3-11 Matchings and Factors

(Part I: Matchings and Covers)

Hengfeng Wei

hfwei@nju.edu.cn

December 10, 2018

Theorem (Hall's Theorem, 1935; Theorem 8.3)

Let G be a bipartite graph with partite sets U and W such that $r = |U| \le |W|$.

G contains a matching of cardinality $r \iff G$ satisfies Hall's Condition:

$$\forall X \subseteq U : |N(X)| \ge |X|$$

Theorem (Hall's Theorem, 1935; Theorem 8.3)

Let G be a bipartite graph with partite sets U and W such that $r = |U| \le |W|$.

G contains a matching of cardinality $r \iff G$ satisfies Hall's Condition:

$$\forall X \subseteq U : |N(X)| \ge |X|$$

TONCAS

(The Obvious Necessary Conditions are Also Sufficient)

Theorem (Hall's Theorem, 1935; Theorem 8.3)

Let G be a bipartite graph with partite sets U and W such that $r = |U| \le |W|$.

G contains a matching of cardinality $r \iff G$ satisfies Hall's Condition:

$$\forall X \subseteq U : |N(X)| \ge |X|$$

TONCAS

(The Obvious Necessary Conditions are Also Sufficient)

Other TONCAS?

Prove that every tree T has ≤ 1 perfect matching.

By strong mathematical induction on the order n of trees.

Prove that every tree T has ≤ 1 perfect matching.

By strong mathematical induction on the order n of trees.

Prove that every tree T has ≤ 1 perfect matching.

By strong mathematical induction on the order n of trees.

Inductive step: Consider a tree of order n.

1: **if** n is odd **then**

2:

3: **else**

 $\triangleright n$ is even

Prove that every tree T has ≤ 1 perfect matching.

By strong mathematical induction on the order n of trees.

- 1: **if** n is odd **then**
- 2: # Perfect Matching = 0
- 3: **else** $\triangleright n$ is even

Prove that every tree T has ≤ 1 perfect matching.

By strong mathematical induction on the order n of trees.

```
1: if n is odd then
2: # Perfect Matching = 0
3: else \triangleright n is even
4: Consider T-r \triangleright r: root of G
5: if k_o(T-r) > 1 then
6:
7: else \triangleright k_o(T-r) = 1
```

Prove that every tree T has ≤ 1 perfect matching.

By strong mathematical induction on the order n of trees.

```
1: if n is odd then
2: # Perfect Matching = 0
3: else \triangleright n is even
4: Consider T - r \triangleright r: root of G
5: if k_o(T - r) > 1 then
6: # Perfect Matching = 0
7: else \triangleright k_o(T - r) = 1
```

Prove that every tree T has ≤ 1 perfect matching.

By strong mathematical induction on the order n of trees.

```
1: if n is odd then
2: # Perfect Matching = 0
3: else \triangleright n is even
4: Consider T-r \triangleright r: root of G
5: if k_o(T-r) > 1 then
6: # Perfect Matching = 0
7: else \triangleright k_o(T-r) = 1
8: By Induction Hypothesis.
```

Prove that every tree T has ≤ 1 perfect matching.

By strong mathematical induction on the order n of trees.

Prove that every tree T has ≤ 1 perfect matching.

By strong mathematical induction on the order n of trees.

Inductive step: Consider a tree of order n.

- 1: **if** T has no perfect matchings **then**
- 2: # Perfect Matching = 0
- 3: **else**

 $\,\triangleright\, T$ has perfect matchings

Prove that every tree T has ≤ 1 perfect matching.

By strong mathematical induction on the order n of trees.

Inductive step: Consider a tree of order n.

- 1: **if** T has no perfect matchings **then**
- 2: # Perfect Matching = 0
- 3: **else**

 $\triangleright T$ has perfect matchings

4: Consider a leaf v

Prove that every tree T has ≤ 1 perfect matching.

By strong mathematical induction on the order n of trees.

Inductive step: Consider a tree of order n.

- 1: **if** T has no perfect matchings **then**
- 2: # Perfect Matching = 0
- 3: **else**

 $\triangleright T$ has perfect matchings

- 4: Consider a leaf v
- 5: v must be matched with its parent u

Prove that every tree T has ≤ 1 perfect matching.

By strong mathematical induction on the order n of trees.

Inductive step: Consider a tree of order n.

- 1: **if** T has no perfect matchings **then**
- 2: # Perfect Matching = 0
- 3: **else**

 $\triangleright T$ has perfect matchings

- 4: Consider a leaf v
- 5: v must be matched with its parent u
- 6: By Induction Hypothesis on each component of $G \{u, v\}$

Prove that every tree T has ≤ 1 perfect matching.

By Contradiction.

Suppose that there are two different perfect matchings M and M' on T.

Prove that every tree T has ≤ 1 perfect matching.

By Contradiction.

Suppose that there are two different perfect matchings M and M' on T.

