

Redes de Computadores II EEL 879

Parte V Roteamento Multicast na Internet

Luís Henrique M. K. Costa

luish@gta.ufrj.br

Universidade Federal do Rio de Janeiro -PEE/COPPE P.O. Box 68504 - CEP 21945-970 - Rio de Janeiro - RJ Brasil - http://www.gta.ufrj.br

Introdução

- Comunicação de grupo (aplicações multidestinatárias)
 - Vídeo-conferência
 - Ensino a distância
 - Jogos distribuídos
 - > TV na Internet, ...
- A mesma informação deve ser enviada a múltiplos receptores

Como enviar a N receptores?

Opções: diferentes tipos de transmissão

Unicast

- Transmissão ponto-a-ponto
- > 1 emissor, 1 receptor

Multicast

- Transmissão ponto-a-multiponto
- 1 emissor, N receptores

Broadcast

Envio a todos os nós da rede

Unicast x Multicast

Unicast x Multicast

Utilização do Multicast

O Vantagens

- Produz menos pacotes
 - Utilização eficiente da banda passante da rede
 - Menor processamento em estações e roteadores

Utilização do Multicast

Problemas

- Como identificar o grupo?
 - Lista dos receptores
 - Overhead de cabeçalho limita o tamanho do grupo
 - Endereço de grupo
 - Identidade e número dos receptores desconhecidos
- Como realizar a distribuição dos pacotes?
 - Endereçamento e roteamento (encaminhamento dos pacotes)
 são diretamente relacionados

Endereçamento na Internet

o endereço IP = inteiro de 32 bits

- escrito na forma de 4 números decimais separados por pontos: 146.164.69.2
- o mapeamento de nomes em endereços IP e vice-versa é feito pelo Sistema de Nome de Domínio (DNS)
- > atribuído a cada interface de rede de uma máquina
 - identifica a conexão de uma estação na rede

endereçamento IP

- topológico (ou hierárquico: utiliza prefixos)
 - a posição de uma máquina determina seu endereço
 - torna eficaz as operações de roteamento

Problema do Multicast

- Dado o endereçamento, como realizar a distribuição dos pacotes?
 - Endereço unicast
 - Identifica e localiza uma estação
 - > Endereço de grupo
 - Hierarquia impossível, receptores espalhados em toda a rede

Modelo de Serviço IP Multicast

Identificação

> Endereço de grupo

Distribuição dos dados

- Gerenciamento de grupo
 - Entrada / saída do grupo
 - "quero escutar o grupo" / "quero parar de escutar o grupo"
 - Entre a estação e seu roteador local

Protocolos de roteamento

- Distribuição dos dados entre as redes
 - Como fazer os pacotes chegarem ao meu roteador local?

Modelo de Serviço

Modelo de Serviço

• Grupo

- > Identificado por um endereço de grupo
- Conversação N x M, aberta
 - Qualquer estação pode participar
 - Uma estação pode pertencer a vários grupos
 - Uma fonte pode enviar dados ao grupo, tendo se inscrito neste ou não
- O grupo é dinâmico, uma estação pode entrar e sair a qualquer instante
- O número e a identidade dos participantes do grupo são desconhecidos

Endereçamento

Endereço Multicast = IP Classe D

31 $x \mid x \mid x \mid$ $\mathbf{x} \mid \mathbf{x} \mid \mathbf{x} \mid \mathbf{x} \mid \mathbf{x}$ | x | x |Х Х Х Χ Х Χ Χ х х Χ Χ Χ Χ х х

- Em geral, o endereço é temporário, *mas...*
 - 224.0.0.0 a 224.0.0.255 são reservados e de escopo

local

224.0.0.1	All Hosts
224.0.0.2	All Multicast Routers
224.0.0.3	Não alocado
224.0.0.4	All DVMRP Routers
224.0.0.5	All OSPF Routers

Modelo de Serviço

- O grupo é identificado por um endereço IP Multicast
 - Endereço IP Classe D
- Criação do grupo
 - Escolha de um endereço multicast e envio de dados para o grupo
- Destruição do grupo
 - Parada do envio de dados

Conexão a um Grupo Multicast

- A aplicação sinaliza à camada rede interesse no grupo G
 - > socket
- Se não havia outra aplicação conectada a G
 - Relatório IGMP é enviado na rede local
 - Camadas inferiores podem ser igualmente programadas
 - Ex. Ethernet

Multicast Ethernet

- 28 bits IP são mapeados em 23 bits Ethernet
 - > 32 endereço IP multicast = 1 endereço multicast Ethernet

Por que apenas 23 bits?

