Index

absolute verification, 21, 25–26	forestry, 136–138
accuracy, 31	frost protection, 126–127
precipitation forecasts, 12, 15	irrigation, 129–131
pressure forecasts, 8, 11–14	raisins, 124–126
temperature forecasts, 12, 15	transportation, 138–140
see also mean square error	chaos, 10–11
analysis system, 13–14	Climate Analysis Center, 133
anecdotal reports, 156–157	climatelogical information
association, 31	autocorrelation, 206–210
mean square error component, 49	skill score baseline, 31, 44, 47–48
precipitation forecasts, 45, 62	value baseline, 68–69, 79–81, 122–
temperature forecasts, 49, 61	123, 141, 151, 185, 190–192
see also correlation coefficient	
see also correlation coefficient	comparative verification, 21, 25 matched, 26
backward induction, 114–116, 197	unmatched, 26
Bayes risk, 191	compensating variation, 86-87
Bayes' theorem, 80, 88, 117	completely reliable forecasts, see reli-
Bayesian correlation score (BCS), 35	ability
Bayesian decision analysis, 78, 88-	computers, 1, 4-6, 8, 13
89, 100-101, 126, 148, 183-185	conditional quantiles, 40-42
posterior probability, 80–81, 187	consistency, 36–37
prior probability, 79–81, 126, 151,	contingent valuation, 159
186, see also climatological in-	convex function, 186, 194, 202, 205,
formation	209, 212
see also decision criteria	correlation coefficient, 31
bias, 29–30, 47	precipitation forecasts, 45, 54, 62
mean square error component, 48	prototype forecasts, 190, 208, 211
precipitation forecasts, 48, 54, 62	skill score component, 53, 67
skill score component, 53-54	temperature forecasts, 40, 54, 61
temperature forecasts, 42 49, 54,	cost-loss problem, 88–89
61	dynamic, finite horizon, 194-202,
bivariate histogram, 38–39, 61	214
Bjerknes, V., 1–3	dynamic, infinite horizon, 202–205,
box plot, 42, 61	214
Brier score (BS), 36, 47, 62, 65	static, 124, 126, 138, 190–194
expected Brier score (EBS), 57	cross correlation function, 208
see also mean square error	curse of dimensionality, 28
Bureau of Reclamation, 157	
	decision criteria
calibration, see reliability	expected expense/loss, 68-69, 191-
calibration-refinement (CR) factor-	192
ization, 24–26, 29, 40, 50, 62,	expected payoff/return, 119-123,
118	150-151, 173
case studies	expected utility, 79–84, 100–101,
crop choice, 119, 131-133	124, 133, 168
descriptive, 157–158	multiple, 168–170
fertilization, 133–135	suboptimal, 111, 140, 167, 174–
forage preservation, 127–129	175, 183, 207

Finley, J.P., 19 decision criteria (cont.) total discounted expected expense, first law of thermodynamics, 1–2 203, 207 forecast accuracy, see accuracy total expected expense, 195 forecast quality, see quality decision elements, 67-70, 78-82, forecast skill, see skill forecast sufficiency characteristic 109 - 112(FSC), 57–59 decision experiments, 165–167 forecast value, see value decision rule, 111-112, 148, 152, 175 decision structure, 113–116 fraction of correct forecasts, 19, 31, decision tree, 114-116 fruit-frost problem, 28, 154-155, 162, chance/event nodes, 114 195, 202, 207, 213, see also case decision nodes, 114-116 studies descriptive study, steps, 148–150, 156, 171 discounting, 184 grid, 6-8, 10, 13-14, 66 discount factor, 101, 133, 203 discount rate, 203 hedging, 35-36 discrimination, 32 heuristics, 168-169 mean square error component, 52 precipitation forecasts, 45-46, 52, impact assessments, 77 influence diagram, 171 temperature forecasts, 62 information system distributions-oriented (DO) apdissemination, 101-103 proach, 20-21, 23, 25, 38, 61-65, nonexcludable commodity, 76 67 nonrival commodity, 76 dynamic programming, 115, 127, private versus public, 75–77, 102– 129, 141, 155, 209 recursion, 198-199, 201, 203, 207, prototype form, 186–190 214 screening, 55-60, see also verification measures El Ninõ-Southern Oscillation U.S., 99 (ENSO), 17, 95, 131–133, 162, initial conditions, 11, 13 Institute for Advanced Study, 4 206 ensemble forecasting, 15–17 interpolation, 13 equitability, 37 interviews, 162-165equivalent variation, 86-87 erroneous forecast, 157 judgment analysis, 171–173 error curve, 14 judgment and decision research, error growth, 14–15 168 - 170error variance, 95 Eulerian reference frame, 3, 10 likelihood-base rate (LBR) factoriza-European Centre for Medium Range tion, 24-26, 29, 40, 50-51, 55, Weather Forecasts (ECMWF), 7 66, 118 expense matrix, 191 Lorenz, E.N., 11 extended-range forecasts, 1, 11 loss function, 60, 68–69, 186–187, fallowing/planting problem, 174, 202, 213, see also case studies Markov chain, 206–208 false alarm rate, 66 Marshallian consumers' surplus, 86-Federal Aviation Administration 87, 89-95, 131

