Занятие 10

Hpubore 2 nopegra

 $\partial nunc(r_1+r_2=2a)$

Junepoora (|21-22 = 2a)

Жанониг. ур-е

$$\frac{x^2}{\alpha^2} + \frac{y^2}{\beta^2} = 1$$

$$(\alpha > \beta)$$

$$\frac{\chi^2}{Q^2} - \frac{y^2}{B^2} = 1$$

 $C = \sqrt{\alpha^2 - \beta^2}$ $\mathcal{E} = \frac{c}{\alpha} < 1$

← Эксцентриситет: → ε = € >1 Вершинот:

A, Az, B, Bz

 A_1, A_2

F1, F2

Pokycon:

F1, F2

di, dz

DupekTpucon:

di, de

Japaδολα (r=h)

Kanonur. ype: y=2px

8=1

Веришна: О

Foxyc: F(€,0) Директиса: X=- €

Рориции преобразование координа; точек

$$\begin{cases} x = Q \\ y = \theta \end{cases} x' + C y' + X_0$$

$$\vec{e}_1' + \vec{e}_2' + C y' +$$

 $\chi y = \pm \frac{\alpha^2}{2}$ (не евг. каноническим); см. зајачу

Och FAMINCA 4 run-167:

Э ровно. 9 типов канонических (3)

Bagaru.

Дано общее уравнение кривог 2 поредка. Гривест уравнение к киноническаму виду и посроить кривую в системи координат Оху. Trajar

© преобразование координат, приводеще к каконич. виду

	071	
3 DIL FINUNCA		Due napadonos
$\frac{\chi^{2}}{\alpha^{2}} + \frac{y^{2}}{\beta^{2}} = 1$		$y'^2=2px'$
1) noryour	1a,6	1) параметр Р
2) FKCGEHIPL	wares cl-a),	
$c = \sqrt{\alpha^2 - \beta^2}$	$C = \sqrt{\alpha^2 + \beta^2}$	
3) yet	етр шины	2) веришну 3) ФОКУС F 4) директису d
5) POK	ycor	3) POKYC F
6) our	LEKTPUCOL 7) acuminas	4) gupek pulaga
(3) (genant pucyhox (5) Halin pacca	aluce of zaga	CHHOC PORKU C
go poky	1006	go Pokyca u

от заданной почки С 90 Фокуса и 90 директи

Бано уравнение 4x²-5y²-8x+20y-11=0 Ф u $\tau \sigma \kappa \alpha C(1+\frac{V15}{2},0)$ Pencence 3anuerieu, 400 b grabnemen ner naonsbegenne xyl, 750 Takor, 4000 tour cryrait (cur renguer). 1) Выделией полные квадрат по х и поу: $4(x^2-2x)-5(y^2-4y)-11=0$ $4(x^2-2x+1-1)-5(y^2-4y+4-4)-11=0$ $4(x-1)^2-4-5(y-2)^2+20-11=0$ $4(x-1)^2 - 5(y-2)^2 = 5$ $\frac{4(x-1)^2}{5} - (y-2)^2 = -1$ Гуреобразование координат: $\begin{cases} x' = x-1 \\ y' = y-2 \end{cases}$ Dougrusy $\frac{x^{12}}{\left(\frac{\sqrt{5}}{2}\right)^2} - \frac{y^{12}}{1^2} = -1$ преобразование координат: ∫x"=y" ← Foo nobopor cear. K-TOxly" Ha 90° y"=-x" προπεβ чαс. Cherky

$$\frac{x''^2}{1^2} - \frac{y''^2}{\left(\frac{\sqrt{5}}{2}\right)^2} = 1$$

 $\frac{x''^{2}}{1^{2}} - \frac{y''^{2}}{\sqrt{5}} = 1 \left| \frac{\partial n}{\partial x} | \frac{\partial n}{\partial x}$

Это канонит. вид.

