At least $|S|^{k-1} \cdot (|S|-1)$ frontiers: a graph theory problem

Darij Grinberg

October 18, 2015 (modified version of a note from 2009)

1. Problem

Let S be a finite set. Let k be a positive integer. Let A be a subset of S^k satisfying $|A| = |S|^{k-1}$. Let $B = S^k \setminus A$. For every $v \in S^k$ and every $i \in \{1, 2, ..., k\}$, we denote by v_i the i-th component

For every $v \in S^k$ and every $i \in \{1, 2, ..., k\}$, we denote by v_i the i-th component of the k-tuple v (remember that v is an element of S^k , that is, a k-tuple of elements of S). Then, every $v \in S^k$ satisfies $v = (v_1, v_2, ..., v_k)$.

Let F be the set of all pairs $(a,b) \in A \times B$ for which there exists an $i \in \{1,2,\ldots,k\}$ satisfying $(a_j = b_j \text{ for all } j \neq i)^{-1}$. (Speaking less formally, let F be the set of all pairs $(a,b) \in A \times B$ for which the k-tuples a and b differ in at most one position.)

Prove that $|F| \ge |S|^{k-1} \cdot (|S| - 1)$.

2. Remark

In the case |S| = 2, this is an old problem (which appeared, for example, in a Moscow MO 1962 preparation booklet, and which is a particular case of Cheeger's inequality for the hypercube).

I use to call the elements of *F* "frontiers" between the sets *A* and *B*.

3. Solution

Since $A \subseteq S^k$ and $B = S^k \setminus A$, we have $A \cap B = \emptyset$ and $A \cup B = S^k$. Hence, $S^k \setminus B = A$.

Define a map ϕ : $A \times B \rightarrow F$ as follows:

Of course, "for all $j \neq i$ " means "for all $j \in \{1, 2, ..., k\}$ satisfying $j \neq i$ " here.

Let $(u,v) \in A \times B$ be a pair. Then, $u \in A$ and $v \in B$, so that $u \notin B$ and $v \notin A$ (since $A \cap B = \emptyset$).

We define a subset T of $\{0, 1, 2, \ldots, k\}$ by

$$T = \{i \in \{0, 1, 2, \dots, k\} \mid (v_1, v_2, \dots, v_i, u_{i+1}, u_{i+2}, \dots, u_k) \in B\}$$

². Then, $0 \notin T$ (since $(u_1, u_2, \ldots, u_k) = u \notin B$) and $k \in T$ (since $(v_1, v_2, \ldots, v_k) = v \in B$). In particular, $k \in T$ yields $T \neq \emptyset$. Thus, the set T has a minimal element (since T is a finite set). Let α be this minimal element. Then, $\alpha \in T$ and $\alpha - 1 \notin T$. We have $\alpha \neq 0$ (since $\alpha \in T$ but $0 \notin T$). Thus, $\alpha - 1 \in \{0, 1, 2, \ldots, k\}$ (since $\alpha \in T \subseteq \{0, 1, 2, \ldots, k\}$).

Now, $\alpha \in T$ yields $(v_1, v_2, ..., v_{\alpha}, u_{\alpha+1}, u_{\alpha+2}, ..., u_k) \in B$, while $\alpha - 1 \notin T$ yields $(v_1, v_2, ..., v_{\alpha-1}, u_{\alpha}, u_{\alpha+1}, ..., u_k) \notin B$, so that $(v_1, v_2, ..., v_{\alpha-1}, u_{\alpha}, u_{\alpha+1}, ..., u_k) \in S^k \setminus B = A$. Set $a = (v_1, v_2, ..., v_{\alpha-1}, u_{\alpha}, u_{\alpha+1}, ..., u_k)$ and $b = (v_1, v_2, ..., v_{\alpha}, u_{\alpha+1}, u_{\alpha+2}, ..., u_k)$. Then, $a = (v_1, v_2, ..., v_{\alpha-1}, u_{\alpha}, u_{\alpha+1}, ..., u_k) \in A$ and

 $b = (v_1, v_2, \dots, v_{\alpha}, u_{\alpha+1}, u_{\alpha+2}, \dots, u_k) \in B$, so that $(a, b) \in A \times B$. Besides, there exists an $i \in \{1, 2, \dots, k\}$ satisfying $(a_j = b_j \text{ for all } j \neq i)$ (namely, $i = \alpha$ ³). Hence, $(a, b) \in F$ (by the definition of F).

