

The Patent Office

REC'D 1.3 JAN 2004

WIPO PCT

The Patent Office Concept House Cardiff Road Newport South Wales NP10 800

I, the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) of the Deregulation & Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein.

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same name as that with which it was registered immediately before re-registration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Re-registration under the Companies Act does not constitute a new legal entity but merely subjects the company to certain additional company law rules.

Signed

Dated

25 November 2003

BEST AVAILABLE COPY

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

Patents Form 1/77

Request for grant of a pater

(See the notes on the back of this form. You can also get

ts Act 1977

17 DEC 2002 P

The Patent Office

Cardiff Road Newport

an explanatory leaflet from the Patent Office to help you fill in this form) Gwent NP10 8QQ J00044660GB Your reference 117 DEC 2002 0229353.8 Patent application number (The Patent Office will fill in this part) The BOC Group plc Full name, address and postcode of the or of Chertsey Road each applicant (underline all surnames) Windlesham Surrey **GU20 6HJ** United Kingdom Patents ADP number (if you know it) UK If the applicant is a corporate body, give the country/state of its incorporation Vacuum Pumping System and Method of Operating a Title of the invention Vacuum Pumping Arrangement ROC GLOND by RGC Jenkins & Co. Name of your agent (if you have one) CHERTTEY ROAD "Address for service" in the United Kingdom 26 Caxton Street to which all correspondence should be sent London SW1H ORJ (including the postcode) United Kingdom a J. 20 6141 03966736001 Patents ADP number (if you know it) Date of filing Priority application Country If you are declaring priority from one or more number (day / month/ year) earlier patent applications, give the country (if you know it) and the date of filing of the or of each of these earlier applications (and if you know it) the or each application number Date of filing Number of earlier application If this application is divided or otherwise (day / month/ year) derived from an earlier UK application, give the number and the filing date of the earlier application Is a statement of inventorship and of right to grant of a patent required in support of this request (Answer 'Yes' if: YES a) any applicant named in part 3 is not an inventor, or b) there is an inventor who is not named as an applicant, c) any named applicant is a corporate body. See note (d))

Patents Form 1/77

 Enter the number of sheets for any of the following items you are filing with this form.
 Do not count copies of the same document

Continuation sheets of this form

Description

14

Claim(s)

Abstract

Drawing(s) 8 +

المرج

 If you are also filing any of the following, state how many against each item.

Priority documents

Translation of priority documents

Statement of inventorship and right to grant of a patent (Patents Form 7/77)

Request for preliminary examination and search (Patents Form 9/77)

Request for substantive examination
(Patents Form 10/77)

Any other documents (please specify)

11.

I/We request the grant of a patent on the basis of this application.

Signature \

Date 17 December, 2002

12. Name and daytime telephone number of person to contact in the United Kingdom

A. K. Abbie 020-7931-7141

Warning

After an application for a patent has been filed, the Comptroller of the Patent Office will consider whether publication or communication of the invention should be prohibited or restricted under Section 22 of the Patents Act 1977. You will be informed if it is necessary to prohibit or restrict your invention in this way. Furthermore, if you live in the United Kingdom, Section 23 of the Patents Act 1977 stops you from applying for a patent abroad without first getting written permission from the Patent Office unless an application has been filed at least 6 weeks beforehand in the United Kingdom for a patent for the same invention and either no direction prohibiting publication or communication has been given, or any such direction has been revoked.

Notes

- a) If you need help to fill in this form or you have any questions, please contact the Patent Office on 0645 500505.
- b) Write your answers in capital letters using black ink or you may type them.
- c) If there is not enough space for all relevant details on any part of this form, please continue on a separate sheet of paper and write "see continuation sheet" in the relevant part(s). Any continuation sheet should be attached to this form.
- d) If you have answered 'Yes' Patents Form 7/77 will need to be filed.
- e) Once you have filled in the form you must remember to sign and date it.
- f) For details of the fee and ways to pay, please contact the Patent Office.

VACUUM PUMPING SYSTEM AND METHOD OF OPERATING A VACUUM PUMPING ARRANGEMENT

The present invention relates to a vacuum pumping system comprising a vacuum pumping arrangement and a method of operating a vacuum pumping arrangement.

