Einführung in die diskrete Mathematik

Arthur Henninger

15. Oktober 2024

INHALTS VERZEICHNIS

KAPITEL 1	Grundlagen	$_{-\!-\!-\!-}$ Seite 2 $_{-\!-\!-\!-\!-}$
Kapitel 2	Bäume und Arboreszenzen	SEITE11
Kapitel 3	Kürzeste Wege	SEITE12
Kapitel 4	Netzwerkflüsse	SEITE13
Kapitel 5	Kostenminimale Flüsse	SEITE14
Kaditel 6	ND Vollagi ndigung	Crimp15

Grundlagen

Definition 1.1: Ungerichtete Graphen

Ein ungerichteter Graph ist ein Tripel (V, E, Ψ) , wobei V, E endliche Mengen, $V \neq \emptyset$ und

$$\Psi: E \to \{x \subset V | |X| = 2\} =: \binom{n}{2}.$$

Definition 1.2: Gerichtete Graphen

Ein gerichteter Graph (Digraph) ist ein Tripel (V, E, Ψ) , wobei V, E endliche Mengen, $V \neq \emptyset$ und

$$\Psi: E \to \{(v,y) \in V \times V | x \neq y\}.$$

Definition 1.3: Graph

Ein Graph ist ein gerichteter oder ungerichteter Graph.

Notation 1.1

Wir nennen V die Menge der Knoten (engl. "verticies") und E die Menge der Kanten (engl. ëdges").

Beispiel 1.1 (Graphen)

ungerichteter bzw. gerichteter Graph:

Abbildung 1.1: ungerichteter Graph

Abbildung 1.2: gerichteter Graph

Definition 1.4: parallele Kanten

Zwei Kanten $e, e' \in E$ heißen parallel, wenn $\Psi(e) = \Psi(e')$.

Definition 1.5: einfacher Graph

Ein Graph heißt einfach, wenn er keine parallelen Kanten besitzt.

Notation 1.2

In diesem Fall identifizieren wir $e \in E$ mit $\Psi(e)$. Der Graph (V, E, Ψ) reduziert sich zu G = (V, E).

Notation 1.3 Sprachgebrauch

- $e = \{x, y\}$ oder e = (x, y) Kante
- $e \text{ } \underline{\text{verbindet}} x \text{ } \underline{\text{und}} y$
- x und y sind benachbart/adjazent
- x ist <u>Nachbar</u> von y
- x und y sind mit e <u>inzident</u>
- $G = (V, E), X, Y \subseteq V(G)$ Ungerichtete Graphen:

```
\begin{split} E(X,Y) &:= \{\{x,y\} \in E(G) | x \in X \setminus Y \text{ und } y \in Y \setminus X\} \\ \delta(X) &:= E(X,V(G) \setminus X) \\ \delta(x) &:= \delta(\{x\}) \text{ für } x \in V(G) \\ |\delta(x)| &: \underline{\text{Grad von }} x. \end{split}
```

Gerichtete Graphen:

```
E^{+}(X,Y) := \{(x,y) \in E(G) | x \in X \setminus Y \text{ und } y \in Y \setminus X\}
\delta^{+}(X) := E^{+}(X,V(G) \setminus X)
\delta^{-}(X) := E^{+}(V(G) \setminus X,X)
\delta(X) := \delta^{+}(X) \cup \delta^{-}(X)
\delta^{+}(x) = \delta^{+}(\{x\})
\delta^{-}(x) = \delta^{-}(\{x\})
\delta(x) = \delta(\{x\})
|\delta^{+}(x)| : \underbrace{\text{Ausgangsgrad}}_{\text{busgehende Kanten}}
\delta^{-}(x) : \underbrace{\text{Eingangsgrad}}_{\text{eingehende Kanten}}
\delta^{-}(x) : \underbrace{\text{eingehende Kanten}}_{\text{eingehende Kanten}}
```

- K-regulärer Graph: $|\delta(x)| = K \forall x \in V(G)$.
- Ein Knoten vom Grad 0 heißt isolierter Knoten.
- Falls mehrere Graphen betrachtet werden: G, H, F, füge Graphen als Index hinzu: $\delta_G(x), \delta_H(x), \ldots$

Satz 1.1

Für jeden Graphen G = (V, E) gilt:

$$\sum_{x \in V(G)} |\delta(x)| = 2 \cdot |E|.$$

Korollar 1.2

In jedem Graphen ist die Anzahl an Knoten mit ungeradem Grad gerade.

