Geometria 2022-23 (Trombetti)

Indice

1	Lezione $01 - XX/03/2023$			2	
	1.1	Defini	zioni di base	2	
		1.1.1	Prodotto Cartesiano	2	
		1.1.2	Coppie	2	
		1.1.3	Operaziona Interna	2	
		1.1.4	Operaziona Esterna	2	
		1.1.5	Prodotto Scalare Standard	2	
		1.1.6	Matrice in R	2	
2	Lez	ione 0^4	4 - 17/03/2023	3	
	2.1		Vettoriali su R	3	
	2.2	•		3	
		2.2.1	Spazio Vettoriale numerico di ordine n	3	
		2.2.2	Spazio Vettoriale di una matrice di ordine m,n	4	
		2.2.3	Spazio Vettoriale polinomiale	4	
		2.2.4	Spazio Vettoriale polinomiale di al più n	4	
		2.2.5	Spazio Vettoriale dei vettori geometrici in un punto O	4	
3	Lez	Lezione 05 - 22/03/2023			
	3.1		Vettoriali del Vettore Geometrico libero	5	
	3.2	-	età Spazi Vettoriali	5	
	3.3		rzionalità	6	
		3.3.1		6	
	3.4	Comb	inazione Lineare	6	
		3.4.1	Esempi	6	
	3.5	Sottos	Spazi Vettoriali	7	
		3.5.1	SottoSpazi Banali	7	
		3.5.2	Esempi	8	

1 Lezione 01 - XX/03/2023

1.1 Definizioni di base

1.1.1 Prodotto Cartesiano

Presi $S, T \neq \emptyset$, possiamo definire il prodotto cartesiano:

$$SxT = \{(s, t)/s \in S, t \in T\}$$

$$S^2 = SxS = \{(s, t)/s \in S, t \in T\}$$

Da non confendere con la definizione di diagonale: $S^2 = SxS = \{(s, s)/s \in S\}.$

1.1.2 Coppie

La definizione di coppia è la seguente:

$$(s,t) = \{\{s,t\},\{s\}\}$$

Negli insiemi l'ordine non conta $\{s,t\} = \{t,s\}$, invece nelle coppie è rilevante, infatti due coppie sono uguali se e solo sono ordinatamente uguali:

$$(s,t) = (s',t') \Leftrightarrow s = s', t = t'$$

Andiamo a dimostrare questa affermazione:

- DIM ⇐: BANALE
- DIM \Rightarrow $(s,t) = (s',t') \Leftrightarrow \{\{s,t\},\{s\}\} = \{\{s',t'\},\{s'\}\}$ Ragioniamo per casi:

a SE
$$s = t$$
:

$$Sx:\{\{s,t\},\{s\}\} \Rightarrow \{\{s,s\},\{s\}\} \Rightarrow \{s\}$$
$$Dx:\{\{s',t'\},\{s'\}\} \Rightarrow \{\{s',s'\},\{s'\}\} \Rightarrow \{s'\}$$

b SE $s \neq t$:

Usiamo le definizioni di uguaglianza tra insiemi:

$$\{s\} = \{s'\} \Rightarrow s = s'$$

$$\{s,t\} = \{s',t'\} \land s = s' \Rightarrow t = t'$$

- 1.1.3 Operaziona Interna
- 1.1.4 Operaziona Esterna
- 1.1.5 Prodotto Scalare Standard
- 1.1.6 Matrice in R

2 Lezione 04 - 17/03/2023

2.1 Spazi Vettoriali su R

Sia V un insieme non vuoto, definiamo due operazioni:

Interna +: VxV - > V (somma vettoriale)

Esterna $\cdot:RxV->V$ (scalare per un vettore) R è campo

Posto $(V, +, \cdot)$ si dice spazio vettoriale su $\mathbb{R} \Leftrightarrow$

1. (V, +) è un gruppo abeliano, quindi:

Associatività

Commutatività

Neutro

Tutti gli elementi invertibili

- 2. $\forall \underline{v} \in V$ tale che $\underline{v} \cdot 1 = \underline{v}$ (associtività mista)
- 3. $\forall h, k \in R, \forall \underline{v} \in V \text{ tale che } (hk)\underline{v} = h(k\underline{v})$
- 4. $\forall h, k \in \mathbb{R}, \forall \underline{v} \in V$ tale che $(h+k) \cdot \underline{v} = h \cdot \underline{v} + k \cdot \underline{v}$ (distrub. tra · e + in \mathbb{R})
- 5. $\forall h, k \in R, \forall \underline{v} \in V \text{ tale che } h(\underline{v} + \underline{w}) = h \cdot \underline{v} + h \cdot \underline{v} \text{ (distrub. tra} \cdot e + \text{in } V)$

2.2 Esempi Spazi Vettoriali

2.2.1 Spazio Vettoriale numerico di ordine n

Verifichiamo che $(R^n, +, \cdot)$ sia uno spazio vettoriale, ma prima facciamo un esempio:

$$(1,2,3) + (0,1,2) = (1,3,5)$$
 $3(3,2,4) = (9,6,12)$

Andiamo a verificare che sia spazio vettoriale:

- 1. $(R^n, +)$ gruppo abeliano:
 - * Associatività e Commutatività banalmente eraditati da +
 - * Neutro: $\underline{0} = (0, 0, ..., 0)$
 - * Inverso: $-(x_1, ..., x_n) = (-x_1, -x_2, ..., -x_n)$
- 2. Banale ereditatà di \cdot
- 3. $(hk)(x_1,...,x_n) = (hkx_1,...,hkx_n) = h(kx_1,...,kx_n) = h(k(x_1,...,x_n))$
- 4. DA DIMOSTARE
- 5. DA DIMOSTARE

2.2.2 Spazio Vettoriale di una matrice di ordine m,n

Possiamo considerare $(M_{m,n}(R), +, \cdot)$ come una lunga riga, quindi si accomuna al caso precedente.

- 2.2.3 Spazio Vettoriale polinomiale
- 2.2.4 Spazio Vettoriale polinomiale di al più n
- 2.2.5 Spazio Vettoriale dei vettori geometrici in un punto O

3 Lezione 05 - 22/03/2023

3.1 Spazi Vettoriali del Vettore Geometrico libero

3.2 Propietà Spazi Vettoriali

Preso $(V, +, \cdot)$ Spazio Vettoriali andiamo a definire le sugueni propietà:

1) $\underline{v} + \underline{w} = \underline{z} \Rightarrow \underline{v} = \underline{z} - \underline{w} = \underline{z} + (-\underline{w})$

Dim:

Sommiamo l'opposto di \underline{w} ambi i membri:

$$(\underline{v} + \underline{w}) + (-\underline{w}) = \underline{z} + (-\underline{w}) \Rightarrow \underline{v} = \underline{z} - \underline{w}$$

- 2) $v + w = w \Rightarrow v = 0$ **NEUTRO**
- 3) $\forall v \in V, \forall h \in \mathbb{R}$

$$0 \cdot v = 0 = h \cdot 0$$

Dim primo lato:

$$0 \cdot \underline{v} = (0+0)\underline{v} = 0 \cdot \underline{v} + 0 \cdot \underline{v} \Rightarrow 0 \cdot \underline{v} = \underline{0}$$

Dim secondo lato:

$$h \cdot \underline{0} = h \cdot (\underline{0} + \underline{0}) = h \cdot \underline{0} + h \cdot \underline{0} \Rightarrow h \cdot \underline{0} = \underline{0}$$

4) $\forall \underline{v} \in V, \forall h \in \mathbb{R}$ Legge annullamento del prodotto

$$h\underline{v} = \underline{0} \Leftrightarrow h = 0$$
 oppure $\underline{v} = \underline{0}$

Dim
$$\Rightarrow$$
: $h \cdot \underline{v} = \underline{0}$

Poniamo $h \neq 0$ e moltiplichiamo ambi i membri per h^{-1} :

$$h^{-1}(h \cdot \underline{v}) = h^{-1}\underline{0} \Rightarrow (h^{-1}h)\underline{v} = \underline{v}$$

5) $h(-\underline{v}) = -(h\underline{v}) = (-h)\underline{v}$

Dim: (-h)v = -(hv): Dobbiamo dimostare che sia opposto, quindi:

$$(-h)\underline{v} + h\underline{v} = 0$$

$$(-h+h)v = 0v$$

Dim:
$$h(-v) = -(hv)$$

$$h(-\underline{v}) + h\overline{\underline{v}} = h(-\underline{v} + \underline{v}) = h \cdot \underline{0} = \underline{0}$$

- 6) (-1)v = -v Corollario immediato
- 7) $(\underline{v} + \underline{w}) + \underline{z} = \underline{v} + (\underline{w} + \underline{z})$

Dato che l'associatività si può sempre ridurre a due elementi, possiamo assumere la associatività generalizzata, questo ci permette di omettere le parentesi.

