COMP3173 Compiler Construction Context-free

Dr. Zhiyuan Li

Outline

- Context-free grammar
- Ambiguous
- Push-down automata

Overview

- Syntax analysis is the second phase of a compiler.
- Take a stream of tokens from the lexer as input.
- Analyze the structure of the tokens.
- Detect syntax errors.
- Out put a parsing tree to present the structure.
- Use context-free grammar (CFG) for analysis.

Overview

- Why CFG?
 - Remember this language $\{a^ib^i|i\geq 0\}$?
 - Also, the syntax for binary operators, like a+b. a and b have to be nicely paired.
 - Regular languages are not enough for this syntax.
 - CFGs are not the most powerful formal language (see Chomsky hierarchy), but CFGs are enough to describe the structures for most of the languages.
- In practice, we will create efficient parsers for many CFGs (but not all), because parsers for more powerful grammars can be very inefficient.

Context-free grammar

- A context-free grammar is a 4-tuple (N, T, R, S), where
 - *N* is a finite set called *variables*,
 - T is a finite set, disjoint from N, called the **terminals**,
 - R is a finite set of **production rules**, with each rule being a variable v and a string s of variables and terminals in the form $v \to s$, and
 - $S \in N$ is the start variable.
- The production rules are same as the rules in the regular definition.
- We can use the rules to derive the strings in a context-free language.
- Terminals are the symbols which cannot produce more symbols. In a compiler, they are tokens.
- Variables only exists when the production is unfinished. They
 are not symbols in the alphabet, neither tokens. Thus, they are
 not in the strings of the language.

Context-free grammar

- For example,
 - $N = \{E\}$
 - $T = \{+,*,(,),-,id\}$
 - $R = \{E \rightarrow E + E, E \rightarrow E * E, E \rightarrow (E), E \rightarrow -E, E \rightarrow id\}$
 - $\bullet S = E$
- The production rules can also be "combined" and rewritten as
 - $R = \{E \rightarrow E + E | E * E | (E) | E | id\}$
 - The symbol "|" is same as it is in regular expressions, meaning that there are multiple options.
 - The rules can be combined only if the LHS are the same.

Context-free grammar

- Sometimes the set of production rules is enough to define a grammar because
 - variables can be obtained by looking at the LHS of each production rule,
 - terminals are the symbols on the RHS of the rules excluding the variables, and
 - the start symbol is usually denoted by E.
- Then, the above grammar can be

$$E \rightarrow E + E|E * E|(E)| - E|id$$

Derivations

- Given a grammar G, we can generate strings in the language L(G) by using a **derivation**.
- A derivation (informally) is a procedure to apply the production rules from the start symbol to a string which only contains terminals.
- Each production is denoted by ⇒.
- For example, given the grammar

$$E \rightarrow E + E|E * E|(E)| - E|id$$

A derivation can be

E		start symbol
\Rightarrow	E + E	using rule 1
\Rightarrow	id + E	using rule 5
\Rightarrow	id + E * E	using rule 2
\Rightarrow	id + id * E	using rule 5
\Rightarrow	id + id * id	using rule 5

Derivations

- The above derivation is called *left-most derivation*, meaning that each iteration we replace the left most nonterminal.
- Similarly, the *right-most derivation* replaces the right most nonterminal in each iteration.
- For example, the derivation below is a right-most derivation which produces the same string.

	E	start symbol
\Rightarrow	E + E	using rule 1
\Rightarrow	E + E * E	using rule 2
\Rightarrow	E + E * id	using rule 5
\Rightarrow	E + id * id	using rule 5
\Rightarrow	id + id * id	using rule 5

Derivation

- Each sequence of nonterminals and tokens that we derive at each step is called a sentential form.
- The last sentential form only contains tokens and is called sentence which is a syntactically correct string in the programming language.
- If w is a sentence and S is the start symbol, we can write $S \stackrel{*}{\Rightarrow} w$.
- ⇒ means derive in zero or more steps. Also means RHS is derivable by LHS.
- From the above example, $E \stackrel{*}{\Rightarrow} id + id * id$

Parse Tree

- Given a derivation of a sentence, we can construct a corresponding parse tree, which describes the structure of the sentence.
- The construction is done recursively.
- Initially, the parse tree has only one vertex the start variable.
- For each iteration of the derivation, every variable and terminal in RHS of the production rule is a new vertex being added to the parse tree as a child of the LHS variable.
- After a parse tree is fully constructed, the leaves are tokens, internal vertices are variables, and the root is the start variable.

Parse Tree

For example, $E \stackrel{*}{\Rightarrow} id + id * id$

$$E$$
 start symbol
 $\Rightarrow E + E$ using rule 1
 $\Rightarrow id + E$ using rule 5
 $\Rightarrow id + E * E$ using rule 2
 $\Rightarrow id + id * E$ using rule 5
 $\Rightarrow id + id * id$ using rule 5

Ambiguous

- The grammar G is **ambiguous** if there is a sentence in L(G) from which it is possible to construct multiple parse trees (using any type of derivation).
- For example, we use $E \stackrel{\hat{}}{\Rightarrow} id + id * id$ again. Even we also use left-most derivation,

$$E \qquad \text{start symbol} \\ \Rightarrow E*E \qquad \text{using rule 2} \\ \Rightarrow E+E*E \qquad \text{using rule 1} \\ \Rightarrow id+E*E \qquad \text{using rule 5} \\ \Rightarrow id+id*E \qquad \text{using rule 5} \\ \Rightarrow id+id*id \qquad \text{using rule 5} \\ \Rightarrow id+id*id \qquad \text{using rule 5}$$

which is different from the previous parse tree.

