

- BLINDNESS DETECTION
- PROBLEM STATEMENT
- DATA PREPROCESSING
- MACHINE LEARNING TECHNIQUES:

 PCA
 LOGISTIC REGRESSION
 RANDOM FOREST
 ADA BOOST
- ARTIFICIAL NEURAL NETWORKS:
 CONVOLUTIONAL NEURAL NETWORKS
 TRANSFER LEARNING
- FINDINGS & FUTURE WORK

STAGES OF DIABETIC RETINOPATHY

Diabetic retinopathy is the most common cause of vision impairment and blindness. It is caused by damage to the blood vessels of the light-sensitive tissue at the back of the eye (retina).

From 2010 to 2050, the number of diabetic retinopathy is expected to nearly double, from 7.7m to 14.6m in the US.

PROBLEM STATEMENT

The purpose of this project is to correctly classify the five stages of the disease, given the images of different patients.

STAGES OF PROJECT

1. DATA COLLECTION

Total of 3662 images

2. EXPLORATORY ANALYSIS

1805 images are not classified in the dataset (No DR)

 Data is pretty balance when we look at DR and No DR

STAGES OF PROJECT

4. T-SNE & PCA

T-SNE to see the distribution of the data

3. FEATURE ENGINEERING

Reduce components from 750 out 2563 in 3D

- No DR
- Mild
- Moderate
- Severe
- Proliferative DR

MACHINE LEARNING

1. LOGISTIC REGRESSION CLASSIFICATION

- 2. RANDOM FOREST CLASSIFICATION
- 3. ADA BOOST CLASSIFIER RANDOM SEARCH

ASSUMPTIONS:

Data split: 70/30

Flatten data

Standardize - Reduce components to 750

Smote the data Counter({0: 1264, 4: 1264,

1: 1264, 2: 1264, 3: 1264})

Fit three machine learning models
Tune models

_			nfusion ma Predicted labe			_	_			nfusion mai			R
0 -	1160	39	6	21	38	- 1000	0 -	518	11	0	6	6	- 500
	130	887	50	36	161	- 800		56	45	8	2	6	- 400
Actual label 2	225	312	414	60	253	- 600	Actual label	162	35	73	10		TEST
M -	86	324	208	435	211	- 400	∢ m -	31	11	8	5	2	- 200
4 -	104	382	159	66	553	- 200	4 -	36	11	21	6	10	- 100
	ó	i	2		TRAI	N		ó	i	2	3	4	- 0

	TRAIN	TEST
Logistic Regression Classification	0.94	0.50
Random Forest Classification	0.55	0.59
Ada Boost Classifier - Random Search	0.66	0.52

The model has more difficulties in classifying Moderate and No DR classes

CONVOLUTIONAL **NEURAL**

CONVOLUTION | DENSE | MAXPOOLING | PADDING | DROPOUT LAYERS

Total number of layers: 15

Softmax

CONVOLUTIONAL NEURAL NETWORKS

1. BUILD BASIC CNN

Layer (type)	Output	Shape	Param #
conv2d_1 (Conv2D)	(None,	225, 225, 32)	2432
max_pooling2d_1 (MaxPooling2	(None,	112, 112, 32)	0
conv2d_2 (Conv2D)	(None,	107, 107, 64)	73792
dropout_1 (Dropout)	(None,	107, 107, 64)	0
conv2d_3 (Conv2D)	(None,	107, 107, 64)	36928
max_pooling2d_2 (MaxPooling2	(None,	53, 53, 64)	0
dense_1 (Dense)	(None,	53, 53, 128)	8320
conv2d_4 (Conv2D)	(None,	53, 53, 96)	196704
max_pooling2d_3 (MaxPooling2	(None,	26, 26, 96)	0
conv2d_5 (Conv2D)	(None,	26, 26, 96)	83040
max_pooling2d_4 (MaxPooling2	(None,	13, 13, 96)	0
dense_2 (Dense)	(None,	13, 13, 512)	49664
flatten_1 (Flatten)	(None,	86528)	0
dense_3 (Dense)	(None,	256)	22151424
dense_4 (Dense)	(None,	5)	1285
Total params: 22,603,589 Trainable params: 22,603,589 Non-trainable params: 0	=====		

Accuracy Train: 72.3% | Accuracy Test: 73.7%

CONVOLUTIONAL NEURAL NETWORKS

2. BUILD CNN WITH DATA AUGMENTATION

FULLY FULLY CONNECTED CONVOLUTION | DENSE | MAXPOOLING | PADDING | DROPOUT LAYERS Total number of layers: 15 **ASSUMPTIONS:** Data Augmentation: horizontal flip, width shift (0.2), zoom (0.1) Accuracy Train: 64.8% Data validation split: 0.2 Callbacks: early stopping Accuracy Test: 69.8% Batch size: 50 | Epochs: 15

CONVOLUTIONAL NEURAL NETWORKS

TRANSFER LEARNING

RESNET50

- CNN trained with > 1m images
- 50 layers
- Consist of 5 stages each with convolution and identity block

EFFICIENTNETBO

- Less parameters than others
- Inverted bottleneck MBConv
- Fewer channels & depth separable convolution

TRANSFER LEARNING

1. RESNET50

2. STEPS & TUNING

- Custom network
- Freeze the model
- Train the layers added
- Unfreeze layers in base network
- Joined train layers and part added

TRANSFER LEARNING

1. EFFICIENTNETBO

global_average_pooling2d_2 (Glo	(None,	2048)	0
dropout_4 (Dropout)	(None,	2048)	0
dense_2 (Dense)	(None,	1024)	2098176
dropout_5 (Dropout)	(None,	1024)	0
final_output (Dense)	(None,	5)	N Oss

2. STEPS & TUNING

- Custom network
- Freeze the model
- Train the layers added
- Unfreeze layers in base network
- Joined train layers and part added

4 - Proliferative DR

FINDINGS

- We used Machine Learning algorithms to achieve 50% accuracy
- We used Convolution Neural Networks to achieve 73% in accuracy
- We used Transfer Learning achieving 84% accuracy, being the best score overall

FUTURE WORK

- Use other data sets available for training
- Use other parameters to tune models such as dropout
- Use other activation and loss functions

Enjoy the break

Daniela Matinho

- CNN models
- Presentation

Hanna Kerr

- Machine Learning models
- Transfer Learning model

- Yuling Gu
- Exploratory analysis
- Transfer Learning model

