

Deep learning whereabouts

A catch-all lecture in useless philosophy & practical tricks

Previously on deep learning...

Feature extraction

Features would tune to your problem automatically!

Simple neural network

Trains with stochastic gradient descent! or momentum/rmsprop/adam/...

Backpropagation

TL;DR: backprop = chain rule*

$$\frac{\partial f(g(x))}{\partial x} = \frac{\partial f(g(x))}{\partial g(x)} \cdot \frac{\partial g(x)}{\partial x}$$

* g and x can be vectors/vectors/tensors

Dynamic graphs

Chainer, DyNet, Pytorch

 W_x

A graph is created on the fly

```
from torch.autograd import Variable

x = Variable(torch.randn(1, 10))
prev_h = Variable(torch.randn(1, 20))
W_h = Variable(torch.randn(20, 20))
W_x = Variable(torch.randn(20, 10))
```

Don't expect deep learning to solve all your problems for free. For it won't.

https://i.warosu.org/data/sci/img/0073/62/1435656449422.png

- No core theory
 - Relies on intuitive reasoning

- No core theory
 - Relies on intuitive reasoning
- Needs tons of data
 - You need either large dataset or heavy wizardry

- No core theory
 - Relies on intuitive reasoning
- Needs tons of data
 - You need either large dataset or heavy wizardry
- Computationally heavy
 - Running on mobiles/embedded is a challenge

- No core theory
 - Relies on intuitive reasoning
- Needs tons of data
 - You need either large dataset or heavy wizardry
- Computationally heavy
 - Running on mobiles/embedded is a challenge
- Pathologically overhyped
 - People expect of it to make wonders

in which you can hint your model on what you want it to learn

Say, you train classifier on two sets of features

Raw features

High-level features

Target

Say, you train classifier on two sets of features

Raw features

Car photo (image pixels)

High-level features

Car brand, model, age, blemishes Car price

Target

Naive approach

Naive approach

Less naïve approach

Less naïve approach

"Image features should be less important" if that's what you want to say

You have a small dataset

You have a small dataset and a larger dataset with similar task

Age, gender, (1kk samples)

You have a small dataset and a larger dataset with similar task

I want to learn features for style classification that also help determine age & gender

For images:

- "I want to classify cats regardless where they are"
- "I don't want model to be indifferent to small shifts"

For texts:

"Model should reconstruct the underlying process"

In general:

- "I don't want model to trust single feature too much"
- "I want my features to be sparse"

Let's see a few more "words"

Regularization

Neural networks overfit like nothing else.

Gotta regularize!

We can use L1/L2 like usual, but there's more!

Regularization

• Dropout:

"I don't my network to trust any single neuron too much"

• Idea:

At training time, with probability **p** multiply neurons by zero!

Scale up the remaining neurons to keep average the same

Regularization

Dropout:

"I don't my network to trust any single neuron too much"

Imagine a 100-layer network with ReLU

Imagine a 100-layer network with ReLU

- Imagine a 100-layer network with ReLU
- Single gradient step...

- Imagine a 100-layer network with ReLU
- Single gradient step…

These guys explode

- Imagine a 100-layer network with ReLU
- Single gradient step…

These guys explode

Those guys are broken and need to re-adjust

- Imagine a 100-layer network with ReLU
- Single gradient step…

These guys explode

TL;DR:

- It's usually a good idea to normalize linear model inputs
 - (c) Every machine learning lecturer, ever

Idea:

 We normalize activation of a hidden layer (zero mean unit variance)

$$h_i = \frac{h_i - \mu_i}{\sqrt{\sigma_i^2}}$$

– Update μ_i , σ_i^2 with moving average while training

$$\mu_{i} := \alpha \cdot mean_{batch} + (1 - \alpha) \cdot \mu_{i}$$

$$\sigma_{i}^{2} := \alpha \cdot variance_{batch} + (1 - \alpha) \cdot \sigma_{i}^{2}$$

Idea:

 We normalize activation of a hidden layer (zero mean unit variance)

$$h_i = \frac{h_i - \mu_i}{\sqrt{\sigma_i^2}}$$

i stands for i-th neuron

– Update μ_i , σ_i^2 with moving average while training

$$\mu_{i} := \alpha \cdot mean_{batch} + (1 - \alpha) \cdot \mu_{i}$$

$$\sigma_{i}^{2} := \alpha \cdot variance_{batch} + (1 - \alpha) \cdot \sigma_{i}^{2}$$

Good side effect #1:

Vanishing gradient less a problem for sigmoid-like nonlinearities

We no longer need to train bias (+b term in Wx+b)

Weight normalization

Same problem, different solution

- Learn separate "direction" w and "length" I

$$\hat{\mathbf{w}} \stackrel{\text{def}}{=} \frac{\mathbf{w}}{\|\mathbf{w}\|} \cdot \mathbf{l}$$

Much simpler, but requires good init

More normalization

Layer/Instance normalization

- Like batchnorm, but normalizes over different axes

Normprop

A special training algorithm

Self-normalizing neural networks (SELU)

Nuff

Coding time!

