ESP1066

Prova 2. Peso: 4,50. Duração: 3h

Prof. Dr. Luiz Fernando Freitas-Gutierres

luiz.gutierres@ufsm.br

Licença internacional *Creative Commons* 4.0 – Atribuição-SemDerivações

 $\verb|https://creativecommons.org/licenses/by-nd/4.0/deed.pt_BR|$

Nome & Matrícula:		
	Nota:	

Instruções:

- ☼ Preencha seu nome completo e matrícula na capa desta avaliação e rubrique as demais folhas.
- Use caneta azul ou preta para responder.
- 🜣 Nas folhas de rascunho, é permitido o uso de lápis ou lapiseira.
- ⇒ Se precisar de espaço adicional para responder questões, solicite uma folha adicional ao professor.
- Escreva respostas de forma clara e legível. Respostas ilegíveis não serão avaliadas.
- De Em questões de certo ou errado, ao identificar itens incorretos, corrija-os e forneça justificativas.
- De Em questões que envolvam cálculos, apresente-os de maneira completa.

Questões	01	02	03	Total
Pontos	50	20	30	100
Notas				

- 1 Um transformador monofásico de 50,00 kVA, com relação de transformação de 13,80/0,44 kV e frequência de 60 Hz foi ensaiado em fábrica, obtendo os seguintes resultados:
 - i) Teste de circuito aberto: 15,00 A 900,00 W Baixa Tensão (BT).
 - ii) Teste de curto-circuito: 870,00 V 1.800,00 W Alta Tensão (AT).

Com base nesses dados de laboratório, responda o que se pede abaixo.

a) 20 pontos Determine os parâmetros do circuito equivalente do transformador solicitados abaixo.

$$R_c^{\mathsf{BT}} =$$

$$X_{\rm m}^{\rm BT} =$$

$$R_{\rm CC}^{\rm BT} =$$

$$X_{CC}^{BT} =$$

$$R_1^{AT}$$
 (resistência da bobina de AT) =

$$R_2^{\rm BT}$$
 (resistência da bobina de BT) =

b) $\boxed{5 \text{ pontos}}$ Determine as correntes de magnetização e de perdas no ferro ($I_{\rm m}$ e $I_{\rm c}$).

$$I_{\rm m} =$$

$$I_c =$$

c) 10 pontos Para uma demanda de 80% da exigência nominal e com fator de potência de 0,80 adiantado, calcule a regulação de tensão e o rendimento do transformador $(R\% \text{ e } \eta)$.

$$R\% = (\Delta \nu \cdot 100) / (\nu \text{ a vazio}) =$$

$$\eta =$$

d) 10 pontos Quando a regulação de tensão é nula operando sob carregamento máximo, identifique o fator de potência $(\cos \theta_{R\%=0})$ correspondente.

$$\cos \theta_{R\%=0} =$$

e) $\boxed{5 \text{ pontos}}$ Quantifique as perdas no cobre (P'_{cobre}) e no ferro (P'_{ferro}) para a exigência de metade da capacidade padrão da máquina.

$$P'_{cobre} =$$

$$P'_{\text{ferro}} =$$

UFSM / CT / DESP / ESP1066

2 A partir dos dados do transformador apresentados anteriormente e considerando que o mesmo opera en regime de plena carga com fator de potência de 0,80, determine as informações solicitadas.
a) 15 pontos Converta o transformador em um autotransformador de 13,80/14,24 kV e calcule a potên cia aparente (S_{auto}) e as correntes elétricas nominais (entrada, saída e comum [$I_{entrada}$, $I_{saída}$ e I_{comum}] correspondentes.
$S_{ m auto} =$
$I_{\sf entrada} =$
$I_{sa\'ida} =$
$I_{comum} =$
b) $\boxed{5 \text{ pontos}}$ Calcule a eficiência energética do autotransformador (η_{auto}) em plena carga e sob um fato de potência de 0,80.
$\eta_{auto} =$
3 30 pontos Analise os itens abaixo, indicando se são certos ou errados.
a) C E Quando ocorre o aumento de carga instalada pelos consumidores e o transformador conectad à rede não pode atender ao acréscimo dessa nova demanda, é melhor, na maioria das vezes, conecta em paralelo outro transformador do que substituir o instalado por um de maior capacidade nomina Inclusive, eles não precisam ser idênticos, desde que se respeite a polaridade do instalado.
b) C E As vantagens de um autotransformador, quando comparado ao tradicional transformador d dois enrolamentos, são os menores tamanhos e custos de fabricação, mas a relação de espiras não pod se afastar muito da unidade.
c) C E Uma simplificação usual, principalmente para transformadores de potência, é aquela em que ramo de magnetização é desprezado, por considerar que a corrente de magnetização é uma porcentager muito baixa em relação à corrente de operação.
d) CE Em um transformador monofásico ideal, há equilíbrio de forças magnetomotrizes (FMMs) entr primário e secundário. As FMMs são iguais em magnitude, mas geram fluxos magnéticos que se opõer e, portanto, o fluxo magnético líquido é zero.
e) C E Em um transformador do tipo núcleo envolvido, as bobinas dos enrolamentos são envolvida pelo núcleo.
f) CE Sob carga, a tensão aplicada ao primário e a força eletromotriz primária induzida são iguais er módulo.
g) C E Normalmente, a bobina com tensão mais alta é a bobina interna em referência ao núcleo, poi isso facilita o isolamento, tornando o projeto mais econômico.
h) C E Para uma mesma tensão aplicada ao primário do transformador, quanto maior for a induçã

magnética, menor pode ser o número de espiras.