A Group-Centric Internet Architecture

Stephen Strowes 1st Year Viva June 3rd, 2008

Introduction

The Internet Architecture

The Internet Architecture

- Current Internet Architecture
 - IP Multicast deployment
- Usage models
 - Network overlays
- Imminent problems
 - IPv4 address shortage
 - DFZ scalability

- Transport identifiers vs. Network locators
 - (ID/loc)
 - Host-based solutions
 - Network-based solutions

- Routing schemes
 - Compact Routing
 - DHTs

- Roads to multicast deployment
 - Tunnelling across "legacy" zones in network
 - Reduce on-path state burden
 - Overlay multicast

- If I am asserting that a group-centric architecture is viable for the Internet, why has IP Multicast not taken off?
 - Deering multicast model
 - Accountability; who pays for what?
 - "All-or-nothing" approach to deployment
 - Distinction between uni & multicast address space

- The 1st year report presents initial ideas for a group-centric architecture
- Key goals:
 - 1. Step away from Deering model, aligned with UDP
 - 2. Step away from flat address space for multicast
 - 3. Step away from signalling state

1. Step away from Deering model

- The ability to send packets into any group, without having to be a member, seems trusting
 - Enforce a "connect" phase ("subscribe"/"register"...)
 - Implies some form of group admittance/security...
 - ... which I'm not going to touch just yet.

- 2. Step away from flat address space for multicast
 - Convey a clear sense of group ownership
 - Allow a clear "target" for connection requests
 - Either routed directly toward the source, or intercepted within an AS by a rendezvous point

3. Step away from signalling state...

- A HBH scheme suggests that:
 - State expands with size of group
 - No additional forwarding state for a group of 2 when compared to unicast
 - No necessity for any additional state in the core of the network

A Group-Centric Architecture... Key concerns?

- State explosion is still a possible concern
 - How much of a concern is it really?
- The introduction of the word "security"
 - Who secures what, where, and why?
 - I'm avoiding this question for now, though identifying it as one which must be looked at.

- Forwarding tables may still exhibit expansion rates currently observed without an overhaul to the routing algorithms
 - There is interesting work in the realm of compact routing which may produce a solution here...

The Road Ahead

Focus

- These are obviously initial ideas...
- By considering a "network architecture":
 - I'm assuming existing layer 2 (link layer) transports
 - Focus on layer 3 (network layer), routing and addressing
 - Utilise existing multicast transport protocols for layer
 4 (transport layer)

Evaluation

- How to evaluate an Internet architecture?
 - Small testbed
 - Xen cluster
 - PlanetLab
 - Network simulation

Timeline

- Internship: Nokia
 - 30/June/2008 31/October/2008
 - Therefore, year 2 of the PhD should commence November 2008.
- A paper covering high-level initial ideas, would be ideal...
- Initial work on implementation of these ideas, and investigative work on simulation and evaluation

Potential Contributions

- The main contribution will hopefully be to add to the discussion of what the future Internet looks like...
 - Group support seems natural, and lots of work looking at multicast supports this assertion
 - The distinction between unicast and multicast communications is a technical artificiality
- Up for discussion is scalability, addressability, gains/losses, etc.

... questions?