

Probeklausur Logik

10. Juli 2025

$$\varphi = \mathbf{A}_1 \vee (\neg \mathbf{A}_2 \rightarrow (\mathbf{A}_1 \vee \mathbf{A}_3))$$

A_1	A_2	A_3	$A_1 \vee A_3$	$\neg A_2$	$ eg \mathcal{A}_2 ightarrow (\mathcal{A}_1 ee \mathcal{A}_3)$	φ
0	0	0				
0	0	1				
0	1	0				
0	1	1				
1	0	0				
1	0	1				
1	1	0				
1	1	1				

$$\varphi = \mathbf{A}_1 \vee (\neg \mathbf{A}_2 \rightarrow (\mathbf{A}_1 \vee \mathbf{A}_3))$$

A_1	A_2	A_3	$A_1 \vee A_3$	$\neg A_2$	$ eg abla \mathcal{A}_2 ightarrow (\mathcal{A}_1 ee \mathcal{A}_3)$	φ
0	0	0	0	1	0	0
0	0	1	1	1	1	1
0	1	0	0	0	1	1
0	1	1	1	0	1	1
1	0	0	1	1	1	1
1	0	1	1	1	1	1
1	1	0	1	0	1	1
1	1	1	1	0	1	1

- b) $\neg A_2 \rightarrow (A_1 \lor A_3)$ oder $A_1 \lor A_2 \lor A_3$
- c) Ja. Nach Koinzidenzlemma ist die Belegung von A_4 für φ nicht relevant. Wir finden die Interpretation in der sechsten Zeile.

- Was sind Hornformeln?
- Wie kann man überprüfen, ob φ äquivalent zu einer Hornformel ist?

Hornformel: Formel in KNF, wobei jedes Konjunktionsglied maximal ein positives Literal enthält.

Wie kann man überprüfen ob φ äquivalent zu einer Hornformel ist?

- mittels Schnitteigenschaft: Wenn $I_1, I_2 \in Mod(\varphi)$ dann auch $I_1 \cap I_2 \in Mod(\varphi)$
- φ äquivalent zu einer Hornformel gdw. φ besitzt die Schnitteigenschaft

Hat $A_1 \vee (\neg A_2 \to (A_1 \vee A_3))$ die Schnitteigenschaft? Nein! Z.b. $\{A_1\}$ und $\{A_2\}$ sind Modelle, aber $\{A_1\} \cap \{A_2\} = \emptyset$ ist kein Modell.

D.h. $A_1 \lor (\neg A_2 \to (A_1 \lor A_3))$ ist nicht äquivalent zu einer Hornformel.

– Wann gilt $\varphi \models \psi$? Wenn $Mod(\varphi) \subseteq Mod(\psi)$

- Wann gilt $\varphi \models \psi$? Wenn $Mod(\varphi) \subseteq Mod(\psi)$
- Wie können wir Modelle von φ und ψ bestimmen? Ablesen: φ ist in DNF, d.h. $Mod(\varphi) = \{\{A_2\}, \{A_2, A_3\}\}$ und ψ ist in KNF, d.h. folgende Interpretationen sind *keine* Modelle: $\{A_2, A_3\}, \{A_1\}, \emptyset \not\in Mod(\psi)$

- Wann gilt $\varphi \models \psi$? Wenn $Mod(\varphi) \subseteq Mod(\psi)$
- Wie können wir Modelle von φ und ψ bestimmen? Ablesen: φ ist in DNF, d.h. $Mod(\varphi) = \{\{A_2\}, \{A_2, A_3\}\}$ und ψ ist in KNF, d.h. folgende Interpretationen sind *keine* Modelle: $\{A_2, A_3\}, \{A_1\}, \emptyset \not\in Mod(\psi)$
- Gilt $\varphi \models \psi$? Nein, da $\{A_2, A_3\} \in Mod(\varphi)$ aber $\{A_2, A_3\} \not\in Mod(\psi)$.

Gilt
$$\neg (A_1 \land \neg A_2) \land (\neg A_1 \rightarrow A_2) \land \neg A_2 \models A_3$$
?

Ja, da $\neg (A_1 \wedge \neg A_2) \wedge (\neg A_1 \to A_2) \wedge \neg A_2$ unerfüllbar ist.

Wie können wir die Interpolante zweier Formeln φ und ψ bestimmen?

Wie können wir die Interpolante zweier Formeln φ und ψ bestimmen?

for
$$A_i \in s(\varphi) \setminus s(\psi)$$
 do $\bot \varphi \leftarrow \varphi[\top/A_i] \lor \varphi[\bot/A_i]$

$$\varphi = (\neg A_3 \to (\neg A_1 \land \neg A_2)) \land (A_3 \to (A_1 \leftrightarrow A_2))$$

$$s(\varphi) \setminus s(\psi) = \{A_3\}$$

$$\xi = \varphi[\bot/A_3] \lor \varphi[\top/A_3]$$

$$= \left((\neg \bot \to (\neg A_1 \land \neg A_2)) \land (\bot \to (A_1 \leftrightarrow A_2)) \right)$$

$$\lor \left((\neg \top \to (\neg A_1 \land \neg A_2)) \land (\top \to (A_1 \leftrightarrow A_2)) \right)$$

$$\equiv (\neg \bot \to (\neg A_1 \land \neg A_2)) \lor (\top \to (A_1 \leftrightarrow A_2))$$

$$\equiv (\neg A_1 \land \neg A_2) \lor (A_1 \leftrightarrow A_2)$$

Allgemeines Vorgehen bei strukturellen Induktionen:

Allgemeines Vorgehen bei strukturellen Induktionen:

IA: Zeigt die Aussage für atomare Formeln.

IV: Nehmt an, dass die Aussage für Formeln φ und ψ gelten.

Allgemeines Vorgehen bei strukturellen Induktionen:

für
$$\mathcal{X}$$

IA: Zeigt die Aussage für atomare Formeln.

$$A \in \mathcal{A}$$

IV: Nehmt an, dass die Aussage für Formeln φ und ψ gelten.

$$\varphi \oplus \psi$$

Allgemeines Vorgehen bei strukturellen Induktionen:

für aussagenlogische Formeln

IA: Zeigt die Aussage für atomare Formeln.

$$A \in \mathcal{A}$$

IV: Nehmt an, dass die Aussage für Formeln φ und ψ gelten.

$$\neg \varphi, \ \varphi \lor \psi, \ \mathsf{und} \ \varphi \land \psi$$

Allgemeines Vorgehen bei strukturellen Induktionen:

für prädikatenlogische Formeln

IA: Zeigt die Aussage für atomare Formeln.

$$P(t_1,\ldots,t_n)$$
 $t_1=t_2$

- IV: Nehmt an, dass die Aussage für Formeln φ und ψ gelten.
- IS: Zeigt die Aussage für Formeln, die φ und ψ mit einem Junktor verknüpfen.

$$\neg \varphi$$
, $\varphi \lor \psi$, und $\varphi \land \psi$, sowie $\exists x \varphi$ und $\forall x \varphi$.

Allgemeines Vorgehen bei strukturellen Induktionen:

für
$$\mathcal{X}$$

IA: Zeigt die Aussage für atomare Formeln.

$$A \in \mathcal{A}$$

IV: Nehmt an, dass die Aussage für Formeln φ und ψ gelten.

$$\varphi \oplus \psi$$

Sei I(A) = 0 für alle $A \in A$.

- IA: Für alle $\varphi = A$ mit $A \in \mathcal{A}$ gilt $I(\varphi) = I(A) = 0$ nach Definition von I.
- IV: Seien $\varphi, \psi \in \mathcal{X}$ zwei Formeln für die gilt, dass $I(\varphi) = I(\psi) = 0$.
- IS: Für $\varphi \oplus \psi$ gilt:

$$\begin{split} \textit{I}(\varphi \oplus \psi) = 1 \iff & \text{ entweder } \textit{I}(\varphi) = 1 \text{ oder } \textit{I}(\psi) = 1 \\ & \iff & \text{ entweder } 0 = \textit{I}(\varphi) = 1 \text{ oder } 0 = \textit{I}(\psi) = 1. \end{split}$$

Da 0=1 nicht gilt, gilt die dritte Aussage nicht. Somit gilt $\textit{I}(\varphi\oplus\psi)\neq 1$, d.h. $\textit{I}(\varphi\oplus\psi)=0$.

Existiert in \mathcal{X} eine Formel äquivalent zu $\neg A_1$?

Existiert in \mathcal{X} eine Formel äquivalent zu $\neg A_1$?

Nein. Sei *I* die Interpretation, die alle Atome zu falsch auswertet.

Es gilt $\mathit{I}(\neg \mathit{A}_1) = 1$ und wir wissen, dass für alle Formeln φ in $\mathcal X$

$$I(\varphi) = 0.$$

Probeklausur Logik | 4. Prädikatenlogik: Modelle, Normalformen

$$\varphi = \exists y \bigg(R(x,y) \land \exists z R(y,z) \bigg) \rightarrow \exists y \bigg(P(y) \land R(y,x) \bigg).$$

Sei a folgende Struktur:

- $U^{\mathfrak{A}} = \{a, b, c, d\},\$
- $R^{\mathfrak{A}} = \{(a,b), (b,c), (c,d)\},\$
- $P^{\mathfrak{A}} = \{a, b, c\}.$

Sei
$$\beta(\mathbf{x}) = \beta(\mathbf{y}) = \beta(\mathbf{z}) = \mathbf{b}$$
.

- 1. Ist (\mathfrak{A}, β) ein Modell von φ ?
- 2. Geben Sie eine Belegung γ an, sodass (\mathfrak{A}, γ) kein Modell von φ ist.
- 3. Überführen Sie φ in Negationsnormalform.

Probeklausur Logik | 4. Prädikatenlogik: Modelle, Normalformen

Ja, da

$$(\mathfrak{A}, \beta_{[\mathbf{y}\mapsto \mathbf{a}]})(\mathbf{P}(\mathbf{y}) \wedge \mathbf{R}(\mathbf{y}, \mathbf{x})) = 1.$$

Somit gilt

$$(\mathfrak{A}, \beta)(\exists y (P(y) \land R(y, x))) = 1$$

und (\mathfrak{A}, β) ist ein Modell von φ .

