

Classification: Logistic Regression

Machine Learning: Jordan Boyd-Graber University of Colorado Boulder

Slides adapted from Hinrich Schütze and Lauren Hannah

What are we talking about?

- Statistical classification: p(y|x)
- Classification uses: ad placement, spam detection
- Building block of other machine learning methods

Logistic Regression: Definition

- Weight vector β_i
- Observations X_i
- "Bias" β_0 (like intercept in linear regression)

$$P(Y=0|X) = \frac{1}{1 + \exp\left[\beta_0 + \sum_i \beta_i X_i\right]} \tag{1}$$

$$P(Y=1|X) = \frac{\exp\left[\beta_0 + \sum_i \beta_i X_i\right]}{1 + \exp\left[\beta_0 + \sum_i \beta_i X_i\right]}$$
(2)

For shorthand, we'll say that

$$P(Y=0|X) = \sigma(-(\beta_0 + \sum_i \beta_i X_i))$$
 (3)

$$P(Y = 1|X) = 1 - \sigma(-(\beta_0 + \sum_i \beta_i X_i))$$
 (4)

• Where $\sigma(z) = \frac{1}{1 + \exp[-z]}$

What's this "exp" doing?

- $\exp[x]$ is shorthand for e^x
- e is a special number, about 2.71828
 - e^x is the limit of compound interest formula as compounds become infinitely small
 - o It's the function whose derivative is itself
- The "logistic" function is $\sigma(z) = \frac{1}{1 + e^{-z}}$
- Looks like an "S"
- Always between 0 and 1.

What's this "exp" doing?

- $\exp[x]$ is shorthand for e^x
- e is a special number, about 2.71828
 - e^x is the limit of compound interest formula as compounds become infinitely small
 - o It's the function whose derivative is itself
- The "logistic" function is $\sigma(z) = \frac{1}{1 + e^{-z}}$
- Looks like an "S"
- Always between 0 and 1.
 - Allows us to model probabilities
 - Different from linear regression

Outline

1 Logistic Regression Example

feature	coefficient	weight
bias	eta_0	0.1
"viagra"	$oldsymbol{eta}_1$	2.0
"mother"	eta_2	-1.0
"work"	eta_3	-0.5
"nigeria"	eta_4	3.0

What does Y = 1 mean?

Example 1: Empty Document? $X = \{\}$

feature	coefficient	weight
bias	eta_0	0.1
"viagra"	$oldsymbol{eta}_1$	2.0
"mother"	eta_2	-1.0
"work"	$oldsymbol{eta_3}$	-0.5
"nigeria"	eta_4	3.0

What does Y = 1 mean?

Example 1: Empty Document? $X = \{\}$ • $P(Y = 0) = \frac{1}{1 + \exp[0.1]} =$ • $P(Y = 1) = \frac{\exp[0.1]}{1 + \exp[0.1]} =$

feature	coefficient	weight
bias	eta_0	0.1
"viagra"	$oldsymbol{eta}_1$	2.0
"mother"	eta_2	-1.0
"work"	$oldsymbol{eta_3}$	-0.5
"nigeria"	eta_4	3.0

• What does Y = 1 mean?

Example 1: Empty Document?

$$X = \{\}$$

•
$$P(Y=0) = \frac{1}{1+\exp[0.1]} = 0.48$$

•
$$P(Y=1) = \frac{\exp[0.1]}{1+\exp[0.1]} = .52$$

 Bias β₀ encodes the prior probability of a class

feature	coefficient	weight
bias	eta_0	0.1
"viagra"	$oldsymbol{eta}_1$	2.0
"mother"	eta_2	-1.0
"work"	eta_3	-0.5
"nigeria"	eta_4	3.0

Example 2	
$X = \{Mother, Nigeria\}$	

• What does Y = 1 mean?

feature	coefficient	weight
bias	eta_0	0.1
"viagra"	$oldsymbol{eta}_1$	2.0
"mother"	eta_2	-1.0
"work"	$oldsymbol{eta_3}$	-0.5
"nigeria"	eta_4	3.0

• What does Y = 1 mean?

