Statička optimizacija u slučaju funkcije više promenljivih bez ograničenja

Anja Buljević Aleksandra Mitrović Smilja Stokanović 28. oktobar 2020.

Zadaci

- 1. Da li postoji optimum u stacionarnoj tački funkcije $y(x) = 8x_1 + x_2 + 5x_1^2 9x_1x_2 + 2x_2^2$?
 - 1. Potrebni uslovi

Prvo ćemo pronaći stacionarnu tačku¹.

$$\frac{\partial y}{\partial x_1} = 8 + 10x_1 - 9x_2 = 0$$

$$\frac{\partial y}{\partial x_2} = 1 - 9x_1 + 4x_2 = 0$$
(1)

Rešavanjem sistema jednačina dobijamo sledeću stacionarnu tačku: $A(x_1^*=1,x_2^*=2)$

2. Dovoljni uslovi

Nakon što smo odredili stacionarnu tačku, potrebno je da odredimo njen karakter. Karakter stacionarne tačke možemo odrediti pomoću:

- Silvesterove teoreme
- Svojstvenih vrednosti
- (a) Silvesterova teorema²

$$H = \begin{bmatrix} \frac{\partial^2 y}{\partial x_1^2} & \frac{\partial^2 y}{\partial x_1 \partial x_2} \\ \frac{\partial^2 y}{\partial x_1 \partial x_2} & \frac{\partial^2 y}{\partial x_2^2} \end{bmatrix}$$

$$H = \begin{bmatrix} 10 & -9 \\ -9 & 4 \end{bmatrix}$$

Odakle sledi da su glavni minori matrice H:

¹ Podsećanje sa predavanja: potreban uslov za postojanje stacionarne tačke jeste da je priraštaj funkcije $\nabla f(x) = 0$. Karakter stacionarne tačke ispitujemo na osnovu vrednosti funkcija viših izvoda.

- 2 U slučaju da postoje parcijalni izvodi drugog reda funkcije y po svim promenljivama u okolini tačke \mathbf{x}^* i ako važi $\left(\frac{\partial y}{\partial x_i}\right)^*=0$ onda tačka ekstremuma funkcije y u tački x^* zadovoljavaju sledeće uslove
- i. Za strogi lokalni minimum $D_i > 0$ za i = 1, 2
- ii. Za strogi lokalni maksimum $D_1 < 0$ $D_2 > 0$

gde su

$$D_1 = \begin{vmatrix} \frac{\partial^2 y}{\partial x_1^2} \end{vmatrix}_{\mathbf{x} = \mathbf{x}^*} \quad D_2 = \begin{vmatrix} \frac{\partial^2 y}{\partial x_1^2} & \frac{\partial^2 y}{\partial x_1 \partial x_2} \\ \frac{\partial^2 y}{\partial x_1 \partial x_2} & \frac{\partial^2 y}{\partial x_2^2} \end{vmatrix}_{\mathbf{x} = \mathbf{x}^*}.$$

$$D_1 = 10 > 0$$

 $D_2 = 40 - 81 = -41 < 0$.

Na osnovu dobijenih vrednosti glavnih minora, možemo da zaključimo da tačka A nije optimum.

(b) Svojstvene vrednosti³

$$\begin{vmatrix} \lambda I - H \end{vmatrix} = 0$$

$$\begin{vmatrix} \lambda I - H \end{vmatrix} = \begin{vmatrix} \lambda & 0 \\ 0 & \lambda \end{vmatrix} - \begin{bmatrix} 10 & -9 \\ -9 & 4 \end{bmatrix} = 0$$

$$\begin{vmatrix} \lambda I - H \end{vmatrix} = \begin{vmatrix} \lambda - 10 & 9 \\ 9 & \lambda - 4 \end{vmatrix} = 0$$

$$\begin{vmatrix} \lambda I - H \end{vmatrix} = (\lambda - 10)(\lambda - 4) - 81 = 0$$

Rešavanjem sistema jednačina dobijamo sledeće vrednosti $\lambda: \left| \lambda_1 = 7 + 3\sqrt{10} \right|$ $\lambda_2 = 7 - 3\sqrt{10}$

Vrednosti λ koje su dobijene nisu istog znaka, te i na osnovu svojstvenih vrednosti možemo da zaključimo da tačka A nije optimum.

