Question 1: (a) Let (X, d) be a metric space. Define the function d': $X \times X \rightarrow \mathbb{R}$ by d'(x,y) = |x-y| / (1+|x-y|). Show that d' is a metric on X. Besides, d'(x,y) < 1 for all $x, y \in X$.

- To show that d' is a metric, we need to verify the following four properties:
 - o **Non-negativity:** $d'(x,y) = \frac{|x-y|}{1+|x-y|}$. Since $|x-y| \ge 0$, it follows that $d'(x,y) \ge 0$.
 - o Identity of indiscernibles:
 - If d'(x, y) = 0, then $\frac{|x-y|}{1+|x-y|} = 0$. This implies |x-y| = 0, which means x = y.
 - If x = y, then |x y| = 0, so $d'(x, y) = \frac{0}{1+0} = 0$.
 - o Symmetry: $d'(x,y) = \frac{|x-y|}{1+|x-y|} = \frac{|y-x|}{1+|y-x|} = d'(y,x)$.
 - o **Triangle inequality:** Let $a,b,c \in X$. We need to show $d'(a,c) \le d'(a,b) + d'(b,c)$. Let u = |a-b| and v = |b-c|. By the triangle inequality for the standard metric $|\cdot|$, we have $|a-c| \le |a-b| + |b-c| = u+v$. Consider the function $f(t) = \frac{t}{1+t} = 1 \frac{1}{1+t}$. This function is increasing for $t \ge 0$ because $f'(t) = \frac{(1+t)(1)-t(1)}{(1+t)^2} = \frac{1}{(1+t)^2} > 0$. Since $|a-c| \le u+v$, and f is increasing, we have $f(|a-c|) \le f(u+v)$. So, $d'(a,c) = \frac{|a-c|}{1+|a-c|} \le \frac{u+v}{1+u+v}$. We know that $\frac{u+v}{1+u+v} = \frac{u}{1+u+v} + \frac{v}{1+u+v}$. Since $1+u+v \ge 1+u$, we have $\frac{u}{1+u+v} \le \frac{u}{1+u}$. Since $1+u+v \ge 1+v$, we have $\frac{v}{1+u+v} \le \frac{v}{1+v}$. Therefore, $d'(a,c) \le \frac{u}{1+u} + \frac{v}{1+v} = d'(a,b) + d'(b,c)$.
- Besides, d'(x, y) < 1 for all $x, y \in X$. For any $x, y \in X$, $|x y| \ge 0$. So, 1 + |x y| > |x y| (since 1 > 0). Dividing both sides by 1 + |x y|

(which is positive), we get $\frac{|x-y|}{1+|x-y|} < 1$. Thus, d'(x,y) < 1 for all $x,y \in X$.

- (b) Let X = C[a,b] be the space of all continuous functions on [a,b]. Define $d(x,y) = \int_a^b |f(x) g(x)| dx$. Then check whether this metric imply pointwise Convergence or not.
 - No, this metric does not imply pointwise convergence.
 - Consider a sequence of functions $f_n \in C[0,1]$ defined as follows: Let [a,b]=[0,1]. For $n\geq 2$, let $f_n(x)$ be a "tent" function. $f_n(x)=0$ for $x\in [0,\frac{1}{2}-\frac{1}{2n}]\cup [\frac{1}{2}+\frac{1}{2n},1]$. $f_n(x)$ rises linearly from 0 to 1 over $[\frac{1}{2}-\frac{1}{2n},\frac{1}{2}]$ and falls linearly from 1 to 0 over $[\frac{1}{2},\frac{1}{2}+\frac{1}{2n}]$. The peak of the tent is at $x=\frac{1}{2}$, where $f_n(\frac{1}{2})=1$.
 - The integral $\int_0^1 |f_n(x) 0| dx$ represents the area of the triangle. The base of the triangle is $(\frac{1}{2} + \frac{1}{2n}) (\frac{1}{2} \frac{1}{2n}) = \frac{1}{n}$. The height of the triangle is 1. So, $d(f_n, 0) = \int_0^1 |f_n(x)| dx = \frac{1}{2} \times \text{base} \times \text{height} = \frac{1}{2} \times \frac{1}{n} \times 1 = \frac{1}{2n}$.
 - As $n \to \infty$, $d(f_n, 0) \to 0$. This means the sequence f_n converges to the zero function in the L^1 metric.
 - However, the sequence f_n does not converge pointwise to the zero function. For example, at $x=\frac{1}{2}$, $f_n(\frac{1}{2})=1$ for all n. So, $\lim_{n\to\infty}f_n(\frac{1}{2})=1\neq 0$.
 - Therefore, convergence in the L¹ metric does not imply pointwise convergence.
- (c) Define Cauchy Sequence and Complete metric space. Let X be any non-empty set and d be defined by $d(x,y) = \{0, x=y; 1, x\neq y\}$. Then show that (X, d) is a Complete metric space.

- Cauchy Sequence: A sequence $\{x_n\}$ in a metric space (X,d) is called a Cauchy sequence if for every $\epsilon > 0$, there exists a positive integer N such that for all m, n > N, we have $d(x_m, x_n) < \epsilon$.
- Complete Metric Space: A metric space (X, d) is said to be complete if every Cauchy sequence in (X, d) converges to a point in X.
- Show that (X, d) is a Complete metric space:
 - o Let $\{x_n\}$ be a Cauchy sequence in (X, d).
 - o By definition of a Cauchy sequence, for $\epsilon = 1/2 > 0$, there exists an integer N such that for all m, n > N, $d(x_m, x_n) < 1/2$.
 - o From the definition of the metric d(x,y):
 - If $x_m \neq x_n$, then $d(x_m, x_n) = 1$.
 - If $x_m = x_n$, then $d(x_m, x_n) = 0$.
 - Since $d(x_m, x_n) < 1/2$, it must be that $d(x_m, x_n) = 0$.
 - o Therefore, for all m, n > N, $x_m = x_n$.
 - This means that the sequence $\{x_n\}$ is eventually constant. Let $x = x_{N+1}$.
 - o For any $\epsilon > 0$, choose $N_0 = N$. Then for all $n > N_0$, $x_n = x$.
 - $\circ \quad \mathsf{So}, \, d(x_n, x) = d(x, x) = 0 < \epsilon.$
 - This shows that the sequence $\{x_n\}$ converges to $x \in X$.
 - o Since every Cauchy sequence in (X,d) converges to a point in X, the metric space (X,d) is complete.

