报告文档

1一、程序优化性说明

1.1 用户交互界面说明(建议 200 字以内,给出主要用户交互界面图)

用户界面采用 C# WinForm 编写,界面从上到下、从左到右依次为:标题 栏、菜单栏、工具栏、原始数据预览区、报告预览区,状态栏。

其中,工具栏部分按钮功能如表1所示:

按钮	功能简介			
	用户选择文件后,读取数据并展示到原			
11) I	始数据预览区域			
保存	用户选择路径后,保存报告预览区的内			
	容			
计算	一键计算对流层改正值,并生成报告预			
り り	览			
退出	用户确定退出后,退出程序			

表1工具栏按钮功能

图1主界面

- 1.2 程序运行过程说明(建议 200 字以内,给出程序运行过程截图)
 - 1. 点击【打开】, 选择数据文件。

图 2 选择数据文件

图 3 数据文件读取成功

2. 点击【计算】, 一键计算并生成报告。

图 4 一键计算

3. 点击【保存】,保存报告。

图 5 保存报告成功

4. 点击【退出】, 退出程序。

图 6 是否退出

1.3 程序运行结果(给出程序运行结果)

秤	序坛	紵	姓	里
/I'-	1114	1 1		\mathbf{x}

测站名	高度角	ZHD	$m_d(E)$	ZWD	m_w(E)	延迟改正
P01	20.00	2.287	2.897	0.100	2.911	6.918
P02	30.00	2.272	1.993	0.100	1.997	4.728
P03	40.00	2.233	1.553	0.100	1.554	3.624
P04	45.00	2.290	1.412	0.100	1.413	3.376
P05	50.00	2.293	1.305	0.100	1.305	3.124
P06	55.00	2.253	1.220	0.100	1.220	2.870
P07	60.00	2.186	1.155	0.100	1.154	2.640

2二、程序规范性说明

2.1 程序功能与结构设计说明(建议 500 字以内)

程序可以读取对流层数据文件,并使用 NEIL 模型进行对流层延迟的计算, 生成报告并保存报告。

程序设计的类及其功能如表 2 所示:

表 2 类功能

	功能简介			
MyData	存放窗口生存所需要的数据,例如测站			
MyData	列表			
MyFile	包含读取数据文件、保存文件两个功能			
Myrne	函数			
	存放测站相关的变量,例如测站名、高			
MyStation	度角、经纬度,同时计算当前测站的对			
	流层延迟。			

2.2 核心算法源码(给出主要算法的源码)

```
128
                /// <summary> 计算年积日
133
                public int CalDoy(string Date)
134
135
                    int year = int.Parse(Date.Substring(0, 4));
136
                    int month = int.Parse(Date.Substring(4, 2));
137
                    int day = int.Parse(Date.Substring(6, 2));
138
139
                    DateTime t = new DateTime(year, month, day);
                    return t.DayOfYear;
140
141
```

图 7 计算年积日

```
144
               /// <summary> 湿分量投影函数
                public double FunMW(double aw, double bw, double cw)
150
151
                    double se = Math.Sin(E_rad);
152
                                                 //sinE
                    double up = 1 / (se + aw / (se + bw / (se + cw)));
153
                    double down = 1 / (1 + aw / (1 + bw / (1 + cw)));
154
155
156
                    return up / down;
157
                }
```

图 8 湿分量投影函数

```
159
                 /// <summary> 干分量投影函数
169
                  public double FunMD(double ad, double bd, double cd, double aht, double bht, double ch)
171
                      double se = Math.Sin(E_rad);
                      double up1 = 1 / (se + ad / (se + bd / (se + cd)));
double down1 = 1 / (1 + ad / (1 + bd / (1 + cd)));
172
173
174
175
                      double up2 = 1 / (se + aht / (se + bht / (se + ch)));
                      double down2 = 1 / (1 + aht / (1 + bht / (1 + ch)));
177
                      return up1 / down1 + (1 / se - up2 / down2) * this.H / 1000;
178
179
180
```

图 9 干分量投影函数

图 10 15-75° 高度角插值湿分量系数

图 11 15-75°高度角插值干分量系数

```
/// <summarv> 延迟改正量计算
218
                 public void CalTropDelay()
219
220
                     double aht = 2.53E-5:
221
                     double bht = 5.49e-3:
222
                     double cht = 1.14e-3;
223
224
                     double a_w, b_w, c_w;
225
                     double a_d, b_d, c_d;
226
                     double Doyθ = 28;//参考时刻的年积日
227
228
229
                     #region 根据经纬度插值
23θ
                     int n = (int)(Math.Abs(this.B) / 15); //纬度取绝对值
231
                     if (n == 0)
232
233
                         a_w = aw[\theta];
                         b_w = bw[\theta];
234
                         c_w = cw[\theta];
235
236
237
                         a_d = ah1[0] + ah1[0] * Math.Cos(2 * Math.PI * (Doy - Doy0) / 365.25);
                         b_d = bh1[θ] + bh1[θ] * Math.Cos(2 * Math.PI * (Doy - Doyθ) / 365.25);
238
                         c_d = ch1[0] + ch1[0] * Math.Cos(2 * Math.PI * (Doy - Doy0) / 365.25);
239
240
241
                     else if (n == 5)
242
243
                         a_w = aw[4];
                         b_w = bw[4];
244
245
                         c_w = cw[4];
246
                         a_d = ah1[4] + ah1[4] * Math.Cos(2 * Math.PI * (Doy - Doy0) / 365.25);
b_d = bh1[4] + bh1[4] * Math.Cos(2 * Math.PI * (Doy - Doy0) / 365.25);
247
248
                         c_d = ch1[4] + ch1[4] * Math.Cos(2 * Math.PI * (Doy - Doy0) / 365.25);
249
250
251
                     else
252
                         a_w = InterpolateW(aw[n - 1], aw[n], B, n);
b_w = InterpolateW(bw[n - 1], bw[n], B, n);
253
255
                         c_w = InterpolateW(cw[n - 1], cw[n], B, n);
256
                         257
258
259
268
261
                     #endregion
262
263
                     //延迟改正量计算
264
                     this.mw = FunMW(a_w, b_w, c_w);
                     this.md = FunMD(a_d, b_d, c_d, aht, bht, cht);
this.ZHD = 2.29951 * Math.Pow(Math.E, -0.000116 * this.H);
265
266
267
                     this.ZWD = 0.1;
                     this.DS = this.ZHD * this.md + this.ZWD * this.mw;
269
```

图 12 计算电离层延迟