# THE MATHEMATICAL THEORY OF CONTEXTUALITY Lecture 5: Cohomological characterization

Samson Abramsky

Department of Computer Science, UCL

TACL 2024 Summer School

#### Based on...

- Contextuality, Cohomology and Paradox (2015), in Proceedings of CSL 2015, S. Abramsky, R.S. Barbosa, K. Kishida, R. Lal and S. Mansfield
- S. Abramsky, S. Mansfield and R. Soares Barbosa, *The Cohomology of Non-Locality and Contextuality*, in *Proceedings of QPL 2011*, EPTCS 2011.

#### Based on...

- Contextuality, Cohomology and Paradox (2015), in Proceedings of CSL 2015, S. Abramsky, R.S. Barbosa, K. Kishida, R. Lal and S. Mansfield
- S. Abramsky, S. Mansfield and R. Soares Barbosa, *The Cohomology of Non-Locality and Contextuality*, in *Proceedings of QPL 2011*, EPTCS 2011.

#### See also work by

- Giovanni Carù (1701.00656)
- Robert Raussendorf, Cihan Okay, Stephen Bartlett et al. (1701.01888)
- Adam Ó Conghaile (2206.15253)
- ...

#### Contextuality

What is contextuality, as a problematic, non-classical phenomenon?

In a nutshell: where we have a family of data which is *locally consistent*, but *globally inconsistent*.

#### The Borders of Paradox

The phenomenon arises with *observable data*, reflecting physical reality, taking us to the borders of paradox!

#### The Borders of Paradox

The phenomenon arises with observable data, reflecting physical reality, taking us to the borders of paradox!

What saves us from a direct conflict between logic and experience is that the data *cannot* directly be observed globally.

We cannot observe all the variables at the same time.

#### The Borders of Paradox

The phenomenon arises with observable data, reflecting physical reality, taking us to the borders of paradox!

What saves us from a direct conflict between logic and experience is that the data *cannot* directly be observed globally.

We cannot observe all the variables at the same time.

A "transcendental deduction" of the *incompatibility* (in general) of observables.

#### **Bundle Pictures**

#### **Strong Contextuality**

• E.g. the PR box:

|         | (0,0)    | (0,1)    | (1,0)    | (1,1)        |
|---------|----------|----------|----------|--------------|
| (a,b)   | <b>√</b> | ×        | ×        | <b>√</b>     |
| (a,b')  | ✓        | ×        | ×        | $\checkmark$ |
| (a',b)  | ✓        | $\times$ | $\times$ | $\checkmark$ |
| (a',b') | ×        | ✓        | ✓        | ×            |



No event extends to a global valuation

• Local consistency — global inconsistency

- Local consistency global inconsistency
- Contextuality is pervasive (e.g. physics, computation, logic, ...)

- Local consistency global inconsistency
- Contextuality is pervasive (e.g. physics, computation, logic, ...)
- Goal: find the common mathematical structure in these diverse manifestations, and develop a widely applicable theory

- Local consistency global inconsistency
- Contextuality is pervasive (e.g. physics, computation, logic, ...)
- Goal: find the common mathematical structure in these diverse manifestations, and develop a widely applicable theory
- Can be effectively visualised in topological terms

- Local consistency global inconsistency
- Contextuality is pervasive (e.g. physics, computation, logic, ...)
- Goal: find the common mathematical structure in these diverse manifestations, and develop a widely applicable theory
- Can be effectively visualised in topological terms
- "Twisting" in bundle space gives rise to an obstruction to global consistency

- Local consistency global inconsistency
- Contextuality is pervasive (e.g. physics, computation, logic, ...)
- Goal: find the common mathematical structure in these diverse manifestations, and develop a widely applicable theory
- Can be effectively visualised in topological terms
- "Twisting" in bundle space gives rise to an obstruction to global consistency
- Idea: use *cohomology* to characterize contextuality

• A major theme of 20/21st century mathematics

- A major theme of 20/21st century mathematics
- Constructive witnesses for non-existence, instead of proofs by contradiction

- A major theme of 20/21st century mathematics
- Constructive witnesses for non-existence, instead of proofs by contradiction
- Often computable

- A major theme of 20/21st century mathematics
- Constructive witnesses for non-existence, instead of proofs by contradiction
- Often computable
- Increasingly coming into applications (e.g. persistent homology, TDA)

- A major theme of 20/21st century mathematics
- Constructive witnesses for non-existence, instead of proofs by contradiction
- Often computable
- Increasingly coming into applications (e.g. persistent homology, TDA)
- Part of the program of developing a widely applicable mathematical theory of contextuality

Empirical models  $(X, \mathcal{M}, O)$ .

Empirical models  $(X, \mathcal{M}, O)$ .

Joint outcomes of measuring variables in a context C are sections  $s: C \to O$ .

Empirical models  $(X, \mathcal{M}, O)$ .

Joint outcomes of measuring variables in a context C are sections  $s: C \to O$ .

We consider "sections\*": formal  $\mathbb{Z}$ -linear combinations of sections

$$\sum_{s:C\to O} z_s \cdot s$$

Empirical models  $(X, \mathcal{M}, O)$ .

Joint outcomes of measuring variables in a context C are sections  $s: C \to O$ .

We consider "sections\*": formal  $\mathbb{Z}$ -linear combinations of sections

$$\sum_{s:C\to O} z_s \cdot s$$

The "Original Sin" of cohomology: we need an abelian group structure to work with.

Empirical models  $(X, \mathcal{M}, O)$ .

Joint outcomes of measuring variables in a context C are sections  $s: C \to O$ .

We consider "sections\*": formal  $\mathbb{Z}$ -linear combinations of sections

$$\sum_{s:C\to O} z_s\cdot s$$

The "Original Sin" of cohomology: we need an abelian group structure to work with.

#### Cochains:

- 0-cochains:  $(r_i)_i$ , where  $r_i$  is a section\* over  $C_i$ .
- 1-cochains:  $(r_{ij})_{i,j}$ , where  $r_{ij}$  is a section\* over  $C_i \cap C_j$ .
- 2-cochains:  $(r_{ijk})_{i,j,k}$ , where  $r_{ijk}$  is a section\* over  $C_i \cap C_j \cap C_k$ .

