Eléments de statique des fluides

Table des matières

1	Modèle du fluide continu				
	1.1	Etat fluide			
	1.2	Ordre de grandeurs			
	1.3	Fluide est un milieu continu			
	1.4	Champ de forces dans un fluide au repos			
2	Pression dans un fluide au repos				
	2.1	Définition			
	2.2	Equation fondamentale de la statique des fluides			
		2.2.1 Cas général			
		2.2.2 Cas usuel : statique des fluides dans un champs de pesanteur			
3	Statique des fluides homogènes incompressibles				
	3.1	Modèle du fluide homogène incompressible			
	3.2	Surfaces isobares			
	3.3	Applications			
	3.4	Théorème de Pascal			
4	Stat	Statique des fluides homogènes compressibles			
	4.1	Modèle de l'atmosphère terrestre			
	4.2	Champ de pression dans l'atmosphère isotherme			
	4.3	Applications			
5	Actions exercées par les fluides au repos-Poussée d'Archimède				
	5.1	Calcul de la force pressante			
	5.2	Poussée d'Archimède			
		5.2.1 Définition			
		5.2.2 Théorème d'Archimède			

1 Modèle du fluide continu

1.1 Etat fluide

Un fluide (liquide ou gaz) est un ensemble de particules microscopiques occupant un volume dont la géométrie s'adapte au récipient qui le contient.

- un liquide occupe un volume limité par une surface libre (état compact mais désordonné)
- un gaz diffuse dans tout l'espace qui lui est offert (état dispersé et désordonné)
- liquide : fluide dense et quasi-incompressible (χ_T est trés faible)
- gaz : fluide peu dense et compressible

1.2 Ordre de grandeurs

Fluide	$\rho(kg.m^{-3})$	$\chi_T(Pa^{-1}(\text{compressibilit\'e isotherme})$
air(gaz)	1,3	10^{-5}
eau(liquide)	10^{3}	$4,4.10^{-10}$
Comparaison	$\rho_l \approx 10^3 \rho_g$	$\chi_{Tg} \approx 10^5 \chi_{Tl}$

1.3 Fluide est un milieu continu

Un fluide est un milieu continu car ses propriétés locales varient continûment à l'échelle macroscopique $:\rho(M);T(M);P(M)...$

Conclusion: Un fluide est un milieu continue déformable permettant l'écoulement

1.4 Champ de forces dans un fluide au repos

Considèrons un fluide délimité par une surface (Σ)

On peut distinguer entre deux types de forces :

• Forces volumiques : interactions à distance tel que les forces de pesanteur

$$\overrightarrow{dF}_v = \overrightarrow{f}_v.d\tau$$

 \overrightarrow{f}_v : vecteur densité volumique de force $(N.m^{-3})$

• Exemple : force de pesanteur $\overrightarrow{dP} = dm \overrightarrow{g} . d\tau$ la densité de force volumique

$$\overrightarrow{f}_v = \frac{dm}{d\tau} \overrightarrow{g} = \rho \overrightarrow{g}$$

• Forces surfaciques : actions à courte portée (sur ou au voisinage de la surface) telle que les forces de contact

$$\overrightarrow{dF}_s = \overrightarrow{f}_s.ds$$

 \overrightarrow{f}_s : vecteur densité surfacique de force La force surfacique se décompose en deux composantes :

- ➤ Composante tangentielle (force de viscosité) : elle diminue avec la diminution de la vitesse, elle est nulle pour un fluide au repos
- ightharpoonup Composante normale : suivant $-\overrightarrow{n}$

Conclusion: Pour un fluide au repos \overrightarrow{f}_s est normale à ds (fluide parfait).

