HR Analytics Project

Project Description

This Jupyter Notebook contains the analysis and findings of the HR Analytics project. The project's main objective is to analyze employee attrition within the organization and identify factors that contribute to attrition. We explore various aspects such as employee satisfaction, career progression, work-life balance, and more to gain insights into attrition patterns.

The analysis includes data cleaning, data visualization, and recommendations for HR strategies based on the findings.

LinkedIn: Asad Ali Mulla (https://www.linkedin.com/in/asad-ali-mulla-044240262/)

GitHub: Asadxio (https://github.com/Asadxio)

Import Libraries

In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

Load the Data

In [2]:

```
df = pd.read_csv("C:/Users/Asad Xio/Desktop/Data Analyst Intern/Project 3 - HR Analytics/
```

Data Exploration

In [3]:

df.head()

Out[3]:

_		Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	E
	0	41	Yes	Travel_Rarely	1102	Sales	1	2	
	1	49	No	Travel_Frequently	279	Research & Development	8	1	
	2	37	Yes	Travel_Rarely	1373	Research & Development	2	2	
	3	33	No	Travel_Frequently	1392	Research & Development	3	4	
	4	27	No	Travel_Rarely	591	Research & Development	2	1	

5 rows × 35 columns

In [4]:

df.tail()

Out[4]:

	Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education		
1465	36	No	Travel_Frequently	884	Research & Development	23	2		
1466	39	No	Travel_Rarely	613	Research & Development	6	1		
1467	27	No	Travel_Rarely	155	Research & Development	4	3		
1468	49	No	Travel_Frequently	1023	Sales	2	3		
1469	34	No	Travel_Rarely	628	Research & Development	8	3		
5 rows × 35 columns									
4							+		

In [5]:

df.describe()

Out[5]:

	Age	DailyRate	DistanceFromHome	Education	EmployeeCount	Employee	
count	1470.000000	1470.000000	1470.000000	1470.000000	1470.0	147(
mean	36.923810	802.485714	9.192517	2.912925	1.0	1024	
std	9.135373	403.509100	8.106864	1.024165	0.0	602	
min	18.000000	102.000000	1.000000	1.000000	1.0	1	
25%	30.000000	465.000000	2.000000	2.000000	1.0	491	
50%	36.000000	802.000000	7.000000	3.000000	1.0	1020	
75%	43.000000	1157.000000	14.000000	4.000000	1.0	155	
max	60.000000	1499.000000	29.000000	5.000000	1.0	2068	
8 rows × 26 columns							

In [6]:

```
df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1470 entries, 0 to 1469
Data columns (total 35 columns):

pata #	Columns (total 35 columns): Non-Null Count	Dtype
0	Age	1470 non-null	int64
1	Attrition	1470 non-null	object
2	BusinessTravel	1470 non-null	object
3	DailyRate	1470 non-null	int64
4	Department	1470 non-null	object
5	DistanceFromHome	1470 non-null	int64
6	Education	1470 non-null	int64
7	EducationField	1470 non-null	object
8	EmployeeCount	1470 non-null	int64
9	EmployeeNumber	1470 non-null	int64
10	EnvironmentSatisfaction	1470 non-null	int64
11	Gender	1470 non-null	object
12	HourlyRate	1470 non-null	int64
13	JobInvolvement	1470 non-null	int64
14	JobLevel	1470 non-null	int64
15	JobRole	1470 non-null	object
16	JobSatisfaction	1470 non-null	int64
17	MaritalStatus	1470 non-null	object
18	MonthlyIncome	1470 non-null	int64
19	MonthlyRate	1470 non-null	int64
20	NumCompaniesWorked	1470 non-null	int64
21	Over18	1470 non-null	object
22	OverTime	1470 non-null	object
23	PercentSalaryHike	1470 non-null	int64
24	PerformanceRating	1470 non-null	int64
25	RelationshipSatisfaction	1470 non-null	int64
26	StandardHours	1470 non-null	int64
27	StockOptionLevel	1470 non-null	int64
28	TotalWorkingYears	1470 non-null	int64
29	TrainingTimesLastYear	1470 non-null	int64
30	WorkLifeBalance	1470 non-null	int64
31	YearsAtCompany	1470 non-null	int64
32	YearsInCurrentRole	1470 non-null	int64
33	YearsSinceLastPromotion	1470 non-null	int64
34	YearsWithCurrManager	1470 non-null	int64

dtypes: int64(26), object(9)
memory usage: 402.1+ KB

Data Cleaning and Preprocessing

In [7]:

df.dropna(inplace=True)

