# TP SNHPC : Résolution d'équation aux dérivées partielles

# Boris Baudel - Ecole Normale Supérieure Paris-Saclay - ArteQ

Professeur: Fikri Hafid

# Contents

| 1. | $\mathbf{R\acute{e}s}$ | olution analytique                                                        | <b>2</b> |
|----|------------------------|---------------------------------------------------------------------------|----------|
|    | 1.1                    | Résolution analytique $u(x,0) = \sin(2\pi x)$                             | 2        |
|    | 1.2                    | Solution analytique de l'EDP pour une condition initiale par morceaux     |          |
| 2. | Solu                   | ution numérique : Schéma explicite                                        | 4        |
|    | 2.1                    | Schéma explicite pour l'équation de la chaleur                            | 4        |
|    | 2.2                    | Formulation Matricielle du Schéma Explicite pour l'Équation de la Chaleur | 4        |
|    | 2.3                    | Implémentation sur Python                                                 |          |
| 3. | Sch                    | éma Implicite pour l'Équation de la Chaleur                               | 6        |
|    | 3.1                    | Formulation du Schéma implicite                                           | 6        |
|    | 3.2                    | Formulation Matricielle                                                   | 7        |
|    | 3.3                    | Implémentation sur Python                                                 | 7        |
| 4. | Solı                   | ution numérique : Schéma de Crank Nicholson                               | 8        |
|    | 4.1                    | Schéma de Crank Nicholson : Définition                                    | 8        |
|    |                        | 4.1.1 Moyennage des termes explicite et implicite                         | 9        |
|    | 4.2                    | Ordre: Crank Nicholson                                                    | 9        |
|    | 4.3                    | Formulation matricielle : Crank Nicholson                                 | 9        |
| 5. | Cor                    | nparaison des méthodes                                                    | 11       |

## 1. Résolution analytique

## 1.1 Résolution analytique $u(x,0) = \sin(2\pi x)$

Nous cherchons à résoudre l'équation aux dérivées partielles suivante :

$$u_t(x,t) = u_{xx}(x,t)$$

avec les conditions aux limites et initiales suivantes :

$$u(0,t) = u(1,t) = 0$$
,  $u(x,0) = f_1(x) = \sin(2\pi x)$ , pour  $x \in ]0,1[$  et  $t > 0$ .

Nous utilisons la méthode de séparation des variables en supposant que u(x,t) = X(x)T(t). En substituant dans l'EDP, nous avons :

$$X(x)T'(t) = X''(x)T(t)$$

En divisant les deux côtés par X(x)T(t):

$$\frac{T'(t)}{T(t)} = \frac{X''(x)}{X(x)} = -\lambda$$

où  $\lambda$  est une constante de séparation. Nous obtenons deux équations ordinaires :

$$T'(t) + \lambda T(t) = 0$$

$$X''(x) + \lambda X(x) = 0$$

En appliquant les conditions aux limites X(0) = X(1) = 0, nous cherchons des solutions sous la forme trigonométrique. La solution générale de  $X''(x) + \lambda X(x) = 0$  est :

$$X(x) = A\cos(\sqrt{\lambda}x) + B\sin(\sqrt{\lambda}x)$$

Avec les conditions aux limites, nous trouvons que A=0 et  $\lambda=n^2\pi^2$  pour n entier non nul. Pour n=2:

$$\lambda = 4\pi^2$$

$$X(x) = B\sin(2\pi x)$$

Pour T(t) avec  $\lambda = 4\pi^2$ , la solution est :

$$T(t) = Ce^{-4\pi^2 t}$$

La solution complète avec la condition initiale donnée est :

$$u(x,t) = C\sin(2\pi x)e^{-4\pi^2 t}$$

En substituant  $u(x,0) = \sin(2\pi x)$ , nous trouvons que C=1.

