Conventions, Accuracy Metrics, Classification, Regression

Nipun Batra

IIT Gandhinagar

July 29, 2025

Digit Recognition Problem

Let us work on the digit recognition problem.

Maybe 4 can be thought of as: |+--+| + another vertically down |

▶ The heights of each of the | need to be similar within tolerance

Maybe 4 can be thought of as: |+--+| + another vertically down |

▶ The heights of each of the | need to be similar within tolerance

- ▶ The heights of each of the | need to be similar within tolerance
- ► Each of the | can be slightly slanted. Similarly the horizontal line can be slanted.

- ▶ The heights of each of the | need to be similar within tolerance
- ► Each of the | can be slightly slanted. Similarly the horizontal line can be slanted.

- ▶ The heights of each of the | need to be similar within tolerance
- ► Each of the | can be slightly slanted. Similarly the horizontal line can be slanted.
- ▶ There can be some cases of 4 where the first | is at 45 degrees

- ▶ The heights of each of the | need to be similar within tolerance
- ► Each of the | can be slightly slanted. Similarly the horizontal line can be slanted.
- ▶ There can be some cases of 4 where the first | is at 45 degrees

- ▶ The heights of each of the | need to be similar within tolerance
- ► Each of the | can be slightly slanted. Similarly the horizontal line can be slanted.
- ▶ There can be some cases of 4 where the first | is at 45 degrees
- ► There can be some cases of 4 where the width of each stroke is different

► Size

► Size

► Size

- Size
- ► Colour

- Size
- ► Colour

- Size
- ► Colour
- ▶ Texture

Should We Include Sample Numbers?

Answer: Usually no! Sample numbers are typically arbitrary identifiers and not meaningful features. Let us remove it.

Should We Include Sample Numbers?

Answer: Usually no! Sample numbers are typically arbitrary identifiers and not meaningful features. Let us remove it. Let us modify our data table for now.

Colour	Size	Texture	Condition
Orange	Small	Smooth	Good
Red	Small	Rough	Good
Orange	Medium	Smooth	Bad
Yellow	Large	Smooth	Bad

The training set consists of two parts:

The training set consists of two parts:

The training set consists of two parts:

1. Features (Input Variables)

The training set consists of two parts:

1. Features (Input Variables)

The training set consists of two parts:

- 1. Features (Input Variables)
- 2. Output or Response Variable

Dataset Notation

We call this matrix as \mathcal{D} , containing:

1. Feature matrix $(\mathbf{X} \in \mathbb{R}^{n \times d})$ containing data of n samples each of which is d dimensional.

Dataset Notation

We call this matrix as \mathcal{D} , containing:

- 1. Feature matrix $(\mathbf{X} \in \mathbb{R}^{n \times d})$ containing data of n samples each of which is d dimensional.
- 2. Output vector $(\mathbf{y} \in \mathbb{R}^n)$ containing output variable for n samples.

Dataset Example

```
Example (after encoding): \mathbf{x}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} (Orange=1, Small=0, Smooth=1)
```

Dataset Example

```
Example (after encoding): \mathbf{x}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} (Orange=1, Small=0, Smooth=1)
```

Dataset Example

Example (after encoding):
$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$
 (Orange=1, Small=0, Smooth=1)

► Complete dataset: $\mathcal{D} = \{(\mathbf{x}_i^\top, y_i)\}_{i=1}^n$

Learn f: Condition = f(colour, size, texture)

Learn f: Condition = f(colour, size, texture)

Learn f: Condition = f(colour, size, texture)

1. From Training Dataset

Learn f: Condition = f(colour, size, texture)

1. From Training Dataset

Learn f: Condition = f(colour, size, texture)

- 1. From Training Dataset
- 2. To Predict the condition for the Testing set

Colour	Size	Texture	Condition
Orange	Small	Smooth	Good
Red	Small	Rough	Good
Orange	Medium	Smooth	Bad
Yellow	Large	Smooth	Bad
Red	Large	Rough	?
Orange	Large	Rough	?

Can We Judge Performance Only on Test Set?

A: Ideally, no!

Can We Judge Performance Only on Test Set?

A: Ideally, no!

