In [90]:

Out[90]:

PROJECT ON MEDICAL INSURANCE

Context

From a Medical Insurance Costs dataset we'll build models using Regression to
predict individual insurance costs. To help us with this task we have some
informations of the persons wih insurance, like the Age, Sex, BMI (Body Mass Index),
Children, Smokers, Region and their Charges. In this notebook we'll clean and
organize the data, build the models and compare the results.

Data Description

 The information about children's medical health insurance includes details about their age, sex, smokers, regions and their insurance charges depends on health conditions, they receive to help understand how to support their healthcare needs better.

Objectives

Children medical health insurance is a type of special protection that helps children
without parents get the medical care they need, like going to the doctor or staying in
the hospital, If they become sick or injured. It's like having a safety net to make sure

Importing Libraries

```
In [1]: import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
import warnings
warnings.filterwarnings("ignore")
```

Read Dataset

```
In [2]: A = pd.read_csv("insurance.csv")
A
```

Out[2]:

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.900	0	yes	southwest	16884.92400
1	18	male	33.770	1	no	southeast	1725.55230
2	28	male	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	northwest	21984.47061
4	32	male	28.880	0	no	northwest	3866.85520
1333	50	male	30.970	3	no	northwest	10600.54830
1334	18	female	31.920	0	no	northeast	2205.98080
1335	18	female	36.850	0	no	southeast	1629.83350
1336	21	female	25.800	0	no	southwest	2007.94500
1337	61	female	29.070	0	yes	northwest	29141.36030

1338 rows × 7 columns

shows number of rows and columns

```
In [24]: A.shape
Out[24]: (1338, 7)
In [25]: A.size
Out[25]: 9366
```

shows all column name in dataframe

```
In [26]: A.columns
```

shows information of dataset

In [22]: A.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1338 entries, 0 to 1337
Data columns (total 7 columns):
               Non-Null Count Dtype
     Column
                               ____
 0
     age
               1338 non-null
                               int64
 1
               1338 non-null
                               object
     sex
 2
     bmi
               1338 non-null
                               float64
 3
     children 1338 non-null
                               int64
 4
     smoker
               1338 non-null
                               object
 5
     region
               1338 non-null
                               object
                               float64
     charges
               1338 non-null
dtypes: float64(2), int64(2), object(3)
memory usage: 73.3+ KB
```

In [30]: A.describe(include="all")

Out[30]:

	age	sex	bmi	children	smoker	region	charges
count	1338.000000	1338	1338.000000	1338.000000	1338	1338	1338.000000
unique	NaN	2	NaN	NaN	2	4	NaN
top	NaN	male	NaN	NaN	no	southeast	NaN
freq	NaN	676	NaN	NaN	1064	364	NaN
mean	39.207025	NaN	30.663397	1.094918	NaN	NaN	13270.422265
std	14.049960	NaN	6.098187	1.205493	NaN	NaN	12110.011237
min	18.000000	NaN	15.960000	0.000000	NaN	NaN	1121.873900
25%	27.000000	NaN	26.296250	0.000000	NaN	NaN	4740.287150
50%	39.000000	NaN	30.400000	1.000000	NaN	NaN	9382.033000
75%	51.000000	NaN	34.693750	2.000000	NaN	NaN	16639.912515
max	64.000000	NaN	53.130000	5.000000	NaN	NaN	63770.428010

Check NaN Values

```
A.isna()
In [31]:
Out[31]:
                                bmi children
                                               smoker region charges
                   age
                          sex
               0 False
                         False
                               False
                                         False
                                                 False
                                                         False
                                                                  False
                  False
                         False
                               False
                                         False
                                                 False
                                                         False
                                                                  False
                  False
                         False False
                                         False
                                                 False
                                                         False
                                                                  False
                  False
                         False
                               False
                                         False
                                                 False
                                                         False
                                                                  False
                         False
                                                 False
                                                         False
                                                                  False
                  False
                               False
                                         False
            1333
                 False
                         False False
                                         False
                                                 False
                                                         False
                                                                  False
                                                                  False
            1334
                 False
                         False
                               False
                                         False
                                                 False
                                                         False
                 False
                         False
                               False
                                         False
                                                 False
                                                         False
                                                                  False
            1336 False
                         False False
                                         False
                                                 False
                                                         False
                                                                  False
            1337
                 False
                         False False
                                         False
                                                 False
                                                         False
                                                                  False
           1338 rows × 7 columns
In [36]: A.isna().sum()
Out[36]:
           age
                          0
                          0
           sex
                          0
           bmi
           children
                          0
           smoker
                          0
           region
                          0
           charges
           dtype: int64
           Duplicates Data
In [38]:
           A[A.duplicated()]
Out[38]:
                 age
                       sex
                              bmi children smoker
                                                       region
                                                                 charges
            581
                            30.59
                                         0
                                                 no northwest 1639,5631
                  19
                      male
In [40]:
           A.drop_duplicates(inplace=True)
 In [ ]:
```

Data Analysis and Visualization on Dataset

Age Column

