Aprendizado de Máquina

Inteligência Artificial
Prof. Leandro C. Fernandes

Adaptado a partir dos materiais de: Grupo de Inteligencia Computacional (UFPE) e do VisionLab da PUC-Rio

A IA usa sempre algumas metáforas...

- Cérebro e sistema nervoso
 - \Rightarrow conexionismo
- Linguagem + processos cognitivos
 - ⇒ IA simbólica
- Teoria da evolução
 - ⇒ computação evolutiva (algoritmos genéticos)

Indagações de alguns séculos atrás...

- Como explicar a diversidade de animais?
- Como explicar sua evolução?
 - Qual é a influência do dos antepassados?
 - Qual é a influência do meio ambiente?

História da Teoria da Evolução

- 1809: Jean-Baptiste Lamarck
 - Lei do uso e do desuso
 - pelo uso e desuso de suas aptidões, a natureza força os seres a se adaptarem para sobreviverem.

- Lei dos caracteres adquiridos.
 - Os serem mais fortes são mais capazes de "transmitir" suas aptidões às novas gerações

História da Teoria da Evolução

- 1859: Charles Darwin
 - Existe uma diversidade de seres devido aos contingentes da natureza (comida, clima, ...) e é pela lei da Seleção Natural que os seres mais adaptados ao seus ambientes sobrevivem
 - contra lei do uso de desuso
 - Os caracteres adquiridos são herdados pelas gerações seguintes
 - o homem vem do macaco...
- Na época, que isto tudo foi polêmico...

História da Teoria da Evolução

- 1865: Gregor Mendel
 - Formalizou a "herança de características", com a teoria do DNA (ervilhas)
- 1901: Hugo De Vries
 - Só a seleção natural não é responsável pela produção de novas (mais adaptadas) espécies. Tem de haver uma mudança genética!
 - Formalizou o processo de geração de diversidade:
 Teoria da Mutação

Computação evolutiva

- 1975: Jonh Holland: Idealizou os algoritmos genéticos
 - Adaptation in Natural & Artificial Systems
 MIT Press, 1975 (2nd ed. 1992)
- Porque a evolução é uma boa metáfora?
 - Muitos problemas computacionais
 - envolvem busca através de um grande número de possíveis soluções
 - requerem que o programa seja adaptativo, apto a agir em um ambiente dinâmico
 - A evolução biológica é
 - é uma busca massivamente paralela em um enorme espaço de problema
 - soluções desejadas = organismos mais adaptados

Roteiro

- Conceitos básicos
- Funcionamento dos algoritmos genéticos
 - seleção
 - mutação
 - reprodução
 - substituição
- Ferramentas de desenvolvimento e exemplos

Computação evolutiva

- Método probabilista de busca para resolução de problemas (otimização) "inspirado" na teoria da evolução
- Tem várias variantes: algoritmos genéticos, programação genética, estratégia evolutiva e programação evolutiva

Ideia:

- indivíduo = solução
- provoca mudança nos indivíduos por intermédio de mutação e reprodução
- seleciona indivíduos mais adaptados através de sucessivas gerações
- A aptidão de cada indivíduo é medida pela "função de aptidão" (fitness function) f(i): R ->[0,1]

 Os algoritmos evolucionários funcionam mantendo uma população de estruturas que evoluem de forma semelhante à evolução das espécies.

 Nestas estruturas são aplicados operadores genéticos, como a recombinação e mutação.

 Cada indivíduo recebe uma avaliação (fitness) que é uma quantificação da sua qualidade como solução do problema em questão.

 Baseados nesta avaliação são aplicados operadores genéticos de forma a simular a sobrevivência do mais apto.

 Algoritmos evolucionários buscam (dentro da atual população) aquelas soluções que possuem as melhores características e tenta combiná-las de forma a gerar soluções ainda melhores.

 O processo é repetido até que tenha se passado tempo suficiente ou que tenhamos obtido uma solução satisfatória para nosso problema.

Aplicação: classes de problemas

- Aproximação de funções
 - não-lineares/lineares, multi-modais
 - Mono-modais e discretas/contínuas
- Otimização combinatória (NP hard)
- Aprendizagem
 - por isto não pode ser contida na estatística!!

