SULLE SUPERFICIE DELL' n=0 ORDINE

IMMERSE NELLO SPAZIO DI *n* DIMENSIONI.

MEMORIA

del dott. P. del Pezzo, a Napoli.

(Seduta del 10 aprile 1887)

§ I. - GENERALITÀ

- 1. Una superficie F_2^n dell'ordine n innmersa nello spazio S_n di n dimensioni, cioè contenuta in S_n e non già in uno $S_{n'}$ con n' < n, è segata da tutti gli S_{n-1} di S_n in ∞^n curve Γ^n immerse negli S_{n-1} rispettivi, le quali vengon chiamate sezioni spaziali di F_2^n . Queste sono o del genere zero, o del genere 1; nel secondo caso si dicono normali, e chiameremo allora le F_2^n normali di prima specie o semplicemente normali, quando non è necessario di distinguerle dalle F_2^n immerse in S_{n+1} , (*) le cui sezioni sono razionali, e che potrebbero chiamarsi superficie normali di o^{ma} specie (**).
- 2. Gli S_{n-2} di S_n tagliano F_2^n in $\infty^{2(n-2)}$ gruppi di n punti G^n , e quando la tagliano in più di n punti, hanno in comune con essa una curva. In generale uno S_k (k < n 2) non incontra la F_2^n in nessun punto, ma vi sono $\infty^{2(k+1)}$ S_k (k + 1)-secanti determinati dai suoi punti a k + 1 a k + 1, ed in particolare ∞^4 corde (rette bisecanti) ed ∞^6 piani trisecanti.

Uno S_k non può incontrare evidentemente F_2^n in k+3, nè in un maggior numero di punti, perchè altrimenti ogni S_{n-2} determinato

^(*) Csc. A: Sulle superficie dell'ordine n immerse negli spazi di n + 1 dimensioni (Rend. della R. Acc. delle Scienze Fis. e Mat. di Napoli, settembre 1885).

^(**) Per la desinizione delle supersicie normali di pma specie csr. A: Intorno ad una proprietà fondamentale, ecc. (Rend. della R. Acc. di Napoli, sebbrajo 1887).

da questo S_k e da altri n-k-2 punti di F_2^n la incontrerebbe in n+1 o più punti. Se S_k taglia F_2^n in k+2 punti, allora essendovi $\infty^{2(n-k+3)}$ S_{n-k-2} (n-k-2)-secanti, e per uno S_{n-k-1} l'appoggiarsi ad uno S_k equivalendo a 3 condizioni, vi saranno $\infty^{2(n-k-2)-3}$ S_{n-k-1} (n-k-2)-secanti, che si appoggiano ad S_k , e gli S_{n-2} passanti per S_k , per uno di questi S_{n-k-1} , e per un altro punto di F_2^n la incontrerebbero in k+2+n-k-2+1=n+1 punti; il che è impossibile. Questo ragionamento cade in difetto quando 2(n-k-2)-3=2(n-k)-7<0 (1), perchè allora non vi sono S_{n-k-1} (n-k-2)-secanti, che si appoggiano ad S_k . La (1) ci dà $k \ge n-3$. Sicchè possono esistere degli S_{n-1} (n-1)-secanti.

3. Quando si costruiscono tutti gli S_{k+1} determinati dagli ∞^2 punti di F_1^n , e da uno S_k di S_n , e poi si segano questi S_{k+1} con uno S_{n-k-1} , si ottiene in S_{n-k-1} una superficie Φ_2 , e si dirà, che si è projettata la F_2^n da S_k , ovvero anche da k+1 punti, sopra S_{n-k-1} . La Φ_2 dicesi projezione di F_2^n , quello S_k e quei k+1 punti diconsi spazio centrale e centri della projezione, e li indicheremo costantemente col simbolo O_k e colle lettere o, o', o'', ... Una F_2^n è projettata da n-3 punti di S_n (cioè dallo S_{n-2} determinato da quegli n-3 punti) sopra uno S_3 in una superficie ordinaria del nostro spazio Φ_2 . Gli S_{n-1} e gli S_{n-2} di S_n uscenti dai centri di projezione segano S_3 nei suoi piani e nelle sue rette, ed F_2^n nelle curve Γ^n e nei gruppi G^n , che vengono projettati sopra S_3 nelle curve piane sezioni di Φ_2 , e nei gruppi di punti sezioni delle rette con Φ_3 . Sicchè la Φ_2 risulta in generale dell'ordine n.

La projezione di F_2^n sopra S_3 da n-3 centri o, o', o'', \ldots può scomporsi in n-3 projezioni successive a questo modo. Si projetti F_2^n da o sopra uno S_{n-1} di S_n , e si otterrà una F_2^{n} in S_{n-1} . Si projetti F_2^{n} sopra uno S_{n-1} di S_{n-1} dal punto \overline{o} o' $S_{n-1} \equiv \omega'$, e si otterrà una F_2^{n} in S_{n-2} . Si projetti F_2^{n} sopra uno S_{n-1} di S_{n-2} dal punto \overline{o} o' \overline{o} o' \overline{o} o' \overline{o} o' \overline{o} o' \overline{o} o' o' \overline{o} sopra uno \overline{o} e si otterrà una \overline{o} in \overline{o} sopra uno \overline{o} projetti \overline{o} projetti \overline{o} sopra uno \overline{o} sopra uno \overline{o} di \overline{o} projetti \overline{o} sopra uno \overline{o} sopra uno \overline{o} di \overline{o} projetti \overline{o} o' \overline{o} o

4. Projettando la F_2^n da n-3 suoi punti o, o', o'', ... sopra S_3 , gli S_{n-3} determinati dai punti o e da un punto qualunque di F_2^n forniscono sopra S_3 i punti della Φ_3 . Se ogni S_{n-3} che contiene n-2

punti di F_3^n ne contenesse un altro, la projezione non risulterebbe univoca. Ma ciò è impossibile. Poichè allora i gruppi G^n sarebbero di tal natura che i loro punti ad n-2 ad n-2 determinerebbero degli S_{n-3} , ciascuno, dei quali conterrebbe un altro degli n punti. Il che non può avvenire, salvo quando tutti gli n punti giacciano in un S_{n-3} . Infatti sieno $P_1, P_2, P_3, \ldots, P_n$ gli n punti di G_n , lo $S_{n-3} \equiv P_3 P_4 \ldots P_n$ contenga P_2 , e lo $S_{n-3} \equiv P_1 P_2 P_3 \ldots P_{n-2}$ contenga P_{n-1} , allora i due S_{n-3} coincidono, perchè determinati ambedue dai punti $P_2 P_3 \ldots P_{n-1}$, e ciascuno contenendo tutti gli n punti P_3 la P_2^n non sarebbe più immersa in S_n . Sicchè:

Una superficie dell'ordine n immersa nello spazio di n dimensioni è sempre univocamente projettata sul nostro spazio da n-3 suoi punti in posizione arbitraria.

§ II. - PIANI TANGENTI.

5. Per un punto semplice P di F_2^n passano ∞^{n-1} sezioni spaziali Γ^n , ciascuna delle quali possiede in P una tangente t, che si dice anche tangente ad F_2^n . Per una t passano ∞^{n-2} S_{n-1} , che contengono il punto P ed il punto P' infinitamente vicino a P sulla direzione t, essi tagliano quindi F_2^n in ∞^{n-2} curve Γ^n che toccano la stessa t. Ne risulta che il numero delle tangenti in P ad F_2^n è semplicemente infinito. Quante se ne appoggiano ad un qualunque S_{n-2} di S_n ? Per S_{n-2} e per P passa un solo S_{n-1} , e la tangente in P alla sua sezione Γ^n si appoggia ad S_{n-2} : viceversa se una t si appoggia ad S_{n-2} , essa tocca la sezione di uno S_{n-1} passante per S_{n-2} e per P, dunque una sola t si appoggia ad S_{n-2} , e si ha che :

Le tangenti in un punto della superficie hanno per luogo un piano π che diremo tangente alla superficie.

6. Uno S_{n-t} uscente da π determina una Γ^n , che ha due intersezioni riunite in P con ogni retta t, cioè passa per P con due rami: viceversa lo S_{n-t} di ogni Γ^n , che ha un punto doppio in P, contiene le sue due tangenti in P, e quindi contiene π . Chiamando tangente ogni spazio uscente da un piano tangente, diremo che:

Gli S_{n-1} tangenti, ed essi soli, segano F_2^n in curve dotate di un punto doppio.

7. Per un S_{n-1} il passare per un piano equivale a tre condizioni. Vi sono ∞^2 piani tangenti a F_2^n , quindi gli S_{n-1} tangenti soddistano ad una sola condizione, e sono in numero ∞^{n-1} . Ne discende anche che:

Per una sezione spaziale di F_2^* l'avere un punto doppio importa una sola condizione.

