Chapitre 6 - Équations différentielles

Manel TAYACHI (cours) - Mica MURPHY (note) - Antoine SAGET (note)

Vendredi 26 Octobre 2018

Introduction

Ici on s'intéresse à des équations où l'inconnue est une fonction y et faisant intervenir les dérivées de y. Exemple. Solutions pour y''(t)-y(t)=0 (il y en a une infinité) : - y=0 OK - $y(t)=e^t$ OK - $y(t)=e^t$ OK - $y(t)=Ce^t$ OK

1) Équations linéaires du 1^{er} ordre

$$(E) y'(x) + a(x)y(x) = b(x)$$

a) Équation homogène

$$(E_H) y'(x) + a(x)y(x) = 0$$

"Idée" pour trouver la solution

$$(E_H)$$
 \Leftrightarrow $y' = -ay$
 \Leftrightarrow $\frac{y'}{y} = -a$
 \Leftrightarrow $ln(y) = -A + Ctse$ (A est une primitive de a)
 \Leftrightarrow $y = Cste \times e^{-A}$

Les solutions de (E_H) sont $x \mapsto Ce^{-A(x)}$ avec $C \in \mathbb{R}$ et A une primitive de a.

Exemple. y' - y = 0 (E_h)

$$y' = y \Leftrightarrow \frac{y'}{y} = 1$$

 $\Leftrightarrow ln(y(x)) = x + Cste$
 $\Leftrightarrow y(x) = Cste \times e^x$

Donc les solutions de (E_H) sont $\{x \mapsto Ce^x | C \in \mathbb{R}\}$

Exemple. Soit (E_H) y'(t) - ty(t) = 0, ici a(t) = -t et une primitive de a est $A: t \mapsto -\frac{t^2}{2}$ Donc les solutions de E_H sont $\{t \mapsto Ce^{\frac{t^2}{2}} \mid C \in \mathbb{R}\}$

Remarque. En général on a :

$$\begin{cases} y' - ay = b \\ y(0) = y_0 \leftarrow \text{ permet d'avoir une unique solution} \end{cases}$$

Exemple.

$$\begin{cases} y'(t) - ty(t) = 0 \\ y(0) = 4 \end{cases}$$

Solutions de (E_H) : $\{t \mapsto Ce^{t^2/2} | C \in \mathbb{R}\}$. On cherche donc la solution tq y(0) = 4 c'est-à-dire la valeur de C pour que y(0) = 4

$$y(0=4) \Leftrightarrow Ce^0 = 4$$
$$\Leftrightarrow C = 4$$

Donc la solution du problème est : $t\mapsto 4e^{t^2/2}$

b) Équation avec second membre

$$y'(t) + a(t)y(t) = b(t) (E)$$

• Étape 1. Résoudre l'équation homogène associée

$$y'(t) + a(t)y(t) = 0 (E_H)\{t \mapsto Ce^{-A(t)}\}\$$

• Étape 2. Les solutions de (E) sont de la forme

$$y(t) = \underset{\text{solution de }(E_H) \rightarrow \text{ étape 1}}{y_H(t)} + \underset{\text{solution particulière de }(E)}{y_P(t)}$$

Il rest donc à trouver une solution particulière. Pour cela on peut utiliser la méthode de la variation de la constante.

Méthode de la variation de la constante (pour trouver une solution particulière)

Méthode. On cherche y_P sous la forme

$$y_P(t) = C(t)e^{-A(t)}$$
 alors $y_P'(t) = C'(t)e^{-A(t)} - a(t)C(t)e^{-A(t)}$ et $y_P'(t) + a(t)y_P(t) = C'(t)e^{-A(t)}$ donc on veut $C'(t)e^{-A(t)} = c(t)e^{-A(t)}$

Et C est une primitive de $t \mapsto b(t)e^{A(t)}$. On trouve ainsi $y_P(t) = C(t)e^{-A(t)}$

Exemple. y' - y = 2 (E) 1. Équation homogènes y' - y = 0 $y_H(t) = Ce^t$ 2. Solution particulière : on cherche la solution particulière sous la forme $y_P(t) = C(t)e^t$, ainsi $y_P'(t) = C'(t)e^t + C(t)e^t$ or,

$$y'_P(t) - y_P(t) = 2 \Leftrightarrow C'(t)e^t = 2$$

 $\Leftrightarrow C'(t) = 2e^{-t}$

Donc $C(t) = -2e^{-t}$ convient et

$$y_P(t) = C(t)e^t$$

= $(-2e^{-t})e^t$
= -2 convien

Donc les solutions de (E) sont

$$\{t \mapsto \frac{Ce^t}{y_H(t)} - \frac{2}{y_P(t)} \mid C \in \mathbb{R}\}$$

Exemple. y'(t) - ty(t) = 2t 1. Équation homogènes

$$(E_H) y'(t) - ty(t) = 0y'(t) = ty(t) \Leftrightarrow \frac{y'(t)}{y(t)} = t \ln(y(t)) = \frac{t^2}{2} + Cstey(t) = Ce^{t^2/2} \text{ Ainsi } y_H(t) = Ce^{t^2/2}$$

