Теоретическая информатика - 1

Теория графов — паросочетания, связность

Паросочетания

Паросочетание (matching) — подмножество ребер $M \subseteq E$, где никакие два ребра не имеют общих концов. Совершенное паросочетание: участвуют все вершины.

Паросочетания

Паросочетание (matching) — подмножество ребер $M \subseteq E$, где никакие два ребра не имеют общих концов. Совершенное паросочетание: участвуют все вершины.

Теорема 1 (Теорема Холла, 1935) Пусть $G = (V_1, V_2, E)$ — двудольный граф. Паросочетание, покрывающее V_1 , существует \Leftrightarrow $\forall U \subseteq V_1$, |U| = k, у вершин U в совокупности есть не менее k смежных вершин в V_2 .

Паросочетания

Паросочетание (matching) — подмножество ребер $M \subseteq E$, где никакие два ребра не имеют общих концов. Совершенное паросочетание: участвуют все вершины.

Теорема 1 (Теорема Холла, 1935)

Пусть $G=(V_1,V_2,E)$ — двудольный граф. Паросочетание, покрывающее V_1 , существует \Leftrightarrow $\forall U\subseteq V_1, \ |U|=k$, у вершин U в совокупности есть не менее k смежных вершин в V_2 .

 \mathcal{L} оказательство. \Rightarrow Очевидно: если есть подмножество $\subseteq V_1$ размера k, у которого менее чем k соседей, то паросочетаний U с V_2 не существует.

 \Leftarrow Индукция по $|V_1|$.

Базис: $|V_1|=1$, и у единственного подмножества размера 1 есть одна смежная вершина в V_2 — это ребро и дает паросочетание.

 \Leftarrow Индукция по $|V_1|$.

Базис: $|V_1|=1$, и у единственного подмножества размера 1 есть одна смежная вершина в V_2 — это ребро и дает паросочетание.

Индуктивный переход.

Случай 1: Пусть есть подмножество $U_1\subset V_1$, $|U_1|=k$, у которого ровно k смежных вершин, и пусть $U_2\subseteq V_2$ смежные с ними вершины, где $|U_2|=|U_1|$.

 \Leftarrow Индукция по $|V_1|$.

Базис: $|V_1|=1$, и у единственного подмножества размера 1 есть одна смежная вершина в V_2 — это ребро и дает паросочетание.

Индуктивный переход.

Случай 1: Пусть есть подмножество $U_1\subset V_1$, $|U_1|=k$, у которого ровно k смежных вершин, и пусть $U_2\subseteq V_2$ — смежные с ними вершины, где $|U_2|=|U_1|$.

В подграфе на вершинах из U_1 и U_2 у каждого подмножества U_1 размера m есть не менее m соседок из V_2 , и, следовательно, из U_2 . Тогда, по предположению индукции, есть паросочетание, покрывающее U_1 .

 \Leftarrow Индукция по $|V_1|$.

Базис: $|V_1|=1$, и у единственного подмножества размера 1 есть одна смежная вершина в V_2 — это ребро и дает паросочетание.

Индуктивный переход.

Случай 1: Пусть есть подмножество $U_1\subset V_1$, $|U_1|=k$, у которого ровно k смежных вершин, и пусть $U_2\subseteq V_2$ — смежные с ними вершины, где $|U_2|=|U_1|$.

В подграфе на вершинах из U_1 и U_2 у каждого подмножества U_1 размера m есть не менее m соседок из V_2 , и, следовательно, из U_2 . Тогда, по предположению индукции, есть паросочетание, покрывающее U_1 .

Покажем, что в подграфе на вершинах из $V_1 \setminus U_1$ и $V_2 \setminus U_2$ также выполняется условие теоремы, т.е. у всякого подмножества $V_1 \setminus U_1$ размера I есть не менее чем I смежных вершин в $V_2 \setminus U_2$.

Пусть $W\subseteq V_1ackslash U_1$ — любое подмножество. Тогда подмножество $U_1\cup W$ имеет не менее чем k+I смежных вершин по условию.

При этом у вершин из U_1 всего k смежных вершин, которые также смежны с U_2 , — и, следовательно, остальные I смежных вершин смежны с W и лежат вне U_2 .

Пусть $W\subseteq V_1ackslash U_1$ — любое подмножество. Тогда подмножество $U_1\cup W$ имеет не менее чем k+I смежных вершин по условию.

