(12) Unexamined Patent Publication (A)

1992-144533

(43) Publication date: May 19, 1992

(51) Int. Cl.		Identifi symbo		JPO file number
A 61 B	1/00	Syllibo		8117-4C
	5/14	300	A	8932-4C
		300	Z	8932-4C×

Request for examination: Not requested Number of inventions: 1 (Total of 15 pages)

(54) Title of Invention: Endoscope

(21) Application: 1990-268866

(22) Application Date: October 5, 1990

(72) Inventor. Hideyuki Adachi Olympus Optical Co., Ltd., 2-43-2 Hatagaya, Shibuya-ku,

Tokyo

(72) Inventor. Yasuhiro Ueda Olympus Optical Co., Ltd., 2-43-2 Hatagaya, Shibuya-ku,

Tokyo

(72) Inventor Takao Tabata Olympus Optical Co., Ltd., 2-43-2 Hatagaya, Shibuya-ku,

Tokyo

(71) Applicant: Olympus Optical 2-43-2 Hatagaya, Shibuya-ku, Tokyo

Co., Ltd.

(74) Representative: Patent Attorney Jun Tsuboi (2 others) Continued on last page.

SPECIFICATIONS

1. TITLE OF THE INVENTION

Endoscope

2. SCOPE OF PATENT CLAIM

This endoscope is characterized by a capsule-shaped unit; observation device designed into this unit; method 1 that selectively generates a force of inertia in a different direction from the aforementioned unit; method 2 that generates the force of inertia of method 1 or changes the direction of the force of inertia; method 3 that receives signals controlling method 2; method 4 that telemetrically transmits signals for method 3 or image signals from the aforementioned observation device; and is used by floating the aforementioned unit in low-gravity or

zero-gravity space.

3. DETAILED DESCRIPTION OF THE INVENTION

[Field of Industrial Application]

This invention is an endoscope used in low-gravity or zero gravity space.

[Conventional Technology]

Until now, there have been numerous endoscopes that have been proposed and used to internally inspect body cavities, engines, piping, etc.

However, these conventional endoscopes must all be used on Earth. Due to the affect of gravity, a large amount of force is needed to control the endoscope remotely and to change the line of sight or the direction of movement. Accordingly, these

endoscopes need to be equipped with a power source or operating transmitters with a large driving force. In addition, these conditions complicate configuration and increase the size of the device.

[Problems to be resolved by the Invention]

In recent years, there has been an increase in the opportunities for humans to live in outer space using rockets and space stations. Naturally, it is expected that examinations within live bodies and machines will also become necessary in outer space.

In this case, gravity decreases as the distance away from the earth's gravitational sphere increases, where zero gravity space is soon reached. Although different concepts must be used to operate endoscopes in this environment, endoscopes for use in this environment have yet to be conceptualized.

This invention focuses on the aforementioned problem and strives to provide an endoscope that simplifies examinations, reduces invasiveness, and

No. 1 in Figure 1 is the endoscope unit shaped like a capsule where the front and rear ends are spherical and the middle is cylindrical. There are various necessary components that are included within Unit 1, as described below. This endoscope is meant to float independently in low-gravity or zero gravity space.

The Objective Lens 2 is located at the center of the front end of Unit 1 as an observation device. A solid-state image sensor, i.e. CCD 3, is situated within the Objective Lens 2. The CCD Drive Circuit 5 is controlled by a Controller 4 located within CCD 3. The CCD 3 is configured with an observation device that changes the viewed images with the Objective Lens 2 into imaging signals. These signals are transmitted to an External Receiver 7 through an Image Transmitter 6. The signals

can be used for a broad range of examinations in low-gravity or zero gravity space.

[Means and Actions for Solving the Problems]

To solve the aforementioned problems, this invention is an endoscope that is characterized by a capsule-shaped unit; observation device designed into this unit; method 1 that selectively generates a force of inertia in a different direction from the aforementioned unit; method 2 that generates the force of inertia of method 1 or changes the direction of the force of inertia; method 3 that receives signals controlling method 2; method 4 that telemetrically transmits signals for method 3 or image signals from the aforementioned observation device; and is used by floating the aforementioned unit in low-gravity or zero-gravity space.

[Embodiment]

Figures 1 to 3 display Embodiment 1 of this invention.

received by the External Receiver 7 are then changed to picture signals using a Video Circuit 8 and the viewed images observed by the endoscope are displayed on a Monitor 9.

In addition, LEDs 11 is located at the top and bottom of the Objective Lens 2 as a means for illumination at the front end of Unit 1.

Furthermore, multiple Nozzles 12 are formed on the perimeter of the rear end of Unit 1 directed diagonally behind in isometric intervals and each Nozzle 12 is connected individually to a Tank 14 through a Valve 9. The Tank 14 is filled with compressed air. Each Valve 9 opens and closes upon receiving a signal from the Valve Controller 16 that is operated by a Receiver 15. The Receiver 15 is operated by signals transmitted by the External Transmitter 17.

The telemetric transmission of signals from the aforementioned Image Transmitter 6 to the External Receiver 7 and from the External Transmitter 17 to the Receiver 15 is conducted by wireless or ultrasonic means as much as possible according to the environment. In addition, the power required by the CCD Drive Circuit 5, LED 11, each Valve 9, Receiver 15, Valve Controller 16, etc. is supplied by the Power Source (storage cell) 13.

Furthermore, the aforementioned Tank 14 is located at the center within Unit 1, as displayed in Figure 1. The Image Transmitter 6 and Controller 4 are located in front of the Tank 14 within Unit 1 and the Power Source 13 is located above these two devices. The Receiver 15 is also in the rear of Unit

In response to the signals received by the Receiver 15, the Valve Controller 16 repeatedly opens specific Valves 9 for short burst and compressed air from the Tank 14 is repeatedly released in bursts.

Unit 1 then uses the inertia (propulsion) created from the release of compressed air from the Nozzles 12 in bursts to move. Unit 1 changes direction and moves as it uses inertia to travel, as directed by the bursts from the Nozzles 12. Figure 3 displays the valve drive signal and opened valve (when compressed air is released) and their distance relationship with Unit 1.

As the endoscope changes direction and moves in low-gravity or zero gravity space, this simplifies examinations, reduces invasiveness, and can be used for a broad range of examinations.

Furthermore, multiple length measuring sensors

1.

The following is an explanation regarding the use of the endoscope as configured above. This endoscope is placed within a body cavity of a patient in low-gravity or zero gravity space. Unit 1 will float within the body cavity. The External Transmitter 17 is operated to telemetrically transmit signals to the endoscope's Receiver 15 to change the position of Unit 1 or move it forward.

are located in different directions on the external side of Unit 1 and the device may also monitor its location by incrementally measuring the distance from Unit 1 to the surrounding walls while traveling by inertia. In addition, if there is no change to the data regarding the various distances to the surrounding walls using the length measuring sensors located around Unit 1, the movement of the device is maintained. If change is detected, the direction and the distance of the movement by Unit 1 can be measured and inertia opposite the direction of the movement can be applied.

