Оптимизация параметров стратегий поиска объектов на море

Антон Ковшаров Научный руководитель: Ковалев А.С.

Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

18 мая 2015 г.

Оптимизация параметров стратегий поиска объектов на море — Постановка задачи

Содержание

Постановка задачи

Симуляция эволюции распределения

Алгоритм построения маршрута

Полученные результать

Цель работы

Построить маршрут поиска объекта максимизирующий вероятность его обнаружения. Фиксированы:

- распределение вероятности (зависимость от времени)
- параметры средства поиска
- стратегия поиска "параллельное галсирование"

Стратегия поиска

- Начальное распределение
 - Нормальное распределение
 - Равномерное распределиние
- Эволюция распределения (диффузия)

- Начальное распределение
 - Нормальное распределение
 - Равномерное распределиние
- Эволюция распределения (диффузия)

- Начальное распределение
 - Нормальное распределение
 - Равномерное распределиние
- Эволюция распределения (диффузия)

- Начальное распределение
 - Нормальное распределение
 - Равномерное распределиние
- Эволюция распределения (диффузия)

- Построение маршрута поиска объекта, основываясь на поле вероятности
- Симуляция прохождения маршрута

- Построение маршрута поиска объекта, основываясь на поле вероятности
- Симуляция прохождения маршрута

- Построение маршрута поиска объекта, основываясь на поле вероятности
- Симуляция прохождения маршрута

Оптимизация параметров стратегий поиска объектов на море — Постановка задачи

Входные данные

- параметры распределения
- параметры средства поиска
- параметры стратегии поиска
- время поиска

Задача

- π : П частица
- w_{π} вес частицы (сумма весов 1)

•
$$\chi(\pi) = \left\{ egin{array}{ll} 1 & {\it ecnu} \ \exists t {\it dist}({\it posFinder}(t), {\it pos}(\pi,t)) <= r \\ 0 & {\it uhaue} \end{array} \right.$$

•
$$S_{res} = \sum_{\pi \in \Pi} \chi(\pi) w_{\pi}$$

Построить маршрут максимизирующий S_{res}

Результат алгоритма

- I_i проекция i-го галса на прямую I
- ullet h_i разница между галсом i и i+1
- S_{res} доля собранных частиц от начального распределения

Содержание

Постановка задачи

Симуляция эволюции распределения

Алгоритм построения маршрута

Полученные результать

Сервисы симулятора

- демонстрация распределения в каждый момент прохождения маршрута
- Статистика
 - прогресс поиска
 - поисковая
 производитель ность

Сервисы симулятора

- демонстрация распределения в каждый момент прохождения маршрута
- Статистика
 - прогресс поиска
 - поисковая производительность

Примеры моделей изменения распределения

- ullet случайное блуждание с произвольным Δt в качестве шага, $v \in [0, v Max]$
- направленное движение в одном из фиксированных направлений
- притяжение-отталкивание от фиксированных точек плоскости

Содержание

Постановка задачи

Симуляция эволюции распределения

Алгоритм построения маршрута

Полученные результать

Глобальный алгоритм

- dp[row][col][time][last] максимальное суммарный вес частиц, который можно собрать
- row, col текущий строка и столбец в которой находится средство поиска
- time количество сделанных ходов
- last количество строк без галсирования

Глобальный алгоритм: переходы

```
• (row, col, time) \rightarrow (row + 1, col, time + 1)/(row, col \pm 1, time + 1)
• (row, col_{row}, time, last) \rightarrow \{ (row + 1, col_{row+1}, time + |col_{row} - col_{row+1}| + 1, 0) \}
• (row + 1, col_{row+1}, time + 1, last + 1)
• (row + 1, col_{row+1}, time + 1, last + 1)
• (row + 1, col_{row+1}, time + 1, last + 1)
• (row + 1, col_{row+1}, time + 1, last + 1)
```

Глобальный алгоритм: порядки величин

- $row \approx 50$
- $col \approx 50$
- $time \approx 10^3$
- ullet last pprox 4 более дальние мало влияют
- $row \cdot col^2 \cdot time \cdot last \approx 5 \cdot 10^8$

• исходное распределение

- 1 час
- 2 часа
- 3 часа
- 4 часа
- 8 часов
- 16 часов

- исходное распределение
- 1 час
- 2 часа
- 3 часа
- 4 часа
- 8 часов
- 16 часов

- исходное распределение
- 1 час
- 2 часа
- 3 часа
- 4 часа
- 8 часов
- 16 yacoe

- исходное распределение
- 1 час
- 2 часа
- 3 часа
- 4 часа
- 8 часов
- 16 часов

- исходное распределение
- 1 час
- 2 часа
- 3 часа
- 4 часа
- 8 часов
- 16 часов

- исходное распределение
- 1 час
- 2 uaca
- 3 часа
- 4 часа
- 8 часов
- 16 часов

- исходное распределение
- 1 час
- 2 часа
- 3 часа
- 4 часа
- 8 часов
- 16 часов

- изначально построенный путь
- со временем путь устарел
- перестроим путь

- изначально построенный путь
- со временем путь устарел
- перестроим путь

- изначально построенный путь
- со временем путь устарел
- перестроим путь

- rest непройденная часть построенного пути
- S'_{rest} планировалось собрать на симуляторе, когда строили путь (без учета диффузии)
- S_{rest}'' планируется на симуляторе к текущему моменту (без учета диффузии)
- $S_{rest}'' \leq k \cdot S_{rest}'$ перестроить маршрут с текущей точки на оставшееся время
- $k \approx 0.95$

Локальная оптимизация пути

- \bullet k дискретных значений h_i
- ullet необходимо осуществить более точную подстройку h_i
- I_i фиксированы
- $h_j, (j \neq i) \land (j \neq i+1)$ фиксированы, локально изменяем $\frac{h_i}{h_{i+1}}$ пока можно улучшить S_{res}

Оптимизация параметров стратегий поиска объектов на море — Полученные результаты

Содержание

Постановка задачи

Симуляция эволюции распределения

Алгоритм построения маршрута

Полученные результаты

Полученные результаты

- Реализован инструмент, рассчитывающий изменение распределения частиц с учетом поискового средства в реальном времени. Инструмент используется для визуализации и оценки эффективности алгоритмов поиска
- Разработан и реализован алгоритм построения пути поиска методом "Параллельное галсирование", обеспечивающий нахождение объекта с вероятностью $\geq 90\%$ в большинстве случаев, за приемлемое время поиска

Оптимизация параметров стратегий поиска объектов на море — Полученные результаты

Вопросы?