```
In [8]:
```

```
df.isnull().sum()
Out[8]:
                             0
Age
Attrition
                             0
BusinessTravel
                             0
DailyRate
                             0
Department
                             0
DistanceFromHome
                             0
Education
                             0
EducationField
                             0
EmployeeCount
                             0
EmployeeNumber
                             0
EnvironmentSatisfaction
                             0
Gender
                             0
HourlyRate
                             0
JobInvolvement
                             0
JobLevel
                             0
JobRole
                             0
JobSatisfaction
                             0
MaritalStatus
                             0
MonthlyIncome
                             0
MonthlyRate
                             0
NumCompaniesWorked
                             0
0ver18
                             0
OverTime
                             0
PercentSalaryHike
                             0
PerformanceRating
                             0
RelationshipSatisfaction
StandardHours
                             0
StockOptionLevel
                             0
TotalWorkingYears
                             0
TrainingTimesLastYear
                             0
WorkLifeBalance
                             0
YearsAtCompany
                             0
YearsInCurrentRole
                             0
YearsSinceLastPromotion
                             0
YearsWithCurrManager
                             0
dtype: int64
In [9]:
df = df.drop(["EmployeeCount", "Over18", "StandardHours"], axis=1)
In [10]:
df = df.rename(columns={"Attrition": "Attrition", "JobSatisfaction": "Job_Satisfaction",)
In [11]:
df = df.dropna()
```

In [12]:

```
df.head()
```

Out[12]:

	Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	E
0	41	Yes	Travel_Rarely	1102	Sales	1	2	
1	49	No	Travel_Frequently	279	Research & Development	8	1	
2	37	Yes	Travel_Rarely	1373	Research & Development	2	2	
3	33	No	Travel_Frequently	1392	Research & Development	3	4	
4	27	No	Travel_Rarely	591	Research & Development	2	1	

5 rows × 32 columns

→

In [13]:

```
import matplotlib.pyplot as plt
import seaborn as sns
```

In [14]:

```
categorical_vars = ["BusinessTravel", "Department", "Gender", "JobRole", "MaritalStatus"]
for var in categorical_vars:
   plt.figure(figsize=(8, 5))
   sns.countplot(data=df, x=var, hue="Attrition")
   plt.title(f"Distribution of {var} vs. Attrition")
   plt.xticks(rotation=45)
   plt.show()
```


In [15]:

```
# Explore the distribution of numeric variables
numeric_vars = ["Age", "MonthlyIncome", "YearsAtCompany", "YearsInCurrentRole"]
for var in numeric_vars:
   plt.figure(figsize=(8, 5))
   sns.boxplot(data=df, y=var, x="Attrition")
   plt.title(f"Distribution of {var} vs. Attrition")
   plt.show()
```


In [16]:

```
# Calculate and visualize the correlation between numeric variables
correlation_matrix = df[numeric_vars].corr()
sns.heatmap(correlation_matrix, annot=True, cmap="coolwarm")
plt.title("Correlation Matrix")
plt.show()
```


Analyze Attrition

In [17]:

```
# Understand the distribution of Attrition
plt.figure(figsize=(6, 4))
sns.countplot(data=df, x="Attrition")
plt.title("Attrition Distribution")
plt.show()
```


In [18]:

```
# Explore factors related to attrition
attrition_factors = ["MaritalStatus", "JobRole", "Education"]
for var in attrition_factors:
   plt.figure(figsize=(8, 5))
   sns.countplot(data=df, x=var, hue="Attrition")
   plt.title(f"{var} vs. Attrition")
   plt.xticks(rotation=45)
   plt.show()
```


Employee Satisfaction and Engagement

In [19]:

```
# Analyze employee satisfaction and engagement
satisfaction_vars = ["Job_Satisfaction", "EnvironmentSatisfaction", "RelationshipSatisfaction
for var in satisfaction_vars:
    plt.figure(figsize=(8, 5))
    sns.countplot(data=df, x=var, hue="Attrition")
    plt.title(f"{var} vs. Attrition")
    plt.show()
```


In [20]:

```
# Investigate the relationship between JobInvolvement and Attrition
plt.figure(figsize=(6, 4))
sns.countplot(data=df, x="JobInvolvement", hue="Attrition")
plt.title("JobInvolvement vs. Attrition")
plt.show()
```


Career Progression

In [21]:

```
# Analyze employee career progression
plt.figure(figsize=(8, 5))
sns.boxplot(data=df, y="JobLevel", x="YearsInCurrentRole")
plt.title("Job Level vs. Years in Current Role")
plt.show()
```


In [22]:

```
# Investigate the relationship between promotions and attrition
plt.figure(figsize=(6, 4))
sns.countplot(data=df, x="YearsSinceLastPromotion", hue="Attrition")
plt.title("Years Since Last Promotion vs. Attrition")
plt.xticks(rotation=45)
plt.show()
```

Years Since Last Promotion vs. Attrition

Work-Life Balance and Overtime

In [23]:

```
# Analyze the impact of work-life balance and overtime on attrition
plt.figure(figsize=(6, 4))
sns.countplot(data=df, x="OverTime", hue="Attrition")
plt.title("OverTime vs. Attrition")
plt.show()
```

OverTime vs. Attrition

In [24]:

```
plt.figure(figsize=(8, 5))
sns.countplot(data=df, x="WorkLifeBalance", hue="Attrition")
plt.title("WorkLifeBalance vs. Attrition")
plt.show()
```


Analyze Attrition

In [25]:

```
# Understand the distribution of Attrition
plt.figure(figsize=(6, 4))
sns.countplot(data=df, x="Attrition")
plt.title("Attrition Distribution")
plt.show()
```


Explore factors related to attrition

In [26]:

```
# Analyze employee satisfaction and engagement
satisfaction_vars = ["Job_Satisfaction", "EnvironmentSatisfaction", "RelationshipSatisfaction
for var in satisfaction_vars:
    plt.figure(figsize=(8, 5))
    sns.countplot(data=df, x=var, hue="Attrition")
    plt.title(f"{var} vs. Attrition")
    plt.show()
```


In [27]:

```
# Investigate the relationship between JobInvolvement and Attrition
plt.figure(figsize=(6, 4))
sns.countplot(data=df, x="JobInvolvement", hue="Attrition")
plt.title("JobInvolvement vs. Attrition")
plt.show()
```


Career Progression

In [28]:

```
# Analyze employee career progression
plt.figure(figsize=(8, 5))
sns.boxplot(data=df, y="JobLevel", x="YearsInCurrentRole")
plt.title("Job Level vs. Years in Current Role")
plt.xlabel("Years in Current Role")
plt.ylabel("Job Level")
plt.show()
```


In [29]:

```
# Investigate the relationship between promotions and attrition
plt.figure(figsize=(8, 5))
sns.countplot(data=df, x="YearsSinceLastPromotion", hue="Attrition")
plt.title("Years Since Last Promotion vs. Attrition")
plt.xlabel("Years Since Last Promotion")
plt.xticks(rotation=45)
plt.show()
```


Work-Life Balance and Overtime

In [30]:

```
# Analyze the impact of work-life balance on attrition
plt.figure(figsize=(8, 5))
sns.countplot(data=df, x="OverTime", hue="Attrition")
plt.title("OverTime vs. Attrition")
plt.xlabel("Overtime")
plt.show()
```

OverTime vs. Attrition

In [31]:

```
# Investigate the relationship between work-life balance and attrition
plt.figure(figsize=(8, 5))
sns.countplot(data=df, x="WorkLifeBalance", hue="Attrition")
plt.title("WorkLifeBalance vs. Attrition")
plt.xlabel("Work-Life Balance")
plt.show()
```


Conclusion and Recommendations

In [32]:

```
# Summarize your findings
print("Summary of Findings:")
print("- Attrition Distribution:")
attrition_counts = df['Attrition'].value_counts()
print(attrition_counts)
```

Summary of Findings:

- Attrition Distribution:

No 1233 Yes 237

Name: Attrition, dtype: int64

In [33]:

```
# Provide recommendations
print("\nRecommendations:")
print("- Consider improving work-life balance to reduce attrition among employees.")
print("- Monitor the impact of overtime work on attrition and take necessary actions to m
print("- Focus on career development opportunities, such as promotions and skill developm
print("- Conduct exit interviews with departing employees to gather more insights into at
```

Recommendations:

- Consider improving work-life balance to reduce attrition among employee s.
- Monitor the impact of overtime work on attrition and take necessary actions to manage workload.
- Focus on career development opportunities, such as promotions and skill development, to enhance job satisfaction.
- Conduct exit interviews with departing employees to gather more insights into attrition reasons.

In [34]:

```
# Overall Conclusion
print("\nOverall Conclusion:")
print("Based on the analysis, we have identified several factors that are related to attr
```

Overall Conclusion:

Based on the analysis, we have identified several factors that are related to attrition within the organization. It's important for the company to ad dress these factors in order to improve employee retention and satisfaction. By implementing the recommended actions, the company can work towards reducing attrition and creating a more positive work environment.

In []: