

ALLENA VENKATA SAI ABHISHEK

Dept of Computer Science and Engineering

DEEP PCB COCO **CONVERTOR**

ABSTRACT

- The MS COCO (Microsoft Common Objects in Context) dataset is a largescale object detection, segmentation, key-point detection, and captioning dataset. It is widely used for various models.
- The dataset consists of 328K images. Coco defines 91 classes but the data only uses 80 classes. So, we are trying to convert the other dataset format into COCO format.
- Deep PCB is a manufacturing defect data set. It has 1500 image pairs.
 Each has a template image & a test image. The template image has no defects & corresponding test image that has some defects with the annotations in a text file.
- We are trying to convert the deep PCB Manufacturing defect into MS/ COCO Format and create metadata about the converted dataset COCO format..

LITERATURE SURVEY

	Journal Type and year	Authors	Title	Summary
1	IEEE, 2019	Weibo Huang, Peng Wei	A PCB Dataset for Defects Detection and Classification	Given the brief introduction about the Deep PCB Manufacturing Defectdataset
2	IEEE, 2015	Tsung-Yi Lin Michael Maire Serge Belongie Lubomir Bourdev Ross Girshick, James Hays Pietro Perona Deva Ramanan C. Lawrence Zitnick Piotr Dollar	Microsoft COCO: Common Objects in Context	Gathered images of complex everyday scenes containing common objects in their natural context & made the COCO dataset. Dataset contains photos of 91 objects types that would be easily recognizable by a 4-year-old. With a total of 2.5 million labeled instances in 328k images.
3	IEEE, 2017	Lin et al. in Microsoft COCO: Common Objects in Context	COCO (Microsoft Common Objects in Context)	The COCO dataset format was explained in this

Existing System

Deep PCB Manufacturing defect dataset is an existing dataset.

MS COCO Format is an existing dataset format.

Reading a text file using python

Proposed System

Converting the Deep PCB manufacturing defect dataset into MS COCO format

Problem Definition

Input:

Deep PCB Dataset - 1. Image directories , 2. Annotation Text files

Output:

MS COCO JSON

COCO FORMAT

```
{
   "info": info,
   "licenses": [license],
   "categories": [category],
   "images": [image],
   "annotations": [annotation]
}
```

```
Categories
[{
    "id": int,
    "name": str,
    "supercategory": str,
    "supercategory": str,
}]

"categories":
    {"id": 1,"name": "rose", "supercategory": "flower"},
    {"id": 2,"name": "tulip", "supercategory": "fruit"}
}]
```

```
image{
"id": int,
"width": int,
"height": int,
"file_name": str,
"license": int,
"flickr_url": str,
"coco_url": str,
"date_captured": datetime,
}
```

```
"images": [
       "id": 397133,
        "width": 640,
        "height": 640,
        "file_name": "101.jpg",
        "license":1,
         "date_captured": "2019-12-04 17:02:52"
    },
         "id": 397122,
        "height": 640,
        "width": 640,
        "file_name": "102.jpg",
        "license": 1,
        "date_captured": "2019-12-04 17:02:52"
```


335 208 364 233 3 429 132 458 159 4 71 149 96 172 5 323 26 350 60 6 585 284 610 310 3 424 346 449 369 6 80 572 105 596 5

80 572 105 596 5

```
"annotations": [
annotation{
"id": int,
"image id": int,
                                         "segmentation":
"category id": int,
                                [[510.66,423.01,511.72,420.03,...,510.45,423.01]],
"segmentation": RLE or [polygon],
                                         "area": 702.10,
"area": float,
                                         "iscrowd": 0,
                                         "image id": 397133,
"bbox": [x,y,width,height],
"iscrowd": 0 or 1,
                                         "bbox": [433.07,355.93,138.65,228.67],
                                          "category id": 18,
                                         "id": 1768
                                     } ,
                                         "segmentation":
                                           "counts": [12,56,198,10]
                                           "size":[120, 240]
                                          "area": 500.2,
                                          "iscrowd": 1,
                                          "image id": 397122,
                                          "bbox": [473.07,395.93,38.65,28.67],
                                          "category id": 18,
                                         "id": 1768
                                     } ]
```

1	Α	В	С	D	Е	F
l	image	xmin	ymin	xmax	ymax	label
	06252020_	142.9378703	1663.277	1783.616	3200	Palme
	06252020_	2538.41801	2061.017	3618.644	3602.26	Morn
	06252020_	350.2824859	1537.853	2187.006	3231.638	Morn
	06252020_	2045.762919	0	5914.689	3990.961	Goose

EXCEL

335 208 364 233 3 429 132 458 159 4 71 149 96 172 5 323 26 350 60 6 585 284 610 310 3 424 346 449 369 6 80 572 105 596 5

