IMAGING

Relazione

Cheikh Ibrahim · Zaid Xia · Tian Cheng

Matricola: 0000974909 Matricola: 0000975129

Anno accademico 2021 - 2022

Corso di Calcolo Numerico Alma Mater Studiorum \cdot Università di Bologna

1 Introduzione

Il progetto consiste nel ricostruire un'immagine a partire da una sua istanza alterata da uno sfocamento noto e un rumore casuale.

Si tratta di un problema solitamente affrontato elaborando immagini provenienti da un dispositivo di acquisizione che nel suo processo di cattura deve digitalizzare un segnale analogico. Per risolvere tali problemi sono note diverse formulazioni. Quelle impiegate per questo progetto sono:

- Minimi quadrati
- Minimi quadrati con regolarizzazione di Tikhonov
- Minimi quadrati con regolarizzazione tramite variazione totale

È noto che risolvere il problema di deblur come minimi quadrati in modo diretto è mal condizionato e per questo si introducono tecniche di regolarizzazione. Per misurare la qualità dei risultati verranno impiegate due metriche:

- Mean Squared Error (MSE) [AGGIUNGERE DESCRIZIONE]
- Peak Signal-to-Noise Ratio (PSNR) [AGGIUNGERE DESCRIZIONE]

2 Esecuzione preliminare

Per avere una visione sul comportamento delle varie formulazioni, è stata eseguita una prima sperimentazione sull'immagine in Figura 1

Figura 1: Immagine di test

2.1 Prima esecuzione

La prima esecuzione è stata eseguita con un kernel 5×5 con $\sigma = 0.5$ e rumore gaussiano con deviazione standard]0, 0.05].

2.1.1 Stima di λ

Per valutare il risultato dei vari metodi, è necessario prima determinare il valore λ del termine di regolarizzazione degli algoritmi che lo prevedono. Il seguente grafico mostra il valore del PSNR al variare di $\lambda \in [0.01, 1]$ con passo 0.01:

Figura 2: $\lambda = 0.19$ e PSNR $\simeq 24.79$

Analogamente, il seguente grafico mostra la variazione del PSNR per $\lambda \in [0.01,1]$ con passo 0.01:

Figura 3: $\lambda = 0.07$ e PSNR $\simeq 36.74$

2.1.2 Esecuzione

I risultati della prima esecuzione sono osservabili in Figura 4.

Figura 4: Risultato sulle varie formulazioni

	Acquisita	Naive	Tikhonov CG	Tikhonov GD	Variazione totale
MSE	$0.2699 \cdot 10^{-2}$	$0.2047 \cdot 10^{0}$	$0.33197 \cdot 10^{-2}$	$0.3320 \cdot 10^{-2}$	$0.2119 \cdot 10^{-3}$
PSNR	25.6878	6.8874	24.7890	24.7890	36.7382
Iter.		140	14	48	14

Come atteso, il risultato ottenuto con la formulazione come problema ai minimi quadrati senza regolarizzazione ha prodotto un'immagine molto distante dall'originale. Utilizzando la regolarizzazione di Tikhonov, si è ottenuto un risultato quasi invariato rispetto all'immagine acquisita se non addirittura peggiore; mentre a livello di velocità, il metodo del gradiente ha richiesto più iterazioni rispetto al metodo del gradiente coniugato. Con la regolarizzazione tramite variazione totale, il risultato ottenuto è invece migliore rispetto agli altri metodi e molto vicina all'immagine originale.

La ragione per cui Tikhonov ha prodotto tale risultato è probabilmente dovuto al fatto che il rumore "sovrasta" il blur.

2.2 Seconda esecuzione

Per vedere le prestazioni di Tikhonov in uno scenario differente, è stata effettuata una seconda esecuzione sulla stessa immagine di partenza con blur ottenuto da un kernel 24×24 con $\sigma = 3$ e rumore con deviazione standard]0,0.05].

2.2.1 Stima di λ

Figura 5: $\lambda = 0.09$ e PSNR $\simeq 28.09$

Figura 6: $\lambda = 0.04$ e PSNR $\simeq 35.09$

2.2.2 Esecuzione

I risultati sono rappresentati in Figura 7.

Figura 7: Risultato sulle varie formulazioni

		Acquisita	Naive	Tikhonov CG	Tikhonov GD	Variazione totale
	MSE	$0.3204 \cdot 10^{-2}$	$0.5719 \cdot 10^{-1}$	$0.1553 \cdot 10^{-2}$	$0.1553 \cdot 10^{-2}$	$0.3094 \cdot 10^{-3}$
I	PSNR	24.9437	-7.5735	28.0889	28.0890	35.0944
	Iter.		200 (max)	18	99	29

Anche in questo caso, il metodo naive non ha prodotto soluzioni accettabili, mentre la regolarizzazione tramite variazione totale, come nel caso precedente, ha prodotto il risultato migliore.

Il metodo regolarizzato con Tikhonov invece, a differenza dell'esecuzione precedente, ha prodotto un risultato migliore dell'immagine acquisita e, analogamente, il numero di iterazioni del metodo che minimizza con il gradiente coniugato è minore rispetto al metodo del gradiente.

