Modelat i comportament del MOS

Disseny de Circuits i Sistemes Electrònics

Escola Tècnica Superior d'Enginyeria de Telecomunicacions

Departament d'Enginyeria Electrònica Universitat Politècnica de Catalunya

Disseny de Circuits i Sistemes Electrònics: El MOS

Índex:

- 1. El transistor MOS. Estructura i descripció del seu comportament.
- 2. Equacions del MOS (canal llarg). Alguns efectes de segon ordre.
- 3. Equacions del MOS (canal curt).
- 4. Model de capacitats.

Condensador MOS

M-O-S: Estructura compuesta por metal, dieléctrico (SiO₂), y semiconductor

$$C_{GATE} = C_{ox} \cdot Area = C_{ox} \cdot W \cdot L$$

$$C_{ox} = \frac{\varepsilon_{SiO2}}{t_{ox}}$$

En un condensador M-O-M, todo el potencial cae en el óxido. En un condensador M-O-S, parte del potencial cae en el semiconductor (principalmente en la superficie)

$$V_G = V_{ox} + \phi_S$$

Disseny de Circuits i Sistemes Electrònics: El MOS

Condensador MOS

La caída del potencial en el semiconductor implica la existencia de un campo eléctrico E(x), perpendicular a la superficie.

El campo E(x) provoca una repulsión y desaparición de cargas positivas (huecos, portadores con carga positiva) en la superficie, hasta crease una región de vaciamiento de cargas (más concretamente, de portadores con carga positiva), de profundidad x_d .

Condensador MOS

Si el campo sigue aumentando (aumento de V_G), la concentración de cargas positivas (portadores mayoritarios) disminuye hasta convertirse en inferior a la concentración de cargas negativas (portadores minoritarios), creándose una región de tipo N cerca de la superficie (capa de inversión, o canal en un MOSFET)

Condensador MOS

- Si el campo sigue aumentando, aumenta la profundidad y concentración de carga de la capa de inversión (aumenta la conductividad), y se mantiene constante la región de vaciamiento.
- A la tensión V_G a partir de la cual se forma la capa de inversión, se la denomina tensión umbral, V_T.

Transistor MOS

- Transistor MOS = condensador MOS + Drenador + Surtidor
- NMOS: D y S tipo N, B tipo P
 PMOS: D y S tipo P, B tipo N
- En un NMOS, $V_D > V_S$. En un PMOS, $V_S > V_D$

• En todo caso, en DC, I_G=0

- I_{SB} , $I_{DB} = 0$ (diodos polarizados en inversa)
- Sustrato (pozos) P polarizado a GND. Sustrato (pozos) N polarizado a V_{DD}

Disseny de Circuits i Sistemes Electrònics: El MOS

Transistor MOS

- La existencia del canal (capa de inversión) permite el flujo de corriente entre Drenador y Surtidor (I_{DS})
- El transistor se comporta como un interruptor no ideal (resistencia serie), controlado por V_G

 $V_{GS} \ge V_T$

 El canal se hace más estrecho allí donde su tensión es mayor (aumento de la región de vaciamiento)

 La resistencia serie (y por lo tanto la corriente I_{DS}) son no lineales, dependen de V_{GS}, V_{DS}.

Transistor MOS: comportamiento

El comportamiento estático de un transistor se caracteriza por la dependencia de I_{DS} con las tensiones entre terminales. Comúnmente se toma la tensión del surtidor V_S como referencia

Transistor MOS: comportamiento ideal (canal largo)

Mientras el canal se extienda de S a D, se cumple (región óhmica)

$$I_{D} = k' \frac{W}{L} \left[(V_{GS} - V_{T}) V_{DS} - \frac{V_{DS}^{2}}{2} \right]$$
 $k' = \mu_{ob} C_{ox} = \mu_{ob} \frac{\varepsilon_{SiO2}}{t_{ox}}$

Para V_{DS} pequeñas, se puede aproximar por (región lineal)

(sección vertical)

Transistor MOS: comportamiento ideal (canal largo)

- Para tensiones V_{DS} por encima de V_{GS}-V_T, el canal no alcanza la zona de drenador (canal estrangulado, *pinch off*).
- Los portadores en esta región alcanzan su velocidad de saturación, por lo que la corriente se hace prácticamente independiente de V_{DS} (comportamiento como una fuente de corriente).

$$I_D = k' \frac{W}{L} \frac{\left(V_{GS} - V_T\right)^2}{2}$$

(sección vertical)

Disseny de Circuits i Sistemes Electrònics: El MOS

1

Transistor MOS: comportamiento ideal (canal largo)

- Transistor en corte si $V_{GS} \leq V_T$ \Rightarrow $I_D = 0$
- $\bullet \quad \text{Transistor en zona \'ohmica si} \quad 0 \leq V_{DS} \leq V_{GS} V_{T} \\ \qquad \Rightarrow \\$
- Transistor en zona de saturación si $V_{GS} V_T \leq V_{DS}$ \Rightarrow

$$I_{D} = k \cdot \frac{W}{L} \left[(V_{GS} - V_{T}) V_{\min} - \frac{V_{\min}^{2}}{2} \right] con \quad V_{\min} = \min \{ V_{DS}, V_{GS} - V_{T} \}$$

