République Algérienne Démocratique et Populaire Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

Université A. Mira de Béjaïa Faculté des Sciences Exactes Département d'Informatique

Mémoire de Fin de Cycle

En vue de l'obtention du diplôme de Licence en Informatique Générale

Thème

Intitulé de votre mémoire

Réalisé par

 $\begin{array}{lll} \text{M. NOM Pr\'enom} & \text{M. NOM Pr\'enom} \\ \text{M}^{lle} \text{ NOM Pr\'enom} & \text{M. NOM Pr\'enom} \\ \text{M}^{lle} \text{ NOM Pr\'enom} & \text{M}^{lle} \text{ NOM Pr\'enom} \end{array}$

Devant le jury composé de

Président: M. NOM Prénom Grade de l'enseignant Université de Béjaïa Examinateur: M. NOM Prénom Grade de l'enseignant Université de Béjaïa \mathbf{M}^{me} NOM Prénom Examinatrice: Grade de l'enseignante Université de Béjaïa Encadrant: M. NOM Prénom Grade de l'enseignant Université de Béjaïa

\mathbf{T}	•	
K	emerciements	
Τl	CHIEL CICHICITOS	

 $\mathbf{Texte}\ \dots$

 $\mathbf{Texte}\ \dots$

 $\mathbf{Texte}\ \dots$

 $\mathbf{Texte}\ \dots$

 $\mathbf{Texte}\ \dots$

\mathbf{T}		1 •			
1)	Δa	11	\mathbf{c}	ces	
L	$\mathbf{C}^{\mathbf{U}}$	41	Ca	CCS	

 $Texte\ \dots$

M. NOM Prénom

Texte ...

 \mathcal{M}^{lle} NOM Prénom

Table des matières

\mathbf{T}_{i}	able	des matières	i
\mathbf{T}_{i}	able	des figures	iii
\mathbf{L}^{i}	iste	des tableaux	iv
\mathbf{L}^{i}	iste	des abréviations	v
Ir	ntrod	duction générale	1
1	con	text et problématique	2
	1.1	Introduction	2
	1.2	UML	2
	1.3	Application mobile	2
	1.4	Contexte du projet	4
	1.5	Cahier des charges	4
	1.6	Conclusion	4
2	Spé	cification des besoins et conception	5
	2.1	Introduction	5
	2.2	spécification et analyse des besoins	5
		2.2.1 Identification des acteurs	5
		2.2.2 Identification des besoins	5
		2.2.3 Titre de la deuxième sous-section	6
	2.3	Conclusion	6
3	Imr	olémentation	7
	3.1	Introduction	7
	3.2	Environnement de développement	7
		3.2.1 Android Studio	7
		3.2.2 Git et GitHub	7
	3.3	Outils de développement	7
		3.3.1 SDK de Android	7
		3.3.2 JDK	8
	3.4	Langage de programmation	8

3.5	Persistance des données		8
3.6	Librairies utilisées		9
3.7	Présentation des interfaces		9
	3.7.1 Interface d'accueil		9
	3.7.2 Interface d'ajout d'un calendrier		10
	3.7.3 Interface d'ajout d'événement		10
3.8	Conclusion		11
Conc	lusion générale et perspectives	1	12
Biblic	ographie	1	13

Table des figures

1.1	Les différents types d'applications
2.1	diagrame cas d'utilisation
	Architecture de Room
3.2	Interface d'accueil
3.3	Ajout d'un calendrier
3.4	Ajout d'un événement

Liste des tableaux

2.1 Titre du tableau			6
----------------------	--	--	---

Liste des abréviations

SE Système d'Exploitation

UML Unified Modeling Language

UP Unified Process

Introduction générale

 ${\bf Texte}\ \dots$

Chapitre 1

context et problématique

1.1 Introduction

pour realiser une application de qualité il faut un plan, une méthodologie. La première étape de cette méthodologie est l'analyse qui va nous permettre de répertorier les fonctionnalités principales de l'application, tant dit que l'étape de conception va nous permettre de modéliser les solutions suite à l'analyse en ayant recours au langage de modélisation choisi. Le langage UML(Unified Modeling Language) sera présenté au cours de ce chapitre, puis nous parlerons des applications mobiles et du contexte du projet actuel puis on finira avec un cahier des charge.

