PA 446

Coding for Civic Data Applications

Will be starting at 6:05pm

Class #6

Logistics

Course Logistics

- HW 4
 - Due 10/20
 - Available end of week
- HW 3, graded by EOW
- Midterm
 - Similar format as HW4
 - With a tighter time limit

Data Science "workflow"

Focus next 3 weeks

Where We Been: Gender Data

- 1. Two variable comparison
- 2. Two variable significance testing

What We Found: Gender Data

Dept	Difference Between Female and Male Salaries	Female Salary Averages	Male Salary Averages
POLICE	-4834.963677	87338.2753	92173.239
FIRE	-2537.510887	103619.36	106156.871
STREETS & SAN	-7476.160747	68309.8452	75786.006
WATER MGMNT	-11322.18714	86732.6581	98054.8453
AVIATION	-9040.943804	73139.6085	82180.5523

How Confident Were We: Gender Data

Dicuss

How Confident Were We: Gender Data

Dept	Difference Between Female and Male Salaries	Female Salary Averages	Male Salary Averages	p.value	alternative
POLICE	-4834.963677	87338.2753	92173.239	1.96E-38	two.sided
FIRE	-2537.510887	103619.36	106156.871	0.03008956	two.sided
STREETS & SAN	-7476.160747	68309.8452	75786.006	1.54E-08	two.sided
WATER MGMNT	-11322.18714	86732.6581	98054.8453	2.92E-24	two.sided
AVIATION	-9040.943804	73139.6085	82180.5523	3.02E-11	two.sided

Takeaways: Gender Data

So What	Next Steps

Where We Been: Race Data

- 1. Multiple variable comparison
- 2. Multiple variable significance testing

Where We Been: Race Data

Department	api	black	hispanic	white	NA
AVIATION	89023	63501	76966	82891	77932
FIRE	90779	99732	99272	107545	106035
POLICE	85783	90703	86518	93484	90574
STREETS &					
SAN	66412	68870	72859	74037	72828
WATER					
MGMNT	94739	92964	93684	97413	96131

How Confident Were We: Race Data

Dicuss

Where We Been: Race Data

[to coding]

How Confident Were We: Race Data

Department	api	black	hispanic	white	NA	p.value
AVIATION	89023	63501	76966	82891	77932	5.19E-06
FIRE	90779	99732	99272	107545	106035	1.58E-11
POLICE	85783	90703	86518	93484	90574	3.37E-52
STREETS &						0.029837
SAN	66412	68870	72859	74037	72828	002
WATER						0.000458
MGMNT	94739	92964	93684	97413	96131	519

How Confident Were We: Race Data

Department	api	black	hispanic	white	NA	p.value
AVIATION	89023	63501	76966	82891	77932	5.19E-06
FTRE	90779	99732	99272	107545	106035	1.58E-11
POLICE	85783	90703	86518	93484	90574	3.37E-52
STREETS &						0.029837
SAN	66412	68870	72859	74037	72828	002
WATER						0.000458
MGMNT	94739	92964	93684	97413	96131	519

Takeaways: Race Data

So What	Next Steps

Takeaways: Race Data

What Can We Do?

Department	api	black	hispanic	white	NA	p.value
AVIATION	89023	63501	76966	82891	77932	5.19E-06

Department	api	black	hispanic	white	NA	p.value
AVIATION	89023	63501	76966	82891	77932	5.19E-06

Department	api	black	hispanic	white	NA	p.value
AVIATION	89023	63501	76966	82891	77932	5.19E-06

Department	api	black	hispanic	white	NA	p.value
AVIATION	89023	63501	76966	82891	77932	5.19E-06

Number of tests: (3+2+1)* # of Departments = 30 tests A lot of work + error prone

What Can We Do?

What Can We Do?

- Clarify scope with the client and compare less variables
- Use linear regressions

Linear Regression

Purpose

How does change in Mouse age impacts Mouse Size?

Finding a Line Best Fit

A lot of compute power is used testing out different lines and slopes until the line best fitted to our data is determined

Described in Equation Form

y = slope* X + constant (y-intercept)

Finding Relationships Between X and Y

y = Mouse Size

 $y = 0^* X + constant_a$

X = Mouse Age

Constant = y-intercept

Interpreting the Formula

$$y = 1.1^* X + constant_c$$

1.1* X: a 1 unit increase in mouse age is correlated with a 1.1 unit increase in mouse size

constant_c: at age 0, a mouse has size 1

Within the Same Sample, Another Variable Impacts Size

y = Mouse Size

X2 = Whether the mouse received gene therapy (Control vs Mutant)

Now what you want to know is **how gene therapy impacts the size of the mouse**

Within the Same Sample, Another Variable Impacts Size

y = Mouse Size

X2 = Whether the mouse received gene therapy

X2 is a categorical variable (Control or Mutant). How do you represent it in the linear regression equation?

Y = slope * X2 + constant_2

Categorical X Values Must be Converted to "Dummy" Vars

Control or Mutant \rightarrow 1 or 0

y = Mouse Size

X2 = Whether the mouse received gene therapy

When X2=0, $Y = slope * 0 + constant_2$ When X2=1, $Y = slope * 1 + constant_2$

Another Linear Regression

y = Mouse Size

X2 = Whether the mouse received gene therapy

 $Y = 0.5* X2 + constant_2$

Complications

You just determined the relationship between gene therapy and mouse size $(Y = 0.5^* X2 + constant_2)$.