Figure 4 and 5 display Embodiment 2 of this invention. Piezoelectric Devices 21 that generate ultra sound are located around the rear of Unit 1 and the various parts of the rear end in this embodiment. The generated ultra sound provides the inertia (propulsion) to Unit 1.

A piezoelectric device drive circuit 22 operated by signals received by the Receiver 15 is located within Unit 1 and selectively drives the aforementioned Piezoelectric Devices 21. Embodiment 2 controls the inertia and direction using ultra sound. Other configurations and actions are the same as those listed in the aforementioned Embodiment 1.

Figure 6 and 7 display Embodiment 3 of this invention. Fans 25 are located on the sides of the rear and on the rear end pointing to over three directions. The various Fans 25 are each driven by a Motor 26. In addition, a Motor Drive Circuit 27 is located within Unit 1 to operate the fans by signals received by the Receiver 15.

In this Embodiment, the selective drive of the fan 25 blows out the surrounding fluid to control the propulsion and direction of Unit 1. Other configurations and actions are the same as those listed in the aforementioned Embodiment 1.

The Auxillary Tank 36 is always supplied with pressurized fluid from the external Pump 37 through the aforementioned Pressurized Tube 33. Similarly, the Electromagnetic Valve 39 selectively opens according to the Valve Controller 40 located within Unit 1. In addition, the Valve Controller 40 operates according to the signals received by the Receiver 15. Other configurations and actions are the same as those listed in the aforementioned embodiment.

This embodiment opens specific Electromagnetic Valves 39 according to the Valve Controller 40 operated by the signals received by the Receiver 15. Pressurized fluid is supplied by the Auxiliary Tank 36 and bursts from the corresponding Nozzles 38. This controls the

Figure 8 and 9 display Embodiment 4 of this invention. In this Embodiment, a Cable 31, created from flexible tubing, extrudes from the rear end of Unit 1 and an Energy Transmission Line 32 and Pressurized Tube 33 is inserted within the Tube 31. The Energy Transmission Line 32 is connected to the Energy Controller 34 within Unit 1 and the External Power Source 35. The Pressurized Tube 33 is connected to the Auxiliary Tank 36 within Unit 1 and a Pump 37. Furthermore, multiple Nozzles 38 is located in different locations and various directions on the external side of Unit 1. For example, vertical Nozzles 38 is located on the exterior of Unit 1 relatively towards the front and multiple Nozzles 38 is located in a diagonally outward direction in isometric intervals on the exterior of Unit 1 relatively towards the rear. Each Nozzle 38 is connected individually to the aforementioned Auxiliary Tank 36 through the various Electromagnetic Valves 39.

propulsion and direction of Unit 1. In addition, the energy of the various components is received from the External Power Source 35 through the Energy Transmission Line 32 and is supplied through the Energy Controller 34. Other configurations and actions are the same as those listed in the aforementioned Embodiment 1.

Propulsion and posture control can be achieved in the endoscope by giving an inertial force using magnet. In other words, inertial force can be obtained by fixing a magnet to the body and suspending in the magnetic field and changing the magnetic field 3 dimensionally.

Figure 10 and 13 show an example of execution of invention number 5. These are related to the micro robots used as self propelled inspection device in the blood vessel. As shown in Figure 10, this device uses multiple capsule parts (41, 42, 43) and connects them in a line. Ultrasonic image pickup device 44, which gets a 2 dimensional front view, is placed at main body 41a in the capsule part 41. Ultrasonic device 45 is placed in capsule part 42 and takes the cross sectional ultrasonic image of blood vessel 46. Further, a telemetry functional part is inserted in the last capsule part 43. A transmission cable 47 is also connected at the last point of capsule part 43.

Also, multiple self propelled arms 48 are attached along the circumference, projecting diagonally from the surface of capsule part 41. As shown in figures 12 and 13, the self propelled arms are 2 directional shape memory alloys and are attached with electrical conducting layers. For

of nickel, and joins flat part of 52a from one end to another to form a loop. Further, the widths between one terminal and the other are gradually reduced. Both the surfaces of the electrical conducting layer 52 are also coated by insulator 53. The width is bent as shown in figure 11 (1) and attached to the edge of capsule part 41. When the self propelled arms are activated, the current flows to the electrical conducting layer 52. If it is allowed to generate heat by electrical resistance and the front end of the electrical conducting layer 52 is heated at a high temperature, the A part will flex as shown in figure 11 (2) If the heating is continued, the part B will bend as shown in figure 11 (3) This bending of the part A towards B will activate the self propelled arms 48.

example, the electrical conducting layer 52 is made

When the current flow is stopped after the movements of the arms, it will spontaneously heat up and return to the previous state in figure 11 (1) F the part 51 is made of one directional shape memory alloy, stop the electrical flow and make it return to the previous state shown in figure 11 (1) by resilient restoration action.

Therefore, in the self propelled inspection device in the blood vessel, if the arms 48 in the capsule part 41 are activated, the arms will kick the walls of the blood vessels 46 and thrush forward the capsule part 41. Further, the Ultrasonic image pickup device 44 will take the 2-dimensional front image and examine. Simultaneously, the Ultrasonic image pickup device 45 in the capsule part 42 will take the cross sectional ultrasonic image of blood vessel 46. The data of the examination will be done

by the telemetry function of the capsule area 43. The data can be received through a cable attached to it.

If the arms 48 do not activate, extend the arms diagonally forward so that the ends reach the wall of the blood vessel 46 and support the capsule areas 41, 42 and 43.

As the mechanism of this type of device is simple and can be further made slender, it can be used inside the ducts as well. The mechanism of the self propelled arms 48 is also not limited to the one mentioned above, but can also be a bimetal as shown in figures 14 and 16. In other words, one side of the resinous matter 55 is attached with a looped nickel layer and the nickel layer 56 is covered with electrical conducting layer 57.

If the nickel layer 56 is made to generate heat by passing electricity, the shape will change from linear (fig. 14 (1)) to curve (fig 14 (2)). In other words, bouncing action can be initiated.

When the current flow is stopped, it will return to the linear state in figure 14 (1). Thus it can be inferred that the response can be faster if the arm 48 is made smaller. A bimorph piezoelectric device can also be used as an arm. Some examples are given in figures 17 and 19. In these figures, multiple self propelled arms 59 are attached along the circumference with spaces between them, projecting diagonally from the surface of a bimorph plezoelectric device 58. The shapes are normally as shown in figure 17.

The arms 59 can be excited by repeating the bent state shown in figures 18 and 19. This action can be used to thrush forward or push back the capsule.

