

Centro de Educação Superior a Distância do Estado do Rio de Janeiro

Álgebra Linear I

Volume 1

Isabel Lugão Rios Luiz Manoel Figueiredo Marisa Ortegoza da Cunha

SECRETARIA DE CIÊNCIA, TECNOLOGIA, INOVAÇÃO E DESENVOLVIMENTO SOCIAL

MINISTÉRIO DA **EDUCAÇÃO**

Apoio:

Fundação Cecierj / Consórcio Cederj

www.cederj.edu.br

Presidente

Carlos Eduardo Bielschowsky

Vice-presidente

Marilvia Dansa de Alencar

Coordenação do Curso de Matemática

Matemática (UFF) - Marcelo da Silva Corrêa Matemática (UNIRIO) - Luiz Pedro San Gil Jutuca. Vice: Marcelo Rainha

Material Didático

Elaboração de Conteúdo

Isabel Lugão Rios Luiz Manoel Figueiredo Marisa Ortegoza da Cunha

Biblioteca

Raquel Cristina da Silva Tiellet Simone da Cruz Correa de Souza Vera Vani Alves de Pinho

Coordenação de Equipe

Marcelo Freitas

Ilustração

Ronaldo d'Aguiar Silva

Programação Visual

Nilda Helena Lopes da Silva

Revisão Linguística e Tipográfica

Patrícia Paula

Coordenação de Produção

Fábio Rapello Alencar

Assistente de Produção

Bianca Giacomelli

Capa

Sami Souza

Produção Gráfica

Patrícia Esteves Ulisses Schnaider

Copyright © 2016, Fundação Cecierj / Consórcio Cederj

Nenhuma parte deste material poderá ser reproduzida, transmitida e gravada, por qualquer meio eletrônico, mecânico, por fotocópia e outros, sem a prévia autorização, por escrito, da Fundação.

R586

Rios, Isabel Lugão.

Álgebra Linear 1 : volume 1 / Isabel Lugão Rios ; Luiz Manoel Figueiredo ; Marisa Ortegoza da Cunha. - Rio de Janeiro : Fundação CECIERJ, 2015.

238p.; 19 x 26,5 cm.

ISBN: 978-85-7648-963-4

1. Álgebra linear. 2. Álgebra linear – Problemas, questões, exercícios. I. Figueiredo, Luiz Manuel. II. Cunha, Marisa Ortegoza da. III. Título.

CDD: 512.5

Governo do Estado do Rio de Janeiro

Governador

Luiz Fernando de Souza Pezão

Secretário de Estado de Ciência, Tecnologia, Inovação e Desenvolvimento Social

Gabriell Carvalho Neves Franco dos Santos

Instituições Consorciadas

CEFET/RJ - Centro Federal de Educação Tecnológica Celso Suckow da Fonseca

Diretor-geral: Carlos Henrique Figueiredo Alves

FAETEC - Fundação de Apoio à Escola Técnica

Presidente: Alexandre Sérgio Alves Vieira

IFF - Instituto Federal de Educação, Ciência e Tecnologia Fluminense

Reitor: Jefferson Manhães de Azevedo

UENF - Universidade Estadual do Norte Fluminense Darcy Ribeiro

Reitor: Luis César Passoni

UERJ - Universidade do Estado do Rio de Janeiro

Reitor: Ruy Garcia Marques

UFF - Universidade Federal Fluminense

Reitor: Sidney Luiz de Matos Mello

UFRJ - Universidade Federal do Rio de Janeiro

Reitor: Roberto Leher

UFRRJ - Universidade Federal Rural do Rio de Janeiro

Reitor: Ricardo Luiz Louro Berbara

UNIRIO - Universidade Federal do Estado do Rio de Janeiro

Reitor: Luiz Pedro San Gil Jutuca

Sumário

Aula 1 • Matrizes	7
Aula 2 • Operações com Matrizes: Transposição, Adição e Multiplicação por Número Real Luiz Manoel Figueiredo	17
Aula 3 • Operações com Matrizes: Multiplicação Luiz Manoel Figueiredo	31
Aula 4 • Operações com Matrizes: Inversão	43
Aula 5 • Determinantes	55
Aula 6 • Sistemas Lineares	69
Aula 7 • Discussão de Sistemas Lineares	85
Aula 8 • Espaços Vetoriais	97
Aula 9 • Subespaços Vetoriais	109
Aula 10 • Combinações Lineares	121
Aula 11 • Base e Dimensão	133
Aula 12 • Dimensão de um Espaço Vetorial	145
Aula 13 • Soma de Subespaços	159
Aula 14 • Espaços Vetoriais com Produto Interno	175
Aula 15 • Conjuntos Ortogonais e Ortonormais	189
Aula 16 • Complemento Ortogonal	207
Aula 17 • Evercícios Resolvidos	210

Aula 1

MATRIZES

Objetivos

Ao final desta aula, você deverá ser capaz de:

- 1 reconhecer matrizes reais;
- 2 identificar matrizes especiais e seus principais elementos;
- 3 estabelecer a igualdade entre matrizes.

MATRIZES

Consideremos o conjunto de alunos do CEDERJ, ligados ao polo Lugar Lindo, cursando a disciplina Álgebra Linear I. Digamos que sejam 5 alunos (claro que se espera muito mais!). Ao longo do semestre, eles farão 2 avaliações a distância e 2 presenciais, num total de 4 notas parciais. Para representar esses dados de maneira organizada, podemos fazer uso de uma tabela:

Aluno	AD1	AD2	AP1	AP2
1. Ana	4,5	6,2	7,0	5,5
2. Beatriz	7,2	6,8	8,0	10,0
3. Carlos	8,0	7,5	5,9	7,2
4. Daniela	9,2	8,5	7,0	8,0
5. Edson	6,8	7,2	6,8	7,5

Se quisermos ver as notas obtidas por um determinado aluno, digamos, o Carlos, para calcular sua nota final, basta atentarmos para a *linha* correspondente (8,0; 7,5; 5,9; 7,2). Por outro lado, se estivermos interessados nas notas obtidas pelos alunos na segunda verificação a distância, para calcular a média da turma, devemos olhar para a *coluna* correspondente (6,2; 6,8; 7,5; 8,5; 7,2). Também podemos ir diretamente ao local da tabela em que se encontra, por exemplo, a nota de Carlos na segunda avaliação a distância (7,5).

É esse tipo de tratamento que as matrizes possibilitam (por linhas, por colunas, por elemento) que fazem desses objetos matemáticos instrumentos valiosos na organização e manipulação de dados.

Vamos, então, à definição de matrizes.

Definição 1.1.

Uma $matriz\ real\ A$ de ordem $m \times n$ é uma tabela de mn números reais, dispostos em m linhas e n colunas, onde m e n são números inteiros positivos.

Uma matriz real de m linhas e n colunas pode ser representada por $A_{m \times n}(\mathbb{R})$. Neste curso, como só trabalharemos com

matrizes reais, usaremos a notação simplificada $A_{m \times n}$, que se lê "A m por n". Também podemos escrever $A=(a_{ij})$, onde $i \in \{1,...,m\}$ é o índice de linha e $j \in \{1,...,n\}$ é o índice de coluna do termo genérico da matriz. Representamos o conjunto de todas as matrizes reais "m por n"por $M_{m\times n}(\mathbb{R})$. Escrevemos os elementos de uma matriz limitados por parênteses, colchetes ou barras duplas.

Os elementos de uma matriz podem ser outras entidades, que não números reais. Podem ser, por exemplo, números complexos, polinômios, outras matrizes etc.

Exemplo 1.1.

a. Uma matriz
$$3 \times 2$$
:
$$\begin{bmatrix} 2 & -3 \\ 1 & 0 \\ \sqrt{2} & 17 \end{bmatrix}$$

b. Uma matriz
$$2 \times 2$$
: $\begin{pmatrix} 5 & 3 \\ -1 & 1/2 \end{pmatrix}$

c. Uma matriz
$$3 \times 1$$
: $\begin{vmatrix} -4 \\ 0 \\ 11 \end{vmatrix}$

As barras simples são usadas para representar determinantes, como veremos na Aula 5.

De acordo com o número de linhas e colunas de uma matriz, podemos destacar os seguintes casos particulares:

- m = 1: matriz linha
- n = 1: matriz
- m = n: matriz quadrada. Neste caso, escrevemos apenas A_n e dizemos que "A é uma matriz quadrada de ordem n".

Representamos o conjunto das matrizes reais quadradas de ordem n por $M_n(\mathbb{R})$ (ou, simplesmente, por M_n).

Exemplo 1.2.

a. Matriz linha
$$1 \times 4$$
: $\begin{bmatrix} 2 & -3 & 4 & 1/5 \end{bmatrix}$

b. Matriz coluna
$$3 \times 1$$
: $\begin{bmatrix} 4 \\ 17 \\ 0 \end{bmatrix}$

c. Matriz quadrada de ordem 2:
$$\begin{bmatrix} 1 & -2 \\ 5 & 7 \end{bmatrix}$$

Os elementos de uma matriz podem ser dados também por fórmulas, como ilustra o próximo exemplo.

Exemplo 1.3.

Vamos construir a matriz $A \in M_{2\times 4}(\mathbb{R})$, $A = (a_{ij})$, tal que

$$a_{ij} = \begin{cases} i^2 + j, \text{ se } i = j\\ i - 2j, \text{ se } i \neq j \end{cases}$$

A matriz procurada é do tipo $A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \end{bmatrix}$.

Seguindo a regra de formação dessa matriz, temos:

$$a_{11} = 1^{2} + 1 = 2$$

$$a_{22} = 2^{2} + 2 = 6$$

$$a_{14} = 1 - 2(4) = -7$$

$$a_{23} = 2 - 2(3) = -4$$

$$a_{12} = 1 - 2(2) = -3$$

$$a_{13} = 1 - 2(3) = -5$$

$$a_{21} = 2 - 2(1) = 0$$

$$a_{24} = 2 - 2(4) = -6$$

$$a_{24} = 2 - 2(4) = -6$$

$$a_{24} = 2 - 2(4) = -6$$

IGUALDADE DE MATRIZES

O próximo passo é estabelecer um critério que nos permita decidir se duas matrizes são ou não iguais. Temos a seguinte definição:

Duas matrizes $A, B \in M_{m \times n}(\mathbb{R}), A = (a_{ij}), B = (b_{ij}),$ são *iguais* quando $a_{ij} = b_{ij}, \forall i \in \{1, ..., m\}, \forall j \in \{1, ..., n\}.$

Exemplo 1.4.

Vamos determinar a,b,c e d para que as matrizes $\begin{bmatrix} 2a & 3b \\ c+d & 6 \end{bmatrix}$ e $\begin{bmatrix} 4 & -9 \\ 1 & 2c \end{bmatrix}$ sejam iguais. Pela definição de igualdade de matrizes, podemos escrever:

$$\begin{bmatrix} 2a & 3b \\ c+d & 6 \end{bmatrix} = \begin{bmatrix} 4 & -9 \\ 1 & 2c \end{bmatrix} \Rightarrow \begin{cases} 2a=4 \\ 3b=-9 \\ c+d=1 \\ 6=2c \end{cases}$$

Daí, obtemos a = 2, b = -3, c = 3 e d = -2.

Numa matriz quadrada $A = (a_{ij}), i, j \in \{1,...n\}$, destacamos os seguintes elementos:

- $diagonal \ principal$: formada pelos termos a_{ii} (isto é, pelos termos com índices de linha e de coluna iguais).
- *diagonal secundária*: formada pelos termos a_{ij} tais que i+j=n+1.

Exemplo 1.5.

Seja

$$A = \left(\begin{array}{rrrr} 3 & -2 & 0 & 1 \\ 5 & 3 & -2 & 7 \\ 1/2 & -3 & \pi & 14 \\ -5 & 0 & -1 & 6 \end{array}\right).$$

A diagonal principal de A é formada por: $3,3,\pi,6$ A diagonal secundária de A é formada por: 1,-2,-3,-5

MATRIZES QUADRADAS ESPECIAIS

No conjunto das matrizes quadradas de ordem n podemos destacar alguns tipos especiais. Seja $A=(a_{ij})\in M_n(\mathbb{R})$. Dizemos que A é uma matriz

- triangular superior, quando $a_{ij} = 0$ se i > j (isto é, possui todos os elementos abaixo da diagonal principal nulos).
- triangular inferior, quando $a_{ij} = 0$ se i < j (isto é, possui todos os elementos acima da diagonal principal nulos).
- diagonal, quando $a_{ij} = 0$ se $i \neq j$ (isto é, possui todos os elementos fora da diagonal principal nulos). Uma matriz

diagonal é, ao mesmo tempo, triangular superior e triangular inferior.

No nosso curso nos referimos aos números reais como *escalares*. Essa denominação é específica da Álgebra Linear.

- escalar, quando $a_{ij} = \left\{ \begin{array}{l} 0, \text{ se } i \neq j \\ k, \text{ se } i = j \end{array} \right.$, para algum $k \in \mathbb{R}$. Isto é, uma matriz escalar é diagonal e possui todos os elementos da diagonal principal iguais a um certo escalar k.
- *identidade*, quando $a_{ij} = \begin{cases} 0, \text{ se } i \neq j \\ 1, \text{ se } i = j \end{cases}$. Isto é, a identidade é uma matriz escalar e possui todos os elementos da diagonal principal iguais a 1. Representamos a matriz identidade de ordem n por I_n .

Exemplo 1.6.

matriz	classificação
$ \left[\begin{array}{ccc} 4 & 1 & 2 \\ 0 & 6 & 3 \\ 0 & 0 & 9 \end{array}\right] $	triangular superior
$ \left[\begin{array}{ccc} 2 & 0 & 0 \\ 0 & 0 & 3 \\ 0 & 0 & 0 \end{array}\right] $	triangular superior
$ \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 0 \end{array}\right] $	triangular superior, triangular inferior, diagonal
$\left[\begin{array}{cc} 0 & 0 \\ -3 & 0 \end{array}\right]$	triangular inferior
$\left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right]$	triangular superior, triangular inferior, diagonal, escalar
$\left[\begin{array}{cc} 5 & 0 \\ 0 & 5 \end{array}\right]$	triangular superior, triangular inferior, diagonal, escalar

Exemplo 1.7.

São matrizes identidade:

$$I_1 = \begin{bmatrix} 1 \end{bmatrix}; I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}; I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}; I_4 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

De modo geral, sendo n um número natural maior que 1, a matriz identidade de ordem n é

$$I_n = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 & 0 \\ 0 & 1 & 0 & \dots & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 & 0 \\ 0 & 0 & 0 & \dots & 0 & 1 \end{bmatrix}$$

Definição 1.2.

A matriz *nula* em $M_{m \times n}(\mathbb{R})$ é a matriz de ordem $m \times n$ que possui todos os elementos iguais a zero.

Exemplo 1.8.

Matriz nula
$$2 \times 3$$
: $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

Matriz nula
$$5 \times 2$$
:
$$\begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Definição 1.3.

Dada $A = (a_{ij}) \in M_{m \times n}(\mathbb{R})$, a *oposta* de A é a matriz $B = (b_{ij}) \in M_{m \times n}(\mathbb{R})$ tal que $b_{ij} = -a_{ij}$, $\forall i \in \{1,...,m\}$, $\forall j \in \{1,...,n\}$. Ou seja, os elementos da matriz oposta de A são os elementos opostos aos elementos de A. Representamos a oposta de A por -A.

Exemplo 1.9.

A oposta da matriz
$$A = \begin{bmatrix} 3 & -1 & 0 \\ 2 & \sqrt{3} & 4 \\ 1 & 0 & -8 \\ -6 & 10 & -2 \end{bmatrix}$$
 é a matriz
$$\begin{bmatrix} -3 & 1 & 0 \\ \hline -7 & 1 & 0 \end{bmatrix}$$

$$-A = \begin{bmatrix} -3 & 1 & 0 \\ -2 & -\sqrt{3} & -4 \\ -1 & 0 & 8 \\ 6 & -10 & 2 \end{bmatrix}.$$

Resumo

Nesta aula, vimos o conceito de matriz e conhecemos seus tipos especiais. Aprendemos a comparar duas matrizes, a identificar a matriz nula e a obter a oposta de uma matriz. Também vimos algumas matrizes quadradas que se destacam por suas características e que serão especialmente úteis no desenvolvimento da teoria.

Exercício 1.1.

1. Escreva a matriz $A = (a_{ij})$ em cada caso:

a.
$$A \notin \text{do tipo } 2 \times 3$$
, $e \ a_{ij} = \left\{ \begin{array}{l} 3i+j, \ \text{se } i=j \\ i-2j, \ \text{se } i \neq j \end{array} \right.$

b.
$$A$$
 é quadrada de ordem 4 e $a_{ij} = \begin{cases} 2i, \text{ se } i < j \\ i - j, \text{ se } i = j \\ 2j, \text{ se } i > j \end{cases}$

- c. $A \in \text{do tipo } 4 \times 2$, e $a_{ij} = \begin{cases} 0, \text{ se } i \neq j \\ 3, \text{ se } i = j \end{cases}$
- d. A é quadrada terceira ordem e $a_{ij} = 3i j + 2$.
- 2. Determine x e y tais que

a.
$$\left[\begin{array}{c} 2x + y \\ 2x - y \end{array} \right] = \left[\begin{array}{c} 11 \\ 9 \end{array} \right]$$

b.
$$\begin{bmatrix} x^2 & y \\ x & y^2 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

Autoavaliação

Você não deve ter sentido qualquer dificuldade para acompanhar esta primeira aula. São apenas definições e exemplos. Se achar conveniente, antes de prosseguir, faça uma segunda leitura, com calma, da teoria e dos exemplos. De qualquer maneira, você sabe que, sentindo necessidade, pode (e deve!) entrar em contato com o tutor da disciplina.

Até a próxima aula!!

RESPOSTAS DOS EXERCÍCIOS

- 1. a. $\begin{bmatrix} 4 & -3 & -5 \\ 0 & 8 & -4 \end{bmatrix}$
 - b. $\begin{bmatrix} 0 & 2 & 2 & 2 \\ 2 & 0 & 4 & 4 \\ 2 & 4 & 0 & 6 \\ 2 & 4 & 6 & 0 \end{bmatrix}$
 - c. $\begin{bmatrix} 3 & 0 \\ 0 & 3 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$
 - d. $\begin{bmatrix} 4 & 3 & 2 \\ 7 & 6 & 5 \\ 10 & 9 & 8 \end{bmatrix}$
- a. x = 5; y = 12.
 - b. x = y = -1

Álgebra Linear I Operações com Matrizes: Transposição, Adição e Multiplicação por Número Real

Aula 2

OPERAÇÕES COM MATRIZES: TRANSPOSIÇÃO, ADIÇÃO E MULTIPLICAÇÃO POR NÚMERO REAL

Objetivos

Ao final desta aula, você deverá ser capaz de:

- 1 obter a matriz transposta de uma matriz dada;
- 2 identificar matrizes simétricas e antissimétricas:
- 3 obter a matriz soma de duas matrizes;
- 4 obter o produto de uma matriz por um número real;
- 5 aplicar as propriedades das operações nos cálculos envolvendo matrizes.

OPERAÇÕES COM MATRIZES

Na aula passada, definimos matrizes e vimos como verificar se duas matrizes são ou não iguais. Nesta aula, iniciamos o estudo das operações com matrizes. É através de operações que podemos obter outras matrizes, a partir de matrizes dadas. A primeira operação com matrizes que estudaremos - a transposição - é *unária*, isto é, aplicada a uma única matriz. A seguir, veremos a adição, que é uma operação *binária*, ou seja, é aplicada a duas matrizes. Finalmente, veremos como multiplicar uma matriz por um número real. Por envolver um elemento externo ao conjunto das matrizes, essa operação é dita *externa*.

TRANSPOSIÇÃO

Dada uma matriz $A \in M_{m \times n}(\mathbb{R})$, $A = (a_{ij})$, a *transposta* de A é a matriz $B \in M_{n \times m}(\mathbb{R})$, $B = (b_{ji})$ tal que $b_{ji} = a_{ij}, \forall i \in \{1,...,m\}, \forall j \in \{1,...,n\}$. Representamos a matriz transposta de A por A^T .

Note que para obter a transposta de uma matriz A, basta escrever as linhas de A como sendo as colunas da nova matriz (ou, equivalentemente, escrever as colunas de A como as linhas da nova matriz.)

Exemplo 2.1.

1. Seja
$$A = \begin{bmatrix} 3 & -2 & 5 \\ 1 & 7 & 0 \end{bmatrix}$$
. A transposta de A é a matriz
$$A^{T} = \begin{bmatrix} 3 & 1 \\ -2 & 7 \\ 5 & 0 \end{bmatrix}$$
.

2. Se
$$M = \begin{bmatrix} -3 & 4 \\ 4 & 9 \end{bmatrix}$$
, então $M^T = \begin{bmatrix} -3 & 4 \\ 4 & 9 \end{bmatrix} = M$.

Comparando uma matriz com sua transposta, podemos definir matrizes simétricas e antissimétricas, como segue:

Definição 2.1.

Uma matriz A é:

- sim'etrica, se $A^T = A$
- antissimétrica, se $A^T = -A$

Segue da definição anterior que matrizes simétricas ou antissimétrica são, necessariamente, quadradas.

Exemplo 2.2.

$$\begin{pmatrix} 3 & -2 & \sqrt{3} \\ -2 & 5 & 1 \\ \sqrt{3} & 1 & 8 \end{pmatrix}, \begin{pmatrix} 19 & 3/2 \\ 3/2 & -7 \end{pmatrix}, e$$

$$\begin{pmatrix} 1 & -2 & 1/5 & 0 \\ -2 & 7 & 9 & -1 \\ 1/5 & 9 & 0 & 8 \\ 0 & -1 & 8 & 4 \end{pmatrix}$$
 são simétricas.

2. A matriz *M*, do Exemplo 2.1, é simétrica.

Note que, numa matriz simétrica, os elementos em posições simétricas em relação à diagonal principal são iguais.

Exemplo 2.3.

$$\left(\begin{array}{ccc} 0 & -1 \\ 1 & 0 \end{array}\right), \quad \left(\begin{array}{ccc} 0 & 2 & -1/2 \\ -2 & 0 & 5 \\ 1/2 & -5 & 0 \end{array}\right), \quad e$$

$$\left(\begin{array}{cccc} 0 & -2 & 1/5 & 0 \\ 2 & 0 & 9 & -1 \\ -1/5 & -9 & 0 & 8 \\ 0 & 1 & -8 & 0 \end{array} \right)$$
são antissimétricas.

Note que uma matriz anti-simétrica tem, necessariamente, todos os elementos da diagonal principal iguais a zero.

ADIÇÃO

Você se lembra do exemplo que demos, na Aula 1, com a relação de nomes e notas da turma de Lugar Lindo? Cada aluno tem seu nome associado a um número (o número da linha). Assim, sem perder qualquer informação sobre os alunos, podemos representar apenas as notas das avaliações numa matriz 5 por 4:

$$A = \begin{bmatrix} 4,5 & 6,2 & 7,0 & 5,5 \\ 7,2 & 6,8 & 8,0 & 10,0 \\ 8,0 & 7,5 & 5,9 & 7,2 \\ 9,2 & 8,5 & 7,0 & 8,0 \\ 6,8 & 7,2 & 6,8 & 7,5 \end{bmatrix}$$

Vamos supor que as provas tenham sido submetidas a uma revisão e que as seguintes alterações sejam propostas para as notas:

$$R = \begin{bmatrix} 0.5 & 0.0 & 0.0 & 0.2 \\ -0.2 & 0.5 & 0.5 & 0.0 \\ 0.0 & 0.2 & 0.6 & -0.1 \\ 0.0 & 0.5 & 0.0 & 0.2 \\ 0.2 & 0.0 & 0.0 & 0.3 \end{bmatrix}$$

A matriz N, com as notas definitivas, é a matriz soma das matrizes A e R, formada pelas somas de cada nota com seu fator de correção, isto é, cada termo de A com seu elemento correspondente em R:

$$N = A + R = \begin{bmatrix} 4,5+0,5 & 6,2+0,0 & 7,0+0,0 & 5,5+0,2 \\ 7,2+(-0,2) & 6,8+0,5 & 8,0+0,5 & 10,0+0,0 \\ 8,0+0,0 & 7,5+0,2 & 5,9+0,6 & 7,2+(-0,1) \\ 9,2+0,0 & 8,5+0,5 & 7,0+0,0 & 8,0+0,2 \\ 6,8+0,2 & 7,2+0,0 & 6,8+0,0 & 7,5+0,3 \end{bmatrix}$$

Logo,
$$N = \begin{bmatrix} 5.0 & 6.2 & 7.0 & 5.7 \\ 7.0 & 7.3 & 8.5 & 10.0 \\ 8.0 & 7.7 & 6.5 & 7.1 \\ 9.2 & 9.0 & 7.0 & 8.2 \\ 7.0 & 7.2 & 6.8 & 7.8 \end{bmatrix}$$
.

Definição 2.2.

Dadas as matrizes $A=(a_{ij}), B=(b_{ij})\in M_{m\times n}(\mathbb{R})$, a matriz soma de A e B é a matriz $C=(c_{ij})\in M_{m\times n}(\mathbb{R})$ tal que

$$c_{ij} = a_{ij} + b_{ij}, \ \forall i \in \{1, ..., m\}, \ \forall j \in \{1, ..., n\}$$

Representamos a matriz soma de A e B por A+B. Em palavras, cada elemento de A+B é a soma dos elementos correspondentes das matrizes A e B. A diferença de A e B, indicada por A-B, é a soma de A com a oposta de B, isto é: A-B=A+(-B).

Exemplo 2.4.

$$1. \begin{bmatrix} -5 & 4 \\ 2 & 1 \end{bmatrix} + \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} -4 & 2 \\ 2 & 4 \end{bmatrix}$$

$$2. \begin{bmatrix} 3 & 8 \\ -1 & 4 \\ 7 & 2 \end{bmatrix} - \begin{bmatrix} 2 & -1 \\ 7 & 2 \\ -3 & 6 \end{bmatrix} = \begin{bmatrix} 3 & 8 \\ -1 & 4 \\ 7 & 2 \end{bmatrix} + \begin{bmatrix} -2 & 1 \\ -7 & -2 \\ 3 & -6 \end{bmatrix} = \begin{bmatrix} 1 & 9 \\ -8 & 2 \\ 10 & -4 \end{bmatrix}$$

MULTIPLICAÇÃO POR UM NÚMERO REAL

Seja
$$A = \begin{bmatrix} 3 & 1 \\ 2 & -4 \end{bmatrix}$$
. Queremos obter $2A$:

$$2A = A + A = \begin{bmatrix} 3 & 1 \\ 2 & -4 \end{bmatrix} + \begin{bmatrix} 3 & 1 \\ 2 & -4 \end{bmatrix} = \begin{bmatrix} 2 \times 3 & 2 \times 1 \\ 2 \times 2 & 2 \times (-4) \end{bmatrix}$$

Em palavras, o *produto* da matriz A pelo número real 2 é a matriz obtida multiplicando-se cada elemento de *A* por 2.

Voltemos à nossa tabela de notas dos alunos do CEDERJ. Suponhamos que, para facilitar o cálculo das médias, queiramos trabalhar numa escala de 0 a 100 (em vez de 0 a 10, como agora). Para isso, cada nota deverá ser multiplicada por 10. Teremos, então, a seguinte matriz:

$$10N = \begin{bmatrix} 50 & 62 & 70 & 57 \\ 70 & 73 & 85 & 100 \\ 80 & 77 & 65 & 71 \\ 92 & 90 & 70 & 82 \\ 70 & 72 & 68 & 78 \end{bmatrix}$$

Você verá que, em Álgebra Linear, lidamos com dois tipos de objeto matemático: os escalares (que, neste curso, serão os números reais) e os vetores. Podemos, então, definir a multiplicação de uma matriz por um número real (ou, como é usual dizer no âmbito da Álgebra Linear, por um *escalar*).

Definição 2.3.

Dada $A = (a_{ij}) \in M_{m \times n}(\mathbb{R})$ e $\alpha \in \mathbb{R}$, a matriz *produto de A por* α é a matriz $C = (c_{ij}) \in M_{m \times n}(\mathbb{R})$ tal que

$$c_{ij} = \alpha a_{ij}, \forall i \in \{1, ..., m\}, \forall j \in \{1, ...n\}$$

Representamos a matriz produto de A por α por αA .

Exemplo 2.5.

Dadas $A = \begin{bmatrix} -5 & 2 \\ 1 & 4 \end{bmatrix}$, $B = \begin{bmatrix} 0 & 6 \\ -3 & 8 \end{bmatrix}$ e $C = \begin{bmatrix} 6 & -1 \\ 3 & 5 \end{bmatrix}$, temos:

1.
$$2A = \begin{bmatrix} -10 & 4 \\ 2 & 8 \end{bmatrix}$$

2.
$$\frac{1}{3}B = \begin{bmatrix} 0 & 2 \\ -1 & 8/3 \end{bmatrix}$$

3.
$$A+2B-3C = \begin{bmatrix} -5 & 2 \\ 1 & 4 \end{bmatrix} + \begin{bmatrix} 0 & 12 \\ -6 & 16 \end{bmatrix} + \begin{bmatrix} -18 & 3 \\ -9 & -15 \end{bmatrix} = \begin{bmatrix} -23 & 17 \\ -14 & 5 \end{bmatrix}$$

PROPRIEDADES DAS OPERAÇÕES COM MATRIZES

Você talvez já tenha se questionado quanto à necessidade ou utilidade de se listar e provar as propriedades de uma dada operação. Comutatividade, associatividade... aparentemente sempre as mesmas palavras, propriedades sempre válidas... No entanto, são as propriedades que nos permitem estender uma operação que foi definida para duas matrizes, para o caso de somar três ou mais. Elas também flexibilizam e facilitam os cálculos, de modo que quanto mais as dominamos, menos trabalho "mecânico" temos que desenvolver. Veremos agora as propriedades válidas para as operações já estudadas.

PROPRIEDADE DA TRANSPOSIÇÃO DE MATRIZES

(t1) Para toda matriz $A \in M_{m \times n}(\mathbb{R})$, vale que $A^{T^T} = A$.

A validade dessa propriedade é clara, uma vez que escrevemos as linhas de *A* como colunas e, a seguir, tornamos a escrever essas colunas como linhas, retornando à configuração original. Segue abaixo a demonstração formal dessa propriedade:

Seja $A = (a_{ij}) \in M_{m \times n}(\mathbb{R})$. Então $A^T = B = (b_{ji}) \in M_{n \times m}(\mathbb{R})$ tal que $b_{ji} = a_{ij}$, (ou, equivalentemente, $b_{ij} = a_{ji}$), $\forall i \in \{1, ...m\}$, $\forall j \in \{1, ..., n\}$. Daí, $A^{T^T} = B^T = C = (c_{ij}) \in M_{m \times n}(\mathbb{R})$ tal que $c_{ij} = b_{ji} = a_{ij}, \forall i \in \{1, ..., m\}$, $\forall j \in \{1, ..., n\}$. Logo, $C = B^T = A^{T^T} = A$.

PROPRIEDADES DA ADIÇÃO DE MATRIZES

Para demonstrar as propriedades da adição de matrizes, usaremos as propriedades correspondentes, válidas para a adição de números reais.

Sejam $A = (a_{ij}), B = (b_{ij})$ e $C = (c_{ij})$ matrizes quaisquer em $M_{m \times n}(\mathbb{R})$. Valem as seguintes propriedades.

(a1) *Comutativa*: A + B = B + A

De fato, sabemos que $A + B = (s_{ij})$ é também uma matriz $m \times n$ cujo elemento genérico é dado por: $s_{ij} = a_{ij} + b_{ij}$, para

todo i = 1,...,m e todo j = 1,...,n. Como a adição de números reais é comutativa, podemos escrever $s_{ij} = b_{ij} + a_{ij}$, para todo i = 1,...,m e todo j = 1,...,n. Isto é, A + B = B + A.

Em palavras: a ordem como consideramos as parcelas não altera a soma de duas matrizes.

(a2) *Associativa*:
$$(A + B) + C = A + (B + C)$$

De fato, o termo geral s_{ij} de (A+B)+C é dado por $s_{ij}=(a+b)_{ij}+c_{ij}=(a_{ij}+b_{ij})+c_{ij}$, para todo i=1,...,m e todo j=1,...,n. Como a adição de números reais é associativa, podemos escrever $s_{ij}=a_{ij}+(b_{ij}+c_{ij})=a_{ij}+(b+c)_{ij}$, para todo i=1,...,m e todo j=1,...,n. Ou seja, s_{ij} é também o termo geral da matriz obtida de A+(B+C). Isto é, (A+B)+C=A+(B+C).

Em palavras: podemos estender a adição de matrizes para o caso de três parcelas, associando duas delas. A partir dessa propriedade, podemos agora somar três ou mais matrizes.

(a3) *Existência do elemento neutro*: Existe $O \in M_{m \times n}(\mathbb{R})$ tal que A + O = A.

De fato, seja O a matriz nula de $M_{m \times n}(\mathbb{R})$, isto é, $O = (o_{ij})$, onde $o_{ij} = 0$, para todo i = 1, ..., m e todo j = 1, ..., n. Sendo s_{ij} o termo geral de A + O, temos $s_{ij} = a_{ij} + o_{ij} = a_{ij} + 0 = a_{ij}$, para todo i = 1, ..., m e todo j = 1, ..., n. Ou seja, A + O = A.

Em palavras: na adição de matrizes a matriz nula desempenha o mesmo papel que o zero desempenha na adição de números reais.

O elemento oposto é também chamado elemento *simétrico* ou *inverso aditivo*. (a4) Da existência do elemento oposto : Existe $(-A) \in M_{m \times n}(\mathbb{R})$ tal que A + (-A) = O.

De fato, sabemos que cada elemento de -A é o oposto do elemento correspondente de A. Então, sendo s_{ij} o termo geral de A+(-A), temos $s_{ij}=a_{ij}+(-a_{ij})=0=o_{ij}$, para todo i=1,...,m e todo j=1,...,n. Isto é, A+(-A)=O.

Em palavras: Cada matriz possui, em correspondência, uma matriz de mesma ordem tal que a soma das duas é a matriz nula dessa ordem.

(a5) Da soma de transpostas: $A^T + B^T = (A + B)^T$

De fato, seja s_{ij} o termo geral de $A^T + B^T$. Então, para todo

i = 1, ..., m e todo j = 1, ..., n, $s_{ij} = a_{ji} + b_{ji} = (a+b)ji$, que é o termo geral de $(A+B)^T$. Ou seja, $A^T + B^T = (A+B)^T$.

Em palavras: A soma das transpostas é a transposta da soma. Mas, vendo sob outro ângulo: a transposição de matrizes é distributiva em relação à adição.

PROPRIEDADES DA MULTIPLICAÇÃO DE UMA MATRIZ POR UM ESCALAR

Você verá que, também neste caso, provaremos a validade dessas propriedades usando as propriedades correspondentes da multiplicação de números reais.

Sejam $A = (a_{ij}), B = (b_{ij}) \in M_{m \times n}(\mathbb{R}), \ \alpha, \beta, \gamma \in \mathbb{R}$. Valem as seguintes propriedades:

$$(mn1) (\alpha \beta) A = \alpha (\beta A)$$

De fato, seja p_{ij} o termo geral de $(\alpha\beta)A$, isto é, $p_{ij} = ((\alpha\beta)a)_{ij} = (\alpha\beta)a_{ij} = \alpha(\beta a_{ij}) = (\alpha(\beta a))_{ij}$, para todo i = 1, ..., m e todo j = 1, ..., n. Ou seja, p_{ij} é também o termo geral de $\alpha(\beta A)$. Logo, $(\alpha\beta)A = \alpha(\beta A)$.

Exemplo 2.6.

Dada
$$A \in M_{m \times n}(\mathbb{R})$$
, $12A = 3(4A) = 2(6A)$.

(mn2)
$$(\alpha + \beta)A = \alpha A + \beta A$$

De fato, seja p_{ij} o termo geral de $(\alpha + \beta)A$, isto é, $p_{ij} = ((\alpha + \beta)a)_{ij} = (\alpha + \beta)a_{ij} = \alpha a_{ij} + \beta a_{ij} = (\alpha a)_{ij} + (\beta a)_{ij}$, para todo i = 1, ..., m e todo j = 1, ..., n. Ou seja, p_{ij} é também o termo geral de $\alpha A + \beta A$. Logo, $(\alpha + \beta)A = \alpha A + \beta A$.

Exemplo 2.7.

Dada
$$A \in M_{m \times n}(\mathbb{R})$$
, $12A = 7A + 5A = 8A + 4A$.

(mn3)
$$\alpha(A+B) = \alpha A + \alpha B$$

De fato, seja p_{ij} o termo geral de $\alpha(A+B)$. Então, para todo i=1,...,m e todo j=1,...,n, temos $p_{ij}=(\alpha(a+b))_{ij}=\alpha(a+b)_{ij}=\alpha(a_{ij}+b_{ij})=\alpha a_{ij}+\alpha b_{ij}=(\alpha a)_{ij}+(\alpha b)_{ij}$. Ou

seja, p_{ij} é também o termo geral de $\alpha A + \alpha B$. Logo, $\alpha (A + B) = \alpha A + \alpha B$.

Exemplo 2.8.

Dadas $A, B \in M_{m \times n}(\mathbb{R}), 5(A+B) = 5A + 5B.$

$$(mn4) 1A = A$$

De fato, sendo p_{ij} o termo geral de 1A, temos $p_{ij}=(1a)_{ij}=1a_{ij}=a_{ij}$, para todo i=1,...,m e todo j=1,...,n. Isto é, 1A=A

$$(mn5) \alpha A^T = (\alpha A)^T$$

De fato, seja p_{ij} o termo geral de αA^T . Então $p_{ij} = \alpha a_{ji} = (\alpha a)_{ji}$, ou seja, p_{ij} é também o termo geral de $(\alpha A)^T$.

Exemplo 2.9.

Dadas
$$A = \begin{pmatrix} 2 & 1 \\ 0 & -1 \end{pmatrix}$$
 e $B = \begin{pmatrix} 4 & 0 \\ -2 & 6 \end{pmatrix}$, vamos determinar $3(2A^T - \frac{1}{2}B)^T$. Para isso, vamos usar as propriedades vistas nesta aula e detalhar cada passo, indicando qual a pro-

priedade utilizada. $3 \left(2A^T - \frac{1}{2}B\right)^T \stackrel{a5}{=} 3 \left[\left(2A^T\right)^T - \left(\frac{1}{2}B\right)^T\right]$ $\stackrel{mn5}{=} 3 \left[2\left(A^T\right)^T - \frac{1}{2}B^T\right]$ $\stackrel{t1}{=} 3\left(2A - \frac{1}{2}B^T\right)$ $\stackrel{mn3}{=} 3(2A) - 3\left(\frac{1}{2}B^T\right)$ $\stackrel{mn1}{=} (3.2)A - \left(3.\frac{1}{2}\right)B^T$ $= 6A - \frac{3}{2}B^T$

$$\stackrel{mn1}{=} (3.2)A - (3.\frac{1}{2})B^{T}$$

$$= 6A - \frac{3}{2}B^{T}$$

$$= 6 \begin{pmatrix} 2 & 1 \\ 0 & -1 \end{pmatrix} - \frac{3}{2} \begin{pmatrix} 4 & -2 \\ 0 & 6 \end{pmatrix}$$

$$= \begin{pmatrix} 12 & 6 \\ 0 & -6 \end{pmatrix} - \begin{pmatrix} 6 & -3 \\ 0 & 9 \end{pmatrix}$$

$$= \begin{pmatrix} 6 & 9 \\ 0 & 15 \end{pmatrix}$$

É claro que você, ao efetuar operações com matrizes, não precisará explicitar cada propriedade utilizada (a não ser

que o enunciado da questão assim o exija!) nem resolver a questão passo-a-passo. O importante é constatar que são as propriedades das operações que nos possibilitam reescrever a matriz pedida numa forma que nos pareça mais "simpática".

Resumo

Nesta aula, começamos a operar com as matrizes. Vimos como obter a transposta de uma matriz e a reconhecer matrizes simétricas e antissimétricas. A seguir, aprendemos a somar duas matrizes e a multiplicar uma matriz por um escalar. Finalizamos com o estudo das propriedades das operações vistas. A aula ficou um pouco longa, mas é importante conhecer as propriedades válidas para cada operação estudada.

Exercício 2.1.

- 1. Obtenha a transposta da matriz $A \in M_{2\times 4}(\mathbb{R}), A = (a_{ij}),$ tal que $a_{ij} = \begin{cases} 2i+j, \text{ se } i=j\\ i^2-j, \text{ se } i\neq j \end{cases}$
- 2. Determine $a \in b$ para que a matriz $\begin{bmatrix} 2 & 4 & 2a b \\ a + b & 3 & 0 \\ -1 & 0 & 5 \end{bmatrix}$ seja simétrica.
- 3. Mostre que a soma de duas matrizes simétricas é uma matriz simétrica.
- 4. Determine a, b, c, x, y, z para que a matriz

$$\begin{bmatrix} 2x & a+b & a-2b \\ -6 & y^2 & 2c \\ 5 & 8 & z-1 \end{bmatrix}$$
 seja antissimétrica.

5. Sendo
$$A = \begin{bmatrix} 2 & 1 \\ 0 & -1 \\ 3 & 2 \end{bmatrix}$$
 e $B = \begin{bmatrix} 0 & 1 \\ 7 & 3 \\ -4 & 5 \end{bmatrix}$, determine $A + B$.

6. Determine a, b, e c para que

$$\begin{bmatrix} a & 3 & 2a \\ c & 0 & -2 \end{bmatrix} + \begin{bmatrix} b & -3 & -1 \\ 1 & 4 & 3 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 5 \\ 3 & 4 & 1 \end{bmatrix}.$$

- 7. Dada $A = \begin{bmatrix} 3 & -5 \\ -4 & 2 \end{bmatrix}$, determine a matriz B tal que A + B é a matriz nula de $M_2(\mathbb{R})$.
- 8. Considere as matrizes $A = \begin{bmatrix} 5 \\ -1 \\ 2 \end{bmatrix}$, $B = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, e $C = \begin{bmatrix} 0 & -2 & 1 \end{bmatrix}$. Determine a matriz X em cada caso:
 a. X = 2A 3Bb. $X + A = B C^T 2X$

c.
$$X + B^T = 3A^T + \frac{1}{2}C$$

- 9. Sendo $A = \begin{bmatrix} 9 & 4 & 2 \\ 6 & 12 & 11 \end{bmatrix}$ e $B = \begin{bmatrix} -8 & 7 & -9 \\ -12 & -19 & -2 \end{bmatrix}$, determine as matrizes X e Y tais que $\begin{cases} 2X + Y = A \\ X 2Y = B \end{cases}$
- 10. Sendo $A, B \in M_{m \times n}(\mathbb{R})$, use as propriedades vistas nesta aula para simplificar a expressão

$$3(2A^{T}-B)^{T}+5(\frac{1}{5}B^{T}-A^{T}+\frac{3}{5}B)^{T}.$$

Autoavaliação

Você deve se sentir à vontade para operar com matrizes nas formas vistas nesta aula: transpor, somar e multiplicar por um escalar são operações de realização simples que seguem a nossa intuição. Além disso, é importante que você reconheça a utilidade das propriedades no sentido de nos dar mobilidade na hora de operarmos com matrizes. Propriedades de operações não são para serem decoradas, mas apreendidas, assimiladas, utilizadas ao pôr a teoria em prática!

Se você sentiu qualquer dificuldade ao acompanhar a aula ou ao resolver os exercícios propostos, peça auxílio ao tutor da teoria. O importante é que caminhemos juntos nesta jornada! Até a próxima aula!!

RESPOSTAS DOS EXERCÍCIOS

$$1. \begin{bmatrix} 3 & 3 \\ -1 & 6 \\ -2 & 1 \\ -3 & 0 \end{bmatrix}$$

2.
$$a = 1$$
; $b = 3$

4.
$$a = \frac{7}{3}$$
; $b = \frac{11}{3}$; $c = -4$; $x = 0$; $y = 0$; $z = 1$

$$5. \begin{bmatrix} 2 & 2 \\ 7 & 2 \\ -1 & 7 \end{bmatrix}$$

6.
$$a = 3$$
; $b = -1$; $c = 2$

$$7. \left[\begin{array}{rr} -3 & 5 \\ 4 & -2 \end{array} \right]$$

8. a.
$$\begin{bmatrix} 7 \\ -8 \\ -5 \end{bmatrix}$$
 b. $\begin{bmatrix} \frac{-4}{3} \\ \frac{5}{3} \\ 0 \end{bmatrix}$ c. $\begin{bmatrix} 14 & -6 & \frac{7}{2} \end{bmatrix}$

9.
$$X = \begin{bmatrix} 2 & 3 & -1 \\ 0 & 1 & 4 \end{bmatrix}$$
; $Y = \begin{bmatrix} 5 & -2 & 4 \\ 6 & 10 & 3 \end{bmatrix}$

10.
$$A + B$$

Álgebra Linear I | Operações com Matrizes: Multiplicação

Aula 3

OPERAÇÕES COM MATRIZES: MULTIPLICAÇÃO

Objetivos

Ao final desta aula, você deverá ser capaz de:

- 1 reconhecer quando é possível multiplicar duas matrizes;
- 2 obter a matriz produto de duas matrizes;
- aplicar as propriedades da multiplicação de matrizes;
- 4 identificar matrizes inversíveis.

OPERAÇÕES COM MATRIZES: MULTI-PLICAÇÃO

Se você já foi "apresentado" à multiplicação de matrizes, pode ter se perguntado por que a definição foge tanto daquilo que nos pareceria mais fácil e "natural": simplesmente multiplicar os termos correspondentes das duas matrizes (que, para isso, deveriam ser de mesma ordem).

Poderia ser assim? Poderia!

Então, por que não é?

Em Matemática, cada definição é feita de modo a possibilitar o desenvolvimento da teoria de forma contínua e coerente. É por essa razão que definimos, por exemplo, 0! = 1 e $a^0 = 1$, $(a \neq 0)$.

Não iríamos muito longe, no estudo das matrizes, caso a multiplicação fosse definida "nos moldes" da adição. Você verá, nesta aula, o significado dessa operação, no modo como é definida. Mais tarde, quando estudarmos transformações lineares (no Módulo 2), ficará ainda mais evidente a importância de multiplicarmos matrizes da maneira como veremos a seguir.

Venha conosco!

Vamos voltar aos nossos alunos de Lugar Lindo. Já é tempo de calcular suas notas finais!

A última matriz obtida (na Aula 2) fornecia as notas numa escala de 0 a 100:

$$N' = \begin{bmatrix} 50 & 62 & 70 & 57 \\ 70 & 73 & 85 & 100 \\ 80 & 77 & 65 & 71 \\ 92 & 90 & 70 & 82 \\ 70 & 72 & 68 & 78 \end{bmatrix}$$

Lembrando: as duas primeiras colunas indicam as notas das avaliações a distância e as duas últimas, as notas das avaliações presenciais dos alunos Ana, Beatriz, Carlos, Daniela e Edson, nessa ordem.

Vamos supor que as avaliações a distância tenham, cada uma, peso 1, num total de 10. Isto é, cada uma colabora com $\frac{1}{10}$ (ou 10%) da nota final.

O caso 0º é mais delicado do que parece. Se você tem interesse nesse problema, vai gostar de ler o artigo de Elon Lages Lima, na Revista do Professor de Matemática (RPM), n. 7.

Para completar, cada avaliação presencial terá peso 4, ou seja, representará $\frac{4}{10}$ (ou 40%) da nota final.

Então, a nota final de cada aluno será dada por:

$$NF = \frac{10}{100}AD1 + \frac{10}{100}AD2 + \frac{40}{100}AP1 + \frac{40}{100}AP2$$

Em vez de escrever uma expressão como essa para cada um dos 5 alunos, podemos construir uma matriz-coluna *P* contendo os pesos das notas, na ordem como aparecem no cálculo de *NF*:

$$P = \begin{bmatrix} 10/100 \\ 10/100 \\ 40/100 \\ 40/100 \end{bmatrix}$$

e efetuar a seguinte operação:

$$N'.P = \begin{bmatrix} 50 & 62 & 70 & 57 \\ 70 & 73 & 85 & 100 \\ 80 & 77 & 65 & 71 \\ 92 & 90 & 70 & 82 \\ 70 & 72 & 68 & 78 \end{bmatrix} \cdot \begin{bmatrix} 10/100 \\ 10/100 \\ 40/100 \end{bmatrix} = \begin{bmatrix} \frac{10}{100}.50 + \frac{10}{100}.62 + \frac{40}{100}.70 + \frac{40}{100}.57 \\ \frac{10}{100}.70 + \frac{10}{100}.73 + \frac{40}{100}.85 + \frac{40}{100}.100 \\ \frac{10}{100}.80 + \frac{10}{100}.77 + \frac{40}{100}.65 + \frac{40}{100}.71 \\ \frac{10}{100}.92 + \frac{10}{100}.90 + \frac{40}{100}.70 + \frac{40}{100}.82 \\ \frac{10}{100}.70 + \frac{10}{100}.72 + \frac{40}{100}.68 + \frac{40}{100}.78 \end{bmatrix} = \begin{bmatrix} 62 \\ 88 \\ 70 \\ 79 \\ 73 \end{bmatrix}$$

O que fizemos: tomamos duas matrizes tais que o número de termos em cada linha da primeira é igual ao número de termos de cada coluna da segunda. Ou seja, o número de colunas da primeira coincide com o número de linhas da segunda (4, no nosso exemplo).

Dessa forma, podemos multiplicar os pares de elementos, "varrendo", simultaneamente, uma linha da 1^{a} matriz e uma coluna da 2^{a} . Depois, somamos os produtos obtidos.

