Devoir à la maison n°17

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1

1 1.a Supposons que P et Q ne soient pas premiers entre eux. Alors leur pgcd n'est pas constant. D'après le théorème de d'Alembert-Gauss, il possède une racine complexe qui est alors une racine commune de P et Q. On a donc bien prouvé le résultat voulu par contraposition.

1.b Supposons que P et Q divisent R. Il existe notamment $A \in \mathbb{R}[X]$ tel que R = AP. Ainsi Q divise AP et $P \land Q = 1$, donc, d'après le théorème de Gauss, Q divise A. Il existe donc $B \in \mathbb{R}[X]$ tel que A = BQ. Ainsi R = AP = BPQ donc PQ divise R.

2 On note \mathcal{P}_n l'assertion suivante :

 $\text{Si } (P_1, \dots, P_n) \text{ est une famille de polynômes non nuls de } \mathbb{R}[X], \text{ alors, en notant } P = \prod_{i=1}^n P_i, \frac{P'}{P} = \sum_{i=1}^n \frac{P'_i}{P_i}.$

 \mathcal{P}_1 est clairement vraie. Soit alors (P_1, \dots, P_{n+1}) une famille de polynômes non nuls de $\mathbb{R}[X]$. Posons $P = \prod_{i=1}^{n+1} P_i = \tilde{P}P_{n+1}$

en posant $\tilde{P} = \prod_{i=1}^{n} P_i$. On a donc

$$\frac{P'}{P} = \frac{\tilde{P}' P_{n+1} + \tilde{P} P'_{n+1}}{\tilde{P} P_{n+1}} = \frac{\tilde{P}'}{\tilde{P}} + \frac{P'_{n+1}}{P_{n+1}}$$

En appliquant \mathcal{P}_n à (P_1, \dots, P_n) , on a

$$\frac{\tilde{P}'}{\tilde{P}} = \sum_{i=1}^{n} \frac{P_i'}{P_i}$$

puis

$$\frac{\mathbf{P}'}{\mathbf{P}} = \sum_{i=1}^{n+1} \frac{\mathbf{P}'_i}{\mathbf{P}_i}$$

2.a La formule de Taylor est en fait inutile. On sait que si P(a) = P'(a) = 0, alors a est racine de P de multiplicité au moins 2. On en déduit que $(X - a)^2$ divise P.

Néanmoins on peut raisonner comme le préconise l'énoncé. En effet,

$$P = \sum_{k=0}^{+\infty} \frac{P^{(k)}(a)}{k!} (X - a)^k$$

Ainsi si P(a) = P'(a) = 0, alors

$$P = (X - a)^2 Q$$

où Q =
$$\sum_{k=2}^{+\infty} \frac{P^{(k)}(a)}{k!} (X-a)^{k-2} \in \mathbb{R}[X]$$
 et donc $(X-a)^2$ divise P.

2.b La linéarité est triviale car la dérivation et l'évaluation sont linéaires. Soit alors $P \in \text{Ker } \varphi$. Alors $P(x_k) = P'(x_k) = 0$ pour tout $k \in [1, p]$. D'après la question précédente, $(X - x_k)^2$ divise P pour tout $k \in [1, p]$. Or les polynômes $(X - x_k)^2$ n'ont aucune racine commune puisque les x_k sont deux à deux distincts donc ils sont premiers entre eux deux à deux

d'après la question 1. D'après cette même question $Q = \prod_{k=1}^{p} (X - x_k)^2$ divise P. Or deg Q = 2p et deg $P \le 2p - 1$ donc P

est nécessairement nul. On en déduit que $\operatorname{Ker} \varphi = \{0\}$ puis que φ est injective. Puisque $\dim \mathbb{R}_{2p-1}[X] = \dim \mathbb{R}^{2p} = 2p$, φ est un isomorphisme.

1

2.c Par bijectivité de φ , il existe un unique polynôme $P_H \in \mathbb{R}_{2p-1}[X]$ tel que $\varphi(P_H) = (a_1, \dots, a_p, b_1, \dots, b_p)$, ce qui répond à la question.

 $\boxed{\bf 3}$ La matrice de ϕ dans les bases canoniques de $\mathbb{R}_3[X]$ et \mathbb{R}^4 est

$$A = \begin{pmatrix} 1 & -1 & 1 & -1 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & -2 & 3 \\ 0 & 1 & 2 & 3 \end{pmatrix}$$

En notant $U = \begin{pmatrix} a_1 \\ a_2 \\ b_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ -1 \\ 2 \end{pmatrix}$, la matrice du polynôme P_H dans la base canonique de $\mathbb{R}_3[X]$ est donc

$$A^{-1}U = \begin{pmatrix} -1/4 \\ -1 \\ 3/4 \\ 1/2 \end{pmatrix}$$

On en déduit que $P_H = -\frac{1}{4} + X + \frac{3}{4}X^2 + \frac{1}{2}X^3$.