- No início da década de 90, Steve Deering desejava que o IEEE alocasse 16 OUIs (*Organizational Unique Identifier*) para os endereços multicast Ethernet.
- Cada OUI equivale a 24 bits de espaço de endereçamento
 - ➤ 16 OUIs consecutivos = 28 bits
- Na época, 1 OUI = US\$ 1.000,00
- Jon Postel (chefe de Deering na época) comprou apenas 1
 OUI, e liberou apenas a metade do espaço para as pesquisas de Deering...

Gerenciamento de Grupo

• Quem quer ouvir que grupos?

"estação de rádio"

IGMP (Internet Group Management Protocol)

- Detecção de estações interessadas em grupos multicast
- Existem 4 versões do IGMP

Escopo local

- diálogo entre a estação e o primeiro roteador
- criação da árvore de distribuição independente do IGMP

Funcionamento do IGMP

Parte estação

- Conexão ao grupo (join (G))
 - Receptor envia mensagem report (G)
- Envio de mensagens report em resposta às mensagens query
 - "Estes são os grupos de interesse desta estação"

Parte roteador

- Envio periódico de mensagens query
 - "Que grupos são escutados na rede?"

Parte estação

Mecanismo de supressão de mensagens report

Funcionamento do IGMP

IGMPv2

- Introduz o mecanismo de fast-leave
 - Diminuição da latência de desconexão
- Desconexão
 - Receptor envia mensagem IGMP leave (G)
- Regras de processamento para evitar a desconexão de outras estações
 - Ex. roteador deve enviar query (G) para detectar se existem ouvintes remanescentes

IGMPv3

- Filtragem de fontes
- A estação anuncia o interesse no grupo G ,
 - > "apenas nos dados enviados por determinadas fontes", ou
 - "nos dados enviados por todas, exceto determinadas fontes"

Interface

```
PIPMulticastListen (socket, interface,
    mcast-address,
    filter mode,
    source-list)
```

> filter-mode pode ser INCLUDE ou EXCLUDE

Exemplo no IGMPv3

- Recepção do que apenas as fontes S1 e S2 enviam a G
- Recepção de tudo que é enviado a G, exceto por S2 e S3
 - PIPMulticastListen (sock, iface, G,
 EXCLUDE, {S2,S3})
- Estado no roteador
 - (G, EXCLUDE { S3 })

Roteamento Multicast

- Problema de Roteamento Multicast
- G= (V, E)
 - v conjunto de vértices
 - > E conjunto de enlaces
- M sub-conjunto de V
 - inclui fontes e receptores do grupo multicast
- Problema: construir uma, ou várias, topologias de interconexão, árvores, que incluem todos os nós em M
 - árvore por fonte (source-based tree)
 - árvore compartilhada (shared tree)

Primeiras Soluções

- Árvores de cobertura (spanning trees)
- Algoritmo de inundação
- Árvores RPF (Reverse Path Forwarding)
- Árvores centradas

Árvores de Cobertura

- Sub-grafo contendo todos os nós em M, sem ciclos
- Pode-se adicionar objetivo de custo mínimo
 - Associa-se um custo, c_{uv}, a cada enlace (u,v)
- Se $c_{uv} = 1 \forall u, v$, árvore de Steiner
 - Problema NP-completo

Árvores de Cobertura

Inundação

Ao receber o pacote

- Esta é a primeira vez que foi recebido?
 - Se sim, re-envio em todas as interfaces de saida
 - Se não, descarte

Problema

- Como identificar o primeiro envio de um pacote
 - Armazenar identificação
 - Carregar lista dos nós atravessados
- Consumo de memória e banda passante

Inundação

Árvores RPF

- Hipótese: um roteador R conhece o caminho mais curto para ir à fonte, s
- Reverse Path Forwarding check (RPF check)
- Reverse Path Broadcasting
 - O roteador R recebe um pacote da fonte S
 - O pacote chegou pela interface utilizada por R para ir à S? (RPF check)
 - Se sim, enviar o pacote por todas as interfaces de saída.
 - Se não, descartar o pacote.

