KOSHA GUIDE W - 8 - 2021

화학물질의 급성흡입독성시험 기술지침

2021. 10.

한국산업안전보건공단

안전보건기술지침의 개요

○ 작성자 : 한국산업안전보건공단 산업안전보건연구원 이성배

○ 개정자 : 한국산업안전보건공단 산업안전보건연구원 김용순

○ 개정자 : 한국산업안전보건공단 산업안전보건연구원 조은상

○ 개정자 : 한국산업안전보건공단 산업안전보건연구원 조중래

○ 제·개정 경과

- 2011년 11월 산업위생분야 제정위원회 심의(제정)
- 2015년 5월 산업독성분야 제정위원회 심의(개정, 법규개정조항 반영)
- 2016년 10월 산업독성분야 제정위원회 심의(개정, 법규개정조항 반영)
- 2021년 09월 산업독성분야 기준제정위원회 심의(개정)

○ 관련규격 및 자료

- OECD Guidelines 403 for the testing of chemicals (Acute inhalation toxicity)
- 산업안전보건연구원 화학물질안전보건센터 급성흡입독성 표준작업지침서 (SOP: Standard Operating Procedures)중 INH/001~006항목
- 관련법규·규칙·고시 등
- 산업안전보건법 제105조(유해인자의 유해성·위험성 평가 및 관리), 제 108조(신규화학물질의 유해성·위험성 조사)
- 산업안전보건법 시행규칙 제141조(유해인자의 분류기준), 제143조(유해인자의 관리 등)
- 고용노동부 예규 제166호(화학물질 의 유해성·위험성 평가에 관한 규정)
- 국립환경과학원 고시 제2020-46호(화학물질의 시험방법에 관한 규정)
- 고용노동부 고시 제2020-30호(화학물질의 분류·표시 및 물질안전보건자료에 관한 기준)

○ 기술지침의 적용 및 문의

- 이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈페이지 (www.kosha.or.kr)의 안전보건기술지침 소관분야별 문의처 안내를 참고하시 기 바랍니다.
- 동 지침 내에서 인용된 관련규격 및 자료, 법규 등에 관하여 최근 개정본 이 있을 경우에는 해당 개정본의 내용을 참고하시기 바랍니다.

공표일자 : 2021년 10월

제 정 자 : 한국산업안전보건공단 이사장

화학물질의 급성흡입독성시험 기술지침

1. 목 적

이 시험지침은 근로자의 건강보호를 위하여 국립환경과학원 고시 제2020-46호(화학물질의 시험방법에 관한 규정) 별표 제5장(건강영향 시험분야) 제2항(급성흡입독성시험) 방법으로 흡입경로로 흡입 가능한 물질(가스, 휘발성 물질 또는 입자상물질)의 단기간 노출에 의해서 나타날 수 있는 건강장해를 평가하는데 그 목적이었다. 이 시험지침으로 얻은 결과는 시험 물질의 분류와 표시를 위한 기초자료로이용되고 아급성흡입독성과 기타 독성을 행하는 경우 용량을 설정하는데 이용될수 있다.

2. 적용범위

이 시험지침은 국립환경과학원 고시 제2020-46호(화학물질의 시험방법에 관한 규정) 별표 제5장(건강영향 시험분야) 제2항 급성 흡입독성시험 항목에 대한 시험법으로 적용한다.

3. 용어의 정의

- (1) 이 지침에서 사용되는 용어의 정의는 다음과 같다.
 - (가) "급성흡입독성"이라 함은 흡입 가능한 물질을 단기간(24시간이내)에 1회 흡입노출 시켰을 때 시험 물질에 의해 나타나는 악영향(Adverse effects)을 말한다.
 - (나) "LC₅₀ (Median lethal concentration)"이라 함은 시험물질에 노출 후 일정시 간 또는 노출 중에 시험동물의 반수를 사망시킬 수 있는 물질의 농도를 말 한다. LC₅₀의 단위는 증기(Vapor) 및 분진(Dust)/연무(Mist)일 경우 공기의 표준부피당 시험물질의 무게(mg/ℓ)로 가스일 경우 ppm으로 표시한다.