2 Pression dans un fluide au repos

2.1 Définition

La force exercée par le fluide sur $\overrightarrow{ds} = ds \overrightarrow{n}$ $\overrightarrow{dF}_{f \to p} = P(M).\overrightarrow{ds} = P(M).ds(M).\overrightarrow{n}$

$$\overrightarrow{dF}_s = \overrightarrow{dF}_{p \to f} = -\overrightarrow{dF}_{f \to p} = -P(M).\overrightarrow{ds} = -P(M).ds(M).\overrightarrow{n}$$

2.2 Equation fondamentale de la statique des fluides

2.2.1 Cas général

- Echelle macroscopique : Correspond au domaine observable expérimentalement, la matière est continue
- Echelle microscopique : Correspond aux particules élementaires ,à cette échelle la matière est discontinue .
- Echelle mesoscopique : C'est l'échelle intermediaire, il est plus grand que l'échelle microscopique et plus petit que l'échelle macroscopique .
- Particule fluide : Elle s'agit d'un élément de volume $d\tau(M)$ défini à l'échelle mesoscopique (il contient autour du point M un nombre suffisant de molécules $dN = n^*(M)d\tau(M)$ pour avoir des propriétés locales définies) .
- ► Equation fondamentale de la statique des fluides Principe fondamental de la dynamique au particule fluide :

fluide au repos : $\overrightarrow{V}(M) = 0 \Rightarrow \overrightarrow{a}(M) = \overrightarrow{0}$ donc $\sum \overrightarrow{F}_{ext} = \overrightarrow{0}$

$$\overrightarrow{dF}_v + \overrightarrow{df}_s = \overrightarrow{0}$$

• Expression de \overrightarrow{dF}_s

forme parallélépipédique

$$\begin{split} \overrightarrow{dF}_s &= \overrightarrow{dF}_x + \overrightarrow{dF}_y + \overrightarrow{dF}_z \\ \overrightarrow{dF}_x &= dF_x \overrightarrow{u}_x = -P_1 ds_1 \overrightarrow{n}_1 - P_2 ds_2 \overrightarrow{n}_2 \\ ds_1 &= ds_2 = dy dz; P_1 = P(x); P_2 = P(x+dx); \overrightarrow{n}_1 = -\overrightarrow{n}_2 = -\overrightarrow{u}_x \\ \operatorname{donc} \overrightarrow{dF}_x &= (P(x) - P(x+dx)) dy dz \overrightarrow{u}_x = -\left(\frac{\partial P}{\partial x}\right)_{y,z} dx dy dz \overrightarrow{u}_x \end{split}$$

$$\overrightarrow{dF}_x = -\left(\frac{\partial P}{\partial x}\right)_{y,z} d\tau \overrightarrow{u}_x$$

avec $d\tau = dxdydz$ de même on montre que

$$\overrightarrow{dF}_y = -\left(\frac{\partial P}{\partial y}\right)_{x,z} d\tau \overrightarrow{u}_y$$

$$\overrightarrow{dF}_z = -\left(\frac{\partial P}{\partial z}\right)_{x,y} d\tau \overrightarrow{u}_z$$

On définit l'opérateur gradient \overrightarrow{grad} par

$$\left|\overrightarrow{grada} = \overrightarrow{\nabla}a = \left(\frac{\partial a}{\partial x}\right)_{y,z} \overrightarrow{u}_x + \left(\frac{\partial a}{\partial y}\right)_{x,z} \overrightarrow{u}_y + \left(\frac{\partial a}{\partial z}\right)_{x,y} \overrightarrow{u}_z\right|$$

$$\operatorname{donc} \ \overrightarrow{gradP} = \overrightarrow{\nabla} P = \left(\frac{\partial P}{\partial x}\right)_{yz} \overrightarrow{u}_x + \left(\frac{\partial P}{\partial y}\right)_{xz} \overrightarrow{u}_y + \left(\frac{\partial P}{\partial z}\right)_{xy} \overrightarrow{u}_z$$