Question 2: (a) Let (X, d) be a metric space. Then show that: (i) \emptyset and X are open sets in (X, d);

- \emptyset is open: By definition, a set G is open if for every $x \in G$, there exists an $\epsilon > 0$ such that $S(x, \epsilon) \subseteq G$. Since the empty set \emptyset contains no points, the condition is vacuously true. Thus, \emptyset is open.
- **X is open:** For any point $x \in X$, we can choose any $\epsilon > 0$ (for example, $\epsilon = 1$). The open ball $S(x, \epsilon) = \{y \in X : d(x, y) < \epsilon\}$ will always be a subset of X. Thus, X is open.
- (ii) the union of an arbitrary family of open sets is open;
 - Let $\{G_{\alpha}\}_{\alpha \in I}$ be an arbitrary family of open sets in (X, d), where I is an index set. Let $G = \bigcup_{\alpha \in I} G_{\alpha}$.
 - We need to show that G is an open set.
 - Let $x \in G$. By the definition of union, there must exist at least one index $\alpha_0 \in I$ such that $x \in G_{\alpha_0}$.
 - Since G_{α_0} is an open set, by definition, there exists an $\epsilon > 0$ such that the open ball $S(x, \epsilon) \subseteq G_{\alpha_0}$.
 - Since $G_{\alpha_0} \subseteq G$, it follows that $S(x, \epsilon) \subseteq G$.
 - Therefore, for every $x \in G$, there exists an $\epsilon > 0$ such that $S(x, \epsilon) \subseteq G$. This proves that G is an open set.
- (iii) the intersection of any finite family of open sets is open.
 - Let $G_1, G_2, ..., G_n$ be a finite family of open sets in (X, d). Let $G = \bigcap_{i=1}^n G_i$.
 - We need to show that *G* is an open set.
 - If $G = \emptyset$, then G is open by part (i).
 - Assume $G \neq \emptyset$. Let $x \in G$.
 - By the definition of intersection, $x \in G_i$ for all i = 1, 2, ..., n.

- Since each G_i is an open set, for each $x \in G_i$, there exists an $\epsilon_i > 0$ such that $S(x, \epsilon_i) \subseteq G_i$.
- Let $\epsilon = \min\{\epsilon_1, \epsilon_2, ..., \epsilon_n\}$. Since there are a finite number of ϵ_i 's and each $\epsilon_i > 0$, ϵ will be positive ($\epsilon > 0$).
- Now, for this ϵ , we have $S(x, \epsilon) \subseteq S(x, \epsilon_i)$ for all i = 1, 2, ..., n.
- Since $S(x, \epsilon_i) \subseteq G_i$, it follows that $S(x, \epsilon) \subseteq G_i$ for all i = 1, 2, ..., n.
- Therefore, $S(x, \epsilon) \subseteq \bigcap_{i=1}^n G_i = G$.
- Thus, for every $x \in G$, there exists an $\epsilon > 0$ such that $S(x, \epsilon) \subseteq G$. This proves that G is an open set.
- (b) Let A be a subset of a metric space (X, d). Then prove that: (i) A° is the largest open subset of A.
 - Definition of A°: The interior of A, denoted by A°, is the set of all interior points of A. A point x ∈ A is an interior point of A if there exists an ε > 0 such that S(x, ε) ⊆ A.
 - **A°** is open: Let $x \in A^\circ$. By definition, there exists an $\epsilon_0 > 0$ such that $S(x,\epsilon_0) \subseteq A$. We need to show that $S(x,\epsilon_0)$ is contained in A° . Let $y \in S(x,\epsilon_0)$. Then $d(x,y) < \epsilon_0$. Let $\delta = \epsilon_0 d(x,y) > 0$. For any $z \in S(y,\delta)$, we have $d(y,z) < \delta$. By the triangle inequality, $d(x,z) \le d(x,y) + d(y,z) < d(x,y) + \delta = d(x,y) + \epsilon_0 d(x,y) = \epsilon_0$. So $S(y,\delta) \subseteq S(x,\epsilon_0)$. Since $S(x,\epsilon_0) \subseteq A$, we have $S(y,\delta) \subseteq A$. This means y is an interior point of A, so $y \in A^\circ$. Thus, $S(x,\epsilon_0) \subseteq A^\circ$. This shows that for every $x \in A^\circ$, there is an open ball around x entirely contained in A° . Hence, A° is open.
 - **A°** is a subset of **A**: By definition, if $x \in A^{\circ}$, then there exists an open ball $S(x, \epsilon)$ such that $S(x, \epsilon) \subseteq A$. Since $x \in S(x, \epsilon)$, it directly implies $x \in A$. Thus, $A^{\circ} \subseteq A$.
 - A° is the largest open subset of A: Let G be any open set such that $G \subseteq A$. We need to show that $G \subseteq A$ °. Let $x \in G$. Since G is open,

there exists an $\epsilon > 0$ such that $S(x, \epsilon) \subseteq G$. Since $G \subseteq A$, it follows that $S(x, \epsilon) \subseteq A$. By definition, this means x is an interior point of A, i.e., $x \in A^{\circ}$. Since this holds for every $x \in G$, we have $G \subseteq A^{\circ}$. Combining these points, A° is an open subset of A, and it contains every other open subset of A. Therefore, A° is the largest open subset of A.

(ii) A is open if and only if $A = A^{\circ}$.

• If A is open, then A = A°:

- We already know that A° $\subseteq A$.
- If A is open, then by part (b)(i) (A° is the largest open subset of A), A itself must be contained in A° (because A is an open subset of A). So A ⊆ A°.
- o Combining $A^{\circ} \subseteq A$ and $A \subseteq A^{\circ}$, we get $A = A^{\circ}$.

• If A = A°, then A is open:

- Since A° is always an open set (as shown in (b)(i)), and we are given $A = A^{\circ}$, it directly follows that A is an open set.
- (c) (i) Let (X, d) be a metric space and $F \subseteq X$. Then show that a point x_0 is a limit point of F if and only if it is possible to select from the set F a sequence of distinct $x_1, x_2, \dots, x_n, \dots$ such that $\lim_{n \to \infty} d(x_n, x_n) = 0$.
 - **Definition of a limit point:** A point $x_0 \in X$ is a limit point of F if every open ball $S(x_0, \epsilon)$ contains at least one point of F other than x_0 . That is, $S(x_0, \epsilon) \cap (F \setminus \{x_0\}) \neq \emptyset$ for all $\epsilon > 0$.
 - (\Rightarrow) Assume x_0 is a limit point of F. Show there exists a sequence of distinct points in F converging to x_0 .
 - Since x_0 is a limit point of F, for each $n \in \mathbb{N}$, the open ball $S(x_0, 1/n)$ contains a point $x_n \in F$ such that $x_n \neq x_0$.
 - \circ We need to ensure the sequence $\{x_n\}$ has distinct terms.
 - Choose $x_1 \in S(x_0, 1) \cap (F \setminus \{x_0\})$.

