$12a_{0554} \ (K12a_{0554})$

Ideals for irreducible components 2 of X_{par}

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

```
I_1^u = \langle -u^{10} + u^9 - 4u^8 + 4u^7 - 4u^6 + 6u^5 + 5u^3 - 3u^2 + 2d + 2u - 2,
        -u^{11} + u^{10} - 4u^9 + 4u^8 - 5u^7 + 7u^6 - u^5 + 7u^4 - u^3 + u^2 + 4c
        -u^9 + u^8 - 4u^7 + 3u^6 - 5u^5 + 3u^4 - 2u^3 + 3u^2 + 2b - 2u + 2
        -u^{11}-u^{10}-2u^9-6u^8+3u^7-9u^6+9u^5-u^4+3u^3-3u^2+4a-4
       u^{12} - u^{11} + 6u^{10} - 6u^9 + 13u^8 - 13u^7 + 11u^6 - 13u^5 + 5u^4 - 7u^3 + 8u^2 - 4u + 4
I_2^u = \langle u^4 + 2u^2 + d, -u^9 + 2u^8 - 6u^7 + 10u^6 - 13u^5 + 18u^4 - 11u^3 + 11u^2 + 2c - u - 1,
        -u^9 - 6u^7 + 2u^6 - 13u^5 + 8u^4 - 11u^3 + 9u^2 + 2b - u + 1, -u^6 - 3u^4 - 2u^2 + a + 1,
       u^{10} - u^9 + 6u^8 - 6u^7 + 13u^6 - 13u^5 + 11u^4 - 10u^3 + 2u^2 + 1
I_3^u = \langle u^4 + 2u^2 + d, -u^9 + 2u^8 - 6u^7 + 10u^6 - 13u^5 + 18u^4 - 11u^3 + 11u^2 + 2c - u - 1,
       u^9 + 6u^7 - 2u^6 + 13u^5 - 8u^4 + 11u^3 - 9u^2 + 2b + 3u - 1.
       3u^9 - 4u^8 + 20u^7 - 22u^6 + 49u^5 - 46u^4 + 49u^3 - 37u^2 + 2a + 11u - 3
       u^{10} - u^9 + 6u^8 - 6u^7 + 13u^6 - 13u^5 + 11u^4 - 10u^3 + 2u^2 + 1
I_A^u = \langle -u^9 - 4u^7 - 3u^5 - 2u^4 + 7u^3 - 5u^2 + 2d + 9u - 1,
        -3u^9 + 2u^8 - 18u^7 + 14u^6 - 39u^5 + 34u^4 - 33u^3 + 29u^2 + 2c - 5u + 1.
        -u^9 - 6u^7 + 2u^6 - 13u^5 + 8u^4 - 11u^3 + 9u^2 + 2b - u + 1, -u^6 - 3u^4 - 2u^2 + a + 1,
       u^{10} - u^9 + 6u^8 - 6u^7 + 13u^6 - 13u^5 + 11u^4 - 10u^3 + 2u^2 + 1
I_5^u = \langle -u^3 + d - u, c - u, -u^5 - 2u^3 - u^2 + b - 1, -u^7 + 2u^6 - u^5 + 2u^4 + 2u^3 + 2a - u + 1,
       u^{8} + 3u^{6} + 2u^{5} + 2u^{4} + 4u^{3} + u^{2} + u + 2
I_6^u = \langle u^6 + u^5 + u^4 + 3u^3 + d + u + 1, -u^7 - u^5 - 2u^4 + 2u^3 - 2u^2 + 2c + u + 1, b - u, a, a \rangle
       u^{8} + 3u^{6} + 2u^{5} + 2u^{4} + 4u^{3} + u^{2} + u + 2
I_7^u = \langle u^6 + u^5 + u^4 + 3u^3 + d + u + 1, -u^7 - u^5 - 2u^4 + 2u^3 - 2u^2 + 2c + u + 1, -u^5 - 2u^3 - u^2 + b - 1, -u^5 - 2u^3 - u^2 + b - 1,
        -u^{7} + 2u^{6} - u^{5} + 2u^{4} + 2u^{3} + 2a - u + 1, \ u^{8} + 3u^{6} + 2u^{5} + 2u^{4} + 4u^{3} + u^{2} + u + 2
I_{s}^{u} = \langle -u^{3} + d - u, c - u, b - u, a, u^{4} + u^{2} + u + 1 \rangle
I_0^u = \langle u^2 + d + u + 1, c - u, -u^2 a - u^2 + 2b - a - 2, 2u^2 a + a^2 + 4u^2 + 2a + 3u + 5, u^3 + u^2 + 2u + 1 \rangle
I_{10}^{u} = \langle u^{2}c + 2cu - u^{2} + d + c - u - 2, -2u^{2}c + c^{2} - cu + 3u^{2} - 4c + u + 5, b - u, a, u^{3} + u^{2} + 2u + 1 \rangle
```

$$\begin{split} I^u_{11} &= \langle -u^2a - au + 2d - u - 3, \ -u^2a - 3u^2 + 2c - a - 2u - 6, \ -u^2a - u^2 + 2b - a - 2, \\ & 2u^2a + a^2 + 4u^2 + 2a + 3u + 5, \ u^3 + u^2 + 2u + 1 \rangle \\ I^u_{12} &= \langle -u^3 + d - u, \ c - u, \ b - u, \ a, \ u^6 - u^5 + 2u^4 - 2u^3 + 2u^2 - 2u + 1 \rangle \\ I^u_{13} &= \langle -u^3 + d - u, \ c - u, \ -u^5 - 2u^3 + u^2 + b - u + 1, \ u^5 - u^4 - 2u^2 + a, \ u^6 - u^5 + 2u^4 - 2u^3 + 2u^2 - 2u + 1 \rangle \\ I^u_{14} &= \langle 2u^5 - u^4 + 2u^3 - 2u^2 + d + 2u, \ u^4 + u^2 + c + 1, \ b - u, \ a, \ u^6 - u^5 + 2u^4 - 2u^3 + 2u^2 - 2u + 1 \rangle \\ I^u_{15} &= \langle d + 1, \ c - u, \ b, \ a - u, \ u^2 + 1 \rangle \\ I^u_{16} &= \langle d + 1, \ c - u, \ b - u, \ a - 1, \ u^2 + 1 \rangle \\ I^u_{18} &= \langle da + u + 1, \ c - u, \ b - u, \ u^2 + 1 \rangle \\ I^u_{18} &= \langle da + u + 1, \ c - u, \ b - u, \ u^2 + 1 \rangle \end{split}$$

 $I_1^v = \langle a, d+v, c+a+1, b-v, v^2+1 \rangle$

^{* 18} irreducible components of $\dim_{\mathbb{C}} = 0$, with total 114 representations.

^{* 1} irreducible components of $\dim_{\mathbb{C}} = 1$

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -u^{10} + u^9 + \dots + 2d - 2, -u^{11} + u^{10} + \dots + u^2 + 4c, -u^9 + u^8 + \dots + 2b + 2, -u^{11} - u^{10} + \dots + 4a - 4, u^{12} - u^{11} + \dots - 4u + 4 \rangle$$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} \frac{1}{4}u^{11} - \frac{1}{4}u^{10} + \dots + \frac{1}{4}u^{3} - \frac{1}{4}u^{2} \\ \frac{1}{2}u^{10} - \frac{1}{2}u^{9} + \dots - u + 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} \frac{1}{4}u^{11} + \frac{1}{4}u^{10} + \dots + \frac{3}{4}u^{2} + 1 \\ \frac{1}{2}u^{9} - \frac{1}{2}u^{8} + \dots + u - 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -\frac{1}{4}u^{11} + \frac{1}{4}u^{10} + \dots - u + 1 \\ -\frac{1}{2}u^{9} - \frac{5}{2}u^{7} + \dots + u + 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -\frac{1}{4}u^{11} + \frac{3}{4}u^{10} + \dots - \frac{3}{2}u + 1 \\ -\frac{1}{2}u^{10} + \frac{1}{2}u^{9} + \dots + u - 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -\frac{1}{4}u^{11} + \frac{1}{4}u^{10} + \dots - \frac{3}{4}u^{2} - \frac{1}{2}u \\ -\frac{1}{2}u^{10} + \frac{1}{2}u^{9} + \dots + u - 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} \frac{1}{2}u^{11} - \frac{1}{2}u^{10} + \dots + \frac{1}{2}u - 1 \\ \frac{1}{2}u^{10} + 2u^{8} + \dots + \frac{1}{2}u^{2} - u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} \frac{1}{4}u^{11} + \frac{1}{4}u^{10} + \dots - \frac{1}{2}u + 1 \\ -\frac{1}{2}u^{10} + \frac{1}{2}u^{9} + \dots + u - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u \\ u^{2} + 1 \\ u^{4} + 2u^{2} \end{pmatrix}$$

(ii) Obstruction class = -1

Crossings	u-Polynomials at each crossing
c_1, c_9, c_{11}	$u^{12} + 5u^{11} + \dots + 6u + 1$
$c_2, c_5, c_6 \\ c_7, c_{10}, c_{12}$	$u^{12} + u^{11} + 3u^{10} + 3u^9 + 7u^8 + 7u^7 + 8u^6 + 7u^5 + 9u^4 + 6u^3 + 3u^2 + 1$
c_3, c_4, c_8	$u^{12} + u^{11} + \dots + 4u + 4$

