Table des matières

Ι	Les	propiétés physiques	2
	1	Analyse Dimensionnelle	2
		1.1 Propriété physique de bases	2
		1.2 Les propriétés physiques dérivés	3
		1.3 Calcul / Analyse Dimensionnel	3
	2	Mesures - Incertidude - Calcul des variations	3
		2.1 Calcul d'incertitudes	4
		2.2 Calcul de variations	5
II	Stat	tique du Solide	6
	1	Quelques forces	6
	2	Rappels sur les vecturs	8
		2.1 Produit Scalaire	9
		2.2 Produit Vectorielle	9
	3	Lois de la statique	10
II	I Cin	ématique du point matériel	L 2
	1	Trajectoire rectiligne	12
	2	La vitesse	12
	3	Vitesse instantanée	12
	4	Accélération	13
	5	En 2D ou 3D	13
	6	vecteur accélération	13
	7	Dynamique du point matériel	14
	8	1ere loi de Newton (1686-87) : matériels	14
	9	2eme loi de Newton	14
	10	Résolution d'un problème de dynamique	15
			16
		10.2 Chute d'un corps dans un fluide	17
		10.3 Lancé oblique d'un projectile	20
		10.4 Oscillateurs harmoniques	
ΙV	Ene	ergies 2	24
	1	Energies mécaniques	24
	2	Travail d'une force	25

I

Les propiétés physiques

1 Analyse Dimensionnelle

1.1 Propriété physique de bases

Type	Dimension	Unité (SI)	
Longueur	L	mètre (m)	
Temps	Т	seconds (s)	
Masse	M	kilogrammes (kg)	
Température	Θ	Kelvin(K)	
Courant	I	Ampère (A)	

Remarque 1 Ne pas confondre unité et dimension.

— Unité Associé la valeur numérique d'une mesure

Remarque 2 Il existe des grandeurs ayant une unité mais sans dimensions. Par exemple un angle a pour unité le radian mais [angle] = 1.

$$\alpha = \frac{l}{R}\alpha = [l][R]^{-1} = L * L^{-1} = 1$$

définition d'un angle

1.2 Les propriétés physiques dérivés

Propriétés	Equation	Dimension	Unité (SI)
Surface	$s = x^2$	L^2	m^2
Volume	$s = x^3$	L^3	m^3
Fréquence	$f = \frac{1}{t}$	T^{-1}	Hz
Vitesse	$v = \frac{dl}{dt}$	$L * T^{-1}$	$m*s^-1$
Accélération	$a = \frac{d^2l}{dt^2}$	$L * T^{-2}$	$m*s^-2$
Force	F = m * a	$M*L*T^{-2}$	N
Energie	E = F * L	$M*L^2*T^{-2}$	J
Puissance	$P = \frac{E}{t}$	$M*L^2*T^{-3}$	W(Watt)
Pression	$P = \frac{F}{S}$	$M * L^{-1} * T^{-2}$	Pa(Pascal)
Tension	$U = \frac{P}{I}$	$M * L^2 * T^{-3} * I^{-1}$	V(Volt)

1.3 Calcul / Analyse Dimensionnel

$$[Q] = M^{\alpha} * T^{\beta} * L^{\gamma} * \Theta^{\delta} * I^{\epsilon}$$
 Si Q est sans dimensions, alors $\alpha = \beta = \dots = \epsilon = 0$ et $[Q] = 1$

Propriétés Générales des Equations en physique

- a Toutes equations faisant itervenir des grandeurs ϕ doit etre homogène. Si $Q_1 = Q_2$ alors $[Q_1] = [Q_2]$ (une Equation aux dimesions)
- b Si $Q = Q_1 + Q_2 + Q_3 + ... + Q_n$ alors $[Q] = [Q_1] = ... = [Q_n]$
- c $Q = f(x) \rightarrow [Q] = [f(x)]$ Si $f(x) = e^x$ ou f(x) = sin(x) Alors la dimensions de l'arguments x doit etre égale à 1. [x] = 1
- d dimension d'un vecteur est la dimension de la norme du vecteurs et des composants.
- e dimension de la dérivé d'une grandeur ϕ :

$$Q = f(x)$$

$$\left[\frac{dQ}{dx}\right] = \left[\frac{df(x)}{dx}\right] = \left[\frac{\Delta Q}{\Delta x}\right] = \frac{[Q]}{[x]} = [Q][x]^{-1}$$

2 Mesures - Incertidude - Calcul des variations

Incertitudes Espériences sont susceptibles d'erreurs et donne des incertitudes. On donnes donc une estimation.

2 approches d'estimations d'incertitudes.

1) incertitude due à l'expérimentation / répétition de la mesure. On estime donc l'incertitude statistique.

2)
$$G_V \in [G_{exp} - \delta G; G_{exp} + \delta G] \delta G = \text{incertitude absolue}$$

 $\frac{\delta G}{G} = \text{incertitude relative (ou Précision)}$

2.1 Calcul d'incertitudes

On Calcule G à partir d'autres grandeurs mesurées $G_1, G_2, G_3, ...$, avec des incertitude $\delta G_1, \delta G_2, ...$

$$G = f(x)$$
 $G_{mesure} = f(x_{mesure})$
 $G_{exp} = f(x + \Delta x)$

$$G_{ex} = f(x_{mesure}) + \frac{df}{dx}(x_{mes})(x - x_{mes}) + \dots$$
 (I.1)

$$G_{ex} - G_{mes} \simeq \frac{df}{dx}(x_{mes})(x - x_{mes})$$
 (I.2)

$$\Delta G \simeq \frac{df}{dx}(x_{mes}) * \Delta x$$
 (I.3)

$$\delta G \simeq \left| \frac{df}{dx}(x_{mes}) \right| * \delta x$$
 (I.4)