La solution finale est:

$$u(x,t) = \sin(2\pi x)e^{-4\pi^2 t}$$

### 1.2 Solution analytique de l'EDP pour une condition initiale par morceaux

Nous cherchons à résoudre l'équation aux dérivées partielles :

$$u_t(x,t) = u_{xx}(x,t)$$

avec les conditions aux limites :

$$u(0,t) = u(1,t) = 0$$

et la condition initiale:

$$u(x,0) = f_2(x) = \begin{cases} 2x & \text{si } x \in ]0, \frac{1}{2}] \\ 2(1-x) & \text{si } x \in ]\frac{1}{2}, 1[ \end{cases}$$

La fonction  $f_2(x)$  est développée en série de Fourier en sinus, car la solution doit satisfaire les conditions de Dirichlet homogènes aux bords. La série de Fourier est de la forme :

$$f_2(x) = \sum_{n=1}^{\infty} b_n \sin(n\pi x)$$

où les coefficients  $b_n$  sont donnés par :

$$b_n = 2\int_0^1 f_2(x)\sin(n\pi x) dx$$

Pour notre fonction par morceaux, les coefficients deviennent :

$$b_n = 2\left(\int_0^{1/2} 2x \sin(n\pi x) dx + \int_{1/2}^1 2(1-x) \sin(n\pi x) dx\right)$$

Les calculs des intégrales peuvent être réalisés par intégration par parties.

$$\int_0^{1/2} 2x \sin(n\pi x) \, dx = \left[ -\frac{2x \cos(n\pi x)}{n\pi} \right]_0^{1/2} + \int_0^{1/2} \frac{2 \cos(n\pi x)}{n\pi} \, dx$$
$$= -\frac{\cos(\frac{n\pi}{2})}{n\pi} + \left[ \frac{2 \sin(n\pi x)}{n^2 \pi^2} \right]_0^{1/2}$$
$$= -\frac{\cos(\frac{n\pi}{2})}{n\pi} + \frac{2 \sin(\frac{n\pi}{2})}{n^2 \pi^2}$$

Il vient:

$$bn = 2\left[\left[-\frac{2x}{n\pi}\cos(n\pi x)\right]_{0}^{1/2} + \left[\frac{2}{(n\pi)^{2}}\sin(n\pi x)\right]_{0}^{1/2} + \left[-\frac{2(1-x)}{(n\pi)^{2}}\cos(n\pi x)\right]_{1/2}^{1} + \left[-\frac{2}{(n\pi)^{2}}\sin(n\pi x)\right]_{1/2}^{1}\right]$$

En simplifiant les termes, on a :

$$bn = 2\left[ -\frac{1}{n\pi}\cos\left(\frac{n\pi}{2}\right) + \frac{2}{(n\pi)^2}\sin\left(\frac{n\pi}{2}\right) + \frac{1}{n\pi}\cos\left(\frac{n\pi}{2}\right) + \frac{2}{(n\pi)^2}\sin\left(\frac{n\pi}{2}\right) \right]$$
$$bn = \frac{8\sin\left(\frac{\pi n}{2}\right)}{\pi^2 n^2}.$$

Une fois ces coefficients déterminés, la solution complète de l'EDP est :

La solution finale est:

$$u(x,t) = \sum_{n=1}^{\infty} b_n \sin(n\pi x) e^{-n^2 \pi^2 t}$$

Chaque terme de cette série représente un mode de vibration de la barre thermique, et chaque mode décroît exponentiellement au cours du temps.

# 2. Solution numérique : Schéma explicite

## 2.1 Schéma explicite pour l'équation de la chaleur

- Divisons l'intervalle spatial [0,1] en N+1 points avec un pas  $h=\frac{1}{N+1}$ , et notons  $x_i=ih$  pour  $i=0,1,\ldots,N+1$ .
- Le temps est discrétisé avec un pas  $\Delta t = k$ , et  $t^n = nk$  pour  $n = 0, 1, 2, \dots$

Approximons les dérivées comme suit :

- Dérivée temporelle :  $\frac{\partial u}{\partial t} \approx \frac{u_i^{n+1} u_i^n}{k}$ ,
- Dérivée seconde spatiale :  $\frac{\partial^2 u}{\partial x^2} \approx \frac{u_{i-1}^n 2u_i^n + u_{i+1}^n}{h^2}$ .

En insérant ces approximations dans l'équation  $u_t = u_{xx}$ , on obtient :

$$\frac{u_i^{n+1} - u_i^n}{k} = \frac{u_{i-1}^n - 2u_i^n + u_{i+1}^n}{h^2}.$$

Cela donne le schéma explicite :

$$u_i^{n+1} = u_i^n + \lambda \left( u_{i-1}^n - 2u_i^n + u_{i+1}^n \right),$$

où  $\lambda = \frac{k}{h^2}$ .

