#### **SBA Statistical Business Analyst with SAS**

#### **SBA2** Regression Modeling Fundamentals

#### **SBA202B Predictive Modeling and Scoring Predictive Models**

#### Overview



















**Brief Introduction to Predictive Modeling Scenario** 

















formulas

$$\hat{Y} = X_1 \hat{\beta}_1 + ... + X_k \hat{\beta}_k$$
  
parametric models











# **Building a Predictive Model**











# Model Assessment and Selection model fitting training validation create models

use selection methods





When you use honest assessment, which of the following would be considered the best model?

The best model is the simplest (the most parsimonious) model that has the best performance on the validation data. The training data is used to fit the model and generate the possible models to be assessed.

# **Demo Building a Predictive Model Using PROC GLMSELECT**



# honest assessment



# honest assessment





| Data Set                  | STAT1.AME      | SHOU        | SINGS   |
|---------------------------|----------------|-------------|---------|
| Validation Data Set       | STAT1.AME      | SHOU        | SING4   |
| Dependent Variable        |                | Sa          | lePrice |
| Selection Method          |                | Ba          | ckward  |
| Select Criterion          |                |             | SBC     |
| Stop Criterion            |                |             | SBC     |
| Choose Criterion          | V              | alidatio    | n ASE   |
| Effect Hierarchy Enforced |                |             | None    |
| Observation Profile       | for Analysis   | Data        |         |
| Number of Observations    | Read           |             | 300     |
| Number of Observations    | Used           |             | 294     |
| Number of Observations    | Used for Trai  | ning        | 294     |
|                           |                |             | 1       |
| Observation Profile       | for Validation | Data        |         |
| Observation Profile (     |                | Data<br>300 | -       |

|                | Clas   | s Level Information | n                   |          |
|----------------|--------|---------------------|---------------------|----------|
| Class          | Levels | Values              |                     |          |
| House_Style2   | 5      | 1Story 2Story SF    | oyer SLvi 1.5Fin    |          |
| Overall_Qual2  | 3      | 564                 |                     |          |
| Overall_Cond2  | 3      | 564                 |                     |          |
| Fireplaces     | 3      | 120                 |                     |          |
| Season_Sold    | 4      | 2341                |                     |          |
| Garage_Type_2  | 3      | Detached NA Att     | sched               |          |
| Foundation_2   | 3      | Cinder Block Con    | crete/Slab Brick/Ti | le/Stone |
| Heating_QC     | 4      | Fa Gd TA Ex         |                     |          |
| Masonry_Veneer | 2      | YN                  |                     |          |
| Lot_Shape_2    | 2      | Regular irregular   |                     |          |
| Central_Air    | 2      | YN                  |                     |          |
|                |        | Dimensions          |                     |          |
|                | Numbe  | er of Effects       | 20                  |          |
|                | Numbe  | er of Parameters    | 43                  |          |

|      |                   | Backwa               | rd Selection       | Summary    |           |                    |
|------|-------------------|----------------------|--------------------|------------|-----------|--------------------|
| Step | Effect<br>Removed | Number<br>Effects In | Number<br>Parms In | \$8C       | ASE       | Validation<br>A SE |
| 0    |                   | 20                   | 32                 | 5779.8460  | 185773538 | 252878776          |
| 1    | Season_Sold       | 19                   | 29                 | 5762.6753  | 185824120 | 252480746          |
| 2    | House_Style2      | 18                   | 25                 | 5750.8247  | 192832172 | 248469026          |
| 3    | Foundation_2      | 17                   | 23                 | 5740.3830  | 193440101 | 248951925          |
| 4    | Garage_Type_2     | 16                   | 21                 | 5730.0735  | 194137231 | 247986887          |
| 5    | Central_Air       | 15                   | 20                 | 5724.5490  | 194242334 | 2478549631         |
| 6    | Heating_QC        | 14                   | 17                 | 5721.3123  | 203585891 | 259432895          |
| 7    | Masonry_Veneer    | 13                   | 16                 | 5718.5873  | 205846000 | 263660934          |
| 8    | Lot_Shape_2       | 12                   | 15                 | 5717.9317* | 209193215 | 265159474          |

Selection stopped at a local minimum of the SBC criterion.