- 2. Naći stacionarne tačke i ispitati njihove karaktere za funkciju $f(x_1, x_2) = x_1^2 x_2 + x_2^3 x_1 - x_1 x_2.$
 - 1. Potrebni uslovi

Da bismo odredili potrebne uslove, potrebno je da odredimo parcijalne izvode po svim promenljivim:

$$\frac{\partial f}{\partial x_1} = 2x_1x_2 + x_2^3 - x_2 = x_2(2x_1 + x_2^2 - 1) = 0$$

$$\frac{\partial f}{\partial x_2} = x_1^2 + 3x_2^2x_1 - x_1 = x_1(x_1 + 3x_2^2 - 1) = 0$$
(2)

Iz jednačine (2) možemo da zaključimo da ćemo imati četiri slučaja kada su zadovoljeni potrebni uslovi:

$$x_1 = 0, x_2 = 0 \to A(0,0)$$

$$x_2 = 0, x_1 + 3x_2^2 - 1 = 0 \to B(1,0)$$

$$x_1 = 0, 2x_1 + x_2^2 - 1 = 0 \to C(0,1), D(0,-1)$$

$$x_1 + 3x_2^2 - 1 = 0, 2x_1 + x_2^2 - 1 = 0 \to E(\frac{2}{5}, \frac{1}{\sqrt{5}}), F(\frac{2}{5}, -\frac{1}{\sqrt{5}})$$

- ³ Sopstvene vrednosti i karakter ekstrema Neka su $\lambda_1, \lambda_2, \dots, \lambda_n$ sopstvene vrednosti Heseove matrice H, za matricu kažemo da je
- i. pozitivno definitna ako su sve vrednoti $\lambda_i > 0 \dots i = 1, \dots, n$
- pozitivno semidefinitna ako su sve vrednoti $\lambda_i \geq 0$ i_1, \ldots, n
- negativno definitna ako su sve vrednoti $\lambda_i < 0$ i_1, \ldots, n
- negativno semidefinitna ako su sve vrednoti $\lambda_i \leq 0$ i_1, \ldots, n
- nedefinitna ukoliko sopstvene vrednosti menjaju znak

Uslov \leq i \geq logički podrazumeva da postoji barem jedna vrednost različita od nule.

2. Dovoljni uslovi

1. Silvesterova teorema

Upotrebom Silvestorove teoreme,, formiramo Heseovu matricuna na osnovu koje ćemo zaključiti karakter dobijenih stacionarnih tačaka:

$$H = \begin{bmatrix} \frac{\partial^2 y}{\partial x_1^2} & \frac{\partial^2 y}{\partial x_1 \partial x_2} \\ \frac{\partial^2 y}{\partial x_1 \partial x_2} & \frac{\partial^2 y}{\partial x_2^2} \end{bmatrix}$$

$$H = \begin{bmatrix} 2x_2 & 2x_1 + 3x_2^2 - 1 \\ 2x_1 + 3x_2^2 - 1 & 6x_1x_2 \end{bmatrix}$$

Odakle sledi da su glavni minori matrice H:

$$D_1 = 2x_2$$

$$D_2 = 12x_2^2x_1 - (2x_1 + 3x_2^2 - 1)^2;$$

$$A(0,0) = B(1,0) = C(0,1) = D(0,-1)$$

	A(0,0)	B(1,0)	C(0,1)	D(0, -1)	$E(\frac{2}{5},\frac{1}{\sqrt{5}})$	$F(\frac{2}{5}, -\frac{1}{\sqrt{5}})$
D ₁	0	0	2	-2	$\frac{2}{\sqrt{5}}$	$-\frac{2}{\sqrt{5}}$
D_2	-1	-1	-4	-4	$\frac{4}{5}$	$\frac{4}{5}$
Karakter	/	/	/	/	MINIMUM	MAKSIMUM

Iz tabele glavnih minora dobijenih pomoću Silvesterove teoreme vidimo da su samo tačke E i F optimalne vrednosti, dok ostale tačke ne predstavljaju optimume.

2. Svojstvene vrednosti

$$\left|\lambda I - H\right| = \begin{vmatrix} \lambda - 2x_2 & -(2x_1 + 3x_2^2 - 1) \\ -(2x_1 + 3x_2^2 - 1) & \lambda - 6x_1x_2 \end{vmatrix} = 0$$

$$|\lambda I - H| = (\lambda - 2x_2)(\lambda - 6x_1x_2) - (2x_1 + 3x_2^2 - 1)^2 = 0$$

Na osnovu dobijenih vrednosti λ_1 i λ_2 možemo da odredimo karakter stacionarnih tački. Kao i na osnovu Silvesterove teoreme, tako i pomoću svojstvenih vrednosti vidimo sad su samo tačke E i F optimalne vrednosti, dok ostale tačke ne predstavljaju optimume.