Reverse Path Broadcasting

Reverse Path Forwarding

Hipótese

um roteador R sabe se seu vizinho o utiliza como caminho para a fonte, S

Como obter esta informação

- > trivial, se protocolo de estado do enlace
- > se protocolo de vetor-distância
 - mensagem adicional para alertar o roteador "pai", ou
 - mensagem de poda para eliminar a rota reversamente
- Informação por (fonte,grupo)

Árvore RPF

Árvores Centradas

- O Construída a partir de um nó central (core)
- Compartilhada por diversas fontes
 - > diversas fontes utilizam o mesmo core
 - > "pedidos de conexão" são enviados ao core

Árvores Centradas

Roteamento Multicast Intra-domínio

- DVMRP (Distance Vector Multicast Routing Protocol)
 - Primeiro protocolo utilizado no MBone
- MOSPF (Multicast Open Shortest Path First)
- CBT (Core Based Trees)
- PIM (Protocol Independent Multicast)
 - PIM-DM (PIM Dense-Mode)
 - PIM-SM (PIM Sparse Mode)
 - PIM-SSM (PIM Source Specifiic Multicast)

DVMRP

Utiliza vetores de distância

- Semelhante ao RIP (Route Information Protocol)
- Constrói rotas unicast para cada fonte multicast
- Poison-reverse especial utilizado para marcar interfaces filhas

Distribuição de dados

- ▶ Inundação e poda (flood-and-prune)
- Teste RPF baseado em sua tabela de roteamento unicast

A inundação é periódica

Descoberta de fontes ativas

Funcionamento do DVMRP

Envio de Dados no DVMRP

DVMRP

- Algoritmo simples
- Protocolo de roteamento unicast próprio
- o Inundação periódica da rede com dados
- Vetores-de-distância
 - Convergência lenta, como no RIP

MOSPF

- Extensão do OSPF (Open Shortest Path First)
 - > roteadores trocam mensagens de estado-do-enlace
 - LSA Link State Advertisement
 - Cada nó possui a topologia atualizada da rede
 - Algoritmo de Dijkstra caminhos mais curtos
- Novo tipo de LSA anuncia receptores multicast
- A árvore de distribuição é uma SPT (Shortest-Path Tree)
 - > união dos caminhos mais curtos entre fonte e cada receptor

MOSPF

Estrutura hierárquica

Áreas OSPF (roteamento intra-área e inter-área)

o Intra-área

- IGMP descoberta de receptores
- Group Membership LSAs
 - (roteador, grupo multicast, lista de interfaces)

Cálculo da SPT

- Disparado apenas após recepção do primeiro pacote de dados
- Diminui o custo computacional

MOSPF Intra-área

MOSPF Inter-área

Multicast Area Border Router (MABR)

- Envio de tráfego multicast
- Informação sobre os grupos multicast
- Conecta uma área OSPF à área 0 (área backbone)

Receptor coringa

- LSA anuncia que o roteador possui receptores para todos os grupos
- Todos os MABRs em uma área são receptores coringa
 - Injetam LSAs coringa na área OSPF
 - Recebem todo o tráfego e o re-enviam na área 0 se necessário

LSA de Resumo de Grupos (Summary Membership LSA)

- Lista todos os grupos escutados em uma área
- São injetadas na área 0 pelos MABRs

MOSPF Inter-área

MOSPF Inter-área

- Árvore SPT é construída na área 0
- A árvore completa (áreas comuns + área 0) não é
 SPT
- Pode haver envio desnecessário de tráfego ao MABR
 - Receptor coringa

MOSPF

Protocolo de roteamento unicast deve ser OSPFv2

- Mensagens de estado-do-enlace
 - evitam a inundação periódica de dados como no DVMRP
 - porém impedem o uso do OSPF em redes muito grandes
 - LSAs inundam toda a rede

O DVMRP

Dados são uma mensagem implícita sobre a localização dos receptores

O MOSPF

Mensagem explícita sobre onde existem receptores

CBT

- Utiliza árvores centradas
 - Compartilhadas e bi-direcionais
- Roteador central core
- Construção da árvore
 - > Mensagens join
 - Enviadas pelos receptores na direção do core

Construção da Árvore CBT

Envio de Dados no CBT

CBT

Escalabilidade

- Estado apenas nos roteadores na árvore de distribuição
 - Ao contrário de DVMRP e MOSPF
- Estado por (grupo), em vez de por (fonte,grupo)

