Linear Models

Abhishek Swain

2023-09-16

Table of Contents

Linear Regression	2
The equations	2
Standard equation	2
Vectorized equation	2
Training the model	2
The Normal Equation	2

Linear Regression

The equations

Standard equation

$$\hat{y} = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

- \hat{y} is the predicted value.
- n is the number of features.
- x_i is the ith feature value.
 θ_j is the jth model parameter.

Vectorized equation

$$\hat{y} = h_{\theta}(x) = \theta \cdot x$$

- θ here is the model's parameter containing $\theta_0 \dots \theta_n$.
- x is the features containing $x_0 \dots x_n$ where x_0 is always 1.
- $\theta \cdot x$ is the dot product between $\theta \& x$. Both are colum vectors.

$$\hat{y} = \theta \cdot x = \theta^T x = [\theta_0 \dots \theta_n] \begin{bmatrix} x_0 \\ \vdots \\ x_n \end{bmatrix} = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

Training the model

We need a loss function to train this model. Out loss function is MSE loss.

$$MSE(X, h_{\theta}) = \frac{1}{m} \sum_{i=1}^{m} (\theta^{T} x^{(i)} - y^{(i)})^{2}$$

Here (i) is the i^{th} training example.

The Normal Equation

Without using any optimization algorithm we also have a direct formula to get the parameters, this formula is the Normal Equation

$$\hat{\theta} = (X^T X)^{-1} X^T y$$

- $\hat{\theta}$ is the estimated parameter, $\hat{\theta} \approx \theta$ y is is the target vector containing $y^{(1)} \dots y^{(m)}$