References

- Meinshausen, Buhlmann (2010). Stability selection. JRSS-B, 72:417-473
- Shah, Samworth (2013). Variable selection with error control: another look at stability selection. JRSS-B, 75:55–80.

Stability path

- The *regularisation path* of the lasso is

$$\{\hat{\beta}_j(\lambda), j=1,\ldots,p,\lambda\in\Lambda\}$$

- The *stability path* is

$$\{\hat{\pi}_j(\lambda), j=1,\ldots,p,\lambda\in\Lambda\}$$

where $\hat{\pi}_j(\lambda)$ is the estimated probability for the *j*th predictor to be selected by the lasso(λ) when randomly resampling from the data

Algorithm 1 Stability Path Algorithm with the Lasso

Require: $B \in \mathbb{N}$, Λ grid, $\tau \in (0.5, 1)$

1: **for**
$$b = 1, ..., B$$
 do

2: Randomly select n/2 indices from $\{1, \ldots, n\}$;

3: Perform the lasso on the n/2 observations to obtain

$$\hat{S}_{n/2}(\lambda) = \{j : \hat{\beta}_j(\lambda) \neq 0\} \qquad \forall \ \lambda \in \Lambda$$

4: end for

5: Compute the relative selection frequencies:

$$\hat{\pi}_{j}(\lambda) = \frac{1}{B} \sum_{k=1}^{B} \mathbb{1}\{j \in \hat{S}_{n/2}(\lambda)\} \quad \forall \lambda \in \Lambda$$

6: The set of *stable predictors* is given by

$$\hat{S}_{\text{stab}} = \{j : \max_{\lambda \in \Lambda} \hat{\pi}_j(\lambda) \ge \tau\}$$

Algorithm 2 (Complementary Pairs) Stability Selection

Require: A variable selection procedure \hat{S}_n , $B \in \mathbb{N}$, $\tau \in (0.5, 1)$

- 1: **for** b = 1, ..., B **do**
- Split $\{1,\ldots,n\}$ into (I^{2b-1},I^{2b}) of size n/2, and for each get

$$\hat{S}_{n/2}^{2b-1} \subseteq \{1, \dots, p\}, \qquad \hat{S}_{n/2}^{2b} \subseteq \{1, \dots, p\}$$

- 3: end for
- 4: Compute the relative selection frequencies:

$$\hat{\pi}_j = \frac{1}{2B} \sum_{h=1}^{B} \left(\mathbb{1} \{ j \in \hat{S}_{n/2}^{2b-1} \} + \mathbb{1} \{ j \in \hat{S}_{n/2}^{2b} \} \right)$$

5: The set of stable predictors is given by

$$\hat{S}_{\text{stab}} = \{j : \hat{\pi}_j \ge \tau\}$$

– The relative selection frequency $\hat{\pi}_i$ is an unbiased estimator of

$$\pi_j^{n/2} = P(j \in \hat{S}_{n/2})$$

but, in general, a biased estimator of

$$\pi_i^n = P(j \in \hat{S}_n) = \mathbb{E}(\mathbb{1}\{j \in \hat{S}_n\})$$

- The key idea of stability selection is to improve on the simple estimator $\mathbb{1}\{j \in \hat{S}_n\}$ of π_i^n through subsampling.
- By means of averaging involved in \hat{S}_{stab} , we hope that $\hat{\pi}_j$ will have reduced variance compared to $\mathbb{1}\{j \in \hat{S}_n\}$ and this increased stability will more than compensate for the bias incurred.

Theorem

Assume that

- 1. $\{\mathbb{1}\{j \in \hat{S}_{n/2}\}, j \in N\}$ is exchangeable;
- 2. The variable selection procedure is not worse than random guessing, i.e.

guessing, i.e.
$$\frac{\mathbb{E}(|\hat{S}_{n/2} \cap S|)}{\mathbb{E}(|\hat{S}_{n/2} \cap N|)} \geq \frac{|S|}{|N|}.$$

Then, for $\tau \in (1/2, 1]$

$$\mathbb{E}(|\hat{S}_{\mathsf{stab}} \cap N|) \leq rac{1}{(2 au - 1)} rac{q^2}{p}$$

where
$$q = \mathbb{E}(|\hat{S}_{n/2}|)$$

- The choice of the number of subsamples *B* is of minor importance
- importance

 It is possible to fix $q = \mathbb{E}(|\hat{S}_{n/2}|)$ and run the variable selection procedure until it selects q variables. However, if q is too small, one would select only a subset of the signal variables as

$$|\hat{S}_{\mathrm{stab}}| \leq |\hat{S}_{n/2}| = q$$

– For example, with p=1000, q=50 and $\tau=0.6$ then

$$\mathbb{E}(|\hat{S}_{\mathsf{stab}} \cap N|) \leq 12.5$$