Гуреобразование, приводящее к канония

nouyou: a=1, b= 15 2) FRCYENTUCUTES: E= C, ye C- Va2+B2 $c = \sqrt{1^2 + (\sqrt{5})^2} = \sqrt{1 + \frac{5}{4}} = \sqrt{\frac{9}{4}} = \frac{3}{2} \Rightarrow \boxed{c} = \frac{\frac{3}{2}}{1} = \sqrt{\frac{3}{2}}$ 3)-6).

Система коорд-т	0"x"y"	Oxy
3) Координалы центра	0"(0,0)	0"(1,2) nepecrus k-201 no pran b glocnos panance
4) Hoofg-m bepumen	A1(-0,0)=(-1,0)	A1 (1,1)
,	A=(0,0) =(1,0)	A 2 (1, 3)
2 bepunner A. vAzs	(B, (0,-B) = (0,-15)	$B_1(1+\frac{\sqrt{5}}{2},2)$
премоугольника	1B2(0,B)=(0, 5)	B2(1-15,2)
5) Hookg-no pokycob	$F_1(-c, 0) = (-\frac{3}{2}, 0)$	$F_1(1,\frac{1}{2})$
-	$F_{2}(c,0)=(\frac{3}{2},0)$	$F_{2}(1,3\frac{1}{2})$

(5)
$$\rho(C,F_1)=\sqrt{(1-(1+\frac{\sqrt{15}}{2}))^2+(\frac{1}{2}-0)^2}=\sqrt{\frac{15}{4}}+\frac{1}{4}=\sqrt{\frac{16}{4}}=\sqrt{4}=\sqrt{2}$$

$$C(1+\frac{\sqrt{15}}{2},0),F_1(1,\frac{1}{2}),F_2(1,3\frac{1}{2})$$

$$\rho(C,F_2)=\sqrt{(1-(1+\frac{\sqrt{15}}{2}))^2+(3\frac{1}{2}-0)^2}=\sqrt{\frac{15}{4}}+\frac{49}{4}=\sqrt{\frac{64}{4}}=\sqrt{16}=\frac{14}{4}$$

Зазага решена

Дано уравнение ху-х-24+6=0

Задание то же.

Pemenne.

Замения, что в ур-им нет x^2 и y^2 , но есть xy (такой частной сл. тоже рас. на лекуши)

D'Ipubegéne ypabreence x bugy (x-xo)(y-yo)=±a Это ур-етиперопот в аспитотах.

x(y-1)-2y+6=0

x(y-1)-2(y-1+1)+6=0

x(y-1)-2(y-1)-2+6=0

(x-2)(y-1)+4=0

(x-2)(y-1) = -4

Theopayobanue kooppiena: $|x'=x-2| \Rightarrow |x=x'+2| (2)$ $|y'=y-1| \Rightarrow |y=y'+1|$

rougemen yp-e kpubod: |x'y'=-4|=-\ar{\alpha} = \ar{\alpha} = \alpha^2 = \alpha^2 = 8

3) 1) horyocu: $a = 2\sqrt{2}$ $b = a = 2\sqrt{2}$

(т.к. чип-ла равнобочная)

2) PRCYENTPUCUTES: E = C, ye C = Va2+B2 $C = \sqrt{8+8} = \sqrt{16} = 4 \implies \mathcal{E} = \frac{4}{2\sqrt{2}} = \frac{2}{\sqrt{2}} = \sqrt{2}$

