- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина дійсних чисел вигляду $x+y\sqrt[3]{3}+z\sqrt[3]{9}$, де $x,y,z\in\mathbb{Q}$
- 2. Скласти таблицю Келі групи D_3 , де D_n група симетрій правильного n-кутника
- 3. Чи буде відображення f гомоморфізмом? Чи буде воно ізоморфізмом? $f: R^* \to R^*, f(x) = \frac{1}{x}$
- 4. Відокремити дійсні корені многочлена $f(x) = x^4 3x^3 x^2 + 8x 4$
- 5. Визначити многочлен найменшого степеня, який дає в остачі 2x при діленні на $(x-1)^2$ і 3x при діленні на $(x-2)^3$
- 6. Знайти круговий многочлен Q_{35}

Варіант 2

- 1. З'ясувати, чи буде групою множина всіх відображень множини $M = \{1, 2, \dots, n\}$ у себе відносно суперпозиції відображень.
- 2. Знайти порядок елемента групи $g=\begin{pmatrix} 1 & 3 \\ 0 & 2 \end{pmatrix} \in T_2(Z_5^*)$ де $T_2(Z_5)$ множина невироджених верхніх трикутних матриць порядку 2 з коефіцієнтами з поля Z_5
- 3. У циклічній групі $\langle a \rangle$ порядку п знайти всі елементи порядку k , якщо n=200, k=8
- 4. Розкласти даний дріб на найпростіші дроби над полем дійсних чисел за методом невизначених коефіцієнтів $f(x) = \frac{1}{(x^2-1)^2}$
- 5. Для яких значень a число -1 буде коренем многочлена $x^5 ax^2 ax + 1$ кратності не менше 2?
- 6. Дано еліптичну криву $y^2=x^3+2x+3$ у полі Z_{13} . Знайти дві різні точки на кривій такі що $0\leq y\leq 6$. Обчислити їх суму

- 1. З'ясувати, чи буде групою множина невироджених дійсних матриць вигляду $\begin{pmatrix} x & y \\ ay & x \end{pmatrix}$, де число а фіксоване, відносно множення.
- 2. Знайти порядок елемента групи $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 7 & 4 & 6 & 2 & 5 & 3 & 1 \end{pmatrix} \in S_8$
- 3. З'ясувати, чи буде множина M відносно звичайних операцій додавання та множення полем. Знайти обернений елемент для елемента а. $M=Z_{143}, a=97.$
- 4. Визначити кратність кореня с для многочлена f(x). Знайти значення многочлена f(x) і його похідних у точці $x=x_0$. $f(x)=x^5-x^4+x^3-3x^2+2x$, c=1, $x_0=-2$.
- 5. Знайти всі такі трійки чисел (a,b,c), щоб коренями многочлена x^3-ax^2+bx-c були числа a,b,c.
- 6. Знайти круговий многочлен Q_{81}

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина раціональних чисел, у нескоротному записі яких знаменники є дільниками фіксованого натурального числа n.
- 2. Знайти порядок елемента групи $g=\begin{pmatrix} 0 & i \\ 1 & 0 \end{pmatrix} \in GL_2(C)$, де $GL_n(P)$ повна лінійна група степеня n група за множенням усіх невироджених матриць порядку n з коефіцієнтами з поля P
- 3. Знайти обернену матрицю до матриці $g = \begin{pmatrix} 10 & 11 \\ 5 & 8 \end{pmatrix}$ в полі Z_{13}
- 4. Знайти всі раціональні корені многочлена $f(x) = 6x^4 x^3 + 11x^2 2x 2$
- 5. Для яких натуральних чисел m многочлен $(x+1)^m x^m 1$ ділиться на $x^2 + x + 1$?
- 6. Знайти елемент обернений до $G[x]=x^4+x+1$ у розширенні поля Z_2 за допомогою незвідного многочлена $F[x]=x^5+x^2+1$

Варіант 5

- 1. З'ясувати, чи буде групою множина невироджених дійсних матриць вигляду $\begin{pmatrix} x & y \\ -y & x \end{pmatrix}$, де $x \in \mathbb{R}$, відносно множення.
- 2. Знайти порядок елемента групи $g=\begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}\in GL_3(Z)$, де $GL_n(Z)$ група за множенням усіх невироджених цілочисельних матриць порядку \mathbf{n} , обернені до яких також ϵ цілочисельними
- 3. У циклічній групі $\langle a \rangle$ порядку
 п знайти всі елементи порядку k , якщо n=105, k=15
- 4. Визначити кратність кореня с для многочлена f(x). Знайти значення многочлена f(x) і його похідних у точці $x=x_0$. $f(x)=x^5-5x^4+7x^3-2x^2+4x-8, c=2, x_0=-1$.
- 5. Для яких натуральних чисел m многочлен $x^{2m} + x^m + 1$ ділиться на $x^2 + x + 1$
- 6. Дано еліптичну криву $y^2 = x^3 + x + 1$ у полі Z_{17} . Знайти точку A на кривій таку що $y \neq 0$. Обчислити A + A

- 1. З'ясувати, чи буде групою множина невироджених дійсних матриць вигляду $\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$, де $x \in \mathbb{R}$, відносно множення.
- 2. Скласти таблицю Келі групи $\left\langle \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 2 & 4 & 5 & 6 & 1 \end{pmatrix} \right\rangle$
- 3. Чи буде відображення f гомоморфізмом? Чи буде воно ізоморфізмом? $f:R \to Z, f(x) = [x]$
- 4. Знайти всі раціональні корені многочлена $f(x) = 4x^4 + 8x^3 + 15x^2 + 24x + 9$
- 5. Визначити, для яких A і B тричлен $Ax^{n+1} + Bx^n + 1$ ділиться на $(x-1)^2$?
- 6. Знайти круговий многочлен Q_{48}

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина дійсних чисел вигляду $x+y\sqrt[3]{3}$, де $x,y\in\mathbb{Q}$
- 2. Скласти таблицю Келі групи Z_9^* , де Z_n^* мультиплікативна група оборотних класів лишків за модулем числа п
- 3. Розв'язати рівняння $x^2 2\sqrt{3}x 1 = 0$ у полі $Q(\sqrt{3})$.
- 4. Розкласти даний многочлен на незвідні множники над полем C: $f(x) = x^4 + 4$
- 5. Сума двох коренів многочлена $2x^3 x^2 7x + a$ дорівнює 1. Визначити параметр a.
- 6. Знайти елемент обернений до $G[x]=x^2+2x+1$ у розширенні поля Z_7 за допомогою незвідного многочлена $F[x]=x^3+x^2+x+2$

Варіант 8

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина комплексних матриць вигляду $\begin{pmatrix} z & w \\ -\overline{w} & \overline{z} \end{pmatrix}$
- 2. Знайти порядок елемента групи $g=-\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}i\in C^*$, де C^* мультиплікативна група поля комплексних чисел.
- 3. Чи буде відображення f гомоморфізмом? Чи буде воно ізоморфізмом? $f: R^+ \to R, f(x) = \log_2 x$
- 4. Відокремити дійсні корені многочлена $f(x) = x^4 4x^3 4x^2 + 4x + 5$
- 5. Яку умову повинні задовольняти числа a,b,c, щоб один із коренів многочлена x^3+ax^2+bx+c дорівнював сумі двох інших коренів?
- 6. Знайти частковий розклад добутку всіх незвідних многочленів степеня 6 у полі \mathbb{Z}_2 через кругові многочлени. Знайти всі незвідні кругові многочлени та многчлени які можна з них одержати.

- 1. З'ясувати, чи буде групою множина підстановок $\{(1)(2)(3)(4); (12)(34); (13)(24); (14)(23)\}$ відносно операції суперпозиції.
- 2. Знайти порядок елемента групи $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 3 & 4 & 6 & 1 & 5 & 8 & 7 \end{pmatrix} \in S_8$
- 3. У циклічній групі $\langle a \rangle$ порядку
 п знайти всі елементи порядку k , якщо n=140, k=35
- 4. Відокремити дійсні корені многочлена $f(x) = x^4 x^3 4x^2 + 4x + 1$
- 5. Довести, що для довільних натуральних чисел m, n і p многочлен $x^{3m} + x^{3n+1} + x^{3p+2}$ ділиться на $x^2 + x + 1$.
- 6. Знайти частковий розклад добутку всіх незвідних многочленів степеня 2 у полі Z_7 через кругові многочлени. Знайти всі незвідні кругові многочлени та многчлени які можна з них одержати.

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина дійсних чисел вигляду $x+y\sqrt{3}$, де $x,y\in\mathbb{Q}$
- 2. Знайти порядок елемента групи $g=\cos\frac{\pi}{5}+i\sin\frac{\pi}{5}\in C^*$, де C^* мультиплікативна група поля комплексних чисел.
- 3. Розв'язати систему рівнянь $\begin{cases} 9x + 2y = 8 \\ 2x + 3y = 11 \end{cases}$ в полі Z_{13}
- 4. Розкласти даний дріб на найпростіші дроби над полем дійсних чисел за допомогою схеми Горнера $f(x)=\frac{x^3-10x+4}{(x-2)^5}$
- 5. Для яких цілих значень a один корінь многочлена $36x^3 12x^2 5x + a$ дорівнює сумі двох інших? Знайти ці корені.
- 6. Знайти круговий многочлен Q_{60}

Варіант 11

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина раціональних чисел, у нескоротному записі яких знаменники є степенями фіксованого простого числа р.
- 2. Знайти порядок групи поворотів правильного тетраедра
- 3. Чи буде відображення f гомоморфізмом? Чи буде воно ізоморфізмом? $f:R\to R^+, f(x)=2^x$
- 4. Знайти всі раціональні корені многочлена $f(x) = 6x^4 5x^3 + 16x^2 + 4x 3$
- 5. Довести, що многочлен f(x) із цілими коефіцієнтами не має цілих коренів, якщо f(0) та f(1) непарні числа.
- 6. Знайти елемент обернений до $G[x]=x^2+2x+1$ у розширенні поля Z_3 за допомогою незвідного многочлена $F[x]=x^4+x^3+x^2+x+1$

- 1. З'ясувати, чи буде групою множина всіх комплексних коренів усіх степенів з одиниці відносно операції множення.
- 2. Знайти порядок елемента групи $g=-\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}i\in C^*$, де C^* мультиплікативна група поля комплексних чисел.
- 3. З'ясувати, чи буде множина M відносно звичайних операцій додавання та множення полем. Знайти обернений елемент для елемента а. $M=Z_{179}, a=96$.
- 4. Визначити кратність кореня с для многочлена f(x). Знайти значення многочлена f(x) і його похідних у точці $x=x_0$. $f(x)=2x^5+12x^4+27x^3+34x^2+36x+24$, c=-2, $x_0=-1$.
- 5. Яку умову повинно задовольняти число b, щоб многочлен x^5-15x^3+b мав подвійний корінь, відмінний від нуля?
- 6. Знайти частковий розклад добутку всіх незвідних многочленів степеня 3 у полі Z_5 через кругові многочлени. Знайти всі незвідні кругові многочлени та многчлени які можна з них одержати.

