D - 1 -2012

미압 배관에서의 폭연 벤팅 설치에 관한 기술지침

2012. 7

한국산업안전보건공단

안전보건기술지침의 개요

O 작성자 : 서울산업대학교 안전공학과 이영순 교수

O 개정자: 이 정 석

O 제 · 개정 경과

- 2009년 8월 화학안전분야 기준제정위원회 심의

- 2012년 7월 총괄 제정위원회 심의(개정, 법규개정조항 반영)

O 관련 규격 및 자료

- KOSHA CODE D-29-1998 「기스 및 증기상의 화재·폭발 위험성이 있는 설비의 설계지침」

O 관련법규

- 산업안전보건법 동법 산업안전보건기준에 관한 규칙 제 76조(배기의 처리) 및 제 267조(배출물질의 처리)
- 대기환경보전법 및 위험물안전관리법 등

O 적용 및 문의

이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈페이지 안전보건기술지침 소관 분야별 문의처 안내를 참고하시기 바랍니다.

공표일자: 2012년 7월 18일

제 정 자: 한국산업안전보건공단 이사장

미압 배관에서의 폭연 벤팅 설치에 관한 기술지침

1. 목적

이 지침은 벤트 배관 내 인화성 증기 및 가스로 인한 폭연으로 배관이 손상되는 것을 최소화하기 위하여 관련 장치와 시스템의 폭연 벤트 기준에 대한 기술지침을 정하는데 그 목적이 있다.

2. 적용범위

- (1) 이 지침은 사용압력 20 kPa (3 psig) 이하에서 사용하는 배관 설비에 적용한다. 다만, 다음의 경우에는 적용하지 않는다.
 - (가) 폭굉, 다량 가스의 자연발화, 증기운 폭발과 같은 무한범위의 폭연
 - (나) 외부화재 시 내부압력 상승에 대비하여 안전장치가 설치된 저장용기
 - (다) 발열 폭주반응 또는 자기분해 폭주반응에 대비한 비상벤트
 - (라) 압력용기에 설치된 압력방출장치
 - (마) 벤트 배출 덕트

3. 정 의

- (1) 이 지침에서 사용하는 용어의 정의는 다음과 같다.
 - (가) "폭연"이라 함은 연소에 의한 폭발 충격파가 미반응 매질 속에서 음속이 하의 속도로 이동하는 폭발현상을 말한다.
 - (나) "폭굉"이라 함은 연소에 의한 폭발 충격파가 미반응 매질 속에서 음속보다 빠른 속도로 이동하는 폭발현상을 말한다.

- (다) "가연성분진"이라 함은 직경 420µm 이하인 미세한 분말상의 물질로서 적절한 비율로 공기와 혼합되면 점화원에 의하여 폭발할 위험성이 있는 물질을 말한다.
- (라) "연소한계(Flammable Limit)"라 함은 가스 등의 농도가 일정한 범위 내에 있을 때 폭발현상이 일어나는데, 그 농도가 지나치게 낮거나 지나치게 높지 않아 폭발이 일어날 수 있는 농도 범위를 폭발한계라 말한다.
- (마) "연소하한계(Lower explosive limit, LEL)"라 함은 가스 등이 공기 중에서 점화원에 의해 착화되어 화염이 전파되는 가스 등의 최소농도를 말한다.
- (바) "연소상한계(Upper explosive limit, UEL)"라 함은 가스 등이 공기 중에서 점화원에 의해 착화되어 화염이 전파되는 가스 등의 최대농도를 말한다.
- (사) "폭발최소 산소농도"라 함은 밀폐된 설비 등에서 분진폭발이 일어나지 않는 최대 산소 농도를 말한다.
- (아) "혼성혼합물(Hybrid Mixture)"이라 함은 인화성가스와 인화성 분진, 인화성 미스트의 혼합물을 말한다.
- (자) "최대 압력(Maximum Pressure)"이라 함은 최적 혼합물에 대해서 폭연공 간에서 생성되는 최대압력을 말한다.
- (차) "최대 벤트압력(Pred, Reduced Pressure)"이라 함은 폭연 시 배출되는 밀폐공간에서 발생된 최대압력으로, 밀폐공간의 가장 약한 구조부분이 견딜수 있는 최대압력을 말한다.
- (카) "분진 폭연지수(Kst)"이라 함은 어떤 부피의 용기에서 분진이 폭발할 때, 발생하는 최대폭발압력상승속도에 분진부피의 세제곱근을 곱하여 얻어지 는 수치로 분진의 폭발등급을 칭할 때 쓰이는 말이다.
- (2) 그 밖에 이 지침에서 사용하는 용어의 정의는 특별한 규정이 있는 경우를 제외하고는 「산업안전보건법」, 같은 법 시행령, 같은 법 시행규칙 및 산업안전보건기준에 관한 규칙에서 정하는 바에 의한다.

