3.1 1) $\alpha \cdot 0 = \alpha \cdot (0+0) = \alpha \cdot 0 + \alpha \cdot 0$

En ajoutant l'opposé du vecteur $\alpha \cdot 0$ aux deux membres de cette égalité, on trouve :

$$0 = \alpha \cdot 0$$

2) $0 \cdot u = (0+0) \cdot u = 0 \cdot u + 0 \cdot u$

En ajoutant l'opposé du vecteur $\alpha \cdot u$ aux deux membres de cette égalité, on obtient :

$$0 = 0 \cdot u$$

 $3) \Leftarrow$

Si $\alpha = 0$, alors $\alpha \cdot u = 0 \cdot u = 0$, vu 2).

Si
$$u = 0$$
, alors $\alpha \cdot u = \alpha \cdot 0 = 0$, d'après 1).

 \Longrightarrow

(a) Supposons $\alpha = 0$.

Alors on a évidemment $\alpha = 0$ ou u = 0.

(b) Supposons $\alpha \neq 0$.

 $u=1\cdot u=(\frac{1}{\alpha}\,\alpha)\cdot u=\frac{1}{\alpha}\cdot(\alpha\cdot u)=\frac{1}{\alpha}\cdot 0=0$

Puisque u = 0, on conclut également que $\alpha = 0$ ou u = 0.

4) $0 = 0 \cdot u = (\alpha + (-\alpha)) \cdot u = \alpha \cdot u + (-\alpha) \cdot u$

signifie que $(-\alpha) \cdot u = -(\alpha \cdot u)$

 $0 = \alpha \cdot 0 = \alpha \cdot (u + (-u)) = \alpha \cdot u + \alpha \cdot (-u)$

implique que $\alpha \cdot (-u) = -(\alpha \cdot u)$