Show that the assumption that \mathbb{P} is countably additive is equivalent to the assumption that \mathbb{P} is continuous. That is to say, show that if a function $\mathbb{P}: \mathcal{F} \to [0,1]$ satisfies $\mathbb{P}(\emptyset) = 0$, $\mathbb{P}(\Omega) = 1$, and $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$ whenever $A, B \in \mathcal{F}$ and $A \cap B = \emptyset$, then \mathbb{P} is countably additive (in the sense of satisfying Definition (1.3.1b)) if and only if \mathbb{P} is continuous (in the sense of Lemma (1.3.5)).

Proof. $\bullet \Rightarrow$ Suppose \mathbb{P} is countably additive.

Suppose w.l.o.g. that $\{A_n\}_{n=1}^{+\infty}$ be any increasing sequence of events

and $A_1 \subset A_2 \cdots$

Let $A = \bigcup_{n=1}^{\infty} A_n$ Let $B_1 = A_1, B_2 = A_2 \setminus A_1, \dots B_n = A_n \setminus A_{n-1}$ and they are all disjoint

Then

$$A = \bigcup_{n=1}^{\infty} B_n = \bigcup_{n=1}^{\infty} A_n$$

For every n, we have $A_n = \bigcup_{k=1}^n B_k$

By countable additivity, we have $\mathbb{P}(A_n) = \sum_{k=1}^n \mathbb{P}(B_k)$

Then, we have $\mathbb{P}(A) = \mathbb{P}(\bigcup_{k=1}^{\infty} B_k) = \sum_{k=1}^{\infty} \mathbb{P}(B_k)$

So,

$$\lim_{n \to \infty} \mathbb{P}(A_n) = \lim_{n \to \infty} \sum_{k=1}^n \mathbb{P}(B_k) = \sum_{k=1}^\infty \mathbb{P}(B_k) = \mathbb{P}(A)$$

Thus, \mathbb{P} is continuous from below. (similarly we can prove that \mathbb{P} is continuous from above by assuming decreasing $\{A_n\}_{n=1}^{+\infty}$)

• \Leftarrow Suppose \mathbb{P} is continuous.

Let $\{A_n\}_{n=1}^{\infty}$ be a sequence of pairwise disjoint sets in \mathcal{F} . Define $B_n = \bigcup_{k=1}^n A_k$. Then $\{B_n\}_{n=1}^{\infty}$ is an increasing sequence with $\prod_{n=1}^{\infty} B_n = \prod_{n=1}^{\infty} A_n$.

Then $\{B_n\}_{n=1}^{\infty}$ is an increasing sequence with $\bigcup_{n=1}^{\infty} B_n = \bigcup_{n=1}^{\infty} A_n$.

By continuity, $\mathbb{P}\left(\bigcup_{n=1}^{\infty} A_n\right) = \lim_{n \to \infty} \mathbb{P}(B_n)$. Since the A_n are pairwise disjoint, $\mathbb{P}(B_n) = \sum_{k=1}^{n} \mathbb{P}(A_k)$.

Thus,

$$\mathbb{P}\left(\bigcup_{n=1}^{\infty} A_n\right) = \lim_{n \to \infty} \sum_{k=1}^{n} \mathbb{P}(A_k) = \sum_{n=1}^{\infty} \mathbb{P}(A_n).$$

This shows that \mathbb{P} is countably additive.

The 'ménages' problem poses the following question. Some consider it to be desirable that men and women alternate when seated at a circular table. If n heterosexual couples are seated randomly according to this rule, show that the probability that nobody sits next to his or her partner is

$$\frac{1}{n!} \sum_{k=0}^{n} (-1)^k \frac{2n}{2n-k} {2n-k \choose k} (n-k)!$$

You may find it useful to show first that the number of ways of selecting k non-overlapping pairs of adjacent seats is $\binom{2n-k}{k} 2n(2n-k)^{-1}$.

Proof. Assume we have n couples labelled $1, 2, \ldots, n$. Define

$$A_k = \{\text{couple } k \text{ sits together}\}.$$

For any chosen k-tuple (i_1, i_2, \ldots, i_k) , we wish to count

$$\mathbb{N}\Big(\bigcap_{j=1}^k A_{i_j}\Big).$$

To eliminate rotational symmetry, choose a couple not among $\{i_1, \ldots, i_k\}$ (say the one with the smallest index not chosen) and fix its man in seat 1. Since men and women alternate, the problem reduces to selecting k non-overlapping adjacent seat pairs from 2n seats. This is equivalent to choosing k "compressed" positions from 2n - k spots, which can be done in

$$\binom{2n-k-1}{k}$$
 ways.

