Основы компьютерных сетей. 7. Углубленное изучение сетевых технологий.

access list

wildcard

Технологии VLAN (802.1Q).

План занятия:

- access list
- wildcard
- VLAN 802.1Q

Что такое access list?

Access list (или ACL - Access Control List) - это набор правил, который определяет, какие типы сетевого трафика разрешены или запрещены на устройстве сетевого оборудования, таком как маршрутизатор или коммутатор.

Access list используются для контроля доступа к сетевым ресурсам, например, они могут определять, какие узлы могут подключаться к сети, какие порты могут быть использованы для определенных типов трафика, и так далее.

Access list могут быть применены на разных уровнях сети. Например, они могут работать на уровне интерфейса устройства, на уровне маршрутизатора или на уровне виртуальной частной сети (VPN).

Access list бывают двух типов

- **1.Стандартные Access list** они основаны на источнике IP-адреса. Такие списки правил позволяют или блокируют трафик на основе источника, например, можно разрешить или запретить определенные IP-адреса.
- **2.Расширенные Access list** они могут включать критерии, такие как источник, назначение, порт и протокол. Это более гибкий вид Access list, позволяющий более детально управлять трафиком.

Access list - важный инструмент в сетевой безопасности, позволяющий ограничивать доступ к сетевым ресурсам и защищать их от несанкционированного доступа.

Что такое wildcard?

"wildcard" (дословно: "джокер") обозначает специальный символ, который используется для задания шаблонов при сопоставлении адресов IP или портов.

В стандартных и расширенных Access Control Lists (ACLs) для маршрутизаторов и коммутаторов Cisco, wildcard-маска используется для указания диапазона адресов, на которые применяются правила.

Это позволяет гибко определять диапазоны адресов и разрешать или блокировать трафик в соответствии с этими шаблонами.

Что такое wildcard?

Примеры wildcard-масок в IPv4:

- •0.0.0.0 соответствует любому адресу.
- •255.255.255 соответствует конкретному адресу.
- •0.0.0.255 соответствует всем адресам в последнем октете сети.
- •0.0.255.255 соответствует всем адресам в последних двух октетах сети.

Что такое wildcard?

Например, если у вас есть правило в Access Control List, которое имеет следующий формат:

permit 192.168.1.0 0.0.0.255

Это означает, что разрешен весь трафик с адресами в диапазоне от 192.168.1.0 до 192.168.1.255.

Часто wildcard называют "обратной маской", но это не совсем корректно.

VLAN (Virtual Local Area Network) - это логический сегмент сети, который позволяет разделить физическую сеть на несколько логических групп. Внешне устройства в разных VLAN'ах могут выглядеть как будто они подключены к разным физическим сетям, хотя физическое соединение остается общим.

Вот несколько ключевых характеристик VLAN:

- **1.Изоляция трафика**: Устройства в одном VLAN не видят трафик из других VLAN без соответствующих настроек маршрутизации.
- **2.Безопасность и управление**: VLAN позволяют управлять доступом к ресурсам и улучшают безопасность сети, так как они разделяют сеть на отдельные сегменты.
- **3.Эффективное использование пропускной способности**: VLAN могут быть использованы для разделения трафика на небольшие группы, что может уменьшить конфликты и улучшить производительность сети.
- **4.Улучшение управляемости сети**: Администраторы смогут гибко управлять трафиком, группировать устройства и применять политики безопасности.

Примеры использования VLAN включают группировку устройств по отделам (например, финансы, маркетинг, IT), разделение голосового и данных трафика для улучшения качества VoIP, а также сегментацию для уменьшения влияния некоторых видов трафика на другие.

Для работы с VLAN требуется сетевое оборудование, поддерживающее эту технологию, например, управляемые коммутаторы.

Switch

Количество VLAN, которые могут быть настроены на одном коммутаторе, зависит от нескольких факторов, включая модель и тип коммутатора, а также используемый стандарт VLAN.

В стандарте 802.1Q (который является самым распространенным протоколом для работы с VLAN), теоретически можно создать до 4096 VLAN'ов, однако не все они могут быть использованы практически из-за ограничений.

На практике, многие коммутаторы имеют ограничения на количество активных VLAN. К примеру, некоторые младшие или более дешевые модели коммутаторов могут поддерживать менее 100 активных VLAN.

"Из коробки" все порты коммутатора находятся в VLAN 1.

При проектировании сети нужно решить сколько нужно VLAN и какие компьютеры в них будут, например количество VLAN может совпадать с количеством отделов в организации.

VLAN инкапсуляция

VLAN инкапсуляция относится к процессу добавления VLAN-тегов к сетевым кадрам внутри локальной сети.

Это позволяет коммутаторам и другому сетевому оборудованию различать и маршрутизировать трафик между различными VLAN.

802.1Q(dot1q):

Это наиболее распространенный стандарт для VLAN инкапсуляции.

В этом стандарте 4 байта (32 бита) добавляются в заголовок Ethernet кадра.

Один из этих байтов представляет собой VLAN тег, который содержит идентификатор VLAN (VLAN ID) и информацию о приоритете трафика (QoS).

