# Respostas de Problemas Selecionados

```
1-2. (a) 25 (b) 9,5625 (c) 1241,6875
1-4, 1023
1-5. nove bits
1-6.
    4.4 V
                2 ms
                                4 ms
1-7. (a) 2^{N} - 1 = 15 e N = 4; portanto, quatro linhas são
necessárias para a transmissão paralela.
(b) Apenas uma linha é necessária para a transmissão serial.
CAPÍTULO 2
2-1. (a) 22 (b) 141 (c) 2313 (d) 983 (e) 191
2-2. (a) 100101 (b) 1110 (c) 10111101
(d) 11001101 (e) 100100001001 (f) 111111111
2-3. 255; 65.535
2-4. (a) 483 (b) 30 (c) 2047 (d) 175 (e) 644
2-5. (a) 73_8 (b) 564_8 (c) 1627_8 (d) 2000000_8
2-6. (a) 111100011 (b) 011110 (c) 011111111111
(d) 010101111 (e) 001010000100
2-7. (a) 26_8 (b) 215_8 (c) 4411_8 (d) 1727_8 (e) 277_8
2-8. 165, 166, 167, 170, 171, 172, 173, 174, 175, 176, 177,
2-9. 100100001001_2 = 4411_8
2-10. Cinco
2-11. (a) 146 (b) 422 (c) 14,333 (d) 704 (e) 2047
2-12. (a) 4B (b) 13A (c) 800 (d) 6413 (e) FFF
2-13. (a) 16 (b) 8D (c) 909 (d) 3D7 (e) BF
2-14. (a) 10010010 (b) 000110100110
(c) 00110111111111101 (d) 001011000000
(e) 0111111111111
2-15. 280, 281, 282, 283, 284, 285, 286, 287, 288, 289.
28A, 28B, 28C, 28D, 28E, 28F, 290, 291, 292, 293, 294.
295, 296, 297, 298, 299, 29A, 29B, 29C, 29D, 29E, 29F,
2A0
```

CAPÍTULO 1

2-16. Cinco

```
2-17. (a) 01000111 (b) 100101100010
(c) 000110000111
(d) 01000010011010001001011000100111
2-18. 10 bits para binário, 12 bits para BCD
2-19. (a) 9752 (b) 184 (c) 7775 (d) 492
2-20. (a) 64 (b) FFFFFFF (c) 999,999
2-21. 01011000 (X); 00111101 (=); 00110010 (2);
10110101 (5); 00101111 (/); 11011001 (Y)
2-22. D8, BD, B2, 35, AF, 59
2-23. BEN SMITH
2-24. (a) 101110100 (bit de paridade na esquerda)
(b) 000111000 (c) 0000101100101
(d) 11001001000000001
2-25. (a) nenhum erro em apenas um bit (b) erro em um bit
(c) erro duplo (d) nenhum erro em apenas um bit
2-27. (a) 10110001001 (b) 11111111 (c) 209
(d) 59.943 (e) 4701 (f) 777 (g) 157 (h) 2254
(i) 1961 (j) 15.900 (k) 640 (l) 952B
(m) 100001100101 (n) 947 (o) 135_{16} (p) 5464_8
(q) 1001010 (r) 01011000 (BCD)
2-28. (a) 100101 (b) 00110111 (c) 25
(d) 0110011 0110111 (e) 45
2-29. (a) octal
(b) 16
(c) dígito
(d) Gray
(e) Paridade; erros em um bit
(f) ASCII
(g) octal; hexadecimal (h) byte
2-30. (a) 1000 (b) 010001 (c) 1111
2-31. (a) 0110 (b) 001111 (c) 1101
2-32. (a) 10000 (b) 7778 (c) 2001 (d) 2001
(e) A00 (f) 1001
2-33. (a) 7776 (b) 7776 (c) 1777 (d) 1FFF
(e) 9FE (f) 0FFF
2-34 (a) 1.048.576 (b) cinco (c) 000FF
2-35: (a) 64; 256; 1024 (b) 440.000 (c) 11.363
```

**2-36.** oito

# CAPÍTULO 3

3-1.



3-2.



3-3. x ficará em nível ALTO constante.

**3-5.** 31

**3-6.** (a) x fica em nível ALTO somente quando A, B e C estão em ALTO.

**(b)** x fica em BAIXO.

(c) x fica em ALTO somente quando B e C estão simultaneamente em nível ALTO.

3-7. Substituir a porta OR por uma porta AND.

3-8. A saída ficará sempre em BAIXO.

**3-12.** (a) 
$$x = (\overline{A} + \overline{B})BC$$
 (b)  $x = \overline{A}\overline{B}\overline{C} + A\overline{B}\overline{C} + \overline{A}\overline{B}D$ 

**3-14.** 
$$x = D \cdot (\overline{AB + C}) + E$$

3-16. (a)



3-17.-3-18.



**3-19.** 
$$x = \overline{(A+B)} \cdot (\overline{BC})$$

x = 0 somente quando A = B = 0, C = 1.

