Introduction to Information Retrieval

Introducing Information Retrieval and Web Search

Why IR?

- Web sites increasing sharply
- Internet users increasing continuously
- Current web(more than 1 billion users so more than 1000 billion pages)
- Google
- more than 3 million documents indexed
- 10-20TB of text on web
- Approx. more than 1000TB of information produced every year

How big Facebook data?

- 2.5 billion content items shared per day
- 2.7 billion likes per day, 300 million photos uploaded per day.
- 100+ petabytes of disk space in one of the FB's largest HADOOP(HDFS) clusters.
- 105 terabytes of data scanned via HIVE every 30 minutes.
- 70,000 queries executed on these databases per day
- 500+ terabytes of new data ingested into the databases every day.

Keywords in IR

- A large repository of documents are stored on computers(Corpus). (or distributed across the web).
- There is a topic about which I desire to get information(information need)
- Some of the documents may contain information that satisfies my need(Relevance).
- How do I retrieve these documents?
- I communicate my information need in the form of query.

Structures data

 How the query is expressed will depend on whether the data in the document corpus is structured/unstructured.

• Structures data tends to refer to information in "tables" and has a clear, overt semantic structure.

Employee	Manager	Salary
Ramesh	Vishal	5000000
Mahesh	Ramesh	600000
Suersh	Hardik	40000

Structured Data

- Structured data allows for expressive queries like:
- Give me the aadhar card number of all employees who have stayed with company with more than 5 years, and whose yearly salaries are three standard deviations above average salary

Unstructured Data

- Unstructured data does not have clear, overt semantic structure(e.g. free text on a web page, audio,video).
- Allows less expensive queries of the form
- Give me all documents that have keyword 'Information retrieval system'

Unstructured (text) vs. structured (database) data in the mid-nineties

Unstructured (text) vs. structured (database) data today

Information Retrieval

- Information Retrieval (IR) is finding material (usually documents) of an unstructured nature (usually text) that satisfies an information need from within large collections (usually stored on computers).
 - These days we frequently think first of web search, but there are many other cases:
 - E-mail search
 - Searching your laptop
 - Corporate knowledge bases
 - Legal information retrieval

The problem of IR

 Goal: find documents relevant to an information need from a large document set

An overview of IR system

Information retrieval Vs. Data mining

- Information retrieval: the ability to query a computer system to return relevant results. The most widely used example is the google web search engine.
- Data Mining: the ability to retrieve information from one or more data sources in order to combine it, cluster it, visualize it, and discover patterns in the data.
- Big Data: the ability to manipulate huge volumes of data (that far exceed the capacity of a single machine) in order to perform data mining techniques on that data.

Terminology associated with IR

- Web search
- Multimedia IR
- Cross language IR
- Recommender system

How good are the retrieved docs?

- Precision: Fraction of retrieved docs that are relevant to the user's information need
- Recall: Fraction of relevant docs in collection that are retrieved

 More precise definitions and measurements to follow later

Well known conference

- SIGIR | Special Interest Group on Information Retrieval
- ACM International Conference on Multimedia Retrieval (ICMR)
- KDD-Knowledge Discovery & Data Mining

Introduction to Information Retrieval

Term-document incidence matrices

Unstructured data in 1620

- Which plays of William Shakespeare contain the words Brutus AND Caesar but NOT Calpurnia?
- Linear scan through all the plays of William
- One could grep all of Shakespeare's plays for Brutus and Caesar, then strip out lines containing Calpurnia?
 - Need to repeat this for every query.
 - Works for William plays, but may not work on huge documents collections(billions/trillions of words Slow (for large corpora))
 - Other operations (e.g., find the word *Romans* near *countrymen*) not feasible
 - Ranked retrieval (best documents to return)
 - Can we cut down the time?

Better solution: Preprocess the Corpus in advance and organize the information about the occurrence of different words in a way that speeds up query processing.

Term-document incidence matrices

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	1	1	0	0	0	1
Brutus	1	1	0	1	0	0
Caesar	1	1	0	1	1	1
Calpurnia	0	1	0	0	0	0
Cleopatra	1	0	0	0	0	0
mercy	1	0	1	1	1	1
worser	4	0	. 1	1	1	0

Brutus AND Caesar BUT NOT Calpurnia

1 if play contains word, 0 otherwise

Incidence vectors

- So we have a 0/1 vector for each term.
- To answer query: take the vectors for *Brutus*,
 Caesar and *Calpurnia* (complemented) →
 bitwise *AND*.
 - 110100 AND

 $-110111 AN\Gamma$

-101111 =

-100100

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	1	1	0	0	0	1
Brutus	1	1	0	1	0	0
Caesar	1	1	0	1	1	1
Calpurnia	0	1	0	0	0	0
Cleopatra	1	0	0	0	0	0
mercy	1	0	1	1	1	1
worser	1	0	1	1	1	0

Answers to query

Antony and Cleopatra, Act III, Scene ii

Agrippa [Aside to DOMITIUS ENOBARBUS]: Why, Enobarbus,
When Antony found Julius *Caesar* dead,
He cried almost to roaring; and he wept
When at Philippi he found *Brutus* slain.

