Kompiuterių tinklai - Paslaugų kokybė tinkluose Trylikta paskaita - 5.4 skyrius

lekt. Vytautas Jančauskas

Paslaugų kokybė

Paslaugų kokybė

- Kartais reikia arba norima garantuoti tam tikrą paslaugos kokybės (duomenų perdavimo greičio, vėlinimo ir t.t.) lygį.
- Paprasčiausiu atveju galima tinkle numatyti tiek resursų, kad jų užtektų visais atvejai. Toks metodas vadinamas overprovisioning.
- Bėda ta, kad toks metodas yra labai brangus. Paprastai bandoma paslaugų kokybę užtikrinti ekonomiškesniais būdais.
- Norint užtikrinti paslaugų kokybę reikia atsižvelgi į šiuos aspektus:
 - 1. Ko taikomosioms programoms reikia iš tinklo.
 - 2. Kaip reguliuoti tinklu perduodamus duomenis.
 - 3. Kaip rezervuoti resursus maršrutizatoriuose norint užtikrinti kokybę.
 - 4. Ar tinklas gali saugiai priimti daugiau duomenų.

Taikomųjų programų keliami reikalavimai

- Skirtingų programų keliami reikalavimai tinklo paslaugoms yra skirtingi.
- Išskirsime 4 aspektus kuriais matuosime kokybę duomenų perdavimo greitį, vėlinimą, drebėjimą ir duomenų praradimą.
- Kokioms programoms kurie iš šių aspektų svarbiausi?
- Pavyzdžiui kokie aspektai svarbūs šioms paslaugoms:
 - ► Elektroniniam paštui.
 - Dalinimuisi failais.
 - Saityno naršymui.
 - ▶ Telefonijai.
 - Filmų žiūrėjimui.

Application	Bandwidth	Delay	Jitter	Loss
Email	Low	Low	Low	Medium
File sharing	High	Low	Low	Medium
Web access	Medium	Medium	Low	Medium
Remote login	Low	Medium	Medium	Medium
Audio on demand	Low	Low	High	Low
Video on demand	High	Low	High	Low
Telephony	Low	High	High	Low
Videoconferencing	High	High	High	Low

Figure 5-27. Stringency of applications' quality-of-service requirements.

Duomenys tinkle

- Norint užtikrinti paslaugų kokybę tinkle reikia žinoti kokie duomenys ir kaip bus perduodami.
- Žinant kokie duomenys bus perduodami sudaroma "sutartis" tarp naudotojo ir paslaugos tiekėjo.
- Paslaugos teikėjas užtikrina, kad duomenys bus perduodami taip, kad aptarti kokybės rodikliai atitiktų
- Tokia sutartis vadinama SLA (Service Level Agreement).
- Naudotojas įsipareigoja duomenis perduoti sutartu būdu, o paslaugos tiekėjas jas perduoti užtikrinant sutartus rodiklius.

Kiauri ir žetonų kibirai (I)

- ▶ Kiaurame kibire, kurio talpa yra B, dugne yra skylė. Vanduo nuolat teka iš kibiro fiksuotu greičiu R.
- Jeigu vandens priteka daugiau nei telpa kibire jis yra praprandamas.
- Žetonų kibiras yra kibiras be skylės dugne. Vanduo į jį teka pastoviu greičiu R. Vanduo išsemiamas pagal poreikį.
- Tokio tipo metodai naudojami kontroliuoti duomenų perdavimo srautui. Išvengiama perdavimo greičio šiuolių.

Figure 5-28. (a) Shaping packets. (b) A leaky bucket. (c) A token bucket.

Figure 5-29. (a) Traffic from a host. Output shaped by a token bucket of rate 200 Mbps and capacity (b) 9600 KB and (c) 0 KB. Token bucket level for shaping with rate 200 Mbps and capacity (d) 16,000 KB, (e) 9600 KB, and (f) 0 KB.

Kiauri ir žetonų kibirai (II)

- Žetonų kibire yra skaitliukas registruojantis kibiro užpildymą.
- ▶ Skaitliukas padidinamas $\frac{R}{\Delta T}$ kiekvienu laiko intervalu ΔT .
- ► Kaip apskaičiuoti, kiek maksimaliai gali trukti pliūpsnis?
- ► Tarkime pliūpsnio ilgis yra S, duomenys pliūpsnio metu ateina M baitų per sekundę greičiu, kibiro talpa yra B o nauji žetonai ateina R baitų per sekundę greičiu.
- ▶ Tarkime B = 9600 KB, M = 125 MB/sec, R = 25 MB/sec.

$$B + RS = MS \tag{1}$$

Paketų planavimas

- Norint užtikrinti paslaugos kokybę būtina rezervuoti resursus maršrutizatoriuose reikalingus konkrečiam duomenų srautui perduoti.
- To pasekoje paketai turės eiti per tuos pačius maršrutizatorius.
- Paprastai išskiriami šie resursai:
 - 1. Juostos plotis.
 - 2. Vieta buferyje.
 - 3. Procesoriaus laikas.

Round-Robin planavimas

- Paprasčiausias būdas planuoti paketams.
- Ateinantys paketai dedami į eilę.
- Paketai imami iš eilės pradžios ir siunčiamas tas kuris pirmas.
- Kokio tipo duomenų struktūra yra eilė?
- Paketai prisipildžius eilei tiesiog atmetami.
- Kokie yra šio metodo trūkumai?

Sąžiningas Round-Robin

- Kiekvienam duomenų srautui išskiriama nauja eilė.
- Ateinantys paketai dedami į atitinkamos eilės galą kaip ir anksčiau.
- ► Algoritmas eina per eiles iš eilės ir išsiunčia pirmą paketą.
- Algoritmas prioretizuoja tuos duomenų srautus, kurie naudoja didesnius paketus. Kodėl?
- Kaip to išvengti?

