FLUID SLOSHERS

Benjamin Musci, Harshith Gowrachari, Peter Kalmar, Yi Ting Char

Young ERCOFTAC Montestigliano Spring School

Data-Driven Model Reduction for Dynamical Systems

Prof.George Haller, ETH Zurich, Switzerland 13th - 19th April 2025 Montestigliano, Italy

Recap: Fluid Sloshing

Observable: Horizontal position of fluid center of mass.

Recap: Fluid Sloshing

SSM with cubic extended normal form: $\dot{\rho} = -0.063179 \rho - 0.041214 \rho^3$, $\dot{\theta} = 7.8144 - 1.5506 \rho^2$.

Observable: Horizontal position of fluid center of mass.

Our observables

Observable: Elevation of the interface at **x** observation point. (Two experiments: 1 for training and 1 for testing.)

Workflow:

Observable selection

Interface end points, mid point, max amplitude, or derivatives of these

Ability to find appropriate SSM depends on interface position used as observable

Variation in data truncation time

Modified SSM process to delay truncation time in cases of persistent higher modes

SSM selection can demonstrate high sensitivity to truncation time

Sensitivity to truncation time depends to varying degree on interface position and ROMorder

Predictions: Unforced

ROM: 7th order

$$\dot{\rho} = -0.4862\rho - 0.5651 + 5.885\rho^5 - 21.19\rho^7$$

$$\dot{\theta} = 7.810 - 1.400\rho^2 + 1.884\rho^4 - 6.226\rho^6$$

Predictions: Backbone curve & Forced response

Experiment backbone curve estimated using the PFF (Peak Finding and Fitting)* method

Conclusions

Future Work

Axial locations +/- 200 mm from walls provide accurate predictions:

- Reproduced decay trajectory
 - Validated backbone curve

Investigate more physically meaningful observables

Predictions are sensitive to data truncation (time)

Controlling damping with external forcing