МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Московский физико-технический институт (государственный университет)

ИНФРАКРАСНАЯ СПЕКТРОСКОПИЯ ПОГЛОЩЕНИЯ. КОЛЕБАТЕЛЬНО-ВРАЩАТЕЛЬНЫЕ СПЕКТРЫ ДВУХАТОМНЫХ МОЛЕКУЛ

Гарина Ольга Викторовна

Аксенова Светлана Александровна

Б04-901 группа

Долгопрудный 2022

Содержание

1	Вве	едение	3
	1.1	Введение в теорию молекулярных спектров	3
	1.2	Вращательные уровни и вращательный спектр	3
	1.3	Колебательные уровни и колебательный спектр	4
	1.4	Колебательно-вращательный спектр двухатомной молекулы	5
	1.5	Спектры многоатомных молекул	6
2	Экс	спериментальная установка	7
3	Обр	работка данных и результаты	8
	3.1	Спектр воздуха	8
	3.2	Спектр поглощения молекулы HCl	9
	3.3	Спектры НПВО спирта	10
		3.3.1 Спектр 1	
		3.3.2 Спирт 2	11
		3.3.3 Спирт 3	11
	3.4	Определение толщины пленки ArN и Kr	11
4	Вы	вод	11
5	Лиз	гература	12
6	Прі	иложение	13

Цель работы: по результатам измерения положения линий вращательной структуры колебательно-вращательного спектра двухатомной молекулы определить вращательные постоянные $B_{v''}$ и $B_{v'}$ для основного и первого колебательных уровней основного электронного состояния, постоянная центробежного растяжения D_e и величина колебательного кванта ω_e .

1 Введение

1.1 Введение в теорию молекулярных спектров

Совокупность стационарных энергетических состояний молекулы дается решением уравнения Шредингера:

$$\hat{H}\psi = E\psi. \tag{1}$$

Уравнение Шредингера можно решать отдельно для электронной, колебательной и вращательной волновых функций, тогда энергию можно записать в виде:

$$E = E_{\text{эл}} + E_{\text{кол}} + E_{\text{вр}},\tag{2}$$

причем

$$E_{\text{вл}} >> E_{\text{кол}} >> E_{\text{вр}}.$$

При переходе молекулы из одного состояния в другое могут меняться все три части энергии:

$$h\nu = E' - E'' = \Delta E_{\text{эл}} + \Delta E_{\text{кол}} + \Delta E_{\text{вр}}.$$
 (3)

Простые оценки дают следующее соотношение

$$E_{\text{\tiny ЭЛ}}: E_{\text{\tiny KOЛ}}: E_{\text{\tiny BP}} \approx 1: \sqrt{\frac{m_e}{M}}: \frac{m_e}{M}. \tag{4}$$

Электронные переходы молекулы расположены в видимой и ультрафиолетовой областях, колебательно-вращательные спектры – в ближней ИК области, вращательные – в далекой ИК и в микроволновой областях.

1.2 Вращательные уровни и вращательный спектр

В первом приближении можно считать, что молекула передставляет собой жесткий ротатор, энергия которого определяется следующим выражением

$$E = \frac{I\omega^2}{2} = \frac{L^2}{2I}. (5)$$

Момент количества движения $L=I\omega$ квантуется, его квадрат может принимать только дискретные значения

$$L^2 = h^2 j(j+1), (6)$$

где j – вращательное квантовое число. С учетом этого замечания, энергия ротатора перепишется в виде

$$E_j = \frac{h^2}{8\pi^2 I} j(j+1). (7)$$

В ИК-спектроскопии положение линий в спектре принято обозначать в обратных сантиметрах. Формула (7) дает значение в Джоулях. Пересчитанная формула выглядит следующим образом (в см $^{-1}$):

$$\varepsilon_j = \frac{E_j}{hc} = Bj(j+1),\tag{8}$$

где $B = h/(8\pi^2 Ic)$ [см⁻¹]— вращательная постоянная.