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина раціональних чисел, у нескоротному записі яких знаменники є дільниками фіксованого натурального числа n.
- 2. Знайти порядок елемента групи $g = \cos \frac{\pi}{5} + i \sin \frac{\pi}{5} \in C^*$, де C^* мультиплікативна група поля комплексних чисел.
- 3. Чи буде відображення f гомоморфізмом? Чи буде воно ізоморфізмом? $f:C^* \to C^*, f(z)=\frac{z}{|z|}$
- 4. Розкласти даний многочлен на незвідні множники над полем R: $f(x) = x^6 1$
- 5. Довести, що многочлен f(x) із цілими коефіцієнтами не має цілих коренів, якщо f(0) та f(1) непарні числа.
- 6. Дано еліптичну криву $y^2 = x^3 + 7x + 8$ у полі Z_{11} . Знайти дві різні точки на кривій такі що $0 \le y \le 5$. Обчислити їх суму

- 1. З'ясувати, чи буде групою множина невироджених дійсних матриць вигляду $\begin{pmatrix} x & y \\ ay & x \end{pmatrix}$, де число а фіксоване, відносно множення.
- 2. Знайти порядок елемента групи $g=\begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}\in GL_3(Z)$, де $GL_n(Z)$ група за множенням усіх невироджених цілочисельних матриць порядку $\mathbf n$, обернені до яких також ϵ цілочисельними
- 3. Розв'язати рівняння $x^2 + x\sqrt{3} 7 + 3\sqrt{3} = 0$ у полі $Q(\sqrt{3}).$
- 4. Розкласти даний дріб на найпростіші дроби над полем дійсних чисел за допомогою схеми Горнера $f(x)=\frac{x^3-10x+4}{(x-2)^5}$
- 5. Сума двох коренів многочлена $2x^3 x^2 7x + a$ дорівнює 1. Визначити параметр a.
- 6. Знайти частковий розклад добутку всіх незвідних многочленів степеня 4 у полі Z_3 через кругові многочлени. Знайти всі незвідні кругові многочлени та многчлени які можна з них одержати.

- 1. З'ясувати, чи буде групою множина невироджених дійсних матриць вигляду $\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$, де $x \in \mathbb{R}$, відносно множення.
- 2. Знайти порядок елемента групи $g=\begin{pmatrix} 0 & i \\ 1 & 0 \end{pmatrix} \in GL_2(C)$, де $GL_n(P)$ повна лінійна група степеня n група за множенням усіх невироджених матриць порядку n з коефіцієнтами з поля P
- 3. З'ясувати, чи буде множина M відносно звичайних операцій додавання та множення полем. Знайти обернений елемент для елемента а. $M=Z_{150}, a=101.$
- 4. Відокремити дійсні корені многочлена $f(x) = x^4 x^3 4x^2 + 4x + 1$
- 5. Яку умову повинно задовольняти число b, щоб многочлен $x^5 15x^3 + b$ мав подвійний корінь, відмінний від нуля?
- 6. Знайти частковий розклад добутку всіх незвідних многочленів степеня 6 у полі Z_2 через кругові многочлени. Знайти всі незвідні кругові многочлени та многчлени які можна з них одержати.

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина раціональних чисел, у нескоротному записі яких знаменники є степенями фіксованого простого числа р.
- 2. Знайти порядок елемента групи $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 3 & 4 & 6 & 1 & 5 & 8 & 7 \end{pmatrix} \in S_8$
- 3. Розв'язати систему рівнянь $\begin{cases} 7x+5y=4 \\ 3x+10y=7 \end{cases}$ в полі Z_{13}
- 4. Знайти всі раціональні корені многочлена $f(x) = 6x^4 5x^3 + 16x^2 + 4x 3$
- 5. Для яких натуральних чисел m многочлен $(x+1)^m x^m 1$ ділиться на $x^2 + x + 1$?
- 6. Знайти частковий розклад добутку всіх незвідних многочленів степеня 2 у полі \mathbb{Z}_7 через кругові многочлени. Знайти всі незвідні кругові многочлени та многчлени які можна з них одержати.

- 1. З'ясувати, чи буде групою множина підстановок $\{(1)(2)(3)(4); (12)(34); (13)(24); (14)(23)\}$ відносно операції суперпозиції.
- 2. Знайти порядок елемента групи $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 7 & 4 & 6 & 2 & 5 & 3 & 1 \end{pmatrix} \in S_8$
- 3. Розв'язати систему рівнянь $\begin{cases} 2x-y=5 \\ x-2y=10 \end{cases}$ в кільці Z_{18}
- 4. Розкласти даний дріб на найпростіші дроби над полем дійсних чисел за методом невизначених коефіцієнтів $f(x) = \frac{1}{(x^2-1)^2}$
- 5. Для яких цілих значень a один корінь многочлена $36x^3 12x^2 5x + a$ дорівнює сумі двох інших? Знайти ці корені.
- 6. Знайти частковий розклад добутку всіх незвідних многочленів степеня 3 у полі Z_5 через кругові многочлени. Знайти всі незвідні кругові многочлени та многчлени які можна з них одержати.

Варіант 18

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина дійсних чисел вигляду $x+y\sqrt[3]{3}$, де $x,y\in\mathbb{Q}$
- 2. Знайти порядок елемента групи $g=\begin{pmatrix}1&3\\0&2\end{pmatrix}\in T_2(Z_5^*)$ де $T_2(Z_5)$ множина невироджених верхніх трикутних матриць порядку 2 з коефіцієнтами з поля Z_5
- 3. Чи буде відображення f гомоморфізмом? Чи буде воно ізоморфізмом? $f:C^* \to R^*, f(z)=\frac{1}{|z|}$
- 4. Визначити кратність кореня с для многочлена f(x). Знайти значення многочлена f(x) і його похідних у точці $x=x_0$. $f(x)=x^5-5x^4+7x^3-2x^2+4x-8, c=2, x_0=-1$.
- 5. Для яких значень a число -1 буде коренем многочлена $x^5 ax^2 ax + 1$ кратності не менше 2?
- 6. Дано еліптичну криву $y^2 = x^3 + 7x + 8$ у полі Z_{11} . Знайти дві різні точки на кривій такі що $0 \le y \le 5$. Обчислити їх суму

- 1. З'ясувати, чи буде групою множина всіх відображень множини $M=\{1,2,\dots,n\}$ у себе відносно суперпозиції відображень.
- 2. Знайти порядок групи поворотів правильного тетраедра
- 3. Розв'язати систему рівнянь $\begin{cases} 2x+y=5 \\ x+2y=10 \end{cases}$ в кільці Z_{18}
- 4. Знайти всі раціональні корені многочлена $f(x) = 4x^4 + 8x^3 + 15x^2 + 24x + 9$
- 5. Для яких натуральних чисел m многочлен $x^{2m} + x^m + 1$ ділиться на $x^2 + x + 1$
- 6. Знайти елемент обернений до $G[x]=x^4+x+1$ у розширенні поля Z_2 за допомогою незвідного многочлена $F[x]=x^5+x^2+1$

- 1. З'ясувати, чи буде групою множина невироджених дійсних матриць вигляду $\begin{pmatrix} x & y \\ -y & x \end{pmatrix}$, де $x \in \mathbb{R}$, відносно множення.
- 2. Скласти таблицю Келі групи D_3 , де D_n група симетрій правильного n-кутника
- 3. Знайти обернену матрицю до матриці $g = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 1 \\ 4 & 3 & 4 \end{pmatrix}$ в полі Z_5
- 4. Знайти всі раціональні корені многочлена $f(x) = 6x^4 x^3 + 11x^2 2x 2$
- 5. Визначити, для яких A і B тричлен $Ax^{n+1} + Bx^n + 1$ ділиться на $(x-1)^2$?
- 6. Дано еліптичну криву $y^2 = x^3 + x + 1$ у полі Z_{17} . Знайти точку A на кривій таку що $y \neq 0$. Обчислити A + A

Варіант 21

- 1. З'ясувати, чи буде групою множина всіх комплексних коренів усіх степенів з одиниці відносно операції множення.
- 2. Скласти таблицю Келі групи Z_9^* , де Z_n^* мультиплікативна група оборотних класів лишків за модулем числа п
- 3. Розв'язати рівняння $x^2 (3 + 3\sqrt{2})x + 4 + 6\sqrt{2}$ у полі $Q(\sqrt{2})$.
- 4. Відокремити дійсні корені многочлена $f(x) = x^4 3x^3 x^2 + 8x 4$
- 5. Знайти всі такі трійки чисел (a,b,c), щоб коренями многочлена x^3-ax^2+bx-c були числа a,b,c.
- 6. Дано еліптичну криву $y^2 = x^3 + 2x + 3$ у полі Z_{13} . Знайти дві різні точки на кривій такі що $0 \le y \le 6$. Обчислити їх суму

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина дійсних чисел вигляду $x+y\sqrt[3]{3}+z\sqrt[3]{9}$, де $x,y,z\in\mathbb{Q}$
- 2. Скласти таблицю Келі групи $\left\langle \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 2 & 4 & 5 & 6 & 1 \end{pmatrix} \right\rangle$
- 3. У циклічній групі $\langle a \rangle$ порядку
 п знайти всі елементи порядку k , якщо n=200, k=8
- 4. Визначити кратність кореня с для многочлена f(x). Знайти значення многочлена f(x) і його похідних у точці $x=x_0$. $f(x)=x^5-x^4+x^3-3x^2+2x$, c=1, $x_0=-2$.
- 5. Визначити многочлен найменшого степеня, який дає в остачі 2х при діленні на $(x-1)^2$ і 3х при діленні на $(x-2)^3$
- 6. Знайти елемент обернений до $G[x]=x^2+2x+1$ у розширенні поля Z_3 за допомогою незвідного многочлена $F[x]=x^4+x^3+x^2+x+1$

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина дійсних чисел вигляду $x+y\sqrt{3}$, де $x,y\in\mathbb{Q}$
- 2. Скласти таблицю Келі групи Z_9^* , де Z_n^* мультиплікативна група оборотних класів лишків за модулем числа п
- 3. Чи буде відображення f гомоморфізмом? Чи буде воно ізоморфізмом? $f:C^* \to R^*, f(z)=\frac{1}{|z|}$
- 4. Відокремити дійсні корені многочлена $f(x) = x^4 4x^3 4x^2 + 4x + 5$
- 5. Яку умову повинні задовольняти числа a,b,c, щоб один із коренів многочлена x^3+ax^2+bx+c дорівнював сумі двох інших коренів?
- 6. Знайти елемент обернений до $G[x]=x^2+2x+1$ у розширенні поля Z_7 за допомогою незвідного многочлена $F[x]=x^3+x^2+x+2$

Варіант 24

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина комплексних матриць вигляду $\begin{pmatrix} z & w \\ -\overline{w} & \overline{z} \end{pmatrix}$
- 2. Скласти таблицю Келі групи D_3 , де D_n група симетрій правильного n-кутника
- 3. З'ясувати, чи буде множина M відносно звичайних операцій додавання та множення полем. Знайти обернений елемент для елемента а. $M=Z_{179}, a=96$.
- 4. Визначити кратність кореня с для многочлена f(x). Знайти значення многочлена f(x) і його похідних у точці $x=x_0$. $f(x)=2x^5+12x^4+27x^3+34x^2+36x+24$, c=-2, $x_0=-1$.
- 5. Довести, що для довільних натуральних чисел m, n і p многочлен $x^{3m} + x^{3n+1} + x^{3p+2}$ ділиться на $x^2 + x + 1$.
- 6. Знайти круговий многочлен Q_{81}

