Lecture 2: Concentration without Independence

Tianpei Xie

Jan. 6th., 2023

Contents

1	Ma	rtingale-based Methods
	1.1	Martingale
	1.2	Bernstein Inequality for Martingale Difference Sequence
	1.3	Azuma-Hoeffding Inequality
	1.4	McDiarmid's Inequality
	1.5	Lipschitz Functions of Gaussian Variables
	1.6	Applications
2	Bou	anding Variance
	2.1	The Efron-Stein Inequality
	2.2	Functions with Bounded Differences
	2.3	Self-Bounding Functions
	2.4	Applications
	2.5	A Proof of the Efron-Stein Inequality Based on Duality

1 Martingale-based Methods

1.1 Martingale

• **Definition** (*Martingale*) [Resnick, 2013] Let $\{X_n, n \geq 0\}$ be a stochastic process on (Ω, \mathscr{F}) and $\{\mathscr{F}_n, n \geq 0\}$ be a *filtration*; that is, $\{\mathscr{F}_n, n \geq 0\}$ is an *increasing sub* σ -fields of \mathscr{F}

$$\mathscr{F}_0 \subset \mathscr{F}_1 \subset \mathscr{F}_2 \subset \ldots \subset \mathscr{F}$$
.

Then $\{(X_n, \mathscr{F}_n), n \geq 0\}$ is a martingale (mg) if

- 1. X_n is **adapted** in the sense that for each $n, X_n \in \mathscr{F}_n$; that is, X_n is \mathscr{F}_n -measurable.
- 2. $X_n \in L_1$; that is $\mathbb{E}[|X_n|] < \infty$ for $n \ge 0$.
- 3. For $0 \le m < n$

$$\mathbb{E}\left[X_n \mid \mathscr{F}_m\right] = X_m, \quad \text{a.s.} \tag{1}$$

If the equality of (1) is replaced by \geq ; that is, things are getting better on the average:

$$\mathbb{E}\left[X_n \mid \mathscr{F}_m\right] \ge X_m, \quad \text{a.s.} \tag{2}$$

then $\{X_n\}$ is called a <u>sub-martingale (submg)</u> while if things are getting worse on the average

$$\mathbb{E}\left[X_n \mid \mathscr{F}_m\right] \le X_m, \quad \text{a.s.} \tag{3}$$

 ${X_n}$ is called a *super-martingale* (*supermg*).

- Remark $\{X_n\}$ is martingale if it is both a sub and supermartingale. $\{X_n\}$ is a supermartingale if and only if $\{-X_n\}$ is a submartingale.
- Remark If $\{X_n\}$ is a martingale, then $\mathbb{E}[X_n]$ is constant. In the case of a submartingale, the mean increases and for a supermartingale, the mean decreases.
- Proposition 1.1 [Resnick, 2013] If $\{(X_n, \mathscr{F}_n), n \geq 0\}$ is a (sub, super) martingale, then

$$\{(X_n, \sigma(X_0, X_1, \dots, X_n)), n \ge 0\}$$

is also a (sub, super) martingale.

- Definition (Martingale Differences). [Resnick, 2013] $\{(d_j, \mathcal{B}_j), j \geq 0\}$ is a <u>(sub, super) martingale difference sequence</u> or a (sub, super) fair sequence if
 - 1. For $j \geq 0$, $\mathscr{B}_j \subset \mathscr{B}_{j+1}$.
 - 2. For $j \geq 0$, $d_j \in L_1$, $d_j \in \mathcal{B}_j$; that is, d_j is absolutely integrable and \mathcal{B}_j -measurable.
 - 3. For $j \geq 0$,

$$\mathbb{E}[d_{j+1}|\mathcal{B}_j] = 0,$$
 (martingale difference / fair sequence);
 $\geq 0,$ (submartingale difference / subfair sequence);
 $< 0,$ (supmartingale difference / supfair sequence)

• Proposition 1.2 (Construction of Martingale From Martingale Difference)[Resnick, 2013]

If $\{(d_j, \mathcal{B}_j), j \geq 0\}$ is (sub, super) martingale difference sequence, and

$$X_n = \sum_{j=0}^n d_j,$$

then $\{(X_n, \mathcal{B}_n), n \geq 0\}$ is a (sub, super) martingale.