	8)
O'x'y'	Dxy
0'(0,0)	0(2,1)
$A_1\left(-\frac{\alpha}{\sqrt{2}},\frac{\alpha}{\sqrt{2}}\right) = (-2,2)$	A1(0,3)
$A_2\left(\frac{\alpha}{\sqrt{2}}, \frac{\alpha}{\sqrt{2}}\right) = (2, -2)$	
F ₁ (-C, C)=(0,0) F ₂ (-21/220)) F1(2-2V2, 1+2V2)
F2(5,-6)=(212,-20)	$F_2(2+2\sqrt{2},1-2\sqrt{2})$
y'= x'+ a 1) = x'+2)	y-1=X-2+2v2=>y=X+2v2-1
y'= x'- & v2 = x-20	y-1=X-2-212 ⇒ y=X-212-1
X' = O(OC6 O'y') $Y' = O(OC6 O'x')$	$x-2=0 \Rightarrow x=2$ $y-1=0 \Rightarrow y=1$
3	
1 0'	/ d2
	$\rightarrow x'$
2	6 12. F ₂
The same of the sa	$ \begin{array}{c} O'(0,0) \\ A_{1}(-\frac{\alpha}{\sqrt{2}},\frac{\alpha}{\sqrt{2}}) = (-2,2) \\ A_{2}(\frac{\alpha}{\sqrt{2}},-\frac{\alpha}{\sqrt{2}}) = (2,-2) \\ F_{1}(-\frac{\alpha}{\sqrt{2}},-\frac{\alpha}{\sqrt{2}}) = (2\sqrt{2},2\sqrt{2}) \\ F_{2}(\frac{\alpha}{\sqrt{2}},-\frac{\alpha}{\sqrt{2}}) = (2\sqrt{2},2\sqrt{2}) \\ Y' = X' + \frac{\alpha}{2}(-\frac{x'+\alpha}{\sqrt{2}}) = (2\sqrt{2},2\sqrt{2}) \\ X' = O(0060'y') \\ Y' = O(0060'x') \end{array} $

$$x^2+6x+2y+3=0$$
; $C(-1;1)$

Pernenne.

Зам., гто кет ху и уг. См. мекуми.

$$x^{2}+2\cdot 3x + 9-9+2y+3=0$$

$$(x+3)^{2}+2y-6=0$$

$$(x+3)^2 + 2(y-3) = 0$$

$$(X+3)^2 = -2(y-3)$$

$$X^{\prime 2} = -2y^{\prime}$$

$$X''^2 = 2y''$$

Typeopayobanue
$$xoopsung$$

 $\begin{cases} x' = x + 3 \\ y' = y - 3 \end{cases}$ $\begin{cases} x'' = -x' \\ y'' = -y' \end{cases} \Rightarrow \begin{cases} x'' = -x - 3 \\ y'' = -y + 3 \end{cases}$ $\begin{cases} x = -x'' - 3 \\ y'' = -y + 3 \end{cases}$

\sim	
Система коорус	HOT
cacreo la resign	T(CC)

$$y'' = -\frac{P}{2} = -\frac{1}{2}$$

$$F(-3,2\frac{1}{2})$$

4) Pucynou:

$$x'' = \frac{0'' \quad 3\frac{1}{2}}{0}$$

$$y''' \quad \sqrt{\frac{3}{2}} \quad d$$

$$y''' \quad \sqrt{\frac{3}{2}} \quad d$$

$$x'' = \frac{3\frac{1}{2}}{0}$$

$$y''' \quad \sqrt{\frac{3}{2}} \quad d$$

$$x'' = \frac{3\frac{1}{2}}{0}$$

$$(5) \quad \rho(C,F) = |CF| = \sqrt{(x_F - x_c)^2 + (y_F - y_c)^2} = \frac{5}{nogcraft_{100}}$$

$$C(-1,1), F(-3;2\frac{1}{2})$$

$$\rho(C,d) = \frac{|1 - 3\frac{1}{2}|}{\sqrt{0^2 + 1^2}} = \frac{2\frac{1}{2}}{1} = 2\frac{1}{2}$$

d: y-31=0

Задага решена.

3agaru.

Найти уравнение кривод по её св-вом в системи координат Оху.

Эменине проходия герез Т. C(0,-1), а его малаг ось оканчивается веришнаеми $A(-3; \sqrt{2}-2)$ и $B(-3,-\sqrt{2}-2)$. Найти ур-е этима.