|                  | Stop De         | tails            |   |                |
|------------------|-----------------|------------------|---|----------------|
| Candidate<br>For | Effect          | Candidate<br>SBC |   | Compare<br>SBC |
| Removal          | Deck_Porch_Area | 5718.6683        | > | 5717.9317      |





|          | Selecting the Best Model using Honest Assessment                                                                                                                                             |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | The GLMSELECT Procedure Selected Model                                                                                                                                                       |
|          | The selected model, based on Validation ASE, is the model at Step 5.                                                                                                                         |
| Effects: | Intercept Oversit_Quat2 Oversit_Cond2 Fireplaces Heating_QC Masonry, Veneer Lot_Shape_2 Gr_Liv_Ares Basement_Ares Garage_Ares Deck_Porch_Ares Lot_Ares Age_Sold Bedroom_AbvGr Total_Bathroom |

| Analysis of Variance |     |                   |                |         |  |
|----------------------|-----|-------------------|----------------|---------|--|
| Source               | DF  | Sum of<br>Squares | Mean<br>Square | F Value |  |
| Model                | 19  | 3.506452E11       | 18770797693    | 90.08   |  |
| Error                | 274 | 57107245191       | 208420807      |         |  |
| Corrected Total      | 293 | 4.137524E11       |                |         |  |

| Root MSE       | 14437      |
|----------------|------------|
| Dependent Mean | 137179     |
| R-Square       | 0.8820     |
| Adj R-Sq       | 0.8524     |
| AIC            | 5945.87742 |
| AICC           | 5950.27448 |
| SBC            | 5724.54902 |
| ASE (Train)    | 194242334  |
| ASE (Validate) | 247854953  |

| Parameter Estimates |     |              |                   |         |  |
|---------------------|-----|--------------|-------------------|---------|--|
| Parameter           | DF  | Estimate     | Standard<br>Error | t Value |  |
| Intercept           | 1   | 51207        | 7079.121457       | 7.23    |  |
| Overall_Qual2 5     | 1   | 6782.080263  | 3104.469941       | 2.18    |  |
| Overall_Qual2 6     | - 1 | 13559        | 3414.555419       | 4.00    |  |
| Overall_Qual2 4     | 0   | 0            |                   |         |  |
| Overall_Cond2 5     | 1   | 8996.618020  | 4137.937302       | 2.17    |  |
| Overall_Cond2 6     | - 1 | 15909        | 4025.283509       | 3.95    |  |
| Overall_Cond2 4     | 0   | 0            |                   |         |  |
| Fireplaces 1        | 1   | 9718.205925  | 2044.580791       | 4.75    |  |
| Fireplaces 2        | 1   | 7235.661619  | 4540.159269       | 1.59    |  |
| Fireplaces 0        | 0   | 0            |                   | - 9     |  |
| Heating_QC Fa       | 1   | -11008       | 4315.812370       | -2.70   |  |
| Heating_QC Gd       | 1   | -3178.918390 | 2496.841385       | -1.27   |  |
| Heating_QC TA       | 1   | -8889.247128 | 2133.424223       | -3.14   |  |
| Heating_QC Ex       | 0   | 0            |                   |         |  |
|                     |     |              |                   |         |  |



```
/*st106d01.sas*/
%let interval=Gr_Liv_Area Basement_Area Garage_Area Deck_Porch_Area
    Lot_Area Age_Sold Bedroom_AbvGr Total_Bathroom;
%let categorical=House_Style2 Overall_Qual2 Overall_Cond2 Fireplaces
    Season_Sold Garage_Type_2 Foundation_2 Heating_QC
    Masonry_Veneer Lot_Shape_2 Central_Air;
ods graphics;
proc glmselect data=STAT1.ameshousing3
       plots=all
       valdata=STAT1.ameshousing4;
  class &categorical / param=glm ref=first;
  model SalePrice=&categorical &interval /
       selection=backward
       select=sbc
       choose=validate;
  store out=STAT1.amesstore;
  title "Selecting the Best Model using Honest Assessment";
run;
```



# Partitioning a Data Set Using PROC GLMSELECT

If you start with a data set that's not yet partitioned, PROC GLMSELECT can partition the data for you. You can request two partitions (training and validation) or three partitions (training, validation and testing). You specify the proportion to use for the validation and test data cases, and you can specify a seed for the partitioning algorithm.

```
PROC GLMSELECT DATA=training-data-set <SEED=number>;
    MODEL targets=inputs < / options>;
    PARTITION FRACTION(<TEST=fraction> <VALIDATE=fraction>);
RUN;
```

In the PROC GLMSELECT statement, the DATA= option specifies the input or training data set. You'll use the PARTITION statement to specify how the cases in the input data set are partitioned into holdout samples for model validation, and if desired, testing. The MODEL statement is the same as before.