Satz 1.3

Für jeden Digraphen G = (V, E) gilt

$$\sum_{x \in V(G)} \delta^-(x) = \sum_{x \in V(G)} \delta^+(x).$$

Definition 1.6: Teilgraph

Ein Graph H=(V(H),E(H)) ist ein <u>Teilgraph</u> (Subgraph, Untergraph) eines Graphen G=(V(G),E(G)), falls

$$V(H) \subseteq V(G)$$
 und $E(H) \subseteq E(G)$.

Wir sagen auch: G enthält H (als Teilgraph).

- Falls V(H) = V(G), so ist H ein aufspannender Teilgraph.
- \bullet Der Graph H ist induzierter Teilgraph von G, falls

$$V(H) \subseteq V(G) \text{ und } E(H) = \{ \{x, y\} \in E(G) | x, y \in V(H) \}.$$

Bemerkung 1.1 🛉

Ein induzierter Teilgraph ist insbesondere durch die Knotenmenge festgelegt.

Notation 1.4

"H ist der von V(H) induzierte Teilgraph von G"

$$H:=G[V(H)].$$

Für $x \in V(G)$ definiere:

$$G - x := G[V(G) \setminus \{x\}].$$

Für $e \in E(G)$ definiere:

$$G-e:=(V(G),E(G)\setminus\{e\}).$$

Für $e \in \binom{V(G)}{2}$ mit $e \notin E(G)$.

$$G + e. = (V(G), E(G) \cup \{e\}).$$

Definition 1.7: vollständiger Graph

$$\left(V, {V \choose 2}\right) := K_n, \text{ falls } |V| = n.$$

Definition 1.8: Isomorphie

Zwei Graphen G und H heißen isomorph, falls es eine Bijektion $\varphi:V(G)\to V(H)$ gibt, sodass

$$\varphi(\{x,y\}) := \{\varphi(x), \varphi(y)\}$$

eine Bijektion zwischen E(G) und E(H) darstellt. φ ist Isomorphismus. Alternativ kann auch

$$\{x,y\} \in E(G) \iff \{\varphi(x),\varphi(y)\} \in E(H)$$

gelten.C:w

Notation 1.5 isomorphe Graphen

 $G \cong H \text{ oder } G = H$

Bemerkung: Für G=(V(G),E(G)) und H=(V(H),E(H)) müssen $\varphi:V(G)\to V(H)$ und $\sigma:E(G)\to E(H)$ "kompatible"Bijektionen sein.

Notation 1.6 Sprechweise

F ist Teilgraph von G meint: F ist isomorph zu einem Teilgraphen von G

Vorlesung vom 10.10.2024

Feststellungen:

- $\varphi: V(g) \to V(H)$ Isomorphismus $\implies g x \cong H \varphi(x \forall x \in V(G))$ (Isomorphie erhält Teilgraphen)
- \bullet Isomorphie
problem: Sind G und H isomorph? Ungelöst, d.h. kein polynomieller Algorithmus (polynomielle Laufzeit in den Kanten) bekannt.
 - $-O(n^2 \cdot n!) \approx O(2^{n \log n})$ trivial
 - schnellster bekannter Algorithmus für Graphenisomorphie: Babai (2025) Laufzeit $O(2^{\text{poly}(\log n)})$
- Ungelöstes Problem: Wenn ich $\varphi: V(G) \to V(H)$ finde, sodass $G x \cong H \varphi(x) \forall x \in V(G)$ gilt, ist dann $G \cong H$. (Außer im Fall der Graphen mit 2 Punkten, die in G verbunden und in H nicht verbunden sind.)
 - andere Formulierung: G Graph, betrachte Multimenge M aller Graphen G-x, $x \in V(G)$. Behauptung: G ist der einzige Graph mit dieser Multimenge (mit Wiederholung) an Teilgraphen, falls $|V(G)| \ge 3$.
 - Name: Graph Reconstruction Problem (scheint offensichtlich zu gelten)
- Ein Isomorphismus von G nach G heißt Automorphismus. Die Menge aller Ismorphismen eines Graphen bildet seine Automorphismengruppe. Jede existente Gruppe ist die Automorphismengruppe eines Graphen.

