	Numer indeksu:	Grupa ¹ :								
Wersja: Δ		s. 4	s. 5	s. 103	s. 104					
		s. 105	s. 139	s. 140	s. 141					
	Logika dla informaty	ków								
Kolokwium nr 2, 15 grudnia 2017 Czas pisania: 30+60 minut										
Zadanie 1 (2 punkty). Jeśli formuła $\left(\exists x \left(p(x) \Rightarrow q(x)\right)\right) \Rightarrow \left((\forall x p(x)) \Rightarrow (\exists x q(x))\right)$ jest tautologią rachunku predykatów, to w prostokąt poniżej wpisz jej dowód w systemie naturalnej dedukcji. W przeciwnym przypadku wpisz odpowiedni kontrprzykład.										
Zadanie 2 (2 punkty). Jeśli inkluzja $\bigcap^{\infty}(A_i \cup B_i) \subseteq \bigcap^{\infty} A_i \cup \bigcap^{\infty} B_i$ zachodzi dla dowolnych										
indeksowanych rodzin zbiorów $\{A_i \mid i \in \mathbb{N}\}$ i $\{B_i \mid i \in \mathbb{N}\}$, to w prostokąt poniżej wpisz słowo										
"TAK". W przeciwnym przypadku wpisz odpowiedni kontrprzykład.										

¹Proszę zakreślić właściwą grupę ćwiczeniową.

Zadanie 3 (2 punkty). Atomowymi kombinacjami zbiorów A, B i C nazwiemy następujące siedem zbiorów: $K_1 = (A \setminus B) \setminus C$, $K_2 = (B \setminus C) \setminus A$, $K_3 = (A \cap B) \setminus C$, $K_4 = (C \setminus A) \setminus B$, $K_5 = (C \cap A) \setminus B$, $K_6 = (B \cap C) \setminus A$ oraz $K_7 = A \cap B \cap C$. Wtedy zbiór $A \cap B$ można przedstawić jako sumę atomowych kombinacji zbiorów A, B i C , mianowicie jako $K_3 \cup K_7$. Jeśli zbiór $(B \cup C) \setminus A$ można przedstawić jako sumę atomowych kombinacji zbiorów A, B i C , to w prostokąt poniżej wpisz taką sumę. W przeciwnym przypadku wpisz słowo "NIE".
Zadanie 4 (2 punkty). Jeśli istnieje taki zbiór A i dwie silnie antysymetryczne relacje R i S na zbiorze A , że R ; S nie jest relacją silnie antysymetryczną, to w prostokąt poniżej wpisz dowolny przykład takiego zbioru i takich relacji. W przeciwnym przypadku wpisz słowa "NIE ISTNIE-JĄ".
Zadanie 5 (2 punkty). Rozważmy funkcje $f: A \to B$ i $g: B \to C$. Nie używając operatora akładonie funkcji (w gragogólneści, pie używając napieu, $g(f'')$) wpieg w prostokat popiżci formula
składania funkcji (w szczególności, nie używając napisu " gf ") wpisz w prostokąt poniżej formułę mówiącą, że złożenie gf funkcji f i g nie $jest$ funkcją różnowartościową.

		Numer indeksu:	(Grupa ¹ :			
Wersja:	$oldsymbol{A}$			s. 4	s. 5	s. 103	s. 104
				s. 105	s. 139	s. 140	s. 141

Zadanie 6 (5 punktów). Mówimy, że rodzina zbiorów $\{A_n\}_{n\in\mathbb{N}}$ jest wstępująca, jeżeli dla wszystkich $n\in\mathbb{N}$ zachodzi inkluzja $A_n\subseteq A_{n+1}$. Udowodnij indukcyjnie (względem j), że jeśli $\{A_n\}_{n\in\mathbb{N}}$ jest wstępującą rodziną zbiorów, to dla wszystkich elementów x oraz dla wszystkich $i,j\in\mathbb{N}$ zachodzi implikacja $x\in A_i\Rightarrow x\in A_{i+j}$. Następnie udowodnij, że dla dowolnych wstępujących rodzin $\{A_n\}_{n\in\mathbb{N}}$ i $\{B_n\}_{n\in\mathbb{N}}$ zachodzi inkluzja $\bigcap_{i=0}^{\infty}(A_i\cup B_i)\subseteq\bigcap_{i=0}^{\infty}A_i\cup\bigcap_{i=0}^{\infty}B_i$.