При этом у вершин из U_1 всего k смежных вершин, которые также смежны с U_2 , — и, следовательно, остальные I смежных вершин смежны с W и лежат вне U_2 .

Следовательно, условие выполняется, и, по предположению индукции, есть паросочетание, покрывающее $V_1 \backslash U_1$, которое не пересекается с ранее построенным паросочетанием, покрывающим U_1 .

Случай II. У всякого подмножества $U_1\subset V_1$ есть не менее чем $|U_1|+1$ смежных вершин.

Случай II. У всякого подмножества $U_1\subset V_1$ есть не менее чем $|U_1|+1$ смежных вершин.

Пусть $(v_1,v_2)\in E$ — произвольное ребро. Подграф, образованный удалением вершин v_1 и v_2 , продолжает удовлетворять условию теоремы, поскольку в нем у каждого подмножества $U_1\subseteq V_1\backslash\{v_1\}$ остается не менее чем $(|U_1|+1)-1$ смежных вершин, за возможной потерей v_2 .

Случай II. У всякого подмножества $U_1\subset V_1$ есть не менее чем $|U_1|+1$ смежных вершин.

Пусть $(v_1,v_2)\in E$ — произвольное ребро. Подграф, образованный удалением вершин v_1 и v_2 , продолжает удовлетворять условию теоремы, поскольку в нем у каждого подмножества $U_1\subseteq V_1\backslash\{v_1\}$ остается не менее чем $(|U_1|+1)-1$ смежных вершин, за возможной потерей v_2 .

Следовательно, по предположению индукции, в нем есть паросочетание, покрывающее $V_1 \setminus \{v_1\}$. Возвращая v_1 , v_2 и ребро (v_1, v_2) , получаем искомое паросочетание.

- ▶ КС компонента связности
- ▶ нечетная КС КС с нечетным числом вершин
- lackbox Для $U\subseteq V$ обозначим Gackslash U индуцированный подграф на Vackslash U.

- ▶ КС компонента связности
- ▶ нечетная КС КС с нечетным числом вершин
- lackbox Для $U\subseteq V$ обозначим Gackslash U индуцированный подграф на Vackslash U.

Теорема 2 (Татт, 1947)

В графе G = (V, E) есть совершенное паросочетание $\Leftrightarrow \forall U \subseteq V$ подграф $G \setminus U$ содержит не более |U| нечетных KC.

В частности, условие для $U=\emptyset$ означает, что |V| четно.

Доказательство. (\Rightarrow) Пусть $M\subseteq E$ — совершенное паросочетание, и пусть $U\subseteq V$ — подмножество вершин.

Тогда в $G \setminus U$ для всякой нечетной КС $C \subseteq V \setminus U$ паросочетание M должно содержать хотя бы одно ребро между C и U, т.е., (u_C, v_C) , где $u_C \in U$ и $v_C \in C$.

Так как вершины u_C , выбранные для разных таких компонент C, повторяться не могут (тогда это не было бы паросочетанием), получается, что число вершин в U не может быть меньше, чем число нечетных компонент связности.

 (\Leftarrow) Пусть совершенного паросочетания нет. Пусть $\hat{G} = (V, \hat{E})$ граф, полученный из G добавлением максимального числа ребер, так, чтобы в нем все еще не было совершенного паросочетания, но добавление любого дополнительного ребра приводило бы к появлению такового.

 (\Leftarrow) Пусть совершенного паросочетания нет. Пусть $\hat{G} = (V, \hat{E})$ граф, полученный из G добавлением максимального числа ребер, так, чтобы в нем все еще не было совершенного паросочетания, но добавление любого дополнительного ребра приводило бы к появлению такового.

Тогда достаточно построить $U\subseteq V$, удаление которого разбивало бы \hat{G} так, чтобы в нем оставалось более чем |U| нечетных КС — тогда и в G число нечетных КС будет не меньше (удаление одного ребра либо сохранает нечетную КС, либо разбивает ее на две, одна из которых опять нечетная).

 (\Leftarrow) Пусть совершенного паросочетания нет. Пусть $\hat{G} = (V, \hat{E})$ граф, полученный из G добавлением максимального числа ребер, так, чтобы в нем все еще не было совершенного паросочетания, но добавление любого дополнительного ребра приводило бы к появлению такового.

