

Art of Problem Solving 2001 China National Olympiad

China National Olympiad 2001

Day 1	
1	Let a be real number with $\sqrt{2} < a < 2$, and let $ABCD$ be a convex cyclic quadrilateral whose circumcentre O lies in its interior. The quadrilateral's circumcircle ω has radius 1, and the longest and shortest sides of the quadrilateral have length a and $\sqrt{4-a^2}$, respectively. Lines L_A, L_B, L_C, L_D are tangent to ω at A, B, C, D , respectively.
	Let lines L_A and L_B , L_B and L_C , L_C and L_D , L_D and L_A intersect at A' , B' , C' , D respectively. Determine the minimum value of $\frac{S_{A'B'C'D'}}{S_{ABCD}}$.
2	Let $X = \{1, 2,, 2001\}$. Find the least positive integer m such that for each subset $W \subset X$ with m elements, there exist $u, v \in W$ (not necessarily distinct) such that $u + v$ is of the form 2^k , where k is a positive integer.
3	Let P be a regular n -gon $A_1A_2A_n$. Find all positive integers n such that for each permutation $\sigma(1), \sigma(2),, \sigma(n)$ there exists $1 \leq i, j, k \leq n$ such that the triangles $A_iA_jA_k$ and $A_{\sigma(i)}A_{\sigma(j)}A_{\sigma(k)}$ are both acute, both right or both obtuse.
Day 2	
1	Let a, b, c be positive integers such that $a, b, c, a+b-c, a+c-b, b+c-a, a+b+c$ are 7 distinct primes. The sum of two of a, b, c is 800. If d be the difference of the largest prime and the least prime among those 7 primes, find the maximum value of d .
2	Let $P_1P_2P_{24}$ be a regular 24-sided polygon inscribed in a circle ω with circumference 24. Determine the number of ways to choose sets of eight distinct vertices from these 24 such that none of the arcs has length 3 or 8.
3	Let $a=2001$. Consider the set A of all pairs of integers (m,n) with $n\neq 0$ such that (i) $m<2a$; (ii) $2n (2am-m^2+n^2)$; (iii) $n^2-m^2+2mn\leq 2a(n-m)$. For $(m,n)\in A$, let $f(m,n)=\frac{2am-m^2-mn}{n}.$

www.artofproblemsolving.com/community/c5224

Contributors: horizon

Art of Problem Solving 2001 China National Olympiad

Determine the maximum and minimum values of f.

www.artofproblemsolving.com/community/c5224

Contributors: horizon