CS 6041 Theory of Computation

Turing machine

Kun Suo

Computer Science, Kennesaw State University

https://kevinsuo.github.io/

What does Turing Machine look like?

https://www.youtube.com/watch?v=E3keLeMwfHY

CS 6041

 On computable numbers, with an application to the Entscheidungsproblem, 1930s

https://londmathsoc.onlinelibrary.wiley.com/doi/pdf/10.1112/plms/s2-42.1.230

Alan Turing

Question: based on the above video, what is the similarity and difference between finite automata and Turing machine?

Question: based on the above video, what is the similarity and difference between pushdown automata and Turing machine?

Turing machine vs. finite automata vs. Pushdown automata

	Finite automata	Pushdown automata	Turing machine
Header			
Header move			
Input			
Output			
CS 6041	L Kennesa	w State University	Theory of Computation

Turing machine: left end and right end of tape

Input on the tape of TM

•
$$\Sigma = \{a, b, 0, 1, ...\}$$

• $\mathbf{u} \notin \Sigma$

 The blank symbol is just used to fill the infinite tape of TM

Initial state and operations of TM

Operations:

- Read symbol below the head
- Write symbol below the head
- Move head one step left
- Move head one step right

Definition of Turing Machine

- TM M=(Q, Σ , Γ , δ ,q₀,q_{acc},q_{rej})
 - 1) Q is the set of states
 - 2) Σ is the input alphabet, not containing blank symbol $\mathbf{B} \notin \Sigma$
 - 3) Γ is the tape alphabet, $\Sigma \cup \{B\} \subseteq \Gamma$,
 - 4) $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times \{L,R\}$ is the transition function
 - 5) $q_0 \in Q$ is the start state
 - 6) q_{acc}∈Q is the accept state
 - 7) $q_{rej} \in Q$ is the reject state, $q_{acc} \neq q_{rej}$

Tape includes input alphabet and space

Definition comparison

A **pushdown automaton** is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$, where Q, Σ , Γ , and F are all finite sets, and

- **1.** Q is the set of states,
- **2.** Σ is the input alphabet,
- **3.** Γ is the stack alphabet,
- **4.** $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \longrightarrow \mathcal{P}(Q \times \Gamma_{\varepsilon})$ is the transition function,
- **5.** $q_0 \in Q$ is the start state, and
- **6.** $F \subseteq Q$ is the set of accept states.

A **Turing machine** is a 7-tuple, $(Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$, where Q, Σ, Γ are all finite sets and

- **1.** Q is the set of states,
- 2. Σ is the input alphabet not containing the **blank symbol** \Box ,
- **3.** Γ is the tape alphabet, where $\sqcup \in \Gamma$ and $\Sigma \subseteq \Gamma$,
- 4. $\delta: Q \times \Gamma \longrightarrow Q \times \Gamma \times \{L, R\}$ is the transition function,
- **5.** $q_0 \in Q$ is the start state,
- **6.** $q_{\text{accept}} \in Q$ is the accept state, and
- 7. $q_{\text{reject}} \in Q$ is the reject state, where $q_{\text{reject}} \neq q_{\text{accept}}$.

 Can a Turing machine ever write the blank symbol _ on its tape?

• Yes. The tape alphabet Γ contains $_$. A Turing machine can write any characters in Γ on its tape.

 Can the tape alphabet Γ be the same as the input alphabet Σ?

o No. Σ never contains _, but Γ always contains _. So they cannot be equal.

 Can a Turing machine's head ever be in the same location in two successive steps?

 Yes. If the Turing machine attempts to move its head off the left-hand end of the tape, it remains on the same tape cell.

 Can a Turing machine contain just a single state?

No. Any Turing machine must contain two distinct states:
 q_{accept} and q_{reject}. So, a Turing machine contains at least two states.