Note que, ao considerarmos a i-ésima linha (da 1^{a} matriz) e a j-ésima coluna (da 2^{a}), geramos o elemento na posição ij da matriz produto.

Formalmente, temos a seguinte definição:

Definição 3.1.

Sejam $A=(a_{ik})\in M_{m\times p}(\mathbb{R})$ e $B=(b_{kj})\in M_{p\times n}(\mathbb{R})$. A matriz produto de A por B é a matriz $AB=(c_{ij})\in M_{m\times n}(\mathbb{R})$ tal que

$$c_{ij} = \sum_{k=1}^{p} a_{ik}.b_{kj}, i = 1,...,m; j = 1,...,n$$

Exemplo 3.1.

Sejam
$$A = \begin{bmatrix} 3 & 2 & -1 \\ 4 & 0 & 7 \end{bmatrix}$$
 e $B = \begin{bmatrix} 1 & 3 & 10 & 2 \\ -1 & 5 & 0 & 5 \\ 2 & 6 & 4 & -2 \end{bmatrix}$.

Como A é do tipo 2×3 e B é do tipo $\overline{3} \times 4$, <u>existe</u> a matriz AB e é do tipo 2×4 :

$$AB = \begin{bmatrix} 3 & 2 & -1 \\ 4 & 0 & 7 \end{bmatrix} \begin{bmatrix} 1 & 3 & 10 & 2 \\ -1 & 5 & 0 & 5 \\ 2 & 6 & 4 & -2 \end{bmatrix} =$$

$$= \begin{bmatrix} 3-2-2 & 9+10-6 & 30+0-4 & 6+10+2 \\ 4+0+14 & 12+0+42 & 40+0+28 & 8+0-14 \end{bmatrix} =$$

$$= \begin{bmatrix} -1 & 13 & 26 & 18 \\ 18 & 54 & 68 & -6 \end{bmatrix}$$

Observe que, neste caso, não é possível efetuar BA.

A seguir, veremos alguns exemplos e, a partir deles, tiraremos algumas conclusões interessantes a respeito da multiplicação de matrizes.

Exemplo 3.2.

Sejam
$$A = \begin{bmatrix} 2 & 4 \\ 3 & -1 \end{bmatrix}$$
 e $B = \begin{bmatrix} 3 & 2 \\ 5 & 6 \end{bmatrix}$. Então

$$AB = \begin{bmatrix} 2 & 4 \\ 3 & -1 \end{bmatrix} \begin{bmatrix} 3 & 2 \\ 5 & 6 \end{bmatrix} = \begin{bmatrix} 6+20 & 4+24 \\ 9-5 & 6-6 \end{bmatrix} = \begin{bmatrix} 26 & 28 \\ 4 & 0 \end{bmatrix}$$

$$BA = \begin{bmatrix} 3 & 2 \\ 5 & 6 \end{bmatrix} \begin{bmatrix} 2 & 4 \\ 3 & -1 \end{bmatrix} = \begin{bmatrix} 6+6 & 12-2 \\ 10+18 & 20-6 \end{bmatrix} = \begin{bmatrix} 12 & 10 \\ 28 & 14 \end{bmatrix}.$$

Note que o produto de duas matrizes quadradas de mesma ordem n existe e é também uma matriz quadrada de ordem n. Assim, a multiplicação pôde ser efetuada nos dois casos, isto é, nas duas ordens possíveis, mas as matrizes AB e BA são diferentes.

Exemplo 3.3.

Sejam
$$A=\left(\begin{array}{cc}1&2\\3&4\end{array}\right)$$
 e $B=\left(\begin{array}{cc}1&4\\6&7\end{array}\right)$. Temos que

$$AB = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 1 & 4 \\ 6 & 7 \end{pmatrix} = \begin{pmatrix} 1+12 & 4+14 \\ 3+24 & 12+28 \end{pmatrix} = \begin{pmatrix} 13 & 18 \\ 27 & 40 \end{pmatrix}$$

e

$$BA = \begin{pmatrix} 1 & 4 \\ 6 & 7 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 1+12 & 2+16 \\ 6+21 & 12+28 \end{pmatrix} = \begin{pmatrix} 13 & 18 \\ 27 & 40 \end{pmatrix}.$$

Neste caso, AB = BA. Quando isso ocorre, dizemos que as matrizes A e B comutam.

Exemplo 3.4.

Consideremos as matrizes
$$A = \begin{bmatrix} 3 & 2 & 1 \\ -4 & 6 & 5 \end{bmatrix}$$
 e $B = \begin{bmatrix} 4 \\ -19 \\ 26 \end{bmatrix}$.

Efetuando AB, obtemos a matriz $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$.

Note que, diferentemente do que ocorre com os números reais, quando multiplicamos matrizes, o produto pode ser a matriz nula, sem que qualquer dos fatores seja a matriz nula.

Exemplo 3.5.

Vamos calcular
$$AB$$
, sendo $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ e $B = \begin{pmatrix} -2 & 1 \\ 3/2 & -1/2 \end{pmatrix}$. Temos que
$$AB = \begin{pmatrix} -2+3 & 1-1 \\ -6+6 & 3-2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_2.$$

Matrizes inversíveis também são chamadas de invertíveis ou de não-singulares. Quando isso ocorre, isto é, quando o produto de duas matrizes *A* e *B* quadradas, é a identidade (obviamente, de mesma ordem das matrizes), dizemos que *A* é *inversível* e que *B* é a sua *inversa*.

Uma matriz inversível sempre comuta com sua inversa. Você pode verificar isso, calculando *BA*. Na próxima aula, estudaremos um método bastante eficiente para determinar, caso exista, a matriz inversa de uma matriz dada.

PROPRIEDADES DA MULTIPLICAÇÃO DE MATRIZES

i. (AB)C = A(BC), $\forall A \in M_{m \times n}(\mathbb{R})$, $B \in M_{n \times p}(\mathbb{R})$, $C \in M_{p \times q}(\mathbb{R})$. Isto é, a multiplicação de matrizes é associativa.

De fato, sejam $A = (a_{ij})$, $B = (b_{jk})$ e $C = (c_{kl})$. O termo de índices ik da matriz AB é dado pela expressão $\sum_{j=1}^{n} a_{ij}b_{jk}$. Então, o termo de índices il da matriz (AB)C é dado por $\sum_{k=1}^{p} \left(\sum_{j=1}^{n} a_{ij}b_{jk}\right)c_{kl} = \sum_{j=1}^{n} a_{ij}\left(\sum_{k=1}^{p} b_{jk}c_{kl}\right)$, que é o termo de índices il da matriz A(BC), pois $\sum_{k=1}^{p} b_{jk}c_{kl}$ é o termo de índices jl da matriz BC. Logo, (AB)C = A(BC).

ii. A(B+C) = AB + AC, $\forall A \in M_{m \times n}(\mathbb{R})$, $B, C \in M_{n \times p}(\mathbb{R})$. Isto é, a multiplicação de matrizes é distributiva em relação à adição de matrizes.

De fato, sejam $A = (a_{ij}), B = (b_{jk})$ e $C = (c_{jk})$. O termo de índices jk de B + C é dado por $(b_{jk} + c_{jk})$. Então, o de índices ik da matriz A(B + C) é $\sum_{j=1}^{n} a_{ij}(b_{jk} + c_{jk}) = \sum_{j=1}^{n} \left[(a_{ij}b_{jk}) + (a_{ij}c_{jk}) \right] = \sum_{j=1}^{n} (a_{ij}b_{jk}) + \sum_{j=1}^{n} (a_{ij}c_{jk}),$

que é o termo de índices ik da matriz dada por AB + AC. Isto é, A(B+C) = AB + AC.

De forma análoga, prova-se que (A + B)C = AC + BC.

iii. $\lambda(AB) = (\lambda A)B = A(\lambda B), \forall \lambda \in \mathbb{R}, \forall A \in M_{m \times n}(\mathbb{R}), \forall B \in M_{n \times p}(\mathbb{R}).$

De fato, sejam $A=(a_{ij})$ e $B=(b_{jk})$. O termo de índices ik de $\lambda(AB)$ é dado por $\lambda\left(\sum_{j=1}^n a_{ij}b_{jk}\right)=\sum_{j=1}^n \lambda(a_{ij}b_{jk})=\sum_{j=1}^n \lambda(a_{ij}b_{jk})$ que é o termo de índices ik de $(\lambda A)B$. Isto é, $\lambda(AB)=(\lambda A)B$. De forma análoga, prova-se que $\lambda(AB)=A(\lambda B)$. Logo, $\lambda(AB)=(\lambda A)B=A(\lambda B)$.

iv. Dada $A \in M_{m \times n}(\mathbb{R})$, $I_m A = AI_n = A$.

De fato, sejam $A = (a_{ij})$ e $I_m = \delta_{ij}$, onde $\delta_{ij} = \begin{cases} 1, \text{ se } i = j \\ 0, \text{ se } i \neq j \end{cases}$. Então, o termo de índices ij de $I_m A$ é dado por $\sum_{k=1}^n \delta_{ik} a_{kj} = \delta_{i1} a_{1j} + \delta_{i2} a_{2j} + \ldots + \delta_{ii} a_{ij} + \ldots + \delta_{in} a_{nj} = 0.a_{1j} + 0.a_{2j} + \ldots + 1.a_{ij} + \ldots + 0a_{nj} = a_{ij}$, que é o termo de índices ij de A. Logo, $I_m A = A$. Analogamente, prova-se que $AI_n = A$. Isto é, $I_m A = AI_n = A$.

A função δ_{ij} assim definida é chamada delta de Kronecker nos índices i e j.

v. Dadas $A \in M_{m \times n}(\mathbb{R}), B \in M_{n \times p}(\mathbb{R}), (AB)^T = B^T A^T$.

De fato, sejam $A=(a_{ij})$ e $B=(b_{jk})$. O termo de índices ik de AB é dado por $\sum_{j=1}^n a_{ij}b_{jk}$, que é, também, o termo de índices ki da matriz $(AB)^T$. Sendo $B^T=(b'_{kj})$ e $A^T=(a'_{ji})$, onde $b'_{kj}=b_{jk}$ e $a'_{ji}=a_{ij}, \ \forall i=1,...,m; j=1,...,n,$ podemos escrever $\sum_{j=1}^n a_{ij}b_{jk}=\sum_{j=1}^n b'_{kj}a'_{ji}$, que é o termo de índices ki da matriz B^TA^T . Logo, $(AB)^T=B^TA^T$.

POTÊNCIAS DE MATRIZES

Quando multiplicamos um número real por ele mesmo, efetuamos uma potenciação. Se a é um número real, indicamos por a^n o produto $a \times a \times ... \times a$, onde consideramos n fatores iguais a a.

Analogamente, quando lidamos com matrizes, definimos a *potência de expoente n* (ou a n-ésima potência) de uma matriz quadrada A como sendo o produto $A \times A \times ... \times A$, onde há n fatores iguais a A.

Exemplo 3.6.

Dada
$$A = \begin{bmatrix} 5 & -4 \\ 3 & 1 \end{bmatrix}$$
, temos
$$A^{2} = A \times A = \begin{bmatrix} 5 & -4 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 5 & -4 \\ 3 & 1 \end{bmatrix} = \begin{bmatrix} 13 & -24 \\ 18 & -11 \end{bmatrix} e$$

$$A^{3} = A^{2} \times A = \begin{bmatrix} 13 & -24 \\ 18 & -11 \end{bmatrix} \begin{bmatrix} 5 & -4 \\ 3 & 1 \end{bmatrix} = \begin{bmatrix} -7 & -76 \\ 57 & -83 \end{bmatrix}$$

Quando calculamos sucessivas potências de uma matriz, podem ocorrer os seguintes casos especiais:

- Aⁿ = A, para algum n natural.
 Nesse caso, dizemos que a matriz A é periódica. Se p é o menor natural para o qual A^p = A, dizemos que A é periódica de período p. Particularmente, se p = 2, a matriz A é chamada idempotente.
- $A^n = O$, para algum n natural. Nesse caso, dizemos que a matriz A é nihilpotente. Se p é o menor natural para o qual $A^p = O$, a matriz A é dita ser nihilpotente de indice p.

Lê-se *nilpotente*. A palavra *nihil* significa *nada*, em latim.

Exemplo 3.7.

Efetuando a multiplicação de *A* por ela mesma, você poderá constatar que a matriz *A*, em cada caso, é idempotente:

$$A = \begin{bmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{bmatrix}$$
$$A = \begin{bmatrix} 0 & 5 \\ 0 & 1 \end{bmatrix}.$$

Exemplo 3.8.

Seja
$$A = \begin{bmatrix} 5 & -1 \\ 25 & -5 \end{bmatrix}$$
. Calculando A^2 , temos
$$A \times A = \begin{bmatrix} 5 & -1 \\ 25 & -5 \end{bmatrix} \begin{bmatrix} 5 & -1 \\ 25 & -5 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
. Ou seja, A é nihilpotente de índice 2.

Resumo

Nesta aula, vimos como multiplicar duas matrizes. Tratase de uma operação que se distingue das que vimos anteriormente, tanto pela maneira pouco intuitiva pela qual é definida, quanto pelo fato de não ser comutativa. Ela representa um papel muito importante no desenvolvimento de toda Algebra Linear, permitindo, por exemplo, uma representação simples da composição de funções especiais, que estudaremos no Módulo 2. Além disso, fomos apresentados às matrizes inversíveis e vimos que estas sempre comutam com suas matrizes inversas.

Exercício 3.1.

1. Calcule AB em cada caso abaixo:

a.
$$A = \begin{bmatrix} 1 & -2 & 4 \\ 5 & 0 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 \\ 6 \\ 10 \end{bmatrix}$

b.
$$A = \begin{bmatrix} 4 & -6 \\ -2 & 3 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & 0 \\ -1 & 4 \end{bmatrix}$

c.
$$A = \begin{bmatrix} 3 \\ -1 \\ 2 \end{bmatrix}$$
, $B = \begin{bmatrix} 6 & 5 & -3 \end{bmatrix}$

2. Determine
$$AB^{T} - 2C$$
, dadas
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 5 \\ 0 & -3 \end{bmatrix}, B = \begin{bmatrix} 4 & 2 \\ 2 & 1 \\ -1 & 7 \end{bmatrix}, C = \begin{bmatrix} 7 & 9 & 1 \\ 6 & 4 & 2 \\ -8 & -10 & 3 \end{bmatrix}.$$

3. Verifique, em caso, se *B* é a matriz inversa de *A*:

a.
$$A = \begin{bmatrix} 2 & 3 \\ 1 & 6 \end{bmatrix}$$
 e $B = \begin{bmatrix} 2/3 & -1/3 \\ -1/9 & 2/9 \end{bmatrix}$

b.
$$A = \begin{bmatrix} 1 & 5 \\ -3 & 2 \end{bmatrix}$$
 e $B = \begin{bmatrix} 6 & -5 \\ -1 & 1 \end{bmatrix}$

4. Resolva a equação matricial

$$\begin{bmatrix} 3 & 1 \\ 2 & -5 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 5 & 15 \\ -8 & -7 \end{bmatrix}.$$

- 5. Determine a e b para que as matrizes $A = \begin{bmatrix} 2 & 3 \\ -9 & 5 \end{bmatrix}$ e $B = \begin{bmatrix} a & -1 \\ 3 & b \end{bmatrix}$ comutem.
- 6. Determine todas as matrizes que comutam com *A*, em cada caso:

a.
$$A = \begin{bmatrix} 1 & 2 \\ 4 & 5 \end{bmatrix}$$

b.
$$A = \begin{bmatrix} 0 & 1 \\ 3 & 1 \end{bmatrix}$$

7. Dadas as matrizes $A = \begin{bmatrix} 1 & -3 \\ 2 & 5 \end{bmatrix}$ e $B = \begin{bmatrix} 1 & 4 \\ 0 & 2 \end{bmatrix}$, calcule:

a.
$$A^2$$

b.
$$B^3$$

c.
$$A^2B^3$$

8. As matrizes $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$ e $B = \begin{bmatrix} 3 & -9 \\ 1 & -3 \end{bmatrix}$ são nihilpotentes. Determine o índice de cada uma.

Autoavaliação

É muito importante que você se sinta bem à vontade diante de duas matrizes a multiplicar. Assimilada a definição, repita os exemplos e os exercícios que tenham deixado alguma dúvida. Caso haja alguma pendência, não hesite em contactar o tutor da disciplina. É essencial que caminhemos juntos!! Até a próxima aula.

RESPOSTAS DOS EXERCÍCIOS

1. a.
$$AB = \begin{bmatrix} 30 \\ 20 \end{bmatrix}$$
 b. $AB = \begin{bmatrix} 14 & -24 \\ -7 & 12 \end{bmatrix}$
c. $AB = \begin{bmatrix} 18 & 15 & -9 \\ -6 & -5 & 3 \\ 12 & 10 & -6 \end{bmatrix}$.

$$\begin{array}{c|cccc}
 & -6 & -14 & 11 \\
 & 6 & 1 & 29 \\
 & 10 & 17 & -27
\end{array}$$

3. a. sim (pois $AB = I_2$); b. não

$$4. \left[\begin{array}{cc} 1 & 4 \\ 2 & 3 \end{array}\right]$$

5.
$$-a+b=-1$$

6. a.
$$\begin{bmatrix} x & z/2 \\ z & x+z \end{bmatrix}$$
, $x,z \in \mathbb{R}$ b. $\begin{bmatrix} x & y \\ 3y & x+y \end{bmatrix}$, $x,y \in \mathbb{R}$.

7. a.
$$\begin{bmatrix} -5 & -18 \\ 12 & 19 \end{bmatrix}$$
 b. $\begin{bmatrix} 1 & 28 \\ 0 & 8 \end{bmatrix}$ c. $\begin{bmatrix} -5 & -284 \\ 12 & 488 \end{bmatrix}$

8. a. 3; b. 2

Álgebra Linear I | Operações com Matrizes: Inversão

Aula 4

OPERAÇÕES COM MATRIZES: INVERSÃO

Objetivos

Ao final desta aula, você deverá ser capaz de:

- obter a matriz inversa (caso exista), pela definição;
- 2 aplicar operações elementares às linhas de uma matriz:
- 3 obter a matriz inversa (caso exista), por operações elementares;
- 4 conhecer matrizes ortogonais.

OPERAÇÕES COM MATRIZES: INVERSÃO

Na Aula 3, vimos que, dada uma matriz $A \in M_n(\mathbb{R})$, se existe uma matriz $B \in M_n(\mathbb{R})$, tal que $AB = I_n$, a matriz A é dita *inversível* e a matriz B é a sua *inversa*, e podemos escrever $B = A^{-1}$. Uma matriz inversível sempre comuta com sua inversa; logo, se $AB = I_n$ então $BA = I_n$ e A é a inversa de B.

Dada uma matriz quadrada A, não sabemos se ela é ou não inversível até procurar determinar sua inversa e isso não ser possível. Para descobrir se uma matriz é ou não inversível e, em caso afirmativo, determinar sua inversa, só contamos, até o momento, com a definição. Assim, dada uma matriz A de ordem n, escrevemos uma matriz também de ordem n, cujos elementos são incógnitas a determinar, de modo que o produto de ambas seja a identidade de ordem n. Vamos a um exemplo:

Exemplo 4.1.

Em cada caso, vamos determinar, caso exista, a matriz inversa de *A*:

1.
$$A = \begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix}$$
. Seja $B = \begin{bmatrix} x & y \\ z & t \end{bmatrix}$ a matriz inversa de inversa de A , então

$$AB = I_2 \implies \begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} x & y \\ z & t \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$\Rightarrow \begin{bmatrix} 2x + 5z & 2y + 5t \\ x + 3z & y + 3t \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

Essa igualdade gera um sistema de 4 equações e 4 incógnitas:

$$\begin{cases} 2x+5z=1\\ 2y+5t=0\\ x+3z=0\\ y+3t=1 \end{cases}$$

Note que esse sistema admite dois subsistemas de 2 equações e 2 incógnitas:

$$\begin{cases} 2x + 5z = 1 \\ x + 3z = 0 \end{cases} \quad e \quad \begin{cases} 2y + 5t = 0 \\ y + 3t = 1 \end{cases}$$

Resolvendo cada um deles, obtemos

$$x = 3, y = -5, z = -1, t = 2.$$

Logo, a matriz A é inversível e sua inversa é

$$A^{-1} = \left[\begin{array}{cc} 3 & -5 \\ -1 & 2 \end{array} \right]$$

2. $A = \begin{bmatrix} 6 & 3 \\ 8 & 4 \end{bmatrix}$. Procedendo com no item anterior, escrevemos:

$$A = \begin{bmatrix} 6 & 3 \\ 8 & 4 \end{bmatrix} \begin{bmatrix} x & y \\ z & t \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \Rightarrow$$
$$\Rightarrow \begin{bmatrix} 6x + 3z & 6y + 3t \\ 8x + 4z & 8y + 4t \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

Obtemos, então, os sistemas

$$\begin{cases} 6x + 3z = 1 \\ 8x + 4z = 0 \end{cases} \quad e \quad \begin{cases} 6y + 3t = 0 \\ 8y + 4t = 1 \end{cases}$$

Ao resolver esses sistemas, porém, vemos que não admitem solução (tente resolvê-los, por qualquer método!). Concluímos, então, que a matriz *A* não é inversível.

Você viu que, ao tentar inverter uma matriz de ordem 2, recaímos em dois sistemas, cada um de duas equações e duas incógnitas. Se a matriz a ser invertida for de ordem 3, então o problema recairá em três sistemas, cada um com três equações e três incógnitas. Já dá pra perceber o trabalho que teríamos para inverter uma matriz de ordem superior (nem precisamos pensar numa ordem muito grande: para inverter uma matriz 5×5 , teríamos que resolver 5 sistemas, cada um de 5 equações e 5 incógnitas!).

Temos, então, que determinar uma outra maneira de abordar o problema. Isso será feito com o uso de operações que serão realizadas com as linhas da matriz a ser invertida. Essas operações também poderiam ser definidas, de forma análoga, sobre as colunas da matriz. Neste curso, como só usaremos operações elementares aplicadas às linhas, nós faremos referência a elas, simplesmente, como operações elementares (e não operações ele-

mentares *sobre as linhas da matriz*). Vamos à caracterização dessas operações.

OPERAÇÕES ELEMENTARES

Dada $A \in M_{m \times n}(\mathbb{R})$, chamam-se *operações elementares* as seguintes ações:

- 1. Permutar duas linhas de A. Indicamos a troca das linhas L_i e L_j por $L_i \leftrightarrow L_j$.
- 2. Multiplicar uma linha de A por um número real não nulo. Indicamos que multiplicamos a linha L_i de A pelo número real λ escrevendo $L_i \leftarrow \lambda L_i$.
- 3. Somamos a uma linha de A uma outra linha, multiplicada por um número real.

 Indicamos que somamos à linha L_i a linha L_j multiplicada pelo número real λ por: $L_i \leftarrow L_i + \lambda L_j$.

Exemplo 4.2.

Vamos aplicar algumas operações elementares às linhas da

matriz
$$A = \begin{bmatrix} -3 & 2 & 5 \\ 0 & 1 & 6 \\ 8 & 4 & -2 \end{bmatrix}$$
:

1.
$$\begin{bmatrix} -3 & 2 & 5 \\ 0 & 1 & 6 \\ 8 & 4 & -2 \end{bmatrix} \xrightarrow{L_1 \leftrightarrow L_3} \begin{bmatrix} 8 & 4 & -2 \\ 0 & 1 & 6 \\ -3 & 2 & 5 \end{bmatrix}$$

2.
$$\begin{bmatrix} -3 & 2 & 5 \\ 0 & 1 & 6 \\ 8 & 4 & -2 \end{bmatrix} L_2 \leftarrow -3L_2 \Rightarrow \begin{bmatrix} -3 & 2 & 5 \\ 0 & -3 & -18 \\ 8 & 4 & -2 \end{bmatrix}$$

3.
$$\begin{bmatrix} -3 & 2 & 5 \\ 0 & 1 & 6 \\ 8 & 4 & -2 \end{bmatrix} L_2 \leftarrow L_2 + 2L_3 \implies \begin{bmatrix} -3 & 2 & 5 \\ 16 & 9 & 2 \\ 8 & 4 & -2 \end{bmatrix}$$

Consideremos o conjunto $M_{m \times n}(\mathbb{R})$. Se, ao aplicar uma sequência de operações elementares a uma matriz A, obtemos a

matriz B, dizemos que B é *equivalente* a A e indicamos por $B \sim A$. Fica definida, assim, uma relação no conjunto $M_{m \times n}(\mathbb{R})$, que é:

1. reflexiva: $A \sim A$

2. simétrica: se $A \sim B$ então $B \sim A$

3. transitiva: se $A \sim B$ e $B \sim C$ então $A \sim C$

Isto é, a relação \sim é uma relação de equivalência no conjunto $M_{m\times n}(\mathbb{R})$. Assim, se $A\sim B$ ou se $B\sim A$ podemos dizer, simplesmente, que A e B são equivalentes.

Lembremos que nosso objetivo é determinar um método para encontrar a inversa de uma matriz, caso ela exista, que seja mais rápido e simples do que o uso da definição. Para isso, precisamos do seguinte resultado:

Teorema 4.1.

Seja $A \in M_n(\mathbb{R})$. Então A é inversível se, e somente se, $A \sim I_n$. Se A é inversível, a mesma sucessão de operações elementares que transformam A em I_n , transformam I_n na inversa de A.

Este método permite determinar, durante sua aplicação, se a matriz é ou não inversível. A ideia é a seguinte:

1. Escrevemos, lado a lado, a matriz que queremos inverter e a matriz identidade de mesma ordem, segundo o esquema:

$$A \mid I$$

- 2. Por meio de alguma operação elementar, obtemos o número 1 na posição 11.
- 3. Usando a linha 1 como linha-pivô, obtemos zeros nas outras posições da coluna 1 (para isso, fazemos uso da terceira operação elementar).
- 4. Por meio de uma operação elementar, obtemos o número 1 na posição 22.

Você poderá
encontrar a
demonstração
desse teorema no
livro Álgebra
Linear e
Aplicações, de
Carlos Callioli,
Hygino Domingues
e Roberto Costa, da
Atual Editora,
(Apêndice do
Capítulo 1).

- 5. Usando a linha 2 como linha-pivô, obtemos zeros nas outras posições da coluna 2 (para isso, fazemos uso da terceira operação elementar).
- 6. Passamos para a terceira coluna e assim por diante.
- 7. Se, em alguma etapa do procedimento, uma linha toda se anula, podemos concluir que a matriz em questão não é inversível nesse caso, nenhuma operação elementar igualaria essa linha a uma linha da matriz identidade!
- 8. Se chegarmos à matriz identidade, então a matriz à direita, no esquema, será a matriz inversa procurada.

Veja os dois exemplos a seguir:

Exemplo 4.3.

Logo, a matriz
$$A$$
 é inversível e $A^{-1} = \frac{1}{15} \begin{bmatrix} 6 & -9 & -3 \\ -7 & 23 & 11 \\ 2 & 2 & -1 \end{bmatrix}$.

Você poderá verificar que essa é, realmente, a inversa de A, efetuando a multiplicação dela por A e constatando que o produto é I_3 .

Como a terceira linha se anulou, podemos parar o processo e concluir que a matriz A não é inversível.

PROPRIEDADES DA INVERSÃO DE MATRIZES

- 1. Se $A \in M_n(\mathbb{R})$ é inversível, então $(A^{-1})^{-1} = A$ De fato, como $A^{-1}A = I_n$, temos que A é a inversa de A^{-1} .
- 2. Se $A, B \in M_n(\mathbb{R})$ são inversíveis, então AB é inversível e $(AB)^{-1} = B^{-1}A^{-1}$.

De fato, temos

$$(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AI_nA^{-1} = AA^{-1} = I_n.$$

Logo, $B^{-1}A^{-1}$ é a inversa de AB.

3. Se $A \in M_n(\mathbb{R})$ é inversível, então $(A^T)^{-1} = (A^{-1})^T$. De fato, como $A^T(A^{-1})^T = (A^{-1}A)^T = (I_n)^T = I_n$, temos que $(A^{-1})^T$ é a inversa de A^T .

Exemplo 4.4.

Supondo as matrizes A e B inversíveis, vamos obter a matriz X nas equações a seguir:

1. AX = B Multiplicando os dois membros da igualdade, à esquerda, por A^{-1} , temos:

$$A^{-1}(AX) = A^{-1}B$$

ou

$$(A^{-1}A)X = A^{-1}B,$$
$$IX = A^{-1}B$$

Logo, $X = A^{-1}B$.

2. $(AX)^T = B$ Temos:

$$(AX)^T = B \Rightarrow [(AX)^T]^T = B^T \Rightarrow AX = B^T \Rightarrow$$

$$\Rightarrow A^{-1}(AX) = A^{-1}B^T \Rightarrow (A^{-1}A)X = A^{-1}B^T \Rightarrow$$

$$\Rightarrow IX = A^{-1}B^T \Rightarrow X = A^{-1}B^T.$$

Para finalizar esta aula, vamos definir um tipo especial de matriz quadrada inversível, que é aquela cuja inversa coincide com sua transposta.

MATRIZES ORTOGONAIS

Dizemos que uma matriz $A \in M_n(\mathbb{R})$, inversível, é *ortogonal*, quando $A^{-1} = A^T$.

Para verificar se uma matriz A é ortogonal, multiplicamos A por A^T e vemos se o produto é a identidade.

Exemplo 4.5.

A matriz $\begin{bmatrix} 1/2 & \sqrt{3}/2 \\ -\sqrt{3}/2 & 1/2 \end{bmatrix}$ é ortogonal. De fato, multiplicando essa matriz pela sua transposta, temos:

$$\begin{bmatrix} 1/2 & \sqrt{3}/2 \\ -\sqrt{3}/2 & 1/2 \end{bmatrix} \begin{bmatrix} 1/2 & -\sqrt{3}/2 \\ \sqrt{3}/2 & 1/2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Veremos mais tarde que as matrizes ortogonais representam um papel importante na representação de funções especiais, chamadas operadores ortogonais. Chegaremos lá!!!!

Resumo

O ponto central desta aula é inverter matrizes, quando isso é possível. Como a definição, embora simples, não fornece um método prático para a inversão de matrizes, definimos as operações elementares, que permitem "passar", gradativamente, da matriz inicial, a ser invertida, para outras, numa sucessão que nos leva à matriz identidade. Trata-se de um método rápido e eficiente, que resolve tanto o problema de decidir se a inversa existe ou não, como de obtê-la, no caso de existir. Esse é o método implementado pelos "pacotes" computacionais - aqueles programas de computador que nos dão, em questão de segundos, a inversa de uma matriz.

Exercício 4.1.

1. Em cada caso, verifique se a matriz B é a inversa de A.

a.
$$A = \begin{bmatrix} 3 & 4 \\ 2 & 3 \end{bmatrix}$$
 e $B = \begin{bmatrix} 3 & -4 \\ -2 & 3 \end{bmatrix}$
b. $A = \begin{bmatrix} 7 & -3 & -28 \\ -2 & 1 & 8 \\ 0 & 0 & 1 \end{bmatrix}$ e $B = \begin{bmatrix} 1 & 3 & 4 \\ 2 & 7 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
c. $A = \begin{bmatrix} 1 & -3 \\ 1 & 4 \end{bmatrix}$ e $B = \begin{bmatrix} 4 & 3 \\ -1 & 1 \end{bmatrix}$

- 2. Dadas $A = \begin{bmatrix} 3 & 1 \\ 5 & 2 \end{bmatrix}$ e $B = \begin{bmatrix} 4 & 7 \\ 1 & 2 \end{bmatrix}$, determine: A^{-1} , B^{-1} e $(AB)^{-1}$.
- 3. Supondo as matrizes $A, B \in C$ inversíveis, determine X em cada equação.

a.
$$AXB = C$$

b.
$$AB = CX$$

c.
$$(AX)^{-1}B = BC$$

d.
$$[(AX)^{-1}B]^T = C$$

4. Determine, caso exista, a inversa da matriz *A*, em cada caso:

a.
$$A = \begin{bmatrix} 3 & -2 \\ 1 & 4 \end{bmatrix}$$

b. $A = \begin{bmatrix} 1 & -2 & 3 \\ 10 & 6 & 10 \\ 4 & 5 & 2 \end{bmatrix}$
c. $A = \begin{bmatrix} 2 & 0 & 0 \\ 4 & -1 & 0 \\ 2 & 3 & -1 \end{bmatrix}$
d. $A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 3 & 2 & 1 & 0 \\ 4 & 2 & 2 & 1 \end{bmatrix}$

5. Que condições $\lambda \in \mathbb{R}$ deve satisfazer para que a matriz

$$\begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 2 \\ 1 & 2 & \lambda \end{bmatrix}$$
 seja inversível?

Autoavaliação

Você deverá treinar bastante a aplicação do método estudado. Faça todos os exercícios e, se possível, resolva outros mais você mesmo(a) poderá criar matrizes a inverter e descobrir se são ou não inversíveis. É fácil, ao final do processo, verificar se a matriz obtida é, de fato, a inversa procurada (isto é, se não houve erros nas contas efetuadas): o produto dela pela matriz dada tem que ser a identidade. Caso haja alguma dúvida, em relação à teoria ou aos exercícios, entre em contato com o tutor da disciplina.

RESPOSTAS DOS EXERCÍCIOS

1. a. sim

b. sim

c. não

2.
$$A^{-1} = \begin{bmatrix} 2 & -1 \\ -5 & 3 \end{bmatrix}$$
; $B^{-1} = \begin{bmatrix} 2 & -7 \\ -1 & 4 \end{bmatrix}$; $(AB)^{-1} = \begin{bmatrix} 39 & -23 \\ -22 & 13 \end{bmatrix}$.

3. a. $X = A^{-1}CB^{-1}$

b.
$$X = C^{-1}AB$$

c.
$$X = A^{-1}BC^{-1}B^{-1}$$

d.
$$X = A^{-1}B(C^T)^{-1}$$

4. a. $A^{-1} = \begin{bmatrix} 2/7 & 1/7 \\ -1/14 & 3/14 \end{bmatrix}$

b. Não existe a inversa de A

c.
$$A^{-1} = \begin{bmatrix} 1/2 & 0 & 0 \\ 2 & -1 & 0 \\ 7 & -3 & -1 \end{bmatrix}$$

Álgebra Linear I | Operações com Matrizes: Inversão

d.
$$A^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -2 & 1 & 0 & 0 \\ 1 & -2 & 1 & 0 \\ 0 & 1 & -2 & 1 \end{bmatrix}$$

5.
$$\lambda \neq 1$$

Aula 5

DETERMINANTES

Objetivo

Ao final desta aula, você deverá ser capaz de:

1 calcular determinantes pelo método da triangularização.

DETERMINANTES

Pré-requisitos: Aulas 1 a 4.

Determinante é um número associado a uma matriz quadrada. Como estamos lidando, neste curso, apenas com matrizes reais, os determinantes que calcularemos serão todos números reais. Os determinantes têm inúmeras aplicações, na Matemática e em outras áreas. Veremos, por exemplo, que o determinante fornece uma informação segura a respeito da inversibilidade ou não de uma matriz. A ênfase desta aula está na aplicação de um método rápido para calcular determinantes, fazendo uso de algumas das suas propriedades e de operações elementares, já estudadas na Aula 4. Antes, porém, de nos convencermos de quanto o método que estudaremos é mais eficiente do que o uso direto da definição, vamos recordar a definição de determinante, devida a Laplace.

DETERMINANTE

Dada uma matriz $A = (a_{ij}) \in M_n(\mathbb{R})$, representamos o determinante de A por detA ou escrevendo os elementos de A limitados por barras simples:

$$\operatorname{Se} A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n-1,1} & a_{n-1,2} & \dots & a_{n-1,n} \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix},$$

representamos o determinante de A por:

$$\det \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots \vdots & \vdots \\ a_{n-1,1} & a_{n-1,2} & \dots & a_{n-1,n} \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} \text{ ou }$$

$$\begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n-1,1} & a_{n-1,2} & \dots & a_{n-1,n} \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix}$$

A definição de determinante é dada de maneira recorrente, em relação à ordem da matriz. Assim, definimos o determinante de ordem 1, a seguir, o de ordem 2 e, a partir da ordem 3, recaímos em cálculos de determinantes de ordens menores. Vamos ver como isso é feito:

Seja
$$A = (a_{ij}) \in M_n(\mathbb{R})$$
.

n=1

Neste caso, $A = [a_{11}]$ e det $A = a_{11}$.

n=2

Neste caso,
$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$
 e seu determinante é dado por:
$$\det A = a_{11}a_{22} - a_{12}a_{21}$$

Exemplo 5.1.

Vamos calcular os determinantes das matrizes abaixo:

1.
$$A = \begin{bmatrix} 3 & 4 \\ 6 & 8 \end{bmatrix} \Rightarrow \det A = 3.8 - 4.6 = 24 - 24 = 0$$

2.
$$A = \begin{bmatrix} 2 & 5 \\ -3 & 4 \end{bmatrix} \Rightarrow \det A = 8 - (-15) = 23$$

3.
$$A = \begin{bmatrix} sen \alpha & -cos \alpha \\ cos \alpha & sen \alpha \end{bmatrix} \Rightarrow det A = sen^2 \alpha + cos^2 \alpha = 1$$

4.
$$A = \begin{bmatrix} 6 & 4 \\ 3 & 1 \end{bmatrix} \Rightarrow \det A = 6 - 12 = -6$$

Note que o determinante de uma matriz de ordem 2 é a diferença entre o produto dos termos da diagonal principal e o produto dos termos da diagonal secundária. Esses produtos se chamam, respectivamente, termo principal e termo secundário da matriz. n=3

Seja
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$
. Neste caso, escolhemos uma

linha (ou uma coluna) para desenvolver o determinante.

Desenvolvendo o determinante pela 1^{a.} linha, obtemos:

$$\det A = a_{11} \cdot (-1)^{1+1} \cdot \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} +$$

$$+ a_{12} \cdot (-1)^{1+2} \cdot \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} +$$

$$+ a_{13} \cdot (-1)^{1+3} \cdot \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}.$$

Exemplo 5.2.

$$\det \begin{bmatrix} 2 & 5 & -3 \\ 0 & 4 & 5 \\ 3 & 1 & -2 \end{bmatrix} =$$

$$= 2(-1)^{1+1} \begin{vmatrix} 4 & 5 \\ 1 & -2 \end{vmatrix} + 5(-1)^{1+2} \begin{vmatrix} 0 & 5 \\ 3 & -2 \end{vmatrix} +$$

$$+(-3)(-1)^{1+3} \begin{vmatrix} 0 & 4 \\ 3 & 1 \end{vmatrix}$$

$$= 2(-8-5) - 5(0-15) - 3(0-12) = 85.$$

Lê-se "Sarrí".

Existe uma regra prática para o cálculo do determinante de ordem 3, conhecida como **Regra de Sarrus**. Ela afirma que:

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = (a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32}) - (a_{13}a_{22}a_{31} + a_{11}a_{23}a_{32} + a_{12}a_{21}a_{33})$$

Desenvolvendo os produtos indicados na definição de deter-

minante de ordem 3, você poderá ver que as expressões coincidem.

Exemplo 5.3.

Vamos calcular, novamente, o determinante do exemplo anterior, agora usando a Regra de Sarrus:

$$\begin{vmatrix} 2 & 5 & -3 \\ 0 & 4 & 5 \\ 3 & 1 & -2 \end{vmatrix} = [2.4.(-2) + (5.5.3) + (-3.0.1)] -[(-3.4.3) + (2.5.1) + (5.0.(-2))]$$

$$= (-16 + 75) - (-36 + 10) = 85.$$

n=4

Seja
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix}.$$

Desenvolvendo o determinante pela 1^{a.} linha, obtemos:

$$\det A = a_{11}.(-1)^{1+1}.\det A_{-1,-1} + a_{12}.(-1)^{1+2}.\det A_{-1,-2} + a_{13}.(-1)^{1+3}.\det A_{-1,-3} + a_{14}.(-1)^{1+4}.\det A_{-1,-4},$$

onde $A_{-i,-j}$ representa a matriz obtida a partir de A, com a retirada da i-ésima linha e da j-ésima coluna. Observe que recaímos no cálculo de 4 determinantes, cada um de ordem 3.

Para $\mathbf{n} = \mathbf{5}$, a definição é análoga: iremos recair no cálculo de 5 determinantes, cada um de ordem 4. Logo, teremos que calcular $5 \times 4 = 20$ determinantes de ordem 3. Como você pode ver, os cálculos envolvidos na obtenção de determinantes crescem rapidamente, à medida que a ordem do determinante aumenta.

Temos, então, que encontrar um método alternativo para calcular determinantes: a definição não fornece uma saída rápida para isso. Antes, porém, de estudarmos um método mais efiUm determinante de ordem 10 exige a realização de 9.234.099 operações! ciente para aplicar, usando as propriedades dos determinantes e, mais uma vez, operações elementares, damos a definição do determinante de ordem *n*, desenvolvido pela *i*-ésima linha:

$$\det \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots \vdots & \vdots \\ a_{n-1,1} & a_{n-1,2} & \dots & a_{n-1,n} \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} = \sum_{j=1}^{n} a_{ij} (-1)^{i+j} \cdot \det A_{-i,-j}$$

PROPRIEDADES DOS DETERMINANTES

Na medida do possível, daremos uma ideia da demonstração dessas propriedades. Para verificar a validade de cada uma delas, precisaríamos definir determinantes pelo uso de permutações, o que alongaria demais a nossa aula. Caso você tenha interesse em conhecer essa abordagem, irá encontrá-la em *Álgebra Linear e Aplicações*, de Carlos Callioli, Hygino Domingues e Roberto Costa.

D1 O determinante de uma matriz é único. Isto é, não importa por qual linha ou coluna o determinante seja desenvolvido, o resultado final é sempre o mesmo.

D2 Dada
$$A \in M_n(\mathbb{R})$$
, $\det A = \det A^T$

Em palavras: o determinante da transposta é igual ao determinante da matriz.

De fato, a expressão do determinante de A, desenvolvido pela i-ésima linha, coincidirá, termo a termo, com a expressão de $\det A^T$, desenvolvido pela i-ésima coluna.

 ${f D3}$ Se $A\in M_n(\mathbb{R})$ possui uma linha (ou uma coluna) nula, então $\det A=0.$

De fato, basta desenvolver det *A* por essa linha (ou coluna) nula.

D4 Se escrevemos cada elemento de uma linha (ou coluna) de $A \in M_n(\mathbb{R})$ como soma de 2 parcelas, então detA é a soma de dois determinantes de ordem n, cada um considerando como elemento daquela linha (ou coluna) uma das parcelas, e repetindo

as demais linhas (ou colunas).

D5 O determinante de uma matriz triangular é o seu termo principal.

D6 Se multiplicamos uma linha (ou coluna) de $A \in M_n(\mathbb{R})$ por um número real λ , o determinante de A fica multiplicado por λ .

D7 Se permutamos duas linhas (ou colunas) de $A \in M_n(\mathbb{R})$, então o determinante de A fica multiplicado por -1.

D8 Se $A \in M_n(\mathbb{R})$ tem duas linhas (ou colunas) iguais então $\det A = 0$.

D9 Se $A \in M_n(\mathbb{R})$ possui uma linha (ou coluna) que é soma de múltiplos de outras linhas (ou colunas), então detA = 0.

D10 Se somamos a uma linha (ou coluna) de $A \in M_n(\mathbb{R})$ um múltiplo de outra linha (ou coluna), o determinante de A não se altera.

D11 Se $A, B \in M_n(\mathbb{R})$, então $\det(AB) = \det A \cdot \det B$.

D12 Se $A \in M_n(\mathbb{R})$ é inversível, então $\det A^{-1} = (\det A)^{-1}$.

De fato, se A é inversível, existe A^{-1} tal que $A.A^{-1} = I$.

Então $\det(A.A^{-1}) = \det I$.

Pela propriedade D11, $\det A \cdot \det A^{-1} = \det I$, e pela propriedade D5, temos que $\det I = 1$. Logo, $\det A^{-1} = \frac{1}{\det A} = (\det A)^{-1}$.

Uma conclusão importante pode ser tirada a partir da propriedade D12: uma matriz é inversível se, e somente se, seu determinante é diferente de zero. Destaquemos esse resultado:

Seja $A \in M_n(\mathbb{R})$.

 $A \in \text{inversivel} \Leftrightarrow \det A \neq 0$

D13 Se $A \in M_n(\mathbb{R})$ é ortogonal, então det $A^{-1} = 1$ ou -1.

De fato, se A é ortogonal, $A^{-1} = A^{T}$. Pela propriedade D2,

Lembrando: o termo principal de uma matriz quadrada é o produto dos elementos de sua diagonal principal.

$$\det A = \det A^T = \det A^{-1}$$
. Então, pela propriedade D12, $\det A \cdot \det A^{-1} = 1 \Rightarrow \det A \cdot \det A^T = 1 \Rightarrow \det A \cdot \det A = 1 \Rightarrow (\det A)^2 = 1 \Rightarrow \det A = \pm 1$.

CÁLCULO DE DETERMINANTES POR TRIANGULARIZAÇÃO

Observe o que diz a propriedade D5. Calcular o determinante de uma matriz triangular é, praticamente, imediato. Dado um determinante, a ideia, então, é aplicar operações elementares sobre suas linhas, de modo a triangularizá-lo. Para isso, temos que observar os efeitos que cada operação elementar pode ou não causar no valor do determinante procurado. Vejamos:

- 1. Permutar duas linhas.
 - Pela propriedade D7, essa operação troca o sinal do determinante.
- Multiplicar uma linha por um número real λ não nulo.
 A propriedade D6 nos diz que essa operação multiplica o determinante por λ.
- Somar a uma linha um múltiplo de outra.
 Pela propriedade D10, essa operação não altera o determinante.

Diante disso, para triangularizar um determinante, basta que fiquemos atentos para "compensar" possíveis alterações provocadas pelas operações elementares utilizadas. Vamos a um exemplo.

Exemplo 5.4.

Calcular, por triangularização, det
$$\begin{bmatrix} 2 & 5 & 1 & 3 \\ 0 & -1 & 4 & 2 \\ 6 & -2 & 5 & 1 \\ 1 & 3 & -3 & 0 \end{bmatrix}.$$

$$= - \begin{vmatrix} 1 & 3 & -3 & 0 \\ 0 & -1 & 4 & 2 \\ 0 & 0 & -57 & -39 \\ 0 & 0 & 3 & 1 \end{vmatrix} |_{L_3 \leftarrow -1/57L_3} =$$

$$= -(-57) \begin{vmatrix} 1 & 3 & -3 & 0 \\ 0 & -1 & 4 & 2 \\ 0 & 0 & 1 & 39/57 \\ 0 & 0 & 0 & -20/19 \end{vmatrix} =$$

$$= -(-57).1.(-1).1.(-20/19) = 60.$$

- i. Não há uma única maneira de se triangularizar um determinante: as operações elementares escolhidas podem diferir, mas o resultado é único.
- ii. O método de triangularização é algorítmico, ou seja, é constituído de um número finito de passos simples: a cada coluna, da primeira à penúltima, devemos obter zeros nas posições abaixo da diagonal principal.

Calcule o determinante do próximo exemplo e compare com a nossa resolução: dificilmente você optará pela mesma sequência de operações elementares, mas (se todos tivermos acertado!) o resultado será o mesmo.

Exemplo 5.5.

Vamos calcular
$$\begin{vmatrix} 2 & -4 & 8 \\ 5 & 4 & 6 \\ -3 & 0 & 2 \end{vmatrix}$$
 por triangularização:
 $\begin{vmatrix} 2 & -4 & 8 \\ 5 & 4 & 6 \\ -3 & 0 & 2 \end{vmatrix} \stackrel{L_1 \leftarrow \frac{1}{2}L_1}{= 2} = 2 \begin{vmatrix} 1 & -2 & 4 \\ 5 & 4 & 6 \\ -3 & 0 & 2 \end{vmatrix} \stackrel{L_2 \leftarrow L_2 - 5L_1}{= 2} = 2 \begin{vmatrix} 1 & -2 & 4 \\ 0 & 14 & -14 \\ 0 & -6 & 14 \end{vmatrix} \stackrel{L_2 \leftarrow \frac{1}{14}L_2}{= 2} = 2 \begin{vmatrix} 1 & -2 & 4 \\ 0 & 14 & -14 \\ 0 & -6 & 14 \end{vmatrix} \stackrel{L_2 \leftarrow \frac{1}{14}L_2}{= 2} = 2 \begin{vmatrix} 1 & -2 & 4 \\ 0 & 1 & -1 \\ 0 & -6 & 14 \end{vmatrix} \stackrel{L_3 \leftarrow L_3 + 6L_2}{= 2} = 2 \begin{vmatrix} 1 & -2 & 4 \\ 0 & 1 & -1 \\ 0 & 0 & 8 \end{vmatrix} = 2 \cdot 14 \cdot 1 \cdot 1 \cdot 8 = 224.$

Exemplo 5.6.

Vamos aplicar as propriedades estudadas nesta aula para dar os determinantes de A^T , A^{-1} e 3A, sabendo que A é uma matriz quadrada inversível de ordem 2 e que detA = D.

- 1. $\det A^T = D$, pois o determinante da matriz transposta é igual ao determinante da matriz dada.
- 2. $\det A^{-1} = \frac{1}{D}$, pois o determinante da matriz inversa é o inverso do determinante da matriz dada.
- 3. $\det 3A = 3^2D = 9D$, pois A possui 2 linhas e cada linha multiplicada por 3 implica multiplicar o determinante por 3.

Exemplo 5.7.

