MATEMATIK - 2

Konya Jeknik Üniversitesi Mühendislik ve Doğa Bilimleri Fakültesi Mühendislik Jemel Bilimleri Bölümü

Prof. Dr. Abdullah Selçuk KURBANLI

2021

3.3.2. Karşılaştırma (Mukayese) Kriteri

Teorem 3.3.2.1. Pozitif terimli $\sum_{n=1}^{\infty} a_n$ ve $\sum_{n=1}^{\infty} b_n$ serileri verilmiş olsun.

(1) Eğer $\sum_{n=1}^{\infty} a_n$ serisi yakınsak ve her $n \in \mathbb{N}$ için $b_n \leq a_n$ ise $\sum_{n=1}^{\infty} b_n$ serisi de yakınsaktır

(2) Eğer $\sum_{n=1}^{\infty} a_n$ serisi ıraksak ve her $n \in \mathbb{N}$ için $a_n \leq b_n$ ise $\sum_{n=1}^{\infty} b_n$ serisi de ıraksaktır.

Örnek 3.3.2.1. Aşağıdaki serilerin karakterlerini belirleyiniz.

$$(1)\sum_{n=1}^{\infty}\frac{1}{n(n+1)}$$

(1)
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$
 (2)
$$\sum_{n=1}^{\infty} \frac{1}{n^n}$$
 (3)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$$

$$(3)\sum_{n=1}^{\infty}\frac{1}{\sqrt{n}}$$

(4)
$$\sum_{n=1}^{\infty} \frac{1}{2n+1}$$
 (5) $\sum_{n=1}^{\infty} \frac{1}{3+5^n}$ (6) $\sum_{n=1}^{\infty} \frac{\cos^2 n}{2^n}$

$$(5) \sum_{n=1}^{\infty} \frac{1}{3+5^n}$$

$$(6)\sum_{n=1}^{\infty}\frac{\cos^2 n}{2^n}$$

$$(7) \sum_{n=2}^{\infty} \frac{3}{\sqrt{n}-1}$$

(8)
$$\sum_{n=1}^{\infty} \frac{1}{n(2n-1)}$$

(7)
$$\sum_{n=2}^{\infty} \frac{3}{\sqrt{n}-1}$$
 (8) $\sum_{n=1}^{\infty} \frac{1}{n(2n-1)}$ (9) $\sum_{n=1}^{\infty} \frac{1}{\ln(n+1)}$

n=(h(u+1)

Çözümler:

(1) Her
$$n \in \mathbb{N}$$
 için $\frac{1}{n(n+1)} < \frac{1}{n^2}$ dir. $\sum_{n=1}^{\infty} \frac{1}{n^2}$ serisi, $p=2$ serisi olduğundan yakınsaktır.

Dolayısıyla Karşılaştırma Kriteri gereği $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ serisi de yakınsaktır.

(2) Her
$$n > 2$$
 için $\frac{1}{n^n} < \frac{1}{2^n}$ dir. $\sum_{n=1}^{\infty} \frac{1}{2^n}$ serisi, $r = \frac{1}{2}$ olan geometrik seri olduğundan yakınsaktır. Dolayısıyla Karşılaştırma Kriteri gereği $\sum_{n=1}^{\infty} \frac{1}{n^n}$ serisi de yakınsaktır.

(3) Her
$$n \in \mathbb{N}$$
 için $\frac{1}{\sqrt{n}} \ge \frac{1}{n}$ dir. $\sum_{n=1}^{\infty} \frac{1}{n}$ harmonik seri ıraksaktır. Dolayısıyla

Karşılaştırma Kriteri gereği $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ serisi de ıraksaktır.

$$\frac{2}{2} - \frac{1}{2}$$

(4) Her $n \in \mathbb{N}$ için $\frac{1}{2n+1} > \frac{1}{2n+2} = \frac{1}{2} \left(\frac{1}{n+1} \right)$ dir. $\sum_{n=1}^{\infty} \frac{1}{n+1}$ harmonik seri ıraksaktır.

