1. Define the *Pauli* group \mathcal{P} on n qubits as the tensor product of Pauli matrices and identities, together with a power of i. For example, $i\sigma_x \otimes I$ is in the Pauli group.

Define the Clifford group C on n qubits as the group made up of all unitary matrices U that satisfy

$$UgU^{\dagger} \in \mathcal{P}$$
 for all matrices $g \in \mathcal{P}$

- (a) Show that the Clifford group is a group; that is,
 - i. if $A \in \mathcal{C}$ and $B \in \mathcal{C}$, then $AB \in \mathcal{C}$, and

Solution: For all $g \in \mathcal{P}$, let $g' = BgB^{\dagger}$. then $g \in \mathcal{P}$, which means $Ag'A^{\dagger} \in \mathcal{P}$. Thus $AB \in \mathcal{C}$.

ii. if $A \in \mathcal{C}$, then $A^{\dagger} \in \mathcal{C}$.

Solution: Note that since A is a unitary matrix, the function $f: \mathcal{P} \to \mathcal{P}$, $f(g) = AgA^{\dagger}$ is a bijection. In other words, every $g \in \mathcal{P}$ can be written as $Ag'A^{\dagger}$ for a unique g'. Therefore we have for all g, $A^{\dagger}gA = A^{\dagger}f^{-1}(g)A = f^{-1}(g) \in \mathcal{P}$.

(b) Show that the Hadamard gate H is in C.

Solution: Note that we only need to check for a set of generators of the Pauli group \mathcal{P} , because for any unitary U, if Ug_1U^{\dagger} , $Ug_2U^{\dagger} \in \mathcal{P}$, then $Ug_1g_2U^{\dagger} = Ug_1U^{\dagger}Ug_2U^{\dagger} \in \mathcal{P}$.

It is then easy to check that $HIH^{\dagger}=I, HZH^{\dagger}=X, HXH^{\dagger}=Z, HYH^{\dagger}=-Y$. Technically, we don't need to check Y here since Y=-iZX.

(c) Show that the CNOT gate is in C.

Solution: FOllowing part (a), we only need to check the cases

$$\operatorname{CNOT}(X \otimes I)\operatorname{CNOT}^{\dagger} = X \otimes X$$
 $\operatorname{CNOT}(I \otimes X)\operatorname{CNOT}^{\dagger} = I \otimes X$
 $\operatorname{CNOT}(Z \otimes I)\operatorname{CNOT}^{\dagger} = Z \otimes I$
 $\operatorname{CNOT}(I \otimes Z)\operatorname{CNOT}^{\dagger} = Z \otimes Z.$

(d) Show that the T gate $\left(\begin{array}{cc} 1 & 0 \\ 0 & e^{i\pi/4} \end{array} \right)$ is not in $\mathcal{C}.$

Solution: Consider

$$TXT^{\dagger} = \begin{bmatrix} 0 & e^{-i\pi/4} \\ e^{i\pi/4} & 0 \end{bmatrix} \notin \mathcal{P}.$$

Therefore $T \notin \mathcal{C}$.

Hint: For 1b and 1c, you don't need to check the condition for all elements of the Pauli group, just for a set of elements that generate it (although if you use this fact, explain why it's true).

2. If you don't erase the workbits in a quantum computer, it can cause your algorithm to get incorrect results. Here is an example.

Consider Simon's algorithm. Suppose you've programmed up Simon's algorithm on a quantum computer, and are trying to find c where $f(x) = f(x \oplus c)$, but you forgot to erase the workbits when computing the quantum oracle. As a result, for any x and y with $x \oplus c = y$, the workspace when you compute f(x) and

f(y) contain different values of bits. What happens when you try to run Simon's algorithm? Can you find c?