4. 설계 시 고려사항

- (1) 배관, 덕트, 가늘고 긴 용기들의 폭연 벤트를 설계할 때에는 폭광으로의 전이를 방지하기 위한 다음 사항을 고려하여야 한다.
 - (가) 용기의 직경에 대한 길이의 비(L/D)가 가급적이면 5 이상 되지 않도록 한다.
 - (나) 밸브, 엘보우, 기타 배관부속품 또는 장애물 등 난류를 발생시키어 화염의 가속과 압력의 급격한 상승을 일으킬 수 있는 상황을 가능한 한 줄인다..
 - (다) 배관 또는 덕트가 부착된 용기내 가연성 혼합물의 농도가 폭연범위로 되지 않도록 한다.
- (2) 이 지침에서 제시하는 적절한 벤트를 확보하는 것이 불가능한 경우, 다음의 방법으로 대체할 수 있다.
 - (가) 폭광 압력을 견디는 배관 또는 덕트 설계와 상호 연결된 용기를 보호하는 격리장치 또는 폭광 억제대책 확보
- (3) 원형이외의 횡단면을 가진 배관, 덕트 및 가늘고 긴 용기의 경우, 용기의 직 경은 4A/P를 적용한다. 여기서 A는 횡단면적이고, P는 횡단면의 둘레이다.

$$D = 4 \left\{ \frac{A}{P} \right\}$$
 (1)
여기서, D = 직경
A = 횡단면적
P = 횡단면의 둘레

- (4) 각 벤트면적의 합은 덕트 또는 배관의 횡단면적 이상이어야 한다.
- (5) 폭연이 일어날 수 있는 용기에 접속된 배관 또는 덕트에도 폭연 벤팅를 설치할 필요가 있으며, 이 때 폭연벤트는 배관 또는 덕트의 횡단면적과 동일한 벤트면적이 되도록 하고 이의 설치지점은 용기의 접속점으로부터 직경 2배이하의 거리로 하여야 한다.

D - 1 - 2012

- (6) 폭연벤트는 발화원이 예상되는 지점의 가장 가까운 곳에 설치해야 한다.
- (7) 가스를 취급하는 계통의 경우 적절한 시험으로 다르게 나타나지 않는 한, 난 류 발생장치가 있는 배관 및 덕트는 직경의 3배 거리에서 장치의 각 면에 폭 연벤트를 설치하여야 한다.
- (8) 폭연벤트 폐쇄부의 중량은 벤트면적당 0.12 kPa(2.5 1b/ft²)의 압력을 초과하지 않아야 한다.
- (9) 벤트의 개방압력은 작동조건에 부합하도록 가능한 한 최대벤트압력(P_{red})의 설계 값 미만이어야 하지만, 최대벤트압력(P_{red})은 설계 값의 1/2를 초과하지 않아야 한다. 덮개는 자석 또는 스프링으로 고정할 수 있다.
- (10) 폭연벤트는 근로자에게 위험이 미치지 않는 장소로 배출하여야 한다.
- (11) 지지대는 벤팅 시 발생한 압력에 견딜 수 있는 강도를 가져야 한다.

5. 폭연벤트 설치 기준

5.1 한 개의 폭연벤트를 가진 배관

- (1) 폭연벤트를 추가로 설치하지 않은 경우, 한쪽 끝이 막혀있고 다른 쪽 끝에서 배출하는 직선인 배관 및 덕트의 최대허용길이는 <그림 1>에 있는 곡선을 사용하여 결정한다.
- (2) <그림 1>에 있는 것보다 길이/직경(L/D)비율이 크다면 폭굉이 일어날 위험 성이 있다.

