§ 14. Электромагнитные колебания и волны

В задачах данного раздела используются данные таблиц 3 и 15 приложения. Если в задаче приведена графическат зависимость нескольких величин от какой-либо одной и при этом все кривые изображены на одном графике, то по оси у задаются условные единицы.

14.1. Колебательный контур состоит из конденсатора емкостью C = 888 пФ и катушки с индуктивностью L = 2 мГн. На какую длину волны λ настроен контур?

Решение:

По формуле Томсона период электромагнитных колебаний в контуре $T=2\pi\sqrt{LC}$ — (1). Длина волны, на которую настроен контур, $\lambda=cT$ — (2). Подставляя (1) в (2), получаем $\lambda=2\pi c\sqrt{LC}=2512\,\mathrm{M}.$

14.2. На какой диапазон длин воли можно настроить велебательный контур, если его индуктивность L=2 мГн, а емьесть может меняться от $C_1=69$ пФ до $C_2=533$ пФ?

Решение:

Длина волны, на которую можно настроить контур (1) задачу 14.1), $\lambda = 2\pi c \sqrt{LC}$ — (1). Подставляя в (1) значения емкостей C_1 и C_2 , получаем днапазон длин воли от $\lambda_1 = 700$ м до $\lambda_2 = 1946$ м.

14.3. Какую индуктивность L надо включить в колебательный контур, чтобы при емкости C=2 мкФ получить частету $\nu=1000$ Гц?

По формуле Томсона период электромагнитных колебаний в контуре $T=2\pi\sqrt{LC}$ — (1), а частота $v=\frac{1}{T}$ — (2). Из (1) и (2) следует, что $v=\frac{1}{2\pi}\frac{1}{\sqrt{LC}}$ — (3). Возводя обе части уравнения (3) в квадрат, получаем $v^2=\frac{1}{4\pi^2LC}$, откуда индуктивность контура $L=\frac{1}{4\pi^2v^2C}=12,66$ мГи.

14.4. Катушка с индуктивностью L = 30 мкГи присоединена к плоскому конденсатору с площадью пластин $S = 0.01 \,\mathrm{m}^2$ и расстоянием между ними $d = 0.1 \,\mathrm{mm}$. Найти диэлектрическую проницаемость ε среды, заполняющей пространство между пластинами, если контур настроен на длину волны $\lambda = 750 \,\mathrm{m}$.

Решение:

Емкость плоского конденсатора $C = \frac{\varepsilon \varepsilon_0 S}{d}$ — (1), где ε — диэлектрическая проницаемость среды, S — площадь пластин конденсатора, d — расстояние между ними. Длина волны, на которую настроен контур (см. задачу 14.1), $\lambda = 2\pi c \sqrt{LC}$ — (2). Подставляя (1) в (2), получаем $\lambda = 2\pi c \sqrt{\frac{\varepsilon \varepsilon_0 SL}{d}}$ — (3). Возведя уравнение (3) в квадрат, получим $\lambda^2 = \frac{4\pi^2 c^2 \varepsilon \varepsilon_0 SL}{d}$, откуда диэлектрическая проницаемость среды, заполняющей пространство между пластинами конденсатора, $\varepsilon = \frac{\lambda^2 d}{4\pi^2 c^2 \varepsilon_0 SL} = 5,96$.

14.5. Колебательный контур состоит из конденсатора e_{MKOC} , тью C=25 нФ и катушки с индуктивностью L=1,015 Гн. Обжладки конденсатора имеют заряд q=2,5 мкКл. Написать уравнение (с числовыми коэффициентами) изменения разности потенциалов U на обкладках конденсатора и тока I в цепи. Найти разность потенциалов на обкладках конденсатора и ток в цепи в моменты времени T/8, T/4 и T/2. Построить графики $_{\rm JTHX}$ зависимостей в пределах одного периода.

Решение:

332

обкладках Разность потенциалов 112 конденсатора $U = U_0 \cos \omega t$ — (1). Начальное значение разности потенциалов $U_0 = \frac{q}{C}$ — (2), а циклическая частота колебаний $\omega = \frac{2\pi}{T}$ — (3), где $T = 2\pi\sqrt{LC}$ — (4) — период колебаний. Подставляя (4) в (3), находим $\omega = \frac{1}{\sqrt{IC}}$ — (5). Подставляя (2) и (5) в (1), получим $U = \frac{q}{C} \cos \frac{t}{\sqrt{LC}}$ — (6). Подставляя числовые данные в (6), получим $U = 100\cos(2\pi \cdot 10^3 t)$. Гок цепи контура $I = C \frac{dU}{dt} = -CU_0 \omega \sin \omega t$ — (7). Подставляя числовые данные в (7) и учитывая (2) и (5), получим $I = -15.7 \sin(2\pi \cdot 10^3 t)$. Если $t_1 = \frac{T}{2}$, то $U_1 = 70.7 \text{ B}$ и $I_1 = -11,1$ мА. Если $t_2 = \frac{T}{4}$, то $U_2 = 0$ В и $I_2 = -15.7$ мА. Еели $t_3 = \frac{T}{2}$, то $U_3 = -100\,\mathrm{B}$ и $I_3 = 0$. Для заданного интервала значений t построим графики.

14.6. Для колебательного контура предыдущей задачи написать уравнение (с числовыми коэффициентами) изменения со временем t энергии электрического поля W_3 , энергии магнитного поля $W_{\rm M}$ и полной энергии поля W. Найти энергию электрического поля, энергию магнитного поля и полную энергию поля в моменты времени $\frac{T}{8}$, $\frac{T}{4}$ и $\frac{T}{2}$. Построить графики этих зависимостей в пределах одного периода.