Next, assign the k couples to these pairs in k! ways. The remaining n - k - 1 men and n - k women are arranged in (n - k - 1)!(n - k)! ways. Including the initial factor 2n from the possible choices before fixing, we have

$$\mathbb{N}\left(\bigcap_{j=1}^{k} A_{i_j}\right) = 2n \binom{2n-k-1}{k} k! (n-k-1)!(n-k)!.$$

Using the inclusion–exclusion principle, the probability that no couple sits together is

$$\mathbb{P}\left(\bigcap_{j=1}^{n} A_{j}^{c}\right) = 1 - \mathbb{P}\left(\bigcup_{j=1}^{n} A_{j}\right) = \sum_{k=0}^{n} (-1)^{k} \binom{n}{k} \, \mathbb{P}\left(\bigcap_{j=1}^{k} A_{i_{j}}\right).$$

Substituting the count and dividing by the total number of arrangements, we obtain

$$\mathbb{P}\Big(\bigcap_{j=1}^{n} A_{j}^{c}\Big) = \frac{1}{n!} \sum_{k=0}^{n} (-1)^{k} \frac{2n}{2n-k} \binom{2n-k}{k} (n-k)!.$$

The probabilistic method. 10 per cent of the surface of a sphere is coloured blue, the rest is red. Show that, irrespective of the manner in which the colours are distributed, it is possible to inscribe a cube in S with all its vertices red.

Proof. Let the sphere S be partitioned into a blue region B and a red region, with

$$\frac{|B|}{|S|} = 0.1.$$

Fix a standard cube inscribed in S so that its 8 vertices lie on S. For every rotation R (with R uniformly distributed over SO(3)), denote its vertices by

$$v_1(R), v_2(R), \ldots, v_8(R).$$

Define the event

$$E_i = \{ R \in SO(3) \mid v_i(R) \in B \}, \quad i = 1, 2, \dots, 8.$$

Since the distribution of each vertex is uniform on S, we have

$$P(E_i) = 0.1$$
 for each i .

Suppose for contradiction that every rotation R results in at least one vertex landing in B. Then

$$SO(3) = \bigcup_{i=1}^{8} E_i.$$

By the Inclusion-Exclusion Principle,

$$P\left(\bigcup_{i=1}^{8} E_i\right) \le \sum_{i=1}^{8} P(E_i) = 8 \times 0.1 = 0.8.$$

Thus, the probability that a rotation R yields no vertex in B is

$$P\left(\bigcap_{i=1}^{8} E_i^c\right) = 1 - P\left(\bigcup_{i=1}^{8} E_i\right) \ge 1 - 0.8 = 0.2 > 0.$$

This positive probability implies that there exists at least one rotation R such that none of the vertices fall in the blue region; that is, they all lie in the red region.

Poker. During a game of poker, you are dealt a five-card hand at random. With the convention that aces may count high or low, show that:

$$\begin{split} &\mathbb{P}(1 \text{ pair }) \simeq 0.423, \\ &\mathbb{P}(\text{ straight }) \simeq 0.0039, \\ &\mathbb{P}(4 \text{ of a kind }) \simeq 0.00024, \\ &\mathbb{P}(2 \text{ pairs }) \simeq 0.0475, \\ &\mathbb{P}(\text{ flush }) \simeq 0.0020, \\ &\mathbb{P}(3 \text{ of a kind }) \simeq 0.021, \\ &\mathbb{P}(\text{ full house }) \simeq 0.0014, \\ &\mathbb{P}(\text{ straight flush }) \simeq 0.000015. \end{split}$$

Proof.

$$|\Omega| = \binom{52}{5}$$

$$|1 \text{ pair}| = 13 \times \binom{4}{2} \times \binom{12}{3} \times 4^{3}$$

$$P[1 \text{ pair}] = \frac{13 \times \binom{4}{2} \times \binom{12}{3} \times 4^{3}}{\binom{52}{5}} \cong 0.423$$

$$|Straight| = 10 \times (4^{5} - 4)$$

$$P[Straight] = \frac{10 \times (4^{5} - 4)}{\binom{52}{5}} \cong 0.0039$$

$$|4 \text{ of a kind}| = 13 \times (52 - 4)$$

$$P[4 \text{ of a kind}] = \frac{13 \times 48}{\binom{52}{5}} \cong 0.00024$$

$$|2 \text{ pairs}| = \binom{13}{2} \times \binom{4}{2}^{2} \times 11 \times 4$$

$$P[2 \text{ pairs}] = \frac{\binom{13}{2} \times \binom{4}{2}^{2} \times 11 \times 4}{\binom{52}{5}}$$

$$|Flush| = 4 \times \binom{13}{5} - 4 \times 10$$

$$P[Flush] = \frac{4 \times \binom{13}{5} - 4 \times 10}{\binom{52}{5}} \cong 0.0020$$

$$|3 \text{ of a kind}| = 13 \times \binom{4}{3} \times \binom{12}{2} \times 4^{2}$$

$$P[3 \text{ of a kind}] = \frac{13 \times \binom{4}{3} \times \binom{12}{2} \times 4^2}{\binom{52}{5}} \approx 0.021$$
$$|FullHouse| = 13 \times \binom{4}{3} \times 12 \times \binom{4}{2}$$
$$P[FullHouse] = \frac{13 \times \binom{4}{3} \times 12 \times \binom{4}{2}}{\binom{52}{5}} \approx 0.0014$$
$$|Straightflush| = 10 \times 4$$
$$P[Straightflush] = \frac{10 \times 4}{\binom{52}{5}} \approx 0.000015$$