Determine
$$x$$
 tal que $\begin{vmatrix} 2x & x+2 \\ -4 & x \end{vmatrix} = 14$

Temos
$$2x.x - (-4)(x+2) = 14 \Rightarrow 2x^2 + 4x - 6 = 0$$

 $\Rightarrow x = 1$ ou $x = -3$.

Exemplo 5.8.

Determine x para que a matriz $A = \begin{bmatrix} x & 1 \\ 20 - x & x \end{bmatrix}$ seja inversível.

Sabemos que A é inversível se, e somente se, $\det A \neq 0$. Queremos, então,

$$x^{2} - (20 - x) \neq 0 \Rightarrow x^{2} + x - 20 \neq 0 \Rightarrow x \neq 4 \text{ e } x \neq -5.$$

Resumo

Nesta aula, recordamos a definição de determinante e vimos que não se trata de um método prático para calcular determinantes de ordens altas. Vimos as propriedades dos determinantes e, com o uso de quatro delas, pudemos facilitar o cálculo de determinantes, aplicando operações elementares e "transformando"o determinante original num triangular. Tal método, chamado *triangularização*, permite que determinantes de ordens altas sejam obtidos sem que tenhamos que recair numa sequência enorme de determinantes de ordens menores a serem calculados. Veja que esta aula não apresentou nenhuma grande novidade em termos de teoria: foi uma aula mais prática, que apresentou uma técnica útil de cálculo.

Exercício 5.1.

1. Calcule, por triangularização, os seguintes determinantes:

a.
$$\begin{vmatrix} 3 & -2 & 4 \\ -1 & 0 & 2 \\ 5 & 6 & 2 \end{vmatrix}$$
 b. $\begin{vmatrix} 2 & -3 & 1 & 7 \\ -2 & 3 & 0 & 4 \\ -1 & 5 & 4 & -3 \\ 2 & 4 & -5 & 0 \end{vmatrix}$

$$\begin{array}{c|cccc}
 & 10 & -2 & -6 \\
 & 2 & 1 & 6 \\
 & 5 & 4 & 2
\end{array}$$

- 2. Dada $A \in M_n(\mathbb{R})$, tal que det A = D, determine:
 - a. $\det A^T$
 - b. $\det A^{-1}$
 - c. det 2A
- 3. Seja $\det A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = 10$. Calcule, usando as propriedades dos determinantes:

a.
$$\begin{vmatrix} a & b & c \\ -d & -e & -f \\ g & h & i \end{vmatrix}$$
 b.
$$\begin{vmatrix} a & b & c \\ g & h & i \\ d & e & f \end{vmatrix}$$

c.
$$\begin{vmatrix} a & b & c \\ d/2 & e/2 & f/2 \\ g & h & i \end{vmatrix}$$
 d. $\begin{vmatrix} a & d & g \\ b & e & h \\ c & f & i \end{vmatrix}$

e.
$$\begin{vmatrix} 2a & 2b & 2c \\ g & h & i \\ d & e & f \end{vmatrix}$$
 f.
$$\begin{vmatrix} a & b & c \\ g+d & h+e & i+f \\ d & e & f \end{vmatrix}$$

4. Calcule *x* para que
$$\begin{vmatrix} x+2 & 2 & -x \\ 4 & 0 & 5 \\ 6 & 2x & x \end{vmatrix} = 14$$

- 5. Sejam $A, B \in M_n(\mathbb{R})$ tais que det A = 4 e det B = 5. Determine:
 - a. det AB

- b. $\det 3A$
- c. $\det(AB)^{-1}$
- d. det(-A)
- e. $\det A^{-1}B$
- 6. Determine x para que a matriz $A = \begin{bmatrix} x & x+2 \\ 1 & x \end{bmatrix}$ seja inversível.

Autoavaliação

Você deve estar bem treinado para calcular determinantes pelo método da triangularização. Veja que se trata de um cálculo "ingrato": não há como verificar se estamos certos, a não ser refazendo e comparando os resultados. Por isso, embora se trate de uma técnica simples, algorítmica, exige atenção. Caso você tenha sentido dúvidas, procure o tutor da disciplina.

RESPOSTAS DOS EXERCÍCIOS

- 1. a. -84 b. -1.099 c. -290
- 2. a. D b. 1/D c. $2^n.D$
- 3. a. -10 b. -10 c. 5 d. 10 e. -20 f. -10
- 4. x = 1 ou $x = -\frac{23}{9}$
- 5. Sejam $A, B \in M_n(\mathbb{R})$ tais que $\det A = 4$ e $\det B = 5$. Determine:
 - a. $\det AB = \det A \cdot \det B = 4 \times 5 = 20$
 - b. $\det 3A = 3^n \cdot \det A = 3^n \times 4 = 4 \cdot 3^n$
 - c. $\det(AB)^{-1} = [\det(AB)]^{-1} = 20^{-1} = 1/20$
 - d. $\det(-A) = (-1)^n \times 4$ (será 4, se n for par e -4, se n for impar)
 - e. $\det A^{-1}B = \det A^{-1}$. $\det B = 1/4 \times 5 = 5/4$
- 6. $x \neq -1$ e $x \neq 2$

Álgebra Linear I | Sistemas Lineares

Aula 6

SISTEMAS LINEARES

Objetivo

Ao final desta aula, você deverá ser capaz de:

1 resolver e classificar sistemas lineares, usando o método do escalonamento.

SISTEMAS LINEARES

Pré-requisitos:

Uma equação é uma sentença

matemática aberta, isto é, com variáveis, onde

duas expressões

são ligadas pelo sinal "=".

Ex: 2x - 1 = 0; $x^2 - 2x = 6$ etc.

Aulas 1 a 4.

Grande parte dos problemas estudados em Álgebra Linear recaem na resolução ou discussão de sistemas de equações lineares. O mesmo acontece com muitos problemas das demais áreas da Matemática, da Física e da Engenharia. Você, com certeza, já tomou conhecimento de diferentes técnicas de resolução desses sistemas - substituição, adição, comparação, entre outras. Nesta aula e na próxima, estudaremos um método que permite um tratamento eficiente de sistemas de equações lineares, seja para obter seu conjunto-solução, seja para classificá-lo ou mesmo para impor condições quanto à existência ou quantidade de soluções.

EQUAÇÕES LINEARES

Uma equação linear é uma equação do tipo

$$a_1x_1 + a_2x_2 + \dots + a_nx_n = b$$

Isto é, trata-se de uma equação na qual cada termo tem grau, no máximo, igual a 1.

Os elementos de uma equação linear são:

• variáveis (ou incógnitas): $x_1, ..., x_n$

• coeficientes: $a_1, ..., a_n \in \mathbb{R}$

• termo independente: $b \in \mathbb{R}$

O grau de um termo - ou monômio - é a soma dos expoentes das variáveis.

Ex: xy tem grau 2; x^2y^3 tem grau 5; 16 tem grau zero. Exemplo 6.1.

São equações lineares:

•
$$3x_1 - 2x_2 + 17 = 0$$

$$2x - 3y + 4z = 1$$

•
$$4a - 5b + 4c - d = 10$$

•
$$x = 2$$

São equações não-lineares:

- $x^2 5x + 6 = 0$
- 3xy x + 4 = 0
- $2\sqrt{x} 3y = 1$
- $\frac{3}{x} 9 = 0$

Uma *solução* de uma equação com *n* variáveis é uma n-upla ordenada de números reais os quais, quando substituídos no lugar das variáveis respectivas na equação, fornecem uma sentença matemática verdadeira.

Resolver uma equação é encontrar o conjunto de todas as suas soluções, chamado conjunto-solução da equação.

Exemplo 6.2.

- 1. O par ordenado (3,2) é uma solução da equação (não linear) $x^2 4y = 1$, pois $3^2 4(2) = 9 8 = 1$.
- 2. O conjunto-solução da equação linear 3x 1 = 5 é $\{2\}$.
- 3. A equação linear x+y=10 possui infinitas soluções. Os pares ordenados (2,8), (-3,13), (0,10), (1/5,49/5) são apenas algumas delas.

SISTEMAS DE EQUAÇÕES LINEARES

Um sistema de equações lineares (ou, simplesmente, um sistema linear) é um conjunto de equações lineares que devem ser resolvidas simultaneamente. Isto é, uma solução do sistema é solução de cada equação linear que o compõe. Resolver um sistema de equações lineares é determinar o conjunto formado por todas as suas soluções, chamado conjunto-solução do sistema.

Um sistema linear, com m equações e n incógnitas, tem a seguinte forma:

Exemplo 6.3.

São sistemas de equações lineares:

$$\begin{cases} 2x - y = 3 \\ 4x + 5y = 0 \end{cases}; \begin{cases} x + 2y - 3z = 1 \\ -2x + 5y - z = 5 \\ 3x - 6y = 10 \\ 4x - y + 2z = -1 \end{cases};$$
$$\begin{cases} 2a - 3b = 1 \\ a + b = 5 \\ 5a - 2b = 8 \end{cases}; \begin{cases} x_1 - 2x_2 + 5x_3 = 0 \\ 2x_1 + x_2 = 2 \end{cases}$$

CLASSIFICAÇÃO DE UM SISTEMA LINEAR QUANTO À SOLUÇÃO

Um sistema linear pode ter ou não solução. Se tem solução, pode ter uma só ou mais de uma. Podemos, então, classificar um sistema linear, quanto à existência e quantidade de soluções, em três tipos:

- Compatível (ou possível) e determinado: quando possui uma única solução.
- Compatível e indeterminado: quando possui mais de uma solução.
- Incompatível (ou impossível): quando não possui solução.

Podemos pensar num sistema de equações lineares como sendo um conjunto de perguntas a responder (qual o valor de cada incógnita?). Cada equação fornece uma informação, uma "dica"a respeito dessas incógnitas. Se tivermos informações coerentes e em quantidade suficiente, encontraremos uma solução,

que será única. Se essas informações forem coerentes entre si, mas em quantidade insuficiente, não conseguiremos determinar, uma a uma, cada solução, mas poderemos caracterizar o conjunto delas. Finalmente, se as informações não forem coerentes entre si, ou seja, se forem incompatíveis, o sistema não terá solução.

Resolver um sistema é um pouco como brincar de detetive...

Exemplo 6.4.

Sem ter que aplicar regras de resolução, podemos ver que

- 1. O sistema $\begin{cases} x+y=3\\ x-y=1 \end{cases}$ possui uma única solução: o par (2,1).
- 2. O sistema $\begin{cases} x+y=3\\ 2x+2y=6 \end{cases}$ possui mais de uma solução. os pares (1,2), (0,3), (3,0), (2,1), (3/2,3/2) são algumas delas;
- 3. O sistema $\begin{cases} x+y=3\\ x+y=4 \end{cases}$ não possui solução (A soma de dois números reais é única!).

SISTEMAS LINEARES HOMOGÊNEOS

Dizemos que um sistema linear é *homogêneo* quando os termos independentes de todas as equações que o compõem são iguais a zero.

Exemplo 6.5.

São sistemas lineares homogêneos:

$$\begin{cases} 2x - 3y = 0 \\ x + 5y = 0 \end{cases} \begin{cases} 3x_1 - x_2 + 7x_3 = 0 \\ x_1 - 2x_2 + 3x_3 = 0 \end{cases} \begin{cases} 2x - 5y = 0 \\ x + 5y = 0 \\ -x + 4y = 0 \end{cases}$$

Observe que um sistema linear homogêneo em n incógnitas

sempre admite a solução

$$\underbrace{(0,0,...,0)}_{n \text{ elementos}}$$

chamada *solução trivial*. Logo, um sistema linear homogêneo é sempre compatível. Quando é determinado, possui somente a solução trivial. Quando é indeterminado, possui outras soluções, além da trivial, chamadas (obviamente!) soluções *não-triviais*.

Já é hora de resolvermos sistemas lineares. Dissemos, no início da aula, que faríamos isso usando um método eficiente. Esse método lida com matrizes associadas ao sistema a ser tratado. Vamos, então, caracterizar essas matrizes.

A solução trivial também é conhecida como solução *nula* ou ainda solução *imprópria*.

MATRIZES ASSOCIADAS A UM SISTEMA LINEAR

Dado um sistema linear com m equações e n incógnitas:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ & \cdot \\ & \cdot \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

destacamos as seguintes matrizes:

• matriz $(m \times n)$ dos coeficientes:

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

• matriz (ou vetor) $(m \times 1)$ dos termos independentes:

$$\left[egin{array}{c} b_1 \ b_2 \ dots \ b_m \end{array}
ight]$$

• matriz aumentada (ou ampliada) $(m \times (n+1))$ do sistema:

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & b_2 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} & b_m \end{bmatrix}$$

Exemplo 6.6.

O sistema linear
$$\begin{cases} 2x - 3y + 4z = 18 \\ x + y - 2z = -5 \\ -x + 3z = 4 \end{cases}$$
 possui

matriz de coeficientes:

matriz

de termos matriz aumentada:
independentes:

$$\begin{bmatrix} 2 & -3 & 4 \\ 1 & 1 & -2 \\ -1 & 0 & 3 \end{bmatrix} \qquad \begin{bmatrix} 18 \\ -5 \\ 4 \end{bmatrix} \qquad \begin{bmatrix} 2 & -3 & 4 & 18 \\ 1 & 1 & -2 & -5 \\ -1 & 0 & 3 & 4 \end{bmatrix}$$

RESOLUÇÃO DE SISTEMAS LINEARES POR ESCALONAMENTO

Observe o sistema linear a seguir:

$$\begin{cases} 2x & +y & -z & = & 3 \\ & +3y & +z & = & -1 \\ & & 2z & = & 4 \end{cases}$$

Note que, para resolvê-lo, basta:

- determinar o valor de z na terceira equação
- substituir o valor de z na segunda equação e obter y
- substituir y e z na primeira equação e obter x

num processo chamado método das substituições regressivas.

A resolução do sistema ficou bastante facilitada. Vejamos a matriz aumentada desse sistema:

$$\left[\begin{array}{ccccc}
2 & 1 & -1 & 3 \\
0 & 3 & 1 & -1 \\
0 & 0 & 2 & 4
\end{array}\right]$$

Observe que, a partir da segunda linha, o número de zeros iniciais sempre aumenta. Quando isso acontece, dizemos que a matriz está *escalonada*. Sistemas com matrizes associadas na forma escalonada podem ser resolvidos pelo método das substituições regressivas, como vimos anteriormente. O problema, então, é:

Dado um sistema linear, como transformar sua matriz associada em uma escalonada?

E como fazer isso sem alterar seu conjunto-solução?

Dizemos que dois sistemas lineares são *equivalentes* quando possuem o mesmo conjunto-solução. Nosso objetivo, portanto, é migrar de um sistema para outro que lhe seja equivalente, e de resolução mais simples.

Nós já estudamos, na Aula 4, as operações elementares que podemos efetuar sobre as linhas de uma matriz. Vamos recordar quais são elas:

1. Permutar duas linhas.

Notação: $L_i \leftrightarrow L_i$

2. Multiplicar uma linha por um número real não nulo.

Notação: $L_i \leftarrow \lambda L_i$

3. Somar a uma linha um múltiplo de uma outra.

Notação: $L_i \leftarrow L_i + \lambda L_j$

Pode-se mostrar que: Seja S um sistema linear com matriz aumentada A. Se aplicamos às linhas de A operações elementares, obtemos uma matriz A', tal que o sistema linear S', de matriz aumentada A', é equivalente a S.

A ideia, então, é: dado um sistema S de matriz aumentada A, aplicar operações elementares às linhas de A, obtendo uma ma-

Neste caso, dizemos que L_j é a linha $piv\hat{o}$.

triz escalonada A', e resolver o sistema associado S', conforme você pode mostra o esquema a seguir:

Sistema linear
$$S$$
 equivalentes \leftrightarrow Sistema linear S'

$$\downarrow \qquad \qquad \uparrow$$

$$\text{matriz } A \qquad \text{operações elementares} \qquad \text{matriz escalonada } A'$$

voce pode
encontrar essas
passagens, em
detalhes, no livro
Álgebra Linear e
Aplicaçõs, de
Collioli,
Domingues e
Costa, da Atual
Editora.

Vamos ver uma série de exemplos para você se familiarizar com o método. Em vez de, simplesmente, ler o exemplo, efetue cada operação elementar indicada, para depois comparar com a matriz apresentada na sequência:

Exemplo 6.7.

Vamos resolver, por escalonamento, o sistema linear

$$S: \begin{cases} x +2y +5z = 28 \\ 2x +3y -z = -1 \\ 4y +z = 13 \end{cases}$$

Vamos escrever a matriz aumentada desse sistema:

$$A = \left[\begin{array}{rrrr} 1 & 2 & 5 & 28 \\ 2 & 3 & -1 & -1 \\ 0 & 4 & 1 & 13 \end{array} \right]$$

Vamos obter "zeros" na primeira coluna, da segunda linha em diante. Para isso, aplicaremos a terceira operação elementar, usando a primeira linha como pivô. Note que, neste caso, como o elemento da terceira linha já é zero, precisamos apenas obter zero na segunda linha. Para isso, vamos multiplicar a primeira linha por -2 e somar o resultado com a segunda linha:

$$\begin{bmatrix} 1 & 2 & 5 & 28 \\ 2 & 3 & -1 & -1 \\ 0 & 4 & 1 & 13 \end{bmatrix} L_2 \leftarrow L_2 - 2L_1 \implies$$

$$\Rightarrow \begin{bmatrix} 1 & 2 & 5 & 28 \\ 0 & -1 & -11 & -57 \\ 0 & 4 & 1 & 13 \end{bmatrix}$$

Passemos, agora, para a segunda coluna (não usaremos mais a primeira linha - ela está "pronta"). Queremos obter zero abaixo da segunda linha. Para isso, multiplicamos a segunda linha por 4 e somamos à terceira:

$$\begin{bmatrix} 1 & 2 & 5 & 28 \\ 0 & -1 & -11 & -57 \\ 0 & 4 & 1 & 13 \end{bmatrix} L_3 \leftarrow L_3 + 4L_2 \implies$$

$$\Rightarrow \begin{bmatrix} 1 & 2 & 5 & 28 \\ 0 & -1 & -11 & -57 \\ 0 & 0 & -43 & -215 \end{bmatrix}$$

Pronto: a matriz está escalonada. Vamos, agora, escrever o sistema S', associado a ela:

$$S': \begin{cases} x & +2y & +5z & = 28 \\ -y & -11z & = -57 \\ & -43z & = -215 \end{cases}$$

Da terceira equação, obtemos z = (-215)/(-43) = 5.

Substituindo na segunda, obtemos y = 2.

Finalmente, substituindo os valores já obtidos na primeira equação, temos x = -1.

Como S' e S são sistemas lineares equivalentes, essa também é a solução do sistema S dado. Logo, o conjunto-solução procurado é $\{(-1,2,5)\}$. Além disso, podemos classificar o sistema S: ele é compatível e determinado.

Exemplo 6.8.

Vamos resolver o sistema linear:

$$S: \begin{cases} 2x + y +5z = 1\\ x +3y +4z = -7\\ 5y -z = -15\\ -x +2y +3z = -8 \end{cases}$$

Sua matriz aumentada é:

$$\begin{bmatrix}
2 & 1 & 5 & 1 \\
1 & 3 & 4 & -7 \\
0 & 5 & -1 & -15 \\
-1 & 2 & 3 & -8
\end{bmatrix}$$

Você deve ter notado que, quando o elemento na linha pivô, na coluna em que estamos trabalhando, é 1 (ou -1), os cálculos ficam facilitados. Então, vamos aproveitar o fato de ter 1 na primeira posição da segunda linha, e permutar as linhas 1 e 2:

$$\begin{bmatrix} 2 & 1 & 5 & 1 \\ 1 & 3 & 4 & -7 \\ 0 & 5 & -1 & -15 \\ -1 & 2 & 3 & -8 \end{bmatrix} L_1 \leftrightarrow L_2 \Rightarrow \begin{bmatrix} 1 & 3 & 4 & -7 \\ 2 & 1 & 5 & 1 \\ 0 & 5 & -1 & -15 \\ -1 & 2 & 3 & -8 \end{bmatrix}$$

Vamos obter zeros na primeira coluna, abaixo da primeira linha, usando a primeira linha como pivô:

$$\begin{bmatrix} 1 & 3 & 4 & -7 \\ 2 & 1 & 5 & 1 \\ 0 & 5 & -1 & -15 \\ -1 & 2 & 3 & -8 \end{bmatrix} L_2 \leftarrow L_2 - 2L_1 \Rightarrow$$

$$\Rightarrow \begin{bmatrix} 1 & 3 & 4 & -7 \\ 0 & -5 & -3 & 15 \\ 0 & 5 & -1 & -15 \\ 0 & 5 & 7 & -15 \end{bmatrix}$$

Passemos para a segunda coluna. Para obter 1 na posição pivô, dividimos toda a segunda linha por -5:

$$\begin{bmatrix} 1 & 3 & 4 & -7 \\ 0 & -5 & -3 & 15 \\ 0 & 5 & -1 & -15 \\ 0 & 5 & 7 & -15 \end{bmatrix} L_2 \leftarrow -1/5L_2 \implies$$

$$\Rightarrow \begin{bmatrix} 1 & 3 & 4 & -7 \\ 0 & 1 & 3/5 & -3 \\ 0 & 5 & -1 & -15 \\ 0 & 5 & 7 & -15 \end{bmatrix}$$

Agora, usando a linha 2 como liha pivô, vamos obter zeros na segunda coluna, abaixo da segunda linha:

$$\begin{bmatrix} 1 & 3 & 4 & -7 \\ 0 & 1 & 3/5 & -3 \\ 0 & 5 & -1 & -15 \\ 0 & 5 & 7 & -15 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 3 & 4 & -7 \\ 0 & 1 & 3/5 & -3 \\ L_3 \leftarrow L_3 - 5L_2 \\ L_4 \leftarrow L_4 - 5L_2 \end{bmatrix} \begin{bmatrix} 0 & 0 & -4 & 0 \\ 0 & 0 & 4 & 0 \end{bmatrix}$$

Para finalizar o escalonamento, precisamos obter três ze-

ros inicias na quarta linha, ou seja, obter um zero na posição i=4, j=3. Nas passagens acima, usamos a segunda operação elementar par obter 1 na posição pivô e, com isso, ter os cálculos facilitados na obtenção dos zeros. Devemos, porém, estar atentos a posssíveis vantagens que um sistema em particular pode oferecer. Neste exemplo, se simplesmente somarmos a linha 3 à linha 4, já obteremos o zero procurado:

$$\begin{bmatrix} 1 & 3 & 4 & -7 \\ 0 & 1 & 3/5 & -3 \\ 0 & 0 & -4 & 0 \\ 0 & 0 & 4 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 3 & 4 & -7 \\ 0 & 1 & 3/5 & -3 \\ 0 & 0 & -4 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

A matriz está escalonada. Vamos escrever o sistema associado:

$$S': \begin{cases} x +3y +4z = -7 \\ y +3z/5 = -3 \\ -4z = 0 \end{cases}$$

Resolvendo por substituições regressivas, obtemos: z = 0, y = -3, x = 2. Logo, o sistema S é compatível e determinado e seu conjunto-solução é $\{(2, -3, 0)\}$.

Exemplo 6.9.

Vamos resolver o sistema linear

$$S: \begin{cases} 3a +2b +c +2d = 3\\ a -3c +2d = -1\\ -a +5b +4c = 4 \end{cases}$$

Acompanhe a sequência de operações elementares que aplicremos para escalonar a matriz aumentada de *S*:

$$\begin{bmatrix} 3 & 2 & 1 & 2 & 3 \\ 1 & 0 & -3 & 2 & -1 \\ -1 & 5 & 4 & 0 & 4 \end{bmatrix} \xrightarrow{L_1 \leftrightarrow L_2} \Rightarrow$$

$$\Rightarrow \begin{bmatrix} 1 & 0 & -3 & 2 & -1 \\ 3 & 2 & 1 & 2 & 3 \\ -1 & 5 & 4 & 0 & 4 \end{bmatrix} \xrightarrow{L_2 \leftarrow L_2 - 3L_1} \xrightarrow{L_3 \leftarrow L_3 + L_1}$$

$$\Rightarrow \begin{bmatrix} 1 & 0 & -3 & 2 & -1 \\ 0 & 2 & 10 & -4 & 6 \\ 0 & 5 & 1 & 2 & 3 \end{bmatrix} \xrightarrow{L_2 \leftarrow 1/2L_2 \Rightarrow}$$

$$\Rightarrow \begin{bmatrix} 1 & 0 & -3 & 2 & -1 \\ 0 & 1 & 5 & -2 & 3 \\ 0 & 5 & 1 & 2 & 3 \end{bmatrix} L_3 \leftarrow L_3 - 5L_2 \Rightarrow$$

$$\Rightarrow \begin{bmatrix} 1 & 0 & -3 & 2 & -1 \\ 0 & 1 & 5 & -2 & 3 \\ 0 & 0 & -24 & 12 & -12 \end{bmatrix} \Rightarrow$$

$$\Rightarrow S' : \begin{cases} a & -3c & +2d & =-1 \\ b & +5c & -2d & =3 \\ -24c & +12d & =-12 \end{cases}$$

Na terceira equação, vamos escrever d em função de c: d=-1+2c. Substituindo na segunda equação, obtemos b=1-c. E na primeira equação: a=1-c. Temos, neste caso, um sistema compatível, porém indeterminado: ele possui infinitas soluções.

Fazendo c = k, seu conjunto-solução é

$$\{(1-k, 1-k, k, -1+2k); k \in \mathbb{R}\}$$

.

Exemplo 6.10.

Vamos resolver o sistema
$$S$$
:
$$\begin{cases} 2x & +y & -3z = 3 \\ x & -y & +z = 1 \\ 3x & +3y & -7z = 2 \end{cases}$$

$$\begin{bmatrix} 2 & 1 & -3 & 3 \\ 1 & -1 & 1 & 1 \\ 3 & 3 & -7 & 2 \end{bmatrix} \xrightarrow{L_1 \leftrightarrow L_2} \begin{bmatrix} 1 & -1 & 1 & 1 \\ 2 & 1 & -3 & 3 \\ 3 & 3 & -7 & 2 \end{bmatrix} \Rightarrow$$

$$L_{2} \leftarrow L_{2} - 2L_{1} \Rightarrow \begin{bmatrix} 1 & -1 & 1 & 1 \\ 0 & 3 & -5 & 1 \\ 0 & 6 & -10 & -1 \end{bmatrix} L_{3} \leftarrow L_{3} - 2L_{2}$$

$$\Rightarrow \left[\begin{array}{cccc} 1 & -1 & 1 & 1 \\ 0 & 3 & -5 & 1 \\ 0 & 0 & 0 & -3 \end{array} \right]$$

Observe que, ao escrever o sistema associado a essa matriz, a terceira equação será: 0x + 0y + 0z = -3, ou seja, 0 = -3, o que é falso, para quaisquer valores de x, y e z. Logo, o sistema S é impossível e seu conjunto-solução é \emptyset .

Exemplo 6.11.

Vamos resolver o sistema linear homogêneo

$$S: \left\{ \begin{array}{lll} a & -b & +c & =0 \\ a & +b & & =0 \\ & 2b & -c & =0 \end{array} \right.$$

$$\begin{bmatrix} 1 & -1 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 2 & -1 & 0 \end{bmatrix} L_2 \leftarrow L_2 - L_1 \begin{bmatrix} 1 & -1 & 1 & 0 \\ 0 & 2 & -1 & 0 \\ 0 & 2 & -1 & 0 \end{bmatrix}$$
$$L_2 \leftarrow L_2 - L_1 \begin{bmatrix} 1 & -1 & 1 & 0 \\ 0 & 2 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \Rightarrow S' : \begin{cases} a - b + c & = 0 \\ 2b - c & = 0 \end{cases}$$

O sistema é compatível (TODO SISTEMA HOMOGÊNEO É COMPATÍVEL!!) e indeterminado. Resolvendo a segunda equação para c, substituindo na primeira, e fazendo b = k, você poderá conferir que o conjunto-solução é $\{(-k, k, 2k)k \in \mathbb{R}\}$.

Resumo

Nesta aula, estudamos o método de escalonamento para resolver e classificar sistemas lineares. Trata-se de um método seguro, que "revela"a estrutura do sistema, explicitando as redundâncias ou incongruências das equações. Após o escalonamento, as equações que não acrescentam informação ao sistema têm seus termos todos anulados e aquelas que são incompatíveis com as demais se transformam numa sentença matemática falsa (algo como 0 = a, com a diferente de zero). Continuaremos a usar esse método, na próxima aula, para discutir sistemas lineares, isto é, para impor ou identificar condições sobre seu conjunto-solução.

Exercício 6.1.

- 1. (Provão MEC 2001)
 - O número de soluções do sistema de equações

$$\begin{cases} x + y -z = 1 \\ 2x +2y -2z = 2 & \text{e} \\ 5x +5y -5z = 7 \end{cases}$$

- (A) 0 (B) 1 (C) 2 (D) 3 (E) infinito
- 2. Classifique e resolva os seguintes sistemas lineares:

a.
$$\begin{cases} 2x & -y = -7 \\ -3x & +4y = 13 \\ x & +2y = -1 \end{cases}$$

b.
$$\begin{cases} 3x - y & = 1 \\ 2y -5z & = -11 \\ z - t & = -1 \\ x + y + z + t & = 10 \end{cases}$$

c.
$$\begin{cases} 2a - b - c = -4 \\ a + b - 2c = 1 \end{cases}$$

d.
$$\begin{cases} 2x + y -z = -6 \\ x - y + 3z = 21 \\ 3x + 2z = 15 \end{cases}$$

e.
$$\begin{cases} x - y = 3 \\ 2x + 3y = 16 \\ x + 2y = 9 \\ 5x - 4y = 17 \end{cases}$$

f.
$$\begin{cases} x - y = 3 \\ 2x + 3y = 16 \\ x + 2y = 8 \\ 5x - 4y = 17 \end{cases}$$

g.
$$\begin{cases} 3x & -y & +z = 0 \\ x & +y & -2z = 0 \\ 5x & -3y & +4z = 0 \end{cases}$$

h.
$$\begin{cases} a +2b = 0 \\ 3a -b = 0 \\ 5a +3b = 0 \end{cases}$$

Autoavaliação

Não se preocupe se você ainda hesita sobre qual operação linear usar, no processo de escalonamento. A familiarização vem com a prática. Se necessário, refaça os exemplos e exercícios. Se sentir dúvidas, procure a tutoria. Os sistemas lineares aparecerão ao longo de todo o curso e é bom que você esteja ágil no processo de escalonamento, para não perder muito tempo com eles!

RESPOSTAS DOS EXERCÍCIOS

- 1. (A) 0 (Ao escalonar, concluímos que o sistema é incompatível)
- 2. a. Sistema compatível determinado.

Conjunto-solução = $\{(-3,1)\}$

b. Sistema compatível determinado.

Conjunto-solução = $\{(1,2,3,4)\}$

c. Sistema compatível indeterminado.

Conjunto-solução = $\{(-1+k,2+k,k); k \in \mathbb{R}\}$

d. Sistema compatível indeterminado.

Conjunto-solução = $\{(5 - 2k/3, -16 + 7k/3, k); k \in \mathbb{R}\}$

e. Sistema compatível determinado.

Conjunto-solução = $\{(5,2)\}$

- f. Sistema incompatível. Conjunto-solução = 0
- g. Sistema compatível indeterminado.

Conjunto-solução = $\{(k/4,7k/4,k); k \in \mathbb{R}\}.$

h. Sistema compatível determinado.

Conjunto-solução = $\{(0,0)\}$

Aula 7

DISCUSSÃO DE SISTEMAS LINEARES

Objetivo

Ao final desta aula, você deverá ser capaz de:

discutir sistemas lineares, usando o método do escalonamento.

DISCUSSÃO DE SISTEMAS LINEARES

Pré-requisito: Aula 6.

Discutir um sistema é analisar sob quais condições ele admite soluções e, quando estas existem, quantas são. Na aula passada, vimos que, ao final do processo de escalonamento da matriz associada a um sistema linear, excluindo as equações do tipo 0=0, chegamos a uma entre três situações possíveis:

- 1. Existe alguma equação do tipo 0 = a, com $a \neq 0$. Isto é, uma equação impossível de ser satisfeita.
 - Nesse caso, o sistema é incompatível e, portanto, seu conjunto solução é vazio.
- 2. Não há equações impossíveis, mas obtemos uma quantidade de equações menor do que o número de incógnitas.
 Nesse caso, o sistema é compatível e indeterminado e seu conjunto-solução admite infinitas soluções.
- 3. Não há equações impossíveis e obtemos uma quantidade de equações igual ao de incógnitas.

Nesse caso, o sistema é compatível e determinado e seu conjunto-solução é unitário.

Nesta aula, iremos analisar sistemas lineares, segundo os valores assumidos por parâmetros presentes nas equações, assim como impor valores a esses parâmetros para que uma desejada situação ocorra.

A seguir, para formalizar os procedimentos explorados ao longo dos exercícios, definiremos a característica de uma matriz e apresentaremos o Teorema de Rouché-Capelli.

Finalmente, veremos a Regra de Cramer, que se aplica a sistemas lineares com quantidade de equações igual à de incógnitas.

Acompanhe os exemplos a seguir.

Exemplo 7.1.

Vamos discutir o o sistema $\begin{cases} x+y+z &= 6 \\ x+2y-z &= -4 \\ x+3z &= a \end{cases}$ os valores do parâmetro a.

Pode-se provar que um sistema linear que possui mais de uma solução possui, de fato, infinitas soluções. Note que o mesmo pode não ocorrer com um sistema não linear. Por exemplo, o sistema $\int x - y = 0$ $x^2 = 4$ possui exatamente duas soluções, a saber, os pares ordenados (2,2) e (-2, -2).

Escalonando sua matriz aumentada, obtemos:

$$\begin{bmatrix} 1 & 1 & 1 & | & 6 \\ 1 & 2 & -1 & | & -4 \\ 1 & 0 & 3 & | & a \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 & | & 6 \\ 0 & 1 & -2 & | & -10 \\ 0 & -1 & 2 & | & a-6 \end{bmatrix} \sim$$

$$\sim \left[\begin{array}{ccc|ccc|c} 1 & 1 & 1 & | & 6 \\ 0 & 1 & -2 & | & -10 \\ 0 & 0 & 0 & | & a-16 \end{array} \right]$$

Assim, o sistema dado é equivalente ao sistema

$$\begin{cases} x+y+z &= 6 \\ y-2z &= -10 \\ 0 &= a-16 \end{cases}$$

cuja terceira equação só será satisfeita se o segundo membro também for igual a zero. Logo, temos:

- $a \neq 16 \Rightarrow$ sistema incompatível.
- $a = 16 \Rightarrow$ sistema compatível e indeterminado, pois possui três incógnitas e apenas duas equações.

Exemplo 7.2.

Vamos discutir o sistema $\begin{cases} x + ay = 2 \\ ax + 2ay = 4 \end{cases}$.

Temos:
$$\begin{bmatrix} 1 & a & | & 2 \\ a & 2a & | & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & a & | & 2 \\ 0 & 2a - a^2 & | & 4 - 2a \end{bmatrix}.$$

Vamos determinar os valores de *a* para os quais o primeiro lado da segunda equação se anula:

 $2a-a^2=0 \Rightarrow a(2-a)=0 \Rightarrow a=0$ ou a=2. Então, há as seguintes possibilidades:

- $a = 0 \Rightarrow$ o sistema fica $\begin{cases} x = 2 \\ 0 = 4 \end{cases} \Rightarrow$ incompatível.
- $a = 2 \Rightarrow$ o sistema fica $\begin{cases} x + 2y = 2 \\ 0 = 0 \end{cases} \Rightarrow \begin{cases} \text{compativel e} \\ \text{indeterminado.} \end{cases}$

• $a \neq 0$ e $a \neq 2 \Rightarrow$ o sistema fica $\begin{cases} x + ay = 2 \\ by = c \end{cases}$, com $b = 2a - a^2 \neq 0$ e $c = 4 - 2a \Rightarrow$ compatível e determinado.

Exemplo 7.3.

Vamos analisar o sistema $\begin{cases} x+y+z &= 0\\ x+2y+kz &= 2\\ kx+2y+z &= -2 \end{cases}$, segundo

os valores do parâmetro *k*:

$$\begin{bmatrix} 1 & 1 & 1 & | & 0 \\ 1 & 2 & k & | & 2 \\ k & 2 & 1 & | & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 & | & 0 \\ 0 & 1 & k-1 & | & 2 \\ 0 & 2-k & 1-k & | & -2 \end{bmatrix} \sim$$

$$\sim \begin{bmatrix} 1 & 1 & & 1 & | & & 0 \\ 0 & 1 & & k-1 & | & & 2 \\ 0 & 0 & (1-k)-(k-1)(2-k) & | & -2-2(2-k) \end{bmatrix} \sim$$

$$\sim \begin{bmatrix} 1 & 1 & & 1 & | & 0 \\ 0 & 1 & k-1 & | & 2 \\ 0 & 0 & (k-1)(k-3) & | & 2(k-3) \end{bmatrix}.$$

Daí, temos $(k-1)(k-3) = 0 \Rightarrow k = 1$ ou k = 3. Há, então, as seguintes possibilidades:

•
$$k = 1 \Rightarrow \begin{cases} x + y + z &= 0 \\ y &= 2 \Rightarrow \text{sistema incompativel.} \\ 0 &= -4 \end{cases}$$

•
$$k = 3 \Rightarrow \begin{cases} x + y + z = 0 \\ y + 2z = 2 \Rightarrow \text{ sistema compative le indeterminado.} \end{cases}$$
 determinado.

•
$$k \neq 1$$
 e $k \neq 3 \Rightarrow$

$$\begin{cases}
x+y+z &= 0 \\
y+az &= 2, \text{ com } a=k-1, \\
bz &= c
\end{cases}$$
 $b = (k-1)(k-3) \neq 0$ e $c = 2(k-3) \Rightarrow$ sistema compatível e determinado.

Exemplo 7.4.

Vamos determinar para que valores de a e b o sistema

$$\begin{cases} x - y + z &= a \\ 2x - y + 3z &= 2 \\ x + y + bz &= 0 \end{cases}$$
 admite infinitas soluções. Temos:

$$\begin{bmatrix} 1 & -1 & 1 & | & a \\ 2 & -1 & 3 & | & 2 \\ 1 & 1 & b & | & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & | & a \\ 0 & 1 & 1 & | & 2 - 2a \\ 0 & 2 & b - 1 & | & -a \end{bmatrix} \sim$$

$$\sim \begin{bmatrix} 1 & -1 & 1 & | & a \\ 0 & 1 & 1 & | & 2 - 2a \\ 0 & 0 & b - 3 & | & 3a - 4 \end{bmatrix}.$$

Para que o sistema admita infinitas soluções (isto é, seja compatível e indeterminado), devemos ter b-3=0 e 3a-4=0. Isto é, b = 3 e a = 4/3.

Exemplo 7.5.

Que condições a, b e c devem satisfazer para que o sistema $\begin{cases} 3x - 2y = a \\ 4x + y = b \text{ admita solução?} \\ x = c \end{cases}$

Solução:

$$\begin{bmatrix} 3 & -2 & | & a \\ 4 & 1 & | & b \\ 1 & 0 & | & c \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & | & c \\ 4 & 1 & | & b \\ 3 & -2 & | & a \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & | & c \\ 0 & 1 & | & b-4c \\ 0 & -2 & | & a-3c \end{bmatrix} \sim$$
$$\sim \begin{bmatrix} 1 & 0 & | & c \\ 0 & 1 & | & b-4c \\ 0 & 0 & | & (a-3c)+2(b-4c) \end{bmatrix}.$$

Logo, o sistema terá solução apenas se (a-3c)+2(b-4c)=0, isto é, se a + 2b - 11c = 0.

Exemplo 7.6.

Vamos discutir o sistema homogêneo $\begin{cases} x + 2y = 0 \\ 3x + ky = 0 \end{cases}$, segundo o parâmetro *k*.

Temos:
$$\begin{bmatrix} 1 & 2 & | & 0 \\ 3 & k & | & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & | & 0 \\ 0 & k-6 & | & 0 \end{bmatrix}$$
.

Então:

- $k = 6 \Rightarrow$ sistema compatível e indeterminado.
- $k \neq 6 \Rightarrow$ sistema compatível e determinado.

Vamos, agora, formalizar o procedimento que vimos adotando para resolver e discutir sistemas lineares. Para isso, precisamos da seguinte definição:

CARACTERÍSTICA DE UMA MATRIZ

Na Aula 4, vimos que, ao passar de uma matriz para outra, por meio de uma sequência de operações elementares, definimos uma relação de equivalência no conjunto dessas matrizes. Assim, se podemos obter a matriz B, a partir da matriz A, pela aplicação de uma sequência de operações elementares, dizemos que A e B são matrizes *equivalentes*. Nos exemplos anteriores, usamos esse fato e indicamos que A e B são equivalentes escrevendo $A \sim B$ (ou $B \sim A$).

Seja A uma matriz qualquer e A' uma matriz escalonada, equivalente a A. Chamamos de característica de A, e indicamos por c(A), ao número de linhas não nulas de A'.

Exemplo 7.7.

1. Seja
$$A = \begin{bmatrix} 1 & 5 \\ 2 & 3 \end{bmatrix}$$
. Então $A' = \begin{bmatrix} 1 & 5 \\ 0 & -7 \end{bmatrix}$ e $c(A) = 2$.

2. Se
$$A = \begin{bmatrix} 2 & 5 & -1 \\ 2 & 3 & 0 \\ 6 & 13 & -2 \end{bmatrix}$$
, então $A' = \begin{bmatrix} 2 & 5 & -1 \\ 0 & -2 & 1 \\ 0 & 0 & 0 \end{bmatrix}$ e $c(A) = 2$.

3. Sendo
$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 2 & 2 & 2 \\ 5 & 5 & 5 & 5 \end{bmatrix}$$
, temos $A' = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ e $c(A) = 1$.

O raciocínio que usamos para resolver ou classificar os sistemas lineares se constitui num resultado conhecido como Teorema de Rouché-Capelli. Nós o enunciamos a seguir.

Teorema 7.1 (Teorema de Rouché-Capelli).

Seja um sistema linear S de representação matricial AX = b, com $A \in M_{m \times n}$. Indiquemos por A|b a matriz aumentada de S. Então S será compatível se, e somente se, c(A) = c(A|b). Quando for compatível, será determinado se c(A) = n e indetermidado, se c(A) < n.

Quando um sistema linear S: AX = b possui número de equações igual ao número de incógnitas, a matriz A é quadrada e podemos calcular seu determinante, que vamos representar por D. Neste caso, vale o seguinte teorema:

Teorema 7.2 (Teorema de Cramer).

Seja S um sistema linear com número de equações igual ao de incógnitas. Se $D \neq 0$, então o sistema é compatível e determinado e sua única solução $(\alpha_1, \alpha_2, ..., \alpha_n)$ é dada por

$$\alpha_i = \frac{D_i}{D}, \ i = 1, ..., n,$$

onde D_i é o determinante da matriz que se obtém, a partir de A, substituindo-se a *i*-ésima coluna pela coluna dos termos independentes do sistema.

Quando $D \neq 0$ (isto é, quando a matriz A é inversível), o sistema é chamado sistema de Cramer.

Exemplo 7.8.

Seja o sistema
$$\begin{cases} x+2y-3z &= -15 \\ 2x-y+z &= 10 \\ 3x-z &= 1 \end{cases}$$

Temos
$$D = \begin{vmatrix} 1 & 2 & -3 \\ 2 & -1 & 1 \\ 3 & 0 & -1 \end{vmatrix} = 2 \neq 0$$
. Logo, o sistema tem

solução única. Vamos determinar essa solução.

As demonstrações dos teoremas de Rouché-Capelli e de Cramer podem ser encontradas, por exemplo, em Fundamentos de Matemática Elementar, vol. 4. dos autores Gelson Iezzi e Samuel Hazzan, editado pela Atual.

$$D_{1} = \begin{vmatrix} -15 & 2 & -3 \\ 10 & -1 & 1 \\ 1 & 0 & -1 \end{vmatrix} = 4$$

$$D_{2} = \begin{vmatrix} 1 & -15 & -3 \\ 2 & 10 & 1 \\ 3 & 1 & -1 \\ 1 & 2 & -15 \\ 2 & -1 & 10 \\ 3 & 0 & 1 \end{vmatrix} = -2$$

$$D_{3} = \begin{vmatrix} 1 & 2 & -15 \\ 2 & -1 & 10 \\ 3 & 0 & 1 \end{vmatrix} = 10.$$
Logo.

$$x = \frac{D_1}{D} = \frac{4}{2} = 2$$
, $y = \frac{D_2}{D} = \frac{-2}{2} = -1$, $z = \frac{D_3}{D} = \frac{10}{2} = 5$

Portanto, a única solução do sistema é (2, -1, 5).

Do teorema de Cramer, podemos concluir que:

- $D \neq 0 \Rightarrow$ sistema compatível determinado.
- $D = 0 \Rightarrow \begin{array}{c} \text{sistema incompativel ou} \\ \text{compativel indeterminado.} \end{array}$

Já vimos que um sistema linear homogêneo sempre admite solução, isto é, é sempre compatível. No caso particular de S ser homogêneo, podemos concluir, então, que:

- $D \neq 0 \Rightarrow$ sistema compatível determinado.
- $D = 0 \Rightarrow$ sistema compatível indeterminado.

Exemplo 7.9.

Vamos discutir o sistema $\begin{cases} ax + 2ay = 0 \\ 4x + ay = 12 \end{cases}$, usando o teorema de Cramer.

Sabemos que se $D = \begin{vmatrix} a & 2a \\ 4 & a \end{vmatrix} \neq 0$, o sistema tem solução única. Assim, os valores de a para os quais D=0 tornam o sistema indeterminado ou impossível. Esses valores são:

$$D=0 \Rightarrow a^2-8a=0 \Rightarrow a(a-8)=0 \Rightarrow a=0 \text{ ou } a=8.$$

- Se a = 0, o sistema fica: $\begin{cases} 0 = 0 \\ 4x = 12 \end{cases} \Rightarrow x = 3 \text{ e y pode}$ assumir qualquer valor real. Logo, o sistema admite infinitas soluções.
- Se a=8, o sistema fica: $\begin{cases} 8x+16y = 0 \\ 4x+8y = 12 \end{cases}$. Escalonando, obtemos o sistema $\begin{cases} 4x+8y = 12 \\ 0 = -24 \end{cases}$, que é incompatível.

Resumindo, temos:

- $a \neq 0$ e $a \neq 8 \Rightarrow$ sistema compatível e determinado.
- $a = 0 \Rightarrow$ sistema compatível indeterminado.
- $a = 8 \Rightarrow$ sistema incompatível.

Exemplo 7.10.

Vamos determinar o valor de k para o qual o sistema

$$\begin{cases} x-y-z = 0 \\ 2x+ky+z = 0 \\ x-2y-2z = 0 \end{cases}$$
 admite solução própria.

Trata-se de um sistema homogêneo de matriz de coeficientes quadrada. Pelo teorema de Cramer, para que existam soluções não-triviais (ou seja, para que o sistema seja indeterminado), o determinante dessa matriz deve ser igual a zero. Isto é,

$$\begin{vmatrix} 1 & -1 & -1 \\ 2 & k & 1 \\ 1 & -2 & -2 \end{vmatrix} = 0 \Rightarrow k = 1.$$

Resumo

Esta foi uma aula prática: discutimos sistemas lineares usando os resultados dos teoremas de Rouché-Capelli e de Cramer. Note que a regra de Cramer só se aplica a sistemas lineares cuja matriz dos coeficientes é quadrada e inversível. (Você se lembra? Uma matriz quadrada é inversível se, e somente se, seu determinante é diferente de zero.) Com esta aula, encerramos a parte introdutória do curso. Você aplicará os conceitos e técnicas vistos até aqui ao longo das próximas aulas. A partir da Aula 8, você estará em contato com os conceitos da Álgebra Linear, propriamende dita. Seja bemvindo!

Exercício 7.1.

1. (Provão - MEC - 1998)

O sistema $\begin{cases} ax + 3y = a \\ 3x + ay = -a \end{cases}$ não tem solução se e só se:

(A)
$$a \neq -3$$
 (B) $a \neq 3$ (C) $a = 0$ (D) $a = -3$ (E) $a = 3$

- 2. Discuta o sistema $\begin{cases} x+ky = 2 \\ kx+y = 2 \end{cases}$, segundo os valores de k.
- 3. Para que valores de m o sistema $\begin{cases} x+y+mz = 2\\ 3x+4y+2z = m\\ 2x+3y+z = 1 \end{cases}$ admite solução?
- 4. Determine os valores de *a* e *b* que tornam o sistema

$$\begin{cases} 3x - 7y &= a \\ x + y &= b \\ x + 2y &= a + b - 1 \\ 5x + 3y &= 5a + 2b \end{cases}$$

compatível e determinado. Em seguida, resolva o sistema.

5. Determine os valores de a e b que tornam o sistema $\begin{cases} 6x + ay = 12 \\ 4x + 4y = b \end{cases}$ indeterminado.

