${\bf PyBioMed}$

-- PyBioMed Protein features

There three different methods of calculating interaction descriptors of chemical-chemical interaction, protein-protein interaction and DNA-DNA interaction. Next, we will show how to construct an interaction feature by the protein-protein interaction example.

Protein-protein interaction descriptors

Let $\mathbf{F_a} = {\mathbf{F_a}(i), i = 1, 2, ..., p}$ and $\mathbf{F_b} = {\mathbf{F_b}(i), i = 1, 2, ..., p}$ are the two descriptor vectors for interaction protein A and protein B, respectively. There are three methods to construct the interaction descriptor vector \mathbf{F} for A and B:

- (1) Two vectors $\mathbf{F_{ab}}$ and $\mathbf{F_{ba}}$ with dimension of 2p are constructed: $\mathbf{F_{ab}} = (\mathbf{F_a}, \mathbf{F_b})$ for interaction between protein A and protein B and $\mathbf{F_{ba}} = (\mathbf{F_b}, \mathbf{F_a})$ for interaction between protein B and protein A.
- (2) One vector \mathbf{F} with dimension of 2p is constructed: $\mathbf{F} = \{\mathbf{F_a}(i) + \mathbf{F_b}(i), \mathbf{F_a}(i) \times \mathbf{F_b}(i), i = 1, 2, ..., p\}$.
- (3) One vector \mathbf{F} with dimension of \mathbf{p}^2 is constructed by the tensor product: $\mathbf{F} = \{\mathbf{F}(k) = \mathbf{F_a}(i) \times \mathbf{F_b}(j), i = 1, 2, ..., p, j = 1, 2, ..., p, k = (i-1) \times p+j\}.$

There two different methods of calculating interaction descriptors of calculating chemical-protein interaction, protein-DNA interaction, chemical-DNA interaction. Next, we will show how to construct an interaction feature by the chemical-protein interaction example.

Chemical-protein interaction descriptors

There are two methods for construction of descriptor vector \mathbf{F} for chemical-protein interaction from the protein descriptor vector $\mathbf{F}_t(\mathbf{F}_t(i), i = 1, 2, ..., p_t)$ and chemical descriptor vector $\mathbf{F}_d(\mathbf{F}_d(i), i = 1, 2, ..., p_d)$:

- (1) One vector V with dimension of $p_t + p_d$ are constructed: $F = (F_t, F_d)$ for interaction between protein T and ligand D.
- (2) One vector **V** with dimension of $p_t \times p_d$ is constructed by the tensor product: $\mathbf{F} = \{\mathbf{F}(k) = \mathbf{F}_t(i) \times \mathbf{F}_d(j), i = 1, 2, ..., p_t, j = 1, 2, ..., p_d, k = (i-1) \times p_t + j\}.$