SEQUENCE LISTING

```
<110> ProChon Biotech Ltd.
      Yayon, Avner
<120> TREATMENT OF T CELL MEDIATED DISEASES BY INHIBITION OF FGFR3
<130> PRO-028-PCT
<140> PCT/IL04/00528
<141> 2004-06-17
<150> IL156495
<151> 2003-06-17
<150> US60/490,961
<151> 2003-07-30
<160> 76
<170> PatentIn version 3.2
<210> 1
<211> 8
<212> PRT
<213> ARTIFICIAL SEQUENCE
<220>
<223> SEQUENCE FROM PHAGE LIBRARY
<400> 1
Ser Tyr Tyr Pro Asp Phe Asp Tyr
               5
<210> 2
<211> 9
<212> PRT
<213> ARTIFICIAL SEQUENCE
<220>
<223> SEQUENCE FROM PHAGE LIBRARY
<400> 2
Asp Phe Leu Gly Tyr Glu Phe Asp Tyr
<210> 3
<211> 20
<212> PRT
<213> ARTIFICIAL SEQUENCE
```

```
<220>
<223> SEQUENCE FROM PHAGE LIBRARY
<400> 3
Tyr His Ser Trp Tyr Glu Met Gly Tyr Tyr Gly Ser Thr Val Gly Tyr
Met Phe Asp Tyr
   20
<210> 4
<211> 10
<212> PRT
<213> ARTIFICIAL SEQUENCE
<220>
<223> SEQUENCE FROM PHAGE LIBRARY
<400> 4
Asp Asn Trp Phe Lys Pro Phe Ser Asp Val
<210> 5
<211> 10
<212> PRT
<213> ARTIFICIAL SEQUENCE
<220>
<223> SEQUENCE FROM PHAGE LIBRARY
<400> 5
Val Asn His Trp Thr Tyr Thr Phe Asp Tyr
1 5
<210> 6
<211> 17
<212> PRT
<213> ARTIFICIAL SEQUENCE
<220>
<223> SEQUENCE FROM PHAGE LIBRARY
<400> 6
Gly Tyr Trp Tyr Ala Tyr Phe Thr Tyr Ile Asn Tyr Gly Tyr Phe Asp
                              10
```

```
Asn
```

```
<210> 7
<211> 18
<212> PRT
<213> ARTIFICIAL SEQUENCE
<220>
<223> SEQUENCE FROM PHAGE LIBRARY
<400> 7
Thr Trp Gln Tyr Ser Tyr Phe Tyr Tyr Leu Asp Gly Gly Tyr Tyr Phe
Asp Ile
<210> 8
<211> 17
<212> PRT
<213> ARTIFICIAL SEQUENCE
<220>
<223> SEQUENCE FROM PHAGE LIBRARY
<400> 8
Asn Met Ala Tyr Thr Asn Tyr Gln Tyr Val Asn Met Pro His Phe Asp
Tyr
<210> 9
<211> 17
<212> PRT
<213> ARTIFICIAL SEQUENCE
<220>
<223> SEQUENCE FROM PHAGE LIBRARY
<400> 9
Ser Met Asn Ser Thr Met Tyr Trp Tyr Leu Arg Arg Val Leu Phe Asp
                                10
```

```
<210> 10
<211> 9
<212> PRT
<213> ARTIFICIAL SEQUENCE
<220>
<223> SEQUENCE FROM PHAGE LIBRARY
<400> 10
Gln Ser Tyr Asp Gly Pro Asp Leu Trp
    5
<210> 11
<211> 9
<212> PRT
<213> ARTIFICIAL SEQUENCE
<220>
<223> SEQUENCE FROM PHAGE LIBRARY
<400> 11
Gln Ser Tyr Asp Tyr Ser Ala Asp Tyr
<210> 12
<211> 8
<212> PRT
<213> ARTIFICIAL SEQUENCE
<220>
<223> SEQUENCE FROM PHAGE LIBRARY
<400> 12
Gln Ser Tyr Asp Phe Asp Phe Ala
<210> 13
<211> 8
<212> PRT
<213> ARTIFICIAL SEQUENCE
<220>
```

```
<223> SEQUENCE FROM PHAGE LIBRARY
<400> 13
Gln Gln Tyr Asp Ser Ile Pro Tyr
<210> 14
<211> 8
<212> PRT
<213> ARTIFICIAL SEQUENCE
<220>
<223> SEQUENCE FROM PHAGE LIBRARY
<400> 14
Gln Gln Met Ser Asn Tyr Pro Asp
<210> 15
<211> 9
<212> PRT
<213> ARTIFICIAL SEQUENCE
<220>
<223> SEQUENCE FROM PHAGE LIBRARY
<400> 15
Gln Ser Tyr Asp Asn Asn Ser Asp Val
<210> 16
<211> 8
<212> PRT
<213> ARTIFICIAL SEQUENCE
<220>
<223> SEQUENCE FROM PHAGE LIBRARY
<400> 16
Gln Gln Thr Asn Asn Ala Pro Val
<210> 17
<211> 8
<212> PRT
<213> ARTIFICIAL SEQUENCE
```

```
<220>
<223> SEQUENCE FROM PHAGE LIBRARY
<400> 17
Gln Ser Tyr Asp Tyr Phe Lys Leu
<210> 18
<211> 9
<212> PRT
<213> ARTIFICIAL SEQUENCE
<220>
<223> SEQUENCE FROM PHAGE LIBRARY
<400> 18
Gln Ser Tyr Asp Met Tyr Met Tyr Ile
          5
<210> 19
<211> 120
<212> PRT
<213> ARTIFICIAL SEQUENCE
<220>
<223> SEQUENCE FROM PHAGE LIBRARY
<400> 19
Gln Val Gln Leu Gln Gln Ser Gly Pro Gly Leu Val Lys Pro Ser Gln
               5
                                  10
Thr Leu Ser Leu Thr Cys Ala Ile Ser Gly Asp Ser Val Ser Ser Asn
Ser Ala Ala Trp Asn Trp Ile Arg Gln Ser Pro Gly Arg Gly Leu Glu
                           40
Trp Leu Gly Arg Thr Tyr Tyr Arg Ser Lys Trp Tyr Asn Asp Tyr Ala
    50
                       55
Val Ser Val Lys Ser Arg Ile Thr Ile Asn Pro Asp Thr Ser Lys Asn
65
                    70
                                       75
```

Gln Phe Ser Leu Gln Leu Asn Ser Val Thr Pro Glu Asp Thr Ala Val 85 90 95

Tyr Tyr Cys Ala Arg Ser Tyr Tyr Pro Asp Phe Asp Tyr Trp Gly Gln 100 105 110

Gly Thr Leu Val Thr Val Ser Ser 115 120

<210> 20

<211> 118

<212> PRT

<213> ARTIFICIAL SEQUENCE

<220>

<223> SEQUENCE FROM PHAGE LIBRARY

<400> 20

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala 1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser Tyr 20 25 30