Nicht isomorphe einfache ungerichtete Graphen:

• n = 1:

• n = 4: 11 Graphen

Wie lange dauert die Erzeugung:

- $2^{\binom{n}{2}} \cdot n! \cdot n^2$ (alle probieren und jeweils Isomorphietest machen)
- Besser: 2^{n-1}
 - Idee: Kanonische Repräsentation: den aller isomorphen Graphen, dessen Adjazenzmatrix als Binärzahl minimal ist
 - Dann kann man bei jedem Graphen unabhängig von anderen Graphen nachtesten, ob es sich bereits um die kanonische Repräsentation handelt.
 - Bemerkung: Es ist im Mittel recht einfach zu testen, ob der Graph die kanonische Repräsentation darstellt (indem man durch Zeilen- oder Spaltenpermutationen versucht, die Binärzahl zu verkleinern). Im Extremfall müssen dennoch alle Spalten- und Zeilenpermutationen getestet werden, dies tritt aber selten auf. Der Algorithmus taugt daher nur zur Findung aller nicht-isomorphen einfachen ungerichteten Graphen gleichzeitig. Insbesondere wird aus einer Repräsentation nicht die kanonische erzeugt, sonst wäre hierdurch ein einfacher Isomorphietest möglich.

Beispiel 1.2

Automorphismengruppe von G: Aut(G)

•

|Aut(Graph, der Würfel repräsentiert)| = 48.

|Aut(3 Punkte in Reihe)| = |Aut(2 Punkte in Reihe)| = 2.

Für foglenden Graph G

ist |V(G)| > 1 aber $|\operatorname{Aut}(G)| = 1$.

Satz 1.4

Es gibt immer mindestens

$$\frac{2^{\binom{n}{2}}}{n!}$$

viele nicht-isomorphe einfache ungerichtete Graphen und mindestens

$$\frac{4^{\binom{n}{2}}}{n!}$$

viele nicht isomorphe einfache gerichtete Graphen auf n Knoten.

Beweis: Betrachte K_n . Dieser hat $\binom{n}{2}$ viele Kanten. Jede Teilmenge der Kantenmenge liefert einen Graphen. Dies sind $2^{\binom{n}{2}}$ Graphen. Maximal n! (Anzahl der Permutationen) davon sind isomorph \implies Es gibt mindestens $\frac{2^{\binom{n}{2}}}{n!}$ nicht isomorphe einfache Graphen.

Analog
$$\frac{4\binom{n}{2}}{n!} = \frac{2^{2\binom{n}{2}}}{n!}$$
 im gerichteten Fall.

Man kann zeigen: Es gibt genau $(1 + o(1)) \cdot \frac{2^{\binom{n}{2}}}{n!}$ einfache ungerichete bzw. $(1 + o(1)) \cdot \frac{4^{\binom{n}{2}}}{n!}$ einfache gerichtete Graphen.

"Fast alle Graphen haben eine triviale Automorphismengruppe"

Definition 1.9: Kantenzug, Weg

Ein Kantenzug in einem GRaphen ist eine Folge $x_1, e_1, x_2, e_2, \dots, e_{k-1}, x_k$ mit $k \ge 1$ und $e_i = \{x_i, x_{i+1}\} \in E(G)$ bzw. $e_i = (x_i, x_{i+1}) \in E(G)$. Falls $x_1 = x_k$, so ist der Kantenzug geschlossen.

Falls in einem Kantenzug $x_1, e_1, \ldots, e_{k-1}, x_k$ alle Knoten paarweise verschieden sind, so ist der Graph $P = (\{x_1, \ldots, x_k\}, \{e_1, \ldots, e_{k-1}\})$ ein Weg.

Notation 1.7 Sprachgebrauch

P ist ein $x_1 - x_k$ -Weg, P verbindet x_1 mit x_k . x_1, x_k werden die Endknoten von P genannt. Alle anderen Knoten, d.h. x_2, \ldots, x_{k-1} sind die inneren Knoten von P.

Für $x, y \in V(P)$ ist $P_{[x,y]}$ der eindeutige Teilweg in P mit Endknoten x und y.

Lemma 1.5

Es gibt genau dann einen x - y-Weg in einem Graphen, wenn es einen x - y-Kantenzug gibt.

Beweis aus AlMa I: . • Per Definition ist ein Weg ein Kantenzug

• Ein Kantenzug kann durch entfernen der Kanten und Knoten zwischen sich wiederholenden Knoten zu einem Weg verkürzt werden.

Definition 1.10: Kreis

Falls in einem geschlossenen Kantenzug $x_1, e_1, x_2, \ldots, e_k, x_1$ gilt, dass $x_i \neq x_j$ für $1 \leq i < j \leq k$ so ist der Graph $(\{x_1, \ldots, x_k\}, \{e_1, \ldots, e_k\})$ ein *Kreis*, falls $k \geq 3$, im ungerichteten Fall bzw. $k \geq 2$ im gerichteten Fall. Die *Länge* eines Kreises oder WEges ist die Anzahl seiner Kanten.