Thus, in the device for large intestines, exciting the arm 67 in capsule part 61 will push forward the capsule parts 61, 62 and 63. On the other hand, exciting the arm 68 in the last capsule part 63 will push backward the capsule parts 61, 62 and 63. Capsule part 61 can provide illumination while examination and the manipulator can be introduced through the aperture. Figure 20 shows the cutting of polyp 1 by using a snare wire 70. The test materials can be inserted to the capsule part 62 and stored. The data of the examined is processed by the telemetry function of capsule part 63. As the capsule 68 is attached, there is no need for a cable to collect the data.

Figure 21 is an example of invention no 7. It is used to examine the small intestine. It has two capsule parts, 72 and 73 which are connected. The main body 72 a in the capsule part 72 is attached

Figure 20 is example no. 6 of the invention. This is related to the micro robots used to examine large intestines. This device uses multiple capsule parts (61, 62, 63) and connects them in a line. The main body 61 a in the first capsule part 61 is fixed with lens 64 to examine the frontal view and the image picking device set in it takes the images. A window 65 for illumination and an aperture (not in diagram) are also made available around the lens 64. The role of the capsule 62 is to store the test materials, while the front end contains the aperture 66 that receives the test materials. The last capsule 63 has the telemetry function part.

The lower surface of the capsule 61 is fixed with arm 67 to push forward while the lower surface of the capsule 63 is fixed with arm 68 to push backward. Though both the arms 67 and 68 can be used in the same way as the other arms mentioned before, the set ups are in the opposite.

with lens 74 to examine the frontal view. An image picking device, not in the picture, is placed in it. A window 75 for illumination and an aperture (not in diagram) are also made available around the lens 74. The main body 73 a of capsule 73 has an ultrasonic device 76 placed around the circumference. It takes the ultrasonic images of the organs around it. The capsule part 73 also has an aperture for insertion and excretion of water. Both the capsule parts have telemetry functional part attached.

The lower surface of the capsule part 72 has multiple arms 78 for stoppage. The arm extends outwards and stops the capsule 72 at that position. The arms 78 can be used in the same way as mentioned above. The capsule 73 is attached with a balloon as reaches the wall of the small intestine 80 as it is raised.

In addition, the operating and observation information is processed by the aforementioned

telemetry function.

Figure 22 displays Embodiment 8 of this This embodiment is a self-propelled invention. capsule for tubule cavities as a medical micro robot. In other words, the self-propelled capsule 81 has a long flexible body and an objective lens 83a and illumination window 83a are located at its front end. In addition, self-propelling legs 84 as configured are located throughout the entire surrounding surface in multiple locations in the space before and after the surrounding surface of the long unit 82. The long body 82 can then be inserted into tubule cavities by operating the self-propelling legs 84. In addition, a flexible cable 86 is connected to the rear end of the self-propelled capsule 81. Illumination and image signals (or optical images) are transmitted through this cable 86.

Specifically, both robots 91 and 92 have a propulsion device 95 located on the capsule units 91a and 92a with a propulsion nozzle 93 and an attitude control nozzle 94. Furthermore, an illumination window 96 and an observation window 97 are situated on the capsule units 91a and 92a to internally observe the living subject. The observed information and the injection of the aforementioned various nozzles 93 and 94 are controlled by the commands from the external operating devices 98 and 99 outside the living subject using the telemetry function built into the various capsule units 91a and 92a.

An injection needle-shaped blood collection manipulator 101 is located at the tip of the blood collection robot 91 and a blood storage tank 102 and constituent separator 103 are situated within the

For example, when this is inserted into a biliary duct 87, the self-propelled capsule 81 is inserted through the channel 89 of the endoscope 88. By operating the self propulsion after inserting into the biliary duct 87, the device enters into the biliary duct 87 being self propelled.

Figure 23 to 26 display a micro robot that can be placed within a subject for extended periods to treat the living subject. Figure 23 displays two micro robots for living subjects, one is an example of a blood collection robot 91 and the other is a bone repair robot 92. The blood collection robot 91 collects the blood of a patient and has the function to analyze its components. The bone repair robot 92 synthesizes bones using the aforementioned components and has the function to repair the bones of the patient.

capsule unit 91a. The aforementioned propulsion device 95 and blood collection manipulator 101 are operated by wireless telemetry transmissions using an external operating device 98. The constituent separator 103 separates the blood into calcium, phosphates, oxygen, etc.

A bone resection manipulator 104, a bone binding manipulator 105, and an opening for artificial bones 106 are built into the bone repair robot 92. An artificial bone discharge device 108 configured from a bone synthesis device 107, pump, etc. is situated within the capsule unit 92a of the bone repair robot 92. The propulsion device 95 and bone binding manipulator 105 are operated by telemetry transmissions using an external operating device 99. The bone synthesis device 107 uses the elements from the aforementioned separation

and creates artificial bones using calcium phosphate material. The constituent separator 103 of the blood collection robot 91 and the bone synthesis device

107 of the bone repair robot 92 are linked by a material transport pipe.

Figure 24 is the block diagram of the aforementioned blood collection robot 91 and bone repair robot 92 system.

Therefore, the blood collection robot 91 and the bone repair robot 92 can be placed inside a living subject for extended periods, as displayed in Figure 23. The blood collection robot 91 can collect and store blood from the blood vessels 100 of patients and separate components from the blood that are necessary to synthesize bone. This material can then be transported to the bone synthesis device 107 of the bone repair robot 92 and artificial bones required for repair can be synthesized. In addition, the bone repair robot 92 eliminates the lesions of the patient's bones 110 by using the bone resection manipulator 104 and repairs are conducted using the artificial bones received from the artificial bone discharge device 108 by the bone binding

In addition, the source of power from the living subject may also be internal combustion. Figure 26 displays an example of this method. In other words, install the device with a constituent separator 121 that separates oxygen from the blood and an oxygen storage tank 122 that stores oxygen. In addition, install the device with a constituent separator 123 that separates methane gas from stool and a methane gas storage tank 124 that stores methane gas. The oxygen and methane gas can be ignited to operate the device using internal combustion 125. When energy is necessary, thermal energy can be extracted by oxidizing the methane gas using internal

combustion 125. This, for example, drives the

propulsion device 126.

manipulator 105.

The mobility of the aforementioned robots 91 and 92 are configured to receive their operating this procedure is displayed in Figure 25. In other words, the constituent separator 111 of the blood collection robot 91 isolates glucose (C6H12O6) and oxygen (O₂) from the collected blood and stores the components in their respective storage tanks 112 and 113. When energy is required, electrical energy is extracted by oxidizing the components using the oxidative dissolution device 114. This electrical energy can, for example, be used to drive the motor 115 or operate the propulsion device 116. As an energy source is available within the living external power supply becomes unnecessary and the robot can be placed within living subjects for extended periods.

Although the aforementioned example was of bone repair, the device can also be similarly used to repair blood vessels. Figure 27 displays the blood vessel repair robot 130. The blood collection robot 131 operates in the same manner as explained above.