8. Se le superficie di cui ci occupiamo sono rigate dell'ordine n immerse in S_n , le indicheremo col simbolo R_2^n . Per ogni punto P di R_2^n passa una sua generatrice g, la quale evidentemente è contenuta nel piano π tangente in P, si stacca dalle sezioni degli S_{n-1} uscenti da π , e giace in qualunque spazio passante per π . Uno S_{n-1} tangente taglia R_2^n in una generatrice g e in una ulteriore curva Γ^{n-1} . Cioè:

La sezione di ogni S_{n-1} tangente a una rigata si spezza in una generatrice e in una rimanente curva.

9. Uno S_{n-1} passante per h generatrici di R_2^n ($2h \ge n$) la sega ulteriormente in una Γ^{n-b} , la quale non può stare in uno S_{n-b-1} , perchè altrimenti ogni S_{n-b-1} di S_{n-b-1} sarebbe (n-h) - secante della superficie (n° 2); essa dunque è immersa in uno S_{n-b} , ed è razionale, come pure tutte le sue sezioni sono razionali:

Una superficie rigata di ordine n immersa nello spazio di n dimensioni è sempre razionale.

Dai ragionamenti precedenti e dall' enunciato è escluso il caso che la superficie sia un cono.

10. Gli S_{n-1} tangenti in P ad una F_2^n (non rigata) sono intersezioni di due S_{n-1} tangenti in P, ciascuno dei quali sega la superficie secondo una curva Γ^n dotata di un punto doppio in P: quattro delle intersezioni delle due Γ^n sono assorbite in P, quindi:

Uno S_{n-2} tangente sega una F_2^n in soli n-4 punti fuori del punto di contatto.

11. Un gruppo di piani che a due a due si segano in rette, o è

immerso in S_3 o i suoi piani concorrono in una stessa retta. Per modo che se i piani tangenti ad F_2^n s'incontrano a due a due in rette, essa è immersa in S_3 . Quando è rigata i piani tangenti nei punti di una generatrice g sono determinati da g e dai punti della g' infinitamente vicina a g, formano perciò un fascio immerso nello $S_3 \equiv gg'$, che può chiamarsi tangente lungo la generatrice g. Onde: i piani tangenti ad una R_2^n rigata si distribuiscono in una scrie di fasci.

12. I piani di S_4 si tagliano a due a due in punti. Ma se i piani di un gruppo, non passando per uno stesso punto, si tagliano a due a due in punti esso è o immerso o contenuto in S_5 . Supponiamo l' esistenza di una superficie G_2 immersa in S_5 , i cui piani tangenti s' incontrino a due a due. Poichè i suoi ∞^2 piani tangenti incontrano un dato π , ve ne sono ∞ che incontrano una retta tangente t, cioè vi sono ∞ rette tangenti che incontrano una data t, e i loro punti di contatto generano evidentemente una curva piana γ . Inoltre è chiaro che due punti di G_2 determinano una ed una sola curva γ , e che queste sono del 2° ordine, perchè altrimenti ogni corda di G_2 sarebbe una plurisecante. Se ne deduce facilmente che la superficie di cui si tratta è la F_2^4 di S_5 , che contiene un sistema doppiamente infinito di coniche (*), e quindi che non esiste in S^5 una F_2^5 i cui piani tangenti s'incontrano in punti a due a due.

§ III. — Projezione delle F_2^n immerse in S_n sulle Φ_2^3 del nostro spazio.

13. Abbiamo veduto (n¹ 3, e 4) che una F_2^n di S_n è projettata da n-3 centri di projezione sul nostro spazio in una superficie in generale dell'ordine n, e che quando tutti o parte dei centri si scelgono sopra F_2^n , ma ad arbitrio, la projezione risulta univoca. Se uno dei centri

^(*) Csc. Veronese: La supersicie ornaloide normale, ecc. (Memorie della R. Acc. dei Lincei, XIX3); Segre: Considerazioni sulla Geometria delle coniche ecc. (Alti della R. Accademia di Torino, vol. XX); ed A. l. c.

o giace su F_2^n , ogni S_{n-2} uscente dai punti o, o', o'', ... incontra altrove la superficie in soli n-1 punti variabili, ogni retta di S_1 , traccia di quello S_{r-2} , incontra la Φ_2 , projezione di F_2^n , in n-1 punti, e questa risulta dell'ordine n-1. I punti di F_n^n infinitamente vicini ad o giacciono sul piano π tangente in o, questo insieme coi punti o', o'', ... determina uno S_{n-2} , che taglia S_i in una retta r. Le rette tangenti in o stanno in π , e determinano coi punti o', o", ... degli S_{n-1} , che projettano i punti infinitamente vicini ad o nei punti della retta r. Dunque la Φ_2^{n-1} immagine di F_2^n contiene la retta r. Se o ed o' sono scelti sopra F₂ si otterrà per projezione sopra S, una Φ_1^{n-2} , che contiene due rette r ed r' immagini di o ed o'. Queste due rette non s'incontrano, poiché qualora s'incontrassero i due S che le determinano, si taglierebbero secondo uno S_{n-1} , e giacerebbero quindi in uno S_{n-1} , ed essendo i punti o ed o' arbitrari, ne verrebbe che ogni S_{n-1} tangente toccherebbe la F_2^n in un altro punto il che è impossibile. Dalle cose dette ricaviamo che:

I punti e i piani tangenti di una F_2^n immersa in S_n si possono projettare sullo spazio ordinario nei punti e nei piani tangenti di una superficie del 3º ordine Φ_2^1 scegliendo n-3 centri di projezione sulla F_2^n , ma ad arbitrio. I punti infinitamente vicini ai centri di projezione si projettano sopra n-3 rette di Φ_2^3 cive a due a due non s'incontrano.

14. Indicando con r, r', r'', ... le rette di Φ_2^2 immagini dei centri o, una retta s di Φ_2^2 che non si appoggia alle r è projezione di una curva di F_2^n che non passa per nessuno dei punti o, e quindi è essa stessa una retta. In generale una curva dell' ordine h contenuta in F_2^n che passa per k punti o è projettata sopra una curva di Φ_2^n dell'ordine h - k e che si appoggia alle k rette r corrispondenti. Viceversa una curva di Φ_2^n dell'ordine t e che si appoggia ad l rette r è l'immagine di una curva di F_2^n dell'ordine t + l che passa per gli l punti o corrispondenti a quelle rette r.

§ IV. — Classificazione delle F_2^n immerse in S_n .

- 15. Una superficie del 3° ordine del nostro spazio può essere un cono, una rigata, o una superficie non rigata, e le F_2^n di S_n possono venir projettate sopra queste tre specie di Φ_2^n . Esamineremo separatamente i tre casi.
- 16. E dapprima se la F_2^n di S_n è projettata da n-3 suoi punti sopra un cono di S_3 , e non è essa stessa un cono, allora scomponendo tal projezione in n-3 successive, come si è esposto al n^a 3, una volta accadrà, che una Φ_2^h di S_h è projettata da un suo punto o in cono K_2^{h-1} di S_{h-1} . Uno S_{h-2} di S_{h-1} passante pel vertice k di K_2^{h-1} lo taglia in h-1 rette s, e quindi uno S_{h-1} di S_h passante per o e per k taglia Φ_2^h almeno in h-1 curve distinte e tali che la somma dei loro ordini è quanto h. Tenendo conto che le rette s entrano simmetricamente nella projezione, se ne deduce facilmente che lo S_{h-1} di S_h taglia Φ_2^h in h-1 rette projettate nelle s e in una rimanente passante per s, le quali tutte debbono appoggiarsi alle s. Dunque s è una rigata che possiede una direttrice rettilinea s s. Ma quando il centro s non è situato in una maniera speciale sulla s s allora per ogni punto di s dovrà passare una retta, alla quale si appoggiano tutte le generatrici, cioè s è un cono. Si enuncia perciò che:

Una F_2^n immersa in S_n , che da n-3 suoi punti arbitrari è projettata sopra un cono cubico di S_3 , è essa stessa un cono.

- 17. Vi sono due specie di coni dell'ordine n in S_n , i razionali e gli ellittici, secondochè la loro sezione è razionale o una curva normale ellittica. Le loro proprietà si deducono immediatamente da quelle della loro sezione. Essi costituiscono le curve razionali e le curve ellittiche di ordine n nello spazio lineare ad n-1 dimensioni generato dalle rette (elementi) di un S_n concorrenti in un punto. Per questa ragione non ce ne occuperemo in seguito.
- 18. Esaminiamo il secondo caso, quando la Φ_2^1 di S_3 , projezione di F_2^n , è una cubica rigata. Poichè una retta di Φ_2^1 , che non si appoggia alle rette r corrispondenti ai centri o è semple l'immagine di una retta della F_2^n (n° 14), ne risulta immediatamente che :

Quando una F_n^n di S_n è projettata da n-3 suoi punti arbitrari in una superficie rigata del 3° ordine, anch'essa è una rigata.

