Prerequisites

0.1 Regularization

Definice 0.1 (Regularization kernel)

 $\eta \in C_0^{\infty}(B_1(\mathbf{o}))$, non-negative, radially symmetric, $\int_{B_1(\mathbf{o})} \eta(x) dx = 1$.

Definice 0.2 (Regularization of function)

Let $f \in L^p(\Omega)$. We extend f by zero to $\mathbb{R}^d \setminus \Omega$ and define $f_{\varepsilon} := \eta_{\varepsilon} * f$, where $\eta_{\varepsilon}(x) := \frac{1}{\varepsilon^d} \eta(x/\varepsilon)$.

Poznámka

 $f_{\varepsilon} \in C^{\infty}(\mathbb{R}^d), f_{\varepsilon} \to f \text{ in } L^p(\Omega) \text{ if } p \in [1, \infty) \text{ and } f_{\varepsilon} \rightharpoonup^* f \text{ in } L^{\infty}.$

Věta 0.1

 $L^p(\Omega)$ is a Banach space, separable for $p \in [1, \infty)$, reflexive for $p \in (1, \infty)$.

Důsledek

 f^n is a bounded sequence in $L^p(\Omega)$, $\Omega \subseteq \mathbb{R}^d$ measurable bounded bounded. Then

- 1. $p \in (1, \infty)$: $\exists f^{n_k}, f : f^{n_k} \to f \text{ in } L^p(\Omega). \iff \forall g \in L^{p'}(\Omega) : \lim_{k \to \infty} \int_{\Omega} f^{n_k} g = \int_{\Omega} f g,$ where $\frac{1}{p} + \frac{1}{p'} = 1$).
- 2. $p = \infty$: $\exists f^{n_k}, f: f^{n_k} \rightharpoonup^* f \text{ in } L^{\infty}(\Omega). \ (\Leftrightarrow g \in L^1(\Omega): \lim_{\Omega} \int_{\Omega} f^{n^k} g = \int_{\Omega} f g).$
- 3. p=1: $\exists f^{n_k}, f \colon f^{n_k} \rightharpoonup^* f \text{ in } M(\overline{\Omega}) \text{ (Radon measures)}. (\Leftrightarrow \forall g \in C(\overline{\Omega}) : \int_{\Omega} f^{n_k} g \rightarrow \langle f, g \rangle_M = \int_{\overline{\Omega}} g df.)$
- 4. p = 1: $\exists f^{n_k}, \tilde{f} \ \exists \Omega_1 \subseteq \Omega_2 \subseteq \Omega_3 \subseteq \ldots, |\Omega \backslash \Omega_l| \to 0 \text{ as } l \to \infty$: $\forall l \in \Omega : f^{n_k} \to \tilde{f} \text{ in } L^1(\Omega)$. (\tilde{f} is called biting limit.)

0.2 Fixpoint theorems

Věta 0.2

 $F: X \to X$, where X is a Banach space, F is continuous and compact. Let there exists closed convex non-empty set $U \subseteq X$ such that $F(U) \subset U$. Then $\exists x \in U : F(x) = x$.

Věta 0.3

 $F: \mathbb{R}^d \to \mathbb{R}^d$, F is continuous. Let there exists closed, convex non-empty set $U \subseteq \mathbb{R}^d$: $F(U) \subseteq U$. Then $\exists x \in U : F(x) = x$.

0.3 Nemytskii operator

Věta 0.4

Let $\Omega \subseteq \mathbb{R}^d$ be open and $f: \Omega \times \mathbb{R}^N \to \mathbb{R}$ is Carathéodory (i.e. $\forall y \in \mathbb{R}^N : f(\cdot, y)$ is measurable and for almost all $x \in \Omega$: $f(x, \cdot)$ is continuous). Assume that $|f(x, y)| \leq |g(x)| + c \cdot \sum_{i=1}^N |y_i|^{p_i/p}$ for some $p_1 \in [1, \infty)$, $p \in [1, \infty)$ with $y \in L^p(\Omega)$.

Then $\forall u_i \in L^{p_i}(\Omega)$, the function $f(x, u_1(x), \dots, u_N(x))$ is measurable and the mapping (named Nemytskii operator) $(u_1, \dots, u_N) \mapsto f(\cdot, u_1, u_2, \dots, u_N)$ is continuous from $L^{p_1}(\Omega) \times \dots \times L^{p_N}(\Omega)$ to $L^p(\Omega)$.