—

Transistor MOS: utilizaciones típicas

- En circuitos digitales, como interruptor
 - OFF: corte
 - ON: lineal
- En circuitos analógicos
 - a) como fuente de corriente (saturación)
 - b) como amplificador ($\Delta I_D / \Delta V_{GS}$) (saturación)

Disseny de Circuits i Sistemes Electrònics: El MOS

13

Transistor MOS: comportamiento no ideal (canal largo)

- En la práctica, en la región de saturación hay una cierta dependencia de la corriente I_D con V_{DS}, aproximadamente lineal.
- A este efecto se le denomina modulación de longitud de canal, y se modela a través del parámetro λ (orden 0,01 V⁻¹)

Transistor MOS: comportamiento no ideal (canal largo)

Efecto sustrato o body effect: dependencia de V_T con la tensión V_{BS}

$$V_{\scriptscriptstyle T} = V_{\scriptscriptstyle TO} + \gamma \left(\sqrt{2\phi_{\scriptscriptstyle F} - V_{\scriptscriptstyle BS}} - \sqrt{2\phi_{\scriptscriptstyle F}} \right)$$

(figure from "Digital Integrated Circuits, A Design Perspective", J. M. Rabaey, A. Chandrakasan, B. Nikolic, Prentice Hall, 2003)

Transistor MOS: comportamiento no ideal (canal largo)

Corriente subumbral: en corte, la corriente $I_{\rm D}$ no es nula.

- Esto provoca que en realidad, el consumo estático de una puerta CMOS no sea nulo.
- Para V_{GS} =0, el consumo aumenta exponencialmente al disminuir V_{T}

Modelo MOS canal largo (modelo clásico):

- MOS de canal N (NMOS)
- $\bullet \quad \text{Transistor en corte si} \quad V_{\textit{GS}} \leq V_{\textit{T}} \quad \Rightarrow \quad I_{\textit{D}} \approx 0 \quad (\textit{subumbral})$
- Transistor en zona óhmica si $0 \le V_{DS} \le V_{GS} V_{T}$ \Rightarrow
- Transistor en zona de saturación si $0 \le V_{GS} V_T \le V_{DS} \Rightarrow$

$$I_{D} = k \cdot \frac{W}{L} \left[\left(V_{GS} - V_{T} \right) V_{\min} - \frac{{V_{\min}}^{2}}{2} \right] \left[1 + \lambda V_{DS} \right] \quad con \quad V_{\min} = \min \left\{ V_{DS}, V_{GS} - V_{T} \right\}$$

$$V_{T} \left(V_{BS} \right)$$

Disseny de Circuits i Sistemes Electrònics: El MOS

17

Modelo MOS canal largo (modelo clásico):

- MOS de canal P (PMOS)
- Transistor en corte si $V_{GS} \ge V_T$ \Rightarrow $I_D \approx 0$ (subumbral)
- Transistor en zona óhmica si $V_{GS} V_T \leq V_{DS} \leq 0 \Rightarrow$
- Transistor en zona de saturación si $V_{DS} \leq V_{GS} V_T \leq 0 \implies$

$$I_{D} = k \cdot \frac{W}{L} \left[\left(V_{GS} - V_{T} \right) V_{\text{max}} - \frac{V_{\text{max}}^{2}}{2} \right] \left[1 + \lambda \left| V_{DS} \right| \right] \quad con \quad V_{\text{max}} = \max \left\{ V_{DS}, V_{GS} - V_{T} \right\}$$

$$V_{T} \left(V_{BS} \right)$$

Donde ahora V_{τ} para un PMOS es < 0

Transistor MOS: efectos de canal corto

- Efectos de canal corto:
 - Propios de tecnologías sub-100 nm (aprox.)
 - Campo eléctrico a lo largo del canal aumenta con menor L, mayor V_{DS}
 - A partir de cierta intensidad del campo eléctrico, los portadores alcanzan su velocidad de saturación, y ${\rm I}_{\rm D}$ deja de aumentar a pesar de que aumente $V_{\rm DS}$
 - $-\;$ La tensión de saturación se alcanza para una $\rm V_{DSsat}$ inferior a $\rm V_{GS}\text{-}V_{T}$

(figures from "Digital Integrated Circuits, A Design Perspective", J. M. Rabaey, A. Chandrakasan, B. Nikolic, Prentice Hall, 2003)

Transistor MOS: efectos de canal corto

- Esto se traduce en:
 - Saturación antes de lo previsto
 - $-\;$ Dependencia de $\rm I_D$ con $\rm V_{GS}$ lineal en lugar de cuadrática

Transistor MOS: efectos de canal corto

- Otros efectos
 - Dependencia de V_T con V_{DS} (DIBL)
 - Portadores "calientes" (corrientes de sustrato, corrientes de puerta)
- En las tecnologías actuales, el modelo ideal es una mala aproximación de la realidad

