# Архитектура трансформера, GPT, BERT

Артём Степанов



# Энкодер-декодер

#### Encoder-decoder на основе RNN



Модель состоит из двух частей: кодировщик (encoder) и декодировщик (decoder)

# Трансформер и его предпосылки

# Модель в идеальном мире

- effective
- efficient

# Проблемы RNN

- почему не effective- потеря информации
- почему не efficient- не параллелится

#### Transformer architecture



#### Аналогия со словарём в python:

```
egin{aligned} d &= \{k_1: v_1, k_2: v_2, \dots\} \ &	ext{importance}(q_i, k_j) \in [0, 1] \ h_i &= 0 \ &	ext{for } k_j, v_j 	ext{ in } d. \, items(): \ &	ext{} h_i + = 	ext{importance}(q_i, k_j) * v_j \end{aligned}
```

 $ilde{E} \in \mathbb{R}^{^{ exttt{m} imes exttt{d}}}$  — матрица эмбеддингов, n — длина последовательности, d — внутренняя размерность

Даны матрицы  $Q,K,V\in\mathbb{R}^{ exttt{d} imes exttt{d}}$ 

$$\widetilde{Q} = \widetilde{E} imes Q, \widetilde{K} = \widetilde{E} imes K, \widetilde{V} = \widetilde{E} imes V$$

Attention для i-ого токена будет считаться как:

$$h_i = \sum_{j=1}^n lpha_j * \widetilde{V_j}$$

$$lpha = softmax(\widetilde{K} imes \widetilde{Q_i^T}) \in \mathbb{R}^{ extsf{n}}$$

alpha- attention scores



Attention сразу для всей последовательности:

$$egin{aligned} lpha &= softmax(\widetilde{K} imes \widetilde{Q^T}) \in \mathbb{R}^{ exttt{m}} \ h_i &= \sum_{j=1}^n lpha_j * \widetilde{V_j} \end{aligned} \qquad egin{aligned} A &= softmax(\widetilde{K} imes \widetilde{Q^T}) \in \mathbb{R}^{ exttt{m} imes imes n} \ H &= A * \widetilde{V} \end{aligned}$$

Пусть содержимое векторов q,k- это н.с.в. с распределением  $\mathcal{N}(0,1)$ . Тогда:

$$\mathbb{E}(< q, k>) = \mathbb{E}(\sum_{j=1}^d q_j * k_j) = \sum_{j=1}^d \mathbb{E} q_j * \mathbb{E} k_j = 0$$

$$Var( < q, k >) = Var(\sum_{j=1}^d q_j * k_j) = \sum_{j=1}^d Var(q_j) * Var(k_j) = d$$

$$softmax(K imes Q^T) 
ightarrow softmax(rac{K imes Q^T}{\sqrt{d}})$$

| Layer Type     | Complexity per Layer | Sequential<br>Operations | Maximum Path Length |
|----------------|----------------------|--------------------------|---------------------|
| Self-Attention | $O(n^2 \cdot d)$     | O(1)                     | O(1)                |
| Recurrent      | $O(n \cdot d^2)$     | O(n)                     | O(n)                |



| Layer Type     | Complexity per Layer | Sequential<br>Operations | Maximum Path Length |
|----------------|----------------------|--------------------------|---------------------|
| Self-Attention | $O(n^2 \cdot d)$     | O(1)                     | O(1)                |
| Recurrent      | $O(n \cdot d^2)$     | O(n)                     | O(n)                |





#### Multi-head self-attention

Было:  $Q,K,V\in\mathbb{R}^{ exttt{d} imes exttt{d}}$ 

Стало: k матриц  $(Q_1,K_1,V_1),\ldots,(Q_k,K_k,V_k)$ . Каждая матрица  $\in \mathbb{R}^{ ext{d} imes rac{ ext{d}}{k}}$ 

 $MultiHeadAttention = [SelfAttention_1(x), SelfAttention_2(x), \ldots, SelfAttention_k(x)] * O, O \in \mathbb{R}^{ ext{d} imes ext{d}}$ 

