WRITTEN HW #4 SOLUTIONS

- (1) (10 points) For each of the following numbers, compute the ones digit of that number in its decimal expansion. Your answer should not require any electronic computational tools.
 - (a) (2 points) 7^{2375}
 - (b) (3 points) $\sum_{n=1}^{15} n!$
 - (c) (5 points) $\stackrel{n-1}{3} \uparrow n$, for $n \geq 3$, where $a \uparrow \uparrow n$ means a power tower of a with size n: for instance, $2 \uparrow \uparrow 3 = 2^{2^2} = 2^4$, while $2 \uparrow \uparrow 4 = 2^{2^{2^2}} = 2^{2^4} = 2^{16}$. (Remember that towers of exponentials are evaluated from the top down, not the bottom up, so for instance $3^{3^3} = 3^{27}$, not $(3^3)^3 = 27^3$, which is a much smaller number than 3^{27} .) Your answer should be in terms of n.

Solution. Notice $7^4 \equiv 1 \mod 10$, and $2375 \equiv 3 \mod 4$, so $7^{2375} \equiv 7^3 \equiv 3 \mod 10$. So 7^{2375} ends in a 3.

Notice many of the terms in the sum of n! have a 0 at the end; namely, any term with $n \ge 5$, because for those terms $10 \mid n!$. So the ones digit of this number is the same as the ones digit of 1! + 2! + 3! + 4! = 33, which is 3.

First, notice that $3^4 \equiv 1 \mod 10$, so to determine the ones digit of $3 \uparrow \uparrow n$, it suffices to determine the residue class of $3 \uparrow \uparrow (n-1) \mod 4$. However, notice that $3^2 \equiv 1 \mod 4$, so the residue class of $3 \uparrow \uparrow (n-1) \mod 4$ is determined by the residue class of $3 \uparrow \uparrow (n-2) \mod 2$; ie, $3 \uparrow \uparrow (n-2) \mod 2$ whether is odd or even. If $n \geq 3$, this is always an odd number, so this means $3 \uparrow \uparrow (n-1) \equiv 3 \mod 4$, so $3 \uparrow \uparrow n \equiv 7 \mod 10$. \square

- (2) (10 points) Find all solutions (modulo the appropriate modulus) to the following linear congruences. Explain why your answer is correct.
 - (a) $2x \equiv 7 \mod 5$
 - (b) $5x \equiv 3 \mod 15$
 - (c) $x^2 + 1 \equiv 0 \mod 13$
 - $(d) x^2 + 1 \equiv 0 \bmod 19$
 - (e) $244x \equiv 32 \mod 75$

Solution.

- (a) $2x \equiv 7 \mod 5$ has exactly one solution mod 5, because $\gcd(2,5) = 1 \mid 7$, and trial and error (or whatever technique you prefer) shows this solution is $x \equiv 1 \mod 5$.
- (b) $5x \equiv 3 \mod 15$ has no solutions, because $\gcd(5, 15) = 5 \nmid 3$.
- (c) $x^2 + 1 \equiv 0 \mod 13$ has either 0, 1, or 2 solutions, because $x^2 + 1$ is a quadratic polynomial and 13 is prime. Inspection shows that $x \equiv \pm 5 \mod 13$ are the two solutions.

- (d) $x^2 + 1 \equiv 0 \mod 19$ has either 0, 1, or 2 solutions, for the same reason as the previous problem.
- (e) $244x \equiv 32 \mod 75$ has one solution mod 75, because gcd(244,75) = 1. Indeed, the Euclidean algorithm yields

$$244 = 75 \cdot 3 + 19,$$

$$75 = 19 \cdot 3 + 18,$$

$$19 = 18 + 1,$$

$$18 = 1 \cdot 18.$$

Recall that to solve $244x \equiv 32 \mod 75$ by hand, we try to find solutions to Bezout's identity 244x + 75y = 1:

$$1 = 19 - 18$$

= $19 - (75 - 19 \cdot 3) = 75 \cdot -1 + 19 \cdot 4$
= $75 \cdot -1 + (244 - 75 \cdot 3) \cdot 4 = 244 \cdot 4 - 75 \cdot 13.$