Vorlesung vom 15.10.2024

Lemma 1.6

Es sei G ein ungerichteter einfacher Graph, in dem jeder Knoten Grad $\geq k$ hat. Dann enthält G einen Weg der Länge $\geq k$. Falls $k \geq 2$ so enthält G einen Kreis der Länge $\geq k+1$.

Beweis: Sei P ein längster Weg in G, x einer seiner Endknoten.

- \implies alle Nachbarn von v liegen in $V(P) \setminus \{x\}$
- $\implies |\delta(x)| \le |V(P)| 1$, es gilt $k \le |\delta(x)|$
- $\implies |V(P)| 1 \ge k$ d.h. Länge des Weges ist $\ge k$

Wähle $a \in V(P)$, sodass $\{x, a\} \in E(P)$ und $P_{[a,x]}$ ist längstmöglich.

$$\implies P_{[a,x]} + \{x,a\}$$
 bilder Kreis der Länge $\ge k+1$

Sei E Familie von Mengen oder Graphen. $F \in E$ ist minimales Element, falls keine echte Teilmenge bzw. kein echter Teilgraph von F in E enthalten ist. analog: maximale Elemente

Definition 1.11: zusammenhängend

Sei G einungerichteter Graph. G heißt zusammenhängend, falls es für je zwei Knoten $x,y\in V(G)$ einen x-y-Weg in G gibt.

Die maximalen zusammenhängenden Teilgraphen von G heißen Zusammenhangskomponenten. Ein Knoten $x \in V(G)$ heißt Artikulationsknoten (trennender Knoten), falls G-x mehr Zusammenhangskomponenten hat als G hat.

Eine Kante $e \in E(G)$ heißt Brücke, falls G - e mehr Zusammenhangskomponenten als G hat.

Satz 1.7

- (a) Ein ungerichteter Graph G ist genau dann zusammenhängend, falls $\delta(X) \neq \emptyset \, \forall \emptyset \subseteq X \subseteq V(G)$.
- (b) Sei G gerichteter Graph und $r \in V(G)$. Genau dann gibt es einen r x-Weg für jedes $x \in V(G)$, falls $\delta^+(X) \neq \emptyset \ \forall X \subsetneq V(G)$ mit $r \in X$.

Beweis: Prop 3.13 und 3.14 in AlMa I

Definition 1.12

- Ein ungerichteter einfacher Graph heißt Wald, falls er keinen Kreis enthält.
- Ein Baum ist ein zusammenhängender Wald.
- Ein spannender Baum ist ein spannender Teilgraph, der Baum ist.
- Ein Blatt ist ein Knoten vom Grad 1 in einem Baum.

Frage 1

Wie viele nicht-isomorphe Bäume auf n Knoten gibt es?

Solution

Bäume liegen meist nicht in der trivialen Automorphismengruppe (Gibt es zum Beispiel 2 Blätter an einem Knoten, kann man diese aufeinander mappen).

Proposition 1.8

Jeder Baum mit mindestens zwei Knoten hat mindestens 2 Blätter.

Beweis: AlMa I □

Satz 1.9

Sei G ungerichteter einfacher Graph auf n Knoten. Dann sind äquivalent:

- (a) G ist ein Baum
- (b) zwischen je 2 Knteon in G gibt es einen eindeutigen Weg
- (c) G ist minimaler Graph mit Knotenmenge V(G) und $\delta(X) \neq \emptyset \forall \emptyset \subsetneq X \subsetneq V(G)$.
- (d) G ist minimaler zusammenhängender Graph auf V(G)
- (e) G ist maximaler kreisfreier Graph
- (f) G hat n-1 Kanten und ist kreisfrei
- (g) G hat n-1 Kanten und ist zusammenhängend.

Beweis: Satz 3.20 in AlMa I

Korollar 1.10

Ein Wald auf n Knoten mit k Zusammenhangskomponenten hat n-k Kanten. (Lemma 3.19b AlMa I)

Beweis: Jede Zusammenhangskomponente ist Baum mit n_i Knoten $i=1,\ldots,k$. Diese haben zusammen

$$\sum_{i=1}^{k} (n_i - 1) = -k + \sum_{i=1}^{k} n_i = -k + n$$

Kanten.

Korollar 1.11

Ein ungerichteter Graph ist genau dann zusammenhängend, wenn er einen spannenden Baum enthält.

Beweis: Wegen (d) \implies (a) in Satz 1.9.

