Rotational motion 2

Physics 211 Syracuse University, Physics 211 Spring 2015 Walter Freeman

April 2, 2015

Announcements

- Your next homework assignment will be posted tonight or tomorrow, and will be due next Friday
- You will also have a practice exam, posted tonight or tomorrow
- Solutions will be posted next Friday
- Exam 3 will be April 13
- Next Mastering Physics assignment has been posted and is due Tuesday before class

- Most of rotational motion corresponds very directly to linear motion
- Instead of talking about x and y, we talk about the angle θ
- Kinematics works the same

- Most of rotational motion corresponds very directly to linear motion
- Instead of talking about x and y, we talk about the angle θ
- Kinematics works the same
- ullet Moment of inertia I is the rotational analogue of mass
 - Moment of inertia, like mass, defined with reference to a particular axis
 - $I = MR^2$ (if all of the mass in the rotating object is the same distance R from the axis
 - $I = \lambda MR^2$ (for more complicated shapes)

- Most of rotational motion corresponds very directly to linear motion
- Instead of talking about x and y, we talk about the angle θ
- Kinematics works the same
- Moment of inertia I is the rotational analogue of mass
 - Moment of inertia, like mass, defined with reference to a particular axis
 - $I = MR^2$ (if all of the mass in the rotating object is the same distance R from the axis
 - $I = \lambda MR^2$ (for more complicated shapes)
- Rotational kinetic energy is what you'd expect: $KE_{\rm rot} = \frac{1}{2}I\omega^2$
 - This is just another form of energy, conserved in the same way and "alongside" the things you already learned about
 - Work works the same way for rotation as well

- Most of rotational motion corresponds very directly to linear motion
- Instead of talking about x and y, we talk about the angle θ
- Kinematics works the same
- Moment of inertia I is the rotational analogue of mass
 - Moment of inertia, like mass, defined with reference to a particular axis
 - $I = MR^2$ (if all of the mass in the rotating object is the same distance R from the axis
 - $I = \lambda MR^2$ (for more complicated shapes)
- Rotational kinetic energy is what you'd expect: $KE_{\rm rot} = \frac{1}{2}I\omega^2$
 - This is just another form of energy, conserved in the same way and "alongside" the things you already learned about
 - Work works the same way for rotation as well
- The analogue of momentum is angular momentum $L = I\omega$
 - This is a different quantity than ordinary momentum, but is also conserved if there are no external torques

The correspondence table

Translation	Rotation
Position x	Angle θ
Velocity v	Angular velocity ω
Acceleration a	Angular acceleration α
$v(t) = v_0 + at$	$\omega(t) = \omega_0 + \alpha t$
$x(t) = x_0 + v_0 t + \frac{1}{2}at^2$	$\theta(t) = \theta_0 + \omega_0 t + \frac{1}{2}\alpha t^2$
$v_f^2 - v_0^2 = 2a\Delta x$	$\omega_f^2 - \omega_0^2 = 2\alpha\Delta\theta$
Force \vec{F}	Torque: $\tau = F_{\perp} r$
Mass m	Moment of Inertia: $I = \lambda MR^2$
$\vec{F} = m\vec{a}$	$\tau = I\alpha$
$Work = \vec{F} \cdot \Delta \vec{s}$	$Work = \tau \Delta \theta$
Kinetic energy $\frac{1}{2}mv^2$	Kinetic energy $\frac{1}{2}I\omega^2$
$ Momentum \vec{p} = m\vec{v} $	Angular momentum $L = I\omega$

Significance of the center of mass

We often talk about the center of mass: where is it, and why do we care?

• We know $\vec{F} = m\vec{a}$; but what part of the object accelerates?

Significance of the center of mass

We often talk about the center of mass: where is it, and why do we care?

- We know $\vec{F} = m\vec{a}$; but what part of the object accelerates?
- Newton's second law gives the acceleration of the center of mass
 - The net force tells you how the center of mass accelerates
 - The net torque tells you the angular acceleration around the center of mass

Significance of the center of mass

We often talk about the center of mass: where is it, and why do we care?

- We know $\vec{F} = m\vec{a}$; but what part of the object accelerates?
- Newton's second law gives the acceleration of the center of mass
 - The net force tells you how the center of mass accelerates
 - The net torque tells you the angular acceleration around the center of mass
- For purposes of torque the gravitational force acts at the center of mass
- For symmetric, uniform objects: the center of mass is at the center!
- For other objects, it's just a weighted average of all of the parts:

$$x_{\text{com}} = \frac{m_1 x_1 + m_2 x_2 + m_3 x_3 + \dots}{m_1 + m_2 + m_3}$$

$$y_{\text{com}} = \frac{m_1 y_1 + m_2 y_2 + m_3 y_3 + \dots}{m_1 + m_2 + m_3}$$

Static equilibrium problems

- Often we are presented with a situation where nothing moves, and we have to solve for something
- No acceleration of the center of mass: $\sum \vec{F} = 0$
- No angular acceleration: $\sum \tau = 0$ about any pivot point
- Can generate enough equations this way to solve for all unknowns

Static equilibrium problems

- Often we are presented with a situation where nothing moves, and we have to solve for something
- No acceleration of the center of mass: $\sum \vec{F} = 0$
- No angular acceleration: $\sum \tau = 0$ about any pivot point
- Can generate enough equations this way to solve for all unknowns
- Strategy: choose the pivot to be aligned with a force you don't know and don't care about

A sample problem: forces on a bar

A bar is suspended by a hinge at one end, and by a cable at the other making an angle θ with the vertical. If the bar has mass m, what is the tension in the cable?