Запишем выражение для энергии магнитного и электрических полей катушки $W_{\rm M}=\frac{LI^2}{2}$ — (1) и конденсатора $W_3=\frac{cU^2}{2}$ — (2). В предыдущей задаче мы напили: $U=100\cos(2\pi\cdot 10^3t)$ В — (3); $I=-15,7\cdot 10^{-3}(2\pi\cdot 10^3)$ А — (4). Подставляя (3) в (2) и (4) в (1), а также числовые значения индуктивности L и емкости C из предыдущей задачи, получим $W_{\rm M}=125\cdot 10^{-6}\sin^2(2\pi\cdot 10^3t)$ Дж. И $W_3=125\cdot 10^{-6}\cos^2(2\pi\cdot 10^3t)$ Дж. Полная энергия поля $W=W_{\rm M}+W_3=125\cdot 10^{-6}(\sin^2(2\pi\cdot 10^3t)+\cos^2(2\pi\cdot 10^3t))$; $W=125\cdot 10^{-6}$ Дж. При $t=\frac{T}{8}=\frac{\pi}{4\omega}$ имеем $\omega t=\frac{\pi}{4}$, тогда $W_{\rm M}=125\cdot 10^{-6}\sin^2\frac{\pi}{4}=62.5\cdot 10^{-6}$ Дж. При $U=125\cdot 10^{-6}\cos^2\frac{\pi}{4}=62.5\cdot 10^{-6}$ Дж. При $U=125\cdot 10^{-6}\cos^2\frac{\pi}{4}=62.5\cdot 10^{-6}$ Дж. При $U=125\cdot 10^{-6}\cos^2\frac{\pi}{4}=62.5\cdot 10^{-6}$ Дж. При

$$W = \frac{T}{4}$$
 имеем $\omega t = \frac{\pi}{2}$, тогда $W_{_{\rm M}} = 125 \cdot 10^{-6}$ Дж; $W_{_{\rm M}} = 0$; $W = 125 \cdot 10^{-6}$ Дж. При $t = \frac{T}{2}$ имеем $\omega t = \pi$, тогда $W_{_{\rm M}} = 0$; $W_{_{\rm M}} = 125 \cdot 10^{-6}$ Дж; $W = 125 \cdot 10^{-6}$ Дж.

14.7. Уравнение изменения со временем разности потентиалов на обкладках конденсатора в колебательном контуре имеет вид $U=50\cos 10^4\pi\,t\, {\rm B}$. Емкость конденсатора $C=0.1{\rm mk\Phi}$. Найти период T колебаний, индуктивность L контура, закон изменения со временем t тока I в цепи и длину волны λ , соответствующую этому контуру.

Решение:

По условию уравнение изменения со временем разности потенциалов $U = 50\cos 10^4 \pi t$ — (1). Общий вид уравнения $U = U_0\cos\omega t$ — (2). Сопоставляя (1) и (2), находим

 $\pmb{\omega}$ = $\mathbf{10}^4\pi$ и учитывая, что $\omega = \frac{2\pi}{T}$, находим T = 0.2 мс.

Поскольку период колебаний $T=2\pi\sqrt{LC}$ — (3), то, возведя обе части уравнения (3) в квадрат, находим $T^2=4\pi^2LC$, откуда индуктивность контура $L=\frac{T}{4\pi^2C}=10{,}13\,\mathrm{m\Gamma}$ н. Закон изменения со временем тока в

цепи $I = C \frac{dU}{dt} = -CU_0 \omega \sin \omega t$ — (4). Подставляя в (4)

числовые значения, получаем $I = -157 \sin 10^4 \pi t$. Длина **волны, соответствующая** контуру, $\lambda = cT = 60$ км.

14.8. Уравнение изменения со временем тока в колебательном контуре имеет вид $I = -0.02 \sin 400 \pi t$ А. Индуктивность контура $L = 1\Gamma$ н. Найти период T колебаний, емкость C контура, максимальную энергию $W_{\rm M}$ магинтного поля и максимальную энергию $W_{\rm M}$ электрического поля.

По условию уравнение изменения тока со временем $I=-0.02\sin 400\pi\,t$ — (1). Закон изменения со временем тока в цепи (см. задачу 14.7) $I=-CU_0\omega\sin\omega t$ — (2). Сопоставляя (1) и (2), находим период колебаний $T=5\,\mathrm{MC}$. С другой стороны, по формуле Томсона $T=2\pi\sqrt{LC}$ — (3), откуда после возведения (3) в квадрат емкость конденсатора $C=\frac{T^2}{4\pi^2L}=0.63\,\mathrm{Mk\Phi}$. Ток максимален, когда $\sin 400\pi\,t=-1$, т. е. $I_{max}=0.02\,\mathrm{A}$. Тогда максимальная энергия магнитного поля $W_\mathrm{M}=\frac{LI^2}{2}=0.2\,\mathrm{MДж}$. Поскольку колебания в контуре не затухают, то по закону сохранення энергии максимальная энергия электрического поля $W_\mathrm{M}=W_\mathrm{M}=0.2\,\mathrm{MДж}$.

14.9. Найти отношение энергии $\frac{W_{\rm st}}{W_{\rm sh}}$ магнитного поля колебательного контура к энергии его электрического поля для момента времени T/8.