Configuration of the Turing machine

- Configuration: uqv
 - Current state: q
 - Current tap: uv
 - Current head location: first symbol of v

Configuration of the Turing machine Question: what is the current Configuration: uqv configuration? Current state: q Current tap: uv Current head location: first symbol of v CS 6041 Kennesaw State University Theory of Computation q_7

configuration 1011q₇01111

Question: what is the start configuration?

- TM M=(Q, Σ , Γ , δ ,q₀,q_{acc},q_{rej})
- w is the input

Configuration of the Turing machine Configuration: uqv Current state: q Current tap: uv Current head location: first symbol of v

Theory of Computation

CS 6041

Start configuration: q₀ w

Configuration of the Turing machine

- Start configuration: qow, w is the input
- Accepting configuration: uq_{accept}v
- Rejecting configuration: uq_{reject}v
- Halting configuration: uq_{accept}v, uq_{reject}v

Yield configuration

• Configuration C_1 *yields* configuration C_2 if the Turing machine can legally go from C_1 to C_2 in a single step.

- If $\delta(q_i,b)=(q_j,c,L)$, then
 - (1) uaq_ibv yields uq_iacv
 - (2) q_ibv yeilds q_jcv

(when the header is already left-most)

Kennesaw S

• If $\delta(q_i,b)=(q_j,c,R)$, then uaq_ibv yields $uacq_iv$

Under state qi,
input with b
-->

Under state qi, input with b

Change to state qj,

b changes to c, header move to left

Change to state qj, b changes to c, header move to right

CS 6041

A Turing machine M accepts input w

- M accepts input w
 - if a sequence of configurations C_1, C_2, \ldots, C_k exists, where
 - 1. C₁ is the start configuration of M on input w,
 - 2. each C_i yields C_{i+1}, and
 - **3.** C_k is an accepting configuration.

Question: give the sequence of configurations that M₂ enters when started on the indicated input string.

Question: give the sequence of configurations that M₂ enters when started on the indicated input string.

Question: give the sequence of configurations that M₂ enters when started on the indicated input string.

Question: give the sequence of configurations that M₁ enters when started on the indicated input string.

Question: give the sequence of configurations that M₁ enters when started on the indicated input string.

The output of Turing Machine

- AcceptReject
- Loop = Never Halt

For finite automata and pushdown automata, they will halt

Examples of TM accepts, rejects and loop

 Accept Halt Reject Never Loop Can anyone give an example of never halting?

```
a.c
       a.c
     #include <stdio.h>
     int main()
         int c:
         printf( "Enter a value :");
         c = getchar();
         switch(c) {
            case '0' :
10
               printf("accept!\n" );
11
12
               break;
13
            case '1' :
               printf("reject\n" );
14
15
               break;
            default :
17
               while(1)
18
19
               };
20
21
22
23
         return 0;
24
```


TM example

TM example

TM example: 1+1 operation

TM example: $B = \{ w \# w \mid w \in \{0,1\}^* \}$

• M_1 = "for input string x":

- Scan the input to make sure there exists only one "#", otherwise reject;
- 2. Move to the same positions on both sides between "#", check whether there exist same symbols. If not, reject; otherwise, cross off the checked symbols;
- If all symbols on the left of "#" are crossed off, check whether there exists other remaining symbols on the right. If yes, reject; otherwise, accept.