W - 8 - 2021

- (다) "빈사 상태(Moribund state)"라 함은 시험물질의 독성에 의하여 시험동물이 죽어가는 상태 또는 생존할 가망이 없는 상태를 말한다.
- (라) "GHS(Globally Harmonized Classification System for Chemical Substances and Mixtures)"이라 함은 국제적으로 조화된 화학물질의 분류 시스템을 말한다.
- (마) "GLP(Good Laboratory Practice: 우수실험실 운영기준)"라 함은 시험기 관에서 행해지는 시험이 계획, 실행, 점검, 기록, 보고되는 과정 및 그 조 건들과 관련된 총체적 사항을 규정하는 것을 말한다.
- (바) "운영책임자"란 시험기관의 전반적인 조직운영에 관한 권한과 책임을 가 진 자를 말한다.
- (사) "시험책임자"란 운영책임자로부터 해당시험에 관한 전반적 책임을 위임 받은 자로 해당시험의 계획, 시행, 보고서 작성 등 시험전반을 책임지는 자를 말한다.
- (아) "시험담당자"란 해당시험의 일부분을 수행하는 자로서 시험계획서에 의하여 시험 책임자로부터 위임된 업무를 수행하는 자를 말한다.
- (자) "동물관리책임자"란 동물실험윤리위원회 실무, 동물의 도입, 순화, 관리, 폐기 등 시험에 관련된 동물관리 일체에 대하여 책임지는 자를 말한다.
- (차) "주령"이란 실험동물의 모체로부터 태어난 날을 기준으로 하여 1주일이 경과되는 날을 1주령이라 한다.
- (카) "순화"란 실험동물은 사육환경 변화시 생체에도 영향을 받으므로 동물의 이동이나 환경조건 변화시 해당 시험장소에서 충분히 적응되어 안정을 찾을 수 있도록 하는 것을 말한다.
- (파) "SPF(Specific Pathogen Free: 특정병원체 부재동물)란 특별히 지정된 미생물과 기생충을 함유하지 않는 동물로 일반적으로 질병을 일으킬 수 있는 병원성 미생물을 함유하지 않는 동물을 말한다.

W - 8 - 2021

- (하) "진전"이라 함은 고정된 상태에 있을 때 몸의 한 부분이 일정한 간격으로 움직이는 현상을 말한다.
- (2) 기타 이 지침에서 사용하는 용어의 정의는 이 지침에서 특별한 규정이 있는 경우를 제외하고는 '국립환경과학원 고시 제2020-46호(화학물질의 시험방법에 관한 규정)'에서 정하는 바에 의한다.

4. 시험계획서 작성

4.1 목적

급성흡입독성 시험을 실시하기 위하여 시험계획서를 작성한다.

4.2 시험계획서 작성 시기

- (1) 시험책임자는 운영책임자로부터 시험책임자로 지정되면 시험물질의 조제 등에 관한 자료를 확보하고 시험계획서를 작성한다.
- (2) 시험책임자는 시험계획서가 운영책임자에 의하여 승인되면, 실험동물윤리위원회 심의 및 동물구입 신청이 원활히 이루어 질 수 있도록 한다.

4.3 시험계획서 작성방법

시험계획서에는 표지 및 시험개요, 시험세부계획이 포함되도록 한다.

(1) 표지 및 시험개요

표지 및 시험개요에는 시험번호, 시험명, 작성일, 시험일정, 의뢰기관, 시험기관명, 그리고 각 시험부문별 확인 및 승인사항이 나타나도록 한다.

(2) 시험세부계획

KOSHA GUIDE W - 8 - 2021

시험세부계획은 아래 <표1> 내용이 포함되도록 한다.

<표 1> 시험세부 계획 내용

순 서	내 용			
1	시험목적			
2	적용된 시험방법 (가능할 경우 OECD 가이드라인 지정)			
3	사용된 시험계			
4	동물사육조건 (사료 및 음용수 포함)			
5	시험물질 및 대조물질			
6	노출방법			
7	시험군			
8	시험실시 예정			
9	시험항목			
10	통계처리			
11	보관자료 및 신뢰성 보증			
12	참고문헌			
13	첨부자료			

5. 독성시험 수행

시험책임자는 작성된 시험계획서에 따라 우수실험실 운영기준(Good Laboratory Practice; GLP) 시설 내에서 다음과 같이 독성시험을 수행한다.