• :

We can restrict a 0-section\* to a 1-section\*, or a 1-section\* to a 2-section\*, by summing out:

We can restrict a 0-section\* to a 1-section\*, or a 1-section\* to a 2-section\*, by summing out:

E.g.  $r_i|_{ij}$ , where  $r_i = \sum_{s \in O} c_i z_s \cdot s$ :

We can restrict a 0-section\* to a 1-section\*, or a 1-section\* to a 2-section\*, by summing out:

E.g. 
$$r_i|_{ij}$$
, where  $r_i = \sum_{s \in O^{C_i}} z_s \cdot s$ :

for 
$$t: C_i \cap C_j \to O$$
,

$$r_i|_{ij} :: t \mapsto \sum_{s|_{C_i \cap C_j} = t} z_s$$

We can restrict a 0-section\* to a 1-section\*, or a 1-section\* to a 2-section\*, by summing out:

E.g. 
$$r_i|_{ij}$$
, where  $r_i = \sum_{s \in O^{C_i}} z_s \cdot s$ :

for 
$$t: C_i \cap C_j \to O$$
,

$$r_i|_{ij} :: t \mapsto \sum_{s|_{C_i \cap C_j} = t} z_s$$

Coboundary maps

$$C^0 \rightarrow^{d^0} C^1 \rightarrow^{d^1} C^2$$

We can restrict a 0-section\* to a 1-section\*, or a 1-section\* to a 2-section\*, by summing out:

E.g.  $r_i|_{ij}$ , where  $r_i = \sum_{s \in O} c_i z_s \cdot s$ :

for  $t: C_i \cap C_j \to O$ ,

$$r_i|_{ij} :: t \mapsto \sum_{s|_{C_i \cap C_j} = t} z_s$$

Coboundary maps

$$C^0 \rightarrow^{d^0} C^1 \rightarrow^{d^1} C^2$$

$$d^{0}(r_{i})_{i} = (s_{ij})_{i,j}, \qquad s_{ij} := r_{i}|_{ij} - r_{j}|_{ij}$$

$$d^{1}(r_{ij})_{i} = (s_{ijk})_{i,j,k}, \qquad s_{ijk} := r_{ij}|_{ijk} - r_{ik}|_{ijk} + r_{jk}|_{ijk}$$

The elements of the kernel of  $d^i$  are called *i-cocycles*.

The elements of the kernel of  $d^i$  are called *i-cocycles*.

The key fact is that  $d^1 \circ d^0 = 0$ , hence im  $d^0 \subseteq \ker d^1$ , and we can mod out the cocycles  $Z^i$  by the coboundaries  $B^i$  to form the cohomology groups

$$H^i:=Z^i/B^i.$$

The elements of the kernel of  $d^i$  are called *i-cocycles*.

The key fact is that  $d^1 \circ d^0 = 0$ , hence im  $d^0 \subseteq \ker d^1$ , and we can mod out the cocycles  $Z^i$  by the coboundaries  $B^i$  to form the cohomology groups

$$H^i:=Z^i/B^i.$$

The 0-cocycles are those  $(r_i)$  with  $d^0(r_i) = 0$ , i.e.  $r_i|_{ij} - r_j|_{ij} = 0$ , i.e.  $r_i|_{ij} = r_j|_{ij}$ .

The elements of the kernel of  $d^i$  are called *i-cocycles*.

The key fact is that  $d^1 \circ d^0 = 0$ , hence im  $d^0 \subseteq \ker d^1$ , and we can mod out the cocycles  $Z^i$  by the coboundaries  $B^i$  to form the cohomology groups

$$H^i := Z^i/B^i$$
.

The 0-cocycles are those  $(r_i)$  with  $d^0(r_i) = 0$ , i.e.  $r_i|_{ij} - r_j|_{ij} = 0$ , i.e.  $r_i|_{ij} = r_j|_{ij}$ .

These are exactly the *compatible families* of sections\*.

# Cocycles and cohomology

The elements of the kernel of  $d^i$  are called *i-cocycles*.

The key fact is that  $d^1 \circ d^0 = 0$ , hence im  $d^0 \subseteq \ker d^1$ , and we can mod out the cocycles  $Z^i$  by the coboundaries  $B^i$  to form the cohomology groups

$$H^i := Z^i/B^i$$
.

The 0-cocycles are those  $(r_i)$  with  $d^0(r_i) = 0$ , i.e.  $r_i|_{ij} - r_j|_{ij} = 0$ , i.e.  $r_i|_{ij} = r_j|_{ij}$ .

These are exactly the *compatible families* of sections\*.

The 1-cocycles are those  $(r_{ij})$  with  $d^1(r_{ij}) = 0$ , i.e.  $r_{ij}|_{ijk} - r_{ik}|_{ijk} + r_{jk}|_{ijk} = 0$ , i.e.  $r_{ij} + r_{jk} = r_{ik}$ .

# Cocycles and cohomology

The elements of the kernel of  $d^i$  are called *i-cocycles*.

The key fact is that  $d^1 \circ d^0 = 0$ , hence im  $d^0 \subseteq \ker d^1$ , and we can mod out the cocycles  $Z^i$  by the coboundaries  $B^i$  to form the cohomology groups

$$H^i := Z^i/B^i$$
.

The 0-cocycles are those  $(r_i)$  with  $d^0(r_i) = 0$ , i.e.  $r_i|_{ij} - r_j|_{ij} = 0$ , i.e.  $r_i|_{ij} = r_j|_{ij}$ .

These are exactly the *compatible families* of sections\*.

The 1-cocycles are those  $(r_{ij})$  with  $d^1(r_{ij}) = 0$ , i.e.  $r_{ij}|_{ijk} - r_{ik}|_{ijk} + r_{jk}|_{ijk} = 0$ , i.e.  $r_{ij} + r_{jk} = r_{ik}$ .

This cocycle condition occurs in many contexts in mathematics.

The relative cohomology at i lets us focus on a section at context  $C_i$ .

The relative cohomology at i lets us focus on a section at context  $C_i$ .

