

Continuous Assessment Test (CAT) - I - FEB 2024

Programme	:	B. Tech.	Semester	:	Winter
Course Code & Course Title	:	BMAT201L & Complex Variables and Linear Algebra	Slot	:	A1+TA1+TAA1
Faculty	"	Dr. Amit Kumar Rahul, Dr. Ashish Kumar Nandi, Dr. Jaganathan B, Dr. Kalyan Manna, Dr. Manivannan A, Dr. Sagithya, Dr. Somnath Bera.	Class Number	:	CH2023240500810 CH2023240500806 CH2023240500801 CH2023240500798 CH2023240500816 CH2023240500804 CH2023240500812
Duration	:	90 Minutes	Max. Mark		50

General Instructions:

- Write only your registration number on the question paper in the box provided and do not write other information.
- Use statistical tables supplied from the exam cell as necessary.
- Use graph sheets supplied from the exam cell as necessary.
- Only non-programmable calculator without storage is permitted.

	Answer all questions.				
Q. No	Sub Sec.	Description	Marks		
1.		Determine the analytic function $f(z) = u + iv$ given that $u - v = \frac{\cos x + \sin x - e^{-y}}{2\cos x - e^y - e^{-y}}$ and $f\left(\frac{\pi}{2}\right) = 0$.	10		
2.	(a)	If $\phi(x,y) = x^2 - y^2 - 2xy - 2x - y - 1$ is the velocity potential of an incompressible fluid flow through a channel, then calculate the complex potential $w = \phi(x,y) + i\psi(x,y)$.	6		
	(b)	Check the condition for orthogonality for the family of curves $u(x, y) = c_1$ and $u(x, y) = c_2$, when $f(z) = u + iv = (x^4 - 6x^2y^2 + y^4) + i(4x^3y - 4xy^3)$.			
3.	(a)	Find the points where the mapping $w = e^{-\sinh z} + 2$ is not conformal.			
	(b)	Find the image of the region $z\bar{z} < 1$ under the transformation $w = \left(\frac{1}{2}e^{\frac{i\pi}{2}}\right)z$.	6		
4.		Determine the bilinear mapping which maps the points $z = 2i, -i, 0$ onto the points $w = \frac{-i}{3}, \infty, 5i$ respectively. Find and sketch the image of the region $ z - i \le 1$ under this transformation. List the fixed points of this mapping.	10		
5.	(a)	Expand the function $f(z) = \frac{z-1}{z+1}$ as a Taylor series about the point $z = 1$. Determine the region of convergence.			
	(b)	Expand the function $f(z) = \frac{1}{z(z-1)}$ in a Laurent series which is valid for $1 < z-2 < 2$.	6		