WavSpA: Wavelet Space Attention

Transformers Eficientes mediante Análisis Multi-Escala

Seminario del Departamento de Matemáticas

Universidad del Valle Octubre 2025

- 1. Motivación: El problema de las secuencias largas
- 2. **Fundamentos Matemáticos**: Teoría de Wavelets
- 3. Arquitectura WavSpA: Diseño e Implementación
- 4. **Análisis Teórico**: Complejidad y Propiedades
- 5. Resultados Experimentales: Long Range Arena
- 6. Código: Análisis de Implementación
- 7. Conclusiones y Trabajo Futuro

1. Motivación

El Problema: Complejidad Cuadrática en Transformers

Transformer Estándar (Vaswani et al., 2017)

Mecanismo de Atención:

donde: $- (Q, K, V \in \mathbb{R}^{L \times d})$ (Queries, Keys, Values) - (L) = longitud de secuencia - (d) = dimensión de embedding

Análisis de Complejidad

Producto Matricial \(QK^T\):

Complejidad Computacional: - Tiempo: $(O(L^2 \cdot d))$ - Memoria: $(O(L^2))$

Problema: - (L = 512): ~260K operaciones - (L = 4096): ~16M operaciones (61× más!) - (L = 16384): ~268M operaciones (1000× más!)

X No escalable para secuencias largas

Aplicaciones Requieren Secuencias Largas

Tarea	Longitud Típica	Desafío
Resumen de documentos	4K-16K tokens	Capturar narrativa completa
Análisis de código	8K-32K tokens	Dependencias de largo alcance
Genómica	100K-1M bases	Patrones regulatorios distantes
Series temporales	10K-100K puntos	Tendencias de largo plazo
Audio/Video	48K-192K frames	Coherencia temporal

Necesidad: Modelos eficientes para \(L \gg 4096\)

2. Fundamentos Matemáticos

Teoría de Wavelets: Intuición

¿Qué es una Wavelet?

Una **wavelet** \(\psi(t)\) es una "ondita" localizada:

 $[\int_{-\infty}^{\int_{-\infty}^{\infty}} \sin(t) \ dt = 0 \ dt \ (media cero)} \]$

 $[\int_{-\infty}^{\int_{-\infty}^{\infty}} |\phi(t)|^2 \ dt < \inf \ \partial \ text{(energía finita)} \]$

Familia de Wavelets:

 $\[\psi_{a,b}(t) = \frac{1}{\sqrt{|a|}} \psi\left(\frac{t-b}{a}\right) \]$

• \(a\): escala (frecuencia)

• \(b\): translación (posición)

Transformada Wavelet: Análisis Multi-Escala

Transformada Wavelet Continua (CWT):

```
\label{eq:w_f(a, b) = \inf_{-\inf y}^{\inf y} f(t) \, \frac{1}{\sup_{a|y} \operatorname{left}(\frac{t-b}{a}\right) dt \]}
```

Interpretación: - Mide similitud entre señal (f(t)) y wavelet en escala (a), posición (b) - Plano tiempo-frecuencia: $((b, a) \mod W_f(a,b))$

Transformada Wavelet Discreta (DWT):

```
[c_j[k] = \sum_n f[n] \ h_j[2^j k - n] \]
```

Banco de Filtros: - \(h_0\): filtro paso-bajo (aproximación) - \(h_1\): filtro paso-alto (detalles)

Descomposición Multi-Resolución

Esquema de Descomposición (3 niveles):

Resultado: $\{A_3, D_3, D_2, D_1\}$

Propiedad Clave: Reconstrucción perfecta $\{f = \text{text}\{DWT\}(\text{text}\{DWT\}(f))\}$

Wavelets de Daubechies

Construcción de Daubechies (orden \(N\)):

Problema: Encontrar $(h_0 = [h_0, h_1, \ldots, h_{2N-1}])$ tal que:

- 1. **Ortogonalidad:** $\lceil \sum_k h_0[k] h_0[k-2m] = \left| delta_m \right|$
- 2. **Momentos Nulos:** $\lceil \sum_k k^p h_1[k] = 0$, $\rceil = 0$,]
- 3. **Normalización:** $\[\sum_k h_0[k] = \sqrt{2} \]$

Solución: Factorización de Fejér-Riesz del polinomio:

 $[P(\omega) = \left(\frac{1 + e^{i\omega}}{2}\right)^N Q(\omega)]$

donde \(Q(\omega)\) tiene raíces específicas.

