Obliczenia Naukowe - Lista 2

Szymon Brzeziński

2 kwietnia 2022

1 Zadanie 1

1.1 Opis problemu

Napisanie funkcji rozwiązującą równanie F(x) = 0 metodą bisekcji.

1.2 Rozwiązanie

Algorytm znajdujuję pierwiastki funkcji jednowymiarowych, to znaczy znajduje takiego $x \in [a, b]$, że F(x) = 0.

Podstawą algorytmu jest twierzenie Darboux: Jeśli F jest funkcją ciągłą w przedziale [a,b] oraz jeśli F(a)*F(b)<0, to istnieje takie $c\in [a,b]$ dla którego F(c)=0.

Ogólną ideą algorytmu jest zmiejszanie przedziału $\left[a,b\right]$ do momentu znalezienia rozwiązania.

Przedział [a,b] jest przedziałem początkowym, kolejnymi przedziałami są [c,b],[c,d] środkiem przedziału [c,d] jest punkt e, natomiast F(e)=0

Danymi wejściowymi do naszej funkcji są:

- \bullet F zadana funkcja
- \bullet a, b końce przedziału początkowego
- $\bullet~\delta,\epsilon$ dokładność obliczeń

Pierwszym krokiem jest sprawdzenie czy F(a) i F(b) mają różne znaki, muszą być one różne, ponieważ warunkiem znaleznienia rozwiązania z twierdzenia jest F(a)*F(b)<0.

Jeśli znaki są róźne możemy przejść do kolejnych kroków:

- 1. Ustalamy zmienną e równe b-a
- 2. Tworzymy pętlę z której wyjściem, będzie znalezielnie rozwiązania, w każdej iteracji:

- \bullet Dzielimy wartość zmiennej e na pół,
- Ustalamy zmienna c = a + e
- Jeśli $|e| < \delta$ zwracamy wyniki
- Jeśli $|F(c)| < \epsilon$ zwracamy wyniki
- Jeśli znaki przy F(c) i F(a) są różne za b podstawiamy c
- Jeśli znaki przy F(c) i F(a) są takie same: za a podstawiamy c

1.3 Wnioski

Prosta do implementacji metoda znajdowania pierwiastków funkcji.

2 Zadanie 2

2.1 Opis problemu

Napisanie funkcji rozwiązującą równanie F(x) = 0 metodą Newtona.

2.2 Rozwiązanie

Metoda Newtona
(metoda stycznych), jest metodą znajduącą pierwiastek funkcji jednowymia
rowych F, poprzez wyliczenie punktu przecięcia stycznych do F z osią
 OX, a następnie wyliczanie kolejnych punktów przeciecią stycznych do F z poprzednim wyliczonym punktem, aż do znalezienia pierwiastka.

Warunki użycia:

- $\bullet \ F(a)$ i F(b)mają różne znaki, gdzie a,bsą końcami badanego przedziału
- F'(x) oraz F''(x) są ciągłe i nie zmieniają znaku w przedziale [a,b]
- Istnieje tylko jedno $c \in [a, b]$ takie, że F(c) = 0

Prosta wizualizacja przykładu użycia algorytmu:

Algorytm, gdzie $x_0 \in [a, b]$ jest punktem początkowym:

- 1. Znalezienie stycznej do $x_0 \in [a, b]$
- 2. Wybranie x_1 jako punktu przecięcia się stycznej z osią OX
- 3. Powtórzenie algorymtu dla x_1 , do momentu znalezienia $x_n \in [a,b]$ takiego, że $F(x_n)=0$

Liczenie punktu przecięcia x_1 , stycznej do funkcji F w punkcie x_0 z osią OX:

$$x_1 = x_0 - \frac{F(x_0)}{F'(x_0)} \tag{1}$$

2.3 Wnioski

Minusem tej metody jest konieczność znania pochodnej funkcji

3 Zadanie3

3.1 Opis problemu

Napisanie funkcji rozwiązującą równanie F(x) = 0 metodą siecznych.

3.2 Rozwiązanie

Metoda siecznych, jest metodą znajduącą pierwiastek funkcji jednowymiarowych F, poprzez wyliczenie siecznych funkcji F z osią OX, by wykorzystując odciętą tych punktów wyznaczyć kolejne sieczne, aż do znalezienia rozwiązania.

