

LMU Munich winter term 2024/2025

Thomas Gabor Claudia Linnhoff-Popien

The Vacuum World running example #1 Heward function: +1 if dirty room B=> States after we claimed after are good

Russel, Norvig. Artificial Intelligence – A Modern Approach. Third Edition. 2016. Computational Intelligence, winter term 2024/2025, LMU Munich

232

Resource/Stock Trading

Personal Life Assistant

Third: Where do we get a state value function?

(finding policies)

Theorem 2 (Bellman equation). Let (S, A, T, P, R) be a Markov decision process. Let $R: S \times A \to T$ be the expected reward of executing an action in a given state, i.e., $R(s,a) = \mathbb{E}[R(s,a,s')]$ where $s' \sim P(s'|s,a)$. Let $\gamma \in [0;1) \subseteq \mathbb{R}$ be a temporal discount factor.

The expected reward of a policy π being executed starting from state s is given via π 's value function

$$V^{\pi}(s) = R(s, \pi(s)) + \gamma \cdot \sum_{s' \in \mathcal{S}} P(s'|s, \pi(s)) \cdot V^{\pi}(s').$$

The value function of the optimal policy π^* is given via

$$V^{\pi^*}(s) = \max_{a \in \mathcal{A}} \left(R(s, a) + \gamma \cdot \sum_{s' \in \mathcal{S}} P(s'|s, a) \cdot V^{\pi^*}(s') \right).$$

Theorem 2 (Bellman equation). Let (S, A, T, P, R) be a Markov decision process. Let $R: S \times A \to T$ be the expected reward of executing an action in a given state, i.e., $R(s,a) = \mathbb{E}[R(s,a,s')]$ where $s' \sim P(s'|s,a)$. Let $\gamma \in [0;1) \subseteq \mathbb{R}$ be a temporal discount factor.

The expected reward of a policy π being executed starting from state s is given via π 's value function

$$V^{\pi}(s) = R(s, \pi(s)) + \gamma \cdot \sum_{s' \in \mathcal{S}} P(s'|s, \pi(s)) \cdot V^{\pi}(s').$$

The value function of the optimal policy π^* is given via

$$V^{\pi^*}(s) = \max_{a \in \mathcal{A}} \left(R(s, a) + \gamma \cdot \sum_{s' \in \mathcal{S}} P(s'|s, a) \cdot V^{\pi^*}(s') \right).$$

Algorithm 7 (optimal policy). Let $V^*: \mathcal{S} \to \mathcal{T}$ be the *true value function* of a Markov decision process $(\mathcal{S}, \mathcal{A}, \mathcal{T}, P, R)$. The optimal policy $\pi^*: \mathcal{S} \to \mathcal{A}$ is given via

$$\pi^*(s_t) = \operatorname*{arg\,max}_{a \in \mathcal{A}} V^*(s')$$

where $s' \sim P(s'|s_t, a)$ is the follow-up state when executing action a in state s_t .

Let's try that!

The Vacuum World

The Basic Grid World

Resource/Stock Trading

Personal Life Assistant

Putting it together...

Definition 11 (training of a neural network). Let $\mathcal{N}: \mathbb{R}^p \to \mathbb{R}^q$ be a neural network with n weights $\overline{\mathcal{N}} = \mathbf{w} + \mathbf{b} \in \mathbb{R}^n$ as in Definition 8. Note that thus $|\overline{\mathcal{N}}| = n$. Let $\tau: \mathbb{R}^n \to \mathbb{R}$ be a target function as in Definition 2. Note that thus $\mathcal{T} = \mathbb{R}$. The process of optimizing the network weights $\overline{\mathcal{N}}$ so that $\tau(\overline{\mathcal{N}})$ becomes minimal is called training.

• Let $\mathbb{T} = \{(\mathbf{x}_i, \mathbf{y}_i) : i = 1, ..., N\}$ be a set of N points of training data, where $\mathbf{x}_i \in \mathbb{R}^p, \mathbf{y}_i \in \mathbb{R}^q$ for all i. If τ is of the form

$$au(\overline{\mathcal{N}}) = \sum_{i=1}^N (\mathcal{N}(\mathbf{x}_i) - \mathbf{y}_i)^2$$

or a similar form, the process of training $\mathcal N$ is called supervised learning.

Definition 11 (training of a neural network). Let $\mathcal{N}: \mathbb{R}^p \to \mathbb{R}^q$ be a neural network with n weights $\overline{\mathcal{N}} = \mathbf{w} + \mathbf{b} \in \mathbb{R}^n$ as in Definition 8. Note that thus $|\overline{\mathcal{N}}| = n$. Let $\tau: \mathbb{R}^n \to \mathbb{R}$ be a target function as in Definition 2. Note that thus $\mathcal{T} = \mathbb{R}$. The process of optimizing the network weights $\overline{\mathcal{N}}$ so that $\tau(\overline{\mathcal{N}})$ becomes minimal is called training.

Let T = {(x_i, y_i) : i = 1,...,N} be a set of N points of training data, where x_i ∈ R^p, y_i ∈ R^q for all i.
 If τ is of the form

$$au(\overline{\mathcal{N}}) = \sum_{i=1}^N (\mathcal{N}(\mathbf{x}_i) - \mathbf{y}_i)^2$$

or a similar form, the process of training $\mathcal N$ is called supervised learning.

• Let $(\mathcal{O}, \mathcal{A}, \mathcal{T}, e, R)$ be a decision process (cf. Definition 9) for which policy $\pi_{\overline{\mathcal{N}}}: \mathcal{O} \to \mathcal{A}$ yields (possibly randomized or non-deterministic) rewards $\langle r_t \rangle_{t \in \mathcal{Z}}$. Note that $\pi_{\overline{\mathcal{N}}}$ in some way calls \mathcal{N} to produce its output, for example

$$\pi_{\overline{\mathcal{N}}}(o) = \mathcal{N}(o)$$

for $\mathcal{O} \subseteq \mathbb{R}^p$, $\mathcal{A} \subseteq \mathbb{R}^q$ or if suitable translations exist.

If τ is of the form

$$au(\overline{\mathcal{N}}) = -\mathbb{E}\Big[\sum_{t \in \mathcal{Z}} \gamma^t \cdot r_t\Big]$$

or a similar form, the process of training ${\mathcal N}$ is called policy-based reinforcement learning.

• Let (S, A, T, P, R) be a Markov decision process (cf. Definition 10) for which we run policy $\pi_{\overline{N}}: S \to A$. Note that $\pi_{\overline{N}}$ in some way calls N to produce its output, for example

$$\pi_{\overline{\mathcal{N}}}(s) = rg \max_{a \in \mathcal{A}} \mathbb{E}_{s' \sim P(s'|s,a)} \left[\mathcal{N}(s') \right]$$

for $S \times A \subseteq \mathbb{R}^p$ with q = 1 or if suitable translations exist.

Let $R: \mathcal{S} \times \mathcal{A} \to \mathcal{T}$ be the expected reward of executing an action in a given state, i.e., $R(s,a) = \mathbb{E}[R(s,a,s')]$ where $s' \sim P(s'|s,a)$. Let $T: \mathcal{S} \times \mathcal{A} \to \mathcal{S}$ be a (possibly randomized or non-deterministic) transition function, i.e., T(s,a) = s' where $s' \sim P(s'|s,a)$. Let $\gamma \in [0;1]$ be a discount factor. Let $V_{\pi_{\overline{\mathcal{N}}}}: \mathcal{S} \to \mathbb{R}$ be the total discounted reward that policy $\pi_{\overline{\mathcal{N}}}$ generates when starting in state s, i.e.,

$$V_{\pi_{\overline{\mathcal{N}}}}(s) = R(s, \pi_{\overline{\mathcal{N}}}(s)) + \gamma \cdot V_{\pi_{\overline{\mathcal{N}}}}(T(s, \pi_{\overline{\mathcal{N}}}(s))).$$

Note that for $\gamma < 1$ we can abort this recursive computation once the effect of the further recursive part is sufficiently small. Note that we may also have a fixed recursion depth or that $T(s^{\dagger}, \underline{\ })$ might not be defined for all $s^{\dagger} \in \mathcal{S}$, which are then called terminal states and also cause the recursion to end.

Let $\mathbb{S}=\{\mathbf{s}_i:i=1,...,N\}\subseteq S$ be a set of training states. If τ is of the form

$$au(\overline{\mathcal{N}}) = -rac{1}{N} \cdot \sum_{i=1}^{N} V_{\pi_{\overline{\mathcal{N}}}}(\mathbf{s}_i)$$

or a similar form, the process of training ${\mathcal N}$ is called value-based reinforcement learning.

Reinforcement Learning

Variations of Value Functions

name	network	policy
policy-based	$\mathcal{N}:\mathcal{S} o\mathcal{A}$	$\pi_{\overline{\mathcal{N}}}(s) = \mathcal{N}(s)$
value-based (V)	$\mathcal{N}:\mathcal{S} o\mathbb{R}$	$\pi_{\overline{\mathcal{N}}}(s) = \operatorname{argmax}_{a \in \mathcal{A}} \mathbb{E}_{s' \sim P(s' s,a)} \left[\mathcal{N}(s') \right]$
value-based (Q)	$\mathcal{N}: \mathcal{S} imes \mathcal{A} ightarrow \mathbb{R}$	$\pi_{\overline{\mathcal{N}}}(s) = \operatorname{argmax}_{a \in \mathcal{A}} \mathcal{N}(s, a)$

...

On-Policy vs. Off-Policy Learning

The Goal Class Hierarchy

Goal Class 5: State Values

Goal Class 4: Rewards and Costs

Goal Class 3: Goal Direction

Goal Class 2: Goal Valuation

Goal Class 2.5: Multiple Goal Valuations

Goal Class 1: Goal Predicate

Goal Class 1.5: Multiple Goal Predicates

Goal Class 0: No Goals

The Goal Class Hierarchy — taking a step back

Partial Observability

POMDPs

The Goal Class Hierarchy

Goal Class 5: State Values

Goal Class 4: Rewards and Costs

Goal Class 3: Goal Direction

Goal Class 2: Goal Valuation

Goal Class 2.5: Multiple Goal Valuations

Goal Class 1: Goal Predicate

Goal Class 1.5: Multiple Goal Predicates

Goal Class 0: No Goals

https://stablediffusionweb.com

Multi-Agent Applications

https://stablediffusionweb.com/prompts

https://aws.amazon.com/de/solutions/
case-studies/amazon-robotics-case-study/

https://aaai.org/Conferences/AAAI-19/invited-speakers/
Speaker: Cynthia Breazeal
Title: "Living and Flourishing with AI"

Multi-Agent Systems

Definition 12 (multi-agent system). Let $G = \{G^{[1]},...,G^{[N]}\}$ be a set of |G| = N agents with observation spaces $\mathcal{O}^{[i]}$ and action spaces $\mathcal{A}^{[i]}$ controlled by policies $\pi^{[i]}$ for all i = 1,...,N, respectively. The multi-agent system G then takes a joint action $a \in \mathcal{A}$ with $\mathcal{A} = \mathcal{A}^{[1]} \times ... \times \mathcal{A}^{[N]}$ after making a joint observation $o \in \mathcal{O}$ with $\mathcal{O} = \mathcal{O}^{[1]} \times ... \times \mathcal{O}^{[N]}$ based on the joint policy $\pi(o^{[1]},...,o^{[N]}) = (a^{[1]},...,a^{[N]})$ where $a^{[i]} = \pi^{[i]}(o^{[i]})$ for all i.

Multi-Agent Systems as a Paradigm for Distributed Programming

Multi-Agent Systems as a Paradigm for Distributed Programming

```
GreetingRobot(\_) = good\_morning.\overline{morning}.GreetingRobot("happy") + morning.GreetingRobot("happy")
```

```
HappyMultiAgentSystem = GreetingRobot("sad") \mid \overline{good\_morning}.GreetingRobot("angry")
```

Swarm Intelligence

local programming => emergent behavior