

A Puzzle of Triangle

Can you solve the challenging problem?

LI GUANYU

Mathematics and Applied Mathematics

01

Construction

Triangles and quadrangle

02

Invariant

To count the number

CONTENTS

03

Proof

Green's theorem

04

Analogies

What is a space?

The Construction

Where do we start?

Triangles

Parallelogram

Rule of Gluing

Blue side can just be glued with another blue side, and so are the red sides.

Examples

Use these pieces of graphs to form a larger regular triangle.

The Invariant

Counting

The number of red/blue pieces of each side of the larger triangle

Conclusion

SUM

The sum of numbers of blue and red pieces of each side equals.

The number of blue pieces of each side equals.

Blue

The Proof

A simple try

What causes the difficulties

How can we eliminate the barriers

The Core

The quadrangle makes the color changes.

Discussing the situations of quadrangle

From "local" to "global"

MAYBE we need something else to determine the color

Vectors

■ Suppose we can attach a unit vector pointing out for each blue side.

Use better description

Observation

■ All the small pieces have the sum of vectors 0 and the sum remains after gluing.

Translate the rule of gluing

01

The color can be regarded as another mathematical objects.

02

The shapes and rules can be translated as equations.

03

The sum remains, so is the invariant.

The Analogy

Analogy

Counter- example?

Cut off part of the triangle

Is there any similarity of this proof?

Counterexample

Why the statement fails to explain this regular triangle?

Cut off

How about we erase part of the triangle?

Emmmmm

Analogy of the proof? Construct the complement?

THANKS