- 1. З'ясувати, чи буде групою множина невироджених дійсних матриць вигляду $\begin{pmatrix} x & y \\ -y & x \end{pmatrix}$, де $x \in \mathbb{R}$, відносно множення.
- 2. Знайти порядок групи поворотів правильного тетраедра
- 3. Знайти обернену матрицю до матриці $g = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 1 \\ 4 & 3 & 4 \end{pmatrix}$ в полі Z_5
- 4. Розкласти даний многочлен на незвідні множники над полем C: $f(x) = x^4 + 4$
- 5. Для яких цілих значень a один корінь многочлена $36x^3-12x^2-5x+a$ дорівнює сумі двох інших? Знайти ці корені.
- 6. Знайти круговий многочлен Q_{60}

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина раціональних чисел, у нескоротному записі яких знаменники є степенями фіксованого простого числа р.
- 2. Знайти порядок елемента групи $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 7 & 4 & 6 & 2 & 5 & 3 & 1 \end{pmatrix} \in S_8$
- 3. З'ясувати, чи буде множина M відносно звичайних операцій додавання та множення полем. Знайти обернений елемент для елемента а. $M=Z_{143}, a=97.$
- 4. Розкласти даний многочлен на незвідні множники над полем R: $f(x) = x^6 1$
- 5. Яку умову повинно задовольняти число b, щоб многочлен x^5-15x^3+b мав подвійний корінь, відмінний від нуля?
- 6. Знайти круговий многочлен Q_{35}

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина дійсних чисел вигляду $x+y\sqrt[3]{3}+z\sqrt[3]{9}$, де $x,y,z\in\mathbb{Q}$
- 2. Знайти порядок елемента групи $g=\begin{pmatrix} 1 & 3 \\ 0 & 2 \end{pmatrix} \in T_2(Z_5^*)$ де $T_2(Z_5)$ множина невироджених верхніх трикутних матриць порядку 2 з коефіцієнтами з поля Z_5
- 3. Розв'язати систему рівнянь $\begin{cases} 2x-y=5 \\ x-2y=10 \end{cases}$ в кільці Z_{18}
- 4. Відокремити дійсні корені многочлена $f(x) = x^4 4x^3 4x^2 + 4x + 5$
- 5. Визначити, для яких A і B тричлен $Ax^{n+1} + Bx^n + 1$ ділиться на $(x-1)^2$?
- 6. Знайти частковий розклад добутку всіх незвідних многочленів степеня 4 у полі Z_3 через кругові многочлени. Знайти всі незвідні кругові многочлени та многчлени які можна з них одержати.

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина раціональних чисел, у нескоротному записі яких знаменники є дільниками фіксованого натурального числа n.
- 2. Знайти порядок елемента групи $g=\begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}\in GL_3(Z)$, де $GL_n(Z)$ група за множенням усіх невироджених цілочисельних матриць порядку $\mathbf n$, обернені до яких також ϵ цілочисельними
- 3. Розв'язати рівняння $x^2 + x\sqrt{3} 7 + 3\sqrt{3} = 0$ у полі $Q(\sqrt{3})$.
- 4. Визначити кратність кореня с для многочлена f(x). Знайти значення многочлена f(x) і його похідних у точці $x=x_0$. $f(x)=2x^5+12x^4+27x^3+34x^2+36x+24$, c=-2, $x_0=-1$.
- 5. Довести, що для довільних натуральних чисел m, n і p многочлен $x^{3m} + x^{3n+1} + x^{3p+2}$ ділиться на $x^2 + x + 1$.
- 6. Знайти круговий многочлен Q_{48}

- 1. З'ясувати, чи буде групою множина підстановок $\{(1)(2)(3)(4); (12)(34); (13)(24); (14)(23)\}$ відносно операції суперпозиції.
- 2. Знайти порядок елемента групи $g=\begin{pmatrix} 0 & i \\ 1 & 0 \end{pmatrix}\in GL_2(C)$, де $GL_n(P)$ повна лінійна група степеня n група за множенням усіх невироджених матриць порядку n з коефіцієнтами з поля P
- 3. Розв'язати систему рівнянь $\begin{cases} 2x+y=5 \\ x+2y=10 \end{cases}$ в кільці Z_{18}
- 4. Знайти всі раціональні корені многочлена $f(x) = 6x^4 5x^3 + 16x^2 + 4x 3$
- 5. Яку умову повинні задовольняти числа a,b,c , щоб один із коренів многочлена x^3+ax^2+bx+c дорівнював сумі двох інших коренів?
- 6. Знайти круговий многочлен Q_{35}

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина комплексних матриць вигляду $\begin{pmatrix} z & w \\ -\overline{w} & \overline{z} \end{pmatrix}$
- 2. Скласти таблицю Келі групи $\left\langle \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 2 & 4 & 5 & 6 & 1 \end{pmatrix} \right\rangle$
- 3. Чи буде відображення f гомоморфізмом? Чи буде воно ізоморфізмом? $f: R \to Z, f(x) = [x]$
- 4. Розкласти даний дріб на найпростіші дроби над полем дійсних чисел за методом невизначених коефіцієнтів $f(x) = \frac{1}{(x^2-1)^2}$
- 5. Знайти всі такі трійки чисел (a, b, c), щоб коренями многочлена $x^3 ax^2 + bx c$ були числа a, b, c.
- 6. Знайти частковий розклад добутку всіх незвідних многочленів степеня 6 у полі Z_2 через кругові многочлени. Знайти всі незвідні кругові многочлени та многчлени які можна з них одержати.

Варіант 31

- 1. З'ясувати, чи буде групою множина невироджених дійсних матриць вигляду $\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$, де $x \in \mathbb{R}$, відносно множення.
- 2. Знайти порядок елемента групи $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 3 & 4 & 6 & 1 & 5 & 8 & 7 \end{pmatrix} \in S_8$
- 3. Розв'язати рівняння $x^2 2\sqrt{3}x 1 = 0$ у полі $Q(\sqrt{3})$.
- 4. Розкласти даний дріб на найпростіші дроби над полем дійсних чисел за допомогою схеми Горнера $f(x)=rac{x^3-10x+4}{(x-2)^5}$
- 5. Довести, що многочлен f(x) із цілими коефіцієнтами не має цілих коренів, якщо f(0) та f(1) непарні числа.
- 6. Знайти частковий розклад добутку всіх незвідних многочленів степеня 4 у полі Z_3 через кругові многочлени. Знайти всі незвідні кругові многочлени та многчлени які можна з них одержати.

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина дійсних чисел вигляду $x+y\sqrt{3}$, де $x,y\in\mathbb{Q}$
- 2. Знайти порядок елемента групи $g=-\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}i\in C^*$, де C^* мультиплікативна група поля комплексних чисел.
- 3. Чи буде відображення f гомоморфізмом? Чи буде воно ізоморфізмом? $f:R\to R^+, f(x)=2^x$
- 4. Знайти всі раціональні корені многочлена $f(x) = 4x^4 + 8x^3 + 15x^2 + 24x + 9$
- 5. Для яких натуральних чисел m многочлен $x^{2m} + x^m + 1$ ділиться на $x^2 + x + 1$
- 6. Знайти частковий розклад добутку всіх незвідних многочленів степеня 2 у полі \mathbb{Z}_7 через кругові многочлени. Знайти всі незвідні кругові многочлени та многчлени які можна з них одержати.

- 1. З'ясувати, чи буде групою множина всіх комплексних коренів усіх степенів з одиниці відносно операції множення.
- 2. Знайти порядок елемента групи $g=\cos\frac{\pi}{5}+i\sin\frac{\pi}{5}\in C^*$, де C^* мультиплікативна група поля комплексних чисел.
- 3. Знайти обернену матрицю до матриці $g = \begin{pmatrix} 10 & 11 \\ 5 & 8 \end{pmatrix}$ в полі Z_{13}
- 4. Відокремити дійсні корені многочлена $f(x) = x^4 x^3 4x^2 + 4x + 1$
- 5. Визначити многочлен найменшого степеня, який дає в остачі 2х при діленні на $(x-1)^2$ і 3х при діленні на $(x-2)^3$
- 6. Знайти круговий многочлен Q_{48}

Варіант 34

- 1. З'ясувати, чи буде групою множина всіх відображень множини $M = \{1, 2, \dots, n\}$ у себе відносно суперпозиції відображень.
- 2. Знайти порядок групи поворотів правильного тетраедра
- 3. Чи буде відображення f гомоморфізмом? Чи буде воно ізоморфізмом? $f: R^+ \to R, f(x) = \log_2 x$
- 4. Визначити кратність кореня с для многочлена f(x). Знайти значення многочлена f(x) і його похідних у точці $x=x_0$. $f(x)=x^5-x^4+x^3-3x^2+2x$, c=1, $x_0=-2$.
- 5. Для яких значень a число -1 буде коренем многочлена $x^5 ax^2 ax + 1$ кратності не менше 2?
- 6. Дано еліптичну криву $y^2 = x^3 + 2x + 3$ у полі Z_{13} . Знайти дві різні точки на кривій такі що $0 \le y \le 6$. Обчислити їх суму

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина дійсних чисел вигляду $x+y\sqrt[3]{3}$, де $x,y\in\mathbb{Q}$
- 2. Скласти таблицю Келі групи D_3 , де D_n група симетрій правильного n-кутника
- 3. З'ясувати, чи буде множина M відносно звичайних операцій додавання та множення полем. Знайти обернений елемент для елемента а. $M=Z_{150}, a=101.$
- 4. Розкласти даний многочлен на незвідні множники над полем C: $f(x) = x^4 + 4$
- 5. Сума двох коренів многочлена $2x^3 x^2 7x + a$ дорівнює 1. Визначити параметр a.
- 6. Знайти елемент обернений до $G[x]=x^2+2x+1$ у розширенні поля Z_7 за допомогою незвідного многочлена $F[x]=x^3+x^2+x+2$

- 1. З'ясувати, чи буде групою множина невироджених дійсних матриць вигляду $\begin{pmatrix} x & y \\ ay & x \end{pmatrix}$, де число а фіксоване, відносно множення.
- 2. Скласти таблицю Келі групи Z_9^* , де Z_n^* мультиплікативна група оборотних класів лишків за модулем числа п
- 3. Чи буде відображення f гомоморфізмом? Чи буде воно ізоморфізмом? $f:C^* \to C^*, f(z)=\frac{z}{|z|}$
- 4. Розкласти даний многочлен на незвідні множники над полем R: $f(x) = x^6 1$
- 5. Для яких натуральних чисел m многочлен $(x+1)^m x^m 1$ ділиться на $x^2 + x + 1$?
- 6. Дано еліптичну криву $y^2=x^3+7x+8$ у полі Z_{11} . Знайти дві різні точки на кривій такі що $0\leq y\leq 5$. Обчислити їх суму