The PARTITION statement specifies how observations in the input data set are logically partitioned into disjointed subsets for model training, validation, and testing. The FRACTION option specifies the fraction (that is, the proportion) of cases in the input data set that are randomly assigned to a testing role and a validation role. The sum of the specified fractions must be less than 1 and the remaining fraction of the cases in the input data set are assigned to the training role. For example, the statement below requests two partitions (training and validation), and one quarter, or 25%, of the observations are written to the validation data set. The remaining three quarters, or 75%, are written to the training data set.

#### PARTITION FRACTION(VALIDATE=.25);

The PARTITION statement uses a pseudo-random number generator. To begin the random selection process, it needs a starting "seed," which must be an integer. If you want to reproduce your results in the future, specify an integer greater than zero in the SEED= option. Then, whenever you run the PROC GLMSELECT step and use the same seed value, the selection process is replicated and the same results are generated. If the SEED= value is invalid or omitted, the seed is automatically generated from the computer's clock. In most situations, it's recommended that you use the SEED= option and specify an integer greater than zero.

#### Partitioning a Data Set Using the Predictive Regression Models Task

You can use the Predictive Regression Models task to partition a data set into two or three partitions. If you want two partitions (training and validation), you must specify a sample proportion for the validation cases. This required value, which is a number between 0 and 1, represents the fraction or proportion of observations to be written to the validation partition. The remaining observations are written to the training partition.

If you also want a test partition, then you indicate that in the task, and specify a sample proportion for the testing partition. This value (a number between 0 and 1) represents the fraction or proportion of cases to be written to the testing partition. If you request both validation and testing partitions, then the sum of the specified fractions must be less than one. The remaining observations are written to the training partition.

You can use the random seed option to specify a starting seed for the pseudo-random number generator. If you specify an integer that's greater than zero, you can reproduce the results in the future. If you omit this option, a random seed will be generated, and the results will be different each time you submit the code.

```
/*st106s01.sas*/
%let interval=Gr_Liv_Area Basement_Area Garage_Area Deck_Porch_Area
    Lot_Area Age_Sold Bedroom_AbvGr Total_Bathroom;
%let categorical=House_Style2 Overall_Qual2 Overall_Cond2 Fireplaces
    Season_Sold Garage_Type_2 Foundation_2 Heating_QC
    Masonry_Veneer Lot_Shape_2 Central_Air;
/*In this example, the data set ameshousing3 is divided into */
/*training and validation using the PARTITION statement, */
/*along with the SEED= option in the PROC GLMSELECT statement.*/
proc glmselect data=STAT1.ameshousing3
        plots=all
       seed=8675309;
  class &categorical / param=ref ref=first;
  model SalePrice=&categorical &interval /
       selection=stepwise
       (select=aic
       choose=validate) hierarchy=single;
  partition fraction(validate=0.3333);
  title "Selecting the Best Model using Honest Assessment";
run;
```

### The GLMSELECT Procedure

| Data Set                  | STAT1.AMESHOUSING3 |
|---------------------------|--------------------|
| Dependent Variable        | SalePrice          |
| Selection Method          | Stepwise           |
| Select Criterion          | AIC                |
| Stop Criterion            | AIC                |
| Choose Criterion          | Validation ASE     |
| Effect Hierarchy Enforced | Single             |
| Random Number Seed        | 8675309            |

| Number of Observations Read                | 300 |
|--------------------------------------------|-----|
| Number of Observations Used                | 294 |
| Number of Observations Used for Training   | 197 |
| Number of Observations Used for Validation | 97  |