Desvantagens

- Concentração de tráfego próximo ao core
- Rotas sub-ótimas entre a fonte e o receptor
 - Maiores atrasos

Localização do core é crítica

PIM

- Protocol Independent Multicast (PIM)
 - > Independente do protocolo de roteamento unicast
- O Dense-Mode (PIM-DM)
 - Receptores densamente distribuídos
 - Árvores por fonte
 - Inundação-e-poda (semelhante ao DVMRP)
- Sparse-Mode (PIM-SM)
 - Receptores esparsamente distribuídos na rede
 - Árvores compartilhadas (como o CBT)
 - Uni-direcionais

PIM-DM

Reverse Path Multicast

- Utiliza o teste RPF
- Mas não constrói lista de interfaces filhas como o DVMRP
- Tráfego enviado em todas as interfaces de saída
- Duplicação de pacotes, todos os enlaces da rede são utilizados, mas
 - independência do roteamento unicast
 - evita base de dados com pais/filhos
- > Após a inundação inicial, mensagens de poda são enviadas
 - Por roteadores que n\u00e3o possuem receptores do grupo
 - Por roteadores que n\u00e3o possuem vizinhos interessados no grupo
 - Por roteadores que receberam tráfego por uma interface incorreta (RPF)

PIM-DM

PIM-DM

- Árvore SPT reversa (RSPT)
 - União dos caminhos mais curtos dos receptores até a fonte
- Todos os roteadores da rede armazenam estado (fonte,grupo) para todas as fontes/grupos ativos
- Inundação periódica é necessária
 - Descoberta de novos membros do grupo

PIM-SM

- Árvores de distribuição centradas ((*,G), como o
 CBT)
 - Nó central roteador RP (rendez-vous point)
 - Uni-directional
- Construção da árvore
 - > Mensagens join
- Mecanismo de mapeamento entre grupos e RPs
- Fontes se "registram" com o RP
 - Dados são enviados ao RP (encapsulados em mensagens PIMregister)

Árvore Compartilhada no PIM-SM

PIM-SM

- Arvores por fonte (S,G)
- Troca realizada por configuração
 - Taxa de envio de dados
- Roteador local envia mensagens join (S, G)
 - Mas não pára o envio de join(*,G)
 - Tráfego de outras fontes deve continuar
 - Envia mensagem de poda especial (RP-bit-prune (S,G))
 - Evita a recepção de dados de s em duplicata

Árvore por Fonte no PIM-SM

PIM-SM

- RP também pode enviar join (S, G)
- Possibilidade de árvores por fonte
 - Diminui a importância da localização do RP
 - Reduz o atraso fonte-receptores

Outros Problemas do Modelo de Serviço

- Como limitar o alcance (ou escopo) do tráfego multicast
 - Até onde vai o tráfego enviado por uma fonte?
 - (receptores não são conhecidos)
- Como evitar a colisão de endereços
 - Duas aplicações escolhem o mesmo endereço multicast

Alcance do Tráfego Multicast

- Definição de Escopos
- Por endereço
- Utilizando o campo TTL
- Administrativos

Escopo por Endereço

- Faixa de endereços dinâmicos
 - > 224.0.1.0 a 239.255.255.255
 - > 224.0.1.0 a 238.255.255.255
 - aplicações com escopo global
 - > 239.0.0.0 a 239.255.255.255
 - aplicações com escopo limitado
 - 239.253.0.0/16 local ao site
 - 239.192.0.0/14 local à organização

Escopo usando o TTL

- TTL (Time-to-live)
 - Campo decrementado de 1 a cada roteador atravessado
 - Pacote descartado quando TTL=0
- Escopo usando o TTL
 - Escolhe-se um valor de TTL inicial para os pacotes multicast
- Limita-se a distância em número de saltos
 - Pouca correlação entre numero de saltos e uma região
- Limiar TTL (TTL threshold)
 - Configurado nos roteadores de borda
 - Pacotes com TTL menor que o limiar de TTL são descartados

Escopo usando o TTL

Escopos Administrativos

- Roteadores não encaminham certas faixas de endereços
 - Maior flexibilidade que por TTL

Escopos Administrativos

Desvantagens

- Alcance definido por todas as zonas às quais a fonte pertence
 - Como descobrir que zonas se aplicam?
- Zonas sobrepostas devem utilizar faixas de endereços disjuntas

