

Current Mirrors

Bibhu Datta Sahoo

Department of Electronics and Electrical Communication Engineering Indian Institute of Technology Kharagpur, India

Indian Institute of Technology Kharagpur, India

Analog Signal Processing, Integrated circuit Research and Engineering LAB, Department of E&ECE, IIT Kharagpur

Concept of Current Mirror

The motivation behind a current mirror is to sense the current from a "golden current source" and duplicate this "golden current" to other locations.

But how to generate a "golden current source"?

- -How do we generate copies of the "reference current"?
- -If λ =0, and two MOS devices have equal V_{GS} then they will carry equal currents.
 -If M_{REF} has size (W/L)_{REF} and M₁ has size
- •If M_{REF} has size (W/L)_{REF} and M₁ has siz (W/L)₁ then the ratio of mirrored to reference current is (W/L)₁ / (W/L)_{REF}.

Indian Institute Of Technology, Kharagpur, India Bibhu Datta Sahoo Application Analog Signal Processing, Integrated circuit Research

Bad MOS Current Mirror, Current Scaling, & CMOS Mirror Example

This is not a current mirror since the relationship between $\mathbf{V}_{\mathbf{X}}$ and \mathbf{I}_{REF} is not clearly defined.

The only way to clearly define V_X with I_{REF} is to use a diode-connected MOS since it provides square-law I-V relationship.

Currents can be scaled up or down. Depending on (W/L) ratio of the transistors → can also be used as amplifiers.

Typically "L" is not changed→ only W is scaled up or down. (Always keep this in mind)

CMOS Current Mirror

Indian Institute Of Technology, Kharagpur, India Bibhu Datta Sahoo

Analog Signal Processing, Integrated circuit Research and Engineering LAB, Department of E&ECE

Figure-of-Merit of Current Sources

- 1. Current source impedance
- 2. Accuracy of Mirroring
- 3. Compliance voltage → minimum voltage across the current source required to maintain the transistor/transistors in saturation

In the presence of channel length modulation we have, $I_{D} = \frac{1}{2} \mu C_{ox} \frac{W}{I} (V_{os} - V_{T})^{2} (1 + \lambda V_{DS})$

Thus, -> accuracy of mirroring

$$\frac{I_{_{D1}}}{I_{_{DREF}}} = \frac{\left(W/L\right)_{_{1}}}{\left(W/L\right)_{_{REF}}} \frac{\left(1 + \lambda V_{_{DS1}}\right)}{\left(1 + \lambda V_{_{DSREF}}\right)}$$

Cascode current source suppresses the effects of channel length modulation.

Indian Institute Of Technology, Kharagpur, India Bibhu Datta Sahoo Ashoe Analog Signal Processing, Integrated circuit Research and Engineering LAB, Department of E&ECE

Cascode Current Source

Single-cascade/Cascode

$$\begin{split} R_o &= r_{o2}[1 + (g_{m2} + g_{mb2})r_{o1}] + r_{o1} \\ &\quad R_{out} \approx g_{m2}r_{o2}r_{o1} \\ &\quad V_{compliance} \approx 2V_{GS} - V_{TH} \\ &\quad V_{compliance} \approx V_{TH} + 2V_{dsat} \\ &\quad \text{Accuracy of mirroring defined} \\ &\quad \text{by the V}_{DS3} \text{ and V}_{DS1} \\ &\quad \frac{I_{OUT}}{I_{IN}} = \frac{(1 + \lambda V_{DS1})}{(1 + \lambda V_{DS3})} \\ &\quad V_{DS3} = V_{GS} \end{split}$$

 $V_{DS1} \approx 2V_{GS} - V_{GS} = V_{GS}$??

- Double-cascode
- $R_{out} pprox g_{m3} r_{o3} r_{o2} r_{o1}$
- R_{out} is better than without cascoding ⁽³⁾
- Higher V_{compliance} ⊗
- Accuracy of mirroring 99.9% ② (why not 100%)

$$egin{aligned} & ext{V}_{ ext{compliance}} pprox 3 ext{V}_{ ext{GS}} - ext{V}_{ ext{TH}} \ & ext{V}_{ ext{compliance}} pprox 3 ext{V}_{ ext{dsat}} + 2 ext{V}_{ ext{TH}} \end{aligned}$$

Accuracy of mirroring defined by the V_{DS4} and V_{DS1}

$$\frac{\mathbf{I_{OUT}}}{\mathbf{I_{IN}}} = \frac{(1 + \lambda \mathbf{V_{DS1}})}{(1 + \lambda \mathbf{V_{DS4}})}$$

$$\mathbf{V_{DS3}} = \mathbf{V_{GS}}$$

$$ext{V}_{ ext{DS1}} pprox 2 ext{V}_{ ext{GS}} - ext{V}_{ ext{GS}} = ext{V}_{ ext{GS}} ? ?$$

