

ADDING REGULARIZING PRIORS FOR BLOCK

Outcome: L_i = pulled left

 $L_i \sim Bernoulli(p_i)$ $logit(p_i) = \alpha_{actor[i]} + \gamma_{block[i]} + \beta_{treatment[i]}$

$$\gamma_j \sim Normal(0, \sigma_{\gamma}), \text{ for } j=1..6$$

This estimates how similar the γ_i coefficients are to each other and changes the estimates accordingly

ADDING REGULARIZING PRIORS FOR BLOCK

 $\begin{aligned} \text{Outcome:} \ L_i &= \text{pulled left} \\ L_i &\sim Bernoulli(p_i) \\ logit(p_i) &= \alpha_{actor[i]} + \gamma_{block[i]} + \beta_{treatment[i]} \\ \gamma_i &\sim Normal(0, \ \sigma_{\gamma}), \text{for} \ j = 1..6 \end{aligned}$

This estimates how similar the γ_j coefficients are to each other and changes the estimates accordingly

REGULARIZING PRIOR FOR THE ACTOR COEFFICIENT

Outcome: L_i = pulled left

$$\begin{split} L_i \sim Bernoulli(p_i) \\ logit(p_i) &= \alpha_{actor[i]} + \gamma_{block[i]} + \beta_{treatment[i]} \\ \gamma_j \sim Normal(0, \, \sigma_\gamma), \text{for } j = 1..6 \\ \alpha_j \sim Normal(\alpha_0, \, \sigma_\alpha), \text{for } j = 1..7 \end{split}$$