A known vacuum pumping arrangement for evacuating a chamber comprises a molecular pump which may include: molecular drag pumping means; or turbomolecular pumping means; or both molecular drag pumping means and turbomolecular pumping means. If both pumping means are included the turbomolecular pumping means are connected in series with the molecular drag pumping means. The pumping arrangement is capable of evacuating the chamber to very low pressures in the region of 1×10^{-6} mbar. The compression ratio achieved by the molecular pump is not sufficient to achieve such low pressures whilst at the same time exhausting to atmosphere and therefore a backing pump is provided to reduce pressure at the exhaust of the molecular pump and hence permit very low pressures to be achieved at the inlet thereof.

10

15

20

The turbomolecular pumping means of a molecular pump comprises a circumferential array of angled blades supported at a generally cylindrical rotor body. During normal operation the rotor is rotated between 20,000 and 200,000 revolutions per minute during which time the rotor blades collide with molecules in a gas urging them towards the pump outlet. Normal

operation occurs therefore at molecular flow conditions at pressures of less than about 0.01 mbar. As it will be appreciated, the turbomolecular pumping means does not work effectively at high pressures, at which the angled rotor blades cause undesirable windage, or resistance to rotation of the rotor. This problem is particularly acute at start up conditions close to or at atmospheric pressure, when it is difficult if not impossible to rotate the rotor of the turbomolecular pumping means at high speed. Therefore, it is desirable to evacuate the turbomolecular pumping means to relatively low pressures by operating the backing pump before starting rotation of the molecular pump. An alternative but undesirable solution to the problem of turbo stage start-up, would be the provision of a much more powerful motor for driving the rotor, that would be able to overcome the windage caused by the angled rotors This solution is undesirable because, blades at atmospheric pressure. generally, a molecular pump, especially when used in the semiconductor processing industry, is kept running most of the time, and is shut down only during power failures, for servicing etc. Accordingly, a powerful motor would be needed only for a relatively small amount of the pump's operating time and therefore the increased cost of such a motor cannot be justified.

10

15

20

Hereto, a molecular pump and a backing pump thereof are separate units of the same vacuum pumping arrangement, the pumps being associated with respective drive shafts which are driven by respective motors. As described above, it is desirable initially to operate the backing pump to evacuate the molecular pump, prior to start-up of the molecular pump.

Clearly, this would be possible only if the two pumps can be driven separately.

It is desirable to provide an improved vacuum pumping system and method of operating a vacuum pumping arrangement.

The present invention provides a vacuum pumping system comprising a vacuum pumping arrangement comprising: a drive shaft; a motor for driving said drive shaft; a molecular pumping mechanism comprising turbomolecular pumping means; and a backing pumping mechanism, wherein said drive shaft is for driving said molecular pumping mechanism and said backing pumping mechanism, and the system comprises evacuation means for evacuating at least said turbomolecular pumping means.

The present invention also provides a method of operating a vacuum pumping arrangement comprising: a drive shaft; a motor for driving said drive shaft; a molecular pumping mechanism comprising turbomolecular pumping means; and a backing pumping mechanism, said drive shaft being for driving said molecular pumping mechanism and said backing pumping mechanism, the method comprising the steps of operating an evacuation means connected to the arrangement to evacuate the arrangement to a predetermined pressure and operating the motor to start rotation of the drive shaft.

Other aspects of the present invention are defined in the accompanying claims.

20

5

10

In order that the present invention may be well understood, some embodiments thereof, which are given by way of example only, will now be described with reference to the accompanying drawings, in which:

Figure 1 is a cross-sectional view of a vacuum pumping arrangement shown schematically;

Figure 2 is an enlarged cross-sectional view of a portion of a regenerative pump of the arrangement shown in Figure 1;

. Figure 3 is a diagram of a control system;

Figure 4 is a schematic representation of a vacuum pumping system;

Figure 5 is a schematic representation of another vacuum pumping system; and

Figures 6 to 8 are cross-sectional views of further vacuum pumping arrangements all shown schematically.

Referring to Figure 1, a vacuum pumping arrangement 10 is shown schematically, which comprises a molecular pumping mechanism 12 and a backing pumping mechanism 14. The molecular pumping mechanism comprises turbomolecular pumping means 16 and molecular drag, or friction, pumping means 18. Alternatively, the molecular pumping mechanism may comprise turbomolecular pumping means only or molecular drag pumping means only. The backing pump 14 comprises a regenerative pumping mechanism. A further drag pumping mechanism 20 may be associated with the regenerative pumping mechanism and provided between drag pumping mechanism 18 and regenerative pumping mechanism 14. Drag pumping

15

. 10

5

mechanism 20 comprises three drag pumping stages in series, whereas drag pumping mechanism 18 comprises two drag pumping stages in parallel.

