# §3.2.3 其他类型TTL门电路 Other TTL Gates

#### 1. TTL 非门

TTL 非门与 TTL 与非门基本相同。



### 2. 或非门

$$F = \overline{A + B}$$

 $A: T_1, T_2, R_1 \ B: T_1', T_2', R_1'$  相同电路

### 中间级和输出级和 与非门相同

$$A$$
: 高  $\left\{ egin{array}{ll} \mathbf{T}_2, \mathbf{T}_5 & \circlearrowleft \mathbf{B} \\ \mathbf{T}_4, \mathbf{D}_3 & \mathbf{B} \mathbf{L} \end{array} \right\} F$ : 低

B: 高  $\left\{ egin{array}{ll} T_2', T_5 & & \widehat{\mathbb{P}} \\ T_4, D_3 & & \mathcal{L} \end{array} \right\}$  F: 低



$$T_2$$
和 $T_2$ '集电极  $\rightarrow T_4$  发射极  $\rightarrow T_5$ 

## 只有当 A 和 B 同时低

$$F = \overline{A + B}$$

### 3. 异或门

# A, B 都高

 $\left\{ egin{array}{l} {\sf T_6}, {\sf T_9}$  导通  ${\sf F}$  低  ${\sf T_8}$  截止

### A, B 都低

T<sub>2</sub>, T<sub>3</sub> 发射极导通
T<sub>4</sub>, T<sub>5</sub> 截止 (V<sub>7b</sub>高)
T<sub>7</sub>, T<sub>9</sub> 导通
T<sub>8</sub> 截止

#### F 低



### A、B 不同

 $egin{aligned} &\mathbf{T}_1$ 导通, $\mathbf{T}_6$ 截止  $\mathbf{T}_4$ , $\mathbf{T}_5$ 之一导通( $V_{7\mathrm{b}}$ 低), $\to$   $\mathbf{T}_7$  截止  $F=\mathbf{T}_8$  导通, $\mathbf{T}_9$  截止

### 3. 集电极开路与非门 (OC门, Open Collector)

### 当需要下面运算时

$$F = F_1 \cdot F_2 = \overline{AB} \cdot \overline{CD}$$

### 有一种连接方法 如图



### 这种连法称"线与"

普通TTL门电路禁止这种连接方法

#### 原因:



如果 G1 输出高, 而 G2 输出低, 会形成一个很大电流 I 从 G1 T4 流向 G2 T5.

#### 导致:

 $G_{I} = G_{I}$  烧毁 $G_{I} = G_{I}$  输出F 脱离标准逻辑电平

非1非0,逻辑错误。

#### OCI'J:





(负载电阻的计算,见书)

# 

选择适当 $V_{cc}$ '和  $R_L$ 值,就可以实现高电平和线与。

OC 门符号:



$$F = F_1 \bullet F_2 = \overline{AB} \bullet \overline{CD} = \overline{AB + CD}$$

# §3.3 MOS 逻辑电路 MOS Logic Circuits

· MOS 逻辑电路的基本单元为MOSFET

金属氧化物半导体场效应晶体管 (Metal-Oxide-Semiconductor Field Effect Transistor, MOSFET)

MOS管分为NMOS、PMOS

#### 1.NMOS管的结构和符号





取一块P型半导体作为衬底,用B表示用氧化工艺生成一层SiO2薄膜绝缘层。

用光刻工艺腐蚀出两个孔。

扩散两个高掺杂的N型区,从而形成两个PN结。

从N型区引出电极,一个是漏极D, 一个是源极S。

在源极和漏极之间的绝缘层上镀 一层金属铝作为<mark>栅极G</mark>。

#### 2. MOS管的工作原理

### (1) 当v<sub>GS</sub>=0V时

当 $\nu_{GS}$ =0V时,漏极D和源极S之间为两个PN结,两端加上电压总有一个PN结反偏,因此,无电流流过, $i_D$ =0。管子处于截止状态。



#### 2.MOS管的工作原理



## (2) 当 $v_{GS} > 0$ 时

ν<sub>GS</sub> > 0将在绝缘层产生电场,该电场将SiO2绝缘层下方的空穴推走,同时将衬底的电子吸引到下方,形

### 3.NMOS管和PMOS管的通断条件

NMOS 
$$G_{\nu_{GS}}$$
  $G_{-}$   $G$ 

PMOS 
$$G \rightarrow B$$
 当  $|v_{GS}| > |V_{TP}|$  时导通  $-E_D$  当  $|v_{GS}| < |V_{TP}|$  时截止

$$V_{\rm T} = 2 \text{ V} \sim 2.5 \text{ V}$$
  $E_D = 5 \text{ V} \sim 15 \text{ V}$ 

