Optimization for Datascience

Convexity, Smoothness and the Gradient Method

Robert M. Gower

Today we will

- Lecture: Basic theory and exercises on convexity, smoothness, strong convexity and convergence proofs
- Exercises lists:

```
complexity_rates_exe
exe_convexity_smoothness
ridge_reg_exe
```

References for todays class

Yurii Nestorov (2004)
Introductory Lectures on
Convex Programming

Chapter 1 and Section 2.1

Free pdf online!

Solving the Finite Sum Training Problem

Optimization Sum of Terms

A Datum Function

$$f_i(w) := \ell \left(h_w(x^i), y^i \right) + \lambda R(w)$$

$$\frac{1}{n} \sum_{i=1}^{n} \ell\left(h_w(x^i), y^i\right) + \lambda R(w) = \frac{1}{n} \sum_{i=1}^{n} \left(\ell\left(h_w(x^i), y^i\right) + \lambda R(w)\right)$$
$$= \frac{1}{n} \sum_{i=1}^{n} f_i(w)$$

Finite Sum Training Problem

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^{n} f_i(w) =: f(w)$$

Optimization Sum of Terms

A Datum Function

$$f_i(w) := \ell\left(h_w(x^i), y^i\right) + \lambda R(w)$$

$$\frac{1}{n} \sum_{i=1}^{n} \ell\left(h_w(x^i), y^i\right) + \lambda R(w) = \frac{1}{n} \sum_{i=1}^{n} \left(\ell\left(h_w(x^i), y^i\right) + \lambda R(w)\right)$$
$$= \frac{1}{n} \sum_{i=1}^{n} f_i(w)$$

Finite Sum Training Problem

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1} f_i(w) =: f(w)$$

How to solve unconstrained optimization?

The Training Problem

Solving the training problem:

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n f_i(w)$$

Reference method: Gradient descent

$$\nabla \left(\frac{1}{n} \sum_{i=1}^{n} f_i(w) \right) = \frac{1}{n} \sum_{i=1}^{n} \nabla f_i(w)$$

Gradient Descent Algorithm

Set
$$w^0 = 0$$
, choose $\alpha > 0$.
for $t = 1, 2, 3, \dots, T$

$$w^{t+1} = w^t - \frac{\alpha}{n} \sum_{i=1}^n \nabla f_i(w^t)$$
Output w^{T+1}

A Logistic Regression problem using the fourclass labelled data from LIBSVM (n, d) = (862,2)

Logistic Regression

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \ln(1 + e^{-y^i \langle w, x^i \rangle}) + \lambda ||w||_2^2$$

Can we prove that this always works?

Logistic Regression

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \ln(1 + e^{-y^i \langle w, x^i \rangle}) + \lambda ||w||_2^2$$

Can we prove that this always works?

-1.5

-0.5

0.5

Can we prove that this always works?

from LIBSVM

No! There is no universal optimization method. The "no free lunch" of Optimization

-2.5

Can we prove that this always works?

from LIBSVM

Logistic Regression

No! There is no universal optimization method. The "no free lunch" of Optimization Specialize

Convex and smooth training problems

Optimization is hard (in general)

Optimization is hard (in general)

Data science methods most used (Kaggle 2017 survey)

Main assumption

Nice property

If
$$\nabla f(w^*) = 0$$
 then $f(w^*) \le f(w)$, $\forall w \in \mathbb{R}^d$

All stationary points are global minima

Lemma: Convexity => Nice property

If
$$f(w) \ge f(y) + \langle \nabla f(y), w - y \rangle$$
, $\forall w, y \in \mathbb{R}^d$ then nice property holds

PROOF: Choose $y = w^*$

Convexity

We say $f : \text{dom}(f) \subset \mathbb{R}^n \to \mathbb{R}$ is convex if dom(f) is convex and

$$f(\lambda w + (1 - \lambda)y) \le \lambda f(w) + (1 - \lambda)f(y), \quad \forall w, y \in C, \lambda \in [0, 1]$$

Convexity: First derivative

A differential function $f: \text{dom}(f) \subset \mathbb{R}^n \to \mathbb{R}$ is convex iff

 $f(y) + \langle \nabla f(y), w - y \rangle$

$$f(w) \ge f(y) + \langle \nabla f(y), w - y \rangle$$

Convexity: Second derivative

A twice differential function $f: dom(f) \subset \mathbb{R}^n \to \mathbb{R}$ is convex iff

Convexity: Examples

Extended-value extension:

$$f: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$$

$$f(x) = \infty, \quad \forall x \not\in \text{dom}(f)$$

Norms and squared norms:

$$x \mapsto ||x||$$

$$x \mapsto ||x||^2$$

Proof is an exercise!