Can We Judge Performance Only on Test Set?

A: Ideally, no!

► Ideally - we want to predict "well" on all possible inputs. But, can we test that?

Can We Judge Performance Only on Test Set?

A: Ideally, no!

► Ideally - we want to predict "well" on all possible inputs. But, can we test that?

Can We Judge Performance Only on Test Set?

A: Ideally, no!

- ► Ideally we want to predict "well" on all possible inputs. But, can we test that?
- No! Since, the test set is only a sample from all possible inputs.

Training vs Test Sets

Both the training set and the test set are samples drawn from the hidden true distribution (also sometimes called population)

Training vs Test Sets

Both the training set and the test set are samples drawn from the hidden true distribution (also sometimes called population) More discussion later once we study bias and variance

▶ # People (More people ⇒ More Energy)

▶ # People (More people ⇒ More Energy)

▶ # People (More people ⇒ More Energy)

- ► # People (More people ⇒ More Energy)
- ► Temperature (Higher Temp. ⇒ Higher Energy)

- ► # People (More people ⇒ More Energy)
- ► Temperature (Higher Temp. ⇒ Higher Energy)

# People	Temp (C)	Energy (kWh)
4000	30	30
4200	30	32
4200	35	40
3000	20	?
1000	45	?

Classification

Classification

Classification

- Classification
 - Output variable is discrete

- Classification
 - Output variable is discrete

- Classification
 - Output variable is discrete
 - ▶ i.e. $y_i \in \{1, 2, ..., k\}$ where k is number of classes

- Classification
 - Output variable is discrete
 - ▶ i.e. $y_i \in \{1, 2, ..., k\}$ where k is number of classes

- Classification
 - Output variable is discrete
 - ▶ i.e. $y_i \in \{1, 2, ..., k\}$ where k is number of classes
 - Examples Predicting:

- Classification
 - Output variable is discrete
 - ▶ i.e. $y_i \in \{1, 2, ..., k\}$ where k is number of classes
 - Examples Predicting:

- Classification
 - Output variable is discrete
 - ▶ i.e. $y_i \in \{1, 2, ..., k\}$ where k is number of classes
 - Examples Predicting:
 - Will I get a loan? (Yes, No)

- Classification
 - Output variable is discrete
 - ▶ i.e. $y_i \in \{1, 2, ..., k\}$ where k is number of classes
 - Examples Predicting:
 - Will I get a loan? (Yes, No)

- Classification
 - Output variable is discrete
 - ▶ i.e. $y_i \in \{1, 2, ..., k\}$ where k is number of classes
 - Examples Predicting:
 - Will I get a loan? (Yes, No)
 - What is the quality of fruit? (Good, Bad)

- Classification
 - Output variable is discrete
 - ▶ i.e. $y_i \in \{1, 2, ..., k\}$ where k is number of classes
 - Examples Predicting:
 - Will I get a loan? (Yes, No)
 - What is the quality of fruit? (Good, Bad)

- Classification
 - Output variable is discrete
 - ▶ i.e. $y_i \in \{1, 2, ..., k\}$ where k is number of classes
 - Examples Predicting:
 - ► Will I get a loan? (Yes, No)
 - What is the quality of fruit? (Good, Bad)
- Regression

- Classification
 - Output variable is discrete
 - ▶ i.e. $y_i \in \{1, 2, ..., k\}$ where k is number of classes
 - Examples Predicting:
 - ► Will I get a loan? (Yes, No)
 - What is the quality of fruit? (Good, Bad)
- Regression

- Classification
 - Output variable is discrete
 - \blacktriangleright i.e. $y_i \in \{1, 2, ..., k\}$ where k is number of classes
 - Examples Predicting:
 - ► Will I get a loan? (Yes, No)
 - ▶ What is the quality of fruit? (Good, Bad)
- Regression
 - Output variable is continuous

- Classification
 - Output variable is discrete
 - \blacktriangleright i.e. $y_i \in \{1, 2, ..., k\}$ where k is number of classes
 - Examples Predicting:
 - ► Will I get a loan? (Yes, No)
 - ▶ What is the quality of fruit? (Good, Bad)
- Regression
 - Output variable is continuous

