Full Custom Inverter Layout Satya Raviteja Erpina, Haranadh Chintapalli, Soma Sai Charitha Group Number - 5

Date - 2/24/2017

Introduction and Physical Properties

Cell Description

CMOS is referred as complementary-symmetry metal oxide semiconductor. The inverter is universally accepted as the most basic logic gate doing a Boolean function on a single input variable. The simple structure consists of a p-mos at the top and n-mos transistor at the bottom. A pair of complementary and symmetrical p-type and n-type metal oxide semiconductor field effect transistor is used for performing logic functions. CMOS devices are high noise immunity and low static power consumption. The Boolean equation is as shown below:

$$Q = \sim A$$

Where Q is output and A is input

CELL SYMBOL:

Cell Truth Table:

Truth table of the inverter is as shown below. We can observe that the output of the inverter is reverse of those respective inputs.

Logic function is no different than that of Inverter, i.e.,

$$Q = \sim A$$

Where Q is output and A is input.

Input	Output
0	Н
1	L

Table 1: Inverter full custom truth table.

Input and Output Parasitic Capacitance Table

From the schematic calculate each input's capacitance normalized to the nominal inverter (your inverter standard cell) by the width of the transistor or drain area as needed. This entry should be an integer fraction similar to Weste and Harris. [Note the normalization is to a standard inverter (the standard cell inverter INV1X). Repeat the rows as needed.]

Computed Cell Input Capacitance				
Input Name Capacitance (/Cinv)				
0 1 1 N				
Output Name	Capacitance (/Cinv)			

Performance Analysis

Rise and Fall Times

[Note: It is highly desirable to split the simulation work load among the team members so that each team member learns how to use the tools.]

FOx denotes output loads. The loads are defined by the number of identical logic gates. Use 20%-80% swings for the output rise and fall entries. Use a 1.2V power supply.

For each output load in the table complete transient simulations. Remember to include a CMOS non-inverting buffer between the ideal voltage source and the logic gate driving the FOx load. Note rise $t_{\rm r}$ / fall $t_{\rm f}$ times are at the input to the logic gate driving the load, **not** the rise/fall times for the input ideal voltage source.

Complete the number needed copies (copies = No. input stacks x No. outputs) of the table below.

For multi-input gates, complete tables for each transistor stack (i.e. each branch connected to the output) using the stack's worst case single controlling input transition in the stack. Label the tables with worst case input in each stack and the output. Replace **X** below with the signal name.

Input X: Output Rise Time Data t _r (ns)					
Input rise/fall	Input rise/fall Output Load (FOx)				
time (ns)	0	1	2	4	8
0.04					
0.06					

Stack Input Combination: Replace with Boolean Product

Stack S, Input X: Output Fall Time Data t _f (ns)					
Input rise/fall	Output Load (FOx)				
time (ns)	0	1	2	4	8
0.04					
0.06					

Stack Input Combination: Replace with Boolean Product

Propagation Delays

For the range of output loads shown in the table simulate propagation delays (low to high t_{plh} and high to low t_{phl}) for the stack's worst case single controlling input transition. The input controlling the output is the same input reported in the rise and fall time section. Use a 1.2V power supply and timing measurements start when input to the logic gate driving the FOx load crosses the 50% of the rail and stop when the logic gate driving output crosses 50% of the rail. Negative values are entered as 0.

Label the tables with the Boolean product (e.g. AB) of the transistor stack and the output. Complete copies of the table below for each branch connected to the output.

Data Worst Case Low to High Propagation Delay Data t _{plh} (ns)					
Input rise/fall	Output Load (FOx)				
time (ns)	0	1	2	4	8
0.04					
0.06					

Worse Case Input Combination: Replace with Boolean Product

Data Worst Case High to Low Propagation Delay Data t _{phl} (ns)					
Input rise/fall	Output Load (FOx)				
time (ns)	0	1	2	4	8
0.04					
0.06					

Worse Case Input Combination: Replace with Boolean Product

From each row of the slew rate data compute the best fit linear propagation delay equation for low-to-high T_{plh} (h) and high-to-low T_{phl} (h). The model predicts a delay, in nanoseconds, as a function of the output load, h, Cout/Cin = FOx. The model line is parameterized by a slope, m, and an intercept, b. The units of m are (ns/FOx) and the units of b are ns.