Visualización: db2, db4, db8

Daubechies orden 2 (db2):

Filtro: [-0.129, 0.224, 0.836, 0.483]

Soporte: 4 coeficientes

Daubechies orden 4 (db4):

Filtro: [-0.010, -0.132, 0.047, 0.787, 0.607, -0.165, -0.072, 0.020]

Soporte: 8 coeficientes

Suavidad: ↑↑

Daubechies orden 8 (db8):

Soporte: 16 coeficientes

Suavidad: 1111

Trade-off: Más suavidad ↔ Más soporte (menos localización)

3. Arquitectura WavSpA

Idea Central: Atención en Dominio Wavelet

Pipeline Completo:

```
Input Sequence x \in \mathbb{R}^{(B \times L \times D)}

[LayerNorm]

[Wavelet Forward Transform]

{z0, z1, z2, ..., z_J}
[L/1] [L/2] [L/4] [L/2^J]

[Attn] [Attn] [Attn] ... [Attn]

{z'0, z'1, z'2, ..., z'_J}

[Wavelet Inverse Transform]

x' \in \mathbb{R}^{(B \times L \times D)}

[x + x'] (Residual)

[MLP Block]

Output
```

Intuición: Procesar diferentes escalas con diferentes "ventanas de contexto"

Matemática Formal: Descomposición

Forward Transform (J niveles):

donde \(\downarrow 2\) denota downsampling por factor 2.

Resultado: $\{z_J, d_J, d_{J-1}\}, \{dots, d_1\} \}$

- $(z_J \in \Delta_S)$ \times $(L/2^J) \in D$): frecuencias bajas (tendencias globales)
- $(d_j \in \mathbb{R}^{B \times (L/2^j) \times D})$: frecuencias altas (detalles nivel (j))

Atención Multi-Escala

Para cada nivel $(j \in \{0, 1, \ldots, J\})$:

```
[z'_j = \text{Xext}\{SelfAttention}(z_j, z_j, z_j) + z_j]
```

Complejidad por nivel:

Nivel	Longitud	Complejidad Atención
0 (original)	\(L\)	$(O(L^2 \cdot D))$
1	(L/2)	$(O((L/2)^2 \cdot cdot D) = O(L^2 \cdot cdot D)/4)$
2	(L/4)	$(O((L/4)^2 \cdot D) = O(L^2 \cdot D)/16)$
•••	•••	
J	$(L/2^J)$	\(O((L/2^J)^2 \cdot D)\)

Pero: Si aplicamos atención eficiente (Linformer, Performer) en niveles más largos...

Inverse Transform: Reconstrucción

Algoritmo de Reconstrucción:

```
 \begin{align} z_j^{(k)} &= (z_j^{(k+1)} \cdot y) + g_0 + (d_j^{(k+1)} \cdot y) + g_1 \cdot y +
```

Wavelets Ortogonales: $(g_0[n] = (-1)^n h_1[1-n]), (g_1[n] = (-1)^{n+1} h_0[1-n])$

Tres Variantes de WavSpA

1. AdaWavSpA: Wavelets Adaptativas

Parámetros entrenables: $[h_0^{(adapt)}] \in \mathbb{R}^{w_{len}} \subset D$

Inicialización: Daubechies \(db_N\)

Pros: Máxima flexibilidad

Contras: Puede perder ortogonalidad

2. OrthoWavSpA: Wavelets Ortogonales Parametrizadas

Construcción mediante rotaciones Givens:

 $[h_0 = e_1 \cdot R(\theta_1) S \cdot R(\theta_2) S \cdot R(\theta_1) S \cdot R(\theta_1)$

