MIT 6.837 - Ray Tracing

Tony DeRose - Math in the Movies

Tony DeRose: Pixar Animation Studios- Senior Scientist

Date: 10-5-2004 (one week from today!)

Time: 1:00 PM- 2:00 PM

Location: 32-D449 (Stata Center, Patil/Kiva)

Film making is undergoing a digital revolution brought on by advances in areas such as computer technology, computational physics and computer graphics. This talk will provide a behind the scenes look at how fully digital films--- such as Pixar's "Monster's Inc" and "Finding Nemo" --- are made, with particular emphasis on the role that mathematics plays in the revolution.

MIT EECS 6.837, Cutler and Durand

2

Final Exam

- · ... has been scheduled
- Thursday December 16th, 1:30-3:30pm
- DuPont
- · Open Book

MIT EECS 6.837, Cutler and Durand

Last Week: Transformations

• Linear, affine and projective transforms

- · Homogeneous coordinates
- · Matrix notation
- Transformation composition is not commutative

 $\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$

MIT EECS 6.837, Cutler and Durand

Last Week: Transformations

- Transformations in Ray Tracing
 - Transforming the ray Remember: points & directions transform differently!
 - Normalizing direction & what to do with t
 - Normal transformation

$$n_{WS}^{T} = n_{OS} (\mathbf{M}^{-1})$$

MIT EECS 6.837, Cutler and Durand

Last Time: Local Illumination

- BRDF Bidirectional Reflectance Distribution Function
- Phong Model- Sum of 3 components:
 - Diffuse Shading
 - Specular Highlight
 - Ambient Term

 $L_o = k_a + \left(k_d(\mathbf{n} \cdot \mathbf{l}) + k_s(\mathbf{v} \cdot \mathbf{r})^q\right) \frac{L_i}{r^2}$

| Plante | P

MIT EECS 6.837, Cutler and Durand

 Shininess coefficient controls the "spread" of the specular highlight

Phong

Blinn-Torrance (scaled to approximate Phong)
MIT EECS 6.837, Cutler and Durand

Implement this version of Phong

The Phong Model

- · Parameters
 - k_s: specular reflection coefficient
 - q : specular reflection exponent

$$L_o = k_s (\cos \alpha)^q \frac{L_i}{r^2} = k_s (\mathbf{v} \cdot \mathbf{r})^q \frac{L_i}{r^2}$$

Blinn-Torrance Variation

- Parameters
 - $-k_s$: specular reflection coefficient (because it's what OpenGL
 - q: specular reflection exponent uses & we want to match)

 $L_o = k_s (\cos \beta)^q \frac{L_i}{r^2} = k_s (\mathbf{n} \cdot \mathbf{h})^q \frac{L_i}{r^2}$

Additional Phong Clamping Term

• Surfaces facing away from the light should not be lit (if $N\cdot L \le 0$)

 Scale by dot product to avoid a sharp edge at the light's grazing angle: specular *= max(N·L,0)

BRDFs in the Movie Industry

- http://www.virtualcinematography.org/publications/acrobat/BRDF-s2003.pd
- · For the Matrix movies
- Agent Smith clothes are CG, with measured BRDF

MIT EECS 6.837, Cutler and Durand 1

How Do We Obtain BRDFs?

Gonioreflectometer
 4 degrees of freedom

Reflection • Reflection angle = view angle • $\mathbf{R} = \mathbf{V} - 2 (\mathbf{V} \cdot \mathbf{N}) \mathbf{N}$

MIT EECS 6.837, Cutler and Durand

The Rendering Equation

- Clean mathematical framework for light-transport simulation
- We'll see this later
- At each point, outgoing light in one direction is the integral of incoming light in all directions multiplied by reflectance property

A Look Ahead

- Assignment 2
 - Transformations & More Primitives
- Assignment 3
 - OpenGL Pre Vaulization & Phong Shading
- Assignment 4
 - Ray Tracing (Shadows, Reflections, Refractions)

MIT EECS 6.837, Cutler and Durand

