

2018 인하대 K-MOOC 강의 교재

인류의 그림자, 에너지 바로알기

신 현돈 교수 (<u>hyundon.shin@inha.ac.kr</u>)

인하대학교 에너지자원공학과

2018

4: 석유의 탐사와 개발

4-1: 땅속의 석유를 어떻게 찾을까?

석유의 생성과 이동

■ 근원암에서 생성(Generation) - 저류암으로 이동 (Migration)

석유저류층 (Petroleum Reservoir)

Key requirements

- Trap
- Cap rock
- Permeable media
 - Oil, gas, water

석유의 부존과 지구

EON	ERA	PERIOD		EPOCH	MYA
PHANEROZOIC	CENOZOIC	QUATERNARY		RECENT	0.01 ← ICE AGE ENDS
				PLEISTOCENE	1.6 ← ICE AGE BEGINS
		TERTIARY	NEOGENE	PLIOCENE	EARLIEST HUMANS
				MIOCENE	-23.7
			PALEOGENE	OLIGOCENE	36.6
				EOCENE	← FORMATION OF
				PALEOCENE	57.8 HIMALAYAS
				FALEOCENE	66 ← DINOSAUR
	MESOZOIC	JURASSIC TRIASSIC		144 ←	EXTINCTION ROCKY MTS.
					FORMED
				208 ←	FIRST MAMMALS
				245	PANGEA BREAK UP FIRST DINOSAURS
	PALEOZOIC	PERMIAN PENNSYLVANIAN MISSISSIPPIAN DEVONIAN SILURIAN ORDOVICIAN		286	
				320 ←	FIRST REPTILES
				360 ←	FIRST ANPHIBIANS
				408	
				438 ←	FIRST LAND PLANTS
				505 ←	FIRST FISH
		CAMBRIAN	4	570	
BRIAN	PROTEZOIC EON			+	EARLIEST SHELLED ANIMALS
PRECAMBRIAN	ARCHEAN EON			2500 ← 3800	EARLIEST FOSSIL RECORDED OF LIFE
				4600	

아프리카와 브라질

4-2: 석유가 숨어있는 집 찾기

유전 개발 싸이클 (Oil field life cycle)

- 1. 저류층 구조 확인
- 2. 시추위치 결정
- 3. 탐사정 시추
- 4. 저류층 평가
- 5. 평가정 시추
- 6. 개발계획
- 7. 생산
- 8. 폐공

저류층 구조확인 (Trap)

■ 탄성파탐사(Seismic survey) — 자료처리(processing) — 자료해석(interpretation)

시추위치 (Drilling location)

Luck does play a role!
Same trap, but...Oil or Dry

탐사시추

■ 시추(Drilling) -케이싱(Casing) - 시멘팅(Cementing)

시추 시스템

Power system, Hoisting system, Rotating system,
 BOP system, Circulation system

시추액 순환 시스템

다양한 시추방법

Vertical, Horizontal, Directional Drilling

시추 유형 결정

■ 저류층 형태와 경제성에 따라 결정

다양한 시추 장비

■ 드릴비트(Drill bit), 시추파이프(Drill string), 케이싱(Casing), 방폭장치(BOP)

4-3: 석유가 집에 있는지 확인하기

물리 검층 (Well logging)

 To get reservoir parameters: pay thickness, porosity, oil saturation for OIIP calculation

OIIP =
$$GRV*(N/G)*\phi*S_{oil}*(1/B_{oil})$$

Logging during/after the drilling job

물리 검층 (Well logging) 원리

- OIIP = $A*h*(N/G)*\phi*S_{oil}*(1/B_{oil})$
 - ▶ h: 암상(사암층 구별)
 - ▶ φ: 공극률 계산 (암석의 밀도차 이용)
 - > Soil: 오일포화도 (오일과 물의 전기 비저항차 이용)

4-4: 얼마나 큰 규모로 존재하는지 계산하기

자원량(Oil Initial In-Place, OIIP)

- 자원량: 지하 저류층의 공극에 존재하는 탄화수소의 총량
- OIIP = GRV*(N/G)* ϕ *S_{oil}*(1/B_{oil})
- 회수가능 OIIP = OIIP * RF
 - GRV (Gross Rock Volume) = Area * Thickness
 - > N/G: Net to Gross of pay thickness
 - Φ = 공극율(porosity)
 - ▶ S_{oil}= 오일포화도(oil saturation)
 - ▶ B_{oil}=오일체적계수
 - ▶ RF = 회수율 (Recovery Factor)
 - ✓ Oil: 20~60% (ave. 35%)
 - ✓ Gas: 40~ 90%

자원량 및 매장량 계산

총 암석부피

(Gross Rock Volume)

매장량= 면적 x 두께 x 공극률 x 오일포화도 x 회수율

총 탄화수소 부피 (Gross Hydrocarbon Pore Volume)

석유 매장량 분류

매장량 변화 경향

E&P 사업의 투자회수 특징

Figure: Impact of information technology on E&P life cycle cash flow.

Source: The Digital Oil Field - Oil & Gas Investor, Apr 2004

4-5: 얼마나 지상으로 끌어올릴 수 있을까?

석유 유체의 특성

- 다양한 종류의 원유
- 연료 (>70%)와 석유 화학(<20%)

	Gullfaks (Norway)	Alaska N.S. (US)	E. Tex. Med. (US)	Maya (Mexico)	Athabasca (Canada)			
Density: Sulfur:	LighterHeavier Less SourMore Sour							
Gravity, °API	37	31	27	22	8			
lbs/bbl	295	305	312	322	355			
Specific gravity	0.84	0.87	0.89	0.92	1.01			
Sulfur, wt%	0.3	1.0	2.2	3.5	>4			
Nitrogen, ppmu	716	1,600	1,015	3,600	>4,000			
Total acid number (TAN)	0.1	0.1	0.1	0.3	>2.5			
Cut ranges, vol%								
Naphtha, <330°F	23	23	13	17	1			
Kerosine, 330–480°F	17	12	13	12	1			
Diesel, 480-650°F	18	16	17	9	8			
VG0, 650-975°F	28	28	21	27	34			
Residue 975°F plus	12	19	26	33	56			
Other quality measures Jet range smoke pt, mm Diesel range cetane no. Gasoil aniline pt., °F	20 48 194	21 42 169	23 50 178	22 49 168	N/A <30 122			

좋은 원유란?

- 휘발유 성분이 많음: 경질유
- 분순물이 적음: Sweet (vs. Sour)

생산성 분석 (Well Test Analysis)

생산 예측

Reserve estimation

- Analogue
- Volumetric
- Material balance
- > Decline curve analysis
- > Numerical simulation
- > Monte Carlo simulation

Production schedule

- > Infill drilling
- > Secondary recovery
- > Enhanced oil recovery

회수율 (Recovery Factor)

■ 오일 생산정

Solution gas: 10-20%

Gas-cap: 20-40%

Water drive: 40-60%

■ 가스생산정

Pressure Depletion: 70-90%

Natural Water Drive : 40-60%

Pressure Depletion-Condensate : 20-40%

Gas Cycling-Condensate : 30-60%

석유회수증진기술 (EOR)

Thermal EOR is widely used: Steam injection

2차 회수 (Secondary recovery)

Water Injection

Cap rock -Water □

Gas Injection

