

et al.
Agonist
6,268,342, which is a 371 of PCT/US97/14154, filed Aug.
27, 1997, which is a continuation-in-part of Ser. No.
08/705,790, filed Aug. 30, 1996, now abandoned. --

In the claims:

Please substitute the claim set in Appendix A entitled "Clean Version of Pending Claims" for the previously pending claim set. The specific amendment to claim 142 is as follows:

142 (Amended). A method of inhibiting fibrosis in a patient said method comprising administering a therapeutically effective amount of somatostatin or a somatostatin agonist to said patient, provided said fibrosis is not in the kidney, in the lung, in the liver, in the skin, of the central nervous system, in bone or bone marrow, in the cardiovascular system, in an endocrine organ, or in the gastro-intestinal system, and further provided that said fibrosis is not periportal fibrosis.

No new matter is being added by the foregoing amendments.

REMARKS

Reconsideration of the Office Action mailed August 14, 2001, (hereinafter "instant Office Action"), entry of the amendments hereinabove, and withdrawal of the rejection of claims 142 and 143 are respectfully requested. The amendment to claim 142 is made to further prosecution of the present application and is not intended to concede the correctness of the Examiner's position or to prejudice the prosecution of the claims prior to amendment which may be presented in any continuing application of the instant application.

In the instant Office Action, claims 142-143 are listed as pending and claims 142-143 are listed as rejected.

The 35 U.S.C. §101 Rejection

The Examiner has rejected claims 142 and 143 under 35 U.S.C. §101, alleging that claims 142 and 143 claim the same invention

THIS PAGE BLANK (USPTO)

as that of claims 1-29 of prior U.S. Patent No. 6,268,342 (the '342 patent). Applicants respectfully traverse this rejection.

In order to support a double patenting rejection under 35 U.S.C. 101 it must be shown that an accused claim is drawn to identical subject matter as a claim of a prior patent. In this regard Applicants respectfully direct the Examiner's attention to MPEP §804, at paragraph II.A., *Statutory Double Patenting - 35 U.S.C. 101*, wherein it is stated:

In determining whether a statutory basis for a double patenting rejection exists, the question to be asked is: Is the same invention being claimed twice? 35 U.S.C. 101 prevents two patents from issuing on the same invention. "Same invention" means identical subject matter. *Miller v. Eagle Mfg. Co.*, 151 U.S. 186 (1984); *In re Vogel*, 422 F.2d 438, 164 USPQ 619 (CCPA 1970); and *In re Ockert*, 245 F.2d 467, 114 USPQ 330 (CCPA 1957).

A reliable test for double patenting under 35 U.S.C. 101 is whether a claim in the application could be literally infringed without literally infringing a corresponding claim in the patent. *In re Vogel*, 422 F.2d 438, 164 USPQ 619 (CCPA 1970). Is there an embodiment of the invention that falls within the scope of one claim, but not the other? If there is such an embodiment, then identical subject matter is not defined by both claims and statutory double patenting would not exist. For example, the invention defined by a claim reciting a compound having a "halogen" substituent is not identical to or substantively the same as a claim reciting the same compound except having a "chlorine" substituent in place of the halogen because "halogen" is broader than "chlorine." On the other hand, claims may be differently worded and still define the same invention. Thus, a claim reciting a widget having a length of "36 inches" defines the same invention as a claim reciting the same widget having a length of "3 feet.";

(emphasis added.)

Applying the foregoing it can be seen that the statutory double patenting rejection levied by the Examiner can not stand since the claims of the '342 patent are not identical in scope to claims 42 and 43 of the instant application. Indeed such would be

THIS PAGE BLANK (USPTO)

the case even if claims 42 and 43 were not amended as provided herein. However, notwithstanding the foregoing Applicants have amended claim 142 in order to remove literal overlap between the claimed subject matter of the instant application and that of the '342 patent.

To the extent that claims 1 - 29 of the '342 patent are themselves drawn to various aspects of the invention therein claimed, Applicants' arguments below have been likewise directed to several subsets of logically related claims.

In respect of claims 11 - 16 of the '342 patent Applicants note that said claims are drawn to a method of *inhibiting over-expression of TGF- β* . In contrast, claims 42 and 43 of the instant application are drawn to a method of *inhibiting fibrosis*. As is well known in the art, inhibition of the over-expression of TGF- β is not identical to inhibition of fibrosis even though a correlation exists between the incidence of high levels of TGF- β and incidence of fibrosis.

To be clear in this regard Applicants note that Anscher, M.S., et al., (Transforming Growth Factor β as a Predictor of Liver and Lung Fibrosis after Autologous Bone Marrow Transplantation for Advanced Breast Cancer, N. Eng. J. Med., 328(22), 1592-98 (1993); hereinafter "Anscher"), teach that:

pretransplantation TGF β levels were significantly higher in patients in whom hepatic veno-occlusive disease or idiopathic interstitial pneumonitis developed than in the [control population] or the patients without these conditions. The predictive value for the development of either condition was 90 percent or more when pretransplantation plasma TGF β levels were more than 2 SD above the mean established in the controls,

(emphasis added). (See discussion in Anscher, under Results). Significantly in this regard are the data Anscher presents in support of the foregoing conclusion, depicted at figure 2 therein, reproduced below:

THIS PAGE BLANK (USPTO)

Reviewing the data it is clear that while elevated TGF β levels are correlated to increased risk of fibrosis development, such risk does not reach 100%; i.e., not all individuals with elevated TGF β levels develop fibrosis. Indeed close inspection of figure 2 reveals that, of the 10 individuals in the "No fibrosis" group, at least 3 had TGF β values at or above the 2 SD level discussed in the foregoing passage, with at least one individual exceeding the 2 SD level quite dramatically. (TGF β = approx. 17 ng/ml vs. 2 SD level = 10 ng/ml).

For the Examiner's convenience a copy of Anscher is submitted herewith as Exhibit 1. (The Examiner will note that the copy of Anscher was retrieved from the New England Journal of Medicine web site, and that certain tables and figures were printed separately for the purposes of clarity.)

In light of the foregoing Applicants submit that the literal scope of claims 11 - 16 of the '342 patent is not identical to the literal scope of claims 42 and 43 of the instant application. Accordingly, withdrawal of the rejection of claims 42 and 43 of

THIS PAGE BLANK (USPTO)

the instant application on the grounds of statutory double patenting, to the extent that such rejection is maintained over claims 11 - 16 of the '342 patent, is respectfully requested.

In respect of claims 26 - 29 of the '342 patent Applicants note that the literal scope of said claims encompasses *pharmaceutical compositions*. In contrast, the literal scope of claims 42 and 43 of the instant application encompasses a *method of treatment*, i.e., of inhibiting fibrosis in a patient. Thus the literal scope of claims 26 - 29 of the '342 patent is not identical to the literal scope of claims 42 and 43 of the instant application. Accordingly, withdrawal of the rejection of claims 42 and 43 of the instant application on the grounds of statutory double patenting, to the extent that such rejection is maintained over claims 26 - 29 of the '342 patent, is respectfully requested.

In respect of claim 1 of the '342 patent and the claims that depend directly or indirectly therefrom, (i.e., claims 3 - 8 and 17 - 20), Applicants note that the literal scope of said claims encompasses:

a method of inhibiting fibrosis in a patient said method comprising administering a therapeutically effective amount of somatostatin [sic, somatostatin] or a somatostatin [sic, somatostatin] agonist to said patient, wherein said fibrosis is in the kidney, in the lung, in the liver, in the skin, of the central nervous system, in bone or bone marrow, in the cardiovascular system, in an endocrine organ or in the gastro-intestinal system.

('342 patent, claim 1; emphasis added.). In contrast, the literal scope of claim 42 of the instant application, as presently amended, encompasses:

[a] method of inhibiting fibrosis in a patient said method comprising administering a therapeutically effective amount of somatostatin or a somatostatin agonist to said patient, provided said fibrosis is not in the kidney, in the lung, in the liver, in the skin, of the central nervous system, in bone or bone marrow, in the cardiovascular system, in an endocrine organ, or

THIS PAGE BLANK (USPTO)

in the gastro-intestinal system, and further provided that said fibrosis is not periportal fibrosis.

(emphasis added). Claim 43 depends from claim 42 therefore amendment of claim 42 applies equally to claim 43.

As can be seen, Applicant's have amended claim 42 (and by extension, claim 43) in order to avoid overlap between the literal scope claim 42 and the literal scope of claim 1 (and by extension, claims 3-8 and 17 - 20) of the '342 patent. Accordingly, withdrawal of the rejection of claims 42 and 43 of the instant application on the grounds of statutory double patenting, to the extent that such rejection is maintained over claims 1, 3-8 and 17 - 20 of the '342 patent, is respectfully requested.

In respect of claim 2 of the '342 patent and the claims that depend directly or indirectly therefrom, (i.e., claims 9, 10 and 21 - 25), Applicants note that the literal scope of said claims encompasses:

a method of inhibiting fibrosis in a patient said method comprising administering a therapeutically effective amount of somatostatin or a somatostatin agonist to said patient, wherein said fibrosis is induced by chemotherapy, induced by radiation, induced by a drug or a combination of drugs, induced by a disease state, induced by an environmental or an industrial factor, induced by an immune reaction, or induced by a wound.

('342 patent, claim 1; emphasis added.). In contrast, and as discussed hereinabove, the literal scope of claim 42 of the instant application, as presently amended, encompasses:

[a] method of inhibiting fibrosis in a patient said method comprising administering a therapeutically effective amount of somatostatin or a somatostatin agonist to said patient, provided said fibrosis is not in the kidney, in the lung, in the liver, in the skin, of the central nervous system, in bone or bone marrow, in the cardiovascular system, in an endocrine organ, or in the gastro-intestinal system, and further provided that said fibrosis is not periportal fibrosis.

THIS PAGE BLANK (USPTO)

(emphasis added). Again, claim 43 depends from claim 42 therefore amendment of claim 42 applies equally to claim 43.

Comparing the subject matter of claims 42 and 43 of the instant application to that of claims 2, 9, 10 and 21 - 25 of the '342 patent it can be seen that, whereas the former are concerned with the location of fibrosis to be treated (i.e., what organs or tissues are involved), the latter are concerned with inducements of fibrosis. As such the scope of claims 42 and 43 is not identical with the scope of any of claims 2, 9, 10 and 21 - 25 of the '342 patent. Accordingly, withdrawal of the rejection of claims 42 and 43 of the instant application on the grounds of statutory double patenting, to the extent that such rejection is maintained over claims 2, 9, 10 and 21 - 25 of the '342 patent, is respectfully requested.

The 35 U.S.C. §112 Rejection

The Examiner has rejected claim 143 under 35 U.S.C. §112, second paragraph, alleging that claim 143:

is substantially duplicative of claim 142. The claim does not further limit or define the antecedent claim (Instant Office Action, at page 2.). Applicants respectfully direct the Examiner's attention to the text of claim 142, which claims:

[a] method of inhibiting fibrosis in a patient said method comprising administering a therapeutically effective amount of somatostatin or a somatostatin agonist to said patient, ...

In contrast, claim 143 claims:

[a] method of claim 142, wherein said method comprises administering a therapeutically effective amount of a somatostatin agonist to said patient.

