Introduction to tensor networks session 2, Entanglement

Luca Tagliacozzo, IFF-CSIC

Specific set of states

 $|\psi_{ABC}
angle$

Correlations and entanglemet

The main idea is that either we saw

- uncorrelated states
- states and prob. dist. with very precise short range correlations ...010101...

How do we formalize this?

ENTANGLEMENT

$$|\psi_{AB}
angle
eq |\psi
angle_A\otimes|\psi
angle_B$$

Entanglement

Examples

Singlet

$$|\psi_{AB}
angle = rac{1}{\sqrt{2}}\left(|00
angle_{AB}+|11
angle_{AB}
ight)$$

Reduced state becomes

$$ho_A=\operatorname{tr}_B\ket{\psi}ra{\psi}=rac{1}{2}\left(\ket{0}ra{0}_A+\ket{1}ra{1}_A
ight)$$

Entanglement measures

Entanlgement entropy, Von Neuman entropy of the prob. distribution of the eigenvalues of the rdm

$$S(
ho_A) = \operatorname{tr}\left(-
ho_A \log(
ho_A)
ight)$$

Examples

Product state:

$$\ket{00}_{AB}
ightarrow
ho_A = \ket{0}ra{0}_A$$
 implies $S_A = 0$

• Singlet:

$$\ket{\psi_{AB}} = rac{1}{\sqrt{2}} \left(\ket{00}_{AB} + \ket{11}_{AB}
ight)
ightarrow \
ho_A = rac{1}{2} \left(\ket{0}ra{0}_A + \ket{1}ra{1}_B
ight)$$

implies $S_A=1$

Chain of singlets

Longer distance singlets

We see that if A and B are connected by more singlets,

The bond dimension increases

How much entangled are random states

$$\ket{\psi} = \exp(-iHt)\ket{0...0}$$

```
2 import numpy as np
 3 import scipy.linalg as LA
 4 import matplotlib.pyplot as plt
 5 mean ent=[]
   std_ent=[]
   for N in range(2,10,2):
       #print(N)
       dim h = 2**N
       ent_entropies=[]
10
       for \_ in range(0,100):
11
12
           init_state = np.zeros([dim_h, 1])
13
           init_state[0]=1.
           random_h = np.array(np.random.rand(dim_h,dim_h)+1j*np.random.rand(d
14
            random_h = random_h+random_h.T.conj()
15
```

The result

