Quiz: Context-Free Grammars and Pushdown Automata

Section 1: Context-Free Grammars (CFGs) and Parse Trees

- 1. Which of the following is NOT a component of a context-free grammar (CFG)?
- A) A finite set of non-terminals
- B) A start symbol
- C) A stack
- D) A finite set of productions

Answer: C

2. A string that can be generated in more than one way by a CFG is called _____.

Answer: Ambiguous

3. All ambiguous grammars generate ambiguous languages.

Answer: False

4. Define a leftmost derivation in a CFG.

Answer: A derivation in which the leftmost non-terminal is always replaced at each step.

- 5. Which of the following is used to show ambiguity in a grammar?
- A) Left recursion
- B) Parse trees
- C) Finite automata
- D) Null productions

Answer: B

Section 2: Ambiguity in Grammars and Languages

6. Every ambiguous language must have at least one ambiguous grammar.

Answer: True

- 7. Which grammar is ambiguous for arithmetic expressions?
- A) $E + E \mid E * E \mid id$
- B) E id
- C) S aSb |
- D) A aA | a

Answer: A

8. How do you remove ambiguity from a grammar for arithmetic expressions?

Answer: By defining operator precedence and associativity.
9. In a parse tree, the is always the start symbol.
Answer: Root
10. Ambiguity can be completely removed from every CFG.
Answer: False
Section 3: Pushdown Automata (PDA)
11. Which of the following pairs correctly represents a transition in PDA?
A) $(q, a) = (p)$
B) $(q, a, Z) = \{(p,)\}$
C) $(q,) = (p, a)$
D) $(p, a, p) = q$
Answer: B
12. The stack in PDA allows it to recognize nested structures like balanced parentheses.
Answer: True
13. What is the purpose of -transitions in PDA?
Answer: To change states without consuming input, enabling non-determinism.
14. Which of the following languages cannot be accepted by a PDA?
A) {ab n 0 }
B) { abc n 0 } C) { w {a,b}* w is a palindrome }
D) { ab n > 0 }
Answer: B
15. PDA is to context-free languages as DFA is to
Answer: Regular languages
16. A PDA can accept a language either by empty stack or by final state.
Answer: True
17. What happens if a PDA has no transition for a given input and stack symbol?
A) It crashes
B) It continues with an empty stack
C) It accepts
D) It loops infinitely

Answer: A

18. Why are PDAs more powerful than DFAs?

Answer: Because PDAs use a stack to recognize context-free languages.

Section 4: Equivalence of PDA and CFG

19. For every PDA, there exists an equivalent CFG that generates the same language.

Answer: True

- 20. Which of the following best represents the relationship between PDA and CFG?
- A) PDA CFG
- B) PDA CFG
- C) PDA = CFG
- D) PDA CFG =

Answer: C