Evaluating Survival Prognosis in the Presence of Immortal Time Bias

for a meeting of the research group of Prof. Sandrine Dudoit, given Friday 2nd March, 2018

Kevin Benac and Nima Hejazi

Group in Biostatistics University of California, Berkeley

O PUBLIC DOMAIN

Data and Motivation

- Consider a data analysis scenario in which we are given survival times for patients recruited based on a first primary melanoma.
- Over the course of the observational study, an a priori unknown number of the patients (n₂) develop a second primary melanoma prior to death.
- Question of interest: How does the occurrence of a second primary melanoma change the survival prognosis of a patient?

Preview: Summary

- Nonparametric estimators of survival (even the NP-MLE) displays bias under this data-generating mechanism.
- The Cox proportional hazards model provides a way to mitigate this bias but comes with assumptions that are difficult to verify in practice.
- Youlden provides an approach that appears intuitive but fails to approach the parameter of interest.
- Jewell provides a correction for employing the Kaplan–Meier estimator in this setting.

Survival Analysis

- Study of the distribution of a lifetime T, corresponding to the time from a well-defined origin until the occurrence of a well-defined event or endpoint.
- ► For historical reasons, the event is often referred to as a **failure**.
- ► An individual for whom an event has not occurred at time t is said to be at risk at time t.
- Although the term failure is usually associated with death, especially in medical research, it has to be taken in the broad sense of a well-defined event.

Survival Analysis

- ► *T* is a non-negative random variable.
- ▶ If $T_1, ..., T_n \stackrel{\textit{iid}}{\sim} T$ are observed, then we know that the empirical cumulative distribution function (eCDF) is the NP-MLE of $F_T(\cdot)$.
- Problem: In practice, we always have to deal with missing data (i.e., censored observations) in the context of survival data. Most of the time, this is merely right-censoring.

Survival Analysis

The Kaplan–Meier Estimator

- ► Kaplan and Meier (1958) extensively studied the case where right-censored data are present in survival analysis.
- Let us denote the distinct ordered times of observed failures by

$$t^{(1)} < \cdots < t^{(m)},$$

Time	$t^{(1)}$	$t^{(2)}$	 [t ^(m)]
Failures	d_1	d_2	 d _m
At risk	$n_1 = n$	n_2	 n _m

The Kaplan–Meier Estimator

If t > 0, $t^{(i)} < t \le t^{(i+1)}$ then we can decompose $S(t^{(i)})$ as

$$P\left\{T > t^{(1)}\right\} P\left\{T > t^{(2)} \mid T > t^{(1)}\right\} \cdots P\left\{T > t^{(i)} \mid T > t^{(i-1)}\right\}.$$

The Kaplan–Meier estimator is defined as

$$\widehat{S}(t) = \prod_{i:t(i) < t} \left(1 - \frac{d_i}{n_i} \right), \quad t \ge 0.$$

The Kaplan–Meier Estimator

- ▶ In the case of data including possible right-censoring, the Kaplan–Meier estimator is the NP-MLE for S(t).
- When there is no censoring, the Kaplan–Meier estimator coincides with 1 − eCDF(·).
- ► The Kaplan–Meier estimator relies on a central assumption that T and C (censoring variable) are independent, which is non-testable in practice.

Hazard Function

The *hazard function* at time *t* is defined by

$$\lambda(t) = \lim_{h \to 0} \frac{P(T < t + h \mid T \ge t)}{h} = \frac{f(t)}{S(t)}, \quad t > 0.$$

The hazard and the survival functions are related by

$$S(t) = \exp\left\{-\Lambda(t)\right\}, \quad t > 0,$$

where

$$\Lambda(t) = \int_0^t \lambda(s) ds, \quad t>0$$

and is known as the cumulative hazard function.

The Cox Proportional Hazards Model

The most widely used regression model in survival analysis is Cox's proportional hazards model (of the hazard function):

$$\lambda\left(t; Z=z\right) = \lambda_0(t) \exp\left(\beta^T z\right), \quad t \geq 0.$$

▶ This is a *semiparametric* model: nonparametric in $\lambda_0(\cdot)$ but parametric in β .

Data and Motivation

- ► *Problem:* Efficiently estimate survival prognosis for a data structure exhibiting immortal time bias.
- Why? Efficient estimation under a time-dependent risks bias presents a novel challenge that has received meager attention in the literature.
- We employ and compare
 - 1. semiparametric estimators of survival: the Cox proportional hazards model (with time-varying covariates),
 - Nonparametric estimators of survival: variations of the the Kaplan–Meier estimator.