Thus contrary to the Examiner's allegation, claim 143 does indeed limit claim 142 since somatostatin has been removed from the genus of compounds to be utilized for treatment. Accordingly, withdrawal of the rejection of claims 43 under 35 U.S.C. §112, second paragraph, is respectfully requested.

THIS PAGE BLANK (USPTO)

Other Matters

Applicants note that an Information Disclosure Statement was filed in the instant application on January 16, 2001. Applicants respectfully request that the Examiner include an initialed copy of Form 1449, submitted therewith, when the Examiner issues the next Office Action.

Applicants also note that claim 42, as amended herein, includes the limitation:

[...] and further provided that said fibrosis is not periportal fibrosis.

This limitation has been added in light of the disclosure of the Tracy, et al. reference (American Journal of Pathology, Vol. 143, No. 6, December 1993) which was made of record in Application No. 09/254,097; i.e., the direct parent application of the instant application. Indeed Tracy et al. is among the references cited in the foregoing Information Disclosure Statement.

Based upon the foregoing, Applicants believe that claims 142-143, as amended hereinabove, are in condition for allowance. Prompt and favorable action is earnestly solicited. The Examiner is invited to telephone Applicants' attorney at 508-478-0144 to facilitate prosecution of this application.

Respectfully submitted,

Date: 14. Feb. 02

Brian R. Morrill
Attorney for Applicants
Reg. No. 42,908

Biomeasure Inc.
27 Maple Street
Milford, MA 01757-3650
(508) 478-0144

THIS PAGE BLANK (USPTO)

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

Serial Number: 09/761,605
Examiner: A. Davenport
Group Art: 1653

Attorney Docket 00537/149003

Tr	forming Gr.	h. m.	F	L
	ring Fibros.		360	120
	ring Fibrot.		11	45
	ring		11	45
	ring		11	45

Exhibit 1

The NEJM

2000-2005

Med. Rev. Rev.

Other

The New England Journal of Medicine

Volume 328

January 1993

Part 1

Editorial

Book

Review

You are invited to contribute to the NEJM's new online journal, *Journal of Clinical Investigation*, at www.jci.org. Visit our website for more information.

Journal of Clinical Investigation
Volume 100 Number 1 January 1993

Volume 328: 1992-1993 June 3, 1993 Number 22

Editor in Chief: Robert S. Lefkowitz
Editorial Board: Michael J. Fischl, David G. Holtzman, Daniel H. Kornblith, John P. Leonard, Mark A. Rosenzweig, Robert M. Silverman, Richard A. Starke, Mark E. Tisch, and James D. Watson

Transforming Growth Factor β as a Predictor of Liver and Lung Fibrosis after Autologous Bone Marrow Transplantation for Advanced Breast Cancer

Mitchell S. Ancker, William P. Peters, Herbert Baumhölzer, William P. Petros, and

Randy L. Jirtle

Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan

ABSTRACT

Background: Hepatic veno-occlusive disease and idiopathic interstitial pneumonitis are major causes of morbidity and mortality after bone marrow transplantation. Fibrosis is a characteristic of both conditions, and transforming growth factor β (TGF β) has been implicated in the pathogenesis of fibrosis.

Methods: Using acid-ethanol extraction to remove TGF β from human plasma and a spin-lung epithelial-cell growth-inhibition assay to measure TGF β activity, we quantified plasma TGF β in 10 normal subjects and 41 patients before and after they underwent high-dose chemotherapy and autologous bone marrow transplantation for advanced breast cancer.

Results: There was no difference in pretransplantation TGF β levels between the controls and the patients who did not have hepatic veno-occlusive disease or idiopathic interstitial pneumonitis after transplantation. In contrast, pretransplantation TGF β levels were significantly higher in patients in whom hepatic veno-occlusive disease or idiopathic interstitial pneumonitis developed than in the controls or the patients without these conditions. The predictive value for the development of either condition was 90 percent or more when pretransplantation plasma TGF β levels were more than 2 SD above the mean established in the controls.

- [Return to Search Result](#)
- [Table of Contents](#)
- [Abstract of this article](#)
- [Find Similar Articles in the Journal](#)
- [Articles citing this article](#)
- [Add to Personal Archive](#)
- [Download to Citation Manager](#)
- [Alert Me when this article is cited](#)
- [Related Articles in Medicine](#)
- [Articles in Medicine by Author:](#)
 - [Ancker, M. S.](#)
 - [Jirtle, R. L.](#)
- [Medline Citation](#)

The New English Journal of Medicine

GRUPO DE ESTUDOS SOBRE A CULTURA DA MUSICA

Translational Research for Advanced Biocatalysis

~~Wien, Sonntag, 9. Juli 1919. Gedacht an die Freiheit, 9. Juli 1919. 9. Juli 1919. 2. November.~~

STORY

Digitized by srujanika@gmail.com

The level of this activity is often increased after bone marrow transplantation.
Conclusions. The plasma TGF β concentration measured after induction chemotherapy but before high-dose chemotherapy and autologous bone marrow transplantation strongly correlates with the risk of hepatic veno-occlusive disease and idiopathic interstitial pneumonitis after these treatments.

Hepatic veno-occlusive disease is a serious consequence of high-dose chemotherapy or radiotherapy combined with bone marrow transplantation for neoplasia; it occurs in 15 to 50 percent of patients, with a mortality rate of up to 50 percent.^{1,2,3,4,5,6,7} The syndrome typically develops one to three weeks after transplantation and is characterized by sudden weight gain, hepatomegaly, ascites, and hyperbilirubinemia;⁷ hepatic encephalopathy may also develop.

Similarly, pulmonary complications of bone marrow-transplantation are a major source of morbidity, occurring in 40 to 60 percent of patients.⁸ Noninfectious pulmonary complications (idiopathic interstitial pneumonitis) occur in 10 to 25 percent of bone marrow-transplant recipients.⁹ This syndrome is characterized by dyspnea, fever, and hypoxemia, with or without diffuse interstitial infiltrates on chest radiography. It occurs 40 to 75 days after transplantation; the mortality rates are high. Both the chemotherapy and the radiotherapy used in the conditioning regimens have been implicated in the development of liver and lung damage after bone marrow transplantation.^{1,8,9}

Fibrosis is a prominent feature in both the lungs and the liver in patients with these complications.^{10,11} Recently, efforts have been directed at elucidating the molecular mechanisms of these fibrotic reactions. Transforming growth factor β (TGF β) stimulates fibroblasts to migrate to the site of injury, proliferate, and produce collagen; it also inhibits collagen degradation.¹² Thus, it plays an important part in normal wound healing¹³⁻¹⁴ as well as in abnormal fibrogenesis. TGF β has been implicated in the causation of chronic pulmonary fibrosis in rats and mice exposed to bleomycin or cyclophosphamide,^{15,16,17,18,19,20} and in the development of hepatic fibrosis in rats exposed to radiation²¹ or carbon tetrachloride.^{22,23} TGF β may also have a role in fibrotic liver and lung diseases in humans,^{24,25,26,27} such as chronic hepatitis,²⁸ idiopathic pulmonary fibrosis,^{29,30} and systemic sclerosis.^{31,32,33} Inhibition of TGF β activity can prevent the development of chronic hepatitis,²⁸ acute mesangial proliferative glomerulonephritis,³⁴ and the fibrotic effects of carbon tetrachloride,³⁵ providing further evidence for the role of TGF β in these fibrotic conditions.

Because the level of expression of the gene for TGF $\beta 1$ is elevated in both animals and humans with fibrotic liver or lung diseases,^{28,30} we postulated that an increase in the release and activation of TGF $\beta 1$ in fibrotic tissue would also result in an increase in the circulating level of this growth factor. It may be possible to use the plasma concentration of TGF β proteins measured before the administration of high-dose chemotherapy to identify patients most prone to the development of lung or liver injury after bone marrow transplantation.

Methods

Patients

People under 40 years of age have more bone mineral than those over 40 years of age. This is because bone mineral increases until about 40 years of age and then begins to decrease.

1

三

Digitized by srujanika@gmail.com

Digitized by srujanika@gmail.com

and the other to the people of the land, so as to cause them to conceive of the
King as a wise and good ruler who has the welfare of his subjects at heart.

Exhibition to come to you is not mandatory. You can choose to exhibit your products at different exhibition centers.

Examiners testicular function need to measure LH and/or FSH or sex-hormones.

act draft, dated 1998-07-10, available at <http://www.legis.state.vt.us/legisweb/billinfo/146/146-1000.htm>.

98 In 1990, the U.S. Congress passed the Americans with Disabilities Act (ADA).

Household members who have been granted permanent residence status

11. *Glomerulocapillaryitis with crescent formation is associated with IgA1 nephropathy.*

For more information about the study, contact Dr. Michael J. Hwang at (319) 356-4000 or email at mhwang@uiowa.edu.

Post-flight to non-instrumented sites selected because they included DDT. To understand more about what might lead to great loss of diversity from disturbed habitats or regeneration areas, see also the next section.

www.ijerph.org | Impact Factor: 2.626 | MDPI | ISSN 1660-4601

1981-1982 Field Measurements of the Riverbed

Er ist nicht mehr zu überzeugen, dass es sich um eine alte

卷之三

213919

At the time of this analysis, 102 women with adenocarcinoma of the breast had been treated according to research protocols for bone marrow transplantation at Duke University Medical Center. All patients had either stage IV disease (metastases) or advanced stage II or III disease (more than 10 positive lymph nodes found after axillary dissection) and underwent four cycles of induction chemotherapy followed by high-dose chemotherapy and autologous bone marrow transplantation (Figure 1). The details of this treatment regimen have been previously reported.²² In brief, the induction regimen consisted of cyclophosphamide, doxorubicin (Adriamycin), and fluorouracil (for stage II or III disease) or doxorubicin, fluorouracil, and methotrexate (for stage IV disease). The high-dose chemotherapy consisted of carbustine, cyclophosphamide, and cisplatin. Radiation therapy was directed at the sites of known metastases (stage IV disease) or to the ipsilateral chest wall, internal mammary nodes, and supravacular lymph nodes (stage II or III disease) after autologous bone marrow transplantation.

Of the 102 patients treated, 12 subsequently had hepatic veno-occlusive disease, 19 had pulmonary fibrosis, and the remaining 71 had neither. Both conditions were defined clinically. Hepatic veno-occlusive disease was indicated by the development of weight gain, hepatomegaly, ascites, and hyperbilirubinemia one to three weeks after transplantation. Pulmonary fibrosis was indicated by dyspnea, fever, and hypoxemia with or without diffuse interstitial infiltrates on chest radiography, beginning 40 to 75 days after transplantation. Other causes of these two syndromes had to be excluded in order to accept these diagnoses. Biopsy was not required. All patients with hepatic veno-occlusive disease or pulmonary fibrosis were included in this analysis. A sample of 10 patients who had neither condition (a sample matching the number of controls, described below) was randomly selected from among all patients enrolled under these protocols whose plasma samples were stored in the archives of the cryopreservation laboratory. Specimens were coded, and TGF β levels measured, without the investigators' prior knowledge of whether or not the patient had hepatic veno-occlusive disease or pulmonary fibrosis. After the plasma TGF β levels in the samples were measured, the code was broken and the data were grouped for analysis according to the patients' status for toxic complications (see below).

of gnatwosz batesu need ber record edt lo amonotocobas ibi w normow 201 ,zaylensz zedt lo part edt VA
berd etmilesq (IA ,jones) lewibz M yletovin edt GuleU qleU re maitnelegens w weman need not elazcangz dorobz
ezbon dgnrel sviliezq 01 nelsi strom) sacezib III to II segte tecmorbz to (p-ecleasant) sacezib VI segte tecmorbz
yd lewifflor yqatdolmats maitubn lo zolyo wcl inawstebz lime (maitsezzib yqatdolmats tecmorbz bnoz)
zidt lo zilatz effT (Lazat3) maitremalogenz w weman need zengelotas bnoz yqatdolmats tecmorbz pach-dzidz
lo bateszro maitgen maitubn zidt lizind n1 .Zaylensz yqatdolmats need evet maitgen amonotocob
maitremalogenz w (sacezib III to II segte w1) licemtousz bnoz .(m1 ,m1n1A) maitfumozb zebimelqadqolz
emtuzmuz lo bateszro yqatdolmato sebz-ridz effT (sacezib VI segte w1) wazqutobz bnoz ,hostemousz
/ segte) eczestebz amonot lo zette zidt lo bateszro zaylensz yqatdolmato B ,m1qutobz bnoz zebimelqadqolz
II segte) ezbon dgnrel sviliezq bnoz ,zation yismmam lamont ,How zedt lansustaqi zidt lo sacezib
maitremalogenz w weman need zengelotas tecmorbz (sacezib III to

Figure 1. Tectonic map of the Western Cape Province showing the location of the Cape Fold Belt.

traswomult (zloymuzhba) nizidimozob to mognit s zstrukb MRA
zblinadneqolqoye to mognit s FAD to mazontolik bns
s vyznachimykh seob-sigid bns (mognit bns), zblidimozob
nizulqo bns, antenmno, zlomolg-ergolye to mognit
sbi rofle suo bessro zw woman snot suogolous to nozhnolqeyit
vyezrostomu s seob-dam

7. *La längerer Revue* (444)

**Stage IV
Disease**

**Stage II or III
Disease**

Induction Chemotherapy

AFM

CAF

3 wk

3 wk

AFM

CAF

3 wk

3 wk

AFM

CAF

3 wk

3 wk

AFM

CAF

**Day -7:
pretransplantation
sampling**

Day -6

High-Dose Chemotherapy

Day 0

Transplantation

**Day 12 to 37: →
post-transplantation
sampling**

Radiation

Anscher Fig. 1

In addition, a third sample was taken at the time of bone marrow transplantation. Plasma samples were obtained twice. The first sample was obtained after induction chemotherapy but before the administration of high-dose chemotherapy and autologous bone marrow transplantation. The second sample was obtained after the high-dose chemotherapy and transplantation (Figure 1), between 12 and 37 days after the operation, depending on the availability of adequate samples. The findings in the transplant recipients were compared with those in controls — 10 normal blood donors whose plasma was obtained from the American Red Cross (Charlotte, N.C.).

Extraction of TGF β from Plasma

TGF β was extracted from plasma by acid-ethanol extraction^{37,38}. Because this extraction procedure activates TGF β , we could not determine the amount of active and inactive TGF β present in the samples. To extract TGF β , 4 ml of an acid-ethanol solution (375 ml of 95 percent ethanol, 7.5 ml of 12 N hydrochloric acid, 33 mg of phenylmethylsulfonyl fluoride, and 1.9 mg of pepstatin) was added to a 1-ml plasma sample previously diluted by a factor of 2 with distilled water. The samples were incubated overnight at 4 °C, then centrifuged at 20,000 × g for 30 minutes at 4 °C. The supernatant was removed and stored at 4 °C, and the remainder of the sample was reextracted and centrifuged. The two supernatants were then combined, and the pH was adjusted to 5.2 to 5.3 with ammonium hydroxide. One milliliter of 2 M ammonium hydroxide was added to 85 ml of supernatant and diluted by a factor of 3 with cold (4 °C) 100 percent ethanol. This solution was incubated at -20 °C for at least two days and then centrifuged. The pellet was resuspended in 5 ml of 1 M acetic acid, dialyzed overnight in 1 percent acetic acid, divided into aliquots, lyophilized, and stored at -20 °C until assayed.

Assay for TGF β

Plasma levels of TGF β were quantified with the use of an assay measuring the inhibition of the growth of mink lung epithelial cells³⁹. Because this assay is not capable of discriminating among the three isoforms of TGF β , throughout this paper we simply use the term "TGF β ." In brief, after the MV 1 Lu mink-lung epithelial cells (CCL-64) were subjected to trypsinization and suspended in the assay medium, they were plated at a concentration of 10^5 cells per milliliter. After incubation at 37 °C for 1 hour, TGF β test samples and standards of known TGF β 1 concentration were added to the wells and incubated at 37 °C for 22 hours. The extent of DNA synthesis was then determined by incubating the cells with 3 H-labeled thymidine at 37 °C for an additional four hours. The cells were finally fixed for one hour at room temperature in 1.0 ml of methanol-acetic acid solution (3:1 vol/vol) and washed twice in 50 percent methanol. They were then solubilized in 0.3 N sodium hydroxide, and the radiolabeled DNA was extracted by precipitation with trichloroacetic acid. The amount of radioactivity in the cells exposed to the test samples and TGF β 1 standards was determined with a liquid-scintillation counter. This assay was able to detect amounts of TGF β ranging from 0.05 to 0.5 ng per milliliter ($0.3 \text{ to } 2 \times 10^{-8}$ nmol per liter), with 50 percent inhibition occurring at a concentration of 0.1 ng per milliliter (0.4×10^{-8} nmol per liter). The samples were serially diluted until the quantities of TGF β present were in the linear portion of the sigmoid-shaped curve for the TGF β standard. Actual TGF β levels were then calculated by multiplying the measured TGF β concentration by the dilution factor. Test samples were always assayed with samples containing known quantities of TGF β to ensure the reliability of the bioassay.

“I am not a member of any particular party,” he said. “I am a member of the Constitution.”

small and 240 T to obtain it

To determine whether the inhibitory effect of the test samples was due specifically to TGF β , a neutralizing antibody that recognized TGF β (R&D Systems, Minneapolis) was added to all the test samples one hour before they were added to the mink-lung cells. Because the antibody was not specific for an individual isoform of TGF β , we could not determine the relative contributions of the three isoforms to the total plasma concentration. In all test samples the TGF β antibody was able to neutralize completely the inhibition of 50 percent of the cell growth (data not shown).

Statistical Analysis

Plasma TGF β was measured in the controls and patients both before and after bone marrow transplantation. Analysis of variance and Scheffe's method of multiple comparisons were used to compare mean values determined before and after transplantation in patients according to whether they subsequently had hepatic veno-occlusive disease, pulmonary fibrosis, or neither condition. Sensitivity, specificity, and predictive values (positive and negative) were calculated on the basis of a cutoff value for plasma TGF β of 10 ng per milliliter (4×10^{-7} mmol per liter), which was 2 SD above the mean determined in the controls (6 ng per milliliter [2.4×10^{-7} mmol per liter]).

The clinical variables determined in each patient are shown in Table 1. These data were analyzed in the same way as the TGF β measurements.¹⁹ No clinical information was available for the controls because they were anonymous blood donors. Laboratory values were measured on or as close as possible to the dates on which plasma samples were obtained for measurement of TGF β (Figure 1), to determine whether there were any differences between the patients in whom hepatic veno-occlusive disease or pulmonary fibrosis developed and the patients without these complications.

[View this table:
\[in this window\]
\[in a new window\]](#)

Table 1. Clinical Characteristics Determined in 102 Women with Breast Cancer.

Results

The characteristics of the 41 patients who underwent autologous bone marrow transplantation for advanced breast cancer are shown in Table 2. The patients in whom pulmonary fibrosis or hepatic veno-occlusive disease later developed and the patients without these complications were similar in all respects except that the group with hepatic veno-occlusive disease included patients with distant metastases who had received chemotherapy or radiotherapy before they were enrolled in the transplantation program. The mortality rates for pulmonary fibrosis and hepatic veno-occlusive disease were 26 percent and 17 percent, respectively (Table 2).

Review & Testimony

Table 3: Chinese Government Employees in 103 Major Cities

શ્રીબ્રહ્મ

Hematologic factors†

- White-cell count
- Hemoglobin
- Hematocrit
- Platelet count
- Prothrombin time
- Activated partial-thromboplastin time

Biochemical factors†

- Uric acid
- Sodium
- Potassium
- Chloride
- Bicarbonate
- Blood urea nitrogen
- Creatinine
- Calcium
- Magnesium
- Phosphorus
- Albumin
- Alkaline phosphatase
- Aspartate aminotransferase
- Alanine aminotransferase
- Lactate dehydrogenase
- Total bilirubin
- Direct bilirubin

Pulmonary function (measured before induction chemotherapy or transplantation)

- Forced vital capacity
- Forced expiratory volume in one second
- Vital capacity
- Total lung capacity
- Carbon monoxide diffusion capacity
- Expiratory reserve volume
- Functional residual capacity

Treatment factors

- Previous chemotherapy before enrollment for transplantation
- Previous radiation therapy before enrollment for transplantation
- Use of peripheral-blood-cell progenitors during transplantation
- Duration of carmustine infusion during transplantation
- Use of colony-stimulating factor during transplantation

Tumor factors

- Maximal tumor size at diagnosis
- Number of positive nodes at diagnosis

Pharmacokinetics (high-dose chemotherapy only)

- Area under the concentration-time curve for carmustine and cyclophosphamide (data not available for cisplatin)

*There were no significant differences in the mean values for these clinical factors between the group of patients who did not have toxic complications and the groups that did ($P>0.1$ in all cases).

†Hematologic and biochemical factors were measured on or as close as possible to the dates on which plasma samples were obtained for measurement of TGF β .

卷之三

gkbi 1000000000
1000000000

10

1. *Chlorophytum comosum* (L.) Willd. (Asparagaceae) - *Chlorophytum comosum* (L.) Willd. (Asparagaceae)

La phonie
s'explique par la
position des lèvres et des dents.
Le son de la phonie dépend de la position
des lèvres et des dents.

1. WILHELM
2. WILHELM

[View this table:
In this window
In a new window](#)

Table 2. Characteristics of Patients Undergoing Autologous Bone Marrow Transplantation for Breast Cancer.

The TGF β concentrations in each patient and control are shown in Figure 2; the solid line at 10 ng per milliliter represents the TGF β level 2 SD above the mean value of 6.1 ng per milliliter (2.4×10^{-7} nmol per liter) determined in the controls (10 healthy blood donors). The mean TGF β concentrations in each study group are shown in Figure 3. When we compared the TGF β levels measured in the patients before transplantation with the levels in the controls, we found no significant difference ($P > 0.1$) between the controls and the patients who did not have hepatic veno-occlusive disease or pulmonary fibrosis after transplantation. In contrast, the pretransplantation TGF β levels in patients who later had hepatic veno-occlusive disease or pulmonary fibrosis were significantly higher ($P = 0.003$) than those in the controls and the patients without fibrotic changes in their lungs or liver.

