

School of Mathematics and Statistics MATH2111 - Higher Several Variable Calculus

10. The Inverse and Implicit Function Theorems

Dr Alan Stoneham

a.stoneham@unsw.edu.au

Inversion Function Theorem for $f: \mathbb{R} \to \mathbb{R}$

Recall that the mapping $x \mapsto mx + b$, where $x, m, b \in \mathbb{R}$, is invertible if and only if $m \neq 0$. That is, when the graph of $x \mapsto mx + b$ is not a horizontal line.

This morally gives us the inverse function theorem as taught in MATH1131/41: if $a \in \mathbb{R}$ and $f: \mathbb{R} \to \mathbb{R}$ is continuously differentiable and satisfies $f'(a) \neq 0$, then there is a neighbourhood U of a such that f restricted to U is invertible.

super set A cu open set antaining

Inversion Function Theorem for $f: \mathbb{R} \to \mathbb{R}$

Inverse Function Theorem for $f: \mathbb{R} \to \mathbb{R}$

Suppose that $f: \mathbb{R} \to \mathbb{R}$ is continuously differentiable with $f'(a) \neq 0$. Then there is an open interval $I \ni a$ and a function $g: f(I) \to I$ such that

$$f \circ g = \mathrm{id}_{f(I)}$$
 and $g \circ f = \mathrm{id}_{I}$.

Moreover, g is continuously differentiable with $g'(y) = \frac{1}{f'(g(y))}$.

Inversion Function Theorem Remarks

Remarks:

- f noy be still locally invertible if $f(\alpha) = 0$, for example $f(n) = n^3$
- A non-zero derivathe closs NOT imply local invertibility Eg: $f(x) = \begin{cases} \frac{\pi}{2} + x^2 \sin \frac{1}{\pi}, & \pi \neq 0 \\ 0, & \pi = 0 \end{cases}$

$$f'(0) = \frac{1}{2}$$
, but $f'(\frac{1}{2n\pi}) = -\frac{1}{2}$

Inverse Function Theorem for $f: \mathbb{R}^n \to \mathbb{R}^n$

How do we generalise this theorem for a function $f: \mathbb{R}^n \to \mathbb{R}^n$?

The condition that $f'(\mathbf{Q}) \neq 0$ is saying that $f'(\mathbf{Q})$ is invertible in the real numbers. For $f: \mathbb{R}^n \to \mathbb{R}^n$, its derivative is represented by an $n \times n$ matrix, which could be invertible...

Inverse Function Theorem for $f: \mathbb{R}^n \to \mathbb{R}^n$

Suppose $\Omega \subseteq \mathbb{R}^n$ is open, $\mathbf{a} \in \Omega$ and $f: \Omega \to \mathbb{R}^n$ is a C^1 function. If $J_f(\mathbf{a})$ is an invertible matrix, then f has a local inverse around \mathbf{a} . That is, there are open sets $U \ni \mathbf{a}$ and $V \ni f(\mathbf{a})$ and a function $g: V \to U$ such that

$$g \circ f = \mathrm{id}_U$$
 and $f \circ g = \mathrm{id}_V$.

Moreover, g is a C^1 function with $J_g(\mathbf{y}) = \left(J_f(g(\mathbf{y}))^{-1}\right)^{-1}$ for all $y \in V$.

$$C \cdot f \cdot g'(g) = f'(g(g))^{-1}$$

in 10.

Inverse Function Theorem Remarks

- · A formuler for the inverse is not given, and it's even more impossible is general than 1st years.
- For $\alpha \in \mathbb{R}^n$, $J_g(f(\alpha)) = J_f(g(f(\alpha))^{-1})$ = $J_f(\alpha)^{-1}$
- The best effine approximation for g is $T_{f(2)}g(2) = g(f(2)) + J_g(f(2))(g f(2))$ $= 2 + J_f(2)^{-1}(g f(2))$

Inverse Function Theorem Example 1

Example.
$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
, $f(x,y) = (x^2-y^2, 2xy)$
The Jacobian of f is $(2x - 2y)$
Which has deteriorized
 $(2x)^2 - (2y)(-2y) = (4(x^2+y^2))$
So by the Inverse function Theorem, f
has a local inverse everywhere except
of the origin $(0,0)$.

