

CSE211 - Formal Languages and Automata Theory

U2L2 – Derivation and its Types

Dr. P. Saravanan

School of Computing SASTRA Deemed University

Agenda

- Derivation using Grammar
- Types of derivation
- Examples
- Comparison of LM and RM derivation
- Definition of CFL
- Sentential Forms
- Parse Tree
- Examples for parse tree
- Yield of a parse tree

In previous class

- The above productions may be rewritten integrally as
 - $\blacksquare E \rightarrow I \mid E + E \mid E^*E \mid (E)$
 - $I \rightarrow a / b / Ia / Ib / I0 / I1$
- An example of string derivations: a*(a0+b1)
 - $\blacksquare E \Longrightarrow E*E$
 - $\blacksquare \Rightarrow I*E$
 - $\Rightarrow a*E$
 - $\Rightarrow a*(E)$
 - $\Rightarrow a*(E+E)$
 - $\Rightarrow a*(10 + E) \Rightarrow ... \Rightarrow a*(a0 +b1)$

CFG Examples

(a) All strings in the language L : $\{a^n b^m a^{2n} \mid n, m \ge 0\}$

$$S \rightarrow aSaa \mid B$$

 $B \rightarrow bB \mid \varepsilon$

(b) All nonempty strings that start and end with the same symbol.

```
S \rightarrow aXa \mid bXb \mid a \mid b
 X \rightarrow aX \mid bX \mid \varepsilon
```

(c) All strings with more a's than b's.

```
S \rightarrow Aa \mid MS \mid SMA

A \rightarrow Aa \mid \varepsilon

M \rightarrow \varepsilon \mid MM \mid bM \mid a \mid aM \mid b
```

(d) All palindromes

$$S \rightarrow aSa \mid bSb \mid a \mid b \mid \epsilon$$

Derivations Using a Grammar

- Concept: we use productions to generate ("infer") strings in the language described by the grammar.
- Two ways for such string inference:
- Recursive inference:
 - bottom up ("from body to head");
 - starting from known strings (often from terminals in productions)
- Derivation:
 - top down ("from head to body") in concept;
 - as shown by the examples given before.

- Show a top-down derivation of the string w = a*(a + b00) using the productions of the CFG G_r described previously
- w above is not a regular expression but an arithmetic expression.

Production Rules:

$$E \rightarrow I$$

 $E \rightarrow E + E$
 $E \rightarrow E*E$
 $E \rightarrow (E)$
 $I \rightarrow a$
 $I \rightarrow b$
 $I \rightarrow Ia$

$$\begin{matrix} I \to Ib \\ I \to I0 \end{matrix}$$

$$I \to I\mathbf{1}$$

Derivation of a*(a + b00)

- Show a bottom-up recursive inference of the string w = a*(a + b00) using the productions of the CFG G_r described previously
- w above is not a regular expression but an arithmetic expression.

Derivation steps	String inferred	For language of	Production used	String(s) used
(1)	а	I	5: (<i>I</i> → α)	_
(ii)	ь	I	6: (<i>I</i> → <i>b</i>)	_
(iii)	b 0	I	9: (I → I0)	(ii)
(iv)	ð00	I	9: (<i>I</i> → <i>I</i> 0)	(iii)
(v)	а	E	1: $(E \rightarrow I)$	(i)
(vi)	ð00	E	1: (<i>E</i> → <i>I</i>)	(iv)
(vii)	a+b00	E	2: (E→ E+E)	(v), (vi)
(viii)	(a + b00)	E	$4: (E \rightarrow (E))$	(vii)
(iv)	a+(a + b00)	E	3: (E → E*E)	(v), (viii)

Fig. 5.1 Inference of a string $w = a \cdot (\alpha + b00)$.

Notations used in derivations

• If $\alpha A\beta$ is a string of terminals and variables, and if $A \rightarrow \gamma$ is a production, then we write

$$\alpha A\beta \Rightarrow \alpha \gamma \beta$$

- to denote a derivation.
- For zero and more derivations, we use the following notation. $A \stackrel{*}{\Rightarrow} \gamma$
- The label *G* under the double arrow may be omitted if which grammar is being used is understood.

Types of Derivations

Definitions:

- Leftmost derivation: Replacing the leftmost variable in each derivation step (represented by the notation or, for typing convenience, also by \Rightarrow_{lm})
- Rightmost derivation: Replacing the rightmost variable in each derivation step (represented by \xrightarrow{rm} or by \Rightarrow_{rm})

Left most Derivation

■ The leftmost derivation of the string w = a*(a+b00) of Example 5.5 is as follows

Production Rules:

daction raics.

