CS 6301

Lecture 2. **Text** Classification

Outline - Key Concepts

NLP

- Text Classification
- Language Modeling
- Word Representations/Embedding

ML

- Discriminative Model vs Generative Model
- Objective Function
- Gradient Descent
- Evaluation
- Statistical Testing
- Feed-forward Neural Networks and Recurrent Neural Networks

Text Classification

Input X	Output Y	Task
Text	Label	Text Classification
(e.g., Sentiment	,	
Text	Linguistic Structure	Structured Prediction (e.g., POS Tagging)
Text (e.g., Translation	Text	Text Generation
		The/DT planet/NN Jupiter/NNP and/CC its/PPS moons/NNS are/VBP in/IN effect/NN a/DT minisolar/JJ system/NN ./.

Text Classification

Input X	Output Y	Task
Text	Label	Text Classification
(e.g., Sentiment	• ,	
Text	Linguistic Structure	Structured Prediction (e.g., POS Tagging)
Text (e.g., Translation	Text	Text Generation

Discriminative Model: Calculate the conditional probability distribution of class labels Y given the input data X.

From Prediction Score to Probability

Sigmoid for Binary Classification

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

$$\mathbb{P}\left[y = +1|\boldsymbol{x}; \boldsymbol{w}\right]$$

$$= \sigma(\boldsymbol{w}^{\top}\boldsymbol{x})$$

$$= \frac{1}{1 + e^{-\boldsymbol{w}^{\top}\boldsymbol{x}}}$$

$$\mathbb{P}\left[y = -1|\boldsymbol{x}; \boldsymbol{w}
ight] = 1 - \mathbb{P}\left[y = +1|\boldsymbol{x}; \boldsymbol{w}
ight] = \sigma(-\boldsymbol{w}^{\top}\boldsymbol{x}) = \frac{1}{1 + e^{\boldsymbol{w}^{\top}\boldsymbol{x}}}$$

Softmax for Multi-class Classification

Softmax extends the idea of sigmoid into a multi-class classification. It converts scores to a probability distribution of class labels.

The predicted probability for the j'th class given a sample vector \mathbf{x} and a weighting vector \mathbf{w} is

$$P(y=j\mid \mathbf{x}) = rac{e^{\mathbf{x}^{\mathsf{T}}\mathbf{w}_{j}}}{\sum_{k=1}^{K}e^{\mathbf{x}^{\mathsf{T}}\mathbf{w}_{k}}}$$

Softmax Example

$$P(y = j \mid \mathbf{x}) = rac{e^{\mathbf{x}^\intercal \mathbf{w}_j}}{\sum_{k=1}^K e^{\mathbf{x}^\intercal \mathbf{w}_k}}$$

$$\begin{bmatrix} 8 \\ 5 \\ 0 \end{bmatrix}$$

$$\sum_{j=1}^{K} \, e^{z_{j}} \, = e^{z_{1}} \, + e^{z_{2}} \, + e^{z_{3}} \, = 2981.0 + 148.4 + 1.0 = 3130.4$$

$$e^{z_1} = e^8 = 2981.0$$
 $e^{z_2} = e^5 = 148.4$
 $e^{z_3} = e^0 = 1.0$

$$\frac{2981.0}{3130.4} = 0.9523$$

$$\frac{148.4}{3130.4} = 0.0474$$

$$\frac{1.0}{3130.4} = 0.0003$$

Softmax in Neural Networks

Class	Probability
apple	0.001
bear	0.04
candy	0.008
dog	0.95
egg	0.001

Models

- Discriminative Model: Calculate the conditional probability distribution of class labels Y given the input data X.
- Joint (e.g. Naïve Bayes)
 - Parameters from data statistics
 - Parameters: probabilistic interpretation
 - Training: one pass through the data
- Perceptron
 - Parameters from reactions to mistakes
 - Parameters: discriminative interpretation
 - Training: go through the data until validation accuracy maxes out

Discriminative Model vs Generative Model

Discriminative Model: Calculate the conditional probability distribution of class labels Y given the input data X.

