第二章 线性规划

修贤超

https://xianchaoxiu.github.io

目录

- 2.1 线性规划问题及其数学模型
- 2.2 图解法
- 2.3 单纯形法原理
- 2.4 单纯形法计算步骤
- 2.5 单纯形法的进一步讨论
- 2.6 线性规划的对偶问题
- 2.7 对偶问题的基本性质

■ 某公司计划制造 I、II 两种家电产品。已知各制造一件时分别占用的设备 A、设备 B 的台时、调试工序时间及每天可用于这两种家电的能力、各售出一件时的获利情况

项目	产品 I	产品	每天可用能力
设备 A/h	0	5	15
设备 B/h	6	2	24
调试工序/h	1	1	5
利润/元	2	1	

■ 问该公司应制造两种家电各多少件,使获取的利润为最大

■ 设两种家电产量分别为 x_1, x_2 , 于是

$$\max z = 2x_1 + x_2$$
s.t.
$$\begin{cases} 5x_2 \le 15 \\ 6x_1 + 2x_2 \le 24 \\ x_1 + x_2 \le 5 \\ x_1, x_2 \ge 0 \end{cases}$$

- □ 决策变量: x₁, x₂
- \Box 目标函数: max $z = 2x_1 + x_2$
- 约束条件: $5x_2 \le 15$, $6x_1 + 2x_2 \le 24$, $x_1 + x_2 \le 5$, $x_1, x_2 \ge 0$

■ 某公司拟在下一年度的 1-4 月的 4 个月内租用仓库堆放物资。已知各月份所需仓库面积

月份	1	2	3	4
所需仓库面积 (100m²)	15	10	20	12

仓库租借费用随合同期限而定,合同期越长折扣越大。租借仓库的合同每月初都可办理,每份合同具体规定租用面积和期限

合同租借期限	1 个月	2 个月	3 个月	4 个月
合同期内的租费 $(\pi/100m^2)$	2800	4500	6000	7300

■ 试确定该公司签订租借合同的最优决策,使所付租借费用最小

- 设 x_{ij} 表示在第 i (i = 1, 2, 3, 4) 个月初签订的租借期为 j (j = 1, 2, 3, 4) 个月 的仓库面积的合同
 - 决策变量: x_{ij} (i, j = 1, 2, 3, 4)
 - □ 目标函数:

$$\min z = 2800(x_{11} + x_{21} + x_{31} + x_{41}) + 4500(x_{12} + x_{22} + x_{32} + x_{42}) + 6000(x_{13} + x_{23} + x_{33} + x_{43}) + 7300(x_{14} + x_{24} + x_{34} + x_{44})$$

□ 约束条件:

$$\begin{cases} x_{11} + x_{12} + x_{13} + x_{14} \ge 15 \\ x_{12} + x_{13} + x_{14} + x_{21} + x_{22} + x_{23} \ge 10 \\ x_{13} + x_{14} + x_{22} + x_{23} + x_{31} + x_{32} \ge 20 \\ x_{14} + x_{23} + x_{32} + x_{41} \ge 12 \\ x_{ij} \ge 0 \end{cases}$$

课堂练习1

■ 某工厂用三种原料 P_1 、原料 P_2 、原料 P_3 生产三种产品 Q_1 、产品 Q_2 、产品 Q_3 ,如表所示

单位产品所需原料数量	$ ight $ 产品 Q_1	产品 Q_2	产品 Q_3	原料可用量
原料 P_1 /公斤	2	3	0	1500
原料 P_2 /公斤	0	2	4	800
原料 $P_3/$ 公斤	3	2	5	2000
位产品的利润/千元	3	5	4	

■ 试制订总利润最大的生产计划

课堂练习1(答案)

- 设每天生产三种产品的数量,分别设为 x_1, x_2, x_3 ,于是
 - □ 决策变量: x₁, x₂, x₃
 - \Box 目标函数: max $z = 3x_1 + 5x_2 + 4x_3$
 - ② 约束条件: $2x_1 + 3x_2 \le 1500$, $2x_2 + 4x_3 \le 800$, $3x_1 + 2x_2 + 5x_3 \le 2000$ $x_1, x_2, x_3 > 0$
- 数学模型为

$$\max z = 3x_1 + 5x_2 + 4x_3$$
s.t.
$$\begin{cases} 2x_1 + 3x_2 \le 1500 \\ 2x_2 + 4x_3 \le 800 \\ 3x_1 + 2x_2 + 5x_3 \le 2000 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

■ 三要素: 决策变量, 目标函数, 约束条件

$$\max z = 3x_1 + 5x_2 + 4x_3$$
s.t.
$$\begin{cases} 2x_1 + 3x_2 \le 1500 \\ 2x_2 + 4x_3 \le 800 \\ 3x_1 + 2x_2 + 5x_3 \le 2000 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

- 。 决策变量的取值是连续的
- 目标函数是决策变量的线性函数
- 约束条件是含决策变量的线性等式或不等式

■ 一般形式

$$\max(\min) \ z = c_1 x_1 + c_2 x_2 + \dots + c_n x_n$$
s.t.
$$\begin{cases} a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n \le (=, \ge) b_1 \\ \dots \\ a_{m1} x_1 + a_{m2} x_2 + \dots + a_{mn} x_n \le (=, \ge) b_m \\ x_1, \dots, x_n \ge 0 \end{cases}$$

- □ x_j: 决策变量
- □ c_j: 价值系数
- □ bi: 资源量/右端项
- □ a_{ij}: 技术系数/工艺系数

■ 线性规划问题的数学模型

$$\max(\min) \ z = c_1 x_1 + c_2 x_2 + \dots + c_n x_n$$
s.t.
$$\begin{cases} a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n \le (=, \ge) b_1 \\ \dots \\ a_{m1} x_1 + a_{m2} x_2 + \dots + a_{mn} x_n \le (=, \ge) b_m \\ x_1, \dots, x_n \ge 0 \end{cases}$$

$$\downarrow \qquad \qquad \qquad \qquad \qquad \downarrow$$

$$\max(\min) \ z = \sum_{j=1}^n c_j x_j$$
s.t.
$$\begin{cases} \sum_{j=1}^n a_{ij} x_j \le (=, \ge) b_i \ (i = 1, \dots, m) \\ x_j \ge 0 \ (j = 1, \dots, n) \end{cases}$$

■ 记

$$\mathbf{C} = \begin{bmatrix} c_1 \dots c_n \end{bmatrix} \quad \mathbf{X} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \quad \mathbf{A} = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix} \quad \mathbf{b} = \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix}$$

■ 用向量和矩阵表示

$$\max(\min) z = \mathbf{CX}$$
s.t.
$$\begin{cases} \sum_{j=1}^{n} \mathbf{A}_{j} x_{j} \leq (=, \geq) \mathbf{b} \\ \mathbf{X} \geq 0 \end{cases}$$

$$\max(\min) \ z = \mathbf{CX}$$

s.t.
$$\begin{cases} \mathbf{AX} \le (=, \ge) \mathbf{b} \\ \mathbf{X} \ge 0 \end{cases}$$

■标准形式

max
$$z = \sum_{j=1}^{n} c_j x_j$$

s.t.
$$\begin{cases} \sum_{j=1}^{n} a_{ij} x_j = b_i \ (i = 1, \dots, m) \\ x_j \ge 0 \ (j = 1, \dots, n) \end{cases}$$

- ☑ 目标函数求最大值
- □ 所有约束条件均用等式表示
- □ 所有决策变量均取非负数
- □ 所有右端项常数均为非负数

非标准型转化为标准形式

■ 非标准型

$$\max z = 3x_1 + 5x_2 + 4x_3$$
s.t.
$$\begin{cases} 2x_1 + 3x_2 \le 1500 \\ 2x_2 + 4x_3 \le 800 \\ 3x_1 + 2x_2 + 5x_3 \le 2000 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

■基本思路

■ 第一步: 目标函数的转换

$$\min z = \sum_{j=1}^{n} c_j x_j \implies \max z' = -\sum_{j=1}^{n} c_j x_j$$

非标准型转化为标准形式

- 第二步: 约束条件的转换
 - □ 右端项常数的转换

$$\sum_{j=1}^{n} a_{ij} x_j = b_i, \ b_i < 0 \quad \Rightarrow \quad -\sum_{j=1}^{n} a_{ij} x_j = -b_i$$

□ 不等式的转换──引入松弛变量

$$\sum_{j=1}^{n} a_{ij} x_j \le b_i \quad \Rightarrow \quad \sum_{j=1}^{n} a_{ij} x_j + s_i = b_i, \ s_i \ge 0$$

□ 不等式的转换──引入剩余变量

$$\sum_{i=1}^{n} a_{ij} x_j \ge b_i \quad \Rightarrow \quad \sum_{i=1}^{n} a_{ij} x_j - \underline{s_i} = b_i, \ s_i \ge 0$$

非标准型转化为标准型

- 第三步: 决策变量的转换
 - □ 取值无约束的转化

$$x_k$$
取值无约束 \Rightarrow $x_k = x_k' - x_k'', x_k', x_k'' \ge 0$

□ 取值非正的转化

$$x_k \le 0 \quad \Rightarrow \quad x_k' = -x_k$$

这里 x'_k, x''_k 为任意非负数,不是导数

■ 请将下式转化为线性规划标准形式

min
$$z = x_1 + 2x_2 + 3x_3$$

s.t.
$$\begin{cases}
-2x_1 + x_2 + x_3 \le 9 \\
-3x_1 + x_2 + 2x_3 \ge 4 \\
4x_1 - 2x_2 - 3x_3 = -6 \\
x_1 \le 0, \ x_2 \ge 0, \ x_3$$
取值无约束

□ 第一步: 目标函数的转换

□ 第二步: 约束条件的转换

□ 第三步: 决策变量的转换

第一步: 目标函数的转换

max
$$z' = -x_1 - 2x_2 - 3x_3$$

s.t.
$$\begin{cases}
-2x_1 + x_2 + x_3 \le 9 \\
-3x_1 + x_2 + 2x_3 \ge 4 \\
4x_1 - 2x_2 - 3x_3 = -6 \\
x_1 \le 0, x_2 \ge 0, x_3$$
取值无约束

第二步: 约束条件的转换

■ 右端项常数的转换

max
$$z' = -x_1 - 2x_2 - 3x_3$$

s.t.
$$\begin{cases}
-2x_1 + x_2 + x_3 \le 9 \\
-3x_1 + x_2 + 2x_3 \ge 4 \\
-4x_1 + 2x_2 + 3x_3 = 6 \\
x_1 \le 0, \ x_2 \ge 0, \ x_3$$
取值无约束

■ 不等式的转换,松弛变量 x_4 ,剩余变量 x_5

max
$$z' = -x_1 - 2x_2 - 3x_3 + 0x_4 + 0x_5$$

s.t.
$$\begin{cases}
-2x_1 + x_2 + x_3 + x_4 = 9 \\
-3x_1 + x_2 + 2x_3 - x_5 = 4 \\
-4x_1 + 2x_2 + 3x_3 = 6 \\
x_1 \le 0, \ x_2, x_4, x_5 \ge 0, \ x_3$$
取值无约束

第三步: 决策变量的转换

$$\max z' = -x_1 - 2x_2 - 3x_3' + 3x_3'' + 0x_4 + 0x_5$$
s.t.
$$\begin{cases}
-2x_1 + x_2 + x_3' - x_3'' + x_4 = 9 \\
-3x_1 + x_2 + 2x_3' - 2x_3'' - x_5 = 4 \\
-4x_1 + 2x_2 + 3x_3' - 3x_3'' = 6 \\
x_1 \le 0, \ x_2, x_3', x_3'', x_4, x_5 \ge 0
\end{cases}$$

•
$$\diamondsuit$$
 $x_1' = -x_1$, 于是

$$\max z' = x_1' - 2x_2 - 3x_3' + 3x_3'' + 0x_4 + 0x_5$$

s.t.
$$\begin{cases} 2x'_1 + x_2 + x'_3 - x''_3 + x_4 = 9\\ 3x'_1 + x_2 + 2x'_3 - 2x''_3 - x_5 = 4\\ 4x'_1 + 2x_2 + 3x'_3 - 3x''_3 = 6\\ x'_1, x_2, x'_3, x''_3, x_4, x_5 \ge 0 \end{cases}$$

