05 – Álgebra Relacional

Baseado nos slides dos professores Paulo Trigo e Porfírio Filipe Todas as alterações são da responsabilidade do professor António Teófilo

Etapas do processo

Álgebra Relacional

- Colecção de operações sobre Relações cujos resultados são também Relações.
- Cada operação inclui:
 - um conjunto de operandos
 - cada operando é uma Relação
 - um operador
 - o operador é designado por Operador Relacional
 - um resultado
 - o resultado é uma Relação
 - sendo uma Relação, o resultado poderá voltar a ser um operando numa nova operação

Álgebra Relacional (Cont.)

Operações Relacionais

- Existentes no formalismo matemático da teoria de conjuntos e aplicáveis pelo facto de uma Relação ser definida como um conjunto de tuplos:
 - □ União (operador ∪)
 - □ Intersecção (operador △)
 - Diferença (operador -)
 - Produto Cartesiano (operador ×)
- Operações elaboradas especificamente para o modelo das bases de dados relacionais:
 - Selecção, ou Restrição (operador σ)
 - \Box Projecção (operador π)
 - □ Junção (operador ⋈)
 - Divisão (operador ÷)
 - Agregação

σ - letra sigma

π - letra PI

Operações Relacionais – Guia visual

União, Intersecção, Diferença, Produto cartesiano

Exemplo: Alunos e Docentes

- Considerem-se os Esquemas de Relação:
 - ALUNO (<u>numeroAluno</u>, nomeAluno, dataNascimentoAluno)
 - DOCENTE (<u>numeroDocente</u>, nomeDocente, dataNascimentoDocente)
- E as Relações R1 e R2:

R1

numeroAluno	nomeAluno	dataNascimentoAluno
12345	António Silva	10-10-1967
54321	Isabel Sousa	10-10-1971
12321	Mário Gomes	10-10-1975

R2

numeroDocente	nomeDocente	dataNascimentoDocente		
12345	António Silva	10-10-1967		Cardinalidade = 2
11111	Joana Coutinho	10-10-1965		caramanaaac 2
)	
	Grau =	= 3		

União

- Sendo R e S duas Relações, o resultado da operação de União, denotado por R ∪ S, é uma Relação que inclui:
 - todos os tuplos que estão em R
 - todos os tuplos que estão em S
 - (os tuplos duplicados não são considerados)

Qual o conjunto de todos os alunos e docentes ?

$$B \cup S = \{ t : t \in R \lor t \in S \}$$

12345	António Silva	10-10-1967
54321	Isabel Sousa	10-10-1971
12321	Mário Gomes	10-10-1975
11111	Joana Coutinho	10-10-1965

 Notar que o tuplo <12345, 'António Silva', 10-10-1967> aparece uma única vez

9

Diferença

- Sendo R e S duas Relações, o resultado da operação de Diferença, denotado por R - S, é uma Relação que inclui:
 - todos os tuplos que estão em R mas que
 - não estão em S
- Formalmente,

$$R - S = \{ t : t \in R \land t \notin S \}$$

- Quais os alunos que não são docentes ?
 - □ R1 R2

	-	
S		

R-S

54321	Isabel Sousa	10-10-1971
12321	Mário Gomes	10-10-1975

R - S = R - (R)	\cap S)
-----------------	-----------

R1

numeroAluno nomeAluno		dataNascimentoAluno	
12345	António Silva	10-10-1967	
54321	Isabel Sousa	10-10-1971	
12321	Mário Gomes	10-10-1975	

R2

numeroDocente	nomeDocente	dataNascimentoDocente
12345	António Silva	10-10-1967
11111	Joana Coutinho	10-10-1965

Características da operação de Diferença

- A operação de Diferença não é comutativa ou seja, pode acontecer:
 - \square R-S \neq S-R
- Quais os alunos que não são docentes ?
 - □ R1 R2

54321	Isabel Sousa	10-10-1971
12321	Mário Gomes	10-10-1975

- Quais os docentes que não são alunos ?
 - □ R2 R1

Intersecção

- Sendo R e S duas Relações, o resultado da operação de Intersecção, denotado por R ∩ S, é uma Relação que inclui: R
 - todos os tuplos que estão simultaneamente em R e em S

$$R \cap S = \{ t : t \in R \land t \in S \}$$

- A Intersecção entre R e S pode também ser obtida pela operação:
 - □ (R-(R-S))
- Quais os docentes que são também alunos ?
 - \square R1 \cap R2

