Apuntes Fisica Teorica (AFTIN)

Felipe Colli *

2025

Índice

1.	Clas	$ m se \ de \ 23/05/2025$	2
	1.1.	Cinemática	2
		1.1.1. Movimiento Rectilíneo Uniforme (MRU)	2
		1.1.2. Movimiento Rectilíneo Uniformemente Acelerado (MRUA)	2
		1.1.3. Graficos	2
		1.1.4. Aplicando la Derivada a la ecuación de la Itininerario	2
2.	Clas	$a = del \ 30/05/2025$	3
			3
			3
			3
			3
3.		se 22/08/2025 - Mmvimiento Circunferencial Uniformemente Variado (MRUV)	4
		(**************************************	4
	3.2.	Velocidad Angular Instantanea	4
	3.3.	Aceleracion Angular Media $(\vec{\alpha_m})$ (Constante)	4
	3.4.	Aceleracion Angular Instantanea	4
	3.5.		4
		3.5.1. $\alpha = f(t)$	4
		3.5.2. $\omega = f(t)$	4
	3.6.	Cantidades Lineales	5
		3.6.1. Velocidad Lineal Instantanea	5
		3.6.2. Aceleracion Tangencial	5
		3.6.3. Aceleracion Centripeta	5
		3.6.4. Aceleracion Neta	5
	3.7.	Problemas	5

^{*}AFTIN y Profesor Paul Cáceres

1. Clase de 23/05/2025

1.1. Cinemática

1.1.1. Movimiento Rectilíneo Uniforme (MRU)

- 1. Poseen una trayectoria rectilinea
- 2. Velocidad constante $(\vec{a} = 0 \frac{m}{s^2})$

•
$$v = \frac{\Delta x}{\Delta t} \ \vec{v} = \frac{\vec{d}}{t} \left(\frac{m}{s} \right) |\vec{v}| = v$$

$$x(t) = x_i + vt$$

$$a=0$$

$$|\vec{d}| = d$$

1.1.2. Movimiento Rectilíneo Uniformemente Acelerado (MRUA)

- 1. Poseen una trayectoria rectilinea
- 2. Velocidad variable $\vec{a} = \frac{\Delta v}{\Delta t} \left(\frac{m}{s^2} \right)$
- 3. Si la aceleración es del mismo signo que la velocidad, el objeto se acelera. Si la aceleración es del signo opuesto a la velocidad, el objeto desacelera.
- Ecuancion de la Velocidad en Función del Tiempo $v=v_i+a\Delta t$
- Ecuación Iterinerario $x(t) = x_i + v_i t + \frac{1}{2}at^2$
- \blacksquare Ecuacion Independiente del Tiempo $v_f^2 = v_i^2 + 2a(x_f x_i)$
- $\bullet |\vec{d}| = d$

1.1.3. Graficos

- 1. Pendiente (Derivada) de la función
- 2. Área bajo la curva (Integral) de la función
- \bullet xv
s $t \to {\sf Pendiente} = {\sf Velocidad},$ Area bajo la curva = ${\sf Velocidad}$
- v v
s $t \to \Delta x = \frac{\Delta v \cdot t}{2} + v_i t$ Pendiente = Aceleración, Area bajo la curva = Distancia Recorrida

1.1.4. Aplicando la Derivada a la ecuación de la Itininerario

$$x_f = x_i + v_i t + \frac{1}{2}at^2$$

$$v(t) = x' = v_1 + at^2$$

$$v(t)' = a$$

2. Clase del 30/05/2025

2.1. Movimiento Circunferencial Uniforme (MCU)

- Movimiento circular con rapidez constante
- Trayectoria circular
- Aceleración centrípeta $a_c = \frac{v^2}{r} \left(\frac{m}{s^2} \right)$
- Velocidad angular $\omega = \frac{\Delta \theta}{\Delta t} \ (\frac{rad}{s})$
- Relación entre velocidad lineal y angular $v = r\omega \left(\frac{m}{s}\right)$

2.1.1. Magnitudes Fisicas Temporales asociadas al Movimiento Ciclicos

- Periodo $T = \frac{2\pi r}{v} = \frac{t}{N} = \frac{1}{f}[s]$ Tiempo que tarda en completar una vuelta
- Frecuencia $f = \frac{1}{T} = \frac{N}{t}[Hz]$
- Longitud de onda $\lambda = \frac{v}{f} = \frac{vT}{N}$