Complete the table below by increasing the number of rows for multiple input gates. The row labeled **All data** is the computed slope and intercept after combining data from all slew rates.

Complete the **Model** row for the gate using the assumptions and methods of the linear delay model from Weste and Harris. Only skewed standard cells will have different values propagation models for rising and falling inputs.

All data means combine the results for both slew rates into a single model.

Discuss in your own words the differences in the calibration and the Weste Harris linear delay model. Discuss the differences in high-to-low versus low-to-high models.

Data Model Propagation Delay Equation $T_{pd}(h) = b + m \cdot h$						
Input Slew	Rising Logical	Falling Logical	Parasitic	Parasitic		
Rate (ns)	Effort (m _r)	Effort (mf)	Rising Delay (br)	Falling Delay		
(b _r)						
0.04						
0.06						
All data						

In the table below normalize the model for the T_{pd} (h) results of the table above to give the logical effort model D(h) described in Weste and Harris. D(h) is a unitless value and predicts the delay as multiples of the standard inverter delay. Normalization is based on the observed CMOS inverter parasitic delay, b_{inv} . *Recall all data* $p_{inv} \square 1$.

Inverte	Inverter Normalized Data Model Propagation Delay Equation						
	$D(h) = p + g \cdot h$						
			Parasitic	Parasitic			
Input Slew	Rising Logical)	Falling Logical	Rising Delay	Falling Delay			
Rate (ns)	Effort (gr	Effort (g _f)	(p_r)	(p_r)			
0.04							
0.06							
All data							
W&H							
Model							

Power-Delay

Simulate the cell for a sequence of input combinations based on the Gray code and compute the time averaged power (mW), average delay (ns), and average powerdelay product (mW ns = pJ). The Gray code restricts the simulations to single input transitions and ignores the large number of multiple input change combinations. Use the same slew rate for all input transitions. Use equal output loads for multiple output gates. Use a period of 2X maximum output delay with FO=8.

Average Power Data (mW)						
Input Slew Output Load (FOx)						
(ns)	0 1 2 4 8					
0.04						
0.06						

verage Delay Data (ns)					
Input Slew Output Load (FOx)					
(ns)	0	1	2	4	8
0.04					
0.06					

Average Power-Delay Data (pJ)						
Input Slew Output Load (FOx)						
(ns)	0	1	2	4	8	
0.04						
0.06						

Schematic Diagram

Figure 1: Schematic diagram of Full custom Inverter

Transistor Dimensions

Save a color or black and white layout of the cell in EPS (i.e. Encapsulated Postscript) format. The cell dimensions are saved in both lambda (\square) and microns (\square m). Record the transistor length and width dimensions (nm). [Repeat the transistor row as needed.]

Cell Physical Dimensions						
X Y						
Cell Dimension in □□						
Cell Dimension in □m						

Transistor Dimensions					
UNIT Name	Length (nm)	Width (nm)			
NMOS N1	50	90			
PMOS P0	50	135			

