#### ARTIFICIAL INTELLIGENCE



Resource Person Ms. Qurat Ul Ain Raja

#### **Contents**

- Probability in Machine Learning
- Naïve Bayesian Algorithm

### Naïve Bayes Overview

Probabilistic approach to classification

- Relationships between input features and class expressed as probabilities
- Label for sample is class with highest probability given input



### Naïve Bayes Classifier

Classification
Using
Probability



Bayes Theorem



Feature Independence Assumption

# **Probability of Event**

Probability is measure of how likely an event is

#### Probability of Event 'A' Occurring

$$P(A) = \frac{\text{# ways for A}}{\text{# possible outcomes}}$$

# **Probability of Event**

What is the probability of rolling a die and getting 6?



#### Probability of Rolling 6 on a Die

P(6) = 
$$\frac{\text{# ways for getting 6}}{\text{# possible outcomes}} = \frac{1}{6}$$

### Bayes' Theorem

 Relationship between P(B I A) and P(A I B) can be expressed through Bayes' Theorem

$$P(B \mid A) = \frac{P(A \mid B) * P(B)}{P(A)}$$

Bayes' Theorem

### Classification with Probabilities

Given features X={X1,X2,...,Xn}, predict class C Do this by finding value of C that maximizes P(C I X)



# Bayes' Theorem for Classification

- But estimating P(CIX) is difficult
- Bayes' Theorem to the rescue!
  - Simplifies problem



# Bayes' Theorem for Classification



Probability of observing values for input features

# Estimating P(C)



To estimate P(C), calculate fraction of samples for class C in training data.

| Home<br>Owner | Marital<br>Status | Loan<br>Default |
|---------------|-------------------|-----------------|
| Yes           | Single            | No              |
| No            | Married           | No              |
| No            | Single            | No              |
| Yes           | Married           | No              |
| No            | Divorced          | Yes             |
| No            | Married           | No              |
| Yes           | Divorced          | No              |
| No            | Single            | Yes             |
| No            | Married           | No              |
| No            | Single            | Yes             |

# Estimating P(X<sub>i</sub>I C)

P(Home Owner = Yes |  $N_0$ ) = 3/7 = 0.43

P(Marital Status = Singlel Yes) = 2/3 = 0.67

#### Naïve Bayes Classifier

•C<sub>1</sub>: buys\_computer = "yes"

•C<sub>2</sub>: buys\_computer = "no"

You can use the given formula:

$$P(C_i|\mathbf{X}) = \frac{P(\mathbf{X}|C_i)P(C_i)}{P(\mathbf{X})}$$

| RID | age         | income | student | credit_rating | Class: buys_computer |
|-----|-------------|--------|---------|---------------|----------------------|
| 1   | youth       | high   | no      | fair          | no                   |
| 2   | youth       | high   | no      | excellent     | no                   |
| 3   | middle_aged | high   | no      | fair          | yes                  |
| 4   | senior      | medium | no      | fair          | yes                  |
| 5   | senior      | low    | yes     | fair          | yes                  |
| 6   | senior      | low    | yes     | excellent     | no                   |
| 7   | middle_aged | low    | yes     | excellent     | yes                  |
| 3   | youth       | medium | no      | fair          | no                   |
| 9   | youth       | low    | yes     | fair          | yes                  |
| 0   | senior      | medium | yes     | fair          | yes                  |
| 1   | youth       | medium | yes     | excellent     | yes                  |
| 2   | middle_aged | medium | no      | excellent     | yes                  |
| 3   | middle_aged | high   | yes     | fair          | yes                  |
| 4   | senior      | medium | no      | excellent     | no                   |

•Data to be classified:

X = (age =youth, income = medium, student = yes, credit\_rating = fair)

#### Naïve Bayes Classifier

#### Compute class probabilities P(C<sub>i</sub>):

- P(buys\_computer = "yes") = 9/14 = 0.643
- P(buys\_computer = "no") = 5/14= 0.357

#### Compute P(X|C<sub>i</sub>) for each class:

- √ P(age = youth| buys\_computer = "yes") = 2/9 = 0.222
- √ P(age = youth | buys\_computer = "no") = 3/5 = 0.6
- P(income = "medium" | buys\_computer = "yes") = 4/9 = 0.444
- √ P(income = "medium" | buys\_computer = "no") = 2/5 = 0.4
- P(student = "yes" | buys\_computer = "yes) = 6/9 = 0.667
- √ P(student = "yes" | buys\_computer = "no") = 1/5 = 0.2
- ✓ P(credit\_rating = "fair" | buys\_computer = "yes") = 6/9 = 0.667
- ✓ P(credit\_rating = "fair" | buys\_computer = "no") = 2/5 = 0.4

#### X = (age = youth, income = medium, student = yes, credit\_rating = fair)

**P(X|G):** P(X|buys\_computer = "yes") = 
$$0.222 \times 0.444 \times 0.667 \times 0.667 = 0.044$$
  
P(X|buys\_computer = "no") =  $0.6 \times 0.4 \times 0.2 \times 0.4 = 0.019$ 

#### Choose the class for which P(X|Ci)\*P(Ci) is the maximum:

$$P(X|C_i)*P(C_i):$$
  $P(X|buys\_computer = "yes") * P(buys\_computer = "yes") = 0.028$   
 $P(X|buys\_computer = "no") * P(buys\_computer = "no") = 0.007$ 

Therefore, X belongs to class ("buys\_computer = yes")

| RID | age         | income | student | credit_rating | Class: buys_compute |
|-----|-------------|--------|---------|---------------|---------------------|
| 1   | youth       | high   | no      | fair          | no                  |
| 2   | youth       | high   | no      | excellent     | no                  |
| 3   | middle_aged | high   | no      | fair          | yes                 |
| 4   | senior      | medium | no      | fair          | yes                 |
| 5   | senior      | low    | yes     | fair          | yes                 |
| 6   | senior      | low    | yes     | excellent     | no                  |
| 7   | middle_aged | low    | yes     | excellent     | yes                 |
| 8   | youth       | medium | no      | fair          | no                  |
| 9   | youth       | low    | yes     | fair          | yes                 |
| 10  | senior      | medium | yes     | fair          | yes                 |
| 11  | youth       | medium | yes     | excellent     | yes                 |
| 12  | middle_aged | medium | no      | excellent     | yes                 |
| 13  | middle_aged | high   | yes     | fair          | yes                 |
| 14  | senior      | medium | no      | excellent     | no                  |

# Naïve Bayes Classification

- Fast and simple
- Scales well
- Independence assumption may not hold true
  - In practice, still works quite well
- Does not model interactions between features