- 6. Discuta o sistema $\begin{cases} mx + y z &= 4 \\ x + my + z &= 0 \\ x y &= 2 \end{cases}$
- 7. Para que valores de k o sistema $\begin{cases} x + ky + 2z &= 0 \\ -2x + y 4z &= 0 \\ x 3y kz &= 0 \end{cases}$ admite soluções não triviais (ou seja, é indeterminado)?
- 8. Determine k, para que o sistema $\begin{cases} -4x + 3y = 2 \\ 5x 4y = 0 \\ 2x y = k \end{cases}$ admita solução.
- 9. Encontre os valores de $p \in \mathbb{R}$ tais que o sistema homogêneo $\begin{cases} 2x 5y + 2z &= 0 \\ x + y + z &= 0 \\ 2x + pz &= 0 \end{cases}$ tenha soluções distintas da solução trivial.
- 10. Que condições *a* e *b* devem satisfazer para que o sistema abaixo seja de Cramer?

$$\begin{cases} ax + by = 0 \\ a^2x + b^2y = 0 \end{cases}$$

Autoavaliação

Embora a teoria usada resolver e discutir sistemas lineares seja simples e pouca extensa, cada sistema é um sistema! Quanto mais exercícios você puder resolver, melhor será, no sentido de deixá-lo mais seguro e rápido nesse tipo de operação. Se possível, consulte outros livros de Álgebra Linear para obter mais opções de exercícios. E não deixe de trazer suas dúvidas para o tutor da disciplina.

RESPOSTAS DOS EXERCÍCIOS

- 1. (E) a = 3
- 2. $k \neq 1$ e $k \neq -1$ \Rightarrow sistema compatível e determinado; k = 1 \Rightarrow sistema compatível e indeterminado; k = -1 \Rightarrow sistema incompatível.
- 3. Para $m \neq 1$. Neste caso, o sistema é compatível e determinado.
- 4. $a = 2, b = 4; \{(3,1)\}$
- 5. a = 6 e b = 8
- 6. $m \neq -1 \Rightarrow$ sistema compatível e determinado; $m = -1 \Rightarrow$ sistema incompatível.
- 7. k = -2 ou $k = -\frac{1}{2}$
- 8. k = -6
- 9. p = 2
- 10. $ab \neq 0$ e $a \neq b$

Aula 8

ESPAÇOS VETORIAIS

Objetivos

Ao final desta aula, você deverá ser capaz de:

- definir espaços vetoriais e estudar alguns dos principais exemplos dessa estrutura;
- 2 identificar propriedades dos espaços vetoriais.

Introdução

Imagine um conjunto *V* em que seja possível somar e multiplicar os elementos por números reais, e que o resultado dessas operações esteja no conjunto *V*. Imagine ainda que essas operações têm "boas" propriedades, com as quais estamos acostumados a usar quando somamos e quando multiplicamos por números reais:

- podemos somar os elementos trocando a ordem, ou agrupando-os como quisermos, sem que o resultado seja alterado;
- existe um elemento que, quando somado a outro, resulta sempre nesse outro;
- feita uma soma, é possível desfazê-la com uma subtração, e todo elemento de *V* pode ser subtraído de outro;
- multiplicar por um não faz efeito;
- multiplicar seguidamente por vários reais é o mesmo que multiplicar pelo produto deles;
- multiplicar o resultado de uma soma por um número real é o mesmo que multiplicar cada parcela e depois somar;
- multiplicar por um elemento de V uma soma de reais é o mesmo que multiplicar cada real pelo elemento em questão e depois somar os resultados.

Existem vários conjuntos em que a adição e a multiplicação por números reais que fazemos usualmente gozam dessas propriedades. Os conjuntos \mathbb{R} , \mathbb{R}^2 e \mathbb{R}^3 são exemplos. Os conjuntos de matrizes de mesma ordem $(M_{2\times 3}(\mathbb{R}), M_{3\times 4}(\mathbb{R}))$ etc.) também são exemplos (veja Aula 3). Na verdade, há muitos exemplos de conjuntos com essa mesma estrutura. Chamamos a esses conjuntos, munidos dessas operações com as propriedades acima, de *espaços vetoriais*.

A vantagem de se estudar os espaços vetoriais de forma mais abstrata, como faremos a partir de agora, é que estaremos estudando propriedades e leis que são válidas em *qualquer* espaço vetorial, em particular nos exemplos que acabamos de destacar.

Ou seja, veremos o que existe de comum entre conjuntos de matrizes, \mathbb{R} , \mathbb{R}^2 , \mathbb{R}^3 e vários outros espaços vetoriais.

DEFINIÇÃO DE ESPAÇO VETORIAL

Considere um conjunto V no qual estão definidas duas operações: uma adição, que a cada par de elementos u e v de V associa um elemento u+v de V, chamado soma de u e v, e uma multiplicação por escalar, que a cada número real α e a cada elemento v de V associa um elemento αv de V, chamado produto de α por v. Dizemos que o conjunto V munido dessas operações é um espaço vetorial real (ou um espaço vetorial sobre \mathbb{R} , ou ainda, um \mathbb{R} -espaço vetorial) se são satisfeitas as seguintes condições, para todos os elementos de V, aqui designados pelas letras u, v e w, e todos os números reais, aqui designados pelas letras α e β :

- u + v = v + u (comutatividade);
- u + (v + w) = (u + v) + w (associatividade);
- existe um elemento em V, que designaremos por e, que satisfaz v + e = v para qualquer v em V (existência de elemento neutro para a adição);
- para cada $v \in V$, existe um elemento de V, que designaremos por -v, que satisfaz v + (-v) = e (existência de inverso aditivo, também chamado de simétrico ou oposto);
- $\alpha(\beta v) = (\alpha \beta) v$ (associatividade);
- $(\alpha + \beta)v = \alpha v + \beta v$ (distributividade);
- $\alpha(u+v) = \alpha u + \alpha v$ (distributividade);
- $1 \cdot v = v$ (multiplicação por 1).

De acordo com essa definição, podemos concluir que **não são** espaços vetoriais o conjunto $\mathbb N$ dos números naturais, e o conjunto $\mathbb Z$ dos números inteiros, para começar. Em nenhum dos dois, por exemplo, a operação multiplicação por escalar está bem definida: ao multiplicar um número inteiro não nulo por $\sqrt{2}$, que é um número real, a resposta certamente não será um número inteiro.

Isso nos diz que alguns dos conjuntos que conhecemos não são espaços vetoriais. Para nos certificarmos que um determinado conjunto é de fato um espaço vetorial, é necessário verificar se as operações estão bem definidas, e se valem *todas* as condições da definição! Qualquer uma que não se verifique indica que o conjunto em questão não é um espaço vetorial.

EXEMPLOS DE ESPAÇOS VETORIAIS

Para verificar se um conjunto é ou não um exemplo de espaço vetorial, partimos do princípio de que no conjunto dos números reais a adição e a multiplicação têm todas as propriedades dadas na definição de espaço vetorial (na verdade, estaremos usando o fato de que $\mathbb R$ é um Corpo, que é uma outra estrutura estudada nos cursos de Álgebra). São vários os exemplos de espaços vetoriais. Listamos alguns deles a seguir.

Exemplo 8.1.

a. \mathbb{R}^2 e \mathbb{R}^3

Provaremos que \mathbb{R}^2 é espaço vetorial, sendo que a prova para \mathbb{R}^3 é análoga. Aqui as operações consideradas são as *usuais*, ou seja, aquelas que estamos acostumados a fazer: se (x_1,x_2) e (y_1,y_2) são elementos de \mathbb{R}^2 , e α é um número real, $(x_1,x_2)+(y_1,y_2)=(x_1+y_1,x_2+y_2)$ e $\alpha(x_1,x_2)=(\alpha x_1,\alpha x_2)$.

Considere $u=(x_1,x_2)$, $v=(y_1,y_2)$ e $w=(z_1,z_2)$, todos em \mathbb{R}^2 , α e β números reais. Então temos:

1.
$$u+v=(x_1+y_1,x_2+y_2)=(y_1+x_1,y_2+x_2)=u+v;$$

2.
$$u + (v + w) = (x_1 + (y_1 + z_1), x_2 + (y_2 + z_2)) =$$

= $((x_1 + y_1) + z_1, (x_2 + y_2) + z_2) = (u + v) + w;$

3. o par
$$e = (0,0)$$
 satisfaz $u + e = (x_1 + 0, x_2 + 0) = (x_1, x_2) = u$;

4. tomando
$$-u = (-x_1, -x_2)$$
, temos $u + (-u) = (x_1 - x_1, x_2 - x_2) = (0, 0) = e$;

5.
$$\alpha(\beta u) = \alpha(\beta x_1, \beta x_2) = (\alpha \beta x_1, \alpha \beta x_2) = (\alpha \beta) u;$$

6.
$$(\alpha + \beta)u = ((\alpha + \beta)x_1, (\alpha + \beta)x_2) =$$

= $(\alpha x_1 + \beta x_1, \alpha x_2 + \beta x_2) = \alpha u + \beta u;$

7.
$$\alpha(u+v) = \alpha(x_1+y_1, x_2+y_2) =$$

= $(\alpha(x_1+y_1), \alpha(x_2+y_2)) =$
= $(\alpha x_1 + \alpha y_1, \alpha x_2 + \alpha y_2) = \alpha u + \alpha v;$

8.
$$1u = (1x_1, 1x_2) = (x_1, x_2) = u$$
.

b. \mathbb{R}^n , com *n* natural não nulo qualquer

O conjunto \mathbb{R}^n é formado pelas *n-uplas* (lê-se "ênuplas") de números reais:

$$\mathbb{R}^n = \{(x_1, x_2, \dots, x_n) : x_1, x_2, \dots, x_n \in \mathbb{R}\}.$$

Em \mathbb{R}^n , as operações usuais são definidas da seguinte maneira: considerando $u = (x_1, x_2, \dots, x_n)$ e $v = (y_1, y_2, \dots, y_n)$ $y_2, \ldots, x_n + y_n$) e $\alpha u = (\alpha x_1, \alpha x_2, \ldots, \alpha x_n)$. A prova de que \mathbb{R}^n é um espaço vetorial é análoga às provas para \mathbb{R}^2 e \mathbb{R}^3 , que são casos particulares onde se considera n=2 e n = 3.

c. $M_{n\times m}(\mathbb{R})$

Já vimos na Aula 3 que o conjunto $M_{n\times m}(\mathbb{R})$ com as operações definidas na Aula 2 satisfazem a todas as condições dadas na definição de espaço vetorial real.

d. \mathbb{C}

Aqui, apenas recordaremos as operações de soma e produto por escalar no conjunto dos números complexos (conceitos vistos no curso de Pré-Cálculo), deixando a prova como exercício. Considere os números complexos $z_1 = a_1 + b_1 i$ e $z_2 = a_2 + b_2 i$, e o número real α . Temos então $z_1 + z_2 = (a_1 + a_2) + (b_1 + b_2)i$ e $\alpha z_1 = \alpha a_1 + \alpha b_1 i$.

e. Polinômios de grau $\leq n$ (n natural não nulo), com coeficientes reais, a uma variável, acrescidos do polinômio polinômio nulo não nulo.

O grau do está definido.

Os polinômios são muito estudados em diversos ramos da Álgebra. Os conjuntos de polinômios de grau $\leq n$ (acrescidos do polinômio nulo), para os diversos valores de n, têm estrutura muito rica (no sentido da quantidade de operações e propriedades que são válidas nesses conjuntos), e o fato de serem espaços vetoriais é apenas uma de suas características. Vamos fazer a prova para o conjunto dos polinômios de grau ≤ 2 , sendo que a prova para o caso geral é inteiramente análoga.

Usaremos a notação $P_2(t,\mathbb{R})$ para indicar o conjunto dos polinômios de grau ≤ 2 a uma variável t, com coeficientes reais, acrescido do polinômio nulo. Nesse caso,

$$P_2(t,\mathbb{R}) = \{at^2 + bt + c : a, b, c \in \mathbb{R}\}.$$

A expressão "grau ≤ 2 " é traduzida matematicamente pelo fato de que a pode ser qualquer número real, inclusive zero: caso a seja 0, e $b \neq 0$, o polinômio em questão tem grau 1. Para o polinômio nulo, temos a = b = c = 0.

Lembre-se de que um polinômio é um objeto abstrato, ao trabalhar com uma expressão do tipo $2t^2 + t + 1$ não estamos interessados em "encontrar t" (nem seria possível, pois não se trata de uma equação). No nosso curso estaremos interessados em somar tais expressões, ou multiplicá-las por escalares, obtendo outras do mesmo tipo. Para isso, sejam $p_1 = a_1t^2 + b_1t + c_1$ e $p_2 = a_2t^2 + b_2t + c_2$ elementos de $P_2(t, \mathbb{R})$, e $\alpha \in \mathbb{R}$. Então,

$$p_1 + p_2 = (a_1 + a_2)t^2 + (b_1 + b_2)t + (c_1 + c_2),$$

$$\alpha p_1 = \alpha a_1 t^2 + \alpha b_1 + \alpha c_1.$$

Vamos às propriedades das operações:

1.
$$p_1 + p_2 = (a_1 + a_2)t^2 + (b_1 + b_2)t + (c_1 + c_2) = (a_2 + a_1)t^2 + (b_2 + b_1)t + (c_2 + c_1) = p_2 + p_1;$$

2.
$$p_1 + (p_2 + p_3) =$$

 $= (a_1 + (a_2 + a_3))t^2 + (b_1 + (b_2 + b_3))t + (c_1 + (c_2 + c_3)) =$
 $= (a_1 + a_2) + a_3)t^2 + ((b_1 + b_2) + b_3)t +$
 $+((c_1 + c_2) + c_3) = (p_1 + p_2) + p_3;$

3. o polinômio
$$0 = 0t^2 + 0t + 0$$
 satisfaz $p_1 + 0 = (a_1 + 0)t^2 + (b_1 + 0)t + (c_1 + 0) = a_1t^2 + b_1t + c_1$;

4. tomando
$$-p_1 = (-a_1)t^2 + (-b_1)t + (-c_1)$$
, temos $p_1 + (-p_1) = (a_1 - a_1)t^2 + (b_1 - b_1)t + (c_1 - c_1) = 0t^2 + 0t + 0 = 0$;

5.
$$\alpha(\beta p_1) = \alpha(\beta a_1 t^2 + \beta b_1 t + \beta c_1) = \alpha \beta a_1 t^2 + \alpha \beta b_1 t + \alpha \beta c_1 = (\alpha \beta) p_1;$$

- 6. $(\alpha + \beta)p_1 = (\alpha + \beta)a_1t^2 + (\alpha + \beta)b_1t + (\alpha + \beta)c_1 = \alpha a_1t^2 + \beta a_1t^2 + \alpha b_1t + \beta b_1t + \alpha c_1 + \beta c_1 = \alpha p_1 + \beta p_1;$
- 7. $\alpha(p_1+p_2) = \alpha(a_1+a_2)t^2 + \alpha(b_1+b_2)t + \alpha(c_1+c_2) = \alpha a_1 t^2 + \alpha a_2 t^2 + \alpha b_1 t + \alpha b_2 t + \alpha c_1 + \alpha c_2 = \alpha p_1 + \alpha p_2;$
- 8. $1p_1 = 1a_1t^2 + 1b_1t + 1c_1 = a_1t^2 + b_1t + c_1 = p_1$.

O conjunto dos polinômios de grau *exatamente* 2 não é um espaço vetorial. De fato, a soma não está bem definida nesse conjunto: somando $t^2 + t + 1$ e $-t^2 + 2t - 3$, que têm grau 2, obtemos o polinômio 3t - 2, que tem grau 1.

f. Polinômios de qualquer grau, com coeficientes reais, a uma variável

Considerando o conjunto de todos os polinômios a uma variável, com coeficientes reais, as operações soma e produto por escalar usuais (análogas às que definimos para $P_2(t,\mathbb{R})$) estão bem definidas e satisfazem a todas as propriedades que caracterizam os espaços vetoriais, tratando-se, portanto, de um exemplo de espaço vetorial.

Os elementos de um espaço vetorial são chamados **vetores**. O elemento neutro da soma é chamado *vetor nulo*, e denotado por **0** ou $\vec{0}$. Note que, segundo essa convenção, vetores podem ser polinômios, matrizes, etc., e o símbolo **0** será usado também para matrizes nulas, *n*-uplas de zeros, etc.

Veremos ao longo deste módulo que muitos dos conceitos aplicáveis aos "antigos" vetores (como módulo, ângulo, etc) também fazem sentido para os vetores da forma que estamos definindo agora.

PROPRIEDADES DOS ESPAÇOS VETORIAS

Vamos considerar um espaço vetorial V, e usar as letras u, v e w para designar elementos desse espaço. Usaremos as letras gregas (α , β , λ , etc) para designar números reais. Para facilitar as referências futuras às propriedades, vamos numerá-las.

1. Existe um único vetor nulo em *V*, que é o elemento neutro da adição.

Em todos os exemplos que listamos na última aula, é bastante claro que existe apenas um elemento neutro em cada espaço, mas existem vários outros espaços vetoriais que não vimos ainda. Vamos então provar que a existência de um único elemento neutro é um fato que decorre *apenas* da definição de espaço vetorial (e, portanto, vale em *qualquer* um). Vamos então provar essa propriedade, e todas as outras, usando a definição e as propriedades que já tenhamos provado.

Já sabemos da definição que existe um elemento neutro no espaço V. Suponhamos que $\mathbf{0}$ e $\mathbf{0}'$ sejam elementos neutros de V, e vamos mostrar que $\mathbf{0} = \mathbf{0}'$.

De fato, temos que ter $\mathbf{0} + \mathbf{0}' = \mathbf{0}'$, pois $\mathbf{0}$ é elemento neutro, mas também temos $\mathbf{0} + \mathbf{0}' = \mathbf{0}$, pois $\mathbf{0}'$ também é elemento neutro. Logo tem-se $\mathbf{0} = \mathbf{0}'$.

2. Para cada $v \in V$, existe um único simétrico $-v \in V$.

Novamente, suponhamos que algum v de V admitisse dois simétricos, -v e -v. Nesse caso, teríamos

$$v + (-v) = v + (-v'),$$

pois os dois lados da igualdade resultam no vetor nulo. Somando (-v) aos dois membros, obtemos

$$(-v) + (v + (-v)) = (-v) + (v + (-v')).$$

Pela associatividade da soma, podemos escrever

$$((-v) + v) + (-v) = ((-v) + v) + (-v').$$

Usando o fato de que -v é simétrico de v, e $\mathbf{0}$ é o elemento neutro da soma, obtemos

$$\mathbf{0} + (-v) = \mathbf{0} + (-v')$$

 $-v = -v'.$

3. Se u + w = v + w então u = v.

Somando -w aos dois membros da equação u+w=v+w,

obtemos

$$(u+w)+(-w)=(v+w)+(-w).$$

Pela associatividade da soma e pelo fato de que -w é o simétrico de w e 0 é o neutro da soma, obtemos

$$u + (w + (-w)) = v + (w + (-w))$$
$$u + \mathbf{0} = v + \mathbf{0}$$
$$u = v.$$

- 4. -(-v) = v (ou seja, o simétrico do vetor -v é o vetor v). Como o simétrico de um vetor qualquer de V é único (propriedade 2), e como v + (-v) = 0, então o simétrico de -vsó pode ser v.
- 5. Fixados u e v em V, existe uma única solução para a equação u + x = v.

Somando -u aos dois membros da equação u + x = v, obtemos

$$(-u) + (u+x) = (-u) + v$$

 $((-u) + u) + x = (-u) + v$
 $\mathbf{0} + x = (-u) + v$
 $x = (-u) + v$,

ou seja, a equação u + x = v tem pelo menos uma solução, que é (-u) + v. Supondo que x e x' sejam soluções da referida equação, ou seja, que u + x = v e u + x' = v, teremos

$$u + x = u + x',$$

e, pela propriedade 3,

$$x = x'$$
.

6. Se $v \in V$ satisfaz v + v = v, então $v = \mathbf{0}$ (só o elemento neutro satisfaz a essa equação).

Note que, se v + v = v, então v é solução da equação v +x = v. Como **0** também é solução, visto que $v + \mathbf{0} = v$, pela propriedade anterior, tem-se v = 0.

7.
$$0v = 0$$

Basta verificar que, pela propriedade distributiva,

$$0v + 0v = (0+0)v = 0v.$$

Pela propriedade anterior, 0v = 0.

8. $\alpha \mathbf{0} = \mathbf{0}$, qualquer que seja o real α considerado.

De novo usando a propriedade distributiva da adição, e o fato de que 0+0=0, temos

$$\alpha \mathbf{0} = \alpha (\mathbf{0} + \mathbf{0}) = \alpha \mathbf{0} + \alpha \mathbf{0}.$$

Pela propriedade 6, $\alpha 0 = 0$.

9. Se $\alpha v = \mathbf{0}$ então $\alpha = 0$ ou $v = \mathbf{0}$

Note que essa propriedade nos diz que a equações das propriedades 7 e 8 representam as únicas formas de obter o vetor nulo como produto de escalar por vetor. Para prová-la, vamos supor que $\alpha v = \mathbf{0}$ e $\alpha \neq 0$ (o caso $\alpha = 0$ já nos dá a conclusão desejada). Nesse caso, podemos multiplicar os dois membros da igualdade $\alpha v = \mathbf{0}$ por α^{-1} , obtendo

$$\alpha^{-1}(\alpha v) = \alpha^{-1} \mathbf{0}.$$

Usando a propriedade associativa da multiplicação por escalar, e a propriedade 8, obtemos

$$(\alpha^{-1}\alpha)v = \mathbf{0}$$

$$1v = 0$$

$$v = 0$$
.

onde a última passagem utiliza a propriedade da multiplicação por 1 dos espaços vetoriais.

10.
$$(-1)v = -v$$

Como 1v = v, podemos escrever

$$(-1)v + v = (-1)v + 1v = (-1+1)v = 0v = \mathbf{0},$$

considerando a propriedade distributiva e a propriedade 7. Daí, concluímos que (-1)v é o simétrico de v, ou seja, (-1)v = -v.

11.
$$(-\alpha)v = -(\alpha v) = \alpha(-v)$$

Na prova dessa propriedade, deixaremos como exercício a identificação das propriedades utilizadas em cada passagem. Siga o raciocínio das provas das propriedades anteriores.

$$(-\alpha)v + \alpha v = (-\alpha + \alpha)v = 0v = \mathbf{0},$$

portanto $(-\alpha)v = -(\alpha v)$.

$$\alpha(-v) + \alpha v = \alpha(-v+v) = \alpha \mathbf{0} = \mathbf{0},$$

portanto
$$\alpha(-v) = -(\alpha v)$$
.

Com essas propriedades que demonstramos, podemos concluir que grande parte das contas que fazemos com vetores de \mathbb{R}^2 e \mathbb{R}^3 são válidas em qualquer espaço vetorial.

A partir de agora, escreveremos u - v no lugar de u + (-v), u + v + w no lugar de u + (v + w) ou (u + v) + w e $\alpha \beta v$ no lugar de $\alpha(\beta v)$ ou $(\alpha \beta)v$.

Exercício 8.1.

- 1. Julgue verdadeiras ou falsas as afirmativas a seguir. Justifique!
 - a. O conjunto $\mathbb Q$ dos números racionais é um espaço vetorial real.
 - b. O conjunto $\mathbb{Q}^2 = \{(a,b) : a, b \in \mathbb{Q}\}$, com as operações usuais, é um espaço vetorial real.
 - c. O conjunto unitário {0}, com as operações usuais, é um espaço vetorial real.
 - d. $\mathbb{R}^+ = \{x \in \mathbb{R} : x > 0\}$ com as operações usuais não é espaço vetorial real.
 - e. O conjunto dos números complexos com parte real não negativa é um espaço vetorial real.
- 2. Mostre que \mathbb{R}^3 com as operações usuais é um espaço vetorial real (siga os passos da demonstração para \mathbb{R}^2 feita no exemplo 1).
- 3. Mostre que $\mathbb{C}^2 = \{(z_1, z_2) : z_1, z_2 \in \mathbb{C}\}$ é um espaço vetorial real, com as operações definidas abaixo:

Adição:
$$(z_1, z_2) + (z'_1, z'_2) = (z_1 + z'_1, z_2 + z'_2)$$

Multiplicação por escalar:
$$\alpha(z_1, z_2) = (\alpha z_1, \alpha z_2)$$

onde
$$(z_1, z_2)$$
 e $(z_1^{'}, z_2^{'})$ são elementos de \mathbb{C}^2 e $\alpha \in \mathbb{R}$.

4. Mostre que, no conjunto $A = \{0, 1\}$, as operações definidas abaixo satisfazem a todas as condições da definição de espaço vetorial real, exceto à lei associativa para a multiplicação por escalar e às leis distributivas.

Adição:
$$0 \oplus 0 = 0$$
, $0 \oplus 1 = 1$, $1 \oplus 0 = 1$ e $1 \oplus 1 = 0$
Multiplicação por escalar: $\alpha \odot x = x$ se $\alpha > 0$ e $\alpha \odot x = 0$ se $\alpha \le 0$, onde $\alpha \in \mathbb{R}$ e $x \in A$.

5. Também definem-se espaços vetoriais sobre o conjunto dos números racionais (o *corpo* dos racionais), apenas fazendo com que a operação multiplicação por escalar considere apenas escalares racionais, e mantendo o restante da definição inalterado. Mostre que o conjunto \mathbb{Q}^2 é um espaço vetorial sobre os racionais.

Autoavaliação

O conteúdo desta aula envolve conceitos muito abstratos. Para obter alguma segurança nesses conceitos, talvez seja necessário reler várias vezes algumas partes. Não se preocupe se você não conseguiu fazer alguns dos exercícios de imediato, retorne a esta aula depois de estudar a próxima, que trata dos *Subespaços Vetoriais*, e você estará mais familiarizado com os conceitos aqui apresentados.

RESPOSTAS DOS EXERCÍCIOS

- 1. a. Falsa.
 - b. Falsa.
 - c. Verdadeira.
 - d. Verdadeira.
 - e. Falsa.

SUBESPAÇOS VETORIAIS

Objetivos

Ao final desta aula, você deverá ser capaz de:

- 1 caracterizar subespacos vetoriais;
- 2 identificar subespaços vetoriais, demonstrando que atende às condições de subespaço.

Introdução

Pré-requisito: Aula 8. Nesta aula, veremos um tipo muito importante de subconjuntos de espaços vetoriais: os *subespaços vetoriais*. Nem todo subconjunto S de um espaço vetorial V é um seu subespaço: é necessário que o subconjunto em questão tenha a mesma estrutura de V, como estabelece a definição a seguir.

Definição 9.1.

Considere um espaço vetorial V. Um subconjunto S de V é dito um *subespaço vetorial* de V se S for um espaço vetorial com respeito às mesmas operações que tornam V um espaço vetorial.

Como primeira consequência dessa definição, um subespaço vetorial S deve ser não vazio, já que uma das condições que devem ser satisfeitas para que S seja um subespaço vetorial de V é a existência em S de um elemento neutro para a adição de vetores: com isso, obrigatoriamente $\mathbf{0} \in S$.

De acordo também com a definição acima, para verificar se um dado subconjunto S de um espaço vetorial V é um subespaço vetorial de V, deve-se checar se as operações de adição e multiplicação por escalar estão bem definidas em S, e se elas satisfazem a todas as condições dadas na definição de espaço vetorial.

Se observarmos melhor, no entanto, veremos que não é necessário verificar cada uma das condições: uma vez que a adição em *S* esteja bem definida (ou seja, que a soma de dois elementos quaisquer de *S* seja também um elemento de *S*), ela não deixará de ser comutativa (por exemplo) apenas porque estamos considerando elementos de *S*, pois a adição em *V* tem essa propriedade. O mesmo se verifica para a multiplicação por escalar.

A seguir, então, listamos três condições que, se satisfeitas, garantem que um subconjunto S de um espaço vetorial V é um subespaço vetorial de V:

- $S \neq \emptyset$.
- Dados u e v quaisquer em S, a soma u + v está em S.

• Dados $u \in S$ e $\alpha \in \mathbb{R}$, o produto αu está em S.

Uma vez que $S \subset V$ satisfaça tais requisitos, todas as outras propriedades listadas na definição de espaço vetorial serão automaticamente "herdadas" pelo conjunto S.

Exemplo 9.1.

Dado um espaço vetorial V qualquer, os conjuntos $\{0\}$ (conjunto cujo único elemento é o vetor nulo) e V são subespaços vetoriais de V.

De fato, é claro que $\{0\} \neq \emptyset$. Além disso, dados dois elementos de $\{0\}$, a soma deles pertence a $\{0\}$ (o único elemento que existe para considerarmos é 0!) e o produto de um número real qualquer por um elemento de $\{0\}$ resulta no vetor nulo, pertencendo, portanto, a $\{0\}$.

Para verificar que V é subspaço vetorial de V, basta aplicar diretamente a definição de subespaço vetorial, e observar que $V \subset V$ e é obviamente um espaço vetorial com respeito às mesmas operações.

Por serem os subespaços mais simples do espaço vetorial V, $\{0\}$ e V são chamados *subespaços triviais* de V.

Exemplo 9.2.

Seja $S = \{(x, 2x) : x \in \mathbb{R}\}$. O conjunto S é um subespaço vetorial de \mathbb{R}^2 .

- Na seção seguinte, veremos quais são todos os subespaços de \mathbb{R}^2 . Neste momento, estudaremos este exemplo particular, para nos familiarizarmos com o procedimento de verificação de que um dado conjunto é um subespaço vetorial. Ao nos confrontarmos com um "candidato" S a subespaço, temos que nos fazer três perguntas:
 - i. $S \neq \emptyset$?
 - ii. Se $u \in S$ e $v \in S$, então $u + v \in S$ (a adição está bem definida em S)?
 - iii. Se $\alpha \in \mathbb{R}$ e $u \in S$, então $\alpha u \in S$ (a multiplicação por escalar está bem definida em S)?

Vamos, então, responder a essas perguntas para o caso de $S = \{(x, 2x) : x \in \mathbb{R}\}$:

- i. $S \neq \emptyset$, porque $(0,0) \in S$, por exemplo. Basta considerar x = 0.
- ii. Se $u \in S$ e $v \in S$, digamos que u = (x, 2x) e v = (y, 2y) com $x, y \in \mathbb{R}$ (precisamos usar letras diferentes para designar elementos diferentes!), então

$$u + v = (x + y, 2x + 2y) = (x + y, 2(x + y)).$$

Logo, $u + v \in S$, pois é um par ordenado de números reais onde a segunda coordenada é o dobro da primeira, que é precisamente a regra que define os elementos de S neste exemplo.

iii. Se $\alpha \in \mathbb{R}$ e $u = (x, 2x) \in S$ então

$$\alpha u = \alpha(x, 2x) = (\alpha x, \alpha 2x) \in S$$
,

pois $\alpha 2x = 2\alpha x$ é o dobro de αx .

Como a resposta às três perguntas formuladas foi positiva, podemos concluir que S é um subespaço vetorial de \mathbb{R}^2 .

Observe que, para responder à primeira pergunta, exibimos um elemento de S, concluindo que $S \neq \emptyset$. Escolhemos exibir o vetor nulo de \mathbb{R}^2 , embora qualquer outro elemento servisse para esse propósito. Tal escolha não foi por acaso: se o vetor nulo não fosse um elemento de S, então S não seria um subespaço vetorial (pois não seria ele mesmo um espaço vetorial). Sempre que tivermos à nossa frente um candidato a subespaço vetorial, podemos verificar se o vetor nulo do espaço vetorial que o contém pertence ao candidato, para responder à primeira das perguntas. Caso a resposta seja afirmativa, passamos a verificar as outras duas perguntas e, se a resposta for negativa, já podemos concluir que o candidato não é um subespaço vetorial, sem nenhum trabalho adicional.

Exemplo 9.3.

Seja $V = \mathbb{R}^2$ e $S = \{(x, x+1) : x \in \mathbb{R}\}$. Observe que $(0,0) \notin S$. Logo, S não é um subespaço vetorial de V.

Exemplo 9.4.

Seja V um espaço vetorial e w um elemento de V. Então, o conjunto $S = {\lambda w : \lambda \in \mathbb{R}}$ é um subespaço vetorial de V.

- Neste exemplo, os elementos de *S* são caracterizados por serem todos produto de um número real qualquer por um elemento fixo de *V*. No caso desse elemento ser o vetor nulo, temos um subespaço trivial.
 - i. $S \neq \emptyset$, pois $\mathbf{0} = 0 w \in S$;
- ii. se $u \in S$ e $v \in S$, digamos, $u = \lambda_1 w$ e $v = \lambda_2 w$ com $\lambda_1, \lambda_2 \in \mathbb{R}$, então

$$u + v = \lambda_1 w + \lambda_2 w = (\lambda_1 + \lambda_2) w \in S;$$

iii. se $\alpha \in \mathbb{R}$ e $u = \lambda_1 w \in S$, então

$$\alpha u = \alpha(\lambda_1)w = (\alpha\lambda_1)w \in S.$$

Exemplo 9.5.

O conjunto solução do sistema

$$\begin{cases} x + 2y - 4z + 3t &= 0 \\ x + 4y - 2z + 3t &= 0 \\ x + 2y - 2z + 2t &= 0 \end{cases}$$

é o subconjunto de \mathbb{R}^4 dado por $\{(0,-t,t,2t);t\in\mathbb{R}\}$. Você pode verificar que esse conjunto satisfaz às três condições de subespaço.

Exemplo 9.6.

O conjunto-solução de um sistema linear homogêneo de m equações e n incógnitas é um subespaço vetorial de \mathbb{R}^n .

O exemplo anterior é um caso particular deste. Considere o sistema escrito na forma matricial,

$$AX = \mathbf{0},\tag{9.1}$$

onde $A \in M_{m \times n}(\mathbb{R})$, X é o vetor-coluna (de n linhas) das incógnitas do sistema, e $\mathbf{0}$ é o vetor nulo de \mathbb{R}^m representado como coluna. Vamos verificar que o conjunto S de todos os vetores X de \mathbb{R}^n que, se representados por vetores-coluna, que satisfazem à equação matricial (9.1), formam um subespaço vetorial de \mathbb{R}^n :

i. $S \neq \emptyset$?

Como sabemos, um sistema homogêneo qualquer tem sempre a solução trivial, portanto $(0,0,\ldots,0) \in \mathbb{R}^n$ é um elemento de S (podemos também verificar que $A\mathbf{0} = \mathbf{0}$, tomando o cuidado de notar que o símbolo $\mathbf{0}$ representa uma coluna de n zeros do lado direito da equação, e uma coluna de m zeros do lado esquerdo da equação).

ii. Se $U \in S$ e $V \in S$, então $U + V \in S$ (a adição está bem definida em S)?

Sejam U e V duas soluções do sistema (9.1), ou seja, vetores-coluna de \mathbb{R}^n qe satisfazem àquela equação matricial. Então, temos

$$A(U+V) = AU + AV = \mathbf{0} + \mathbf{0} = \mathbf{0},$$

onde a primeira igualdade vem da propriedade distributiva da adição de matrizes, e a segunda do fato de que, como U e V são soluções do sistema (9.1), $AU = \mathbf{0}$ e $AV = \mathbf{0}$. Vemos, portanto, que U + V satisfaz à equação matricial (9.1), representando, portanto, uma solução do sistema.

iii. Se $\alpha \in \mathbb{R}$ e $U \in S$, então $\alpha U \in S$ (a multiplicação por escalar está bem definida em S)?

Novamente, considere U um vetor coluna de \mathbb{R}^n que satisfaz à equação (9.1). Seja $\alpha \in \mathbb{R}$. Então, temos

$$A(\alpha U) = \alpha A U = \alpha \mathbf{0} = \mathbf{0}.$$

A primeira igualdade utiliza a propriedade *mn*1, de multiplicação de matrizes por números reais, vista na Aula 2.

Acabamos de verificar, usando representações matriciais, que a soma de duas soluções de um sistema linear homogêneo também é solução desse sistema e que qualquer múltiplo real de uma

solução também o é. Logo, o conjunto-solução de um sistema linear homogêneo com n incógnitas é um subespaço vetorial de

Exemplo 9.7.

O conjunto $S = \left\{ \begin{bmatrix} a & 0 \\ c & d \end{bmatrix}; a+c=d \right\}$ é subespaço vetorial de $M_{2\times 2}(\mathbb{R})$.

Exemplo 9.8.

O conjunto $S = \{a + bx + cx^2; a, b, c \in \mathbb{R} \text{ e } a = b + c\}$ é subespaço vetorial de $V = P_2$.

Observe que \mathbb{R} e \mathbb{R}^2 são espaços vetoriais, e \mathbb{R} **não é** um subespaço vetorial de \mathbb{R}^2 . Isso porque \mathbb{R} não está contido em \mathbb{R}^2 , assim como \mathbb{R}^2 não está contido em \mathbb{R}^3 . A confusão costuma acontecer, em parte, porque a representação geométrica de \mathbb{R}^2 (plano cartesiano) parece incluir a representação geométrica de \mathbb{R} (reta). Na verdade, porém, \mathbb{R} é um conjunto de **números**, enquanto \mathbb{R}^2 é um conjunto de pares ordenados de números, e esses dois objetos são completamente distintos. Veremos mais identicamente nulo. tarde que \mathbb{R}^2 contém apenas "cópias" de \mathbb{R} , assim como \mathbb{R}^3 contém "cópias" tanto de \mathbb{R} como de \mathbb{R}^2 .

Lembrando: P2 é o conjunto de todos os polinômios a variável e coeficientes reais, de grau menor ou igual a 2, acrescido do polinômio

OS SUBESPAÇOS VETORIAIS DE \mathbb{R}^2

Já conhecemos alguns dos subespaços de \mathbb{R}^2 :

- $\{(0,0)\}\ e\ \mathbb{R}^2$, que são os subespaços triviais;
- $\{\alpha w : \alpha \in \mathbb{R}\}$, onde $w \in \mathbb{R}$ é um elemento de \mathbb{R}^2 .

Esses subespaços foram vistos nos exemplos anteriores. Note que, variando w no segundo item, existem infinitos exemplos de subespaços. Veremos, nesta seção, que esses são os únicos subespaços de \mathbb{R}^2 : são em número infinito, mas são todos de algum dos tipos anteriores. Para isso, vamos considerar o plano cartesiano, que é a representação geométrica do conjunto \mathbb{R}^2 .

A cada vetor do plano com origem no ponto (0,0) e extremidade no ponto (x,y) fazemos corresponder o ponto (x,y) de \mathbb{R}^2 , e vice-versa.

Cada elemento $(x,y) \in \mathbb{R}^2$ é representado como um vetor com origem no ponto (0,0) e extremidade no ponto (x,y).

Considere um subespaço S de \mathbb{R}^2 que não seja $\{(0,0)\}$. Então, nesse subespaço existe um vetor w que não é o vetor nulo. Como S é fechado para a multiplicação por escalar, todos os múltiplos de w também são elementos de S. Com isso, como vemos na **Figura 9.1**, a reta que contém w deve estar toda contida em S. Ou seja, se S é não trivial, ele contém pelo menos uma reta (infinitos pontos!). Observe que essa mesma reta também contém a origem.

Figura 9.1: Reta que contém w.

Suponhamos agora que, além de conter w, S também contenha algum outro vetor v de \mathbb{R}^2 , que não esteja na reta que contém w. Nesse caso, S também deve conter a reta dos múltiplos de v. Observe as duas retas na **Figura 9.2**.

Figura 9.2: Retas contidas em *S*.

Note que o subespaço S não pode consistir apenas das duas retas da **Figura 9.2**. Isso porque a adição não está bem definida no conjunto formado pela união das duas retas; se considerarmos, por exemplo, o vetor w + v, veremos que ele não pertence a nenhuma das duas retas.

Lembre-se de como somar vetores geometricamente no plano!

Figura 9.3: Soma de *w* e *v*.

Observe, agora, que qualquer vetor de \mathbb{R}^2 (com origem em $\mathbf{0} = (0,0)$) pode ser obtido pela soma de vetores das duas retas, e isso significa que, nesse caso, $S = \mathbb{R}^2$. Na **Figura 9.4**, vemos alguns exemplos de vetores em diversas posições, obtidos como soma de vetores das retas, e você pode procurar mais exemplos para se convencer desse fato.

Figura 9.4: Vetores de \mathbb{R}^2 .

Até agora, resumindo, temos os seguintes fatos para um subespaço S de \mathbb{R}^2 :

- se S não contém vetores não nulos, $S = \{0\}$;
- se *S* contém um vetor não nulo, *S* também contém a reta que contém esse vetor;
- se S contém dois vetores não nulos, que não estejam sobre uma mesma reta, então $S = \mathbb{R}^2$.

Com isso, os únicos subespaços vetoriais de \mathbb{R}^2 são $\{\mathbf{0}\}$, \mathbb{R}^2 e as retas de \mathbb{R}^2 que passam pela origem.

Uma reta de \mathbb{R}^2 que não contém a origem (ponto (0,0)) pode ser um subespaço vetorial de \mathbb{R}^2 ? Por quê?

OS SUBESPAÇOS VETORIAIS DE \mathbb{R}^3

Os subespaços vetoriais de \mathbb{R}^3 são do seguinte tipo:

- $\{\mathbf{0}\}\$ e \mathbb{R}^3 (triviais);
- retas do \mathbb{R}^3 que contêm a origem ($\mathbf{0} = (0,0,0)$ neste caso);
- planos de \mathbb{R}^3 que contêm a origem.

Não faremos aqui uma demonstração desse fato, como fizemos na seção passada. Os motivos que fazem com que esses sejam os únicos possíveis subespaços são inteiramente análogos ao caso de \mathbb{R}^2 . Nas próximas aulas, vamos estudar conceitos que permitirão uma demonstração bem simples desse fato.

Resumo

Nesta aula, vimos a definição de subespaço: trata-se de subconjuntos de espaços vetoriais que são, por si mesmos, espaços vetoriais também, considerando as mesmas operações definidas no espaço que os contêm. Vimos que, para comprovar que um subconjunto de um espaço vetorial é um subespaço, basta verificar três condições: ser não-vazio, e ser fechado para as operações de adição e multiplicação por número real. Vimos também que, embora sejam em número infinito, os subespaços de \mathbb{R}^2 e \mathbb{R}^3 são facilmente identificados.

Exercício 9.1.

- 1. Verifique quais dos seguintes subconjuntos são subespaços de \mathbb{R}^3 :
 - a. todos os vetores da forma (a, 0, 0).
 - b. todos os vetores da forma (a, 1, 0).
 - c. todos os vetores da forma (a,b,c), com c=a+b.
 - d. todos os vetores da forma (a, b, c), com a+b+c=1.
- 2. Verifique quais dos seguintes subconjuntos são subespaços de $M_{2\times 2}(\mathbb{R})$:
 - a. todas as matrizes 2×2 com elementos inteiros.
 - b. todas as matrizes da forma $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$, com a+b+c + d = 0.
 - c. todas as matrizes 2×2 inversíveis.
 - d. todas as matrizes da forma $\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$.

Lembrando: uma matriz é inversível se, e somente se, seu deteminante é diferente de zero.

- 3. Verifique quais dos seguintes subconjuntos são subespaços de $P_3(\mathbb{R})$:
 - a. todos os polinômios da forma $a_1x + a_2x^2 + a_3x^3$, onde a_1 , a_2 e a_3 são números reais quaisquer.
 - b. todos os polinômios da forma $a_0 + a_1x + a_2x^2 + a_3x^3$, onde a soma dos coeficientes é igual a zero.
 - c. todos os polinômios da forma $a_0 + a_1x + a_2x^2 + a_3x^3$ para os quais a soma dos coeficientes é um número inteiro.
 - d. todos os polinômios da forma $a_0 + a_1x$, a_0 e a_1 reais quaisquer.

Autoavaliação

Você deverá ter segurança quanto ao conferir se um subconjunto é ou não subespaço de um espaço que o contenha. Lembre-se de que o primeiro passo é verificar se o elemento nulo do espaço pertence ao subconjunto: a resposta negativa já garante que não se trata de um subespaço, mas a resposta afirmativa só mostra que o subconjunto não é vazio. É preciso, ainda, verificar se a soma de dois vetores quaisquer, genéricos, do subconjunto, também pertence a ele, e se um múltiplo real qualquer de um vetor genérico do subconjunto também pertence ao subconjunto. Procure fazer essa verificação nos exemplos da aula. Quando o espaço vetorial for \mathbb{R}^2 ou \mathbb{R}^3 , basta verificar se o candidato a subespaço é uma reta passando pela origem ou, no caso do espaço, um plano passando pela origem. Além desses, apenas o subespaço nulo e todo o espaço dado são subconjuntos também. Se você tiver qualquer dúvida na resolução dos exercícios ou na compreensão dos exemplos, procure o tutor da disciplina.

RESPOSTAS DOS EXERCÍCIOS

- 1. São subespeços a, c.
- 2. São subespeços b, d.
- 3. São subespaços a, b, d.

Objetivos

Ao final desta aula, você deverá ser capaz de:

- 1 caracterizar combinação linear e subespaço gerado por um conjunto de vetores;
- 2 determinar o subespaço gerado por um conjunto de vetores;
- 3 encontrar geradores para um subespaço vetorial dado.

Introdução

Pré-requisitos: Aulas 6 e 7, sobre resolução de sistemas lineares por escalonamento, e Aulas 8 e 9. Iniciaremos o estudo do importante conceito de combinação linear. Através das propriedades das combinações lineares, é possível dar uma descrição simples e completa de cada espaço vetorial, como veremos a partir desta aula.

Definição 10.1.

Considere um espaço vetorial V, e v_1, v_2, \ldots, v_n elementos de V. Uma *combinação linear* desses vetores é uma expressão do tipo

$$a_1v_1 + a_2v_2 + \ldots + a_nv_n$$

onde a_1, a_2, \ldots, a_n são números reais.

Se é possível descrever um vetor $v \in V$ através de uma expressão como essa, dizemos que v é combinação linear de v_1, v_2, \ldots, v_n , ou que v se escreve como combinação linear de v_1, v_2, \ldots, v_n .

Exemplo 10.1.

- a. O vetor $v=(2,-4)\in\mathbb{R}^2$ é combinação linear de $v_1=(1,1)$ e $v_2=(1,-1)$, pois $v=-1v_1+3v_2$.
- b. O vetor $v = 2 + 3t \in P_2(t, \mathbb{R})$ é combinação linear dos vetores $v_1 = t + 2t^2$, $v_2 = 1 + t^2$ e $v_3 = 2t^2$, pois $v = 3v_1 + 2v_2 4v_3$.

c. O vetor
$$v = \begin{bmatrix} 2 & -3 & 4 \\ 1 & 1 & -2 \\ -1 & 0 & 3 \end{bmatrix} \in M_{3\times 3}(\mathbb{R})$$
 é combinação linear dos vetores $v_1 = \begin{bmatrix} 2 & -3 & 4 \\ 1 & 1 & -2 \\ -1 & 0 & 3 \end{bmatrix}$,
$$v_2 = \begin{bmatrix} 4 & -6 & 8 \\ 2 & 2 & -4 \\ -2 & 0 & 6 \end{bmatrix}$$
 e $v_3 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, pois $v = v_1 + 0v_2 + 257v_3$. Temos ainda que

 $v = 3v_1 - v_2 + \pi v_3$, ou ainda, $v = -5v_1 + 3v_2 + \sqrt{2}v_3$, ou seja, v é combinação linear de v_1 , v_2 e v_3 de várias maneiras diferentes.

d. Para que o vetor (0,m) de \mathbb{R}^2 seja combinação linear dos vetores (1,-2) e (-2,4), é necessário que existam a e b em \mathbb{R} tais que (0,m)=a(1,-2)+b(-2,4). Para isso, devemos ter (0,m)=(a-2b,-2a+4b), ou seja, a-2b=0 e -2a+4b=m simultaneamente. Tal sistema de duas equações nas variáveis a e b tem solução apenas para o caso em que m=0.

SUBESPAÇOS GERADOS

No Exemplo 9.4, da Aula 9, vimos que, se V é um espaço vetorial e w um elemento de V, então o conjunto $S = \{\lambda w : \lambda \in \mathbb{R}\}$ é um subespaço vetorial de V. Agora que definimos combinação linear, podemos observar que tal S é o conjunto formado por todas as combinações lineares do vetor w.

Esse exemplo pode ser generalizado para um número qualquer de vetores da seguinte maneira: se $w_1, w_2, ..., w_n$ são vetores do espaço vetorial V, então o conjunto de todas as combinações lineares desses vetores é um subespaço vetorial de V (vamos provar isso!), chamado *subespaço gerado pelos vetores* $w_1, w_2, ..., w_n$, ou ainda *subespaço gerado pelo conjunto* $\{w_1, w_2, ..., w_n\}$. Denotamos esse espaço por $[w_1, w_2, ..., w_n]$, ou $[\{w_1, w_2, ..., w_n\}]$, e dizemos que $w_1, w_2, ..., w_n$ são geradores de $[w_1, w_2, ..., w_n]$. Assim, temos

$$[w_1, w_2, \dots, w_n] = \{a_1w_1 + a_2w_2 + \dots + a_nw_n : a_1, a_2, \dots, a_n \in \mathbb{R}\}.$$

Vamos agora mostrar que $[w_1, w_2, \dots, w_n]$ é um subespaço vetorial de V.

i.
$$S \neq \emptyset$$
, pois $\mathbf{0} = 0w_1 + 0w_2 + \dots + 0w_n \in [w_1, w_2, \dots, w_n]$;

ii. se $u \in S$ e $v \in S$, digamos,

$$u = a_1 w_1 + a_2 w_2 + \cdots + a_n w_n$$

e

$$v = b_1 w_1 + b_2 w_2 + \dots + b_n w_n$$

Observe que se os geradores w_1, w_2, \dots, w_n não são todos nulos, o conjunto $[w_1, w_2, \dots, w_n]$ é infinito. Já o conjunto $\{w_1, w_2, \dots, w_n\}$ é finito: possui, exatamente, n elementos.

com
$$a_1, a_2, \ldots, a_n \in \mathbb{R}$$
 e $b_1, b_2, \ldots, b_n \in \mathbb{R}$, então

$$u+v = (a_1w_1 + a_2w_2 + \dots + a_nw_n)$$

+ $(b_1w_1 + b_2w_2 + \dots + b_nw_n)$
= $(a_1+b_1)w_1 + (a_2+b_2)w_2 + \dots + (a_n+b_n)w_n,$

ou seja, u + v é também uma combinação linear dos vetores w_1, w_2, \ldots, w_n , sendo, portanto, um elemento de $[w_1, w_2, \ldots, w_n]$;

iii. se
$$\alpha \in \mathbb{R}$$
 e $u = a_1 w_1 + a_2 w_2 + \cdots + a_n w_n \in S$ então

$$\alpha u = \alpha(a_1w_1 + a_2w_2 + \dots + a_nw_n)$$

= $(\alpha a_1)w_1 + (\alpha a_2)w_2 + \dots + (\alpha a_n)w_n$,

ou seja,
$$\alpha u \in [w_1, w_2, ..., w_n]$$
.

