

Jönköping International Business School

AMEFA 2022 – Assignment 2

COURSE: FSSS23 - Analytical Methods for Economic and Financial Analysis

PROGRAMME: International Financial Analysis

AUTHOR: Enrique Höner (03.11.1997), Sophie Dick (25.12.1999)

TUTOR: Pär Henrik Sjölander

All calculations were made with EViews Version 12 LITE

Q.2.1. – Vector Autoregressive Models – Granger Causality Tests

Q.2.1.1

For this exercise we test at 10% significance level.

Notice: We included the following command in the exercise:

Genr dx1 = d(x1)

Genr dy = d(y)

We also calculated this exercise without this command, since the variables were already given, and received different results (which are not included in this assignment due to space), but those did not change the conclusions.

1. Determine the optimal lag-length for the bivariate VAR model

VAR Lag Order Selection Criteria Endogenous variables: DX1 DY Exogenous variables: C Date: 02/27/22 Time: 11:13 Sample: 1971 2006

Included observations: 30

Lag	LogL	LR	FPE	AIC	SC	HQ
0	-155.8823	NA	127.7124	10.52549	10.61890	10.55537
1	-128.5174	49.25681*	26.93464*	8.967826*	9.248066*	9.057477*
2	-127.2650	2.087326	32.50921	9.151000	9.618065	9.300418
3	-124.4351	4.339098	35.54395	9.229010	9.882902	9.438196
4	-123.4306	1.406321	44.30215	9.428709	10.26943	9.697662
5	-121.3521	2.632831	52.07322	9.556805	10.58435	9.885526

^{*} indicates lag order selected by the criterion

LR: sequential modified LR test statistic (each test at 5% level)

FPE: Final prediction error

AIC: Akaike information criterion

SC: Schwarz information criterion

HQ: Hannan-Quinn information criterion

As can be seen from the output above, 1 lag seems to be the optimal lag length, since that is the lag at which e.g., the AIC is the lowest.

2. Estimating the bivariate VAR (1) model

Vector Autoregression Estimates Date: 02/27/22 Time: 11:20 Sample (adjusted): 1973 2006 Included observations: 34 after adjustments Standard errors in () & t-statistics in []

Ctandard circis iii () d			
	DX1	DY	
DX1(-1)	0.938717	526010.8	
	(0.08975)	(262627.)	
	[10.4594]	[2.00288]	
	£	[
DY(-1)	-6.19E-08	0.399910	
	(5.6E-08)	(0.16456)	
	[-1.10075]	[2.43014]	
С	0.000547	807.9827	
	(0.00037)	(1075.26)	
	[1.48751]	[0.75143]	
R-squared	0.796414	0.348918	
Adj. R-squared	0.783279	0.306913	
Sum sq. resids	4.78E-05	4.09E+08	
S.E. equation	0.001241	3632.937	
F-statistic	60.63479	8.306536	
Log likelihood	180.8354	-325.3987	
Akaike AIC	-10.46091	19.31757	
Schwarz SC	-10.32623	19.45225	
Mean dependent	0.003534	4218.773	
S.D. dependent	0.002667	4363.791	
Determinant resid covar	riance (dof adi.)	20.11609	
Determinant resid covar	16.72280		
Log likelihood	-144.3730		
Akaike information criter	8.845468		
Schwarz criterion		9 114826	
Number of coefficients		6	

This is the same as estimating two OLS regressions separately.

ls dx1 c dy(-1) dx1(-1)

Dependent Variable: DX1 Method: Least Squares Date: 02/27/22 Time: 11:25 Sample (adjusted): 1973 2006

Included observations: 34 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C DY(-1) DX1(-1)	0.000547 -6.19E-08 0.938717	0.000367 5.62E-08 0.089748	1.487506 -1.100747 10.45944	0.1470 0.2795 0.0000
R-squared	0.796414	Mean depen	dent var	0.003534

ls dy c dy(-1) dx1(-1)

Dependent Variable: DY Method: Least Squares Date: 02/27/22 Time: 11:26 Sample (adjusted): 1973 2006

Included observations: 34 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C DY(-1) DX1(-1)	807.9827 0.399910 526010.8	1075.256 0.164562 262627.0	0.751433 2.430144 2.002882	0.4581 0.0211 0.0540
R-squared	0.348918	Mean depen	dent var	4218.773

3. Autocorrelation test - checking if the residuals are white noise for the VAR model

VAR Residual Serial Correlation LM Tests

Date: 02/27/22 Time: 11:32

Sample: 1971 2006 Included observations: 34

Null hypothesis: No serial correlation at lag h						
Lag	LRE* stat	df	Prob.	Rao F-stat	df	Prob.
1	2.432982	4	0.6567	0.610511	(4, 56.0)	0.6568
2	3.765263	4	0.4387	0.956030	(4, 56.0)	0.4388
3	4.020541	4	0.4032	1.023162	(4, 56.0)	0.4034
4	3.706774	4	0.4471	0.940691	(4, 56.0)	0.4473
5	4.068222	4	0.3969	1.035734	(4, 56.0)	0.3970
6	1.437500	4	0.8377	0.357560	(4, 56.0)	0.8377
7	5.223774	4	0.2651	1.343662	(4, 56.0)	0.2652
8	0.444972	4	0.9786	0.109719	(4, 56.0)	0.9786
9	4.372678	4	0.3579	1.116260	(4, 56.0)	0.3581
10	5.341517	4	0.2540	1.375390	(4, 56.0)	0.2542

H₀: No autocorrelation up to the specified lag

H₁: Autocorrelation up to the specified lag

As can be seen in the output above, all p-values (corresponding to F-statistic) are higher than 10% (> 0.10), which indicates that we cannot reject H_0 .

Therefore, it can be concluded that there is no autocorrelation in the residuals.

