

Roadmap

- Overview of neural networks
- Single-layer NN: Perceptron
 - Training, delta rule, etc.
 - Limitation
- Multi-layered NN: Multilayered Perceptron (MLP)
 - Chain rule
 - Back-propagation algorithm
 - Other issues
- Take-home messages

Multilayered Perceptron (MLP): A Very First Neural Networks

- Networks of processing units (neurons) with connections (synapses) between them
- Large number of neurons: 10¹⁰
- Large connectitivity: 10⁵
- Parallel processing
- Distributed computation/memory
- Robust to noise, failures

Understanding the Brain

- Levels of analysis (Marr, 1982)
 - 1. Computational theory
 - 2. Representation and algorithm
 - 3. Hardware implementation
- Reverse engineering: From hardware to theory
- Parallel processing:

SIMD (Single instruction, multiple data) VS

MIMD (Multiple instruction, multiple data)

- Neural net: SIMD with modifiable local memory
- Learning: Update by training/experience (E)

A Perceptron

Neural Networks

5

What a **Perceptron** Does?

Activation Functions:

1 or step activation:
$$y = 1(o) = \begin{cases} 1 & if \ o > 0 \\ 0 & otherwise \end{cases}$$

Sigmoid activation:
$$y = sigmoid(o) = \frac{1}{1 + e^{-W^T X}}$$
Neural Networks

6

 $y = o = \mathbf{w}^T \mathbf{x}$

Linear activation:

K Perceptrons for K Outputs

Classification:

$$o_{i} = \mathbf{w}_{i}^{T} \mathbf{x}$$

$$y_{i} = \frac{\exp o_{i}}{\sum_{k} \exp o_{k}}$$

$$\operatorname{choose} C_{i} \quad \operatorname{Softmax}_{\text{function}}$$

$$\operatorname{if} \quad y_{i} = \max_{k} y_{k}$$

Regression:
$$\mathbf{y}_i = \sum_{j=1}^d \mathbf{w}_{ij} \mathbf{x}_j + \mathbf{w}_{i0} = \mathbf{w}_i^T \mathbf{x}$$

 $\mathbf{y} = \mathbf{W} \mathbf{x}$

Supervised Learning with NN

Real inputs $\in \mathbb{R}$

Classification /Regression

Objective function

$$Loss =$$

$$\sum_{i=1}^n (y-\hat{y})^2$$

$$w=w+\Delta w$$

$$b=b+\Delta b$$

Total number of predictions

OR

$$w_{t+1} = w_t - \eta \Delta w_t$$

$$b_{t+1} = b_t - \eta \Delta b_t$$

Learning/Training

- Online (instances seen one by one) learning
 - No need to store the whole sample as in batch learning
 - Problem may change in time
- Stochastic gradient-descent (SGD): Update after a single instance
- Generic update rule (delta rule):

t denotes current training instance

$$\Delta w_{ij}^t = \eta (r_i^t - y_i^t) x_j^t$$

Weight_update = learning_rate x (desired_output - predicted_output) x input

Training a **Perceptron**: Regression Task

• Regression (Linear output): Linear activation: $y = o = w^T x$

Half squared error/loss

$$E^{t}\left(\mathbf{w} \mid \mathbf{x}^{t}, r^{t}\right) = \frac{1}{2}(r^{t} - y^{t})^{2} = \frac{1}{2}[r^{t} - (\mathbf{w}^{T}\mathbf{x}^{t})]^{2}$$

$$\Delta w_{j}^{t} = \eta(r^{t} - y^{t})x_{j}^{t}$$

$$\Delta w_j^t = -\eta \frac{\partial E^t}{\partial w_i^t}$$
 \leftarrow \text{Gradient descent}

Gradient Descent

• E(w|X) is error with parameters w on sample X $w^* = \arg \min_{w} E(w \mid X)$

Gradient-descent:

Starts from random \boldsymbol{w} and updates \boldsymbol{w} iteratively in the negative direction of gradient. (Note that gradient is a vector pointing at the greatest increase of a function, negative gradient is a vector pointing at the greatest decrease of a function!)