 $E \rightarrow I$ (1) $E \rightarrow E + E$ (2)(3) $E \rightarrow E^*E$ $\mathsf{E} \to (\mathsf{E})$ (4) $I \rightarrow a$ (5) (6) $I \rightarrow b$ $I \rightarrow Ia$ (7) (8) $I \rightarrow Ib$ $I \rightarrow I0$ (9) $I \rightarrow I1$ (10)

<u>Leftmost Derivation of a*(a + b00)</u>

Е	⇒ _{lm} E∗E	apply (3)
	$\Rightarrow_{Im} I*E$	apply (1)
	⇒ _{lm} a∗E	apply (5)
	$\Rightarrow_{\operatorname{Im}} a*(E)$	apply (4)
	$\Rightarrow_{Im} a*(E+E)$	apply (2)
	$\Rightarrow_{Im} a*(I+E)$	apply (1)
	$\Rightarrow_{lm} a^*(a + E)$	apply (5)
	$\Rightarrow_{lm} a*(a + I)$	apply (1)
	$\Rightarrow_{lm} a*(a + I0)$	apply (9)
	$\Rightarrow_{lm} a*(a + I00)$	apply (9)
	$\Rightarrow_{lm} a*(a + b00)$	apply (6)

■ The rightmost derivation of the string w = a*(a+b00) of Example 5.5 is as follows

Production Rules:

Rightmost Derivation of a*(a + b00)

<u>Leftmost Derivation of a*(a + b00)</u>

Rightmost Derivation of a*(a + b00)

$E \Rightarrow_{lm} E*E$ $\Rightarrow_{lm} I*E$ $\Rightarrow_{lm} a*(E)$ $\Rightarrow_{lm} a*(E)$ $\Rightarrow_{lm} a*(I)$ $\Rightarrow_{lm} a*(a)$	apply (4) + E) apply (2) + E) apply (1) + E) apply (5) + I) apply (1) + I0) apply (9) + I00) apply (9)	E	$\Rightarrow_{rm} E*E$ $\Rightarrow_{rm} E*(E)$ $\Rightarrow_{rm} E*(E+E)$ $\Rightarrow_{rm} E*(E+I)$ $\Rightarrow_{rm} E*(E+I0)$ $\Rightarrow_{rm} E*(E+I00)$ $\Rightarrow_{rm} E*(E+b00)$ $\Rightarrow_{rm} E*(I+b00)$ $\Rightarrow_{rm} E*(a+b00)$ $\Rightarrow_{rm} I*(a+b00)$ $\Rightarrow_{rm} a*(a+b00)$	apply (3) apply (4) apply (2) apply (1) apply (9) apply (9) apply (6) apply (6) apply (1) apply (5) apply (1) apply (5)
---	--	---	---	---

The Language of a Grammar

Definition :

■ The language L(G) of a CFG G = (V, T, P, S) is

$$L(G) = \{ w \mid w \in T^*, S \stackrel{*}{\Rightarrow} w \}$$

- The language of a CFG is called a context-free language (CFL)
- Theorem 5.7 in the text book shows a typical way to prove that a given grammar really generates the desired language

- Derivations from the start symbol are called sentential forms.
 - Given a CFG G = (V, T, P, S), if $S \stackrel{*}{\Rightarrow} \alpha$ with $\alpha \in (V \cup T)^*$, then α is a sentential form.
 - If $S \stackrel{*}{\Longrightarrow} \alpha$ where $\alpha \in (V \cup T)^*$, then α is a left-sentential form.
 - If $S \Rightarrow_{rm} \alpha$ where $\alpha \in (V \cup T)^*$, then α is a right-sentential form.

- Derivation using Grammar
- Types of derivation
- Examples
- Comparison of LM and RM derivation
- Definition of CFL
- Sentential Forms

- John E. Hopcroft, Rajeev Motwani and Jeffrey D.
 Ullman, Introduction to Automata Theory, Languages, and Computation, Pearson, 3rd Edition, 2011.
- Peter Linz, An Introduction to Formal Languages and Automata, Jones and Bartle Learning International, United Kingdom, 6th Edition, 2016.

Next Class:

Parse Tree and Its Type

THANK YOU.