4. Jarque-Bera normality test

VAR Residual Normality Tests

Orthogonalization: Cholesky (Lutkepohl)

Null Hypothesis: Residuals are multivariate normal

Date: 02/27/22 Time: 11:40

Sample: 1971 2006 Included observations: 34

Component	Skewness	Chi-sq	df	Prob.*
1 2	0.310127 -0.333312	0.545011 0.629547	1	0.4604 0.4275
Joint		1.174559	2	0.5558
Component	Kurtosis	Chi-sq	df	Prob.
1 2	2.460556 2.439400	0.412249 0.445218	1 1	0.5208 0.5046
Joint		0.857468	2	0.6513
Component	Jarque-B	df	Prob.	
1 2	0.957261 1.074766	2 2	0.6196 0.5843	
Joint	2.032026	4	0.7299	

^{*}Approximate p-values do not account for coefficient estimation

H0: Normally distributed residuals

H1: Non normally distributed residuals

The third section shows the Jarque-Bera statistic with 0.957261 for the first component and a p-value of 0.6196 > 0.10 and a Jarque-Bera statistic of 1.074766 and a p-value of 0.5843 > 0.10 for the second component.

The joint test also shows a p-value of 0.7299 > 0.10 (Jarque-Bera 2.032026).

Therefore, we cannot reject H0 and can conclude normal distribution of the residuals.

5. Estimating a Granger causality test

VAR Granger Causality/Block Exogeneity Wald Tests

Date: 02/27/22 Time: 11:50

Sample: 1971 2006 Included observations: 34

Dependent variable: DX1

Excluded	Chi-sq	df	Prob.
DY	1.211644	1	0.2710
All	1.211644	1	0.2710

Dependent variable: DY

Excluded	Chi-sq	df	Prob.
DX1	4.011536	1	0.0452
All	4.011536	1	0.0452

First test hypothesis for the upper section: Dependent variable: dx1

H₀: **dy** does not Granger cause **dx1**

H₁: **dy** does Granger cause **dx1**

We have a chi-squared statistic of 1.211644 and a p-value of 0.2710 which is greater than 0.10 (10% significance level).

Therefore, we cannot reject H_0 , which indicates that dy does not Granger cause dx1.

Second test hypothesis for the lower section: Dependent variable: dy

H₀: **dx1** does not Granger cause **dy**

H₁: **dx1** does Granger cause **dy**

We have a chi-squared statistic of 4.011536 and a p-value of 0.0452, which is less than 0.10.

Therefore, we reject H_0 and conclude that dx1 does Granger cause dy.

Conclusion: geographic concentration (dx1) drives economic growth (dy), while there is no significant support for a relationship in the opposite direction.

Now the significance level is 5%

VAR Granger Causality/Block Exogeneity Wald Tests

Date: 02/27/22 Time: 11:50

Sample: 1971 2006 Included observations: 34

Dependent variable: DX1

Excluded	Chi-sq	df	Prob.
DY	1.211644	1	0.2710
All	1.211644	1	0.2710

Dependent variable: DY

Excluded	Chi-sq	df	Prob.
DX1	4.011536	1	0.0452
All	4.011536	1	0.0452

First test hypothesis for the upper section: Dependent variable: dx1

H₀: **dy** does not Granger cause **dx1**

H₁: **dy** does Granger cause **dx1**

We have a chi-squared statistic of 1.211644 and a p-value of 0.2710 which is greater than 0.05 (5% significance level).

Therefore, we cannot reject H_0 , which indicates that dy does not Granger cause dx1.

Second test hypothesis for the lower section: Dependent variable: dy

H₀: **dx1** does not Granger cause **dy**

H₁: **dx1** does Granger cause **dy**

We have a chi-squared statistic of 4.011536 and a p-value of 0.0452, which is less than 0.05.

Therefore, we reject H_0 and conclude that dx1 does Granger cause dy.

Conclusion: geographic concentration (dx1) drives economic growth (dy), while there is no significant support for a relationship in the opposite direction. So applying the 5% significance level yields the same conclusion as above.

Lag Order Selection Criteria

VAR Lag Order Selection Criteria

Endogenous variables: HAWAII_HILO HAWAII_MANOA

Exogenous variables: C Date: 02/27/22 Time: 12:25

Sample: 1971 2008 Included observations: 19

Lag	LogL	LR	FPE	AIC	SC	HQ
0	59.22779	NA	0.000	-6.023978	0.02.000	0.00
1	73.01263	23.21657*	2.98e-06*	-7.053961*	-6.755717*	-7.003486*
2	74.30561	1.905453	4.04e-06	-6.769012	-6.271939	-6.684887
3	78.77473	5.645199	4.03e-06	-6.818392	-6.122490	-6.700618

^{*} indicates lag order selected by the criterion

LR: sequential modified LR test statistic (each test at 5% level)

FPE: Final prediction error
AIC: Akaike information criterion
SC: Schwarz information criterion
HQ: Hannan-Quinn information criterion

According to the AIC, SC and HQ 1 lag is the optimal lag length, since the value is the lowest one for all the criterion (negative number).

Since the variable Manoa \sim I(1), that is first differenced, and we conclude that m=1, we add 1 extra lag due to Toda and Yamamoto.

