

PATENT ABSTRACTS OF JAPAN

(11)Publication number : 07-042879
 (43)Date of publication of application : 10.02.1995

(51)Int.CI. F16L 11/08
 B29C 70/06
 B32B 1/08
 B32B 25/10

(21)Application number : 05-018755	(71)Applicant : YOKOHAMA RUBBER CO LTD:THE TOYODA MACH WORKS LTD YAMASEI KOGYO KK YOKOHAMA EIROKUITSUPU KK
(22)Date of filing : 05.02.1993	(72)Inventor : SATO TAKASHI SASHIDE KAZUO KAWAMURA TETSUJI NAKAJIMA MIKIO AKIMITSU KENJI

(54) HIGH-PRESSURE RUBBER HOSE

(57)Abstract:

PURPOSE: To provide a high-pressure rubber hose that can meet high inflation and durability simultaneously by combining the intermediate elongation and braiding angle of reinforcing layers to an optimum.

CONSTITUTION: This high-pressure rubber hose 1 has two reinforcing layers 5a, 5b (reinforcing material) braided between an inner-surface rubber layer 2 and an outer-surface rubber layer 3 with an intermediate rubber layer 4 between them. The rubber forming the inner and outer surface layers 2,3 is made of a chlorosulfonated polyethylene (CSM) or hydrogenated nitrile (HSN), etc., and the rubber forming the intermediate layer 4 (inter-layer rubber) is nitrile butadiene rubber(NBR). The reinforcing layers 5a, 5b use one 1890-d untwisted yarn of 66 nylon having an intermediate elongation (relation between elongation and strength) of 9.0% or more at 4.5Kgf and a strength of 0.8gf/d or more, and the braiding angle of the reinforcing layers is in the range 47° to 53°, preferably 49° to 51°.

LEGAL STATUS

[Date of request for examination]	16.07.1999
[Date of sending the examiner's decision of rejection]	18.12.2001
[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]	

BEST AVAILABLE COPY

[Date of final disposal for application]
[Patent number]
[Date of registration]
[Number of appeal against examiner's decision
of rejection]
[Date of requesting appeal against examiner's
decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19) 日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11) 特許出願公開番号

特開平7-42879

(43) 公開日 平成7年(1995)2月10日

(51) Int.Cl. ⁶	識別記号	序内整理番号	F I	技術表示箇所
F16L 11/08	A			
B29C 70/06				
B32B 1/08 25/10	B 7158-4F			
	7310-4F	B29C 67/14	V	

審査請求 未請求 請求項の数 1 O L (全 5 頁)

(21) 出願番号	特願平5-18755	(71) 出願人	000006714 横浜ゴム株式会社 東京都港区新橋5丁目36番11号
(22) 出願日	平成5年(1993)2月5日	(71) 出願人	000003470 豊田工機株式会社 愛知県刈谷市朝日町1丁目1番地
		(71) 出願人	593025011 山清工業株式会社 愛知県名古屋市南区元鳴尾町22番地
		(71) 出願人	000122209 横浜エイロクイップ株式会社 東京都港区芝浦4丁目16番23号
		(74) 代理人	弁理士 小川 信一 (外2名) 最終頁に続く

(54) 【発明の名称】高圧ゴムホース

(57) 【要約】

【目的】 補強層の中間伸度と、編組角度とを最適な組合せにすることで、高膨張量と、高耐久性を同時に満足することが出来る高圧ゴムホースを提供することを目的とするものである。

【構成】 この高圧ゴムホース1は、内面ゴム層2と外面ゴム層3との間に、中間ゴム層4を挟んで2層の補強層5a, 5b(補強材)が編組してある。前記、内面ゴム層2及び外面ゴム層3のゴム材は、繰返し高膨張に耐え得るクロロスルファン化ポリエチレン(CSM)または水素化ニトリル(HSN)等を使用すると共に、中間ゴム層4(層間ゴム層)のゴム材は、ニトリルブタジエンゴム(NBR)を使用している。前記補強層5a, 5bは、66ナイロンで、中間伸度(伸びと強度との関係)が4.5Kgf時に9.0%以上、強度0.8gf/d以上の1890d/1本の無撚り糸を使用すると共に、補強層の編組角度を、47°～53°、好ましくは49°～51°に設定して編組してある。