• Proposition 1.3 (Construction of Martingale Difference From Martingale) [Resnick, 2013]

Suppose $\{(X_n, \mathcal{B}_n), n \geq 0\}$ is a **(sub, super) martingale**. Define

$$d_0 := X_0 - \mathbb{E}[X_0]$$

 $d_j := X_j - X_{j-1}, \quad j \ge 1.$

Then $\{(d_j, \mathcal{B}_j), j \geq 0\}$ is a (sub, super) martingale difference sequence.

• Proposition 1.4 (Orthogonality of Martingale Differences). [Resnick, 2013] If $\{(X_n, \mathcal{B}_n), n \geq 0\}$ is a martingale where X_n can be decomposed as

$$X_n = \sum_{j=0}^n d_j,$$

 d_j is \mathscr{B}_j -measurable and $\mathbb{E}[d_j^2] < \infty$ for $j \geq 0$, then $\{d_j\}$ are **orthogonal**:

$$\mathbb{E}\left[d_i\,d_j\right] = 0 \quad i \neq j.$$

Proof: This is an easy verification: If j > i, then

$$\mathbb{E} [d_i d_j] = \mathbb{E} [\mathbb{E} [d_i d_j | \mathscr{B}_i]]$$
$$= \mathbb{E} [d_i \mathbb{E} [d_j | \mathscr{B}_i]] = 0. \quad \blacksquare$$

A consequence is that

$$\mathbb{E}\left[X_n^2\right] = \mathbb{E}\left[\sum_{i=1}^n d_i^2\right] + 2\sum_{0 \le i < j \le n} \mathbb{E}\left[d_i d_j\right] = \mathbb{E}\left[\sum_{i=1}^n d_i^2\right],$$

which is **non-decreasing**. From this, it seems likely (and turns out to be true) that $\{X_n^2\}$ is a **sub-martingale**.

• Example (Smoothing as Martingale) Suppose $X \in L_1$ and $\{\mathscr{B}_n, n \geq 0\}$ is an increasing family of sub σ -algebra of \mathscr{B} . Define for $n \geq 0$

$$X_n := \mathbb{E}\left[X|\mathscr{B}_n\right].$$

Then (X_n, \mathcal{B}_n) is a *martingale*. From this result, we see that $\{(d_n, \mathcal{B}_n), n \geq 0\}$ is a *martingale difference sequence* when

$$d_n := \mathbb{E}\left[X|\mathscr{B}_n\right] - \mathbb{E}\left[X|\mathscr{B}_{n-1}\right], \quad n \ge 1. \tag{4}$$

Proof: See that

$$\mathbb{E}\left[X_{n+1}|\mathscr{B}_n\right] = \mathbb{E}\left[\mathbb{E}\left[X|\mathscr{B}_{n+1}\right]|\mathscr{B}_n\right]$$

$$= \mathbb{E}\left[X|\mathscr{B}_n\right] \qquad \text{(Smoothing property of conditional expectation)}$$

$$= X_n \quad \blacksquare$$

 $\bullet \ {\bf Example} \ ({\it Sums} \ of \ Independent \ Random \ Variables) \\$

Suppose that $\{Z_n, n \geq 0\}$ is an *independent* sequence of integrable random variables satisfying for $n \geq 0$, $\mathbb{E}[Z_n] = 0$. Set

$$X_0 := 0,$$

$$X_n := \sum_{i=1}^n Z_i, \quad n \ge 1$$

$$\mathscr{B}_n := \sigma(Z_0, \dots, Z_n).$$

Then $\{(X_n, \mathcal{B}_n), n \geq 0\}$ is a martingale since $\{(Z_n, \mathcal{B}_n), n \geq 0\}$ is a martingale difference sequence.

• Example (*Likelihood Ratios*).

Suppose $\{Y_n, n \geq 0\}$ are *independent identically distributed* random variables and suppose the true density of Y_n is f_0 (The word "density" can be understood with respect to some fixed reference measure μ .) Let f_1 be some other probability density. For simplicity suppose $f_0(y) > 0$, for all y. For $n \geq 0$, define the likelihood ratio

$$X_n := \frac{\prod_{i=0}^n f_1(Y_i)}{\prod_{i=0}^n f_0(Y_i)}$$
$$\mathscr{B}_n := \sigma(Y_0, \dots, Y_n)$$

Then (X_n, \mathcal{B}_n) is a **martingale**.