Gradient Descent

Training a Perceptron: Classification Task

• K=1 Single sigmoid output

Sigmoid activation:
$$y = sigmoid(o) = \frac{1}{1 + e^{-W}T_X}$$

$$y^{t} = \operatorname{sigmoid}(\mathbf{w}^{T}\mathbf{x}^{t})$$

$$E^{t}(\mathbf{w} \mid \mathbf{x}^{t}, \mathbf{r}^{t}) = -r^{t} \log y^{t} - (1 - r^{t}) \log (1 - y^{t})$$

$$\Delta w_{i}^{t} = \eta(r^{t} - y^{t})x_{i}^{t}$$
Logistic loss

Weight_update = learning_rate x (desired_output - predicted_output) x input

• *K*≥2 Softmax outputs

$$y^{t} = \frac{\exp \mathbf{w}_{i}^{T} \mathbf{x}^{t}}{\sum_{k} \exp \mathbf{w}_{k}^{T} \mathbf{x}^{t}} \qquad E^{t} (\{\mathbf{w}_{i}\}_{i} | \mathbf{x}^{t}, \mathbf{r}^{t}) = -\sum_{i} r_{i}^{t} \log y_{i}^{t}$$
$$\Delta w_{ij}^{t} = \eta (r_{i}^{t} - y_{i}^{t}) x_{j}^{t}$$

Weight_update = learning_rate x (desired_output - predicted_output) x input

How about learning XOR?

Linear non-separable!

χ_1	χ_2	r
0	0	0
0	1	1
1	0	1
1	1	0

Any straight line (one line only) to perfectly separate the four pts?

Empowering perceptron with more layers:

Multilayer Perceptrons (MLP)

$$\mathbf{y}_i = \mathbf{v}_i^T \mathbf{z} = \sum_{h=1}^H \mathbf{v}_{ih} \mathbf{z}_h + \mathbf{v}_{i0}$$

$$z_h = \operatorname{sigmoid} \left(\mathbf{w}_h^T \mathbf{x} \right)$$

$$= \frac{1}{1 + \exp \left[-\left(\sum_{j=1}^d w_{hj} x_j + w_{h0} \right) \right]}$$

(Rumelhart et al., 1986)

Backpropagation (BP) Algorithm for Training MLP

$$y_{i} = \mathbf{v}_{i}^{T} \mathbf{z} = \sum_{h=1}^{H} v_{ih} z_{h} + v_{i0}$$

$$z_{h} = \operatorname{sigmoid} \left(\mathbf{w}_{h}^{T} \mathbf{x} \right)$$

$$= \frac{1}{1 + \exp \left[-\left(\sum_{j=1}^{d} w_{hj} x_{j} + w_{h0} \right) \right]}$$

$$\frac{\partial E}{\partial w_{hj}} = \frac{\partial E}{\partial y_i} \frac{\partial y_i}{\partial z_h} \frac{\partial z_h}{\partial w_{hj}}$$

Very famous "Chain rule" in calculus!

Regression

with (K=)1 Output

$$y^t = \sum_{h=1}^H v_h z_h^t + v_0$$

Hidden layer
$$z_h = \text{sigmoid}\left(\mathbf{w}_h^T \mathbf{x}\right)$$

Input layer

X

Error (to backpropagate):

$$E(\mathbf{W}, \mathbf{v} \mid \mathcal{X}) = \frac{1}{2} \sum_{t} (\mathbf{r}^{t} - \mathbf{y}^{t})^{2}$$

$$\Delta \mathbf{v}_h = \eta \sum_{t} (\mathbf{r}^t - \mathbf{y}^t) \mathbf{z}_h^t$$