This means we estimate the entire VAR with 2 lags (due to p+m=2)

Vector Autoregression Estimates Date: 02/27/22 Time: 12:36 Sample (adjusted): 1988 2007 Included observations: 20 after adjustments Standard errors in () & t-statistics in []

	HAWAII_HILO	HAWAII_MANOA	
HAWAII_HILO(-1)	-0.094356 (0.25971) [-0.36331]	-0.031490 (0.09239) [-0.34084]	
HAWAII_MANOA(-1)	1.293265 (0.69086) [1.87196]	0.717118 (0.24577) [2.91783]	
С	-1.570207 (1.10799) [-1.41717]	0.551688 (0.39416) [1.39964]	
HAWAII_HILO(-2)	-0.208884 (0.22189) [-0.94140]	0.044457 (0.07894) [0.56320]	
HAWAII_MANOA(-2)	0.494515 (0.81651) [0.60564]	0.087778 (0.29047) [0.30219]	
R-squared Adj. R-squared Sum sq. resids S.E. equation F-statistic Log likelihood Akaike AlC Schwarz SC Mean dependent S.D. dependent	0.558493 0.440758 0.064484 0.065566 4.743643 28.99189 -2.399189 -2.150256 2.861500 0.087676	0.793501 0.738435 0.008161 0.023325 14.40991 49.66264 -4.466264 -4.217331 2.972000 0.045607	
Determinant resid covariance (dof adj.) Determinant resid covariance Log likelihood Akaike information criterion Schwarz criterion Number of coefficients		2.32E-06 1.31E-06 78.72774 -6.872774 -6.374907 10	

Causality tests:

First test:

H₀: Manoa GPA does not Granger cause Hilo GPA

H₁: Manoa GPA does Granger cause Hilo GPA

Wald Test: Equation: EQ1

Test Statistic	Value	df	Probability
t-statistic	1.871961	15	0.0808
F-statistic	3.504238	(1, 15)	0.0808
Chi-square	3.504238	1	0.0612

Null Hypothesis: C(4)=0 Null Hypothesis Summary:

Normalized Restriction (= 0)	Value	Std. Err.	
C(4)	1.293265	0.690861	

Restrictions are linear in coefficients.

As seen above, the chi-squared statistic is 3.504238; d.o.f. = 1; p-value of 0.0612 > 0.05 and therefore, we accept H_0 .

This indicates that, at the 5% significance level, Manoa GPA does not Granger cause Hilo GPA.

Second test:

H₀: Hilo GPA does not Granger cause Manoa GPA

H₁: Hilo GPA does Granger cause Manoa GPA

Wald Test: Equation: EQ2

Test Statistic	Value	df	Probability
t-statistic	-0.340838	15	0.7380
F-statistic	0.116170	(1, 15)	0.7380
Chi-square	0.116170	1	0.7332

Null Hypothesis: C(2)=0 Null Hypothesis Summary:

Normalized Restriction (= 0)	Value	Std. Err.
C(2)	-0.031490	0.092391

Restrictions are linear in coefficients.

As seen above the chi-squared statistic is 0.116170; d.o.f. =1; p-value of 0.7332 > 0.05 and therefore, we accept H_0 .

Accordingly, Hilo GPA does not granger cause Manoa GPA, at the 5% significance level.

Conclusion: Over the period of 1971 to 2008, neither the grade inflation in Manoa nor the grade inflation in Hilo caused the opposite to start inflating their grades too.

Q.2.2

Q.2.2 Pro3

For this data set we assume that we are dealing with the GDP of an industrialized country

This means that we can assume that y_t is growing, which can also be assumed when looking at the plot.

1.1 Augmented Dicked Fuller Test

 h_0 : ρ =1 *Unit root* (non – stationary)

 h_1 : ρ <1 No unit root (stationary)

Null Hypothesis: PRO3 has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic - based on SIC, maxlag=23)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic Test critical values: 1% level		-2.696645 -3.964390	0.2381
rest shied values.	5% level 10% level	-3.412914 -3.128449	

Since the p-value is 0.2381 > 0.05 we cannot reject h_0 , meaning that we assume at least one unit root.

This also implies that β =0. We can assume a stochastic trend which is created where $\alpha \neq 0$, because we know that y_t grows over time and only α can induce this drift.

Conclusion: $\rho=1$ (unit root), anot equal 0 (drift, stochastic trend since $\rho=1$), $\beta=0$

⇒ Process 3

Q.2.2 Pro4

For this data set we assume that we are dealing with a "rate-variable".

This means that we can assume that y_t is not growing

1.2 Augmented Dicked Fuller Test

 h_0 : ρ =1 Unit root (non – stationary)

 $h_1: \rho < 1$ No unit root (stationary)

Null Hypothesis: PRO4 has a unit root Exogenous: Constant, Linear Trend

Lag Length: 0 (Automatic - based on SIC, maxlag=23)

		t-Statistic	Prob.*
Augmented Dickey-Fu Test critical values:	1% level 5% level	-22.54065 -3.964390 -3.412914	0.0000
	10% level	-3.128449	

Since the p-value is 0 < 0.05 we must reject h_0 and must assume that there is no unit root.

This means that we believe in stationarity (ρ <1). This also means that we can assume that $\alpha\neq0$.

Conclusion: ρ <1 (no unit root) $\alpha \neq 0$ (just a constant, no drift since ρ <1), and β =0 (no deterministic trend)

⇒ Process 4

Q.2.2 Pro4

For this data set we assume that we are dealing with consumption of an industrialized country.

This means that we can assume that y_t is growing.

1.3 Augmented Dicked Fuller Test

 $h_0: \rho=1$ Unit root (non – stationary)

 $h_1: \rho < 1$ *No unit root (stationary)*

Null Hypothesis: PRO6 has a unit root Exogenous: Constant, Linear Trend

Lag Length: 0 (Automatic - based on SIC, maxlag=23)

		t-Statistic	Prob.*
Augmented Dickey-Ful Test critical values:	ller test statistic 1% level 5% level 10% level	-22.21218 -3.964390 -3.412914 -3.128449	0.0000

^{*}MacKinnon (1996) one-sided p-values.

Since the p-value is 0 < 0.05 we must reject h_0 and must assume that there is no unit root.

This means that we believe in stationarity (ρ <1). This also implies that $\beta \neq 0$.

Conclusion: ρ <1 (no unit root) and $\alpha \neq 0$ (just a constant, no drift since ρ <1) and & $\beta \neq 0$ (deterministic trend).

⇒ Process 6

This also makes sense when looking at the plot, which looks like it has a deterministic trend.

Q.2.2 Pro1

For this data set we have no prior knowledge.

Since the growth status is unknown, we use "Case 3" in the Elder & Kennedy approach.

