# Optimizing neural networks: SGD & Backpropagation

EECE454 Intro. to Machine Learning Systems

#### Recap: Neural networks

Deep learning (supervised).

Performing the usual optimization

$$\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} \mathcal{E}(y_i, f_{\theta}(\mathbf{x}_i)) =: \min_{\theta} L(\theta)$$

where the parameters are weights & biases of each layers

$$\theta = \{(\mathbf{W}_l, \mathbf{b}_l)\}_{l=1}^L$$

and the predictor is the neural network

$$f_{\theta}(\mathbf{x}) = \mathbf{W}_{L} \sigma(\mathbf{W}_{L-1} \sigma(\cdots \sigma(\mathbf{W}_{1} \mathbf{x} + \mathbf{b}_{1}) \cdots + \mathbf{b}_{L-1}) + \mathbf{b}_{L}$$

### Today

• Question. How do we solve the optimization problem?

$$\min_{\theta} L(\theta), \quad f_{\theta}(\mathbf{x}) = \mathbf{W}_{L} \sigma(\cdots \sigma(\mathbf{W}_{1} \mathbf{x} + \mathbf{b}_{1}) \cdots + \mathbf{b}_{L}$$

# Today

• Question. How do we solve the optimization problem?

$$\min_{\theta} L(\theta), \quad f_{\theta}(\mathbf{x}) = \mathbf{W}_{L} \sigma(\cdots \sigma(\mathbf{W}_{1} \mathbf{x} + \mathbf{b}_{1}) \cdots + \mathbf{b}_{L}$$

- Convex? Not really
- Critical point analysis? Too complicated



# Today

Question. How do we solve the optimization problem?

$$\min_{\theta} L(\theta), \quad f_{\theta}(\mathbf{x}) = \mathbf{W}_{L} \sigma(\cdots \sigma(\mathbf{W}_{1} \mathbf{x} + \mathbf{b}_{1}) \cdots + \mathbf{b}_{L}$$

- Convex? Not really
- Critical point analysis? Too complicated

• Answer. Use a heuristic; the gradient descent



# Gradient descent and stochastic gradient descent

#### Recap: Gradient descent

• Idea. Iteratively update heta in a <u>direction that the loss decreases</u> the fastest

$$\theta^{(t+1)} = \theta^{(t)} - \eta \cdot \nabla_{\theta} L(\theta)$$
 Step size (a.k.a., learning rate) Direction of fastest increase



#### Recap: Gradient descent

• Idea. Iteratively update heta in a <u>direction that the loss decreases the fastest</u>

$$\theta^{(t+1)} = \theta^{(t)} - \eta \cdot \nabla_{\theta} L(\theta)$$

- **Problem.** To evaluate gradients, we need to look at all data samples at each iteration.
  - Gradient is the average of <u>per-sample gradients</u>

$$\nabla_{\theta} L(\theta) = \frac{1}{n} \sum_{i=1}^{n} \nabla_{\theta} \mathcal{E}(y_i, f_{\theta}(\mathbf{x}_i))$$

But there are typically quite many samples!
 (e.g., ImageNet has millions of samples)



# Stochastic gradient descent (SGD)

- SGD (wide). Look at only a few, randomly drawn samples at a time.
  - Mini-batch GD. Draw a batch  ${\mathscr B}$  of samples, and compute

$$\hat{\nabla}_{\theta} L(\theta) = \frac{1}{|\mathcal{B}|} \sum_{i \in \mathcal{B}} \nabla_{\theta} \mathcal{E}(y_i, f_{\theta}(\mathbf{x}_i))$$

• SGD (narrow). Mini-batch GD with a single sample.



### Stochastic gradient descent (SGD)

- It is typical to draw samples without replacement
  - i.e., never use a sample twice, if there exists a sample that has never been used



# Stochastic gradient descent (SGD)

- It is typical to draw samples without replacement
  - i.e., never use a sample twice, if there exists a sample that has never been used
- **Epoch.** A set of iterations until every samples has been used once.
  - Example. If we use a batch size 64 for a dataset of size 32,000, we need 500 steps for a single epoch.
- Note. The learning rate and the batch size are the most important hyperparameters



# Computing the gradients

### Evaluating gradients

• (per-sample) gradient. A product of loss derivative and the predictor gradient

$$\nabla_{\theta} \Big( \mathcal{C}(y, f_{\theta}(\mathbf{x})) \Big) = \frac{\partial \mathcal{C}(y, z)}{\partial z} (f_{\theta}(\mathbf{x})) \cdot \nabla_{\theta} f_{\theta}(\mathbf{x}) \qquad \frac{\partial}{\partial x} g(f(x)) = g'(f(x)) \cdot f'(x)$$
 loss derivative, evaluated at prediction  $f_{\theta}(\mathbf{x})$  Predictor gradient

# Evaluating gradients

• (per-sample) gradient. A product of loss derivative and the predictor gradient

$$\nabla_{\theta} \Big( \mathcal{E}(y, f_{\theta}(\mathbf{x})) \Big) = \frac{\partial \mathcal{E}(y, z)}{\partial z} (f_{\theta}(\mathbf{x})) \cdot \nabla_{\theta} f_{\theta}(\mathbf{x})$$

- Loss derivative. Typically easy to compute
  - Example. For squared loss  $\ell(y,z)=(y-z)^2$ , the loss derivative will be

$$2(y - f_{\theta}(\mathbf{x}))$$

• Simply pass the data through the predictor, measure the error, and multiply 2.