[View larger version \(27K\):](#)

[In this window
In a new window](#)

Figure 2. Individual Pretransplant TGF β Pretransplant Concentrations in the Control Group and Groups.

Table 5. Correspondence to Previous Unpublished Analogous Bone Morphologies for Differentiation to Fetal Callus.

1. **What is the difference between TGF- β 1 and TGF- β 2 in terms of their biological activities?**

Highly visible as being the most basic of all categories. One group of
such categories is that of the pure or basic types of inference, which
are called *monocategoreical* or *monocategoreic*. The other group
of such categories is that of the mixed or hybrid types of inference,
which are called *polycategoreical* or *polycategoreic*.

1. **תְּמִימָה** בְּלֵבֶן
2. **תְּמִימָה** בְּלֵבֶן

VARIABLE	PATIENTS WITHOUT FIBROSIS (N = 10)	PATIENTS WITH FIBROSIS	
	LIVER (N = 12)	LUNGS (N = 19)	
Age (yr)			
Mean	41	40	39
Range	32-53	32-46	30-47
Tumor size (cm)*			
Mean	4.2	4.2	3.4
Range	1.2-12	2-11	1-10
No. of positive nodes			
Mean	15	12	14
Range	10-39	0-33	10-33
Patients given chemotherapy before enrollment for transplantation (%)	0	5 (42)	0
Patients given previous radiation therapy (%)	0	2 (17)	0
Patients with distant metastases (%)			
No metastases	10	6 (50)	19 (100)
Lung	0	0	0
Liver	0	2 (17)	0
Other site	0	4 (33)	0
Patients dying of toxic complications (%)	—	2 (17)	5 (26)

*Measured before induction chemotherapy.

THIS PAGE BLANK (USPTO)

Anscher Fig. 2

... 16.

1. (164) 2. (165)

q	em.	verb. &c.	in	other
both in	and I	I shall	the same next	
with a lot	There	you are	time to go	
from me	you're	you're	there	

Table 6
Comparison of
the Results of
the Various
Experiments

.....

7

Year	Officer	Rank	Age	Length of Service	Number of Cases	Number of Convictions	Percentage of Convictions
1850	John C. Frémont	Major	35	1 year	10	8	80%
1851	John C. Frémont	Major	36	2 years	15	12	80%
1852	John C. Frémont	Major	37	3 years	20	16	80%
1853	John C. Frémont	Major	38	4 years	25	20	80%
1854	John C. Frémont	Major	39	5 years	30	24	80%
1855	John C. Frémont	Major	40	6 years	35	28	80%
1856	John C. Frémont	Major	41	7 years	40	32	80%
1857	John C. Frémont	Major	42	8 years	45	36	80%
1858	John C. Frémont	Major	43	9 years	50	40	80%
1859	John C. Frémont	Major	44	10 years	55	44	80%
1860	John C. Frémont	Major	45	11 years	60	48	80%
1861	John C. Frémont	Major	46	12 years	65	52	80%
1862	John C. Frémont	Major	47	13 years	70	56	80%
1863	John C. Frémont	Major	48	14 years	75	60	80%
1864	John C. Frémont	Major	49	15 years	80	64	80%
1865	John C. Frémont	Major	50	16 years	85	68	80%
1866	John C. Frémont	Major	51	17 years	90	72	80%
1867	John C. Frémont	Major	52	18 years	95	76	80%
1868	John C. Frémont	Major	53	19 years	100	80	80%
1869	John C. Frémont	Major	54	20 years	105	84	80%
1870	John C. Frémont	Major	55	21 years	110	88	80%
1871	John C. Frémont	Major	56	22 years	115	92	80%
1872	John C. Frémont	Major	57	23 years	120	96	80%
1873	John C. Frémont	Major	58	24 years	125	100	80%
1874	John C. Frémont	Major	59	25 years	130	104	80%
1875	John C. Frémont	Major	60	26 years	135	108	80%
1876	John C. Frémont	Major	61	27 years	140	112	80%
1877	John C. Frémont	Major	62	28 years	145	116	80%
1878	John C. Frémont	Major	63	29 years	150	120	80%
1879	John C. Frémont	Major	64	30 years	155	124	80%
1880	John C. Frémont	Major	65	31 years	160	128	80%
1881	John C. Frémont	Major	66	32 years	165	132	80%
1882	John C. Frémont	Major	67	33 years	170	136	80%
1883	John C. Frémont	Major	68	34 years	175	140	80%
1884	John C. Frémont	Major	69	35 years	180	144	80%
1885	John C. Frémont	Major	70	36 years	185	148	80%
1886	John C. Frémont	Major	71	37 years	190	152	80%
1887	John C. Frémont	Major	72	38 years	195	156	80%
1888	John C. Frémont	Major	73	39 years	200	160	80%
1889	John C. Frémont	Major	74	40 years	205	164	80%
1890	John C. Frémont	Major	75	41 years	210	168	80%
1891	John C. Frémont	Major	76	42 years	215	172	80%
1892	John C. Frémont	Major	77	43 years	220	176	80%
1893	John C. Frémont	Major	78	44 years	225	180	80%
1894	John C. Frémont	Major	79	45 years	230	184	80%
1895	John C. Frémont	Major	80	46 years	235	188	80%
1896	John C. Frémont	Major	81	47 years	240	192	80%
1897	John C. Frémont	Major	82	48 years	245	196	80%
1898	John C. Frémont	Major	83	49 years	250	200	80%
1899	John C. Frémont	Major	84	50 years	255	204	80%
1900	John C. Frémont	Major	85	51 years	260	208	80%
1901	John C. Frémont	Major	86	52 years	265	212	80%
1902	John C. Frémont	Major	87	53 years	270	216	80%
1903	John C. Frémont	Major	88	54 years	275	220	80%
1904	John C. Frémont	Major	89	55 years	280	224	80%
1905	John C. Frémont	Major	90	56 years	285	228	80%
1906	John C. Frémont	Major	91	57 years	290	232	80%
1907	John C. Frémont	Major	92	58 years	295	236	80%
1908	John C. Frémont	Major	93	59 years	300	240	80%
1909	John C. Frémont	Major	94	60 years	305	244	80%
1910	John C. Frémont	Major	95	61 years	310	248	80%
1911	John C. Frémont	Major	96	62 years	315	252	80%
1912	John C. Frémont	Major	97	63 years	320	256	80%
1913	John C. Frémont	Major	98	64 years	325	260	80%
1914	John C. Frémont	Major	99	65 years	330	264	80%
1915	John C. Frémont	Major	100	66 years	335	268	80%
1916	John C. Frémont	Major	101	67 years	340	272	80%
1917	John C. Frémont	Major	102	68 years	345	276	80%
1918	John C. Frémont	Major	103	69 years	350	280	80%
1919	John C. Frémont	Major	104	70 years	355	284	80%
1920	John C. Frémont	Major	105	71 years	360	288	80%
1921	John C. Frémont	Major	106	72 years	365	292	80%
1922	John C. Frémont	Major	107	73 years	370	296	80%
1923	John C. Frémont	Major	108	74 years	375	300	80%
1924	John C. Frémont	Major	109	75 years	380	304	80%
1925	John C. Frémont	Major	110	76 years	385	308	80%
1926	John C. Frémont	Major	111	77 years	390	312	80%
1927	John C. Frémont	Major	112	78 years	395	316	80%
1928	John C. Frémont	Major	113	79 years	400	320	80%
1929	John C. Frémont	Major	114	80 years	405	324	80%
1930	John C. Frémont	Major	115	81 years	410	328	80%
1931	John C. Frémont	Major	116	82 years	415	332	80%
1932	John C. Frémont	Major	117	83 years	420	336	80%
1933	John C. Frémont	Major	118	84 years	425	340	80%
1934	John C. Frémont	Major	119	85 years	430	344	80%
1935	John C. Frémont	Major	120	86 years	435	348	80%
1936	John C. Frémont	Major	121	87 years	440	352	80%
1937	John C. Frémont	Major	122	88 years	445	356	80%
1938	John C. Frémont	Major	123	89 years	450	360	80%
1939	John C. Frémont	Major	124	90 years	455	364	80%
1940	John C. Frémont	Major	125	91 years	460	368	80%
1941	John C. Frémont	Major	126	92 years	465	372	80%
1942	John C. Frémont	Major	127	93 years	470	376	80%
1943	John C. Frémont	Major	128	94 years	475	380	80%
1944	John C. Frémont	Major	129	95 years	480	384	80%
1945	John C. Frémont	Major	130	96 years	485	388	80%
1946	John C. Frémont	Major	131	97 years	490	392	80%
1947	John C. Frémont	Major	132	98 years	495	396	80%
1948	John C. Frémont	Major	133	99 years	500	400	80%
1949	John C. Frémont	Major	134	100 years	505	404	80%
1950	John C. Frémont	Major	135	101 years	510	408	80%
1951	John C. Frémont	Major	136	102 years	515	412	80%
1952	John C. Frémont	Major	137	103 years	520	416	80%
1953	John C. Frémont	Major	138	104 years	525	420	80%
1954	John C. Frémont	Major	139	105 years	530	424	80%
1955	John C. Frémont	Major	140	106 years	535	428	80%
1956	John C. Frémont	Major	141	107 years	540	432	80%
1957	John C. Frémont	Major	142	108 years	545	436	80%
1958	John C. Frémont	Major	143	109 years	550	440	80%
1959	John C. Frémont	Major	144	110 years	555	444	80%
1960	John C. Frémont	Major	145	111 years	560	448	80%
1961	John C. Frémont	Major	146	112 years	565	452	80%
1962	John C. Frémont	Major	147	113 years	570	456	80%
1963	John C. Frémont	Major	148	114 years	575	460	80%
1964	John C. Frémont	Major	149	115 years	580	464	80%
1965	John C. Frémont	Major	150	116 years	585	468	80%
1966	John C. Frémont	Major	151	117 years	590	472	80%
1967	John C. Frémont	Major	152	118 years	595	476	80%
1968	John C. Frémont	Major	153	119 years	600	480	80%
1969	John C. Frémont	Major	154	120 years	605	484	80%
1970	John C. Frémont	Major	155	121 years	610	488	80%
1971	John C. Frémont	Major	156	122 years	615	492	80%
1972	John C. Frémont	Major	157	123 years	620	496	80%
1973	John C. Frémont	Major	158	124 years	625	500	80%
1974	John C. Frémont	Major	159	125 years	630	504	80%
1975	John C. Frémont	Major	160	126 years	635	508	80%
1976	John C. Frémont	Major	161	127 years	640	512	80%
1977	John C. Frémont	Major	162	128 years	645	516	80%
1978	John C. Frémont	Major	163	129 years	650	520	80%
1979	John C. Frémont	Major	164	130 years	655	524	80%
1980	John C. Frémont	Major	165	131 years	660	528	80%
1981	John C. Frémont	Major	166	132 years	665	532	80%
1982	John C. Frémont	Major	167	133 years	670	536	80%
1983	John C. Frémont	Major	168	134 years	675	540	80%
1984	John C. Frémont	Major	169	135 years	680	544	80%
1985	John C. Frémont	Major	170	136 years	685	548	80%
1986	John C. Frémont	Major	171	137 years	690	552	80%
1987	John C. Frémont	Major	172	138 years	695	556	80%
1988	John C. Frémont	Major	173	139 years	700	560	80%
1989	John C. Frémont	Major	174	140 years	705	564	80%
1990	John C. Frémont	Major	175	141 years	710	568	80%
1991	John C. Frémont	Major	176	142 years	715	572	80%
1992	John C. Frémont	Major	177	143 years	720	576	80%
1993	John C. Frémont	Major	178	144 years	725	580	80%
1994	John C. Frémont	Major	179	145 years	730	584	80%
1995	John C. Frémont	Major	180	146 years	735	588	80%
1996	John C. Frémont	Major	181	147 years	740	592	80%
1997	John C. Frémont	Major	182	148 years	745	596	80%
1998	John C. Frémont	Major	183	149 years	750	600	80%
1999	John C. Frémont	Major	184	150 years	755	604	80%
2000	John C. Frémont	Major	185	151 years	760	608	80%
2001	John C. Frémont	Major	186	152 years	765	612	80%
2002	John C. Frémont	Major	187	153 years	770	616	80%
2003	John C. Frémont	Major	188	154 years	775	620	80%
2004	John C. Frémont	Major	189	155 years	780	624	80%
2005	John C. Frémont	Major	190	156 years	785	628	80%
2006	John C. Frémont	Major	191	157 years	790	632	80%
2007	John C. Frémont	Major	192	158 years	795	636	80%
2008	John C. Frémont	Major	193	159 years	800	640	80%
2009	John C. Frémont	Major	194	160 years	805	644	80%
2010	John C. Frémont	Major	195	161 years	810	648	80%
2011	John C. Frémont	Major	196	162 years	815	652	80%
2012	John C. Frémont	Major	197	163 years	820	656	80%
2013	John C. Frémont	Major	198	164 years	825	660	80%
2014	John C. Frémont	Major	199	165 years	830	664	80%
2015	John C. Frémont	Major	200	166 years	835	668	80%
2016	John C. Frémont	Major	201	167 years	840	672	80%
2017	John C. Frémont	Major	202	168 years	845	676	80%
2018	John C. Frémont	Major	203	169 years	850	680	80%
2019	John C. Frémont	Major	204	170 years	855	684	80%
2020	John C. Frémont	Major	205	171 years	860	688	80%
2021	John C. Frémont	Major	206	172 years	865	692	80%
2022	John C. Frémont	Major	207	173 years	870	696	80%
2023	John C. Frémont	Major	208	174 years	875	700	80%
2024	John C. Frémont	Major	209	175 years	880	704	80%