Exemple

$$G \to f(x)$$
 = loi expérimental
$$= A * x^{a}$$

$$\delta G = |\frac{df}{dx}| \delta x = (A\dot{a}x^{a-1}) \delta x$$

$$= \frac{f(x)}{x} * a * \delta x$$

$$|a * \frac{G}{x}| * \delta x$$

$$\frac{\delta G}{G} = |\frac{a}{x}| * \delta x$$

Ecriture d'un résultat : $G = (G_{exp} + -\delta G)(\text{Unit\'e})$

 $G = G_{exp}$ à $(\frac{\delta x}{G})$ près. Exemple : $V_{mesuree}$ avec δV Précision(incertitude relative) $\frac{\delta V}{V}$

2. MESURES - INCERTIDUDE - CALCUL DES VARIATIONS ES PROPIÉTÉS PHYSIQUES

$$V = (V_{mesure} + -\delta v)m * s^{-1}$$
 et $V = V_{mesure}$ à $\frac{\delta v}{v}$ près

Remarque Incertitude non indiquée explicitemment ext évaluée d'après dernier chiffre significatif. M=2.50 kg signifie qu'on est précis à 10^{-2} ($\delta m=0.01kg$)

A contrario Si on écrit une valeur calculée, il faut bien s'arreter au dernier chiffre significatif (on écrit pas M=2.50138 sachant qu'on est précis à 10^{-2} près)

2.2 Calcul de variations

1 carre, $x = 2cm \Delta x$

Si la longueur d'un côté varie, $S=x^2=2^2=4cm^2$ La variation de S quand x varie de Δx $\Delta S=S(x+\Delta x)-S(x_0)=0.42cm^2$

Autre méthode

$$\Delta S =$$

$$= S(x) - S(x_0) = (x_0 + \Delta x)^2 - x_0^2$$

$$= 2x_0 \Delta x + (\Delta x)^2$$

Si $\Delta x << x_0$, alors $(\Delta x)^2 <<< x_0$ On néglige alors $(\Delta x)^2$ (therme de second ordre) car beaucoup plus petit que x_0 $\Delta S = 2x_0\dot{\Delta}x$

Généralisation G dépend de x, $G(x) = f(x)\dot{(x} - x_0)$

$$f(x) \simeq f(x_0) + \frac{df}{dx}|_{x=x_0}$$
 avec $x = x_0$

\mathbf{II}

Statique du Solide

Statique : étude des solides en equilibre sous l'action de forces.

force : action exercée sur un solide / un point matériel. Elle est définie par son intensité, sa direction, son sens. La force est toujours prise comme une quantité vectorielle. Un vecteur

1 Quelques forces

La force de gravitation C'est une force attractive, elle est exercée par une masse M_1 en présence d'une autre masse M_2

$$\overrightarrow{F_{1/2}} = -\frac{G*m_1*m_2}{||\overrightarrow{M_1M_2}||^2}*\frac{\overrightarrow{M_1M_2}}{||\overrightarrow{M_1M_2}||}$$

$$= -\frac{G*m_1*m_2}{r^2}\overrightarrow{u_r}$$

G : Constante de gravitation $G = 6.67 * 10^{-11} m^3 kg^{-1}s^{-2}$

 m_1, m_2 : Masses des corps 1 et 2 M_1, M_2 : Position des corps 1 et 2

Remarques

Force gravitationnelle inversemment proportionelle à r^2 . Sa portée est donc infinie Elle fait partie des forces fondamentales.

Elle est cependant mal connu aux petites échelles (subatomique).

C'est la force de gravitation qui régule la distribution des structures dans la nature.

La force électrostatique Elle s'exerce entre 2 charges à <u>l'immobiles</u>.

$$\overrightarrow{F} = -\frac{1}{4*\pi*\epsilon_0} * Q_1 Q_2 \frac{1}{r^2} \overrightarrow{u_r} \text{ Force de coulomb}$$

$$\epsilon_0 = 8.854*10^{-2} F.m^{-2}$$

 ϵ_0 : Permittivité du <u>vide</u>

Remarque Elle est similaire dans la forme à la force de gravitation mais

$$Q = > 0$$
 Elle est la principal cause de la cohésion de la matière : La cohésion $Q = < 0$

dans un atome (entre les charge e^- et e^+) et celle des molécules.

$$[Q] = I.T$$

Unité(Q) = Coulomb (C)

Force de frottement fluide/visqueux Force exercée par un fluide sur un solide en mouvement par rapport au fluide.

$$F=$$

$$f=$$
 coefficient nummérique de frottement dépend de la nature du fluide.

l'origine de cette force est l'interaction moléculaire des fluides et solides.

Remarque La forme est valable uniquement si v n'est pas trop grand.

force de frottement solide

Si
$$||\vec{F}|| > ||\vec{P}|| . k_s$$

Alors le corps est en mouvement. k_s =coefficient de frottement statique

$$\vec{F}$$
 = Force exercé sur le corps.

Le support exerce une force

Si
$$||\overrightarrow{f_s}|| < k_s mg$$

Le solide reste statique : la force de frottement opposé

aux mouvement est appelé force de frottement du solide statique

F est la force de frottement statique du solide

Quand \vec{F} devient suffisante $(||\overrightarrow{f_c} = k_c*mg||)$, le solide est en mouvement. La force de frottement opposé à la force de déplacement est appelé force de frottement du solide cinetique.

