

Research Project - IT4010

Ethical Analysis Report

Group ID: 24_25J_213

Project Title: ManthraX: Pioneering Precision, The Future of autonomous Mobility

IT21160448: Perception and Scene Understanding

	Identification and Analysis
Data Privacy Concerns	•YOLOv5 for Object Detection: The model processes simulated images from the CARLA simulator, which means there is no real-world data involved, and thus no direct privacy concerns individuals. However, if the model is later deployed in real-world scenarios, privacy concerns (e.g., anonymizing faces or license plates) will need to be addressed. •CNN Based Lane Keeping Model: Similarly, the model uses simulated images from the CARLA simulator, so there are no immediate privacy concerns. However, future real-world deployments will require anonymization of sensitive information in the images. •GNN With Transformer – Behavior Classification: The model collects data from the CARLA simulator, including the behavior of surrounding vehicles. While the data is simulated, it is essential to ensure that any real-world data used in the future is anonymized and collected with informed consent.
Data Security	 YOLOv5 for Object Detection: While the data is simulated, the model's weights, training data, and inference results should still be stored securely to prevent unauthorized access or tampering. This is especially important if the model is later adapted for real-world use. CNN Based Lane Keeping Model: The simulated images and steering angle data should be stored securely, with access controls in place to prevent unauthorized access. This ensures that the model's integrity is maintained, even in a simulated environment. GNN With Transformer – Behavior Classification: The temporal graph data should be encrypted, and secure access protocols should be implemented to protect the data from breaches.
Bias and Fairness	 YOLOv5 for Object Detection: The model may exhibit biases if the simulated dataset does not accurately represent real-world diversity (e.g., different types of vehicles, pedestrians, or road conditions). Regular audits of the dataset and model performance are necessary to ensure fairness, especially if the model is later deployed in real-world scenarios. CNN Based Lane Keeping Model: The model's performance may vary based on the diversity of the simulated road conditions (e.g., poorly marked lanes, different lighting conditions). Ensuring a diverse and representative training dataset is crucial to avoid biased predictions. GNN With Transformer – Behavior Classification: The model may exhibit biases if the simulated data does not accurately represent real-world scenarios. Regular testing with diverse scenarios is necessary to ensure fairness.

Research Project - IT4010

Ethical Analysis Report

YOLOv5 for Object Detection: The model's decision-making process
should be transparent, with clear documentation of how objects are
detected and classified. Even though the data is simulated, the team
should be accountable for any errors or accidents caused by the model
in the simulation.
•CNN Based Lane Keeping Model: The model's architecture and training
process should be well-documented, and the team should be
accountable for any steering errors in the simulation. Transparency in
how the model predicts steering angles is essential for trust and
reliability.
•GNN With Transformer – Behavior Classification: The model's behavior
classification process should be transparent, with clear documentation
of how vehicle behaviors are predicted. The team should be
accountable for any incorrect predictions.
•YOLOv5 for Object Detection: While the model is currently used in a
simulated environment, its outcomes could impact the safety of
passengers and other road users if deployed in real-world scenarios.
Incorrect object detection in the simulation could lead to unsafe driving
behaviors, which must be addressed before real-world deployment.
CNN Based Lane Keeping Model: Incorrect steering predictions in the
simulation could lead to unsafe driving behaviors, affecting the safety of
passengers and other road users. Ensuring the model's reliability in the
simulation is crucial before transitioning to real-world applications.
GNN With Transformer – Behavior Classification: Incorrect behavior
classification could lead to unsafe driving decisions, affecting the safety
of passengers and other road users. This is especially critical in real-
world scenarios, where incorrect predictions could result in accidents.

