι τετριμμένη, δηλαδή e=1 και το \mathfrak{p} δεν διακλαδίζεται, τότε υπάρχει καλά ορισμένο στοιχείο $\operatorname{Frob}_{\mathfrak{q}}\in D_{\mathfrak{q}}$. Είναι σημαντικό να μπορούμε να συσχετίσουμε τα $\operatorname{Frob}_{\mathfrak{q}_1}$ και $\operatorname{Frob}_{\mathfrak{q}_2}$ για διαφορετικά πρώτα ιδεώδη $\mathfrak{q}_i\mid \mathfrak{p}$. Ξέρουμε ότι υπάρχει $\tau\in\operatorname{Gal}(L/K)$ με $\tau(\mathfrak{q}_1)=\mathfrak{q}_2$ και εύκολα φαίνεται ότι $D_{\mathfrak{q}_2}=\tau D_{\mathfrak{q}_1}\tau^{-1}$, καθώς και $\operatorname{Frob}_{\mathfrak{q}_2}=\tau\operatorname{Frob}_{\mathfrak{q}_1}\tau^{-1}$. Αν \mathfrak{q} $\operatorname{Gal}(L/K)$ είναι αβελιανή και το \mathfrak{p} δεν διακλαδίζεται στο L, τότε μπορούμε να ξεχωρίσουμε μοναδικό στοιχείο της $\operatorname{Gal}(L/K)$ που βρίσκεται στην $D_{\mathfrak{q}}$ για κάθε $\mathfrak{q}\mid \mathfrak{p}$. Αυτό το στοιχείο θα το λέμε $\operatorname{Frob}_{\mathfrak{p}}$.

Πρόταση 2.11. Εστω L/K επέκταση Galois και \mathfrak{p} πρώτο ιδεώδες του \mathcal{O}_K και \mathfrak{q} πρώτο ιδεώδες του \mathcal{O}_L με $\mathfrak{q} \mid \mathfrak{p}$. Completions!

2.2 Κυκλοτομικά Σώματα

Ορισμός 2.12. Μια πρωταρχική n-οστή ρίζα της μονάδας είναι ένας αριθμός $\zeta_n \in \mathbb{C}$ τέτοιος ώστε $\zeta_n^n = 1$ και $\zeta_n^m \neq 1$ για κάθε 0 < m < n. Το σώμα $\mathbb{Q}(\zeta_n)$ λέγεται το n-οστό κυκλοτομικό σώμα.

Ορίζουμε το n-οστό χυχλοτομικό πολυώνυμο $\Phi_n(x)$ ως εξής:

$$\Phi_n(x) = \prod_{\substack{0 < m < n \\ \gcd(m,n)=1}} (x - \zeta_n^m)$$

Οι ρίζες του πολυωνύμου είναι αχριβώς οι πρωταρχικές n-οστές ρίζες της μονάδας. Έχουμε $\deg(\Phi_n)=\phi(n)$. Επιπλέον ισχύει ότι $\Phi_n(x)\in\mathbb{Q}[x]$. Αυτό φαίνεται από την σχέση

$$x^n - 1 = \prod_{d|n} \Phi_d(x) \tag{2.3}$$

και με επαγωγή στο n. Αφού $\Phi_n(\zeta_n)=0$ έχουμε ότι $[\mathbb{Q}(\zeta_n):\mathbb{Q}]\leq \phi(n)$. Έχουμε ότι η επέκταση $\mathbb{Q}(\zeta_n)/\mathbb{Q}$ είναι Galois αφού το Φ_n διασπάται πλήρως στο $\mathbb{Q}(\zeta_n)$. Εφαρμόζοντας τον μετασχηματισμό Möbius στην εξίσωση 2.3 παίρνουμε:

$$\Phi_n(x) = \prod_{d|n} (x^d - 1)^{\mu(n/d)}$$

Λήμμα 2.13. Εστω $n = p^r$ όπου p πρώτος. Τότε:

- (1) $[\mathbb{Q}(\zeta_{p^r}) : \mathbb{Q}] = \phi(p^r) = p^r p^{r-1}$.
- $(2) \ p\mathcal{O}_{\mathbb{Q}(\zeta_{p^r})} = (1-\zeta_{p^r})^{\phi(p^r)} \ \text{και το} \ (1-\zeta_{p^r}) \ \epsilon$ ίναι πρώτο ιδεώδες του $\mathcal{O}_{\mathbb{Q}(\zeta_{p^r})}$.
- (3) $\mathcal{O}_{\mathbb{Q}(\zeta_{p^r})} = \mathbb{Z}[\zeta_{p^r}].$
- (4) $\Delta_{\mathbb{O}(\zeta_{n^r})} = \pm p^{p^{r-1}(pr-r-1)}$.