An artificial sheet 132 grasping and handling manipulator 133, suture needle manipulator 134, discharge opening 136 supplying protein thread 135, artificial sheet (protein film) 132 discharge opening 137, etc. are built into the capsule unit 130a of the blood vessel repair robot 130. In addition, an illumination window 136 and an observation window 139 are situated on the capsule. A propulsion device with a propulsion nozzle 141 and an attitude control nozzle 142 are built into the capsule unit

130a.

Furthermore, as displayed in Figure 28, the protein film synthesis device 145 that synthesizes protein films using the components received through the transportation pipe 143 from the blood collection

The constituent separator 149 of the blood collection robot 131 isolates the proteins from the collected blood. The blood vessel repair robot 130 receives the transported proteins and synthesizes artificial sheets 132 of protein film and protein thread 135 and delivers them as required using the pumps 146 and 148. This operation is controlled by wireless telemetry transmissions.

The blood vessel repair robot 130 repairs blood vessels 150, for example, by sewing artificial sheets 132 on aneurysms using the handling manipulator 133 and suture needle manipulator 134. The consumable materials, artificial sheets 132 and protein thread 135, are produced within the living subject making external supplies unnecessary. Accordingly, the device can function within living subjects for extended periods. The source of energy is also as explained above.

In addition, a receiver 155 for telemetry transmissions and a drive circuit 156 for the propulsion method 154 are built into the various micro robots 151, 152, and 153.

Furthermore, an illumination method 157 using LED's, observation method 160 using an objective lens 158 or image pickup device 159, transmitter 161, and guidance device 162 are built into the first micro robot 151. Image signals that have been converted by the image pickup device 159 transmit the signals to an external receiver from a transmitter 161. In addition, the following guidance device 162 transmits emitted electro-magnetic waves and guidance signals to micro robots 152 and 153.

A storage space 164 that stores the manipulator

robot 131, pump 146 that discharges protein films, protein thread synthesis device 147 that synthesizes protein thread, and pump 147 that discharges protein thread are built into the capsule unit 130a.

Figures 29 to 31 display medical in-vivo robots using other systems. In other words, these medical in-vivo robots are made up of multiple micro robots components 151, 152, and 153 that have been separated. The aforementioned propulsion method 154 has been configured to the external side of the various micro robots 151, 152, and 153 and the device independently propels itself within the ducts by using this propulsion method 154. For example, the propulsion method 154 of this device has situated bristles diagonally on piezoelectric devices located in external rings around the micro robots.

The device moves forward or backwards according to the vibrating patterns of the piezoelectric devices. In addition, the aforementioned propulsion method may also be used.

163 to process living subjects, drive motor 165 that operates the manipulator 163, and a cover 168 to cover the opening of the storage space 164 are built into the second micro robot 152. The power source 169 is built into the third micro robot 153. Furthermore, these micro robots 151, 152, and 153 move around the body independently after receiving wireless signals from external control methods, however, the devices can be linked and integrated (combined), as displayed in Figure 30. This allows for the exchange of energy and signals.

Figure 31 displays a specific example. An electromagnet 171 is divided into three, set diagonally on each of the surfaces of the joint ends, and the polarity of each magnet is reversed.

Accordingly, there is no slippage when docking. An electric signal transmission connector 172, LED 173, and power source connector 174 protrude out from the joint end surface at the front and corresponding female connectors 175, 176, and 177 are located on the joint end surface at the rear.

The electric signal transmission connector 172 is connected to the drive circuit. The power source connector 174 is connected to the power source. A light-sensitive element 178 is built into the female connector 176. Accurately determine the angle by matching the axis line when the guidance signal at the front of the micro robots 151 and 152 is in close range of the micro robots 152 and 153 using the LED 173 and light-sensitive element 178. The micro robots 151, 152, and 153 reach the opening of the target body cavity 183, i.e. biliary duct, through the channel 182 of the endoscope 181.

diagnosis is conducted on the affected area, the next micro robot 152 suited for treatment is sent. If it looks like treatment will take some time, micro robot 153 with a large capacity power source can be sent.

The first micro robot 151 is sent to the target body cavity 183 by remote control. Turning on self-propulsion moves the device forward. Once a

Furthermore, Figures 32 and 33 display other formats of the micro robot. The micro robot indicated in Figure 32 is configured with an ultrasonic transducer 194 and drive motor 195 that is used for observations and propulsion. As displayed in Figure 33, the micro robot 196 comes with an injection needle 197 and is linked to the micro robot 198, which comes with a drug solution tank 199.

[Effect of the Invention]

As explained above, the endoscope of this invention is suited for use in low-gravity and zero-gravity spaces; it simplifies examinations, reduces invasiveness, and can be used for a broad range of examinations.

4. Brief Description of the Drawings

Figures 1 to 3 display Embodiment 1 of this invention. Figure 1 is the schematic perspective view of the endoscope, Figure 2 is the block diagram of the configuration, and Figure 3 is the drive time chart. Figure 4 displays Embodiment 2 and is the schematic perspective view of the endoscope and Figure 5 is the block diagram of the configuration. Figure 6 displays Embodiment 3 and Is the schematic perspective view of the endoscope and Figure 7 is the block diagram of the configuration. Figure 8 displays Embodiment 4 and is the schematic perspective view of the

endoscope and Figure 9 is the block diagram of the Figures 10 to 13 display configuration. Embodiment 5 of this invention. Figure 10 is the side view while in use, Figure 11 is the explanatory diagram while operating, Figure 12 is the top view while operating, and Figure 13 is the cross-section view while operating. Figures 14 to 16 display variations of the example while operating. Figure 14 is the perspective view while operating, Figure 15 is the top view while operating, and Figure 16 is the cross-section view while operating. Figures 17 to 19 display the cross-section view while operating in Figure 20 is the schematic other methods. perspective view during the use of another example. Figure 21 is the schematic perspective view during the use of a further example. Figure 22 is the schematic perspective view during the use of a further example. Figure 23 is the perspective view of a medical micro robot and Figures 24 and 25 are

block diagrams of the configuration. Figure 26 is the block diagram of a variation of the example. Figure 27 is the perspective view of a medical micro robot and Figure 28 is the block diagram of the configuration. Figures 29 and 30 are the perspective views of other medical micro robots and Figure 31 is the perspective view expanding the end section. Figures 32 and 33 are the perspective

views of other variations of the robot example.

1: Main Unit; 2: Objective Lens; 11: LED; 12: Nozzle; 14: Tank; 15: Receiver; 21: Piezoelectric Device; 25: Fan; 26: Motor; 38: Nozzle.