Métodos de busca: otimização

- Matemáticos de gradiente: Hill-Climbing
 - problema: mínimos locais

- Enumerativos -> cada ponto...
 - Problema: custa caro

Métodos de busca: otimização

Aleatórios: Recozimento Simulado (ou Simulated Annealing)

- Aleatórios: computação evolutiva
 - indivíduo = solução

Processo adaptativo e paralelo!

Algoritmos genéticos

- Definição de um problema em algoritmos genéticos:
 - É necessário definir uma maneira de codificar os indivíduos.
 - Definir uma função de avaliação para medir a capacidade de sobrevivência de cada indivíduo.
 - Definir um método de seleção dos pais.
 - Definir os operadores genéticos que serão utilizados.
 - Recombinação.
 - Mutação.

Algoritmos genéticos

```
// tempo inicial
t := 0
                                        // conjunto de soluções
P := população inicial de indivíduos
Avalia aptidão de cada indivíduo de P // função objetivo
Enquanto critério De Parada (Max Gerações, fitness (P)),
   não é satisfeito faça
                                         // incrementa tempo
   t := t + 1
   P' := seleciona(P)
                                         // população mais adequada
   P'' := reproduz(P')
                                         // gera descendentes
   P''' := muta(P'')
                                         // diversifica-os
   Avalia aptidão de P'''
   P := substitui(P,P''')
                                         // escolhe os sobreviventes
```

Exemplo: Quanto de açúcar e farinha de trigo para fazer um bom biscoito?

indivíduo: 3 1 3 g de açucar e 1g de farinha de trigo

Mutação: +/- 1 num intervalo de 1 a 5

Reprodução:

açucar 2 3 4 3 2 1 1 2 3 4 3 2 1 1 2 3 4 3 2 1 1 2 3 2 1

farinha

Função objetivo: $f(i) = q(i) / \sum_{j=1}^{n} q(j)$

Seleção/substituição: nova geração substitui a antiga (max. 4 indivíduos)

Exemplo (cont.)

Ex#2: Problema do Caixeiro Viajante (TSP)

- Um caixeiro viajante deve visitar N cidades em sua área de vendas
- O caixeiro começa de uma base, visita cada cidade uma única vez e retorna à sua cidade no final
- A cada viagem esta associado um custo
 - O caixeiro deve percorrer a rota mais curta

TSP: Implementação

Cromossomo - Enumerado

4 5 2 1 6 3

- Objetivo minimizar o caminho total (tour)
 - soma de cada elemento do vetor

- Applet exemplo animado
 - http://www.cs.washington.edu/education/courses/cse473/06sp
 /GeneticAlgDemo/tspexample.html
 - http://www.professor.webizu.org/ga/tspexample.html (pt-BR)

Ex#3: Otimização de Função

FUNÇÃO OBJETIVO :
$$f(x,y) = 0.5 - \frac{\left(\sin\sqrt{x^2 + y^2}\right)^2 - 0.5}{\left(1.0 + 0.001\left(x^2 + y^2\right)\right)^2}$$

Aptidão = Função Objetivo

Exemplo de cromossomo

Decodificar a cadeia de bits para o intervalo [-100,100]

Exemplo de Crossover

- Ponto de corte é aleatório
- Taxa de crossover (prob.) ~ 0,6 a 0,9

Corte

Exemplo de mutação

 Cada bit sofre mutação com taxa de mutação (prob.) ~ 0,001 a 0,01

Questões centrais

- Como representar os indivíduos?
- Quem é a população inicial?
- Como definir a função objetivo?
- Quais são os critérios de seleção?
- Como aplicar/definir o operador de reprodução?
- Como aplicar/definir o operador de mutação?
- Como garantir a convergência e ao mesmo tempo a solução ótima?

Representação

 Única restrição: determinar de modo não ambíguo uma solução

- Exemplos comuns:
 - cadeia
 - vetor de bits
 - matrizes
 - árvores, ….

