Tarea 2

Razonamiento automatizado

Emmanuel Peto Gutiérrez

4 de marzo de 2020

1. Demostrar la siguiente proposición:

Sean A, B fórmulas cualquiera y x una variable que no aparece en B. Entonces

$$A[x := B] \sim_{sat} (x \leftrightarrow B) \land A$$

.

Solución:

- \Rightarrow) Supongamos que A[x:=B] es satisfacible. Sea \mathcal{I}_1 un modelo para A[x:=B]. Se puede construir un modelo \mathcal{I}_2 para $(x \leftrightarrow B) \land A$ haciendo $\mathcal{I}_2(x) = \mathcal{I}_1(B)$, es decir, se asigna a x el valor de la subfórmula B bajo el estado \mathcal{I}_1 . Para el resto de las variables p de A[x:=B] se les deja el valor que ya tenían, es decir, $\mathcal{I}_2(p) = \mathcal{I}_1(p)$. $\mathcal{I}_2(x \leftrightarrow B) = 1$ porque $\mathcal{I}_2(x) = \mathcal{I}_2(B)$. $\mathcal{I}_2(A) = 1$ porque x toma el valor de $\mathcal{I}_1(B)$ y se sabe que $\mathcal{I}_1(A[x:=B]) = 1$. Así, $\mathcal{I}_2((x \leftrightarrow B) \land A) = 1$.
- \Leftarrow) Supongamos que $(x \leftrightarrow B) \land A$ es satisfacible. Sea \mathcal{I}_1 modelo de $(x \leftrightarrow B) \land A$. Como \mathcal{I}_1 es modelo de $(x \leftrightarrow B) \land A$, entonces $\mathcal{I}_1(A) = 1$ y $\mathcal{I}_1(x \leftrightarrow B) = 1$, lo que implica que $\mathcal{I}_1(x) = \mathcal{I}_1(B)$. Como $\mathcal{I}_1(A) = 1$ entonces $\mathcal{I}_1(A[x := B]) = 1$ porque la subfórmula B toma el valor de $\mathcal{I}_1(x)$. Es decir, $\mathcal{I}_1 \models A[x := B]$.
- 2. Mostrar que las reglas del algoritmo DPLL son correctas.
 - (a) La regla RCU es correcta:

Si S es un conjunto de cláusulas y S' el resultado de aplicar RCU a S, entonces $S\sim_{sat} S'.$

Solución:

• \Rightarrow) Supongamos que S es satisfacible y sea ℓ una cláusula unitaria en S. Se sabe que, dado un conjunto de fórmulas Γ , con $\varphi \in \Gamma$ pasa lo siguiente: si Γ es satisfacible entonces $\Gamma \setminus \{\varphi\}$ es satisfacible. Esto significa que cualquier subconjunto $\Gamma' \subseteq \Gamma$ es satisfacible siempre que Γ lo sea. Así, como S es satisfacible, el conjunto $S' = S \setminus \{C | \ell \in C\}$ también lo es.

Sea $S'' = \{C \setminus \{\ell^c\} | C \in S'\}$, es decir, S'' se obtiene eliminando la literal ℓ^c de todas las cláusulas de S', y sea \mathcal{I} un modelo de S. Como ℓ es una

cláusula unitaria en S, $\mathcal{I}(\ell)=1$, así que $\mathcal{I}(\ell^c)=0$. Cualquier cláusula $C\in S$ es verdadera en el estado \mathcal{I} , entonces $\mathcal{I}(D\vee\ell^c)=1$ para cualquier cláusula que tenga esta forma. Se sabe que $\mathcal{I}(\ell^c)=0$, así que $\mathcal{I}(D)$ debe ser 1. En S'' se eliminaron todas literales ℓ^c , pero por el resultado anterior se puede concluir que $\mathcal{I}(C')=1$ para cada cláusula $C'\in S''$, así, I es modelo de S''.

• \Rightarrow) Sea S un conjunto de cláusulas satisfacible y sean ℓ y ℓ^c literales que no figuran en S. Sea \mathcal{I}_1 un modelo de S. Para cualquier cláusula $C \in S$, $\mathcal{I}_1(C) = 1$, así que $\mathcal{I}_1(C \vee F) = 1$ para cualquier fórmula F, sin importar el valor de $\mathcal{I}_1(F)$. Se puede construir un conjunto S' a partir de S agregando ℓ^c a un número arbitrario de cláusulas en S, el cual, por la observación anterior, es satisfacible. Un modelo \mathcal{I}_2 para S' se puede construir extendiendo \mathcal{I}_1 dando un valor a la variable de la literal ℓ para que $\mathcal{I}_2(\ell) = 1$. Es evidente que $\mathcal{I}_2 \models S'$.

Sea U un conjunto de cláusulas donde cada una tiene la literal ℓ , es decir, cada cláusula es de la forma $D \vee \ell$. Se puede construir un modelo \mathcal{I}_3 para U tomando los mismos valores de \mathcal{I}_2 y asignandole un valor arbitrario a las variables nuevas de U. Como $\mathcal{I}_3(\ell) = \mathcal{I}_2(\ell) = 1$ y ℓ aparece en cada cláusula de U, entonces \mathcal{I}_3 es modelo de U. $\mathcal{I}_3(S') = \mathcal{I}_2(S') = 1$, así que $\mathcal{I}_3 \models S'$. Por lo tanto, el conjunto $S'' = S' \cup U$ es satisfacible e \mathcal{I}_3 es modelo de S''.