Crossings	Riley Polynomials at each crossing
c_1, c_9, c_{11}	$y^{12} + 9y^{11} + \dots + 18y + 1$
$c_2, c_5, c_6 \\ c_7, c_{10}, c_{12}$	$y^{12} + 5y^{11} + \dots + 6y + 1$
c_3, c_4, c_8	$y^{12} + 11y^{11} + \dots + 48y + 16$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.930547 + 0.179955I		
a = 0.670259 + 1.162990I		
b = -0.563501 + 1.188620I	-5.48513 - 12.85560I	-4.74505 + 9.29863I
c = -1.40294 - 1.16824I		
d = -1.51082 - 1.44889I		
u = 0.930547 - 0.179955I		
a = 0.670259 - 1.162990I		
b = -0.563501 - 1.188620I	-5.48513 + 12.85560I	-4.74505 - 9.29863I
c = -1.40294 + 1.16824I		
d = -1.51082 + 1.44889I		
u = -0.686814 + 0.551480I		
a = -0.796508 + 0.745631I		
b = 0.603454 + 0.816648I	0.72149 + 5.92893I	1.32923 - 9.67861I
c = 0.968608 - 0.657314I		
d = -0.163512 - 0.755585I		
u = -0.686814 - 0.551480I		
a = -0.796508 - 0.745631I		
b = 0.603454 - 0.816648I	0.72149 - 5.92893I	1.32923 + 9.67861I
c = 0.968608 + 0.657314I		
d = -0.163512 + 0.755585I		
u = 0.185101 + 0.743746I		
a = 0.370768 + 0.449966I		
b = -0.222861 + 0.420471I	0.425064 - 1.127160I	4.87896 + 6.40596I
c = -0.277347 + 0.101905I		
d = 0.209277 + 0.422629I		
u = 0.185101 - 0.743746I		
a = 0.370768 - 0.449966I		
b = -0.222861 - 0.420471I	0.425064 + 1.127160I	4.87896 - 6.40596I
c = -0.277347 - 0.101905I		
d = 0.209277 - 0.422629I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.18488 + 1.42300I		
a = -1.041110 + 0.719276I		
b = 0.842304 - 0.448362I	7.14373 + 1.01626I	7.50962 + 1.51234I
c = -0.567633 - 0.283558I		
d = -0.62794 + 1.29888I		
u = -0.18488 - 1.42300I		
a = -1.041110 - 0.719276I		
b = 0.842304 + 0.448362I	7.14373 - 1.01626I	7.50962 - 1.51234I
c = -0.567633 + 0.283558I		
d = -0.62794 - 1.29888I		
u = 0.40234 + 1.40049I		
a = -1.76208 - 0.32910I		
b = 0.593901 - 1.231770I	-0.4877 - 17.6327I	-1.23582 + 10.46043I
c = -1.185730 + 0.490884I		
d = -1.36730 - 2.05780I		
u = 0.40234 - 1.40049I		
a = -1.76208 + 0.32910I		
b = 0.593901 + 1.231770I	-0.4877 + 17.6327I	-1.23582 - 10.46043I
c = -1.185730 - 0.490884I		
d = -1.36730 + 2.05780I		
u = -0.14629 + 1.48775I		
a = 1.55868 + 0.32070I		
b = -0.753298 - 0.941385I	7.55213 + 8.70787I	4.26306 - 7.95599I
c = 0.965047 + 0.119356I		
d = 0.460302 - 0.241641I		
u = -0.14629 - 1.48775I		
a = 1.55868 - 0.32070I		
b = -0.753298 + 0.941385I	7.55213 - 8.70787I	4.26306 + 7.95599I
c = 0.965047 - 0.119356I		
d = 0.460302 + 0.241641I		

$$\text{II. } I_2^u = \langle u^4 + 2u^2 + d, \ -u^9 + 2u^8 + \dots + 2c - 1, \ -u^9 - 6u^7 + \dots + 2b + 1, \ -u^6 - 3u^4 - 2u^2 + a + 1, \ u^{10} - u^9 + \dots + 2u^2 + 1 \rangle$$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} \frac{1}{2}u^{9} - u^{8} + \dots + \frac{1}{2}u + \frac{1}{2} \\ -u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{6} + 3u^{4} + 2u^{2} - 1 \\ \frac{1}{2}u^{9} + 3u^{7} + \dots + \frac{1}{2}u - \frac{1}{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -\frac{1}{2}u^{9} - 3u^{7} + \dots + \frac{1}{2}u + \frac{3}{2} \\ -\frac{1}{2}u^{9} - 3u^{7} + \dots + \frac{3}{2}u + \frac{1}{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{1}{2}u^{9} + 2u^{7} + \dots + \frac{5}{2}u + \frac{1}{2} \\ -\frac{1}{2}u^{9} - 2u^{7} + \dots + \frac{1}{2}u - \frac{1}{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{3} - 2u \\ -\frac{1}{2}u^{9} - 2u^{7} + \dots + \frac{1}{2}u - \frac{1}{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{8} - 5u^{6} + u^{5} - 8u^{4} + 4u^{3} - 3u^{2} + 4u + 1 \\ 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} \frac{1}{2}u^{9} + 2u^{7} + \dots - \frac{5}{2}u + \frac{1}{2} \\ -u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u \\ u^{2} + 1 \\ u^{4} + 2u^{2} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $4u^8 2u^7 + 20u^6 10u^5 + 32u^4 20u^3 + 12u^2 14u 4$

Crossings	u-Polynomials at each crossing		
c_1, c_9	$u^{10} + 4u^9 + 10u^8 + 14u^7 + 15u^6 + 10u^5 + 7u^4 + 5u^3 + 11u^2 + 11u + 4$		
c_2, c_5, c_7 c_{10}	$u^{10} - 2u^9 + 4u^8 - 4u^7 + 5u^6 - 6u^5 + 7u^4 - 7u^3 + 5u^2 - 3u + 2$		
c_3, c_4, c_8	$u^{10} + u^9 + 6u^8 + 6u^7 + 13u^6 + 13u^5 + 11u^4 + 10u^3 + 2u^2 + 1$		
c_6, c_{12}	$u^{10} + u^9 + 3u^8 + 3u^7 + 4u^6 + 4u^5 + 3u^4 + 5u^3 + 4u^2 + 4u + 4$		
c_{11}	$u^{10} + 5u^9 + 11u^8 + 13u^7 + 8u^6 + 2u^5 + u^4 - u^3 + 16u + 16$		

Crossings	Riley Polynomials at each crossing
c_1, c_9	$y^{10} + 4y^9 + \dots - 33y + 16$
c_2, c_5, c_7 c_{10}	$y^{10} + 4y^9 + 10y^8 + 14y^7 + 15y^6 + 10y^5 + 7y^4 + 5y^3 + 11y^2 + 11y + 4$
c_3, c_4, c_8	$y^{10} + 11y^9 + \dots + 4y + 1$
c_6, c_{12}	$y^{10} + 5y^9 + 11y^8 + 13y^7 + 8y^6 + 2y^5 + y^4 - y^3 + 16y + 16$
c_{11}	$y^{10} - 3y^9 + \dots - 256y + 256$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.748770 + 0.138462I		
a = 0.92253 + 1.26185I		
b = -0.439859 + 1.118370I	-7.31978 - 3.81695I	-7.33347 + 4.73761I
c = -1.60028 - 1.01804I		
d = -1.33318 - 0.63926I		
u = 0.748770 - 0.138462I		
a = 0.92253 - 1.26185I		
b = -0.439859 - 1.118370I	-7.31978 + 3.81695I	-7.33347 - 4.73761I
c = -1.60028 + 1.01804I		
d = -1.33318 + 0.63926I		
u = 0.28433 + 1.41260I		
a = 0.919982 + 0.694170I		
b = -0.910142 - 0.314063I	5.18879 - 6.45670I	5.02275 + 3.64794I
c = 0.488875 - 0.418182I		
d = 0.80878 + 1.46934I		
u = 0.28433 - 1.41260I		
a = 0.919982 - 0.694170I		
b = -0.910142 + 0.314063I	5.18879 + 6.45670I	5.02275 - 3.64794I
c = 0.488875 + 0.418182I		
d = 0.80878 - 1.46934I		
u = -0.35489 + 1.40814I		
a = 1.79571 - 0.20376I		
b = -0.609606 - 1.180280I	2.57186 + 12.00600I	1.91374 - 7.39232I
c = 1.132790 + 0.439888I		
d = 1.26468 - 1.71290I		
u = -0.35489 - 1.40814I		
a = 1.79571 + 0.20376I		
b = -0.609606 + 1.180280I	2.57186 - 12.00600I	1.91374 + 7.39232I
c = 1.132790 - 0.439888I		
d = 1.26468 + 1.71290I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.05139 + 1.48296I		
a = -1.43312 + 0.49863I		
b = 0.782018 - 0.812236I	8.34709 - 2.88363I	6.09026 + 2.85464I
c = -0.856742 + 0.002799I		
d = -0.408434 + 0.364710I		
u = 0.05139 - 1.48296I		
a = -1.43312 - 0.49863I		
b = 0.782018 + 0.812236I	8.34709 + 2.88363I	6.09026 - 2.85464I
c = -0.856742 - 0.002799I		
d = -0.408434 - 0.364710I		
u = -0.229588 + 0.355227I		
a = -1.205100 - 0.252617I		
b = 0.177588 + 0.796469I	-3.85316 + 1.05773I	-3.69328 - 6.23330I
c = 1.33535 + 0.83396I		
d = 0.168159 + 0.302254I		
u = -0.229588 - 0.355227I		
a = -1.205100 + 0.252617I		
b = 0.177588 - 0.796469I	-3.85316 - 1.05773I	-3.69328 + 6.23330I
c = 1.33535 - 0.83396I		
d = 0.168159 - 0.302254I		