 $-\gamma(x)=\gamma(y)=\gamma(z)=a$, da a mit b in Relation steht und b mit c, aber es kein Element $u\in U^{\mathfrak{A}}$ gibt, sodass $(u,a)\in R^{\mathfrak{A}}$.

Probeklausur Logik | 4. Prädikatenlogik: Modelle, Normalformen

$$\varphi \equiv \neg \exists y (R(x,y) \land \exists z R(y,z)) \lor \exists y (P(y) \land R(y,x))$$

$$\equiv \forall y \neg (R(x,y) \land \exists z R(y,z)) \lor \exists y (P(y) \land R(y,x))$$

$$\equiv \forall y (\neg R(x,y) \lor \neg \exists z R(y,z)) \lor \exists y (P(y) \land R(y,x))$$

$$\equiv \forall y (\neg R(x,y) \lor \forall z \neg R(y,z)) \lor \exists y (P(y) \land R(y,x))$$

Die Formel ist nicht bereinigt, da *y* mehrmals gebunden wird.

Probeklausur Logik | 5. Resolution

Wendet den Resolutionsalgorithmus an:

$$\{\{\textbf{A}_1,\textbf{A}_2\},\{\textbf{A}_1,\neg \textbf{A}_2,\textbf{A}_3\},\{\neg \textbf{A}_1,\textbf{A}_3\},\{\neg \textbf{A}_1,\neg \textbf{A}_3\},\{\neg \textbf{A}_2,\neg \textbf{A}_3\}\}.$$

Probeklausur Logik | 5. Resolution

R(z, y, g(y, z))

[z/c][y/f(v)]

Wendet den Unifikationsalgorithmus an:

und

R(c, f(v), g(f(v), v)).

| R(c, f(v), g(f(v), c)) | R(c, f(v), g(f(v), v))

 $[z/c][y/f(v)][v/c] \mid R(c,f(c),g(f(c),c)) \mid R(c,f(c),g(f(c),c))$

Probeklausur Logik | 5. Resolution

Bildet eine Resolvente:

$$\{P(z, f(y)), R(z, y, g(y, z)), \neg Q(z, z)\}$$

 $\{\neg R(c, f(v), g(f(v), v)), Q(v, f(v))\}$

Resolvente:

$$\{P(c,f(f(c))),\neg Q(c,c),Q(c,f(c))\}.$$

Probeklausur Logik | 6. Prädikatenlogik: Äquivalenzen

Sei $x \notin \text{frei}(\varphi)$ und $y \notin \text{frei}(\psi)$. Zeigt, dass

$$\forall \mathbf{x} \exists \mathbf{y} (\varphi \wedge \psi) \equiv \exists \mathbf{y} \forall \mathbf{x} (\varphi \wedge \psi).$$

Es gilt ebenso $x \notin \text{frei}(\exists y \varphi)$ und $y \notin \text{frei}(\forall x \psi)$.

$$\forall \mathbf{x} \exists \mathbf{y} (\varphi \wedge \psi) \equiv \forall \mathbf{x} (\exists \mathbf{y} \varphi \wedge \psi)$$

$$\equiv \forall \mathbf{x} (\psi \wedge \exists \mathbf{y} \varphi)$$

$$\equiv (\forall \mathbf{x} \psi \wedge \exists \mathbf{y} \varphi)$$

$$\equiv (\exists \mathbf{y} \varphi \wedge \forall \mathbf{x} \psi)$$

$$\equiv \exists \mathbf{y} (\varphi \wedge \forall \mathbf{x} \psi)$$

$$\equiv \exists \mathbf{y} (\forall \mathbf{x} \psi \wedge \varphi)$$

$$\equiv \exists \mathbf{y} \forall \mathbf{x} (\psi \wedge \varphi)$$

$$\equiv \exists \mathbf{y} \forall \mathbf{x} (\varphi \wedge \psi)$$

Probeklausur Logik | 6. Prädikatenlogik: Äquivalenzen

Beweisen oder widerlegen Sie: Es existiert ein erfüllbarer prädikatenlogischer Satz φ dessen Modelle alle überabzählbar sind.

Probeklausur Logik | 6. Prädikatenlogik: Äquivalenzen

Beweisen oder widerlegen Sie: Es existiert ein erfüllbarer prädikatenlogischer Satz φ dessen Modelle alle überabzählbar sind.

Gilt nicht. Angenommen φ ist ein prädikatenlogischer Satz, der nur überabzählbare Modelle besitzt. Dann existiert nach Löwenheim-Skolem auch ein abzählbares Modell. (Widerspruch)

Probeklausur Logik |

Überprüft, dass bei euch im Moodle mindestens 60 Punkte eingetragen sind.

Klausur am 25. Juli 8:30 - 9:30.

Probeklausur Logik |

Noch Fragen?

Moodle-Forum schoenherr@informatik.uni-leipzig.de