Gruppi liberi e presentazioni

di Gabriel Antonio Videtta

Nota. Nel corso del documento con G un qualsiasi gruppo.

Si definisce il **gruppo libero** su n generatori il gruppo F_n tale per cui:

$$F_n = \langle x_1, \dots, x_n \rangle = \{ x_{i_1}^{\pm 1} \cdots x_{i_n}^{\pm 1} \mid i_j \in \{1, \dots, n\} \} / \sim,$$

dove¹ $a \sim b$ se e solo se sostituendo i vari $x_i x_i^{-1}$ o $x_i^{-1} x_i$ si ottengono le stesse scritture in funzione dei simboli $x_1, ..., x_n$. L'operazione di questo gruppo è la concatenazione (ossia il prodotto tra x_i e x_j è per definizione $x_i x_j$) e la stringa vuota è per definizione l'identità, indicata con e. Per convenzione si denota $x \cdots x$ ripetuto k volte come x^k e si pone $x^{-k} := (x^{-1})^k$, facendo valere le usuali proprietà delle potenze.

In generale, dato un insieme S, si definisce il gruppo libero F(S) come il gruppo libero ottenuto dalle scritture finite di S a meno di equivalenza per \sim . Se S è finito e |S| = n, allora $F(S) \cong F_n$, dove l'isomorfismo è costruito mandando ordinatamente i generatori di F(S) in x_1, \ldots, x_n .

Per i gruppi liberi vale la **proprietà universale**, ossia $\operatorname{Hom}(F_n, G)$ è in bigezione con G^n tramite la mappa che associa un omomorfismo φ alla n-upla $(\varphi(x_1), \ldots, \varphi(x_n))$, la cui inversa associa una n-upla (g_1, \ldots, g_n) ad un unico omomorfismo tale per cui $\varphi(x_i) = g_i$. Questi gruppi, infatti, non presentano alcuna relazione tra i propri generatori, e dunque gli omomorfismi presentati sono sempre ben definiti.

Si dice che un gruppo G ammette una **presentazione** se esiste un insieme S di generatori di G e un sottoinsieme R di F(S) tale per cui:

$$G \cong F(S)/N$$
,

dove N è il più piccolo sottogruppo normale di F(S) contenente R (ossia la *chiusura normale* di R). In particolare G ammette una **presentazione finita** se S e R sono finiti.

Se G ammette una presentazione, allora esiste un omomorfismo surgettivo $\varphi: F(S) \to G$ tale per cui φ ristretto a S sia l'identità² e per cui $\ker \varphi = N$.

 $^{^{1}\}mathrm{Chiaramente}$ la relazione \sim è di equivalenza.

²A livello astratto S in F(S) è solo una scrittura simbolica, quello che si intende è che si associa al simbolo $s \in S$ l'effettivo elemento s in G.

In tal caso, è decisamente più facile descrivere gli omomorfismi da G a un qualsiasi altro gruppo H. Infatti, poiché $G \cong F(S)/N$, esiste una bigezione, secondo il Primo teorema di omomorfismo, tra $\operatorname{Hom}(G,H)$ e gli omomorfismi di $\operatorname{Hom}(F(S),H)$ tali per cui N sia contenuto nel nucleo; affinché N sia contenuto nel nucleo è però sufficiente vi sia contenuto R, dacché N è la chiusura normale di R. Pertanto R rappresenta in un certo senso un insieme di "relazioni tra i generatori" che devono essere rispettate affinché l'omomorfismo sia ben definito. Si scrive allora la presentazione di G come:

$$G \cong F(S)/N = \langle S \mid R \rangle.$$

Talvolta per R si scrive un insieme di identità $a_1 = b_1$, sottintendendo che $a_1b_1^{-1} \in R$.

Esempio. Si illustrano le presentazioni dei gruppi più importanti:

- $\mathbb{Z} \cong \langle x \rangle$,
- $\bullet \ \mathbb{Z}/n\mathbb{Z} \cong \langle x \mid x^n \rangle,$
- $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \cong \langle x, y \mid x^2, y^2, [x, y] \rangle$,
- $D_n \cong \langle r, s \mid r^n, s^2, (sr)^2 \rangle$.