DRINKING STATUS

This dataset is collected from National Health Insurance Service in Korea. The purpose of this dataset is to:

- Analysis of body signal
- To predict whether a person is a drinker or not according to collected Features 🔽 🗶

The dataset contains 23 following features.

- Sex male, female
- Age round up to 5 years
- Height round up to 5 cm (cm)
- Weight (kg)
- Sight_left eyesight (left)
- Sight_right eyesight (right)
- Hear_left hearing left, 1 (normal), 2 (abnormal)
- Hear_right hearing right, 1 (normal), 2 (abnormal)
- SBP Systolic blood pressure (mmHg)
- DBP Diastolic blood pressure (mmHg)
- BLDS Blood Sugar Level or Fasting Blood Glucose (mg/dL)
- Tot_chole total cholesterol (mg/dL)
- HDL_chole High-Density Lipoprotein cholesterol (mg/dL)
- IDI shala Law Danaity Linanzatain shalastaral (ma/dl)

- LDL_choic Low-Density Lipoprotein choicsteror (mg/dL)
- Triglyceride triglyceride (mg/dL)
- Hemoglobin hemoglobin (g/dL)
- Urine_protein protein in urine
- Serum_creatinine serum (blood) creatinine (mg/dL)
- SGOT_AST Serum Glutamate Oxaloacetate Transaminase Aspartate Transaminase (IU/L)
- SGOT_ALT Serum Glutamate Oxaloacetate Transaminase Alanine Transaminase (IU/L)
- Gamma_GTP γ-Glutamyl Transpeptidase (IU/L)
- DRK_YN Drinker or Not
- 1 #Drive Mount
- 2 from google.colab import drive
- 3 drive.mount('/content/drive')

Importing neccessary libraries

```
1 import numpy as np
2 import pandas as pd
3 import matplotlib.pyplot as plt
4 import seaborn as sns
5 df=pd.read_csv('/content/drive/MyDrive/driking_dataset_Ver01.csv')
6 df=df.drop(['SMK_stat_type_cd'], axis = 1)
7 df

**
```

	sex	age	height	weight	waistline	sight_left	sight_right	hear_left	hear_
0	Male	35	170.0	75.0	90.0	1.0	1.0	1	
1	Male	30	180.0	80.0	89.0	0.9	1.2	1	
2	Male	40	165.0	75.0	91.0	1.2	1.5	1	
3	Male	50	175.0	80.0	91.0	1.5	1.2	1	
4	Male	50	165.0	60.0	80.0	1.0	1.2	1	
23994	Female	50	155.0	55.0	71.2	1.0	1.2	1	
23995	Male	55	165.0	65.0	84.0	1.0	0.8	1	
23996	Male	40	170.0	75.0	90.0	1.2	1.2	1	
23997	Female	30	150.0	55.0	76.0	1.2	1.0	1	
23998	Male	50	165.0	70.0	94.0	0.7	0.6	1	

23999 rows × 23 columns

Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mour

1 df.head()

-	*
_	_

	sex	age	height	weight	waistline	sight_left	sight_right	hear_left	hear_right
0	Male	35	170.0	75.0	90.0	1.0	1.0	1	1
1	Male	30	180.0	80.0	89.0	0.9	1.2	1	1
2	Male	40	165.0	75.0	91.0	1.2	1.5	1	1
3	Male	50	175.0	80.0	91.0	1.5	1.2	1	1
4	Male	50	165.0	60.0	80.0	1.0	1.2	1	1

5 rows × 23 columns

1 df.tail()

	-	-
u	-	_

	sex	age	height	weight	waistline	sight_left	sight_right	hear_left	hear_
23994	Female	50	155.0	55.0	71.2	1.0	1.2	1	
23995	Male	55	165.0	65.0	84.0	1.0	0.8	1	
23996	Male	40	170.0	75.0	90.0	1.2	1.2	1	
23997	Female	30	150.0	55.0	76.0	1.2	1.0	1	
23998	Male	50	165.0	70.0	94.0	0.7	0.6	1	

5 rows × 23 columns

1 df.describe()

-	,

	age	height	weight	waistline	sight_left	sight_right
count	23999.000000	23936.000000	23971.000000	23999.000000	23998.000000	23999.000000
mean	47.592816	162.290901	63.293146	81.291616	0.981407	0.977557
std	14.165375	9.281372	12.485935	12.729166	0.612472	0.590782
min	20.000000	135.000000	30.000000	35.000000	0.100000	0.100000
25%	35.000000	155.000000	55.000000	74.200000	0.700000	0.700000
50%	45.000000	160.000000	60.000000	81.000000	1.000000	1.000000
75%	60.000000	170.000000	70.000000	87.600000	1.200000	1.200000
max	85.000000	190.000000	130.000000	999.000000	9.900000	9.900000

8 rows × 21 columns

3 of 35

07-07-2024, 03:22 pm

1 dt.dtypes object sex int64 age height float64 weight float64 waistline float64 sight_left float64 sight_right float64 hear_left int64 hear_right int64 SBP float64 DBP float64 **BLDS** float64 tot_chole float64 HDL_chole int64 LDL chole int64 triglyceride float64 hemoglobin float64 urine_protein int64 serum_creatinine float64 SGOT AST float64 SGOT_ALT int64 gamma_GTP int64 DRK_YN object dtype: object

Graphical Representation

```
1 plt.figure(figsize=(20,20))
2 plt.subplot(1, 4, 1)
3 label1 = ['Male', 'Female']
4 df['sex'].value_counts().plot.pie(labels=label1,counterclock=False,autopct='%1.1f%')
5 plt.title('Sex')
6 plt.legend()
7 plt.subplot(1, 4, 2)
8 labels = ['Drinker, Y', 'Not Drinker, N']
9 df['DRK_YN'].value_counts().plot.pie(labels=labels, counterclock=False,autopct='%1.1f%')
10 plt.title('Drinking')
11 plt.legend()
12 plt.show()
```


