Ejercicios del Tema 3

- 1. (El toro de revolución). En el semiplano $P = \{(x, y, z) \in \mathbb{R}^3 \mid y = 0, x \geq 0\}$ tomamos una circunferencia C de centro (c, 0, 0) y radio r > 0 con c > r > 0. Se llama toro de revolución generado por C a la superficie T obtenida al rotar C alrededor del eje z. Dibujar T y describir la superficie como el conjunto de soluciones de una ecuación con 3 incógnitas. ¿Es dicha ecuación la de una cuádrica?
- 2. Sea L una recta afín en \mathbb{R}^n y C una hipercuádrica. Demostrar que se da una y sólo una de las siguientes posibilidades: o bien $L \cap C = \emptyset$, o bien $L \cap C$ es un punto, o bien $L \cap C$ consta de dos puntos, o bien $L \subseteq C$.
- 3. (El hiperboloide de una hoja como unión de rectas). Consideremos el hiperboloide de una hoja $C = \{(x, y, z) \in \mathbb{R}^3 / x^2 + y^2 z^2 = 1\}$. Para cada punto $p \in C \cap \{z = 0\}$ tomamos la recta afín $L_p = p + L(J(p) + e_3)$, donde J es el giro de 90° en el plano z = 0 centrado en el origen y $e_3 = (0, 0, 1)$. Demostrar que C coincide con la unión de todas las rectas L_p .
- 4. Sea H una hipercuádrica en \mathbb{R}^n con matriz \hat{C} en el sistema de referencia usual \mathcal{R}_0 . Diremos que H es invariante por homotecias lineales si para toda homotecia $h_{O,r}$ con centro el origen $O \in \mathbb{R}^n$ y razón $r \neq 0$,

$$M(h_{O,r}^{-1}, \mathcal{R}_0)^{\mathfrak{t}} \cdot \hat{C} \cdot M(h_{O,r}^{-1}, \mathcal{R}_0) = \lambda \hat{C}$$

para algún $\lambda \in \mathbb{R} \setminus \{0\}$ (dependiendo de r); en particular, $h_{O,r}(H) = H$ para todo $r \in \mathbb{R} \setminus \{0\}$. Demostrar que H cumple esta propiedad si y sólo si $\hat{C} = \begin{pmatrix} 0 & 0 \\ \hline 0 & C \end{pmatrix}$, donde C es simétrica y no nula. Mostrar algunos ejemplos de este tipo de cuádricas en \mathbb{R}^2 y \mathbb{R}^3 .

- 5. Construir explícitamente un isomorfismo afín $f: \mathbb{R}^n \to \mathbb{R}^n$ tal que f(C) = C' en cada uno de los siguientes casos:
 - a) n=2, $C=\{(x,y)\in\mathbb{R}^2\,/\,\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\}$, $C'=\{(x,y)\in\mathbb{R}^2\,/\,x^2-y^2=1\}$.
 - b) n = 3, $C = \{(x, y, z) \in \mathbb{R}^3 / x^2 + y^2 + z^2 = 1\}$, $C' = \{(x, y, z) \in \mathbb{R}^3 / \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1\}$.
 - c) n = 2, $C = \{(x, y) \in \mathbb{R}^2 / x^2 y = 0\}$, $C' = \{(x, y) \in \mathbb{R}^2 / x y^2 = 0\}$.
 - d) n = 3, $C = \{(x, y, z) \in \mathbb{R}^3 / ax^2 + by^2 = 1\}$, $C' = \{(x, y, z) \in \mathbb{R}^3 / x^2 + y^2 = 1\}$.
- 6. Clasificar las siguientes cónicas:
 - a) $2x^2 y^2 + 4xy + 6x 2y + 1 = 0$.
 - b) $2x^2 y^2 + 2xy + 4x 2y + 1 = 0$.
 - c) $x^2 + y^2 + 2xy + 2x + 2y = 0$.
 - d) $x^2 + y^2 + 2xy + 2x + 2y + 1 = 0$.
 - e) $x^2 + y^2 + 2xy + 2x + 2y + 2 = 0$.
 - $f) 4x^2 + 2y^2 2xy + x 3y 3 = 0.$

g)
$$-x^2 + xy - \sqrt{3}x + \sqrt{3}y = 0$$
.

7. Para cada una de las siguientes cónicas:

$$x^{2} - 7y^{2} - 6xy + 10x + 2y + 9 = 0,$$

$$9x^{2} + 4y^{2} + 12xy - 52 = 0.$$

encontrar un isomorfismo afín de \mathbb{R}^2 que nos lleve a su ecuación reducida.

- 8. ¿Existe alguna elipse en la familia de cónicas $x^2+y^2+xy+2x-2y+\alpha=0$ con $\alpha\in\mathbb{R}$?
- 9. Encontrar la ecuación reducida y decir de qué tipo es la cónica siguiente en función del parámetro real α :

$$\alpha x^{2} + y^{2} + 4\alpha xy - 2x - 4y + \alpha = 0.$$

10. Clasifica afínmente la cónica H del plano afín \mathbb{R}^2 que en en el sistema de referencia usual \mathcal{R}_0 viene definida por la ecuación

$$x_1^2 - 4x_1x_2 + x_2^2 - 3x_1 + 4x_2 - 1 = 0.$$

Encuentra un sistema de referencia \mathcal{R} de \mathbb{R}^2 en el que H adopte su forma canónica.