Чисто вращательными спектрами излучения и поглощения могут обладать только молекулы с постоянным электрическим дипольным моментом, отличным от нуля. Возможные чисто вращательные переходы определяются правилом отбора

$$j' - j'' = \Delta j = \pm 1. \tag{9}$$

Энергии возможных переходов

$$\Delta \varepsilon = \varepsilon_{j'} - \varepsilon_{j''} = 2Bj'. \tag{10}$$

Таким образом, чисто вращательный спектр состоит из ряда равноотстоящих линий, расположенных в далекой ИК и микроволновой областях. Расстояние между соседними линиями равно 2В.

В действительности при вращении молекулы расстояние между ядрами увеличивается из-за центробежной силы. Введем поправку в энергии

$$\varepsilon_j = Bj(j+1) - Dj^2(j+1)^2[\text{ cm}^{-1}],$$
 (11)

где D - поправка на центобежное растяжение. Эта поправка сказывается только при больших значениях вращательного числа $j \geq 10$.

У легких молекул поправку на центробежное растяжение надо учитывать уже при малых j. Эта поправка также зависит от колебательного квантового числа v и обозначается D_v (B_v).

1.3 Колебательные уровни и колебательный спектр

Модель гармонического осциллятора позволяет корректно описывать положение нижних колебательных уровней. Потенциальная энергия движения ядер на расстоянии r, близком k равновесному r_e , описывается выражением

$$u = \frac{k(r - r_e)^2}{2}. (12)$$

Для колебательных переходов гармонического осциллятора выполняется правило отбора $\Delta v=\pm 1$. Для более точного описания колебательного движения двухатомной молекулы вводят функцию Морзе

$$u(r) = D_e[1 - exp(-\beta(r - r_e))]^2, \tag{13}$$

где D_e – энергия диссоциации молекулы. Приближенно последовательность разрешенных уровней колебательной энергии принимает вид

$$\varepsilon_v = \omega_e(v + 1/2) - \omega_e x_e(v + 1/2)^2.$$
 (14)

Из этой формулы видно, что с ростом номера колебательного уровня расстояние между соседними энергетическими уровнями уменьшается, они сгущаются по мере приближения к границе диссоциации.

Рисунок 1 – Вид кривой потенциальной энергии и схема колебательных уровней двухатомной молекулы

Правила отбора для ангармонического осциллятора: $\Delta v = \pm 1, \pm 2, \dots$ Заметной интенсивностью будут обладать лишь линии с $\Delta v = \pm 1, \pm 2, \pm 3$.

1.4 Колебательно-вращательный спектр двухатомной молекулы

При гармонических колебаниях средняя длина связи будет равна равновесной, а в случае ангармонических колебаний средняя длина связи будет увеличиваться с ростом номера колебательного уровня, что приведет к зависимости вращательной постоянной от величины колебательной энергии.

Значение В в верхней колебательном состоянии всегда меньше чем в нижнем, так как средняя длина связи увеличивается с ростом колебательной энергии, а $B \sim 1/r_{\rm cp}^2$. Зависимость вращательной постоянной от квантового числа можно описать формулой

$$B_v = B_e - \alpha_e(v + 1/2), \tag{15}$$

где α_e – контанта, которая мала по сравнению с B_e . В итоге колебательная и вращательная энергии молекулы запишутся в виде

$$\varepsilon_{i,v} = B_v j(j+1) + \omega_e(v+1/2) - \omega_e x_e(v+1/2)^2.$$
 (16)

Правила отбора для вращательного и квантового колебательных чисел остаются те же. Однако, излучательные переходы с $\Delta j=0$ практически не имеют

места для двухатомной молекулы, то есть колебательных переход всегда сопровождается вращательным.

Колебательно-вращательные полосы состоят из R-ветви — совокупности линий, для которых $\Delta j=+1$, и из P-ветви — совокупности линий, для которых $\Delta j=-1$.