标准型

■标准型通常记为

$$\max z' = x_1' - 2x_2 - 3x_3' + 3x_3'' + 0x_4 + 0x_5$$
s.t.
$$\begin{cases} 2x_1' + x_2 + x_3' - x_3'' + x_4 = 9 \\ 3x_1' + x_2 + 2x_3' - 2x_3'' - x_5 = 4 \\ 4x_1' + 2x_2 + 3x_3' - 3x_3'' = 6 \\ x_1', x_2, x_3', x_3'', x_4, x_5 \ge 0 \end{cases}$$

$$\Longrightarrow z = x_1 - 2x_2 - 3x_3 + 3x_4$$
s.t.
$$\begin{cases} 2x_1 + x_2 + x_3 - x_4 + x_5 = 9 \\ 3x_1 + x_2 + 2x_3 - 2x_4 - x_6 = 4 \\ 4x_1 + 2x_2 + 3x_3 - 3x_4 = 6 \\ x_1, x_2, x_3, x_4, x_5, x_6 \ge 0 \end{cases}$$

课堂练习 2

■ 请将下式转化为线性规划标准形式

min
$$z = -x_1 + 2x_2 - 3x_3$$

s.t.
$$\begin{cases} x_1 + x_2 + x_3 \le 7 \\ x_1 - x_2 + x_3 \ge 2 \\ x_1, x_2 \ge 0, \ x_3$$
取值无约束

课堂练习2(答案)

■ 线性规划标准形式为

min
$$z = -x_1 + 2x_2 - 3x_3$$

s.t.
$$\begin{cases} x_1 + x_2 + x_3 \le 7 \\ x_1 - x_2 + x_3 \ge 2 \\ x_1, x_2 \ge 0, \ x_3$$
取值无约束

$$\Downarrow$$

$$\max z = x_1 - 2x_2 + 3x_3 - 3x_4$$
s.t.
$$\begin{cases} x_1 + x_2 + x_3 - x_4 + x_5 = 7 \\ x_1 - x_2 + x_3 - x_4 - x_6 = 2 \\ x_1, x_2, x_3, x_4, x_5, x_6 \ge 0 \end{cases}$$

小结

■ 线性规划问题的标准形式

max
$$z = \sum_{j=1}^{n} c_j x_j$$

s.t.
$$\begin{cases} \sum_{j=1}^{n} a_{ij} x_j = b_i \ (i = 1, \dots, m) \\ x_j \ge 0 \ (j = 1, \dots, n) \end{cases}$$

- 三要素: 决策变量, 目标函数, 约束条件
- 非标准型转化为标准形式

目标函数 ⇒ 约束条件 ⇒ 决策变量

■ 课后作业: P43, 习题 1.2

目录

- 2.1 线性规划问题及其数学模型
- 2.2 图解法
- 2.3 单纯形法原理
- 2.4 单纯形法计算步骤
- 2.5 单纯形法的进一步讨论
- 2.6 线性规划的对偶问题
- 2.7 对偶问题的基本性质

■标准形式

$$\max z = \sum_{j=1}^{n} c_j x_j$$
s.t.
$$\begin{cases} \sum_{j=1}^{n} a_{ij} x_j = b_i \ (i = 1, \dots, m) \\ x_j \ge 0 \ (j = 1, \dots, n) \end{cases}$$

- 满足约束条件的 x_j $(j = 1, \dots, n)$ 称为可行解
- 全部可行解的集合称为可行域
- 使目标函数达到最优的可行解称为<mark>最优解</mark>

适用范围

■ 只有两个变量的线性规划问题

max
$$z = c_1 x_1 + c_2 x_2$$

s.t.
$$\begin{cases} a_{i1} x_1 + a_{i2} x_2 = b_i \ (i = 1, \dots, m) \\ x_1 x_2 \ge 0 \end{cases}$$

■ 具体步骤

□ 第一步: 建立平面直角坐标系

□ 第二步: 图示约束条件, 找出可行域

□ 第三步: 图示目标函数

□ 第四步: 确定最优解

max
$$z = 2x_1 + 3x_2$$

s.t.
$$\begin{cases} x_1 + 2x_2 \le 8 \\ 4x_1 \le 16 \\ 4x_2 \le 12 \\ x_1, x_2 \ge 0 \end{cases}$$

- □ 决策变量: x₁, x₂
- \Box 目标函数: max $z = 2x_1 + 3x_2$

具体步骤

■ 第一步: 建立平面直角坐标系

■ 第二步: 图示约束条件, 找出可行域

$$\max z = 2x_1 + 3x_2$$
s.t.
$$\begin{cases} x_1 + 2x_2 \le 8 \\ 4x_1 \le 16 \\ 4x_2 \le 12 \\ x_1, x_2 \ge 0 \end{cases}$$

具体步骤

■ 第一步: 建立平面直角坐标系

■ 第二步: 图示约束条件, 找出可行域

■ 第三步: 图示目标函数 $\max z = 2x_1 + 3x_2$

■ 第四步: 确定最优解为 $x_1 = 4, x_2 = 2$, 最优值为 $z^* = 14$

无穷多最优解

■ 目标函数的直线族与约束条件平行

$$\max z = 2x_1 + 4x_2$$
s.t.
$$\begin{cases} x_1 + 2x_2 \le 8 \\ 4x_1 \le 16 \\ 4x_2 \le 12 \\ x_1, x_2 \ge 0 \end{cases}$$

无界解

■ 建立数学模型时遗漏了某些必要的资源约束条件

$$\max z = x_1 + x_2$$
s.t.
$$\begin{cases}
-2x_1 + x_2 \le 4 \\
x_1 - x_2 \le 2 \\
x_1, x_2 \ge 0
\end{cases}$$

无可行解

■ 当存在矛盾的约束条件时会出现无可行域

$$\max z = 2x_1 + 3x_2$$
 s.t.
$$\begin{cases} x_1 + x_2 \ge 10 \\ x_1 + 2x_2 \le 8 \\ 4x_1 \le 16 \\ 4x_2 \le 12 \\ x_1, x_2 \ge 0 \end{cases}$$

$$\max z = 4x_1 + 3x_2$$
s.t.
$$\begin{cases} 2x_1 + 3x_2 \le 6 \\ -3x_1 + 2x_2 \le 3 \\ 2x_1 + x_2 \le 4 \\ 2x_2 \le 5 \\ x_1, x_2 \ge 0 \end{cases}$$

课堂练习1

$$\max z = 2x_1 + 3x_2$$

s.t.
$$\begin{cases} 2x_1 + 2x_2 \le 14\\ 4x_1 \le 12\\ 3x_2 \le 15\\ x_1, x_2 \ge 0 \end{cases}$$

课堂练习1(答案)

$$\max z = 2x_1 + 3x_2$$
s.t.
$$\begin{cases} 2x_1 + 2x_2 \le 14 \\ 4x_1 \le 12 \\ 3x_2 \le 15 \\ x_1, x_2 \ge 0 \end{cases}$$

启示

- 若线性规划问题的可行域存在,则可行域是一个凸集
- 若线性规划问题的最优解存在,则最优解一定是凸集的某个顶点
- 解题思路
 - □ 先找出凸集的任一顶点,计算在顶点处的目标函数值
 - □ 比较周围相邻顶点的目标函数值是否比这个值大,如果为否,则该顶点就 是最优解的点,否则转到比这个点的目标函数值更大的另一顶点
 - □ 重复上述过程,一直到找出使目标函数值达到最大的顶点为止

小结

- 图解法仅求解两个变量的线性规划问题
- 解的存在性
 - □ 唯一解
 - 🛛 无穷多解
 - □ 无界解
 - □ 无解/无可行解
- 课后作业: P43, 习题 1.1

目录

- 2.1 线性规划问题及其数学模型
- 2.2 图解法
- 2.3 单纯形法原理
- 2.4 单纯形法计算步骤
- 2.5 单纯形法的进一步讨论
- 2.6 线性规划的对偶问题
- 2.7 对偶问题的基本性质

解的概念

■标准形式

$$(LP) \quad \max z = \sum_{j=1}^{n} c_j x_j \tag{1.1}$$

s.t.
$$\begin{cases} \sum_{j=1}^{n} a_{ij} x_j = b_i \ (i = 1, \dots, m) \\ x_j \ge 0 \ (j = 1, \dots, n) \end{cases}$$
 (1.2)

- \Box 满足约束条件 (1.2) 和 (1.3) 的 x_j ($j = 1, \dots, n$) 称为可行解
- ☑ 全部可行解的集合称为<mark>可行域</mark>
- □ 满足 (1.1) 的可行解称为最优解
- □最优解所对应的函数值称为最优值

解的概念

■ 设 A 为约束方程组 (1.2) 的 $m \times n$ (n > m) 阶系数矩阵, 其秩为 m, B 是矩阵 A 中的一个 $m \times m$ 阶的满秩子矩阵, 记为

$$\mathbf{B} = \left[egin{array}{ccc} a_{11} & \cdots & a_{1m} \ dots & & dots \ a_{m1} & \cdots & a_{mm} \end{array}
ight] = (\mathbf{P}_1, \cdots, \mathbf{P}_m)$$

- □ B 是线性规划问题 (LP) 的一个基
- □ B 中的每一个列向量 P_j $(j = 1, \dots, m)$ 称为基向量
- $oldsymbol{\square}$ 与基向量 \mathbf{P}_j 对应的变量 x_j 称为基变量,记为 $\mathbf{X}_B = (x_1, \cdots, x_m)^{\mathsf{T}}$
- forup 除基变量以外的变量称为非基变量,记为 ${f X}_N=(x_{m+1},\cdots,x_n)^{ op}$

■ 找出线性规划问题的基、基向量和基变量

$$\max z = 70x_1 + 120x_2$$
s.t.
$$\begin{cases} 9x_1 + 4x_2 + x_3 = 360 \\ 4x_1 + 5x_2 + x_4 = 200 \\ 3x_1 + 10x_2 + x_5 = 300 \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

■写出技术系数矩阵

$$\mathbf{A} = \left[\begin{array}{ccccc} 9 & 4 & 1 & 0 & 0 \\ 4 & 5 & 0 & 1 & 0 \\ 3 & 10 & 0 & 0 & 1 \end{array} \right]$$

■ 寻找阶为 *m* 的满秩子矩阵

$$\mathbf{B} = \left[egin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}
ight] = (\mathbf{P}_3, \mathbf{P}_4, \mathbf{P}_5)$$

基变量为 $\mathbf{X}_B = (x_3, x_4, x_5)^{\mathsf{T}}$,非基变量为 $\mathbf{X}_N = (x_1, x_2)^{\mathsf{T}}$

■写出技术系数矩阵

$$\mathbf{A} = \left[\begin{array}{ccccc} 9 & 4 & 1 & 0 & 0 \\ 4 & 5 & 0 & 1 & 0 \\ 3 & 10 & 0 & 0 & 1 \end{array} \right]$$

■ 另一个基为

$$\mathbf{B}' = \left[egin{array}{ccc} 4 & 0 & 0 \ 5 & 1 & 0 \ 10 & 0 & 1 \end{array}
ight] = (\mathbf{P}_2, \mathbf{P}_4, \mathbf{P}_5)$$

基变量为 $\mathbf{X}_B = (x_2, x_4, x_5)^{\mathsf{T}}$, 非基变量为 $\mathbf{X}_N = (x_1, x_3)^{\mathsf{T}}$

解的概念

■ 在 (1.2) 中,令所有非基变量 x_{m+1}, \dots, x_n 等于 0,则称

$$\mathbf{X} = (x_1, \cdots, x_m, 0, \cdots, 0)^{\top}$$

为线性规划问题 (LP) 的基解

- 满足变量非负约束条件 (1.3) 的基解称为基可行解
- 对应于基可行解的基称为可行基

▼ 求出全部基解,指出其中的基可行解,并确定最优解

$$\max z = 2x_1 + 3x_2 + x_3$$
s.t.
$$\begin{cases} x_1 + x_3 = 5 \\ x_1 + 2x_2 + x_4 = 10 \\ x_2 + x_5 = 4 \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

■ 写出技术系数矩阵

$$\mathbf{A} = \left[\begin{array}{rrrr} 1 & 0 & 1 & 0 & 0 \\ 1 & 2 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{array} \right]$$

■ 全部基解见下表

序号	x_1	x_2	x_3	x_4	x_5		基可行解
<u> </u>	0	0	5	10	4	5	\checkmark
2	0	4	5	2	0	17	\checkmark
3	5	0	0	5	4	10	\checkmark
4	0	5	5	0	-1	20	×
(5)	10	0	-5	0	4	15	×
6	5	2.5	0	0	0	1.5	\checkmark
(7)	5	4	0	-3	0	22	×
8	2	4	3	0	0	19	✓

