Arquitectura de Sistemas e Computadores I

Miguel Barão mjsb@di.uevora.pt

Resumo

- Introdução à arquitectura de Von Neumann (stored program computer)
- Organização da memória RAM. Conceito de endereço e byte.

ENIAC (Electronic Numerical Integrator And Computer) Usado para cálculos de balística, 1946–1955.

Colossus Mark 2 Usado pelos Britânicos para ler mensagens cifradas pelos Alemães durante a 2ª Grande Guerra

Intel 4004 (92000 instr./s) CPU de 4 bits desenvolvido em 1971. Foi o primeiro microprocessador

Equipava os microcomputadores: BBC, Apple IIe e Commodore 64

Processadores desta arquitectura são actualmente usados em dispositivos de rede, consolas de jogos, impressoras, set-top boxes, televisões digitais e modems de cabo/ADSL.

Stored Program Computers (arquitectura Von Neumann)

O programa e os dados são guardados conjuntamente em memória.

Um programa é um conjunto de números em memória que codificam as instruções a executar \rightarrow código máquina.

Pretende-se somar os números 17 e 5...

"Somar" 17,5,22

Na realidade o que está em memória é:

Memória: organização

Funciona como uma estante onde as prateleiras são numeradas e cada prateleira armazena exactamente 8 bits de informação (1 byte).

Memória: unidades de informação

- 1 bit é abreviatura de "binary unit". Pode tomar os valores 0 ou 1. Um sistema digital funciona nesta base (base binária).
- 1 byte tipicamente são 8 bits. É a menor unidade de informação endereçável em memória.
- 1 word é a unidade de informação natural para uma dada arquitectura. No caso da arquitectura MIPS estudada nesta disciplina 1 word = 32 bits, mas pode ter outros tamanhos noutras arquitecturas (16 bits, 64 bits, etc).

Memória: endereçamento

Atenção

Não é possível endereçar de forma directa um bit em memória. Um endereço apenas permite aceder a um bloco de 8 bits (1 byte).

As operações permitidas sobre a memória são:

- Ler um byte da memória (*load byte*)
- Escrever um byte na memória (*store byte*)

Também é possível escrever vários bytes de uma vez. Por exemplo:

- Ler uma word da memória (*load word*)
- Escrever uma word na memória (*store word*)

Memória

Exemplo

Suponha que a memória de um computador contém a seguinte sequência de bits:

- Qual o conteúdo da memória nos endereços 0, 1, 2, 3, 4 e 5?
- 2 Represente em décimal e hexadecimal o conteúdo desses endereços.
- Se os bytes representam números inteiros em complemento para 2, que números são?

Nota: Os números hexadecimais são representados com prefixo 0x. Por exemplo: 10 = 0xA.

Problema

Quando se pretende escrever um número com mais de um byte para a memória surge um problema:

Qual a ordenação dos bytes a usar? i.e., deve colocar-se primeiro os bytes mais significativos ou menos significativos?

Problema

Quando se pretende escrever um número com mais de um byte para a memória surge um problema:

■ Qual a ordenação dos bytes a usar? *i.e.*, deve colocar-se primeiro os bytes mais significativos ou menos significativos?

Definição (Endianness)

Existem duas convenções em uso:

Little endian o byte menos significativo primeiro. É usado na arquitectura Intel.

Big endian o byte mais significativo primeiro. É usado na arquitectura PowerPC.

Problema

Quando se pretende escrever um número com mais de um byte para a memória surge um problema:

■ Qual a ordenação dos bytes a usar? *i.e.*, deve colocar-se primeiro os bytes mais significativos ou menos significativos?

Definição (Endianness)

Existem duas convenções em uso:

Little endian o byte menos significativo primeiro. É usado na arquitectura Intel.

Big endian o byte mais significativo primeiro. É usado na arquitectura PowerPC.

Algumas arquitecturas suportam ambos os modos. É o caso das arquitecturas MIPS e ARM.

São usados os termos MIPSEL e ARMEL para realçar que a ordenação de bytes usada é little endian.

Como escrever o número 0x12345678 em memória?

