Lecture 7

Rajiv Kumar rajiv.kumar@iitjammu.ac.in

September 21, 2021

Vector Spaces

Non-example

• A set that is not a vector space. Let $\mathbb{V}=\mathbb{R}^2.$ Define addition and scalar multiplication as

$$\mathbf{x} + \mathbf{y} = \begin{bmatrix} x_1 \\ y_1 \end{bmatrix} + \begin{bmatrix} x_2 \\ y_2 \end{bmatrix} = \begin{bmatrix} x_1 + x_2 \\ y_1 + y_2 \end{bmatrix}$$

and

$$k \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} kx \\ 0 \end{bmatrix}.$$

Check that V is not a vector space.

• Let $\mathbb{R}'_n[x] = \text{set of polynomials of degree } n \text{ with } 0 \text{ polynomial.}$ Then $\mathbb{R}'_n[x]$ is not a vector space.

More Example

• Let $V = \mathbb{R}^{>0}$ with operations

$$u + v = uv$$

and

$$ku = u^k$$
,

where $k \in \mathbb{R}$. Then V is a real vector space.

• Let V be set of all functions from $\mathbb R$ to $\mathbb R$ with the following operations: for $f,g\in V$ and $\alpha\in\mathbb R$

$$(f+g)(x) = f(x) + g(x)$$

$$(\alpha f)(x) = \alpha f(x)$$

Let V be set of all bijective functions from \mathbb{R} to \mathbb{R} with operation defined above. Is V a vector a space?

Let $V = \{a\}$ be set containing one object. Then define operations such that V is a real vector space.

Examples

- Let V be line in \mathbb{R}^2 with usual addition and multiplication. Is V a vector space?
- Let V be plane in \mathbb{R}^3 with usual addition and multiplication. Is V a vector space?
- Let V be line in \mathbb{R}^2 passing through origin with usual addition and multiplication. Is V a vector space?
- Let V be plane in \mathbb{R}^3 passing through origin with usual addition and multiplication. Is V a vector space?
- Let **A** be a matrix and *S* is the set of solution of equation $\mathbf{A}\mathbf{x} = \mathbf{O}$. Is *S* a vector space over \mathbb{R} ?

Theorem

Let V be a real (complex) vector space and $\mathbf{x} \in V, c \in \mathbb{F}$. Then

- 1. $0 \odot x = 0$
- **2**. $c \odot 0 = 0$
- 3. $(-1) \odot x = -x$
- **4**. If $c \odot \mathbf{x} = \mathbf{0}$, then either c = 0 or $\mathbf{x} = \mathbf{0}$.

Proof.

1. By axiom 8 in definition of vector space $((\lambda + \mu)\mathbf{x} = \lambda\mathbf{x} + \mu\mathbf{x}$ for all $\lambda, \mu \in \mathbb{F}$ and $\mathbf{x} \in \mathbb{V}$), we have $0 \odot \mathbf{x} = (0 + 0) \odot \mathbf{x} = (0 \odot \mathbf{x}) \oplus (0 \odot \mathbf{x})$. Adding the inverse $-(0 \odot \mathbf{x})$ on both sides

$$\mathbf{0} = ((0 \odot \mathbf{x}) \oplus -(0 \odot \mathbf{x})) \oplus (0 \odot \mathbf{x})$$
$$= \mathbf{0} \oplus (0 \odot \mathbf{x}) = (0 \odot \mathbf{x}).$$

2. By axiom 7 in definition of vector space $(\lambda(\mathbf{x} + \mathbf{y}) = \lambda\mathbf{x} + \lambda\mathbf{y})$ for all $\lambda \in \mathbb{F}$ and $\mathbf{x}, \mathbf{y} \in \mathbb{V}$, we have

$$c \odot \mathbf{0} = c \odot (\mathbf{0} \oplus \mathbf{0}) = (c \odot \mathbf{0}) \oplus (c \odot \mathbf{0}).$$

Adding the inverse $-(c \odot \mathbf{0})$ gives the desired result.

- 3. Exercise.
- 4. Let $c \odot \mathbf{x} = \mathbf{0}$. If c = 0, then the conclusion holds. Suppose $c \neq 0$. Then multiply both sides of $c \odot \mathbf{x} = \mathbf{0}$ by $\frac{1}{c}$ and apply part 2 of this theorem to obtain $\frac{1}{c} \odot (c \odot \mathbf{x}) = \frac{1}{c} \odot \mathbf{0} = \mathbf{0}$. By axiom 9, we get $1 \odot \mathbf{x} = \mathbf{0}$ and apply axiom 10 to obtain $\mathbf{x} = \mathbf{0}$.