• 교재:정보통신의 배움터 - 생능출판사 -

• 강의: 이론강의 2시간

- <u>injoo2@gmail.com</u>, 질문 게시판.

| 중간고사  | 기말고사  | 토론 | 출석    | 과제    |
|-------|-------|----|-------|-------|
| 35.0% | 35.0% | 0% | 20.0% | 10.0% |

1장 정보통신의 개요

### 목차

- 1.1 정보통신의 개념
- 1.2 정보통신의 역사
- 1.3 아날로그와 디지털
- 1.4 통신의 대부 전화망

### 1.1 정보통신의 개념(정보란)

#### • 정보:

- 관찰이나 측정을 통해 수집된 데이터를 실제 문제에 도움이 될 수 있도록 해석하고 정리한 지식
- 현실 세계로부터 발생되는 여러 데이터들을 가공하여 특정 목적에 부합되도록 만든 내용
- 다양한 정보



a. 기상정보



b. 생활정보



c. 교통정보



#### 1.1 정보통신의 개념\_정보의 종류

#### • 아날로그 정보

- 카메라의 필름에 기록되는 영상, 레코드 음반에 저장되는 음성 정보 등. \_\_\_\_\_\_

비트 니블 바이트 1011101110101011111

#### • 디지털 정보

- 키보드를 사용하여 입력한 문자, 디지털 카메라에 저장되는 영 상, CD에 저장되는 정보 등
- 비트(bit) 단위를 사용하여 표기
- 아날로그 정보와 같이 모든 범위의 값을 나타낼 수는 없지만 데 이터를 정확한 값으로 표현
  - 저장, 전송에 유리
  - 초기 정보통신 기술에서는 대부분 정보를 아날로그 형태로 저장하거나 전송
  - 현재는 디지털 형태로 바꾸어서 저장하거나 전송

### 1.1 정보통신의 개념\_정보의 종류

#### • 이미지 정보

- 화소 이미지 정보를 구성하는 기본단위
- 흑백 정보일 경우 각 화소는 1비트로 표현
- 256가지 색을 갖는 컬러 정보일 경우, 한 화소가 256가지의 서로 다른 색을 표현하기 위해 8비트의 이진 정보 필요

# 1.1 정보통신의 개념\_정보통신이란?

• 90년대 통신 기술, 컴퓨터 및 반도체 기술이 비약적으로 발전

• 정보의 전달과 처리, 그리고 유통 속도가 엄청나게 빨라짐

• 기술간의 연계성이 높아지면서 네트워크를 이용하여 통합, 운용

할 필요성이 제기됨

 온갖 기기들을 광대역 통합망(BcN)으로 연결하 여 다양한 서비스를 제 공할 수 있는 정보 통신 시대를 열게 함



<광대역통합망의 다양한 서비스>

#### 정보통신이란?

- 넓은 의미(과거) 상대방에게 정보를 전달하는 과정
- 정보 전송: 국제전신전화자문위원회(CCITT)에서는 "기계에 의하여 처리되거나 처리된 정보의 전송"이라고 정의
- 좁은 의미
  - 컴퓨터를 통신 회선으로 연결하여분산되어 있는 정보를 공유하는 방식



- 정보 통신(Information & Communication)
  - 전기 통신에 의한 정보전송 기술과 컴퓨터에 의한 정보처리 기술을 결합
  - 정확한 정보의 전달과 처리 체계를 의미
- 정보 통신 시스템(Information & Communication System)
  - 정보전송 기술과 정보처리 기술을 유기적으로 결합
  - 다양한 정보의 처리 기능 또는 전송 기능을 수행하는 시스템을 의미

#### → 정보통신의 다양한 기능

- 멀리 떨어져 있는 사람과의 의사소통을 원활하게 해줌
- 필요한 정보 등을 신속하게 제공함으로써 정보의 유통을 효율적으로 이루어지게 함
- 시간과 거리의 제약을 극복하게 해줌
- 대용량의 정보를 공동으로 이용 가능
- 세계화를 앞당기고 환경 문제 등 범세계적 문제 해결에 사용 됨.

