10/590626

JAP9 Rec'd PCT/PTO 24 AUG 2006

ATTACHMENT A

Claims 1 - 16: (Cancelled)

17. (New) A supported catalyst system comprising a product obtained by contacting:

- an adduct of formula (I)

$$MgT_2$$
'y AlQ_j (OU)_{3-j}(I)

wherein

Mg is magnesium; Al is aluminum; O is oxygen;

T is chlorine, bromine, or iodine;

U is a linear or branched C₁-C₁₀ alkyl radical;

y ranges from 6.00 to 0.05;

j is a non-integer number ranging from 3 to 0.1;

Q, same or different, is a hydrocarbon radical comprising from 1 to 20 carbon atoms, optionally comprising at least one silicon or germanium atom; with

- at least one compound of formula (II), (III) or (IV)

wherein

 M^1 is a transition metal atom selected from Groups 3-11 of the Periodical Table of Elements, including lanthanoids;

X, same or different, are monoanionic sigma ligands selected from the group consisting of hydrogen, halogen, R, OR, OCOR, SR, NR_2 and PR_2 , wherein R is a hydrocarbon radical comprising from 1 to 20 carbon atoms optionally comprising at least one Si or Ge atom;

n ranges from 0 to 3;

 R^1 , same or different, are C_1 - C_{40} hydrocarbon radicals optionally comprising at least one heteroatom belonging to groups 13-17 of the Periodic Table of Elements;

L is a divalent or trivalent bridge connecting the two nitrogen atoms;

m ranges from 0 to 1, with the proviso that when m is 0, T^1 is not-existent;

 \mathtt{T}^1 is a Lewis base, \mathtt{T}^1 can optionally be bonded to $\mathtt{R}^1;$

bonds (a) and (b) connecting the two nitrogen atoms with L, same or different, can be a single bond or double bond;

Cr is a chromium atom;

 R^2 , R^3 , R^4 and R^5 , same or different, are hydrogen, halogen, or C_1 - C_{40} hydrocarbon radicals optionally comprising one or more heteroatoms belonging to groups 13-17 of the Periodic Table of Elements; or two adjacent R^2 , R^3 , R^4 and R^5 form at least one C_3 - C_7 membered ring optional comprising at least one heteroatom belonging to groups 13-17 of the Periodic Table of Elements;

 L^1 is a divalent or trivalent bridging group selected from a C_1 - C_{20} alkylidene, a C_3 - C_{20} cycloalkylidene, a C_6 - C_{20} arylidene, a C_7 - C_{20} alkylarylidene, or a C_7 - C_{20} arylalkylidene radical optionally comprising at least one heteroatom belonging

to groups 13-17 of the Periodic Table of Elements, or a silvlidene radical comprising up to 5 silicon atoms;

 A^1 is a moiety of formula (V)

(V)

wherein $R^{2'}$, $R^{3'}$, $R^{4'}$ and $R^{5'}$ are hydrogen, halogen, or C_1 - C_{40} hydrocarbon radicals optionally comprising one or more heteroatoms belonging to groups 13-17 of the Periodic Table of Elements; or two adjacent $R^{2'}$, $R^{3'}$, $R^{4'}$ and $R^{5'}$ form at least one C_3 - C_7 membered ring optional comprising at least one heteroatom belonging to groups 13-17 of the Periodic Table of Elements; or A^1 is oxygen, sulphur, NR^7 , NR^7_2 , OR^7 or SR^7 , wherein R^7 is a C_1 - C_{40} hydrocarbon radical;

 R^8 is hydrogen, halogen, or a C_1 - C_{40} hydrocarbon radical optionally comprising one or more heteroatoms belonging to groups 13-17 of the Periodic Table of Elements;

 A^2 is a halogen, $R^{7'}$, $OR^{7'}$, $OCOR^{7'}$, $SR^{7'}$, $NR^{7'}{}_2$, $NR^{7'}{}_3$, $SR^{7'}{}_2$, $OR^{7'}{}_2$, wherein $R^{7'}$ is a C_1 - C_{40} hydrocarbon radical.

18. (New) The supported catalyst system according to claim 17, wherein L^1 is $SiMe_2$ or $SiPh_2$.

