Συναρτήσεις Ορια συνάρτησης στο άπειρο

Κωνσταντίνος Λόλας

 10^o ΓΕΛ Θεσσαλονίκης

Οταν πάμε εμείς στο άπειρο λοιπόν!

2/1

- $\lim_{x \to 0^+} \frac{1}{x} = +\infty \implies \lim_{x \to +\infty} \frac{1}{x} = 0$
- $\lim_{x \to +\infty} x^n = +\infty$
- $\lim_{x \to +\infty} \frac{1}{x^n} = 0$
- $\lim_{x \to -\infty} x^n = egin{cases} +\infty & n \text{ άρτιος} \\ -\infty & n περιττός \end{cases}$
- \bullet $\mu \epsilon a > 1$, $\lim_{x \to +\infty} a^x = +\infty$
- **8** $\mu \epsilon 0 < a < 1$, $\lim_{x \to +\infty} a^x = 0$
- (9) $\mu \epsilon 0 < a < 1$, $\lim_{x \to \infty} a^x = +\infty$
- $\mathbf{0}$ $\mu \mathbf{e}$ $\lim_{n \to \infty} \ln x = +\infty$

$$\mathbf{1} \lim_{x \to 0^+} \frac{1}{x} = +\infty \implies \lim_{x \to +\infty} \frac{1}{x} = 0$$

- $\lim_{x \to +\infty} x^n = +\infty$
- $\lim_{x \to +\infty} \frac{1}{x^n} = 0$
- $m{@} \lim_{x o -\infty} x^n = egin{cases} +\infty & n \text{ άρτιος} \\ -\infty & n \text{ περιττός} \end{cases}$
- $\lim_{x \to -\infty} \frac{1}{x^n} = 0$
- \bullet $\mu \epsilon a > 1$, $\lim_{x \to +\infty} a^x = +\infty$
- \bigcirc $\mu \epsilon a > 1$, $\lim_{x \to -\infty} a^x = 0$
- **8** $\mu \epsilon 0 < a < 1$, $\lim_{x \to +\infty} a^x = 0$
- \bullet $\mu \varepsilon 0 < a < 1$, $\lim_{x \to -\infty} a^x = +\infty$
- $\mathbf{0}$ $\mu \mathbf{e} \lim_{r \to +\infty} lnx = +\infty$

- $\lim_{x \to +\infty} x^n = +\infty$
- $\lim_{x \to +\infty} \frac{1}{x^n} = 0$
- $m{@} \lim_{x o -\infty} x^n = egin{cases} +\infty & n \ ext{άρτιος} \ -\infty & n \ ext{περιττός} \end{cases}$
- \bullet $\mu \varepsilon a > 1$, $\lim_{x \to +\infty} a^x = +\infty$
- $\mathbf{0} \ \mu \epsilon \ a > 1, \lim_{x \to -\infty} a^x = 0$
- **8** $\mu \epsilon 0 < a < 1$, $\lim_{x \to +\infty} a^x = 0$
- \bullet $\mu \varepsilon 0 < a < 1$, $\lim_{x \to -\infty} a^x = +\infty$
- $\mathbf{0}$ $\mu \epsilon \lim_{r \to +\infty} lnx = +\infty$

- $\lim_{x \to +\infty} x^n = +\infty$
- $\lim_{x \to +\infty} \frac{1}{x^n} = 0$
- $4\lim_{x\to -\infty} x^n = \begin{cases} +\infty & n \text{ άρτιος} \\ -\infty & n \text{ περιττός} \end{cases}$
- $\lim_{x \to -\infty} \frac{1}{x^n} = 0$
- **6** $\mu \varepsilon a > 1$, $\lim_{x \to +\infty} a^x = +\infty$
- \bullet $\mu \varepsilon a > 1$, $\lim_{x \to -\infty} a^x = 0$
- **8** $\mu \epsilon 0 < a < 1$, $\lim_{x \to +\infty} a^x = 0$
- $\mathbf{0}$ $\mu \epsilon \lim_{x \to +\infty} lnx = +\infty$

