

Qualitätssicherung von Software

Prof. Dr. Holger Schlingloff

Humboldt-Universität zu Berlin und Fraunhofer FIRST

OLDE ON THE STATE OF

Binary Decision Trees (BDTs)

Binary decision tree

 Elimination of isomorphic subtrees (abbreviations)

Binary Decision Diagrams (BDDs)

 Elimination of redundant nodes (redundant subformulas) Ite (v,ψ,ψ) by ψ


```
function PL2BDD (Formula \varphi) : (Nodeset, Int)
     /* Calculates the BDD of \varphi
         as a set of nodes and a pointer to the topmost node */
    Nodeset table := {}; /* Table of BDD nodes (\delta, i, \delta_1, \delta_2) */
    Int max := 1; /* Index of maximal table entry */
    Int result := BDD(\varphi,1); /* Index of topmost BDD node */
    return (table, result);
function BDD (Formula \varphi, Int i): Int
     /* \varphi is the current subformula, i is the current BDD variable */
     /* Return value is a pointer to the maximal BDD node */
    if i > n then return eval(\varphi) / * \varphi is a boolean constant */
    else \delta_1 := BDD(\varphi\{v_i := \bot\}, i+1); \ \delta_2 := BDD(\varphi\{v_i := \top\}, i+1);
         if \delta_1 = \delta_2 then return \delta_1
         elsif \exists \delta : (\delta, i, \delta_1, \delta_2) \in table \text{ then return } \delta
         else max := max + 1; table := table \cup \{(max, i, \delta_1, \delta_2)\}; return max;
```


Boolean operations on BDDs

```
function BDD_imp (Int \varphi, \psi): Int
     /* Calculates the BDD of (\varphi \to \psi) from the BDDs of \varphi and \psi */
     if \varphi = 0 or \psi = 1 then return 1
     elsif \varphi = 1 and \psi = 0 then return 0
     elsif \varphi = 1 and (\psi, j, \psi_1, \psi_2) \in table_{\psi}
          then return new_node(j, BDD_imp(1, \psi_1), BDD_imp(1, \psi_2))
     elsif \psi = 0 and (\varphi, i, \varphi_1, \varphi_2) \in table_{\varphi}
          then return new_node(i, BDD_imp(\varphi_1, 0), BDD_imp(\varphi_2, 0))
     else (\varphi, i, \varphi_1, \varphi_2) \in table_{\varphi} and (\psi, j, \psi_1, \psi_2) \in table_{\psi}
          if i = j then return new_node(i, BDD_imp(\varphi_1, \psi_1), BDD_imp(\varphi_2, \psi_2))
      elsif i < j then return new_node(i, BDD_imp(\varphi_1, \psi), BDD_imp(\varphi_2, \psi))
     elsif i > j then return new_node(j, BDD_imp(\varphi, \psi_1), BDD_imp(\varphi, \psi_2));
```

Generally

- This procedure can be applied for arbitrary boolean connectives (or, and, not)
 - this amounts to set union, intersection, and complement with respect to the base set
- Substitution by constants is trivial
- Boolean quantification:

$$\exists q(\varphi) \quad \leftrightarrow \quad (\varphi\{q:=\top\} \vee \varphi\{q:=\top\})$$

Binary Encoding of Relations

- A relation is a subset of the product of two sets
 - Thus, a relation is nothing but a set
- Example: var v: {0..3}, w:{0..7};

var v0, v1, w0, w1, w2: boolean;

"divides"-Relation:

v divides w iff v=1, or v=2 and w even, or v=3 and w in {0,3,6}

	0	1	2	3	4	5	6	7
0	-	-	-	-	-	-	1	1
1	+	+	+	+	+	+	+	+
2	+	-	+	-	+	-	+	-
3	+	ı	-	+	ı	ı	+	1

boolean formula:

$$v \| w \leftrightarrow ((\neg v_0 \land v_1) \lor (v_0 \land \neg v_1 \land \neg w_2) \lor (v_0 \land v_1 \land ((\neg w_0 \land \neg w_1 \land \neg w_2) \lor (\neg w_0 \land w_1 \land w_2) \lor (w_0 \land w_1 \land \neg w_2)))$$

The Influence of Variable Ordering

$$v_1 = 0 \rightarrow ((v_1' = 1) \land (v_2' = v_2) \land (v_3' \neq v_3))$$

Transitive Closure

- Each finite (transition) relation can be represented as a BDD
- The transitive closure of a relation R is defined recursively by

$$R^*(x,y) \leftrightarrow R(x,y) \lor \exists z (R(x,z) \land R^*(z,y))$$

 Thus, transitive closure be calculated by an iteration on BDDs

$$R^{0}(x,y) \triangleq R(x,y)$$

$$R^{i+1}(x,y) \leftrightarrow R^{i}(x,y) \lor \exists z (R(x,z) \land R^{i}(z,y))$$

Reachability

- State s is reachable iff s_0R^*s , where $s_0 \in S_0$ is an initial state and R is the transition relation
- Reachability is one of the most important properties in verification
 - most safety properties can be reduced to it
 - in a search algorithm, is the goal reachable?
- Can be arbitrarily hard
 - for infinite state systems undecidable
- Can be efficiently calculated with BDDs

Pause!

(ein Screenshot)

Logical Languages, Expressiveness

- So far, we've been doing validation of systems without using anything but propositional logic!
- It is more interesting (though not necessarily more practical) to consider more expressive logics
- Dilemma:

Models

- A model M is a graph consisting of
 - a set of nodes U (universe)
 - a transition relation R between nodes
 - transitive closure of R denoted by <
 - an initial node w₀
 - an assignment I of propositions to nodes

Temporal logic

- "Modal logic with 'until"
- $w \not\models \bot$, and $w \models (\varphi \to \psi)$ iff $w \models \varphi$ implies $w \models \psi$;
- $w \models p$ iff $w \in \mathcal{I}(w, p)$;
- $w \models (\varphi \cup \psi)$ iff $v \models \psi$ for some v > w, and $u \models \varphi$ for w < u < v.