5.1 시험의 준비

5.1.1 예비사항

- (1) 건강하게 성숙한 동물을 시험 전 5일 이상 시험환경에 순화시킨 후 시험시 작 전에 동물을 무작위로 나눈다.
- (2) 공기 중에 적당한 시험물질 농도를 조정하기 위하여 필요한 경우 적당한 용매를 가해도 좋다.

W - 8 - 2021

5.1.2 장 치

- (1) 19%이상 산소농도와 균일하게 분포되는 노출환경을 확보하며 시간당 12~ 15회의 환기가 유지되도록 고안된 적절한 흡입장치에서 시험한다.
- (2) 흡입 시험 장치는 코 전용(Nose only) 또는 전신(Whole body) 노출 챔버가 있으며 목적에 따라 선택한다. 일반적으로 코 전용이 기본 모드이나 전신노 출 챔버를 사용하면 더 좋은 연구를 얻을 수 있다.
- (3) 챔버내는 약간의 음압으로 유지시켜 시험물질이 바깥쪽으로 누출되는 것을 방지한다.
- (4) 챔버를 사용하는 경우는 시험동물의 밀집을 최소한으로 하되, 시험물질의 노출이 최대한으로 되도록 고려한다.
- (5) 챔버내 환경의 안정성을 확실하게 하는 일반적인 방법으로 사용동물의 총용적을 챔버용적의 5% 이내로 해야 챔버내 농도를 안정적으로 유지할 수있다.
- (6) 다른 방법으로서 입·피부노출, 두부노출, 전신개별 챔버노출법 등을 사용할 수가 있다.
- (7) 적절한 농도분석 모니터링 장치를 부착시킨 흡입장치를 사용한다.
- (8) 장치내 전체의 조건이 동일하게 유지되도록 공기의 유량을 조정할 수 있어야 한다.

5.1.3 동물입수 준비

- (1) 시험책임자는 동물관리책임자와 협의하여 사용할 동물실을 결정한다.
- (2) 동물관리책임자는 사용할 동물실의 환경, 청소 소독, 설비를 점검하고 이상 이 없도록 준비한다.

W - 8 - 2021

- (3) 사용할 기자재가 완전히 갖추어 진 것을 확인한다. 개체식별카드는 미리 작성하여 사육상자 전면에 부착한다.
- (4) 동물실 사용기록지를 작성하여 사용할 동물실의 전면에 부착한다.

5.1.4 시험동물

- (1) 동물을 사용하는 시험 책임자는 동물관리실에 시험번호, 시험물질, 동물종 (계통), 주령, 동물수, 도입시 동물체중 공급업자 등을 기입하여 동물구입을 신청한다.
- (2) 시험동물은 각종 독성시험에서 약물반응 및 자연발생 병변 등 기초 자료가 풍부한 특정병원체 부재(Specific Pathogen Free; SPF) 동물을 사용한다.
- (3) 시험책임자는 시험계획을 세우고 실험동물관리위원회의 심의를 거친 후 실험에 사용할 동물수를 정한다.
- (4) 노출 당일에 동물은 8주에서 12주 사이의 나이인 청장년기, 체중은 노출하 기전의 같은 나이의 동물로 각 성별에 따른 체중의 ±20%이내의 것을 사용 한다.
- (5) 암컷은 출산의 경험이 없거나 임신하지 않은 동물을 사용한다.
- (6) 동물은 새로운 환경으로 야기되는 스트레스를 줄이기 위하여 시험 시작하기 전 최소한 5일 이상 동물실험실 또는 챔버내에서 순화 시킨다. 코 전용시험을 할 경우는 구속튜브에 익숙해지도록 장치 적응작업을 수행한다.
- (7) 순화 후 건강한 동물 중에서 무작위로 선정하여 군분리 한다.

5.1.5 사육조건

- (1) 시험동물실의 온도는 22±3℃, 상대습도는 30~70%를 유지되도록 한다.
- (2) 조명은 매 12시간 간격으로 점멸한다.