Решение:

Запишем выражение для энергии магнитного и электрических полей катушки $W_{_{\rm M}}=\frac{LI^2}{2}$ и конденсатора $W_{_{2}}=\frac{cU^2}{2}$. Напряжение в колебательном контуре изменяется по следующему закону: $U=U_0\cos\omega t$, а сила тока в цепи $I=C\frac{dU}{dt}$, где C — электроемкость конденсатора. $I=-CU_{6}\omega\sin\omega t$. Тогда выражения для $W_{_{2}}$ и $W_{_{2}}$ можно записать в виде $W_{_{\rm M}}=\frac{LC^2U_{0}\omega^2\sin^2\omega t}{2}$.

$$W_3 = \frac{CU_0^2 \cos^2 \omega t}{2}$$
, а их отношение $\frac{W_M}{W_3} = \frac{LC^2U_0^2\omega^2 \sin^2 \omega t \cdot 2}{2CU_0^2 \cos^2 \omega t} = LC\omega^2 t g^2 \omega t$. Циклическая частота и период колебаний связаны следующим соотношением: $\omega = \frac{2\pi}{T}$. При $t = \frac{T}{8}$, $\omega t = \frac{\pi}{4}$. Кроме того, $\frac{W_M}{W_3} = t g^2 \frac{\pi}{4} = 1$.

14.10. Колебательный контур состоит из конденсатора емкостью
$$C=7$$
 мкФ и катушки с индуктивностью $L=0.23$ Гн и сопротивлением $R=40$ Ом. Обкладки конденсатора имеют заряд $q=0.56$ мКл. Найти период T колебаний контура и логарифмический декремент затухания \aleph колебаний. Написать уравнение изменения со временем t разности потенциалов U на обкладках конденсатора. Найти разность потенциалов в моменты времени, равные: $\frac{T}{2}$, T , $\frac{3T}{2}$ и $2T$. Построить график $U=f(t)$ в пределах двух периодов.

Период электромагнитных колебаний в контуре, дотоящем из емкости C, индуктивности L и сопротивная R, определяется формулой $T = \frac{2\pi}{\sqrt{1/LC - (R/2L)^2}}$ Логарифмический декремент затухания $\aleph = \delta T$ — (. le $\delta = \frac{R}{2L}$ — (2) — коэффициент затухания. Подставля. ...) B (1). находим $\aleph = \frac{RT}{2L} = 0.7$. Разность потенциалов: 05кладках конденсатора меняется со временем по 🖫 🕾 ну $U = U_0 e^{-ct} \cos \omega t$ — (3), rge $\omega = \frac{2\pi}{T} = 250\pi$ — (4), $U_o = \frac{q}{C} = 80 \,\mathrm{B}$ — (5). Подставляя (4) и (5) в (3), получаем $U = 80e^{-87.5t} \cos 250\pi t$. Если $t_1 = \frac{T}{2}$, то $U_1 = -56.5$ В Бели $t_2 = T$, то $U_2 = 40 \,\mathrm{B}$. Если $t_3 = \frac{3T}{2}$, то $U_3 = -28 \,\mathrm{B}$. Если $t_4=2T$, то $U_1=20\,\mathrm{B}$. Характер зависимости U=f(t)показан на графике.

14.11. Колебательный контур состоит из конденсатс f см-костью C=0.2 мкФ и катушки с индуктивностью $L=5.0^\circ$ мГи. При каком логарифмическом декременте затухания 8° разлость потенциалов на обкладках конденсатора за время t=1мс у сеньшится в три раза? Каково при этом сопротивление R контуро?

Решение:

Период электромагнитных колебаний в контуре равен $T = \frac{2\pi}{\sqrt{1/LC - (R/2L)^2}} .$ Предположим, что R достатечно мало, тогда период колебаний найдем по формуле

 $T = 2\pi\sqrt{LC} = 0.2 \cdot 10^{-3}$ е. Разность потенциалов на обклад-

338

конденсатора изменяется со временем по закону
$$U = U_0 \exp\left(-\frac{\aleph t}{T}\right)$$
, откуда $\aleph = \frac{T \ln(U_0/U)}{t}$. Подставляя

рисловые данные, получим
$$\aleph = \frac{0.2 \cdot 10^{-3} \ln 3}{10^{-3}} = 0.22$$
. Лога-

рифмический декремент затухания $\aleph = \delta T = \frac{R}{2L}T$, откуда

$$R = \frac{28L}{T} = 11,1 \,\text{Om}$$
. Величина $\left(\frac{R}{2L}\right)^2 \approx 10^3$ намного меньше

величины $\frac{1}{LC} \approx 10^9$, следовательно, мы действительно

могли применять формулу $T=2\pi\sqrt{LC}$.

14.12. Колебательный контур состоит из конденсатора еместью $C = 405 \,\mathrm{h}\Phi$, катушки с индуктивностью $L = 10 \,\mathrm{m}$ Гн и сиротивления $R = 2 \,\mathrm{Om}$. Во сколько раз уменьшится разность потенциалов на обкладках конденсатора за один период колебатий?

Решение:

Разность потенциалов на обкладках конденсатора меняется **со временем** по закону $U = U_0 e^{-\delta} \cos \omega t$, следовательно, за

время
$$t = T$$
 отношение $\frac{U_0}{U} = e^{it}$ — (1), где

$$T = \frac{2\pi}{\sqrt{1/LC - (R/2L)^2}}$$
 — (2) — период электромагнитных

колебаний в контуре, $\delta = \frac{R}{2L}$ — (3) — коэффициент затухамия. Подставляя (2) и (3) в (1), окончательно получаем

$$\frac{U_0}{U} = exp\left(\frac{\pi R}{\sqrt{L/C - R^2/A}}\right) = 1.02.$$

14.13. Колебательный контур состоит из конденсатора e_{MKOC} тью C=2,22 нФ и катушки длиной l=20 см из медной проволоки диаметром d=0,5 мм. Найти логарифмический декремент затухания \aleph колебаний.