<그림 1> 직선 배관에 대해 길이 대 직경 비율로 표현된 최대허용길이

- (3) 초기속도 2 m/sec 이하인 가스 배관의 폭연 벤트
 - (가) 초기에 2 m/sec 이하 속도로 흐르는 가스-공기 혼합물의 폭연발생으로 배관 압력이 상승할 경우, 한 개의 폭연벤트를 갖는 배관 내에서 상승하는 압력은 <그림 2>의 곡선을 이용하여 예측한다.
 - (나) <그림 2>의 곡선은 프로판과 비슷한 성질을 가진 가스 혼합물에 적용할 수 있다.
 - (다) 곡선에 있는 직경과 다른 직경에 대해서는 곡선을 내삽하여 압력을 예측할 수 있다.
 - (라) 상승한 압력이 용기의 설계 강도를 초과면 7절에서 기술한 추가 벤트를 확보해야 한다.
- (4) 초기속도 2 m/sec 이하인 분진 배관의 폭연 벤트
 - (가) 초기에 2 m/sec 이하로 유동하는 분진-공기 혼합물이 발화될 경우, 한쪽 끝을 폐쇄하고, 추가 벤트 없이 다른 쪽으로 벤트되는 배관 및 덕트에서

D - 1 - 2012

상승한 압력을 예측할 때에는 <그림 3>의 곡선을 이용한다.

- (나) 상승한 압력이 용기의 파열 강도를 초과하면 7절에서 기술한 추가 벤트 설치를 고려하여야 한다.
- (5) 초기속도 2 m/sec 초과할 때의 폭연 벤트

시스템 유체의 속도가 2 m/sec 초과하여 흐르는 인화성 혼합물이 배관 내에서 발화하거나 화염의 속도가 60 cm/sec를 초과하는 경우, 하나의 단일 폭연벤트로 적정한 벤팅을 확보하는 것은 불가능하다.

- (6) 다음에 해당되는 경우 벤트사이의 거리는 $1 \sim 2 \text{ m}$ 이하 간격으로 배치해야 한다.
 - (가) 초기 속도가 20 m/sec 초과하는 가스
 - (나) 프로판 연소속도의 1.3배 초과하는 가스
 - (다) 폭연지수 K_{st}>300인 분진

각 물질별 연소속도 및 폭연지수는 별첨의 <표 1> 내지 <표 7>을 참조한다.

(7) 난류 발생장치

난류 발생장치가 있는 덕트 또는 배관의 경우 5.66절의 기준에 따라 벤트를 설치해야 한다. 5.2항에서 기술하는 추가 벤트가 필요할 수 있다.

5.2 두 개 이상의 폭연벤트를 가진 배관

- (1) 벤트사이의 최대거리는 <그림 1>의 곡선으로 최대허용벤트 간격을 정하여 사용하다.
- (2) 초기속도 2~20 m/sec 범위

17 kPa (2.5 psig) 이하로 최대벤트압력(P_{red})를 제한하기 위해 벤트 사이의 거리는 <그림 4>로 결정할 수 있다. <그림 4>는 기본 연소속도 20 m/sec이 하의 가스와 폭연지수(K_{st}) 300인 분진에 적용한다. (3) 기본 연소속도가 60 cm/sec를 초과하지 않는 기타 가스의 경우, 프로판 이외에 가스는 다음 공식 중 하나를 사용하여 최대압력을 계산한다.

$$P_{red,x} = P_{red,p} \left\{ \frac{S_{u,x}}{S_{u,p}} \right\}^{2}$$

$$L_{x} = L_{p} \left\{ \frac{S_{u,p}}{S_{u,x}} \right\}^{2}$$
(3)

여기서, Predx = 가스의 예상 최고압력(psi)

P_{red,p} = 2.5psi - 프로판의 예상 최고압력

 L_x = 가스의 벤트사이 거리(m or ft)

Lp = 프로판의 벤트사이 거리(m or ft)

Sux = 가스의 기본 연소속도

Sup = 프로판의 기본 연소속도

<그림 2> 한쪽 끝이 폐쇄된 직선 배관에서 2 m/sec 이하의 속도로 흐르는 프로판/공기 혼합물의 폭연 시 상승한 최대 압력

<그림 3> 한쪽 끝이 폐쇄된 직선 배관에서 2 m/sec 이하의 속도로 흐르는 분진-공기 혼합물의 폭연 시 상승한 최대 압력

<그림 4> Pred를 0.2 barG 초과하지 않는데 필요한 벤트 간격

D - 1 - 2012

6. 설비 점검 및 관리

- (1) 벤트 폐쇄부는 정기적으로 점검하여야 하며, 부식상태나 침전물의 축적량 증가와 같은 상황발생이 예상될 경우 점검주기 및 횟수를 조정한다.
- (2) 벤트 폐쇄부는 작동에 악영향을 미칠 수 있는 천재지변이나 정비분해(검토) 수리 후 점검을 실시한다.
- (3) 점검 빈도 및 절차를 포함하는 정기점검에 대한 사내규정을 마련하여야 한다.
- (4) 점검 시 발견한 부식, 설비손상 및 기타 결함 등은 즉시 수리하여야 한다.
- (5) 벤트 폐쇄부는 제조자의 권고에 따라 적절한 예방적 유지보수를 하여야 한다.
- (6) 점검일자, 점검결과, 내용의 기록은 최소한 최근 3회의 점검기록을 유지하여 야 한다.