- Suppose $x_1, x_2, ..., x_k$ have been chosen such that $x_i \in S(x_0, 1/i) \cap (F \setminus \{x_0\})$ and all x_i are distinct and $x_i \neq x_0$.
- O Consider the set $S_k = \{x_0\}$ if x_0 is not equal to any of $x_1, ..., x_k$. If x_0 is equal to one of them, then it's $\{x_0\}$ still. Let $r_k = \min(\{d(x_0, x_i): i = 1, ..., k \text{ and } x_i \neq x_0\} \cup \{1/(k+1)\})$. Since all x_i are distinct from x_0 , $d(x_0, x_i) > 0$. So $r_k > 0$.
- The ball $S(x_0, r_k)$ must contain a point $x_{k+1} \in F$ such that $x_{k+1} \neq x_0$.
- O Also, x_{k+1} cannot be any of $x_1, ..., x_k$ because $d(x_0, x_{k+1}) < r_k \le d(x_0, x_i)$ for i = 1, ..., k.
- Thus, we can construct a sequence of distinct points $\{x_n\}$ in $F\setminus\{x_0\}$ such that $x_n\in S(x_0,1/n)$.
- o This implies $d(x_n,x_0)<1/n$. As $n\to\infty$, $1/n\to0$, so $d(x_n,x_0)\to0$. Therefore, $\lim_{n\to\infty}d(x_n,x_0)=0$.
- (\Leftarrow) Assume there exists a sequence of distinct $x_n \in F$ such that $\lim_{n\to\infty} d(x_n,x_0)=0$. Show x_0 is a limit point of F.
 - o Since $\lim_{n\to\infty} d(x_n,x_0)=0$, for any $\epsilon>0$, there exists an integer N such that for all n>N, $d(x_n,x_0)<\epsilon$.
 - This means that $x_n \in S(x_0, \epsilon)$ for all n > N.
 - Since the terms x_n are distinct and $x_n \in F$, and since $d(x_n, x_0) < \epsilon$ for n > N, there are infinitely many points of the sequence in $S(x_0, \epsilon)$.
 - o In particular, there exists at least one point $x_n \in S(x_0, \epsilon)$ such that $x_n \in F$ and $x_n \neq x_0$ (since the terms are distinct and converge to x_0 , for sufficiently large n, x_n cannot be x_0 unless the sequence is eventually constant at x_0 and $x_0 \in F$. Even then, if x_0 is a limit point, there must be other points).

- o If x_0 is one of the x_n terms, say $x_k = x_0$, then for n > k, $x_n \neq x_k = x_0$ (because the terms are distinct). So $S(x_0, \epsilon)$ contains points from $F \setminus \{x_0\}$.
- Thus, $S(x_0, \epsilon) \cap (F \setminus \{x_0\}) \neq \emptyset$ for every $\epsilon > 0$.
- o Therefore, x_0 is a limit point of F.
- (ii) Let $A \subseteq$ and $F = \{f \in C: f(t) = 0, \forall t \in A\}$. Show that F is a closed subset of C equipped with the uniform metric.
 - Assuming "C" refers to C[a,b], the space of continuous functions on [a,b], and the uniform metric is $d_{\infty}(f,g) = \sup_{t \in [a,b]} |f(t) g(t)|$.
 - We need to show that $F = \{f \in C[a, b]: f(t) = 0, \forall t \in A\}$ is a closed subset of C[a, b].
 - A set is closed if it contains all its limit points. Alternatively, a set is closed if its complement is open. A common way to prove a set is closed is to show that if a sequence in the set converges, its limit is also in the set.
 - Let $\{f_n\}$ be a sequence in F such that $f_n \to f$ in the uniform metric, for some $f \in C[a,b]$. We need to show that $f \in F$, i.e., f(t) = 0 for all $t \in A$.
 - Since $f_n \in F$ for all n, we have $f_n(t) = 0$ for all $t \in A$ and for all n.
 - Since $f_n \to f$ in the uniform metric, we have $\lim_{n\to\infty} d_\infty(f_n, f) = 0$.
 - This means $\lim_{n\to\infty} \sup_{t\in[a,b]} |f_n(t) f(t)| = 0$.
 - By the property of uniform convergence, for any $t_0 \in [a,b]$, if $f_n \to f$ uniformly, then $f_n(t_0) \to f(t_0)$ pointwise.
 - In particular, for any $t_0 \in A$, we have $f_n(t_0) = 0$ for all n.
 - Therefore, $\lim_{n\to\infty} f_n(t_0) = 0$.
 - Since $f_n(t_0) \to f(t_0)$ pointwise, we must have $f(t_0) = 0$.

- This holds for all $t_0 \in A$.
- Thus, f(t) = 0 for all $t \in A$, which means $f \in F$.
- Therefore, F is a closed subset of C[a, b] equipped with the uniform metric.

Question 3: (a) Let (X, d) be a metric space and $F \subseteq X$. Then show that the following statements are equivalent: (i) $x \in \overline{F}$; (ii) $S(x, \varepsilon) \cap F \neq \emptyset$ for every open ball $S(x, \varepsilon)$ centred at x; (iii) There exists an infinite sequence $\{x_n\}$ of points (not necessarily distinct) of F such that $\lim_{n \to \infty} x_n = x$.

Definitions:

- F (closure of F) is the smallest closed set containing F.
 Equivalently, F = F \cup F', where F' is the set of limit points of F.
- A point x is in F if and only if every open ball centered at x intersects F. This is exactly statement (ii). So (i) and (ii) are equivalent by definition.

• Equivalence of (i) and (ii):

- (⇒) Assume x \in $\overline{\mathsf{F}}$. If $x \in F$, then for any $S(x, \epsilon)$, $x \in S(x, \epsilon)$ ∩ F, so $S(x, \epsilon)$ ∩ $F \neq \emptyset$. If $x \in F'$ (limit point of F), then by definition of limit point, every $S(x, \epsilon)$ contains a point of $F \setminus \{x\}$. So $S(x, \epsilon)$ ∩ $F \neq \emptyset$. Thus, (i) implies (ii).
- (\Leftarrow) Assume $S(x, \epsilon) \cap F \neq \emptyset$ for every $S(x, \epsilon)$. This is the definition of a point in the closure of F. Thus, $x \in \overline{F}$. So (ii) implies (i).
- Therefore, (i) \Leftrightarrow (ii).

Equivalence of (ii) and (iii):

o (⇒) Assume (ii) is true. Show (iii) is true.

- Since $S(x, \epsilon) \cap F \neq \emptyset$ for every $\epsilon > 0$, for each $n \in \mathbb{N}$, consider $\epsilon = 1/n$.
- Then $S(x, 1/n) \cap F \neq \emptyset$.
- This means we can choose a point $x_n \in S(x, 1/n) \cap F$.
- By definition of S(x, 1/n), we have $d(x_n, x) < 1/n$.
- As $n \to \infty$, $1/n \to 0$, so $d(x_n, x) \to 0$.
- Thus, $\lim_{n\to\infty} x_n = x$. The sequence $\{x_n\}$ consists of points from F. These points are not necessarily distinct. So (ii) implies (iii).
- (⇐) Assume (iii) is true. Show (ii) is true.
 - Assume there exists a sequence $\{x_n\}$ of points of F such that $\lim_{n\to\infty}x_n=x$.
 - This means for any $\epsilon > 0$, there exists an integer N such that for all n > N, $d(x_n, x) < \epsilon$.
 - So, for all n > N, $x_n \in S(x, \epsilon)$.
 - Since $x_n \in F$ for all n, this implies that $S(x, \epsilon)$ contains at least one point from F (specifically, $x_{N+1} \in S(x, \epsilon) \cap F$).
 - Therefore, $S(x, \epsilon) \cap F \neq \emptyset$ for every $\epsilon > 0$. So (iii) implies (ii).
- Since (i) ⇔ (ii) and (ii) ⇔ (iii), all three statements are equivalent.
- (b) State and prove Cantor's intersection theorem.
 - Statement of Cantor's Intersection Theorem: Let (X, d) be a complete metric space. Let $\{F_n\}_{n=1}^{\infty}$ be a sequence of non-empty closed subsets of X such that:
 - a. $F_1 \supseteq F_2 \supseteq F_3 \supseteq \cdots$ (nested sequence, i.e., $F_{n+1} \subseteq F_n$ for all n).

b. $\lim_{n\to\infty} \operatorname{diam}(F_n) = 0$, where $\operatorname{diam}(F_n) = \sup\{d(x,y): x,y\in F_n\}$ is the diameter of F_n . Then, the intersection $\bigcap_{n=1}^{\infty} F_n$ contains exactly one point.

