Module 2. Univariate statistics Data Science & Al

Sabine De Vreese Stijn Lievens Lieven Smits Bert Van Vreckem 2021–2022

Contents

Central Tendency and Dispersion Measure of Central Tendency Measures of Dispersion Summary

Data visualisation
Simple Graphs
Interpretation of Charts

Learning Goals

- Descriptive statistics
- Central tendency and dispersion for each measurement level
- Know formulas, being able to calculate
- Suitable visualization techniques for each measurement level

Central Tendency and Dispersion

HO GENT

How tall are my friends?

Remember our superheroes:

Measure of Central Tendency

What value is representative of the entire group?

Mean or Average

Arithmetic mean

The arithmetic mean (notation: \bar{x}) is the sum of all values divided by the number of values

$$\overline{x} = \frac{1}{n} \sum_{x=1}^{n} x_i$$

<i>x</i> ₁		<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅
14	1	198	143	201	184

Mean or Average

- Q1 What happens if Kabouter Wesley (10 cm) is added?
- Q2 The arithmetic mean of 15 numbers is 12. What number should be added to get a mean of 13?

Median

Median

To find the median, sort all values and pick the middle number

- Odd number of values: no problem
- Even number of values: average of the middle two

<i>x</i> ₁	<i>x</i> ₂	<i>X</i> ₃	X_4	<i>X</i> ₅
141	198	143	201	184

Median

- Q1 What happens if Kabouter Wesley (10 cm) is added?
- Q2 What is the median of the number of people saved by Batman during the last eight years?

4	7	11	16	20	22	25	26	

Mode

Mode

The mode is the value that appears most often in a dataset.

Number of people saved by Superman during the last 15 years:

Number of people saved by Batman during the last 8 years:

Measures of Dispersion

How large are the differences within the group?

Range

Range

The range of a dataset is the absolute value of the difference between the highest and the lowest value.

<i>x</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅
141	198	143	201	184

Quartiles

Quartiles

The quartiles of a sorted set of numbers are the three values that divide the set into 4 equally large subsets. Notation: Q_1 , Q_2 , Q_3

Number of people saved by Superman during the last 15 years:

Calculating Quartiles

- Different software programs have slightly different ways of calculating quartiles.
- The following method is easy to perform by hand. Start by sorting the values.
 - O When n is odd.
 - The median (Q_2) is the middle value (as before).
 - Leave out the median. ${\it Q}_{1}$ is the median of the first half, ${\it Q}_{3}$ is the median of the second half.
 - O When n is even.
 - The median (Q_2) is the average of the two middle values.
 - $-Q_1$ is the median of the first half, Q_3 is the median of the second half.

Variance and Standard Deviation

Variance

The variance (s^2 or σ^2) is the mean squared difference between the values of a data set and the arithmetic mean.

$$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2$$

Standard deviation

The standard deviation (s or σ) is the square root of the variance

<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	X ₄	<i>X</i> ₅
141	198	143	201	184

• Can the standard deviation be negative?

- Can the standard deviation be negative?
- What is the smallest possible value? What does this imply?

- Can the standard deviation be negative?
- What is the smallest possible value? What does this imply?
- What effect do outliers have on the standard deviation?

- Can the standard deviation be negative?
- What is the smallest possible value? What does this imply?
- What effect do outliers have on the standard deviation?
- What is the unit of the standard deviation (in relation to the unit of the variable)?

- Can the standard deviation be negative?
- What is the smallest possible value? What does this imply?
- What effect do outliers have on the standard deviation?
- What is the unit of the standard deviation (in relation to the unit of the variable)?
- How do you interpret the standard deviation combined with the average?

Why n-1 in the denominator and not n? You can prove the reason for the change mathematically, but we will investigate it empirically

See Python example code in demo-analysis-1-var.ipynb

21 februari 2014 16:28

This news item reports on high prices for houses and flats. Do the numbers give a good idea of the situation?

Remember!

Providing only a center value is never sufficient!

- What is the dispersion?
- How is the data distributed? Normal distribution?
- Is the group sufficiently homogeneous?

Central Tendency and Dispersion: Summary

Measurement Level	Center	Spread Distribution
Qualitative	Mode	_
Quantitative	Average/Mean Median	Variance, Standard Deviation Range, Interquartile Range

Summary of Symbols

	Population	Sample
number of elements	N	n
average or mean	μ	\overline{x}
variance	$\sigma^2 = \frac{\sum (x_i - \mu)^2}{N}$	$s^2 = \frac{\sum (x_i - \overline{x})^2}{n - 1}$
standard deviation	σ	S

Data visualisation

Chart type overview

Measurement level	Chart type	
Qualitative	Bar chart	
Quantitative	Boxplot Histogram Density plot	

See Python-example code in demo-analysis-1-var.ipynb

Pie Chart

Attention!

Avoid using a pie chart!

Disadvantages:

- Comparing angles is harder than comparing length
- Unusable for data with many categories

Pie Chart

What people are saying about your pie chart

Interpretation of Charts

Tips:

- Label the axes
- Add a clear title
- Name the unit (and, if necessary, order of magnitude)
- Add a label that clarifies the chart

Data distortion

= misrepresenting data so that invalid conclusions are drawn

Data distortion

Data distraction

- Avoid bells and whistles
- Minimize "ink to data" ratio

Active Duty Personnel, 1998

The importance of data visualization

Anscombe's Quartet are four completely different datasets with the same measurements of central tendency and dispersion.

"The Datasaurus Dozen" (Source: https://www.autodeskresearch.com/publications/samestats)