Datenbanken und Informationssysteme SS 2009

Prof. Dr. G. Lausen

17. September 2009

1 Aufgabe

(8+2 Punkte)

Betrachten Sie das folgende ER-Diagramm:

Die folgende Entitätstabellen:

$$\begin{array}{c|cccc}
A & K_A \\
\hline
& a_1 \\
& a_2 \\
\end{array}$$

$$\begin{array}{c|ccccc}
B & K_b \\
\hline
& b_1 \\
& b_2 \\
\end{array}$$

Und die folgenden Varianten für die Beziehungstabellen:

i)

ii)

iii)

iv)

a)

Welche der Beziehungstabellen (i)- (iv) erfüllen Beziehungskomplexitäten, welche nicht? Begründen Sie!

b)

Ändern Sie obrige Beziehungskompl
xitäten so ab, dass alle Beziehungstabellen (i) - (iv) sie erfüllen.

(5+5 Punkte)

Sei in SQL eine Tabelle R definiert wie folgt:

CREATE TABLE R (
A INTEGER NOT NULL,
B INTEGER NOT NULL)

Und sei folgende Instanz zu R gegeben:

R	A	B
	1	1
	1	2
	$\begin{bmatrix} 2 \\ 2 \end{bmatrix}$	1
	2	2
	3	5

Betrachten Sie folgende SQL-Anfragen:

(i)

SELECT B FROM R GROUP BY A

(ii)

SELECT A FROM R GROUP BY A

(iii)

SELECT count(B) FROM R GROUP BY A

(iv)

SELECT A, count(B) FROM R GROUP BY A

(v)

SELECT max(C) FROM (SELECT count(B) AS C FROM R GROUP BY A) T

a)

Welche der SQL-Ausdrücke (i)-(v) sind syntaktisch fehlerhaft? Begründen Sie!

b)

Geben Sie für alle syntaktisch korrekten Ausdrücke das Ergebnis an.

```
(15 Punkte)
```

Sei in SQL eine Tabelle K definiert wie folgt:

```
CREATE TABLE K (X INTEGER, Y INTEGET)
```

a)

Schreiben Sie eine SQL-Anfrage, die angewendet auf eine Instanz zu K als Ausgabe eine Ergebnismenge von Tupeln der Form (k, m, n) genau dann erzeugt, wenn die betrachtete Instanz zu K Tupel (k, m) und (m,n) enthält.

b)

Erweitern Sie ihre Anfrage aus a) so, dass für jedes Ergebnistupel (k, m, n) gerade gilt: k < m < n

c)

Welche Ergebnisse liefen die Anfragen aus a) und b) wenn angewendet auf die Instanz:

K	X	Y
	1	2
	2	3
	3	1
	1	null
	null	null

$$(6 + 4 \text{ Punkte})$$

Sei ein Relationsschema R mit Attributmenge

$$V = \{A, B, C, D, E\}$$

und die Menge von funktionalen Abhängigkeiten

$$\mathcal{F} = \{AB \to C, BC \to D, CD \to E, DE \to A\}$$

gegeben.

a)

Welche der folgenden funktionalen Abhängigkeiten sind in \mathcal{F}^+ enthalten:

- 1. $AB \rightarrow D$
- 2. $AB \rightarrow E$
- 3. $AB \rightarrow A$
- $4. \ A \rightarrow A$
- 5. $A \rightarrow B$
- 6. $A \rightarrow C$

Begründen Sie jeweils.

b)

Geben Sie alle Schlüssel zu R an.

(8 Punkte)

Betrachten Sie Realtionen der Form:

R	A	B		S	B	C		T	A	B
	1	2	•		2	1			2	1
	2	2			2	2			2	2
	3	2			2	3			2	3
	:	:			:	:			:	÷
	n	2			2	m			2	m

Geben Sie jeweils an, wieviele Tupel das Ergebnis der folgenden Algebraasudrücke jeweils enthält:

- 1. $R \bowtie S$
- 2. $S \bowtie R$
- 3. $R \setminus T$
- 4. $T \backslash R$
- 5. $R \cap T$
- 6. $T \cap R$
- 7. $R \div (\pi[B]S)$
- 8. $S \div (\pi[B]R)$

(5+5+2+8+10 Punkte) Geben sie die beiden Tabellen Conference und Country, sowie die Ergebnis-Tabellen $E_1, E_2, E_3, E_4, E_5, E_6, E_7$ (null bezeichnet den SQl-Nullwert):

