MS121: IT Mathematics

DIFFERENTIATION

Rules for Differentiation: Part 1

John Carroll School of Mathematical Sciences

Dublin City University

Differentiation by Formula

Outline

- Differentiation by Formula
- 2 Sums & Differences of Functions
- 3 The Product Rule
- 4 The Quotient Rule

Outline

- Differentiation by Formula
- Sums & Differences of Functions
- 3 The Product Rule
- 4 The Quotient Rule

Differentiation by Formula

Function $f(x) = x^n$

Differentiation by Formula

Pattern Observed

You may have noticed the following pattern when we were differentiating from first principles:

$$\begin{array}{cccc}
x & \rightarrow & 1 \\
x^2 & \rightarrow & 2x \\
x^3 & \rightarrow & 3x^2 \\
\vdots & \vdots & \vdots \\
x^{-1} & \rightarrow & -1 \cdot x^{-2} \\
x^{-2} & \rightarrow & -2 \cdot x^{-3} \\
\vdots & \vdots & \vdots \\
\end{array}$$

Differentiation by Formula

Function $f(x) = x^n$

Differentiation by Formula

Function $f(x) = x^n$

Differentiation by Formula

General Rule

$$\frac{d}{dx}x^n = n \cdot x^{n-1}$$

and this rule is true for all values of n.

| 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 5 / 36

Differentiation (2/5)

MS121: IT Mathematics

Differentiation (2/5)

MS121: IT Mathemat

John Carroll 6

Differentiation by Formula

Function $f(x) = x^n$

Differentiation by Formula

Other Entries in the Mathematical Tables

The derivatives of the trigonometric functions are also available, for example

$$\frac{d}{dx}\sin x = \cos x$$

$$\frac{d}{dx}\cos x = -\sin x$$

$$\frac{d}{dx}\tan x = \sec^2 x$$

Note that trigonometric definitions are on pages 13–16.

Example 1

To find the derivative of \sqrt{x} , note that $\sqrt{x} = x^{\frac{1}{2}}$ so that the general rule can be applied with $n = \frac{1}{2}$ to obtain

$$\frac{d}{dx} x^{\frac{1}{2}} = \frac{1}{2} \cdot x^{-\frac{1}{2}} = \frac{1}{2} \cdot \frac{1}{x^{\frac{1}{2}}} = \frac{1}{2\sqrt{x}}.$$

Note

This rule is found on page 25 of the "formulae and tables" booklet, along with a number of other useful derivatives which you may use without proof unless you have been explicitly asked to differentiate from first principles.

Differentiation by Formula Function $f(x) = x^n$

The Exponential and Log Functions

Rate of Growth

- Another important derivative found in the log tables is for the exponential function.
- We know that the derivative of a function is equal to its slope which we also think of as being its rate of growth.

The Exponential and Log Functions

Question

What function has a derivative equal to the function itself?

Answer

• The answer is the unique function

$$y = e^x = \exp(x)$$

the exponential function.

For this function only,

$$\frac{dy}{dx} = y$$
, i.e. $\frac{d}{dx} e^x = e^x$.

Differentiation (2/5)

MS121: IT Mathematics

Differentiation by Formula Function $f(x) = x^n$

$$y = e^x$$
 and $\frac{dy}{dx} = e^x$

Differentiation (2/5)

The function $y = e^x$

Differentiation (2/5) MS121: IT Mathematics

Differentiation by Formula Function $f(x) = x^n$

The Exponential and Log Functions

The Exponential Function (Cont'd)

- Note that e^x is simply the number which we call "e" raised to the power of x ($e = e^1 = 2.718281828...$).
- This number, like the number π , is an irrational number, i.e. a non-repeating decimal.
- Since 2 < e < 3, the function e^x satisfies

$$2^{x} < e^{x} < 3^{x}$$

and the limit of e^x as $x \to \infty$ must be infinite, i.e.

$$\lim_{x\to\infty}e^x=\infty,$$

Differentiation by Formula Function $f(x) = x^n$

Differentiation by Formula Function $f(x) = x^n$

• The function $y = e^x$ has an inverse, namely

The Exponential and Log Functions

 $y = \ln x$,

• A graph of $y = \ln x$ will show that the function is only defined on $(0,\infty)$ which is the range of the exponential function $y=e^x$ and

The Exponential and Log Functions

The Exponential Function (Cont'd)

• The limit of e^x as $x \to -\infty$ is

$$\lim_{x \to -\infty} e^x = \lim_{z \to \infty} e^{-z} = \lim_{z \to \infty} \frac{1}{e^z} = \frac{1}{\infty} = 0.$$

• In the foregoing, we simply made the substitution z = -x.

Differentiation (2/5)

Differentiation (2/5)

MS121: IT Mathematics

Differentiation by Formula Function $f(x) = x^n$

Differentiation (2/5)

Differentiation (2/5)

The Logarithmic Function

the natural logarithm of x.

hence the domain of $y = \ln x$.