1.4 Augmented Dicked Fuller Test

 h_0 : ρ =1 *Unit root* (non – stationary)

 $h_1: \rho < 1$ No unit root (stationary)

Null Hypothesis: PRO1 has a unit root Exogenous: Constant, Linear Trend

Lag Length: 0 (Automatic - based on SIC, maxlag=23)

		t-Statistic	Prob.*
Augmented Dickey-Ful Test critical values:	ller test statistic 1% level 5% level 10% level	-1.909046 -3.964390 -3.412914 -3.128449	0.6492

^{*}MacKinnon (1996) one-sided p-values.

Since the p-value is 0.6492 > 0.05 we cannot reject h_0 , which means that we must assume at least one unit root.

We still cannot conclude whether we have a stochastic or deterministic trend since we have no prior knowledge. To come to a conclusion, we regress $\Delta(\text{pro1})$ on only an intercept. A significant trend would mean that there is a trend that is causing a constant increase, which would manifest itself in a statistically significant intercept.

$$\Delta yt = \alpha + \epsilon t$$

Dependent Variable: D(PRO1) Method: Least Squares Date: 03/06/22 Time: 13:21

Sample: 2 1450

Included observations: 1449

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.022021	0.026579	0.828523	0.4075
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.000000 0.000000 1.011745 1482.212 -2072.460 2.053751	Mean depend S.D. depende Akaike info cri Schwarz crite Hannan-Quin	ent var iterion rion	0.022021 1.011745 2.861919 2.865562 2.863279

Since the p-value of the intercept is 0.4075>0.05 we must assume no drift and no stochastic trend.

Conclusion2: $\rho=1$ (unit root), $\alpha=0$ (no drift, no stochastic trend since $\rho=1$), $\beta=0$

→ Pure random walk

⇒ Process 1

Q.2.3

1. All Coefficients are constant across Time and Individuals

Dependent Variable: Y
Method: Panel Least Squares
Date: 03/06/22 Time: 11:46
Sample: 1935 1954
Periods included: 20
Cross-sections included: 4
Total panel (balanced) observations: 80

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C X2	-63.36773 0.110168	29.58691 0.013724	-2.141749 8.027358	0.0354
Х3	0.303384	0.049282	6.156023	0.0000
R-squared	0.756938	Mean dependent var		290.8871
Adjusted R-squared	0.750624	S.D. dependent var		284.9375
S.E. of regression	142.2908	Akaike info criterion		12.79040
Sum squared resid	1558993.	Schwarz criterion		12.87973
Log likelihood	-508.6160	Hannan-Quinn criter.		12.82621
F-statistic	119.8956	Durbin-Watson stat		0.218229
Prob(F-statistic)	0.000000			

1.1 Test the residuals for normality

 h_0 : Normaly distributed residuals

 h_1 : Not normaly distributed residuals

Since the p-value is 0.61 > 0.10 we cannot reject h_0 and must assume a normal distribution.

2. Slope coefficients are constant, but the intercept varies across individuals

$$Y_{it} = \beta_{1i} + \beta_2 * X_{2it} + \beta_3 * X_{3it} + u_{it}$$

The i after the intercept indicates that each firm has a specific intercept now.

We can also calculate this regression by adding dummy terms:

$$Y_{it} = \alpha_1 + \alpha_2 * D_{2i} + \alpha_3 * D_{3i} + \alpha_4 * D_{4i} + \beta_{1i} + \beta_2 * X_{2it} + \beta_3 * X_{3it} + u_{it}$$

We only add 3 dummy terms because we use the intercept of the fourth company as a base, so that the terms show the "distance" to the base intercept.

Either way, the results of the regression are the same, that's why we skipped the normality test in this step and conducted it in the next step (3.).

Dependent Variable: Y Method: Panel Least Squares Date: 03/06/22 Time: 11:57 Sample: 1935 1954 Periods included: 20 Cross-sections included: 4 Total panel (balanced) observations: 80

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-73.91292	37.51846	-1.970041	0.0526
X2	0.108013	0.017518	6.165864	0.0000
Х3	0.346202	0.026656	12.98764	0.0000
	Effects Sp	ecification		
Cross-section fixed (du	mmy variables)		
R-squared	0.934703	Mean depend	dent var	290.8871
Adjusted R-squared	0.930291	S.D. depende	ent var	284.9375
S.E. of regression	75.23044	Akaike info cr	iterion	11.55103
Sum squared resid	418811.8	Schwarz crite	rion	11.72968
Log likelihood	-456.0411	Hannan-Quir	in criter.	11.62265
F-statistic	211.8570	Durbin-Watso	on stat	0.805529
Prob(F-statistic)	0.000000			

3. Slope coefficients are constant, but the intercept varies across individuals by Least-Squares Dummy Variable

Dependent Variable: Y Method: Panel Least Squares Date: 03/06/22 Time: 12:05 Sample: 1935 1954 Periods included: 20 Cross-sections included: 4 Total panel (balanced) observations: 80

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-245.6495	35.76948	-6.867573	0.0000
DUMGM	161.1416	46.50371	3.465135	0.0009
DUMUS	339.4758	23.97041	14.16229	0.0000
DUMWEST	186.3290	31.47026	5.920796	0.0000
X2	0.108013	0.017518	6.165864	0.0000
X3	0.346202	0.026656	12.98764	0.0000
R-squared	0.934703	Mean dependent var		290.8871
Adjusted R-squared	0.930291	S.D. dependent var		284.9375
S.E. of regression	75.23044	Akaike info criterion		11.55103
Sum squared resid	418811.8	Schwarz criterion		11.72968
Log likelihood	-456.0411	Hannan-Quinn criter.		11.62265
F-statistic	211.8570	Durbin-Watso	on stat	0.805529

1.2 Test the residuals for normality

 h_0 : Normaly distributed residuals

 h_1 : Not normaly distributed residuals

Since the p-value is 0.896 > 0.10 we cannot reject h_0 and must assume a normal distribution.