Indian Institute Of Technology, Kharagpur, India Bibhu Datta Sahoo AS and Engineering LAB, Department of E&ECE

Cascode Current Source → Reducing V_{compliance}

- R_{out} is better than without cascading ⁽³⁾
- Reduces V_{compliance} ⊚
- Accuracy of mirroring compromised ⊗
- Power is increased as extra branch required to drop a V_{GS} ⊗

Indian Institute Of Technology, Kharagpur, India Bibhu Datta Sahoo Asper Analog Signal Processing, Integrated circuit Research and Engineering LAB, Department of E&ECE

Triode-Saturation Biasing Circuit

- M₆ operates in saturation
- M₅ operates in triode region with V_{DS5} = V_{dsat}. How do you size it??

$$I_{IN6} = rac{k'}{2} \Big(rac{W}{L}\Big)_6 (V_{GS6} - V_{TH})^2 \ I_{IN5} = rac{k'}{2} \Big(rac{W}{L}\Big)_5 (2(V_{GS5} - V_{TH})V_{DS5}) - (V_{DS5})^2 \Big)$$

- ullet Goal is to set $\,V_{DS5}=V_{dsat}\,$ when $\,V_{GS6}=V_{TH}+V_{dsat}\,$ resulting in $\,V_{GS5}=V_{GS6}+V_{DS5}=V_{TH}+2V_{dsat}\,$
- Thus, substituting I_{IN5} , VDS_5 , VGS_6 , and V_{GS5} above in I_{IN6} we get,

$$\frac{k'}{2}\Big(\frac{W}{L}\Big)_6(V_{dsat})^2=\frac{k'}{2}\Big(\frac{W}{L}\Big)_5\big(2(2V_{dsat})V_{dsat})-(V_{dsat})^2\big)$$

resulting in

$$\left(\frac{W}{L}\right)_5 = \frac{1}{3} \left(\frac{W}{L}\right)_6$$

- In reality ratio would be different due to body-effect. Simulation should be used to size it.
- In nanometer-CMOS the ratio would not be 1/3 but could be 1/4 to 1/5.

Indian Institute Of Technology, Kharagpur, India Bibhu Datta Sahoo Asparate Analog Signal Processing, Integrated circuit Research

Cascode Current Source → Reducing V_{compliance} & Power

Sooch cascode current mirror

$$\begin{split} I_{IN6} &= \tfrac{k'}{2} \Big(\tfrac{W}{L} \Big)_6 (V_{GS6} - V_{TH})^2 \\ I_{IN5} &= \tfrac{k'}{2} \Big(\tfrac{W}{L} \Big)_5 \big(2(V_{GS5} - V_{TH}) V_{DS5}) - (V_{DS5})^2 \big) \end{split}$$

- R_{out} is better than without cascoding [©]
- Reduces V_{compliance} to 2V_{ov} ©
- Accuracy of mirroring ≈ 100% ☺
- Power is not compromised ^③
- Supply voltage required is high ⊗
- The goal is to set $V_{DS5} = V_{dsat}$ when $V_{GS6} = V_{TH} + V_{dsat}$ $V_{GS5} = V_{GS6} + V_{DS5} = V_{TH} + V_{dsat}$
- Thue

$$\begin{split} \frac{k'}{2} \Big(\frac{W}{L}\Big)_6 (V_{dsat})^2 &= \frac{k'}{2} \Big(\frac{W}{L}\Big)_5 \big(2(2V_{dsat})V_{dsat}\big) - (V_{dsat})^2 \big) \\ \clubsuit \Big(\frac{W}{L}\Big)_5 &= \frac{1}{3} \Big(\frac{W}{L}\Big)_6 \end{split}$$

- Consider effect of M $_{4}$ \Rightarrow $V_{DS3} = V_{G2} V_{GS4}$ where $V_{G2} = V_{GS3} + V_{DS5}$
- Ignoring channel length modulation: $V_{G2} = (V_{TH} + V_{dsat}) + V_{dsat} = V_{TH} + 2V_{dsat}$
- Similarly, $V_{GS4} = V_{TH} + V_{dsat}$
- Thus, $V_{DS3} = V_{dsat} \rightarrow$ Perfect mirroring

Indian Institute Of Technology, Kharagpur, India Bibhu Datta Sahoo Analog Signal Processing, Integrated circuit Research and Engineering LAB, Department of E&ECE

Low-Voltage Sooch Cascode

Indian Institute Of Technology, Kharagpur, India Bibhu Datta Sahoo Ashoo Analog Signal Processing, Integrated circuit Research and Engineering LAB, Department of E&ECE