NYU FRE 7773 - Week 12

Machine Learning in Financial Engineering
Jacopo Tagliabue

RecSys 101 (again!)

Machine Learning in Financial Engineering
Jacopo Tagliabue

 RS can be understood easily by use case and input-output:

- RS can be understood easily by use case and input-output:
 - Item as input, item as output: similar vs complementary

- RS can be understood easily by use case and input-output:
 - Item as input, item as output: similar vs complementary

- RS can be understood easily by use case and input-output:
 - Item as input, item as output: similar vs complementary
 - User as input, item as output: "for you"

- RS can be understood easily by use case and input-output:
 - Item as input, item as output: similar vs complementary
 - User as input, item as output: "for you"
 - User as input, user as output: people you may know

- RS can be understood easily by use case and input-output:
 - Item as input, item as output: similar vs complementary
 - User as input, item as output: "for you"
 - User as input, user as output: people you may know
 - Session as input, item as output: what are you doing next?

- RS can be understood easily by use case and input-output:
 - Item as input, item as output: similar vs complementary
 - User as input, item as output: "for you"
 - User as input, user as output: people you may know
 - Session as input, item as output: what are you doing next?
 - Item as input, user as output: who should we sell this to?

Input

New Fantastic SaaS Product!

RecSys by use case (with refs!)

- RS can be understood easily by use case and input-output:
 - Item as input, item as output: <u>similar</u> vs <u>complementary</u>
 - User as input, item as output: "for you"
 - User as input, user as output: people you may know
 - Session as input, item as output: what are you doing next?
 - Item as input, user as output: who should we sell this to?

Key intuition: if you like X, you like things similar to X as well!

What does "similar" mean?

Similarity and representation

Intuition: similarity is "closeness" in a "proper" space

- Let's map movies along two dimensions:
 - O How much action is there?
 - O How much violence is there?
- Observation #1: items as vectors
 - o Indiana Jones: [3, 1]
 - Fast and Furious: [5, 2]
 - o Die Hard: [4, 4]
- Observation #2: similar movies are close in the space
 - Back to RecSys: if you like Indiana
 Jones, you're more likely to like FF then
 Die Hard

Intuition: similarity is "closeness" in a "proper" space

- If the space does not represent the underlying concepts well, we are in trouble!
- Machines understand vectors, but not all vectorizations define an appropriate space in this sense.
- For example, let's consider one-hot encoding:
 - Is "cat" more similar to "dog" than "snake"?
 - Note: how big is the vector with 1000 animals? And how sparse?

Intuition: similarity is "closeness" in a "proper" space

- If the space *represents* the underlying concepts well, <u>items close in the space will be similar</u>, items far apart are not so similar.
- While there are many <u>different ways</u> to characterize "close", cosine distance (or dot product on scaled vectors) is the most common.
- **Corollary**: "similarity inference" is "just" nearest neighbor search in the vector space

$$cosine(\mathbf{v}, \mathbf{w}) = \frac{\mathbf{v} \cdot \mathbf{w}}{|\mathbf{v}||\mathbf{w}|} = \frac{\sum_{i=1}^{N} v_i w_i}{\sqrt{\sum_{i=1}^{N} v_i^2 \sqrt{\sum_{i=1}^{N} w_i^2}}}$$

Dot Product

Consider a movie recommendation systems (user-item case)

• **Step 1**: represent movies in a suitable space

Consider a movie recommendation systems (user-item case)

- Step 1: represent movies in a suitable space
- Step 2: represent the user position in the space
 - For example, Jacopo is "where his last movie is"

Consider a movie recommendation systems (user-item case)

- **Step 1**: represent movies in a suitable space
- Step 2: represent the user position in the space
- Step 3: recommend the closest K items (KNN search) to the user!
 - o Recommendation: Die Hard!

Consider a real life example:

- Jacopo goes on vacation in Maui, Hawaii
 - o Does Jacopo like surfing?
- **Ethan** goes on vacation in Boulder, Colorado
 - O Does Ethan like climbing?
- Intuition: by knowing the position of the users in the space (in this case, Earth), we can tell a lot about their preferences!

A huge part in our success when building recSys boils down to the quality of the representation in our space.

How do we map users and items to vectors, then?

- GOAL: learning a good representation space!
 - A "good" space is a space where items that are indeed similar are close, and items that are far from each other are unrelated.
- While we could ask humans to rate action vs violence vs comedy ... for all movies on Netflix, that is impractical:
 - A ton of manual work (imagine doing this for all the books on Amazon!)
 - Unclear where to stop: should we have a dimension for actors as well? What about movie length? What about cost of production? Etc.
- We typically distinguish between content-based and behavioral-based representations (of course, hybrid are also possible!): e.g. for Netflix
 - Content: analyze the title, script, images from the movie, genre etc. i.e. what do we know about this item in our catalog?
 - Behavioral: analyze the behavior of users wrt the items if users 1 like items A and B, and then likes also C, can we suppose C is similar to A and B?