(Illustrated with demo equipment; solution on document camera)

A sample problem: forces on a bar

A bar is suspended by a hinge at one end, and by a cable at the other making an angle θ with the vertical. If the bar has mass m, what is the tension in the cable?

(Illustrated with demo equipment; solution on document camera)

What is the (vector) force at the hinge?

One more thing: another way of computing torque

Last time we saw that the torque $\tau = F_{\perp}r$

... but there's another way to compute it which is sometimes more helpful

- Note that $F_{\perp} = F \sin \theta$, so $\tau = Fr \sin \theta$
- We can think of the torque in any other equivalent way; there is another one that's often useful
- The way I taught you yesterday: "The radius vector, times the component of force perpendicular to it"
- The alternative: "The force vector, times the component of the radius perpendicular to it"

Here's the figure from the text:

I'll draw a clearer version on the document camera

One more thing: another way of computing torque

Last time we saw that the torque $\tau = F_{\perp}r$

... but there's another way to compute it which is sometimes more helpful

- Note that $F_{\perp} = F \sin \theta$, so $\tau = Fr \sin \theta$
- We can think of the torque in any other equivalent way; there is another one that's often useful
- The way I taught you yesterday: "The radius vector, times the component of force perpendicular to it"
- The alternative: "The force vector, times the component of the radius perpendicular to it"

$$\tau = F_{\perp} r = F r_{\perp} = F r \sin \theta$$

(where θ is the angle between the radius and force vectors)

One more thing: another way of computing torque

Last time we saw that the torque $\tau = F_{\perp}r$

... but there's another way to compute it which is sometimes more helpful

- Note that $F_{\perp} = F \sin \theta$, so $\tau = Fr \sin \theta$
- ullet We can think of the torque in any other equivalent way; there is another one that's often useful
- The way I taught you yesterday: "The radius vector, times the component of force perpendicular to it"
- The alternative: "The force vector, times the component of the radius perpendicular to it"

$$\tau = F_{\perp} r = F r_{\perp} = F r \sin \theta$$

(where θ is the angle between the radius and force vectors) NB: Your book calls r_{\perp} the "moment arm"

A sample problem: distribution of weight in a truck

A 2000 kg rear wheel drive pickup truck has a wheelbase 5 meters long. Its center of mass is located 150 cm behind the front wheels, and 130 cm above the ground. What is the fastest it can accelerate, if $\mu_s = 0.6$?

A sample problem: distribution of weight in a truck

A 2000 kg rear wheel drive pickup truck has a wheelbase 5 meters long. Its center of mass is located 150 cm behind the front wheels, and 130 cm above the ground. What is the fastest it can accelerate, if $\mu_s = 0.6$?

The limiting factor is the traction force: static friction on the rear wheels.

10 / 14

A sample problem: distribution of weight in a truck

A 2000 kg rear wheel drive pickup truck has a wheelbase 5 meters long. Its center of mass is located 150 cm behind the front wheels, and 130 cm above the ground. What is the fastest it can accelerate, if $\mu_s = 0.6$?

The limiting factor is the traction force: static friction on the rear wheels.

Compute torque about the front wheels:

$$1.5mg = 5F_{N,\text{rear}}$$

$$F_{N,\text{rear}} = 0.3mg$$

$$F_{f,\text{max}} = \mu_s F_{N,\text{rear}} = 0.18mg$$

$$a_{\text{max}} = 0.18g$$

Angular momentum $L = \sum I\omega$ is conserved in the absence of external torques

Angular momentum $L = \sum I\omega$ is conserved in the absence of external torques

• Dumbbell demo: if I goes down, ω goes up

Angular momentum $L = \sum I\omega$ is conserved in the absence of external torques

- Dumbbell demo: if I goes down, ω goes up
- Bike wheel demo: $\sum L = \text{constant...}$

Angular momentum $L = \sum I\omega$ is conserved in the absence of external torques

- Dumbbell demo: if I goes down, ω goes up
- Bike wheel demo: $\sum L = \text{constant...}$
- We learned about rotation in 2D, where ω , L, and τ are scalars
- In 3D they're vectors, and the behavior can be downright weird!

11 / 14

A bar of mass 5 kg and length 1 m has a weight of mass 1 kg resting on one end. At what point must it be supported if it is to balance?

A bar of mass 5 kg and length 1 m has a weight of mass 1 kg resting on one end. At what point must it be supported if it is to balance?

Strategy:

- Draw a "number line" by your force diagram and label coordinates
- Introduce a variable corresponding to the thing you're trying to find

A bar of mass 5 kg and length 1 m has a weight of mass 1 kg resting on one end. At what point must it be supported if it is to balance?

A bar of mass 5 kg and length 1 m has a weight of mass 1 kg resting on one end. At what point must it be supported if it is to balance?

Strategy:

- Draw a "number line" by your force diagram and label coordinates
- Introduce a variable corresponding to the thing you're trying to find
- Can compute torques about any pivot; which is easiest?

April 2, 2015

A bar of mass m and length L has a weight of mass M resting on one end. At what point must it be supported if it is to balance?

A bar of mass m and length L has a weight of mass M resting on one end. At what point must it be supported if it is to balance?

Same method as before, but note:

- The point of support is also the center of mass
- The converse is also true: an object's center of mass must be within its base of support if it is to stay put

14 / 14