 $donde: - \(R(\theta) = \beta) - \(S): permutación cíclica) + \(S(\theta) + \beta) - \(S($

Parámetros: $(\hat [0, 2\pi]^{L/2})$

Pros: Garantiza ortogonalidad

Contras: Restricción puede limitar expresividad

3. LiftWavSpA: Lifting Scheme

Parámetros entrenables: $\langle P \rangle$ y $\langle U \rangle$ (redes convolucionales)

Pros: In-place, memoria eficiente

Contras: Más complejo de implementar

4. Análisis Teórico

Análisis de Complejidad

Transformer Estándar:

Operación Complejidad

Self-Attention $(O(L^2 \cdot D))$ Memoria $(O(L^2 + L \cdot D))$

WavSpA (J niveles):

Operación Complejidad

Wavelet Transform $(O(L \cdot dot w_{len} \cdot dot D))$

Inverse Transform $(O(L \cdot dot w_{len} \cdot dot D))$

Total $(\mathbb{C}^2 \cdot D + L \cdot w_{len} \cdot D)$

Con atención lineal (e.g., Performer):

 $[\text{Total} = O(L \cdot D^2 \cdot D^2 \cdot D^2 \cdot M_{en} \cdot D) = O(L \cdot D^2 \cdot D^2 \cdot D) = O(L \cdot D^2 \cdot D^$

V Lineal en L!

Teorema: Capacidad Representacional

Teorema (Informal):

Para cualquier función \fi \mathbb{R}\L\\) expresable por un Transformer de profundidad \(N\), existe un WavSpA de profundidad \(O(N)\) que puede aproximar \((f\)\) con precisión arbitraria, siempre que:

- 1. Las wavelets sean suficientemente regulares (e.g., \(db_4\) o superior)
- 2. El número de niveles $(J \geq (L))$
- 3. Cada nivel tenga atención de capacidad equivalente

Intuición: - Wavelets descomponen en espacios anidados - Atención captura correlaciones - Reconstrucción combina información

Referencia: Similar a resultados de aproximación universal para redes wavelet (Zhang, 1993)

Propiedad: Localidad e Invarianza

1. Localidad Espacio-Frecuencia:

Por principio de incertidumbre de Heisenberg: \[\Delta t \cdot \Delta \omega \geq \frac{1}{2} \]

Wavelets logran un balance óptimo (para Gaussianas).

 $\textbf{Implicación:} \ - \ Detalles \ \backslash (d_j \backslash): \ localizados \ espacialmente \ - \ Aproximación \ \backslash (z_J \backslash): \ información \ global$

2. Invarianza a Desplazamientos:

 $\label{lem:wavelet Packet Transform (extensión de WavSpA): $$ \left(\text{WPT}(\lambda u_s f) \right) \leq \left(\text{WPT}(f) \right) $$ donde $$ (\lambda u_s)$ es desplazamiento de $$ (s)$ posiciones.$

Ventaja: Robustez a variaciones de posición

5. Resultados Experimentales

Long Range Arena (LRA) Benchmark

Suite de 6 tareas para evaluar secuencias largas:

Tarea	Longitud	Descripción	Métrica
ListOps	2K	Evaluación de expresiones anidadas	Accuracy
Text	4K	Clasificación de texto (IMDB)	Accuracy
Retrieval	4K	Búsqueda documento-query (AAN)	Accuracy
Image	1K	Clasificación CIFAR-10 (píxeles)	Accuracy
Pathfinder	1K	Conectividad visual (largo alcance)	Accuracy
Avg	-	Promedio de 5 tareas	Accuracy

Desafío: Capturar dependencias de 1K-4K tokens

Resultados: WavSpA vs. Transformer Base

Tabla de Resultados (%):

Modelo	ListOps	Text	Retrieval	Image	Pathfinder	Avg
Transformer	36.37	64.27	57.46	42.44	71.40	54.39
AdaWavSpA	55.40	81.60	79.27	55.58	81.12	70.59
Mejora Relativa	+52%	+27%	+38%	+31%	+14%	+30%

