Ejercicios de la sección 2.2 Aplicaciones lineales entre espacios \mathbb{R}^n

(Para hacer en clase: 3, 5, 8, 15, 16, 20, 22, 24.)

(Con solución o indicaciones: 1, 2, 4, 6, 10, 13, 17, 19, 21, 23.)

▶1. Sea $T: \mathbb{R}^2 \to \mathbb{R}^2$ una transformación lineal que transforma

$$\mathbf{u} = \begin{pmatrix} 5 \\ 2 \end{pmatrix}$$
 en $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$, $\mathbf{v} \cdot \mathbf{v} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$ en $\begin{pmatrix} -1 \\ 3 \end{pmatrix}$.

Usa el hecho de que T es lineal para encontrar las imágenes bajo T de 3 \mathbf{u} , 2 \mathbf{v} y 3 \mathbf{u} + 2 \mathbf{v} .

▶2. La figura muestra los vectores \mathbf{u} , \mathbf{v} y \mathbf{w} junto con las imágenes $T(\mathbf{u})$ y $T(\mathbf{v})$ bajo la acción de una transformación lineal $T: \mathbf{R}^2 \to \mathbf{R}^2$. Copia cuidadosamente esta figura, y luego dibuja la imagen $T(\mathbf{w})$ con tanta precisión como sea posible.

Sugerencia: Primero, escribe ${\bf w}$ como una combinación lineal de ${\bf u}$ y ${\bf v}$.

▶3. Sean

$$\mathbf{e}_1 = \left(\begin{array}{c} 1 \\ 0 \end{array} \right), \; \mathbf{e}_2 = \left(\begin{array}{c} 0 \\ 1 \end{array} \right), \; \mathbf{y}_1 = \left(\begin{array}{c} 2 \\ 5 \end{array} \right) \; \mathbf{e} \; \mathbf{y}_2 = \left(\begin{array}{c} -1 \\ 6 \end{array} \right),$$

y sea $T: \mathbf{R}^2 \to \mathbf{R}^2$ una transformación lineal que transforma \mathbf{e}_1 en \mathbf{y}_1 y \mathbf{e}_2 en \mathbf{y}_2 . Halla la imágen de $\begin{pmatrix} 5 \\ -3 \end{pmatrix}$ y la de $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$.

▶4. Sea
$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
, $\mathbf{v}_1 = \begin{pmatrix} -2 \\ 5 \end{pmatrix}$, $\mathbf{y} \ \mathbf{v}_2 = \begin{pmatrix} 7 \\ -3 \end{pmatrix}$, $\mathbf{y} \ \text{sea}$ $T : \mathbf{R}^2 \to \mathbf{R}^2$ una transformación lineal que transforma \mathbf{x} en $x_1\mathbf{v}_1 + x_2\mathbf{v}_2$. Halla una matriz A tal que $T(\mathbf{x})$ sea $A\mathbf{x}$ para cada \mathbf{x} .

En los ejercicios 5 y 6, indica para cada enunciado si es verdadero o falso. Justifica cada una de tus respuestas.

▶5.

- (a) Una transformación lineal es un tipo especial de función.
- (b) Si A es una matriz de orden 3×5 y T una transformación definida por $T(\mathbf{x}) = A\mathbf{x}$, entonces el dominio de T es \mathbf{R}^3 .
- (c) Si A es una matriz de orden $m \times n$, entonces el conjunto imagen de la transformación $\mathbf{x} \mapsto A\mathbf{x}$ es \mathbf{R}^2
- (d) Cuando se realizan dos aplicaciones lineales una después de la otra, el efecto combinado puede no ser siempre una aplicación lineal.
- (e) Una transformación T es lineal si, y sólo si, $T(c_1\mathbf{v}_1 + c_2\mathbf{v}_2) = c_1T(\mathbf{v}_1) + c_2T(\mathbf{v}_2)$ para todo \mathbf{v}_1 \mathbf{y} \mathbf{v}_2 en el dominio de T \mathbf{y} para todos los números c_1 \mathbf{y} c_2 .