Proof:

o Existence of a point:

- Since each F_n is non-empty, for each n, we can choose an arbitrary point $x_n \in F_n$.
- Consider the sequence $\{x_n\}$. We will show that it is a Cauchy sequence.
- Let $\epsilon > 0$. Since $\lim_{n \to \infty} \text{diam}(F_n) = 0$, there exists an integer N such that for all n > N, $\text{diam}(F_n) < \epsilon$.
- Now, for any m, k > N, without loss of generality, assume $m \ge k$.
- Since the sequence is nested $(F_k \supseteq F_{k+1} \supseteq \cdots)$, if m, k > N, then $x_m \in F_m \subseteq F_N$ and $x_k \in F_k \subseteq F_N$. More specifically, if m, n > N, then both x_m and x_n belong to F_N (since F_N contains all subsequent F_k).
- Thus, $d(x_m, x_n) \le \text{diam}(F_N)$.
- Since N is chosen such that $diam(F_N) < \epsilon$, we have $d(x_m, x_n) < \epsilon$ for all m, n > N.
- Therefore, $\{x_n\}$ is a Cauchy sequence in X.
- Since (X, d) is a complete metric space, every Cauchy sequence converges to a point in X. So, there exists a point $x_0 \in X$ such that $\lim_{n\to\infty} x_n = x_0$.

o The point x_0 is in the intersection:

• We need to show that $x_0 \in F_k$ for every k.

- Consider an arbitrary F_k . For all $n \ge k$, we have $x_n \in F_n \subseteq F_k$.
- So, the sequence $\{x_n\}_{n=k}^{\infty}$ is a sequence of points in F_k .
- Since F_k is a closed set and $x_n \to x_0$, the limit point x_0 must belong to F_k .
- Since this holds for every k, $x_0 \in \bigcap_{n=1}^{\infty} F_n$. Thus, the intersection is non-empty.

Our Uniqueness of the point:

- Assume there are two points $x_0, y_0 \in \bigcap_{n=1}^{\infty} F_n$.
- Then $x_0 \in F_n$ and $y_0 \in F_n$ for all n.
- Therefore, $d(x_0, y_0) \le \text{diam}(F_n)$ for all n.
- Since $\lim_{n\to\infty} \operatorname{diam}(F_n) = 0$, we have $d(x_0, y_0) \le 0$.
- Since distances are non-negative, $d(x_0, y_0) = 0$, which implies $x_0 = y_0$.
- Thus, the intersection contains exactly one point.
- (c) Show that the metric spaces (X, d) and (X, ρ) where $\rho(x, y) = d(x, y)/(1 + d(x, y))$ are equivalent.
 - Two metric spaces (X, d) and (X, ρ) are equivalent if they induce the same topology. This means that a set $G \subseteq X$ is open in (X, d) if and only if it is open in (X, ρ) .
 - Equivalently, it means that for every point $x \in X$ and every $\epsilon > 0$, there exists a $\delta_1 > 0$ such that $S_{\rho}(x, \delta_1) \subseteq S_d(x, \epsilon)$, and there exists a $\delta_2 > 0$ such that $S_d(x, \delta_2) \subseteq S_{\rho}(x, \epsilon)$.

$$\circ \ S_d(x,\epsilon) = \{y \in X \colon d(x,y) < \epsilon\}$$

$$\circ \ S_{\rho}(x,\delta_1) = \{ y \in X : \rho(x,y) < \delta_1 \}$$

- Part 1: Show that for any $S_d(x,\epsilon)$, there exists $S_o(x,\delta_1)$ such that $S_{\rho}(x, \delta_1) \subseteq S_d(x, \epsilon)$.
 - Let $x \in X$ and $\epsilon > 0$. We want to find $\delta_1 > 0$ such that if $\rho(x,y) < \delta_1$, then $d(x,y) < \epsilon$.
 - $\circ \ \text{Let } \rho(x,y) = \frac{d(x,y)}{1 + d(x,y)}.$
 - Consider the function $f(t) = \frac{t}{1+t}$. We know $f'(t) = \frac{1}{(1+t)^2} > 0$, so f(t) is an increasing function for $t \ge 0$.
 - o Also, $\rho(x,y) < \delta_1 \Leftrightarrow \frac{d(x,y)}{1+d(x,y)} < \delta_1$.
 - Since f(t) is increasing, its inverse $f^{-1}(s) = \frac{s}{1-s}$ (for $0 \le s < 1$) is also increasing.
 - o So, $d(x,y) < \frac{\delta_1}{1-\delta_1}$ (if $\delta_1 < 1$). o We want $d(x,y) < \epsilon$.

 - We can choose δ_1 such that $\frac{\delta_1}{1-\delta_2} = \epsilon$.
 - o Solving for δ_1 : $\delta_1 = \epsilon(1 \delta_1) \Rightarrow \delta_1 = \epsilon \epsilon \delta_1 \Rightarrow \delta_1(1 + \epsilon) = \epsilon \Rightarrow \delta_1(1 + \epsilon) = \epsilon$ $\delta_1 = \frac{\epsilon}{1+\epsilon}$.
 - Since $\epsilon > 0$, we have $0 < \delta_1 < 1$.
 - o So, if we choose $\delta_1 = \frac{\epsilon}{1+\epsilon}$, then $\rho(x,y) < \delta_1$ implies $d(x,y) < \epsilon$.
 - o Thus, $S_{\rho}(x, \frac{\epsilon}{1+\epsilon}) \subseteq S_d(x, \epsilon)$.
- Part 2: Show that for any $S_{\rho}(x,\epsilon)$, there exists $S_{d}(x,\delta_{2})$ such that $S_d(x, \delta_2) \subseteq S_\rho(x, \epsilon)$.
 - Let $x \in X$ and $\epsilon > 0$. We want to find $\delta_2 > 0$ such that if $d(x,y) < \delta_2$, then $\rho(x,y) < \epsilon$.

