What's Cooking

Eka Renardi

Kaggle Competition

Problem

Classify 'cuisine' based on 'ingredients'

Data

- → Provided by Yummly
- → Text data
- → 39,000+ observations
- → 3 Columns:
 - id: numeric, unique identifier
 - cuisine: text, 20 classes
 - ingredients: list of text

Sample Data

```
"id": 25693,
"cuisine": "southern us",
"ingredients": [
  "plain flour",
  "ground pepper",
  "salt",
  "tomatoes",
  "ground black pepper",
  "thyme",
  "eggs",
  "green tomatoes",
  "yellow corn meal",
  "milk",
  "vegetable oil"
```

Cuisine

```
('shape:', (39774, 3))
('unique cuisine count:', 20)
```


- brazilian
- 2. british
- 3. cajun_creole
- . chinese
- 5. filipino
- 6. french
- 7. greek
- 8. indian
- 9. irish
- 10. italian
- 10. Italian
- 11. jamaican
- 12. japanese
- 13. korean
- 14. mexican
- 15. moroccan
- 16. russian
- 17. southern_us
- 18. spanish
- 19. thai
- 20. vietnamese

Ingredients

What's the most common ingredients

Ingredients (Europe)

Ingredients (Americas)

Ingredients (Asia)

Ingredients <-> Cuisine Relationship

Ingredients (Word Ngram)

words in an ingredient (e.g. Salt = 1 word, Black Pepper = 2 words)

	percent				
1	32.715556				
2	50.361037				
3	14.443825				
4	1.970376				
5	0.437395				
6	0.047330				
7	0.011191				
8	0.006062				
9	0.001632				
10	0.000466				
11	0.004197				
13	0.000933				

Ingredients (Char NGram)

characters per word (e.g. Salt = 4 chars)

	percent		
0	0.001247		
1	0.160310		
2	0.083645		
3	9.139650		
4	23.213375		
5	29.595723		
6	21.562160		
7	8.104493		
8	5.108222		
9	0.843558		
10	1.628777		
11	0.091997		
12	0.355898		
13	0.093618		
14	0.004363		
15	0.004488		
18	0.000374		
19	0.008103		

Model Building

Data Cleaning

- 1. Word replacement (e.g. Philadelphia Cream Cheese -> cream cheese)
 - a. Read from a text file (thesauri.txt)
- 2. Stop words (e.g. and, &)
 - a. Read from a text file (stopwords.txt)
- 3. Stemming (e.g. apples -> apple)

Data Cleaning Files

```
thesauri.txt
stopwords.txt
    a's
    able
    about
    above
    according
    accordingly
    across
    actually
    after
    afterwards
12
    again
    against
    ain't
14
    all
    allow
    allows
```

```
stopwords.txt
                     thesauri.txt
  Bisquick Baking Mix, baking mix
   Bertolli® Classico Olive Oil, classico olive oil
   Bertolli® Alfredo Sauce,alfredo sauce
   Jonshonville® Cajun Style Chicken Sausage, cajun style chicken sausage
  Old El Paso Enchilada Sauce, enchilada sauce
  Old El Paso Green Chiles, green chiles
  Old El Paso™ refried beans, refried beans
  Old El Paso™ chopped green chiles, chopped green chiles
  Old El Paso™ taco seasoning mix,taco seasonig mix
  Old El Paso™ Thick 'n Chunky salsa, thick chunky salsa
  Old El Paso Flour Tortillas, flour tortillas
  Old El Paso™ mild red enchilada sauce", mild red enchilada sauce
  Mexican cheese blend, cheese blend
   Pillsbury™ Refrigerated Crescent Dinner Rolls refrigerated crescent ding
```

Feature Engineering

- 1. TFIDF features: ngram, max_features
- 2. Ingredient length
- 3. Region encoding (work in progres...)

Modeling

- 1. Logistic Regression. Classic classification algorithm.
- 2. Linear SVC. Large dimensions.

Model Building

Use cross validation, and GridSearchCV with 5 folds.

Uses 'Pipeline' heavily

Scoring on 'Accuracy'

Test on entire train.json

Default train test split

First Model

```
# base models
models = [
    ('nb'.
         Pipeline([('vect', CountVectorizer(strip_accents='unicode')),
                   ('clf', MultinomialNB())
                  1)
     ('logistic',
         Pipeline([('vect', TfidfVectorizer(strip accents='unicode', tokenizer=Tokenizer())),
                   ('clf', LogisticRegression(C=1e9))
                  1)
X = df['ingredients all']
predLst = cross val models(models, X, y, 5)
predDf = pd.DataFrame.from_dict(predLst)
predDf
```