Proof: See that

$$\mathbb{E}\left[X_{n+1}|\mathscr{B}_{n}\right] = \mathbb{E}\left[\left(\frac{\prod_{i=0}^{n} f_{1}(Y_{i})}{\prod_{i=0}^{n} f_{0}(Y_{i})}\right) \frac{f_{1}(Y_{n+1})}{f_{0}(Y_{n+1})} \mid Y_{0}, \dots, Y_{n}\right]$$

$$= X_{n} \mathbb{E}\left[\frac{f_{1}(Y_{n+1})}{f_{0}(Y_{n+1})} \mid Y_{0}, \dots, Y_{n}\right]$$

$$= X_{n} \mathbb{E}\left[\frac{f_{1}(Y_{n+1})}{f_{0}(Y_{n+1})}\right] \quad \text{(by independence)}$$

$$:= X_{n} \int \frac{f_{1}(y_{n+1})}{f_{0}(y_{n+1})} f_{0}(y_{n+1}) d\mu(y_{n+1}) = X_{n}.$$

1.2 Bernstein Inequality for Martingale Difference Sequence

• Proposition 1.5 (Bernstein Inequality, Martingale Difference Sequence Version)
[Wainwright, 2019]

Let $\{(D_k, \mathcal{B}_k), k \geq 1\}$ be a martingale difference sequence, and suppose that

$$\mathbb{E}\left[\exp\left(\lambda D_{k}\right) \middle| \mathscr{B}_{k-1}\right] \leq \exp\left(\frac{\lambda^{2} \nu_{k}^{2}}{2}\right)$$

almost surely for any $|\lambda| < 1/\alpha_k$. Then the following hold:

1. The sum $\sum_{k=1}^{n} D_k$ is **sub-exponential** with **parameters** $\left(\sqrt{\sum_{k=1}^{n} \nu_k^2}, \alpha_*\right)$ where $\alpha_* := \max_{k=1,...,n} \alpha_k$. That is, for any $|\lambda| < 1/\alpha_*$,

$$\mathbb{E}\left[\exp\left\{\lambda\left(\sum_{k=1}^{n}D_{k}\right)\right\}\right] \leq \exp\left(\frac{\lambda^{2}\sum_{k=1}^{n}\nu_{k}^{2}}{2}\right)$$

2. The sum satisfies the concentration inequality

$$\mathbb{P}\left\{\left|\sum_{k=1}^{n} D_{k}\right| \geq t\right\} \leq \begin{cases}
2\exp\left(-\frac{t^{2}}{2\sum_{k=1}^{n} \nu_{k}^{2}}\right) & \text{if } 0 \leq t \leq \frac{\sum_{k=1}^{n} \nu_{k}^{2}}{\alpha_{*}} \\
2\exp\left(-\frac{t}{\alpha_{*}}\right) & \text{if } t > \frac{\sum_{k=1}^{n} \nu_{k}^{2}}{\alpha_{*}}.
\end{cases}$$
(5)

Proof: We follow the standard approach of controlling the moment generating function of $\sum_{k=1}^{n} D_k$, and then applying the Chernoff bound. For any scalar λ such that $|\lambda| < 1/\alpha_*$, conditioning on \mathcal{B}_{n-1} and applying iterated expectation yields

$$\mathbb{E}\left[\exp\left\{\lambda\left(\sum_{k=1}^{n}D_{k}\right)\right\}\right] = \mathbb{E}\left[\exp\left\{\lambda\left(\sum_{k=1}^{n-1}D_{k}\right)\right\}\mathbb{E}\left[\exp\left\{\lambda D_{n}\right\} \mid \mathcal{B}_{n-1}\right]\right]$$

$$\leq \mathbb{E}\left[\exp\left\{\lambda\left(\sum_{k=1}^{n-1}D_{k}\right)\right\}\right]\exp\left(\frac{\lambda^{2}\nu_{k}^{2}}{2}\right),$$

where the inequality follows from the stated assumption on D_n . Iterating this procedure yields the bound $\mathbb{E}\left[\exp\left\{\lambda\left(\sum_{k=1}^n D_k\right)\right\}\right] \leq \exp\left(\frac{\lambda^2\sum_{k=1}^n \nu_k^2}{2}\right)$, valid for all $|\lambda| < 1/\alpha_*$. By definition, we conclude that $\sum_{k=1}^n D_k$ is sub-exponential with parameters $\left(\sqrt{\sum_{k=1}^n \nu_k^2}, \alpha_*\right)$, as claimed. The tail bound (5) follows by properties of sub-exponential distribution.