 $k_c < k_s$ avec k_c le coefficient de frottement cinématique et k_s le coefficient de frottement statique, et on a $||\overrightarrow{f_c}|| < ||\overrightarrow{f_s}||$

Remarque Les forces de frottements statique et cinétique ne dépende que le nature des 2 surfaces en contacte. Elle ne dépend pas par exemple de la vitesse. Elle est du aux interactions entre les atomes et les molécules en surfaces.

Force élastique (ou de rappel) C'est la force qu'exerce un solide pour s'opposer à une déformation.

 l_0 est la longueur au repos du ressort et l
 la longueur du ressort après deformation

$$\overrightarrow{F_r} = -k(l-l_0) * \overrightarrow{i}$$

$$= -k.x.\overrightarrow{i}, \text{ avec } x = (l-l_0)$$

k est la constante de raideur du ressort, la forme $\vec{F_r} = -k.x.\vec{i}$ n'est valable que si on comprime le ressort (x < 0).

Si on déforme trop le solide (si on quitte le domaine élastique), d'après la loi de Hook, le solide entre dans le domaine plastique et ne revient plus à sa longueur original.

2 Rappels sur les vecturs

Un vecteur est définis par sa direction D, par sa norme $||\vec{AB}||$ et son sens \vec{AB}

Base orthonormée

Si 3 vecteurs : \vec{i},\vec{j},\vec{k} , $||\vec{i}||=||\vec{j}||=||\vec{k}||$

et $\vec{i}, \vec{j}, \vec{k}$ sont orthogonaux, alors $\vec{i}, \vec{j}, \vec{k}$ forment une base orthonormée. Tous les vecteurs \vec{V} peuvent etre définis par : $\vec{V} = V_x \vec{i} + V_y \vec{j} + V_z \vec{k}$ avec V_x, V_y, V_z les composants de V dans $(\vec{i}, \vec{j}, \vec{k})$

Propriétés l'expression dans une base orthonormée

$$\begin{cases} \vec{V_1} = V_{1x}\vec{i} + V_{1y}\vec{j} + V_{1z}\vec{k} \\ \vec{V_2} = V_{2x}\vec{i} + V_{2y}\vec{j} + V_{2z}\vec{k} \end{cases}$$

$$\vec{V}_1 + \vec{V}_2 = \vec{C}$$

$$\vec{C} = (V_{2x} + V_{1x})\vec{i} + (V_{2y} + V_{1y})\vec{j} + (V_{2z} + V_{1z})\vec{k}$$

 $\vec{V}=\lambda\vec{V_1},$ les composants sont multipliés par λ Si $\vec{V_1}=\vec{V_2}$ alors

$$\begin{cases} \vec{V_{1x}} = \vec{V_{2x}} \\ \vec{V_{1y}} = \vec{V_{2y}} \\ \vec{V_{1z}} = \vec{V_{2z}} \end{cases}$$

2.1 Produit Scalaire

$$V = V_{1} \cdot \vec{V_{2}} \text{Le résultat est un nombre}$$

$$= ||\vec{V_{1}}|| * ||\vec{V_{2}}|| * \cos(\vec{V_{1}}, \vec{V_{2}})$$

$$= (V_{1x}\vec{i} + V_{1y}\vec{j} + V_{1z}\vec{k}) * (V_{2x}\vec{i} + V_{2y}\vec{j} + V_{1z}\vec{k})$$

$$= (V_{1x}V_{2x} + V_{1y}V_{2y} + V_{1z}V_{2z})$$

Le produit scalaire d'un vecteur par lui meme :

$$\begin{split} V = & \vec{V_1} \cdot \vec{V_1} & \text{Le r\'esultat est un nombre} \\ = & V_{1x}^2 + V_{1y}^2 + V_{1z}^2 \\ = & ||\vec{V_1}|| * ||\vec{V_1}|| \cos(\vec{V_1}, \vec{V_1}) \\ = & \sum V_{1i}^2 & i = x, y, z \end{split}$$

$$\begin{cases} |\vec{V_1} \cdot \vec{V_2} = 0 \quad \vec{V_1}, \vec{V_2} \text{non nulle} \\ ||\vec{V_1}|| * ||\vec{V_2}|| \cos(\vec{V_1}, \vec{V_2}) = 0 \\ \cos((\vec{V_1}, \vec{V_2}) = 0 \\ (\vec{V_1}, \vec{V_2}) = \frac{\pi}{2} \end{cases}$$

Si $\vec{V_1}$ perpendiculaire à $\vec{V_2}$, alors $\vec{V_1} \cdot \vec{V_2} = 0$

2.2 Produit Vectorielle

$$\vec{V} = \vec{V_1} \wedge \vec{V_2} = ||\vec{V_1}|| * ||\vec{V_2}|| * \sin(\vec{V_1}, \vec{V_2}) * \vec{u}$$

$$\vec{V} \perp \vec{V_1} \\ \vec{V} \perp \vec{V_2}$$

Si
$$\vec{V_1}//\vec{V_2}$$
 alors $\sin(\vec{V_1},\vec{V_2})=0$ et $\vec{V_1}\wedge\vec{V_2}=\vec{0}$

Composantes du produit vectorielle

$$\vec{V} = \vec{V_1} \wedge \vec{V_2} = \begin{pmatrix} V_{1x} V_{2x} \\ V_{1y} V_{2y} \\ V_{1z} V_{2z} \end{pmatrix} \vec{i} \quad (V_{1y} * V_{2z}) - (V_{2y} * V_{1z}) + \\ \vec{V_1} = (V_{1z} * V_{2x} - V_{2z} * V_{1x}) + \\ \vec{V_2} = (V_{1z} * V_{2y} - V_{2x} * V_{1y})$$