(This is our best result yet)

4. All coefficient vary across individuals

Dependent Variable: Y Method: Panel Least Squares Date: 03/06/22 Time: 12:07 Sample: 1935 1954 Periods included: 20 Cross-sections included: 4 Total panel (balanced) observations: 80

Variable	Coefficient	Std. Error t-Statistic		Prob.
С	-11.38605	76.55446	-0.148731	0.8822
DUMGM	-137.8927	109.4570	-1.259789	0.2121
DUMUS	-37.45806	129.3168	-0.289661	0.7730
DUMWEST	10.59789	93.19637	0.113716	0.9098
X2	0.027157	0.038115	0.712506	0.4786
X3	0.152308	0.062678	2.429999	0.0177
DUMGM*X2	0.092010	0.042630	2.158347	0.0344
DUMGM*X3	0.219237	0.068408	3.204848	0.0021
DUMUS*X2	0.143672	0.064779	2.217875	0.0299
DUMUS*X3	0.256727	0.120609	2.128592	0.0369
DUMWEST*X2	0.026320	0.110931	0.237265	0.8132
DUMWEST*X3	-0.062574	0.378093	-0.165499	0.8690
R-squared	0.951158	Mean depend	lent var	290.8871
Adjusted R-squared	0.943257	S.D. depende		284.9375
S.E. of regression	67.87425	Akaike info cr	iterion	11,41067
Sum squared resid	313270.2	Schwarz crite	rion	11.76798
Log likelihood	-444.4269	Hannan-Quin	11.55393	
F-statistic	120.3861	Durbin-Watso	n stat	0.973063
Prob(F-statistic)	0.000000			

1.3 Test the residuals for normality

 h_0 : Normaly distributed residuals

 h_1 : Not normaly distributed residuals

Since the p-value is 0.343 > 0.10 we cannot reject h_0 and must assume a normal distribution. (Worse than in the case before)

5. Random effects model

Dependent Variable: Y
Method: Panel EGLS (Cross-section random effects)
Date: 03/06/22 Time: 12:10
Sample: 1935 1954
Periods included: 20
Cross-sections included: 4
Total panel (balanced) observations: 80
Swamy and Arora estimator of component variances

Variable	Coefficient	Std. Error t-Statistic		Prob.		
С	-73.09669	84.15441	-0.868602	0.3878		
X2	0.107720	0.016881	6.381075	0.0000		
Х3	0.345750	0.026628	12.98470	0.0000		
Effects Specification						
	•		S.D.	Rho		
Cross-section random			151.9823	0.8032		
Idiosyncratic random			75.23044	0.1968		
	Weighted	Statistics				
R-squared	0.805271	Mean depend	dent var	32.00117		
Adjusted R-squared	0.800213	S.D. depende	ent var	167.7384		
S.E. of regression	74.97487	Sum squared	l resid	432834.8		
F-statistic	159.2110	Durbin-Watso	on stat	0.778772		
Prob(F-statistic)	0.000000					
Unweighted Statistics						
R-squared	0.754122	Mean depend	dent var	290.8871		
Sum squared resid	1577053.	Durbin-Watso	on stat	0.213740		

(Almost the same result as in 2.)

1.5 Test the residuals for normality

 h_0 : Normaly distributed residuals

 h_1 : Not normaly distributed residuals

Since the p-value is 0.815 > 0.10 we cannot reject h_0 and must assume a normal distribution.

2. Conduct the Hausmann-test

This is done to see whether the random effects or the fixed effects model is the best approximation.

Correlated Random Effects - Hausman Test Equation: Untitled Test cross-section random effects

Test Summary	Chi-Sq. Statistic	Chi-Sq. d.f.	Prob.
Cross-section random	1.477716	2	0.4777

Cross-section random effects test comparisons:

Variable	Fixed	Random	Var(Diff.)	Prob.
X2	0.108013	0.107720	0.000022	0.9500
X3	0.346202	0.345750	0.000002	0.7152

 h_0 : Choose a random effects model

 h_1 : Choose a fixed effetcs model

Since the p-value 0.4777 > 0.05 we cannot reject the h_0 hypothesis, meaning the is little evidence against the connotation that we have specified the model correctly. Therefore, we should use a random effects model.

Q.2.4. Conditional Heteroscedasticity

Replication of: ar1-garch11 - lite.wf1 (from Part 12)

THE ARCH-MODEL

The plotted data takes on the following form:

We will follow the Box-Jenkins approach. We can obviously see from the plot, that the data exhibits no growth and looks like its mean reverting. Therefor, we can assume "Case 2" in the Box-Jenkins approach.

1. First, we check for unit roots using the augmented Dickey-Fuller test

 h_0 : ρ =1 *Unit root* (non - stationary)

 h_1 : ρ =1 *No unit root (stationary)*

Null Hypothesis: Y has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic - based on SIC, maxlag=23)

		t-Statistic	Prob.*
Augmented Dickey-Ful Test critical values:	ller test statistic 1% level 5% level 10% level	-20.86038 -3.434655 -2.863328 -2.567771	0.0000

^{*}MacKinnon (1996) one-sided p-values.

Since the p-value is 0 < 0.05 we must reject h_0 and have to assume that there is no unit root. (This is in line with our expectations after looking at the plot.)

Since h_0 is rejected, we can assume a stationary process. Which implies that $\alpha \neq 0$ & $\beta=0$.

This leads us to the conclusion that we are dealing with a stationary process and a non-zero equilibrium. → Process 4

Know that we know that the underlying data generating process has no unit roots we can rule out all ARIMA models. What is left to do now is to choose between the ARMA-models.

2. Run a correlogram

We do this, to determine which process is best by looking at the SAC and SPAC.

One spike in the SPAC and a decay in the SAC indicates an AR(1) process.