- Classification
 - Output variable is discrete
 - ▶ i.e. $y_i \in \{1, 2, ..., k\}$ where k is number of classes
 - Examples Predicting:
 - ► Will I get a loan? (Yes, No)
 - ► What is the quality of fruit? (Good, Bad)
- Regression
 - Output variable is continuous
 - ▶ i.e. $y_i \in \mathbb{R}$

- Classification
 - Output variable is discrete
 - ▶ i.e. $y_i \in \{1, 2, ..., k\}$ where k is number of classes
 - Examples Predicting:
 - ► Will I get a loan? (Yes, No)
 - ► What is the quality of fruit? (Good, Bad)
- Regression
 - Output variable is continuous
 - ▶ i.e. $y_i \in \mathbb{R}$

- Classification
 - Output variable is discrete
 - ▶ i.e. $y_i \in \{1, 2, ..., k\}$ where k is number of classes
 - Examples Predicting:
 - ► Will I get a loan? (Yes, No)
 - ► What is the quality of fruit? (Good, Bad)
- Regression
 - Output variable is continuous
 - ▶ i.e. $y_i \in \mathbb{R}$
 - Examples Predicting:

- Classification
 - Output variable is discrete
 - ▶ i.e. $y_i \in \{1, 2, ..., k\}$ where k is number of classes
 - Examples Predicting:
 - ► Will I get a loan? (Yes, No)
 - ► What is the quality of fruit? (Good, Bad)
- Regression
 - Output variable is continuous
 - ▶ i.e. $y_i \in \mathbb{R}$
 - Examples Predicting:

- Classification
 - Output variable is discrete
 - ▶ i.e. $y_i \in \{1, 2, ..., k\}$ where k is number of classes
 - Examples Predicting:
 - ► Will I get a loan? (Yes, No)
 - ► What is the quality of fruit? (Good, Bad)
- Regression
 - Output variable is continuous
 - ▶ i.e. $y_i \in \mathbb{R}$
 - Examples Predicting:
 - ► How much energy will campus consume?

- Classification
 - Output variable is discrete
 - ▶ i.e. $y_i \in \{1, 2, ..., k\}$ where k is number of classes
 - Examples Predicting:
 - ► Will I get a loan? (Yes, No)
 - ► What is the quality of fruit? (Good, Bad)
- Regression
 - Output variable is continuous
 - ▶ i.e. $y_i \in \mathbb{R}$
 - Examples Predicting:
 - ► How much energy will campus consume?

- Classification
 - Output variable is discrete
 - ▶ i.e. $y_i \in \{1, 2, ..., k\}$ where k is number of classes
 - Examples Predicting:
 - ► Will I get a loan? (Yes, No)
 - What is the quality of fruit? (Good, Bad)
- Regression
 - Output variable is continuous
 - ▶ i.e. $y_i \in \mathbb{R}$
 - Examples Predicting:
 - ► How much energy will campus consume?
 - ► How much rainfall will fall?

Accuracy Calculation

Accuracy =
$$\frac{|\{i : y_i = \hat{y}_i\}|}{n} = \frac{3}{5} = 0.6$$

Accuracy Notation

▶ Set cardinality notation: $|\{i: y_i = \hat{y}_i\}|$

- ▶ Set cardinality notation: $|\{i : y_i = \hat{y}_i\}|$
 - ▶ Reads as: "Number of indices *i* such that $y_i = \hat{y}_i$ "

- ▶ Set cardinality notation: $|\{i: y_i = \hat{y}_i\}|$
 - ▶ Reads as: "Number of indices *i* such that $y_i = \hat{y}_i$ "
 - Counts how many samples satisfy the condition

- ▶ Set cardinality notation: $|\{i: y_i = \hat{y}_i\}|$
 - ▶ Reads as: "Number of indices *i* such that $y_i = \hat{y}_i$ "
 - Counts how many samples satisfy the condition

- ▶ Set cardinality notation: $|\{i: y_i = \hat{y}_i\}|$
 - ▶ Reads as: "Number of indices *i* such that $y_i = \hat{y}_i$ "
 - Counts how many samples satisfy the condition