 $\exists v : v \text{ is matched with different vertices in } M \text{ and } M'.$

Prove that every tree T has ≤ 1 perfect matching.

By Contradiction.

Suppose that there are two different perfect matchings M and M' on T.

 $\exists v : v \text{ is matched with different vertices in } M \text{ and } M'.$

$$\underbrace{u} \notin M \quad \underbrace{v} \notin M' \quad \underbrace{w}$$

Prove that every tree T has ≤ 1 perfect matching.

By Contradiction.

Suppose that there are two different perfect matchings M and M' on T.

 $\exists v : v \text{ is matched with different vertices in } M \text{ and } M'.$

$$\underbrace{u} \notin M \underbrace{v} \notin M' \underbrace{w}$$

Q: What about u and w?

Prove that every tree T has ≤ 1 perfect matching.

By Contradiction.

Suppose that there are two different perfect matchings M and M' on T.

 $\exists v : v \text{ is matched with different vertices in } M \text{ and } M'.$

$$\underbrace{u} \notin M \underbrace{v} \notin M' \underbrace{w}$$

Q: What about u and w?

Contradiction: Cycle

Prove that every tree T has ≤ 1 perfect matching.

By Contradiction.

Suppose that there are two different perfect matchings M and M' on T.

Prove that every tree T has ≤ 1 perfect matching.

By Contradiction.

Suppose that there are two different perfect matchings M and M' on T.

$$M\Delta M' = (M-M') \cup (M'-M)$$

Consider the subgraph \mathcal{M} with V(T) and $M\Delta M'$.

Prove that every tree T has ≤ 1 perfect matching.

By Contradiction.

Suppose that there are two different perfect matchings M and M' on T.

$$M\Delta M' = (M - M') \cup (M' - M)$$

Consider the subgraph \mathcal{M} with V(T) and $M\Delta M'$.

$$\in M \mid \in M'$$

Case I

$$\in M$$
 $\in M'$

Case II

Prove that every tree T has ≤ 1 perfect matching.

By Contradiction.

Suppose that there are two different perfect matchings M and M' on T.

$$M\Delta M' = (M - M') \cup (M' - M)$$

Consider the subgraph \mathcal{M} with V(T) and $M\Delta M'$.

$$\in M \mid \in M'$$
CASE I

$$\in M$$
 $\in M'$

 $\forall v \in V(\mathcal{M}):$

 $\deg(v) = 0 \vee \deg(v) = 2$

Prove that every tree T has ≤ 1 perfect matching.

By Contradiction.

Suppose that there are two different perfect matchings M and M' on T.

$$M\Delta M' = (M-M') \cup (M'-M)$$

Consider the subgraph \mathcal{M} with V(T) and $M\Delta M'$.

$$\in M \mid \in M'$$
CASE I

$$\in M$$
 $\in M'$

$$deg(v) = 0 \lor deg(v) = 2$$
 $T \text{ is a tree } \implies deg(v) = 2$

$$T ext{ is a tree } \implies \deg(v) = 0$$

 $\forall v \in V(\mathcal{M}):$

Case II

Prove that every tree T has ≤ 1 perfect matching.

By Contradiction.

Suppose that there are two different perfect matchings M and M' on T.

$$M\Delta M' = (M-M') \cup (M'-M)$$

Consider the subgraph \mathcal{M} with V(T) and $M\Delta M'$.

$$\in M \mid \in M'$$
CASE I

$$\in M$$
 $\in M'$

$$\forall v \in V(\mathcal{M}):$$

$$\deg(v) = 0 \lor \deg(v) = 2$$

$$T \text{ is a tree } \implies \deg(v) = 0$$

$$\deg(v) = 0 \implies \text{Case I}$$

 $\alpha(G)$ $\beta(G)$ $\alpha'(G)$ $\beta'(G)$

- $\alpha(G)$ Maximum size of independent set
- $\beta(G)$ Minimum size of vertex cover
- $\alpha'(G)$ Maximum size of matching
- $\beta'(G)$ Minimum size of edge cover

Theorem (Callai Identities, 1959; Theorem 8.7)

If G is graph without isolated vertices, then

$$\alpha'(G) + \beta'(G) = n(G).$$

- $\alpha(G)$ Maximum size of independent set
- $\beta(G)$ Minimum size of vertex cover
- $\alpha'(G)$ Maximum size of matching
- $\beta'(G)$ Minimum size of edge cover

Theorem (Callai Identities, 1959; Theorem 8.7)

If G is graph without isolated vertices, then

$$\alpha'(G) + \beta'(G) = n(G).$$

- $\alpha(G)$ Maximum size of independent set
- $\beta(G)$ Minimum size of vertex cover
- $\alpha'(G)$ Maximum size of matching
- $\beta'(G)$ Minimum size of edge cover

Theorem (Callai Identities, 1959; Theorem 8.8)

If G is graph without isolated vertices, then

$$\alpha(G) + \beta(G) = n(G).$$

A graph G without isolated vertices has a perfect matching if and only if $\alpha'(G) = \beta'(G)$.