卷之三

WILHELMUS VAN DER HORST

卷之三

[View larger version \(27K\):](#)

[\(in this window\)](#)

[\(in a new window\)](#)

Figure 2. Mean (±SEM) TGF β Concentrations in the Controls and Patients.

The legend to Figure 2 describes the four study groups. TGF β was measured before (solid bars) and after (hatched bars) bone marrow transplantation. In Table 1, the mean of the pretransplantation TGF β values is shown. The bars are the mean, and the error bars represent the SEM. TGF β was measured in plasma by enzyme immunoassay.

After autologous bone marrow transplantation, TGF β levels fell to approximately 50 percent of their pretransplantation levels ($P<0.001$) in all three groups of patients (Table 2). To calculate the sensitivity, specificity, and positive predictive value,

After autologous bone marrow transplantation, there was a significant decrease ($P<0.001$) in the TGF β levels of patients with subsequent hepatic veno-occlusive disease or pulmonary fibrosis (Figure 2 and Figure 3). This decrease paralleled a marked decrease in the platelet count after the high-dose chemotherapy (Table 3). In contrast, the plasma TGF β levels remained unchanged ($P>0.1$) in the patients who did not have hepatic veno-occlusive disease or pulmonary fibrosis, even though their platelet counts decreased to the same extent as the counts of the patients who did have these complications. Although there was a significant difference in pretransplantation TGF β levels between the groups with hepatic veno-occlusive disease and pulmonary fibrosis and the group without these developments, as noted above, there was no significant ($P>0.1$) difference in the post-transplantation levels among these three groups.

[View this table:](#)

[\(in this window\)](#)

[\(in a new window\)](#)

Table 2. Mean (±SEM) TGF β Levels in Plasma Before and After Autologous Bone Marrow Transplantation

[Autologous Bone Marrow Transplantation](#)

To test the usefulness of the TGF β level as an indicator of an increased risk of hepatic veno-occlusive disease or pulmonary fibrosis after high-dose chemotherapy and autologous bone marrow transplantation, the sensitivity, specificity, and the positive and negative predictive values of this marker were calculated. To make these calculations, the upper limit of normal TGF β levels in plasma was set at 10 ng per milliliter, which was 2 SD above the mean value in normal subjects (Figure 2). The resulting values (Table 4) showed that the TGF β level measured in plasma after induction chemotherapy but before high-dose chemotherapy and transplantation was a very good indicator of which patients would subsequently have pulmonary fibrosis or hepatic veno-occlusive disease (or both) after chemotherapy and transplantation. If the plasma concentration of TGF β was greater than 10 ng per milliliter, it was possible to predict with more than 90 percent accuracy that either hepatic veno-occlusive disease or pulmonary fibrosis would develop (i.e., the positive predictive value was >90 percent).

ଜୀବ ତି ଅନ୍ୟମାନଙ୍କୁ (ଏପିଟି) M12୫ ଏମ୍ ଡି ଗାନ୍ଧୀ (ଏପିଟି) M12୫ ଏମ୍ ଡି ଗାନ୍ଧୀ

ଅବ୍ୟାକ୍ତ ପରିମା ନି ପରିପୂର୍ଣ୍ଣ ହେଲା ଏବଂ ଆଶ୍ରମରେ ଯେତେବେଳେ
ଧ୍ୟାନବିନ୍ଦୁ ଦେଖିଲା ତାଙ୍କୁ ଏହା ଅମେରିକ ରୀତେ ବେଳାବେଳା
= ୩) ପରିମାର୍ଗରେ ଥିଲା ଏହା ଧ୍ୟାକ୍ତ ଏହାରେ ରେଖିନ୍ଦ୍ର
ମନ୍ଦିରର ଅନ୍ତରେ ଏହା ବିଷୟରେ ଏହା ମାତ୍ରମେ (୫୦୦.୦
ଟଙ୍କା ରେ ରାଜମନ୍ଦିର ବିଷୟରେ ଏହା ଏହାରେ ଏହାରେ

וְאֵת שָׁמֶן אֲשֶׁר־בַּיּוֹם

卷之三

卷之三

To test the null hypothesis of no difference between the two groups, we can use a paired t-test. The null hypothesis is that the mean difference between the two groups is zero. The alternative hypothesis is that the mean difference is not zero. We can use a two-tailed test because we are interested in any difference, not just a specific direction. The test statistic is calculated as follows:

Ansch Fig. 3

THIS PAGE BLANK (USPTO)

VARIABLE	PATIENTS WITHOUT FIBROSIS		PATIENTS WITH FIBROSIS		LIVER		LUNGS	
	Before	After	Before	After	Before	After	Before	After
TGF β level (ng/ml)*	7.6±1.6	4.6±1.4	19.5±3.5	7.3±2.1	26.1±4.9	9.3±2.6	6.6±1.5	6.6±1.5
Platelet count ($\times 10^3/\text{ml}$)	172±23	28±6.7	172±18	25±8.4	212±14	29±3.6	140±15	140±15

*To convert values to millimoles per liter; multiply by 4×10^{-8} .

Anscher Table 3

Time	Condition	Reaction	Reaction	Reaction
0 min	Control	None	None	None
10 min	UV	None	None	None
20 min	UV	None	None	None
30 min	UV	None	None	None

REFERENCES

It is also important to note that the high-level of education and income of the population is positively correlated with the level of education.

Nombre	Apellido	Nombre	Apellido	Nombre	Apellido
RODRIGO	RODRIGUEZ	RODRIGO	RODRIGUEZ	RODRIGO	RODRIGUEZ

Nombre	Apellido	Nombre	Apellido	Nombre	Apellido
RODRIGO	RODRIGUEZ	RODRIGO	RODRIGUEZ	RODRIGO	RODRIGUEZ
RODRIGO	RODRIGUEZ	RODRIGO	RODRIGUEZ	RODRIGO	RODRIGUEZ
RODRIGO	RODRIGUEZ	RODRIGO	RODRIGUEZ	RODRIGO	RODRIGUEZ
RODRIGO	RODRIGUEZ	RODRIGO	RODRIGUEZ	RODRIGO	RODRIGUEZ

Algunas de las piezas que se han conservado en el Museo de Arqueología de la Universidad de Costa Rica, tienen la inscripción de "Museo de Arqueología de la Universidad de Costa Rica" y "Museo de Arqueología de la UCR".

En la pieza número 002, se observa que la inscripción es "Museo de Arqueología de la Universidad de Costa Rica" y "Museo de Arqueología de la UCR".

Nombre	Apellido	Nombre	Apellido	Nombre	Apellido
RODRIGO	RODRIGUEZ	RODRIGO	RODRIGUEZ	RODRIGO	RODRIGUEZ
RODRIGO	RODRIGUEZ	RODRIGO	RODRIGUEZ	RODRIGO	RODRIGUEZ
RODRIGO	RODRIGUEZ	RODRIGO	RODRIGUEZ	RODRIGO	RODRIGUEZ
RODRIGO	RODRIGUEZ	RODRIGO	RODRIGUEZ	RODRIGO	RODRIGUEZ

La pieza número 002, tiene la inscripción de "Museo de Arqueología de la Universidad de Costa Rica" y "Museo de Arqueología de la UCR".

[View this table:
\(in this window\)
\(in a new window\)](#)

Table 4. Pretransplantation Concentration of Plasma TGF β as a Predictor of Liver and Lung Disease after High-Dose Chemotherapy and Autologous Bone Marrow Transplantation.

We also attempted to determine whether the development of pulmonary fibrosis or hepatic veno-occlusive disease was associated with any of the variables listed in Table 1. We could find no significant difference in the mean values for these clinical factors between the patients with these complications after transplantation and those without them ($P>0.1$ in all cases). Furthermore, there was no correlation between any of the factors and the pretransplantation TGF β levels in the three groups of patients (data not shown).

To explore the possibility that TGF β might be produced by the tumor, the relation between tumor burden, as measured by the maximal tumor dimension and the number of lymph nodes involved by cancer, and the plasma TGF β concentration before transplantation was determined (Table 5). There were no significant differences in pretransplantation TGF β levels when the patients were compared according to the number of involved lymph nodes or the greatest measurable tumor dimension (before induction chemotherapy).

[View this table:
\(in this window\)
\(in a new window\)](#)

Table 5. TGF β Concentration at Induction Chemotherapy Before Transplantation With Liver or Lung Disease.