#### 정보통신의 역사

- 통신은 인간뿐만 아니라 모든 생명체의 기본적인 기능
- 동물과 곤충들은 소리나 몸짓, 분비물, 냄새 등으로 의사소통
- 통신(정보전송) 기술의 탄생과 발전 과정
  - 전기통신 이전의 통신
    - 가청 및 가시거리 통신
    - 몸동작이나 언어. 각종 물리적 도구를 이용해 통신
    - 예) 파발마, 봉화
  - 전기통신
    - 문자나 음성 등의 데이터를 전기적 신호로 변환한 후 이를 전송매체 를 이용해 전송 → 원거리통신
    - 제1세대: 전신 (1844년 모스에 의한 최초의 전신)
    - 제2세대: 전화 (1876년 미국의 벨 전화기 발명)
  - 정보통신
    - 제3세대 : 데이터 통신 (컴퓨터를 이용한 통신 )
    - 제4세대 : 정보통신 (컴퓨터로 통신을 공유하는 형태 )

#### 정보통신: 네트워크+컴퓨터

- 전기통신의 활용 범위를 확장하기 위한 방법은 네트워크의 사용
- 네트워크의 기술 혁신과 컴퓨터의 발달에 기인









<최초의 컴퓨터 ENIAC>

- 정보 전달의 시간적, 지역적, 개인적 격차를 해소하는 방향으로 발전
- 정보통신시스템: 정보시스템+통신시스템

#### 정보통신: 네트워크+컴퓨터



<인터넷>

- 온라인 정보 시스템의 이용과 동시에 통신 기능을 이용한 정보 전달이 활발하게 진행
- 대표적인 예: 1974년 IBM이 발표한 SNA
- SNA: 컴퓨터 간의 접속을 용이하게 하고, 다양한 이용 형태에 대처하기 위해 체계화 된 네트워크 방식
- 기존의 정보통신 형태는 전신, 전화, 데이터 통신이 각기 별개의 네트워크를 형성
- 여러 형태의 정보를 하나로 묶어 전송하는 초고속 디지털 종합정보 통신망으로 발전
- TCP/IP라는 통신규약을 대부분 표준으로 사용, 전세계를 하나로 연결하는 기능 수행

# 아날로그와 디지털-(신호란?)

- 정보전달을 위해 전송매체에서 사용되는 전자기 신호가 필요
- 통신 시스템에서 데이터는 전자기 신호로 변환되어 한 지점에서 다른 지점으로 전달
- 전자기 신호는 아날로그 신호와 디지털 신호로 구분
- 아날로그(analog): '비슷하다'는 뜻, 어떤 물리량의 변화가 표현 수단에서의 변화모습과 비슷하다는 의미
  - 연속적으로 변하는 전자기파를 나타냄
- 디지털: 손가락으로 셈을 할 때 손가락 하나하나를 의미하는 '디지트(Digit)'로부터 나온 단어
  - 매체를 통해 전송되는 일련의 전압펄스를 의미
  - 예를 들어, 일정한 양(+)의 전압은 이진수 1을 표현, 일정 한 음(-)의 전압은 이진수 0을 표시

#### 신호란?

- 아날로그 신호
  - 주파수에 따라 다양한 매체를 통해 전송, 연속적으로 변하는 전자기파



- 기존의 음성이나 영상은 대부분 아날로그 신호를 사용
  - 소리의 고저가 음향 정보의 주파수에 해당
  - 음폭은 진폭에 해당
- 음향 정보는 아날로그 신호 형태로 전송매체를 통해 전달

### 신호란?

#### • 디지털 신호:

- 매체를 통해 전송되는 일련의 전압 펄스
- 데이터 정보와 이미지 정보는 일반적으로 0과 1로 구성된 디지털 신호로써 표현
- 디지털 전송의 장점은 아날로그 신호보다 비용이 적게 들고 잡음에 강함



