James K. Pringle Statistical Theory Dr. Constantine Frangakis Problem Set 2 March 14, 2013

Problem Set 2

Problems (i) through (v)

Let Y^{obs} denote the vector $(Y_1, ..., Y_n)$ except that Y_i is replaced by NA (for "not available") if $I_i = 0$; let Y^{mis} be the missing outcomes; and let $I = (I_1, ..., I_n)$. Then, the likelihood of the data (Y^{obs}, I) is:

$$\operatorname{pr}(Y^{obs}, I \mid \theta, \alpha) = \prod_{i:I_i=1} f(Y_i, \theta) \pi(Y_i, \alpha) \prod_{i:I_i=0} \int f(Y_i, \theta) (1 - \pi(Y_i, \alpha)) dY_i$$
 (1)

Questions. Assume that n "eligible" persons are starting their stay to nursing homes in a time window around the present time; assume that our study is actually conducted by visiting a simple random sample of people who right now are at nursing homes; assume that Y_i is the total length that person i has stayed and will stay at the home; and assume that all those we visited now are followed-up and we find out Y_i for these people. The latter sample of Y_i is only a subset of the "eligible persons" and is more likely to include an "eligible" person with a longer than a shorter stay Y_i . To address this phenomenon, known in Biometry as length bias, assume here that the probability, $\pi(y_i, \alpha)$, of getting an "eligible" Y_i in our study sample is $Y_i = Y_i/\alpha$, where is the maximum length of stay that can occur (i.e., $f(y;\theta) = 0$ for $y > \alpha$).

(i) Using this model, and (1) above, write down the likelihood of the data $D_0 = (Y^{obs}, I_1, \dots, I_n)$ in terms of f() and α , simplifying where possible.

Proof. From (1), we start calculating

$$pr(D_0 \mid \theta, \alpha) = pr(Y^{obs}, I \mid \theta, \alpha)$$
(2)

$$= \prod_{i:I_i=1} f(Y_i, \theta) \pi(Y_i, \alpha) \prod_{i:I_i=0} \int f(Y_i, \theta) (1 - \pi(Y_i, \alpha)) dY_i$$
 (3)

$$= \prod_{i:I_i=1} f(Y_i, \theta) \frac{Y_i}{\alpha} \prod_{i:I_i=0} \int f(Y_i, \theta) - \frac{Y_i}{\alpha} f(Y_i, \theta) dY_i$$
 (4)

$$= \prod_{i:I_i=1} f(Y_i, \theta) \frac{Y_i}{\alpha} \prod_{i:I_i=0} \left(\int f(Y_i, \theta) dY_i - \int \frac{Y_i}{\alpha} f(Y_i, \theta) dY_i \right)$$
 (5)

$$= \prod_{i:I_i=1} f(Y_i, \theta) \frac{Y_i}{\alpha} \prod_{i:I_i=0} \left(1 - \frac{1}{\alpha} E_{\theta}[Y_i] \right)$$
 (6)

$$= \left(\prod_{i:I_i=1} f(Y_i, \theta) \frac{Y_i}{\alpha}\right) \left(1 - \frac{1}{\alpha} E_{\theta}[Y_i]\right)^{n_2} \tag{7}$$

Equation (4) follows from the preceding one because $\pi(Y_i, \alpha) = Y_i/\alpha$. In (6), E_{θ} is the conditional expectation, given θ . The n_2 in (7) is the total number of unobserved people—in other words, $|\{i: I_i = 0\}|$.

(ii) In practice, we do not know the number of "eligible" persons, but we know the number of people, n_1 , with $I_I = 1$ in step 2. Suppose we observe Y_i from $n_1 = 500$ people at step 2. Write down the likelihood of the data $\{Y_i : i = 1, \dots, n_1\}$ given $\{I_i = 1 : i = 1, \dots, n_1\}$ and given $n_1 = 500$.

Proof. The likelihood of the data $\{Y_i: i=1,\cdots,n_1\}$ given $\{I_i=1: i=1,\cdots,n_1\}$ is

$$\operatorname{pr}(Y_i \mid I_i = 1, \theta, \alpha) = \frac{\operatorname{pr}(Y_i, I_i = 1 \mid \theta, \alpha)}{\operatorname{pr}(I_i = 1 \mid \theta, \alpha)}$$
(8)

$$= \frac{\prod_{i=1}^{500} f(Y_i, \theta) \frac{Y_i}{\alpha}}{\operatorname{pr}(I_i = 1 \mid \alpha)}$$
 (9)