Male Drinker, Y

1 df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 23999 entries, 0 to 23998 Data columns (total 23 columns):

_	#	Column	Non-Null Count	Dtype
			2200011	
	0	sex	23999 non-null	object
	1	age	23999 non-null	int64
	2	height	23936 non-null	float64
	3	weight	23971 non-null	float64
	4	waistline	23999 non-null	float64
	5	sight_left	23998 non-null	float64
	6	sight_right	23999 non-null	float64
	7	hear_left	23999 non-null	int64
	8	hear_right	23999 non-null	int64
	9	SBP	23956 non-null	float64
	10	DBP	23904 non-null	float64
	11	BLDS	23991 non-null	float64
	12	tot_chole	23990 non-null	float64
	13	HDL_chole	23999 non-null	int64
	14	LDL_chole	23999 non-null	int64
	15	triglyceride	23985 non-null	float64
	16	hemoglobin	23999 non-null	float64
	17	urine_protein	23999 non-null	int64
	18	serum_creatinine	23999 non-null	float64
	19	SGOT_AST	23950 non-null	float64
	20	SGOT_ALT	23999 non-null	int64
	21	gamma_GTP	23999 non-null	int64
	22	DRK_YN	23999 non-null	object
C	dtype	es: float64(13), ir	nt64(8), object(2	-

memory usage: 4.2+ MB

Finding & Filling missing values

1 df.isna().sum()

sex	0
age	0
height	63
weight	28
waistline	0
sight_left	1
sight_right	0
hear_left	0
hear right	0

```
SBP
                          43
                          95
     DBP
     BLDS
                           8
     tot_chole
                           9
     HDL_chole
                           0
                           0
     LDL_chole
     triglyceride
                          14
     hemoglobin
                           0
     urine_protein
                           0
                           0
     serum_creatinine
     SGOT_AST
                          49
     SGOT_ALT
                           0
     gamma_GTP
                           0
                           0
     DRK_YN
     dtype: int64
 1 df['height']=df['height'].fillna(df['height'].mean())
 2 df['weight']=df['weight'].fillna(df['weight'].mean())
 3 df['sight_left']=df['sight_left'].fillna(df['sight_left'].mean())
 4 df['SBP']=df['SBP'].fillna(df['SBP'].mean())
 5 df['DBP']=df['DBP'].fillna(df['DBP'].mean())
 6 df['BLDS']=df['BLDS'].fillna(df['BLDS'].mean())
 7 df['tot_chole']=df['tot_chole'].fillna(df['tot_chole'].mean())
8 df['triglyceride']=df['triglyceride'].fillna(df['triglyceride'].mean())
 9 df['SGOT_AST']=df['SGOT_AST'].fillna(df['SGOT_AST'].mean())
10
 1 df.isna().sum()
                          0
     sex
                          0
     age
                          0
     height
                          0
     weight
     waistline
                          0
     sight_left
                          0
     sight_right
                          0
     hear_left
                          0
     hear_right
                          0
     SBP
                          0
     DBP
                          0
     BLDS
                          0
     tot_chole
                          0
                          0
     HDL_chole
     LDL_chole
                          0
     triglyceride
                          0
     hemoglobin
                          0
                          0
     urine_protein
     serum_creatinine
                          0
     SGOT_AST
                          0
     SGOT_ALT
                          0
                          0
     gamma_GTP
     DRK_YN
                          0
     dtype: int64
```

1 df.dtypes

```
sex
                      object
age
                       int64
                    float64
height
                    float64
weight
                    float64
waistline
sight_left
                    float64
sight_right
                    float64
hear_left
                       int64
hear_right
                       int64
SBP
                    float64
DBP
                    float64
BLDS
                    float64
tot_chole
                    float64
HDL_chole
                       int64
LDL_chole
                      int64
triglyceride
                    float64
hemoglobin
                    float64
urine_protein
                      int64
serum creatinine
                    float64
SGOT_AST
                    float64
SGOT_ALT
                      int64
                       int64
gamma_GTP
DRK_YN
                      object
dtype: object
```

Encoding

```
1 from sklearn.preprocessing import LabelEncoder
2 le=LabelEncoder()
3 df['sex']=le.fit_transform(df['sex'])
4 df['DRK_YN']=le.fit_transform(df['DRK_YN'])
1 df.columns
    Index(['sex', 'age', 'height', 'weight', 'waistline', 'sight_left',
           'sight_right', 'hear_left', 'hear_right', 'SBP', 'DBP', 'BLDS',
           'tot_chole', 'HDL_chole', 'LDL_chole', 'triglyceride', 'hemoglobin',
           'urine_protein', 'serum_creatinine', 'SGOT_AST', 'SGOT_ALT',
           'gamma_GTP', 'DRK_YN'],
          dtype='object')
1 df.dtypes
    sex
                          int64
    age
                          int64
    height
                        float64
   weight
                        float64
   waistline
                        float64
                        float64
    sight_left
                        float64
    sight right
    hear_left
                          int64
    hear_right
                          int64
    SBP
                        float64
   DBP
                        float64
    BLDS
                        float64
   tot cholo
                        £1~~+61
```

ror_cliote 110ac04 HDL_chole int64 LDL_chole int64 triglyceride float64 hemoglobin float64 urine_protein int64 serum_creatinine float64 float64 SGOT_AST SGOT_ALT int64 gamma_GTP int64 DRK_YN int64 dtype: object

