Определение систематических и случайных погрешностей при измерении удельного сопротивления нихромой проволоки Лабораторная работа №1.1.1 по курсу Общая физика

Дербенев Никита Максимович 7 сентября 2023 В работе используеются: линейка, линейка, штангенциркуль, микрометр, отрезок проволоки из нихрома, амперметр, вольтметр, источник ЭДС, мост постоянного тока, реостат, ключ.

- 1. Точность измерения с помощью штангенциркуля -0.1 мм. Точность измерения с помощью микрометра -0.01 мм.
- 2. Измеряем диаметр проволки с помощью штангенциркуля $(d_1, \text{табл. } 1)$ и микрометра $(d_2, \text{табл. } 2)$ на 10 различных участках (табл. 1)

Таблица 1: Результаты измерения диаметра проволоки

	1	2	3	4	5	6	7	8	9	10
d_1 , MM	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
d_2 , MM	0.37	0.38	0.37	0.36	0.36	0.36	0.36	0.38	0.36	0.35
	$\overline{d_1}=0.3~\mathrm{mm}$				$\overline{d_2}=0.365$ mm					

При измерении диаметра проволоки штангенциркулем случайная погрешность отсутствует. Следовательно, точность резульата определяется только точностью штангенциркуля (систематической погрешностью):

$$d_1 = (0.3 \pm 0.1) \text{ mm}$$

При измерении микрометром есть как систематичская, так и случайная ошибка:

$$\sigma_{
m chct} = 0.01$$
 мм, $\sigma_{
m c.t} = rac{1}{N} \cdot \sqrt{\sum_{i=1}^{N} (d-\overline{d})^2} = rac{1}{10} \sqrt{8.5 \cdot 10^{-4}} pprox 2.915 \cdot 10^{-4}$ мм
$$\sigma = \sqrt{\sigma_{
m chct}^2 + \sigma_{
m c.t}^2} pprox 0.01$$
мм

Поскольку погрешность микрометра на порядок меньше погрешности штангенциркуля, для расчета площади поперечного сечения проволоки будем использовать значение, полученное измерением с помощью микрометра:

$$d_2 = (0.365 \pm 0.1)$$
MM

3. Определим площадь поперечного сечения проволоки:

$$S = \frac{\pi d^2}{4} = \frac{3,14 \cdot (0.365)^2}{4} \approx 0.105 \text{ mm}^2$$

Погрешность находим по формуле:

$$\sigma_s = 2 \frac{\sigma_{d_2}}{d_2} S = 2 \frac{0.01}{0.365} \cdot 0.105 \text{ mm}^2 \approx 5.75 \cdot 10^{-3} \text{ mm}^2$$

Итак, $S=(0.105\pm0.006)\,\mathrm{mm^2}$, то есть площадь определена с точностью 6%.

Таблица 2: Основные характеристики приборов при данном пределе

таолица 2. Основные характеристики приооров при данном пределе						
	Вольтметр	Миллиамперметр				
Система	Электронная	Электромагнитная				
Класс точности	0.001	0.5				
Предел измерений	10 B	300 мА				
$ x_n $						
Число делений	100000	150				
шкалы п						
Цена делений	0.1 мВ/дел	2 мА/дел				
x_n/n						
Чувствительность	10000 дел/В	500 дел/А				
n/x_n						
Абсолютная	0.1мВ	2 MA				
погрешность Δx_M						
Внутреннее	10 MO _M	1 Ом				
сопротивление						
прибора						

- 4. Сведем основные хаактеристики приборов в таблицу (табл. 2)
- 5. Очевидно, что надо мерять способом показанным на рис. 1а, так как погрешность измерений:

для схемы на рисунке 1
а:
$$R_{\rm np}/R_{\rm V}=5\cdot 10^{-7},$$
 т.е. около 0%, для схемы на рисунке 16: $R_{\rm A}/R_{\rm np}=1/5=0.20,$ т.е. 20%.

6. Собираем схему рис. 1

- 7. Опыт проводим для трех длин проволоки: $l_1=(50\pm0,1)~{\rm cm}, l_2=(30\pm0,1)~{\rm cm}, l_3=(20\pm0,1)~{\rm cm}.$ Измерения ведем для возрастающих и убывающих значений тока, все измерения записываем в табл. 3.
- 8. Строим графики зависимостей U=f(I) для всех трех отрезков проволоки, проводя прямые через экспериментальные точки (рис. 2). Из графиков

Таблица 3: Показания приборов и результаты измерения сопротивления вольтметром, амперметром и при помощи моста

	1 = 2	<u> </u>		30 см	$l = 50 \; \text{см}$		
\prod	U, B	I, A	U, B	I, A	U, B	I, A	
\prod	0.4202	0.198	0.6639	0.208	1.1322	0.216	
	0.5047	0.238	0.7532	0.238	1.2426	0.236	
	0.5438	0.256	0.8288	0.260	1.2885	0.246	
	0.5732	0.270	0.9127	0.288	1.4783	0.282	
	0.6138	0.290	0.9470	0.298	1.5814	0.301	
Ĭ	0.6010	0.284	0.9134	0.288	1.4153	0.270	
	0.5839	0.275	0.8572	0.270	1.2968	0.247	
	0.5525	0.260	0.8508	0.268	1.2818	0.244	
	0.5080	0.240	0.7901	0.250	1.2007	0.227	
	0.5044	0.238	0.7329	0.232	1.1598	0.221	
	$R_0 = 2.$	133 Ом	$R_0 = 3.$	1909 Ом	$R_0 = 5.2679 \; \mathrm{Om}$		
	$R_{\rm cp}=2$	2.12 Ом	$R_{\rm cp} =$	3.17 Ом	$R_{ m cp}=5.25~{ m Om}$		
	$\sigma_{R_{ m cp}} =$	0.007	$\sigma_{R_{ m cp}}$ =	= 0.014	$\sigma_{R_{ m cp}}=0.019$		

