Математический анализ I Конспект <i>основан</i> на лекциях Константина Петровича Кохас					
	Мат	ематиче	ский аг	нализ I	
Конспект основан на лекциях Константина Петровича Кохас					
	Конспект основа	н на лекциях	Константи	на Петрович	іа Кохас

Оглавление

	0.1	Введение	2
	0.2	Мощность множеств	5
1	Осн	овы топологии	9
	1.1	Метрическое пространство	9
	1.2	Топологическое пространство	11
	1.3	Внутренность и замыкание	13

0.1 Введение

Определение. *Отображением* из множества X в множество Y называется отношение $F \subseteq X \times Y$, для которого

$$\forall x \in X \exists ! y \in Y : (x, y) \in F$$

Обозначается $F: X \to Y$ или $X \xrightarrow{F} Y$. Сам факт того, что $(x,y) \in F$ обозначается f(x) = y. X называют областью определения, а Y — областью значений f.

Определение. Отображение $f: X \longrightarrow Y$ называется *инъективным*, если для него выполняется

$$x_1 \neq x_2 \Longrightarrow f(x_1) \neq f(x_2)$$

Иначе говорят, что f - 1-1 отображение, и часто обозначают $f : X \xrightarrow{1-1} Y$.

Определение. Отображение $f: X \to Y$ называется *сюръективным*, если для него выполняется

$$\forall y \in Y \ \exists x \in X \colon f(x) = y$$

Такие отображения называют отображениями *на*, и часто обозначают $f: X \xrightarrow{\text{на}} Y$.

Определение. Отображение $f: X \to Y$ называют *биекцией*, если оно одновременно сюръективно и инъективно, иначе говоря

$$\forall y \in Y \exists ! x \in X : f(x) = y$$

Такие отображения, по аналогии с предыдущими определениями, называют 1-1 на отображениями, и часто обозначают $f: X \xrightarrow[\text{на}]{1-1} Y$.

Определение. Образом множества $A\subseteq X$ при отображении $f:X\to Y$ называют множество

$$f(A) \stackrel{def}{=} \{ f(x) \mid x \in A \}$$

Определение. Прообразом множества $B \subseteq Y$ при отображении $f: X \to Y$ называют множество

$$f^{-1}(B) \stackrel{def}{=} \{ x \in X \mid f(x) \in B \}$$

Определение. Обратимым называется отображение $f: X \to Y$, для которого существует обратное относительно композиции отображение $f^{-1}: Y \to X$, для которого выполняется

$$f^{-1} \circ f = id_X$$

Теорема 0.1.1 (Свойства прообраза). Пусть $f: X \to Y$, $A, B \subseteq X$. Тогда справедливо

i)
$$f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$$

ii)
$$f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$$

Доказательство. Без доказательства (очевидно).

Теорема 0.1.2. f биективно \iff f обратимо

Доказательство. Без доказательства (тривиально).

Определение. *Полем* называется тройка $(X, +: X \times X \to X, \cdot: X \times X \to X)$, где X — множество, удовлетворяющая аксиомам поля:

+G1
$$\alpha$$
 + (β + γ) = (α + β) + γ

$$+G2 \exists 0 \in X: \alpha + 0 = 0 + \alpha = \alpha$$

$$+G3 \exists -\alpha: \alpha+-\alpha=0$$

$$+G4 \alpha + \beta = \beta + \alpha$$

$$\cdot G1 \ \alpha(\beta\gamma) = (\alpha\beta)\gamma$$

$$\cdot$$
G2 $\exists 1 \in X: 1\alpha = \alpha 1 = \alpha$

·G3
$$\alpha \neq 0 \Rightarrow \exists \alpha^{-1}$$
: $\alpha \alpha^{-1} = 1$

·G4
$$\alpha\beta = \beta\alpha$$

D
$$(\alpha + \beta)\gamma = \alpha\gamma + \beta\gamma$$

Для любых $\alpha, \beta, \gamma \in X$. Аксиомы +G1-4 задают на X структуры абелевой группы по +, аксиомы ·G1-4 задают на $X \setminus \{0\}$ структуру абелевой группы по ·, аксиома дистрибутивности D связывает + и ·.

Примеры.

- i) \mathbb{R} поле. В дальнейшем можно под произвольным полем понимать \mathbb{R} , общность от этого сильно не пострадает.
- іі) \mathbb{Z}_p тогда и только тогда поле, когда p простое.