Решение:

Пусть D — диаметр катушки, тогда ее площадь поперечного сечения равна $S_{\kappa} = \frac{\pi D^2}{A}$ — (1). Число витков катушки $N = \frac{l}{d}$ — (2), где l — длина катушки, d — лиаметр проволоки. Индуктивность катушки $L = \mu \mu_0 n^2 / S$ — (3), где $\mu_0 = 4\pi \cdot 10^{-7} \, \text{Гн/м}$ — магнитная постоянная, μ магнитная проницаемость среды, $n = \frac{N}{I} = \frac{1}{I}$ — (4) — число витков на единицу длины. Подставляя (1) и (4) в (3), получаем $L = \frac{\mu \mu_0 l \pi D^2}{4 J^2}$ — (5). Длина одного витка катушки составляет $l_i = \pi D$, а всей проволоки, намотанной на катушку, $l_{\rm up} = N l_{\rm I} = \frac{\pi D l}{d}$ — (6). Активное сопротивление проволоки $R = \rho \frac{I_{\rm np}}{S}$, где ρ — удельное сопротивление меди, $S_{\rm np} = \frac{\pi d^2}{4}$ — (8) — площадь поперечного сечения проволоки. Подставляя (6) и (8) в (7), получаем $R = \frac{4\rho Dl}{J^3}$ — (9). Логарифмический декремент затухания $\aleph = \delta T$ — (10), где $\delta = \frac{R}{2L}$ — (11) — коэффициент зату хания, $T = 2\pi\sqrt{LC}$ — (12) — период электромагнитных колебаний в контуре. Подставляя (5) в (12), находим 340

$$T = \frac{\pi D}{d} \sqrt{\mu \mu_0 \pi l C}$$
 — (14), затем, подставляя (13) и (14) в (10), окончательно получаем $\aleph = \frac{8\rho}{d} \sqrt{\frac{\pi l C}{\mu \nu_0}} = 0.018$.

14.14. Колебательный контур имеет емкость C = 1,1 нФ и индуктивность L = 5 мГн. Логарифмический декремент затухания 1 = 0,005. За какое время вследствие затухания потеряется 99% энергии контура?

Решение:

Разность потенциалов на обкладках конденсатора меняется со временем по закону $U = U_0 e^{-\delta t} \cos \omega t$ — (1). Из формулы (1) следует, что $\frac{U_0}{U} = e^{\delta t}$ — (2). По условию $\frac{U_0 - U}{U_0} = 0,99$, следовательно, $\frac{U_0}{U} = 100$ — (3). Приравнивая правые части уравнений (2) и (3), получаем $e^{\delta t} = 100$ — (4). Логарифмируя уравнение (4), находим $\delta t = \ln 100$ — (5). Логарифмический декремент затухания $\Re = \delta T$, откуда $\delta = \frac{\Re}{T}$ — (6). Подставляя (6) в (5), получаем $\frac{\Re t}{T} = \ln 100$ или $t = \frac{T \ln 100}{\Re}$ — (7). По формуле Томсона $T = 2\pi\sqrt{LC}$ — (8). Подставляя (8) в (7), окончательно находим $t = \frac{2\pi\sqrt{LC} \ln 100}{2} = 13,6$ м/с.

14.15. Колебательный контур состоит из конденсатора и катушки длиной $l=40\,\mathrm{cm}$ из медной проволоки, площадь поперечного сечения которой $s=0.1\,\mathrm{mm}^2$. Найти емкость конденсатора C, если, вычисляя период колебаний контура по приближенной формуле $T=2\pi\sqrt{LC}$, мы допускаем ошибку $\varepsilon=1\%$.

Указание: учесть, что ошибка $\varepsilon = \frac{T_2 - T_1}{T_2}$, где T_1 — период колебаний, найденный по приближенной формуле, а T_2 — период колебаний, найденный по точной формуле.

Решение:

Индуктивность катушки (см. задачу 14.13) $L = \frac{\mu \mu_1 h_2 h_3^2}{4}$ (1), где D — диаметр катушки, d — диаметр провежники. Поскольку $S = \frac{\pi d^2}{4}$, то $d^2 = \frac{4S}{\pi}$ — (2) и $d = 2\sqrt{\frac{S}{\pi}}$ Подставляя (2) в (1), получаем $L = \frac{\mu\mu_0 l \pi^2 D^2}{16S}$ — (4). Активнос сопротивление проволоки $R = \frac{4\rho Dl}{r^3}$ — (5) где ρ — удельное сопротивление меди. Подставляя (3) в (5), получаем $R = \frac{\rho Dl}{2} \left(\frac{\pi}{S}\right)^{\frac{3}{2}}$ — (6). По формуле Томсона $T_{\rm I} = 2\pi\sqrt{LC}$ — (7). Подставляя (4) в (7), получаем $T_1 = \frac{\pi^2 D}{2} \sqrt{\frac{\mu \mu_0 lC}{S}}$ — (8). По точной формуле, с учетом активного сопротивления проволоки, намотанной катушку, $T_2 = \frac{2\pi}{\sqrt{1/LC - (R/2I)^2}}$ — (9). Подставляя (4) и

(6) B (9), получаем
$$T_2 = \frac{\pi^2 \mu \mu_0 D}{2} \sqrt{\frac{lC}{S(\mu \mu_0 - \rho^2 lC \pi^2)}}$$

(10). По условию $\varepsilon = 1 - \frac{T_1}{T_2}$ — (11). Подставляя (8) и (10) в

(11), находим
$$\varepsilon = 1 - \sqrt{1 - \frac{\rho^2 l C \pi}{\mu \mu_0}}$$
 — (12). Возводя обе

жасти уравнения (12) в квадрат, получаем
$$\varepsilon^2 - 2\varepsilon + 1 = 1 - \frac{\rho^2 l C \pi}{\mu \mu_0}, \quad \text{откуда окончательно находим}$$

$$C = \frac{(2 - \varepsilon)\varepsilon \mu \mu_0}{\pi \sigma^2 l} = 0.68 \, \text{мк} \Phi.$$

14.16. Катушка длиной $l=50\,\mathrm{cm}$ и площадью поперечного сечения $S=10\,\mathrm{cm}^2$ включена в цепь переменного тока частотой $\omega=50\,\mathrm{Fu}$. Число витков катушки N=3000. Найти сопротивление R катушки, если сдвиг фаз между напряжением и током $\varphi=60^\circ$.