Backward

$$\Delta w_{hj} = -\eta \frac{\partial E}{\partial w_{hj}}$$

$$= -\eta \sum_{t} \frac{\partial E}{\partial y^{t}} \frac{\partial y^{t}}{\partial z_{h}^{t}} \frac{\partial z_{h}^{t}}{\partial w_{hj}}$$

$$= -\eta \sum_{t} -(r^{t} - y^{t}) v_{h} z_{h}^{t} (1 - z_{h}^{t}) x_{j}^{t}$$

$$= \eta \sum_{t} (r^{t} - y^{t}) v_{h} z_{h}^{t} (1 - z_{h}^{t}) x_{j}^{t}$$

Regression with Multiple ($K \ge 2$) Outputs

$$E(\mathbf{W}, \mathbf{V} | \mathcal{X}) = \frac{1}{2} \sum_{t} \sum_{i} (r_{i}^{t} - y_{i}^{t})^{2}$$

$$y_{i}^{t} = \sum_{h=1}^{H} v_{ih} z_{h}^{t} + v_{i0}$$

$$\Delta v_{ih} = \eta \sum_{t} (r_{i}^{t} - y_{i}^{t}) z_{h}^{t}$$

$$\Delta w_{hj} = \eta \sum_{t} \left[\sum_{i} (r_{i}^{t} - y_{i}^{t}) v_{ih} \right] z_{h}^{t} (1 - z_{h}^{t}) x_{j}^{t}$$

Aggregated errors to backpropagate!

Back Propagation Algorithm

```
Initialize all v_{ih} and w_{hj} to rand(-0.01, 0.01)
Repeat
       For all (\boldsymbol{x}^t, r^t) \in \mathcal{X} in random order
               For h = 1, ..., H /* for all hidden neurons */
                       z_h \leftarrow \operatorname{sigmoid}(\boldsymbol{w}_h^T \boldsymbol{x}^t)
                                                                                                  Feedforward
               For i=1,\ldots,K /* for all output neurons */
                       y_i = \boldsymbol{v}_i^T \boldsymbol{z}
               For i=1,\ldots,K /* Compute updates for all output neurons */
                       \Delta \boldsymbol{v}_i = \eta(r_i^t - y_i^t)\boldsymbol{z}
               For h=1,\ldots,H /* Compute updates for all hidden neurons */
                       \Delta \boldsymbol{w}_h = \eta \left( \sum_i (r_i^t - y_i^t) v_{ih} \right) z_h (1 - z_h) \boldsymbol{x}^t
                                                                                                  –Feedback
                                                                                                    (Back-propagation)
               For i=1,\ldots,K /* Update parameters for all output neurons */
                       \boldsymbol{v}_i \leftarrow \boldsymbol{v}_i + \Delta \boldsymbol{v}_i
               For h=1,\ldots,H /* Update parameters for all hidden neurons */
                       \boldsymbol{w}_h \leftarrow \boldsymbol{w}_h + \Delta \boldsymbol{w}_h
Until convergence
```

Learning Curve and Performance

Learning curve...error decreasing 1.4 1.2 1.0 1.4 1.2 1.4 1.5 1.5 1.6 1.7 Training Validation

Figure 11.9 The mean square error on training and validation sets as a function of training epochs.

150

Training Epochs

100

Special test sets

250

200

Figure 11.8 Sample training data shown as '+', where $x^t \sim U(-0.5, 0.5)$, and $y^t = f(x^t) + \mathcal{N}(0, 0.1)$. $f(x) = \sin(6x)$ is shown by a dashed line. The evolution of the fit of an MLP with two hidden units after 100, 200, and 300 epochs is drawn.

Qualitative Description of Backpropagation Learning

- Iteratively process a set of training tuples & compare the network's prediction with the actual known target value
- For each training tuple, the weights are modified to minimize the mean
 squared error between the network's prediction and the actual target value
- Modifications are made in the "backwards" direction: from the output layer, through each hidden layer down to the first hidden layer, hence "backpropagation"
- Steps
 - Initialize weights to small random numbers, associated with biases
 - Propagate the inputs forward (by applying activation function)
 - Backpropagate the error (by updating weights and biases)
 - Terminating condition (when error is very small, etc.)