1) Verip =
$$O'(-3+(-3); (2-2)+(-1/2-2))=(-3,-2)$$

 $=> O'(-3+(-3); (2-2)+(-1/2-2))=(-3,-2)$

2) rongoce (marae) B = 10A |= 10B |= V2

$$(x-x_0)^2 + \frac{(y-y_0)^2}{8^2} = 1$$

$$\frac{(x+3)^2}{\alpha^2} + \frac{(y+2)^2}{(\sqrt{2})^2} = 1$$

4) Haugery a.
$$C(0,-1) \in 21$$
 number =>
 $\Rightarrow (0+3)^2 + \frac{(-1+2)^2}{2} = 1$; $\frac{9}{a^2} = 1 - \frac{1}{2}$; $\frac{9}{a^2} = \frac{1}{2} \Rightarrow \alpha = 3\sqrt{2}$

5)
$$y_1 - e = 1 \cdot \frac{(x+3)^2 + (y+2)^2}{(3\sqrt{2})^2 + (\sqrt{2})^2} = 1$$

0	Don	ONKUTENOTIO:	
npéochcasoban Kanoniir gp-e	OLO FA	uenca Hai	gécie (1
HEND BELLIN	, horry	оси, эксцені	puctives,
Geno, bepui	ano, q	okejou u g	rupe kopsucoi
geneur per	Cynek		
2) Rpeoployet	ance	координат	;
$\int X' = X + 3$	= x/-3		
$\begin{cases} x' = x + 3 \\ y' = y + 2 \end{cases} = \begin{cases} x \\ y \end{cases}$	= y'-2		
		2	- 1
3) Kanonur	· gp-c.	(3/2)2 + (1/2)2	= 7
F) Thocyocce 2) FRCGENTIGE $C = \sqrt{18-2} = 2$: a = 3 V2	E, 6=12	
2) Эксценти	curer:	E=C, ye	$c = \sqrt{a^2 - \beta^2}.$
$C = \sqrt{18 - 2} =$	V16 = 4 =	$\Rightarrow \mathcal{E} = \frac{4}{3\sqrt{2}} =$	212 3
3)6)Cucrecua k	200pg-7	Oxy	Oxy
3) Yenn		0'(0,0)	0'(-3,-2)
4) Веришени	j7	C(-a,0)=(-312,0)	C (-313-2, -2)
,		$\mathcal{D}(0,0)=(3\sqrt{2},0)$	D(3/3-3,-2)
		$A(0,8) = (0,\sqrt{2})$	A(-3, V2-2)
		A (0,6)=(0,12) B (0,-6)=(0,-12)	B(-3,-12-2)
5) Рокусы		F, (-c,0)=(-4,0)	F ₁ (-7, -2)
	1	$F_2(c,0) = (4,0)$	F2 (1,-2)
10	/	,	
6) Директрис	T	$x' = \pm \frac{Q}{\varepsilon} = \pm \frac{9}{2}$	$X+3=\pm\frac{9}{2}=>$
		C &	$\Rightarrow x = 3 \pm 4\frac{1}{2}$
5 Due nocopie	рения	полезно на	agri vorkce
401.0 COTO HEL	60 0	C.O. 8881 110011	0111100

replecere tell c oblevely koopgehar.

($0y: x = 0 \Rightarrow \frac{(0+3)^2}{(3\sqrt{2})^2} + \frac{(y+2)^2}{(\sqrt{2})^2} = 1 \Rightarrow y = -1 + y = -3$.

3 agara helletta.

Парабола проходит герез т. С(-4,-1), ее директиса имеет уравнение х+3=0, расстаение от фокуса Е до веришной равно 🛨 ; веришна межит во 🗓 гетверти. Написать уравнение парабола.

Perrence.

О Туст Q-веришна парадоеня 1) Us yes. $|QF| = \frac{1}{2}$ Us cb-b napadoso $|QF| = \frac{P}{2}$. (=> p=1, rge p-nafano napaiono P

2) Fre guperpuch d no yes. $x = -\frac{3}{2} \Rightarrow$ => OCE MAJARDONOT 11 Ox ⇒ ypabnenne cullisention naparons $(y-y_0)^2 = \pm 2p(x-x_0),$ где знак + (или-), если ветви параболь bupalo (unu breto).