| Class Level Information |        |                                             |  |  |
|-------------------------|--------|---------------------------------------------|--|--|
| Class                   | Levels | Values                                      |  |  |
| House_Style2            | 5      | 1.5Fin 1Story 2Story SFoyer SLvl            |  |  |
| Overall_Qual2           | 3      | 456                                         |  |  |
| Overall_Cond2           | 3      | 456                                         |  |  |
| Fireplaces              | 3      | 012                                         |  |  |
| Season_Sold             | 4      | 1234                                        |  |  |
| Garage_Type_2           | 3      | Attached Detached NA                        |  |  |
| Foundation_2            | 3      | Brick/Tile/Stone Cinder Block Concrete/Slab |  |  |
| Heating_QC              | 4      | Ex Fa Gd TA                                 |  |  |
| Masonry_Veneer          | 2      | NY                                          |  |  |
| Lot_Shape_2             | 2      | Irregular Regular                           |  |  |
| Central_Air             | 2      | NY                                          |  |  |

| Dimensions           |    |
|----------------------|----|
| Number of Effects    | 20 |
| Number of Parameters | 32 |

The GLMSELECT Procedure

| Stepwise Selection Summary |                              |                   |                      |                    |            |            |                   |  |  |  |  |
|----------------------------|------------------------------|-------------------|----------------------|--------------------|------------|------------|-------------------|--|--|--|--|
| Step                       | Effect<br>Entered            | Effect<br>Removed | Number<br>Effects In | Number<br>Parms In | AIC        | ASE        | Validation<br>ASE |  |  |  |  |
| 0                          | Intercept                    |                   | 1                    | 1                  | 4335.7651  | 1303938780 | 1656501303        |  |  |  |  |
| 1                          | Basement_Area                |                   | 2                    | 2                  | 4222.6053  | 726746007  | 767937080         |  |  |  |  |
| 2                          | Gr_Liv_Area                  |                   | 3                    | 3                  | 4153.7335  | 507157741  | 590152215         |  |  |  |  |
| 3                          | Age_Sold                     |                   | 4                    | 4                  | 4070.6947  | 329360476  | 379123329         |  |  |  |  |
| 4                          | Garage_Area                  |                   | 5                    | 5                  | 4040.9787  | 280383339  | 349351979         |  |  |  |  |
| 5                          | Overall_Cond2                |                   | 6                    | 7                  | 4017.8121  | 244265684  | 348031039         |  |  |  |  |
| 6                          | Fireplaces                   |                   | 7                    | 9                  | 4001.1755  | 219972414  | 328829426         |  |  |  |  |
| 7                          | Overall_Qual2                |                   | 8                    | 11                 | 3991.0799  | 204782951  | 328466410         |  |  |  |  |
| 8                          | House_Style2                 |                   | 9                    | 15                 | 3981.7659  | 187553153  | 302046363         |  |  |  |  |
| 9                          | Deck_Porch_Area              |                   | 10                   | 16                 | 3975.3902  | 179746298  | 298786920         |  |  |  |  |
| 10                         | Heating_QC                   |                   | 11                   | 19                 | 3971.6360  | 171063090  | 290197323*        |  |  |  |  |
| 11                         | Lot_Area                     |                   | 12                   | 20                 | 3966.5960  | 165057936  | 290656975         |  |  |  |  |
| 12                         | Bedroom_AbvGr                |                   | 13                   | 21                 | 3961.0693  | 158870625  | 291293258         |  |  |  |  |
| 13                         | Total_Bathroom               |                   | 14                   | 22                 | 3959.6794  | 156160207  | 292267671         |  |  |  |  |
| 14                         |                              | House_Style2      | 13                   | 18                 | 3958.4479* | 161618790  | 302466608         |  |  |  |  |
|                            | * Optimal Value of Criterion |                   |                      |                    |            |            |                   |  |  |  |  |

Selection stopped at a local minimum of the AIC criterion.

| Stop Details     |                |                  |   |                |  |  |  |  |
|------------------|----------------|------------------|---|----------------|--|--|--|--|
| Candidate<br>For | Effect         | Candidate<br>AIC |   | Compare<br>AIC |  |  |  |  |
| Entry            | Masonry_Veneer | 3959.1313        | > | 3958.4479      |  |  |  |  |
| Removal          | Total_Bathroom | 3961.4810        | > | 3958.4479      |  |  |  |  |







#### Selecting the Best Model using Honest Assessment

The GLMSELECT Procedure Selected Model

The selected model, based on Validation ASE, is the model at Step 10.