#### 4. MOSFET 开关特性

#### NMOS 开关电路

当  $V_i = V_{GS} < V_T$ , NMOS 截止

MOSFET 在截止状态的 电阻 R<sub>OFF</sub>

$$R_{\rm OFF} \ge 10^{10} \Omega$$



MOSFET的 D-S 结等效于断开.

只要  $R_{\rm D} << R_{\rm OFF}$ ,输出为高电平:  $V_{\rm OH} \approx E_{\rm D}$ 

#### NMOS 开关电路

# 当 $V_i > V_T$ , NMOS处于恒流 区、NMOS的导通电阻:

 $R_{\rm ON} \sim 1 {\rm k}\Omega$ 

只要  $R_{\rm D} >> R_{\rm ON}$ ,输出为低电平:  $V_{\rm OL} \approx 0$ .



MOSFET的 D-S 结相当于 短路.

输入低电平, MOS 截止, 输出高电平; 输入高电平,MOS导通,输出低电平。

# § 3.3.1 NMOS 门电路

#### **NMOS Gate Circuits**

### 1. NMOS **非门**

#### NMOS 非门含有两个 N-沟 FETs:



 $R_{\rm ON1} = 100 \text{ k}\Omega$ 

Tı:负载管

 $T_2$ : 驱动管,接输入 A

负载管 $T_1$ 栅极接 $E_D$ ,总是导通,基本作用为负载电阻(有源负载省面积)

输入
$$A = 0 \text{ V (logic 0)}$$
,

$$V_{\rm GS2} < V_{\rm T,}$$

T<sub>2</sub> 截止,

$$R_{\rm off} \ge 10^{10} \Omega$$



输出: 
$$F = \frac{10^{10}}{10^5 + 10^{10}} \times E_D \approx E_D$$

$$F = E_{\rm D}$$
 (logic 1)

$$A = 0, F = 1$$

输入
$$A = 5 \text{ V (logic 1)}$$
,

$$V_{GS} > V_{T}$$
,  $T_2$  导通,

$$R_{on2} = 1 k\Omega$$



$$F = \frac{R_{ON2}}{R_{ON1} + R_{ON2}} E_D = \frac{1k}{100k + 1k} E_D \approx 0.01 E_D$$

### 真值表

$$\therefore F = 0 \text{ (logic 0)}$$

$$egin{array}{c|c|c} A & \mathrm{T}_1 & \mathrm{T}_2 & F \\ \hline 0 & \mathrm{on} & \mathrm{off} & 1 \\ 1 & \mathrm{on} & \mathrm{on} & 0 \\ \hline \end{array}$$

实现逻辑功能

$$F = \overline{A}$$

对MOS逻辑门,采用MOS管导通和截止状态电阻的不同,用分压的方法来分析输出逻辑电平的高低。

#### 2. NMOS 与非门



$$F = \overline{AB}$$

两个驱动管 T<sub>2</sub> 和 T<sub>3</sub> 串联,输入分别为 A 和 B.

### 输入、输出列于真值表:

| AB  | $T_1$ | $T_2$ $T$ | F        |
|-----|-------|-----------|----------|
| 0 0 | on    | off of    | f 1      |
| 0 1 | on    | off or    | <b>1</b> |
| 10  | on    | on of     | f 1      |
| 11  | on    | on on     | 0        |

两个NMOS驱动管 串联,实现与非关系。

### 3. NMOS 或非门



两个驱动管 T<sub>2</sub> 和 T<sub>3</sub> 并联,输入分别 为 A 和 B.

