Masked Autoencoders are scalable Vision Learners

윤태영(인제대학교 헬스케어IT공학과 석사과정)

Introduction

MAE접근 방식(simple)

- 입력이미지를 패치로 나눠 random하게 masking을 하여 이를 재구성하고자 하는 모델
- 무작위 masking의 장점: 중복 성이 적어지고, 전체적이해 가 필요한 까다로운 self-supervised 학습에 적합.
- 재구성하는 경량 디코더와 마스킹 패치를 제외한 나머지에 서만 작동하는 인코더 (비대칭 encoder-decoder)
- Input image의 75%를 마스킹할 시에 의미 있는 결과 (25%의 패치만 encoding하기때문에 계산 비용 3배 절약)

Related work

- Masked language modeling(FERT, GPT)
 - > NLP의 pre-trained의 매우 성공적인 방법
 - > input sequence 일부를 누락시키고 학습하여 누락 부분 예측
 - ▶ 사전 학습된 표현이 다양한 downstream task에 일반화.
- Masked image encoder
 - > CNN을 사용하여 누락된 큰 영역을 inpainting함.
 - ➤ 최근에는 iGPT, BEiT와 같은 language model에 접목시켜 연구 진행.
- AutoEncoder(classical method)
 - ▶ DAE같은 경우 input을 noise로 손상시켜 손상되지 않은 raw signal처럼 재구성
 - > MAE와 유사하면서 다른 method.
- Self-supervised learning
 - > computer vision 또는 pre-training을 위한 다양한 사전 텍스트 작업에 초점.

Approach

- MAE는 부분 관찰을 통한 raw data 재구성 기법
- 부분 data를 encode를 통해 매핑하고, decode를 통한 raw data재구성
- 부분 data에 다른 비대칭 설계로 전체 재구성 → 일반적인 AE와 차별성을 둠.

Masking

- ▶ 겹치지 않게 이미지를 패치로 분할(like ViT)
- ▶ 무작위 샘플링 : masking을 한 패치는 제거하고 나머지 패치들을 shuffle.

MAE encoder

▶ ViT와 같이 위치 임베딩을 가지지만 제거되지 않은 25%의 patch에만 적용

MAE decoder

- > decoder는 pre-train시에만 사용
- encoder에서 나온 결과와 masking되었던 패치와 합쳐 위치 임베딩을 추가함.(위치 임베딩이 없을 경우 자신의 위치에 대한 정보를 갖지 못하기 때문에 학습 불가)

Approach

- Reconstruction target
 - ➤ Decoder 마지막 layer는 output channel 수와 patch들의 pixel수가 동일하다.(linear projection)
 - > MSE : BERT와 유사하게 masked patch에만 손실 함수 계산
- Simple implementation
 - ▶ 특수한 sparse operation필요하지 않음.
 - 1. 모든 input patch에 토큰 생성
 - 2. 토큰을 임의로 섞고 비율에 맞춰 마지막 부분 제거(remove masked patch)
 - 3. encoding후에 masked 토큰과 encoder patch를 합침(None shuffle)
 - 4. decode는 전체에 적용(위치 임베딩 추가) →pre-train시에만 사용

Experiments - Main Properties

Linear probing은 다년간 유명한 protocol이지만, 비선형관계를 해결하지 못한다.

- Self-supervised learning을 통해 pre-train후에 fine-tuning과 linear probing을 할 수 있다.
- 두 method를 masking rate에 따른 변화를 보여준다.
- Masking rate은 40~80%정도에서 좋은 결과를 보임.
- Fine-tune과 linear probing의 추세가 다르고 finetuning이 더 좋은 결과를 보임.

Experiments - Main Properties

blocks	ft	lin
1	84.8	65.5
2	84.9	70.0
4	84.9	71.9
8	84.9	73.5
12	84.4	73.3

(a) **Decoder depth**. A deep decoder can improve linear probing accuracy.

A. Depth(Transformer 개수)의 변화

linear probing에서는 depth가 깊어질수록 성 능개선이 보이지만 fine-tune에선 변화가 없음.

dim	ft	lin
128	84.9	69.1
256	84.8	71.3
512	84.9	73.5
768	84.4	73.1
1024	84.3	73.1

(b) **Decoder width**. The decoder can be narrower than the encoder (1024-d).

B. Width(Channel 개수)

512에서 가장 좋은 결과를 보이며, 비교 군인 ViT-L모델의 width가 1024인 점을 보았을 때 좀더 가볍다.

Experiments - Main Properties

case	ft	lin	FLOPs
encoder w/ [M]	84.2	59.6	3.3×
encoder w/o [M]	84.9	73.5	1×

(c) **Mask token**. An encoder without mask tokens is more accurate and faster (Table 2).

C. Encoder에서의 Mask token 유/무

w/o이 encoder에 mask token이 없는 것으로 mask token을 넣는 거보다 높은 결과를 보임. 또한, FLOPs를 보면 3.3배 차이가 남.

(f) **Mask sampling**. Random sampling work the best. See Figure 6 for visualizations.

block 50%

grid 75%

F. Mask sampling block같은 경우 BEiT방식과 동일한 방법. Block과 grid보다 random하게 마스킹을 했을 때가 더 좋은 성능을 보임.

Experiments – Comparison with results

method	pre-train data	ViT-B	ViT-L	ViT-H	ViT-H ₄₄₈	
scratch, our impl.	-	82.3	82.6	83.1	-	_
DINO [5]	IN1K	82.8	-	-	-	
MoCo v3 [9]	IN1K	83.2	84.1	-	-	Ĺ
BEiT [2]	IN1K+DALLE	83.2	85.2	-	-	
MAE	IN1K	83.6	<u>85.9</u>	<u>86.9</u>	87.8	_

BEiT와 비교했을 때, MAE가 더 간단하고 빠르다.

MAE training time: 31h (1600 epoch)

Moco-V3 training time: 36h (300 epoch)

Partial Fine-tuning partial fine-tune은 마지막 몇 개의 layer를 제외 하고 freeze하는 방법이다. moco-V3는 linear probing에서는 좋은 결과를 보였지만, partial fine-tune에서는 결과가 좋지 않다.

또한, MAE는 적은 layer의 fine-tune으로도 좋은 결과를 낸다.

Transfer learning experiments

		AP^{box}		AP ^{mask}	
method	pre-train data	ViT-B	ViT-L	ViT-B	ViT-L
supervised	IN1K w/ labels	47.9	49.3	42.9	43.9
MoCo v3	IN1K	47.9	49.3	42.7	44.0
BEiT	IN1K+DALLE	49.8	53.3	44.4	47.1
MAE	IN1K	50.3	53.3	44.9	47.2

dataset	ViT-B	ViT-L	ViT-H	ViT-H ₄₄₈	prev best
iNat 2017	70.5	75.7	79.3	83.4	75.4 [55]
iNat 2018	75.4	80.1	83.0	86.8	81.2 [54]
iNat 2019	80.5	83.4	85.7	88.3	84.1 [54]
Places205	63.9	65.8	65.9	66.8	66.0 [19] †
Places365	57.9	59.4	59.8	60.3	58.0 [40] ‡

Object detection and segmentation
MAE가 supervised learning에 비해 2.4~4.0포인
트가 차이 날만큼 좋다.
Pixel기반인 MAE와 token기반인 BEiT가 동등하거
나 MAE가 더 좋지만 MAE가 더 빠른 성능을 가진
다.

Classification datasets
모델이 커짐에 따라 성능이 증가.
IN1K로 pre-train한 후 ViT-H에서 448로
resolution을 했을 때 성능향상이 된다.