Solutions série 3

Exercice 2. On considere

$$\mathbb{Z}^2 = \{ (m, n), \ m, n \in \mathbb{Z} \}.$$

Montrer que \mathbb{Z}^2 est un sous-groupe de $(\mathbb{R}^2, +)$.

1. Soient $a, b, c, d \in \mathbb{Z}$, montrer que l'application

$$\phi: (m,n) \in \mathbb{Z}^2 \to (am+bn,cm+dn)$$

est un endomorphisme de $(\mathbb{Z}^2, +)$.

- 2. Montrer que tout endomorphisme de $(\mathbb{Z}^2, +)$ est de la forme ci-dessus.
- 3. Montrer que si $ad-bc \neq 0$ alors ϕ est injectif (on pourra considerer l'application similaire dans \mathbb{R}^2).
- 4. Montrer que si $ad-bc=\pm 1$ alors ϕ est un isomorphisme de groupes et donner la reciproque .
- 5. Montrer que si $ad bc \neq \pm 1$ alors ϕ n'est pas un isomorphisme.

Solution 2. Let $(m_1, n_1), (m_2, n_2) \in \mathbb{Z}^2$. Then $(m_1, n_1) - (m_2, n_2) = (m_1 - m_2, n_1 - n_2) \in \mathbb{Z}^2$, since $m_1 - m_2$ and $n_1 - n_2$ are both integers if m_1, n_1, m_2, n_2 are integers. Thus \mathbb{Z}^2 is a subgroup of \mathbb{R}^2 .

1. Let $(m_1, n_1), (m_2, n_2) \in \mathbb{Z}^2$. Then:

$$\phi((m_1, n_1) + (m_2, n_2))
= \phi(m_1 + m_2, n_1 + n_2)
= (a(m_1 + m_2) + b(n_1 + n_2), c(m_1 + m_2) + d(n_1 + n_2))
= ((am_1 + bn_1) + (am_2 + n_2), (cm_1 + dn_1) + (cm_2 + dn_2))
= (am_1 + bn_1, cm_1 + dn_1) + (am_2 + n_2, cm_2 + dn_2)
= \phi(m_1, n_1) + \phi(m_2, n_2).$$
(1.4)

Thus ϕ is a morphism. We used rules of addition in \mathbb{Z}^2 in order to obtain (1.1), (1.3), and the definition of ϕ in order to obtain (1.2), (1.4).

2. Let $\phi: \mathbb{Z}^2 \to \mathbb{Z}^2$ be any endomorphism. Denote $\phi(1,0) =: (A,C)$ and $\phi(0,1) =: (B,D)$. For every $(m,n) \in \mathbb{Z}^2$ such that m,n>0 we have :

$$\phi(m,n) = \phi(\underbrace{(1,0) + (1,0) + \ldots + (1,0)}_{m} + \underbrace{(0,1) + (0,1) + \ldots + (0,1)}_{n})$$

$$= \underbrace{\phi(1,0) + \phi(1,0) + \ldots + \phi(1,0)}_{m} + \underbrace{\phi(0,1) + \phi(0,1) + \ldots + \phi(0,1)}_{n}$$

$$= \underbrace{(A,C) + (A,C) + \ldots + (A,C)}_{m} + \underbrace{(B,D) + (B,D) + \ldots + (B,D)}_{n}$$

$$= \underbrace{(A + A + \ldots + A, C + C + \ldots + C)}_{m} + \underbrace{(B + B + \ldots + B, D + \ldots + D)}_{n}$$

$$= (Am, Cm) + (Bn, Dn)$$

$$= (Am + Bn, Cm + Dn).$$

Note that $\phi(0,0) = (0,0) = (A0 + B0, C0 + D0)$ since every morphism maps the neutral element to the neutral element. We also have

$$\phi(-1,0) + \phi(1,0) = \phi(0,0)$$

$$\Rightarrow \phi(-1,0) + (A,C) = (0,0)$$

$$\Rightarrow \phi(-1,0) = (0,0) - (A,C)$$

$$\Rightarrow \phi(-1,0) = (-A,-C),$$

and similarly $\phi(0,-1) = (-B,-D)$. Now we can use the same technique as for m > 0, n > 0 to verify that $\phi(m,n) = (Am + Bn, Cm + Dn)$ holds for all the remaining combination of signs of m and n.