NOTEPAD

CSV

```
Language
 1 | ImageID, Source, LabelName, Confidence, XMin, XMax, YMin, YMax, IsOccluded, IsTruncated, IsGroupOf, IsDepiction, IsInside
 2 0001eeaf4aed83f9,freeform,/m/0cmf2,1,0.022464,0.964178,0.070656,0.800164,0,0,0,0,0
 3 000595fe6fee6369,freeform,/m/02wbm,1,0.000000,1.000000,0.000233,1.000000,0,0,1,0,0
 4 000595fe6fee6369, freeform, /m/02xwb, 1, 0.141030, 0.180277, 0.676262, 0.732455, 0, 0, 0, 0, 0
 5 000595fe6fee6369, freeform, /m/02xwb, 1, 0.213781, 0.253028, 0.298764, 0.354956, 1, 0, 0, 0, 0
   000595fe6fee6369,freeform,/m/02xwb,1,0.232926,0.288447,0.488954,0.545146,1,0,0,0,0
 7 000595fe6fee6369, freeform, /m/02xwb, 1, 0.245370, 0.290361, 0.661854, 0.716605, 1, 0, 0, 0
 8 000595fe6fee6369, freeform, /m/02xwb, 1, 0.245370, 0.291319, 0.548028, 0.604220, 1, 0, 0, 0
 9 000595fe6fee6369, freeform, /m/02xwb, 1, 0.247285, 0.283661, 0.379450, 0.437084, 1, 0, 0, 0, 0
10 000595fe6fee6369, freeform, /m/02xwb, 1, 0.247285, 0.294190, 0.608543, 0.673380, 1, 0, 0, 0, 0
11 000595fe6fee6369,freeform,/m/02xwb,1,0.271216,0.306635,0.597016,0.658972,1,0,0,0,0
12 000595fe6fee6369,freeform,/m/02xwb,1,0.282703,0.341096,0.334784,0.426998,1,0,0,0,0
13 000595fe6fee6369,freeform,/m/02xwb,1,0.316207,0.361198,0.177733,0.246893,0,0,0,0
14 000595fe6fee6369,freeform,/m/02xwb,1,0.350668,0.384172,0.601339,0.669058,1,0,0,0,0
15 000595fe6fee6369,freeform,/m/02xwb,1,0.355455,0.400446,0.648886,0.726691,0,0,0,0
16 000595fe6fee6369,freeform,/m/02xwb,1,0.375557,0.427249,0.591253,0.661854,0,0,0,0
17 000595fe6fee6369,freeform,/m/02xwb,1,0.380343,0.591896,0.383773,0.620070,0,0,1,0,0
18 000595fe6fee6369, freeform, /m/02xwb, 1, 0.406189, 0.451180, 0.248334, 0.304527, 0, 0, 0, 0
19 000595fe6fee6369,freeform,/m/02xwb,1,0.427249,0.467453,0.713724,0.774239,0,0,0,0
20 000595fe6fee6369, freeform, /m/02xwb,1,0.432992,0.496171,0.595575,0.684907,0,0,0,0
21 000595fe6fee6369, freeform, /m/02xwb, 1, 0.434907, 0.482769, 0.736777, 0.813141, 1, 0, 0, 0, 0
```

```
01_open_circuit_03 - Notepad
File Edit Format View Help
<annotation>
        <folder>Open circuit</folder>
        <filename>01 open circuit 03.jpg</filename>
        <path>/home/weapon/Desktop/PCB DATASET/Open circuit/01 open circuit 03.jpg</path>
               <database>Unknown</database>
        </source>
        <size>
               <width>3034</width>
               <height>1586</height>
               <depth>3</depth>
        </size>
        <segmented>0</segmented>
        <object>
               <name>open circuit</name>
               <pose>Unspecified</pose>
               <truncated>0</truncated>
               <difficult>0</difficult>
               <bndbox>
                        <xmin>1419
                       <ymin>1132
                        <xmax>1460</xmax>
                        <ymax>1172</ymax>
                </bndbox>
        </object>
                                                                XML
        <object>
               <name>open circuit</name>
               <pose>Unspecified</pose>
               <truncated>0</truncated>
               <difficult>0</difficult>
               <bndbox>
                        <xmin>599
                        <ymin>909
                        <xmax>633</xmax>
                        <ymax>942</ymax>
                </bndbox>
        </object>
        <object>
               <name>open_circuit</name>
               <pose>Unspecified</pose>
               <truncated>0</truncated>
               <difficult>0</difficult>
                <bndbox>
                        <xmin>1688
                        <ymin>350
                        <xmax>1723</xmax>
                        <ymax>390</ymax>
               </bndbox>
        </object>
</annotation>
```