Observaciones:

- 1. **ListOps:** Mejora dramática (+19pp) → wavelets capturan anidamiento
- 2. **Text:** +17pp → mejor contexto de largo alcance
- 3. **Retrieval:** +22pp → comparación de documentos mejorada
- 4. **Image:** +13pp → patrones multi-escala en visión
- 5. **Pathfinder:** +10pp → conectividad de largo alcance

Comparación con Arquitecturas Eficientes

WavSpA + Diferentes Mecanismos de Atención:

Base Model Avg LRA WavSpA+Base Mejora

Longformer	53.46	63.66	+10.2pp
Linformer	49.36	52.01	+2.7pp
Linear Attn	50.67	64.32	+13.7pp
Performer	51.41	65.47	+14.1pp

Conclusión: WavSpA es complementario, mejora cualquier arquitectura base.

Ablation Studies

¿Qué componente es más importante?

Configuración	ListOps	Avg LRA
Sin wavelets (Transformer base)	36.37	54.39
db2 fija (no entrenable)	42.15	58.72
db2 entrenable (AdaWavSpA)	49.80	66.14
Ortho parametrizada	45.95	65.90

Configuración ListOps Avg LRA Adaptive db2 55.40 70.59

Insight: - Wavelets fijas ya ayudan (+4.3pp) - Entrenabilidad crucial (+11.6pp adicional) - AdaWavSpA logra mejor balance

Niveles de Descomposición (J):

J Longitud mín ListOps Avg LRA Tiempo (ms)

1 L/2	48.20	65.30	120
2 L/4	52.10	68.45	145
3 L/8	55.40	70.59	180

Óptimo: J=3 (balance performance-costo)

Escalabilidad: Longitudes Extremas

Experimento: Clasificación con secuencias variables

Longitud Transformer AdaWavSpA Speedup

512	98ms	105ms	0.93×
1024	320ms	180ms	1.78×
2048	1100ms	310ms	3.55×
4096	OOM	580ms	∞
8192	OOM	1150ms	∞
16384	OOM	2400ms	∞

OOM: Out of Memory

WavSpA escala a 16K tokens (Transformer falla en 4K)

6. Análisis de Código

Estructura del Proyecto

```
wavspa/
                             # Core library
  - wavspa/
                             # Forward transform
     — conv fwt.py
      conv fwt learn.py
                            # Learnable forward

 wavelet lifting.py

                          # Lifting scheme
      - utils.pv
   lra benchmarks/
      - models/
             — wavspa learn.py # 🐈 Arquitectura principal
             — middle layer *.py # Mecanismos atención
             — waveformer.pv
      - listops/
                             # Tareas LRA
      - text classification/
   examples/
    benchmark simple.py # Ejemplo de uso
```

Código: Inicialización de Daubechies

```
def daubcqf(N):
    """Calcula filtros de Daubechies orden N/2"""
    K = int(N/2)
    h_0 = np.array([1.0, 1.0]) # Base: Haar

# Iteración para construir orden superior
for j in range(1, K):
    a = -a * 0.25 * (j + K - 1) / j
    h_0 = np.hstack((0, h_0)) + np.hstack((h_0, 0))
    p = np.hstack((0, -p)) + np.hstack((p, 0))
    p = np.hstack((0, -p)) + np.hstack((p, 0))
    q = np.hstack((0, q, 0)) + a * p

# Seleccionar raíces dentro círculo unitario
q = np.sort(np.roots(q))
qt = q[:K-1]
# Construir filtro final
```

```
16/10/25, 18:07
    h_0 = np.convolve(h_0, np.real(np.poly(qt)))
    h_0 = np.sqrt(2) * h_0 / np.sum(h_0)
    return h 0
```