Tyr Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met 35 40 45

Gly Trp Ile Asn Pro Asn Ser Gly Gly Thr Asn Tyr Ala Gln Lys Phe 50 55 60

Gln Gly Arg Val Thr Met Thr Arg Asp Thr Ser Ile Ser Thr Ala Tyr 65 70 75 80

Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys $85 \\ \hspace*{1.5cm} 90 \\ \hspace*{1.5cm} 95$

Ala Arg Asp Phe Leu Gly Tyr Glu Phe Asp Tyr Trp Gly Gln Gly Thr $100 \hspace{1.5cm} 105 \hspace{1.5cm} 110 \hspace{1.5cm}$

Leu Val Thr Val Ser Ser 115

<210> 21 <211> 130 <212> PRT <213> ARTIFICIAL SEQUENCE <220> <223> SEQUENCE FROM PHAGE LIBRARY <400> 21 Gln Val Gln Leu Lys Glu Ser Gly Pro Ala Leu Val Lys Pro Thr Gln 1 5 10 Thr Leu Thr Leu Thr Cys Thr Phe Ser Gly Phe Ser Leu Ser Thr Ser Gly Val Gly Val Gly Trp Ile Arg Gln Pro Pro Gly Lys Ala Leu Glu 40 Trp Leu Ala Leu Ile Asp Trp Asp Asp Lys Tyr Tyr Ser Thr Ser 50 55 60 Leu Lys Thr Arg Leu Thr Ile Ser Lys Asp Thr Ser Lys Asn Gln Val 70 Val Leu Thr Met Thr Asn Met Asp Pro Val Asp Thr Ala Thr Tyr Tyr 90 85 9.5 Cys Ala Arg Tyr His Ser Trp Tyr Glu Met Gly Tyr Tyr Gly Ser Thr 100 105 110 Val Gly Tyr Met Phe Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val 120 Ser Ser 130 <210> 22 <211> 118 <212> PRT <213> ARTIFICIAL SEQUENCE

<220>

<223> SEQUENCE FROM PHAGE LIBRARY

<400> 22

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser
1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Gly Thr Phe Ser Ser Tyr 20 25 30

Ala Ile Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met 35 40 45

Gly Gly Ile Ile Pro Ile Phe Gly Thr Ala Asn Tyr Ala Gln Lys Phe 50 55 60

Gln Gly Arg Thr Ile Thr Ala Asp Glu Ser Thr Ser Thr Ala Tyr Met 70 75 80

Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys Ala 85 90 95

Arg Asp Asn Trp Phe Lys Pro Phe Ser Asp Val Trp Gly Gln Gly Thr 100 105 110

Leu Val Thr Val Ser Ser 115

<210> 23

<211> 119

<212> PRT

<213> ARTIFICIAL SEQUENCE

<220>

<223> SEQUENCE FROM PHAGE LIBRARY

<400> 23

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser 1 5101510

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Gly Thr Phe Ser Ser Tyr 20 25 30

Ala Ile Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met 35 40 45

Gly Gly Ile Ile Pro Ile Phe Gly Thr Ala Asn Tyr Ala Gln Lys Phe 50 60

Gln Gly Arg Val Thr Ile Thr Ala Asp Glu Ser Thr Ser Thr Ala Tyr 65 70 75 80

Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95

Ala Arg Val Asn His Trp Thr Tyr Thr Phe Asp Tyr Trp Gly Gln Gly 100 105 110

Thr Leu Val Thr Val Ser Ser 115

<210> 24

<211> 126

<212> PRT

<213> ARTIFICIAL SEQUENCE

<220>

<223> SEQUENCE FROM PHAGE LIBRARY

<400> 24

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala 1 $$ 5 $$ 10 $$ 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser Tyr 20 25 30

Tyr Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met 35 40 45

Gly Trp Ile Asn Pro Asn Ser Gly Gly Thr Asn Tyr Ala Gln Lys Phe 50 55 60

Gln Gly Arg Val Thr Met Thr Arg Asp Thr Ser Ile Ser Thr Ala Tyr 65 70 75 80

Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95

Ala Arg Gly Tyr Trp Tyr Ala Tyr Phe Thr Tyr Ile Asn Tyr Gly Tyr 100 105

Phe Asp Asn Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser

<210> 25

<211> 127

<212> PRT

<213> ARTIFICIAL SEQUENCE

<220>

<223> SEQUENCE FROM PHAGE LIBRARY

<400> 25

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala 10

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser Tyr 20

Tyr Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met 35 40

Gly Trp Ile Asn Pro Asn Ser Gly Gly Thr Asn Tyr Ala Gln Lys Phe 50 55

Gln Gly Arg Val Thr Met Thr Arg Asp Thr Ser Ile Ser Thr Ala Tyr 65 70 75

Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys

Ala Arg Thr Trp Gln Tyr Ser Tyr Phe Tyr Tyr Leu Asp Gly Gly Tyr 100 105

Tyr Phe Asp Ile Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser 120 115 125

<210> 26

<211> 126

```
<212> PRT
<213> ARTIFICIAL SEQUENCE
<220>
<223> SEQUENCE FROM PHAGE LIBRARY
<400> 26
Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser Tyr
```

Tyr Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met

10

Gly Trp Ile Asn Pro Asn Ser Gly Gly Thr Asn Tyr Ala Gln Lys Phe 55

Gln Gly Arg Val Thr Met Thr Arg Asp Thr Ser Ile Ser Thr Ala Tyr 70 75

Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90

Ala Arg Asn Met Ala Tyr Thr Asn Tyr Gln Tyr Val Asn Met Pro His 100 105 110

Phe Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser 115 120

<210> 27 <211> 126 <212> PRT

<213> ARTIFICIAL SEQUENCE

<220>

<223> SEQUENCE FROM PHAGE LIBRARY

<400> 27

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala 10

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser Tyr 20 25 30

Tyr Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met 35 40 45

Gly Trp Ile Asn Pro Asn Ser Gly Gly Thr Asn Tyr Ala Gln Lys Phe 50 55 60

Gln Gly Arg Val Thr Met Thr Arg Asp Thr Ser Ile Ser Thr Ala Tyr 65 70 75 80

Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95

Ala Arg Ser Met Asn Ser Thr Met Tyr Trp Tyr Leu Arg Arg Val Leu 100 105 110

Phe Asp His Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser 115 120 125

<210> 28

<211> 109

<212> PRT

<213> ARTIFICIAL SEQUENCE

<220>

<223> SEQUENCE FROM PHAGE LIBRARY

<400> 28

Asp Ile Glu Leu Thr Gln Pro Pro Ser Val Ser Val Ala Pro Gly Gln 1 5 10 15

Thr Ala Arg Ile Ser Cys Ser Gly Asp Ala Leu Gly Asp Lys Tyr Ala 20 25 30

Ser Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Val Leu Val Ile Tyr 35 40 45