Table 2: Inverter Transistor Dimensions

Cell Layout

Figure 2: Layout diagram of Full custom Inverter

DRC Report

```
=== CALIBRE::DRC-F SUMMARY REPORT
Execution Date/Time: Wed Feb 22 21:20:43 2017
Calibre Version:
                           v2013.2 35.25 Wed Jul 3 15:43:57 PDT 2013
Rule File Pathname:
                           /u/erpina/cadence/DRC-files/_calibreDRC.rul_
Rule File Title:
                           GDS
Layout System:
Layout System.

Layout Path(s): Inverter.calibre.db

Layout Primary Cell: Inverter

Current Directory: /u/erpina/cadence/DRC-files
erpina
Maximum Results/RuleCheck: 1000
Maximum Result Vertices: 4096
DRC Results Database: Inverter.drc.results (ASCII)
Layout Depth: ALL
Text Depth:
                            PRIMARY
Summary Report File: Inverter.drc.summary (REPLACE)

Geometry Flagging: ACUTE = NO SKEW = NO ANGLED = NO OFFGRID = NO NONSIMPLE POLYCON = NO NONSIMPLE PARTY = NO
                           NONSIMPLE POLYGON = NO NONSIMPLE PATH = NO
Excluded Cells:
CheckText Mapping: COMMENT TEXT + RULE FILE INFORMATION Layers: MEMORY-BASED
Keep Empty Checks: YES
______
--- RUNTIME WARNINGS
--- ORIGINAL LAYER STATISTICS
LAYER pwell ..... TOTAL Original Geometry Count = 3
LAYER nwell ..... TOTAL Original Geometry Count = 3
LAYER active ..... TOTAL Original Geometry Count = 16
LAYER poly ...... TOTAL Original Geometry Count = 9
LAYER pimplant ... TOTAL Original Geometry Count = 2
LAYER nimplant ... TOTAL Original Geometry Count = 2
LAYER vth ...... TOTAL Original Geometry Count = 0
LAYER vtg ...... TOTAL Original Geometry Count = 0
LAYER metal1 ..... TOTAL Original Geometry Count = 12
LAYER metal2 ..... TOTAL Original Geometry Count = 0
```

```
LAYER metal3 .... TOTAL Original Geometry Count = 0
LAYER metal4 .... TOTAL Original Geometry Count = 0
LAYER metal5 ..... TOTAL Original Geometry Count = 0
LAYER metal6 .... TOTAL Original Geometry Count = 0
LAYER metal7 .... TOTAL Original Geometry Count = 0
LAYER metal8 .... TOTAL Original Geometry Count = 0
LAYER metal9 .... TOTAL Original Geometry Count = 0
LAYER metal10 .... TOTAL Original Geometry Count = 0
LAYER contact .... TOTAL Original Geometry Count = 7
LAYER via1 ..... TOTAL Original Geometry Count = 0
LAYER via2 ..... TOTAL Original Geometry Count = 0
LAYER via3 ..... TOTAL Original Geometry Count = 0
LAYER via4 ..... TOTAL Original Geometry Count = 0
LAYER via5 ..... TOTAL Original Geometry Count = 0
LAYER via6 ..... TOTAL Original Geometry Count = 0
LAYER via7 ..... TOTAL Original Geometry Count = 0
LAYER via8 ..... TOTAL Original Geometry Count = 0
LAYER via9 ...... TOTAL Original Geometry Count = 0
______
--- RULECHECK RESULTS STATISTICS
RULECHECK Well.1 ..... TOTAL Result Count = 0
RULECHECK Well.2 ..... TOTAL Result Count = 0
RULECHECK Well.4 ..... TOTAL Result Count = 0
RULECHECK Poly.1 ..... TOTAL Result Count = 0
RULECHECK Poly.2 ..... TOTAL Result Count = 0
RULECHECK Poly.3 ..... TOTAL Result Count = 0
RULECHECK Poly.4 ..... TOTAL Result Count = 0
RULECHECK Poly.5 ..... TOTAL Result Count = 0
RULECHECK Poly.6 ..... TOTAL Result Count = 0
RULECHECK Active.1 .... TOTAL Result Count = 0
RULECHECK Active.2 .... TOTAL Result Count = 0
RULECHECK Active.3 .... TOTAL Result Count = 0
RULECHECK Active.4 .... TOTAL Result Count = 0
RULECHECK Implant.1 ... TOTAL Result Count = 0
RULECHECK Implant.2 ... TOTAL Result Count = 0
RULECHECK Implant.3 ... TOTAL Result Count = 0
RULECHECK Implant.4 ... TOTAL Result Count = 0
RULECHECK Implant.6 ... TOTAL Result Count = 0
RULECHECK Contact.1 ... TOTAL Result Count = 0
RULECHECK Contact.2 ... TOTAL Result Count = 0
RULECHECK Contact.3 ... TOTAL Result Count = 0
RULECHECK Contact.4 ... TOTAL Result Count = 0
RULECHECK Contact.5 ... TOTAL Result Count = 0
RULECHECK Contact.6 ... TOTAL Result Count = 0
RULECHECK Metal1.1 .... TOTAL Result Count = 0
RULECHECK Metal1.2 .... TOTAL Result Count = 0
RULECHECK Metal1.3 .... TOTAL Result Count = 0
RULECHECK Metal1.4 .... TOTAL Result Count = 0
RULECHECK Via1.1 ..... TOTAL Result Count = 0
RULECHECK Via1.2 ..... TOTAL Result Count = 0
RULECHECK Via1.3 ..... TOTAL Result Count = 0
RULECHECK Via1.4 ..... TOTAL Result Count = 0
```

