Nonlinear Control Theory Lecture 7. Controllability

Lost time

- · Stability of invariant set (Poincaré map, Floquet's theory)
- · Center manifold theory
- · Singular perturbation.

Today

Controllability (nonlinear affine systems)

Let us first consider the linear case: $\dot{\chi} = A \times + B U$, $\chi \in \mathbb{R}^{n}$, $U \in \mathbb{R}^{m}$. (*)

Def: $S \subseteq \mathbb{R}^n$ is called a controlled invariant subspace of (*) if there exists a feedback control u = 7x such that S is an invariant set under $\dot{x} = (A+B7)x$.

Det S is (A,B)-invariant (controlled invariant) subspace if there exists a matrix 7, such that (A+BF)SES (76S) (A+BF)XES)

Such 7 is called a friend of S.

 $\frac{Idea:}{\chi(t)} = e^{(A+BF)t} \chi_o = \left(I + (A+BF) + t + \frac{1}{2}(A+BF)^2 + \cdots \right) \chi_o$

If $X_0 \in S$, $(A+BF)X_0 \in S$, $\Rightarrow \chi(t) \in S$. $\forall t \geq 0 \Rightarrow sufficiency$.

On the other hand, suppose there exists a point $\chi_0 \in S$, such that $(A+B+)\chi_0 \notin S$, $\chi(t;\chi_0) = \chi_0 + t(A+B+)\chi_0 + o(t^2) \notin S$, for sufficiently small t. $\Rightarrow i \neq i$'s also necessary.

Def. A control system is called <u>controllable</u> if for any two points $\chi_{1,1}\chi_{1}\in \mathbb{R}^{N}$, there exists a finite time T and an admissible control $U\in \mathbb{R}^{M}$, such that $\chi(T,0,U;\chi_{1})=\chi_{2}$, where $\chi(t,t_{0},U;\chi_{0})$ denotes the solution at time t with initial condition $\chi_{0,1}$ initial time to. and control $U(\cdot)$

For linear systems, $\chi_1 = \chi(T) = e^{AT} \chi_0 + \int_0^T e^{A(T-T)} B u(T) dT$.
$\Rightarrow \int_0^T e^{A(T-T)} Bu(T) dT = \chi_1 - e^{AT} \chi_0 \Rightarrow L(u) = d.$
$L(u), L: U \mapsto \mathbb{R}^n$ d linear mapping.
controllability" => the linear mapping L(u) is on-to" for te[0,T]
A B
the nows of e ^{A(T-1T)} B are linearly independent.
s are with a controllable iff
$\frac{\sum (T-T)^{j}}{j!} A^{j} B \Rightarrow \frac{1}{R} = Im(BAB - A^{n-1}B) \text{ has}$ dimension n.
Denote < AIS) as the smallest A-invariant subspace that contains S,
$\langle A ImB\rangle = \mathcal{R} = Im(B,AB,,A^{n-1}B)$ $\wedge AS = S{(**)}$
Q: Can we extend this idea to the nonlinear case $\dot{x} = f(x) + f(x) \cdot u$?
Nanely, span $\{g_1(x), g_2(x), \dots, g_m(x)\} \approx \text{Im B}$, affine systems
Proposition. Consider system (**) and to where f(xo) = 0, If the linearization
at No and u=0 then the set of points that can be
at x_0 and $u=0$ $\dot{z}=\frac{\partial f}{\partial x} _{x=x_0}z+g(x_0)u$ then, the set of points that can be contains a neighbourhood of x_0 . For Contains a neighbourhood of x_0 .
Consider.
0 = Uz
But you can drive a car anywhere you like.
The question is: whether the monlinear system it self is controllable?
Before proceed, let's cover some knowledge about all differential geometry.
differential geometry.