```
In [17]: sns.histplot(data=A,x="age",color="green")
    plt.title("Distribution of People with respect to Age",size=15)
    plt.xlabel("age", size=12)
    plt.ylabel("Count", size=12)
    plt.show()
```


• In this histplot graph show that more number of people in the dataset near the age of range of 20 and ramaining range of age 25 to 70 distribution of age is normal.

Sex Column

```
In [46]: A["sex"].value_counts().plot(kind="pie",autopct="%i%%")
    plt.title("Distribution of Sex",size=15)
    plt.show()
```

Distribution of Sex

Observation-

• In this piechart graph show that distribution of sex in which count of male is 50% and count of female is 49%.

```
In [39]: A["sex"].value_counts()
Out[39]: sex
    male    676
    female    662
    Name: count, dtype: int64
```

BMI Column (Body Mass Index)

```
In [88]: sns.displot(data=A, x="bmi", color="red")
    plt.title("Distribution Body Mass Index", size=13)
    plt.xlabel("BMI", size=12)
    plt.ylabel("Count", size=12)
    plt.show()
```


- In this distplot graph show that highest BMI index is 30. It is under overweight.
- Normal BMI range is 18.5 to 24.9
 - The value of BMI range below 18.5 is underweight
 - The value of BMI range 18.5 to 24.9 is mediumweight
 - The value of BMI range above 24.9 is overweight

Children Column

```
In [84]: sns.countplot(data=A, x="children")
    plt.title("Children")
    plt.xlabel("childern", size=12)
    plt.ylabel("Count", size=12)
    plt.show()
```


• In this countplot graph we can see that number of people who doesn't have a childern and count is around 570. and other people whose have a childern is around 320. and so on in decline order.

Smokers Column

```
In [91]: plt.figure(figsize=(15,10))
    sns.displot(data=A, x="smoker", color="grey", bins=20)
    plt.title("Smoker People",size=13)
    plt.xlabel("Smoker", size=12)
    plt.ylabel("Count", size=12)
    plt.show()
```

<Figure size 1500x1000 with 0 Axes>

• In this displot graph we can see that number of people who does not smoke is more rather than whose does.

Regions Column

```
In [29]: sns.countplot(data=A,x="region", color="green", edgecolor="black")
    plt.title("Distribution of People Across Regions", size=13)
    plt.xlabel("region", size=12)
    plt.ylabel("count", size=12)
    plt.show()
```


• In this countplot graph we can see that count of people in this four regions are almost same but littlebit more is southeast region.

