On the probabilities of trees and cladograms under Ford's α -model.

Supplementary material 1: $P_{\alpha,n}$ on \mathcal{T}_n for $n \leq 8$

Arnau Mir, Tomás Martínez, Francesc Rosselló

1. Introduction

In this document we compute the probabilities of all cladograms in every \mathcal{T}_n with $n=2,\ldots,8$. Although Ford gives in [1, §7] these probabilities for $n=2,\ldots,6$, to help the user of this paper we also include them. We shall denote the shapes of dendrograms by means of their Newick format [2], representing their leaves with a symbol *. We use the formula for the probability of a cladogram $T \in \mathcal{T}_n$ given in Proposition 2 in the main document:

$$P_{\alpha,n}(T) = \frac{2^{n-1}}{n! \cdot \Gamma_{\alpha}(n)} \prod_{(a,b) \in NS(T)} \varphi(a,b)$$

where, for every $a, b \in \mathbb{N} \setminus \{0\}$,

$$\varphi(a,b) = \frac{\alpha}{2} \binom{a+b}{a} + (1-2\alpha) \binom{a+b-2}{a-1}.$$

For the convenience of the reader, we gather in Table 1 below the values of $\varphi(a, b)$ with $a \leq b$ and $a + b \leq 8$, which are used in the explicit computations given in this document.

In the sections below we classify the dendrograms in each \mathcal{T}_n according to their shape in \mathcal{T}_n^* and then, for each one of these shapes, we give the number of dendrograms with that shape (which is equal to n! divided by 2 to the power of its number of symmetric branch points; see [1, Lem. 31]) and the probability of each one of these dendrograms; hence, the probability of every tree in \mathcal{T}_n^* can be easily computed as the product of these two numbers.

2. \mathcal{T}_2

There is only one tree in \mathcal{T}_2 , with shape

Thus, of course, it has probability 1.

3. \mathcal{T}_3

All trees in \mathcal{T}_2 have shape

(a,b)	$\varphi(a,b)$
$\boxed{(1,1)}$	$1-\alpha$
(1,2)	$(2-\alpha)/2$
(1,3)	1
(2,2)	$2-\alpha$
(1,4)	$(2+\alpha)/2$
(2,3)	$3-\alpha$
(1,5)	$1 + \alpha$
(2,4)	$(8-\alpha)/2$
(3,3)	$2(3-\alpha)$
(1,6)	$(2+3\alpha)/2$
(2,5)	$(10 + \alpha)/2$
(3,4)	$5(4-\alpha)/2$
(1,7)	$1+2\alpha$
(2,6)	$2(3+\alpha)$
(3,5)	$15-2\alpha$
(4,4)	$5(4-\alpha)$

Table 1: Values of $\varphi(a,b)$ for $a \leq b$ and $a+b \leq 8$

There are 3 of them, and each one has probability

$$\frac{2^2}{3!\cdot\Gamma_\alpha(3)}\varphi(1,2)\varphi(1,1)=\frac{1}{3}$$

as it should be, since the α -model is shape invariant.

4. \mathcal{T}_4

In \mathcal{T}_4 there are:

(4.1) Trees with shape

There are 4!/2 = 12 of them, and each one has probability

$$\frac{2^3}{4!\cdot \Gamma_\alpha(4)}\varphi(1,3)\varphi(1,2)\varphi(1,1) = \frac{1}{6(3-\alpha)}$$

(4.2) Trees with shape

There are $4!/2^3=3$ of them, and each one has probability

$$\frac{2^3}{4!\cdot \Gamma_\alpha(4)}\varphi(2,2)\varphi(1,1)^2 = \frac{1-\alpha}{3(3-\alpha)}$$

5. \mathcal{T}_5

In \mathcal{T}_5 there are:

(5.1) Trees with shape

There are 5!/2 = 60 of them, and each one has probability

$$\frac{2^4}{5! \cdot \Gamma_{\alpha}(5)} \varphi(1,4) \varphi(1,3) \varphi(1,2) \varphi(1,1) = \frac{2+\alpha}{30(4-\alpha)(3-\alpha)}$$

(5.2) Trees with shape

There are $5!/2^3=15$ of them, and each one has probability

$$\frac{2^4}{5! \cdot \Gamma_{\alpha}(5)} \varphi(1,4) \varphi(2,2) \varphi(1,1)^2 = \frac{(1-\alpha)(2+\alpha)}{15(4-\alpha)(3-\alpha)}$$