3 Confronto tra gradiente coniugato e metodo del gradiente

Si analizzano ora le prestazioni di Tikhonov utilizzando i due metodi di discesa implementati.

3.1 Prima esecuzione

Per una prima sperimentazione si è usata la Figura 1 con kernel 5×5 con $\sigma = 0.5$ e rumore gaussiano con deviazione standard]0,0.05].

I risultati ottenuti sono i seguenti:

Figura 8: Iterazioni al variare della tolleranza

È immediato notare che il metodo del gradiente coniugato impiega meno iterazioni rispetto al metodo del gradiente.

Figura 9: PSNR al variare della tolleranza

Il risultato ottenuto mostra che i due metodi, al variare della tolleranza, convergono allo stesso risultato.

È però presente un comportamento controintuitivo in vicinanza di valori di tolleranza elevati. Infatti si ottiene un PSNR maggiore in corrispondenza di tali valori, in altri termini, si ottiene un'immagine più fedele all'originale con meno iterazioni, mentre il risultato peggiora nella continuazione dell'esecuzione (Tale problematica verrà approfondita nella sezione 4).

Figura 10: Andamento della funzione obiettivo

Figura 11: Andamento della norma del gradiente

Come atteso dai risultati precedenti, per il metodo del gradiente coniugato la decrescita della funzione obiettivo è maggiore rispetto al metodo del gradiente. Lo stesso risultato è osservabile con la norma del gradente che nel caso del gradiente coniugato esegue "salti" di dimensione maggiore.

3.2 Seconda esecuzione

Per una seconda valutazione si è usato un kernel 24×24 con $\sigma = 3$ e rumore gaussiano con deviazione standard [0,0.05].

Figura 12: Iterazioni al variare della tolleranza

Figura 13: PSNR al variare della tolleranza

Figura 14: Andamento della funzione obiettivo

Figura 15: Andamento della norma del gradiente

I risultati ottenuto sono in linea con quelli precedenti ed evidenziano che le prestazioni del gradiente coniugato sono maggiori rispetto a quelle del metodo del gradiente, come atteso dalle valutazioni teoriche.

4 Semi-convergenza

Nella sezione 3 è emerso il problema per cui l'immagine ottenuta con meno iterazioni è migliore rispetto a quella ottenuta quando il metodo raggiunge convergenza. Tale problema è noto come semi-convergenza, ovvero metodi per il quale il raggiungimento dell'ottimo non corrisponde al soddisfacimento delle condizioni di convergenza e per questo le iterazioni successive peggiorano il risultato.

Nel contesto del deblur, il problema di semi-convergenza è causato dal rumore aggiunto all'immagine. È noto che il metodo naive è quello che più viene condizionato dal rumore e per questa ragione vengono introdotti i metodi di regolarizzazione.

Si analizza quindi il risultato dei vari metodi analizzando l'andamento dell'iterato x_k :

4.1 Analisi con rumore

4.1.1 Metodo naive

Figura 16: PSNR al variare del numero delle iterazioni

Figura 17: Risultato ottenuto

Come atteso, il risultato viene distorto molto rapidamente e non viene raggiunta convergenza nel punto ottimo.

4.1.2 Regolarizzazione di Tikhonov

Figura 18: PSNR al variare del numero delle iterazioni

Figura 19: Risultato ottenuto

La regolarizzazione di Tikhonov viene introdotta per ridurre l'impatto del rumore sul risultato finale. Infatti si nota che, nonostante sia ancora presente il problema di semi-convergenza, dopo il punto di ottimo l'errore decresce di una quantità più contenuta rispetto al metodo naive fino ad assumere un comportamento asintotico.

4.1.3 Regolarizzazione tramite variazione totale

Figura 20: PSNR al variare del numero delle iterazioni

Figura 21: Risultato ottenuto

Regolarizzando tramite variazione totale invece, il problema di semi-convergenza è assente e il raggiungimento dell'ottimo avviene contemporaneamente al soddisfacimento delle condizioni di convergenza.

4.1.4 Considerazioni finali

Le prove precedenti sono state eseguite con kernel 5×5 con $\sigma = 0.5$ e kernel 24×24 con $\sigma = 3$, entrambi i casi con rumore con deviazione standard]0, 0.05].

Nel caso generale, non è possibile risolvere il problema di semi-convergenza interrompendo l'esecuzione quando si rileva l'aumento dell'errore, infatti come si è visto in Figura 18 nel caso del metodo del gradiente, l'andamento del PSNR assume più punti di massimo locale.

4.2 Analisi senza rumore

Si eseguono ora gli stessi esperimenti su un'immagine a cui è stato applicato un blur senza aggiungere rumore.

Figura 22: PSNR al variare del numero delle iterazioni con il metodo naive

Figura 23: PSNR al variare del numero delle iterazioni con regolarizzazione di Tikhonov

Figura 24: PSNR al variare del numero delle iterazioni con regolarizzazione tramite variazione totale

Figura 25: Risultato ottenuto

Come atteso tutti i metodi hanno raggiunto convergenza e ottimo contemporaneamente e il risultato, in assenza di rumore, si presenta molto simile indipendentemente dalla formulazione.

5 Risultati su esecuzioni multiple