- 19. (New) The catalyst system according to claim 17, wherein T is chlorine; U is a linear C_1 - C_{10} alkyl radical; y ranges from 2 to 0.1; j ranges from 3 to 0.5; and Q is a linear or branched, cyclic or acyclic, C_1 - C_{20} -alkyl, C_2 - C_{20} alkenyl, C_2 - C_{20} alkynyl, C_6 - C_{20} -aryl, C_7 - C_{20} -alkylaryl or C_7 - C_{20} -arylalkyl radical optionally comprising at least one silicon or germanium atom.
- 20. (New) The catalyst system according to claim 17, wherein M^1 is a transition metal atom selected from Groups 3-6 and 8-10; X is a halogen or R; and L is a divalent or trivalent C_1 - C_{40} hydrocarbon group optionally comprising at least one heteroatom belonging to groups 13-17 of the Periodic Table of Elements.
- 21. (New) The catalyst system according to claim 17, wherein L^1 is a divalent group of formula $(ZR^6_{ml})_{nl}$, wherein Z is C, Si, Ge, N or P; R^6 , same or different, is hydrogen or a hydrocarbon comprising from 1 to 20 carbon atoms, or two R^6 can form an aliphatic or aromatic C_4 - C_7 ring; ml is 1 or 2, with the proviso that ml is 1 when Z is N or P, and ml is 2 when Z is C, Si or Ge; nl is an integer ranging from 1 to 4; A^1 is NR^7_2 ; and R^7 is a C_1 - C_{20} -alkyl radical.
- 22. (New) The catalyst system according to claim 17, wherein the adduct of formula (I)

 $\label{eq:mgT2-yAlQj} \text{MgT}_2\text{-yAlQ}_j\text{(OU)}_{3\text{-}j} \qquad \text{(I)}$ comprises a surface area (BET) higher than 30 m²/g.

- 23. (New) A catalyst system obtained by a process comprising the following steps:
 - contacting

- (i) a partially dealcoholated adduct of formula MgT'₂'wUOH, wherein T' is chlorine, bromine, or iodine; U is a linear or branched C₁-C₁₀ alkyl radical; and w ranges from 6 to 0.1; with
- (ii) an organo-aluminium compound of formula $H_eAlQ^1_{3-e}$ or $H_eAl_2Q^1_{6-e}$, wherein Q^1 , same or different, is hydrogen, halogen, or a hydrocarbon radical comprising from 1 to 20 carbon atoms optionally comprising at least one silicon or germanium atom; with the proviso that at least one Q^1 is different from halogen; and e is a non-integer number ranging from 0 to 1;

to obtain an adduct of formula (I)

 MgT_2 $\gamma AlQ_j (OU)_{3-j}$ (I)

wherein

Mg is magnesium; Al is aluminum; O is oxygen;

T is chlorine, bromine, or iodine;

U is a linear or branched C₁-C₁₀ alkyl radical;

- y ranges from 6.00 to 0.05;
- j is a non-integer number ranging from 3 to 0.1;
- Q, same or different, is a hydrocarbon radical comprising from 1 to 20 carbon atoms, optionally comprising at least one silicon or germanium atom;
- contacting a product obtained from contacting (i) and
 (ii) with at least one compound of formula (II), (III)
 and (IV)

wherein

 M^1 is a transition metal atom selected from Groups 3-11 of the Periodical Table of Elements, including lanthanoids;

X, same or different, are monoanionic sigma ligands selected from the group consisting of hydrogen, halogen, R, OR, OCOR, SR, NR_2 and PR_2 , wherein R is a hydrocarbon radical comprising from 1 to 20 carbon atoms optionally comprising at least one Si or Ge atom;

n ranges from 0 to 3;

 R^1 , same or different, are C_1 - C_{40} hydrocarbon radicals optionally comprising at least one heteroatom belonging to groups 13-17 of the Periodic Table of Elements;

L is a divalent or trivalent bridge connecting the two nitrogen atoms;

m ranges from 0 to 1, with the proviso that when m is 0, T^1 is not-existent;

 \mathtt{T}^1 is a Lewis base, \mathtt{T}^1 can optionally be bonded to $\mathtt{R}^1;$

bonds (a) and (b) connecting the two nitrogen atoms with L, same or different, can be a single bond or double bond;

Cr is a chromium atom;