3. Let $ad - bc \neq 0$. In order to prove that ϕ is an injection, it suffices to show $\ker(\phi) = \{(0,0)\}$, since (0,0) is the neutral element in $(\mathbb{Z}^2,+)$. Suppose that $(m,n) \in \mathbb{Z}^2$ is such that $\phi(m,n) = (0,0)$, i.e. (am + bn, cm + dn) = (0,0). Then the numbers m and n make a solution of the 2×2 linear system of equations

$$\begin{cases} am + bn = 0, \\ cm + dn = 0. \end{cases}$$

This system has a unique solution if and only if $\begin{vmatrix} a & b \\ c & d \end{vmatrix} \neq 0$, and this is precisely iff $ad - bc \neq 0$. In that case, the unique solution is (m, n) = (0, 0), which implies $\ker(\phi) = \{(0, 0)\}.$

4. Suppose that ad-bc=1, and let $\psi(m,n):=(dm-bn,-cm+an)$. The function $\psi:\mathbb{Z}^2\to\mathbb{Z}^2$ is a morphism and

$$(\psi \circ \phi)(m, n) = \psi(am + bn, cm + dn)$$

$$= (d(am + bn) - b(cm + dn), -c(am + bn) + a(cm + dn))$$

$$= ((ad - bc)m, (ad - bc)n)$$

$$= (m, n),$$

for all $(m, n) \in \mathbb{Z}^2$. Similarly, $\phi \circ \psi = id$, and thus ϕ is invertible with $\phi^{-1} = \psi$. If ad - bc = -1, the same holds for $\psi(m, n) := (-dm + bn, cm - an)$.

How did we come up with the formulae for ψ ? Let us rewrite $\phi(m, n)$ in a slightly different form, where we replace an ordered pair (m, n) with a 2d-vector:

$$\phi\left(\left[\begin{array}{c} m \\ n \end{array}\right]\right) = \left[\begin{array}{c} am + bn \\ cm + dn \end{array}\right] = \left[\begin{array}{c} a & b \\ c & d \end{array}\right] \left[\begin{array}{c} m \\ n \end{array}\right].$$

Composition of two morphisms then amounts to matrix multiplication, and the inverse of a morphism can be computed via the matrix inverse:

$$\left[\begin{array}{cc} a & b \\ c & d \end{array}\right]^{-1} = \frac{1}{ad - bc} \left[\begin{array}{cc} d & -b \\ -c & a \end{array}\right].$$

5. Let M = ad-bc be such that $M \neq \pm 1$. If M = 0, by using the solution of subtask 3., we can see that ϕ is not injective, and thus not an isomorphism. Suppose that |M| > 1, and that ϕ is an isomorphism. Since ϕ is a surjection, there exists $(m_1, n_1) \in \mathbb{Z}^2$ such that $\phi(m_1, n_1) = (am_1 + bn_1, cm_1 + dn_1) = (0, 1)$. Thus $cm_1 + dn_1 = 1$, and Bezout's theorem implies GCD(c, d) = 1. On the other hand, there also exists $(m_2, n_2) \in \mathbb{Z}^2$ such that $\phi(m_2, n_2) = (am_2 + bn_2, cm_2 + dn_2) = (1, 0)$, i.e.

$$am_2 + bn_2 = 1,$$
 (1.5)

$$cm_2 + dn_2 = 0. (1.6)$$

Multiply (1.6) with a, and subtract (1.5) multiplied with c to get

$$(ad - bc)n_2 = -c$$

from which we conclude that c is divisible by M. Similarly, multiply (1.6) with b, and subtract (1.5) multiplied with d to get

$$(ad - bc)m_2 = d,$$

from which we conclude that d is also divisible by M. This is a contradiction since GCD(c,d) = 1. Thus ϕ cannot be an isomorphism if $ad - bc \neq 1$.

Exercice 3. Une isometrie du plan \mathbb{R}^2 est une application $\phi: \mathbb{R}^2 \to \mathbb{R}^2$ telle que

$$\forall P, Q \in \mathbb{R}^2, \ d(\phi(P), \phi(Q)) = d(P, Q)$$

ou d(., .) est la distance euclidienne usuelle dans \mathbb{R}^2 . On admet que l'ensemble Isom(\mathbb{R}^2) des isometries du plan forme un groupe pour la composition des applications.

