

PERFORMANCE AND EVALUATION

- Performance depends on :
 - the type of task:
 - Ex: target identification, polarity classification
 - the number and type of classes
 - positive vs. negative
 - multi-class
 - fear vs. anger more subtle than fear vs. joy
 - the train/test corpus (diversity of data)

PERFORMANCE AND EVALUATION

- Provide comparison of Human vs. system performance
- See evaluation campaings :
 - Semeval : series of evaluations of computational semantic analysis systems including sentiment analysis tasks

- Accuracy
- Recall
- Precision
- FI-score
- AUC-ROC
- Mean Square Error
- RandIndex

ACCURACY

Predicted class Actual class	Positif	Négatif
Positif	TP	FN
Négatif	FP	TN

Accuracy : percentage of correctly predicted instances

$$ACC = \frac{TP + TN}{P + N} = \frac{TP + TN}{TP + TN + FP + FN}$$

=> Not appropriate for imbalanced data sets

- Recall for class c
 - how many documents of class c in the test dataset have been correctly predicted as class c?
 - R = (number of system's correct assignments to class c) / (number of documents labelled c)
 - R = TP/(TP+FN)
 - A system that tends to infrequently assign class c (high system silence for class c) will have a low recall
 - Also called sensitivity of the model or detection rate

- Precision for each class
 - how many documents predicted as class c correspond to correct predictions?
 - P = (number of system's correct assignments to class c) / (number of system's assignments to class c)
 - P = TP/(TP+FP)
 - A system that tends to allocate class c too frequently (system noise is high for class c) will have a low precision

- F-score for each class
 - F-score: harmonic mean between recall and precision = $2\times(P\times R)$ / (P+R)
- Multiclass: average over the classes
 - => macro-FI : harmonic mean between average precision and average recall obtained on each class : gives equal importance to each observation
 - => micro-FI: harmonic mean between micro-recall and micro-precision
 - Micro-precision and micro-recall use all the correctly predicted instances in a multiclass case : gives each class equal importance.

$$\frac{TP1+TP2}{TP1+TP2+FP1+FP2} \qquad \frac{TP1+TP2}{TP1+TP2+FN1+FN2}$$

AUC - AREA UNDER THE CURVE

- Area Under the ROC (Receiver Operating Characteristic) Curve
 - ROC : TPR_s = f(FPR_s) for different classification threshold s
 - TPR True positive ratio = recall (ratio of documents of class c in the test dataset that have been correctly predicted as class c)
 - FPR False positive ratio = FP/(FP+TN) (ratio of documents not in class c in the test set that have been wrongly predicted as class c)
- A metric for measuring the quality of a model independently from the used classification threshold.
 - The higher the AUC, the better

EVALUATION METRICS FOR REGRESSION

- Mean square error:
 - Can be used to measure the divergence between the predicted sentiment labels and actual sentiment labels (sentiment classif. viewed as a regression task)
 - Can be used as a loss for the training

$$ext{MSE} = rac{1}{n} \sum_{i=1}^n (Y_i - \hat{Y_i})^2$$

MSE = mean squared error

n = number of data points

 Y_i = observed values

 \hat{Y}_i = predicted values

EVALUATING CLUSTERING

- RandIndex: a sort of percentage of agreement between the clustering and a ground truth partition.
- the proportion of pairs of elements that are jointly grouped or jointly separated.

EXAMPLE OF PERFORMANCE FOR ABSA

CAN: Constrained Attention Network (RNN)

COMPARISON STUDY FOR THE SEMEVAL 2014 DATA SET ON THE RESTAURANT DOMAIN

Method	Accuracy	Macro-F1	Method	Accuracy	Macro-F1
CNN	77.95%	IMN: Interactive	AF-LSTM [48]	75.40%	
PF-CNN [33]	79.20%	Multi-Task Learning	PRET+MULT [49]	79.11%	69.73%
PG-CNN [33]	78.93%	Network (CNN)	Inter-aspect dependencies [50]	79.00%	
GCAE [34]	77.28%		LSTM+SynATT+TarRep [51]	80.63%	71.32%
TNet-LF [36]	80.79%	70.84%	Soft label strategy [52]	80.98%	71.52%
TNet-AS [36]	80.69%	71.27%	CAN [53]	83.33%	73.23%
IMN [37]	83.89%	75.66%	ATLS [54]	82.86%	
TD-LSTM [40]	75.60%		AdaRNN [55]	60.42%	
AE-LSTM [43]	76.60%	66.45%	PhraseRNN [56]	66.20%	62.21%
AT-LSTM [43]	76.20%		MemNet [58]	80.95%	
ATAE-LSTM [43]	77.20%	65.41%	Tensor DyMemNN [59]		58.61%
BILSTM-ATT-G [44]	79.73%	69.25%	Holo DyMemNN [59]		58.82%
IAN [45]	78.60%		RAM [61]	80.23%	70.80%
MGAN [46]	81.25%	71.94%	Cabse [64]	80.89%	
AOA-LSTM [47]	81.20%		CMA-MemNet	81.26%	68.64%
			FCMN [65]	82.03%	

Liu, Haoyue, et al. "Aspect-Based Sentiment Analysis: A Survey of Deep Learning Methods." *IEEE Transactions on Computational Social Systems* 7.6 (2020): 1358-1375.

PERFORMANCE COMPARISON

- RNN models seem to perform better than CNN
- But execution and training time is higher than CNN for LSTM and its variants.
- See SOA: Sentiment analysis using deep learning architectures: a review

TO GO FURTHER

- The Curse of Performance Instability in Analysis Datasets: Consequences, Source, and Suggestions <u>Xiang Zhou, Yixin Nie</u>, <u>Hao Tan</u>, <u>Mohit Bansal</u>
- Reliable characterizations of NLP systems as a social responsibility, talk by Christopher Potts at ACL 2021 http://web.stanford.edu/~cgpotts/talks/potts-acl2021-slides-handout.pdf
 - Important question: "is there anything about the composition of the dataset that might impact future uses"