

CALIBRATION REPORT

F.1 E-Field Probe

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinatt.com Http://www.chinattl.com IRA MRA

Client

Baluntek

Certificate No: Z18-60206

CALIBRATION CERTIFICATE

Object EX3DV4 - SN:7510

Calibration Procedure(s)

FF-Z11-004-01

Calibration Procedures for Dosimetric E-field Probes

Calibration date:

July 14, 2018

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	101919	20-Jun-18 (CTTL, No.J18X05032)	Jun-19
Power sensor NRP-Z91	101547	20-Jun-18 (CTTL, No.J18X05032)	Jun-19
Power sensor NRP-Z91	101548	20-Jun-18 (CTTL, No.J18X05032)	Jun-19
Reference10dBAttenuator	18N50W-10dB		Feb-20
Reference20dBAttenuator	18N50W-20dB		Feb-20
Reference Probe EX3DV4	SN 3846	25-Jan-18(SPEAG,No.EX3-3846_Jan18)	Jan-19
DAE4	SN 777	15-Dec-17(SPEAG, No.DAE4-777_Dec17)	
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
SignalGeneratorMG3700A		21-Jun-18 (CTTL, No.J18X05033)	Jun-19
Network Analyzer E5071C	MY46110673	14-Jan-18 (CTTL, No.J18X00561)	Jan -19
	Name	Function	Signature
Calibrated by:	Yu Zongying	SAR Test Engineer	Dark
Reviewed by:	Lin Hao	SAR Test Engineer	林药
Approved by:	Qi Dianyuan	SAR Project Leader	002
This and house are as a		Issued: July 16	2018
ma campranon cermicate sh	all not be reprodu	ced except in full without written approval of t	he laboratory.

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.com

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z

DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A.B,C,D modulation dependent linearization parameters

Polarization Φ rotation around probe axis

Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i

θ=0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016

c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010

d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).

NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This
linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the
frequency response is included in the stated uncertainty of ConvF.

 DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.

 PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.

Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z:A,B,C are numerical linearization parameters assessed based on the
data of power sweep for specific modulation signal. The parameters do not depend on frequency nor
media. VR is the maximum calibration range expressed in RMS voltage across the diode.

ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.

 Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.

 Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

 Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: Z18-60206

Add: No.51 Xueyuan Rond, Hnidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Probe EX3DV4

SN: 7510

Calibrated: July 14, 2018

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: Z18-60206

Page 3 of 11

Add: No.51 Xueyunn Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Tel: +86-10-62304633-2512 E-mail: etsl@chinatt.com Http://www.chinattl.en

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 7510

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(µV/(V/m)2)A	0.65	0.54	0.42	±10.0%
DCP(mV) ⁸	97.1	96.9	99.3	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc E (k=2)
0 CW	cw x 0	0.0	0.0	1.0	0.00	199.8	±2.3%	
		Y	0.0	0.0	1.0		177.2	
		Z	0.0	0.0	1.0		152.7	1

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z18-60206

^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 5 and Page 6).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 7510

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	10.37	10.37	10.37	0.40	0.80	±12.1%
835	41.5	0.90	10.06	10.06	10.06	0.16	1.63	±12.1%
1750	40.1	1.37	8.68	8.68	8.68	0.27	0.98	±12.1%
1900	40.0	1.40	8.31	8.31	8.31	0.25	1.02	±12.1%
2300	39.5	1.67	8.12	8.12	8.12	0.50	0.79	±12.1%
2450	39.2	1.80	7.88	7.88	7.88	0.60	0.71	±12.1%
2600	39.0	1.96	7.60	7.60	7.60	0.67	0.69	±12.1%
5250	35.9	4.71	5.48	5.48	5.48	0.40	1.15	±13.3%
5600	35.5	5.07	4.78	4.78	4.78	0.40	1.25	±13.3%
5750	35.4	5.22	5.03	5.03	5.03	0.40	1,35	±13.3%

^G Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

Certificate No: Z18-60206

Page 5 of 11

FAt frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to $\pm 10\%$ if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to $\pm 5\%$. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2512
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 7510

Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz] ^G	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^g	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	10.53	10.53	10.53	0.40	0.80	±12.1%
835	55.2	0.97	10.14	10.14	10.14	0.18	1.43	±12.1%
1750	53.4	1.49	8.20	8.20	8.20	0.24	1.04	±12.1%
1900	53.3	1.52	7.86	7.86	7.86	0.21	1.19	±12.1%
2300	52.9	1.81	7.91	7.91	7.91	0.54	0.82	±12.1%
2450	52.7	1.95	7.80	7.80	7.80	0.64	0.73	±12.1%
2600	52.5	2.16	7.33	7.33	7.33	0.67	0.69	±12.1%
5250	48.9	5.36	5.09	5.09	5.09	0.50	1.05	±13.3%
5600	48.5	5.77	4.35	4.35	4.35	0.50	1.05	±13.3%
5750	48.3	5.94	4.52	4.52	4.52	0.50	1,10	±13.3%

^C Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

Certificate No: Z18-60206

Page 6 of 11

F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

GAlpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.com

Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ±7.4% (k=2)

Certificate No: Z18-60206

Page 7 of 11

Receiving Pattern (Φ), θ=0°

f=600 MHz, TEM

f=1800 MHz, R22

Certificate No: Z18-60206

Page 8 of 11

Add: No.51 Xusyuan Rond, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Hitp://www.chinattl.cn

Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz)

Uncertainty of Linearity Assessment: ±0.9% (k=2)

Certificate No: Z18-60206

Page 9 of 11

Add: No.51 Xueyuun Rood, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttf@chinattl.com Http://www.chinattl.en

Conversion Factor Assessment

f=750 MHz, WGLS R9(H_convF)

f=1750 MHz, WGLS R22(H_convF)

Deviation from Isotropy in Liquid

Certificate No: Z18-60206

Page 10 of 11

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 7510

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	37
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	9mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	1.4mm

F.2 Data Acquisition Electronics

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: ctt@chinattl.com Http://www.chinattl.com

Client : Bal	untek	Certificate	No: Z18-60213
CALIBRATION	CERTIFICA	TE	
Object	DAE4	I - SN: 685	
Calibration Procedure(s)	FF-Z1	11-002-01 ration Procedure for the Data Acquis x)	sition Electronics
Calibration date:	July 1	4, 2018	
measurements(SI). The pages and are part of the	measurements an e certificate.	traceability to national standards, whi d the uncertainties with confidence prob the closed laboratory facility: enviro	ability are given on the following
Calibration Equipment us	The second of	for calibration) al Date(Calibrated by, Certificate No.)	Scheduled Calibration
Process Calibrator 753	1971018	20-Jun-18 (CTTL, No.J18X05034)	June-19
	Name	Function	Signature
Calibrated by:	Yu Zongying	SAR Test Engineer	Anto
Reviewed by:	Lin Hao	SAR Test Engineer	林州
Approved by:	Qi Dianyuan	SAR Project Leader	John
This calibration certificate	shall not be repre	leaduced except in full without written app	ssued: July 16, 2018 roval of the laboratory.

Certificate No: Z18-60213

Page 1 of 3

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Glossary:

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X

to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

 DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.

- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Certificate No: Z18-60213

Report No.: BL-SZ1950177-701&702

Add: No.51 Xueyuan Roud, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cstl@chinattl.com Http://www.chinattl.cn

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: 1LSB = 6.1 µV, full range = -100...+300 mV
Low Range: 1LSB = 61 nV, full range = -1......+3mV
DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Y	Z
High Range	404,244 ± 0.15% (k=2)	404.721 ± 0.15% (k=2)	404.504 ± 0.15% (k=2)
Low Range	3.97926 ± 0.7% (k=2)	3.93773 ± 0.7% (k=2)	4.00116 ± 0.7% (k=2)

Connector Angle

10	203.5° ± 1 °	Connector Angle to be used in DASY system
	203.5°±	Connector Angle to de daed in DAG 1 system

Certificate No: Z18-60213

Page 3 of 3

In Colleboration with

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Client

baluntek

Certificate No:

Z17-97036

CALIBRATION CERTIFICATE

Object

D2450V2 - SN: 952

Calibration Procedure(s)

FD-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date:

