inference for a proportion - Bayesian approach

Dr. Mine Çetinkaya-Rundel

framework

- consider the 20 total pregnancies
 - question: how likely is it that 4 pregnancies occur in the treatment group?
- if treatment and control are equally effective + sample sizes for the two groups are the same
- P(pregnancy comes from treatment group) = p = 0.5

hypotheses, i.e. models

- delineate plausible models:
 - assume p could be
 - 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, or 90%
- consider 9 models, instead of I as in the frequentist paradigm
 - p = 20%: given a pregnancy occurs, there is a 2:8 or 1:4 chance that it will occur in the treatment group

specifying the prior

- prior probabilities reflect state of belief prior to the current experiment
- Incorporate information learned from all relevant research up to the current point in time, but not incorporate information from the current experiment
- > suppose my prior probability for each of the 9 models is as presented below:

Model (p)	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	Total
Prior	0.06	0.06	0.06	0.06	0.52	0.06	0.06	0.06	0.06	

- benefit of treatment is symmetric equally likely to be better or worse than the standard treatment
- > 52% chance that there is no difference between the treatments

likelihood

- calculate $P(data \mid model)$ for each model considered.
- this probability is called the likelihood:

$$P(data \mid model) = P(k = 4 \mid n = 20, p)$$

calculating the likelihood

```
p <- seq(from = 0.1, to = 0.9, by = 0.1)
prior <- c(rep(0.06, 4), 0.52, rep(0.06, 4))
likelihood <- dbinom(4, size = 20, prob = p)</pre>
```

Model (p)	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	Total
Prior, P(model)	0.06	0.06	0.06	0.06	0.52	0.06	0.06	0.06	0.06	
Likelihood, P(data model)	0.0898	0.2182	0.1304	0.035	0.0046	0.0003	0	0	0	

posterior

use Bayes' rule to calculate the posterior probability, i.e. $P(model \mid data)$

$$P(model \mid data) = \frac{P(model \& data)}{P(data)}$$

$$= \frac{P(data \mid model) \times P(model)}{P(data)}$$

calculating the posterior

```
numerator <- prior * likelihood
denominator <- sum(numerator)
posterior <- numerator / denominator
sum(posterior)</pre>
```

[1] 1

Model (p)	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	Total
Prior, P(model)	0.06	0.06	0.06	0.06	0.52	0.06	0.06	0.06	0.06	
Likelihood, P(data model)	0.0898	0.2182	0.1304	0.035	0.0046	0.0003	0	0	0	
P(data model) x P(model)	0.0054	0.0131	0.0078	0.0021	0.0024	0	0	0	0	0.0308
Posterior, P(model data)	0.1748	0.4248	0.2539	0.0681	0.0780	0.0005	0	0	0	

decision making

- posterior probability that p = 0.2 is 42.48%
 - this model has the highest posterior probability
- calculation of the posterior incorporated prior information and likelihood of data observed
 - data "at least as extreme as observed" plays no part in the Bayesian paradigm
- Note that probability that p=0.5 dropped from 52% in the prior to about 7.8% in the posterior
 - this demonstrates how we update our beliefs based on observed data

prior, likelihood, and posterior, visualized

synthesis

- Bayesian paradigm allows us to make direct probability statements about our models
- we can also calculate the probability that RU-486 (the treatment) is more effective than the control
 - this is the sum of the posteriors of the models where p < 0.5

Model (p)	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	Total
Posterior, P(model data)	0.1748	0.4248	0.2539	0.0681	0.0780	0.0005	0	0	0	