PROJECT WORK IN MACHINE LEARNING: OSMI MENTAL HEALTH IN TECH PREDICTION

MASTER'S DEGREE IN ARTIFICIAL INTELLIGENCE UNIVERSITY OF BOLOGNA

STEFANO POGGI CAVALLETTI 0000982439

DATASET

OSMI Mental Health in Tech

- collected by the Open Sourcing Mental Health corporation and available on Kaggle
- measures the attitude and frequency towards mental health disorders in the context of tech workplace
- aimed to understand whether any factor can affect the employee to get treatment or not

TASK

Analyze the data and predict individual's mental health seek of treatment based on different features (e.g. age, gender, country and a variety of answers about their mental health related with work) through the deployment of machine learning models

CONTENT: 24 FEATURES (I)

- Timestamp
- Age
- Gender
- Country state: If you live in the United States, which state or territory do you live in?
- self_employed: Are you self-employed?
- family_history: Do you have a family history of mental illness?
- treatment: Have you sought treatment for a mental health condition? (Yes/No)
- work_interfere: If you have a mental health condition, do you feel that it interferes with your work?
- no_employees: How many employees does your company or organization have?
- remote_work: Do you work remotely (outside of an office) at least 50% of the time?
- tech_company: Is your employer primarily a tech company/organization?
- benefits: Does your employer provide mental health benefits?

CONTENT: 24 FEATURES (II)

- care_options: Do you know the options for mental health care your employer provides?
- wellness_program: Has your employer ever discussed mental health as part of an employee wellness program?
- seek_help: Does your employer provide resources to learn more about mental health issues and how to seek help?
- **anonymity**: Is your anonymity protected if you choose to take advantage of mental health or substance abuse treatment resources?
- leave: How easy is it for you to take medical leave for a mental health condition?
- mental_health_consequence: Do you think that discussing a mental health issue with your employer would have negative consequences?
- phys_health_consequence: Do you think that discussing a physical health issue with your employer would have negative consequences?
- **coworkers**: Would you be willing to discuss a mental health issue with your coworkers?
- phys_health_interview: Would you bring up a physical health issue with a potential employer in an interview?
- **mental_vs_physical**: Do you feel that your employer takes mental health as seriously as physical health?
- **obs_consequence**: Have you heard of or observed negative consequences for coworkers with mental health conditions in your workplace?
- **comments**: Any additional notes or comments

DATA PRE-PROCESSING

- Removal of NaN values and not useful features (comments, State, Timestamp) and replacement of empty values
- Data cleaning:
 - Encoding of gender values
 - Removal of meaningless age values (negative or too high)

Relationship between gender and treatment: in the dataset, the number of male individuals is much higher compared to the other genders

Distribution of individuals across the countries: the number of participants from the USA is much higher compared to any other country

Relationship between age and treatment status among the respondants: peak around 30

- Correlation heatmap to see the correlation between variables and cause-effect relationships, computed using DataFrame.corr from Pandas library and sns.heatmap from seaborn
- Interesting correlation between family_history and seek of treatment

- The percentages of respondents who want and do not want to get treatment are balanced and nearly equal to 50
- Fewer respondents claim to have a family history of mental illness but it is more likely that they want to get treatment compared to those without a family history, as they are more correlated

DATA ENCODING

- Features are encoded using LabelEncoder from sklearn.preprocessing, which encodes target labels with value between 0 and n_classes- I
- Scaling: the Age attribute is scaled to normalize values in the range [0,1] with the MinMax scaler
- Splitting dataset into train and validation set with train_test_split function

PREDICTION MODELS

Five models were used and tuned with their hyperparameters:

- Support Vector Machine
- Logistic Regressor
- K-Nearest Neighbor
- Random Forest
- XGB Classifier

PREDICTION MODELS

Cross validation is applied on the defined models, tuning them for both accuracy and F1-score, while
the best models are saved

- For each model, the best parameters found are printed in output, as well as their:
 - Accuracy
 - FI-score (harmonic mean of precision and recall)
 - ROC-Curve plot with AUC score (performance metric for classification problems: it gives an indication of how much the model is capable of distinguishing between classes: the higher the better the model is at predicting the right class)

RESULTS OF CLASSIFIERS (I)

1) Support Vector Machine

- Best parameters found: {'C': 10, 'cache_size': 8000, 'gamma': 'scale', 'kernel': 'rbf', 'probability': True}
- Accuracy: 0.71
- F1-score: 0.70
- ROC-AUC score: 0.78

2) Logistic Regressor

- Best parameters found: {'C': 3, 'max_iter': 100, 'solver': 'lbfgs'}
- Accuracy: 0.72
- F1-score: 0.71
- ROC-AUC score: 0.78

RESULTS OF CLASSIFIERS (II)

3) K-Nearest Neighbor

- Best parameters found: {'metric': 'manhattan', 'n_neighbors': 9}
- Accuracy: 0.68
- F1-score: 0.64
- ROC-AUC score: 0.73

4) Random Forest

- Best parameters found: {'max_depth': 25}
- Accuracy: 0.77
- F1-score: 0.77
- ROC-AUC score: 0.83

RESULTS OF CLASSIFIERS (III)

5) XGB Classifier

- Best parameters found: {'learning_rate': 0.05, 'max_depth': 3, 'n_estimators': 50}
- Accuracy: 0.77
- F1-score: 0.78
- ROC-AUC score: 0.84

CONCLUSIONS

- The results of the predictions show that the best performing models in terms of accuracy, FI-score and AUC score were:
 - Random Forest
 - XGB Classifier
- On the other hand, the model which showed the worst results was K-Nearest Neighbors