APMA 1655 Chapter 2 Notes: Basics of Probability

Basic Terminology

- Sample space: collection of all possible outcomes denoted by Ω or S
- Event: any subset of sample space
- notions on events: $A \subseteq B$, $A \cap B = AB$; $A \cup B$ and \bar{A} ; events A and B are mutually exclusive or disjoint if $A \cap B = \emptyset$
- distributive laws: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$; $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Probability Axioms

- Let sample space be Ω; let P(A) denote the probability of event A
 - $-0 \le P(A) \le 1$ for every event $A \subseteq \Omega$
 - $-P(\Omega)=1$
 - if $A_1, A_2,...$ is a sequence of mutually exclusive events, then:

$$P(A_1 \cup A_2 \cup ...) = \sum_{i=1}^{\inf} P(A_i)$$

Method of Counting in Discrete Probability

- let sample space Ω have finitely many equally likely sample points
- P(A) =number of sample points in A/total number of sample points in Ω

Combinatorial Numbers

- factorial: $n! = n \times (n-1) \times ... \times 1$ with 0! = 1
- binomial coefficients:

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

for $0 \le k \le n$

• binomial expansion:

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$

Conditional Probability

• given that B happens, what is the probability if A happening?

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

• $P(A \cap B) = P(B)P(A|B) = P(A)P(B|A)$

Independence

• $\{A_1, ..., A_n\}$ are independent if any subcollection $\{A_{j1}, ..., A_{jk}\}$ satisfies:

$$P(A_{i1} \cap A_{i2}... \cap A_{ik}) = P(A_{i1})P(A_{i2})...P(A_{ik})$$

• A and B are independent if $P(A \cap B) = P(A)P(B)$

Law of Total Probability and Bayes' Rule

- tree image on Chapter 2 slide 17
- Let $\{B_1, ..., B_2, ..., B_n\}$ be a partition of sample space Ω , that is the B_i 's are disjoint and $\bigcap_{i=1}^n B_i = \Omega$
- Law of Total Probability: $P(A) = \sum_{i=1}^{n} P(A|B_i)P(B_i)$
- Bayes' Rule: $P(B_k|A) = \frac{P(A|B_k)P(B_k)}{\sum_{i=1}^n P(A|B_i)P(B_i)}$

Random Variables

- a function X: $\Omega \to \mathbb{R}$
- random vector: collection of random variables