Linguagens Formais e Autômatos

Arthur do Prado Labaki – 11821BCC017

Primeira Lista de Exercícios

- 1) Sejam as gramáticas G1, G3 e G5 abaixo.
- a) Descreva qual é a linguagem gerada por cada gramática abaixo.
- b) Apresente qual é o tipo (0, 1, 2 ou 3) de cada gramática? Justifique.

```
G1 = ({S,A,B,C,E,F}, {0,1,2}, {S\rightarrow012|0BAC, B\rightarrow0B1A|01A, AC\rightarrowC2,1C2\rightarrowF12, AF\rightarrowFA, FA1\rightarrowF1E, E2\rightarrow22, 1F1\rightarrowF11, 1E1\rightarrow11E, 0F1\rightarrow011}, S)

Exemplos:
S \Rightarrow 012
```

 $S \Rightarrow 0$ <u>B</u>AC $\Rightarrow 001$ A<u>AC</u> $\Rightarrow 001$ <u>AC</u>2 $\Rightarrow 00$ <u>1C2</u>2 $\Rightarrow 0$ <u>0F1</u>22 $\Rightarrow 001$ 122

 $S \Rightarrow 0 \\ \underline{B} \\ AC \Rightarrow 00 \\ \underline{B} \\ 1AAC \Rightarrow 0001 \\ A1A \\ \underline{AC} \Rightarrow 0001 \\ A1 \\ \underline{AC} \\ 2 \Rightarrow 0001 \\ \underline{A} \\ \underline{F} \\ 122 \\ 2 \Rightarrow 0001 \\ \underline{AF} \\ 122 \\ 2 \Rightarrow 0001 \\ \underline{AF} \\ 1222 \\ 2 \Rightarrow 0001 \\$

$$\begin{split} S &\Rightarrow 0\underline{B}AC \Rightarrow 00\underline{B}1AAC \Rightarrow 000\underline{B}1A1AAC \Rightarrow 00001A1A1A\underline{AC} \Rightarrow 00001A1A1\underline{AC}2 \Rightarrow \\ 00001A1A\underline{1C2}2 &\Rightarrow 00001A1\underline{AF}122 \Rightarrow 00001A1\underline{FA1}22 \Rightarrow 00001A1F1\underline{E2}2 \Rightarrow \\ 00001A\underline{1F1}222 &\Rightarrow 00001\underline{AF}11222 \Rightarrow 00001\underline{FA1}1222 \Rightarrow 00001\underline{F1}222 \Rightarrow 00001\underline{F1}222 \Rightarrow 00001\underline{F1}2222 \Rightarrow 000001\underline{F1}22$$

Logo a linguagem gerada é:

```
L(G1) = \{ w \in \{0,1,2\}^* \mid w = 0^n 1^n 2^n, N > 0 \}
```

Não é gramatica do tipo 3 (regular), pois tem mais de uma variável a direita (B→0B1A)

Não é do tipo 2 (livre de contexto), pois tem mais de uma variável a esquerda (AF \rightarrow FA)

É gramatica do tipo 1 (sensíveis ao contexto), pois sendo $\alpha \to \beta$, $|\beta| \ge |\alpha|$

$$G3 = (\{S, A, B, C, D, E\}, \{0\}, P3, S),$$

P3 = $\{S \rightarrow ACOB, CO \rightarrow 000C, CB \rightarrow DB, CB \rightarrow E, OD \rightarrow DO, AD \rightarrow AC, OE \rightarrow EO, AE \rightarrow E\}$

Exemplos:

$$S \Rightarrow ACOB \Rightarrow AOOOCB \Rightarrow AOOOE \Rightarrow AOOEO \Rightarrow AOEOO \Rightarrow AEOOO \Rightarrow OOO$$

 $\begin{array}{l} S \Rightarrow A\underline{COB} \Rightarrow A000\underline{CB} \Rightarrow A00\underline{ODB} \Rightarrow A0\underline{OD}0B \Rightarrow A\underline{OD}00B \Rightarrow \underline{AD}000B \Rightarrow \underline{AC0}00B \Rightarrow \\ A000\underline{C0}0B \Rightarrow A000000\underline{C0}B \Rightarrow A00000000\underline{CB} \Rightarrow A00000000\underline{OE} \Rightarrow A00000000\underline{E}0 \Rightarrow \\ A000000\underline{OE}00 \Rightarrow A00000\underline{OE}000 \Rightarrow A0000\underline{OE}0000 \Rightarrow A000\underline{OE}00000 \Rightarrow A00\underline{OE}00000 \Rightarrow \\ A0\underline{OE}0000000 \Rightarrow \underline{ADE}00000000 \Rightarrow \underline{AE}000000000 \Rightarrow 000000000 \end{array}$

