Combinational Logic Design p.128

일반적으로 컴퓨터 설계에서 매우 유용하게 사용되는 조합회로 볼록 둘 에 대해 알아본다.

Decoder, Encoder, Multiplexer

1

1

Rudimentary Logic Functions 712 E 2184

- 값고정(value fixing)
- 전달(transferring)
- 보수화(inverting) —
- 유효화(enabling).. 나중에

■ 단일 변수 X에 대한 함수들 -

- 값 고정(0, 1)

- 전달(X)

- 반전(X') : not gate

Х	F = 0	F = X	F = X	F = 1
0	0	0	1	1
1	0	1	0	1

다중 비트 함수(도식화 방법) p.116

0 F₃ 0 F₃ F₃
1 F₂ 1 F₂
A F₁ A F₂ F₁
A F₂ F₁ F₂
A F₂ F₁ F₂
A F₂ F₁ F₂ F₂
A F₃ A F₂ F₁
A F₂ F₂ F₂ F₃
A F₂ F₁
A F₂ F₂ F₃
A F₃ F₂ F₁
A F₂ F₂ F₃
A F₃ F₃ F₃ F₄ F₃ F₄ F₅
A F₂ F₃ F₄ F₅
A F₂ F₃ F₄ F₅
A F₂ F₃ F₄ F₅
A F₄ A F₅ F₅
A F₄ A F₅ F₄ F₅
A F₅ A F₅ F₅ F₆
A F₁ A F₂ F₃ F₄ F₅
A F₅ A F₅ F₆
A F₅ A F₆ A F₇ F₇ F₇
A F₆ A F₇ A F₇

조명제어 함수의 기능 정의

Мо	de:	Mo	M ₁	M ₂
Р	R	$H = \overline{P}R + P\overline{R}$	H = P	H = R
0	0	0	0	0
0	1	1	0	1
1	0	1	1	0
1	1	0	1	1

Decoding p.120

- decoder
 - n비트로 코딩된 <u>2진 정보를</u> 최대 2ⁿ개의 출력으로 변환하는 조합회로
 - n개의 입력 ⇒ 2º개의 출력
 - n-to-m라인 디코더(m < 2ⁿ)
- 1-to-2 decoder

6-to-64 decoder (비용 절감 측면)

- D0 = C0 B0 (000 000)
- D1 = C0 B1 (000 001)
- D2 = C0 B2 (000 010)
- . :
- D7 = C0 B7 (000 111)
- D8 = C1 B0 (001 000)
- D9 = C1 B1 (001 001)
- .
- D15 = C1 B7 (001 111)
- D16 = C2 B0 (010 000)
- D63 = C7 B7 (111 111)

P.123

Gate input cost ∃ □

6입력 and gate 사용의 경우 6+(6*64) = 390

그림 3-20의 경우 6+2(2*4)+2(2*8)+2*64 = 182

Decoder-Based Combinational Circuits p.126

■ 디코더:

- 2ⁿ개의 최소항 제공
- 모든 부울 함수는 최소항의 합으로 표현할 수 있다.
- 즉, 디코더와 OR 게이트로 모든 부울함수가 구현가능.

활용 예

 많은 개수의 출력이 필요하고 각 출력의 구성이 적은 수의 최소항으로 구성된 경우, 디코더를 이용한 조합회로 설계 가 유용하다.

24

24

Х	Υ	Z	С	S	
0	0	0	0	0	$S(X,Y,Z)=\sum m(1,2,4,7)$
0	0	1	0	1	$C(X,Y,Z)=\sum m(3,5,6,7)$
0	1	1	0	0	C(11,1,2) Zm(0,0,0,7)
1	0	0	o	1	
1	0	1	1	0	
1	1	0	1	0	
1	1	1	1	1	

연습(디코더 기반 조합회로) Gray BCD GrayCode -to-BCD converter abcd XYZ를 3X8 decoder 와 or gates를 이용하여 0 0 0 0000 설계하시오. m4 0 0001 0 입력변수 3개 : A,B,C 출력변수 4개: a,b,c,d 0 1 0010 1 0011 1 0 1 0 0100 0 1 2 0 0101 1 3 4 1 1 0110 5 2 0 1 0111 6

Decoder: 3 X 8

Encoder: 8 X 3

- decoder와 반대동작
 - 2ⁿ개보다 적거나 같은 입력 → n개의 출력
 - 의미) 입력선에 따라 2진코드를 생성한다.
- Encoder's Limitation