Finding & Correcting Outlayers

11 of 35


```
gamma_GTP
```

```
1 df = df.select_dtypes(include=['number'])
2 q1=df.quantile(0.25)
3 q2=df.quantile(0.75)
4 IQR=q2-q1
                              #Interquartile Range
5 \text{ max\_limit=q2+(1.5*IQR)}
6 min_limit=q1-(1.5*IQR)
1 df=pd.DataFrame(np.where(df>max_limit,max_limit,(np.where(df<min_limit,min_limit,df))),cc</pre>
1 df.shape
    (23999, 23)
1 df.nunique()
                           2
    sex
                          14
    age
                          13
    height
                          15
    weight
                         460
    waistline
                          19
    sight_left
    sight_right
                          19
    hear_left
                           1
    hear_right
                           1
    SBP
                          79
    DBP
                          50
    BLDS
                          71
    tot_chole
                         201
    HDL_chole
                          80
    LDL_chole
                         185
    triglyceride
                         275
    hemoglobin
                          91
    urine_protein
                           1
    serum_creatinine
                          14
    SGOT_AST
                          39
    SGOT_ALT
                          52
                          74
    gamma_GTP
    DRK_YN
                           2
    dtype: int64
1 # for i in['age', 'height', 'weight', 'waistline', 'sight_left', 'sight_right', 'SBP', 'DBP', 'BL
2 #
      plt.figure(figsize=(6,6))
3 #
      sns.boxplot(df[i],color='blue')
4 #
      plt.xlabel(i)
5 #
      plt.ylabel('Range')
1 df['hear_left']
```

```
0
         1.0
1
         1.0
2
         1.0
3
         1.0
4
         1.0
23994
         1.0
23995
         1.0
23996
         1.0
23997
         1.0
23998
         1.0
Name: hear_left, Length: 23999, dtype: float64
```

1 df['hear_left'].value_counts()

hear_left 1.0 23999

Name: count, dtype: int64

- 1 df.drop(['hear_left','hear_right','urine_protein'],axis=1,inplace=True)
- 1 plt.figure(figsize=(20,8))
- 2 sns.boxplot(data=df)

Checking Co-relation

	sex	age	height	weight	waistline	sight_left	sight_r
sex	1.000000	-0.083209	0.726752	0.590532	0.432042	0.167185	0.17
age	-0.083209	1.000000	-0.395952	-0.197100	0.164387	-0.360460	-0.35
height	0.726752	-0.395952	1.000000	0.668320	0.322849	0.268216	0.27
weight	0.590532	-0.197100	0.668320	1.000000	0.783528	0.171450	0.17
waistline	0.432042	0.164387	0.322849	0.783528	1.000000	-0.008308	0.00
sight_left	0.167185	-0.360460	0.268216	0.171450	-0.008308	1.000000	0.69
sight_right	0.178484	-0.356387	0.270467	0.176304	0.000132	0.698550	1.00
SBP	0.180282	0.271473	0.033525	0.252190	0.347212	-0.087821	-0.07
DBP	0.203149	0.115360	0.111095	0.280387	0.304965	-0.014214	-0.00
BLDS	0.151638	0.259969	0.022815	0.184589	0.284012	-0.089856	-0.09
tot_chole	-0.025790	0.010458	-0.023743	0.064095	0.074761	0.023682	0.01
HDL_chole	-0.307030	-0.118202	-0.182061	-0.343599	-0.376161	0.006797	-0.00
LDL_chole	-0.008804	0.027586	-0.014537	0.071464	0.078892	0.019791	0.01
triglyceride	0.262788	0.086186	0.155686	0.344221	0.387878	0.009169	0.00
hemoglobin	0.680379	-0.177468	0.547527	0.514122	0.367610	0.168812	0.17
serum_creatinine	0.584680	0.042963	0.413638	0.374681	0.292700	0.064146	0.07
SGOT_AST	0.202628	0.170429	0.068020	0.211990	0.276781	-0.031622	-0.02
SGOT_ALT	0.326451	0.003721	0.224380	0.428773	0.429396	0.052933	0.06
gamma_GTP	0.419859	0.014914	0.272427	0.406772	0.408744	0.049675	0.06
DRK_YN	0.377456	-0.278262	0.375580	0.268724	0.124624	0.151138	0.15

Heatmap

1 plt.figure(figsize=(15,10))

2 sns.heatmap(df.corr(),annot=True)

3 plt.show()