4. Il est clair que $Q_i(x_k) = \delta_{i,k}$ pour tout $k \in [1, p]$. Si $k \neq I$, x_k est une racine double de Q_i donc $Q_i'(x_k) = 0$. De plus, d'après la question **2**,

$$\frac{Q_i'}{Q_i} = \sum_{\substack{j=1\\j\neq i}}^p \frac{2}{X - x_j}$$

donc, en évaluant en x_i ,

$$Q'_{i}(x_{i}) = \sum_{\substack{j=1\\ i \neq i}}^{p} \frac{2}{x_{i} - x_{j}}$$

4.b Soit $k \in [1, p]$. Comme $Q_i(x_k) = \delta_{i,k}$, on a clairement $P(x_k) = a_k$ pour tout $k \in [1, p]$. De plus,

$$\mathbf{P}' = \sum_{i=1}^{p} (b_i - a_i \mathbf{Q}_i'(x_i)) \mathbf{Q}_i + \sum_{i=1}^{p} \left[\left(1 - \mathbf{Q}_i'(x_i)(\mathbf{X} - x_i) \right) a_i + (\mathbf{X} - x_i) b_i \right] \mathbf{Q}_i'$$

A nouveau, pour tout $k \in [1, p]$,

$$P'(x_k) = b_k - a_k Q'_k(x_k) + a_k Q'_k(x_k) = b_k$$

Par injectivité de φ, P est donc bien le polynôme d'interpolation de Hermite recherché.

4.c Calcul laissé au lecteur. Désolé...

5 Puisque deg $H'_n < \deg XH_n$, il est clair que H_{n+1} et H_n ont le même coefficient dominant et que deg $H_{n+1} = \deg H_n + 1$. Comme H_0 est unitaire de degré 0, H_n est unitaire de degré n.

6 Une fois n'est pas coutume, on montre cette relation de récurrence par récurrence. Il est clair que $H_1 = X$ de sorte que $H_1' = 1 = H_0$. Supposons alors que $H_{n+1}' = (n+1)H_n$ pour un certain $n \in \mathbb{N}$. Alors

$$H_{n+2} = XH_{n+1} - H'_{n+1} = XH_{n+1} - (n+1)H_n$$

Ainsi

$$H'_{n+2} = XH'_{n+1} + H_{n+1} - (n+1)H'_n = (n+1)(XH_n - H'_n) + H_{n+1} = (n+2)H_{n+1}$$

On en déduit bien par récurrence que $H'_{n+1} = (n+1)H_n$ pour tout $n \in \mathbb{N}$.

7 7.a

7.b

© Laurent Garcin MP Dumont d'Urville

8 8.a Soit $(P, Q) \in \mathbb{R}[X]^2$. Par intégration par parties :

$$\langle \mathbf{P}' \mid \mathbf{Q} \rangle = \int_{-\infty}^{+\infty} \mathbf{P}'(x) \mathbf{Q}(x) f(x) \ \mathrm{d}x = \left[\mathbf{P}(x) \mathbf{Q}(x) f(x) \right]_{-\infty}^{+\infty} - \int_{-\infty}^{+\infty} \mathbf{P}(x) \mathbf{Q}'(x) f(x) \ \mathrm{d}x - \int_{-\infty}^{+\infty} \mathbf{P}(x) \mathbf{Q}(x) f'(x) \ \mathrm{d}x$$

Le crochet est nul par croissances comparées et f'(x) = -xf(x) pour tout $x \in \mathbb{R}$. On en déduit que

$$\langle P' \mid Q \rangle = -\langle P \mid Q' \rangle + \langle P \mid XQ \rangle$$

ou encore

$$\langle P' \mid Q \rangle = \langle P \mid XQ - Q' \rangle$$

Notamment, pour tout $n \in \mathbb{N}^*$,

$$\langle P' \mid H_{n-1} \rangle = \langle P \mid XH_{n-1} - H'_{n-1} \rangle = \langle P \mid H_n \rangle$$

On en déduit par récurrence que $\langle P \mid H_n \rangle = \langle P^{(n)} \mid H_0 \rangle$.

