Math 131: Linear Algebra

Zhixian (Susan) Zhu

2.C. Dimension

- Any bases have the same length
- Dimension counting
- Dimension formula of sum space

6.1 Some properties

Theorem 1 Any two bases of a finite-dimensional vector space have the same length.

Sketch of the proof: Let B_1 and B_2 are two bases of a finite-dimensional vector space V. By the symmetry, it is enough to show that the length of B_1 is smaller than the length of B_2 . This is true since B_1 is linearly independent and B_2 spans V and the fact that any linearly independent set has less element than any spanning set.

Definition 1

The number of elements in a basis is defined to be the *dimension* of V over \mathbb{F} , denoted by $\dim V$.

Remark 1

Note that the basis and the dimension of a vector space highly depends on the field. For example, $V = \mathbb{C}$ can be treated as a vector space over \mathbb{C} , over \mathbb{R} , or \mathbb{Q} , or some other fields. $\dim_{\mathbb{C}} V = 1$, $\dim_{\mathbb{R}} V = 2$, and $\dim_{\mathbb{Q}} V = \infty$.

Example 1

 $V=\mathbb{C}$ with complex number addition and real number scalar product forms a \mathbb{R} -vector space. Show that V is of dimension 2.

Solution:

All complex numbers have the form a + bi. Choose $v_1 = 1$ and $v_2 = i$. Try to solve equation for arbitrary complex number a + bi:

$$c_1v_1+c_2v_2=a+bi.$$

No matter what a and b are, $c_1 = a$ and $c_2 = b$ is the only solution. Therefore $\{1, i\}$ forms a basis of V. Then the dimension of V is 2.

Example 2

 $V = \mathbb{C}$ with complex number addition and complex number scalar product forms a \mathbb{C} -vector space. Show that V is of dimension 1.

Solution:

Choose $v_1 = 1$. Try to solve equation for arbitrary complex number c:

$$c_1v_1=c$$
.

No matter what c is, $c_1 = c$ is the only solution of the equation. Therefore $\{1\}$

forms a basis of V. Then the dimension of V is 1.

Remark 2

Because of the above examples, we call the first dimension \mathbb{R} -dimension and the second \mathbb{C} dimension. You can image other F-dimensions depending on the base fields of the vector spaces.

6.2 Properties of dimension

Proposition 1 If V is finite-dimensional and U is a subspace of V, then dim $U \leq$ $\dim V$. Furthermore, U = V if and only if $\dim U = \dim V$.

Sketch of the proof: The idea is that a basis of U is also linearly independent in V. We can extend it to a basis of U. Hence dim $U \leq \dim V$. If dim $U = \dim V$, then we don't need to add any new element to the basis of U. Hence it spans V and it is a basis of U.

Proposition 2 (Criterion for basis I)

Suppose V is finite-dimensional. Then every linearly independent list of vectors in V with length dim V is a basis of V.

Proposition 3 (Criterion for basis II)

Suppose V is finite-dimensional. Then every spanning list of vectors in V with length dim V is a basis of V.

6.3 Dimension formula for sum of two vector spaces

Theorem 2 If U_1 and U_2 are subspaces of a finite-dimensional vector space, then

$$\dim(U_1 + U_2) = \dim U_1 + \dim U_2 - \dim(U_1 \cap U_2).$$

Sketch of the proof: We first take a basis of $U_1 \cap U_2$, say $\{u_1, \ldots, u_r\}$. Then we extend it to bases of U_1 and U_2 by adding elements $\{v_1, \ldots, v_m\}$ and $\{w_1, \ldots, w_n\}$, respectively. Clearly, the union $\{u_1, \ldots, u_r, v_1, \ldots, v_m, w_1, \ldots, w_n \text{ spans } U_1 + U_2.$

If we can prove that $\{u_1, \ldots, u_r, v_1, \ldots, v_m, w_1, \ldots, w_n \text{ is linearly independent, } \}$ then

$$\dim(U_1 + U_2) = r + m + n = (r + m) + (r + n) - r = \dim U_1 + \dim U_2 - \dim(U_1 \cap U_2).$$

The key is to show linearly independence. Read the book for a detailed proof.

We list a couple of examples of dimension counting.

Example 3

1. dim
$$\mathbb{F}^n = n$$
.

2. dim
$$P_n(\mathbb{F}) = n + 1$$

3. dim Mat
$$\kappa_{\times m}(\mathbb{F}) = km$$
.

2.
$$\dim P_n(\mathbb{F})=n+1$$
.
3. $\dim \operatorname{Mat}_{k\times m}(\mathbb{F})=km$.
4. Let $U=\{p(t)\in \mathbb{R}[t]\mid p''(t)=0\}=2$ and $V=\operatorname{Span}(1,t^2.t^3)$ in $\mathbb{R}[t]$. Then we

can verify the dimension formula:

$$U+V=P_3(\mathbb{R})= exttt{Span}(1,t,t^2,t^3)$$
,

and $U \cap V = P_0(\mathbb{R}) = \mathrm{Span}(1)$. Hence we can verify the dimension formula by checking that $\dim U + V = 4$, $\dim U = 2$, $\dim V = 3$, $\dim U \cap V = 1$.