3-21. (c)



**3-22.** (a) 1 (b) A (c) 0 (d) C (e) 0 (f) D

**(g)** D **(h)** 1 **(i)** G **(j)** y

3-24. (a)  $MP\overline{N} + \overline{M} \overline{P} N$  (b)  $B\overline{C}$ 

3-26. (a)  $A + \overline{B} + C$  (b)  $A \cdot (B + \overline{C})$  (c)  $\overline{A} + \overline{B} + \overline{C}$ 

CD (d)  $\overline{A} + B + \overline{C} + \overline{D}$  (e)  $\overline{M}N + M\overline{N}$ 

**(f)**  $(\overline{A} + \overline{B})C + \overline{D}$ 

**3-27.**  $A + B + \overline{C}$ 

**3-34. (a)** NOR

**(b)** AND

(c) NAND

3-35. (a)



**3-36.** (a) Z fica em ALTO apenas quando A = B = 0 e C = D = 1.

**(b)** Z fica em BAIXO quando A ou B estão em ALTO ou quando C ou D estão em BAIXO.

**3-38.** X vai para ALTO quando E=1, ou D=0, ou B=C=0, ou quando B=1 e A=0.

**3-39.** X está em nível BAIXO para *EDCBA* = 01011, 01100, 01101 e 01111.

3-40. (a) ALTO

(b) BAIXO

**3-41.**  $\overline{\text{LIGHT}} = 0$  quando A = B = 0 ou A = B = 1.

3-42. (a)



3-43. 
$$Z = (\overline{\overline{AB} + \overline{C}})F + \overline{C} + (\overline{D} + F)$$

**3-43.**  $Z = (\overline{AB} + \overline{C})F + \overline{C} + (\overline{D} + E)$  **4-14.**  $x = A_3A_2 + A_3A_1A_0$  **3-46.** Coloque INVERSORes nas entradas  $A_7$ ,  $A_5$ ,  $A_4$  e  $A_2$  do 74HC30. **4-15.** (a)  $x = \overline{AC} + \overline{BC} + AC\overline{D}$ 

### CAPÍTULO 4

**4-1.** (a) 
$$C\overline{A} + CB$$
 (b)  $\overline{Q}R + Q\overline{R}$  (c)  $C + \overline{A}$ 

(d) 
$$\overline{R} \, \overline{S} \, \overline{T}$$
 (e)  $BC + \overline{B}(\overline{C} + A)$  (f)  $BC + \overline{B}(\overline{C} + A)$ 

ou  $BC + \overline{B}\overline{C} + \overline{A}\overline{C}$  (g)  $\overline{D} + A\overline{B}\overline{C} + \overline{A}\overline{B}C$ 

**4-2.** 
$$Q(M + N)$$

**4-3.** 
$$MN + Q$$

**4-4.** Uma solução:  $\bar{x} = \bar{B}C + AB\bar{C}$ . Outra solução:  $x = \bar{A}B + \bar{B}C$ 

$$\overline{BC}$$
 + BC. Uma outra:  $BC$  +  $\overline{BC}$  +  $\overline{AC}$   
4-5.  $x = \overline{AB} + \overline{AC} + \overline{BC}$ 

**4-5.** 
$$x = \overline{A}\overline{B} + \overline{A}\overline{C} + \overline{B}\overline{C}$$

**4-6.** 
$$x = AB\overline{C}\overline{D} + \overline{A}BCD$$

**4-7.** 
$$x = \overline{A}_3(A_2 + A_1A_0)$$

**4-8.** alarme = 
$$ID + \overline{I}L$$

4-9.



### 4-11.



**4-12.** 
$$x = BC + \overline{B}\overline{C} + AC$$
; ou  $x = BC + \overline{B}\overline{C} + A\overline{B}$ 

**4-13.** 
$$y = \overline{D} + \overline{A}\overline{B}C + A\overline{B}\overline{C}$$



**4-14.** 
$$x = \overline{A}_3 A_2 + \overline{A}_3 A_1 A_0$$

4-15. (a) 
$$x = \overline{AC} + \overline{BC} + AC\overline{D}$$



**(b)** 
$$x = \overline{AD} + \overline{BC} + \overline{BD}$$

(c) 
$$y = \overline{B} + A\overline{C}$$



**4-16.** Melhor solução: 
$$x = B\overline{C} + AD$$

**4-17.** 
$$x = \overline{S}_1 \overline{S}_2 + \overline{S}_1 \overline{S}_3 + \overline{S}_3 \overline{S}_4 + \overline{S}_2 \overline{S}_3 + \overline{S}_2 \overline{S}_4$$

4-18. (a)



**(b)** 
$$x = A$$
 **(c)**  $x = \overline{A}$ 

**4-19.** 
$$A = 0$$
,  $B = C = 1$ 

4-20. Uma solução possível é apresentada na figura a seguir.



**4-22.** quatro saídas onde  $z_3$  é o MSB

$$z_3 = y_1 y_0 x_1 x_0$$

$$z_2 = y_1 x_0 (\bar{y}_0 + \bar{x}_0)$$

$$z_1 = y_0 x_1 (\overline{y}_1 + \overline{x}_0) + y_1 x_0 (\overline{y}_0 + \overline{x}_1)$$

$$z_0 = y_0 x_0$$

**4-23.**  $x = A_3A_2 + A_3A_1$ 

**4-24.**  $x = AB(C \oplus D)$ 

**4-25.** (A + B)(C + D)

**4-26.** N–S =  $\overline{C}\overline{D}(A + B) + AB(\overline{C} + \overline{D})$ ; E–W =  $\overline{N-S}$ 

4-27. Substituir o último EX-OR por EX-NOR.