<데이터 정보의 디지털 신호 표현 예>

### 아날로그와 디지털 신호

- 아날로그와 디지털은 크게 '선'과 '숫자'로 대변
- 즉 아날로그는 연속되는 선의 형태로 정보를 전달
  - 전류의 주파수나 진폭 등 연속적으로 변화하는 형태로 전류를 전달
- 디지털은 0과 1이라는 숫자를 통해 정보를 전달
  - 전류가 흐르는 상태(1)와 흐르지 않는 상태(0)의 2가지를 조합하여 전달
- 디지털 방식은 연속적인 값들을 세분해서 그 값들을 하나의 값으로 표시
- 디지털의 경우 0부터 1사이는 0, 1부터 2사이는 1로 표시
- 아날로그의 경우 0.3은 0.3, 0.327은 0.327 그대로 표시

# 디지털 방식의 등장 계기

- 연속적인 값을 표현하기에 실제 전류는 매우 불안정
- 전류가 흐르거나 흐르지 않는 두 상태로 모든 값들을 표현하는 것이 유리
  - 디지털방식에서는 연속적인 값들을 분류해서 0과 1의 조합 으로 값을 나타내고 처리



<아날로그 VGA 모니터 케이블과 디지털 DVI 모니터 케이블>

#### 비트와 보오

- 정보통신에서 통신 속도는 단위 시간에 전송되는 정보의 양으로 표시
- 비트: 단위 시간에 전송되는 정보의 기본단위
- 디지털 정보의 전송속도는 크게 bps(bit per second)와 보오 (baud)로서 나타냄
- bps: 매초당 전송되는 비트의 수
- 보오(baud): 매초당 몇 개의 신호변화가 있었는가를 나타내는 신호속도의 단위
- 한 비트가 하나의 신호를 표현하는 단위로 쓰이는 경우 bps나 보오 속도는 동일
- 2비트나 3비트가 모여서 하나의 신호를 나타내는 경우에 있어서 보오 속도는 bps의 1/2, 1/3

# 비트와 보오



# 스펙트럼과 대역폭

#### • 주파수 스펙트럼

- 대부분의 물리적 현상들은 어떤 주파
  수의 형식으로 자신을 표현
- 음성 전송에 이용하는 주파수 대역
  - 300Hz~3,300Hz



<빛의 스펙트럼>



### 대역폭

- 신호 주파수의 하한선과 상한선의 범위
- 전화의 경우: 3000Hz(300Hz~3,300Hz)
- 대역폭이 넓다는 의미는 아우토반과 같은 전용도로에서 보다 많은 차량들이 빠른 속도로 달리 수 있는 것과 같은 의미



<음성신호의 대역폭>





<아우토반과 시골길>

#### 부호화

- 전송 매체에서 사용하는 신호 형태와 보내고자 하는 정보의 표현 형태가 다른 경우 → 정보를 전송 매체에서 전송 가능한 형태로 변환하는 작업을 부호화라고 함
- 복호화: 변환된 신호를 원래의 정보 형태로 복원하는 과정
- 신호변환기
  - 부호화와 복호화를 수행하는 기기
  - EX) DSU/CSU, 모뎀, 코덱, PCM기기, 전화기, 방송장비 등
- 디지털/디지털, 디지털/아날로그, 아날로그/디지털, 아날로그/아날 로그와 같이 네 가지 부호화 방식이 가능

# 디지털-디지털 부호화

• 디지털 신호를 디지털 전송에 적합한 형태로 변환하는 방법



- EX) 컴퓨터에서 디지털 모니터로 데이터를 전송하는 경우
- 단극형, 극형, 양극형 방식으로 분류

# 디지털-디지털 부호화









#### • 단극형

- 오직 한 준위의 값만 이용
- 0 또는 1의 값 중에 하나의 값만 부호화
- 단순하며 구현 비용이 저렴
- 부호화되지 않은 신호는 0 또는 휴지회선으로 표현
- 직류성분과 동기화라는 문제 때문에 실제로는 잘 사용되지 않음