III.
$$I_3^u = \langle u^4 + 2u^2 + d, -u^9 + 2u^8 + \dots + 2c - 1, u^9 + 6u^7 + \dots + 2b - 1, 3u^9 - 4u^8 + \dots + 2a - 3, u^{10} - u^9 + \dots + 2u^2 + 1 \rangle$$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} \frac{1}{2}u^{9} - u^{8} + \dots + \frac{1}{2}u + \frac{1}{2} \\ -u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -\frac{3}{2}u^{9} + 2u^{8} + \dots - \frac{11}{2}u + \frac{3}{2} \\ -\frac{1}{2}u^{9} - 3u^{7} + \dots - \frac{3}{2}u + \frac{1}{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -\frac{1}{2}u^{9} - 3u^{7} + \dots + \frac{1}{2}u + \frac{3}{2} \\ -\frac{1}{2}u^{9} - 3u^{7} + \dots + \frac{3}{2}u + \frac{1}{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{9} + u^{8} - 5u^{7} + 5u^{6} - 9u^{5} + 8u^{4} - 5u^{3} + 2u^{2} + 2u - 3 \\ \frac{1}{2}u^{9} + 2u^{7} + \dots - \frac{1}{2}u - \frac{3}{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -\frac{1}{2}u^{9} + u^{8} + \dots + \frac{3}{2}u - \frac{9}{2} \\ \frac{1}{2}u^{9} + 2u^{7} + \dots - \frac{1}{2}u - \frac{3}{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{9} - u^{8} + 6u^{7} - 5u^{6} + 12u^{5} - 8u^{4} + 7u^{3} - 2u^{2} - 3u + 3 \\ 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{2} + 1 \\ u^{4} + 2u^{2} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $4u^8 2u^7 + 20u^6 10u^5 + 32u^4 20u^3 + 12u^2 14u 4$

Crossings	u-Polynomials at each crossing		
c_1	$u^{10} + 5u^9 + 11u^8 + 13u^7 + 8u^6 + 2u^5 + u^4 - u^3 + 16u + 16$		
c_2, c_7	$u^{10} + u^9 + 3u^8 + 3u^7 + 4u^6 + 4u^5 + 3u^4 + 5u^3 + 4u^2 + 4u + 4$		
c_3, c_4, c_8	$u^{10} + u^9 + 6u^8 + 6u^7 + 13u^6 + 13u^5 + 11u^4 + 10u^3 + 2u^2 + 1$		
c_5, c_6, c_{10} c_{12}	$u^{10} - 2u^9 + 4u^8 - 4u^7 + 5u^6 - 6u^5 + 7u^4 - 7u^3 + 5u^2 - 3u + 2$		
c_9, c_{11}	$u^{10} + 4u^9 + 10u^8 + 14u^7 + 15u^6 + 10u^5 + 7u^4 + 5u^3 + 11u^2 + 11u + 4$		

Crossings	Riley Polynomials at each crossing
c_1	$y^{10} - 3y^9 + \dots - 256y + 256$
c_2, c_7	$y^{10} + 5y^9 + 11y^8 + 13y^7 + 8y^6 + 2y^5 + y^4 - y^3 + 16y + 16$
c_3, c_4, c_8	$y^{10} + 11y^9 + \dots + 4y + 1$
$c_5, c_6, c_{10} \\ c_{12}$	$y^{10} + 4y^9 + 10y^8 + 14y^7 + 15y^6 + 10y^5 + 7y^4 + 5y^3 + 11y^2 + 11y + 4y^4 + 10y^5 + 10y^5 + 10y^6 + 1$
c_9, c_{11}	$y^{10} + 4y^9 + \dots - 33y + 16$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.748770 + 0.138462I		
a = 0.68224 - 1.78754I		
b = -0.308911 - 1.256830I	-7.31978 - 3.81695I	-7.33347 + 4.73761I
c = -1.60028 - 1.01804I		
d = -1.33318 - 0.63926I		
u = 0.748770 - 0.138462I		
a = 0.68224 + 1.78754I		
b = -0.308911 + 1.256830I	-7.31978 + 3.81695I	-7.33347 - 4.73761I
c = -1.60028 + 1.01804I		
d = -1.33318 + 0.63926I		
u = 0.28433 + 1.41260I		
a = -1.82670 - 0.00276I		
b = 0.625816 - 1.098530I	5.18879 - 6.45670I	5.02275 + 3.64794I
c = 0.488875 - 0.418182I		
d = 0.80878 + 1.46934I		
u = 0.28433 - 1.41260I		
a = -1.82670 + 0.00276I		
b = 0.625816 + 1.098530I	5.18879 + 6.45670I	5.02275 - 3.64794I
c = 0.488875 + 0.418182I		
d = 0.80878 - 1.46934I		
u = -0.35489 + 1.40814I		
a = -0.859188 + 0.669926I		
b = 0.964500 - 0.227856I	2.57186 + 12.00600I	1.91374 - 7.39232I
c = 1.132790 + 0.439888I		
d = 1.26468 - 1.71290I		
u = -0.35489 - 1.40814I		
a = -0.859188 - 0.669926I		
b = 0.964500 + 0.227856I	2.57186 - 12.00600I	1.91374 + 7.39232I
c = 1.132790 - 0.439888I		
d = 1.26468 + 1.71290I		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.05139 + 1.48296I $a = 1.253620 + 0.604304I$ $b = -0.833404 - 0.670721I$	8.34709 - 2.88363I	6.09026 + 2.85464I
c = -0.856742 + 0.002799I $d = -0.408434 + 0.364710I$		
u = 0.05139 - 1.48296I $a = 1.253620 - 0.604304I$ $b = -0.833404 + 0.670721I$ $c = -0.856742 - 0.002799I$ $d = -0.408434 - 0.364710I$	8.34709 + 2.88363I	6.09026 - 2.85464I
u = -0.229588 + 0.355227I $a = -0.74997 - 4.37781I$ $b = 0.051999 - 1.151700I$ $c = 1.33535 + 0.83396I$ $d = 0.168159 + 0.302254I$	-3.85316 + 1.05773I	-3.69328 - 6.23330I
u = -0.229588 - 0.355227I $a = -0.74997 + 4.37781I$ $b = 0.051999 + 1.151700I$ $c = 1.33535 - 0.83396I$ $d = 0.168159 - 0.302254I$	-3.85316 - 1.05773I	-3.69328 + 6.23330I

IV.
$$I_4^u = \langle -u^9 - 4u^7 + \dots + 2d - 1, -3u^9 + 2u^8 + \dots + 2c + 1, -u^9 - 6u^7 + \dots + 2b + 1, -u^6 - 3u^4 - 2u^2 + a + 1, u^{10} - u^9 + \dots + 2u^2 + 1 \rangle$$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} \frac{3}{2}u^{9} - u^{8} + \dots + \frac{5}{2}u - \frac{1}{2} \\ \frac{1}{2}u^{9} + 2u^{7} + \dots - \frac{9}{2}u + \frac{1}{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{6} + 3u^{4} + 2u^{2} - 1 \\ \frac{1}{2}u^{9} + 3u^{7} + \dots + \frac{1}{2}u - \frac{1}{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} \frac{5}{2}u^{9} - 2u^{8} + \dots + \frac{7}{2}u - \frac{3}{2} \\ u^{9} + 5u^{7} + 8u^{5} + u^{3} - 6u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{1}{2}u^{9} + 2u^{7} + \dots - \frac{5}{2}u + \frac{1}{2} \\ -\frac{1}{2}u^{9} - 2u^{7} + \dots + \frac{1}{2}u - \frac{1}{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{3} - 2u \\ -\frac{1}{2}u^{9} - 2u^{7} + \dots + \frac{1}{2}u - \frac{1}{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{3} - 2u \\ u^{9} + 5u^{7} + 8u^{5} + u^{3} + u^{2} - 6u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -\frac{1}{2}u^{9} - 2u^{7} + \dots + \frac{5}{2}u - \frac{7}{2} \\ \frac{1}{2}u^{9} - u^{8} + \dots + \frac{3}{2}u + \frac{3}{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{2} + 1 \\ u^{4} + 2u^{2} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $4u^8 2u^7 + 20u^6 10u^5 + 32u^4 20u^3 + 12u^2 14u 4$

Crossings	u-Polynomials at each crossing		
c_1,c_{11}	$u^{10} + 4u^9 + 10u^8 + 14u^7 + 15u^6 + 10u^5 + 7u^4 + 5u^3 + 11u^2 + 11u + 4$		
c_2, c_6, c_7 c_{12}	$u^{10} - 2u^9 + 4u^8 - 4u^7 + 5u^6 - 6u^5 + 7u^4 - 7u^3 + 5u^2 - 3u + 2$		
c_3, c_4, c_8	$u^{10} + u^9 + 6u^8 + 6u^7 + 13u^6 + 13u^5 + 11u^4 + 10u^3 + 2u^2 + 1$		
c_5,c_{10}	$u^{10} + u^9 + 3u^8 + 3u^7 + 4u^6 + 4u^5 + 3u^4 + 5u^3 + 4u^2 + 4u + 4$		
c_9	$u^{10} + 5u^9 + 11u^8 + 13u^7 + 8u^6 + 2u^5 + u^4 - u^3 + 16u + 16$		

Crossings	Riley Polynomials at each crossing
c_1,c_{11}	$y^{10} + 4y^9 + \dots - 33y + 16$
c_2, c_6, c_7 c_{12}	$y^{10} + 4y^9 + 10y^8 + 14y^7 + 15y^6 + 10y^5 + 7y^4 + 5y^3 + 11y^2 + 11y + 4$
c_3, c_4, c_8	$y^{10} + 11y^9 + \dots + 4y + 1$
c_5, c_{10}	$y^{10} + 5y^9 + 11y^8 + 13y^7 + 8y^6 + 2y^5 + y^4 - y^3 + 16y + 16$
<i>c</i> ₉	$y^{10} - 3y^9 + \dots - 256y + 256$