Applicant Representative: Patent Attorney Jun Tsuboi

Figure 1

Figure 2

Figure 3

Figure 6

Figure 10

Figure 11

Figure 17

Figure 18

11

Figure 14

Figure 15

Figure 16

Figure 20

Figure 28

Figure 29

Figure 30

Figure 31

Figure 32

Figure 33

Continuation of Page 1

			•	•	
	(51) Int. Cl. ⁵ Identification		Identification	JPO file number	
	A 61 B	17/00	symbols	7807-4C	
	A 61 B	8/14	320	9052-4C	
	A 61 F	2/06	•	7603-4C	
		2/28		7603-4C	
	B 64 G	1/66		Z 8817-3D	
(72) Inventor: Shoichi Gotanda		hi Gotanda	Olympus Optical Co., Ltd., 2-43-2 Hatagaya, Shibuya-ku, Tokyo		
(72) Inventor: Masahiro Koda		hiro Koda	Olympus Optical Co., Ltd., 2-43-2 Hatagaya, Shibuya-ku, Tokyo		
(72) Inventor: Yutaka Oshima			a Oshima	Olympus Optical Co., Ltd., 2-43-2 Hatagaya, Shibuya-ku, Tokyo	
(72) Inventor: Tsutomu Okada			mu Okada	Olympus Optical Co., Ltd., 2-43-2 Hatagaya, Shibuya-ku, Tokyo	
(72) Inventor: Akira Suzuki			Suzuki	Olympus Optical Co., Ltd., 2-43-2 Hatagaya, Shibuya-ku, Tokyo	
(72) Inventor: Eiichi Fuse			Fuse	Olympus Optical Co., Ltd., 2-43-2 Hatagaya, Shibuya-ku, Tokyo	
(72) Inventor: Masaaki Hayashi				Olympus Optical Co., Ltd., 2-43-2 Hatagaya, Shibuya-ku, Tokyo	

PATENT ABSTRACTS OF JAPAN

(11) Publication number:

04-144533

(43) Date of publication of application: 19.05.1992

(51) Int.CI.

A61B 1/00 A61B 5/14 A61B 17/00 // A61B 8/14 A61F 2/06 A61F 2/28 B64G 1/66

(21) Application number: 02-268866 (71) Applicant: OLYMPUS OPTICAL

CO LTD

(22) Date of filing: 05.10.1990 (72) Inventor: ADACHI HIDEYUKI

UEDA YASUHIRO
TABATA TAKAO
GOTANDA SHOICHI
KUDO MASAHIRO
OSHIMA YUTAKA
OKADA TSUTOMU
SUZUKI AKIRA
FUSE EIICHI
HAYASHI MASAAKI

(54) ENDOSCOPE

(57) Abstract:

PURPOSE: To facilitate inspection, etc., to reduce intrusiveness, and to extend inspection range by controlling the main body for executing telemetry transmission of an image signal from an observing means so that the direction of inertia force can be switched to the different direction, floating it in a zero gravity space and using it. CONSTITUTION: In a minute gravity space or in a zero gravity space, this endoscope is inserted into a body-cavity of a patient. In the body-cavity, a main body 1 is in a floating state. In such a state, in the case it is desired to vary or advance the attitude of the main body 1, it is operated by

operating an external transmitting part placed in the outside of the body and executing telemetry transmission of a signal to a receiving part 15 of the endoscope. In accordance with the contents of the signal received by the receiving part 15, a valve controller 16 opens a prescribed valve 9 repeatedly for a short time each, and emits singly and repeatedly compressed air from a tank 14. By a reaction at the time of emitting singly compressed air from a nozzle 12, inertia force works on the main body 1. In such a state, in accordance with the blowout direction from the nozzle 12, inertial navigation, that is, a conversion of the direction and a movement of the main body 1 can be executed.

⑩日本国特許庁(JP)

⑩特許出願公開

② 公開特許公報(A) 平4-144533

®Int.Cl.

識別記号

庁内整理番号

❸公開 平成4年(1992)5月19日

A 61 B 1/00 5/14 300 A 300 Z 8117-4C 8932-4C 8932-4C **

審査請求 未請求 請求項の数 1 (全15頁)

9発明の名称 内視鏡

②特 類 平2-268866

@出 颜 平2(1990)10月5日

@発明者安達 英之

東京都渋谷区幅ケ谷 2 丁目43番 2 号 オリンパス光学工業 株式会社内

79発明者 植田 康弘

東京都渋谷区幡ケ谷2丁目43番2号 オリンパス光学工業

株式会社内

⑫発明者田畑 孝夫

東京都渋谷区幅ケ谷2丁目43番2号 オリンパス光学工業

株式会社内

②出 顋 人 オリンパス光学工業株

東京都渋谷区幡ケ谷2丁目43番2号

式会社

四代 理 人 弁理士 坪 井 淳 外2名

最終頁に続く

明 翻 容

1、発明の名称 内視額

2. 特許請求の範囲

カプセル状の本体と、この本体に設けられた
観察用手段と、上記本体に設けられ致なる方向の
関性力を選択的に発生する第1の手段と、この第
1の手段による慢性力の発生およびその領性力の
向きを切り換える第2の手段と、この第2の手段
を制御する信号および上記観察手段からの
面像
信号をテレメトリ伝送する第4の手段とを
見傾信
と記本体を数少重力空間あるいは無力空間に
どとむする内視鏡。

3. 発明の詳細な説明

[産業上の利用分野]

本発明は、特に敬少量力空間または無重力空間において使用する内視鏡に関する。

[従来の技術]

体腔内やエンジン・配管等の内部を検査する内

視飾は、これまで種々のものが提案され、かつ使 用されてきた。

しかし、この従来の内視없は、いずれも地球上で使用されることを前提としたものである。それ故、量力の影響を受け、視野方向や移動方向を適照的に操作して変更するためには、大きな振動力を必要としていた。したがって、大きな駆動力を有する動力原および操作伝達系等を構成しなければならなかった。また、それに応じて構造が複雑で大型化する。

[発明が解決しようとする課題]

ところで、近年、ロケットや字面ステーション等を利用して字面で人間が生活する機会が徐々に増えてきている。宇宙空間においても、生体や機器内の検査が必要となってくることが当然に予想される。

この場合、地球の引力圏から返ざかるにつれ、 低力は小さくなり、ついにはほぼ無度力空間にな る。こうした環境における内視鏡の操作は、これ までの内視鏡のものとは異なる発想で考えなけれ はならないが、未だ、そのような環境で使用され るべき内視鏡は、知られていない。

本発明は上記課題に着目してなされたもので、その目的とするところは、微少量力空間または無度力空間において、検査等の容易性、低侵職性、検支範囲の拡大が図れる内視鏡を提供することにある。

【課題を解決するための手段および作用】

モニタ9で内視鏡が観察する視野像を写し出すよ うになっている。

また、本体1の先端壁部において、対物レンズ2の上下部位には照明手段としてのLED11が16けられている。

さらに、本体1の後端盤部の周囲には等角間隔でそれぞれ斜め倒後方へ向いた複数のノズル12は個別にパルプリを介してなり、この各リズル12は個別にパルプリを介してケンク14に接続されている。各パインク14には圧縮空気が充填されている。各パイコントローラ16からの借号を受けて開閉するようになっている。送信を受けて作動するようになっている。