- 1. З'ясувати, чи буде групою множина всіх комплексних коренів усіх степенів з одиниці відносно операції множення.
- 2. Знайти порядок елемента групи $g=\begin{pmatrix} 0 & i \\ 1 & 0 \end{pmatrix} \in GL_2(C)$, де $GL_n(P)$ повна лінійна група степеня n група за множенням усіх невироджених матриць порядку n з коефіцієнтами з поля P
- 3. Розв'язати систему рівнянь $\begin{cases} 9x + 2y = 8 \\ 2x + 3y = 11 \end{cases}$ в полі Z_{13}
- 4. Відокремити дійсні корені многочлена $f(x) = x^4 3x^3 x^2 + 8x 4$
- 5. Довести, що для довільних натуральних чисел m, n і p многочлен $x^{3m} + x^{3n+1} + x^{3p+2}$ ділиться на $x^2 + x + 1$.
- 6. Знайти елемент обернений до $G[x]=x^4+x+1$ у розширенні поля Z_2 за допомогою незвідного многочлена $F[x]=x^5+x^2+1$

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина дійсних чисел вигляду $x+y\sqrt{3}$, де $x,y\in\mathbb{Q}$
- 2. Знайти порядок елемента групи $g=\begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix} \in GL_3(Z)$, де $GL_n(Z)$ група за множенням усіх невироджених цілочисельних матриць порядку \mathbf{n} , обернені до яких також ϵ цілочисельними
- 3. Розв'язати рівняння $x^2 (3 + 3\sqrt{2})x + 4 + 6\sqrt{2}$ у полі $Q(\sqrt{2})$.
- 4. Визначити кратність кореня с для многочлена f(x). Знайти значення многочлена f(x) і його похідних у точці $x=x_0$. $f(x)=x^5-5x^4+7x^3-2x^2+4x-8, c=2, x_0=-1$.
- 5. Для яких натуральних чисел m многочлен $(x+1)^m x^m 1$ ділиться на $x^2 + x + 1$?
- 6. Знайти елемент обернений до $G[x]=x^2+2x+1$ у розширенні поля Z_3 за допомогою незвідного многочлена $F[x]=x^4+x^3+x^2+x+1$

Варіант 39

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина раціональних чисел, у нескоротному записі яких знаменники є степенями фіксованого простого числа р.
- 2. Знайти порядок елемента групи $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 3 & 4 & 6 & 1 & 5 & 8 & 7 \end{pmatrix} \in S_8$
- 3. Розв'язати систему рівнянь $\begin{cases} 7x + 5y = 4 \\ 3x + 10y = 7 \end{cases}$ в полі Z_{13}
- 4. Знайти всі раціональні корені многочлена $f(x) = 6x^4 x^3 + 11x^2 2x 2$
- 5. Визначити многочлен найменшого степеня, який дає в остачі 2х при діленні на $(x-1)^2$ і 3х при діленні на $(x-2)^3$
- 6. Знайти круговий многочлен Q_{81}

- 1. З'ясувати, чи буде групою множина невироджених дійсних матриць вигляду $\begin{pmatrix} x & y \\ ay & x \end{pmatrix}$, де число а фіксоване, відносно множення.
- 2. Знайти порядок елемента групи $g=\cos\frac{\pi}{5}+i\sin\frac{\pi}{5}\in C^*$, де C^* мультиплікативна група поля комплексних чисел.
- 3. Чи буде відображення f гомоморфізмом? Чи буде воно ізоморфізмом? $f:R^* \to R^*, f(x) = \frac{1}{x}$
- 4. Розкласти даний дріб на найпростіші дроби над полем дійсних чисел за допомогою схеми Горнера $f(x)=\frac{x^3-10x+4}{(x-2)^5}$
- 5. Сума двох коренів многочлена $2x^3 x^2 7x + a$ дорівнює 1. Визначити параметр a.
- 6. Знайти круговий многочлен Q_{60}

- 1. З'ясувати, чи буде групою множина підстановок $\{(1)(2)(3)(4); (12)(34); (13)(24); (14)(23)\}$ відносно операції суперпозиції.
- 2. Знайти порядок елемента групи $g=\begin{pmatrix}1&3\\0&2\end{pmatrix}\in T_2(Z_5^*)$ де $T_2(Z_5)$ множина невироджених верхніх трикутних матриць порядку 2 з коефіцієнтами з поля Z_5
- 3. У циклічній групі $\langle a \rangle$ порядку п знайти всі елементи порядку k , якщо n=140, k=35
- 4. Розкласти даний дріб на найпростіші дроби над полем дійсних чисел за методом невизначених коефіцієнтів $f(x) = \frac{1}{(x^2-1)^2}$
- 5. Яку умову повинно задовольняти число b, щоб многочлен $x^5 15x^3 + b$ мав подвійний корінь, відмінний від нуля?
- 6. Дано еліптичну криву $y^2 = x^3 + x + 1$ у полі Z_{17} . Знайти точку A на кривій таку що $y \neq 0$. Обчислити A + A

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина комплексних матриць вигляду $\begin{pmatrix} z & w \\ -\overline{w} & \overline{z} \end{pmatrix}$
- 2. Знайти порядок елемента групи $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 7 & 4 & 6 & 2 & 5 & 3 & 1 \end{pmatrix} \in S_8$
- 3. У циклічній групі $\langle a \rangle$ порядку
 п знайти всі елементи порядку k , якщо n=105, k=15
- 4. Визначити кратність кореня с для многочлена f(x). Знайти значення многочлена f(x) і його похідних у точці $x=x_0$. $f(x)=2x^5+12x^4+27x^3+34x^2+36x+24, c=-2, x_0=-1$.
- 5. Знайти всі такі трійки чисел (a,b,c), щоб коренями многочлена x^3-ax^2+bx-c були числа a,b,c.
- 6. Знайти частковий розклад добутку всіх незвідних многочленів степеня 3 у полі Z_5 через кругові многочлени. Знайти всі незвідні кругові многочлени та многчлени які можна з них одержати.

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина дійсних чисел вигляду $x+y\sqrt[3]{3}$, де $x,y\in\mathbb{Q}$
- 2. Знайти порядок елемента групи $g=-\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}i\in C^*$, де C^* мультиплікативна група поля комплексних чисел.
- 3. Розв'язати систему рівнянь $\begin{cases} 2x-y=5 \\ x-2y=10 \end{cases}$ в кільці Z_{18}
- 4. Відокремити дійсні корені многочлена $f(x) = x^4 3x^3 x^2 + 8x 4$
- 5. Визначити, для яких A і B тричлен $Ax^{n+1} + Bx^n + 1$ ділиться на $(x-1)^2$?
- 6. Дано еліптичну криву $y^2=x^3+2x+3$ у полі Z_{13} . Знайти дві різні точки на кривій такі що $0\leq y\leq 6$. Обчислити їх суму

Варіант 44

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина раціональних чисел, у нескоротному записі яких знаменники є дільниками фіксованого натурального числа n.
- 2. Скласти таблицю Келі групи $\left\langle \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 2 & 4 & 5 & 6 & 1 \end{pmatrix} \right\rangle$
- 3. З'ясувати, чи буде множина M відносно звичайних операцій додавання та множення полем. Знайти обернений елемент для елемента а. $M=Z_{143}, a=97.$
- 4. Знайти всі раціональні корені многочлена $f(x) = 6x^4 x^3 + 11x^2 2x 2$
- 5. Для яких цілих значень a один корінь многочлена $36x^3-12x^2-5x+a$ дорівнює сумі двох інших? Знайти ці корені.
- 6. Знайти елемент обернений до $G[x]=x^4+x+1$ у розширенні поля Z_2 за допомогою незвідного многочлена $F[x]=x^5+x^2+1$

- 1. З'ясувати, чи буде групою множина всіх відображень множини $M=\{1,2,\ldots,n\}$ у себе відносно суперпозиції відображень.
- 2. Знайти порядок елемента групи $g=\begin{pmatrix} 1 & 3 \\ 0 & 2 \end{pmatrix} \in T_2(Z_5^*)$ де $T_2(Z_5)$ множина невироджених верхніх трикутних матриць порядку 2 з коефіцієнтами з поля Z_5
- 3. Чи буде відображення f гомоморфізмом? Чи буде воно ізоморфізмом? $f:C^* \to R^*, f(z)=\frac{1}{|z|}$
- 4. Визначити кратність кореня с для многочлена f(x). Знайти значення многочлена f(x) і його похідних у точці $x=x_0$. $f(x)=x^5-5x^4+7x^3-2x^2+4x-8, c=2, x_0=-1$.
- 5. Для яких натуральних чисел m многочлен $x^{2m} + x^m + 1$ ділиться на $x^2 + x + 1$
- 6. Знайти круговий многочлен Q_{81}

- 1. З'ясувати, чи буде групою множина невироджених дійсних матриць вигляду $\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$, де $x \in \mathbb{R}$, відносно множення.
- 2. Знайти порядок групи поворотів правильного тетраедра
- 3. Розв'язати систему рівнянь $\begin{cases} 2x+y=5 \\ x+2y=10 \end{cases}$ в кільці Z_{18}
- 4. Визначити кратність кореня с для многочлена f(x). Знайти значення многочлена f(x) і його похідних у точці $x=x_0$. $f(x)=x^5-x^4+x^3-3x^2+2x$, c=1, $x_0=-2$.
- 5. Для яких значень a число -1 буде коренем многочлена $x^5 ax^2 ax + 1$ кратності не менше 2?
- 6. Знайти частковий розклад добутку всіх незвідних многочленів степеня 2 у полі \mathbb{Z}_7 через кругові многочлени. Знайти всі незвідні кругові многочлени та многчлени які можна з них одержати.

- 1. З'ясувати, чи буде групою множина невироджених дійсних матриць вигляду $\begin{pmatrix} x & y \\ -y & x \end{pmatrix}$, де $x \in \mathbb{R}$, відносно множення.
- 2. Знайти порядок елемента групи $g=\begin{pmatrix} 0 & i \\ 1 & 0 \end{pmatrix} \in GL_2(C)$, де $GL_n(P)$ повна лінійна група степеня п група за множенням усіх невироджених матриць порядку п з коефіцієнтами з поля P
- 3. У циклічній групі $\langle a \rangle$ порядку
 п знайти всі елементи порядку k , якщо n=105, k=15
- 4. Розкласти даний многочлен на незвідні множники над полем C: $f(x) = x^4 + 4$
- 5. Довести, що многочлен f(x) із цілими коефіцієнтами не має цілих коренів, якщо f(0) та f(1) непарні числа.
- 6. Знайти частковий розклад добутку всіх незвідних многочленів степеня 6 у полі Z_2 через кругові многочлени. Знайти всі незвідні кругові многочлени та многчлени які можна з них одержати.

