Lezione 14 Geometria 1

Federico De Sisti2024-04-04

Precisazione 1

Siano S,T sottospazi affini in uno spazio euclideo δ di dimensione n. Diciamo che S, T sono ortogonali se, posto $S = p + U, T = q + W, p \in S, q \in T$ U, W sottospazi vettoriali di V,

$$\langle U, W \rangle = 0$$
 se $dim(S) + dim(T) < n$.
 $\langle U^{\perp}, W^{\perp} \rangle = 0$ se $dim(S) + dim(T) \ge n$.

Esempi

1. Due rette r, s in \mathbb{E}^3 con vettori direttori v_s, v_r

COMPLETARE CON DISEGNI

2. retta e piano in \mathbb{E}^3

COMPLETARE CON DISEGNI

3. due piani in \mathbb{E}^3

COMPLETARE CON DISEGNI

sarò sincero, non si capisce un cazzo

2 Esercizi foglio 4

$$r: \begin{cases} x_1 - x_3 = 0 \\ x_2 - x_3 = 0 \end{cases} \qquad r' = \begin{cases} x_1 + x_2 = 0 \\ x_3 = -1 \end{cases}$$

Posizione reciproca

La direzione di $r \in \mathbb{R} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, quella di $r' = \mathbb{R} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$ Essendo tali vettori indipendenti, le rette non sono parallele

$$p' = \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix} \in r', \quad O \in r$$

$$\overrightarrow{Op'} = \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix} \langle \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \rangle$$
quindi r, r' sono sghembi

 $S = \pi \cap \pi'$ π piano per r parallelo a $v \wedge v'$ π' piano per r' parallelo a $v \wedge v'$

$$v \wedge v' \quad \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \end{pmatrix} \quad v \wedge v' = \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}.$$
$$\pi : \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = t \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + s \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}.$$
$$\pi' : \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix} + t \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} + s \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}.$$

trasformiamo in coordinate cartesiane

$$\pi \to \det \begin{pmatrix} x_1 & x_2 & x_3 \\ 1 & 1 & 1 \\ 1 & 1 & -2 \end{pmatrix} = 0 \to x_1 - x_2 = 0$$

analogo per π' es 4 proiezione ortogonale su π simmetria ortogonale di asse π

$$\pi: 2x_1 + x_2 - x_3 + 2 = 0.$$

vettore normale a π $p_0 \in \pi$ $p(p) = p_0 + \widetilde{p}(\overline{p_0p})$ $\sigma(p) = p_0 + \widetilde{\sigma}(\overline{p_0p})$ $\operatorname{scelgo} p_0 \in \pi$ $p_0 = \begin{pmatrix} 0 \\ 2 \\ 2 \end{pmatrix}$ $W \text{ giacitura di } \pi = \langle \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \rangle \quad \mathbb{R}^3 = W \oplus W^{\perp}$ $\operatorname{Dobbiamo \ decomporre \ } \overline{p_0p} \text{ rispetto a } W \oplus W^{\perp} \quad W^{\perp} = \mathbb{R} \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix}$ $\begin{pmatrix} \frac{x_1}{x_2} \\ x_3 - 2 \end{pmatrix} = \alpha \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix} + \beta \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} + \gamma \begin{pmatrix} -2 \\ -1 \\ 1 \end{pmatrix}$ $\operatorname{Questo \ poi \ è \ solo \ un \ sistema \ noisso \ da \ risolvere}$

 $p\begin{pmatrix} x_1 \\ x_2 \\ 3 \end{pmatrix} = ($ guarda le lavagnate, è un super vettore).

sulle lavagnate trovi anche il risultato della simmetria