**4-29.**  $x = A\overline{B}C$ 

**4-30.** x = A + BCD

**4-31.**  $x = A + (B \oplus C)$ 

**4-32.**  $z = A_0 \overline{S} + A_1 S$ 

**4-33.**  $z = x_1 x_0 y_1 y_0 + x_1 \overline{x}_0 y_1 \overline{y}_0 + \overline{x}_1 x_0 \overline{y}_1 y_0 + \overline{x}_1 \overline{x}_0 \overline{y}_1 \overline{y}_0$  Nenhum par, nem quarteto e nem octeto

4-35. (a) indeterminado

**(b)** 1,4 a 1,8 V

(c) Veja as formas de onda a seguir.



**4-38.** Possíveis falhas: problemas em  $V_{\rm CC}$  ou terra de Z2; Z2-1 ou Z2-2 interna ou externamente desconectados; Z2-3 desconectado internamente.

4-39. Sim: (c), (e), (f).

Não: (a), (b), (d), (g).

4-41. Z2-6 e Z2-11 em curto.

4-43. Falhas mais prováveis:

problemas no  $V_{cc}$  ou no terra de Z1

Z1 foi conectado ao contrário

Z1 está danificado

4-44. Falhas possíveis:

Z2-13 em curto com  $V_{cc}$ ;

Z2-8 em curto com  $V_{cc}$ 

conexão interrompida com Z2-13;

Z2-3, Z2-6, Z2-9 ou Z2-10 em curto com a terra.

4-45. (a)



**(b)** Abrir ligações 1, 2, 3 e 5.

**4-47.** (a)  $00_{16}$  até EF<sub>16</sub>

**(b)** F0

(c) F1 até FF

# CAPÍTULO 5

5-1.



5-2. Resultado igual a 5-1.

5-3.



5-6. Z1-4 permanentemente em ALTO.

**5-7.** 20 ns

5-8.



5-9. Q é uma onda quadrada de 500 Hz.

5-10.



5-11. (a) onda quadrada de 5 kHz

**(b)** 2,5 kHz

5-13.



5-14. onda quadrada de 500 Hz

5-15. Q permanece em ALTO.

5-18.



5-19.



5-21. (a) 200 ns

**(b)** 7474; 74C74

(c) 30 ns

**5-22.** 48 ns

**5-23.** Conectar  $A \text{ em } I \in \overline{A} \text{ em } K$ .

**5-24.** (a) A, B, C

**5-25.** (a) Conectar  $X \text{ em } I \in \overline{X} \text{ em } K$ .

**(b)** Use a disposição da Fig. 5-43.

**5-26.** 1011, 1101, 1110, 0111, 1011, 1101, 1110, 0111,

1011 **5-27.** Conectar  $X_0$  na entrada D de  $X_3$ .

**5-31. (a)** 10 **(b)** 1953 Hz **(c)** 1024 **(d)** 12

**5-32. (a)** 128

**(b)** 0 a 127

**5-34.** Colocar INVERSORes em  $A_8$ ,  $A_{11}$  e  $A_{14}$ .

5-37.



**5-38.** (a)  $\overline{Q}$  vai permanecer em BAIXO.

**(b)** Transição de subida em  $\overline{Q}$  vai setar X = 1.

(c) Fazendo  $t_p = 20 \mu s$ .

**5-39. (a)**  $A_1$  ou  $A_2$  devem estar em BAIXO quando ocorrer a transição de subida em B.

**(b)** B e A, devem estar em ALTO quando ocorrer a transição de descida em  $A_1$ .

5-41. Após 14 pulsos, todas as saídas param de mudar e permanecem com A = W = X = Y = Z = 0 e B = C = 1.

**5-42.** Uma possibilidade é R=1 k $\Omega$  e C=80 nF.

**5-43.** Uma possibilidade é  $R_A = 1 \text{ k}\Omega$ ,  $R_B = 10 \text{ k}\Omega$  e C = 1.800 pF.

5-45. (a)



**5-46.** (a) não (b) sim (c) não (d) não

**5-47.** O flip-flop  $X_0$  está com a entrada D desconectada.

**5-48.** (a) sim (b) não

**5-49.** Dois INVERSORes em cascata entre  $Q_1$  e  $Q_2$  introduzem um atraso suficiente para aumentar o  $t_{\rm PLH}$  efetivo de  $Q_1$ , de modo que, quando  $Q_2$  for acionado pelo clock, o sinal de  $Q_1$  não tenha alcan-

**5-51.** (a) não (b) não (c) sim (d) não

5-52. Primeira combinação: 101. Segunda combinação: 010.