MS121: IT Mathematics

 $\frac{d}{dx} \ln x = \frac{1}{x}.$

• The derivative of ln x is also in the tables:

Differentiation by Formula Function $f(x) = x^n$

 $y = e^x$ is a reflection of $y = \ln x$ in y = x

The function $y = \ln x$

MS121: IT Mathematics

Outline

- Sums & Differences of Functions
- The Product Rule

Differentiation (2/5)

MS121: IT Mathematics

Differentiation (2/5)

MS121: IT Mathematics

Sum/Difference

Sums & Differences of Functions

Derivative of the Sum

The derivative of the sum is simply the sum of the derivatives:

$$\frac{d}{dx}\left[u(x)+v(x)\right]=\frac{du}{dx}+\frac{dv}{dx}$$

for any 2 functions of x.

Sums & Differences of Functions

Work Plan

- We now introduce some rules for differentiation which will allow us to take the derivative of sums, products, quotients and compositions of functions.
- In the remainder of this section, we deal with sums of functions while the products, quotients and compositions of functions are dealt with in separate sections to follow.

Sum/Difference

Example 1

For $y = x^2 + 7$, we obtain

$$\frac{d}{dx}[x^2+7] = \frac{d}{dx}x^2 + \frac{d}{dx}7 = 2x + 0 = 2x.$$

Note how the derivative of any constant term is zero. You can prove this from first principles or simply apply the general for x^n with n = 0, i.e.

$$\frac{d}{dx}7 = \frac{d}{dx}7x^0 = 7\frac{d}{dx}x^0 = 7 \cdot 0 \cdot x^{-1} = 0.$$

Example 2

Using the same rule, we find

$$\frac{d}{dx}\left[e^{x}+\ln x\right]=\frac{d}{dx}e^{x}+\frac{d}{dx}\ln x=e^{x}+\frac{1}{x}.$$

Differentiation (2/5)

MS121: IT Mathematics

MS121: IT Mathematics

The Product Rule

The Product Rule

Formula

To differentiate the product of two functions, u(x) and v(x), we must use the product rule, which is given in the Math Tables:

$$\frac{d}{dx} [u(x) \star v(x)] = v \frac{du}{dx} + u \frac{dv}{dx}$$

Outline

- Differentiation by Formula
- Sums & Differences of Functions
- The Product Rule

Differentiation (2/5)

The Product Rule

Example 3

Consider the function $y = xe^x$. To use the product rule, let u = x and $v = e^x$ so that

$$\frac{du}{dx} = 1, \qquad \frac{dv}{dx} = e^x.$$

The product rule then gives:

$$v\frac{du}{dx} + u\frac{dv}{dx} = e^{x} \cdot 1 + x \cdot e^{x}$$
$$= e^{x}(1+x)$$

Example 4

For the function $y = \ln x \tan x$, we let

$$u = \ln x,$$
 $v = \tan x,$

so that

$$\frac{du}{dx} = \frac{1}{x},$$
 $\frac{dv}{dx} = \sec^2 x.$

The product rule then gives:

$$v\frac{du}{dx} + u\frac{dv}{dx} = \tan x \cdot \frac{1}{x} + \ln x \cdot \sec^2 x$$
$$= \frac{1}{x} \tan x + \ln x \sec^2 x$$

Differentiation (2/5)

MS121: IT Mathematics

Example 5

Consider $y = x^{\frac{1}{4}} (2 + 3x + x^2)$.

Solution

With

$$u = x^{\frac{1}{4}},$$
 $v = 2 + 3x + x^2,$

we obtain

$$\frac{du}{dx} = \frac{1}{4}x^{-\frac{3}{4}}, \qquad \frac{dv}{dx} = 3 + 2x.$$

The product rule then gives:

$$v\frac{du}{dx} + u\frac{dv}{dx} = (2 + 3x + x^2) \cdot \frac{1}{4}x^{-\frac{3}{4}} + x^{\frac{1}{4}} \cdot (3 + 2x)$$
$$= \frac{1}{4}x^{-\frac{3}{4}} (2 + 3x + x^2) + x^{\frac{1}{4}} (3 + 2x)$$

Differentiation (2/5)

MS121: IT Mathematics

The Product Rule

Extension of the Formula

If you need to find the derivative of 3 functions, say u(x), v(x) and w(x)multiplied together, then the formula to use is an extension of the product rule, namely

$$\frac{d}{dx} \left[u(x) \star v(x) \star w(x) \right] = \frac{du}{dx} vw + u \frac{dv}{dx} w + uv \frac{dw}{dx}$$

This rule is not found in the Math Tables because it is simply the product rule applied twice.

The Product Rule

Example 6

Differentiate $y = e^x \sin x \tan x$.