- $\lim_{x \to 0^+} \frac{1}{x} = +\infty \implies \lim_{x \to +\infty} \frac{1}{x} = 0$
- $\lim x^n = +\infty$ $x \rightarrow +\infty$
- $\lim_{x \to +\infty} \frac{1}{x^n} = 0$
- $\lim_{x \to -\infty} x^n = \begin{cases} +\infty & n \text{ άρτιος} \\ -\infty & n \text{ περιττός} \end{cases}$

$$\mathbf{1} \lim_{x \to 0^+} \frac{1}{x} = +\infty \implies \lim_{x \to +\infty} \frac{1}{x} = 0$$

- $\lim_{x \to +\infty} x^n = +\infty$
- $\lim_{x \to +\infty} \frac{1}{x^n} = 0$
- $4 \lim_{x \to -\infty} x^n = \begin{cases} +\infty & n \text{ άρτιος} \\ -\infty & n \text{ περιττός} \end{cases}$
- $\lim_{x \to -\infty} \frac{1}{x^n} = 0$
- 6 $\mu \epsilon a > 1$, $\lim_{x \to +\infty} a^x = +\infty$
- **8** $\mu \epsilon 0 < a < 1$, $\lim_{x \to +\infty} a^x = 0$
- ⓐ με 0 < a < 1, $\lim_{x \to \infty} a^x = +\infty$
- $\mathbf{0}$ $\mu \epsilon \lim_{r \to +\infty} lnx = +\infty$

- $\mathbf{1} \lim_{x \to 0^+} \frac{1}{x} = +\infty \implies \lim_{x \to +\infty} \frac{1}{x} = 0$
- $\lim_{x \to +\infty} x^n = +\infty$
- $\lim_{x \to +\infty} \frac{1}{x^n} = 0$
- $\lim_{x \to -\infty} x^n = egin{cases} +\infty & n \text{ άρτιος} \\ -\infty & n \text{ περιττός} \end{cases}$
- $\lim_{x \to -\infty} \frac{1}{x^n} = 0$
- 6 $\mu \epsilon a > 1$, $\lim_{x \to +\infty} a^x = +\infty$
- \bigcirc $\mu \epsilon a > 1$, $\lim_{x \to -\infty} a^x = 0$
- **8** $\mu \epsilon 0 < a < 1$, $\lim_{x \to +\infty} a^x = 0$
- **9** $\mu \epsilon 0 < a < 1$, $\lim_{x \to -\infty} a^x = +\infty$
- $\mathbf{0}$ με $\lim_{n\to\infty} lnx = +\infty$

$$\mathbf{1} \lim_{x \to 0^+} \frac{1}{x} = +\infty \implies \lim_{x \to +\infty} \frac{1}{x} = 0$$

- $\lim_{x \to +\infty} x^n = +\infty$
- $\lim_{x \to +\infty} \frac{1}{x^n} = 0$
- $\lim_{x \to -\infty} x^n = egin{cases} +\infty & n \text{ άρτιος} \\ -\infty & n \text{ περιττός} \end{cases}$
- $\lim_{x \to -\infty} \frac{1}{x^n} = 0$
- **6** με a > 1, $\lim_{x \to +\infty} a^x = +\infty$
- **8** $\mu \epsilon 0 < a < 1$, $\lim_{x \to +\infty} a^x = 0$
- 9 με 0 < a < 1, $\lim_{x \to -\infty} a^x = +\infty$
- $\mathbf{0}$ $\mu \mathbf{\epsilon} \lim_{x \to +\infty} \ln x = +\infty$

$$\mathbf{1} \lim_{x \to 0^+} \frac{1}{x} = +\infty \implies \lim_{x \to +\infty} \frac{1}{x} = 0$$