- 1.0 - 0.8

sight_left -	0.17	-0.36	0.27	0.17	-0.0083	1	0.7	-0.088	-0.014	-0.09	0.024	0.0068	0.02	0.0092	0.17	0.064	-0.032	0.053	0.05	0.15		- 0.6
sight_right -	0.18	-0.36	0.27	0.18	0.00013	0.7	1	-0.077	-0.004	-0.091	0.0190	0.0003	30.018	0.0094	0.17	0.076	-0.023	0.061	0.06	0.16		
SBP -	0.18	0.27	0.034	0.25	0.35	-0.088	-0.077	1	0.74	0.24	0.077	-0.13	0.041	0.24	0.17	0.13	0.19	0.2	0.24	0.037		
DBP -	0.2	0.12	0.11	0.28	0.3	-0.014	-0.004	0.74	1	0.18	0.12	-0.11	0.074	0.24	0.25	0.13	0.18	0.22	0.27	0.1		- 0.4
BLDS -	0.15	0.26	0.023	0.18	0.28	-0.09	-0.091	0.24	0.18	1	0.018	-0.16	-0.025	0.26	0.12	0.12	0.16	0.22	0.26	0.027		
tot_chole -	-0.026	0.01	-0.024	0.064	0.075	0.024	0.019	0.077	0.12	0.018	1	0.17	0.89	0.27	0.13	0.017	0.092	0.12	0.15	0.022		
HDL_chole -	-0.31	-0.12	-0.18	-0.34	-0.38	0.0068	0.0003	3-0.13	-0.11	-0.16	0.17	1	-0.046	-0.44	-0.21	-0.23	-0.092	-0.23	-0.17	0.04		- 0.2
LDL_chole -	0.0088	0.028	-0.015	0.071	0.079	0.02	0.018	0.041	0.074	-0.025	0.89	-0.046	1	0.047	0.1	0.039	0.037	0.079	0.04	-0.041		
triglyceride -	0.26	0.086	0.16	0.34	0.39	0.0092	0.0094	0.24	0.24	0.26	0.27	-0.44	0.047	1	0.29	0.18	0.22	0.35	0.44	0.11		- 0.0
hemoglobin -	0.68	-0.18	0.55	0.51	0.37	0.17	0.17	0.17	0.25	0.12	0.13	-0.21	0.1	0.29	1	0.39	0.23	0.38	0.4	0.31		
serum_creatinine -	0.58	0.043	0.41	0.37	0.29	0.064	0.076	0.13	0.13	0.12	0.017	-0.23	0.039	0.18	0.39	1	0.15	0.2	0.24	0.17		
SGOT_AST -	0.2	0.17	0.068	0.21	0.28	-0.032	-0.023	0.19	0.18	0.16	0.092	-0.092	0.037	0.22	0.23	0.15	1	0.76	0.48	0.061		-0.2
SGOT_ALT -	0.33	0.0037	0.22	0.43	0.43	0.053	0.061	0.2	0.22	0.22	0.12	-0.23	0.079	0.35	0.38	0.2	0.76	1	0.59	0.1		
gamma_GTP -	0.42	0.015	0.27	0.41	0.41	0.05	0.06	0.24	0.27	0.26	0.15	-0.17	0.04	0.44	0.4	0.24	0.48	0.59	1	0.3		
DRK_YN -	0.38	-0.28	0.38	0.27	0.12	0.15	0.16	0.037	0.1	0.027	0.022	0.04	-0.041	0.11	0.31	0.17	0.061	0.1	0.3	1		-0.4
	sex -	age -	height -	weight -	waistline -	sight_left -	sight_right -	SBP -	DBP -	BLDS -	tot_chole -	HDL_chole -	LDL_chole -	triglyceride -	hemoglobin -	erum_creatinine -	SGOT_AST -	SGOT_ALT -	gamma_GTP -	DRK_YN -		

1 df_corr = df.corr()
2 df_corr

sight_r	sight_left	waistline	weight	height	age	sex	
0.17	0.167185	0.432042	0.590532	0.726752	-0.083209	1.000000	sex
-0.35	-0.360460	0.164387	-0.197100	-0.395952	1.000000	-0.083209	age
0.27	0.268216	0.322849	0.668320	1.000000	-0.395952	0.726752	height
0.17	0.171450	0.783528	1.000000	0.668320	-0.197100	0.590532	weight
0.00	0.00000	4 000000	0.700500	0.000040	0.404007	0.400040	!4!!

waistiine	0.432042	0.164387	0.322849	0.783528	1.000000	-0.008308	0.00
sight_left	0.167185	-0.360460	0.268216	0.171450	-0.008308	1.000000	0.69
sight_right	0.178484	-0.356387	0.270467	0.176304	0.000132	0.698550	1.00
SBP	0.180282	0.271473	0.033525	0.252190	0.347212	-0.087821	-0.07
DBP	0.203149	0.115360	0.111095	0.280387	0.304965	-0.014214	-0.00
BLDS	0.151638	0.259969	0.022815	0.184589	0.284012	-0.089856	-0.09
tot_chole	-0.025790	0.010458	-0.023743	0.064095	0.074761	0.023682	0.01
HDL_chole	-0.307030	-0.118202	-0.182061	-0.343599	-0.376161	0.006797	-0.00
LDL_chole	-0.008804	0.027586	-0.014537	0.071464	0.078892	0.019791	0.01
triglyceride	0.262788	0.086186	0.155686	0.344221	0.387878	0.009169	0.00
hemoglobin	0.680379	-0.177468	0.547527	0.514122	0.367610	0.168812	0.17
serum_creatinine	0.584680	0.042963	0.413638	0.374681	0.292700	0.064146	0.07
SGOT_AST	0.202628	0.170429	0.068020	0.211990	0.276781	-0.031622	-0.02
SGOT_ALT	0.326451	0.003721	0.224380	0.428773	0.429396	0.052933	0.06
gamma_GTP	0.419859	0.014914	0.272427	0.406772	0.408744	0.049675	0.06
DRK_YN	0.377456	-0.278262	0.375580	0.268724	0.124624	0.151138	0.15

1 df_corr_1 = df_corr[abs(df_corr) > 0.2]

1 sns.heatmap(df_corr_1)

