第 12 章

線形同型

線形写像 $f: V \rightarrow U$ が全単射であるとき、f を同型写像 (isomorphism) という。

★ def 12.1 - 線形同型写像

V,W を線形空間とし、線形写像 $f\colon V\to W$ が全単射であるとき、f は<mark>線形同型写像</mark>あるいは単に線形同型であるという。

このとき、同型を表す記号 ≅ を用いて、次のように表す。

$$f \colon V \xrightarrow{\cong} W$$

全単射性から、V のベクトル全体と W のベクトル全体の間に一対一の対応がつく。 また、線形性より、和・スカラー倍といった基本的な演算も対応がつく。

これより、W は V を f という精巧なレンズで観測した像であり、実体は同じものだとも考えられる。

★ def 12.2 - 部分空間の線形同型

V と W の間に線形同型写像が存在するとき、V と W は線形同型であるといい、次のように表す。

$V \cong W$

同型写像はふたつのベクトル空間を写しあう精巧なレンズである。

たとえば、同型写像 $f\colon V\to W$ があるとき、f を通して、V の性質を W の性質として「観測」することができる。

W が未知の線型空間でも、既知の線型空間 V と同型なら、W のことも V と同じようによくわかることになる。

特に、既知の線型空間として、数ベクトル空間 K^n を考えることが多い。

線形同型の性質

ここでは、線形同型写像の恒等写像、逆写像、合成写像との関係を述べる

線形同型と恒等写像

🕹 theorem - 恒等写像の線形同型性

恒等写像は線形同型写像である

恒等写像は明らかに全単射であり、線形写像でもあるため、線形同型写像である

この事実は、部分空間の線形同型に関して次のように言い換えられる

♣ theorem - 部分空間の自己同型性

部分空間 V は V 自身と線形同型であるすなわち、

 $V \cong V$

線形同型と逆写像

♣ theorem - 線形同型写像の逆写像

線形同型写像の逆写像は線形同型写像である

証明

「Todo 1: book: 図で整理!例題で納得!線形空間入門 p93~94]

この事実は、部分空間の線形同型に関して次のように言い換えられる

st theorem - 線形同型性の対称性

部分空間 V が部分空間 W と線形同型なら、W は V と線形同型であるすなわち、

 $V \cong W \Longrightarrow W \cong V$

線形同型と合成写像

♣ theorem - 線形同型写像の合成

線形同型写像の合成は線形同型写像である

証明

「Todo 2: book: 図で整理!例題で納得!線形空間入門 p94]

この事実は、部分空間の線形同型に関して次のように言い換えられる

♣ theorem - 線形同型性の推移性

部分空間 V が部分空間 W と線形同型で、W が部分空間 U と線形同型ならば、V は U と線形同型である

すなわち、

 $V \cong W \land W \cong U \Longrightarrow V \cong U$

ここまでで登場した、部分空間の線形同型に関する性質をまとめると、

- ♣ theorem 線形同型の同値関係としての性質
 - i. $V \cong V$
 - ii. $V \cong W \Longrightarrow W \cong V$
 - iii. $V \cong W \land W \cong U \Longrightarrow V \cong U$

となり、これらは、

同型 ≅ が等号 = と同じ性質をもつ

ことを意味している

線形写像 $f\colon V\to W$ において、f が同型写像であることと、f が V の基底を W の基底 に写すことは同値である。

基底によって、その線形空間のすべての元(ベクトル)を一意的に表すことができる。 そのため、基底の像がまた基底になることは、

- i. f では作れないベクトルが W に残ることはない (f の像が W を張る)
- ii. 異なるベクトルが同じベクトルに潰れることがない(fの像は線形従属にはならない)

ということを意味する。

ここで、(i) は全射の条件、(ii) は単射の条件を表しているので、基底の像がまた基底になるなら、f は全単射すなわち同型写像となる。

逆に、同型写像は基底を基底に写す写像となる。

♣ theorem 12.1 - 基底の像が基底となることと同型性

V を線形空間とし、 $oldsymbol{v}_1,\ldots,oldsymbol{v}_n$ を V の基底とする。線形写像 $f\colon V\to W$ に対し、次の条件は同値である。