This lets us consider questions such as extending such a local section to a global one in an empirical model.

The relative cohomology at i lets us focus on a section at context  $C_i$ .

This lets us consider questions such as extending such a local section to a global one in an empirical model.

We shall not give the abstract definition.

The relative cohomology at i lets us focus on a section at context  $C_i$ .

This lets us consider questions such as extending such a local section to a global one in an empirical model.

We shall not give the abstract definition.

### Proposition

For any  $C_i \in \mathcal{M}$ , the elements of the relative cohomology group  $H_i^0$  correspond bijectively to compatible families  $(r_j)$  such that  $r_i = 0$ .

To each local section s at context  $C_i$  in an empirical model e, we associate an element  $\gamma(s)$  of  $H_i^1$ , which can be regarded as an obstruction to s having an extension within the support of e to a global section.

To each local section s at context  $C_i$  in an empirical model e, we associate an element  $\gamma(s)$  of  $H_i^1$ , which can be regarded as an obstruction to s having an extension within the support of e to a global section.

In particular, the existence of such an extension implies that the obstruction vanishes, yielding *cohomological witnesses* for logical and strong contextuality in the *non-vanishing* of the obstruction.

To each local section s at context  $C_i$  in an empirical model e, we associate an element  $\gamma(s)$  of  $H_i^1$ , which can be regarded as an obstruction to s having an extension within the support of e to a global section.

In particular, the existence of such an extension implies that the obstruction vanishes, yielding *cohomological witnesses* for logical and strong contextuality in the *non-vanishing* of the obstruction.

Fix an element  $s = s_1 \in S_e(C_1)$ . Because of the compatibility of the empirical model, there is a family  $\{s_i \in S_e(C_i)\}$  with  $s_1|_{C_1 \cap C_i} = s_i|_{C_1 \cap C_i}$ , i = 2, ..., n.

To each local section s at context  $C_i$  in an empirical model e, we associate an element  $\gamma(s)$  of  $H_i^1$ , which can be regarded as an obstruction to s having an extension within the support of e to a global section.

In particular, the existence of such an extension implies that the obstruction vanishes, yielding *cohomological witnesses* for logical and strong contextuality in the *non-vanishing* of the obstruction.

Fix an element  $s = s_1 \in S_e(C_1)$ . Because of the compatibility of the empirical model, there is a family  $\{s_i \in S_e(C_i)\}$  with  $s_1|_{C_1 \cap C_i} = s_i|_{C_1 \cap C_i}$ , i = 2, ..., n.

We define the 0-cochain  $c := (s_1, \dots, s_n)$ . The coboundary of this cochain is  $z := d^0(c)$ .

To each local section s at context  $C_i$  in an empirical model e, we associate an element  $\gamma(s)$  of  $H_i^1$ , which can be regarded as an obstruction to s having an extension within the support of e to a global section.

In particular, the existence of such an extension implies that the obstruction vanishes, yielding *cohomological witnesses* for logical and strong contextuality in the *non-vanishing* of the obstruction.

Fix an element  $s = s_1 \in S_e(C_1)$ . Because of the compatibility of the empirical model, there is a family  $\{s_i \in S_e(C_i)\}$  with  $s_1|_{C_1 \cap C_i} = s_i|_{C_1 \cap C_i}$ , i = 2, ..., n.

We define the 0-cochain  $c := (s_1, \dots, s_n)$ . The coboundary of this cochain is  $z := d^0(c)$ .

#### Proposition

The coboundary z of c vanishes under restriction to  $C_1$ , and hence is a cocycle in the relative cohomology with respect to  $C_1$ .

We define  $\gamma(s_1)$  as the cohomology class [z] in  $H_1^1$ .

We define  $\gamma(s_1)$  as the cohomology class [z] in  $H_1^1$ .

#### Remarks:

There is a more conceptual way of defining this obstruction, using the connecting homomorphism from the long exact sequence of cohomology (which in turn uses the "Snake Lemma").

We define  $\gamma(s_1)$  as the cohomology class [z] in  $H_1^1$ .

#### Remarks:

There is a more conceptual way of defining this obstruction, using the connecting homomorphism from the long exact sequence of cohomology (which in turn uses the "Snake Lemma").

We have given a more concrete formulation, which may be easier to grasp, and is also convenient for computation.

We define  $\gamma(s_1)$  as the cohomology class [z] in  $H_1^1$ .

#### Remarks:

There is a more conceptual way of defining this obstruction, using the connecting homomorphism from the long exact sequence of cohomology (which in turn uses the "Snake Lemma").

We have given a more concrete formulation, which may be easier to grasp, and is also convenient for computation.

Note that, although  $z = d^0(c)$ , it is *not* necessarily a relative coboundary, since c is not a relative cochain, as  $s_i|_{C_1 \cap C_i} \neq 0$ .

We define  $\gamma(s_1)$  as the cohomology class [z] in  $H_1^1$ .

#### Remarks:

There is a more conceptual way of defining this obstruction, using the connecting homomorphism from the long exact sequence of cohomology (which in turn uses the "Snake Lemma").

We have given a more concrete formulation, which may be easier to grasp, and is also convenient for computation.

Note that, although  $z = d^0(c)$ , it is *not* necessarily a relative coboundary, since c is not a relative cochain, as  $s_i|_{C_1 \cap C_i} \neq 0$ .

Thus in general, we need not have [z] = 0.

# Key Property of the Obstruction

# Key Property of the Obstruction

#### Proposition

The following are equivalent:

- The cohomology obstruction vanishes:  $\gamma(s_1) = 0$ .
- **②** There is a 0-cochain  $(r_i)$  with  $s_1 = r_1$ , and for all i, j:

$$r_i|_{C_i\cap C_j}=r_j|_{C_i\cap C_j}.$$

As an immediate application to contextuality, we have the following.

As an immediate application to contextuality, we have the following.

### Proposition

If the model e is possibilistically extendable, then the obstruction vanishes for every section in the support of the model. If e is not strongly contextual, then the obstruction vanishes for some section in the support.

As an immediate application to contextuality, we have the following.

### Proposition

If the model e is possibilistically extendable, then the obstruction vanishes for every section in the support of the model. If e is not strongly contextual, then the obstruction vanishes for some section in the support.