Für einen Digraphen G ist der zugrunde liegende ungerichtete Graph derjenige Graph G', den man aus G erhält, indem man jedes $(x,y) \in E(G)$ durch $\{x,y\} \in E(G')$ ersetzt (parallele Kanten können entstehen). Umgekehrt heißt G Orientierung von G'.

Ein Digraph heißt zusammenhängend, falls sein zugrundeliegender ungerichteter Graph zusammenhängend ist. Ein Digraph heißt Branching, falls er keine Kreise enthält und $|\delta^-(x)| \le 1 \,\forall x \in V(G)$.

Abbildung 1.4: kein Kreis

Der einem Branching zugrunde liegende ungerichtete Graph ist ein Wald.

Eine Arboreszenz ist ein zusammenhängendes Branching. Der einer Arboreszent zugrunde liegende ungerichtete Graph ist ein Baum \implies Bei n Knoten hat die Arboreszent n-1 Kanten \implies es gibt genau einen Knoten r mit $\delta^-(r) = \emptyset$. Der Knoten r heißt Wurzel der Arboreszenz. Ein Knteon v mit $\delta^+(v) = \emptyset$ heißt Blatt.

Satz 1.12

Sei G Digraph mit n Knoten und $r \in V(G)$. Dann sind äquivalent:

- (a) G ist Arboreszenz mit Wurzel r
- (b) G ist Branching mit n-1 Kanten und $\delta^-(r) = \emptyset$
- (c) G hat n-1 Kanten und jeder Knoten ist von r aus erreichbar
- (d) Jeder Knoten ist von r aus erreichbar, aber das Entfernen einer beliebigen Kante zerstört diese Eigenschaft.
- (e) G ist kantenminimaler Graph mit $\delta^+(X) \neq \emptyset \forall X \subseteq V(G), r \in X$
- (f) $\delta^-(r) \neq \emptyset$ und $\forall v \in V(G)$ gibt es eindeutigen r v-Kantenzug
- (g) $\delta^-(v) = \emptyset$ und $|\delta^-(v)| = 1 \,\forall v \in V(G) \setminus \{r\}$ und G enthält keinen Kreis.

Beweis: • (a) \Longrightarrow (b) zusammenhängendes Branching, zugrunde liegender Graph ist Baum \Longrightarrow $\delta^-(r) = \emptyset$, n-1 Kanten.

- (b) \implies (c) n-1 Kanten, $\forall v \neq r$ gilt $|\delta^-(v)| = 1 \implies$ "verfolge" rekursiv die eingehenden Kanten zurück. Die Folge muss in r enden und wir haben einen r-v-Weg gefunden.
- (c) \Longrightarrow (d) Folgt aus Satz 1.9 (d) \Longleftrightarrow (g)
- (d) \implies (e) Folgt aus Satz 1.7 (b)
- (e) \Longrightarrow (f) $\delta^-(r) = \emptyset$ folgt aus Kantenminimalität, Satz 1.7 $\Longrightarrow r v$ -Kantenzug existiert $\Longrightarrow r v$ -Weg. Sei P ein r v-Weg. Sei Q ein anderer r v-Kantenzug $\Longrightarrow Q$ enthält mindestens eine Kante, die nicht in P enthalten ist. Sei e letzte Kante entlang des r v-Kantenzugs Q, die nicht in P liegt. $\Longrightarrow e$ kann entfernt werden ohne die Eigenschaft in (e) zu zerstören.
- (f) \Longrightarrow (g) $\forall v \in V(G) \setminus \{r\}$ ist $|\delta^-(v)| \ge 1$, da sonst v von r nocht erreichbar wäre. Annahme: $|\delta^-(v)| \ge 2 \Longrightarrow \exists (a,v), (b,r). \exists r-a$ -Weg und r-b-Weg. $\Longrightarrow \exists 2$ veschiedene r-v-Kantenzüge (Alternative: $|\delta^{-1}(v)| = 1 \, \forall v \in V(G) \setminus \{r\}$, Kreis $\Longrightarrow r$ ist nicht enthalten, d.h. $\nexists r - v$ -Kantenzug für einen Knoten des Kreises)
- (g) \implies (a) Nach Definition ist G Branching mit n-1 Knoten. Satz 1.9 (f) \implies (G) Arboreszenz.

Übung: Reihenfolge ändern und Implikationen zeigen

Bäume und Arboreszenzen

Kapitel 3

Kürzeste Wege

Netzwerkflüsse

Kostenminimale Flüsse

NP-Vollständigkeit