Aπόδειξη. Άρχικά έχουμε $\mathbb{Z}[\zeta_{p^r}]\subseteq\mathcal{O}_{\mathbb{Q}(\zeta_{p^r})}$ αφού τα στοιχεία του πρώτου είναι άθροισμα α-κεραίων της μορφής $\sum_{i=0}^{p^r-1}a_i\zeta_{p^r}^i$ και τα ακέραια στοιχεία αποτελούν δακτύλιο. Αν ζ_{p^r}' είναι μια άλλη p^r ρίζα της μονάδας, τότε υπάρχουν $s,t\in\mathbb{Z}$ με p /st και $\zeta_{p^r}=(\zeta_{p^r}')^t,\zeta_{p^r}'=\zeta_{p^r}^s$. Έτσι, $\mathbb{Q}(\zeta_{p^r})=\mathbb{Q}(\zeta_{p^r}')$ και $\mathbb{Z}[\zeta_{p^r}]=\mathbb{Z}[\zeta_{p^r}']$. Επιπλέον,

$$\frac{1 - \zeta_{p^r}'}{1 - \zeta_{p^r}} = \frac{1 - \zeta_{p^r}^s}{1 - \zeta_{p^r}} = 1 + \zeta_{p^r} + \dots + \zeta_{p^r}^{s-1} \in \mathbb{Z}[\zeta_{p^r}]$$

και όμοια, $(1-\zeta_{p^r})/(1-\zeta_{p^r}')\in\mathbb{Z}[\zeta_{p^r}]$. Αρα το $(1-\zeta_{p^r}')$ είναι αντιστρέψιμο στο $\mathbb{Z}[\zeta_{p^r}]$ και άρα και στο $\mathcal{O}_{\mathbb{Q}(\zeta_{p^r})}$.

$$\Phi_{p^r}(x) = \frac{x^{p^r} - 1}{x^{p^{r-1}} - 1} = \frac{t^p - 1}{t - 1} = 1 + t + \dots + t^{p-1}, \ t = x^{p^{r-1}}$$

και $\Phi_{p^r}(1) = p$. Από τους ορισμούς φαίνεται ότι:

$$\Phi_{p^r}(1) = \prod (1 - \zeta'_{p^r})$$

$$= \prod \frac{1 - \zeta'_{p^r}}{1 - \zeta_{p^r}} (1 - \zeta_{p^r})$$

$$= u(1 - \zeta_{p^r})^{\phi(p^r)}$$

με u αντιστρέψιμο στοιχείο του $\mathbb{Z}[\zeta_{p^r}]$. Άρα παίρνουμε ισότητα στα ιδεώδη του $\mathcal{O}_{\mathbb{Q}(\zeta_{p^r})}$, δηλαδή $p\mathcal{O}_{\mathbb{Q}(\zeta_{p^r})}=(1-\zeta_{p^r})^{\phi(p^r)}$. Συνεπώς, το ιδεώδες $p\mathcal{O}_{\mathbb{Q}(\zeta_{p^r})}$ έχει τουλάχιστον $\phi(p^r)$ πρώτους παράγοντες στο $\mathcal{O}_{\mathbb{Q}(\zeta_{p^r})}$. Άρα (;) παίρνουμε $[\mathbb{Q}(\zeta_{p^r}):\mathbb{Q}]\geq \phi(p^r)$ και συνεπώς

$$[\mathbb{Q}(\zeta_{p^r}):\mathbb{Q}] = \phi(p^r) = p^r - p^{r-1}$$

Επιπλέον, το $(1-\zeta_{p^r})$ παράγει πρώτο ιδεώδες αλλιώς θα είχαμε παραπάνω από $\phi(p^r)$ πρώτους στην παραγοντοποίηση του $p\mathcal{O}_{\mathbb{Q}(\zeta_{p^r})}$. Για την διαχρίνουσα, χρησιμοποιούμε τον τύπο με την παράγωγο από την βιβλιογραφία (π.χ. Milne ANT prop 2.33)

$$disc(\mathbb{Z}[\zeta_{p^r}]/\mathbb{Z}) = \pm N_{\mathbb{Q}(\zeta_{p^r})/\mathbb{Q}}(\Phi'_{p^r}(\zeta_{p^r}))$$

. Έχουμε

$$\Phi'_{p^r}(\zeta_{p^r}) = \frac{p^r \zeta_{p^r}^{p^r - 1}}{\zeta_{p^r}^{p^r - 1} - 1}$$