```
In [73]: A_new=A.groupby("region")
for x,y in A_new:
    print()
    print(x)
    print(y)
```

north									
	age	sex	bmi		smoker	0			
8	37	male	29.830		nc	o northeast	6406.41070		
10	25	male	26.220) 0	nc	o northeast	2721.32080		
16	52	female	30.780	1	nc	o northeast	10797.33620		
17	23	male	23.845	0	nc	o northeast	2395.17155		
20	60	female	36.005	. 0	nc	northeast	13228.84695		
1321	62	male	26.695		yes		28101.33305		
1325	61	male	33.535		nc				
1326	42	female	32.870						
					nc				
1328	23	female	24.225		nc				
1334	18	female	31.920	0	nc	o northeast	2205.98080		
[324 rows x 7 columns]									
north	west								
(11	age	sex	bmi	children	smoker	regior	n charges		
2	33	male	22.705						
3					nc				
4	32	male	28.886		nc				
7	37	female	27.740		nc				
9	60	female	25.840		nc				
24	37	male	28.025	2	nc	o northwest	6203.90175		
• • •	• • •	• • •		• • •	• • •	• • •	• • •		
1319	39	female	26.315	2	nc	o northwest	7201.70085		
1320	31	male	31.065	3	nc	o northwest	5425.02335		
1324	31	male	25.935	1	nc	northwest	4239.89265		
1333	50	male	30.970) 3	nc	northwest	10600.54830		
1337	61	female	29.070		yes	northwest			
					-				
[325	rows	x 7 colu	mns]						
south	east								
	age	sex	bmi	children	smoker	region	charges		
1	18	male	33.77	1	no	southeast	1725.5523		
2	28	male	33.00	3	no	southeast	4449.4620		
5	31	female	25.74	0	no	southeast	3756.6216		
6	46	female	33.44	1	no	southeast	8240.5896		
11	62	female	26.29	0	yes	southeast	27808.7251		
	•••	• • •		• • •	• • •	• • •			
1322	62	male	38.83	0	no	southeast	12981.3457		
1323	42	female	40.37	2	yes	southeast	43896.3763		
1327	51	male	30.03	1	no	southeast	9377.9047		
1330	57	female	25.74	2	no	southeast	12629.1656		
1335	18	female	36.85	0		southeast	1629.8335		
1333	10	remate	30.63	Ø	no	Southeast	1029.0333		
[364 rows x 7 columns]									
south	west								
	age	sex	bmi	children sı	noker	region	charges		
0	19	female	27.9	0	yes	southwest	16884.92400		
12	23	male	34.4	0	no	southwest	1826.84300		
15	19	male	24.6	1	no	southwest	1837.23700		
18	56	male	40.3	0		southwest	10602.38500		
10 19	30			0	no	southwest	36837.46700		
13	שכ	male	35.3	ь	yes	SOUTHWEST			
• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •		

1316	19	female	20.6	0	no	southwest	1731.67700
1329	52	male	38.6	2	no	southwest	10325.20600
1331	23	female	33.4	0	no	southwest	10795.93733
1332	52	female	44.7	3	no	southwest	11411.68500
1336	21	female	25.8	0	no	southwest	2007.94500

[325 rows x 7 columns]

Charge Column

```
In [4]: sns.histplot(data=A, x="charges",bins=20)
    plt.title("Distribution of Charges",size=13)
    plt.xlabel("charges", size=12)
    plt.ylabel("count", size=12)
    plt.show()
```


Observation

• In this hisplot graph show that we have lots of data in distribution charges in this 10,000 values and very little bit values in 30,000 to 60,000.

Correlation

```
In [13]:
          #sex column
          A.replace({"sex":{"male":0, "female":1}},inplace=True)
          #smoker column
          A.replace({"smoker":{"yes":0, "no":1}},inplace=True)
          #region column
          A.replace({"region":{"southeast":0, "southwest":1, "northwest":3, "northeast":4
Out[13]:
                 age
                     sex
                             bmi children smoker region
                                                             charges
              0
                  19
                        1 27.900
                                        0
                                                          16884.92400
              1
                                        1
                  18
                        0 33.770
                                                1
                                                           1725.55230
                        0 33.000
              2
                  28
                                        3
                                                1
                                                           4449.46200
              3
                  33
                        0 22.705
                                        0
                                                1
                                                       3 21984.47061
              4
                  32
                        0 28.880
                                        0
                                                1
                                                       3
                                                           3866.85520
                        0 30.970
                                                       3 10600.54830
           1333
                  50
                                        3
                                                1
           1334
                  18
                        1 31.920
                                        0
                                                           2205.98080
           1335
                  18
                        1 36.850
                                        0
                                                1
                                                       0
                                                           1629.83350
           1336
                  21
                        1 25.800
                                        0
                                                1
                                                           2007.94500
           1337
                  61
                        1 29.070
                                                       3 29141.36030
          1338 rows × 7 columns
          A[["charges", "sex", "smoker", "region"]].corr()
In [14]:
Out[14]:
                     charges
                                         smoker
                                                    region
                                   sex
                    1.000000 -0.057292 -0.787251 -0.037020
           charges
               sex -0.057292
                              1.000000
                                        0.076185
                                                  0.012741
            smoker -0.787251
                              0.076185
                                        1.000000
                                                  0.036749
```

0.036749

1.000000

region -0.037020 0.012741