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.748770 + 0.138462I		
a = 0.92253 + 1.26185I		
b = -0.439859 + 1.118370I	-7.31978 - 3.81695I	-7.33347 + 4.73761I
c = -1.73122 + 1.35717I		
d = -2.26783 - 0.05446I		
u = 0.748770 - 0.138462I		
a = 0.92253 - 1.26185I		
b = -0.439859 - 1.118370I	-7.31978 + 3.81695I	-7.33347 - 4.73761I
c = -1.73122 - 1.35717I		
d = -2.26783 + 0.05446I		
u = 0.28433 + 1.41260I		
a = 0.919982 + 0.694170I		
b = -0.910142 - 0.314063I	5.18879 - 6.45670I	5.02275 + 3.64794I
c = -1.047080 + 0.366289I		
d = -1.16328 - 1.17886I		
u = 0.28433 - 1.41260I		
a = 0.919982 - 0.694170I		
b = -0.910142 + 0.314063I	5.18879 + 6.45670I	5.02275 - 3.64794I
c = -1.047080 - 0.366289I		
d = -1.16328 + 1.17886I		
u = -0.35489 + 1.40814I		
a = 1.79571 - 0.20376I		
b = -0.609606 - 1.180280I	2.57186 + 12.00600I	1.91374 - 7.39232I
c = -0.441314 - 0.512537I		
d = -0.99330 + 1.55020I		
u = -0.35489 - 1.40814I		
a = 1.79571 + 0.20376I		
b = -0.609606 + 1.180280I	2.57186 - 12.00600I	1.91374 + 7.39232I
c = -0.441314 + 0.512537I		
d = -0.99330 - 1.55020I		

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.05139 + 1.48296I		
a = -1.43312 + 0.49863I		
b = 0.782018 - 0.812236I	8.34709 - 2.88363I	6.09026 + 2.85464I
c = 0.758680 - 0.138716I		
d = 0.366987 + 0.885907I		
u = 0.05139 - 1.48296I		
a = -1.43312 - 0.49863I		
b = 0.782018 + 0.812236I	8.34709 + 2.88363I	6.09026 - 2.85464I
c = 0.758680 + 0.138716I		
d = 0.366987 - 0.885907I		
u = -0.229588 + 0.355227I		
a = -1.205100 - 0.252617I		
b = 0.177588 + 0.796469I	-3.85316 + 1.05773I	-3.69328 - 6.23330I
c = 1.46094 + 2.78212I		
d = 1.05742 - 2.03840I		
u = -0.229588 - 0.355227I		
a = -1.205100 + 0.252617I		
b = 0.177588 - 0.796469I	-3.85316 - 1.05773I	-3.69328 + 6.23330I
c = 1.46094 - 2.78212I		
d = 1.05742 + 2.03840I		

V.
$$I_5^u = \langle -u^3 + d - u, \ c - u, \ -u^5 - 2u^3 - u^2 + b - 1, \ -u^7 + 2u^6 + \dots + 2a + 1, \ u^8 + 3u^6 + \dots + u + 2 \rangle$$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} \frac{1}{2}u^{7} - u^{6} + \dots + \frac{1}{2}u - \frac{1}{2} \\ u^{5} + 2u^{3} + u^{2} + 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{3} \\ -u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{1}{2}u^{7} + u^{6} + \dots + \frac{3}{2}u + \frac{1}{2} \\ -u^{6} - 2u^{4} - u^{3} - u^{2} - u - 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} \frac{1}{2}u^{7} + \frac{1}{2}u^{5} - u^{2} + \frac{1}{2}u - \frac{1}{2} \\ -u^{6} - 2u^{4} - u^{3} - u^{2} - u - 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -\frac{1}{2}u^{7} + u^{6} + \dots + \frac{3}{2}u - \frac{1}{2} \\ u^{6} - u^{5} + 2u^{4} + 2u - 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{4} + u^{2} + 1 \\ u^{6} + 2u^{4} + u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{2} + 1 \\ u^{4} + 2u^{2} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $4u^6 4u^5 + 8u^4 + 8u + 2$

Crossings	u-Polynomials at each crossing
c_1,c_{11}	$(u^4 + 2u^3 + 3u^2 + u + 1)^2$
c_2, c_6, c_7 c_{12}	$(u^4 + u^2 - u + 1)^2$
c_3, c_4, c_5 c_8, c_{10}	$u^8 + 3u^6 - 2u^5 + 2u^4 - 4u^3 + u^2 - u + 2$
c_9	$u^8 + 6u^7 + 13u^6 + 10u^5 - 2u^4 - 4u^3 + u^2 + 3u + 4$

Crossings	Riley Polynomials at each crossing
c_1,c_{11}	$(y^4 + 2y^3 + 7y^2 + 5y + 1)^2$
c_2, c_6, c_7 c_{12}	$(y^4 + 2y^3 + 3y^2 + y + 1)^2$
c_3, c_4, c_5 c_8, c_{10}	$y^8 + 6y^7 + 13y^6 + 10y^5 - 2y^4 - 4y^3 + y^2 + 3y + 4$
<i>c</i> ₉	$y^8 - 10y^7 + 45y^6 - 102y^5 + 82y^4 + 24y^3 + 9y^2 - y + 16$

Solutions to I_5^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.856926 + 0.228629I		
a = -0.766503 + 1.117310I		
b = 0.547424 + 1.120870I	-2.62503 + 7.64338I	-1.77019 - 6.51087I
c = -0.856926 + 0.228629I		
d = -1.35181 + 0.72034I		
u = -0.856926 - 0.228629I		
a = -0.766503 - 1.117310I		
b = 0.547424 - 1.120870I	-2.62503 - 7.64338I	-1.77019 + 6.51087I
c = -0.856926 - 0.228629I		
d = -1.35181 - 0.72034I		
u = 0.511330 + 0.719091I		
a = 0.699144 + 0.608069I		
b = -0.547424 + 0.585652I	0.98010 - 1.39709I	3.77019 + 3.86736I
c = 0.511330 + 0.719091I		
d = -0.148192 + 0.911292I		
u = 0.511330 - 0.719091I		
a = 0.699144 - 0.608069I		
b = -0.547424 - 0.585652I	0.98010 + 1.39709I	3.77019 - 3.86736I
c = 0.511330 - 0.719091I		
d = -0.148192 - 0.911292I		
u = 0.036094 + 1.304740I		
a = 1.33473 + 1.08141I		
b = -0.547424 - 0.585652I	0.98010 + 1.39709I	3.77019 - 3.86736I
c = 0.036094 + 1.304740I		
d = -0.148192 - 0.911292I		
u = 0.036094 - 1.304740I		
a = 1.33473 - 1.08141I		
b = -0.547424 + 0.585652I	0.98010 - 1.39709I	3.77019 + 3.86736I
c = 0.036094 - 1.304740I		
d = -0.148192 + 0.911292I		

Solutions to I_5^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.309502 + 1.349500I		
a = -2.01737 - 0.12267I		
b = 0.547424 - 1.120870I	-2.62503 - 7.64338I	-1.77019 + 6.51087I
c = 0.309502 + 1.349500I		
d = -1.35181 - 0.72034I		
u = 0.309502 - 1.349500I		
a = -2.01737 + 0.12267I		
b = 0.547424 + 1.120870I	-2.62503 + 7.64338I	-1.77019 - 6.51087I
c = 0.309502 - 1.349500I		
d = -1.35181 + 0.72034I		

 $VI. \\ I_6^u = \langle u^6 + u^5 + \dots + d + 1, \ -u^7 - u^5 + \dots + 2c + 1, \ b - u, \ a, \ u^8 + 3u^6 + \dots + u + 2 \rangle$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} \frac{1}{2}u^{7} + \frac{1}{2}u^{5} + \dots - \frac{1}{2}u - \frac{1}{2} \\ -u^{6} - u^{5} - u^{4} - 3u^{3} - u - 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -\frac{1}{2}u^{7} - \frac{5}{2}u^{5} + \dots - \frac{1}{2}u - \frac{3}{2} \\ -u^{7} - 3u^{5} - 2u^{3} - u^{2} + u - 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} \frac{1}{2}u^{7} + \frac{3}{2}u^{5} + u^{3} - \frac{1}{2}u + \frac{1}{2} \\ 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -\frac{1}{2}u^{7} - \frac{1}{2}u^{5} + \dots + \frac{1}{2}u + \frac{1}{2} \\ u^{5} + 2u^{3} + u^{2} + u + 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{2} + 1 \\ u^{4} + 2u^{2} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $4u^6 4u^5 + 8u^4 + 8u + 2$

Crossings	u-Polynomials at each crossing	
c_1	$u^{8} + 6u^{7} + 13u^{6} + 10u^{5} - 2u^{4} - 4u^{3} + u^{2} + 3u + 4$	
c_2, c_3, c_4 c_7, c_8	$u^8 + 3u^6 - 2u^5 + 2u^4 - 4u^3 + u^2 - u + 2$	
c_5, c_6, c_{10} c_{12}	$(u^4 + u^2 - u + 1)^2$	
c_9, c_{11}	$(u^4 + 2u^3 + 3u^2 + u + 1)^2$	

Crossings	Riley Polynomials at each crossing		
c_1	$y^8 - 10y^7 + 45y^6 - 102y^5 + 82y^4 + 24y^3 + 9y^2 - y + 16$		
c_2, c_3, c_4 c_7, c_8	$y^8 + 6y^7 + 13y^6 + 10y^5 - 2y^4 - 4y^3 + y^2 + 3y + 4$		
c_5, c_6, c_{10} c_{12}	$(y^4 + 2y^3 + 3y^2 + y + 1)^2$		
c_{9}, c_{11}	$(y^4 + 2y^3 + 7y^2 + 5y + 1)^2$		