Solution: If you do not uncompute f(x), the state you have before applying the second Hadamard transform in Simon's algorithm is

$$\frac{1}{2^{n/2}}\sum_{x=0}^{2^n-1}\left|x\right\rangle\left|f(x)\right\rangle\left|\mathrm{junk}_x\right\rangle\left|f(x)\right\rangle.$$

Now if we apply the Hadamard to the first qubit, the state is

$$\frac{1}{2^n}\sum_{x=0}^{2^n-1}\left(\sum_{y=0}^{2^n-1}(-1)^{x\cdot z}\left|z\right\rangle\right)\left|f(x)\right\rangle\left|\mathrm{junk}_x\right\rangle\left|f(x)\right\rangle = \frac{1}{2^n}\sum_{x,z=0}^{2^n-1}(-1)^{x\cdot z}\left|z\right\rangle\left|f(x)\right\rangle\left|\mathrm{junk}_x\right\rangle\left|f(x)\right\rangle.$$

Since $|\mathrm{junk}_x\rangle \neq |\mathrm{junk}_y\rangle$ for $y=x\oplus c$, if we now measure the first two registers in the standard basis, for any x and y, the probability that we get $|y\rangle\,|f(x)\rangle$ is $\frac{1}{2^{2n}}+\frac{1}{2^{2n}}=\frac{1}{2^{2n-1}}$, and the measurement result gives us no information on c. Therefore Simon's algorithm will fail.

3. (a) Suppose that you have a function f mapping n-bit strings to n-bit strings which is not necessarily 2-to-1, but where $f(x) = f(x \oplus c)$. Does the quantum part of Simon's algorithm still always return a binary string with $c \cdot k = 0 \pmod{2}$?

Solution:

The analysis of Simon's algorithm proceeds exactly as it does in the two-to-one case until we compute the probability of seeing a state $|k\rangle |\ell\rangle$.

Now, the probability of seeing $|k\rangle |\ell\rangle$ is

$$\frac{1}{2^n} \sum_{(j,j\oplus c):f(j)=\ell} (-1)^{j\cdot k} (1+(-1)^{c\cdot k}).$$

If $c \cdot k = 1 \pmod{2}$, then the above sum is still 0. Therefore we still only see k with $c \cdot k = 0 \pmod{2}$.

(b) Suppose that f(x) = 0 except for two values, d and $d \oplus c$, which have f(x) = 1. Approximately how many times do you need to run the algorithm in part (a) before you find a non-zero f(x)? How many function evaluations will it take you to find c? How does this compare to the time it would take on a classical computer?

Solution:

i. Approximately how many times do you need to run the algorithm in part (a) before you find a non-zero f(x)?

The probability you see a specific $|k\rangle |1\rangle$ with $k \cdot c = 0$ is

$$\left| \frac{1}{2^n} \left((-1)^{d \cdot k} + (-1)^{(d \oplus c) \cdot k} \right) \right|^2 = \frac{4}{2^{2n}} = \frac{1}{2^{2n-2}}.$$

There are 2^{n-1} possible k's with $k \cdot c = 0$. So the probability of seeing $|1\rangle$ in the second register is $\frac{1}{2^{n-1}}$, and the expected number of times you will have to run the algorithm for this is 2^{n-1} .

ii. How many function evaluations will it take you to find c?

The challenge here is that the probability of measuring $|k\rangle |0\rangle$ where k=0 is quite high. The probability is

$$\left| \frac{1}{2^n} \sum_{j: f(j)=0} (-1)^{j \cdot 0} \right|^2 = \left| \frac{2^n - 2}{2^n} \right|^2 = \left(1 - \frac{1}{2^{n-1}}\right)^2.$$

However, measuring k=0 is not useful. We need to get n-1 linearly independent values of k before we find c. If the second register is $|1\rangle$, for any k such that $c \cdot k = 0$, the probability that the first register is $|k\rangle$ is $1/2^{2n-2}$ as in part (i).

If the second register is $|0\rangle$, for any k, the probability of seeing $|k\rangle |0\rangle$ is

$$\left| \frac{1}{2^n} \sum_{j: f(j) = 0} (-1)^{j \cdot k} \right|^2.$$

There are $2^n - 2$ possible j's with f(j) = 0, and 2^{n-1} will give you $(-1)^{j \cdot k} = 1$ while $2^{n-1} - 2$ will give you $(-1)^{j \cdot k} = -1$ (or maybe the other way around). This means that the probability of seeing $|k\rangle |0\rangle$ is

$$\frac{4}{2^{2n}} = \frac{1}{2^{2n-2}}.$$

Since there are $2^{n-1}-1$ non-zero k such that $c\cdot k=0$, the total probability of getting a non-zero, desirable k is roughly $\frac{1}{2^{n-2}}$, and the expected time before we see a non-zero k is 2^{n-2} . However, we need n-1 linearly independent non-zero k to find c, so Simon's algorithm takes approximately $n2^{n-2}$ time in this case. (Even if we get an output with $|1\rangle$ in the second register, the first register only gives us a vector perpendicular to c.)