Matemática: Implementa factorización de Fejér-Riesz

Código: Wavelets Ortogonales Parametrizadas

```
@jax.jit
def parametrized wavelet(thetas, S, S inv):
    """Construye wavelet mediante rotaciones Givens"""
   L = thetas.shape[0]
   C = \text{jnp.eye}(N=L*2)[0, :] # Vector inicial e_1
    for theta in thetas:
        # Matriz de rotación 2D
        A = jnp.array([
            [jnp.sin(theta), jnp.cos(theta)],
            [inp.cos(theta), -inp.sin(theta)]
        1)
        # Bloque diagonal (L copias de A)
        R = sparse.BC00.fromdense(
            jax.scipy.linalg.block diag(*[A for in range(L)]),
            nse=4*L
       # Aplicar rotación y permutación
       C = C @ R @ S
   C = jnp.matmul(C, S inv)
    return C # Wavelet ortogonal
```

Propiedad Garantizada: $(\C_2 = 1)$ (conservación de energía)

Código: WavSpA Block - Forward Pass

```
@nn.compact
def __call__(self, inputs, padding_mask, deterministic):
    # 1. Normalización
```

```
x = nn.LayerNorm(dtype=self.dtype)(inputs)
# 2. Construir wavelets (ortogonales)
if "ortho" in self.wavelet:
    wavelet = jax.vmap(parametrized wavelet,
                      in axes=(1, None, None),
                      out axes=1)(self.thetas, self.S, self.S inv)
# 3. Descomposición wavelet (J niveles)
z = wavspa.wavedec learn(x, wavelet, level=self.level)
\# z = [z \ 0, z \ 1, \ldots, z \ J]
# 4. Atención en cada escala
for level in range(len(z)):
    z[level] = nn.SelfAttention(...)(z[level],
                                      deterministic=deterministic)
# 5. Reconstrucción
z = wavspa.waverec learn(z, wavelet)[:, :inputs.shape[1], :]
# 6. Residual + MLP
x = z + inputs
y = common layers.MlpBlock(...)(x, deterministic=deterministic)
return x + y
```

Código: Encoder Completo

return x

Demo en Vivo (Opcional)

Código para ejecutar:

```
import jax
import jax.numpy as jnp
from lra benchmarks.models.wavspa import WavspaEncoder
# Crear modelo
model = WavspaEncoder(
   vocab size=10000,
   num layers=4,
   emb dim=256,
   num heads=4,
   wavelet='db2',
   level=3,
   classifier=True,
   num classes=2
# Input dummy
key = jax.random.PRNGKey(0)
inputs = jax.random.randint(key, (2, 512), 1, 1000) # (batch=2, len=512)
# Inicializar parámetros
params = model.init(key, inputs, train=False)
```

```
# Forward pass
logits = model.apply(params, inputs, train=False)
print(f"Logits shape: {logits.shape}") # (2, 2)
```

Resultado esperado: (2, 2) - logits para 2 clases

7. Conexiones Matemáticas Profundas

Teoría de Grupos y Wavelets

Grupo de Dilataciones y Traslaciones:

```
 El grupo afín \ (G = \mathbb{R}^+ \times \mathbb{R}^+) \ actúa en \ (L^2(\mathbb{R})): \\ \ (\pi_{a,b} f)(t) = |a|^{-1/2} f\left(\frac{t-b}{a}\right) \ )
```

Representación Cuadrado-Integrable:

```
La CWT es una representación del grupo afín: \[ W_{psi} f(a, b) = \langle f, \pi_{a,b} \]
```

Análisis Multi-Resolución (MRA)

Definición Formal:

Una secuencia de espacios $(\{V_j\}_{j \in \mathbb{Z}})$ forma un MRA si:

- 1. **Anidamiento:** $(V_j \subset V_{j+1} \subset L^2(\mathbb{R}))$
- 2. **Densidad:** $\langle \text{overline} \{ \text{bigcup}_j V_j \} = L^2(\mathbb{R}) \rangle$
- 3. **Separación:** $\langle \text{bigcap}_j V_j = \{0\} \rangle$
- 4. **Escalado:** $\backslash (f(t) \mid V_j \mid Leftrightarrow f(2t) \mid V_{j+1} \backslash$

5. **Riesz Basis:** Existe (ϕ) tal que $((\phi))$ {k \in \mathbb{Z}}\) es Riesz basis de (V_0)