Example 2

 $X = \{Mother, Nigeria\}$

•
$$P(Y=0) = \frac{1}{1+\exp[0.1-1.0+3.0]} =$$

•
$$P(Y=1) = \frac{\exp[0.1-1.0+3.0]}{1+\exp[0.1-1.0+3.0]} =$$

Include bias, and sum the other weights

feature	coefficient	weight
bias	eta_0	0.1
"viagra"	$oldsymbol{eta}_1$	2.0
"mother"	eta_2	-1.0
"work"	$oldsymbol{eta_3}$	-0.5
"nigeria"	eta_4	3.0

• What does Y = 1 mean?

Example 2

 $X = \{Mother, Nigeria\}$

•
$$P(Y=0) = \frac{1}{1+\exp[0.1-1.0+3.0]} = 0.11$$

•
$$P(Y=1) = \frac{\exp[0.1-1.0+3.0]}{1+\exp[0.1-1.0+3.0]} =$$
.88

Include bias, and sum the other weights

feature	coefficient	weight
bias	eta_0	0.1
"viagra"	$oldsymbol{eta}_1$	2.0
"mother"	eta_2	-1.0
"work"	$oldsymbol{eta_3}$	-0.5
"nigeria"	eta_4	3.0
"viagra" "mother" "work"	$eta_1 \ eta_2 \ eta_3$	2.0 -1.0 -0.5

Example 3 $X = \{Mother, Work, Viagra, Mother\}$

• What does Y = 1 mean?

feature	coefficient	weight
bias	eta_0	0.1
"viagra"	$oldsymbol{eta}_1$	2.0
"mother"	eta_2	-1.0
"work"	eta_3	-0.5
"nigeria"	eta_4	3.0

• What does Y = 1 mean?

Example 3

 $X = \{Mother, Work, Viagra, Mother\}$

•
$$P(Y=0) = \frac{1}{1 + \exp[0.1 - 1.0 - 0.5 + 2.0 - 1.0]} =$$

•
$$P(Y=1) = \frac{\exp[0.1-1.0-0.5+2.0-1.0]}{1+\exp[0.1-1.0-0.5+2.0-1.0]} =$$

Multiply feature presence by weight

feature	coefficient	weight
bias	eta_0	0.1
"viagra"	$oldsymbol{eta}_1$	2.0
"mother"	eta_2	-1.0
"work"	$oldsymbol{eta_3}$	-0.5
"nigeria"	eta_4	3.0

• What does Y = 1 mean?

Example 3

 $X = \{Mother, Work, Viagra, Mother\}$

•
$$P(Y=0) = \frac{1}{1 + \exp[0.1 - 1.0 - 0.5 + 2.0 - 1.0]} = 0.60$$

•
$$P(Y=1) = \frac{\exp[0.1-1.0-0.5+2.0-1.0]}{1+\exp[0.1-1.0-0.5+2.0-1.0]} = 0.30$$

Multiply feature presence by weight

How is Logistic Regression Used?

- Given a set of weights $\vec{\beta}$, we know how to compute the conditional likelihood $P(y|\beta,x)$
- Find the set of weights $\vec{\beta}$ that maximize the conditional likelihood on training data (next week)
- **Intuition**: higher weights mean that this feature implies that this feature is a good this is the class you want for this observation

How is Logistic Regression Used?

- Given a set of weights $\vec{\beta}$, we know how to compute the conditional likelihood $P(y|\beta,x)$
- Find the set of weights $\vec{\beta}$ that maximize the conditional likelihood on training data (next week)
- **Intuition**: higher weights mean that this feature implies that this feature is a good this is the class you want for this observation
- Naïve Bayes is a special case of logistic regression that uses Bayes rule and conditional probabilities to set these weights

Contrasting Naïve Bayes and Logistic Regression

- Naïve Bayes easier
- Naïve Bayes better on smaller datasets
- Logistic regression better on medium-sized datasets
- On huge datasets, it doesn't really matter (data always win)
 - Optional reading by Ng and Jordan has proofs and experiments
- Logistic regression allows arbitrary features (biggest difference!)

Contrasting Naïve Bayes and Logistic Regression

- Naïve Bayes easier
- Naïve Bayes better on smaller datasets
- Logistic regression better on medium-sized datasets
- On huge datasets, it doesn't really matter (data always win)
 - Optional reading by Ng and Jordan has proofs and experiments
- Logistic regression allows arbitrary features (biggest difference!)
- Don't need to memorize (or work through) previous slide—just understand that naïve Bayes is a special case of logistic regression

Next time ...

- How to learn the best setting of weights
- Regularizing logistic regression to encourage sparse vectors
- Extracting features