Exercise 1

Write a function *solution* that, given an integer N returns the máximum possible value (in absolute value) obtained by inserting one '5' digit inside the decimal representation of integer N.

Examples:

- Given N=268, the function should return 5268
- Given N=670, the function should return 6750
- Given N=0, the function should return 50
- Given N=-999, the function should return -5999

You could asume that N is an integer within the range [-8000, 8000]

```
class Solution {
   public int solution(int N) {
      // write your code using any version of C#, and indicate it
}
```

Exercise 2

A non-empty array A of bits (1s and/or 0s) is given. The *maximal binary ones span* of A is the longest sequence of consecutive 1s.For example, for A such that:

```
A[0] = 0
A[1] = 1
```

A[2] = 1

A[3] = 1

A[4] = 0

A[5] = 1

A[6] = 1

A[7] = 1

A[8] = 0

A[9] = 1

the maximal binary ones span equals 3. There are two sequences of consecutives 1s of such length A[1..3] and A[5..7].

You are given an implementation of the function:

```
class Solution { public int solution (int A[] ); }
```

that, given a non-empty array A consisting on N bits, finds the first sequence of consecutive 1s whose length equals the maximal binary ones span of A, and returns its starting position (index of the first 1 in the sequence).

It there are no bits set no 1, the function returns -1.

For example, given A as in the example above, the function should return 1, because the maximal binary ones span in A reaches 3 (which was already explained) and the first sequence of that length starts at index 1.

Given an array A consisting on two bits such that:

```
A[0] = 0
```

$$A[1] = 0$$

the function should return -1, as there are no 1s.

The attached code is still incorrect for some inputs. Despite the error(s), the code may produce a correct answer for the example test cases. The goal of the exercise is to find and fix the bug(s) in the implementation. You can modify, at most, two lines.

Assume that:

```
N is an integer in the range [1..1000];
```

Each element of array A is an integer that can have one of the following values 0:1

```
class Solution {
```

```
public int solution(int[] A) {
  int n = A.Length;
  int i = n - 1;
  int result = -1;
  int k = 0, maximal = 0;
  while (i > 0) {
     if (A[i] == 1) {
        k = k + 1;
        if (k \ge maximal) {
           maximal = k;
           result = i;
        }
     }
     else
        k = 0;
     i = i - 1;
```

```
}
  if (A[i] == 1 && k + 1 > maximal)
    result = 0;
  return result;
}
```

Exercise 3

From the following table write a SQL query to find those distributors who purchased all types of item from the company. Return distributors ids.

Input:

Table: items

Structure:

Field	Туре	Null	Key	Default	Extra
item_code	int(11)	No	PRI		
item_name	varchar(255)	YES			

Example Data:

item_code	item_name
10091	juice
10092	chocolate
10093	cookies
10094	cake

item_code is the primary key column for items table.

Table: orders

Structure:

Field	Туре	Null	Key	Default	Extra
order_id	int(11)	YES			
distributor_id	int(11)	YES			
item_ordered	int(11)	YES	MUL		
item_quantity	int(11)	YES			

Example Data:

order_id	distributor_id	item_ordered	item_quantity
1	501	10091	250
2	502	10093	100
3	503	10091	200
4	502	10091	150
5	502	10092	300
6	504	10094	200

7	503	10093	250
8	503	10092	250
9	501	10094	180
10	503	10094	350

item_ordered is a foreign key to items table.