Thus we have a *sufficient condition* for contextuality in the non-vanishing of the obstruction.

As an immediate application to contextuality, we have the following.

### Proposition

If the model e is possibilistically extendable, then the obstruction vanishes for every section in the support of the model. If e is not strongly contextual, then the obstruction vanishes for some section in the support.

Thus we have a *sufficient condition* for contextuality in the non-vanishing of the obstruction.

The non-necessity of the condition arises from the possibility of "false positives": families of sections\*  $(r_i)$  which do not determine a *bona fide* global section.

#### Support of the Hardy Model

|         | (0,0) | (0, 1) | (1,0) | (1, 1) |
|---------|-------|--------|-------|--------|
| (A,B)   | 1     | 0      | 0     | 0      |
| (A,B')  | 0     | 1      | 0     | 0      |
| (A',B)  | 0     | 1      | 1     | 1      |
| (A',B') | 1     | 1      | 1     | 0      |

- Possibilistically non-local
- Not strongly contextual
- The section  $(A,B) \rightarrow (0,0)$  witnesses non-locality
- All other sections belong to compatible families of sections

## Support of the Hardy Model

|         | (0,0)           | (0,1)                 | (1,0)                 | (1,1)                 |
|---------|-----------------|-----------------------|-----------------------|-----------------------|
| (A,B)   | $s_1$           | $s_2$                 | <i>s</i> <sub>3</sub> | <i>s</i> <sub>4</sub> |
| (A,B')  | 0               | <i>s</i> <sub>6</sub> | <i>S</i> 7            | <i>s</i> <sub>8</sub> |
| (A',B)  | 0               | S <sub>10</sub>       | s <sub>11</sub>       | S <sub>12</sub>       |
| (A',B') | S <sub>13</sub> | S <sub>14</sub>       | S <sub>15</sub>       | 0                     |

#### Label non-zero sections

• Compatible family of Z-linear combinations of sections:

$$r_1 = s_1$$
,  $r_2 = s_6 + s_7 - s_8$ ,  $r_3 = s_{11}$ ,  $r_4 = s_{15}$ 

One can check that

$$r_{2}|A = 1 \cdot (A \mapsto 0) + 1 \cdot (A \mapsto 1) - 1 \cdot (A \mapsto 1) = r_{1}|A = r_{2}|B' = 1 \cdot (B' \mapsto 1) + 1 \cdot (B' \mapsto 0) - 1 \cdot (B' \mapsto 1) = r_{4}|B' = r$$

## Support of the Hardy Model

|         | (0,0)           | (0,1)           | (1,0)                 | (1,1)                 |
|---------|-----------------|-----------------|-----------------------|-----------------------|
| (A,B)   | $s_1$           | $s_2$           | <i>s</i> <sub>3</sub> | $s_4$                 |
| (A,B')  | 0               | $s_6$           | <i>S</i> 7            | <i>s</i> <sub>8</sub> |
| (A',B)  | 0               | S <sub>10</sub> | s <sub>11</sub>       | S <sub>12</sub>       |
| (A',B') | s <sub>13</sub> | S <sub>14</sub> | S <sub>15</sub>       | 0                     |

- Label non-zero sections
- Compatible family of  $\mathbb{Z}$ -linear combinations of sections:

$$r_1 = s_1$$
,  $r_2 = s_6 + s_7 - s_8$ ,  $r_3 = s_{11}$ ,  $r_4 = s_{15}$ 

One can check that

$$\begin{array}{rcl} r_2|A & = & 1 \cdot (A \mapsto 0) + 1 \cdot (A \mapsto 1) - 1 \cdot (A \mapsto 1) & = & r_1|A, \\ r_2|B' & = & 1 \cdot (B' \mapsto 1) + 1 \cdot (B' \mapsto 0) - 1 \cdot (B' \mapsto 1) & = & r_4|B' \end{array}$$

### Support of the Hardy Model

|         | (0,0)           | (0,1)                 | (1,0)                 | (1,1)                 |
|---------|-----------------|-----------------------|-----------------------|-----------------------|
| (A,B)   | $s_1$           | $s_2$                 | <i>s</i> <sub>3</sub> | <i>S</i> <sub>4</sub> |
| (A, B') | 0               | <i>s</i> <sub>6</sub> | <i>S</i> 7            | <i>s</i> <sub>8</sub> |
| (A',B)  | 0               | S <sub>10</sub>       | s <sub>11</sub>       | S <sub>12</sub>       |
| (A',B') | s <sub>13</sub> | S <sub>14</sub>       | S <sub>15</sub>       | 0                     |

- Label non-zero sections
- Compatible family of  $\mathbb{Z}$ -linear combinations of sections:

$$r_1 = s_1$$
,  $r_2 = s_6 + s_7 - s_8$ ,  $r_3 = s_{11}$ ,  $r_4 = s_{15}$ 

One can check that

$$\begin{array}{lcl} r_2|A & = & 1\cdot(A\mapsto 0) + 1\cdot(A\mapsto 1) - 1\cdot(A\mapsto 1) & = & r_1|A, \\ r_2|B' & = & 1\cdot(B'\mapsto 1) + 1\cdot(B'\mapsto 0) - 1\cdot(B'\mapsto 1) & = & r_4|B' \end{array}$$

- $\gamma(s_1)$  vanishes!
- This example illustrates that false positives do arise
- The cohomological obstruction does not show the non-locality of the Hardy model

|                 | (0,0) | (0, 1) | (1,0) | (1,1) |
|-----------------|-------|--------|-------|-------|
| $C_1 = (A,B)$   | а     | 0      | 0     | b     |
| $C_2 = (A, B')$ | c     | 0      | 0     | d     |
| $C_3=(A',B)$    | e     | 0      | 0     | f     |
| $C_4=(A',B')$   | 0     | g      | h     | 0     |

## Coefficients for Candidate Family $\{r_i\}$

|                 | (0,0) | (0,1) | (1,0) | (1,1) |
|-----------------|-------|-------|-------|-------|
| $C_1 = (A,B)$   | a     | 0     | 0     | b     |
| $C_2 = (A, B')$ | c     | 0     | 0     | d     |
| $C_3=(A',B)$    | e     | 0     | 0     | f     |
| $C_4=(A',B')$   | 0     | g     | h     | 0     |