Now set $\phi(u,v) = (a,b)$. Thus we have defined a map $\phi: A \times B \to F$.

Next, we will prove that $|\phi^{-1}(\{(a,b)\})| \le |S|^{k-1}$ for every $(a,b) \in F$. In fact, let $(a,b) \in F$. Since $(a,b) \in F$, we have $(a,b) \in A \times B$, so that $a \in A$ and $b \in B$, so that $a \ne b$ (since $A \cap B = \emptyset$). But since $(a,b) \in F$,

there exists an
$$i \in \{1, 2, ..., k\}$$
 satisfying $(a_i = b_i \text{ for all } j \neq i)$. (1)

Consider this *i*.

We must have $a_i \neq b_i$ ⁴.

Now, consider some $(u,v) \in \phi^{-1}(\{(a,b)\})$. Then, $\phi(u,v) = (a,b)$. Thus, by the definition of ϕ , there exists an $\alpha \in \{0,1,2,\ldots,k\}$ such that

$$a = (v_1, v_2, \dots, v_{\alpha-1}, u_{\alpha}, u_{\alpha+1}, \dots, u_k)$$
 and $b = (v_1, v_2, \dots, v_{\alpha}, u_{\alpha+1}, u_{\alpha+2}, \dots, u_k)$. (2)

Consider this α .

²For i=0, the notation $(v_1,v_2,\ldots,v_i,u_{i+1},u_{i+2},\ldots,u_k)$ means (u_1,u_2,\ldots,u_k) . For i=k, the notation $(v_1,v_2,\ldots,v_i,u_{i+1},u_{i+2},\ldots,u_k)$ means (v_1,v_2,\ldots,v_k) .

³In fact, $a_j=b_j$ for all $j\neq\alpha$ (in fact, for any j, we have $a_j=\begin{cases} v_j, \text{ if } j<\alpha; \\ u_j, \text{ if } j\geq\alpha \end{cases}$ and $b_j=\begin{cases} v_j, \text{ if } j\leq\alpha; \\ u_j, \text{ if } j>\alpha \end{cases}$; thus, if $j\neq\alpha$, this simplifies to $a_j=\begin{cases} v_j, \text{ if } j<\alpha; \\ u_j, \text{ if } j>\alpha \end{cases}$ and $b_j=\begin{cases} v_j, \text{ if } j<\alpha; \\ u_j, \text{ if } j>\alpha \end{cases}$, so that $a_j=b_j$ for all $j\neq\alpha$).

⁴In fact, otherwise, we would have $a_i = b_i$, what, combined with $a_j = b_j$ for all $j \neq i$, would yield $a_i = b_i$ for all $j \in \{1, 2, ..., k\}$, so that a = b, contradicting $a \neq b$.

We must have $u_{\alpha} \neq v_{\alpha}$ ⁵. Since $a_{\alpha} = u_{\alpha}$ and $b_{\alpha} = v_{\alpha}$, this yields $a_{\alpha} \neq b_{\alpha}$. Hence, $\alpha = i$ (since otherwise, we would have $\alpha \neq i$, so that $a_{\alpha} = b_{\alpha}$ by (1), contradicting $a_{\alpha} \neq b_{\alpha}$). Thus, (2) becomes

$$a = (v_1, v_2, \dots, v_{i-1}, u_i, u_{i+1}, \dots, u_k)$$
 and $b = (v_1, v_2, \dots, v_i, u_{i+1}, u_{i+2}, \dots, u_k)$.

Now, $a = (v_1, v_2, \dots, v_{i-1}, u_i, u_{i+1}, \dots, u_k)$ yields $a_j = u_j$ for all $j \ge i$. Hence,

$$u = (u_1, u_2, \dots, u_{i-1}, u_i, u_{i+1}, \dots, u_k) = (u_1, u_2, \dots, u_{i-1}, a_i, a_{i+1}, \dots, a_k)$$

$$\in S^{i-1} \times \{a_i\} \times \{a_{i+1}\} \times \dots \times \{a_k\}.$$
(3)

6

Also, $b = (v_1, v_2, \dots, v_i, u_{i+1}, u_{i+2}, \dots, u_k)$ yields $b_j = v_j$ for all $j \le i$. Hence,

$$v = (v_1, v_2, \dots, v_i, v_{i+1}, v_{i+2}, \dots, v_k) = (b_1, b_2, \dots, b_i, v_{i+1}, v_{i+2}, \dots, v_k)$$

$$\in \{b_1\} \times \{b_2\} \times \dots \times \{b_i\} \times S^{k-i}.$$
(4)