• Remark This result is a generalization of the Bernstein's inequality when $\{D_k\}$ are independent sub-exponential distributed random variables.

The proof used the property of conditional expectation

$$\mathbb{E}\left[\mathbb{E}\left[X|\mathscr{B}_{n}\right]\right] = \mathbb{E}\left[X\right], \quad \mathbb{E}\left[h(X)g(Y)|Y\right] \stackrel{a.s.}{=} h(X)\mathbb{E}\left[g(Y)|Y\right]$$

1.3 Azuma-Hoeffding Inequality

• Corollary 1.6 (Azuma-Hoeffding Inequality, Martingale Difference) [Wainwright, 2019] Let $\{(D_k, \mathcal{B}_k), k \geq 1\}$ be a martingale difference sequence for which there are constants $\{(a_k, b_k)\}_{k=1}^n$ such that $D_k \in [a_k, b_k]$ almost surely for all $k = 1, \ldots, n$. Then, for all $t \geq 0$,

$$\mathbb{P}\left\{ \left| \sum_{k=1}^{n} D_k \right| \ge t \right\} \le 2 \exp\left(-\frac{2t^2}{\sum_{k=1}^{n} (b_k - a_k)^2}\right) \tag{6}$$

1.4 McDiarmid's Inequality

• An important application of Azuma-Hoeffding Inequality concerns functions that satisfy a bounded difference property.

Definition (Functions with Bounded Difference Property)

Given vectors $x, x' \in \mathcal{X}^n$ and an index $k \in \{1, 2, ..., n\}$, we define a new vector $x^{(-k)} \in \mathcal{X}^n$ via

$$x_j^{(-k)} = \begin{cases} x_j & j \neq k \\ x_k' & j = k \end{cases}$$

With this notation, we say that $f: \mathcal{X}^n \to \mathbb{R}$ satisfies <u>the bounded difference inequality</u> with parameters (L_1, \ldots, L_n) if, for each index $k = 1, 2, \ldots, n$,

$$\left| f(x) - f(x^{(-k)}) \right| \le L_k, \quad \text{for all } x, x' \in \mathcal{X}^n.$$
 (7)

• Corollary 1.7 (McDiarmid's Inequality / Bounded Differences Inequality)[Wainwright, 2019]

Suppose that f satisfies **the bounded difference property** (7) with parameters (L_1, \ldots, L_n) and that the random vector $X = (X_1, X_2, \ldots, X_n)$ has **independent** components. Then

$$\mathbb{P}\left\{|f(X) - \mathbb{E}\left[f(X)\right]| \ge t\right\} \le 2\exp\left(-\frac{2t^2}{\sum_{k=1}^n L_k^2}\right). \tag{8}$$

Proof: Consider the associated martingale difference sequence

$$D_k := \mathbb{E}\left[f(X)|X_1,\ldots,X_k| - \mathbb{E}\left[f(X)|X_1,\ldots,X_{k-1}|\right]\right].$$

We claim that D_k lies in an interval of length at most L_k almost surely. In order to prove this claim, define the random variables

$$A_k := \inf_{x} \left\{ \mathbb{E} \left[f(X) | X_1, \dots, X_{k-1}, x \right] \right\} - \mathbb{E} \left[f(X) | X_1, \dots, X_{k-1} \right]$$

$$B_k := \sup \left\{ \mathbb{E} \left[f(X) | X_1, \dots, X_{k-1}, x \right] \right\} - \mathbb{E} \left[f(X) | X_1, \dots, X_{k-1} \right].$$