3. Creating the AR(1) model

Dependent Variable: Y

Method: ARMA Maximum Likelihood (BFGS)

Date: 03/06/22 Time: 13:55

Sample: 1 1450

Included observations: 1450

Convergence achieved after 3 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error t-Statistic		Prob.
C	-0.018541	0.058064 -0.319321		0.7495
AR(1)	0.537186	0.008163	65.81026	0.0000
SIGMASQ	1.021622	0.014852	68.78892	0.0000
R-squared	0.288942	Mean depend	-0.018894	
Adjusted R-squared	0.287959	S.D. depende	ent var	1.199064
S.E. of regression	1.011800	Akaike info cr	iterion	2.863641
Sum squared resid	1481.352	Schwarz crite	rion	2.874564
Log likelihood	-2073.140	Hannan-Quir	n criter.	2.867717
F-statistic	293.9973	Durbin-Watso	1.958463	
Prob(F-statistic)	0.000000			
	·			

Inverted AR Roots

.54

The formula would be: $y_t = -0.018541 + 0.537186 * y_{t-1}$

4. Testing the AR(1) model

We test the model by looking at the distribution of the residuals and testing whether they are normally distributed or not, with the Jarque-Bera test.

 H_0 : Normal distribution

 H_1 : Non-normal distribution

Since the p-value is 0 < 0.05 we must reject h_0 and assume non-normality within the residuals.

5. Testing the residuals for autocorrelation

Date: 03/06/22 Time: 15:18

Sample: 1 1450

Q-statistic probabilities adjusted for 1 ARMA term

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		l 1	0.021	0.021	0.6149	
ali.	i ä	2	-0.031	-0.031	1.9910	0.158
4	i ali	3	-0.047	-0.045	5.1639	0.076
uli.	, 9. .ml	4	0.036	0.037	7.0455	0.070
ı lı	, ;r	5	0.031	0.037	8.4169	0.077
ılı.	i ii	6	0.031	0.020	11.735	0.077
. p	<u> </u>	7	0.048	0.047	11.789	0.039
'Ψ' .#.		8	-0.008	-0.009	11.769	0.067
'" al.	'#'.	i -				
"	, ",	9	-0.048	-0.046	15.254	0.054
Щ¹ .h	 h	10	-0.019	-0.021	15.779	0.072
'∭	<u> </u>	11	0.033	0.028	17.369	0.067
! !!	ļ ! !	12	-0.007	-0.016	17.449	0.095
i ∮!	ļ III	13	-0.012	-0.008	17.656	0.127
()	ļ ı ļ i	14	-0.012	-0.005	17.856	0.163
ı l ı	i i	15	0.007	0.009	17.930	0.210
- (0		16	-0.020	-0.020	18.520	0.236
ı İ ı	ı ı	17	0.018	0.017	19.002	0.269
ı	j iji	18	-0.002	-0.004	19.009	0.328
ı	į į	19	0.011	0.010	19.193	0.380
ı İı	i ii	20	0.007	0.013	19.274	0.439
ı	i di	21	0.000	-0.001	19.274	0.504
·¶.	1 '¶'	-	0.000	0.001	10.217	0.00-

No patterns can be seen in the test for autocorrelation since the p-values are < 0.05. Therefore, we accept h_0 and conclude that there is no autocorrelation.

6. Testing to see if there are ARCH-effects in the residuals

We use the ARCH-LM test. This test is conducted with one lag.

 h_0 : No arch effects

 h_1 : ARCH effects

Heteroskedasticity Test: ARCH

F-statistic	774 5819	Prob. F(1,1447)	0.0000
Obs*R-squared		Prob. Chi-Square(1)	0.0000
ODO IT Oqualou	000.2111	r rob. om oquaro(1)	0.0000

Test Equation:

Dependent Variable: RESID^2 Method: Least Squares Date: 03/06/22 Time: 15:28 Sample (adjusted): 2 1450

Included observations: 1449 after adjustments

Variable	Coefficient	Std. Error t-Statistic		Prob.
C RESID^2(-1)	0.418918 0.590464	0.082231 5.094390 0.021216 27.83131		0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.348662 0.348212 3.019431 13192.25 -3656.285 774.5819 0.000000	Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quin Durbin-Watso	nt var terion ion n criter.	1.022327 3.740003 5.049393 5.056679 5.052112 1.959351

Since the p-value 0 < 0.05 we reject h_0 and conclude that there are significant ARCH effects.

7. Estimating a GARCH(1,1) model

A GARCH(1,1) model is estimated, because it is a remedy against ARCH-effects in the residuals.

Dependent Variable: Y

Method: ML ARCH - Normal distribution (BFGS / Marquardt steps)

Date: 03/06/22 Time: 15:35 Sample (adjusted): 2 1450

Included observations: 1449 after adjustments Convergence achieved after 23 iterations

Coefficient covariance computed using outer product of gradients

Presample variance: backcast (parameter = 0.7) GARCH = $C(3) + C(4)*RESID(-1)^2 + C(5)*GARCH(-1)$

Variable	Coefficient	Std. Error z-Statistic		Prob.
C AR(1)	-0.028529 0.571291	0.028852 -0.988801 0.022817 25.03786		0.3228 0.0000
7.1(1)	Variance		20.00.00	
C RESID(-1)^2 GARCH(-1)	0.091314 0.718299 0.228043	0.009626 0.062493 0.031686	9.485688 11.49417 7.196912	0.0000 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.287791 0.287299 1.012619 1483.749 -1407.332 2.020934	Mean depend S.D. depende Akaike info cri Schwarz critei Hannan-Quin	-0.018907 1.199478 1.949388 1.967603 1.956186	
Inverted AR Roots	.57			

This leads to the following equations:

Mean: $y_t = -0.028529 + 0.571291 * x_{t-1}$

Variance: $h_t = 0.091314 + 0.718299 * \varepsilon_{2t-1} + 0.228043 * h_{t-1} + u_t$

What is now left to do is to check the residuals in the same manner that we checked them for the AR(1) process. Meaning we must check whether the residuals are normally distributed, whether there is autocorrelation and lastly check whether there are any ARCH-effects in the residuals.