(5.3) Trees with shape

There are $5!/2^2 = 30$ of them, and each one has probability

$$\frac{2^4}{5! \cdot \Gamma_{\alpha}(5)} \varphi(2,3) \varphi(1,2) \varphi(1,1)^2 = \frac{(1-\alpha)}{15(4-\alpha)}$$

6. T_6

In \mathcal{T}_6 there are:

(6.1) Trees with shape

There are 6!/2 = 360 of them, and each one has probability

$$\frac{2^5}{6! \cdot \Gamma_{\alpha}(6)} \varphi(1,5) \varphi(1,4) \varphi(1,3) \varphi(1,2) \varphi(1,1) = \frac{(1+\alpha)(2+\alpha)}{90(5-\alpha)(4-\alpha)(3-\alpha)}$$

(6.2) Trees with shape

There are $6!/2^3 = 90$ of them, and each one has probability

$$\frac{2^5}{6! \cdot \Gamma_{\alpha}(6)} \varphi(1,5) \varphi(1,4) \varphi(2,2) \varphi(1,1)^2 = \frac{(1-\alpha)(1+\alpha)(2+\alpha)}{45(5-\alpha)(4-\alpha)(3-\alpha)}$$

(6.3) Trees with shape

There are $6!/2^2 = 180$ of them, and each one has probability

$$\frac{2^5}{6! \cdot \Gamma_{\alpha}(6)} \varphi(1,5) \varphi(2,3) \varphi(1,2) \varphi(1,1)^2 = \frac{(1-\alpha)(1+\alpha)}{45(5-\alpha)(4-\alpha)}$$

(6.4) Trees with shape

There are $6!/2^2 = 180$ of them, and each one has probability

$$\frac{2^5}{6! \cdot \Gamma_{\alpha}(6)} \varphi(2,4) \varphi(1,3) \varphi(1,2) \varphi(1,1)^2 = \frac{(1-\alpha)(8-\alpha)}{90(5-\alpha)(4-\alpha)(3-\alpha)}$$

(6.5) Trees with shape

There are $6!/2^4 = 45$ of them, and each one has probability

$$\frac{2^5}{6! \cdot \Gamma_{\alpha}(6)} \varphi(2,4) \varphi(2,2) \varphi(1,1)^3 = \frac{(1-\alpha)^2 (8-\alpha)}{45 (5-\alpha) (4-\alpha) (3-\alpha)}$$

(6.6) Trees with shape

There are $6!/2^3=90$ of them, and each one has probability

$$\frac{2^5}{6! \cdot \Gamma_{\alpha}(6)} \varphi(3,3) \varphi(1,2)^2 \varphi(1,1)^2 = \frac{(1-\alpha)(2-\alpha)}{45(5-\alpha)(4-\alpha)}$$

4

7. \mathcal{T}_7

In \mathcal{T}_7 there are:

(7.1) Trees with shape

There are 7!/2 = 2520 of them, and each one has probability

$$\frac{2^6}{7! \cdot \Gamma_{\alpha}(7)} \varphi(1,6) \varphi(1,5) \varphi(1,4) \varphi(1,3) \varphi(1,2) \varphi(1,1) = \frac{(1+\alpha)(2+\alpha)(2+3\alpha)}{630(6-\alpha)(5-\alpha)(4-\alpha)(3-\alpha)}$$

(7.2) Trees with shape

There are $7!/2^3 = 630$ of them, and each one has probability

$$\frac{2^6}{7! \cdot \Gamma_{\alpha}(7)} \varphi(1,6) \varphi(1,5) \varphi(1,4) \varphi(2,2) \varphi(1,1)^2 = \frac{(1-\alpha)(1+\alpha)(2+\alpha)(2+3\alpha)}{315(6-\alpha)(5-\alpha)(4-\alpha)(3-\alpha)}$$

(7.3) Trees with shape

There are $7!/2^2 = 1260$ of them, and each one has probability

$$\frac{2^6}{7! \cdot \Gamma_{\alpha}(7)} \varphi(1,6) \varphi(1,5) \varphi(2,3) \varphi(1,2) \varphi(1,1)^2 = \frac{(1-\alpha)(1+\alpha)(2+3\alpha)}{315(6-\alpha)(5-\alpha)(4-\alpha)}$$