- i. $f: V \rightarrow W$ は同型である
- ii. $f(\boldsymbol{v}_1), \ldots, f(\boldsymbol{v}_n)$ は W の基底をなす

証明

$(i) \Longrightarrow (ii)$

このとき、f は単射でもあり、全射でもある。

theorem 5.4「単射な線型写像は線型独立性を保つ」ことから、f の単射性により、基底の線型独立性が保たれる。

また、theorem 5.3 「線形写像の全射性と像の関係」より、f の全射性は、f の像が W を張ることを意味する。

よって、f による像は W の基底をなす。

$(ii) \Longrightarrow (i)$

[Todo 3:]

座標写像による数ベクトル空間との同型

 K^n の座標 (x_1, \ldots, x_n) を、次のように V のベクトルに送り込む写像 Φ を考える。

$$\Phi(x_1,\ldots,x_n)=x_1\boldsymbol{v}_1+\cdots+x_n\boldsymbol{v}_n$$

ここで、 K^n の座標 (x_1,\ldots,x_n) は、標準基底 $\{e_1,\ldots,e_n\}$ を用いたベクトルの成分表示として考えている。(標準基底による直交座標系の構成 [\$1\$ 章])

「Todo 4: 座標写像が線形写像であること」

★ def 12.3 - 座標写像

V を線形空間とし、 $\mathcal{V} = \{ \boldsymbol{v}_1, \ldots, \boldsymbol{v}_n \}$ を V の基底とする。

このとき、 K^n から V への線形写像 $\Phi_{\mathcal{V}}: K^n \to V$ を次のように定める。

$$\Phi_{\mathcal{V}}(x_1,\ldots,x_n) = \sum_{i=1}^n x_i oldsymbol{v}_i \quad (x_i \in \mathcal{K})$$

この写像 Φ_{ν} を ν で定まる座標写像という。

% theorem 12.2 - 座標写像の線形同型性

座標写像 (def 12.3) は線形同型写像である。

証明

 K^n の座標 (x_1,\ldots,x_n) を \boldsymbol{x} と表記し、線形写像 $\Phi_{\mathcal{V}}$ が全単射であることを示す。

単射であること

基底 $\{\boldsymbol{v}_1,\ldots,\boldsymbol{v}_n\}$ の線型独立性は、次の条件を満たすことである。

$$\sum_{i=1}^n x_i \boldsymbol{v}_i = \boldsymbol{o} \Longrightarrow x_i = 0 \quad (i = 1, \ldots, n)$$

Φν の定義をふまえると、上の条件は、次のように書ける。

$$\Phi_{\mathcal{V}}(\boldsymbol{x}) = \boldsymbol{o} \Longrightarrow \boldsymbol{x} = \boldsymbol{o}$$

よって、**theorem 5.1**「零ベクトルへの写像による単射性の判定」より、 Φ_ν は単射である ■

全射であること

基底の定義より、 $\{\boldsymbol{v}_1,\ldots,\boldsymbol{v}_n\}$ は V を生成する。

$$\langle \boldsymbol{v}_1, \ldots, \boldsymbol{v}_n \rangle = V$$

 $\Phi_{\mathcal{V}}$ の定義をふまえると、 $\Phi_{\mathcal{V}}$ は $\boldsymbol{v}_1,\ldots,\boldsymbol{v}_n$ の線形結合全体、すなわち ベクトルが張る空間 (def 10.2) を像として持つ。

Im
$$\Phi_{\mathcal{V}} = \langle \boldsymbol{v}_1, \ldots, \boldsymbol{v}_n \rangle$$