1.2 UML

UML (Unified Modeling Language) se définit comme un language de modélisation graphique et textuel. Il est destiné à décrire des besoins, spécifier et documenter des systèmes, esquisser des architectures logicielles, concevoir des solutions et communiquer des points de vue. UML unifie également les notations nécessaires aux différentes activités d'un processus de développement d'applications et offre, par ce biais, le moyen d'établir le suivi des décisions prises, depuis l'expression des besoins jusqu'à l'étape de réalisation.

E n fait, et comme son nom l'indique, UML n'a pas l'ambition d'être exactement une méthode : c'est un langage. UML est donc non seulement un outil intéressant, mais une norme qui s'impose en technologie à objets et à laquelle se sont rangés tous les grands acteurs du domaine, acteurs qui ont d'ailleurs contribué à son élaboration.

1.3 Application mobile

Une application mobile n'est rien d'autre qu'un logiciel téléchargeable que l'on installe facilement sur nos smartphones(mobile intelligent) comme on ferait sur notre ordinateur. Le téléchargement de l'application mobile se fait suivant deux options :

- Sur téléphone par le biais de connexion Internet.
- Sur ordinateur en le branchant avec le téléphone mobile.

Il existe trois types distincts selon leurs spécificités techniques qui sont :

Application Native: Ces applications sont liés au système d'exploitation sur le quel sont installées car elles utilisent des caractéristiques reliées à celui-ci. Elle sont écrites dans un langage adapté au système d'exploitation en question. Ce type d'application est accessible seulement sur les systèmes d'exploitation auxquelles sont destinées. Ces plate-formes retirent 25 du prix de vente pour une application native payante.

Application Web: Ce sont toutes les applications conçues grâce aux outils de développent web actuels (HTML, CSS, JavaScript..). Elles sont accessible sur tout les mobiles via un navigateur Web ce qui la rend plus intéressante sur le point de vue financier car les coûts de développement sont réduits vue qu'on développe une seule application qui est compatible avec tous les smartphones quelque soit leur système.

Application Hybride: sont des applications qui incorporent les deux principes de développement des types précédemment cités. Les caractéristiques des applications web et celles
des application native. Elles pourront être distribuées sur les plate-formes de téléchargement
telles que l'Apple Store (iOS), Play Store (Android) ou encore Windows Store (Windows
Phone). L'utilisateur peut donc installer ces applications et consulter leur contenu sans avoir
à passer par un navigateur web. Ce type d'application mobile minimise les charges et la
durée de son développement même si cela sera au détriment du perfectionnement et de la
qualité qui caractérise l'application native.

La figure suivante illustre les trois types cités.

FIGURE 1.1 – Les différents types d'applications.

1.4 Contexte du projet

On dit toujours que le temps est la chose la plus précieuse car on peut tout acheter sauf le temps. Quoi qu'on fasse, une journée durera toujours 24 heures et le rythme de vie de la société moderne nous fait sentir que l'on est en perpétuellement en manque de temps. Donc la solution serait qu'on organise mieux notre temps. En utilisant une des plus grandes inventions modernes accessibles à tous qui est le smartphone ceci en mettant entre vos mains un outil aussi simple qu'efficace, capable de vous accompagnez tout au long de votre journée pour vous rappeler ce que vous avez prévu à quelle heure et bien plus encore.

Voila pourquoi on a décider de réaliser ce projet. On a décidé de faire une application dont le mot d'ordre est simplicité. Tout au long de ce travail, nous allons raisonné avec le principe du rasoir d'Ockham également appelé principe de simplicité. Vous allez voir une conception simple, des diagrammes très légers pour aboutir a un résultat fidèle à ce principe que nous avons pas décelé dans les applications testées.

Vous avez tendance à arriver en retard ou carrément à rater des rendez-vous car vous aviez prévu autre chose au même moment sans le savoir? Vous faites pleins d'activités et vous n'arrivez plus à vous situer? Vous ne savez pas quoi répondre quand on vous demande si vous êtes libre à tels moment? Désormais, vous n'allez plus plus à réfléchir pour répondre à cette question grâce a notre application.

1.5 Cahier des charges

l'application à développer aura pour mission d'offrir une représentation des événements et des activités de l'utilisateur pendant les jours de la semaine. Pour cela, l'application devra répondre à ces besoins avec les fonctionnalités suivantes :

- Permettre à l'utilisateur d'organiser ses activités et les regrouper dans de différents calendriers.
- Permettre à l'utilisateur d'ajouter des activités dans le calendrier qui leur convient.
- Offrir une interface intuitive à l'utilisateur pour afficher ses activités.
- Générer des alertes/notifications pour les activités correspondantes.

1.6 Conclusion

Texte ...

Chapitre 2

Spécification des besoins et conception

2.1 Introduction

Texte ...

2.2 spécification et analyse des besoins

Une phase décisive du processus de développement dune application elle nous permet de identifier les acteurs formaliser les besoins fonctionnels et non fonctionnels .déduire les différents cas dutilisation a partir des besoins fonctionnels et les détaillées .on va conclure cette section avec des maquettes IHM et leurs lins de navigation .

2.2.1 Identification des acteurs

Lapplication est supposer fournir une représentation simplifier de lemploi du temps dune personne (ex :étudiant).suit a ca nous avons identifié un seule acteur qui est lutilisateur lui-même

2.2.2 Identification des besoins

Besoins fonctionnel Permettre a lutilisateur dajouter des évènements et de les administrer dans les calendriers qui leurs correspondent qui il auras préalablement pris le soin de créer selon ses besoin .il devras être rappeler et informer des évènements pour les quels il a définie des alerte même lorsque lapplication est arrêté .Avoir une représentation détailles sur sont emplois du temps générale (tous les calendriers)ou un seul . adapter la représentation pour afficher une seule journée ,3 jours ,une semaine . lui permettre de modifier a tous moment les information déjà saisie .

Besoin non fonctionnel Lapplication dois remplir des critères non fonctionnels comme :

— La fiabilité :si application crache et que lutilisateur na pas reçu lalerte cela peux savérer problématique .

- Lutilisabilité :lutilisateur dois pouvoir métriser le fonctionnements de lapplication facilement et rapidement .
- Performance :on est amener a vérifié notre emplois du temps plusieurs fois par jour .lapplication doit être accessible rapidement pour ne pas contrarier lutilisateur .

La figure $2.1 \dots$

2.2.3 Titre de la deuxième sous-section

Texte ...

Colonne 1	Colonne 2	Colonne 3	
Ligne 1 Colonne 1	Ligne 1 Colonne 2	Ligne 1 Colonne 3	
Ligne 2 Colonne 1	etc.	etc.	

Table 2.1 – Titre du tableau.

2.3 Conclusion

Texte ...

de cas d'utilisation. PNG

Figure 2.1 – diagrame cas d'utilisation.

Chapitre 3

Implémentation

3.1 Introduction

Ce dernier chapitre est consacré à la partie pratique de la réalisation de notre projet. Dans un premier temps, nous allons énumérer les différents outils de développement qui nous ont permis de mener à bien notre application mobile. Ensuite, nous allons présenté les différents langage de programmation utilisés, les librairies et enfin les différentes interfaces de notre application.

3.2 Environnement de développement

3.2.1 Android Studio

Android Studio est un environnement de développement intégré(EDI) permettant de développer des applications sous Android. Développé par Google, il se base sur l'EDI IntelliJ de JetBrains. Il offre les outils nécessaires pour développer des applications mobiles natives destinées à Android. Ainsi, il permet d'éditer des fichiers Java/Kotlin pour la partie programmation et des fichiers XML pour la partie graphique.

3.2.2 Git et GitHub

Git est un logiciel libre de gestion de versions, sous licence publique générale GNU 2. GitHub est un service web de gestion et d'hébergement de projet de développement logiciel utilisant le logiciel Git.

3.3 Outils de développement

3.3.1 SDK de Android

Le SDK (Software Developpement Kit) de Android est un ensemble d'outils de développement essentiel au développement d'application mobile sous Android, il inclut ainsi de différents outils

tel qu'un débogueur, de la documentation, un émulateur basé sur QEMU et un ensemble de bibliothèques logicielles.

3.3.2 JDK

Le JDK (Java Developement Kit) est un ensemble d'outils et de bibliothèques logicielles destinées à la programmation Java. Il est nécessaire notamment pour la compilation du code Java qui sera transformé en bytecode pour être exécuté par la Java Virtual Machine (JVM).

3.4 Langage de programmation

Java est un langage de programmation orienté objet, puissant, il a la particularité d'être portable c'est-à-dire avoir la possibilité d'exécuter les programmes écrits en Java sous n'importe quel système d'exploitation grâce a la JVM incluse dans le JDK.

XML eXtensible Markup Language (Language de balisage extensible en français) est un métalanguage informatique de balisage générique. Il permet ainsi de structurer des données grâce à des balises.