Pour garantir la stabilité du schéma explicite, la condition CFL (Courant–Friedrichs–Lewy) doit être satisfaite :

$$\lambda = \frac{k}{h^2} \le \frac{1}{2}.$$

# 2.2 Formulation Matricielle du Schéma Explicite pour l'Équation de la Chaleur

Nous considérons l'équation aux dérivées partielles de la forme :

$$u_t(x,t) = u_{xx}(x,t)$$

avec des conditions aux limites de Dirichlet homogènes. Pour une résolution numérique par le schéma en différences finies, nous adoptons un schéma explicite en temps et centré en espace, d'ordre 1 en temps et d'ordre 2 en espace. Le domaine spatial est discrétisé en points  $x_i = ih$  pour  $i = 0, 1, \ldots, M$  et le temps est discrétisé en instants  $t^n = nk$  pour  $n = 0, 1, \ldots, N$ . La mise à jour temporelle s'exprime par :

$$u_i^{n+1} = u_i^n + \lambda(u_{i+1}^n - 2u_i^n + u_{i-1}^n)$$

où  $\lambda = \frac{k}{h^2}$  est le paramètre de stabilité. Pour formuler ce schéma en termes matriciels, nous définissons le vecteur des températures à l'instant  $t^n$  par :

$$\mathbf{u}^n = \begin{bmatrix} u_1^n \\ u_2^n \\ \vdots \\ u_{M-1}^n \end{bmatrix}$$

La matrice tridiagonale A, représentant l'opérateur discret Laplacien avec conditions aux limites de Dirichlet, est :

$$A = \begin{bmatrix} -2 & 1 & 0 & \cdots & 0 \\ 1 & -2 & 1 & \cdots & 0 \\ 0 & 1 & -2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & -2 \end{bmatrix}$$

La formulation matricielle complète pour le schéma explicite est donc :

$$\mathbf{u}^{n+1} = (I + \lambda A)\mathbf{u}^n$$

## 2.3 Implémentation sur Python

Pour faire l'implémentation sur python nous allons utiliser les résultats et le schéma explicite que nous avons fait précédemment. Voici le code de cette implémenation :



Figure 1: Solution schéma explicite

```
_{1} L = 1.0
_{2} T = 0.1
3 N = 100
_{4} M = 5000
5 h = L / (N + 1)
6 k = T / M
7 lambda_ = k / h**2
8 if lambda_ > 0.5:
      print("CFL non respectee (lambda > 0.5).")
10 else:
      print("CFL respectee (lambda <= 0.5).")</pre>
12 diagonal = (1 - 2 * lambda_) * np.ones(N)
13 off_diagonal = lambda_ * np.ones(N - 1)
14 A = np.diag(diagonal) + np.diag(off_diagonal, k=1) + np.diag(off_diagonal, k
      =-1)
15 # Initialisation
16 x = np.linspace(0, L, N + 2)
17 t = np.linspace(0, T, M + 1)
18 u = np.zeros((M + 1, N + 2))
19 f = lambda x: np.sin(np.pi * x) # Exemple : u(x,0) = sin(pi*x)
u[0, 1:-1] = f(x[1:-1])
21 # Schema explicite
22 for n in range(0, M):
      u[n + 1, 1:-1] = A @ u[n, 1:-1] # u[n+1, 0] = 0 conditions limites
24 plt.figure(figsize=(8, 6))
25 for i in range(0, M + 1, M // 10):
      plt.plot(x, u[i, :], label=f"t = {t[i]:.3f}")
27 plt.title("Evolution de la solution avec le schema explicite")
28 plt.xlabel("x")
29 plt.ylabel("u(x, t)")
30 plt.legend()
31 plt.grid()
32 plt.show()
```

# 3. Schéma Implicite pour l'Équation de la Chaleur

Nous cherchons à résoudre l'équation de la chaleur avec un schéma implicite, qui est stable sans condition sur le pas de temps.

### 3.1 Formulation du Schéma implicite

Le schéma d'Euler implicite en temps combiné avec une approximation centrée pour la dérivée seconde en espace est défini par la relation suivante :

$$\frac{u_i^{n+1} - u_i^n}{k} = \frac{u_{i+1}^{n+1} - 2u_i^{n+1} + u_{i-1}^{n+1}}{h^2}$$

où h est le pas spatial et k le pas temporel.