3 Lois de la statique

Un ensemble de points matériels soumis à des forces est en équilibre statique ou immobile alors

1ere lois de la statique : $\sum (\vec{F}) = \vec{0}$

2ème lois : Soit 2 systèmes 1, 2 en interaction mutuelles. La force exercé par 1 sur 2 est égale à l'inverse de la force exercé par 2 sur 1 (meme direction, meme norme, sens opposé) $\overrightarrow{F_{1/2}} = -\overrightarrow{F_{2/1}}$

 $\vec{F}_{1/2}$ s'exerce en 2, et $\vec{F}_{2/1}$ s'applique en 1.

$$\underbrace{0 \quad M}^{\bar{F}}$$

Le moment de \vec{F} par rapport à O est égale à : $\overline{M_0(\vec{F})} = \overrightarrow{OM} \wedge \vec{F}$ Loi de la statistique en rotation dit qu'il existe un point P par rapport auquel $\sum (\overline{M_P(\vec{F}_i)}) = \vec{0}$ Le moment d'une force est la capacité de cette force à faire tourner un objet au niveau du point d'étude.

Exemple

Quelles force appliqué en P est nécessaore pour que le système soit en équilibre?

Quelles est la force en C pour que le système reste fixe en C ?

$$\sum \vec{F} = \vec{0}$$
 en P Bilan des forces en P : $\vec{F}, \vec{f_r}$ Expression des forces :

$$\vec{f_r} = k(l - l_0)(\vec{i})$$
$$= -kx\vec{i}$$

Application de la loi de la statique

$$\vec{F} + \vec{f_r} = \vec{0}$$

$$\vec{F} = -\vec{f_r}$$

$$= -(-kx\vec{i})$$

$$= kx\vec{i}$$

Bilan des forces en C:

$$\vec{F} + \vec{R} = \vec{0}$$

$$\vec{R} = -\vec{F} = -(-\vec{f_r}) = -kx\vec{i}$$

$$\vec{R} = -kx\vec{i}$$

Contact avec frottement solide À l'équilibre, avec la loi statique : $\vec{P} + \vec{R} = \vec{0}$

En projection sur
$$(\mathbf{x}, \mathbf{y})$$
:
$$\begin{cases} \vec{R} = \vec{R_N} + \vec{F} = F * \vec{i} + R_N * \vec{j} \\ \vec{P} = \vec{P_x} + \vec{P_y} = -mg * sin(\alpha) * \vec{i} - mg \cos(\alpha) \vec{j} \end{cases}$$

$$\vec{P} + \vec{R} + \vec{0} = \text{en projection} \begin{cases} \sin \vec{i} : F - mg\sin(\alpha) = 0 \\ \sin \vec{j} : R_N - mg\cos(\alpha) = 0 \end{cases} = \begin{cases} F = mg\sin(\alpha) \\ R_N = mg\cos(\alpha) \end{cases}$$

$$\boxed{\frac{F}{R_N} = \tan(\alpha)}$$
 D'après le comportement expérimental obsérvé, comme $F \leq k_s * P, F < k_s R_N$
$$k_s > \frac{F}{R_N} = \tan(\alpha)$$

Condition d'équilibre : $\tan(\alpha) < k_s$

III

Cinématique du point matériel

La cinématique est la description des mouvements sans s'intéressé à leur causes. Pour décrire un mouvement il faut connaître les trajectoires (position en fonction du temps), la vitesse ainsi que son accélération.

1 Trajectoire rectiligne

$$0 \quad \overrightarrow{i} \quad M \quad X \\ t_1 \quad t_2$$

M se déplace sur ox, (o, \vec{i}) On repère M par $\overrightarrow{OM} = x\vec{i}$ avec x l'abscisse de M et \overrightarrow{OM} le vecteur position.

En général, M dépend de t : $\boxed{\overrightarrow{OM}(t) = x(t)\overrightarrow{i}}$

2 La vitesse

La vitesse moyenne entre t_1 et $t_2: \langle \vec{v} \rangle_{[t_1,t_2]} = \frac{x(t_2)\vec{i} - x(t_1)\vec{i}}{t_2 - t_1}$

$$<\vec{v}> = \frac{x(t_2) - x(t_1)}{\Delta t}\vec{i}$$

 $t_2 = t_1 + \Delta t \downarrow \langle \vec{v} \rangle_{\Delta t} = \frac{dM}{\Delta t} \vec{i}$ Distance parcourue pendant Δt $= \frac{\Delta x}{\Delta t} \vec{i}$

3 Vitesse instantanée

 $v(t) = \lim_{\substack{t_2 \to t_1 \\ \Delta t \to 0}} \frac{x(t_2) - x(t_1)}{t_2 - t_1} \vec{i} \text{ Ce qui donne } v(t) = \frac{dx}{dt} \text{ (dérivée de x par rapport à t)}.$

On note la dérivée
$$/_t$$
: $\dot{x}(t) = \frac{dx}{dt} = v(t)$

Accélération 4

L'accélération \vec{a} sur $[t_1,t_2]$ c'est la variation de \vec{v} sur $[t_1,t_2]$ $\vec{a} = \frac{d\vec{v}}{dt} = \frac{dv(t)}{dt}\vec{i} = \dot{v}\vec{i}$ $v(t) = \frac{dx}{dt}$ $a = \frac{d}{dt}(\frac{dx}{dt}) = \frac{d^2x}{dt^2}$ $donc \vec{a} = \vec{v}\vec{i} = \ddot{x}\vec{i}$

