Algoritmi e Strutture Dati

Foglio 4 20/03/2023

Esercizio 1. Riscrivete le procedure ENQUEUE e DEQUEUE per una coda viste a lezione in modo da rilevare underflow e overflow.

Esercizio 2. L'operazione INSERT per gli insiemi dinamici può essere implementata per una lista singolarmente concatenata nel tempo O(1)? E l'operazione DELETE?

Esercizio 3. Implementate uno stack utilizzando una lista singolarmente concatenata. Le operazioni Push e Pop dovrebbero richiedere tempo O(1).

Esercizio 4. Implementate una coda utilizzando una lista singolarmente concatenata. Le operazioni ENQUEUE e DEQUEUE dovrebbero richiedere tempo O(1).

Esercizio 5. Implementate le operazioni per i dizionari (INSERT, DELETE, SEARCH) utilizzando una lista circolare singolarmente concatenata. Quali sono i tempi di esecuzione delle procedure?

Esercizio 6. Sia A un array di $n \ge 2$ interi contenente gli interi tra 1 ed n-1, uno dei quali appare due volte. Descrivete un algoritmo che trovi l'elemento ripetuto in tempo O(n).

Esercizio 7. Fornite un algoritmo che, dato un array A di n interi, restituisca un intero k che non può essere ottenuto come somma di due elementi di A, cioè un intero k tale che non esistono $i \neq j$ tali che k = A[i] + A[j]. L'algoritmo deve impiegare O(n) passi.

Esercizio 8. Sia A un array di n interi. Un salto in A è un indice i $(1 \le i < n)$ tale che $A[i+1] - A[i] \ge 2$. Osservate che, se $n \ge 2$ e $A[n] - A[1] \ge n$, l'array A ha almeno un salto. Progettate un algoritmo che, dato un array A di dimensione $n \ge 2$ e tale che $A[n] - A[1] \ge n$, trovi un salto in tempo $O(\log n)$.