Vacuum pumping arrangement 10 comprises a housing, which is formed in three separate parts 22, 24, 26, and which houses the molecular pumping mechanism 12, drag pumping mechanism 20 and regenerative pumping mechanism 14. Parts 22 and 24 may form the inner surfaces of the molecular pumping mechanism 12 and the drag pumping mechanism 20, as shown. Part 26 may form the stator of the regenerative pumping mechanism 14.

Part 26 defines a counter-sunk recess 28 which receives a lubricated bearing 30 for supporting a drive shaft 32, the bearing 30 being at a first end portion of the drive shaft associated with regenerative pumping mechanism 14. Bearing 30 may be a rolling bearing such as a ball bearing and may be lubricated, for instance with grease, because it is in a part of the pumping arrangement 10 distal from the inlet of the pumping arrangement. The inlet of the pumping arrangement may be in fluid connection with a semiconductor processing chamber in which a clean environment is required.

10 .

15

20

Drive shaft 32 is driven by motor 34 which as shown is supported by parts 22 and 24 of the housing. The motor may be supported at any convenient position in the vacuum pumping arrangement. Motor 34 is adapted to be able to drive simultaneously the regenerative pumping mechanism 14, and the drag pumping mechanism 20 supported thereby, and also the molecular pumping mechanism 12. Generally, a regenerative

pumping mechanism requires more power for operation than a molecular pumping mechanism, the regenerative pumping mechanism operating at pressures close to atmosphere where windage and air resistance is relatively high. A molecular pumping mechanism requires relatively less power for operation, and therefore, a motor selected for powering a regenerative pumping mechanism is also generally suitable for powering a molecular pumping mechanism. Means are provided for controlling the rotational speeds of the backing pumping mechanism and the molecular pumping mechanism so that pressure in a chamber connected to, or operatively associated with, the arrangement can be controlled. A suitable control system diagram for controlling speed of the motor 34 is shown in Figure 3 and includes a pressure gauge 35 for measuring pressure in a chamber 33 and a controller 37 connected to the pressure gauge for controlling the pump's rotational speed.

Regenerative pumping mechanism 14 comprises a stator comprising a plurality of circumferential pumping channels disposed concentrically about a longitudinal axis A of the drive shaft 32 and a rotor comprising a plurality of arrays of rotor blades extending axially into respective said circumferential pumping channels. More specifically, regenerative pumping mechanism 14 comprises a rotor fixed relative to drive shaft 32. The regenerative pumping mechanism 14 comprises three pumping stages, and for each stage, a circumferential array of rotor blades 38 extends substantially orthogonally from one surface of the rotor body 36. The rotor blades 38 of the three arrays

extend axially into respective circumferential pumping channels 40 disposed concentrically in part 26 which constitutes the stator of the regenerative pumping mechanism 14. During operation, drive shaft 32 rotates rotor body 36 which causes the rotor blades 38 to travel along the pumping channels, pumping gas from inlet 42 in sequence along the radially outer pumping channel, radially middle pumping channel and radially inner pumping channel where it is exhausted from pumping mechanism 14 via exhaust 44 at pressures close to or at atmospheric pressure.

5

10

15

20

An enlarged cross-section of a single stage of the regenerative pumping mechanism is shown in Figure 2. For efficient operation of the regenerative pumping mechanism 14, it is important that the radial clearance "C" between rotor blades 38 and stator 26 is closely controlled, and preferably kept to no more than 200 microns or less, and preferably less than 80 microns, during operation. An increase in clearance "C" would lead to significant seepage of gas out of pumping channel 40 and reduce efficiency of Therefore, regenerative pumping regenerative pumping mechanism 14. mechanism 14 is associated with the lubricated rolling bearing 30 which substantially resists radial movement of the drive shaft 32 and hence rotor body 36. However, if there is radial movement of the drive shaft at an end thereof distal from the lubricated bearing 30, this may also cause radial movement of the rotor of the regenerative pumping mechanism, resulting in loss of efficiency. In other words, bearing 30 may act as a pivot about which some radial movement may take place. To avoid loss of efficiency, the rotor

