Problem 3

Let (dl, L.(.)) be the underlying hilbert space. Then we define the Hamiltonian H: H - H Corough

$$H:=\frac{{\rho_1}^2}{2m}+\frac{{\rho_2}^2}{2m}+V(x_1,x_2)$$

with V(x, X2) as given potential operator and the property $V(x_1, X_2) = V(x_2, X_{\chi})$

Now assume (9) e H is an eigenfunction of H with non-decemerated Energy E & R. In other words :

and for every other IVIEH with $H|\Psi\rangle = E|\Psi\rangle$

it holds that IU) = x 197 for an acc

Let us further define The as the transposition which interchanges 1 and 2 and Piz = P(TIZZ).

From definition we know the momentum operator Pro and the potential operator V(xx1x2) are symmetric.

Therefore the Hamiltonian H has to be symmetric and

=> Pa(E(4)) = E Pa(4) = PaH(4) = HPa(4)

-> PAZ (9) is an eigenstate of H with energy E

-> $P_{12}(9) = \alpha(9)$ for a constant $\alpha \in C$

-> 197 is an eigenstate of PL with eigenvolve a e We know o(Paz) = {-1.13. => Paz (8) = ± 18)

PERFECT!

1 Auf 3: 2.0

Preserves the inner product <1.> of the hilbert space. $\langle x | R_{A2} R_{A2} \rangle = \langle x | y \rangle \quad \text{for all } x_1 y \in \mathcal{H}$ $\Rightarrow \| R_{A2} R_{A2} \rangle \|^2 = \langle x | y \rangle \quad \text{for all } x_1 y \in \mathcal{H}$ $\Rightarrow \| R_{A2} R_{A2} \rangle \|^2 = \langle x | y \rangle \quad \text{for all } x_1 y \in \mathcal{H}$ On the other hand: $\| R_{A2} R_{A2} \|^2 = \| \alpha \|^2 \|^2 = \| \alpha \|^2 \|^2 = \| \alpha \|^2 \|^2 \|^2$ on the other hand: $\| R_{A2} R_{A2} \|^2 = \| \alpha \|^2 \|^2 = \| \alpha \|^2 \|^2 = \| \alpha \|^2 \|^2 \|^2$ for $\alpha \in \mathbb{C}$ $\Rightarrow \| \| \| \| \| \|^2 = \| \alpha \|^2 \| \| \| \| \|^2 \|^2 \quad \text{for an } \alpha \in \mathbb{C}$ Now we choose $\alpha \in \mathbb{C}$ with $|R_{AL} R_{AL} R_{AL}$

Problem 4

Let 1810); be the wave function at time o with

P(T) 19(0) > = (sgn TT) (9(0)) for a ∈ {0,1}, TT ∈ Sn, n ∈ N

We assume the time evolution is given by the operators U(t) for all times $t \in (0,\infty)$, so that

19(t)):= (1(t) 19(0)) for all to (0,00)

is the wave function of the system at time t.

Then we know that Ult) is symmetric for all $t \in (0,\infty)$, hence $P(\pi)U(t) = U(t)P(\pi)$ for all $t \in (0,\infty)$, $\pi \in S_{\pi}$.

 $P(\pi) | \Psi(t) \rangle = P(\pi) | U(t) | (\Psi(0)) \rangle = | U(t) | P(\pi) | \Psi(0) \rangle$ $= | U(t) [(sgn \pi)^{\alpha} | \Psi(0) \rangle] = (sgn \pi)^{\alpha} | U(t) | \Psi(0) \rangle$

= (squ tt) ~ (4(1))

=> (8(+)) is symmetric or antisymmetric for all to(0,00)

PERFECT

Auf 4: 1.0/

Problem 5

- (1) Let $L^2(\mathbb{R}) := \{ \}: |\mathbb{R} \to \mathbb{C} \mid \int |\mathbb{S}|^2 d\lambda < \infty \}$ be the space of square-integrable functions with domain \mathbb{R} . For three particles with spin equal to 0 we need $\lambda := L^2(\mathbb{R}) \otimes L^2(\mathbb{R}) \otimes L^2(\mathbb{R}) \cong L^2(\mathbb{R}^3)$ as a superset of our Hilbert space to Lenote the position of every particle. Because the spin is 0 the three identical particles are Bosons. Therefore their wave functions have to be symmetric.
 - => $\mathcal{H}_s := \{ |9\rangle \in \mathcal{H} \mid P(\pi)|9\rangle = |9\rangle$ for all $\pi \in S_3 \} \subset \mathcal{H} \setminus \mathcal{H}$ with S_3 as the University of parameters groups and $P(\pi)$ as the related operator for $\pi \in S_3$ is the hilbert space of the system.
- (2) The particles do not interact.