Generative Model: Directly Model

- maximize the joint probability of the training set of labeled documents
- maximum likelihood estimation (MLE)

$$\hat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} p(\boldsymbol{x}^{(1:N)}, y^{(1:N)}; \boldsymbol{\theta})$$

Perceptron (Separable Case)

- The perceptron algorithm
 - Iteratively processes the training set, reacting to training errors
 - Can be thought of as trying to drive down training error
- The online (binary $\rightarrow y = \pm 1$) perceptron algorithm:
 - Start with zero weights
 - Visit training instances $(X^{(i)}, y^{(i)})$ one by one, until all correct
 - Make a prediction
 - If correct $(y^* == y^{(i)})$: no change, goto next example!
 - If wrong: adjust weights

Perceptron (Separating Hyperplane)

Problems with the Perceptron

- Noise: if the data isn't separable, weights might thrash
 - Averaging weight vectors over time can help (averaged perceptron)
- Mediocre generalization: finds a "barely" separating solution
- Overtraining: test / held-out accuracy usually rises, then falls
 - Overtraining is a kind of overfitting

Models

- Discriminative Model: Calculate the conditional probability distribution of class labels Y given the input data X. (Neural Network)
- Joint (e.g. Naïve Bayes)
 - Parameters from data statistics
 - Parameters: probabilistic interpretation
 - Training: one pass through the data
- Perceptron
 - Parameters from reactions to mistakes
 - Parameters: discriminative interpretation
 - Training: go through the data until validation accuracy maxes out

Logistics

- Gradescope submission
 - Assignments, Presentation slides, final project report

Discriminative Model

The discriminative model is parameterized by $|\theta|$

$$P(y|X;\theta)$$

Discriminative Model Objective Function

The discriminative model is parameterized by heta

$$P(y|X;\theta)$$

We often use **negative log likelihood** over training data as our **objective function** or **loss function**. It is a function of θ

$$\mathcal{L}(\theta) = -\sum_{(X,y)\in\mathcal{D}_{\text{train}}} \log P(y|X;\theta)$$

Discriminative Model Objective Function

The discriminative model is parameterized by heta

$$P(y|X;\theta)$$

We often use **negative log likelihood** over training data as our **objective function** or **loss function**. It is a function of θ

$$\mathcal{L}(\theta) = -\sum_{(X,y)\in\mathcal{D}_{\text{train}}} \log P(y|X;\theta)$$

We then optimize the parameters to minimize the loss. Better model has lower loss

$$\hat{\theta} = \arg\min_{\theta} \mathcal{L}(\theta)$$

How to Learn the parameters

optimization

Optimize Objective Function by Gradient Descent

Calculate the gradient of the loss function with respect to the parameter

$$rac{\partial \mathcal{L}(heta)}{\partial heta}$$

Update heta by moving a small step in the gradient direction to decrease the loss

$$\theta_{\text{new}} \leftarrow \theta_{\text{old}} - \eta \frac{\partial \mathcal{L}(\theta)}{\partial \theta}$$

 η is the **learning rate**

Gradient Descent

$$m{w}_0 = m{0}$$
 for $t = 1, 2, \dots, T$ $m{w}_{t+1} = m{w}_t - \eta_t
abla f(m{w}_t)$ end for return $m{w}_T$ $m{w}_0$

- Text classification
- Ranking
- Natural language generation (NLG)

Accuracy

$$ext{Accuracy} = rac{TP + TN}{TP + TN + FP + FN}$$

		Predicted condition		
	Total population = P + N	Positive (PP)	Negative (PN)	
Actual condition	Positive (P)	True positive (TP), hit	False negative (FN), type II error, miss, underestimation	
Actual o	Negative (N)	False positive (FP), type I error, false alarm, overestimation	True negative (TN), correct rejection	

Precision

$$ext{Precision} = rac{tp}{tp+fp}$$

Recall

$$ext{Recall} = rac{tp}{tp+fn}$$

F1 score: the harmonic mean of precision and recall

$$F_1 = 2 \cdot rac{ ext{precision} \cdot ext{recall}}{ ext{precision} + ext{recall}}$$

harmonic mean < geometric mean < arithmetic mean
 https://en.wikipedia.org/wiki/Precision and recall

Evaluation (F-1 score)

 The following confusion matrix summarizes the predictions made by the model:

Predicted

Actual

	Drafted = Yes	Drafted = No
Drafted = Yes	120 (True Positive)	40 (False Negative)
Drafted = No	70 (False positive)	170 (True Negative)

Precision, Recall?

Evaluation (F-1 score)

 The following confusion matrix summarizes the predictions made by the model:

Predicted

Actual

	Drafted = Yes	Drafted = No
Drafted = Yes	120 (True Positive)	40 (False Negative)
Drafted = No	70 (False positive)	170 (True Negative)

Precision, Recall, and F-1?

F-1 v.s. acc

• For example, suppose 90% of reviews are positive. If we have a model that simply predicts every review to be positive, the model would have a 90% acc.

Value seems high, but ...