Questo ragionamento è basato sull'ipotesi che l'immagine dei centri o sieno altrettante generatrici di Φ_2^3 , ciò che avverrà, sempre quando vi sieno più centri o, non potendosi le rette immagini incontrare fra loro. Ma quando il centro o è unico, e si tratta di una F_2^4 di S_4 , allora la sua immagine può essere: o una generatrice di Φ_2^3 , ed il teorema precedente resta tal quale; ovvero può essere la direttrice semplice di Φ_2^3 , allora le sue generatrici rappresentano coniche di F_2^4 uscenti da o, ed essa non possiede alcuna retta. Sicchè:

Esiste una F⁴ non rigata in S₁ a sezioni razionali che si projetta da un suo punto sul nostro spazio in una superficie rigata del 3° ordine.

Lo studio ulteriore di questa F_2^* farebbe riconoscere agevolmente, che è projezione della F_2^* di S_5 , e quindi conduce, projettata sul nostro spazio, alla superficie romana di Steiner.

19. Finalmente la projezione Φ_2^1 può essere una superficie non rigata del 3° ordine generale ovvero dotata di uno o più punti doppi. In tutti i casi essa non possiede più di 6 rette formanti un sistema sghembo (sestupla). Sicchè quando si voglia che Φ_2^1 non risulti rigata dalla projezione di F_2^n , dev'essere $n-3 \ge 6$, $n \ge 9$: e mettendo questa conclusione in confronto coll' enunciato del n° prec., si ha che:

Le superficie dell'ordine n immerse nello spazio di n dimensioni per n > 9 sono sempre rigate.

20. Supponendo per ora che la Φ_2^2 sia affatto generale, e ritenendo le solite notazioni per indicare le sue 27 rette, abbiamo, che una F_2^0 di S_3 è projettata da 6 centri giacenti in essa o_1 , o_2 , o_3 , o_4 , o_5 , o_6 in una Φ_2^3 di S_3 , e i punti infinitamente vicini ai punti o si projettano rispettivamente nei punti delle rette a_1 , a_2 , a_3 , a_4 , a_5 , a_6 di una sestupla di Φ_2^3 . Una F_2^n di S_n (n < 9) che sia projettata da n - 3 suoi punti sulla Φ_2^3 in modo che l'immagine di questi centri sieno n - 3 delle rette a, può anche ottenersi projettando la F_2^9 da 9 - n dei punti o, e possiede in generale 9 - n rette, che si projettano nelle rimanenti rette a. Una coppia, una terna, una quadrupla di rette di Φ_2^3 è sempre contenuta in una sestupla : perciò le F_2^5 di S_4 , F_2^6 di S_6 , F_2^7 di S_7 , posseggono sempre almeno A_1 , A_2 , rette rispet-

tivamente. Ma di quintuple in Φ_2^1 ve ne sono di due specie. Una quintupla come a_1 , a_2 , a_3 , a_4 , a_5 la quale fa parte di una sestupla, ed una come a_1 , a_2 , a_3 , a_4 , c_5 6, la quale non fa parte di una sestupla, e perciò ogni altra retta di Φ_2^1 si appoggia ad una o a più delle sue rette. Quando una F_2^3 di S_8 , è projettata da 5 suoi punti in modo, che le immagini dei centri costituiscono una quintupla di prima specie a_1 , a_2 , a_3 , a_4 , a_5 , allora la presenza della retta a_6 ci dice che F_2^8 ammette una retta. Ma quando le immagini dei centri di projezione costituiscono una quintupla di seconda specie, allora F_2^8 non possiede rette. Se ne inferisce la possibile esistenza di due specie di F_2^8 in S_8 : l'una che possiede una retta, e che può essere projezione di una F_2^9 , di S_9 ; l'altra che non possiede rette, e quindi non può ricavarsi per projezione dalla F_2^9 di S_9 . Daremo in appresso la costruzione e diverse proprietà di tutte queste F_2^n di S_n che abbiamo qui enumerate.

21. Resta a contemplare il caso in cui la Φ_2^3 , pur non essendo rigata, ammetta uno o più punti doppi. Se P è un punto doppio conico di Φ_2^1 , scomponendo la projezione come al n^o 3, si scorge che o F_2^n ha un punto doppio conico, ovvero una volta almeno una F_2^b di S_b è projettata da un suo punto in una F_2^{b-1} di S_{b-1} dotata di un punto doppio conico P. Esiste allora in F_2^b una serie semplicemente infinita di tangenti, che si projetta da un punto qualunque fuori di esse nel cono k_2^a tangente in P, vale a dire che quella serie costituisce un cono di 2^o ordine, il cui vertice è un punto doppio di F_2^b . Dunque:

Quando una F_2^n di S_n è projettata da centri arbitrariamente scelti su, o fuori, di essa in un' altra superficie dotata di un punto doppio conico, possiede anch'essa un punto doppio coni.o.

22. Se per gli n-3 centri o passa uno S_{n-3} (n-1)-secante, questo projetta i rimanenti due punti A ed A' della F_2^n in un solo punto doppio per Φ_2^1 con due piani tangenti provenienti dai due piani tangenti ad F_2^n in A ed A'. Sicchè:

Un punto doppio biplanare di Φ_2^1 può essere projezione o di un punto doppio biplanare o di due punti distinti di F_2^n .

23. Sopra una F_2^n non rigata di S_n , la quale possiede un punto doppio conico o si scelgano altri n-4 punti o', o'', ... Ogni S_{n-2} uscente da questi punti incontra altrove la F_2^n in altri 2 punti, e quindi essa è projettata sopra S_3 dai centri o in una quadrica Q_2^n . Lè immagini dei centri o', o'', ... sono rette di Q_2^n appartenenti ad uno stesso sistema, e l'immagine del centro o è una conica. Riserbandoci esaminare in appresso alcuni casi di F_2^n dotate di punti doppi, enunciamo intanto che:

Una F_2^n di S_n dotata di un punto doppio è projettata da questo e da altri suoi n - 1 punti in una quadrica del nostro spazio.

§ V. — Delle rigate di ordine n immerse nello spazio di n dimensioni.

24. Intorno alle rigate di ordine n immerse nello spazio di n dimensioni vi sono a fare alcune brevi considerazioni, le quali mostrano che esse si deducono tutte per projezione dalle rigate di ordine n immerse nello spazio di n + 1 dimensioni.

Projettando una R_2^n immersa in S_n da n-3 suoi punti o sulla R_2^n di S_3 le immagini dei centri o sieno n-3 sue generatrici r. Le generatrici p, p', p'', ... di R_2^n uscenti dai centri o, o', o'', ... rispettivamente si projettano in n-3 punti P, P', P'', ... di R_2^n situati sulle r, r', r'', ... rispettivamente, di guisa che P ed r presi insieme rappresentano p ed o in modo che ad ogni punto di p corrisponde costantemente P; p0 e ad p0 corrisponde un punto qualunque di p1. Ad una curva p2 di p3, che si appoggia p3 volte a p3, e passa p3 volte per p4 corrisponde una curva di p5 dell' ordine p7 che si appoggia p7 volte ad p8 e passa p8 volte per p9. In particolare le sezioni spaziali di p9 sono rappresentate in p1 da curve di ordine p2 che passano semplicemente pei punti p3. La direttrice semplice di p3 è immagine di una curva di p4 che passa una volta per ciascun punto p8 e perciò dell'ordine p9.

25. La direttrice doppia di R_2^3 determina coi centri o una S_{n-2} che taglia R_2^n secondo una C^{n-1} . Ogni S_{n-3} di questo S_{n-2} uscente dai cen-

tri o incontra C^{-1} e R_2^n in altri due punti che si projettano insieme su un punto della direttrice doppia. Cioè:

Per n-3 qualunque punti di R_2^n passano un fascio di S_{n-3} (n-1)-secanti.

26. I punti di due sezioni di una R_2^n sono riferiti projettivamente mediante le sue generatrici. Anzi le rette di S_n , che uniscono i punti cortispondenti di due C^n razionali projettive, immerse in due S_{n-1} , e che hanno n punti comuni, formano una R_2^n . Tali due C^n possono in infiniti modi considerarsi come projezioni da uno stesso centro A di due C^n immerse in due S_n di uno S_{n+1} ed aventi n punti comuni, queste saranno anche tra loro projettive, e le rette che uniscono i punti corrispondenti generano una R_2^n di S_{n+1} che si projetta da A sulla R_2^n di S_n . Dunque:

Ogni rigata dell'ordine n inmersa in S_n è projezione di una rigata dello stesso ordine immersa in S_{n+1} .

27. Le proprietà riguardanti le R_2^n di S_n si ottengono dunque da quelle delle R_2^n di S_{n+1} come pure in generale le proprietà di ogni superficie rigata razionale. Lo studio delle R_2^n di S_{n+1} è fatto dal Segre(*) e se ne ricava fra gli altri teoremi il seguente:

Le R_2^n di S_n si classificano in $\frac{n-1}{2}$ ovvero $\frac{n}{2}$ specie, caratterizzate ciascuna dall' ordine minimo di una direttrice, che può variare da 1 ad $\frac{n-1}{2}$ o ad $\frac{n}{2}$ secondo che n è dispari o pari.