видно, что нет различия между значениями, полученными при возрастании и уменьшении тока. Видно также, что случайный разброс точек пренебрежимо мал.

Рис. 2: График ВАХ для разных участков проволоки

- 9. Для каждой длины l, используя график, находим среднее значение сопротивления по угловому коэффициенту соответствующей прямой: $R_{\rm cp} = U/I$, где U и I значение тока и напряжения, взятые на прямой в удобной точке у ее конца. Результаты запишем в табл. 3.
- 10. Погрешность $R_{\rm cp}$ оцениваем по формуле

$$\frac{\sigma_{R_{\rm cp}}}{R_{\rm cp}} = \sqrt{\left(\frac{\sigma_U}{U}\right)^2 + \left(\frac{\sigma_I}{I}\right)^2},$$

где I и U — максимальные значения тока и напряжения, получанные в опыте, а σ_U и σ_I — среднеквадратичные ошибки измерения вольтметром и амперметром. Ошибка σ_U равна половине абсолютной погрешности вольтметра:

$$\sigma_U = \frac{\Delta x}{2} = \frac{0.1 \text{ MB}}{2} \approx 0.05 \text{ MB}$$

Аналогично для амперметра: $\sigma_I=\frac{2~{\rm MA}}{2}=1~{\rm MA}.$ Пример расчета $\sigma_{R{
m cp}}$ для проволоки длиной $l=30~{\rm cm};$ из табл. 2 $R_c=3.17~{\rm Om},~I=288~{\rm MA},$ $U=913.4~{\rm MB};$

$$\sigma_{R_{\rm cp}} = R_{\rm cp} \sqrt{\left(\frac{\sigma_U}{U}\right)^2 + \left(\frac{\sigma_I}{I}\right)^2} = 3.17 \cdot \sqrt{\left(\frac{0.05}{913.4}\right)^2 + \left(\frac{1}{288}\right)^2} \approx 1.1 \cdot 10^- 2 \ {\rm Om}.$$

Результаты расчетов:

	l, cm	20	30	50	
ĺ	$R_{\rm cp},{ m Om}$	2.12	3.17	5.25	
ĺ	$\sigma_{R_{\rm cp}}$, Om	0.007	0.011	0.038	

- 11. Поправку в измеренное значение не приходится вносить, так как $R_V \ll R_{\text{cd}}$
- 12. Сравниваем результаты измерения сопротивления проволоки по ВАХ и при помощи моста Р4833. В пределах погрешности эти результаты совпадают.
- 13. Определяем удельное сопротивление проволоки ρ и погрешность σ_{ρ} :

$$\frac{\sigma_{\rho}}{\rho} = \sqrt{\left(\frac{\sigma_R}{R}\right)^2 + \left(\frac{\sigma_d}{d}\right)^2 + \left(\frac{\sigma_l}{l}\right)^2}$$

Имеем:

l, cm	20	30	50
$\rho, \text{Om} \cdot \text{mm}^2/\text{m}$	1.109	1.106	1.099
$\sigma_{\rho}, \text{Om} \cdot \text{mm}^2/\text{m}$	0.0609	0.0606	0.0602

Окончательно: $\rho = (1.1047 \pm 0.0606) \, \text{Om} \cdot \text{мм}^2/\text{м}$.

Основной вклад в погрешность σ_{ρ} вносит погрешность измерения диаметра проволоки, которая приблизительно равна 3%, но так как из-за возведения в квадрат она удваивается, то вклад в погрешность получается примерно 6%. Погрешность остальных измерений достаточно мала по сравнению с измерением диаметра (меньше 1%), поэтому точнее всего необходимо выполнять измерение диаметра проволоки. В качестве альтернативного способа можно находить площадь сечения по массе проволоки, ее плотности и длине. Можно будет измерить массу достаточно большого мотка проволоки (несколько метров) для достижения найбольшей точности.

Полученное значение удельного сопротивления сравниваем с табличными значениями. В справочнике ("Физические величины"М.: Энергоиздат, 1991. С. 444) для удельного сопротивления нихрома при 20° значения в зависимости от массового содержания компонентов сплава меняются от $1.12~{\rm Om\cdot mm^2/m}$ до $0.97~{\rm Om\cdot mm^2/m}$. Наиболее близкое значение к получившемуся в работе $1.1047~{\rm Cm\cdot mm^2/m}$ для сплава $70{\rm Ni}$ 8Fe $20{\rm Cr}$ 2Mn и для сплава $62{\rm Ni}$ 23Fe $15{\rm Cr}$ (проценты по массе).