- iii. How does this compare to the time it would take on a classical computer? On a classical computer, you can search all possibilities for f(x) = 1 in time 2^n , which is less than what Simon's algorithm takes. Randomized algorithm will not help here, because we need to find the two values where f(x) = 1 to determine c.
- 4. Partial transpose Suppose you have two qubits. They have a 4×4 density matrix. We will write this matrix as a 2×2 matrix of 2×2 submatrices F, G, H, and J. Define the partial transpose of such a matrix

$$M = \left(\begin{array}{cc} F & G \\ H & J \end{array} \right) \qquad \text{as} \qquad pt(M) = \left(\begin{array}{cc} F & H \\ G & J \end{array} \right).$$

Note that if we also took the transpose of F, G, H, and J, we would get the transpose of M.

(a) Show that if M is separable, i.e. if

$$M = \sum_{i} \lambda_{i} |v_{i}\rangle\langle v_{i}| \otimes |w_{i}\rangle\langle w_{i}|,$$

where the λ_i are positive and v_i and w_i are unit vectors, then pt(M) is non-negative. Density matrices which are not separable are said to be entangled.

Hint: a matrix M is non-negative if and only if $\langle x | M | x \rangle \geq 0$ for all $|x\rangle$.

Solution: Here let's assume that $|v_i\rangle = [v_{i,0}, v_{i,1}]^T, |w_i\rangle = [w_{i,0}, w_{i,1}]^T$. Then we have

$$pt(M) = \sum_{i} \lambda_{i} pt \begin{bmatrix} v_{i,0}v_{i,0}^{*} & |w_{i}\rangle\langle w_{i}| & v_{i,0}v_{i,1}^{*} & |w_{i}\rangle\langle w_{i}| \\ v_{i,1}v_{i,0}^{*} & |w_{i}\rangle\langle w_{i}| & v_{i,1}v_{i,1}^{*} & |w_{i}\rangle\langle w_{i}| \end{bmatrix}$$

$$= \sum_{i} \lambda_{i} \begin{bmatrix} v_{i,0}v_{i,0}^{*} & |w_{i}\rangle\langle w_{i}| & v_{i,1}v_{i,0}^{*} & |w_{i}\rangle\langle w_{i}| \\ v_{i,0}v_{i,1}^{*} & |w_{i}\rangle\langle w_{i}| & v_{i,1}v_{i,1}^{*} & |w_{i}\rangle\langle w_{i}| \end{bmatrix}$$

$$= \sum_{i} \lambda_{i} |v_{i}^{*}\rangle\langle v_{i}^{*}| \otimes |w_{i}\rangle\langle w_{i}|.$$

Where $|v_i^*\rangle = [v_{i,0}^*, v_{i,1}^*]^T$. Now given any state $|x\rangle$, we have

$$\langle x| pt(M) |x\rangle = \sum_{i} \lambda_{i} \langle x| |v_{i}^{*}w_{i}\rangle \langle v_{i}^{*}w_{i}| |x\rangle$$
$$= \sum_{i} \lambda_{i} |\langle x|v_{i}^{*}w_{i}\rangle|^{2} \geq 0,$$

since $\lambda_i \geq 0$ for all i.

(b) Use part (a) to show that the state $\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$ is not separable.

Solution: Here we note that the density matrix for the EPR pair is

$$\rho = \frac{1}{2} \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix}.$$

Therefore

$$pt(\rho) = \frac{1}{2} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

This matrix has eigenvalue -1 with eigenvector $\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)$, which means the EPR pair is not separable.

5. Suppose you are given a three-dimensional quantum system (a *qutrit*) with basis $|0\rangle$, $|1\rangle$, $|2\rangle$, in some unknown state $|\psi\rangle$. Can you teleport it?

