Simple LTC Good LDPC Codes

David Ponarovsky

January 30, 2023

Abstract

We propose a new simple construction based on Tanner Codes, which yields a good LDPC testable code.

ex1. Find a simple description of the work-function algorithm in the case of uniform metric space.

ex2. Consider the following 3-point metric space, w(a,b) = 1 and $w(\cdot,c) = M$. The initial configuration is $\{b,c\}$ (2 servers). Show that randomized competitive ratio, for some value of M is $> H_2 = 1 + \frac{1}{2}$.

ex3. Show that randomized marking algorithm cannot be c-competitive against the adaptive online adversary, for c = o(k).

ex4 - Ski Rental. At each step, the adversary decides either continue or stop. Stop terminate the game. If it continues, the online algorithm decides, either rent or buy. Rent costs 1 Buy costs M>1. Deisgn a primal-dual randomized online ski-rental algorithm with better than 2 competitive

ex5. Prove Yao's minimax principle.

$$\begin{aligned} &\forall \text{rand. alg} \; \exists \; \sigma \\ &\mathbf{E} \left[c_{\text{alg}} \left(\sigma \right) : \text{alg} \sim \tilde{\text{alg}} \right] \geq c \cdot c_{\text{base}} \left(\sigma \right) \\ &\Leftrightarrow \exists \; \text{rand. } \tilde{\sigma} \forall \text{alg} \\ &\mathbf{E} \left[c_{\text{alg}} \left(\sigma \right) : \sigma \sim \tilde{\sigma} \right] \geq c \mathbf{E} \left[c_{\text{base}} \left(\sigma \right) : \sigma \sim \tilde{\sigma} \right] \end{aligned}$$

Solution. First direction, assume through contriduction that for all distrubtons $\tilde{\sigma}$ there exists an algorithm such that:

$$\mathbf{E}\left[c_{\mathrm{alg}}\left(\sigma\right):\sigma\sim\tilde{\sigma}\right]< c\mathbf{E}\left[c_{\mathrm{base}}\left(\sigma\right):\sigma\sim\tilde{\sigma}\right]$$

Now let $\tilde{\sigma}$ be the uniform distrubtion, and notice that by defintion $c_{\text{base}}(\sigma) \leq c_{\text{alg}}(\sigma)$. By the fact that probability function must be non negitive we obtain that. By the monotonic preporty of random variables we have