- (a) Toda transformación matricial es una transforma-
- ción lineal.
 (b) Si T: R² → R² gira los vectores del plano alrededor del origen en un ángulo φ, entonces T es una aplicación lineal.
- (c) Si T : Rⁿ → R^m es una transformación lineal y b es un vector de R^m, entonces una pregunta de unicidad es: ¿Está b en la imagen de T?.
- (d) Una transformación lineal conserva las operaciones de suma de vectores y de multiplicación por números.
- (e) El principio de superposición es una descripción física de una transformación lineal.
- 7. Supongamos que los vectores $\mathbf{v}_1, \ldots, \mathbf{v}_p$ generan \mathbf{R}^n y sea $T: \mathbf{R}^n \to \mathbf{R}^m$ una transformación lineal. Demuestra que si $T(\mathbf{v}_i) = 0$ para $i = 1, \ldots, p$. entonces T es la transformación cero. Esto es, demuestra que si \mathbf{x} es cualquier vector en \mathbf{R}^n , entonces $T(\mathbf{x}) = \mathbf{0}$.
- ▶8. Dados $\mathbf{v} \neq \mathbf{0}$ y \mathbf{p} en \mathbf{R}^n , la recta que pasa por \mathbf{p} en la dirección de \mathbf{v} tiene la ecuación paramétrica $\mathbf{x} = \mathbf{p} + t\mathbf{v}$. Demuestra que una transformación lineal $T: \mathbf{R}^n \to \mathbf{R}^m$ transforma esta recta en otra recta o en un único punto.
- 9. Sean \mathbf{u} y \mathbf{v} vectores linealmente independientes en \mathbf{R}^3 , y sea P el plano que pasa por \mathbf{u} , \mathbf{v} y $\mathbf{0}$. La ecuación paramétrica de P es $\mathbf{x} = s\,\mathbf{u} + t\,\mathbf{v}$ (con s, t en \mathbf{R}). Demuestra que una transformación lineal $T: \mathbf{R}^3 \to \mathbf{R}^3$ transforma P en un plano que pasa por $\mathbf{0}$, o en una recta que pasa por $\mathbf{0}$, o transforma todo P en el origen de \mathbf{R}^3 . ¿Qué condición deben cumplir $T(\mathbf{u})$ y $T(\mathbf{v})$ para que la imagen de P sea un plano? ¿Y para que sea un punto?
- ▶10. El segmento rectilíneo que va desde 0 hasta un vector \mathbf{u} es el conjunto de puntos de la forma $t\mathbf{u}$, con $0 \le t \le 1$. Demuestra que una transformación lineal T lleva este segmento al segmento que que va desde $\mathbf{0}$ hasta $T(\mathbf{u})$.
- 11. Este ejercicio muestra que una aplicación lineal transforma una recta cualquiera en otra recta o en un punto.
 - (a) Demuestra que la recta que pasa por los puntos \mathbf{p} y \mathbf{q} en \mathbf{R}^n tiene la ecuación paramétrica $\mathbf{x} = (1 t)\mathbf{p} + t\mathbf{q}$ con t en \mathbf{R} .
 - (b) El segmento de recta de ${\bf p}$ a ${\bf q}$ es el conjunto de puntos de la forma $(1-t){\bf p}+t{\bf q}$ con $0\le t\le 1$. Demuestra que una transformación lineal T transforma este segmento en otro segmento o en un único punto.
- **12.** Sean **u** y **v** vectores en \mathbb{R}^n . Es posible demostrar que todos los puntos del paralelogramo P determinado por **u** y **v** tienen la forma $a\mathbf{u} + b\mathbf{v}$ con $0 \le a \le 1$, $0 \le b \le 1$. Sea $T: \mathbb{R}^n \to \mathbb{R}^m$ una transformación lineal. Explica por qué la imagen de un punto en P mediante la transformación T está en el paralelogramo determinado por $T(\mathbf{u})$ y $T(\mathbf{v})$.
- ▶13. Definamos $f : \mathbf{R} \to \mathbf{R}$ por la fórmula f(x) = mx + b.
 - (a) Demuestra que f es una transformación lineal cuando h=0
 - (b) Indica una propiedad de las transformaciones lineales que se viole cuando $b \neq 0$.
 - (c) ¿Por qué se dice que f es una "función lineal"?

- **14.** Una *transformación afín* $T : \mathbf{R}^n \to \mathbf{R}^m$ tiene la forma $T(\mathbf{x}) = A\mathbf{x} + \mathbf{b}$, donde A es una matriz de orden $m \times n$ \mathbf{y} \mathbf{b} es un vector en \mathbf{R}^m . Demuestra que si $\mathbf{b} \neq 0$ entonces T no es una transformación lineal.
- ▶15. Sean $T: \mathbf{R}^n \to \mathbf{R}^m$ una transformación lineal y $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ un conjunto ligado en \mathbf{R}^n . Explica por qué el conjunto $\{T(\mathbf{v}_1), T(\mathbf{v}_2), T(\mathbf{v}_3)\}$ es también ligado.

