Αλγόριθμοι και πολυπλοκότητα: 1η σειρά γραπτών ασκήσεων

Ονοματεπώνυμο: Τσαγκαράκης Στυλιανός **ΑΜ:** 03115180

Άσκηση 1: Ασυμπτωτικός Συμβολισμός, Αναδρομικές Σχέσεις

(a)

Συνάρτηση	Τάξη Μεγέθους
n^2	$\Theta(n^2)$
$2^{(\log_2 n)^4}$	n^4 = $\Theta(n^4)$
$\frac{\log(n!)}{\log(n)^3}$	$\Theta(rac{n}{log^2n})$ γιατί $\log(n!) = \Theta(n\log n)$
$n*2^{2^{2^{100}}}$	$cn=\Theta(n)$
$\log \binom{n}{\log n}$	$\Theta(\log^2 n)$ γιατί $\left(rac{n}{k}^k < \loginom{n}{k} < rac{ne}{k}^k ight)$
$\frac{\log^2 n}{\log \log n}$	$> rac{\log^2 n}{\log n} = \Omega(\log n) \subset O(poly(\log n))$
$\log^4 n$	$=\Theta(poly(\log n))=O(\sqrt{n})$ $orall arepsilon>0:\log^d n=O(n^arepsilon)$ για $arepsilon=rac{1}{2}$
$(\sqrt{n})!$?
$\binom{n}{6}$	$=rac{n1}{6!(n-6)!}=\Theta(n^6)$
$\frac{n^3}{\log^8 n}$	$\leq rac{n^3}{\sqrt{n}} = \Theta(n^{rac{5}{2}})$ ισχύει για $rac{n^3}{\log^{10} n}$
$(\log_2 n)^{\log_2 n}$	$=\Theta(n^{\log\log n})$
$\log\binom{2n}{n}$	$\leq \log\left(rac{(2n)^{2n}}{n^n(2n-n)^{2n-n}} ight) = \log 2^{2n} = \Theta(n)$ επίσης: $inom{n}{k} \leq rac{n^n}{k^2(n-k)^{n-k}}$
$n\sum_{k=0}^{n} \binom{n}{k}$	$O(n2^n)$
$(\sqrt{n})^{\log_2 log_2(n!)}$	$\Theta(n^{logn})$
$\sum_{k=1}^n k 2^{-k}$	$\Theta(1)$ αφού αποδεικνύεται ότι $2^{-k} = 2 - rac{n+2}{2^n}$
$\sum_{k=1}^n k2^k$	$2(1+(n-1)2^n)=O(n2^n) \ \sum_{i=1}^n=\Theta(2^n)$

Τελικά έχουμε:

$$egin{aligned} \sum_{k=1}^n k 2^{-k} &\subseteq \logigg(rac{n}{\log n}igg) \subseteq rac{\log^2 n}{\log\log n} = \log^4 n \subseteq rac{\log n!}{(\log n)^3} \subseteq \logigg(rac{2n}{n}igg) = n*2^{2^{2^{100}}} = \Theta(n) \subseteq n^2 \subseteq rac{n^3}{\log^8 n} \subseteq igg(rac{n}{6}igg) \subseteq \log_2 n = \Thetaigg(rac{\log\log^d n}{n}igg) \subseteq 2^{\log_2 4} = \Theta(n^{\log^3 n}) \subseteq 2^{\log_2 4} = \Theta(n^{\log^3 n}) \subseteq 2^{\log_2 4} = n = 2^{n} + 2^{n} = n = 2^{n} + 2^{n} = 2^{n} = 2^{n} + 2^{n} = n = 2^{n} = 2^{n$$

(B)