D - 1 - 2012

<부록>

폭연벤트 계산(예시)

예제1]

폭연지수 K_{st} 가 190인 분진을 취급하는 건조기의 직경 2 m, 길이 20 m이고, 하나의 단일 벤트 설치로 설계하는 경우, 폭연 벤트시의 발생할 수 있는 압력은 어느 정도인가?

계산1]

- (a) 최대 허용 길이 확인 : 건조기의 직경 2 m인 분진의 경우 <그림 1>에 따라 L/D는 약 25를 적용한다. 해당 건조기의 L/D는 10이므로 허용 할수 있다.
- (b) 최대 압력: <그림 3>에 따라 L/D는 10인 경우에 상승할 수 있는 압력은 약 0.5 barG 압력이 분진에 의한 폭연으로 설비 내에서 상승할 것이다. 따라서 이 설비의 설계압력은 적어도 0.5 barG 이상의 압력을 가져야 한다.

예제2]

배출가스 소각탑(Flare stack)은 직경 0.4 m, 높이 40 m이고, 바닥에 워터 씰(Water seal)을 설치하는 경우, 프로판과 특성이 비슷한 연료/공기 혼합물의 발화로 상승한 압력으로부터 배출가스 연소탑을 보호하기 위해 설계 압력은 어느 정도이어야 하는가?

계산2]

(a) 최대 허용길이 확인: 소각탑(Flare stack)의 직경이 0.4 m인 혼합물의 경우, <그림 1>에서 최대 허용길이 L/D는 약 28을 적용할 수 있다. 이 소각탑의 L/D는 100으로 최대 허용길이 28을 초과하므로, 소각탑 설비가 폭광을 견디도록 설계하거나 다른 수단으로 보호하여야 한다.

예제3]

직경 1 m, 길이 100 m인 직선 덕트를 폭연벤트 설치로 보호할 계획이다.

덕트 내부는 프로판의 특성과 비슷한 탄화수소/공기 혼합물이 들어있으며, 혼합물의 이동속도가 20 m/sec 미만이라면, 덕트의 폭연 압력을 0.017 MPa(2.5 psig)로 제한하기 위해서는 설치하여야 하는 밴트의 벤트간격은 얼마나 필요한가? 단 벤트의 설계압력은 0.05 barG에서 개방되도록 설계하였다.

계산3]

덕트의 직경이 1미터인 경우 벤트의 간격은 <그림 4>에서 L/D는 7.6이므로 벤트 사이의 7.6 m 이하 간격을 유지해야 한다. 이러한 요구사항을 만족하기 위해 벤트는 각 끝에 1개씩 설치하고, 추가로 13개의 벤트를 덕트를 따라 균일한 간격으로 위치하는 것을 권장한다.

예제4]

<그림 5>의 건조기, 집진기 및 덕트 설비 보호를 위한 폭연 벤트를 설치하고자 한다. 설비를 통과하는 가스 유량은 100 m³/hr 이고, 모든 덕트는 직경이 0.6 m이다. 덕트와 설비의 최대허용운전압력은 0.2 barG이고, 설비내 최대 작동압력은 0.05 barG이다. 설비에서 취급하는 유체는 St-2 등급의 분진을 취급한다. 건조기와 집진기 및 덕트에 적절한 폭연벤트를 설치하시오.