Asp Asp Ser Asp Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser 50 55 60

Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Gly Thr Gln Ala Glu 65 70 75 80

Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Gly Pro Asp Leu Trp 85 90 95

Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gln \$100\$

<210> 29

<211> 109

<212> PRT

<213> ARTIFICIAL SEQUENCE

<220>

<223> SEQUENCE FROM PHAGE LIBRARY

<400> 29

Asp Ile Glu Leu Thr Gln Pro Pro Ser Val Ser Val Ala Pro Gly Gln 1 5 10 15

Thr Ala Arg Ile Ser Cys Ser Gly Asp Ala Leu Gly Asp Lys Tyr Ala 20 25 30

Ser Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Val Leu Val Ile Tyr 35 40 45

Asp Asp Ser Asp Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser 50 55 60

Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Gly Thr Gln Ala Glu 65 70 75 80

Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Tyr Ser Ala Asp Tyr 85 90 95

Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gln 100 105

<210> 30

<211> 107

<212> PRT

<213> ARTIFICIAL SEQUENCE

<220> <223> SEQUENCE FROM PHAGE LIBRARY <400> 30 Asp Ile Glu Leu Thr Gln Pro Pro Ser Val Ser Val Ala Pro Gly Gln Thr Ala Arg Ile Ser Cys Ser Gly Asp Ala Leu Gly Asp Lys Tyr Ala Ser Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Val Leu Val Ile Tyr 40 Asp Asp Ser Asp Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser 55 Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Gly Thr Gln Ala Glu 70 75 65 Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Phe Asp Phe Ala Val 90 Phe Gly Gly Thr Lys Leu Thr Val Leu Gly Gln 100 <210> 31 <211> 115 <212> PRT <213> ARTIFICIAL SEQUENCE <220> <223> SEQUENCE FROM PHAGE LIBRARY

<400> 31

Asp Ile Val Met Thr Gln Ser Pro Asp Ser Leu Ala Val Ser Leu Gly
1 5 10 15

Glu Arg Ala Thr Ile Asn Cys Arg Ser Ser Gln Ser Val Leu Tyr Ser 20 25 30

Ser Asn Asn Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln 35 40 45

Pro Pro Lys Leu Leu Ile Tyr Trp Ala Ser Thr Arg Glu Ser Gly Val 50 55 60

Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr 65 70 75 80

Ile Ser Ser Leu Gln Ala Glu Asp Val Ala Val Tyr Tyr Cys Gln Gln 85 90 95

Lys Arg Thr 115

<210> 32

<211> 110

<212> PRT

<213> ARTIFICIAL SEQUENCE

<220>

<223> SEQUENCE FROM PHAGE LIBRARY

<400> 32

Asp Ile Val Leu Thr Gln Ser Pro Ala Thr Leu Ser Leu Ser Pro Gly 1 5 10 15

Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val Ser Ser Ser 20 25 30

Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu 35 40 45

Ile Tyr Gly Ala Ser Ser Arg Ala Thr Gly Val Pro Ala Arg Phe Ser
50 55 60

Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Glu 65 70 75 80

Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Met Ser Asn Tyr Pro 85 90 95

Asp Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg Thr 100 105 <210> 33 <211> 112 <212> PRT <213> ARTIFICIAL SEQUENCE <220> <223> SEQUENCE FROM PHAGE LIBRARY <400> 33 Asp Ile Ala Leu Thr Gln Pro Ala Ser Val Ser Gly Ser Pro Gly Gln Ser Ile Thr Ile Ser Cys Thr Gly Thr Ser Ser Asp Val Gly Gly Tyr 20 Asn Tyr Val Ser Trp Tyr Gln Gln His Pro Gly Lys Ala Pro Lys Leu 40 Met Ile Tyr Asp Val Ser Asn Arg Pro Ser Gly Val Ser Asn Arg Phe 55 50 Ser Gly Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr Ile Ser Gly Leu 65 70 75 Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Asn Asn 85 90 Ser Asp Val Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gln <210> 34 <211> 110 <212> PRT <213> ARTIFICIAL SEQUENCE <220> <223> SEQUENCE FROM PHAGE LIBRARY

<400> 34

Asp Ile Val Leu Thr Gln Ser Pro Ala Thr Leu Ser Leu Ser Pro Gly 10 Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val Ser Ser 20 25 Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu 40 35 Ile Tyr Gly Ala Ser Ser Arg Ala Thr Gly Val Pro Ala Arg Phe Ser 55 Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Glu 75 70 Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Thr Asn Asn Ala Pro Val Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg Thr 105 100 110 <210> 35 <211> 108 <212> PRT <213> ARTIFICIAL SEQUENCE <220> <223> SEQUENCE FROM PHAGE LIBRARY <400> 35 Asp Ile Glu Leu Thr Gln Pro Pro Ser Val Ser Val Ala Pro Gly Gln 10 Thr Ala Arg Ile Ser Cys Ser Gly Asp Ala Leu Gly Asp Lys Tyr Ala 20 Ser Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Val Leu Val Ile Tyr

40

55

Asp Asp Ser Asp Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser

45

60

35

Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Gly Thr Gln Ala Glu 65 70 75 80

Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Tyr Phe Lys Leu Val 85 90 95

Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gln 100 105

<210> 36

<211> 112

<212> PRT

<213> ARTIFICIAL SEQUENCE

<220>

<223> SEQUENCE FROM PHAGE LIBRARY

<400> 36

Asp Ile Ala Leu Thr Gln Pro Ala Ser Val Ser Gly Ser Pro Gly Gln 1 5 10 15

Ser Ile Thr Ile Ser Cys Thr Gly Thr Ser Ser Asp Val Gly Gly Tyr 20 25 30

Asn Tyr Val Ser Trp Tyr Gln Gln His Pro Gly Lys Ala Pro Lys Leu 35 40 45

Met Ile Tyr Asp Val Ser Asn Arg Pro Ser Gly Val Ser Asn Arg Phe 50 55 60

Ser Gly Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr Ile Ser Gly Leu 65 70 75 80

Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Met Tyr 85 90 95

Asn Tyr Ile Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gln 100 105 110

<210> 37

<211> 249

<212> PRT

<213> ARTIFICIAL SEQUENCE

<220>

<223> SEQUENCE FROM PHAGE LIBRARY

<400> 37

Met Leu Thr Cys Ala Ile Ser Gly Asn Ser Val Ser Ser Asn Ser Ala $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Ala Trp Asn Trp Ile Arg Gln Ser Pro Gly Arg Gly Leu Glu Trp Leu 20 25 30