7

By (3) and (4), we have

$$(u,v) \in \left(S^{i-1} \times \{a_i\} \times \{a_{i+1}\} \times \dots \times \{a_k\}\right) \times \left(\{b_1\} \times \{b_2\} \times \dots \times \{b_i\} \times S^{k-i}\right)$$

for every $(u, v) \in \phi^{-1}(\{(a, b)\})$. Thus,

$$\left| \phi^{-1} \left(\{ (a,b) \} \right) \right| \\
\leq \left| \left(S^{i-1} \times \{ a_i \} \times \{ a_{i+1} \} \times \dots \times \{ a_k \} \right) \times \left(\{ b_1 \} \times \{ b_2 \} \times \dots \times \{ b_i \} \times S^{k-i} \right) \right| \\
= \left| S^{i-1} \times \{ a_i \} \times \{ a_{i+1} \} \times \dots \times \{ a_k \} \right| \cdot \left| \{ b_1 \} \times \{ b_2 \} \times \dots \times \{ b_i \} \times S^{k-i} \right| \\
= \left(\underbrace{\left| S^{i-1} \right|}_{=|S|^{i-1}} \cdot \underbrace{\left| \{ a_i \} \right|}_{=1} \cdot \underbrace{\left| \{ a_{i+1} \} \right|}_{=1} \cdot \dots \cdot \underbrace{\left| \{ a_k \} \right|}_{=1} \right) \cdot \left(\underbrace{\left| \{ b_1 \} \right|}_{=1} \cdot \underbrace{\left| \{ b_2 \} \right|}_{=1} \cdot \dots \cdot \underbrace{\left| \{ b_i \} \right|}_{=|S|^{k-i}} \right) \\
= \left| S \right|^{i-1} \cdot \left| S \right|^{k-i} = \left| S \right|^{k-1} \tag{5}$$

$$a = \left(v_1, v_2, \ldots, v_{\alpha-1}, \underbrace{u_{\alpha}}_{=v_{\alpha}}, u_{\alpha+1}, \ldots, u_k\right) = (v_1, v_2, \ldots, v_{\alpha}, u_{\alpha+1}, u_{\alpha+2}, \ldots, u_k) = b,$$

contradicting $a \neq b$.

⁶By abuse of notation, we are writing $S^{i-1} \times \{a_i\} \times \{a_{i+1}\} \times \cdots \times \{a_k\}$ for $S \times S \times \cdots \times S \times \{a_i\} \times \{a_{i+1}\} \times \cdots \times \{a_k\}$ here.

⁵because otherwise, we would have $u_{\alpha} = v_{\alpha}$ and thus

⁷By abuse of notation, we are writing $\{b_1\} \times \{b_2\} \times \cdots \times \{b_i\} \times S^{k-i}$ for $\{b_1\} \times \{b_2\} \times \cdots \times \{b_i\} \times S \times S \times \cdots \times S$ here.

for every $(a, b) \in F$.

Thus,

$$|A \times B| = \sum_{(a,b) \in F} |\{(u,v) \in A \times B \mid \phi(u,v) = (a,b)\}|$$

$$= \sum_{(a,b) \in F} \left| \frac{\phi^{-1}(\{(a,b)\})}{\sum_{\substack{\leq |S|^{k-1} \\ \text{(by (5))}}}} \le \sum_{(a,b) \in F} |S|^{k-1}$$

$$= |F| \cdot |S|^{k-1}.$$

But

$$|A \times B| = |A| \cdot |B| = |A| \cdot |S^{k} \setminus A| = |A| \cdot (|S^{k}| - |A|)$$

$$= |S|^{k-1} \cdot (|S^{k}| - |S|^{k-1}) = |S|^{k-1} \cdot (|S|^{k} - |S|^{k-1}),$$

so this becomes

$$|S|^{k-1} \cdot (|S|^k - |S|^{k-1}) \le |F| \cdot |S|^{k-1}$$
,

thus $|S|^k - |S|^{k-1} \le |F|$, so that

$$|F| \ge |S|^k - |S|^{k-1} = |S|^{k-1} \cdot (|S| - 1)$$
,

qed.