Рисунок 2 – Формирование Р- и R-ветвей колебательного спектра двухатомной молекулы

Между сериями линий P- и R-ветвей находится так называемый нулевой промежуток (начало полосы) ν_0 . Он соответствует число колебательному переходу j''=0, j'=0, который для большинства двухатомных молекул запрещен правилами отбора. Поэтому отсчет P-ветви начинается с j=j''=0. Ветвь R всегда расположена со стороны больших частот от ν_0 , а первая наблюдаемая линия соответствует j=0.

1.5 Спектры многоатомных молекул

Сложная молекула, состоящая из n атомов имеет 3n-6 нормальных колебаний (3n-5) для линейных молекул), многие из которых могут проявляться в ИК-спектрах. Нормальные колебания можно разделить на два класса : скелетные колебания, которые в равной мере затрагивают большое количество атомов молекулы, и колебания характеристических групп, при которых сильное смещение испытывает лишь небольшая часть молекулы. Частоты скелетных колебаний приходятся на область 700-1400 см $^{-1}$. Такие колебания характерны для линейных, разветвленно-цепных и кольцевых структур в молекулах. Частоты колебаний характеристических групп почти не зависят от строения молекулы в целом. Локализация колебаний в определенных частях

молекулы или на определенной связи непосредственно зависит от соотношения между массами колеблющихся атомов.

Среди различных форм колебаний также принято выделять **валентные и деформационные колебания**. Валентными называют колебания, при которых изменяются длины связей, а углы между связями остаются неизменными. При деформационных колебаниях, наоборот, изменяются углы между связями, а их длины остаются постоянными.

Рисунок 3 – Основные моды колебаний на примере группы >СН2

Иногда наряду с нормальными колебаниями появляются и другие. Так обертоны имеют частоту приблизительно удвоенную по сравнению с нормальными колебаниями, и наблюдаются иногда в виде слабых полос. Составные колебания дают слабые полосы, которые могут проявляться на частотах, являющихся суммой или разностью частот основных колебаний.

2 Экспериментальная установка

Регистрация колебательно-вращательных спектров производится с помощью инфакрасного спектрофотометра Симекс ФТ-801. Для исследований используется кварцевая газовая кювета длиной 100 мм, наполненная смесью паров хлороводорода с воздухом. Окна кюветы выполнены из кварца SiO_2 , прозрачного для ИК-излучения с волновым числом $\nu > 2100~{\rm cm}^{-1}$.

Принципиальная схема прибора изображена на рис. 4. В ее основе лежит интерферометр (Майкельсона).

Рисунок 4 — Принцип работы фурье-спектрометра на основе интерферометра Майкельсона. 1 — источник излучения, 2 — входная диафрагма, 3 — светоделитель, 4 — выходная диафрагма.

Рисунок 5 – Схема устройства фурье-спектрометра

3 Обработка данных и результаты

3.1 Спектр воздуха

В этой части работы был снят спектр воздуха в спектральном диапазоне 500-5000 см $^{-1}$ при 10 накоплениях и при разрешении 0,5, 1, 2, 4 см-1 с аподизацией

Рисунок 6 – Аппаратная функция фурье-спектрометра. Аппаратная функция улучшается, если использовать аподизирующую функцию D(x)

(треугольной) и без (рис. 7).

Далее на этих спектрах было предложено выделить линии поглощения ${\rm CO_2}$ и ${\rm H_2O}$ и указать для них тип колебаний – валентные или деформационные (рис. 8 и 9)

3.2 Спектр поглощения молекулы HCl

Для получения спектра хлороводорода сначала был снят спектр пустой кюветы при разрешении $0.5~{\rm cm}^{-1}$ как опорный спектр. Далее в кювета была помещена капля соляной кислоты и снят ее спектр поглощения (рис. 11). На спектре четко выделяются P- и R-ветри. Далее для ветвей было произведено соотнесении линий (таблица 2 в приложении).