Gly Arg Thr Tyr Tyr Arg Ser Lys Trp Tyr Asn Asp Tyr Ala Val Ser 35 40 45

Val Lys Ser Arg Ile Thr Ile Asn Pro Asp Thr Ser Lys Asn Gln Phe 50 55 60

Ser Leu Gln Leu Asn Ser Val Thr Pro Glu Asp Thr Ala Val Tyr Tyr 65 70 75 80

Cys Ala Arg Ser Tyr Tyr Pro Asp Phe Asp Tyr Trp Gly Gln Gly Thr 85 90 95

Leu Val Thr Val Ser Ser Ala Gly Gly Gly Ser Gly Gly Gly Ser
100 105 110

Gly Gly Gly Ser Gly Gly Gly Ser Asp Ile Glu Leu Thr Gln
115 120 125

Pro Pro Ser Val Ser Val Ala Pro Gly Gln Thr Ala Arg Ile Ser Cys 130 135 140

Ser Gly Asp Ala Leu Gly Asp Lys Tyr Ala Ser Trp Tyr Gln Gln Lys 145 150 155

Pro Gly Gln Ala Pro Val Leu Val Ile Tyr Asp Asp Ser Asp Arg Pro 165 170 175

Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser Asn Ser Gly Asn Thr Ala 180 185 190 Thr Leu Thr Ile Ser Gly Thr Gln Ala Glu Asp Glu Ala Asp Tyr Tyr 195 200 205

Cys Gln Ser Tyr Asp Gly Pro Asp Leu Trp Val Phe Gly Gly Gly Thr 210 215 220

Lys Leu Thr Val Leu Gly Gln Glu Phe Asp Tyr Lys Met Thr Met Thr 225 230 235 240

Lys Arg Ala Val Glu Pro Pro Ala Val 245

<210> 38

<211> 750

<212> DNA

<213> ARTIFICIAL SEQUENCE

<220>

<223> SEQUENCE FROM PHAGE LIBRARY

<400> 38

atgctgacct gtgcgatttc cgggaatagc gtgagcagca acagcgcggc gtggaactgg 60 attequeagt etectgggeg tggeetegag tggetgggee gtacetatta tegtageaaa 120 tggtataacg attatgcggt gagcgtgaaa agccggatta ccatcaaccc ggatacttcg 180 aaaaaccagt ttagcctgca actgaacagc gtgaccccgg aagatacggc cgtgtattat 240 300 tgcgcgcgtt cttattatcc tgattttgat tattggggcc aaggcaccct ggtgacggtt agctcagcgg gtggcggttc tggcggcggt gggagcggtg gcggtggttc tggcggtggt 360 ggttccgata tcgaactgac ccagccgcct tcagtgagcg ttgcaccagg tcagaccgcg 420 cgtatctcgt gtagcggcga tgcgctgggc gataaatacg cgagctggta ccagcagaaa 480 cccgggcagg cgccagttct ggtgatttat gatgattctg accgtccctc aggcatcccg 540 gaacgettta geggatecaa cageggeaac acegegaece tgaecattag eggeaeteag 600 gcggaagacg aagcggatta ttattgccag agctatgacg gtcctgatct ttgggtgttt 660 ggcggcggca cgaagttaac cgttcttggc caggaattcg actataagat gacgatgaca 720 750 aagcgcgccg tggagccacc cgcagtttga

<212> <213>	DNA ARTIFICIAL SEQUENCE	
<220> <223>	SEQUENCE FROM PHAGE LIBRARY	
<400> tcttati	39 tatc ctgattttga ttat	24
<210> <211> <212> <213>	40 27 DNA ARTIFICIAL SEQUENCE	
<220> <223>	SEQUENCE FROM PHAGE LIBRARY	
<400> gatttt	40 cttg gttatgagtt tgattat	27
	41 90 DNA ARTIFICIAL SEQUENCE	
<220> <223>	SEQUENCE FROM PHAGE LIBRARY	
<400> tatcat	41 tott ggtatgagat gggttattat ggttotactg ttggttatat gtttgattat	60
gataat	tggt ttaagccttt ttctgatgtt	90
<211> <212>	42 30 DNA ARTIFICIAL SEQUENCE	
<220> <223>	SEQUENCE FROM PHAGE LIBRARY	
<400> gataat	42 tggt ttaagccttt ttctgatgtt	30
<213>	43 30 DNA ARTIFICIAL SEQUENCE	
<220>		

<223>	SEQUENCE FROM PHAGE LIBRARY	
	43 catt ggacttatac ttttgattat	30
-		
<210> <211> <212>		
<213>	ARTIFICIAL SEQUENCE	
<220> <223>	SEQUENCE FROM PHAGE LIBRARY	
	44 tggt atgcttattt tacttatatt aattatggtt attttgataa t	51
<211> <212>	45 54 DNA ARTIFICIAL SEQUENCE	
<220>		
<223>	SEQUENCE FROM PHAGE LIBRARY	
<400> acttgg	45 cagt attettattt ttattatett gatggtggtt attattttga tatt	54
<210> <211>		
<212>		
<220>		
<223>	SEQUENCE FROM PHAGE LIBRARY	
	46 gott atactaatta toagtatgtt aatatgooto attttgatta t	51
<210> <211>	47 51	
<212> <213>	DNA ARTIFICIAL SEQUENCE	
<220>		
<223>	SEQUENCE FROM PHAGE LIBRARY	
<400> tctatga	47 aatt ctactatgta ttggtatctt cgtcgtgttc tttttgatca t	51

<210><211><211><212><213>	48 27 DNA ARTIFICIAL SEQUENCE	
<220> <223>	SEQUENCE FROM PHAGE LIBRARY	
<400> cagage	48 tatg acggtcctga tctttgg	27
<211> <212>	49 27 DNA ARTIFICIAL SEQUENCE	
<220> <223>	SEQUENCE FROM PHAGE LIBRARY	
<400> cagage	49 tatg actattctgc tgattat	27
	50 24 DNA ARTIFICIAL SEQUENCE	
<220> <223>	SEQUENCE FROM PHAGE LIBRARY	
<400> cagage	50 tatg actttgattt tgct	24
<210><211><211><212><213>	51 24 DNA ARTIFICIAL SEQUENCE	
<220> <223>	SEQUENCE FROM PHAGE LIBRARY	
<400> cagcag	51 tatg attctattcc ttat	24
<213>		
<220>		

<223>	SEQUENCE FROM PHAGE LIBRARY	
	52	
cagcag	atgt ctaattatcc tgat	24
<210> <211> <212> <213>	53 27 DNA ARTIFICIAL SEQUENCE	
<220> <223>	SEQUENCE FROM PHAGE LIBRARY	
<400>	53 tatg acaataattc tgatgtt	27
<210><211><211><212><213>	54 24 DNA ARTIFICIAL SEQUENCE	
<220>		
<223>	SEQUENCE FROM PHAGE LIBRARY	
<400>	54 acta ataatgctcc tgtt	24
cagcag		2 1
<210> <211> <212> <213>	24	
<220> <223>	SEQUENCE FROM PHAGE LIBRARY	
<400> cagage	55 tatg actattttaa gctt	24
<210> <211>	56 27	
<212> <213>	DNA ARTIFICIAL SEQUENCE	
<220>		
<223>	SEQUENCE FROM PHAGE LIBRARY	
<400> cagage	56 tatg acatgtataa ttatatt	27

<210> <211> <212> <213>	57 362 DNA ART	IFICIAL SEQU	JENCE								
<220> <223>											
<400> caggtgo	57 caat	tgcaacagtc	tggtccgggc	ctggtgaaac	cgagccaaac	cctgagcctg	60				
acctgt	gcga	tttccggaga	tagcgtgagc	agcaacagcg	cggcgtggaa	ctggattcgc	120				
cagtcto	cctg	ggcgtggcct	cgagtggctg	ggccgtacct	attatcgtag	caaatggtat	180				
aacgatt	tatg	cggtgagcgt	gaaaagccgg	attaccatca	acccggatac	ttcgaaaaac	240				
cagttta	agcc	tgcaactgaa	cagcgtgacc	ccggaagata	cggccgtgta	ttattgcgcg	300				
cgttctt	tatt	atcctgattt	tgattattgg	ggccaaggca	ccctggtgac	ggttagctca	360				
gc							362				
<210><211><211><212><213><223>	<211> 356 <212> DNA <213> ARTIFICIAL SEQUENCE <220>										
<400>	58										
caggtgo	caat	tggttcagag	cggcgcggaa	gtgaaaaaac	cgggcgcgag	cgtgaaagtg	60				
agctgca	aaag	cctccggata	tacctttacc	agctattata	tgcactgggt	ccgccaagcc	120				
cctggg	cagg	gtctcgagtg	gatgggctgg	attaacccga	atagcggcgg	cacgaactac	180				
gcgcaga	aagt	ttcagggccg	ggtgaccatg	acccgtgata	ccagcattag	caccgcgtat	240				
atggaad	ctga	gcagcctgcg	tagcgaagat	acggccgtgt	attattgcgc	gcgtgatttt	300				
cttggtt	tatg	agtttgatta	ttggggccaa	ggcaccctgg	tgacggttag	ctcagc	356				
<210> <211> <212> <213> <220>		IFICIAL SEQU									
<223>	SEQU	JENCE FROM I	PHAGE LIBRAI	ΧY							

<400> 59										
caggtgcaat t	tgaaagaaag	cggcccggcc	ctggtgaaac	cgacccaaac	cctgaccctg	60				
acctgtacct t	tttccggatt	tagcctgtcc	acgtctggcg	ttggcgtggg	ctggattcgc	120				
cageegeetg e	ggaaagccct	cgagtggctg	gctctgattg	attgggatga	tgataagtat	180				
tatagcacca o	gcctgaaaac	gcgtctgacc	attagcaaag	atacttcgaa	aaatcaggtg	240				
gtgctgacta t	tgaccaacat	ggacccggtg	gatacggcca	cctattattg	cgcgcgttat	300				
cattcttggt a	atgagatggg	ttattatggt	tctactgttg	gttatatgtt	tgattattgg	360				
ggccaaggca d	ccctggtgac	ggttagctca	gc			392				
<220>	FICIAL SEQU ENCE FROM F	JENCE PHAGE LIBRAF	RY							
<400> 60										
caggtgcaat t	tggttcagtc	tggcgcggaa	gtgaaaaaac	cgggcagcag	cgtgaaagtg	60				
agctgcaaag d	cctccggagg	cacttttagc	agctatgcga	ttagctgggt	gcgccaagcc	120				
cctgggcagg g	gtctcgagtg	gatgggcggc	attattccga	tttttggcac	ggcgaactac	180				
gcgcagaagt t	ttcagggccg	ggtgaccatt	accgcggatg	aaagcaccag	caccgcgtat	240				
atggaactga g	gcagcctgcg	tagcgaagat	acggccgtgt	attattgcgc	gcgtgataat	300				
tggtttaagc o	ctttttctga	tgtttggggc	caaggcaccc	tggtgacggt	tagctcagc	359				
<210> 61 <211> 359 <212> DNA <213> ARTIFICIAL SEQUENCE <220> <223> SEQUENCE FROM PHAGE LIBRARY										
<400> 61 caggtgcaat t	tggttcagtc	tggcgcggaa	gtgaaaaaac	cgggcagcag	cgtgaaagtg	60				
agctgcaaag o						120				
cctgggcagg g						180				
gcgcagaagt t	ttcagggccg	ggtgaccatt	accgcggatg	aaagcaccag	caccgcgtat	240				

atggaactga	gcagcctgcg	tagcgaagat	acggccgtgt	attattgcgc	gcgtgttaat	300
cattggactt	atacttttga	ttattggggc	caaggcaccc	tggtgacggt	tagctcagc	359
<210> 62 <211> 380 <212> DNA <213> ART	IFICIAL SEQU	JENCE				
<220> <223> SEQ	JENCE FROM I	PHAGE LIBRAI	RY			
<400> 62 caggtgcaat	tggttcagag	cggcgcggaa	gtgaaaaaac	cgggcgcgag	cgtgaaagtg	60
agctgcaaag	cctccggata	tacctttacc	agctattata	tgcactgggt	ccgccaagcc	120
cctgggcagg	gtctcgagtg	gatgggctgg	attaacccga	atagcggcgg	cacgaactac	180
gcgcagaagt	ttcagggccg	ggtgaccatg	acccgtgata	ccagcattag	caccgcgtat	240
atggaactga	gcagcctgcg	tagcgaagat	acggccgtgt	attattgcgc	gcgtggttat	300
tggtatgctt	attttactta	tattaattat	ggttattttg	ataattgggg	ccaaggcacc	360
ctggtgacgg	ttagctcagc					380
<210> 63 <211> 383 <212> DNA <213> ART	IFICIAL SEQU	JENCE				
<220> <223> SEQ	JENCE FROM I	PHAGE LIBRAI	RY			
<400> 63 caggtgcaat	tggttcagag	cggcgcggaa	gtgaaaaaac	cgggcgcgag	cgtgaaagtg	60
agctgcaaag	cctccggata	tacctttacc	agctattata	tgcactgggt	ccgccaagcc	120
cctgggcagg	gtctcgagtg	gatgggctgg	attaacccga	atagcggcgg	cacgaactac	180
gcgcagaagt	ttcagggccg	ggtgaccatg	acccgtgata	ccagcattag	caccgcgtat	240
atggaactga	gcagcctgcg	tagcgaagat	acggccgtgt	attattgcgc	gcgtacttgg	300
cagtattctt	atttttatta	tcttgatggt	ggttattatt	ttgatatttg	gggccaaggc	360
accctggtga	cggttagctc	agc				383