Тогда достаточно построить $U\subseteq V$, удаление которого разбивало бы \hat{G} так, чтобы в нем оставалось более чем |U| нечетных КС — тогда и в G число нечетных КС будет не меньше (удаление одного ребра либо сохранает нечетную КС, либо разбивает ее на две, одна из которых опять нечетная).

$$U := \{v \in V | \operatorname{deg} v = |V| - 1\}.$$

Утверждение. В $\hat{G} \setminus U$ всякая КС — полный граф.

Утверждение. В $\hat{G} \setminus U$ всякая КС — полный граф. Доказательство утверждения. Пусть есть КС $C \subseteq V \setminus U$, которая не является полным графом.

Утверждение. В $\hat{G} \setminus U$ всякая КС — полный граф. Доказательство утверждения. Пусть есть КС $C \subseteq V \setminus U$, которая не является полным графом.

Т.е. существуют вершины $v_1, v_2, v_3 \in C$, для которых $(v_1, v_2), (v_1, v_3) \in \hat{E}$, $(v_2, v_3) \notin \hat{E}$.

Утверждение. В $\hat{G} \setminus U$ всякая КС — полный граф. Доказательство утверждения. Пусть есть КС $C \subseteq V \setminus U$, которая не является полным графом.

Т.е. существуют вершины $v_1, v_2, v_3 \in C$, для которых $(v_1, v_2), (v_1, v_3) \in \hat{E}$, $(v_2, v_3) \notin \hat{E}$.

Т.к. $v_1 \notin U$, то $\exists v_4 \in V \colon (v_1, v_4) \notin \hat{E}$.

Утверждение. В $\hat{G} \setminus U$ всякая КС — полный граф. Доказательство утверждения. Пусть есть КС $C \subseteq V \setminus U$, которая не является полным графом.

Т.е. существуют вершины $v_1, v_2, v_3 \in C$, для которых $(v_1, v_2), (v_1, v_3) \in \hat{E}$, $(v_2, v_3) \notin \hat{E}$.

Т.к. $v_1 \notin U$, то $\exists v_4 \in V \colon (v_1, v_4) \notin \hat{E}$.

 $\hat{G}\Rightarrow$ если добавить в него ребро (v_1,v_4) , то будет совершенное паросочетание $M_1\subseteq\hat{E}\cup\{(v_1,v_4)\}$. Но раз в \hat{G} совершенного паросочетания не было, то $(v_1,v_4)\in M_1$.

Утверждение. В $\hat{G} \setminus U$ всякая КС — полный граф. Доказательство утверждения. Пусть есть КС $C \subseteq V \setminus U$, которая не является полным графом.

Т.е. существуют вершины $v_1, v_2, v_3 \in C$, для которых $(v_1, v_2), (v_1, v_3) \in \hat{\mathcal{E}}, (v_2, v_3) \notin \hat{\mathcal{E}}.$

Т.к. $v_1 \notin U$, то $\exists v_4 \in V \colon (v_1, v_4) \notin \hat{E}$.

 $\hat{G}\Rightarrow$ если добавить в него ребро (v_1,v_4) , то будет совершенное паросочетание $M_1\subseteq\hat{E}\cup\{(v_1,v_4)\}$. Но раз в \hat{G} совершенного паросочетания не было, то $(v_1,v_4)\in M_1$.

Аналогично при добавлении ребра (v_2, v_3) получится совершенное паросочетание $M_2 \subseteq \hat{\mathcal{E}} \cup \{(v_2, v_3)\}$, где $(v_2, v_3) \in M_2$.

 $G':=(V,M_1\cup M_2)$ состоит из отдельных ребер из $M_1\cap M_2$, а также из циклов четной длины, в которых чередуются ребра из M_1 и M_2 .

 $G':=(V,M_1\cup M_2)$ состоит из отдельных ребер из $M_1\cap M_2$, а также из циклов четной длины, в которых чередуются ребра из M_1 и M_2 .

Ребра (v_1, v_4) и (v_2, v_3) попадут в такие циклы, поскольку каждое из них принадлежит ровно одному из двух паросочетаний.

 $G':=(V,M_1\cup M_2)$ состоит из отдельных ребер из $M_1\cap M_2$, а также из циклов четной длины, в которых чередуются ребра из M_1 и M_2 .