Rule of thumb

- We often use accuracy when the classes are balanced and there is no major downside to predicting false negatives.
- We often use F1 score when the classes are imbalanced and there is a serious downside to predicting false negatives.

Precision-Recall Curve

ROC Curve

Recall is also called **True Positive Rate**

True Positive / (True Positive + False Negative)

We can also define False Positive Rate

False Positive / (False Positive + True Negative)

Be default, we can use 0.5 as threshold, but we can use other threshold as well. (varying)

As we change the threshold, both TPR and FPR change.

ROC curve: Receiver Operating Characteristic

ROC Curve

Recall is also called **True Positive Rate**

True Positive / (True Positive + False Negative)

We can also define **False Positive Rate**

False Positive / (False Positive + True Negative)

ROC is a probability curve

68b2303cc9c5

AUC represents the degree or measure of separability

FPR https://towardsdatascience.com/understanding-auc-roc-curve-

AUC

AUC: Area under Curve

- AUC = 1: The perfect classifier
- AUC = 0.5: The random classifier
- AUC = 0: The worst classifier

- Text classification
- Ranking (e.g. Information Retrieval / Question Answering)
- Natural language generation (NLG)

Evaluation for Ranking

Classification: order of predictions doesn't matter Ranking: order of predictions does matter

 Search engines: Predict which documents match a query on a search engine.

k	Document ID	Predicted Relevance	Actual Relevance
1	06	0.90	Relevant (1.0)
2	03	0.85	Not Relevant (0.0)
3	05	0.71	Relevant (1.0)
4	00	0.63	Relevant (1.0)
5	04	0.47	Not Relevant (0.0)
6	02	0.36	Relevant (1.0)
7	01	0.24	Not Relevant (0.0)
8	07	0.16	Not Relevant (0.0)

Evaluation for Ranking (P@K)

Classification: order of predictions doesn't matter Ranking: order of predictions does matter

 Search engines: Predict which documents match a query on a search engine.

$$ext{Precision@}k = rac{true\ positives\ @}{(true\ positives\ @}k) + (false\ positives\ @}k)}$$

k	Document ID	Predicted Relevance	Actual Relevance
1	06	0.90	Relevant (1.0)
2	03	0.85	Not Relevant (0.0)
3	05	0.71	Relevant (1.0)
4	00	0.63	Relevant (1.0)
5	04	0.47	Not Relevant (0.0)
6	02	0.36	Relevant (1.0)
7	01	0.24	Not Relevant (0.0)
8	07	0.16	Not Relevant (0.0)

Evaluation for Ranking (Precision@K)

${ m Precision}@k =$	$true\ positives\ @k$
1 Tecision@k =	$\overline{(true\ positives\ @k) + (false\ positives\ @k)}$

$$P@4 = ?$$

$$P@8 = ?$$

k	Document ID	Predicted Relevance	Actual Relevance
1	06	0.90	Relevant (1.0)
2	03	0.85	Not Relevant (0.0)
3	05	0.71	Relevant (1.0)
4	00	0.63	Relevant (1.0)
5	04	0.47	Not Relevant (0.0)
6	02	0.36	Relevant (1.0)
7	01	0.24	Not Relevant (0.0)
8	07	0.16	Not Relevant (0.0)

Evaluation for Ranking (Recall@K)

$$ext{Recall}@k = rac{true\ positives\ @k}{(true\ positives\ @k) + (false\ negatives\ @k)}$$

$$R@1 = ?$$

$$R@4 = ?$$

$$R@8 = ?$$

k	Document ID	Predicted Relevance	Actual Relevance
1	06	0.90	Relevant (1.0)
2	03	0.85	Not Relevant (0.0)
3	05	0.71	Relevant (1.0)
4	00	0.63	Relevant (1.0)
5	04	0.47	Not Relevant (0.0)
6	02	0.36	Relevant (1.0)
7	01	0.24	Not Relevant (0.0)
8	07	0.16	Not Relevant (0.0)

Evaluation for Ranking (F1@K)

$$F_1@k = 2 \cdot rac{(Precision@k) \cdot (Recall@k)}{(Precision@k) + (Recall@k)}$$

k	Document ID	Predicted Relevance	Actual Relevance
1	06	0.90	Relevant (1.0)
2	03	0.85	Not Relevant (0.0)
3	05	0.71	Relevant (1.0)
4	00	0.63	Relevant (1.0)
5	04	0.47	Not Relevant (0.0)
6	02	0.36	Relevant (1.0)
7	01	0.24	Not Relevant (0.0)
8	07	0.16	Not Relevant (0.0)

Evaluation for Ranking

Mean Average Precision

average of AP over all examples in a test set.