$$\lim_{x \to +\infty} x^n = +\infty$$

$$\lim_{x \to +\infty} \frac{1}{x^n} = 0$$

$$4 \lim_{x \to -\infty} x^n = \begin{cases} +\infty & n \text{ άρτιος} \\ -\infty & n \text{ περιττός} \end{cases}$$

$$\lim_{x \to -\infty} \frac{1}{x^n} = 0$$

$$0$$
 $\mu \epsilon \lim_{x \to +\infty} lnx = +\infty$

$$\mathbf{1} \lim_{x \to 0^+} \frac{1}{x} = +\infty \implies \lim_{x \to +\infty} \frac{1}{x} = 0$$

$$\lim_{x \to +\infty} x^n = +\infty$$

$$\lim_{x \to +\infty} \frac{1}{x^n} = 0$$

$$\lim_{x \to -\infty} x^n = \begin{cases} +\infty & n \text{ άρτιος} \\ -\infty & n \text{ περιττός} \end{cases}$$

$$\lim_{x \to -\infty} \frac{1}{x^n} = 0$$

6 με
$$a > 1$$
, $\lim_{x \to +\infty} a^x = +\infty$

8
$$\mu \epsilon 0 < a < 1$$
, $\lim_{x \to +\infty} a^x = 0$

$$\lim_{x\to+\infty} \ln x = +\infty$$

$$\mathbf{1} \lim_{x \to 0^+} \frac{1}{x} = +\infty \implies \lim_{x \to +\infty} \frac{1}{x} = 0$$

- $\lim_{x \to +\infty} x^n = +\infty$
- $\lim_{x\to +\infty}\frac{1}{x^n}=0$
- $\mathbf{4}\lim_{x\to -\infty} x^n = egin{cases} +\infty & n \ \text{άρτιος} \\ -\infty & n \ \text{περιττός} \end{cases}$
- $\lim_{x \to -\infty} \frac{1}{x^n} = 0$

- **8** $\mu \epsilon 0 < a < 1$, $\lim_{x \to +\infty} a^x = 0$
- 9 με 0 < a < 1, $\lim_{x \to -\infty} a^x = +\infty$

Συμπέρασμα

Οπως και με τα κανονικά όρια:

- $\label{eq:force_force} \ensuremath{\mathbf{1}} \lim_{x \to \pm \infty} f(x) = k \in \mathbb{R} \ \ensuremath{\mbox{\acute{\eta}}}$
- $2 \lim_{x \to \pm \infty} f(x) = \pm \infty \ \acute{\mathbf{\eta}}$

Μόνο 2 περιπτώσεις

Ασχολούμαστε μόνο με

$$2 + \infty - \infty$$

- \bullet x vs x^2
- $x^2 \text{ vs } x^5$
- Πολυώνυμο vs εκθετική
- Πολυώνυμο vs λογαριθμική

- \bullet x vs x^2
- Πολυώνυμο vs εκθετική
- Πολυώνυμο vs λογαριθμική

- $\quad \quad \textbf{$\boldsymbol{v}$ vs x^2}$
- Πολυώνυμο vs εκθετική
- Πολυώνυμο vs λογαριθμική

- \bullet x vs x^2
- Πολυώνυμο vs εκθετική
- Πολυώνυμο vs λογαριθμική

Πιο άπειρο είναι μεγαλύτερο κάνει κουμάντο

- Υπάρχει μεγαλύτερο? το βγάζω κοινό παράγοντα
- Είναι ίσα? κάνω πράξεις και τα διώχνω

Δύο έτοιμα όρια

$$\begin{split} & \text{Estw } P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 \text{ kall } \\ & Q(x) = b_k x^k + b_{k-1} x^{k-1} + \dots + b_1 x + b_0 \\ & \bullet \lim_{x \to \pm \infty} P(x) = \lim_{x \to \pm \infty} a_n x^n \\ & \bullet \lim_{x \to \pm \infty} \frac{P(x)}{Q(x)} = \lim_{x \to \pm \infty} \frac{a_n x^n}{b_k x^k} \end{split}$$