- 3. Ukupni nedeljni prihod radionice je $P = -0.2x^2 0.25y^2 0.25y^2$ 0.2xy + 200x + 160y. Gdje je x, broj završenih stolova, a y, broj nezavršenih stolova. Ukupni nedeljni troškovi su T =100x + 70y + 4000. Koliko stolova treba proizvesti nedeljno, kako bi dobit bila najveća?
 - 1. Potrebni uslovi

Ukupnu dobit možemo izračunati tako što ćemo od ukupnih prihoda oduzeti troškove:

$$P = -0.2x^{2} - 0.25y^{2} - 0.2xy + 200x + 160y,$$

$$T = 100x + 70y + 4000,$$

$$D = P - T$$

$$D = -0.2x^{2} - 0.25y^{2} - 0.2xy + 200x + 160y - (100x + 70y + 4000)$$

$$D = -0.2x^{2} - 0.25y^{2} - 0.2xy + 100x + 90y - 4000$$

$$\frac{\partial D}{\partial x} = -0.4x - 0.2y + 100 = 0$$

$$\frac{\partial D}{\partial y} = -0.5y - 0.2x + 180 = 0$$

$$y = -0.4x + 0.08x - 36 + 100 = 0$$

$$-0.32x = -64$$

$$x^{*} = 200, y^{*} = 100.$$
(4)

Nakon što smo pronašli stacionarnu tačku, potrebno je i da proverimo da li za dobijene vrednosti x, y imamo maksimalnu dobit proveravanjem dovoljnih uslova.

2. Dovoljni uslovi

Dovoljne uslove možemo odrediti upotrebom Silvesterove teoreme, formiranjem Heseove matrice i računanjem glavnih minora:

$$H = \begin{bmatrix} \frac{\partial^2 D}{\partial x_1^2} & \frac{\partial^2 D}{\partial x_1 \partial x_2} \\ \frac{\partial^2 D}{\partial x_1 \partial x_2} & \frac{\partial^2 D}{\partial x_2^2} \end{bmatrix} = \begin{bmatrix} -0.4 & 0.2 \\ -0.2 & -0.5 \end{bmatrix}$$

$$D_1 = -0.4$$

$$D_2 = -0.2 - 0.04 = 0.16$$

Pošto je vrednost $D_1 < 0$, a vrednost $D_2 > 0$, možemo da zaključimo da će ostvarena dobit biti maksimalna.

4. Šumar se nalazi u tački A i treba da prođe putem, šumom i kroz šipražje, da bi došao do kuće. Kroz šiprag se kreće brzinom $3\frac{km}{h}$, kroz šumu brzinom $4\frac{km}{h}$ i putem $5\frac{km}{h}$. Kako treba da se kreće šumar, kako bi najbrže stigao do kuće.

Put Suma 1,5kmSiprag 1kmSumar

10km

Kuca

U ovom slučaju, potrebno je da minimizujemo vreme kako bi šumar za što kraće vreme stigao do kuće:

$$T = T_1 + T_2 + T_3$$

$$T = \frac{s_1}{V_1} + \frac{s_2}{V_2} + \frac{s_3}{V_3}$$

$$T = \frac{\sqrt{1+x^2}}{V_1} + \frac{\sqrt{1.5^2 + (y-x)^2}}{V_2} + \frac{10-y}{V_3}$$

Nakon što smo formirali kriterijum optimalnosti, potrebno je da nađemo pparcijalni izvode po promenljivim *x* i *y*:

$$\frac{\partial T}{\partial x} = \frac{1}{3} \frac{2x}{2\sqrt{1+x^2}} + \frac{1}{4} \frac{-2(y-x)}{2\sqrt{1.5^2 + (y-x)^2}} = 0$$

$$\frac{\partial T}{\partial y} = \frac{1}{4} \frac{2(y-x)}{2\sqrt{1.5^2 + (y-x)^2}} - \frac{1}{5} = 0$$

Preostaje nam još da izračunamo vrednosti *x* i *y*:

$$\frac{1}{4} \frac{(y-x)}{\sqrt{1.5^2 + (y-x)^2}} = \frac{1}{3} \frac{x}{\sqrt{1+x^2}}$$

$$\frac{1}{4} \frac{(y-x)}{\sqrt{1.5^2 + (y-x)^2}} = \frac{1}{5}$$

$$\frac{1}{3} \frac{x}{\sqrt{1+x^2}} = \frac{1}{5}$$

$$5x = 3\sqrt{1+x^2}$$

$$x = \pm \frac{3}{4}$$

Pošto je u pitanju fizička veličina, kao optimalnu vrednost x, uzimamo $x = \frac{3}{4}$.

$$5(y-x) = 4\sqrt{(y-x)^2 + 1.5^2}/2$$

$$25(y-x)^2 = 16((y-x)^2 + 1.5^2)$$

$$9(y-x)^2 = 16 * 1.5^2$$

$$(y-x) = \pm \frac{4*1.5}{3}$$

$$y = x \pm \frac{4*1.5}{3}$$

$$y = \frac{3}{4} \pm 2$$

$$y^* = \frac{11}{4}$$