En los ejercicios 16 a 20, los vectores se escriben como coordenadas, por ejemplo $\mathbf{x}=(x_1,x_2)$, y $T(\mathbf{x})$ se escribe como $T(x_1,x_2)$.

- ▶16. Demuestra que la transformación T definida por $T(x_1,x_2)=(4x_1-2x_2,3|x_2|)$ no es lineal.
- ▶17. Demuestra que la transformación T definida por $T(x_1,x_2)=(2x_1-3x_2,x_1+4,5x_2)$ no es lineal.
- **18.** Sea $T: \mathbf{R}^n \to \mathbf{R}^m$ una transformación lineal. Demuestra que si T transforma dos vectores linealmente independientes en un conjunto ligado, entonces la ecuación $T(\mathbf{x}) = \mathbf{0}$ tiene alguna solución no trivial.

Sugerencia: Supongamos que \mathbf{u} y \mathbf{v} en \mathbf{R}^n son linealmente independientes, pero que $T(\mathbf{u})$ y $T(\mathbf{v})$ son linealmente dependientes. Entonces $c_1T(\mathbf{u})+c_2T(\mathbf{v})=\mathbf{0}$ para algunos pesos c_1 y c_2 , donde al menos uno de ellos no es cero.

▶19. Sea $T: \mathbb{R}^3 \to \mathbb{R}^3$ la transformación que refleja cada vector $\mathbf{x} = (x_1, x_2, x_3)$ en el plano $x_3 = 0$, es decir: $T(\mathbf{x}) = (x_1, x_2, -x_3)$. Demuestra que T es una transformación lineal.

▶20. Sea $T: \mathbf{R}^3 \to \mathbf{R}^3$ la transformación que proyecta cada vector $\mathbf{x} = (x_1, x_2, x_3)$ sobre el plano $x_2 = 0$, de modo que $T(\mathbf{x}) = (x_1, 0, x_3)$. Demuestra que T es una transformación lineal.

En los ejercicios 21 y 22, la matriz dada determina una transformación lineal T. Halla todos los vectores \mathbf{x} que satisfagan $T(\mathbf{x}) = \mathbf{0}$.

$$\triangleright 22. \begin{pmatrix} -9 & -4 & -9 & 4 \\ 5 & -8 & -7 & 6 \\ 7 & 11 & 16 & -9 \\ 9 & -7 & -4 & 5 \end{pmatrix}$$

- ▶23. Sea $\mathbf{b} = \begin{pmatrix} \frac{7}{9} \\ \frac{9}{7} \end{pmatrix}$ y A la matriz del ejercicio 21. ¿Está \mathbf{b} en la imagen de la transformación $\mathbf{x} \mapsto A\mathbf{x}$?. En caso afirmativo, halla un \mathbf{x} cuya imagen por la transformación sea \mathbf{b}
- ▶24. Sea $\mathbf{b} = \begin{pmatrix} -7 \\ -7 \\ 13 \\ -5 \end{pmatrix}$ y *A* la matriz del ejercicio 22. ¿Está \mathbf{b} en la imagen de la transformación $\mathbf{x} \mapsto A \mathbf{x}$?. En caso afirmativo, halla un \mathbf{x} cuya imagen por la transformación

Pistas y soluciones de ejercicios seleccionados de la sección 2.2

1.
$$T(3\mathbf{u}) = 3T(\mathbf{u}) = 3\binom{2}{1} = \binom{6}{3}$$
; $T(2\mathbf{v}) = 2T(\mathbf{v}) = 2\binom{-1}{3} = \binom{-2}{6}$; $T(3\mathbf{u} + 2\mathbf{v}) = T(3\mathbf{u}) + T(2\mathbf{v}) = \binom{6}{3} + \binom{-2}{6} = \binom{4}{9}$.

2. Observando en la gráfica que la recta que pasa por \mathbf{w} y por \mathbf{u} es paralela al eje x_1 y que la recta que pasa por \mathbf{w} y por \mathbf{v} es paralela a \mathbf{u} se deduce que $\mathbf{w} = \mathbf{u} + \mathbf{v}$. Luego, por linealidad, $T(\mathbf{w}) = T(\mathbf{u}) + T(\mathbf{v})$ y por tanto este vector se construye completando el paralelogramo.

4.
$$T(\mathbf{x}) = x_1 \mathbf{v}_1 + x_2 \mathbf{v}_2 = x_1 \begin{pmatrix} -2 \\ 5 \end{pmatrix} + x_2 \begin{pmatrix} -7 \\ -3 \end{pmatrix} = \begin{pmatrix} -2 & 7 \\ 5 & -3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} -2 & 7 \\ 5 & -3 \end{pmatrix} \mathbf{x} = A\mathbf{x}$$
, Luego $A = \begin{pmatrix} -2 & 7 \\ 5 & -3 \end{pmatrix}$.

