SECTION 1.7: TRIG FUNCTIONS AND HYPE FUNCTJONS

TRIG FCTS

If
$$0 \in \mathbb{R}$$
, then
$$e^{i\theta} = \cos \theta + i \sin \theta$$
and

$$e^{-i\theta} = \cos\theta - i\sin\theta$$
.

$$\cos \theta = \frac{i\theta}{2} + e^{-i\theta}$$
and
 $i\theta = -i\theta$

$$\sin\theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$$

DEF 1.7.1 For ZEC, we define $\cos(z) := e^{iz} - iz$ and

$$Stn(z) := \frac{e^{iz} - e^{iz}}{zi}$$

(a)
$$\cos (2+i\pi)$$
 (b) $\sin (i \frac{5\pi}{4})$

Solutions

(a)
$$\cos(2+i\pi) = \frac{1}{2}(e^{i(2+i\pi)} - i(2+i\pi))$$

$$=\frac{1}{2}\left(e^{-\pi+2i}+e^{\pi-7i}\right)$$

$$= \frac{1}{2} \left(e^{-\pi} (\cos z + i \sin z) + e^{\pi} (\cos z - i \sin z) \right)$$

$$=\frac{1}{2}\left(e^{-\pi}+e^{\pi}\right)\cos 2$$

$$+\frac{i}{2}\left(e^{-\pi}-e^{\pi}\right)\sin 2$$

$$= \frac{1}{2} \left(e^{\pi} + e^{-\pi} \right) \cos Z - i \frac{1}{2} \left(e^{\pi} - e^{-\pi} \right) \sin 2$$

here,
$$\cosh(x) = \frac{e^x + e^x}{z}$$
 and $\sinh(x) = \frac{e^x - e^x}{z}$

(b)
$$Sin\left(\frac{iS\Pi}{4}\right) = \frac{i(i^{3}\Pi/4)}{2i} - i(i^{5}\Pi/4)$$

$$= \underbrace{e}_{-\frac{5\pi}{4}} = \underbrace{e}_{-\frac{5\pi}{4}} = \underbrace{e}_{-\frac{5\pi}{4}} = \underbrace{e}_{-\frac{5\pi}{4}} = \underbrace{e}_{-\frac{2i}{2}}$$

$$= -\frac{1.i}{i.i} \sinh(5\pi/4)$$

odd:
$$f(-z) = -f(z)$$

even: $f(-z) = f(z)$

Prop. 1.7.3

For any ZEC:

(1)
$$\cos(-z) = \cos(z)$$
 & $\sin(-z) = -\sin(z)$

(2)
$$\cos(z+2\pi) = \cos(z)$$
 & $\sin(z+2\pi) = \sin(z)$

n

Prop. the functions cos z and sin z are unbounded.

Proof.

For
$$\cos$$
: Let $z=iy$. So
$$\cos(z) = \cos(iy) = \frac{e^{-y} + e^{-y}}{2} = \cosh(y)$$

$$\Rightarrow$$
 $|\cos(z)| = \cosh(y) \rightarrow \infty$ as $y \rightarrow \infty$

For sin: Let z=iy. Then

$$Sin(z) = Sin(iy) = \frac{-y}{2i} = sinh(y)$$

$$\Rightarrow |\sin(z)| = |\sinh(y)| = \left|\frac{e^{\vartheta} - e^{-\vartheta}}{2}\right|$$

Prop. 1.7.6 Let z=zig & C. Then

- (1) $\cos(z) = \cos(x)\cosh(y) i \sin(x) \sinh(y)$
- (2) sin(2) = sin(2) coshly) + i costa) sinhly)

Proof. We prove only (1). Let z=x+iy.

 $(oslz) = \underbrace{e + e}_{2}$

 $= \frac{e^{ix-y} - ix+y}{2}$

= e^ycosx + i e^ysinx + e^ycosx -ie^ysinx

 $= \frac{\left(e^{y} + e^{-y}\right) \cos x + i \left(e^{-y} - e^{y}\right) \sin x}{2}$

= coshly) cosx - i sinhly) sinlx)

Prop.

- (1) Sinz=0 ⇔ Z= kπ, k∈Z.
- (2) $\cos z = 0 \Leftrightarrow z = \frac{\pi}{2} + k\pi, \quad k \in \mathbb{Z}.$

Proof. Prove (1) only.

(2)
$$Z = k\pi$$
 \Rightarrow $Sin(k\pi) = \frac{e - e}{2i}$

$$= (os(k\pi) + isin(k\pi))^{O}$$

$$- (osk\pi - isin(k\pi))^{O}$$

$$= o$$

$$= o$$

$$\Rightarrow e^{iz} - e^{-iz}$$

$$\Rightarrow e^{iz} = e^{iz}$$

$$\Rightarrow e^{iz} =$$

DEF 1.7.9

$$tanz = \frac{cosz}{sinz} | sinz \neq 0$$

$$cot z = \frac{1}{tanz} | cosz \neq 0$$

$$secz = \frac{1}{cosz} | cosz \neq 0$$

$$csc z = \frac{1}{sinz} | sinz \neq 0.$$