Figure 5-30. Round-robin fair queueing.

Round-Robin su svoriais

- Anksčiau nagrinėtų algoritmų trūkumas tame, kad negalima prioretizuoti eilių.
- Galima įvesti svorius eilėms, tada gauto paketo išsiuntimo laiką F_i galime paskaičiuoti pagal formulę.
- $ightharpoonup A_i$ paketo atvykimo laikas, L_i paketo ilgis, W eilės svoris.
- Paketai dedami į išsiuntimo eilę pagal jų išsiuntimo laiką.

$$F_i = \max(A_i, F_{i-1}) + L_i/W \tag{2}$$

Figure 5-31. (a) Weighted Fair Queueing. (b) Finishing times for the packets.

Priėmimo kontrolė (I)

- Naudotojas pasiūlo tinklui duomenų srautą su QoS reikalavimais tinklui. Tinklas sprendžia priimti srautą ar ne.
- Su reikalavimais turi sutikti visi kelyje esantys maršrutizatoriai.
- Galima ieškoti kelio atsižvelgiant į QoS reikalavimus. Tokie metodai vadinamai QoS maršrutizavimu.
- Nuspręsti ar priimti srautą ar ne yra ne taip paprastai kaip atrodo.
- Programos paprastai žino, kokio juostos pločio joms reikia.
 Tačiau jos dažniausiai negali žinoti, kokių buferių ar kiek CPU ciklų reikės išskirti kiekviename maršrutizatoriuje.
- ▶ Be to, kai kurios programos gali būti linkusios derėtis dėl srauto parametrų, o kai kurios ne.

Priėmimo kontrolė (II)

- Naudotojo prašomi srauto parametrai vadinami srauto specifikacija.
- Srauto specifikaciją gali sudaryti pvz.: Žetonų kibiro srautas, žetonų kibiro dydis, maksimalus duomenų srautas, minimalus paketo dydis, maksimalus paketo dydis.
- ► Lieka klausimas, kaip paversti šiuos parametrus reikalavimais maršrutizatoriaus resursams.

Figure 5-33. Bandwidth and delay guarantees with token buckets and WFQ.

Integrated Services

- Integrated Services sukurtas su tikslu transliuoti audio ir video duomenis.
- Naudojamas multicast duomenų perdavimo modelis.
- RSVP The Resource reSerVation Protocol atlieka rezervacijas. Aprašytas RFC 2205-2210.
- Kiekviena multicast grupė gauna savo adresą.
- Siuntėjas įrašo multicast grupės adresą į paketą.
- Naudojami aprėpiantys medžiai ir reverse path forwarding algoritmas.
- Siekiant rezervuoti juostos plotį naudojamas svorinis round-robin metodas.

Figure 5-34. (a) A network. (b) The multicast spanning tree for host 1. (c) The multicast spanning tree for host 2.

Figure 5-35. (a) Host 3 requests a channel to host 1. (b) Host 3 then requests a second channel, to host 2. (c) Host 5 requests a channel to host 1.

Differentiated Services

- Integrated Services reikalauja daug pakeitimų maršrutizatoriuose, kas apriboja jų panaudojimą praktikoje.
- Differentiated Services naudoja laukus IPv4 ir IPv6 paketuose nusakančius paketo klasę.
- Maršrutizatoriai turi palaikyti Differentiated Services ir būti sukonfigūruoti jas naudoti.
- ▶ Differentiated Services klasės nusako kaip maršrutizatorius apdoroja paketą kiekvieno šuolio metu.

Expedited Forwarding

- Paketai pažymimi kaip normalūs arba kaip expedited.
- Expedited paketai yra siunčiami taip, tarsi daugiau paketų be jų ir nebūtų.
- Taip gaunamas minimalus vėlinimas, paketų praradimas ir drebėjimas.
- Expedited forwarding yra idealu VoIP paslaugoms.
- Paketus kaip expedited paprastai pažymi maršrutizatorius o ne naudotojo programa.
- Expedited paketai yra tiesiog dedami į prioritetinę eilę.

Figure 5-36. Expedited packets experience a traffic-free network.

Assured Forwarding

- Aprašyta RFC 2597.
- Paketai priskiriami vienai iš keturių prioriteto klasių (pirmos trys gali būti pavadintos gold, silver bronze).
- Paketai taip pat priskiriami vienai iš trijų atmetimo klasių (low, medium ir high).
- Paketai atmetimo klasėms priskiriami pagal tai, kaip dažnai ir kokio dydžio generuojami pliūpsniai.
- Naudojamas svorinis round-robin. Aukštesnės klasės gauna aukštesnį prioritetą.

Figure 5-37. A possible implementation of assured forwarding.

Uždaviniai

Užduotys (I)

- 93. Žetonų kibiras naudojamas eismo reguliavimui tinkle. Naujas žetonas į kibirą patenka kas 5 μ sec. Kiekviename žetone yra 48 baitai duomenų. Koks gali būti palaikomas maksimalus duomenų srautas.
- 94. Kompiuteris yra 6-Mbps tinkle naudoja žetonų kibirą. Žetonų kibiras pildomas 1 Mbps greičiu. Pradžioje jame yra 8 megabitai. Kaip ilgai kompiuteris gali siųsti duomenis 6 Mbps greičiu?
- 95. Aprašykit weighted round-robin paketų planavimo metodą.
- 96. Aprašykite žetonų kibiro metodą ir kam jis naudojamas.