上記 阿 俊 送 楷 部 6 か 6 体 外 吳 偕 部 7 、 また は 体 外 送 俳 耶 1 7 か 6 受 信 耶 1 5 へ の 俳 号 の テレ メ ト リ 伝 送 は 、 そ の 環 境 に 応 じ て 使 用 可 能 な 例 え ば 無 線 や 超 音 波 等 を 利 用 し た 手 及 に よっ て 行 われ る。また、 C C D 駆 助 回 路 5 、 L E D 1 1 、 各 バ ル ブ 9 、 受 信 部 1 5 、 バ ル ブ コ ン ト ロ ー ラ 1 6 な ど が

[実热例]

第1図ないし第3図は本発明の第1の実施例を 示すものである。

第1図中1は内視鏡の本体であり、これは先端登師と後端壁部とを球形、中間部を筒形としたカブセル形状となっている。この本体1の内部には後述するような種々の必要な師品が組み込まれている。そして、この内視鏡は微少盤力空間または無重力空間において単独で浮遊するようになっている。

本体1の先端壁部にはその中央に位置して観察を取り、ではないの方にはいる。CCDの内側には固定での方には対けるでの方には対しての方には対しての方には対しての方には対しての方になり、CCDの形がしたが、CCDの形がしたが、CCDの形がしたが、CCDの形がしたが、CCDの形がしたが、CCDの形がしたが、CCDの形が

必要とする成力は、電級(蓄電池)13から供給 を受けるようになっている。

なお、第1図で示すように、上記タンク14は、本体1内中央に配置されている。本体1内のタンケ14より先端側に位置して面象送信部6と制御部4が投電され、これの上側部には電源13が投置されている。また、受信部15は本体1の投始部内に投資されている。

次に、上記構成の作用を説明する。。 の内観の作用を説明する。 の内観の作用を説明する。 の内観の情報の体ででは、 の内には、 の内には、 の内には、 の内には、 の内には、 ののでは、 ののででは、 ののでは、 ののででは、 ののでは、 ののでは、 ののでは、 ののでは、 ののでは、 ののでは、 ののでは、 ののでは、 造力)が働く。モレて、ノズル12からの吸出方向に応じて損性航行、つまり、本体1の向きの変換および移動を行うことができる。 なお、第3図はバルブ駆動倡号、バルブの開放(圧縮空気の放出時間)、本体1の移動量の関係を示している。

しかして、この内視的によれば、微少量力空間または無量力空間において、本体1の向きを変換したり移動したりできるから、これによる検接の容易性、低優健性、検査範囲の拡大等が図れる。

なお、本体1の外面部にそれぞれ異なるう場合をのは、気がの別長センサを設け、気性筋行を行う場合をでの別長センサによって回じを改視するようにの聴触を選次別定して位置を放視面の上下のの財産を改けたがないのではなってを関係している。またはその対してもない場合にはその変化をよりをはどの関性力を与えるようにしてもよい。

この実施例ではファン25を選択的に駆動することにより周囲の流体を発き込んで吹き出し、 その反動で本体1に対する推進力、姿勢制御を行うことができる。 その他の構成や作用は上記第1の実施例のものと時間にである。

第6図ないしま7図は本発明の第3の実施例を示すものである。この実施例では本体1の後部における側面の3方向以上の部位と後端部位のそれぞれにファン25を設ける。この各ファン25はそれぞれのモータ26によって駆動されるようになっている。また、本体1内には受債部15で受けた借号によって操作されるモータ額動回路27が設けられている。

この実施例では受信班15で受けた信号によって操作されるバルブコントローラ40で所定の既出バルブコントローラ40で所定のの既はパルブ39を開放すると、予領タンク36からもれに対応したノズル38に加圧流体を供給して、このときの反動で本体1に対する推進力、姿勢制御を行うことができる。また、各部へのエネルギは体外電歌部35からエネルギ伝送ライン32を通じて受け、エネルギ制御部34を通じて供給されている。その他の作用は上記第1の実施例のものと路間にである。

なお、内辺鏡の本体を出力によって慣性力を与え、推進や姿勢制御に利用することができる。 つまり、本体に磁性体を付設し、これを磁場中に浮遊させるとともに、その磁場3次元的に変えることによって慣性力を与えるものである。

第10図ないし第13図は本発明の第5の次の第日ではないしのである。この実施的は医療用では医療である。こののではなさなが、このなどではないではないが、このなどははいいのではないが、ないののではは、100元では、10

さらに、最先端のカプセル部41の前部におけ

婚例のA部が個曲する。ついで、加熱が進むと、 外112回で示す状態にB部が週曲する。このようにA部からB部へ順に助げることにより自走用 脚48の蹴り作用がなされるのである。また、自 走用脚48の蹴り作動後、上紀通電を止めると自 然放熱して第11回①の状態協合金で形成した場 合には上記通電を止めた後、その部材51をよび 終鞣膜53などの弾性復元力で第11回①の状態 に戻るようにする。

しかして、この血管内自走式検定程において、最先端のカブセル部41におる複数の自走用脚48に銀り動作を行わせると、このカブセル部48に銀り動作を行わせると、り、カブセルがの場合の壁面を後方へは、りのより前のというの世では、一般を得るのでは、一般を得るのでは、一般を得るのでは、一般を得るのでは、一般を得るのでは、一般を得るのでは、一般を得るのでは、一般を得るのでは、一般を得るのでは、一般を認めては、一般を認めては、一般を認めては、一般を認めては、一般を認めるのでは、一般を認めるのでは、一般を認めるのでは、一般を認めるのでは、一般を認めるのでは、一般を認める。

る周面から斜め飼前方へ向けて突き出す後述する ような複数の自走用脚48が全層にわたり専角間 隔で取り付けられてる。この目走用脚48は第 12図ないし第13図で示すように2方向性の形 状紀低合金で形成した帯状の郎材51の片面に調 電加熱用の比較的電気的抵抗のある磁電筋52が 貼り付けられている。導電腦52は例えばニッケ ルから形成され、一端から他熘に向かって平行な 部分52a.52aの他蛸を遮詰してループ形状 をなしている。また、上記部分52α。52αは - 端側から他鱗側へその輻を段階的に小さくして ある。さらに、この導電層52の両面は無気的紙 投験53によって披摂してある。そして、導電層 52における部分52a, 52aの鍋が狭い一端 側を基端卸としてこれを第11図①で示すように 折り曲げて上記最先端のカプセル部41に取り付 ける。このような自走用脚48を作助させるには 上記導電腦52に適電し、これを電気的抵抗熱で 発熱させると、蘇電暦52の先端側が先に高い温 皮で加熱され、最初に第11回②で示す状態に先

ル部43のテレメトリ機能によって処理する。 これらを回収するにはケーブル47を引いて行うにとかできる。

なお、自走用脚48が限り動作をしていない場合には、その目走用脚48が倒斜め前方へ延びてそれぞれの先端が血策46の内盤に当たり、カフセル部41.42.43を保持する。