【特許請求の範囲】

【請求項 1】 内面ゴム層と外面ゴム層との間に、中間ゴム層を挟んで複数層の補強層を編組して成る高圧ゴムホースにおいて、前記補強層は、中間伸度が4.5Kgf 時に9.0%以上、強度0.8gf/d 以上の66ナイロン糸材を使用すると共に、補強層の編組角度を、47°～53°に設定して編組したことを特徴とする高圧ゴムホース。

【発明の詳細な説明】

【0001】

【産業上の利用分野】 この発明は、高圧ゴムホースに係わり、更に詳しくは高膨張量と、高耐久性を同時に満足した高圧ゴムホースに関するものである。

【0002】

【従来の技術】 従来、建設車両の油圧系や、自動車のパワーステアリングに用いられる油圧を使用した高圧ゴムホースは、内面ゴム層と外面ゴム層との間に、中間ゴム層を挟んで複数層の補強層を編組して構成されている。

【0003】

【発明が解決しようとする問題点】 ところで、上記のような高圧ゴムホースは、ポンプの脈圧振動や、音等を吸収する目的から、ホースの膨張量が要求されている。然しながら、高圧ゴムホースの膨張量と耐久性とは、相反するため、例えば、油圧6.0Kgf/cm²／時で、20cc/m以上の膨張量を有するように高圧ゴムホースを設計した場合、膨張量は確保できても、ホースの膨張によって破壊強度の低下及び内面ゴムに亀裂等が生じ、耐久性が著しく低下すると言う問題があり、従来の高圧ゴムホースでは、高膨張量と、高耐久性を同時に満足することが出来ないと言う問題があった。

【0004】 この発明は、かかる従来の課題に着目して索出されたもので、補強層の中間伸度と、編組角度とを最適な組合せにすることで、高膨張量と、高耐久性を同時に満足することが出来る高圧ゴムホースを提供することを目的とするものである。

【0005】

【課題を解決するための手段】 この発明は上記目的を達成するため、内面ゴム層と外面ゴム層との間に、中間ゴム層を挟んで複数層の補強層を編組して成る高圧ゴムホースにおいて、前記補強層は、中間伸度が4.5Kgf 時に9.0%以上、強度0.8gf/d 以上の66ナイロン糸材を使用すると共に、補強層の編組角度を、47°～53°に設定して編組したことを要旨とするものである。

【0006】

【発明の作用】 この発明は上記のように構成され、内面ゴム層と外面ゴム層との間に、中間ゴム層を介して介在させる補強層を2層構造とし、66ナイロンで、中間伸度が4.5Kgf 時に9.0%以上、強度0.8gf/d 以上の1890d/1本の無撚り66ナイロン糸を使用すると共に、補強層の編組角度を、47°～53°、好ましくは49°～51°に設定

して編組し、更に内面ゴム層及び外面ゴム層のゴム材を、繰返し高膨張に耐え得るクロロスルファン化ポリエチレン(CSM)または水素化ニトリル(HSN)等を使用すると共に、中間ゴム層のゴム材をニトリルブタジエンゴム(NBR)を使用することにより、従来の1.5倍以上の膨張量を実現出来、更に高温衝撃性能(耐久性)は、従来の高圧ゴムホースと略同程度に維持させることが出来るものである。

【0007】

【発明の実施例】 以下、添付図面に基づき、この発明の実施例を説明する。図1は、この発明を実施した高圧ゴムホース1の一部切欠した斜視図を示し、この高圧ゴムホース1は、内面ゴム層2と外面ゴム層3との間に、中間ゴム層4を挟んで2層の補強層5a, 5b(補強材)が編組してある。

【0008】 前記、内面ゴム層2及び外面ゴム層3のゴム材は、繰返し高膨張に耐え得るクロロスルファン化ポリエチレン(CSM)または水素化ニトリル(HSN)等を使用すると共に、中間ゴム層4(層間ゴム層)のゴム材は、ニトリルブタジエンゴム(NBR)を使用している。前記補強層5a, 5bは、66ナイロンで、中間伸度(伸びと強度との関係)が4.5Kgf 時に9.0%以上、強度0.8gf/d 以上の1890d/1本の無撚り66ナイロン糸を使用すると共に、補強層の編組角度を、47°～53°、好ましくは49°～51°に設定して編組してある。