 R^2 , R^3 , R^4 and R^5 , same or different, are hydrogen, halogen, or C_1 - C_{40} hydrocarbon radicals optionally comprising one or more heteroatoms belonging to groups 13-17 of the Periodic Table of Elements; or two adjacent R^2 , R^3 , R^4 and R^5 form at least one C_3 - C_7 membered ring optional comprising at least one heteroatom belonging to groups 13-17 of the Periodic Table of Elements;

 L^1 is a divalent or trivalent bridging group selected from a C_1 - C_{20} alkylidene, a C_3 - C_{20} cycloalkylidene, a C_6 - C_{20} arylidene, a C_7 - C_{20} alkylarylidene, or a C_7 - C_{20} arylalkylidene radical optionally comprising at least one heteroatom belonging to groups 13-17 of the Periodic Table of Elements, or a silylidene radical comprising up to 5 silicon atoms;

A¹ is a moiety of formula (V)

(V)

wherein $R^{2'}$, $R^{3'}$, $R^{4'}$ and $R^{5'}$ are hydrogen, halogen, or C_1 - C_{40} hydrocarbon radicals optionally comprising one or more heteroatoms belonging to groups 13-17 of the Periodic Table of Elements; or two adjacent $R^{2'}$, $R^{3'}$, $R^{4'}$ and $R^{5'}$ form at least one C_3 - C_7 membered ring optional

comprising at least one heteroatom belonging to groups 13-17 of the Periodic Table of Elements; or A^1 is oxygen, sulphur, NR^7 , NR^7_2 , OR^7 or SR^7 , wherein R^7 is a C_1 - C_{40} hydrocarbon radical;

 R^8 is hydrogen, halogen, or a $C_1\text{-}C_{40}$ hydrocarbon radical optionally comprising one or more heteroatoms belonging to groups 13-17 of the Periodic Table of Elements;

 A^2 is a halogen, $R^{7'}$, $OR^{7'}$, $OCOR^{7'}$, $SR^{7'}$, $NR^{7'}$ ₂, $NR^{7'}$ ₃, $SR^{7'}$ ₂, $OR^{7'}$ ₂, wherein $R^{7'}$ is a C_1 - C_{40} hydrocarbon radical.

- 24. (New) The catalyst system according to claim 17, wherein generally between 1000 $\mu mol/g$ to 1 $\mu mol/g$ of at least one compound of formula (II), (III) or (IV) is supported on the adduct of formula (I).
- 25. (New) The catalyst system according to claim 17, wherein the compound of formula (II) comprises formula (IIa) or (IIb):

$$R^{9} \xrightarrow{N} T^{1}_{m}$$

$$N T^{1}_{m}$$

$$M^{1}X_{n}$$

$$N T^{1}_{m}$$

$$M^{2}X_{n}$$

$$N T^{1}_{m}$$

$$M^{2}X_{n}$$

$$N T^{2}$$

$$M^{2}X_{n}$$

$$N T^{2}$$

wherein

 R^1 , same or different, are C_1 - C_{40} hydrocarbon radicals optionally comprising at least one heteroatom belonging to groups 13-17 of the Periodic Table of Elements;

 T^1 is a Lewis base, T^1 can optionally be bonded to R^1 ;

 M^1 is a transition metal atom selected from Groups 3-11 of the Periodical Table of Elements, including lanthanoids;

X, same or different, are monoanionic sigma ligands selected from the group consisting of hydrogen, halogen, R, OR, OCOR, SR, NR_2 and PR_2 , wherein R is a hydrocarbon radical comprising from 1 to 20 carbon atoms optionally comprising at least one Si or Ge atom;

n ranges from 0 to 3;

m ranges from 0 to 1, with the proviso that when m is 0, T^1 is not-existent;

 R^9 is hydrogen or a linear or branched, cyclic or acyclic, C_1 - C_{20} -alkyl, C_2 - C_{20} alkenyl, C_2 - C_{20} alkynyl, C_6 - C_{20} -aryl, C_7 - C_{20} -alkylaryl or C_7 - C_{20} -arylalkyl radical optionally comprising at least one heteroatom belonging to groups 13-17 of the Periodic Table of Elements;

 R^{10} is a divalent group selected from a C_1 - C_{20} alkylidene, a C_3 - C_{20} cycloalkylidene, a C_6 - C_{20} arylidene, a C_7 - C_{20} alkylarylidene, or a C_7 - C_{20} arylalkylidene radical optionally comprising at least one heteroatom belonging to groups 13-17 of the Periodic Table of Elements, and a silylidene radical comprising up to 5 silicon atoms;

 T^2 is OR^{11} , SR^{11} or NR^{11}_2 , wherein R^{11} is a linear or branched, cyclic or acyclic, C_1 - C_{10} -alkyl, C_2 - Cl_0 alkenyl, C_2 - Cl_0 alkynyl, C_6 - Cl_0 -aryl, C_7 - Cl_0 -alkylaryl or C_7 - Cl_0 -arylalkyl radical.