<210> <211> <212> <213>	211> 380 212> DNA										
<220> <223>											
<400> caggtgo	64 caat	tggttcagag	cggcgcggaa	gtgaaaaaac	cgggcgcgag	cgtgaaagtg	60				
agctgca	aaag (cctccggata	tacctttacc	agctattata	tgcactgggt	ccgccaagcc	120				
cctgggd	cagg (gtctcgagtg	gatgggctgg	attaacccga	atagcggcgg	cacgaactac	180				
gcgcaga	aagt †	ttcagggccg	ggtgaccatg	acccgtgata	ccagcattag	caccgcgtat	240				
atggaad	ctga (gcagcctgcg	tagcgaagat	acggccgtgt	attattgcgc	gcgtaatatg	300				
gcttata	acta a	attatcagta	tgttaatatg	cctcattttg	attattgggg	ccaaggcacc	360				
ctggtga	acgg 1	ttagctcagc					380				
<210><211><211><212><213><223>	<211> 380 <212> DNA <213> ARTIFICIAL SEQUENCE <220>										
<400>	65		PHAGE LIBRAE								
caggtgo	caat 1	tggttcagag	cggcgcggaa	gtgaaaaaac	cgggcgcgag	cgtgaaagtg	60				
agctgca	aaag (cctccggata	tacctttacc	agctattata	tgcactgggt	ccgccaagcc	120				
cctgggd	cagg (gtctcgagtg	gatgggctgg	attaacccga	atagcggcgg	cacgaactac	180				
gcgcaga	aagt 1	ttcagggccg	ggtgaccatg	acccgtgata	ccagcattag	caccgcgtat	240				
atggaad	ctga (gcagcctgcg	tagcgaagat	acggccgtgt	attattgcgc	gcgttctatg	300				
aattcta	acta 1	tgtattggta	tcttcgtcgt	gttctttttg	atcattgggg	ccaaggcacc	360				
ctggtga	acgg 1	ttagctcagc					380				
<210> <211> <212> <213>	66 327 DNA ARTII	FICIAL SEQU	JENCE								

<223> SEQUENCE FROM PHAGE LIBRARY <400> 66 60 gatatcgaac tgacccagcc gccttcagtg agcgttgcac caggtcagac cgcgcgtatc 120 tegtgtageg gegatgeget gggegataaa tacgegaget ggtaccagea gaaacceggg caggegecag ttetggtgat ttatgatgat tetgacegte ceteaggeat eeeggaaege 180 240 tttagcggat ccaacagcgg caacaccgcg accctgacca ttagcggcac tcaggcggaa 300 gacgaagcgg attattattg ccagagctat gacggtcctg atctttgggt gtttggcggc 327 ggcacgaagt taaccgttct tggccag <210> 67 <211> 327 <212> DNA <213> ARTIFICIAL SEQUENCE <220> <223> SEQUENCE FROM PHAGE LIBRARY <400> 67 gatategaae tgacecagee geetteagtg agegttgeae eaggteagae egegegtate 60 120 tegtgtageg gegatgeget gggegataaa taegegaget ggtaceagea gaaaceeggg 180 caggegecag ttetggtgat ttatgatgat tetgacegte ceteaggeat eeeggaaege 240 tttagcggat ccaacagcgg caacaccgcg accctgacca ttagcggcac tcaggcggaa 300 gacgaagcgg attattattg ccagagctat gactattctg ctgattatgt gtttggcggc ggcacgaagt taaccgttct tggccag 327 <210> 68 <211> 324 <212> DNA <213> ARTIFICIAL SEQUENCE <220> <223> SEQUENCE FROM PHAGE LIBRARY <400> 68 60 gatategaac tgacecagee geetteagtg agegttgeac caggteagae egegegtate 120 tegtgtageg gegatgeget gggegataaa taegegaget ggtaceagea gaaaceeggg caggcgccag ttctggtgat ttatgatgat tctgaccgtc cctcaggcat cccggaacgc 180

