Data Challenge ANCAP 2022

Estimación del contenido de compuestos "C7+" en la carga a la Unidad de Isomerización, y de benceno y precursores en la carga a la Unidad de Reforming

08/11/2022

Objetivo y Fundamento

- Estimar dos variables claves con la intención de mejorar el control de calidad para los procesos de Isomerización y Reforming de la refinería La Teja, y prevenir desviaciones sin tener que esperar los resultados de laboratorio adelantando el ajuste de las variables de operación.
- El impacto que tiene un exceso en el contenido de "C7+" en la carga a Isomerización, es importante pues compromete la vida útil del catalizador usado para la producción.
- Cuanto menor sea el contenido de precursores de benceno en la carga a Reforming, menor será el contenido de benceno en el reformado y menor será su contenido en las gasolinas, resultando estas más saludables para su uso.

Procesos de refinería

2102-E

2102-E

- 44 m de altura
- 3,1 m de diámetro
- 56 platos

Reconciliación del Balance de Masa

- Los medidores de flujo tienen error, y al alejarse de las condiciones de diseño es necesario corregir la medida indicada por los medidores para poder conocer con mayor exactitud el flujo que está circulando por cada medidor.
- Para la unidad en cuestión se puede definir el siguiente bloque con sus correspondientes medidores de entrada y salida:

Caudal corregido = Caudal medido * Factor corrección

Entradas

Entradas

Salidas

Salidas

Reconciliación del Balance de Masa

TAG NO.	FE-21004	FE-21008
TAG HISTORIZADOR DE FLUJO	TDC_PHD.FIC_21004	TDC_PHD.FI_21008
TAG HISTORIZADOR DE TEMPERATURA	TDC_PHD.TI_21004	TDC_PHD.TI_21029
TAG HISTORIZADOR DE PRESION		TDC_PHD.PIC_22059
TAG HISTORIZADOR DE DENSIDAD	STMS_DI_21004	
TAG HISTORIZADOR DE PESO MOLECULAR		STMS_LAB_PM_2209-F
DESIGN OPERATING CONDITIONS		
FLUID/STATE	HYDROCARBON / LIQUID	GAS
MAXIMUM FLOW	140 m³/h	820 Sm³/h
NORMAL FLOW	121.24 m³/h	708 Sm³/h
MINIMUM FLOW	60.62 m³/h	397 Sm³/h
PRESSURE Kg/Cm2g	36.6	20.9
TEMPERATURE °C	35	40
SPECIFIC GRAVITY AT 15°C	0.735	-
S. GRAVITY AT OPERATING CONDITIONS	0.723	-
MOLECULAR WEIGHT	100.3	4.476
VISCOSITY AT OPERATING COND. cP	0.384	0.01
Cp / Cv	-	1.355
DENSITY AT OPERATING COND. Kg/m3	-	2.812

$$\mbox{Factor corrección} = \frac{\mbox{Densidad a 15°C en diseño}}{\mbox{Densidad a 15°C real}} * \sqrt{\frac{\mbox{Densidad operation real}}{\mbox{Densidad operation diseño}}} \label{eq:policy}$$

$$\text{Factor corrección} = \sqrt{\frac{(Presión \, real + 1,03) * PM \, real}{Temperatura \, real + 273}} * \sqrt{\frac{Temperatura \, diseño + 273}{(Presión \, diseño + 1,03) * PM \, diseño}} * \frac{PM \, diseño + 273}{PM \, real} * \frac{PM$$