Effects: Intercept House\_Style2 Overall\_Qual2 Overall\_Cond2 Fireplaces Heating\_QC Gr\_Liv\_Area Basement\_Area Garage\_Area Deck\_Porch\_Area Age\_Sold

| Analysis of Variance |     |                   |                |         |  |  |
|----------------------|-----|-------------------|----------------|---------|--|--|
| Source               | DF  | Sum of<br>Squares | Mean<br>Square | F Value |  |  |
| Model                | 18  | 2.231765E11       | 12398695049    | 65.49   |  |  |
| Error                | 178 | 33699428801       | 189322634      |         |  |  |
| Corrected Total      | 196 | 2.568759E11       |                |         |  |  |

| Root MSE       | 13759      |
|----------------|------------|
| Dependent Mean | 133582     |
| R-Square       | 0.8688     |
| Adj R-Sq       | 0.8555     |
| AIC            | 3971.63597 |
| AICC           | 3976.40870 |
| SBC            | 3835.01684 |
| ASE (Train)    | 171063090  |
| ASE (Validate) | 290197323  |

| Parameter Estimates |    |              |                   |         |
|---------------------|----|--------------|-------------------|---------|
| Parameter           | DF | Estimate     | Standard<br>Error | t Value |
| Intercept           | 1  | 27334        | 10120             | 2.70    |
| House_Style2 1Story | 1  | 12267        | 4203.159135       | 2.92    |
| House_Style2 2Story | 1  | 2456.477699  | 4386.235156       | 0.56    |
| House_Style2 SFoyer | 1  | 20779        | 7050.033468       | 2.95    |
| House_Style2 SLvI   | 1  | 17117        | 5527.649598       | 3.10    |
| Overall_Qual2 5     | 1  | 7841.596393  | 3417.138088       | 2.29    |
| Overall_Qual2 6     | 1  | 14024        | 3806.928311       | 3.68    |
| Overall_Cond2 5     | 1  | 12475        | 4949.669709       | 2.52    |
| Overall_Cond2 6     | 1  | 17766        | 4841.031305       | 3.67    |
| Fireplaces 1        | 1  | 5832.276234  | 2471.249968       | 2.36    |
| Fireplaces 2        | 1  | 10886        | 4999.141012       | 2.18    |
| Heating_QC Fa       | 1  | -13782       | 5544.767861       | -2.49   |
| Heating_QC Gd       | 1  | -3687.706899 | 2867.792984       | -1.29   |
| Heating_QC TA       | 1  | -5944.139856 | 2467.507946       | -2.41   |
| Gr_Liv_Area         | 1  | 54.360524    | 6.486247          | 8.38    |
| Basement_Area       | 1  | 18.329197    | 3.964241          | 4.62    |
| Garage_Area         | 1  | 33.820604    | 6.692579          | 5.05    |
| Deck_Porch_Area     | 1  | 27.291527    | 8.243101          | 3.31    |
| Age_Sold            | 1  | -379.483707  | 54.640384         | -6.95   |

# **Practice: Building a Predictive Model Using PROC GLMSELECT**

Question 1

Use the **ameshousing3** data set to build a model that predicts the sale prices of homes in Ames, Iowa, that are 1500 square feet or below, based on various home characteristics.

1. Write a PROC GLMSELECT step that predicts the values of SalePrice. Partition the stat1.ameshousing3 data set into a training data set of approximately 2/3 and a validation data set of approximately 1/3. Specify the seed 8675309. Define the Interval and Categorical macro variables as shown below, and use them to specify the inputs. Use stepwise regression as the selection method, Akaike's information criterion (AIC) to add and or remove effects, and average squared error for the validation data to select the best model. Add the REF=FIRST option in the CLASS statement.

```
Masonry_Veneer Lot_Shape_2 Central_Air;
```