Como escrever o número 0x12345678 em memória?

A definição e o tratamento correcto da ordenação de bytes é especialmente importante quando é necessário transmitir informação entre máquinas com ordenações diferentes.

É o que acontece quando:

- escrevemos um ficheiro (e.g. música, imagem, etc) para ser lido noutra máquina.
- enviamos informação pela rede
- no interface com dispositivos da própria máquina (placas gráficas, rede, etc)

Quando uma grandeza é muito grande podem usar-se prefixos:

	SI			IEC ¹	
$10^0 = 1$	(sem prefixo)	Unidade	2 ⁰		
$10^3 = 1000$	k	kilo	$2^{10} = 1024$	Ki	kibi
10 ⁶	M	mega	2 ²⁰	Mi	mebi
10 ⁹	G	giga	2 ³⁰	Gi	gibi
10 ¹²	T	tera	2 ⁴⁰	Ti	tebi
10^{15}	Р	peta	2 ⁵⁰	Pi	pebi
10 ¹⁸	Е	exa	2 ⁶⁰	Ei	exbi
10^{21} 10^{24}	Z	zetta	2 ⁷⁰	Zi	zebi
10 ²⁴	Y	yotta	280	Yi	yobi

Pergunta: Uma memória com 2 GiB tem quantos bits?

¹International Electrotechnical Comission

Quando uma grandeza é muito grande podem usar-se prefixos:

	SI			IEC ¹	
$10^0 = 1$	(sem prefixo)	Unidade	2 ⁰		
$10^3 = 1000$	k	kilo	$2^{10} = 1024$	Ki	kibi
10 ⁶	M	mega	2 ²⁰	Mi	mebi
10 ⁹	G	giga	2 ³⁰	Gi	gibi
10 ¹²	T	tera	2 ⁴⁰	Ti	tebi
10 ¹⁵	Р	peta	2 ⁵⁰	Pi	pebi
10 ¹⁸	Е	exa	2 ⁶⁰	Ei	exbi
10 ²¹	Z	zetta	2 ⁷⁰	Zi	zebi
10 ²⁴	Y	yotta	280	Yi	yobi

Pergunta: Uma memória com 2 GiB tem quantos bits?

Resposta: $2GiB = 2 \times 2^{30} \times 8 \ bits =$

¹International Electrotechnical Comission

Quando uma grandeza é muito grande podem usar-se prefixos:

	SI			IEC ¹	
$10^0 = 1$	(sem prefixo)	Unidade	2 ⁰		
$10^3 = 1000$	k	kilo	$2^{10} = 1024$	Ki	kibi
10 ⁶	M	mega	2 ²⁰	Mi	mebi
10 ⁹	G	giga	2 ³⁰	Gi	gibi
10 ¹²	T	tera	2 ⁴⁰	Ti	tebi
10 ¹⁵	Р	peta	2 ⁵⁰	Pi	pebi
10 ¹⁸	Е	exa	2 ⁶⁰	Ei	exbi
10^{21} 10^{24}	Z	zetta	2 ⁷⁰	Zi	zebi
10 ²⁴	Y	yotta	280	Yi	yobi

Pergunta: Uma memória com 2 GiB tem quantos bits?

Resposta:
$$2GiB = 2 \times 2^{30} \times 8 \ bits = 2^1 \times 2^{30} \times 2^3 \ bits =$$

¹International Electrotechnical Comission

Quando uma grandeza é muito grande podem usar-se prefixos:

	SI			IEC ¹	
$10^0 = 1$	(sem prefixo)	Unidade	2 ⁰		
$10^3 = 1000$	k	kilo	$2^{10} = 1024$	Ki	kibi
10 ⁶	M	mega	2 ²⁰	Mi	mebi
10 ⁹	G	giga	2 ³⁰	Gi	gibi
10 ¹²	T	tera	2 ⁴⁰	Ti	tebi
10 ¹⁵	Р	peta	2 ⁵⁰	Pi	pebi
10 ¹⁸	Е	exa	2 ⁶⁰	Ei	exbi
10 ²¹	Z	zetta	2 ⁷⁰	Zi	zebi
10 ²⁴	Y	yotta	280	Yi	yobi

Pergunta: Uma memória com 2 GiB tem quantos bits?