2. Solution particulière On cherche $y_P(t) = C(t)e^{\frac{t^2}{2}}$

$$y_P'(t) = C'(t)e^{\frac{t^2}{2}} + tC(t)e^{\frac{t^2}{2}}$$

Donc $2t = y_P'(t) - ty_p(t) = C'(t)e^{\frac{t^2}{2}}$ Donc $C'(t) = 2te^{\frac{-t^2}{2}}$ Donc $C(t) = -2e^{\frac{-t^2}{2}}(+Cste)$ Ainsi

$$Y_{P} = C(t)e^{\frac{t^{2}}{2}}$$

$$= (-2e^{\frac{-t^{2}}{2}})e^{\frac{t^{2}}{2}}$$

$$= -2$$

Donc les solutions de (E) sont $\{t\mapsto Ce^{t^2/2}_{y_H(t)}-\frac{2}{y_P(t)}\mid C\in\mathbb{R}\}$

D'autres méthodes pour trouver une solution particulière

Ces méthodes ne marchent pas tout le temps, et seulement quand a est constant.

- Si b(t) = P(t), alors on peut chercher $y_P(t) = Q(t)$ (= polynôme en t avec $d\check{r}Q = d\check{r}P$)
- Si b(t) = P(t) $e^{\lambda t}$ alors on peut chercher $y_P(t) = Q(t)e^{\lambda t}$

$$\begin{split} d \check{\mathbf{r}} Q &= d \check{\mathbf{r}} P & \text{si} \quad \lambda \neq -a \\ d \check{\mathbf{r}} Q &= d \check{\mathbf{r}} P + 1 & \text{si} \quad \lambda = -a \end{split}$$

Exemple. Soit (E) $y'(t) + y(t) = (1+t)e^{2t}$, on cherche $y_P(t)$ sous la forme

$$y_P(t) = (at + b)e^{2t}$$

$$y'_P(t) = ae^{2t} + 2(at+b)e^{2t}$$

= $(2at + (a+2b))e^{2t}$

$$y'_P(t) + y_P(t) = (3at + (a+3b))$$

= $(2tt)$

Donc

$$\begin{cases} 3a = 1 \\ a + 3b = 2 \end{cases} \Leftrightarrow \begin{cases} a = \frac{1}{3} \\ b = \frac{1}{3}(2 - a) = \frac{1}{3}(\frac{6}{3} - \frac{1}{3}) = \frac{5}{9} \end{cases}$$

Donc
$$y_P(t) = \left(\frac{t}{3} + \frac{5}{9}\right)e^{2t}$$

Exemple. Soit $y'(t) - y(t) = (2t + t^2)e^t$, Chercher une solution particulière

$$y_P(t) = Q(t)e^t$$

on est danc le cas ou " $\lambda = -a$ "

Donc $y_P(t) = (a + bt + ct^2 + dt^3)e^t$

$$y_P' = (b+2ct+3dt^2)e^t + (a+bt+ct^2+dt^3)e^t$$
$$= ((a+b)+(2c+b)t+(3d+c)t^2+dt^3)e^t$$

Donc

$$y'_P(t) - y_P(t) = (b + 2ct + 3dt^2)e^t$$

= $(2ttt^2)e^t$

Donc
$$\begin{cases} b = 0 \\ 2c = 2 \\ 3d = 1 \end{cases} \Leftrightarrow \begin{cases} b = 0 \\ c = 1 \\ d = 1/3 \end{cases} \text{ avec } a \in \mathbb{R} \text{ et enfin } \boxed{y_P(t) = (t^2 + \frac{t^3}{3})e^t}$$

Remarque. Si $b(t) = P(t)cos(\omega t)$,\\\\\\\ Il faut se rappeler que $cos(\omega t) + isin(\omega t) = e^{i\omega t}$

On cherche alors $y_P(t) = Q(t)e^{i\omega t}$ solution de $y'(t) + ay(t) = P(t)e^{i\omega t}$

Ainsi, - $Re(y_P(t))$ est solution de $y'(t) + ay(t) = P(t)\cos(\omega t)$ - $Im(y_P(t))$ est solution de $y'(t) + ay(t) = P(t)\sin(\omega t)$

Exemple. Trouver la solution de (E) : $\begin{cases} y'-2y=e^{2x} \\ y(0)=1 \\ t \end{cases}$

