11.1 Sequences

Sequence: An infinite list $\{a_1, a_2, a_3, ...\} = \{a_n\}_{n=1}^* = \{a_n\}$

Limits of Sequences: $\lim_{n\to\infty} a_n = L \Leftrightarrow \lim_{x\to\infty} f(x) = L$

- Informal: a_n approaches L as n grows positively without
- Precise: given $\varepsilon > 0$, there exists N > 0 such that $|a_n L| < \varepsilon$ for all $n \ge N$

11.2 Series

Fact: Monotone Convergence Theorem

 $\{a_n\}$ bounded and eventually increasing or decreasing \Rightarrow $\lim = L$ for some number L

Partial Sum: $S_n \rightarrow S_1 = a_1 + a_2 + a_3 + ...$

Series: A sum of a sequence $S_{\infty} = \sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + ...$

Geometric Series:

$$\sum_{n=1}^{\infty} ar^{n-1} = \frac{a}{1-r} \qquad |r| < 1 \implies \text{converges}$$

$$\sum_{n=1}^{\infty} ar^{n-1} \qquad |r| > 1 \implies \text{diverges}$$

$$|r| < 1 \implies \text{converge}$$

$$\sum_{n=1}^{\infty} ar^{n-}$$

$$|r| > 1 \Rightarrow \text{diverges}$$

P-series Test:

$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{1}{n^p}$$

$$p > 1 \Rightarrow \text{converges}$$

$$p < 1 \Rightarrow \text{diverges}$$

Divergence Test:

If
$$\lim_{n\to\infty} a_n \neq 0 =$$

If
$$\lim_{n\to\infty} a_n \neq 0 \Rightarrow \sum_{n=1}^{\infty} a_n$$
 diverges

11.3 The Integral Test and Estimates of Sums

Remainder Estimate for the Integral Test:

$$\int_{N+1}^{\infty} f(x)dx \le R_N \le \int_{N}^{\infty} f(x)dx$$

$$\int_{N}^{\infty} f(x)dx \le \# \ error \ given$$

$$\lim_{N \to \infty} \int_{N}^{\infty} f(x)dx \le \# \ error \ given$$

Then solve for N

Integral Test:

If
$$\int_{1}^{\infty} f(x)dx$$
 converges, then $\sum_{n=1}^{\infty} a_n$ converges

If
$$\int_{1}^{\infty} f(x)dx$$
 converges, then $\sum_{n=1}^{\infty} a_n$ converges
If $\int_{1}^{\infty} f(x)dx$ diverges, then $\sum_{n=1}^{\infty} a_n$ diverges

Conditions

1. Continuous

2. f(x) > 0

3. f'(x) < 0

11.4 The Comparison Tests

Direct Comparison Test:

If
$$\sum_{n=1}^{\infty} b_n$$
 converges, then $\sum_{n=1}^{\infty} a_n$ converges If $\sum_{n=1}^{\infty} b_n$ diverges, then $\sum_{n=1}^{\infty} a_n$ diverges

$$a_n < b_n$$

If
$$\sum_{n=1}^{\infty} b_n$$
 diverges, then $\sum_{n=1}^{\infty} a_n$ diverges

Limit Comparison Test:

$$\lim_{n \to \infty} \frac{a_n}{b_n} = c > 0 \text{ then both } \sum_{n=1}^{\infty} b_n \text{ and } \sum_{n=1}^{\infty} a_n \text{ converge}$$

 a_n and b_n must be positive

$$\lim_{n\to\infty} \frac{a_n}{b_n} = 0, \text{ if } \sum_{n=1}^{\infty} b_n \text{ converges, then } \sum_{n=1}^{\infty} a_n$$

$$\lim_{n\to\infty} \frac{a_n}{b_n} = \infty, \text{ if } \sum_{n=1}^{\infty} b_n \text{ diverges, then } \sum_{n=1}^{\infty} a_n \text{ diverges}$$

11.5 Alternating Series

Alternating Series Test:

If $\sum_{n=0}^{\infty} (-1)^{n-1} b_n$ satisfies the conditions, then it converges

Conditions

1. b_n decreasing

2. $\lim b_n = 0$

11.6 Absolute Convergence and the Ratio and Root Tests

Ratio Test:

If
$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=L<1$$
, then $\sum_{n=1}^{\infty}a_n$ absolutely converges

If
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L > 1$$
 or $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \infty$, then $\sum_{n=1}^{\infty} a_n$ diverges

If $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = 1 \Rightarrow$ Inconclusive

If
$$\lim_{n\to\infty} \sqrt[n]{a_n} = L < 1$$
, then $\sum_{n=1}^{\infty} a_n$ absolutely converges

If
$$\lim_{n\to\infty} \sqrt[n]{a_n} = L > 1$$
 or diverges, then $\sum_{n=1}^{\infty} a_n$ diverges

If $\lim_{n\to\infty} \sqrt[n]{a_n} = 1 \Rightarrow$ Inconclusive