8. Are the residuals normally distributed?

This is done using the Jarque-Bera test for normality.

 H_0 : Normal distribution

 H_1 : Non-normal distribution

Since the p-value 0.502311 > 0.05 we cannot reject H_0 and must assume normality.

9. Check the residuals for autocorrelation

Date: 03/06/22 Time: 15:50 Sample (adjusted): 2 1450

Q-statistic probabilities adjusted for 1 ARMA term

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob*
	1 1	1	0.003	0.003	0.0122	
(i)	į di	2	-0.032	-0.032	1.5142	0.218
(i)	0	3	-0.026	-0.025	2.4667	0.291
	1 •	4	0.016	0.015	2.8560	0.414
	1 •	5	0.001	-0.001	2.8568	0.582
ι þ i		6	0.047	0.048	6.0904	0.298
()	(1)	7	-0.046	-0.046	9.2210	0.162
(h	1 1	8	-0.026	-0.023	10.212	0.177
•	(1)	9	-0.026	-0.027	11.219	0.190
()	(-	10	-0.039	-0.045	13.496	0.141
1	1 1	11	0.027	0.026	14.547	0.149
ıþı	1 1	12	-0.006	-0.012	14.607	0.201
ψ.	1 1	13	0.020	0.025	15.164	0.233
	1 1	14	0.003	0.005	15.178	0.296
ψ.	1 1	15	0.022	0.022	15.886	0.320
•	1 •	16	-0.010	-0.008	16.046	0.379
ıþ	1 1	17	0.026	0.019	17.030	0.384
ιþ	•	18	0.041	0.042	19.503	0.300
(h	(1)	19	-0.025	-0.030	20.436	0.309
1	1 1	20	0.012	0.017	20.635	0.357

We cannot see any pattern here. So we just assume that there is no autocorrelation whithin the residuals.

10. Are there ARCH-effects in the residuals?

This test is, in accordance with the lab slides, conducted with one lag. Meaning that a more accurate specification of the optimal lag length using Schwarz information criterion is skipped.

 h_0 : No arch effects

 h_1 : ARCH effects

Heteroskedasticity Test: ARCH

F-statistic	0.170619	Prob. F(1,1446)	0.6796
Obs*R-squared	0.170835	Prob. Chi-Square(1)	0.6794

Test Equation:

Dependent Variable: WGT_RESID^2

Method: Least Squares Date: 03/06/22 Time: 15:53 Sample (adjusted): 3 1450

Included observations: 1448 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C WGT_RESID^2(-1)	0.988404 0.010859	0.044750 0.026290	22.08702 0.413061	0.0000 0.6796
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000118 -0.000574 1.377547 2743.980 -2517.423 0.170619 0.679623	Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quin Durbin-Watso	nt var terion rion n criter.	0.999270 1.377152 3.479866 3.487156 3.482586 1.998864

Since the p-value 0.6796 > 0.05 we cannot reject h_0 and must assume that there are no ARCH-effects.

11. Specification of the model

After completion of all these steps we can conclude that the GARCH(1,1) model is indeed correctly specified.

Dependent Variable: Y

Method: ML ARCH - Normal distribution (BFGS / Marquardt steps)

Date: 03/06/22 Time: 15:57 Sample (adjusted): 2 1450

Included observations: 1449 after adjustments Convergence achieved after 23 iterations

Coefficient covariance computed using outer product of gradients

Presample variance: backcast (parameter = 0.7)

 $GARCH = C(3) + C(4)*RESID(-1)^2 + C(5)*GARCH(-1)$

Variable	Coefficient	Std. Error	z-Statistic	Prob.		
C AR(1)	-0.028529 0.571291	0.028852 0.022817	-0.988801 25.03786	0.3228 0.0000		
Variance Equation						
C RESID(-1)^2 GARCH(-1)	0.091314 0.718299 0.228043	0.009626 0.062493 0.031686	9.485688 11.49417 7.196912	0.0000 0.0000 0.0000		
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.287791 0.287299 1.012619 1483.749 -1407.332 2.020934	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		-0.018907 1.199478 1.949388 1.967603 1.956186		
Inverted AR Roots	.57					

This output can be interpreted in the following way:

Mean:
$$y_t = -0.028529 + 0.571291 * x_{t-1}$$

Variance:
$$h_t = 0.091314 + 0.718299 * \varepsilon_{2t-1} + 0.228043 * h_{t-1} + u_t$$

12. Check the stationarity constraints

1) $\omega > 0$

As can be seen from the output: $\omega = 0.091314 > 0$

2) 0≤α<1

As can be seen from the output: $0 < \alpha = 0.718299 < 1$

3) $(\alpha+\beta)<1$

0.091314 + 0.718299 = 0.809613 < 0

This implies that the unconditional variance is positive:

$$Var(u) = \frac{\omega}{(1 - \alpha - \beta)} = \frac{0.091314}{(1 - 0.718299 - 0.091314)} = \frac{0.091314}{0.190387} \approx 0.479623 > 0$$

Where ω is the mean variance, α is the autoregressive ARCH term (ε^2_{t-q}) and β is the GARCH term (h_{t-1})

THE GJR OR TARCH-MODEL

The TARCH or GJR model is a model where positive news and negative news are treated asymmetrically.

The conditional variance is defined the following way:

$$h_t = \delta + \alpha_1 * \varepsilon_{t-1}^2 + \gamma * d_{t-1} * \varepsilon_{t-1}^2 + \beta_1 * h_{t-1}$$

Where d_t is a dummy variable taking on 1 for bad and 0 for good news. γ is the asymmetry term. If we would plug in 0 for y that the model would just collapse into a GARCH model.