Cette équation peut être réarrangée en :  $-\lambda u_{i-1}^{n+1}+(1+2\lambda)u_i^{n+1}-\lambda u_{i+1}^{n+1}=u_i^n$  où  $\lambda=\frac{k}{h^2}.$ 

#### 3.2 Formulation Matricielle

Le système peut être représenté sous forme matricielle pour faciliter le calcul numérique. Soit  $\mathbf{u}^n$  le vecteur des températures à l'instant  $t^n$  et  $\mathbf{u}^{n+1}$  à l'instant  $t^{n+1}$ , alors :

$$A\mathbf{u}^{n+1} = \mathbf{u}^n$$

où A est une matrice tridiagonale définie comme suit :

$$A = \begin{bmatrix} 1 + 2\lambda & -\lambda & 0 & \cdots & 0 \\ -\lambda & 1 + 2\lambda & -\lambda & \cdots & 0 \\ 0 & -\lambda & 1 + 2\lambda & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 + 2\lambda \end{bmatrix}$$

La résolution de ce système à chaque pas de temps permet de mettre à jour le vecteur de température selon :

$$\mathbf{u}^{n+1} = A^{-1}\mathbf{u}^n$$

## 3.3 Implémentation sur Python



Figure 2: Solution schéma implicite

Le résultat de l'implémentation est visible dans la figure 2, nous avons un résultat similaire a celui de la première figure. Nous pouvons dresser le tableau suivant qui compare les deux méthodes.

| Aspect                  | Méthode explicite                                   | Méthode implicite                             |
|-------------------------|-----------------------------------------------------|-----------------------------------------------|
| Formulation             | $\mathbf{U}^{n+1} = \mathbf{A}\mathbf{U}^n$         | $\mathbf{A}\mathbf{U}^{n+1} = \mathbf{U}^n$   |
| Stabilité               | Condition de stabilité stricte $(\lambda \leq 0.5)$ | Stable pour tout $\lambda$ (inconditionnelle) |
| Résolution              | Directe, sans résolution de<br>système              | Résolution d'un système linéaire à chaque pas |
| Coût de calcul          | Bas pour des petits pas temporels $k$               | Plus élevé à chaque pas de temps              |
| Précision pour $T$ long | Faible (petits $k$ )                                | Bonne (possibilité de grands $k$ )            |
| Applications            | Cas où $k$ est petit (problèmes rapides)            | Cas où $k$ est grand (temps longs)            |

Table 1: Comparaison des méthodes explicite et implicite pour l'équation de la chaleur.

```
33 from scipy.linalg import solve_banded
35 T = 0.1
36 N = 100
37 M = 500
38 h = L / (N + 1)
39 k = T / M
40 \text{ lambda} = k / h**2
41 if lambda_ > 0.5:
      print("lambda > 0.5, schema stable, moins precis")
43 else:
     print("Schema implicate stable.")
45 diagonal = (1 + 2 * lambda_) * np.ones(N)
46 off_diagonal = -lambda_ * np.ones(N - 1)
47 A_banded = np.zeros((3, N)) # Matrice tridiagonale
48 A_banded[0, 1:] = off_diagonal # Diagonale superieure
49 A_banded[1, :] = diagonal  # Diagonale principale
50 A_banded[2, :-1] = off_diagonal # Diagonale inferieure
_{51} x = np.linspace(0, L, N + 2)
52 t = np.linspace(0, T, M + 1)
u = np.zeros((M + 1, N + 2))
54 f = lambda x: np.sin(np.pi * x) # Exemple : u(x,0) = sin(pi*x)
55 u[0, 1:-1] = f(x[1:-1])
56 # Schema implicite
57 for n in range(0, M):
      # Resolution du systeme lineaire A * U^{n+1} = U^n
      u_next = solve_banded((1, 1), A_banded, u[n, 1:-1])
      u[n + 1, 1:-1] = u_next # Mise a jour de la solution
61 plt.figure(figsize=(8, 6))
62 for i in range(0, M + 1, M // 10):
      plt.plot(x, u[i, :], label=f"t = {t[i]:.3f}")
64 plt.title("evolution de la solution avec le schema implicite (matricielle)")
65 plt.xlabel("x")
66 plt.ylabel("u(x, t)")
67 plt.legend()
68 plt.grid()
69 plt.show()
```

# 4. Solution numérique : Schéma de Crank Nicholson

### 4.1 Schéma de Crank Nicholson : Définition

L'équation à résoudre est :

$$u_t(x,t) = u_{xx}(x,t), \quad x \in ]0,1[, t > 0,$$

avec les conditions:

$$u(0,t) = 0$$
,  $u(1,t) = 0$  pour tout  $t > 0$ ,

et une condition initiale:

$$u(x,0) = f(x)$$
.