#### Restrictions

$$r_1|C_{1,2} = r_2|C_{1,2} \longrightarrow a = c \qquad b = d$$
  
 $r_1|C_{1,3} = r_3|C_{1,2} \longrightarrow a = e \qquad b = f$   
 $r_2|C_{2,4} = r_4|C_{2,4} \longrightarrow c = h \qquad d = g$   
 $r_3|C_{3,4} = r_4|C_{3,4} \longrightarrow e = g \qquad f = h$ 

### Coefficients for Candidate Family $\{r_i\}$

|                 | (0,0) | (0,1) | (1,0) | (1,1) |
|-----------------|-------|-------|-------|-------|
| $C_1 = (A,B)$   | а     | 0     | 0     | b     |
| $C_2 = (A, B')$ | c     | 0     | 0     | d     |
| $C_3=(A',B)$    | e     | 0     | 0     | f     |
| $C_4=(A',B')$   | 0     | g     | h     | 0     |

#### Restrictions

$$r_1|C_{1,2} = r_2|C_{1,2} \longrightarrow a = c \qquad b = d$$
  
 $r_1|C_{1,3} = r_3|C_{1,2} \longrightarrow a = e \qquad b = f$   
 $r_2|C_{2,4} = r_4|C_{2,4} \longrightarrow c = h \qquad d = g$   
 $r_3|C_{3,4} = r_4|C_{3,4} \longrightarrow e = g \qquad f = h$ 

- All coefficients are required to be equal
- Checking if a section is a member of a family amounts to setting its coefficient to 1 and all other coefficients in its context to 0
  - The equations then require 1=0

|                 | (0,0) | (0,1) | (1,0) | (1,1) |
|-----------------|-------|-------|-------|-------|
| $C_1 = (A,B)$   | а     | 0     | 0     | b     |
| $C_2 = (A, B')$ | c     | 0     | 0     | d     |
| $C_3=(A',B)$    | e     | 0     | 0     | f     |
| $C_4=(A',B')$   | 0     | g     | h     | 0     |

- All coefficients are required to be equal
- Checking if a section is a member of a family amounts to setting its coefficient to 1 and all other coefficients in its context to 0
- The equations then require 1 = 0
- No family  $\{r_i\}$  extending a section s ( $\forall s$ .  $\gamma(s) \neq 0$ )

|                 | (0,0) | (0,1) | (1,0) | (1,1) |
|-----------------|-------|-------|-------|-------|
| $C_1 = (A, B)$  | a=1   | 0     | 0     | b = 0 |
| $C_2 = (A, B')$ | c     | 0     | 0     | d     |
| $C_3=(A',B)$    | e     | 0     | 0     | f     |
| $C_4=(A',B')$   | 0     | g     | h     | 0     |

- All coefficients are required to be equal
- Checking if a section is a member of a family amounts to setting its coefficient to 1 and all other coefficients in its context to 0
- The equations then require 1 = 0
- No family  $\{r_i\}$  extending a section s ( $\forall s$ .  $\gamma(s) \neq 0$ )

|                 | (0,0) | (0,1) | (1,0) | (1,1) |
|-----------------|-------|-------|-------|-------|
| $C_1 = (A, B)$  | a=1   | 0     | 0     | b = 0 |
| $C_2 = (A, B')$ | c     | 0     | 0     | d     |
| $C_3=(A',B)$    | e     | 0     | 0     | f     |
| $C_4=(A',B')$   | 0     | g     | h     | 0     |

- All coefficients are required to be equal
- Checking if a section is a member of a family amounts to setting its coefficient to 1 and all other coefficients in its context to 0
- The equations then require 1 = 0
- No family  $\{r_i\}$  extending a section s ( $\forall s$ .  $\gamma(s) \neq 0$ )

## Other Examples

The cohomology approach witnesses strong contextuality in a number of other well-known examples:

- GHZ model
- Peres-Mermin Square
- 18-vector Kochen-Specker model
- Other KS-type models

#### Other Examples

The cohomology approach witnesses strong contextuality in a number of other well-known examples:

- GHZ model
- Peres-Mermin Square
- 18-vector Kochen-Specker model
- Other KS-type models

It also witnesses contextuality in important classes of constructions, e.g. "All-versus-Nothing" arguments.

• In his thesis, Giovanni Carù gives a refined cohomological criterion which covers the vast majority of cases, kills all known counter-examples, and is conjectured to be complete.

- In his thesis, Giovanni Carù gives a refined cohomological criterion which covers the vast majority of cases, kills all known counter-examples, and is conjectured to be complete.
- Following our work, Raussendorf and Okay have developed a related cohomological treatment of contextuality.

- In his thesis, Giovanni Carù gives a refined cohomological criterion which covers the vast majority of cases, kills all known counter-examples, and is conjectured to be complete.
- Following our work, Raussendorf and Okay have developed a related cohomological treatment of contextuality.
- Sivert Aasnaess has shown that their work also falls under the scope of the sheaf cohomology invariants.

- In his thesis, Giovanni Carù gives a refined cohomological criterion which covers the vast majority of cases, kills all known counter-examples, and is conjectured to be complete.
- Following our work, Raussendorf and Okay have developed a related cohomological treatment of contextuality.
- Sivert Aasnaess has shown that their work also falls under the scope of the sheaf cohomology invariants.
- Adam Ó Conghaile has applied the approach to obtain a novel polynomial-time approximation algorithm for CSP, which covers many known tractable cases.

Given a finite relational structure B over a finite relational vocabulary  $\sigma$ , the *constraint satisfaction problem*  $\mathsf{CSP}(B)$  is to decide, for an *instance* given by a finite  $\sigma$ -structure A, whether there is a homomorphism  $A \to B$ .

Given a finite relational structure B over a finite relational vocabulary  $\sigma$ , the *constraint satisfaction problem* CSP(B) is to decide, for an *instance* given by a finite  $\sigma$ -structure A, whether there is a homomorphism  $A \to B$ .