Research Project - IT4010

Ethical Analysis Report

IT21155048: Decision Making and Collison Avoidance

	Identification and Analysis
	Oollision Avoidance: The model processes simulated data from the
Data Privacy Concerns	CARLA simulator, including the behavior of surrounding vehicles. Since
	the data is simulated, there are no immediate privacy concerns related
	to real-world individuals. However, if the model is later deployed in
	real-world scenarios, privacy concerns (e.g., anonymizing vehicle or
	pedestrian data) will need to be addressed.
	Decision Making: Similarly, the model uses simulated data from the
	CARLA simulator, so there are no direct privacy concerns. However,
	future real-world deployments will require anonymization of sensitive
	information, such as vehicle or pedestrian identities.
	Collision Avoidance: The temporal graph data and model weights
	should be stored securely to prevent unauthorized access or
	tampering. This is especially important if the model is later adapted for
	real-world use.
Data Security	Decision Making: The data used for training and inference should be
	stored securely, with access controls in place to prevent unauthorized
	access. This ensures that the model's integrity is maintained, even in a
	simulated environment.
	Collision Avoidance: The model may exhibit biases if the simulated
	dataset does not accurately represent real-world diversity such as
	different types of vehicles, pedestrians, or traffic scenarios. Regular
	audits of the dataset and model performance are necessary to ensure
	fairness, especially if the model is later deployed in real-world
Bias and Fairness	scenarios.
	Decision Making: The model's performance may vary based on the
	complexity of traffic scenarios in the simulation. Ensuring a diverse and
	representative training dataset is crucial to avoid biased predictions,
	particularly in edge cases such as sudden pedestrian crossings or
	vehicles ignoring traffic signals.
	Collision Avoidance: The model's behavior classification process
	should be transparent, with clear documentation of how vehicle
	behaviors are predicted.
Transparency and	Decision Making: The model's decision-making process should be
Accountability	transparent, with clear documentation of how collision avoidance
	decisions are made. The team should be accountable for any errors or
	accidents caused by the model in the simulation.
	Collision Avoidance: While the model is currently used in a simulated
Impact on Stakeholders	environment, its outcomes could impact on the safety of passengers
	and other road users if deployed in real-world scenarios. Incorrect
	and other road doers if deployed in real-world occidence. Incorrect

Research Project - IT4010

Ethical Analysis Report

behavior classification could lead to unsafe driving decisions, which must be addressed before real-world deployment.

• Decision Making: Incorrect collision avoidance decisions in the simulation could lead to unsafe driving behaviors, affecting the safety of passengers and other road users. Ensuring the model's reliability in the simulation is crucial before transitioning to real-world applications.

Research Project - IT4010

Ethical Analysis Report

IT21162978: Driver Monitoring and Ethical Decision-Making

	Identification and Analysis
Data Privacy Concerns	•Eyeball Tracking System: The model processes real-world data from drivers,
	including facial features, eye movements, and gaze direction. This data is highly
	sensitive, as it can reveal personal information about the driver. Ensuring that
	the data is anonymized such as blurring faces or removing identifiable features
	is crucial to protect the privacy of individuals.
	•Ethical Decision Making: The model processes simulated data from the CARLA
	simulator, including vehicle positions, pedestrian movements, and traffic
	scenarios. While the data is simulated, any real-world data used in the future
	must be anonymized and collected with informed consent.
Data Security	•Eyeball Tracking System: The real-world data collected from drivers must be
	stored securely, with robust encryption and access controls in place to prevent
	unauthorized access or misuse. This is especially important given the sensitive
	nature of the data.
	•Ethical Decision Making: The simulated data and model weights should be
	stored securely to prevent unauthorized access or tampering. This is especially
	important if the model is later adapted for real-world use.
Bias and Fairness	•Eyeball Tracking System: The model may exhibit biases if the training dataset
	does not accurately represent diverse driver populations (e.g., different
	ethnicities, ages, or genders). Regular audits of the dataset and model
	performance are necessary to ensure fairness, especially in real-world
	deployments.
	•Ethical Decision Making: The model may exhibit biases if the simulated data
	does not accurately represent real-world ethical dilemmas. Regular testing
	with diverse scenarios is necessary to ensure fairness, especially if the model
	is later deployed in real-world scenarios.
Transparency and	•Eyeball Tracking System: The model's decision-making process should be
Accountability	transparent, with clear documentation of how eye movements and gaze
	direction are tracked and interpreted. The team should be accountable for any
	errors or false alerts generated by the system.
	•Ethical Decision Making: The model's decision-making process should be
	transparent, with clear documentation of how ethical decisions are made. The
	team should be accountable for any unethical decisions made by the model,
	especially in high-risk scenarios.
Impact on Stakeholders	•Eyeball Tracking System: The model's outcomes directly impact the safety of
	drivers and passengers. Incorrect tracking of eye movements or gaze direction
	could lead to false alerts or missed warnings, affecting the driver's ability to
	respond to road conditions.
	•Ethical Decision Making: The model's outcomes directly impact the safety of
	passengers, pedestrians, and other road users. Unethical decisions could lead
	to accidents, affecting the autonomy and rights of individuals.