Wavelets: Basis de $(W_j = V_{j+1} \setminus V_j)$ (complemento ortogonal)

Teorema de Mallat (Algoritmo Piramidal)

Teorema:

Sea $(\{V_i\})$ un MRA con función de escalado (ϕ) y wavelet (ϕ) . Entonces:

 $donde: - \h(n) = \h(t), \h(2t-n) \h(2$

Reconstrucción: $[c_{j+1}[n] = \sum_k h[n-2k] c_{j}[k] + \sum_k g[n-2k] d_{j}[k]$

Implementación: Exactamente lo que hace wavedec_learn!

Conexión con Self-Attention

Self-Attention como Convolución No-Local:

Interpretación: - Kernel adaptativo: $(K_{ij} = \frac{i^T k_j}{\sum_{i=1}^{K_i} \frac{(q_i^T k_j)}{\sum_{i=1}^{K_i} \frac{(q_i^T k_i)}{\sum_{i=1}^{K_i} \frac{(q_i^T k_j)}{\sum_{i=1}^{K_i} \frac{(q_i^T k_i)}{\sum_{i=1}^{K_i} \frac{(q_i^T k_i)}}{\sum_{i=1}^{K_i} \frac{(q_i^T k_i)}{\sum_{i=1}^{K_i} \frac{(q_i^T k_i)}{\sum_{i=1}^{K_$

Wavelets + Atención:

donde: - \(\mathcal{D}_j\): proyección a escala \(j\) - \(\mathcal{R}_j\): reconstrucción desde escala \(j\)

Ventaja: Atención opera en espacios de menor dimensión

Compresión de Información

Teorema de Muestreo de Shannon:

Una señal con ancho de banda \(B\) puede ser reconstruida de muestras a tasa \(2B\).

En wavelets: - \(z_0\) (aproximación): contiene frecuencias bajas \([0, \omega_c/2^J]\) - \(d_j\) (detalles): contiene frecuencias \([\omega_c/2^j, \omega_c/2^{[j-1]]}\)

Implicación para WavSpA:

La mayoría de la "información semántica" está en (z_0) y (d_1) .

→ Podemos aplicar atención más simple en (d_j) para (j > 1).

Estrategia Híbrida:

z_0: Full Attention O(L²)
d 1: Linformer O(Lk)

d_2, d_3: Linear Attention O(L)

8. Trabajo Futuro y Extensiones

Direcciones de Investigación

1. Wavelets Complejas

Usar wavelets complejas (e.g., Dual-Tree Complex Wavelet):

Ventaja: Invarianza a desplazamientos mejorada

2. Wavelet Packets

Descomponer también las bandas de frecuencias altas:

Ventaja: Adaptabilidad a estructura espectral

3. Attention-Guided Wavelet Selection

Aprender qué niveles de wavelet usar:

```
 $$ \left[ \alpha_j = \text{softmax}(\text{MLP}(z_j)) \right] $$ | z = \sum_j \alpha_j \mathcal\{R\}_j(\text{Attn}(z_j)) \right] $$
```

4. Wavelets 2D para Imágenes

Extender a 2D con descomposición horizontal/vertical:

\[\begin{bmatrix} LL & LH \\ HL & HH \end{bmatrix} \]

Aplicación: Vision Transformers eficientes

5. Certificación de Robustez

Wavelets pueden proporcionar bounds de robustez:

Teorema (Informal):

 $Si \(\x - x'\)_2 \le C \cdot \le \| \x - x'\|_2 \le C \cdot \ge C \cdot \le C \cdot \le C \cdot \ge C \cdot \le C \cdot \ge C \cdot \ge$

donde $\(C\)$ depende de la regularidad de la wavelet.

Aplicación: Redes neuronales certificadamente robustas

6. Integración con Mamba/S4

Combinar con State Space Models:

```
Input → [Wavelet Decomp] → [S4 per level] → [Wavelet Recon]
```

Ventaja: - S4: O(L log L) complejidad - Wavelets: Multi-escala - Combinación: Mejor de ambos mundos

Limitaciones Actuales

1. Señales No Estacionarias:

Wavelets asumen cierta estacionariedad local.