- We know that $\rho(x,y) = \frac{d(x,y)}{1+d(x,y)}$.
- O Since the function $f(t) = \frac{t}{1+t}$ is increasing, if we choose $\delta_2 = \epsilon$ (assuming $\epsilon < 1$, as $\rho(x,y)$ is always less than 1), then $d(x,y) < \delta_2$ implies $d(x,y) < \epsilon$.
- $\text{Since } d(x,y) < \epsilon \text{, and } f(t) \text{ is increasing, we have } \rho(x,y) = \frac{d(x,y)}{1+d(x,y)} < \frac{\epsilon}{1+\epsilon}.$
- o Since we want $\rho(x,y) < \epsilon$, we can choose $\delta_2 = \epsilon$ (if $\epsilon < 1$). If $\epsilon \ge 1$, we can choose any positive δ_2 , say $\delta_2 = 1$, because $\rho(x,y)$ will always be less than 1.
- o Let's be more precise. We need $\frac{d(x,y)}{1+d(x,y)} < \epsilon$.
- Choose $\delta_2 = \epsilon$. If $d(x, y) < \epsilon$, then 1 + d(x, y) > 1.
- $o Then <math>\rho(x,y) = \frac{d(x,y)}{1+d(x,y)} < d(x,y) < \epsilon.$
- Thus, if we choose $\delta_2 = \epsilon$, then $S_d(x, \epsilon) \subseteq S_\rho(x, \epsilon)$.
- Since both conditions are met, the metric spaces (X, d) and (X, ρ) are equivalent.

Question 4: (a) Prove that a mapping $f: X \to Y$ is continuous on X if and only if $f^{-1}(G)$ is open in X for all open subsets G of Y.

- **Definition of Continuity (using** ϵ - δ): A mapping $f:(X,d_X) \to (Y,d_Y)$ is continuous at a point $x \in X$ if for every $\epsilon > 0$, there exists a $\delta > 0$ such that for all $x' \in X$, if $d_X(x,x') < \delta$, then $d_Y(f(x),f(x')) < \epsilon$. The mapping f is continuous on X if it is continuous at every point in X.
- Proof (\Rightarrow): Assume f is continuous on X. Show $f^{-1}(G)$ is open in X for all open subsets G of Y.
 - Let G be an arbitrary open subset of Y. We want to show that $f^{-1}(G)$ is open in X.

- o If $f^{-1}(G) = \emptyset$, then it is open.
- Assume $f^{-1}(G) \neq \emptyset$. Let $x \in f^{-1}(G)$.
- By definition of inverse image, $f(x) \in G$.
- Since G is an open set in Y, there exists an $\epsilon > 0$ such that the open ball $S_Y(f(x), \epsilon) \subseteq G$.
- Since f is continuous at x, for this ϵ , there exists a $\delta > 0$ such that if $x' \in X$ and $d_X(x,x') < \delta$, then $d_Y(f(x),f(x')) < \epsilon$.
- This means that $f(S_X(x, \delta)) \subseteq S_Y(f(x), \epsilon)$.
- Since $S_Y(f(x), \epsilon) \subseteq G$, it follows that $f(S_X(x, \delta)) \subseteq G$.
- Taking the inverse image of both sides, $S_X(x, \delta) \subseteq f^{-1}(G)$.
- Thus, for every $x \in f^{-1}(G)$, we have found an open ball $S_X(x, \delta)$ centered at x which is entirely contained in $f^{-1}(G)$.
- Therefore, $f^{-1}(G)$ is open in X.
- Proof (\Leftarrow): Assume $f^{-1}(G)$ is open in X for all open subsets G of Y. Show f is continuous on X.
 - We want to show that f is continuous at an arbitrary point $x \in X$.
 - o Let $\epsilon > 0$ be given.
 - o Consider the open ball $S_Y(f(x), \epsilon)$ centered at f(x) in Y. This is an open set in Y.
 - o By hypothesis, its inverse image $f^{-1}(S_Y(f(x), \epsilon))$ is an open set in X.
 - Since $f(x) \in S_V(f(x), \epsilon)$, it means $x \in f^{-1}(S_V(f(x), \epsilon))$.

- Since $f^{-1}(S_Y(f(x), \epsilon))$ is an open set and contains x, by definition of an open set, there exists a $\delta > 0$ such that the open ball $S_X(x, \delta) \subseteq f^{-1}(S_Y(f(x), \epsilon))$.
- This means that for any $x' \in S_X(x, \delta)$, we have $x' \in f^{-1}(S_Y(f(x), \epsilon))$, which implies $f(x') \in S_Y(f(x), \epsilon)$.
- o By definition of $S_Y(f(x), \epsilon)$, this means $d_Y(f(x), f(x')) < \epsilon$.
- ο Thus, for every $\epsilon > 0$, there exists a $\delta > 0$ such that if $d_X(x,x') < \delta$, then $d_Y(f(x),f(x')) < \epsilon$.
- \circ Therefore, f is continuous at x. Since x was arbitrary, f is continuous on X.
- (b) Let T: $X \rightarrow X$ be a contraction mapping of the complete metric space (X,
- d). Then show that T has a unique fixed point.

• Definitions:

- **Contraction Mapping:** A mapping $T: X \to X$ is a contraction mapping if there exists a constant $k \in [0,1)$ (i.e., $0 \le k < 1$) such that for all $x, y \in X$, $d(T(x), T(y)) \le kd(x, y)$. The constant k is called the contraction constant.
- o **Fixed Point:** A point $x \in X$ is a fixed point of T if T(x) = x.

• Proof (Banach Fixed Point Theorem):

- Existence:
 - Let x_0 be an arbitrary point in X.
 - Construct a sequence $\{x_n\}$ by iterating $T: x_{n+1} = T(x_n)$ for $n \ge 0$.
 - Consider the distance between consecutive terms: $d(x_{n+1}, x_n) = d(T(x_n), T(x_{n-1})) \le kd(x_n, x_{n-1}).$
 - By repeating this, we get: $d(x_{n+1}, x_n) \le kd(x_n, x_{n-1}) \le k^2 d(x_{n-1}, x_{n-2}) \le \dots \le k^n d(x_1, x_0)$.

- Now, we show that $\{x_n\}$ is a Cauchy sequence. For m > n: $d(x_m, x_n) = d(x_m, x_{m-1} + x_{m-1} + \dots + x_n)$ By the triangle inequality: $d(x_m, x_n) \le d(x_m, x_{m-1}) + d(x_{m-1}, x_{m-2}) + \dots + d(x_{n+1}, x_n) \ d(x_m, x_n) \le k^{m-1} d(x_1, x_0) + k^{m-2} d(x_1, x_0) + \dots + k^n d(x_1, x_0)$ $d(x_m, x_n) \le d(x_1, x_0)(k^n + k^{n+1} + \dots + k^{m-1}) \ d(x_m, x_n) \le d(x_1, x_0)k^n(1 + k + \dots + k^{m-1-n}) \ d(x_m, x_n) \le d(x_1, x_0)k^n \frac{1-k^{m-n}}{1-k}$ Since $0 \le k < 1$, we have $\frac{1-k^{m-n}}{1-k} < \frac{1}{1-k}$. So, $d(x_m, x_n) \le \frac{k^n}{1-k} d(x_1, x_0)$.
- Since $0 \le k < 1$, as $n \to \infty$, $k^n \to 0$.
- Therefore, for any $\epsilon > 0$, we can choose N large enough such that $\frac{k^n}{1-k}d(x_1,x_0) < \epsilon$ for all n > N.
- This means $d(x_m, x_n) < \epsilon$ for all m, n > N. Hence, $\{x_n\}$ is a Cauchy sequence.
- Since (X, d) is a complete metric space, the sequence $\{x_n\}$ converges to some point $x^* \in X$. Let $x^* = \lim_{n \to \infty} x_n$.
- Now we show x^* is a fixed point. Since T is a contraction mapping, it is continuous. (If $d(x,y) < \delta$, choose $\delta = \epsilon/k$, then $d(T(x),T(y)) \leq kd(x,y) < k(\epsilon/k) = \epsilon$). Since $x_{n+1} = T(x_n)$ and T is continuous, taking the limit as $n \to \infty$: $\lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} T(x_n) \ x^* = T(\lim_{n \to \infty} x_n) \ x^* = T(x^*)$. Thus, x^* is a fixed point of T.