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина дійсних чисел вигляду $x+y\sqrt[3]{3}+z\sqrt[3]{9}$, де $x,y,z\in\mathbb{Q}$
- 2. Знайти порядок елемента групи $g=-\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}i\in C^*$, де C^* мультиплікативна група поля комплексних чисел.
- 3. З'ясувати, чи буде множина M відносно звичайних операцій додавання та множення полем. Знайти обернений елемент для елемента а. $M=Z_{179}, a=96$.
- 4. Знайти всі раціональні корені многочлена $f(x) = 6x^4 5x^3 + 16x^2 + 4x 3$
- 5. Яку умову повинні задовольняти числа a,b,c, щоб один із коренів многочлена $x^3 + ax^2 + bx + c$ дорівнював сумі двох інших коренів?
- 6. Дано еліптичну криву $y^2=x^3+x+1$ у полі Z_{17} . Знайти точку A на кривій таку що $y\neq 0$. Обчислити A+A

Варіант 49

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина дійсних чисел вигляду $x+y\sqrt{3}$, де $x,y\in\mathbb{Q}$
- 2. Скласти таблицю Келі групи D_3 , де D_n група симетрій правильного n-кутника
- 3. Чи буде відображення f гомоморфізмом? Чи буде воно ізоморфізмом? $f:R\to R^+, f(x)=2^x$
- 4. Розкласти даний многочлен на незвідні множники над полем R: $f(x) = x^6 1$
- 5. Визначити, для яких A і B тричлен $Ax^{n+1} + Bx^n + 1$ ділиться на $(x-1)^2$?
- 6. Знайти частковий розклад добутку всіх незвідних многочленів степеня 4 у полі Z_3 через кругові многочлени. Знайти всі незвідні кругові многочлени та многчлени які можна з них одержати.

- 1. З'ясувати, чи буде групою множина всіх відображень множини $M = \{1, 2, \dots, n\}$ у себе відносно суперпозиції відображень.
- 2. Знайти порядок елемента групи $g=\begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix} \in GL_3(Z)$, де $GL_n(Z)$ група за множенням усіх невироджених цілочисельних матриць порядку \mathbf{n} , обернені до яких також ϵ цілочисельними
- 3. Розв'язати систему рівнянь $\begin{cases} 9x + 2y = 8 \\ 2x + 3y = 11 \end{cases}$ в полі Z_{13}
- 4. Відокремити дійсні корені многочлена $f(x) = x^4 4x^3 4x^2 + 4x + 5$
- 5. Довести, що для довільних натуральних чисел m, n і p многочлен $x^{3m} + x^{3n+1} + x^{3p+2}$ ділиться на $x^2 + x + 1$.
- 6. Знайти круговий многочлен Q_{48}

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина раціональних чисел, у нескоротному записі яких знаменники є степенями фіксованого простого числа р.
- 2. Скласти таблицю Келі групи $\left\langle \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 2 & 4 & 5 & 6 & 1 \end{pmatrix} \right\rangle$
- 3. Розв'язати систему рівнянь $\begin{cases} 7x + 5y = 4 \\ 3x + 10y = 7 \end{cases}$ в полі Z_{13}
- 4. Знайти всі раціональні корені многочлена $f(x) = 4x^4 + 8x^3 + 15x^2 + 24x + 9$
- 5. Довести, що многочлен f(x) із цілими коефіцієнтами не має цілих коренів, якщо f(0) та f(1) непарні числа.
- 6. Знайти частковий розклад добутку всіх незвідних многочленів степеня 3 у полі Z_5 через кругові многочлени. Знайти всі незвідні кругові многочлени та многчлени які можна з них одержати.

Варіант 52

- 1. З'ясувати, чи буде групою множина невироджених дійсних матриць вигляду $\begin{pmatrix} x & y \\ ay & x \end{pmatrix}$, де число а фіксоване, відносно множення.
- 2. Знайти порядок елемента групи $g = \cos \frac{\pi}{5} + i \sin \frac{\pi}{5} \in C^*$, де C^* мультиплікативна група поля комплексних чисел.
- 3. Чи буде відображення f гомоморфізмом? Чи буде воно ізоморфізмом? $f:C^* \to C^*, f(z)=\frac{z}{|z|}$
- 4. Відокремити дійсні корені многочлена $f(x) = x^4 x^3 4x^2 + 4x + 1$
- 5. Сума двох коренів многочлена $2x^3 x^2 7x + a$ дорівнює 1. Визначити параметр a.
- 6. Знайти елемент обернений до $G[x]=x^2+2x+1$ у розширенні поля Z_3 за допомогою незвідного многочлена $F[x]=x^4+x^3+x^2+x+1$

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина дійсних чисел вигляду $x+y\sqrt[3]{3}$, де $x,y\in\mathbb{Q}$
- 2. Знайти порядок елемента групи $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 3 & 4 & 6 & 1 & 5 & 8 & 7 \end{pmatrix} \in S_8$
- 3. Розв'язати рівняння $x^2 2\sqrt{3}x 1 = 0$ у полі $Q(\sqrt{3})$.
- 4. Відокремити дійсні корені многочлена $f(x) = x^4 x^3 4x^2 + 4x + 1$
- 5. Для яких натуральних чисел m многочлен $(x+1)^m x^m 1$ ділиться на $x^2 + x + 1$?
- 6. Знайти елемент обернений до $G[x]=x^2+2x+1$ у розширенні поля Z_7 за допомогою незвідного многочлена $F[x]=x^3+x^2+x+2$

- 1. З'ясувати, чи буде групою множина невироджених дійсних матриць вигляду $\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$, де $x \in \mathbb{R}$, відносно множення.
- 2. Знайти порядок елемента групи $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 7 & 4 & 6 & 2 & 5 & 3 & 1 \end{pmatrix} \in S_8$
- 3. З'ясувати, чи буде множина M відносно звичайних операцій додавання та множення полем. Знайти обернений елемент для елемента а. $M=Z_{150}, a=101.$
- 4. Відокремити дійсні корені многочлена $f(x) = x^4 4x^3 4x^2 + 4x + 5$
- 5. Для яких значень a число -1 буде коренем многочлена $x^5 ax^2 ax + 1$ кратності не менше 2?
- 6. Дано еліптичну криву $y^2 = x^3 + 7x + 8$ у полі Z_{11} . Знайти дві різні точки на кривій такі що $0 \le y \le 5$. Обчислити їх суму

Варіант 55

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина раціональних чисел, у нескоротному записі яких знаменники є дільниками фіксованого натурального числа n.
- 2. Скласти таблицю Келі групи Z_9^* , де Z_n^* мультиплікативна група оборотних класів лишків за модулем числа п
- 3. Чи буде відображення f гомоморфізмом? Чи буде воно ізоморфізмом? $f:R\to Z, f(x)=[x]$
- 4. Розкласти даний многочлен на незвідні множники над полем R: $f(x) = x^6 1$
- 5. Для яких цілих значень a один корінь многочлена $36x^3-12x^2-5x+a$ дорівнює сумі двох інших? Знайти ці корені.
- 6. Знайти круговий многочлен Q_{60}

- 1. З'ясувати, чи буде групою множина підстановок $\{(1)(2)(3)(4); (12)(34); (13)(24); (14)(23)\}$ відносно операції суперпозиції.
- 2. Знайти порядок групи поворотів правильного тетраедра
- 3. У циклічній групі $\langle a \rangle$ порядку
 п знайти всі елементи порядку k , якщо n=200, k=8
- 4. Розкласти даний многочлен на незвідні множники над полем C: $f(x) = x^4 + 4$
- 5. Визначити многочлен найменшого степеня, який дає в остачі 2x при діленні на $(x-1)^2$ і 3x при діленні на $(x-2)^3$
- 6. Знайти круговий многочлен Q_{35}

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина дійсних чисел вигляду $x+y\sqrt[3]{3}+z\sqrt[3]{9}$, де $x,y,z\in\mathbb{Q}$
- 2. Знайти порядок елемента групи $g=-\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}i\in C^*$, де C^* мультиплікативна група поля комплексних чисел.
- 3. Розв'язати рівняння $x^2 (3 + 3\sqrt{2})x + 4 + 6\sqrt{2}$ у полі $Q(\sqrt{2})$.
- 4. Визначити кратність кореня с для многочлена f(x). Знайти значення многочлена f(x) і його похідних у точці $x=x_0$. $f(x)=2x^5+12x^4+27x^3+34x^2+36x+24$, c=-2, $x_0=-1$.
- 5. Знайти всі такі трійки чисел (a, b, c), щоб коренями многочлена $x^3 ax^2 + bx c$ були числа a, b, c.
- 6. Знайти круговий многочлен Q_{60}

Варіант 58

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина комплексних матриць вигляду $\begin{pmatrix} z & w \\ -\overline{w} & \overline{z} \end{pmatrix}$
- 2. Скласти таблицю Келі групи $\left\langle \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 2 & 4 & 5 & 6 & 1 \end{pmatrix} \right\rangle$
- 3. Чи буде відображення f гомоморфізмом? Чи буде воно ізоморфізмом? $f:R^* \to R^*, f(x) = \frac{1}{x}$
- 4. Визначити кратність кореня с для многочлена f(x). Знайти значення многочлена f(x) і його похідних у точці $x=x_0$. $f(x)=x^5-x^4+x^3-3x^2+2x$, $c=1,x_0=-2$.
- 5. Для яких натуральних чисел m многочлен $x^{2m} + x^m + 1$ ділиться на $x^2 + x + 1$
- 6. Дано еліптичну криву $y^2 = x^3 + x + 1$ у полі Z_{17} . Знайти точку A на кривій таку що $y \neq 0$. Обчислити A + A

- 1. З'ясувати, чи буде групою множина невироджених дійсних матриць вигляду $\begin{pmatrix} x & y \\ -y & x \end{pmatrix}$, де $x \in \mathbb{R}$, відносно множення.
- 2. Знайти порядок елемента групи $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 7 & 4 & 6 & 2 & 5 & 3 & 1 \end{pmatrix} \in S_8$
- 3. Знайти обернену матрицю до матриці $g = \begin{pmatrix} 10 & 11 \\ 5 & 8 \end{pmatrix}$ в полі Z_{13}
- 4. Визначити кратність кореня с для многочлена f(x). Знайти значення многочлена f(x) і його похідних у точці $x=x_0$. $f(x)=x^5-5x^4+7x^3-2x^2+4x-8, c=2, x_0=-1$.
- 5. Яку умову повинні задовольняти числа a,b,c , щоб один із коренів многочлена x^3+ax^2+bx+c дорівнював сумі двох інших коренів?
- 6. Знайти круговий многочлен Q_{48}

- 1. З'ясувати, чи буде групою множина всіх комплексних коренів усіх степенів з одиниці відносно операції множення.
- 2. Скласти таблицю Келі групи Z_9^* , де Z_n^* мультиплікативна група оборотних класів лишків за модулем числа п
- 3. Розв'язати рівняння $x^2 + x\sqrt{3} 7 + 3\sqrt{3} = 0$ у полі $Q(\sqrt{3})$.
- 4. Знайти всі раціональні корені многочлена $f(x) = 6x^4 5x^3 + 16x^2 + 4x 3$
- 5. Яку умову повинно задовольняти число b, щоб многочлен x^5-15x^3+b мав подвійний корінь, відмінний від нуля?
- 6. Знайти частковий розклад добутку всіх незвідних многочленів степеня 2 у полі \mathbb{Z}_7 через кругові многочлени. Знайти всі незвідні кругові многочлени та многчлени які можна з них одержати.