We have covered the "definition" of manifold briefly in the previous
beotive.
Def (Manifold on R")
Suppose N is an open set in 12. The solit
$M = \{x \in \mathcal{N} = \lambda_i(x) = 0, i = 1, \dots, n - m\}$
where λ_i are smooth functions.
where λ_i are smooth functions. If rank $\begin{bmatrix} \frac{\partial \lambda_i}{\partial x} \end{bmatrix} = n-m$ $\forall x \in M$, then M is a (hyper) surface (which $\frac{\partial \lambda_i}{\partial x} = n-m$)
is a smooth manifold of dimension n-m).
Take a vector be R" and smooth function $\lambda: \mathbb{R}^n \mapsto \mathbb{R}$, then at any point
xer, the rate of charge of MIX) along the allred on of D is
$\mathcal{L}_b \lambda := \lim_{\varepsilon \to 0} \frac{\lambda(x+\varepsilon b) - \lambda(x)}{\varepsilon}$ since ε is small"
Do Taylor expansion to $\mathcal{N}(x+\epsilon b)$ at x , we have:
Do Taylor expansion to $\lambda(x+\varepsilon b)$ at x , we have: $ \mathcal{L}_{b}\lambda = \lim_{\varepsilon \to 0} \frac{\lambda(x)+\varepsilon \cdot b \frac{\partial \lambda}{\partial x} - \lambda(x)}{\varepsilon} = b \frac{\partial \lambda}{\partial x} $
$= \left(\sum_{i=1}^{\infty} b_i \frac{\partial}{\partial x_i} \right) \lambda$
a manifold
We see {\frac{1}{2}xi} i=1,,n as a basis of the tangent space to \R''
we see 13x; 1-1, ", " as a basis of the tangent space to lk"
Tangent space to a general manifold M at a point P (denoted by TPM)
can be defined similarly. The precise definition will not be covered in this course.
this course.
I vertor field f on a smooth manifold M is a mapping M
Def (Vector field). A vector field f on a smooth manifold M is a mapping M assigning to each point PEM a tangent vector f(p) & TpM. A school field is smooth over P (where M = PP") if there exists n real
A vector field is smooth over IR" (where M=IR") if there exists n real
valued smooth functions fir, for defined on R", such that
fig) = \(\frac{1}{2} \frac{1}
where X1 Xn form a basis for 12".

We see the solution of ODE X(t;f,P) as flow" and denote as verter field initial value (f(p)). It holds that $(f_1, f_2) = (f_1, f_2)$, $(f_1, f_2) = (f_1, f_2)$. $(f_1, f_2) = (f_1, f_2)$. (Compare with the state transition matrix). It also holds that: $\frac{\partial f}{\partial t}\Big|_{T=0} = f(x_f(b))\Big|_{t=0} = f(b)$ Pet (Lie bracket in R") For two vector fields f and f on MCR", the Lie bracket is a third vector field defined by $[f,g](x) = \frac{\partial g}{\partial x} f(x) - \frac{\partial f}{\partial x} g(x)$ Geometric interpretation Lemma For every XER", X3 o Xf o Xf o Xf (P) = P+ t2[f,8](P)+O(t3), for t that tends to zero. proof: It's enough we do Taylor expansion for each flow to the order 3. (1, b) = b+ 34 (t)+ + 7 34 (t)+ 0 (t) = $p + \frac{1}{3+1} \left(\frac{1}{t}(p) + \frac{1}{2} \frac{1}{3+1} \left[\frac{1}{t}(p) \right] \right) + \frac{1}{2} \frac{1}{3+1} \left[\frac{1}{t}(p) \right] + \frac{1}{2} \frac{1}{3+1} \left[\frac{1}{t}(p) + \frac{1}{t}(p) + \frac{1}{2} \frac{1}{3+1} \left[\frac{1}{t}(p) + \frac{1}{2} \frac{1}{t}(p) + \frac$ = $p + t f(p) + \frac{t^2}{2}$ Df($\chi_{t}^{2}(p)$), $f(\chi_{t}^{2}(p))|_{t=0} + o(t^3)$ $f = \int_{t}^{t} \int_{t}^{t} \int_{t}^{t} \frac{\partial f_{t}}{\partial x_{t}} \frac{\partial f_{t}}{\partial x_{t}}$ = $P + t f(P) + \frac{t^2}{2} \mathcal{D}f(P) f(P) + o(t^3)$ 20 84 (b) = 1/2 (b) + + 8 (1/2 (b)) + = D & (1/2 (b)) & (1/2 (b)) + o (+3) = $P + t f(p) + \frac{t^2}{2} Df(p) f(p) + o(t^3)$ + t.[3(p) + t.D3(1/t(p)) f(x/t(p)) | t=0 + 0(t2) + + + Dg(p)g(p) + O(t)] = p+ $t[f(p)+g(p)]+\frac{t^2}{2}Df(p)f(p)+t^2Dg(p)f(p)+\frac{t^2}{2}Dg(p)g(p)+0(t^3)$. Similarly, $\chi_{t}^{f} \circ \chi_{t}^{g} \circ \chi_{t}^{f}(p) = \chi_{t} + t \cdot g(x) + [f, g](p)t^{2} + O(t^{3})$

and rf. rf. rf. rf(p) = p + t'Ef. g](p) + o (t3)

? The Lemna states the fact that if [f,g](p) & span {f(x),g(x)}, then it is possible, by afternating between the flow of f and g, to attain the points that can not be reached with the flow of linear combinations of f and g.