Logo a linguagem gerada é:

L(G3) = {w
$$\in$$
 {0}* | w = 0^{3^N} (0 elevado ao cubo, elevado à N), sendo N \ge 1}

Não é gramatica do tipo 3 (regular), pois tem mais de uma variável a direita (CB→DB)

Não é do tipo 2 (livre de contexto), pois tem mais de uma variável a esquerda (AD \rightarrow AC)

Não é do tipo 1 (sensíveis ao contexto), pois o lado esquerdo é maior que o direito (AE \rightarrow ϵ)

Logo é do tipo 0 (irrestrita), pois tanto o lado direito quanto esquerdo ε (V U T) *

$$G5 = (\{E,O\}, \{+,*, id\}, P5, E),$$

P5 =
$$\{E \rightarrow EOE, E \rightarrow id, O \rightarrow +, O \rightarrow *\}$$

Exemplos:

 $E \Rightarrow id$

$$E \Rightarrow \underline{E}OE \Rightarrow idO\underline{E} \Rightarrow id\underline{O}id \Rightarrow id + id$$

$$E \Rightarrow \underline{E}OE \Rightarrow idO\underline{E} \Rightarrow id\underline{O}id \Rightarrow id*id$$

$$E \Rightarrow \underline{E}OE \Rightarrow idO\underline{E} \Rightarrow idO\underline{E}OE \Rightarrow idOidO\underline{E} \Rightarrow id\underline{O}idOid \Rightarrow id+id\underline{O}id \Rightarrow id+id*id$$

$$E \Rightarrow \underline{E}OE \Rightarrow idO\underline{E} \Rightarrow idO\underline{E}OE \Rightarrow idOidO\underline{E} \Rightarrow id\underline{O}idOid \Rightarrow id*id\underline{O}id \Rightarrow id*id*id$$

Logo a linguagem gerada é:

L(G5) = {w | w representa todas as possíveis expressões de soma e multiplicação, com argumentos id}

Não é gramatica do tipo 3 (regular), pois tem mais de uma variável a direita (E \rightarrow EOE)

É do tipo 2 (livre de contexto), pois sempre tem uma única variável à esquerda.

2) Construa uma gramática que gere a linguagem:

a) $\Sigma = \{a\}$, L = $\{w \in \Sigma^* \mid \text{tamanho de } w \text{ é múltiplo de } 3\}$

$$L1 = ({S, B}, {a}, P1, S),$$

P1 =
$$\{S \rightarrow aaaB, B \rightarrow aaaB \mid \epsilon\}$$

Assim, sempre começara com o mínimo múltiplo de 3 (o próprio 3) e pode ir aumentando mais 3 (podendo ser aaa, aaaaaaa, aaaaaaaa, aaaaaaaaaa, ...).

b) $\Sigma = \{a,b\}$, $L = \{w \in \Sigma^* \mid ab \text{ é prefixo de } w$, aa é subpalavra de $w \text{ e bb } \text{ é sufixo de } w\}$

$$L2 = ({S, C}, {a, b}, P2, S),$$

$$P2 = \{S \rightarrow abCbb, C \rightarrow aa \mid aC \mid Ca \mid bC \mid Cb\}$$

Assim, sempre terá 'ab' como prefixo e 'bb' como sufixo, e pode ter infinitos 'a' ou 'b' dentro da palavra, mas sempre contem a subpalavra 'aa'.

3) Construa um AF que reconheça as linguagens definidas:

a) $\Sigma = \{a,b,c\}$, $L = \{w \in \Sigma^* \mid ccc \in subpalavra de w e aa ou bb são sufixos de w\}$

A1 = ({q0, q1, q2, q3, q4, q5, qf}, {a, b, c}, δ , q0, {qf}) sendo δ representado pelas transições do autômato:

b) $\Sigma = \{0,1\}$, L = $\{w \in \Sigma^* \mid \text{qualquer 0 antecede qualquer 1 em w}\}$

A2 =
$$(Q, \Sigma, \delta, q0, F)$$

Q = $\{q0, qf\}$
 $\Sigma = \{0, 1\}$
F = $\{qf\}$

4) Construa um AF que aceite a linguagem gerada pela gramática

G1 = (
$$\{S, A, B\}, \{0, 1\}, \{S \rightarrow 1 \mid 0A \mid 1S \mid 10, A \rightarrow \varepsilon \mid 00\}, S$$
)

A1 =
$$(Q, \Sigma, \delta, q0, F)$$

Q = $\{q0, q1, q2, q3, q4\}$
 $\Sigma = \{0, 1\}$
F = $\{q1, q2, q4\}$

5) Construa uma gramática que gere a linguagem aceita pelo AF:

Exemplos Aceitos:

1, 11, 1111111..., 10, 1111111...10, 0, 000.