#### • 극형

- 양과 음의 두 가지 전압준위를 같이 사용
- 회선의 평균전압을 감소, 직류성분 문제 완화

#### • 양극형

- 양,음,영의 세가지 전압준위를 사용
- 준위 0은 이진수 0을 표현, 양전압과 음전압 은 교대로 1을 표현

# 예)

01100101

단극형**→** 



극형-I**→** 



# 아날로그-디지털 부호화

• 아날로그 정보를 디지털 신호로 표현



• EX) LAN에 연결된 컴퓨터를 이용하여 인터넷 전화를 사용할 경우, 음성 신호를 디지털 신호로 변환

### 아날로그-디지털 부호화

- 펄스코드변조(Pulse Code Modulation: PCM)
  - PAM(Pulse Amplitude Modulation): 아날로그 정보를 크기에 따라 높이가 다른 펄스열로 나열한 1차적인 펄스변조방법
  - 가장 일반적으로 사용되는 변조 방법
  - 컴퓨터와 관련된 아날로그신호 체계는 거의 PCM 방식으로 저 장되어 전송
  - PCM 신호를 생성하는 순서
    - 아날로그 신호를 양자화하여 PAM 신호로 변환
    - 펄스의 디지털 레벨의 비트 수만큼 이진 코드 열로 변환
    - 변환된 이진수 값을 펄스로 표현

# 아날로그-디지털 부호화



<아날로그 신호에서 PCM 디지털 부호로의 변환>

- 디지털 정보를 아날로그 신호로 변환하는 것
- 아날로그 신호만을 전송할 수 있는 전송매체 (전화선)를 이용하여 디지털 정보를 전달하는 경우



- 진폭 편이변조(Amplitude Shift Keying: ASK)
  - 신호의 진폭을 변경
  - 주파수와 위상은 일정하게 유지
  - 잡음에 가장 취약한 부호화 방법

- 진폭 편이변조(Amplitude Shift Keying: ASK)
  - 신호의 진폭을 변경
  - 주파수와 위상은 일정하게 유지
  - 잡음에 가장 취약한 부호화 방법



- 주파수 편이변조(Frequency Shift Keying: FSK)
  - 신호의 주파수를 변경, 진폭과 위상은 일정하게 유지
  - 1 보오 당 1 비트의 신호가 전송되므로 비트율과 보오율은 같음
  - 진폭 편이변조 방식보다 잡음에 강하고, 비교적 회로도 간단하 여 데이터 전송에 많이 사용



정보토신의 이해

- 위상 편이변조(Phase Shift Keying: PSK)
  - 신호의 위상을 변경
  - 진폭과 주파수는 일정하게 유지
  - 잡음이나 주파수 제한 등에 영향을 안받음



- 구상 진폭변조(Quadrate Amplitude Modulation: QAM)
  - ASK와 PSK를 조합, 하나의 신호 변화에 보다 많은 비트를 표현
  - 4-QAM, 8-QAM, 16-QAM 등



# 아날로그-아날로그 부호화

- 아날로그 신호로 아날로그 정보를 표현
- 아날로그 라디오 방송이 대표적인 예

방송장비: 아날로그-아날로그 부호화 장비의 예



라디오 방송 스튜디오



방송장비



<아날로그 캠코더 (아날로그 - 아날로그)>

# 아날로그-아날로그 부호화



AM 변조신호



FM 변조신호

- 진폭변조(Amplitude Modulation)
  - 신호의 진폭변화에 따라 반송파의 진폭이 같이 바뀌는 변조 방식

- 주파수변조(Frequency Modulation)
  - 반송파의 주파수가 신호의 전압 변 화에 따라 변조



PM 변조신호

- 위상변조(Phase Modulation)
  - 신호의 전압준위(진폭)의 변화에 따라 신호의 위상이 바뀌는 변조 방식

# Tip: 모스 부호란?

짧은 발신전류(점)와 비교적 긴 발신전류(선)를 배합하여 알파벳과 숫자를 표시



<모스 부호 표>

• 1844년 워싱턴에서 볼티모어 사이의 전신연락에 최초로 사용

### Tip: 아날로그/디지털 오실로스코프가 뭔가요?

#### • 오실로스코프

- 전자장비를 검증하거나 디자인할 때 필요한 계측기
- 전기적 신호를 화면에 나타내 주는 장비



아날로그 오실로스코프



디지털 오실로스코프

### 코덱:

• 부호화기(coder)와 복호화기(decoder)의 합성어



아날로그 음성정보를 디지털 신호로 변환하고
 디지털 신호로부터 다시 원래의 음성정보를 복원해내는 기기

### 모뎀:

- 공중전화망은 아날로그 신호를 실어 나르는데 적합
- 전화망을 통해서 데이터를 전송하기 위해서 아날로그 신호로 변환이 필요함
- 디지털 정보를 아날로그 신호 형태로 변환하는 장치가 모뎀