Hamlet, Act III, Scene ii

Lord Polonius: I did enact Julius **Caesar** I was killed i' the Capitol; **Brutus** killed me.

Problems with term document incidence matrix

- Frequency of the word is not considered
- Position of the word is not considered

Sec. 1.1

Bigger collections

- Consider N = 1 million documents, each with about 1000 words.
- Avg 6 bytes/word including spaces/punctuation
 - 6GB of data in the documents.
- Say there are M = 500K distinct terms among these.

Sec. 1.1

Can't build the matrix

500K x 1M matrix has half-a-trillion 0's and 1's.

• But it has no more than one billion 1's.

matrix is extremely sparse.

- What's a better representation?
 - We only record the 1 positions.

Introduction to Information Retrieval

The Inverted Index

The key data structure underlying

modern IR

Inverted index

- For each term t, we must store a list of all documents that contain t.
 - Identify each doc by a docID, a document serial number
- Can we used fixed-size arrays for this?

What happens if the word *Caesar* is added to document 14?

Inverted index

- We need variable-size postings lists
 - On disk, a continuous run of postings is normal and best
 - In memory, can use linked lists or variable length arrays

 Posting

Some tradeoffs in size/ease of insertion

Dictionary

Postings

Sorted by docID (more later on why).

Query processing: AND

Consider processing the query:

Brutus AND **Caesar**

- Locate Brutus in the Dictionary;
 - Retrieve its postings.
- Locate Caesar in the Dictionary;
 - Retrieve its postings.
- "Merge" the two postings (intersect the document sets): $2 \rightarrow 4 \rightarrow 8 \rightarrow 16 \rightarrow 32 \rightarrow 64 \rightarrow 128$ Brutus $1 \rightarrow 2 \rightarrow 3 \rightarrow 5 \rightarrow 8 \rightarrow 13 \rightarrow 21 \rightarrow 34$ Caesar

The merge

 Walk through the two postings simultaneously, in time linear in the total number of postings entries

If the list lengths are x and y, the merge takes O(x+y) operations.

<u>Crucial</u>: postings sorted by docID.

Intersecting two postings lists (a "merge" algorithm)

```
INTERSECT(p_1, p_2)
      answer \leftarrow \langle \ \rangle
       while p_1 \neq \text{NIL} and p_2 \neq \text{NIL}
       do if docID(p_1) = docID(p_2)
               then ADD(answer, doclD(p_1))
                      p_1 \leftarrow next(p_1)
                      p_2 \leftarrow next(p_2)
  6
               else if doclD(p_1) < doclD(p_2)
                         then p_1 \leftarrow next(p_1)
                         else p_2 \leftarrow next(p_2)
       return answer
```

Inverted index construction

Initial stages of text processing

- Tokenization
 - Cut character sequence into word tokens
 - Deal with "John's", a state-of-the-art solution
- Normalization
 - Map text and query term to same form
 - You want *U.S.A.* and *USA* to match
- Stemming
 - We may wish different forms of a root to match
 - authorize, authorization
- Stop words
 - We may omit very common words (or not)
 - the, a, to, of

Indexer steps: Token sequence

• Sequence of (Modified token, Document ID) pairs.

Doc 1

I did enact Julius Caesar I was killed i' the Capitol; Brutus killed me. Doc 2

So let it be with Caesar. The noble Brutus hath told you Caesar was ambitious

Term	docID
I	1
did	1
enact	1
julius	1
caesar	1
I	1
was	1
killed	1
i'	1
the	1
capitol	1
brutus	1
killed	1
me	1
so	2
let	2
it	2
be	2
with	2
caesar	2
the	2
noble	2
brutus	2
hath	2
told	2
you	2
caesar	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
was	2
ambitious	2

Indexer steps: Sort

- Sort by terms
 - And then docID

Term	docID
I	1
did	1
enact	1
julius	1
caesar	1
I	1
was	1
killed	1
i'	1
the	1
capitol	1
brutus	1
killed	1
me	1
so	2
let	2
it	2
be	2
with	2
caesar	2
the	2
noble	2
brutus	2
hath	2
told	2
you	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
caesar	2
was	2
ambitious	2

Term	docID
ambitious	2
be	1 2
brutus	1
brutus	2
capitol	1
caesar	1
caesar	2 2 1 1
caesar	2
did	1
enact	
hath	1
I	1
I	1
i'	1
it	2
julius	1
killed	1
killed	1
let	2
me	1
noble	2
so	2
the	1
the	2
told	2
you	2
was	1
was	1 2 2 1 2 2 2 1 2 2 2 2
with	2

Indexer steps: Dictionary & Postings

- Multiple term entries in a single document are merged.
- Split into Dictionary and Postings
- Doc. frequency information is added.