Nous allons appliquer le schéma de Crank-Nicholson, qui combine les schémas explicite et implicite pour obtenir un schéma numérique stable et précis. Le schéma de Crank-Nicholson s'obtient en faisant la moyenne des termes explicites et implicites pour les dérivées spatiales à l'instant  $t^n$  et  $t^{n+1}$ . Pour le terme explicite (à l'instant  $t^n$ ):

$$u_{xx} \approx \frac{u_{i-1}^n - 2u_i^n + u_{i+1}^n}{h^2}.$$

Pour le terme implicite (à l'instant  $t^{n+1}$ ):

$$u_{xx} \approx \frac{u_{i-1}^{n+1} - 2u_i^{n+1} + u_{i+1}^{n+1}}{h^2}.$$

### 4.1.1 Moyennage des termes explicite et implicite

Le schéma de Crank-Nicholson pour  $u_t = u_{xx}$  s'écrit :

$$\frac{u_i^{n+1} - u_i^n}{k} = \frac{1}{2} \left[ \frac{u_{i-1}^n - 2u_i^n + u_{i+1}^n}{h^2} + \frac{u_{i-1}^{n+1} - 2u_i^{n+1} + u_{i+1}^{n+1}}{h^2} \right].$$

En réarrangeant cette équation, nous obtenons :

$$-\lambda u_{i-1}^{n+1} + (1+2\lambda)u_i^{n+1} - \lambda u_{i+1}^{n+1} = \lambda u_{i-1}^n + (1-2\lambda)u_i^n + \lambda u_{i+1}^n,$$

où  $\lambda = \frac{k}{2h^2}$ .

### 4.2 Ordre: Crank Nicholson

- Le terme  $u_{xx}$  est approximé par une différence centrale spatiale :

$$u_{xx} \approx \frac{u_{i-1} - 2u_i + u_{i+1}}{h^2}.$$

- Cette approximation introduit une erreur de troncature de l'ordre  $O(h^2)$ , ce qui donne un schéma d'ordre **2 en espace**.
- La dérivée temporelle  $u_t$  est approximée par une différence centrée temporelle via une moyenne des termes explicites (au temps  $t^n$ ) et implicites (au temps  $t^{n+1}$ ):

$$\frac{u_i^{n+1} - u_i^n}{k} \approx \frac{1}{2} \left( u_{xx}^n + u_{xx}^{n+1} \right).$$

- Cette approximation introduit une erreur de troncature de l'ordre  $O(k^2)$ , ce qui donne un schéma d'ordre **2 en temps**. Le schéma de Crank-Nicholson est d'ordre **2 en espace**  $(O(h^2))$  Et d'ordre **2 en temps**  $(O(k^2))$ .

### 4.3 Formulation matricielle: Crank Nicholson

Sous forme matricielle, cela devient:

$$\mathbf{A}\mathbf{U}^{n+1} = \mathbf{B}\mathbf{U}^n.$$

avec:

Matrice tridiagonale pour les termes implicites  $(t^{n+1})$ :

$$\mathbf{A} = \begin{bmatrix} 1+2\lambda & -\lambda & 0 & \cdots & 0 \\ -\lambda & 1+2\lambda & -\lambda & \cdots & 0 \\ 0 & -\lambda & 1+2\lambda & \ddots & 0 \\ \vdots & \vdots & \ddots & \ddots & -\lambda \\ 0 & 0 & \cdots & -\lambda & 1+2\lambda \end{bmatrix}.$$

Matrice tridiagonale pour les termes explicites  $(t^n)$ :

$$\mathbf{B} = \begin{bmatrix} 1 - 2\lambda & \lambda & 0 & \cdots & 0 \\ \lambda & 1 - 2\lambda & \lambda & \cdots & 0 \\ 0 & \lambda & 1 - 2\lambda & \ddots & 0 \\ \vdots & \vdots & \ddots & \ddots & \lambda \\ 0 & 0 & \cdots & \lambda & 1 - 2\lambda \end{bmatrix}.$$