36 of the regenerative pumping mechanism is connected to said drive shaft 32 so as to be sufficiently close to said lubricated bearing 30 (i.e. the pivot) so that radial movement of distal end of the said drive shaft translates substantially to axial movement of said rotor blades relative to respective said circumferential pumping channels. Preferably, the bearing 30 is substantially axially aligned with the circumferential pumping channels so that any radial movement of the rotor blades 38 does not cause significant seepage. As shown, the stator 26 of the regenerative pumping mechanism 14 defines the recess for the bearing 30 and the rotor body 36 is, as it will be appreciated, adjacent the stator 26. Accordingly, the bearing 30, which resists radial movement, prevents significant radial movement of the rotor body 36 and also hence of the rotor blades 38. Therefore, clearance "C" between the rotor blades 38 and stator 26 can kept within tolerable limits.

5

10

15

20

Extending orthogonally from the rotor body 36 are two cylindrical drag cylinders 46 which together form rotors of drag pumping mechanism 20. The drag cylinders 46 are made from carbon fibre reinforced material which is both strong and light. The reduction in mass when using carbon fibre drag cylinders, as compared with the use of aluminium drag cylinders, produces less inertia when the drag pumping mechanism is in operation. Accordingly, the rotational speed of the drag pumping mechanism is easier to control.

The drag pumping mechanism 20 shown schematically is a Holweck type drag pumping mechanism in which stator portions 48 define a spiral channel between the inner surface of housing part 24 and the drag cylinders 46. Three drag stages are shown, each of which provides a spiral path for gas flow between the rotor and the stator. The operation and structure of a Holweck drag pumping mechanism is well known. The gas flow follows a tortuous path flowing consecutively through the drag stages in series.

5 ·

10

15

20

The molecular pumping mechanism 12 is driven at a distal end of drive shaft 32 from the regenerative pumping mechanism 14. A back up bearing may be provided to resist extreme radial movement of the drive shaft 32 during, for instance, power failure. As shown, the lubricant free bearing is a magnetic bearing 54 provided between rotor body 52 and a cylindrical portion 56 fixed relative to the housing 22. A passive magnetic bearing is shown in which like poles of a magnet repel each other resisting excessive radial movement of rotor body 52 relative to the central axis A. In practice, the drive shaft may move about 0.1 mm.

A small amount of radial movement of the rotor of a molecular pumping mechanism does not significantly affect the pumping mechanism's performance. However, if it is desired to further resist radial movement, an active magnetic bearing may be adopted. In an active magnetic bearing, electro magnets are used rather than permanent magnets in passive magnetic bearings. Further provided is a detection means for detecting radial movement and for controlling the magnetic field to resist the radial movement. Figures 6 to 8 show an active magnetic bearing.

A circumferential array of angled rotor blades 58 extend radially outwardly from rotor body 52. At approximately half way along the rotor

blades 58 at a radially intermediate portion of the array, a cylindrical support ring 60 is provided, to which is connected drag cylinder 62 of drag pumping mechanism 18. Drag pumping mechanism 18 comprises two drag stages in parallel with a single drag cylinder 62, which may be made from carbon fibre to reduce inertia. Each of the stages is comprised of stator portions 64 forming with the tapered inner walls 66 of the housing 22 a spiral molecular gas flow channel. An outlet 68 is provided to exhaust gas from the drag pumping mechanism 18.

During normal operation, inlet 70 of pump arrangement 10 is connected to a chamber, the pressure of which it is desired to reduce. Motor 34 rotates drive shaft 32 which in turn drives rotor body 36 and rotor body 52. Gas in molecular flow conditions is drawn in through inlet 70 to the turbomolecular pumping means 16 which urges molecules into the molecular drag pumping means 18 along both parallel drag pumping stages and through outlet 68. Gas is then drawn through the three stages in series of the drag pumping mechanism 20 and into the regenerative pumping mechanism through inlet 42. Gas is exhausted at atmospheric pressure or thereabouts through exhaust port 44.

