# Introduction to Machine Learning and Big Data Exercise

Volker G. Göhler

TU Bergakademie Freiberg

April 11, 2024

# Organizational Matters

#### Exercise

- ► Thursday each week
- ▶ 18:00 until 19:30
- ► KKB-2097

#### Dramatis Personæ

- ► 

  M. Sc. Volker Göhler
- ► #Humboldt-Bau Zimmer 228
- ► **Volker.Goehler@informatik.tu-freiberg.de**
- **J**03731 39 3113

- code along
- bring your device (don't connect it to the wire, eduroam is okay)
- ▶ flipped classroom

#### Share

via Opal



Figure 1: Opal Course Structure

# Machine Learning

#### Software

Python Python.org

# Machine Learning

#### Software

- Python Python.org
- ► Scikit Library **Ø**scikit-learn.org

# Machine Learning

#### Software

- Python python.org
- ► Scikit Library **G**scikit-learn.org
- ▶ jupyter/jupyterlab **𝚱**jupyter.org

Machine Learning? AI Machine learning Deep learning **CNN** 

Figure 2: What is AI and ML [@Trusculescu20]

Which kinds of learning do you know?

- Which kinds of learning do you know?
  ► Supervised Learning

- Which kinds of learning do you know?
- Supervised Learning
- Unsupervised Learning

- Which kinds of learning do you know?
- Supervised Learning
- Unsupervised Learning
- Semi Supervised

- Which kinds of learning do you know?
- Šupervised Learning
- Unsupervised Learning
- Semi Supervised
- Self Supervised

- Which kinds of learning do you know?
- Šupervised Learning
- Unsupervised Learning
- Semi Supervised
- Self Supervised
- Reinforcement Learning

No Free Lunch Theorem

► There is no free lunch. [@Wolpert97]

#### No Free Lunch Theorem

- ► There is no free lunch. [@Wolpert97]
- All optimization algorithms perform equally well when their performance is averaged over all possible objective functions.

## Explanation

Roughly speaking we show that for both static and time dependent optimization problems the average performance of any pair of algorithms across all possible problems is exactly identical.

[@Wolpert97]

#### ML flow

- ▶ How do we design a Machine Learning Model?
- ► What is necessary?

## ML flow

- study data
- select model
- train it
- predict
- rinse and repeat

# Running Example jupyter lab example codes

#### What it is?

work sheet environment

## Where to get the examples?

work sheets are in the opal share (in the notebook folder)

```
docker-compose.yml
jupyter-lab
Dockerfile
notebook
exercise_one.ipynb
```

Figure 3: overview of the example structure

Docker ?

#### How To Run?

#### at home:

in folder run: docker-compose up

▶ in browser: 127.0.0.1:8895

Password: imldb

or install jupyterlab directly

## in pool:

use anaconda

## Task!

Your model performs great on the training data, but generalizes poorly to new instances of data.

- ► What is happening?
- ▶ Name three strategies to mitigate this.

- Opal: Exercise -> Tasks -> Task One
- answer the task and upload the answer in Opal

## Thank you!



Figure 4: craiyon.com

### Reference