

ICT30010 eForensic Fundamentals

SWINBURNE
UNIVERSITY OF
TECHNOLOGY

Lecture 1
Introduction to eForensics

**Troy Pretty** 

Digital Forensic Analyst





## Teaching Team

- Mr Troy Pretty
  - Lecturer and Tutorial
    - Email: tpretty@swin.edu.au
  - 11 years experience in computer forensics
  - 6 years teaching ICT30010
  - Interests:
    - Malware
    - Reverse Engineering



## **Teaching Team**

- Mr Aldin Dautcehajic
  - Tutorial
    - Email: adautcehajic@swin.edu.au
  - 9 years experience in computer forensics
  - 5 years teaching ICT30010
  - Interests:
    - Mobile Forensics
    - Password Cracking



## Teaching Team

- Mr Andrew Marriott
  - Tutorial
    - Email: <u>amarriott@swin.edu.au</u>
  - 11 years experience in computer forensics
  - 3 years teaching ICT30010
  - Interests:
    - Cloud Forensics
    - Network Forensics



## Outline and Learning Goals

- The nature of eForensics
  - It's purpose, objectives and scope
  - Forensic analysis and procedures
- eForensic areas
  - Computer forensics
  - Network forensics
  - Database forensics
  - Mobile device forensics
- Forensic toolkits





SWINBURNE UNIVERSITY OF TECHNOLOGY

#### WHAT IS FORENSICS?



- fo·ren·sic /fəˈrenzik/
  - adj. Of or used in courts of law
- Latin root "forensis" (before the forum)

Application of scientific method to answer questions of interest to a legal system



## Locard's Exchange Principle

- General Principle of Forensic Science
  - Edmond Locard
    - Pioneer of forensic science
  - Locard's Exchange Principle: "With contact between two items, there will be an exchange" (Thornton, 1997)

## Challenges in Digital Forensics

- Jurisdictional boundaries
  - Victim in "A", suspect in "B", evidence located in "C"
  - Who investigates? What laws apply? How do "A" or "B" obtain evidence to investigate/prosecute?
  - What if event is only a crime in one jurisdiction?
- Volatility of digital evidence
  - Acquiring data without changing it
- Proliferation of digital devices
- Volumes of data
  - All of Wikipedia would fit on an iPhone
- "CSI Effect"



## Ubiquity of electronic devices

- Modern life is lived on electronic devices
  - Mobile devices for phone calls, texts, twitter, websurfing
  - Computer for communication, paying bills, ordering goods and services, entertainment, blogs, facebook...
  - Video game consoles, MP3 player, electronic books, digital video recorder...
- Consequent rise in related crime, civil litigation, security incidents, privacy invasion
- eForensics is about investigating these sorts of cases



## Sources of Electronic Evidence



## eForensics Scope and Goals

- At the high level, eForensics is concerned with the following
  - Identification of the facts
  - Evidence collection
  - Event reconstruction
- eForensics can be used in the following ways
  - Attribution
  - Assessing alibis and statements
  - Determining intent
  - Authenticating digital documents



## Digital Forensics Process



- Identification
  - Find potential evidence storage
  - Determine authority to acquire (warrant / anton piller)
- Acquisition
  - Preserve digital crime scene
  - May include live or static analysis, and include taking logical or physical copies
- Authentication
  - Use of hash functions to validate data has not changed
- Analysis
  - Find evidence to support <u>or refute</u> hypothesis
  - How did an item appear on the computer? (e.g. image, log record)
- Presentation
  - Reports, evidence in court, etc.



## **Acquisition Phase**

- Acquire forensic copies of identified data
  - Secure, traceable, verifiable
- Acquire data in "order of volatility"
  - Most likely -> least likely to change
  - Move quickly!
- Use of specialist tools
  - Commercial: EnCase, FTK, Tableau, WiebeTech, Logicube
  - Open Source: Helix, SIFT, Paladin



## Order of Volatility

CPU Registers / Cache

Main Memory (RAM)

Network State / Running Processes

Hard Disk Drives, USB Flash, etc.

Backups/Printouts/CD ROM/etc.



