Light C. Read (H 13.1 Homework Pr 11-350)
$$\frac{1}{\sqrt{6}} \sqrt{100}$$
 $\frac{1}{\sqrt{6}} \sqrt{100}$ $\frac{3}{\sqrt{6}} \sqrt{100}$ $\frac{$

(9)
$$\int 4x^{3} \cos y$$
 on $1 \le x \le 2$, $0 \le y \le \frac{\pi}{2}$ = $\int \frac{\pi}{4}x^{3} \cos y$ dy $\int \frac{\pi}{2}x^{3} \sin y$ | $\frac{\pi}{2}$ = $\int \frac{\pi}{4}x^{3} \cos y$ dy $\int \frac{\pi}{2}x^{3} \sin y$ | $\frac{\pi}{2}$ = $\int \frac{\pi}{2}x^{3}(1) - \frac{\pi}{2}x^{3}(0)$

2] $\int \frac{\pi}{2}x^{3} dx$, $\int \frac{\pi}{2}x^{3} = \frac{\pi}{2}x^{3}(1) - \frac{\pi}{2}x^{3}(0)$

21) $\int \int \frac{\pi}{2}x^{3} + \frac{\pi}{2}x^{3} = \frac{\pi}{2}x^{3} = \frac{\pi}{2}x^{3} = \frac{\pi}{2}x^{3}$

21) $\int \int \frac{\pi}{2}x^{3} + \frac{\pi}{2}x^{3} = \frac{\pi}{2}x^{3} = \frac{\pi}{2}x^{3} = \frac{\pi}{2}x^{3} = \frac{\pi}{2}x^{3}$

22) $\int \frac{\pi}{2}x^{3} + \frac{\pi}{2}x^{3} = \frac{\pi}{$

31)
$$\int \frac{x}{(1+x^2)^2} dx$$
 or $0 \le y \le q$, $1 \le y \le 2$

1] $\int \frac{1}{x} \frac{x}{(1+x^2)^2} dy$ $\Rightarrow \|y| = 1 + xy$ $\therefore \int_{1+x}^{1+2x} \frac{1}{y^2} dy$ $\Rightarrow \|y| = 1 + xy$ $\therefore \int_{1+x}^{1+2x} \frac{1}{y^2} dy$ $\Rightarrow \|y| = 1 + xy$

2] $\int \frac{1}{1+x} - \frac{1}{1+2x} dx$ $\ln(1+x) - \frac{1}{2} \ln(1+2x) \Big|_{q}^{q} = \ln(5) - \frac{1}{2} \ln(7)$
 $= \ln(5) - \ln(7^{\frac{1}{2}}) = \ln(5) - \ln(3) = \frac{1}{2} \ln(\frac{5}{3})$

33) $\int (x,y) = e^{-y}$ $0 \le x \le 6$, $0 \le y \le \ln 2$ $\Rightarrow \int_{0}^{2} e^{-y} dx$ dy

1] $\int_{0}^{6} e^{-y} dx$ $\Rightarrow xe^{-y} \Big|_{0}^{6} = \frac{1}{6} e^{-y}$

2] $\int_{0}^{6} e^{-y} dx$ $\Rightarrow xe^{-y} \Big|_{0}^{6} = \frac{1}{6} e^{-y}$

Anti $\int (x,y)$ on $0 \le x \le 6$, $0 \le y \le \ln 2$ $\int (x,y) = \frac{3}{6} \ln 2 = \frac{1}{2(\ln 2)}$

35) Squared Distance ($x \le x \le 2$, $0 \le y \le 2$) and ($0,0$)

 $\int = (x_2 - x, y^2 + (y_2 - y_1)^2) d = \sqrt{(-x)^2 + (-y)^2}$ $\int_{0}^{2} = (-x)^2 + (-y)^2$
 $\int_{0}^{2} e^{-y} dy$ $\Rightarrow y \ge \frac{1}{3} y^3 \Big|_{0}^{2} = \frac{1}{2} \int_{0}^{2} 2x^2 + \frac{8}{3} dx$ $\Rightarrow \frac{1}{3} x^3 + \frac{8x}{3} \Big|_{0}^{2}$
 $\int_{0}^{2} (x^2 + y^2) dy$ $\Rightarrow y \ge \frac{1}{3} x^3 + \frac{8x}{3} \Big|_{0}^{2}$
 $\int_{0}^{2} (x^2 + y^2) dy$ $\Rightarrow y \ge \frac{1}{3} x^3 + \frac{8x}{3} \Big|_{0}^{2}$
 $\int_{0}^{2} (x^2 + y^2) dy$ $\Rightarrow y \ge \frac{1}{3} x^3 + \frac{8x}{3} \Big|_{0}^{2}$
 $\int_{0}^{2} (x^2 + y^2) dy$ $\Rightarrow y \ge \frac{1}{3} x^3 + \frac{8x}{3} \Big|_{0}^{2}$
 $\int_{0}^{2} (x^2 + y^2) dy$ $\Rightarrow y \ge \frac{1}{3} x^3 + \frac{8x}{3} \Big|_{0}^{2}$
 $\int_{0}^{2} (x^2 + y^2) dy$ $\Rightarrow y \ge \frac{1}{3} x^3 + \frac{8x}{3} \Big|_{0}^{2}$
 $\int_{0}^{2} (x^2 + y^2) dy$ $\Rightarrow y \ge \frac{1}{3} x^3 + \frac{8x}{3} \Big|_{0}^{2}$
 $\int_{0}^{2} (x^2 + y^2) dy$ $\Rightarrow y \ge \frac{1}{3} x^3 + \frac{8x}{3} \Big|_{0}^{2}$
 $\int_{0}^{2} (x^2 + y^2) dy$ $\Rightarrow y \ge \frac{1}{3} x^3 + \frac{8x}{3} \Big|_{0}^{2}$
 $\int_{0}^{2} (x^2 + y^2) dy$ $\Rightarrow y \ge \frac{1}{3} x^3 + \frac{1}{3$