Equation (8) follows from the definition of conditional probability. The numerator in (9) comes from (7) and the hypothesis that $n_2 = 0$. The denominator in (9) is equal to the denominator in (8) since $pr(I_i = 1 \mid \alpha)$ does not depend on θ . Now we find by

the law of total probability

$$pr(I_i = 1 \mid \alpha) = pr(I_i = 1 \mid \alpha, \theta)$$
(10)

$$= \int \operatorname{pr}(I_i = 1 \mid Y_i, \alpha, \theta) f(Y_i, \theta) dY_i$$
(11)

$$= \int \pi(y,\alpha)f(Y_i,\theta)dY_i \tag{12}$$

$$= \int \frac{Y_i}{\alpha} f(Y_i, \theta) dY_i \tag{13}$$

$$= E_{\theta}[Y_i]/\alpha \tag{14}$$

Hence, from (9) and (14) we have by independence of Y_i 's and indendence with I_i that

$$\operatorname{pr}(Y_i \mid I_i = 1, \theta, \alpha) = \frac{\prod_{i=1}^{500} f(Y_i, \theta) \frac{Y_i}{\alpha}}{\prod_{i=1}^{500} E_{\theta}[Y_i] / \alpha}$$
(15)

$$= \prod_{i=1}^{500} \frac{f(Y_i, \theta)Y_i}{E_{\theta}[Y_i]}$$
 (16)

This is the likelihood equation we seek.

(iii) Assume that, in the target population of people who go to nursing homes, the length of stay Y is a Gamma random variable with mean θ_1 and variance θ_2 . What is the expectation of Y_i given $I_i = 1$?

Proof. By (16), we have

$$pr(Y_i \mid I_i = 1, \theta, \alpha) = f(Y_i, \theta)Y_i / E_{\theta}[Y_i]$$
(17)

So the expectation of (17) is

$$E[Y_i|I_i=1,\alpha] = \int \frac{Y_i^2}{E[Y_i]} f(Y_i) dY_i$$
(18)

$$= \frac{1}{E[Y_i]} E[Y_i^2] \tag{19}$$

$$= \frac{1}{E[Y_i]} (\text{var}(Y_i) + E[Y_i]^2)$$
 (20)

$$=\frac{1}{\theta_1}(\theta_2+\theta_1^2)\tag{21}$$

$$=\frac{\theta_2}{\theta_1} + \theta_1 \tag{22}$$

(iv) Find a minimal sufficient statistic (possibly a vector) from the likelihood in (iii) for the mean θ_1 and variance θ_2 .

Proof. According to Wikipedia the density of the gamma distribution is

$$f(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x}$$
 (23)

with mean α/β and variance α/β^2 . Since we assume Y_i has a gamma distribution with mean θ_1 and variance θ_2 , we can use the substitutions that $\alpha = \theta_1^2/\theta_2$ and $\beta = \theta_1/\theta_2$. Hence,

$$f(Y_i) = \frac{(\theta_1/\theta_2)^{\theta_1^2/\theta_2}}{\Gamma(\theta_1^2/\theta_2)} Y_i^{\theta_1^2/\theta_2 - 1} e^{-Y_i \theta_1/\theta_2}$$
(24)

Plugging this in to (16), and noting that under our assumptions, $f(Y_i, \theta) = f(Y_i)$ we have

$$\operatorname{pr}(Y_i \mid I_i = 1, \theta_1, \theta_2) = \prod_{i=1}^{500} \frac{\frac{(\theta_1/\theta_2)^{\theta_1^2/\theta_2}}{\Gamma(\theta_1^2/\theta_2)} Y_i^{\theta_1^2/\theta_2 - 1} e^{-Y_i \theta_1/\theta_2} Y_i}{E[Y_i]}$$
(25)

$$= \prod_{i=1}^{500} \frac{\frac{(\theta_1/\theta_2)^{\theta_1^2/\theta_2}}{\Gamma(\theta_1^2/\theta_2)} Y_i^{\theta_1^2/\theta_2} e^{-Y_i \theta_1/\theta_2}}{\theta_1}$$
(26)

$$= \prod_{i=1}^{500} \frac{(\theta_1/\theta_2)^{\theta_1^2/\theta_2} Y_i^{\theta_1^2/\theta_2} e^{-Y_i \theta_1/\theta_2}}{\theta_1 \Gamma(\theta_1^2/\theta_2)}$$
(27)

From our class definitions, a statistic T() is a minimally sufficient statistic for θ_1, θ_2 if and only if

$$T(x) = T(y)$$
 if and only if $\frac{\operatorname{pr}(x \mid \theta_1, \theta_2)}{\operatorname{pr}(y \mid \theta_1, \theta_2)}$ is free of θ (28)