March 21, 2017

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22 \pm 3) $\mathbb T$ and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	101919	27-Jun-16 (CTTL, No.J16X04777)	Jun-17
Power sensor NRP-Z91	101547	27-Jun-16 (CTTL, No.J16X04777)	Jun-17
Reference Probe EX3DV4	SN 3617	23-Jan-17(SPEAG,No.EX3-3617_Jan17)	Jan-18
DAE4	SN 777	22-Aug-16(CTTL-SPEAG,No.Z16-97138)	Aug-17
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	13-Jan-17 (CTTL, No.J17X00286)	Jan-18
Network Analyzer E5071C	MY46110673	13-Jan-17 (CTTL, No.J17X00285)	Jan-18

Calibrated by Zhao Jing

SAR Test Engineer

Function

Qi Dianyuan SAR Project Leader

Lu Bingsong Deputy Director of the laboratory

Issued: March 25, 2017.

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z17-97036

Reviewed by:

Approved by:

Page 1 of 8

n Colleboration with

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China. Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl/@chinattl.com http://www.chinattl.cn

Glossary:

TSL ConvF N/A tissue simulating liquid sensitivity in TSL / NORMx,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005.
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z17-97036

Page 2 of 8

s p e CALIBRATION LABORATORY

Add: No.51 Xueyuan Roud, Haidian District, Beijing, 190191, China Teli +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ctil@chinattl.com http://www.chinattl.cn

Measurement Conditions

DASY Version	DASY52	52,8.8.1258
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.0 ± 6 %	1.77 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C	- Table	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.0 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	52.4 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	6.04 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	24.3 mW /g ± 20.4 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.3 ± 6 %	1.93 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		***

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.6 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	50.5 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	5.82 mW/g
SAR for nominal Body TSL parameters	normalized to 1W	23.3 mW /g ± 20.4 % (k=2)

Certificate No: Z17-97036

Page 3 of 8

E-mail: ettl@chinattl.com

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@shinattl.com http://www.shinattl.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.0Ω+ 5,94jΩ	
Return Loss	- 24.3dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.7Ω+ 6.25jΩ	
Return Loss	- 23.8dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.257 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: Z17-97036

Page 4 of 8

CALIBRATION LABORATORY

Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Add: No.51 Xueyuan Rond, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

DASY5 Validation Report for Head TSL

Date: 03.21.2017

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 952

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; $\sigma = 1.768$ S/m; $\epsilon r = 39.02$; $\rho = 1000$ kg/m3

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(7.74, 7.74, 7.74); Calibrated: 1/23/2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn777; Calibrated: 8/22/2016
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 104.6 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 27.0 W/kg

SAR(1 g) = 13 W/kg; SAR(10 g) = 6.04 W/kg

Maximum value of SAR (measured) = 21.7 W/kg

0 dB = 21.7 W/kg = 13.36 dBW/kg

| Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2504 | E-mail: cttl@chinattl.com | http://www.chinattl.com

Impedance Measurement Plot for Head TSL

Add: No.51 Xueyuan Road, Haidinn District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

DASY5 Validation Report for Body TSL

Date: 03.21.2017

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 952

Communication System: UID 0, CW; Frequency; 2450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; $\sigma = 1.931$ S/m; $\epsilon_r = 52.27$; $\rho = 1000$ kg/m³

Phantom section: Center Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(7.8, 7.8, 7.8); Calibrated: 1/23/2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn777; Calibrated: 8/22/2016
- Phantom: Triple Flat Phantom 5.1C; Type; QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 96.07 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 26.4 W/kg

SAR(1 g) = 12.6 W/kg; SAR(10 g) = 5.82 W/kg

Maximum value of SAR (measured) = 20.9 W/kg

0 dB = 20.9 W/kg = 13.20 dBW/kg

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: *86-10-62304633-2079 Fax: *86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

Impedance Measurement Plot for Body TSL

F.4 5GHz Dipole

Client

baluntek

Certificate No:

Z17-97083

CALIBRATION CERTIFICATE

Object

D5GHzV2 - SN: 1200

Calibration Procedure(s)

FD-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date:

June 29, 2017

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)\tilde{\pi} and humidity<70\%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRVD	102083	22-Sep-16 (CTTL, No.J16X06809)	Sep-17
Power sensor NRV-Z5	100595	22-Sep-16 (CTTL, No.J16X06809)	Sep-17
ReferenceProbe EX3DV4	SN 7433	26-Sep-16(SPEAG,No.EX3-7433_Sep16)	Sep-17
DAE4	SN 1331	19-Jan-17(CTTL-SPEAG,No.Z17-97015)	Jan-18
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	13-Jan-17 (CTTL, No.J17X00286)	Jan-18
NetworkAnalyzer E5071C	MY46110673	13-Jan-17 (CTTL, No.J17X00285)	Jan-18

	Name	Function	Signature
Calibrated by:	Zhao Jing	SAR Test Engineer	\$2
Reviewed by:	Lin Hao	SAR Test Engineer	W136
Approved by:	Qi Dianyuan	SAR Project Leader	and

Issued: July 1, 2017.