- 11. Demuestra los siguientes enunciados.
 - a) El lugar geométrico de los puntos del plano afín euclidiano \mathbb{R}^2 tales que la suma de las distancias a dos puntos fijos (llamados focos) es constante, es una *elipse*.
 - b) El lugar geométrico de los puntos del plano afín euclidiano \mathbb{R}^2 tales que el valor absoluto de la diferencia de sus distancias a dos puntos fijos (llamados focos) es constante, es una $hip\acute{e}rbola$.
 - c) El lugar geométrico de los puntos del plano afín euclidiano \mathbb{R}^2 que equidistan de una recta (llamada directriz) y de un punto exterior a la misma (llamado foco), es una parábola.
- 12. Expresar en coordenadas usuales de \mathbb{R}^2 las ecuaciones de las siguientes cónicas:
 - a) $E = \{ p \in \mathbb{R}^2 / d(p, F_1) + d(p, F_2) = 4 \}$, donde $F_1 = (0, 2), F_2 = (-2, 0)$.
 - b) La parábola P de foco F=(2,2) y directriz de ecuación x+y=0.
- 13. En \mathbb{R}^2 consideramos las rectas afines de ecuaciones x + y = 1 y x y = 1. ¿Es una cónica el conjunto de puntos de \mathbb{R}^2 que equidistan de ambas rectas? En caso afirmativo, escribir su ecuación reducida y decir de qué tipo es.
- 14. Clasificar las siguientes cuádricas:

a)
$$2x^2 - y^2 + 4xy + 6x - 2y + 1 = 0$$
.

- b) xy z = 0.
- c) 2xy + 2xz + 2yz 4 = 0.

- d) $2x^2 + 3y^2 + 2xy 2yz + 2z + 2 = 0$.
- e) $x^2 + y^2 + z^2 + 2xy 2x 2z + 1 = 0$.
- $f) \ 3y^2 + 2xy 2yz + 2z + 2 = 0.$
- q) $x^2 + z^2 + 2xz 4 = 0$.
- h) xy + xz + yz 2x y + 3z + 13 = 0.
- 15. Clasifica afínmente la cuádrica H del espacio afín \mathbb{R}^3 que en en el sistema de referencia usual \mathcal{R}_0 viene definida por la ecuación

$$x_1^2 + x_2^2 + x_3^2 + 2x_1x_2 + 2x_1x_3 + 2x_2x_3 - 4x_1 + 2 = 0.$$

Encuentra un sistema de referencia de \mathbb{R}^3 en el que H adopte su forma canónica.

16. Clasifica afínmente la cuádrica H del espacio afín \mathbb{R}^3 que en en el sistema de referencia usual \mathcal{R}_0 viene definida por la ecuación

$$x_1^2 + x_2^2 + x_3^2 + x_1x_2 + x_1x_3 + x_2x_3 + x_1 + x_2 + x_3 + 1 = 0.$$

17. Para la cuádrica en \mathbb{R}^3 dada por:

$$2xy + 2xz + 2yz - 6x - 6y - 4z + 9 = 0$$

determinar un isomorfimo afín de \mathbb{R}^3 que nos lleve a su ecuación reducida.

18. Encontrar la ecuación reducida afín y decir de qué tipo es la cuádrica siguiente en función del parámetro real α :

$$2x^2 + 2y^2 - z^2 - 2xy + 4x - 2y + \alpha = 0.$$

- 19. Sean F_1 y F_2 dos puntos distintos en \mathbb{R}^3 . Consideramos el lugar geométrico definido por $E = \{p \in \mathbb{R}^3 / d(p, F_1) + d(p, F_2) = 2a\}$, siendo $2a > d(F_1, F_2)$. Estudiar si E es o no una cuádrica en \mathbb{R}^3 y, en caso afirmativo, decidir de qué tipo es.
- 20. En \mathbb{R}^3 consideramos el punto F=(0,0,1) y el plano afín S de ecuación x-z=0. Definimos el conjunto:

$$C = \{ p \in \mathbb{R}^3 / d(p, F) = d(p, S) \}.$$

Demostrar que C es una cuádrica y clasificarla.

21. Encontrar la ecuación reducida de la hipercuádrica en \mathbb{R}^4 de ecuación:

$$2x^2 - y^2 + z^2 - w^2 + 2xz - 2yz + 2yw + 2x - 2y + 2w + 1 = 0.$$

- 22. Sea S un subespacio afín de dimensión k en \mathbb{R}^n y C una hipercuádrica. Demostrar que se da una de las siguientes posibilidades:
 - a) $S \cap C = \emptyset$,
 - b) $S \subseteq C$,
 - c) $S \cap C$ es una hipercuádrica en S (identificando S con \mathbb{R}^k).
- 23. Clasificar las cónicas que se obtienen al cortar el cono $x^2 + y^2 = z^2$ con un plano afín.