Term	docID 2 2 1 1 2 2 2 2 1 1 1 1 1
ambitious	2
be	2
brutus	1
brutus	2
capitol	1
caesar	1
caesar	2
caesar	2
did	1
enact	1
hath	1
I	1
I	1
i'	1
it	1 2 1
julius	1
killed	1
killed	1
let	2
me	1
noble	2
so	2
the	1
the	2
told	2
you	2
was	1 2 1 2 2 1 2 2 2 2 1 2 2 2 2 2
was	2
with	2

Where do we pay in storage?

Query optimization

- What is the best order for query processing?
- Consider a query that is an AND of n terms.
- For each of the n terms, get its postings, then AND them together.

Query: Brutus AND Calpurnia AND Caesar

The index we just built

How do we process a query?

– Later - what kinds of queries can we process?

Query optimization example

- Process in order of increasing freq:
 - start with smallest set, then keep cutting further.

Execute the query as (Calpurnia AND Brutus) AND Caesar.

Boolean queries: Exact match

- The Boolean retrieval model is being able to ask a query that is a Boolean expression:
 - Boolean Queries are queries using AND, OR and NOT to join query terms
 - Views each document as a set of words
 - Is precise: document matches condition or not.
 - Perhaps the simplest model to build an IR system on
- Primary commercial retrieval tool for 3 decades.
- Many search systems you still use are Boolean:
 - Email, library catalog, Mac OS X Spotlight

Introduction to Information Retrieval

The Boolean Retrieval Model

& Extended Boolean Models

Example: WestLaw http://www.westlaw.com/

- Largest commercial (paying subscribers) legal search service (started 1975; ranking added 1992; new federated search added 2010)
- Tens of terabytes of data; ~700,000 users
- Majority of users still use boolean queries
- Example query:
 - What is the statute of limitations in cases involving the federal tort claims act?
 - LIMIT! /3 STATUTE ACTION /S FEDERAL /2 TORT /3 CLAIM
 - /3 = within 3 words, /S = in same sentence

Example: WestLaw http://www.westlaw.com/

- Another example query:
 - Requirements for disabled people to be able to access a workplace
 - disabl! /p access! /s work-site work-place (employment /3 place
- Note that SPACE is disjunction, not conjunction!
- Long, precise queries; proximity operators; incrementally developed; not like web search
- Many professional searchers still like Boolean search
 - You know exactly what you are getting
- But that doesn't mean it actually works better....

Boolean queries: More general merges

• Exercise: Adapt the merge for the queries:

Brutus AND NOT Caesar
Brutus OR NOT Caesar

• Can we still run through the merge in time O(x+y)? What can we achieve?

Sec. 1.3

Merging

What about an arbitrary Boolean formula? (Brutus OR Caesar) AND NOT (Antony OR Cleopatra)

- Can we always merge in "linear" time?
 - Linear in what?
- Can we do better?

More general optimization

- e.g., (madding OR crowd) AND (ignoble OR strife)
- Get doc. freq.'s for all terms.
- Estimate the size of each *OR* by the sum of its doc. freq.'s (conservative).
- Process in increasing order of OR sizes.

Exercise

 Recommend a query processing order for

(tangerine OR trees) AND (marmalade OR skies) AND (kaleidoscope OR eyes)

Which two terms should we process first?

Term	Freq
eyes	213312
kaleidoscope	87009
marmalade	107913
skies	271658
tangerine	46653
trees	316812

Query processing exercises

- Exercise: If the query is friends AND romans AND (NOT countrymen), how could we use the freq of countrymen?
- Exercise: Extend the merge to an arbitrary
 Boolean query. Can we always guarantee
 execution in time linear in the total postings size?
- Hint: Begin with the case of a Boolean formula query: in this, each query term appears only once in the query.