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина раціональних чисел, у нескоротному записі яких знаменники є дільниками фіксованого натурального числа n.
- 2. Знайти порядок елемента групи $g=\begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}\in GL_3(Z)$, де $GL_n(Z)$ група за множенням усіх невироджених цілочисельних матриць порядку n , обернені до яких також ϵ цілочисельними
- 3. Знайти обернену матрицю до матриці $g = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 1 \\ 4 & 3 & 4 \end{pmatrix}$ в полі Z_5
- 4. Розкласти даний дріб на найпростіші дроби над полем дійсних чисел за методом невизначених коефіцієнтів $f(x) = \frac{1}{(x^2-1)^2}$
- 5. Яку умову повинно задовольняти число b, щоб многочлен x^5-15x^3+b мав подвійний корінь, відмінний від нуля?
- 6. Дано еліптичну криву $y^2 = x^3 + 7x + 8$ у полі Z_{11} . Знайти дві різні точки на кривій такі що $0 \le y \le 5$. Обчислити їх суму

- 1. З'ясувати, чи буде групою множина всіх комплексних коренів усіх степенів з одиниці відносно операції множення.
- 2. Знайти порядок елемента групи $g=\begin{pmatrix} 0 & i \\ 1 & 0 \end{pmatrix} \in GL_2(C)$, де $GL_n(P)$ повна лінійна група степеня n група за множенням усіх невироджених матриць порядку n з коефіцієнтами з поля P
- 3. Чи буде відображення f гомоморфізмом? Чи буде воно ізоморфізмом? $f:R^+ \to R, f(x) = \log_2 x$
- 4. Розкласти даний дріб на найпростіші дроби над полем дійсних чисел за допомогою схеми Горнера $f(x)=\frac{x^3-10x+4}{(x-2)^5}$
- 5. Для яких цілих значень a один корінь многочлена $36x^3-12x^2-5x+a$ дорівнює сумі двох інших? Знайти ці корені.
- 6. Знайти частковий розклад добутку всіх незвідних многочленів степеня 6 у полі Z_2 через кругові многочлени. Знайти всі незвідні кругові многочлени та многчлени які можна з них одержати.

Варіант 63

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина дійсних чисел вигляду $x+y\sqrt{3}$, де $x,y\in\mathbb{Q}$
- 2. Знайти порядок елемента групи $g=\begin{pmatrix} 1 & 3 \\ 0 & 2 \end{pmatrix} \in T_2(Z_5^*)$ де $T_2(Z_5)$ множина невироджених верхніх трикутних матриць порядку 2 з коефіцієнтами з поля Z_5
- 3. У циклічній групі $\langle a \rangle$ порядку
 п знайти всі елементи порядку k , якщо n=140, k=35
- 4. Знайти всі раціональні корені многочлена $f(x) = 6x^4 x^3 + 11x^2 2x 2$
- 5. Для яких натуральних чисел m многочлен $x^{2m} + x^m + 1$ ділиться на $x^2 + x + 1$
- 6. Знайти частковий розклад добутку всіх незвідних многочленів степеня 3 у полі Z_5 через кругові многочлени. Знайти всі незвідні кругові многочлени та многчлени які можна з них одержати.

- 1. З'ясувати, чи буде групою множина невироджених дійсних матриць вигляду $\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$, де $x \in \mathbb{R}$, відносно множення.
- 2. Знайти порядок елемента групи $g=\cos\frac{\pi}{5}+i\sin\frac{\pi}{5}\in C^*$, де C^* мультиплікативна група поля комплексних чисел.
- 3. Чи буде відображення f гомоморфізмом? Чи буде воно ізоморфізмом? $f:R\to R^+, f(x)=2^x$
- 4. Знайти всі раціональні корені многочлена $f(x) = 4x^4 + 8x^3 + 15x^2 + 24x + 9$
- 5. Довести, що для довільних натуральних чисел m, n і p многочлен $x^{3m} + x^{3n+1} + x^{3p+2}$ ділиться на $x^2 + x + 1$.
- 6. Знайти елемент обернений до $G[x]=x^2+2x+1$ у розширенні поля Z_7 за допомогою незвідного многочлена $F[x]=x^3+x^2+x+2$

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина раціональних чисел, у нескоротному записі яких знаменники є степенями фіксованого простого числа р.
- 2. Знайти порядок елемента групи $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 3 & 4 & 6 & 1 & 5 & 8 & 7 \end{pmatrix} \in S_8$
- 3. Розв'язати систему рівнянь $\begin{cases} 2x-y=5 \\ x-2y=10 \end{cases}$ в кільці Z_{18}
- 4. Відокремити дійсні корені многочлена $f(x) = x^4 3x^3 x^2 + 8x 4$
- 5. Сума двох коренів многочлена $2x^3 x^2 7x + a$ дорівнює 1. Визначити параметр a.
- 6. Знайти круговий многочлен Q_{35}

Варіант 66

- 1. З'ясувати, чи буде групою множина підстановок $\{(1)(2)(3)(4); (12)(34); (13)(24); (14)(23)\}$ відносно операції суперпозиції.
- 2. Скласти таблицю Келі групи D_3 , де D_n група симетрій правильного n-кутника
- 3. З'ясувати, чи буде множина M відносно звичайних операцій додавання та множення полем. Знайти обернений елемент для елемента а. $M=Z_{143}, a=97.$
- 4. Знайти всі раціональні корені многочлена $f(x) = 6x^4 5x^3 + 16x^2 + 4x 3$
- 5. Знайти всі такі трійки чисел (a,b,c), щоб коренями многочлена x^3-ax^2+bx-c були числа a,b,c.
- 6. Знайти частковий розклад добутку всіх незвідних многочленів степеня 4 у полі Z_3 через кругові многочлени. Знайти всі незвідні кругові многочлени та многчлени які можна з них одержати.

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина дійсних чисел вигляду $x+y\sqrt[3]{3}$, де $x,y\in\mathbb{Q}$
- 2. Знайти порядок елемента групи $g=-\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}i\in C^*$, де C^* мультиплікативна група поля комплексних чисел.
- 3. Розв'язати систему рівнянь $\begin{cases} 9x+2y=8 \\ 2x+3y=11 \end{cases}$ в полі Z_{13}
- 4. Знайти всі раціональні корені многочлена $f(x) = 6x^4 x^3 + 11x^2 2x 2$
- 5. Яку умову повинні задовольняти числа a,b,c , щоб один із коренів многочлена x^3+ax^2+bx+c дорівнював сумі двох інших коренів?
- 6. Дано еліптичну криву $y^2 = x^3 + 2x + 3$ у полі Z_{13} . Знайти дві різні точки на кривій такі що $0 \le y \le 6$. Обчислити їх суму

- 1. З'ясувати, чи буде групою множина всіх відображень множини $M=\{1,2,\ldots,n\}$ у себе відносно суперпозиції відображень.
- 2. Знайти порядок елемента групи $g=\begin{pmatrix}1&3\\0&2\end{pmatrix}\in T_2(Z_5^*)$ де $T_2(Z_5)$ множина невироджених верхніх трикутних матриць порядку 2 з коефіцієнтами з поля Z_5
- 3. Чи буде відображення f гомоморфізмом? Чи буде воно ізоморфізмом? $f:C^* \to R^*, f(z)=\frac{1}{|z|}$
- 4. Відокремити дійсні корені многочлена $f(x) = x^4 x^3 4x^2 + 4x + 1$
- 5. Для яких натуральних чисел m многочлен $(x+1)^m x^m 1$ ділиться на $x^2 + x + 1$?
- 6. Знайти елемент обернений до $G[x]=x^4+x+1$ у розширенні поля Z_2 за допомогою незвідного многочлена $F[x]=x^5+x^2+1$

Варіант 69

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина дійсних чисел вигляду $x+y\sqrt[3]{3}+z\sqrt[3]{9}$, де $x,y,z\in\mathbb{Q}$
- 2. Знайти порядок елемента групи $g=\begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix} \in GL_3(Z)$, де $GL_n(Z)$ група за множенням усіх невироджених цілочисельних матриць порядку \mathbf{n} , обернені до яких також ϵ цілочисельними
- 3. У циклічній групі $\langle a \rangle$ порядку п знайти всі елементи порядку k , якщо n=140, k=35
- 4. Визначити кратність кореня с для многочлена f(x). Знайти значення многочлена f(x) і його похідних у точці $x=x_0$. $f(x)=x^5-5x^4+7x^3-2x^2+4x-8, c=2, x_0=-1$.
- 5. Визначити многочлен найменшого степеня, який дає в остачі 2х при діленні на $(x-1)^2$ і 3х при діленні на $(x-2)^3$
- 6. Знайти круговий многочлен Q_{81}

- 1. З'ясувати, чи буде групою множина невироджених дійсних матриць вигляду $\begin{pmatrix} x & y \\ ay & x \end{pmatrix}$, де число а фіксоване, відносно множення.
- 2. Знайти порядок елемента групи $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 3 & 4 & 6 & 1 & 5 & 8 & 7 \end{pmatrix} \in S_8$
- 3. У циклічній групі $\langle a \rangle$ порядку п знайти всі елементи порядку k , якщо n=200, k=8
- 4. Відокремити дійсні корені многочлена $f(x) = x^4 4x^3 4x^2 + 4x + 5$
- 5. Довести, що многочлен f(x) із цілими коефіцієнтами не має цілих коренів, якщо f(0) та f(1) непарні числа.
- 6. Знайти елемент обернений до $G[x]=x^2+2x+1$ у розширенні поля Z_3 за допомогою незвідного многочлена $F[x]=x^4+x^3+x^2+x+1$

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина комплексних матриць вигляду $\begin{pmatrix} z & w \\ -\overline{w} & \overline{z} \end{pmatrix}$
- 2. Знайти порядок елемента групи $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 7 & 4 & 6 & 2 & 5 & 3 & 1 \end{pmatrix} \in S_8$
- 3. Чи буде відображення f гомоморфізмом? Чи буде воно ізоморфізмом? $f:C^* \to C^*, f(z)=\frac{z}{|z|}$
- 4. Розкласти даний дріб на найпростіші дроби над полем дійсних чисел за методом невизначених коефіцієнтів $f(x) = \frac{1}{(x^2-1)^2}$
- 5. Для яких значень a число -1 буде коренем многочлена $x^5 ax^2 ax + 1$ кратності не менше 2?
- 6. Знайти частковий розклад добутку всіх незвідних многочленів степеня 4 у полі Z_3 через кругові многочлени. Знайти всі незвідні кругові многочлени та многчлени які можна з них одержати.