```
In [15]: sns.heatmap(A[["charges","sex","smoker","region"]].corr(),annot=True)
```

Out[15]: <Axes: >

From the Heatmap we can see that there is a **strong correlation** between being a **smoker** and the **medical charges**.

There is also small correlation between age and medical charges as well.

Insurance Charges with respect to Age

Observation:- In this barplot graph show that whose age 19 people has more charge as compare to other age group of people.

Insurance Charges with respect to Sex

Distribution of Charges on Male and Female 14000 - 12569.6 10000 - 4000 - 4000 - 2000 - 6male Female Sex

Observation: Barplot graph show that medical health insurance charges on male is high as compare to female.

Insurance Charges with respect to Smoker

Observation

0

• In this barplot graph show medical health insurance charges for smoker tend to be higher compared to non-smokers. This reflects the increased health risks associated with smoking, which may lead to more frequent and costly medical treatments.

Smoker

no

yes

Insurance Charges with respect to Region

```
In [27]: D=sns.barplot(data=A, x="region",y="charges", ci=False)
    plt.title("Distribution of Charges on Regionwise", size=13)
    plt.xlabel("Region", size=12)
    plt.ylabel("Charges", size=12)
    for i in D.containers:
        D.bar_label(i)
    plt.show()
```


Observation:

• In this barplot graph show southeast region insurance charges is higher due to greater healthcare demand, expensive medical facilities, and other regions with lower healthcare costs and healtheir people may have more affordable insurance charges.

Relationship between Region, Sex with respect to Charges

```
In [4]: D=sns.boxplot(data=A, x="region",y="charges",hue="sex")
    plt.title("Relationship between Region, Sex with respect to Charges", size=13)
    plt.xlabel("Region", size=12)
    plt.ylabel("Charges", size=12)
    plt.show()
```

Relationship between Region, Sex with respect to Charges

Observation

 In this swarmplot graph show Medical health insurance charges may differ due to varying healthcare costs and population health. similiarly, sex based differences in insurance charges may reflect differences in healthcare utilization patterns and risk factors between male and female. There variations aim to ensure that insurance premiums align with the specific healthcare needs and risk profiles of different regions and sex, promoting fair and equitable access to healthcare coverage.

Relationship between Age, Smokers with respect to Charges

```
In [38]: B=A.groupby(["age","smoker"], as_index=False)["charges"].sum().sort_values(by=
sns.barplot(data=B,x="age", y="charges", hue="smoker")
plt.title("Relationship between Age, Smoker with respect to Charges", size=13)
plt.xlabel("Age", size=12)
plt.ylabel("Charges", size=12)
plt.show()
```

Relationship between Age, Smoker with respect to Charges

Obseravation

• In this barplot graph show that Medical health insurance charges are often influenced by both age and smoking status. As individuals age, insurance chargs tend to increase due to higher healthcare needs associated with aging. Additionally, smokers typically face higher insurance charges compared to non-smokers due to the increased health risks associated with smoking. Combining age and smoking status, older smokers often encounter the highest insurance charges, refecting both age related healthcare needs and the additional risks posed by smoking.

Relationship between Smoker, Sex with respect to Charges

```
In [39]: sns.swarmplot(data=A,x="sex", y="charges", hue="smoker")
plt.title("Relationship between Sex, Smoker with respect to Charges", size=13)
plt.xlabel("Sex", size=12)
plt.ylabel("Charges", size=12)
plt.show()
```

Relationship between Sex, Smoker with respect to Charges

Observation

Medical health insurace charges for smokers may differ based on sex. In this graph male
smokers might face higher premiums compared to female smokers due to statistically
higher rates of certain smoking related condition among men. However, insurance charges
for smokers, regardless of sex, generally tend to be higher than those for non-smokers to
cover the increased risk of health issues associated with smoking.

Conclusion

- Age, BMI and being a smoker affects the price of medical charges for individuals.
 - Medical charges increase as age and BMI increases.
 - Medical charge will always be high if you're a smoker.

• It helps you pay for medical expenses when you're sick or injured. With insurance, you can get treatment without worrying too much about the cost. It's like having a safety net for your health. So, having medical health insurance is a smart move to stay protected and financially secure during times of medical need.