# Positional encoding

Не хватает позиционной информации. Решение:

$$\widetilde{E} = E + PE$$

Для позиции роѕ имеем:

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{\text{model}}})$$

$$PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{\text{model}}})$$

# Positional encoding

Пример матрицы с позиционной информацией:



Картинка взята отсюда

#### Encoder block



Картинка взята отсюда

#### Decoder block



#### Decoder block

Отличие работы self-attention в энкодере и в декодере:



## **Attention mask**

Пример формирования attention mask для masked self-attention:

|         | Ī | am        | а         | student   |
|---------|---|-----------|-----------|-----------|
| Ī       | 0 | $-\infty$ | $-\infty$ | $-\infty$ |
| am      | 0 | 0         | $-\infty$ | $-\infty$ |
| а       | 0 | 0         | 0         | $-\infty$ |
| student | 0 | 0         | 0         | 0         |

#### Attention mask

Что происходит с маской дальше:

```
transformers / src / transformers / models / openai / modeling_openai.py
                 860 lines (725 loc) · 37.3 KB
 Code
          Blame
            class Attention(nn.Module):
   136
    158
                def prune heads(self, heads):
   172
               def _attn(self, q, k, v, attention_mask=None, head_mask=None, output_attentions=False):
   173 ~
                   w = torch.matmul(q, k)
   174
   175
                   if self.scale:
                       w = w / math.sqrt(v.size(-1))
   176
                   # w = w * self.bias + -1e9 * (1 - self.bias) # TF implementation method: mask_attn_weights
   177
                   # XD: self.b may be larger than w, so we need to crop it
   178
                   b = self.bias[:, :, : w.size(-2), : w.size(-1)]
   179
                   w = w * b + -1e4 * (1 - b)
   180
   181
                   if attention mask is not None:
   182
                       # Apply the attention mask
   183
                       w = w + attention_mask
... 184
```

#### Ссылка на исходный код

# Pretraining и fine-tuning

# Создаём модель под задачу

#### Обычно:

- собираем большую выборку под вашу задачу
- учим модель на этой выборке

# Создаём модель под задачу

Transfer learning: pretraining(self-supervised) → fine-tuning

Архитектура: декодер-блок трансформера



Картинка взята отсюда

Архитектура: декодер-блок трансформера



Картинка взята отсюда

#### Идея:

1. предобучаем декодер трансформера как языковую модель(generative pre-training)

$$L_1(\mathcal{U}) = \sum_{i} \log P(u_i|u_{i-k}, \dots, u_{i-1}; \Theta)$$

2. файнтюним языковую модель под свою задачу(supervised fine-tuning)

$$L_2(\mathcal{C}) = \sum_{(x,y)} \log P(y|x^1, \dots, x^m).$$

$$L_3(\mathcal{C}) = L_2(\mathcal{C}) + \lambda * L_1(\mathcal{C})$$

Архитектурный хак:

вставка LayerNorm внутрь residual connections



Архитектурный хак:

вставка LayerNorm внутрь residual connections. Эффекты:

- меньше гиперпараметров
- ускорение сходимости

#### Для PostLN нужен Ir-warmup



Картинка взята отсюда

Что получаем?

- получаем модель, которая справляется лучше доменно-специфичной модели, обученной на тонне размеченных данных
- одна модель под все задачи(при условии, что мы добавим один линейный слой)