■ 最优解为 $X = (2, 4, 3, 0, 0)^{\mathsf{T}}$, 最优值为 $z^* = 19$

凸集

■ 对于任意两点 $X_1, X_2 \in \Omega$, 满足下式的集合 Ω 称为凸集

$$\alpha \mathbf{X}_1 + (1 - \alpha)\mathbf{X}_2 \in \Omega \quad (0 < \alpha < 1)$$

■ 对于凸集 Ω 中的点 X, 如果不存在 X_1 , $X_2 \in \Omega$ 使得

$$\mathbf{X} = \alpha \mathbf{X}_1 + (1 - \alpha) \mathbf{X}_2 \in \Omega \quad (0 < \alpha < 1)$$

则称 X 是凸集 Ω 的顶点 (极点)

■ 定理 1 若线性规划问题存在可行解,则可行域是凸集

证明 记 Ω 为满足线性规划问题束条件的集合

$$\sum_{j=1}^{n} \mathbf{P}_{j} x_{j} = \mathbf{b}, \ \mathbf{x}_{j} \ge \mathbf{0} \quad (j = 1, \cdots, n)$$

设 Ω 内的任意两点为

$$\mathbf{X}_1 = (x_{11}, \cdots, x_{1n})^{\top}, \ \mathbf{X}_2 = (x_{21}, \cdots, x_{2n})^{\top}$$

且 $X_1 \neq X_2$, 一定满足

$$\sum_{j=1}^{n} \mathbf{P}_{j} x_{1j} = \mathbf{b}, \ x_{1j} \ge 0 \quad (j = 1, \dots, n)$$
$$\sum_{j=1}^{n} \mathbf{P}_{j} x_{2j} = \mathbf{b}, \ x_{2j} \ge 0 \quad (j = 1, \dots, n)$$

证明 (续) 令 $\mathbf{X} = (x_1, \cdots, x_n)^{\mathsf{T}}$ 为 \mathbf{X}_1 , \mathbf{X}_2 连线上任意一点,即

$$\mathbf{X} = \alpha \mathbf{X}_1 + (1 - \alpha) \mathbf{X}_2 \quad (0 < \alpha < 1)$$

其中 $x_j = \alpha x_{1j} + (1 - \alpha) x_{2j}$

于是

$$\sum_{j=1}^{n} \mathbf{P}_{j} x_{j} = \sum_{j=1}^{n} \mathbf{P}_{j} \left(\alpha x_{1j} + (1 - \alpha) x_{2j} \right)$$

$$= \alpha \sum_{j=1}^{n} \mathbf{P}_{j} x_{1j} + \sum_{j=1}^{n} \mathbf{P}_{j} x_{2j} - \alpha \sum_{j=1}^{n} \mathbf{P}_{j} x_{2j}$$

$$= \alpha \mathbf{b} + \mathbf{b} - \alpha \mathbf{b}$$

$$= \mathbf{b}$$

考虑 $x_{1j}, x_{2j} \ge 0$, $\alpha > 0$, $1 - \alpha > 0$, 可知 $x_j \ge 0$ $(j = 1, \dots, n)$, 证毕

■ 引理 线性规划问题的可行解 $\mathbf{X} = (x_1, x_2, \dots, x_n)^{\top}$ 为基可行解的充要条件 是 \mathbf{X} 的正分量所对应的系数列向量是线性独立的

证明 (必要性) 由基可行解的定义可知

在 (1.2) 中,令所有非基变量 x_{m+1}, \cdots, x_n 等于 0,则称

$$\mathbf{X} = (x_1, \cdots, x_m, 0, \cdots, 0)^{\top}$$

为线性规划问题的基解,满足变量非负约束条件 (1.3) 的基解称为基可行解

证明(续) (充分性) 若向量 $\mathbf{P}_1, \mathbf{P}_2, \cdots, \mathbf{P}_k$ 线性独立,则必有 $k \leq m$

(1) 当 k=m 时, $\mathbf{P}_1,\mathbf{P}_2,\cdots,\mathbf{P}_k$ 恰构成一个基,从而

$$\mathbf{X} = (x_1, x_2, \cdots, x_m, 0, \cdots, 0)^{\top}$$

为相应的基可行解

(2) 当 k < m 时,则可以从其余的列向量中取出 m - k 个与 $\mathbf{P}_1, \mathbf{P}_2, \cdots, \mathbf{P}_k$ 构成最大的线性独立向量组,其对应的解恰为 \mathbf{X} ,根据定义它是基可行解

- 定理 2 线性规划问题的基可行解 X 对应线性规划问题可行域 (凸集) 的顶点
- 定理 3 若线性规划问题有最优解,那么一定存在一个基可行解是最优解
- 定理 4 可行域有界,目标函数最优值必可在顶点得到

课堂练习1

■ 试证明定理 3, 即

若线性规划问题有最优解, 那么一定存在一个基可行解是最优解

课堂练习1(答案)

证明 设 $\mathbf{X}^{(0)} = (x_1^0, x_2^0, \cdots, x_n^0)^{\mathsf{T}}$ 是线性规划问题的一个最优解,那么

$$\mathbf{Z} = \mathbf{C}\mathbf{X}^{(0)} = \sum_{j=1}^{n} c_j x_j^0$$

是目标函数的最大值

若 $\mathbf{X}^{(0)}$ 不是基可行解,由定理 2 知 $\mathbf{X}^{(0)}$ 不是顶点,一定能在可行域内找到通过 $\mathbf{X}^{(0)}$ 的直线上的另外两个点

$$(\mathbf{X}^{(0)} + \mu \delta) \ge 0 \quad \text{fl} \quad (\mathbf{X}^{(0)} - \mu \delta) \ge 0$$

将这两个点带入目标函数有

$$\mathbf{C}(\mathbf{X}^{(0)} + \mu\delta) = \mathbf{C}\mathbf{X}^{(0)} + \mathbf{C}\mu\delta$$
$$\mathbf{C}(\mathbf{X}^{(0)} - \mu\delta) = \mathbf{C}\mathbf{X}^{(0)} - \mathbf{C}\mu\delta$$

课堂练习1(答案)

证明(续) 因 $\mathbf{C}\mathbf{X}^{(0)}$ 为目标函数的最大值,故有

$$\mathbf{C}\mathbf{X}^{(0)} \ge \mathbf{C}\mathbf{X}^{(0)} + \mathbf{C}\mu\delta$$
$$\mathbf{C}\mathbf{X}^{(0)} \ge \mathbf{C}\mathbf{X}^{(0)} - \mathbf{C}\mu\delta$$

由此 $C\mu\delta = 0$, 即有

$$\mathbf{C}(\mathbf{X}^{(0)} + \mu \delta) = \mathbf{C}\mathbf{X}^{(0)} = \mathbf{C}(\mathbf{X}^{(0)} - \mu \delta)$$

如果 $(\mathbf{X}^{(0)} + \mu \delta)$ 或 $(\mathbf{X}^{(0)} - \mu \delta)$ 仍不是基可行解,按照上面的方法继续做下去,最终一定可以找到一个基可行解,其目标函数值等于 $\mathbf{C}\mathbf{X}^{(0)}$,证毕

小结

- 解的概念
 - □ 可行解, 可行域, 最优解
 - □ 基, 基解, 基可行解, 可行基
 - □ 凸集, 顶点
- 解的性质
 - □ 所有可行解构成的集合是凸集
 - □ 每个基可行解对应可行域的一个顶点
 - □ 若有最优解,则必在顶点上得到
- 课后作业: P44, 习题 1.3

目录

- 2.1 线性规划问题及其数学模型
- 2.2 图解法
- 2.3 单纯形法原理
- 2.4 单纯形法计算步骤
- 2.5 单纯形法的进一步讨论
- 2.6 线性规划的对偶问题
- 2.7 对偶问题的基本性质

单纯形法原理

- 先找出一个基可行解,判断其是否为最优解,如果否,则转换到相邻的基可 行解,并使目标函数值不断增大,一直找到最优解为止
- 迭代步骤
 - □ 第一步: 求初始基可行解, 列出初始单纯形表
 - □ 第二步: 最优性检验
 - 第三步: 从一个基可行解转换到相邻的目标函数值更大的基可行解,列出新的单纯形表
 - □ 第四步: 重复二、三步, 一直到计算结束为止
- 单纯形表: 为检验一个基可行解是否最优,需要将其目标函数值与相邻基可 行解的目标函数值进行比较

■ 考虑线性规划问题

$$\max z = c_1 x_1 + c_2 x_2 + \dots + c_n x_n$$
s.t.
$$\begin{cases} x_1 + a_{1,m+1} x_{m+1} + \dots + a_{1,n} x_n = b_1 \\ x_2 + a_{2,m+1} x_{m+1} + \dots + a_{2,n} x_n = b_2 \\ \dots \\ x_m + a_{m,m+1} x_{m+1} + \dots + a_{m,n} x_n = b_m \\ x_1, \dots, x_n \ge 0 \end{cases}$$

■ 系数矩阵的增广矩阵

$$A = \begin{bmatrix} 1 & 0 & \cdots & 0 & a_{1,m+1} & \cdots & a_{1,n} & b_1 \\ 0 & 1 & \cdots & 0 & a_{2,m+1} & \cdots & a_{2,n} & b_2 \\ \vdots & \vdots & & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & a_{m,m+1} & \cdots & a_{m,n} & b_m \end{bmatrix}$$

■ 选取 $m \times m$ 的单位矩阵作为可行基,得到初始单纯形表

	$c_j \rightarrow$		c_1		c_m		c_{j}		c_n
	\mathbf{X}_{B}								•
c_1	x_1	b_1	1		0		a_{1j}		a_{1n}
c_2	x_2	b_2	0		0	• • •	a_{2j}		a_{2n}
:	:	:	:				:		
c_m	$\begin{array}{c c} x_1 \\ x_2 \\ \vdots \\ x_m \end{array}$	b_m	0	• • •	1	• • •	a_{mj}		a_{mn}
	$z_j - z_j$								

■ 检验数
$$\sigma_j = c_j - z_j = c_j - \sum_{i=1}^m c_i a_{ij}$$

■ 例 1

max
$$z = 2x_1 + x_2$$

s.t.
$$\begin{cases} 5x_2 \le 15 \\ 6x_1 + 2x_2 \le 24 \\ x_1 + x_2 \le 5 \\ x_1, x_2 \ge 0 \end{cases}$$

■标准化

$$\max z = 2x_1 + x_2$$
s.t.
$$\begin{cases} 5x_2 + x_3 = 15 \\ 6x_1 + 2x_2 + x_4 = 24 \\ x_1 + x_2 + x_5 = 5 \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

■ 系数矩阵

$$A = \begin{bmatrix} 0 & 5 & 1 & 0 & 0 \\ 6 & 2 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

■列出初始单纯形表

	$c_j \rightarrow$		2	1	0	0	0
\mathbf{C}_B	\mathbf{X}_{B}	b	$ x_1 $	$ x_2 $	$ x_3 $	x_4	$ x_5 $
0	x_3	15	0	5	1	0	0
0	x_4	24	6	2	0	1	0
0	$\begin{array}{c c} x_3 \\ x_4 \\ x_5 \end{array}$	5	1	1	0	0	1
C	2	1	0	0	0		

第二步: 最优性检验

■ 如果所有检验数

$$\sigma_j = c_j - \sum_{i=1}^m c_i a_{ij} \le 0$$

且基变量中不含有人工变量,则停止,得到最优解

■如果存在

$$\sigma_j = c_j - \sum_{i=1}^m c_i a_{ij} > 0$$

且有 $P_j \leq 0$,则停止迭代,问题为无界解

■ 否则转三步

第二步: 最优性检验

	$c_j \rightarrow$		2	1	0	0	0
\mathbf{C}_B	\mathbf{X}_{B}	b	$ x_1 $	$ x_2 $	$ x_3 $	x_4	$ x_5 $
0	$\begin{array}{c c} x_3 \\ x_4 \\ x_5 \end{array}$	15	0	5	1	0	0
0	x_4	24	6	2	0	1	0
0	x_5	5	1	1	0	0	1
C	$z_j - z_j$	2	1	0	0	0	