12345	António Silva	10-10-1967

- □ R2 ∩ R1
- □ R1 (R1 R2)
- □ R2 (R2 R1)

Operações de União, Diferença e Intersecção

- São operações binárias ou seja,
 - são aplicadas a duas Relações
- Os Atributos da Relação resultante da aplicação de uma destas operações devem ser identificados pelo seu índice de ordem no tuplo
- Estas operações só podem ser aplicada se os seus operandos (Relações) forem "Compatíveis em União"
- Duas Relações R e S são Compatíveis em União se:
 - tiverem o mesmo Grau (número de Atributos)
 - cada Atributo em R, deve ter o mesmo Domínio, que o atributo com o mesmo índice em S

Produto Cartesiano

- Sendo R e S duas Relações, o resultado da operação de Produto Cartesiano, denotado por R × S, é uma Relação que inclui:
 - todas as possíveis formas de combinar os tuplos das Relações R e S (por esta ordem)
- Formalmente,
 - □ $R \times S = \{ t1, t2 : t1 \in R \land t2 \in S \}$
- Se R tiver Grau Gr e S tiver Grau Gs,
 - □ R × S terá Grau Gr + Gs
- Se R tiver Cardinalidade Cr e S tiver Cardinalidade Cs
 - R × S terá Cardinalidade Cr * Cs

Exemplo: Empregados e Categorias

- Considere-se os Esquemas de Relação:
 - EMPREGADO (numero, nome, departamento, categoria)
 - CATEGORIA (codigo, designacao, ordenado)
- E as Relações R1 e R2:

R1

numero	nome	departamento	categoria
31445	António Silva	Contabilidade	2
30442	Isabel Sousa	Armazém	2
27710	Mário Gomes	Vendas	1

R2

codigo	designacao	ordenado
1	Estagiário	100
2	Técnico	140

- Pretende-se para cada empregado, a lista de todas as categorias
 - □ R1 × R2

numero	nome	departamento	categoria	codigo	designacao	ordenado
31445	António Silva	Contabilidade	2	1	Estagiário	100
31445	António Silva	Contabilidade	2	2	Técnico	140
30442	Isabel Sousa	Armazém	2	1	Estagiário	100
30442	Isabel Sousa	Armazém	2	2	Técnico	140
27710	Mário Gomes	Vendas	1	1	Estagiário	100
27710	Mário Gomes	Vendas	1	2	Técnico	140

Selecção

Projecção

Exemplo: Empregados

- Considere-se o Esquema de Relação:
 - EMPREGADO (<u>numero</u>, nome, departamento, categoria)

E a Relação R1:

R1

<u>n</u> umero	nome	departamento	categoria
31445	António Silva	Contabilidade	5
30442	Isabel Sousa	Armazém	4
27710	Mário Gomes	Vendas	3
35561	João Lopes	Armazém	4
27734	Pedro Nunes	Publicidade	1

Identificação de cada Atributo da Relação

- Formalmente, quando se aplica um operador, os nomes dos Atributos das Relações operando não são tidos em conta
 - cada Atributo identifica-se pelo seu índice de ordem no tuplo da Relação a que pertence
- Na prática, e para simplificar a legibilidade adopta-se por vezes identificar cada Atributo pelo seu nome
- Quando existir hipótese de ambiguidade, iremos identificar cada Atributo pelo seu índice no tuplo da Relação a que pertence,
 - escrevendo, se necessário, o índice entre os parêntesis rectos
- A categoria do empregado na relação R1 pode ser identificado por:
 - categoria
 - **4**
 - **-** [4]

Selecção ou Restrição

- Operação de Selecção, também designada por Restrição (σ)
 - escolhe o subconjunto de tuplos (linhas) que verificam determinada condição
- Sendo R uma Relação, a operação de Selecção tem o formato geral:
- Quais os empregados com categoria superior a 3?
 - \Box $\sigma_{\text{categoria} > 3}$ (R1)

numero	nome	departamento	categoria
31445	António Silva	Contabilidade	5
30442	Isabel Sousa	Armazém	4
35561	João Lopes	Armazém	4

R1

	1	categoria	departamento	nome	_umero
		5	Contabilidade	António Silva	31445
l (0:		4	Armazém	Isabel Sousa	30442
σ - Letra Sigma		3	Vendas	Mário Gomes	27710
		4	Armazém	João Lopes	35561
10	15	1	Publicidade	Pedro Nunes	2773/

Selecção ou Restrição (Cont.)