Συναρτήσεις 8/1

Στο σχήμα lacktriangle φαίνεται η γραφική παράσταση μιας συνάρτησης f(x). Να υπολογίσετε τα παρακάτω όρια (εφόσον υπάρχουν):

- $\bullet \lim_{x \to -\infty} f(x)$

Συναρτήσεις 9/1

Στο σχήμα ullet Geogebra φαίνεται η γραφική παράσταση μιας συνάρτησης f(x). Να υπολογίσετε τα παρακάτω όρια (εφόσον υπάρχουν):

- $\bullet \lim_{x \to -\infty} f(x)$
- $\bullet \ \lim_{x \to +\infty} f(x)$
- $\lim_{x \to -\infty} \frac{1}{f(x) 1}$
- $\bullet \lim_{x \to +\infty} \frac{1}{f(x)}$

Στο σχήμα lacktriangle φαίνεται η γραφική παράσταση μιας συνάρτησης f(x). Να υπολογίσετε τα παρακάτω όρια (εφόσον υπάρχουν):

- $\bullet \lim_{x \to -\infty} f(x)$
- $\bullet \lim_{x \to +\infty} f(x)$
- $\lim_{x \to -\infty} \frac{1}{f(x) 1}$ $\lim_{x \to +\infty} \frac{1}{f(x)}$

Στο σχήμα ullet Geogebra φαίνεται η γραφική παράσταση μιας συνάρτησης f(x). Να υπολογίσετε τα παρακάτω όρια (εφόσον υπάρχουν):

- $\bullet \lim_{x \to -\infty} f(x)$
- $\bullet \lim_{x \to +\infty} f(x)$
- $\bullet \lim_{x \to -\infty} \frac{1}{f(x) 1}$
- $\bullet \lim_{x \to +\infty} \frac{1}{f(x)}$

$$\bullet \lim_{x \to +\infty} 3x^2 - x - 1$$

$$\bullet \lim_{x \to +\infty} -2x^2 + 3x - 1$$

$$\lim_{x \to -\infty} -3x^2 + 5x - 1$$

$$\lim_{x \to -\infty} -2x^3 + 1$$

$$\bullet \lim_{x \to +\infty} 3x^2 - x - 1$$

$$\bullet \lim_{x \to +\infty} -2x^2 + 3x - 1$$

$$\lim_{x \to -\infty} -3x^2 + 5x - 1$$

$$\lim_{x \to -\infty} -2x^3 + 1$$

$$\bullet \lim_{x \to +\infty} 3x^2 - x - 1$$

$$\bullet \lim_{x \to -\infty} -3x^2 + 5x - 1$$

$$\lim_{x \to -\infty} -2x^3 + 1$$

$$\bullet \lim_{x \to +\infty} 3x^2 - x - 1$$

$$\bullet \lim_{x \to +\infty} -2x^2 + 3x - 1$$

$$\bullet \lim_{x \to -\infty} -3x^2 + 5x - 1$$

$$\bullet \lim_{x \to -\infty} -2x^3 + 1$$

Να βρείτε τα όρια:

$$\lim_{x \to +\infty} \frac{2x^3 - x + 1}{3x^3 + x^2 + 1}$$

$$\lim_{x \to -\infty} \frac{x^2 - x + 2}{2x^3 + x + 1}$$

$$\bullet \lim_{x \to +\infty} \left(\frac{x^2}{x-1} - x \right)$$

11/1

$$\lim_{x \to +\infty} \frac{2x^3 - x + 1}{3x^3 + x^2 + 1}$$

•
$$\lim_{x \to -\infty} \frac{x^2 - x + 2}{2x^3 + x + 1}$$

$$\bullet \lim_{x \to +\infty} \left(\frac{x^2}{x-1} - x \right)$$

$$\lim_{x \to +\infty} \frac{2x^3 - x + 1}{3x^3 + x^2 + 1}$$

•
$$\lim_{x \to -\infty} \frac{x^2 - x + 2}{2x^3 + x + 1}$$

$$\bullet \lim_{x \to +\infty} \left(\frac{x^2}{x-1} - x \right)$$

Na breite to ório
$$\lim_{x\to +\infty} \left(2x-|x^3-x-1|\right)$$

$$\bullet \lim_{x \to +\infty} \sqrt{4x^2 - 2x + 1}$$

$$\bullet \lim_{x \to -\infty} \left(\sqrt{x^2 + 5} - x \right)$$

$$\bullet \lim_{x \to +\infty} \sqrt{4x^2 - 2x + 1}$$

$$\bullet \lim_{x \to -\infty} \left(\sqrt{x^2 + 5} - x \right)$$

$$\bullet \lim_{x \to +\infty} \left(\sqrt{4x^2 + 2x + 1} - 2x \right)$$

$$\bullet \lim_{x \to -\infty} \left(x + \sqrt{x^2 + 1} \right)$$

$$\bullet \ \lim_{x \to +\infty} \left(\sqrt{4x^2 + 2x + 1} - 2x \right)$$

$$\bullet \lim_{x \to -\infty} \left(x + \sqrt{x^2 + 1} \right)$$

Να βρείτε το όριο
$$\lim_{x\to +\infty} \left((a-1)x^3-2x+1\right)$$
, για τις διάφορες τιμές του $a\in \mathbb{R}$

15/1 Συναρτήσεις

Να βρείτε τις τιμές του $\mu\in\mathbb{R}$, για τις οποίες το $\lim_{x\to+\infty}\frac{(\mu-1)x^3+\mu x^2-2}{(\mu-2)x^2+3x+1}$, είναι πραγματικός αριθμός

Λόλας $(10^{o}$ ΓΕΛ) Συναρτήσεις 16/1

Για τις διάφορες πραγματικές τιμές του μ , να υπολογίσετε το $\lim_{x\to -\infty} \left(\sqrt{4x^2+1} + \mu x\right)$

Δίνεται η συνάρτηση $f(x)=\frac{x^n+x-1}{x^2+1}$, $n\in\mathbb{N}^*$. Να βρείτε το $\lim_{x\to+\infty}f(x)$ για τις διάφορες τιμές του $n\in\mathbb{N}^*$.

Λόλας $(10^{o}$ ΓΕΛ) Συναρτήσεις 18/1

Εστω
$$f:\mathbb{R} \to \mathbb{R}$$
 μια συνάρτηση, για την οποία ισχύει
$$\lim_{x \to +\infty} \left(x f\left(\frac{x-1}{x}\right)\right) = 2$$
, να υπολογίσετε το $\lim_{x \to 1} \frac{f(x)}{x-1}$.

Εστω $f:\mathbb{R} o \mathbb{R}$ μια συνάρτηση, για την οποία ισχύει $\lim_{x o 1} f(x) = -\infty$, να υπολογίσετε τα όρια

$$\lim_{x \to 1} \frac{2f^2(x) + f(x) - 1}{f^3(x) - f(x) - 2}$$

Συναρτήσεις 20/1

Εστω $f:\mathbb{R} o \mathbb{R}$ μια συνάρτηση, για την οποία ισχύει $\lim_{x o 1} f(x) = -\infty$, να υπολογίσετε τα όρια

$$\lim_{x \to 1} \frac{2f^2(x) + f(x) - 1}{f^3(x) - f(x) - 2}$$

$$\lim_{x \to 1} \left(\sqrt{f^2(x) + 1} - f(x) \right)$$

Συναρτήσεις 20/1

Εστω $f:(-\infty,0)\to\mathbb{R}$ μια συνάρτηση, για την οποία ισχύει

$$\lim_{x \to -\infty} \frac{x f(x) - 2x + 3}{x + 2} = 1$$

- υα βρείτε τα όρια:
 - - $\lim_{x \to -\infty} \frac{3x^2 f(x) x^2 + 1}{x f(x) + 3}$
- @ Αν επιπλέον ισχύει $f\left((-\infty,0)\right)=(3,+\infty)$, να βρείτε το $\lim_{x\to -\infty}\frac{x}{f(x)-3}$