- ► Set cardinality notation: $|\{i: y_i = \hat{y}_i\}|$
 - ▶ Reads as: "Number of indices *i* such that $y_i = \hat{y}_i$ "
 - Counts how many samples satisfy the condition
- Alternative: Indicator function notation

Accuracy =
$$\frac{\sum_{i=1}^{n} \mathbf{1}[y_i = \hat{y}_i]}{n}$$

where
$$\mathbf{1}[\text{condition}] = \begin{cases} 1 & \text{if condition is true} \\ 0 & \text{if condition is false} \end{cases}$$

- ► Set cardinality notation: $|\{i: y_i = \hat{y}_i\}|$
 - ▶ Reads as: "Number of indices *i* such that $y_i = \hat{y}_i$ "
 - Counts how many samples satisfy the condition
- Alternative: Indicator function notation

Accuracy =
$$\frac{\sum_{i=1}^{n} \mathbf{1}[y_i = \hat{y}_i]}{n}$$

where
$$\mathbf{1}[\text{condition}] = \begin{cases} 1 & \text{if condition is true} \\ 0 & \text{if condition is false} \end{cases}$$

- ▶ Set cardinality notation: $|\{i: y_i = \hat{y}_i\}|$
 - ▶ Reads as: "Number of indices *i* such that $y_i = \hat{y}_i$ "
 - Counts how many samples satisfy the condition
- Alternative: Indicator function notation

Accuracy =
$$\frac{\sum_{i=1}^{n} \mathbf{1}[y_i = \hat{y}_i]}{n}$$

where
$$\mathbf{1}[\text{condition}] = \begin{cases} 1 & \text{if condition is true} \\ 0 & \text{if condition is false} \end{cases}$$

 Both notations are mathematically equivalent and commonly used in ML literature

When Precision/Recall Matter

Cases for this:

Cancer Screening

When Precision/Recall Matter

Cases for this:

- ► Cancer Screening
- ► Planet Detection

Precision Metric

Precision =
$$\frac{|\{i : y_i = \hat{y}_i = \text{Good}\}|}{|\{i : \hat{y}_i = \text{Good}\}|} = \frac{2}{4} = 0.5$$

"the fraction of relevant instances among the retrieved instances", i.e. "out of the number of times we predict Good, how many times is the condition actually Good"

Accuracy vs Precision/Recall

$$\label{eq:accuracy} \begin{aligned} \mathsf{Accuracy} &= \frac{98}{100} = 0.98 \\ \mathsf{Recall} &= \frac{0}{1} = 0 \\ \mathsf{Precision} &= \frac{0}{1} = 0 \end{aligned}$$

Confusion Matrix

		Ground Truth		
		Yes	No	
redicted	Yes	True Positive	False Positive	
edic	No	False Negative	True Negative	
<u>آ</u>				

Example Metrics

	G.T. Positive	G.T. Negative
Pred Positive	(0	1
Pred Negative	1	98 <i>)</i>

Example Metrics

```
\begin{array}{c} \text{G.T. Positive} & \text{G.T. Negative} \\ \text{Pred Positive} & 0 & 1 \\ \text{Pred Negative} & 1 & 98 \\ \end{array} \begin{array}{c} \text{G.T. Positive} & \text{G.T. Negative} \\ \text{Pred Positive} & \text{True Positive} & \text{False Positive} \\ \text{Pred Negative} & \text{True Negative} & \text{False Negative} \\ \end{array}
```

Example Metrics

$$\begin{array}{ccc} & \text{G.T. Positive} & \text{G.T. Negative} \\ \text{Pred Positive} & \begin{pmatrix} & 0 & & 1 \\ & 1 & & 98 \end{pmatrix} \\ \end{array}$$

 $\begin{array}{ccc} & G.T. \ Positive & G.T. \ Negative \\ Pred \ Positive & True \ Positive & False \ Positive \\ Pred \ Negative & True \ Negative & False \ Negative \\ \end{array}$

$$\begin{aligned} \text{Recall} &= \frac{\text{T.P}}{\text{T.P} + \text{F.P}} \\ \text{Precision} &= \frac{\text{T.P}}{\text{T.P} + \text{F.N}} \end{aligned}$$

Mean Error Issues

Is there any downside with using mean error?