- 1. $T(n) = 2T(\frac{n}{3}) + n\log n$ a = 2, b = 3 $2f(\frac{n}{3}) < f(n) \Rightarrow 2\frac{n}{3}\log\frac{n}{3} < n\log n$ $f(n) = n\log n = \Theta(n\log n)$ Περίπτωση 3: $\Theta(n\log n)$
- 2. $T(n) = 3T(\frac{n}{3}) + n\log n$ Με βάση το δέντρο αναδρομής βγαίνει το εξής: $T(n) = 3T(\frac{n}{3}) + n\log n$ $T(\frac{n}{3}) = 3T(\frac{n}{9}) + \frac{n}{3}\log\frac{n}{3}\dots T(\frac{n}{3^k}) = T(1) = \frac{n}{3^k}\log\frac{n}{3^k}$ όπου $k = \log_3 n$ άρα $T(n) = \sum_{i=0}^k n\log\frac{n}{3^k}$ άρα $T(n) = n\log_3 n(\log n \log_3 n)$ και $\log_3 n = \frac{\log n}{\log 3}$ οπότε τελικά: $T(n) = \Theta(n\log^2 n)$
- 3. $T(n)=4T(\frac{n}{3})+n\log n$ a=4,b=3 Περίπτωση 1 $f(n)=n\log n\Rightarrow n^{\log_3 4}\Rightarrow T(n)=\Theta(n^{\log_3 4})$
- 4. $T(n) = T(\frac{n}{2}) + T(\frac{n}{3}) + n$ Επειδή $\frac{n}{2} + \frac{n}{3} < n$ υποθέτουμε ότι $\mathbf{T}(n) = \Theta(n)$ και αποδεικνύω με δέντρο. (όμοια με 2)
- 5. $T(n) = T(\frac{n}{2}) + T(\frac{n}{3}) + T(\frac{n}{6}) + n$ Είναι $\frac{n}{2} + \frac{n}{3} + \frac{n}{6} = n$ Υποπτεύομαι ότι $Tau(n) = \Theta(n \log n)$ και αποδεικνύεται πάλι με δέντρο αναδρομής. Ύψος: $\Theta(\log n)$ Κορυφών: $\Theta(n) \frac{\mathrm{X} \rho_{\delta} \nu o\varsigma}{\mathrm{E}\pi i \pi \epsilon \delta o} = \Theta(n)$ από το 1.
- 6. $\mathrm{T}(n)=T(n^{\frac{5}{6}})+\Theta(\log n)$ Θέτω $m=\log_6 n$ Άρα $T(m)=T(\frac{5m}{6})+\Theta(m)$ Από Μ.Τ. $a=1,b=\frac{6}{5}\Rightarrow T(m)=\Theta(m)$
- 7. $T(n)=T(rac{n}{4})+n^{rac{1}{2}}$ Από Μ.Τ. $\log_b a=log_41=0, d=rac{1}{2}\Rightarrow T(n)=\Theta(n^d)=\Theta(\sqrt{n})$

<u>Άσκηση 2: Ταξινόμηση</u>

(a)

1. Βρίσκουμε το μέσο του μη ταξινομημένου πίνακα. Το κάνουμε χρησιμοποιώντας τον παρακάτω αλγόριθμο της Quick Select (όπου $k=\frac{n}{2}$ στην περίπτωσή μας):

```
quickselect_modified(arrayA, left, right, k)
  if right - left + 1 > n/k
    start = 0
    end = SZ-1
    pivot = random element of arrayA
    for each element i in arrayA
    if i <= pivot
        arrayB[start] = i //B is an array of size "SZ"
        start = start + 1
    else
        arrayB[end] = i
        end = end - 1
    //it will finally be start=end;
    arrayB[end] = pivot</pre>
```

```
if (end <= 1)
         quickselect_modified(arrayB, end+1, right, k)
else if(end >= right-1)
         quickselect_modified(arrayB, left , end-1, k)
else
         quickselect_modified(arrayB, end+1, right, k)
         quickselect_modified(arrayB, left , end-1, k)
return
```

Η παραπάνω αναδρομική συνάρτηση θα εκτελέσει τις εντολές του for loop για n φορές την πρώτη φορά, $\frac{n}{2}$ την δεύτερη φορά κοκ. Συνολικά θα τρέξει $\log k$ φορές από n στοιχεία κάθε φορά. Άρα πολυπλοκότητα $O(n\log k)$. Με οπτικοποίηση του αλγόριθμου θα έχουμε ένα δέντρο ύψους $\log k$ και n στοιχείων σε κάθε επίπεδο. Ο αλγόριθμος είναι βέλτιστος γιατί πρέπει να κατασκευάζονται κάθε φορά $\frac{n!}{\left((\frac{n}{k})! \right)^k}$ φύλλα και ύψους $\log \varphi_{\delta} \lambda \lambda \omega \nu$. Άρα ο χρόνος εκτέλεσης:

$$\geq \log rac{n!}{\left(rac{n!}{\left(rac{n}{k})!
ight)^k}} = \log n! - k\log \left(\left(rac{n}{k}
ight)!
ight) \Rightarrow \left(Stirling
ight) = \Theta(n\log k)$$