Εστω $f:(-\infty,0)\to\mathbb{R}$ μια συνάρτηση, για την οποία ισχύει

$$\lim_{x \to -\infty} \frac{xf(x) - 2x + 3}{x + 2} = 1$$

- 1 να βρείτε τα όρια:

 - $\lim_{x \to -\infty} \frac{3x^2 f(x) x^2 + 1}{x f(x) + 3}$
- ② Αν επιπλέον ισχύει $f\left((-\infty,0)\right)=(3,+\infty)$, να βρείτε το $\lim_{x\to-\infty}\frac{x}{f(x)-3}$

Εστω $f:(0,+\infty) \to \mathbb{R}$ μια συνάρτηση, για την οποία ισχύουν

$$\lim_{x\to +\infty}\frac{f(x)}{x}=5\ \mathrm{kal}\ \lim_{x\to +\infty}\left(f(x)-5x\right)=2$$

Nα βρείτε το $\lambda \in \mathbb{R}$, ώστε

$$\lim_{x\to +\infty} \frac{3f(x)+\lambda x-2}{xf(x)-5x^2+1}=3$$

$$\lim_{x \to +\infty} \eta \mu \frac{2x - 1}{x^2 + 1}$$

$$\lim_{x \to +\infty} \frac{x}{x^2 + 1} \sigma v \nu x$$

$$\lim_{x \to +\infty} \frac{x}{x^2 + 1} \sigma v \nu x$$

$$\lim_{x \to +\infty} \frac{x}{x^2 + 1} \sigma v \nu x$$

$$\lim_{x \to -\infty} x \eta \mu \frac{1}{x} = 1$$

$$\lim_{x \to +\infty} \frac{\eta \mu x}{x} = 0$$

$$\lim_{x \to +\infty} \eta \mu x \cdot \eta \mu \frac{1}{x} = 0$$

$$\lim_{x \to +\infty} \frac{x - \eta \mu x}{x - 1} = 1$$

$$\lim_{x \to +\infty} \frac{\eta \mu x}{x} = 0$$

$$\lim_{x \to +\infty} \eta \mu x \cdot \eta \mu \frac{1}{x} = 0$$

$$\lim_{x \to +\infty} \frac{x - \eta \mu x}{x - 1} = 1$$

$$\lim_{x \to -\infty} x \eta \mu \frac{1}{x} = 1$$

$$\lim_{x \to -\infty} \eta \mu x$$

$$\lim_{x \to +\infty} \frac{\eta \mu x}{x} = 0$$

$$\lim_{x\to +\infty} \eta \mu x \cdot \eta \mu \frac{1}{x} = 0$$

$$\lim_{x \to +\infty} \frac{x - \eta \mu x}{x - 1} = 1$$

$$\lim_{x\to -\infty} x\eta\mu\frac{1}{x}=1$$

$$\lim_{x \to +\infty} \frac{\eta \mu x}{x} = 0$$

$$\lim_{x \to +\infty} (x + \eta \mu x)$$

$$\lim_{x \to +\infty} \frac{x}{2 - \eta \mu x}$$

$$\text{ } \lim_{x \to +\infty} \left(x + \eta \mu x \right)$$

$$\lim_{x \to +\infty} \frac{x}{2 - \eta \mu x}$$

$$\lim_{x\to +\infty}\frac{e^x-2^x+1}{3^x-5^x-2}$$

2
$$\lim_{x \to -\infty} \frac{3^x - 5^x}{3^x - 2^x}$$

$$\lim_{x\to +\infty}\frac{e^x-2^x+1}{3^x-5^x-2}$$

$$\lim_{x \to -\infty} \frac{3^x - 5^x}{3^x - 2^x}$$

Na breite to
$$\lim_{x\rightarrow +\infty} \frac{2^x-a^x}{2^x+3a^x}$$
 , $a>0$

- $-\frac{1}{\alpha}$ lim $e^{-\frac{1}{\alpha}}$
- $\lim_{x \to 0^-} e^{-x}$
- $\lim_{x \to 0} \frac{1}{e^{x^2} 1}$

