Week 6 Deep learning

Introduction: This hourly data set contains the PM2.5 data in Beijing, Shanghai, Guangzhou, Chengdu and Shenyang. Meanwhile, meteorological data for each city are also included.

https://archive.ics.uci.edu/ml/datasets/PM2.5+Data+of+Five+Chinese+Cities (https://archive.ics.uci.edu/ml/datasets/PM2.5+Data+of+Five+Chinese+Cities)

Objective

I used recurrent neural networks and LTSM model to predict the PM2.5 level in Beijing, Shanghai, Guangzhou, Chengdu and Shenyang using time series data.

Imports

In [1]:

```
import sys, os
import numpy as np
import matplotlib.pyplot as plt
import warnings
warnings.simplefilter(action='ignore')
import seaborn as sns
import pandas as pd
from datetime import datetime
```

In [2]:

```
import tensorflow
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, SimpleRNN, LSTM, Activation, Dropout
```

In [3]:

```
import math
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error
```

Data description

```
In [4]:
```

```
1 os.getcwd()
```

Out[4]:

^{&#}x27;/Users/yanzhenlei'

```
In [5]:
```

```
df_Beijing = pd.read_csv('/Users/yanzhenlei/Beijing.csv')
df_Beijing = df_Beijing[df_Beijing.year >= 2015]
df_Beijing.head(10)
```

Out[5]:

	No	year	month	day	hour	season	PM_Dongsi	PM_Dongsihuan	PM_Nongzhangua
43824	43825	2015	1	1	0	4	5.0	32.0	8.
43825	43826	2015	1	1	1	4	4.0	12.0	7.
43826	43827	2015	1	1	2	4	3.0	19.0	7.
43827	43828	2015	1	1	3	4	4.0	9.0	11.
43828	43829	2015	1	1	4	4	3.0	11.0	5.
43829	43830	2015	1	1	5	4	3.0	18.0	3.
43830	43831	2015	1	1	6	4	3.0	20.0	6.
43831	43832	2015	1	1	7	4	3.0	22.0	7.
43832	43833	2015	1	1	8	4	NaN	NaN	Nat
43833	43834	2015	1	1	9	4	5.0	37.0	11.

In [67]:

```
1 df_Beijing.info()
```

<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 8760 entries, 2015-01-01 00:00:00 to 2015-12-31 23:00:0
0

Data columns (total 19 columns):

#	Column	Non-Null Count	Dtype
0	No	8760 non-null	int64
1	year	8760 non-null	int64
2	month	8760 non-null	int64
3	day	8760 non-null	int64
4	hour	8760 non-null	int64
5	season	8760 non-null	int64
6	PM_Dongsi	8760 non-null	float64
7	PM_Dongsihuan	5465 non-null	float64
8	PM_Nongzhanguan	8760 non-null	float64
9	PM_US Post	8631 non-null	float64
10	DEWP	8755 non-null	float64
11	HUMI	8421 non-null	float64
12	PRES	8421 non-null	float64
1 ^		^=== 33	63 . 6 4

There are 8760 units for analysis. We need to transform a variable into a datetime type.

```
In [6]:
```

```
df Beijing.isnull().sum()
Out[6]:
                        0
No
year
                        0
                        0
month
day
                        0
hour
                        0
season
                        0
PM Dongsi
                      164
PM Dongsihuan
                     3295
                      287
PM Nongzhanguan
PM US Post
                      129
DEWP
                        5
                      339
HUMI
PRES
                      339
TEMP
                        5
cbwd
                        5
                        5
Iws
precipitation
                      459
                      459
Iprec
dtype: int64
```

PM_Dongsi had the the least missing values for PM values so I used PM_Dongsi as example.

```
In [66]:
```

```
df_Beijing['PM_Dongsi'].describe()
Out[66]:
count
         8760.000000
           87.145776
mean
           91.899063
std
            3.000000
min
           22.000000
25%
50%
           58.000000
          117.000000
75%
          685.000000
Name: PM Dongsi, dtype: float64
In [8]:
    df Beijing['PM Dongsi'] = df Beijing['PM Dongsi'].interpolate()
In [9]:
    def make date(row):
 1
        return datetime(year = row['year'], month = row['month'], day = row['day'],
 2
    df Beijing['date'] = df Beijing.apply(make date,axis=1)
```

```
In [10]:
```

```
df Beijing.set index(df Beijing.date,inplace=True)
```

In [68]:

```
1 sns.distplot(df_Beijing['PM_Dongsi'])
```

Out[68]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f98be25ae80>

Most of the PM_Dongsi level concentrated in the zone less than 100 but the extreme large level is also abudant

In [11]:

```
1 plt.plot(df_Beijing['PM_Dongsi'])
```

Out[11]:

[<matplotlib.lines.Line2D at 0x7f9908674438>]

Data engineering

We use the last 56 days of the PM_Dongsi series, and will train a model that takes in 12 time steps in order to predict the next time step. We use the last day of data for visually testing the model.