In altri termini appartengono alla 1^n , alla 2^n , alla 3^n , ecc. specie quelle R_1^n che posseggono una retta, una conica, una cubica gobba direttrice, ecc. rispettivamente. Una R_2^n possiede sempre una curva direttrice dell'ordine $\frac{n-1}{2}$ o $\frac{n}{2}$. Anzi quando n è pari le direttrici di ordine $\frac{n}{2}$ sono in numero semplicemente infinito.

^(*) Sulle rigate razionali in uno spazio lineare qualunque (Atti della R. Acc. della Scienze di Torino, Vol. XIX.)

28. Si osservi che quando R_2^n possiede una direttrice D^m dell'ordine m ($m \ge \frac{n}{2}$), se degli n-3 centri di projezione m se ne scelgono sopra D^m , la projezione di R_2^n è un cono cubico razionale. (cfr. n° 16). Infatti un altro punto di D^m insieme coi centri determina uno S_{n-1} , che contiene D^m . La traccia di tale S_{n-1} , sopra S_1 , è un punto K pel quale passano tutte le generatrici della projezione, visto che le generatrici di R_2^n si appoggiano tutte a D^m .

In un punto P della R_1^n oltre alle rette tangenti alle sezioni passanti per P vi sono i piani osculatori, gli S_3 4-tangenti, gli S_4 5-tangenti, ecc. Ora se si considera la generatrice g passante per P ed altre r-1 successive a g, queste determinano uno S_{2r-1} nel quale giacciono tutti gli S_{r-1} r-tangenti in P come in un altro qualunque punto di g. Questo può chiamarsi lo S_{2r-1} r-tangente a P. Tali considerazioni che del resto si possono applicare ad una rigata qualunque, mostrano come non si trova nei punti delle rigate la medesima serie di spazi r-tangenti che nei punti di una superficie non rigata (*).

§ VI. — SULLE RETTE APPARTENENTI ALLE F_2^n non righte di S_n .

29. Le F_2^n di S_n ($n \ge 9$) sono projettate, come si è detto, da n-3 loro punti, quando non sono rigate, sopra una Φ_2^1 generale di S_3 . Le immagini dei centri di projezione o, o', o'', ... sono n-3 rette di Φ_2^1 formanti un sistema gobbo il quale fa parte sempre di una sestupla, salvo il caso n=8 in cui può farne o no parte. Riserbandoci di trattare dopo questo secondo caso, per ora restereno sempre nell'ipotesi che il detto sistema gobbo appartenga ad una sestupla.

30. In tali ipotesi sieno a_1 , a_2 , a_3 , ... le n-3 rette immagini dei centri o. Tutte le rette di Φ_2^3 che non si appoggiano a nessuna delle a sono projezioni di rette della F_2^n ed è evidente che quando due di queste s'incontrano o non, le loro projezioni s'incontrano o non; e reciprocamente. Ne deriva che se dalla configurazione delle 27 rette

^(*) Cfr. A: Sugli spazi tangenti ad una superficie o ad una varietà.

di Φ_2^3 stacchiamo la (n-3)-pla $a_1, a_2 \ldots$ e tutte le sue secanti e plurisecanti, la configurazione delle rimanenti rette è identica a quella delle rette di F_2^n .

31. Ponendo successivamente n = 4, 5, 6, 7, 8, 9 ne ricaviamo che: 1° La F_2^4 di S_4 possiede 16 rette. Queste si possono indicare con:

Le note convenzioni sul significato degli indici esprimono le loro mutue relazioni, e definiscono completamente la risultante configurazione.

2º La F; di S, possiede 10 rette, formanti la configurazione:

$$a_3$$
 a_4 a_5 a_6
 c_{34} c_{35} c_{36}
 c_{45} c_{46}

3° La F_2^6 di S_6 possiede 6 rette a_4 , a_5 , a_6 , c_{45} , c_{46} , c_{56} , distribuite in due terne coniugate tali, che ogni retta dell' una è bisecante dell'altra.

4° La F_2^7 di S_7 possiede 3 rette a_5 , a_6 , c_{56} , una delle quali si appoggia alle altre due che non s'incontrano fra loro.

5° La F⁸ di S₈ di prima specie ha una retta.

6º La F di S, non ha retta alcuna.

32. Le rette di Φ_2^3 che si appoggiano a k delle a_1 , a_2 ... immagini degli n-3 punti o rappresentano curve razionali dell'ordine k+r, che passano pei k punti o corrispondenti. Ma poichè i punti o sono arbitrariamente scelti sulla F_2^n , ne inferiamo l'esistenza di un sistema e, k volte infinito, di C^{k+1} , tale che k punti qualunque di F_2^n ne determinano una. Ogni retta r di Φ_2^1 che si appoggia alle a dà luogo a un

sistema e, che diremo coniugato alla retta r. Le curve di e sono projettate dai centri o in curve di Φ' dello stesso ordine formanti un analogo sistema e' coniugato ad r'. Ad e' appartengono curve dalle quali si separano una, o più, delle rette a, e sono projezioni di quelle curve di e che passano per uno, o più, dei punti o; e finalmente ci appartiene la curva formata dalle k rette a insieme con r, la quale è projezione della curva di a passante per tutti i punti o. Possiamo così riconoscere la presenza di coniche, di cubiche gobbe, di C^4 razionali, ecc. sopra Φ_3^3 , ed in ciascun caso vedere le relazioni che corrono fra queste curve e le rette di φ3. Inoltre, procedendo sempre col metodo indicato, quelle curve razionali, che si appoggiano ad una, o a più, delle k rette a, ci indicano l'esistenza di altri sistemi di curve razionali, di ordine più alto in F_1^n , da questi ricaviamo per projezione sistemi di curve dello stesso ordine in Φ_i^* , e così sempre avanti. Otteniamo dunque, partendo dalle sole rette di Φ3, un mezzo per stabilire le curve razionali di tutti gli ordini contenute tanto in Φ_2^3 quanto nella F_2^n . È inutile insistere sopra questa ricerca minuziosa. Farò solo notare che, mentre le altre F_a^n posseggono rette e coniche, la curva del più piccolo ordine contenuta nella F_2^9 di S_9 è la cubica gobba.

33. Dalle cose dette si deduce immediatamente che:

Le F_i di S_i sono tutte rappresentabili, eccetto i coni ellittici.

Poichè si possono projetture sulle diverse specie di superficie cubiche del nostro spazio, e fra queste i soli coni ellittici non sono rappresentabili.

34. Dalla nota rappresentazione della superficie generale del 3° ordine si ricavano quelle delle F_2^n non rigate e generali di S_n , tranne la F_2^8 di S_8 e di seconda specie, di cui ci occuperemo a parte. Una qualunque sezione spaziale di F_2^n ($n \ge 9$) è una C^n ellittica, che non passa pei punti o, e che si appoggia una volta a ciascuna retta di F_2^n , essa è dunque projettata sopra Φ_2^3 in una Γ^n , la quale non si appoggia alle n-3 rette a_1, a_2, \ldots immagini dei punti o, e si appoggia una

volta alle rimanenti rette della sestupla. Ora se indichiamo con A_1 , A_2 ,... i 6 punti base del sistema triplo di cubiche piane, che rappresenta la Φ_2^3 , le immagini delle predette Γ^n si troveranno nelle cubiche che non passano per gli n-3 punti A_1 , A_2 ,... e che passano pei rimanenti punti base. Dunque :

Il sistema n volte infinito di cubiche piane con 9 — n punti base semplici rappresenta una F_2^n non rigata immersa in S_n ; e reciprocamente: ogni F_2^n generale non rigata immersa in S_n , tranne la F_2^n di seconda specie, è rappresentabile sul piano col sistema ∞^n di cubiche che passano per 9 — n punti assegnati.

35. La F_2^9 di S_2 è rappresentata sul piano dal sistema lineare ∞^9 di tutte le cubiche piane : ad ogni cubica piana corrisponde una sezione spaziale C^9 e lo S_8 in cui questa è immersa; ai 9 punti che le cubiche hanno in comune a due a due corrispondono i gruppi di 9 punti intersezioni della F2 cogli S2 di S2. Le rette del piano rappresentano cubiche gobbe in numero doppiamente infinito contenute in F_{z}^{o} , che si tagliano a due a due in un punto, e sono le curve del minimo ordine giacenti in F_2^9 . Affinche la F_2^9 sia projettata da un centro o sopra una superacie di minor ordine è necessario che o stia sopra F_2^9 ; allora si ottiene per projezione una F_2^8 di S_8 . Le sezioni di F_2^8 saranno projezione delle sezioni di $F_{\frac{a}{2}}^{9}$ passanti per o. Se ad o corrisponde nel piano il punto A_6 , le cubiche passanti per A_6 rappresentano le sezioni di F_2^9 passanti per o e quindi tutte le sezioni di F_2^8 . I punti infinitamente vicini ad o sono projettati nei punti di una retta di F3, ch'è rappresentata sul piano dal punto base A_6 . È poi evidente che la F_2^8 di S_8 di seconda specie, la quale non possiede rette, non può risultare come projezione della F_3^9 di S_3 . Estendendo la discussione precedente, e riassumendo, abbiamo che:

Le F_2^n generali di S_n , tranne la F_2^3 di seconda specie, sono tutte projezioni della F_2^9 immersa in S_9 , e ciascuna è projezione di quelle di ordine più alto.