**5-53.** (a) não (b) não (c) sim

5-54. (a) latches e NAND e NOR

**(b)** J-K

(c) latch D

(d) flip-flop D

(e) flip-flop D e latch D

(f) Todos os FFs

(g) flip-flops com clocks dos tipos S-C, J-K e D

**(h)** J-K

CAPÍTULO 6

**6-1. (a)** 10101 **(b)** 10010 **(c)** 1111,0101 **(d)** 1,1010

**(e)** 100111000

**6-2. (a)** 00100000 (incluindo o bit de sinal) **(b)** 11110010

(c) 00111111 (d) 10011000 (e) 01111111

**(f)** 10000001 **(g)** 01011001 **(h)** 11001001

(i) 111111111 (j) 10000000

(k) não pode ser representado com 8 bits

**(1)** 00000000

**6-3.** (a) +13 (b) -3 (c) +123 (d) -103

**(e)** +127 **(f)** -64 **(g)** -1 **(h)** -127 **(i)** +99

**(j)** -39

**6-4. (a)** -2.048 até +2.047

(b) 16 bits incluindo o bit de sinal

**6-5.**  $-16_{10}$  até  $15_{10}$ 

**6-6.** (a) 00111; 11001 (b) 10100; 01100

**6-7.** 0 a 1.023; -512 a +511 **6-9.** (a) 00001111 (b) 11111101 (c) 11111011

**(d)** 10000000 **(e)** 00000001 **(f)** 11011110

**(g)** 00000000 **(h)** 00010101

**6-11. (a)** 100011 **(b)** 1111001 **(c)** 100011,00101

(d) 0,10001111

**6-12.** (a) 11 (b) 111 (c) 101,11 (d) 1111,0011

**6-13. (a)** 10010111 (BCD) **(b)** 10010101 (BCD)

(c) 010100100111 (BCD) (e) 000100000000001 (BCD)

**6-14. (a)** 6E24 **(b)** 100D **(c)** 18AB **(d)** 3000

**(e)** 10FE **(f)** 17C36

**6-15.** (a) 0EFE (b) 229 (c) 02A6 (d) 01FD

**(e)** 0001 **(f)** EF00

**6-16.** 16.849 posições

**6-17.** (a) 119 (b) +119 (c) 229; -27 **6-19.** SOMA =  $A \oplus B$ ; CARRY = AB

**6-21.** [A] = 0000

**6-22.** 200 ns

**6-23.** overflow =  $A_3 \bar{B}_3 S_3 + A_3 B_3 \bar{S}_3$ 

**6-25.** 
$$C_3 = A_2B_2 + (A_2 + B_2) \{A_1B_1 + (A_1 + B_1)[A_0B_0 + A_0C_0 + B_0C_0]\}$$



**6-30.** [S] = 01110; 
$$x = 1$$
; [ $\Sigma$ ] = 0100

**6-32.** 
$$[\Sigma] = 100001000101$$

6-33.

| [F]      | $C_{N+4}$ | OVR |
|----------|-----------|-----|
| (a) 1001 | 0         | 1   |
| (b) 1101 | 0         | 0   |
| (c) 0011 | 1         | 0   |

**6-34.** 
$$[S] = 100; [B] = 1111$$

**(e)** 1000

**6-41.** Utilizando-se flip-flops D. Conectar  $(\overline{S_3 + S_2 + S_1} + \overline{S_0})$  na entrada D do flip-flop do flag zero;  $C_4$  na entrada D do flip-flop do carry; e  $S_3$  na entrada D do flip-flop de sinal.

**6-42.** 0000000001001001; 11111111110101110

# CAPÍTULO 7

**7-1.** 250 kHz, 50%

7-2. Mesma resposta de 7-1

**7-3.** 10000.

**7-4.** São necessários cinco FFs:  $Q_0$ - $Q_4$ , sendo  $Q_4$  o MSB. As saídas  $Q_3$  e  $Q_4$  devem ser conectadas em uma porta NAND cuja saída aciona todos os CLRs.

7-5.



**7-6.** Existe um glitch na saída B na décima quarta descida do clock. **7-7.** Para módulo 50, conecte  $Q_5$ ,  $Q_4$  e  $Q_1$ . Um contador de módulo 100 não pode ser construído sem lógica adicional.

**7-8. (b)** 000, 001, 010, 100, 101, 110 e repete.

7-9.



**7-10.** Utilizando um contador de módulo 15 (do Problema 7-9) acionando um contador de módulo 4

**7-11.** 60 Hz

**7-13. (c)** 0001

**7-14.** 100, 011, 010, 001, 000 e repete.

7-15. Os estados 1000 e 0000 nunca ocorrem.

**7-16. (a)** 12,5 MHz **(b)** 8,33 MHz

**7-17.** (a) Incluir dois FFs (*E* e *F*) na Fig. 7-60. Conectar as portas AND conforme ilustrado a seguir nas entradas apropriadas dos FFs. (b) 33 MHz



**7-18.** 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001 e repete.

7-21. Conectar 01100100 nas entradas de dados paralelos.

**7-22. (d)** *Z* não irá para 0 e o temporizador não poderá ser reiniciado.

7-23. Alterar as entradas de dados paralelos para 1010.

**7-24.** nove

**7-26.** (a) dez (b) limpa o contador para 0000 (c) ajusta o contador para 1001 (d) crescente (e) Conectar  $Q_0$  em  $CP_1$  e o sinal de clock em  $CP_0$ ; aterrar  $MR_1$ ,  $MR_2$ ,  $MS_1$  e  $MS_2$ . (f) Conectar o sinal de clock em  $CP_1$ ; conectar  $Q_3$  em  $CP_0$ ; aterrar todas as entradas MR e  $MS_2$ . **7-27.** 



7-30.