και

$$N(\zeta_{p^r}) = \pm 1$$

αρα

$$N(p^r) = (p^r)^{\phi(p^r)} = p^{r\phi(p^r)}$$

και ισχυριζόμαστε ότι:

$$N(1 - \zeta_{p^r}^{p^s}) = p^{p^s}, \ 0 \le s < r$$

Πράγματι, το ελάχιστο πολυώνυμο του $1-\zeta_{p^r}$ είναι το $\Phi_{p^r}(1-x)$ που έχει σταθερό όρο $\Phi_{p^r}(1)=p$. Αρα $N(1-\zeta_{p^r})=\pm p$. Έστω s< r, το $\zeta_{p^r}^{p^s}$ είναι πρωταρχική p^{r-s} -οστή ρίζα της μονάδας, άρα ο ίδιος υπολογισμός για r-s αντί για r δίνει $N_{\mathbb{Q}(\zeta_{p^r}^{p^s})/\mathbb{Q}}(1-\zeta_{p^r}^{p^s})=\pm p$. Χρησιμοποιώντας την προσεταιριστικότητα της νόρμας, μαζί με $N_{M/L}(a)=a^{[M:L]}$ για σώματα $M\supset L$, παίρνουμε ότι:

$$N_{\mathbb{Q}(\zeta_{p^r})/\mathbb{Q}}(1-\zeta_{p^r}^{p^s})=p^a$$

όπου

$$a = [\mathbb{Q}(\zeta_{p^r}) : \mathbb{Q}(\zeta_{p^r}^{p^s})] = \phi(p^r)/\phi(p^{r-s}) = p^s$$

Συνεπώς, $N(\Phi'_{p^r}(\zeta_{p^r}))=\pm p^c$ όπου $c=p^{r-1}(pr-r-1)$. Άρα η διαχρίνουσα του $\mathbb{Z}[\zeta_{p^r}]$ πάνω από το \mathbb{Z} είναι δύναμη του p. Άρα και η διαχρίνουσα του $\mathcal{O}_{\mathbb{Q}(\zeta_{p^r})}$ πάνω από το \mathbb{Z} είναι δύναμη του p από τον τύπο:

$$disc(\mathcal{O}_{\mathbb{Q}(\zeta_{p^r})}/\mathbb{Z})[\mathcal{O}_{\mathbb{Q}(\zeta_{p^r})}:\mathbb{Z}[\zeta_{p^r}]]^2 = disc(\mathbb{Z}[\zeta_{p^r}/\mathbb{Z}])$$

(Milne remark 2.24)

Επιπλέον, έχουμε ότι το $[\mathcal{O}_{\mathbb{Q}(\zeta_{p^r})}:\mathbb{Z}[\zeta_{p^r}]]$ είναι δύναμη του p, άρα $p^M(\mathcal{O}_{\mathbb{Q}(\zeta_{p^r})}/\mathbb{Z}[\zeta_{p^r}])=0$ για κάποιο M. Δηλαδή, $p^M\mathcal{O}_{\mathbb{Q}(\zeta_{p^r})}\subseteq\mathbb{Z}[\zeta_{p^r}]$. Το χρησιμοποιούμε αυτό για το ιδεώδες $\mathfrak{p}=(1-\zeta_{p^r})$ και έχουμε $f(\mathfrak{p}/p)=1$ και άρα η παρακάτω απεικόνιση είναι ισομορφισμός:

$$\mathbb{Z}/p\mathbb{Z} \longrightarrow \mathcal{O}_{\mathbb{Q}(\zeta_{n^r})/(1-\zeta_{n^r})}$$

Άρα $\mathbb{Z} + (1 - \zeta_{p^r})\mathcal{O}_{\mathbb{Q}(\zeta_{p^r})} = \mathcal{O}_{\mathbb{Q}(\zeta_{p^r})}$ και άρα επίσης:

$$\mathbb{Z}[\zeta_{p^r}] + (1 - \zeta_{p^r})\mathcal{O}_{\mathbb{Q}(\zeta_{p^r})} = \mathcal{O}_{\mathbb{Q}(\zeta_{p^r})} \tag{2.4}$$

η οποία δίνει:

$$(1 - \zeta_{p^r}) \mathbb{Z}[\zeta_{p^r}] + (1 - \zeta_{p^r})^2 \mathcal{O}_{\mathbb{Q}(\zeta_{p^r})} = (1 - \zeta_{p^r}) \mathcal{O}_{\mathbb{Q}(\zeta_{p^r})}$$
(2.5)

