Exercises 6.2.4 — Problem 9

Problem. If f is a Riemann integrable function on [a,b] prove that $F(x) = \int_a^x f(t)dt$ satisfies a Lipschitz condition.

Proof. The function F(x) is Lipschitz if there exists a natural number M such that $|F(x) - F(x_0)| \le M|x - x_0|$ for all $x, x_0 \in [a, b]$. Plugging in x, we must have $|\int_a^x f(t)dt - \int_a^{x_0} | \le M|x - x_0|$ for all $x, x_0 \in [a, b]$. Choose $M = \sup_{u \in [a, b]} f(y)$.

Now we will show that $\int_a^x f(t)dt - \int_a^{x_0} f(t)dt = \int_{x_0}^x f(t)dt$. We consider three cases. Case $x = x_0$: then $\int_a^x f(t)dt - \int_a^{x_0} f(t)dt = 0 = \int_{x_0}^x f(t)dt$. Case $x < x_0$: then $\int_a^x f(t)dt - \int_a^{x_0} f(t)dt = \int_a^x f(t)dt - \int_a^x f(t)dt = \int_a^x f(t)dt = \int_a^x f(t)dt$. Case $x > x_0$: then $\int_a^x f(t)dt - \int_a^x f(t)dt = \int_a^x f(t)dt$.

So now have $|\int_a^x f(t)dt - \int_a^{x_0} f(t)dt| = |\int_{x_0}^x f(t)dt|$. Then we immediately obtain $|\int_{x_0}^x f(t)dt| \le M_0|x - x_0|$ where $M_0 = \sup f(x)$ on $[x_0, x]$ (or $[x, x_0]$ if $x < x_0$). Then $M_0|x - x_0| \le \sup_{x \in [a,b]} f(x)|x - x_0| = M|x - x_0|$. So we have just shown that $|F(x) - F(x_0)| \le M|x - x_0|$ for our chosen M. Therefore F(x) is Lipshitz continuous.