maximum temperature (Tmax) fore-

casts, 38-54, 61-63

(FAA), 163

finite difference method, 3, 6-7

mean absolute error, 37, 65	probability of precipitation (PoP)
mean error (ME), 47	forecasts, 15, 38–54, 58, 62–63,
precipitation forecasts, 48, 62	118
see also bias	propriety, 35–36
mean square error (MSE), 47	protocol analysis, 162–165, 171–172
decomposition, $4\hat{6}$, $48-52$, 62	• , , , ,
precipitation forecasts, 48, 51–52,	quality, 20, 23
62	aspects, 29–33
relationship to value, 69–70	measures, 33–34, 46–54, 183–185,
temperature forecasts, 49, 61	189, 208, 211
measures-oriented (MO) approach,	overall, 63
20, 27	threshold, 193–194, 202, 204–205,
model output statistics (MOS), 14-	213
15	quality/value
model parameterization, 10–11, 13–	curve, 183, 186, 190, 194, 201–202,
14	204–205, 209, 211–212
model resolution, 13, 15	relationship, 67–70
multiple regression analysis, 171	
multiple regression analysis, 171	surface, 119
National Centers for Environmental	ranked probability score (RPS), 65
Prediction (NCEP), 7, 13	rational expectations, 83–85, 95, 103
National Hurricane Center, 167	receiver operating characteristic
National Meteorological Center	(ROC), 66
(NMC), 7	refinement, see sharpness
National Weather Service (NWS),	reliability, 31
38, 117–118, 154, 160	curves, 43–44, 46, 51, 62
Neumann, J. von, 4	mean square error component, 50
Newtonian laws of motion, 1-2	overall, 188, 211
Newtonian relation, 5	perfect, 31–32, 44, 50–51, 53, 117,
nonlinear equations, 3, 10–11	190
normative theory, 147-150, see also	precipitation forecasts, 42–44, 51,
decision criteria	54, 62–63
	skill score component, 53
optimal policy, 185	temperature forecasts, 40-41, 54,
structure, 192, 194, 200–201, 204	61–62
overforecasting, 39–40, 45, 61	resolution, 31–32
0,0101000000118, 00 10, 10, 01	mean square error component, 50
parametric statistical model, 28,	precipitation forecasts, 44, 51, 63
117, 212	Richardson, L.F., 3–6
payoff function, 60, 68, 70, 148, 150,	risk, 133, 153
167, 186–187, 190	aversion, 84–85, 87, 100–101, 123
perfect forecasts, 32, 95, 119, 122,	neutrality, 79, 87, 123, 173
162–165, 185, 187, 190, 199–201,	Rossby, C.G., 4
213	100000, 0.0., 1
performance measures, 33–34, 46	satellites, 13, 164
persistence	score, expected, 35–37
calibrated, 122	scoring rule, 33, 35–36
parameter, 206	linear, 36
predictability limits, 10–12, 209	second law of thermodynamics, 1
predictive distribution, 118	sharpness, 32
variance, 119	mean square error component, 48,
probability of detection, 66	52
probability of detection, to	92

sharpness (cont.) precipitation forecasts, 43, 52, 63 temperature forecasts, 49 signal detection theory (SDT), 66 skill, 31 precipitation forecasts, 15, 44, 48, 54, 62 pressure forecasts, 8, 11–14 temperature forecasts, 15, 54, 61– 62	mean square error component, 48, 50 precipitation forecasts, 51 temperature forecasts, 49 user surveys, 89, 158–162 utility function, 79, 87, 100, 123– 124, 126, 138, 155 linear, 68, 82, 100, 150, 191
skill score, 31, 36, 47	value
decomposition, 46, 52–54, 61–62,	ex ante/ex post, 79, 81-87, 89, 99- 100, 151
67	individual decision maker, 78–82,
small-scale errors, 10	88–89
state variable, 116, 129	market level, 82–87, 89–98, 125–
statistical forecasting, 1, 8, 10, 14–15	126, 131–133, 141
stochastic transformation, 55–56,	measures, 68, 80–82, 89, 192
185	see also case studies
subgrid scale, 10, 13	variable
sufficiency diagram, 56–57	binary, 42, 45
relation, 28, 34–35, 55–60, 63, 185,	dichotomous, 27, 36–37, 56–58, 64–65
189–190, 209, 211	nominal, 64
,	ordinal, 64
Thompson, P.D., 4, 11	polychotomous, 37, 64–65
transfer function, 98–99, 102–103	verification
turbulence, 9–11, 15	complexity, 25–26
type 1 conditional bias, see reliabil-	data sample, 21–23
ity	dimensionality, 26–29
type 2 conditional bias, 32	verification measures, 33–34
mean square error component, 52	screening, 33–37
precipitation forecasts, 52	von Neumann-Morgenstern utility function, 77, 84, see also utility
umbrella problem, 184, 191, see also cost-loss problem	function
uncertainty, 32–33, 194	well-calibrated forecasts, see reliability