(7.4) Trees with shape

There are $7!/2^2 = 1260$ of them, and each one has probability

$$\frac{2^6}{7! \cdot \Gamma_{\alpha}(7)} \varphi(1,6) \varphi(2,4) \varphi(1,3) \varphi(1,2) \varphi(1,1)^2 = \frac{(1-\alpha)(8-\alpha)(2+3\alpha)}{630(6-\alpha)(5-\alpha)(4-\alpha)(3-\alpha)}$$

(7.5) Trees with shape

There are $7!/2^4 = 315$ of them, and each one has probability

$$\frac{2^6}{7! \cdot \Gamma_{\alpha}(7)} \varphi(1,6) \varphi(2,4) \varphi(2,2) \varphi(1,1)^3 = \frac{(1-\alpha)^2 (8-\alpha) (2+3\alpha)}{315 (6-\alpha) (5-\alpha) (4-\alpha) (3-\alpha)}$$

(7.6) Trees with shape

There are $7!/2^3 = 630$ of them, and each one has probability

$$\frac{2^6}{7! \cdot \Gamma_{\alpha}(7)} \varphi(1,6) \varphi(3,3) \varphi(1,2)^2 \varphi(1,1)^2 = \frac{(1-\alpha)(2-\alpha)(2+3\alpha)}{315(6-\alpha)(5-\alpha)(4-\alpha)}$$

(7.7) Trees with shape

There are $7!/2^2 = 1260$ of them, and each one has probability

$$\frac{2^6}{7! \cdot \Gamma_{\alpha}(7)} \varphi(2,5) \varphi(1,4) \varphi(1,3) \varphi(1,2) \varphi(1,1)^2 = \frac{(1-\alpha)(2+\alpha)(10+\alpha)}{630(6-\alpha)(5-\alpha)(4-\alpha)(3-\alpha)}$$

(7.8) Trees with shape

There are $7!/2^3 = 630$ of them, and each one has probability

$$\frac{2^6}{7! \cdot \Gamma_{\alpha}(7)} \varphi(2,5) \varphi(2,3) \varphi(1,2) \varphi(1,1)^3 = \frac{(1-\alpha)^2 (10+\alpha)}{315(6-\alpha)(5-\alpha)(4-\alpha)}$$

(7.9) Trees with shape

There are $7!/2^4 = 315$ of them, and each one has probability

$$\frac{2^6}{7! \cdot \Gamma_{\alpha}(7)} \varphi(2,5) \varphi(1,4) \varphi(2,2) \varphi(1,1)^3 = \frac{(1-\alpha)^2 (2+\alpha) (10+\alpha)}{315 (6-\alpha) (5-\alpha) (4-\alpha) (3-\alpha)}$$

(7.10) Trees with shape

There are $7!/2^2 = 1260$ of them, and each one has probability

$$\frac{2^6}{7! \cdot \Gamma_{\alpha}(7)} \varphi(3,4) \varphi(1,3) \varphi(1,2)^2 \varphi(1,1)^2 = \frac{(1-\alpha)(2-\alpha)}{126(6-\alpha)(5-\alpha)(3-\alpha)}$$

(7.11) Trees with shape

There are $7!/2^4 = 315$ of them, and each one has probability

$$\frac{2^6}{7! \cdot \Gamma_{\alpha}(7)} \varphi(3,4) \varphi(1,2) \varphi(2,2) \varphi(1,1)^3 = \frac{(1-\alpha)^2 (2-\alpha)}{63(6-\alpha)(5-\alpha)(3-\alpha)}$$

8. \mathcal{T}_8

In \mathcal{T}_8 there are:

(8.1) Trees with shape

There are 8!/2 = 20160 of them, and each one has probability

$$\frac{2^7}{8! \cdot \Gamma_{\alpha}(8)} \varphi(1,7) \varphi(1,6) \varphi(1,5) \varphi(1,4) \varphi(1,3) \varphi(1,2) \varphi(1,1)$$

$$= \frac{(1+\alpha)(1+2\alpha)(2+\alpha)(2+3\alpha)}{2520(7-\alpha)(6-\alpha)(5-\alpha)(4-\alpha)(3-\alpha)}$$