O Uniqueness:

- Suppose x^* and y^* are two fixed points of T.
- Then $T(x^*) = x^*$ and $T(y^*) = y^*$.
- Consider the distance $d(x^*, y^*)$.

- Since T is a contraction mapping: $d(x^*, y^*) = d(T(x^*), T(y^*)) \le kd(x^*, y^*)$.
- So, $d(x^*, y^*) \le kd(x^*, y^*)$.
- Rearranging, $(1 k)d(x^*, y^*) \le 0$.
- Since $0 \le k < 1$, we have 1 k > 0.
- For $(1-k)d(x^*,y^*) \le 0$ to be true, and 1-k > 0, it must be that $d(x^*,y^*) \le 0$.
- Since distance is non-negative, $d(x^*, y^*) = 0$.
- By the property of a metric, $d(x^*, y^*) = 0$ implies $x^* = y^*$.
- Therefore, the fixed point is unique.

Question 5: (a) Let (X, d) be a metric space. Then show that the following statements are equivalent: (i) (X, d) is disconnected; (ii) there exists a continuous mapping of (X, d) onto the discrete two element space (X_0, d_0) .

Definitions:

- O **Disconnected Metric Space:** A metric space (X,d) is disconnected if it can be written as the union of two non-empty disjoint open sets. That is, $X = A \cup B$ where $A \neq \emptyset$, $B \neq \emptyset$, $A \cap B = \emptyset$, and A and B are both open in X.
- o **Discrete Two Element Space (X₀, d₀):** Let $X_0 = \{0,1\}$. The discrete metric d_0 is defined as $d_0(x,y) = 0$ if x = y and $d_0(x,y) = 1$ if $x \neq y$. In a discrete space, every subset is open (and closed).
- Proof (⇒): Assume (X, d) is disconnected. Show there exists a continuous mapping from X onto X₀.
 - Since (X, d) is disconnected, there exist non-empty open sets $A, B \subseteq X$ such that $X = A \cup B$ and $A \cap B = \emptyset$.

- O Define a mapping $f: X \to X_0$ as follows: f(x) = 0 if $x \in A$ f(x) = 1 if $x \in B$
- \circ Since A and B are non-empty, f maps X onto $\{0,1\}$.
- \circ To show f is continuous, we need to show that the inverse image of every open set in X_0 is open in X.
- o The open sets in X_0 are \emptyset , $\{0\}$, $\{1\}$, $\{0,1\}$.
 - $f^{-1}(\emptyset) = \emptyset$, which is open in X.
 - $f^{-1}(\{0\}) = A$, which is given as open in X.
 - $f^{-1}(\{1\}) = B$, which is given as open in X.
 - $f^{-1}(\{0,1\}) = A \cup B = X$, which is open in X.
- \circ Since the inverse image of every open set in X_0 is open in X, f is a continuous mapping.
- Proof (\Leftarrow): Assume there exists a continuous mapping $f: X \to X_0$ onto X_0 . Show (X, d) is disconnected.
 - Let $f: X \to X_0$ be a continuous mapping onto $X_0 = \{0,1\}$.
 - Since f is onto, there must exist $x_0 \in X$ such that $f(x_0) = 0$ and $x_1 \in X$ such that $f(x_1) = 1$.
 - o Consider the sets $A = f^{-1}(\{0\})$ and $B = f^{-1}(\{1\})$.
 - \circ Since $\{0\}$ and $\{1\}$ are open sets in the discrete space X_0 , and f is continuous, their inverse images A and B must be open sets in X.
 - \circ Since f is onto, A and B are non-empty (because 0 and 1 are in the image).
 - Also, $A \cup B = f^{-1}(\{0\}) \cup f^{-1}(\{1\}) = f^{-1}(\{0\} \cup \{1\}) = f^{-1}(X_0) = X$.

- o And $A \cap B = f^{-1}(\{0\}) \cap f^{-1}(\{1\}) = f^{-1}(\{0\} \cap \{1\}) = f^{-1}(\emptyset) = \emptyset$.
- Thus, X is expressed as the union of two non-empty, disjoint open sets A and B.
- \circ Therefore, (X, d) is disconnected.
- (b) Let I = [0,1] and let $f: I \to I$ be continuous. Then show that there exists a point $c \in I$ such that f(c) = c. Discuss the result if I = [-1,1]. Discuss the result if I = [-1,1] and $I = [-1,\infty)$.
 - Part 1: Let I = [0,1] and let f: I → I be continuous. Then show that there exists a point c ∈ I such that f(c) = c.
 - This is a direct application of the Intermediate Value Theorem (or Brouwer Fixed Point Theorem for 1D).
 - Consider the function g(x) = f(x) x.
 - Since f is continuous on [0,1] and x is continuous, g(x) is continuous on [0,1].
 - \circ Evaluate g(x) at the endpoints:
 - g(0) = f(0) 0 = f(0). Since $f: [0,1] \to [0,1]$, we have $f(0) \in [0,1]$, so $f(0) \ge 0$. Thus, $g(0) \ge 0$.
 - g(1) = f(1) 1. Since $f: [0,1] \to [0,1]$, we have $f(1) \in [0,1]$, so $f(1) \le 1$. Thus, $g(1) \le 0$.
 - o Case 1: If g(0) = 0, then f(0) = 0, so c = 0 is a fixed point.
 - o Case 2: If g(1) = 0, then f(1) = 1, so c = 1 is a fixed point.
 - o Case 3: If g(0) > 0 and g(1) < 0. Since g is continuous on [0,1] and g(0) and g(1) have opposite signs, by the Intermediate Value Theorem, there exists a point $c \in (0,1)$ such that g(c) = 0.
 - o If g(c) = 0, then f(c) c = 0, which means f(c) = c.