Решение:

Сдвиг фаз между напряжением и током определяется формулой $tg\varphi = \frac{\omega L - 1/\omega C}{R}$ — (1). Поскольку цепь не солержит конденсатора, то формула (1) примст упрощенный $tg\varphi = \frac{\omega L}{R}$ — (2). Циклическая частота колебаний связана с обычной соотношением $\omega = 2\pi v$ — (3). Подставляя (3) в (2), получаем $tg\varphi = \frac{2\pi vL}{R}$ — (4). Индуктивность катушки $L = \mu\mu_0 n^2 lS$ — (5), где $n = \frac{N}{l}$ — (6) — число витков на единицу длины. Подставляя (6) в (5), получаем $L = \frac{\mu\mu_0 N^2 S}{l}$ — (7), затем, подставляя (7) в (4), находим $tg\varphi = \frac{2\pi v\mu\mu_0 N^2 S}{Rl}$, откуда активное сопротивление катуш-

14.17. Обмотка катушки состоит из N = 500 витков медной проволоки, площадь поперечиого сечения которой $s = 1 \text{ мm}^2$.

ки. $R = \frac{2\pi v \mu \mu_0 N^2 S}{h_{GCO}} = 4.1 \text{ Ом.}$

Длина катушки l=50 см, ее диаметр D=5 см. При какой частоте ν переменного тока полное сопротивление Z катушки вдвое больше ее активного сопротивления R?

Решение:

сопротивление катушки (см. задачу 14.15) $R = \frac{\rho Dl}{2} \left(\frac{\pi}{S}\right)^{\frac{3}{2}}$ — (1), а ее полное сопротивление $Z = \sqrt{R^2 + \omega^2 L^2}$ — (2). Индуктивность катушки (см. задачу 14.16) $L = \frac{\mu \mu_0 N^2 S_{\kappa}}{I}$ — (3), где $S_{\kappa} = \frac{\pi D^2}{I}$ — (4) — площадь поперечного сечения катушки. Подставляя (4) в (3), получаем $L = \frac{\mu \mu_0 N^2 \pi D^2}{M}$ — (5). Поскольку $\omega = 2\pi \nu$ — (6), то, подставляя (1), (5) и (6) в (2), получаем $Z = \frac{D}{2l} \left(\frac{\pi}{S}\right)^{\frac{3}{2}} \sqrt{\rho^2 l^4 + \pi v^2 \mu^2 \mu_0^2 N^4 D^2 S^3}$ — (7). По условию Z = 2R. Подставляя (1) и (7) в (8), получаем $\frac{1}{l}\sqrt{\rho^2 l^4 + \pi v^2 \mu^2 \mu_0^2 N^4 D^2 S^3} = 2\rho l$ — (9). Возведя обе части уравнения (9) в квадрат, имеем $\rho^2 l^4 + \pi v^2 \mu^2 \mu_0^2 \times$ $\times N^4 D^2 S^3 = 4 \rho^2 l^4$, отсюда $v^2 = \frac{3 \rho^2 l^4}{\pi u^2 u_0^2 N^4 D^2 S^3}$ или окончательно $v = \frac{\rho l^2}{m N^2 D} \sqrt{\frac{3}{\pi S^3}} = 265 \Gamma ц.$

14.18. Два конденсатора с емкостями $C_1 = 0.2 \, \text{мк} \Phi$ и $C_2 = 0.1 \, \text{мк} \Phi$ включены последовательно в цепь переменного тока напряжением $U = 220 \, \text{B}$ и частотой $v = 50 \, \Gamma$ ц. Найти ток I 344

 $_{f B}$ цепи и падения потенциала U_{C1} и U_{C2} на первом и втором конденсаторах.

Решение:

Емкостное сопротивление конденсатора выражается формулой $x_c = \frac{1}{\omega C}$ — (1), где $\omega = 2\pi v$ — (2) — циклическая частота колебаний. Подставляя (2) в (1), найдем сопротивления конденсаторов: $x_{c1} = \frac{1}{2\pi v C_1}$ и $x_{c2} = \frac{1}{2\pi v C_2}$. Поскольку конденсаторы соединены последовательно, то их общее сопротивление $x_c = x_{c1} + x_{c2} = \frac{C_1 + C_2}{2\pi v C_1 C_2}$ — (3). По закону Ома для переменного тока $I_{3\phi} = \frac{U_{3\phi}}{X_c}$ — (4), где $I_{3\phi} = \frac{I}{\sqrt{2}}$ — (5) и $I_{2\phi} = \frac{U}{\sqrt{2}}$ — (6) — эффективные значения тока и напряжения. Подставляя (3) в (4), с учетом (5) и (6), находим ток в цепи $I = \frac{2\pi v C_1 C_2 U}{C_1 + C_2} = 4,6$ мА. Падения

потенциала на первом и втором конденсаторах будут соответственно равны $U_1 = IX_{c1} = \frac{C_2 U}{C_1 + C_2} = 73,34 \,\mathrm{B}$ и

$$U_2 = IX_{c2} = \frac{C_1 U}{C_1 + C_2} = 146.6 \,\mathrm{B}.$$

14.19. Катушка длиной $l=25\,\mathrm{cm}$ и раднусом $r=2\,\mathrm{cm}$ имеет обмотку из N=1000 витков медной проволоки, площадь поперечного сечения которой $s=1\,\mathrm{mm}^2$. Катушка включена в цепь переменного тока частотой $v=50\,\mathrm{Fm}$. Какую часть полного сопротивления Z катушки составляет активное сопротивление R и индуктивное сопротивление X_L ?