RESULTS

```
"info": {
    "description": "DeepPCB-2-COCO-Format-2022",
    "url": "",
    "version": "1.0",
    "year": 2022,
    "contributor": "",
    "date_created": "2022/1/10"
"licenses": [
        "url": "",
        "id": 0,
        "name": ""
"images": [
        "id": 1000,
        "license": 0,
        "coco_url": "",
       "flickr_url": "",
       "height": 640,
       "width": 640.
        "file_name": "20085000_test.jpg",
        "date_captured": "2022"
        "id": 1001.
       "license": 0.
        "coco_url": "",
       "flickr_url": "",
        "height": 640,
        "width": 640,
        "file_name": "20085001_test.jpg",
        "date_captured": "2022"
        "id": 1002,
        "license": 0,
        "coco_url": ""
        "flickr_url": "",
```

```
"annotations": [
       "id": 0,
       "category_id": 3,
       "iscrowd": 0,
        "segmentation": [],
       "image_id": 1000.
        "area": 0.0.
        "bbox": [
           409.0.
           394.0.
           26.0.
           28.0
       "id": 1,
       "category_id": 3,
       "iscrowd": 0,
        "segmentation": [],
       "image_id": 1000,
       "area": 0.0,
        "bbox": [
           275.0.
           383.0,
           44.0,
           34.0
       "id": 2,
       "category_id": 4,
       "iscrowd": 0,
        "segmentation": [],
       "image_id": 1000,
       "area": 0.0,
        "bbox": [
           8.0.
           163.0.
           28.0,
```

```
'categories": [
       "supercategory": "open",
       "id": 1,
       "name": "open"
       "supercategory": "short",
       "id": 2,
       "name": "short"
       "supercategory": "mousebite",
       "id": 3,
       "name": "mousebite"
       "supercategory": "spur",
       "id": 4,
       "name": "spur"
       "supercategory": "copper",
       "id": 5,
       "name": "copper"
       "supercategory": "pin-hole",
       "id": 6,
       "name": "pin-hole"
```

DEEP PCB IN COCO FORMAT ANNOTATION JSON

METADATA

- Information About The Data. It Guides
- Used In Corporate Sector
- It Saves Time And Manpower

```
"@class": "DeepPCB2COCOconvertor.DataSetMetadata",
"displayName": "DeepPCB to COCO",
"description": "Manufacturing Defect Dataset to COCO Format.",
"provider": "Sreeja Genti",
"creationDateTime": "2022-01-10T11:13:48.343Z",
"lastUpdateTime": "2022-01-10T11:13:48.343Z",
"version": 1,
"studioVersion": 1001.
"tags": [
    "COCO",
    "DeepPCB"
"size": 1500,
"format": "IMAGES"
"dataLoader": "COCO"
"colorSpace": "rgb",
"purpose": "Detection"
"labelDistribution": {
    "VALIDATION": {
         "annotationCounts": {
            "1": 659,
            "2": 478,
            "3": 586.
            "4": 483.
            "5": 464.
            "6": 470
         "labelNames":
            "copper",
            "mousebite"
            "open".
            "pin-hole".
            "short".
            "spur"
        "imagesCount": 500
    "TRAIN": {
        "annotationCounts": {
            "3": 1379,
            "4": 1142.
            "5": 1010.
            "6": 1031.
            "1": 1283.
            "2": 1028
         "labelNames": [
            "copper",
            "mousebite",
            "open".
            "pin-hole".
            "short".
            "spur"
         "imagesCount": 1000
```

CONCLUSION

The PCB datasets is converted into COCO format.

Files are shared throughout the corporate in this format structure

- 1. Images (which has all the images).
- 2. Annotations (which has the train and test set COCO Json files.
- 3. Metadata

References

- 1. A PCB Dataset for Defects Detection and Classification Mateusz Buda, Atsuto Maki, Maciej A. Mazurowski (https://arxiv.org/pdf/1901.08204v1.pdf)
- 2. Microsoft COCO: Common Objects in Context Lin et al. in Microsoft COCO (https://arxiv.org/pdf/1405.0312.pdf)
- 3. COCO (Microsoft Common Objects in Context) Lin et al. in Microsoft COCO (https://paperswithcode.com/dataset/coco)
- 4. Sanli Tang, Fan He, Xiaolin Huang, Jie Yang (2019) "Online PCB Defect Detector On A New PCB Defect Dataset" arXiv:1902.06197 [cs.CV] [5] Lv, Teng & Yan, Ping & He, Weimin. (2018). Survey on JSON Data Modelling. Journal of Physics: Conference Series. 1069. 012101. 10.1088/1742-6596/1069/1/012101.
- 5. Lv, Teng & Yan, Ping & He, Weimin. (2018). Survey on JSON Data Modelling. Journal of Physics: Conference Series. 1069. 012101. 10.1088/1742-6596/1069/1/012101.
- 6. Allena Venkata Sai Abhishek, Venkateswara Rao Gurrala "AugStatic A Light-Weight Image Augmentation Library", International Journal of Emerging Technologies and Innovative Research (www.jetir.org), ISSN: 2349-5162, Vol.9, Issue 5, page no.b735-b742, May-2022, Available:http://www.jetir.org/papers/JETIR2205199.pdf

THANK YOU