Tarea Método de Punto Fijo

Angel Caceres Licona

June 7, 2020

1 Considerar la función $e^x + x^2 - x - 4...$

1.1 Construya tresdiferentes funciones de iteracion.

Consideremos primero $g(x) = e^x + x^2 - 4$

Gráfica de la primer g(x)

La derivada de esta función es:

 $g'(x) = -e^x - 2x$ y tenemos que |g'(x)| < 1 para $x \in (-0.74, 0)$

Al hacer las iteraciones obtenemos lo siguiente:

n	g(x)
1	-0.281718171541
2	-3.16614858154
3	6.06666252367
4	464.043421299
5	3.40014339901e + 201
II .	

Que no converge a la raíz buscada.

Probamos con una segunda $g(x) = \log(-x^2 + x + 4)$ Su derivada es $g'(x) \frac{1-2x}{-x^2 + x + 4}$ Y tenemos que |g'(x)| < 1 no tiene soluciones reales. Iteramos y obtenemos lo siguiente:

n	g(x)
1	1.38629436112
2	1.24256321468
3	1.30795433512
4	1.28015848727
5	1.29235524303
6	1.2870741686
7	1.28837503694
8	1.28880963902
9	1.2886207127
10	1.28870285824

Que parece estar convergiendo muy lentamente.

Escogemos una tercera $g(x)=\frac{-e^x+x+4}{x}$ Tenemos que $g'(x)=-\frac{e^x(x-1)+4}{x^2}$ y que $|g'(x)|<1x\in(-1.88751,0)$

Iteramos y obtenemos lo siguiente

n	g(x)
1	2.28171817154
2	-1.53909222227
3	-1.45951746429
4	-1.58143648714
5	-1.39928735729
6	-1.68224194147
7	-1.26723832134
8	-1.93424818125
9	-0.993263918688
10	-2.65424944943
H	

que tampoco converge.

Código del programa

```
1 from math import *
  def gx(x):
      return -\exp(x) -x**2 +4
  def puntofijo(a,tol, n = 20):
      b = gx(a)
      tramo = abs(b-a)
11
      while(tramo>=tol and i<=n):</pre>
         print "El⊔punto⊔fijo⊔es⊔",b,"⊔despues⊔de⊔",i,"⊔iteraciones"
13
```

```
b = gx(a)
tramo = abs(b-a)
i = i+1
respuesta = b

return(respuesta)

respuesta = puntofijo(-0.74,10**-25)
```

2.1 Repetir el ejercicio con $x^3 - x^2 - 10x + 7$

Primero graficamos en el intervalo (0,1)