Warunki użycia:

- $F \in C^2[a,b]$
- $F'(r) \neq 0$ (r jest pierwiastkiem jednokrotnym)

Algorytm, gdzie x_n i $x_{n-1} \in [a,b]$ to wybrane wartości początkowe

- 1. Aproksymujemy $F'(x_n) \approx \frac{F(x_n) F(x_{n-1})}{x_n x_{x-1}}$
- 2. Liczymy $x_{x+1} = x_n F(x_n) \frac{x_n x_{n-1}}{F(x_n) F(x_{n-1})}$
- 3. Powtarzamy poprzednie poprzednie kroki dla nowych x_n i x_{n-1} , do momentu: $|x_{n-1}-x_n| \le \delta$ lub $|F(x_{n+1}| \le \epsilon,$ gdzie δ, ϵ dokładność obliczeń

4 Zadanie 4

4.1 Opis problemu

Wyznaczenie pierwastka równiania:

$$\sin(x) - (\frac{1}{2}x)^2 = 0 (2)$$

Przy użyciu metod: bisekcji, Newtona oraz siecznych

4.2 Wyniki

	Przybliżenie pierwiastka r	wartość f(r)	liczba wykonanych iteracji
Metoda bisekcji	1.9337539672851562	-2.7027680138402843e-7	16
Metoda Newtonaa	1.933753779789742	-2.2423316314856834e-8	4
Metoda siecznych	1.933753644474301	1.564525129449379e-7	4

4.3 Wnioski

Każdy algorytm zwrócił poprawne, i bardzo podobne do siebie przybliżenie pierwiastka r.

Ilość wykonanych iteracji dla metod Newtona i siecznych jest równa, natomiast dla metody bisekcji ich ilość jest 4-krotnie większa a obliczone pierwiastki są bliższe temu rzeczywistemu. Jednak w metodzie bisekcji piewiastek został obliczonyczony z najwiekszą dokładnością w stosunku do zadanego przybliżenia. Uzyskane wyniki zależą od współczynnika zieżności α , równego odpowiednio 1, $\frac{1+\sqrt{5}}{2}$, 2 dla metod bisekcji, Newtona, siecznych.

5 Zadanie 5

5.1 Opis problemu

Znalezienie wartości zmiennej x, dla której przecinają się wykresy funkcji: y=3x i $y=e^x$

5.2 Rozwiązanie

W celu znalezienia punktu przecięcia musimy obliczyć miejsca zerowe funkcji: $F(x) = e^x - 3x$

Według programowi Wolfram Alpha szukanie miejsca zerowe to: $x_1 \approx 0.619061$ ora
z $x_2 \approx 1.51213$.

Wykorzystując te wiedze można ustalić przedziały w naszych funkcja na

	a	b	Przybliżenie pierwiastka r	wartość f(r)	liczba wykonanych iteracji
Metoda bisekcji	0	1	0.619140625	-9.066320343276146e-5	9
Metoda bisekcji	1	2	1.5120849609375	-7.618578602741621e-5	13

Uzyskane wyniki są zbieżne do tych do z programu WolframAlpha więc metoda bisekcji zwróciła dobry wyniki przy poprawnie dobranych przedziałach.

6 Zadanie 5

6.1 Opis problemu

Znalezienie miejsc zerowych funkcji $f_1(x)=e^{1-x}-1$ oraz $f_2(x)=xe^{-x}$, za pomocą metod bisekcji, Newtona oraz siecznych. Należy także sprawdzić co się stanie gdy w metodzie Newtona dla f_1 wybierzemy $x_0\in(1,\infty]$, a dla f_2 $x_o>1$, oraz odpowiedzięć na pytanie czy można wybrać $x_0=1$ dla f_2 .

6.2 Rozwiązanie

W celu dobrania odpowiednich parametrów do funkcji, ponownie użyłem programu Wolfram Alpha do wizu
alizacji funkcji f_1 oraz f_2

6.3 Wyniki

		Metoda Bisekcji			
Funckja	Danamatuu	Przybliżenie	Wartość f(r)	Liczba wykonanych	
Funckja	Parametry	pierwiastka r	wartosc 1(1)	iteracji	
f_1	a = -100, b = 100	0.9999990463256836	9.536747711536009e-7	23	
f_1	a = 0.5, b = 2	0.9999923706054688	7.629423635080457e-6	16	
f_1	a = -2, b = 2	1.0	0.0	2	

			Metoda Bisekcji	
Funckja	Danamatur.		Wartość f(r)	Liczba wykonanych
Funckja Parametry	rarameny	pierwiastka r	wartosc 1(1)	iteracji
f_2	a = -20 b = 200	90.0	7.374611361591463e-38	1
f_2	a = -5, b = 5	0	0	1
f_2	a = -1, b = 1	0	0.0	1

Jak widać nawet dla dużej przedziału, metoda bisekcji znajduję rozwiązanie. Wartym zauważyć, że dla źle podanego przedziału, który nie zawiera poprawnego pierwiastka, metoda zwraca poprawny wynik z daną dokładnością. Dla dobrze dobranego przedziału, w którym wynik znajduję się mniej więcej w połowe, metoda zwraca wynik w pierwszych iteracjach.

Dla funkcji f_2 , metoda w przypadku większych przedziałów zwraca niepoprawnę przybliżenie w 1 iteracji i kończy działanie.