**7-32. (a)** quando o contador vai de 0111 para 1000

**7-33.** 12 flip-flops

7-34. quatro; dezesseis; treze

**7-35.** (a) 
$$J_A = B\overline{C}$$
,  $K_A = 1$ ,  $J_B = CA + \overline{C}\overline{A}$ ,  $K_B = 1$ ,  $J_C = \overline{A}B$ ,  $K_C = B + \overline{A}$  (b)  $J_A = B\overline{C}$ ,  $K_A = 1$ ,  $J_B = K_B = 1$ ,  $J_C = K_C = B$ 

**7-36.** 
$$J_A = K_A = 1$$
,  $J_B = K_B = \overline{A}$ ,  $J_C = K_C^{\bullet} = \overline{A}\overline{B}$ ,  $J_D = K_D = \overline{A}\overline{B}\overline{C}$ 

**7-39.** Vide figura do contador em anel de 5 bits com o FF J-K e a tabela a seguir.



**7-40.** A seqüência de contagem é: 00000, 10000, 11000, 11110, 11111, 01111, 00111, 00011, 00001 e repete.

7-41. A frequência em z é de 5 Hz.

**7-42.** (a) Cada lâmpada ficará ligada por 0,5 segundo a cada intervalo de 4 segundos.

**(b)** Cada lâmpada estará ligada por 2 segundos e desligada por 2 segundos.

**7-43. (b)** 257

**(c)** 323

**7-44. (a)** 22

**(b)** 450

(c) 0 ou 1

**7-45.** Conecte  $Q_3$  do 74290 no  $\overline{CP_1}$  do 74293.

7-47. Incluir outro flip-flop J-K.

**7-49.** Conectar  $Q_3$  de um ao  $D_5$  do outro.

**7-50.** O 74178 é carregado com 1101 na descida do sexto pulso de clock.

**7-52.** *t*<sub>310</sub>

**7-54. (b)**  $Q_0 \cdot \overline{Q}_1 + Q_0 \cdot Q_7$  **(c)**  $Q_3 \cdot \overline{Q}_6$ 

7-55. Veja a figura do diagrama de tempo a seguir.



# 7-56. (a) A entrada CLR é assíncrona.

(b) Verdadeiro

| $Q_a$ | $Q_b$ | $Q_c$        | $Q_d$ |                        |
|-------|-------|--------------|-------|------------------------|
| 1     | 0     | 1            | 1     |                        |
| 0     | 1     | 1            | 1     | Após 1 pulso de clock  |
| 1     | 1     | 3-1 <u>-</u> | 1     | Após 2 pulsos de clock |
| 1     | 1     | 1            | 1     | Após 3 pulsos de clock |
| 1     | 1     | 1            | 1     | Após 4 pulsos de clock |

|                        | 0.    | 0   | $Q_{p}$ | 0    | (d) |
|------------------------|-------|-----|---------|------|-----|
|                        | $Q_d$ | ∠c. | ×υ      | Qa . |     |
|                        | 1     | 1   | 0       | 1    |     |
| Após 1 pulso de clock  | 1     | 0   | 1       | 0    |     |
| Após 2 pulsos de clock | 0     | 1   | 0       | 0    |     |
| Após 3 pulsos de clock | 1     | 0   | 0       | 0    |     |
| Após 4 pulsos de clock | 0     | 0   | 0       | 0    |     |
|                        |       |     |         |      |     |

| (e) | $Q_{a}$ | $Q_b$ | $Q_c$ | $Q_d$ |                        |
|-----|---------|-------|-------|-------|------------------------|
|     | 0       | 1     | 1     | 0     | Após 1 pulso de clock  |
|     | 0       | 1     | 1     | 0     | Após 2 pulsos de clock |
|     | 0       | 1     | 1     | 0     | Após 3 pulsos de clock |
|     | 0       | 1     | 1     | 0     | Após 4 pulsos de clock |

(f) Igual ao item (e).

(g)

| $Q_{a}$ | $Q_b$ | $Q_c$ | $Q_{d}$  |                 |
|---------|-------|-------|----------|-----------------|
| 1       | 0     | 1     | 1        |                 |
| 0       | 1     | 1     | 1 Após 1 | pulso de clock  |
| 1       | 1     | 1     | 0 Após 2 | pulsos de clock |
| 1       | 1     | 0     | 1 Após 3 | pulsos de clock |
| 1       | 0     | 1     | 1 Após 4 | pulsos de clock |

**7-57.** A ligação entre  $MR_1$  e  $Q_1$  está aberta, ou  $Q_3$  ou  $MR_2$  está em curto com a terra.

7-58. O CLR do flip-flop X está aberto, ou permanentemente em ALTO ou não está respondendo.

7-59. O MSB do contador de módulo 6 está permanentemente em nível BAIXO.

**7-60.** (a) display = 001 (b) display = 000

7-61. Os contadores não estão sendo limpados antes de cada intervalo de amostragem.

7-62. (a) O flip-flop C vai comutar a cada transição de descida da

(b) Não vai contar no modo crescente adequadamente; B e C não vão comutar.