There are many metrics for ranking.

DCG/NDCG: the document relevance is a real number, not simple 0 or 1.

k	Document ID	Predicted Relevance	Actual Relevance	DCG@k
1	06	0.90	Relevant (1.0)	1.0
2	03	0.85	Not Relevant (0.0)	1.0
3	05	0.71	Relevant (1.0)	1.5
4	00	0.63	Relevant (1.0)	1.93
5	04	0.47	Not Relevant (0.0)	1.93
6	02	0.36	Relevant (1.0)	2.29
7	01	0.24	Not Relevant (0.0)	2.29
8	07	0.16	Not Relevant (0.0)	2.29

Evaluation for Ranking

There are many metrics for ranking.

- DCG/NDCG: the document relevance is a real number, not simple 0 or 1.
- MAP (Mean Average Precision)
- MRR (<u>Mean reciprocal rank</u>)

Figure 4: Results on the containing passage ICT task as maximum passage length varies (50 to 400 tokens). *Left*: Reranking 200 candidates; *Right*: Retrieval from three million candidates.

Evaluation for Natural Language Generation

(We will talk about this in more detail when we have lectures on NLG and Summarization.)

n-gram based

Automatic Evaluation

- Machine Translation: BLEU⁴
- Summarization: ROUGE, METEOR*
- Embedding-based Metric: MoverScore, BERTScore

Human Evaluation

Is Automatic Metric really reliable? How to determine

Evaluation for Natural Language Generation

(We will talk about this in more detail when we have lectures on NLG and Summarization.)

Automatic Evaluation

- Machine Translation: BLEU
- Summarization: ROUGE, METEOR
- Embedding-based Metric: MoverScore, BERTScore

Human Evaluation

Is Automatic Metric really reliable? Correlation Analysis

Statistical Testing

We have two models ("baseline and our model") with similar accuracies. How can we tell whether the differences are due to consistent trends that hold on other

datasets?

	Dataset 1	Dataset 2	Dataset 3
Generative	0.854	0.915	0.567
Discriminative	0.853	0.902	0.570

We need perform Statistical (significance) testing!

See <u>The Hitchhiker's Guide to Testing Statistical Significance in Natural Language</u>

<u>Processing (Dror et al., ACL 2018)</u> for a complete overview.

Slides Credit: Graham Neubig

Significance Testing: Basic Idea

Given a quantity, we test certain values of uncertainty with respect to the quantity, e.g.

- p-value: what is the probability that a difference with another quantity is by chance (lower = more likelihood of a significant difference).
- confidence interval: what is the range under which we could expect another trial to fall?

Unpaired vs. Paired Tests

Unpaired Test: Compare means of a quantity on two unrelated groups

 Example: test significance of difference of accuracies of a model on two datasets

Paired Test: Compare means of a quantity on one dataset under two conditions

 Example: test significance of difference of accuracies of two models on one dataset

We are most commonly interested in **Paired Test!**

Bootstrap Tests

A method that can measure p-values, confidence intervals, etc. by re-sampling data. Sample many (e.g. 10,000) subsets from your dev/test set with replacement. Measure accuracies on these many subsets.

Easy to implement, applicable to any evaluation measure, but somewhat biased on small datasets.

Reporting results with Bootstrap Tests

Our model outperforms "significantly"

	Event Trigger		Ev	Event Trigger		Event Argument		Argument Role				
	Identification		Classification		Identification			Classification				
Model	P	R	F1	P	R	F1	P	R	F1	P	R	F1
JOINTBEAM (Li et al., 2013)	76.6	58.7	66.5	74.0	56.7	64.2	74.6	25.5	38.0	68.8	23.5	35.0
StagedMaxEnt	73.9	66.5	70.0	70.4	63.3	66.7	75.7	20.2	31.9	71.2	19.0	30.0
WITHINEVENT	76.9	63.8	69.7	74.7	62.0	67.7	72.4	37.2	49.2	69.9	35.9	47.4
JOINTEVENTENTITY	77.6	65.4	71.0*	75.1	63.3	68.7	73.7	38.5	50.6*	70.6	36.9	48.4*

Table 3: Event extraction results on the ACE2005 test set. * indicates that the difference in F1 compared to the second best model (WITHINEVENT) is statistically significant (p < 0.05).

¹⁰All significance tests reported in this paper were computed using the paired bootstrap procedure (Berg-Kirkpatrick et al., 2012) with 10,000 samples of the test documents.