よって、

$$V = Im(\Phi_{\mathcal{V}})$$

が成り立つため、**theorem 5.3** 「線形写像の全射性と像の関係」より、 $\Phi_{\mathcal{V}}$ は全射である。

数ベクトル空間との同型

theorem 12.2「座標写像の線形同型性」を部分空間の線形同型に関して言い換えると、次のような主張になる。

北 theorem 12.3 – 有限次元部分空間と数ベクトル空間の線形同型性任意の部分空間 V は、次元の等しい数ベクトル空間 K^n と線形同型である。

このことはつまり、

和とスカラー倍だけに着目すれば、

どんな部分空間も数ベクトル空間と「同じ」

ということを意味する。

この同型により、部分空間に<mark>座標</mark>を与えることができる。 そしてその座標によって、ベクトルの<mark>成分表示</mark>が得られる。

同型を選ぶことは、基底を選ぶことと同値である。

同型写像 $f: K^n \to V$ を 1 つ選ぶと、theorem 12.1「基底の像が基底となることと同型性」より、その像 $\{f(\boldsymbol{e}_1),\ldots,f(\boldsymbol{e}_n)\}$ は V の基底を成す。

逆に、V の基底 $\{\boldsymbol{v}_1,\ldots,\boldsymbol{v}_n\}$ を 1 つ選ぶと、 $\boldsymbol{e}_i\mapsto\boldsymbol{v}_i$ と定めることで、同型写像 $f\colon K^n\to V$ が一意的に定まる。

つまり、基底を選ぶことは、V に座標を入れて $V \cong K^n$ とみなすことにほかならない。

ここで、次の定理により、未知の同型写像 $f: K^n \to V$ に関する議論を、<u>座標写像</u>による議論に帰着させることができる。

 $oldsymbol{\$}$ theorem 12.4 – 基底に基づく座標写像と同型写像の同一視任意の同型写像 $f\colon K^n \to V$ は、V のある基底 $oldsymbol{\mathcal{V}}$ に対する座標写像 $\Phi_{\mathcal{V}}$ そのものである。

₩ 証明

f が同型 \Longrightarrow f は座標写像

任意の同型写像 $f: K^n \rightarrow V$ をとる。

f は同型であるから、 $theorem\ 12.1$ 「基底の像が基底となることと同型性」より、f は K^n の基底を V の基底に写す。

そこで、 $\mathcal{V} = \{\boldsymbol{v}_1, \dots, \boldsymbol{v}_n\}$ を、 K^n の標準基底の像として定める。

$$\boldsymbol{v}_i = f(\boldsymbol{e}_i) \quad (i = 1, \ldots, n)$$

このとき、任意の $\boldsymbol{x}=(x_1,\ldots,x_n)\in K^n$ について、

$$f(x) = f\left(\sum_{i=1}^n x_i oldsymbol{e}_i
ight) = \sum_{i=1}^n x_i f(oldsymbol{e}_i) = \sum_{i=1}^n x_i oldsymbol{v}_i = \Phi_{\mathcal{V}}(x)$$

が成り立つことから、 $f = \Phi_{\mathcal{V}}$ である。

f が座標写像 \Longrightarrow f は同型

theorem 12.2「座標写像の線形同型性」から成り立つ。

同型と基底の対応

基底を選ぶことは、V に座標を入れて $V \cong K^n$ とみなすことにほかならない。 このことは、次の定理として示すことができる。

♣ theorem - 同型と基底の対応

V を n 次元線形空間、 K^n の標準基底を $\{e_1,\ldots,e_n\}$ とする。

同型写像 $\Phi: K^n \to V$ に対し、V の基底を対応させる写像は同型である。

$$\Theta$$
: $\left\{ \begin{array}{ccc} egin{aligned} eta & K^n
ightarrow V
ight\} & \longrightarrow & \left\{ V \ \mathcal{O}$ 基底 $ight\} & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & &$

証明

V の基底を V と表記する。

○ の定義より、次のように書ける。

$$\Theta(f) = \{f(\boldsymbol{e}_1), \ldots, f(\boldsymbol{e}_n)\} = \mathcal{V}$$

theorem 12.4「基底に基づく座標写像と同型写像の同一視」より、同型写像 $f: K^n \to V$ を座標写像 $\Phi_{\mathcal{V}}$ とみなしても一般性を失わない。

