79094422805

Фотон с энергией

Ответ:

Фотон с энергией

1. Фотон с энергией 0,75 МэВ рассеялся на свободном электроне под углом 60 градусов. Кинетическая энергия и импульс электрона до соударения с фотоном малы. Найти кинетическую энергию электрона отдачи.

Ответ дайте в целых кэВ.

Ответ:

Ответ:

Квантовая частица движется(1ая область)

Квантовая частица движется в пространстве с потенциальным барьером в форме ступеньки. Частица имеет энергию $E < U_0$ (см. рисунок). Выберите какой вид будет иметь волновая функция в области $\it I$.

- $\psi(x) = a \exp(ik_1x)$
- $\psi(x) = b \exp\left(-k_1 x\right)$
- $\psi(x) = a \exp(ik_1x) b \exp(-ik_1x)$
- $\psi(x) = a \exp(k_1 x)$
- $\psi(x) = a \exp(k_1 x) + b \exp(-k_1 x)$
- $\psi(x) = a \exp(k_1 x) + b \exp(k_1 x)$
- $\psi(x) = a \exp(k_1 x) b \exp(-k_1 x)$
- $b\exp(-ik_1x)$
- $\psi(x) = a \exp(ik_1x) + b \exp(-ik_1x)$
- $\psi(x) = a \exp(-k_1 x) + b \exp(-k_1 x)$

Квантовая частица движется(1ая область)

Квантовая частица движется в пространстве с потенциальным барьером прямоугольной формы. Частица имеет энергию $E < U_0$ (см. рисунок). Выберите какой вид будет иметь волновая функция в области *I*.

$$\psi(x) = b \exp\left(-k_1 x\right)$$

$$\Psi(x) = a \exp(-ik_1x) + b \exp(-ik_1x)$$

$$\psi(x) = b \exp\left(-ik_1 x\right)$$

$$\psi(x) = a \exp(k_1 x)$$

$$\psi(x) = a \exp(k_1 x) - b \exp(-k_1 x)$$

$$\psi(x) = a \exp(ik_1x) - b \exp(-ik_1x)$$

$$\psi(x) = a \exp(k_1 x) + b \exp(-k_1 x)$$

Квантовая частица движется(2ая область)

Квантовая частица движется в пространстве с потенциальным барьером прямоугольной формы. Частица имеет энергию $E < U_0$ (см. рисунок). Выберите какой вид будет иметь волновая функция в области **II**.

$$I \qquad \qquad I \qquad$$

- $\quad \quad \square \ \, \psi(x) = a \exp\left(k_2 x\right)$
- $\psi(x) = b \exp(-k_2 x)$
- $\psi(x) = a \exp(ik_2x) b \exp(-ik_2x)$
- $\psi(x) = b \exp(-ik_2x)$

- $\psi(x) = a \exp(k_2 x) b \exp(-k_2 x)$
- $\psi(x) = a \exp(k_2 x) + b \exp(-k_2 x)$
- $\psi(x) = a \exp(-ik_2x)$

Ответ:

Квантовая частица движется(2ая область)

Квантовая частица движется в пространстве с потенциальным барьером в форме ступеньки. Частица имеет энергию $E < U_0$ (см. рисунок). Выберите какой вид будет иметь волновая функция в области *II*.

- $\psi(x) = a \exp(k_2 x)$
- $\psi(x) = b \exp\left(-k_2 x\right)$
- $\psi(x) = a \exp(k_2 x) + b \exp(-k_2 x)$
- $\psi(x) = a \exp\left(-ik_2 x\right)$

- $\psi(x) = a \exp(ik_2x) + b \exp(-ik_2x)$
- $\psi(x) = b \exp(-ik_2x)$
- $\psi(x) = a \exp(k_2 x) + b \exp(k_2 x)$

Fredi Kats (#p-gh-stats, projects) @tom_gnill#6420 Там конфликт в ветке. Умеешь фиксить их?

Discord

Квантовая частица(Зья область)

Квантовая частица движется в пространстве с потенциальным барьером прямоугольной формы. Частица имеет энергию $E < U_0$ (см. рисунок). Выберите какой вид будет иметь волновая функция в области III.

$$\begin{array}{c|c}
I & II \\
III & III \\
E < U_s & III \\
0 & X
\end{array}$$

- $\psi(x) = a \exp(-ik_3x)$
- $\quad \quad \square \ \, \psi(x) = a \exp\left(k_3 x\right)$
- $\psi(x) = a \exp(-k_3 x) + b \exp(-k_3 x)$

- $\psi(x) = b \exp(-k_3 x)$
- $\ \ \ \ \psi(x)=a\exp\left(k_3x
 ight)+b\exp\left(k_3x
 ight)$
- $\psi(x) = b \exp\left(-ik_3x\right)$
- $\psi(x) = a \exp(-ik_3x) + b \exp(-ik_3x)$
- $\psi(x) = a \exp(ik_3x) + b \exp(-ik_3x)$

Ответ:

Уравнением Шредингера

Уравнением Шрёдингера для стационарных состояний квантовой частицы является:

- $\hat{H}\psi(\vec{r}) = E\psi(\vec{r})$
- $egin{aligned} & -i\hbar\Delta\psi(ec{r}) + (E-U)\psi(ec{r}) = 0 \end{aligned}$
- $^{\Box}~i\hbar\hat{H}\psi(ec{r})=E\psi(ec{r})$
- $\Delta \psi(ec{r}) + rac{2m}{\hbar^2}(E-U)\psi(ec{r}) = 0$

Ответ:

Уравнением Шредингера для стационарных(в одномерном)

Уравнением Шрёдингера для стационарных состояний квантовой частицы в одномерном случае является:

$$-rac{\hbar}{2m}rac{d^2\psi(x)}{dx^2}+(U-E)\psi(x)=0$$

$$rac{d^2\psi(x)}{dx^2}+rac{2m}{\hbar^2}(E-U)\psi(x)=0$$

$$egin{aligned} rac{d^2\psi(x)}{dx^2} + rac{2m}{\hbar^2}(U-E)\psi(x) = 0 \end{aligned}$$

$$egin{aligned} &-rac{d^2\psi(x)}{dx^2}+rac{2m}{\hbar^2}(E-U)\psi(x)=0 \end{aligned}$$

Ответ:

Оператор кинетической энергии

Оператор кинетической энергии квантовой частицы:

$$\frac{\hbar}{2m}
abla^2$$

$$-\frac{\hbar^2}{2m}\Delta$$

$$-rac{\hbar^2}{2m}\Delta \ -rac{\hbar^2}{2m}
abla^2 \ -rac{\hbar^2}{2m}
abla^2$$

$$-rac{i\hbar}{2m}\Delta$$

Ответ:

Гамильтониан квантовой частицы

Гамильтониан квантовой частицы:

$$rac{i\hbar}{2m}
abla-\hat{U}(ec{r})$$

$$-rac{\hbar^2}{2m}\Delta+\hat{U}(ec{r})$$

$$-rac{\hbar^2}{2m}
abla^2+\hat{U}(ec{r})$$

$$^{\square} \; rac{i\hbar}{2m}
abla + \hat{U}(ec{r})$$

На цезий

На цезий (работа выхода $A_{_B}=1,94$ эВ), посветили светом с $\lambda=400$ нм. Электроны, если вылетают из материала, попадают в однородное магнитное поле с индукцией $B=9\cdot 10^{-4}$ Тл так, что угол к линиям магнитного поля составляет 90 градусов. Рассчитайте максимальный радиус окружности r, по которой будут двигаться электроны?

Ответ округлите до целых миллиметров

Ответ:

На медь

На медь (${
m A_B}=4,36$ эВ), посветили светом с $\lambda=200$ нм. Электроны, если они вылетают из катода, попадают в однородное магнитное поле с индукцией ${
m B}=1\cdot 10^{-4}$ Тл так, что угол к линиям индукции этого поля равен 90 градусов. Рассчитайте максимальный радиус окружности r, по которой будут двигаться электроны?

Ответ округлите до целых миллиметров

Ответ: 46

Ответ:

Фотоны, которые падают

Фотоны, которые падают на катод, вызывают фотоэффект и выбитые электроны ускоряются напряжением $\Delta U=14000$ В и попадают на экран, из-за которого возникают вспышки при попадании каждого электрона. Частота падающего света $u_1=500$ ТГц, а для света, излучаемого экраном, $u_2=1000$ ТГц. Во сколько раз N (целое) увеличивается число фотонов, если один фотоэлектрон появляется при падении на катод в среднем k=7 фотонов? Работу выхода электронов $A_{\rm B}$ можно принять равной 2 эВ. Предположим, что энергия электронов падает на экран переходит в энергию света без потерь.

Ответ: 485

Ответ:

Фотоны, которые падают на катод

Фотоны, которые падают на катод, вызывают фотоэффект и выбитые электроны ускоряются напряжением $\Delta U=14000$ В и попадают на экран, из-за которого возникают вспышки при попадании каждого электрона. Частота падающего света $u_1=500$ ТГц, а для света, излучаемого экраном, $u_2=1000$ ТГц. Во сколько раз N (целое) увеличивается число фотонов, если один фотоэлектрон появляется при падении на катод в среднем k=20 фотонов? Работу выхода электронов $A_{\tt B}$ можно принять равной 2 эВ. Предположим, что энергия электронов падает на экран переходит в энергию света без потерь.

Ответ: 171

Фотоны, которые падают на катод

Фотоны, которые падают на катод, вызывают фотоэффект и выбитые электроны ускоряются напряжением $\Delta U=16000$ В и попадают на экран, из-за которого возникают вспышки при попадании каждого электрона. Частота падающего света $ u_1=375$ ТГц, а для света, излучаемого экраном, $ u_2=750$ ТГц. Во сколько раз N (целое) увеличивается число фотонов, если один фотоэлектрон появляется при падении на катод в среднем $k=12$					
фотонов? Работу выхода электронов $A_{\mathtt{B}}$ можно принять равной 2 эВ. Предположим, что энергия электронов падает на					
экран переходит в энергию света без потерь.					
Ответ: 85					

Ответ:

Какую разность потенциалов

Какую разность потенциалов в вольтах нужно пройти электронному пучку, чтобы после дифракции на двух щелях с расстоянием между ними 200 нм, первые максимумы дифракции оказались на расстоянии 0,5 см, при расстоянии от щели до экрана L=1 м.

