

Schieberegister

Das ist zuständig für das Speichern und Bewegen von Daten, des halb wird as für den Entwurt von Rechnern genutzt. Ein Schieberegister mit n Bits Kann aus n Flip-Flops Konstruiert werden, aber darch einen gemeisamen Takt gesteuert werden.

Dei jedem Takt worden alle Bits des Register gleichzeitig aktualiste

4 Arten

- Serial-in zu Parallel-out (SIPO): In diesem Modus werden die Eingabedaten seriell eingelesen und anschließend parallel ausgelesen.
- Serial-in to Serial-out (SISO): In diesem Modus werden die Eingabedaten seriell eingelesen und anschließend seriell ausgelesen.
- Parallel-in to Serial-out (PISO): In diesem Modus werden die Eingabedaten parallel eingelesen und anschließend seriell ausgelesen.
- Parallel-in to Parallel-out (PIPO): In diesem Modus werden die Eingabedaten parallel eingelesen und anschließend parallel ausgelesen.



Abbildung 1: SIPO Schieberegister.

Abbildung 2: PISO Schieberegister.



## Synchroner Vorwarts - Rückuarts - Zähler

es wird aus 2 JK Flip-Flops autgebaut. 4 Eingaben (elk, reset, C, D) 2 Ausgabe (Qo, Q1)

```
sync_counter.vhdl
library ieee;
use ieee.std_logic_1164.all;
entity sync_counter is
     port(
          reset, clk, C, D : in std_logic; q1, q0 : out std_logic
     );
end sync_counter;
architecture bh of sync_counter is component jk_flipflop is
           port(
                j,k, clk, reset : in std_logic;
                0 : out std_logic
           );
     end component;
           signal z0,z1,j0,j1,k0,k1 : std_logic;
     begin
                       j0 <= C and ((not D) or z1);
k0 <= C and (D or (not z1));</pre>
           j1 \ll C and (not D) and z0;
           k1 \leftarrow C and D and z1 and (not z0);
           jk_flipflop_0 : jk_flipflop port map(j=>j0, k=>k0, clk=>clk, reset=>reset, q=>z0);
jk_flipflop_1 : jk_flipflop port map(j=>j1, k=>k1, clk=>clk, reset=>reset, q=>z1);
           q0<=z0;
           q1<=z1;
end bh;
```

$$Q_0 = z_0$$

$$Q_1 = z_1$$

$$j_0 = C \wedge (\overline{D} \vee Z_1)$$
 $K_0 = C \wedge (\overline{D} \vee Z_1)$ 
 $j_1 = C \wedge \overline{D} \wedge Z_0$ 
 $K_1 = C \wedge D \wedge Z_1 \wedge \overline{Z_0}$ 

## Unterschied Moore Automat und Medly Automat

- · Moore Automat
- Vorteile: Einfacher umzusetzen da Ausgabe nur abhängig von Zustand; Ausgabe synchron zum Takt,
   daher robust gegen Glitches
- Nachteile: Meist mehr Zustände als Mealy; Mindestens ein Takt erforderlich um auf Eingabe zu reagieren
- Mealy Automat
- Vorteile: Meist weniger Zustände, dadurch kleinere Schaltungen
- Nachteile: Ausgabe asynchron zum Takt, dadurch Glitches möglich



Add-Shift Multiplizier nutzt Schieberegister, Addierwerk und endliche Automaten



Abbildung 6: Flussdiagramm des Multiplizierwerk nach der add shift Methode.

| 1                                        |                                              |
|------------------------------------------|----------------------------------------------|
| c) Add-shift-Multiplexer                 | Pavallel - Multiplexer                       |
| - Verwondet eine schrittweise            | - verwandet eine pavallele Methode           |
| Methode.                                 |                                              |
| - multipliziert den Multiplikator        | - multipliziert den Multiplikatar mit allen  |
| mit jedan Bit des Multiplikanden         | Bits des Multiplikanden gleichzeitig und     |
| und addiert die Teilergebnisse           | addiert die Teilergebnisse in einem Schritt. |
| Schrittweise, indem er die Bits des      |                                              |
| Multiplikators nach links schiebt.       |                                              |
|                                          |                                              |
|                                          |                                              |
| Add-shift                                | - Multiplexer                                |
| 11 , 0                                   | N o. o                                       |
| Vorteil                                  | Nachteil                                     |
| - einfache Implementierung: nur          | - langsam, große Berechnungszeit:            |
| Additionen und Shift-Operationen verwe   |                                              |
| - geringerer Hard wave bedarf: im Vergle |                                              |
| zun Pavallel - Multiplexer               | Verfügber ist.                               |
|                                          |                                              |
|                                          |                                              |
| D                                        | N1 (1) (0)                                   |
| Javalle                                  | Multiplexer                                  |
| Vorteil                                  | Nachteil                                     |
| - schneller: da er pavallel erfolgt      | - Komplexere Implementierung: er erfordert   |
| - niedrigere Latenz: das Ergebnis        | eine Komplexere Schaltung                    |
| Schneller verfügbar ist.                 | - Höherer Hardwareauswand.                   |
|                                          | - Höherer Stromverbranch: Auggrund der       |
|                                          | Verwendung einer größeren Anzahl von         |
|                                          | Schaltelementen                              |
|                                          | Service                                      |
|                                          |                                              |