Logo, sendo G1 = ({S, A, B}, {0, 1}, P1, S):

P1 = $\{S \rightarrow 1A \mid 0B, A \rightarrow \varepsilon \mid 1A \mid 0, B \rightarrow \varepsilon \mid 00\}$

Aceitando 1^n0^m , sendo $N \ge 0$, M = 0, 1 ou 3.

6) Seja o Problema do Fazendeiro

a) Modele esse problema através de um AF, sendo que as transições representam as possíveis travessias de uma margem a outra e os estados as situações válidas possíveis de ocorrer dependendo da transição / travessia utilizada.

Utilizando os estados XXXX|XXXX, sendo antes do rio | depois do rio e F, L, C, A para Fazendeiro, Lobo, Carneiro e Alface respectivamente, temos o conjunto de estados:

$$Q = \{FLCA|, LA|FC, FLA|C, L|FCA, A|FLC, FLC|A, FCA|L, C|FLA, FC|LA, |FLCA\}$$

E seu alfabeto seria $\Sigma = \{F, L, C, A\}$ sendo F para somente o fazendeiro, L para fazendeiro e lobo, C para fazendeiro e carneiro e A para fazendeiro e alface.

b) Quais são as menores palavras aceitas pelo AF? Ou seja, as sequências mais curtas de travessias?

As menores palavras seriam a que transicionariam diretamente para o estado final, existindo duas menores palavras possíveis, CFACLFC ou CFLCAFC.

Exercícios do livro Hopcroft e Ullman

Modele o comportamento desse brinquedo por um autômato finito.

Listando todos os estados, da forma (X1 X3 X2), temos 8 diferentes estados, sendo E para esquerda e D para direita.

Caso algum estado se repita, verificamos se ambos são estados finais ou não.

Caso sejam iguais, juntamos em um único estado, para diminuir o AF. Mas caso não sejam, transicionamos o estado final para o mesmo estado não final com uma cadeia vazia.

Supomos que o brbinquedo comece como na imagem (E E E).

2.5) Escreva um AF que aceita as linguagens a seguir, escritas sobre o alfabeto {0,1}:

a) Todas as palavras com tamanho maior ou igual a 5 e que para qualquer bloco com 5 símbolos consecutivos da palavra, contém pelo menos 2 zeros.

b) Todas as palavras que podem ser interpretadas como a representação binária de um número inteiro que é congruente a "zero módulo 5".

c) Todas as palavras que o quinto símbolo lido da direita para a esquerda é um "1".

2.8) Escreva um AFND que aceita a linguagem, escrita sobre o alfabeto {0,1}:

Todas as palavras que o décimo símbolo lido da direita para a esquerda é um "1".

2.9) Construa o AFD equivalente ao AFD definido pela tabela de transição:

Eu acredito que era para converter essa tabela para um AFD, pois ela é AFN e não AFD como descrito no exercício, logo:

	Q'	0	1
q0	р	qs	q
q1	qs	r	pqr
q2	q	r	qr
q3	r.	S	р
q4	pqr	qrs	pqr
q5	qr	rs	pqr
q6	S	8	р
q7	qrs	rs	pqr
q8	rs	s	р

2.11 e 2.12) Descreva as linguagens denotadas pelas expressões regulares e escreva os AFs equivalentes às expressões:

L1 = {w | w tenha depois de uma sequência ímpar de 1s, tenha uma sequência par de 0s}, como:

2) $(1+01+001)*(\xi+0+00)$

L2 = {w | w tenha no máximo 2 zeros (0) em sequência}, como:

 ξ , 0, 1, 00, 01, 11, 111, 0010010010100, 111111, 1001001, 00100

3) (00+01+10+11)* + ((0+1)(0+1)(0+1))*

L3 = {w | w tenha $2^n + 3^m$ de tamanho, sendo N e M \geq 0}, como:

 $\xi,\,00,\,11,\,0000,\,101010,\,100110011010,100101010000000$

OBS: Fiz todas as passagens de acordo com o algoritmo de formalismo descrito nos slides da aula, por esse motivo que os autômatos ficaram com muitas transições ε .