Exercise

- Try the search feature at http://www.rhymezone.com/shakespeare/
- Write down five search features you think it could do better

Introduction to Information Retrieval

Phrase queries and positional indexes

Phrase queries

- We want to be able to answer queries such as "stanford university" – as a phrase
- Thus the sentence "I went to university at Stanford" is not a match.
 - The concept of phrase queries has proven easily understood by users; one of the few "advanced search" ideas that works
 - Many more queries are implicit phrase queries
- For this, it no longer suffices to store only
 - <term : docs> entries

A first attempt: Biword indexes

- Index every consecutive pair of terms in the text as a phrase
- For example the text "Friends, Romans,
 Countrymen" would generate the biwords
 - friends romans
 - romans countrymen
- Each of these biwords is now a dictionary term
- Two-word phrase query-processing is now immediate.

Longer phrase queries

- Longer phrases can be processed by breaking them down
- stanford university palo alto can be broken into the Boolean query on biwords:

stanford university AND university palo AND palo alto

Without the docs, we cannot verify that the docs matching the above Boolean query do contain the phrase.

Can have false positives!

Issues for biword indexes

- False positives, as noted before
- Index blowup due to bigger dictionary
 - Infeasible for more than biwords, big even for them

 Biword indexes are not the standard solution (for all biwords) but can be part of a compound strategy

Sec. 2.4.2

Solution 2: Positional indexes

 In the postings, store, for each term the position(s) in which tokens of it appear:

```
<term, number of docs containing term; doc1: position1, position2 ...; doc2: position1, position2 ...; etc.>
```

Positional index example

```
<be: 993427;
1: 7, 18, 33, 72, 86, 231;
2: 3, 149;
4: 17, 191, 291, 430, 434;
5: 363, 367, ...>
Which of docs 1,2,4,5
could contain "to be
or not to be"?
```

- For phrase queries, we use a merge algorithm recursively at the document level
- But we now need to deal with more than just equality

- Extract inverted index entries for each distinct term: *to, be, or, not.*
- Merge their doc:position lists to enumerate all positions with "to be or not to be".
 - **to**:
 - 2:1,17,74,222,551; 4:8,16,190,429,433; 7:13,23,191; ...
 - *− be:*
 - 1:17,19; 4:17,191,291,430,434; 5:14,19,101; ...
- Same general method for proximity searches

Proximity queries

- LIMIT! /3 STATUTE /3 FEDERAL /2 TORT
 - Again, here, /k means "within k words of".
- Clearly, positional indexes can be used for such queries; biword indexes cannot.
- Exercise: Adapt the linear merge of postings to handle proximity queries. Can you make it work for any value of k?
 - This is a little tricky to do correctly and efficiently
 - See Figure 2.12 of IIR

Positional index size

- A positional index expands postings storage substantially
 - Even though indices can be compressed
- Nevertheless, a positional index is now standardly used because of the power and usefulness of phrase and proximity queries ... whether used explicitly or implicitly in a ranking retrieval system.

Positional index size

- Need an entry for each occurrence, not just once per document
- Index size depends on average document size Why?
 - Average web page has <1000 terms
 - SEC filings, books, even some epic poems ... easily 100,000 terms

Consider a term with frequency 0.1%

Document size	Postings	Positional postings
1000	1	1
100,000	1	100

Rules of thumb

 A positional index is 2–4 as large as a nonpositional index

 Positional index size 35–50% of volume of original text

 Caveat: all of this holds for "English-like" languages

Combination schemes

- These two approaches can be profitably combined
 - For particular phrases ("Michael Jackson", "Britney Spears") it is inefficient to keep on merging positional postings lists
 - Even more so for phrases like "The Who"
- Williams et al. (2004) evaluate a more sophisticated mixed indexing scheme
 - A typical web query mixture was executed in ¼ of the time of using just a positional index
 - It required 26% more space than having a positional index alone

Introduction to Information Retrieval

Structured vs. Unstructured Data

IR vs. databases: Structured vs unstructured data

Structured data tends to refer to information in "tables"

Employee	Manager	Salary
Smith	Jones	50000
Chang	Smith	60000
lvy	Smith	50000

Typically allows numerical range and exact match (for text) queries, e.g.,

Salary < 60000 AND Manager = Smith.

Unstructured data

- Typically refers to free text
- Allows
 - Keyword queries including operators
 - More sophisticated "concept" queries e.g.,
 - find all web pages dealing with drug abuse
- Classic model for searching text documents

Semi-structured data

- In fact almost no data is "unstructured"
- E.g., this slide has distinctly identified zones such as the *Title* and *Bullets*
 - ... to say nothing of linguistic structure
- Facilitates "semi-structured" search such as
 - Title contains data AND Bullets contain search
- Or even
 - Title is about Object Oriented Programming AND Author something like stro*rup
 - where * is the wild-card operator

The classic search model

