Le dipôle RC

On général :

Tension aux bornes du résistor : $U_R = Ri$.

Tension aux bornes du résistor : $u_c = rac{q}{c}$.

Expression de l'intensité du courant : $\mathbf{i} = \frac{dq}{dt}$ et $q = Cu_c \rightarrow \mathbf{i} = C.\frac{du_c}{dt}$.

Energie emmagasinée par un condensateur : $E_c = \frac{1}{2} \frac{q^2}{c} = \frac{1}{2} C u_c^2 = \frac{1}{2} q u_c$.

Phénomène de charge :

$$RC.\frac{du_c}{dt} + u_c = E$$

$$RC.\frac{dq}{dt} + q = C.E$$

Solution de l'équation différentielle avec
$$\tau = RC$$

$$u_c = E\left(1 - e^{-\frac{t}{\tau}}\right)$$

$$q = CE\left(1 - e^{-\frac{t}{\tau}}\right)$$

 $+i(t)=\frac{u_R(t)}{R}$ elle a la même allure que $u_R(t)$.

 $u_c(\tau) = 0.63E$ ou la tangente a l'origine :

Phénomène de décharge :

Equation différentielle

$$RC.\frac{du_c}{dt} + u_c = 0$$
 $RC.\frac{dq}{dt} + q = 0$

Solution de l'équation différentielle avec $\tau = RC$

$$u_{c} = E \cdot e^{-\frac{t}{\tau}} \qquad q = CE \cdot e^{-\frac{t}{\tau}}$$

 $u_c(au) = 0.37E$ ou la tangente a l'origine :