5 En 2D ou 3D

La trajectoire est une courbe en 3D. M repéré par (x, y, z) dans la base

$$\overrightarrow{OM}(t) = x(t)\overrightarrow{i} + y(t)\overrightarrow{j} + z(t)\overrightarrow{k}$$

 $= \frac{d}{dt}[(x_2\vec{i} + y_2\vec{j} + z_2k) - (x_1\vec{i} + y_1\vec{j} + z_1k)]$

$$= \frac{dx}{dt}\vec{i} + \frac{dy}{dt}\vec{j} + \frac{dz}{dt}\vec{k}$$
$$= \dot{x}\vec{i} + \dot{y}\vec{j} + \dot{z}\vec{k}$$

vecteur accélération 6

 $<\vec{a}>_{[t_1,t_2]} = \frac{\vec{v}(t_2) - \vec{v}(t_1)}{t_2 - t_1}$ pour tout $t_2 - t_1 = \Delta t \to \delta t$

$$\vec{a} = \lim_{\Delta t \to 0} \frac{\Delta \vec{v}}{\Delta t}$$

$$\vec{v}(t) = v_x \vec{i} + v_y \vec{j} + v_z \vec{k}$$

$$\vec{a} = \frac{dv_x}{dt} \vec{i} + \frac{dv_y}{dt} \vec{j} + \frac{dv_z}{dt} \vec{k}$$

$$= \frac{d^2 x}{dt^2} \vec{i} + \frac{d^2 y}{dt^2} \vec{j} + \frac{d^2 z}{dt^2} \vec{k}$$

7 Dynamique du point matériel

C'est l'étude des applications d'une force ou d'une action qui va modifier les mouvements des points matériels.

8 1ere loi de Newton (1686-87) : matériels

1ère loi Tout corps matériel persévère à l'état de repos ou de mouvement rectiligne dans lequel il se trouve à moins qu'une force quelconque n'agisse sur lui et le contraigne à changer d'état.

Les actions extérieures (Forces) changent l'état du système.

Force action dynamique qui va changer l'etat du système physique

9 2eme loi de Newton

énoncé Le changement de mouvement d'un système se fait proportionnellement à l'action qui le provoque et dans le sens de celle ci. La force change la <u>quantite de mouvement</u> : proportionnelle à \vec{v} et le facteur de proportionnalité m : masse.

On note $\vec{P} = m\vec{v}$ la quantité de mouvement.

$$\frac{d\vec{P}}{dt} = \sum \vec{F}_{ext}$$

$$\frac{d(m\vec{v})}{dt} = \sum \vec{F}_{ext}$$

$$\frac{dm}{dt}\vec{v} + m\frac{d\vec{v}}{dt} = \sum \vec{F}_{ext}$$

pour des masses constantes : $\left\{ \begin{array}{l} m\vec{a} = \sum \vec{F}_{ext} \\ m\frac{d\vec{v}}{dt} = \sum \vec{F}_{ext} \end{array} \right\} = \text{Principe Fondamentale de la Dynamique}.$

En général \vec{F} dépend du temps et/ou de la position et/ou de la vitesse

 $\vec{F}(\vec{OM}, \vec{v}) = m \frac{d\vec{OM}}{dt^2}$ relation entre les <u>coordonees</u> et leurs dérivées : c'est une équation différentielle.

Rappel

$$[F] = MLT^{-2}$$

$$[\overrightarrow{v}] = LT^{-1}$$

$$[\overrightarrow{a}] = LT^{-2}$$

10 Résolution d'un problème de dynamique

- 1. identifier le systeme et repérer les points dont on veut étudier le comportement
- 2. faire le bilan des force qui agissent en <u>ce point</u> \downarrow prédire le comportement des points en applicant le principe fondamentale de la dynamique : $\sum \vec{F} = m\vec{a}$
- 3. définit la base orthonormé qui permet de "simplifier" l'étude.
- 4. on somme les forces et on les projette sur la base.

$$\vec{F} = F_x \vec{i} + F_y \vec{j} + F_z \vec{k}$$

$$F_x = (x, y, z, \dot{x}, \dot{y}, \dot{z}, t) = m\dot{x}$$

$$F_y = (x, y, z, \dot{x}, \dot{y}, \dot{z}, t) = m\dot{y}$$

$$F_z = (x, y, z, \dot{x}, \dot{y}, \dot{z}, t) = m\dot{z}$$

Solution des Equations différentielles.

Exemple d'application du PFD Remarque Si $\sum \vec{F} = \vec{0}$, alors $m\vec{a} = \vec{0}$.

Choix d'une direction $\vec{i}(\vec{ox})$

$$m\frac{d^2x}{dt^2} = 0$$

$$m\frac{dv}{dt} = 0$$

$$\frac{dv}{dt} = 0$$

$$v(t) = constante$$

 $\frac{dx}{dt} = v(t) = constante = c(t) \Rightarrow x(t) = c.t + k$ Avec les conditions à <u>t donne</u>, on fixe une valeur pour c et pour k.