- 1. З'ясувати, чи буде групою множина невироджених дійсних матриць вигляду $\begin{pmatrix} x & y \\ -y & x \end{pmatrix}$, де $x \in \mathbb{R}$, відносно множення.
- 2. Знайти порядок групи поворотів правильного тетраедра
- 3. Розв'язати систему рівнянь $\begin{cases} 7x + 5y = 4 \\ 3x + 10y = 7 \end{cases}$ в полі Z_{13}
- 4. Відокремити дійсні корені многочлена $f(x) = x^4 3x^3 x^2 + 8x 4$
- 5. Визначити, для яких A і B тричлен $Ax^{n+1} + Bx^n + 1$ ділиться на $(x-1)^2$?
- 6. Знайти елемент обернений до $G[x]=x^2+2x+1$ у розширенні поля Z_7 за допомогою незвідного многочлена $F[x]=x^3+x^2+x+2$

- 1. З'ясувати, чи буде групою множина невироджених дійсних матриць вигляду $\begin{pmatrix} x & y \\ ay & x \end{pmatrix}$, де число а фіксоване, відносно множення.
- 2. Знайти порядок елемента групи $g=\begin{pmatrix} 0 & i \\ 1 & 0 \end{pmatrix} \in GL_2(C)$, де $GL_n(P)$ повна лінійна група степеня n група за множенням усіх невироджених матриць порядку n з коефіцієнтами з поля P
- 3. Знайти обернену матрицю до матриці $g = \begin{pmatrix} 10 & 11 \\ 5 & 8 \end{pmatrix}$ в полі Z_{13}
- 4. Розкласти даний дріб на найпростіші дроби над полем дійсних чисел за допомогою схеми Горнера $f(x)=rac{x^3-10x+4}{(x-2)^5}$
- 5. Довести, що для довільних натуральних чисел m, n і p многочлен $x^{3m} + x^{3n+1} + x^{3p+2}$ ділиться на $x^2 + x + 1$.
- 6. Знайти частковий розклад добутку всіх незвідних многочленів степеня 2 у полі \mathbb{Z}_7 через кругові многочлени. Знайти всі незвідні кругові многочлени та многчлени які можна з них одержати.

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина комплексних матриць вигляду $\begin{pmatrix} z & w \\ -\overline{w} & \overline{z} \end{pmatrix}$
- 2. Знайти порядок елемента групи $g=\cos\frac{\pi}{5}+i\sin\frac{\pi}{5}\in C^*$, де C^* мультиплікативна група поля комплексних чисел.
- 3. Чи буде відображення f гомоморфізмом? Чи буде воно ізоморфізмом? $f:R^+ \to R, f(x) = \log_2 x$
- 4. Визначити кратність кореня с для многочлена f(x). Знайти значення многочлена f(x) і його похідних у точці $x=x_0$. $f(x)=2x^5+12x^4+27x^3+34x^2+36x+24$, c=-2, $x_0=-1$.
- 5. Яку умову повинні задовольняти числа a,b,c , щоб один із коренів многочлена x^3+ax^2+bx+c дорівнював сумі двох інших коренів?
- 6. Знайти частковий розклад добутку всіх незвідних многочленів степеня 6 у полі Z_2 через кругові многочлени. Знайти всі незвідні кругові многочлени та многчлени які можна з них одержати.

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина раціональних чисел, у нескоротному записі яких знаменники є дільниками фіксованого натурального числа n.
- 2. Скласти таблицю Келі групи Z_9^* , де Z_n^* мультиплікативна група оборотних класів лишків за модулем числа п
- 3. Розв'язати рівняння $x^2 + x\sqrt{3} 7 + 3\sqrt{3} = 0$ у полі $Q(\sqrt{3})$.
- 4. Визначити кратність кореня с для многочлена f(x). Знайти значення многочлена f(x) і його похідних у точці $x=x_0$. $f(x)=x^5-x^4+x^3-3x^2+2x$, c=1, $x_0=-2$.
- 5. Для яких значень a число -1 буде коренем многочлена $x^5 ax^2 ax + 1$ кратності не менше 2?
- 6. Знайти круговий многочлен Q_{35}

Варіант 76

- 1. З'ясувати, чи буде групою множина підстановок $\{(1)(2)(3)(4); (12)(34); (13)(24); (14)(23)\}$ відносно операції суперпозиції.
- 2. Скласти таблицю Келі групи D_3 , де D_n група симетрій правильного n-кутника
- 3. Розв'язати рівняння $x^2 2\sqrt{3}x 1 = 0$ у полі $Q(\sqrt{3})$.
- 4. Розкласти даний многочлен на незвідні множники над полем C: $f(x) = x^4 + 4$
- 5. Сума двох коренів многочлена $2x^3 x^2 7x + a$ дорівнює 1. Визначити параметр a.
- 6. Знайти частковий розклад добутку всіх незвідних многочленів степеня 3 у полі Z_5 через кругові многочлени. Знайти всі незвідні кругові многочлени та многчлени які можна з них одержати.

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина дійсних чисел вигляду $x+y\sqrt{3}$, де $x,y\in\mathbb{Q}$
- 2. Скласти таблицю Келі групи $\left\langle \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 2 & 4 & 5 & 6 & 1 \end{pmatrix} \right\rangle$
- 3. Чи буде відображення f гомоморфізмом? Чи буде воно ізоморфізмом? $f: R^* \to R^*, f(x) = \frac{1}{x}$
- 4. Знайти всі раціональні корені многочлена $f(x) = 4x^4 + 8x^3 + 15x^2 + 24x + 9$
- 5. Визначити многочлен найменшого степеня, який дає в остачі 2х при діленні на $(x-1)^2$ і 3х при діленні на $(x-2)^3$
- 6. Знайти круговий многочлен Q_{81}

- 1. З'ясувати, чи буде групою множина невироджених дійсних матриць вигляду $\begin{pmatrix} x & y \\ -y & x \end{pmatrix}$, де $x \in \mathbb{R}$, відносно множення.
- 2. Скласти таблицю Келі групи $\left\langle \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 2 & 4 & 5 & 6 & 1 \end{pmatrix} \right\rangle$
- 3. З'ясувати, чи буде множина M відносно звичайних операцій додавання та множення полем. Знайти обернений елемент для елемента а. $M=Z_{150}, a=101.$
- 4. Розкласти даний многочлен на незвідні множники над полем R: $f(x) = x^6 1$
- 5. Визначити, для яких A і B тричлен $Ax^{n+1} + Bx^n + 1$ ділиться на $(x-1)^2$?
- 6. Знайти круговий многочлен Q_{60}

Варіант 79

- 1. З'ясувати, чи буде групою множина невироджених дійсних матриць вигляду $\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$, де $x \in \mathbb{R}$, відносно множення.
- 2. Знайти порядок елемента групи $g=\begin{pmatrix} 1 & 3 \\ 0 & 2 \end{pmatrix} \in T_2(Z_5^*)$ де $T_2(Z_5)$ множина невироджених верхніх трикутних матриць порядку 2 з коефіцієнтами з поля Z_5
- 3. Розв'язати систему рівнянь $\begin{cases} 2x+y=5 \\ x+2y=10 \end{cases}$ в кільці Z_{18}
- 4. Відокремити дійсні корені многочлена $f(x) = x^4 3x^3 x^2 + 8x 4$
- 5. Яку умову повинно задовольняти число b, щоб многочлен x^5-15x^3+b мав подвійний корінь, відмінний від нуля?
- 6. Дано еліптичну криву $y^2 = x^3 + 2x + 3$ у полі Z_{13} . Знайти дві різні точки на кривій такі що $0 \le y \le 6$. Обчислити їх суму

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина раціональних чисел, у нескоротному записі яких знаменники є степенями фіксованого простого числа р.
- 2. Знайти порядок елемента групи $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 3 & 4 & 6 & 1 & 5 & 8 & 7 \end{pmatrix} \in S_8$
- 3. Чи буде відображення f гомоморфізмом? Чи буде воно ізоморфізмом? $f:R \to Z, f(x) = [x]$
- 4. Знайти всі раціональні корені многочлена $f(x) = 6x^4 x^3 + 11x^2 2x 2$
- 5. Для яких натуральних чисел m многочлен $(x+1)^m x^m 1$ ділиться на $x^2 + x + 1$?
- 6. Знайти круговий многочлен Q_{48}

- 1. З'ясувати, чи буде групою множина всіх відображень множини $M = \{1, 2, \dots, n\}$ у себе відносно суперпозиції відображень.
- 2. Скласти таблицю Келі групи Z_9^* , де Z_n^* мультиплікативна група оборотних класів лишків за модулем числа п
- 3. Знайти обернену матрицю до матриці $g = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 1 \\ 4 & 3 & 4 \end{pmatrix}$ в полі Z_5
- 4. Визначити кратність кореня с для многочлена f(x). Знайти значення многочлена f(x) і його похідних у точці $x=x_0$. $f(x)=x^5-5x^4+7x^3-2x^2+4x-8, c=2, x_0=-1$.
- 5. Для яких натуральних чисел m многочлен $x^{2m} + x^m + 1$ ділиться на $x^2 + x + 1$
- 6. Дано еліптичну криву $y^2 = x^3 + 7x + 8$ у полі Z_{11} . Знайти дві різні точки на кривій такі що $0 \le y \le 5$. Обчислити їх суму

Варіант 82

- 1. З'ясувати, чи буде групою множина всіх комплексних коренів усіх степенів з одиниці відносно операції множення.
- 2. Скласти таблицю Келі групи D_3 , де D_n група симетрій правильного n-кутника
- 3. З'ясувати, чи буде множина M відносно звичайних операцій додавання та множення полем. Знайти обернений елемент для елемента а. $M = Z_{179}, a = 96$.
- 4. Відокремити дійсні корені многочлена $f(x) = x^4 x^3 4x^2 + 4x + 1$
- 5. Довести, що многочлен f(x) із цілими коефіцієнтами не має цілих коренів, якщо f(0) та f(1) непарні числа.
- 6. Знайти елемент обернений до $G[x]=x^4+x+1$ у розширенні поля Z_2 за допомогою незвідного многочлена $F[x]=x^5+x^2+1$

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина дійсних чисел вигляду $x+y\sqrt[3]{3}$, де $x,y\in\mathbb{Q}$
- 2. Знайти порядок елемента групи $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 7 & 4 & 6 & 2 & 5 & 3 & 1 \end{pmatrix} \in S_8$
- 3. Розв'язати рівняння $x^2 (3 + 3\sqrt{2})x + 4 + 6\sqrt{2}$ у полі $Q(\sqrt{2})$.
- 4. Визначити кратність кореня с для многочлена f(x). Знайти значення многочлена f(x) і його похідних у точці $x=x_0$. $f(x)=2x^5+12x^4+27x^3+34x^2+36x+24$, c=-2, $x_0=-1$.
- 5. Для яких цілих значень a один корінь многочлена $36x^3 12x^2 5x + a$ дорівнює сумі двох інших? Знайти ці корені.
- 6. Дано еліптичну криву $y^2=x^3+x+1$ у полі Z_{17} . Знайти точку A на кривій таку що $y\neq 0$. Обчислити A+A

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина дійсних чисел вигляду $x+y\sqrt[3]{3}+z\sqrt[3]{9}$, де $x,y,z\in\mathbb{Q}$
- 2. Знайти порядок елемента групи $g=\cos\frac{\pi}{5}+i\sin\frac{\pi}{5}\in C^*$, де C^* мультиплікативна група поля комплексних чисел.
- 3. У циклічній групі $\langle a \rangle$ порядку п знайти всі елементи порядку k , якщо n=105, k=15
- 4. Розкласти даний многочлен на незвідні множники над полем R: $f(x) = x^6 1$
- 5. Знайти всі такі трійки чисел (a, b, c), щоб коренями многочлена $x^3 ax^2 + bx c$ були числа a, b, c.
- 6. Знайти елемент обернений до $G[x]=x^2+2x+1$ у розширенні поля Z_3 за допомогою незвідного многочлена $F[x]=x^4+x^3+x^2+x+1$

Варіант 85

- 1. З'ясувати, чи буде групою множина всіх комплексних коренів усіх степенів з одиниці відносно операції множення.
- 2. Знайти порядок елемента групи $g=-\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}i\in C^*$, де C^* мультиплікативна група поля комплексних чисел.
- 3. Чи буде відображення f гомоморфізмом? Чи буде воно ізоморфізмом? $f:C^* \to R^*, f(z)=\frac{1}{|z|}$
- 4. Знайти всі раціональні корені многочлена $f(x) = 4x^4 + 8x^3 + 15x^2 + 24x + 9$
- 5. Для яких цілих значень a один корінь многочлена $36x^3-12x^2-5x+a$ дорівнює сумі двох інших? Знайти ці корені.
- 6. Знайти частковий розклад добутку всіх незвідних многочленів степеня 3 у полі Z_5 через кругові многочлени. Знайти всі незвідні кругові многочлени та многчлени які можна з них одержати.

