LEZIONI INTERMEDIE

MIGLIORARE L'AFFIDABILITÀ DELLA PROGRAMMAZIONE

By Sanjay and Arvind Seshan

Obiettivi della lezione

- 1. Imparare come rendere il tuo robot più affidabile
- 2. Conoscere i problemi comuni che potresti incontrare
- 3. Scoprire alcune possibili soluzioni

Nota: Questa lezione si concentra sui problemi di affidabilità affrontati dai team FIRST LEGO League. Molti concetti sono applicabili a situazioni di non competizione, ma la terminologia nella lezione e l'obiettivo principale è per i robot da competizione.

Fonti dei problemi

Problema	Impatto
L'allineamento di partenza varia da corsa a corsa	Ogni corsa è diversa e le missioni a volte funzionano, a volte no.
I robot non viaggiano dritto a lungo o non girano esattamente la stessa quantità	È difficile prevedere esattamente la posizione del robot.
Gli errori si accumulano mentre viaggia	Le missioni lunghe tendono a fallire. È difficile fare missioni lontane dalla base
Regolazione motori / attacchi in base	Andare fuori base può essere diverso ogni volta. Le estensioni non funzionano sempre allo stesso modo
I livelli della batteria influiscono sulle prestazioni del motore	Le modifiche che funzionano oggi falliscono domani

I punti di partenza in base sono critici

Nella FIRST LEGO League, i team devono capire da dove partire in base

Preparate una dima che possa permettere l'allineamento al muro del robot in base

- Lo stesso inizio ogni volta: scegliete un punto e iniziate da lì, indipendentemente dalla missione
- Reticolato in pollici: utilizzare i segni dei pollici per scegliere un punto iniziale per ciascuna corsa
- Parole: in base sono scritte parole. Se non siete vicino a linee del reticolato, scegliete una parola o una lettera per iniziare.

Ancora meglio, provate a trovare un modo per allineare il robot usando altre tecniche (vedi la prossima pagina)

Gli errori si accumulano col tempo

Quando il robot arriva al lato opposto del tavolo, non è più nella giusta posizione Soluzione: ripetere le tecniche di allineamento più volte in una corsa per una migliore affidabilità (vedere la diapositiva successiva)

Dove ti trovi nel campo della FLL?

Considerate queste strategie di allineamento comunemente usate:

- Allinearsi contro il muro: muoversi all'indietro appositamente sino a sbattere contro il muro per riprendere posizione (notate: il robot potrebbe andare in stallo facendo questo. Guardate fra le lezioni avanzate quella sullo stallo.
- Allinearsi ad una linea: se il robot non va dritto ma devia di un certo angolo, potete farlo riallineare quando vede una linea. (Vedete fra le lezioni avanzate quella sull'allineamento)
- Muoversi fino ad una linea: andare avanti finché non si trova una linea in maniera da ritrovare la propria posizione sul campo (vedete tra le lezioni per principianti: sensori di colore)
- Allinearsi ad un modello di missione: i modelli per le missioni vengono bloccati sul posto e quindi possono essere utilizzati per allinearvisi contro

Sistemare le estensioni in base

Così come per il corpo del robot, avete bisogno di sistemare le vostre estensioni nello stesso modo ogni volta per migliorare l'affidabilità

- Costruire una dima di permette di avere la certezza che una estensione potrà essere piazzata e mossa nello stesso modo ogni volta
 - In "Senior Solution" abbiamo utilizzato una dima per essere sicuri che il braccio che doveva prendere la scatoletta per le pillole fosse sempre al livello giusto
- Indicatori sul robot (per esempio un piccolo connettore) può aiutarvi a ricordare dove rimettere in posizione un braccio
 - In Food Factor, abbiamo utilizzato un conduttore rosso in un foro per ricordarci quanto lontano doveva arrivare a muoversi un braccio
- Potete utilizzare un sensore al tocco per determinare la posizione di una estensione dalla partenza al suo punto di arrivo

Aggiustare i motori in Base

Muovere estensioni o ruote

- Quando il programma è fermo potete muovere le ruote e le estensioni facilmente senza creare problemi
- Ma se il programma è in esecuzione, bisogna fare diversi passi
 - Avete bisogno di mettere i motori in folle
 - Se muovete i motori in folle, i motori torneranno indietro la loro posizione originale al primo movimento!
 - Avete bisogno di risettare i motori dopo l'aggiustamento e prima di far ripartire il robot

1) Mettere tutti i motori che usate in folle, in maniera da poterli ruotare manualmente per aggiustarli

2) Adesso dovete resettare i motori

Usare il folle

Questo codice mostra che il motore A, che muove il braccio, non si muoverà esattamente dal punto in cui l'avete piazzato. Il suo movimento è basato sull'ultima posizione è stata registrata perché il sensore di rotazione del motore non è stato resettato.

Non funziona bene. Non è affidabile!

Usare il folle e poi Reset

Più affidabile!

Altri fattori nell'affidabilità

Carica della batteria

- Se programmate il vostro botto quando la carica della batteria bassa, non si comportava nello stesso modo quando la batteria sarà in piena carica
 - I motori si comportano in maniera differente quando la batteria scarica
 - Ma usando i sensori vi renderete indipendenti dalla carica della batteria

I pezzi LEGO si separano nel tempo:

- Stringete i pezzi LEGO nelle aree chiave prima di una corsa: i pioli si allentano, il che significa che i sensori potrebbero non essere nella stessa posizione di una corsa precedente
- Spingete i cavi di sensori e motori. Escono!

Motori e sensori non sempre corrispondono :

- Alcune squadre testano motori, sensori e ruote per assicurarsi che combacino
- Non otterrete mai una corrispondenza perfetta quindi vi consigliamo di usare altre tecniche e accettare queste imperfezioni

CREDITI

Questo tutorial è stato creato da Sanjay Seshan and Arvind Seshan

Altre lezioni sono disponibili nel sito www.ev3lessons.com

Traduzione: Giuseppe Comis

Questo lavoro è soggetto a <u>Creative Commons Attribution-</u> NonCommercial-ShareAlike 4.0 International License.