Ребра (v_1, v_4) и (v_2, v_3) попадут в такие циклы, поскольку каждое из них принадлежит ровно одному из двух паросочетаний.

Рассмотрим два случая.

Если эти ребра попадают в один и тот же цикл, то его можно перестроить, задействовав одно из ребер (v_1, v_2) и (v_1, v_4) — получим совершенное паросочетание для \hat{G} .

 $G':=(V,M_1\cup M_2)$ состоит из отдельных ребер из $M_1\cap M_2$, а также из циклов четной длины, в которых чередуются ребра из M_1 и M_2 .

Ребра (v_1, v_4) и (v_2, v_3) попадут в такие циклы, поскольку каждое из них принадлежит ровно одному из двух паросочетаний.

Рассмотрим два случая.

- Если эти ребра попадают в один и тот же цикл, то его можно перестроить, задействовав одно из ребер (v_1, v_2) и (v_1, v_4) получим совершенное паросочетание для \hat{G} .
- Если же эти ребра попадают в разные циклы, то в каждом цикле можно взять другие ребра, и опять получится совершенное паросочетание для \hat{G} .

Утверждение доказано.

Итак, удалением $U\subseteq V$ получатся КС — полные графы, из них не более |U| нечетных.

Строим совершенное паросочетание в \hat{G} : четные КС сами с собой; нечетные — соединением одной вершины с произвольной вершиной из U, остальные вершины — сами с собой; оставшиеся вершины из U — между собой.

Противоречие.

odd(G) — число нечетных КС в G. Теорема о размере максимального паросочетания в графе:

Теорема 3 (Формула Бержа, 1958)

Число вершин, непокрытых наибольшим паросочетанием, равно

$$\max_{U\subseteq V}(\mathit{odd}(\mathit{G}\backslash U)-|\mathit{U}|).$$

Эта величина иногда называется дефектом d(G) графа G. Замечание: d(G)=0 соответствует теореме Татта.

Доказательство.

 (\geq) Аналогично доказательству простой части теоремы Татта:

Доказательство.

 (\geq) Аналогично доказательству простой части теоремы Татта:

Пусть $M\subseteq E$ — паросочетание, и пусть $U\subseteq V$ — подмножество вершин, для которого достигается максимум $(\operatorname{odd}(G\backslash U)-|U|)$.

Доказательство.

 (\geq) Аналогично доказательству простой части теоремы Татта:

Пусть $M\subseteq E$ — паросочетание, и пусть $U\subseteq V$ — подмножество вершин, для которого достигается максимум $(\operatorname{odd}(G \backslash U) - |U|)$.

В G ackslash U во всякой нечетной КС $C \subseteq V ackslash U$ есть

- ightharpoonup или вершина, не покрытая паросочетанием M,
- lacktriangle или вершина $v_C \in C$, для которой паросочетание M содержит ребро (u_C,v_C) , где $u_C \in U$.

Вершины u_C для разных таких КС C не повторяются.

Доказательство.

 (\geq) Аналогично доказательству простой части теоремы Татта:

Пусть $M\subseteq E$ — паросочетание, и пусть $U\subseteq V$ — подмножество вершин, для которого достигается максимум $(\operatorname{odd}(G\backslash U)-|U|)$.

В G ackslash U во всякой нечетной КС $C \subseteq V ackslash U$ есть

- ightharpoonup или вершина, не покрытая паросочетанием M,
- lacktriangle или вершина $v_C \in C$, для которой паросочетание M содержит ребро (u_C, v_C) , где $u_C \in U$.

Вершины u_C для разных таких КС C не повторяются.

Отсюда нечетных KC, в которых есть непокрытая вершина, не менее чем $(\operatorname{odd}(G \setminus U) - |U|)$.

 (\leq) : Пусть $k = \max_{U \subseteq V} (\operatorname{odd}(G \setminus U) - |U|).$

Для всякого $U' \subseteq V \cup \{v_1, \dots v_k\}$ рассмотрим два случая:

• если не все вершины $\{v_1, \ldots v_k\}$ попали в U', то после удаления U' останется связный граф (т.е., не более 1 нечетной KC).

