	диссертация допущена к защите
	зав. кафедрой
	«» 2019 г.
Моделирование і	нуклеосинтеза в звездах
	Тема:
Направление: –	
Магистерская программа: -	
Выполнил студент гр	

Введение

Вопрос о том, из чего состоит материальный мир стоит перед учеными с самого зарождения науки Левкипп (около 430 г. до н.э.) и Демокрит (около 420 г. до н.э.) первыми предложили атомную теорию, в которой вся материя состоит из неделимых частиц. Позже ученые добились успехов в экспериментах с процессами возникновения различных веществ. Алхимики, например, задавались вопросами преобразования обычных металлов (свинца, например) в благородные (такие как золото). Попытки их были тщетны, и теоретическая основа этих преобразований не получила никакого развития. И только в конце XX века ядерные физики добились успеха превращения висмута в золото (лишь в небольших количествах и с коммерческими расходами) В связи с развитием ядерной физики были также построено огромное количество различных математических моделей, объясняющих возникновение тяжелых элементов, а именно тяжелее железа, из более легких.

В данной работе, как видно из названия, я буду моделировать такие реакции с использование открытой библиотеки реакций ReacLib, в основе которой лежит построение сечения зависимостью от температуры по 7 параметрам.

Основной целью работы является построение сечений для столкновительного β -распада при столкновении элементов с протоном, а также оценка влияния этих реакций на полученную распространенность элементов в результате всех процессов за промежуток времени.

Сам процесс моделирования будет выполняться с помощью открытой библиотеки SkyNet, написанную Jonas Lippuner с дополнение ее своим набором реакций.

- 1. Столкновительный β -распад
- 1.1. Распространенность в солнечной системе
- 1.2. Нуклеосинтез Большого Взрыва
- 1.3. Ядерное горение в тяжелых звездах
- 1.4. Пик железа
- 1.5. Нуклеосинтез за пиком железа
- 1.6. Возможные места г-процесса
- 1.7. Коллапс ядра сверхновых
- 1.8. Химическая эволюция галактики
- 1.9. Эволюция само-нагрева
- 1.10. 2.3.3 Критерий сходимости и временной шаг