§ VIII. — Projezione delle superficie da piani tangenti. S_{ς} osculatori.

36. Una F_2^n non rigata di S_n per $n \ge 6$ può projettarsi da un piano tangente sopra uno S_{n-i} . Tal projezione equivale a quella fatta da tre centri comunque situati sopra un piano tangente, ed in particolare da tre centri scelti sulla superficie, infinitamente vicini tra loro, ma non giacenti sopra una stessa sezione. Gli S_{n-2} uscenti dal piano tangente π incontrano la F_2^n in altri n-4 punti fuori del punto di contatto e segano S_{n-3} nei suoi S_{n-5} , i quali taglieranno la projezione di F_2^n in soli n-4 punti variabili. Dunque:

Una F_2^n non rigata e generale di S_n per $9 \ge n \ge 6$ è projettuta da un suo piano tangente in una Φ_2^{n-1} immersa in S_{n-1} .

37. Le Φ_2^{n-4} di S_{n-3} da considerasi nel nostro caso sono: la quadrica di S_3 , la cubica rigata immersa in S_4 , due specie di superficie del 4° ordine in S_5 , cioè la rigata e quella che non contiene nessuna retta, e finalmente la superficie del 5° ordine in S_6 che è sempre rigata. La F_2^9 di S_9 è projettata da un suo piano tangente sulla Φ_2^6 di S_6 . Per projettarla da un suo piano tangente π e da un suo punto σ possiamo decomporre la projezione in due, prima projettandola da π , e poi la Φ_2^6 di S_6 che ne risulta dal suo punto σ 0' immagine di σ 1; se ne ottiene la σ 2 rigata di σ 3. Avremmo potuto prima projettare la σ 3 di σ 4 di σ 5 di σ 6 e poi la σ 5 di σ 6 risultante, dal suo piano tangente σ 7, immagine di σ 7, e saremmo giunti evidentemente alla medesima σ 9 di σ 9. Se ne trae che:

La F_s^s di prima specie immersa in S_s è projettata da un suo piano tangente sulla Φ_s^4 rigata di S_s .

38. In un punto P delle F_2^n immerse in S_n , oltre alla serie delle rette tangenti alle sezioni passanti per P, le quali generano il piano π tangente, vi è luogo a considerare la serie dei piani ω osculatori in P alle sezioni medesime. Questi piani ω segano π nelle rette tangenti, e quindi determinano con π degli S_1 i quali projettano da π i punti

di F_a^* infinitamente vicini a P. Ciascuna sezione passante per P possiede in P un piano osculatore ω . Per un piano ω passano ∞^{n-1} S_{n-1} le cui sezioni osculano ω , talchè il numero dei piani ω è doppiamente infinito. Quando uno S_a determinato da π e da un piano ω si appoggia ad un qualunque S_{n-1} dello S_n , esso giace nello S_{n-1} determinato da S_{n-1} e da π . Viceversa uno S_{n-1} uscente da π dà luogo ad una sezione spaziale con due rami per P, e quindi a due piani ω : esso contiene dunque due, e due soli, dei sopradetti S_a . Ne segue, che questi S_a sono in numero semplicemente infinito, e generano un cono K_a col sostegno π . Questi ragionamenti non reggono se non per $n \ge 5$. Pel caso n > 5 abbiamo intanto che:

Projettando una F_1^n di S_n da un suo piano tangente, le immagini dei punti infinitamente vicini al contatto è una conica che giace sulla projezione.

- 39. Il cono K_4^2 è immerso in uno spazio Π_5 , che diremo osculatore in P alla F_2^n . Le sezioni fatte con S_{n-1} uscenti da Π_5 posseggono infiniti piani osculatori in P; esse dunque hanno almeno un punto triplo, ma poichè in generale le sezioni sono del genere I, vuol dire che queste si spezzano.
- 40. Nella superficie che risulta come projezione di una F_2^n di S_n da un suo piano tangente π in P, le sezioni spaziali sono projezioni di quelle di F_2^n che passano con due rami per P. Le immagini di queste nel sistema rappresentativo piano di F_2^n sono le cubiche che hanno un dato punto doppio K. Ne conchiudiamo che:

Le Φ_2^c di S_6 e Φ_2^c rigata di S_5 , projezioni della F_2^o di S_6 e della F_3^b di prima specie immersa in S_8 , sono rappresentate dal sistema delle cubiche piane con un punto doppio base e con zero o I punti base semplici rispettivamente. Il punto base doppio rappresenta una conica direttrice della superficie.

Si ritrovano così i noti sistemi rappresentativi di quelle superficie (*). Anche per la quadrica di S_4 e la Φ_2^3 di S_4 si trovano sistemi rappresentativi che non sono però i più semplici. Potremo usare in generale questa locuzione:

^(*) Segre, l. c.

La projezione di una F₁ da un suo piano tangente, equivale alla introduzione di un punto doppio base nel suo sistema rappresentativo.

41. Se una sezione spaziale di F_1^n possiede un punto triplo in P_1 , anche la sua immagine nella rappresentazione piana passa con tre rami pel punto P' corrispondente a P_1 , cioè si spezza in tre rette concorrenti in P'. Queste rappresentano isolatamente tre curve razionali di F_2^n , cioè rette, coniche o cubiche gobbe, secondo la posizione che ciascuna delle tre rette ha verso i punti fondamentali. In particolare diremo:

Gli S_{n-1} osculatori di una F_2^9 immersa in S_9 , la tagliano secondo tre cubiche gobbe concorrenti nel punto di osculazione.

§ IX. — SULLA SUPERFICIE DELL'OTTAVO ORDINE E DI SECONDA SPECIE IMMERSA NELLO SPAZIO DI OTTO DIMENSIONI.

42. Sieno c_{12} , a_3 , a_4 , a_5 , a_6 le rette di una quintupla di seconda specie, cioè che non anmette alcuna nullisecante, formata colle rette di Φ_3^3 , e supponiamo che una F_2^8 di S_8 si projetti da 5 suoi punti o, o', o'', ... sopra Φ_2^3 , in modo che le immagini dei centri di projezione sieno le rette della quintupla ordinatamente. La quintupla ammette 10 secanti semplici, cioè due per ciascuna retta, che sono: a_1 , a_2 ; c_{11} , c_{21} ; c_{12} , c_{24} ; c_{15} , c_{25} ; c_{16} , c_{26} . Le rette a_1 ed a_2 rappresentano due coniche di F_2^8 passanti pel punto o che corrisponde a c_{12} , analogamente per le altre secanti. Ma poichè i centri sono arbitrariamente scelti sulla superficie, ne discende che:

La F_2^8 immersa in S_8 possiede due sistemi semplicemente infiniti di coniche: per ogni suo punto passa una conica di ciascun sistema. Due coniche s' incontrano, o no, secondo che appartengono a diversi, o allo stesso sistema.

43. La quintupla data non ha bisecanti; se ne inferisce che F_2^8 non possiede cubiche gobbe; poichè, se ne avesse, scegliendo due dei centri sulla cubica, si otterrebbe nella projezione Φ_2^3 una quintupla di seconda specie con rette bisecanti.

La quintupla data ammette delle trisecanti una per ciascuna terna

delle due rette; p. e: la b_6 si appoggia ad a_3 , a_4 , a_5 e non alle rimanenti due. Queste ci dicono che:

La F_2^n possiede un sistema lineare triplo di quartiche normali, tale che per tre suoi punti ne passa una sola.

Non vi sono quadrisecanti della quintupla, e quindi non vi sono quintiche in F_2^8 .

44. Finalmente vi sono due rette b_1 e b_2 le quali si appoggiano a tutte quelle della quintupla, e ci rivelano che:

La F_2^8 possiede due sistemi lineari di sestiche normali: per cinque suoi punti passa una sestica di ciascun sistema; due sestiche di sistema opposto hanno cinque punti comuni; due dello stesso sistema ne hanno quattro.