26. (New) The catalyst system according to claim 25, wherein T^1 is tetrahydrofuran or a tertiary amine; M^1 is titanium or vanadium; n is 2; and m is 1.

27. (New) The catalyst system according to claim 17, wherein the compound of formula (II) comprises formula (IIc):

wherein

 R^1 , same or different, are C_1 - C_{40} hydrocarbon radicals optionally comprising at least one heteroatom belonging to groups 13-17 of the Periodic Table of Elements;

 T^1 is a Lewis base, T^1 can optionally be bonded to R^1 ;

 M^1 is a transition metal atom selected from Groups 3-11 of the Periodical Table of Elements, including lanthanoids;

X, same or different, are monoanionic sigma ligands selected from the group consisting of hydrogen, halogen, R, OR, OCOR, SR, NR_2 and PR_2 , wherein R is a hydrocarbon radical comprising from 1 to 20 carbon atoms optionally comprising at least one Si or Ge atom;

n ranges from 0 to 3;

 R^{12} , same or different, is hydrogen or a linear or branched, cyclic or acyclic, C_1 - C_{20} -alkyl, C_2 - C_{20} alkenyl, C_2 - C_{20} alkynyl, C_6 - C_{20} -aryl, C_7 - C_{20} -alkylaryl or C_7 - C_{20} -arylalkyl radical optionally comprising at least one heteroatom belonging to groups 13-17 of the Periodic Table of Elements; and two R^{12} groups can optionally join to form a C_3 - C_8 membered ring optionally comprising at least one C_1 - C_{15} -alkyl, C_2 - C_{15} alkenyl, C_2 - C_{15} alkynyl, C_6 - C_{15} -aryl, C_7 - C_{15} -alkylaryl or C_7 - C_{15} -arylalkyl substituent.

28. (New) The catalyst system according to claim 27, wherein the compound of formula (IIc) comprises formula (IIca) or (IIcb):

$$R^{13}$$
 R^{13}
 R^{13}
 R^{15}
 R^{15}
 R^{15}
 R^{15}
 R^{16}
 R^{16}
 R^{16}
 R^{13}
 R^{13}
 R^{13}
 R^{14}
 R^{15}
 R^{16}
 R^{16}
 R^{16}
 R^{16}
 R^{16}
 R^{13}
 R^{13}
 R^{14}
(IIIca)

wherein

 R^{13} , same or different, is hydrogen or a linear or branched, cyclic or acyclic, $C_1\text{-}C_{10}\text{-}alkyl$ radical;

 R^{14} , same or different, is hydrogen or a linear or branched, cyclic or acyclic, C_1 - C_{10} -alkyl radical;

 R^{15} , same or different, is hydrogen or a linear or branched, cyclic or acyclic, C_1 - C_{20} -alkyl, C_2 - C_{20} alkenyl, C_2 - C_{20} alkynyl, C_6 - C_{20} -aryl, C_7 - C_{20} -alkylaryl or C_7 - C_{20} -arylalkyl radical optionally comprising at least one heteroatom belonging to groups 13-17 of the Periodic Table of Elements;

 R^{16} , same or different, is hydrogen or a C_1 - C_{15} -alkyl, C_2 - C_{15} alkenyl, C_2 - C_{15} alkynyl, C_6 - C_{15} -aryl, C_7 - C_{15} -alkylaryl or C_7 - C_{15} -arylalkyl radical.