そこで、写像 Ψ を、V の基底に対して座標関数 Φ_{V} を対応させる写像として定める。

$$\Psi: \{V \text{ の基底 }\} \to \{ \text{ 同型 } K^n \to V \}$$

すなわち、次のように書ける。

$$\Psi(\mathcal{V}) = \Phi_{\mathcal{V}} = f$$

 Θ と Ψ が互いに逆写像であることを示せば、 Θ が同型(可逆)であることが従う。

まず、任意の $\boldsymbol{\mathcal{V}} = \{\boldsymbol{v}_1, \ldots, \boldsymbol{v}_n\}$ に対し、

$$(\Theta \circ \Psi)(\mathcal{V}) = \Theta(\Psi(\mathcal{V})) = \Theta(\Phi_{\mathcal{V}})$$
$$= \{\Phi_{\mathcal{V}}(\boldsymbol{e}_1), \dots, \Phi_{\mathcal{V}}(\boldsymbol{e}_n)\} = \{\boldsymbol{v}_1, \dots, \boldsymbol{v}_n\} = \mathcal{V}$$

となるので、 Θ o Ψ は恒等写像である。

また、任意の $f: K^n \to V$ に対し、

$$(\Psi \circ \Theta)(f) = \Psi(\Theta(f)) = \Psi(\mathcal{V}) = \Phi_{\mathcal{V}} = f$$

となるので、 $\Psi \circ \Theta$ も恒等写像である。

したがって、 def A.7 「逆写像(恒等写像による定義)」より、 Θ と Ψ は互いに 逆写像である。

このことから、⊖ は同型であることがいえる。

基底が定める同型

 $m{v}_1,\ldots,m{v}_n\in V$ が基底であるとき、 $m{v}_1,\ldots,m{v}_n$ が定める線形写像 $f\colon K^n\to V$ を、基底 $m{v}_1,\ldots,m{v}_n$ が定める同型という。

どんな線型空間 V でも、V の基底があれば、数ベクトル空間から V への同型が定まるため、V の元を数ベクトルを使って表すことができる。

V の基底を**とる**(take)ことで、

V の元を数ベクトルを使って表すことができる

行列と A 倍写像の同型

これまで、線形写像とその表現行列を「同じ」ものとして扱うことが多くあった。 その基本的な考え方については行列から定まる線形写像 [第 2 章] で述べたが、同型の概念 によって、その根拠をより厳密に議論できる。

A 倍写像

縦ベクトルに左から行列をかけたものは、縦ベクトルとなる。

より具体的には、n 次元縦ベクトル v に対して、 $m \times n$ 型行列 A を左からかけたものは、m 次元縦ベクトルとなる。

$$\begin{array}{ccc}
A & \cdot & \boldsymbol{v} & = & A\boldsymbol{v} \\
m \times n & n \times 1 & m \times 1
\end{array}$$

このとき、行列は、あるベクトルを別なベクトルに対応させる役割を果たしている。 そこで、「左から行列をかける」という操作を、一種の 写像 (def A.1) と考えることができる。

★ def - A 倍写像

 $m \times n$ 型行列 A に対し、次のようにおくことで定まる写像 $f_A \colon K^n \to K^m$ を、A 倍写像 (multiplication by A) という。

$$f_A(\boldsymbol{v}) = A\boldsymbol{v}$$

A 倍写像が線形であることは、theorem 2.3「行列から定まる線形写像」で示されている。

♣ theorem - A 倍写像の線形性

A を $m \times n$ 型行列とすると、A 倍写像 $f_A \colon K^n \to K^m$ は線形写像である。

A 倍写像と標準基底

行列 A を、n 個の m 次元ベクトル $\boldsymbol{a}_1, \ldots, \boldsymbol{a}_n \in K^m$ を並べたものとみなす。

$$A = \begin{pmatrix} \boldsymbol{a}_1 & \boldsymbol{a}_2 & \cdots & \boldsymbol{a}_n \end{pmatrix}$$

このとき、A 倍写像 $f_A: K^n \to K^m$ は、次のように定義される。

$$f_A(\boldsymbol{v}) = A\boldsymbol{v} \quad (\boldsymbol{v} \in K^n)$$

この f_A を標準基底 $e_1, \ldots, e_n \in K^n$ に作用させると、

$$f_A(\boldsymbol{e}_i) = A\boldsymbol{e}_i = \boldsymbol{a}_i \quad (i = 1, \ldots, n)$$

