

Transition Experiment

Jenna Eppink and Shelly Sadowski NASA Langley Research Center

AIAA CFD Transition Modeling DG, Feb. 10, 2022

Objectives

- Test Objectives
 - Provide needed experimental database for transition modelers
 - Next-generation transition models will be used for more efficient designs of fixed-wing aircraft, rotorcraft, and turbomachinery
- Design Objectives (model/flow conditions)
 - Design wing to provide mixed-mode transition (TS, traveling CF, stationary CF)
 - Relative importance of instabilities will vary with AoA
 - Boundary layer must be thick enough for off-body measurements
 - Mean and fluctuating components of velocity
 - Sufficient extent of laminar flow to measure instability growth
 - Body large enough to house embedded PIV system (or possibly LDV?) for non-intrusive BL measurements
 - Ability to change roughness enough to affect instability mechanism and transition location
 - Test multiple facilities for Re # and FS turbulence effect
 - Targeting facilities like 14x22 (M≅0.2-0.3)
 - Desire to change FS turbulence (if possible)

Swept Wing/Body Configuration

- What is novel about this experiment?
 - Experiment with mixed-modes (stationary CF, traveling CF, TS) in a realistic wing/body configuration
 - Change instability modes through changes in angle of attack
 - Off-body non-intrusive measurements to help identify primary instability mechanism(s) and their relative importance
 - Characterization and (possibly) modification of roughness and/or FS turbulence
 - Modifications that affect transition front without causing bypass
 - BL measurements of beginning and end of transition (possibly)
 - Test in multiple facilities (changing FS turbulence and/or Re #)
 - Combining IR (global transition front) with off-body measurements
- What is added value?
 - Provide both transition location and instability mechanism(s) to transition modelers
 - Expand experimental database of roughness/FS turbulence effect on transition/instability mechanisms

Input from the Community

- Which measurements are most important?
 - Flow measurements:
 - Transition front (IR/TSP)
 - Instability identification (frequency/wavelength/wave angle)
 - Instability amplitude
 - Surface/freestream characterization
 - Surface roughness
 - RMS
 - Wavelength spectra
 - Freestream turbulence
 - u', v', w'
 - Acoustic environment
 - Single point vs spanwise uniformity
 - Measurements upstream vs. BL edge
 - Empty tunnel vs tunnel+model
 - Anything else?

- Other topics:
 - Full-span vs semi-span CFD perspectives?
 - Flow/test conditions
 - Incompressible
 - Reynolds # range
 - Variation of roughness/FS turbulence
- What would you hope to get out of this test?