De acordo com os itens i, ii e iii, $[w_1, w_2, \dots, w_n]$ é um subespaço vetorial de V.

Exemplo 10.2.

Veremos agora alguns exemplos de subespaços gerados.

- a. No Exemplo .2, da Aula 9, $S = \{(x, 2x) : x \in \mathbb{R}\} \subset \mathbb{R}^2$ é o subespaço gerado pelo vetor $(1,2) \in \mathbb{R}^2$, ou seja, S = [(1,2)].
- b. O subespaço de \mathbb{R}^3 gerado pelos vetores u=(1,2,0), v=(3,0,1) e w=(2,-2,1) é o plano de equação 2x-y-6z=0. Note que os vetores dados satisfazem a equação obtida para o subespaço gerado por eles.
- c. O conjunto $\{at+bt^2: a,b\in\mathbb{R}\}$ é o subespaço de $P_2(\mathbb{R},t)$ gerado pelos vetores t e t^2 .
- d. O conjunto \mathbb{R}^3 é o (sub)espaço gerado pelos vetores i = (1,0,0), j = (0,1,0) e k = (0,0,1) de \mathbb{R}^3 . Os vetores (1,2,0), (0,-1,2) e (1,1,3), juntos, também geram o \mathbb{R}^3 .
- e. O conjunto de todos os polinômios (de qualquer grau) com coeficientes reais, a uma variável t, denotado por $P(t,\mathbb{R})$, é gerado pelo conjunto infinito de vetores $\{1,t,t^2,t^3\ldots\}$.

Lembre-se de que os vetores de $P_2(\mathbb{R},t)$ são polinômios!

Ao longo deste curso serão dados inúmeros outros exemplos de subespaços gerados. Nas próximas seções, veremos como determinar o subespaço gerado por um conjunto de vetores e como encontrar geradores para um subespaço vetorial dado.

DETERMINAÇÃO DO SUBESPAÇO GERADO POR UM CONJUNTO DE VETORES

Há várias maneiras de se descrever um mesmo subespaço vetorial S de um espaço V. Eis algumas delas:

- através de um conjunto de geradores (ex: $S = [(1,1),(1,2)] \subset \mathbb{R}^2$);
- através de uma equação ou conjunto de equações (ex: S é o plano de equação x+y-z=0 em \mathbb{R}^3);
- através de uma propriedade de seus elementos (ex: $S = \{a+bt+ct^2 \in P_2(t,\mathbb{R}) : a+b-c=0\}$.

No Exemplo 10.2 da seção anterior, cada subespaço foi descrito por duas dessas formas. *Determinar* o subespaço gerado por um conjunto de vetores significa passar da descrição por geradores (a primeira acima) para outras descrições que permitam melhor entendimento do subespaço. Veremos como isso é feito através de alguns exemplos.

Exemplo 10.3.

Considere o subespaço de \mathbb{R}^3 gerado pelos vetores u=(1,2,0), v=(3,0,1) e w=(2,-2,1). A descrição de S como espaço gerado não deixa claro, por exemplo, se S é trivial, ou uma reta que passa pela origem, ou um plano que passa pela origem. Ajuda bastante saber que S é o plano de equação 2x-y-6z=0. Como fazer para encontrar essa outra descrição?

Como S = [u, v, w], cada elemento de S é uma combinação linear de u, v e w. Se denotarmos por (x, y, z) um elemento genérico de S, teremos então que (x, y, z) = au + bv + cw, onde a, b e c são números reais. Daí, temos

$$(x,y,z) = a(1,2,0) + b(3,0,1) + c(2,-2,1),$$

ou seja,

$$(x, y, z) = (a+3b+2c, 2a-2c, b+c).$$

Para que a igualdade anterior se verifique, é necessário que as coordenadas correspondentes dos ternos ordenados de cada lado da equação coincidam, ou seja, devemos ter

$$x = a+3b+2c$$

$$y = 2a-2c$$

$$z = b+c$$

Para que um dado vetor $(x, y, z) \in \mathbb{R}^3$ seja um elemento de S, é preciso que existam valores para a, b e c de forma que as três equações anteriores se verifiquem simultaneamente (compare com o Exemplo 10.2.d, desta aula).

Vamos, então, resolver por escalonamento, o sistema linear (nas variáveis a, b e c)

$$S: \left\{ \begin{array}{ccc} a & +3b & +2c & =x \\ 2a & & -2c & =y \\ b & +c & =z \end{array} \right.$$

Passando à matriz ampliada, e escalonando, temos

$$\begin{bmatrix} 1 & 3 & 2 & x \\ 2 & 0 & -2 & y \\ 0 & 1 & 1 & z \end{bmatrix} L_2 \leftarrow L_2 - 2L_1 \Rightarrow \begin{bmatrix} 1 & 3 & 2 & x \\ 0 & -6 & -6 & y - 2x \\ 0 & 1 & 1 & z \end{bmatrix}$$

$$L_2 \leftarrow -1/6L_2 \Rightarrow \begin{bmatrix} 1 & 3 & 2 & x \\ 0 & 1 & 1 & \frac{-y+2x}{6} \\ 0 & 1 & 1 & z \end{bmatrix}$$

$$L_3 \leftarrow L_3 - L_2 \Rightarrow \begin{bmatrix} 1 & 3 & 2 & x \\ 0 & 1 & 1 & \frac{-y + 2x}{6} \\ 0 & 0 & 0 & z + \frac{y - 2x}{6} \end{bmatrix}$$

O sistema em questão tem solução se, e somente se, os valores de x, y e z são tais que se tenha $z+\frac{y-2x}{6}=0$, ou, equivalentemente, se 2x-y-6z=0. Essa é precisamente a equação de um plano em \mathbb{R}^3 contendo a origem.

Os cálculos para determinar o subespaço gerado são sempre análogos ao que acabamos de fazer. Sempre que ocorrerem linhas de zeros, podemos obter equações que descrevem o espaço. Quando tais linhas não ocorrerem, isso significa que não existem restrições para que o elemento genérico esteja no subespaço gerado, ou seja, o subespaço em questão coincide com o espaço todo. Isso é o que acontece no próximo exemplo.

Exemplo 10.4.

Considere o subespaço de \mathbb{R}^2 gerado pelos vetores (1,1) e (1,-1). Para que (x,y) seja combinação desses vetores, devem existir a e b em \mathbb{R} tais que a(1,1)+b(1,-1)=(x,y). Isso significa que o sistema

$$S: \left\{ \begin{array}{ll} a & +b & =x \\ a & -b & =y \end{array} \right.$$

deve ter solução. Escalonando, obtemos

$$\left[\begin{array}{ccc} 1 & 0 & \frac{y-x}{2} \\ 0 & 1 & \frac{x-y}{2} \end{array}\right]$$

que tem sempre solução, para quaisquer valores de x e y (não há restrições sobre x e y para que (x,y) esteja no espaço gerado pelos vetores em questão). Daí $[(1,1),(1,-1)]=\mathbb{R}^2$.

Exemplo 10.5.

Considere o subespaço S, de P_3 , gerado pelos polinômios $p_1 = 2 - t + t^2$ e $p_2 = t + 3t^3$. Um polinômio $x + yt + zt^2 + wt^3$, para pertencer a S, deve poder ser escrito como uma combinação linear de p_1 e p_2 , isto é, queremos que existam escalares a e b tais que $x + yt + zt^2 + wt^3 = a(2 - t + t^2) + b(t + 3t^3)$.

tais que $x + yt + zt^2 + wt - at$ Ou seja, queremos que o sistema linear $\begin{cases} 2a = x \\ -a + b = y \\ a = z \\ 3b = w \end{cases}$

possua solução. Escalonando esse sistema, chegamos ao siste-

ma equivalente
$$\begin{cases} a = z \\ b = y+z \\ 0 = z-2x \\ 0 = w-3y-3z \end{cases}.$$

Logo, para que o sistema seja compatível, devemos ter z - 2x = 0 e w - 3y - 3z = 0, ou seja, z = 2x e w = 3y + 6x. Concluímos, então, que $S = \{x + yt + zt^2 + wt^3 \in P_3 | z = 2x$ e $w = 3y + 6x\}$.

DETERMINAÇÃO DE GERADORES DE UM SUBESPAÇO VETORIAL

Vimos que, dado um conjunto de vetores de um espaço vetorial V, o conjunto de todas as suas combinações lineares é um subespaço vetorial de V. É natural pensarmos se o contrário também acontece: será que todo subespaço S de V é gerado por um conjunto de vetores? A resposta à pergunta nesses termos é simples: é claro que S é o subespaço gerado por S (verifique!).

Façamos a pergunta de outro modo: será que todo subespaço S de V, incluindo o próprio V, é gerado por um conjunto finito de vetores? A resposta é sim para alguns espaços, entre eles \mathbb{R}^n , ou $M_{m\times n}(\mathbb{R})$. Existem também espaços que não têm essa propriedade, como é o caso do Exemplo 10.2.e de subespaços gerados. Em nosso curso, estudaremos mais a fundo os espaços que são *finitamente gerados*, ou seja, que admitem um conjunto finito de geradores, o mesmo acontecendo para todos os seus subespaços.

Veremos agora como encontrar geradores para subespaços através do estudo de alguns exemplos.

Exemplo 10.6.

Retornemos ao Exemplo 10.2, da Aula 9, $S = \{(x,2x) : x \in \mathbb{R}\} \subset \mathbb{R}^2$. Para verificar que de fato S é o subespaço gerado pelo vetor $(1,2) \in \mathbb{R}^2$, basta notar que os elementos de S são todos da forma (x,2x) = x(1,2): variando o valor de x, obtemos diferentes elementos de S. Ora, x(1,2) é a expressão de uma combinação linear de (1,2), portanto todos os elementos de S são combinações lineares de (1,2).

Exemplo 10.7.

Seja $S = \{(x, x+y, y) : x, y \in \mathbb{R}\} \in \mathbb{R}^3$. Raciocinando como anteriormente, vemos que o *elemento genérico* de S é da forma

(x,x+y,y) = (x,x,0) + (0,y,y) = x(1,1,0) + y(0,1,1), ou seja, é combinação linear dos vetores (1,1,0) e (0,1,1). Podemos escrever, então, S = [(1,1,0),(0,1,1)].

Exemplo 10.8.

Seja $S = \{(x,y,z) \in \mathbb{R}^3 : x+y-z=0\}$. Para encontrar geradores para esse subespaço do \mathbb{R}^3 , devemos procurar escrevê-lo conforme o exemplo anterior, colocando nas coordenadas do vetor genérico a(s) equação(ões) que define(m) o espaço. No caso em questão, como temos uma equação e três variáveis, podemos escrever o conjunto solução da equação (que é exatamente o subespaço S!) em função de duas variáveis livres. Nesse caso, temos $S = \{(-y+z,y,z) : y,z \in \mathbb{R}\}$ (apenas escrevemos a variável x em função de y e z). Assim, como no exemplo anterior, temos (-y+z,y,z) = y(-1,1,0)+z(1,0,1), ou seja, S = [(-1,1,0),(1,0,1)].

Exemplo 10.9.

Seja $S = \{a + bt + ct^2 \in P_2; a - b - 2c = 0\}$. A condição que define S pode ser escrita como a = b + 2c. Inserindo essa condição na expressão do vetor genérico de P_2 , temos: $a + bt + ct^2 = b + 2c + bt + ct^2 = b(1+t) + c(2+t^2)$. Logo, escrevemos o polinômio de S como combinação linear dos polinômios 1 + t e $2 + t^2$, que são, assim, os geradores de S.

Exemplo 10.10.

Seja
$$S = \left\{ \left[\begin{array}{cc} a & b \\ c & d \end{array} \right] \in M_2\mathbb{R}; a+b-c=0 \text{ e } c+d=0 \right\}.$$

As equações que definem S podem ser escritas como c = -d e a = -b - d. Logo, uma matriz de S é do tipo

$$\left[\begin{array}{cc} -b-d & b \\ -d & d \end{array}\right] = b \left[\begin{array}{cc} -1 & 1 \\ 0 & 0 \end{array}\right] + d \left[\begin{array}{cc} -1 & 0 \\ -1 & 1 \end{array}\right],$$

e o conjunto gerador de *S* é formado por essas duas últimas matrizes.

Resumo

Nesta aula, vimos duas importantes técnicas envolvendo subespaços gerados:

- 1. Como determinar o subespaço gerado por um conjunto de vetores: Neste caso, escrevemos um vetor genérico do espaço como combinação linear dos vetores geradores. Isso fornece um sistema linear o qual queremos que seja compatível. Assim, após o escalonamento, se alguma equação tiver o primeiro membro nulo, o segundo membro também terá que se anular, fornecendo uma equação do subespaço. Caso nenhuma equação tenha seu primeiro lado anulado, significa que o subespaço gerado é todo o espaço.
- Como determinar os geradores de um subespaço dado: "embutimos" as condições dadas pelas equações do subespaço num vetor genérico do espaço e o decompomos como uma combinação linear.

Exercício 10.1.

- 1. Em cada caso, escreva o vetor v como combinação linear de v_1, \ldots, v_n .
 - a. Em \mathbb{R}^2 , v = (1,3), $v_1 = (1,2)$ e $v_2 = (-1,1)$.
 - b. Em \mathbb{R}^3 , v = (2,1,4), $v_1 = (1,0,0)$, $v_2 = (1,1,0)$ e $v_3 = (1,1,1)$.
 - c. Em \mathbb{R}^2 , v = (1,3), $v_1 = (0,0)$ e $v_2 = (3,9)$.
 - d. Em \mathbb{R}^3 , v = (2, -1, 6), $v_1 = (1, 0, 2)$ e $v_2 = (1, 1, 0)$.
 - e. Em $P_2(t,\mathbb{R})$, $v = t^2 2t$, $v_1 = t + 1$, $v_2 = t^2$ e $v_3 = 2t$.
- 2. Determine $m \in \mathbb{R}$ tal que o vetor v = (1, -m, 3) seja combinação linear dos vetores $v_1 = (1, 0, 2), v_2 = (1, 1, 1)$ e $v_3 = (2, -1, 5)$.
- 3. No exercício anterior, substituindo o valor de m que você encontrou, escreva v como combinação linear de v_1 , v_2 e v_3 .
- 4. Determine o subespaço *S* do espaço *V*, gerado pelos vetores de *A*, em cada caso.

a.
$$V = \mathbb{R}^3$$
, $A = \{(1,2,1), (2,1,-2)\}$.

b.
$$V = M_{2\times 2}(\mathbb{R}), A = \{v_1, v_2, v_3\}, \text{ onde }$$

$$v_1 = \begin{bmatrix} 2 & -3 \\ 1 & 1 \end{bmatrix}, v_2 = \begin{bmatrix} 4 & -6 \\ 2 & 2 \end{bmatrix} e v_3 = \begin{bmatrix} 0 & 2 \\ 1 & 0 \end{bmatrix}.$$

c.
$$V = P_2(t, \mathbb{R}), v_1 = t + 1 \text{ e } v_2 = t^2$$
.

5. Determine um conjunto de geradores para os seguintes subespaços:

a.
$$S = \{(x, y, z) \in \mathbb{R}^3; x = 5y \text{ e } z = -2y\}$$

b.
$$S = \{(x, y, z) \in \mathbb{R}^3; x - y + z = 0\}$$

c.
$$S = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_{2 \times 2}(\mathbb{R}); a = -d \in c = 2b \right\}$$

d.
$$S = \{at^2 + at + b : a, b \in \mathbb{R}\} \subset P_2(t, \mathbb{R})$$

Autoavaliação

Ao final desta aula, você deverá dominar as duas técnicas estudadas: i. como determinar o subespaço gerado por um conjunto de vetores e ii. como determinar um conjunto de geradores de um subespaço dado. Este segundo tipo de problema é resolvido rapidamente, enquanto o primeiro sempre recai num sistema linear sobre o qual imporemos a condição de ser compatível. Os vetores geradores não são únicos, por isso as respostas dadas aqui podem não coincidir com as suas. Para verificar se acertou, basta testar se cada vetor, candidato a gerador, satisfaz a condição do subespaço. Se houver qualquer dúvida, consulte o tutor da disciplina... e vamos em frente!

RESPOSTAS DOS EXERCÍCIOS

1. a.
$$v = 4/3v_1 + 1/3v_2$$
.

b.
$$v = v_1 - 3v_2 + 4v_3$$
.

c. Várias respostas possíveis. Uma delas é
$$v = 45v_1 + 1/3v_2$$
.

d.
$$v = 3v_1 - v_2$$
.

e.
$$v = 0v_1 + v_2 - v_3$$
.

Álgebra Linear I | Combinações Lineares

2.
$$m = 1$$

3.
$$v = (1, -1, 3) = (2 - 3a)v_1 + (a - 1)v_2 + av_3$$
, onde $a \in \mathbb{R}$.

4. a.
$$[A] = \{(x, y, z) \in \mathbb{R}^3; 5x - 4y + 3z = 0\}$$

b.
$$[A] = \left\{ \begin{bmatrix} 2a & 2b - 5a \\ b & a \end{bmatrix} \in M_{2 \times 2}(\mathbb{R}) \right\}$$

c.
$$[A] = \{a + at + bt^2 \in P_2(t, \mathbb{R})\}$$

5. a.
$$\{(5,1,-2)\}$$

b.
$$\{(1,1,0),(-1,0,1)\}$$

c.
$$\left\{ \begin{bmatrix} 0 & 1 \\ 2 & 0 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$

d.
$$\{t+t^2,1\}$$
.

Objetivos

Ao final desta aula, você deverá ser capaz de:

- definir *independência linear* e mostrar como verificar se um conjunto é linearmente independente;
- definir *base* de um espaço vetorial e dar alguns exemplos;
- 3 mostrar a base canônica do \mathbb{R}^n .

INTRODUÇÃO

Na Aula 10, estudamos subespaços gerados por um conjunto de vetores em um espaço vetorial V.

Veremos, agora, que alguns conjuntos de vetores geram um subespaço de maneira mais "eficiente". Vamos começar com um exemplo.

Exemplo 11.1.

No Exemplo 10.3, da Aula 10, vimos, com detalhes, a determinação do subespaço de \mathbb{R}^3 gerado por u, v, e w.

O subespaço de \mathbb{R}^3 gerado pelos vetores u=(1,2,0), v=(3,0,1) e w=(2,-2,1) é o plano de equação S=2x-y-6z=0. Dizemos que $\{u,v,w\}$ é um conjunto de geradores para o plano S. No entanto, como veremos a seguir, os vetores u=(1,2,0) e s=(12,-6,5) juntos geram o plano S.

Solução: Para ver isto, vamos usar o método explicado no Exemplo 10.3, da Aula 10.

Se W é o subespaço gerado por u e s, então $(x,y,z) \in W$ quando existem $a, b \in \mathbb{R}$ tais que (x,y,z) = a.u + b.s. Mas

$$au + bs = a(1,2,0) + b(12,-6,5) = (a+12b,2a-6b,5b).$$

Assim, $(x, y, z) \in W$, quando existe solução para o sistema

$$\begin{cases} a + 12b = x \\ 2a - 6b = y \\ 5b = z \end{cases}$$

Vamos colocar este sistema em forma matricial e resolvê-lo:

$$\begin{bmatrix} 1 & 12 & | & x \\ 2 & -6 & | & y \\ 0 & 5 & | & z \end{bmatrix} \qquad L_2 \leftarrow L_2 - 2L_1 \\ L_3 \leftarrow \frac{1}{5} \cdot L_3$$

$$\begin{bmatrix} 1 & 12 & | & x \\ 0 & -30 & | & y - 2x \\ 0 & 1 & | & \frac{z}{5} \end{bmatrix} \qquad L_1 \leftarrow L_1 - 12L_3 \\ L_2 \leftarrow L_2 + 30L_3$$

$$\begin{bmatrix} 1 & 0 & | & x - \frac{12z}{5} \\ 0 & 0 & | & y - 2x + \frac{30z}{5} \\ 0 & 1 & | & \frac{z}{5} \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & | & x - \frac{12z}{5} \\ 0 & 1 & | & \frac{z}{5} \\ 0 & 0 & | & y - 2x + 6z \end{bmatrix}$$

Isto mostra que o sistema tem solução se, e somente se, -2x + y + 6z = 0 (linha nula) e que, neste caso, a solução é $a = x - \frac{12z}{5}$ e $b = \frac{z}{5}$.

Como -2x+y+6z é a equação do plano S, então u e s geram o plano S.

Portanto, o conjunto $\{u, v, w\}$ gera o plano S e o conjunto $\{u, s\}$ também gera o mesmo plano S.

O segundo conjunto gera o mesmo subespaço com um número menor de vetores geradores.

INDEPENDÊNCIA LINEAR

A chave para entendermos o que está acontecendo no exemplo anterior está no conceito de *independência linear*.

Um conjunto de vetores $\{v_1, v_2, \dots, v_n\}$ em um espaço vetorial V é chamado linearmente independente se a equação vetorial

$$c_1v_1 + c_2v_2 + \ldots + c_nv_n = 0,$$
 (11.1)

admite apenas a solução trivial $c_1 = c_2 = \ldots = c_n = 0$.

O conjunto $\{v_1, v_2, \dots, v_n\}$ é chamado linearmente dependente quando a equação (11.1) admite alguma solução não trivial, isto é, se existem escalares c_1, \dots, c_n , não todos iguais a zero, tais que (11.1) seja válido.

É comum usar a abreviação L.I. para conjuntos linearmente independentes e L.D. para os linearmente dependentes.

Exemplo 11.2.

Um conjunto contendo um único vetor v é linearmente independente se, e somente se, $v \neq 0$.

Exemplo 11.3.

O conjunto $\{v_1, v_2\}$ contendo apenas dois vetores v_1, v_2 não-nulos é linearmente dependente quando um é múltiplo do outro.

Solução: De fato, se $c_1v_1 + c_2v_2 = 0$ possui solução não trivial então $c_1 \neq 0$ e $c_2 \neq 0$ (pois $c_1 = 0 \Rightarrow c_2 \neq 0$ e $c_2v_2 = 0 \Rightarrow v_2 = 0$, analogamente, $c_2 = 0 \Rightarrow v_1 = 0$).

$$c_1 v_1 + c_2 v_2 = 0 \Rightarrow v_1 = -\frac{c_2}{c_1} \cdot v_2.$$

Portanto, v_1 é múltiplo de v_2 .

Exemplo 11.4.

Seja C[0,1] o conjunto das funções reais, contínuas com domínio [0,1]. Esse conjunto forma um espaço vetorial com as operações usuais de soma de funções e multiplicação por escalar.

O conjunto $\{\text{sen} t, \cos t\}$ é linearmente independente em C[0,1], já que sen t e $\cos t$ são não-nulos e não são múltiplos um do outro enquanto vetores de C[0,1].

Isto é, não há $c \in \mathbb{R}$ tal que sen $t = c \cos t$, para todo $t \in [0, 1]$. Para ver isso, basta comparar os gráficos de sen t e $\cos t$.

O conjunto $\{ \sec 2t, \sec t \cos t \}$ é linearmente dependente em C[0,1], pois

Exemplo 11.5.

Seja P_2 o espaço vetorial formado por polinômios de grau ≤ 2 . Sejam $p_1 = 1$, $p_2 = x - 1$, $p_3 = 5 - x$, então $\{p_1, p_2, p_3\}$ forma um conjunto linearmente dependente, pois

$$-4p_1 + p_2 + p_3 = 0.$$

COMO DETERMINAR SE UM CONJUNTO É L.I.

Para determinarmos se um conjunto de vetores $\{v_1, v_2, ..., v_n\}$ é linearmente independente em um espaço vetorial V, devemos verificar se a equação $c_1v_1 + ... + c_nv_n = 0$ possui ou não solução não-trivial.

Exemplo 11.6.

Mostre que o conjunto $\{(1,0,0),\ (0,1,0),\ (0,0,1)\}$ é L.I. em \mathbb{R}^3

Solução: Vamos resolver a equação,

$$c_1(1,0,0) + c_2(0,1,0) + c_3(0,0,1) = (0,0,0)$$
$$(c_1,0,0) + (0,c_2,0) + (0,0,c_3) = (0,0,0)$$
$$(c_1,c_2,c_3) = (0,0,0)$$
$$\Rightarrow c_1 = c_2 = c_3 = 0$$

Portanto, a única solução é a trivial, $c_1=c_2=c_3=0$, o que mostra que o conjunto é L.I.

Exemplo 11.7.

Determine se o conjunto $\{u, v, w\}$, onde u = (1, 2, 0), v = (3, 0, 1) e w = (2, -2, 1) é L.I. em \mathbb{R}^3 .

Solução: Voltamos aos vetores do Exemplo 11.1 que, como vimos, geram o plano S dado por 2x - y - 6z = 0.

Vamos resolver a equação

$$c_1 u + c_2 v + c_3 w = (0,0,0)$$
 (11.2)

Substituindo os valores de *u*, *v* e *w*:

$$c_1(1,2,0) + c_2(3,0,1) + c_3(2,-2,1) = (0,0,0)$$

$$(c_1,2c_1,0) + (3c_2,0,c_2) + (2c_3,-2c_3,c_3) = (0,0,0)$$

$$(c_1+3c_2+2c_3,2c_1-2c_3,c_2+c_3) = (0,0,0),$$

o que leva ao sistema

$$\begin{cases}
c_1 + 3c_2 + 2c_3 = 0 \\
2c_1 - 2c_3 = 0 \\
c_2 + c_3 = 0
\end{cases}$$

Colocando na forma matricial e reduzindo:

$$\begin{bmatrix} 1 & 3 & 2 & | & 0 \\ 2 & 0 & -2 & | & 0 \\ 0 & 1 & 1 & | & 0 \end{bmatrix} \qquad L_2 \leftarrow L_2 - 2L_1$$

$$\begin{bmatrix} 1 & 3 & 2 & | & 0 \\ 0 & -6 & -6 & | & 0 \\ 0 & 1 & 1 & | & 0 \end{bmatrix} \qquad L_2 \leftarrow L_2 + 6L_3$$

$$\begin{bmatrix} 1 & 3 & 2 & | & 0 \\ 0 & 1 & 1 & | & 0 \end{bmatrix} \qquad L_1 \leftarrow L_1 - 3L_3$$

$$L_2 \leftarrow L_3$$

$$L_2 \leftarrow L_3$$

$$L_3 \leftarrow L_2$$

$$\begin{bmatrix} 1 & 0 & -1 & | & 0 \\ 0 & 1 & 1 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix} \rightarrow \begin{cases} c_1 - c_3 & = 0 \\ c_2 + c_3 & = 0 \end{cases}$$

Esse sistema possui solução $c_1 = c_3$, $c_2 = -c_3$ e $c_3 = c_3$, para qualquer valor de c_3 .

Ou seja, a equação (11.2) possui infinitas soluções não triviais.

Por exemplo, $c_3 = 1$ resulta em $c_1 = 1$, $c_2 = -1$ e $c_3 = 1$. Verifique que, com esses valores, $c_1u + c_2v + c_3w = 0$.

Exemplo 11.8.

Ver Exemplo 11.1.

Determine se o conjunto $\{u, s\}$, onde u = (1, 2, 0) e s = (12, -6, 5) é L.I.

Solução: Como o conjunto $\{u, s\}$ tem dois vetores, ele é L.D. apenas quando um dos vetores é múltiplo do outro. Claramente, este não é o caso de $\{u, s\}$. Portanto, $\{u, s\}$ é L.I.

Comparando os Exemplos 11.7 e 11.8, vemos que os conjuntos $\{u,v,w\}$ e $\{u,s\}$ geraram o mesmo subespaço S. No entanto, $\{u,v,w\}$ é L.D., enquanto $\{u,s\}$ é L.I.

Veremos, posteriormente, que se um subespaço W é gerado por um conjunto de n elementos, então qualquer conjunto de m elementos, onde m > n, é necessariamente linearmente dependente.

No exemplo anterior, como $\{u,s\}$ gera o subespaço S, então qualquer conjunto com mais de 2 elementos é L.D.

BASE DE UM SUBESPAÇO VETORIAL

Seja W um subespaço de um espaço vetorial V. Um conjunto de vetores $B = \{v_1, ..., v_n\}$ é uma base de W se

- i. *B* é um conjunto linearmente independente.
- ii. O subespaço gerado por $B \notin W$.

Observe que a definição de base se aplica também ao próprio espaço vetorial V, pois todo espaço vetorial é subespaço de si mesmo.

Observe também que se $B = \{v_1, ..., v_n\}$ é base de W, então $v_1, ..., v_n$ pertencem a W.

Exemplo 11.9.

Sejam os vetores $i_1=(1,0,0),\ i_2=(0,1,0)$ e $i_3=(0,0,1)$. Considere o conjunto $\{i_1,i_2,i_3\}$, já vimos que o conjunto é L.I. e claramente gera \mathbb{R}^3 , pois $(x,y,z)\in\mathbb{R}^3\Rightarrow (x,y,z)=xi_1+yi_2+zi_3$. Logo $\{i_1,i_2,i_3\}$ é base de \mathbb{R}^3 . Essa base é chamada base canônica do \mathbb{R}^3 .

Figura 11.1: Base canônica do \mathbb{R}^3 .

Exemplo 11.10.

Sejam os vetores:

$$i_1 = (1,0,...,0)$$

 $i_2 = (0,1,...,0)$
 \vdots
 $i_n = (0,0,...,1)$

O conjunto $\{i_1,...,i_n\}$ é uma base do \mathbb{R}^n , chamada base canônica.

Exemplo 11.11.

O conjunto $\{u,s\}$, onde $u = \{1,2,0\}$ e $s = \{12,-6,5\}$, é uma base do subespaço S, onde S: 2x - y - 6z = 0. (Veja os Exemplos 11.7 e 11.8.)

Exemplo 11.12.

Seja P^n o espaço dos polinômios de grau $\leq n$. Então, o conjunto $B = \{1, t, ..., t^n\}$ forma uma base de P^n . Essa base é chamada canônica de P^n .

Solução: De fato, B claramente gera P^n . Para provar que B é L.I., sejam c_0, \ldots, c_n tais que

$$c_0.1 + c_1.t + c_2.t^2 + \dots + c_n.t^n = 0.$$

A igualdade significa que o polinômio da esquerda tem os mesmos coeficientes que o polinômio da direita, que é o polinômio nulo. Mas o polinômio da esquerda deve ter infinitas soluções, pois seu valor é zero $\forall t \in \mathbb{R}$, logo deve ser nulo. Portanto, $c_0 = c_1 = \ldots = c_n = 0$ e assim, $\{1, t_1, \ldots, t_n\}$ é L.I.

Resumo

Nesta aula, estudamos conjuntos linearmente independentes (L.I.) e linearmente dependentes (L.D.). Vimos que um conjunto B gerador de um subespaço W e linearmente independente é uma base de W. Vimos alguns exemplos.

As bases são conjuntos geradores "mínimos" para um subespaço, no sentido de que se um conjunto tem mais elementos que uma base, então ele é L.D., e se tem menos elementos que uma base de W, então não gera W. Essas propriedades das bases serão vistas na próxima aula.

Exercício 11.1.

1. Determine uma base para o espaço das matrizes

$$M_{2x2}(\mathbb{R}) = \left\{ \left[\begin{array}{cc} a & b \\ c & d \end{array} \right] \mid a, b, c, d \in \mathbb{R} \right\}.$$

- 2. Sejam u, v e w os vetores do Exemplo 11.7. Vimos que $\{u,v,w\}$ é L.D. Mostre que os conjuntos $\{u,v\}$, $\{u,w\}$ e $\{v,w\}$ são linearmente independentes.
- 3. Determine uma base para o subespaço

$$S = \{(x, x + y, 2y) | x, y \in \mathbb{R}\} \subset \mathbb{R}^3.$$

4. Sejam
$$v_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
, $v_2 = \begin{bmatrix} -1 \\ 2 \\ -3 \end{bmatrix}$ e $v_3 = \begin{bmatrix} -1 \\ 10 \\ -3 \end{bmatrix}$. Seja

H o subespaço de \mathbb{R}^3 gerado por $\{v_1, v_2, v_3\}$. Mostre que $\{v_1, v_2, v_3\}$ é linearmente dependente e que $\{v_1, v_2\}$ é uma base para H.

- 5. No espaço vetorial de todas as funções reais, mostre que $\{t, \text{sen} t, \cos 2t, \text{sen} t \cos t\}$ é um conjunto linearmente independente.
- 6. Determine uma base para os subespaços a seguir (veja Exercício 5 da Aula 10).

a.
$$S = \{(x, y, z) \in \mathbb{R}^3; x = 5y \text{ e } z = -2y\}$$
.

b.
$$S = \{(x, y, z) \in \mathbb{R}^3; x - y + z = 0\}$$
.

c.
$$S = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_{2X2}(\mathbb{R}); a = -d \text{ e } c = 2b \right\}.$$

d.
$$S = \{at^2 + at + b; a, b \in \mathbb{R}\} \subset P_2(t, \mathbb{R})$$
.

RESPOSTAS DOS EXERCÍCIOS

1.
$$B = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}.$$

2. Sejam a e b tais que au + bv = 0. Substituindo os valores de u e v:

$$a(1,2,0) + b(3,0,1) = (0,0,0)$$

 $(a+3b,2a,b) = (0,0,0).$

O que leva ao sistema:

$$\begin{cases} a+3b = 0 \\ 2a = 0 \\ b = 0 \end{cases}$$

Portanto, a única solução é a trivial, a = b = 0, o que mostra que o conjunto $\{u, v\}$ é LI.

Sejam a e b tais que au + bw = 0. Substituindo os valores de u e w:

$$a(1,2,0) + b(2,-2,1) = (0,0,0)$$

 $(a+2b,2a-2b,b) = (0,0,0).$

O que leva ao sistema:

$$\begin{cases} a+2b = 0 \\ 2a-2b = 0 \\ b = 0 \end{cases}$$

Portanto, a única solução é a trivial, a = b = 0, o que mostra que o conjunto $\{u, w\}$ é LI.

Sejam a e b tais que av + bw = 0. Substituindo os valores de v e w:

$$a(3,0,1) + b(2,-2,1) = (0,0,0)$$

 $(3a+2b,-2b,a+b) = (0,0,0).$

O que leva ao sistema:

$$\begin{cases} 3a+2b = 0 \\ -2b = 0 \\ a+b = 0 \end{cases}$$

Portanto, a única solução é a trivial, a = b = 0, o que mostra que o conjunto $\{v, w\}$ é LI.

- 3. $B = \{(1, 1, 0), (0, 1, 2)\}$
- 4. O conjunto $H = \{(x, y, 3x); x, y \in \mathbb{R}\}$ é o subespaço gerado tanto por $\{v_1, v_2, v_3\}$ como por $\{v_1, v_2\}$. Logo, a dimensão de H é 2, $\{v_1, v_2, v_3\}$ é linearmente dependente e $\{v_1, v_2\}$ é uma base para H.
- 5. Sejam a, b, c e d tais que

$$at + b \operatorname{sen}(t) + c \cos(2t) + d \operatorname{sen}(t) \cos(t) = 0$$
 (*)

Fazendo $t=0,\ t=\frac{\pi}{2},\ t=\pi,\ t=\frac{\pi}{4}$ em (*), obtemos como a única solução a solução trivial, a=b=c=d=0, o que mostra que o conjunto $\{t, sent, cos2t, sent cost\}$ é LI.

- 6. a. $B = \{(5, 1, -2)\}.$
 - b. $B = \{(1, 0, -1), (0, 1, 1)\}.$
 - c. $B = \left\{ \begin{bmatrix} 0 & 1 \\ 2 & 0 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \right\}$.
 - d. $B = \{(1, t + t^2)\}.$

Aula 12

DIMENSÃO DE UM ESPAÇO VETORIAL

Objetivos

Ao final desta aula, você deverá ser capaz de:

- apresentar o sistema de coordenadas determinado por uma base em um espaço vetorial V;
- 2 mostrar que se um espaço vetorial *V* tem uma base com *n* elementos, então todas as bases de *V* têm *n* elementos;
- definir dimensão.

Introdução

Uma vez que esteja especificada uma base B para um espaço vetorial V, podemos representar um vetor $v \in V$ por suas *coordenadas* na base B. Por isso, dizemos que uma base B de V estabelece um *sistema de coordenadas* em V.

Veremos, com mais detalhes, o que isso tudo quer dizer mais adiante. Observaremos que, se a base B tem n vetores, então um vetor $v \in V$ fica representado por uma n-upla (a_1, a_2, \ldots, a_n) . Isto faz o espaço vetorial V "se parecer" com \mathbb{R}^n . Exploraremos esta relação para mostrar que todas as bases de um mesmo espaço vetorial V têm o mesmo número de elementos.

SISTEMA DE COORDENADAS

A existência de um sistema de coordenadas está baseada no seguinte teorema.

Teorema 12.1 (Representação Única).

Seja $B = \{b_1, \ldots, b_n\}$ uma base para um espaço vetorial V. Então, para cada $x \in V$, existe um único conjunto de escalares c_1, \ldots, c_n , tal que

$$x = c_1 b_1 + \ldots + c_n b_n.$$

Demonstração

Como $B = \{b_1, \ldots, b_n\}$ é uma base de V, então gera V, logo todo $x \in V$ é combinação linear dos vetores em B. Portanto, existem $c_1, \ldots, c_n \in \mathbb{R}$ tais que:

$$x = c_1 b_1 + \ldots + c_n b_n. \tag{1}$$

Vamos agora provar a unicidade. Suponha que *x* também tenha a representação

$$x = d_1b_1 + \ldots + d_nb_n.$$
 (2)

Subtraindo (1) e (2), obtemos:

$$0 = x - x = (c_1 - d_1)b_1 + \dots + (c_n - d_n)b_n.$$
 (3)

Como B é linearmente independente, os coeficientes c_1-d_1 , c_2-d_2 , ..., c_n-d_n , na equação (3), devem ser todos nulos, logo $c_i=d_i,\ i=1,\ldots,n$, o que mostra que a representação é única.

Definição 12.1.

Seja $x \in V$ e seja $B = \{b_1, \ldots, b_n\}$ uma base de V. Se

$$x = c_1b_1 + \ldots + c_nb_n,$$

então os escalares c_1, \ldots, c_n são chamados coordenadas de x na base B e escrevemos

$$[x]_B = \left[\begin{array}{c} c_1 \\ \vdots \\ c_n \end{array} \right].$$

Exemplo 12.1.

Seja a base $B = \{b_1, b_2\}$ do \mathbb{R}^2 dada por $b_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ e $b_2 = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$. Sejam $x, y \in \mathbb{R}^2$. Se $[x]_B = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$, determine x e, se $y = \begin{bmatrix} 2 \\ 5 \end{bmatrix}$, determine $[y]_B$.

Solução: Como $x_B = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$, então

$$x = 1.b_1 + 3b_2 = 1.\begin{bmatrix} 1 \\ 1 \end{bmatrix} + 3.\begin{bmatrix} 0 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 7 \end{bmatrix}.$$

Se
$$y = \begin{bmatrix} 2 \\ 5 \end{bmatrix}$$
 e $[y]_B = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$, então,

$$\begin{bmatrix} 2 \\ 5 \end{bmatrix} = y_1b_1 + y_2b_2 = y_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + y_2 \begin{bmatrix} 0 \\ 2 \end{bmatrix}$$

$$\left[\begin{array}{c}2\\5\end{array}\right] = \left[\begin{array}{c}y_1\\y_1+2y_2\end{array}\right],$$

o que resulta em

$$\begin{cases} y_1 = 2 \\ y_1 + 2y_2 = 5 \implies 2 + 2y_2 = 5 \implies y_2 = \frac{3}{2} \end{cases}.$$

Portanto, $[y]_B = \begin{bmatrix} 2 \\ \frac{3}{2} \end{bmatrix}$.

Exemplo 12.2.

A base canônica $b=\{i_1,\ i_2\}$ é a base em que $x=[x]_B$, para todo $x\in\mathbb{R}^2$, pois, se $[x]_B=\left[\begin{array}{c}a\\b\end{array}\right]$, então

$$x = a.i_1 + b.i_2 = a.$$
 $\begin{bmatrix} 1 \\ 0 \end{bmatrix} + b.$ $\begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix} = [x]_B.$

Exemplo 12.3.

Seja $B = \{2, 1-t, 1+t+t^2\}$ uma base de $P^2[t]$, o espaço dos polinômios em uma variável de grau ≤ 2 (verifique que B é uma base de $P^2[t]$). Determine as coordenadas de $x = t^2 - 1$ na base B.

Solução: Se
$$B=\{b_1,\ b_2,\ b_3\}$$
 e $[x]_B=\left[\begin{array}{c}c_1\\c_2\\c_3\end{array}\right]$, então

$$x = c_1b_1 + c_2b_2 + c_3b_3, \text{ isto } é$$

$$-1+t^2 = c_1.2 + c_2.(1-t) + c_3.(1+t+t^2)$$

$$-1+t^2 = 2c_1 + c_2 - c_2t + c_3 + c_3t + c_3t^2$$

$$-1+t^2 = (2c_1 + c_2 + c_3) + t(-c_2+c_3) + c_3t^2$$

Comparando os coeficientes, obtemos

$$\begin{cases} 2c_1 + c_2 + c_3 &= -1 \\ -c_2 + c_3 &= 0 \\ c_3 &= 1 \end{cases}, \text{ o que leva a } \begin{cases} c_1 &= -\frac{3}{2} \\ c_2 &= 1 \\ c_3 &= 1 \end{cases}.$$

Portanto,
$$[x]_B = \begin{bmatrix} -\frac{3}{2} \\ 1 \\ 1 \end{bmatrix}$$
.

Exemplo 12.4.

Seja V um espaço vetorial e $B=\{b_1,\ldots,b_n\}$ uma base de V. A representação do vetor nulo em B é $[0]_B=\begin{bmatrix}0\\\vdots\\0\end{bmatrix}$, pois, se $[v]_B=\begin{bmatrix}0\\\vdots\\0\end{bmatrix}$, então $v=0.b+\ldots+0.b_n=0$.

Nesta seção, provaremos que todas as bases de um espaço vetorial V têm o mesmo número de elementos. Vamos iniciar com o \mathbb{R}^n .

O conjunto $B = \{i_1, i_2, ..., i_n\}$ é uma base de \mathbb{R}^n (ver exemplo 11.10, da Aula 11). Esta é a base canônica do \mathbb{R}^n . No teorema a seguir, veremos que qualquer conjunto com mais de n elementos é L.D.

Teorema 12.2.

Seja $S = \{u_1, ..., u_p\}$ um subconjunto do \mathbb{R}^n . Se p > n, então S é linearmente dependente.

Demonstração

Seja
$$u_1 = \begin{bmatrix} x_{11} \\ x_{12} \\ \vdots \\ x_{n1} \end{bmatrix}, \dots, u_p = \begin{bmatrix} x_{1p} \\ x_{22} \\ \vdots \\ x_{np} \end{bmatrix}.$$

A equação

$$c_1 u_1 + \dots + c_p u_p = 0 (1)$$

pode ser escrita como

$$c_1 \begin{bmatrix} x_{11} \\ x_{21} \\ \vdots \\ x_{n1} \end{bmatrix} + \dots + c_p \begin{bmatrix} x_{1p} \\ x_{2p} \\ \vdots \\ x_{np} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \rightarrow \text{vetor nulo do} \mathbb{R}^n$$

o que resulta no sistema

$$\begin{cases} x_{11}c_1 + \cdots + x_{1p}c_p = 0 \\ x_{21}c_1 + \cdots + x_{2p}c_p = 0 \\ \vdots \\ x_{n1}c_1 + \cdots + x_{2p}c_p = 0 \end{cases}$$
(2)

O sistema (2) é um sistema homogêneo, nas variáveis c_1, \ldots, c_p , com n equações. Como p > n, então trata-se de um sistema homogêneo com mais variáveis que equações. Segue-se que há soluções não-triviais de (2), logo (1) tem soluções não-triviais e, portanto, $S = \{u_1, \ldots, u_p\}$ é linearmente dependente.

O próximo teorema generaliza este resultado para qualquer espaço vetorial.

Teorema 12.3.

Se um espaço vetorial V tem base $B = \{b_1, \ldots, b_n\}$, então todo subconjunto de V com mais de n vetores é linearmente dependente.

Demonstração

Seja $\{u_1, \ldots, u_p\}$ um subconjunto de V, com p > n. Os vetores das coordenadas $[u_1]_B$, $[u_2]_B$, ..., $[u_p]_B$ formam um subconjunto do \mathbb{R}^n com p > n vetores. Pelo teorema anterior este é um conjunto L.D.

Portanto, existem escalares c_1, \ldots, c_p , nem todos iguais a zero, tais que

$$c_1[u_1]_B + \ldots + c_p[u_p]_B = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}.$$

Como a transformação de coordenadas é uma transformação Verifique que se B linear, temos é uma base de um

$$[c_1u_1 + \ldots + c_pu_p]_B = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$$

Portanto, a representação do vetor $c_1u_1 + \ldots + c_pu_p$, na base $c_1[a]_B + c_2[b]_B$. B é $[0\cdots 0]$, isto é,

$$c_1u_1 + \dots + c_pu_p = 0.b_1 + \dots + 0.b_n = 0$$
 (3)

A equação (3) mostra que u_1, \ldots, u_p é um conjunto linearmente dependente.

Verifique que se B é uma base de um espaço vetorial $V,\ a,b\in V$ e c_1 e c_2 são escalares, então $[c_1a+c_2b]_B=c_1[a]_B+c_2[b]_B.$ Isto mostra que a transformação de coordenadas é uma transformação linear.

Teorema 12.4.

Se um espaço vetorial V tem uma base com n vetores, então toda base de V também tem exatamente n vetores.

Demonstração

Seja B_1 uma base com n vetores e seja B_2 uma outra base de V.

Como B_1 é base e B_2 é linearmente independente, então B_2 não tem mais que n vetores, pelo teorema anterior.

Por outro lado, como B_2 é base e B_1 é linearmente independente, então B_2 não tem menos que n vetores. Disto resulta que B_2 tem exatamente n vetores.

Um espaço vetorial pode não ter uma base com um número finito de vetores. Por exemplo, o espaço vetorial dos polinômios na variável t, denotado $\mathbb{R}[t]$, não tem base finita. Uma base para este espaço é

$$\{1, t, t^2, t^3, ...\}.$$

Como este conjunto é infinito, então $\mathbb{R}[t]$ não pode ter base finita (se tivesse uma base com d elementos, então qualquer conjunto com mais de d elementos seria L.D., logo não poderia ter uma base infinita).

O teorema anterior mostra que, se um espaço vetorial *V* tem base finita, então todas as bases têm o mesmo número de ele-

mentos. Isto motiva a seguinte definição:

Definição 12.2.

Se V tem uma base finita, então V é chamado espaço vetorial de dimensão finita e chamamos de dimensão de V, denotada dim V, o número de vetores de uma base de V. Caso V não tenha uma base finita, dizemos que V é um espaço vetorial de dimensão infinita. A dimensão do espaço vetorial trivial [0] é definida como sendo igual a zero.

Exemplo 12.5.

dim $\mathbb{R}^n = n$. Basta notar que a base canônica do \mathbb{R}^n tem n vetores.

Exemplo 12.6.

 $\dim P^n = n+1$, onde o P^n é o espaço vetorial dos polinômios de grau $\leq n$. Uma base de P^n é o conjunto

$$\{1, t, t^2, \ldots, t^n\},\$$

que tem n+1 vetores.

Exemplo 12.7.

Determine a dimensão do subespaço H de \mathbb{R}^3 geral do pelos

vetores
$$v_1 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$
 e $v_2 = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$.

Solução: Como v_1 e v_2 não são múltiplos um do outro, então o conjunto $\{v_1, v_2\}$ é L.I, portanto é uma base de H. Logo dim H = 2.

TEOREMA DO CONJUNTO GERADOR

Um problema comum é o de encontrar uma base para um subespaço gerado por um certo conjunto de vetores. Se este conjunto é L.I., então é base do subespaço que ele gera, se não for L.I., então possui "excesso" de vetores, como mostra o teorema a seguir.

Teorema 12.5 (Teorema do Conjunto Gerador).

Seja $S = \{v_1, ..., v_p\}$ um conjunto em V e seja H o conjunto gerado por $\{v_1, ..., v_p\}$

- a. Se um dos vetores de S, digamos v_k , é combinação linear dos outros, então $S \{v_k\}$ ainda gera o subespaço H.
- b. Se $H \neq \{0\}$, então algum subconjunto se S é uma base de H.