(Ответ округлить до целого числа В)

Ответ: 46

Ответ:

Какую разность потенциалов

Какую разность потенциалов в вольтах нужно пройти электронному пучку, чтобы после дифракции на решетке с периодом 1 мкм, первые максимумы дифракции оказались на расстоянии 0,5 см, при расстоянии от щели до экрана L=1 м.

(Ответ округлить до целого числа В)

Ответ:

Какую разность потенциалов

од	кую разность потенциалов в вольтах нужно пройти электронному пучку, чтобы после дифракции на иночной щели шириной 100 нм, первые минимумы дифракции оказались на расстоянии 1 см, при сстоянии от щели до экрана L=1 м.						
(Ответ округлить до целого числа В)							
елей							
От	вет:						

После отражения от кристаллической

После отражения от кристаллической решетки монокристалла никеля с периодом 0.089 нм электронный пучок давал дифракционный максимум при угле скольжения 70 градусов. Определите ускоряющую разность потенциалов для этих условий.

(Ответ округлить до целого числа В)

Ответ:	

Ответ:

Энергия падающего фотона

Энергия падающего фотона в процессе комптоновского рассеяния распределилась одинаково между фотоном и электроном отдачи. Угол рассеяния 90 градусов. Найти импульс рассеянного фотона.
Ответ дайте в СИ, деленый на 10^{-22} с точностью до десятых .
Пример: если ответ $2,56\cdot 10^{-22}$, то ответом будет число 2,6Ответ: 1,4

Ответ:

При каком значении

При каком значении кинетической энергии (W в эВ) длина волны альфа-частицы будет равна 10 пм? (Масса альфа-частицы равна 4*1,67×10⁻²⁷ кг. Ответ округлить до целого числа эВ).

Ответ: 21

Ответ:

При каком значении

При каком значении кинетической энергии (W в $_{^{9}B}$) длина волны для протона будет равна 28.5 пм? (Масса протона равна $1,67\cdot 10^{-27}$. (Ответ округлить до целого числа $_{^{9}B}$).

Ответ:

При каком значении

При каком значении кинетической энергии (W в <i>эВ</i>) длина волны электрона будет равна 205 пм? (Масса электрона равна 9.1×10 ⁻³¹ кг.
Ответ округлить до целого числа эВ).
Ответ: 36
OTBET: 30

Фотон рассеялся

Фотон рассеялся на свободном электроне под углом 90 градусов. Кинетическая энергия и импульс электрона до соударения с фотоном малы. Энергия рассеянного фотона 216 кэВ. Найти кинетическую энергию электрона отдачи. Ответ дайте в целых кэВ. Ответ: 1

Ответ:

Фотон рассеялся

Фотон рассеялся на свободном электроне под углом 90 градусов. Кинетическая энергия и импульс электрона до соударения с фотоном малы. Энергия рассеянного фотона 216 кэВ. Найти энергию фотона до рассеяния.

Ответ дайте в целых кэВ.

374 Ответ:

Ответ:

На конденсаторе появляется заряд

На конденсаторе появляется заряд $q=11\cdot 10^{-9}$ Кл, если некоторый промежуток времени освещать катод светом. лития ${
m A_{ t bbl}NODA}=2.49\,$ эВ. Определите длину волны λ света, освещающего катод, если емкость конденсатора $C=600\,\mathrm{n}$ Ф. Ответ округлите до целых нанометров

Ответ:

5553535

Ответ:

На конденсаторе появляется заряд

На конденсаторе появляется заряд $q=9\cdot 10^{-9}\,$ Кл, если некоторый промежуток времени освещать катод светом. Катод

ниобия ${
m A_{{\scriptscriptstyle BbIXODA}}}=3.99\;$ эВ. Определите длину волны λ света, освещающего катод, если емкость конденсатора $C=600\;$ пФ.

Ответ округлите до целых нанометров

Ответ:

Рентгеновское монохроматическое излучение

Рентгеновское монохроматическое излучение узким пучком направляется на вещество так, что рассеянные под углами 60 и 120 градусов излучения волны имеют длины волн, различающиеся в 1,5 раза. Считая, что рассеяние имеет место на свободных электронах, вычислить длину волны падающего излучения.
Ответ дайте в пм с точностью до десятых.

Ответ: 3.6

Ответ:

При какой скорости

При какой скорости электроны будут иметь энергию, равную энергии фотонов с длиной волны 209 нм (Масса электрона равна 9.1×10^{-31} кг. Ответ округлить до целого числа км/с).

Ответ: 1404

Ответ:

Для эффекта Комптона

Для эффекта Комптона вычислить энергию электрона при отражении рассеянного фотона (длина волны 100 пм) на угол 180 градусов.

Ответ дайте в виде целого числа эВ.

Ответ: 574,4