Regenerative pumping mechanism 14 is required to exhaust gas at approximately atmospheric pressure. Accordingly, the gas resistance to passage of the rotor blades 38 is considerable and therefore the power and torque characteristics of motor 34 must be selected to meet the requirements of the regenerative pumping mechanism 14. The resistance to rotation

encountered by the molecular pumping mechanism 12 is relatively little, since the molecular pumping mechanism operates at relatively low pressures. Furthermore, the structure of the drag pumping mechanism 18 with its only moving part being a cylinder rotated about axis A does not suffer significantly Therefore, once power and torque from gas resistance to rotation. characteristics for motor 34 have been selected for regenerative pumping mechanism 14, only a relatively small proportion of extra capacity is needed so that the motor also meets the requirements of molecular pumping mechanism 12. In other words, a 200w motor, which is typically used for a molecular pumping mechanism, is significantly less powerful than motor 34 which preferably is a 2kw motor. In the prior art, the typical motor is not powerful enough so that pressure change in a chamber can be controlled by controlling the rotational speed of the pump. However, since a powerful motor is selected to drive regenerative pumping mechanism 14, the additional power can also be used to control rotational speed of the molecular pumping mechanism and thereby control pressure.

5

10

15

20

A typical turbomolecular pumping means is evacuated to relatively low pressures before it is started up. In the prior art, a backing pumping mechanism is used for this purpose. Since the backing pumping mechanism and turbomolecular pumping means are associated with the same drive shaft in vacuum pumping arrangement 10, this start up procedure is not possible. Accordingly, the vacuum pumping arrangement forms part of a vacuum pumping system which comprises additional evacuation means to evacuate at

least the molecular pumping mechanism 12 prior to start up to a predetermined pressure. Preferably, the molecular pumping mechanism is evacuated to less than 500 mbar prior to start up. Conveniently, the whole vacuum pumping arrangement is evacuated prior to start up, as shown in Figures 4 and 5. The evacuation means may be provided by an additional pump, although this is not preferred since an additional pump would increase costs of the system. When the pumping arrangement 10 is used as part of a semi-conductor processing assembly, it is convenient to make use of a pump or pumping means associated with the system such as the pump for the load lock chamber. Figure 4 shows the arrangement of a semiconductor processing system, in which the load lock pump 74 is, in normal use, used to evacuate pressure from load lock chamber 76. A valve 78 is provided between load lock chamber 76 and load lock pump 74. Load lock pump 74 is connected to the exhaust of pumping arrangement 10 via valve 80. A further valve 82 is provided downstream of exhaust 44 of pumping arrangement 10. During start up, valve 78 and valve 82 are closed whilst valve 80 is opened. Load lock pump 74 is operated to evacuate gas from arrangement 10 and therefore from turbomolecular pumping means 16. During normal operation, valves 82 and 78 are opened whilst valve 80 is closed. Arrangement 10 is operated to evacuate pressure from vacuum chamber 84.

5

. 10

15

20

Alternatively, vacuum pumping arrangement 10 can be started up as described with reference to Figure 5. The additional evacuation means comprises a high pressure nitrogen supply which is connected to an ejector

pump 90 via valve 88. Valve 88 is opened so that high pressure nitrogen is ejected to evacuate arrangement 10 and therefore turbomolecular pumping means 16. Nitrogen is a relatively inert gas at normal operating temperatures of the system and does not contaminate the system.

Although the pumping arrangement 10 may be evacuated prior to start up, it is also possible to evacuate the arrangement after or during start up, since the arrangement can be started but will not reach suitable rotational speeds until evacuation is performed. However, if the arrangement and in particular the turbomolecular pumping means is started prior to or during evacuation, torque of the motor is preferably limited to prevent overloading until evacuation is performed.

There now follows a description of three further embodiments of the present invention. For brevity, the further embodiments will be discussed only in relation to the parts thereof which are different to the first embodiment and like reference numerals will be used for like parts.

Figure 6 shows a vacuum pumping arrangement 100 comprising an active magnetic bearing in which a cylindrical pole of the magnetic bearing 54 is mounted to the drive shaft 32 with a like pole being positioned on housing 22. The rotor body 52 of the turbomolecular pumping means 16 of the molecular pumping mechanism, is disc-shaped and the overall size of the arrangement 100 is reduced as compared with the first embodiment.

In Figure 7, a vacuum pumping arrangement 200 is shown in which the turbomolecular pumping means 12 comprises two turbomolecular

15

20

10

pumping stages 16. A stator 92 extends radially inwardly from housing part 22 between the two turbo stages 16.