- 2.24 Optei por não encaminhar esse exercício (não encontrei)
- 4.1 Escreva as Gramáticas (GLC) que geram as linguagens:
- a) O conjunto de todas as palíndromos escritas sobre o alfabeto {a,b}

$$G1 = (\{S, A, B\}, \{a, b\}, P, S) \text{ onde } P \text{ } \acute{e}$$

$$S \rightarrow aA \mid bB \mid a \mid b \mid \epsilon$$

 $A \rightarrow Sa$

 $B \rightarrow Sb$

Exemplos: aa, abba, baba, abbaabba.

b) O conjunto de todas as palavras escritas sobre o alfabeto {(,)}, que representam expressões de parênteses balanceados, isto é, para todo "(" existe um ")", que casam entre si, e todo par "casado" de parênteses está propriamente aninhado.

$$G2 = ({S, A}, {((', ')')}, P, S) \text{ onde } P \text{ } \acute{e}$$

 $S \rightarrow (A \mid \varepsilon)$

 $A \rightarrow S) \mid S$

Exemplos: ((((((()))))), ()(), (()()), ()()(()(())).

Exercícios do livro Hopcroft, Ullmann e Motwani

4.4.1 e 4.4.2) Minimizar os AFDs dados pelas tabelas de transições:

	0	1
$\rightarrow A$	В	A
В	A	C
С	D	В
*D	D	A
E	D	F
F	G	E
G	F	G
Н	G	D

1)

Os estados E, F, G e H são inúteis, pois a partir do estado inicial A, não é possível acessar esses estados. (pode ser visualizado pelo autômato ao lado)

Fazendo a tabela com os 4 estados não inúteis:

	q	0	1	П	r _o	0	1	Ī	T ₁	0	1	Т	T ₂	0	1	Т	Т3
→	Α	В	Α	Α		1	1	Α	100	-1	1	Α	E		1	Α	- 6
189	В	Α	С	В	1.	-1	-1	В	10.0	1	11	В	11	E	111	В	11
-	С	D	В	С		Н	1	С	Н	Ш	E	С	III	IV	11	С	III
公	D	D	Α	D	H	II	1.	D	Ш	111	1	D	IV	IV	T.	D	IV

Com a tabela, geramos o autômato mínimo, que é o próprio autômato sem os estados inúteis.

	0	1
$\rightarrow A$	В	E
В	C	F
*C	D	Н
D	E	Н
E	F	I
*F	G	В
G	Н	В
Н	I	C
*1	A	E

2)

O autômato não apresenta estados inúteis.

Fazendo a tabela:

	q	0	1	Т	r _o	0	1	1	π_{t}		1	П	2
→	Α	В	Е	Α		T		Α		11	11	Α	
_	В	С	F	В		11	П	D	1	11	II	D	i
公	С	D	Н	D		T	1	G		II	II	G	
30000	D	Е	Н	Ε		11	П	В		III	III	В	
	Е	F	T.	G		1	T.	E	l II	III	III	E	11
☆	F	G	В	Н		П	П	Н	1	111	III	Н	1
	G	Н	В	С			T.	С		1	11	С	
	Н	1	С	F	П	1	1	F	III	1	11	F	Ш
₩	1	Α	Е	T.		1	1	1		1	Ш	T	
_													•

Com a tabela, geramos o autômato mínimo com somente 3 estados.

Exercícios do livro "Paulo Blauth Menezes. Linguagens Formais e Autômatos"

- **2.4** Desenvolva Expressões e Gramáticas Regulares que gerem as seguintes linguagens sobre $\Sigma = \{a, b\}$:
- a) {w | w tem no máximo um par de a como subpalavra e no máximo um par de b como subpalavra}

ER:
$$((ab + ba)^* (aa + \varepsilon)(ab + ba)^* (bb + \varepsilon)(ab + ba)^*) +$$

$$((ab + ba)^* (bb + \varepsilon)(ab + ba)^* (aa + \varepsilon)(ab+ba)^*)$$

GR: ({S, A}, {a, b}, P, S) onde P é:

$$\mathsf{S} \to \mathsf{XYXZX} \ | \ \mathsf{XZXYX}$$

$$X \to abX \ | \ baX \ | \ \epsilon$$

$$Y \mathop{\rightarrow} aa \mid \epsilon \quad Z \mathop{\rightarrow} bb \mid \epsilon$$

2.6 Descreva em palavras as linguagens geradas pelas seguintes Expressões Regulares:

b)
$$(b + ab)*(\varepsilon + a)$$

Exemplos: a, b, ab, ba, bb, aba, abb, bab, bba, bbb

L = {w | w não tenha a's em sequências (2 ou mais 'a' juntos)}

2.7 Aplique o algoritmo de tradução de formalismo de Expressão Regular para Autômato Finito:

2.8 Aplique os algoritmos de tradução de formalismos apresentados e, a partir da Expressão Regular (b + ϵ)(a + bb)*, realize as diversas etapas até gerar a Gramática Regular correspondente (ER \rightarrow AF ϵ \rightarrow AFN \rightarrow AFD \rightarrow GR).

ER : $(b + \varepsilon)(a + bb)^*$

GR: ({S, A}, {a, b}, P, S) onde P é:

 $S \rightarrow b \mid bA \mid \epsilon$

 $A \rightarrow Aa \mid bbA \mid \epsilon$

2.19 Desenvolva uma Máquina de Mealy e uma de Moore que realize a conversão da representação de valores monetários de dólares para reais. Por exemplo, dado o valor US\$25,010.59 na fita de entrada, deve ser gravado o valor R\$25.010,59 na fita de saída (atenção para o uso da vírgula e do ponto nos dois valores). Adicionalmente, o autômato deve verificar se a entrada é um valor monetário válido.

Utilizei 0,1,2,3... ao invés do d descrito na solução do analisador léxico, pois achei que facilitaria a visualização.

Sempre ao ler um número na fita de entrada o mesmo número será escrito na fita de saída. Utilizei isso para não precisar fazer 10 transições diferentes para cada conjunto de símbolo, semelhante ao descrito na solução.

O primeiro autômato é a maquina de Mealy e o segundo é o de Moore.

- **3.2** Desenvolva Gramáticas Livres do Contexto que gerem as seguintes linguagens:
- d) $L_4 = \{w \mid w \in \text{palindromo em } \{a, b\}^*\}$, onde palindromo significa que $w = w^r$
- f) $L_6 = \{ a^i b^j c^k \mid i = j \text{ ou } j = k \text{ e } i, j, k \ge 0 \}$

G4 = ({S, A, B}, {a, b}, P, S) onde P é

 $\mbox{S} \rightarrow \mbox{aA} \mbox{ | bB | a | b | } \epsilon$

 $A \rightarrow Sa$

 $B \rightarrow Sb$

Exemplos: aa, abba, baaab, aaaaa, bababab.

G6 = ({S, A, B, C, D, E}, {a, b, c}, P, S) onde P é
$$S \rightarrow B$$

$$B \rightarrow aDbC \mid AbEc$$

$$A \rightarrow aA \mid \varepsilon$$

$$C \rightarrow Cc \mid \varepsilon$$

$$D \rightarrow aDb \mid \varepsilon$$

$$E \rightarrow bEc \mid \varepsilon$$

Exemplos: aaabbbc, abbbccc, aabbcc, abccc.

3.11 a) Optei por não encaminhar esse exercício

3.16 As linguagens geradas pelas gramáticas cujas produções estão representadas abaixo são vazias, finitas ou infinitas?

a)
$$S \rightarrow AB \mid CA$$

$$A \rightarrow a$$

$$B \rightarrow BC$$

$$C \rightarrow AB \mid \epsilon$$
b)
$$S \rightarrow aS \mid aSbS \mid X$$

$$X \rightarrow SS$$

A linguagem da gramatica 1 é finita. Se o autômato encontrar o estado B, ela fica infinita, mas a partir de S começando com CA o C pode ser cadeia vazia, resultando em um único a, sem encontrar o loop infinito de B.

Já a segunda gramatica é infinita. S sempre retorna pra S ou X, mas X sempre volta para S, sem nenhuma saída, sendo infinita.

OBS:

Não consegui encontrar o exercício 2.24 do livro do Hopcroft e Ullman também não consegui fazer o exercício 3.11 (a) do livro do Paulo Blauth.

Caso alguma imagem não tenha ficado boa para visualização, estou deixando um link do drive para o arquivo que fiz os autômatos, usando o site draw.io

https://drive.google.com/drive/folders/1pXaQAgn6JwxiZ07Bn9f9i4AtrkbshvPi?usp=sharing

Os arquivos 'AFs' e 'Afs2' contém todos os autômatos juntos.