Chute d'un corps près de la surface de la terre 10.1

- sans frottement
- mass m_i ponctuelle
- vitesse $v_0 = 0$
- altitude : h

$${\rm PFD}: \sum \vec{F} = m\vec{a} = \vec{P} = -mg\vec{k}$$

PFD : $\sum x = ...$ $\begin{cases} m\ddot{x} = 0 \\ m\ddot{y} = 0 \\ m\ddot{z} = -mg \end{cases}$ Equations différentielles du mouvement : derive seconde $\begin{cases} m\ddot{x} = 0 \\ m\ddot{y} = 0 \end{cases}$

Solution des equations differentielles :

derive premiere
$$\begin{cases} \dot{x}=C_1\\ \dot{y}=C_2\\ \dot{z}=-gt+C_z \end{cases}$$

$$\dot{z}=-gt+C_z \text{ On passe par la primitive }$$

pour
$$t = 0$$
 \vec{v}
$$\begin{cases} \dot{x}(0) = 0 \\ \dot{y}(0) = 0 \\ \dot{z}(0) = 0 \end{cases}$$

On remplace pour t = 0:

$$\dot{x}(0) = C_1 = 0$$

$$\dot{y}(0) = C_2 = 0$$

$$\dot{z}(0) = (-gt + C_3) = C_3 = 0$$

Donc:
$$\vec{v}$$

$$\begin{cases} \dot{x}(t) = 0 \\ \dot{y}(t) = 0 \\ \dot{z}(t) = -gt \end{cases}$$

10.2 Chute d'un corps dans un fluide

Les positions à chaque t :

$$\begin{cases} x(t) \\ y(t) \text{ Les primitives de } \dot{x}, \dot{y}, \dot{z} \Rightarrow \begin{cases} x(t) = C_x \\ y(t) = C_y \\ z(t) = \int -gt dt = -\frac{g}{2}t^2 + C_z \end{cases}$$

pour
$$t = 0$$

$$\begin{cases} x(0) = 0 \Rightarrow C_x = 0 \\ y(0) = 0 \Rightarrow C_y = 0 \\ z(0) = h \Rightarrow C_z = h \end{cases}$$

Exemples d'application du PFD

— m : ponctuelle.

$$t = 0 \begin{cases} z = h \\ v = 0 \end{cases}$$

— Bilan des forces : $\vec{P}=m\vec{g},$ force de frottement visqueux / fluide : $\vec{f}=-\lambda\vec{v}$

— PFD:

$$\begin{split} m\vec{a} &= \vec{P} + \vec{f} \\ &= -mg\vec{k} - \lambda \vec{v} \quad ||\vec{g}|| = g \\ &= -mg\vec{k} - \lambda v\vec{k} \quad v \begin{cases} \dot{x} \\ \dot{y} \\ \dot{z} \end{cases} \end{split}$$

$$\begin{cases} m\ddot{x} = 0 \\ m\ddot{y} = 0 \\ m\ddot{z} = -mg - \lambda\dot{z} \end{cases} m\dot{v}_{x} = 0 \\ m\dot{v}_{y} = 0 \\ m\dot{v}_{z} = -mg - \lambda v_{z} (3) \end{cases} \Rightarrow \begin{cases} v_{x} = C_{x} \\ v_{y} = C_{y} \end{cases}$$

(3)
$$\dot{v}_z + \frac{\lambda}{m}v_z = -g$$

On pose : $\frac{\lambda}{m} = \frac{1}{\tau} \Rightarrow \dot{v}_z + \frac{v_z}{\tau} = -g(3)'$

La solution de (3)' est la solution de l'équation sans second membre (ou équation homogène) $\dot{v}_z + \frac{v_z}{\tau} = 0 \quad \text{(équation homogène)} + \text{Une Solution particuliere de (3)}$

$$V_z = V_z^{(P)} + V_z^{(H)}$$

La solution de l'équation Homogène : $\dot{v}_z + \frac{v_z}{\tau} = 0$ est de la forme :

$$v_z^H(t) = K * e^{-\frac{t}{\tau}}$$

La solution particulière est de la même forme que le 2^{nd} membre donc

$$V_z^{(P)} = constante$$

$$\dot{V}_z^{(P)} = 0$$

On remplace dans (3)': $0 + \frac{V_z^P}{\tau} = -g \Rightarrow v_z^{(P)} = -g\tau$ Donc la solution de l'équation différentielle de (3) est :

$$v_z(t) = V_z^H + v_z^P = Ke^{-\frac{t}{\tau}} - g \cdot \tau$$

à
$$t = 0$$
 $v_z = 0$

$$v_z(0) = K * (1) - g\tau = 0$$

$$K = g\tau \Rightarrow v_z(t) = g\tau e^{-\frac{t}{\tau}} - g\tau$$

= $-g\tau[1 - e^{-\frac{t}{\tau}}]$

à
$$t = 0$$
, $e^{-\frac{1}{\tau}} = 1$ et $v_z = 0$

$$e^{-\frac{t}{\tau}} \quad \rightarrow \quad ($$

Pour $t >> \tau$, alors

$$v_z \to -g\tau$$

Calcul de z(t)

$$\begin{aligned} v_z(t) &= \dot{z}(t) \\ z(t) &= \int \dot{z}(t) = \int \left[-g\tau (1 - e^{-\frac{t}{\tau}}) \right] dt \\ &= \int \left[(-g\tau) dt + (g\tau e^{-\frac{t}{\tau}}) \right] dt \\ &= -g\tau \cdot t + g\tau \int e^{-\frac{t}{\tau}} dt + g\tau (-\frac{1}{2}) e^{-\frac{t}{\tau}} + K_z \\ &= -g\tau t - g\tau^2 e^{-\frac{t}{\tau}} + K_z \\ &= -g\tau^2 \left[\frac{t}{\tau} + e^{-\frac{t}{\tau}} \right] + K_z \end{aligned}$$