<Axes: >


```
height
weight
                                              DBP
                                                 BLDS
                                   waistline
                                                            triglyceride
                                                                  serum_creatinine
                                                               hemoglobin
1 input_feature = ['sex','age','height','weight','hemoglobin','gamma_GTP']
1 #df.drop('age',axis=1,inplace=True)
                          float64
                          float64
                         float64
                         float64
    waistline
                         float64
    sight_left
                         float64
    sight_right
                         float64
                         float64
                         float64
                         float64
    tot_chole
                         float64
    HDL_chole
                         float64
    LDL_chole
                         float64
                         float64
    triglyceride
                         float64
    hemoglobin
                         float64
    serum_creatinine
                         float64
                         float64
                          float64
    gamma_GTP
                          float64
    dtype: object
1 # x=df.iloc[:,:-1].values
1 new_x = df[input_feature]
2 new_x.head()
3 x = new_x.values
                                                   40.],
    array([[ 1. , 35. , 170. ,
                                   75.,
                                            17.1,
                                                   27.],
              1.,
                     30., 180.,
                                    80.,
                                            15.8,
                     40., 165.,
                                    75.,
                                            15.8,
                                                   68.],
              1.,
                                    75.,
                     40., 170.,
                                            17.2,
                                                   76.],
                                    55.,
                                            14.7,
                     30., 150.,
                     50., 165.,
                                   70.,
                                                   76.]])
                                            15.,
```

1 df.dtypes

sex age

SBP

DBP

BLDS

SGOT_AST

SGOT_ALT

DRK_YN

2 # x

4 x

height

weight

```
1 x.shape
    (23999, 6)
1 x.ndim
   2
1 y=df.iloc[:,-1].values
2 y
   array([1., 0., 0., ..., 1., 1., 1.])
1 y.ndim
   1
1 df['DRK_YN'].value_counts()
   DRK_YN
   0.0
           12046
   1.0
           11953
   Name: count, dtype: int64
```

Countplot of output

Splitig of training & testing data

```
1 from sklearn.model_selection import train_test_split
2 x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.30,random_state=42)
3 x_train
   array([[ 1., 45., 175., 70., 15.9, 22.],
         [ 0., 30., 165., 50., 13.9, 15.],
         [ 0., 65., 145., 45., 13.4, 14.],
         [ 1., 45., 175., 75., 14.7, 36.],
         [ 1., 40., 170., 92.5, 16.1, 43.],
         [ 1., 50., 165., 65., 16., 76.]])
1 x_test
   array([[ 0., 45., 160., 60., 14.4, 11.],
         [ 1., 65., 160., 50., 12.8, 15.],
         [ 0., 60., 140., 45.,
                                   11.8, 16. ],
         [ 0., 55., 145., 50., 13.8, 21.],
         [ 0., 40., 165., 55., 10.6, 10.],
         [ 0., 40., 150., 45., 14.2, 15.]])
1 y_train
   array([0., 1., 0., ..., 1., 0., 1.])
1 y_test
   array([1., 0., 0., ..., 0., 0., 0.])
1 pd.unique(y_train)
   array([0., 1.])
```

Normalization

```
1 from sklearn.preprocessing import StandardScaler
2 scaler=StandardScaler()
3 scaler.fit(x_train)
4 x_train=scaler.transform(x_train)
5 x_test=scaler.transform(x_test)
```

Model Creation

```
1 from sklearn.neighbors import KNeighborsClassifier
2 from sklearn.naive_bayes import GaussianNB
3 from sklearn.svm import SVC
4 from sklearn.metrics import confusion_matrix,accuracy_score,classification_report,Confusi
5 knn=KNeighborsClassifier(n_neighbors=7)
6 base=GaussianNB()
7 model=SVC()
8 lst=[knn,base,model]
```

Performance Evaluation

```
1 for i in lst:
2
   i.fit(x_train,y_train)
3
   y_pred=i.predict(x_test)
   cmd=ConfusionMatrixDisplay(confusion_matrix(y_test,y_pred),display_labels=pd.unique(y_t
4
5
   print('\n')
6
   print('Model is ',i)
7
   print('\n')
8
   print(y_pred)
   print('!'*100)
9
10
   print('score is',accuracy_score(y_test,y_pred))
11
   print('*'*100)
12
   print('confusion is',confusion_matrix(y_test,y_pred))
13
   print('#'*100)
   print('classification_rp',classification_report(y_test,y_pred))
14
15
   print('CM display is',cmd.plot())
    Model is KNeighborsClassifier(n neighbors=7)
    [0. 0. 0. ... 0. 0. 1.]
    score is 0.6841666666666667
    **************************************
    confusion is [[2405 1203]
    [1071 2521]]
    classification_rp
                             precision
                                        recall f1-score
                                                       support
           0.0
                   0.69
                           0.67
                                   0.68
                                           3608
           1.0
                   0.68
                           0.70
                                   0.69
                                           3592
       accuracy
                                   0.68
                                           7200
                                           7200
                   0.68
                           0.68
                                   0.68
      macro avg
   weighted avg
                   0.68
                           0.68
                                   0.68
                                           7200
```

CM display is <sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay object at 0

Model is GaussianNB()

```
[0. 0. 0. ... 0. 0. 0.]
   ************************************
   confusion is [[2526 1082]
    [1118 2474]]
   classification rp
                          precision
                                    recall f1-score
                                                 support
         0.0
                 0.69
                        0.70
                               0.70
                                      3608
          1.0
                 0.70
                        0.69
                               0.69
                                      3592
                               0.69
                                      7200
      accuracy
     macro avg
                 0.69
                        0.69
                               0.69
                                      7200
                               0.69
                                      7200
   weighted avg
                 0.69
                        0.69
   CM display is <sklearn.metrics. plot.confusion matrix.ConfusionMatrixDisplay object at €
   Model is SVC()
   [0. 0. 0. ... 0. 0. 0.]
   score is 0.707222222222222
   *************************************
   confusion is [[2437 1171]
    [ 937 2655]]
   classification rp
                          precision
                                    recall f1-score
                                                 support
Model creation: Random Forest
         1.0
                 0.69
                        0.74
                               0.72
                                      3592
1 from sklearn.ensemble import RandomForestClassifier
2 model=RandomForestClassifier(n_estimators=5, criterion='gini', random_state=0)
3 model.fit(x_train,y_train)
4 y pred=model.predict(x test)
5 y_pred
6 # from sklearn.svm import SVC
7 # model=SVC()
8 # model.fit(x_train,y_train)
9 # y pred=model.predict(x test)
10 # y_pred
   array([0., 0., 0., ..., 0., 0., 0.])
Performnace evaluation
    Ф
                                              1800
1 from sklearn.metrics import confusion_matrix,accuracy_score,classification_report,Confusi
2 cm=confusion_matrix(y_test,y_pred)
3 cm
   array([[2354, 1254],
```