Demonstração

a. Reordenando os vetores, se necessário, suponha que v_p é combinação linear dos vetores $v_1,...,v_{p-1}$. Então existem escalares $c_1,...,c_{p-1}$ tais que

$$v_p = c_1 v_1 + \dots + c_{p-1} v_{p-1}.$$
 (1)

Seja x um vetor em H. Então existem $x_1, ..., x_p$ tais que

$$x = x_1 v_1 + \dots + x_{p-1} v_{p-1} + x_p v_p.$$
 (2)

Substituindo o valor de v_p de (1) em (2) resulta que

$$x = x_1v_1 + \dots + x_{p-1}v_{p-1} + x_p(c_1v_1 + \dots + c_{p-1}v_{p-1})$$

= $(x_1 + c_1x_p)v_1 + \dots + (x_{p-1} + c_{p-1}x_p)v_{p-1}.$

Portanto, todo $x \in H$ é combinação linear dos vetores $v_1, v_2, \ldots, v_{p-1}$.

b. Se o conjunto gerador inicial S é linearmente independente, então é base do subespaço H que gera. Caso contrário, é linearmente dependente, o que implica que algum vetor em S é combinação linear dos demais. Excluindo este vetor, obtemos um subconjunto $S_1 \subset S$, que também gera H. Se S_1 é linearmente independente então é base de H. Caso contrário, algum vetor em S_1 é combinação linear dos outros. Excluindo este, obtemos S_2 que também gera.

Como $H \neq \{0\}$ e o conjunto inicial S é finito, então o processo acima deve parar, isto é, existe um subconjunto S_i de S, tal que S_i gera H e S_i é linearmente independente.

Exemplo 12.8.

Determine uma base para o subespaço

$$H = \left\{ \begin{bmatrix} a & + & b & - & c \\ 2a & + & d & \\ b & - & c & - & d \\ 5d & & & \end{bmatrix}, \text{ tal que } a, b, c \text{ e } d \in \mathbb{R} \right\}$$

Solução: Claramente $H \subset \mathbb{R}^4$. Note que

$$\begin{bmatrix} a & + & b & - & c \\ 2a & + & d & \\ b & - & c & - & d \end{bmatrix} = \begin{bmatrix} a \\ 2a \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} b \\ 0 \\ b \\ 0 \end{bmatrix} + \begin{bmatrix} -c \\ 0 \\ -c \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ d \\ -d \\ 5d \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 0 \\ 0 \end{bmatrix} + b \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} + c \begin{bmatrix} -1 \\ 0 \\ -1 \\ 0 \end{bmatrix} + d \begin{bmatrix} 0 \\ 1 \\ -1 \\ 5 \end{bmatrix}.$$

Portanto, *H* é gerado pelos vetores

$$v_{1} = \begin{bmatrix} 1 \\ 2 \\ 0 \\ 0 \end{bmatrix}, v_{2} = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}, v_{3} = \begin{bmatrix} -1 \\ 0 \\ -1 \\ 0 \end{bmatrix}, v_{4} = \begin{bmatrix} 0 \\ 1 \\ -1 \\ 5 \end{bmatrix}.$$

Devemos checar se estes vetores formam um conjunto L.I. Claramente, v_3 é múltiplo de v_2 . Portanto, podemos excluir v_3 . O conjunto $\{v_1, v_2, v_3\}$ é, pelo teorema anterior, gerador de H.

Para checar se $\{v_1, v_2, v_3\}$ é L.I., vamos resolver a equação

 $c_1v_1 + c_2v_2 + c_4v_4 = 0$

$$c_{1} \begin{bmatrix} 1 \\ 2 \\ 0 \\ 0 \end{bmatrix} + c_{2} \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} + c_{4} \begin{bmatrix} 0 \\ 1 \\ -1 \\ 5 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}.$$

O que resulta no sistema

$$\begin{cases} c_1 + c_2 &= 0 \\ 2c_1 + c_4 &= 0 \\ c_2 - c_4 &= 0 \end{cases},$$

$$5c_4 = 0$$

esse sistema implica $c_2 = c_4 = 0$ e $c_1 = 0$ e $c_2 = 0$, o que mostra que $\{v_1, v_2, v_4\}$ é L.I. e, portanto, base de H.

Resumo

Nesta aula, vimos a definição de dimensão de um espaço vetorial. A definição dada faz sentido apenas porque, como estudamos, se um espaço vetorial V tem uma base com n elementos, então todas as bases de V têm também n elementos. Vimos também que, dado um conjunto B, linearmente dependente, gerador de um subespaço H de um espaço vetorial, podemos ir retirando certos vetores de B até que o conjunto resultante seja uma base de H.

Exercício 12.1.

Para cada subespaço H nos exercícios 1 a 6, determine uma base de H e sua dimensão.

1.
$$H = \{(s-2t, s+t, 4t); s,t \in \mathbb{R}\}.$$

2.
$$H = \{(3s, 2s, t); s, t \in \mathbb{R}\}.$$

3.
$$H = \{(a+b, 2a, 3a-b, 2b); a, b \in \mathbb{R}\}.$$

4.
$$H = \{(a, b, c); a-3b+c=0, b-2c=0 \text{ e } 2b-c=0\}.$$

5.
$$H = \{(a, b, c, d); a-3b+c=0\}.$$

6.
$$H = \{(x, y, x); x, y \in \mathbb{R}\}.$$

7. Determine a dimensão do subespaço de \mathbb{R}^3 gerado pelos vetores

$$\begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}, \begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 9 \\ 4 \\ -2 \end{bmatrix}, \begin{bmatrix} -7 \\ -3 \\ 2 \end{bmatrix}.$$

8. Os quatro primeiros polinômios de Hermite são 1, 2t, $-2+4t^2$ e $-12t+8t^3$.

Mostre que esses polinômios formam uma base de \mathbb{P}^3 .

- 9. Encontre as coordenadas do polinômio $p(t) = 7 12t 8t^2 + 12t^3$ na base de \mathbb{P}^3 formada pelos polinômios de Hermite (Ver Exercício 8).
- 10. Mostre que o espaço $C(\mathbb{R})$ formado por todas as funções reais é um espaço de dimensão infinita.
- 11. Mostre que uma base *B* de um espaço vetorial de dimensão finita *V* é um conjunto gerador minimal. Em outras palavras, se *B* tem *n* vetores, então nenhum conjunto com menos de *n* vetores pode gerar *V*.

Mostre também que a base B é um conjunto linearmente independente maximal, no sentido que qualquer conjunto com mais de n vetores não pode ser L.I.

12. Mostre que se H é subespaço de V e $\dim H = \dim V$, então H = V.

RESPOSTAS DOS EXERCÍCIOS

- 1. O conjunto é uma das bases de H e dimH = 2.
- 2. O conjunto é uma das bases de H e dimH = 2.
- 3. O conjunto é uma das bases de H e dimH = 2.
- 4. O conjunto é base de H e dimH = 0.
- 5. O conjunto é uma das bases de H e dimH = 3.
- 6. O conjunto é uma das bases de H e dimH = 2.
- 7. Como os vetores (1,0,2),(3,1,1) e (-7,-3,2) são LI, o espaço gerado pelos vetores dados é o \mathbb{R}^3 .
- 8. Eles geram o \mathbb{P}^3 , pois

$$\begin{array}{lcl} a + bt + ct^2 + dt^3 & = & \left(\frac{4a + 2c}{4}\right) + 2\left(\frac{2b + 3d}{4}\right)t + \\ & + & \left(\frac{c}{4}\right)(-2 + 4t^2) + \left(\frac{d}{8}\right)(-12t + 8t^3). \end{array}$$

E são LI, se

$$a+2bt+c(-2+4t^4)+d(-12t+8t^3)=0 \Rightarrow a=b=c=d=0.$$

9.
$$[p(t)]_B = \left(3, 3, -2, \frac{3}{2}\right)$$
.

- 10. O espaço vetorial dos polinômios na variável t, $\mathbb{R}[t]$, possui base infinita e é um subespaço vetorial do espaço. Logo, $C(\mathbb{R})$ é um espaço de dimensão infinita.
- 11. Considere $\dim V = n$.
 - a. Suponha que v_1, \dots, v_{n-1} geram dim V. Então, v_1, \dots, v_{n-1} é LD e um dos v_i , por exemplo, v_{n-1} , é combinação linear dos outros. Daí, os vetores v_1, \dots, v_{n-2} ainda gerariam dim V. Poderíamos continuar eliminando vetores dessa maneira até chegar a um conjunto gerador linearmente independente com elementos. Mas isso contradiz o fato de que dim V = n. Portanto, um conjunto com menos de n vetores não pode gerar V.

b. Suponha $B = v_1, \dots, v_{n-1}$ uma base de V e sejam u_1, \dots, v_m , com m > n, m vetores em V. Então, $u_i = a_{i1}v_1 + a_{i2}v_2 + \dots + a_{in}v_n$, com $i = 1, 2, \dots, m$. Considere a combinação linear

$$b_1 u_1 + b_2 u_2 + \dots + b_m u_m =$$

$$= b_1 \sum_{j=1}^n a_{1j} v_j + b_2 \sum_{j=1}^n a_{2j} v_j + \dots + b_m \sum_{j=1}^n a_{mj} v_j$$

$$= \sum_{j=1}^n \left[b_i \left(\sum_{j=1}^n a_{ij} v_j \right) \right] = \sum_{j=1}^n \left(\sum_{j=1}^n a_{ij} b_i \right) v_j.$$

Agora considere o sistema de equações

$$\sum_{i=1}^{n} a_{ij}b_i = 0, j = 0, 1, 2, \dots, n.$$

Este sistema é um sistema homogêneo com mais equações do que incógnitas. Portanto, o sistema possui uma solução não trivial $(b'_1, b'_2, \dots, b'_m)$. Mas, então,

$$b_1u_1 + b2u_2 + \dots + b'_mu_m = \sum_{j=1}^n 0 v_j = 0,$$

 $\log u_1, \cdots, u_m$ são LD.

12. Seja $B = w_1, \dots, w_n$ uma base de H. Sendo $n = \dim V$, de acordo com o exercício anterior, $B = w_1, \dots, w_n$ é um conjunto maximal de elementos linearmente independentes de V. Logo, B é uma base de V e H = V.

Objetivos

Ao final desta aula, você deverá ser capaz de:

- mostrar um método prático para obter uma base de um subespaço vetorial a partir de um conjunto gerador deste subespaço;
- provar o teorema do completamento, que afirma que, dado um conjunto L.I. em um subespaço vetorial *V*, podemos completá-lo para tornar uma base de *V*;
- definir soma de subespaços e ver o teorema da dimensão da soma.

SOMA DE SUBESPAÇOS

COMO OBTER UMA BASE A PARTIR DE UM CONJUNTO GERADOR

Seja $S = \{b_1, b_2, b_3, \dots, b_n\}$ um conjunto e U o subespaço gerado por S. Seja M a matriz obtida escrevendo os vetores b_1, \dots, b_n como linhas de M, isto é, b_i é a i-ésima linha de M.

$$M = \left[egin{array}{c} b_1 \ b_2 \ dots \ b_n \end{array}
ight].$$

As operações elementares nas linhas de M são:

- Multiplicação de uma linha por uma constante: $L_i \leftarrow \alpha.L_i$.
- Troca de uma linha por outra: $L_i \leftrightarrow L_j$.
- Substituir uma linha por uma combinação linear dela por outra: $L_i \leftarrow L_i + \alpha . L_j$.

Estas operações levam os vetores b_1, \ldots, b_n a vetores b_i', \ldots, b_n' que pertencem ao espaço gerado por $\{b_1, \ldots, b_n\}$. Como estas operações são invertíveis, isto é, posso passar de $\{b_1', \ldots, b_n'\}$ a $\{b_1, \ldots, b_n\}$ aplicando operações elementares, então o espaço gerado por $\{b_1, \ldots, b_n\}$ é o mesmo gerado por $\{b_1', \ldots, b_n'\}$.

Podemos usar esta propriedade para reduzir a matriz

$$M = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix} \text{ a uma matriz na forma } M' = \begin{bmatrix} b_1' \\ b_2' \\ \vdots \\ b_r' \\ 0 \\ \vdots \\ 0 \end{bmatrix}; \text{ onde os }$$

$$b_1', b_2', \dots, b_r'$$
 são L.I..

Neste caso, $\{b_1', b_2', \dots, b_r'\}$ é um conjunto L.I. e gera o mesmo subespaço U gerado por $\{b_1, \dots, b_n\}$. Em outras palavras,

obtivemos uma base a partir do conjunto gerado.

Exemplo 13.1.

Obtenha uma base do subespaço U do \mathbb{R}^4 gerado pelos vetores $\{(1,1,0,-2),\ (2,0,-1,-1),\ (0,1,-2,1),\ (1,1,1,-3)\}$. Determine a dimensão de U.

Solução:

Vamos formar a matriz M dos vetores acima e reduzi-la:

$$M = \begin{pmatrix} 1 & 1 & 0 & -2 \\ 2 & 0 & -1 & -1 \\ 0 & 1 & -2 & 1 \\ 1 & 1 & 1 & -3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 & -2 \\ 0 & -2 & -1 & 3 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 1 & -1 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 1 & 0 & -2 \\ 0 & 1 & -2 & 1 \\ 0 & -2 & -1 & 3 \\ 0 & 0 & 1 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 & -2 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 5 & 5 \\ 0 & 0 & 1 & -1 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 1 & 0 & -2 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & -5 & 5 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 & -2 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Vemos que o subespaço U tem base $\{(1,1,0,-2),\ (0,1,-2,1),\ (0,0,1,-1)\}$. Portanto, $\dim U=3$.

Observe que, claramente, vetores na forma

$$\begin{pmatrix} x_1 & \cdot & \cdot & \cdot & \cdot & \cdot \\ 0 & x_2 & \cdot & \cdot & \cdot & \cdot \\ 0 & 0 & x_3 & \cdot & \cdot & \cdot \\ 0 & 0 & 0 & x_4 & \cdot & \cdot \cdot \\ \vdots & & & & \end{pmatrix}, \text{ onde as entradas marcadas } \cdot \text{ podem ter}$$

qualquer valor e $x_1 \neq 0, x_2 \neq 0$, etc. são necessariamente L.I.

TEOREMA DO COMPLETAMENTO

Vimos, na seção anterior, como obter uma base de um conjunto gerador. Se este conjunto não é L.I., temos que "diminuí-

lo" para conseguir uma base.

Nesta seção veremos o inverso. Como obter uma base de um conjunto L.I.. Se este conjunto não é gerador, então temos que "aumentá-lo" de forma que continue L.I. e que se torne gerador.

Teorema 13.1.

Seja $\{b_1, \ldots, b_r\}$ um conjunto L.I. em um espaço vetorial de dimensão finita V. Então existem b_{r+1}, \ldots, b_n , tal que $\{b_1, \ldots, b_r, b_{r+1}, \ldots, b_n\}$ formam uma base de V, onde $n = \dim V$.

Demonstração

Se $\{b_1, \ldots, b_r\}$ gera o espaço V, então nada temos a fazer.

Se $\{b_1,\ldots,b_r\}$ não é gerador, então existe $b_{r+1} \in V$ tal que b_{r+1} não é combinação linear de b_1,\ldots,b_r . Portanto,

$$\{b_1,\ldots,b_r,b_{r+1}\}$$
 é um conjunto L.I.

Se este conjunto agora é gerador, obtivemos uma base. Se não, há um vetor $b_{r+2} \in V$ tal que b_{r+2} não é combinação linear de b_1, \ldots, b_{r+1} . Portanto,

$$\{b_1, \dots, b_r, b_{r+1}, b_{r+2}\}$$
 é L.I.

Se este conjunto for gerador, obtivemos uma base, caso contrário continuamos com o processo, obtendo b_{r+3}, b_{r+4} , etc. Como V tem dimensão finita, digamos $\dim V = n$, quando chegarmos a $\{b_1, \ldots, b_n\}$, teremos obtido uma base, pois o processo leva sempre a conjuntos L.I. e um conjunto L.I. com $n \ (= \dim(V))$ elementos deve ser uma base.

SOMA DE SUBESPAÇOS

Dados subespaços U e V de um espaço vetorial W, podemos obter um subespaço maior que inclui U e V como subconjuntos (e como subespaços). Já que este subespaço contem todo $u \in U$ e todo $v \in V$, então deve conter todos os u + v, com $u \in U$ e $v \in V$. (Lembre-se de que subespaços são fechados para a soma de vetores!)

Portanto, qualquer subespaço que contenha U e V deve con-

ter as somas u + v, com $u \in U$ e $v \in V$. Isto motiva a seguinte definição:

Definição 13.1.

Sejam U e V subespaços de um espaço vetorial W. Chamamos de soma de U e V o conjunto

$$U + V = \{u + v; u \in V \text{ e } v \in V\}.$$

Note que $U \subset U + V$ e $V \subset U + V$.

Note que, nesta definição, U + V é só um conjunto. Mostraremos em seguida que é subespaço de W.

Na discussão acima, vimos que qualquer subespaço que contenha U e V deve conter o conjunto U + V definido acima.

A próxima proposição mostra que o conjunto U+V já é um subespaço vetorial.

A SOMA DE SUBESPAÇOS É UM SUBESPAÇO

Proposição 13.2.

Se U e V são subespaços de um espaço vetorial W, então U+V é subespaço de W.

Demonstração

Basta provar que U+V é não vazio, fechado para a soma de vetores e produto por escalar.

• $U + V \neq \emptyset$, pois U e V são não vazios. Em particular, $0 \in U + V$, pois

$$0 \in U$$
 e $0 \in V \Rightarrow 0 = 0 + 0 \in U + V$.

• Se $x_1, x_2 \in U + V$ então $x_1 = u_1 + v_1$ e $x_2 = u_2 + v_2$, para certos vetores $u_1, u_2 \in U$ e $v_1, v_2 \in V$, então

$$x_1 + x_2 = (u_1 + v_1) + (u_2 + v_2) = (u_1 + u_2) + (v_1 + v_2).$$

Como $u_1 + u_2 \in U$ e $v_1 + v_2 \in V$ então $x_1 + x_2 \in U + V$.

• Se $x = u + v \in U + V$, com $u \in U$ e $v \in V$, então $\alpha x = \alpha(u + v) = \alpha u + \alpha v$; $\forall \alpha \in \mathbb{R}$. Como $\alpha u \in U$ e $\alpha v \in V$, então $\alpha x \in U + V$.

CQD

Como U+V é subespaço e, como observamos acima, todo subespaço de W que contenha U e V deve conter U+V, então, podemos dizer que U+V é o menor subespaço de W contendo U e V.

Exemplo 13.2.

 $U = U + \{0\}$, onde $\{0\}$ é o espaço vetorial nulo.

Exemplo 13.3.

Seja $U = \{(x,0,0); x \in \mathbb{R}\}$ e $V = \{(0,y,z); y,z \in \mathbb{R}\}$, subespaços vetoriais do \mathbb{R}^3 . Então, temos que

$$U+V = \{(x,0,0) + (0,y,z); x,y,z \in \mathbb{R}\}$$

= \{(x,y,z); x,y,z \in \mathbb{R}\} = \mathbb{R}^3.

Isto é, a soma de U e V é todo o \mathbb{R}^3 .

Agora observe o seguinte: U é uma reta, o eixo OX, enquanto que V é o plano dado por x = 0.

Neste caso, a soma de um plano e uma reta é o espaço \mathbb{R}^3 .

Exemplo 13.4.

Seja
$$U=\{(x,0,0)\}\in\mathbb{R}^3$$
 e $V=\{(x,y,0)\}\in\mathbb{R}^3$, então $U\subset V$ e $U+V=V$.

Neste caso, a soma de um plano e uma reta é o próprio plano.

O que diferencia os Exemplos 13.3 e 13.4?

No Exemplo 13.3, somamos um plano e uma reta não contida nele, o que resulta no espaço, enquanto que no Exemplo 13.4 somamos um plano e uma reta contida no plano, resultando no próprio plano. Voltaremos a este tópico quando falarmos sobre a base da soma.

Exemplo 13.5.

Claramente, se $U \subset V$ então U + V = V.

SOMA DIRETA

Intuitivamente, quanto menor $U \cap V$, mais "ganhamos" quando passamos de U e V para U+V. Em um caso extremo, se $U \subset V$ então U + V = V e não ganhamos nada.

Lembre-se de que U + V deve sempre conter o vetor nulo 0.

Definição 13.2.

Sejam U e V subespaços vetoriais de W tais que $U \cap V = \{0\}$. Então dizemos que U + V é a soma direta de U e V. Denotamos a soma direta por $U \oplus V$.

No caso que $U \oplus V = W$, então dizemos que U e V são complementares e dizemos que V é o complementar de U em relação a W (e vice-versa).

Veremos que dado subespaço U de W, sempre existe o espaço complementar de U em relação a W, isto é, sempre existe $V \subset W$ tal que $U \oplus V = W$.

Na próxima proposição, veremos como a soma direta está relacionada à decomposição única de cada vetor como soma de vetores nos subespaços.

Proposição 13.3.

Sejam U e V subespaços vetoriais de um espaço vetorial W. Então $W=U\oplus V$ se, e somente se, cada vetor $w\in W$ admite uma única decomposição w=u+v, com $u\in U$ e $v\in V$.

Demonstração

(⇒) Suponha, por hipótese, que $W = U \oplus V$. Então, dado $w \in W$, existem $u \in U$ e $v \in V$, tais que w = u + v. Temos que provar apenas a unicidade. Suponha que exista outra decomposição w = u' + v', com $u' \in U$ e $v' \in V$.

Então

$$w = u + v$$

 $w = u' + v'$ \Rightarrow $(u - u') + (v - v') = 0 \Rightarrow $u - u' = v' - v$.$

Mas $u - u' \in U$ e $v' - v \in V$. Como $U \cap V = \{0\}$ (pois a soma é direta), então

$$u - u' = v' - v \implies u - u' = v' - v = 0 \implies u = u' \text{ e } v = v'.$$

Portanto a decomposição é única.

(⇐) Suponha que exista decomposição única.

Como todo $w \in W$ se escreve como w = u + v, com $u \in U$ e $v \in V$, então W = U + V. Resta provar que a soma é direta.

Seja $x \in U \cap V$. Então podemos escrever

A unicidade da decomposição implica em que x=0, ou seja, $U\cap V=\{0\}$.

Exemplo 13.6.

Seja $\{b_1,\ldots,b_n\}$ uma base para um espaço vetorial. Vimos

que todo $v \in V$ tem uma única decomposição na forma

$$v = \alpha_1 b_1 + \ldots + \alpha_n b_n$$
.

Cada $\alpha_i b_i$ pertence ao subespaço $[b_i]$ gerado pelo vetor b_i . Portanto, vale que

$$V = [b_1] \oplus [b_2] \oplus \ldots \oplus [b_n].$$

O exemplo anterior leva à questão de como obter uma base de uma soma $U \oplus V$, tendo a base de U e de V.

BASE E DIMENSÃO DA SOMA DE SUBESPAÇOS

Seja W um espaço vetorial de dimensão finita, e sejam U e V subespaços de W. Vimos que $U \cap V$ e U + V são subespaços de W. A proposição a seguir relaciona a dimensão destes subespaços.

Proposição 13.4.

$$\dim(U+V)+\dim(U\cap V)=\dim U+\dim V$$

Demonstração

Seja $B_1 = \{x_1,...,x_r\}$ uma base de $U \cap V$, onde $r = \dim(U \cap V)$.

Vamos agora completar esta base B_1 de forma a criar uma base de U e uma base de V.

Pelo teorema do completamento, existem vetores u_1, \ldots, u_s em U e v_1, \ldots, v_t em V tais que

$$B_2 = \{x_1, \dots, x_r, u_1, \dots, u_s\}$$
 é uma base de U e

$$B_3 = \{x_1, \dots, x_r, v_1, \dots, v_t\}$$
 é uma base de V .

Note que $r+s = \dim U$ e $r+t = \dim V$. Mostraremos, a seguir, que

$$B = \{x_1, \dots, x_r, u_1, \dots, u_s, v_1, \dots, v_t\}$$
 é uma base de $U + V$.

a. o conjunto B gera U + V.

Seja $w \in U + V$. Então w = u + v, para certos $u \in U$ e $v \in V$. Como B_2 e B_3 são bases de U e V, respectivamente, então podemos escrever,

$$u = \alpha_1 x_1 + \ldots + \alpha_r x_r + \beta_1 u_1 + \ldots + \beta_s u_s$$

$$v = \alpha_1' x_1 + \ldots + \alpha_r' x_r + \gamma_1 v_1 + \ldots + \gamma_r v_r$$

onde as letras gregas são escalares. Somando u e v encontramos

$$w = u + v = (\alpha_1 + {\alpha_1}')x_1 + \ldots + (\alpha_r + {\alpha_r}')x_r + \beta_1 u_1 + \ldots + \beta_s u_s + \gamma_1 v_1 + \ldots + \gamma_t v_t.$$

Portanto, o conjunto B gera U + V.

b. o conjunto *B* é linearmente independente.

Suponhamos que

(1)
$$\alpha_1 x_1 + \ldots + \alpha_r x_r + \beta_1 u_1 + \ldots + \beta_s u_s + \gamma_1 v_1 + \ldots + \gamma_t v_t = 0$$
 então.

$$\alpha_1 x_1 + \ldots + \alpha_r x_r + \beta_1 u_1 + \ldots + \beta_s u_s = -\gamma_1 v_1 - \ldots - \gamma_t v_t.$$

O vetor do lado esquerdo da igualdade está em U, logo $-\gamma_1 v_1 - \dots - \gamma_t v_t \in U$. Mas v_1, \dots, v_t estão em V, logo

$$-\gamma_1 v_1 - \ldots - \gamma_t v_t \in U \cap V.$$

Como x_1, \ldots, x_r formam uma base de $U \cap V$, segue-se que existem escalares $\delta_1, \ldots, \delta_r$ tais que

$$-\gamma_1 v_1 - \ldots - \gamma_t v_t = \delta_1 x_1 + \ldots + \delta_r x_r$$

$$\delta_1 x_1 + \ldots + \delta_r x_r + \gamma_1 v_1 + \ldots + \gamma_t v_t = 0.$$

A equação anterior é uma combinação linear dos vetores em B_3 , que é base de V, portanto L.I.. Segue-se que

$$\delta_1 = \ldots = \delta_r = \gamma_1 = \ldots = \gamma_t = 0.$$

Substituindo $\gamma_1 = ... = \gamma_t = 0$ em (1), obtemos

$$\alpha_1 x_1 + \ldots + \alpha_r x_r + \beta_1 u_1 + \ldots + \beta_s u_s = 0$$

que é uma combinação linear nos vetores em B_1 , que é

base de U, logo

$$\alpha_1 = \ldots = \alpha_r = \beta_1 = \ldots = \beta_s = 0.$$

Com isto, provamos que todos os coeficientes em (1) são nulos, ou seja, o conjunto B é L.I.

Concluímos que B é base de U+V. Como B tem r+s+t vetores, então $\dim(U+V)=r+s+t$, segue-se que

$$\dim(U+V) + \dim(U \cap V) = r+s+t+r =$$

$$= (r+s) + (r+t) =$$

$$= \dim U + \dim V$$

CQD

No caso em que a soma é direta, $U\cap V=\{0\}$, logo $\dim U\cap V=0$ e

$$\dim(U \oplus V) = \dim U + \dim V.$$

Além disso, na demonstração do teorema acima, vimos que, no caso de soma direta, se B_1 é base de U e B_2 é base de V, então $B_1 \cup B_2$ é base de $U \oplus V$.

Em geral, se $U \cap V \neq \{0\}$, então $B_1 \cup B_2$ é um conjunto gerador de U + V, mas não é L.I.

Exemplo 13.7.

Seja $U = \{(0, y, z); y, z \in \mathbb{R}\}$ e V = [(1, 1, 0)]. Vamos determinar U + V. Começaremos determinando $U \cap V$.

Observe que:

Se
$$w = (x, y, z) \in V$$
, $(x, y, z) = \alpha(1, 1, 0) \Rightarrow$

$$\begin{cases}
x = \alpha \\
y = \alpha \\
z = 0
\end{cases}$$

$$\Rightarrow w = (x, y, 0)$$
. Ou seja, se $w = (x, y, z) \in V \Rightarrow x = y$ e $z = 0$, então, $V = \{(x, x, 0); x \in \mathbb{R}\}$ e dim $V = 1$.

Por outro lado, se $w=(x, y, z) \in U \Rightarrow x=0$. Logo, se $w=(x, y, z) \in U \cap V \Rightarrow w \in U$ e $w \in V \Rightarrow x=0, x=y,$ e z=0. Daí, $U \cap V = \{(0, 0, 0)\}$.

Se uma reta r não está contida em um plano α , então $r \cap \alpha$ pode ser vazio (reta paralela) ou um ponto, quando a reta corta o plano (ver figura acima).

Sendo $\dim V=1$ e $\dim U=2$ temos, pela Proposição 13.4, que $\dim (U+V)=\dim U+\dim V-\dim (U\cap V)=3$. Como U+V é um subespaço de \mathbb{R}^3 , $U+V=\mathbb{R}^3$.

Poderíamos também justificar que $U+V=\mathbb{R}^3$, observando que todo vetor de $w=(x,\,y,\,z)\in\mathbb{R}^3$ é a soma de $u\in U$ com um $v\in V$, escrevendo $(x,\,y,\,z)=(0,\,y-x,\,z)+(x,\,x,\,0)$.

Neste caso, o espaço \mathbb{R}^3 é a soma do plano U com a reta V não contida no plano U. Se a reta V estivesse contida no plano U, ou seja, $V \subset U$, então U + V = U.

Exemplo 13.8.

Seja U subespaço de \mathbb{R}^4 gerado por $\{(1,1,0,0),(0,0,1,0)\}$ e $V = \{(x,y,z,t); y+z=0\}$. Vamos determinar U+V.

Agora vamos determinar esta soma sem primeiramente calcular a interseção $U \cap V$. O conjunto $\{(1,1,0,0),(0,0,1,0)\}$ é linearmente independente. Esse conjunto é uma base para U. Observe que todo vetor $v=(x,y,z,t)\in V$ é tal que v=(x,y,-y,t)=x(1,0,0,0)+y(0,1,-1,0)+t(0,0,0,1).

Logo, o conjunto $B = \{(1,0,0,0), (0,1,-1,0), (0,0,0,1)\}$ gera V. Sendo este, um conjunto L.I, ele é uma base para V.

Sabemos que o conjunto $A \cup B$ é um conjunto gerador de U+V. Mas, para determinar uma base para U+V, precisamos encontrar um conjunto que, além de gerar este espaço, seja também LI. É fácil constatar que o conjunto não é LI.(Verifique!)

Então, vamos encontrar uma base para U+V a partir deste conjunto gerador:

$$\begin{array}{c} \text{base de U} \\ ---- \\ \text{base de V} \end{array} \left(\begin{array}{cccc} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ ---- & --- \\ 1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right) \ L_3 \leftarrow L_3 - L_1 \end{array} \left(\begin{array}{ccccc} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right)$$

$$\begin{array}{c} L_3 \leftarrow -L_3 \\ L_4 \leftrightarrow L_5 \\ \longrightarrow \end{array} \left(\begin{array}{ccccc} 1 & 1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{array} \right) \begin{array}{c} \longrightarrow \\ \longrightarrow \\ L_5 \leftarrow L_5 - L_3 \end{array} \left(\begin{array}{ccccc} 1 & 1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{array} \right)$$

Isto mostra que o conjunto

$$\{(1,1,0,0),(0,1,-1,0),(0,0,1,0),(0,0,0,1)\}$$

também gera U+V e este é um conjunto LI(Verifique!). Logo, é uma base para U+V, ou seja, sua dimensão é 4. Daí, $U+V=\mathbb{R}^4$.

Poderíamos também justificar $U+V=\mathbb{R}^4$, observando que todo vetor de $w=(x, y, z, t) \in R^4$ é a soma de um vetor de $u \in U$ com $v \in V$, escrevendo (x,y,z,t)=(0,0,y+z,0)+(x,y,-y,t).

Observe que sendo a $\dim U = 2$ e $\dim V = 3$,

$$\dim(U \cap V) = \dim U + \dim V - \dim(U + V) = 1.$$

Vamos complementar o exemplo calculando o conjunto $U \cap V$. Se $(x, y, z, t) \in U$,

$$(x, y, z, t) = a(1, 1, 0, 0) + b(0, 0, 1, 0) \Rightarrow$$

$$\begin{cases} x = a \\ y = a \\ z = b \\ t = 0 \end{cases}$$

$$\Rightarrow x = y, z = b \text{ e } t = 0.$$

Por outro lado, se $(x, y, z, t) \in V \Rightarrow z = -y$.

Logo, se
$$(x, y, z, t) \in U \cap V$$
, então $x = y, t = 0$ e $z = -y$.

Concluímos, então, que $U \cap V = \{(x,x,-x,0); x \in \mathbb{R}\}$ e $\dim(U \cap V) = 1$, como visto acima.

Resumo

Iniciamos esta aula vendo um processo de obter uma base a partir de um conjunto gerador para um espaço vetorial, usando operações elementares nas linhas da matriz formada pelos vetores deste conjunto gerador.

Em seguida, vimos o teorema do complemento, que afirma que dado um conjunto L.I., em um espaço vetorial V se ele não for uma base de V, nós acrescentamos vetores até que se torne uma base de V.

Passemos, então, ao estudo da soma U+V dos subespaços U e V de um espaço vetorial W. Quando $U\cap V=\{0\}$ então, a soma é chamada direta e denota por $U\oplus V$.

O conjunto união das bases de U e V forma um conjunto gerador de U+V que, no caso de soma direta, é uma base de $U \oplus V$. A dimensão de U+V é dada por:

$$\dim(U+V) = \dim(U) + \dim(V) - \dim(U \cap V).$$

Exercício 13.1.

1. Seja $U \subset \mathbb{R}^4$ o subespaço gerado pelo conjunto

$$\{(1,1,2,0),(0,1,3,1),(2,-1,-5,-3)\}.$$

Encontre uma base de U e determine dim U.

2. Para os subespaços U e V de \mathbb{R}^3 nos itens abaixo, determine $U\cap V$ e U+V.

a.
$$U = [(1,0,1), (0,1,1) \text{ e } V = [(1,1,1)].$$

b.
$$U = [(1,0,1), (0,1,1) \text{ e } V = [(1,2,3)].$$

c.
$$U = \{(x, y, z) \in \mathbb{R}^3 \mid z = 0\} \text{ e } V = [(0, 0, 1)].$$

d.
$$U = \{(x, y, z) \in \mathbb{R}^3 \mid x + y = 0\} \text{ e } V = [(2, -2, 1)].$$

- 3. Em qual dos itens do exercício anterior a soma é direta?
- 4. Se U e V são subespaços vetoriais do \mathbb{R}^4 , dim U=2 e dim V=3, determine o menor e o maior valor possível para dim $U \cap V$ e para dim U+V.

5. Seja M_{2X2} o espaço vetorial das matrizes reais de ordem 2x2. Seja U o subespaço de M_{2X2} dado por

$$U = \left\{ \left[\begin{array}{cc} 0 & b \\ c & 0 \end{array} \right]; \ b, c \in \mathbb{R} \right\}.$$

Determine um subespaço $V \subset M_{2X2}$ tal que $M_{2X2} = U \oplus V$.

RESPOSTAS DOS EXERCÍCIOS

- 1. Base de $U \notin B = \{(1,1,2,0), (0,1,3,1)\}, \dim U = 2.$
- 2. a. $U \cap V = \{0\}$ e $U + V = \mathbb{R}^3$.
 - b. $V \subset U$, logo $U \cap V = V$ e U + V = U.
 - c. $U \cap V = \{0\} \ e \ U + V = \mathbb{R}^3$.
 - d. $V \subset U$, logo $U \cap V = V$ e $U + V = \mathbb{R}^3$.
- 3. A soma é direta nos itens a e c.
- 4. Temos $\max\{\dim U,\dim V\} \leq \dim(U+V) \leq \dim(\mathbb{R}^4)$,

$$\Rightarrow 3 \le \dim(U+V) \le 4$$
.

$$\label{eq:como} \begin{array}{ll} \operatorname{Como} & \dim(U \cap V) = \dim U + \dim V - \dim(U + V) \\ & \dim(U \cap V) = 5 - \dim(U + V) \end{array}$$

então

$$1 \le \dim U \cap V \le 2$$
.

5.
$$V = \left\{ \begin{bmatrix} a & 0 \\ 0 & d \end{bmatrix}; a, d \in \mathbb{R} \right\}.$$

Álgebra Linear I | Espaços Vetoriais com Produto Interno

ESPAÇOS VETORIAIS COM PRODUTO INTERNO

Ao final desta aula, você deverá ser capaz de:

- 1 reconhecer produtos internos;
- determinar a norma de um vetor e o ângulo entre dois vetores;
- 3 identificar vetores ortogonais;
- 4 aplicar as propriedades dos produtos internos na resolução de exercícios.

ESPAÇOS VETORIAIS COM PRODUTO INTERNO

Pré-requisitos: Aulas 8, 11 e 12.

Neste curso trabalhamos apenas com espaços vetoriais reais, isto é, considerando o conjunto dos números reais como o conjunto de escalares. No entanto, poderíamos considerar o conjunto dos números complexos. Nesse caso, o resultado do produto interno seria um número complexo, e a definição, ligeiramente diferente.

Nesta aula, vamos definir uma operação entre vetores cujo resultado é um número real: o produto interno. Vários exemplos, com destaque para o chamado produto interno, serão vistos, estudaremos as principais propriedades dos produtos internos e suas aplicações na determinação de grandezas geométricas associadas a vetores de \mathbb{R}^2 e \mathbb{R}^3 .

PRODUTO INTERNO

Seja V um espaço vetorial (real). Um produto interno definido em V é uma relação

$$<...>:V\times V\to\mathbb{R}$$

que, a cada par de vetores $(u, v) \in V \times V$, associa um número real representado por $\langle u, v \rangle$, e que satisfaz as seguintes condições:

i.
$$< u, v > = < v, u >$$

ii.
$$\langle u, v + w \rangle = \langle u, v \rangle + \langle u, w \rangle$$

iii.
$$\langle \alpha u, v \rangle = \alpha \langle u, v \rangle$$

iv.
$$\langle u, u \rangle \geq 0$$
 e $\langle u, u \rangle = 0 \Leftrightarrow u = \vec{o}_V, \ \forall u, v, w \in V, \ \forall \alpha \in \mathbb{R}.$

Chamamos de *espaço euclidiano* a um espaço vetorial real munido de produto interno.

Podemos definir diferentes produtos internos num mesmo espaço vetorial. Vamos ver alguns exemplos.

Exemplo 14.1.

Vamos mostrar que a relação $< u, v >= 2x_1x_2 + 3y_1y_2$, onde $u = (x_1, y_1)$ e $v = (x_2, y_2)$, é um produto interno definido em \mathbb{R}^2 . Para isso, temos que mostrar a validade das quatro condições da definição de produto interno:

i.
$$\langle u, v \rangle = 2x_1x_2 + 3y_1y_2 = 2x_2x_1 + 3y_2y_1 = \langle v, u \rangle$$
.

ii. Seja $w = (x_3, y_3) \in \mathbb{R}^2$. Então

$$\langle u, v + w \rangle = 2x_1(x_2 + x_3) + 3y_1(y_2 + y_3) =$$

= $2x_1x_2 + 2x_1x_3 + 3y_1y_2 + 3y_1y_3 =$
= $(2x_1x_2 + 3y_1y_2) + (2x_1x_3 + 3y_1y_3) =$
= $\langle u, v \rangle + \langle u, w \rangle$.

iii. Seja $\alpha \in \mathbb{R}$. Então

$$<\alpha u, v> = 2\alpha x_1 x_2 + 3\alpha y_1 y_2 = \alpha(2x_1 x_2 + 3y_1 y_2) =$$

= $\alpha < u, v>$.

iv. $< u, u> = 2x_1^2 + 3y_1^2 \ge 0$. Além disso, se < u, u> = 0 então $2x_1^2 + 3y_1^2 = 0$, que implica $x_1^2 = 0$ e $y_1^2 = 0$. Daí, $x_1 = 0$ e $y_1 = 0$, isto é, $u = (0,0) = v_{\mathbb{R}^2}$. Finalmente, se $u = v_{\mathbb{R}^2} = (0,0)$, segue que < u, u> = 2.0 + 3.0 = 0.

Exemplo 14.2.

Na Aula 12, você determinou o vetor-coordenadas de um vetor em relação a uma certa base. Viu que, fixados a base e o vetor, as coordenadas são únicas. Sejam V, um espaço vetorial real de dimensão n, e $B = \{u_1, u_2, ..., u_n\}$, uma base de V.

A relação definida em $V \times V$ que, a cada par de vetores u e v, de V, associa o número real $a_1b_1 + a_2b_2 + ... + a_nb_n$, onde $u]_B = (a_1, a_2, ..., a_n)$ e $v]_B = (b_1, b_2, ..., b_n)$ são os vetores-coordenadas dos vetores u e v, de V, em relação à base B, respectivamente, é um produto interno em V.

Importante: Tendo em vista o exemplo anterior, podemos concluir que TODO espaço vetorial admite produto interno. Assim, quando nos referimos a um espaço vetorial munido de produto interno, não significa que existem espaços que não satisfazem essa propriedade, mas sim que estamos querendo enfatizar o fato de que usaremos o produto interno na argumentação ou nas aplicações que forem o objeto de estudo, naquele instante.

Quando a base considerada é a canônica, o produto interno assim definido chama-se produto interno *usual*. Particularmente, nos espaços vetoriais \mathbb{R}^2 e \mathbb{R}^3 , o produto interno usual é também conhecido como produto escalar.

Você já estudou o produto escalar na disciplina de Geometria Analítica.

Exemplo 14.3.

Em $M_2(\mathbb{R})$, sendo $u = \begin{bmatrix} u_1 & u_2 \\ u_3 & u_4 \end{bmatrix}$ e $v = \begin{bmatrix} v_1 & v_2 \\ v_3 & v_4 \end{bmatrix}$, a relação $< u, v >= u_1 v_1 + u_2 v_2 + u_3 v_3 + u_4 v_4$ é um produto interno (é produto interno usual em M_2). Você pode verificar isso, como exercício. Segundo esse produto interno, sendo $u = \begin{bmatrix} 2 & 1 \\ 5 & -1 \end{bmatrix}$ e $v = \begin{bmatrix} 3 & 6 \\ 0 & 2 \end{bmatrix}$, temos < u, v >= 2.3 + 1.6 + 5.0 + (-1).2 = 10.

Exemplo 14.4.

Dados $p = a_0 + a_1t + a_2t^2 + a_3t^3$ e $q = b_0 + b_1t + b_2t^2 + b_3t^3$, a relação $< p, q >= a_0b_0 + a_1b_1 + a_2b_2 + a_3b_3$ define um produto interno em P_3 (é o produto interno usual em P_3). Dados $p = 2 + 3t - t^2$ e $q = 2t + t^2 - 5t^3$, temos < p, q >= 2.0 + 3.2 + (-1).1 + 0.(-5) = 5.

PROPRIEDADES DO PRODUTO INTERNO

Seja V um espaço vetorial real e $< .,. >: V \times V \to \mathbb{R}$ um produto interno. Valem as seguintes propriedades:

1.
$$\langle o_V, v \rangle = \langle v, o_V \rangle = 0, \forall v \in V$$

De fato, como $0v = o_V$, para todo vetor v em V, podemos escrever

$$< o_V, v> = < 0v, v> \stackrel{(iii)}{=} 0 < v, v> = 0.$$

Além disso, por (i), temos $\langle o_V, v \rangle = \langle v, o_V \rangle = 0$. Logo, $\langle o_V, v \rangle = \langle v, o_V \rangle = 0$.

2.
$$\langle v, \alpha u \rangle = \alpha \langle v, u \rangle, \forall \alpha \in \mathbb{R}, \forall v, u \in V.$$

De fato,

$$< v, \alpha u > \stackrel{(i)}{=} < \alpha u, v > \stackrel{(iii)}{=} \alpha < u, v > \stackrel{(i)}{=} \alpha < v, u > \stackrel{(iiii)}{=} < \alpha v, u > .$$

3.
$$< u + v, w > = < u, w > + < v, w >, \forall u, v, w \in V.$$

De fato,

$$< u + v, w > \stackrel{(i)}{=} < w, u + v > \stackrel{(ii)}{=} < w, u > + < w, v > =$$

 $\stackrel{(i)}{=} < u, w > + < v, w > .$

4.
$$<\alpha_1 u_1 + \alpha_2 u_2 + ... + \alpha_n u_n, v> = <\alpha_1 u_1, v> + <\alpha_2 u_2, v> + ... + <\alpha_n u_n, v>, \forall n \text{ inteiro }, n \ge 1, \forall u, v_i \in V, i = 1, ..., n.$$

A prova desta propriedade usa indução e as condições (ii) e (iii) da definição de produto interno. De modo mais sucinto, podemos escrevê-la usando o símbolo de somatório:

$$\left\langle \sum_{i=1}^n \alpha_i u_i, v \right\rangle = \sum_{i=1}^n \alpha_i < u_i, v > .$$

5.
$$\left\langle u, \sum_{i=1}^{n} \alpha_i v_i \right\rangle = \sum_{i=1}^{n} \langle u, v_i \rangle$$
.

A prova desta propriedade usa indução e as propriedades 2 e 3 já vistas.

6. Generalizando, podemos provar que

$$\left\langle \sum_{i=1}^n \alpha_i u_i, \sum_{j=1}^m \beta_j v_j \right\rangle = \sum_{i=1}^n \sum_{j=1}^m \alpha_i \beta_j < u_i, v_j >.$$

Veremos a seguir aplicações práticas do produto interno.

APLICAÇÕES DO PRODUTO INTERNO

NORMA DE VETOR

Sejam V um espaço euclidiano e $v \in V$. Chama-se norma de v o número real

$$||v|| = \sqrt{\langle v, v \rangle}.$$

Note que, pela condição (iv) da definição de produto interno, esse número está bem definido, pois $\langle v, v \rangle$ é não negativo, para qualquer vetor v considerado. Assim, a norma de um vetor é sempre um número real não negativo e o vetor nulo é o único vetor de V que tem norma igual a zero.

Exemplo 14.5.

Em \mathbb{R}^2 , com o produto interno usual, a norma de um vetor $v = (x_1, x_2)$ é dada por $||v|| = \sqrt{x_1^2 + x_2^2}$. Assim, temos:

$$||(-3,4)|| = \sqrt{(-3)^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5.$$
$$||(\frac{1}{2}, \frac{\sqrt{3}}{2})|| = \sqrt{\frac{1}{4} + \frac{3}{4}} = \sqrt{1} = 1.$$

Exemplo 14.6.

Em \mathbb{R}^3 , com o produto interno usual, a norma de um vetor $v = (x_1, x_2, x_3)$ é $||v|| = \sqrt{x_1^2 + x_2^2 + x_3^2}$. Por exemplo:

$$||(-1,2,3)|| = \sqrt{(-1)^2 + 2^2 + 3^2} = \sqrt{1+4+9} = \sqrt{14}.$$

 $||(2,-2,1)|| = \sqrt{4+4+1} = \sqrt{9} = 3.$

Na **Figura 14.1**, podemos ver que, no plano, a norma do vetor v coincide com a medida da hipotenusa do triângulo retângulo determinado por x_1 e x_2 (compare a expressão a norma com a conhecida fórmula de Pitágoras...). No espaço, a norma de v coincide com a medida da diagonal do paralelepípedo formado por x_1, x_2 e x_3 .

Devido a essa interpretação geométrica que podemos dar à norma de um vetor de \mathbb{R}^2 ou \mathbb{R}^3 , a norma de um vetor v é também conhecida como sendo o *módulo*, *tamanho*, ou ainda, *comprimento* de v.

Figura 14.1: Norma de vetores em \mathbb{R}^3 e \mathbb{R}^2 .

A não ser que se diga algo em contrário, o produto interno considerado será sempre o usual.

Exemplo 14.7.

 $\operatorname{Em} M_2(\mathbb{R})$, com o produto interno definido no Exemplo 14.3, a norma da matriz $v=\begin{bmatrix}3&6\\0&2\end{bmatrix}$ é

$$||v|| = \sqrt{\langle v, v \rangle} = \sqrt{9 + 36 + 4} = \sqrt{49} = 7.$$

Exemplo 14.8.

Usando o produto interno de P_3 , definido no Exemplo 14.4, a norma do polinômio $p = 2 + 3t - t^2$ é

$$||p|| = \sqrt{\langle p, p \rangle} = \sqrt{4 + 9 + 1} = \sqrt{14}.$$

A norma de vetores possui importantes propriedades que listamos a seguir; suas demonstrações são propostas como exercícios, ao final da aula.

PROPRIEDADES DA NORMA DE VETORES

Seja V um espaço euclidiano. Então:

- 1. $||\alpha v|| = |\alpha| ||v||, \forall \alpha \in \mathbb{R}, \forall v \in V.$
- 2. $||v|| \ge 0, \forall v \in V \text{ e } ||v|| = 0 \Leftrightarrow v = o_V.$
- 3. $|\langle u, v \rangle| \le ||u|| \, ||v||, \forall u, v \in V$. (Designaldade de Cauchy Schwarz)
- 4. $||u+v|| \le ||u|| + ||v||, \forall u, v \in V$. (Designaldade triangular)

Usando o conceito de norma de vetor, podemos também definir a distância entre dois vetores: dados *u* e *v* em um espaço

euclidiano V, a *distância* entre eles, representada por d(u,v), é dada por:

$$d(u,v) = ||u - v||.$$

A **Figura 14.2** ilustra o caso em que $V = \mathbb{R}^2$.

Figura 14.2: Distância em \mathbb{R}^2 .

Exemplo 14.9.

Em \mathbb{R}^3 , a distância entre u=(3,-2,1) e v=(4,1,-3) é $d(u,v)=||u-v||=||(-1,-3,4)||=\sqrt{1+9+16}=\sqrt{26}$.

ÂNGULO DE DOIS VETORES

Sejam V, um espaço vetorial euclidiano, e $u, v \in V$, não nulos.

