

First Intermediate Presentation:

Reinforcement learning of action sequences in table football

Alexandros Kyrloglou

Guidance: Wannes Meert Jens Bürger Wen-Chi Yang

Context & Motivation

- Development of robotic foosball.
- Benchmark for any Reinforcement Learning implementation.
- Nature of the game: no RNG, not only reactive, continuous environment, adversarial.
- From theoretic RL implementation to real life robotic implementation.

Problem statement

- Goal is passing between controllable players.
- Types of passes:
 - Ball control
 - Pass static opponent
 - Pass dynamic opponent
 - Different rails
- Metrics: speed/time, accuracy to the end position (speed at that position), success rate (opponent type).
- Get ball to shooting position from goalkeeper.

Methodology

- Tools:
 - Unity (ML-agent)
 - C# controller + python (Stable Baselines)
- Methods:
 - Model-free Q-Learning.
 - DRL:
 - Deep Q-Learning (E-Greedy).
 - Deep Policy Network.

- Discrete Agent actions: (min-max)
 - Rotation.
 - Translation.
- Continuous Environment:
 - Ball Position (x,y,z).
 - Ball Speed.
 - Current position of players/enemies.
- Rewards:
 - Ball reaching location.
 - Distance to location.
 - Speed at location.

Planning

- Set up the simulation environment (unity project working properly)
- Set up controllable agents
- Define states, actions, rewards, metrics etc.
- Define promising RL approaches
- Implement direct pass with different methods as baseline.
- Implement different passes and optimize performance
- Determine best working methods
- Create sequences that work vs different players: Get the ball from the goalkeeper to a scoring location.

