2. Inequalities & Distributions Markov's Inequality Proof

Assuming the random variable X is non-negative.

$$egin{aligned} E[X] &= \sum_x x \cdot Pr[X = x] \ &\geq \sum_{x \geq a} x \cdot Pr[X = x] \ &\geq a \cdot \sum_{x \geq a} Pr[X = x] \ &= a \cdot Pr[X \geq a] \end{aligned}$$

Hence,

$$Pr[X \ge a] \le rac{E[X]}{a}$$

Alternative Proof of Markov's Inequality

This can also be proven using this method

$$E(X) = P(X < a) \cdot E(X|X < a) + P(X \ge a) \cdot E(X|X < a)$$
 $E(X) \ge P(X \ge a) \cdot E(X|X \ge A)$
 $E(X) \ge a \cdot P(X \ge A)$
 $P(X \ge a) \le \frac{E(X)}{a}$

Chebyshev's Inequality Proof

We make use of Markov's Inequality to get a tighter inequality, known as the Chebyshev's inequality

Instead of taking $X \geq a, E[X]$, we can replace X, to work with $|x - \mu| \geq a, E[|x - \mu|]$.

Therefore

$$P(|x-\mu| \geq a) \leq rac{E[|x-\mu|]}{a}$$

But, we know that

$$P(|x - \mu| \ge a) = P((x - \mu)^2 \ge a^2)$$

Hence, we have

$$P((x-\mu)^2 \geq a^2) \leq \frac{E[(x-\mu)^2]}{a^2}$$

We know that $E[(x-\mu)^2]=Var(X)$, we can rewrite this as

$$P(|x-\mu| \geq a) \leq \frac{Var(X)}{a^2}$$

Hence proved.

Geometric distribution

If the probability of success is p, the expected number of trials to get a success is

$$\frac{1}{p}$$

In a geometric series, the random variable is defined as

$$X = egin{cases} 1 & ext{with probability } p \ 0 & ext{with probability } 1-p \end{cases}$$

We can prove the expected value below

$$E[X] = (1-p)\cdot (1+E[x]) + p \ E[X] = 1+E[x] - p - pE[x] + p \ (1-(1-p))E[X] = 1 \ E[X] = rac{1}{p}$$

Linearity of Expectation

The expected value of the sum of random variables is equal to the sum of their individual expected values irrespective of whether they are independent or not.

Proof

Assume there are 2 random variables X, Y which may or may not be independent.

$$\begin{split} E[X+Y] &= \sum_{x} \sum_{y} [(x+y) \cdot P(X=x,Y=y)] \\ &= \sum_{x} \sum_{y} [x \cdot P(X=x,Y=y)] + \sum_{y} \sum_{x} [y \cdot P(X=x,Y=y)] \\ &= \sum_{x} x \sum_{y} P(X=x,Y=y) + \sum_{y} y \sum_{x} P(X=x,Y=y) \\ &= \sum_{x} x P(X=x) + \sum_{y} y P(Y=y) \\ &= E[X] + E[Y] \end{split}$$

Hence, we've showed that linearity of expectation holds without using the property that X,Y are independent.