Lab 3:I-V and C-V Characteristics of Solar Cell

Wadhwani Electronics Lab

Department of Electrical Engineering Indian Institute of Technology, Bombay.

Aim of the Experiment

- Measure the I-V characteristics of solar cell under different illumination levels and find fill factor
- Measure the C-V characteristics of solar cell and estimate the doping Concentration and built-in potential of the solar cell

Part 1: I-V characteristics of Solar cell

• write the ngspice netlist to plot I-V characteristics for the solar cell and find ideality factor η for following conditions with input voltage varied from -2V to 2V (use the below circuit).

- A) Dark (IL=0)
- B) Lighted characteristics for the intensities corresponding to light generated current IL=8mA and 10mA.

Hint:-For simulating different levels of illumination, you need to understand model file of solar cell provided and use the below command

X1 node1 node2 solar_cell IL_val = 10e-3 (for example simulating light generated current of IL=10mA)

Part 2 : Measurement of V_{OC} and I_{SC} at different illumination levels

- In this part, we will plot the I/V characteristics of the solar cell when used as a power source. We will measure I/V characteristics when the solar cell is lighted at the intensity to generate IL=8mA,10mA
- A load resistor R is connected across the solar cell. The value of R is varied from 1 to 500Ω and the values of I_R and V_R are recorded (take as many values as possible to get the plot smoother)
- Plot I_D - V_D and P_R - V_D characteristics under lighted condition and note the values of Voc and Isc values(P_R = V_R*I_R)

Experiment 3 Dept. of EE, IIT-Bombay 4/8

Part 3: Fillfactor of solar cell

• Find fillfactor by determining the voltage V_{MP} at which the power P reaches maximum. Find the current I_{MP} at the maximum power point. Using I_{MP} and V_{MP} , calculate the fill factor $FF = I_{MP} * V_{MP} / (I_{sc} * V_{oc})$

Experiment 3 Dept. of EE, IIT-Bombay 5/8 5/

Part 4: C-V characteristics of a Solar Cell

- When reversed biased, a PN junction exhibits capacitance called junction capacitance (C_j) . The value of capacitance depends upon the applied reverse bias voltage.
- In this part of the experiment, we intend to measure this capacitance, its voltage dependence and estimate doping profile of a PN junction.
- The PN junction under consideration is that of a solar cell.
- This can be achieved by applying a reverse bias to the diode so that it acts as a capacitor.
- To estimate the capacitance value, a small AC signal is superimposed on this DC reverse bias using a summing amplifier, and the AC current through the capacitor is measured.

Solar Cell C-V Measurement

- The experimental setup uses the same circuit as you have used in quiz-1.
- Solar Cell is kept under no illumination(IL=0mA).
- Negative DC component of VDUT ensures -ve voltage at the anode of the cell and with cathode held at ground potential, the cell gets reverse biased.
- you have to measure the capacitance of the solar cell, C_{DUT} (where DUT is solar cell here)as Vdc is varied from 0 to 2 V.

Note:- DUT = Device Under Test (Solar cell in this case)

Solar Cell C-V Measurement

For the above circuit, the ac gain from V_{DUT} to V_{out} is given by,

$$\left| rac{V_{out}}{V_{DUT}}
ight| = rac{C_{DUT}}{Cfb} rac{1}{\sqrt{1 + rac{1}{\left(\omega RfbCfb
ight)^2}}}$$

- Vary the dc voltage in steps from 0 volt to 2 volt and plot C_{DUT} versus applied DC voltage.
- Plot $\frac{1}{C^2}$ vs V_{DUT} and obtain the following:
 - Doping Density N_D (in terms of atoms/ cm^3)
 - ullet Built in Voltage V_{bi}

you can use the following equation:

$$\frac{1}{C^2} = \frac{2}{q \varepsilon N_D} (V_{bi} - V_R)$$

where C is normalised junction capacitance = C_{DUT}/A rea consider Area = 1μ m × 1μ m (Hypothetical value) V_R is Reverse diode voltage(= V_{DUT}) and $\varepsilon = \varepsilon_0 * \varepsilon_{si}(\varepsilon_{si} = 11.68)$