Dolayısıyla Karşılaştırma Kriteri gereği $\sum_{n=1}^{\infty} \frac{1}{2n+1}$ serisi de ıraksaktır.

- (5) Her $n \in \mathbb{N}$ için $\frac{1}{3+5^n} < \frac{1}{5^n}$ dir. serisi, $r = \frac{1}{5}$ olan geometrik seri olduğundan yakınsaktır. Dolayısıyla Karşılaştırma Kriteri gereği $\sum_{n=1}^{\infty} \frac{1}{3+5^n}$ serisi de yakınsaktır.
 - (6) Her $n \in \mathbb{N}$ için $\frac{\cos^2 n}{2^n} \le \frac{1}{2^n}$ dir. $\sum_{n=1}^{\infty} \frac{1}{2^n}$ serisi, $r = \frac{1}{2}$ olan geometrik seri olduğundan yakınsaktır. Dolayısıyla Karşılaştırma Kriteri gereği $\sum_{n=1}^{\infty} \frac{\cos^2 n}{2^n}$ serisi de yakınsaktır.

(7) Her
$$n > 1$$
 için $\frac{3}{\sqrt{n}-1} > 3\frac{1}{\sqrt{n}}$ dir. $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ serisi, $p = \frac{1}{2}$ serisi olduğundan ıraksaktır.

Dolayısıyla Karşılaştırma Kriteri gereği $\sum_{n=2}^{\infty} \frac{3}{\sqrt{n}-1}$ serisi de ıraksaktır.

(8) Her
$$n \in \mathbb{N}$$
 için $\frac{1}{n(2n-1)} = \frac{1}{2n^2-n} < \frac{1}{2n^2-n^2} = \frac{1}{n^2}$ dir. serisi, $\sum_{n=1}^{\infty} \frac{1}{n^2}$ serisi olduğundan yakınsaktır. Dolayısıyla Karşılaştırma Kriteri gereği $\sum_{n=1}^{\infty} \frac{1}{n(2n-1)}$ serisi de yakınsaktır.

(9) Her
$$n \in \mathbb{N}$$
 için $\ln n < n$ olduğundan $\frac{1}{\ln n} > \frac{1}{n}$ dir. Bu durumda $\frac{1}{\ln(n+1)} > \frac{1}{n+1}$ dir.

$$\sum_{n=1}^{\infty} \frac{1}{n+1}$$
 serisi harmonik seri olup ıraksak olduğundan Karşılaştırma Kriteri

— gereği $\sum_{n=1}^{\infty} \frac{1}{\ln(n+1)}$ serisi de ıraksaktır.

Teorem 3.3.2.2. (Karşılaştırma Kriterinin Limit Formu)

Pozitif terimli $\sum_{n=1}^{\infty} a_n$ ve $\sum_{n=1}^{\infty} b_n$ serileri için

$$\lim_{n\to\infty}\frac{a_n}{b_n}=$$

olsun. Bu durumda

- \checkmark (1) 0 < l < +∞ ise iki seri aynı karakterdedir.
 - (2) l = 0 ve $\sum_{n=1}^{\infty} b_n$ yakınsak ise $\sum_{n=1}^{\infty} a_n$ serisi de yakınsaktır.
 - (3) $l \to \infty$ ve $\sum_{n=1}^{\infty} b_n$ ıraksak ise $\sum_{n=1}^{\infty} a_n$ serisi de ıraksaktır

Uyarı 3.3.2.1. $\sum_{n=1}^{\infty} \frac{a_1 n^p + a_2 n^{p-1} + \cdots}{b_1 n^q + b_2 n^{q-1} + \cdots}$ serisinin karakterini belirlemek için $b_n = \frac{n^p}{n^q}$ şeklinde seçilmelidir. Bu durumda

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\underbrace{a_1 n^p + a_2 n^{p-1} + \cdots}_{b_1 n^q + b_2 n^{q-1} + \cdots}}_{\underbrace{\frac{n^p}{n^q}}} = \underbrace{\frac{a_1}{b_1}} \neq 0$$

elde edilir.