A designaldade de Cauchy Schwarz: $|\langle u, v \rangle| \le ||u|| \, ||v||$, sendo modular, se desdobra na dupla designaldade:

$$-||u||\,||v|| \le < u, v > \le ||u||\,||v||.$$

Como os vetores u e v são não nulos, suas normas são números reais positivos e podemos dividir cada termo dessa desigualdade por $||u|| \ ||v||$:

$$-1 \le \frac{\langle u, v \rangle}{||u|| \, ||v||} \le 1.$$

Na disciplina de Pré-Cálculo, você estudou as funções trigonométricas. Deve lembrar-se, então, de que a cada número real a no intervalo [-1,1] corresponde um único arco θ , $0 \le \theta \le \pi$, tal que $\cos \theta = a$, conforme ilustra a **Figura 14.3**.

Figura 14.3: Ângulo entre dois vetores de \mathbb{R}^2 .

Podemos, então, definir o *ângulo entre os vetores u e v* como sendo θ tal que

$$\cos\theta = \frac{\langle u, v \rangle}{||u|| \, ||v||}.$$

Em \mathbb{R}^2 e \mathbb{R}^3 , θ é, de fato, o ângulo geométrico determinado pelos vetores u e v. A fórmula fornece o cosseno do ângulo. Ao final da aula, há uma tabela com os cossenos dos ângulos notáveis no intervalo $[0, \pi]$.

Exemplo 14.10.

Vamos determinar o ângulos entre os vetores u = (4, -2) e v = (3, 1), de \mathbb{R}^2 :

$$\cos \theta = \frac{\langle u, v \rangle}{||u|| \, ||v||} = \frac{12 - 2}{\sqrt{16 + 4}\sqrt{9 + 1}} = \frac{10}{\sqrt{20}\sqrt{10}} = \frac{10}{\sqrt{200}} = \frac{10}{10\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}}.$$

Um caso particularmente interessante é quando $\theta=90^{0}$, ou seja, quando os vetores formam um ângulo reto, ou, em outras palavras, quando são ortogonais. Como $cos\,90^{0}=0=\frac{< u,v>}{||u||\,||v||}$, concluímos que

u e v são **ortogonais** $\Leftrightarrow < u, v >= 0$.

Exemplo 14.11.

Em $M_2(\mathbb{R})$, com o produto interno definido no Exemplo 14, as matrizes $u = \begin{bmatrix} 2 & 0 \\ 1 & 5 \end{bmatrix}$ e $v = \begin{bmatrix} 3 & 5 \\ 4 & -2 \end{bmatrix}$ são ortogonais, pois $\langle u, v \rangle = 2.3 + 0.5 + 1.4 + 5.(-2) = 0$.

Resumo

Nesta aula, definimos produto interno: uma importante relação definida em espaços vetoriais, que associa um número real a cada par de vetores do espaço. A partir da definição de produto interno, podemos determinar a norma de um vetor e o ângulo definido por dois vetores. Podemos definir diferentes produtos internos em um mesmo espaço vetorial; cada um deles determinará uma norma e um ângulo entre vetores. O produto interno mais estudado, mais útil para nós, é o usual; a partir dele, a norma de um vetor do plano ou do espaço corresponde ao seu comprimento geométrico, o mesmo acontecendo com o ângulo entre eles. Vimos, também, o conceito de ortogonalidade de vetores. Na próxima aula retomaremos esse assunto, estudando importantes subespaços de um espaço euclidiano.

Exercício 14.1.

- 1. Prove a validade das propriedades do produto interno, isto é, sendo *V* um espaço euclidiano,
 - a. $||\alpha v|| = |\alpha| ||v||, \forall \alpha \in \mathbb{R}, \forall v \in V.$
 - b. $||v|| \ge 0, \forall v \in V \text{ e } ||v|| = 0 \Leftrightarrow v = o_V$
 - c. (Desigualdade de Cauchy Schwarz)

$$|< u, v > | \le ||u|| ||v||, \forall u, v \in V.x$$

Sugestão: Primeiramente, mostre que no caso em que v é o vetor nulo, vale a igualdade. Suponha, então, $v \neq o$. Nesse caso, sendo α um real qualquer, é verdade que $||u + \alpha v||^2 \ge 0$. Desenvolva essa expressão, obtendo um trinômio do segundo grau, em α , sempre positivo.

Então seu discriminante tem que ser menor ou igual a zero. Daí segue a desigualdade procurada.

d. (Desigualdade triangular)

$$||u+v|| \le ||u|| + ||v||, \forall u, v \in V.$$

Sugestão: Desenvolva a expressão $||u+v||^2$ e use a desigualdade de Cauchy Schwarz.

2. Considerando o espaço euclidiano \mathbb{R}^3 , calcule < u, v > em cada caso:

a.
$$u = (2, -1, 0)$$
 e $v = (-3, 4, 1)$

b.
$$u = (1/2, 3, 2)$$
 e $v = (-1, 1, 5)$

3. Seja o espaço euclidiano \mathbb{R}^2 . Determine o vetor w tal que < u, w >= 8 e < v, w >= 10, dados u = (2,1) e v = (-1,3).

Sugestão: Represente o vetor w pelo par (x, y).

4. Calcule a norma de $v \in V$, em cada caso:

a.
$$v = (-3,4), V = \mathbb{R}^2$$

b.
$$v = (1, 1, 1), V = \mathbb{R}^3$$

c.
$$v = (-1, 0, 4, \sqrt{19}), V = \mathbb{R}^4$$

- 5. Em um espaço euclidiano, um vetor é dito ser *unitário* quando sua norma é igual a 1.
 - a. Entre os seguintes vetores de $I!R^2$, quais são unitários:

$$u = (1,1)$$
; $v = (-1,0)$; $w = (1/2,1/2)$; $t = (1/2,\sqrt{3}/2)$

- b. Determine $a \in \mathbb{R}^2$ tal que o vetor u = (a, 1/2), de $I!R^2$ seja unitário.
- 6. Obtenha o ângulo entre os seguintes pares de vetores de \mathbb{R}^2 :

a.
$$u = (3,1)$$
 e $v = (6,2)$

b.
$$u = (1,2)$$
 e $v = (-1,3)$

c.
$$u = (3,1)$$
 e $v = (2,2)$

d.
$$u = (0,2)$$
 e $v = (-1,-1)$

- 7. Considere o espaço euclidiano $M_2(\mathbb{R})$.
 - a. Quais das matrizes abaixo são ortogonais a $M = \begin{bmatrix} 2 & 1 \\ -1 & 3 \end{bmatrix}$:

$$A = \begin{bmatrix} 1 & 2 \\ 4 & 0 \end{bmatrix} \; ; \quad B = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \; ; \quad C = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix};$$

$$D = \begin{bmatrix} 3 & 2 \\ -1 & 3 \end{bmatrix}.$$

- b. Calcule a norma da matriz M, do item anterior.
- c. Determine o ângulo entre as matrizes $M_1 = \begin{bmatrix} 2 & 4 \\ -1 & 3 \end{bmatrix}$ e $M_2 = \begin{bmatrix} -3 & 1 \\ 4 & 2 \end{bmatrix}$
- d. Calcule a distância entre as matrizes M_1 e M_2 do item anterior.
- 8. No espaço vetorial P_2 ,
 - a. Defina o produto interno usual (análogo ao definido em P_3 , no Exemplo 14.4).
 - b. Calcule a norma do polinômio $p = 3 4t + 2t^2$, de P_2 .

Autoavaliação

O assunto tratado nesta aula é muito importante, no desenvolvimento de toda a teoria. Note que os conceitos de norma, distância, ângulo, ortogonalidade, tão naturais, quando pensamos em vetores do plano ou do espaço, foram estendidos para espaços vetoriais quaisquer. Expressões, como "norma de polinômio", "distância entre matrizes", "polinômios ortogonais", não devem mais causar estranheza. Você não deve ficar com nenhuma dúvida, antes de seguir em frente. Refaça os exemplos, se julgar necessário. E lembre-se: encontrando qualquer obstáculo, peça ajuda ao tutor da disciplina. Até a próxima aula!!

RESPOSTAS DOS EXERCÍCIOS

1. a.

$$||\alpha v|| = \sqrt{\langle \alpha v, \alpha v \rangle} = \sqrt{\alpha^2 \langle v, v \rangle} =$$
 Note que, dado $a \in \mathbb{R}$, $\sqrt{a^2 = |a|}$.

b. ||v|| > 0, pela própria definição de norma.

$$||v|| = 0 \Rightarrow \sqrt{\langle v, v \rangle} = 0 \Rightarrow \langle v, v \rangle = 0 \Rightarrow v = o_V.$$

Finalmente,

$$v = o_V \Rightarrow \langle v, v \rangle = 0 \Rightarrow \sqrt{\langle v, v \rangle} = 0 \Rightarrow ||v|| = 0.$$

c. Se $v = o_V$, então ||v|| = 0 e < u, v >= 0 = ||u|||v||. Portanto, vale a igualdade (e, em consequência, a desigualdade). Supondo $v \neq o_V$, e sendo $\alpha \in \mathbb{R}$, arbitrário, podemos afirmar que $||u + \alpha v||^2 \geq 0$. Desenvolvendo essa expressão (usando a definição de norma), chegamos a $||v||^2\alpha^2 + 2 < u, v > \alpha + ||u||^2 \geq 0$, para todo α real. Isto é, obtemos um trinômio do segundo grau, em α , sempre positivo. Então seu discriminante tem que ser menor ou igual a zero, isto é: $4 < u, v >^2 - 4||v||^2 ||u||^2 \leq 0$. Separando os termos da desigualdade, simplificando e extraindo a raiz quadrada de cada termo, concluímos que

$$|< u, v > | \le ||u|| ||v||.$$

d.

$$||u+v||^2 = \langle u+v, u+v \rangle =$$

$$= \langle u, u \rangle + \langle u, v \rangle + \langle v, u \rangle + \langle v, v \rangle =$$

$$= ||u||^2 + 2 \langle u, v \rangle + ||v||^2.$$

Usando a desigualdade de Cauchy Schwarz,

$$||u+v||^2 \le ||u||^2 + 2||u|| ||v|| + ||v||^2 = (||u|| + ||v||)^2.$$

Logo,
$$||u + v|| \le ||u|| + ||v||, \forall u, v \in V.$$

2. a. -10

Álgebra Linear I | Espaços Vetoriais com Produto Interno

3.
$$w = (2,4)$$

b.
$$\sqrt{3}$$

b.
$$||u|| = 1 \Rightarrow ||u||^2 = 1 \Rightarrow a^2 + 1/4 = 1 \Rightarrow a = \pm \sqrt{3}/2$$

6. a.
$$0^0$$

b.
$$45^0$$

c.
$$\arccos 2\sqrt{5}/5$$

d.
$$135^0$$

7. a.
$$A, C, D$$

b.
$$||M|| = 15$$

c. 90° - as matrizes M_1 e M_2 são ortogonais.

d.
$$d(M_1, M_2) = ||M_1 - M_2|| = \sqrt{60} = 2\sqrt{15}$$
.

8. a. Sendo $p = a_0 + a_1t + a_2t^2$ e $q = b_0 + b_1t + b_2t^2$, em P_2 , o produto interno usual é dado por:

$$\langle p,q \rangle = a_0b_0 + a_1b_1 + a_2b_2$$

•

b.
$$\sqrt{29}$$

Tabela do cosseno:

Para os ângulos do segundo quadrante (compreendidos no intervalo $[\pi/2, \pi]$, basta lembrar que $cos(\pi-\theta) = -cos \theta$ (ou: $cos(180-\theta) = cos \theta$). Por exemplo, $cos 120^0 = -cos (180^0 - 120^0) = -cos 60^0 = -1/2$.

Aula 15 Conjuntos Ortogonais E Ortonormais

Objetivos

Ao final desta aula, você deverá ser capaz de:

- 1 reconhecer conjuntos ortogonais e ortonormais;
- aplicar o método de ortogonalização de Gram-Schmidt:
- 3 reconhecer bases ortonormais;
- 4 projetar vetores ortogonalmente em subespaços.

CONJUNTOS ORTOGONAIS E ORTONORMAIS

Pré-requisitos: Aulas 11, 12 e 14.

Espaços vetoriais reais, com produto interno e dimensão finita. Nesta aula, vamos caracterizar subconjuntos especiais de espaços euclidianos. Na Aula 14, vimos que, num espaço euclidiano, dois vetores são ortogonais quando o produto interno deles se anula. Isto é, sendo *V* um espaço euclidiano,

$$u \perp v \iff \langle u, v \rangle = 0, \ \forall u, v \in V.$$

Vejamos, agora, as duas definições importantes desta aula:

Seja V um espaço euclidiano. Um subconjunto $S = \{v_1, ..., v_n\} \subset V$ é

 ortogonal, quando seus elementos são ortogonais dois a dois, isto é:

$$< v_i, v_j >= 0, \ \forall i, j \in \{1, ..., n\}, \ i \neq j.$$

• *ortonormal* quando é ortogonal e todos os seus elementos são unitários, isto é:

S é ortogonal e
$$||v_i|| = 1$$
, $\forall i \in \{1,...,n\}$.

Exemplo 15.1.

a. O conjunto $S = \{2, -3, 1\}, (5, 4, 2)\} \subset \mathbb{R}^3$ é ortogonal. De fato, <(2, -3, 1), (5, 4, 2)> = 10 - 12 + 2 = 0. S não é ortonormal pois, por exemplo,

$$||(2,-3,1)|| = \sqrt{4+9+1} = \sqrt{14} \neq 1.$$

b. O conjunto $S = \{(1,0,0), (0,-\sqrt{3}/2,1/2)\} \subset \mathbb{R}^3$ é ortonormal, pois,

$$<(1,0,0),(0,-\sqrt{3}/2,1/2)>=0,\\ ||(1,0,0)||=\sqrt{1}=1 \text{ e}\\ ||(0,-\sqrt{3}/2,1/2)||=\sqrt{3/4+1/4}=\sqrt{1}=1.$$

c. Se S é um conjunto ortogonal num espaço euclidiano V, então o conjunto resultante da união $S \cup \{o_V\}$ também é

ortogonal, pois o vetor nulo é ortogonal a qualquer outro vetor. É claro, também, que nenhum conjunto em que o vetor nulo comparece é ortonormal, pois a condição de todos os vetores serem unitários não é satisfeita.

Na Aula 14, vimos que, num espaço euclidiano, o cosseno do ângulo θ , formado por dois vetores u e v, não nulos, é:

$$\cos\theta = \frac{\langle u, v \rangle}{||u|| \, ||v||}.$$

No caso de os dois vetores serem unitários, a fórmula se resume a

$$\cos \theta = \langle u, v \rangle$$
.

Agora, num conjunto ortornomal S, só há duas possibilidades para a medida do ângulo formado por quaisquer dois de seus vetores:

- i. se os vetores são distintos, então formam ângulo reto e, então, o produto interno é igual a zero (pois vimos acima que o cosseno do ângulo se iguala ao produto interno);
- ii. se consideramos duas vezes o mesmo vetor, então o ângulo é nulo e seu cosseno é igual a 1; logo, o produto interno também é 1.

Daí, podemos concluir que:

Sendo $S = \{v_1, v_2, ..., v_n\}$ um subconjunto ortonormal de um espaço euclidiano, então

•
$$i \neq j \Rightarrow \theta = 90^{\circ} \Rightarrow \cos \theta = 0 = \langle v_i, v_i \rangle$$
.

•
$$i = j \Rightarrow \theta = 0^{\circ} \Rightarrow \cos \theta = 1 = \langle v_i, v_i \rangle$$
.

Podemos, então, caracterizar um conjunto ortonormal $\{v_1, v_2, ..., v_n\}$ usando o símbolo de Kronecker:

$$\langle v_i, v_j \rangle = \delta ij, \forall i, j \in \{1, ..., n\}.$$

Veremos, a seguir, um importante resultado envolvendo conjuntos ortonormais.

Lembrando: A função delta de Kronecker nos índices i e j é definida

$$\delta_{ij} = \begin{cases} 0, \text{ se } i \neq j \\ 1, \text{ se } i = j \end{cases}.$$

Proposição 15.1.

Um conjunto ortonormal é linearmente independente.

Lembrando: um conjunto de vetores é LI quando, ao escrevermos o vetor nulo como uma combinação linear deles, obtemos todos os coeficientes nulos.

Demonstração

Sejam V um espaço euclidiano e $S = \{v_1, ..., v_n\} \subset V$, ortonormal. Sejam $\alpha_1, ..., \alpha_n \in \mathbb{R}$ tais que $\alpha_1 v_1 + \alpha_2 v_2 ... + \alpha_n v_n = o_V$. Como o produto interno de qualquer vetor pelo vetor nulo é igual a zero, podemos escrever:

$$0 = < o_{V}, v_{1} > =$$

$$= < \alpha_{1}v_{1} + \alpha_{2}v_{2} + ... + \alpha_{n}v_{n}, v_{1} > =$$

$$= \alpha_{1} < v_{1}, v_{1} > + \alpha_{2} < v_{2}, v_{1} > + ... + \alpha_{n} < v_{n}, v_{1} > =$$

$$= \alpha_{1}$$

Logo, $\alpha_1 = 0$. Procedendo de forma análoga com os vetores $v_2, ..., v_n$, iremos concluir que $\alpha_1 = \alpha_2 = ... = \alpha_n = 0$. Logo, o conjunto $S \notin LI$.

CQD

Já vimos, na Aula 10, que todo subconjunto de um espaço vetorial V gera um subespaço de V. Quando o conjunto considerado é LI, além de gerar, ele forma uma base do subespaço gerado. Assim, a Proposição 15.1 permite concluir que um conjunto ortonormal é uma base do subespaço que ele gera. Nesse caso, dizemos que a base é ortonormal. Bases ortonormais são particularmente interessantes por simplificarem os cálculos e permitirem uma representação gráfica mais clara e fácil de se construir. Surge, então, a questão: como obter bases ortonormais de subespaços dados?

Mas vamos com calma. O primeiro passo para chegar à resposta procurada é saber obter a projeção de um vetor na direção de outro.

Projeção de um Vetor na Direção de Outro

Sejam V um espaço euclidiano, $u, v \in V, v \neq o_V$. Vamos obter o vetor projeção de u na direção de v. Em outras palavras, vamos decompor u em duas componentes: uma na direção de v - que

será a projeção mencionada, e outra, ortogonal a *v*, como mostra a **Figura 15.1**.

Figura 15.1: Projetando u na direção de v.

Os cálculos ficam mais simples se o vetor sobre o qual se projeta é unitário. Caso ele não seja, podemos "trocá-lo"por outro, de mesma direção e sentido, e de tamanho 1. Esse vetor se chama *versor* do vetor dado. Para isso, basta dividir o vetor *v* pelo seu módulo:

versor de
$$v = \frac{v}{||v||}$$
.

É fácil verificar que, de fato, o versor de v é unitário:

$$\left| \left| \frac{v}{||v||} \right| \right| = \sqrt{\langle \frac{v}{||v||}, \frac{v}{||v||} \rangle} = \sqrt{\frac{1}{||v||^2}} < v, v > = \sqrt{\frac{||v||^2}{||v||^2}} = 1.$$

Exemplo 15.2.

Consideremos o vetor v=(3,4), de \mathbb{R}^2 . Seu módulo é $||v||=\sqrt{9+16}=\sqrt{25}=5$. Seu versor é o vetor $\frac{v}{||v||}=\frac{(3,4)}{5}=(3/5,4/5)$. Vamos verificar que esse vetor é realmente unitário:

$$\sqrt{(3/5)^2 + (4/5)^2} = \sqrt{9/25 + 16/25} = \sqrt{25/25} = 1.$$

A **Figura 15.2** ilustra esse caso.

Figura 15.2: O vetor (3,4) de \mathbb{R}^2 e seu versor.

Assim, ao projetar um vetor na direção de v, não nulo, podemos sempre considerá-lo unitário. Na **Figura 15.3**, vemos que a projeção de u na direção de v é um vetor paralelo a v e, portanto, pode ser escrito como um múltiplo de v, isto é,

$$proj_{\nu}u = k\nu$$
, para algum $k \in \mathbb{R}$.

Figura 15.3

Então $||proj_{\nu}u|| = ||k\nu|| = |k|||\nu|| = |k|$, uma vez que estamos supondo ||v|| = 1. Para conhecer o vetor projeção, então, temos que determinar k. No triângulo retângulo da **Figura 15.3**, o vetor projeção é o cateto adjacente ao ângulo θ , formado pelos vetores u e v, e a hipotenusa mede ||u||. Logo, lembrando da expressão do cosseno do ângulo formado por dois vetores e usando o fato de v ser unitário, temos:

$$||proj_{v}u|| = |cos \theta.||u||| = \left|\frac{\langle u, v \rangle}{||u|| ||v||}||u||\right| = |\langle u, v \rangle|.$$

Assim, $||proj_{\nu}u|| = |\langle u, v \rangle| = |k|$, donde podemos concluir que $k = \pm \langle u, v \rangle$. Ocorre, porém, que $k \in \langle u, v \rangle$ têm o mesmo sinal, como indica a **Figura 15.3**. No caso em que $\theta = 90^{\circ}$, temos k = 0, ou seja, a projeção é o vetor nulo (a projeção reduz-se a um ponto).

Num triângulo retângulo, o cosseno de um ângulo agudo é igual à medida do cateto adjacente dividida pela medida da hipotenusa. Concluímos, então, que

$$proj_{v}u = \langle u, v \rangle v$$
.

Nesse processo, a partir de um vetor u, qualquer, de um espaço euclidiano V, obtivemos a componente $u - proj_{\nu}u$, que é ortogonal à direção de v. Isso fica claro na **Figura 15.1**, mas podemos verificar algebricamente, calculando o produto interno dos vetores $u - proj_{\nu}u$ e v:

$$< u - < u, v > v, v > = < u, v > - << u, v > v, v > = < u, v > - < u, v > v, v > = < u, v > - < u, v > < v, v > = < u, v > (1 - < v, v >) = < u, v > (1 - ||v||^2) = < u, v > (1 - 1) = 0.$$

Exemplo 15.3.

No espaço euclidiano \mathbb{R}^3 , a projeção ortogonal do vetor u=(0,1,-4) na direção do vetor $v=(1/2,0,\sqrt{3}/2)$ é o vetor < u,v>v (note que v é unitário). Ou seja, é o vetor $-2\sqrt{3}v=(-\sqrt{3},0,-3)$. O vetor

$$u' = u - proj_{\nu}u = (0, 1, -4) - (-\sqrt{3}, 0, -3) = (\sqrt{3}, 1, -1)$$

é ortogonal a v. (Verifique!)

Ao projetar u na direção de v, o que fizemos foi projetá-lo ortogonalmente no subespaço de V gerado pelo vetor v (a reta suporte de v). Vamos estender esse método para o caso em que o subespaço sobre o qual projetamos é gerado por n vetores:

Sejam V, um espaço euclidiano, $S = \{v_1, v_2, ..., v_n\} \subset V$, ortonormal, e $v \in V$. A **projeção ortogonal de** v **sobre o subespaço gerado por** S é o vetor

$$< v, v_1 > v_1 + < v, v_2 > v_2 + ... + < v, v_n > v_n.$$

Exemplo 15.4.

Seja $S = \{(1,0,0), (0,-1,0)\}$ no espaço euclidiano \mathbb{R}^3 . Vamos projetar o vetor v = (5,2,-3), ortogonalmente, sobre o

plano [S]. Primeiramente, notamos que os vetores de S são ortogonais e unitários. Podemos, então, usar a expressão da projeção:

$$proj_{v_1}v = \langle v, v_1 \rangle v_1 = 5v_1 = (5, 0, 0).$$

 $proj_{v_2}v = \langle v, v_2 \rangle v_2 = -2v_2 = (0, 2, 0).$

Então
$$proj_{[S]}v = (5,0,0) + (0,2,0) = (5,2,0).$$

Além disso, de forma análoga à que ocorre quando projetamos sobre a direção de um único vetor, a diferença entre o vetor projetado e a projeção é um vetor ortogonal ao subespaço de projeção, como mostramos na

Proposição 15.2.

Sejam V um espaço euclidiano, $S = \{v_1, v_2, ..., v_n\} \subset V$, um conjunto ortonormal, e $v \in V$. O vetor

$$u = v - \langle v, v_1 \rangle v_1 - \langle v, v_2 \rangle v_2 - \dots - \langle v, v_n \rangle v_n$$

é ortogonal a todo vetor de S.

Demonstração

Vamos mostrar que u é ortogonal a v_1 :

$$\langle u, v_{1} \rangle =$$

$$= \langle v - \langle v, v_{1} \rangle v_{1} - \langle v, v_{2} \rangle v_{2} - \dots - \langle v, v_{n} \rangle v_{n}, v_{1} \rangle =$$

$$= \langle v, v_{1} \rangle - \langle \langle v, v_{1} \rangle v_{1}, v_{1} \rangle - \langle \langle v, v_{2} \rangle v_{2}, v_{1} \rangle - \dots$$

$$- \langle \langle v, v_{n} \rangle v_{n}, v_{1} \rangle =$$

$$= \langle v, v_{1} \rangle - \langle v, v_{1} \rangle \leq \underbrace{v_{1}, v_{1}}_{1} \rangle - \langle v, v_{2} \rangle \leq \underbrace{v_{2}, v_{1}}_{0} \rangle - \dots$$

$$- \langle v, v_{n} \rangle \leq \underbrace{v_{n}, v_{1}}_{0} \rangle =$$

$$= \langle v, v_{1} \rangle - \langle v, v_{1} \rangle = 0.$$

Procedendo de maneira análoga, com os demais vetores de *S*, concluiremos que

$$u \perp v_1, u \perp v_2, ..., u \perp v_n$$

Exemplo 15.5.

No exemplo anterior, o vetor

$$v - proj_{[S]}v = (5, 2, -3) - (5, 2, 0) = (0, 0, -3)$$

é ortogonal a (1,0,0) e a (0,-1,0), vetores de S.

Proposição 15.3.

Sejam V um espaço euclidiano, $S = \{v_1, v_2, ..., v_n\} \subset V$, um conjunto ortonormal e $v \in V$. O vetor

$$u = v - \langle v, v_1 \rangle v_1 - \langle v, v_2 \rangle v_2 - \dots - \langle v, v_n \rangle v_n$$

é ortogonal a todo vetor do subespaço de V gerado por S. Ou seja, u é ortogonal a todo vetor de V que pode ser escrito como uma combinação linear dos vetores de S.

Demonstração

Pela Proposição 15.2, já sabemos que u é ortogonal a cada vetor de S, ou seja,

$$\langle u, v_1 \rangle = \langle u, v_2 \rangle = \dots = \langle u, v_n \rangle = 0.$$

Vamos calcular o produto interno de u por um vetor genérico do subespaço gerado por S:

Sejam $\alpha_1, \alpha_2, ..., \alpha_n \in \mathbb{R}$ e $w = \alpha_1 v_1 + \alpha_2 v_2 + ... + \alpha_n v_n \in V$. Então

$$\langle u, w \rangle = \langle u, \alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n \rangle =$$

$$= \alpha_1 \underbrace{\langle u, v_1 \rangle}_0 + \alpha_2 \underbrace{\langle u, v_2 \rangle}_0 + \dots + \alpha_n \underbrace{\langle u, v_n \rangle}_0 = 0.$$

Logo, *u* é ortogonal a *w*.

CQD

Exemplo 15.6.

Retomando o exemplo anterior, podemos afirmar que o vetor $v - proj_{S}v = (5, 2, -3) - (5, 2, 0) = (0, 0, -3)$ é ortogonal ao plano [S].

Estamos, agora, em condições de responder à pergunta: uma vez que temos que ter bases ortonormais para poder efetuar a projeção, como obter bases ortonormais para espaços dados? Vamos fazer isso usando o chamado Método de ortonormalização de Gram-Schmidt, que nada mais é do que a aplicação do resultado demonstrado na Proposição 15.3. Vamos a ele:

MÉTODO DE ORTONORMALIZAÇÃO DE GRAM-SCHMIDT

Todo espaço euclidiano admite uma base ortonormal

Demonstração

 $\dim V=1$: Seja $\{v\}$ uma base de V. Então o conjunto $\{u\}=\{\frac{v}{||v||}\}$ é uma base ortonormal de V.

 $\dim V = 2$: Seja $\{v_1, v_2\}$ uma base de V. Seja $u_1 = \frac{v_1}{\|v_1\|}$. Pela Proposição 15.3, o vetor $g_2 = v_2 - proj_{u_1}v_2 = v_2 - < v_2, u_1 > u_1$ é ortogonal a u_1 . Então o vetor $u_2 = \text{versor de } g_2 = \frac{g_2}{\|z\|}$ é unitário e também é ortogonal a u_1 . Logo, o conjunto $\{u_1, u_2\}$ é uma base ortonormal de V, pois possui dois vetores ortogonais e unitários e a dimensão de V é dois.

 $\dim V = n$: Prosseguindo de forma análoga, dada uma base de V, vamos construindo, um a um, os vetores de uma outra base, esta sim, ortonormal. O primeiro é, simplesmente, o versor do primeiro vetor da base original. A partir do segundo, a ideia é decompor cada vetor em duas componentes: uma na direção do subespaço gerado pelos vetores já obtidos e outra ortogonal à primeira. É o versor dessa segunda componente que irá se reunir aos vetores já obtidos, para formar a base ortonormal.

Exemplo 15.7.

Vamos aplicar o método de Gram-Schmidt para obter uma base ortonormal de \mathbb{R}^3 , a partir da base $B = \{v_1, v_2, v_3\}$, com $v_1 = (1, 1, 1); v_2 = (1, -1, 1)$ e $v_3 = (0, 1, 1)$. Seja $B' = \{u_1, u_2, u_3\}$ a base ortonormal procurada. Então

$$u_{1} = \frac{v_{1}}{||v_{1}||} = \frac{(1,1,1)}{\sqrt{3}} = (1/\sqrt{3}, 1/\sqrt{3}, 1/\sqrt{3}).$$

$$g_{2} = v_{2} - proj_{u_{1}}v_{2} =$$

$$= v_{2} - \langle v_{2}, u_{1} \rangle u_{1} =$$

$$= (1,-1,1) -$$

$$< (1,-1,1), (1/\sqrt{3}, 1/\sqrt{3}, 1/\sqrt{3}) \rangle (1/\sqrt{3}, 1/\sqrt{3}, 1/\sqrt{3}) =$$

$$= (1,-1,1) - 1/\sqrt{3}(1/\sqrt{3}, 1/\sqrt{3}, 1/\sqrt{3}) =$$

$$= (1,-1,1) - (1/3,1/3,1/3) =$$

$$= (2/3,-4/3,2/3).$$

O vetor g_2 é ortogonal a u_1 . De fato, $\langle g_2, u_1 \rangle = \frac{2}{3\sqrt{3}} - \frac{4}{3\sqrt{3}} + \frac{2}{3\sqrt{3}} = 0$. Então o segundo vetor da nova base é o versor de g_2 , isto é:

$$u_2 = \frac{g_2}{||g_2||} =$$

$$= \frac{(2/3, -4/3, 2/3)}{\sqrt{4/9 + 16/9 + 4/9}} =$$

$$= \frac{(2/3, -4/3, 2/3)}{\sqrt{24/9}} =$$

$$= \frac{(2/3, -4/3, 2/3)}{\frac{2\sqrt{6}}{3}} =$$

$$= \frac{3}{2\sqrt{6}} (2/3, -4/3, 2/3) =$$

$$= (1/\sqrt{6}, -2/\sqrt{6}, 1/\sqrt{6}).$$

$$g_{3} = v_{3} - proj_{u_{1}}v_{3} - proj_{u_{2}}v_{3} =$$

$$= v_{3} - \langle v_{3}, u_{1} \rangle u_{1} - \langle v_{3}, u_{2} \rangle u_{2} =$$

$$= v_{3} - 2/\sqrt{3}u_{1} - (-1/\sqrt{6})u_{2} =$$

$$= (0, 1, 1) - 2/\sqrt{3}(1/\sqrt{3}, 1/\sqrt{3}, 1/\sqrt{3})$$

$$-(-1/\sqrt{6})(1/\sqrt{6}, -2/\sqrt{6}, 1/\sqrt{6}) =$$

$$= (0, 1, 1) - (2/3, 2/3, 2/3) + (1/6, -2/6, 1/6) =$$

$$= (-1/2, 0, 1/2).$$

Logo, o terceiro vetor da base B' é o versor de g_3 , isto é: $u_3 = \frac{g_3}{||g_3||} = \frac{(-1/2,0,1/2)}{\sqrt{\frac{2}{4}}} = \frac{2}{\sqrt{2}}(-1/2,0,1/2) = (-1/\sqrt{2},0,1/\sqrt{2}).$

Logo, a base ortonormal de \mathbb{R}^3 é

$$B' = \{(1/\sqrt{3}, 1/\sqrt{3}, 1/\sqrt{3}), (1/\sqrt{6}, -2/\sqrt{6}, 1/\sqrt{6}), (-1/\sqrt{2}, 0, 1/\sqrt{2})\}.$$

Exemplo 15.8.

Em \mathbb{R}^3 , vamos projetar o vetor u = (1, 2, -3), ortogonalmente, na direção do vetor v = (1, 2, 2).

Observe, primeiramente, que v não é unitário, pois $||v|| = \sqrt{1+4+4} = 3$. O seu versor é o vetor $v' = \frac{v}{3} = (1/3, 2/3, 2/3)$. O vetor projeção é

$$proj_{v}u = proj_{v'}u = \langle u, v' \rangle v' = (-1/3)(1/3, 2/3, 2/3) = (-1/9, -2/9, -2/9).$$

Além disso, o vetor

$$u - proj_{\nu}u = (1, 2, -3) - (-1/9, -2/9, -2/9) =$$

= $(10/9, 20/9, -25/9)$

é ortogonal a v.

Exemplo 15.9.

Vamos projetar o vetor u = (1,2,-3), do exemplo anterior, sobre o plano P de \mathbb{R}^3 gerado pelos vetores $v_1 = (1,0,2)$ e $v_2 = (0,1,0)$. Precisamos de uma base ortonormal do subespaço gerado por v_1 e v_2 . Note que esses dois vetores são ortogonais; precisamos, apenas, tomar o versor de v_1 , uma vez que v_2 já é unitário:

$$v_{1}' = \frac{(1,0,2)}{\sqrt{5}} = (1/\sqrt{5},0,2/\sqrt{5})$$
 Então
 $proj_{P}u = proj_{v_{1}}u + proj_{v_{2}}u =$
 $= \langle u, v_{1}' > v_{1}' + \langle u, v_{2}' > v_{2}' =$
 $= (-5/\sqrt{5})(1/\sqrt{5},0,2/\sqrt{5}) + 2(0,1,0) =$
 $= (-1,2,-2).$

Note que a projeção é um vetor de *P*. Por outro lado, a diferença:

$$u - (-1, 2, -2) = (2, 0, -1)$$
 é um vetor ortogonal a P .

Exemplo 15.10.

Vamos obter uma base ortonormal do subespaço de \mathbb{R}^3 : $U = \{(x, y, z) \in \mathbb{R}^3 | x - y + z = 0\}$ e, em seguida, projetar o vetor u = (5,3,2), ortogonalmente, sobre U.

Primeiramente, vamos obter uma base para U. Note que um vetor de *U* é da forma (x, x+z, z) = x(1, 1, 0) + z(0, 1, 1). Logo, $v_1 = (1, 1, 0)$ e $v_2 = (0, 1, 1)$ formam uma base de *U*. Precisamos ortonormalizar essa base. Seja $B = \{u_1, u_2\}$ a base ortonormal procurada. Então:

$$u_1 = \frac{v_1}{||v_1||} = \frac{(1,1,0)}{\sqrt{2}} = (1/\sqrt{2},1/\sqrt{2},0)$$

$$g_2 = v_2 - proj_{u_1}v_2 = v_2 - \langle v_2, u_1 \rangle u_1 =$$

= $(0, 1, 1) - 1/\sqrt{2}(1/\sqrt{2}, 1/\sqrt{2}, 0) = (-1/2, 1/2, 1).$

Logo,

$$u_2 = \frac{g_2}{||g_2||} = 2/\sqrt{6}(-1/2, 1/2, 1) = (-1/\sqrt{6}, 1/\sqrt{6}, 2/\sqrt{6}).$$

Então
$$B' = \{(1/\sqrt{2}, 1/\sqrt{2}, 0), (-1/\sqrt{6}, 1/\sqrt{6}, 2/\sqrt{6})\}.$$

Agora podemos obter a projeção de u sobre U:

$$proj_{U}u = proj_{u_{1}}u + proj_{u_{2}}u = \langle u, u_{1} \rangle u_{1} + \langle u, u_{2} \rangle u_{2} =$$

$$= \frac{8}{\sqrt{2}} \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0 \right) + \frac{2}{\sqrt{6}} \left(\frac{-1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}} \right) =$$

$$= \left(\frac{11}{3}, \frac{13}{3}, \frac{2}{3} \right).$$

Resumo

Nesta aula, você aprendeu um método prático de obter uma base ortonormal, a partir de outra base dada. Isso é necessário, pois aprendemos como projetar ortogonalmente um vetor sobre um subespaço, desde que conheçamos uma base ortornormal desse subespaço. Vimos, também, que a diferença entre o vetor projetado e sua projeção ortogonal sobre um subespaço é um vetor ortogonal ao subespaço.

Exercício 15.1.

- 1. Em \mathbb{R}^2 , obtenha o vetor projeção ortogonal de u = (4,5) na direção de v = (1,2).
- 2. Em \mathbb{R}^3 , obtenha o vetor projeção ortogonal de u = (1, 1, 3) na direção de v = (0, 1, 1).
- 3. Dê a componente de u = (2, -1, 1), em \mathbb{R}^3 , ortogonal ao vetor v = (1, 2, 1).
- 4. Determine a projeção ortogonal do vetor u = (2, -1, 3) sobre o subespaço de \mathbb{R}^3 gerado por $S = \{(1, 0, 1), (2, 1, -2)\}.$
- 5. Projete, ortogonalmente, o vetor u = 3, 2, 1) sobre o subespaço $W = \{(x, y, z) \in \mathbb{R}^3; x + y z = 0\}.$
- 6. Use o método de ortonormalização de Gram-Schmidt para obter uma base ortonormal de \mathbb{R}^3 , a partir da base $B = \{(1,0,0), (0,1,1), (0,1,2)\}.$
- 7. Obtenha uma base ortornormal de \mathbb{R}^2 , a partir da base $B = \{(1,2), (-1,3)\}.$
- 8. Obtenha uma base ortornormal para o seguinte subespaço vetorial de \mathbb{R}^4 : $U = \{(x, y, z, t) \in \mathbb{R}^4 | x y = 0 \text{ e } z = 2t\}$. A seguir, projete o vetor u = (1, 3, 4, 2) ortogonalmente sobre U.

Autoavaliação

Você deve estar familiarizado com a expressão que fornece a projeção ortogonal de um vetor sobre um subespaço. Lembre-se de que isso só pode ser feito quando temos uma base ortonormal. Então, o que devemos fazer é:

Verificar se a base do subespaço sobre o qual vamos projetar é ortonormal:

- Se sim, usar a fórmula da projeção ortogonal.
- Se não, usar primeiramente o Método de ortonormalização de Gram-Schmidt para obter uma base ortonormal e aí sim, aplicar a fórmula da projeção.

Não resta dúvida de que é um método trabalhoso, envolvendo muitos cálculos, mas o importante é que você compreenda o significado geométrico do que o processo realiza. A ideia é "desentortar"os vetores, trocando cada um deles pela sua componente que é ortogonal à direção de cada subespaço gerado pelos anteriores. Ao final do método, obtemos vetores ortogonais, dois a dois, todos unitários. A utilidade de se lidar com bases ortonormais ficará mais evidente quando estudarmos representações matriciais de transformações lineares. Não se assuste com o nome - tudo a seu tempo!!! Até lá! Em tempo: havendo qualquer dúvida, procure o tutor da disciplina!!

RESPOSTAS DOS EXERCÍCIOS

- 1. (14/5, 28/5)
- 2. (0,2,2)
- 3. (11/6, -8/6, 5/6)
- 4. Observe, primeiramente, que os vetores geradores são ortogonais. A resposta é (11/6, -1/3, 19/6).
- 5. Veja o exemplo feito em aula: primeiramente obtenha uma base de W; em seguida, aplique o método de Gram-Schmidt para obter uma base ortonormal. Aí, sim, use a expressão que fornece a projeção ortogonal. A resposta é (5/3,2/3,7/3).
- 6. $\{(1,0,0), (0,1/\sqrt{2},1/\sqrt{2}), (0,-1/\sqrt{2},1/\sqrt{2})\}$
- 7. $(\sqrt{5}/5, 2\sqrt{5}/5), (-2\sqrt{5}/5, \sqrt{5}/5)$
- 8. $\{(1/\sqrt{2},1/\sqrt{2},0,0),(0,0,2/\sqrt{5},1/\sqrt{5})\};\ (2,2,4,2)$

Aula 16

COMPLEMENTO ORTOGONAL

Objetivo

Ao final desta aula, você deverá ser capaz de:

1 obter o complemento ortogonal de um subespaço.

Pré-requisitos: Aulas 13 (Soma de subespaços); 14 (Espaços euclidianos) e

15 (Conjuntos ortonormais/projeção ortogonal).

COMPLEMENTO ORTOGONAL

Esta aula é curta - nela completaremos a teoria iniciada na aula anterior. Destacaremos um subespaço especial, que é definido a partir de um outro subespaço, usando a noção de ortogonalidade. Recordaremos também o conceito de soma direta de subespaços. Iniciamos com a principal definição desta aula.

COMPLEMENTO ORTOGONAL

Sejam V um espaço euclidiano e $U \subset V$ um subespaço vetorial de V. Vamos representar por U^{\perp} o subconjunto formado pelos vetores de V que são ortogonais a todo vetor de U, isto é:

$$U^{\perp} = \{ v \in V | < v, u > = 0, \forall u \in U \}$$

O subconjunto U^{\perp} é chamado *complemento ortogonal* de U e é também um subespaço vetorial de V.

De fato,

- i. $U^{\perp} \neq \emptyset$, pois $\langle o_V, u \rangle = 0, \forall u \in V$; logo, $o_V \in U^{\perp}$.
- ii. Sejam $v_1, v_2 \in U^{\perp}$, isto é, $< v_1, u >= 0$ e $< v_2, u >= 0, \forall u \in U$. Então $< v_1 + v_2, u >= < v_1, u > + < v_2, u >= 0 + 0 = 0, \forall u \in U$. Logo, $v_1 + v_2 \in U^{\perp}$.
- iii. Sejam $\alpha \in \mathbb{R}$ e $v \in U^{\perp}$, isto é, $\langle v, u \rangle = 0, \forall u \in U$. Então $\langle \alpha v, u \rangle = \alpha \langle v, u \rangle = \alpha.0 = 0, \forall u \in U$. Logo, $\alpha v \in U^{\perp}$.

Exemplo 16.1.

Em \mathbb{R}^2 , o complemento ortogonal do subespaço gerado pelo vetor (3,0) é o subespaço gerado pelo vetor (0,1). De fato, sendo U=[(3,0)], um vetor $u\in U$ é da forma $(3\alpha,0)$, para algum $\alpha\in\mathbb{R}$. Queremos identificar os vetores de \mathbb{R}^2 que são ortogonais a todo vetor de U. Isto é, os vetores $v=(x,y)\in\mathbb{R}^2$ tais que $< v,u>=0, \forall u\in U$. Ou seja, queremos (x,y) tais que $3\alpha x=0$. Como essa igualdade tem que se verificar para qualquer α real, concluímos que x=0. Logo, todo vetor de U^{\perp} é da

forma (0,y), com $y \in \mathbb{R}$. Assim, qualquer vetor dessa forma, não nulo, gera U^{\perp} , e podemos escrever $U^{\perp} = [(0,1)]$. Note que U é o eixo das abscissas e U^{\perp} , o eixo das ordenadas, como indica a **Figura 16.1**.

Figura 16.1: Um subespaço de \mathbb{R}^2 e seu complemento ortogonal.

Na Aula 13, você estudou soma e soma direta de subespaços. Recordando:

 Sendo U e W subespaços vetoriais de um mesmo espaço vetorial V, a soma de U e W é o subconjunto de V formado pelos vetores que podem ser escritos como a soma de um vetor de U com um de W, isto é:

$$U + W = \{ v \in V | v = u + w; u \in U \text{ e } w \in W \}.$$

- A soma de dois subespaços de *V* é também um subespaço de *V*.
- A soma direta de U e W, representada por $U \oplus W$, é a soma de U e W no caso em que $U \cap W = \{o_V\}$.
- Sendo V de dimensão finita, a dimensão da soma direta de U e W é a soma das dimensões de U e W e a união de uma base de U com uma base de W é uma base da soma direta.
- Além disso, quando a soma é direta, só existe uma maneira de decompor cada vetor de V numa soma de um vetor de U com um vetor de U[⊥], o que significa dizer que esses dois vetores são únicos.

Proposição 16.1.

Sejam V um espaço euclidiano e U, subespaço de V. Então $V=U\oplus U^\perp.$

Demonstração

Temos que mostrar duas coisas: i. V é soma de U e do complemento ortogonal de U, e ii. essa soma é direta.

i. Queremos mostrar que, $\forall v \in V, v = u + w$, para algum $u \in U$ e algum $w \in U^{\perp}$.

Sejam $B=\{u_1,...,u_m\}$ uma base ortonormal de U , e $v\in V$. Pela proposição 15.3 da Aula 15, o vetor

$$w = v - \langle v, u_1 \rangle u_1 - \langle v, u_2 \rangle u_2 - \dots - \langle v, u_m \rangle u_m$$

é ortogonal a todo vetor de B e, assim, ortogonal a todo elemento de U. Logo, $w \in U^{\perp}$. Podemos, então, escrever

$$v = \underbrace{w}_{\in U^{\perp}} + \underbrace{(\langle v, u_1 \rangle u_1 + \langle v, u_2 \rangle u_2 + ... + \langle v, u_m \rangle u_m)}_{\in U},$$

o que prova que $V = U + U^{\perp}$.

ii. Seja $v \in U \cap U^{\perp}$. Como $v \in U^{\perp}, \langle v, u \rangle = 0, \forall u \in U^{\perp}$. Em particular, como $v \in U$, temos $\langle v, v \rangle = 0$, o que implica $v = o_V$. Logo, $U \cap U^{\perp} = \{o_V\}$.

Como já vimos na Aula 15, todo vetor $v \in V$ pode ser decomposto em duas parcelas, uma sendo a projeção ortogonal do vetor sobre um subespaço de V e a outra, um vetor ortogonal a esse subespaço. Considerando os subespaços U e U^{\perp} , podemos então, decompor cada vetor v de V, de forma única, na soma:

$$v = w + u$$
.

onde

- $u \in U$: u é a projeção ortogonal de v sobre o subespaço U, e
- $w \in U^{\perp}$: w é ortogonal a U.

Vimos, na Aula 15, que todo espaço euclidiano admite uma base ortonormal. É importante lembrar que para determinar a projeção de um vetor v de V sobre U, é necessário conhecer uma base ortonormal de U. Para isso, estudamos o método de Gram-Schmidt.

Em resumo:

Sendo

- U um subespaço vetorial do espaço euclidiano V;
- $\{v_1, ..., v_m\}$ base ortonormal de U;
- $v \in V$.

então v = w + u, onde

$$u = proj_U v = \sum_{i=1}^m \langle v, v_i \rangle v_i$$

Exemplo 16.2.

Seja W o eixo z de \mathbb{R}^3 , isto é,

$$W = \{(x, y, z) \in \mathbb{R}^3 | x = y = 0\} = \{(0, 0, z); z \in \mathbb{R}\}.$$

 W^{\perp} é o plano xy, isto é:

$$W^{\perp} = \{(x, y, z) \in \mathbb{R}^3 | z = 0\} = \{(x, y, 0); x, y \in \mathbb{R}\}.$$

Temos, então, que $\mathbb{R}^3=W\oplus W^\perp$, pois, dado $(x,y,z)\in\mathbb{R}^3$, podemos escrever

$$(x,y,z) = \underbrace{(x,y,0)}_{\in W^{\perp}} + \underbrace{(0,0,z)}_{\in W}$$

e

$$W \cap W^{\perp} = \{(0,0,z); z \in \mathbb{R}\} \cap \{(x,y,0); x,y \in \mathbb{R}\} = \{(0,0,0)\} = o_{\mathbb{R}^3}.$$

Essa situação está ilustrada na Figura 16.2.

Figura 16.2: Um subespaço de \mathbb{R}^3 e seu complemento ortogonal.

Exemplo 16.3.

Seja W o subespaço de \mathbb{R}^4 gerado por u=(1,2,3,-1) e w=(2,4,7,2). Vamos encontrar uma base para W^{\perp} .

Para um vetor v = (x, y, z, t) de \mathbb{R}^4 pertencer a W^{\perp} , deve ser ortogonal a u e a w, simultaneamente, isto é:

$$\begin{cases} \langle v, u \rangle = 0 \\ \langle v, w \rangle = 0 \end{cases} \Rightarrow \begin{cases} x + 2y + 3z - t = 0 \\ 2x + 4y + 7z + 2t = 0 \end{cases} \Rightarrow$$
$$\Rightarrow \begin{cases} x + 2y + 3z - t = 0 \\ z + 4t = 0 \end{cases}$$

Um vetor de \mathbb{R}^4 é solução desse sistema quando é da forma $(-2y+13t,y,-4t,t), \quad \text{com} \quad y,t \in \mathbb{R}.$ Como (-2y+13t,y,-4t,t)=y(-2,1,0,0,)+t(13,0,-4,1), temos que o subespaço W^\perp é gerado pelos vetores (-2,1,0,0,) e (13,0,-4,1), que são LI . Logo, $\{(-2,1,0,0,),(13,0,-4,1)\}$ é uma base de W^\perp .