45. Per un punto P di F_2^3 passano due coniche γ e γ' che toccano il piano tangente π in P. Non vi passano cubiche. E vi passa un sistema doppiamente infinito di quartiche normali C^4 , tangenti a π , e tali che due altri punti qualunque di F3 ne determinano una, ed esse s'incontrano in un punto a due a due. Ora projettando F_z^s da π si ottiene sopra S, una Φ⁴₂, come già sappiamo. I punti vicinissimi a P si projettano nei punti di una conica α di Φį. I piani delle coniche y e y', che sono osculatori in P alla F_{*}^{*} , determinano con π due S_i , che projettano tutti i punti di γ e di γ' in due punti G e G'di x. Le C^4 passanti per P si projettano in altrettante coniche di Φ_s^4 , le quali pure godranno della proprietà che due punti di Φi ne determinano una, ed esse s'incontrano a due a due in un punto. Si scorge subito che la Φ⁴ non ha rette poichè queste non appoggiandosi a κ² proverrebbero da rette di F_2^8 , ovvero appoggiandosi a x^2 una o due volte dovrebbero venire da cubiche o da quintiche passanti per P con uno o due rami rispettivamente. Dall'insieme di questi ragionamenti raccogliamo che:

La F_2^8 immersa in S_8 è projettata da un suo piano tangente in una superficie del 4° ordine non vigata immersa in S_3 .

46. Le sezioni spaziali di F_2^8 incontrano due volte tanto γ quanto γ' , esse si projettano quindi sopra Φ_2^4 in un ∞^8 C^8 , le quali hanno

due punti doppi in G e G'. La C^4 di F_2^8 determinata da P, da un punto di γ e da uno di γ' , si spezza evidentemente in γ e γ' . Ma vi sono ∞ C^4 che si appoggiano a γ e non a γ' , ed ∞ che si appoggiano a γ' e non a γ : queste si projettano nelle coniche di Φ_2^4 che passano per G e G' rispettivamente. Finalmente le sezioni di Φ_2^4 sono immagini delle sezioni di F_2^8 , che passano con due rami per P.

47. Dai centri G e G' projettiamo la Φ_2^4 sopra S_1 . Si ottiene una quadrica Q, e i punti vicinissimi a G e G' si projettano nei punti di due rette r ed r' appartenenti a sistemi opposti di Q. Le C^8 passanti con due rami per G e G', immagini delle sezioni spaziali di F_2^8 , si projettano nelle C^4 di genere I di Q, che incontrano due volte le rette di ciascun sistema. Dunque alle ∞^8 sezioni di F_2^8 possiamo far corrispondere le ∞^8 $C^{2,2}$ di una quadrica Q. Due qualunque C^8 di F_2^8 si incontrano in 8 punti, come pure due $C^{2,2}$ di Q. Reciprocamente, il sistema lineare 8 volte infinito delle quartiche di prima specie contenute in una quadrica Q è tale che due qualunque di esse si segano in 8 punti. Dunque, se lo mettiamo in corrispondenza projettiva cogli S_7 di S_8 , esso rappresenta appunto una superficie dell'ottavo ordine immersa in quello S_8 . Riassumendo:

La F_2^8 di seconda specie immersa in S_8 può rappresentarsi sopra una quadrica di S_4 , assumendo come sistema rappresentativo quello delle curve del 4° ordine e di genere 1 appartenenti alla quadrica.

48. Le curve piane del 4° ordine e di genere i che hanno due punti doppi fissi I e II corrispondono nella rappresentazione piana della quadrica Q alle sue $C^{2,2}$; perciò il sistema ∞^8 di queste curve può assumersi come rappresentativo della F_2^8 di seconda specie in S_8 . È facile anche di accorgersi, che questo è il suo sistema rappresentativo di ordine minimo.

Il sistema rappresentativo piano della F_2^8 di seconda specie immersa in S_8 si compone di tutte le quartiche con due punti base doppi.

49. Le proprietà della F_2^8 già enunciate, ed altre ancora, si ricavano immediatamente dall'esame della rappresentazione piana. Si ha p. e. che la Φ_2^4 di S_5 , projezione di F_2^8 da un suo piano tangente, è rap-

presentata dalle curve del 4° ordine con tre punti base doppi, il qual sistema si riduce con una trasformazione a quello di tutte le coniche del piano. La F_2^7 immersa in S_7 che si deduce dalla F_2^8 projettandola da un suo punto è rappresentata dalle curve piane del 4° ordine con due punti base doppi e uno semplice, il qual sistema si riduce con trasformazione quadratica a quello delle cubiche piane con due punti base. Ne segue che:

- Le F_2^n immerse in S_n per n < 8 sono projezioni della F_2^8 di seconda specie immersa in S_8 .
- 50. Rappresentando la Φ_2^3 di S_3 colle curve del 4° ordine piane con due punti base doppi e cinque semplici, questi cinque rappresentano le rette di una quintupla di seconda specie. Togliendo dalle condizioni del sistema rappresentativo i cinque punti base semplici, si giunge immantinenti a definire la F_2° mediante la sua rappresentazione piana.
- 51. Si osservi anche che in conseguenza del nº 47 si può ottenere una rappresentazione delle F_2^n di S_n per $n \ge 8$ ed in particolare della F_2^3 del nostro spazio sopra una quadrica Q_2^a , facendo corrispondere alle sezioni spaziali della F_2^n le $C^{2,2}$ di Q_2^a , le quali passano per 0, 1, 2, 3, 4, 5 punti fissi di Q_2^a rispettivamente.

§ X. — Alcune varietà di tre dimensioni le cui sezioni spaziali sono delle F_1^n immerse in S_n .

52. Le quadriche Q_2^2 del nostro spazio sono ∞^9 e tre di esse si tagliano in 8 punti. Se le riferiamo agli S_8 di uno S_9 , agli S_7 di S_9 corrisponderanno fasci di Q_2^2 e le $C^{2,2}$ base degli stessi fasci, come pure agli S_7 di S_9 le reti di Q_2^2 e i gruppi di 8 punti base di queste reti. In conseguenza ai punti del nostro spazio corrisponderanno i punti di una varietà di tre dimensioni e dell'ottavo ordine immersa in S_9 , alle cui prime sezioni fatte cogli S_8 corrispondono le Q_2^2 , ed alle seconde sezioni fatte cogli S_7 le $C^{2,2}$ di S_3 . Questa M_3^8 nella geometria dello S_9 delle quadriche inviluppo del nostro spazio si può anche definire come il luogo delle quadriche inviluppo degenerate in un punto

doppio, e gode di notevoli proprietà che non è qui il luogo di enumerare. Poichè ad una sua sezione spaziale corrisponde una Q_2^2 di S_3 , ed alle sezioni di questa le $C^{2,2}$ giacenti sulla stessa Q_2^2 si ha che :

La F_2^8 di seconda specie immersa in S_8 è sezione della M_3^8 immersa in S_9 rappresentata col sistema lineare di tutte le quadriche di S_3 .

Si può anche dimostrare reciprocamente che:

Se la sezione di una M_3^8 immersa in S_9 è una F_2^8 di seconda specie essa è rappresentabile col sistema lineare di tutte le quadriche di S_3 .

53. Projettando la M_3^8 di S_9 da 1, 2, 3, 4, 5 centri scelti su di essa si ottengono altre M_3^n immerse in S_{n+1} (3 $\overline{\gtrsim}$ n < 8), i cui sistemi rappresentativi si compongono delle Q_1^2 di S_3 che passano per 1, 2, 3, 4, 5 punti fissi rispettivamente, le quali posseggono ordinatamente 1, 2, 3, 4, 5 piani indipendenti fra loro, e le cui sezioni sono le F_2^n di S_n per 3 $\overline{\gtrsim}$ n < 8. Reciprocamente in forza del nº 51 possiamo anche dire che:

Le F_2^n di S_n per 3 $\overline{\gtrsim}$ n < 8 si possono considerare come le sezioni delle M_3^n di S_{n+1} rappresentabili sopra S_3 col sistema delle quadriche che passano per 8 — n punti base fissi.

54. Nè queste sono le sole varietà dell'ordine n immerse in S_{n+1} le cui sezioni sono F_2^n immerse in S_n e non rigate. P. c. il sistema delle Φ_2^3 del nostro spazio che passano per una C^3 del genere 2 e per una sua trisecante r, è 4 volte infinito. Due Φ_2^3 del sistema si tagliano ulteriormente secondo una C^3 piana, e tre Φ_2^3 in tre punti variabili. Sicchè esso può assumersi come rappresentativo di una M_3^3 di S_4 , la quale possiede un piano π rappresentato dalla retta r, e 4 punti doppi: uno rappresentato dalla quadrica passante per C^5 ed r la quale non incontra le Φ_2^3 fuori degli elementi fondamentali, e i rimanenti tre dai tre punti C^5 . Reciprocamente se una M_3^3 di S_4 possiede un piano π , possiede anche, come è noto, (*) quattro punti doppi giacenti su π . Projettandola da uno dei punti doppi se ne ottiene una rappresentazione univoca sopra S_3 , ed alle sue sezioni corrispondono appunto le Φ_2^3 del sistema considerato. Togliendo ora dagli elementi base del

^(*) Cfr. A: Sulle Projezioni, ecc.

sistema la trisecante r, se ne ricava un altro composto di tutte le Φ_2^1 che passano per una C^5 fissa del genere 2, due delle quali si tagliano ulteriormente secondo una curva del quart' ordine e di prima specie, e tre in quattro punti variabili. Questo è il sistema rappresentativo di una M_1^4 di S_2 , che non possiede piani, che si projetta da un suo punto sulla M_3^3 di S_4 precedentemente definita, e la cui sezione è una F_2^4 generale di S_4 . Ríassumendo:

Ogni superficio generale del 3° ordine del nostro spazio può considerarsi come sezione spaziale di una varietà del 3° ordine e di tre dimensioni immersa in S, la quale possegga un piano.