- Solution homogène : $y_H' 2y_H = 0 \Leftrightarrow y_H(x) = \lambda e^{2x}$ avec $\lambda \in \mathbb{R}$
- Solution particulière : on peut chercher y_P sous la forme :

$$y_P(x) = (ax + b)e^{2x}$$
 : -2
 $y'_P(x) = (2ax + (a + 2b))e^{2x}$: 1
 $y_P(x) - 2y_P(x) = ae^{2x}$ $\Rightarrow a = 1$

ainsi, $y_P(x) = xe^{2x}$ convient et les solutions de $y' - 2y = e^{2x}$ sont $\{x \mapsto (\lambda + x)e^{2x} \mid \lambda \in \mathbb{R}\}$

• Cherchons maintenant les solutions tel que $y(0) = 1 \Leftrightarrow (\lambda + 0)e^{-2\times 0} = 1 \Leftrightarrow \lambda = 1$. Donc la solution du système (E) est $y: \left\{\begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & (1+x)e^{2x} \end{array}\right\}$

Principe de superposition

Comment trouver une solution particulère de (E) $y'(t) + a(t)y(t) = b_1(t) + b_2(t)$?

On considère

$$(E_1)$$
 $y'(t) + a(t)y(t) = b_1(t)(E_2)$ $y'(t) + a(t)y(t) = b_2(t)$

On cherche alors : - y_1 solution particulière de (E_1) - y_2 solution particulière de (E_2)

Alors $y_P = y_1 + y_2$ est une solution particulière de (E)

Exemple. (E)
$$y' - 2y = e^{2x} + e^{3x}$$

Chercher une solution particulière :

$$(E_1)$$
 $y' - 2y = e^{2x}(E_2)$ $y' - 2y = e^{3x}$

- Une solution particulière de (E_1) est $y_1(t) = xe^{2x}$
- Cherchons une solution particulère de (E_2) : On cherche $y_2(x) = Ce^{3x}$

$$\begin{array}{rclcrcl} y_2(x) & = & Ce^{3x} & : & -2 \\ y_2'(x) & = & 3Ce^{3x} & : & 1 \\ \rightarrow y_2'(x) - 2y_2(x) & = & Ce^{3xa} & \Rightarrow & C = 1 \end{array}$$

Ainsi, $y_2(x) = e^{3x}$, donc une solution particulière pour (E) est :

$$y_P(x) = y_1(x) + y_2(x)$$

= $xe^{2x} + e^{3x}$

2) Équations differentielles d'ordre 2 à coefficients constants

(E)
$$ay''(t) + by'(t) + cy(t) = d(t)$$

Comme d'habitude les solutions de (E) sont de la forme $y(t) = y_H(t) + y_P(t)$ sol. part. de (E) où (E_H) est l'équation homogène

ay'' + by' + cy = 0

Solution homogène

Pour résoudre (E), on passe par le **polynôme caractéristique** : $P(r) = ar^2 + br + c$ (ici r est la variable) et on cherche alors les racine de ce polynôme.

 $\Delta = b^2 - 4ac$

• Cas 1 ($\Delta > 0$): r_1 et r_2 sont les deux racines réelles distinctes Alors, les solutions de (E_H) sont :

$$y_H(t) = \lambda_1 e^{r_1 t} + \lambda_2 e^{r_2 t}$$
 avec $\lambda_1, \lambda_2 \in \mathbb{R}$

• Cas 2 ($\Delta = 0$): une racine réelle double r_0 Alors, les solutions de (E_H) sont:

$$y_H(t) = (\lambda + \mu t)e^{r_0 t}$$
 avec $\lambda, \mu \in \mathbb{R}$

• Cas 3 ($\Delta < 0$): $z_1 = r + i\omega$ et $z_2 = r - i\omega$ sont les deux racines complexes distinctes Alors, les solutions de (E_H) sont :

$$y_H(t) = \lambda_1 e^{rt} \cos(\omega t) + \lambda_2 e^{rt} \sin(\omega t)$$
 avec $\lambda_1, \lambda_2 \in \mathbb{R}$

 $Exemple.\ y^{\prime\prime}-y=0$ Polynôme caractéristique : $P(r)=r^2-1$

 $\Delta > 0$ et les racines de P sont $r_1 = 1$ et $r_2 = -1$

Les solutions de E_H sont de la forme

$$y_H(t) = \lambda_1 e^t + \lambda_2 e^{-t}$$
 avec $\lambda_1, \lambda_2 \in \mathbb{R}$

Exemple. $(E_H) y'' + y = 0$

Polynôme caractéristique : $P(r) = 1 \times r^2 + 0 \times r + 1$

 $\Delta < 0$ et les deux racines complexes de P sont $z_1 = i$ et $z_2 = -i$ (r = 0 et $\omega = 1)$