=> $H = \sum_{k=1}^{3} H^{(k)}$ is the Hamiltonian of the system with $H: \mathcal{H}_s \longrightarrow \mathcal{H}_s$.

Now we assume $\{(n) \in L^2(\mathbb{R}) \mid n \in \mathbb{N}\}$ is an orthonormal eigenbasis of $H^{(1)}$. Therefore it is an eigenbasis of $H^{(2)}$ $H^{(3)}$ because they are identical.

=> $\{|n_{A}\rangle\otimes|n_{2}\rangle\otimes|n_{3}\rangle$ $|n_{A},n_{L},n_{3}\in |N|\}$ forms orthonormal eigenbasis of H with Jonnain H. But these states are not symmetric.

 $|n_{\lambda}n_{\lambda}n_{\lambda}\rangle_{S} := \sum_{\pi \in S_{\lambda}} P(\pi) |n_{\lambda}n_{\lambda}\rangle = \sum_{\pi \in S_{\lambda}} |n_{\pi(\lambda)}n_{\pi(\lambda)}n_{\pi(\lambda)}\rangle$

is symmetric and an eigenvector of H with Somain Ks.

-> { \(\mu_1 \nu_2 \nu_3 \rangle_5 \) \(\mu_1 \nu_1 \nu_2 \nu_3 \rangle_5 \) \(\nu_1 \nu_1 \nu_2 \nu_3 \rangle_5 \) \(\nu_1 \nu_2 \nu_3 \rangle_5 \) \(\nu_2 \nu_3 \rangle_5 \) \(\nu_1 \nu_2 \nu_3 \rangle_5 \) \(\nu_2 \nu_3 \rangle_5 \) \(\nu_3 \nu_1 \nu_1 \nu_2 \nu_3 \rangle_5 \) \(\nu_1 \nu_2 \nu_3 \rangle_5 \) \(\nu_2 \nu_3 \rangle_5 \) \(\nu_3 \nu_1 \nu_1 \nu_2 \nu_3 \rangle_5 \) \(\nu_1 \nu_2 \nu_3 \rangle_5 \) \(\nu_2 \nu_3 \nu_

case
$$n_1 = n_2 = n_3$$
: $|n_1 n_2 n_3\rangle_S := \frac{1}{3!} |n_1 n_2 n_3\rangle_S = |n_1 n_2 n_3\rangle$

$$= > |||n_1 n_2 n_3\rangle_S || = 1$$

case
$$n_1 = n_2 + n_3$$
: $|n_1 n_2 n_3\rangle_S := \frac{1}{\sqrt{3! \cdot 2!}} |n_1 n_2 n_3\rangle_S (-0.5)$
=> $|| |n_1 n_2 n_3\rangle_S || = 1$

case
$$n_1 \neq n_2 \neq n_3 \neq n_1$$
: $|n_1 n_2 n_3\rangle_{s} := \frac{1}{\sqrt{3!/1}} |n_2 n_2 n_3\rangle_{s}$

$$= > || |n_1 n_2 n_3\rangle_{s} || = 1$$

- => { $|n_1n_2n_3\rangle_5$ $|n_1n_2,n_3\in IN$ } is an orthonormal eigenbasis of H with Lomain Hs
- (3) We know there are constants E_0 , S_0 , $\omega \in \mathbb{R}$ such that $H^{(\Lambda)}(n) = E_n(n)$ with $E_n = E_0 n^2$ $S_n(x) = S_0 \sin(\omega n x) M_{[-a,a]}(x), S_n = [n]$ for all $n \in \mathbb{N}$

five eigenstates with lowest energies:

Problem 6

Let $S_R^2 := \{ x \in |R^3 \setminus ||x|| = R \}$ be the surface of the ball with Radius $R \in R^+$ in R^3 . In that case the Hilbert space for one particle is given by $\mathcal{X} := L^2(S_R^2) \otimes C^2$

with L2(S2):= {f: S2-, C | S1512 do 200}

as the space of square-integrable functions on the sphere The Hamiltonian of this particle can be defined by

 $H:=\frac{p^2}{2m}=\frac{\pi^2}{2m}\Delta$

where $m \in \mathbb{R}^+$ is the mass of the particle. Now let $V_{lp}: S_R^2 \longrightarrow C$ be the spherical harmonics for LENo and $p \in \mathbb{Z}$, $|p| \leq l$. Then we know

 $\Delta Y_{cp} = \frac{((L+1))}{R^2} Y_{cp}$ for all $L \in \mathcal{N}_0$, $p \in \mathbb{Z}$, $Lpl \leq L$

=> You are eigenstates of H

 $\frac{\hbar^2}{2m} \Delta Y_{ip} = \frac{\hbar^2}{2mR^2} L(l+1) Y_{ip} =: E_{ip} Y_{ip}$

with Eqp := the colors for all LEN, pe Z, plec

Note: for l=0 we do not have a valid eigenstate because of $E_{00}=0$ Warum? (-0,5)

Now consider the Hilbert space for $n \in IN$ identical particles. (fermions) $\mathcal{H}_{\alpha}^{n} := \{ | \varphi \rangle \in \mathcal{H}^{n} \mid P(\pi) | \varphi \rangle = sgn(\pi) | \varphi \rangle$ for all $\pi \in S_{n} \}$

=> every fermion has to be in another state (Pauli Principle)

We want to find the smallest degree $l \in \mathbb{N}$ for the energy $E := 42 \frac{t^2}{2uR^2}$: $E = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{$

 $E_{f}(n) := \sum_{l=1}^{n} \sum_{p=-l}^{l} 2E_{lp} = \frac{\hbar^{2}}{2mR^{2}} \sum_{l=\chi}^{n} \sum_{p=-l}^{l} 2l(l+1) \sqrt{\frac{1}{2mR^{2}}} = \frac{\hbar^{2}}{2mR^{2}} \sum_{l=\chi}^{n} 2l(l+1)(2l+1) \sqrt{\frac{1}{2mR^{2}}} = \frac{\hbar^{2}}{2mR^{2}} \sum_{l=\chi}^{n} 2l^{3} + 3l^{2} + l$

=>
$$E_f(n) = \frac{t^2}{2mR^2} \sum_{l=\Lambda}^{N} 2l^3 + 3l^2 + l$$

= $\frac{t^2}{2mR^2} \cdot 2 \cdot \left[\frac{\Lambda}{2} n^2 (n_{1\Lambda})^2 + \frac{\Lambda}{2} n (n_{2\Lambda}) (2n_{2\Lambda}) + \frac{\Lambda}{2} n (n_{2\Lambda}) \right]$
= $\frac{t^2}{2mR^2} \cdot n (n_{2\Lambda}) \left[n (n_{2\Lambda}) + 2n_{2\Lambda} + \Lambda \right]$
= $\frac{t^2}{2mR^2} \cdot n (n_{2\Lambda})^2 (n_{2\Lambda})$

Eq(n) describes the energy of the system with the identical particles occupying the first n degrees.

=>
$$E_f(1) = \frac{12h^2}{2mR^2}$$
, $E_f(2) = \frac{72h^2}{2mR^2}$

=> $E_{\xi}(\Lambda) < E < E_{\xi}(\lambda)$ => first degree of system is occupied

=> Second degree is partially accupied

In the second degree every Fermion of the system increments the energy by $E_{2m} = \frac{6h^2}{2mR^2}$, $m \in \{-2, -1, 0, 1, 2\}$

number of Ferminus in second degree: $n_2 = \frac{E - E_g(1)}{E_{2m}R^2}$ $m_2 = \frac{30 \, \text{tr}^2}{2 \, \text{mR}^2} / \frac{6 \, \text{tr}^2}{2 \, \text{mR}^2} = 5$

number of fermions in (full) first degree: $n_{\lambda} = 6$ $\left(n_{\lambda} = \frac{E_{\zeta}(1)}{E_{\zeta}n_{\lambda}}, \quad m \in \{-1, 0, 1\} \right)$

=> number of fermions on sphere: n=nx+nz = 11

+ 2 PARTICLES
IN THE L=0 STAYE

$$H = \frac{Z^2}{2MR}$$

Auf 6: 2,5/3,0