Only one input can be active(1) at any given time

ime		Inputs					Outputs			
D ₇	De	Ds	D_4	D ₃	D ₂	D,	Do	Az	A,	A ₀
θ	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	1	0	0	0	1
0 0 0	0	0	0	0	1	0	0	0	1	0
0	0	0	0	1	0	0	0	0	1	1
0	0	0	1	0	0	0	0	1	0	0
0	0	1	0	0	0	0	0	1	0	1
0	1	0	0	0	0	0	0	1	1	0
1	0	0	0	0	0	0	0	1	1	1

32

encoder (p.128)

■ 입력선에 따른 2진코드생성

encoder (p.128)

■ 입력선에 따른 2진코드생성

34

encoder (p.128)

Encoder's Limitation: Only one input can be active(1) at any given time

Encoder p.128

예) octal-to binary encoder

$$-A_0 = D_1 + D_3 + D_5 + D_7$$

$$-A_1 = D_2 + D_3 + D_6 + D_7$$

$$-A_2 = D_4 + D_5 + D_6 + D_7$$

Inputs									Outpu	ts
D ₇	Ds	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀	A ₂	A ₁	A
0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	1	0	0	0	1
0	0	0	0	0	1	0	0	0	1	0
0	0	0	0	1	0	0	0	0	1	1
0	0	0	1	0	0	0	0	1	0	0
0	0	1	0	0	0	0	0	1	0	1
0	1	0	0	0	0	0	0	1	1	0
1	0	0	0	0	0	0	0	1	1	1

36

Priority Encoder (우선순위-) p.129

- 문제 1) 부정확한 입력(1개 이상의 입력)
 - 해결1) 모호함을 없애기 위해 입력에 대한 우선 순위를 두자. <u>큰 첨자의 입력(</u>큰 값)에 우선순위를 둔다.
- 문제 2) 0의 출력에 대한 두가지 해석
 - D₀가 1일때의 유효한 출력
 - 모든 입력이 0일때의 무응답
 - (유효한 출력 / 무응답) 의 구분을 위한 출력 V 를 추가하자.

	In	outs	Outputs							
D ₃	D ₂	D ₁	D ₀	Α,	Ao	V valid				
0	0	0	0	X	Х	0				
0	0	0	1	0	0	1				
0	0	1	X	0	1	1				
0	1	X	X	1	0	1				
1	X	X	X	1	1_	1				
		• 입력이 하나 이상의 1을 가질때 V=1 • 무응답일때 V=0 (유효하지 않다.)								

Priority Encoder 설계(간소화)

	Ing	outs		Outputs		
D ₃	D ₂	D,	Do	A,	A ₀	٧
0	0	0	0	X	X	0
0	0	0	1	0	0	1
0	0	1	X	0	1	1
0	1	X	X	1	0	1
1	X	X	X	1	1	1

- A1 = ??
- A0 = ??
- V = ??

우선 순위 인코더 p.130

P선 순위 인코더 p.130

P선 순위 인코더 p.130

P선 순위 인코더 p.130

P선 순위 인코더 p.130

A0 = D3 + D1 \overline{D2}

A1 = D2 + D3

D2 - A1 = D2 + D3

D3 - V = D0 + D1 + D2 + D3

Multiplexer p.131

- 시스템간 통신에서 여러 입력 중 하나를 선택하는 기능이 필요.
- 멀티플렉서 (multiplexer, <mark>MUX</mark>)
 - 입력
 - · 2n의 다수의 입력선
 - n개의 선택 정보(selection input)
 - 출력: 단일 출력선
 - 용도 : data selector 역할

42

Multiplexer p.131

- 예1) 2X1 MUX
 - 2개의 입력 중 하나를 선택해 출력
 - 2개의 입력
 - 1개의 출력
 - ?개의 선택정보
- 예2) 8X1 MUX
 - 8개의 입력 중 하나를 선택해 출력
 - 8개의 입력
 - 1개의 출력
 - ? 개의 선택정보

 Y_3 Y_2 Y_1 Y_0

S₀

4X1 MUX of a binary-adder (2) p.141 XY Y Z C X S 0 1 0 Z S

연습

P.180

 3-47 4-to-1 라인 멀티플렉서와 외부게이트들 (And, Or, Not)로 된 부울 함수를 구현하라.
 F(A,B,C,D) = ∑m(1,3,4,11,12,13,14,15)
 단, A,B를 선택선과 연결하라.

정리

- 기본 함수 블럭들 : 컴퓨터 설계에서 유용하게 사용 되는 조합회로들
 - enable 기능
 - Decoder
 - Decoder + enabling
 - Decoder를 이용한 부울 함수
 - Encoder
 - Priority encoder
 - Multiplexer
 - MUX를 이용한 부울 함수

62