- Therefore, in all cases, there exists a point $c \in [0,1]$ such that f(c) = c.
- Part 2: Discuss the result if I = [-1,1].
 - \circ The result holds for I = [-1,1] as well. The interval [-1,1] is a closed and bounded interval, hence compact and connected.
 - If $f: [-1,1] \rightarrow [-1,1]$ is continuous, consider g(x) = f(x) x.
 - g(-1) = f(-1) (-1) = f(-1) + 1. Since $f(-1) \in [-1,1]$, $f(-1) \ge -1$, so $f(-1) + 1 \ge 0$. Thus $g(-1) \ge 0$.
 - o g(1) = f(1) 1. Since $f(1) \in [-1,1]$, $f(1) \le 1$, so $f(1) 1 \le 0$. Thus $g(1) \le 0$.
 - o By the Intermediate Value Theorem, there exists $c \in [-1,1]$ such that g(c) = 0, which means f(c) = c.
 - o The result holds: a continuous function from [-1,1] to [-1,1] has a fixed point.
- Part 3: Discuss the result if I = [-1,1] and I = [-1,∞). (The phrasing "if I = [-1,1] and I = [-1,∞)" suggests two separate discussions).
 - o **For I = [-1,1]:** (Already discussed above) The result holds. Continuous functions $f: [-1,1] \to [-1,1]$ always have a fixed point. This is because [-1,1] is a compact and convex set, and Brouwer's Fixed Point Theorem applies to continuous mappings from a convex compact subset of \mathbb{R}^n to itself. For n=1, this is a closed interval.
 - o For I = [-1, ∞):
 - The result (existence of a fixed point) does not necessarily hold if the domain/codomain is not compact (i.e., not closed and bounded).
 - Consider $I = [-1, \infty)$. Let $f: [-1, \infty) \to [-1, \infty)$ be defined by f(x) = x + 1.

- f(x) is continuous.
- We are looking for c such that f(c) = c, i.e., c + 1 = c.
- This equation simplifies to 1 = 0, which has no solution.
- Thus, the function f(x) = x + 1 has no fixed point in $[-1, \infty)$.
- The reason the fixed point theorem fails here is that [-1,∞) is not a compact set (it's not bounded). The fixed point property relies on the domain being compact and convex.
- (c) (i) If C is a connected subset of a disconnected metric space $X = A \cup B$, where A, B are nonempty and $\overline{A} \cap B = \emptyset = A \cap \overline{B}$, then show that either C $\subseteq A$ or $C \subseteq B$.
 - **Definition of Disconnected Space**: A metric space X is disconnected if there exist non-empty sets $A, B \subseteq X$ such that $X = A \cup B$, $A \cap B = \emptyset$, and both A and B are open (equivalently, both A and B are closed, as $A = X \setminus B$ and $B = X \setminus A$).
 - The condition given, $\overline{A} \subset B = \mathbb{B}$, means that A and B form a separation of X.
 - This is equivalent to X being disconnected, where A and B are closed and disjoint, and $A \cup B = X$.
 - o If A and B are open and disjoint, then $A \cap \overline{B} = \emptyset$ (if $y \in B$, $S(y, \epsilon) \subseteq B$, so no point in A can be a limit point of B; similar for $\overline{A} \cap B = \emptyset$).

Proof:

○ Assume C is a connected subset of $X = A \cup B$, where A, B are non-empty, $A \cap B = \emptyset$, and A and B are separated (i.e., $\overline{A} \setminus B = \emptyset$). This implies that A and B are open and closed in X.

- Consider the sets $C_A = C \cap A$ and $C_B = C \cap B$.
- o Since A and B are open in X, their intersections with C are open in the subspace topology of C. That is, C_A and C_B are open in C.
- We also have $C = (C \cap A) \cup (C \cap B) = C_A \cup C_B$.
- $\circ \ \mathsf{And} \ \mathcal{C}_A \cap \mathcal{C}_B = (\mathcal{C} \cap A) \cap (\mathcal{C} \cap B) = \mathcal{C} \cap (A \cap B) = \mathcal{C} \cap \emptyset = \emptyset.$
- Since C is connected, it cannot be expressed as the union of two non-empty, disjoint open sets (in its own subspace topology).
- o Therefore, either $C_A = \emptyset$ or $C_B = \emptyset$.
- o If $C_A = \emptyset$, then $C \cap A = \emptyset$. Since $C \subseteq A \cup B$, this implies $C \subseteq B$.
- o If $C_B = \emptyset$, then $C \cap B = \emptyset$. Since $C \subseteq A \cup B$, this implies $C \subseteq A$.
- o Thus, either $C \subseteq A$ or $C \subseteq B$.
- (ii) If Y is a connected set in a metric space (X, d) then show that any set Z such that $Y \subseteq Z \subseteq \overline{Y}$ connected.

Proof:

- o Assume Y is a connected set in (X, d). Let Z be a set such that Y \subseteq Z \subseteq \overline{Y} .
- We want to show that Z is connected. We will use the definition of connected: A set S is connected if it cannot be written as the union of two non-empty disjoint open sets (in the subspace topology of S). Equivalently, if $f: S \to \{0,1\}$ is continuous, then f must be constant.
- Let $f: Z \to \{0,1\}$ be a continuous function. We want to show that f is constant on Z.
- Since $Y \subseteq Z$, the restriction of f to Y, denoted as $f|_{Y}$, is a continuous function from Y to $\{0,1\}$.

- Since Y is connected, $f|_Y$ must be constant on Y. Let f(y) = c for all $y \in Y$, where $c \in \{0,1\}$.
- O Now, we need to show that f(z) = c for all $z \in Z$.
- Let $z \in Z$. Since Z \subseteq \overline{Y} , z is in the closure of Y.
- o By the property of closure (from Question 3(a)), if $z \in \overline{Y}$, then for every $\epsilon > 0$, the open ball $S_X(z, \epsilon)$ intersects Y. That is, $S_X(z, \epsilon) \cap Y \neq \emptyset$.
- o Since f is continuous on Z, for every $\epsilon' > 0$ (in the metric of $\{0,1\}$), there exists $\delta > 0$ such that if $z' \in Z$ and $d_X(z,z') < \delta$, then $d_0(f(z),f(z')) < \epsilon'$.
- o Let's take $\epsilon' = 1/2$. Then there exists $\delta > 0$ such that if $z' \in Z$ and $d_X(z,z') < \delta$, then $d_0(f(z),f(z')) < 1/2$.
- o In the discrete metric d_0 , $d_0(a,b) < 1/2$ implies a = b. So, if $d_X(z,z') < \delta$, then f(z') = f(z).
- Since $z \in \overline{Y}$, there exists a point $y \in S_X(z, \delta) \cap Y$.
- Since $y \in Y$, we know f(y) = c.
- Since $y \in S_X(z, \delta)$ and $y \in Z$ (because $Y \subseteq Z$), we have $d_X(z, y) < \delta$.
- o By the continuity of f at z, since $d_X(z,y) < \delta$, it must be that f(z) = f(y).
- o Since f(y) = c, we have f(z) = c.
- \circ Since z was an arbitrary point in Z, f is constant on Z.
- Therefore, Z is connected.

Question 6: (a) Let (X, d) be a metric space. Then show that the following statements are equivalent: (i) every infinite set in (X, d) has at least one limit point in X; (ii) every infinite sequence in (X, d) contains a convergent subsequence.