On one hand, we have

$$D_k - A_k = \mathbb{E}[f(X)|X_1, \dots, X_k] - \inf_{x \in \mathbb{R}} \{\mathbb{E}[f(X)|X_1, \dots, X_{k-1}, x]\},$$

so that $D_k \geq A_k$ almost surely. A similar argument shows that $D_k \leq B_k$ almost surely. We now need to show that $B_k - A_k \leq L_k$ almost surely. Observe that by the independence of $\{X_k\}_{k=1}^n$, we have

$$\mathbb{E}[f(X) | x_1, \dots, x_k] = \mathbb{E}_{(k+1)}[f(x_1, \dots, x_k, X_{k+1}, \dots, X_n)], \text{ for any } (x_1, \dots, x_k),$$

where $\mathbb{E}_{(k+1)}[\cdot]$ denote the expectation over (X_{k+1},\ldots,X_n) . Consequently, we have

$$B_{k} - A_{k} = \sup_{x} \mathbb{E}_{(k+1)} \left[f(X_{1}, \dots, X_{k-1}, x, X_{k+1}, \dots, X_{n}) \right]$$

$$- \inf_{x} \mathbb{E}_{(k+1)} \left[f(X_{1}, \dots, X_{k-1}, x, X_{k+1}, \dots, X_{n}) \right]$$

$$\leq \sup_{x,y} \left\{ \mathbb{E}_{(k+1)} \left[f(X_{1:k-1}, x, X_{k+1:n}) \right] - \mathbb{E}_{(k+1)} \left[f(X_{1:k-1}, y, X_{k+1:n}) \right] \right\}$$

$$< L_{k},$$

using the bounded differences assumption. Thus, the variable D_k lies within an interval of length L_k at most surely, so that the claim follows as a corollary of the Azuma-Hoeffding inequality.

1.5 Lipschitz Functions of Gaussian Variables

1.6 Applications

2 Bounding Variance

2.1 The Efron-Stein Inequality

• Remark (Variance of Independence Random Variables) Let $X_n = \sum_{i=1}^n Z_i$ be the sum of independent real-valued random variables Z_1, \ldots, Z_n . Then we have

$$\mathbb{E}\left[(X_n - \mathbb{E}\left[X_n \right])^2 \right] = \sum_{i=1}^n \mathbb{E}\left[(Z_i - \mathbb{E}\left[Z_i \right])^2 \right]$$
$$\Rightarrow \operatorname{Var}(X_n) = \sum_{i=1}^n \operatorname{Var}(Z_i).$$

• Remark (Variance of Smoothing Martingale Difference Sequence) Suppose $X \in L_1$ and $\{\mathscr{B}_n, n \geq 0\}$ is an increasing family of sub σ -algebra of \mathscr{B} formed by

$$\mathscr{B}_n := \sigma(Z_1,\ldots,Z_n)$$
.

For $n \geq 1$, define

$$\begin{aligned} d_0 &:= \mathbb{E} \left[X \right] \\ d_n &:= \mathbb{E} \left[X | \mathscr{B}_n \right] - \mathbb{E} \left[X | \mathscr{B}_{n-1} \right] \\ &= \mathbb{E} \left[X | Z_1, \dots, Z_n \right] - \mathbb{E} \left[X | Z_1, \dots, Z_{n-1} \right]. \end{aligned}$$

From (4) we see that (d_n, \mathcal{B}_n) is a martingale difference sequence. By orthogonality of martingale difference, we see that

$$\mathbb{E}\left[d_i \, d_j\right] = 0 \quad i \neq j.$$

Therefore, based on the decomposition

$$X - EX = \sum_{i=1}^{n} d_i$$

we have

$$\operatorname{Var}(X) = \mathbb{E}\left[\left(\sum_{i=1}^{n} d_{i}\right)^{2}\right] = \sum_{i=1}^{n} \mathbb{E}\left[d_{i}^{2}\right] + 2\sum_{i>j} \mathbb{E}\left[d_{i} d_{j}\right]$$
$$= \sum_{i=1}^{n} \mathbb{E}\left[d_{i}^{2}\right]. \tag{9}$$

• Remark (Variance of General Functions of Independent Random Variables)