- 모뎀은 Modulator와 Demodulator의 합성어
- 변조 기능: 디지털 정보 -> 아날로그 신호
- 복조 기능: 아날로그 신호 -> 디지털 정보

### 모뎀:

### • 모뎀의 분류

- 사용 형태에 따라 내장형, 외장형으로 분류
- 통신속도에 따라 저속, 중속, 고속 모뎀으로 분류
- 채널의 대역폭, 사용 가능 거리, 사용 가능한 포트 수에 따라 분류되기도 함



a. 내장형 모뎀



b. 외장형 모뎀



c. 노트북용 모뎀



e. 와이브로 모뎀



d. 케이블 모뎀

### 전화망:

- 전화망은 그 이후에 등장하는 모든 통신망에 영향을 줌
- 전화망은 회선 교환망(Circuit Switched Network)의 대표 모델
- 전신(Telegraph): 현대적 전기 통신의 시초
  - 1837년 모스(Samuel F.B. Morse) 발명
  - 1844년 상업용의 전신 시스템이 발명, 모스부호 사용
- 1876년 3월 Alexander Graham Bell 전화발명
- 1877년 1월 30일 상자모양의 전화기가 등장 (그 해 600여대의 전화가 교환국 없이 각자의 전용선으로 연결)
- 1887년 벨은 유럽에 전화기를 소개 (빅토리아 여왕 앞에서 직접 전화통화 시연)

## 전화망 - 통신망은 전화망의 이해로 부터



<벨의 전화 시연>



<전화기 변천사>

## 전화망 구성

- 최초의 전화 시장은 파리
- 구매자가 직접 전선을 연결해야 했음
- 초기 전화망의 형태로 연결하게 되면 사용자가 n명일 경우, n(n-1)/2 개의 회선이 필요
- 연결 비용이 많이 들고, 회선의 관리가 어려움



<초기 전화망의 형태>

### 교환기의 역사

- 1878년 미국 커넷티컷주 뉴 헤븐 시에 상용 자석식 교환대가 설치
- 자석식 교환대의 최초 형식: 단식 교환대
  - 한 사람의 교환원이 100~200 회선 밖에 취급할 수 없음
- 1882년 웨스턴사의 퍼만(L. B. Firman)이 복식 교환대 고안
  - 각 교환대의 가입자선이 직렬로 접속된 직렬 복식
  - 뒤이어 가입자선을 병렬로 접
    속시키는 병렬 복식이 출현
  - 공전식 교환대(common battery switchboard)의 시초



<수동식 교환기>

### 교환기의 역사

• 미국 캔사스시의 장의사 스트로우저 (Strowger)가 교환원이 불필요한 단계식 (step by step) 자동 기계식 교환기 발명



<스트로우저 교환기>

- 크로스바 교환기
  - 1894년 스웨덴에서 발명
  - 단계식 교환기의 결점을 보안
  - 구조: 수평바와 수직바가 교차
  - 통화회선 스위치 회로와 제어 회로를 분리
  - 제어방식: 공통제어 방식
    - 1960년 대에 초기 전자 교환기 제어 방식의 근간



### 교환기의 역사

### • 전자교환기

- 제어부에 컴퓨터가 자리 잡으면서 교환기술은 급속도로 발달
- 1945년 미국의 폰 노이만이 축적 프로그램 제어 방식의 발명
- 1958년 벨 연구소에서 축적 프로그램 제어 방식을 적용한 전자교환방식 발표



<TDX-1A 전자교환기>

### • 디지털교환기

- 1959년 디지털 교환기의 이론적인 연구
- 1955년 미국의 벨 연구소에서 T-1 반송 (carrier)시스템이 개발
- 1962년 시카고 지역에 최초로 설치되어 전 송구간의 디지털화에 널리 사용
- 1976년 미국에서 No.4 ESS 시외 디지털 교 환기가 시외(toll)용으로 개통
- 1981년 No.5 ESS 디지털 교환기가 시내 (local)용으로 개통



<TDX-10 디지털 교환기>

### 교환기의 역사 - 국내

### TDX-1

- 1982년 7월 26일, 한국통신은 경기도 용인군 송전우체국에 한국전기통신연구소(현 한국전자통신연구원)가 우리 기술로 개발한 첫 전전자 교환기를 설치, 시험운용
- 국산 교환기 1호

### TDX-100

- 1998년에 국내에서도 멀티미디어 전화서비스를 제공하는 전전자 교 환기시스템인 "TDX-100" 개발
- 일반전화망(PSTN) 및 ISDN 서비 스 제공은 물론 차세대 지능망 서 비스, 영상회의 서비스 등 다양한 첨단기능을 제공





### 전화망 구성 예

- 이후에 가입자의 폭발적인 증가로 점차 많은 교환기가 필요
- 증설된 교환기를 관리하기 위해 2단계의 교환기가 투입 되는 등 다단계 형태로 확장



## 전화망 구성:

- 전화망에 사용되는 통신 매체
  - 가입자 회선: 트위스티드 페어(Twisted Pair)
  - 교환기 상호간: 동축 케이블, 마이크로웨이브, 광섬유
- 전화망에서 디지털 신호의 사용시 장점
  - 신호를 멀리 전파 가능하고 할 수 있고, 관리가 용이
  - 반면 아날로그 신호는 증폭이 되면 어느 정도 원래 정보의 손실이 있게 마련이고 손실은 누적됨
  - 음성, 데이터, 영상 등의 데이터를 함께 다중화 가능
  - 효율적인 전송이 가능하여 더 많은 데이터를 전송 가능
  - 디지털 전송은 아날로그 전송에 비해 비용이 적게 소요
  - 장거리 아날로그 전송에서는 수백 개가 될 수도 있는 증폭기를 거치면서 생기게 되는 손실을 재생해 주어야 함

## 전화망 구성:

- 전화망은 넓은 지역에 분포하는 시설들의 효율적인 유지보수와 시외통화에 대한 과금 처리의 문제점 때문에 시내 전화망(local network)과 시외 전화망(toll network)으로 구분해서 설치
- 전화망을 구성하는 시설은 크게 전송시설과 교환시설로 분류
- 전송시설은 다시 가입자 선로(loop) 시설과 중계선(trunk) 시설 로 구분
- 교환시설은 기능에 따라 시내(local) 교환기, 시외(toll) 교환기, 중계(tandem) 교환기 등으로 구분

# 전화망 구성:

### <전화망의 구성요소와 기능>

| 종류       | 구성장비           |        | 수행기능                                                                      |
|----------|----------------|--------|---------------------------------------------------------------------------|
| 전송       | 가입자선로(loop)    |        | 가입자 전화기를 시내 교환기에 연결                                                       |
| 시설       | 중계선<br>(trunk) | 시내 중계선 | 시내 교환기 상호간, 시내 교환기와 시외 교<br>환기 사이를 연결                                     |
|          |                | 시외 중계선 | 시외 교환기 상호간의 연결                                                            |
| 교환<br>시설 |                |        | 가입자 전화기를 수용하며 동일 시스템 내부<br>가입자 상호간이나 내부 가입자를 다른 교환<br>기와 연결되는 중계선 사이에서 교환 |
|          |                |        | 시내 교환기의 중계선과 시외 교환기의 중계<br>선 사이에서 교환기능 수행                                 |
|          |                |        | 중계선 사이의 교환기능은 시외 교환기와 동<br>일하나 연결 구역이 시내지역으로 한정됨                          |

## 전화번호의 할당

- 국내 전화번호 할당은 "전기통신번호 관리세칙" 제 2장에 근거
- 현재까지 할당되어 있는 통신망 식별번호와 특수번호

| 번 호            | 용도                |  |
|----------------|-------------------|--|
| 001 ~ 009      | 국제전화              |  |
| 010 ~ 019      | 무선전화, 무선호출, 부가통신망 |  |
| 020,, 090      | 공통서비스(개인번호 등)     |  |
| $02x \sim 06x$ | 지역번호              |  |
| 070            | 인터넷전화사업자          |  |
| 081 ~ 089      | 시외전화              |  |
| 091 ~ 099      | (예비)              |  |
| 100 ~ 109      | 사업자의 민원 및 통신업무    |  |
| 110 ~ 129      | 긴급 민원사항           |  |
| 1300 ~ 1399    | 생활정보 등            |  |
| 1400 ~ 1499    | (예비)              |  |

<'0'으로 시작하는 통신망 식별번호와 '1'로 시작하는 특수번호>

### 전화번호의 할당

- 00X(X의 3, 7, 9 제외)는 국제전화를 위해서 할당
- 003YY 또는 007YY는 설비보유 재판매 사업자들을 위한 국제전화 번호
- 08X(X의 5, 9 제외)는 기간통신 사업자들을 위한 시외전화 번호

| 번호                                    | 사업자 및 용도            |  |
|---------------------------------------|---------------------|--|
| 001                                   | KT                  |  |
| 002                                   | LG유플러스              |  |
| 003xx                                 | 국제전화 부가서비스(00365 등) |  |
| 004                                   | 예비                  |  |
| 005                                   | SK브로드밴드             |  |
| 006                                   | SK텔링크               |  |
| 007xx 국제전화 부가서비스(00700(SK브로드밴드), 0077 |                     |  |
| 800                                   | 온세텔레콤               |  |
| 009                                   | 사용하지 않음             |  |

<국제전화 번호 및 사업자>

### 전화번호는 어떻게 할당되나요?

- 이동전화사업에서 셀룰러 및 개인휴대통신은 01Y(Y는 0, 1, 6, 7, 8, 9 포함) 번호를 사용
- 2007년 9월 1일 이후에는 010 번호만 사용
- IMT 서비스 또한 010 번호를 사용
- 위성휴대통신 서비스는 0100 번호를 사용
- 최근 등장한 사물통신을 위해서는 012 번호가 할당

| 번호                                   | 사업자 및 용도                                          |
|--------------------------------------|---------------------------------------------------|
| 01Y(Y=0, 1, 6, 7, 8, 9) 셀룰러 및 개인휴대통신 |                                                   |
| 010 IMT                              |                                                   |
| 0100                                 | 위성휴대통신 사업자                                        |
| 012                                  | 사물지능통신 사업자                                        |
| 013Y                                 | 선박무선통신, 주파수공용통신, 무선데이터통신 등 특정 가입자를 대상으로 하는<br>서비스 |
| 014XY                                | 부가통신역무 제공 사업자                                     |
| 015                                  | 무선호출 사업자                                          |

<이동전화번호 및 사업자>

## 전화번호의 할당

• 020, …., 090 과 같이 세 번째 자리가 '0'인 공통서비스 번호는 통신망과 상관없이 공통적으로 사용할 수 있는 서비스 규정

| 번호  | 용도              |  |
|-----|-----------------|--|
| 020 | 예비              |  |
| 030 | 통합 메시징 서비스(UMS) |  |
| 040 | 예비              |  |
| 050 | 개인번호서비스         |  |
| 060 | 전화 정보서비스        |  |
| 070 | 인터넷전화           |  |
| 080 | 착신과금서비스         |  |
| 090 | 예비              |  |

<공통서비스 번호 및 용도>

## 하번호는 어떻게 할당되나요?

### • 통합 메시징 시스템(UMS: Unified Messaging System)

- UMS: 전화망(PSTN)을 이용해 음성, 팩스, 이메일, 단문메시지 및 멀티미디어 메일 등 여러 형태의 메시지들을 시간, 장소, 단말기 등에 관계없이 하나의 개인 사서함에서 통합 운영할 수 있는 시스템
- 전화기, 웹 브라우저, 휴대폰, WAP폰 등을 이용하여 메시지를 송수신
- UMS 번호는 '030+00(기간통신사업자구분번호·20~59)+000+0000' 형태