The Feder-Vardi Conjecture (1993):

For every B, CSP(B) is either polynomial-time solvable, or NP-complete.

Given a finite relational structure B over a finite relational vocabulary  $\sigma$ , the *constraint satisfaction problem* CSP(B) is to decide, for an *instance* given by a finite  $\sigma$ -structure A, whether there is a homomorphism  $A \to B$ .

The Feder-Vardi Conjecture (1993):

For every B, CSP(B) is either polynomial-time solvable, or NP-complete.

Evidence: known problems at the time were either NP-complete (e.g. 3-SAT), or fell into two "islands of tractability":

- bounded width exactly solvable by local consistency, or
- "subgroup problems"

Given a finite relational structure B over a finite relational vocabulary  $\sigma$ , the *constraint satisfaction problem* CSP(B) is to decide, for an *instance* given by a finite  $\sigma$ -structure A, whether there is a homomorphism  $A \to B$ .

The Feder-Vardi Conjecture (1993):

For every B, CSP(B) is either polynomial-time solvable, or NP-complete.

Evidence: known problems at the time were either NP-complete (e.g. 3-SAT), or fell into two "islands of tractability":

- bounded width exactly solvable by local consistency, or
- "subgroup problems"

The two tractable classes identified by Feder and Vardi appeared to be quite different in character.

Given a finite relational structure B over a finite relational vocabulary  $\sigma$ , the *constraint satisfaction problem* CSP(B) is to decide, for an *instance* given by a finite  $\sigma$ -structure A, whether there is a homomorphism  $A \to B$ .

The Feder-Vardi Conjecture (1993):

For every B, CSP(B) is either polynomial-time solvable, or NP-complete.

Evidence: known problems at the time were either NP-complete (e.g. 3-SAT), or fell into two "islands of tractability":

- bounded width exactly solvable by local consistency, or
- "subgroup problems"

The two tractable classes identified by Feder and Vardi appeared to be quite different in character.

This conjecture was recently proved (independently) by Bulatov and Zhuk (c. 2016).

#### Contextuality

In a nutshell: contextually arises where we have a family of overlapping pieces of data which is *locally* consistent, but globally inconsistent.

### Contextuality

In a nutshell: contextually arises where we have a family of overlapping pieces of data which is *locally* consistent, but globally inconsistent.

#### **Illustration: local consistency**









# Illustration: global inconsistency



### Topology of Paradox

- Clearly, the staircase *as a whole* cannot exist in the real world. Nonetheless, the constituent parts make sense *locally*.
- Quantum contextuality shows that the logical structure of quantum mechanics exhibits exactly these features of *local consistency*, but *global inconsistency*.
- This can happen because *not all variables can be measured at the same time* (non-commuting observables).
- We note that Escher's work was inspired by the *Penrose stairs*.
- Indeed, these figures provide more than a mere analogy. Penrose has studied the topological "twisting" in these figures using cohomology. This is quite analogous to our use of sheaf cohomology to capture the logical twisting in contextuality.
- Recent cross-over of these ideas into Constraint Satisfaction and structure isomorphism (refinements of Weisfeiler-Leman).



Given an approximation level k, we test if there are solutions for all  $\leq k$ -element subsets of the instance.

Given an approximation level k, we test if there are solutions for all  $\leq k$ -element subsets of the instance.

More precisely, this amounts to the existence of a non-empty family S of homomorphisms  $f: C \to B$ , where C is an induced substructure of A with  $|C| \le k$ .

Given an approximation level k, we test if there are solutions for all  $\leq k$ -element subsets of the instance.

More precisely, this amounts to the existence of a non-empty family S of homomorphisms  $f: C \to B$ , where C is an induced substructure of A with  $|C| \le k$ .

This is subject to the following conditions:

- **down-closure**: If  $f: C \to B \in S$  and  $C' \subseteq C$ , then  $f|_{C'}: C' \to B \in S$ .
- **forth condition**: If  $f: C \to B \in S$ , |C| < k, and  $a \in A$ , then for some  $f': C \cup \{a\} \to B \in S$ , |C| = f.

Given an approximation level k, we test if there are solutions for all  $\leq k$ -element subsets of the instance.

More precisely, this amounts to the existence of a non-empty family S of homomorphisms  $f: C \to B$ , where C is an induced substructure of A with  $|C| \le k$ .

This is subject to the following conditions:

- **down-closure**: If  $f: C \to B \in S$  and  $C' \subseteq C$ , then  $f|_{C'}: C' \to B \in S$ .
- **forth condition**: If  $f: C \to B \in S$ , |C| < k, and  $a \in A$ , then for some  $f': C \cup \{a\} \to B \in S$ ,  $f'|_C = f$ .

This is equivalent to the existence of a winning strategy for Duplicator in the existential *k*-pebble game from *A* to *B*.

Given an approximation level k, we test if there are solutions for all  $\leq k$ -element subsets of the instance.

More precisely, this amounts to the existence of a non-empty family S of homomorphisms  $f: C \to B$ , where C is an induced substructure of A with  $|C| \le k$ .

This is subject to the following conditions:

- **down-closure**: If  $f: C \to B \in S$  and  $C' \subseteq C$ , then  $f|_{C'}: C' \to B \in S$ .
- **forth condition**: If  $f: C \to B \in S$ , |C| < k, and  $a \in A$ , then for some  $f': C \cup \{a\} \to B \in S$ ,  $f'|_C = f$ .

This is equivalent to the existence of a winning strategy for Duplicator in the existential *k*-pebble game from *A* to *B*.

Notation:  $A \rightarrow_k B$ .

Given an approximation level k, we test if there are solutions for all  $\leq k$ -element subsets of the instance.

More precisely, this amounts to the existence of a non-empty family S of homomorphisms  $f: C \to B$ , where C is an induced substructure of A with  $|C| \le k$ .

This is subject to the following conditions:

- **down-closure**: If  $f: C \to B \in S$  and  $C' \subseteq C$ , then  $f|_{C'}: C' \to B \in S$ .
- **forth condition**: If  $f: C \to B \in S$ , |C| < k, and  $a \in A$ , then for some  $f': C \cup \{a\} \to B \in S$ , |C| = f.