RULECHECK	Metal2.1	TOTAL	Result	Count	=	0
RULECHECK		-	Result	Count	=	0
RULECHECK	Metal2.3	TOTAL	Result	Count	=	0
RULECHECK	Metal2.4	TOTAL	Result	Count	=	0
RULECHECK	Via2.1	TOTAL	Result	Count	=	0
RULECHECK	Via2.2	TOTAL	Result	Count	=	0
RULECHECK	Via2.3	TOTAL	Result	Count	=	0
RULECHECK	Via2.4	TOTAL	Result	Count	=	0
RULECHECK	Metal3.1	TOTAL	Result	Count	=	0
RULECHECK	Metal3.2	TOTAL	Result	Count	=	0
RULECHECK	Metal3.3	TOTAL	Result	Count	=	0
RULECHECK		TOTAL	Result	Count	=	0
RULECHECK		TOTAL	Result	Count	=	0
RULECHECK		-	Result		=	0
RULECHECK		-	Result		=	0
RULECHECK		-	Result		=	0
RULECHECK		TOTAL	Result		=	0
RULECHECK		_	Result		_	0
RULECHECK		TOTAL	Result		_	0
RULECHECK		TOTAL	Result		=	0
RULECHECK		TOTAL	Result		=	0
RULECHECK		TOTAL	Result			0
		-			=	-
RULECHECK		TOTAL	Result		=	0
	Metal5.1	TOTAL	Result		=	0
RULECHECK		TOTAL	Result		=	0
RULECHECK		TOTAL	Result		=	0
RULECHECK		TOTAL	Result		=	0
RULECHECK		TOTAL	Result		=	0
RULECHECK		TOTAL	Result		=	0
RULECHECK		TOTAL	Result	Count	=	0
RULECHECK	Metal6.1	TOTAL	Result	Count	=	0
RULECHECK		TOTAL	Result	Count	=	0
RULECHECK	Metal6.3	TOTAL	Result	Count	=	0
RULECHECK	Via6.1	TOTAL	Result	Count	=	0
RULECHECK	Via6.2	TOTAL	Result	Count	=	0
RULECHECK	Via6.3	TOTAL	Result	Count	=	0
RULECHECK	Via6.4	TOTAL	Result	Count	=	0
RULECHECK	Metal7.1	TOTAL	Result	Count	=	0
RULECHECK	Metal7.2	TOTAL	Result	Count	=	0
RULECHECK	Metal7.3	TOTAL	Result	Count	=	0
RULECHECK	Via7.1	TOTAL	Result	Count	=	0
RULECHECK	Via7.2	TOTAL	Result	Count	=	0
RULECHECK			Result			0
RULECHECK			Result			0
	Metal8.1		Result			0
	Metal8.2		Result			0
	Metal8.3		Result			0
RULECHECK			Result			0
RULECHECK			Result			0
RULECHECK			Result			0
RULECHECK			Result			0
	Metal9.1					0
			Result			-
	Metal9.2		Result			0
KULECHECK	Meta19.3	TOTAL	Result	Count	=	0

