Some slides were adapted/taken from various sources, including Prof. Andrew Ng's Coursera Lectures, Stanford University, Prof. Kilian Q. Weinberger's lectures on Machine Learning, Cornell University, Prof. Sudeshna Sarkar's Lecture on Machine Learning, IIT Kharagpur, Prof. Bing Liu's lecture, University of Illinois at Chicago (UIC), CS231n: Convolutional Neural Networks for Visual Recognition lectures, Stanford University, Dr. Luis Serrano, Prof. Alexander Ihler and many more. We thankfully acknowledge them. Students are requested to use this material for their study only and NOT to distribute it.

Outlines

- What is Reinforcement Learning?
- Markov Decision Processes
- Q-Learning
- Policy Gradients

Supervised Learning

Data: (x, y) x is data, y is label

Goal: Learn a function to map

Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc.

Classification

Un-Supervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying hidden *structure* of the data

Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc

Problems involving an **agent** interacting with an **environment**, which provides numeric **reward** signals

Goal: Learn how to take actions in order to maximize reward

Agent

Environment

Cart-Pole Problem

Objective: Balance a pole on top of a movable cart

State: angle, angular speed, position, horizontal velocity

Action: horizontal force applied on the cart

Reward: 1 at each time step if the pole is upright

Robot Locomotion

Objective: Make the robot move forward State: Angle and position of the joints

Action: Torques applied on joints

Reward: 1 at each time step upright + forward movement

Atari Games

Objective: Complete the game with the highest score

State : Raw pixel inputs of the game state

Action: Game controls e.g. Left, Right, Up, Down

Reward: Score increase/decrease at each time step

RL: Mathematical Formulation

Markov Decision Process

- Mathematical formulation of the RL problem
- Markov property: Current state completely characterises the state of the world

Defined by: $(\mathcal{S},\mathcal{A},\mathcal{R},\mathbb{P},\gamma)$

 ${\cal S}$: set of possible states

 \mathcal{A} : set of possible actions

R: distribution of reward given (state, action) pair

 γ : discount factor

Markov Decision Process

S is a set of a finite state that describes the environment.

A is a set of a finite actions that describes the action that can be taken by the agent

P is a probability matrix that tells the probability of moving from one state to the other.

R is a set of rewards that depend on the state and the action taken. Rewards are not necessarily positive, they should be seen as outcome of an action done by the agent when it is at a certain state. So negative reward indicates bad result, whereas positive reward indicates good result.

 γ is a discount factor, that tells how important future rewards are to the current state. Discount factor is a value between 0 and 1. A reward R that occurs N steps in the future from the current state, is multiplied by γ ^N to describe its importance to the current state. For example consider $\gamma = 0.9$ and a reward R = 10 that is 3 steps ahead of our current state. The importance of this reward to us from where we stand is equal to $(0.9^3)*10 = 7.29$.

Example: Tic-tac-toe

Before game begins

X's first move

O's first move

X's second move

		X
	0	
Χ		0

O's second move

X's third move

O's third move

X	0	X
Χ	0	
Х		0

X wins on X's fourth move

Man Vs Machine

Deep Blue IBM Super Computer

Garry Kasparov World Chess Champion

First matchFebruary 10, 1996: took place in Philadelphia, Pennsylvania

Result: **Kasparov**–Deep Blue (4–2)

Record set: First computer program to defeat a world champion in a *classical game* under

tournament regulations

Second match (rematch)

May 11, 1997: held in New York City, New York

Result: **Deep Blue**–Kasparov (3½–2½)

Record set: First computer program to defeat a world champion in a *match* under

tournament regulations

Thanks