(8.2) Trees with shape

There are $8!/2^3 = 5040$ of them, and each one has probability

$$\frac{2^7}{8! \cdot \Gamma_{\alpha}(8)} \varphi(1,7) \varphi(1,6) \varphi(1,5) \varphi(1,4) \varphi(2,2) \varphi(1,1)^2 = \frac{(1-\alpha)(1+\alpha)(1+2\alpha)(2+\alpha)(2+3\alpha)}{1260(7-\alpha)(6-\alpha)(5-\alpha)(4-\alpha)(3-\alpha)} \varphi(1,7) \varphi(1,6) \varphi(1,5) \varphi(1,6) \varphi(1$$

(8.3) Trees with shape

There are $8!/2^2 = 10080$ of them, and each one has probability

$$\frac{2^7}{8! \cdot \Gamma_{\alpha}(8)} \varphi(1,7) \varphi(1,6) \varphi(1,5) \varphi(2,3) \varphi(1,2) \varphi(1,1)^2 = \frac{(1-\alpha)(1+\alpha)(1+2\alpha)(2+3\alpha)}{1260(7-\alpha)(6-\alpha)(5-\alpha)(4-\alpha)}$$

(8.4) Trees with shape

There are $8!/2^4 = 2520$ of them, and each one has probability

$$\frac{2^7}{8! \cdot \Gamma_{\alpha}(8)} \varphi(1,7) \varphi(1,6) \varphi(2,4) \varphi(2,2) \varphi(1,1)^3 = \frac{(1-\alpha)^2 (1+2\alpha)(2+3\alpha)(8-\alpha)}{1260(7-\alpha)(6-\alpha)(5-\alpha)(4-\alpha)(3-\alpha)} \varphi(1,7) \varphi(1,6) \varphi(2,4) \varphi(2,2) \varphi(1,1)^3 = \frac{(1-\alpha)^2 (1+2\alpha)(2+3\alpha)(8-\alpha)}{1260(7-\alpha)(6-\alpha)(5-\alpha)(4-\alpha)(3-\alpha)} \varphi(1,7) \varphi(1,6) \varphi(1,7) \varphi(1,6) \varphi(1,7) \varphi(1,6) \varphi(1,7) \varphi(1,$$

(8.5) Trees with shape

There are $8!/2^2 = 10080$ of them, and each one has probability

$$\frac{2^7}{8! \cdot \Gamma_{\alpha}(8)} \varphi(1,7) \varphi(1,6) \varphi(2,4) \varphi(1,3) \varphi(1,2) \varphi(1,1)^2 = \frac{(1-\alpha)(1+2\alpha)(2+3\alpha)(8-\alpha)}{2520(7-\alpha)(6-\alpha)(5-\alpha)(4-\alpha)(3-\alpha)} \varphi(1,7) \varphi(1,6) \varphi(1,7) \varphi(1,3) \varphi(1,2) \varphi(1,1)^2 = \frac{(1-\alpha)(1+2\alpha)(2+3\alpha)(8-\alpha)}{2520(7-\alpha)(6-\alpha)(5-\alpha)(4-\alpha)(3-\alpha)} \varphi(1,7) \varphi(1$$

(8.6) Trees with shape

There are $8!/2^3 = 5040$ of them, and each one has probability

$$\frac{2^7}{8! \cdot \Gamma_{\alpha}(8)} \varphi(1,7) \varphi(1,6) \varphi(3,3) \varphi(1,2)^2 \varphi(1,1)^2 = \frac{(1-\alpha)(1+2\alpha)(2-\alpha)(2+3\alpha)}{1260(7-\alpha)(6-\alpha)(5-\alpha)(4-\alpha)}$$

(8.7) Trees with shape

There are $8!/2^2 = 10080$ of them, and each one has probability

$$\frac{2^7}{8! \cdot \Gamma_{\alpha}(8)} \varphi(1,7) \varphi(2,5) \varphi(1,4) \varphi(1,3) \varphi(1,2) \varphi(1,1)^2 = \frac{(1-\alpha)(1+2\alpha)(2+\alpha)(10+\alpha)}{2520(7-\alpha)(6-\alpha)(5-\alpha)(4-\alpha)(3-\alpha)}$$