8) Lo stesso concetto del punto 7) si può applicare per la commutatività, quindi se vale per due elementi vale anche per n elementi, quindi possiamo ordinare gli elementi come ci pare.

5

9) Stesso concetto del punto 7)e8) vale anche per la distrubitività.

3.3 Proporzionalità

Presi $v, w \in V$ si dicono proporzionali \Leftrightarrow

$$\exists h \neq 0 \quad \underline{v} = h\underline{w}$$

La proporzionalità è una Relazione di Equivalenza, quindi valgono le tre propietà:

Riflessiva: $\underline{v} = 1\underline{v}$

Simmetrica: $\underline{v} = h\underline{w} \Rightarrow h^{-1}\underline{v} = \underline{w}$

Transitiva: $\underline{v} = h\underline{w} \ e \ \underline{w} = k\underline{z} \Rightarrow \underline{v} = h(k\underline{z}) = (hk)\underline{z} \ (h, k \neq 0)$

3.3.1 Esempi

Indicheremo con la tilde \sim la proporzionalità.

 R^3

 $(1,2,0) \sim (2,4,0)$

 $(1,2,0) \not\sim (0,0,0)$

Rx

$$1 + x^{40} \sim 2 + 2x^{40}$$

3.4 Combinazione Lineare

 \underline{v} è combinazione lineare dei vettori $\underline{v}_1,\underline{v}_2,...,\underline{v}_n \Leftrightarrow$

$$\exists h_1, ..., h_n \in \mathbb{R} : \underline{v} = h_1 \cdot \underline{v}_1 + ... + h_n \cdot \underline{v}_n$$

(Sia i vettori \underline{v} che gli scalari h possono essere diversi tra loro)

3.4.1 Esempi

 R^3

(1,2,1) è combinazione lineare (2,4,2) con h=2

 R^2

(1,2)è combinazione lineare di(1,1),(0,1)

$$(1,2) = 1(1,1) + 1(0,1)$$

 R^3

(1,2,1)è combinazione lineare di (1,2,0),(0,1,1),(1,1,1)?

$$(1,2,1) = x_1(1,2,0) + x_2(0,1,1) + x_3(1,1,1)$$

Come possiamo notare in questo caso non è immediato trovare la soluzione, quindi possiamo ricorrere a un sistema lineare:

$$\begin{cases} x_1 & + x_3 = 1 \\ 2x_1 + x_2 + x_3 = 2 \\ x_2 + x_3 = 1 \end{cases} \dots = 1 \begin{cases} \dots \\ x_1 & = \frac{1}{2} \\ \dots & \dots \end{cases} \begin{cases} x_3 + \frac{1}{2} = 1 \\ \dots \\ x_1 & = \frac{1}{2} \\ \dots & x_2 & = \frac{1}{2} \end{cases}$$

 $Rx \ 1 + x + x^2$ è combinazione lineare di $1 + x, 1 + x^2$

$$1+x+x^2=h(1+x)+k(1+x^2)=kx^2+hx+(h+k)$$

$$\begin{cases} h+k=1\\ h=1 \ Nonhasoluzione\\ k=1 \end{cases}$$

3.5 SottoSpazi Vettoriali

Preso V spazio vettoriale, e $H \subseteq V$. Dim:

H stabile (chiuso) rispetto a +

$$\forall v, w \in H \Rightarrow v + w \in H$$

H stabile (chiuso) rispetto a \cdot

$$\forall h \in \mathbb{R}, \forall v \in H \ hv \in H$$

H sottospazio vettoriale se è stabile $+ e \cdot$

$$+_H: HxH-> H(\underline{v},\underline{w})->\underline{v}+_v\underline{w}$$

$$\cdot_H : \mathbb{R}xH - > H \ (h,\underline{v}) - > h \cdot_v \underline{v}$$

Per semplicità d'ora in poi ometteremo i pedici, quindi ora dimostriamo che $(H, +, \cdot)$ sia sottospazio vettoriale:

 \bullet (H,+) gruppo abeliano

Commutativa: $\underline{v} +_h \underline{w} = \underline{v} +_v \underline{w} = \underline{w} +_v \underline{v} = \underline{w} +_h \underline{v}$

Associtività: IDEM

Neutro: $v \cdot 0 = 0 \in H$ Poiché stabile

Opposto: $(-1)\underline{v} = -\underline{v}$

• $1 \cdot_h \underline{v} = 1 \cdot \underline{v} = \underline{v}$

• Distrubitività 1: DA FARE

• Distrubitività 2: DA FARE

IL VETTORE NULLO C'È SEMPRE!!!

3.5.1 SottoSpazi Banali

D'ora in poi indicheremo i sottospazi con \leq , esistono sempre due sottospazi banali:

- 1) $(\{\underline{0}+,\cdot\})$ $\{\underline{0}\}\leq V$
- 2) V < V Estremamente banale

DA CHEKKARE: Ricordare anche che l'unico sottospazio finito possibile è $\{\underline{0},\underline{v}_1,...,\underline{v}_n\}=\{\underline{0}\}$

3.5.2 Esempi

Per dimostare che un insieme sia sottospazio bisogna sempre verificare che sia non vuoto, stabile rispetto a + e \cdot

 R^3

$$H_1 = \{(x, y, z) \in \mathbb{R}^3 / x = y\}$$

1

Non vuoto: banale

Stabile +:

$$(x_1, y_1, z_1) + (x_2, y_2, z_2) = (x_1 + x_2, y_1 + y_2, z_1 + z_2)$$

Rispetta le propietà poiché $x_1+x_2=y_1+y_2$ essendo $x_1=y_1$ e $x_2=y_2$

Stabile ::

$$h(x_1, y_1, z_1) = (hx_1, hy_1, hz_1)(hx_1 = hy_1)$$

 $R_{2,2}$

$$\{\begin{pmatrix}0&0\\0&0\end{pmatrix},\begin{pmatrix}1&0\\0&1\end{pmatrix},\begin{pmatrix}0&1\\1&0\end{pmatrix},\begin{pmatrix}1&1\\1&1\end{pmatrix}\}{\leq}\mathbb{R}^2$$

Questo insieme non è sottospazione vettoriale poiché non è stabile +:

$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} + \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix} \not\in$$

 R^3

$$H = \{(x, y, z) \in R^3/x = y^2\} \le R^3$$

Non è lineare quindi molto probabilmente non è sottospazio:

Controesempio:
$$(2,4,0) + (3,9,0) = (5,15,0)$$
 MA $5 = 15 \neq 5^2$

 R^3

$$H = \{(x, y, z) \in R^3/x + y + z = 1\} \le R^3$$

Non è omogeneo quindi molto probabilmente non è sottospazio:

Controesempio
$$(1,0,0) + (0,0,1) = (1,0,1)$$
 MA $1+0+1 \neq 1$

$$R_2x \leq R_3x \leq ... \leq Rx$$

$$\{p(x) \in R_4 x / \operatorname{grado} p(x) = 3\}$$

Il neutro ha necessariamente grado diverso da 3 quindi non può essere sottospazio

 $^{^1{\}rm Truchetto}$ per gli esercizi: se un sottospazio è costituito da un equazione ed è lineare ed omogenea quasi sempre è sottospazio caso contrario no

$${p(x) \in R_4 x / \operatorname{grado} p(x) = 3 \operatorname{oppure grado} p(x) = 0}$$

Ora ammette neutro ma non è comunque stabile poiché $(x^3+3)+(-x^3+5)=8\neq H$

$$\{P(x) \in Rx/p(-x) = p(x)\}\$$

Stiamo considerando tutti i polinomi pari poiché $-x^{n\text{pari}=x^n}$ È sottospazio poiché la somma tra pari rimane pari, idem il prodotto.

Caso particolare

$$\{(0,x)/x \in \mathbb{R}\} \cup \{(y,0)/y \in \mathbb{R}\} \leq \mathbb{R}^2$$

Questo non è sottos pazio vettoriale poiché non è stabile rispetto al + poiché $(0,1)+(1,0)=(1,1)\not\in$

Però presi singolarmente sono sottospazi ma la loro unione no.