W - 8 - 2021

- (3) 사료는 일반적으로 널리 쓰는 것을 사용하며 음용수는 자유로이 섭취 가능하도록 한다.
- (4) 동물은 성별 군으로 사육해야 하며, 케이지당 동물수는 개개의 동물을 충분 히 관찰할 수 있는 범위로 한다.

5.1.6 시험물질

- (1) 사용할 시험물질의 물리적 성상은 가스, 증기, 연무 또는 분진 형태이며 물질에 따라 맞는 발생기(유기용제의 경우 유기용제 발생장치, 연무는 연무발생장치, 그리고 분진의 경우는 분진발생장치 등)를 선택하여 사용한다.
- (2) 부식 또는 심한 통증 또는 고통을 일으킬 것으로 예상되는 농도의 시험은 실시하지 않으며, 특별한 목적이 있을 경우 동물실험윤리위원회의 심의를 거쳐 수행할 수 있다.
- (3) 흡입시험은 자료의 단위가 물질의 성상에 따라 다르기 때문에 주의가 필요한데, 시험환경이 거의 기체에 가까운 증기를 포함한 가스인 경우에는 기체 (ppm), 액체이면서 비점이 비교적 낮은 물질은 증기(mg/l), 기타 물질은 분진 및 연무 mg/l)의 수치를 이용하여 분류한다.
 - ☞ ppm 단위와 mg/ℓ 단위의 환산 (1기압, 25℃)

 $(ppm) = [(mg/L) \times 24.45 \times 10^{3}] / 분자량$ $(mg/\ell) = [(ppm) \times 분자량 \times 10^{-3}] / 24.45$

(4) 가스 또는 증기

- (가) 노출하는 시험물질의 농도는 가스크로마토그래피로 측정한다.
- (나) 챔버내 농도는 자동으로 실시간 농도측정이 가능한 시스템을 구축하여야 한다. 노출시간 동안 호흡기 영역 내에서 최소 3회 포집을 하여 노출하는 농도를 분석한다.

W - 8 - 2021

- (다) 가스와 증기 농도는 ±10%이내 이어야 한다.
- (5) 연무 또는 분진
- (가) 입자의 크기 조정은 모든 에어로졸 및 에어로졸 형태로 응축한 증기로 수행한다.
- (나) 에어로졸의 입자 크기 분포는 공기 역학적 입자 크기측정계기 같은 엔더 슨 샘플러(Anderson sampler), 캐스케이드 임팩터(Cascade impactor) 또 는 다른 계기를 사용하여 4시간 노출시 최소 두 번 측정한다.
- (다) 위의 계기와 같은 결과를 얻을 수 있다면, 다른 계기도 사용할 수 있다. 중량 필터 또는 임핀저(Impinger)/가스 버블러(Gas bubbler)와 같은 2차 장치는 1차 계기의 수집 효율을 확인하기 위하여 1차 계기와 병행하여 사용한다.
- (라) 입자 크기 분석에 의해 얻어진 질량 농도는 필터를 분석하여 얻어진 질량 농도는 ±20%이내에 있어야 한다.
- (마) 호흡기의 주변 지역의 노출에 대한 허용하려면 에어로졸은 질량 평균 공기 역학적 직경 (Mass Median Aerodynamic Diameter; MMAD)은 1~4 μ m범위이고 기하 표준편차는 $1.5\sim3.0$ 의 범위이어야 한다.
- (바) 노출되는 실제 농도는 흡입 챔버에 있는 동물들의 호흡 영역에서 측정한 농도이다. 특정 방법(직접 샘플링, 흡착 또는 화학적 반응 방법 및 그 이후의 분석 특성화 등) 또는 중량 필터 분석과 같은 방법으로 농도를 측정한다.
- (사) 중량 분석은 단일 성분 분진 또는 연무 에어로졸의 경우에 가능하다.
- (아) 다중 성분 분진 에어로졸 농도도 중량 분석에 의해 결정될 수 있다. 그러나 공기 중 시료의 조성이 시작 물질과 다른 조성이 되어 버리면 사용할수 없다.

W - 8 - 2021

(자) 분진 또는 연무 에어로졸의 편차는 ±20%를 유지하여야 한다.