Индуктивность катушки выражается формулой $L = \mu \mu_{L, \times}$ $\times n^2 lS_{\kappa}$ — (1), где $n = \frac{N}{l}$ — (2) — число витков на единицу длины и $S_{\kappa} = \pi r^2$ — (3) — площадь поперечного сечения катушки. Подставляя (2) и (3) в (1), получаем $L = \frac{\mu \mu_0 N^2 \pi r^2}{I}$ — (4). Индуктивное сопротивление катупцки выражается формулой $X_L = \omega L$ — (5), где $\omega = 2\pi v$ — (6) — циклическая частота колебаний. Подставляя (4) и (6) в (5), получаем $X_L = \frac{2\pi^2 \nu \mu \mu_0 N^2 r^2}{r}$ — (7). Активное сопротивление проволоки выражается формулой $R = \rho \frac{I_{\rm np}}{c}$ — (8), где $l_{\rm np} = 2\pi rN$ — (9) — длина проволоки, намотанной на катушку. Подставляя (9) в (8), получаем $R = \frac{2\pi rN\rho}{S}$ — (10). Полное сопротивление цени $Z = \frac{2\pi rN}{\Omega} \sqrt{l^2 \rho^2 + \pi^2 v^2 \mu^2 \mu_0^2 N^2 r^2 S^2} - (11). \text{ Из формул (7)},$ (10) и (11) следует, что доли активного и емкостного сопротивлений от полного соответственно рагны $\frac{R}{Z} = \frac{\rho I}{\sqrt{l^2 \rho^2 + \pi^2 v^2 \mu^2 \mu^2 \mu^2 N^2 r^2 S^2}} = 0.74 \cdot 100\% = 74\% \text{ M}$ $\frac{X_L}{Z} = \frac{\pi \nu \mu \mu_0 NrS}{\sqrt{l^2 \rho^2 + \pi^2 v^2 \mu^2 \mu^2 N^2 r^2 S^2}} = 0.68 \cdot 100\% = 68\%.$

14.20. Конденсатор емкостью $C=20\,\mathrm{Mk\Phi}$ и резистор, сопротивление которого $R=150\,\mathrm{Om}$, включены последовательно в цепь переменного тока частотой $\nu=50\,\mathrm{\Gamma\mu}$. Какую часть напряжения U, приложенного к этой цепи, составляют падения напряжения на конденсаторе U_{C} и на резисторе U_{R} ?

Решенне: выкостное сопротивление конденсатора (см. задачу 14.18) $X_C = \frac{1}{2\pi vC}$ — (1). Полное сопротивление цепи $Z = \sqrt{R^2 + X_C^2}$ — (2). Подставляя (1) в (2), получаем $\ddot{Z} = \sqrt{R^2 + \frac{1}{4\pi^2 v^2 C^2}}$ — (3). По закону Ома для переменного тока $I_{3\phi} = \frac{U_{3\phi}}{Z}$ — (4), где $I_{3\phi} = \frac{I}{\sqrt{2}}$ — (5) и $\tilde{U}_{3\phi} = \frac{U}{\sqrt{2}}$ — (6) — эффективные значения тока и напряжения. Подставляя (3) и (4), с учетом (5) и (6), находим ток в цепи $I = \frac{C}{\sqrt{R^2 + 1/(4\pi^2 v^2 C^2)}}$ — (7). Токи через резистор $I_R = \frac{U_R}{D}$ — (8) и $I_C = 2\pi \nu C U_C - (9)$, где U_R и $U_C - падения напряжения$ на резисторе и конденсаторе. Поскольку резистор и **конденсатор** соединены последовательно, то $I = I_C = I_R$ — **(10)**. Подставляя (7), (8) и (9) в (10), получаем $\frac{U}{\sqrt{R^2 + 1/(4\pi^2 v^2 C^2)}} = 2\pi v C U_C \quad \text{if} \quad \frac{U}{\sqrt{R^2 + 1/4\pi^2 v^2 C^2}} = \frac{U_P}{R},$ откуда $\frac{U_C}{U} = \frac{1}{2\pi\nu C\sqrt{R^2 + 1/(4\pi^2\nu^2C^2)}} = 0,727\cdot100\% = 72,7\%$

$$\mathbf{H} \frac{U_R}{U} = \frac{1}{\sqrt{R^2 + 1/(4\pi^2 v^2 C^2)}} = 0.685 \cdot 100\% = 68.5\%.$$

14.21. Конденсатор и электрическая лампочка соединены последовательно и включены в цепь переменного тока напряжением $U=440\,\mathrm{B}$ и частотой $\nu=50\,\Gamma$ ц. Какую емкость C дол-

жен иметь конденсатор для того, чтобы через лампочку протекал ток $I=0.5~{\rm A}$ и падение потенциала на ней было равным $U_n=110~{\rm B}$?

Решение:

Ток, протекающий через лампочку (см. задачу 14.20), $I = \frac{U_{\pi}}{R_{\pi}}$ — (1), где R_{π} — сопротивление лампочки. С дру-

гой стороны,
$$I = \frac{U}{\sqrt{R_{\pi}^2 + 1/(4\pi^2 v^2 C^2)}}$$
 — (2). Из (1) имеем

$$R_{\pi} = \frac{U_{\pi}}{I}$$
 — (3). Возведя (3) в квадрат и подставляя в (2),

получим
$$I = \frac{U}{\sqrt{U_n^2/I^2 + 1/\left(4\pi^2 v^2 C^2\right)}}$$
, откуда после пре-

образований находим емкость конденсатора $C = \frac{I}{2\pi v \sqrt{U^2 - U_A^2}} = 3,74 \, \text{мк}\Phi.$

14.22. Катушка с активным сопротивлением $R=10~{\rm OM}$ и индуктивностью L включена в цепь переменного тока наиряжением $U=127~{\rm B}$ и частотой $v=50~{\rm \Gamma}$ ц. Найти индуктивность L катушки, если известно, что катушка поглощает мошность $P=400~{\rm BT}$ и сдвиг фаз между напряжением и током $\varphi=60^\circ$.

Решение:

Изобразим вскторную диаграмму напряжений. Катушка обладает индуктивностью L и активным сопротивлением R. Напряжение на R будет иметь такую же фазу, что и ток I, а напряжение на индуктивности U_L опередит ток

на
$$\frac{\pi}{2}$$
. Полное папряжение мож-

но изобразить (см. рисунок) векторной суммой $\vec{\vec{U}} = \vec{U}_R + \vec{U}_L$. Индуктивное сопротивление катушки (см. задачу 14.19) $X_L = 2\pi \nu L$ — (1), а ее полное сопротивление $\mathbf{Z} = \sqrt{R^2 + X_L^2}$ — (2). Подставляя (1) в (2), получаем $Z = \sqrt{R^2 + 4\pi^2 v^2 L^2}$ — (3). По закону Ома для переменного тока $I_{3\phi} = \frac{U_{3\phi}}{7}$ — (4), где $I_{3\phi} = \frac{I}{\sqrt{2}}$ — (5) и $U_{3\phi} = \frac{U}{\sqrt{2}}$ — (6) — эффективные значения тока и напряжения. Подставляя (3) и (4), с учетом (5) и (6), находим ток в цепи $I = \frac{U}{\sqrt{R^2 + 1/(4\pi^2 v^2 L^2)}}$ — (7). Мощность, поглощаемая катушкой, $P = I_{9\varphi} U_{9\varphi} \cos \varphi$ — (8). Подставляя (7) в (8), получаем $P = \frac{U^2 \cos \varphi}{\sqrt{R^2 + 4\pi^2 v^2 L^2}}$, откуда после пренаходим индуктивность катушки **образов**аний $L = \frac{\sqrt{U^4 \cos^2 \varphi - P^2 R^2}}{2 - P} = 55 \text{ m}\Gamma \text{H}.$

14.23. Найти формулы для полного сопротивления цепи Z и сдвига фаз φ между напряжением и током при различных способах включения сопротивления R, емкости C и индуктивности L. Рассмотреть случаи: а) R и C включены последовательно; б) R и C включены параллельно; в) R и L включены последовательно; R и R включены параллельно; R и R включены последовательно.

Решение:

Если цепь содержит сопротивление R, емкость C и индуктивность L, соединенные последовательно, то пол-

ное сопротивление цепи равно
$$Z = \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}$$
 —

- (1), а сдвиг фаз между напряжением и током определяется формулой $tg\varphi = \frac{\omega L 1/\omega C}{R}$ (2).
- а) Если R и C включены последовательно, то L=0 , следовательно, формулы (1) и (2) примут вид

$$Z = \sqrt{R^2 + \left(\frac{1}{\omega C}\right)^2} \text{ и } tg\varphi = \frac{1}{\omega CR}.$$

б) Если R и C включены параллельно, то L=0 . Тегда

$$\frac{1}{Z} = \sqrt{\frac{1}{R^2} + (\omega C)^2}$$
, откуда $Z = \frac{R}{\sqrt{1 + R^2 \omega^2 C^2}}$ и $tg\varphi = -\omega CR$.

в) Если R и L включены последовательно, то C=0, следовательно, формулы (1) и (2) примут вид $Z=\sqrt{R^2+(\omega\,L)^2}$ и $tg\,\varphi=\frac{\omega\,L}{R}$.

r) Если R и L включены параллельно, то C=0 . Тогда

$$\frac{1}{Z} = \sqrt{\frac{1}{R^2} + \left(\frac{1}{\omega L}\right)^2} \text{ , откуда } Z = \frac{R\omega L}{\sqrt{1 + \left(\omega L\right)^2}} \text{ и } tg\varphi = \frac{R}{\omega L}.$$

- д) Если R, L и C включены последовательно, то формулы для Z и $tg\varphi$ будут иметь начальный вид (\tilde{I}) и (2). В качестве примера пострым векторную диаграмму для дани (0) случая. Векторы \tilde{U}_R и \tilde{I} буду дараллельны, вектор \tilde{U}_L повериу: на $\frac{\pi}{2}$ против часовой стрелки, а \tilde{U}_L по часовой стрелке относительно \tilde{I} (см. рисунок).
- **14.24.** Конденсатор ємкостью C = 1мк Φ и резистор сепротивлением R = 3 к Θ м включены в цепь переменного тока часто-

той $v = 50 \, \Gamma$ ц. Найти полное сопротивление Z цепи, если контенсатор и резистор включены: а) последовательно; б) паралнельно.

Решение:

а) Если конденсатор и резистор включены в цепь послевовательно, то полное сопротивление цепи (см. задачу

14.23) pabho
$$Z = \sqrt{R^2 + \left(\frac{1}{\omega C}\right)^2}$$
 — (1), rge $\omega = 2\pi \nu$ —

(2) — циклическая частота колебаний. Подставляя (2) в (1),

получим
$$Z = \sqrt{R^2 + \frac{1}{4\pi^2 v^2 C^2}} = 4,37 \, \text{кОм.}$$
 б) Если конден-
сатор и резистор включены в цепь параллельно, тогда

$$Z = \frac{R}{\sqrt{1 + R^2 \omega^2 C^2}}$$
 — (3). Подставляя (2) в (3), получим

$$Z = \frac{R}{\sqrt{1 + 4\pi^2 v^2 C^2 R^2}} = 2.18 \text{ KOM}.$$

14.25. В цепь переменного тока напряжением $U = 220\,\mathrm{B}$ и частотой $v = 50\,\mathrm{F}\,\mathrm{u}$ включены последовательно емкость $C = 35,4\,\mathrm{mk}\Phi$, сопротивление $R = 100\,\mathrm{Om}$ и индуктивность $L = 0,7\,\mathrm{Fh}$. Найти ток I в цепи и падения напряжения U_C , U_R и U_L на емкости, сопротивлении и индуктивности.

