Fonctions à valeurs complexes

1. Généralités I désigne un intervalle de \mathbb{R}

a) <u>Définition</u>: une fonction $f: I \to \mathbb{C}$ à valeurs complexes s'écrit de manière unique :

$$\forall x \in I, \ f(x) = f_1(x) + i f_2(x)$$

où f_1 et f_2 sont des fonctions à valeurs réelles sur I. On les note $\operatorname{Re} f$ et $\operatorname{Im} f$.

Exemple 1: si $a = -\lambda + i\omega$ avec $(\lambda, \omega) \in \mathbb{R}_+^*$, comment s'écrit $f: x \mapsto e^{\lambda x}$?

Exemple 2: $f: x \mapsto ix^3 + (1-2i)x^2 + e^{i\frac{\pi}{7}}x + 3 + 4i$ est une fonction (polynôme) à valeurs complexes.

Exemple 3: soit $x \in \mathbb{R}$. Que valent $\operatorname{ch}(ix)$ et $\operatorname{sh}(ix)$?

b) Continuité: on dira que f est continue sur I lorsque f_1 et f_2 le sont

On montre que sommes, produits, quotients (à dénominateur non nul) de fonctions continues sont continus.

c) **<u>Dérivation</u>**: on dira que f est **dérivable** sur f lorsque f et f le sont f, et on pose

$$f' = f_1' + if_2'$$

Autrement dit

$$\boxed{\operatorname{Re}\left(f'\right) = \left(\operatorname{Re}f\right)'}$$
 et $\boxed{\operatorname{Im}\left(f'\right) = \left(\operatorname{Im}f\right)'}$

On montre que sommes, produits, quotients (à dénominateur non nul) de fonctions complexes dérivables sont dérivables et on a les formules suivantes :

- **Linéarité** : $(\lambda f + \mu g)' = \lambda f' + \mu g'$ (pour λ et μ complexes)
- 2. **Produit**: (fg)' = f'g + fg'3. **Quotient**: $\left(\frac{f}{g}\right)' = \frac{f'g fg'}{g^2}$ si g ne s'annule pas sur I
- **d)** Fonctions de classe C^n : plus généralement, si $n \in \mathbb{N}$, on dira que $f \in C^n(I,\mathbb{C})$ lorsque $f^{(n)}$ existe et est continue sur \mathbb{R} . Cela revient à dire que $\operatorname{Re} f$ et $\operatorname{Im} f$ sont de classe C^n sur I, et on a

$$f^{(n)} = (\operatorname{Re} f)^{(n)} + i (\operatorname{Im} f)^{(n)} \quad \text{soit} \quad \begin{cases} \operatorname{Re} (f^{(n)}) = (\operatorname{Re} f)^{(n)} \\ \operatorname{Im} (f^{(n)}) = (\operatorname{Im} f)^{(n)} \end{cases}$$

Exemples: calculer la dérivée n-ième de $f: x \mapsto \frac{1}{x^2 + 1}$ pour tout entier $n \in \mathbb{N}$.

e) Primitives : on dira que $F: I \to \mathbb{C}$ est une primitive de f sur I lorsque F est dérivable sur I et F' = f. Si $f = f_1 + if_2$ est continue sur I, et si F_1 et F_2 sont des primitives de f_1 et f_2 sur I, alors $F = F_1 + iF_2$ est une primitive de f sur I. Autrement dit

$$\int f(x) dx = \int f_1(x) dx + i \int f_2(x) dx \quad \text{ou} \quad \left\{ \begin{array}{l} \operatorname{Re} \left(\int f(x) dx \right) = \int \operatorname{Re} f(x) dx \\ \operatorname{Im} \left(\int f(x) dx \right) = \int \operatorname{Im} f(x) dx \end{array} \right.$$

1

Exemples: calcular
$$\int e^{(1+i)x} dx$$
, $\int (2x-3i)^2 dx$, $\int \frac{dx}{(x-i)^3}$ et $\int \frac{dx}{x-i}$

2. Fonction exponentielle complexe : $t\mapsto e^{at},\ a\in\mathbb{C}^*$

a) <u>Dérivée</u>: on pose $a = \lambda + i\omega$, $(\lambda, \omega) \in \mathbb{R}$. Alors $\forall t \in \mathbb{R}$,

$$e^{at} = e^{\lambda t}e^{i\omega t} = e^{\lambda t}\left(\cos\left(\omega t\right) + i\sin\left(\omega t\right)\right)$$

La fonction $t \mapsto e^{at}$ est dérivable sur \mathbb{R} , et on a $\forall t \in \mathbb{R}$:

$$\boxed{\frac{d}{dt}e^{at} = ae^{at}} \quad \text{(comme sur } \mathbb{R}$$

 $\boxed{\frac{d}{dt}e^{at}=ae^{at}} \quad \text{(comme sur } \mathbb{R}\text{)}$ $\textit{Remarque 1:} \text{ on a donc } \forall t \in \mathbb{R}, \ \frac{d^2}{dt^2}e^{at}=a^2e^{at}. \text{ En particulier } \frac{d^2}{dt^2}e^{i\omega t}=-\omega^2e^{i\omega t}.$

Plus généralement, la dérivée $n\text{-}\mathrm{i}\mathrm{\grave{e}me}$ de f est $\frac{d^n}{dt^n}\left(e^{at}\right)=a^ne^{at}$

Remarque 2: $\int e^{at}dt = \frac{e^{at}}{a} + C$. En particulier $\int e^{i\omega t}dt = \frac{e^{i\omega t}}{i\omega} + C = -\frac{i}{\omega}e^{i\omega t} + C$.

Exemple 1: pour $n \in \mathbb{N}$, calculer les dérivées n-ièmes de la fonction \sin

Exemple 2 : pour $n \in \mathbb{N}$, calculer les dérivées n-ièmes de $f: x \mapsto e^x \cos x$ puis $g: x \mapsto xe^x \cos x$.

Exemple 3 : soit $f\left(x\right)=x^{1+i}\ \left(x>0\right)$. Calculer $\operatorname{Re}f'\left(x\right)$.

- b) Etude de $t\mapsto \operatorname{Re}\left(e^{at}\right)=e^{\lambda t}\cos\left(\omega t\right)$ pour $\omega>0$ et $\lambda<0$: (oscillation amorties):
 - (i) La fonction $t\mapsto e^{i\omega t}$ est T-périodique, avec $T=\frac{2\pi}{\omega t}$

La fonction $t \mapsto e^{\lambda t} \cos(\omega t)$ n'est pas périodique.

Les points d'annulations de $t\mapsto e^{\lambda t}\cos\left(\omega t\right)$ sont espacés de $\frac{T}{2}$ (on parle parfois de "pseudo période" T)

Remarque: ces points d'annulations sont $t_k = \frac{T}{4} + k\frac{T}{2}$, où $k \in \mathbb{Z}$.

(ii) <u>Courbe</u>: la courbe de $t \mapsto \operatorname{Re}(e^{at})$ est "comprise" entre les courbes d'équations $y = e^{\lambda t}$ et $y = -e^{\lambda t}$.