This is equivalent to the existence of a winning strategy for Duplicator in the existential k-pebble game from A to B.

Notation:  $A \rightarrow_k B$ .

This fits perfectly into the sheaf-theoretic language used to capture contextuality by Abramsky-Brandenburger et al!

• We write  $\Sigma_k(A)$  for the poset of subsets of A of cardinality  $\leq k$ . Each such subset gives rise to an induced substructure of A.

- We write  $\Sigma_k(A)$  for the poset of subsets of A of cardinality  $\leq k$ . Each such subset gives rise to an induced substructure of A.
- We define a presheaf  $\mathscr{H}_k : \Sigma_k(A)^{\mathsf{op}} \to \mathbf{Set}$  by  $\mathscr{H}_k(C) = \mathsf{hom}(C, B)$ . If  $C' \subseteq C$ , then the restriction maps are defined by  $\rho_{C'}^{C}(h) = h|_{C'}$ .

- We write  $\Sigma_k(A)$  for the poset of subsets of A of cardinality  $\leq k$ . Each such subset gives rise to an induced substructure of A.
- We define a presheaf  $\mathscr{H}_k : \Sigma_k(A)^{\mathsf{op}} \to \mathbf{Set}$  by  $\mathscr{H}_k(C) = \mathsf{hom}(C, B)$ . If  $C' \subseteq C$ , then the restriction maps are defined by  $\rho_{C'}^{C}(h) = h|_{C'}$ .
- This is the *presheaf of partial homomorphisms*.

- We write  $\Sigma_k(A)$  for the poset of subsets of A of cardinality  $\leq k$ . Each such subset gives rise to an induced substructure of A.
- We define a presheaf  $\mathscr{H}_k : \Sigma_k(A)^{\mathsf{op}} \to \mathbf{Set}$  by  $\mathscr{H}_k(C) = \mathsf{hom}(C, B)$ . If  $C' \subseteq C$ , then the restriction maps are defined by  $\rho_{C'}^C(h) = h|_{C'}$ .
- This is the *presheaf of partial homomorphisms*.
- A subpresheaf of  $\mathscr{H}_k$  is a presheaf  $\mathscr{S}$  such that  $\mathscr{S}(C) \subseteq \mathscr{H}_k(C)$  for all  $C \in \Sigma_k(A)$ , and moreover if  $C' \subseteq C$  and  $h \in \mathscr{S}(C)$ , then  $\rho_{C'}^C(h) \in \mathscr{S}(C')$ .

- We write  $\Sigma_k(A)$  for the poset of subsets of A of cardinality  $\leq k$ . Each such subset gives rise to an induced substructure of A.
- We define a presheaf  $\mathscr{H}_k : \Sigma_k(A)^{\mathsf{op}} \to \mathbf{Set}$  by  $\mathscr{H}_k(C) = \mathsf{hom}(C, B)$ . If  $C' \subseteq C$ , then the restriction maps are defined by  $\rho_{C'}^{C}(h) = h|_{C'}$ .
- This is the *presheaf of partial homomorphisms*.
- A subpresheaf of  $\mathscr{H}_k$  is a presheaf  $\mathscr{S}$  such that  $\mathscr{S}(C) \subseteq \mathscr{H}_k(C)$  for all  $C \in \Sigma_k(A)$ , and moreover if  $C' \subseteq C$  and  $h \in \mathscr{S}(C)$ , then  $\rho_{C'}^C(h) \in \mathscr{S}(C')$ .
- A presheaf is *flasque* (or "flabby") if the restriction maps are surjective. This means that if  $C \subseteq C'$ , each  $h \in \mathcal{S}(C)$  has an extension  $h' \in \mathcal{S}(C')$  with  $h'|_C = h$ .

#### Proposition

There is a bijective correspondence between

- positional strategies from A to B
- $\bigcirc$  flasque sub-presheaves of  $\mathcal{H}_k$ .

#### Proof.

The property of being a subpresheaf of  $\mathcal{H}_k$  is equivalent to the down-closure property, while being flasque is equivalent to the forth condition.

A *global section* is a family of partial homomorphisms  $\{s_C : C \to B\}_{C \subseteq A, |C| \le k}$  which agrees on overlaps:

$$\forall C, C': \ s_C|_{C\cap C'} = s_{C'}|_{C\cap C'}$$

A *global section* is a family of partial homomorphisms  $\{s_C : C \to B\}_{C \subseteq A, |C| \le k}$  which agrees on overlaps:

$$\forall C, C': \ s_C|_{C\cap C'} = s_{C'}|_{C\cap C'}$$

Global sections are in 1-1 correspondence with homomorphisms  $A \rightarrow B$ .

A *global section* is a family of partial homomorphisms  $\{s_C : C \to B\}_{C \subseteq A, |C| \le k}$  which agrees on overlaps:

$$\forall C, C': \ s_C|_{C \cap C'} = s_{C'}|_{C \cap C'}$$

Global sections are in 1-1 correspondence with homomorphisms  $A \rightarrow B$ .

In previous work with Barbosa, Mansfield, Kishida and Lal (ABKLM) I used *cohomology* to characterise contextuality, *i.e.* the *non-existence* of such a homomorphism.

A *global section* is a family of partial homomorphisms  $\{s_C : C \to B\}_{C \subseteq A, |C| \le k}$  which agrees on overlaps:

$$\forall C, C': \ s_C|_{C\cap C'} = s_{C'}|_{C\cap C'}$$

Global sections are in 1-1 correspondence with homomorphisms  $A \rightarrow B$ .

In previous work with Barbosa, Mansfield, Kishida and Lal (ABKLM) I used *cohomology* to characterise contextuality, *i.e.* the *non-existence* of such a homomorphism.

This gives linear-algebraic approximations to global sections: a family  $\{r_C\}_C$  where  $r_C$  is a  $\mathbb{Z}$ -linear combination of local sections, satisfying the compatibility (i.e. agree-on-overlap) conditions, suitably extended to linear combinations.