た、上記通路を停止することで第14図①の遊線的な状態に復場する。これによれば、自走用助48がマイクロ化することにより高速な応答が実現する。

新20図は本発明の第6の実施例を示すものである。この実施別は医療用マイクロロボットとしての大脳用自走式検査装置に係る。すなわち、この装置は複数のカブセル部61、62、63を有し、これらは一列に連結されている。 最先端のカ

第21図は本発明の第7の実施例を示すものである。この実施例は医療用マイクロロボットとしての小脇用自走式検査装置に係る。すなわち、この装置は可後2つのカブセル部72.73を有し、これらは連結されている。最先端のカブセル部72における本体72ョの先期には前方の観算を

さらに、最先館のカブセル部 5 1 の下面には同 遮用の自走用跑 6 7 が 設けられ、最後端のカブセ ル部 5 3 の下面には後退用の自走用 即 6 8 が設け られている。この各自走用 即 6 7 , 6 8 としては 前述したような程々のものが利用できるが、その 前遮用と後退用のものとでは、その駄る向きを逆 にして配数する。

しかして、この大腸用自走式袋 変数 置において、 最先端のカブセル部 6 1 にある自虚用 脚 6 7 に 財

観察する対物レンズ74が設けられ、その内側に設けた図示しない遺像素子によって退像の間になって、はいる。 また、対物レンズ74の間にいる。 はいいる。 後方のカブセルののおけられている。 後方のカブセルが超過を設け、これによって周囲の組織の超過を設け、これによって周囲の組織を合った。 また、2つのカブセル部72、73の少ないる。 また、2つのカブセル部72、73の少ないる。

きらに、最先端のカブセル部72の下面には投 数の位置停止用脚78が設けられている。この での止用脚78は、必要な位置で停止させるようになっている。この脚78としては前述したような程 々のものが利用できる。後方のカブセル部73の 関囲にはパルーン79が設けられていて、膨らむ ことにより小路80の壁に当たるようになってい る。しかして、この小陽月自走式検査装置の各カ ブセル配72,73は小脇80の蝎動運動で抑人 されるものである。

また、これらの操作や観察事の情報は、上記テレメトリ級能によって処理する。

骨箱接 ロボット 9 2 には、骨切除用マニピュレータ 1 0 4、骨組 9 用マニピュレータ 1 0 5、人工骨出口 1 0 6 とが設けられている。骨箱接口ボット 9 2 のカブセル本体 9 2 ュ内には骨合成装置 1 0 7 とポンプなどからなる人工骨吐出装置

光像) 切の伝送を行うようになっている。

第23図ないし第26図は、生体内部で治療を行うため、生体内に長時間留置するマイクロロボット、のまり、血被採集ロボット91と骨補格ロボット92の例を示している。血被採集ロボット91は患者自身の血液を採集してよりの行を治療する機能を持っている。

具体的に述べれば、両方のロボット91、92とも、そのカブセル本体91a.92aには、前地用噴射口93と姿勢制御用噴射口94を有した推進装置95が设けられている。さらに、カブセル本体91a.92aには、照明窓96と観察窓

108が设けられている。推過装置95、骨切除用マニピュレータ104、骨綴り用マニピュレータ105は、外部操作装置99によるテレメトリ伝送によって操作されるようになっている。骨合成装置107では上記分離した元素からリン酸カルシウム系の物質を作り人工骨とする。

血液採集ロボット91の成分分離装置103と 骨箱をロボット92の骨合成装置107とは物質 脂炭パイプ109によって連指されている。

上記血液探集ロボット91と背初終ロボット 92とのシステムをプロック的に示すと第24図 で示すようになる。

しかして、この血液採集ロボット 9 1 と骨箱体ロボット 9 2 とは、第 2 3 図で示すように生体内に長期間留置され、血液採集ロボット 9 1 により 思者の血管 1 0 0 から血液を採取して貯蔵するととし、その血液中から骨の合成に必要な成分を分離し、これを骨積能ロボット 9 2 の骨合成虫 2 配また、骨箱に必要な人工骨を合成する。また、骨箱にボット 9 2 は骨切除用マニビュレ

ータ104で患者の骨110の病変部を切除し、骨級り用マニピュレータ105で人工骨貼出装置 108から受け取った人工骨で補係する。

上記名ロボット91、92の助力も生体中から得るにする。この手段の1例を第25図分分離で示す。すなわち、血液採集ロボット91の成分分離接置111では、採集した血液中より、ぶどうなくで、が、と改然(0))とを分離貯蔵したので、エネルギが必要なとき、取り開放しておく。そして、エネルギが必要なとき、取り出助し、倒えば推進接置116を操作驱動する。で、外部のでは推進接で116を操作を表するので、外部のではない。というに生体内からエネルギ源を入手するので、外部からの結合をする必要がなく、ロボットを長期に留置することが可能である。

また、生体から得る助力減として内燃機関であってもよい。第25回はこの場合の1例を示すものである。すなわち、血被中から酸素を分離する 成分分離袋盤121とその酸素を貯蔵する酸素貯

照明窓138や観察窓139も扱けられている。また、カブセル本体130mには前週用瞭射口141と姿勢制四用喷射口142を有した推進装置が設けられている。

さらに、カブセル本体130aの内部には、第 28回で示すように、血液採集用ロボット131 から輸送パイプ143を通じて得た成分を利用 してタンパク膜を合成するタンパク膜合成装置 145、たんぱく腰を吐出するポンプ146、タンパク糸を合成するタンパク糸合成装置147、 ケンパク糸を吐出するポンプ148が設けられている。

しかして、血液採集用ロボット131ではその 成分分離装置149において、採集した血液中か らタンパク質を分離する。血管抽修用ロボット 130ではそのタンパク質の輸送を受けてタンパ ク酸たる人工シート132とタンパク系135を 合成し、ポンプ146,148でそれぞれを必要 に応じて送り出し、必要に供する。この動作は無 鉄等を利用したテレメトリ伝送によって制御され 双タンク122とを設ける。また、大便からメタンガスを分能する成分分離装置123とそのメタンガスを貯蔵するメタンガス貯蔵クンク124を設ける。その政素とメタンガスを燃焼してある。その内機機関125を作動してメタンガスを設化して為エネルギを取り出す。これで、例えば推進装置126を駆動する。

なお、上記例では骨の結構についての場合であったが、血管の結構についても同じように利用できる。第27回はその場合の血管結集用ロボット130を示す。血液採集用ロボット131については上記同様なものである。

この血管補作用ロボット130は、そのカブセル本体130mに人工シート132の招待および操作用マニピュレータ133、雄合針操作用マニピュレータ134、たんぱく糸135を繰り出す吐出口136、人工シート(タンバク膜)132 を出す取出し口137等が設けられている。また