In Figure 8, a vacuum pumping arrangement 300 is shown in which molecular drag pumping mechanism 20 has been omitted.

CLAIMS

1. A vacuum pumping system comprising a vacuum pumping arrangement comprising: a drive shaft; a motor for driving said drive shaft; a molecular pumping mechanism comprising turbomolecular pumping means; and a backing pumping mechanism, wherein said drive shaft is for driving said molecular pumping mechanism and said backing pumping mechanism, and the system comprises evacuation means for evacuating at least said turbomolecular pumping means.

10

5

2. A system as claimed in claim 1, wherein the vacuum pumping arrangement forms part of a semiconductor processing assembly and said evacuation means comprises a pump associated with said semiconductor processing assembly.

15

- 3. A system as claimed in claim 2, wherein said pump is a pump for a load lock chamber of the semiconductor processing assembly.
- 4. A system as claimed in claim 1, wherein said evacuation means comprises an ejector pump.
 - 5. A system as claimed in any one of claims 1 to 4, wherein the backing pumping mechanism comprises a regenerative pumping mechanism.

- 6. A system as claimed in any one of the preceding claims, wherein said molecular pumping mechanism comprises molecular drag pumping means.
- 7. A system as claimed in any one of the preceding claims, wherein said evacuation means is for evacuating the vacuum pumping arrangement.
 - 8. A method of operating a vacuum pumping arrangement comprising: a drive shaft; a motor for driving said drive shaft; a molecular pumping mechanism comprising turbomolecular pumping means; and a backing pumping mechanism, said drive shaft being for driving said molecular pumping mechanism and said backing pumping mechanism, the method comprising the step of operating an evacuation means connected to the arrangement to evacuate at least the turbomolecular pumping means to a predetermined pressure and operating the motor to start rotation of the drive shaft.
 - 9. A method as claimed in claim 8, wherein the motor is operated to start rotation of the drive shaft when said predetermined pressure has been attained.
 - 10. A method as claimed in claim 8, wherein the method comprises: the step of starting the motor before or during evacuating said at least the turbomolecular pumping means to said predetermined pressure and limiting

20

10

the torque of the motor to prevent overloading before evacuation; and the step of operating the evacuation means to evacuate at least the turbomolecular pumping means to said predetermined pressure.

- 5 11. A method as claimed in any one of claims 8 to 10, wherein the vacuum pumping arrangement forms part of a semiconductor processing assembly having a pump associated therewith which forms said evacuation means, and the method comprises connecting the pump to the arrangement and operating the pump to evacuate at least the turbomolecular pumping means to said predetermined pressure.
 - 12. A method as claimed in claim 8 to 10, wherein the evacuation means comprises an ejector pump and the method comprises connecting said ejector pump to the arrangement and operating the ejector pump to evacuate at least the turbomolecular pumping means to said predetermined pressure.

- 13. A method as claimed in claim 8 to 12, wherein said vacuum pumping arrangement is evacuated to said predetermined pressure.
- 20 14. A method as claimed in any one of claims 8 to 13, wherein said predetermined pressure is 500 mbar or less.

ABSTRACT

VACUUM PUMPING SYSTEM AND

METHOD OF OPERATING A VACUUM PUMPING ARRANGEMENT

The present invention provides a vacuum pumping system which comprises a vacuum pumping arrangement 10 comprising a drive shaft 32, a motor 34 for driving said drive shaft, a molecular pumping mechanism 12 comprising turbomolecular pumping means 16 and a backing pumping mechanism 14, said drive shaft being for driving said turbomolecular pumping means and said backing pumping mechanism, the system comprising evacuation means 74 for evacuating at least said turbomolecular pumping means.

The present invention also provides a method of operating a vacuum pumping arrangement 10 comprising: a drive shaft 32; a motor 34 for driving said drive shaft; a molecular pumping mechanism 12 comprising turbomolecular pumping means 16; and a backing pumping mechanism 14, said drive shaft being for driving said molecular pumping mechanism and said backing pumping mechanism, the method comprising the step of operating an evacuation means 74 connected to the arrangement to evacuate at least the turbomolecular pumping means to a predetermined pressure and operating the motor to start rotation of the drive shaft.

[FIGURES 1 and 3]

10

5

15

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER: _____

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.