7-63.  $P_1$  aberto ou S3 com problema

7-65. (a) paralelo

(b) binário

(c) decrescente

(d) de módulo 10

(e) assíncrono

(f) em anel

(g) Johnson

(h) todos

(i) com carga paralela

(i) crescente/decrescente

(k) assíncrono

(I) BCD

(m) síncrono/paralelo

### CAPÍTULO 8

**8-1.** (a) A; B (b) A (c) A

**8-2.** (a) 728,3 pJ (b) 459,3 pJ (c) 59,06 pJ

**(d)** 27,41 pJ **(e)** 67,26 pJ

**8-3.** (a) 0,9 V (b) 1,4 V

8-4. (a)  $I_{\text{lH}}$  (b)  $I_{\text{CCL}}$  (c)  $t_{\text{PHL}}$ 

(d) produto velocidade-potência (e)  $V_{NH}$ 

(f) CI para montagem em superfície

(g) absorção de corrente (h) fan-out

(i) saída totem-pole (j) transistor de absorção de corrente

**(k)** 4,75 a 5,25 V **(l)** 2,4 V; 2,0 V **(m)** 0,8 V; 0,4 V

(n) fornecimento

**8-5.** (a) 0,7 V; 0,3 V (b) 0,5 V; 0,4 V (c) 0,5 V; 0,3 V

**8-6. (b)** AND, NAND **(c)** entradas desconectadas

**8-7.** (a) 20  $\mu$ A/0,4 mA (c) cinco

**8-8. (a)** 30/15 **(b)** 24 mA 8-10. O fan-out não é excedido em nenhum dos casos.

**8-11.** 10 ns

**8-12.** 43 ns; 38 ns

**8-13.** (a)  $2 k\Omega$  (b)  $8 k\Omega$ 

**8-14. (b)** O resistor de 4,7 k $\Omega$  é muito grande.

8-15. (a) amplitude muito pequena

**(b)**  $t_p$  muito pequeno **(c)**  $t_w(L)$  muito pequeno

8-18. Seis portas AND

**8-19.** AB + CD + FG

8-20. opção (a)

**8-21.** (a) 5V (b)  $R_s = 110 \Omega$  para uma corrente de 20 mA no LED

**8-22. (a)** 12 V **(b)** 40 mA

8-24. (a)

| x | 3/  | Dados no<br>Barramento    |
|---|-----|---------------------------|
| 0 | 0   | ASTRONOM COMMISSION       |
| 0 | 1   | B                         |
| 1 | 2 O | В                         |
| 1 | 1   | Successful $A$ introduces |

**(b)** Contenção de barramento, pois  $E_4$  e  $E_C$  ficariam simultaneamente ativados quando X = Y = 1.

8-25. AND

**8-27.** a, c, d, e, g, h

8-28. a, c, e, f, g, h

8-29. b

8-30. 12,5 mW

8-31. 2,9 V

**8-33.** Utilizando os valores para  $V_{cc} = 6$  V, o produto velocidadepotência é 1,44 pJ para cada porta.

8-34. 0 V, 1,22 V

8-35.



**8-36.** -1 e =2

**8-37.** (a) 74HCT (b) converte tensões dos níveis lógicos

(c) CMOS não pode absorver a corrente do TTL (d) falso

8-38. A opção (c) é uma possível razão.

**8-39.** (a) nenhuma (b) duas

**8-42.** O fan-out do 74HC00 foi excedido; desconecte o pino 3 do 7402 e ligue-o na terra.

**8-44.**  $R_2 = 1.5 \text{ k}\Omega$ ,  $R_1 = 18 \text{ k}\Omega$ 

8-47. (b) é uma falha possível.

8-48. A entrada da porta NAND CMOS está em curto com +5 V.

**8-49.** 0 V a = 11,25 V e de volta para -6 V

# CAPÍTULO 9

**9-1. (a)** todas em ALTO **(b)**  $\overline{O}_0 = BAIXO$  **(c)**  $\overline{O}_7 = BAIXO$ 

(d) todas em ALTO

9-2. 6 entradas, 64 saídas

**9-3.** [A] = 110,  $E_3 = 1$ ,  $\overline{E}_1 = \overline{E}_2 = 0$ 

9-4



9-5.



**9-6.** Conectar  $\overline{E}_2$  na terra e usar a saída  $\overline{O}_2$ .

**9-7.** habilitado quando D = 0

9-8.



**9-10.** Resistores de 250  $\Omega$ .

9-12.



9-13. (a), (b) codificador

(c), (d), (e) decodificador

9-14. 0111

9-17. A quarta tecla pressionada seria colocada no registrador MSD.

9-18. opção (b)

9-19. opção (a) ou (d)

9-20. (a) sim (b) não (c) não

**9-21.** A linha  $A_2$  do barramento está aberta entre Z2 e Z3.

**9-22.**  $E_2$  de Z4 está permanentemente em BAIXO.

**9-23.** Ou o segmento g ou o transistor de saída do decodificador poderiam queimar.

**9-24.** As entradas *D* e *C* do decodificador estão trocadas.

**9-25.** As saídas *a* e *b* do decodificador estão em curto.

9-27. Um MUX 4 para 1

**9-28.** Utiliza nove 74151s.

9-29.



**9-30. (b)** O número total de conexões no circuito que utiliza MUXes é 63, não incluindo  $V_{cc}$  e GND, e também sem incluir as conexões para as entradas de clock dos contadores. O número total para o circuito que usa decodificadores/drivers separados é 66.

9-31.



9-32.