よって、A 倍写像 f_A は、標準基底 $e_1, \ldots, e_n \in K^n$ を $\mathbf{a}_1, \ldots, \mathbf{a}_n \in K^m$ に写す線形写像にほかならない。

行列と線形写像の同一視

次の同型が、行列 A と線形写像 f_A を同じものと考えることの根拠となっている。

♣ theorem - 行列と線形写像の同型対応

 $m \times n$ 型行列 A に対して、A 倍写像 $f_A \colon K^n \to K^m$ を対応させる写像は同型である。

$$\Psi: M_{mn}(K) \longrightarrow \{$$
線形写像 $K^n \to K^m\}$
 $\Psi \longrightarrow F_A$

証明

 K^n の標準基底を e_1, \ldots, e_n とする。

また、 $A \in M_{mn}(K)$ の第 j 列を $\mathbf{a}_j \in K^m$ と書くことにする。

Ψ の定義と存在

theorem 10.7「基底を写す線形写像の存在」より、

$$f_A(\boldsymbol{e}_j) = \boldsymbol{a}_j \quad (j = 1, \ldots, n)$$

を満たす線形写像 $f_A: K^n \to K^m$ が一意に存在する。 よって、A を与えたときに f_A は一意に定まるため、写像 Ψ が定義できる。

Ψ の単射性

 $f_A = f_B$ ならば、すべての j について次が成り立つ。

$$\boldsymbol{a}_j = A\boldsymbol{e}_j = f_A(\boldsymbol{e}_j) = f_B(\boldsymbol{e}_j) = B\boldsymbol{e}_j = \boldsymbol{b}_j$$

したがって、A, B の列ベクトルは一致するため、A = B がいえる。 よって、

$$f_A = f_B \implies A = B$$

より、Ψ は 単射 (def A.3) である。

Ψ の全射性

任意の線形写像 $q: K^n \to K^m$ をとる。

各j について $\boldsymbol{w}_j = g(\boldsymbol{e}_j)$ とおき、行列Aを次のように定める。

$$A = (\boldsymbol{w}_1 \quad \cdots \quad \boldsymbol{w}_n) \in M_{mn}(K)$$

すると、 $f_A(\boldsymbol{e}_j) = \boldsymbol{w}_j = g(\boldsymbol{e}_j)$ であるから、theorem 10.8「基底上の値による線型写像の同一性判定」より、 $f_A = g$ がしたがう。

ゆえに、 Ψ の像は任意の線形写像となるため、 Ψ の像空間と線形写像全体の集合は一致する。よって、 Ψ は 全射 (\det A.4) である。

Ψ の線形性

 $A, B \in M_{mn}(K), c_1, c_2 \in K$ とすると、

$$(c_1A + c_2B)\boldsymbol{e}_i = c_1A\boldsymbol{e}_i + c_2B\boldsymbol{e}_i$$

なので、基底 $\{e_i\}$ 上で次が成り立つ。

$$f_{C_1A+C_2B}(\boldsymbol{e}_i) = c_1f_A(\boldsymbol{e}_i) + c_2f_B(\boldsymbol{e}_i)$$

theorem 10.8「基底上の値による線型写像の同一性判定」より、基底上で値が一致する線形写像は一意であるから、

$$\Psi(c_1A + c_2B) = c_1\Psi(A) + c_2\Psi(B)$$

よって、Ψ は線形写像である。

線形代数における鳩の巣原理

♣ theorem 12.5 - 線形代数における鳩の巣原理の抽象版

 $V,\ W$ を同じ次元の線形空間とするとき、線形写像 $f\colon V \to W$ に関して、次はすべて同値である

- i. f は単射
- ii. f は全射
- iii. *f* は線形同型
- iv. rank(f) = dim V = dim W

V, W をそれぞれ V, W の基底として、線形写像の合成

$$a: \mathbb{R}^n \xrightarrow{\Phi_{\mathcal{V}}} V \xrightarrow{f} W \xrightarrow{\Phi_{\mathcal{W}}^{-1}} \mathbb{R}^n$$

