Machine Learning Applications to Gamma-Ray Bursts

August 19, 2023

- Guided by:- Prof. Shantanu Desai
- ► Work By:- Sarvesh Purohit, Department of AI

Outline

- ► Galaxy Cluster Dataset- preprocessing
- ► Gaussian Process Regression
- GRB Dataset
- Error Propagation
- MCMC Analysis
- Regression relation

Thesis Stage-1

Galaxy Cluster Dataset- preprocessing

Source:-

- Dataset Reference
- arxiv:astro-ph/0512349(Click here for Dataset)
- Dataset Description:
 - cluster name
 - Redshift value
 - Angular diameter distance
 - error min and error max value.
- ▶ Dataset is consist of data related to 38 different galaxy cluster with redshift value in range of 0.14 to 0.89.
- ▶ Error is symmetrized for further calculation

Gaussian Process Regression

▶ Using GPR finding the relation between the redshift z and Angular diameter distance D_A .

Gaussian Process Regression

Gamma Ray Burst(GRB) Dataset

Source:-

- Dataset Reference
- arxiv:1105.0046(Click here for Dataset)
- Dataset description:-
 - GRB
 - $ightharpoonup P_{bolo}$ and P_{bolo} err
 - S_{bolo} and S_{bolo} err
 - ightharpoonup F_{beam} and F_{beam} err
 - $ightharpoonup T_{lag}$ and T_{lag} err
 - \triangleright V and V_{err}
 - \Rightarrow E and $E_{peak}err$
 - \Rightarrow E and E_{peak} err
 - $ightharpoonup T_{RT}$ and T_{RT} err

6/16

D_L calculation:-

 $^{\circ}$ calculation of D_L is done for each GRB using the D_A and z relation obtained previously using Gaussian.

$$D_L = D_A \cdot (1+z)^2$$

L calculation:-

calculation of L is done for each GRB

$$L = 4\pi (d_L)^2 P_{\text{bolo}}$$

E_{ISO} calculation:-

ightharpoonup calculation of E_{ISO} is done for each GRB.

$$E_{\rm iso} = \frac{4\pi (d_L)^2 s_{\rm bolo}}{1+z}$$

E_r calculation:-

ightharpoonup calculation of E_r is done for each GRB

$$E_r = E_{\rm iso} \cdot F_{\rm beam}$$

8/16

Thesis Stage-1

Error Propagation

Error Propagation Derivation:-

- Error Propagation(Click here to see complete Error Propagation derivation)
- The general error propagation formula calculates the uncertainty (ΔQ) in a quantity Q that depends on several variables x_1, x_2, \ldots, x_n , each with their respective uncertainties $(\Delta x_1, \Delta x_2, \ldots, \Delta x_n)$. The formula is given by:

$$\Delta Q = \sqrt{\left(\frac{\partial Q}{\partial x_1} \Delta x_1\right)^2 + \left(\frac{\partial Q}{\partial x_2} \Delta x_2\right)^2 + \ldots + \left(\frac{\partial Q}{\partial x_n} \Delta x_n\right)^2}$$

Here, $\frac{\partial Q}{\partial x_i}$ represents the partial derivatives of Q with respect to each variable x_i .

MCMC Analysis

MCMC Analysis

MCMC Analysis

	a	a_err	ь	b_err	sigma_int	sigma_int_err
('E_peak-E_gamma', 'GRB')	-4.44697	0.140672	1.43143	0.259921	0.335673	0.152011
('E_peak-E_iso', 'GRB')	-2.47432	0.161768	1.56583	0.317142	0.594658	0.120487
('E_peak-L', 'GRB')	0.623043	0.043082	0.126617	0.0854989	0.188 655	0.0282104
('T_RT-L', 'GRB')	0.715671	0.0855066	-0.183487	0.114962	0.203865	0.0371049
('T_lag-L', 'GRB')	0.558511	0.106681	0.0473301	0.141298	0.300793	0.0884514
('V-L', 'GRB')	-3.42774	0.348096	1.20461	0.576007	0.701353	0.196112

Figure 4: Parameters values estimated using MCMC

13/16

Regression relation

Regression relation

References

- Govindaraj, Gowri, and Shantanu Desai. "Low redshift calibration of the Amati relation using galaxy clusters." Journal of Cosmology and Astroparticle Physics 2022.10 (2022): 069.
- Wang, Fa-Yin, Shi Qi, and Zi-Gao Dai. "The updated luminosity correlations of gamma-ray bursts and cosmological implications." Monthly Notices of the Royal Astronomical Society 415.4 (2011): 3423-3433.
- ➤ Tang, Li, et al. "Model-independently calibrating the luminosity correlations of gamma-ray bursts using deep learning." The Astrophysical Journal 907.2 (2021): 121.