RULECHECK	Via9.1	TOTAL	Result	Count	=	0
RULECHECK	Via9.2	TOTAL	Result	Count	=	0
RULECHECK	Via9.3	TOTAL	Result	Count	=	0
RULECHECK	Via9.4	TOTAL	Result	Count	=	0
RULECHECK	Metal10.1	TOTAL	Result	Count	=	0
RULECHECK	Metal10.2	TOTAL	Result	Count	=	0
RULECHECK	Metal10.3	TOTAL	Result	Count	=	0
RULECHECK	Metal1.5	TOTAL	Result	Count	=	0
RULECHECK	Metal1.6	TOTAL	Result	Count	=	0
RULECHECK	Metal1.7	TOTAL	Result	Count	=	0
RULECHECK	Metal1.8	TOTAL	Result	Count	=	0
RULECHECK	Metal1.9	TOTAL	Result	Count	=	0
RULECHECK	Metal2.5	TOTAL	Result	Count	=	0
RULECHECK	Metal2.6	TOTAL	Result	Count	=	0
RULECHECK	Metal2.7	TOTAL	Result	Count	=	0
RULECHECK	Metal2.8	TOTAL	Result	Count	=	0
RULECHECK	Metal2.9	TOTAL	Result	Count	=	0
RULECHECK	Metal3.5	TOTAL	Result	Count	=	0
RULECHECK	Metal3.6	TOTAL	Result	Count	=	0
RULECHECK	Metal3.7	TOTAL	Result	Count	=	0
RULECHECK	Metal3.8	TOTAL	Result	Count	=	0
RULECHECK	Metal3.9	TOTAL	Result	Count	=	0
RULECHECK	Metal4.5	TOTAL	Result	Count	=	0
RULECHECK	Metal4.6	TOTAL	Result	Count	=	0
RULECHECK	Metal4.7	TOTAL	Result	Count	=	0
RULECHECK	Metal4.8	TOTAL	Result	Count	=	0
RULECHECK	Metal5.5	TOTAL	Result	Count	=	0
RULECHECK	Metal5.6	TOTAL	Result	Count	=	0
RULECHECK	Metal5.7	TOTAL	Result	Count	=	0
RULECHECK	Metal5.8	TOTAL	Result	Count	=	0
RULECHECK	Metal6.5	TOTAL	Result	Count	=	0
RULECHECK	Metal6.6	TOTAL	Result	Count	=	0
RULECHECK	Metal6.7	TOTAL	Result	Count	=	0
RULECHECK	Metal6.8	TOTAL	Result	Count	=	0
RULECHECK	Metal7.5	TOTAL	Result	Count	=	0
RULECHECK	Metal7.6	TOTAL	Result	Count	=	0
RULECHECK	Metal7.7	TOTAL	Result	Count	=	0
RULECHECK	Metal8.5	TOTAL	Result	Count	=	0
RULECHECK	Metal8.6	TOTAL	Result	Count	=	0
RULECHECK	Metal8.7	TOTAL	Result	Count	=	0
RULECHECK	Metal9.5	TOTAL	Result	Count	=	0
RULECHECK	Metal9.6	TOTAL	Result	Count	=	0
RULECHECK	Metal10.5	TOTAL	Result	Count	=	0
RULECHECK	Metal10.6	TOTAL	Result	Count	=	0
RULECHECK	Grid.1	TOTAL	Result	Count	=	0
RULECHECK	Grid.2	TOTAL	Result	Count	=	0
RULECHECK	Grid.3	TOTAL	Result	Count	=	0
RULECHECK	Grid.4	TOTAL	Result	Count	=	0
RULECHECK	Grid.5		Result			0
RULECHECK	Grid.6	TOTAL	Result	Count	=	0
RULECHECK	Grid.7	TOTAL	Result	Count	=	0
RULECHECK	Grid.8		Result			0
RULECHECK		TOTAL	Result	Count	=	0
RULECHECK	Grid.10	TOTAL	Result	Count	=	0

```
RULECHECK Grid.11 .... TOTAL Result Count = 0
RULECHECK Grid.12 ..... TOTAL Result Count = 0
RULECHECK Grid.13 .... TOTAL Result Count = 0
RULECHECK Grid.14 .... TOTAL Result Count = 0
RULECHECK Grid.15 ..... TOTAL Result Count = 0
RULECHECK Grid.16 .... TOTAL Result Count = 0
RULECHECK Grid.17 .... TOTAL Result Count = 0
RULECHECK Grid.18 ..... TOTAL Result Count = 0
RULECHECK Grid.19 ..... TOTAL Result Count = 0
RULECHECK Grid.20 .... TOTAL Result Count = 0
RULECHECK Grid.21 ..... TOTAL Result Count = 0
RULECHECK Grid.22 ..... TOTAL Result Count = 0
RULECHECK Grid.23 .... TOTAL Result Count = 0
RULECHECK Grid.24 .... TOTAL Result Count = 0
RULECHECK Grid.25 .... TOTAL Result Count = 0
RULECHECK Grid.26 .... TOTAL Result Count = 0
_____
--- SUMMARY
TOTAL CPU Time:
                               0
TOTAL REAL Time:
TOTAL Original Layer Geometries: 54
TOTAL DRC RuleChecks Executed: 156
TOTAL DRC Results Generated:
```