| AB  | $T_1$ $T_2$ $T_3$ | $F$ |
|-----|-------------------|-----|
| 0 0 | on off off        | 1   |
| 0.1 | on off on         | 0   |
| 10  | on on off         | 0   |
| 11  | on on on          | 0   |

$$\therefore F = \overline{A + B}$$

两个NMOS驱动管 并联,实现或非关系。

### § 3.3.2 CMOS 门电路 CMOS Gate Circuits

互补型MOS (CMOS: Complementary) 逻辑门在一个电路中同时包含PMOS和NMOS。

#### 1. CMOS 详门



PMOS: 负载

NMOS: 驱动

$$E_{D} = 10 \text{ V}$$

$$E_{D} > (V_{TN} + |V_{TP}|)$$

$$V_{TN} = |V_{TP}|$$

大于两门坎电压代数和

### A=0, $T_{\rm N}$ 截止, $T_{\rm P}$ 导通

$$\begin{split} V_{\text{GSN}} &< V_{\text{TN}}, \\ V_{\text{GSP}} &= \mathbf{0} - E_{\text{D}} = -E_{\text{D}} \\ |V_{\text{GSP}}| &> |V_{\text{TP}}| \end{split}$$

$$F = E_D = 1$$

# A=1, $T_{\rm N}$ 导通, $T_{\rm P}$ 截止

$$V_{\text{GSP}} = E_{\text{D}} - E_{\text{D}} = 0$$

$$< |V_{\text{TP}}|$$

$$F = 0$$



| $\boldsymbol{A}$ | $T_{\rm P}$ $T_{ m N}$ | F |
|------------------|------------------------|---|
| 0                | on off                 | 1 |
| 1                | off on                 | 0 |

$$F = \overline{A}$$

### 带缓冲器的门电路

缓冲器 (buffer)是具有一个输入和一个输出的门电路, 分正相缓冲器和反相缓冲器。



### 2. CMOS 与非门

| A B | $T_{N1} \ T_{N2} \ T_{P1} \ T_{P2}$ | $oxed{F}$ |
|-----|-------------------------------------|-----------|
| 0 0 | off off on on                       | 1         |
| 0 1 | off on on off                       | 1         |
| 10  | on off off on                       | 1         |
| 11  | on on off off                       | 0         |



# 两个驱动管 $T_{N1}$ 和 $T_{N2}$ 串联 两个负载管 $T_{P1}$ 和 $T_{P2}$ 并联

# 功能: 与非

$$F = \overline{AB}$$



# 3. CMOS 或非门

| AB   | $T_{N1}$ | $T_{N2}$ | $T_{P1}$ | $T_{P2}$ | $oldsymbol{F}$ |
|------|----------|----------|----------|----------|----------------|
| 0    | off      | off      | on       | on       | 1              |
| 0 1  | off      | on       | on       | off      | 0              |
| 1, 0 | on       | off      | off      | on       | 0              |
| 1    | on       | on       | off      | off      | 0              |

### 功能:或非

F = A + B

两 PMOS 串联作为负载管

#### 思考: CMOS门电路结构上有什么规律?



- (1) 下拉网络由NMOS管构成,上拉网络由PMOS管构成
- (2) 上拉网络和下拉网络相互对偶
- (3) 每个输入端同时加到一个NMOS管和一个PMOS管的栅极
- (4) NMOS管串联可实现与,并联可实现或,其输出是该操作的反

#### 输入负载特性

MOS电路输入电阻  $R_{\rm GS} > 10^{10}\,\Omega$ ,所以无论外接电阻多大,都是:接地  $\to$  0, $E_{\rm c}$   $\to$  1。



CMOS 电路不用的输入端一定不能悬空 (静电保护) 悬空时入端无电流,高输入阻抗 (>10<sup>10</sup> Ω) 会使沟道 被静电击穿。

# CMOS漏极开路门

### 门电路的推拉式输出结构

## 什么是推拉式输出?输出级的两只管子轮流导通。



# 推拉式输出门电路不能线与 (wire-AND)



当 $L_1$ 输出高电平, $L_2$ 输出 低电平时,自 $V_{DD} \rightarrow G_1$ 的  $T_P \rightarrow G_2$ 的 $T_N \rightarrow$ 地形成低阻通 路。造成功耗过大,输出电平 错误。

# CMOS漏极开路门 (Open-Drain, OD门)



# 作业

- 2.3  $2.13 (F_1)$
- 2.4 2.17
- 2.5 2.21