tttagcggat ccaacagcgg caacaccgcg accctgacca ttagcggcac tcaggcggaa

~~~~~~~~	2++2++2++4	aaaaaaatat	~~ at t t ~ a t t	++~~+~+	+ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	200
gacgaagcgg	attattattg	CCagagetat	gactitigati	tigotgtgtt	tggeggegge	300
acgaagttaa	ccgttcttgg	ccag				324
<210> 69 <211> 345 <212> DNA <213> ART	IFICIAL SEQU	JENCE				
<220> <223> SEQ	UENCE FROM I	PHAGE LIBRAI	RY			
<400> 69						
gatatcgtga	tgacccagag	cccggatagc	ctggcggtga	gcctgggcga	acgtgcgacc	60
attaactgca	gaagcagcca	gagcgtgctg	tatagcagca	acaacaaaaa	ctatctggcg	120
tggtaccagc	agaaaccagg	tcagccgccg	aaactattaa	tttattgggc	atccacccgt	180
gaaagcgggg	tcccggatcg	ttttagcggc	tctggatccg	gcactgattt	taccctgacc	240
atttcgtccc	tgcaagctga	agacgtggcg	gtgtattatt	gccagcagta	tgattctatt	300
ccttatacct	ttggccaggg	tacgaaagtt	gaaattaaac	gtacg		345
<210> 70 <211> 330 <212> DNA <213> ART	IFICIAL SEQU	JENCE				
<220> <223> SEQ	UENCE FROM I	PHAGE LIBRA	RY			
<400> 70 gatatcgtgc	tgacccagag	cccggcgacc	ctgagcctgt	ctccgggcga	acgtgcgacc	60
ctgagctgca	gagcgagcca	gagcgtgagc	agcagctatc	tggcgtggta	ccagcagaaa	120
ccaggtcaag	caccgcgtct	attaatttat	ggcgcgagca	gccgtgcaac	tggggtcccg	180
gcgcgtttta	gcggctctgg	atccggcacg	gattttaccc	tgaccattag	cagcctggaa	240
cctgaagact	ttgcgactta	ttattgccag	cagatgtcta	attatcctga	tacctttggc	300
cagggtacga	aagttgaaat	taaacgtacg				330
<210> 71 <211> 336 <212> DNA <213> ART	IFICIAL SEQU	JENCE				

<220> <223> SEQU	JENCE FROM I	PHAGE LIBRAF	RY								
<400> 71 gatatcgcac	tgacccagcc	agcttcagtg	agcggctcac	caggtcagag	cattaccatc	60					
tcgtgtacgg	gtactagcag	cgatgtgggc	ggctataact	atgtgagctg	gtaccagcag	120					
catcccggga	aggcgccgaa	actgatgatt	tatgatgtga	gcaaccgtcc	ctcaggcgtg	180					
agcaaccgtt	ttagcggatc	caaaagcggc	aacaccgcga	gcctgaccat	tagcggcctg	240					
caagcggaag	acgaagcgga	ttattattgc	cagagctatg	acaataattc	tgatgttgtg	300					
tttggcggcg	gcacgaagtt	aaccgttctt	ggccag			336					
<220>	<211> 330 <212> DNA <213> ARTIFICIAL SEQUENCE <220>										
<400> 72											
	tgacccagag	cccggcgacc	ctgagcctgt	ctccgggcga	acgtgcgacc	60					
ctgagctgca	gagcgagcca	gagcgtgagc	agcagctatc	tggcgtggta	ccagcagaaa	120					
ccaggtcaag	caccgcgtct	attaatttat	ggcgcgagca	gccgtgcaac	tggggtcccg	180					
gcgcgtttta	gcggctctgg	atccggcacg	gattttaccc	tgaccattag	cagcctggaa	240					
cctgaagact	ttgcgactta	ttattgccag	cagactaata	atgctcctgt	tacctttggc	300					
cagggtacga	aagttgaaat	taaacgtacg				330					
<210> 73 <211> 324 <212> DNA <213> ARTI	FICIAL SEQU	JENCE									
<220> <223> SEQU	JENCE FROM I	PHAGE LIBRAF	RY								
<400> 73 gatatcgaac	tgacccagcc	gccttcagtg	agcgttgcac	caggtcagac	cgcgcgtatc	60					
tcgtgtagcg	gcgatgcgct	gggcgataaa	tacgcgagct	ggtaccagca	gaaacccggg	120					
caggcgccag	ttctggtgat	ttatgatgat	tctgaccgtc	cctcaggcat	cccggaacgc	180					

tttagcggat	ccaacagcgg d	caacaccgcg	accctgacca	ttagcggcac	tcaggcggaa	240
gacgaagcgg	attattattg (	ccagagctat	gactatttta	agcttgtgtt	tggcggcggc	300
acgaagttaa	ccgttcttgg (	ccag				324
<210> 74 <211> 336 <212> DNA <213> ARTI	FICIAL SEQUE	ENCE				
<220> <223> SEQU	ENCE FROM PI	HAGE LIBRA	RY			
<400> 74						
gatatcgcac	tgacccagcc a	agcttcagtg	agcggctcac	caggtcagag	cattaccatc	60
tcgtgtacgg	gtactagcag (	cgatgtgggc	ggctataact	atgtgagctg	gtaccagcag	120
catcccggga	aggcgccgaa a	actgatgatt	tatgatgtga	gcaaccgtcc	ctcaggcgtg	180
agcaaccgtt	ttagcggatc d	caaaagcggc	aacaccgcga	gcctgaccat	tagcggcctg	240
caagcggaag	acgaagcgga t	tattattgc	cagagctatg	acatgtataa	ttatattgtg	300
tttggcggcg	gcacgaagtt a	aaccgttctt	ggccag			336
<210> 75 <211> 694 <212> PRT <213> HOMC	SAPIENS					
<309> 1991	/P22607 -08-01 .(375)					
<400> 75						
Met Gly Ala 1	Pro Ala Cys 5	s Ala Leu i	Ala Leu Cys 10	Val Ala Val	Ala Ile 15	
Val Ala Gly	Ala Ser Ser 20		Leu Gly Thr 25	Glu Gln Arg	y Val Val	

Gly Arg Ala Ala Glu Val Pro Gly Pro Glu Pro Gly Gln Gln Glu Gln 35 40 45

Leu	Val 50	Phe	Gly	Ser	Gly	Asp 55	Ala	Val	Glu	Leu	Ser 60	Cys	Pro	Pro	Pro
Gly 65	Gly	Gly	Pro	Met	Gly 70	Pro	Thr	Val	Trp	Val 75	Lys	Asp	Gly	Thr	Gly 80
Leu	Val	Pro	Ser	Glu 85	Arg	Val	Leu	Val	Gly 90	Pro	Gln	Arg	Leu	Gln 95	Val
Leu	Asn	Ala	Ser 100	His	Glu	Asp	Ser	Gly 105	Ala	Tyr	Ser	Cys	Arg 110	Gln	Arg
Leu	Thr	Gln 115	Arg	Val	Leu	Cys	His 120	Phe	Ser	Val	Arg	Val 125	Thr	Asp	Ala
Pro	Ser 130	Ser	Gly	Asp	Asp	Glu 135	Asp	Gly	Glu	Asp	Glu 140	Ala	Glu	Asp	Thr
Gly 145	Val	Asp	Thr	Gly	Ala 150	Pro	Tyr	Trp	Thr	Arg 155	Pro	Glu	Arg	Met	Asp 160
Lys	Lys	Leu	Leu	Ala 165	Val	Pro	Ala	Ala	Asn 170	Thr	Val	Arg	Phe	Arg 175	Cys
Pro	Ala	Ala	Gly 180	Asn	Pro	Thr	Pro	Ser 185	Ile	Ser	Trp	Leu	Lys 190	Asn	Gly
Arg	Glu	Phe 195	Arg	Gly	Glu	His	Arg 200	Ile	Gly	Gly	Ile	Lys 205	Leu	Arg	His
Gln	Gln 210	Trp	Ser	Leu	Val	Met 215	Glu	Ser	Val	Val	Pro 220	Ser	Asp	Arg	Gly
Asn 225	Tyr	Thr	Cys	Val	Val 230	Glu	Asn	Lys	Phe	Gly 235	Ser	Ile	Arg	Gln	Thr 240
Tyr	Thr	Leu	Asp	Val 245	Leu	Glu	Arg	Ser	Pro 250	His	Arg	Pro	Ile	Leu 255	Gln
Ala	Gly	Leu	Pro 260	Ala	Asn	Gln	Thr	Ala 265	Val	Leu	Gly	Ser	Asp 270	Val	Glu

Phe	His	Cys 275	Lys	Val	Tyr	Ser	Asp 280	Ala	Gln	Pro	His	Ile 285	Gln	Trp	Leu
Lys	His 290	Val	Glu	Val	Asn	Gly 295	Ser	Lys	Val	Gly	Pro 300	Asp	Gly	Thr	Pro
Tyr 305	Val	Thr	Val	Leu	Lys 310	Val	Ser	Leu	Glu	Ser 315	Asn	Ala	Ser	Met	Ser 320
Ser	Asn	Thr	Pro	Leu 325	Val	Arg	Ile	Ala	Arg 330	Leu	Ser	Ser	Gly	Glu 335	Gly
Pro	Thr	Leu	Ala 340	Asn	Val	Ser	Glu	Leu 345	Glu	Leu	Pro	Ala	Asp 350	Pro	Lys
Trp	Glu	Leu 355	Ser	Arg	Ala	Arg	Leu 360	Thr	Leu	Gly	Lys	Pro 365	Leu	Gly	Glu
Gly	Cys 370	Phe	Gly	Gln	Val	Val 375	Met	Ala	Glu	Ala	Ile 380	Gly	Ile	Asp	Lys
Asp 385	Arg	Ala	Ala	Lys	Pro 390	Val	Thr	Val	Ala	Val 395	Lys	Met	Leu	Lys	Asp 400
Asp	Ala	Thr	Asp	Lys 405	Asp	Leu	Ser	Asp	Leu 410	Val	Ser	Glu	Met	Glu 415	Met
Met	Lys	Met	Ile 420	Gly	Lys	His	Lys	Asn 425	Ile	Ile	Asn	Leu	Leu 430	Gly	Ala
Cys	Thr	Gln 435	Gly	Gly	Pro	Leu	Tyr 440	Val	Leu	Val	Glu	Tyr 445	Ala	Ala	Lys
Gly	Asn 450	Leu	Arg	Glu	Phe	Leu 455	Arg	Ala	Arg	Arg	Pro 460	Pro	Gly	Leu	Asp
Tyr 465	Ser	Phe	Asp	Thr	Cys 470	Lys	Pro	Pro	Glu	Glu 475	Gln	Leu	Thr	Phe	Lys 480

Asp Leu Val Ser Cys Ala Tyr Gln Val Ala Arg Gly Met Glu Tyr Leu 485 490 Ala Ser Gln Lys Cys Ile His Arg Asp Leu Ala Ala Arg Asn Val Leu 500 505 510 Val Thr Glu Asp Asn Val Met Lys Ile Ala Asp Phe Gly Leu Ala Arg 515 520 525 Asp Val His Asn Leu Asp Tyr Tyr Lys Lys Thr Thr Asn Gly Arg Leu 530 535 Pro Val Lys Trp Met Ala Pro Glu Ala Leu Phe Asp Arg Val Tyr Thr 550 555 His Gln Ser Asp Val Trp Ser Phe Gly Val Leu Leu Trp Glu Ile Phe 565 570 Thr Leu Gly Gly Ser Pro Tyr Pro Gly Ile Pro Val Glu Glu Leu Phe 580 585 Lys Leu Leu Lys Glu Gly His Arg Met Asp Lys Pro Ala Asn Cys Thr 595 600 His Asp Leu Tyr Met Ile Met Arg Glu Cys Trp His Ala Ala Pro Ser 610 615 620 Gln Arg Pro Thr Phe Lys Gln Leu Val Glu Asp Leu Asp Arg Val Leu 625 630 635 640 Thr Val Thr Ser Thr Asp Glu Tyr Leu Asp Leu Ser Ala Pro Phe Glu 650 Gln Tyr Ser Pro Gly Gly Gln Asp Thr Pro Ser Ser Ser Ser Gly 665 Asp Asp Ser Val Phe Ala His Asp Leu Leu Pro Pro Ala Pro Pro Ser 675 680 685

Ser Gly Gly Ser Arg Thr