Α					В						С			
<u> </u>		^_	_				^					_^	_	
1	0	1	0	0	1	1	0	0	0	1	1	1	0	1

Representação

- Representações mais gerais:
 - conjunto de elementos que podem ser bits, números reais, símbolos, regras, outros conjunto de elementos, ...
 - Indivíduo = regra e população = base de regras
 - indivíduo = base de regras e população = agentes
- Exemplos
 - ex. SAGACE: jogo
 - indivíduo = (eu, adv-min, jeton, joga)
 - ex. SAMUEL: agentes reativos
 - indivíduo1 = (r1, r7, r10, r15, r21)
 - indivíduo2 = (r5, r7, r11, r13, r22),

Representação: conhecimento do domínio

- Representações mais estruturadas
 - implica em redefinição dos operadores genéticos (maior complexidade)
 - ex. cadeia x matriz de matrizes

- Representações mais ricas
 - não necessariamente evidentes de se definir
 - ex. Em SAGACE o indivíduo final tem 16 parâmetros
 - (eu-min, eu-max, adv-min,..., jeton,..., nb-utilizada, fitness..., joga)

População inicial

- Aleatoriamente escolhida
- Trade-off: velocidade de convergência x variedade
- Na prática, 100 indivíduos (100³ patterns)

Seleção

- Objetivo:
 - propagar material genético dos indivíduos mais adaptados
- Problemática da convergência prematura (trade-off rapidez x diversidade):
 - Um indivíduo super adaptado no começo não deve ser valorizado demais
 - indivíduos ruins no começo não podem ser desprezados
- Tipos:
 - Ranking (os n mais adaptados)
 - Roda da roleta (ranking probabilístico): pselect(i) = $f(i) / \sum f(j)$
 - Torneio (eliminatórias 2 a 2)
 - Outros: stochatic reminder sampling,

Roda da roleta

n.	cadeia	aptidão	% do total
1	01101	169	14,4
2	11000	576	49,2
3	01000	64	5,5
4	10011	361	30,9
Total		1170	100,0

Reprodução/recombinação

• Função:

combinar e/ou perpetuar material genético dos indivíduos mais adaptados

• Tipos:

- assexuada (=duplicação)
- sexuada (crossover)

Reprodução (2)

 Quanto mais "estruturada" a representação mais difícil de definir o cruzamento

Mutação

- Objetivo:
 - gerar diversidade (p/ escapar de ótimos locais)
- Tipos:
 - generativa
 - destrutiva
 - swap
 - swap de sequência

- Observação:
 - Existe uma "taxa de mutação" (ex. % da população selecionada) que diminui com o tempo para garantir convergência

Substituição

Objetivo:

 garantir uma convergência adequada

Tipos:

- simples (m,l) : a nova geração SUBSTITUI a antiga
- elitista ou steady-state (m +
 l): a nova geração se
 MISTURA com a antiga.

- Critérios de substituição no caso elitista:
 - os piores
 - os mais semelhantes
 - para evitar convergência prematura
 - os melhores
 - os pais
 - aleatoriamente, ...

Evitando a convergência prematura

- Crowding
 - substitui os mais semelhantes
- Escalonamento
 - Linear fitness scaling: normaliza a função de avaliação "bruta"
- Sharing
 - diminui score dos ind. + semelhantes
- Janelamento:
 - escore mínimo para todos
- Algoritmos genéticos paralelos

Algoritmos genéticos paralelos

K Populações são iniciadas evoluem paralelamente

A cada n-ésima geração, as populações trocam indivíduos

Porque converge?

- Esquemas
 - "sub-partes" comuns recorrentes
- Teorema dos esquemas
 - o número de esquemas bem adaptados cresce exponencialmente
- Building-blocks hypothesis:
 - a otimalidade é obtida por justaposição de pequenos esquemas altamente adaptados
- Paralelismo implícito:
 - Tomando o alfabeto {0,1,*}, existem 2^k cadeias de k bits mas
 3^k possíveis esquemas
 - n indivíduos @ n^3 esquemas úteis

Paralelismo implícito: exemplo

n.	cadeia	aptidão	% do total
1	01101	169	14,4
2	11000	576	49,2
3	01000	64	5,5
4	10011	361	30.9

esquema 1****, melhor que 0****

Computação Evolutiva

Técnicas

- Algoritmos genéticos
- Programação genética
- Estratégia evolutiva
- Programação evolutiva