We also considered the possibility that patients with stage IV cancer who had previously received chemotherapy (before their enrollment in the bone marrow transplantation study) might be at increased risk for toxic complications, as compared with patients who had not previously received chemotherapy. This comparison could be made only in the group with hepatic veno-occlusive disease, since no patient in the other groups had been previously treated with chemotherapy. We found no difference ($P>0.1$) in the pretransplantation TGF β levels between the patients who had received previous chemotherapy and those who had not, which suggested that previous chemotherapy did not necessarily increase the risk of hepatic veno-occlusive disease in this group.

Discussion

Hepatic veno-occlusive disease and pulmonary fibrosis are major causes of morbidity and mortality after bone marrow transplantation for cancer. Many clinical factors define patient populations at increased risk for the development of these complications,^{12,21,22,23,24,25,26} but none of these clinical factors have been useful in assessing the risk in an individual patient. Our study indicates that the plasma TGF β concentration, if measured after induction chemotherapy, strongly correlates with the development of pulmonary fibrosis or hepatic veno-occlusive disease after high-dose chemotherapy and autologous bone marrow transplantation.

Patients most prone to pulmonary fibrosis or hepatic veno-occlusive disease after high-dose chemotherapy and autologous bone marrow transplantation have elevated TGF β levels before transplantation. A positive

10. **Digitization of the Library**: The library has started digitizing its collection. A digital catalog is available online at www.library.iitg.ac.in. The library also has a digital archive of its publications.

We also have a few more specific requirements for the new system. We would like to see the following features:

In the same way as we have seen that the clinical presentation of primary hypertension will vary according to the type of hypertension, so too will the presentation of secondary hypertension vary according to the cause.

10. Съществуващите във ФРЮИИ правни норми са създадени за да подпомагат и да улесняват правилното изпълнение на законите и правилниците във ФРЮИИ.

We also now have the ability to predict which patients will benefit from a particular treatment. This allows us to tailor treatments to individual patients, which can lead to better outcomes and reduced costs.

arit mi ($1.0 < q$) sommeltib na brunit s'W. Agar terdapat nilai q yang memenuhi syarat ini, maka \hat{M}_T adalah estimasi yang baik untuk M_T .

ମୁଦ୍ରାକାରୀ

In the early 1980s, the first large-scale experiments were conducted at the University of California, Berkeley, to determine the effects of different soil treatments on plant growth and yield. The results showed that the use of organic fertilizers, such as manure or compost, can significantly increase crop yields and reduce the need for chemical fertilizers.

44(1) comes in addition to the 44(1A) and 44(1B) provisions in section 44.

Io meglioio rai una diritti esistono alcuni altrimenti nulla si sarebbe mai potuto fare. Il problema è solo che ogni diritto ha un condizionante e questo è il diritto di difesa. Non c'è diritto di difesa se non c'è diritto di difesa.

equation-based models, which are often used to predict the outcome of various systems. A notable example is the model developed by the University of Cambridge, which uses a complex set of equations to predict the behavior of various systems.

VARIABLE	LIVER FIBROSIS	LUNG FIBROSIS
<i>percent</i>		
Sensitivity	75	74
Specificity	89	89
Positive predictive value	90	93
Negative predictive value	73	62

Anschel Table 4

THIS PAGE BLANK (USPTO)

TUMOR-BURDEN FACTOR	TGFβ (ng/ml)	P VALUE
No. of positive nodes*		
≤ 12	22.8	
> 12	17.9	>0.1
Tumor size (cm)†		
≤ 3.5	19.4	>0.1
> 3.5	20.9	

*Mean number of positive nodes, 12.

†Mean tumor size, 3.5 cm.

Table 5. Correlation of TGF β levels with tumor burden factors. (Adapted from Anscher Table 5)

	Abnormal	Growth
Normal	22.8	19.4
Abnormal	17.9	20.9
Normal vs. abnormal	0.0001	0.0001
Normal vs. growth	0.0001	0.0001
Abnormal vs. growth	0.0001	0.0001

10	10	10	10	10	10	10
11	11	11	11	11	11	11
12	12	12	12	12	12	12
13	13	13	13	13	13	13
14	14	14	14	14	14	14
15	15	15	15	15	15	15
16	16	16	16	16	16	16
17	17	17	17	17	17	17
18	18	18	18	18	18	18
19	19	19	19	19	19	19
20	20	20	20	20	20	20
21	21	21	21	21	21	21
22	22	22	22	22	22	22
23	23	23	23	23	23	23
24	24	24	24	24	24	24
25	25	25	25	25	25	25
26	26	26	26	26	26	26
27	27	27	27	27	27	27
28	28	28	28	28	28	28
29	29	29	29	29	29	29
30	30	30	30	30	30	30
31	31	31	31	31	31	31
32	32	32	32	32	32	32
33	33	33	33	33	33	33
34	34	34	34	34	34	34
35	35	35	35	35	35	35
36	36	36	36	36	36	36
37	37	37	37	37	37	37
38	38	38	38	38	38	38
39	39	39	39	39	39	39
40	40	40	40	40	40	40
41	41	41	41	41	41	41
42	42	42	42	42	42	42
43	43	43	43	43	43	43
44	44	44	44	44	44	44
45	45	45	45	45	45	45
46	46	46	46	46	46	46
47	47	47	47	47	47	47
48	48	48	48	48	48	48
49	49	49	49	49	49	49
50	50	50	50	50	50	50
51	51	51	51	51	51	51
52	52	52	52	52	52	52
53	53	53	53	53	53	53
54	54	54	54	54	54	54
55	55	55	55	55	55	55
56	56	56	56	56	56	56
57	57	57	57	57	57	57
58	58	58	58	58	58	58
59	59	59	59	59	59	59
60	60	60	60	60	60	60
61	61	61	61	61	61	61
62	62	62	62	62	62	62
63	63	63	63	63	63	63
64	64	64	64	64	64	64
65	65	65	65	65	65	65
66	66	66	66	66	66	66
67	67	67	67	67	67	67
68	68	68	68	68	68	68
69	69	69	69	69	69	69
70	70	70	70	70	70	70
71	71	71	71	71	71	71
72	72	72	72	72	72	72
73	73	73	73	73	73	73
74	74	74	74	74	74	74
75	75	75	75	75	75	75
76	76	76	76	76	76	76
77	77	77	77	77	77	77
78	78	78	78	78	78	78
79	79	79	79	79	79	79
80	80	80	80	80	80	80
81	81	81	81	81	81	81
82	82	82	82	82	82	82
83	83	83	83	83	83	83
84	84	84	84	84	84	84
85	85	85	85	85	85	85
86	86	86	86	86	86	86
87	87	87	87	87	87	87
88	88	88	88	88	88	88
89	89	89	89	89	89	89
90	90	90	90	90	90	90
91	91	91	91	91	91	91
92	92	92	92	92	92	92
93	93	93	93	93	93	93
94	94	94	94	94	94	94
95	95	95	95	95	95	95
96	96	96	96	96	96	96
97	97	97	97	97	97	97
98	98	98	98	98	98	98
99	99	99	99	99	99	99
100	100	100	100	100	100	100

test for TGF β has a positive predictive value of more than 90 percent for the development of either hepatic veno-occlusive disease or pulmonary fibrosis in a given patient. It may be possible to use TGF β plasma levels to individualize therapy and thus reduce the risk of both complications.

Use of TGF β in patients

We chose the assay system we used in this study because of its ability to detect very low levels of TGF β . Although enzyme-linked immunosorbent assays for the quantification of TGF β ⁴² are less sensitive than our biologic assay, our results demonstrate that enzyme-linked immunosorbent assays should have sufficient sensitivity to permit rapid screening for patients most prone to fibrotic changes (i.e., patients with plasma levels of TGF β 1 above 10 ng per milliliter [4×10^{-7} mmol per liter]).

References

The cause of elevated plasma levels of TGF β in patients who ultimately have hepatic or pulmonary fibrosis is not known. Platelets are the principal source of TGF β in humans, but an artifactual disruption of platelets seems unlikely. For TGF β levels to become falsely elevated in the patients we studied, blood samples would have had to have been obtained shortly after platelet destruction occurred, since the half-life of TGF β in the blood is only a few minutes. Also, the putative destruction of platelets by drugs or venipuncture would have had to have occurred only in the patients who ultimately had fibrosis. Finally, all patients treated with high-dose chemotherapy and autologous bone marrow transplantation had a decrease in TGF β concurrent with chemotherapy-induced thrombocytopenia.¹⁸ This finding suggests that the elevation in the plasma of the

The elevation of plasma levels of TGF β in patients with hepatic veno-occlusive disease or pulmonary fibrosis also does not appear to be related to their tumor burden. Some factor other than the tumor is apparently responsible for the elevated TGF β levels in patients with these complications.

Increased synthesis or activation of TGF β or decreased degradation of this growth factor (or some combination of these processes) is a possible response to induction chemotherapy in patients who subsequently have hepatic veno-occlusive disease or pulmonary fibrosis. Hoyt and Lazo²² have shown that strain-specific variations in TGF β messenger RNA in the lungs of mice correlate with differences in susceptibility to cyclophosphamide-induced pulmonary fibrosis. Likewise, differences may also occur in human responses to chemotherapeutic agents.

TGF β is normally secreted from cells as a glycosylated latent complex that contains phosphorylated mannose residues.⁴³ It must be dissociated from this complex to become biologically active. The latent complex of TGF β 1 binds to the receptor that accepts both glycoproteins containing mannose-6-phosphate and insulin-like growth factor II,⁴⁴ and this binding has been shown to facilitate the activation of the TGF β 1 molecule by proteolytic enzymes.⁴⁵ It is possible that this activation process is augmented in patients in whom hepatic veno-occlusive disease or pulmonary fibrosis develops, and consequently more mature TGF β would be present in the plasma. We have observed an increased concentration of TGF β in hepatocytes with increased numbers of mannose-6-phosphate-insulin-like growth factor II receptors when the liver is undergoing regeneration²² or has been exposed to the liver-tumor promoter phenobarbital.²¹ Whether a concomitant increase in the level of TGF β 1 and the number of mannose-6-phosphate-insulin-like growth factor II receptors also occurs in the liver and lungs of humans after exposure to chemotherapeutic agents, radiation, or other insults resulting in fibrosis is unknown.

Supported by grants (CA460172 and CA-25957) from the National Cancer Institute (Bethesda).

Received June 1, 1993; accepted July 20, 1993; revised August 24, 1993; and accepted September 1, 1993.

வாய்மையினால் முன் கொண்டு வரும் நிலைத்திறன் என்பதை அறிய வேண்டும்.

ବ୍ୟାକିଲ୍ଲ ପାଇଁ ଏଣ୍

W e can see that the Fe^{2+} concentration in the solution increases as time goes by. This is because the iron ions are being reduced from Fe^{3+} to Fe^{2+} . The concentration of Fe^{3+} decreases over time, which means that the reaction is proceeding in the forward direction.

After being exposed to the *Plague*, *Spurred by a desire to help others*, *he turned out as best he could* (Fig.). The debris left over from his work was collected and used to fill the gap with a mixture. In group 24.1 (ab. 211, 2 weeks) the *Spurred by a desire to help others* mixture, etc., was used to fill both other rooms, leaving no

Constitutes to generate a simulation system which is able to generate the simulation data to measure the effect of the different test methods.