LVS Report

```
REPORT FILE NAME: Inverter.lvs.report
LAYOUT NAME: Inverter.calibre.db

SOURCE NAME: /u/erpina/cadence/LVS-files/Inverter.src.net
('Inverter')
RULE FILE: /u/erpina/cadence/LVS-files/_calibreLVS.rul_
RULE FILE TITLE: LVS Rule File for FreePDK45
LVS MODE: Mask
RULE FILE NAME: /u/erpina/cadence/LVS-files/_calibreLVS.rul_
CREATION TIME: Wed Feb 22 21:21:43 2017
CURRENT DIRECTORY: /u/erpina/cadence/LVS-files
USER NAME: erpina
CALIBRE VERSION: v2013.2 35.25 Wed Jul 3 15:43:57 PDT 2013
```

*****************			*******	*******
		0.	VERALL COMPARISON RESULTS	
			* * * * * * * * * * * * * * * * * * * *	******
*****	*****	****		
		#	##################	
		#	# #	* *
	# #		# CORRECT #	I
	# #		# #	\/
	#		###############	
NUMBERS OF OBJ	ECTS			
	Layout	Source	Component Type	
Nets:	4	4		
	4	4	(4)	
Instances:	1	1	mn (4 pins)	
	1		mp (4 pins)	
Total Inst:	2	2		
*****			********	******
* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * *	LVS PARAMETERS	
*****	*****	*****	**************************************	******
*****	*****	****		
o LVS Setup:				
TIC COMPONE	NIII IIIVDE DD	ODEDEA	element	
LVS COMPONE LVS COMPONE				
// LVS PIN			1 mode1	
LVS POWER N			"VDD"	
LVS GROUND			"VSS" "GROUND"	
LVS CELL SU			NO	
LVS RECOGNI			ALL	
LVS IGNORE			YES	
LVS CHECK P		VED 5.5	NO	
LVS IGNORE				
LVS BUILTIN	DEVICE PI.	N SWAP	YES	