Для всякого $U' \subseteq V \cup \{v_1, \dots v_k\}$ рассмотрим два случая:

- если не все вершины $\{v_1, \dots v_k\}$ попали в U', то после удаления U' останется связный граф (т.е., не более 1 нечетной KC).
- ightharpoonup если в $\{v_1,\dots v_k\}\subseteq U'$ попали все новые вершины, то по сути из исходного графа G удаляются |U'|-k вершин.

Для всякого $U' \subseteq V \cup \{v_1, \dots v_k\}$ рассмотрим два случая:

- если не все вершины $\{v_1, \dots v_k\}$ попали в U', то после удаления U' останется связный граф (т.е., не более 1 нечетной KC).
- если в $\{v_1, \dots v_k\} \subseteq U'$ попали все новые вершины, то по сути из исходного графа G удаляются |U'|-k вершин. Оценим число образующихся нечетных КС: $\mathrm{odd}(G'\backslash U')-(|U'|-k)\leq k;$ $\mathrm{odd}(G'\backslash U')\leq |U'|.$

Для всякого $U' \subseteq V \cup \{v_1, \dots v_k\}$ рассмотрим два случая:

- если не все вершины $\{v_1, \dots v_k\}$ попали в U', то после удаления U' останется связный граф (т.е., не более 1 нечетной КС).
- если в $\{v_1, \ldots v_k\} \subseteq U'$ попали все новые вершины, то по сути из исходного графа G удаляются |U'|-k вершин. Оценим число образующихся нечетных КС: $\mathrm{odd}(G'\backslash U')-(|U'|-k)\leq k;$ $\mathrm{odd}(G'\backslash U')\leq |U'|.$

Тогда, по теореме Татта, существует совершенное паросочетание в G'. После удаления из графа дополнительных вершин остается не более чем k вершин, не покрытых этим паросочетанием.

Связность и разделяющие множества

Пусть $V_1,V_2\subseteq V(G)$. Множество $X\subseteq V(G)$ называется (V_1,V_2) -разделяющим, если в графе $G\backslash X$ нет путей из V_1 в V_2 .

Связность и разделяющие множества

Пусть $V_1,V_2\subseteq V(G)$. Множество $X\subseteq V(G)$ называется (V_1,V_2) -разделяющим, если в графе $G\backslash X$ нет путей из V_1 в V_2 .

Теорема 4 (Геринг, 2000)

Пусть $V_1, V_2 \subseteq V(G)$, $k \in \mathbb{N}$ натуральное число. Тогда верно ровно одно из двух условий:

- 1. В V(G) найдется подмножество U, |U| < k, разделяющее V_1 и V_2 ;
- 2. В G найдется не менее k простых путей из V_1 в V_2 , попарно не имеющих общих вершин.

Понятно, что 1) и 2) одновременно выполняться не могут: разделяющее множество обязано содержать хотя бы по одной вершине из каждого из путей из V_1 в V_2 .

Понятно, что 1) и 2) одновременно выполняться не могут: разделяющее множество обязано содержать хотя бы по одной вершине из каждого из путей из V_1 в V_2 .

Таким образом, требуется доказать HE 1) \Rightarrow 2) — то есть, если любое (V_1, V_2) -разделяющее множество содержит $\geq k$ вершин, то найдутся k путей из V_1 в V_2 .

Понятно, что 1) и 2) одновременно выполняться не могут: разделяющее множество обязано содержать хотя бы по одной вершине из каждого из путей из V_1 в V_2 .

Таким образом, требуется доказать HE 1) \Rightarrow 2) — то есть, если любое (V_1, V_2) -разделяющее множество содержит $\geq k$ вершин, то найдутся k путей из V_1 в V_2 .

Индукция по |V|.

База для |V|=1 очевидна.

Индуктивный переход. Будем удалять ребра до тех пор, пока любое (V_1,V_2) -разделяющее множество содержит $\geq k$ вершин. Когда-то это закончится (если только $|V_1\cap V_2|< k$ — но если $|V_1\cap V_2|\geq k$, то имеется k одновершинных путей из V_1 в V_2).

Понятно, что 1) и 2) одновременно выполняться не могут: разделяющее множество обязано содержать хотя бы по одной вершине из каждого из путей из V_1 в V_2 .

Таким образом, требуется доказать HE 1) \Rightarrow 2) — то есть, если любое (V_1, V_2) -разделяющее множество содержит $\geq k$ вершин, то найдутся k путей из V_1 в V_2 .