- 检验数 $\sigma_i > 0$,因此初始基可行解不是最优解
- 按照单纯形法转第三步

第三步: 基可行解转化

- 从一个基可行解转换到相邻的目标函数更大的基可行解, 列出新的单纯形表
 - \square 确定换入变量 x_k (最大增加原则)

$$\sigma_k = \max_j \ \{ \sigma_j \mid \sigma_j > 0 \}$$

□ 确定换出变量 x₁ (最小比值原则)

$$\theta = \min_{i} \left\{ \frac{b_i}{a_{ik}} \mid \frac{a_{ik}}{a_{ik}} > 0 \right\} = \frac{b_l}{a_{lk}}$$

确定 x_l 为换出变量, a_{lk} 为主元素

第三步: 基可行解转化

■ 用换入变量 x_k 替换基变量中的换出变量 x_l , 得到一个新的基

$$(\mathbf{P}_1,\ldots,\mathbf{P}_{l-1},\mathbf{P}_k,\mathbf{P}_{l+1},\ldots,\mathbf{P}_m)$$

进行初等变换

$$\mathbf{P}_k = egin{bmatrix} a_{1,k} \ a_{2,k} \ dots \ a_{l,k} \ dots \ a_{m,k} \end{bmatrix}$$
 高斯消元 $\mathbf{P}_l = egin{bmatrix} 0 \ 0 \ dots \ 1 \ dots \ 0 \end{bmatrix}$

第三步: 基可行解转化

	$c_j \rightarrow$		2	1	0	0	0
\mathbf{C}_{B}	\mathbf{X}_{B}	b	$ x_1 $	x_2	$ x_3 $	$ x_4 $	x_5
0	$\begin{array}{c c} x_3 \\ \underline{x_4} \\ x_5 \end{array}$	15	0	5	1	0	0
0	x_4	24	[6]	2	0	1	0
0	$\overline{x_5}$	5	1	1	0	0	1
C	$z_j - z_j$		2	1	0	0	0

- \square 因 $\sigma_1 > \sigma_2$, 确定 x_1 为换入变量
- $\Theta = \min\left\{\infty, \frac{24}{6}, \frac{5}{1}\right\} = 4$, 确定 6 为主元素
- □ x₄ 为换出变量

第四步: 重复二、三步

	$c_j \rightarrow$		2	1	0	0	0
\mathbf{C}_{B}	\mathbf{X}_{B}	b	$ x_1 $	$\underline{x_2}$	x_3	$ x_4 $	x_5
0	x_3	15	0	5	1	0	0
2	x_1	4	1	2/6	0	1/6	0
0	$\underline{x_5}$	1	0	[4/6]	0	$\begin{vmatrix} 0\\1/6\\-1/6\end{vmatrix}$	1
С	$z_j - z_j$		0	1/3	0	-1/3	0

- \Box 因 $\sigma_2 > 0$, 确定 x_2 为换入变量
- □ x₅ 为换出变量

第四步: 重复二、三步

	$c_j \rightarrow$		2	1	0	0	0
\mathbf{C}_{B}	\mathbf{X}_{B}	b	$ x_1 $	x_2	$ x_3 $	$ x_4 $	x_5
0	x_3	15/2	0	0	1	5/4	-15/2
2	x_1	7/2	1	0	0	1/4	-1/2
1	x_2	3/2	0	1	0	$ \begin{vmatrix} 5/4 \\ 1/4 \\ -1/4 \end{vmatrix} $	3/2
	$c_j - z$	Źj	0	0	0	-1/4	-1.2

- \Box 所有检验数 $\sigma_i \leq 0$, 得到最优解 $\mathbf{X} = (7/2, 3/2, 15/2, 0, 0)^{\top}$
- 代入目标函数得最优值 $z^* = 2x_1 + x_2 = 17/2$

■ 用单纯形法求解线性规划问题

max
$$z = 2x_1 + 3x_2$$

s.t.
$$\begin{cases} x_1 + 2x_2 \le 8 \\ 4x_1 \le 16 \\ 4x_2 \le 12 \\ x_1, x_2 \ge 0 \end{cases}$$

■标准化

$$\max z = 2x_1 + 3x_2 + 0x_3 + 0x_4 + 0x_5$$
s.t.
$$\begin{cases} x_1 + 2x_2 + x_3 = 8 \\ 4x_1 + x_4 = 16 \\ 4x_2 + x_5 = 12 \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

■ 第一步: 求初始基可行解, 列出初始单纯形表

	$c_j \rightarrow$		2	3	0	0	0
\mathbf{C}_{B}	$ \mathbf{X}_{B} $	b	$ x_1 $	$ x_2 $	$ x_3 $	x_4	$ x_5 $
0	$\begin{array}{c c} x_3 \\ x_4 \\ x_5 \end{array}$	8	1	2	1	0	0
0	x_4	16	4	0	0	1	0
0	x_5	12	0	4	0	0	1
С	$z_j - z_j$	2	3	0	0	0	

■ 第二步: 检验数大于零, 因此初始基可行解不是最优解

■ 第三步: 基可行解的转换

	$c_j \rightarrow$		2	3	0	0	0
\mathbf{C}_{B}	$ \mathbf{X}_{B} $	b	$ x_1 $	$\underline{x_2}$	x_3	$ x_4 $	$ x_5 $
0	x_3 x_4 x_5	8	1	2	1	0	0
0	x_4	16	4	0	0	1	0
0	$\underline{x_5}$	12	0	[4]	0	0	1
c	$z_j - z_j$		2	3	0	0	0

- \square 因 $\sigma_2 > \sigma_1$, 确定 x_2 为换入变量
- $m{\Box}$ $\theta = \min\left\{rac{8}{2}, \infty, rac{12}{4}
 ight\} = 3$, 确定 4 为主元素
- □ x₅ 为换出变量

■具体过程

■ 第四步: 重复二、三步

	$c_j \rightarrow$		2	3	0	0	0
\mathbf{C}_{B}	$\mid \mathbf{X}_B \mid$	b	$\underline{x_1}$	$ x_2 $	$ x_3 $	x_4	x_5
0	x_3	2	[1]	0	1	0	$ \begin{array}{c c} -1/2 \\ 0 \\ 1/4 \end{array} $
0	$\overline{x_4}$	16	4	0	0	1	0
3	x_2	3	0	1	0	0	1/4
C	$z_j - z_j$		2	0	0	0	-3/4

- \Box 因 $\sigma_1 > 0$, 确定 x_1 为换入变量
- $m{\theta} = \min\left\{ rac{2}{1}, rac{16}{4}, \infty
 ight\} = 2$, 确定 1 为主元素
- □ x₃ 为换出变量

■ 具体过程

■ 第四步: 重复二、三步

- \Box 因 $\sigma_5 > 0$, 确定 x_5 为换入变量
- $\theta = \min\left\{-, \frac{8}{2}, \frac{3}{1/4}\right\} = 4$, 确定 2 为主元素 (为什么不能选 -1/2 ?)
- □ x₄ 为换出变量

■ 具体过程

■ 第四步: 重复二、三步

($c_j \rightarrow$		2	3	0	0	0
\mathbf{C}_{B}	\mathbf{X}_{B}	$\mid \mathbf{b} \mid$	x_1	$ x_2 $	x_3	$ x_4$	$\underline{x_5}$
2	x_1	4	1	0	0	1/4	0
0	x_5	4	0	0	$0 \\ -2 \\ 1/2$	$\begin{array}{ c c }\hline 1/4\\1/2\\\end{array}$	1
3	x_2	2	0	1	1/2	-1/8	
$c_{:}$	$j-z_j$		0	0	-3/2	-1/8	0

- \Box 所有检验数 $\sigma_i \leq 0$, 得到最优解
- \Box 最优值 $z^* = 2x_1 + 3x_2 = 14$

课堂练习1

■ 用单纯形法求解线性规划问题

max
$$z = 50x_1 + 100x_2$$

s.t.
$$\begin{cases} x_1 + x_2 \le 300 \\ 2x_1 + x_2 \le 400 \\ x_2 \le 250 \\ x_1, x_2 \ge 0 \end{cases}$$

课堂练习1(答案)

■ 经过分析得到

	$c_j \rightarrow$		50	100	0	0	0
\mathbf{C}_{B}	$ \mathbf{X}_{B} $	b	$ x_1 $	$ x_2 $	$ x_3 $	$ x_4 $	$ \underline{x_5} $
50	$ x_1 $	50	1	0 0	1	0	-1
0	x_4	50	0	0	$\begin{array}{ c c } & 1 \\ -2 \\ & 0 \end{array}$	1	1
100	x_2	250	0	1	0	0	1
($z_j - z_j$	j	0	0	-50	0	-50

- 所有检验数 $\sigma_i \leq 0$, 得到唯一最优解
- **最优解** $X = (50, 250, 0, 50, 0)^{\top}$
- **最优值** $z^* = 50x_1 + 100x_2 = 27500$

小结

- ■单纯形表
- 检验数
- 计算步骤
 - □ 第一步: 列出初始单纯形表
 - □ 第二步: 最优性检验
 - □ 第三步: 基可行解转化
 - □ 第四步: 重复二、三步, 一直到计算结束为止

目录

- 2.1 线性规划问题及其数学模型
- 2.2 图解法
- 2.3 单纯形法原理
- 2.4 单纯形法计算步骤
- 2.5 单纯形法的进一步讨论
- 2.6 线性规划的对偶问题
- 2.7 对偶问题的基本性质

人工变量法

考虑求解线性规划问题

$$\max z = -3x_1 + x_3$$
s.t.
$$\begin{cases} x_1 + x_2 + x_3 \le 4 \\ -2x_1 + x_2 - x_3 \ge 1 \\ 3x_2 + x_3 = 9 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\max z = -3x_1 + x_3 + 0x_4 + 0x_5$$
s.t.
$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 4 \\ -2x_1 + x_2 - x_3 - x_5 = 1 \\ 3x_2 + x_3 = 9 \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

大M法

■ 添加人工变量 x₆, x₇

$$\max z = -3x_1 + x_3 + 0x_4 + 0x_5$$
s.t.
$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 4 \\ -2x_1 + x_2 - x_3 - x_5 = 1 \\ 3x_2 + x_3 = 9 \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

$$\Longrightarrow z = -3x_1 + x_3 + 0x_4 + 0x_5 - Mx_6 - Mx_7$$
s.t.
$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 4 \\ -2x_1 + x_2 - x_3 - x_5 + x_6 = 1 \\ 3x_2 + x_3 + x_7 = 9 \\ x_1, x_2, x_3, x_4, x_5, x_6, x_7 \ge 0 \end{cases}$$

大 M 法

■用单纯形法求解

$c_j \rightarrow$		-3	0	1	0	0	-M	-M
$\mathbf{C}_B \mid \mathbf{X}_B$	\mathbf{b}	x_1	x_2	x_3	$ x_4 $	x_5	$ x_6 $	x_7
$0 \mid x_4$	4	1	1	1	1	0	0	0
$-M \mid x_6$	1	-2	[1]	-1	0	-1	1	0
$-M \mid x_7$	9	0	3	1	0	0	0	1
$c_j - z_j$		-3-2M	4M	1	0	-M	0	0
$0 \mid x_4$	3	3	0	2	1	1	-1	0
$0 x_2$	1	-2	1	-1	0	-1	1	0
$-M \mid x_7$	6	[6]	0	4	0	3	-3	1
$c_j - z_j$		-3 + 6M	0	1+4M	0	3M	-4M	0

大 M 法

■ 用单纯形法求解 (续)

$c_j \rightarrow$		-3	0	1	0	0	-M	-M
$\mathbf{C}_B \mid \mathbf{X}_B \mid$	\mathbf{b}	x_1	x_2	x_3	$ x_4 $	x_5	x_6	x_7
$\begin{bmatrix} 0 & x_4 \\ 0 & x_2 \end{bmatrix}$	$\begin{array}{c} 0 \\ 3 \end{array}$	0	$\begin{vmatrix} 0 \\ 1 \end{vmatrix}$	0 1/3	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	$\begin{array}{ c c } -1/2 \\ 0 \end{array}$	-1/2	1/2 1/3
$-3 \mid x_1 \mid$	1	1	0	[2/3]	0	1/2	-1/2	1/6
$c_j - z_j$		0	0	3	0	3/2	-3/2 - M	1/2 - M
$0 \mid x_4 \mid$	0	0	0	0	1	-1/2	1/2	-1/2
$0 \mid x_2 \mid$	5/2	-1/2	1	0	0	-1/4	1/4	1/4
$1 \mid x_3 \mid$	3/2	3/2	0	1	0	3/4	-3/4	1/4
$c_j - z_j$		-9/2	0	0	0	-3/4	3/4 - M	-1/4 - M

