ВЫРАЖЕНИЕ ЦЕНТРАЛЬНЫХ ИДЕМПОТЕНТОВ НЕПРИВОДИМЫХ ПРЕДСТАВЛЕНИЙ ГРУПП КОКСТЕРА ЧЕРЕЗ YJM-ЭЛЕМЕНТЫ

Разработал: Стерлягов А.А., магистрант ВятГУ, г. Киров

Руководитель: Пушкарёв И.А., к.ф.-м.н., доцент ВятГУ, г. Киров

Постановка задачи

- Разработать модуль для проведения вычислений в групповой алгебре.
- Разработать модуль для вычисления образа конкретного симметрического многочлена.
- Разработать модуль для реализации построения по конкретному стандартному элементу центра Z_n его прообраза.
- При помощи разработанного ПО изучить свойства гомоморфизма из множества симметрических многочленов в центр групповой алгебры

Основные определения

- Пусть σ такой элемент группы G_m , что никакой элемент, сопряжённый с ним в группе G_m не содержится ни в какой группе с меньшим номером. Символом $\Xi_n(\sigma)$ (при $n \geq m$) обозначим сумму всех элементов в групповой алгебре группы G_n , которые сопряжёны с σ и лежат в $G_n \setminus G_{n-1}$. Эти суммы будем называть элементами YJM-элементами.
- В основном примере групповых алгебр симметрических групп $s_i = (i, i+1)$ кокстеровские образующие симметрической группы. Тогда $\mathcal{E}_n(\sigma) = \sum_{i=1}^{n-1} (i, n)$ классические элементы Юнга-Юциса-Мерфи.

Симметрические многочлены от YJMэлементов

- Рассмотрим последовательность коммутативных алгебр $Q_n(y_1, \dots, y_n)$ симметрических многочленов с целыми коэффициентами от формальных переменных y_1, \dots, y_n . Подстановка в переменные y_k элементов (8) индуцирует гомоморфизм алгебры Q_n в центр Z_n групповой алгебры $C[S_n]$ n-ой симметрической группы S_n .
- <u>Теорема.</u> Элементы центра групповой алгебры являются симметрическими многочленами от YJM-элементов.

Симметрические многочлены от YJMэлементов

$$\sum_{i=2}^{n} \Xi_i(\sigma) = S((2,1))$$

$$\sum_{i=2}^{n} \Xi_i^2(\sigma) = S((3,2,1)) + \frac{n \cdot (n-1)}{2} \times 1$$

$$\sum_{i=2}^{n-1} \Xi_i(\sigma) \left(\sum_{j=i+1}^n \Xi_j(\sigma) \right) = S((3,2,1)) + S((2,1)(4,3))$$

k=2, n=1	k=4, n=2	k=6, n=3	k=8, n=4	k=9, n=5
1	-1	1	1	-1

k=4, n=2

$$\begin{cases} x_1 = \sigma_1 \\ x_2 + x_3 + 0 = \sigma_2 \\ 3x_2 + 2x_3 + 10 = \sigma_1^2 \end{cases} \begin{cases} (2,1) = \sigma_1 \\ (2,1)(4,3) = 10 + 3\sigma_2 - \sigma_1^2 \\ (3,2,1) = -10 - 2\sigma_2 + \sigma_1^2 \end{cases}$$

k=6, n=3

$$\begin{cases} x_1 = \sigma_1 \\ x_2 + x_3 = \sigma_2 \\ 3x_2 + 2x_3 + 21 = \sigma_1^2 \\ x_4 + x_5 + x_6 = \sigma_3 \\ 20x_1 + 6x_4 + 4x_5 + 3x_6 = \sigma_2\sigma_1 \\ 71x_1 + 16x_4 + 9x_5 + 6x_6 = \sigma_1^3 \end{cases}$$

k=6, n=3

$$\begin{cases} (2,1) = \sigma_1 \\ (2,1)(4,3) = 21 + 3\sigma_2 - \sigma_1^2 \\ (2,1)(4,3)(6,5) = -2\sigma_1 + 10\sigma_3 - 7\sigma_2\sigma_1 + 2\sigma_1^3 \\ (3,2,1)(5,4) = 13\sigma_1 - 12\sigma_3 + 10\sigma_2\sigma_1 - 3\sigma_1^3 \\ (4,3,2,1) = -11\sigma_1 + 3\sigma_3 - 3\sigma_2\sigma_1 + \sigma_1^3 \\ (3,2,1) = -21 - 2\sigma_2 + \sigma_1^2 \end{cases}$$

Сравнение быстродействия

Сравнение быстродействия

Выводы

- Построены и решены системы уравнений, определяющие параметры отображения из множества симметрических многочленов в центр групповой алгебры.
- Для рассмотренных групповых алгебр показано, что у этого отображения нет ядра.
- Стандартные элементы центра выражены через симметрические многочлены, тем самым подтверждена справедливость теоремы о том, что элементы центра являются симметрическими многочленами от YJM-элементов.