[1245, 2347]]) 1 ac=accuracy_score(y_test,y_pred) 2 ac 0.6529166666666667 Predicted label 1 cr=classification_report (y_test,y_pred) 2 print(cr) precision recall f1-score support 0.0 0.65 0.65 0.65 3608 0.65 1.0 0.65 0.65 3592 0.65 7200 accuracy macro avg 0.65 0.65 0.65 7200 weighted avg 0.65 0.65 0.65 7200 ĭ **Model Creation : XGBclassifier** 1 from xgboost import XGBClassifier 2 xgmodel = XGBClassifier(random_state=0) 3 xgmodel.fit(x_train,y_train) XGBClassifier XGBClassifier(base_score=None, booster=None, callbacks=None, colsample_bylevel=None, colsample_bynode=None,

1 y_pred =xgmodel.predict(x_test)
1 ac=accuracy_score(y_test,y_pred)
2 ac
0.704583333333333
1 from sklearn.metrics import classification_report
2 print(classification_report(y_test,y_pred))

recall f1-score

precision

29 of 35 07-07-2024, 03:22 pm

support

0.0	0.72	0.68	0.70	3608
1.0	0.69	0.73	0.71	3592
accuracy			0.70	7200
macro avg	0.71	0.70	0.70	7200
weighted avg	0.71	0.70	0.70	7200

Hyper Parameter Tuning XGBClassifier

```
1 # For Hyperparameter tuning
 2 from sklearn.model_selection import GridSearchCV
 3 xgb = XGBClassifier()
 5 # Define the grid of hyperparameters to search
 6 param_grid = {
 7
       'n_estimators': [100, 200, 300],
 8
       'max_depth': [3, 4, 5],
 9
       'learning_rate': [0.05, 0.1, 0.2],
10
       'subsample': [0.8, 0.9, 1.0],
       'colsample_bytree': [0.8, 0.9, 1.0]
11
12 }
14 # Instantiate GridSearchCV
15 grid_search = GridSearchCV(estimator=xgb, param_grid=param_grid, cv=5, scoring='accuracy'
17 # Fit the grid search to the data
18 grid_search.fit(x_train, y_train)
19
20 # Get the best parameters and the best score
21 best_params = grid_search.best_params_
22 print("Best Parameters:", best_params)
     Best Parameters: {'colsample_bytree': 0.9, 'learning_rate': 0.05, 'max_depth': 3, 'n_est
 1 xgb1 = XGBClassifier(colsample_bytree=0.9,learning_rate=0.05,max_depth=3,n_estimators=200
 2 xgb1.fit(x_train,y_train)
 3 y_pred1 = xgb1.predict(x_test)
 4 y_pred1
     array([0, 0, 0, ..., 0, 0, 0])
 1 score = accuracy_score(y_test,y_pred1)
 2 score
     0.7095833333333333
 1 pip install catboost
     Collecting catboost
       Downloading catboost-1.2.5-cp310-cp310-manylinux2014_x86_64.whl (98.2 MB)
                                                --- 98.2/98.2 MB 2.3 MB/s eta 0:00:00
     Requirement already satisfied: graphviz in /usr/local/lib/python3.10/dist-packages (from
```

```
Requirement already satisfied: matplotlib in /usr/local/lib/python3.10/dist-packages (fr
Requirement already satisfied: numpy>=1.16.0 in /usr/local/lib/python3.10/dist-packages
Requirement already satisfied: pandas>=0.24 in /usr/local/lib/python3.10/dist-packages (
Requirement already satisfied: scipy in /usr/local/lib/python3.10/dist-packages (from ca
Requirement already satisfied: plotly in /usr/local/lib/python3.10/dist-packages (from c
Requirement already satisfied: six in /usr/local/lib/python3.10/dist-packages (from cath
Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.10/dist-
Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (
Requirement already satisfied: tzdata>=2022.1 in /usr/local/lib/python3.10/dist-packages
Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packag
Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (
Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packa
Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.10/dist-packa
Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-package
Requirement already satisfied: pillow>=6.2.0 in /usr/local/lib/python3.10/dist-packages
Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packag
Requirement already satisfied: tenacity>=6.2.0 in /usr/local/lib/python3.10/dist-package
Installing collected packages: catboost
Successfully installed catboost-1.2.5
```

Model Creation: Catbooster

2 cb = CatBoostClassifier()

19:

20:

21:

22:

23:

24:

25:

26:

1 from catboost import CatBoostClassifier

learn: 0.5901456

learn: 0.5878390

learn: 0.5855610

learn: 0.5835230

learn: 0.5817418

learn: 0.5798406

learn: 0.5782070

learn: 0.5766043

```
3 cb.fit(x_train,y_train)
4 y_pred=cb.predict(x_test)
5 y_pred
    Learning rate set to 0.034366
            learn: 0.6832799
                                     total: 51.7ms
                                                      remaining: 51.6s
    0:
    1:
            learn: 0.6743027
                                     total: 56.9ms
                                                      remaining: 28.4s
    2:
            learn: 0.6666223
                                     total: 60.6ms
                                                      remaining: 20.1s
    3:
            learn: 0.6588005
                                     total: 65.5ms
                                                      remaining: 16.3s
    4:
            learn: 0.6516208
                                     total: 69.5ms
                                                      remaining: 13.8s
    5:
            learn: 0.6453102
                                     total: 74.3ms
                                                      remaining: 12.3s
    6:
            learn: 0.6399327
                                     total: 78.1ms
                                                      remaining: 11.1s
                                     total: 81.6ms
    7:
            learn: 0.6346929
                                                      remaining: 10.1s
    8:
            learn: 0.6293743
                                     total: 86.8ms
                                                      remaining: 9.55s
    9:
            learn: 0.6239359
                                     total: 91.7ms
                                                      remaining: 9.08s
    10:
            learn: 0.6191680
                                     total: 97ms
                                                      remaining: 8.72s
            learn: 0.6148740
                                     total: 102ms
    11:
                                                      remaining: 8.41s
    12:
            learn: 0.6109272
                                     total: 107ms
                                                      remaining: 8.15s
    13:
            learn: 0.6068740
                                     total: 114ms
                                                      remaining: 8.05s
    14:
            learn: 0.6033009
                                     total: 119ms
                                                      remaining: 7.85s
    15:
            learn: 0.5999638
                                     total: 124ms
                                                      remaining: 7.63s
    16:
            learn: 0.5971658
                                     total: 129ms
                                                      remaining: 7.47s
    17:
            learn: 0.5945976
                                     total: 134ms
                                                      remaining: 7.33s
    18:
            learn: 0.5926530
                                     total: 139ms
                                                      remaining: 7.18s
```

31 of 35 07-07-2024, 03:22 pm

remaining: 7.07s

remaining: 6.97s

remaining: 6.88s

remaining: 6.79s

remaining: 6.73s

remaining: 6.67s

remaining: 6.56s

remaining: 6.51s

total: 144ms

total: 150ms

total: 155ms

total: 160ms

total: 165ms

total: 171ms

total: 175ms

total: 181ms

```
27:
            learn: 0.5752667
                                                      remaining: 6.46s
                                     total: 186ms
    28:
            learn: 0.5738937
                                     total: 191ms
                                                      remaining: 6.41s
    29:
            learn: 0.5724349
                                     total: 200ms
                                                      remaining: 6.48s
    30:
            learn: 0.5712017
                                     total: 206ms
                                                      remaining: 6.45s
    31:
            learn: 0.5700903
                                     total: 212ms
                                                      remaining: 6.4s
    32:
            learn: 0.5690052
                                     total: 217ms
                                                      remaining: 6.36s
    33:
            learn: 0.5680874
                                     total: 222ms
                                                      remaining: 6.31s
    34:
            learn: 0.5672090
                                     total: 228ms
                                                      remaining: 6.28s
    35:
            learn: 0.5662916
                                     total: 233ms
                                                      remaining: 6.23s
    36:
            learn: 0.5655308
                                     total: 238ms
                                                      remaining: 6.19s
            learn: 0.5646765
                                     total: 245ms
    37:
                                                      remaining: 6.19s
    38:
            learn: 0.5641019
                                     total: 248ms
                                                      remaining: 6.12s
                                     total: 252ms
    39:
            learn: 0.5635243
                                                      remaining: 6.05s
    40:
            learn: 0.5628528
                                     total: 258ms
                                                      remaining: 6.02s
    41:
            learn: 0.5622065
                                     total: 263ms
                                                      remaining: 6s
    42:
            learn: 0.5615185
                                     total: 268ms
                                                      remaining: 5.97s
    43:
            learn: 0.5610247
                                     total: 274ms
                                                      remaining: 5.95s
    44:
                                     total: 279ms
            learn: 0.5604456
                                                      remaining: 5.92s
    45:
            learn: 0.5599715
                                     total: 284ms
                                                      remaining: 5.89s
    46:
            learn: 0.5594971
                                     total: 290ms
                                                      remaining: 5.87s
    47:
            learn: 0.5590498
                                     total: 295ms
                                                      remaining: 5.84s
    48:
            learn: 0.5585199
                                     total: 300ms
                                                      remaining: 5.82s
    49:
            learn: 0.5579803
                                     total: 305ms
                                                      remaining: 5.8s
    50:
            learn: 0.5575636
                                                      remaining: 5.78s
                                     total: 310ms
    51:
            learn: 0.5571564
                                     total: 316ms
                                                      remaining: 5.76s
    52:
            learn: 0.5567077
                                     total: 321ms
                                                      remaining: 5.74s
    53:
            learn: 0.5563491
                                     total: 326ms
                                                      remaining: 5.72s
    54:
            learn: 0.5560238
                                     total: 331ms
                                                      remaining: 5.7s
    55:
            learn: 0.5557000
                                     total: 337ms
                                                      remaining: 5.68s
    56:
            learn: 0.5554010
                                     total: 342ms
                                                      remaining: 5.66s
1 ac=accuracy_score(y_test,y_pred)
2 ac
    0.710972222222222
1 input_feature
    ['sex', 'age', 'height', 'weight', 'hemoglobin', 'gamma GTP']
1 df1 = pd.DataFrame(x_test)
2 df1
```

	0	1	2	3	4	5
0	-1.062996	-0.189922	-0.244224	-0.264138	0.105143	-0.980150
1	0.940737	1.221025	-0.244224	-1.087465	-0.926047	-0.782980
2	-1.062996	0.868288	-2.400426	-1.499128	-1.570540	-0.733688
3	0.940737	-0.189922	1.372929	-0.675801	0.814086	0.202868
4	-1.062996	0.162815	-0.244224	-1.087465	-1.183844	-0.930857
7195	-1.062996	-1.600870	-0.783274	-0.675801	-0.539351	-0.832273