29. (New) A process for (co)polymerizing olefins comprising from 2 to 20 carbon atoms comprising contacting one or more of the olefins under polymerization conditions in presence of a supported catalyst system comprising a product obtained by contacting:

- an adduct of formula (I)

 MgT_2 'y AlQ_j (OU)_{3-j}(I)

wherein

Mg is magnesium; Al is aluminum; O is oxygen;

T is chlorine, bromine, or iodine;

U is a linear or branched C₁-C₁₀ alkyl radical;

y ranges from 6.00 to 0.05;

j is a non-integer number ranging from 3 to 0.1;

Q, same or different, is a hydrocarbon radical comprising from 1 to 20 carbon atoms, optionally comprising at least one silicon or germanium atom; with at least one compound of formula (II), (III) or (IV)

wherein

 ${
m M}^1$ is a transition metal atom selected from Groups 3-11 of the Periodical Table of Elements, including lanthanoids;

X, same or different, are monoanionic sigma ligands selected from the group consisting of hydrogen, halogen, R, OR, OCOR, SR, NR_2 and PR_2 , wherein R is a hydrocarbon radical comprising from 1 to 20 carbon atoms optionally comprising at least one Si or Ge atom;

n ranges from 0 to 3;

 R^1 , same or different, are C_1 - C_{40} hydrocarbon radicals optionally comprising at least one heteroatom belonging to groups 13-17 of the Periodic Table of Elements;

L is a divalent or trivalent bridge connecting the two nitrogen atoms;

m ranges from 0 to 1, with the proviso that when m is 0, T^1 is not-existent;

 T^1 is a Lewis base, T^1 can optionally be bonded to R^1 ;

bonds (a) and (b) connecting the two nitrogen atoms with L, same or different, can be a single bond or double bond;

Cr is a chromium atom;

 R^2 , R^3 , R^4 and R^5 , same or different, are hydrogen, halogen, or C_1 - C_{40} hydrocarbon radicals optionally comprising one or more heteroatoms belonging to groups 13-17 of the Periodic Table of Elements; or two adjacent R^2 , R^3 , R^4 and R^5 form at least one C_3 - C_7 membered ring optional comprising at least one heteroatom belonging to groups 13-17 of the Periodic Table of Elements;

 L^1 is a divalent or trivalent bridging group selected from a C_1 - C_{20} alkylidene, a C_3 - C_{20} cycloalkylidene, a C_6 - C_{20} arylidene, a C_7 - C_{20} alkylarylidene, or a C_7 - C_{20} arylalkylidene radical optionally comprising at least one heteroatom belonging

to groups 13-17 of the Periodic Table of Elements, or a silylidene radical comprising up to 5 silicon atoms;

A¹ is a moiety of formula (V)

(V)

wherein $R^{2'}$, $R^{3'}$, $R^{4'}$ and $R^{5'}$ are hydrogen, halogen, or C_1 - C_{40} hydrocarbon radicals optionally comprising one or more heteroatoms belonging to groups 13-17 of the Periodic Table of Elements; or two adjacent $R^{2'}$, $R^{3'}$, $R^{4'}$ and $R^{5'}$ form at least one C_3 - C_7 membered ring optional comprising at least one heteroatom belonging to groups 13-17 of the Periodic Table of Elements; or A^1 is oxygen, sulphur, NR^7 , NR^7_2 , OR^7 or SR^7 , wherein R^7 is a C_1 - C_{40} hydrocarbon radical;

 R^8 is hydrogen, halogen, or a C_1 - C_{40} hydrocarbon radical optionally comprising one or more heteroatoms belonging to groups 13-17 of the Periodic Table of Elements;

 $$\rm A^2$$ is a halogen, $\rm R^{7'}$, $\rm OR^{7'}$, $\rm OCOR^{7'}$, $\rm SR^{7'}$, $\rm NR^{7'}{}_2$, $\rm NR^{7'}{}_3$, $\rm SR^{7'}{}_2$, $\rm OR^{7'}{}_2$, wherein $\rm R^{7'}$ is a $\rm C_1\text{-}C_{40}$ hydrocarbon radical.

30. (New) The process according to claim 29, wherein at least one alpha-olefin is (co)polymerized.

- 31. (New) The process according to claim 29, wherein the alpha-olefin is selected from propylene, ethylene, 1-butene, 1-hexene, 1-octene, and mixtures thereof.
- 32. (New) The process according to claim 29, wherein the alpha-olefin is at least ethylene.
- 33. (New) The process according to claim 32, wherein an ethylene polymer is produced and comprises a molecular weight (Mw) higher than 500,000.