La F_2^+ di S_4^- è sezione di una M_3^+ di S_5^- rappresentabile sopra S_3^- col sistema delle Φ_3^+ che passano per una curva del 5° ordine di genere 2.

55. Sempre basandoci sull'esame di sistemi lineari di superficie generali del 3° ordine possiamo definire altre varietà dell'ordine n immerse in S_{n+1} . Il sistema delle Φ_2^3 passanti per una curva del 4° ordine C^+ di genere zero è 6 volte infinito. Due Φ_1^3 si segano inoltre secondo una curva del 5° ordine del genere 1, che si appoggia in 10 punti a C+, e tre si segano in 5 punti variabili. Esso dunque è il sistema rappresentativo di una M_1^5 di S_6 , la quale non possiede nessun piano, e la cui sezione è una F_3^5 immersa in S_3 . Projettando la medesima M_3^5 da un suo punto sopra S_5 si ottiene una M_3^4 , che possiede un piano immagine del centro di projezione, ed il cui sistema rappresentativo sopra S, è costituito dalle o le quali contengono una C4 razionale ed una sua trisecante r. Finalmente projettando la stessa M3 da due suoi punti sopra S_A si ottiene una M_3^3 con due piani in posizione indipendente (oltre ad altri piani) immagini dei centri di projezione, il cui sistema rappresentativo è dato dalle 43 che passano per una C4 razionale e per due sue trisecanti r ed r'. Riassumendo:

Le F_2^s di S_4 , le F_2^4 di S_4 , le F_2^s di S_3 possono considerarsi come sezioni rispettivamente di M_3^s di S_6 che non posseggono piani, di M_3^4 di S_5 che posseggono un piano solo, e di M_3^3 di S_4 che posseggono due soli piani in posizione indipendente.

56. Una M_1^3 di S_4 non può possedere più di cinque piani π tra loro indipendenti. Poichè, se ne possedesse sei, uno S_4 tangente in un

punto P la taglierebbe secondo una F_2^* dotata di un punto doppio P e di una sestupla di rette comuni ad S_1 ed ai sei piani π , ciò ch' è impossibile. Inoltre una retta qualunque r di M_3^* si appoggia sempre ad un piano π . Infatti conducendo in un punto P di r lo S_1 tangente ad M_3^* questo la taglia secondo una F_2^* per la quale P è doppio : fra le rette di F_2^* uscenti da π vi è r. I piani π segano S_1 in cinque rette di una quintupla di F_2^* , delle quali una almeno si appoggia ad r. Ne discende che uno S_1 taglia M_3^* in una F_2^* , ed i piani π in una sua quintupla di seconda specie cioè non appartenente a una sestupla.

Ciò posto se esistesse una M_3^9 in S_{10} non composta di infiniti piani questa da 6 suoi punti dovrebbe projettarsi su S_4 in una M_3^3 dotata di 6 piani indipendenti senza averne infiniti, il che non può essere.

Si consideri una M_3^8 di S_9 e una sua sezione F_2^8 di S_8 , questa è sempre di seconda specie. Infatti scegliendo su di essa cinque centri o ad arbitrio, e projettando la M_3^8 e la F_2^8 si ottiene una M_3^3 ed una sua sezione F_2^3 . La M_3^3 ha cinque piani indipendenti π immagini dei punti o, e l'immagine dei medesimi punti sopra F_2^3 sono cinque rette di una quintupla di seconda specie, quindi F_2^8 è di seconda specie. Conchiuderemo che:

La F_2^9 di S_9 e la F_2^8 di S_8 di prima specie non si possono considerare come totali sezioni di nessuna varietà a più dimensioni.

§ XI. — F_{z}^{u} di S_{u} dotate di punti doppi conici.

- 57. Una superficie immersa in uno spazio di più dimensioni può fornire per projezione sopra uno spazio di minor numero di dimensioni un'altra superficie dotata di punti doppi conici, senza che la primitiva ne possegga: basta scegliere convenientemente i centri di projezione, come ne vedremo alcuni esempi in questo paragrafo.
- 58. Nel sistema lineare di tutte le cubiche piane rappresentativo di una F_2^9 immersa in S_9 una conica γ rappresenta una C^6 razionale appartenente ad F_2^9 , e per cinque punti qualunque di F_2^9 passa una tale C^6 . Ora se invece di scegliere comunque 6 centri di projezione o sulla F_2^9 si prendano sopra una stessa C^6 , la projezione di F_2^9 sopra

 S_1 sarà una superficie cubica dotata di un punto doppio D; i sei punti fondamentali del sistema rappresentativo giaceranno sopra una conica γ . Gli S_8 determinati dai centri o e dai piani tangenti ad F_2^o nei punti di C^o passano per un medesimo S_7 determinato dai centri o e dal punto D. Analogamente si può stabilire le particolarità nella giacitura dei centri di projezione per ottenere dalle altre F_2^o di S_1 la F_2^o di S_3 con un punto doppio. P. e. projettando la F_2^o di S_4 da un centro preso sopra una sua retta, projettando la F_2^o di S_3 da due centri presi sopra una sua conica, ecc.

59. Se tre punti fondamentali nel sistema rappresentativo della Φ_2^3 di S_3 giacciono in una retta, questa è l'immagine di un punto doppio conico. Ricordando le cose dette al nº 21, ne discende che:

Projettando la F_2^9 di S_2 da tre punti situati sopra una sua C^3 si ottiene una F_2^6 in S_6 con un punto doppio. Projettandola da cinque punti, due situati su C^3 , due sopra $C^{\prime 3}$ ed il quinto comune a C^3 e $C^{\prime 3}$, si ottiene una F_2^4 con due punti doppi. Finalmente projettandola da sei punti, che a tre a tre giacciono sopra tre C^3 , ovvero che sieno le intersezioni di quattro C^3 a due a due, si perviene alla Φ_2^3 di S_3 dotata di tre o quattro punti doppi.

60. Sia t una retta tangente in o alla F_2^o di S_9 . Projettandola da t si ottiene una F_2^o in S_7 . Fra i piani projettanti vi è il piano ω tangente in o, che incontra S_7 in un punto D. Le sezioni spaziali di F_2^o passanti per D sono le projezioni di quelle sezioni di F_2^o fatti cogli S_8 uscenti da ω , ed hanno perciò tutte un punto doppio in D, cioè D è doppio per la F_2^o . Inoltre gli S_3 determinati da ω e dai punti di F_2^o vicinissimi ad ω generano un cono K_2^o il cui sostegno è ω (n° 38): la projezione di questo cono da t è un'altro cono proprio K_2^o il cui vertice è D, ed è generato dalle tangenti in D alla F_2^o , sicchè D è punto doppio conico. Diremo dunque che:

Una F_2^n di S_n è projettata da una sua tangente in una F_2^{n-1} di S_{n-2} dotata di un punto doppio conico. (*)

^(*) E cost avviene anche in generale per una F_2^n di S_m .

- 61. Profittando di tale enunciato possiamo dedurre dalla F_2^9 una F_2^7 e una F_2^6 dotate di un punto doppio conico, una F_2^6 e una F_2^6 dotate di uno o due punti doppi conici. Finalmente basandoci sulle considerazioni dei ni. 58, 59 e 60 possiamo costruire una F_2^6 di S_3 con uno, due, tre o quattro punti doppi conici. Si trae anche facilmente dalle cose dette quali sieno i sistemi rappresentativi delle precedenti superficie.
- 62. Si osservi che la projezione di una F_2^* di S_n da un suo punto doppio D è una F_2^{n-2} in S_{n-1} la quale a sua volta può projettarsi sopra una quadrica del nostro spazio. Sicchè le proprietà delle F_2^n di S_n dotate di punto doppio, specialmente per quanto riguarda la determinazione delle curve passanti pel punto doppio, si possono tutte dedurre dalla geometria della quadrica.
 - § XII. Superficie del nostro spazio che si deducono dalle F_2^n di S_n ,
- 63. La projezione di una F_2^n di S_n non rigata (3 $\overline{\geq}$ n $\overline{\geq}$ 9) da n-3 centri o comunque situati in S_n è una Φ_2^n di S_3 , le sezioni di F_2^n passanti pei centri o sono projettate nelle sezioni di Φ_2^n , queste dunque sono del genere 1.

