HW07 Answer

P1 (20pts)

Let T be a minimum spanning tree (MST) of G and T includes e. We can replace e by another edge e' which is also on the cycle and is not included in T. Then, we can obtain a new spanning tree T' and $w(T') \le w(T)$, as $w(e') \le w(e)$. Therefore, T' is a MST of G. It is also a MST of G', as T' does note include e and both G and G' have the same number of vertices.

- 다양한 답안이 존재해서 notation, 부등호 방향 등 사소한 실수는 1점씩 감점하고 이외에 대부분 어느 이상의 점수를 부여함.

P2 (20pts)

- (a) [10pts] ((a,e),(a,b),(e,f),(f,g),(b,c),(d,e),(g,h))
 - · order 틀린 경우 3점 감점
 - · order을 알 수 없는 경우 3점 감점
 - · 누락된 edge 1개에 1점씩 감점
 - · 다른 설명이나 그래프 없이 weight만 나열한 경우 0점
- (b) [10pts]((f,g),(a,e),(a,b),(e,f),(b,c),(d,e),(g,h))
 - order 틀린 경우 3점 감점
 - · order을 알 수 없는 경우 3점 감점
 - · 누락된 edge 1개에 1점씩 감점
 - · 다른 설명이나 그래프 없이 weight만 나열한 경우 0점

Problem3 (40pts)

- (a) [2pts] ((1,3), (1,4), (3,5), (5,2))
 - 부분 점수 없음
- (b) [2pts] ((1,3), (1,4), (3,5), (5,2))
 - 부분 점수 없음
- (c) [10pts] 각각 2점

$$L^{(0)} = \begin{pmatrix} 0 & \infty & \infty & \infty & \infty \\ \infty & 0 & \infty & \infty & \infty \\ \infty & \infty & 0 & \infty & \infty \\ \infty & \infty & \infty & 0 & \infty \\ \infty & \infty & \infty & 0 & \infty \end{pmatrix} \qquad L^{(1)} = \begin{pmatrix} 0 & 6 & 1 & 4 & 6 \\ \infty & 0 & \infty & \infty & \infty \\ \infty & \infty & \infty & 0 & \infty \\ \infty & \infty & \infty & 0 & \infty \end{pmatrix}$$

$$L^{(1)} = \begin{pmatrix} 0 & 6 & 1 & 4 & 6 \\ \infty & 0 & \infty & \infty & \infty \\ \infty & \infty & 0 & \infty & \infty \\ \infty & 3 & \infty & \infty & 0 \end{pmatrix}$$

$$L^{(2)} = \begin{pmatrix} 0 & 6 & 1 & 4 & 2 \\ \infty & 0 & \infty & \infty & \infty \\ \infty & 4 & 0 & \infty & 1 \\ \infty & 2 & \infty & 0 & 4 \\ \infty & 3 & \infty & \infty & 0 \end{pmatrix} \qquad L^{(4)} = \begin{pmatrix} 0 & 5 & 1 & 4 & 2 \\ \infty & 0 & \infty & \infty & \infty \\ \infty & 4 & 0 & \infty & 1 \\ \infty & 2 & \infty & 0 & 4 \\ \infty & 3 & \infty & \infty & 0 \end{pmatrix}$$

(d) [6pts] 각각 2점

$$L^{(0)} = \begin{pmatrix} 0 & \infty & \infty & \infty & \infty \\ \infty & 0 & \infty & \infty & \infty \\ \infty & \infty & 0 & \infty & \infty \\ \infty & \infty & 0 & \infty & \infty \\ \infty & \infty & \infty & 0 & \infty \\ \infty & \infty & \infty & \infty & 0 & \infty \end{pmatrix} \qquad L^{(2)} = \begin{pmatrix} 0 & 6 & 1 & 4 & 2 \\ \infty & 0 & \infty & \infty & \infty \\ \infty & 4 & 0 & \infty & 1 \\ \infty & 2 & \infty & 0 & 4 \\ \infty & 3 & \infty & \infty & 0 \end{pmatrix} \qquad L^{(4)} = \begin{pmatrix} 0 & 5 & 1 & 4 & 2 \\ \infty & 0 & \infty & \infty & \infty \\ \infty & 4 & 0 & \infty & 1 \\ \infty & 2 & \infty & 0 & 4 \\ \infty & 3 & \infty & \infty & 0 \end{pmatrix}$$

