```
(a)
  GQ statistic: 1.172853
  critical value: [ 0.837669 , 1.196781 ]
       Fail to Reject H0, there is insufficient evidence to conclude that
       \sigma_{M} \neq \sigma_{F}.
(b)
  GQ statistic: 1.189914
  critical value: 1.161325
       Reject H0, it suggests that \sigma_{MARRIED} > \sigma_{SINGLE}.
(c)
  NR-squared statistic: 59.03
  critical value: 9.487729
        Reject H0, it suggests that heteroskedasticity exists
        Yes, it does. The error variation for married and unmarried individuals
       are different according to the hypothesis testing.
```

```
(d)
   degrees of freedom: 10
   NR-squared statistic: 78.82
   critical value: 18,30704
       Reject H0, it suggests that the heteroskedasticity exists.
(e)
  b3, b4 and b5 have gotten narrower, b1 and b2 have gotten wider.
  Yes, there is.
(f)
  The t-value is not significant. It's is not in conflict with the results from part (b)
  because the exist of heteroskedasticity does not mean that the independent
```

variable must have explanatory power over the dependent variable...

```
(a)
95% CI: [ -135.3298 , -28.32302 ]
(b)
```

It seem that income affects  $\sigma$ ,  $\sigma$  increases as income increases.

Age, on the other hand, does not seem to show any clear pattern with  $\sigma$ .





(c)

The narrowest interval is for GLS, followed by robust GLS, then OLS, with the widest interval being for robust.

```
(a)
  GQ statistic: 0.8062789
  critical value: [ 0.9452566 , 1.058097 ]
       Reject H0, it suggests that \sigma_{M} \neq \sigma_{F}.
(b)
  NR2 (METRO, FEMALE, BLACK): 23.55681 critical value: 11.34487
  NR2 (all exp. variables ): 109.4243 critical value: 21.66599
       Reject H0, Both test suggest the heteroskedasticity exists.
       Yes, they support our conclusions in part (a).
(c)
  NR2: 182.6723 critical value: 57.34207
       Reject H0, it suggest the heteroskedasticity exists.
```

### (d)(e)(f)

#### **OLS**

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.2014e+00 3.2115e-02 37.4089 < 2.2e-16 ***
            1.0123e-01 1.7583e-03 57.5737 < 2.2e-16
educ
            2.9622e-02 1.3003e-03 22.7799 < 2.2e-16 ***
exper
I(exper^2) -4.4578e-04 2.6354e-05 -16.9148 < 2.2e-16 ***
            -1.6550e-01 9.5291e-03 -17.3680 < 2.2e-16 ***
female
black.
           -1.1153e-01 1.6942e-02 -6.5826 4.860e-11 ***
                                    9.6711 < 2.2e-16
            1.1902e-01 1.2307e-02
metro
           -4.5755e-02 1.3561e-02 -3.3740 0.0007438
south
midwest
            -6.3943e-02 1.4104e-02 -4.5338 5.862e-06 ***
            -6.5891e-03 1.4402e-02 -0.4575 0.6473209
west
```

### **FGLS**

|             | Estimate    | Std. Error | t value  | Pr(> t )  |     |
|-------------|-------------|------------|----------|-----------|-----|
| (Intercept) | 1.1922e+00  | 3.1593e-02 | 37.7359  | < 2.2e-16 | *** |
| educ        | 1.0166e-01  | 1.7646e-03 | 57.6111  | < 2.2e-16 | *** |
| exper       | 3.0090e-02  | 1.2975e-03 | 23.1905  | < 2.2e-16 | *** |
| I(exper^2)  | -4.5614e-04 | 2.6789e-05 | -17.0269 | < 2.2e-16 | *** |
| female      | -1.6621e-01 | 9.4808e-03 | -17.5315 | < 2.2e-16 | *** |
| black       | -1.1085e-01 | 1.6992e-02 | -6.5237  | 7.199e-11 | *** |
| metro       | 1.1777e-01  | 1.1459e-02 | 10.2771  | < 2.2e-16 | *** |
| south       | -4.4843e-02 | 1.3522e-02 | -3.3162  | 0.0009158 | *** |
| midwest     | -6.3192e-02 | 1.3984e-02 | -4.5189  | 6.288e-06 | *** |
| west        | -5.4938e-03 | 1.4377e-02 | -0.3821  | 0.7023654 |     |

#### robust

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.2014e+00 3.2794e-02 36.6340 < 2.2e-16 ***
educ
            1.0123e-01 1.9058e-03 53.1160 < 2.2e-16 ***
            2.9622e-02 1.3149e-03 22.5276 < 2.2e-16 ***
exper
I(exper^2) -4.4578e-04 2.7597e-05 -16.1533 < 2.2e-16 ***
female
           -1.6550e-01 9.4883e-03 -17.4428 < 2.2e-16 ***
black
           -1.1153e-01 1.6094e-02 -6.9297 4.482e-12 ***
            1.1902e-01 1.1582e-02 10.2762 < 2.2e-16 ***
metro
           -4.5755e-02 1.3902e-02 -3.2914 0.001001 **
south
midwest
           -6.3943e-02 1.3724e-02 -4.6591 3.217e-06 ***
           -6.5891e-03 1.4557e-02 -0.4526 0.650813
west
```

### robust\_FGLS

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.1922e+00 3.2360e-02 36.8422 < 2.2e-16 ***
educ
            1.0166e-01 1.8928e-03 53.7107 < 2.2e-16 ***
exper
            3.0090e-02 1.3046e-03 23.0643 < 2.2e-16 ***
           -4.5614e-04 2.7408e-05 -16.6423 < 2.2e-16 ***
I(exper^2)
           -1.6621e-01 9.4381e-03 -17.6109 < 2.2e-16 ***
female
black
           -1.1085e-01 1.5869e-02 -6.9857 3.020e-12 ***
metro
            1.1777e-01 1.1563e-02 10.1851 < 2.2e-16 ***
south
           -4.4843e-02 1.3834e-02 -3.2414 0.001193 **
midwest
           -6.3192e-02 1.3713e-02 -4.6083 4.111e-06 ***
           -5.4938e-03 1.4509e-02 -0.3787 0.704951
west
```

(g)

I prefer the FGLS model because most standard errors of it are smaller than those of the other models.