- Erros de configuração
 - Zonas maiores ou menores que o necessário
 - Com o TTL, pode-se escolher um valor pouco maior que o necessário e garantir o funcionamento da aplicação

Alocação de Endereços

Alocação Estática

- Endereçamento GLOP [RFC2770]
- Faixa 233/8 reservada

0 7	8 23	24 31
233	16 bits AS	local bits

Ex. AS 16007 - faixa 233.64.7.0 à 233.64.7.255

Alocação Dinâmica Hierárquica

Arquitetura MAAA (Multicast Address Allocation Architecture)

Arquitetura MAAA

MADCAP (Multicast Address Dynamic Allocation Protocol)

- Protocolo cliente-servidor (semelhante ao DHCP)
- Serviço de alocação de endereços

Multicast AAP (Multicast Address Allocation Protocol)

- Coordena a alocação de endereços dentro de um domínio
- Executado pelos servidores MADCAP

MASC (Multicast Address Set Claim)

- Coordena a alocação de endereços inter-domínio
- Trabalha com o BGP

Princípios Básicos do MASC

Estrutura hierárquica

- Domínios = Sistemas Autônomos (AS)
- Trabalha em conjunto com o BGP
- Domínios-"filhos" alocam sub-faixas das faixas alocadas por seus "pais"

Mecanismo de escuta e pedido com detecção de colisões

- Filho escuta as faixas alocadas por seu pai,
- escolhe sub-faixas,
- anuncia as sub-faixas escolhidas aos irmãos.
- Faixa considerada alocada após um período de detecção de colisões,
- e comunicada ao servidor MAAS do domínio e a outros domínios
 - Através de rotas de grupo ("group routes") BGP.

Alocação Hierárquica

Rotas de Grupo BGP

- Rotas de grupo
 - G-RIB ("Group-Route Information Base")
- A3 armazena (224.0.128.0/24, B1) em sua G-RIB
 - B1 é o próximo salto para os grupos dentro da faixa 224.0.128.0/24
- A1, A2 e A4 armazenam (224.0.128.0/24, A3) em suas G-RIBs
 - A3 é o próximo salto a partir de A1, A2 e A4

Agregação de Rotas

- Semelhante às rotas unicast no BGP
- Exemplo
 - ➤ Domínio A 224.0.0.0/16
 - ▶ Domínio B 224.0.128.0/24 (anunciada por B1)
- A1 anuncia a rota (224.0.0.0/16, A1) ao roteador
 E1

Roteamento Inter-domínio

- Nem todos os roteadores são multicast
- Diferentes protocolos nos diferentes domínios
- Problemas com o PIM-SM
 - Mecanismo escalável de mapeamento entre RPs e grupos
 - Inter-dependência entre provedores de serviço introduzida pelos RPs

Arquitetura MBGP/MSDP

- Solução de curto-prazo
 - Interconexão de domínios PIM-SM
- MBGP Multiprotocol Extensions for BGP-4
 - Permite múltiplas tabelas de roteamento
 - Pode-se utilizar uma tabela unicast e uma tabela multicast
 - M-RIB (Multicast Route Information Base)
- MSDP Multicast Source Discovery Protocol
 - Anúncio das fontes ativas, entre todos os RPs

Árvores Intra-domínio no MBGP/MSDP

Árvore Inter-domínio no MBGP/MSDP

Envio de Dados no MBGP/MSDP

MBGP/MSDP

- Inter-dependência entre domínios evitada
- Todos os domínios são notificados de todas as fontes ativas
 - Problema de escalabilidade
- Tráfego é encapsulado nas mensagens de "fonteativa"
 - Evita perda dos primeiros dados
 - > E de fontes em rajadas
 - Problema: dados são enviados a todos os RPs

Inter-domínio: Próximo Passo

- Border Gateway Multicast Protocol (BGMP)
- Em discussão no IETF
- Projeto semelhante ao BGP
 - "Anuncio as rotas que me interessam anunciar"
 - "Sou a raiz dos grupos que me pertencem"

BGP - Visão Geral

Border Gateway Multicast Protocol

- Árvores compartilhadas bi-direcionais
 - Podem ser construídos ramos por fonte
- A raiz da árvore é um Sistema Autônomo (AS)
 - Maior estabilidade e tolerância a falhas
 - ASs devem ser associados a endereços de grupo multicast
- A raiz da árvore do grupo G é o AS ao qual G está associado
 - Maior probabilidade de este AS possuir receptores de G