Conclusion

$$\overrightarrow{dF}_s = -\overrightarrow{grad}P.d\tau$$

l'équation fondamentale de la statique du fluide s'écrit sous la forme $\overrightarrow{f}_v d\tau - \overrightarrow{grad}P.d\tau = 0$

$$\overrightarrow{grad}P = \overrightarrow{f}_v$$

2.2.2 Cas usuel : statique des fluides dans un champs de pesanteur

 $\overrightarrow{f}_v = \rho \overrightarrow{g}$ avec ρ la masse volumique du fluide donc l'équation fondamental de la statique du fluide devient

donc P nedépend ni de x ni de y

$$dP = -\rho g dz$$

3 Statique des fluides homogènes incompressibles

3.1 Modèle du fluide homogène incompressible

$$\chi_T = \frac{-1}{V} \left(\frac{\partial V}{\partial P} \right)_T \text{ avec } \rho = \frac{m}{V} \text{ donc } \chi_T = \frac{1}{\rho} \left(\frac{\partial \rho}{\partial P} \right)_T$$

- Fluide incompessible : $\chi_T = 0$ donc la masse volumique ρ ne dépend pas de la pression
- Fluide homogène : ρ ne dépend pas du point M du fluide

Conclusion : Pour un fluide homogène incompressible $\rho=cte$

$$\int_{M0}^{M} dp = -\int_{M0}^{M} \rho g dz$$

$$P(z) - P(z_0) = -\rho g(z - z_0)$$

$$P(z) + \rho g z = P(z_0) + \rho g z_0$$

$$Z$$

$$M \quad P(z)$$

$$\overrightarrow{g}$$

$$M_0 P_0$$

Conclusion: Pour un fluide homogène incompressible

$$\rho gz + P(z) = cte$$

3.2 Surfaces isobares

- Les surfaces isobares sont les surfaces d'égale pression P = cte
- Pour le cas du seul champ de pesanteur : $dP = -\rho g dz$ surfaces isobares : $P(z) = cte \Rightarrow \rho(z) = cte$ et z = cte

Conclusion : Les surfaces isobares pour le seul cas du champ de pesanteur uniforme se confondent avec les surfaces d'isodensité $\rho(z)=cte$ et les surfaces équipotentielles $(E_p=mgz+cte=cte)\Rightarrow z=cte$

Donc les surfaces isobares sont représentées par des plans horizontaux (z = cte)

3.3 Applications

- Manomètre à mercure à l'air libre Le manomètre est relié au compartiment dont on veut mesurer la pression (P_1)
 - Le système gazeux de volume limité présente une même pression en chacune de ses points donc $P_1 = P_A$
 - Le mercure liquide à l'intérieur du tube coudé possède une même pression en tout point d'un plan horizontal en équilibre : $P_{A'} = P_1$

 $P_B = P_0$ (tube ouvert); $\rho_{Hg} = 13, 6.10^3 kg.m^{-3}$

En mesurant la dénivellation h du mercure on peut déduire la pression P_1 du gaz

$$P_1 = P_0 + \rho_{Hg}.h.g$$

• Baromètre à mercure

Il est basé sur le même principe que précédemment mais la pression de référence est celle du vide .

On l'utilise en général pour mesurer la pression atmosphèrique P_{atm}

$$P_A = P_{atm} = P_B + \rho_{Hg}.g.h$$
 avec $P_B = 0$

$$P_A = P_{atm} = \rho_{Hg}.g.h$$

• Remarque : Le choix du mercure est lié à sa trés forte masse volumique (entrainant des hauteurs modérées donc mésurable) et sa trés faible pression de vapeur saturante (absence de Hg(g) dans une chambre à vide) .

3.4 Théorème de Pascal

L'équation fondamentale de la statique des fluides homogènes et incompressibles

$$P_B = P_A + \rho hg \Rightarrow \Delta P_B = \Delta P_A$$

Enoncé: Pour un fluide homogène incompressible tout variation ΔP de la pression en A est transmise intégralement au point B(et en tout autre point M du fluide en équilibre).

Application

Un récipient contenant de l'eau comporte deux ouvertures fermées par des pistons de surfaces différentes $S_1 \ll S_2$.

