ANÁLISE COMPORTAMENTAL DE OVELHAS SUBMETIDAS À INTERVENÇÃO HUMANA USANDO

GAMLSS

Lineu Alberto C. de Freitas lialcafre@gmail.com PET Estatística - UFPR Cesar Augusto Taconeli José L. Padilha da Silva DEST UFPR

Priscilla Regina Tamioso
Carla Forte Maiolino Molento
LABEA UFPR

Introdução

O presente estudo é uma análise dos dados obtidos em um experimento sobre comportamento de ovelhas descrito em Tamioso et al. (2017). Na ocasião foram observadas 20 ovelhas pertencentes a 2 linhagens genéticas, que foram submetidas à escovação por um humano que lhes era familiar. Considerou-se a modelagem usando GAMLSS. O objetivo verificar o efeito da linhagem genética, escovação e isolamento nas posturas apresentadas por ovellhas.

Materiais e Metódos

- Vinte ovelhas foram submetidas à escovação;
- ► Animais pertencentes a duas linhagens genéticas: uma reativa (s+) ao isolamento social temporário, composta por 9 animais, e outra não reativa (s-), com 11 animais;
- Experimento foi conduzido em três sessões experimentais;
- Animais observados em 3 momentos distintos em cada sessão: antes, durante e após a escovação;
- Os dados coletados dizem respeito às proporções de tempo em que os animais permaneciam em determinadas posturas, constituindo variáveis resposta restritas ao intervalo [0,1];
- Neste trabalho consideramos a proporção do tempo em que as ovelhas permaneciam com as orelhas levantadas e assimétricas;
- Foram utilizadas as distribuições Beta e Beta inflacionada;
- Foram incluídos dois efeitos aleatórios aos modelos: de animal e de animal dentro de sessão;
- ► A inserção desses efeitos deve-se à necessidade de incorporar as correlações entre as medidas num mesmo animal e do animal numa mesma sessão;
- Os modelos ajustados continham os efeitos fixos de: sessão, momento experimental, linhagem genética além dos efeitos aleatórios;
- ► Todas as análises foram realizadas utilizando o software R e, para ajuste dos modelos, foi usado o pacote gamlss.

Análise Descritiva

Especificação dos Modelos

Dois modelos foram ajustados:

$$Y_{ijkl}|u_{j}, v_{jk} \sim Beta(\mu_{ijkl}, \sigma)$$

$$logito(\mu_{ijkl}) = \alpha^{(1)} + \beta_{i}^{(1)} + \gamma_{k}^{(1)} + \theta_{l}^{(1)} + (\beta\gamma)_{ik}^{(1)} + (\beta\theta)_{il}^{(1)} + (\gamma\theta)_{kl}^{(1)}$$

$$Y_{ijkl}|u_{j}, v_{jk} \sim Beta\ Inflacionada(\mu_{ijkl}, \sigma, \nu, \tau_{ikl})$$

$$logito(\mu_{ijkl}) = \alpha^{(1)} + \beta_{i}^{(1)} + \gamma_{k}^{(1)} + \theta_{l}^{(1)} + (\beta\gamma)_{ik}^{(1)} + (\beta\theta)_{il}^{(1)} + (\gamma\theta)_{kl}^{(1)}$$

$$log(\tau_{ikl}) = \alpha^{(2)} + \beta_{i}^{(2)} + \gamma_{k}^{(2)} + \theta_{l}^{(2)},$$

- ▶ $i \in \{s-, s+\}, k \in \{se1, se2, se3\}, l \in \{antes, durante, depois\};$
- μ representa o parâmetro de locação; σ representa o parâmetro de dispersão; ν e τ os parâmetros de inflação em 0 e 1;
- \triangleright β_i , γ_k e θ_l representam os efeitos de linhagem, sessão e momento;
- u_i é o efeito aleatório de animal e v_{ij} o de animal dentro de sessão: $u_j \sim N(0, \sigma_U^2)$ e $v_{jk} \sim N(0, \sigma_V^2)$
- Como o suporte da distribuição beta não é adequado, utilizou-se uma correção para trazer todas as respostas para o suporte da distribuição beta.

Referências

TAMIOSO, P. R. et al. Does emotional reactivity influence behavioral and cardiac responses of ewes submitted to brushing? Behavioural Processes, 2017.

Seleção de Modelos

A escolha entre as distribuições foi conduzida por meio de diagnóstico dos ajustes e comportamento dos resíduos. A análise de resíduos nos GAMLSS é realizada com base em resíduos quantílicos aleatorizados.

No geral, a análise de resíduos indica que o modelo Beta Inflacionado está melhor ajustado aos dados.

Resumo dos modelos

Novos modelos foram ajustados e comparados via teste de razão de verossimilhanças que apontou que o modelo mais simples que não difere estatísticamente do modelo com os efeitos fixos, interações de ordem 2 e efeitos aleatórios é aquele sem a interação entre sessão e linhagem (p=0,98).

Tabela 1: Resumo do modelo.

		μ			au	
Par.	exp(Est.)	IC(95%)	p-valor	exp(Est.)	IC(95%)	p-valo
γ_{se2}	2,39	(1,21;4,73)	0,01	6,52	(2,46;17,27)	<0,01
γ_{se} 3	1,78	(0,81;3,90)	0,15	17,16	(6,31;46,72)	<0,01
$ heta_{ extsf{dur}}$	0,30	(0,15;0,59)	<0,01	2,76	(1,16;6,56)	0,02
$ heta_{ extit{dep}}$	0,66	(0,31;1,37)	0,26	1,46	(0,62;3,44)	0,39
$eta_{ extit{reat}}$	0,66	(0,37;1,19)	0,17	0,40	(0,20;0,81)	0,01
$\gamma heta$ dur	5,12	(1,84;14,22)	<0,01			
$\gamma heta_{ extsf{dur}}^{ extsf{se}3}$	1,88	(0,62;5,69)	0,26			
$\gamma heta_{ extit{dep}}^{ extit{se2}}$	1,20	(0,48;3,00)	0,69			
$\gamma heta_{ extit{dep}}^{ extit{se3}}$	1,72	(0,54;5,43)	0,36			
$eta heta^{ extit{reat}}_{ extit{dep}}$	0,25	(0,11;0,59)	<0,01			
$_{ar{eta} heta}^{ar{eta}eat}$	0,58	(0,25;1,32)	0,20			

Interações

Conclusão

A metodologia aqui abordada não é comumente utilizada para análise de dados em estudos similares. Contudo, trata-se de um método extremamente flexível no que diz respeito às distribuições implementadas e recursos adicionais para modelagem estatística, tornando o GAMLSS uma útil e eficiente ferramenta para análise de dados de comportamento animal.