3.3. Global existence.

Theorem 3.10. Assuming that (3.2) and (3.3) are satisfied, then the conclusions in Theorem 3.4 hold for any T > 0.

Proof. By Theorem 3.4, we may assume that (3.1) has a unique solution (u, g, h) defined on some maximal time interval $(0, T_m)$ with $T_m \in (0, \infty]$, and

$$h, g \in C^{1 + \frac{\beta}{2}}((0, T_m)), \quad u \in C^{1 + \frac{\beta}{2}, 2 + \beta}(\Omega_{T_m}),$$

where $\Omega_{T_m} := \{(t,x) : t \in (0,T_m), x \in [g(t),h(t)]\}$. To complete the proof, we must demonstrate that $T_m = \infty$. Suppose $T_m < \infty$. Then, by the proof of Theorem 3.4, along with Lemmas 3.8 and 3.9, there exist positive constants $C_1, C_2 = C_2(T_m)$, such that for $t \in [0,T_m)$ and $x \in [g(t),h(t)]$,

$$0 \le u(x,t) \le C_1$$
, $|h'(t)| + |g'(t)| \le C_2$, $|h(t)|, |g(t)| \le C_2t + h_0$.

For any small constant $\varepsilon > 0$, it follows from the proof of Theorem 3.4 and Lemmas 3.8 and 3.9 that $u, v \in C^{1+\beta, \frac{1+\beta}{2}}(\Omega_{T_m-\varepsilon})$. Thus, as in Step 4 of the proof of Theorem 3.4, applying Schauder's estimates, for any fixed $0 < T_0 < T_m - \varepsilon$, we obtain $||u||_{C^{2+\beta, 1+\frac{\beta}{2}}(\Omega_{T_m-\varepsilon}\setminus\Omega_{T_0})} \le Q^*$, where Q^* depends on T_0, T_m , and C_i for i=1,2, but is independent of ε . Since $\varepsilon > 0$ can be made arbitrarily small, it follows that for any $t \in [T_0, T_m)$,

$$||u(t,\cdot)||_{C^{2+\beta}([g(t),h(t)])} \le Q^*.$$

By repeating the arguments used in the proof of Theorem 3.4, we can conclude that there exists T>0 small, depending on Q^* and C_i (i=1,2), such that the solution to (3.1) with initial time $T_m-\frac{T}{2}$ can be extended uniquely to $t=T_m-\frac{T}{2}+T>T_m$, a contradiction to the definition that T_m is the maximal time interval for the solution. Thus, we must have $T_m=\infty$.

3.4. **Proof of Theorem 3.1.** Let us first note that $f(t, x, 1) \equiv 0$ and $f(t, x, u) \leq \bar{f}(u) < 0$ for u > 1 imply $\bar{f}(1) = 0$. Let $M_0 = \max\{\|u_0\|_{\infty}, 1\}$ and v(t) be the solution of

$$v' = \bar{f}(v), \ v(0) = M_0.$$

Since $\bar{f}(v) < 0$ for v > 1, we clearly have $1 \le v(t) \le M_0$ and $v(t) \to 1$ as $t \to \infty$. Since $f(t, x, u) \le \bar{f}(u)$ for $u \ge 1$, we obtain

$$v_t - dv_{xx} = \bar{f}(v) \ge f(t, x, v) \text{ for } t > 0, x \in [g(t), h(t)].$$

We also have $v \ge 1 > \delta = u$ for $x \in \{g(t), h(t)\}$ and $v(0) = M_0 \ge u(0, x)$ for $x \in [-h_0, h_0]$. Therefore the standard comparison principle over the region $\{(t, x) : t > 0, x \in [g(t), h(t)]\}$ infers $u(t, x) \le v(t)$ in this region. It follows that

$$\limsup_{t \to \infty} u(t, x) \le \lim_{t \to \infty} v(t) = 1 \text{ uniformly for } x \in [g(t), h(t)].$$

To bound u(t,x) from below, we first make use of (3.4) to show that there exists $T_0 > 0$ such that (3.32) $u(t,x) \ge \delta$ for $t \ge T_0$ and $x \in [g(t),h(t)]$.

Similar to the proof of Theorem 1.1, since \underline{f} satisfies $(\mathbf{f_A})$, we are able to choose a function $\hat{f} \in C^1$ sufficiently close to \underline{f} in L^{∞} such that $\hat{f}(s) \leq f(s)$ for $s \geq 0$, and \hat{f} satisfies $(\mathbf{F_b})$ with $(P,Q) = (\hat{\theta}, \delta)$ for some $\hat{\theta} \in [\theta, \delta) \cap (0, \delta)$. Then, by Lemma 2.1, the traveling wave problem (2.4) has a solution pair $(c, q) = (c_0, q_0)$ with $c_0 > 0$ and $q_0(\cdot)$ strictly increasing.

The same reasoning as in the proof of Theorem 1.1 shows that for some L > 0 sufficiently large,

$$\underline{u}(t,x) := \max\{q_0(ct - x - L), q_0(ct + x - L)\}\$$

satisfies (in the weak sense)

$$\underline{u}_t \le d\underline{u}_{xx} + f(\underline{u}) \le f(t, x, \underline{u}) \quad \text{for } t > 0, \ x \in \mathbb{R}.$$

Additionally,

$$0 \le \underline{u}(t, x) \le \delta \le u(t, x)$$
 for $t > 0$, $x \in \{g(t), h(t)\}$,

and

$$\underline{u}(0,x) \le u_0(x)$$
 for $x \in [-h_0, h_0]$.

Therefore we can apply the standard comparison principle over $\{(t,x): t>0, x\in [g(t),h(t)]\}$ to deduce $u(t,x)\geq \underline{u}(t,x)$ in this region.

Moreover, using

$$\lim_{t \to \infty} \|\underline{u}(t, \cdot) - \delta\|_{L^{\infty}(\mathbb{R})} = 0,$$