Solutions to I_6^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.856926 + 0.228629I		
a = 0		
b = -0.856926 + 0.228629I	-2.62503 + 7.64338I	-1.77019 - 6.51087I
c = 1.39892 - 1.05885I		
d = 1.17165 - 1.21187I		
u = -0.856926 - 0.228629I		
a = 0		
b = -0.856926 - 0.228629I	-2.62503 - 7.64338I	-1.77019 + 6.51087I
c = 1.39892 + 1.05885I		
d = 1.17165 + 1.21187I		
u = 0.511330 + 0.719091I		
a = 0		
b = 0.511330 + 0.719091I	0.98010 - 1.39709I	3.77019 + 3.86736I
c = -0.620678 - 0.381115I		
d = 0.517398 - 0.132058I		
u = 0.511330 - 0.719091I		
a = 0		
b = 0.511330 - 0.719091I	0.98010 + 1.39709I	3.77019 - 3.86736I
c = -0.620678 + 0.381115I		
d = 0.517398 + 0.132058I		
u = 0.036094 + 1.304740I		
a = 0		
b = 0.036094 + 1.304740I	0.98010 + 1.39709I	3.77019 - 3.86736I
c = 0.490144 + 0.046758I		
d = 0.98671 + 1.09479I		
u = 0.036094 - 1.304740I		
a = 0		
b = 0.036094 - 1.304740I	0.98010 - 1.39709I	3.77019 + 3.86736I
c = 0.490144 - 0.046758I		
d = 0.98671 - 1.09479I		
	I	<u> </u>

Solutions to I_6^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.309502 + 1.349500I		
a = 0		
b = 0.309502 + 1.349500I	-2.62503 - 7.64338I	-1.77019 + 6.51087I
c = -1.018380 + 0.475355I		
d = -1.67576 - 1.31818I		
u = 0.309502 - 1.349500I		
a = 0		
b = 0.309502 - 1.349500I	-2.62503 + 7.64338I	-1.77019 - 6.51087I
c = -1.018380 - 0.475355I		
d = -1.67576 + 1.31818I		

VII.
$$I_7^u = \langle u^6 + u^5 + \dots + d + 1, -u^7 - u^5 + \dots + 2c + 1, -u^5 - 2u^3 - u^2 + b - 1, -u^7 + 2u^6 + \dots + 2a + 1, u^8 + 3u^6 + \dots + u + 2 \rangle$$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} \frac{1}{2}u^{7} + \frac{1}{2}u^{5} + \dots - \frac{1}{2}u - \frac{1}{2} \\ -u^{6} - u^{5} - u^{4} - 3u^{3} - u - 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} \frac{1}{2}u^{7} - u^{6} + \dots + \frac{1}{2}u - \frac{1}{2} \\ u^{5} + 2u^{3} + u^{2} + 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -\frac{1}{2}u^{7} - \frac{5}{2}u^{5} + \dots - \frac{1}{2}u - \frac{3}{2} \\ -u^{7} - 3u^{5} - 2u^{3} - u^{2} + u - 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{1}{2}u^{7} + u^{6} + \dots + \frac{3}{2}u + \frac{1}{2} \\ -u^{6} - 2u^{4} - u^{3} - u^{2} - u - 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} \frac{1}{2}u^{7} + \frac{1}{2}u^{5} - u^{2} + \frac{1}{2}u - \frac{1}{2} \\ -u^{6} - 2u^{4} - u^{3} - u^{2} - u - 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -\frac{1}{2}u^{7} - u^{6} + \dots - \frac{3}{2}u - \frac{1}{2} \\ 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -\frac{1}{2}u^{7} - \frac{1}{2}u^{5} + \dots + \frac{1}{2}u + \frac{1}{2} \\ u^{5} + 2u^{3} + u^{2} + u + 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{2} + 1 \\ u^{4} + 2u^{2} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $4u^6 4u^5 + 8u^4 + 8u + 2$

Crossings	u-Polynomials at each crossing
c_1, c_9	$(u^4 + 2u^3 + 3u^2 + u + 1)^2$
c_2, c_5, c_7 c_{10}	$(u^4 + u^2 - u + 1)^2$
c_3, c_4, c_6 c_8, c_{12}	$u^8 + 3u^6 - 2u^5 + 2u^4 - 4u^3 + u^2 - u + 2$
c_{11}	$u^8 + 6u^7 + 13u^6 + 10u^5 - 2u^4 - 4u^3 + u^2 + 3u + 4$

Crossings	Riley Polynomials at each crossing
c_1, c_9	$(y^4 + 2y^3 + 7y^2 + 5y + 1)^2$
c_2, c_5, c_7 c_{10}	$(y^4 + 2y^3 + 3y^2 + y + 1)^2$
c_3, c_4, c_6 c_8, c_{12}	$y^8 + 6y^7 + 13y^6 + 10y^5 - 2y^4 - 4y^3 + y^2 + 3y + 4$
c_{11}	$y^8 - 10y^7 + 45y^6 - 102y^5 + 82y^4 + 24y^3 + 9y^2 - y + 16$

Solutions to I_7^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.856926 + 0.228629I		
a = -0.766503 + 1.117310I		
b = 0.547424 + 1.120870I	-2.62503 + 7.64338I	-1.77019 - 6.51087I
c = 1.39892 - 1.05885I		
d = 1.17165 - 1.21187I		
u = -0.856926 - 0.228629I		
a = -0.766503 - 1.117310I		
b = 0.547424 - 1.120870I	-2.62503 - 7.64338I	-1.77019 + 6.51087I
c = 1.39892 + 1.05885I		
d = 1.17165 + 1.21187I		
u = 0.511330 + 0.719091I		
a = 0.699144 + 0.608069I		
b = -0.547424 + 0.585652I	0.98010 - 1.39709I	3.77019 + 3.86736I
c = -0.620678 - 0.381115I		
d = 0.517398 - 0.132058I		
u = 0.511330 - 0.719091I		
a = 0.699144 - 0.608069I		
b = -0.547424 - 0.585652I	0.98010 + 1.39709I	3.77019 - 3.86736I
c = -0.620678 + 0.381115I		
d = 0.517398 + 0.132058I		
u = 0.036094 + 1.304740I		
a = 1.33473 + 1.08141I		
b = -0.547424 - 0.585652I	0.98010 + 1.39709I	3.77019 - 3.86736I
c = 0.490144 + 0.046758I		
d = 0.98671 + 1.09479I		
u = 0.036094 - 1.304740I		
a = 1.33473 - 1.08141I		
b = -0.547424 + 0.585652I	0.98010 - 1.39709I	3.77019 + 3.86736I
c = 0.490144 - 0.046758I		
d = 0.98671 - 1.09479I		

Solutions to I_7^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.309502 + 1.349500I		
a = -2.01737 - 0.12267I		
b = 0.547424 - 1.120870I	-2.62503 - 7.64338I	-1.77019 + 6.51087I
c = -1.018380 + 0.475355I		
d = -1.67576 - 1.31818I		
u = 0.309502 - 1.349500I		
a = -2.01737 + 0.12267I		
b = 0.547424 + 1.120870I	-2.62503 + 7.64338I	-1.77019 - 6.51087I
c = -1.018380 - 0.475355I		
d = -1.67576 + 1.31818I		

VIII.
$$I_8^u = \langle -u^3 + d - u, \ c - u, \ b - u, \ a, \ u^4 + u^2 + u + 1 \rangle$$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{3} \\ u^{2} + 2u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -1 \\ u^{3} - u^{2} - 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u \\ -u^{3} - u^{2} - u - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{2} + 1 \\ u^{2} - u - 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $4u^3 4u^2 + 2$

Crossings	u-Polynomials at each crossing
c_1, c_9, c_{11}	$u^4 + 2u^3 + 3u^2 + u + 1$
c_2, c_3, c_4 c_5, c_6, c_7 c_8, c_{10}, c_{12}	$u^4 + u^2 - u + 1$

Crossings	Riley Polynomials at each crossing
c_1, c_9, c_{11}	$y^4 + 2y^3 + 7y^2 + 5y + 1$
c_2, c_3, c_4 c_5, c_6, c_7 c_8, c_{10}, c_{12}	$y^4 + 2y^3 + 3y^2 + y + 1$

Solutions to I_8^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.547424 + 0.585652I		
a = 0		
b = -0.547424 + 0.585652I	0.98010 - 1.39709I	3.77019 + 3.86736I
c = -0.547424 + 0.585652I		
d = -0.148192 + 0.911292I		
u = -0.547424 - 0.585652I		
a = 0		
b = -0.547424 - 0.585652I	0.98010 + 1.39709I	3.77019 - 3.86736I
c = -0.547424 - 0.585652I		
d = -0.148192 - 0.911292I		
u = 0.547424 + 1.120870I		
a = 0		
b = 0.547424 + 1.120870I	-2.62503 + 7.64338I	-1.77019 - 6.51087I
c = 0.547424 + 1.120870I		
d = -1.35181 + 0.72034I		
u = 0.547424 - 1.120870I		
a = 0		
b = 0.547424 - 1.120870I	-2.62503 - 7.64338I	-1.77019 + 6.51087I
c = 0.547424 - 1.120870I		
d = -1.35181 - 0.72034I		

IX. $I_9^u = \langle u^2 + d + u + 1, \ c - u, \ -u^2 a - u^2 + 2b - a - 2, \ 2u^2 a + 4u^2 + \dots + 2a + 5, \ u^3 + u^2 + 2u + 1 \rangle$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u \\ -u^{2} - u - 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} \frac{1}{2}u^{2}a + \frac{1}{2}u^{2} + \frac{1}{2}a + 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{2} + 2u + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -\frac{1}{2}u^{2}a - au - u^{2} - a - \frac{1}{2}u - 2 \\ \frac{1}{2}u^{2}a - \frac{1}{2}u^{2} + \dots + \frac{1}{2}a - \frac{1}{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -\frac{1}{2}au - \frac{3}{2}u^{2} + \dots + \frac{1}{2}a - \frac{1}{2} \\ \frac{1}{2}u^{2}a - \frac{1}{2}u^{2} + \dots + \frac{1}{2}a - \frac{1}{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} \frac{1}{2}u^{2}a + 3u^{2} + a + \frac{5}{2}u + 4 \\ 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u + 2 \\ -u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ -u^{2} - u - 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{2} + 1 \\ u^{2} + u + 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^2 4u 6$