Você se lembra? Este método para determinar um conjunto de geradores sempre fornece uma base do subespaço.

Exemplo 16.4.

Dado
$$U = \{(x, y, z) \in \mathbb{R}^3; x + y + z = 0\}$$
, vamos

- a. escrever o vetor (3,2,5), de \mathbb{R}^3 como uma soma de um vetor de U e um de U^{\perp} ;
- b. obter o vetor projeção ortogonal de $v=(a,b,c)\in\mathbb{R}^3$ sobre U e

c. escrever o vetor v = (a, b, c), de \mathbb{R}^3 , como soma de um vetor de U e um ortogonal a U.

Vamos obter uma base para U: um vetor de U pode ser escrito na forma (x,y,-x-y)=x(1,0,-1)+y(0,1,-1). Logo, os vetores (1,0,-1) e (0,1,-1) geram U e são LI. Logo, formam uma base de U. Precisamos ortonormalizar essa base. Para isso, aplicamos o método de Gram-Schmidt:

Sejam $v_1=(1,0,-1)$ e $v_2=(0,1,-1)$. Seja $\{u_1,u_2\}$ a base ortonormal procurada. Então:

$$u_1 = \frac{v_1}{||v_1||} = \left(\frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{2}}\right).$$

$$w_2 = v_2 - \langle v_2, u_1 \rangle u_1 =$$

$$= (0, 1, -1) - \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{2}} \right) = \left(-\frac{1}{2}, 1, -\frac{1}{2} \right).$$

$$u_2 = \frac{w_2}{||w_2||} = \frac{2}{\sqrt{6}} \left(-\frac{1}{2}, 1, -\frac{1}{2} \right) = \left(-\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, -\frac{1}{\sqrt{6}} \right).$$

Podemos, agora, resolver o exercício:

a.
$$proj_{U}(3,2,5) = proj_{u_{1}}(3,2,5) + proj_{u_{2}}(3,2,5) =$$

$$= -\frac{2}{\sqrt{2}}u_{1} - \frac{4}{\sqrt{6}}u_{2} =$$

$$= (-1,0,1) + \left(\frac{2}{3}, -\frac{4}{3}, \frac{2}{3}\right) =$$

$$= \left(-\frac{1}{3}, -\frac{4}{3}, \frac{5}{3}\right).$$

Daí, temos

$$(3,2,5) - proj_{U}(3,2,5) = (3,2,5) - \left(-\frac{1}{3}, -\frac{4}{3}, \frac{5}{3}\right) = \left(\frac{10}{3}, \frac{10}{3}, \frac{10}{3}\right).$$

Então,

$$(3,2,5) = \underbrace{\left(-\frac{1}{3}, -\frac{4}{3}, \frac{5}{3}\right)}_{\in U} + \underbrace{\left(\frac{10}{3}, \frac{10}{3}, \frac{10}{3}\right)}_{\in U^{\perp}}.$$

b.
$$proj_{U}(a,b,c) = proj_{u_{1}}(a,b,c) + proj_{u_{2}}(a,b,c) =$$

$$= \frac{a-c}{\sqrt{2}}u_{1} + \left(\frac{-a+2b-c}{\sqrt{6}}\right)u_{2} =$$

$$= \left(\frac{2a-b-c}{3}, \frac{-a+2b-c}{3}, \frac{-a-b+2c}{3}\right).$$

c.
$$(a,b,c) = \underbrace{(\frac{2a-b-c}{3}, \frac{-a+2b-c}{3}, \frac{-a-b+2c}{3})}_{\in U} + \underbrace{(\frac{a+b+c}{3}, \frac{a+b+c}{3}, \frac{a+b+c}{3})}_{\in U^{\perp}}.$$

Exemplo 16.5.

Em $P_2(\mathbb{R})$, definimos o produto interno

$$< f(t), g(t) > = \int_0^1 f(t) g(t) dt.$$

Vamos obter uma base ortonormal do subespaço $[3, 1-t]^{\perp}$.

Seja
$$p(t) = at^2 + bt + c \in [3, 1 - t]^{\perp}$$
. Então $< f(t), p(t) >= \int_0^1 3(at^2 + bt + c)dt = 0 \Rightarrow 2a + 3b + 6c = 0 \quad (1)$. $< g(t), p(t) >= \int_0^1 (1 - t)(at^2 + bt + c)dt = 0 \Rightarrow a + 2b + 6c = 0 \quad (2)$.

O sistema linear formado pelas equações (1) e (2) possui soluções (a,b,c) tais que a=6c; b=-6c. Logo, $p(t)=6ct^2-6ct+c=c(6t^2-6t+1), c\in\mathbb{R}$.

O vetor $\{6t^2 - 6t + 1\}$ é uma base de $[3, 1 - t]^{\perp}$ mas ainda não é uma base ortonormal, para isso precisamos normalizar p(t):

$$|| p(t) || = \sqrt{\langle p(t), p(t) \rangle} = \sqrt{\int_0^1 (6t^2 - 6t + 1)^2 dt} = \sqrt{1/5}.$$

$$\frac{p(t)}{\parallel p(t) \parallel} = \frac{6t^2 - 6t + 1}{\sqrt{1/5}} = \sqrt{5}(6t^2 - 6t + 1).$$

Logo, $\{\sqrt{5}(6t^2-6t+1)\}$ é uma base ortonormal de $[3,1-t]^{\perp}$.

Resumo

Nesta aula estudamos o subespaço que é o complemento ortogonal de um outro. Na verdade, podemos definir o complemento ortogonal de qualquer subconjunto de um espaço euclidiano e provar que é um subespaço, mas quando partimos de um subsconjunto U que é, ele próprio, um subespaço, o caso fica muito mais interessante porque podemos escrever o espaço como soma direta de U e seu complemento ortogonal. Podemos, também, decompor um vetor do espaço em duas parcelas, sendo cada uma delas a projeção ortogonal do vetor em um dos subespaços: U e U^{\perp} .

Exercício 16.1.

- 1. Dado $U = \{(x, y, z) \in \mathbb{R}^3; y 2z = 0\},\$
 - a. Escreva o vetor (1,2,4), de \mathbb{R}^3 como uma soma de um vetor de U e um de U^{\perp} .
 - b. Obtenha o vetor projeção ortogonal de $v=(a,b,c)\in\mathbb{R}^3$ sobre U.
- 2. Seja W o subespaço de \mathbb{R}^4 gerado por u=(1,2,3,-1), v=(2,4,7,2) $\mathbf{e}=(1,1,1,1).$ Encontre uma base ortonormal para W^\perp .
- 3. Considere o seguinte produto interno em \mathbb{R}^4 :

$$<(a,b,c,d),(x,y,z,w)>=2ax+by+cz+dw,$$

para $(a,b,c,d),(x,y,z,w) \in \mathbb{R}^4$. Determine uma base do subespaço ortogonal de U = [(1,2,0,-1),(2,0,-1,1)].

4. Em $M_2(\mathbb{R})$, a relação

$$\langle A,B \rangle = a_{11}b_{11} + a_{12}b_{12} + a_{21}b_{21} + a_{22}b_{22},$$

onde $A = (a_{1j}), B = (b_{ij}), i, j = 1, 2, \text{ \'e um produto interno.}$ Considere o seguinte subespaço de $M_2(\mathbb{R})$:

$$W = \left\{ \left(\begin{array}{cc} x & y \\ z & w \end{array} \right); x - y + z = 0 \right\}.$$

- a. Determine uma base de W.
- b. Determine uma base de W^{\perp} .
- 5. Sejam \mathbb{R}^4 e $U = \{(x, y, z, w) \in \mathbb{R}^4; x + y z + 2w = 0\}$. Determine uma base ortonormal de U de uma de U^{\perp} .

Autoavaliação

Bem, chegamos ao final do primeiro módulo. A próxima aula revê a teoria apresentada ao longo das 16 primeiras aulas, em forma de exercícios. Antes de partir para ela, porém, certifique-se de ter apreendido a técnica e, principalmente, o significado do que estudamos nesta aula. Se sentir qualquer dificuldade ao resolver os exercícios ou ao estudar os exemplos, entre em contato com o tutor da disciplina.

RESPOSTAS DOS EXERCÍCIOS

- 1. a. $(1,2,4) = (1,\frac{16}{5},\frac{8}{5}) + (0,-\frac{6}{5},\frac{12}{5})$ b. $proj_U(a,b,c) = (a,\frac{4a+2c}{5},\frac{2b+c}{5})$
- 2. Uma base de W^{\perp} : $\{\frac{(-7,10,-4,1)}{\sqrt{166}}\}$
- 3. (Atenção para o produto interno, diferente do usual!!) Uma base de U^{\perp} : $\{(-1,1,-4,0),(1,0,6,2)\}$
- 4. a. $\left\{ \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$ b. $\left\{ \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix} \right\}$
- 5. Uma base de

$$U: \left\{ \left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}, 0\right), \left(-\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, 0\right), \left(-\frac{2}{\sqrt{21}}, -\frac{2}{\sqrt{21}}, \frac{2}{\sqrt{21}}, \frac{3}{\sqrt{21}}\right) \right\}.$$

Uma base de

$$U^{\perp}: \; \left\{ \left(\frac{1}{\sqrt{7}}, \frac{1}{\sqrt{7}}, -\frac{1}{\sqrt{7}}, \frac{2}{\sqrt{7}}\right) \right\}$$

Aula 17 Exercícios Resolvidos

Objetivos

Fazer uma revisão do primeiro módulo, através da resolução de exercícios variados.

EXERCÍCIOS RESOLVIDOS

Pré-requisito: Aulas 1 a 16.

Nesta aula, damos uma pequena pausa na apresentação da teoria para exercitar o conteúdo já estudado. Você tem uma lista de exercícios para tentar resolver e conferir com as resoluções, que se encontram após os enunciados.

A ideia é que você primeiro tente resolvê-los, recorrendo, se necessário, às anotações de aula, e só depois de resolver, compare sua solução com a que apresentamos aqui.

Caso haja alguma discordância ou dúvida, procure o tutor. O objetivo principal é que você siga em frente, iniciando o segundo módulo bem seguro do conteúdo estudado no primeiro.

EXERCÍCIOS

1. Sendo
$$A_{3\times 2} = \begin{pmatrix} 1 & -1 \\ 2 & 0 \\ 3 & 1 \end{pmatrix}$$
, $B_{3\times 2} = \begin{pmatrix} 0 & 2 \\ 3 & 4 \\ -5 & -1 \end{pmatrix}$, $C_{2\times 4} = \begin{pmatrix} 2 & a & -3 & 2 \\ 0 & -1 & b & 6 \end{pmatrix}$, determine a e b para que a matriz $(2A+B)C$ seja igual a $\begin{pmatrix} 4 & 2 & -6 & 4 \\ 14 & 3 & -1 & 38 \\ 2 & 0 & 2 & 8 \end{pmatrix}$.

- 2. Dada $A = \begin{bmatrix} 1 & 2 \\ 4 & -3 \end{bmatrix}$, calcule: a. A^2 b. A^T c. $\det A$ d. $\det A^T$ e. A^{-1} f. $(A^T)^{-1}$ g. $\det A^{-1}$ h) f(A), onde $f(x) = x^2 + 2x - 11$
- 3. Classifique em V (verdadeira) ou F (Falsa) cada sentença abaixo:

a.
$$(A+B)^T = A^T + B^T$$

b. $(AB)^T = A^T B^T$
c. $(A+B)^{-1} = A^{-1}B^{-1}$
d. $(AB)^{-1} = B^{-1}A^{-1}$
e. $det A = det A^T$

- f. $det A^{-1} = -det A$
- g. Se $A \in M_n(\mathbb{R})$, $\alpha \in \mathbb{R}$, $det \alpha A = n\alpha det A$
- 4. Determine $a \in \mathbb{R}$ para que exista a inversa da matriz

$$A = \begin{bmatrix} 1 & 0 & 2 \\ 4 & 1 & a \\ 2 & -1 & 3 \end{bmatrix}$$
. Caso exista, calcule A^{-1} , para $a = 8$.

5. (Provão - MEC - 2002)

A e B são matrizes reais $n \times n$, sendo $n \ge 2$ e α , um número real. A respeito dos determinantes dessas matrizes, é correto afirmar que:

- (a) det(AB) = det A.det B
- (b) det(A+B) = det A + det B
- (c) $det(\alpha A) = \alpha det A$
- (d) $det A \ge 0$, se todos os elementos de A forem positivos
- (e) se det A = 0 então A possui duas linhas ou colunas iguais
- 6. Calcule $det \begin{bmatrix} 2 & -1 & 3 & 0 \\ 2 & 1 & 3 & 5 \\ -2 & 0 & 4 & 5 \\ 1 & 0 & 1 & 3 \end{bmatrix}$ por triangularização.
- 7. Classifique e resolva, por escalonamento, cada um dos sistemas lineares abaixo:

$$S_1: \begin{cases} x+y-z=0\\ 2x+4y-z=0\\ 3x+2y+2z=0 \end{cases}$$

$$S_2: \begin{cases} 2x - y + z = 0 \\ x + 2y - z = 0 \\ 3x + y = 0 \end{cases}$$

$$S_3: \begin{cases} x - y + 3z = 2\\ x + y + z = 1\\ x - 3y + 5z = 5 \end{cases}$$

8. Discuta o sistema linear $\begin{cases} 2x + 3y + az = 3 \\ x + y - z = 1 \\ x + ay + 3z = 2 \end{cases}$, segundo os valores do parâmetro real a.

- 9. Determine as condições sobre a,b e c que tornam compatível, o sistema $\begin{cases} x 2y + 7z = a \\ x + 2y 3z = b \\ 2x + 6y 11z = c \end{cases}$.
- 10. Dado um espaço vetorial V, mostre que $W \subset V$, não vazio, é subespaço vetorial de V se, e somente se, $au + bv \in W, \forall u, v \in W, \forall a, b \in \mathbb{R}$.
- 11. Verifique se os seguintes vetores de \mathbb{R}^3 são LD ou LI:

a.
$$(1,1,-1),(2,1,0)$$
 e $(-1,1,2)$

b.
$$(1,2,0), (3,1,2)$$
 e $(2,-1,2)$

12. Obtenha um conjunto de geradores do subespaço U, de V, em cada caso:

a.
$$V = \mathbb{R}^2$$
; $U = \{(x, y) \in \mathbb{R}^2; x = 3y\}$

b.
$$V = \mathbb{R}^3$$
; $U = \{(x, y, z) \in \mathbb{R}^3; x = 3y\}$

c.
$$V = \mathbb{R}^4$$
; $U = \{(x, y, z, t) \in \mathbb{R}^4; x = 3y \text{ e } z - t = 0\}$

- 13. Determine o subespaço de \mathbb{R}^3 gerado pelos vetores $v_1 = (1, -1, 1), v_2 = (2, -3, 1)$ e $v_3 = (0, 1, 1)$.
- 14. Encontre uma base e dê a dimensão do subespaço de $M_2(\mathbb{R})$ gerado por $u = \begin{bmatrix} 1 & -2 \\ 3 & 1 \end{bmatrix}, v = \begin{bmatrix} 3 & 2 \\ -1 & 5 \end{bmatrix}$ e $w = \begin{bmatrix} 3 & 10 \\ -11 & 7 \end{bmatrix}$.
- 15. Dados $U = \{(x,x,z); x,z \in \mathbb{R}\}$ e $W = \{(x,0,x); x \in \mathbb{R}\}$, subespaços de \mathbb{R}^3 , encontre uma base e determine a dimensão dos subespaços $U \cap W$ e U + W, de \mathbb{R}^3 .
- 16. Determine a sabendo que o vetor $v = (1, -2, a, 4) \in \mathbb{R}^4$ tem módulo igual a $\sqrt{30}$.
- 17. Considere os vetores u = (1, -2, 1) e v = (0, -3, 4), de \mathbb{R}^3 . Determine:

a.
$$2u - v$$

d.
$$\langle u, v \rangle$$

- 18. Determine $a \in \mathbb{R}$ tal que os vetores u = (a, a+2, 1) e v = (a+1, 1, a), de \mathbb{R}^3 , sejam ortogonais.
- 19. Dadas as matrizes $u = \begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix}$ e $v = \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix}$, em $M_2(\mathbb{R})$, a expressão $< u, v >= a_1 a_2 + b_1 b_2 + c_1 c_2 + d_1 d_2$ define um produto interno no espaço $M_2(\mathbb{R})$.

 Dados os vetores $u = \begin{bmatrix} -1 & 2 \\ 1 & 3 \end{bmatrix}$ e $v = \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix}$, determine
 - a. ||u + v||
 - b. o ângulo entre *u* e *v*
- 20. Em $P_2(\mathbb{R})$, definimos o produto interno de dois vetores $p(t) = a_1t^2 + b_1t + c_1$ e $q(t) = a_2t^2 + b_2t + c_2$ como $< p, t >= a_1a_2 + b_1b_2 + c_1c_2$. Calcule < p(t), q(t) > no caso em que $p(t) = 2t^2 3t + 1$ e $q(t) = t^2 + 5t 2$.
- 21. Determinar o versor de um vetor v é um processo também conhecido por *normalização* de v. Normalize cada um dos vetores abaixo, no espaço euclidiano \mathbb{R}^3 :
 - a. u = (1, 2, -1)
 - b. v = (1/2, 2/3, 1/2)
- 22. Em $P_3(\mathbb{R})$, considere o produto interno

$$< f(t), g(t) > = \int_0^1 f(t)g(t)dt.$$

- a. Calcule o produto interno de f(t) = t 1 por $g(t) = 3t^3 + 2t + 1$.
- b. Calcule ||p(t)||, onde $p(t) = t^2 t$.
- c. Determine $a \in \mathbb{R}$ para que $f(t) = at^2 + 1$ e g(t) = t 2 sejam ortogonais.
- 23. Mostre que se *u* é ortogonal a *v* então todo múltiplo escalar de *u* também é ortogonal a *v*.
- 24. Encontre um vetor unitário, ortogonal, simultaneamente, a $v_1 = (2, 1, 1)$ e $v_2 = (1, 3, 0)$, em \mathbb{R}^3 .

- 25. Sejam u, v vetores de um espaço euclidiano V, com v não nulo. Mostre que o vetor $w = u \frac{\langle u, v \rangle}{||v||^2} v$ é ortogonal a v. (O vetor w é a projeção ortogonal de u na direção de v, obtido sem a hipótese de v ser unitário.)
- 26. Determine $a \in \mathbb{R}$ tal que os vetores u = (a, a + 2, 1) e v = (a + 1, 1, a), de \mathbb{R}^3 , sejam ortogonais.
- 27. Obtenha uma base ortonormal de \mathbb{R}^3 a partir da base $B = \{v_1, v_2, v_3\}$, onde $v_1 = (1, 1, -1), v_2 = (1, -1, 0), v_3 = (-1, 1, 1).$
- 28. Em \mathbb{R}^3 , com o produto interno usual, determine a projeção ortogonal do vetor u = (1,2,-3) sobre o subespaço gerado pelos vetores $v_1 = (1,0,2)$ e $v_2 = (0,1,0)$.
- 29. Considere $U = \{(x, y, z) \in \mathbb{R}^3; x y z = 0\}$, subespaço de \mathbb{R}^3 .
 - a. Determine uma base ortonormal de U.
 - b. Determine uma base ortonormal de U^{\perp} .
 - c. Escreva o vetor $v=(a,b,c)\in\mathbb{R}^3$ como soma de um vetor de U e um de U^\perp .

RESOLUÇÃO DOS EXERCÍCIOS

1.
$$(2A+B)C) =$$

$$= \begin{bmatrix} \begin{pmatrix} 2 & -2 \\ 4 & 0 \\ 6 & 2 \end{pmatrix} + \begin{pmatrix} 0 & 2 \\ 3 & 4 \\ -5 & -1 \end{pmatrix} \end{bmatrix} \begin{pmatrix} 2 & a & -3 & 2 \\ 0 & -1 & b & 6 \end{pmatrix} =$$

$$= \begin{pmatrix} 2 & 0 \\ 7 & 4 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 2 & a & -3 & 2 \\ 0 & -1 & b & 6 \end{pmatrix} =$$

$$= \begin{pmatrix} 4 & 2a & -6 & 4 \\ 14 & 7a - 4 & -21 + 4b & 38 \\ 2 & a - 1 & -3 + b & 8 \end{pmatrix}.$$

Então,

$$\begin{cases} 2a = 2 \\ 7a - 4 = 3 \\ a - 1 = 0 \\ -21 + 4b = -1 \\ -3 + b = 2 \end{cases} \Rightarrow \begin{cases} a = 1 \\ b = 5 \end{cases}$$

2. a.

$$A^{2} = \begin{pmatrix} 1 & 2 \\ 4 & -3 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 4 & -3 \end{pmatrix} =$$

$$= \begin{pmatrix} 1+8 & 2-6 \\ 4-12 & 8+9 \end{pmatrix} = \begin{pmatrix} 9 & -4 \\ -8 & 17 \end{pmatrix}.$$

b.
$$A^T = \begin{pmatrix} 1 & 4 \\ 2 & -3 \end{pmatrix}$$

c.
$$det A = -3 - 8 = -11$$

d.
$$det A^T = det A = -11$$

e. A^{-1} :

Logo,
$$A^{-1} = \begin{pmatrix} 3/11 & 2/11 \\ 4/11 & -1/11 \end{pmatrix}$$
.

f.
$$(A^T)^{-1} = (A^{-1})^T = \begin{pmatrix} 3/11 & 4/11 \\ 2/11 & -1/11 \end{pmatrix}$$

g.
$$det A^{-1} = (det A)^{-1} = (-11)^{-1} = -\frac{1}{11}$$

h.

$$f(A) = A^{2} + 2A - 11I_{2} =$$

$$= \begin{pmatrix} 9 & -4 \\ -8 & 17 \end{pmatrix} + \begin{pmatrix} 2 & 4 \\ 8 & -6 \end{pmatrix} - \begin{pmatrix} 11 & 0 \\ 0 & 11 \end{pmatrix} =$$

$$= \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

Neste caso, dizemos que a matriz A é um zero da função f.

- 3. a. (V)
 - b. (F): $(AB)^T = B^T A^T$
 - c. (F): não há fórmula para a inversa da soma
 - d. (V)
 - e. (V)
 - f. (F): $det A^{-1} = (det A)^{-1} = \frac{1}{det A}$. Justamente porque o determinante da matriz A aparece no denominador é que só existe a inversa de A se seu determinante for diferente de zero.
 - g. (F): A cada linha de A que é multiplicada pelo escalar α , o determinante fica multiplicado por α . Uma matriz quadrada de ordem n possui n linhas. Logo, o determinante de A multiplicada por α é igual ao determinante de A multiplicado por α , n vezes. Ou seja, $det \alpha A = \alpha^n det A$.
- 4. Para que exista a inversa de A, o seu determinante não pode ser nulo. Vamos calcular det A, pelo método de Sarrus:

$$\begin{vmatrix} 1 & 0 & 2 \\ 4 & 1 & a \\ 2 & -1 & 3 \end{vmatrix} = (3-8) - (4-a) = a-9.$$

Queremos $det A \neq 0$, isto é, $a - 9 \neq 0 \Rightarrow a \neq 9$. Podemos calcular a inversa de *A* para a = 8:

5. A opção correta é a letra (a).

$$= (-)(6) \begin{vmatrix} 1 & 0 & 1 & 3 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 1 & \frac{11}{6} \\ 0 & 0 & 2 & -7 \end{vmatrix} L_4 \leftarrow L_4 - 2L_3$$

$$= (-)(6) \begin{vmatrix} 1 & 0 & 1 & 3 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 1 & \frac{11}{6} \\ 0 & 0 & 0 & -\frac{64}{6} \end{vmatrix} =$$

$$= (-)(6)(1)(1)(1)\left(-\frac{64}{6}\right) = 64.$$
7. a.
$$\begin{bmatrix} 1 & 1 & -1 \\ 2 & 4 & -1 \\ 3 & 2 & 2 \end{bmatrix} L_2 \leftarrow L_2 - 2L_1 \rightarrow$$

$$\rightarrow \begin{bmatrix} 1 & 1 & -1 \\ 0 & 2 & 1 \\ 0 & -1 & 5 \end{bmatrix} L_2 \leftarrow L_2 \leftrightarrow L_3 \rightarrow$$

$$\rightarrow \begin{bmatrix} 1 & 1 & -1 \\ 0 & 2 & 1 \\ 0 & -1 & 5 \end{bmatrix} L_2 \leftarrow L_2 \leftrightarrow L_3 \rightarrow$$

$$\rightarrow \begin{bmatrix} 1 & 1 & -1 \\ 0 & -1 & 5 \\ 0 & 2 & 1 \end{bmatrix} L_3 \leftarrow L_3 + 2L_2 \rightarrow$$

$$\rightarrow \begin{bmatrix} 1 & 1 & -1 \\ 0 & -1 & 5 \\ 0 & 0 & 11 \end{bmatrix}.$$

Obtemos o sistema equivalente: $\begin{cases} x+y-z=0\\ -y+5z=0\\ 11z=0 \end{cases}$ que é compatível determinado, com conjunto-solução $\{(0,0,0)\}$.

b.
$$\begin{bmatrix} 2 & -1 & 1 \\ 1 & 2 & -1 \\ 3 & 1 & 0 \end{bmatrix} \xrightarrow{L_1 \leftrightarrow L_2} \rightarrow$$

$$\rightarrow \begin{bmatrix} 1 & 2 & -1 \\ 2 & -1 & 1 \\ 3 & 1 & 0 \end{bmatrix} \xrightarrow{L_2 \leftarrow L_2 - 2L_1} \rightarrow$$

$$\rightarrow \begin{bmatrix} 1 & 2 & -1 \\ 0 & -5 & 3 \\ 0 & -5 & 3 \end{bmatrix} \xrightarrow{L_3 \leftarrow L_3 - L_2} \rightarrow$$

$$\rightarrow \left[\begin{array}{ccc} 1 & 2 & -1 \\ 0 & -5 & 3 \\ 0 & 0 & 0 \end{array} \right].$$

Obtemos o sistema equivalente: $\begin{cases} x + 2y - z = 0 \\ -5y + 3z = 0 \end{cases}$

que é compatível e indeterminado. Fazendo $y=\frac{3}{5}z$, na segunda equação, e substituindo na primeira, obtemos $x=-\frac{1}{5}z$. Logo, as soluções do sistema são os vetores de \mathbb{R}^3 da forma (-z/5,3z/5,z), para $z\in\mathbb{R}$.

c.
$$\begin{bmatrix} 1 & -1 & 3 & | & 2 \\ 1 & 1 & 1 & | & 1 \\ 1 & -3 & 5 & | & 5 \end{bmatrix} \begin{array}{c} L_2 \leftarrow L_2 - L_1 \rightarrow \\ L_3 \leftarrow L_3 - L_1 \end{array}$$

$$\rightarrow \left[\begin{array}{ccc|ccc|c} 1 & -1 & 3 & | & 2 \\ 0 & 2 & -2 & | & -1 \\ 0 & -2 & 2 & | & 3 \end{array} \right] \begin{array}{c} L_3 \leftarrow L_3 + L_2 \end{array} \rightarrow$$

$$\rightarrow \left[\begin{array}{ccc|ccc|c} 1 & -1 & 3 & | & 2 \\ 0 & 2 & -2 & | & -1 \\ 0 & 0 & 0 & | & 2 \end{array} \right].$$

Obtemos o sistema equivalente $\begin{cases} x - y + 3z = 2 \\ 2y - 2z = -1 \\ 0 = 2 \end{cases}$

que é incompatível. Logo, o conjunto-solução do sistema dado é vazio.

8.
$$\begin{bmatrix} 2 & 3 & a & | & 3 \\ 1 & 1 & -1 & | & 1 \\ 1 & a & 3 & | & 2 \end{bmatrix} \quad L_1 \leftrightarrow L_2 \rightarrow$$

$$\rightarrow \left[\begin{array}{ccc|ccc} 1 & 1 & -1 & | & 1 \\ 2 & 3 & a & | & 3 \\ 1 & a & 3 & | & 2 \end{array} \right] \begin{array}{c} L_2 \leftarrow L_2 - 2L_1 \\ L_3 \leftarrow L_3 - L_1 \end{array}$$

$$\rightarrow \begin{bmatrix} 1 & 1 & -1 & | & 1 \\ 0 & 1 & a+2 & | & 1 \\ 0 & a-1 & 4 & | & 1 \end{bmatrix} \quad L_3 \leftarrow L_3 - (a-1)L_2$$

$$\rightarrow \left[\begin{array}{ccc|ccc} 1 & 1 & & -1 & | & & 1 \\ 0 & 1 & & a+2 & | & & 1 \\ 0 & 0 & 4-(a-1)(a+2) & | & 1-(a-1) \end{array} \right].$$

A terceira equação pode ser escrita -(a-2)(a+3)z = -(a-2). Note que a expressão do primeiro membro se anula para a=2 ou a=-3. Então,

Se a=2, a terceira equação fica 0=0 e o sistema é, nesse caso, compatível e indeterminado.

Se a = -3, a terceira equação fica 0z = 5, o que torna o sistema incompatível.

Finalmente, se $a \neq 2$ e $a \neq -3$, a terceira equação nem é eliminada nem é impossível. Nesse caso, o sistema é compatível e determinado.

Para que o sistema seja compatível é necessário ter $c-2a-10(\frac{b-a}{4})=0$, ou seja, a-5b+2c=0.

- 10. Vimos que um subconjunto W de um espaço vetorial V é subespaço vetorial de V se (i) $W \neq \emptyset$; (ii) $av \in W$, $\forall v \in W, \forall a \in \mathbb{R}$ e (iii) $u+v \in W, \forall u,v \in W$. (\Rightarrow) Vamos supor que W é subespaço. Então W é nãovazio. Além disso, dados $a,b \in \mathbb{R}$, $u,v \in W$, por (ii), temos que $au \in W$ e $bv \in W$. Por (iii), $au+bv \in W$. (\Leftarrow) Vamos supor, agora, que W é nãovazio e $au+bv \in V, \forall u,v \in V, \forall a,b \in \mathbb{R}$. Fazendo b=0, temos a validade da propriedade (ii) da definição de subespaço. Fazendo a=b=1, temos a validade de (iii).
- 11. a. $a_1(1,1,-1) + a_2(2,1,0) + a_3(-1,1,2) = o_{\mathbb{R}^3} = (0,0,0) \Rightarrow$

Obtemos, assim, o sistema equivalente:

$$\begin{cases} a_1 + 2a_2 - a_3 = 0 \\ -a_2 + 2a_3 = 0 \end{cases},$$

$$5a_3 = 0$$

cuja solução é dada por $a_1 = a_2 = a_3 = 0$. Logo, os vetores v_1, v_2 , e v_3 são LI.

b.
$$a_{1}(1,2,0) + a_{2}(3,-1,2) + a_{3}(2,-1,2) = o_{\mathbb{R}^{3}} = (0,0,0) \Rightarrow$$

$$\Rightarrow \begin{cases} a_{1} + 3a_{2} + 2a_{3} = 0 \\ 2a_{1} + a_{2} - a_{3} = 0 \end{cases} \Rightarrow$$

$$\Rightarrow \begin{bmatrix} 1 & 3 & 2 \\ 2 & 1 & -1 \\ 0 & 2 & 2 \end{bmatrix} L_{2} \leftarrow L_{2} - 2L_{1} \rightarrow$$

$$\Rightarrow \begin{bmatrix} 1 & 3 & 2 \\ 0 & -5 & -5 \\ 0 & 2 & 2 \end{bmatrix} L_{2} \leftarrow -1/5L_{2} \rightarrow$$

$$\Rightarrow \begin{bmatrix} 1 & 3 & 2 \\ 0 & 1 & 1 \\ 0 & 2 & 2 \end{bmatrix} L_{3} \leftarrow L_{3} - 2L_{2} \rightarrow \begin{bmatrix} 1 & 3 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$$

Obtemos, assim, o sistema equivalente

$$\begin{cases} a_1 + 3a_2 + 2a_3 = 0 \\ a_2 + a_3 = 0 \end{cases},$$

que é indeterminado. Logo, os vetores v_1, v_2 e v_3 são LD.

- 12. a. $v \in U \Rightarrow v = (3y,y) = y(3,1); y \in \mathbb{R}$. Um conjunto gerador de $U \notin \{(3,1)\}$.
 - b. $v \in U \Rightarrow v = (3y, y, z) = y(3, 1, 0) + z(0, 0, 1); y, z \in \mathbb{R}$. Um conjunto gerador de $U \notin \{(3, 1, 0), (0, 0, 1)\}$.
 - c. $v \in U \Rightarrow v = (3y, y, t, t) = y(3, 1, 0, 0) + t(0, 0, 1, 1);$ $y, t \in \mathbb{R}$. Um conjunto gerador de U é $\{(3, 1, 0, 0), (0, 0, 1, 1)\}.$
- 13. Um vetor v = (x, y, z) de \mathbb{R}^3 pertence ao subespaço gerado pelos vetores v_1, v_2 e v_3 se v pode ser escrito como uma combinação linear desses vetores. Isto é, queremos que existam a, b, c reais tais que

$$(x,y,z) = a(1,-1,1) + b(2,-3,1) + c(0,1,1).$$

Em outras palavras, queremos que o sistema linear

$$\begin{cases} a+2b=x\\ -a-3b+c=y\\ a+b+c=z \end{cases}$$

seja compatível. Vamos escalonar o sistema:

$$\begin{bmatrix} 1 & 2 & 0 & | & x \\ -1 & -3 & 1 & | & y \\ 1 & 1 & 1 & | & z \end{bmatrix} \begin{array}{c} L_2 \leftarrow L_2 + L_1 \rightarrow L_3 \leftarrow L_3 - L_1 \end{array}$$

$$\rightarrow \left[\begin{array}{ccc|ccc} 1 & 2 & 0 & | & x \\ 0 & -1 & 1 & | & y+x \\ 0 & -1 & 1 & | & z-x \end{array} \right] \quad L_3 \leftarrow L_3 - L_2$$

$$\rightarrow \left[\begin{array}{ccc|ccc} 1 & 2 & 0 & | & x \\ 0 & -1 & 1 & | & y+x \\ 0 & 0 & 0 & | & z-x-(y+x) \end{array} \right].$$

Para que o sistema admita solução devemos ter z-x-(y+x)=0, isto é, o subespaço de \mathbb{R}^3 gerado pelos vetores v_1,v_2 e v_3 é $\{(x,y,z)\in\mathbb{R}^3; 2x+y-z=0\}$.

14. Queremos caracterizar as matrizes de $M_2(\mathbb{R})$ que podem

ser escritas como combinação linear de $u, v \in w$:

$$\begin{bmatrix} x & y \\ z & t \end{bmatrix} = au + bv + cw =$$

$$= \begin{bmatrix} a+3b+3c & -2a+2b+10c \\ 3a-b-11c & a+5b+7c \end{bmatrix}.$$

Em outras palavras, queremos que seja compatível o sistema:

$$\begin{cases} a+3b+3c = x \\ -2a+2b+10c = y \\ 3a-b-11c = z \\ a+5b+7c = t \end{cases}.$$

Escalonando esse sistema temos:

$$\begin{bmatrix} 1 & 3 & 3 & | & x \\ -2 & 2 & 10 & | & y \\ 3 & -1 & -11 & | & z \\ 1 & 5 & 7 & | & t \end{bmatrix} \begin{bmatrix} L_2 \leftarrow L_2 + 2L_1 \\ L_3 \leftarrow L_3 - 3L_1 \end{bmatrix} \rightarrow$$

$$\rightarrow \begin{bmatrix} 1 & 3 & 3 & | & x \\ 0 & 8 & 16 & | & y + 2x \\ 0 & -10 & -20 & | & z - 3x \\ 0 & 2 & 4 & | & t - x \end{bmatrix} \begin{bmatrix} L_2 \leftrightarrow L_4 \rightarrow L_$$

$$\rightarrow \left[\begin{array}{cccc|c} 1 & 3 & 3 & | & x \\ 0 & 2 & 4 & | & t - x \\ 0 & 0 & 0 & | & z - 3x + 5(t - x) \\ 0 & 0 & 0 & | & y + 2x - 4(t - x) \end{array} \right].$$

Temos que ter, então:

z-3x+5(t-x) = 0 e y+2x-4(t-x) = 0. Escrevendo y e z em função das variáveis livres x e t, temos: y=-6x+4t e z=8x-5t. Logo, uma matriz do subespaço procurado é da forma

$$\begin{bmatrix} x & -6x+4t \\ 8x-5t & t \end{bmatrix} = x \begin{bmatrix} 1 & -6 \\ 8 & 0 \end{bmatrix} + t \begin{bmatrix} 0 & 4 \\ -5 & 1 \end{bmatrix};$$

$$x, t \in \mathbb{R}.$$

Concluimos, então, que $\left\{ \begin{bmatrix} 1 & -6 \\ 8 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 4 \\ -5 & 1 \end{bmatrix} \right\}$ é uma base do subespaço e sua dimensão é 2.

15. Seja
$$v=(a,b,c)\in U\cap W.$$
 Então
$$\left\{ \begin{array}{ll} a=b\\ a=c\\ b=0 \end{array} \right.$$

Logo, a = b = c = 0, o que implica $U \cap W = \{(0,0,0)\}$. Então $dim(U \cap W) = 0$. Como dimU = 2, pois $\{(1,1,0),(0,0,1)\}$ é uma base de U e dimW = 1, pois $\{(1,0,1)\}$ é uma base de W, temos

$$dim U + dim W = 3 = dim \mathbb{R}^3$$
.

Logo, \mathbb{R}^3 é a soma direta dos subespaços U e W. Como base de \mathbb{R}^3 podemos considerar a canônica ou a união das bases mencionadas acima, de U e W.

16.
$$||v|| = \sqrt{\langle v, v \rangle} = \sqrt{30} \Rightarrow \sqrt{1 + 4 + a^2 + 16} = \sqrt{30} \Rightarrow 21 + a^2 = 30 \Rightarrow a^2 = 9 \Rightarrow a = \pm 3.$$

17. a.
$$2u - v = (2, -4, 2) - (0, -3, 4) = (2, -1, -2)$$
.

b.
$$||u|| = \sqrt{1+4+1} = \sqrt{6}$$
.

c. versor de
$$v = \frac{v}{||v||} = \frac{(0,-3,4)}{\sqrt{9+16}} = (0,-\frac{3}{5},\frac{4}{5}).$$

d.
$$\langle u, v \rangle = 0 + 6 + 4 = 10$$
.

e.
$$d(u,v) = ||u-v|| = ||(1,1,-3)|| = \sqrt{1+1+9} = \sqrt{11}$$
.

18.
$$\langle u, v \rangle = 0 \Rightarrow a(a+1) + (a+2) + a = 0 \Rightarrow a^2 + 3a + 2 = 0 \Rightarrow a = -1 \text{ ou } a = -2.$$

19. a.
$$||u+v|| = \left| \left| \begin{bmatrix} 1 & 3 \\ 4 & 7 \end{bmatrix} \right| = \sqrt{1+9+16+49} = \sqrt{75} = 5\sqrt{3}$$
.

b)
$$\cos \theta = \frac{\langle u, v \rangle}{||u||.||v||} = \frac{-2+2+3+12}{\sqrt{1+4+1+9}\sqrt{4+1+9+16}} = \frac{15}{\sqrt{15}\sqrt{30}} = \frac{\sqrt{2}}{2} \Rightarrow \theta = 45^{\circ}.$$

20.
$$\langle p(t), q(t) \rangle = 2 - 15 - 2 = -15$$
.

21. a.
$$\frac{u}{||u||} = \frac{(1,2,-1)}{\sqrt{6}} = \left(\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, -\frac{1}{\sqrt{6}}\right).$$

b.
$$\frac{v}{\|v\|} = \frac{(1/2, 2/3, 1/2)}{\sqrt{17/18}} = \frac{3\sqrt{2}}{\sqrt{17}} (\frac{1}{2}, \frac{2}{3}, \frac{1}{2}) =$$
$$= \left(\frac{3\sqrt{2}}{2\sqrt{17}}, \frac{2\sqrt{2}}{\sqrt{17}}, \frac{3\sqrt{2}}{2\sqrt{17}}\right).$$

22. a.
$$\int_{0}^{1} (t-1)(3t^{3} + 2t + 1)dt =$$

$$= \int_{0}^{1} (3t^{4} - 3t^{3} + 2t^{2} - t - 1)dt =$$

$$= \frac{3t^{5}}{5} - \frac{3t^{4}}{4} + \frac{2t^{3}}{3} - \frac{t^{2}}{2} - t \Big]_{0}^{1} =$$

$$= \frac{3}{5} - \frac{3}{4} + \frac{2}{3} - \frac{1}{2} - 1 = -\frac{59}{60}.$$

b.
$$||p(t)|| = \sqrt{\langle p(t), p(t) \rangle} = \sqrt{\int_0^1 (p(t))^2 dt} =$$

 $= \sqrt{\int_0^1 (t^2 - t)^2 dt} = \sqrt{\int_0^1 (t^4 - 2t^3 + t^2) dt} =$
 $= \sqrt{\left(\frac{t^5}{5} - \frac{2t^4}{4} + \frac{t^3}{3}\right)\Big|_0^1} = \sqrt{\frac{1}{30}}.$

c.
$$\langle f(t), g(t) \rangle = 0 \Rightarrow \int_0^1 (f(t), g(t)) dt = 0 \Rightarrow$$

 $\Rightarrow \int_0^1 (at^3 - 2at^2 + t - 2) dt = 0 \Rightarrow$
 $\Rightarrow \left(\frac{at^4}{4} - \frac{2at^3}{3} + \frac{t^2}{2} - 2t \right) \Big|_0^1 = 0 \Rightarrow$
 $\Rightarrow \frac{a}{4} - \frac{2a}{3} + \frac{1}{2} - 2 = 0 \Rightarrow a = -\frac{18}{5}.$

- 23. Se u é ortogonal a v então < u, v> = 0. Seja $\alpha \in \mathbb{R}$. Então $< \alpha u, v> = \alpha < u, v> = \alpha.0 = 0$. Logo, αu também é ortogonal a v, para qualquer escalar α .
- 24. Queremos um vetor v = (a, b, c) tal que

$$< v, v_1 > = 0 = < v, v_2 > .$$

Isto leva a

$$\begin{cases} 2a+b+c=0 \\ a+3b=0 \end{cases}.$$

A solução desse sistema é qualquer vetor de \mathbb{R}^3 da forma (-3b,b,5b), para $b\in\mathbb{R}$.

Fazendo b=1, temos o vetor (-3,1,5). Normalizando este vetor, obtemos uma resposta: $\left(-\frac{3}{\sqrt{3}5},\frac{1}{\sqrt{3}5},\frac{5}{\sqrt{3}5}\right)$.

25.
$$\left\langle u - \frac{\langle u, v \rangle}{||v||^2} v, v \right\rangle = \langle u, v \rangle - \left\langle \frac{\langle u, v \rangle}{||v||^2} v, v \right\rangle =$$

= $\langle u, v \rangle - \frac{\langle u, v \rangle}{||v||^2} ||v||^2 = \langle u, v \rangle - \langle u, v \rangle = 0.$

26.
$$a(a+1)+(a+2)+a=0 \Rightarrow a^2+3a+2=0 \Rightarrow a=-1$$
 ou $a=-2$.

27. Seja $\{u_1, u_2, u_3\}$ a base ortonormal procurada. Então:

$$u_1 = \frac{v_1}{\|v_1\|} = \frac{(1,1,-1)}{\sqrt{3}}.$$

$$w_2 = v_2 - proj_{u_1}v_2 = \mathbf{v_2} - \langle v_2, u_1 \rangle u_1 = v_2 - 0.u_1 = v_2,$$

o que indica que os vetores u_1 e v_2 são ortogonais. Basta normalizar o vetor v_2 :

$$u_2 = \frac{v_2}{||v_2||} = \frac{(1, -1, 0)}{\sqrt{2}}.$$

$$w_{3} = v_{3} - proj_{u_{1}}v_{3} - proj_{u_{2}}v_{3} =$$

$$= v_{3} - \langle v_{3}, u_{1} \rangle u_{1} - \langle v_{3}, u_{2} \rangle u_{2} =$$

$$= (-1, 1, 1) - \left(-\frac{1}{\sqrt{3}}\right) \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}\right) -$$

$$\left(-\frac{2}{\sqrt{2}}\right) \left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0\right) = \left(\frac{1}{3}, \frac{1}{3}, \frac{2}{3}\right).$$

$$u_3 = \frac{w_3}{||w_3||} = \frac{3}{\sqrt{6}} \left(\frac{1}{3}, \frac{1}{3}, \frac{2}{3}\right) = \left(\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}\right).$$

Resposta:

$$\left\{ \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}\right), \left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0\right), \left(\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}\right) \right\}.$$

28. Sendo S o subespaço de \mathbb{R}^3 gerado pelos vetores v_1 e v_2 , sabemos que $proj_Su = proj_{u_1}u + proj_{u_2}u$, onde $\{u_1, u_2\}$ é uma base ortonormal de S. Verificamos que os vetores v_1 e v_2 são LI (um não é múltiplo do outro) e, portanto, formam uma base de S. Além disso, o produto interno deles é zero, logo, formam uma base ortogonal. Precisamos apenas normalizá-la. Logo, $u_1 = \frac{v_1}{||v_1||} = \frac{(1,0,2)}{\sqrt{5}}$ e $u_2 = v_2$, pois vetor v_2 é unitário. Então:

$$proj_{S}u = \langle u, u_{1} \rangle u_{1} + \langle u, u_{2} \rangle u_{2} =$$

$$= \frac{-5}{\sqrt{5}} \left(\frac{1}{\sqrt{5}}, 0, \frac{2}{\sqrt{5}} \right) + 2(0, 1, 0) =$$

$$= (-1, 0, -2) + (0, 2, 0) = (-1, 2, -2).$$

29. a. Um vetor de *U* é da forma

$$(y+z,y,z) = y(1,1,0) + z(1,0,1).$$

Assim, $\{v_1, v_2\}$ com $v_1 = (1, 1, 0)$ e $v_2 = (1, 0, 1)$ é uma base de U. Vamos aplicar o método de Gram-Schmidt para ortonormalizar essa base. Seja $\{u_1, u_2\}$ a base ortonormal procurada. Então

$$u_1 = \frac{v_1}{||v_1||} = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right).$$

$$w_2 = v_2 - \langle v_2, u_1 \rangle u_1 =$$

$$= (1, 0, 1) - \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0 \right) =$$

$$= (\mathbf{1}, \mathbf{0}, \mathbf{1}) - \left(-\frac{\mathbf{1}}{\mathbf{2}}, -\frac{\mathbf{1}}{\mathbf{2}}, \mathbf{0} \right) = \left(\frac{1}{2}, -\frac{1}{2}, 1 \right).$$

$$u_2 = \frac{w_2}{||w_2||} = \frac{2}{\sqrt{6}} \left(\frac{1}{2}, -\frac{1}{2}, 1 \right) = \left(\frac{1}{\sqrt{6}}, -\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}} \right).$$

Logo, $\left\{\left(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}},0\right),\left(\frac{1}{\sqrt{6}},-\frac{1}{\sqrt{6}},\frac{2}{\sqrt{6}}\right)\right\}$ é uma base ortonormal de U.

- b. Um vetor v = (x, y, z) de \mathbb{R}^3 pertence a U^{\perp} se $< v, v_1 > = < v, v_2 > = 0$. Isto leva a $\begin{cases} x + y = 0 \\ x + z = 0 \end{cases}$. v = (x, -x, -x) = x(1, -1, -1), para $x \in \mathbb{R}$. Vamos normalizar o vetor (1,-1,-1), obtendo o vetor $u_3 = \left(\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}\right)$. Então, $\left\{\left(\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}\right)\right\}$ é uma base ortonormal de U^{\perp} .
- c. Queremos escrever (a,b,c) = u + w, com $u \in U$ e $w \in U^{\perp}$. Para isso, temos que determinar o vetor u, projeção ortogonal de v = (a, b, c) sobre o subespaço

U:

$$u = proj_{U}v = proj_{u_{1}}v + proj_{u_{2}}v =$$

$$= \langle v, u_{1} \rangle u_{1} + \langle v, u_{2} \rangle u_{2} =$$

$$= \frac{a+b}{\sqrt{2}} \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0 \right) +$$

$$+ \frac{a-b+2c}{\sqrt{6}} \left(\frac{1}{\sqrt{6}}, -\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}} \right) =$$

$$= \left(\frac{a+b}{2}, \frac{a+b}{2}, 0 \right) +$$

$$+ \left(\frac{a-b+2c}{6}, \frac{-a+b-2c}{6}, \frac{2a-2b+4c}{6} \right) =$$

$$= \left(\frac{2a+b+c}{3}, \frac{a+2b-c}{3}, \frac{a-b+2c}{3} \right).$$

Calculando

$$v - proj_{v}U = (a,b,c) - \left(\frac{2a+b+c}{3}, \frac{a+2b-c}{3}, \frac{a-b+2c}{3}\right) = \left(\frac{a-b-c}{3}, \frac{-a+b+c}{3}, \frac{-a+b+c}{3}\right).$$

Logo, a decomposição do vetor (a,b,c) numa soma de um vetor de U com um de U^\perp é dada por

$$(a,b,c) = \underbrace{\left(\frac{2a+b+c}{3}, \frac{a+2b-c}{3}, \frac{a-b+2c}{3}\right)}_{\in U} + \underbrace{\left(\frac{a-b-c}{3}, \frac{-a+b+c}{3}, \frac{-a+b+c}{3}\right)}_{\in U}.$$