Research Project - IT4010

Ethical Analysis Report

IT21174780: In Cabin Security in Autonomous Vehicles

	Identification and Analysis
Data Privacy Concerns	•Emotion Detection: The model processes real-world facial images to classify
	emotions. This data is highly sensitive, as it can reveal personal information
	about individuals. Ensuring that the data is anonymized (e.g., blurring faces or
	removing identifiable features) is crucial to protect privacy.
	•Harmful Status Detection: The model processes real-world audio data to
	classify harmful statuses (e.g., glass breaking). While audio data is less visually
	identifiable, it may still contain sensitive information (e.g., voices or
	background conversations). Anonymization and secure handling of this data are necessary.
	•Weapon Detection with YOLOv8: The model processes real-world images to
	detect weapons. These images may include sensitive information about
	individuals or locations. Ensuring that the data is anonymized (e.g., blurring
	faces or license plates) is crucial to protect privacy.
Data Security	•Emotion Detection: The real-world facial images must be stored securely, with
	robust encryption and access controls in place to prevent unauthorized access
	or misuse. This is especially important given the sensitive nature of the data.
	•Harmful Status Detection: The real-world audio data must be stored securely,
	with encryption and access controls to prevent unauthorized access. This
	ensures that sensitive information is protected.
	•Weapon Detection with YOLOv8: The real-world images must be stored
	securely, with robust encryption and access controls to prevent unauthorized
	access or misuse. This is especially important given the sensitive nature of the
	data.
Bias and Fairness	•Emotion Detection: The model may exhibit biases if the training dataset does
	not accurately represent diverse populations (e.g., different ethnicities, ages,
	or genders). Regular audits of the dataset and model performance are
	necessary to ensure fairness.
	•Harmful Status Detection: The model may exhibit biases if the training dataset
	does not accurately represent diverse audio scenarios (e.g., different types of
	harmful sounds or background noise). Regular audits of the dataset and model
	performance are necessary to ensure fairness.
	•Weapon Detection with YOLOv8: The model may exhibit biases if the training
	dataset does not accurately represent diverse scenarios (e.g., different types of
	weapons, lighting conditions, or environments). Regular audits of the dataset
Transparancy and	and model performance are necessary to ensure fairness.
Transparency and	•Emotion Detection: The model's decision-making process should be
Accountability	transparent, with clear documentation of how emotions are classified. The team should be accountable for any errors or misclassifications.
	Harmful Status Detection: The model's decision-making process should be
	transparent, with clear documentation of how harmful statuses are classified.
	The team should be accountable for any errors or false positives/negatives.
	Weapon Detection with YOLOv8: The model's decision-making process
	should be transparent, with clear documentation of how weapons are
	detected. The team should be accountable for any errors or false detections.
	uetected. The team should be accountable for any errors of false detections.

Research Project - IT4010

Ethical Analysis Report

Impact on Stakeholders	•Emotion Detection: The model's outcomes could impact individuals' privacy
	and autonomy if misused. Incorrect emotion classification could lead to
	inappropriate responses or decisions, affecting individuals' rights.
	•Harmful Status Detection: The model's outcomes could impact individuals'
	safety and privacy. Incorrect classification of harmful statuses could lead to
	false alarms or missed threats, affecting individuals' safety.
	•Weapon Detection with YOLOv8: The model's outcomes could impact public
	safety and individual rights. Incorrect weapon detection could lead to false
	accusations or missed threats, affecting individuals' safety and rights.