Relatório 2º projecto ASA 2020/2021

Grupo: al135

Aluno(s): João Jorge(88079)

Os processos são os vértices representados no meio do grafo. Os processadores são os extremos. Encontrar o custo mínimo de execução do programa corresponde a encontrar um dos cortes mínimos do grafo (como representado na figura).

Pelo teorema do fluxo máximo corte mínimo, sabemos que a capacidade do fluxo máximo é igual à capacidade do corte mínimo, por isso modelou-se o problema de forma a representar uma rede de fluxos e depois calculou-se o fluxo máximo.

Escolheu-se chegar à solução através do método ford-fulkerson uma vez que a complexidade do algoritmo depende do fluxo máximo. E para este tipo de problemas o fluxo é baixo.

Fontes externas: foi utilizado o material de apoio (slides) presente na página do professor responsável da disciplina (aula 9 – teorema e ford-fulkerson, aula 4 – DFS)

Análise Teórica

- Leitura dos dados de entrada: simples leitura do input, com ciclo a depender linearmente V+E. V é o número de vértices (n + 2, n processos e 2 processadores) e E é o número de arestas. Construir lista de adjacências com V entradas e inserir arestas no vértice correspondente. Logo O(E).
- Executar o método ford-fulkerson com procura de caminhos de aumento com o algoritmo DFS. Logo O(E*f), E número de arestas e f o fluxo máximo do grafo.
- Calcular o fluxo máximo do gráfico. O(n). Limitado pelo número de processos.

Complexidade global da solução: O(E*f)

Relatório 2º projecto ASA 2020/2021

Grupo: al135

Aluno(s): João Jorge(88079)

Avaliação Experimental dos Resultados

Como foi usado o método ford-fulkerson especialmente eficiente para fluxos baixos, construíram-se redes com arestas de capacidade máxima igual a 20 unidades.

O número de arestas (E) é igual a [2*(V-2) + 2*L]. Os vértices sink e source do grafo estão ligados aos vértices que representam processos [2*(V-2)]. Os vértices no meio do grafo, (processos) estão ligados entre si L vezes sendo que a ligação é bidirecional, logo [2*L].

Informações representadas na tabela:

capacidade aresta		num de processos	fluxo máximo (f)	num Edges (E)	E*f	time(microsseconds)
(máximo)						
	20	50	484	1680	813120	1596
	20	100	920	7800	7176000	3408
	20	200	1996	32400	64670400	28924
	20	400	3825	133168	509367600	127332
	20	800	7985	524508	4188196380	851356
	20	1000	9942	823020	8182464840	1560483
	20	1200	12328	1207084	14880931552	3018385
	20	1400	14096	1625336	22910736256	4606263
	20	1600	15821	2132088	33731764248	7024820

Gráfico do tempo (microssegundos) em função do fluxo máximo e do número de arestas (E*f).

Com base nos resultados obtidos, parece que a análise teórica está de acordo com os resultados obtidos visto que o tempo aumenta proporcionalmente com o número de arestas e <u>fluxo</u> máximo.