Negative log and logistic:

$$x \mapsto -\log(x)$$

$$x \mapsto \log\left(1 + e^{-y\langle a, x\rangle}\right)$$

$$x \mapsto \max\{0, 1 - yx\}$$

Hinge loss

Negatives log determinant, exponentiation ... etc

Smoothness

We say $f: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ is smooth if

$$||\nabla f(x) - \nabla f(y)|| \le L||x - y||, \quad \forall x, y \in \mathbb{R}^n$$

Smoothness

We say $f: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ is smooth if

$$||\nabla f(x) - \nabla f(y)|| \le L||x - y||, \quad \forall x, y \in \mathbb{R}^n$$

If a twice differentiable $f: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ is L-smooth then

1)
$$d^{\top} \nabla^2 f(x) d \le L \cdot ||d||_2^2, \quad \forall x, d \in \mathbb{R}^n$$

2)
$$f(x) \le f(y) + \langle \nabla f(y), x - y \rangle + \frac{L}{2} ||x - y||^2, \quad \forall x, y \in \mathbb{R}^n$$

Smoothness

We say $f: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ is smooth if

$$||\nabla f(x) - \nabla f(y)|| \le L||x - y||, \quad \forall x, y \in \mathbb{R}^n$$

If a twice differentiable $f: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ is L-smooth then

1)
$$d^{\top} \nabla^2 f(x) d \le L \cdot ||d||_2^2, \quad \forall x, d \in \mathbb{R}^n$$

2)
$$f(x) \le f(y) + \langle \nabla f(y), x - y \rangle + \frac{L}{2} ||x - y||^2, \quad \forall x, y \in \mathbb{R}^n$$

EXE: Using that
$$\sigma_{\max}(X)^2 ||d||_2^2 \ge ||X^{\top}d||_2^2$$

Show that
$$\frac{1}{2}||X^{\top}w - b||_2^2 \text{ is } \sigma_{\max}(X)^2 - \text{smooth}$$

Smoothness: Examples

Convex quadratics:

$$x \mapsto x^{\top} A x + b^{\top} x + c$$

Logistic:

$$x \mapsto \log\left(1 + e^{-y\langle a, x\rangle}\right)$$

Trigonometric:

$$x \mapsto \cos(x), \sin(x)$$

Proof is an exercise!

Important consequences of Smoothness

If $f: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ is L-smooth then

Smoothness: Convex counter-example

$$f(w) \le f(y) + \langle \nabla f(y), w - y \rangle + \frac{L}{2} ||w - y||^2, \quad \forall w, y \in \mathbb{R}^n$$

Minimizing the upper bound in w we get:

$$\nabla_w \left(f(y) + \langle \nabla f(y), w - y \rangle + \frac{L}{2} ||w - y||^2 \right) = \nabla f(y) + L(w - y) = 0$$

$$f(w) \le f(y) + \langle \nabla f(y), w - y \rangle + \frac{L}{2} ||w - y||^2, \quad \forall w, y \in \mathbb{R}^n$$

Minimizing the upper bound in w we get:

$$\nabla_w \left(f(y) + \langle \nabla f(y), w - y \rangle + \frac{L}{2} ||w - y||^2 \right) = \nabla f(y) + L(w - y) = 0$$

$$w = y - \frac{1}{L}\nabla f(y)$$

$$f(w) \le f(y) + \langle \nabla f(y), w - y \rangle + \frac{L}{2} ||w - y||^2, \quad \forall w, y \in \mathbb{R}^n$$