По формулам (17) и (18) были определены частоты нулевых переходов ω_e

$$\nu_R = \Delta \varepsilon = \omega_2 (1 - 2x_e) + (B_1 + B_0)(j'' + 1) + (B_1 - B_0)(j'' + 1)^2$$
 (17)

$$\nu_P = \Delta \varepsilon = \omega_2 (1 - 2x_e) - (B_1 + B_0)(j' + 1) + (B_1 - B_0)(j' + 1)^2$$
 (18)

$$\omega_{e,P} = 2935.2 \pm 0.3$$
 $\omega_{e,R} = 2912 \pm 2$

Для каждого значения ј были рассчитаны комбинационные разности

$$\Delta_2 F'(j) = \nu_R(j) - \nu_P(j) \tag{19}$$

$$\Delta_2 F''(j) = \nu_R(j-1) - \nu_P(j+1) \tag{20}$$

По этим разностям, используя соотношение (21) были определены вращательные постоянные B_0, B_1, D_0, D_1 .

$$\frac{\Delta_2 F(j)}{j+1/2} = 4B - 8D(j+1/2)^2. \tag{21}$$

Это выражение эквивалентно линейному уравнению y = ax + b, где $x = (j + 1/2)^2$, $y = \frac{\Delta_2 F(j)}{j+1/2}$, a = 4B, b = -8D. Графики в данных координатах представлены в приложении (рис. 12, 13). Также были построены графики "невязки разности между экспериментальными данными и линейной аппроксимацией (рис. 14, 15). Требовалось также построить графики в координатах $\Delta_2 F/(j+1/2)$ от $(j+1/2)^2$ (рис. 16, 17).

$$B_1 = 10.163 \pm 0.023 \text{ cm}^{-1}$$

 $B_0 = 13.1 \pm 0.6 \text{ cm}^{-1}$
 $D_1 = 0.0010 \pm 0.0002 \text{ cm}^{-1}$
 $D_0 = 0.015 \pm 0.006 \text{ cm}^{-1}$
 $r = 1.31 \pm 0.04 \text{Å}$

3.3 Спектры НПВО спирта

При снятии спектров волокнистых материалов используют метод под названием спектроскопия нарушенного (ослабленного) полного внутреннего отражения — НПВО. Суть этой методики в том, что при отражении светового луча от внутренней грани призмы под достаточно большим углом, преломленная волна отсутствует, происходит полное внутренее отражение. Граничный угол – угол полного внутреннего отражения определяется относительным показателем преломления контактирующих сред: $sin\theta_0 = n2/n1$. Приближенно интенсивность отраженного света при НПВО можно описать выражением

$$I = I_0 exp(-\alpha C d_{\vartheta \varphi \varphi}), \tag{22}$$

где α — показатель поглощения, С — концентрация поглощающих частиц, $d_{\mbox{\scriptsize э}\Phi\Phi}$ — эффективная толщина поглощающей среды.

В этой части лабораборной работы были сняты спектры НПВО трех спиртов (рис.18, 19, 20)

3.3.1 Спектр 1

- $\bullet \sim 3000$ νOH
- ~ 1700 δOH
- $\bullet \sim 1450 \delta CH_3$
- 1044, 1086 − ν C-O

Таким образом, 1 спирт - метанол.

3.3.2 Спирт 2

- ~ 3000 νOH
- $\sim 1700 \delta OH$
- $\bullet \sim 1300 \delta^{as} CH_3$
- ~ 1100 -1200 $\delta C(CH_3)_2$
- 1044, 1086ν C-O

Таким образом, спирт 2 - изопропанол.

3.3.3 Спирт 3

- $\bullet \sim 3000$ νOH
- $\bullet \sim 1300 \delta^{as}CH_3$
- $\sim 1600 \delta CH_2$
- 1044, 1086ν C-O

Таким образом, спирт 3 - этанол.

3.4 Определение толщины пленки ArN и Kr

В этой части работы были выданы спектры аргона и криптона, для них требовалось по теории НПВО рассчитать толщину пленки.

$$d = \frac{\lambda/n_1}{2\pi(\sin\theta^2 - n_2^2/n_1^2)^{1/2}}. (23)$$

$$d_{Ar} = 0.021 \text{ cm}$$

 $d_{Kr} = 0.004 \text{ cm}$

4 Вывод

В ходе данной лабораторной работы были получены спектры поглощения воздуха, паров хлороводорода и неизвестных спиртов. В спектре воздуха были выделены линии CO_2 и H_2O и определены типа колебаний каждой линии. По спектру хлороводорода с помощью построения графиков в координатах, описанных в пункте 3.2 были посчитаны частоты нулевых переходов и вращательные постоянные. Данные представлены в таблице 1.

Таблица 1 – Результаты

	B_0, cm^{-1}	B_1, cm^{-1}	D_0, cm^{-1}	D_1, cm^{-1}	$\omega_e, \mathrm{cm}^{-1}$	r, Å	k, Н/м
	13.1	10.163	0.015	0.0010	2923	1.31	49
эксперимент	± 0.6	± 0.023	± 0.006	± 0.0002	± 12	± 0.04	± 0.4
теория	10,59	10,59	0,000532	0,000532		1, 275	

Ошибки в определении постоянных могут быть связаны с плохой аппроксимацией экспериментальных данных линейной зависимостью, что подтверждается графиками "невязки".

Было оценено минимальное разрешение спектрометра, позволяющее наблюдать изотопное $^{35}{\rm Cl}/^{37}{\rm Cl}$ расщепление линий $R=\frac{\nu}{\delta\nu}$

$$\delta \nu = \omega' - \omega'' = 1.62 \text{ cm}^{-1}$$

 $R = 1800 \pm 10.$

Погрешность в данном случае не приведена, так как не имеет физического смысла, так как величины, по которым посчитана погрешность косвенного измерения, определены с точностью до десятков.

Были определены неизвестные спирты - метанол, изопропанол и этанол. Расшифрованы спектры аргона и криптона, рассчитаны толщины пленок.

5 Литература

- 1. ИНФРАКРАСНАЯ СПЕКТРОСКОПИЯ ПОГЛОЩЕНИЯ. КОЛЕБАТЕЛЬНО-ВРАЩАТЕЛЬНЫЕ СПЕКТРЫ ДВУХАТОМНЫХ МОЛЕКУЛ. Лабораторная работа по курсу: Физические методы исследований
- 2. Курс лекций ФЭФМ "Диагностика веществ и материалов: колебательная спектроскопия".

6 Приложение

Рисунок 7 — Спектр воздуха а) без аподизации, b) с аподизацией, c) без аподизации (фрагмент), d) с аподизацией (фрагмент).

Рисунок 8 — Линии поглощения ${\rm CO_2}$: а) валентные, б)деформационные колебания.

Рисунок 9 — Линии поглощения H_2O : а) валентные, б)деформационные колебания.

Таблица 2 — Соотнесение полос R- и P-ветвей спектра поглощения паров HCl

	R	Р		
j	ν, cm^{-1}	j	ν , cm ⁻¹	
0	2905.74	1	2864.75	
1	2925.52	2	2843.05	
2	2944.32	3	2820.86	
3	2963.13	4	2798.68	
4	2980.5	5	2775.53	
5	2997.86	6	2751.89	
6	3014.26	7	2727.3	
7	3029.69	8	2702.7	
8	3044.64	9	2677.62	
9	3059.11	10	2651.1	
10	3064.9	11	2625.05	

Рисунок 10 — Сравнение видов спектра при разном разрешении с аподизацией и без

Рисунок 11 – Спектр поглощения паров HCl без аподизации

Рисунок 12 – График зависимости $\Delta_2 F'(j+1/2)$

Рисунок 13 – График зависимости $\Delta_2 F''(j+1/2)$

Рисунок 14 – Невязка $\Delta_2 F'(j+1/2)$

Рисунок 15 – Невязка $\Delta_2 F''(j+1/2)$

Рисунок 16 – График зависимости $\Delta_2 F'[(j+1/2)^2]$

Рисунок 17 – График зависимости $\Delta_2 F''[(j+1/2)^2]$

Рисунок 18 – Спектр НПВО спирта 1

Рисунок 19 — Спектр НПВО спирта
 2

Рисунок 20 — Спектр НПВО спирта 3