MATH2111 Tutorial 10

T1A&T1B QUAN Xueyang T1C&T2A SHEN Yinan T2B&T2C ZHANG Fa

1 Eigenvectors and Eigenvalues

- 1. **Definition**. An **eigenvector** of an $n \times n$ matrix A is a **nonzero** vector \mathbf{x} such that $A\mathbf{x} = \lambda \mathbf{x}$ for some scalar λ . A scalar λ is called an **eigenvalue** of A if there is a nontrivial solution \mathbf{x} of $A\mathbf{x} = \lambda \mathbf{x}$; such an \mathbf{x} is called an eigenvector corresponding to λ .
- 2. **Theorem**. The eigenvalues of a triangular matrix are the entries on its main diagonal.
- 3. **Theorem**. If $\mathbf{v}_1, \dots, \mathbf{v}_r$ are eigenvectors that correspond to distinct eigenvalues $\lambda_1, \dots, \lambda_r$ of an $n \times n$ matrix A, then the set $\{\mathbf{v}_1, \dots, \mathbf{v}_r\}$ is linearly independent.
- 4. **Definition**. The **eigenspace** of A corresponding to the eigenvalue λ (or the λ -eigenspace of A, sometimes written $E_{\lambda}(A)$) is the solution set to $(A \lambda I)\mathbf{x} = \mathbf{0}$.
- 5. **Theorem**. Eigenspaces are subspaces. (Because λ -eigenspace of A is the null space of $A \lambda I$)

2 The Characteristic Equation

1. **Theorem**. A scalar λ is an eigenvalue of an $n \times n$ matrix A if and only if λ satisfies the characteristic equation of A

$$\det(A - \lambda I) = 0$$

- 2. **Definition**. The (algebraic) multiplicity of an eigenvalue λ_k is its multiplicity as a root of the characteristic equation, i.e. it is the number of times the linear factor $(\lambda \lambda_k)$ occurs in $\det(A \lambda I)$.
- 3. **Definition**. The **geometric multiplicity** of an eigenvalue λ_k is the number of linearly independent eigenvectors associated with it. That is, it is the dimension of the null space of $A \lambda_k I$.
- 4. **Theorem** (**The Invertible Matrix Theorem**). Let A be an $n \times n$ matrix. Then A is invertible if and only if:
 - (a) The number 0 is not an eigenvalue of A.
 - (b) The determinant of A is not zero.

- 5. **Definition**. If A and B are $n \times n$ matrices, then A and B are similar if there is an invertible matrix P such that $P^{-1}AP = B$, or, equivalently, $A = PBP^{-1}$.
- 6. **Theorem**. If $n \times n$ matrices A and B are similar, then they have the same characteristic polynomial and hence the same eigenvalues (with the same multiplicities).

7. Procedures to find the Eigenvalues and Eigenvectors of A

- (a) Solve the characteristic equation $det(A \lambda I) = 0$, the solutions are the eigenvalue(s) of A with the corresponding multiplicity(ies).
- (b) For each of the eigenvalue(s) found in (a), find the basis of the solution space of $(A \lambda I)\mathbf{v} = \mathbf{0}$, these are the corresponding eigenvector(s).

Exercises 3

- 1. Let λ be an eigenvalue of A. Find an eigenvalue of the following matrices.
- (1) A^2
- (2) $A^3 + A^2$ (3) $A^3 + 2I$
- (4) If A is invertible, A^{-1}
- (5) If $p(t) = c_0 + c_1 t + c_2 t^2 + \dots + c_n t^n$, define p(A) to be the matrix formed by replacing each power of t in p(t) by the corresponding power of A (with $A^0 = I$). That is,

$$p(A) = c_0 I + c_1 A + c_2 A^2 + \dots + c_n A^n.$$

2. Let

$$A = \begin{bmatrix} -1 & 4 & 6 \\ -3 & 7 & 9 \\ 1 & -2 & -2 \end{bmatrix}$$

Determine whether the following vectors are eigenvectors of A.

$$(1)\begin{bmatrix} 1\\2\\-1\end{bmatrix}$$

$$(2)\begin{bmatrix} 2\\3\\-1\end{bmatrix}$$

$$\begin{bmatrix} 1\\1\end{bmatrix}\begin{bmatrix} 2\\2\end{bmatrix}$$

3. For the given matrix A and the given eigenvalue λ , find the corresponding collection of eigenvectors.

$$A = \begin{bmatrix} 5 & 9 & 7 \\ 4 & 10 & 7 \\ -8 & -18 & -13 \end{bmatrix}, \ \lambda = 1$$

4. Suppose that λ and ρ are two different eigenvalues of the square matrix A . Prove that the intersection of the eigenspaces for these two eigenvalues is trivial. That is, $\mathcal{E}_A(\lambda) \cap \mathcal{E}_A(\rho) = \{0\}$		

- 5. Find the eigenvalues eigenvalues, eigenspaces, algebraic and geometric multiplicities of the following matrices.
- matrices. (1) $A = \begin{bmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \end{bmatrix}$ (2) $A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$