Minimizing the upper bound in w we get:

$$\nabla_w \left(f(y) + \langle \nabla f(y), w - y \rangle + \frac{L}{2} ||w - y||^2 \right) = \nabla f(y) + L(w - y) = 0$$

A gradient descent ster descent step!

$$w = y - \frac{1}{L}\nabla f(y)$$

$$f(w) \le f(y) + \langle \nabla f(y), w - y \rangle + \frac{L}{2} ||w - y||^2, \quad \forall w, y \in \mathbb{R}^n$$

Minimizing the upper bound in w we get:

$$\nabla_w \left(f(y) + \langle \nabla f(y), w - y \rangle + \frac{L}{2} ||w - y||^2 \right) = \nabla f(y) + L(w - y) = 0$$

If f is L-smooth, show that

$$f(y - \frac{1}{L}\nabla f(y)) - f(y) \le -\frac{1}{2L}||\nabla f(y)||_2^2, \forall y$$

$$f(w^*) - f(w) \le -\frac{1}{2L}||\nabla f(w)||_2^2, \quad \forall w \in \mathbb{R}^n \quad w = y - \frac{1}{L}\nabla f(y)$$

where
$$f(w^*) \leq f(w), \quad \forall w \in \mathbb{R}^n$$

A gradient descent step!

$$w = y - \frac{1}{L}\nabla f(y)$$

Strong convexity

We say $f: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ is μ -strongly convex if

$$f(w) \ge f(y) + \langle \nabla f(y), w - y \rangle + \frac{\mu}{2} ||w - y||^2, \quad \forall w, y \in \mathbb{R}^n$$

Strong convexity

We say $f: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ is μ -strongly convex if

$$f(w) \ge f(y) + \langle \nabla f(y), w - y \rangle + \frac{\mu}{2} ||w - y||^2, \quad \forall w, y \in \mathbb{R}^n$$

$$d^{\top} \nabla^2 f(w) d \ge \mu ||d||^2, \quad \forall d \in \mathbb{R}^n$$

EXE: Using that

$$|\sigma_{\min}(X)^2||d||_2^2 \le ||X^{\top}d||_2^2$$

Show that

$$\frac{1}{2}||X^{\top}w - b||_2^2$$
 is $\sigma_{\min}(X)^2$ -strongly convex

Convergence GD strongly convex

Theorem

Let f be μ -strongly convex and L-smooth.

$$||w^t - w^*||_2^2 \le \left(1 - \frac{\mu}{L}\right)^t ||w^1 - w^*||_2^2$$

Where

$$w^{t+1} = w^t - \frac{1}{L} \nabla f(w^t), \quad \text{for } t = 1, \dots, T$$

$$\Rightarrow \text{ for } \frac{||w^T - w^*||_2^2}{||w^1 - w^*||_2^2} \le \epsilon \text{ we need } T \ge \frac{L}{\mu} \log \left(\frac{1}{\epsilon}\right) = O\left(\log \left(\frac{1}{\epsilon}\right)\right)$$

EXE: Solve the questions in complexity_rates exe.pdf

Gradient Descent Example: logistic

$$y$$
-axis = $\frac{||w^t - w^*||_2^2}{||w^1 - w^*||_2^2}$

$$\log\left(\frac{||w^t - w^*||_2^2}{||w^1 - w^*||_2^2}\right) \le t\log\left(1 - \frac{\mu}{L}\right)$$

Proof Convergence GD strongly convex + smooth

Proof on board

$$||w^{t+1} - w^*||_2^2 = ||w^t - w^* - \frac{1}{L}\nabla f(w^t)||_2^2$$

$$= ||w^t - w^*||_2^2 + \frac{2}{L}\langle\nabla f(w^t), w^* - w^t\rangle + \frac{1}{L^2}||\nabla f(w^t)||_2^2$$

Now smoothness gives

$$f(w^*) - f(w) \le -\frac{1}{2L} ||\nabla f(w)||_2^2$$

$$||\nabla f(w)||_2^2 \le 2L(f(w) - f(w^*))$$

And strong convexity gives

$$f(w^*) \ge f(w) + \langle \nabla f(w), w^* - w \rangle + \frac{\mu}{2} ||w - w^*||^2$$

$$\langle \nabla f(w), w^* - w \rangle \le -(f(w) - f(w^*)) - \frac{\mu}{2} ||w - w^*||^2$$