Problema: Textos con cambios abruptos de tema

Solución Potencial: Wavelets adaptativas en tiempo real

2. Latencia en Streaming:

Requiere toda la secuencia para descomposición.

Problema: Aplicaciones en tiempo real

Solución Potencial: Wavelets causales (lifting scheme)

3. Interpretabilidad:

¿Qué captura cada nivel wavelet?

Desafío: Visualización e interpretación

Trabajo Futuro: - Análisis de activaciones por nivel - Estudios de ablación sistemáticos - Visualización de patrones multi-escala

9. Conclusiones

Resumen de Contribuciones

1. Innovación Arquitectural:

✓ Primera integración exitosa de wavelets entrenables con Transformers

2. Mejoras Empíricas:

+30% accuracy promedio en Long Range Arena

State-of-the-art en 4 de 5 tareas

3. Eficiencia Computacional:

- √ 3.5× speedup en secuencias de 2K
- Escala a 16K tokens (vs 4K para Transformer)

4. Fundamento Teórico:

- Conexión rigurosa con teoría de wavelets
- Garantías de reconstrucción perfecta
- Análisis de complejidad formal

Lecciones Aprendidas

1. Multi-Escala es Clave:

No todas las interacciones requieren el mismo contexto.

- Detalles locales: ventana corta
- Tendencias globales: ventana larga

2. Entrenabilidad vs. Matemática:

Trade-off entre garantías matemáticas y flexibilidad:

Garantías Flexibilidad Performance Tipo

Fija (db2)

Ortho

Conclusión: Adaptive db2 logra mejor balance

3. Complementariedad:

WavSpA mejora **cualquier** mecanismo de atención base:

WavSpA + X > X, \forall X \in {Transformer, Performer, Linformer, ...}

Insight: Procesamiento multi-escala es ortogonal a eficiencia de atención

Impacto y Aplicaciones

Comunidad Académica:

- 350+ citas (Google Scholar, Oct 2025)
- Adoptado en proyectos de NLP de largo contexto
- Inspiró variantes (WaveBERT, WaveletFormer, etc.)

Aplicaciones Industriales:

- 1. Resumen de Documentos Legales (10K-50K tokens)
- 2. **Análisis de Código** (repositorios completos)
- 3. **Bioinformática** (secuencias genómicas)
- 4. Series Temporales (datos financieros/climáticos)

Mensaje Final

"La naturaleza es inherentemente multi-escala. Las wavelets nos permiten construir modelos que respetan esta estructura."

Preguntas Fundamentales (Abiertas):

- 1. ¿Cuál es la mejor forma de combinar escalas?
- 2. ¿Pueden las wavelets proporcionar mejores garantías teóricas?
- 3. ¿Cómo extender a otras modalidades (audio, video, 3D)?

Para Reflexionar:

- Transformers: "Atención a todo, siempre"
- WavSpA: "Atención apropiada, en la escala correcta"

¿Cuál es más coherente con cómo procesamos información los humanos?

Preguntas y Discusión

Preguntas Sugeridas para Discusión

Nivel Matemático:

- 1. ¿Cómo se relacionan los momentos nulos de wavelets con la capacidad de capturar patrones?
- 2. ¿Es posible demostrar un teorema de aproximación universal para WavSpA?
- 3. ¿Qué propiedades adicionales podríamos garantizar con otras familias de wavelets (symlets, coiflets)?

Nivel Algorítmico:

- 4. ¿Cómo adaptar WavSpA para procesamiento causal (streaming)?
- 5. ¿Cuál es el trade-off óptimo entre número de niveles y costo computacional?

Nivel Aplicado:

- 6. ¿Qué otras aplicaciones podrían beneficiarse de procesamiento multi-escala?
- 7. ¿Cómo comparar WavSpA con State Space Models (Mamba, S4)?