En utilisant le fait (admis) qu'une isometrie $\phi: \mathbb{R}^2 \to \mathbb{R}^2$ qui laisse trois points nonalignes P_1, P_2, P_3 invariants ($\phi(P_i) = P_i, i = 1, 2, 3$) est l'identité $\mathrm{Id}_{\mathbb{R}^2}$, montrer que l'ensemble des isometries $\mathrm{Isom}_F(\mathbb{R}^2) = \{\phi \in \mathrm{Isom}(\mathbb{R}^2), \phi(F) = F\}$ qui preservent la figure ci-dessous est le groupe des rotations de centre (0,0) et d'angle un multiple de 60° .

Pour cela on pourra considerer une telle isometrie, ϕ , considerer les valeurs possibles des points $A_6, 0, A_3, B_6$ et montrer qu'il existe une rotation comme ci-dessus qui envoie ces points sur les meme images.

Solution 3. We make several observations in order to prove the statement of the exercise.

Observation 1: An isometry maps line segments to line segments of the same length. Let \overline{AB} be a given line segment. Then $P \in \overline{AB}$ if and only if d(A,P)+d(P,B)=d(A,B) (the triangle inequality). By using this and the fact that ϕ is an isometry, we have $d(\phi(A),\phi(P))+d(\phi(P),\phi(B))=d(A,P)+d(P,B)=d(A,B)=d(\phi(A),\phi(B))$. Thus, $\phi(P)\in \overline{\phi(A)\phi(B)}$. Conversely, if $Q\in \overline{\phi(A)\phi(B)}$, then $\phi^{-1}(Q)\in \overline{AB}$ since ϕ^{-1} is an isometry as well. Therefore, $\phi(\overline{AB})=\overline{\phi(A)\phi(B)}$.

Observation 2 : ϕ permutes the tuples $(\overline{A_1A_4}, \overline{A_2A_5}, \overline{A_3A_6})$ and $(A_1, A_2, A_3, A_4, A_5, A_6)$. Let F denote the entire figure. From Observation 1, $\phi(\overline{A_1A_4}) \subseteq F$ is a line segment of the same length. There exist only three line segments in F of this length, and these are $\overline{A_1A_4}, \overline{A_2A_5}, \overline{A_3A_6}$. Thus $\phi(\overline{A_1A_4}) \in \{\overline{A_1A_4}, \overline{A_2A_5}, \overline{A_3A_6}\}$, and the endpoints $\phi(A_1), \phi(A_4)$ lie in the set $\{A_1, A_2, A_3, A_4, A_5, A_6\}$. The same holds for $\phi(\overline{A_2A_5})$ and $\phi(\overline{A_3A_6})$ and the endpoints A_2, A_5, A_3, A_6 . Finally, note that $\phi(A_i) \neq \phi(A_j)$ for all $i \neq j$ since $d(\phi(A_i), \phi(A_j)) = d(A_i, A_j) > 0$. Thus, $(\phi(A_1), \phi(A_2), \phi(A_3), \phi(A_4), \phi(A_5), \phi(A_6))$ is a permutation of $(\overline{A_1A_4}, \overline{A_2A_5}, \overline{A_3A_6})$.

Observation 3: $\phi(O) = O$. Since $O \in \overline{A_1 A_4} \cap \overline{A_2 A_5} \cap \overline{A_3 A_6}$, we have that $\phi(O) \in \phi(\overline{A_1 A_4}) \cap \phi(\overline{A_2 A_5}) \cap \phi(\overline{A_3 A_6}) = \overline{A_1 A_4} \cap \overline{A_2 A_5} \cap \overline{A_3 A_6}$, where we used Observation 2 for the last equality. The only point in $\overline{A_1 A_4} \cap \overline{A_2 A_5} \cap \overline{A_3 A_6}$ is O, and thus $\phi(O) = O$.

Observation 4: If $\phi(A_1) = A_i$, then $\phi(B_1) = B_i$. Let $\phi(A_1) = A_i$. Since $d(\phi(B_1), \phi(A_1)) = d(B_1, A_1)$, the point $\phi(B_1)$ lies on the circle k_1 of radius $d(B_1, A_1)$ with the center at $\phi(A_1) = A_i$. Similarly, since $d(\phi(B_1), \phi(O)) = d(B_1, O)$, the point $\phi(B_1)$ lies on the circle k_2 of radius $d(B_1, 0)$ with the center at $\phi(O) = O$. The circles k_1 and k_2 intersect at two points: B_i and B_{i-1} . If $\phi(B_1) = B_{i-1}$ then $\phi(\overline{A_1B_1}) = \overline{A_iB_{i-1}}$, which cannot hold true since $\overline{A_1B_1} \subseteq F$ and $\overline{A_iB_{i-1}} \not\subseteq F$. Thus $\phi(B_1) = B_i$.

