Universidad Industrial de Santander Numerical Analysis Department of Computer Science PhD. Henry Arguello Fuentes

Undergraduate Students

Homework #3

Solution of Linear Systems AX = B

DATE: 16th June 2020 DUE: 5th July 2020

Name: Juan Camilo Marin Garcia Scholar ID: 2172969

1 Indications

- · Write down the solution process for all problems in this assignment sheet.
- · Answers with no process are not valid.
- Make all calculations with 5 decimal places of precision.

2 Solution of Linear Systems AX=B

1. (0.8 points) For the following linear system, start with ${\bf P_0}={\bf 0}$ and use Gauss-Seidel iteration to find ${\bf P}_k$ for k=1,2,3,4,5. Will Gauss-Seidel iteration converge to the solution?

$$2x + 8y - z = 11$$

 $5x - 12y + z = 10$
 $-x + y + 14z = 3$

Process:		

2. (0.8 points) Suppose that three computers, A, B and C, are working in parallel in three different tasks, T_1, T_2 and T_3 . Table 1 shows the consumed time per task per computer and the total of instructions required per task.

Table 1. Time consuming per task per computer

Task	A	B	C	Instructions
T_1	9[s]	20[s]	5[s]	139'500,000
T_2	30[s]	150[s]	30[s]	894'000,000
T_3	0.01[s]	0.002[s]	0.3[s]	2'372,800

Distribution of instructions per task per computer. Example: the 139'500,000 instructions required by T_1 were distributed such that, computer A

$0[s]$, computer B spend $20[s]$, and, computer C spend $5[s]$ processing the asigned instructions for T_1 .
Determine a linear system of equations $AX = B$, such that, it allows to find the processor speed,
V_A, V_B and V_C , of computers A, B and C respectively. Process and Answer:
Flocess and Answer.
Determine an equivalent upper-triangular system $\mathbf{U}\mathbf{X}=\mathbf{Y}$ for the linear system of equations $\mathbf{A}\mathbf{X}=\mathbf{B}$ found in literal a).
Process and Answer:
Use backsubstitution method over the upper-triangular system $\mathbf{U}\mathbf{X}=\mathbf{Y}$ found in literal b) to determine V_A,V_B and V_C .
Process:
Answer:
$V_A = $ $V_C = $

a)			rge to th								
			15x	-	y +	z	=	12			
					y -						
			-x	+	y +	4z	=	3			
	Process:										
[$\mathbf{P_0} =$	$\mathbf{P_1} =$	$\mathbf{P_2} =$			$\overline{\mathbf{P_3}} =$			$\mathbf{P_4} =$		$oxed{\mathbf{P_5}} =$
	points) The vector ${f Y}$							onal i	the angle	e betwe	en them is $\frac{\pi}{2}$
a) [Process and A		mai II ali	u om	y 11 ∠s	1	_ 0.				