- Cada < CONDIÇÃO BOOLEANA> consiste numa sequência de cláusulas da forma:
 - Atributo> θ < Valor Constante pertencente ao Domínio>
 - \Box <Atributo> θ <Atributo>
- As diversas cláusulas podem ser ligadas pelos operadores lógicos:
 - \triangle \wedge (AND), \vee (OR), \neg (NOT)
- O operador θ pode ser:

- Quais os empregados do departamento 'Contabilidade' com categoria superior a 4 ?
 - □ σ departamento = 'Contabilidade' ∧ categoria > 4 (R1)

numero	nome	departamento	categoria
31445	António Silva	Contabilidade	5

θ - letra teta

Características da operação de Selecção

- A operação de Selecção é unária ou seja,
 - é aplicado a uma única Relação
- O Grau da Relação resultante de uma operação de Selecção é o mesmo que o da Relação à qual a operação foi aplicada (operando)
- Uma sequência de operações σ pode-se transformar numa única, através de condições de conjunção (∧)
- A composição de operações de Selecção é comutativa ou seja,
 - uma sequência de operações σ pode ser aplicada em qualquer ordem

Projecção

numero	nome	departamento	categoria
31445	António Silva	Contabilidade	5
30442	Isabel Sousa	Armazém	4
27710	Mário Gomes	Vendas	3
35561	João Lopes	Armazém	4
27734	Pedro Nunes	Publicidade	1

 π

- Operação de Projecção (π)
 - escolhe determinado subconjunto de atributos (colunas)
- Sendo R uma Relação a operação de Projecção tem o formato geral:

R1

- \Box π <LISTA DE ATRIBUTOS> (R)
- Quais os departamentos e categorias existentes ?
 - π departamento, categoria (R1)

departamento	categoria
Contabilidade	5
Armazém	4
Vendas	3
Publicidade	1

Notar que o tuplo <Armazém, 4> aparece uma única vez

Características da operação de Projecção

- Quando aplicando uma operação de Projecção existirem dois ou mais tuplos iguais, apenas um é considerado na Relação Resultante
 - isto é conhecido como "Eliminação de Duplicados"
 - garante que o resultado é uma Relação conjunto de tuplos.
- No caso da lista de atributos conter a Chave da Relação, então
 - a Relação Resultante terá o mesmo número de tuplos que a Relação à qual a operação foi aplicada (operando)
- No caso de <lista2> conter os Atributos de <lista1>, então
- No caso de lista2> não conter os Atributos de lista1>, então
 - \Box π < lista1> (π < lista2> (R)), está INCORRECTO

Sequência de operações

- Para aplicar diversas operações:
 - escrever as operações como uma única expressão
 - aplicar uma operação de cada vez, criando resultados intermédios
- Qual o número e nome dos empregados do departamento 'Armazém' ?

```
\Box \pi numero, nome ( \sigma departamento = 'Armazém' ( R1 ) )
```

Ou

□ R2
$$\leftarrow$$
 σ departamento = 'Armazém' (R1)

 \Box $\pi_{\text{numero, nome}}$ (R2)

numero	nome
30442	Isabel Sousa
35561	João Lopes

Exercícios

- Tendo o esquema de relação Empregados e a relação R1 em consideração, pretende-se obter a expressão e o resultado de:
 - a) Quais os números dos empregados do departamento de Vendas, que têm a categoria 3.
 - b) Quais os departamentos que têm algum empregado com categoria 5.
 - c) Quais as categorias dos empregados do departamento de Armazém.
 - d) Quais são os departamentos que não têm empregados com a categoria 5

R1

numero	nome	departamento	categoria
31445	António Silva	Contabilidade	5
30442	Isabel Sousa	Armazém	4
27710	Mário Gomes	Vendas	3
35561	João Lopes	Armazém	4
27734	Pedro Nunes	Publicidade	1
26483	Jorge Rodrigues	Contabilidade	3