Έστω $a \in \mathcal{O}_{\mathbb{Q}(\zeta_{p^r})}$. Τότε από την εξίσωση 2.4 παίρνουμε ότι $a = a' + \gamma$ με $a' \in (1 - \zeta_{p^r})\mathcal{O}_{\mathbb{Q}(\zeta_{p^r})}$ και $\gamma \in \mathbb{Z}[\zeta_{p^r}]$. Η εξίσωση 2.5 δίνει $a' = a'' + \gamma'$ με $a'' \in (1 - \zeta_{p^r})^2\mathcal{O}_{\mathbb{Q}(\zeta_{p^r})}$ και $\gamma' \in \mathbb{Z}[\zeta_{p^r}]$. Άρα $a = (\gamma + \gamma') + a''$. Συνεπώς:

$$\mathbb{Z}[\zeta_{p^r}] + (1 - \zeta_{p^r})^2 \mathcal{O}_{\mathbb{Q}(\zeta_{p^r})} = \mathcal{O}_{\mathbb{Q}(\zeta_{p^r})}$$

Με επανάληψη, μπορούμε να πάρουμε $\mathbb{Z}[\zeta_{p^r}]+(1-\zeta_{p^r})^m\mathcal{O}_{\mathbb{Q}(\zeta_{p^r})}=\mathcal{O}_{\mathbb{Q}(\zeta_{p^r})}$ για $m\in\mathbb{N}$. Καθώς $(1-\zeta_{p^r})^{\phi(p^r)}=p\cdot u$, u αντιστρέψιμο, έχουμε $\mathbb{Z}[\zeta_{p^r}]+p^m\mathcal{O}_{\mathbb{Q}(\zeta_{p^r})}=\mathcal{O}_{\mathbb{Q}(\zeta_{p^r})}$ για κάθε $m\in\mathbb{N}$. Ωστόσο, για αρκετά μεγάλο m έχουμε δείξει ότι $p^m\mathcal{O}_{\mathbb{Q}(\zeta_{p^r})}\subseteq\mathbb{Z}[\zeta_{p^r}]$. Άρα πράγματι $\mathbb{Z}[\zeta_{p^r}]=\mathcal{O}_{\mathbb{Q}(\zeta_{p^r})}$. Αυτό μαζί με τον υπολογισμό του $disc(\mathbb{Z}[\zeta_{p^r}]/\mathbb{Z})$ ολοκληρώνουν την απόδειξη.

Μαζί με το ακόλουθο λήμμα, θα γενικεύσουμε την πρόταση για $n \in \mathbb{N}$.

Λήμμα 2.14. Έστω K, L πεπερασμένες επεκτάσεις του \mathbb{Q} με

$$[KL:\mathbb{Q}] = [K:\mathbb{Q}] \cdot [L:\mathbb{Q}]$$

και έστω $d = \gcd(\operatorname{disc}(\mathcal{O}_K/\mathbb{Z}), \operatorname{disc}(\mathcal{O}_L/\mathbb{Z}))$. Τότε

$$O_{KL} \subset d^{-1}\mathcal{O}_K\mathcal{O}_L$$

Πρόταση 2.15. Έστω ζ_n μια πρωταρχική n-οστή ρίζα της μονάδας και $K = \mathbb{Q}(\zeta_n)$. Ισχύουν τα ακόλουα:

- (1) $[K : \mathbb{Q}] = \phi(n)$.
- (2) $\mathcal{O}_K = \mathbb{Z}[\zeta_n].$
- (3) Ο πρώτος p διακλαδίζεται στο K αν και μόνο αν $p\mid n$ (εκτός αν n=2·περιττός και p=2). Ειδικότερα, αν $n=p^r$ με $\gcd(p,m)=1$, τότε

$$p\mathcal{O}_K = (\mathfrak{p}_1 \cdots \mathfrak{p}_s)^{\phi(p^r)}$$

στο K με τα \mathfrak{p}_i να είναι διακεκριμένοι πρώτοι στο K.

Απόδειξη. Με επαγωγή στο πλήθος των πρώτων που διαιρούν το n. Θεωρούμε τα σώματα:

και κοιτάμε πώς το p παραγοντοποιείται στα E,F. $p\mathcal{O}_E=\mathfrak{p}^{\phi(p^r)}$ διακλαδίζεται πλήρως όπως δίνεται από το προηγούμενη πρόταση. $p\mathcal{O}_F=\mathfrak{p}_1\cdots\mathfrak{p}_r$ δεν διακλαδίζεται καθώς το p είναι σχετικά πρώτο με την διακρίνουσα.

Τώρα, κοιτάμε την παραγοντοίηση

2.3 Άπειρη Θεωρία Galois

2.4 Θεωρία Κλάσεων Σωμάτων