Introduction to Number Theory

Math 110 | Winter 2023

Xu Gao March 13, 2023 Last time, we have constructed permutations α , β , and γ such that

$$\gamma = \beta \circ \alpha$$
.

We have shown

$$sign(\alpha) = \left(\frac{p}{q}\right)$$
 and $sign(\beta) = \left(\frac{q}{p}\right)$

using Theorem 23.8 ($sign(g \circ f) = sign(g) \cdot sign(f)$).

It remains to

- prove Theorem 23.8, and
- show that $sign(\gamma) = (-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}}$.

Permutation Group

Permutation Group

Definition 24.1

The *permutation group* of a set X is the set of permutations of X equipped with the binary operation "composition" and the neutral element id_X . This group is denoted by Perm(X), Sym(X), or $\mathfrak{S}(X)$.

It is not difficult to see that any permutation is a composition of cycles. Furthermore, we would like to find a system of *generators*.

Definition 24.2

A 2-cycle is called a *transposition*.

Permutation Group

Theorem 24.3

Any permutation is an iterated composition of transpositions.

Proof. We only need to show prove this for a cycle, saying $(a_1a_2\cdots a_n)$. We may simply write* it as $(12\cdots n)$.

Then one can verify that $(12 \cdots n) = (12)(23) \cdots (n-1n)$.

^{*}From now on, we are in the field of abstract algebra. A guideline is: what matters are structures, not elements.

How to verify $(12 \cdots n) = (12)(23) \cdots (n-1n)$

We can track an individual $i \in \{1, \dots, n\}$ under the actions.

First, $(12 \cdots n)$ maps i to (i+) (Note that we would think n+1 as 1.)

When k > i, the transposition (kk + 1) fixes i. Hence,

$$(i + 1i + 2) \cdot \cdot \cdot (n - 1n) \cdot i = i$$
.

Then (ii + 1) maps i to i + 1. So,

$$(ii + 1) \cdot \cdot \cdot (n - 1n) \cdot i = i + 1.$$

The rest transpositions (i.e. (kk + 1) with k < i) fix i + 1. Hence,

$$(12)\cdots(n-1n).i=\underline{i+1}.$$

We thus conclude $(12 \cdots n) = (12)(23) \cdots (n-1n)$.

By the definitions, the sign of a transposition is always –1.

We want to prove the following special case of Theorem 23.8.

Lemma 24.4

Let f be a permutation and τ a transposition of the same set. Then

$$sign(\tau \circ f) = -sign(f).$$

Proof. Let $h = \tau \circ f$ and suppose $\tau = (ab)$. We separate the proof into two cases:

- 1. a, b belong to the same cycle of f.
- 2. a, b belong to two distinct cycles of f.

Assume a, b belong to the same cycle of f. Then by composing with τ , this cycle breaks into two.

Moreover, the sum of the length of two new cycles equals the length of original cycle. Hence, sign(h) = -sign(f).

Assume a, b belong to two distinct cycles of f. Then by composing with τ , the two cycles merges into one.

Moreover, the length of new cycle equals the sum of the length of two original cycles. Hence, sign(h) = -sign(f).

Theorem 24.5 (Second characterization of sign)

Let f be a permutation. If f can be written as the composition of n transpositions, then

$$sign(\mathbf{f}) = (-1)^n.$$

Proof. Let's say $f = \tau_1 \circ \cdots \circ \tau_n$, where τ_i are transpositions. Then by repeatedly applying Lemma 24.4,

$$sign(f) = -sign(\tau_2) \circ \cdots \circ \tau_n)$$

$$= \cdots \qquad \cdots$$

$$= (-1)^n.$$

Now Theorem 23.8 ($sign(g \circ f) = sign(g) \cdot sign(f)$) is clear: if

$$f = \tau_1 \circ \cdots \circ \tau_n$$
 and $g = \tau'_1 \circ \cdots \circ \tau'_m$,

then $g \circ f = \tau_1' \circ \cdots \circ \tau_m' \circ \tau_1 \circ \cdots \circ \tau_n$. Namely, if we can write f as the composition of n transpositions and g as the composition of m transpositions, then we can write $g \circ f$ as the composition of m+n transpositions. Hence,

$$sign(g \circ f) = (-1)^{m+n} = (-1)^m (-1)^n = sign(g) \cdot sign(f).$$

From now on, we assume our set X is **linearly ordered**. You can think this as we fixed a bijection from X to the set $\{1, 2, \dots, n\}$, where n is the size of X, or even further think X $\{1, 2, \dots, n\}$.

Definition 24.6

Let f be a permutation of X. Then an **inversion** of f is a pair (a, b) in X such that

$$a < b$$
 and $f(a) > f(b)$.