One thing you can do is embed it in a set of qubits of higher dimension. So, for example, you can embed one qutrit in two qubits (since 3 < 4), and five qutrits in eight qubits (since $3^5 < 2^8$), and then teleport these qubits. But you can also teleport qutrits directly.

Let $\omega = e^{2\pi i/3}$ be a cube root of 1, and define the 3×3 matrices

$$P = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega^2 \end{bmatrix} \qquad \text{and} \qquad T = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}.$$

Then the analog of the EPR pair is the state $\frac{1}{\sqrt{3}}(|00\rangle+|11\rangle+|22\rangle)$, and the analog of the Pauli matrices are the nine matrices P^aT^b . where $0 \le a,b < 3$.

Figure out how a qutrit teleportation algorithm works and describe it.

Solution:

We follow the standard teleportation protocol. Suppose A has a qutrir in state $a \, |0\rangle + b \, |1\rangle + c \, |2\rangle$, and A has one qubit from the state $|\Phi\rangle = \frac{1}{\sqrt{3}}(|00\rangle + |11\rangle + |22\rangle)$. Suppose B has the other entangled qubit. The overall three qutrit state is

$$\frac{1}{\sqrt{3}}\left[a\left|000\right\rangle+a\left|011\right\rangle+a\left|022\right\rangle+b\left|100\right\rangle+b\left|111\right\rangle+b\left|122\right\rangle+c\left|200\right\rangle+c\left|211\right\rangle+c\left|222\right\rangle\right]$$

A measures her two qubits in the following basis (on the left, here P, T are both applied to A's entangled qutrit), and given her measurement results, B applies the correction (on the right).

Resulting state of measurement	State held by B after measurement by A	Correction by B
$P^0T^0 \phi\rangle = \phi\rangle$	$a 0\rangle + b 1\rangle + c 2\rangle$	P^0T^0
$P^{0}T^{1} \phi\rangle = \frac{1}{\sqrt{3}}(02\rangle + 10\rangle + 21\rangle)$	$a\left 2\right\rangle + b\left 0\right\rangle + c\left 1\right\rangle$	P^0T^2
$P^{0}T^{2} \phi\rangle = \frac{\sqrt{3}}{\sqrt{3}}(01\rangle + 12\rangle + 20\rangle)$	$a\left 1\right\rangle + b\left 2\right\rangle + c\left 0\right\rangle$	P^0T^1
$P^{1}T^{0} \phi\rangle = \frac{1}{\sqrt{3}}(00\rangle + \omega 11\rangle + \omega^{2} 22\rangle)$	$a 0\rangle + b\omega 1\rangle + c\omega^2 2\rangle$	P^2T^0
$P^{1}T^{1} \phi\rangle = \frac{\sqrt{3}}{\sqrt{3}}(\omega^{2} 02\rangle + 10\rangle + \omega 21\rangle)$	$a\omega^2 2\rangle + b 0\rangle + c\omega 1\rangle$	P^2T^2
$P^{1}T^{2} \phi\rangle = \frac{1}{\sqrt{3}}(\omega 01\rangle + \omega^{2} 12\rangle + 20\rangle)$	$a\omega \left 1\right\rangle + b\omega^{2}\left 2\right\rangle + c\left 0\right\rangle$	P^2T^1
$P^2T^0 \phi\rangle = \frac{\sqrt{10}}{\sqrt{3}}(00\rangle + \omega^2 11\rangle + \omega 22\rangle)$	$a 0\rangle + b\omega^2 1\rangle + c\omega 2\rangle$	P^1T^0
$P^2T^1 \phi\rangle = \frac{1}{\sqrt{3}} (\omega 02\rangle + 10\rangle + \omega^2 21\rangle)$	$a\omega 2\rangle + b 0\rangle + c\omega^2 1\rangle$	P^1T^2
$P^{2}T^{2} \phi\rangle = \frac{\sqrt{3}}{\sqrt{3}} (\omega^{2} 01\rangle + \omega 12\rangle + 20\rangle)$	$a\omega^2 1\rangle + b\omega 2\rangle + c 0\rangle$	P^1T^1

Note that the states on the left form a measurement basis, i.e they are orthonormal because $1 + \omega + \omega^2 = 0$. This can be most easily seen by the fact that multiplying this sum by ω does not change it. We see that this protocol achieves teleportation of qutrits.