Convergence GD for smooth + convex

Theorem

Let f be convex and L-smooth.

$$f(w^t) - f(w^*) \le \frac{2L||w^1 - w^*||_2^2}{t - 1} = O\left(\frac{1}{t}\right).$$

Where

$$w^{t+1} = w^t - \frac{1}{L}\nabla f(w^t)$$

$$\Rightarrow \text{ for } \frac{f(w^T) - f(w^*)}{||w^1 - w^*||_2^2} \le \epsilon \text{ we need } T \ge \frac{2L}{\epsilon} = O\left(\frac{1}{\epsilon}\right)$$

Convex and Smooth Properties

If $f: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ convex and L-smooth then

$$|f(y) - f(x)| \le \langle \nabla f(y), y - x \rangle - \frac{1}{2L} ||\nabla f(y) - \nabla f(x)||_2^2$$

Co-coercivity

$$\langle \nabla f(y) - \nabla f(x), y - x \rangle \ge \frac{1}{L} ||\nabla f(x) - \nabla f(y)||_2$$

Convex and Smooth Properties

If $f: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ convex and L-smooth then

$$|f(y) - f(x)| \le \langle \nabla f(y), y - x \rangle - \frac{1}{2L} ||\nabla f(y) - \nabla f(x)||_2^2$$

Co-coercivity

$$\langle \nabla f(y) - \nabla f(x), y - x \rangle \ge \frac{1}{L} ||\nabla f(x) - \nabla f(y)||_2$$

Use convexity Use smoothness

Proof
$$f(y) - f(x) = f(y) - f(z) + f(z) - f(x)$$

Convex and Smooth Properties

If $f: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ convex and L-smooth then

$$|f(y) - f(x)| \le \langle \nabla f(y), y - x \rangle - \frac{1}{2L} ||\nabla f(y) - \nabla f(x)||_2^2$$

Co-coercivity

$$\langle \nabla f(y) - \nabla f(x), y - x \rangle \ge \frac{1}{L} ||\nabla f(x) - \nabla f(y)||_2$$

Use convexity Use smoothness

Proof
$$f(y) - f(x) = f(y) - f(z) + f(z) - f(x)$$

$$\leq \langle \nabla f(y), y - z \rangle + \langle \nabla f(x), z - x \rangle + \frac{L}{2} ||z - x||^2$$

Convex and Smooth Properties

If $f: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ convex and L-smooth then

$$|f(y) - f(x)| \le \langle \nabla f(y), y - x \rangle - \frac{1}{2L} ||\nabla f(y) - \nabla f(x)||_2^2$$

Co-coercivity

$$\langle \nabla f(y) - \nabla f(x), y - x \rangle \ge \frac{1}{L} ||\nabla f(x) - \nabla f(y)||_2$$

Proof
$$f(y) - f(x) = f(y) - f(z) + f(z) - f(x)$$

$$\leq \langle \nabla f(y), y - z \rangle + \langle \nabla f(x), z - x \rangle + \frac{L}{2} ||z - x||^2$$

Then minimize in z and insert back in minima.

Proof of GD smooth + convex theorem

$$||w^{t+1} - w^*||_2^2 = ||w^t - w^* - \frac{1}{L}\nabla f(w^t)||_2^2$$
 Use co-coercivity
$$= ||w^t - w^*||_2^2 + \frac{2}{L}\langle\nabla f(w^t), w^* - w^t\rangle + \frac{1}{L^2}||\nabla f(w^t)||_2^2$$

$$\langle \nabla f(y) - \nabla f(w), y - w \rangle \ge \frac{1}{L} ||\nabla f(w) - \nabla f(y)||_2$$

With
$$y = w^*$$
 gives $\langle \nabla f(w), w^* - w \rangle \le -\frac{1}{L} ||\nabla f(w)||_2$