Solution

We let

$$u = e^x$$
, $v = \sin x$, $w = \tan x$,

$$v = \sin x$$

$$w = \tan x$$

so that

$$\frac{du}{dx} = e^x$$

$$\frac{dv}{dx} = \cos x$$

$$\frac{du}{dx} = e^x,$$
 $\frac{dv}{dx} = \cos x,$ $\frac{dw}{dx} = \sec^2 x.$

$y = e^x \sin x \tan x$

Example 6 (Cont'd)

We then obtain

$$\frac{d}{dx} [uvw] = \frac{du}{dx}vw + u\frac{dv}{dx}w + uv\frac{dw}{dx}$$

$$= e^x \sin x \tan x + e^x \cos x \tan x + e^x \sin x \sec^2 x$$

$$= e^x \left\{ \sin x \tan x + \cos x \tan x + \sin x \sec^2 x \right\}$$

$$= e^x \sin x \left\{ \tan x + 1 + \sec^2 x \right\}.$$

<ロ > < @ > < 量 > < 量 > 量 ● の Q ()

Differentiation (2/5)

MS121: IT Mathematics

Outline

- Differentiation by Formula
- Sums & Differences of Functions
- The Product Rule
- The Quotient Rule

MS121: IT Mathematics Differentiation (2/5)

The Quotient Rule

The Quotient Rule

Differentiation (2/5)

Formula

To differentiate the quotient of two functions, u(x) and v(x), namely $y = \frac{u(x)}{v(x)}$, we must use the quotient rule, which is given in the log tables:

$$\frac{d}{dx}\left[\frac{u(x)}{v(x)}\right] = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$$

The Quotient Rule

Example 7

Find
$$\frac{dy}{dx}$$
 where $y = \frac{x^{\frac{1}{4}}}{\cos x}$

Solution

With

$$u = x^{\frac{1}{4}} \qquad v = \cos x$$

$$\frac{du}{dx} = \frac{1}{4}x^{-\frac{3}{4}} \qquad \frac{dv}{dx} = -\sin x$$

$$\frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2} = \frac{\cos x \cdot \frac{1}{4}x^{-\frac{3}{4}} - x^{\frac{1}{4}} \cdot (-\sin x)}{\cos^2 x}$$

$$= \frac{\frac{1}{4}x^{-\frac{3}{4}}\cos x + x^{\frac{1}{4}}\sin x}{\cos^2 x}.$$

Example 8

Find
$$\frac{dy}{dx}$$
 where $y = \frac{x^{\frac{1}{2}} + x^{-\frac{1}{2}}}{\ln x}$

Solution

We let

$$u = x^{\frac{1}{2}} + x^{-\frac{1}{2}}, \qquad v = \ln x,$$

so that

$$\frac{du}{dx} = \frac{1}{2}x^{-\frac{1}{2}} - \frac{1}{2}x^{-\frac{3}{2}}, \qquad \frac{dv}{dx} = \frac{1}{x}.$$

The quotient rule then gives:

$$\frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2} = \frac{\ln x \cdot \frac{1}{2} \left(x^{-\frac{1}{2}} - x^{-\frac{3}{2}} \right) - \left(x^{\frac{1}{2}} + x^{-\frac{1}{2}} \right) \cdot \frac{1}{x}}{\ln^2 x}$$

MS121: IT Mathematics Differentiation (2/5)

The Quotient Rule

Example 9

Consider the function $y = \frac{\sin x}{\cos x}$

Solution

In this case, we have

$$u = \sin x$$
, $v = \cos x$,

so that

$$\frac{du}{dx} = \cos x, \qquad \frac{dv}{dx} = -\sin x.$$

The quotient rule then gives

Differentiation (2/5)

$$\frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2} = \frac{\cos x \cdot \cos x - \sin x \cdot (-\sin x)}{\cos^2 x}$$

$$y = \frac{x^{\frac{1}{2}} + x^{-\frac{1}{2}}}{\ln x}$$

Example 8 Cont'd

The quotient rule:

$$\frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2} = \frac{\ln x \cdot \frac{1}{2} \left(x^{-\frac{1}{2}} - x^{-\frac{3}{2}}\right) - \left(x^{\frac{1}{2}} + x^{-\frac{1}{2}}\right) \cdot \frac{1}{x}}{\ln^2 x}$$
$$= \frac{\frac{1}{2} \ln x \left(x^{-\frac{1}{2}} - x^{-\frac{3}{2}}\right) - \frac{1}{x} \left(x^{\frac{1}{2}} + x^{-\frac{1}{2}}\right)}{\ln^2 x}$$

Differentiation (2/5)

MS121: IT Mathematics

The Quotient Rule

$$y = \frac{\sin x}{\cos x}$$

Example 9 Cont'd

The quotient rule:

$$\frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2} = \frac{\cos x \cdot \cos x - \sin x \cdot (-\sin x)}{\cos^2 x}$$
$$= \frac{\cos^2 x + \sin^2 x}{\cos^2 x}$$
$$= \frac{1}{\cos^2 x}$$
$$= \sec^2 x.$$

Note that this is just the result $\frac{d}{dx} \tan x = \sec^2 x$.

<ロ > ← □