Inverse Function Theorem Example 1

If
$$g$$
 denotes a local inerse for $F(l, 2) = (-3, 4)$, find the best offine approximation for g at the point $g(-3, 4) = (1, 2)$, $g(-3, 4) = f(1, 2)^{-1}$

If $f(l, 2) = \begin{pmatrix} 2 & -4 \\ 4 & 2 \end{pmatrix} \longrightarrow f(l, 2)^{-1} = \frac{1}{20} \begin{pmatrix} 2 & 4 \\ -4 & 2 \end{pmatrix}$

So the required hest offine approx is

 $f(-1, 4) g(u, v) = \begin{pmatrix} 1 \\ 2 \end{pmatrix} + \frac{1}{20} \begin{pmatrix} 2 & 4 \\ -4 & 2 \end{pmatrix} \begin{pmatrix} u+3 \\ v-4 \end{pmatrix}$

Inverse Function Theorem Example 2

Exercise. Find when the polar map $p: \mathbb{R}^2 \to \mathbb{R}^2$, $p(r,\theta) = (r\cos\theta, r\sin\theta)$, has a local inverse and, when it exists, find its best affine approximation at

$$(x_0, y_0) = (r_0 \cos \theta_0, r_0 \sin \theta_0).$$

$$J_{\rho}(r,0) = \begin{pmatrix} 650 & -r\sin 0 \\ \sin 0 & r\sin 0 \end{pmatrix}, |J_{\rho}(r,0)| = r$$

so ρ has a local inverse whenever $r \neq 0$
 $J_{\rho}(r_{0}, \theta_{0})^{-1} = \frac{1}{r} \begin{pmatrix} r\cos \theta_{0} & r\sin \theta_{0} \\ -\sin \theta_{0} & \cos \theta_{0} \end{pmatrix}$

Best affine approximation for the local inverse is

 $T_{\rho}(r_{0}\cos \theta_{0}, r_{0}\sin \theta_{0}) = \begin{pmatrix} r_{0} \\ \theta_{0} \end{pmatrix} + J_{\rho}(r_{0}, \theta_{0})^{-1} \begin{pmatrix} \kappa - r\cos \theta_{0} \\ \gamma - r\sin \theta_{0} \end{pmatrix}$

Given a surface $\mathcal S$ in $\mathbb R^3$ defined by $\phi(x,y,z)=0$ and $\mathbf x_0\in\mathcal S$, can we write z=f(x,y)for all (x, y, z) in the vicinity of \mathbf{x}_0 ?

If so, we would say that the surface is **implicitly defined by** f at the point x_0 .

For example, consider the sphere $x^2 + y^2 + z^2 = 1$. For any point (x_0, y_0, z_0) in the upper hemisphere, we can express the surface 'locally' via $z=\sqrt{1-x^2-y^2}$ for all (x,y) in an open set $U \ni (x_0, y_0)$. Likewise, we can write $z = -\sqrt{1 - x^2 - y^2}$ for any point in the lower hemisphere.

However, for any point on the equator of the sphere (z=0), we cannot find find a function f that implicitly defines the surface via z=f(x,y).

More generally, it is possible to implicitly define a surface with a function around x_0 when

$$\phi \in C^{1} \quad \text{and} \quad \frac{\partial \phi}{\partial z}(\mathbf{x}_{0}) \neq 0.$$

$$\frac{\partial \phi}{\partial z} = 2z = 0 \quad \text{ot} \quad z = 0$$

$$=) \quad \chi^{2} + y^{2} = 1 \quad \text{ond} \quad z = 0$$

$$50 \quad z \quad \text{cound be} \quad \text{defined in terms of } \chi \quad \text{and } y.$$

Implicit Function Theorem (Special Case)

Let $\phi: \mathbb{R}^{m+1} \to \mathbb{R}$ be a C^1 function and express an element of \mathbb{R}^{m+1} as $(\mathbf{x},z)=(x_1,\ldots,x_m,z).$ Let $(\mathbf{a},b)\in\mathbb{R}^{m+1}$ satisfy $\phi(\mathbf{a},b)=0.$ If $\frac{\partial\phi}{\partial z}(\mathbf{a},b)\neq 0$, then there are open sets $U\subseteq\mathbb{R}^m$ and $V\subseteq\mathbb{R}$ and a surjective C^1 function $f:U\to V$ such that $\mathbf{a}\in U$ and $b\in V$ and $\phi(\mathbf{x},f(\mathbf{x}))=0$ for all $\mathbf{x}\in U.$

Implicit Function Theorem Example

\$C1,0,0) = 0

Example. Consider the surface defined by $\phi(x,y,z) = xy^2 - x^2 + z^3 + e^{xz}\cos y = 0$. Can we write z = f(x,y) in the vicinity of (1,0,0)?