5.1.7 챔버내 기류

- (1) 시험담당자는 챔버를 통하는 공기의 흐름은 지속적으로 감시한다. 노출을 하는 동안 챔버내 유량은 최소한 매시간 마다 기록한다.
- (2) 코 전용 챔버의 노출 시스템을 통하여 흐르는 시험물질이 역으로 흘러 재호흡되지 않도록 한다.
- (3) 산소 농도는 최소 19%이어야 하고 이산화탄소 농도는 1%를 넘지 않도록 한다. 만약 이 경우에 산소와 이산화탄소 농도를 측정할 수 없다면 믿을만 한 기준(시간당 환기량 횟수 12회 이상)이 있어야한다.
- (4) 코 전용과 전신노출 챔버내의 온도는 22±3℃로 유지한다.
- (5) 동물 호흡 영역에서 상대 습도를 모니터링하고 노출되는 4시간동안 적어도 세 번은 측정되어야 한다. 상대 습도는 30~70%의 범위에서 유지되어야하 지만 물이 포함된 미스트 시험의 경우는 예외로 한다.

5.2 시험 방법

5.2.1 워리

- (1) 몇 개의 군으로 나눈 시험동물에 1군 1농도로 시험 물질을 일정기간 노출 하는데, 이때 노출환경 중에서 적절하게 농도를 유지하기 위하여 용매를 사 용하는 경우에는 용매 노출군을 설정한다.
- (2) 시험담당자는 그 후에 여러 가지 시험물질에 의한 영향 및 사망에 대한 관찰을 한다.
- (3) 시험 중에 사망한 동물은 부검하고 시험 종료시까지 생존한 동물은 도살하여 부검한다.

W - 8 - 2021

5.2.2 시험물질투여

- (1) 시험담당자는 노출 직전에 시험동물의 체중을 측정하고, 지정한 장치에서 시험농도로 4시간 노출한다.
- (2) 시험온도는 22±3℃로 유지해야 하고, 상대습도는 30~70%로 한다. 에어로 졸 시험의 경우에는 예외로 한다.
- (3) 노출 중에는 먹이를 주지 않으며, 음용수는 24시간 자유 급수가 가능하도록 하나 코 전용 시험의 경우는 예외로 한다.

5.2.3 한계 시험

- (1) 한계시험은 해당 시험물질 또는 시험물질과 유사한 특성을 지닌 물질의 독성이 비교적 낮거나 무독성으로 예상되는 경우 수행한다.
- (2) 한계시험은 한 가지 농도로 수행하며, 가스의 경우 20,000 ppm, 증기의 경우 20 mg/ℓ, 분진 또는 미스트의 경우 5 mg/ℓ에서 4시간 노출한다.
- (3) 시험물질의 투여는 암·수 6마리를 대상으로 하며 각각 3마리씩 2단계로 나눠서 수행한다.
- (가) 1단계에서 투여한 3마리에서 관찰되는 사망(또는 빈사상태) 정도에 따라 다음 단계로 넘어간다.
- (나) 사망(또는 빈사상태) 개체수가 0~1마리의 경우는 2단계에서 3마리에 대하여 동일 농도로 재차 투여하며, 이때 전체 6마리 중 사망(또는 빈사상태) 동물이 발생하지 않을 경우 미분류(Unclassified) 등급으로 분류하며, 1~2마리가 사망(또는 빈사상태)할 경우 시험물질을 GHS 구분 (Category) 4 등급으로 분류한다(표 2참조).
- (다) 다른 한편으로 1단계와 2단계에서 사망(또는 빈사상태) 개체수가 3마리이 상 발생하는 경우, 이보다 저농도에서 본시험을 수행한다.

W - 8 - 2021

- (4) 만약 시험물질의 물리적·화학적 성상 때문에 위의 농도노출이 불가능한 경우에는 얻어낼 수 있는 최고농도로 시험한다.
- (5) 시험물질로 인한 사망이 발생하지 않을 경우에는 본시험을 수행하지 않는다.

5.2.4 본시험

(1) 한계농도 이하에서 화학물질의 분류, 표시 및 물질안전보건자료에 관한 기준, 그리고 GHS분류기준에 근거한 아래 <표 2>의 농도로 노출한다.