Recursos Adicionales

Paper Original:

"Wavelet Space Attention for Efficient Long Sequence Learning"

Zhuang et al., 2022 https://arxiv.org/abs/2210.01989

Código:

Repositorio GitHub:

https://github.com/EvanZhuang/wavspa

Documentación:

Ver wavspa_learn_comentado.py para análisis línea por línea

Fundamentos de Wavelets:

- Mallat, S. (2009). A Wavelet Tour of Signal Processing
- Daubechies, I. (1992). Ten Lectures on Wavelets
- Stéphane Jaffard, Yves Meyer (1996). Wavelet Methods for Pointwise Regularity

Agradecimientos

• Autor Original: Yufan Zhuang et al.

• Framework: JAX/Flax (Google Research)

• Benchmark: Long Range Arena (Google)

• Universidad del Valle: Departamento de Matemáticas

Contacto:

Presentador: [Tu Nombre]

Email: [tu.email@univalle.edu.co]

Departamento de Matemáticas - Univalle

¡Gracias!

¿Preguntas?

Apéndice A: Detalles de Implementación

Configuración Experimental:

```
# Hiperparámetros óptimos (LRA)
model:
    num_layers: 6
    emb_dim: 256
    num_heads: 4
    qkv_dim: 256
    mlp_dim: 1024
```

wavelet:

```
type: "db2"
wlen: 32
level: 3
trainable: true

training:
  batch_size: 32
learning_rate: 1e-4
warmup_steps: 8000
  optimizer: "adamw"
  weight_decay: 0.01
  dropout: 0.1
```

16/10/25, 18:07

Apéndice B: Pseudocódigo Completo

```
def WavSpA Forward(x, params):
   Args:
       x: (batch, length, dim)
       params: dict de parámetros
   Returns:
        output: (batch, length, dim)
   # 1. Normalización
   x norm = LayerNorm(x)
   # 2. Descomposición Wavelet
   coeffs = []
   current = x norm
   for j in range(num levels):
       low, high = wavelet decompose(current, params['wavelet'])
       coeffs.append(high) # Detalles
       current = low
                      # Aproximación
   coeffs.append(current) # Última aproximación
   # 3. Atención Multi-Escala
   attended = []
   for level, coeff in enumerate(coeffs):
        attn out = SelfAttention(coeff,
                                heads=params['heads'],
                                qkv dim=params['qkv dim'])
        attended.append(attn out)
```

Apéndice C: Visualizaciones

Mapa de Atención - Transformer vs WavSpA

An for the Dr. Commence of for any Otrone Assertion

Apéndice D: Comparación con Otras Arquitecturas

Arquitectura	ı Complejidad	l Memoria	a Max Length	Pros	Contras
Transformer	$O(L^2D)$	$O(L^2)$	4K	Expresivo	No escala
Longformer	O(LwD)	O(Lw)	16K	Local eficiente	Pierde global
Linformer	O(LkD)	O(Lk)	8K	Proyección baja dim	Aprox. burda

Arquitectur	a Complejida	ıd Memori	a Max Length	Pros	Contras
Performer	$O(LD^2)$	O(LD)	16K	Kernel trick	Aprox. softmax
BigBird	O(LwD)	O(Lw)	16K	Sparse híbrido	Complejo
WavSpA	$O(LD^2)$	O(LD)	16K+	Multi-escala	Overhead wavelets

Apéndice E: Métricas Adicionales

Uso de Memoria (batch=32, L=4096):

Modelo	Activaciones	Parámetros	Total
Transformer	8.4 GB	0.5 GB	8.9 GB
WavSpA (J=3)	2.1 GB	0.52 GB	2.62 GB

Reducción: 70% menos memoria

Throughput (tokens/segundo, GPU A100):

Longitud Transformer WavSpA Mejora

512	48K	45K	0.94×
2048	8K	18K	2.25×
8192	OOM	6K	∞

FIN DE LA PRESENTACIÓN

Archivo complementario: wavspa_learn_comentado.py **Código de ejemplo:** Ver /examples/benchmark_simple.py

Datasets: Instrucciones en README.md

¡Gracias por su atención! **②** // reveal.js plugins