Transistor MOS: modelo de canal corto

- Propuesta de modelo único para canal largo y canal corto (NMOS):
- Transistor en corte si $V_{GS} \le V_{TN} \implies I_D \approx 0$ (subumbral)
- Transistor en conducción si $V_{GS} \ge V_{TN}$

$$\begin{split} I_D &= k' \frac{W}{L} \bigg[\big(V_{GS} - V_{TN} \big) V_{\min} - \frac{{V_{\min}}^2}{2} \bigg] \big[1 + \lambda V_{DS} \big] \\ con \quad V_{\min} &= \min \big[V_{DS}, V_{GS} - V_{TN}, V_{DSsat} \big] \qquad V_T \big(V_{BS} \big) \end{split}$$

 $V_{min} = V_{DS}$ si zona óhmica ($V_{DS} < V_{GS} - V_{TN}$ para canal largo; $V_{DS} < V_{DSsat}$ para canal corto) $V_{min} = V_{GS} - V_{TN}$ si saturación, canal largo $V_{min} = V_{DSsat}$ si saturación, canal corto

$$\text{con } V_{\text{DSsat}} = L \cdot E_{\text{sat}} = L \cdot \frac{v_{\text{sat}}}{\mu_{ob}}$$

 $v_{sat} \simeq 10^5 \frac{m}{s}$ tanto para portadores n como para portadores p

Transistor MOS: modelo de canal corto

- Propuesta de modelo único para canal largo y canal corto (PMOS):
- $\bullet \quad \text{Transistor en corte si} \quad V_{\textit{GS}} \geq V_{\textit{TP}} \qquad \Rightarrow \quad I_{\textit{D}} \approx 0 \quad (\textit{subumbral})$
- Transistor en conducción si $V_{GS} \leq V_{TP}$

$$I_D = k' \frac{W}{L} \left[\left(V_{GS} - V_{TP} \right) V_{\text{max}} - \frac{V_{\text{max}}^2}{2} \right] \left[1 + \lambda \left| V_{DS} \right| \right]$$

$$con \quad V_{\max} = \max \left[V_{DS}, V_{GS} - V_{TP}, V_{DSsat} \right] \qquad V_{T} \left(V_{BS} \right)$$

 $V_{max} = V_{DS}$ si zona óhmica $(V_{DS} > V_{GS} - V_{TP}$ para canal largo; $V_{DS} > V_{DSsat}$ para canal corto) $V_{max} = V_{GS} - V_{TP}$ si saturación, canal largo $V_{max} = V_{DSsat}$ si saturación, canal corto

$$\text{con } V_{\text{DSsat}} = -L \cdot E_{\text{sat}} = -L \cdot \frac{v_{\text{sat}}}{\mu_{ob}}$$

 $v_{sat} \simeq 10^5 \, \frac{m}{s}$ tanto para portadores *n* como para portadores *p*

Disseny de Circuits i Sistemes Electrònics: El MOS

23

Capacidades MOS

- Capacidades de un transistor en corte (no hay canal)
- 1. Capacidad puerta-sustrato $C_{\mathit{GB}} = \varepsilon_{\mathit{SiO}_2} \, \frac{W \cdot L}{t_{ox}}$

Capacidades MOS

- Capacidades de transistor en corte (no hay canal)
- 1. Capacidad puerta-substrato
- 2. Capacidades laterales puerta-drenador y puerta-surtidor,

$$C_{GD} = C_{GDoverlap}$$
 ; $C_{GS} = C_{GSoverlap}$

Disseny de Circuits i Sistemes Electrònics: El MOS

Capacidades MOS

- Capacidades de un transistor en corte (no hay canal)
- 1. Capacidad puerta-substrato
- 2. Capacidades laterales puerta-drenador y puerta-surtidor, $C_{\text{GDoverlap}}$.
- 3. Capacidades de los diodos drenador-substrato y surtidor-substrato

Capacidades MOS

Si el transistor está en zona <u>óhmica</u>, la capacidad puerta-canal se reparte a partes iguales hacia el drenador y el surtidor

$$C_{GD} = C_{GS} = C_{overlap} + \frac{1}{2} \varepsilon_{SiO_2} \frac{W \cdot L}{t_{ox}}$$

Disseny de Circuits i Sistemes Electrònics: El MOS

Capacidades MOS

Si el transistor está en zona de saturación, el reparto es:

$$C_{GS} = C_{GSoverlap} + \frac{2}{3} \varepsilon_{SiO_2} \frac{W \cdot L}{t_{ox}}$$
 $C_{GD} = C_{GDoverlap}$

$$C_{GD} = C_{GDoverlap}$$

Capacidades MOS

- Las capacidades asociadas a la puerta se denominan intrínsecas
 - En corte, $C_{GB} = \varepsilon_{SiO_2} \frac{W \cdot L}{t_{ox}}$

 - En ohmica, $C_{GS} = C_{GD} = \frac{1}{2} \varepsilon_{SiO_2} \frac{W \cdot L}{t_{ox}}$ En saturación $C_{GS} = \frac{2}{3} \varepsilon_{SiO_2} \frac{W \cdot L}{t_{ox}}$
- Las capacidades de overlap y de los diodos al substrato se denominan extrínsecas
 - ullet $C_{GDoverlap}$ $C_{GSoverlap}$