Eğer q - p > 1 ise $\sum_{n=1}^{\infty} \frac{n^p}{n^q}$ serisi yakınsaktır. Dolayısıyla verilen seri de yakınsak olur.

Benzer şekilde $q - p \le 1$ ise $\sum_{n=1}^{\infty} \frac{n^p}{n^q}$ serisi ıraksaktır. Dolayısıyla verilen seri de ıraksak olur.

Örnek 3.3.2.2. Aşağıdaki serilerin karakterlerini belirleyiniz.

(1)
$$\sum_{n=1}^{\infty} \frac{4n^2 - n + 3}{n^3 + 2n}$$
 (2) $\sum_{n=1}^{\infty} \frac{\sqrt[3]{n^4 - 16}}{n^2 \sqrt{n + 2}}$

(3)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \cdot \tan\left(\frac{\pi}{\sqrt{n}}\right)$$
 (4)
$$\sum_{n=1}^{\infty} \ln\left(1 + \frac{1}{n}\right)$$

$$(4)\sum_{n=1}^{\infty}\ln\left(1+\frac{1}{n}\right)$$

$$(5)\sum_{n=1}^{\infty}\frac{\sqrt{n}}{n+1}$$

(6)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{(n+1)(n+2)}}$$

2 h = h = 15a

Çözüm.

(1)
$$b_n = \frac{4n^2}{n^3} = \frac{4}{n}$$
 olarak seçilirse

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\frac{4n^2 - n + 3}{n^3 + 2n}}{\frac{4n^2}{n^3}} = 1 \neq 0$$

0<12+00

elde edilir. Bu durumda iki seri aynı karakterdedir.

$$4\sum_{n=1}^{\infty} \frac{1}{n}$$
 serisi harmonik seri olup ıraksak olduğundan Karşılaştırma Kriteri

gereği $\sum_{n=1}^{\infty} \frac{4n^2-n+3}{n^3+2n}$ serisi de ıraksaktır.

(2)
$$b_n = \frac{\sqrt[3]{n^4}}{n^2 \sqrt{n}} = \frac{1}{n^{7/6}}$$
 olarak seçilirse

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\frac{\sqrt[3]{n^4 - 16}}{n^2 \sqrt{n+2}}}{\frac{\sqrt[3]{n^4}}{n^2 \sqrt{n}}} = 1 \neq 0$$

elde edilir. Bu durumda iki seri aynı karakterdedir. $\sum_{n=1}^{\infty} \frac{1}{n^{7/6}}$ serisi $p = \frac{7}{6}$ serisi

olup yakınsak olduğundan Karşılaştırma Kriteri gereği $\sum_{n=1}^{\infty} \frac{\sqrt[3]{n^4-16}}{n^2\sqrt{n+2}}$ serisi de yakınsaktır.

(3) $b_n = \frac{1}{\sqrt{n}} \cdot \frac{1}{\sqrt{n}} = \frac{1}{n}$ olarak seçilirse

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\frac{1}{\sqrt{n}} \cdot \tan\left(\frac{\pi}{\sqrt{n}}\right)}{\frac{1}{\sqrt{n}} \cdot \frac{1}{\sqrt{n}}} = \pi \neq 0$$

elde edilir.

Bu durumda iki seri aynı karakterdedir. $\sum_{n=1}^{\infty} \frac{1}{n}$ harmonik seri ıraksak olduğundan Karşılaştırma Kriteri gereği $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \cdot \tan\left(\frac{\pi}{\sqrt{n}}\right)$ serisi de ıraksaktır.