	$\mathbf{X} = (4, -7, 5, 9)$			
	Process:		Process:	
	Answer:		Answer:	
	Y =		$\mathbf{Z} =$	
i.	$\mathbf{X} = (6, 2, -3, -3)$			
	Process:		Process:	
	A		A	
	Answer: Y =		Answer: Z =	
	· · · · · · · · · · · · · · · · · · ·	Jius the 3070 of Com	edy movies, plus the 84% of Romance mov	
	40% of Action movies is equal ual to the double amount of R	• •	know that the amount of Comedy movies $ $ s the 35% of Action movies.	
eq	•	Romance movies plus	s the 35% of Action movies.	
eq Dete	ual to the double amount of R	Romance movies plus	s the 35% of Action movies.	
eq Dete	ual to the double amount of Rermine a linear system of equ	Romance movies plus	s the 35% of Action movies.	
eq Dete	ual to the double amount of Rermine a linear system of equ	Romance movies plus	s the 35% of Action movies.	
eq Dete	ual to the double amount of Rermine a linear system of equ	Romance movies plus	s the 35% of Action movies.	
s eq Dete	ual to the double amount of Rermine a linear system of equ	Romance movies plus	s the 35% of Action movies.	
eq Dete	ual to the double amount of Rermine a linear system of equ	Romance movies plus	s the 35% of Action movies.	
s eq Dete	ual to the double amount of Rermine a linear system of equ	Romance movies plus	s the 35% of Action movies.	
eq ete	ual to the double amount of Rermine a linear system of equ	Romance movies plus	s the 35% of Action movies.	
eq Dete	ual to the double amount of Rermine a linear system of equ	Romance movies plus	s the 35% of Action movies.	
eq Dete Pro	ual to the double amount of Rermine a linear system of equ	domance movies plus $\mathbf{A}\mathbf{X}=\mathbf{B}$ with	the 35% of Action movies. the given information.	
Dete	ual to the double amount of Rermine a linear system of equocess and Answer:	domance movies plus $\mathbf{A}\mathbf{X}=\mathbf{B}$ with	the 35% of Action movies. the given information.	
eq Dete Pro	ual to the double amount of Rermine a linear system of equocess and Answer:	domance movies plus $\mathbf{A}\mathbf{X}=\mathbf{B}$ with	the 35% of Action movies. the given information.	
Dete	ual to the double amount of Rermine a linear system of equocess and Answer:	domance movies plus $\mathbf{A}\mathbf{X}=\mathbf{B}$ with	the 35% of Action movies. the given information.	
Dete	ual to the double amount of Rermine a linear system of equocess and Answer:	domance movies plus $\mathbf{A}\mathbf{X}=\mathbf{B}$ with	the 35% of Action movies. the given information.	
Dete	ual to the double amount of Rermine a linear system of equocess and Answer:	domance movies plus $\mathbf{A}\mathbf{X}=\mathbf{B}$ with	the 35% of Action movies. the given information.	
Dete	ual to the double amount of Rermine a linear system of equocess and Answer:	domance movies plus $\mathbf{A}\mathbf{X}=\mathbf{B}$ with	the 35% of Action movies. the given information.	
eq Dete Pro	ual to the double amount of Rermine a linear system of equocess and Answer:	domance movies plus $\mathbf{A}\mathbf{X}=\mathbf{B}$ with	the 35% of Action movies. the given information.	
Dete	ual to the double amount of Rermine a linear system of equocess and Answer:	domance movies plus $\mathbf{A}\mathbf{X}=\mathbf{B}$ with	the 35% of Action movies. the given information.	

b) Find two different vectors, \mathbf{Y} and $\mathbf{Z},$ that are orthogonal to

	Process and Answer:
	1 Tocess and Answer.
1.0 p	point) Let
	$\begin{bmatrix} 7 & -6 & 3 \end{bmatrix}$
	$\begin{bmatrix} -5 & 6 & 10 & 12 \\ -6 & 2 & 11 \end{bmatrix}$
	$\mathbf{A} = \begin{bmatrix} -5 & 6 & 10 & 12 \\ 15 & 3 & 28 & 1 \\ 10 & -12 & -20 & -24 \end{bmatrix}, \mathbf{B} = \begin{bmatrix} 7 & -6 & 3 \\ -6 & 2 & 11 \\ 10 & -12 & -20 \\ 6 & 17 & 3 \end{bmatrix}, \mathbf{C} = \begin{bmatrix} 14 & 8 & 1 \\ 5 & 4 & 1 \\ 2 & 25 & 6 \end{bmatrix}$
	$\begin{bmatrix} 10 & -12 & -20 & -24 \end{bmatrix}$ $\begin{bmatrix} 6 & 17 & 3 \end{bmatrix}$ $\begin{bmatrix} 2 & 25 & 6 \end{bmatrix}$
2)	Determine ${f AB}+{f C}$
a)	Process and Answer:
1	Determine ${f BA}$
b)	
b)	Process and Answer:

2)	Determine CA
2)	Process and Answer:
d)	Find the determinant of ${f A}, {f B}$ and ${f C}$ if it exists.
	Process and Answer: