Intégration et théorie

de la mesure Structure des mesures

Question 1/16

Théorème de décomposition de Lebesgue

Réponse 1/16

Si (X, \mathcal{A}) est un espace mesuré, μ une mesure positive σ -finie et ν une mesure (positive, signée ou complexe) σ -finie alors il existe un unique couple (ν_a, ν_s) de mesures (positives, signées ou complexes) telles que $\nu = \nu_a + \nu_s$, $\nu_a \ll \mu \text{ et } \nu_s \perp \mu$

Question 2/16

Théorème de Radon-Nikodym

Réponse 2/16

Si (X, \mathcal{A}) est un espace mesurable, μ et ν deux mesures positives σ -finies, alors $\nu \ll \mu$ si et seulement s'il existe $f:(X, \mathcal{A}) \to \mathbb{R}_+$ mesurable telle que $\nu = f\mu$ Une telle fonction f est unique μ -pp

Question 3/16

Lien entre absolument continue et à variations bornées

Réponse 3/16

Si f est absolument continue alors elle est à variations bornées

Question 4/16

Mesure vectorielle

Réponse 4/16

$$\nu: \mathcal{A} \to \mathbb{R}^d \text{ v\'erifiant}$$

$$\nu(\varnothing) = 0$$
Pour tout $(A_n) \in \mathcal{A}^{\mathbb{N}}$ v\'erifiant
$$i \neq j \Rightarrow A_i \cap A_j = \varnothing, \ \nu\left(\bigcup_{n \in \mathbb{N}} A_n\right) = \sum_{n \in \mathbb{N}} \nu(A_n)$$
et cette s\'erie converge normalement

Question 5/16

 $f:[0,1]\to\mathbb{R}$ est absolument continue

Réponse 5/16

i=1

$$\forall \varepsilon > 0, \ \exists \delta > 0,$$

$$\forall 0 \leqslant a_1 \leqslant b_1 \leqslant \dots \leqslant a_n \leqslant b_n \leqslant 1,$$

$$\sum_{n=0}^{\infty} b_j - a_j < \delta \Rightarrow \sum_{n=0}^{\infty} |f(b_j) - f(a_j)| < \varepsilon$$

Question 6/16

CNS pour f absolument continue

Réponse 6/16

$$\mathrm{d}f \ll \lambda$$

Question 7/16

Deux mesures positives μ et $\widetilde{\mu}$ sont étrangères $\mu \perp \widetilde{\mu}$

Réponse 7/16

$$\exists A \in \mathcal{A}, \ \mu(A) = 0 \land \widetilde{\mu}(A^{\complement}) = 0$$

Question 8/16

$$\nu = f\mu \text{ avec } f \in L^1$$

Réponse 8/16

$$\forall A \in \mathcal{A}, \ \nu(A) = \int_{A} f \, \mathrm{d}\mu$$

Question 9/16

Théorème de dérivation de Lebesgue

Réponse 9/16

Si
$$f \in L^1(\mathbb{R}^d)$$
 alors pour tout $x \in \mathbb{R}^d$,
$$\left| f(x) - \frac{1}{\lambda(B(x,R))} \int_{B(x,R)} f(y) \, \mathrm{d}y \right|$$

$$\leqslant \frac{1}{\lambda(B(x,R))} \int_{B(x,R)} |f(x) - f(y)| \, \mathrm{d}y \xrightarrow[R \to 0]{} 0$$

$$\lambda \text{-pp}$$

Question 10/16

 ν est absolument continue par rapport à la mesure positive μ $\nu \ll \mu$

Réponse 10/16

$$\forall A \in \mathcal{A}, \ \mu(A) = 0 \Rightarrow \nu(A) = 0$$

Ou de manière équivalente, $\forall A \in \mathcal{A},$
 $\mu(A) = 0 \Rightarrow |\nu|(A) = 0$

Question 11/16

Mesure signée

Réponse 11/16

$$\nu: \mathcal{A} \to \mathbb{R} \text{ v\'erifiant}$$

$$\nu(\varnothing) = 0$$
Pour tout $(A_n) \in \mathcal{A}^{\mathbb{N}} \text{ v\'erifiant}$

$$i \neq j \Rightarrow A_i \cap A_j = \varnothing, \ \nu\left(\bigcup_{n \in \mathbb{N}} A_n\right) = \sum_{n \in \mathbb{N}} \nu(A_n)$$
et cette s\'erie converge absolument

Question 12/16

Dérivée de $f \in L^1(\mathbb{R}^d)$ selon le théorème de dérivation de Lebesgue

Réponse 12/16

Si f est absolument continue et df = g dx avec

$$g \in L^1 \text{ alors } f'(x) = \lim_{\lambda(I) \to 0} \left(\frac{1}{\lambda(I)} \int_I df\right) = g$$

On a done df = f'dx

Question 13/16

Mesure positive associée à une mesure ν

Réponse 13/16

$$|\nu| \text{ définie par}$$

$$|\nu|(A) = \sup \left\{ \sum_{n=0}^{+\infty} |\nu(A_n)|, A = \bigsqcup_{n=0}^{+\infty} A_n \right\}$$
C'est la plus petite mesure positive μ qui vérifie $|\nu(A)| \leq \mu(A)$

Question 14/16

Mesure complexe

Réponse 14/16

$$\nu: \mathcal{A} \to \mathbb{C} \text{ v\'erifiant}$$

$$\nu(\varnothing) = 0$$
Pour tout $(A_n) \in \mathcal{A}^{\mathbb{N}}$ v\'erifiant
$$i \neq j \Rightarrow A_i \cap A_j = \varnothing, \ \nu\left(\bigcup_{n \in \mathbb{N}} A_n\right) = \sum_{n \in \mathbb{N}} \nu(A_n)$$
et cette s\'erie converge absolument

Question 15/16

CNS pour f à variations bornées

Réponse 15/16

Il existe g_1 et g_2 càdlàg¹ telles que $f = g_1 - g_2$ En particulier, $df = dg_1 - dg_2$

Question 16/16

 $f:[0,1] \to \mathbb{R}$ est à variations bornées

Réponse 16/16

$$\sup_{\substack{0=x_0\\\leqslant \cdots\leqslant \\x_n=1}} \left(\left\{ \sum_{j=1}^n |f(x_j) - f(x_{j-1})| \right\} \right) < +\infty$$