Индукция по |V|.

База для |V|=1 очевидна.

Индуктивный переход. Будем удалять ребра до тех пор, пока любое (V_1, V_2)-разделяющее множество содержит $\geq k$ вершин. Когда-то это закончится (если только $|V_1 \cap V_2| < k$ — но если $|V_1 \cap V_2| \geq k$, то имеется k одновершинных путей из V_1 в V_2).

Итак, при удалении ребра xy образуется (V_1, V_2) -разделяющее множество Z, |Z| < k.

Заметим, что множество $Z \cup x$ было разделяющим и до удаления ребра xy, а тогда $|Z|=k-1, \ |Z \cup x|=k$. Аналогично для $Z \cup y$.

Заметим, что множество $Z \cup x$ было разделяющим и до удаления ребра xy, а тогда |Z|=k-1, $|Z \cup x|=k$. Аналогично для $Z \cup y$.

Два случая:

Случай 1: одно из множеств $Z \cup x$, $Z \cup y$ совпадает с V_1 , а второе с V_2 . В качестве k путей из V_1 в V_2 можно взять вершины Z и ребро xy.

Заметим, что множество $Z \cup x$ было разделяющим и до удаления ребра xy, а тогда |Z|=k-1, $|Z \cup x|=k$. Аналогично для $Z \cup y$.

Два случая:

Случай 1: одно из множеств $Z \cup x$, $Z \cup y$ совпадает с V_1 , а второе с V_2 . В качестве k путей из V_1 в V_2 можно взять вершины Z и ребро xy.

Случай 2: одно из множеств $Z \cup x$, $Z \cup y$ отлично и от V_1 , и от V_2 . Обозначим это множество W, тогда |W|=k, $W \neq V_1$, $W \neq V_2$ и $W - (V_1, V_2)$ -разделяющее множество в нашем графе.

Заметим, что множество $Z \cup x$ было разделяющим и до удаления ребра xy, а тогда $|Z|=k-1, \ |Z \cup x|=k.$ Аналогично для $Z \cup y$.

Два случая:

Случай 1: одно из множеств $Z \cup x$, $Z \cup y$ совпадает с V_1 , а второе с V_2 . В качестве k путей из V_1 в V_2 можно взять вершины Z и ребро xy.

Случай 2: одно из множеств $Z \cup x$, $Z \cup y$ отлично и от V_1 , и от V_2 . Обозначим это множество W, тогда |W|=k, $W \neq V_1$, $W \neq V_2$ и $W - (V_1, V_2)$ -разделяющее множество в нашем графе.

Заметим, что никакой путь из V_1 в W не проходит через вершины (непустого!) множества $V_2 \backslash W$ — иначе бы W не разделяло V_1 и V_2 .

Выкинем из нашего графа множество вершин $V_2 \backslash W$ — обозначим новый граф G_1 .

Заметим, что любое (V_1,W) -разделяющее множество в G_1 является (V_1,W) -разделяющим и в старом, поскольку то, что мы выкинули, никак не помогает добраться из V_1 в W. Следовательно, оно является и (V_1,V_2) -разделяющим, ибо любой путь из V_1 в V_2 заходит в W.

Поэтому в нем не менее k вершин.

Выкинем из нашего графа множество вершин $V_2 \backslash W$ — обозначим новый граф G_1 .

Заметим, что любое (V_1,W) -разделяющее множество в G_1 является (V_1,W) -разделяющим и в старом, поскольку то, что мы выкинули, никак не помогает добраться из V_1 в W. Следовательно, оно является и (V_1,V_2) -разделяющим, ибо любой путь из V_1 в V_2 заходит в W.

Поэтому в нем не менее k вершин.

Но $|V(G_1)| < |V(G)| \Rightarrow$ по предположению индукции имеется k непересекающихся путей из V_1 в W. Аналогично, имеется k непересекающихся путей из W в V_2 .

Выкинем из нашего графа множество вершин $V_2 \backslash W$ — обозначим новый граф G_1 .

Заметим, что любое (V_1,W) -разделяющее множество в G_1 является (V_1,W) -разделяющим и в старом, поскольку то, что мы выкинули, никак не помогает добраться из V_1 в W. Следовательно, оно является и (V_1,V_2) -разделяющим, ибо любой путь из V_1 в V_2 заходит в W.