Exercícios

- Tendo o esquema de relação Empregados e a relação R1 em consideração,
- Escreva o significado e o resultado das seguintes expressões:

```
a) \pi numero, nome (\sigma departamento \neq 'Armazém' \wedge categoria > 3 (R1))
```

b)
$$\pi_{\text{categoria}}$$
 ($\sigma_{\text{departamento}} = \text{`Armazém'}$ (R1))

c)
$$\pi_{\text{nome}}$$
 ($\sigma_{\text{categoria} < 5}$ ($\sigma_{\text{-(departamento = 'Armazém')}}$ (R1)))

R1

numero	nome	departamento	categoria
31445	António Silva	Contabilidade	5
30442	Isabel Sousa	Armazém	4
27710	Mário Gomes	Vendas	3
35561	João Lopes	Amazém	4
27734	Pedro Nunes	Publicidade	1
26483	Jorge Rodrigues	Contabilidade	3

Junção e suas variantes Divisão

Junção teta

Equijoin

Junção natural

Semi-junção

Junção externa (à direita) (à esquerda)

Exemplo: Empregados e Categorias

- Considerem-se os Esquemas de Relação:
 - EMPREGADO (numero, nome, departamento, categoria)
 - CATEGORIA (codigo, designacao, ordenado)
- E as Relações R1 e R2:

R1

numero	nome	departamento	categoria
31445	António Silva	Contabilidade	2
30442	Isabel Sousa	Armazém	2
27710	Mário Gomes	Vendas	1

R2

codigo	designacao	ordenado
1	Estagiário	100
2	Técnico	140

Produto Cartesiano e Selecção

- A aplicação de uma operação de Selecção à Relação resultante do Produto Cartesiano tem um grande interesse prático
- Pretende-se para cada empregado, conhecer tudo sobre a sua categoria
 - \Box σ categoria = codigo (R1 × R2)

numero	nome	departamento	categoria	codigo	designacao	ordenado
31445	António Silva	Contabilidade	2	2	Técnico	140
30442	Isabel Sousa	Armazém	2	2	Técnico	140
27710	Mário Gomes	Vendas	1	1	Estagiário	100

- O interesse da aplicação da operação de Selecção sobre a Relação resultante de um Produto Cartesiano,
 - levou à definição da operação de Junção (Join)

R1

numero	nome	departamento	categoria
31445	António Silva	Contabilidade	2
30442	Isabel Sousa	Armazém	2
27710	Mário Gomes	Vendas	1

codigo	designacao	ordenado
1	Estagiário	100
2	Técnico	140

05 29

Projecção sobre o produto cartesiano

R1

numero	nome	departamento	categoria
31445	António Silva	Contabilidade	2
30442	Isabel Sousa	Armazém	2
27710	Mário Gomes	Vendas	1

R2

codigo	designacao	ordenado
1	Estagiário	100
2	Técnico	140

□ R1 × R2

numero	nome	departamento	categoria	codigo	designacao	ordenado
31445	António Silva	Contabilidade	2	1	Estagiário	100
31445	António Silva	Contabilidade	2	2	Técnico	140
30442	Isabel Sousa	Armazém	2	1	Estagiário	100
30442	Isabel Sousa	Armazém	2	2	Técnico	140
27710	Mário Gomes	Vendas	1	1	Estagiário	100
27710	Mário Gomes	Vendas	1	2	Técnico	140

 \Box σ categoria = codigo (R1 × R2)

numero	nome	departamento	categoria	codigo	designacao	ordenado
31445	António Silva	Contabilidade	2	1	Estagiário	100
31445	António Silva	Contabilidade	2	2	Técnico	140
30442	Isabel Sousa	Armazém	2	1	Estagiário	100
30442	Isabel Sousa	Armazém	2	2	Técnico	140
27710	Mário Gomes	Vendas	1	1	Estagiário	100
27710	Mário Gomes	Vendas	1	2	Técnico	140

Junção

$$\sigma_{condição}$$
 (R × S)

- Sendo R e S duas Relações, a operação de Junção (*Join*) tem o formato geral:
 - □ R N <CONDIÇÃO JUNÇÃO> S
- A <CONDIÇÃO JUNÇÃO> tem o formato geral:
 - □ <CONDIÇÃO> ∧ <CONDIÇÃO> ∧ ... ∧ <CONDIÇÃO>
- A <CONDIÇÃO> tem o formato geral:
 - I θ J onde
 - I é o i-ésimo Atributo de R
 - J é o j-ésimo Atributo de S
 - I e J têm o mesmo Domínio
 - θ é um dos operadores de comparação $\{=,<,\leq,>,\geq,\neq\}$
- A operação de Junção com este formato geral é designada por "Junção Teta"

Junção (Cont.)