Clearly
$$\emptyset$$
 is C' Now,

 $\frac{\partial \emptyset}{\partial z} = 3z^2 + xe^{xz}asy$
 $\frac{\partial \emptyset}{\partial z} = (1,0,0) = 0 + 1e^{\alpha}as(0) = 1 \neq 0$

By the Implicit Function Revern, there is

 α C' function f such that $z = f(x, y)$ if and only if $\theta(x, y, z) = 0$ for all (x, y, z) in an open reighbourhood if $(x, y, z) = 0$

Best offine appear : $f(x, y) \approx f(1, 0) + (1, 0) \cdot (x - 0)$

Implicit Function Theorem Example

or chair Rube

To get If, ne use Implicit Differentiation

 $0 = \frac{1}{2\pi} (xy^2 - x^2 + z^2 + e^{xz} asy) = y^2 - 2x + 3z^2 \frac{dz}{dx}$ $= y^2 - 2x + 3z^2 \frac{\partial z}{\partial x} + e^{xz} \omega_{y} \left(z + x \frac{\partial z}{\partial x}\right)$ + excry & (x2)

At $(1,0,0) : 0 = 0-2 + 0 + (1) &s(0) (0 + \frac{\partial^2}{\partial x})$ =) $\frac{\partial^2}{\partial x} (1,0) = 2$

 $0 = \frac{\partial}{\partial y} (xy^2 - x^2 + 2^3 + e^{x^2} \cos y) = 2xy + 3z^2 \frac{\partial^2}{\partial y}$ + x de ext asy - exising

At $(1,0,0) = 0 = 0 + 0 + 1 \frac{\partial z}{\partial y} e^{2} \cos(0) - e^{2} \sin(0)$ $\frac{\partial z}{\partial y} = 0$. So $f(x,y) \approx 2(x-1)$ in the vicinity of (1,0)

Implicit Function Theorem v1 Proof

Define $G: \mathbb{R}^{m+1} \longrightarrow \mathbb{R}^{n+1}$, G(x, z) =Suppose that $\phi(c_2, b) = 0$ with $\frac{\partial \phi}{\partial z}(c_2, b) \neq 0$ Then This is invertible since 30 (9,6) #0 By the Lowerse Function Theorem, There are open sets $W_1 \times (-S, S)$, W_2 and a sizedion $F: W_1 \times (-S, S) \rightarrow W_2$ such that & & w,, (2,b) & w, and (x,t) = G(F(x,z)) = (F(x,z), F(x,z), --F(x,z))∀ (≥, 2) ∈ W, x (-8,8) (¢(F, (≤, +) ··· , F, (≤, 2))

Implicit Function Theorem v1 Proof

Proof sketch cont. In penticular, $x_i = F_i(x_j \ge 1) \ \forall \ j \le i \le m$, and so $z = \beta(x_1, x_2, ..., x_n, F_{m+1}(x, z))$ = $\varphi(x)$, $F_{m+1}(x, 2)) <math>\forall (x, 2) \in W, x (-\delta, \delta)$ In particular, setting z = 0 gives $g(x, F_{n+1}(x, 0)) = 0$ for all KEW. This neens (n, fue, (x, v) As (9,6) E Wz, which is open, there we open es. u' = R and V = R such that (a, b) = u'x V = w,

Implicit Function Theorem v1 Proof G(x,b) = (x,b)= (x, b) = (x,b)

Let $u = \{x \in u' : F_{n+1}(x, 0) \in V\}$, which is open since it is the preinciple of an open set under a continuous function.

Perfine $f: u \longrightarrow V$ by $f(x) = f_{n+1}(x, 0)$ firstly $g \in u$ size $f(g) = f_{n+1}(2, 0) = f_{n+1}(G(2, 6))$ identify $= (f \circ G)_{n+1}(g \circ b) = b$

Earlier, we observed that $\begin{cases}
\varphi(\chi), & f_{n+1}(\chi_{0}) = 0 \\
(=) & \varphi(\chi), & f(\chi) = 0
\end{cases}$ $\forall \chi \in \mathcal{W},$ $\forall \chi \in \mathcal{W},$

But wait, there's more!

