Electromagnetism |

Professor D. Evans d.evans@bham.ac.uk

Lecture 4c
Final part on Gauss' Law
Week 2

Last Lecture

- Gauss's Law
 - Examples using Gauss's Law
 - E-fields in conductors
 - E-field between charged Conducting Plates

Lecture 4c Content

- Final Note on Gauss's Law
 - Choosing a Gaussian surface
- E-field between non-conducting plates

Gaussian Surface

- Use Gauss's Law in case where there is symmetry
 - E.g. sphere, infinite planes, infinite line charges
- Choose Gaussian surface such that the E-field is normal to the Gaussian surface such that:

$$\underline{E} \cdot d\underline{S} = \text{E dS}$$
 and E is constant at surface i.e. $\int_S \underline{E} \cdot d\underline{S} = \int_S E \, dS = E \int_S ds$

• Hence $\int_S ds$ is just the area of the surface.

Non-conducting Charged Parallel Plates (infinite)

- Surface charge from LHS plate gives field: $\underline{E}_L = \frac{\sigma}{2\varepsilon_0} \widehat{\underline{x}}$ (see Lec. 3)
- Surface charge from RHS plate gives field: $\underline{E}_R = \frac{-\sigma}{2\varepsilon_0} \widehat{\underline{n}} = \frac{\sigma}{2\varepsilon_0} \widehat{\underline{x}}$
 - Where $\widehat{\underline{n}}$ is the unit vector normal to the surface.
- Superposition principle gives:

•
$$\underline{E} = \underline{E}_L + \underline{E}_R = \frac{\sigma}{\varepsilon_0} \widehat{\mathbf{x}}$$

Note: Same result as for conducting parallel plates (last lecture) - WHY?

Conducting Charged Parallel Plates (infinite)

Consider two oppositely charged plates a long way apart. They have charges on each surface.

E=0

As the plates are moves close together, their E-fields attract the charges on each plates until all the charges move to the front faces, doubling the surface charge density. So add initial E-fields:

$$E=\frac{\sigma_i}{\varepsilon_0}+\frac{\sigma_i}{\varepsilon_0}=\frac{2\sigma_i}{\varepsilon_0}=\frac{\sigma}{\varepsilon_0} \quad \text{Where σ is final charge density}$$

Back to Non-conducting Charged Parallel Plates

E-field in between plates

$$\underline{E} = \frac{\sigma}{2\varepsilon_0} \widehat{\underline{x}} + \frac{\sigma}{2\varepsilon_0} \widehat{\underline{x}} = \frac{\sigma}{\varepsilon_0} \widehat{\underline{x}}$$

• E-field to the left of plates:

$$\underline{E} = -\frac{\sigma}{2\varepsilon_0} \hat{\underline{x}} + \frac{\sigma}{2\varepsilon_0} \hat{\underline{x}} = 0$$

• E-field to the right of plates:

$$\underline{E} = \frac{\sigma}{2\varepsilon_0} \hat{\underline{x}} - \frac{\sigma}{2\varepsilon_0} \hat{\underline{x}} = 0$$

• E-field outside <u>non-zero</u> if plates have different charge densities. (see week 3 problem 1).