(8.8) Trees with shape

There are $8!/2^3 = 5040$ of them, and each one has probability

$$\frac{2^7}{8! \cdot \Gamma_{\alpha}(8)} \varphi(1,7) \varphi(2,5) \varphi(2,3) \varphi(1,2) \varphi(1,1)^3 = \frac{(1-\alpha)^2 (1+2\alpha) (10+\alpha)}{1260 (7-\alpha) (6-\alpha) (5-\alpha) (4-\alpha)} \varphi(1,7) \varphi(2,5) \varphi(2,3) \varphi(1,2) \varphi(1,1)^3 = \frac{(1-\alpha)^2 (1+2\alpha) (10+\alpha)}{1260 (7-\alpha) (6-\alpha) (5-\alpha) (4-\alpha)} \varphi(1,7) \varphi(1,7)$$

(8.9) Trees with shape

There are $8!/2^4 = 2520$ of them, and each one has probability

$$\frac{2^7}{8! \cdot \Gamma_{\alpha}(8)} \varphi(1,7) \varphi(2,5) \varphi(1,4) \varphi(2,2) \varphi(1,1)^3 = \frac{(1-\alpha)^2 (1+2\alpha)(2+\alpha)(10+\alpha)}{1260(7-\alpha)(6-\alpha)(5-\alpha)(4-\alpha)(3-\alpha)} \varphi(1,7) \varphi(2,5) \varphi(1,4) \varphi(2,2) \varphi(1,1)^3 = \frac{(1-\alpha)^2 (1+2\alpha)(2+\alpha)(10+\alpha)}{1260(7-\alpha)(6-\alpha)(5-\alpha)(4-\alpha)(3-\alpha)} \varphi(1,7) \varphi(1,$$

(8.10) Trees with shape

There are $8!/2^2 = 10080$ of them, and each one has probability

$$\frac{2^7}{8! \cdot \Gamma_{\alpha}(8)} \varphi(1,7) \varphi(3,4) \varphi(1,3) \varphi(1,2)^2 \varphi(1,1)^2 = \frac{(1-\alpha)(1+2\alpha)(2-\alpha)}{504(7-\alpha)(6-\alpha)(5-\alpha)(3-\alpha)}$$

(8.11) Trees with shape

There are $8!/2^4 = 2520$ of them, and each one has probability

$$\frac{2^7}{8! \cdot \Gamma_{\alpha}(8)} \varphi(1,7) \varphi(3,4) \varphi(1,2) \varphi(2,2) \varphi(1,1)^3 = \frac{(1-\alpha)^2 (1+2\alpha)(2-\alpha)}{252(7-\alpha)(6-\alpha)(5-\alpha)(3-\alpha)}$$

(8.12) Trees with shape

There are $8!/2^2 = 10080$ of them, and each one has probability

$$\frac{2^7}{8! \cdot \Gamma_{\alpha}(8)} \varphi(2,6) \varphi(1,5) \varphi(1,4) \varphi(1,3) \varphi(1,2) \varphi(1,1)^2 = \frac{(1-\alpha)(1+\alpha)(2+\alpha)(3+\alpha)}{630(7-\alpha)(6-\alpha)(4-\alpha)(5-\alpha)(3-\alpha)} \varphi(2,6) \varphi(1,5) \varphi(1,$$

(8.13) Trees with shape

There are $8!/2^4 = 2520$ of them, and each one has probability

$$\frac{2^7}{8! \cdot \Gamma_{\alpha}(8)} \varphi(2,6) \varphi(1,5) \varphi(1,4) \varphi(2,2) \varphi(1,1)^3 = \frac{(1-\alpha)^2 (1+\alpha)(2+\alpha)(3+\alpha)}{315(7-\alpha)(6-\alpha)(5-\alpha)(4-\alpha)(3-\alpha)}$$

(8.14) Trees with shape

There are $8!/2^3 = 5040$ of them, and each one has probability

$$\frac{2^7}{8! \cdot \Gamma_{\alpha}(8)} \varphi(2,6) \varphi(1,5) \varphi(2,3) \varphi(1,2) \varphi(1,1)^3 = \frac{(1-\alpha)^2 (1+\alpha) (3+\alpha)}{315 (7-\alpha) (6-\alpha) (5-\alpha) (4-\alpha)}$$

(8.15) Trees with shape

There are $8!/2^3 = 5040$ of them, and each one has probability

$$\frac{2^7}{8! \cdot \Gamma_{\alpha}(8)} \varphi(2,6) \varphi(2,4) \varphi(1,3) \varphi(1,2) \varphi(1,1)^3 = \frac{(1-\alpha)^2 (3+\alpha)(8-\alpha)}{630(7-\alpha)(6-\alpha)(5-\alpha)(4-\alpha)(3-\alpha)}$$