La projezione sul nostro spazio da centri arbitrari di una superficie non rigata dell'ordine n immersa nello spazio di n dimensioni è una superficie dell'ordine n a sezioni piane ellittiche, la quale possiede in generale una curva doppia dell'ordine $\frac{n(n-3)}{2}$.

64. Si ottengono dunque rispettivamente:

Dalla $F_{\frac{1}{2}}$ di S_{4} la superficie del 4° ordine con conica doppia (superficie di Steiner) (*).

^(*) Csr. Segre: Etude des différentes surfaces du 4° ordre à conique double ou cuspidule (générale ou décomposée) considérées comme des projections de l'intersection de deux variétés quadratiques de l'espace à quatre dimensions (Muth. Ann. XXIV).

Dalla F₂ di S₃ la superficie del 5° ordine con una curva doppia del 5° ordine (superficie di Caporali). (*)

Dalla F_2^6 di S_6 una superficie del 6° ordine con curva doppia del 9° ordine.

Dalla $F_{\frac{7}{2}}$ di S_{7} una superficie del 7° ordine con curva doppia del 14° ordine.

Dalle F_2^8 di S_8 due specie di superficie dell'8° ordine con curva doppia del 20° ordine, l'una che possiede una retta, l'altra che n'è priva.

Dalla F_2^9 di S_9 una superficie del 9° ordine con una curva doppia del 27° ordine.

Tutte queste superficie possono egualmente dedursi dalla F_1^9 di S_9 (salvo la Φ_2^8 di 2^n specie) ponendo alcuni dei centri di projezione su F_2^9 , come pure per n < 8 si possono dedurre analogamente dalla F_3^8 , di S_8 .

- 65. Il sistema rappresentativo piano di queste superficie Φ_1^n del nostro spazio si deduce immediatamente da quello delle rispettive superficie obbiettive in S_n , sottoponendo le curve del sistema a soddisfare (oltre le condizioni a cui già sono soggette, rappresentate da punti base) ad altre n-3 condizioni lineari affatto generali. Le superficie Φ_2^n posseggono tante rette quante le rispettive F_2^n , costituenti una identica configurazione. La determinazione delle curve esistenti sulle Φ_2^n come pure de' loro scambievoli rapporti di giacitura si può fare immediatamente, sia ricavandola dall'analoga determinazione sulla superficie obbiettiva, sia dallo studio del sistema rappresentativo. Perciò non insisteremo su queste proprietà generali delle Φ_2^n .
- 66. Messa da parte la Φ_2^3 di seconda specie, per le altre Φ_2^n lo studio del loro sistema rappresentativo fornisce i numeri seguenti:

I coni circoscritti a Φ_2^n sono dell'ordine 2n e del genere n+1. La classe di una Φ_2^n è sempre = 12.

Per un punto qualunque dello spazio passano 24 piani tangenti stazionari e 2n + 30 piani tangenti doppi di Φ_2^n .

^(*) Caporali: Sulla superficie del 5° ordine dotata di una curva doppia del 5° ordine (Annali di Matematica, VII2).

La curva doppia di Φ_2^n è dell'ordine $\frac{n(n-3)}{2}$, possiede n=4(n-3) punti cuspidali, $t=\frac{(n-2)(n-3)(n-4)}{6}$ punti tripli, ed il suo genere è $\pi=\frac{(n-4)(n-5)}{2}$.

La sviluppabile dei piani tangenti alla Φ_1^n lungo i punti della curva doppia è della classe $\alpha = 2(n-2)(n-3)$.

La curva parabolica di una Φ_n^n è dell'ordine 4n e del genere 2n + 13. La sviluppabile dei piani tangenti stazionari è dell'ordine 6(n + 2), della 24^{ma} classe, del genere 2n + 13 e possiede 2(30 - n) piani tangenti inflessionali.

Etcetera.

67. Ne risultano i seguenti numeri caratteristici per le F_n^* di S_n . Il primo rango di una sezione spaziale è 2n. Gli S_{n-1} tangenti i quali passano per uno S_{n-1} costituiscono un cono tangente dell' ordine 2n e del genere n+1 in generale, ma quando lo S_{n-1} sostegno del cono contiene uno o più punti della superficie questi numeri si riducono di altrettante unità.

Il primo rango della superficie, cioè il numero dei suoi S_{n-1} tangenti appartenenti ad un fascio qualunque, è sempre 12.

Le corde di una qualunque sezione spaziale che si appoggiano ad uno S_{n-4} del suo spazio sono $\frac{n(n-3)}{n-2}$.

Vi sono 4(n-3) tangenti della superficie che si appoggiano ad un qualunque S_{n-4} , ed $\frac{(n-2)(n-3)(n-4)}{6}$ piani trisecanti che segano un qualunque S_{n-1} secondo una retta. Etc.

- § XIII. Ogni superficie rappresentabile a sezioni ellittiche è projezione di una F_2^* immersa in S_a .
- 68. Abbiasi nello spazio a k dimensioni una superficie rappresentabile dell'ordine n le cui sezioni sieno del genere 1: il suo sistema

rappresentativo si componga di curve C^m piane dell'ordine m e del genere i, e sia k volte infinito. Possegga inoltre i punti base P_i singulari di qualsivoglia singolarità. Sieno:

 E_i l'abbassamento prodotto nel genere di una C^m dalla presenza della singolarità P_i .

 I_i il numero delle intersezioni assorbite in P_i fra due C^m .

 C_i il numero delle condizioni alle quali dee soddisfare una C^m per avere nel punto P_i la singolarità P_i .

Si ha la relazione: (*)

$$C_i = I_i - E_i$$

Ora sieno E, I, C i numeri analoghi ai precedenti per l'insieme di tutte le singolarità date P_i . Avremo in generale

$$E = \sum_{i} E_{i}, i = \sum_{i} I_{i}, C = \sum_{i} C_{i} - \varphi, \qquad (t)$$

dove o indica un numero intero, e quindi

$$C + \varphi = I - E. \tag{2}$$

Se oltre a quelle fornite dalla presenza dei detti punti base le curve del sistema dato debbono soddisfare ed altre θ condizioni lineari, allora togliendo quest'ultime si ottiene un altro sistema $k+\theta$ volte infinito che rappresenta una superficie dell'ordine n nello spazio di $k+\theta$ dimensioni, a sezioni del genere τ , la quale è projettata da θ punti del suo spazio nella primitiva superficie data. Avremo quindi:

$$\frac{1}{2}(m-1)(m-2) - E = 1, \frac{1}{2} m(m+3) - C = k+\theta,$$

$$m^2 - 1 = n$$

^(*) Csc. Guccia: Sur une question concernant les points singuliers des courbes algébriques planes (Comptes Rendus de l'Académie des Sciences, t. CIII, ottobre 1886).

e da queste equazioni sommando le prime due e sottraendo la terza si ha in virtù delle (1) e (2).

$$k + \theta = n + \varphi. \tag{3}$$

Ma una superficie dell'ordine n a sezioni ellittiche è immersa al più in uno spazio di n dimensioni, dunque sarà $\varphi = 0$. Ne conchiudiamo intanto che:

Tra i numeri caratteristici delle singolarità di una curva piana di genere 1 esiste la relazione:

$$\sum_{i} C_{i} = \sum_{i} I_{i} - \sum_{i} E_{i},$$

semprechè essa possegga inoltre almeno 3 costanti arbitrarie.

69. In seguito a tale enunciato la (3) deve scriversi

$$k+\theta=n, \tag{4}$$

la quale tenendo presente le cose dette innanzi ci dice che:

Ogni superficie rappresentabile a sezioni piane ellittiche e dell'ordine n o è immersa nello spazio di n dimensioni, o è projezione di una superficie dell'ordine n immersa nello spazio di n dimensioni.

Ovvero anche in virtù dei risultati che già conosciamo:

Ogni superficie rappresentabile a sezioni spaziali ellittiche è projezione della F_2^9 non rigata immersa in S_9 o della F_2^8 di seconda specie immersa in S_8 ovvero di ambeduc le predette superficie.

70. Sicchè:

Tutte le superficie rappresentabili a sezioni piane ellittiche sono quelle enumerate al SXII o loro casi particolari.

71. Due sistemi rappresentativi di una medesima superficie di S, danno luogo ad una corrispondenza Cremoniana fra i punti dei piani

dei due sistemi, per la quale i due sistemi si trasformano l'uno nell'altro. Se ne deduce che: (cfr. ni 34, 48)

Tutti i sistemi k volte infiniti ($k \ge 3$) di curve piane del genere i si possono ridurre con trasformazioni Cremoniane ai seguenti tipi:

- 1º sistemi di cubiche piane con e senza punti base semplici.
- 2° sistema di quartiche piane con due punti base doppi (che in particolare stieno vicinissimi) e senza altri punti base.

Napoli, 7 aprile 1887.