Chapitre 1

Le théorème de Seifert Van Kampen

1.1 Classes d'homotopie et composantes connexes par arcs

Rappel. On rappelle la notion d'homotopie

 $f,g:A\longmapsto X$ sont homotopes s'il existe une homotopie $H:A\times I\longmapsto X$ avec H(a,0)=f(a) et H(a,1)=g(a) pour tout $a\in A$.

Soient $a_0 \in A$, $x_0 \in X$ des points de base de ces espaces

Définition 1.1.1 (Homotopie au sens pointé). Deux applications pointées $(A, a_0) \mapsto (X, x_0)$, qui envoient a_0 sur x_0 , sont homotopes s'il existe une homotopie $H: A \times I \longmapsto X$ telle que $H(a_0, t) = x_0 \ \forall t \in I$. Une telle homotopie est dite *pointée*, on note $f \simeq_* g$. On note [A, X] l'ensemble des classes d'homotopie d'applications $A \longmapsto X$ et on note $[A, X]_*$ l'ensemble des classes d'homotopie pointée d'applications pointées.

Définition 1.1.2 (Fonctorialité). Soit $f: X \longmapsto Y$ et A un espace. Alors f induit

$$f_*: [A, X] \longmapsto [A, Y]$$
$$[u] \longmapsto [f \circ u].$$

Cette application est bien définie. En effet si $u \simeq v$ alors nous avons $H: A \times I \longmapsto X$ qui

induit $f \circ H : A \times I \longrightarrow Y$ avec $(f \circ H)(a,0) = f(H(a,0)) = (f \circ u)(a)$ et $(f \circ H)(a,1) = f(H(a,1)) = (f \circ v)(a)$, une homotopie entre $f \circ u$ et $f \circ v$.

Lemme 1.1.3. Si $f \simeq g$, alors $f_* = g_*$.

Démonstration. Soit $u: A \longrightarrow X$, on doit montrer que $f \circ u \simeq g \circ u$. Soit $F: X \times I \longrightarrow Y$ une homotopie entre f et g. On recompose cette application par $u \times Id: A \times I \longmapsto X \times I$ pour obtenir

$$H: A \times I \longmapsto X \times I \stackrel{F}{\longmapsto} Y$$

 $(a,t) \longmapsto (u(a),t) \longmapsto F(u(a),t).$

On obtient alors

$$H(a,0) = F(u(a),0) = (f \circ u)(a)$$
 et $H(a,1) = F(u(a),1) = (g \circ u)(a)$.

Donc H est une homotopie entre $f \circ u$ et $g \circ u$ et ainsi

$$f_*(u) = [f \circ u] = [g \circ u] = g_*(u).$$

Proposition 1.1.4. Si $X \simeq Y$, alors $[A, X] \cong [A, Y]$ au sens de bijection d'ensembles.

Démonstration. Comme $X \simeq Y$ il existe des applications $f: X \longmapsto Y$ et $g: Y \longmapsto X$ telles que $g \circ f \simeq Id_X$ et $f \circ g \simeq Id_Y$.

Considérons alors les compositions suivantes

$$\begin{split} [A,X] & \stackrel{f_*}{\longmapsto} [A,Y] & \stackrel{g_*}{\longmapsto} [A,X] \\ [u] & \longmapsto [f \circ u] & \longmapsto [g \circ f \circ u] = [u]. \end{split}$$

Ainsi $f_* \circ g_* = Id_{[A,X]}$ et de même $g_* \circ f_* = Id_{[A,Y]}$ et donc f_* et g_* sont inverses l'une de l'autre.

On illustre ces notions d'homotopie avec les composantes connexes.

Notation. On adopte dans cette section les notations suivantes

- Pour $x \in X$, on note \overline{x} la classe de x dans l'ensemble des composantes connexes de X.
- $\pi_0 X$ dénote l'ensemble des composantes connes de X.

• $S^0 := \{\pm 1\} \subset \mathbf{R}$ est la sphère unité.

Proposition 1.1.5. Soit (X, x_0) un espace pointé, alors $\pi_0 X \cong [S^0, X]_*$ comme bijection d'ensembles.