Mean Error Issues

Is there any downside with using mean error? Errors can get cancelled out

Pop Quiz

Quick Quiz 1

Which metrics should you use for imbalanced datasets?

1. Accuracy only

Answer: c) Precision, recall, and F1-score give a more complete picture!

Pop Quiz

Quick Quiz 1

Which metrics should you use for imbalanced datasets?

- 1. Accuracy only
- 2. Mean squared error

Answer: c) Precision, recall, and F1-score give a more complete picture!

Pop Quiz

Quick Quiz 1

Which metrics should you use for imbalanced datasets?

- 1. Accuracy only
- 2. Mean squared error
- 3. Precision, recall, and F1-score

Answer: c) Precision, recall, and F1-score give a more complete picture!

► ML vs Traditional Programming: ML learns rules from data, traditional programming uses predefined rules

► ML vs Traditional Programming: ML learns rules from data, traditional programming uses predefined rules

- ► ML vs Traditional Programming: ML learns rules from data, traditional programming uses predefined rules
- ► Features matter: Choose meaningful features, avoid arbitrary identifiers

- ► ML vs Traditional Programming: ML learns rules from data, traditional programming uses predefined rules
- ► Features matter: Choose meaningful features, avoid arbitrary identifiers

- ► ML vs Traditional Programming: ML learns rules from data, traditional programming uses predefined rules
- ► Features matter: Choose meaningful features, avoid arbitrary identifiers
- ► Classification vs Regression: Discrete outputs vs continuous outputs

- ► ML vs Traditional Programming: ML learns rules from data, traditional programming uses predefined rules
- ► Features matter: Choose meaningful features, avoid arbitrary identifiers
- ► Classification vs Regression: Discrete outputs vs continuous outputs

- ► ML vs Traditional Programming: ML learns rules from data, traditional programming uses predefined rules
- ► Features matter: Choose meaningful features, avoid arbitrary identifiers
- ► Classification vs Regression: Discrete outputs vs continuous outputs
- ► **Accuracy isn't everything:** For imbalanced data, use precision, recall, F1-score

- ► ML vs Traditional Programming: ML learns rules from data, traditional programming uses predefined rules
- ► Features matter: Choose meaningful features, avoid arbitrary identifiers
- ► Classification vs Regression: Discrete outputs vs continuous outputs
- ► **Accuracy isn't everything:** For imbalanced data, use precision, recall, F1-score

- ► ML vs Traditional Programming: ML learns rules from data, traditional programming uses predefined rules
- ► Features matter: Choose meaningful features, avoid arbitrary identifiers
- Classification vs Regression: Discrete outputs vs continuous outputs
- ► **Accuracy isn't everything:** For imbalanced data, use precision, recall, F1-score
- ► Visualization is crucial: Always plot your data (Anscombe's Quartet lesson)

- ► ML vs Traditional Programming: ML learns rules from data, traditional programming uses predefined rules
- ► Features matter: Choose meaningful features, avoid arbitrary identifiers
- Classification vs Regression: Discrete outputs vs continuous outputs
- ► **Accuracy isn't everything:** For imbalanced data, use precision, recall, F1-score
- ► Visualization is crucial: Always plot your data (Anscombe's Quartet lesson)

- ► ML vs Traditional Programming: ML learns rules from data, traditional programming uses predefined rules
- ► Features matter: Choose meaningful features, avoid arbitrary identifiers
- Classification vs Regression: Discrete outputs vs continuous outputs
- ► **Accuracy isn't everything:** For imbalanced data, use precision, recall, F1-score
- ► Visualization is crucial: Always plot your data (Anscombe's Quartet lesson)
- Use baselines: Simple baseline models help validate your approach

Summary: Evaluation Metrics

Task	Common Metrics	When to Use
Classification	Accuracy, Precision, Recall, F1	Balanced/Imbalanced
	Confusion Matrix	Multi-class problems
Regression	MSE, RMSE, MAE	Continuous prediction
	Mean Error	Check for bias

Remember: Choose metrics based on your problem's characteristics and business requirements!