La force \overrightarrow{F}_1 exercée sur le piston (1) produit une augmentation de pression $\Delta P = \frac{F_1}{S_1}$ qui est transmise intégralement au niveau du piston (2) de surface S_2 , donc le piston (2) est soumise à une force \overrightarrow{F}_2

$$\Delta P = \frac{F_1}{S_1} = \frac{F_2}{S_2} \text{ donc}$$

$$F_2 = \frac{S_2}{S_1} F_1 >> F_1$$

Statique des fluides homogènes compressibles 4

4.1 Modèle de l'atmosphère terrestre

- On assimile l'atmospère (mélange gazeux) à un gaz parfait unique de masse molaire $M = 29g.mol^{-1}$ (air : 20% O_2 et 80% N_2)
- Le champ de pesanteur \overrightarrow{g} est considéré uniforme.

4.2 Champ de pression dans l'atmosphère isotherme

atmosphère isotherme T = ctePour un gaz parfait

$$\rho = \frac{m}{V} = \frac{nM}{V} = \frac{MP}{RT}$$

Pour une altitude z

$$\rho(z) = \frac{M}{RT}P(z)$$

l'équation de l'hydrostatique
$$dp=-\rho g dz$$

$$\int_{P0}^{P} \frac{dP}{P} = -\frac{Mg}{RT} \int_{z0=0}^{z} dz \Rightarrow \ln \frac{P}{P_0} = -\frac{Mg}{RT} z$$

$$P(z) = P_0 \exp\left(-\frac{Mg}{RT}z\right)$$

Conclusion: La masse volumique et la pression pour l'atmosphère isotherme décroissent avec l'altitude.

4.3 Applications

• Hauteur H caractéristique de l'atmosphère isotherme On appelle hauteur caractéristique de l'atmosphère isotherme la quantité

$$H = \frac{RT}{Mg}$$

Donc lapression P s'écrit

$$P(z) = P_0 \exp\left(\frac{-z}{H}\right)$$

• Ordre de grandeur

 $air: T = 20^{\circ}C = 293^{\circ}c \Rightarrow H = 8,6km$

La variation relative de la pression de z = 0 à z s'exprime

$$\frac{\Delta P}{P_0} = \frac{P(z) - P_0}{P_0} = -(1 - e^{\frac{-z}{H}})$$

On admet que l'on puisse considérer la pression comme uniforme si sa variation relative n'excède pas 1%

Un
$$DL_1$$
 donne $\frac{\Delta P}{P_0} \approx -\frac{z}{H}$

$$\left|\frac{\Delta P}{P_0}\right| \leqslant \frac{1}{100} \Rightarrow z \leqslant \frac{H}{100}$$

donc en tenant compte des valeurs précédentes $z \leq 86m$.

• Interprétation statistique -Facteur de Boltzman

Chaque molécule du gaz parfait a une masse $\boxed{m = \frac{M}{N_A}}$ donc possède une énergie

potentielle
$$E_p = mgz + cte$$
 avec $cte = E_p(0) = 0$

la densité moléculaire
$$n^* = \frac{N}{V} = \frac{n \cdot N_A}{V} = \frac{m' N_A}{VM} = \frac{\rho(z)}{m} = \frac{1}{m} \frac{MP(z)}{RT}$$

$$n^* = N_A \cdot \frac{P(z)}{RT} = \frac{P(z)}{k_B T} \text{ avec } P(z) = P_0 \exp\left(-\frac{z}{H}\right) \Rightarrow n^* = n^*(0) \exp\left(-\frac{Mgz}{RT}\right)$$

$$n^*(z) = n^*(0) \exp\left(-\frac{mgz}{k_B T}\right)$$

 \bullet Probabilité de trouver une molécule à l'altitude z à dz prés dans un cylindre de section S et de hauteur h