The slides from here are not examinable!

So given a C^1 function $\phi: \mathbb{R}^{m+1} \to \mathbb{R}$ and the surface defined by $\phi(x_1, \dots, x_{m+1}) = 0$, we have conditions for when the surface can be locally expressed as the graph of a function.

What if we want to express more variables as functions of the others? For example, given

$$e^{xyu} + yuv + x - 3 = 0$$
$$\ln(yv) + xu^{3}v - x^{3}u = 0,$$

can we express u and v (locally) as functions of x and y?

Implicit Function Theorem (Marsden & Tromba Ch. 3.5)

Let $\phi: \mathbb{R}^{m+n} \to \mathbb{R}^n$ be a C^1 function and write $(\mathbf{x}, \mathbf{y}) = (x_1, \dots, x_m, y_1, \dots y_m)$ for an element of \mathbb{R}^{m+n} . Let $(\mathbf{a}, \mathbf{b}) \in \mathbb{R}^{m+n}$ satisfy $\phi(\mathbf{a}, \mathbf{b}) = 0$ and consider

$$J_{\phi}(\mathbf{a}, \mathbf{b}) = \left(\frac{\partial(\phi_1, \dots, \phi_n)}{\partial(x_1, \dots, x_m)} \middle| \frac{\partial(\phi_1, \dots, \phi_n)}{\partial(y_1, \dots, y_n)} \right)$$

$$= \begin{pmatrix} \frac{\partial \phi_1}{\partial x_1}(\mathbf{a}, \mathbf{b}) & \cdots & \frac{\partial \phi_1}{\partial x_m}(\mathbf{a}, \mathbf{b}) & \frac{\partial \phi_1}{\partial y_1}(\mathbf{a}, \mathbf{b}) & \cdots & \frac{\partial \phi_1}{\partial y_n}(\mathbf{a}, \mathbf{b}) \\ \vdots & & \vdots & & \vdots \\ \frac{\partial \phi_n}{\partial x_1}(\mathbf{a}, \mathbf{b}) & \cdots & \frac{\partial \phi_n}{\partial x_m}(\mathbf{a}, \mathbf{b}) & \frac{\partial \phi_n}{\partial y_1}(\mathbf{a}, \mathbf{b}) & \cdots & \frac{\partial \phi_n}{\partial y_n}(\mathbf{a}, \mathbf{b}) \end{pmatrix}.$$

If $\frac{\partial(\phi_1,...,\phi_n)}{\partial(y_1,...,y_n)}$ is invertible, then there are open sets $U\subseteq\mathbb{R}^m$ and $V\subseteq\mathbb{R}^n$ and a surjective C^1 function $f:U\to V$ such that $\mathbf{a}\in U$, $\mathbf{b}\in V$, $f(\mathbf{a})=\mathbf{b}$ and for all $\mathbf{x}\in U$, $\mathbf{y}\in V$, we have that $\phi(\mathbf{x},\mathbf{y})=0$ if and only if $f(\mathbf{x})=\mathbf{y}$.

Example. Given the equations

$$e^{xyu} + yuv + x - 3 = 0$$
$$\ln(yv) + xu^{3}v - x^{3}u = 0,$$

can u and v be expressed as functions of x and y in the vicinity of $(x_0, y_0, u_0, v_0) = (2, 1, 0, 1)$?

Consider the C^1 function $\phi: \mathbb{R} \times \mathbb{R}^+ \times \mathbb{R} \times \mathbb{R}^+ \to \mathbb{R}^2$ defined by

$$\phi(x, y, u, v) = \begin{pmatrix} e^{xyu} + yuv + x - 3\\ \ln(yv) + xu^3v - x^3u \end{pmatrix},$$

which satisfies $\phi(2,1,0,1)=0$. The Jacobian of ϕ at (2,1,0,1) is

$$J_{\phi}(2,1,0,1) = \begin{pmatrix} 1 & 0 & 3 & 0 \\ 0 & 1 & -8 & 1 \end{pmatrix}.$$

Since $\frac{\partial(\phi_1,\phi_2)}{\partial(u,v)}=\begin{pmatrix}3&0\\-8&1\end{pmatrix}$ is invertible, the Implicit Function Theorem gives us open sets U and V and a function $f:U\to V$ such that $(2,1)\in U$, $(0,1)\in V$, f(2,1)=(0,1) and $\phi\bigl(x,y,f(x,y)\bigr)=0$ for all $(x,y)\in U$.