3.5 Persistance des données

Comme nous l'avons vu durant les chapitres précédents, il est primordial de stocker en permanence les données. Ceci dit, une base de données locale est suffisante dans notre contexte.

SQLite est une bibliothèque de Android qui propose un moteur de base de données relationnelles accessible par SQL.

Room est une librairie de base de données développée par Google. Elle est une couche d'abstraction à SQLite. En effet, Room facilite la gestion de la base de données, de sa création à la lecture des données en passant par leur mise à jour de manière fluide pour exploiter toute la puissance de SQLite. Son principal atout est de détecter les erreurs de SQL à la compilation du code. Elle offre aussi la possibilité d'exécuter les requêtes SQL dans différents Threads évitant ainsi de se surcharger le Thread principal, Elle permet aussi de mettre en cache des données lors de l'absence d'une connexion Internet. Elle est composée de :

Entités : Les entités est l'ensemble de classes dont chacune d'elle représente une table dans la base de données.

DAOs(Data Access Objects): Ce sont des interfaces qui ont pour rôle de gérer toutes les requêtes SQL, elle agit comme un intermédiaire entre la base de données et le reste de l'application. Chaque entité doit avoir son propre DAO.

Base de données: Elle contient toutes les tables et toutes les données stockées.

La figure suivante résume l'architecture de Room

FIGURE 3.1 – Architecture de Room.

3.6 Librairies utilisées

WeekView est une librairie qui affiche la vue d'un calendrier. Elle a été utile pour l'affichage des événements sur un calendrier, elle implémente également plusieurs fonctionnalités rendant ainsi l'application plus intuitive.

ColorPicker est comme son nom l'indique, une librairie qui permet de choisir une ou plusieurs couleurs.

Il est à noter que les librairies utilisées étaient libres, open-source et disponibles sur GitHub.

3.7 Présentation des interfaces

3.7.1 Interface d'accueil

Cette première figure présente l'interface d'accueil, ceci est la première interface affichée à l'utilisateur au lancement de l'application. Son principal composant est une vue calendrier, il regroupe les différents événements préalablement ajoutés par l'utilisateur. Chaque événement est affiché avec la couleur du calendrier auquel il appartient. Aussi, nous avons un bouton flottant qui permet d'ajouter des événements, un menu latéral pour naviguer entre les différentes activités de l'application et enfin un menu qui ouvre une liste déroulante pour changer la vue du calendrier.

FIGURE 3.2 – Interface d'accueil.

3.7.2 Interface d'ajout d'un calendrier

La figure 3.3 représente l'interface d'ajout d'un calendrier, elle nous permet d'ajouter un calendrier. Pour cela, il suffit de remplir les champs et de faire le choix de la couleur avec laquelle seront affichés les événements de appartenant au calendrier.

FIGURE 3.3 – Ajout d'un calendrier.

3.7.3 Interface d'ajout d'événement

La figure ci-dessous représente l'interface d'ajout d'un événement. L'utilisateur est invité à remplir les champs, à choisir à quel calendrier appartient-il et enfin décider à quel moment il souhaite être alerté voire désactiver complètement l'alerte.

FIGURE 3.4 – Ajout d'un événement.

3.8 Conclusion

Dans ce dernier chapitre, nous avons vu les différents environnements de développement et décrit les outils utilisés notamment GitHub qui a été un outil clé pour notre travail collaboratif. Nous avons vu également les différents langage de programmation. Concernant la base de données, Room a été un véritable plus avec sa facilité à gérer et implémenter la base de données. Aussi, les différentes librairies qui nous ont permis de gagner un temps précieux. Enfin, nous avons vu les différentes interfaces principales qui composent notre application.

Conclusion générale et perspectives

Texte ...

En guise de perspectives, nous envisageons de ...

Bibliographie

- [1] P. ROQUES, UML 2 Modéliser une Application Web, 4e édition, Eyrolles, Paris, 2008.
- [2] Visual Paradigm, Leading UML, BPMN, EA, Agile and Project Management Software, https://www.visual-paradigm.com/, Version 15.0, Consulté le 17/03/2018.
- [3] ...

Résumé

Texte en français ...

 \boldsymbol{Mots} clés : mot clé 1, mot clé 2, mot clé 3, mot clé 4, mot clé 5

Abstract

Texte en anglais ...

Keywords: mot clé 1, mot clé 2, mot clé 3, mot clé 4, mot clé 5