University of Central Florida School of Computer Science COT 4210 Fall 2004

Prof. Rene Peralta

Notes on the Pumping Lemma by TA Robert Lee

The Generalized Pumping Lemma for Regular Languages

If L is a regular language, then there exists a constant n (the number of states in the DFA for L) such that

- 1. for all strings s in L such that $|s| \ge n$, and
- 2. for all ways of partitioning s as s = xyz such that $|y| \ge n$,
- 3. there exists a division of the substring y into three substrings u, v, w such that y = uvw, where |v| > 0 and $|uv| \le n$, and
- 4. for all $i \ge 0$, xuv^iwz is in L.

How to Use the Pumping Lemma

We use the Pumping Lemma to prove that a language L is NOT regular.

Proof by Contradiction. Assume that L is regular; then the constant n (the number of states in the DFA for L) exists.

To contradict the property of L given by the Pumping Lemma, we must show that

- 1. there exists a string s in L such that $|s| \ge n$, and
- 2. there exists a way of partitioning s as s = xyz, where $|y| \ge n$, so that
- 3. for all divisions of the substring y into three substrings u, v, w such that y = uvw, where |v| > 0 and $|uv| \le n$,
- 4. there exists a value of $i \ge 0$ such that xuv^iwz is not in L.

When we have shown that the string s exists, we have contradicted the property of L given by the Pumping Lemma. Therefore we conclude that L is not regular.

An Example of Using the Pumping Lemma

Consider the language $L = \{a^k b^k \mid k \ge 0\}$. Often it helps to think about what kind of strings are in the language; in this language, the strings consist of zero or more a's followed by an equal number of b's.

Proof by Contradiction. Assume that L is regular; then the constant n (the number of states in the DFA for L) exists.

- 1. Choose a string s in L such that $|s| \ge n$. We will pick the string $s = a^n b^n$. Notice that $|s| = 2n \ge n$, so the length requirement is satisfied.
- 2. Choose a partitioning of s into substrings xyz, where $|y| \ge n$. We choose the partitioning $x = \epsilon, y = a^n, z = b^n$. Notice that $|y| = n \ge n$, so the length requirement is satisfied.
- 3. Consider all possible divisions of y into uvw such that |v| > 0 and $|uv| \le n$. Because y consists only of a's, no matter how we divide y into substrings uvw, we must have $v = a^j$, where $0 < j \le n$.
- 4. Choose the value i=2. The string $xuv^iwz=a^{n+j}b^n$. Since j>0, we have $n+j\neq n$; thus the string xuv^iwz is not in L.

Therefore we have a contradiction, and we conclude that the language L is not regular.

Pumping Lemma Practice Problems

Use the Generalized Pumping Lemma for Regular Languages to prove that the following languages are not regular.

- 1. $L = \{a^k b^r \mid k \neq r\}$. We solved this at the review session. Try to recreate the proof. Think about why the factorial is necessary.
- 2. $L = \{a^k b^r c^r \mid k > 0, r > 0\}.$
- 3. $L = \{a^k \mid k \text{ is a prime number}\}$. Hint: what does it mean for a number <u>not</u> to be prime?
- 4. $L = \{a^k \mid k \text{ is a perfect cube; that is, you can write } k = m^3 \text{ for some integer } m \ge 0\}.$
- 5. $L = \{ww^R, \text{ where } w \in \{a, b\}^*, \text{ and } w^R \text{ denotes the string } w \text{ in reverse}\}.$
- 6. L= the set of palindromes of even length in $\{a,b\}^*$. A string is a palindrome if it is the same whether read forwards or backwards; for example, "racecar" and "kayak" are palindromes in English.