Regular expressions

Sipser 1.3 (pages 63-76)

Looks familiar...

Your turn now!

Formally

• Definition 1.52:

Say that R is a regular expression if R is

- 1. a for some a in the alphabet Σ
- 2. ε
- 3. Ø
- 4. $(R_1 \cup R_2)$, where R_1 and R_2 are regular expressions
- 5. $(R_1 \circ R_2)$, where R_1 and R_2 are regular expressions
- 6. (R_1^*) , where R_1 is a regular expression

Examples

```
• 0*10* = \{w \mid w \text{ is a string of odd length}\}

• (0 \cup \varepsilon)(1 \cup \varepsilon) =

• (01)*\varnothing =

• (+ \cup - \cup \varepsilon)(DD* \cup DD*.D* \cup D*.DD*) =

where D = \{0,1,2,3,4,5,6,7,8,9\}
```

Identities

- Let R be a regular expression
 - $R^{\circ} \emptyset =$
 - $-R^{\circ}\epsilon =$
 - -RUØ =
 - $-RU\epsilon =$

Regular expressions describe...

regular languages!

Regular expressions and NFAs

- Theorem 1.54: A language is regular if and only if some regular expression describes it.
- Proof (⇐)
 - 1. If $a \in \Sigma$, then a is regular.
 - 2. ε is regular.
 - 3. \emptyset is regular.
 - 4. If R_1 and R_2 are regular, then $(R_1 \cup R_2)$ is regular.
 - 5. If R_1 and R_2 are regular, then $(R_1 \circ R_2)$ is regular.
 - 6. If R_j is a regular, then (R_j^*) is regular

Proof in action

Build an NFA to that recognizes the regular expression

$$a(a \cup b)*a$$

Video credit - Kexin Wang (F19)