(8.16) Trees with shape

There are $8!/2^5 = 1260$ of them, and each one has probability

$$\frac{2^7}{8! \cdot \Gamma_{\alpha}(8)} \varphi(2,6) \varphi(2,4) \varphi(2,2) \varphi(1,1)^4 = \frac{(1-\alpha)^3 (3+\alpha)(8-\alpha)}{315(7-\alpha)(6-\alpha)(5-\alpha)(4-\alpha)(3-\alpha)}$$

(8.17) Trees with shape

There are $8!/2^4 = 2520$ of them, and each one has probability

$$\frac{2^7}{8! \cdot \Gamma_{\alpha}(8)} \varphi(2,6) \varphi(3,3) \varphi(1,2)^2 \varphi(1,1)^3 = \frac{(1-\alpha)^2 (2-\alpha) (3+\alpha)}{315 (7-\alpha) (6-\alpha) (5-\alpha) (4-\alpha)}$$

(8.18) Trees with shape

There are $8!/2^2 = 10080$ of them, and each one has probability

$$\frac{2^7}{8! \cdot \Gamma_{\alpha}(8)} \varphi(3,5) \varphi(1,4) \varphi(1,3) \varphi(1,2)^2 \varphi(1,1)^2 = \frac{(1-\alpha)(2-\alpha)(2+\alpha)(15-2\alpha)}{2520(7-\alpha)(6-\alpha)(5-\alpha)(4-\alpha)(3-\alpha)}$$

(8.19) Trees with shape

There are $8!/2^4 = 2520$ of them, and each one has probability

$$\frac{2^7}{8! \cdot \Gamma_{\alpha}(8)} \varphi(3,5) \varphi(1,2) \varphi(1,4) \varphi(2,2) \varphi(1,1)^3 = \frac{(1-\alpha)^2 (2-\alpha)(2+\alpha)(15-2\alpha)}{1260(7-\alpha)(6-\alpha)(5-\alpha)(4-\alpha)(3-\alpha)}$$

(8.20) Trees with shape

There are $8!/2^3 = 5040$ of them, and each one has probability

$$\frac{2^7}{8! \cdot \Gamma_{\alpha}(8)} \varphi(3,5) \varphi(2,3) \varphi(1,2)^2 \varphi(1,1)^3 = \frac{(1-\alpha)^2 (2-\alpha) (15-2\alpha)}{1260 (7-\alpha) (6-\alpha) (5-\alpha) (4-\alpha)}$$

(8.21) Trees with shape

There are $8!/2^3 = 5040$ of them, and each one has probability

$$\frac{2^7}{8! \cdot \Gamma_{\alpha}(8)} \varphi(4,4) \varphi(1,3)^2 \varphi(1,2)^2 \varphi(1,1)^2 = \frac{(1-\alpha)(2-\alpha)}{252(7-\alpha)(6-\alpha)(5-\alpha)(3-\alpha)}$$

(8.22) Trees with shape

There are $8!/2^4 = 2520$ of them, and each one has probability

$$\frac{2^7}{8! \cdot \Gamma_{\alpha}(8)} \varphi(4,4) \varphi(1,3) \varphi(1,2) \varphi(2,2) \varphi(1,1)^3 = \frac{(1-\alpha)^2 (2-\alpha)}{126 (7-\alpha) (6-\alpha) (5-\alpha) (3-\alpha)}$$

(8.23) Trees with shape

There are $8!/2^7 = 315$ of them, and each one has probability

$$\frac{2^7}{8! \cdot \Gamma_{\alpha}(8)} \varphi(4,4) \varphi(2,2)^2 \varphi(1,1)^4 = \frac{(1-\alpha)^3 (2-\alpha)}{63(7-\alpha)(6-\alpha)(5-\alpha)(3-\alpha)}$$

References

- [1] D. Ford. Probabilities on cladograms: Introduction to the alpha model. PhD Thesis (Stanford University). arXiv preprint arXiv:math/0511246 [math.PR] (2005).
- [2] The Newick tree format: http://evolution.genetics.washington.edu/phylip/newicktree.html (last visited, 01/05/2017).