		Metoda Newtona			
Funckja Parametry		Przybliżenie	Wartość f(r)	Liczba wykonanych	
runckja rarametry	1 arametry	pierwiastka r	vvartosc 1(1)	iteracji	
f_1	$x_0 = -1.0$	0.9999922654776594	7.734552252003368e-6	5	
f_1	$x_0 = 0.9$	0.99999999931772	6.822808984452422e-11	3	
f_1	$x_0 = 5.0$	0.9999996427095682	3.572904956339329e-7	54	

		Metoda Newtona				
Funckja Parametry		Przybliżenie	Wartość f(r)	Liczba wykonanych		
		pierwiastka r	vvariosc i(i)	iteracji		
f_2	$x_0 = -1.0$	-3.0642493416461764e-7	-3.0642502806087233e-7	5		
f_2	$x_0 = 0.1$	-6.707074105306854e-9	-6.7070741502916976e-9	3		
f_2	$x_0 = 5.0$	15.194283983439147	3.827247505782993e-6	9		

Dla przybliżeń początkowych bliskich faktycznemu miejscu zerowemu metoda znajduję wyniki w kilku iteracjach, natomiast gorsze przybliżenie początkowe powoduję drastyczny wzrost liczby iteracji.

		Metoda Siecznych		
Funckja	Parametry	Przybliżenie	Wartość f(r)	Liczba wykonanych
1 direkja 1 dire	1 drametry	pierwiastka r	, , , , , , , , , , , , , , , , , , ,	iteracji
f_1	$x_0 = -2, x_1 = 2$	1.00000000080618678	-8.061867839970205e-9	8
f_1	$x_0 = -0.5, x_1 = 1.5$	0.9999964138056234	3.5862008069820206e-6	5
f_1	$x_0 = -0.9, x_1 = 1.1$	1.0000002015040548	-2.0150403445828857e-7	4
f_1	$x_0 = -5, x_1 = 5$	4.975665372740593	-0.9812331895845449	3

		Metoda Siecznych		
Funckja	D	Przybliżenie	Wartość f(r)	Liczba wykonanych
runckja	Parametry	pierwiastka r	wartosc 1(1)	iteracji
f_2	$x_0 = -2, x_1 = 2$	14.294924723787231	8.85064549833867e-6	15
f_2	$x_0 = -0.5, x_1 = 1.5$	14.75097215511155	5.788350668027595e-6	12
f_2	$x_0 = -0.1, x_1 = 0.1$	1.1114156192137446e-8	1.1114156068612979e-8	4
f_2	$x_0 = -5, x_1 = 5$	14.70482129398244	6.04278309521908e-6	13

Metoda Siecznych dla początkowych przybliżeń odpowiednio odległych od wartości rozwiązania, zwraca niepoprawne przybliżenie pierwiastka.

		Metoda Newtona					
Funckja	Parametry	Przybliżenie	Wartość f(r)	Liczba wykonanych	Kod błędu		
Funckja Farametry	pierwiastka r	wartosc i(i)	iteracji	Kod biędu			
f_1	$x_0 = 1.1$	0.9999999991094	8.906009263398573e-11	3	0		
f_1	$x_0 = 2.0$	0.9999999810061002	1.8993900008368314e-8	5	0		
f_1	$x_0 = 4.0$	0.9999999995278234	4.721767421500545e-10	21	0		
f_1	$x_0 = 8.0$	-	-	5	1		
f_1	$x_0 = 16.0$	16.0	-0.9999996940976795	0	2		

Dla metody Newtona dla funkcji f_1 wybranie $x_0 \in (1, \infty]$, powoduje wzrost liczby potrzebnych iteracji, w przypadku większych wartości zwracane są błędy.

		Metoda Newtona					
Funckja	Parametry	Przybliżenie pierwiastka r	Wartość f(r)	Liczba wykonanych iteracji	Kod błędu		
f_2	$x_0 = 1.1$	14.272123938290509	9.040322779745447e-6	3	0		
f_2	$x_0 = 1.0$	1.0	0.36787944117144233	0	2		

Dla metody Newtona dla funkcji f_2 wybranie $x_0 > 1$, powoduje poprzez zmiejszenie dokładności przybliżenia pierwiastka, zwrócenie niepoprawnej wartości.

Natomiast wybranie $x_0=1$ powoduję zakończenie programu i zwrócenie błędu, dzieje się tak ponieważ pochodna funkcji ma wartość bliską 0.

6.4 Wnioski

Metoda bisekcji, jest zbieżna globalnie, zwraca poprawne wyniki nawet dla dużych i niepoprawnych przedziałów, natomiast jej zbieżność jest gorsza zbieżność lokalych z metod stycznych(zbieżność kwadratowa) i siecznych(zbieżność liniowa). Dobrym pomysłem mogło by połączenie metod, początkowo szukanie lepszego przedziału metodą bisekcji, następnie użycie metod Newtona lub siecznych.