Introduction to the Theory of Computation Solutions $$\operatorname{\textbf{Ryan}}$$ Dougherty

${\bf Contents}$

1 Chapter 4 5

4.2

Consider the problem of determining whether a DFA and a regular expression are equivalent. Express this problem as a language and show that it is decidable.

Solution: We formulate the problem $EQ_{DFA,REX} = \{\langle A, R \rangle \mid A \text{ is a DFA}, R \text{ is a regular expression, and } L(A) = L(R)\}$. We will design a TM T that decides $EQ_{DFA,REX}$:

T = "On input $\langle A, R \rangle$ where A is a DFA, R is a regular expression:

- 1. Use Theorem 1.54 to convert R into an equivalent DFA B. Therefore, L(B) = L(R).
- 2. Run EQ_{DFA} on input $\langle A, B \rangle$. Output what EQ_{DFA} outputs."

Since EQ_{DFA} is decidable, and the conversion from regular expressions to DFAs takes finite time, $EQ_{DFA,REX}$ is decidable.

4.3

Let $ALL_{DFA} = \{\langle A \rangle \mid A \text{ is a DFA and } L(A) = \Sigma^* \}$. Show that ALL_{DFA} is decidable. **Solution:** We will design a TM T that decides ALL_{DFA} : $T = \text{"On input } \langle A \rangle$ where A is a DFA:

- 1. Construct a DFA B such that $L(A) = \overline{L(B)}$.
- 2. Run E_{DFA} on input $\langle B \rangle$. Output what E_{DFA} outputs."

Since E_{DFA} is decidable, ALL_{DFA} is decidable.

4.4

Let $A\epsilon_{CFG} = \{\langle G \rangle \mid G \text{ is a CFG that generates } \epsilon.\}$. Show that $A\epsilon_{CFG}$ is decidable. **Solution:** We will design a TM T that decides $A\epsilon_{CFG}$: $T = \text{``On input } \langle G \rangle$ where G is a CFG:

- 1. Convert G into an equivalent CFG $C = (V, \Sigma, R, S)$ in Chomsky Normal Form.
- 2. Accept if C includes the rule $S \to \epsilon$, reject otherwise."

Since converting a CFG into CNF is decidable, $A\epsilon_{CFG}$ is decidable.

4.13

Let $A = \{\langle R, S \rangle \mid R \text{ and } S \text{ are regular expressions and } L(R) \subseteq L(S) \}$. Show that A is decidable. **Solution:** We will design a TM T that decides A: $T = \text{``On input } \langle R, S \rangle \text{ where } R \text{ and } S \text{ are regular expressions:}$

- 1. Construct a DFA B such that $L(B) = \overline{L(S)} \cap L(R)$.
- 2. Run E_{DFA} on input $\langle B \rangle$. Output what E_{DFA} outputs."

Since E_{DFA} is decidable, A is decidable. This construction is correct because $L(R) \subseteq L(S) \Leftrightarrow \overline{L(S)} \cap L(R) = \emptyset$.

4.15

Show that the problem of determining whether a CFG generates all strings in 1* is decidable. In other words, show that $\{\langle G \rangle \mid G \text{ is a CFG over } \{0,1\} \text{ and } 1^* \subset L(G)\}$ is a decidable language.

Solution: Let f be a computable function. Construct a decider D:

D = "On input $\langle G \rangle$ where G is a CFG:

- 1. Convert G into an equivalent CFG C in Chomsky Normal Form.
- 2. Let p be the pumping length of C.
- 3. Repeat $\forall i \leq f(p)$:
 - a. Check whether $1^i \in L(C)$.
 - b. If not, reject $\langle G \rangle$.
- 4. $Accept \langle G \rangle$.

We can check $1^i \in L(C)$ using the Cocke-Younger-Kasami (CYK) algorithm for CFGs, which has a running time of $\Theta(n^3|G|)$. Therefore, the loop has a running time of $\Theta(pn^3|G|)$. Since Steps 1, 2, 3, and 4 take finite time, this language is decidable.