Then inv(f) is the number of inversions of f.

^{*}Follows the guideline: what matters are structures, not elements.

E.g. consider $S = \{1, 2, 3, 4, 5, 6\}$ and the map f whose dynamic is displayed as left below.

$$Sign(f) = -1$$

Fill in each (f(a), f(b))

Definition 24.7

A transposition τ is called an *adjacent transposition* if it switches two consecutive numbers.

N.B. this notion clearly relies on the linear order.

E.g. On the set $\{1, \dots, 6\}$, (12) is an adjacent transposition as it switches 1 and 2, while (16) is not.

Lemma 24.8

Let f be a permutation of $\{1, \dots, n\}$ and $\tau = (aa + 1)$. Then

$$\operatorname{inv}(\tau \circ f) - \operatorname{inv}(f) = \begin{cases} 1 & \text{if } f^{-1}(a) < f^{-1}(a+1), \\ -1 & \text{if } f^{-1}(a) > f^{-1}(a+1). \end{cases}$$

Proof. Let (s,t) be a pair such that $1 \le s < t \le n$. We want to see when it is an inversion of f and when it is an inversion of $\tau \circ f$. We will show that τ reverses (f(s), f(t)) for exactly one such a pair (s,t). Hence, $\operatorname{inv}(\tau \circ f)$ and $\operatorname{inv}(f)$ are different by 1 and the conclusion then follows.

We begin with the case $\{f(s), f(t)\} \neq \{a, a+1\}$. Then τ does not change the order relation between f(s) and f(t). Consequently, (s, t) is an inversion of $\tau \circ f$ if and only if it is an inversion of f.

Now, we consider the case $\{f(s), f(t)\} = \{a, a+1\}$. Then τ changes the order relation between f(s) and f(t). Hence, (s, t) is an inversion of $\tau \circ f$ if and only if it is NOT an inversion of f.

Lemma 24.9

Any permutation f of $\{1, \dots, n\}$ can be written as the composition of inv(f) adjacent transpositions.

Proof. We prove this by an induction on inv(f).

If inv(f) = 0, namely f preserves the order, then f has to be id. And id is the imposition of 0 adjacent transpositions.

Now suppose inv(f) > 0. Then $f \neq id$ and thus there is an a such that

$$f^{-1}(a) > f^{-1}(a+1).$$

By Lemma 24.8, $inv((aa + 1) \circ f) = inv(f) - 1. < inv(f)$

By inductive hypothesis, $(aa + 1) \circ f$ can be written as the composition of inv(f) - 1 adjacent transpositions. While we have

$$f = (aa + 1) \circ (aa + 1) \circ f$$

which can be written as the composition of inv(f) adjacent transpositions.

П

Theorem 24.10 (Third characterization of sign)

Let f be a permutation of a linearly ordered finite set. Then

$$sign(\mathbf{f}) = (-1)^{inv(\mathbf{f})}.$$

Proof. By the previous lemma, f can be written as the composition of inv(f) adjacent transpositions. Hence, the second characterization of sign (Theorem 24.5) implies that $sign(f) = (-1)^{inv(f)}$.

Lemma 24.11

$$sign(\gamma) = (-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}}.$$

Proof. We'll use the 3rd characterization of sign. First recall that $S = \{0, 1, \dots, pq - 1\}$ and on which we have label systems

$$[a,b\rangle := a+bp$$
 and $\langle a,b \rangle := aq+b$.
 $0 \le a \le p-1$ $0 \le b \le q-p$

It is clear that

$$[a,b\rangle < [a',b'\rangle \iff \text{ either } b < b' \text{ or } b = b' \text{ and } a < a',$$
 $\langle a,b \rangle < \langle a',b' \rangle \iff \text{ either } a < a' \text{ or } a = a' \text{ and } b < b'.$
 $\langle a,b \rangle > \langle a',b' \rangle \iff a > a' \text{ or } a = a' \text{ and } b > b'.$

The permutation γ maps each [a, b) to $\langle a, b \rangle$. Therefore,

$$([a,b\rangle,[a',b'\rangle)$$
 is an inversion of γ
 $\iff [a,b\rangle < [a',b'\rangle \text{ and } \langle a,b] > \langle a',b']$
 $\iff b < b' \text{ and } a > a'.$
 $\{0,\cdots, 1-1\}$

The number of such quadruple (a, a', b, b') is

$$\binom{p}{2} \cdot \binom{q}{2} = pq \frac{p-1}{2} \cdot \frac{q-1}{2} \equiv \frac{p-1}{2} \cdot \frac{q-1}{2} \pmod{2}.$$

Therefore, $sign(\gamma) = (-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}}$.