Crossings	u-Polynomials at each crossing
c_1, c_{11}	$u^6 + 3u^5 + 4u^4 + 2u^3 + 1$
c_2, c_6, c_7 c_{12}	$u^6 + u^5 + 2u^4 + 2u^3 + 2u^2 + 2u + 1$
c_3, c_4, c_5 c_8, c_{10}	$(u^3 - u^2 + 2u - 1)^2$
<i>c</i> 9	$(u^3 + 3u^2 + 2u - 1)^2$

Crossings	Riley Polynomials at each crossing
c_1, c_{11}	$y^6 - y^5 + 4y^4 - 2y^3 + 8y^2 + 1$
c_2, c_6, c_7 c_{12}	$y^6 + 3y^5 + 4y^4 + 2y^3 + 1$
c_3, c_4, c_5 c_8, c_{10}	$(y^3 + 3y^2 + 2y - 1)^2$
c_9	$(y^3 - 5y^2 + 10y - 1)^2$

Solutions to I_9^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.215080 + 1.307140I		
a = -0.919774 + 0.855379I		
b = 0.713912 - 0.305839I	-0.26574 + 2.82812I	1.50976 - 2.97945I
c = -0.215080 + 1.307140I		
d = 0.877439 - 0.744862I		
u = -0.215080 + 1.307140I		
a = 2.24449 + 0.26918I		
b = -0.498832 - 1.001300I	-0.26574 + 2.82812I	1.50976 - 2.97945I
c = -0.215080 + 1.307140I		
d = 0.877439 - 0.744862I		
u = -0.215080 - 1.307140I		
a = -0.919774 - 0.855379I		
b = 0.713912 + 0.305839I	-0.26574 - 2.82812I	1.50976 + 2.97945I
c = -0.215080 - 1.307140I		
d = 0.877439 + 0.744862I		
u = -0.215080 - 1.307140I		
a = 2.24449 - 0.26918I		
b = -0.498832 + 1.001300I	-0.26574 - 2.82812I	1.50976 + 2.97945I
c = -0.215080 - 1.307140I		
d = 0.877439 + 0.744862I		
u = -0.569840		
a = -1.32472 + 1.68359I	4 40000	
b = 0.284920 + 1.115140I	-4.40332	-5.01950
c = -0.569840		
d = -0.754878		
u = -0.569840		
a = -1.32472 - 1.68359I	4 40000	F 010F0
b = 0.284920 - 1.115140I	-4.40332	-5.01950
c = -0.569840		
d = -0.754878		

 $I_{10}^u = \langle u^2c - u^2 + \dots + c - 2, -2u^2c + 3u^2 + \dots - 4c + 5, b - u, a, u^3 + u^2 + 2u + 1 \rangle$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} c \\ -u^{2}c - 2cu + u^{2} - c + u + 2 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{2}c - 2u^{2} + 2c - u - 3 \\ -cu \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{2}c + cu - 2u^{2} + 2c - u - 3 \\ 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -2u^{2} + c - u - 4 \\ -u^{2} + c - 2 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ -u^{2} - u - 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{2} + 1 \\ u^{2} + u + 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^2 4u 6$

Crossings	u-Polynomials at each crossing
c_1	$(u^3 + 3u^2 + 2u - 1)^2$
c_2, c_3, c_4 c_7, c_8	$(u^3 - u^2 + 2u - 1)^2$
c_5, c_6, c_{10} c_{12}	$u^6 + u^5 + 2u^4 + 2u^3 + 2u^2 + 2u + 1$
c_9, c_{11}	$u^6 + 3u^5 + 4u^4 + 2u^3 + 1$

Crossings	Riley Polynomials at each crossing
c_1	$(y^3 - 5y^2 + 10y - 1)^2$
c_2, c_3, c_4 c_7, c_8	$(y^3 + 3y^2 + 2y - 1)^2$
c_5, c_6, c_{10} c_{12}	$y^6 + 3y^5 + 4y^4 + 2y^3 + 1$
c_9, c_{11}	$y^6 - y^5 + 4y^4 - 2y^3 + 8y^2 + 1$

Solutions to I_{10}^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.215080 + 1.307140I		
a = 0		
b = -0.215080 + 1.307140I	-0.26574 + 2.82812I	1.50976 - 2.97945I
c = 0.836473 + 0.439023I		
d = 1.93730 - 0.49194I		
u = -0.215080 + 1.307140I		
a = 0		
b = -0.215080 + 1.307140I	-0.26574 + 2.82812I	1.50976 - 2.97945I
c = -0.376271 - 0.256441I		
d = -0.81474 + 1.23680I		
u = -0.215080 - 1.307140I		
a = 0		
b = -0.215080 - 1.307140I	-0.26574 - 2.82812I	1.50976 + 2.97945I
c = 0.836473 - 0.439023I		
d = 1.93730 + 0.49194I		
u = -0.215080 - 1.307140I		
a = 0		
b = -0.215080 - 1.307140I	-0.26574 - 2.82812I	1.50976 + 2.97945I
c = -0.376271 + 0.256441I		
d = -0.81474 - 1.23680I		
u = -0.569840		
a = 0		
b = -0.569840	-4.40332	-5.01950
c = 2.03980 + 1.11514I		
d = 1.377440 - 0.206343I		
u = -0.569840		
a = 0		
b = -0.569840	-4.40332	-5.01950
c = 2.03980 - 1.11514I		
d = 1.377440 + 0.206343I		

XI.
$$I_{11}^u = \langle -u^2a - au + 2d - u - 3, -u^2a - 3u^2 + \dots - a - 6, -u^2a - u^2 + 2b - a - 2, 2u^2a + 4u^2 + \dots + 2a + 5, u^3 + u^2 + 2u + 1 \rangle$$

$$a_{3} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1\\u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} \frac{1}{2}u^{2}a + \frac{3}{2}u^{2} + \frac{1}{2}a + u + 3\\ \frac{1}{2}u^{2}a + \frac{1}{2}au + \frac{1}{2}u + \frac{3}{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} a\\\frac{1}{2}u^{2}a + \frac{1}{2}u^{2} + \frac{1}{2}a + 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{2}a + \frac{3}{2}u^{2} + \dots + \frac{3}{2}a + \frac{7}{2}\\ \frac{1}{2}u^{2}a + \frac{1}{2}u^{2} + \dots + \frac{1}{2}a + \frac{3}{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -\frac{1}{2}u^{2}a - au - u^{2} - a - \frac{1}{2}u - 2\\ \frac{1}{2}u^{2}a - \frac{1}{2}u^{2} + \dots + \frac{1}{2}a - \frac{1}{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -\frac{1}{2}au - \frac{3}{2}u^{2} + \dots + \frac{1}{2}a - \frac{1}{2}\\ \frac{1}{2}u^{2}a - \frac{1}{2}u^{2} + \dots + \frac{1}{2}a - \frac{1}{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} \frac{1}{2}u^{2}a + au + u^{2} + a + \frac{1}{2}u + 2\\ 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} \frac{1}{2}u^{2}a - \frac{1}{2}u^{2} + \frac{1}{2}a - 1\\ \frac{1}{2}u^{2}a + \frac{1}{2}u^{2} + \frac{1}{2}a + u + 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u\\ -u^{2} - u - 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{2} + 1\\ u^{2} + u + 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^2 4u 6$

Crossings	u-Polynomials at each crossing
c_1, c_9	$u^6 + 3u^5 + 4u^4 + 2u^3 + 1$
c_2, c_5, c_7 c_{10}	$u^6 + u^5 + 2u^4 + 2u^3 + 2u^2 + 2u + 1$
c_3, c_4, c_6 c_8, c_{12}	$(u^3 - u^2 + 2u - 1)^2$
c_{11}	$(u^3 + 3u^2 + 2u - 1)^2$

Crossings	Riley Polynomials at each crossing
c_1, c_9	$y^6 - y^5 + 4y^4 - 2y^3 + 8y^2 + 1$
c_2, c_5, c_7 c_{10}	$y^6 + 3y^5 + 4y^4 + 2y^3 + 1$
c_3, c_4, c_6 c_8, c_{12}	$(y^3 + 3y^2 + 2y - 1)^2$
c_{11}	$(y^3 - 5y^2 + 10y - 1)^2$

Solutions to I_{11}^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.215080 + 1.307140I		
a = -0.919774 + 0.855379I		
b = 0.713912 - 0.305839I	-0.26574 + 2.82812I	1.50976 - 2.97945I
c = 0.836473 + 0.439023I		
d = 1.93730 - 0.49194I		
u = -0.215080 + 1.307140I		
a = 2.24449 + 0.26918I		
b = -0.498832 - 1.001300I	-0.26574 + 2.82812I	1.50976 - 2.97945I
c = -0.376271 - 0.256441I		
d = -0.81474 + 1.23680I		
u = -0.215080 - 1.307140I		
a = -0.919774 - 0.855379I		
b = 0.713912 + 0.305839I	-0.26574 - 2.82812I	1.50976 + 2.97945I
c = 0.836473 - 0.439023I		
d = 1.93730 + 0.49194I		
u = -0.215080 - 1.307140I		
a = 2.24449 - 0.26918I		
b = -0.498832 + 1.001300I	-0.26574 - 2.82812I	1.50976 + 2.97945I
c = -0.376271 + 0.256441I		
d = -0.81474 - 1.23680I		
u = -0.569840		
a = -1.32472 + 1.68359I		
b = 0.284920 + 1.115140I	-4.40332	-5.01950
c = 2.03980 + 1.11514I		
d = 1.377440 - 0.206343I		
u = -0.569840		
a = -1.32472 - 1.68359I		
b = 0.284920 - 1.115140I	-4.40332	-5.01950
c = 2.03980 - 1.11514I		
d = 1.377440 + 0.206343I		

XII. $I_{12}^u = \langle -u^3 + d - u, \ c - u, \ b - u, \ a, \ u^6 - u^5 + \dots - 2u + 1 \rangle$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{3} \\ -u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{5} - 2u^{3} - u + 1 \\ 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{4} + u^{2} + 1 \\ u^{5} + 2u^{3} - u^{2} + 2u - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{2} + 1 \\ u^{4} + 2u^{2} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $4u^3 + 4u 2$

Crossings	u-Polynomials at each crossing
c_1, c_9, c_{11}	$u^6 + 3u^5 + 4u^4 + 2u^3 + 1$
c_2, c_3, c_4 c_5, c_6, c_7 c_8, c_{10}, c_{12}	$u^6 + u^5 + 2u^4 + 2u^3 + 2u^2 + 2u + 1$

Crossings	Riley Polynomials at each crossing
c_1, c_9, c_{11}	$y^6 - y^5 + 4y^4 - 2y^3 + 8y^2 + 1$
c_2, c_3, c_4 c_5, c_6, c_7 c_8, c_{10}, c_{12}	$y^6 + 3y^5 + 4y^4 + 2y^3 + 1$

Solutions to I_{12}^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.498832 + 1.001300I		
a = 0		
b = -0.498832 + 1.001300I	-0.26574 - 2.82812I	1.50976 + 2.97945I
c = -0.498832 + 1.001300I		
d = 0.877439 + 0.744862I		
u = -0.498832 - 1.001300I		
a = 0		
b = -0.498832 - 1.001300I	-0.26574 + 2.82812I	1.50976 - 2.97945I
c = -0.498832 - 1.001300I		
d = 0.877439 - 0.744862I		
u = 0.284920 + 1.115140I		
a = 0		
b = 0.284920 + 1.115140I	-4.40332	-5.01951 + 0.I
c = 0.284920 + 1.115140I		
d = -0.754878		
u = 0.284920 - 1.115140I		
a = 0		
b = 0.284920 - 1.115140I	-4.40332	-5.01951 + 0.I
c = 0.284920 - 1.115140I		
d = -0.754878		
u = 0.713912 + 0.305839I		
a = 0		
b = 0.713912 + 0.305839I	-0.26574 - 2.82812I	1.50976 + 2.97945I
c = 0.713912 + 0.305839I		
d = 0.877439 + 0.744862I		
u = 0.713912 - 0.305839I		
a = 0		
b = 0.713912 - 0.305839I	-0.26574 + 2.82812I	1.50976 - 2.97945I
c = 0.713912 - 0.305839I		
d = 0.877439 - 0.744862I		

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{5} + u^{4} + 2u^{2} \\ u^{5} + 2u^{3} - u^{2} + u - 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{3} \\ -u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{5} - 2u^{4} + 2u^{3} - 2u^{2} + 3u - 2 \\ -u^{5} - u^{3} - u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -2u^{4} + u^{3} - 2u^{2} + 2u - 2 \\ -u^{5} - u^{3} - u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -2u^{4} + u^{3} - 2u^{2} + 2u - 2 \\ -u^{5} - u^{3} - u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{5} + 2u^{4} - 2u^{3} + 2u^{2} - 3u + 2 \\ 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{4} + u^{2} + 1 \\ u^{5} + 2u^{3} - u^{2} + 2u - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{2} + 1 \\ u^{4} + 2u^{2} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $4u^3 + 4u 2$

Crossings	u-Polynomials at each crossing
c_1, c_9, c_{11}	$u^6 + 3u^5 + 4u^4 + 2u^3 + 1$
c_2, c_3, c_4 c_5, c_6, c_7 c_8, c_{10}, c_{12}	$u^6 + u^5 + 2u^4 + 2u^3 + 2u^2 + 2u + 1$

Crossings	Riley Polynomials at each crossing
c_1, c_9, c_{11}	$y^6 - y^5 + 4y^4 - 2y^3 + 8y^2 + 1$
c_2, c_3, c_4 c_5, c_6, c_7 c_8, c_{10}, c_{12}	$y^6 + 3y^5 + 4y^4 + 2y^3 + 1$

Solutions to I_{13}^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.498832 + 1.001300I		
a = -0.643729 + 0.689603I		
b = 0.713912 + 0.305839I	-0.26574 - 2.82812I	1.50976 + 2.97945I
c = -0.498832 + 1.001300I		
d = 0.877439 + 0.744862I		
u = -0.498832 - 1.001300I		
a = -0.643729 - 0.689603I		
b = 0.713912 - 0.305839I	-0.26574 + 2.82812I	1.50976 - 2.97945I
c = -0.498832 - 1.001300I		
d = 0.877439 - 0.744862I		
u = 0.284920 + 1.115140I		
a = -3.29468 - 0.84179I		
b = 0.284920 - 1.115140I	-4.40332	-5.01951 + 0.I
c = 0.284920 + 1.115140I		
d = -0.754878		
u = 0.284920 - 1.115140I		
a = -3.29468 + 0.84179I		
b = 0.284920 + 1.115140I	-4.40332	-5.01951 + 0.I
c = 0.284920 - 1.115140I		
d = -0.754878		
u = 0.713912 + 0.305839I		
a = 0.938404 + 0.982703I		
b = -0.498832 + 1.001300I	-0.26574 - 2.82812I	1.50976 + 2.97945I
c = 0.713912 + 0.305839I		
d = 0.877439 + 0.744862I		
u = 0.713912 - 0.305839I		
a = 0.938404 - 0.982703I		
b = -0.498832 - 1.001300I	-0.26574 + 2.82812I	1.50976 - 2.97945I
c = 0.713912 - 0.305839I		
d = 0.877439 - 0.744862I		

 $\begin{aligned} & \text{XIV.} \\ I^u_{14} = \langle 2u^5 - u^4 + \dots + d + 2u, \ u^4 + u^2 + c + 1, \ b - u, \ a, \ u^6 - u^5 + \dots - 2u + 1 \rangle \end{aligned}$

$$a_{3} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1\\u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{4} - u^{2} - 1\\-2u^{5} + u^{4} - 2u^{3} + 2u^{2} - 2u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -2u^{5} - 3u^{3} + u^{2} - 2u + 1\\-3u^{5} + 2u^{4} - 3u^{3} + 3u^{2} - 3u + 2 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1\\u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{2} + 1\\u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u\\-2u^{5} + 2u^{4} - 2u^{3} + 2u^{2} - 2u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u\\2u^{4} - 2u^{3} + 2u^{2} - 3u + 2 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u\\u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{2} + 1\\u^{4} + 2u^{2} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $4u^3 + 4u 2$

Crossings	u-Polynomials at each crossing
c_1, c_9, c_{11}	$u^6 + 3u^5 + 4u^4 + 2u^3 + 1$
c_2, c_3, c_4 c_5, c_6, c_7 c_8, c_{10}, c_{12}	$u^6 + u^5 + 2u^4 + 2u^3 + 2u^2 + 2u + 1$

Crossings	Riley Polynomials at each crossing
c_1, c_9, c_{11}	$y^6 - y^5 + 4y^4 - 2y^3 + 8y^2 + 1$
c_2, c_3, c_4 c_5, c_6, c_7 c_8, c_{10}, c_{12}	$y^6 + 3y^5 + 4y^4 + 2y^3 + 1$

Solutions to I_{14}^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.498832 + 1.001300I		
a = 0		
b = -0.498832 + 1.001300I	-0.26574 - 2.82812I	1.50976 + 2.97945I
c = 0.183526 - 0.507021I		
d = -1.105040 + 0.381425I		
u = -0.498832 - 1.001300I		
a = 0		
b = -0.498832 - 1.001300I	-0.26574 + 2.82812I	1.50976 - 2.97945I
c = 0.183526 + 0.507021I		
d = -1.105040 - 0.381425I		
u = 0.284920 + 1.115140I		
a = 0		
b = 0.284920 + 1.115140I	-4.40332	-5.01951 + 0.I
c = -0.784920 + 0.841795I		
d = -3.70216 - 1.47725I		
u = 0.284920 - 1.115140I		
a = 0		
b = 0.284920 - 1.115140I	-4.40332	-5.01951 + 0.I
c = -0.784920 - 0.841795I		
d = -3.70216 + 1.47725I		
u = 0.713912 + 0.305839I		
a = 0		
b = 0.713912 + 0.305839I	-0.26574 - 2.82812I	1.50976 + 2.97945I
c = -1.39861 - 0.80012I		
d = -0.692808 - 0.761122I		
u = 0.713912 - 0.305839I		
a = 0		
b = 0.713912 - 0.305839I	-0.26574 + 2.82812I	1.50976 - 2.97945I
c = -1.39861 + 0.80012I		
d = -0.692808 + 0.761122I		

XV.
$$I_{15}^u = \langle d+1, \ c-u, \ b, \ a-u, \ u^2+1 \rangle$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u \\ -1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} u \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ u - 1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u+1\\-1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ u \end{pmatrix}$$

$$a_8 = \begin{pmatrix} u \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 0

Crossings	u-Polynomials at each crossing
c_1, c_2, c_7	u^2
c_3, c_4, c_5 c_6, c_8, c_{10} c_{12}	$u^2 + 1$
c_9, c_{11}	$(u-1)^2$

Crossings	Riley Polynomials at each crossing	
c_1, c_2, c_7	y^2	
c_3, c_4, c_5 c_6, c_8, c_{10} c_{12}	$(y+1)^2$	
c_9, c_{11}	$(y-1)^2$	

	Solutions to I_{15}^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u =	1.000000I		
a =	1.000000I		
b =	0	-1.64493	0
c =	1.000000I		
d = -1.00000			
u =	-1.000000I		
a =	-1.000000I		
b =	0	-1.64493	0
c =	-1.000000I		
$d = \frac{1}{2}$	-1.00000		

XVI.
$$I_{16}^u = \langle d+1, \ c-u, \ b-u, \ a-1, \ u^2+1 \rangle$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u \\ -1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ u - 1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} u+1 \\ -1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} u \\ -1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u \\ -1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ u \end{pmatrix}$$

$$a_8 = \begin{pmatrix} u \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 0

Crossings	u-Polynomials at each crossing
c_1, c_9	$(u-1)^2$
$c_2, c_3, c_4 \\ c_5, c_7, c_8 \\ c_{10}$	$u^2 + 1$
c_6, c_{11}, c_{12}	u^2

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing		
c_1, c_9	$(y-1)^2$		
c_2, c_3, c_4 c_5, c_7, c_8 c_{10}	$(y+1)^2$		
c_6, c_{11}, c_{12}	y^2		

(vi) Complex Volumes and Cusp Shapes

Solution	s to I_{16}^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u =	1.000000I		
a = 1.00000	l		
b =	1.000000I	-1.64493	0
c =	1.000000I		
d = -1.00000	l .		
u =	-1.000000I		
a = 1.00000			
b =	$-\ 1.000000I$	-1.64493	0
c =	$-\ 1.000000I$		
d = -1.00000			

XVII.
$$I_{17}^u = \langle d-u, \ c, \ b-u, \ a-1, \ u^2+1 \rangle$$

(i) Arc colorings

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_2 = \begin{pmatrix} u+1 \\ -1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} u \\ -1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u \\ u - 1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} u \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 0

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing		
c_1,c_{11}	$(u-1)^2$		
c_2, c_3, c_4 c_6, c_7, c_8 c_{12}	$u^2 + 1$		
c_5, c_9, c_{10}	u^2		

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing		
c_1,c_{11}	$(y-1)^2$		
c_2, c_3, c_4 c_6, c_7, c_8 c_{12}	$(y+1)^2$		
c_5, c_9, c_{10}	y^2		

(vi) Complex Volumes and Cusp Shapes

	Solutions to I_{17}^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u =	1.000000I		
a =	1.00000		
b =	1.000000I	-1.64493	0
c =	0		
d =	1.000000I		
u =	-1.000000I		
a =	1.00000		
b =	-1.000000I	-1.64493	0
c =	0		
d =	-1.000000I		

XVIII.
$$I_{18}^u = \langle da + u + 1, \ c - u, \ b - u, \ u^2 + 1 \rangle$$

(i) Arc colorings

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u \\ d \end{pmatrix}$$

$$a_7 = \begin{pmatrix} a \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ d+u \end{pmatrix}$$

$$a_2 = \begin{pmatrix} au+1\\-1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} au \\ -1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -au + u \\ d+1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ -du \end{pmatrix}$$

$$a_8 = \begin{pmatrix} u \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = -6
- (iv) u-Polynomials at the component : It cannot be defined for a positive dimension component.
- (v) Riley Polynomials at the component : It cannot be defined for a positive dimension component.

(iv) Complex Volumes and Cusp Shapes

$u = \cdot \\ a = \cdot \\ b = \cdot$				
$b = \cdot$	$\cdot \cdot \cdot = -3.289$	987	-6.00000	
$c = \cdot$				
$d = \cdot$				

XIX.
$$I_1^v = \langle a, \ d+v, \ c+a+1, \ b-v, \ v^2+1 \rangle$$

(i) Arc colorings

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -1 \\ -v \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 0 \\ v \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} v - 1 \\ -v \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -1 \\ -v - 1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} -v \\ 1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -12

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing	
c_1, c_9, c_{11}	$(u-1)^2$	
$c_2, c_5, c_6 \\ c_7, c_{10}, c_{12}$	$u^2 + 1$	
c_3, c_4, c_8	u^2	

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing		
c_1, c_9, c_{11}	$(y-1)^2$		
$c_2, c_5, c_6 \\ c_7, c_{10}, c_{12}$	$(y+1)^2$		
c_3, c_4, c_8	y^2		

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^v		$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v =	1.000000I		
a =	0		
b =	1.000000I	-4.93480	-12.0000
c = -1.0	00000		
d =	-1.000000I		
v =	-1.000000I		
a =	0		
b =	-1.000000I	-4.93480	-12.0000
c = -1.0	00000		
d =	1.000000I		

XX. u-Polynomials

Crossings	u-Polynomials at each crossing			
	$u^{2}(u-1)^{6}(u^{3}+3u^{2}+2u-1)^{2}(u^{4}+2u^{3}+3u^{2}+u+1)^{5}$			
c_1, c_9, c_{11}	$(u^6 + 3u^5 + 4u^4 + 2u^3 + 1)^5$			
$(u^8 + 6u^7 + 13u^6 + 10u^5 - 2u^4 - 4u^3 + u^2 + 3u + 4)$				
	$(u^{10} + 4u^9 + 10u^8 + 14u^7 + 15u^6 + 10u^5 + 7u^4 + 5u^3 + 11u^2 + 11u + 4)^2$			
	$\cdot (u^{10} + 5u^9 + 11u^8 + 13u^7 + 8u^6 + 2u^5 + u^4 - u^3 + 16u + 16)$			
	$\cdot (u^{12} + 5u^{11} + \dots + 6u + 1)$			
	$u^{2}(u^{2}+1)^{3}(u^{3}-u^{2}+2u-1)^{2}(u^{4}+u^{2}-u+1)^{5}$			
c_2, c_5, c_6	$\cdot (u^6 + u^5 + 2u^4 + 2u^3 + 2u^2 + 2u + 1)^5$			
c_7, c_{10}, c_{12}	$\cdot (u^8 + 3u^6 - 2u^5 + 2u^4 - 4u^3 + u^2 - u + 2)$			
	$(u^{10} - 2u^9 + 4u^8 - 4u^7 + 5u^6 - 6u^5 + 7u^4 - 7u^3 + 5u^2 - 3u + 2)^2$			
	$(u^{10} + u^9 + 3u^8 + 3u^7 + 4u^6 + 4u^5 + 3u^4 + 5u^3 + 4u^2 + 4u + 4)$			
	$ (u^{12} + u^{11} + 3u^{10} + 3u^9 + 7u^8 + 7u^7 + 8u^6 + 7u^5 + 9u^4 + 6u^3 + 3u^2 + 1) $			
	$u^{2}(u^{2}+1)^{3}(u^{3}-u^{2}+2u-1)^{6}(u^{4}+u^{2}-u+1)$			
c_3, c_4, c_8	$\cdot (u^6 + u^5 + 2u^4 + 2u^3 + 2u^2 + 2u + 1)^3$			
	$\cdot (u^8 + 3u^6 - 2u^5 + 2u^4 - 4u^3 + u^2 - u + 2)^3$			
	$(u^{10} + u^9 + 6u^8 + 6u^7 + 13u^6 + 13u^5 + 11u^4 + 10u^3 + 2u^2 + 1)^3$			
	$(u^{12} + u^{11} + \dots + 4u + 4)$			

XXI. Riley Polynomials

Crossings	Riley Polynomials at each crossing
	$y^{2}(y-1)^{6}(y^{3}-5y^{2}+10y-1)^{2}(y^{4}+2y^{3}+7y^{2}+5y+1)^{5}$
c_1, c_9, c_{11}	$(y^6 - y^5 + 4y^4 - 2y^3 + 8y^2 + 1)^5$
	$(y^8 - 10y^7 + 45y^6 - 102y^5 + 82y^4 + 24y^3 + 9y^2 - y + 16)$
	$(y^{10} - 3y^9 + \dots - 256y + 256)(y^{10} + 4y^9 + \dots - 33y + 16)^2$
	$(y^{12} + 9y^{11} + \dots + 18y + 1)$
	$y^{2}(y+1)^{6}(y^{3}+3y^{2}+2y-1)^{2}(y^{4}+2y^{3}+3y^{2}+y+1)^{5}$
c_2, c_5, c_6	$(y^6 + 3y^5 + 4y^4 + 2y^3 + 1)^5$
c_7, c_{10}, c_{12}	$ (y^8 + 6y^7 + 13y^6 + 10y^5 - 2y^4 - 4y^3 + y^2 + 3y + 4) $
	$ (y^{10} + 4y^9 + 10y^8 + 14y^7 + 15y^6 + 10y^5 + 7y^4 + 5y^3 + 11y^2 + 11y + 4)^2 $
	$(y^{10} + 5y^9 + 11y^8 + 13y^7 + 8y^6 + 2y^5 + y^4 - y^3 + 16y + 16)$
	$(y^{12} + 5y^{11} + \dots + 6y + 1)$
	$y^{2}(y+1)^{6}(y^{3}+3y^{2}+2y-1)^{6}(y^{4}+2y^{3}+3y^{2}+y+1)$
c_3, c_4, c_8	$(y^6 + 3y^5 + 4y^4 + 2y^3 + 1)^3$
	$(y^8 + 6y^7 + 13y^6 + 10y^5 - 2y^4 - 4y^3 + y^2 + 3y + 4)^3$
	$ ((y^{10} + 11y^9 + \dots + 4y + 1)^3)(y^{12} + 11y^{11} + \dots + 48y + 16) $