 7196
 0.940737
 -0.542659
 1.372929
 1.382516
 -0.539351
 0.104283

 7197
 -1.062996
 0.515551
 -1.861376
 -1.087465
 -0.281553
 -0.487226

 7198
 -1.062996
 -0.542659
 0.294827
 -0.675801
 -2.343933
 -1.029442

 7199
 -1.062996
 -0.542659
 -1.322325
 -1.499128
 -0.023756
 -0.782980

7200 rows × 6 columns

	0	
0	1.0	
1	0.0	
2	0.0	
3	1.0	
4	0.0	
7195	1.0	
7196	1.0	
7197	0.0	
7198	0.0	
7199	0.0	

7200 rows × 1 columns

```
1 df3 = pd.concat([df1,df2],axis=1)
2 df3.columns = [0,1,2,3,4,5,'out']
3 df3
```

	0	1	2	3	4	5	out
0	-1.062996	-0.189922	-0.244224	-0.264138	0.105143	-0.980150	1.0
1	0.940737	1.221025	-0.244224	-1.087465	-0.926047	-0.782980	0.0
2	-1.062996	0.868288	-2.400426	-1.499128	-1.570540	-0.733688	0.0
3	0.940737	-0.189922	1.372929	-0.675801	0.814086	0.202868	1.0
4	-1.062996	0.162815	-0.244224	-1.087465	-1.183844	-0.930857	0.0

-1.062996	-1.600870	-0.783274	-0.675801	-0.539351	-0.832273	1.0
0.940737	-0.542659	1.372929	1.382516	-0.539351	0.104283	1.0
-1.062996	0.515551	-1.861376	-1.087465	-0.281553	-0.487226	0.0
-1.062996	-0.542659	0.294827	-0.675801	-2.343933	-1.029442	0.0
-1.062996	-0.542659	-1.322325	-1.499128	-0.023756	-0.782980	0.0
	0.940737 -1.062996 -1.062996	0.940737 -0.542659 -1.062996 0.515551 -1.062996 -0.542659	0.940737 -0.542659 1.372929 -1.062996 0.515551 -1.861376 -1.062996 -0.542659 0.294827	0.940737 -0.542659 1.372929 1.382516 -1.062996 0.515551 -1.861376 -1.087465 -1.062996 -0.542659 0.294827 -0.675801	0.940737 -0.542659 1.372929 1.382516 -0.539351 -1.062996 0.515551 -1.861376 -1.087465 -0.281553 -1.062996 -0.542659 0.294827 -0.675801 -2.343933	-1.062996-1.600870-0.783274-0.675801-0.539351-0.8322730.940737-0.5426591.3729291.382516-0.5393510.104283-1.0629960.515551-1.861376-1.087465-0.281553-0.487226-1.062996-0.5426590.294827-0.675801-2.343933-1.029442-1.062996-0.542659-1.322325-1.499128-0.023756-0.782980

7200 rows × 7 columns

1 drinker_data = df3[df3.out == 1]

2 drinker_data

	0	1	2	3	4	5	out
0	-1.062996	-0.189922	-0.244224	-0.264138	0.105143	-0.980150	1.0
3	0.940737	-0.189922	1.372929	-0.675801	0.814086	0.202868	1.0
6	0.940737	1.221025	0.294827	0.147526	0.105143	-0.339349	1.0
7	0.940737	-0.895396	1.372929	-0.264138	0.620738	0.892962	1.0
9	0.940737	-1.953606	0.833878	0.970853	-1.312743	-0.437933	1.0
7191	0.940737	0.868288	0.294827	0.147526	0.234042	2.223856	1.0
7192	0.940737	-0.542659	1.372929	1.382516	1.651928	-0.043594	1.0
7193	-1.062996	0.868288	-1.322325	-0.675801	-0.926047	0.597207	1.0
7195	-1.062996	-1.600870	-0.783274	-0.675801	-0.539351	-0.832273	1.0
7196	0.940737	-0.542659	1.372929	1.382516	-0.539351	0.104283	1.0

3592 rows × 7 columns

1 non_drinker_data = df3[df3.out == 0]

2 non_drinker_data

	0	1	2	3	4	5	out
1	0.940737	1.221025	-0.244224	-1.087465	-0.926047	-0.782980	0.0
2	-1.062996	0.868288	-2.400426	-1.499128	-1.570540	-0.733688	0.0
4	-1.062996	0.162815	-0.244224	-1.087465	-1.183844	-0.930857	0.0
5	0.940737	0.162815	0.833878	0.970853	1.136333	0.202868	0.0
8	-1.062996	-0.189922	-0.783274	-1.499128	1.071884	-0.782980	0.0

 7188
 0.940737
 0.515551
 -0.783274
 -0.675801
 0.427390
 0.054991
 0.0

 7194
 -1.062996
 -0.895396
 -0.783274
 -1.087465
 -1.119395
 -0.782980
 0.0

 7197
 -1.062996
 0.515551
 -1.861376
 -1.087465
 -0.281553
 -0.487226
 0.0

 7198
 -1.062996
 -0.542659
 0.294827
 -0.675801
 -2.343933
 -1.029442
 0.0

 7199
 -1.062996
 -0.542659
 -1.322325
 -1.499128
 -0.023756
 -0.782980
 0.0

 3608 rows × 7 columns

1 cb.predict([[0.940737,-0.542659,1.372929,1.382516,-0.539351,0.104283]])
array([1.])