COCO Project

Vertical Takeoff, Vertical Landing Rocket

Philippe Brigger – 18-927-822 ETH Zürich, July 2023

Current State

- Simulation settings
 - No wind disturbances
 - Landing barge does not move
 - Initial position above landing barge
- PID controller
 - Stabilizes and lands rocket
 - No state or input constraints taken into account
- Computational effort per calculation step
 - $\emptyset = 0.023 \, s$
 - $\sigma = 0.006 \, s$

Failure Modes

- PID controller failure modes:
 - Initial position not above landing barge (I, II, III)
 - Wind disturbances (I)
 - Initially tilted and non-zero initial velocities (II)
 - Moving landing barge (III)
- Failure modes are likely
 - Rocket usually not straight above landing barge
 - Wind disturbances on open-sea plausible, rocket thrust creates air turbulences when rocket is near ground
 - Water flow can make landing barge move

Conclusion: A more sophisticated controller is necessary!

My Recommendation

- Use knowledge of:
 - Linearized rocket model (LTI system)
 - State constraints
 - Input constraints
- Model Predictive Control (MPC)
 - Minimize cost, respect constraints
 - Solve N-step optimization problem (Receding horizon control)
- Advantages of MPC over PID
 - Satisfies state and input constraints
 - Adapts to disturbances and setpoint changes
 - Can optimize fuel consumption via cost function

MPC Design

$$\min_{U,X} \left\{ (x_N - x_{des})^T Q_N (x_N - x_{des}) + \sum_{i=0}^{N-1} (x_i - x_{des})^T Q(x_i - x_{des}) + u_i^T R u_i \right\}$$

$$subj. \ to \ \ x_{i+1} = A x_i + B u_i$$

$$x_0 = obs, \quad x_i \in \mathcal{X}, \quad u_i \in \mathcal{U}$$

N:	Prediction horizon	Q_N :	Final state cost matrix
x_i :	State (of X) in i^{th} step	Q:	State stage cost matrix
u_i :	Input (of U) in i^{th} step	R:	Input stage cost matrix
x_{des} :	Desired landing position	obs:	Simulation state
<i>A</i> :	Linearized system matrix	\mathcal{X} :	State constraints
B:	Linearized input matrix	u:	Input constraints

Demonstration

- Simulation settings
 - Wind disturbances (from failure mode I)
 - Tilt, non-zero velocities (from failure mode II)
 - Moving landing barge (from failure mode III)
 - Combination of all three failure modes
- MPC controller
 - Stabilizes and lands rocket (adapts to disturbances)
 - Satisfies state and input constraints
 - Uses less fuel
- Computational effort per calculation step
 - $\emptyset = 0.240 \, s$
 - $\sigma = 0.133 \, s$

Deployment Plan - Requirements

- On-board state estimation
 - IMU, GPS, barometer, magnetometer and camera sensors
 - Sensor fusion with Extended Kalman Filter approach
- Communication between rocket and ground station
 - Transmitter, receiver and antenna for radio frequency telemetry system
 - Enables data collection for offline model improvement
 - Mission control from ground station (E.g. landing position)
- On-board real-time computing
 - Many sensors for redundancy (robustness, safety)
 - Explicit MPC for real-time implementation (look-up tables)
 - High-performance on-board computer (run control loop at a high frequency)

Bonus – Data-Enabled Predictive Control (DeePC)

- No model information:
 - Apply random inputs to system u_{data}
 - Collect corresponding states x_{data}
 - Setup Hankel matrices H_L with collected data
- Data-Enabled Predictive Control (DeePC):
 - Under assumption of controllable, LTI system
 Any trajectory is a linear combination of the collected data
 - Satisfies state and input constraints
 - Solve N-step optimization problem (Receding horizon control)
- Computational effort per calculation step:
 - $\emptyset = 17.904 \, s$, $\sigma = 5.367 \, s$

DeePC Design

$$\min_{U, X, g} \left\{ \sum_{i=0}^{N-1} (x_i - x_{des})^T Q(x_i - x_{des}) + u_i^T R u_i \right\}$$

$$subj.to \quad \begin{bmatrix} H_L(u_{data}) \\ H_L(x_{data}) \end{bmatrix} g = \begin{bmatrix} u_{past} \\ U \\ x_{past} \\ X \end{bmatrix}, \quad x_i \in \mathcal{X}, \quad u_i \in \mathcal{U}$$

Prediction horizon $H_L(u_{data})$: Collected input data N: State (of X) in i^{th} step $H_L(x_{data})$: Collected state data x_i : Input (of U) in i^{th} step Input of last step u_{past} : u_i : Desired landing position x_{des} : State of last step x_{past} : Q: State stage cost matrix \mathcal{X} : State constraints Input stage cost matrix II:Input constraints