2. Γενικά η Quicksort θέλει $O(n\log n)$ στην μέση περίπτωση. Άρα ταξινομώ τους k υποπίνακες με κόστος $O(\frac{n}{k}*\log(\frac{n}{k})*k)$ δηλαδή $O(n*\log(\frac{n}{k}))$. Κάθε συγκριτικός αλγόριθμος ταξινόμησης πρέπει να έχει $\Omega(n*\log(\frac{n}{k}))$, γιατί αλλιώς θα κατασκευάζαμε πλήρη συγκριτικό αλγόριθμο ταξινόμησης $O(n\log n) = \Theta(n\log k) + O(n\log(\frac{n}{k}))$.

(B)

- Έστω ότι έχουμε ένα υποπίνακα A' του A ο οποίος περιέχει M διαφορετικά στοιχεία του A σε αύξουσα σειρά.
- Διασχίζουμε τον A και για κάθε στοιχείο που συναντάμε κάνουμε δυαδική αναζήτηση στον A' για να βρούμε με ποιό στοιχείο του A' είναι ίσο.
- Αυξάνουμε ένα Counter σε εκείνο το σημείο και βάση αυτού μπορούμε να παράξουμε μια ταξινόμηση για τον Α.
- Πολυπλοκότητα: $O(n \log M)$

Πρέπει να υπολογίσουμε τον A'. Θα χρησιμοποιήσουμε μια παραλλαγή της Mergesort.

- Χωρίζουμε τον Α στην μέση και παίρνουμε τους πίνακες A_1' και A_2' .
- Αναδρομικά υπολογίζουμε τους A_1' και A_2' , καθένας τους περιέχει το πολύ M στοιχεία.
- Συγχωνεύουμε τους A_1' και A_2' με την διαφορά οτι αν συναντήσουμε 2 ίσα στοιχεία πετάμε ο ένα.
- Ο πίνακας που προκύπτει είναι ο A'.
- Πολυπλοκότητα:

$$T(n) = 2T(\frac{n}{2}) + \Theta(M) \Rightarrow T(n) = O(M \log n)$$

Συνολική Πολυπλοκότητα: $O(n \log M + M \log n)$

Συγκεκριμένα εδώ αφού έχουμε $M = O(\log^d n)$:

$$O(n \log \log^d n) = O(d * n \log \log n) = O(n \log \log n)$$

Ουσιάστικά θέλουμε να υπολογίσουμε το πλήρθος των διαφορετικών ταξινομημένων ακολουθιών μήκους n με στοιχεία που παίρνουν τιμές στο $\{1,\ldots,M\}$, οπού $M=\max(A)$.

Έστω A_k το πλήθος των στοιχείων με τιμή k.

Αρκεί να υπολογίσουμε με πόσους τρόπους μπορούμε να αναθέσουμε τιμές από το 0 στο n, στους αριθμούς A_1, A_2, \ldots, A_M έτσι ώστε $A_1 + A_2 + \ldots + A_M = n$.

Το παραπάνω μπορεί να γίνει με $\binom{n+M-1}{n}$ τρόπους.

Άρα κάθε συγκριτικός αλγόριθμος χρειάζεται τουλάχιστον $\Omega(\log \binom{n+M-1}{n})) = \Omega(n\log M).$

Στην περίπτωση μας $M=\log^d n$ συνεπώς δεν έχουμε n διαφορετικά στοιχεία. Άρα δεν ισχύει το κάτω φράγμα του $\Omega(n\log k)$.