• $w \models (\varphi \cup \psi)$ iff $v \models \psi$ for some $v \geq w$, and $u \models \varphi$ for $w \leq u < v$.

Examples

edged.

(3)
$$\forall t_1((t_0 \leq t_1 \land \text{req}(t_1)) \rightarrow \exists t_2((t_1 < t_2 \land \text{ack}(t_2)) \land \forall t_3((t_1 < t_3 \land t_3 < t_2) \rightarrow \text{req}(t_3))))$$

No request is withdrawn before it is acknowl-

$$\mathbf{G}^* (\text{req} \rightarrow (\text{req } \mathbf{U}^+ \text{ ack}))$$

NEVER OUTPUT MTea INSIDE EACH INTERVAL
STARTING AT EVENT WCof ENDING AT STATE Idle

Other connectives

- always: $\mathbf{G}^{\dagger} \varphi \stackrel{\Delta}{=} \neg \mathbf{F}^{\dagger} \neg \varphi$
- next-time: $\mathbf{X} \varphi \stackrel{\Delta}{=} (\bot \mathbf{U}^{\dagger} \varphi)$ ()- (φ)
- atnext: (φ A⁺ ψ) Δ (¬ψ U⁺ (φ ∧ ψ)) () → (¬ψ) → (¬ψ)
- before: $(\varphi \mathbf{B}^+ \psi) \triangleq (\neg \psi \mathbf{U}^+ (\varphi \wedge \neg \psi)) \bigcirc \neg (\neg \psi) \neg (\neg \psi) \neg (\varphi) \rightarrow (\neg \psi) \rightarrow$

Linear and Branching Time Logics

Executions of a program =

- set of execution sequences, or
- single execution tree

LTL (linear temporal logic) is interpreted on sequences. (Syntactically, there is no difference between TL and LTL!)

Syntax of CTL (computation tree logic):

CTL ::= $P \mid \bot \mid (CTL \rightarrow CTL) \mid E(CTL U^{\dagger} CTL) \mid A(CTL U^{\dagger} CTL)$

CTL is interpreted on trees, where < is the usual tree-order.

- $w_0 \models \mathbf{E}(\psi \ \mathbf{U}^{\top} \varphi)$ iff $\exists w_1 > w_0, w_1 \models \varphi, \forall w_0 < w_2 < w_1, w_2 \models \psi$
- $w_0 \models A(\psi U^{\dagger} \varphi)$ iff for all paths p from w_0 , $\exists w_1 > w_0 \text{ on path } p \text{ s.t. } w_1 \models \varphi, \text{ and } \forall w_0 < w_2 < w_1, w_2 \models \psi$

some successor

CTL Examples

- $\mathbf{E} \mathbf{F}^+$ (started $\land \neg \mathbf{ready}$): it is possible to get to a state where started holds but ready does not hold.
- $\mathbf{A} \mathbf{G}^*$ (req $\rightarrow \mathbf{A} \mathbf{F}^+$ ack): if a request occurs, then it will be eventually acknowledged
- AG AF stack_is_empty: the proposition stack_is_empty holds infinitely often on every computation path
- $\mathbf{A} \mathbf{G}^* \mathbf{E} \mathbf{F}^*$ restart: from any state it is possible to get to a restart state.

Model Checking

Model checking problem:

Given finite Kripke model $\mathcal{M} = (U, \longrightarrow, \mathcal{I}, w_0)$ and formula φ , check if

$$\mathcal{M} \models \varphi$$

For CTL: Recursive descent on subformulas.

$$w \models \mathbf{E} \mathbf{F}^{+} \varphi \text{ iff } \exists w \longrightarrow v \text{ s.t. } v \models \varphi \text{ or } \exists w \longrightarrow v \text{ s.t. } v \models \mathbf{E} \mathbf{F}^{+} \varphi$$

Similarly,

- $w \models \mathbf{E}(\varphi \ \mathbf{U}^{+} \psi)$ iff for some $w \longrightarrow v$ it holds that $v \models \psi$ or $v \models \varphi$ and $v \models \mathbf{E}(\varphi \ \mathbf{U}^{+} \psi)$
- $w \models \mathbf{A}(\varphi \ \mathbf{U}^{\top} \psi)$ iff for all $w \longrightarrow v$ it holds that $v \models \psi$ or $v \models \varphi$ and $v \models \mathbf{A}(\varphi \ \mathbf{U}^{\top} \psi)$

Let
$$\varphi^{\mathcal{M}} = \{ w \mid w \models \varphi \}.$$

 $(\mathbf{E} \mathbf{F}^{\dagger} \varphi)^{\mathcal{M}}$ is the set of points from which some point in $\varphi^{\mathcal{M}}$ is reachable. How to determine $(\mathbf{E} \mathbf{F}^{\dagger} \varphi)^{\mathcal{M}}$ from $\varphi^{\mathcal{M}}$? (*Inverse reachability problem*)

Backward iteration marks all points in $(\mathbf{E} \mathbf{F}^{\dagger} \varphi)^{\mathcal{M}}$:

- Initially mark all points for which some direct successor is in \(\varphi^{\mathcal{M}} \).
- Repeatedly add all points which have some marked successor.

Comparison

- CTL model checking
 - uses sets, breath-first search
 - can be directly implemented with BDDs
 - systems: e.g. nuSMV
- LTL model checking
 - depth-first search, enumerates states
 - implementation allows state-space hashing, partial order reduction etc.
 - systems: e.g. SPIN