8.b Soit $(i, j) \in [0, n]^2$ tel que $i \neq j$. On suppose i < j sans perte de généralité. D'après la question précédente,

$$\langle \mathbf{H}_i \mid \mathbf{H}_i \rangle = \langle \mathbf{H}_i^{(j)} \mid \mathbf{H}_0 \rangle$$

Or $j > i = \deg H_i$ donc $H_i^{(j)} = 0$ et $\langle H_i \mid H_j \rangle = 0$. La famille (H_0, \dots, H_n) est donc orthogonale. Puisqu'elle ne contient pas le vecteur nul, elle est libre. Enfin $\dim \mathbb{R}_n[X] = n+1$ donc (H_0, \dots, H_n) est une base de $\mathbb{R}_n[X]$.

8.c On a également $\|H_n\|^2 = \langle H_n \mid H_n \rangle = \langle H_n^{(n)} \mid H_0 \rangle$. Or H_n est unitaire de degré n donc $H_n^{(n)} = n!$. Comme $H_0 = 1$,

$$\|\mathbf{H}_n\|^2 = n! \int_{-\infty}^{+\infty} f(x) \, \mathrm{d}x = n!$$

puis $\|\mathbf{H}_n\| = \sqrt{n!}$.

8.d On trouve successivement $H_1 = X$, $H_2 = X^2 - 1$ et $H_3 = X^3 - 3X$. En résolvant un système (triangulaire), on obtient $P = 2H_0 + 4H_1 + H_2 + H_3$. Comme (H_0, H_1, H_2, H_3) est une base orthhormée de $\mathbb{R}_3[X]$, donc $4H_1 + H_2 + H_3 \in \text{vect}(H_0)^{\perp} = \mathbb{R}_0[X]^{\perp}$. Le projeté orthogonal de P sur $\mathbb{R}_0[X]^{\perp}$ est donc $2H_0$ et en notant d la distance recherchée, on obtient via le théorème de Pythagore :

$$d^2 = \|4H_1 + H_2 + H_3\|^2 = 16\|H_1\|^2 + \|H_2\|^2 + \|H_3\|^2 = 16\dot{1}! + 2! + 3! = 24$$

puis $d = \sqrt{24}$.

9. 9.a Suposons p < n. Puisque deg S = p, $S^{(n)} = 0$. D'après la question **8.a**,

$$\langle S \mid H_n \rangle = \langle S^{(n)} \mid H_0 \rangle = 0$$

9.b Notons m_i les multiplicités (impaires) des racines a_i . Notons également b_1, \ldots, b_q les racines de multiplicités paires de H_n ainsi que n_i les multiplicités des b_i . Notons enfin Q_1, \ldots, Q_r les polynômes irréductibles unitaires de degré 2 apparaissant dans la décomposition en facteurs irréductibles de H_n et p_i leurs «multiplicités». Comme H_n est unitaire, sa décomposition en facteurs irréductibles est :

$$H_n = \prod_{i=1}^p (X - a_i)^{m_i} \prod_{i=1}^q (X - b_i)^{n_i} \prod_{i=1}^r Q_i^{p_i}$$

Ainsi

$$SH_n = \prod_{i=1}^p (X - a_i)^{m_i + 1} \prod_{i=1}^q (X - b_i)^{n_i} \prod_{i=1}^r Q_i^{p_i}$$

Les facteurs $(X - a_i)^{m_i+1}$ sont positifs sur \mathbb{R} puisque $m_i + 1$ est pair, de même que les facteurs $(X - b_i)^{n_i}$. Ensuite les polynômes Q_i étant irréductibles de degré 2, ils sont aussi positifs sur \mathbb{R} . On en déduit que SH_n est positif sur \mathbb{R} .

9.c Supposons que p < n. Alors $x \mapsto S(x)H_n(x)f(x)$ est positive et continue sur \mathbb{R} . Puisque $\langle S \mid H_n \rangle = \int_{-\infty}^{+\infty} S(x)H_n(x)f(x) = \int_{-\infty}^{+\infty} S(x)H_n(x)f(x) dx$

 $0, x \mapsto S(x)H_n(x)f(x)$ est nulle sur \mathbb{R} . Comme f ne s'annule pas sur \mathbb{R} , le polynôme SH_n est nul sur \mathbb{R} . Comme \mathbb{R} est infini, $SH_n = 0$. Ceci est impossible car ni S ni H_n ne sont nuls et $\mathbb{R}[X]$ est intègre. On en déduit que $p \ge n$. Puisque deg $H_n = n$, on a également $p \le n$ d'où p = n. Finalement, H_n possède eaxctement n racines réllles distinctes.