Решение:

По закону Ома для переменного тока $I_{3\phi} = \frac{U_{3\phi}}{Z}$ — (1), где

$$Z = \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}$$
 — (2) — полное сопротивление

цепи,
$$I_{3\phi} = \frac{I}{\sqrt{2}}$$
 — (3) и $U_{5\phi} = \frac{U}{\sqrt{2}}$ — (4) — эффектив-

ные значения тока и напряжения. Подставляя (2) в (1), с учетом (3) и (4), и учитывая, что $\omega = 2\pi v$ — цикли-

ческая частота колебаний, находим ток в цепи $I = \frac{U}{\sqrt{R^2 + \left(2\pi vL - 1/2\pi vC\right)^2}} = 1,34 \text{ A.}$ Падение напряжения

на емкости равно $U_C = IX_C = \frac{I}{2\pi\nu C} = 120,49\,\mathrm{B}$. Падение напряжения на резисторе $U_R = IR = 134\,\mathrm{B}$. Падение напряжения на индуктивности равно $U_L = IX_L = 2\pi\nu LI = 294,68\,\mathrm{B}$.

14.26. Индуктивность $L=22,6\,\mathrm{M}\Gamma$ и и сопротивление R включены параллельно в цепь переменного тока частотой $\nu=50\,\Gamma$ ц. Найти сопротивление R, если известно, что сдвиг фаз между напряжением и током $\varphi=60^\circ$.

Решение:

Если индуктивность и сопротивление включены нараллельно в цепь переменного тока, то сдвиг фаз между напряжением и током (см. задачу 14.23) определяется формулой $tg\phi=\frac{R}{\omega L}$ — (1), где $\omega=2\pi\nu$ — (2) — циклическая частота колебаний. Подставляя (2) в (1), получаем $tg\phi=\frac{R}{2\pi\nu L}$, откуда сопротивление $R=2\pi\nu Ltg\phi=12.3$ Ом.

14.27. Активное сопротивление R и индуктивность L соединены параллельно и включены в цепь переменного тока напряжением $U=127\,\mathrm{B}$ и частотой $v=50\,\mathrm{Fu}$. Найти совротивление R и индуктивность L, если известно, что цепь поглощает мощность $P=404\,\mathrm{Br}$ и сдвиг фаз между напряжением и током $\phi=60^\circ$.

Решение:

Если активное сопротивление и индуктивность включены параллельно в цепь переменного тока, то полное сопро-352 вивление цепи (см. задачу 14.23) определяется формулой

$$Z = \frac{R\omega L}{\sqrt{R^2 + (\omega L)^2}}$$
 — (1), где $\omega = 2\pi v$ — (2) — циклическая

частота колебаний, а сдвиг фаз между напряжением и током (см. задачу 14.26) равен $tg\varphi = \frac{R}{2\pi \nu L}$ — (3). Подставляя

(2) **B** (1), получаем
$$Z = \frac{2\pi vRL}{\sqrt{R^2 + (2\pi vL)^2}}$$
 — (4). По закону

Ома для переменного тока
$$I_{3\phi} = \frac{U_{3\phi}}{Z}$$
 — (5), где $I_{2\phi} = \frac{I}{\sqrt{2}}$ —

(6) и
$$U_{3\phi} = \frac{U}{\sqrt{2}}$$
 — (7) — эффективные значения тока и на-

пряжения. Подставляя (4) в (5), с учетом (6) и (7), получим

$$I = \frac{U\sqrt{R^2 + (2\pi vL)^2}}{2\pi vRL}$$
 — (8), а мощность переменного тока

$$P = I_{9\phi} U_{9\phi} \cos \varphi$$
 — (9). Подставляя (8) в (9), получаем

$$P = \frac{U^2 \sqrt{R^2 + (2\pi vL)^2}}{4\pi vRL}$$
— (10). Решая совместно (3), (4) и

(10), находим
$$R = \frac{U^2 \sqrt{tg^2 \varphi + 1}}{2P} = 40 \text{ Om } \text{и}$$

$$L = \frac{U^2 \sqrt{tg^2 \varphi + 1}}{4\pi v P tg \varphi} = 74 \text{ M} \Gamma \text{H}.$$

14.28. В цепь переменного тока напряжением $U=220~{\rm B}$ включены последовательно емкость C, сопротивление R и индуктивность L. Найти падение напряжения U_R на сопротивлении, если известно, что падение напряжения на конденсаторе $U_C=2U_R$, на индуктивности $U_L=3U_R$.

12-3269

Если емкость сопротивление и индуктивность включены в цепь переменного тока последовательно, то $U = \frac{U_R}{\sqrt{2}} + \frac{U_L}{\sqrt{2}} - \frac{U_C}{\sqrt{2}}$ — (1), где U_R , U_L и U_C , — падения напряжения на сопротивлении, индуктивности и емкости. По условию $U_C = 2U_R$ — (2) и $U_L = 3U_R$ — (3). Подставляя (2) и (3) в (1), получим $U = \frac{2U_R}{\sqrt{2}} = \sqrt{2}U_R$, откуда падение напряжения га сопротивлении $U_R = \frac{U}{\sqrt{2}} = 155,56\,\mathrm{B}$.