【0009】 なお、補強層5a, 5bの糸は、840d, 1260dのナイロン糸を使用することも可能である。次に、この発明の実施例と比較例を、表一1を参照しながら説明する。なお、評価試験条件は、JIS K 6379 及び JASOM 326 規定の方法により実施した。但し、測定圧力及び温度等の詳細な条件は表1に示す通りである。

【実施例1】 内面ゴム層2及び外面ゴム層3のゴム材を、クロロスルファン化ポリエチレン(CSM)を使用し、中間ゴム層4(層間ゴム層)のゴム材は、ニトリルブタジエンゴム(NBR)を使用した。

【0010】 外径19.0mm、内径9.5mmの高圧ゴムホースにおいて、補強層5a, 5bの補強材は、材質66ナイロン、中間伸度が4.5Kgf 時に9.0%、切断伸度が21.5%，切断強度16.0Kgf(強度0.85gf/d)のものを使用した。補強層の構造としては、2層構造にし、1層目及び2層の糸本数を96本で、補強層の編組角度は、1層目は49.5°、2層目は50°に設定して編組した。

【0011】 このような構造の高圧ゴムホースの評価試験を行った結果、1m当たりの膨張量、長さ変化率、破壊圧力、120℃、120Kgf/cm²の高温衝撃試験(耐久試験)は、以下の表一1に示すような結果を得ることが出来た。

【実施例2】 実施例1と同様に、内面ゴム層2及び外面ゴム層3のゴム材を、クロロスルファン化ポリエチレン(CSM)を使用し、中間ゴム層4(層間ゴム層)のゴ

ム材は、ニトリルブタジエンゴム（NBR）を使用した。

【0012】外径19.0mm、内径9.5 mmの高圧ゴムホースにおいて、補強層5a、5bの補強材は、材質66ナイロン、中間伸度が4.5Kgf時に10.0%、切断強度16.0Kgf(強度0.85gf/d)のものを使用した。補強層の構造としては、2層構造にし、1層目及び2層の糸本数を96本で、補強層の編組角度は、1層目は49.5°、2層目は50°に設定して編組した。

【0013】このような構造の高圧ゴムホースの評価試験を行った結果、1m当たりの膨張量、長さ変化率、破壊圧力、120℃、120Kgf/cm²の高温衝撃試験（耐久試験）は、以下の表一1に示すような結果を得ることが出来た。

【比較例】内面ゴム層2及び外面ゴム層3のゴム材を、クロロスルファン化ポリエチレン（CSM）を使用し、中間ゴム層4（層間ゴム層）のゴム材は、ニトリルブタジエンゴム（NBR）を使用した。

【0014】外径19.0mm、内径9.5 mmの高圧ゴムホースにおいて、補強層5a、5bの補強材は、材質66ナイロン、中間伸度が4.5Kgf時に8.0%、切断伸度が20.0%，切断強度16.0Kgf(強度0.85gf/d)のものを使用し

た。補強層の構造としては、2層構造にし、1層目及び2層の糸本数を96本で、補強層の編組角度は、1層目は51.1°、2層目は51.5°に設定して編組した。

【0015】このような構造の高圧ゴムホースの評価試験を行った結果、1m当たりの膨張量、長さ変化率、破壊圧力、120℃、120Kgf/cm²の高温衝撃試験（耐久試験）は、以下の表一1に示すような結果を得ることが出来た。表一1に基づいて、実施例1、実施例2及び比較例の評価結果を比較すると、比較例の膨張量15cc(60Kgf/cm²・時)に対して、実施例1の膨張量21cc(60Kgf/cm²・時)及び実施例2の膨張量25cc(60Kgf/cm²・時)であって、約1.4～1.7倍程度大きくすることが出来、また長さ変化率は、比較例に対してやや大きくなっているが許容範囲である-4.0%以内に収まっている。