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина комплексних матриць вигляду $\begin{pmatrix} z & w \\ -\overline{w} & \overline{z} \end{pmatrix}$
- 2. Знайти порядок групи поворотів правильного тетраедра
- 3. У циклічній групі $\langle a \rangle$ порядку
 п знайти всі елементи порядку k , якщо n=140, k=35
- 4. Розкласти даний дріб на найпростіші дроби над полем дійсних чисел за допомогою схеми Горнера $f(x)=\frac{x^3-10x+4}{(x-2)^5}$
- 5. Для яких значень a число -1 буде коренем многочлена $x^5 ax^2 ax + 1$ кратності не менше 2?
- 6. Дано еліптичну криву $y^2 = x^3 + 7x + 8$ у полі Z_{11} . Знайти дві різні точки на кривій такі що $0 \le y \le 5$. Обчислити їх суму

- 1. З'ясувати, чи буде групою множина невироджених дійсних матриць вигляду $\begin{pmatrix} x & y \\ ay & x \end{pmatrix}$, де число а фіксоване, відносно множення.
- 2. Знайти порядок елемента групи $g=\begin{pmatrix} 0 & i \\ 1 & 0 \end{pmatrix} \in GL_2(C)$, де $GL_n(P)$ повна лінійна група степеня n група за множенням усіх невироджених матриць порядку n з коефіцієнтами з поля P
- 3. Чи буде відображення f гомоморфізмом? Чи буде воно ізоморфізмом? $f:C^* \to C^*, f(z)=\frac{z}{|z|}$
- 4. Розкласти даний многочлен на незвідні множники над полем C: $f(x) = x^4 + 4$
- 5. Яку умову повинно задовольняти число b, щоб многочлен x^5-15x^3+b мав подвійний корінь, відмінний від нуля?
- 6. Дано еліптичну криву $y^2 = x^3 + x + 1$ у полі Z_{17} . Знайти точку A на кривій таку що $y \neq 0$. Обчислити A + A

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина дійсних чисел вигляду $x+y\sqrt[3]{3}$, де $x,y\in\mathbb{Q}$
- 2. Знайти порядок елемента групи $g=\begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}\in GL_3(Z)$, де $GL_n(Z)$ група за множенням усіх невироджених цілочисельних матриць порядку $\mathbf n$, обернені до яких також ϵ цілочисельними
- 3. Розв'язати систему рівнянь $\begin{cases} 7x + 5y = 4 \\ 3x + 10y = 7 \end{cases}$ в полі Z_{13}
- 4. Знайти всі раціональні корені многочлена $f(x) = 6x^4 5x^3 + 16x^2 + 4x 3$
- 5. Довести, що многочлен f(x) із цілими коефіцієнтами не має цілих коренів, якщо f(0) та f(1) непарні числа.
- 6. Знайти елемент обернений до $G[x]=x^4+x+1$ у розширенні поля Z_2 за допомогою незвідного многочлена $F[x]=x^5+x^2+1$

- 1. З'ясувати, чи буде групою множина всіх відображень множини $M = \{1, 2, \dots, n\}$ у себе відносно суперпозиції відображень.
- 2. Знайти порядок елемента групи $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 3 & 4 & 6 & 1 & 5 & 8 & 7 \end{pmatrix} \in S_8$
- 3. Знайти обернену матрицю до матриці $g = \begin{pmatrix} 10 & 11 \\ 5 & 8 \end{pmatrix}$ в полі Z_{13}
- 4. Розкласти даний дріб на найпростіші дроби над полем дійсних чисел за методом невизначених коефіцієнтів $f(x) = \frac{1}{(x^2-1)^2}$
- 5. Для яких натуральних чисел m многочлен $(x+1)^m x^m 1$ ділиться на $x^2 + x + 1$?
- 6. Знайти частковий розклад добутку всіх незвідних многочленів степеня 2 у полі \mathbb{Z}_7 через кругові многочлени. Знайти всі незвідні кругові многочлени та многчлени які можна з них одержати.

Варіант 90

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина дійсних чисел вигляду $x+y\sqrt[3]{3}+z\sqrt[3]{9}$, де $x,y,z\in\mathbb{Q}$
- 2. Знайти порядок елемента групи $g=\cos\frac{\pi}{5}+i\sin\frac{\pi}{5}\in C^*$, де C^* мультиплікативна група поля комплексних чисел.
- 3. Розв'язати рівняння $x^2 2\sqrt{3}x 1 = 0$ у полі $Q(\sqrt{3})$.
- 4. Відокремити дійсні корені многочлена $f(x) = x^4 4x^3 4x^2 + 4x + 5$
- 5. Знайти всі такі трійки чисел (a, b, c), щоб коренями многочлена $x^3 ax^2 + bx c$ були числа a, b, c.
- 6. Дано еліптичну криву $y^2 = x^3 + 2x + 3$ у полі Z_{13} . Знайти дві різні точки на кривій такі що $0 \le y \le 6$. Обчислити їх суму

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина раціональних чисел, у нескоротному записі яких знаменники є степенями фіксованого простого числа р.
- 2. Знайти порядок елемента групи $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 7 & 4 & 6 & 2 & 5 & 3 & 1 \end{pmatrix} \in S_8$
- 3. Розв'язати систему рівнянь $\begin{cases} 2x-y=5 \\ x-2y=10 \end{cases}$ в кільці Z_{18}
- 4. Визначити кратність кореня с для многочлена f(x). Знайти значення многочлена f(x) і його похідних у точці $x=x_0$. $f(x)=x^5-x^4+x^3-3x^2+2x$, c=1, $x_0=-2$.
- 5. Визначити, для яких A і B тричлен $Ax^{n+1} + Bx^n + 1$ ділиться на $(x-1)^2$?
- 6. Знайти частковий розклад добутку всіх незвідних многочленів степеня 4 у полі Z_3 через кругові многочлени. Знайти всі незвідні кругові многочлени та многчлени які можна з них одержати.

- 1. З'ясувати, чи буде групою множина невироджених дійсних матриць вигляду $\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$, де $x \in \mathbb{R}$, відносно множення.
- 2. Знайти порядок елемента групи $g=\begin{pmatrix} 0 & i \\ 1 & 0 \end{pmatrix} \in GL_2(C)$, де $GL_n(P)$ повна лінійна група степеня n група за множенням усіх невироджених матриць порядку n з коефіцієнтами з поля P
- 3. Чи буде відображення f гомоморфізмом? Чи буде воно ізоморфізмом? $f:R\to R^+, f(x)=2^x$
- 4. Знайти всі раціональні корені многочлена $f(x) = 6x^4 5x^3 + 16x^2 + 4x 3$
- 5. Довести, що для довільних натуральних чисел m, n і p многочлен $x^{3m} + x^{3n+1} + x^{3p+2}$ ділиться на $x^2 + x + 1$.
- 6. Знайти круговий многочлен Q_{81}

Варіант 93

- 1. З'ясувати, чи буде групою множина підстановок $\{(1)(2)(3)(4); (12)(34); (13)(24); (14)(23)\}$ відносно операції суперпозиції.
- 2. Скласти таблицю Келі групи D_3 , де D_n група симетрій правильного n-кутника
- 3. У циклічній групі $\langle a \rangle$ порядку п знайти всі елементи порядку k , якщо n=200, k=8
- 4. Відокремити дійсні корені многочлена $f(x) = x^4 x^3 4x^2 + 4x + 1$
- 5. Для яких натуральних чисел m многочлен $x^{2m} + x^m + 1$ ділиться на $x^2 + x + 1$
- 6. Знайти круговий многочлен Q_{60}

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина дійсних чисел вигляду $x+y\sqrt{3}$, де $x,y\in\mathbb{Q}$
- 2. Знайти порядок елемента групи $g=\begin{pmatrix} 1 & 3 \\ 0 & 2 \end{pmatrix} \in T_2(Z_5^*)$ де $T_2(Z_5)$ множина невироджених верхніх трикутних матриць порядку 2 з коефіцієнтами з поля Z_5
- 3. Чи буде відображення f гомоморфізмом? Чи буде воно ізоморфізмом? $f:R^* \to R^*, f(x) = \frac{1}{x}$
- 4. Знайти всі раціональні корені многочлена $f(x) = 6x^4 x^3 + 11x^2 2x 2$
- 5. Яку умову повинні задовольняти числа a,b,c , щоб один із коренів многочлена x^3+ax^2+bx+c дорівнював сумі двох інших коренів?
- 6. Знайти елемент обернений до $G[x]=x^2+2x+1$ у розширенні поля Z_7 за допомогою незвідного многочлена $F[x]=x^3+x^2+x+2$

- 1. З'ясувати, чи буде кільцем відносно звичайних операцій додавання та множення множина раціональних чисел, у нескоротному записі яких знаменники є дільниками фіксованого натурального числа n.
- 2. Знайти порядок групи поворотів правильного тетраедра
- 3. Чи буде відображення f гомоморфізмом? Чи буде воно ізоморфізмом? $f:R\to Z, f(x)=[x]$
- 4. Розкласти даний дріб на найпростіші дроби над полем дійсних чисел за допомогою схеми Горнера $f(x)=rac{x^3-10x+4}{(x-2)^5}$
- 5. Визначити многочлен найменшого степеня, який дає в остачі 2х при діленні на $(x-1)^2$ і 3х при діленні на $(x-2)^3$
- 6. Знайти частковий розклад добутку всіх незвідних многочленів степеня 6 у полі Z_2 через кругові многочлени. Знайти всі незвідні кругові многочлени та многчлени які можна з них одержати.

- 1. З'ясувати, чи буде групою множина невироджених дійсних матриць вигляду $\begin{pmatrix} x & y \\ -y & x \end{pmatrix}$, де $x \in \mathbb{R}$, відносно множення.
- 2. Скласти таблицю Келі групи Z_9^* , де Z_n^* мультиплікативна група оборотних класів лишків за модулем числа п
- 3. Знайти обернену матрицю до матриці $g=\begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 1 \\ 4 & 3 & 4 \end{pmatrix}$ в полі Z_5
- 4. Розкласти даний дріб на найпростіші дроби над полем дійсних чисел за методом невизначених коефіцієнтів $f(x) = \frac{1}{(x^2-1)^2}$
- 5. Сума двох коренів многочлена $2x^3 x^2 7x + a$ дорівнює 1. Визначити параметр a.
- 6. Знайти круговий многочлен Q_{35}