Denote adg = [f, g], $ad_f g = g$, $ad_f g = [f, ad_f g]$

Def. A distribution & on a manifold M is a map which assigns to each PEM a vector subspace S(P) of the tangent space TpM. I is called a smooth if for each PEM, there exists a neighbourhoused U of p and a set of smooth vector fields finit I, such that 2(8) = span { fi(9) }, ∀9 ∈ U.

a subset of a vector space $X,y \in S$, then $dX+\beta y \in S$.

Throughout the course, we always assume the distribution is smooth and the index set I is finite.

Det A distribution is called nonsingular if for each PEM, dim (D(P)) is the same, i.e., {fi(P)} are linearly independent UPEM.

Det. A distribution \triangle is called involutive if $f \in \triangle$, $g \in \triangle$ $\Rightarrow [f,g] \in \triangle$.

Now, consider the nonlinear affine system x = f(x) + g(x) U. where $g(x) = [g_1(x), g_2(x), \cdots g_m(x)]$ manifold.

The olynamics is authorly: $\dot{X} = f(x) + \sum_{i=1}^{m} f_i(x) U_i$ Det A distribution $\Delta(x)$ is said to be invariant under vector field f(x), if $[f, k](x) \in \Delta(x)$, $\forall k \in \Delta(x)$.

Det (Strong accessibility distribution Rc)

Rc is the smallest distribution which contains span {91, ..., 9m} and is invariant under vector fields f, 91,..., 9m and is denoted by

Rc(x)=<f,81,...,9m| span {91,...,8m}>

For linear systems, f = Ax, $g_i = bi$ ($B = [b_1, ..., b_m]$)

The strong accessibility distribution is $\langle Ax, b_1, ..., b_m|$ spanfb₁,... $b_m f$)

We get $b_i - invariance$ for free, since $[b_i, b_j] = 0$, $\forall i, j = 1,..., m$ $[Ax, b_i] = \frac{\partial b_i}{\partial x} \cdot Ax - \frac{\partial Ax}{\partial x} \cdot b_i = -Ab_i$

 $\Rightarrow \mathcal{R}_{c}(x) = \langle A \mid span\{b_{1}, b_{m}\} \rangle = \langle A \mid I_{m}B \rangle$

For nonlinear systems, it is in general very difficult to determine the controllability except for some special cases. Thus, it is very useful to study the so-called accessibility.

Proposition If at a point No, dim (Re(No)) = 1, then the system is locally strongly accessible from Xo. Namely, for any neighbourhood of Xo, the set of reachable points at time T contains a non-empty open set for any T > 0.

Ex). Consider the angular motion of a space-craft. Here we assume only two controls (two pairs of boosters) are available,

The model of angular velocities around the three main axes is

$$\chi_1 = \frac{\alpha_2 - \alpha_3}{\alpha_1} \chi_2 \chi_3$$

$$\hat{\chi}_{2} = \frac{a_{3} - a_{1}}{a_{2}} \chi_{1} \chi_{3} + u_{1}, \quad a_{1}, a_{2}, a_{3} > 0$$

$$\dot{\chi}_3 = \frac{\alpha_1 - \alpha_2}{\alpha_3} \chi_2 \chi_1 + \mu_2$$

$$f(x) = \begin{bmatrix} \alpha x_1 x_3 \\ \beta x_1 x_3 \\ \gamma x_1 x_2 \end{bmatrix}, \quad g(x) = \begin{bmatrix} 0 \\ i \\ 0 \end{bmatrix}, \quad g(x) = \begin{bmatrix} 0 \\ 0 \\ i \end{bmatrix}, \quad \chi = \frac{a_2 - a_3}{a_1}, \quad \beta = \frac{a_3 - a_1}{a_2}, \quad \chi = \frac{a_1 - a_2}{a_3}$$