<표 2> 화학물질의 분류, 표시 및 물질안전보건자료에 관한 기준

성상	구분 1	구분 2	구분 3	구분 4
가스 (ppm V)	ATE≤100	100 <ate≤500< td=""><td>500<ate 2500<="" \le="" td=""><td>2500<ate 20000<="" <="" td=""></ate></td></ate></td></ate≤500<>	500 <ate 2500<="" \le="" td=""><td>2500<ate 20000<="" <="" td=""></ate></td></ate>	2500 <ate 20000<="" <="" td=""></ate>
증기 (mg/l)	ATE≤0.5	0.5 <ate 2.0<="" \le="" td=""><td>2.0<ate 10<="" \le="" td=""><td>10.0<ate 20.0<="" \le="" td=""></ate></td></ate></td></ate>	2.0 <ate 10<="" \le="" td=""><td>10.0<ate 20.0<="" \le="" td=""></ate></td></ate>	10.0 <ate 20.0<="" \le="" td=""></ate>
분진/미스트 (mg/l)	ATE≤0.05	0.05 <ate 0.5<="" <="" td=""><td>0.5<ate 1.0<="" \le="" td=""><td>1.0<ate≤5.0< td=""></ate≤5.0<></td></ate></td></ate>	0.5 <ate 1.0<="" \le="" td=""><td>1.0<ate≤5.0< td=""></ate≤5.0<></td></ate>	1.0 <ate≤5.0< td=""></ate≤5.0<>

- st ATE : 급성흡입독성 추정치. LC_{50} 또는 추정값
- (2) 각 시험용량에 대해 암·수 5마리씩을 시험동물로 사용한다.
- (3) 시험 시작은 상기 표에 제시된 용량 가운데서 독성 증상(사망 또는 빈사상 태)이 나타날 것으로 예측되는 용량 하나를 선택하여 3마리씩 노출을 하고, 이때 나타난 결과를 통하여 다른 농도에서 시험을 계속 진행한다.
- (4) 시험물질 또는 이와 유사한 물질의 독성정보가 없는 경우, 가스 2,500 ppm, 증기 10 mg/l, 분진/미스트 1.0 mg/l 용량으로 시험을 시작한다.

5.2.5 관찰기간

(1) 관찰기간은 일반적으로 14일간하며, 독성 반응과 증상출현율의 비율, 그리고 회복기간 등에 따라 변경될 수 있다.

W - 8 - 2021

(2) 관찰은 노출시작 후부터 종료 2시간까지는 특별한 주의를 기울여 수시로 관찰을 하고, 이후 14일까지는 1일 1회 이상 관찰한다.

5.2.6 이화학적 측정항목

다음의 사항에 관하여 측정 또는 모니터링을 행한다.

- (1) 공기의 유량은 연속적으로 측정하여야 한다.
- (2) 시험물질의 농도는 동물의 호흡구역 내에서 측정하며, 노출중의 농도는 일 정하게 유지한다. 분진이나 에어로졸의 경우에는 이 조건범위의 변동을 유 지하는 것이 불가능한 경우도 있으므로 보다 넓은 범위가 인정된다.
- (3) 발생장치(Generating system)의 작동에 있어서는 에어로졸 농도의 안정성을 확인하기 위하여 입자크기의 분석을 실시하며, 노출 중 입도분포의 항상성 측정이 필요하면 반복 분석한다.
- (4) 온도와 습도는 연속적으로 측정하여야 한다.

5.2.7 임상관찰

- (1) 시험담당자는 노출 중 및 노출 후의 관찰을 행하여 기록한다. 각각의 동물에 관하여 개별기록을 하여야 한다. 매일 1회 이상 주의 깊게 임상적 관찰을 수행한다.
- (2) 사망동물은 발견한 즉시 부검 또는 냉장보존하며, 쇠약 또는 빈사상태의 동물은 격리 또는 도살 등의 처치를 한다.
- (3) 관찰은 피부, 눈, 점막, 호흡계, 순환계, 자율신경 및 중추신경계, 전신운동과 행동 패턴의 변화, 진전, 경련, 유연, 설사, 졸림, 수면 및 혼수가 포함되어야 한다.
- (4) 사망시간은 가능한 한 정확히 기록해야 한다. 동물의 개별체중은 노출 후 매주 1회와 사망시에 측정한다.