- **Content-based** representations require only the "catalog" of our target entities: their quality depends on the ability to turn images, text and categories into "good" vectors.
 - Sometimes the meta-data are not good (for example, movies are mis-categorized!)
 - Sometimes, the vectorization is not very good (for example, our language model does not work well in the target language!)
- Behavioral-based representations require real-world data from "users", e.g.:
 - Purchase data from Amazon
 - Streaming data from Netflix
 - Playlist data from Spotify
 - o etc.
- **Note**: a huge lesson of the last 20 years in RecSys is that behavioral-based representations are surprisingly useful in producing good representations (i.e. there is a lot of signals in people behavior!).
 - Q: when a behavioral strategy won't be helpful (we discussed it in class!)?

- We call the process of mapping high-cardinality entities (users, items, words etc.) to a low-dimensional space "embedding":
 - Remember the one-hot encoding, sparse vectors? Embeddings are small (100s dimensions for thousands of items) and dense!

- We call the process of mapping high-cardinality entities (users, items, words etc.) to a low-dimensional space "embedding":
 - Remember the one-hot encoding, sparse vectors? Embeddings are small (100s dimensions for thousands of items) and dense!

Word2Vec, Song2Vec, Everything2Vec

The NLP Analogy: similar things appear often together

- Distributional hypothesis: "words that appear in similar contexts have similar meanings"
 - Example 1: if two books are often viewed in the same shopping session, they are probably similar!
 - Example 2: if two songs are often after each other in playlists, they are probably similar!

Word Embeddings Past, Present and Future

- Outline of the general argument:
 - We need to learn vectors for words to make a "good" space
 - Words which are similar tend to appear in the same sentence
 - If we use vectors as weights for a classifier that tells when two words are likely to appear together, we can learn vectors that encode similarity and therefore produce a good space!
- In other words, the distributional hypothesis gives us a proxy measure of similarity: embeddings that are good in the distributional settings SHOULD therefore be good representations for word similarity.

- Outline of the general argument:
 - We need to learn vectors for words to make a "good" space
 - Words which are similar tend to appear in the same sentence
 - If we use vectors as weights for a classifier that tells when two words are likely to appear together, we can learn vectors that encode similarity and therefore produce a good space!
- In other words, the distributional hypothesis gives us a proxy measure of similarity: embeddings that are good in the distributional settings SHOULD therefore be good representations for word similarity.

Training: similar items gets pushed closer! *T_o:* random weights

BONUS POINT: this actually works in most successful applications of deep learning - if you find an appropriate prediction task, you can learn good representations for anything!

 T_n : final weights

CORPUS: "The furry cat is on the mat"

WINDOW LENGTH: 2

TARGET: "cat"

• INPUT PREPARATION, positive and negative samples

Target	Context	Label
cat	furry	1
cat	the	1
cat	is	1
cat	on	1

Target	Context	Label
cat	Berlin	0
cat	Jacopo	0
cat	ciao	0
cat	table	0

CORPUS: "The furry cat is on the mat"

WINDOW LENGTH: 2

TARGET: "cat"

 $P_{\alpha}(w) = \frac{count(w)^{\alpha}}{\sum_{w'} count(w')^{\alpha}}$

INPUT PREPARATION, positive and negative samples (a=0.75)

Target	Context	Label
cat	furry	1
cat	the	1
cat	is	1
cat	on	1

Target	Context	Label
cat	Berlin	0
cat	Jacopo	0
cat	ciao	0
cat	table	0

- We have turned a word prediction problem into a binary classification problem
 - Is the context word likely to appear next to the target word?
- Let's define our <u>learning objective</u>:
 - We want to maximize the similarity of (t,c) drawn from the positive examples
 - We want to minimize the similarity of (t,c) drawn from the negative examples

$$L(\theta) = \sum_{(t,c) \in +} \log P(+|t,c) + \sum_{(t,c) \in -} \log P(-|t,c)$$

6

CHAPTER

Vector Semantics and Embeddings

荃者所以在鱼,得鱼而忘茎 Nets are for fish:
Once you get the fish, you can forget the net.

音者所以在意,得意而忘言 Words are for meaning;
Once you get the meaning, you can forget the words meaning.

庄于(Zhuangzi), Chap

- Let's define our learning objective:
 - We want to maximize the similarity of (t,c) drawn from the positive examples
 - We want to minimize the similarity of (t,c) drawn from the negative examples

- Remember: we maximize the dot product of the word with the context words, and minimize the dot products of the word with the negative sampled words!
- Training procedure:
 - Random initialization of vectors for N words in the vocabulary.
 - At each step, move embeddings of related words closer in the vector space, and push others further away (using gradient descent).

Figure 6.14 Intuition of one step of gradient descent. The skip-gram model tries to shift embeddings so the target embeddings (here for *apricot*) are closer to (have a higher dot product with) context embeddings for nearby words (here *jam*) and further from (lower dot product with) context embeddings for noise words that don't occur nearby (here *Tolstoy* and *matrix*)

Is this a "good" space?

- word2vec tends to capture well similarity
 between words and some <u>analogical relations</u>
 - without any human labels / intervention!
- Once you have a well-trained embedding space, the offsets between vector embeddings can be used to solve analogies such as: "man: king = women: ?" (queen)
 - This is possible since the result of vector('king') vector('man') + vector('woman') is a vector close to vector('queen').

From NLP, back to RecSys

Remember: the same intuition about "words in a sentence" can be applied whenever we have meaningful sequences of target items (e.g. playlist, shopping sessions etc.)

Coding time!