【0016】また、高温衝撃試験（耐久性）については、120℃、120Kgf/cm²の条件で100万回以上の耐久性を有し、比較例のものと略同じであった。以上の点から、本願発明の実施例1及び実施例2と、比較例とを評価試験を比較すると、高膨張量と、高耐久性を同時に満足することが出来ることが判った。

【0017】

【表1】

【表1】

	実施例(1)		実施例(2)		比較例	
	内面ゴム CSM	CSM	CSM	CSM	CSM	CSM
補強材	材質 66ナイロン 中间伸度 9.0% (4.5kgf 時) 切斷伸度 21.5% 強度 0.85gf/d (切斷強度16.0 kgf)	材質 66ナイロン 中间伸度 10.0% (4.5kgf 時) 切斷伸度 22.0% 強度0.85gf/d (切斷強度16.0 kgf)	材質 66ナイロン 中间伸度 8.0% (4.5kgf 時) 切斷伸度 20.0% 強度0.85gf/d (切斷強度16.0 kgf)			
補強構造	(1層目 96本, 2層目 96本)	(1層目 96本, 2層目 96本)	(1層目 96本, 2層目 96本)	(1層目 96本, 2層目 96本)	(1層目 96本, 2層目 96本)	(1層目 96本, 2層目 96本)
編組角度	1層目49.5°, 2層目50.0°	1層目49.5°, 2層目50.0°	1層目49.5°, 2層目50.0°	1層目51.1°, 2層目51.5°	1層目51.1°, 2層目51.5°	1層目51.1°, 2層目51.5°
層間ゴム	NBR	NBR	NBR	NBR	NBR	NBR
外面ゴム	CSM	CSM	CSM	CSM	CSM	CSM
内径	9.5	9.5	9.5	9.5	9.5	9.5
外径	19.0	19.0	19.0	19.0	19.0	19.0
評価 (1m当たり) 張量	21cc (60kgf/cm時)	25cc (60kgf/cm時)	25cc (60kgf/cm時)	15cc (60kgf/cm時)	15cc (60kgf/cm時)	15cc (60kgf/cm時)
長さ変化率	-3.5% (")	-3.8% (")	-3.8% (")	-2.0% (")	-2.0% (")	-2.0% (")
破壊圧力 120°C: 120kgf/cm ² 高温衝撃試験	590kgf/cm ² 本体破壊 n=6/6本	560kgf/cm ² 本体破壊 100万回打切り n=6/6本	560kgf/cm ² 本体破壊 100万回打切り n=6/6本	650kgf/cm ² 本体破壊 100万回打切り n=6/6本	650kgf/cm ² 本体破壊 100万回打切り n=6/6本	650kgf/cm ² 本体破壊 100万回打切り n=6/6本

【0018】

【発明の効果】この発明は、上記のように内面ゴム層と外面ゴム層との間に、中間ゴム層を挟んで複数層の補強層を編組して成る高圧ゴムホースの補強層を、中間伸度が4.5Kgf 時に9.0%以上、強度0.8gf/d 以上の66ナイロン糸材を使用すると共に、補強層の編組角度を、47°～53°に設定して編組したことにより、高膨張量と、高耐久性を同時に満足した高圧ゴムホースを製造することが出来る効果がある。

40

【図面の簡単な説明】

【図1】この発明を実施した高圧ゴムホースの一部切欠した斜視図である。

【符号の説明】

- | | |
|-----------------|-------------|
| 1 高圧ゴムホース
ム層 | 2 内面ゴ
ム層 |
| 3 外面ゴム層
ム層 | 4 中間ゴ
ム層 |
| 5 a, 5 b 補強層 | |

【図 1】

フロントページの続き

(72) 発明者 佐藤 孝志

神奈川県平塚市追分 2 番 1 号 横浜ゴム株
式会社平塚製造所内

(72) 発明者 指出 和男

神奈川県平塚市追分 2 番 1 号 横浜ゴム株
式会社平塚製造所内

(72) 発明者 川村 哲司

愛知県刈谷市朝日町 1-1 豊田工機株式
会社内

(72) 発明者 中島 幹夫

愛知県名古屋市南区元鳴尾町22 山清工業
株式会社内

(72) 発明者 秋満 健治

神奈川県平塚市東八幡 4-6-40 横浜エ
イロクイップ株式会社平塚工場内