Multiple Hidden Layers

• MLP with one hidden layer is a universal approximator (Hornik et al., 1989), but using more layers may lead to simpler networks

$$z_{1h} = \operatorname{sigmoid}\left(\mathbf{w}_{1h}^{T}\mathbf{x}\right) = \operatorname{sigmoid}\left(\sum_{j=1}^{d} w_{1hj}x_{j} + w_{1h0}\right), h = 1, ..., H_{1}$$

$$z_{2l} = \operatorname{sigmoid}\left(\mathbf{w}_{2l}^{T}\mathbf{z}_{1}\right) = \operatorname{sigmoid}\left(\sum_{h=1}^{H_{1}} w_{2lh}z_{1h} + w_{2l0}\right), l = 1, ..., H_{2}$$

$$y = \mathbf{v}^{T}\mathbf{z}_{2} = \sum_{l=1}^{H_{2}} v_{l}z_{2l} + v_{0}$$

Different non-linearly separable problems

Neural Networks - An Introduction Dr. Andrew Hunter

TVOUTAT TVOUVOTRO 7111 II	Types of	Exclusive-OR	Classes with	Most General
Structure	Decision Regions	Problem	Meshed regions	Region Shapes
Single-Layer	Half Plane Bounded By Hyperplane	A B A	B	
Two-Layer	Convex Open Or Closed Regions	A B A	B	
Three-Layer	Abitrary (Complexity Limited by No. of Nodes)	B A	B	

Improving Convergence

Momentum

$$\Delta \mathbf{w}_{i}^{t} = -\eta \frac{\partial E^{t}}{\partial \mathbf{w}_{i}} + \alpha \Delta \mathbf{w}_{i}^{t-1}$$

Adaptive learning rate

$$\Delta \eta = \begin{cases} +a & \text{if } E^{t+\tau} < E^t \\ -b\eta & \text{otherwise} \end{cases}$$

Gradient descent with different learning rates. Source

Overfitting (with more complex NN)

Figure 11.12 As complexity increases, training error is fixed but the validation error starts to increase and the network starts to overfit.

Overfitting (with Overtraining)

Figure 11.13 As training continues, the validation error starts to increase and the network starts to overfit.

Loss function of sigmoid modified linear discriminant

General loss function

$$loss = \sum_i (y_i - \hat{y_i})^2$$

i.e. the sum of the squared difference between the true output y_i and the predicted output \hat{y}_i

An example:

x_1	x_2	y	\hat{y}
1	1	0.5	0.6
2	1	0.8	0.7
1	2	0.2	0.2
2	2	0.9	0.5

$$\hat{y}=rac{1}{1+e^{-(wx+b)}}$$

$$Loss = \sum_{i=1}^4 (y - \hat{y})^2 = 0.18$$

y could be binary, i.e., 0 or 1.

Gradient Descent Learning

Gradient Descent Rule

- The direction u that we intend to move in should be at 180° w.r.t. the gradient.
- In other words, move in a direction opposite to the gradient.

$$w=w+\Delta w$$

$$b=b+\Delta b$$

OR

$$egin{aligned} w_{t+1} &= w_t - \eta \Delta w_t \ b_{t+1} &= b_t - \eta \Delta b_t \end{aligned}$$

Parameter Update Rule

$$egin{aligned} w_{t+1} &= w_t - \eta \Delta w_t \ b_{t+1} &= b_t - \eta \Delta b_t \end{aligned}$$

where
$$\Delta w_t = rac{\partial \mathscr{L}(w,b)}{\partial w}_{at}{}_{w=w_t,b=b_t}, \Delta b_t = rac{\partial \mathscr{L}(w,b)}{\partial b}_{atw=w_t,b=b_t}$$

Learning Algorithm

Initialise w, b

Iterate over data:

 $compute \ \hat{y}$

compute $\mathcal{L}(w,b)$

$$w_{t+1} = w_t - \eta \Delta w_t$$

$$b_{t+1} = b_t - \eta \Delta b_t$$

till satisfied

Gradient Descent Optimization

$$egin{align}
abla w &= rac{\partial}{\partial w} [rac{1}{2}*(f(x)-y)^2] \ &= rac{1}{2}*[2*(f(x)-y)*rac{\partial}{\partial w}(f(x)-y)] \ &= (f(x)-y)*rac{\partial}{\partial w}(f(x)) \ &= (f(x)-y)*rac{\partial}{\partial w} \Big(rac{1}{1+e^{-(wx+b)}}\Big) \ &= (f(x)-y)*f(x)*(1-f(x))*x \ \end{align}$$