A *global section* is a family of partial homomorphisms  $\{s_C : C \to B\}_{C \subseteq A, |C| \le k}$  which agrees on overlaps:

$$\forall C, C': \ s_C|_{C \cap C'} = s_{C'}|_{C \cap C'}$$

Global sections are in 1-1 correspondence with homomorphisms  $A \to B$ .

In previous work with Barbosa, Mansfield, Kishida and Lal (ABKLM) I used *cohomology* to characterise contextuality, *i.e.* the *non-existence* of such a homomorphism.

This gives linear-algebraic approximations to global sections: a family  $\{r_C\}_C$  where  $r_C$  is a  $\mathbb{Z}$ -linear combination of local sections, satisfying the compatibility (i.e. agree-on-overlap) conditions, suitably extended to linear combinations.

Given  $s: C_0 \to B$ , we can ask if it has an extension to such a  $\mathbb{Z}$ -linear family  $\{r_C\}$ , with  $r_{C_0} = 1 \cdot s$ .

A *global section* is a family of partial homomorphisms  $\{s_C : C \to B\}_{C \subseteq A, |C| \le k}$  which agrees on overlaps:

$$\forall C, C': \ s_C|_{C \cap C'} = s_{C'}|_{C \cap C'}$$

Global sections are in 1-1 correspondence with homomorphisms  $A \rightarrow B$ .

In previous work with Barbosa, Mansfield, Kishida and Lal (ABKLM) I used *cohomology* to characterise contextuality, *i.e.* the *non-existence* of such a homomorphism.

This gives linear-algebraic approximations to global sections: a family  $\{r_C\}_C$  where  $r_C$  is a  $\mathbb{Z}$ -linear combination of local sections, satisfying the compatibility (i.e. agree-on-overlap) conditions, suitably extended to linear combinations.

Given  $s: C_0 \to B$ , we can ask if it has an extension to such a  $\mathbb{Z}$ -linear family  $\{r_C\}$ , with  $r_{C_0} = 1 \cdot s$ .

We can use this test to filter out those local sections from the *k*-consistency approximation which *do not have* such extensions, getting a sharper approximation.

Key insight by Adam O' Conghaile: this cohomological refinement of *k*-consistency is *efficiently computable*!

(Since the predicate "s has a  $\mathbb{Z}$ -linear extension" translates into solvability of a polynomial size system of  $\mathbb{Z}$ -linear equations).

Key insight by Adam O' Conghaile: this cohomological refinement of *k*-consistency is *efficiently computable*!

(Since the predicate "s has a  $\mathbb{Z}$ -linear extension" translates into solvability of a polynomial size system of  $\mathbb{Z}$ -linear equations).

So we get a new refined approximation algorithm for  $\mathsf{CSP}(B)$ .

Key insight by Adam O' Conghaile: this cohomological refinement of *k*-consistency is *efficiently computable*!

(Since the predicate "s has a  $\mathbb{Z}$ -linear extension" translates into solvability of a polynomial size system of  $\mathbb{Z}$ -linear equations).

So we get a new refined approximation algorithm for  $\mathsf{CSP}(B)$ .

A key property which follows from the ABKLM results on contextuality:

#### **Proposition**

Cohomological k-consistency is exact for affine templates B.

Key insight by Adam O' Conghaile: this cohomological refinement of *k*-consistency is *efficiently computable*!

(Since the predicate "s has a  $\mathbb{Z}$ -linear extension" translates into solvability of a polynomial size system of  $\mathbb{Z}$ -linear equations).

So we get a new refined approximation algorithm for CSP(B).

A key property which follows from the ABKLM results on contextuality:

#### Proposition

Cohomological k-consistency is exact for affine templates B.

So cohomological *k*-consistency captures the two main tractable classes identified by Feder-Vardi in a unified fashion.

Key insight by Adam O' Conghaile: this cohomological refinement of *k*-consistency is *efficiently computable*!

(Since the predicate "s has a  $\mathbb{Z}$ -linear extension" translates into solvability of a polynomial size system of  $\mathbb{Z}$ -linear equations).

So we get a new refined approximation algorithm for  $\mathsf{CSP}(B)$ .

A key property which follows from the ABKLM results on contextuality:

#### Proposition

Cohomological k-consistency is exact for affine templates B.

So cohomological *k*-consistency captures the two main tractable classes identified by Feder-Vardi in a unified fashion.

#### Question

*Is cohomological k-consistency exact for all tractable cases?* 

The whole story adapts quite straightforwardly to yield cohomological refinements of the Weisfeiler-Leman approximations to graph and structure isomorphism.

The whole story adapts quite straightforwardly to yield cohomological refinements of the Weisfeiler-Leman approximations to graph and structure isomorphism.

Recall that these correspond to equivalence in k-variable logic with counting  $C_k$ .

The whole story adapts quite straightforwardly to yield cohomological refinements of the Weisfeiler-Leman approximations to graph and structure isomorphism.

Recall that these correspond to equivalence in k-variable logic with counting  $C_k$ .

Moreover, the result on completeness of cohomological k-consistency for affine templates is leveraged to show that  $\equiv_k^{\mathbb{Z}}$  is discriminating enough to defeat two important families of counter-examples:

- the CFI (Cai-Furer-Immerman) construction used to show that  $C_k$  is not strong enough to characterise polynomial time, and
- the constructions due to Lichter and Dawar et al. which are used to show similar results for linear algebraic extensions of  $C_k$ .

The whole story adapts quite straightforwardly to yield cohomological refinements of the Weisfeiler-Leman approximations to graph and structure isomorphism.

Recall that these correspond to equivalence in k-variable logic with counting  $C_k$ .

Moreover, the result on completeness of cohomological k-consistency for affine templates is leveraged to show that  $\equiv_k^{\mathbb{Z}}$  is discriminating enough to defeat two important families of counter-examples:

- the CFI (Cai-Furer-Immerman) construction used to show that  $C_k$  is not strong enough to characterise polynomial time, and
- the constructions due to Lichter and Dawar et al. which are used to show similar results for linear algebraic extensions of  $C_k$ .

#### References:

- https://arxiv.org/abs/2206.15253 (AOC paper appeared in MFCS 2022)
- https://arxiv.org/abs/2206.12156 (SA notes)