る。

血管補作用ロボット130は、その操作用マニピュレータ133と離合針操作用マニピュレータ133と離合針操作用マニピュレート134を用いて血管150の例えば動脈をしたがって、消費材である人工シート132とタンパク糸135は生体内で人手でき、外部からの補給は不要である。したがって、長期間、生体内で機能を受ってある。

第29図ないし第31図は他の方式の医療用は 内ロボットを示すものである。すなわち、この医療の ・ である。すなわち、このとなった。ないのない。 ・ が、 かいではからない。 ・ かいではいて、このでは、 かいではないでは、 このでは、 153 ののないでは、 25 ののないでは、 25 ののには、 25 ののには、 25 ののでは、 25 できるようには、 25 でいる。この走行用脚154として、 例とには、 25 でいる。この走行用脚154として、 のよいでに 25 でいる。この走行用脚154として、 のか 25 に 25 できる 電索子に斜めに取り付けた剛毛からなり、その圧 電索子の援助パターンに応じて前進または後退き せ得るようになっている。また、前述したような 虚行用脚の方式を用いてもよい。

また、各マイクロロボット配151,152, 153にはテレメトリ伝送用の受信装置155、 走行用約154のための駆動回路156が設けら れている。さらに、第1のマイクロロボット部 151には、LED等からなる無明手段157、 対物レンズ158や退促素子159年からなる規 系手段160、送倡装置161、誘導装置162 が組み込まれている。機像架子159で信号化し た級條信号は送信装置161で体外の受信装置に 伝送される。また、誘導装置162は後続のマイ クロロボット部152、153に、例えば常波を 発して誘導信号を送る。 第2のマイクロロボッ ト部152には、生体処置用のマニピュレータ 163を専出自在に格的する格納室164、マニ ピュレータ163を操作する収助用モータ165、 格約室164のMD部を閉閉自在に覆う閉閉カバ

る。また・凹部コネクタ176には受光然子178が設けられていて、これらLED173と 受光菜子178により前側のマイクロロボット部151・152の誘導信号で後ろ側のマイクロロボット部152、153の近距離になったとき、 互いの値線を合わせて正確に位置決めするようになっている。

なお、第32図と第33図は他の形式のマイクロロボット部を示す。第32図で示すマイクロロボット部は観察や走行などの用途に使用する超音

このための具体的な手段の一例を第31回で示す。すなわち、斜めの各特合階面には3分割された電磁石171が付設されており、それぞれの極性は対応するものと逆になっている。したがかったでがカ側の特合増面には匿気信号伝送用コネクタ172、LED173、電弧コネクタ174が突出した凹部コネクタ175、176、177が設けられている。電気信号伝送用コネクク172は互いの駆動回路を接続する。電源コネクタ174は互いの電源を接続するようになっていませんと

波振助子194と駆助用モータ195を追加した 構成のものである。第33図で示すマイクロロボット部196は往附針197を備え、これに連結されるマイクロロボット部198には興胺タンク199を解えたものである。

[発明の効果]

以上説明したように本発明の内視鏡によれば、 改少重力空間または無重力空間においての使用に 適し、その検査等の容易性、低優健性、検査範囲 の拡大が図れる。

4 図面の簡単な説明

第1 図ないし第3 図は本売明の第1 の実施例を示し、第1 図はその内視鏡の接絡的な斜視図、第3 図は取りののはなのは路的なりにといいまる。第4 図は取りのよびの表施例の内視鏡の機路的な斜視図、第5 図はその構成を示すプロック図である。第6 図は本発明の第7 図はその構成を示すプロック図である。第6 図は本発明の第3 の実施例の内視鏡の機路的な斜視

特別平4-144533 (8)

図、第9図はその構成を示すプロック図である。 第10図ないし第13図は本発明の第5の実施例 を示し、第10図はその使用状態における側方が ら見た図、第11図は走行用脚の動作説明図、第 12図はその赴行用的の平面図、第13図はその 赴行用脚の断菌図である。 第14図ないし第16 図はその走行用脚の変形例を示し、第14図はそ の走行用脚の動作を示す斜視図、第15図はその **世行用脚の平而図、第16図はその赴行用脚の断** 面図である。 第17図ないし第19図は他の走行 用脚の断面図である。 第20 図は他の例の使用状 態を示す機略的な斜視図である。第21図はさら、 に他の例の便用状態を示す概略的な斜視図である。 第22図はさらに他の例の使用状態を示す概略的 な斜視図である。第23図は医療マイクロロボッ トの解説図、第24図ないし第25はそのプロッ ク根底図である。 第26図は他の変形例を示すプ ロック構成図である。第27回は他の医療マイク ロロボットの斜視図、第28図はそのブロック指 成図である。第29図および第30図はさらに他

の 医 領 マイク ロロボットの 斜 視 図 、 第 3 1 図 は その 端 面 部 分 の 拡大 した 斜 視 図 、 第 3 2 図 と 第 3 3 図 は 他 の 変 形 例 を 示す ロ ボット の 斜 視 図 で あ る。 1 … 本 休 、 2 … 対 物 レンズ 、 1 1 … L E D 、 1 2 … ノ ズ ル 、 1 4 … タ ン ク 、 1 5 … 受 信 郁 、 2 1 … 圧 電 常 于 、 2 5 … ファン 、 2 6 … モ … タ 、 3 8 … ノ ズ ル 。

出版人代理人 弁理士 坪 井 淳

Fig. /

第 1 図

第 2 图

第 3 図

Fig. 5

第 5 図

特刚平4-144533 (11)

剪 10 図

Fig. 12

A B 52a 48

51 52b

Fig. 13

48 52

第 13 図

Fig. W

Fig. 24

Fig. 3d

第 30 図

Fig. 3

第 31 図

第 32 図

第 33 図

第1頁の filnt. A 61 A 61 A 61 B 64	Cl. F B 1	7/00 8/14 2/06 2/28 1/66		川記号 2 0	z	庁内整理番号 7807-4C 9052-4C 7603-4C 7603-4C 8817-3D	
@発 明	者	五.	反 田	E		東京都渋谷区幡ケ谷2丁目43番2号 株式会社内	オリンパス光学工業
個発 明	者	I	藤	Œ	宏	東京都渋谷区幡ケ谷2丁目43番2号 株式会社内	オリンパス光学工業
個発 明	者	大	島		豊	東京都渋谷区幡ケ谷2丁目43番2号 株式会社内	オリンパス光学工業
@発 明	峇	岡	毌		勉	東京都渋谷区幡ケ谷2丁目43番2号 株式会社内	オリンパス光学工業
個 発明	潛	鈴	木		明	東京都波谷区船ケ谷2丁目43番2号 株式会社内	オリンパス光学工業
@発 明	者	布	施	桀		東京都渋谷区幡ケ谷2丁目43番2号 株式会社内	オリンパス光学工業
@発 明	潜	林		E	明	東京都渋谷区報ケ谷2丁目43番2号 株式会社内	オリンパス光学工業

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.