```
<211>
      2085
<212>
      DNA
<213>
      HOMO SAPIENS
<300>
<308>
      NCBI/AF2451114
<309>
      2002-03-28
<313>
      (40)..(2124)
<400> 76
                                                                       60
atgggegece etgeetgege eetegegete tgegtggeeg tggeeategt ggeeggegee
                                                                      120
tecteggagt cettggggae ggageagege gtegtgggge gageggeaga agteeeggge
ccagagcccg gccagcagga gcagttggtc ttcggcagcg gggatgctgt ggagctgagc
                                                                      180
                                                                      240
tgtcccccgc ccgggggtgg tcccatgggg cccactgtct gggtcaagga tggcacaggg
ctggtgccct cggagcgtgt cctggtgggg ccccagcggc tgcaggtgct gaatgcctcc
                                                                      300
cacgaggact ccggggccta cagctgccgg cagcggctca cgcagcgcgt actgtgccac
                                                                      360
ttcagtgtgc gggtgacaga cgctccatcc tcgggagatg acgaagacgg ggaggacgag
                                                                      420
gctgaggaca caggtgtgga cacaggggcc ccttactgga cacggcccga gcggatggac
                                                                      480
                                                                      540
aagaagetge tggeegtgee ggeegeeaae acegteeget teegetgeee ageegetgge
                                                                      600
aaccccactc cctccatctc ctggctgaag aacggcaggg agttccgcgg cgagcaccgc
attggaggca tcaagctgcg gcatcagcag tggagcctgg tcatggaaag cgtggtgccc
                                                                      660
                                                                      720
teggacegeg geaactacae etgegtegtg gagaacaagt ttggeageat eeggeagaeg
tacacgetgg acgtgctgga gcgctccccg caccggccca tcctgcaggc ggggctgccg
                                                                      780
                                                                      840
gccaaccaga cggcggtgct gggcagcgac gtggagttcc actgcaaggt gtacagtgac
                                                                      900
gcacagecee acatecagtg geteaageae gtggaggtga aeggeageaa ggtgggeeeg
                                                                      960
gacggcacac cctacgttac cgtgctcaag gtgtccctgg agtccaacgc gtccatgagc
                                                                     1020
tecaacacac caetggtgeg categeaagg etgteeteag gggagggeee caegetggee
                                                                     1080
aatgteteeg agetegaget geetgeegae eecaaatggg agetgteteg ggeeeggetg
                                                                     1140
accetgggea ageceettgg ggagggetge tteggeeagg tggteatgge ggaggeeate
ggcattgaca aggaccgggc cgccaagcct gtcaccgtag ccgtgaagat gctgaaagac
                                                                     1200
                                                                     1260
gatgccactg acaaggacct gtcggacctg gtgtctgaga tggagatgat gaagatgatc
```

<210>

gggaaacaca	aaaacatcat	caacctgctg	ggcgcctgca	cgcagggcgg	gcccctgtac	1320
gtgctggtgg	agtacgcggc	caagggtaac	ctgcgggagt	ttctgcgggc	gcggcggccc	1380
ccgggcctgg	actactcctt	cgacacctgc	aagccgcccg	aggagcagct	caccttcaag	1440
gacctggtgt	cctgtgccta	ccaggtggcc	cggggcatgg	agtacttggc	ctcccagaag	1500
tgcatccaca	gggacctggc	tgcccgcaat	gtgctggtga	ccgaggacaa	cgtgatgaag	1560
atcgcagact	tcgggctggc	ccgggacgtg	cacaacctcg	actactacaa	gaagacaacc	1620
aacggccggc	tgcccgtgaa	gtggatggcg	cctgaggcct	tgtttgaccg	agtctacact	1680
caccagagtg	acgtctggtc	ctttggggtc	ctgctctggg	agatcttcac	gctggggggc	1740
tccccgtacc	ccggcatccc	tgtggaggag	ctcttcaagc	tgctgaagga	gggccaccgc	1800
atggacaagc	ccgccaactg	cacacacgac	ctgtacatga	tcatgcggga	gtgctggcat	1860
gccgcgccct	cccagaggcc	caccttcaag	cagctggtgg	aggacctgga	ccgtgtcctt	1920
accgtgacgt	ccaccgacga	gtacctggac	ctgtcggcgc	ctttcgagca	gtactccccg	1980
ggtggccagg	acacccccag	ctccagctcc	tcaggggacg	actccgtgtt	tgcccacgac	2040
ctgctgcccc	cggccccacc	cagcagtggg	ggctcgcgga	cgtga		2085