Conference				
Name	Year	City		
WWW	2001	null		
ESWC	2003	Basel		
ESWC	2008	Baroelona		
SIGMOD	2005	Berlin		
SIGMOD	2006	Paris		
SIGMOD	2007	null		
VLDB	2005	Berlin		
VLDB	2006	Paris		
VLDB	2001	Rome		
ISWC	2007	Karlsruhe		
ISWC	2007	Rome		
ISWC	2009	Paris		
PODS	2001	Basel		
PODS	2002	Berlin		
PODS	200	4 Paris		
PODS	2005	Rome		
PODS	2006	Innsbruck		

Country			
Name	Capital		
Germany	Berlin		
France	Paris		
Italy	Rome		

E_1
Name
VLDB
PODS

E_2
Name
ESWC
ISWC
PODS

E_3
Name
WWW
ESWC

E_4	
Conference	Country

E_5	E_6
Name	Name
WWW	WWW
SIGMOD	ESWC
VLDB	SIGMOD ISWC
PODS	PODS

E_7			
Conference	Country		
SIGMOD	Germany		
SIGMOD	France		
VLDB	Germany		
VLDB	France		
VLDB	Italy		
ISWC	Italy		
ISWC	France		
PODS	Germany		
PODS	France		
PODS	Italy		

Antworten			
Aufgabe	Ergebnistabelle		
a)			
b)			
c)			
d)			
e)			

Ordnen Sie den folgenden SQL-Anfragen das Ergebnis zu, das man erhält, wenn man die jeweiligen Anfragen auf *Conference* und *Country* anwendet. Schreiben Sie Ihre Lösungen in die obige Antworten-Tabelle.

```
1. SELECT DISTINCT name
  FROM conference
  WHERE city NOT IN (SELECT capital From Country);
2. SELECT DISTINCT name
  FROM Conference a
  WHERE NOT EXISTS
  SELECT capital
  FROM Country b
  WHERE b .capital=a.city
  );
3. SELECT name conference, name country
  FROM Conference NATURAL JOIN Country;
4. SELECT name
  FROM Conference
  EXCEPT
  SELECT name
  FROM
  SELECT name, capital
  FROM
  (SELECT name FROM Conference)
  CROSS JOIN
  (SELECT capital FROM Country)
  EXCEPT
  SELECT name, city
  FROM Conference
  );
5. SELECT DISTINCT name
  FROM Conference a
  WHERE NOT EXISTS
  SELECT capital
  FROM Country
  WHERE capital NOT IN
  SELECT city
```

```
FROM Conference b WHERE b.name=a.name ) );
```

$$(2+4+6)$$
 Punkte)

Geben sie jeweils eine BCNF-Zerlegung an und benenne Sie jeweils die Schlüssel des Ausgangschemas und der Resultatsschemata:

1.
$$\mathcal{V} = \{A, B, C, D\}$$

 $\mathcal{F} = \{A \to C, B \to D\}$

2.
$$\mathcal{V} = \{A, B, C, D, E\}$$

 $\mathcal{F} = \{A \rightarrow C, AB \rightarrow E, B \rightarrow D\}$

3.
$$V = \{A, B, C, D, E\}$$

 $F = \{A \rightarrow C, AB \rightarrow E, B \rightarrow D, D \rightarrow E\}$

Wenden Sie jeweils den BCNF-Analyse-Algorithmus an.

$$(2 + 5 + 5 + 5)$$
 Punkte)

Auf einer Datenbanken sollen 3 Transaktionen zur Ausführung kommen.

1. Die Transaktionen haben die Form:

$$T_1$$
: RA WA T_2 : RA WA T_3 : RA WA

- a) Wieviele serielle Schedule gibt es zu T_1, T_2, T_3 ?
- b) Wieviele serialisierbare Schedule gibt es zu T_1, T_2, T_3 , die selbst nicht seriell sind?
- 2. Die Tansaktionen haben die Form:

$$T_1$$
: RA WB T_2 : RB WC T_3 : RC WD

- a) Wieviele nicht serielle Schedule gibt es zu T_1, T_2, T_3 ?
- b) ist gewährleistet, dass bei Anwendung eines Zeitmarken-Schedulers alle serialisierbaren Schedule zu T_1,T_2,T_3 zur Ausführung kommen können? Begründen Sie!

(8 Punkte)

Zeigen oder widerlegen Sie die folgenden Aussage: Jeder serialisierbare Schedule kann von einem 2PL-Scheduler bei geeigneter Wahl der Sperren und Freigaben ausgeführt werden.