.....
.....

222 Since top surface (G) has to make it to work, it has to move up to meet the top. Therefore
the first thing we have to do is to move the top surface (G) up to the top. This is done by
the first two moves of the algorithm.

iii. *Paracoccidioides brasiliensis* (A. da Motta et al.)

11. **W**hile the **U**nited **S**tates **W**ay **s**aid **o**ut **in** **R**ussia, **W**hich **U**nited **S**tates **W**ay **s**aid **o**ut **in** **R**ussia.

Fig. 1. Afferent villus-globoid groups of adrenocortical cortex (from a 10-year-old boy).

1. *Constitutive equations for the shear modulus and wave velocity of a two-phase medium*, by G. C. Sih and R. D. Cook.

in December 2018, the first 1000 units were delivered to the market.

in unexpended amounts remaining to be expended in the fiscal year in which they were incurred.

in 1910 to all his friends he wrote: "I am now in Mexico at Guanajuato where I have been working on my book on the Mexican Revolution."

३८५ अनुवाद विजय कुमार शर्मा

and the members of the executive committee to reduce all fees by 10% to level with the rest of the industry.

Digitized by srujanika@gmail.com

Consequently, the author's claim that the study is "not applicable" to the present situation is misleading.

We are grateful to the following for technical assistance, to Denise Crawford for assistance in data acquisition, to Richard Dodge for statistical advice, and to Roxanne Scroggs for assistance in the preparation of the manuscript.

Michael N. Anacker, M.D.
John D. Muller, M.D.
Jeffrey S. Jacobs, M.D.
David J. Johnson, M.D.
John C. Hwang, M.D.
John P. Edwards, M.D.
John W. Jones, M.D.
John R. Edwards, M.D.
John C. Hwang, M.D.
John P. Edwards, M.D.
John W. Jones, M.D.
John R. Edwards, M.D.

Michael N. Anacker, M.D.
John D. Muller, M.D.
Jeffrey S. Jacobs, M.D.
David J. Johnson, M.D.
John C. Hwang, M.D.
John P. Edwards, M.D.
John W. Jones, M.D.
John R. Edwards, M.D.

Source Information

From the Department of Radiation Oncology (M.S.A., H.R., R.B.J.) and the Department of Medicine, Division of Hematology/Oncology (W.P., Peters, W.P., Payne), Duke University Medical School, Durham, N.C.

Address reprint requests to Dr. Jardie at Box 3433, Duke University Medical Center, Durham, NC 27710.
Dear Publishing group: Please add a "Received" date of 10/10/93.

References

- McDonald GB, Shulman HM, Winkford JL, Spencer GD. Liver disease after human marrow transplantation. *Semin Liver Dis* 1987;7:210-229. [Medline]
- McDonald GB, Sharma P, Matthews DE, Shulman HM, Thomas ED. Venoocclusive disease of the liver after bone marrow transplantation: diagnosis, incidence, and predisposing factors. *Hepatology* 1984;4:116-122. [Medline]
- McDonald GB, Shulman HM, Sullivan KM, Spencer GD. Intestinal and hepatic complications of human bone marrow transplantation. *Gastroenterology* 1986;90:770-784. [Medline]
- Brodsy R, Topolsky D, Crilley P, Bulova S, Brodsy I. Frequency of veno-occlusive disease of the liver in bone marrow transplantation with a modified busulfan/cyclophosphamide preparative regimen. *Am J Clin Oncol* 1990;13:221-225. [Medline]
- Ganem G, Saint Marc Girardin MF, Kuentz M, et al. Venoocclusive disease of the liver after allogeneic bone marrow transplantation in man. *Int J Radiat Oncol Biol Phys* 1988;14:879-884. [Medline]
- Ozkaynak MF, Weinberg K, Kohn D, Sender L, Parkman R, Leharsky C. Hepatic veno-occlusive disease post-bone marrow transplantation in children conditioned with busulfan and cyclophosphamide: incidence, risk factors, and clinical outcome. *Bone Marrow Transplant* 1991;7:467-474. [Medline]
- Jones RJ, Lee KSE, Beszedesner WE, et al. Venoocclusive disease of the liver following bone marrow transplantation. *Transplantation* 1987;44:778-783. [Medline]
- Ettlinger NA, Trulock EP. Pulmonary considerations of organ transplantation. *Am Rev Respir Dis* 1991;144:213-223. [Medline]
- Noble PW. The pulmonary complications of bone marrow transplantation in adults. *West J Med* 1989;150:443-449. [Medline]
- Hackman RC, Madtes DK, Petersen FB, Clark JO. Pulmonary venoocclusive disease following bone marrow transplantation. *Transplantation* 1989;47:989-992. [Medline]
- Shulman HM, Gowin AM, Negendank DJ. Hepatic venoocclusive disease after bone marrow transplantation: immunohistochemical identification of the material within occluded central venules. *Am J Pathol* 1987;127:549-558. [Medline]
- Amento EP, Beck LS. TGF- β and wound healing. In: Bock GR, Marsh J, eds. *Clinical applications of TGF- β* . West Sussex, England: John Wiley, 1991:115-29.
- Musciot TA, Pieros GF, Thomason A, Gramatos P, Sporn MB, DiSalvo TR. Accelerated healing of incisional wounds in rats induced by transforming growth factor- β . *Science* 1987;237:1333-1336. [Medline]
- Lynch SE, Colville RB, Antoniades HN. Growth factors in wound healing: single and synergistic effects on partial thickness porcine skin wounds. *J Clin Invest* 1989;84:640-646. [Medline]
- Kelley J, Kovacs EJ, Nicholson K, Fabisiak JP. Transforming growth factor- β production by lung macrophages and fibroblasts. *Chest* 1991;99 Suppl:85S-86S. [Medline]
- Hoyt DG, Lazio JS. Alterations in pulmonary mRNA encoding procollagens, fibronectin and

We are the **WORLD** of education! We are the **WORLD** of education! We are the **WORLD** of education!

It was the intention of the author to include a detailed description of the methods used in this study, but this would have greatly increased the size of the paper.

[Gutsche Informatie](#)

the following recommendations are made:

Reiteración **Blanco**

5. *Chloromyces* M. H. Nees var. *Spumifer* (C. M. Smith) Sacc.

to another kingdom. In such a case it is fitting that the king should be informed.

20 Dec 1955 24 hours 10 minutes 10 sec
718-24 U.S. 100% P.W.O.R. 100% O.S.T.

2018-07-20 10:55:14.194 [main] INFO com.azavea.rfc.RFCClient - Connected to host 127.0.0.1:5000

Strong yesterdays 35

clipper sailing ship built by Captain John

and the 2nd and 3rd segments are each 16.5 mm. (111) and 10.0 mm. (80).

and the other side of the hill, the following points are visible:

प्राप्ति विद्युति विद्युति विद्युति विद्युति विद्युति विद्युति विद्युति

10. *Uttarāvadī* 2.07. 1990 12.00

monism and rest in cessation of all action. What is the result? 11

To extend temporary protection to foreign firms now doing business in the U.S.

1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

gratia et amicorum et voluntate diversorum patrum et consiliorum. Et quod
dicitur de laudibus omniisque virtute.

This article has been cited by other articles:

- Blobe, G. C., Schiemann, W. P., Lodish, H. F. (2000). Role of Transforming Growth Factor (beta) in Human Disease. *N Engl J Med* 342: 1350-1358 [Abstract] [Full Text]
- McCormick, L. L., Zhang, Y., Tootell, E., Gilliam, A. C. (1999). Anti-TGF-(beta) Treatment Prevents Skin and Lung Fibrosis in Murine Sclerodermatous Graft-Versus-Host Disease: A Model for Human Scleroderma. *The JI* 163: 5693-5699 [Abstract] [Full Text]
- Coker, R K, Laurent, G J, Jeffery, P K, du Bois, R M, Black, C M, McAnulty, R J (2001). Localisation of transforming growth factor (beta)1 and (beta)3 mRNA transcripts in normal and fibrotic human lung. *Thorax* 56: 549-556 [Abstract] [Full Text]
 - ZHENG, H., WANG, J., KOTELIANSKY, V. E., GOTWALS, P. J., HAUER-JENSEN, M. (2000). Recombinant Soluble Transforming Growth Factor beta Type II Receptor Ameliorates Radiation Enteropathy in Mice. *Gastroenterology* 119: 1286-1296 [Abstract] [Full Text]
 - Yong, S.-J., Adlakha, A., Limper, A. H. (2001). Circulating Transforming Growth Factor-(beta)1 : A Potential Marker of Disease Activity During Idiopathic Pulmonary Fibrosis. *Chest* 120: S68-70 [Full Text]
 - Anecher, M. S., Marks, L. B., Shafman, T. D., Clough, R., Huang, H., Tisch, A., Munley, M., Herndon, J. E. II, Garst, J., Crawford, J., Jirtle, R. L. (2001). Using Plasma Transforming Growth Factor Beta-1 During Radiotherapy to Select Patients for Dose Escalation. *J Clin Oncol* 19: 3758-3765 [Abstract] [Full Text]
 - Border, W. A., Noble, N. A. (1994). Transforming Growth Factor (beta) in Tissue Fibrosis. *N Engl J Med* 331: 1286-1292 [Full Text]
 - MOZES, M. M., BÖTTINGER, E. P., JACOT, T. A., KOPP, J. B. (1999). Renal Expression of Fibrotic Matrix Proteins and of Transforming Growth Factor-(beta) (TGF-(beta)) Isoforms in TGF-(beta) Transgenic Mice. *J Am Soc Nephrol* 10: 271-280 [Abstract] [Full Text]

- [Return to Search Result](#)
- [Table of Contents](#)
- [Abstract of this article](#)
- [Find Similar Articles in the Journal](#)

- [Add to Personal Archive](#)
- [Download to Citation Manager](#)
- [Alert me when this article is cited](#)

- [Related Articles in Medline](#)
- Articles in Medline by Author:
 - [Anecher, M. S.](#)
 - [Jirtle, R. L.](#)
- [Medline Citation](#)

[HOME](#) | [SEARCH](#) | [CURRENT ISSUE](#) | [PAST ISSUES](#) | [COLLECTIONS](#) | [HELP](#)

Comments and questions? Please contact us.

The New England Journal of Medicine is owned, published, and copyrighted © 2002
Massachusetts Medical Society. All rights reserved.