9-33.

| A  | В | C   |                     |
|----|---|-----|---------------------|
| 0  | 0 | 0   | $0 \rightarrow I_0$ |
| -0 | 0 | 1   | $0 \rightarrow I_1$ |
| 0  | 1 | 0   | $0 \rightarrow I_2$ |
| 0  | 1 | . 1 | $1 \rightarrow I_3$ |
| 1  | 0 | 0   | $0 \rightarrow I_4$ |
| 1  | 0 | 1   | $1 \rightarrow I_5$ |
| 1  | 1 | 0   | $1 \rightarrow I_6$ |
| 1  | 1 | 1   | $1 \rightarrow I_7$ |

**9-34.** Conecte  $I_1$ ,  $I_5$ ,  $I_8$ ,  $I_{11}$ ,  $I_{14}$ ,  $I_{15}$  em  $V_{CC}$ . Conectar todas as outras entradas na terra.

**9-35.** Z = ALTO para DCBA = 0010, 0100, 1001, 1010.

**9-36.** (b)  $Z = \overline{A}B\overline{C} + AB\overline{C} + \overline{A}\overline{B}C + A\overline{B}C + \overline{A}\overline{B}\overline{C}\overline{D} + ABC\overline{D}$ 

*ABCD*9-37. (a) codificador, MUX (b) MUX, DEMUX (c) MUX
(d) codificador (e) decodificador, DEMUX (f) DEMUX (g) MUX
9-38.



**9-39.** Cada uma das saídas do DEMUX vai para BAIXO, uma de cada vez em seqüência.

9-40. (a) Todos os LEDs estão apagados.

(b) Cada LED vai piscar.

(c) Os LEDs 2 e 6 vão piscar.

9-41. cinco linhas

**9-43. (a)** O seqüenciamento termina após o atuador 3 ser ativado. **(b)** O mesmo que no item (a)

**9-44.** A falha provável é um curto para a terra do MSB do MUX das dezenas.

**9-45.** Provavelmente  $Q_0$  e  $Q_1$  estão trocados.

9-46. Provavelmente as entradas 6 e 7 do MUX estão em curto.

**9-47.**  $S_1$  está permanentemente em BAIXO.

9-48. (a) não

**(b)** sim

9-51. A última saída binária é 1000101.

**9-52.** Provavelmente  $A_0$  e  $B_0$  estão trocados.

**9-54.**  $\overrightarrow{OE}_C = 0$ ,  $\overrightarrow{IE}_C = 1$ ;  $\overrightarrow{OE}_B = \overrightarrow{OE}_A = 1$ ;  $\overrightarrow{IE}_B = \overrightarrow{IE}_A = 0$ ; aplicar um pulso de clock

**9-55.** (a) Em  $t_4$ , cada registrador conterá 1011.

9-56.



**9-57. (b)** aceso, aceso, aceso, apagado (da esquerda para a direita)

**9-58.** (a) Em  $t_3$ , os registradores têm 1001.

**9-60.** (a) 57FA (b) 5000 a 57FF (c) 9000 a 97FF (d) não

CAPÍTULO 10

**10-1. (f)**, **(g)** falso

**10-2.** 3,58 V

**10-3.** LSB = 20mV

**10-4.** 20 mV; aproximadamente 0,4%

10-5. aproximadamente 5 mV

**10-6.** oito

**10-7.** 14,3%, 0,286 V

**10-9.** 250,06 rpm

**10-10.** 10 mV, 0,1%, 6,95 V

10-11.

| Binário | BCD   |
|---------|-------|
| 3,88 mV | 10 mV |
| 0,392%  | 1,01% |

**10-13.** 800 Ω; não

**10-14.** (a) -0.3125 V, -4.6875 V (b)  $4.27 \text{ k}\Omega$  (c) -0.0267

10-15. Utiliza poucos valores diferentes de R.

**10-16.** 20  $\mu$ A; sim

10-17. (a) sete

10-19. 242,5 mV não está dentro das especificações.

10-20. offset fora das especificações

**10-21.** O bit 1 do conversor D/A está aberto ou permanentemente em ALTO

**10-22.** bits 0 e 1 trocados

**10-24.** (a) 10010111 (b) 10010111 (c) 102  $\mu$ s, 51  $\mu$ s

**10-27. (a)** 1,2 mV **(b)** 2,7 mV

**10-28.** (a) 0111110110 (b) 0111110111

**10-29.** 2,834 a 2,844 V

10-31. A frequência da forma de onda reconstruída é 3,33 kHz.

**10-32.** Rampa digital: *a*, *d*, *e*, *f*, *b*. Aproximações sucessivas: *b*, *c*, *d*, *e*, *g*, *b*.

**10-35.** 80 μs

**10-36.** 100101

**10-37.** 2,276 V

**10-38.** 2,869 V

**10-39.** (a) 00000000 (b) 500 mV (c) 510 mV

(d) 255 mV (e) 01101110 (f) 0,2°F; 2 mV

10-44. 386 passos

**10-45.** O MSB do MSD não está afetando  $V_{AX}$ 

**10-47.** A chave está permanentemente fechada; a chave está permanentemente aberta, ou o capacitor está em curto.

**10-49.** (a) O endereço é EA*xx*.

#### CAPÍTULO 11

**11-1.** 16.384; 32; 524.288

**11-2.** 16.384

**11-3.** 64K × 4

**11-4.** 16; 16; 13; 16.384

11-6. (a) dados, endereço, controle (b) endereço

(c) dados (d) CPU

11-7. (a) Alta impedância

**(b)** 11101101

**11-8. (a)** registrador 11 **(b)** 0100

**11-9. (a)** 16.384 **(b)** quatro

(c) dois decodificadores 1 de 128

**11-11.** 120 ns

**11-12.** 180 ns

**11-14.** *Q*<sub>13</sub>, *Q*<sub>14</sub>, *Q*<sub>15</sub>

**11-15.** Os seguintes transistores terão o terminal fonte desconectado:  $Q_0$ ,  $Q_2$ ,  $Q_5$ ,  $Q_6$ ,  $Q_7$ ,  $Q_9$ ,  $Q_{15}$ .