A graph G without isolated vertices has a perfect matching if and only if $\alpha'(G) = \beta'(G)$.

" ==> "

A graph G without isolated vertices has a perfect matching if and only if $\alpha'(G) = \beta'(G)$.

G has a perfect matching

$$\implies n \text{ is even } \wedge \alpha'(G) = n/2$$

$$\implies \beta'(G) = n/2$$

A graph G without isolated vertices has a perfect matching if and only if $\alpha'(G) = \beta'(G)$.

$$"\Longrightarrow"$$

G has a perfect matching

$$\implies n \text{ is even } \wedge \alpha'(G) = n/2$$

$$\implies \beta'(G) = n/2$$

A graph G without isolated vertices has a perfect matching if and only if $\alpha'(G) = \beta'(G)$.

$$G$$
 has a perfect matching
$$\implies n \text{ is even } \wedge \alpha'(G) = n/2$$

$$\implies \beta'(G) = n/2$$

$$\alpha'(G) = \beta'(G)$$

$$\implies \alpha'(G) = n/2 \land n \text{ is even}$$

$$\implies$$
 G has a perfect matching

- $\alpha(G)$ Maximum size of independent set
- $\beta(G)$ Minimum size of vertex cover
- $\alpha'(G)$ Maximum size of matching
- $\beta'(G)$ Minimum size of edge cover

Theorem (König, 1931; Egerváry, 1931)

If G is a bipartite graph, then

$$\alpha'(G) = \beta(G).$$

- $\alpha(G)$ Maximum size of independent set
- $\beta(G)$ Minimum size of vertex cover
- $\alpha'(G)$ Maximum size of matching
- $\beta'(G)$ Minimum size of edge cover

Theorem (König, 1931)

If G is a bipartite graph, then

$$\alpha(G) = \beta'(G).$$

If G is a graph of order n, maximum degree Δ and having no isolated vertices, then

$$\beta(G) \ge \frac{n}{\Delta + 1}.$$

If G is a graph of order n, maximum degree Δ and having no isolated vertices, then

$$\beta(G) \ge \frac{n}{\Delta + 1}.$$

If G is a graph of order n, maximum degree Δ and having no isolated vertices, then

$$\beta(G) \ge \frac{n}{\Delta + 1}.$$

$$n = 3, \Delta = 1, \frac{n}{\Delta + 1} = \frac{3}{2}, \beta = 1$$

If G is a graph of order n, maximum degree Δ and having no isolated vertices, then

$$\beta(G) \ge \frac{n}{\Delta + 1}.$$

By Contradiction: $\beta < \frac{n}{\Delta+1}$.

$$n = 3, \Delta = 1, \frac{n}{\Delta + 1} = \frac{3}{2}, \beta = 1$$

If G is a graph of order n, maximum degree Δ and having no isolated vertices, then

$$\beta(G) \ge \frac{n}{\Delta + 1}.$$

$$n = 3, \Delta = 1, \frac{n}{\Delta + 1} = \frac{3}{2}, \beta = 1$$

By Contradiction: $\beta < \frac{n}{\Delta+1}$.

$$\beta \cdot \Delta < \frac{n\Delta}{\Delta + 1}$$

$$= n - \frac{n}{\Delta + 1}$$

$$\leq n - 1$$

If G is a graph of order n, maximum degree Δ and having no isolated vertices, then

$$\beta(G) \ge \frac{n}{\Delta + 1}.$$

$$n = 3, \Delta = 1, \frac{n}{\Delta + 1} = \frac{3}{2}, \beta = 1$$

By Contradiction: $\beta < \frac{n}{\Delta+1}$.

$$\beta \cdot \Delta < \frac{n\Delta}{\Delta + 1}$$

$$= n - \frac{n}{\Delta + 1}$$

$$\leq n - 1$$

Contradiction: No isolated vertices.

If G is a graph of order n, maximum degree Δ , then

$$\alpha(G) \ge \frac{n}{\Delta + 1}.$$

If G is a graph of order n, maximum degree Δ , then

$$\alpha(G) \ge \frac{n}{\Delta + 1}.$$

By Construction.

If G is a graph of order n, maximum degree Δ , then

$$\alpha(G) \ge \frac{n}{\Delta + 1}.$$

By Construction.

To construct an independent set S with $|S| \ge \frac{n}{\Delta+1}$.

If G is a graph of order n, maximum degree Δ , then

$$\alpha(G) \ge \frac{n}{\Delta + 1}.$$

By Construction.

To construct an independent set S with $|S| \geq \frac{n}{\Delta+1}$.

- 1: **while** |V(G) > 0| **do**
- 2: Choose $v \in V(G)$
- 3: $S \leftarrow S \cup \{v\}$
- 4: $G \leftarrow G \{v\} N(v)$

Office 302

Mailbox: H016

hfwei@nju.edu.cn