(4) $b_n = \frac{1}{n}$ olarak seçilirse

$$\lim_{n\to\infty} \frac{a_n}{b_n} = \lim_{n\to\infty} \frac{\ln\left(1+\frac{1}{n}\right)}{\frac{1}{n}} = \lim_{n\to\infty} \left(\ln\left(1+\frac{1}{n}\right)^n\right) = \ln\left(\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n\right) = \ln e = 1$$

elde edilir. Bu durumda iki seri aynı karakterdedir. $\sum_{n=1}^{\infty}\frac{1}{n}$ harmonik seri ıraksak olduğundan Karşılaştırma Kriteri gereği $\sum_{n=1}^{\infty}\ln\left(1+\frac{1}{n}\right)$ serisi de ıraksaktır.

(5) $b_n = \frac{1}{\sqrt{n}}$ olarak seçilirse

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\frac{\sqrt{n}}{n+1}}{\frac{1}{\sqrt{n}}} = \lim_{n \to \infty} \left(\frac{n}{n+1}\right) = 1 \neq 0$$

elde edilir. Bu durumda iki seri aynı karakterdedir. $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ serisi $p=\frac{1}{2}$ serisi olup ıraksak olduğundan Karşılaştırma Kriteri gereği $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n+1}$ serisi de ıraksaktır.

(6) $b_n = \frac{1}{n}$ olarak seçilirse

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\frac{1}{\sqrt{(n+1)(n+2)}}}{\frac{1}{n}} = \lim_{n \to \infty} \left(\frac{n}{\sqrt{(n+1)(n+2)}}\right) = 1 \neq 0$$

elde edilir. Bu durumda iki seri aynı karakterdedir. $\sum_{n=1}^{\infty}\frac{1}{n}$ harmonik seri ıraksak olduğundan Karşılaştırma Kriteri gereği $\sum_{n=1}^{\infty}\frac{1}{\sqrt{(n+1)(n+2)}}$ serisi de ıraksaktır.

Sonuç 3.3.2.1. Pozitif terimli $\sum_{n=1}^{\infty} a_n$ serisi verilmiş olsun. Bu durumda

(1) $\lim_{n\to\infty} n^p a_n = l \neq 0$ ise $\sum_{n=1}^{\infty} a_n$ serisi $p \leq 1$ için ıraksak ve p > 1 için yakınsaktır.

(2) $\lim_{n\to\infty} n^p a_n = 0$ ve p > 1 ise $\sum_{n=1}^{\infty} a_n$ serisi yakınsaktır.

(3) $\lim_{n\to\infty} n^p a_n = +\infty$ ve $p \le 1$ ise $\sum_{n=1}^{\infty} a_n$ serisi ıraksaktır.

Teorem 3.3.2.3. Pozitif terimli $\sum_{n=1}^{\infty} a_n$ ve $\sum_{n=1}^{\infty} b_n$ serilerini ele alalım. Her $n(\varepsilon) < n$ için $\frac{a_{n+1}}{a_n} \le \frac{b_{n+1}}{b_n}$ olacak şekilde bir $n(\varepsilon) \in \mathbb{N}$ sayısı mevcut olsun. Bu durumda

- (1) $\sum_{n=1}^{\infty} b_n$ serisi yakınsak ise $\sum_{n=1}^{\infty} a_n$ serisi de yakınsaktır.
- (2) $\sum_{n=1}^{\infty} a_n$ serisi ıraksak ise $\sum_{n=1}^{\infty} b_n$ serisi de ıraksaktır.

Kaynak:

- 1. Prof. Dr. İbrahim YALÇINKAYA, Analiz III Diziler ve Seriler, Dizgi Ofset, 2017.
- **2. G. B. Thomas ve Ark.,** Thomas Calculus I, Çeviri: R. Korkmaz, Beta Yayıncılık, İstanbul, 2009.

KAYNAKLAR:

- **1. Prof. Dr. İbrahim YALÇINKAYA**, Analiz III Diziler ve Seriler, Dizgi Ofset, 2017.
- **2. G. B. Thomas ve Ark.,** Thomas Calculus I, Çeviri: R. Korkmaz, Beta Yayıncılık, İstanbul, 2009.