6. (a) Recuérdense las propiedades del producto matriz por vector, (b) Es una aplicación matricial con matriz $\begin{pmatrix} \cos \varphi - \sin \varphi \\ \sin \varphi \end{pmatrix}$. O también: Es lineal porque es la composición de dos reflexiones (que son aplicaciones lineales, una sobre el eje x y otra sobre la recta por el origen de pendiente tan $\varphi/2$. O incluso: Es lineal porque es continua, conserva el origen y lleva rectas en restas), (c) Esta es una pregunta de existencia, (d) Recuérdese la definición de transformación lineal, (e) Ver la sección 2.2.

10. $T(t\mathbf{u}) = tT(\mathbf{u})$ con $0 \le t \le 1$. Esto es el segmento que que va desde **0** (t=0) hasta $T(\mathbf{u})$ (t=1).

13. (a) Si b=0, f(x+y)=m(x+y)=mx+my=f(x)+f(y) y $f(kx)=m\cdot kx=k(mx)=kf(x)$, luego f es lineal. (b) Se viola tanto la propiedad f(x+y)=f(x)+f(y) como la propiedad f(kx)=kf(x). (c) Porque está definida por un polinomio de primer grado (o polinomio "lineal") cuya gráfica es una línea recta.

17. $T(0,0) = (0,4,0) \neq (0,0,0)$, luego falla la propiedad $T(\mathbf{0}) = \mathbf{0}$ y por tanto T no es lineal.

19. Primera propiedad:

$$T(\mathbf{x} + \mathbf{y}) = (x_1 + y_1, x_2 + y_2, -(x_3 + y_3))$$

= $(x_1 + y_1, x_2 + y_2, -x_3 - y_3)$
= $(x_1, x_2, -x_3) + (y_1, y_2, -y_3) = T(\mathbf{x}) + T(\mathbf{y}).$

Segunda propiedad:

$$T(k\mathbf{x}) = (kx_1, kx_2, -(kx_3))$$

= $(kx_1, kx_2, k(-x_3))$
= $k(x_1, x_2, -x_3) = kT(\mathbf{x})$.

21. Hay que resolver un sistema homogéneo. La forma escalonada reducida de la matriz de coeficientes se puede obtener, por ejemplo, mediante las siguientes operaciones elementales: $(-1)F_1$, F_1+F_4 , F_2+9F_1 , F_3+6F_1 , F_4-5F_1 , F_3-F_2 , F_4+F_2 , F_4-3F_3 (con esto se llega a una forma escalonada), $\frac{1}{4}F_3$, F_2-19F_3 , F_1-3F_3 , $-\frac{1}{2}F_2$ y F_1+F_2 . Así se obtiene: $\begin{pmatrix} 1 & 0 & 0-7/2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ y de aquí la solución general en forma paramétrica vectorial es:

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = t \begin{pmatrix} 7/2 \\ 9/2 \\ 0 \\ 1 \end{pmatrix} \quad \text{o también:} \quad \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = r \begin{pmatrix} 7 \\ 9 \\ 0 \\ 2 \end{pmatrix}.$$

23. Nos piden decir si el sistema con matriz ampliada $(A|\mathbf{b})$ es compatible y hallar una solución particular en caso de que lo sea. Realizando sobre esta matriz las primeras ocho operaciones elementales usadas en el ejercicio 21 se llega a

la siguiente matriz escalonada: $\begin{pmatrix} 1 & -1 & 3 & 1 & 0 \\ 0 & -2 & 19 & 9 & 5 \\ 0 & 0 & 4 & 0 & 4 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ en la que vemos que no hay un pivote en la columna de los términos

vemos que no hay un pivote en la columna de los términos independientes y por tanto el sistema es compatible. Por tanto $\bf b$ está en la imagen de la transformación $\bf x\mapsto A\, \bf x$. Para hallar un vector cuya imagen por la transformación sea $\bf b$ continuamos el proceso de reducción a forma escalonada con las restantes operaciones elementales usadas

en el ejercicio 21 y llegamos a $\begin{pmatrix} 1 & 0 & 0 & -7/2 & 4 \\ 0 & 1 & 0 & -9/2 & 7 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$ de donde

obtenemos la solución particular $\mathbf{x} = \begin{pmatrix} 4 \\ 7 \\ 1 \\ 0 \end{pmatrix}$. Compruébese ahora que $A\mathbf{x} = \mathbf{b}$.