Παρακάτω είναι ο ψευδοκώδικας για την άσκηση:

```
merge_modified(arrayA, 1, r)
   //arrayCounter is of size M
   //where M is the max element of arrayA
    initialize arrayCounter to 0
    copy arrayA to arrayAcopy
   mergeSort(arrayA, 1, r)
   //now arrayA is A' and arrayAcopy is A
    for each element i of arrayA
       //find the position of each element of arrayA
        //in the Acount and increase counter by one
       index = binarySearch(arrayAcopy, 1, r, i)
        arrayCounter[index] = arrayCounter[index] + 1
    //Create A sorted
    for each element i of arrayA
        for each element j of arrayCounter
            j = i
mergeSort(arrayA, 1, r)
   if (1 < r)
       m = (r-1)/2
       //Sort first and second halves
       mergeSort(A, 1, m)
       mergeSort(A, m+1, r)
       merge_without_equals(A, 1, m, r)
merge_without_equals(arrayA, 1, m, r)
    arrayL = left half of arrayA
    arrayR = right half of arrayA
   while left in arrayL && right in arrayR
       if left < right</pre>
            add in arrayA the element left
            left = next element of arrayL
        else if left > right
```

```
add in arrayA the element right
    right = next element of arrayR
else //left == right
    if last element of arrayA == left || arrayA.empty()
        add left to arrayA
    left = next element of arrayL
    right = next element of arrayR

for each remaining element i in arrayL
    add i to arrayA
for each remaining element i in arrayR
    add i to arrayA
```

Άσκηση 3: Διάστημα ελάχιστου μήκος που καλύπτει όλους τους Πίνακες

(a)

```
min_diff_2(arrayA1, n1, arrayA2, n2)
    //n1 is the size of arrayA1
    //n2 is the size of arrayA2
    while i<n1 AND j<n2
        min = abs(A1[i]-A2[j]) //|A1 - A2|
        if A1[i] <= A2[j]
        i = i + 1
        else
            j = j + 1
        if i>n1 OR j>n2
        exit
```

Η παραπάνω συνάρτηση θα περάσει μια φορά τον κάθε πίνακα οπότε είμαστε στα πλαίσια της γραμμικής πολυπλοκότητας $\Rightarrow O(n)$.

Είμαστε σίγουροι ότι τα ζευγάρια που "χάνουμε" έχουν μεγαλύτερη διαφορά από αυτά που υπολογίζουμε αφού κάθε φορά προχωράμε το μικρότερο.

Απόδειξη:

Έστω $x_k \leq y_z$ και min η έως τώρα ελάχιστη διαφορά.

```
Έχουμε: orall (i,k): i \leq k 	o x_i \leq x_k και orall (z,j): z \leq j 	o y_z \leq y_j άρα |x_i-y_j| \geq |x_k-y_z| \geq min
```

(β)

```
min_diff_n(m arrays)
  while each element i_m in arraym
    min = min from i_m elements
    max = max from i_m elements
    diff = max - min
    if i1 <= i2 && i1 <= i3
        i1 = next element of array1
    else if i2 <= i1 && i2 <= i3
        i2 = next element of array2
    else if i3 <= i1 && i3 <= i2
        i3 = next element of array3
    else if ...
    ...</pre>
```

Ο παρακάτω αλγόριθμος έχει πολυπλοκότητα O(mN) όπου $N=\sum_{k=1}^m n_k.$

Αυτό γιατί περνάει όλα τα στοιχεία του κάθε πίνακα, άρα N, και κάθε φορά περνάει το στοιχείο από τον κάθε πίνακα που επιλέγουμε άρα m. Συνολικά O(mN).

(y)

Θα μπορούσαμε να χρησιμοποιήσουμε heap για να αποθηκεύουμε το επιλεγμένο στοιχείο του κάθε πίνακα σε κάθε επανάληψη.

Έτσι η εισαγωγή/αφαίρεση του στοιχείου θα παίρνει $O(\log m)$.

Αντίστοιχα η εύρεση του min.

Η εύρεση του max μπορεί να παίρνει μόνο O(1) καθώς θα συγκρίνουμε το στοιχείο που αλλάζουμε σε κάθε επανάληψη με το ήδη max. Στην πρώτη επανάληψη θα κάνουμε (m-1) συγκρίσεις αλλά πάλι θεωρείται O(1) συνολικά.

Δηλαδή βελτιώνουμε το O(mN) σε $O(N \log m)$

Άσκηση 4η: Αναζήτηση

(a)

Τις 1.000.000 φιάλες (διακριτές καταστάσεις) μπορούμε να τις κωδικοποιήσουμε με 20 bit $(2^{20}>1.000.000$ ενώ $2^{19}\approx 500.000$). Έστω ότι κάθε bit ξεκινώντας από το LSB αναπαριστά έναν εθελοντή και όταν το bit αυτό γίνει 1 τότε πίνει ο αντίστοιχος εθελοντής.