O que varia

- Critérios de escolha dos sobreviventes
- Operadores de "transformação" dos indivíduos
- Representação dos indivíduos

Algoritmos evolutivos

	Indivíduos	operadores	seleção/subst
Algoritmos Genéticos	soluções	mut. + repr.	
Programação genética	programas	mut. + repr.	
Estratégia evolutiva.	soluções	mut.	(1,1)
Programação evolutiva	soluções	mut.	overlap, 1/2

Exemplos de aplicações

- Roteamento de Telecomunicações
- Planejamento dos Jogos Olímpicos
- Avaliação de Crédito e Análise de Risco
- Particionamento de circuitos
- Jogos

Problema: 8 Rainhas

Como representar os indivíduos?

- 8 dígitos cada um representado a posição da rainha em sua coluna.
- **Exemplo:** (1, 7, 4, 6, 8, 2, 5, 3)

Qual a função de avaliação?

 Número de pares de rainhas não sedo atacadas.

$$(3, 2, 7, 5, 2, 4, 1, 1) = 23$$

$$(2, 4, 7, 4, 8, 5, 5, 2) = 24$$

 Problema do caixeiro viajante: Deve-se encontrar o caminho mais curto para percorrer n cidades sem repetição.

Como representar os indivíduos?

- Cada indivíduo pode ser representador por uma lista ordenada de cidades, que indica a ordem em que cada uma será visitada.
- Exemplo: (3 5 7 2 1 6 4 8)

 Cada cromossomo tem que conter todas as cidades do percurso, apenas uma vez.

Considerando 8 cidades:

- Cromossomos válidos: (1 2 3 4 5 6 7 8), (8 7 6 5 4 3 2 1), (1 3 5 7 2 4 6 8)...
- Cromossomos inválidos: (1 5 7 8 2 3 6) Falta a cidade 4, (1 5 7 8 2 3 6 5) Falta a cidade 4 e a cidade 5 está representada 2 vezes...

- Qual a função de avaliação?
 - A função de avaliação consiste em somar todas as distâncias entre cidades consecutivas.
 - Exemplo:

O cromossomo (1 3 5 4 2) tem avaliação igual a 35+ 80 + 50 + 65 = 230

Recombinação (uniforme):

- Para cada gene é sorteado um número zero ou um.
 - Se o valor sorteado for 1, um filho recebe o gene do primeiro pai e o segundo filho o gene do segundo pai. Se for 0, ocorre o inverso.

```
- Pai1 (3 5 7 2 1 6 4 8)
```

- Pai2 (2 5 7 6 8 4 3 1)
- 1) Gera-se uma string de bits aleatória do mesmo tamanho que os pais: 100 10101
- 2) Copia-se para o filho 1 os elementos do pai 1 referentes àquelas posições onde a string de bits possui um 1: 3 _ 2 _ 6 _ 8
- 3) Elementos não copiados do pai1: _57_1_4_
- 4) Permuta-se essa lista de forma que os elementos apareçam na mesma ordem que no pai 2 e copia-se eles para dentro do Filho1: 3 5 7 2 1 6 4 8

• Mutação:

Individuo (3 5 7 2 1 6 4 8)

 Escolhem-se dois elementos aleatórios dentro do cromossomo e trocam-se as suas posições:

(3 5 7 2 1 6 4 8)

Novo individuo mutante:

(3 1 7 2 5 6 4 8)

Balanço

Vantagens

- Simples (várias representações, 1 algoritmo) e pouco sensível a pequenas variações no set-up
- Vasto campo de aplicações (inclusive em NN)
- Ainda custa caro mas pode ser paralelizado facilmente

Desvantagens

Como o método é
 basicamente numérico nem
 sempre é fácil introduzir
 conhecimento do domínio.

Links

- Course on Genetic Algorithms
 - http://gal4.ge.uiuc.edu/ge493/ge493.top.html
- Intro to GAs (slides)
 - http://lancet.mit.edu/~mbwall/presentations/IntroToGAs/
- GA faq
 - http://www.cis.ohio-state.edu/hypertext/faq/usenet/ai-faq/genetic/top.html
- Links para Genetic Algorithms
 - http://www.ics.hawaii.edu/~sugihara/research/linkdga.html