■ 用大 M 法求解线性规划问题

$$\max z = 6x_1 + 4x_2$$
s.t.
$$\begin{cases} 2x_1 + 3x_2 \le 100 \\ 4x_1 + 2x_2 \le 120 \\ x_1 = 14 \\ x_2 \ge 22 \\ x_1, x_2 \ge 0 \end{cases}$$

■ 标准化,增加人工变量

$$\max z = 6x_1 + 4x_2 + 0x_3 + 0x_4 + 0x_5 - Mx_6 - Mx_7$$
s.t.
$$\begin{cases} 2x_1 + 3x_2 + x_3 = 100 \\ 4x_1 + 2x_2 + x_4 = 120 \\ x_1 + x_6 = 14 \\ x_2 - x_5 + x_7 = 22 \\ x_1, x_2, x_3, x_4, x_5, x_6, x_7 \ge 0 \end{cases}$$

■用单纯形法求解

c_j -	>	6	4	0	0	0	-M	-M
$\mathbf{C}_B \mid \mathbf{X}_B$	$_{3}\mid \mathbf{b}$	$ x_1 $	x_2	x_3	$ x_4 $	$ x_5 $	$ x_6 $	$ x_7 $
$0 \mid x_3$	100	2	3	1	0	0	0	0
$0 \mid x_4$	120	4	2	0	1	0	0	0
$-M \mid x_{\epsilon}$	14	[1]	0	0	0	0	1	0
$-M \mid x_7$	22	0	1	0	0	-1	0	1
c_j –	z_j	M+6	M+4	0	0	-M	0	0
$0 \mid x_3$	72	0	3	1	0	0	-2	0
$\begin{array}{c c} \hline 0 & x_3 \\ \hline 0 & x_4 \end{array}$	0.4	0	$\frac{3}{2}$	1 0	$\begin{vmatrix} 0 \\ 1 \end{vmatrix}$	0 0	$\begin{vmatrix} -2 \\ -4 \end{vmatrix}$	0 0
	0.4	0 0 1		_	$\begin{bmatrix} 0\\1\\0 \end{bmatrix}$			0 0
$0 x_4$	64	0 0 1 0	2	0	1	0		0 0 0 1

■ 用单纯形法求解 (续)

	$c_j \rightarrow$		6	4	0	0	0	-M	-M
\mathbf{C}_{B}	$ \mathbf{X}_{B} $	b	$ x_1 $	$ x_2 $	x_3	$ x_4 $	x_5	$ x_6 $	$ x_7 $
0	x_3	6	0	0	1	0	[3]	-2	-3
0	x_4	20	0	0	0	1	2	-4	-2
6	x_1	14	1	0	0	0	0	1	0
4	x_2	22	0	1	0	0	-1	0	1
($z_j - z_j$		0	0	0	0	4	-6-M	-4-M
0	x_5	2	0	0	1/3	0	1	-2/3	-1
0	x_4	16	0	0	-2/3	1	0	-8/3	0
6	x_1	14	1	0	0	0	0	1	0
4	x_2	24	0	1	1/3	0	0	-2/3	0
($z_j - z_j$		0	0	-4/3	0	0	-10/3 - M	-M

两阶段法

■ 对于标准形式线性规划问题

max
$$z = \sum_{j=1}^{n} c_j x_j$$

s.t.
$$\begin{cases} \sum_{j=1}^{n} a_{ij} x_j = b_i \ (i = 1, \dots, m) \\ x_j \ge 0 \ (j = 1, \dots, n) \end{cases}$$

■ 引入辅助问题

min
$$w = \sum_{i=1}^{m} y_i$$

s.t.
$$\begin{cases} \sum_{j=1}^{n} a_{ij} x_j + y_i = b_i \ (i = 1, \dots, m) \\ x_j, y_i \ge 0 \ (i = 1, \dots, m, j = 1, \dots, n) \end{cases}$$

两阶段法

■ 第一阶段: 采用单纯形法求解, 求解辅助问题

当人工变量取值为 0 时, 目标函数值也为 0。这时候的最优解就是原线性规划问题的一个基可行解。如果第一阶段求解结果最优解的目标函数值不为 0, 也即最优解的基变量中含有非零的人工变量, 表明原线性规划问题无可行解

■ 第二阶段: 在第一阶段已求得原问题的一个初始基可行解的基础上, 再求原问题的最优解

对第一阶段的最优单纯形表稍加改动,首先把第一行的价值向量替换成原问题的价值向量,人工变量全部从表中去掉,然后继续用单纯形法计算

■ 原问题有可行解时,辅助问题最优值为 0

■ 求解线性规划问题

$$\max z = -3x_1 + x_3$$
s.t.
$$\begin{cases} x_1 + x_2 + x_3 \le 4 \\ -2x_1 + x_2 - x_3 \ge 1 \\ 3x_2 + x_3 = 9 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

■ 大 M 法

$$\max z = -3x_1 + x_3 + 0x_4 + 0x_5 - Mx_6 - Mx_7$$
s.t.
$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 4 \\ -2x_1 + x_2 - x_3 - x_5 + x_6 = 1 \\ 3x_2 + x_3 + x_7 = 9 \\ x_1, x_2, x_3, x_4, x_5, x_6, x_7 \ge 0 \end{cases}$$

■ 第一阶段

min
$$w = x_6 + x_7 \text{ (max } w' = -x_6 - x_7)$$

s.t.
$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 4 \\ -2x_1 + x_2 - x_3 - x_5 + x_6 = 1 \\ 3x_2 + x_3 + x_7 = 9 \\ x_1, x_2, x_3, x_4, x_5, x_6, x_7 \ge 0 \end{cases}$$

■ 第二阶段

$$\max z = -3x_1 + 0x_2 + x_3 + 0x_4 + 0x_5$$
s.t.
$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 4 \\ -2x_1 + x_2 - x_3 - x_5 = 1 \\ 3x_2 + x_3 = 9 \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

■ 第一阶段

	$c_j \to$		0	0	0	0	0	-1	-1
\mathbf{C}_{B}	\mathbf{X}_{B}	b	$ x_1 $	x_2	$ x_3 $	$ x_4 $	x_5	x_6	x_7
0	x_4	4	1	1	1	1	0	0	0
-1	x_6	1	-2	[1]	-1	0	-1	1	0
-1	x_7	9	0	3	1	0	0	0	1
c_{i}	$j-z_j$		-2	4	0	0	-1	0	0
0	x_4	3	3	0	2	1	1	-1	0
0	x_2	1	-2	1	-1	0	-1	1	0
-1	x_7	6	[6]	0	4	0	3	-3	1
c_{\cdot}	$j-z_j$		6	0	4	0	3	-4	0
0	x_4	0	0	0	0	1	-1/2	1/2	-1/2
0	x_2	3	0	1	1/3	0	0	0	1/3
0	x_1	1	1	0	2/3	0	1/2	-1/2	1/6
c_{\cdot}	$j-z_j$		0	0	0	0	0	-1	-1

■ 第二阶段

	$c_j \rightarrow$		-3	0	1	0	0
\mathbf{C}_{B}	\mathbf{X}_{B}	b	$ x_1$	$ x_2 $	x_3	x_4	$ x_5 $
0	x_4	0	0	0	0	1	-1/2
0	x_2	3	0	1	1/3	0	0
-3	x_1	1	1	0	[2/3]	0	1/2
	$c_j - z_j$	j	0	0	3	0	3/2
0	x_4	0	0	0	0	1	-1/2
0	x_2	5/2	-1/2	1	0	0	-1/4
_ 1	x_3	3/2	3/2	0	1	0	3/4
	$c_j - z_j$	i	-9/2	0	0	0	-3/4

单纯形法计算中的几个问题

- 当所有 $\sigma_j \leq 0$,且<mark>某个非基变量的检验数为 0</mark> 时,那么线性规划问题有无穷 多最优解(见例 3)
- 当结果出现所有 $\sigma_j \leq 0$ 时, 如基变量中仍含有非零的人工变量(两阶段法求解时第一阶段目标函数值不等于零), 表明问题无可行解(见例 4)
- $lue{}$ 当目标函数求极小化时,解的判别以 $\sigma_j \geq 0$ 作为判别最优解的标准(见例 5)

例 3: 无穷多解

考虑求解线性规划问题

$$\max z = x_1 + 2x_2$$
s.t.
$$\begin{cases} x_1 \le 4 \\ x_2 \le 3 \\ x_1 + 2x_2 \le 8 \\ x_1, x_2 \ge 0 \end{cases}$$

$$\lim z = x_1 + 2x_2 + 0x_3 + 0x_4 + 0x_5$$
s.t.
$$\begin{cases} x_1 + x_3 = 4 \\ x_2 + x_4 = 3 \\ x_1 + 2x_2 + x_5 = 8 \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

例 3: 无穷多解

■用单纯形法求解

	$c_j \rightarrow$		1	2	0	0	0
\mathbf{C}_{B}	\mathbf{X}_{B}	b	$ x_1 $	x_2	x_3	$ x_4 $	x_5
0	x_3	4	1	0	1	0	0
0	x_4	3	0	[1]	0	1	0
0	x_5	8	1	2	0	0	1
c_{i}	$j-z_j$		1	2	0	0	0
0	x_3	4	1	0	1	0	0
0	x_2	3	0	1	0	1	0
0	x_5	2	[1]	0	0	-2	1
c_{i}	$j-z_j$		1	0	0	-2	0

例 3: 无穷多解

■ 用单纯形法求解 (续)

($c_j \to$		1	2	0	0	0
\mathbf{C}_{B}	$ \mathbf{X}_B $	b	$ x_1 $	x_2	x_3	x_4	x_5
0	x_3	2	0	0	1	[2]	-1
2	x_2	3	0	1	0	1	0
1	x_1	2	1	0	0	-2	1
c_{i}	$j-z_j$		0	0	0	0	-1
0	x_4	1	0	0	[1/2]	1	-1/2
2	x_2	2	0	1	-1/2	0	1/2
1	x_1	4	1	0	1	0	0
$c_{:}$	$j-z_j$		0	0	0	0	-1

$$\mathbf{X}_1 = (2, 3, 2, 0, 0)^{\mathsf{T}}, \ \mathbf{X}_2 = (4, 2, 0, 1, 0)^{\mathsf{T}}, \dots$$

例 4: 无可行解

■ 考虑求解线性规划问题

$$\max z = 2x_1 + x_2$$
s.t.
$$\begin{cases} x_1 + x_2 \le 2 \\ 2x_1 + 2x_2 \ge 6 \\ x_1, x_2 \ge 0 \end{cases}$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$\max z = 2x_1 + x_2 + 0x_3 + 0x_4 - Mx_5$$
s.t.
$$\begin{cases} x_1 + x_2 + x_3 = 2 \\ 2x_1 + 2x_2 - x_4 + x_5 = 6 \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

例 4: 无可行解

■用单纯形法求解

$c_j \rightarrow$	2	1	0	0	-M
$\mathbf{C}_B \mid \mathbf{X}_B \mid \mathbf{b}$	$ x_1 $	$ x_2 $	x_3	$ x_4$	x_5
$\begin{array}{c cccc} 0 & x_3 & 2 \\ -M & x_5 & 6 \end{array}$	[1]	1 2	1 0	$\begin{vmatrix} 0 \\ -1 \end{vmatrix}$	0
	$\frac{2}{ 2+2M }$	1+2M	0	$\frac{1}{ -M }$	0
$\begin{array}{c cccc} 2 & x_1 & 2 \\ -M & x_5 & 2 \end{array}$	1 0	1 0	1 -2	$\begin{vmatrix} 0 \\ -1 \end{vmatrix}$	
$c_j - z_j$	0	-1	-2-2M	-M	0

■ 当所有 $\sigma_j \leq 0$ 时,基变量中仍含有非零的人工变量 $x_5 = 2$,故无可行解

例 5: 极小化

■ 考虑求解线性规划问题

min
$$z = x_1 - x_2 + x_3 - 3x_5$$

s.t.
$$\begin{cases} x_2 + x_3 - x_4 + 2x_5 = 6 \\ x_1 + 2x_2 - 2x_4 = 5 \\ 2x_2 + x_4 + 3x_5 + x_6 = 8 \\ x_1, x_2, x_3, x_4, x_5, x_6 \ge 0 \end{cases}$$