 The ambiguity is caused by lacking parenthesis, which is omitted by the precedence of operations.

Ambiguous

 Here is another way to produce the second parse tree using the right-most derivation.

$$E$$
 start symbol
 $\Rightarrow E*E$ using rule 2
 $\Rightarrow E*id$ using rule 5
 $\Rightarrow E+E*id$ using rule 1
 $\Rightarrow E+id*id$ using rule 5
 $\Rightarrow id+id*id$ using rule 5

Some properties

- Each derivation (left-most, right-most, or otherwise) corresponds to exactly one parse tree, whether the grammar is ambiguous or not.
- Each parse tree corresponds to multiple derivations, whether the grammar is ambiguous or not.
- Each parse tree corresponds to exactly one left-most derivation and exactly one right-most derivation, whether the grammar is ambiguous or not.
- All derivations of the same sentence correspond to the same parse tree if the grammar is not ambiguous.
- Multiple derivations of the same sentence may not correspond to the same parse tree if the grammar is ambiguous.
- In general, deciding a grammar is ambiguous or not is undecidable, or uncomputable (like the halting problem).

Exercises

- Add parenthesis to the grammar $E \to E + E|E * E|(E)| E|id$ to eliminate ambiguity.
- Given the context-free grammar $S \rightarrow SS + |SS| * |a|$ and the string aa + a *
 - Give a left-most derivation for the string.
 - Give a right-most derivation for the string.
 - Give a parse tree for the string.
 - Is the grammar ambiguous? Why?
 - Use English to describe the language defined by the grammar.
- Some grammars are ambiguous, but the left-most derivation and the right-most derivation correspond to the same parse tree. Try to construct an example for such ambiguous grammars.

Ambiguity Elimination

- A compiler cannot use an ambiguous grammar because each input program must be parsed to a unique parse tree to show the structure.
- To remove ambiguity in a grammar, we can transform it by hand into an unambiguous grammar. This method is possible in theory but not widely used in practical because of the difficulty.
- Most compilers use additional information to avoid ambiguity.

Ambiguity Elimination

Here is an ambiguous grammar for "if-else".

$$S \rightarrow \text{if } (E) S$$

$$| \text{if } (E) S \text{ else } S$$

$$| \text{other}$$

- The sentence "if (E_1) if (E_2) else S_1 " can be parsed differently.
- The grammar can be transformed into the one below without ambiguity but hard to be understood.

$$S \rightarrow M|U$$
 $M \rightarrow \text{if } (E) M \text{ else } M$
 $\mid \text{ other}$
 $U \rightarrow \text{if } (E) S$
 $\mid \text{if } (E) M \text{ else } U$

 In practice, we can tell the compiler that "else" is associated with the nearest "if" to eliminate ambiguity.

CFG vs Regular Definition

- From the definition of CFG and Regular Definition, we can easily tell CFG is the superset.
- The RHS of each production rule in a CFG has no restriction.
- But the RHS of the rules in a regular definition is a regular expression which cannot contain the LHS.
- Simulating regular expressions in CFGs is simple.
- Thus, using CFGs for lexical analysis is possible in theory but not efficient in practical.

- Keep in mind that machines, languages, and grammars are equivalent.
- Same as NFAs/DFAs recognize regular languages, there are some machines called push-down automata (PDA) recognize context-free languages.
- Intuitively, a PDA is a finite automata plus a stack with some modifications on the transitions to fit stack behaviors.
- A nondeterministic PDA is more powerful than a deterministic PDA. Here we only discuss NPDAs.

- An NPDA is (formally) a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, f)$, where
 - *Q* is a finite set of states,
 - Σ is a finite set of the input alphabet,
 - Γ is a finite set of the stack alphabet,
 - $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \to \mathcal{P}(Q \times \Gamma_{\varepsilon})$ is the transition function,
 - $q_0 \in Q$ is the start state, and
 - $F \subseteq Q$ is the set of accept states.
- For example, the context-free language $L = \{0^n 1^n | n \ge 0\}$ has grammar

$$E \rightarrow 0E1|\varepsilon$$

and the corresponding PDA (in a transition graph)

CFG

• The PDA accepts the string 0011.

\$

0

• The PDA accepts the string 0011.

0	
0	
\$	

$$0, \varepsilon \to 0$$

$$q_0 \qquad \varepsilon, \varepsilon \to \$$$

$$q_1 \qquad \varepsilon, \varepsilon \to \varepsilon$$

$$q_2 \qquad \varepsilon, \$ \to \varepsilon$$

$$q_3 \qquad q_3 \qquad q_3$$

Limit of CFG

- Same as regular languages/expressions/definitions/DFAs/NFAs (remember they are all equivalent), CFGs are not ultimate even CFGs are more powerful than regular expressions.
- There are some languages which cannot be defined by CFGs.
- For example, $L = \{a^i b^j c^k | 0 \le i \le j \le k\}$ over the alphabet $\Sigma = \{a, b, c\}$.
- To prove a language is not context-free, you need pumping lemma for context free languages.
- To powerup the CFG/PDA, we can try again to add another stack to the machine, same as what we did to finite automata.
- This upgrade is ultimate. A finite automata with two stacks is as powerful as a Turing machine, which is the most powerful computational model that human can implement right now.

The End of Lecture 4