を考える

このとき、g は \mathbb{R}^n の線形変換である

f が単射(全射)であると仮定すると、座標写像は全単射であるので、f との合成写像 g も単射(全射)となる

逆に、g が単射(全射)であると仮定した場合について考える f は g を用いて次のように表現でき、

$$f = \Phi_{\mathcal{W}} \circ g \circ \Phi_{\mathcal{V}}^{-1}$$

座標写像は全単射であるので、gとの合成写像 fも単射(全射)となる

以上より、f が単射(全射)であることと、g が単射(全射)であることは同値である

線形変換 q に対して、theorem 11.3「線形代数における鳩の巣原理」より、

q が単射 $\iff q$ が全射 $\iff q$ が全単射

が成り立つが、g の単射性・全射性は f についても成り立つことがわかったので、

f が単射 $\iff f$ が全射 $\iff f$ が線形同型

がいえる

最後に、階数に関する条件を示す

全射となるときの像 [第5章] により、f が全射であることは、Im(f)=W と同値であるから、

$$\dim \operatorname{Im}(f) = \dim W$$

より、

$$rank(f) = dim W = dim V$$

が得られる

次元による部分空間の比較

次の事実は、数の一致で空間の一致が結論できる有用な結果である

北 theorem 12.6 - 次元の一致による部分空間の一致判定 2 つの線型空間について、 $V \subset W$ ならば、

$$\dim V = \dim W \Longrightarrow V = W$$

証明

 $m{v} \in V$ をそのまま W の元と考えることで得られる写像を $\iota: V \to W$ とする(包含写像)

この包含写像は、V の元 \boldsymbol{v} を W の中にそのまま「埋め込む」操作を表しているため、 $\iota(\boldsymbol{v})$ は \boldsymbol{v} 自身である

$$\iota(\boldsymbol{v}) = \boldsymbol{v}$$

特に、 $\iota(\boldsymbol{v}) = \boldsymbol{0}$ は $\boldsymbol{v} = \boldsymbol{0}$ そのものを意味する

$$\iota(\boldsymbol{v}) = 0 \Longleftrightarrow \boldsymbol{v} = 0$$

したがって、theorem 5.1「零ベクトルへの写像による単射性の判定」より、 ι は単射である

また、 ι が単射であることと、仮定 $\dim V = \dim W$ を合わせると、theorem **12.5**「線形代数における鳩の巣原理の抽象版」より、 ι は全射であることがわかる

よって、全射の定義より、すべての $\boldsymbol{w} \in W$ に対して $\iota(\boldsymbol{v}) = \boldsymbol{w}$ となる \boldsymbol{v} が存在する

すなわち、W の元はすべて V の元であり、 $V \subset W$ もふまえると、これは V = W を意味する

♣ theorem - 次元による部分空間の比較

 K^n の部分空間 V, W について、 $V \subset W$ ならば、

 $\dim V < \dim W$

が成り立つ

等号が成立するのは、V=W のときに限る

証明

 $V \subseteq W$ であることから、 $theorem\ 10.6$ 「基底の延長」により、V の基底を延長して W の基底にできるので、

 $\dim V \leq \dim W$

が成り立つ

等号が成立する場合については、前述の theorem 12.6「次元の一致による部分 空間の一致判定」を参照 ■

核空間・像空間の次元

♣ theorem - 線形写像の単射性と核の次元

線形写像 $f: V \rightarrow W$ について、

$$f$$
 が単射 \iff dim $Ker(f) = 0$

証明

theorem 5.2 「線形写像の単射性と核の関係」より、f が単射であることは次と同値である

$$Ker(f) = \{0\}$$

def 10.3「次元」より、 $\{0\}$ の次元は 0 であるので、

$$\dim \operatorname{Ker}(f) = 0$$

が成り立つ

♣ theorem - 線形写像の全射性と像の次元

線形写像 $f: V \rightarrow W$ について、

$$f$$
 が全射 \iff $\dim \operatorname{Im}(f) = \dim W$

証明

theorem 12.5「線形代数における鳩の巣原理の抽象版」の主張そのものである

......

Zebra Notes

Туре	Number
todo	4