à
$$t = 0, z(0) = h$$

$$z(0) = 0 - g\tau^2 * 1 + K_z = h$$

 $K_z = h + g\tau^2$

On remplace dans (4):
$$z(t) = -g\tau^2 \left[\frac{t}{\tau} + e^{-\frac{t}{\tau}}\right] + h + g\tau^2$$
$$z(t) = h - g\tau^2 \left[\frac{t}{\tau} + e^{-\frac{t}{\tau}} - 1\right]$$

$$\begin{array}{c} e^{-\frac{t}{\tau}} \to 0 \\ \text{Pour } t >> \tau, & \text{D'où} \\ (\frac{t}{\tau}) - 1 \to \frac{t}{\tau} \end{array}$$

$$z(t) \simeq h - gt\tau$$

D'où le mouvement uniforme rectiligne pour $t >> \tau$

Rappels

- Mouvement rectiligne uniformément accéléré : $\vec{F}Constant\acute{e}$
- Mouvement rectiligne amortie : F dépend de la fonction de la vitesse, et des frottements visqueux / fluide

Lancé oblique d'un projectile 10.3

- m ponctuelle
- lancé avec $\vec{v} = \vec{v_0}$
- On néglige les forces de frottement avec l'air ainsi que la poussé d'archimède
- bilan des forces :

$$\vec{P} = m\vec{q} = m \cdot q \cdot \vec{k}$$

— PFD : $m\vec{a} = \vec{P} = -mg\vec{k}$

$$\begin{cases} m\ddot{x}=0 \\ m\ddot{y}=0 \\ \ddot{y}=C_y \\ \dot{z}=-gt+C_z \end{cases}$$

$$\dot{v} = v_0 \cos(\alpha)$$

$$v_z = v_0 \cos(\alpha)$$

$$v_z = v_0 \sin(\alpha)$$
 D'où
$$v_y = 0$$

$$\begin{cases} C_x = v_0 \cos(\alpha) \\ C_y = 0 \\ C_z = v_0 \sin(\alpha) \end{cases} \begin{cases} \dot{x} = v_0 \cos(\alpha) \\ \dot{y} = 0 \\ \dot{z} = -gt + v_0 \sin(\alpha) \end{cases} \vec{v}(t) = v_0 \cos(\alpha) \vec{i} + (-gt + v_0 \sin(\alpha)) \vec{k} \\ \vec{OM} = x(t) \vec{i} + y(t) \vec{j} + z(t) \vec{k} \\ x(t) = v_0 \cos(\alpha) \cdot + C'_x \\ y(t) = C'_y = 0 \\ z(t) = -\frac{1}{2}gt^2 + v_0 \sin(\alpha) \cdot t + C'_z \end{cases}$$

$$\vec{A} \ t = 0, \begin{cases} x = 0 \\ y = 0 \\ z = 0 \end{cases}$$

$$\vec{C}'_x = 0 \\ C'_y = 0 \\ C'_z = 0 \end{cases}$$

D'où un mouvement uniforme par rapport à Ox, et un mouvement uniforme accéléré par rapport à Oz. Le mouvement est dans le plan de $\vec{v_0}$ car par de $\vec{F} \perp \vec{v_0}$

Équation de la trajectoire z(x)

$$x(t) = v_0 \cos(\alpha)t \tag{1}$$

$$z(t) = -\frac{1}{2}gt^2 + v_0 \sin(\alpha) \cdot (2)$$
 Ce qui donne :
$$t = \frac{x}{v_0 \cos(\alpha)} \Rightarrow z = -\frac{1}{2}g\frac{x^2}{v_0^2 \cos(\alpha)^2} + v_0 \sin(\alpha) \cdot \frac{x}{v_0 \cos(\alpha)}$$

D'où
$$z(x) = x - (\frac{g}{2v_0^2 \cos(\alpha)^2}x + \tan(\alpha))$$

Ceci est:

- Un équation d'une parabole
- Passant par : (x, z) = (0, 0)

Pour
$$z=0,$$

$$x_p=2\sin(\alpha)\cos(\alpha)\frac{V_0^2}{g}$$

$$x_p=\sin(2\alpha)\frac{v_0^2}{g}$$
 Donne la portée maximal

La portée est maximal pour $\sin(2\alpha) = 1$ donc pour $\alpha = \frac{\pi}{4}$

Hauteur maximal Elle est maximal pour z'(x) = 0 et, comme la trajectoire est une parabole, elle est symétrique par une droite parallèle à O_z passant par $\frac{x_p}{2}$

$$z(\frac{x_p}{2}) = \text{hauteur}$$

10.4 Oscillateurs harmoniques

System:

- masse m
- Ressort de raideur k et de longueur l_0
- t=0, on déforme de x_0
- On néglige les frottements et le poids du ressort
- Bilan de forces : \vec{P} et \vec{R} s'équilibre car abscence de frottements.
- $\vec{F} = -k(l l_0)\vec{i} = -kx(t)\vec{i}$ $\text{PFD} : m\vec{a} = \vec{F} = -kx\vec{i}$

Projection sur O_x

$$\boxed{m\ddot{x} = -kx} \ \vec{x} + \frac{k}{m}\vec{i} = 0$$

On pose
$$\frac{k}{m} = \omega^2$$
:

$$\ddot{x}(t) + \omega^2 x(t) = 0$$

La fonction sinusoïdale est celle dont la dérivée second est le produit de cette fonction par une constante.

10. RÉSOLUTION D'UN PROBLÈME DE DYNAMIQUMÉMATIQUE DU POINT MATÉRIEL

La solution générale est de la forme $x(t) = A\cos(\omega t) + B\sin(\omega t)$

La vitesse : $\dot{x} = -A\omega \sin(\omega)t + B\omega \cos(\omega)t$

Pour déterminer A et B, on regarde les conditions initiales :

$$\begin{cases} x(0) = 0 \\ \dot{x} = 0 \end{cases} \Rightarrow \begin{cases} x(0) = A = x_0 \\ \dot{x}(0) = B\omega \Rightarrow B = 0 \end{cases} \text{D'ou} \begin{cases} x(t) = x_0 \cos(\omega t) \\ \dot{x}(t) = -x_0 \omega \sin(\omega t) \end{cases}$$

Chute d'une masse m
 solide dans un liquide visqueux, avec une vitesse initial
 $\upsilon_0.$

- liquide de viscosité η .
- force de frottement : $\vec{f} = -(6\pi\eta R)\vec{v}$ d'après la relation d'Einstein.