VLAN инкапсуляция

Роли интерфейсов коммутаторов

На коммутаторах существует несколько типов интерфейсов, каждый из которых выполняет свою специфическую роль в сетевом окружении. Вот некоторые из основных ролей интерфейсов на коммутаторе:

1.Access Port (Доступный порт)(Ethernet):

- 1. Роль: Обычно подключается к конечным устройствам, таким как компьютеры, принтеры или IP-телефоны.
- 2. Характеристики: Один VLAN может быть назначен к Access порту. Кадры, поступающие с этого порта, не имеют VLAN-тега и считаются принадлежащими к назначенному VLAN.

2.Trunk Port (Магистральный порт)(dot1q):

- 1. Роль: Обычно соединяется с другими коммутаторами или маршрутизаторами для передачи трафика между VLAN.
- 2. Характеристики: Поддерживает передачу кадров с VLAN-тегами. Может быть назначено несколько VLAN на один Trunk порт.

Роли интерфейсов коммутаторов

3. Hybrid Port (Гибридный порт):

- 1. Роль: Комбинация свойств Access и Trunk порта. Используется для подключения к устройствам, которые могут быть как конечными устройствами, так и другими коммутаторами.
- 2. Характеристики: Позволяет как передачу кадров с VLAN-тегами, так и работу в одном VLAN (аналогично Access порту).

4.Port-channel (EtherChannel):

- 1. Роль: Группа физических интерфейсов, объединенных в одну логическую связь для повышения пропускной способности и увеличения отказоустойчивости.
- 2. Характеристики: Обычно используется для агрегации каналов между коммутаторами.

5.SVI (Switch Virtual Interface):

- 1. Роль: Интерфейс, представляющий виртуальный интерфейс коммутатора для удаленного управления и конфигурации, а также для пересылки трафика к управляющему приложению.
- 2. Характеристики: Может быть назначен IP-адрес и работать на уровне сетевого уровня (Layer 3).

Субинтерфейсы роутера

Субинтерфейсы (Subinterfaces) - это логические интерфейсы, создаваемые на физическом интерфейсе маршрутизатора. Они позволяют одному физическому интерфейсу работать с несколькими VLAN или подсетями, что делает их важными для реализации маршрутизации между виртуальными сетями в сетях с использованием технологий VLAN и 802.1Q тегирования.

Основные характеристики субинтерфейсов:

- **1.Идентификация субинтерфейса**: Каждый субинтерфейс имеет свой собственный уникальный номер или идентификатор (например, FastEthernet0/0.1, FastEthernet0/0.2 и т.д.).
- **2.Принадлежность к VLAN**: Каждый субинтерфейс может быть назначен определенному VLAN, что позволяет маршрутизатору обрабатывать трафик, связанный с этим VLAN.
- **3.Назначение IP-адреса**: Субинтерфейсам можно назначать IP-адреса, что позволяет им работать на уровне сетевого уровня (Layer 3) и обеспечивать маршрутизацию между VLAN.
- **4.Использование 802.1Q тегов**: Субинтерфейсы часто используются совместно с 802.1Q тегированием для разделения трафика между VLAN.

Пример использования субинтерфейсов:

Предположим, у вас есть один физический интерфейс на маршрутизаторе, который подключен к коммутатору, и вы хотите, чтобы он обрабатывал трафик из двух разных VLAN: VLAN 10 и VLAN 20. Вы можете создать два субинтерфейса (например, FastEthernet0/0.10 и FastEthernet0/0.20) и назначить им соответствующие VLAN и IP-адреса.

Использование субинтерфейсов позволяет эффективно управлять трафиком между разными VLAN и обеспечивать маршрутизацию в виртуальных сетях.

Практика


```
// Настраиваем коммутатор
Switch>enable
// список VLAN
Switch#show vlan
// создание vlan
Switch#conf terminal
Switch(config)#vlan 10
Switch(config-vlan)#name MANAGERS
Switch(config-vlan)#exit
Switch(config)#vlan 20
Switch(config-vlan)#exit
Switch#show vlan
```

```
// добавим интерфейс в vlan
Switch#conf t
// выбираем интерфейс fa 0/1
Switch(config)#interface fastEthernet 0/1
// выставляем режим access
Switch(config-if)#switchport mode access
// назначаем интерфейс в vlan 10
Switch(config-if)#switchport access vlan 10
// проверяем
Switch#show vlan
```

// настройка trunk

Switch(config)#interface gig0/1

Switch(config-if)#switchport mode trunk

Switch(config-if)#switchport trunk allowed vlan 10,20

// проверяем

Switch#show interfaces gig0/1 switchport

// router Router(config)#int gig0/0/0 Router(config-if)#no shutdown // настраиваем субинтерфейсы Router(config)#interface gigabitEf

Router(config)#interface gigabitEthernet 0/0/0.10 Router(config-subif)#encapsulation dot1Q 10 Router(config-subif)#ip address 10.0.10.1 255.255.255.0

Router(config)#interface gigabitEthernet 0/0/0.20
Router(config-subif)#no shutdown
Router(config-subif)#encapsulation dot1Q 20
Router(config-subif)#ip address 10.0.20.1 255.255.255.0

```
// acl
Router(config)#ip access-list extended DENYPC2
// запретим трафик src=10.0.10.3 ,dst=10.0.20.2
Router(config-ext-nacl)#deny ip host 10.0.10.3 host
10.0.20.2
// разрешим остальной трафик
Router(config-ext-nacl)#permit ip any any
// применим правила
Router(config)#int gig 0/0/0.10
Router(config-subif)#ip access-group DENYPC2 in
```