

Final de Sistemas Operativos

01/08/2023

Nota:			

Apellido y Nombre	Profesor	Tomé conocimiento de la nota: (Sólo aplazos)

Preguntas teóricas				Ejero	cicios		
1	2	3	4	5	1 2		

- A) Teoría: Explícitamente defina como VERDADERA o FALSA cada una de estas afirmaciones justificando brevemente.
- 1) Teniendo dos ULTs dentro un mismo KLT, el ULT2 es capaz de modificar el heap de ULT1 pero no puede cambiar el stack del mismo.
- 2) En un algoritmo de planificación Virtual Round Robin algunos procesos con ráfagas de CPU muy largas pueden sufrir inanición si el quantum es muy corto.
- 3) Si bien una solución de software resuelve la mutua exclusión, esta siempre ocasiona espera activa y además puede provocar deadlocks (pero no livelocks).
- 4) No es posible bajo ninguna circunstancia que un proceso entre en thrashing si éste es el único en ejecución en un determinado momento.
- 5) Algunas ventajas que tiene FAT por sobre UFS son que permite accesos directos más rápidos (en promedio), requiriendo traer menos bloques de disco y que requiere tener menos estructuras en memoria.

B) <u>Práctica</u>: Resuelva los ejercicios justificando las respuestas

1) Un sistema utiliza detección y recuperación para manejar los deadlocks. En el mismo se asume que mientras más recursos tiene asignados un proceso está más próximo a terminar su ejecución. Se sabe que en el mismo hay la siguiente cantidad de recursos máximos: [R1, R2, R3, R4] = [4, 5, 7, 5]

PETICIONES	ACTUAL	ES
-------------------	--------	----

		R1	R2	R3	R4
	P1	1	0	2	2
	P2	0	2	1	0
	Р3	2	1	0	1
	P4	0	0	0	0
ſ	P5	1	0	2	0

AS		ι۸,	\sim 1.	\cap I	N	
Δ	-	ı,~\ı	L-1	UI.	N	E.S

ASIGNACIONES							
	R1	R2	R3	R4			
P1	0	0	0	0			
P2	1	1	2	0			
Р3	1	2	3	1			
P4	1	1	1	1			
P5	1	1	1	2			

- a) Se sabe que en el sistema hay un deadlock. Indique justificando detalladamente en qué situación está cada proceso.
- b) ¿Qué proceso mataría si se quiere minimizar la pérdida de ejecución ya realizada?
- c) Luego de matar el proceso en el punto b) ¿Quedaría el deadlock solucionado o habría que matar más procesos?

2) Un sistema utiliza paginación bajo demanda con una TLB de 6 entradas de capacidad (se sabe que sólo logra guardar info de 1% de los frames de la memoria principal) y una política de reemplazo de LRU. Por otro lado, para las tablas de página se utiliza Clock modificado con sustitución local. En dicho sistema se encuentra ejecutando PB, quien tiene 3 páginas cargadas en memoria (sabiendo que su último acceso fue escribir en la DL A55093h). El tamaño de marco es 1 MiB.

Tabla de páginas PB

Tabla de paginas Fb							
Pág	Marco	Р	J	М			
0	10	0	0	0			
1	11	1	1	0			
2	13	1	0	1			
3	12	0	0	0			
4	12	0	0	0			
5	_	0	-	-			

P= Presencia // U = Uso // M = Modificado

Continúa ...

TLB

TLB				
Entrada	Pr	Ра	Mar	TUR
0	PA	1	10	100
1	РВ	1	11	120
2	PA	12	12	90
3	РВ	2	13	60
4	РВ	10	14	121
5	РС	20	16	80

Pr = Proceso // Pa = página // Mar = Marco // TUR = tiempo de última referencia (se incrementa con cada acceso)

Analizando la configuración del sistema y el estado anterior responda y justifique:

- a) ¿Qué tipo de asignación de frames tiene el sistema?
- b) Si luego PB accede (en modo lectura) a DL 1400001h y a DL 511102h ¿A qué frames estaríamos accediendo?
- c) Luego de los nuevos accesos, ¿en qué posiciones de la TLB quedarían dichas entradas?
- d) ¿Cuál es el tamaño del bitmap de frames libres del sistema?

01/08/2023

Nota:			

Resolución

Teoría

- 1) Verdadero: si dos ULT pertenecen al mismo KLT ambos son capaces de modificar el heap cuando lo deseen, pero no pueden intervenir en el stack del ULT hermano.
- 2) Falso: Una de las características de VRR es no generar inanición
- 3) Falso: Toda solución de software tiene espera activa como desventaja, sin embargo, dependiendo de su uso podría generar tanto deadlocks como livelocks.
- 4) Falso. Aunque sea el único en ejecución, si tiene menos frames asignados que los que necesita para ejecutar podría generar thrashing en cualquier momento.
- 5) Falso: si bien FAT permite accesos directos más rápidos en promedio, no es verdad que requiere tener menos estructuras en memoria porque la tabla FAT misma puede ser muy grande y debe estar en memoria.

Práctica

1)

- a) P1 está en starvation, P4 no tiene problemas y los restantes P2, P3 y P5 están en deadlock.
- b) Se debe matar P2 ya que de los tres involucrados en el deadlock, es el que tiene menos recursos asignados y por ende no está próximo a terminar su ejecución
- c) Luego de matar a P2 el deadlock queda solucionado.
- 2) La dirección DL A55093 tiene un offset de 20 bits porque un frame ocupa 1 MiB. En consecuencia, 55093h es offset y Ah representa el número de página: 10d. Lo que es correcto porque se ve en la entrada #4 de la TLB. Esta es la tercera página del proceso B presente, y tiene uso y modificado en 1 (ya que fue recientemente escrita)
 - a) Dinámica (se ve en la TP de PB que tuvo asignados los frames 10 y 12 que ahora tiene PA (ver TLB)
 - b) Las direcciones DL 1400001h y DL 511102h apuntan a las páginas 14h y 5h respectivamente. 14h es la página 20d y 5h es la página 5d. Dado que no están presentes, procedemos a reemplazar en memoria, en orden, las páginas 1 y 2 siguiendo el algoritmo Clock Modificado. En consecuencia la página 14d se almacena en el frame 11 y la página 5 en el frame 13
 - c) El frame 13 queda en la posición 3 y el frame 11 en la posición 5 por el algoritmo de reemplazo LRU de la tabla.
 - d) Como se sabe que la TLB tiene 6 entradas y eso representa el 1% de los frames en memoria principal, contamos entonces con 600 frames. 600/8 bits = 75 bytes