Derivative of Sigmoid Function

$$egin{aligned} rac{\partial}{\partial w} \Big(rac{1}{1+e^{-(wx+b)}}\Big) \ &= rac{-1}{(1+e^{-(wx+b)})^2} rac{\partial}{\partial w} (e^{-(wx+b)})) \ &= rac{-1}{(1+e^{-(wx+b)})^2} st (e^{-(wx+b)}) rac{\partial}{\partial w} (-(wx+b))) \ &= rac{-1}{(1+e^{-(wx+b)})} st rac{e^{-(wx+b)}}{(1+e^{-(wx+b)})} st (-x) \ &= rac{1}{(1+e^{-(wx+b)})} st rac{e^{-(wx+b)}}{(1+e^{-(wx+b)})} st (x) \ &= f(x) st (1-f(x)) st x \end{aligned}$$

An Example

Emergency Room Visits	Narcotics	Pain	Total Visits	Medical Claims	PoorCare
0	2	6	11	53	1
1	1	4	25	40	0
0	0	5	10	28	0
1	3	5	7	20	1

Initialise $w_1, w_2, ..., w_5, b$

Iterate over data:

$$egin{aligned} w_1 &= w_1 - \eta \Delta w_1 \ w_2 &= w_2 - \eta \Delta w_2 \ dots \end{aligned}$$

$$w_5=w_5-\eta\Delta w_5$$

$$b=b-\eta \Delta b$$

till satisfied

$$z = w_1 * ER_visits + w_2 * Narcotics + w_3 * Pain + w_4 * TotalVisits + \ w_5 * MedicalClaims + b \ z = w_1 * x_{i1} + w_2 * x_{i2} + w_3 * x_{i3} + w_4 * x_{i4} + w_5 * x_{i5} + b \ \hat{y} = rac{1}{1 + e^{-z}} \ \hat{y} = rac{1}{1 + e^{-(w_1 * x_{i1} + w_2 * x_{i2} + w_3 * x_{i3} + w_4 * x_{i4} + w_5 * x_{i5} + b)}$$

$$\Delta w = \sum_{i=1}^m (f(x)-y)*f(x)*(1-f(x))*x$$

$$\Delta w_1 = \sum_{i=1}^m (\hat{y} - y) * \hat{y} * (1 - \hat{y}) * x_{i1}$$

$$\Delta w_2 = \sum_{i=1}^m (\hat{y} - y) * \hat{y} * (1 - \hat{y}) * x_{i2}$$

$$\Delta w_j = \sum_{i=1}^m (\hat{y}-y) * \hat{y} * (1-\hat{y}) * x_{ij}$$

(c) One Fourth Labs

Changes in sigmoid decision surface

Decision surface -> optimization space (yet another space you need to understand!)

How to iterate over data?

Batch Gradient Descent

- uses the whole batch of training data at every step
- calculates the error for each record and takes an <u>average</u> to determine the gradient
- Stochastic Gradient Descent (SGD)
 - just picks one instance from training set at every step
 - update gradient only based on that single record

Mini-Batch Gradient Descent

- Hybrid of Batch type and SGD
- Pick 1<n<N instance to update

till satisfied...how to measure?

Simple ones

$$RMSE = \sqrt{rac{1}{n}\sum_{i=1}^n (y - \hat{y})^2}$$

$$Accuracy = \frac{\text{Number of correct predictions}}{\text{Total number of predictions}}$$

Take-home messages

- The layered structure of NN makes it powerful!
- NN, originated from neuroscience, has very nice mathematical structure.
- Machine learning through optimization of error/loss function -> mathematical structure is important!
- Gradient descent is simple and well-fit for ML!

Acknowledgement

- Slides/Materials of
 - [1] E. Alpaydin, Introduction to Machine Learning. 2nd Ed. MIT Press, 2010.
 - [2] https://medium.com/datadriveninvestor/simplified-sigmoid-neuron-a-building-block-of-deep-neural-network-5bfa75c8d8a9
- Photos from Internet