Exercise 1

- a) The box plots above indicate that Setosa tends to have smaller petal lengths than the other two species and Virginica tends to larger petal lengths, though there is some overlap between Versicolor and Virginica petal lengths. The petal lengths for Setosa also seem to have small spread. From the plots alone we will not be able to determine if the differences in location or spread of petal lengths is significant across species.
- b) Basic descriptive statistics are shown as follows. The mean and median values are close to 40 (37.58 and 43.5, respectively), but there is a pretty large standard deviation (17.653) and the difference between the largest and smallest lengths is 59 mm, so there is a very large spread in values across the various species. The larger value of median than mean may indicate a left skewness for the data, and in fact we a skewness of -.275 which is small but noticeable.

Moments					
N	150	Sum Weights	150		
Mean	37.58	Sum Observations	5637		
Std Deviation	17.6529823	Variance	311.627785		
Skewness	-0.2748842	Kurtosis	-1.4021034		
Uncorrected SS	258271	Corrected SS	46432.54		
Coeff Variation	46.9744075	Std Error Mean	1.44135997		

	Basic Statistical Measures					
Location Variability						
Mean	37.58000	Std Deviation	17.65298			
Median	43.50000	Variance	311.62779			
Mode	14.00000	Range	59.00000			
		Interquartile Range	35.00000			

Note: The mode displayed is the smallest of 2 modes with a count of 13.

Tests of normality will give us a quantitative check, and histograms and probability plots can give us visual checks of normality.

Tests for Normality						
Test	Statistic p Value					
Shapiro-Wilk	W	0.876268	68 Pr < W <0.00			
Kolmogorov-Smirnov	D	0.198154	Pr > D	< 0.0100		
Cramer-von Mises	W-Sq	1.222285	Pr > W-Sq	< 0.0050		
Anderson-Darling	A-Sq	7.678546	Pr > A-Sq	<0.0050		

All of the tests for normality are quite significant at a .05 level, indicating that an assumption that all of the petal lengths came from a single normal population should be rejected. It is pretty unlikely that a sample from a single normal population would generate this data.

The histogram and probability plot would also give us a qualitative indication that the data set deviates quite a bit from normal, and hence the underlying population probably isn't normal. We see two different maxima with a dip between them in the histogram, and the histogram does not match the estimated normal distribution very well.

The probability plot that follows also has two distinct fairly straight regions with a big jump in between. This coincides with the peaks and the gap in the histogram. If the data were reasonably normal, the points on the probability plot would fall pretty closely along a straight line.

c) Results for individual species follow. We see that the spread (standard deviation and range) within species is much smaller (e.g. standard deviations of 1.74, 4.7, and 5.52 for Setosa, Versicolor and Virginica, respectively). We also see that the mean of 14.62 and median of 15 for Setosa is much further away from the overall mean and median than are the means and medians of Versicolor and Virginica.

The skewness for Setosa is pretty small at 0.11. The skewness is more noticeable for the other two species, with Versicolor having a moderate left skew of -0.61 and Virginica having a moderate right skew of 0.55.

Discussion of normality checks follows the results.

Iris Species=Setosa

Moments					
N	50	Sum Weights	50		
Mean	14.62	Sum Observations	731		
Std Deviation	1.73663996	Variance	3.01591837		
Skewness	0.1063939	Kurtosis	1.02157611		
Uncorrected SS	10835	Corrected SS	147.78		
Coeff Variation	11.8785223	Std Error Mean	0.24559798		

	Basic Statistical Measures					
Location Variability						
Mean	14.62000	Std Deviation	1.73664			
Median	15.00000	Variance	3.01592			
Mode	14.00000	Range	9.00000			
		Interquartile Range	2.00000			

Note: The mode displayed is the smallest of 2 modes with a count of 13.

Tests for Normality						
Test	Sta	Statistic p Value				
Shapiro-Wilk	W	0.954977	77 $Pr < W$ 0.05			
Kolmogorov-Smirnov	D	0.153398	Pr > D	< 0.0100		
Cramer-von Mises	W-Sq	0.189745	Pr > W-Sq	0.0070		
Anderson-Darling	A-Sq	1.007324	Pr > A-Sq	0.0111		

Iris Species=Setosa

Iris Species=Setosa

Iris Species=Versicolor

Moments					
N	50	Sum Weights			
Mean	42.6	Sum Observations	2130		
Std Deviation	4.69910977	Variance	22.0816327		
Skewness	-0.6065077	Kurtosis	0.0479033		
Uncorrected SS	91820	Corrected SS	1082		
Coeff Variation	11.0307741	Std Error Mean	0.66455448		