Να βρείτε τα όρια:

- $\lim_{x \to 0^-} e^{-x}$
- $\lim_{x \to 0} \frac{1}{e^{x^2} 1}$

- $1 \lim_{x \to +\infty} e^{-x^2+1}$
 - 1 --1 lim c 2
- $\lim_{x \to 0^{-}} e^{-x}$
- $\lim_{x \to 0} \frac{1}{e^{x^2} 1}$

$$\lim_{x \to 0} \frac{1}{x} - \ln x$$

$$\lim_{x \to 0} \frac{x}{\ln x}$$

$$\lim_{x \to 1} \frac{1 + \sqrt{x - 1}}{\ln x}$$

$$\lim_{x \to 0} \frac{\ln x}{\eta \mu x}$$

- $\lim_{x \to 0} \frac{1}{x} \ln x$
- $\lim_{x \to 0} \frac{x}{\ln x}$
- $\lim_{x \to 1} \frac{1 + \sqrt{x 1}}{\ln x}$
- $4 \lim_{x \to 0} \frac{\ln x}{\eta \mu x}$

- $\lim_{x \to 0} \frac{1}{x} \ln x$
- $\lim_{x \to 0} \frac{x}{\ln x}$
- $\lim_{x \to 1} \frac{1 + \sqrt{x 1}}{\ln x}$
- $4 \lim_{x \to 0} \frac{\ln x}{\eta \mu x}$

- $\lim_{x \to 0} \frac{1}{x} \ln x$
- $\lim_{x \to 0} \frac{x}{\ln x}$
- $\lim_{x \to 1} \frac{1 + \sqrt{x 1}}{\ln x}$
- $4 \lim_{x \to 0} \frac{\ln x}{\eta \mu x}$

$$\lim_{x \to +\infty} \left(\ln x + e^{-\frac{1}{x}} \right)$$

- $\lim_{x \to 1} \ln \frac{x}{x 1}$
- $\lim_{x \to +\infty} \left(\ln(1 + e^{2x}) x \right)$

$$\lim_{x \to +\infty} \left(\ln x + e^{-\frac{1}{x}} \right)$$

- $\lim_{x \to +\infty} \left(\ln(1 + e^{2x}) x \right)$

$$\lim_{x \to +\infty} \left(\ln x + e^{-\frac{1}{x}} \right)$$

Να βρείτε τα όρια:

- $\lim_{x \to +\infty} (\ln x + \sigma v \nu x)$
- $\lim_{x \to +\infty} \frac{\sigma v \nu x}{\ln x}$

31/1

- $\lim_{x \to +\infty} (\ln x + \sigma v \nu x)$
- $\lim_{x \to +\infty} \frac{\sigma v \nu x}{\ln x}$

Δίνεται η συνάρτηση $f(x) = \ln x + \sqrt{x-1}$ με σύνολο τιμών το $[0,+\infty)$

- ① Να δείξετε ότι η f αντιστρέφεται
- ② Να βρείτε το $\lim_{x\to +\infty} \left(x^2 f^{-1}(x)\right)$

Δίνεται η συνάρτηση $f(x) = \ln x + \sqrt{x-1}$ με σύνολο τιμών το $[0,+\infty)$

- f 0 Να δείξετε ότι η f αντιστρέφεται
- ② Να βρείτε το $\lim_{x \to +\infty} \left(x^2 f^{-1}(x) \right)$

Δίνεται η συνάρτηση $f(x)=x^x$, x>0. Να βρείτε το $\lim_{x\to +\infty}f(x)$

Στο moodle θα βρείτε τις ασκήσεις που πρέπει να κάνετε, όπως και αυτή τη παρουσίαση