The output of estimating this regression is as follows:

Dependent Variable: R Method: ML ARCH - Normal distribution (BFGS / Marquardt steps) Date: 03/06/22 Time: 16:25 Sample: 1 500 Included observations: 500 Convergence achieved after 24 iterations Coefficient covariance computed using outer product of gradients Presample variance: backcast (parameter = 0.7) ${\sf GARCH} = {\sf C(2)} + {\sf C(3)}^* {\sf RESID(-1)}^2 + {\sf C(4)}^* {\sf RESID(-1)}^2 *({\sf RESID(-1)}^0) + \\$

C(5)*GARCH(-1)

Variable	Coefficient	Std. Error	z-Statistic	Prob.		
С	0.994247	0.042924	23.16281	0.0000		
Variance Equation						
С	0.355671	0.090153	3.945179	0.0001		
RESID(-1) ²	0.263027	0.080567	3.264712	0.0011		
RESID(-1)^2*(RESID(-1)<0)	0.491803	0.204753	2.401926	0.0163		
GARCH(-1)	0.287622	0.115607	2.487926	0.0128		
R-squared	-0.005040	Mean dependent var		1.078294		
Adjusted R-squared	-0.005040	S.D. dependent var		1.185025		
S.E. of regression	1.188007	Akaike info criterion		2.942235		
Sum squared resid	704.2692	Schwarz criterion		2.984381		
Log likelihood	-730.5586	Hannan-Quin	n criter.	2.958773		
Durbin-Watson stat	1.909350					

It can be seen (highlighted) that the term describing the asymmetry between good and bad news (0.491803) is statistically significant at the 5% level. We can conclude that positive and negative shocks have different effects.

If we assume a positive shock, we can set $d_t = 0$ which collapses the formula to:

$$h_t = \delta + \alpha_1 * \varepsilon_{t-1}^2 + \beta_1 * h_{t-1} = 0.355671 + 0.263027 * \varepsilon_{t-1}^2 + 0.287622 * h_{t-1}$$

If we assume a negative shock, $d_t = 1$. The formula will take on the following form:

$$h_{t} = \delta + \alpha_{1} * \varepsilon_{t-1}^{2} + \gamma * d_{t-1} * \varepsilon_{t-1}^{2} + \beta_{1} * h_{t-1} = \delta + (\alpha_{1} + \gamma) * \varepsilon_{t-1}^{2} + \beta_{1} * h_{t-1}$$

$$= 0.355671 + (0.263027 + 0.491803) * \varepsilon_{t-1}^{2} + 0.287622 * h_{t-1}$$

THE GARCH-in mean (GARCH-M) model

As we understand is the GARCH-M model is used when the risk of a security effects its return.

When using a normal OLS regression in cases like this we get:

Dependent Variable: RETURNSP Method: Least Squares Date: 03/06/22 Time: 16:38

Sample (adjusted): 1960M02 1996M02 Included observations: 433 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C D(R3) GPW	0.012028 -0.829997 -0.854717	0.001755 0.306072 0.234959	6.855222 -2.711773 -3.637724	0.0000 0.0070 0.0003
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.055120 0.050725 0.032947 0.466767 864.8710 12.54203 0.000005	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quir Durbin-Watso	ent var iterion rion in criter.	0.009266 0.033816 -3.980928 -3.952724 -3.969795 1.520157

We can see that the R^2 is very low.

When plotting the residuals one can see that the timeseries has some "spikes" in it. This indicates that the use of a GARCH-model may be appropriate.

Dependent Variable: RETURNSP

Method: ML ARCH - Normal distribution (BFGS / Marguardt steps)

Date: 03/06/22 Time: 16:46 Sample (adjusted): 1960M02 1996M02 Included observations: 433 after adjustments Convergence achieved after 19 iterations

Coefficient covariance computed using outer product of gradients

Presample variance: backcast (parameter = 0.7) GARCH = $C(4) + C(5)*RESID(-1)^2 + C(6)*GARCH(-1)$

Variable	Coefficient	Std. Error	z-Statistic	Prob.		
C D(R3)	0.012726 -1.091747	0.001556 0.299550	8.180735 -3.644621	0.0000		
GPW	-0.801557	0.183055	-4.378779	0.0000		
Variance Equation						
C RESID(-1)^2 GARCH(-1)	0.000187 0.186137 0.647594	7.80E-05 0.046329 0.101450	2.394358 4.017690 6.383390	0.0166 0.0001 0.0000		
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.052844 0.048439 0.032987 0.467891 882.1851 1.516407	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		0.009266 0.033816 -4.047044 -3.990637 -4.024777		

It can be seen that both the ARCH and GRACH coefficients are statistically significant.

If we assume that the riskiness of a stock effects the return of the stock itself, we should use a GARCH-M model. In this step the variance or variable of the errors are added into the regression.

Dependent Variable: RETURNSP

Method: ML ARCH - Normal distribution (BFGS / Marquardt steps)

Date: 03/06/22 Time: 16:51

Sample (adjusted): 1960M02 1996M02 Included observations: 433 after adjustments Convergence achieved after 23 iterations

Coefficient covariance computed using outer product of gradients

Presample variance: backcast (parameter = 0.7) GARCH = C(5) + C(6)*RESID(-1)^2 + C(7)*GARCH(-1)

Variable	Coefficient	Std. Error	z-Statistic	Prob.			
@SQRT(GARCH)	0.471168	0.254244	1.853211	0.0639			
C	-0.001256	0.007569	-0.165966	0.8682			
D(R3)	-0.999345	0.307024	-3.254944	0.0011			
GPW	-0.876038	0.176873	-4.952911	0.0000			
Variance Equation							
C	0.000148	6.44E-05	2.297423	0.0216			
RESID(-1)^2	0.185032	0.043024	4.300661	0.0000			
GARCH(-1)	0.687511	0.087118	7.891750	0.0000			
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.050541 0.043902 0.033065 0.469029 884.3845 1.487998	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		0.009266 0.033816 -4.052584 -3.986776 -4.026606			

This is the regression output for the GARCH(1,1) model. However, the standard deviation σ_t (the measure of risk that we have chosen in this chase) is not relevant at the 5% level of significance, but it is relevant at the 10% level.