2.1.2. Estudio lineal del M.C.U.

- Rapidez tangencial $v = \frac{2\pi r}{T} = 2\pi r f$
- Aceleración centrípeta $a_c = \frac{v^2}{r}$
- Aceleración tangencial $a_t = r\alpha$ donde α es la aceleración angular
- Aceleración total $a = \sqrt{a_c^2 + a_t^2}$

2.1.3. Estudio Angular del M.C.U.

- $1rad \approx 57,3$
- $-360 = 2\pi rad$
- Rapidez angular $\omega = \frac{2\pi}{T} = 2\pi f$
- Aceleración angular $\alpha = \frac{\Delta \omega}{\Delta t}$
- Relación entre aceleración centrípeta y angular $a_c = r\omega^2$
- \blacksquare Relación entre aceleración tangencial y angular $a_t = r\alpha$
- Aceleración total $a = \sqrt{a_c^2 + a_t^2}$

- 3. Clase 22/08/2025 Mmvimiento Circunferencial Uniformemente Variado (MRUV)
- 3.1. Velocidad Angular media $(\vec{\omega_m})$

$$\vec{\omega_m} = \frac{\Delta \vec{\theta}}{\Delta t} (\frac{rad}{s})$$

3.2. Velocidad Angular Instantanea

$$\vec{\omega} = \lim_{\Delta t \to 0} \vec{\omega_m} = \frac{\Delta \vec{\theta}}{\Delta t}$$

3.3. Aceleracion Angular Media $(\vec{\alpha_m})$ (Constante)

$$\vec{\alpha_m} = \frac{\Delta \vec{\omega}}{\Delta t} (\frac{ras}{s^2})$$

3.4. Aceleracion Angular Instantanea

$$\vec{\alpha} = \lim_{\Delta t \to 0} \frac{\Delta \vec{\omega}}{\Delta t}$$

- 3.5. Analisis Gráfico
- **3.5.1.** $\alpha = f(t)$

$$A = \alpha \cdot t = \Delta \vec{\omega}$$

3.5.2. $\omega = f(t)$

$$\omega(t) = \omega_i + \alpha t$$

$$A_1 = \frac{1}{2}\Delta\omega t$$

$$A_2 = \omega_i t$$

$$A = \Delta\theta = A_1 + A_2 = \omega_i t + \frac{1}{2}\omega_i t$$

$$\theta_f - \theta_i = \omega_i t + \frac{1}{2} \alpha t^2$$

$$\theta(t) = \theta_i + \omega_i t + \frac{1}{2} \alpha t^2$$

3.6. Cantidades Lineales

3.6.1. Velocidad Lineal Instantanea

$$v = r\omega$$

Aceleracion Tangencial 3.6.2.

$$A_t = \frac{\Delta v}{\Delta t} = \frac{r\Delta \omega}{\Delta t} = \alpha \cdot r$$

Aceleracion Centripeta 3.6.3.

$$A_c = \omega^2 r$$

$$\vec{A} = \vec{A_c} + \vec{A_t}$$

3.6.4. Aceleracion Neta

$$|\vec{A}| = \sqrt{A_c^2 + A_t^2}$$

3.7.**Problemas**

1. Una cuerda de 50 cm de diamtreo trada 10 segundos en adquirir una rapidez constante de 180 pi rad/s, calcula:

a) la acelarcion angular
$$\alpha = \frac{\Delta \omega}{\Delta t} = \frac{\omega_f - (\omega_i = 0)}{10} = \frac{180\pi}{10} = 18(\frac{rad}{s^2})$$

- b) Cual es la rapidez lineal en un putno de la periferia cuando alcanza esa rapidez angular $v = \omega r = 180\pi \cdot 0.5 = 90\pi (\frac{rad}{s})$
- c) LA acelaraciop
n centripeta a laos 5 degundo de inciado el mov $A_c=\omega^2 r=(90\pi)^2\cdot 0, 5=8100\pi^2\cdot 0, 5=4050\pi^2(\frac{rad}{s^2})$

$$A_c = \omega^2 r = (90\pi)^2 \cdot 0.5 = 8100\pi^2 \cdot 0.5 = 4050\pi^2 (\frac{rad}{s^2})$$