Démonstration. On veut montrer que l'application suivante passe au quotient sur les classes $[S^0, X]$.

$$\mathcal{C}((S^0, 1), (X, x_0)) \longmapsto X \longmapsto \pi_0 X$$

 $f \longmapsto f(-1) \longmapsto \overline{f(-1)}.$

En effet, si $f \simeq_* g$, il existe $H: S^0 \times I \longrightarrow X$ une homotopie pointée telle que

$$H(\pm 1, 0) = f(\pm 1)$$

 $H(\pm 1, 1) = g(\pm 1)$
 $H(1, t) = x_0.$

Ainsi H(-1,t) définit un chemin entre H(-1,0)=f(-1) et H(-1,1)=g(-1) et donc $\overline{f(-1)}=\overline{g(-1)}$.

On a obtenu une application bien définie $[S^0, X]_* \mapsto \pi_0 X$, on montre dans un premier temps la surjectivité. Soit $x \in X$, on pose

$$f_x: S^0 \longmapsto X$$
$$1 \longmapsto x_0$$
$$-1 \longmapsto x.$$

Alors $[f_x] \longmapsto \overline{x}$.

Quant à l'injectivité, soient $f,g:S^0\longmapsto X$ pointées telles que $\overline{f(-1)}=\overline{g(-1)}$. Donc f(-1) et g(-1) sont deux points de X dans la même composante connexe par arcs, il existe donc un chemin $\gamma:I\longmapsto X$ tel que $\gamma(0)=f(-1)$ et $\gamma(1)=g(-1)$. On définit alors une homotopie pointée entre f et g.

$$H: S^0 \times I \longmapsto X$$

 $(1,t) \longmapsto x_0$
 $(-1,t) \longmapsto \gamma(t).$

Ainsi [f] = [g] et l'injectivité est établie.

Remarque. On voit de cette façon l'ensemble des composantes connexes de X comme un ensemble de classes d'homotopies de la 0-sphère S^0 dans X.

1.2 Le groupe fondamental

Définition 1.2.1 (Lacet). Un lacet dans un espace X est une application $\omega: I \longrightarrow X$ avec la condition $\omega(0) = \omega(1)$. On peut ainsi voir un lacet comme une application $\gamma: S^1 \longmapsto X$.

Définition 1.2.2 (Le groupe fondamental). On définit le groupe fondamental comme étant $\pi_1 X := [S^1, X]_*$.

Il s'agît comme son nom l'indique d'un groupe, sa loi de composition est la concaténation de chemins, définie pour $f, g: I \longrightarrow X$ par

$$f \star g = \begin{cases} f(2t) & 0 \le t \le \frac{1}{2} \\ g(2t-1) & \frac{1}{2} \le t \le 1 \end{cases}.$$

1.2.1 Pincer et plier

Remarque. On retrouve souvent la nomenclature 'pinch and fold'.

Définition 1.2.3 (Pinch). L'application *pinch* de la suspension d'un espace A est obtenue en collapsant la partie centrale $A \times \frac{1}{2}$ sur un point. Plus formellement elle est définie par l'application quotient $p: \Sigma A \longmapsto \frac{\Sigma A}{A \times \frac{1}{2}}$. Ce denier quotient peut être associé au wedge $\Sigma A \bigvee \Sigma A$.

FIGURE 1.1 – Illustration du pinch de la suspension de A

FIGURE 1.2 – Illustration du pinch de S^1

Exemple 1.2.4. On illustre ici l'exemple du cercle unité $S^1 \cong \Sigma S^0$.

On défini à présent l'application de pliage.

Définition 1.2.5 (Fold). L'application de pliage fold est définie pour n'importe quel espace pointé (X, x_0) par

$$\nabla: X \bigvee X \longmapsto X := (id_X, id_X).$$

Cette construction s'appuie sur la propriété universelle du wedge, plus explicitement on a pour tout $x \in X$

$$\nabla: X\bigvee X\longmapsto X$$

$$(x,1)\longmapsto x$$

$$(x,2)\longmapsto x.$$

1.2.2 La structure de groupe de $\pi_1 X$

On illustre dans un premier temps la composition de deux lacets dans X vus comme des applications $S^1 \longmapsto X$.