## Types of Data Acquisition

Physical

- "bit for bit" copy, includes deleted (unallocated) areas of disk
- Usually requires computer to be off ("dead"/"static")

Logical

- File system (or specific files) only, in tamper-evident container
- Often best option for "live" analysis

File Copy

- Individual file contents only, easily modified
- Metadata (e.g. MFT dates and times) lost



## Digital Investigation Types

- Computer forensics
- Network forensics
- Database forensics
- Mobile device forensics

Emphasis on this unit is Computer and Network forensics but we will talk about database and mobile devices



### ACPO Good Practice Guide

#### Associate of Chief Police Officer's (ACPO)

- No action taken by law enforcement agencies or their agents should change data held on a computer or storage media which may subsequently be relied upon in court.
- 2. In circumstances where a person finds it necessary to access original data held on a computer or on storage media, that person must be competent to do so and be able to give evidence explaining the relevance and the implications of their actions
- 3. An audit trail or other record of all processes applied to computer-based electronic evidence should be created and preserved. An independent third party should be able to examine those processes and achieve the same result.
- 4. The person in charge of the investigation (the case officer) has overall responsibility for ensuring that the law and these principles are adhered to.



#### ACPO Good Practice Guide

- 1. Don't change original data
- 2. If you must change data, only use competent people who understand the implications of their actions
- 3. Log everything! (Must be repeatable)
- 4. Investigator has ultimate responsibility

http://www.7safe.com/electronic\_evidence/ACPO\_guidelines\_computer\_evidence.pdf



# Examples of Computer Forensic Activities

- Has a user of a particular computer downloaded child pornography?
- Has a user of a particular computer participated in illegal upload or download of unlicensed software?
- Has a user of a particular computer broken nondisclosure agreements by emailing trade-secrets (customer lists, pricing details) to a competitor?



## Computer Forensic Tasks We Will Carry Out

- Capture an image of a hard disk
  - Use the image to identify the file system
- Ensure the chain of custody of captured images
  - Use hash functions to do so
- Reconstruct deleted files from disk images
  - From NTFS file system
- Search disk images for specific keywords
  - Use free Linux-based tools for searching captured images



#### **Network Forensics**

- Examine a network to determine whether or not it has been used to commit some illicit activity
- Need to monitor the network for such activity
- Different aspects to network forensics
  - Have hosts (computers, servers, databases) attached to your network been the victim of illicit activity?
  - Have hosts on your network been a party to illicit activity?
    - Such activity may or may not have been carried out knowingly



### Example of Network Forensic Activities

- Was security of network compromised?
- How was system/network compromised?
- What data may have been exfiltrated during the attack?



### Common Network Forensic Tasks

- Capture a sequence of messages (packets)
- Ensure the chain of custody of such a sequence
- Reconstruct the events represented by the sequence of packets
- Search packets for particular message types transmitted to or from particular hosts



## Network Forensic Tasks We Will Carry Out

- Use of network tools wireshark and tcpdump to listen and capture traffic
  - Capture traffic for later analysis
- Use of wireshark and tcpdump to extract content of packets
  - Using wireshark to extract conversations
  - Using tcpdump to explore the detailed contents of packets
- Interpreting the contents of particular packets
  - Particularly interested in identifying anomalous events



## Wireshark Analysis





## Database / Log Forensics

- Analysing records in a database to determine whether or not illicit activities have occurred
- A simple example might be a web (http) logfile
  - Might be interested in specific addresses that have accessed the webserver
  - Might be interested in what information has been retrieved
- Often analyse contents of database systems (such as SQL) for time and date information to correlate with other events



### Common Database Forensic Tasks

- Search a database for activity from a particular user
  - Perhaps defined by IP address or user name
- Search a database for events that occurred between specific times
  - Large amounts of money deposited following successful scams detected elsewhere
- Search a log file for access to a particular object
  - Illegal content on a webserver. We might want to find who (which IP address) has downloaded it
- Search a log for anomalous events
  - Large volumes of money entering and leaving an account within a very short timeframe



## HTTP logfile analysis

- Can make use of specific pattern match tools to find strings within a logfile
  - cat httplogfile | grep "rrosalionlaptop" | more



#### Mobile Device Forensics

- Mobile phones, Memory sticks...
  - Devices with significant capabilities that can
  - Store data of interest
  - Be used as a malware vector
  - Be used to assist in attacks such as Distributed Denial of Service
  - Be used to plan and control a crime
- Most of the techniques for computer and network forensics can be applied to mobile device forensics, however there are additional areas



## Forensic Software / Toolkits

- There are a number of toolkits available for forensic analysis
  - Mostly for analysing PCs
  - Many generalist networking analysis tools available
- In this unit we will make use of open source tools and toolkits
  - Computer forensics SANS investigative forensic toolkit
  - Network forensics wireshark
  - Database forensics Linux command line
- It is important that you understand the details of what happens rather than have it hidden by a more complex system



#### Conclusion

- eForensics a wide ranging area
  - Technical, legal, procedural, investigative, administrative...
- Our interest is (primarily) technical
- Four areas of technical investigation
  - Computer
  - Network
  - Database
  - Mobile devices