Then above formula (9) holds when $X = f(Z_1, ..., Z_n)$ for general function $f: \mathbb{R}^n \to \mathbb{R}$ with n independent random variables $(Z_1, ..., Z_n)$. By Fubini's theorem,

$$\mathbb{E}[X|Z_1,\ldots,Z_i] = \int_{\mathcal{Z}^{n-i}} f(Z_1,\ldots,Z_i,z_{i+1},\ldots,z_n) \ d\mu_{i+1}(z_{i+1}) \ldots d\mu_n(z_n)$$

where μ_j is the probability distribution of Z_j for $j \geq 1$. Define the conditional expectation of X given all random variables (Z_1, \ldots, Z_n) except for Z_i as

$$\mathbb{E}_{(-i)}[X] := \mathbb{E}[X|Z_1, \dots, Z_{i-1}, Z_{i+1}, \dots, Z_n]$$

$$= \int_{\mathcal{Z}} f(Z_1, \dots, Z_{i-1}, z_i, Z_{i+1}, \dots, Z_n) \ d\mu_i(z_i).$$

Then, again by Fubini's theorem (smoothing properties of conditional expectation),

$$\mathbb{E}\left[\mathbb{E}_{(-i)}\left[X\right]|Z_1,\ldots,Z_i\right] = \mathbb{E}\left[X|Z_1,\ldots,Z_{i-1}\right] \tag{10}$$

Denote $Z_{(-i)} := (Z_1, \dots, Z_{i-1}, Z_{i+1}, \dots, Z_n)$

• Proposition 2.1 (Efron-Stein Inequality) [Boucheron et al., 2013] Let Z_1, \ldots, Z_n be independent random variables and let X = f(Z) be a square-integrable function of $Z = (Z_1, \ldots, Z_n)$. Then

$$Var(X) \le \sum_{i=1}^{n} \mathbb{E}\left[\left(X - \mathbb{E}_{(-i)}\left[X\right]\right)^{2}\right] := \nu. \tag{11}$$

Moreover, if Z'_1, \ldots, Z'_n are **independent** copies of Z_1, \ldots, Z_n and if we define, for every $i = 1, \ldots, n$,

$$X'_{i} := f(Z_{1}, \dots, Z_{i-1}, Z'_{i}, Z_{i+1}, \dots, Z_{n}),$$

then

$$\nu = \frac{1}{2} \sum_{i=1}^{n} \mathbb{E} \left[\left(X - X_{i}' \right)^{2} \right] = \sum_{i=1}^{n} \mathbb{E} \left[\left(X - X_{i}' \right)_{+}^{2} \right] = \sum_{i=1}^{n} \mathbb{E} \left[\left(X - X_{i}' \right)_{-}^{2} \right]$$

where $x_{+} = \max\{x, 0\}$ and $x_{-} = \max\{-x, 0\}$ denote the **positive** and **negative** parts of a real number x. Also,

$$\nu = \inf_{X_i} \sum_{i=1}^{n} \mathbb{E}\left[(X - X_i)^2 \right],$$

where the infimum is taken over the class of all $Z_{(-i)}$ -measurable and square-integrable variables X_i , i = 1, ..., n.

Proof: We begin with the proof of the first statement. Note that, using (10), we may write

$$d_{i} := \mathbb{E}\left[X|Z_{1}, \dots, Z_{i}\right] - \mathbb{E}\left[X|Z_{1}, \dots, Z_{i-1}\right]$$

$$= \mathbb{E}\left[X|Z_{1}, \dots, Z_{i}\right] - \mathbb{E}\left[\mathbb{E}_{(-i)}\left[X\right]|Z_{1}, \dots, Z_{i}\right]$$

$$= \mathbb{E}\left[X - \mathbb{E}_{(-i)}\left[X\right]|Z_{1}, \dots, Z_{i}\right].$$

By Jensen's inequality used conditionally,

$$d_i^2 \leq \mathbb{E}\left[\left(X - \mathbb{E}_{(-i)}\left[X\right]\right)^2 | Z_1, \dots, Z_i\right]$$

Using (9) $\operatorname{Var}(X) = \sum_{i=1}^{n} \mathbb{E}\left[d_i^2\right]$, we have

$$\operatorname{Var}(X) \leq \sum_{i=1}^{n} \mathbb{E}\left[\mathbb{E}\left[\left(X - \mathbb{E}_{(-i)}\left[X\right]\right)^{2} | Z_{1}, \dots, Z_{i}\right]\right] = \sum_{i=1}^{n} \mathbb{E}\left[\left(X - \mathbb{E}_{(-i)}\left[X\right]\right)^{2}\right],$$

we obtain the desired inequality.