Les vecteurs  $\mathbf{U}^n$  et  $\mathbf{U}^{n+1}$  représentent les solutions aux instants  $t^n$  et  $t^{n+1}$ , respectivement :

$$\mathbf{U}^n = [u_1^n, u_2^n, \dots, u_N^n]^T, \quad \mathbf{U}^{n+1} = [u_1^{n+1}, u_2^{n+1}, \dots, u_N^{n+1}]^T.$$

```
70 L = 1.0
71 T = 0.1
72 N = 100
73 \text{ M_explicit} = 5000
74 M_implicit = 500
75 \text{ M_crank} = 500
_{76} h = L / (N + 1) # Pas spatial
77 x = np.linspace(0, L, N + 2) # Points spatiaux (inclut les bords)
78 f = lambda x: np.sin(np.pi * x) # Exemple : u(x,0) = sin(pi*x)
79 # Sch ma explicite
80 # -----
81 k_explicit = T / M_explicit # Pas temporel explicite
82 lambda_explicit = k_explicit / h**2 # Constante explicite
83 if lambda_explicit > 0.5:
     print(" CFL non respect e (lambda > 0.5).")
84
85 else:
86
     print("CFL respect e pour le sch ma explicite (lambda <= 0.5).")</pre>
87 diagonal_explicit = (1 - 2 * lambda_explicit) * np.ones(N)
88 off_diagonal_explicit = lambda_explicit * np.ones(N - 1)
89 A_explicit = np.diag(diagonal_explicit) + np.diag(off_diagonal_explicit, k=1) +
      np.diag(off_diagonal_explicit, k=-1)
90 u_explicit = np.zeros((M_explicit + 1, N + 2))
91 u_{explicit}[0, 1:-1] = f(x[1:-1]) # Condition initiale
92 for n in range(0, M_explicit):
94 # -----
95 # Sch ma implicite
96 # --
97 k_implicit = T / M_implicit # Pas temporel implicite
98 lambda_implicit = k_implicit / h**2  # Constante implicite
99 if lambda_implicit > 0.5:
    print("lambda > 0.5.")
.00
01 else:
    print("Sch ma implicate stable.")
03 diagonal_implicit = (1 + 2 * lambda_implicit) * np.ones(N)
04 off_diagonal_implicit = -lambda_implicit * np.ones(N - 1)
05 A_banded_implicit = np.zeros((3, N))
06 A_banded_implicit[0, 1:] = off_diagonal_implicit
07 A_banded_implicit[1, :] = diagonal_implicit
08 A_banded_implicit[2, :-1] = off_diagonal_implicit
09 u_implicit = np.zeros((M_implicit + 1, N + 2))
10 u_{inplicit}[0, 1:-1] = f(x[1:-1]) # Condition initiale
11 for n in range(0, M_implicit):
    u_next = solve_banded((1, 1), A_banded_implicit, u_implicit[n, 1:-1])
     u_{inplicit[n + 1, 1:-1] = u_{inext}
14 # -----
15 # Schema de Crank-Nicholson
17 k_crank = T / M_crank # Pas temporel pour Crank-Nicholson
18 lambda_crank = k_crank / (2 * h**2)
19 diagonal_crank_A = (1 + 2 * lambda_crank) * np.ones(N)
20 off_diagonal_crank_A = -lambda_crank * np.ones(N - 1)
21 A_banded_crank = np.zeros((3, N))
22 A_banded_crank[0, 1:] = off_diagonal_crank_A
23 A_banded_crank[1, :] = diagonal_crank_A
24 A_banded_crank[2, :-1] = off_diagonal_crank_A
25 diagonal_crank_B = (1 - 2 * lambda_crank) * np.ones(N)
26 off_diagonal_crank_B = lambda_crank * np.ones(N - 1)
27 B_crank = np.diag(diagonal_crank_B) + np.diag(off_diagonal_crank_B, k=1) + np.
      diag(off_diagonal_crank_B, k=-1)
u_{crank} = np.zeros((M_{crank} + 1, N + 2))
u_{crank}[0, 1:-1] = f(x[1:-1]) # Condition initiale
30 for n in range(0, M_crank):
31
      rhs = B_crank @ u_crank[n, 1:-1] # Second membre B * U^n
      u_next = solve_banded((1, 1), A_banded_crank, rhs)
     u_crank[n + 1, 1:-1] = u_next
```

```
Visualisation compareE
37 plt.figure(figsize=(10, 6))
38 time_indices_explicit = np.linspace(0, M_explicit, 10, dtype=int)
39 time_indices_implicit = np.linspace(0, M_implicit, 10, dtype=int)
40 time_indices_crank = np.linspace(0, M_crank, 10, dtype=int)
41 for idx_e, idx_i, idx_c in zip(time_indices_explicit, time_indices_implicit,
      time_indices_crank):
      plt.plot(x, u_explicit[idx_e, :], '--', label=f"Explicite t = {idx_e *
      k_explicit:.3f}")
      plt.plot(x, u_implicit[idx_i, :], '-', label=f"Implicite t = {idx_i *
      k_implicit:.3f}")
      plt.plot(x, u_crank[idx_c, :], '-.', label=f"Crank-Nicholson t = {idx_c *
      k_crank:.3f}")
45 plt.title("Comparaison des sch mas explicite, implicite et Crank-Nicholson")
46 plt.xlabel("x")
47 plt.ylabel("u(x, t)")
48 plt.legend()
49 plt.grid()
50 plt.show()
```

# 5. Comparaison des méthodes

Les avantages et inconvénients de toutes les méthodes sont données ci-dessous :



Figure 3: Comparaison des schémas pour toutes les méthodes

| Schéma          | Ordre en temps | Ordre en espace |
|-----------------|----------------|-----------------|
| Explicite       | 1(O(k))        | $2 (O(h^2))$    |
| Implicite       | 1(O(k))        | $2(O(h^2))$     |
| Crank-Nicholson | $2 (O(k^2))$   | $2 (O(h^2))$    |

Table 2: Ordre de précision des schémas numériques.

Avantage Crank-Nicholson : Il offre une meilleure précision temporelle  $(O(k^2))$  par rapport aux deux autres schémas.

Avantage Crank-Nicholson : Comme le schéma implicite, il est inconditionnellement stable, mais avec une meilleure précision que le schéma implicite.

| Schéma          | Stabilité                                   |
|-----------------|---------------------------------------------|
| Explicite       | Conditionnellement stable $(k/h^2 \le 0.5)$ |
| Implicite       | Inconditionnellement stable                 |
| Crank-Nicholson | Inconditionnellement stable                 |

Table 3: Stabilité des schémas numériques.

| Schéma          | Précision dans le temps                                            |
|-----------------|--------------------------------------------------------------------|
| Explicite       | Faible pour de grands $T$ (petits $k$ nécessaires pour stabilité). |
| Implicite       | Bonne pour de grands $T$ , mais erreurs de diffusion possibles.    |
| Crank-Nicholson | Excellente pour de grands $T$ , sans erreurs de phase.             |

Table 4: Précision dans les simulations à long terme.

Avantage Crank-Nicholson : Il offre une meilleure précision que le schéma implicite, en particulier sur le long terme, sans nécessiter de petits pas temporels comme le schéma explicite.

| Schéma          | Coût                                         |
|-----------------|----------------------------------------------|
| Explicite       | Faible (pas de système linéaire à résoudre). |
| Implicite       | Modéré (système linéaire à chaque pas).      |
| Crank-Nicholson | Modéré (même coût que le schéma implicite).  |

Table 5: Coût de calcul des schémas numériques.

Avantage Crank-Nicholson : Le coût est similaire à celui du schéma implicite, mais avec une meilleure précision.

| Schéma          | Complexité                                                     |
|-----------------|----------------------------------------------------------------|
| Explicite       | Facile                                                         |
| Implicite       | Moyenne (nécessite un solveur pour un système linéaire).       |
| Crank-Nicholson | Moyenne (nécessite aussi un solveur pour un système linéaire). |

Table 6: Complexité d'implémentation.

Avantage Crank-Nicholson : Légèrement plus complexe que le schéma explicite, mais pas plus compliqué que le schéma implicite.

| Schéma          | Condition CFL                              |
|-----------------|--------------------------------------------|
| Explicite       | $k/h^2 \le 0.5$ pour stabilité.            |
| Implicite       | Pas de contrainte (stable pour tout $k$ ). |
| Crank-Nicholson | Pas de contrainte (stable pour tout $k$ ). |

Table 7: Condition CFL des schémas numériques.

Avantage Crank-Nicholson: Comme le schéma implicite, il n'est pas limité par la condition CFL.



Figure 4: Comparaison des schémas pour les méthodes