Two-Sided (Bilateral) Z-Transform Correspondence Table

Bilateral definition:
$$\mathcal{Z}\{x[n]\} = X(z) = \sum_{n=-\infty}^{\infty} x[n] z^{-n}$$
.

Notes: The ROC (region of convergence) is an annulus $r_1 < |z| < r_2$, determined by the growth/decay of x[n]. If the ROC includes the unit circle |z| = 1, then the DTFT exists and $X(e^{j\omega}) = X(z)|_{z=e^{j\omega}}$.

A. Common Transform Pairs (bilateral definition)

Sequence $x[n]$	X(z)	ROC (typ.)	Notes
$\frac{\delta[n]}{\delta[n-n_0]}$	$\frac{1}{z^{-n_0}}$	$\begin{array}{c} \text{all } z \\ \text{all } z \end{array}$	Unit sample Integer delay $n_0 \in \mathbb{Z}$
$\epsilon[n]$	$\frac{1}{1 - z^{-1}} = \frac{z}{z - 1}$	z > 1	Right-sided step
$-\epsilon[-n-1]$	$\frac{1}{1 - z^{-1}} = \frac{z}{z - 1}$	z < 1	Left-sided step (same form, different ROC)
$a^n \epsilon[n]$	$\frac{1}{1-az^{-1}} = \frac{z}{z-a}$	z > a	Right-sided exponential
$-a^n \epsilon [-n-1]$	$\frac{\frac{1}{1 - az^{-1}}}{\frac{1}{1 - az^{-1}}} = \frac{z}{z - a}$ $\frac{1}{1 - az^{-1}} = \frac{z}{z - a}$	z < a	Left-sided exponential
$n a^n \epsilon[n]$	$\overline{(z-a)^2}$	z > a	First moment (right-sided)
$-n a^n \epsilon [-n-1]$	$\frac{az}{(z-a)^2}$	z < a	First moment (left-sided)
$\alpha^{ n }, \ 0 < \alpha < 1$	$\frac{1 - \alpha^2}{1 - 2\alpha z^{-1} + \alpha^2 z^{-2}}$	$\alpha < z < \alpha^{-1}$	Two-sided exponential (even)
$\epsilon[n] - \epsilon[n-N]$	$\frac{1-z^{-N}}{1-z^{-1}}$	z > 1	Right-sided length- N rectangle
$1_{\{ n \leq M\}}$	$\sum_{n=-M}^{M} z^{-n} = \frac{z^{M+1} - z^{-M}}{z - 1}$	all $z \neq 0$	Symmetric length $2M+1$ rectangle

Definitions.

- $\epsilon[n]$ is the unit step; $\epsilon[-n-1]=1$ for $n\leq -1$, else 0.
- $\mathbf{1}_{\{|n| \le M\}}$ equals 1 for $|n| \le M$, else 0.
- For right-sided exponentials $a^n \epsilon[n]$, the pole is at z = a with ROC |z| > |a|; for left-sided $-a^n \epsilon[-n-1]$, the same pole but ROC |z| < |a|.

B. Useful Properties (bilateral)

Time domain	z-domain	Comments / ROC
Linearity: $\mathcal{Z}\{ax + by\}$	aX + bY	$a,b \in \mathbb{C}$
Time shift (delay): $x[n-n_0]$	$z^{-n_0}X(z)$	ROC unchanged except possible endpoints $0, \infty$
Time reversal: $x[-n]$	$X(z^{-1})$	ROC maps to reciprocal annulus
Convolution: $(x * y)[n]$	X(z) Y(z)	Intersection of ROCs
Multiplication: $x[n]y[n]$	$\frac{1}{2\pi j} \oint X(\zeta) Y\left(\frac{z}{\zeta}\right) \frac{d\zeta}{\zeta}$	Frequency-domain convolution (Mellin form)
First moment: $n x[n]$	$-z\frac{dX}{1}$ $\frac{1}{1-z^{-1}}X(z)$	Differentiation in z
Accumulation: $\sum_{n=0}^{n} \sum_{n=0}^{n} [h]$	$\frac{1}{1-z^{-1}}X(z)$	ROC must exclude $z = 1$ and
$s[n] = \sum_{k=-\infty}^{n} x[k]$ DTFT link	$X(e^{j\omega}) = X(z)\big _{z=e^{j\omega}}$	include overlap Valid if ROC includes $ z = 1$
Initial value (if $\infty \in ROC$)	$x[0] = \lim_{z \to \infty} X(z)$	Right-sided inclusion of ∞
Final value (if $1 \in ROC$, stable)	$\lim_{n \to \infty} x[n] = \lim_{z \to 1} (1 - z^{-1})X(z)$	Poles inside unit circle except possibly at $z = 1$