Поэтому в нем не менее k вершин.

Но $|V(G_1)| < |V(G)| \Rightarrow$ по предположению индукции имеется k непересекающихся путей из V_1 в W. Аналогично, имеется k непересекающихся путей из W в V_2 .

Заметим, что пути из V_1 в W и из W в V_2 не могут пересекаться, кроме как по общему концу в W — это бы означало, что W не разделяет V_1 и V_2 . Склеим два наших набора по k путей \Rightarrow получим k непересекающихся путей из V_1 в V_2 .

Теорема Менгера

Теорема 5 (Менгер, 1927)

Пусть вершины а и b связного графа G не соединены ребром. Тогда наименьшее число вершин (a, b)-разделяющего множества равно наибольшему числу непересекающихся по вершинам путей, соединяющих а и b.

В формулировке теоремы подразумевается, что разделяющее множество не содержит a и b, а пути не пересекаются по вершинам, не являющимся начальной или конечной.

Доказательство. Достаточно рассмотреть граф G-a-b и применить теорему Геринга к множествам V_1 , V_2 , где V_1- множество соседей a, V_2- множество соседей b (а k- наименьшая мощность (V_1,V_2) -разделяющего множества).

Теорема Кёнига

Вершинное покрытие графа — это такое множество вершин, что каждое ребро содержит хотя бы одну из них.

Теорема 6 (Кёниг, 1931)

Наибольшее число ребер в паросочетании двудольного графа G равно наименьшему числу вершин в вершинном покрытии графа G.

Доказательство. Применим теорему Геринга к графу G и множествам, состоящим из вершин одной и второй доли. Заметим, что каждый путь можно сократить только до одного ребра, так что наибольшее количество путей есть просто наибольшее паросочетание, а разделяющее множество — это в точности вершинное покрытие.

k-регулярный граф — степень каждой вершины равна k.

Теорема 7 (Петерсен, 1891)

Во всяком 3-регулярном графе без мостов есть совершенное паросочетание.

k-регулярный граф — степень каждой вершины равна k.

Теорема 7 (Петерсен, 1891)

Во всяком 3-регулярном графе без мостов есть совершенное паросочетание.

Доказательство. Для всякого множества вершин $U\subseteq V$ рассмотрим подграф $G\backslash U$, и в нем все нечетные КС C_1,\ldots,C_k .

Докажем утверждение: каждая из этих КС соединена с U в исходном графе G нечетным числом ребер, и не менее чем тремя.

k-регулярный граф — степень каждой вершины равна k.

Теорема 7 (Петерсен, 1891)

Во всяком 3-регулярном графе без мостов есть совершенное паросочетание.

Доказательство. Для всякого множества вершин $U\subseteq V$ рассмотрим подграф $G\backslash U$, и в нем все нечетные КС C_1,\ldots,C_k .

Докажем утверждение: каждая из этих КС соединена с U в исходном графе G нечетным числом ребер, и не менее чем тремя.

Так как в КС нечетное число вершин, и все они нечетной степени, сумма их степеней нечетна. Из них четное число приходится на внутренние ребра, а оставшееся нечетное число — на внешние. Поскольку каждое ребро входит в цикл, ребро не может быть единственным. Утверждение доказано.

k-регулярный граф — степень каждой вершины равна k.

Теорема 7 (Петерсен, 1891)

Во всяком 3-регулярном графе без мостов есть совершенное паросочетание.

Доказательство. Для всякого множества вершин $U\subseteq V$ рассмотрим подграф $G\backslash U$, и в нем все нечетные КС C_1,\ldots,C_k .

Докажем утверждение: каждая из этих КС соединена с U в исходном графе G нечетным числом ребер, и не менее чем тремя.

Так как в КС нечетное число вершин, и все они нечетной степени, сумма их степеней нечетна. Из них четное число приходится на внутренние ребра, а оставшееся нечетное число — на внешние. Поскольку каждое ребро входит в цикл, ребро не может быть единственным. Утверждение доказано.

Сумма степеней вершин из |U| равна 3|U|, и потому ребер, соединяющих |U| с нечетными компонентами связности, всего не более чем 3|U|.

Так как в каждую нечетную КС идет не менее трех ребер, всего этих компонент не более чем |U|. По теореме Татта есть совершенное паросочетание. ЧТД