ConvReLU++: Reference-based Lossless Acceleration of Conv-ReLU Operations on Mobile CPU

Mobisys'23

Rui Kong* kongrui@sjtu.edu.cn Shanghai Jiao Tong University Shanghai, China

Yizhen Yuan Institute for AI Industry Research (AIR), Tsinghua University Beijing, China Yuanchun Li[†]
Institute for AI Industry Research (AIR), Tsinghua
University
Beijing, China

Linghe Kong[†] Shanghai Jiao Tong University Shanghai, China

- Deploying CNNs to edge devices is common
- The execution of typical CNNs requires a lot of computing power and energy
- Various CNN inference acceleration approaches
 - model compression
 - domain specific processors
 - system optimization

- Deploying CNNs to edge devices is common
- The execution of typical CNNs requires a lot of computing power and energy
- Various CNN inference acceleration approaches
 - model compression
 - domain specific processors
 - system optimization

This paper's goal: Saving computation and latency from ReLU

Saving computation and latency from ReLU

The output of Conv-ReLU may contain a large portion of zeros

The computation cost to obtain the precise negative values in the Convolution operation may be wasted

- Saving computation and latency from ReLU
- Insight: judging whether the output of a vector multiplication operation is negative can be faster than actually executing it.
- The vector multiplication operations before a ReLU activation can be skipped if their output values are foreseen negative

key point: Identifying negative output operations with low overhead and high success rate

The whole computation in a Conv-ReLU structure can be seen as a batch of long-vector multiplications.

Figure 6: A convolution operation is executed as a matrix multiplication between the unfolded input matrix x and unfolded convolution kernel matrix W.

Data patterns of Conv-ReLU

- 1. high sparsity in the output
 - The sparsity ratio and the portion of computation related to the sparse output are high (53.29% \sim 93.43%)
- There is a great potential for acceleration

Data patterns of Conv-ReLU

2. high similarity between input patches

Similarity between input patches of Conv-ReLU is common

- (a)in the input image
- (b) across images in a batch
- (c) in the feature map

Target: identify the negative-output vector multiplications in Conv-ReLU without calculating them

suppose we have a function ϕ that calculates the upper-bound

$$\overline{\mathbf{y}_{i,j,k}} = \phi(\mathbf{x}_{i,j}, \mathbf{w}_k) = upperbound(\mathbf{x}_{i,j} \cdot \mathbf{w}_k),$$

$$\mathbf{y}_{i,j,k} = \left\{ \begin{array}{ll} 0, & \text{if } \overline{\mathbf{y}_{i,j,k}} \leq 0 \\ \text{ReLU}\left(\mathbf{x}_{i,j} \cdot \mathbf{w}_{k}\right), & \text{otherwise.} \end{array} \right.$$

The computation can be reduced if the upper-bound calculation function ϕ is more lightweight than the vector multiplication and the portion of zeros is high

Challenges

- 1. How to select the references to reduce the computation?
- 2. How to effectively detect and skip unnecessary computations based on the selected references?

Main idea: skip unnecessary long-vector multiplications based on the similarity between input patches

Figure 5: The overall procedure of the Conv-ReLU operation in ConvReLU++.

Hash-based patch Clustering: identify reference input patches

A tight upper-bound calculation method: identify unnecessary vector multiplications

Hash-based patch Clustering: identify reference input patches

- the references should be representative of all input patches
- the selection must be efficient
- the number of selected references should be controllable

method: clustering

- k-means is too time consuming
- hashing is better
- a hash function that map the input patch to a hash id
- use a lightweight Conv layer as the hash function

$$patch_hash(\mathbf{x}_{i,j}) = w^{hash} \cdot \mathbf{x}_{i,j},$$

Figure 5: The overall procedure of the Conv-ReLU operation in ConvReLU++.

select the first input patch in each cluster as the inference

A tight upper-bound calculation method: identify unnecessary vector multiplications

Goal: predict whether the dot product is negative

$$\mathbf{y}_{i,j,k} = \mathbf{x}_{i,j} \cdot \mathbf{w}_k \leq \mathbf{y}_{i,j,k}^{ref} + \phi(\mathbf{x}_{i,j} - \mathbf{x}_{i,j}^{ref}, \mathbf{w}_k),$$

- precompute the Conv outputs for all reference input patches
- the key is how to design the function ϕ which is used to calculate the upper-bound