Le nombre de molécules qu'on trouve entre z et z + dz est :

$$dN(z) = n^*(z)Sdz = n^*(0)\exp\left(-\frac{E_p(z)}{k_BT}\right)Sdz$$

• la probabilité

$$dp(z) = \frac{dN(z)}{N} = \frac{n^*(0).S}{N} \exp\left(\frac{-E_p(z)}{k_B T}\right) dz = A \exp\left(\frac{-E_p(z)}{k_B T}\right) dz$$

N: nombre de molécules totale inclus dans le cylindre

Conclusion : La probabilité pour qu'une molécule soit à l'altitude z à dz prés dans l'état d'énergie $E_p(z)$ à la température T est proportionnelle au facteur de Boltzmann

$$\exp\left(\frac{-E_p(z)}{k_B T}\right)$$

• Loi de répartition de Boltzmann La probabilité de trouver une entité dans l'état d'énergie E_i est proportionnelle à $\exp\left(\frac{-E_i}{k_BT}\right)$

5 Actions exercées par les fluides au repos-Poussée d'Archimède

5.1 Calcul de la force pressante

La force pressante \overrightarrow{df} exercée par un fluide en équilibre sur un élement de paroi ds est

$$\overrightarrow{df}(M) = P(M)ds\overrightarrow{n}$$

 \overrightarrow{n} : vecteur unitaire suivant la normale extérieure au fluide

Soit une paroi (S) séparant un liquide en équilibre de masse volumique ρ de l'air atmosphèrique à la pression P_0 Un élement ds du paroi subit la force

$$\overrightarrow{df} = \overrightarrow{df}_l + \overrightarrow{df}_a = (P - P_0)ds \overrightarrow{n}$$

L'équation fondamentale de l'hydrostatique $dP=\rho gz$, en intégrant entre M et M_0 $(z_0=0) \Rightarrow P(M)=P_0+\rho gz$

La résultante des forces pressantes

$$\overrightarrow{F} = \int \int_{(s)} \overrightarrow{df} = \int \int_{(s)} \rho gz \overrightarrow{n} ds$$

$$F_z = \int \int_{(s)} \rho gz \overrightarrow{n} \overrightarrow{e}_z ds =$$

$$\int \int_{(s)} \rho gz \sin \alpha ds$$

$$d\tau = z \sin \alpha ds : \text{volume du colonne}$$
liquide représenté sur la figure

$$F_z = \int \int_{(s)} g\rho d\tau = \rho Vg = mg$$

Conclusion : La composante verticale F_z de la résultante des forces pressantes sur une paroi (s) s'identifie avec le poids de la colonne verticale (de masse m) limitée inférieurement par la paroi et supérieurement par la surface libre .

5.2 Poussée d'Archimède

5.2.1 Définition

On appelle poussée d'Archimède la résultante $\overrightarrow{\Pi}_A$ des forces pressantes, exercées par le système fluide en équilibre, sur la paroi Σ du corps immergé .

5.2.2 Théorème d'Archimède

Enoncé : La poussée d'Archimè de $\overrightarrow{\Pi}_A$ égale l'opposée au poids des fluides déplacés par le corps immergé .

La poussée d'Archimède s'applique au point C, appelé centre de poussée qui se confond avec le centre de masse des fluides déplacés.

$$\overrightarrow{\Pi}_A = -M\overrightarrow{g} = -V\rho\overrightarrow{g}$$

M la masse du fluide déplacé

 ρ : la masse volumique du fluide

- Cas d'un corps flottant entre l'eau et air : On confond usuellement la poussée d'Archimède avec celle du seul liquide déplacé car $\rho_{air} << \rho_{eau}$
- •Remarque : Le poids apparent d'un solide homogène de volume V et de masse volumique ρ , égale à son poids diminue de la pousseé d'Archimède de l'air ambiant

$$P' = \rho Vg - \rho_a Vg = m\left(1 - \frac{\rho_a}{\rho}\right) = m'g$$

$$m' = m \left(1 - \frac{\rho_a}{\rho} \right)$$