AMT Tutorial 2

1 M. W. of while god = 0.1x64 +0.9 x29.

1500 =46.15 molar flow rate of inlet gas, Gr= 32.5 |molly. Moler flow rate of solute-free , crs = 0.9 Gr = 41.5385 fm = 41.5385 fred/h.

Mole ratios: Ventry - 0.1 = 0.11 Yearing = 0.11x0.03 = 0.0033.

X entry = 0.

At minimum solvent flow rate, & Eniting solvent will be in equilabrium with entering vapour.

a) Lsmin = Y1-1/h => Lsmin = 1646.7 x103

Kennol/h.

b) Ls = 1.25 Lsmin (gind) + LS= 2058.4 pmol/4.

To obtain the height of the packed be mented to H - Jenter O' dy - (Ns) - (Ns) J(1+y) dy

yand kya. (1-y) 19-yi) - (kya A) J(1-y) 1 y-yi) where est is motor flow vote per writare (flow)

You is the underfacial concertation of solute.

- Voning 2 feller theory we know, kn (M-xi) = by (41-4) - Since (Hr. 40) will be an explore wome and (huy) will be on operating line, all we need to do is draw line of glope - kn from a paint on operating his and find out where it interest at your were (at the greathing of intersection is the required yi) This is done in MATCHO by taking 10 faints along the were operating line and solving the equation: (ky (4:-4) +x3)-f(4)-0. where f(4) is the 4 hm call we - Vering 91 we can evalurated the necessary function -> Use rapercial rule and integrate wrt y. in the integral -> Area under curve is is found to be 22.648 -- thight of parked bed = (VS) v 22. 4 48. -> Height = 4.42 m.

Question 1: Code + Graphs

Equilibrium curve(X vs Y)

F(y) vs y


```
clear; close all;

yentry = 0.1;

Yentry = yentry/(1-yentry);

xentry = 0;

yexit = 0.03*0.1/(0.03*0.1+0.9);

Yexit = yexit/(1-yexit);

mw = 0.1*64+0.9*29;

Vs = 1500/mw*0.9;

xeqbm = [0 0.562 1.403 2.8 4.22 8.42 14.03 19.65 27.9]*10^(-4);

yeqbm = [0 0.792 2.23 6.19 10.65 25.9 47.3 68.5 104]*(10^(-3));
```

```
xy = spline(yeqbm,xeqbm);
%part a
Xeqbm = xeqbm./(1-xeqbm);
Yeqbm = yeqbm./(1-yeqbm);
figure(1);
title('EqbmPlot')
xlabel('Xeqbm')
ylabel('Yeqbm')
plot(Xeqbm, Yeqbm);
XY = spline(Yeqbm,Xeqbm);
Xexit = ppval(XY,Yentry);
Lsmin = Vs*(Yentry-Yexit)/(Xexit);
%Part b
kx=1.25;
ky=0.075;
cs = 0.781;
Ls = 1.25*Lsmin;
%operating line in terms of mole ratio
OL = @(val)(Vs/Ls).*(val - Yexit);
%n points on operating line
n = 10;
Y = linspace(Yexit,Yentry,n);
X = OL(Y);
x = X./(1+X);
y = Y./(1+Y);
%From n points, draw lines of slope -kx/ky and find intersection at eqbm
%curve. Substitute Xi in terms of the line equation & curve equation,
%equate them and set to zero
func = @(yi)(-ky/kx*(yi-y)+x) - ppval(xy,yi);
yi = fsolve(func,zeros(1,n));
%Value of function to be integrated
f = (1+Y)./((y-yi).*(1-y));
%Integrate yis using trapezoidal rule
AUC = trapz(y,f);
H = AUC*(Vs/(cs*3600*ky));
figure(2);
title('f(y) vs y(mole fraction)')
xlabel('y')
ylabel('f(y)')
plot(y,f)
```

```
AMT CH3030 - Tutorial 2
D Inlet we outlet feed flow rate
        Ventry = PV = 0.4 × 1.013×105 16.41 mells
                           8.314 297
       Yentry = partial pressure of solute = 50 = 0.070 4
                 partial prime of solvent 710
     Yenit = Yenit = 5x10-3 = 5.025 x 103
     Vs = 710 x Ventry = 15-33 molls.
   Egom curve: facult 'slaw.
                   y Ptabel = X (Prapour)
        >) y = 0.45Tx.
   At . Lamin, Xent will be in equilibrium with Yestry
        > Xent = 0.1689 4 0.169.
  a).: Nuon. Liquid gas ratio, Lonis. Yentry-Yent 20-387.
  b). If <u>Ls</u> = 1.5 Lsmis 1 then Ls = 9 8-9 mods.
      = 8.9x 3600 x 0.18 Mg/A.
        3/45 = 5768. 9 kg/h.
```

For no of steps graphical method, starting we Start from bottom of operating Line (Xentry, Yenit) . noove to egom come huping y constat, then heep I constant and mere to the operating him. this procedure is repeated till we can the y. Penty Number of steps were found to be 6 Kremser's method Absorption factor, A = Slope of operating lier Slope of equilibrium 0.581 0.45 N= log (Genty- K M K X entry) x (1- 1) + 1

Yenit - K Meit K-s slope of equilibrium curve. (note: all are not fraiting) -3 N = 5.298. ... No - 18teps = 6. 0.81 x 10 = 3100 hg/m? d) Comer 4 = 2 ep = 2 ×10-3 pas, f= and molecular weight = 189 9 mel. Value of 4-anis = (Stope of Eym cure) x (hed. wight) or 4 = 2.02 ×104.

From the ownell effection of graph 4 we can see that

Eo = no. of ideal brays as

real no. of trays required = N = 6

Fo = 0. of

= 24 trays

Whole: if we put N = 5-29 | value optained through Kranger

equates

we will get 22 trays

Question 2: Code + Graphs

```
clear; close all;
Ventry = 0.4*1.013*10^5/8.314/297;
yentry = 50/760;
xentry=0;
Vs = (1-yentry)*Ventry;
Yentry = yentry/(1-yentry);
yexit = 0.005;
Yexit = yexit/(1-yexit);
xeqbm = @(y)(760/346*y);
xexit = xeqbm(yentry);
Xexit = xexit/(1-xexit);
Lsmin = Vs*(Yentry-Yexit)/(Xexit);
Ratiomin = (Yentry-Yexit)/(Xexit);
Ls = 1.5*Lsmin*180/1000*3600;
m = 1.5*Ratiomin;
y = Yexit;
i = 0;
xcoords = zeros(1,6);
ycoords = zeros(1,6);
ycoords2 = ycoords;
while y <= Yentry
  i = i + 1;
  x = (y)/0.455;
  xcoords(i) = x;
  ycoords(i) = y;
  y = Yexit + m*(x);
  ycoords2(i) = y;
ypoints = linspace(Yentry,Yexit,10);
OL = 1/m.*(ypoints-Yexit);
Eqbm = ypoints/0.455;
figure();
plot(OL,ypoints,Eqbm,ypoints,xcoords,ycoords,'x',xcoords,ycoords2,'o');
%Kremser's method
K = 346/760;
A = m/(K);
N = log((yentry-K*xentry))/(yexit-K*xentry)*(1-1/A)+1/A)/log(A);
%efficiency
mu = 2*10^{-3};
pho = 0.81*1000;
abs = mu*0.455*180/pho;
Eo = 0.25;
N_actual = N/Eo;
```