- Supõe mecanismo de associação de endereços
 - Alocação de faixas pelo MASC
 - Alocação estática GLOP
- Roteadores de borda executam dois protocolos multicast
 - > BGMP
 - MIGP (Multicast Interior Gateway Protocol)
 - Ex. PIM-SM, DVMRP

Funcionamento do BGMP

- Ao receber mensagens join, o roteador de borda
 - Cria um "alvo-pai" próximo roteador BGMP na direção do AS raiz
 - Cria uma lista de "alvos-filhos" outro roteador BGMP ou MIGP
 - Propaga o join a seu alvo-pai
 - Envia join ao MIGP, caso o alvo-pai seja um parceiro BGMP interno

Modelo de serviço IP Multicast

- Fontes que não pertencem ao grupo podem enviar ao grupo
 - Dados encaminhados pelo MIGP até o melhor roteador de saída
 - DVMRP inundação da rede
 - PIM-SM envio ao RP (remoto neste caso)
- Em seguida dados enviados na direção do domínio raiz pelo BGMP

o Implantação

- > Na escala da Internet
- Depende da implantação da arquitetura de alocação de endereços
- > lenta...

Novas Propostas

Modelo de Serviço IP Multicast

- Endereço IP class-D = grupo de estações
 - qualquer estação pode se inscrever no grupo
 - e qualquer estação pode enviar dados para o grupo
- alocação de endereços multicast é problemática
- protocolos: IGMP + protocolos de roteamento

IP Multicast não foi implantado na Internet

- Redes de backbone superdimensionadas
- Tentativas de simplificação da arquitetura
 - Simple Multicast
 - EXPRESS, PIM-SSM
 - REUNITE, HBH

Protocolos Multicast

O IGMP

 Gerenciamento de grupo (estações – roteadores designados)

Protocolos de roteamento

- Modo denso
 - DVMRP, PIM-DM
 - Inundação-e-poda, árvores por fonte
- Modo esparso
 - PIM-SM
 - Join explícito, árvores compartilhadas, árvores por fonte

MBGP (Multi-protocol BGP)

- Anúncio de rotas unicast e multicast
- MSDP (Multicast Source Discovery Protocol)
 - Anúncio de fontes ativas entre todos os RPs

Arquitetura Atual

Inconvenientes da Arquitetura Atual

- Modelo de serviço aberto
- Alocação de endereços
- PIM-SM
 - é possível comutar da árvore compartilhada para árvore por fonte
 - nos roteadores Cisco
 - limiar de tráfego configurado para 1 pacote
 - RP, MSDP
 - servem apenas para a descoberta de fontes
 - Árvore por fonte é preferível em muitas aplicações
 - Mesmo para fontes conhecidas
 - Construção da árvore compartilhada no início da transmissão

EXPRESS

- EXPlicitely REquested Single Source multicast
- Canal multicast
 - 1 fonte para N receptores
 - ECMP protocol
 - controle do canal
 - coleta de informações sobre o canal
- Canal
 - ▶ (S,G) S = endereço IP da fonte, G = endereço multicast classe D

Source Specific Multicast

- SSM (Source-Specific Multicast)
 - conversação 1 x N
 - Subscribe channel <S,G>
 - Fornece base para o controle de acesso
 - Apenas S pode enviar para (S,G), outras fontes são bloqueadas
 - Alocação de endereços multicast (G)
 - Problema local à fonte
 - > Roteadores RP e o protocolo MSDP não são necessários

Componentes do Serviço SSM

- Faixa de endereços exclusiva 232/8 (IANA)
- O Roteamento: PIM-SSM
 - Versão modificada do PIM-SM
 - Pode implementar ambos os serviços (SM & SSM)
- IGMPv3 (MLDv2 no IPv6)
 - Suporta a filtragem de fontes
 - (INCLUDE, EXCLUDE)

Arquitetura SSM

Funcionamento do PIM-SSM

Regras do PIM-SSM

- > somente join(S,G) é permitido na faixa 232/8
- join(*,G) e join(S,G) permitidos na faixa restante
- roteadores de borda (DR no PIM)
 - implementam *join*(S,G) imediato
- > roteadores de núcleo
 - devem evitar as árvores compartilhadas em 232/8

