Twitter Community detection

Unveiling the Twittersphere

IFQIR MOHAMED SEDJARI YASSINE Supervised by: Pr. Mohamed LAZAAR

Outline

- Introduction
- Communities in social media
- Dataset description
- Feature extraction
- Clustering phase
- Results & Experimentation
- Conclusion

Introduction

Communities in social media

• The social hierarchy of social media users

Dataset Description

Dataset statistics				
Nodes	81306			
Edges	1768149			
Nodes in largest WCC	81306 (1.000)			
Edges in largest WCC	1768149 (1.000)			
Nodes in largest SCC	68413 (0.841)			
Edges in largest SCC	1685163 (0.953)			

Average clustering coefficient	0.5653
Number of triangles	13082506
Fraction of closed triangles	0.06415
Diameter (longest shortest path)	7
90-percentile effective diameter	4.5

Files hierarchy

Project directory

- twitter_combined.txt
 - Twitter directory

NodelD.egofeat

NodelD.featnames

Graph network

Directed graph A--->B

Node A follows Node B

Feature Extraction

Edge-based Approach

Extract Adjacency Matrix

Load the dataset

• Extract the edges from the twitter_combined.txt

Form the list of edges (Node i ,Node j)

• These edges will be used in the process of creating the adjacency matrix

Construct the Adjacency

 Check the connection between nodes and fill in the adjacency matrix

Graph network

Feature-based approach

Extract Adjacency Matrix

Load the dataset

Form the list of edges (Node i ,Node j)

Extract account features from nodeld.feature names

• Check the connection between

matrix

nodes and fill in the adjacency

• Extract the edges from the twitter_combined.txt

• These edges will be used in the process of creating the adjacency matrix

Store extracted data in a Dataframe (972,24250)

Compute degree, closeness and betweenness centrality

17/30

Final Dataset

	nodeld	#OCTAVIA	#THEHELP	#ff	@BAFTA	@FuckYes	sEmma	@JUD#	AOcombr	@astowe	ellcom @er	nmastonebr	@helpmovie	@	ochococat
968	14528221	0	0	1	0		0		0		0	0	0		0
969	14840869	0	0	0	0		0		0		0	0	0		0
970	82726142	0	0	0	0		0		0		0	0	0		0
971	255790981	0	0	0	0		0		0		0	0	0		0
972	36618690	0	0	0	0		0		0		0	0	0		1
@hel	pmovie	@chococa	t @danny	Bstyl	e, @jon_	blaze55	@kylepı	ulver:	@terryca	wanagh	@twitchtv.	Degree Centrality			veenness Centrality
	0	(0		0	0		0		0	0	0.001030	0.238165		0.000000
	0	(0		0	0		0		0	0	0.003090	0.239990		0.001701
	0	(0		0	0		0		0	0	0.002060	0.206245		0.000958
	0	(0		0	0		0		0	0	0.009269	0.273984		0.002988
	0	:	1		1	1		1		1	1	0.010299	0.294064		0.010228

Clustering Phase

Edge-based Approach

Parameter	Value
Number of clusters	3
Affinity	Precomputed
Algorithm	Spectral Clustering

Feature-based approach

Algorithm	Number of Clusters	Data	Random Seed
k-means	3	df	42
hierarchical	3	df	
spectral	3	df	42

Results & Experimentation

Method	Clustering Algorithm	Silhouette Score	
Method 1: Edge- based Approach	Spectral Clustering	-0.1887	
	Spectral Clustering	-0.0343	
Method 2: Feature- based Approach	Hierarchical Clustering	0.6756	
	K-MEANS	0.6917	

Conclusion

Thank you for your attention

Feel free to ask questions