IV

Energies

1 Energies mécaniques

Dans un système mécanique, on a 2 formes d'énergies :

- une énergie communiquée par \vec{v} dîtes cinétique (qui peut être conservé s'il n'y a pas d'intéraction avec le système) noté E_c .
- Le travail des forces qui s'appliquent sur m noté E_p .

Exemple Ressort de raideur k.

PFD:

$$m\ddot{x} + kx = 0$$

$$m(\dot{x} \cdot \ddot{x}) + k\dot{x}x = 0$$

Multiplication par \dot{x}

$$m\frac{1}{2}\cdot\frac{d}{dt}[(x)]^2+\frac{1}{2}k\frac{d}{dt}[(x)^2]=0 \ \text{Expression sous forme de derive}$$

$$\frac{d}{dt}[(\frac{1}{2}m\dot{x}^2+\frac{1}{2}kx^2=0$$

On écrit $\frac{1}{2}m\dot{x}^2 + \frac{1}{2}kx^2 = E_m = \text{ constante}$.

$$[m\dot{x}^2] = M\cdot (LT^{-1})^2$$

$$= ML^2T^{-2}$$

$$[kx^2] = ML^2T^{-2}$$

- $\frac{1}{2}m\dot{x}^2$ est l'énergie cinétique. Elle est maximum quand $\frac{1}{2}kx^2=0$
- $\frac{1}{2}kx^2$ est l'énergie potentielle élastique (conservative) du ressort emmagasinée dans Δx . La force de rappel du ressort est une force conservative

Dans un fluide visqueux (λ) : PFD

$$m\ddot{x} + \lambda \dot{x} + kx = 0$$

multiplication par *x* et écriture sous forme de dérivé

$$\frac{d}{dt}\left[\frac{1}{2}m\dot{x}^2 + \frac{1}{2}kx^2\right] = -\lambda\dot{x}^2$$

$$\frac{d}{dt}E_m = \underbrace{-\lambda\dot{x}^2}_{\text{terme dissipatif}}$$

theoreme d'Energie mecanique

$$\begin{cases} \lambda > 0 \\ \dot{x} > 0 \end{cases}$$

Contrairement à E_p , $-\lambda \dot{x}^2$ est une force de frottement qui n'est pas conservative.

2 Travail d'une force

 \vec{F} : Une force aggissant sur m se déplaçant suivant Ox

Définition Le travail d'une force \vec{F} est défini par : $W_{A\to B} = \vec{F} \cdot \overrightarrow{AB}$

Remarque :
$$W_{B \to A} = \vec{F} \cdot \overrightarrow{BA} = -W_{A \to B}$$

Remarque : $W_{B\to A} = \vec{F} \cdot \overrightarrow{BA} = -W_{A\to B}$ Pour une force \vec{F} quelconque (variable en fonction de la position). On divise l'intervalle \overrightarrow{AB} en N sous intervalles sur lesqueles \overrightarrow{F} est constante.

$$\vec{F} \overrightarrow{AB} = \sum_{N} (\vec{f}(x) \cdot \frac{\overrightarrow{AB}}{N})$$

$$= \vec{F}(x) \sum_{l=1}^{N} (\delta x_{l} \vec{i})$$

$$\delta x = \frac{||\overrightarrow{AB}||}{N}$$

$$W_{A \to B} = \sum_{l=1}^{N} \delta W_{l}$$

$$W_{AB} = \lim_{\delta x \to dx} \sum_{l=1}^{N} dW_{l}$$

$$W_{AB} = \int_{A}^{B} \vec{F}(x) \cdot dx \vec{i}$$

Travail d'une force

Sur 3 dimensions :
$$W_{AB}=\int_A^B \vec{F}(x,y,z)\cdot(dx\vec{i}+dy\vec{j}+dz\vec{k})$$

$$dW=\vec{F}\cdot d\vec{r}$$

Remarque

$$[W] = [Energie]$$
$$= ML^2T^{-2}$$

- Si $W_{AB} > 0$, il y a apport d'énergie au système.
- Si $W_{AB} < 0$, il y a dissipation d'énergie.

Exemples de travail $\vec{F} = -kx \cdot \vec{i}$ sur un chemin $A \to B$.

$$W_{A\to B}(\vec{F}) = \int_{A}^{B} (-kx)\vec{i} \cdot (dx\vec{i})$$

$$= \int_{A}^{B} (-kxdx)$$

$$= [-\frac{1}{2}kx^{2}]_{A}^{B}$$

$$= -[\frac{1}{2}kx_{B}^{2} - \frac{1}{2}kx_{A}]^{2}$$

$$= \frac{1}{2}k[x_{A}^{2} - x_{B}^{2}]$$

Remarque Le travail d'une force conservatrice ne dépend <u>Pas</u> du chemin suivi (Ici il dépend du point de départ, et du point d'arrivé).

Théorème de l'énergie cinétique La variation de l'énergie cinétique d'un système entre 2 points A et B est égale à la somme des travaux des forces appliquées.

$$E_c(B) - E_c(A) = \sum_{\vec{F}} (W_{A \to B}(\vec{F}))$$