Observation 5: ϕ is a rotation by a multiple of 60° . Assume that $\phi(A_1) = A_i$. Then $\phi(B_1) = B_i$ and $\phi(O) = O$. Denote with r the rotation by $60^{\circ} \cdot (i-1)$ degrees around O, and let $\psi = r^{-1} \circ \phi$. Then $r(A_1) = A_i$, $r(B_1) = B_i$, r(O) = O, from which we have $\psi(A_1) = A_1$, $\psi(B_1) = B_1$, $\psi(O) = O$. Since ψ is an isometry (a composition of two isometries) with three fixed ("invariant") points, it has to be equal to identity. Therefore, $\phi = r$.

Exercice 5 (**). On rappelle (voir le cours) que etant donne un groupe (G, .) et un element $g \in G$, l'application de conjugaison

$$\operatorname{Ad}_g: \begin{matrix} G & \mapsto & G \\ g' & \mapsto & \operatorname{Ad}_g(g') = g.g'.g^{-1} \end{matrix}$$

est un morphisme de groupe bijectif (ie. un isomorphisme) et sa reciproque est $\mathrm{Ad}_{q^{-1}}$.

En d'autres termes $Ad_g \in Isom_{Gr}(G)$.

Montrer que l'application qui en resulte

$$\operatorname{Ad}_{\cdot}: \begin{matrix} G & \mapsto & \operatorname{Isom}(G) \\ g & \mapsto & \operatorname{Ad}_{g} \end{matrix}$$

est un morphisme de groupes de (G,.) vers le groupe des isomorphismes de G, $(\operatorname{Isom}(G), \circ)$.

1. Montrer que le noyau de cette application est le sous-ensemble de G donne par

$$Z_G = \{ g \in G, \ \forall g' \in G, \ g.g' = g'.g \}.$$

C'est a dire l'ensemble des elements de G qui commutent avec tous les elements de g.

2. Montrer que c'est un sous-groupe : on l'appelle le centre de G.

Solution 5. In order to make more clear what we need to show, let us introduce notation $Ad(g) = Ad_g$. The task is to demonstrate that $Ad : G \to Isom(G)$ is a morphism, i.e. $Ad(g.h) = Ad(g) \circ Ad(h)$, for all $g, h \in G$. Take any two elements $g, h \in G$. To show that functions Ad(g.h) and $Ad(g) \circ Ad(h)$ coincide, we need to show that they coincide at each element of their domain, which is G. For every $x \in G$ we have:

$$(\mathrm{Ad}(g.h))(x) = \mathrm{Ad}_{g.h}(x) = (g.h).x.(g.h)^{-1} = g.h.x.h^{-1}.g^{-1}$$

$$= g.(h.x.h^{-1}).g^{-1} = g.\mathrm{Ad}_h(x).g^{-1} = \mathrm{Ad}_g(\mathrm{Ad}_h(x)) = (\mathrm{Ad}_g \circ \mathrm{Ad}_h)(x)$$

$$= (\mathrm{Ad}(g) \circ \mathrm{Ad}(h))(x).$$

- 1. The neutral element in Isom(G) is the identity mapping. Let $g \in \text{ker}(\text{Ad})$. Then $\text{Ad}_g = id$, and for each $x \in G$ it holds that $\text{Ad}_g(x) = id(x)$, i.e. $g.x.g^{-1} = x$. Multiplying by g from the right, we have g.x = x.g, and thus $g \in Z_G$. Conversely, let $g \in Z_G$. Then it holds that g.x = x.g for all $x \in G$, from which we have $g.x.g^{-1} = x$, i.e. $\text{Ad}_g(x) = id(x)$, so $\text{Ad}_g = id$ and $g \in \text{ker}(\text{Ad})$.
- 2. Take any $g, h \in Z_G$. Then $g.h^{-1} \in Z_G$ since for all $x \in G$ we have

$$(g.h^{-1}).x = g.(h^{-1}.x)$$

$$= (h^{-1}.x).g$$

$$= (x^{-1}.h)^{-1}.g$$

$$= (h.x^{-1})^{-1}.g$$

$$= x.h^{-1}.g$$

$$= x.(g.h^{-1}).$$
(1.9)

To get (1.7) and (1.9), respectively, we used $g \in Z_G$, so it commutes with any element of G including $h^{-1}.x$ and h^{-1} , respectively. To get (1.8), we used $h \in Z_G$, so it commutes with any element of G including x^{-1} .