Les solutions de E_H sont de la forme

$$y_H(t) = \lambda_1 \cos(t) + \lambda_2 \sin(t)$$
 avec $\lambda_1, \lambda_2 \in \mathbb{R}$

Solution particulière

$$(E) ay'' + by' + cy = d(t)$$

- Il existe une méthode de variation de la constante (voir sur Unisciel)
- Si $d(t) = P(t)e^{\lambda t}$ On cherche alors $y_p(t)$ sous la forme $y_p(t) = Q_{\text{polynôme en t}}(t)e^{\lambda t}$ avec

 $\begin{cases} d \check{\mathbf{r}} Q = d \check{\mathbf{r}} P & \text{si } \lambda \text{ n'est pas racine du polynôme caractéristique} \\ d \check{\mathbf{r}} Q = d \check{\mathbf{r}} P + 1 & \text{si } \lambda \text{ est racine simple du polynôme caractéristique} \\ d \check{\mathbf{r}} Q = d \check{\mathbf{r}} P + 2 & \text{si } \lambda \text{ est racine double du polynôme caractéristique} \end{cases}$

Exemple. $y'' - y = e^{-t}$

- solution homogène

$$y_h(t) = \lambda_1 e^{-t} + \lambda_2 e^t$$

 $-\,$ solution particulière On cherche y_p sous la forme

$$\begin{array}{rcl} y_P(t) & = & (at+b)e^{-t} & : & -1 \\ y_P'(t) & = & (-at+(a-b))e^{-t} & : & 0 \\ y_P''(t) & = & (at+(-2a+b))e^{-t} & : & 1 \\ \Rightarrow & y_P''(t) - y_P(t) & = & -2a \ e^{-t} \end{array}$$

Donc y_P solution $\Leftrightarrow -2a = 1 \Leftrightarrow a = 1$

Ainsi $y_P(t) = \frac{-1}{2}te^{-t}$ convient.

Les solutions de (E) sont :

$$\boxed{\{t \mapsto \lambda_1 e^{-t} + \lambda_2 e^t - \frac{1}{2}t \ e^{-t} \mid \lambda_1, \lambda_2 \in \mathbb{R}\}}$$

• Si $d(t) = P(t)e^{rt}\cos(\omega t)$ (ou $P(t)e^{rt}\sin(\omega t)$) on regarde alors

$$(\widetilde{E}) \ ay'' + by' + cy = P(t)e^{(r+i\omega)t}$$

On cherche alors une solution particulière comme dans le cas précedent avec $\lambda=r+i\omega$ Ob obtient alors $\widetilde{y}(t)=Q(t)e^{(r+i\omega)t}$

Alors

 $-y_P(t) = Re(\widetilde{y}(t))$ donne une solution particulière de

$$ay'' + by' + cy = P(t)e^{rt}\cos(\omega t)$$

 $-y_P(t) = Im(\widetilde{y}(t))$ donne une solution particulière de

$$ay'' + by' + cy = P(t)e^{rt}\sin(\omega t)$$

Remarque. On a aussi un principe de superposition :

Pour trouver une solution de $ay'' + by' + cy = d_1(t) + d_2(t)$ on fait la somme d'une solution particulière de (E_1) $ay'' + by' + cy + d_1(t)$ et d'une solution particulière de (E_2) $ay'' + by' + cy + d_2(t)$

Exemple. $y'' + 2y' + y = \cos(t)e^{-t}$

• Solution homogène :

$$P(r) = r^2 + 2r + 1$$

= $(r+1)^2$

Donc $y_H(t) = (\lambda t + \mu)e^{-t}$

• Solution particulière :

$$(\widetilde{E}) y'' + 2y' + y = e^{(-1+i)t}$$

> (-1+i)n'est pas racine de P donc on cherche une solution particulière de la forme $\widetilde{y}(t) = ae^{(-1+i)t}$

$$\begin{array}{rclcrcl} \widetilde{y}(t) & = & ae^{(i-1)t} & : & 1 \\ \widetilde{y}'(t) & = & a(i-1)e^{(i-1)t} & : & 2 \\ \widetilde{y}''(t) & = & a(i-1)^2e^{(i-1)t} & : & 1 \\ \Rightarrow & \widetilde{y}''(t) + 2\widetilde{y}'(t) + \widetilde{y}(t) & = & a(1+2(i-1)+(i-1)^2)e^{(i-1)t} \\ & = & a(1+(i-1))^2e^{(i-1)t} \\ & = & ai^2e^{(i-1)t} \\ & = & -ae^{(i-1)t} \end{array}$$

Ainsi une solution particulière de (\widetilde{E}) est $\widetilde{y}(t)=-e^{(i-1)t}$

Ainsi, une solution particulière de (E) est