Эволюция кол-ва параметров в языковых моделях

#### 15,000x increase in 5 years



Картинка взята отсюда

#### Без всякого файнтюнинга!

| Dataset                                                      | Metric                    | Our<br>result | Previous record | Human   |
|--------------------------------------------------------------|---------------------------|---------------|-----------------|---------|
| Winograd Schema Challenge                                    | accuracy (+)              | 70.70%        | 63.7%           | 92%+    |
| LAMBADA                                                      | accuracy (+)              | 63.24%        | 59.23%          | 95%+    |
| LAMBADA                                                      | perplexity (-)            | 8.6           | 99              | ~1-2    |
| Children's Book Test Common Nouns<br>(validation accuracy)   | accuracy (+)              | 93.30%        | 85.7%           | 96%     |
| Children's Book Test Named Entities<br>(validation accuracy) | accuracy (+)              | 89.05%        | 82.3%           | 92%     |
| Penn Tree Bank                                               | perplexity (-)            | 35.76         | 46.54           | unknown |
| WikiText-2                                                   | perplexity (-)            | 18.34         | 39.14           | unknown |
| enwik8                                                       | bits per<br>character (-) | 0.93          | 0.99            | unknown |
| text8                                                        | bits per<br>character (-) | 0.98          | 1.08            | unknown |
| WikiText-103                                                 | perplexity (-)            | 17.48         | 18.3            | unknown |

GPT-2 achieves state-of-the-art on Winograd Schema, LAMBADA, and other language modeling tasks.

Откуда берётся магия?

- Дискриминативная парадигма: мы моделируем p(y|x)
- Мультизадачная парадигма: мы моделируем p(y|x, task)

Как внедрить знание о задаче в модель?

Как внедрить знание о задаче в модель?

(translate from english to french <english text>)

(answer the question: <question>)

#### Методология работы с промтами:

- Few-shot learning- инструкция + 10-100 примеров
- One-shot learning- инструкция + 1 пример
- Zero-shot learning- инструкция

#### Это круто работает!



Картинка взята отсюда



Pre-training

#### Pretraining-задачи:

- Next Sentence Prediction(NSP)
- Masked Language Modelling(MLM)

#### Как маскируем токены в MLM

Из 15% токенов, выбранных для маскирования:

- В 80% случаев заменяем на токен [MASK]
- В 10% случаев заменяем на случайный токен
- В 10% случаев ничего не делаем

| Input                  | [CLS] my                           | dog is                           | cute              | [SEP]              | he              | likes              | play              | ##ing              | [SEP]              |
|------------------------|------------------------------------|----------------------------------|-------------------|--------------------|-----------------|--------------------|-------------------|--------------------|--------------------|
| Token<br>Embeddings    | E <sub>[CLS]</sub> E <sub>my</sub> | E <sub>dog</sub> E <sub>is</sub> | E <sub>cute</sub> | E <sub>[SEP]</sub> | E <sub>he</sub> | E <sub>likes</sub> | E <sub>play</sub> | E <sub>##ing</sub> | E <sub>[SEP]</sub> |
|                        | + +                                | + +                              | +                 | +                  | +               | +                  | +                 | +                  | +                  |
| Segment<br>Embeddings  | E <sub>A</sub> E <sub>A</sub>      | E <sub>A</sub> E <sub>A</sub>    | E <sub>A</sub>    | E <sub>A</sub>     | E <sub>B</sub>  | E <sub>B</sub>     | E <sub>B</sub>    | E <sub>B</sub>     | E <sub>B</sub>     |
|                        | + +                                | + +                              | +                 | +                  | +               | +                  | +                 | +                  | +                  |
| Position<br>Embeddings | $E_0$ $E_1$                        | $E_2$ $E_3$                      | E <sub>4</sub>    | E <sub>5</sub>     | E <sub>6</sub>  | E <sub>7</sub>     | E <sub>8</sub>    | E <sub>9</sub>     | E <sub>10</sub>    |

# Making transformers go brrr with mixed-precision



Пример с tensor cores и tf32:



$$A \times B + C$$





Алгоритм обучения в формате mixed-precision

на каждой итерации:

- a. делаем forward pass
- b. умножаем лосс на S, считаем градиенты
- с. получившиеся градиенты умножаем на 1/S
- d. обновляем веса

#### Динамический подбор множителя

- Гиперпараметры:
  - S- стартовый множитель
  - К- число итераций
- На текущей итерации:
  - Если последние К итераций при подсчёте градиентов не было underflow/overflow,
     увеличиваем S
  - Иначе не обновляем веса и уменьшаем S

Не ко всем операциям применим переход в формат с более низкой точностью. Примеры:

- softmax
- статистики для batchnorm

# Спасибо за внимание!