Derivatives of Composite Functions

Recall that the **composite function** or **composition** of two functions is the function obtained by applying them one after the other.

For example, If
$$f(x) = \frac{1}{x}$$
 and $g(x) = x^3 + 2$, then

$$f(g(x)) = \frac{1}{g(x)} = \frac{1}{x^3 + 2}$$

and
$$g(f(x)) = (f(x))^3 + 2 = \left(\frac{1}{x}\right)^3 + 2 = \frac{1}{x^3} + 2$$

Try a **Java applet.**

The derivative of the composition of two non-constant functions is equal to the product of their derivatives, evaluated appropriately.

The Chain Rule

We have the Chain Rule:

$$(g(h(x)))' = g'(h(x))h'(x)$$

Example 1: Using
$$g(x) = \frac{1}{x} = x^{-1}$$
 and $h(x) = x^3 + 2$,

we have
$$g'(x) = (-1)x^{-2}$$
 and $h'(x) = 3x^2$, $g'(h(x)) = (-1)(h(x))^{-2}$, so we get

$$\left(\frac{1}{x^3+2}\right)' = g'(h(x))h'(x) = (-1)(h(x))^{-2}(3x^2) =$$

$$(-1)(x^3+2)^{-2}(3x^2) = \frac{-3x^2}{(x^3+2)^2}$$

On the other hand,
$$\left(\frac{1}{x^3} + 2\right)' = \left(h(g(x))\right)' = h'(g(x))g'(x) =$$

$$3(g(x))^2(-x^{-2}) = 3(x^{-1})^2(-x^{-2}) = -3x^{-4}$$
, as expected.

Example 2: Let $g(x) = x^3$, and $h(x) = x^2$, so that

$$g(h(x)) = h(x)^3 = (x^2)^3 = x^6.$$

Then
$$g'(x) = 3x^2$$
, so $g'(h(x)) = 3(h(x))^2$, and $h'(x) = 2x$,

so the Chain Rule gives us

$$(g'(h(x)))' = g'(h(x))h'(x) = (3(h(x))^2)(2x) =$$

$$(3(x^2)^2)(2x) = (3x^4)(2x) = 6x^5$$
, as expected.

Example 3: Let $g(x) = x^3 + 3$, and $h(x) = x^2 + 2$, so that

$$g(h(x)) = (h(x))^3 + 3 = (x^2 + 2)^3 + 3.$$

Then
$$g'(x) = 3x^2$$
, so $g'(h(x)) = 3(h(x))^2$, and $h'(x) = 2x$,

so the Chain Rule gives us

$$(g'(h(x)))' = g'(h(x))h'(x) = (3(h(x))^2)(2x) = (3(x^2+2)^2)(2x) =$$

$$6x(x^2+2)^2$$

Example 4: Find f'(x) if $f(x) = \sqrt[3]{x^4 + x^2 + 1}$.

We let $g(x) = x^{\frac{1}{3}}$ and $h(x) = x^4 + x^2 + 1$ so that f(x) = g(h(x)).

Then
$$g'(x) = \frac{1}{3}x^{-\frac{2}{3}}$$
, $g'(h(x)) = \frac{1}{3}(h(x))^{-\frac{2}{3}}$, and $h'(x) = 4x^3 + 2x$,

so we have
$$f'(x) = g'(h(x))h'(x) = \frac{1}{3}(h(x))^{-\frac{2}{3}}(4x^3 + 2x) =$$

$$\frac{2x(2x^2+1)}{3(x^4+x^2+1)^{\frac{2}{3}}}$$

Example 5: Find f'(x) if $f(x) = \sin(x^2)$.

We let
$$g(x) = \sin x$$
 and $h(x) = x^2$ so that $f(x) = g(h(x))$.

Then
$$g'(x) = \cos x$$
, $g'(h(x)) = \cos(x^2)$, and $h'(x) = 2x$,

so we have
$$f'(x) = g'(h(x))h'(x) = (\cos(x^2))(2x) = 2x\cos(x^2)$$

Example 6: Find f'(x) if $f(x) = (\sin x)^2$.

We let
$$g(x) = x^2$$
 and $h(x) = \sin x$ so that $f(x) = g(h(x))$.

Then
$$g'(x) = 2x$$
, $g'(h(x)) = 2\sin x$, and $h'(x) = \cos x$,

so we have
$$f'(x) = g'(h(x))h'(x) = (2\sin x)(\cos x) = 2\sin x \cos x = \sin 2x$$

The Power Rule

$$\left(\left(g(x)\right)^{n}\right)' = n\left(g(x)\right)^{n-1}g'(x)$$

Example 4a: Find f'(x) if $f(x) = \sqrt[3]{x^4 + x^2 + 1}$.

We write
$$f(x) = (g(x))^{\frac{1}{3}}$$
 where $g(x) = x^4 + x^2 + 1$.

Then
$$f'(x) = \frac{1}{3}(g(x))^{-\frac{2}{3}}g'(x) = \frac{1}{3}(x^4 + x^2 + 1)^{-\frac{2}{3}}(4x^3 + 2x) =$$

$$\frac{2x(2x^2+1)}{3(x^4+x^2+1)^{\frac{2}{3}}}$$

Example 7: Find f'(x) if $f(x) = \left(\frac{4x-3}{2x+1}\right)^8$.

We have
$$f'(x) = 8\left(\frac{4x-3}{2x+1}\right)^7 \left(\frac{4x-3}{2x+1}\right)' =$$

$$8\left(\frac{4x-3}{2x+1}\right)^7\left(\frac{(2x+1)(4x-3)'-(4x-3)(2x+1)'}{(2x+1)^2}\right) =$$

$$8\left(\frac{4x-3}{2x+1}\right)^7\left(\frac{(2x+1)4-(4x-3)2}{(2x+1)^2}\right) =$$

$$8\left(\frac{4x-3}{2x+1}\right)^7\left(\frac{8x+4-8x+6}{(2x+1)^2}\right) = 8\left(\frac{4x-3}{2x+1}\right)^7\left(\frac{10}{(2x+1)^2}\right) = 80\frac{(4x-3)^7}{(2x+1)^9}$$

Example 8: Find f'(x) if $f(x) = e^{\cos x}$.

We have $f'(x) = e^{\cos x}(\cos x)' = e^{\cos x}(-\sin x) = -\sin x e^{\cos x}$

Example 9: Find f'(x) if $f(x) = \sin(e^{\tan x})$.

We have $f'(x) = \cos(e^{\tan x})(e^{\tan x})' = \cos(e^{\tan x})e^{\tan x}(\tan x)' = \cos(e^{\tan x})e^{\tan x}\sec^2 x$