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z17-97083

Page 1 of 14

in Collaboration with

S D E A G

Add: No.51 Xueyuan Rood, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttlir/chinattl.com http://www.chinattl.cn

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORMx,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL. The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z17-97083

Page 2 of 14

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com http://www.chinattl.cn

Measurement Conditions

s far as not given on page 1.

AST System configuration, as far as	not given on page 1	
DASY Version	DASY52	52.10.0.1446
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5250 MHz ± 1 MHz 5600 MHz ± 1 MHz 5750 MHz ± 1 MHz	

Head TSL parameters at 5250 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.8 ± 6 %	4.63 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C	-	-

SAR result with Head TSL at 5250 MHz

Condition	
100 mW input power	7.63 mW / g
normalized to 1W	76.2 mW /g ± 24.4 % (k=2)
Condition	
100 mW input power	2.18 mW/g
normalized to 1W	21.8 mW /g ± 24.2 % (k=2)
	100 mW input power normalized to 1W Condition 100 mW input power

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cm

Head TSL parameters at 5600 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.2 ± 6 %	4.96 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		_

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.23 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	82.6 mW /g ± 24.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.35 mW/g
SAR for nominal Head TSL parameters	normalized to 1W	23.6 mW /g ± 24.2 % (k=2)

Head TSL parameters at 5750 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.4	5.22 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.2 ± 6 %	5.11 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL at 5750 MHz

SAR averaged over 1 cm ¹ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.05 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	80.8 mW /g ± 24.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.28 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	22.9 mW /g ± 24.2 % (k=2)

Certificate No: Z17-97083 Page 4 of 14

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Body TSL parameters at 5250 MHz The following parameters and calculations w

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.36 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.1 ± 6 %	5.42 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C	****	

SAR result with Body TSL at 5250 MHz

SAR averaged over 1 cm ¹ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.54 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	75.2 mW /g ± 24.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	100 mW input power	2.13 mW/g
SAR for nominal Body TSL parameters	normalized to 1W	21.2 mW /g ± 24.2 % (k=2)

Body TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.6 ± 6 %	5.77 mha/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.82 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	77.9 mW /g ± 24.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	100 mW input power	2.20 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	21.9 mW /g ± 24.2 % (k=2)

Certificate No: Z17-97083

in Collaboration with

s p e a

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2070 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

Body TSL parameters at 5750 MHz The following parameters and calculations wi

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.3	5.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.5 ± 6 %	5.84 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		-

SAR result with Body TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.53 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	75.0 mW /g ± 24.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	100 mW input power	2.12 mW/g
SAR for nominal Body TSL parameters	normalized to 1W	21.1 mW/g ± 24.2 % (k=2)

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Teb +86-10-62304633-2079 Fax: *86-10-62304633-2504 E-mail: ethlojchinattl.com http://www.chinattl.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	48.2Ω - 4.57jΩ	
Return Loss	- 26.0dB	

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	$55.2\Omega + 2.14j\Omega$	
Return Loss	- 25.4dB	

Antenna Parameters with Head TSL at 5750 MHz

Impedance, transformed to feed point	50.6Ω - 3.25∤Ω	
Return Loss	- 29.7dB	

Antenna Parameters with Body TSL at 5250 MHz

Impedance, transformed to feed point	47.9Ω - 2.79jΩ	
Return Loss	- 29.0dB	

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	55.3Ω + 3.88įΩ	
Return Loss	- 24.1dB	

Antenna Parameters with Body TSL at 5750 MHz

Impedance, transformed to feed point	51.9Ω - 2.20jΩ	
Return Loss	- 30.9dB	

Certificate No: Z17-97083

Page 7 of 14

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Iel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com http://www.chinattl.en