CS 6041

011000#011000

q_{start} state

X11000#011000

q_{start} state

q₀ state: crossed off a 0

X11000#011000

q_{start} state

q₀ state: crossed off a 0

X11000#011000

q₀ state: crossed off a 0

q_{0#} state: crossed off a 0, read a #

X11000#X11000

Under this state, if read one 0, cross off the 0, then move to the left

q_{0#} state: crossed off a 0, read a #

X11000#X11000

q state: normal state

q_# state: read a #

X11000#X11000

q_# state: read a #

X11000#X11000

q# state: read a #

XX1000#X11000

XX1000#X11000

q₁ state: crossed off a 1

XX1000#X11000

q₁ state: crossed off a 1

XX1000#X11000

q₁ state: crossed off a 1

q_{1#} state: crossed off a 1, read a #

XX1000#X11000

q_{1#} state: crossed off a 1, read a #

XX1000#XX1000

Under this state, if read one 1, cross off the 1, then move to the left

q_{1#} state: crossed off a 1, read a #

XX1000#XX1000

q state: normal state

q_# state: read a #

XX1000#XX1000

q_# state: read a #

XX1000#XX1000

Keep doing the first step, read the input

q_# state: read a #

XXX000#XX1000

q state: normal state

q₁ state: crossed off a 1

XXX000#XX1000

q₁ state: crossed off a 1

q_{1#} state: crossed off a 1, read a #

XXX000#XX1000

Under this state, if read one 1, cross off the 1, then move to the left

q_{1#} state: crossed off a 1, read a #

X X X O O O # X X X O O O

Under this state, if read one 1, cross off the 1, then move to the left

q_{1#} state: crossed off a 1, read a #

X X X X X O # X X X X X O

XXXXXXXXXXXX

q₀ state: crossed off a 0

Under this state, if read one 0, cross off the 0, then move to the left

XXXXXXXXXXX

q₀ state: crossed off a 0

q_{0#} state: crossed off a 0, read a #

Under this state, if read one 0, cross off the 0, then move to the left

q_{0#} state: crossed off a 0, read a #

XXXXXX # XXXXXX

q state: normal state

q_# state: read a #

XXXXXX # XXXXXX

Currently, there is no 0s or 1s. Change to another state q_{B}

Currently, there is no 0s or 1s. Change to another state q_B and head moves to the last of X

Under state q_B , if there is no 0 or 1 after last X, accept; Otherwise, reject.

XXXXXX # XXXXXX

Under state q_B , if there is no 0 or 1 after last X, accept; Otherwise, reject.

TM example: $L = \{ w \# w \mid w \in \{0,1\}^* \}$

• M_1 = "for input string x":

- Scan the input to make sure there exists only one "#", otherwise reject;
- 2. Move to the same positions on both sides between "#", check whether there exist same symbols. If not, reject; otherwise, cross off the checked symbols;
- 3. If all symbols on the left of "#" are crossed off, check whether there exists other remaining symbols on the right. If yes, reject; otherwise, accept.

Give descriptions of TM that decide the following languages over the alphabet {a,b}.

- {w| w contains an equal number of a and b}
 - 1. Scan the tape and mark the first 'a' which has not been marked. If there is no unmarked 'a', go to stage 4. Otherwise, move the head back to the front of the tape.
 - 2. Scan the tape and mark the first 'b' which has not been marked. If there is no unmarked 'b', reject.
 - 3. Move the head back to the front of the tape and repeat stage 1.
 - 4. Move the head back to the front of the tape. Scan the tape to see if any unmarked 'b's remain. If there are none, accept. Otherwise, reject.

```
$aabbbbaa ⊔ ⊔
↑
```

\$xabbbbaa ∟ ∟
↑
——

\$xabbbbaa ∟ ∟

↑

```
$xaxbbbaa ∟ ∟
↑
```

\$xaxbbbaa ⊔ ⊔

↑

\$xaxbbbaa ⊔ ⊔
↑

```
$xxxbbbaa ∟ ∟

↑
```

\$xxxbbbaa ∟ ∟

↑

\$xxxxbbaa ∟ ∟

↑

\$xxxxbbaa □ □

↑

——


```
$xxxxbbxa □ □

↑
```


• • •

- TM M=(Q, Σ , Γ , δ ,q₀,q_{acc},q_{rej})
 - 1) Q =
 - 2) Σ =
 - 3) Γ =
 - 4) δ:
 - 5) q₀
 - $6) q_{acc} =$
 - 7) $q_{rej} =$