Let m be Lebesgue measure on [0,1], and $0 \le a \le b \le c \le d \le 1$ such that $a+d \ge b+c$. Give an example of a sequence of sets A_1, A_2, \cdots in [0,1], such that $m(\liminf_n A_n) = a$, $\lim_n m(A_n) = b$, $\lim_n m(A_n) = c$ and $m(\limsup_n A_n) = d$.

Proof. Define

$$I = [0, a] \quad \text{and} \quad E = [a, d].$$

Let α be any irrational number (say $\sqrt{2}$) and let $\{n\alpha\}$ denote the fractional part of $n\alpha$. For each $n \in \mathbb{N}$, set

$$X_n = \begin{cases} [a + (d-a)\{n\alpha\}, \ a + (d-a)\{n\alpha\} + (b-a)], & \text{if } n \text{ is even,} \\ [a + (d-a)\{n\alpha\}, \ a + (d-a)\{n\alpha\} + (c-a)], & \text{if } n \text{ is odd,} \end{cases}$$

and define

$$A_n = I \cup X_n$$
.

Then we can have

$$m\left(\liminf_{n\to\infty}A_n\right)=a, \quad \liminf_{n\to\infty}m(A_n)=b, \quad \limsup_{n\to\infty}m(A_n)=c, \quad m\left(\limsup_{n\to\infty}A_n\right)=d.$$

Problem 6

Let $\Omega = \mathbb{R}$ and consider the following subsets of $\mathcal{P}(\mathbb{R})$:

$$C_1 := \{(-\infty, b] : b \in \mathbb{R}\}$$

$$C_2 := \{(a, b] : a, b \in \mathbb{R}\}$$

$$C_3 := \{A \subset \mathbb{R}, A \text{ is closed }\}.$$

Show that $\sigma(\mathcal{C}_1) = \sigma(\mathcal{C}_2) = \sigma(\mathcal{C}_3)$.

Proof. $\sigma(C_1) = \sigma(C_2)$

- $C_1 \subseteq \sigma(C_2)$ Since $(-\infty, b] \in \sigma(C_2)$ So, $\sigma(C_1) \subseteq \sigma(C_2)$ because $\sigma(C_1)$ is minimal
- $C_2 \subseteq \sigma(C_1)$ Writing $(a, b] = (-\infty, b] \setminus (-\infty, a]$ Since $(-\infty, b]$ and $(-\infty, a]$ are in C_1 , we have $(a, b] \in \sigma(C_1)$ So, $\sigma(C_2) \subseteq \sigma(C_1)$ because $\sigma(C_2)$ is minimal

 $\sigma(C_2) = \sigma(C_3)$

- $\sigma(\mathcal{C}_2) \subseteq \sigma(\mathcal{C}_3)$: Let $(a,b] \in \mathcal{C}_2$. Notice that for any $x \in \mathbb{R}$, the set $(-\infty,x]$ is closed. Hence, both $(-\infty,b]$ and $(-\infty,a]$ belong to \mathcal{C}_3 . Writing $(a,b] = (-\infty,b] \setminus (-\infty,a]$, we conclude that (a,b] is an element of $\sigma(\mathcal{C}_3)$. Therefore, $\mathcal{C}_2 \subseteq \sigma(\mathcal{C}_3)$. So $\sigma(\mathcal{C}_2) \subseteq \sigma(\mathcal{C}_3)$ because $\sigma(\mathcal{C}_2)$ is minimal
- $\sigma(\mathcal{C}_3) \subseteq \sigma(\mathcal{C}_2)$: Every open set $U \subset \mathbb{R}$ can be written as $U = \bigcup_{n=1}^{\infty} I_n$, where each I_n is an open interval. For any open interval $I_n = (a, b)$, we have

$$(a,b) = \bigcup_{m=1}^{\infty} \left(a + \frac{1}{m}, b\right].$$

Thus,

$$U = \bigcup_{n=1}^{\infty} \bigcup_{m=1}^{\infty} \left(a_n + \frac{1}{m}, b_n \right],$$

showing that U is a countable union of half-open intervals of the form (a, b].

Hence, $U \in \sigma(\mathcal{C}_2)$, where $\mathcal{C}_2 = \{(a, b] : a, b \in \mathbb{R}\}.$

So we have $U^c \in \sigma(\mathcal{C}_2)$, where $U^c = \mathcal{C}_3$

Therefore, $\sigma(\mathcal{C}_3) \subseteq \sigma(\mathcal{C}_2)$ because $\sigma(\mathcal{C}_3)$ is minimal