1^a Lista de Pré Cálculo

Curso: Ciência da Computação

Profo: Anderson F. Maia

Domínio e Imagem.

1) Encontre o conjunto domínio das seguintes funções:

a)
$$f(x) = \frac{1}{x^3}$$

b)
$$g(x) = \frac{x}{x^2 - 1}$$

c)
$$h(x) = \sqrt[4]{x-4}$$

d)
$$s(x) = \frac{\sqrt{3}}{x^3 - 9x}$$

e)
$$p(x) = \frac{x^2+1}{\sqrt{8x-x^4}}$$

b)
$$g(x) = \frac{x}{x^2 - 1}$$

d) $s(x) = \frac{\sqrt{3}}{x^3 - 9x}$
f) $r(x) = \frac{\sqrt{x^3 + 4x^2}}{x^2 - 16}$

2) Encontre o conjunto imagem das seguintes funções:

a)
$$f(x) = x^3 + 2$$

b)
$$q(x) = x^2 - 9$$

a)
$$f(x) = x^3 + 2$$

b) $g(x) = x^2 - 9$
c) $h(x) = \sqrt[4]{x^8 + 16}$
d) $s(x) = \frac{2}{\sqrt{x^2 + 9}}$

d)
$$s(x) = \frac{2}{\sqrt{x^2+9}}$$

Injetividade, Sobrejetividade e Bijetividade.

3) Classifique as funções abaixo em injetiva, sobrejetiva ou bijetiva. Justifique, demonstrando em caso positivo ou dando um contra-exemplo em caso negativo.

a)
$$f(x) = x^5 + 2$$

b)
$$g(x) = x^4 - 16$$

c)
$$h:[0,1]\to [1,+\infty)$$
 onde $h(x)=\frac{1}{1-x}$

d)
$$s:(0,1)\to [1,+\infty)$$
 onde $s(x)=\frac{1}{x+1}$

Função Composta e Inversa.

4) Encontre para as funções $f(x) = x^3 + 5$, $g(x) = \frac{1}{x+2}$ e $h(x) = \sqrt[3]{x^2 + 3}$ as seguintes compostas:

a) $f \circ g(x)$

b) $g \circ f(x)$

c) $f \circ h(x)$

d) $h \circ f(x)$

e) $g \circ h(x)$

f) $h \circ g(x)$

5) Encontre a função inversa das seguintes funções:

a) $f(x) = x^3 - 4$

b) $g(x) = \sqrt[5]{x+7}$

c) $h(x) = \frac{x}{x-3}$

d) $p(x) = \sqrt{\frac{1}{x^7 - 8}}$

6) Para as funções $f: D(f) \to Im(f) \in g: D(g) \to Im(g)$ bijetivas, mostre o que se pede:

a) Se $\operatorname{Im}(g) \subseteq D(f)$, então $f \circ g : D(g) \to \operatorname{Im}(f)$ é bijetiva.

b) A função $f^{-1}: \operatorname{Im}(f) \to \operatorname{D}(f)$ é bijetiva.

Função crescente e decrescente.

7) Mostre o que se pede:

a) Se f e g são crescentes onde $\operatorname{Im}(g) \subseteq \operatorname{D}(f)$ então $f \circ g$ é crescente.

b) Se f é crescente e g decrescente onde $Im(g) \subseteq D(f)$ então $f \circ g$ é decrescente.

8) Mostre o que se pede:

a) A função $f(x) = \sqrt[n]{x}$ é crescente em \mathbb{R}^+ . b) A função $g(x) = \frac{1}{\sqrt[n]{x}}$ é decrescente em \mathbb{R}^+ .

Função par e ímpar.

- 9) Mostre o que se pede para as funções f e g:
 - a) Se f e g são pares então $f\pm g,\,f.g$ e f/g são pares.
 - b) Se f e g são ímpares então $f \pm g$ é ímpar, f.g e f/g são pares.
 - c) Se f é par e g é impar então $f \circ g$ é par.
 - d) Se f e g são impares então $f \circ g$ é impar.
- 10) Se uma função f é par e impar então f é a função identicamente nula.

Sinal de uma função.

11) Encontre $S^+(f) = \{x \in D(f) \; ; \; f(x) > 0\} \in S^-(f) = \{x \in D(f) \; ; \; f(x) < 0\}$ escrevendo em termos de intervalos para as seguintes funções :

a)
$$f(x) = x^3 + 1$$

b)
$$g(x) = x^2 - 9$$

c)
$$h(x) = \sqrt[6]{x^8 + 16}$$

d)
$$s(x) = \frac{x-5}{x+9}$$

a)
$$f(x) = x^3 + 1$$

b) $g(x) = x^2 - 9$
c) $h(x) = \sqrt[6]{x^8 + 16}$
d) $s(x) = \frac{x - 5}{x + 9}$
e) $r(x) = (x^2 - 16)(-x + 1)$
f) $q(x) = \frac{x - 9}{x^3 + x^2}$

f)
$$q(x) = \frac{x+9}{x^3+x^2}$$