계산4]

- (a) 5-4항과 5-6항에서 요구하는 대로 건조기 배출구 직경의 2배 이내와, 첫 번째 엘보우 상류 측 직경의 3배 이하 위치에 벤트 A와 B를 각각 설치하고, 직경 3배의 거리에 C를 설치한다.
- (b) 마찬가지로 5-4항에 근거하여 집진기 입구 상류 측 직경의 대략 2배 위치에 벤트 F를 설치하고, 20 m 덕트에 추가 벤팅이 필요하다. 설비를 통과하는 가스 100 m³/min의 유량은 6 m/sec(=100/60sec/π×0.62)의 유속과 같으므로, 이를 <그림 4>에 적용하면 L/D는 11배 이하 또는 약 6.5 m 이하의 벤트 간격이 필요하며, 벤트 C와 F사이 거리는 약 17.2 m이다. 그러므로, 대략 같은 간격으로 2개의 추가 벤트(D 와 E)의 설치가 필요할 것이다.
- (c) 총 벤트면적은 각 벤트 위치에서 적어도 덕트의 횡단면적과 같아야 하며,

이것은 최대벤트압력 (P_{red}) 이 0.2 barG 이하를 의미한다. 5-8항에 따라 벤트 개방압력은 최대벤트압력 (P_{red}) 의 1/2을 초과하지 않도록 설계하여야 하므로, 벤트개방압력은 0.1 barG를 초과하지 않도록 설계하여야 한다.

<그림 5> 예제4 그림

<부록>

<표 1> 선정된 가스와 증기의 기본 연소속도

여.	入外 に		어지수트
│ 북진명	소속도	물질명	연소속도
(Cn	n/sec)		(Cm/sec)
Acetone	54		0.0
	.66*	Ethyl acetate	38
	66	Ethylene oxide	108
		Ethylenimine	46
	50	Gasoline (100-octane)	40
	87	n-Heptane	46
Benzene	48	Hexadecane	44
,n-butyl-	39	1,5-Hexadiene	52
,tert.obutyl-	39	n-Hexane	46
,1,2-dimethyl-	37		
,1,2,4-trimethyl-	39	1-Hexene	50 57
1,2-Butadiene (methylallene)	68	1-Hexyne	57
1,3-Butadiene	64	3-Hexyne	53
,2,3-dimethyl-	52	Hydrogen	312 *
	55 55	Isopropyl alcohol	41
		Isopropylamine	31
n-Butane	45	Jet fuel, grade JP-1 (average)	40
	47	Jet fuel, grade JP-4 (average)	41
2,2-dimethyl-	42	Methane	40*
	43		40* 35
2-methyl-	43	diphenyl-	
2,2,3-trimethyl-	42	Methyl alcohol	56
Butanone	$\frac{12}{42}$	1,2-Pentadiene (ethylallene)	61
1-Butene	51	cis-1,3-Pentadiene	55
2-cyclopropyl-	50	trans-1,3-Pentadiene (piperylene)	54
	46	2-methyl-(cis or trans)	46
2,3-dimethyl-		1,4-Pentadiene	55
	46	2,3-Pentadiene	60
	46	n-Pentane,	46
	49	2,2-dimethyl-	41
2,3-dimethyl-2-butene	44		43
2-Buten 1-yne (vinylacetylene)	89	2,3-dimethyl-	
	68	2,4-dimethyl-	42
3,3-dimethyl-	56	2-methyl-	43
	61	3-methyl-	43
Carbon disulfide	58	2,2,4-trimethyl-	41
Carbon distillide	46	1-Pentene	50
		2-methyl-	47
Cyclobutane	67	4-methyl-	48
	53	cis-2-Pentene	51
	46	1-Pentene	63
	52	4-methyl-	53
methylene	61		
Cyclohexane	46	2-Pentyne	61
methyl-	44	4-methyl-	54
	46	Propane	46*
	44	2-cyclopropyl-	50
methyl-	44 42	1-deutero-	40
		1-deutero-2-methyl-	40
Cyclopropane	56	2-deutero-2-methyl-	40
cis-1,2-dimethyl-	55	2,2-dimethyl-	39
trans-1,2-dimethyl-	55	2-methyl-	41
ethyl-	56		53
methyl-	58	2-cyclopropyl	
	52	2-methyl-	44
trans-Decalin	36	Propionaldehyde	58
(decahydronaphthalene)	55	Propylene oxide	82
	43	(1,2-epoxypropane)	
		1-Propyne	82
	44	Spiropentane	$\overline{71}$
	47	Tetrahydropyran	48
	54	Tetralin (tetrahydronaphthalene)	39
Ethane	47	Toluene (methylbenzene)	41
Ethane (ethylene)	80	Toruche (memy benzene)	-11

<표 2> 선정된 가스에 대한 기본 연소속도 비교

가스	丑 1		rews and radley	France and Pritchard	
		(공기중)	(산소중)	(공기중)	
Acetylene	166	158	1140	-	
Ethylene	80	79	-	0	
Hydrogen	312	310	1400	347	
Methane	40	45	450	43	
Propane	46	-	-	46	