General Antenna Parameters and Design

Electrical Delay (one direction)	1.315 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: Z17-97083

Page 8 of 14

Date: 06.29.2017

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel; +86-10-62304633-2079 Fax; +86-10-62304633-2504
E-mail: cett@ichinattl.com http://www.chinattl.cn

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1200

Communication System: CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz,

Medium parameters used: f = 5250 MHz; σ = 4.633 mho/m; ϵ r = 35.82; ρ = 1000 kg/m3, Medium parameters used: f = 5600 MHz; σ = 4.957 mho/m; ϵ r = 36.23; ρ = 1000 kg/m3, Medium parameters used: f = 5750 MHz; σ = 5.107 mho/m; ϵ r = 36.17; ρ = 1000 kg/m3,

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN7433; ConvF(5.13,5.13,5.13); Calibrated: 2016/9/26, ConvF(4.59,4.59,4.59); Calibrated: 2016/9/26, ConvF(4.66,4.66,4.66); Calibrated: 2016/9/26,
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1331; Calibrated: 2017/1/19
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/3
- Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Dipole Calibration /Pin=100mW, d=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 67.36 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 30.2 W/kg

SAR(1 g) = 7.63 W/kg; SAR(10 g) = 2.18 W/kg Maximum value of SAR (measured) = 18.0 W/kg

Dipole Calibration /Pin=100mW, d=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 54.3 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 33.9 W/kg

SAR(1 g) = 8.23 W/kg; SAR(10 g) = 2.35 W/kg Maximum value of SAR (measured) = 19.4 W/kg

Add: No.51 Xueyuan Road. Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax; +86-10-62304633-2504 E-mail: ctsl@chinattl.com http://www.chinattl.cn

Dipole Calibration /Pin=100mW, d=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 54.85 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 33.6 W/kg

SAR(1 g) = 8.05 W/kg; SAR(10 g) = 2.28 W/kg Maximum value of SAR (measured) = 19.7 W/kg

0 dB = 19.7 W/kg = 12.94 dBW/kg

Add: No.51 Xueyuan Road, Haidim District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

Impedance Measurement Plot for Head TSL

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl/@chinattl.com http://www.chinattl.cn

DASY5 Validation Report for Body TSL

Date: 06.28.2017

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1200

Communication System: CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz,

Medium parameters used: f = 5250 MHz; σ = 5.418 mho/m; ϵ r = 48.07; ρ = 1000 kg/m3, Medium parameters used: f = 5600 MHz; σ = 5.767 mho/m; ϵ r = 47.59; ρ = 1000 kg/m3, Medium parameters used: f = 5750 MHz; σ = 5.844 mho/m; ϵ r = 47.51; ρ = 1000 kg/m3,

Phantom section: Center Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN7433; ConvF(4.68,4.68,4.68); Calibrated: 2016/9/26, ConvF(3.98,3.98,3.98); Calibrated: 2016/9/26,ConvF(4.35,4.35,4.35); Calibrated: 2016/9/26,
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1331; Calibrated: 2017/1/19
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/3
- Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Dipole Calibration /Pin=100mW, d=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 39.45 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 29.1 W/kg

SAR(1 g) = 7.54 W/kg; SAR(10 g) = 2.13 W/kg Maximum value of SAR (measured) = 17.7 W/kg

Dipole Calibration /Pin=100mW, d=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 62.62 V/m; Power Drift = -0.05 dB
Peak SAR (extrapolated) = 32.9 W/kg
SAR(1 g) = 7.82 W/kg; SAR(10 g) = 2.2 W/kg
Maximum value of SAR (measured) = 18.7 W/kg

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tef: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl/rjchinattl.com http://www.chimattl.cn

Dipole Calibration /Pin=100mW, d=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 63.40 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 31.3 W/kg

SAR(1 g) = 7.53 W/kg; SAR(10 g) = 2.12 W/kg Maximum value of SAR (measured) = 18.5 W/kg

0 dB = 18.5 W/kg = 12.67 dBW/kg

Add: No.51 Xueyuan Road, Haidian District, Heijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cnl-achinant.com http://www.chinant.cn

Impedance Measurement Plot for Body TSL

Certificate No: Z17-97083

Page 14 of 14