Определение. Векторным (линейным) пространством над полем K называют тройку $\langle V, +_V : V \times V \to V, \cdot_V : V \times K \to V \rangle$, где V — множество, удовлетворяющюю аксиомам:

$$+_V G1 x + (y+z) = (x+y) + z$$

$$+_{V}G2 \exists 0 \in X : x + 0 = 0 + x = x$$

$$+_{V}G3 \exists -\mathbf{x}: \mathbf{x} + -\mathbf{x} = \mathbf{0}$$

$$+_V G4 \mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{z}$$

V1
$$(\alpha + \beta)\mathbf{x} = \alpha\mathbf{x} + \beta\mathbf{x}$$

V2
$$(\alpha \beta)\mathbf{x} = \alpha(\beta \mathbf{x})$$

V3
$$\alpha(\mathbf{x} + \mathbf{y}) = \alpha \mathbf{x} + \alpha \mathbf{y}$$

V4
$$1_K \mathbf{x} = \mathbf{x}$$

Для любых $\alpha, \beta \in K$, $\mathbf{x}, \mathbf{y} \in V$.

Пример. $K^n \stackrel{def}{=} \underbrace{K \oplus K \oplus \ldots \oplus K}_n$ — векторное пространство, которому изоморфны все векторные пространства над полем K размерности n. Мы ограничимся рассмотрением \mathbb{R}^n .

Теорема 0.1.3. (Закон Де-Моргана) Пусть $\{X_{\alpha}\}_{\alpha\in A}$ — семейство множеств, и Y — множество. Тогда справедливо

$$Y \setminus \left(\bigcup_{\alpha \in A} X_{\alpha}\right) = \bigcap_{\alpha \in A} \left(Y \setminus X_{\alpha}\right)$$

Доказательство. Докажем, что z принадлежит левой части \iff z принадлежит правой части:

$$z \in Y \setminus \Big(\bigcup_{\alpha \in A} X_{\alpha}\Big) \Longleftrightarrow z \in Y \land z \notin \bigcup_{\alpha \in A} X_{\alpha} \Longleftrightarrow z \in Y \land \forall \alpha \in A \ z \notin X_{\alpha} \Longleftrightarrow \\ \forall \alpha \in A \ z \in Y \land z \notin X_{\alpha} \Longleftrightarrow z \in \bigcap_{\alpha \in A} \Big(Y \setminus X_{\alpha}\Big)$$

Теорема 0.1.4. (Неравенство Бернулли) $(1+x)^n \ge 1+nx$ при $x \ge -1$, $n \in \mathbb{N}$ Доказательство.

- і) База индукции при n = 1: $1 + x \ge 1 + x$
- іі) Индукционный переход:

$$(1+x)^n = (1+x)(1+x)^{n-1} \ge (1+x)(1+(n-1)x) = 1+x+(n-1)x+(n-1)x^2 = 1+nx+(n-1)x^2 \ge 1+nx$$

Теорема 0.1.5. (Неравенство КБШ)

$$\left| \sum_{i=1}^{n} a_i b_i \right| \le \sqrt{\sum_{i=1}^{n} a_i^2} \sqrt{\sum_{i=1}^{n} b_i^2}$$

Доказательство.

$$0 \leq \frac{1}{2} \sum_{i,k=1}^{n} (a_i b_k - a_k b_i)^2 = \frac{1}{2} \sum_{i,k=1}^{n} (a_i^2 b_k^2 + a_k^2 b_i^2 - 2a_i b_i a_k b_k) = \frac{1}{2} \left[\left(\sum_{i=1}^{n} a_i^2 \sum_{k=1}^{n} b_k^2 \right) + \left(\sum_{i=1}^{n} b_i^2 \sum_{k=1}^{n} a_k^2 \right) - 2 \left(\sum_{i=1}^{n} a_i b_i \right) \left(\sum_{k=1}^{n} a_k b_k \right) \right] = \sum_{i=1}^{n} a_i^2 \sum_{i=1}^{n} b_i^2 - \left(\sum_{i=1}^{n} a_i b_i \right)^2$$

4

0.2 Мощность множеств

Определение. *Мощностью конечного множества* называют количество его различных элементов.

Определение. Множества A и B pавномощны, если сущесвует $f: A \xrightarrow[\text{на}]{1-1} B$ — биекция

Лемма 0.2.1. Равномощность — отношение эквивалентности

Доказательство.

•
$$A \sim B \Longrightarrow \exists f : A \xrightarrow{1-1} B \Longrightarrow f^{-1} : B \xrightarrow{1-1} A \Longrightarrow B \sim A$$

•
$$A \sim B \land B \sim C \Longrightarrow \exists f : A \xrightarrow{1-1}_{\text{Ha}} B, g : B \xrightarrow{1-1}_{\text{Ha}} C \Longrightarrow f \circ g : A \xrightarrow{1-1}_{\text{Ha}} C \Longrightarrow A \sim C$$

•
$$id_A: A \xrightarrow{1-1} A \Longrightarrow A \sim A$$

Определение. *Булеаном* множества A называют множество всех подмножеств A. Обозначают $\mathcal{P}(A)$ или 2^A

Лемма 0.2.2. $\mathcal{P}(A) \not\sim A$

Доказательство. Предположим обратное. Пусть $f: A \xrightarrow[Ha]{1-1} \mathcal{P}(A)$. Рассмотрим

$$X = \{ a \in A \mid a \notin f(a) \} \subseteq A$$

Тогда существует $x \in A$: f(x) = X. Но тогда

$$x \in X \iff x \notin f(x) \iff x \notin X$$

Противоречие.

Определение. Будем говорить, что множество A по мощности не превосходит множество B, если A равномощно некоторому подмножеству B. Обозначается $A \leq B$

Определение. Будем говорить, что множество A по мощности не превосходит множество B, если существует инъекция $f:A \xrightarrow{1-1} B$

Замечание. Эти два определения эквивалентны.

Теорема 0.2.3. Для произвольных A, B выполнено

- i) $A \sim B \Longrightarrow A \leq B$
- ii) $A \leq B \wedge B \leq C \Longrightarrow A \leq C$

Доказательство. Без доказательства (тривиально).

Теорема 0.2.4. (Кантор-Бернштейн) $A \preccurlyeq B \land B \preccurlyeq A \Longleftrightarrow A \sim B$

Доказательство.

$$\Longrightarrow$$
 Положим $f:A\xrightarrow[\text{Ha}]{1-1} f(A)$ и $g:B\xrightarrow[\text{Ha}]{1-1} g(B)$. Тогда $f\circ g:A\xrightarrow[\text{Ha}]{1-1} g(f(A))$

$$A_0 := A$$

 $A'_0 := g(B)$
 $A_1 := g(f(A_0))$

Тогда по построению $A_0\supseteq A_0'\supseteq A_1$. Кроме того, посредством $f\circ g$ получаем $A_0\sim A_1$, и по условию $B\sim A_0'$ Тогда по транзитивности достаточно показать, что $A_0\sim A_0'$.

$$A'_1 := g(f(A'_0)) \sim A'_0$$

Потому что $A_0' \subseteq A$ и $f \circ g$ — биекция (получается своего рода двустороннее сужение $f \circ g$, которое сохраняет его биективность). В том же духе продолжим

$$A_{n+1} := g(f(A_n)) \sim A_n$$

 $A'_{n+1} := g(f(A'_n)) \sim A'_n$

причём для всех n выполнено (аналогично первому шагу)

$$A_n \supseteq A'_n \supseteq A_{n+1}$$

Обозначим

$$D := \bigcap_{n \in \mathbb{N}} A_n$$
 $M_n := A_n \setminus A'_n$
 $M'_n := A'_n \setminus A_{n+1}$

Все эти множества попарно не пересекаются. При этом

$$A_0 = D \sqcup M_0 \sqcup M_0' \sqcup M_1 \sqcup \dots$$

$$A_0' = D \qquad \sqcup M_0' \sqcup M_1 \sqcup \dots$$

Нетрудно понять, что $g(f(M_n)) = M_{n+1}$ и $g(f(M'_n)) = M'_{n+1}$. Тогда построим искомое соответствие следующим образом:

Где все диагональные стрелки — сужения $f \circ g$, а вертикальные — тождественные отображения.

Определение. *Множествами счетной мощности* называют множества, лежащие в одном классе эквивалентности по \sim с \mathbb{N} .

Теорема 0.2.5. (Свойства счетных множеств)

- і) Любое бесконечное множество сожержит счетное подмножество
- іі) Объединение двух счетных множеств счетно
- iii) A бесконечно, B ~ \mathbb{N} \Longrightarrow $A \cup B$ ~ A

Доказательство.

- і) Пусть A бесконечно. Тогда оно не пусто, то есть $\exists a \in A$. Рассмотрим $A \setminus \{a\}$. Если оно пусто, то множество A не было бесконечным. Продолжим этот процесс и получим счетное подмножество A: $\{a_1, a_2, \ldots\}$.
- іі) Пусть A и B счетные. Получим биекции этих множеств с \mathbb{N} : $A = \{a_1, \ldots\}$ и $B = \{b_1, \ldots\}$. Построим биекцию $(A \cup B)^* \to \mathbb{N}$: $A \cup B = \{a_1, b_1, a_2, \ldots\}$, считая совпадающие элементы из разных множеств разными. Тогда выполнено $\mathbb{N} \sim A \leq A \cup B \leq \mathbb{N}$, то есть $A \cup B \sim \mathbb{N}$ (теорема Кантора- Бернштейна).
- ііі) В A найдется счетное подмножество $C \subseteq A$.

$$A = A' \cup C$$
$$A \cup B = A' \cup (C \cup B)$$

Причем $C \cup B$ счетно, то есть $C \cup B \sim C$. Тогда построим соответствие:

Теорема 0.2.6. (Счетность множества рациональных чисел) $\mathbb{Q} \sim \mathbb{N}$

Доказательство.
$$\mathbb{Q} \sim \mathbb{Z} \times \mathbb{N} \sim \mathbb{N}$$

Определение. *Bin* — множество всех последовательностей из нулей и единиц.

Теорема 0.2.7.
$$Bin \sim [0,1] \subseteq \mathbb{R}$$

Доказательство. Для доказательства теоремы разобъем $Bin = Bin^{\infty} \sqcup Bin^{0}$ — множества последовательностей бесконечной и конечной длинной (конечной в том смысле, что с конечного места в последовательности идут только нули) соответственно.

і) $Bin^0 = \bigcap_{k=0}^{+\infty} B_k$, где B_k — множество последовательностей длины k — счетное объединение конечных множеств. Поэтому Bin^0 счетно.

- іі) Отождествим элементы Bin^{∞} с числами полуинтервала (0,1] как их двоичную запись. Поскольку любой элемент (0,1] представим в двоичной записи бесконечной длины (тривиально), получаем, что $Bin^{\infty} \sim (0,1]$.
- iii) Теперь $Bin = Bin^0 \sqcup Bin^\infty \sim Bin^\infty \sim (0,1] \sim [0,1]$.

Теорема 0.2.8. Все промежутки вида $\langle a, b \rangle$, $a \neq b$ в \mathbb{R} равномощны.

Доказательство. Ограничимся рассмотрением открытых интервалов. Добавление граничной точки не меняет мощность множества.

Докажем, что $\forall a \neq b, \ c \neq d \ (a,b) \sim (c,d)$. Для этого построим биекцию между этими двумя множествами:

$$f: (a, b) \to (c, d)$$
$$x \longmapsto \frac{(d - c)(x - a)}{b - a}$$

Теорема 0.2.9. $\mathbb{R} \sim \mathbb{R}^n$

Доказательство. Построим биекцию меджу \mathbb{R}^n и Bin, что и докажет утверждение. Пусть $\psi \colon \mathbb{R} \to Bin$ — функция, сопоставляющая числу его двоичную запись. Тогда

$$\phi: \mathbb{R}^n \to Bin$$

$$(x_1, x_2, \dots, x_n) \longmapsto (\psi(x_1)_1, \psi(x_2)_1, \dots, \psi(x_1)_2, \psi(x_2)_2, \dots)$$

осуществляет требуемое соответствие.

Теорема 0.2.10. \mathbb{R}^n несчетно

Доказательство. $\mathbb{R}^n \sim Bin \sim \mathcal{P}(\mathbb{N}) \not\sim \mathbb{N}$

Теорема 0.2.11. *Множеством мощности континуум* называют множество, равномощное $[0,1] \subseteq \mathbb{R}$

Глава 1

Основы топологии

1.1 Метрическое пространство

Определение. *Метрикой* на множестве X называют $\rho: X \to \mathbb{R}$, удовлетворяющую аксиомам метрики:

- i) $\rho(x) \ge 0$
- ii) $\rho(x, y) = \rho(y, x)$
- iii) $\rho(x, y) + \rho(y, z) \ge \rho(x, z)$

Определение. Пару $\langle X, \rho \rangle$, где ρ — метрика на X, называют метрическим пространством

Примеры.

- i) Стандартная метрика на \mathbb{R}^n : $\rho(x,y) = |x,y|_2$, где $d_k(x,y) \stackrel{def}{=} |x,y|_k = \sqrt[k]{\sum_{i=1}^n (x_i y_i)^k}$
- іі) $|.,.|_k$ является метрикой на \mathbb{R} при любых $k \ge 1$
- і
ііі) $|x,y|_{\infty} = \max_{i=1}^n (x_i y_i)$ метрика на $\mathbb R$
- iv) $\rho(x,y) = 1$ при $x \neq y$ и $\rho(x,y) = 0$ иначе метрика, порождающая дискретное пространство.

 Δ алее, если не указано, речь идет о метрическом пространстве X

Определение. Шаром радиуса r с центром в точке x называется

$$B_r(x) \stackrel{def}{=} \{ y \in X \mid \rho(x, y) < r \}$$

Определение. Замкнутым шаром радиуса r с центром в точке x называется

$$\overline{B_r}(x) \stackrel{def}{=} \{ y \in X \mid \rho(x, y) \leq r \}$$

Определение. Расстоянием от точки x до множества A называется

$$\rho(x,A) \stackrel{def}{=} \inf_{y \in A} \rho(x,y)$$

Определение. Диаметром множества А называется

$$diam(A) = \sup \{ \rho(x, y) \mid x, y \in A \}$$

Определение. В метрическом пространстве *открытыми* называют множества A такие, что

$$\forall x \in A \exists B_r(x) \subset A$$

Иначе говоря, любая точка открытого множества входит в него с некоторым шаром.

Определение. Множество A называют ограниченным, если $\operatorname{diam}(A) < +\infty$

Теорема 1.1.1. Множество A ограниченно \iff его можно вписать в шар Δ оказательство.

- $\implies m := \operatorname{diam}(A)$. Покажем, что A можно вписать в шар радиуса m+1. Возьмем произвольную точку $x \in A$. Тогда $\forall y \in A \ \rho(x,y) \leqslant m < m+1 \Longrightarrow y \in B_{m+1}(x)$
- \iff Пусть $y,z \in A$ и A можно вписать в шар $B_r(x)$. Тогда $2r > \rho(x,y) + \rho(x,z) \geqslant \rho(y,z) \Longrightarrow \rho(y,z) < 2r \Longrightarrow A$ ограничено.

Теорема 1.1.2.

- і) Произольное объединение открытых множеств открыто
- іі) Пересечение двух (а значит, и произвольного конечного числа) открытых множеств открыто.

Доказательство.

і) Пусть $\{G_{\alpha}\}_{\alpha\in A}$ — семейство открытых множеств. Тогда

$$x \in \bigcup_{\alpha \in A} G_\alpha \Longrightarrow x \in G_\alpha \Longrightarrow \exists U(x) \subset G_\alpha \subset \bigcup_{\alpha \in A} G_\alpha$$

іі) Пусть А и В — открытые множества. Тогда

$$x \in A \cap B \Longrightarrow x \in A \land x \in B \Longrightarrow$$
$$\exists B_{r_1}(x) \subset A \land B_{r_2}(x) \subset B \Longrightarrow$$
$$x \in B_{\min(r_1, r_2)}(x) \subset A \cap B$$

Определение. Липшицево эквивалентными называют отображения f и g в \mathbb{R} , такие, что $\exists c_1, c_2 \colon c_1 f \leqslant g \leqslant c_2 f$

Пример. В \mathbb{R}^n метрики d_1 и d_2 липшицево эквивалентны

1.2 Топологическое пространство

Определение. *Топологией* на множестве X называют $\Omega \subseteq \mathcal{P}(X)$, удовлетворяющее следующим свойствам:

- i) $\emptyset, X \in \Omega$
- ii) $A, B \in \Omega \Longrightarrow A \cap B \in \Omega$

iii)
$$\{X_{\alpha} \in \Omega\}_{\alpha \in A} \Longrightarrow \bigcup_{\alpha \in A} X_{\alpha} \in \Omega$$

Иными словами, топология замкнута относительно конечных пересечений и произвольных объединений её элементов.

Определение. Пара (X, Ω) , где Ω — топология на X, называется топологическим пространством.

Определение. Элементы топологии называются *открытыми множествами*. Дополнения открытых множеств называются *замкнутыми множествами*.

Примеры.

- i) $\Omega = \mathcal{P}(X)$ дискретная топология
- ii) $\Omega = \{\emptyset, X\}$ антидискретная топология
- iii) Все метрические пространства являются топологическими пространствами, порожденными метрикой.
- iv) $\Omega = \emptyset \cup \{$ все дополнения конечных множеств $\}$

Определение. *Метризуемым* называется топологическое пространство, топология которого может быть порождена метрикой.

Примеры.

- і) Дискретная топология метризуема
- іі) Антидискретная топология не метризуема

Определение. Окрестностью точки x называют любое открытое множество, содержащее x. Далее окрестность точки x будет обозначаться U(x).

Определение. Точка x называется *внутренней* для множества A, если она входит в него с некоторой окрестностью:

$$\exists U(x): U(x) \subset A$$

Определение. Точка x называется *граничной* точкой множества A, если любая окрестность точки x имеет непустое пересечение как с A, так и с его дополнением:

$$\forall U(x) \ A \cap U(x) \neq \emptyset \land (X \setminus A) \cap U(x) \neq \emptyset$$

Определение. Точка x называется *предельной* точкой множества A, если любая окрестность точки x имеет непустое пересечение с A:

$$\forall U(x) \ A \cap U(x) \neq \emptyset$$

Определение. Точка x называется внешней точкой A, если

$$\exists U(x) \ A \cap U(x) = \emptyset$$

Определение. Точка x называется точкой прикосновения множества A, если

$$\forall U(x) \ A \cap U(x) \neq \emptyset$$

Замечание. Точка прикосновения и внешняя точка — формальные отрицания друг друга.

Теорема 1.2.1.

- i) \emptyset , X замкнуты
- іі) A, B замкнуты $\Longrightarrow A \cup B$ замкнуто
- ііі) если C_{α} замнкнуты, то $\bigcap_{\alpha \in A} C_{\alpha}$ замкнуто

Доказательство.

- i) $X = X \setminus \emptyset$ замкнуто по опделелению. Аналогично $\emptyset = X \setminus X$
- іі) $A \cup B$ замкнуто $\iff X \setminus (A \cap B)$ открыто $\iff (X \setminus A) \cup (X \setminus B)$ открыто $\iff (X \setminus A)$, $(X \setminus B)$ открыты $\iff A, B$ замкнуты.
- ііі) Аналогично іі

Теорема 1.2.2. A открыто, B замкнуто. Тогда

- i) $A \setminus B$ открыто
- ii) $B \setminus A$ замкнуто

Доказательство.

- i) $A \setminus B = A \cap (X \setminus B)$ открыто
- ii) $B \setminus A = B \cap (X \setminus A)$ замкнуто

1.3 Внутренность и замыкание

Определение. Внутренностью множества A называют наибольшее по включению открытое множество, содержащееся в A, иначе говоря:

$$\operatorname{Int}(A) \stackrel{def}{=} \bigcup_{\substack{U \subseteq A \\ open_X(U)}} U$$

Определение. Замыканием множества A называют наименьшее по включению замкнутое множество, сожержащее A, иначе говоря:

$$Cl(A) \stackrel{def}{=} \bigcap_{\substack{C \supseteq A \\ cl_X(C)}} C$$

Теорема 1.3.1. (Свойства Int)

- i) Int(A) открыто
- ii) $Int(A) \subseteq A$
- iii) $open_X(B), B \subseteq A \Longrightarrow B \subseteq Int(A)$
- iv) $Int(A) = A \iff open_x(A)$
- v) Int(Int(A)) = A
- vi) $A \subseteq B \Longrightarrow Int(A) \subseteq Int(B)$
- vii) $Int(A \cap B) = Int(A) \cap Int(B)$
- viii) $Int(A \cup B) \supseteq Int(A) \cup Int(B)$

Доказательство.