<표 3> 농산물

	입자크 최소연소농도 lm) (g/m³)	최대폭발 압력 P _{max} (bar)	폭연지수 K _{St} (bar-m/sec)	분진 위험 Class
Cellulose pulp Cork Corn Egg white Milk, powdered Milk, nonfat, dry Soy flour Starch, corn Starch, rice Starch, wheat Sugar Sugar, milk Sugar, beet Tapioca Whey	33 60 42 30 42 30 28 60 17 125 83 60 60 - 20 200 7 - 18 60 22 30 30 200 27 60 29 60 22 125 41 125 29 -	9.7 9.9 9.6 9.4 8.3 5.8 8.8 9.2 10.3 9.2 9.9 8.5 8.3 8.2 9.4 9.8 10.5	229 62 202 75 38 28 125 110 202 101 115 138 82 59 62 140 205	2 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1

<표 4> 탄소질 분진

물질	중간입자크 (µm)	최소연소농도 (g/m³)	최대폭발 압력 P _{max} (bar)	폭연지수 K _{St} (bar-m/sec)	분진 위험 Class
Charcoal, activated	28	60	7.7	14	1
Charcoal, wood	14	60	9.0	10	1
Coal, bituminous	24	60	9.2	129	1
Coke, petroleum	15	125	7.6	47	1
Lampblack	<10	60	8.4	121	1
Lignite	32	60	10.0	151	1
Peat, 22% H ₂ O	_	125	84.0	67	1
Soot, pine	<10	_	7.9	26	1

<표 5> 화학물질 분진

물질	중간입자 크기 (µm)	최소연소농도 (g/m³)	최대폭발 압력, P _{max} (bar)	폭연지수 K _{St} (bar-m/sec)	분진 위험 Class
Adipic acid Anthraquinone Ascorbic acid Calcium acetate Calcium stearate Calcium stearate Carboxy-methylcellu lose Dextrin Lactose Lead stearate Methyl-cellulose Paraformaldehyde Sodium ascorbate Sodium stearate Sulfur	<10 <10 39 92 85 12 24 41 23 12 75 23 23 22 20	60 - 60 500 250 30 125 60 60 60 60 60 30 30	8.0 10.6 9.0 5.2 6.5 9.1 9.2 8.8 7.7 9.2 9.5 9.9 8.4 8.8 6.8	97 364 111 9 21 132 136 106 81 152 134 178 119 123 151	1 3 1 1 1 1 1 1 1 1

<표 6> 금속분진

물질	중간입자 크기 (µm)	최소연소농도 (g/m³)	최대폭발 압력, P _{max} (bar)	폭연지수 K _{St} (bar-m/sec)	분진 위험 Class
Aluminum Bronze Iron carbonyl Magnesium Zinc Zinc	29 18 <10 28 10 <10	30 750 125 30 250 125	12.4 4.1 6.1 17.5 6.7	415 31 111 508 125 176	3 1 1 3 1

<표 7> 합성수지

물질	중간임자 크기 (µm)	최소연소농 (g/m³)	최대폭발 압력, P _{max} (bar)	폭연지수 K _{St} (bar-m/sec)	분진 위험 Class
(poly) Acrylamide (poly) Acrylonitrile (poly) Ethylene (low-pressure process)	10 25 <10	250 - 30	5.9 8.5 8.0	12 121 156	1 1 1
Epoxy resin Melamine resin Melamine, molded (wood flour and mineral filled phenol-formaldehyde) Melamine molded	26 18 15	30 125 60	7.9 10.2 7.5	129 110 41	1 1 1
(phenol-cellulose)	12	60	10.0	127	1
(poly) Methyl acrylate	21	30	9.4	269	2
(poly) Methyl acrylate, emulsion	18	30	10.1	202	2
polymer Phenolic resin (poly) Propylene Terpene-phenol	<10 25 10	15 30 15	9.3 8.4 8.7	129 101 143	1 1 1
resin Urea-formaldehyde/	13	60	10.2	136	1
cellulose, molded (poly) Vinyl acetate/ ethylene copolymer	32	30	8.6	119	1
(poly) Vinyl alcohol (poly) Vinyl butyral (poly) Vinyl chloride (poly) Vinyl chloride/ vinyl acetylene emulsion	26 65 107 35	60 30 200 60	8.9 8.9 7.6 8.2	128 147 46 95	1 1 1 1
copolymer (poly) Vinyl chloride/ethylene/vinyl acetylene suspension copolymer	60	60	8.3	98	1