Για παράδειγμα η 1^{η} φιάλη είναι 0...01 και έχει 1 το 1^{o} bit. Αυτό σημαίνει ότι από την φιάλη θα πιεί μόνο ο 1^{os} εθελοντής.

Η 2^{η} φιάλη είναι 0...010 και έχει 1 το 2^{o} bit. Αυτό σημαίνει ότι από την 2^{η} φιάλη πίνει μόνο ο $2^{o\varsigma}$ εθελοντής.

```
Στην 3^{\eta} (0...011)θα πιεί ο 1^{o\varsigma} και ο 2^{o\varsigma} κ.ο.κ.
```

Έτσι θα μπορέσουμε να αντιληφθούμε με βάση συνδυασμών ποια φιάλη έχει το μαγικό φίλτρο.

```
find_best_split(arrayA, days)
    //lower search bound = max element -> O(n)
    //upper search bound = sum of all -> O(n)
    upper = 0 //sum
    lower = 0
    for each element i in arrayA
        upper = upper + i //calculate sum
        if i > lower
            lower = i
    temp[days] = 0 //array of 'days' positions initialized to 0
    while true
        test_number = (upper+lower)/2 //integer division
        if test_number = 0 //this means max - min < 1 then max is our answer
            return max //found result
        count = 0
        for each element i in arrayA
            if (temp[count] + i) < test_number</pre>
                temp[count] = temp[count] + i
            else
                count = count + 1
                if count > days
                    lower = test_number //lower upper bound
                    exit for loop
                else
                    temp[count] = temp[count] + i
        if count <= days
            upper = test_number
        continue //move to next test
```

Το άνω όριο αναζήτησης είναι το άθροισμα όλων των στοιχείων ενώ το κάτω όριο είναι το μεγαλύτερο στοιχείο. Με σταθερό k στο διάστημα [κάτω όριο, πάνω όριο] κάνουμε δυαδική αναζήτηση. Αν με το νούμερο που θα επιλέξουμε το ταξίδι είναι επιτυχές τότε διαιρούμε /2 το αριστερό μισό $(median \rightarrow upperbound)$ αλλιώς το δεξί μισό $(median \rightarrow lowerbound)$.

Πρακτικά ο αλγόριθμος είναι πολυπλοκότητας $O(upperbound) = O(\sum_{i=1}^n k_n)$ αφού κάνουμε δυαδική αναζήτηση και μας επηρεάζει το άνω όριο. Οποιαδήποτε βελτιστοποίηση άνω και κάτω ορίου δεν προσφέρει σημαντική βελτίωση στον αλγόριθμο.

Άσκηση 5: Επιλογή

(a)

Λύση:

- Ρωτάμε πλήθος στοιχείων μικρότερα από $(\frac{M}{2}), F_S(\frac{M}{2}).$
- ullet Αν $F_S(rac{M}{2}) < k$ συνεχίζουμε αναδρομικά στο $[rac{M}{2},M]$.
- ullet Αν $F_S(rac{M}{2})>k$ συνεχίζουμε αναδρομικά στο $[0,rac{M}{2}].$
- Τελειώνουμε όταν βρούμε t τέτοιο ώστε $F_S(t-1) < k$ και $F_S(t) \ge k$.
- Επιστρέφουμε το t σε χρόνο $O(\log M)$.

Παρακάτω και σε ψευδοκώδικα:

```
return_kth_element(arrayA, k)
    upper = M
    lower = 0
    while true
        mid = (upper + lower)/2
        temp = Fs(mid) //external function
        if temp < k
            lower = upper/2
        else if temp > k
            upper = upper/2
        else
            return mid
```

Ο αλγόριθμος πάντα θα επιστρέφει το k-οστό στοιχείο καθώς κάθε φορά στον έλεγχο ψάχνουμε έναν αριθμό t τέτοιο ώστε $F_S(t) \geq k$ αλλά και $F_S(t-1) < k$ δηλαδή υπάρχουν k στοιχεία μικρότερα ή ίσα από τον t συμπεριλαμβανομένου του εαυτού του. Άρα είναι το ζητούμενο νούμερο. Στην χειρότερη περίπτωση θα γίνει $O(\log M)$ δηλαδή να χρειαστεί να ψάξουμε "όλο" τον πίνακα ή αλλιώς να μην πετυχαίνουμε το στοιχείο με κανένα κόψιμο παρά μόνο στο τελευταίο.