 $\frac{\text{Step 1}}{\mathcal{R}_o(x)} = \text{Span } \{g_i(x), g_i(x)\} = \text{Span } \{e_i, e_3\}$

$$\frac{8 \text{ tep 2}}{g_3(x) := \Gamma f, g_1 = \frac{\partial g_1}{\partial x} f - \frac{\partial f}{\partial x} g_1 = -\begin{bmatrix} 0 & dx_3 & dx_2 \\ \beta & 0 & \beta x_1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = -\begin{bmatrix} dx_3 \\ 0 \\ 0 \end{bmatrix}$$

 $\mathcal{Z}_{i}(x) = \operatorname{span} \{ \mathcal{Z}_{i}(x), \hat{i}=1, \dots + \}$

Step 3. If $\alpha = 0$ (i.e. $\alpha_2 = \alpha_3$), then $\mathcal{R}_1(x) = \mathcal{R}_0(x)$, $\mathcal{R}_c(x) = \mathcal{R}_0(x) = \mathcal{R}_0(x) = span\{e_2, e_3\}$ If $x \neq 0$, then $\mathcal{R}_1(x) \neq \mathcal{R}_0(x)$ and dim $\mathcal{R}_1(x) = 2 < 3$ for $x_2 = x_3 = 0$.

Hence return to <u>Step 2</u>.

Step 2-2 $\mathcal{R}_2(x) = \mathcal{R}_1(x) + \text{span } \{[f, f_i], [g_i, f_j], i = 1, 2, 3, 4\}.$

Since
$$[g_1, g_4] = \frac{\partial g_4}{\partial x} \cdot g_1 = \begin{bmatrix} 0 & -d & 0 \\ -\beta & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} -d \\ 0 \\ 0 \end{bmatrix}$$

$$\Rightarrow \mathcal{R}_2(x) = \mathbb{R}^3 \cdot dim(\mathcal{R}_2(x)) = 3 \forall x \in \mathbb{R}^3$$

dim
$$(R_2(x)) = 3$$
 $\forall x \in \mathbb{R}^3$, the system is locally strongly $\Rightarrow \Re_c(x) = \Re_z(x) = \mathbb{R}^3 \Rightarrow \text{accessible from any point in } \mathbb{R}^3$

Thm (chow) If f=0, then olim ($R_c(x)$) = n, $\forall x \in N$ implies the system is controllable.

$$\frac{\partial}{\partial x_1} = u_1 \cos x_3 \qquad \qquad \hat{x} = \begin{bmatrix} \cos x_3 & 0 \\ \sin x_3 & 0 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \Rightarrow \begin{cases} 3_1(x) = \begin{bmatrix} \cos x_3 \\ \sin x_3 \end{bmatrix} \\ \hat{x}_2 = u_1 \sin x_3 \end{cases} \Rightarrow \begin{cases} \hat{x} = \begin{bmatrix} \cos x_3 \\ \sin x_3 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \Rightarrow \begin{cases} 3_1(x) = \begin{bmatrix} \cos x_3 \\ \sin x_3 \end{bmatrix} \end{bmatrix}$$

$$\hat{x}_3 = u_2$$

$$\mathcal{R}_{o}(x) = \operatorname{Span} \left\{ \beta_{i}(x), \beta_{i}(x) \right\}$$

$$\mathcal{R}_{o}(x) := \left[\left\{ \beta_{i}, \beta_{i} \right\} \right] = \frac{\partial \beta_{i}}{\partial x}, \left\{ \beta_{i}, -\frac{\partial \beta_{i}}{\partial x}, \left\{ \beta_{i} \right\} \right] = -\left[\left[\begin{array}{c} 0 & 0 & -\sin x_{3} \\ 0 & 0 & \cos x_{3} \\ 0 & 0 & 0 \end{array} \right] \cdot \left[\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right]$$

$$= \left[\begin{array}{c} -\sin x_{3} \\ \cos x_{3} \\ 0 \end{array} \right],$$

$$A = \left[\begin{array}{c} \cos x_{3} \\ \cos x_{3} \\ 0 \end{array} \right],$$

 $\mathcal{R}_{i}(x) = \mathcal{R}_{o}(x) + \text{span}[\mathcal{G}_{i}, \mathcal{G}_{i}] = \mathcal{R}^{3} \Rightarrow \text{controllable}$