**11-17.** (a) Apaga todas as posições de memória para conter FF<sub>16</sub>.

**(b)** Escreve  $3C_{16}$  no endereço  $2300_{16}$ .

**11-18.** A forma de onda de  $D_0$  é ilustrada a seguir.



11-19. Dados em hexadecimal: 5E, BA, 05, 2F, 99, FB, 00, ED, 3C, FF, B8, C7, 27, EA, 52, 5B

11-20.

| $A_5$ | $A_4$ | $A_3$ | $A_2$ | $A_1$ | $A_0$ | $D_2$ | $D_1$ | $D_0$ | $C_3$ | $C_2$ | $C_1$ | $C_0$ |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 1     | 0     | 0     | 1     | 0     | 1     | 0     | 1     | 1     | 0     | 1     | 1     | 1     |
| 0     | 0     | 1     | 1     | 1     | 0     | 0     | 0     | 1     | 0     | 1     | 0     | 0     |
| 1     | 1     | 1     | 1     | 1     | 0     | 1     | 1     | 0     | 0     | 0     | 1     | 0     |
| 0     | 1     | 1     | 1     | 0     | 0     | 0     | 1     | 0     | 1     | 0     | 0     | 0     |
| 1     | 1     | 0     | 1     | 0     | 1     | 1     | 0     | 1     | 0     | 0     | 1     | 1     |
| 0     | 0     | 0     | 1     | 1     | 0     | 0     | 0     | 0     | 0     | 1     | 1     | 0     |
| 0     | 1     | 0     | 0     | 1     | 1     | 0     | 0     | 1     | 1     | 0     | 0     | 1     |
| 1     | 1     | 0     | 0     | 0     | o     | 1     | 0     | 0     | 1     | 0     | 0     | 0     |

**11-21. (a)** 25,6 kHz

**(b)** Ajustar  $V_{\text{ref}}$ . **(b)** 30 ns **(c)** 10 milhões **(d)** 20 ns **11-24.** (a) 100 ns **(e)** 30 ns **(f)** 40 ns (g) 10 milhões

11-25. oito

11-26.



11-27.



**11-30.** a cada 7,8  $\mu$ s

**11-31.** (a) 4.096 colunas, 1.024 linhas (b) 2048 (c) Deveria dobrar. 11-34. Inclua mais quatro PROMs no circuito (PROM-4 a PROM-7). Conecte suas saídas de dados e entradas de endereço nos barramentos de dados e endereço, respectivamente. Conecte AB<sub>13</sub> na entrada C do decodificador e conecte as saídas 4 a 7 do decodificador nas entradas de CS das PROMs 4 a 7, respectivamente.

**11-35.** Conecte  $AB_{13}$ ,  $AB_{14}$  e  $AB_{15}$  em uma porta OR de três entradas e conecte a saída da porta OR na entrada C do decodificador.

11-38. F000-F3FF; F400-F7FF; F800-FBFF; FC00-FFFF

**11-40.** A entrada B do decodificador está aberta ou permanentemente em ALTO.

11-41. O nó da saída da porta OR com a entrada C está permanentemente em nível BAIXO.

11-42. Somente os módulos de RAM 1 e 3 estão sendo testados.

11-43. O chip RAM com as saídas de dados 4 a 7 no módulo 2 não está funcionando adequadamente.

11-44. A saída 7 do módulo de RAM 3 está aberta ou permanentemente em ALTO.

**11-46.** *Checksum* = 11101010

# CAPÍTULO 12

12-2. (a) simples, complexo, registrador

(b) registrador

(c) registrador

(d) simples, complexo, registrador

12-3. No modo registrador existem oito termos-produto na configuração com registradores e sete termos-produto na configuração combinacional.

| 1 | 2- | 5. |
|---|----|----|
|   |    |    |

| Modo                   | Configuração      | Habilitação                               |
|------------------------|-------------------|-------------------------------------------|
| Simples                | Entrada           | Terra                                     |
| u an an agus Aguildean | Saída .           | $V_{cc}$                                  |
| Complexo               |                   | 8.° termo-produto<br>da matriz de entrada |
| Registradores          | Com registradores | Pino 11 ( $\overline{OE}$ )               |
|                        | Combinacional     | 8.° termo-produto                         |

**12-8.** !Y0 = G1 & !G2A & !G2B & !C & !B & !A

**12-10.**  $D_A = \overline{QA}$ 

 $D_{B} = \overline{QB} \cdot QA + QB \cdot \overline{QA}$   $D_{C} = \overline{QC} \cdot QB \cdot QA + QC \cdot \overline{QB} + QC \cdot \overline{QA}$ 

**12-11.**  $D_B = \overline{QA}$ ;  $D_A = \overline{QB}$ 

12-12. Incluir uma variável de entrada (DIR) para controlar a direção (DIR = 0, sentido anti-horário; DIR = 1, sentido horá-