- i) Int(A) открыто как объединение открытых
- іі) В объединения входят только подмножества A, поэтому $Int(A) \subseteq A$
- ііі) В по определению войдет в объединение
- iv) ⇒ по пункту (i). ⇐ по пункту (iii)
- v) см. пункт (iv)
- vi) Все открытые подмножества A являются открытыми подмножествами B
- vii) $A \cap B \subseteq A$, $A \cap B \subseteq B \Longrightarrow$ $Int(A \cap B) \subseteq Int(A)$, $Int(B) \Longrightarrow Int(A \cap B) \subseteq Int(A) \cap Int(B)$

$$\operatorname{Int}(A) \cap \operatorname{Int}(B) \subseteq \operatorname{Int}(A) \subseteq A$$
, аналогично $\operatorname{Int}(A) \cap \operatorname{Int}(B) \subseteq B$, поэтому $\operatorname{Int}(A) \cap \operatorname{Int}(B) \subseteq A \cap B \Longrightarrow \operatorname{Int}(\operatorname{Int}(A) \cap \operatorname{Int}(B)) = \operatorname{Int}(A \cap B) \Longrightarrow \operatorname{Int}(A) \cap \operatorname{Int}(B) \subseteq \operatorname{Int}(A \cap B)$

Теорема 1.3.2. (Свойства Cl)

- i) Cl(A) замкнуто
- ii) $Cl(A) \supseteq A$
- iii) $cl_X(B), B \supseteq A \Longrightarrow B \supseteq Cl(A)$
- iv) $Cl(A) = A \iff cl_X(A)$
- v) Cl(Cl(A)) = A
- vi) $A \subseteq B \Longrightarrow Cl(A) \subseteq Cl(B)$
- vii) $Cl(A \cup B) = Cl(A) \cup Cl(B)$
- viii) $Cl(A \cap B) \subseteq Cl(A) \cap Cl(B)$

Доказательство. Можно доказать аналогично предыдущей теореме, а можно доказать, пользуясь переходом к дополнению в предыдущей теореме. ■

Теорема 1.3.3. (Связь Int и Cl)

- i) $X \setminus Int(A) = Cl(X \setminus A)$
- i) $X \setminus Cl(A) = Int(X \setminus A)$

Доказательство.

i)

$$X \setminus \operatorname{Int}(A) \stackrel{def}{=} X \setminus \left(\bigcup_{\substack{U \subseteq A \\ open_X(U)}} U\right) = \bigcap_{\substack{U \subseteq A \\ open_X(U)}} X \setminus U \stackrel{def}{=} \operatorname{Cl}(X \setminus A)$$

так как множества вида $X \setminus U$ суть замкнутые множества, содержащие A

іі) Аналогично

Определение. Границей множества А называется

$$\operatorname{Fr}(A) \stackrel{def}{=} \operatorname{Cl}(A) \setminus \operatorname{Int}(A)$$

Теорема 1.3.4. (Свойства Fr)

- i) Fr(A) замкнуто
- ii) $Fr(A) = Fr(X \setminus A)$
- ііі) A замкнуто \iff Fr(A) $\subseteq A$
- iv) A открыто \iff $Fr(A) \cap A = \emptyset$

Доказательство.

- і, іі) Очевидно в свете предыдущих теорем
 - iii) A замкнуто \iff Cl(A) = A \iff Cl(A) \ Int(A) ⊆ A
 - iv) A открыто \iff Int(A) = A \iff Fr(A) = Cl(A) $\setminus A$ \iff Fr(A) $\cap A$ = \emptyset

Теорема 1.3.5. (Характеризация внутренности)

Int(A) — множество всех внутренних точек A.

Доказательство. Докажем, что $x \in Int(A) \iff x$ — внутренняя точка A

$$\implies x \in Int(A)$$
 — открыто $\implies U(x) := Int(A) \subseteq A \implies x$ — внутренняя точка A

 $\longleftarrow x$ — внутренняя для $A \Longrightarrow \exists U(x) \subseteq A \Longrightarrow x \in Int(A)$ так как по определению Int(A) — это объединение всех открытых множеств, содержащихся в A, в том числе и U(x).

Следствие 1.3.6. *А* открыто $\iff \forall x \in A \ x$ — внутренняя точка *A*

Теорема 1.3.7. (Характеризация замыкания)

Cl(A) — множество всех точек прикосновения A.

Доказательство.

$$X \setminus Cl(A) = Int(X \setminus A) = \{$$
 внешние точки $A\} = X \setminus \{$ точки прикосновения $A\}$

Определение. Множество *A* называется всюду плотным, если Cl(A) = X.

Определение. Топологическое пространство X называют *сепарабельным*, если в нем существует не более чем счетное всюду плотное множество.