In [12]:

```
def get_n_last_days(df,series_name,n_days):
    return df[series_name][-(24*n_days):]
```

In [13]:

```
1
  def plot n last days(df, series name, n days):
2
      plt.figure(figsize=(10,5))
3
      plt.plot(get n last days(df, series name, n days), 'k-')
4
      plt.title('{0} Air Quality Time Series - {1} days'
5
                 .format(series name, n days))
      plt.xlabel('Recorded Hour')
6
7
      plt.ylabel('Reading')
8
      plt.grid(alpha=0.3)
```

In [14]:

```
plot_n_last_days(df_Beijing,'PM_Dongsi',42)
```


In [43]:

```
def get_keras_format_series(series):
    series = np.array(series)
    return series.reshape(series.shape[0], series.shape[1], 1)
```

```
In [44]:
```

```
def get train test data(df, series name, series days, input hours,
 1
 2
                            test hours, sample gap=3):
 3
       forecast series = get n last days(df, series name, series days).values
 4
 5
 6
       train = forecast series[:-test hours]
 7
       test = forecast series[-test hours:]
 8
 9
       train X, train y = [], []
10
       for i in range(0, train.shape[0]-input hours, sample gap):
11
12
           train X.append(train[i:i+input hours])
13
           train_y.append(train[i+input_hours])
14
15
       train X = get keras format series(train X)
16
       train y = np.array(train y)
       test_X_init = test[:input_hours]
17
18
       test y = test[input hours:]
19
       return train X, test X init, train y, test y
20
```

In [45]:

```
1  series_days = 56
2  input_hours = 12
3  test_hours = 24

5  train_X, test_X_init, train_y, test_y = \
6    (get_train_test_data(df_Beijing, 'PM_Dongsi', series_days, input_hours, test_hours))
```

In [46]:

```
1 train_X.shape
```

Out[46]:

(436, 12, 1)

In [47]:

```
1 train_y.shape
```

Out[47]:

(436,)

In [48]:

```
1 test_X_init.shape
```

Out[48]:

(12,)

```
In [49]:
    1 test_y.shape
Out[49]:
(12,)
```

Data Modeling

```
In [50]:
```

```
def fit_SimpleRNN(train_X, train_y, cell_units, epochs):
    model = Sequential()
    model.add(SimpleRNN(cell_units, input_shape=(train_X.shape[1],1)))
    model.add(Dense(1))
    model.compile(loss='mean_squared_error', optimizer='adam')
    model.fit(train_X, train_y, epochs=epochs, batch_size=64, verbose=0)
    return model
```

```
In [51]:
```

```
1 model = fit_SimpleRNN(train_X, train_y, cell_units=10, epochs=10)
```

In [52]:

```
def predict(X init, n steps, model):
 1
 2
 3
        X_{init} = X_{init.copy().reshape(1,-1,1)}
 4
        preds = []
 5
 6
        for in range(n steps):
 7
             pred = model.predict(X init)
 8
             preds.append(pred)
 9
             X \text{ init}[:,:-1,:] = X \text{ init}[:,1:,:]
10
             X init[:,-1,:] = pred
11
12
        preds = np.array(preds).reshape(-1,1)
13
14
        return preds
```

In [53]:

```
def predict and plot(X init, y, model, title):
 1
 2
3
       y_preds = predict(test_X_init, n_steps=len(y), model=model)
 4
       start_range = range(1, test_X_init.shape[0]+1)
5
       predict range = range(test X init.shape[0], test hours)
6
       plt.plot(start range, test X init)
 7
       plt.plot(predict_range, test_y, 'orange')
8
       plt.plot(predict_range, y_preds, 'teal', linestyle='--')
9
10
       plt.title(title)
       plt.legend(['Initial Series','Target Series','Predictions'])
11
```

In [41]:

```
predict_and_plot(test_X_init,test_y,model,'PM Series: Test Data and Simple RNN F
```


The predicts is bad. We can also pass over the training data many more times, increasing epochs, giving the model more opportunity to learn the patterns in the data.

In [54]:

```
model = fit_SimpleRNN(train_X, train_y, cell_units=30, epochs=1200)
predict_and_plot(test_X_init,test_y,model,'PM Series: Test Data and Simple RNN F
```



```
In [55]:
```

```
1 model.summary()
```

Model: "sequential_6"

Layer (type)	Output Shape	Param #
simple_rnn_6 (SimpleRNN)	(None, 30)	960
dense_6 (Dense)	(None, 1)	31
Total params: 991		

Trainable params: 991
Non-trainable params: 0

LSTM Modeling

In [60]:

```
def fit_LSTM(train_X, train_y, cell_units, epochs):
2
3
       model = Sequential()
4
5
       model.add(LSTM(cell_units, input_shape=(train_X.shape[1],1)))
6
7
       model.add(Dense(1))
8
9
       model.compile(loss='mean_squared_error', optimizer='adam')
       model.fit(train X, train y, epochs=epochs, batch size=64, verbose=0)
10
11
       return model
12
```

In [65]:

```
1
   series days = 56
 2
   input_hours = 12
 3
   test hours = 24
 4
 5
   train X, test X init, train y, test y = \
 6
        (get_train_test_data(df_Beijing, 'PM_Dongsi', series_days,
 7
                              input hours, test hours))
 8
 9
   model = fit LSTM(train X, train y, cell units=30, epochs=1200)
10
   predict and plot(test X init, test y, model,
11
                     'PM_Nongzhanguan Series: Test Data and LSTM Predictions')
12
```

PM_Nongzhanguan Series: Test Data and LSTM Predictions Initial Series 200 Target Series 175 Predictions 150 125 100 75 50 25 Ś 10 15 20

LTSM seems not a good way to predict the PM2.5

Insights and key findings

I used two deep learning models(LTSM and RNN) to predict PM2.5 in time series data. The RNNs model perform better than LTSM model to predict data in my attemp. The parameters(more cell units and more epochs) should be tuned for more attemps. Better result than before and it fits the curve more accurately. There are 991 parameters to run so the computation would be slow.

Summary

Flaws and next step

The attemps seems too simple since the time-limited attemps. I should try more parameters in series_days,input_hours,test_hours to figure out the optimal models. Maybe write a loop function to run as much as parameters to find the optimal parameters combination. I can increase the cell_Units and try more training epochs.