Therefore $244 \cdot 4 \equiv 1 \mod 75$. To solve $244x \equiv 32 \mod 75$, we multiply this previous equation by 32, to get $244(4 \cdot 32) \equiv 32 \mod 75$, or $x \equiv 53 \mod 75$. \square

(3) (20 points) Let X be a set. A relation on X is a subset R of $X \times X = \{(x,y)|x,y \in X\}$. We will write aRb if $(a,b) \in R$. For example, if $X = \mathbb{Z}$, then the subset R consisting of all ordered pairs $(x,2x), x \in \mathbb{Z}$, is a relation on \mathbb{Z} , and we have 1R2, 4R8, say.

A relation R is called an equivalence relation if aRa for all $a \in X$ (ie, if R is reflexive), if aRb implies bRa (ie, if R is symmetric), and if aRb, bRc implies aRc (ie, R is transitive). The example relation defined in the last paragraph is not an equivalence relation – it violates each of the three properties an equivalence relation needs to satisfy. On the other hand, recall that the relation R on \mathbb{Z} defined by aRb if and only if $a \equiv b \mod n$, for some fixed integer n, is an equivalence relation.

A partition of a set X is a collection of subsets $\{X_i\}$ of X, such that each element of X is in exactly one subset X_i . For example, if $X = \{1, 2, 3\}$, then $X_1 = \{1, 3\}, X_2 = \{2\}$ is a partition of X, whereas $X_1 = \{1, 2\}, X_2 = \{2, 3\}$ is not, nor is $X_1 = \{1\}, X_2 = \{3\}$.

Let R be an equivalence relation. The equivalence class of an element $x \in X$ is defined to be the set of all $y \in X$ such that xRy, and is written [x]. Show that every element of X is in some equivalence class, and that if [x], [y] have non-empty intersection, then [x] = [y]. In particular, conclude that the equivalence classes of R partition X.

Conversely, show that a partition $\{X_i\}$ of X induces an equivalence relation on X, where aRb if and only if a, b lie in the same subset X_i .

Solution. We will first show the equivalence classes of R partition X. Since R is an equivalence relation, clearly aRa for each $a \in X$, so each element of X is in some congruence class, even if it is the only element of its congruence class.

Now assume we have two congruence classes [x], [y] with nontrivial intersection. Let a be such a common element, so that we have xRa, aRy (guaranteed by symmetry). By transitivity, these two relations imply that xRy. Now let $c \in [y]$ be arbitrary. Then xRy, yRc implies that xRc, so $c \in [x]$. This shows that $[y] \subset [x]$; a symmetric argument shows $[x] \subset [y]$. Therefore [x] = [y] as desired, so all distinct equivalence classes have empty intersection.

Conversely, assume we have some partition $\{X_i\}$ of X. Assume we have the relation R, where aRb if and only if a, b lie in the same subset X_i . Clearly a is in the same subset as itself, so R is reflexive. If a is in the same subset as b, then b is in the same subset as a, so we have symmetry. Now assume we have aRb, bRc. This means that a is in the same subset as b and that b is in the same subset as c, so a and c must be in the same subset, hence we do have aRc, i.e. R is transitive. \square

(4) (10 points) Recall that we said addition and multiplication of congruences classes was well-defined mod n, since we proved that if $a \equiv a' \mod n$, $b \equiv b' \mod n$, then $a + b \equiv a' + b' \mod n$, $ab \equiv a'b' \mod n$. Show that exponentiation of congruences classes is not well-defined in general, by exhibiting specific a, a', b, b', n such that $a \equiv a' \mod n$, $b \equiv b' \mod n$, but $a^b \not\equiv a'^{b'} \mod n$.

Solution. There are lots of counterexamples for this problem. One such example is a = a' = 2, b = 10, b' = 20, n = 10. If we check this, we see that $a^b = 2^{10} \equiv 4 \pmod{10}$, but $a^{b'} = 2^{20} \equiv 6 \pmod{10}$. \square