	Basic Statistical Measures					
Loca	Location Variability					
Mean	42.60000	Std Deviation	4.69911			
Median	43.50000	Variance	22.08163			
Mode	45.00000	Range	21.00000			
		Interquartile Range	6.00000			

Tests for Normality					
Test	Statistic p Value				
Shapiro-Wilk	W	0.966004	Pr < W	0.1585	
Kolmogorov-Smirnov	D	0.117121	Pr > D	0.0855	
Cramer-von Mises	W-Sq	0.090004	Pr > W-Sq	0.1506	
Anderson-Darling	A-Sq	0.555056	Pr > A-Sq	0.1479	

Iris Species=Versicolor

Iris Species=Versicolor

Iris Species=Virginica

Moments					
N	50	Sum Weights	50		
Mean	55.52	Sum Observations	2776		
Std Deviation	5.51894696	Variance	30.4587755		
Skewness	0.54944459	Kurtosis	-0.1537786		
Uncorrected SS	155616	Corrected SS	1492.48		
Coeff Variation	9.94046642	Std Error Mean	0.78049696		

	Basic Statistical Measures					
Loca	Location Variability					
Mean	55.52000	Std Deviation	5.51895			
Median	55.50000	Variance	30.45878			
Mode	51.00000	Range	24.00000			
		Interquartile Range	8.00000			

Tests for Normality						
Test	Statistic p Value					
Shapiro-Wilk	W	0.962186	6 Pr < W 0.10			
Kolmogorov-Smirnov	D	0.113606	Pr > D	0.1036		
Cramer-von Mises	W-Sq	0.086306	Pr > W-Sq	0.1725		
Anderson-Darling	A-Sq	0.608956	Pr > A-Sq	0.1088		

Iris Species=Virginica

Iris Species=Virginica

Visually, normality doesn't seem unreasonable for any of the species—the histograms do not look too different from bell shapes and the probability plots are pretty close to a straight line. Looking at the tests of normality, we see that all tests for Versicolor and Virginica are insignificant at a .05 level, so we would not reject the assumption of normality for these two species. For Setosa, though, we see some possible cause for concern. Only Shapiro-Wilk is insignificant at a .05 level, but the p-value of .0548 is pretty close to the cutoff. Shapiro-Wilk is specific to normal distributions, so it should be a better test of normality than the others. We should note that there is some indication of deviation from normality for Setosa given how significant the other test statistics are. T tests, for instance, are fairly robust with respect to small deviations from normality, so we should still be safe using a t-test on the Setosa lengths

provided the test stronger rejects or fails to reject the null. If the p-value for such a test were not far from .05, we would want to switch to a rank-based test to be safe.

Exercise 2

a) We found normality to be a very bad assumption for the full sample, so we should not trust the t test here. Signed rank assumes symmetry. We do not have a quantitative test of symmetry, but the histogram doesn't look very symmetric and the skewness was -0.27. If we consider the fact that the Versicolor and Virginica values seem to overlap a fair amount and the Setosa seem pretty well separated from the rest, symmetry is not a safe assumption, so we should rely on the sign test. The test statistic of -8 has a p-value 0.208. So we would not reject the null hypothesis and conclude that there is no significant difference between 45 and the true population median for petal lengths.

Tests for Location: Mu0=45						
Test	Statistic p Value					
Student's t	t	-5.14792	Pr > t	<.0001		
Sign	M	-8	Pr >= M	0.2080		
Signed Rank	S	-1817	Pr >= S	0.0002		

b) Virginica was reasonably close to normal, so we can rely on a t test to compare the mean of the Virginica population to the null value of 43.5 (the median for the full sample). We want a one-sided test because we want the alternative hypothesis to be that the Virginica mean is significantly greater than the null value.

DF	t Value	Pr > t	
49	15.40	<.0001	

With a test statistic of 15.4 and a p-value less than .0001, we would reject the null hypothesis in favor of the alternative that the mean Viriginica petal length is significantly greater than 43.5.

c) Based on the results of Exercise 1, the species Versicolor and Virginica are reasonably normal. So we can use a t test to compare the mean/median difference between Versicolor and Virginica.

