Welcome!

Bit by Bit Week 3

This Weeks Goals

What we will be working on

4 Pillars to Work on

Graphs

Directed (Instagram)

Undirected (Facebook)

Graph Key Words: (We can use DFS or BFS!)

- Locations
- Relationships
- Paths

Graph Implementation

Adjacency Matrix

	0	1	2	3	4	5
0	0	1	1	0	0	0
1	1	0	0	1	0	0
2	1	0	0	1	0	1
3	0	1	1	0	1	0
4	0	0	0	1	0	1
5	0	0	1	0	1	0

Edge List

```
0 [1, 2],
1 [0, 3],
2 [0, 3],
3 [2, 4],
4 [3, 5],
5 [2, 4],
```


Three types of Trees

Binary Trees

- Can have up to two children
- Typical node class has a left, a right and a data value
 - Always important to check that the children are not null!!
- Many important questions coming up to think about when approaching trees

Action	Runtime
Access Element	O(n)
Remove element	O(n)
Add element	O(n)
Searching	O(n)

Run Time Cheat Sheet

Important Tree Clarifying Questions

Difference between the left and the right subtree for any node is not more than one

A Binary Tree is full if every node has 0 or 2 children.

Every level, except the last, is completely filled, all nodes are as left as possible.

All internal nodes have two children and all leaves are at same level.

Tree Traversal Methods

 Top-Down Solution (Pre-Order Traversal)

```
Return if root is null

Update answer if necessary

Left_ans = function(root.left, left_params)

Right_ans = function(root.right, right_params)

Return answer
```

Are you passing something down the tree?

Bottom-Up Solution (Post-Order Traversal)

```
Return if root is null

Left_ans = function(root.left)

Right_ans = function(root.right)

Return answer // answer = left_ans + right_ans + root.val
```

Can you calculate specific values as you move up the tree?

Common Types of Tree Problems

Check if Valid / Is this true for the whole tree?

- base case/processing
- isLeftTrue = recurse(left)
- isRightTrue = recurse(right)
- return if this node is true && isLeftTrue && isRightTrue

Example: Is this tree a binary search tree?

Need to build a new tree

- base case/processing
- node.left = recurse(something); node.right= recurse(something);
- return the root

Example: Return a new tree where every node value is doubled.

Note: Helper Functions are your friend!!! Any time we need to return another data structure and are doing recursion (aka return a list with all the nodes in a tree that are greater than 0 or return a new tree) we want to have a helper function!

Binary Search Tree

- <u>Left nodes are all less</u>
 than the current node.
- Right nodes are greater than the current one
- We want to keep the tree <u>balanced</u>
- Great for <u>Sorting</u>
- Always clarify how to dealwith duplicate values

Action	Average	Worst	
Access Element	O(log(n))	O(n)	
Remove element	O(log(n))	O(n)	
Add element	O(log(n))	O(n)	
Searching	O(log(n))	O(n)	

Run Time Cheat Sheet

Behavioral Tips

Projects and Networking

"Tell me about a personal project"

- Find a project you are <u>passionate</u> about
- Project can be from
 - Class
 - Hackathon
 - Something else you worked on in your spare time
- This is a <u>technical</u> project
- Share <u>tech stacks</u> used or other relevant technical info

My personal "personal project"

General Context

I was in a class where we did XYZ and got to make an app

The Solution

What I built and how it solves my problem

"The Problem"

We knew there was a problem of XYZ on campus so we decided we were going to make a program to solve it

Result

How many people use the project? Where is it now?

Technical Details

We built the project with React Native

Networking - key steps

GOAL: To get a referral!

- 1. Finding companies you are interested in
- 2. Finding individuals you want to talk to at said companies
 - a. Recruiters
 - b. Engineers
- 3. <u>Emailing</u> individuals asking to learn more
- 4. Speaking on the phone
- 5. <u>Asking</u> for referrals

Annika,

Thanks for reaching out! Looks like you were in our system twice- once as a referral, and again as an application submittal not including a referral. You are still in the interview process. Best of luck on the HackerRank test!

-Sarah

Networking - how to find companies

Field / Impact

- https://www.startus-insights.c
 om/
- Angellist
- Generally just Google

Location

 Angellist, LinkedIn, or general Google Searches.

Size

- Small companies tend to be on LinkedIn, Angellist
- Medium Companies may have funding so it's worth looking at different Venture Capital or Growth Equity portfolios
- Large companies you probably know of already

Networking - how to find individuals

LinkedIn

- Search by school
- Search by location
- Either directly LinkedIn them or guess their email
- Rocket Reach is great for email guessing

School Alumni

- Differs by school
- Typically sends email directly to the alumni so no need to guess
- Creates immediate strong connections

Other Network Groups

- Any other communities you are a part of?
- High school connections
- Friends of friends?
- Specific clubs?

Networking - recruiters vs engineers

Recruiters

- Ask about application information
- Ask about timelines
- Ask about feedback

Engineers

- Ask specific company questions (culture, job, coding, etc)
- CAN (and want to) refer you!

Networking - sample emails

Morgan R. Sorbaro

Mon 7/16/2018 4:14 PM

To: cameronwhouser@gmail.com

Hi Ms. Houser.

My name is Morgan Sorbaro and I am a rising junior at Dartmouth College. I have been interested in coding since early high school and am now a computer science major at Dartmouth. Looking towards the future, working for Airbnb particularly excites me and I would love to hear more about the internship opportunities. Due to Dartmouth's quarter schedule I am looking for not only a summer internship in 2019 but also a winter 2019 internship (January - March) and was wondering if Airbnb had opportunities during both or either of those times. If so, what does the application timeline look like? Thank you for the information and I hope to be able to apply soon.

Best, Morgan Sorbaro

Email to a recruiter

On Mon, Jul 30, 2018 at 1:43 PM Morgan R. Sorbaro

< Morgan.R.Sorbaro.20@dartmouth.edu > wrote:

Hi Sophia,

My name is Morgan Sorbaro and I am a Dartmouth '20 studying computer science. I am interested in applying to Google for the software engineering winter internship and if you have some free time I would love to hear about your experience working there so far. I am in the middle of sophomore summer and my schedule is very flexible so let me know what works best for you!

Thanks, Morgan Sorbaro

Email to an Engineer

If you have no idea....

What do you know?

- Explain <u>why</u> you are stuck
- Ask for <u>feedback on potential directions</u> you could go
- Go through list of <u>Data Structures</u> which could work?
- Explain <u>what you know</u> about the chosen data structure and then explain <u>if that helps</u> or not in the problem
- <u>List all assumptions</u> you have made about the problem
- Try to think about it <u>"like a human"</u>

Google Mock Interview Example

Key Takeaways

- He asks creative clarifying questions
- Starting with brute force analysis
- Walking through examples
- Always trying to communicate
- Talking while coding pauses to explain exactly why he is doing every line!