To prove the identities for ν , denote by $\operatorname{Var}_{(-i)}$ the *conditional variance operator* conditioned on $Z_{(-i)} := (Z_1, \dots, Z_{i-1}, Z_{i+1}, \dots, Z_n)$. Then we may write ν as

$$\nu = \sum_{i=1}^{n} \mathbb{E} \left[\operatorname{Var}_{(-i)}(X) \right].$$

Now note that one may simply use (conditionally) the elementary fact that if X and Y are independent and identically distributed real-valued random variables, then

$$\operatorname{Var}(X) = \frac{1}{2} \mathbb{E}\left[(X - Y)^2 \right].$$

Since conditionally on $Z_{(-i)}$, X'_i is an independent copy of X, we may write

$$\operatorname{Var}_{(i)}(X) = \frac{1}{2} \mathbb{E}_{(-i)} \left[\left(X - X_i' \right)^2 \right] = \sum_{i=1}^n \mathbb{E}_{(-i)} \left[\left(X - X_i' \right)_+^2 \right] = \sum_{i=1}^n \mathbb{E}_{(-i)} \left[\left(X - X_i' \right)_-^2 \right],$$

where we used the fact that the conditional distributions of X and X'_i are identical.

The last identity is obtained by recalling that, for any real-valued random variable X,

$$\operatorname{Var}(X) = \inf_{a \in \mathbb{R}} \mathbb{E}\left[(X - a)^2 \right].$$

Using this fact conditionally, we have, for every i = 1, ..., n,

$$\operatorname{Var}_{(-i)}(X) = \inf_{\mathbf{X}} \mathbb{E}_{(-i)} \left[(X - X_i)^2 \right].$$

Note that this infimum is achieved whenever $X_i = \mathbb{E}_{(-i)}[X]$.

2.2 Functions with Bounded Differences

• Remark Recall that a function $f: \mathcal{X}^n \to \mathbb{R}$ satisfies the bounded difference inequality with parameters (L_1, \ldots, L_n) if, for each index $k = 1, 2, \ldots, n$,

$$\left| f(x) - f(x^{(-k)}) \right| \le L_k, \quad \text{ for all } x, x' \in \mathcal{X}^n.$$

where

$$x_j^{(-k)} = \begin{cases} x_j & j \neq k \\ x_k' & j = k \end{cases}$$

• Corollary 2.2 [Boucheron et al., 2013] If f has the **bounded differences property** with parameters (L_1, \ldots, L_n) , then

$$Var(f(X)) \le \frac{1}{4} \sum_{i=1}^{n} L_i^2.$$

2.3 Self-Bounding Functions

• Another simple property which is satisfied for many important examples is the so-called self-bounding property.

Definition (Self-Bounding Property)

A nonnegative function $f: \mathcal{X}^n \to [0, \infty)$ has the <u>self-bounding property</u> if there exist functions $f_i: \mathcal{X}^{n-1} \to \mathbb{R}$ such that for all $x_1, \ldots, x_n \in \mathcal{X}$ and all $i = 1, \ldots, n$,

$$0 \le f(x_1, \dots, x_n) - f_i(x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n) \le 1$$
(12)

and also

$$\sum_{i=1}^{n} \left(f(x_1, \dots, x_n) - f_i(x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n) \right) \le f(x_1, \dots, x_n). \tag{13}$$

• Remark Clearly if f has the self-bounding property,

$$\sum_{i=1}^{n} \left(f(x_1, \dots, x_n) - f_i(x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n) \right)^2 \le f(x_1, \dots, x_n)$$
 (14)

• Corollary 2.3 [Boucheron et al., 2013]
If f has the self-bounding property, then

$$Var(f(X)) \leq \mathbb{E}[f(X)].$$

• Remark (*Relative Stability*) [Boucheron et al., 2013] A sequence of nonnegative random variables $(Z_n)_{n\in\mathbb{N}}$ is said to be *relatively stable* if

$$\frac{Z_n}{\mathbb{E}\left[Z_n\right]} \stackrel{\mathbb{P}}{\to} 1.$$

This property guarantees that the random fluctuations of Z_n around its expectation are of negligible size when compared to the expectation, and therefore most information about the size of Z_n is given by $\mathbb{E}[Z_n]$.