2) U yes. 1QFI= == > Веришна Q(x0, y0) = (-1; y0) u besty naparous, Bnhabo"

Q(x0, y0)=(-2, y0) u -11 - 11- 11- 16clebo"

) The year. T. $C(-4,-1) \in napaione => Q(x_0,y_0) = (-2,y_0)u \stackrel{\text{berby}}{=} (-2,y_0)u \stackrel{\text{berby}}{=} (y-y_0)^2 = -2p(x-x_0)$

 $(y-y_0)^2 = -2 \cdot 1 (x - (-2))$ $(y-y_0)^2 = -2 (x+2)$

1) Hαθισμένη γο. Πο grs. C(-4,-1) ∈ napaδονε => (-1-40)2 = -2(-4+2) $(1+y_0)^2 = 4$ 1+90 = ±2 $y_0 = \pm 2 - 1 \Rightarrow Q(x_0, y_0) = (-2, 1)$ $Q(x_0, y_0) = (-2, -3) - He nogx.,$ $T.K. no yerohio Q \in II ref.$ Cues, $\frac{y_{h}-e}{(y-1)^{2}=-2(x+2)}$ Del percenca: Hoelger T. nepecerence C $y=0 \implies (0-1)^2 = -2(x+2)$ 1 = -2(x+2) $X + 2 = -\frac{1}{2}$ $X = -2\frac{1}{2}$ Задага решена.

Построит кривую:

$$y = 7 - \frac{3}{2} \sqrt{x^2 - 6x + 13}$$

Peucence

Type of cyyeur ypabrence xpuba:
$$y-7=-\frac{3}{2}\sqrt{x^2-6x+13}$$
 [.(-2) $2(7-y)=3\sqrt{x^2-6x+13}$ | ^2

(1)
$$\int 4(7-y)^2 = 9(x^2-6x+13)$$

(1):
$$4(y-7)^2 = 9(x^2-6x+9+4)$$
 $[(\alpha-b)^2=(b-a)^2$

$$4(y-7)^2 = 9(x-3)^2 + 36$$

$$2(x-3)^2 + 4(x-3)^2 = -36$$

$$9(x-3)^2 - 4/y - 7)^2 = -36 / 36$$

$$\frac{(x-3)^2}{4} - \frac{(y-7)^2}{9} = -1$$

$$\frac{(x-3)^{2}}{2^{2}} - \frac{(y-7)^{2}}{3^{2}} = -1$$
 confission

итерболь с уентом (3,7) и парашетами a=2, в=3.

$$(2)$$
: $y \in 7$

Т.к. у ≤ 7, 70 надо выбрать только нижнюю ветвь чеп-мы.

Jhorku nepecerenus c ocenus koopgunas.
C
$$0x$$
: $y=0$ $\frac{(x-3)^2-(0-7)^2}{4}=-1$ 1.36
 $\frac{9(x-3)^2-49.4=-36}{9}=-1$ $(x-3)^2=\frac{160}{9}$
 $(x-3)^2=\frac{160}{9}$
 $x-3=\pm\frac{\sqrt{10}}{3}$
 $x=3\pm\frac{\sqrt{10}}{3}$
C $0y$: $x=0$ $\frac{9}{4}-\frac{(y-7)^2}{9}=-1$ 1.36
 $81-41y-7)^2=-36$
 $(y-7)^2=30$
 $y-7=\pm\sqrt{30} \Rightarrow y=7\pm\sqrt{30}$

Д/3I: Выпосению задачи про Кривые 2 пор. в Д32 по анал. геогиетии.

DBT: N 2.249 (21mencon) N 2.269 (run-101) N 2.288 (naparonon)

Уравнения гиперболы & acueunrorax:

$$xy = \pm \frac{\alpha^2}{2},$$

rge nouyocce run-101 a=B nabron. Pac. 3Hak, E.

$$C = \sqrt{\alpha^2 + \beta^2} = \sqrt{2\alpha^2} = \alpha\sqrt{2}$$

$$\varepsilon = \frac{c}{\alpha} = \sqrt{2}$$

веришни:
$$A_1(-\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}), A_2(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}})$$
Фокусот : $F_1(-\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}), F_2(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}) = (\alpha,-\alpha)$