JOSH SANYAL

☐ 408-816-5343 | ☑ jsanyal@stanford.edu | ♠ joshsanyal | ऻ josh-sanyal

EDUCATION

Stanford University 06/2024 (expected)

B.S. in Computer Science (Artificial Intelligence Track), Minor in Mathematics

GPA: 4.19/4.0

- *Relevant Coursework*: Programming Abstractions, Computer Organization and Systems, Discrete Mathematics, Machine Learning (Coursera), Natural Language Processing with Deep Learning (Audit)
- Organizations: TreeHacks Hackathon Organizer (Technology Team), Association for Computing Machinery

EXPERIENCE

Research Intern Mayo Clinic's Banerjee Lab

06/2019-Present

- 2019-20: Developed encoded representations of unstructured clinical notes through weighted word embeddings
- 2019-20: Trained a sequential deep learning model to predict cancer recurrence using EHR data, proposing a novel weak supervision methods to overcome severe class imbalance and improve performance by 12%
- 2020-21: Automated the post-market surveillance of adverse events using clinical notes by training and externally validating a machine learning model to detect cases of insulin pump failure as a test case
- 2020-21: Developed a model to detect mass effect from CT head reports for mortality prediction

Research Intern

Stanford Quantitative Imaging and AI Lab

06/2018-08/2019

- Developed an automated pipeline that takes input multi-parametric MR images, segments the prostate gland, and aligns images in the same image-space using shape-based registration
- Trained a pixel-level deep learning model that detects prostate tumors and quantifies aggressiveness with improved accuracy and explainability over previous state-of-the-art model

SELECTED PUBLICATIONS

- Sanyal, J., Rubin, D., & Banerjee, I. (2021). A weakly supervised model for the automated detection of adverse events using clinical notes. *Journal of Biomedical Informatics*, 103969.
- Sanyal, J., Tariq, A., Kurian, A. W., Rubin, D., & Banerjee, I. (2021). Weakly supervised temporal model for prediction of breast cancer distant recurrence. *Scientific Reports*, 11(1), 1-11.
- Sanyal, J., Banerjee, I., Hahn, L., & Rubin, D. (2020). An Automated Two-step Pipeline for Aggressive Prostate Lesion Detection from Multi-parametric MR Sequence. *AMIA Joint Summits on Translational Science*, 552–560.

PROJECTS

HomesteadHacks Website

- Created and designed the website with live schedule, embedded registration forms, workshop content, prizes
- Supported user accounts for solving algorithmic and CTF-style problems with a live leaderboard

Online Mafia Game

- Implemented the popular social deduction game, Mafia, with custom roles and win conditions
- Incorporated networking to host centralized multi-device games with chat-based communication

TECHNICAL SKILLS

Languages: C/C++, Java, Python, MATLAB, HTML/CSS, JavaScript, PHP, Octave **Frameworks/Libraries**: TensorFlow, Keras, PyTorch, Gensim, NLTK, Matplotlib

ACHIEVEMENTS

International Science and Engineering Fair Finalist	2020
 3rd place in Mathematics and Computer Science at National JSHS 	2021
 Poster Presenter at the AMIA Informatics Summit 	2019
USA Computing Olympiad Gold Division	2019
• 5-time AIME Qualifier (highest score 9)	2017–21