LVS ALL CAPACITOR PINS SWAPPABLE	NO
LVS ALL CAPACITOR PINS SWAPPABLE LVS DISCARD PINS BY DEVICE LVS SOFT SUBSTRATE PINS LVS INJECT LOGIC LVS EXPAND UNBALANCED CELLS LVS FLATTEN INSIDE CELL LVS EXPAND SEED PROMOTIONS LVS PRESERVE PARAMETERIZED CELLS LVS GLOBALS ARE PORTS LVS REVERSE WL LVS SPICE PREFER PINS LVS SPICE ALLOW INLINE PARAMETERS	NO
LVS SOFT SUBSTRATE PINS	NO
LVS INJECT LOGIC	YES
LVS EXPAND UNBALANCED CELLS	YES
LVS FLATTEN INSIDE CELL	NO
LVS EXPAND SEED PROMOTIONS	NO
LVS PRESERVE PARAMETERIZED CELLS	NO
LVS GLOBALS ARE PORTS	YES
LVS REVERSE WL	NO
LVS SPICE PREFER PINS	NO
LVS SPICE SLASH IS SPACE	YES
LVS SPICE ALLOW FLOATING PINS	YES
// LVS SPICE ALLOW INLINE PARAMETERS	
LVS SPICE ALLOW UNQUOTED STRINGS	NO
THE CRICE CONDITIONAL IDD	110
LVS SPICE CULL PRIMITIVE SUBCIRCUITS	NO
LVS SPICE IMPLIED MOS AREA	NO
// LVS SPICE MULTIPLIER NAME	
LVS SPICE OVERRIDE GLOBALS	NO
LVS SPICE REDEFINE PARAM	NO
LVS SPICE REPLICATE DEVICES	NO
LVS SPICE CONDITIONAL LDD LVS SPICE CULL PRIMITIVE SUBCIRCUITS LVS SPICE IMPLIED MOS AREA // LVS SPICE MULTIPLIER NAME LVS SPICE OVERRIDE GLOBALS LVS SPICE REDEFINE PARAM LVS SPICE REPLICATE DEVICES LVS SPICE SCALE X PARAMETERS LVS SPICE STRICT WL // LVS SPICE OPTION LVS STRICT SUBTYPES LVS EXACT SUBTYPES LAYOUT CASE SOURCE CASE LVS COMPARE CASE LVS DOWNCASE DEVICE LVS REPORT MAXIMUM LVS PROPERTY RESOLUTION MAXIMUM	NO
LVS SPICE STRICT WL	NO
// LVS SPICE OPTION	
LVS STRICT SUBTYPES	NO
LVS EXACT SUBTYPES	NO
LAYOUT CASE	NO
SOURCE CASE	NO
LVS COMPARE CASE	NO
LVS DOWNCASE DEVICE	NO
LVS REPORT MAXIMUM	50
LVS PROPERTY RESOLUTION MAXIMUM	32
// LVS SIGNATURE MAXIMUM	
// LVS FILTER UNUSED OPTION	
// LVS FILTER UNUSED OPTION // LVS REPORT OPTION LVS REPORT UNITS	
LVS REPORT UNITS	YES
// LVS NON USER NAME PORT	
// LVS NON USER NAME NET	
// LVS NON USER NAME INSTANCE	
// Reduction	
THE PERIOR SERVES WAS	VEC
LVS REDUCE SERIES MOS	YES
LVS REDUCE PARALLEL MOS	YES
LVS REDUCE SEMI SERIES MOS	YES
LVS REDUCE SPLIT GATES	YES
LVS REDUCE PARALLEL BIPOLAR	YES
LVS REDUCE SERIES CAPACITORS	YES
LVS REDUCE PARALLEL CAPACITORS	YES
LVS REDUCE SERIES RESISTORS	YES
LVS REDUCE PARALLEL RESISTORS	YES
LVS REDUCE PARALLEL DIODES	YES
LVS REDUCTION PRIORITY	PARALLEL

```
LVS SHORT EQUIVALENT NODES
                                   NO
  // Trace Property
  TRACE PROPERTY mn(nmos vtl) 1 1 4e-09 ABSOLUTE
  TRACE PROPERTY mn(nmos vtl) w w 4e-09 ABSOLUTE
  TRACE PROPERTY mp (pmos vtl) 1 1 4e-09 ABSOLUTE
  TRACE PROPERTY mp (pmos vtl) w w 4e-09 ABSOLUTE
  TRACE PROPERTY mn(nmos_vth) 1 1 4e-09 ABSOLUTE
  TRACE PROPERTY mn(nmos vth) w w 4e-09 ABSOLUTE
  TRACE PROPERTY mp (pmos vth) 1 1 4e-09 ABSOLUTE
  TRACE PROPERTY mp (pmos vth) w w 4e-09 ABSOLUTE
  TRACE PROPERTY mn (nmos vtg) 1 1 4e-09 ABSOLUTE
  TRACE PROPERTY mn(nmos vtg) w w 4e-09 ABSOLUTE
  TRACE PROPERTY mp (pmos vtg) 1 1 4e-09 ABSOLUTE
  TRACE PROPERTY mp(pmos_vtg) w w 4e-09 ABSOLUTE TRACE PROPERTY mn(nmos_thkox) l 1 4e-09 ABSOLUTE
  TRACE PROPERTY mn(nmos thkox) w w 4e-09 ABSOLUTE
  TRACE PROPERTY mp (pmos thkox) 1 1 4e-09 ABSOLUTE
  TRACE PROPERTY mp (pmos thkox) w w 4e-09 ABSOLUTE
*******************
                         INFORMATION AND WARNINGS
*******************
              MatchedMatchedUnmatchedUnmatchedComponentLayoutSourceLayoutSourceType------------------
                 4
                            4
                                       0
  Nets:
                                                  Ω
                   1
                            1
                                       0
                                                  0
                                                       mn (NMOS VTL)
  Instances:
                           1
                                       0
                                                  0
                                                       mp (PMOS VTL)
                   1
                        -----
                                 -----
  Total Inst:
                                       0
o Initial Correspondence Points:
             gnd! vdd! A Y
  Nets:
******************
                                  SUMMARY
******************
Total CPU Time: 0 sec
```

Total Elapsed Time: 0 sec