Reading Quiz #9

1 This is a preview of the published version of the quiz

Started: Nov 1 at 2:38p.m.

Quiz Instructions

Read the following chapters from the textbook:

- Chapter 8, sections 8.1 up to but not including "A First Reduction..." on page 454.
- Chapter 8.3.
- Chapter 8.4 (only theorems (8.12), (8.14) and the section titled "General Strategy for Proving New Problems NP-Complete")

Question 1	1 pts
Section 8.1: Polynomial-Time Reductions	
Which of the following are true?	
"Problem Y is polynomial-time reducible to problem X" is equivalent to "problem X is at least as hard as problem Y with respect to polynomial to	ime".
Assume problem Y is polynomial-time reducible to problem X. If X can be solved in polynomial time, Y can be solved in polynomial time.	e
Assume problem Y is polynomial-time reducible to problem X. If X cannot solved in polynomial time, Y cannot be solved in polynomial time.	ot be
Assume problem Y is polynomial-time reducible to problem X. If Y cannot solved in polynomial time, X may be solved in polynomial time.	ot be
lacksquare Let $G=(V,E)$ be a graph. S is an independent set if and only if $V-S$ is vertex cover.	5 a

Question 2 1 pts

Which of these would make a good "certificate" for a certifier for 3-SAT?

0	A list of truth assignments to each variable in the problem.
	A list of the clauses in the problem that can possibly be satisfied via any assignment of truth values to variables.
0	A list of the 2 ⁿ possible truth assignments to all n variables in the problem.

Question 3	1 pts
Which of the following are true?	
$\ \square$ There is a fair amount of hard evidence showing that $\mathscr P$ is most likely n equal to $\mathscr {NP}$.	ot
☐ If a problem belongs to 𝒜ff then every Yes instance of this problem ad efficient verifier.	mits an
☐ If a problem belongs to ℳ then every No instance of this problem adn efficient verifier.	nits an
$\hfill \square$ Many theoretical computer scientists believe that no problem in \mathscr{NP} ca solved in polynomial time.	n be
■ Every problem in the class \mathcal{NP} can be solved in time $O(2^{f(n)})$ where f is polynomial function of the instance size n .	s a

Question 4	1 pts

Reduce a known	NP-complete problem B to A and show that A is in NP
Reduce A to a kn	own NP-complete problem B and show that A is in NP
Reduce A to a kn	own NP-complete problem B and show that B is in NP.

Not saved

Submit Quiz