

11th meeting of the BRICS Astronomy Working Group

13 to 17 October 2025

Instituto Nacional de Pesquisas Espaciais (INPE) São José dos Campos, São Paulo, Brasil

The Nova Synthetic Data Base: a PCA Analysis of Novae Spectra

Bruno Santos

First Name:	Bruno
Last Name:	Santos
Institution/Affiliation:	IAG-USP
Country of Residence:	Brazil
Preferred type of presentation	Poster
Will you attend in person or online?	_
Email	brunocesar0111@usp.br

Abstract

Este trabalho apresenta a Nova Synthetic Data Base, um conjunto de modelos de espectros sintéticos tridimensionais para novas clássicas, cobrindo um intervalo sem precedentes de parâmetros físicos (massa ejetada, metalicidade, idade pós-erupção, temperatura e luminosidade da anã branca) e idades pós-erupção entre 80 e 2560 dias. Desenvolvida através do código de fotoionização anisotrópica RAINY3D e processada no supercomputador Santos Dumont, a NSDB contém 875 modelos que permitem uma exploração sistemática de características espectrais desses sistemas. Aplicamos PCA a esta grade, identificando padrões espectrais dominantes e suas correlações com os parâmetros físicos fundamentais, estabelecendo assim o plano de fundo para o desenvolvimento de um novo método quantitativo para diagnóstico astrofísico. Nossa metodologia envolveu: a redução dimensional do Spectral-Space (composto por 240 razões de fluxo normalizadas por Hβ) para um conjunto 5 a 10 autoespectros por data; a seleção objetiva das 100 linhas mais brilhantes em diferentes idades; e a quantificação da importância de cada uma dessas 100 linhas no diagnóstico dos parâmetros físicos do sistema anã branca-envoltório. Os resultados revelaram que os autoespectros mais significativos são dominados por linhas de hidrogênio e hélio, refletindo os processos globais de ionização nos envoltórios, enquanto correlações expressivas demonstram o potencial diagnóstico do método. Este trabalho estabelece as bases para uma nova era de estudos quantitativos de novas clássicas, particularmente relevante para a análise dos grandes volumes de dados espectrais que serão produzidos por levantamentos como o VRO e o LSST. É esperado que a NSDB não apenas supere as limitações dos métodos qualitativos tradicionais, mas também que permita a extração eficiente de parâmetros físicos mesmo de espectros incompletos ou com ruído.