The Cox Proportional Hazards Model

- ▶ In the case we consider for motivation, let U be the time where a second event occurs, then define Z(t) = I(t > U), $t \ge 0$.
- Fitting the Cox model with Z(t) as a covariate enables us to estimate how the risk for the patient changes after the appearance of the second melanoma.

Methodology — Cox Regression

- ▶ We simulate observed data under the assumptions of the Cox model a total of 10,000 times, averaging the estimated survival across all observed time points for each fit of the Cox proportional hazards regression.
- Recall that Cox regression estimates the hazard at a given time, assuming a simplistic relationship between hazards for events of interest.
- ► This borrows information across the two groups to estimate survival that is, groups experiencing a single primary melanoma and those with two both inform estimation of survival.
- We account for transitions between the two groups by way of a time-varying covariate.

Results — Cox Proportional Hazards

Methdology — Kaplan–Meier (Youlden)

- In pratice it's impossible to know if assumptions of the Cox model hold for a given data-generating process we encounter "in the wild."
- This makes the use of a nonparametric approach highly desirable, so, how might we formulate a Kaplan–Meier estimator for this setting?
- Recall that we cannot provide covariate information when fitting Kaplan–Meier estimators, let alone time-varying disease status.
- ► *Proposal:* Fit a Kaplan–Meier estimator for patients that experience only a single primary melanoma.

Results — Kaplan–Meier (Youlden)

Results — Kaplan–Meier (Youlden)

Methdology — Kaplan–Meier (Jewell)

- ► The difference between the Kaplan–Meier and Cox regression estimates of survival is quite striking.
- Given that the assumptions of the Cox model hold, we can evaluate Kaplan–Meier relative to Cox — why is KM so strongly biased?
- ► Recall that we *chose* to discard the second group when fitting our chosen KM estimator.
- ► Including such observations when fitting our KM estimator should *de-bias* the early (in time) estimates.

Results — Kaplan–Meier (Jewell)

Results — Kaplan–Meier (Jewell)

Results — Kaplan–Meier (Jewell)

Discussion

- ► Each of three estimators provides strikingly different estimates of survival across the observed times.
- Since the assumptions of the Cox model hold in our simulation, we can evaluate results from each of the nonparametric KM estimators relative to those from Cox PH.
- ► Further/ongoing investigation: How does the relative performance of these estimators differ when the assumptions of the Cox model do not hold?

Discussion

- Our initial KM proposal exhibited strong bias, underestimating survival at all observed times, with a particularly noticeable bias early on.
- ► The corrected KM estimator, which draws on information from both groups, provides better estimates early in time, but displays a stronger positive bias at later times (overestimating survival).

Review: Summary

- Nonparametric estimators of survival (even the NP-MLE) displays bias under this data-generating mechanism.
- ► The Cox proportional hazards model provides a way to mitigate this bias but comes with assumptions that are difficult to verify in practice.
- Youlden provides an approach that appears intuitive but fails to approach the parameter of interest.
- Jewell provides a correction for employing the Kaplan–Meier estimator in this setting.

References I

- Snapinn, S. M., Jiang, Q., and Iglewicz, B. (2005). Illustrating the impact of a time-varying covariate with an extended kaplan-meier estimator. *The American Statistician*, 59(4):301–307.
- Tsai, W.-Y., Jewell, N. P., and Wang, M.-C. (1987). A note on the product-limit estimator under right censoring and left truncation. *Biometrika*, 74(4):883–886.
- Youlden, D. R., Baade, P. D., Soyer, H. P., Youl, P. H., Kimlin, M. G., Aitken, J. F., Green, A. C., and Khosrotehrani, K. (2016). Ten-year survival after multiple invasive melanomas is worse than after a single melanoma: a population-based study. *Journal of Investigative Dermatology*, 136(11):2270–2276.

Acknowledgments

Nicholas P. Jewell

University of California, Berkeley

Thank you. Questions?

- Nonparametric estimators of survival (even the NP-MLE) displays bias under this data-generating mechanism.
- ► The Cox proportional hazards model provides a way to mitigate this bias but comes with assumptions that are difficult to verify in practice.
- Youlden provides an approach that appears intuitive but fails to approach the parameter of interest.
- Jewell provides a correction for employing the Kaplan–Meier estimator in this setting.