例 5: 极小化

■用单纯形法求解

	$c_j \rightarrow$		1	-1	1	0	-3	0
\mathbf{C}_{B}	\mathbf{X}_{B}	b	x_1	x_2	$ x_3 $	x_4	$ x_5 $	x_6
1	x_3	6	0	1	1	-1	2	0
1	x_1	5	1	2	0	-2	0	0
0	x_6	8	0	2	0	1	[3]	1
	$c_j - z_j$	j	0	-4	0	3	-5	0
1	x_3	2/3	0	-1/3	1	-5/3	0	-2/3
1	x_1	5	1	[2]	0	-2	0	0
-3	x_5	8/3	0	2/3	0	1/3	1	1/3
	$c_i - z_i$		0	-2/3	0	14/3	0	5/3

单纯形法的进一步讨论

■ 用单纯形法求解 (续)

	$c_j \rightarrow$		1	-1	1	0	-3	0
\mathbf{C}_{B}	$ \mathbf{X}_{B} $	b	$ x_1 $	x_2	$ x_3 $	x_4	x_5	$ x_6 $
1	x_3	3/2	1/6	0	1	-2	0	-2/3
-1	x_2	5/2	1/2	1	0	-1	0	0
-3	x_5	1	$egin{array}{c c} 1/6 \\ 1/2 \\ -2/3 \end{array}$	0	0	1	1	1/3
($c_j - z_j$	j	1/3	0	0	4	0	5/3

- **最优解 X** = $(0, 5/2, 3/2, 0, 1)^{\mathsf{T}}$
- 最优值 $z^* = -4$

单纯形法计算中的几个问题

- 按最小比值 θ 来确定换出基的变量时,有时出现存在两个以上相同的最小比值,从而使下一个表的基可行解中出现一个或多个基变量等于零的退化解
- 退化解的出现原因是模型中存在多余的约束, 使多个基可行解对应同一顶点
- 当存在退化解时,就有可能出现迭代计算的循环
- 解决办法
 - \Box 当存在多个 $\sigma_j > 0$ 时,始终选取中下标值为最小的变量作为换入变量
 - $_{f Q}$ 当计算 $_{f heta}$ 值出现两个以上相同的最小比值时,始终选取下标值为最小的变量作为换出变量

课堂练习1

■ 已知初始单纯形表和用迭代后单纯形法, 试求括弧中的值

项目	x_1	x_2	x_3	x_4	x_5
$\left \begin{array}{c c} x_4 & 6 \\ x_5 & 1 \end{array} \right $	$(b) \\ -1$	(<i>c</i>) 3	$\begin{pmatrix} (d) \\ (e) \end{pmatrix}$	1 0	0 1
$c_j - z_j$	(a)	-1	2	0	0
$\begin{array}{c c} x_1 & (f) \\ x_5 & 4 \end{array}$	(g) (h)	2 (i)	$\begin{vmatrix} -1 \\ 1 \end{vmatrix}$	1/2 1/2	0 1
$c_j - z_j$	0	-7	(j)	(k)	(l)

课堂练习2

■ 用大 M 法求解线性规划问题

$$\min z = -3x_1 + x_2 + x_3$$
s.t.
$$\begin{cases} x_1 - 2x_2 + x_3 \le 11 \\ -4x_1 + x_2 + 2x_3 \ge 3 \\ -2x_1 + x_3 = 1 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

■ 课后作业

课堂练习2(答案)

■ 标准化并添加人工变量后得到

$$\max z = 3x_1 - x_2 - x_3 + 0x_4 + 0x_5 - Mx_6 - Mx_7$$
s.t.
$$\begin{cases} x_1 - 2x_2 + x_3 + x_4 = 11 \\ -4x_1 + x_2 + 2x_3 - x_5 + x_6 = 3 \\ -2x_1 + x_3 + x_7 = 1 \\ x_j \ge 0 \ (j = 1, \dots, 7) \end{cases}$$

■ 最优解 $\mathbf{X} = (4, 1, 9)^{\mathsf{T}}$, 最优值 $z^* = -2$

小结

单纯形法完整计算步骤

目录

- 2.1 线性规划问题及其数学模型
- 2.2 图解法
- 2.3 单纯形法原理
- 2.4 单纯形法计算步骤
- 2.5 单纯形法的进一步讨论
- 2.6 线性规划的对偶问题
- 2.7 对偶问题的基本性质

■ 某公司计划制造 I、II 两种家电产品, 已知各制造一件时分别占用的设备 A、设备 B、调试工序时间及每天的能力、各售出一件时的获利情况

项目	产品Ⅰ	产品	每天可用能力
设备 A/h 设备 B/h	0	5	15
	6	2	24
调试工序/h	1	1	5
利润/元	2	1	

■ 如果公司不再安排生产,而是将设备 A、设备 B 和调试工序这三种能力资源 出租,如何确定各种资源的租价才能获得最大利润

对偶问题的提出

- 决策变量 设 y_1, y_2, y_3 为出租设备 A、设备 B 和调试工序单位时间的租金
- 约束条件 出租所得到的租金应不低于自己生产的获利,即

$$\begin{cases} 6y_2 + y_3 \ge 2\\ 5y_1 + 2y_2 + y_3 \ge 1 \end{cases}$$

- 目标函数 公司总收入即租赁方的成本 $w = 15y_1 + 24y_2 + 5y_3$
- 数学模型 从租赁方的角度考虑

min
$$w = 15y_1 + 24y_2 + 5y_3$$

s.t.
$$\begin{cases} 6y_2 + y_3 \ge 2\\ 5y_1 + 2y_2 + y_3 \ge 1\\ y_1, y_2, y_3 \ge 0 \end{cases}$$

对偶问题的提出

■原问题

max
$$z = 2x_1 + x_2$$

s.t.
$$\begin{cases}
5x_2 \le 15 \\
6x_1 + 2x_2 \le 24 \\
x_1 + x_2 \le 5 \\
x_1, x_2 \ge 0
\end{cases}$$

■ 对偶问题

min
$$w = 15y_1 + 24y_2 + 5y_3$$

s.t.
$$\begin{cases} 6y_2 + y_3 \ge 2\\ 5y_1 + 2y_2 + y_3 \ge 1\\ y_1, y_2, y_3 \ge 0 \end{cases}$$

对称形式下对偶问题的一般形式

■ 一般形式

min
$$w = b_1 y_1 + b_2 y_2 + \dots + b_m y_m$$

$$s.t. \begin{cases} a_{11} y_1 + a_{21} y_2 + \dots + a_{m1} y_m \ge c_1 \\ a_{12} y_1 + a_{22} y_2 + \dots + a_{m2} y_m \ge c_2 \\ \dots \\ a_{1n} y_1 + a_{2n} y_2 + \dots + a_{mn} y_m \ge c_n \\ y_1, y_2, \dots, y_m \ge 0 \end{cases}$$

■ 矩阵形式

$$\min \ w = \mathbf{Y}^{\top} \mathbf{b}$$
 s.t. $\begin{cases} \mathbf{A}^{\top} \mathbf{Y} \geq \mathbf{C}^{\top} \\ \mathbf{Y} \geq \mathbf{0} \end{cases}$

对称形式下对偶问题的一般形式

项目	原问题 (P)	对偶问题 (D)
\mathbf{A}	约束系数矩阵	约束系数矩阵的转置
b	约束条件的右端项向量	目标函数中的价格系数向量
\mathbf{C}	目标函数中的价格系数向量	约束条件的右端项向量的转置
目标函数	$\max z = \mathbf{CX}$	$\min \ w = \mathbf{Y}^{T} \mathbf{b}$
约束条件	$\mathbf{AX} \leq \mathbf{b}$	$\mathbf{A}^{\top}\mathbf{Y} \geq \mathbf{C}^{\top}$
决策变量	$X \ge 0$	$\mathbf{Y} \ge 0$

■ 写出下面问题的对偶问题

$$\max z = 5x_1 + 6x_2$$
s.t.
$$\begin{cases} 3x_1 - 2x_2 \le 7 \\ 4x_1 + x_2 \le 9 \\ x_1, x_2 \ge 0 \end{cases}$$

■ 对偶问题

min
$$w = 7y_1 + 9y_2$$

s.t.
$$\begin{cases} 3y_1 + 4y_2 \ge 5\\ -2y_1 + y_2 \ge 6\\ y_1, y_2 \ge 0 \end{cases}$$

课堂练习1

■ 写出下面问题的对偶问题

$$\max z = -7y_1 - 9y_2$$
s.t.
$$\begin{cases}
-3y_1 - 4y_2 \le -5 \\
2y_1 - y_2 \le -6 \\
y_1, y_2 \ge 0
\end{cases}$$

■ 再出下面问题的对偶问题

$$\max z = 5x_1 + 6x_2$$
s.t.
$$\begin{cases} 3x_1 - 2x_2 \le 7 \\ 4x_1 + x_2 \le 9 \\ x_1, x_2 \ge 0 \end{cases}$$

■ 对偶问题的对偶是原问题

非对称形式的原-对偶问题关系

■ 考虑非对称形式

max
$$z = c_1 x_1 + c_2 x_2 + c_3 x_3$$

s.t.
$$\begin{cases} a_{11} x_1 + a_{12} x_2 + a_{13} x_3 \le b_1 \\ a_{21} x_1 + a_{22} x_2 + a_{23} x_3 = b_2 \\ a_{31} x_1 + a_{32} x_2 + a_{33} x_3 \ge b_3 \\ x_1 \ge 0, \ x_2 \le 0, \ x_3$$
无约束

步骤一

■等式变不等式

$$a_{i1}x_{1} + a_{i2}x_{2} + \dots + a_{in}x_{n} = b_{i}$$

$$\downarrow \downarrow$$

$$a_{i1}x_{1} + a_{i2}x_{2} + \dots + a_{in}x_{n} \leq b_{i}$$

$$a_{i1}x_{1} + a_{i2}x_{2} + \dots + a_{in}x_{n} \geq b_{i}$$

$$\downarrow \downarrow$$

$$a_{i1}x_{1} + a_{i2}x_{2} + \dots + a_{in}x_{n} \leq b_{i}$$

$$- a_{i1}x_{1} - a_{i2}x_{2} - \dots - a_{in}x_{n} \leq -b_{i}$$

步骤二

- 不等式变不等式
 - □目标函数求极大时

$$a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n \ge b_i$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$-a_{i1}x_1 - a_{i2}x_2 - \dots - a_{in}x_n \le -b_i$$

□ 目标函数求<mark>极小</mark>时

$$a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n \leq b_i$$

$$\downarrow \qquad \qquad \qquad \qquad \qquad \downarrow$$

$$-a_{i1}x_1 - a_{i2}x_2 - \dots - a_{in}x_n \geq -b_i$$

步骤三

■ 变量转换

 \Box 若 $x_k \leq 0$, 令

$$x_k' = -x_k, \ x_k' \ge 0$$

 \Box 若存在取值无约束的变量 x_k , 令

$$x_k = x_k' - x_k'', \ x_k', x_k'' \ge 0$$

■ 写出下面问题的对偶问题

$$\max z = 5x_1 + 6x_2$$
s.t.
$$\begin{cases} 3x_1 - 2x_2 = 7 \\ 4x_1 + x_2 \le 9 \\ x_1, x_2 > 0 \end{cases}$$

■ 经过变换后可重新表达为

$$\max z = 5x_1 + 6x_2$$
s.t.
$$\begin{cases} 3x_1 - 2x_2 \le 7 \\ -3x_1 + 2x_2 \le -7 \\ 4x_1 + x_2 \le 9 \\ x_1, x_2 \ge 0 \end{cases}$$

ullet 令各约束的对偶变量分别是 y_1', y_1'', y_2 ,按对应关系写出对偶问题

min
$$w = 7y'_1 - 7y''_1 + 9y_2$$

s.t.
$$\begin{cases} 3y'_1 - 3y''_1 + 4y_2 \ge 5\\ -2y'_1 + 2y''_1 + y_2 \ge 6\\ y'_1, y''_1, y_2 \ge 0 \end{cases}$$