Zadanie 7 (5 punktów). Rozważmy dowolne zbiory A, B i C. Udowodnij, że $A \cap B = C$ wtedy i tylko wtedy, gdy $C \subseteq A$, $C \subseteq B$ oraz $(A \setminus C) \cap (B \setminus C) = \emptyset$. Czy istnieją takie zbiory A, B i C, że $(A \setminus C) \cap (B \setminus C) = \emptyset$ i $A \cap B = C$? Uzasadnij odpowiedź.

Zadanie 8 (5 punktów). Powiemy, że binarna relacja $R \subseteq A \times A$ jest *euklidesowa*, jeśli dla wszystkich $a, b, c \in A$ zachodzi implikacja $aRb \wedge aRc \Rightarrow bRc$.

- (a) Czy każda relacja symetryczna jest euklidesowa? Uzasadnij odpowiedź.
- (b) Czy każda relacja symetryczna i przechodnia jest euklidesowa? Uzasadnij odpowiedź.

¹Proszę zakreślić właściwą grupę ćwiczeniową.

	Numer indeksu:		Grupa ¹ :						
Wersja:			s. 4	s. 5	s. 103	s. 104			
Weisja.			s. 105	s. 139	s. 140	s. 141			
	Logika dla informatyk	кów							
Kolokwium nr 2, 15 grudnia 2017 Czas pisania: 30+60 minut									
Zadanie 1 (2 punkty). Jeśli inkluzja $\bigcup_{i=1}^\infty A_i \cap \bigcup_{i=1}^\infty B_i \subseteq \bigcup_{i=1}^\infty (A_i \cap B_i)$ zachodzi dla dowolnych									
	indeksowanych rodzin zbiorów $\{A_i \mid i \in \mathbb{N}\}$ i $\{B_i \mid i \in \mathbb{N}\}$, to w prostokąt poniżej wpisz słowo "TAK". W przeciwnym przypadku wpisz odpowiedni kontrprzykład.								
A, że R ; S nie jest rela	t y). Jeśli istnieje taki zbiór A i dwie acją symetryczną, to w prostokąt po . W przeciwnym przypadku wpisz sł	niże	ej wpisz d	owolny j	przykład				

 $^{^{1}\}mathrm{Proszę}$ zakreślić właściwą grupę ćwiczeniową.

		Numer indeksu:	 Grupa ¹ :			
Wersja:	Ъ		s. 4	s. 5	s. 103	s. 104
	D		s. 105	s. 139	s. 140	s. 141

Zadanie 6 (5 punktów). Rozważmy dowolne zbiory A, B i C. Udowodnij, że $A \cup B = C$ wtedy i tylko wtedy, gdy $A \subseteq C$, $B \subseteq C$ oraz $(C \setminus A) \setminus B = \emptyset$. Czy istnieją takie zbiory A, B i C, że $(C \setminus A) \setminus B = \emptyset$ i $A \cup B = C$? Uzasadnij odpowiedź.

Zadanie 7 (5 punktów). Mówimy, że rodzina zbiorów $\{A_n\}_{n\in\mathbb{N}}$ jest zstępująca, jeżeli dla wszystkich $n\in\mathbb{N}$ zachodzi inkluzja $A_n\supseteq A_{n+1}$. Udowodnij indukcyjnie, że jeśli $\{A_n\}_{n\in\mathbb{N}}$ jest zstępującą rodziną zbiorów, to dla wszystkich elementów x oraz dla wszystkich $j\in\mathbb{N}$ zachodzi implikacja $x\not\in A_0\Rightarrow x\not\in A_j$. Następnie udowodnij, że dla dowolnych zstępujących rodzin $\{A_n\}_{n\in\mathbb{N}}$ i $\{B_n\}_{n\in\mathbb{N}}$ zachodzi inkluzja $\bigcup_{i=0}^{\infty}A_i\cap\bigcup_{i=0}^{\infty}B_i\subseteq\bigcup_{i=0}^{\infty}(A_i\cap B_i)$.

Zadanie 8 (5 punktów). Powiemy, że binarna relacja $R \subseteq A \times A$ jest *euklidesowa*, jeśli dla wszystkich $a, b, c \in A$ zachodzi implikacja $aRb \wedge aRc \Rightarrow bRc$.

- (a) Czy każda relacja euklidesowa jest relacją równoważności? Uzasadnij odpowiedź.
- (b) Czy każda relacja zwrotna i euklidesowa jest relacją równoważności? Uzasadnij odpowiedź.

¹Proszę zakreślić właściwą grupę ćwiczeniową.