Example cont. Find the best affine approximation to f at (2,1).

$$0 = \frac{\partial}{\partial x} \left(e^{xyu} + yuv + x - 3 \right)$$

$$= ye^{xyu} \left(u + x \frac{\partial u}{\partial x} \right) + y \left(v \frac{\partial u}{\partial x} + u \frac{\partial v}{\partial x} \right) + 1$$

$$\frac{\partial u}{\partial x} (2, 1) = -\frac{1}{3}$$

$$0 = \frac{\partial}{\partial y} \left(e^{xyu} + yuv + x - 3 \right)$$

$$= xe^{xyu} \left(u + y \frac{\partial u}{\partial y} \right) + uv + yv \frac{\partial u}{\partial y} + yu \frac{\partial v}{\partial y}$$

$$\frac{\partial u}{\partial y} (2, 1) = 0$$

$$0 = \frac{\partial}{\partial x} \left(\ln(yv) + xu^3v - x^3u \right)$$

$$= \frac{1}{v} \frac{\partial v}{\partial x} + u^3v + 3xu^2v \frac{\partial u}{\partial x} + xu^3 \frac{\partial v}{\partial x} - 3x^2u - x^3 \frac{\partial u}{\partial x}$$

$$\frac{\partial v}{\partial x} (2, 1) = -\frac{8}{3}$$

Example cont.

$$0 = \frac{\partial}{\partial y} \left(\ln(yv) + xu^3v - x^3u \right)$$

$$= \frac{1}{y} + \frac{1}{v} \frac{\partial v}{\partial y} + x \left(3u^2v \frac{\partial u}{\partial y} + u^3 \frac{\partial v}{\partial y} \right) - x^3 \frac{\partial u}{\partial y}$$

$$\frac{\partial v}{\partial y} (1, 2) = -1$$

So the best affine approximation to f at (1,2) is

$$f(x,y) \approx \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} -1/3 & 0 \\ -8/3 & -1 \end{pmatrix} \begin{pmatrix} x-2 \\ y-1 \end{pmatrix}$$

Inverse ← **Implict**

We saw earlier how the Inverse Function Theorem can give us the Implicit Function Theorem. Suppose that $\mathbf{c} \in \mathbb{R}^n$ and $g: \mathbb{R}^n \to \mathbb{R}^n$ is a C^1 function such that $J_g(\mathbf{c})$ is invertible. Define a C^1 function $\phi: \mathbb{R}^{2n} \to \mathbb{R}^n$ by

$$\phi(\mathbf{x}, \mathbf{y}) = \mathbf{x} - g(\mathbf{y}).$$

Then $\phi(g(\mathbf{c}), \mathbf{c}) = 0$ and $J_{\phi}(\mathbf{c}) = (I|-J_g(\mathbf{c}))$, and so the Implicit Function Theorem yields open sets $U, V \subseteq \mathbb{R}^n$ and a surjective function $f: U \to V$ such that $g(\mathbf{c}) \in U$, $\mathbf{c} \in V$, $f(g(\mathbf{c})) = \mathbf{c}$ and for all $\mathbf{x} \in U$ and $\mathbf{y} \in V$, we have that $\phi(\mathbf{x}, \mathbf{y}) = \mathbf{0}$ if and only if $f(\mathbf{x}) = \mathbf{y}$. That is,

$$\mathbf{0} = \phi(\mathbf{x}, f(\mathbf{x})) = \mathbf{x} - g(f(\mathbf{x}))$$

and so $g \circ f = \mathrm{id}_U$. Moreover, U and V can be chosen so that the continuity of g implies that $g(\mathbf{y}) \in U$ for all $\mathbf{y} \in V$. So for any $\mathbf{y} \in V$,

$$\phi(g(\mathbf{y}), \mathbf{y}) = g(\mathbf{y}) - g(\mathbf{y}) = \mathbf{0},$$

and so $f(g(\mathbf{y})) = \mathbf{y}$.

Proving one of the Inverse or Implicit Function Theorems is very challenging. One method uses the Contraction Mapping Theorem (MATH3611).