Cross_val nb...0.723 Cross_val logistic...0.653

	name	score	sem
0	nb	0.723085	poz444
1	logistic	0.652690	0.004202

Data Cleaning Effect on Models

- With no data cleaning, accuracy is 0.734
- With data cleaning, accuracy is 0.743

TFIDF Tuning (Word Ngram)

```
# the word ngram range
word ngram range = [(1,3), (1,5)]
# create the model
model = Pipeline([('tfidf', TfidfVectorizer(strip accents='unicode', analyzer='word')).
                  ('clf', LogisticRegression(C=le9))
param grid = {
    'tfidf ngram range': word ngram range,
# cross validate using grid search
X = df['ingredients string']
word ngram results = grid search models('word ngram', model, param grid, X, y, 5)
word naram results
Grid search word ngram...0.783
{'best params': Pipeline(steps=[('tfidf', TfidfVectorizer(analyzer='word', binary=False, dec
ode error=u'strict',
         dtype=<type 'numpy.int64'>, encoding=u'utf-8', input=u'content',
         lowercase=True, max df=1.0, max features=None, min df=1,
         ngram range=(1, 3), norm=u'l2', preprocessor=None, smooth idf=True...class='ovr', p
enalty='l2', random state=None,
           solver='liblinear', tol=0.0001, verbose=0))]).
 'name': 'word ngram',
 'score': 0.78335093277015133.
 'scores': [mean: 0.78335, std: 0.00359, params: {'tfidf ngram range': (1, 3)},
 mean: 0.78071, std: 0.00509, params: {'tfidf ngram range': (1, 5)}}}
wpd = get grid scores pd(word ngram results)
wpd
  name
                          mean score
                                    scores
0 {u'tfidf _ngram_range': (1, 3)} 0.783351
                                     [0.782089927154, 0.787132445338, 0.78192559074...
```

[0.779201205727, 0.787760743906, 0.77790346908,

1 {u'tfidf ngram range': (1, 5)} 0,780711

TFIDF Tuning

- char ngram: accuracy 0.772, no improvement
- max_features: accuracy: 0.471, no improvement.

Adding Ingredient Length

No improvement

```
# model additional feature (ingredient length) and logistic regression
model = Pipeline([
            ('ingredients', IngredientExtractor()),
            ('union', FeatureUnion(
                    # adding ingredient length feature
                    ('ingredient length', Pipeline([
                      ('extract', ItemSelector(key='ingredient length')),
                      ('tfidf', TfidfVectorizer()),
                    1)).
                    # adding ingredient text feature
                    ('txt', Pipeline([
                      ('extract', ItemSelector(key='txt')),
                      ('tfidf', TfidfVectorizer(strip accents='unicode',
                                                analyzer='word', ngram range=(1,3))),
                    1)),
                ],
            )),
            # using logistic classifier
            ('clf', LogisticRegression(C=le9))
param grid = {}
# cross validate using grid search
X = df['ingredients all']
ful results = grid search models('feature union', model, param grid, X, y, 5)
ful results
```

Grid_search feature_union...0.782

Linear SVC (base)

Best model so far, with accuracy of 0.786

Prediction Result

Accuracy on training set: 0.998759637948
Accuracy on testing set: 0.784794851167
Classification Report:

Classificati	on Report:			
	precision	recall	f1-score	support
Θ	0.74	0.52	0.61	102
1	0.56	0.39	0.46	197
2	0.73	0.72	0.72	356
3	0.78	0.87	0.82	684
4	0.74	0.52	0.61	181
5	0.59	0.62	0.60	656
6	0.79	0.70	0.74	305
7	0.86	0.92	0.89	740
8	0.66	0.42	0.51	173
9	0.80	0.89	0.84	1994
10	0.78	0.70	0.74	132
11	0.86	0.66	0.75	340
12	0.87	0.75	0.81	206
13	0.90	0.93	0.91	1599
14	0.79	0.73	0.76	203
15	0.68	0.41	0.51	120
16	0.72	0.79	0.75	1115
17	0.68	0.46	0.55	239
18	0.82	0.80	0.81	419
19	0.71	0.57	0.63	183
avg / total	0.78	0.78	0.78	9944

{u'brazilian': 0. u'british': 1, u'cajun creole': 2, u'chinese': 3, u'filipino': 4, u'french': 5, u'areek': 6. u'indian': 7. u'irish': 8. u'italian': 9, u'jamaican': 10, u'japanese': 11, u'korean': 12, u'mexican': 13. u'moroccan': 14. u'russian': 15. u'southern us': 16, u'spanish': 17, u'thai': 18, u'vietnamese': 19}

Conclusion

Iterative approach to problem solving

Feature engineering is time consuming, but may improve the score.

Attempt different algorithms.

What's Next

- More feature engineering
- Ensembling