So assume we have another random variable family X_i with the same distribution as Y_i , then

$$\frac{\operatorname{pr}(Y_i \mid \theta_1, \theta_2)}{\operatorname{pr}(X \mid \theta_1, \theta_2)} = \frac{\prod_{i=1}^{500} \frac{(\theta_1/\theta_2)^{\theta_1^2/\theta_2} Y_i^{\theta_1^2/\theta_2} e^{-Y_i \theta_1/\theta_2}}{\theta_1 \Gamma(\theta_1^2/\theta_2)}}{\prod_{i=1}^{500} \frac{(\theta_1/\theta_2)^{\theta_1^2/\theta_2} X_i^{\theta_1^2/\theta_2} e^{-X_i \theta_1/\theta_2}}{\theta_1 \Gamma(\theta_1^2/\theta_2)}}$$
(29)

$$= \prod_{i=1}^{500} \frac{Y_i^{\theta_1^2/\theta_2} e^{-Y_i \theta_1/\theta_2}}{X_i^{\theta_1^2/\theta_2} e^{-X_i \theta_1/\theta_2}}$$
(30)

$$= \prod_{i=1}^{500} \left(\frac{Y_i}{X_i}\right)^{\theta_1^2/\theta_2} e^{(-Y_i + X_i)\theta_1/\theta_2}$$
 (31)

$$= \left(\prod_{i=1}^{500} \frac{Y_i}{X_i}\right)^{\theta_1^2/\theta_2} e^{(\theta_1/\theta_2)\sum_{i=1}^{500} (-Y_i + X_i)}$$
(32)

Thus, if $\prod_{i=1}^{500} Y_i = \prod_{i=1}^{500} X_i$ and $\sum_{i=1}^{500} Y_i = \sum_{i=1}^{500} X_i$, the conditions will be met. Hence $T(\prod_{i=1}^{500} Y_i, \sum_{i=1}^{500} Y_i)$ is a minimally sufficient statistic.

(v) What would the likelihood in (iii) be and what would be the minimal sufficient statistic if we had mistakenly assumed that $\pi(Y_i, \alpha)$ is not a function of Y_i ? Would we end up with the same inference for θ_1 and θ_2 in that case where we assumed the length-biased $\pi(Y_i, \alpha)$, and why?

Proof. Now we assume that $pi(Y_i, \alpha) = g(\alpha)$ some function of α . Then (14) becomes

$$pr(I_i = 1 \mid \alpha) = \int \pi(y, \alpha) f(Y_i, \theta) dY_i$$
(33)

$$= \int g(\alpha)f(Y_i,\theta)dY_i \tag{34}$$

$$= g(\alpha) \int f(Y_i, \theta) dY_i \tag{35}$$

$$=g(\alpha) \tag{36}$$

Then (16) becomes

$$\operatorname{pr}(Y_i \mid I_i = 1, \theta, \alpha) = \prod_{i=1}^{500} \frac{f(Y_i, \theta)g(\alpha)}{g(\alpha)}$$
(37)

$$= \prod_{i=1}^{500} f(Y_i, \theta)$$
 (38)

And that is the likelihood from (ii). Then (18) with (38) become the new (22)

$$E[Y_i \mid I_i = 1, \alpha] = \int Y_i f(Y_i) dY_i$$
(39)

$$= E[Y_i] \tag{40}$$

$$=\theta_1\tag{41}$$

Since we used (16) to find the answer to (iv) we use (38). That gives

 $\frac{\operatorname{pr}(Y_i \mid \theta_1, \theta_2)}{\operatorname{pr}(X \mid \theta_1, \theta_2)} = \frac{\prod_{i=1}^{500} \frac{(\theta_1/\theta_2)^{\theta_1^2/\theta_2} Y_i^{\theta_1^2/\theta_2 - 1} e^{-Y_i \theta_1/\theta_2}}{\Gamma(\theta_1^2/\theta_2)}}{\prod_{i=1}^{500} \frac{(\theta_1/\theta_2)^{\theta_1^2/\theta_2} X_i^{\theta_1^2/\theta_2 - 1} e^{-X_i \theta_1/\theta_2}}{\Gamma(\theta_1^2/\theta_2)}}$ (42)

$$= \prod_{i=1}^{500} \frac{Y_i^{\theta_1^2/\theta_2 - 1} e^{-Y_i \theta_1/\theta_2}}{X_i^{\theta_1^2/\theta_2 - 1} e^{-X_i \theta_1/\theta_2}}$$
(43)

$$= \prod_{i=1}^{500} \left(\frac{Y_i}{X_i}\right)^{\theta_1^2/\theta_2 - 1} e^{(-Y_i + X_i)\theta_1/\theta_2} \tag{44}$$

$$= \left(\prod_{i=1}^{500} \frac{Y_i}{X_i}\right)^{\theta_1^2/\theta_2 - 1} e^{(\theta_1/\theta_2) \sum_{i=1}^{500} (-Y_i + X_i)}$$
(45)

And thus we have the same minimally sufficient statistic, $T(\prod_{i=1}^{500} Y_i, \sum_{i=1}^{500} Y_i)$.

It is not clear what this says about the inference on θ .