$\frac{\text{Annexe 1}}{\text{Formules et des tables d'intérêt composé pour un taux d'intérêt } i \text{ et pour } n \text{ périodes}$

Montant à calculer	Notation	Formule
Valeur future d'un montant actuel	(F/P, i, n)	$F = P(1+i)^n$
Valeur actuelle d'un montant futur	(P/F, i, n)	$P = F(1+i)^{-n}$
Valeur future d'une annuité	(F/A, i, n)	$F = A \frac{\left(1 + i\right)^n - 1}{i}$
Valeur actuelle d'une annuité	(P/A, i, n)	$P = A \frac{(1+i)^n - 1}{i(1+i)^n}$
Annuité équivalente à un montant actuel	(A/P, i, n)	$A = P \frac{i(1+i)^n}{(1+i)^n - 1}$
Annuité équivalente à un montant futur	(A/F , i, n)	$A = F \frac{i}{(1+i)^n - 1}$
Valeur actuelle d'une série de montants à croissance arithmétique de gradient G (ignorant l'annuité de base A)	(P/G, i, n) G=(1/i)[(F/A)-r	$P = G\left\{\frac{1}{i} \left[\frac{(1+i)^n - 1}{i(1+i)^n} - \frac{n}{(1+i)^n} \right] \right\}$
Annuité équivalente à une série de montants à croissance arithmétique de gradient G	(A/G, i, n)	$A = G\left[\frac{1}{i} - \frac{n}{(1+i)^n - 1}\right]$
Valeur actuelle d'une série de montants à croissance géométrique avec un taux de croissance g et un montant initial A ₁	(P/A₁,g,i,n) -Si g≠i	$P = A_1 \left[\frac{1 - \left(1 + g\right)^n \left(1 + i\right)^{-n}}{i - g} \right]$
	-Si g=i	$P = \frac{nA_1}{1+i}$
Valeur future d'une série de montants à croissance géométrique avec un taux de croissance g et un montant initial A ₁	(F/A₁,g,i,n) -Si g≠i	$F = A_{1} \left[\frac{\left(1+i\right)^{n} - \left(1+g\right)^{n}}{i-g} \right]$
	-Si g=i	$F = nA_1(1+i)^{(n-1)}$
Annuité d'une série de valeurs à croissance géométrique avec un taux de croissance g et une valeur initiale A ₁	(A/A ₁ ,g,i,n)	$A = (A/F,i,n) * (F/A_1,g,i,n)$ \underline{ou} $A = (A/P,i,n) * (P/A_1,g,i,n)$

P=montant actuel F=montant futur A=annuité G=gradient

i=taux d'intérêt g=taux de croissance

Mohammed Khalfoun