(e) [20pts] 각각 2점

[zopis] -	7 4 0	
k	d	π
1	$\begin{pmatrix} 0 & 6 & 1 & 4 & 6 \\ \infty & 0 & \infty & \infty & \infty \end{pmatrix}$	NIL 1 1 1 1 NIL NIL NIL NIL
	$\begin{bmatrix} \infty & 0 & \infty & \infty & \infty \\ \infty & \infty & 0 & \infty & 1 \end{bmatrix}$	NIL NIL NIL NIL 3
	$ \begin{pmatrix} \infty & 2 & \infty & 0 & 4 \\ \infty & 3 & \infty & \infty & 0 \end{pmatrix} $	NIL 4 NIL NIL 4 NIL 5 NIL NIL NIL
2	/0 6 1 4 6	/NIL 1 1 1 1 \
	$\left(\begin{array}{cccc} \infty & 0 & \infty & \infty & \infty \end{array}\right)$	NIL NIL NIL NIL NIL
	$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$	NIL NIL NIL 3
	$\left(\begin{array}{cccc} \infty & 2 & \infty & 0 & 4 \end{array} \right)$	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
	\∞ 3 ∞ ∞ 0/	<i>NIL</i> 5 <i>NIL NIL NIL/</i>
3	/0 6 1 4 <mark>2</mark> \	/NIL 1 1 1 3 \
	$\left(\begin{array}{cccc} \infty & 0 & \infty & \infty & \infty \end{array} \right)$	NIL NIL NIL NIL NIL
	$\infty \infty 0 \infty 1$	NIL NIL NIL 3
	$\left(\begin{array}{cccc} \infty & 2 & \infty & 0 & 4 \end{array} \right)$	NIL 4 NIL NIL 4
	\∞ 3 ∞ ∞ 0/	NIL 5 NIL NIL NIL/
4	$\int 0 \ 6 \ 1 \ 4 \ 2 \setminus$	/NIL 1 1 1 3 \
	$(\infty 0 \infty \infty \infty)$	NIL NIL NIL NIL NIL
	$\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	NIL NIL NIL 3
	$\setminus \infty 2 \infty 0 4 \mid$	NIL 4 NIL NIL 4
	\∞ 3 ∞ ∞ 0/	NIL 5 NIL NIL NIL/
5	\(\begin{pmatrix} 0 & \ 5 & 1 & 4 & 2 \end{pmatrix}	/NIL 5 1 1 3 \
	$\left[\begin{array}{cccc} \infty & 0 & \infty & \infty & \infty \end{array}\right]$	NIL NIL NIL NIL NIL
	∞ 4 0 ∞ 1	NIL 5 NIL NIL 3
	$\left(\begin{array}{ccccc} \infty & 2 & \infty & 0 & 4 \end{array} \right)$	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
	\∞ 3 ∞ ∞ 0/	NIL 5 NIL NIL NIL/

Problem4 (20pts)

```
MODIFIED-CUT-ROD(p, n, c)
Let r[0:n] be a new array
r[0] = 0
for i = 1 to n
  q = p[i] // the case of no cuts --- 없으면 1점 감점
  for j = 1 to i - 1
    q = max(q, p[j] + r[i-j] - c)
  r[i] = q
  return r[n]
```

- inner loop 10점, outer loop 10점
- 예시 답안과 다르게 짠 경우에도 구현된 로직이 맞으면 점수 부여
- algorithm이 아닌 줄글로 풀어 적은 경우 10점 감점
- bracket, 배열 선언 등 사소한 실수 1점씩 감점