Species	Method	Mean	95% CL Mean		Std Dev	95% CL Std Dev	
Versicolor		42.6000	41.2645	43.9355	4.6991	3.9253	5.8557
Virginica		55.5200	53.9515	57.0885	5.5189	4.6102	6.8773
Diff (1-2)	Pooled	-12.9200	-14.9543	-10.8857	5.1254	4.4974	5.9590
Diff (1-2)	Satterthwaite	-12.9200	-14.9549	-10.8851			

Method	Variances	DF	t Value	Pr > t
Pooled	Equal	98	-12.60	<.0001
Satterthwaite	Unequal	95.57	-12.60	<.0001

Equality of Variances					
Method	Num DF	Den DF	F Value	Pr > F	
Folded F	49	49	1.38	0.2637	

The equality of variances test has an insignificant p-value 0.2637, which means we can rely on the assumption that the two species have equal population variance. It would lead us to the pooled t-test. With a test statistic -12.6 and a p-value less than .0001, we would reject the null hypothesis in favor of the alternative that one of the populations tends to have larger values than the other. If we looked at the samples, we would see that the distribution of Virginica petal lengths tends to have larger values than the distribution of Versicolor. The confidence limits for the difference (not required for this exercise) show that Virginica petal lengths are estimated to be about 13mm larger on average, with a 95% confidence region of roughly 11mm to 15mm.

Exercise 3

a) The correlation matrix for the population of Versicolor and Virginica together shows moderate to strong positive correlations in all pairs of the four length and width measurements and all correlations are statistically significant. This tells us that if one of the measurement increases, the other three measurements will tend to increase as well. The length measures and the petal measures have pretty strong correlations with values over 0.8. The other correlations are more moderate with values between 0.5 and 0.6.

Pearson Correlation Coefficients, N = 100 Prob > r under H0: Rho=0					
	SepalLength	SepalWidth	PetalLength	PetalWidth	
SepalLength Sepal Length (mm)	1.00000	0.55385 <.0001	0.82848 <.0001	0.59371 <.0001	
SepalWidth Sepal Width (mm)	0.55385 <.0001	1.00000	0.51980 <.0001	0.56620 <.0001	
PetalLength Petal Length (mm)	0.82848 <.0001	0.51980 <.0001	1.00000	0.82335 <.0001	
PetalWidth Petal Width (mm)	0.59371 <.0001	0.56620 <.0001	0.82335 <.0001	1.00000	

b) For Versicolor, the correlation matrix shows positive correlations in all pairs of the four length and width measurements similar to those in the combined data set. The length and petal measurement correlations are slightly smaller, falling between 0.75 and 0.8. The correlation of 0.66 between widths is slightly stronger than in the combined data set.

Iris Species=Versicolor

Pearson Correlation Coefficients, N = 50 Prob > r under H0: Rho=0					
	SepalLength	SepalWidth	PetalLength	PetalWidth	
SepalLength Sepal Length (mm)	1.00000	0.52591 <.0001	0.75405 <.0001	0.54646 <.0001	
SepalWidth Sepal Width (mm)	0.52591 <.0001	1.00000	0.56052 <.0001	0.66400 <.0001	
PetalLength Petal Length (mm)	0.75405 <.0001	0.56052 <.0001	1.00000	0.78667 <.0001	
PetalWidth Petal Width (mm)	0.54646 <.0001	0.66400 <.0001	0.78667 <.0001	1.00000	

For Virginica, although all of the relationships are still significant at .05 level, the magnitudes of the correlation (and also the level of significance) between petal width and sepal length, petal length are much smaller than that in the combined data set. The correlation between petal and sepal lengths is, however, a bit stronger than in the combined sample.

Our main conclusions about the differences in correlations with respect to these two species is that there is a stronger proportion relationship between length measures in a Virginica and a weaker correspondence in proportions of for other pairs of length and width measurements.

Iris Species=Virginica

Pearson Correlation Coefficients, N = 50 Prob > r under H0: Rho=0							
	SepalLength SepalWidth PetalLength PetalWidth						
SepalLength Sepal Length (mm)	1.00000	0.45723 0.0008	0.86422 <.0001	0.28111 0.0480			
SepalWidth Sepal Width (mm)	0.45723 0.0008	1.00000	0.40104 0.0039	0.53773 <.0001			
PetalLength Petal Length (mm)	0.86422 <.0001	0.40104 0.0039	1.00000	0.32211 0.0225			
PetalWidth Petal Width (mm)	0.28111 0.0480	0.53773 <.0001	0.32211 0.0225	1.00000			