- A Junção entre as Relações R e S, é dada pela Selecção:
 - $\square R \bowtie _{I \theta J} S = \sigma_{AI \theta A(N + J)} (R \times S),$
 - onde N é o Grau de R
- Os tuplos cujos valores dos Atributos da Junção forem NULL,
 - não pertencem à Relação resultante
- Exemplo,
 - \square R1 \bowtie _{4>1} R2

numero	nome	departamento	categoria	codigo	designacao	ordenado
31445	António Silva	Contabilidade	2	1	Estagiário	100
30442	Isabel Sousa	Armazém	2	1	Estagiário	100

- Nas condições de Junção mais comuns, o operador θ é a igualdade,
 - nesses caso temos a operação designada por Equijoin

Junção Natural

- Considerem-se os Esquemas de Relação:
 - ALUNO (numeroAluno, nome, numeroMatricula)
 - AUTOMOVEL (numeroMatricula, modelo, cor)
- Qual o automóvel de cada aluno ?
 - □ ALUNO ⋈₃₌₁ AUTOMOVEL
- Neste exemplo,
 - o Atributo onde se especifica a condição de Junção tem o mesmo nome em ambos os Esquemas de Relação
- Quando num Equijoin são indicados Atributos com o mesmo tipo e nome,
 - basta indicar qual o nome do atributo em causa
 - □ ALUNO ⋈ numeroMatricula AUTOMOVEL
- Esta Junção designa-se por "Junção Natural"

Junção Natural (Cont.)

- Sendo R e S duas Relações contendo um mesmo sub-conjunto de Atributos X, designa-se por Junção Natural à Relação que,
 - contem todos os Atributos de R e de S que possuem os mesmo valores nos Atributos X, ou seja é o conjunto,
 - □ $\{$ < t1.A1, ..., t2.B1, ..., t1.X > : t1 ∈ R \land t2 ∈ S \land t1.X = t2.X $\}$
- A Junção Natural entre as Relações R e S, sobre o conjunto de Atributos X, é dada pela Selecção:
 - $\square R \bowtie_X S = \pi_{i1, i2, ..., im} (\sigma_{R.A1=S.A1 \land ... \land R.Ak=S.Ak} (R \times S)),$
 - □ onde i1, ..., im são todos os Atributos de R × S por ordem,
 - exceptuando os Atributos S.A1, ..., S.Ak (Atributos de X em S) *
- Omitir a indicação explicita de qual o conjunto X, ou seja escrever
 - \square R \bowtie S
 - assume que serão considerados todos os Atributos que em R e S, tenham o mesmo tipo e nome

* elimina atributos duplicados

34

Junção Natural - exemplo

ALUNO

numeroAluno	nome	numeroMatricula
12345	Miguel Sousa	12-34-EE
67890	Isabel Rocha	34-56-XG
22222	Mário Mendes	22-22-BB

AUTOMOVEL

numeroMatricula	modelo	cor
12-34-EE	Toyota	Azul
22-22-BB	For	Cinzento

Aluno ⋈ **Automovel**

Resultado

numeroAluno	nome	numeroMatricula	modelo	cor
12345	Miguel Sousa	12-34-EE	Toyota	Azul
22222	Mário Mendes	22-22-BB	Ford	Cinzento

Semi - Junção

 Sendo R e S duas Relações, a operação de Semi - Junção (Semijoin), resulta da Projecção sobre todos os Atributos de R do resultado da Junção Natural entre R e S ou seja,

$$\square$$
 R \bowtie_X S = $\pi_{R.A1,...,R.An}$ (R \bowtie_X S)

ALUNO

numeroAluno	nome	numeroMatricula
12345	Miguel Sousa	12-34-EE
67890	Isabel Rocha	NULL
22222	Mário Mendes	22-22-BB

AUTOMOVEL

numeroMatricula	modelo	cor
12-34-EE	Toyota	Azul
22-22-BB	For	Cinzento

- Quais os alunos que têm pelo menos um automóvel ?
 - □ ALUNO ⋉ numeroMatricula AUTOMOVEL