Bounding the variance of Z_n by its expected value implies, in many cases, the relative stability of $(Z_n)_{n\in\mathbb{N}}$. If Z_n has the self-bounding property, then, by Chebyshev's inequality, for all $\epsilon > 0$,

$$\mathbb{P}\left\{ \left| \frac{Z_n}{\mathbb{E}[Z_n]} - 1 \right| > \epsilon \right\} \le \frac{\operatorname{Var}(Z_n)}{\epsilon^2 (\mathbb{E}[Z_n])^2} \le \frac{1}{\epsilon^2 \mathbb{E}[Z_n]}.$$

Thus, for relative stability, it suffices to have $\mathbb{E}[Z_n] \to \infty$.

• An important class of functions satisfying the self-bounding property consists of the so-called configuration functions.

Definition (Configuration Function)

Assume that we have a property Π defined over the union of finite products of a set \mathcal{X} , that is, a sequence of sets

$$\Pi_1 \subset \mathcal{X}, \ \Pi_2 \subset \mathcal{X} \times \mathcal{X}, \ \dots, \ \Pi_n \subset \mathcal{X}^n.$$

We say that $(x_1, \ldots, x_m) \in \mathcal{X}^m$ satisfies the property Π if $(x_1, \ldots, x_m) \in \Pi_m$.

We assume that Π is **hereditary** in the sense that if (x_1, \ldots, x_m) satisfies Π then so does any sub-sequence $\{\overline{x_{i_1}, \ldots, x_{i_k}}\}$ of (x_1, \ldots, x_m) .

The function f that maps any vector $x = (x_1, ..., x_n)$ to **the size** of a **largest sub-sequence** satisfying Π is **the configuration function** associated with property Π .

• Corollary 2.4 [Boucheron et al., 2013] Let f be a configuration function, and let $Z = f(X_1, ..., X_n)$, where $X_1, ..., X_n$ are independent random variables. Then

$$Var(Z) \leq \mathbb{E}[Z]$$
.

• Example (VC Dimension)

Let \mathcal{H} be an arbitrary collection of subsets of \mathcal{X} , and let $x = (x_1, \ldots, x_n)$ be a vector of n points of \mathcal{X} . Define the **trace** of \mathcal{H} on x by

$$\operatorname{tr}(x) = \{A \cap \{x_1, \dots, x_n\} : A \in \mathcal{H}\}.$$

The shatter coefficient, (or Vapnik-Chervonenkis growth function) of \mathcal{H} in x is $\tau_{\mathcal{H}}(x) = |\operatorname{tr}(x)|$, the size of the trace. $\tau_{\mathcal{H}}(x)$ is the number of different subsets of the n-point set $\{x_1,\ldots,x_n\}$ generated by intersecting it with elements of \mathcal{H} . A subset $\{x_{i_1},\ldots,x_{i_k}\}$ of $\{x_1,\ldots,x_n\}$ is said to be **shattered** if $2^k = T(x_{i_1},\ldots,x_{i_k})$.

The VC dimension D(x) of \mathcal{H} (with respect to x) is the cardinality k of the largest shattered subset of x. From the definition it is obvious that f(x) = D(x) is a **configuration function** (associated with the property of "**shatteredness**") and therefore if X_1, \ldots, X_n are independent random variables, then

$$Var(D(X)) \le \mathbb{E}[D(X)].$$

2.4 Applications

2.5 A Proof of the Efron-Stein Inequality Based on Duality

References

Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration inequalities: A nonasymptotic theory of independence. Oxford university press, 2013.

Sidney I Resnick. A probability path. Springer Science & Business Media, 2013.

Martin J Wainwright. *High-dimensional statistics: A non-asymptotic viewpoint*, volume 48. Cambridge University Press, 2019.