Submit the code and examine the results. Which model did PROC GLMSELECT choose? PROC GLMSELECT chose the model at Step 10, which has the following effects:Intercept, Basement\_Area, Gr\_Liv\_Area, Age\_Sold, Garage\_Area, Overall\_Cond2, Firepla ces, Overall\_Qual2, House\_Style2, Deck\_Porch\_Area, and Heating\_QC.

```
/*st106s01.sas*/
%let interval=Gr Liv Area Basement Area Garage Area Deck Porch Area
         Lot_Area Age_Sold Bedroom_AbvGr Total_Bathroom;
%let categorical=House_Style2 Overall_Qual2 Overall_Cond2 Fireplaces
         Season Sold Garage Type 2 Foundation 2 Heating QC
         Masonry_Veneer Lot_Shape_2 Central_Air;
/*In this example, the data set ameshousing3 is divided into */
/*training and validation using the PARTITION statement, */
/*along with the SEED= option in the PROC GLMSELECT statement.*/
proc glmselect data=STAT1.ameshousing3
               plots=all
               seed=8675309;
   class &categorical / param=ref ref=first;
   model SalePrice=&categorical &interval /
                   selection=stepwise
                   (select=aic
                   choose=validate) hierarchy=single;
   partition fraction(validate=0.3333);
   title "Selecting the Best Model using Honest Assessment";
run;
```

# **Scoring Predictive Models**

# Scenario















# **Methods of Scoring**





### **Demo Scoring Data Using PROC PLM**



```
OPTIONS NONOTES NOSTIMER NOSOURCE NOSYNTAXCHECK;
 1
 60
              proc plm restore=STAT1.amesstore;
 61
                   score data=STAT1.ameshousing4 out=scored;
 62
                   code file="&homefolder\scoring.sas";
 63
              run:
 NOTE: External file S:/ecst142\scoring.sas opened.
 NOTE: The PLM procedure wrote the DATA step code to external file S:/ecst142\scoring.sas.
 NOTE: The data set WORK.SCORED has 300 observations and 33 variables.
3 proc plm restore=STAT1.amesstore;
                                          perform needed data
     score data=STAT1.ameshousing4 out=score
                                         transformations before
     code file="&homefolder\scoring.sas";
                                              %INCLUDE
  run;
                                                                          DATA <data-set-name>;
  data scored2;
     set STAT1.ameshousing4;
                                                                              SET SAS-data-set <(data-set-options>;
     %include "&homefolder\scoring.sas";
                                                                              %INCLUDE source;
  run:
                                                                          RUN:
 1
                OPTIONS NONOTES NOSTIMER NOSOURCE NOSYNTAXCHECK:
 59
 60
                data scored2;
                      set STAT1.ameshousing4;
 61
 62
                      %include "&homefolder\scoring.sas";
 264
                run;
 NOTE: There were 300 observations read from the data set STAT1.AMESHOUSING4.
 NOTE: The data set WORK.SCORED2 has 300 observations and 33 variables.
,13 proc compare base=scored compare=scored2 criterion=0.0001;
                                                             PROC COMPARE BASE=SAS-data-set COMPARE=SAS-data-set
     var Predicted;
                                                                          CRITERION=value;
     with P_SalePrice;
                                                                VAR variable(s);
16 run;
                                                                WITH variable(s);
                                    default criterion:
                                                             RUN:
                                        .00001
18
13 proc compare base=scored compare=scored2 criterion=0.0001;
                                                             PROC COMPARE BASE=SAS-data-set COMPARE=SAS-data-set
     var Predicted:
                                                                          CRITERION=value;
     with P_SalePrice;
                         scored variable in the
                                                                VAR variable(s);
16 run;
                            BASE = data set
                                                                WITH variable(s);
                                                             RUN:
18
13 proc compare base=scored compare=scored2 criterion=0.0001;
                                                            PROC COMPARE BASE=SAS-data-set COMPARE=SAS-data-set
     var Predicted:
                                                                         CRITERION=value;
    with P_SalePrice;
                                                                VAR variable(s);
                         scored variable in the
                                                                WITH variable(s);
                          COMPARE= data set
                                                            RUN:
                      Values Comparison Summary
    Number of Variables Compared with All Observations Equal: 1.
   Number of Variables Compared with Some Observations Unequal: 0.
    Total Number of Values which Compare Unequal: 0.
    Total Number of Values not EXACTLY Equal: 296
   Maximum Difference Criterion Value: 2.2837E-15.
```





/\*st106d02.sas\*/ /\*Part A\*/

```
proc plm restore=STAT1.amesstore;
  score data=STAT1.ameshousing4 out=scored;
  code file="&homefolder\scoring.sas";
run;
```

| The PLM Procedure     |                                                                                                   |  |  |
|-----------------------|---------------------------------------------------------------------------------------------------|--|--|
| Store Information     |                                                                                                   |  |  |
| Item Store            | STAT1.AMESSTORE                                                                                   |  |  |
| Data Set Created From | STAT1.AMESHOUSING3                                                                                |  |  |
| Created By            | PROC GLMSELECT                                                                                    |  |  |
| Date Created          | 02SEP21:06:38:46                                                                                  |  |  |
| Response Variable     | SalePrice                                                                                         |  |  |
| Class Variables       | House_Style2 Overall_Qual2 Overall_Cond2 Fireplaces Season_Sold Garage_Type_2 Foundation_2        |  |  |
| Model Effects         | Intercept Overall_Qual2 Overall_Cond2 Fireplaces Heating_QC Masonry_Veneer Lot_Shape_2 Gr_Liv_Are |  |  |

#### data scored2;

### set STAT1.ameshousing4;

### %include "&homefolder\scoring.sas";

#### run;



## proc compare base=scored compare=scored2 criterion=0.0001;

var Predicted;

with P\_SalePrice;

#### run;

```
The COMPARE Procedure
                              Comparison of WORK.SCORED with WORK.SCORED2
                              (Method=RELATIVE(2.22E-10), Criterion=0.0001)
                                           Data Set Summary
                                     Modified NVar NObs Label
Dataset
                      Created
                                                33
WORK.SCORED 03SEP21:03:46:29 03SEP21:03:46:29
                                                      300 Scoring Results for DATA=STAT1.AMESHOUSING4
WORK.SCORED2 03SEP21:03:47:07 03SEP21:03:47:07
                                                33
                                                        300
                                           Variables Summary
                      Number of Variables in Common: 32.
                      Number of Variables in WORK.SCORED but not in WORK.SCORED2: 1.
                      Number of Variables in WORK.SCORED2 but not in WORK.SCORED: 1.
                      Number of VAR Statement Variables: 1.
                      Number of WITH Statement Variables: 1.
```

```
Observation
                                     Base Compare
                     First Obs
                                        1
                                                    1
                     Last Obs
                                        300
                                                  300
   Number of Observations in Common: 300.
   Total Number of Observations Read from WORK.SCORED: 300.
   Total Number of Observations Read from WORK.SCORED2: 300.
   Number of Observations with Some Compared Variables Unequal: 0.
   Number of Observations with All Compared Variables Equal: 300.
                       Values Comparison Summary
   Number of Variables Compared with All Observations Equal: 1.
   Number of Variables Compared with Some Observations Unequal: 0.
   Total Number of Values which Compare Unequal: 0.
   Total Number of Values not EXACTLY Equal: 297.
   Maximum Difference Criterion Value: 2.3062E-15.
/*st106s02.sas*/
proc glmselect data=STAT1.ameshousing3
      seed=8675309
       noprint;
 class &categorical / param=ref ref=first;
 model SalePrice=&categorical &interval /
      selection=stepwise
      (select=aic
      choose=validate) hierarchy=single;
 partition fraction(validate=0.3333);
 score data=STAT1.ameshousing4 out=score1;
 store out=store1;
 title "Selecting the Best Model using Honest Assessment";
run;
proc plm restore=store1;
```

Observation Summary

### score data=STAT1.ameshousing4 out=score2;

run;

proc compare base=score1 compare=score2 criterion=0.0001;

var P\_SalePrice;

with Predicted;

run;

## Selecting the Best Model using Honest Assessment

#### The PLM Procedure

| Store Information     |                                                                                                   |  |
|-----------------------|---------------------------------------------------------------------------------------------------|--|
| Item Store            | WORK.STORE1                                                                                       |  |
| Data Set Created From | STAT1.AMESHOUSING3                                                                                |  |
| Created By            | PROC GLMSELECT                                                                                    |  |
| Date Created          | 03SEP21:03:51:17                                                                                  |  |
| Response Variable     | SalePrice                                                                                         |  |
| Class Variables       | House_Style2 Overall_Qual2 Overall_Cond2 Fireplaces Season_Sold Garage_Type_2 Foundation_2        |  |
| Model Effects         | Intercept House_Style2 Overall_Qual2 Overall_Cond2 Fireplaces Heating_QC Gr_Liv_Area Basement_Are |  |

## Selecting the Best Model using Honest Assessment

```
The COMPARE Procedure
Comparison of WORK.SCORE1 with WORK.SCORE2
(Method=RELATIVE(2.22E-10), Criterion=0.0001)
```

#### Data Set Summary

```
Dataset Created Modified NVar NObs Label

WORK.SCORE1 03SEP21:03:51:17 03SEP21:03:51:17 33 300 Score Results for DATA=STAT1.AMESHOUSING4
WORK.SCORE2 03SEP21:03:51:17 03SEP21:03:51:17 33 300 Scoring Results for DATA=STAT1.AMESHOUSING4
```

#### Variables Summary

```
Number of Variables in Common: 32.

Number of Variables in WORK.SCORE1 but not in WORK.SCORE2: 1.

Number of Variables in WORK.SCORE2 but not in WORK.SCORE1: 1.

Number of VAR Statement Variables: 1.

Number of WITH Statement Variables: 1.
```

```
Observation Summary
                 Observation Base Compare
                 First Obs
                                  1
                 Last Obs
                                  300
                                           300
Number of Observations in Common: 300.
Total Number of Observations Read from WORK.SCORE1: 300.
Total Number of Observations Read from WORK.SCORE2: 300.
Number of Observations with Some Compared Variables Unequal: 0.
Number of Observations with All Compared Variables Equal: 300.
                  Values Comparison Summary
Number of Variables Compared with All Observations Equal: 1.
Number of Variables Compared with Some Observations Unequal: 0.
Total Number of Values which Compare Unequal: 0.
Total Number of Values not EXACTLY Equal: 196.
Maximum Difference Criterion Value: 4.466E-16.
```

# **Practice: Scoring Using the SCORE Statement in PROC GLMSELECT**

Question 1

You want to re-create the model that was built in the previous practice (based on **stat1.ameshousing3**), create an item store, and then use the item store to score the new cases in **stat1.ameshousing4**. You'll score the data in two ways (using PROC GLMSELECT and PROC PLM) and compare the results.

Open the solution program from the previous practice, **st106s01.sas**. There is no need to examine the results, so make the following changes to the code:

- Remove the PLOTS= option.
- Add the NOPRINT option to the PROC GLMSELECT statement.
- Remove the TITLE statement

Here's the modified code:

In the PROC GLMSELECT step, add a STORE statement to create an item store named **store1**, and a SCORE statement to score the data in **stat1.ameshousing4**. Add a PROC PLM step that uses the item store, store1, to score the data in **stat1.ameshousing4**. **Note**: Be sure to use different names for the two scored data sets. Add a PROC COMPARE step to compare the scoring results from PROC GLMSELECT and PROC PLM. Submit the code and examine the results.

Does the PROC COMPARE output indicate any differences between the predictions produced by the two scoring methods?

The two scoring methods produce the same predictions. **Note:** Depending on the version of SAS and SAS/STAT that you are using, your results might look somewhat different from the output shown here. However, the results should indicate that these data sets do not differ.

```
/*st106s02.sas*/
proc glmselect data=STAT1.ameshousing3
               seed=8675309
               noprint;
   class &categorical / param=ref ref=first;
   model SalePrice=&categorical &interval /
               selection=stepwise
               (select=aic
               choose=validate) hierarchy=single;
   partition fraction(validate=0.3333);
   score data=STAT1.ameshousing4 out=score1;
   store out=store1;
   title "Selecting the Best Model using Honest Assessment";
run;
proc plm restore=store1;
   score data=STAT1.ameshousing4 out=score2;
run;
proc compare base=score1 compare=score2 criterion=0.0001;
   var P SalePrice;
   with Predicted;
run;
```