武漢理工大學

数学建模暑期培训论文

第1题

基于 xxxxxxxx 模型

第10组

姓名方向刘子川(组长)编程程宇建模祁成写作

控制高压油管的压力变化对减小燃油量偏差,提高发动机工作效率具有重要意义。 本文建立了基于质量守恒定理的微分方程稳压模型,采用二分法、试探法以及自适应权 重的蝙蝠算法对模型进行求解。//

针对问题一,建立基于质量守恒定律的燃油流动模型,考察单向阀开启时间对压力稳定性的影响。综合考虑压力与弹性模量、密度之间的关系,提出燃油压力-密度微分方程模型和燃油流动方程。本文采用改进的欧拉方法对燃油压力-密度微分方程求得数值解;利用二分法求解压力分布。综合考虑平均绝对偏差等反映压力稳定程度的统计量,求得直接稳定于100MPa的开启时长为0.2955ms,在2s、5s内到达并稳定于150MPa时开启时长为0.7795ms、0.6734ms,10s到达并稳定于150MPa的开启时长存在多解。最后对求解结果进行灵敏度分析、误差分析。//

针对问题二,建立基于质量守恒定律的泵-管-嘴系统动态稳压模型,将燃油进入和喷出的过程动态化处理。考虑柱塞和针阀升程的动态变动,建立喷油嘴流量方程和质量守恒方程。为提高角速度求解精度,以凸轮转动角度为固定步长,转动时间变动步长,采用试探法粗略搜索与二分法精细搜索的方法求解,求得凸轮最优转动角速度 0.0283rad/ms (转速 270.382 转/分钟),并得到该角速度下高压油管的密度、压力周期性变化图。对求解结果进行误差分析与灵敏度分析,考察柱塞腔残余容积变动对高压油管压力稳态的影响。//

针对问题三,对于增加一个喷油嘴的情况,改变质量守恒方程并沿用问题二的模型调整供、喷油策略,得到最优凸轮转动角速度为 0.0522rad/ms (498.726 转/分钟);对于既增加喷油嘴又增加减压阀的情况,建立基于自适应权重的蝙蝠算法的多变量优化模型,以凸轮转动角速度、减压阀开启时长和关闭时长为参数,平均绝对偏差 MAD 为目标,在泵-管-嘴系统动态稳压模型的基础上进行求解,得到最优参数:角速度 0.0648 rad/ms (619.109 转/分钟)、减压阀的开启时长 2.4ms 和减压阀的关闭时长 97.6ms。//

本文的优点为: 1. 采用试探法粗略搜索与二分法精细搜索结合的方法,降低了问题的求解难度。2. 以凸轮转动角度为固定步长,对不同角速度按照不同精度的时间步长求解,大大提高了求解的精确度。3. 针对智能算法求解精度方面,采用改进的蝙蝠算法,使速度权重系数自适应调整,兼顾局部搜索与全局搜索能力。

关键词: 微分方程 微分方程 微分方程 微分方程

目录

— 、	问题重述	1
	1.1 问题背景	1
	1.2 问题概述	1
二、	模型假设	2
三、	符号说明	2
四、	问题一模型的建立与求解	2
	4.1 问题描述与分析	2
	4.2 模型的建立	3
	4.2.1 自适应分数阶微分强化算法	3
	4.2.2 滤波	4
	4.3 模型的求解	4
	4.4 实验结果及分析	4
五、	问题二模型的建立与求解	4
	5.1 问题描述与分析	4
	5.2 模型的建立	5
	5.3 模型的求解	5
	5.4 实验结果及分析	5
六、	问题三模型的建立与求解	6
	6.1 结果分析	6
七、	灵敏度分析	6
八、	模型的评价	6
	8.1 模型的优点	6
	8.2 模型的缺点	6
	8.3 模型改进	6
附录	A 数据可视化的字现	8

一、问题重述

1.1 问题背景

自动指纹识别系统 (automated fingerprint identification system, 简称 AFIS) 有着广泛的应用背景。目前对自动指纹识别系统的研究主要有 3 个方面,即图像增强、指纹分类和细节匹配。一般可以分成"离线部分"和"在线部分"两个部分。如图 1 所示,离线部分包括用指纹采集仪采集指纹、提取出细节点、将细节点保存到数据库中形成指纹模板库等主要步骤。在线部分包括用指纹采集仪采集指纹、提取出细节点、然后将这些细节点与保存在数据库中模板细节点进行匹配,判断输入细节点与模板细节点是否来自同一个手指的指纹[1,3]。指纹分类一般是用在大规模的指纹库中,作为细节匹配中减少搜索范围的步骤使用。指纹图像一般占用较多的空间,且图像中的像素信息并不适合计算机进行分析或匹配。为实现计算机自动识别,需要有一种方法来描述指纹的内在结构、具体形态和其它特征并将其用最少的字节数来存储于计算机中。此计算机系统可扫描犯罪现场采集的指纹,并且与州、地区、国家之间执法机关采集的数百万指纹档案互相比对[2]。指纹由专家追踪后,经计算机扫描,得到许多细节来和数据库里其它指纹比对,列出相符合的百分比来让鉴识人员得知可能的相符人选¹。任何计算机比对的结果,都会经指纹专家比较与此指纹相关的样本来验证。

图 1 自动指纹识别系统框图

1.2 问题概述

围绕相关附件和条件要求,试根据附件中的16幅指纹图像,不借助现有的指纹相关软件,依次提出以下问题:

https://baike.baidu.com/item/AFIS/2851410?fr=aladdin

编码:给出一种用不超过 200 字节(下面称为"指纹密码")来刻画描述指纹基本特征的表示方法,介绍其数学原理。

匹配:将你的方法编程实现,对附件中的每一幅指纹都给出其"指纹密码"的表示。 基于你找到的这些指纹表示,你能否给出一种方法比较不同指纹间的异同及相似程度?

应用: 你能否对附件中的 16 个指纹进行对比和归类?请给出你对比及分类的依据和结果。

二、模型假设

- (1)
- (2)
- (3)
- **(4)**

三、符号说明

符号	说明
P_n	20 个站点
P_{n}	20 个站点
P_n	20 个站点

注: 表中未说明的符号以首次出现处为准

四、问题一模型的建立与求解

4.1 问题描述与分析

问题一要求

其思维流程图如图 2 所示:

武溪狸工大学

图 2 问题一思维流程图

4.2 模型的建立

$$d(p_i, p_j) = |x_i - x_j| + |y_i - y_j|,$$

4.2.1 自适应分数阶微分强化算法

分数阶微分广泛应用于图像强化,与传统强化方法相比,具有图像边缘增强明显、纹理细节清晰的效果,同时能非线性保留平滑区域信息。本节中,利用 Grunward-Letnikov 微分算子,构造自适应函数,并将其应用于指纹像素掩膜;采集梯度信息和计算信息熵,从而确定微分阶数。本方法非线性加强了像素信息中的高频成分,也保留了一定的低频和直流成分,有效提高图像质量,减少掩膜耗时。

对 $\alpha \in \mathbb{R}$,定义 Grunward-Letnikov 分数阶微分算子

$$\binom{G}{\alpha} D_t^{\alpha} f(t) = \lim_{h \to 0} \frac{(\Delta_h^{\alpha} f)(x)}{h^{\alpha}} \tag{1}$$

$$= \lim_{h \to 0} \frac{1}{h^{\alpha}} \sum_{k=0}^{m} (-1)^k {\alpha \choose k} f(t - kh)$$
 (2)

其中, $(\Delta_h^{\alpha}f)(x)$ 是 Grunward-Letnikov 分数阶差分,h 是微分步长, α 和 t 分别是微分的上限和下限,持续周期 $t \in [\alpha, t]$ 。 $m = \left[\frac{t - \alpha}{h}\right]$ 是 $\frac{t - \alpha}{h}$ 取整数, $\binom{\alpha}{k} = \frac{\alpha!}{k!(\alpha - k)!}$ 。

对指纹信号 f(x,y) 分别对 x 和 y 进行分数阶偏微分,取最小步长 h=1。可分别得到 f(x,y) 在 x_i 方向上的分数阶偏微分近似表达:

$$\frac{\partial^{v} f(x,y)}{\partial x_{i}^{v}} \doteq \sum_{k=0}^{x_{i}-v} (-1)^{k} {l \choose k} f(x_{i}-k)$$
(3)

其中, x_i (i = 0, 1, ..., 7) 是不同的偏微分方向,此处取以 x 轴正向为起始方向,顺时针旋转一周均匀分部的 8 个方向。为方便计算,此处 $x_i - v$ 取 3。分别在 8 个方向采用分数阶微分近似掩膜,从而提高图像质量。

为了确定自适应分数阶微分阶数 v,需要确定每个像素的梯度和信息熵,

4.2.2 滤波

4.3 模型的求解

```
Algorithm 1: Procedure of Apriori
   Input: item data base: D
           minimum Support threshold: Sup_{min}
           minimum Confidence threshold: Conf_{min}
   Output: frequent item sets F
 1 Initialize
    iteration t \leftarrow 1
    The candidate FIS:C_t = \emptyset
    The length of FIS: length = 1
    for i=1 to sizeof(D) do
      I_i = D(i)
        n=sizeof(I_i)
        for j=1 to n do
          if I_i(j) \notin C_t then
 3
           C_t = C_t \cup I_i(j)
 4
          end
 5
      end
 6
8 F_t = \{ f | f \in C_t, Sup(f) > Sup_{min} \}
    while F \neq \emptyset do
      t=t+1
        length=length+1
        C_t \leftarrow \text{all candidate of FIS in } F_{t-1}
        F_t = \{f | f \in C_t, (Sup(f) > Sup_{min}) \cap (Comf(f) > Conf_{min})\}
10 end
11 return F_{t-1}
```

4.4 实验结果及分析

五、问题二模型的建立与求解

5.1 问题描述与分析

问题二要求

其思维流程图如图 3 所示:

武溪狸工大学

图 3 问题二思维流程图

- 5.2 模型的建立
- 5.3 模型的求解
- 5.4 实验结果及分析

结果如下表??所示:

xxxxxxx	xxxxxxx
xxxxxxx	909.80
xxxxxxx	852.60

由表1可知

其各个小车的运输细节图下图所示:

六、 问题三模型的建立与求解

6.1 结果分析

七、灵敏度分析

八、 模型的评价

- 8.1 模型的优点
- (1)
- (2)
- 8.2 模型的缺点
- 8.3 模型改进

参考文献

- [1] Davies S G. Touching Big Brother: How biometric technology will fuse flesh and machine[J]. Information Technology & People, 2014, 7(4): 38-47.
- [2] Moses K R, Higgins P, McCabe M, et al. Automated fingerprint identification system (AFIS)[J]. Scientific Working Group on Friction Ridge Analysis Study and Technology and National institute of Justice (eds.) SWGFAST-The fingerprint sourcebook, 2011: 1-33.
- [3] Dror I E, Wertheim K, Fraser-Mackenzie P, et al. The impact of human technology cooperation and distributed cognition in forensic science: biasing effects of AFIS contextual information on human experts[J]. Journal of forensic sciences, 2012, 57(2): 343-352.

[4]

[5]

附录 A 数据可视化的实现

第一问画图-python 源代码		
第二问画图-python 源代码		