But remember, you are using the same sample as before. What might you have overlooked?

How to Control for Age?

Is there some way to control for age, when comparing the mouse size of control and mutant mice?

Mouse Size

35

Multiple Regression

Finding Relationships Between X and Y, Controlling for X2

What relationship do you see?

Multiple Regression

Finding Relationships Between X1, X2 and Y

> Formula

y = 1.1* Mouse age + 0.5*Mutant mouse + constant

Interpretation:
Mutant mice are 0.5 size larger than control mouse, controlling for mouse age

A 1 unit increase in mouse age is correlated with a 1.1 unit increase in mouse size, controlling for the mouse' gene status

Multiple Regression

Finding Relationships Between X1, X2 and Y

Linear regressions works for numeric X's and/or categorical X's

Let's try 1 more time with exclusively categorical X's: mice gene therapy and gender

Multiple Regression: Categorical

Multiple Binary Variables: Control v Mutant

Mouse Size

y = 1.1*Mutant mouse + constant

Multiple Regression: Categorical

Multiple Binary Variables: Control v Mutant and Male v Female

Multiple Regression

Multiple Binary Variables: Control v Mutant and Male v Female

Mouse Size

> Final Formula

y = 1.5*Mutant mouse + 2*gender + constant

Interpretation:
Male mice are 2 sizes
larger than female
mice, controlling for
gene status

Mutant mice are 0.5 sizes larger than control mice, controlling for gender

10-minute break, be back by 7:15pm

How Does This Help with Our Problem with Race?

Discuss

Mouse Size	Gender (1= M, 0=F)	gene type (1=Mutant, 0 = Control)	mouse age
4	1	1	2.4
3.6	1	0	1.5
6	0	0	3.0
4.8	0	1	3.8
5	1	1	5.1
3	0	0	2.2

Salary	Department	race	gender
118998	POLICE	white	М
109662	FIRE	black	M
121272	DAIS	NA	NA
119712	WATER MGMNT	API	M
92352	TRANSPORT	hispanic	М
72510	POLICE	NA	F

I omitted name and job title

Wrangling Needed Before Running a Regression

Discuss

1.

Generating Dummy Variables

Discuss

race_white	race_black	race_api	race_hispa nic	race_aian
1	0	0	0	0
0	1	0	0	0
1	0	0	0	0
0	0	1	0	0
0	0	0	1	0
0	0	0	0	0

Multiple Regression

What If We Isolated to Only White and API

> Final Formula

Much harder to visualize multiple regressions after 2 variables because you will need a 3D space

Data Quality Checks for Linear Regressions

NA's Are Usually Bad

- 1. Impute (average, median etc)
- 2. Remove the NA rows
- 3. Remove the columns with NAs

Data Quality Checks for Linear Regressions

No categorical variables for linear regression

All numerics

- Dummy (1's and 0's) remember to exclude 1 category, otherwise you have collinearity
- Doubles (any numbers)

Applying to Race Data

Data Quality Checks for Linear Regressions

No categorical variables for linear regression

All numerics

- Dummy (1's and 0's) remember to exclude 1 category, otherwise you have collinearity
- Doubles (any numbers)

Regression Results: Aviation Department

term	estimate	std.error	statistic	p.value
(Intercept)	83247.2	1064.9	78.2	0.00
final_race_two_api	6283.4	4665.3	1.3	0.18
final_race_two_black	-12266.4	2799.8	-4.4	0.00
final_race_two_hispanic	-6127.9	1692.4	-3.6	0.00

Interpretation:

Regression Results: Aviation Department

		Tr.	i	
term	estimate	std.error	statistic I	p.value
(Intercept)	83247.2	1064.9	78.2	0.00
final_race_two_api	6283.4	4665.3	1.3	0.18
final_race_two_black	-12266.4	2799.8	-4.4	0.00
final_race_two_hispanic	-6127.9	1692.4	-3.6	0.00
	<u> </u>			

Regression Results: Aviation Department

term	estimate	std.error	statistic -	p.value
(Intercept)	83247.2	1064.9	78.2	0.00
final_race_two_api	6283.4	4665.3	1.3	0.18
final_race_two_black	-12266.4	2799.8	-4.4	0.00
final_race_two_hispanic	-6127.9	1692.4	-3.6	0.00

Interpretation: the average salary of final_race_two_white = 1

Regression Results

term	estimate	std.error	statistic	p.value
(Intercept)	_ 83247.2	1064.9	78.2	0.00
final_race_two_api	6283.4	4665.3	1.3	0.18
final_race_two_black	-12266.4	2799.8	-4.4	0.00
final_race_two_hispanic	-6127.9	1692.4	-3.6	0.00

Interpretation: the average salary of final_race_two_api = 1 is \$6283.4 higher than final_race_two_white = 1. The result is not statistically significant at 95% confidence level

Data Quality Checks for Linear Regressions

No categorical variables for linear regression

term	estimate	std.error	statistic	p.value
(Intercept)	83247.2	1064.9	78.2	0.00
final_race_two_api	6283.4	4665.3	1.3	0.18
final_race_two_black	-12266.4	2799.8	-4.4	0.00
final_race_two_hispa				
nic	-6127.9	1692.4	-3.6	0.00

Descriptive

Predictive

Prescriptive

In Summary

- 1. Review of ANOVA
- 2. Isolated the impact of different races on salary data
 - a. Introduction to machine learning