Resposta: $2GiB = 2 \times 2^{30} \times 8 \ bits = 2^1 \times 2^{30} \times 2^3 \ bits = 2^{34} \ bits.$

¹International Electrotechnical Comission

A utilização não é consensual sendo necessário alguma cautela. A União Europeia introduziu legislação em 2007 para regular a utilização dos prefixos binários.

Alguns exemplos:

Tamanhos dos ficheiros Linux e OS X usam IEC, Windows usa SI.

A utilização não é consensual sendo necessário alguma cautela. A União Europeia introduziu legislação em 2007 para regular a utilização dos prefixos binários.

Alguns exemplos:

Tamanhos dos ficheiros Linux e OS X usam IEC, Windows usa SI. Memória usam-se prefixos binários IEC, e.g. 4 GiB.

A utilização não é consensual sendo necessário alguma cautela. A União Europeia introduziu legislação em 2007 para regular a utilização dos prefixos binários.

Alguns exemplos:

Tamanhos dos ficheiros Linux e OS X usam IEC, Windows usa SI. Memória usam-se prefixos binários IEC, e.g. 4 GiB.

Discos rígidos fabricantes usam sempre prefixos decimais, e.g. disco de 320 GB.

(mas programas diferentes apresentam o tamanho do disco usando o prefixos diferentes...)

A utilização não é consensual sendo necessário alguma cautela. A União Europeia introduziu legislação em 2007 para regular a utilização dos prefixos binários.

Alguns exemplos:

Tamanhos dos ficheiros Linux e OS X usam IEC, Windows usa SI. Memória usam-se prefixos binários IEC, e.g. 4 GiB.

Discos rígidos fabricantes usam sempre prefixos decimais, e.g. disco de 320 GB. (mas programas diferentes apresentam o tamanho do disco usando o prefixos diferentes...)

Frequência de relógio usa prefixo decimal, e.g. 2.66 GHz.

A utilização não é consensual sendo necessário alguma cautela. A União Europeia introduziu legislação em 2007 para regular a utilização dos prefixos binários.

Alguns exemplos:

Tamanhos dos ficheiros Linux e OS X usam IEC, Windows usa SI. Memória usam-se prefixos binários IEC, e.g. 4 GiB.

Discos rígidos fabricantes usam sempre prefixos decimais, e.g. disco de 320 GB.

(mas programas diferentes apresentam o tamanho do disco usando o prefixos diferentes...)

Frequência de relógio usa prefixo decimal, e.g. 2.66 GHz.

CD usa prefixo binário, e.g. 700 MiB.

A utilização não é consensual sendo necessário alguma cautela. A União Europeia introduziu legislação em 2007 para regular a utilização dos prefixos binários.

Alguns exemplos:

Tamanhos dos ficheiros Linux e OS X usam IEC, Windows usa SI. Memória usam-se prefixos binários IEC, e.g. 4 GiB.

Discos rígidos fabricantes usam sempre prefixos decimais, e.g. disco de 320 GB.

(mas programas diferentes apresentam o tamanho do disco usando o prefixos diferentes...)

Frequência de relógio usa prefixo decimal, e.g. 2.66 GHz.

CD usa prefixo binário, e.g. 700 MiB.

DVD, Blu-ray usa prefixo decimal, e.g. 4.7 GB.

Exercícios

- 1 Considere os números 127, 77, 1024, 0.
 - 1.1 Escreva-os em binário e em hexadecimal.
 - 1.2 Represente-os de modo a ocuparem quatro endereços de memória consecutivos.
 - 1.3 Repita para o simétrico de cada um dos números.
- Quatro endereços de memória consecutivos contêm 0x01, 0x7f, 0xfc, 0x10, respectivamente. Sabendo que a ordenação de bytes é Little Endian e que os quatro bytes representam um número inteiro de 32 bits, escreva o número correspondente em hexadecimal.
- 3 Quantos bits contém um ficheiro de 4 MiB?