■ 写出下面问题的对偶问题

max
$$z = c_1 x_1 + c_2 x_2 + c_3 x_3$$

s.t.
$$\begin{cases} a_{11} x_1 + a_{12} x_2 + a_{13} x_3 \le b_1 \\ a_{21} x_1 + a_{22} x_2 + a_{23} x_3 = b_2 \\ a_{31} x_1 + a_{32} x_2 + a_{33} x_3 \ge b_3 \\ x_1 \ge 0, \ x_2 \le 0, \ x_3$$
无约束

$$\max z = c_1 x_1 - c_2 x_2' + c_3 x_3' - c_3 x_3''$$

$$\begin{cases} a_{11} x_1 - a_{12} x_2' + a_{13} x_3' - a_{13} x_3'' \le b_1 \\ a_{21} x_1 - a_{22} x_2' + a_{23} x_3' - a_{23} x_3'' \le b_2 \\ -a_{21} x_1 + a_{22} x_2' - a_{23} x_3' + a_{23} x_3'' \le -b_2 \\ -a_{31} x_1 - a_{32} x_2' - a_{33} x_3' + a_{33} x_3'' \le -b_3 \\ x_1, x_2', x_3', x_3'' \ge 0 \end{cases}$$

■ 令各约束的对偶变量分别是 y_1, y_2', y_2', y_3' , 按对应关系写出

$$\min w = b_1 y_1 + b_2 y_2^{'} - b_2 y_2^{''} - b_3 y_3^{'}$$

$$\text{s.t.} \begin{cases} a_{11} y_1 + a_{21} y_2^{'} - a_{21} y_2^{''} - a_{31} y_3^{'} \ge c_1 \\ -a_{12} y_1 - a_{22} y_2^{'} + a_{22} y_2^{''} - a_{32} y_3^{'} \ge -c_2 \\ a_{13} y_1 + a_{23} y_2^{'} - a_{23} y_2^{''} - a_{33} y_3^{'} \ge c_3 \\ -a_{13} y_1 - a_{23} y_2^{'} + a_{23} y_2^{''} + a_{33} y_3^{'} \ge -c_3 \\ y_1, y_2^{'}, y_2^{''}, y_3^{'} \ge 0 \end{cases}$$

•
$$\diamondsuit$$
 $y_2 = y_2^{'} - y_2^{''}, \ y_3 = -y_3^{'}$, 得到对偶问题

min
$$w = b_1 y_1 + b_2 y_2 + b_3 y_3$$
s.t.
$$\begin{cases} a_{11} y_1 + a_{21} y_2 + a_{31} y_3 \ge c_1 \\ a_{12} y_1 + a_{22} y_2 + a_{32} y_3 \le c_2 \\ a_{13} y_1 + a_{23} y_2 + a_{33} y_3 = c_3 \\ y_1 \ge 0, \ y_2$$
无约束, $y_3 \le 0$

原问题与对偶问题的关系归纳

E 21 E (6)	
原问题 (P)	対偶问题 (D)
目标函数 $\max z$	目标函数 min w
决策变量 n 个	约束条件 n 个
决策变量 ≥ 0	约束条件 ≥
决策变量 ≤ 0	约束条件 ≤
决策变量无约束	约束条件 =
约束条件 m 个	$oxed{eta}_m$ 决策变量 m 个
约束条件 ≥	决策变量 ≤ 0
约束条件 ≤	决策变量 ≥ 0
约束条件 =	决策变量无约束
 约束条件右端项向量	目标函数变量的系数
目标函数变量系数	约束条件右端项向量

课堂练习2

■ 写出下列线性规划问题的对偶问题

min
$$z = 2x_1 + 2x_2 + 4x_3$$

s.t.
$$\begin{cases} -x_1 + 3x_2 + 4x_3 \ge 2\\ 2x_1 + x_2 + 3x_3 \le 3\\ x_1 + 4x_2 + 3x_3 = 5\\ x_1, x_2 \ge 0, x_3$$
无约束

■ 以对偶问题为原问题,再写出对偶的对偶问题

小结

- 对偶问题的提出
- 对称形式下原问题与对偶问题
 - □ 目标函数
 - □ 约束条件
 - □ 决策变量
- 非对称形式的原-对偶问题关系
 - □ 先对称化后转化
 - 🛛 违背原则
- 课后作业: P75, 习题 2.1

目录

- 2.1 线性规划问题及其数学模型
- 2.2 图解法
- 2.3 单纯形法原理
- 2.4 单纯形法计算步骤
- 2.5 单纯形法的进一步讨论
- 2.6 线性规划的对偶问题
- 2.7 对偶问题的基本性质

■原问题

$$\max z = \sum_{j=1}^{n} c_j x_j$$
s.t.
$$\begin{cases} \sum_{j=1}^{n} a_{ij} x_j \le b_i \ (i = 1, \dots, m) \\ x_j \ge 0 \ (j = 1, \dots, n) \end{cases}$$

■ 矩阵表达

$$\max z = \mathbf{CX}$$
s.t.
$$\begin{cases} \mathbf{AX} \le \mathbf{b} \\ \mathbf{X} \ge \mathbf{0} \end{cases}$$

■ 引入松弛变量

$$\max z = \mathbf{CX} + \mathbf{0X}_{S}$$
s.t.
$$\begin{cases} \mathbf{AX} + \mathbf{IX}_{S} = \mathbf{b} \\ \mathbf{X} \ge \mathbf{0}, \ \mathbf{X}_{S} \ge \mathbf{0} \end{cases}$$

- □Ⅰ为初始基
- $\mathbf{Q} \ \mathbf{X}_{S} = (x_{n+1}, \dots, x_{n+m})^{\top} \$ 为基变量
- 决策变量为 $X = [X_B, X_N]$
- 约束函数的系数矩阵为 $\mathbf{A} = [\mathbf{B}, \mathbf{N}]$
- 目标函数的系数向量为 $\mathbf{C} = [\mathbf{C}_B, \mathbf{C}_N]$

■ 用单纯形法计算下面问题

max
$$z = 2x_1 + x_2$$

s.t.
$$\begin{cases}
5x_2 \le 15 \\
6x_1 + 2x_2 \le 24 \\
x_1 + x_2 \le 5 \\
x_1, x_2 \ge 0
\end{cases}$$

■标准化

$$\max z = 2x_1 + x_2 + 0x_3 + 0x_4 + 0x_5$$
s.t.
$$\begin{cases}
5x_2 + x_3 = 15 \\
6x_1 + 2x_2 + x_4 = 24 \\
x_1 + x_2 + x_5 = 5 \\
x_1, x_2, x_3, x_4, x_5 \ge 0
\end{cases}$$

■ 列出初始单纯形表,确定主元 [6],用 x_1 替换 x_4

	$c_j \rightarrow$		2	1	0	0	0
\mathbf{C}_{B}	\mathbf{X}_{B}	b	x_1	$ x_2 $	$ x_3 $	$ x_4 $	x_5
0	x_3	15	0	5	1	0	0
0	$x_3 \\ x_4$	24	[6]	2	1 0	1	0
0	x_5	5	1	1	0	0	1
	$z_j - z_j$		2	1	0	0	0

■ 变量重排

		\mathbf{X}_{B}		X	-N		\mathbf{X}_{S}	
	x_3	$ x_1$	x_5	$ x_4$	x_2	$ x_3 $	x_4	$ x_5 $
15	1	0	0	0	5	1	0	0
24	0	6	0	1	2	0	1	0
5	0	1	1	0	1	0	0	1
b		В		1	V		Ι	

	项目		非基	变量	基变量
\mathbf{C}_{B}	基	b	\mathbf{X}_{B}	$ \mathbf{X}_N $	$ \mathbf{X}_S $
0	$ \mathbf{X}_S $	b	В	N	I
c	$j-z_j$		\mathbf{C}_{B}	\mathbf{C}_N	0

■ 变量重排

		\mathbf{X}_{B}		X	N		\mathbf{X}_{S}	
	$ x_3 $	x_1	x_5	x_4	$ x_2 $	x_3	$ x_4 $	x_5
15	1	0	0	0	5	1	0	0
4	0	1	0	1/6	2/6		1/6	0
5	0	0	1	-1/6	4/6	0	-1/6	1
b		Ι		$ \mathbf{B}^{-}$	1 N $ $		\mathbf{B}^{-1}	

项目	基变量	非基变量		
\mathbf{C}_B 基 \mathbf{b}	\mathbf{X}_{B}	\mathbf{X}_N	\mathbf{X}_S	
$oxed{\mathbf{C}_B \mid \mathbf{X}_B \mid \mathbf{B}^{-1}\mathbf{b} \mid}$	$\mathbf{B}^{-1}\mathbf{B} = \mathbf{I}$	$\mathbf{B}^{-1}\mathbf{N}$	$\mid \mathbf{B}^{-1}\mathbf{I} = \mathbf{B}^{-1}$	
$c_j - z_j$	$\mathbf{C}_B - \mathbf{C}_B \mathbf{I} = 0$	$\mathbf{C}_N - \mathbf{C}_B \mathbf{B}^{-1} \mathbf{N}$	$ 0 - \mathbf{C}_B \mathbf{B}^{-1}$	

■ 迭代前后对

项目	非基	基变量	
$oxed{\mathbf{C}_B \mid \mathbf{\&} \mid \mathbf{b}}$	\mathbf{X}_{B}	\mathbf{X}_N	$oxed{\mathbf{X}_S}$
$0 \mid \mathbf{X}_S \mid \mathbf{b}$	В	N	I
$c_j - z_j$	\mathbf{C}_{B}	\mathbf{C}_N	0

项目	项目 基变量		非基变量		
$egin{array}{c c c c c c c c c c c c c c c c c c c $	\mathbf{X}_{B}	\mathbf{X}_N	$ \mathbf{X}_S $		
$\mathbf{C}_B \mid \mathbf{X}_B \mid \mathbf{B}^{-1}\mathbf{b}$	$\mathbf{B}^{-1}\mathbf{B} = \mathbf{I}$	${f B}^{-1}{f N}$	$\mathbf{B}^{-1}\mathbf{I} = \mathbf{B}^{-1}$		
$c_j - z_j$	$\mathbf{C}_B - \mathbf{C}_B \mathbf{I} = 0$	$\mathbf{C}_N - \mathbf{C}_B \mathbf{B}^{-1} \mathbf{N}$	$0 - \mathbf{C}_B \mathbf{B}^{-1}$		

- 对应初始单纯形表中的单位矩阵 I,迭代后的单纯形表中为 B⁻¹
- $lacksymbol{\bullet}$ 初始单纯形表中基变量 $\mathbf{X}_S = \mathbf{b}$,迭代后的表中 $\mathbf{X}_B = \mathbf{B}^{-1}\mathbf{b}$

项目	非基变量	基变量
$\mathbf{C}_B \mid \mathbf{E} \mid \mathbf{b}$	$\mid \mathbf{X}_B \mid \mathbf{X}_N \mid$	\mathbf{X}_S
$0 \mid \mathbf{X}_S \mid \mathbf{b}$	B N	I
$c_j - z_j$	$\mid \mathbf{C}_B \mid \mathbf{C}_N \mid$	0

项目	基变量	非基变量		
$\mathbf{C}_B \mid \mathbf{A} \mid \mathbf{b}$	$ $ \mathbf{X}_{B}	\mathbf{X}_N	\mathbf{X}_S	
$\mathbf{C}_B \mid \mathbf{X}_B \mid \mathbf{B}^{-1}\mathbf{b}$	$\mathbf{B}^{-1}\mathbf{B} = \mathbf{I}$	$\mathbf{B}^{-1}\mathbf{N}$	$\mathbf{B}^{-1}\mathbf{I} = \mathbf{B}^{-1}$	
$c_j - z_j$	$\mid \mathbf{C}_B - \mathbf{C}_B \mathbf{I} = 0$	$\mid \mathbf{C}_N - \mathbf{C}_B \mathbf{B}^{-1} \mathbf{N}$	$0 - \mathbf{C}_B \mathbf{B}^{-1}$	

- 初始单纯形表中约束系数矩阵 [A, I] = [B, N, I], 迭代后的表中约束系数矩阵为 $[B^{-1}A, B^{-1}I] = [I, B^{-1}N, B^{-1}]$
- $lacksymbol{\bullet}$ 若初始矩阵中变量 x_j 的系数向量为 \mathbf{P}_j , 迭代后的为 \mathbf{P}_j' ,则 $\mathbf{P}_j' = \mathbf{B}^{-1}\mathbf{P}_j$

项目	非基变量 基	量变基
C _B 基 1	$\mathbf{b} \mid \mathbf{X}_B \mid \mathbf{X}_N \mid$	\mathbf{X}_S
$0 \mid \mathbf{X}_S \mid 1$	b B N	Ι
$c_j - z_j$	$\mid \mathbf{C}_B \mid \mathbf{C}_N \mid$	0