Inserting above show decreasing

$$||w^{t+1} - w^*||_2^2 \le ||w^t - w^*||_2^2 - \frac{1}{L^2}||\nabla f(w^t)||_2^2$$

smoothness gives

$$f(w^{t+1}) - f^* \le f(w^t) - f^* - \frac{1}{2L} ||\nabla f(w^t)||_2^2$$

Combine with convexity

$$f(w^{t}) - f(w^{*}) \le \langle \nabla f(w^{t}), w^{t} - w^{*} \rangle$$

$$\le ||\nabla f(w^{t})||_{2}||w^{t} - w^{*}||_{2}$$

Acceleration and lower bouds

The Accelerated gradient method

$$\min_{w \in \mathbb{R}^d} f(w)$$

Accelerated gradient

Set
$$w^{1} = 0 = y^{1}, \kappa = L/\mu$$

for $t = 1, 2, 3, ..., T$

$$y^{t+1} = w^{t} - \frac{1}{L}\nabla f(w^{t})$$

$$w^{t+1} = \left(1 + \frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right)y^{t+1} - \frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}w^{t}$$
Output w^{T+1}

The Accelerated gradient method

$$\min_{w \in \mathbb{R}^d} f(w)$$

Weird

Accelerated gradient

Set
$$w^1=0=y^1, \kappa=L/\mu$$
 but it works for $t=1,2,3,\ldots,T$
$$y^{t+1}=w^t-\frac{1}{L}\nabla f(w^t)$$

$$w^{t+1}=\left(1+\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)y^{t+1}-\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}w^t$$
 Output w^{T+1}

Convergence lower bounds strongly convex

Theorem (Nesterov)

For any optimization algorithm where

$$w^{t+1} \in w^t + \operatorname{span}\left(\nabla f(w^1), \nabla f(w^2), \dots, \nabla f(w^t)\right)$$

There exists a function f(w) that is L-smooth and μ -strongly convex such that

$$f(w^{T}) - f(w^{*}) \ge \frac{\mu}{2} \left(1 - \frac{2}{\sqrt{\kappa + 1}} \right)^{2(T-1)} ||w^{1} - w^{*}||_{2}^{2}$$

$$= O\left(\left(1 - \frac{1}{\sqrt{\kappa}}\right)^{2T}\right).$$

Accelerated gradient has this rate

Convergence lower bounds strongly convex

Theorem (Nesterov)

For any optimization algorithm where

$$w^{t+1} \in w^t + \operatorname{span}\left(\nabla f(w^1), \nabla f(w^2), \dots, \nabla f(w^t)\right)$$

There exists a function f(w) that is L-smooth and μ -strongly convex such that

$$f(w^{T}) - f(w^{*}) \ge \frac{\mu}{2} \left(1 - \frac{2}{\sqrt{\kappa + 1}} \right)^{2(T-1)} ||w^{1} - w^{*}||_{2}^{2}$$

$$= O\left(\left(1 - \frac{1}{\sqrt{\kappa}}\right)^{2T}\right).$$

Accelerated gradient has this rate

Convergence lower bounds convex

Theorem (Nesterov)

For any optimization algorithm where

$$w^{t+1} \in w^t + \operatorname{span}\left(\nabla f(w^1), \nabla f(w^2), \dots, \nabla f(w^t)\right)$$

There exists a function f(w) that is L-smooth and convex such that

$$\min_{i=1,\dots,T} f(w^i) - f(w^*) \ge \frac{3L||w^1 - w^*||_2^2}{32(T+1)^2} = O\left(\frac{1}{T^2}\right).$$

Convergence lower bounds convex

Theorem (Nesterov)

For any optimization algorithm where

$$w^{t+1} \in w^t + \operatorname{span}\left(\nabla f(w^1), \nabla f(w^2), \dots, \nabla f(w^t)\right)$$

There exists a function f(w) that is L-smooth and convex such that

$$\min_{i=1,\dots,T} f(w^i) - f(w^*) \ge \frac{3L||w^1 - w^*||_2^2}{32(T+1)^2} = O\left(\frac{1}{T^2}\right).$$

Exercises!

Solve ridge_reg_exe.pdf

Exercises!

Solve ridge_reg_exe.pdf