ΗΛΕΚΤΡΟΝΙΚΟΙ ΥΠΟΛΟΓΙΣΤΕΣ ΙΙ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ

Θέματα Εξέτασης Θεωρίας Ιούνιος 2016

1. Βρείτε τον πίνακα ${\bf X}$ που ικανοποιεί τη σχέση ${\bf A}{\bf X}={\bf B}$ με

$$A = \left(\begin{array}{cccc} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 2 & 0 \end{array}\right) ,$$

και

$$B = \left(\begin{array}{cccc} 1 & 0 & 0 & 1 \\ 0 & 1 & 2 & 0 \\ 1 & 2 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{array}\right) .$$

Να εξηγείτε συνοπτικά τις πράξεις που κάνετε.

2. Βρείτε τη ρίζα της συνάρτησης

$$f(\theta) = \frac{\arcsin(1.5\sin\theta)}{\theta} + 0.1$$

που είναι κοντά στο $\theta=3.5~{
m rad}$. Η προσέγγιση θ_n θα είναι ικανοποιητική αν $|f(\theta_n)|<10^{-3}$.

Διάρκεια: 60 λεπτά Καλή επιτυχία!

ΗΛΕΚΤΡΟΝΙΚΟΙ ΥΠΟΛΟΓΙΣΤΕΣ ΙΙ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ

Θέματα Εξέτασης Εργαστηρίου Ιούνιος 2016

1. Υπολογίστε με 7 σημαντικά ψηφία το ολοκλήρωμα

$$\int_{-2}^{2} \frac{\cos x + \sin x}{\sqrt{1 - \left(\frac{x}{2}\right)^2}} dx .$$

Υπόδειξη: Δοκιμάστε διαφορετικό πλήθος σημείων μέχρι να μην αλλάζουν τα 7 πρώτα ψηφία.

2. Η εξίσωση κίνησης του εκκρεμούς είναι

$$\ddot{\theta} = -\sin\theta$$
,

όπου θ η γωνία ως προς την κάθετο. Με ποια γωνιακή ταχύτητα $\dot{\theta}_0$ πρέπει να εκτοξευτεί το εκκρεμές από τη θέση ευσταθούς ισορροπίας $(\theta=0)$, ώστε να φτάσει με ταχύτητα 0 σε γωνία 72° ;

Υπόδειξη: Δημιουργήστε σε κώδικα τη συνάρτηση $\dot{\theta}(\dot{\theta}_0)$ που επιλύει τη διαφορική εξίσωση για κάποιο $\dot{\theta}_0$ και υπολογίζει τη γωνιακή ταχύτητα στην επιθυμητή γωνία. Κατόπιν, βρείτε πού μηδενίζεται.

3. Ακριβείς κβαντομηχανικοί υπολογισμοί έδωσαν τις ακόλουθες τιμές για το δυναμικό V συναρτήσει της απόστασης r μεταξύ δύο μοριακών συστημάτων (για την ακρίβεια, των CO_2 και C_6H_6):

r (Å)	V (kcal/mol)	r (Å)	V (kcal/mol)
2.8	1.403	3.8	-2.304
3	-1.188	4	-1.988
3.2	-2.470	4.2	-1.668
3.4	-2.633	4.4	-1.374
3.6	-2.560	4.6	-1.117

Επιθυμούμε να προσεγγίσουμε το πραγματικό V(r) με το εμπειρικό δυναμικό Lennard–Jones:

$$V_{LJ} = \frac{A}{r^{12}} - \frac{B}{r^6} \ .$$

Εφαρμόστε με κατάλληλο τρόπο τη μέθοδο ελάχιστων τετραγώνων για να υπολογίσετε τους συντελεστές $A,\,B$ στο V_{LJ} .

Υπόδειξη: Να θέσετε $x=1/r^6$ και να προσαρμόσετε στα δεδομένα το πολυώνυμο $V(x)=Ax^2-Bx.$

Διάρκεια: 90 λεπτά Καλή επιτυχία!