(b) La regla RPL es correcta:

Si S es un conjunto de cláusulas y S' el resultado de aplicar RPL a S, entonces $S\sim_{sat} S'.$

Solución:

- \Rightarrow) Sea S un conjunto de cláusulas satisfacible que contiene una literal pura ℓ . Sea $S' = S \setminus \{C | \ell \in C \& C \in S\}$. Es decir, S' se construye eliminando de S todas las cláusulas que contienen a ℓ . Como $S' \subset S$ y S es satisfacible, entonces S' es satisfacible.
- \Leftarrow) Sea S un conjunto de cláusulas satisfacible, ℓ y ℓ^c literales complementarias que no figuran en S y U un conjunto de cláusulas en el cual cada cláusula contiene a ℓ . Sea \mathcal{I}_1 un modelo de S. Se construye el estado \mathcal{I}_2 de la siguiente forma:
- $\mathcal{I}_2(p) = \mathcal{I}_1(p)$ para cada variable p en S. Esto es para que $\mathcal{I}_2 \models S$.
- $\mathcal{I}_2(\ell) = 1$. Si $\ell = x$ entonces $\mathcal{I}_2(x) = 1$, y si $\ell = \neg x$, $\mathcal{I}_2(x) = 0$.
- $\mathcal{I}_2(q)=1$ para cada variable q en U que no está en S (funciona igual si se elige $\mathcal{I}_2(q)=0$).

Como $\mathcal{I}_2(\ell)=1$ y ℓ está en todas las cláusulas de U, entonces $\mathcal{I}_2\models U$. Por lo tanto $\mathcal{I}_2\models S'=S\cup U$.

(c) La regla RD es correcta:

Si S es un conjunto de cláusulas y S_1 , S_2 son los conjuntos resultantes de aplicar RD a S, entonces S es satisfacible si y solo si S_1 es satisfacible o S_2 es satisfacible.

Solución:

Sea S un conjunto de cláusulas donde algunas tienen a ℓ , otras tienen a ℓ^c (para cierta literal ℓ) y otras no contienen a ninguna. Se definen los conjuntos A, B, A', B', R, S_1 y S_2 de la siguiente forma:

```
 \begin{aligned} -A &= \{C | C \in S \ \& \ \ell \in C \} \\ -B &= \{C | C \in S \ \& \ \ell^c \in C \} \\ -R &= \{C | C \in S \ \& \ \ell \notin C \ \& \ \ell^c \not\in C \} \\ -A \cup B \cup R &= S \\ -A' &= \{C \setminus \ell | C \in A \} \\ -B' &= \{C \setminus \ell^c | C \in B \} \\ -S_1 &= A' \cup R \\ -S_2 &= B' \cup R \end{aligned}
```

• \Rightarrow) Supongamos que S es satisfacible. Hay que demostrar que S_1 es satisfacible o S_2 es satisfacible. Como $R \subseteq S$, R es satisfacible, así que solo hay que considerar los conjuntos A' y B'.

Sea \mathcal{I} un modelo de S. Pueden ocurrir 2 casos: $\mathcal{I}(\ell) = 0$ o $\mathcal{I}(\ell^c) = 0$.

Caso 1: $\mathcal{I}(\ell) = 0$. Cada cláusula C de A es verdad bajo I porque $A \subseteq S$, y éstas tienen la forma $C = D \lor \ell$, pero como $\mathcal{I}(\ell) = 0$ tiene que ocurrir que $\mathcal{I}(D) = 1$. Así, $\mathcal{I}(C \backslash \ell) = 1$ para cada $(C \backslash \ell) \in A'$, y por lo tanto $\mathcal{I} \models A'$. Como $\mathcal{I} \models R$ y $\mathcal{I} \models A'$, entonces $I \models S_1 = A' \cup R$.

Caso 2: $\mathcal{I}(\ell^c) = 0$. Usando un razonamiento similar al caso 1, se puede deducir que $\mathcal{I} \models B'$ y entonces $\mathcal{I} \models S_2 = B' \cup R$.

Por lo tanto, para cualquier modelo I de S se cumple que $I \models S_1$ o $I \models S_2$.

• \Leftarrow) Sean S_1 y S_2 los conjuntos construidos por RD, S_1 el conjunto original y ℓ la literal usada para la descomposición. Supongamos que S_1 es satisfacible o S_2 lo es.

Caso 1: S_1 es satisfacible. Sea \mathcal{I}_1 un modelo de S_1 , lo que significa que $\mathcal{I}_1 \models A'$ y $\mathcal{I}_1 \models R$. Se va a construir un estado \mathcal{I}_2 de la siguiente forma:

```
-\mathcal{I}_{2}(\ell) = 0
```

- $\mathcal{I}_2(p) = \mathcal{I}_1(p)$ para cada variable $p \in S_1$
- $\mathcal{I}_2(q) = 1$ para cada variable $q \in B'$ que no está en S_1

Para cada cláusula $C \in A'$ se sabe que $\mathcal{I}_2(C) = 1$, así que $\mathcal{I}_2(C \vee \ell) = 1$, y por lo tanto $\mathcal{I}_2 \models A$. Se sabe que $\mathcal{I}_2(\ell^c) = 1$, así que $\mathcal{I}_2(C \vee \ell^c) = 1$ para cualquier cláusula $C \in B'$, y por lo tanto $\mathcal{I}_2 \models B$.

Se tiene que $\mathcal{I}_2 \models R$, $\mathcal{I}_2 \models A$ y $\mathcal{I}_2 \models B$. Por lo tanto $\mathcal{I}_2 \models S = A \cup B \cup R$.

Caso 2: S_2 es satisfacible. Se puede usar un razonamiento análogo para demostrar que S es satisfacible, pero tomando primero un modelo \mathcal{I}_1 de S_2 y haciendo $\mathcal{I}_2(\ell^c) = 0$.

Se puede concluir que si S_1 es satisfacible o S_2 es satisfacible, entonces S es satisfacible.