Observações Finais

- Arquitetura IP Multicast
 - Continua complexa
 - > Ainda possui problemas de escalabilidade
 - Estado armazenado nos roteadores
- Faltam ferramentas de gerenciamento
- Modelo de tarifação em discussão
- Conclusão: ainda há muito trabalho a fazer

REcursive UNIcast TrEes

- Modelo de distribuição 1 para N
- Não utiliza endereço de classe-D
 - group = $\langle S, P \rangle$ P port number
- Escalabilidade

forwarding state (MFT)

X

control state (MCT)

- Distribuição de dados
 - árvores unicast recursivas
 - os pacotes possuem endereços de destino unicast
 - os nós de bifurcação criam cópias modificadas de cada pacote

REUNITE

- Construção da árvore
 - mensagens join(S,G) e tree(S,G)
 - Joins trafegam na direção da fonte
 - Trees são emitidos em "multicast" pela fonte
 - (potencialmente) árvore SPT (Shortest-Path Tree)
- Problemas se o roteamento unicast é assimétrico

Unicast Recursivo

Construção da árvore REUNITE

Rotas unicast:

$$S \leftarrow R_1 \leftarrow R_2 \leftarrow r_1$$

 $S \rightarrow R_1 \rightarrow R_3 \rightarrow r_1$

$$S \leftarrow R_3 \leftarrow R_1 \leftarrow r_2$$

 $S \rightarrow R_4 \rightarrow r_2$

r₁ se inscreve;

r₂ se inscreve;

 r_1 deixa o canal;

Duplicação de dados

Problemas do Roteamento Assimétrico

- Não se garante uma SPT
 - Atraso
- Duplicação de dados
 - Consumo de banda passante
- Criação de ciclos temporários
 - > Tráfego de controle

Hop-By-Hop Multicast

- Modelo de distribuição 1 para N
- Abstração de serviço: canal EXPRESS
 - canal = <S,G> S @ unicast da fonteG @ IP classe D
- Distribuição de dados REUNITE
 - árvores unicast recursivas
 - os pacotes possuem endereços de destino unicast
 - os nós de bifurcação criam cópias modificadas de cada pacote

Unicast Recursivo

Funcionamento do HBH

- Primeiro join sempre atinge S
- mensagens tree instalam entradas na MFT
- mensagens fusion refinam a estrutura da árvore
- Soft-states
 - joins atualizam as entradas MFT
 - trees atualizam as entradas MCT
 - fusions marcam e/ou atualizam as entradas MFT em certos casos especiais

- Data Forwarding entradas marcada
 - > envio de controle, não de dados
 - entradas stale
 - > envio de dados, não de controle

Construção da árvore HBH

Rotas unicast:

$$S \leftarrow H_1 \leftarrow H_2 \leftarrow r_1$$

 $S \rightarrow H_1 \rightarrow H_3 \rightarrow r_1$

$$S \leftarrow H_3 \leftarrow H_1 \leftarrow r_2$$

 $S \rightarrow H_4 \rightarrow r_2$

r₁ se inscreve;

r₂ se inscreve;

 r_1 deixa o canal;

REUNITE

Duplicação de dados

HBH

REUNITE x HBH

A árvore HBH é

- sempre uma SPT
- de menor custo
- mais estável: o caminho de dados fonte-receptor não muda durante a comunicação
- porém...
 - a convergência é mais lenta o protocolo é mais complexo
 - em cada nó de bifurcação uma cópia modificada a mais é produzida

XCast

- Lista explícita de receptores nos dados
 - Novo cabeçalho no IPv4
 - Extensão de roteamento no IPv6
- Cada roteador examina o cabeçalho
 - > Se ponto de ramificação
 - Criação de cópias dos pacotes com as respectivas listas de receptores (alcançáveis a partir de cada interface de saída)
- Não há estado por grupo nos roteadores
- Tamanho do grupo é limitado

Futuro: Multicast no IPv6

- Todos os nós devem suportar o multicast
 - Implementações não precisam suportar túneis multicast
- Modelo de serviço idêntico ao IPv4
- Escopo
 - Definido explicitamente no endereço multicast
- Detalhes de Implementação
 - IPv4: endereço unicast é utilizado na identificação da interface
 - > Inadequado no IPv6, uma interface pode ter vários endereços