项目	基变量	非基变	€量	
$\mathbf{C}_B \mid \ \mathbf{E} \mid \ \mathbf{b}$	$ \mathbf{X}_{B} $	\mathbf{X}_N	\mathbf{X}_S	
$\mathbf{C}_B \mid \mathbf{X}_B \mid \mathbf{B}^{-1}\mathbf{b}$	$\mathbf{B}^{-1}\mathbf{B} = \mathbf{I}$	$\mathbf{B}^{-1}\mathbf{N}$	$\mathbf{B}^{-1}\mathbf{I} = \mathbf{B}^{-1}$	
$c_j - z_j$	$\mathbf{C}_B - \mathbf{C}_B \mathbf{I} = 0$	$\mathbf{C}_N - \mathbf{C}_B \mathbf{B}^{-1} \mathbf{N}$	$0 - \mathbf{C}_B \mathbf{B}^{-1}$	

■ 迭代后达到最优, 即检验数满足

$$\mathbf{C}_N - \mathbf{C}_B \mathbf{B}^{-1} \mathbf{N} \le 0, \ -\mathbf{C}_B \mathbf{B}^{-1} \le 0$$

由于 $C_B - C_B I = 0$, 得到

$$\mathbf{C} - \mathbf{C}_B \mathbf{B}^{-1} \mathbf{A} \le 0, \ -\mathbf{C}_B \mathbf{B}^{-1} \le 0$$

这里 C_BB^{-1} 称为单纯形乘子。若令 $Y^{\top} = C_BB^{-1}$,则上式可以改写为

$$\mathbf{A}^{\mathsf{T}}\mathbf{Y} \ge \mathbf{C}^{\mathsf{T}}, \ \mathbf{Y} \ge 0$$

■ 上式表明 $\mathbf{C}_B\mathbf{B}^{-1}$ 的转置为其对偶问题的一个可行解,即

$$w = \mathbf{Y}^{\mathsf{T}} \mathbf{b} = \mathbf{C}_B \mathbf{B}^{-1} \mathbf{b} = z$$

当原问题为最优解时,对偶问题为可行解,且两者具有相同的目标函数值

弱对偶性

■ 如果 \overline{x}_j $(j=1,\ldots,n)$ 是原问题的可行解, \overline{y}_i $(i=1,\ldots,m)$ 是其对偶问题的可行解,则恒有

$$\sum_{j=1}^{n} c_j \overline{x}_j \le \sum_{i=1}^{m} b_i \overline{y}_i$$

证明 根据定义易知

$$\sum_{j=1}^{n} c_{j} \overline{x}_{j} \leq \sum_{j=1}^{n} \left(\sum_{i=1}^{m} a_{ij} \overline{y}_{i} \right) \overline{x}_{j} = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} \overline{x}_{j} \overline{y}_{i}$$

$$\sum_{i=1}^{m} b_{i} \overline{y}_{i} \geq \sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_{ij} \overline{x}_{j} \right) \overline{y}_{i} = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} \overline{y}_{i} \overline{x}_{j}$$

推论

■ 如果 \overline{x}_j $(j=1,\ldots,n)$ 是原问题的可行解, \overline{y}_i $(i=1,\ldots,m)$ 是其对偶问题的可行解,则恒有

$$\sum_{j=1}^{n} c_j \overline{x}_j \le \sum_{i=1}^{m} b_i \overline{y}_i$$

- 推论 1 原问题任一可行解的目标函数值是其对偶问题目标函数值的下界, 反之,对偶问题任一可行解的目标函数值是其原问题目标函数值的上界
- 推论 2 若原问题有可行解且目标函数值无界,则其对偶问题无可行解,反之,对偶问题有无界解,则原问题无可行解
- 推论 3 若原问题有可行解,对偶问题无可行解,则原问题目标函数值无界, 反之,对偶问题有可行解,原问题无可行解,则对偶问题的目标函数值无界

最优性

■ 如果 \hat{x}_j (j = 1, ..., n) 是原问题的可行解, \hat{y}_i (i = 1, ..., m) 是其对偶问题的可行解,且有 $\sum\limits_{j=1}^n c_j \hat{x}_j = \sum\limits_{i=1}^m b_i \hat{y}_i$ 则 \hat{x}_j (j = 1, ..., n) 是原问题的最优解,

 $\hat{y}_i \; (i=1,\ldots,m)$ 是其对偶问题的最优解

证明 设 x_j^* $(j=1,\ldots,n)$ 是原问题的最优解, y_i^* $(i=1,\ldots,m)$ 是其对偶问题的最优解, 有

$$\sum_{j=1}^{n} c_j \hat{x}_j \le \sum_{j=1}^{n} c_j x_j^*, \ \sum_{i=1}^{m} b_i y_i^* \le \sum_{i=1}^{m} b_i \hat{y}_i$$

$$\sum_{j=1}^{n} c_j \hat{x}_j = \sum_{i=1}^{m} b_i \hat{y}_i, \ \sum_{j=1}^{n} c_j x_j^* \le \sum_{i=1}^{m} b_i y_i^*$$

$$\Rightarrow \sum_{j=1}^{n} c_j \hat{x}_j = \sum_{j=1}^{n} c_j x_j^* = \sum_{i=1}^{m} b_i y_i^* = \sum_{i=1}^{m} b_i \hat{y}_i$$

强对偶性

■ 若原问题及其对偶问题均具有可行解,则两者均具有最优解,且它们最优解的目标函数值相等

证明 由于两者均有可行解,根据弱对偶性的推论 1, 对原问题的目标函数值具有上界, 对偶问题的目标函数值具有下界, 因此两者均具有最优解

当原问题为最优解时, 其对偶问题的解为可行解, 且有 z=w, 由最优性知, 这时两者的解均为最优解

"推论 1 原问题任一可行解的目标函数值是其对偶问题目标函数值的下界, 反之,对偶问题任一可行解的目标函数值是其原问题目标函数值的上界"

互补松驰性

■ 在线性规划问题的最优解中,如果对应某一约束条件的对偶变量值为零,则 改约束条件取严格等式;反之,如果约束条件取严格不等式,则其对应的对 偶变量一定为零。也即

$$m{\square}$$
 若 $\hat{y}_i > 0$,则有 $\sum_{j=1}^n a_{ij} \hat{x}_j = b_i$,即 $\hat{x}_{si} = 0$

$$m{Q}$$
 若 $\sum_{j=1}^{n} a_{ij} \hat{x}_{j} < b_{i}$,即 $\hat{x}_{si} = 0$,则有 $\hat{y}_{i} = 0$

因此一定有 $\hat{x}_{si} \cdot \hat{y}_i = 0$

证明 由弱对偶性知

$$\sum_{j=1}^{n} c_j \hat{x}_j \le \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} \hat{x}_j \hat{y}_i \le \sum_{i=1}^{m} \sum_{j=1}^{n} b_i \hat{y}_i$$

又根据最优性 $\sum\limits_{i=1}^n c_i \hat{x}_i = \sum\limits_{i=1}^m b_i \hat{y}_i$,故上式中全为等式

互补松驰性

由右端等式得

$$\sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_{ij} \hat{x}_j - b_i \right) \hat{y}_i = 0$$

由于 $\hat{y}_i \geq 0$, $\sum_{j=1}^{n} a_{ij} \hat{x}_j - b_i \leq 0$, 故对所有 $i = 1, \ldots, m$ 有

$$\left(\sum_{j=1}^{n} a_{ij}\hat{x}_j - b_i\right)\hat{y}_i = 0$$

- \Box 当 $\sum_{i=1}^{n} a_{ij}\hat{x}_{j} b_{i} < 0$ 时,必有 $\hat{y}_{i} = 0$

互补松驰性

- 将互补松弛性质应用于其对偶问题时, 可以描述为
 - \square 如果有 $\hat{x}_i > 0$,则 $\sum\limits_{i=1}^m a_{ij} \hat{y}_i = c_j$
 - \square 如果有 $\sum\limits_{i=1}^{m}a_{ij}\hat{y}_{j}>c_{j}$,则 $\hat{x}_{j}=0$
- 上述针对对称形式证明得对偶问题得性质,同样适用于非对称形式
- 互补松弛性质是理解非线性规划中 KKT 条件得重要基础

■ 试用对偶理论证明上述线性规划问题无最优解

$$\max z = x_1 + x_2$$
s.t.
$$\begin{cases} -x_1 + x_2 + x_3 \le 2\\ -2x_1 + x_2 - x_3 \le 1\\ x_1, x_2, x_3 \ge 0 \end{cases}$$

■ 上述问题的对偶问题

min
$$w = 2y_1 + y_2$$

s.t.
$$\begin{cases}
-y_1 - 2y_2 \ge 1 \\
y_1 + y_2 \ge 1 \\
y_1 - y_2 \ge 0 \\
y_1, y_2 \ge 0
\end{cases}$$

- 由第1个约束条件知对偶问题无可行解,因而无最优解
- 由 推论 3 知原问题也无最优解

"推论 3 若原问题有可行解,对偶问题无可行解,则原问题目标函数值无界..."

■ 已知线性规划问题

min
$$w = 2x_1 + 3x_2 + 5x_3 + 2x_4 + 3x_5$$

s.t.
$$\begin{cases} x_1 + x_2 + 2x_3 + x_4 + 3x_5 \ge 4\\ 2x_1 - x_2 + 3x_3 + x_4 + x_5 \ge 3\\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

已知其对偶问题的最优解为 $y_1^* = 4/5, y_2^* = 3/5, z = 5$, 试用对偶理论找出原问题的最优解

■ 原问题

min
$$w = 2x_1 + 3x_2 + 5x_3 + 2x_4 + 3x_5$$

s.t.
$$\begin{cases} x_1 + x_2 + 2x_3 + x_4 + 3x_5 \ge 4\\ 2x_1 - x_2 + 3x_3 + x_4 + x_5 \ge 3\\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

■ 对偶问题

$$\max z = 4y_1 + 3y_2$$
s.t.
$$\begin{cases}
y_1 + 2y_2 \le 2 & (1) \\
y_1 - y_2 \le 3 & (2) \\
2y_1 + 3y_2 \le 5 & (3) \\
y_1 + y_2 \le 2 & (4) \\
3y_1 + y_2 \le 3 & (5) \\
y_1, y_2 \ge 0
\end{cases}$$

■ 将 $y_1^* = 4/5, y_2^* = 3/5$ 的值代入约束条件得

$$(2) = 1/5 < 3, (3) = 17/5 < 5, (4) = 7/5 < 2$$

它们为严格不等式,由<mark>互补松弛性</mark>得 $x_2^* = x_3^* = x_4^* = 0$

■ 由于 $y_1^*, y_2^* > 0$, 由互补松弛性可知原问题的两个约束条件应取等式,即

$$x_1^* + 3x_5^* = 4, \ 2x_1^* + x_5^* = 3$$

求解后得到 $x_1^* = 1, x_5^* = 1$

■ 因此原问题的最优解为 $X^* = (1,0,0,0,1)^{\top}$, 最优值为 $w^* = 5$

课堂练习1

■ 已知线性规划问题

$$\max z = 2x_1 + 4x_2 + x_3 + x_4$$
s.t.
$$\begin{cases} x_1 + 3x_2 + x_4 \le 8\\ 2x_1 + x_2 \le 6\\ x_2 + x_3 + x_4 \le 6\\ x_1 + x_2 + x_3 \le 9\\ x_1, x_2, x_3, x_4 \ge 0 \end{cases}$$

- 🛮 写出其对偶问题
- □ 原问题的最优解为 (2,2,4,0), 试根据对偶理论直接求对偶问题的最优解

课堂练习1(答案)

■ 对偶问题

min
$$w = 8y_1 + 6y_2 + 6y_3 + 9y_4$$

s.t.
$$\begin{cases} y_1 + 2y_2 + y_4 \ge 2\\ 3x_1 + y_2 + y_3 + y_4 \ge 4\\ y_3 + y_4 \ge 1\\ y_1 + y_3 \ge 1\\ y_1, y_2, y_3, y_4 \ge 0 \end{cases}$$

■ 对偶问题最优解为 $y = (4/5, 3/5, 1, 0)^{\mathsf{T}}$, 最优值 $w^* = 16$

小结

- 单纯形计算的矩阵描述
- 对偶问题的基本性质
 - □ 弱对偶定理
 - □最优性定理
 - □ 对偶定理
 - □ 互补松弛性
- 课后作业: P75, 习题 2.5

Q&A

Thank you!

感谢您的聆听和反馈