• Definitions:

- (i) This property is equivalent to X being sequentially compact. (Though often in general topology, it's part of the definition of compact).
- (ii) This property is called sequential compactness.
- Proof (i) ⇔ (ii): This is the Bolzano-Weierstrass property.
- Proof (⇒): Assume (i) is true. Show (ii) is true.
 - Let $\{x_n\}$ be an arbitrary infinite sequence in (X, d).
 - Consider the set $A = \{x_n : n \in \mathbb{N}\}$ (the set of distinct values in the sequence).
 - Case 1: A is a finite set.
 - If A is finite, then at least one element $x_k \in A$ must appear infinitely many times in the sequence $\{x_n\}$.
 - Let x^* be such an element. We can form a subsequence $\{x_{n_i}\}$ such that $x_{n_i} = x^*$ for all j.
 - This subsequence clearly converges to x^* (as $d(x_{n_j}, x^*) = 0$ for all j).
 - So, $\{x_n\}$ has a convergent subsequence.
 - Case 2: A is an infinite set.
 - By assumption (i), every infinite set in X has at least one limit point in X.
 - So, *A* has a limit point, say $x^* \in X$.
 - Since x^* is a limit point of A, by Question 2(c)(i) (or 3(a)(iii)), there exists a sequence of distinct points from A that converges to x^* .

- Let this sequence be $\{y_k\}$, where $y_k \in A$ and $y_k \to x^*$.
- Since each $y_k \in A = \{x_n : n \in \mathbb{N}\}$, each y_k is some x_{n_k} for some n_k .
- We can choose the indices n_k to be strictly increasing. For example, choose x_{n_1} such that $d(x_{n_1}, x^*) < 1$. Then choose x_{n_2} with $n_2 > n_1$ such that $d(x_{n_2}, x^*) < 1/2$, and so on. (If x^* is a limit point of the sequence values, we can always find such distinct points and increasing indices).
- Thus, we obtain a subsequence $\{x_{n_k}\}$ that converges to x^* .
- So, in both cases, $\{x_n\}$ contains a convergent subsequence.
- Proof (⇐): Assume (ii) is true. Show (i) is true.
 - \circ Let A be an arbitrary infinite set in (X,d).
 - \circ We need to show that A has a limit point in X.
 - O Since A is infinite, we can choose an infinite sequence of distinct points $\{x_n\}$ from A.
 - o By assumption (ii), this sequence $\{x_n\}$ contains a convergent subsequence, say $\{x_{n_k}\}$, that converges to some point $x^* \in X$.
 - Since $x_{n_k} \in A$ for all k, and the terms x_{n_k} are distinct (because they are chosen from a sequence of distinct points), x^* is a limit point of the set A (as seen in Question 2(c)(i) or 3(a)(iii)).
 - \circ Thus, every infinite set in *X* has at least one limit point in *X*.
- (b) If f is a one-to-one continuous mapping of a compact metric space (X, d_X) onto a metric space (Y, d_Y), then show that f^{-1} is continuous on Y and, hence, f is a homeomorphism of (X, d_X) onto (Y, d_Y).

Definitions:

- O **Homeomorphism:** A mapping $f: X \to Y$ is a homeomorphism if it is bijective (one-to-one and onto), continuous, and its inverse $f^{-1}: Y \to X$ is also continuous.
- Compact Metric Space: A metric space is compact if every open cover has a finite subcover. In metric spaces, compactness is equivalent to sequential compactness (every sequence has a convergent subsequence) and also to completeness and total boundedness.

Given:

- o $f:(X,d_X) \to (Y,d_Y)$ is one-to-one (injective) and onto (surjective), so it is bijective.
- o f is continuous on X.
- o (X, d_X) is a compact metric space.
- **Goal:** Show $f^{-1}: Y \to X$ is continuous. (This will imply f is a homeomorphism).

Proof:

- To show f^{-1} is continuous, we need to show that for every open set $U \subseteq X$, its inverse image under f^{-1} is open in Y.
- The inverse image of U under f^{-1} is $(f^{-1})^{-1}(U) = f(U)$.
- So, we need to show that for every open set $U \subseteq X$, the set f(U) is open in Y.
- o Alternatively, it is often easier to show that f^{-1} maps closed sets to closed sets. That is, for every closed set $F \subseteq X$, f(F) is closed in Y.
- \circ Let *F* be any closed subset of *X*.

- Since X is a compact metric space, and F is a closed subset of a compact space, F itself is compact.
 - (Proof that closed subset of compact space is compact: Let $\{G_{\alpha}\}$ be an open cover of F. Then $\{G_{\alpha}\} \cup \{X \setminus F\}$ is an open cover of X. Since X is compact, there is a finite subcover $\{G_{\alpha_1}, \ldots, G_{\alpha_n}, X \setminus F\}$. Then $\{G_{\alpha_1}, \ldots, G_{\alpha_n}\}$ is a finite subcover of F.)
- Now, we use a key property of continuous functions on compact spaces: A continuous image of a compact set is compact.
- \circ Since F is compact and f is continuous, the image f(F) must be compact in Y.
- o In any metric space, **every compact set is closed.** (Proof: Let K be a compact set. Let $y \notin K$. For each $k \in K$, there are disjoint open balls U_k around k and V_k around y. $\{U_k\}_{k \in K}$ is an open cover of K. Take a finite subcover. The union of the corresponding U_k 's covers K. The intersection of the corresponding V_k 's is an open neighborhood of Y disjoint from Y_k . So Y_k is closed).
- \circ Therefore, f(F) is a closed set in Y.
- \circ We have shown that for every closed set F in X, its image f(F) is a closed set in Y. This is precisely the condition for f^{-1} to be continuous.
- o Since f is bijective, continuous, and f^{-1} is continuous, f is a homeomorphism.
- (c) Let A be a compact subset of a metric space (X, d). Show that for any B $\subseteq X$, there is a point $p \in A$ such that d(p, B) = d(A, B).

Definitions:

O Distance from a point to a set: $d(x,B) = \inf\{d(x,b): b \in B\}$.

○ Distance between two sets: $d(A, B) = \inf\{d(a, b): a \in A, b \in B\}$.

Proof:

- Let A be a compact subset of (X, d), and $B \subseteq X$.
- We know that $d(A,B) = \inf_{a \in A} \{d(a,B)\}.$
- o Consider the function $g: A \to \mathbb{R}$ defined by g(x) = d(x, B).
- \circ We need to show that this function g(x) is continuous on A.
- For any $x_1, x_2 \in X$, and any $b \in B$, by the triangle inequality, $d(x_1, b) \le d(x_1, x_2) + d(x_2, b)$.
- Taking the infimum over $b \in B$ on the right side, we get $d(x_1, B) \le d(x_1, x_2) + d(x_2, B)$.
- Rearranging, $d(x_1, B) d(x_2, B) \le d(x_1, x_2)$.
- Similarly, $d(x_2, B) d(x_1, B) \le d(x_1, x_2)$.
- Ocombining these, $|d(x_1, B) d(x_2, B)| \le d(x_1, x_2)$. This shows that g(x) is continuous (it is even Lipschitz continuous with constant 1).
- o Since A is a compact set and $g: A \to \mathbb{R}$ is a continuous function, by the **Extreme Value Theorem** (a continuous real-valued function on a compact set attains its minimum and maximum values).
- \circ Therefore, g(x) attains its minimum value on A.
- O This means there exists a point $p \in A$ such that $g(p) = \inf_{x \in A} g(x)$.
- o In other words, there exists a point $p \in A$ such that $d(p, B) = \inf_{a \in A} \{d(a, B)\}.$
- o By definition, $\inf_{a \in A} \{d(a, B)\} = d(A, B)$.
- Hence, there is a point $p \in A$ such that d(p,B) = d(A,B).

Duhive