This notice was posted by owner or agent:

Comments and suggestions? Please contact us

2006 3. балансирана борса, бодливост и иновативност на индустрията във връзка със стратегията на УА.

dc

- transforming growth factor- β precede bleomycin-induced pulmonary fibrosis in mice. *J Pharmacol Exp Ther* 1988;246:765-771. [Abstract]
17. Khalil N, Berezney O, Sporn M, Greenberg AH. Macrophage production of transforming growth factor- β and fibroblast collagen synthesis in chronic pulmonary inflammation. *J Exp Med* 1989;170:727-737. [Abstract]
18. Raghav R, Irish P, Kang AH. Coordinate regulation of transforming growth factor- β genes by expression and cell proliferation in hamster lungs undergoing bleomycin-induced pulmonary fibrosis. *J Clin Invest* 1989;84:1836-1842. [Medline]
19. Phan SH, Gharavi-Kermati M, Wolber F, Ryan US. Stimulation of rat connective cell transforming growth factor- β production by bleomycin. *J Clin Invest* 1991;87:148-154. [Medline]
20. Hoyt DG, Lazo JS. Early increase in pulmonary mRNA encoding procollagens transforming growth factor- β in mice sensitive to cyclophosphamide-induced pulmonary fibrosis. *J Pharmacol Exp Ther* 1989;249:38-43. [Abstract]
21. Aschner MS, Crocker IR, Jirtle RL. Transforming growth factor- β expression in irradiated liver. *Radiat Res* 1990;122:77-85. [Medline]
22. Czaja MJ, Werner FR, Flanders KC, et al. In vitro and in vivo association of transforming growth factor- β 1 with hepatic fibrosis. *J Cell Biol* 1989;108:2477-2482. [Abstract]
23. Nakatsuksa H, Nagy P, Evans RP, Hsia C-C, Marsden E, Thorgeirsson SS. Cellular distribution of transforming growth factor- β 1 and procollagen types I, III, and IV transcripts in carbon tetrachloride-induced rat liver fibrosis. *J Clin Invest* 1990;85:1833-1843. [Medline]
24. Milani S, Herbst H, Schuppan D, Stein H, Surrenti C. Transforming growth factors β 1 and β 2 are differentially expressed in fibrotic liver disease. *Am J Pathol* 1991;139:1221-1229. [Abstract]
25. Armendariz-Borunda J, Seyer JM, Kang AH, Raghav R. Regulation of TGF β gene expression in rat liver intoxicated with carbon tetrachloride. *FASEB J* 1990;4:215-221. [Abstract]
26. Yamauchi K, Martinet Y, Bassett P, Falls GA, Crystal RG. High levels of transforming growth factor- β are present in the epithelial lining fluid of the normal human lower respiratory tract. *Am Rev Respir Dis* 1988;137:1360-1363. [Medline]
27. Raghu G, Masti S, Meyers D, Narayanan AS. Collagen synthesis by normal and fibrotic human lung fibroblasts and the effect of transforming growth factor- β . *Am Rev Respir Dis* 1989;140:95-100. [Medline]
28. Castilla A, Prieto J, Fausto N. Transforming growth factor- β 1 and α in chronic liver disease -- effects of interferon α therapy. *N Engl J Med* 1991;324:933-940. [Abstract]
29. Limper AH, Broekelmann TJ, Colby TV, Malizia G, McDonald JA. Analysis of local mRNA expression for extracellular matrix proteins and growth factors using *in situ* hybridization in fibroproliferative lung disorders. *Chest* 1991;99 Suppl:55S-56S. [Medline]
30. Broekelmann TJ, Limper AH, Colby TV, McDonald JA. Transforming growth factor- β 1 is present at sites of extracellular matrix gene expression in human pulmonary fibrosis. *Proc Natl Acad Sci U S A* 1991;88:6642-6646. [Abstract]
31. Harrison NK, Argent AC, McAnulty RJ, Black CM, Corrin B, Laurent GJ. Collagen synthesis and degradation by systemic sclerosis lung fibroblasts: responses to transforming growth factor- β . *Chest* 1991;99 Suppl:71S-72S. [Medline]
32. Varga J, Haustein UF, Creech RH, Dwyer JP, Jimenez SA. Exaggerated radiation-induced fibrosis in patients with systemic sclerosis. *JAMA* 1991;265:3292-3295. [Medline]
33. Kahaleh MB, LeRoy EC. The immune basis for human fibrotic diseases, especially scleroderma (systemic sclerosis). *Clin Aspects Autoimmun* 1989;3:19-28.
34. Border WA, Okuda S, Languino LR, Sporn MB, Ruoslahti E. Suppression of experimental glomerulonephritis by antiserum against transforming growth factor- β 1. *Nature* 1990;346:371-374. [Medline]
35. Lie TS, Preissinger H, Bach M, et al. The protective effect of cyclosporine against cirrhotic alteration of the liver. *Surgery* 1991;110:847-853. [Medline]

Leptodora (L.) T. G. (1850) Leptodora Tippit

beM q.v.d. L. nocturnus estrii exstentor; si uero in extremitate abegit collum, et ad hunc exstentem

visum alicuius deputati ex parte eiusdem etiam si non est deputatus a rebus publicis.

[Anilka A]. 801. [Anilka A]. R481/0281 120001 Issued by D. L. Johnson

Non solo la legge europea, ma anche le norme nazionali, sono state modificate per adeguarsi alle nuove regole.

HOLDOFFER, H. B. 1980. The influence of vegetation on the distribution of the ground beetle, Harpalus affinis (Collembola: Sminthuridae). *Entomophaga* 25: 305-312.

and better serve all people.

13. विश्वामित्र द्वारा अपनी विजय का उत्सव आयोजित किया गया।

10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31.

1811-1812 (DRAFT). 1812-1813 (DRAFT). 1813-1814 (DRAFT). 1814-1815 (DRAFT).

McAuliffe visiting novel names location odd to bush animal hunting, *Collected Poems*, 1889, p. 107
McAuliffe visiting novel names location odd to bush animal hunting, *Collected Poems*, 1889, p. 107

Look for the right job at www.Rexnord.com or call 800-333-2343.

-- **Запись ведется вручную** (все записи ведутся вручную) (Все записи ведутся вручную)

ПРИЧЕРНОГОРСКИЙ КАМЕНЬ

Digitized by srujanika@gmail.com

Unus deo dicitur ut etiam in aliis scripturis videtur. Sed etiam in aliis scripturis videtur.

Question 9: Which of the following best describes the relationship between the two graphs?

Verlag für Hochschulbildung und Beratung, 1010 Wien, Austria, Tel. +43-1-505 50 50, Fax +43-1-505 50 55, E-mail: info@vhb.at

85-86 | 186 | [Anterior A](#) [Posterior A](#) [Lateral](#) | [2015-2016](#)

Figure 1A. OpenS2I outcome for a case of moderate 25-hydroxyvitamin D deficiency.

SEARCHED INDEXED SERIALIZED FILED - MAR 17 1968 MURKIN, H. ROBERT, CLERK

36. Peters WP, Skopell BJ, Jones RB, et al. High-dose combination alkylating agents with bone marrow support as initial treatment for metastatic breast cancer. *J Clin Oncol* 1988;6:1368-1376. [Abstract]
37. Proper JA, Bjornson CL, Moses HL. Mouse embryos contain polypeptide growth factor(s) capable of inducing a reversible neoplastic phenotype in nontransformed cells in culture. *J Cell Physiol* 1982;110:169-174. [Medline]
38. Roberts AB, Lamb LC, Newton DL, Sporn MB, DeLarco JE, Todaro GJ. Transforming growth factors: isolation of polypeptides from virally and chemically transformed cells by acid/ethanol extraction. *Proc Natl Acad Sci U S A* 1980;77:3494-3498. [Medline]
39. Danielpour D, Dart LL, Flanders KC, Roberts AB, Sporn MB. Immunodetection and quantitation of the two forms of transforming growth factor- β (TGF- β 1 and TGF- β 2) secreted by cells in culture. *J Cell Physiol* 1989;138:79-86. [Medline]
40. Freund JE. Modern elementary statistics. 3rd ed. Englewood Cliffs, N.J.: Prentice-Hall, 1967.
41. Beutman SI, Appelbaum FR, Buckner CD, et al. Regimen-related toxicity in patients undergoing bone marrow transplantation. *J Clin Oncol* 1988;6:1562-1568. [Abstract]
42. Gluckman E, Jolivet L, Scrobohaci M-L, et al. Role of PGE₁ to prevent veno-occlusive disease of the liver after bone marrow transplantation. *Nouv Rev Fr Hematol* 1990;32:R3.
43. Piedbois P, Guermat G, Cerdonniere C, et al. Interstitial pneumonitis and veno-occlusive disease of the liver after bone marrow transplantation. *Radiother Oncol* 1990;18(Suppl 1):A25-A27. [Medline]
44. Scrobohaci ML, Druey L, Monge-Mansi A, et al. Liver veno-occlusive disease after bone marrow transplantation changes in coagulation parameters and endothelial markers. *Thromb Res* 1991;63:509-519. [Medline]
45. Weiner RS, Horowitz MM, Gale RP, et al. Risk factors for interstitial pneumonia following bone marrow transplantation for severe aplastic anaemia. *Br J Haematol* 1989;71:535-543. [Medline]
46. Wingard JR, Melliss ED, Jones RJ, et al. Association of hepatic veno-occlusive disease with interstitial pneumonitis in bone marrow transplant recipients. *Bone Marrow Transplant* 1989;4:685-689. [Medline]
47. Lucas C, Bald LN, Fendly BM, et al. The autocrine production of transforming growth factor- β 1 during lymphocyte activation: a study with a monoclonal antibody-based ELISA. *J Immunol* 1990;145:1415-1422. [Abstract]
48. Massague J. The transforming growth factor- β family. *Annu Rev Cell Biol* 1990;6:597-641.
49. Koyacina KS, Steele-Perkins G, Puccio AF, et al. Interactions of recombinant and platelet transforming growth factor- β 1 precursor with the insulin-like growth factor-II/mannose 6-phosphate receptor. *Biochem Biophys Res Commun* 1989;160:393-403. [Medline]
50. Jirtle RL, Carr BI, Scott CD. Modulation of insulin-like growth factor-II/ mannose 6-phosphate receptors and transforming growth factor- β 1 during liver regeneration. *J Biol Chem* 1991;266:22444-22450. [Erratum, *J Biol Chem* 1991;266:24860.] [Abstract]
51. Jirtle RL, Meyer RA. Liver tumor promotion: effect of phenobarbital on EGF and protein kinase C signal transduction and transforming growth factor- β 1 expression. *Dig Dis Sci* 1991;36:659-668. [Medline]

35. D'Amato LA, Bifolco G, Cicali P, et al. Bone marrow transplantation in patients with chronic myelomonocytic leukaemia. *Br J Haematol* 1993; 82: 132-137.

1901-1902. In 1902 he became a member of the Royal Society of Medicine.

Latest batch produced by Mr. M. G. B. M. H. R. A. T. Hamilton 1900-1901 date 1901

~~January 28, 1961 (local) Tammam M. H. (Ghassan) TRIFKAR 19
woman aged 1918 deceased because she had been a victim of~~

1981-1982. The following table gives the number of books received by the library during this period.

10 *to school* *period* *not*

(6) ~~100% of the gross sales revenue is remitted by the service providers to the State Government~~

bioRxiv preprint doi: <https://doi.org/10.1101/2023.08.01.550000>; this version posted August 1, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a [CC-BY-ND 4.0 International license](https://creativecommons.org/licenses/by-nd/4.0/).

RECORDED AND INDEXED [REDACTED] OCTOBER 1972 BY [REDACTED]

תְּמִימָנָה בְּרֵבָד כְּלֹבֶד אֲמַרְתָּךְ תְּמִימָנָה
בְּרֵבָד כְּלֹבֶד אֲמַרְתָּךְ תְּמִימָנָה

• [Feedback](#) • [Help](#) • [About](#) • [Contact](#) •

1000 1000