Transformation de Fourier-Plancherel

1 Rappel

Par densité de la classe de Schwartz dans L^2 , on peut étendre la transformation de Fourier à L^2 .

Théorème 1. Théorème de Plancherel

La transformation de Fourier $F: L^1 \to L^\infty$ se prolonge de façon unique comme une application $F: L^2 \to L^2$, continue, linéaire et unitaire, i.e. $\forall f, g \in L^2$,

$$\langle F(f), F(g) \rangle = \langle f, g \rangle$$
 et $||F(f)||_2 = ||f||_2$.

De plus, elle est inversible et

$$F^{-1} = \bar{F} : f \mapsto \bar{F}(f)(x) = \int f(\nu) e^{+2i\pi\nu x} dx.$$

2 Exercices

Exercice 1.

a) Calculer les transformées de Fourier des fonctions suivantes

$$f(x) = e^{-|x|}, \quad g(x) = \frac{1}{1+x^2}, \quad h(x) = \frac{\sin(x)}{x}$$

b) Calculer l'intégrale

$$\int_{\mathbb{R}} \left(\frac{\sin(x)}{x} \right)^2 dx$$

Exercice 2.

- a) Soit a > 0. Calculer la transformée de Fourier de la fonction $x \mapsto xe^{-ax} \mathbf{1}_{\mathbb{R}_+}(x)$.
- b) En déduire la transformée de Fourier de la fonction $x\mapsto |x|e^{-a|x|}$.
- c) Calculer l'intégrale

$$\int_{\mathbb{R}} \frac{x^2}{(x^2 + a^2)^2} \, dx.$$

Indication : on pourra également calculer la transformée de Fourier de $x \mapsto e^{-a|x|}$.