A tight upper-bound calculation method: identify unnecessary vector multiplications

$$\begin{aligned} \mathbf{y}_{i,j,k} &= \mathbf{x}_{i,j} \cdot \mathbf{w}_{k} \leq \mathbf{y}_{i,j,k}^{ref} + \phi(\mathbf{x}_{i,j} - \mathbf{x}_{i,j}^{ref}, \mathbf{w}_{k}), & \delta \cdot \mathbf{w}_{k} \leq ||\delta[I_{\text{diff-sub}}^{c}]|| \times ||\mathbf{w}_{k}[I_{\text{diff-sub}}^{c}]|| \\ &+ \delta[I_{\text{diff-sub}}] \cdot \mathbf{w}_{k}[I_{\text{diff-sub}}]. \\ I_{\text{same}} &= \{i \mid \delta[i] \times \mathbf{w}_{k}[i] > 0\}, \\ I_{\text{diff}} &= \{i \mid \delta[i] \times \mathbf{w}_{k}[i] \leq 0\}. & \delta \cdot \mathbf{w}_{k} \leq ||\delta|| \times ||\mathbf{w}_{k}[I_{\text{diff-sub}}^{c}]|| + \delta[I_{\text{diff-sub}}] \cdot \mathbf{w}_{k}[I_{\text{diff-sub}}] \\ &= \phi(\delta, \mathbf{w}_{k}). \end{aligned}$$

$$\delta \cdot \mathbf{w}_{k} = \delta[I_{\text{same}}] \cdot \mathbf{w}_{k}[I_{\text{same}}] + \delta[I_{\text{diff}}] \cdot \mathbf{w}_{k}[I_{\text{diff}}]$$

$$\leq ||\delta[I_{\text{same}}]|| \times ||\mathbf{w}_{k}[I_{\text{same}}]|| + \delta[I_{\text{diff}}] \cdot \mathbf{w}_{k}[I_{\text{diff}}].$$

Flops reduction

Table 1: Models and tasks used in our experiments and the average FLOPs reduction ratio achieved by our approach. The # Layers column is the number of Conv-ReLU layers compared with the total number of layers (excluding non-parametric layers).

		M - 1-1	l	Datasat	Oniminal OFLORA	O OFLOR-
ID	Task	Model	# Layers	Dataset	Original GFLOPs	Our GFLOPs
1	Classification	VanillaCNN	2/2	MNIST-ROT [25]	0.02	0.01 (-43.77%)
2	Classification	ResNet50 [18]	33/50	ImageNet [12]	8.24	8.02 (-2.62%)
3	Classification	VGG16 [32]	13/16	ImageNet [12]	15.50	14.87 (-4.08%)
4	Classification	SqueezeNet [21]	12/18	ImageNet [12]	0.35	0.33 (-5.28%)
5	Classification	ResNet50 [18]	33/50	Industrial Images [45]	24.22	21.40 (-11.81%)
6	Classification	VGG16 [32]	13/16	Industrial Images [45]	90.64	68.06 (-24.91%)
7	Detection	FasterRCNN [39]	8/17	COCO [29]	23.50	21.81 (-7.21%)
8	Detection	FasterRCNN [39]	8/17	TSRD [58]	23.50	20.64 (-12.16%)
9	Detection	MobileNet-SSD [20]	47/60	COCO [29]	1.23	1.16 (-5.44%)
10	Detection	MobileNet-SSD [20]	47/60	TSRD [58]	1.23	1.10 (-10.82%)

Flops reduction

Table 2: Relative FLOPs of our method & lossy baselines on MNIST-ROT dataset with Vanilla CNN model. r is a hyperparameter of SparseNN. * means that SeerNet needs to run a whole 4-bit quantized model.

Method	Test Accuracy	Relative FLOPs	
SparseNN with r=1	14.82%	17.23%	
SparseNN with r=2	42.35%	35.75%	
SparseNN with r=4	72.88%	68.31%	
SparseNN with r=9	93.34%	144.09%	
SeerNet	90.12%	27.44% + 100.00% (4-bit)*	
Ours	93.34%	56.23%	
Vanilla CNN	93.34%	100.00%	

Breakdown analysis of the FLOPs reduction

Figure 7: Layer-wise FLOPs reduction achieved by ConvReLU++ on different models and tasks.

Latency reduction

Table 4: Latency reduction and memory overhead of ConvReLU++ on real edge devices.

Device	Model + Dataset	Original Lat.	Our Lat.	Reduced FLOPs	Original Mem.	Our Mem.
Smartphone	ResNet50+Industrial Images	4.86s	4.47s (-8.02%)	-11.81%	148.40M	152.30M (+2.6%)
Smartphone	MobileNet-SSD+TSRD	1.08s	1.01s (-6.44%)	-10.82%	83.10M	84.20M (+1.32%)
Smartphone	SqueezeNet+ImageNet	0.24s	0.23s (-2.90%)	-5.28%	43.50M	44.30M (+1.84%)
Arduino	MobileNet+PnPLO	1.46s	1.33s (-8.91%)	-9.54%	198.23K	200.61K (+1.20%)
Arduino	MobileNet+COCO	1.46s	1.36s (-7.16%)	-8.37%	198.23K	200.61K (+1.20%)

Conclusion

- introduce an operator-level acceleration method for Conv-ReLU structures
- the method is lossless and can be applied to general vision tasks
- design a novel hash-based clustering method for input reference selection and a lightweight upperbound calculation method for redundant vector multiplication detection

Limitations

- the proposed acceleration method has different effects on different data
- the acceleration effect is more evident for shallower convolution layers
- the method also does not support other activation functions like sigmoid

Thank You

Presented by Ye Wan 2023-06-08