Course	Course Code Introduction to computational physics		Course Type		LTP			
PHY1003				Credits				
Course	Course Objectives:							
	• Familiarizing students with computational methodologies and techniques to solve the							
_		s in physics g scientific programming tactics, numerical techniques and	l their i	mnleme	entation			
		ing the ability to scientifically analyze the data and interpr		-	Jitation			
Course	Outcon	nes:						
CO2. Us CO3. Nu	se the co umerica	mputers to formulate and solve basic problems in physics omputational tools and methodology to communicate ideas lly solve the linear and non-linear system of equations he basics understanding of scientific simulation and model		kplanati	ons			
Mod.	o de la propertie	Module Description		Lect.	CO			
No.				Hrs				
1	Basic d	lata operations		5	2			
	dimens	nentals of computations, Data visualization in 2 and ion, Plotting and data interpretation in 2 and 3 dimension, lation and fitting						
2	Mathematical Physics I				1,2,3			
	vectors	, Vector, Col linear vectors, Addition and subtraction, Scalar products, Vector products, Vector triple product, Divergence, Curl, Matrix methods, Matrix operation	luct,	8				
3	Mathe	matical Physics II						
	Sequen of cent analysis Forwar	tial and random numbers, Concept of randomness, Meas tral tendency and dispersion, Frequency distribution, E s, Root finding, Simple functions, Derivatives and integr	Error rals,	10	1,2,3			
4	Particle dynamics; a computational approach I			8	1 2 2 4			
	forces, motion	n's equation of motions, Work energy theorem, conserva Linear motion, non-linear motions, Uniform and non unif , Collision of particles, Elastic collision, Inelastic collis vation laws, Algorithm development and problem solving	orm		1,2,3,4			
5 Particle dynamics; a computational approach II		e dynamics; a computational approach II		7 1234				
	phase of An-har	harmonic motion Simple harmonic oscillator: energy of simple harmonic oscillator, Two body harmonic oscillations, Motion in a frictional or drag environment development and problem solving	ator,		1,2,3,4			

Guest Lecture on Contemporary Topic		2	
	Total Lecture Hours:	4	10

Mode of Teaching and Learning: Flipped class room, activity based teaching/learning, tutorials for the technical details, , development of the computational codes, if possible a 2 hours lecture by experts on contemporary topics

Mode of Evaluation: The assessment and evaluation components may consist of quizzes, assignments, tutorials and any other innovative assessment practices followed by faculty, in addition to the Continuous assessment tests (CAT) and Term end examination. (TEE)

Text Book(s):

- 1. Basic Concepts in Computational Physics, B. A. Stickler, E. Schachinger, Springer (2016)
- 2. Computational Physics: Problem solving with python, R. H. Landau, M. J. Paez, and C. C. Bordeianu, Wiley-VCH (2015)

Reference Books:

- 1. Computational Physics: Simulation of Classical and Quantum Systems, P. O. J. Scherer, Springer (2017)
- 2. Computation in Modern Physics, W. R. Gibbs, World Scientific (2006)
- 3. Computer Simulation Methods, Application to Physical Systems, H. Gould, J. Tobochnik and H. Christian, Addison Wesley (2007).

Hands-on Session : Experimental part of this course work will consist of a hands-on session. Here, students will be developing the various codes relevant to the physics problems. A few examples are given below

- 1. Integration and differentiation of the simple functions
- 2. Matrix operation and vectors
- 3. Formulations of the Newton's law
- 4. Simple harmonic oscillator
- 5. Dammped harmonic oscillator

Recommendation by the Board of Studies on	17/10/2020
Approval by Academic council on	20/10/2020
Compiled by	Dr. Rajdeep Singh Payal
	and Dr. Sharad Chandra
	Tripathi