Resultado

numeroAluno	nome	numeroMatricula
12345	Miguel Sousa	12-34-EE
22222	Mário Mendes	22-22-BB

Neste caso a chave estrangeira numeroMatricula permite NULL

Junção Externa

- Nas operações de Junção (*Join*) já apresentadas, os tuplos de uma Relação que <u>não têm</u> "tuplos associados" na outra Relação (valores iguais nos atributos de *Join*) <u>não pertencem</u> à Relação resultado.
- De modo a manter todos os tuplos na Relação resultado foi definida a operação de Junção Externa (Outer Join)
- Sendo R e S duas Relações, a operação de Junção Externa (Outer Join), resulta de se,
 - adicionar à Junção os tuplos de R e S que não estão contidos nela,
 - completando-os com valores NULL para os atributos não existentes
- A Relação Externa entre R e S representa-se por,
 - □ R 🖁 IθJ S

Junção Externa (Cont.)

Considerem-se as seguintes Relações:

numero	nome	departamento	categoria
31445	António Silva	Contabilidade	3
30442	Isabel Sousa	Armazém	3
27710	Mário Gomes	Vendas	2

R2

codigo	designacao	ordenado
1	Estagiário	100
2	Técnico	140
3	Coordenador	250

- Quais os empregados e categorias existentes e para cada empregado quais as categorias superiores à sua ?
 - □ R1 🖁 _{4<1} R2

numero	nome	departamento	categoria	codigo	designacao	ordenado
31445	António Silva	Contabilidade	3	NULL	NULL	NULL
30442	Isabel Sousa	Armazém	3	NULL	NULL	NULL
27710	Mário Gomes	Vendas	2	3	Coordenador	250
NULL	NULL	NULL	NULL	1	Estagiário	100
NULL	NULL	NULL	NULL	2	Técnico	140

Junção Externa à Esquerda e à Direita

 A operação de Junção Externa à Esquerda (*Left Outer Join*) entre as Relações R e S mantém todos os tuplos da Relação escrita à esquerda do operador,

 A operação de Junção Externa à Direita (Right Outer Join) entre as Relações R e S mantém todos os tuplos da Relação escrita à direita do operador,

Junção Externa à Esquerda e à Direita (Cont.)

Considerem-se as seguintes Relações:

R1

numero	nome	departamento	categoria
31445	António Silva	Contabilidade	2
30442	Isabel Sousa	Armazém	2
27710	Mário Gomes	Vendas	1
32657	Júlio Simões	Publicidade	NULL

R₂

codigo	designacao	ordenado
1	Estagiário	100
2	Técnico	140
3	Coordenador	250
4	Gestor	340

- Pretende-se uma lista de todas as categorias existentes e para cada categoria os empregados dessa categoria.
 - □ R1 🖁 _{4 = 1} R2

numero	nome	departamento	categoria	codigo	designacao	ordenado
31445	António Silva	Contabilidade	2	2	Técnico	140
30442	Isabel Sousa	Armazém	2	2	Técnico	140
27710	Mário Gomes	Vendas	1	1	Estagiário	100
NULL	NULL	NULL	NULL	3	Coordenador	250
NULL	NULL	NULL	NULL	4	Gestor	340

Divisão

- A operação de Divisão de uma relação R por uma relação S produz a Relação quociente Q,
 - \square R \div S
- R e S têm que ser Compatíveis em Divisão:
 - se X é o conjunto de atributos de R e Y o conjunto de atributos de S então,
 R e S são Compatíveis em Divisão se X ⊇ Y
- A Relação quociente Q (resultado da operação R ÷ S),
 - os atributos que vão ser examinados são os que pertencem simultaneamente às duas relações, R e S
 - são procurados os conjuntos de tuplos em R onde os valores dos atributos comuns são iguais a todos os que aparecem em S
 - o quociente será, desses tuplos, os valores dos atributos de R que não fazem parte de S
 A B C
 B C

41

Divisão (Cont.)