W - 8 - 2021

(5) 1일 이상 생존한 경우에는 체중변화를 계산하고 기록하고, 시험 종료시 생존한 동물은 체중을 측정한 후 도살 처분한다.

5.2.8 부검

- (1) 일반적으로 급성흡입시험일 경우 병리검사를 실시하지 않으나, 시험책임자 가 필요하다고 판단되면 병리검사를 실시할 수 있다.
- (2) 동물의 부검은 특히 기도에 어떠한 변화를 일으켰는지 특별한 주의를 해야 한다.
- (3) 다른 장기가 관여하고 있을 가능성을 보여주는 독성징후가 있는 경우에는 해당 장기도 조사하고 모든 육안적 병리변화는 기록하여야 한다.
- (4) 표적 기관의 현미경적 검사는 필요시 실시한다.

6. 독성시험 결과 및 보고

6.1 결과의 처리

- (1) 각 군마다 시험개시시의 동물수, 노출농도, 개별동물의 사망시간, 독성징후를 나타낸 동물수, 독성변화 및 부검소견을 표로 정리한다.
- (2) 동물의 희생을 최소화하기 위하여 변경된 OECD가이드라인과 유해성 구분을 위하여 과반수 치사량은 구하지 않고 사망, 빈사상태 동물수로 급성흡입 독성 등급만 결정한다.

6.2 시험결과의 보고

시험결과의 보고서는 다음의 항목을 포함한다.

(1) 시험기관의 명칭 및 소재지

W - 8 - 2021

- (2) 시험책임자 및 담당자 성명
- (3) 시험동물: 종, 시험동물의 수, 연령, 공급원, 사육조건, 각 개체의 사육 조건
- (4) 시험물질: 물질명과 CAS 번호, 물리적 특성 및 순도, 시험과 관련된 물리 화학적 특성, 시험물질의 안정성
- (5) 시험조건
- (가) 시험기간, 노출농도 수준, 사료 및 음용수 공급 시기 등
- (나) 형태, 크기, 공기원, 에어로졸 및 입자발생계, 환경공기조정의 방법, 배기 의 처리방법
- (다) 챔버내 동물 수용방법, 노출장치의 기록, 온도, 습도, 에어로졸 입자의 농 도와 크기
- (6) 노출성적

평균치와 변동치(표준편차)를 명기하고 노출성적에는 다음 항목을 포함하여 기록한다.

- (가) 흡입장치의 공기 유량
- (나) 공기의 온도와 습도
- (다) 이론치 농도(흡입장치 내에 투여된 시험물질의 총량을 공기량으로 나는 값)
- (라) 호흡구역에서의 실측농도
- (마) 입자크기의 중앙치(입경분포): 분진 또는 미스트 시험의 경우 실시

W - 8 - 2021

- (7) 동물에 관한 성적
- (가) 사용된 동물종 및 계통
- (나) 성별 및 노출농도 군마다의 성적표(사망동물 수, 독성징후를 나타낸 동물의 수, 노출동물 수, 피부, 눈, 점막, 호흡계, 순환계, 자율신경 및 중추신경계, 전신운동과 행동 패턴의 변화, 진전, 경련, 유연, 설사, 졸림, 수면및 혼수상태 등)
- (다) 노출기간 중 또는 노출후의 사망시간
- (라) 용량-사망곡선과 기울기(계산방법에 따른 가능한 경우)
- (마) 도살기준 및 근거
- (바) 관찰되었던 장해와 이상을 포함하는 부검 결과
- (사) 병리학적 소견 등의 결과 해석

지침 개정 이력

- □ 개정일 : 2021. 10.
 - 개정자 : 한국산업안전보건공단 산업안전보건연구원 조중래
 - 개정사유 : 산업안전보건법령 및 관련 고시 폐지 등 개정
 - 주요 개정내용
 - 산업안전보건법 전면개정에 따른 변경내용 반영
 - 고용노동부 고시(화학물질의 유해성·위험성 시험 등에 관한 기준, 고용노 동부고시 제2020-57호) 폐지에 따른 국립환경과학원 고시(화학물질의 시험방법에 관한 규정) 인용