#### • '050'번호

- 집, 사무실, 팩스, 그리고 휴대폰 전화번호 등 여러 통신 번호를 하나로 통합 해 사용하는 서비스에 부여되는 번호
- '050' 번호 하나만 알면 사무실이나 휴대폰 번호가 변경되어도 연락이 가능

### '060' 번호

- 음성정보장치를 설치해 이용자에게 녹음한 음성 등을 듣게 하는 서비스 부여
- 녹음된 음성 전달을 통해 광고, 성인광고 음성 등을 제공
- 스팸 번호로 인식되는 경우가 많음

## <u>라</u>번호는 어떻게 할당되나요?

#### • '070'

- 인터넷을 통해 전화 서비스를 제공하는 인터넷 전화번호
- 이용자 입장에서는 인터넷전화 사용으로 통신비용을 절감
- 후발 통신사업자 입장에서는 집 전화 시장을 단기간에 확대할 수 있는 좋은 기회

### • '080' 번호

- 서비스 제공업체가 통화료를 부담하는 일명 '클로버 서비스'
- 착신 과금 서비스로 명명
- 금융, 관광안내 등 서비스 제공업체가 주문, 예약, 상담 등의 전화 요금을 고객 대신 지불하는 서비스

## 전화망의 두뇌 SS7이란? (지능망)

- Signaling System 7, SS7은 음성 통신의 콜 정보와 데이터 통신의 접속 정보 등을 통합적으로 관리하기 위한 프로토콜이다.
- SS7은 음성 통신과 데이터 통신에 대한 메타 정보를 관리한다.
- 1980년대 음성망에서 특정 서비스를 제공하기 위해 고안된 것으로, 네 트워크 구성요소(Network Element) 들끼리 정보를 교환하기 위한 프로 토콜이었다.
- SS7의 일차적인 기능은 신속한 콜 설정과 원격 데이터베이스 참조 작업을 수행하는 트랜잭션 능력을 제공하는 것.
  - 예를 들어 전화기에서 들리는 뚜~~ 하는 발신음. 전화번호를 누르는 행위, 통화대기 신호. 음성 사서함 사용 등이 모두 시그널링이다.
- 지능망 신호 체계는 다음 두가지 특징을 갖는 네트워크 서비스를 지원.
- - Access Signaling: 가입자와 네트워크 간의 신호(Signaling)
- Network Signaling: 네트워크 노드들 간의 신호(Signaling)

## 전화망의 두뇌 SS7이란? (지능망)

- 기존 전화망에서 통화의 시작과 종료를 관리하기 위해 사용되는 신호방 식은
  - 신호와 트래픽이 동일한 회선 및 동일한 경로를 통하여 전달되는 개 별선 신호방식
- 공통선 신호방식(CCS: Common Channel Signaling)
  - 신호와 데이터를 분리하여 처리
  - 신규 서비스의 도입이 용이
  - 네트워크 운용 및 유지보수가 용이
  - 특징: 고속 데이터 전송, 통화 회선과 신호 회선의 분리, 다량의 통화 회선을 하나의 신호회선으로 제어할 수 있음
  - 장점: 신호의 고속 전송, 통화와 독립된 신호 전송, 다양한 신호의 전달, 통화 회선의 양방향 운용 및 신호 기능의 집중화

## 전화망의 두뇌 SS7이란?(지능망)

- 80년대 음성망에서 특정서비스를 제공하기 위해 고안
- 음성통신의 호출 정보와 데이터 통신의 접속정보 등을 통합적으로 관리하기 위한 프로토콜
  - 통화설정, 요금청구, 통화 라우팅을 지원하기 위해 OOB(Out-of-Band) 신호 기능
  - 전화망(PSTN)과 정보교환기능을 수행함으로써 패킷데이터통신 망(PSDN)과 PSTN간의 가교역할을 수행
  - 음성통신과 데이터통신의 통합 환경을 바탕으로 다양한 지능망 시스템의 개발이 가능

# 전화망의 두뇌 SS7이란?(지능망)