Considerem-se as seguintes Relações:

FORNECEDOR_PRODUTO

numeroFornecedor	codigoProduto	
1	Arroz	
2	Arroz	
2	Café	
3	Café	

PRODUTO

codigoProduto		
Arroz		
Café		

- Qual o produtor que fornece todos os produtos ?
 - □ FORNECEDOR_PRODUTO ÷ PRODUTO

numeroFornecedor
2

Divisão (Cont. 1)

- Formalmente, sendo R(A1, ..., Ap, Ap+1, ..., An) e S(Ap+1, ..., An) duas
 Relações, designa-se por Divisão de R por S à Relação
 - Q(A1, ..., Ap) tal que,
 - o tuplo que resulta da concatenação de qualquer tuplo de Q com qualquer tuplo de S, dá um tuplo existente em R

Agregação

Agregação – apresentação do conceito

- A operação de agregação junta várias linhas numa só, e que executa uma determinada função de agregação ao conjunto de linhas agregadas
- Exemplo:
 - Na relação seguinte pretende-se saber o total de salários de cada departamento R1

numero	nome	departamento	salario
31445	António Silva	Contabilidade	130
30442	Isabel Sousa	Armazém	240
27710	Mário Gomes	Vendas	240
27720	Maria Mendes	Vendas	300
27730	João Pereira	Vendas	130

 Cada conjunto de tuplos de cada departamento será agregado num só tuplo, que contém o nome do departamento e o somatório da coluna de salário do respectivo departamento.

departamento	salario
Contabilidade	130
Armazém	240
Vendas	670

De notar que as restantes colunas não podem figurar no resultado pois poderiam apresentar valores diferentes nos vários tuplos e não havendo uma função de agregação para tal situação esses valores não poderiam ser agregados

BD - 05 45

Exemplo de agregação

R1

numero	nome	departamento	salario
31445	António Silva	Contabilidade	130
30442	Isabel Sousa	Armazém	240
27710	Mário Gomes	Vendas	240
27720	Maria Mendes	Vendas	300
27730	João Pereira	Vendas	130
31023	Luís Mendes	Contabilidade	150
32645	Jorge Pimenta	Armazém	230

31445	António Silva	Contabilidade	130
31023	Luís Mendes	Contabilidade	150

Departamento	Sum salario
Contabilidade	280

30442	Isabel Sousa	Armazém	240
32645	Jorge Pimenta	Armazém	230

Departamento	Sum salario
Armazém	270

27710	Mário Gomes	Vendas	240
27720	Maria Mendes	Vendas	300
27730	João Pereira	Vendas	130

1/	Departamento	Sum salario
vendas 670	Vendas	670

Agregação por departamento com somatório de salários

Todos os tuplos com o mesmo valor de Departamento são agregados numa mesma linha, que só poderá conter os atributos de agrupamento (Departamento) e colunas resultantes de agregações (sum(salario))

Resultado

departamento	salario
Contabilidade	280
Armazém	270
Vendas	670

Agregação – operador de agregação

- O operador de agregação deve indicar:
 - Atributos para agrupamento
 - Indicação de que colunas devem ser consideradas na agregação
 - Estipula qual o critério de agregação, ou seja, de junção dos tuplos
 - □ Funções de agregação
 - Lista de pares de: <função de agregação> <argumento>
 - Estipula quais as funções que se quer aplicar aos tuplos agregados, de modo a produzir resultados (também agregados) por conjunto de tuplos agregados
 - Da aplicação desse operador resultará um esquema de relação com os atributos para agrupamento e com uma coluna por cada função de agregação indicada
- Definição do operador de agregação
 - □ Símbolo: ℑ (script F)
 - □ Sendo R uma Relação, ℑ tem o formato geral:
 - <atributos para agrupamento> \mathfrak{I} <funções de agregação> (R)

Funções de Agregação

- Função de Agregação função que agrega valores de vários tuplos num só valor
 - COUNT *: contagem do nº de tuplos agregados
 - COUNT idColuna: contagem do nº de tuplos agregados com valores diferentes de NULL na coluna
 - SUM idColuna: somatório dos valores da coluna
 - AVG idColuna: média dos valores da coluna
 - MAX idColuna: valor máximo dos valores da coluna
 - MIN idColuna: valor mínimo dos valores da coluna
- Aplicações:
 - O exemplo do total de salários de cada departamento ficaria:
 - departamento 3 sum salario (R1)
 - O total de salários (de todos os departamento)
 - 3 sum salario (R1)

departamento	sum salario	
Contabilidade	130	
Armazém	240	
Vendas	670	

Sum salario	
1040	

Agregação – Exercícios

Considerando R2:

- Qual o valor máximo e o mínimo de salários do departamento de Vendas ?
 - σ departamento = "Vendas" (departamento 3 MAX salario, MIN salario (R2)), ou melhor ainda
 - departamento 3 MAX salario, MIN salario (σ departamento = "Vendas" (R2))

departamento	Max salario	Min salario
Vendas	300	130

- indique para cada departamento e para cada função qual o número de funcionários e salário médio deles.
 - □ departamento, funcao ℑ COUNT *, AVG salario (R2)

R2

departamento	funcao	Count *	Avg salario
Produção	Estagiário	1	130
Produção	Operacional	3	260
Produção	Director	1	350
Vendas	Estagiário	2	135
Vendas	Operacional	2	255
Vendas	Director	1	300

numero	nome	departamento	salario	funcao
31445	António Silva	Produção	130	Estagiário
30442	Isabel Sousa	Produção	240	Operacional
27710	Mário Gomes	Vendas	240	Operacional
27720	Maria Mendes	Vendas	300	Director
27730	João Pereira	Vendas	130	Estagiário
26345	Manuel Oliveira	Produção	350	Director
32541	Ana Isidro	Produção	290	Operacional
34472	Marta Cunha	Vendas	140	Estagiário
33121	José Matos	Produção	250	Operacional
30126	Jorge Pinto	Vendas	270	Operacional

Exercícios

Exercício 1 (Esquemas de relação)

- Considere os seguintes Esquemas de Relação e respectivas Relações:
 - EMPRESA (<u>numeroContribuinte</u>, nome)
 - FILIAL (<u>numeroContribuinte</u>, <u>codigo</u>, localidade)
 - FK: {numeroContribuinte} → EMPRESA
 - EMPREGADO (<u>numeroEmpregado</u>, nome, numeroContribuinte, codigo)
 - FK: {numeroContribuinte, codigo} → FILIAL

EMPRESA

numeroContribuinte nome 555556666 BigC 666664444 LitleZ 123456789 A&B 777777777 MMM

FILIAL

numeroContribuinte	codigo	localidade
555556666	1	Lisboa
666664444	1	Porto
123456789	1	Coimbra
123456789	2	Leiria
123456789	3	Lisboa

EMPREGADO

numeroEmpregado	nome	numeroContribuinte	codigo
10	Isabel Ferreira	555556666	1
111	Pedro Marques	555556666	1
21	João Nunes	123456789	3
54	Ana Sousa	123456789	2
300	Luísa Fonseca	NULL	NULL

Grupo 1 – interpretação de interrogações

Relativamente às Relações apresentadas: efectue as seguintes operações, apresentando o resultado sob a forma de uma tabela; e escreva em português a questão cuja resolução seria o conteúdo da respectiva alínea.

a)
$$\pi_{NOME}$$
 (EMPRESA)

b)
$$\sigma_{\text{LOCALIDADE = 'Lisboa' v LOCALIDADE = 'Leiria'}}$$
 (FILIAL)

C)
$$\pi_{\text{numeroContribuinte}}$$
 ($\sigma_{\text{NOME = 'BigC'}}$ (EMPRESA))

d)
$$\pi$$
 numeroEmpregado, nome, localidade (EMPREGADO $\bowtie_{3=1 \land 4=2}$ ($\sigma_{\text{LOCALIDADE}} = \text{`Lisboa'}$ (FILIAL)))

e)
$$\pi_{2,5,7}$$
 (EMPRESAM ₁₌₆ (FILIALM _{1=3 \times 2=4} EMPREGADO))

FILIAL

numeroContribuinte	codigo	localidade
555556666	1	Lisboa
666664444	1	Porto
123456789	1	Coimbra
123456789	2	Leiria
123456789	3	Lisboa

EMPREGADO

numeroEmpregado	nome	numeroContribuinte	codigo
10	Isabel Ferreira	555556666	1
111	Pedro Marques	555556666	1
21	João Nunes	123456789	3
54	Ana Sousa	123456789	2
300	Luísa Fonseca	NULL	NULL

numeroContribuinte

555556666

666664444

123456789

nome

BigC LitleZ

A&B

MMM

Grupo 2 : operações e interrogações

Indique a expressão em álgebra relacional que permite obter:

- a) a localidade em que trabalha o empregado com número de empregado 111
- b) o nome da empresa em que trabalha a 'Ana Sousa'
- c) por cada empresa (nome) o seu número de funcionários