# Evaluating gradients

• (per-sample) gradient. A product of loss derivative and the predictor gradient

$$\nabla_{\theta} \left( \ell(y, f_{\theta}(\mathbf{x})) \right) = \frac{\partial \ell(y, z)}{\partial z} (f_{\theta}(\mathbf{x})) \cdot \nabla_{\theta} f_{\theta}(\mathbf{x})$$

- Predictor gradient. Much trickier
  - The parameter heta is high-dimensional (billions trillions)

$$\nabla_{\theta} g(\theta) = \left[ \frac{\partial}{\partial \theta_1} g(\theta), \dots, \frac{\partial}{\partial \theta_d} g(\theta) \right]$$

This makes the <u>numerical method</u> very computation-heavy to use.

$$\nabla_{\theta} g(\theta) = \left[ \frac{\partial}{\partial \theta_1} g(\theta), \dots, \frac{\partial}{\partial \theta_d} g(\theta) \right]$$

Numerical method. Evaluate each partial derivative by taking the limit

$$\frac{\partial}{\partial x}g(x) = \lim_{\epsilon \to 0} \frac{g(x+\epsilon) - g(x)}{\epsilon}$$

- Problem. Cannot take the limit.
  - Approximate by choosing a very small  $\epsilon$
- Requires evaluating both  $g(x+\epsilon)$  and g(x)... for each parameter dimension!

```
W + h (first
current W:
                    dim):
                    [0.34 + 0.0001,
[0.34,
-1.11,
                    -1.11,
0.78,
                    0.78,
0.12,
                    0.12,
0.55,
                    0.55,
2.81,
                    2.81,
                    -3.1,
-3.1,
-1.5,
                    -1.5,
0.33,...
                    0.33,...
loss 1.25347
                    loss 1.25322
```

```
gradient dW:
```

```
W + h (second
current W:
                    dim):
[0.34,
                    [0.34,
-1.11,
                    -1.11 + 0.0001
0.78,
                    0.78,
0.12,
                    0.12,
0.55,
                    0.55,
2.81,
                    2.81,
-3.1,
                    -3.1,
-1.5,
                    -1.5,
0.33,...
                    0.33,...
loss 1.25347
                    loss 1.25353
```

```
gradient dW:
```

```
[-2.5, 0.6, ?, ?, (1.25353 - 1.25347)\sqrt{0.0001} = 0.6 ?, ?, \frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} ?, ?, ?,
```

| current W:   | W + h (third dim): |
|--------------|--------------------|
| [0.34,       | [0.34,             |
| -1.11,       | -1.11,             |
| 0.78,        | 0.78 + 0.0001,     |
| 0.12,        | 0.12,              |
| 0.55,        | 0.55,              |
| 2.81,        | 2.81,              |
| -3.1,        | -3.1,              |
| -1.5,        | -1.5,              |
| 0.33,]       | 0.33,]             |
| loss 1.25347 | loss 1.25347       |

gradient dW:

```
[-2.5, 0.6, 0.6]
?, (1.25347 - 1.25347)(0.00001 = 0)
?, \frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}
?, (1.25347 - 1.25347)(0.00001 = 0)
```

- · Pros.
  - Easy to implement
  - Can use for black-box model
- · Cons.
  - Only gives you approximate
    - Cannot send  $\epsilon \to 0$ , due to finite precision
  - Very slow
    - Requires at least d+1 evaluations of  $f_{\theta}(\mathbf{x})$ , for d-dimensional parameter  $\theta$

# Analytic method

- Thus, we mainly use what we call the analytic method
- Idea. Derive an <u>analytic expression</u> of the gradient
  - Example. If  $g(x) = \sin(5 \cdot \exp(x))$ , we know that the gradients will be

$$g'(x) = 5 \cdot \cos(5 \cdot \exp(x)) \cdot \exp(x)$$

# Analytic method

- Thus, we mainly use what we call the analytic method
- · Idea. Derive an analytic expression of the gradient
  - Example. If  $g(x) = \sin(5 \cdot \exp(x))$ , we know that the gradients will be

$$g'(x) = 5 \cdot \cos(5 \cdot \exp(x)) \cdot \exp(x)$$

- Pros. Exact & Fast
- Cons. Requires a careful implementation for complicated functions
  - Often check correctness, using the numerical method (called "gradient check")

# Analytic forms of NN gradients, and backpropagation

# Analytic form of gradients

• Question. How do we derive an analytic form of  $\nabla_{\theta} f_{\theta}(\mathbf{x})$  for complicated functions?

$$f_{\theta}(\mathbf{x}) = \mathbf{W}_{L} \sigma(\mathbf{W}_{L-1} \sigma(\cdots \sigma(\mathbf{W}_{1} \mathbf{x} + \mathbf{b}_{1}) \cdots + \mathbf{b}_{L-1}) + \mathbf{b}_{L}$$



# Analytic form of gradients

• Question. How do we derive an analytic form of  $\nabla_{\theta} f_{\theta}(\mathbf{x})$  for complicated functions?

$$f_{\theta}(\mathbf{x}) = \mathbf{W}_{L}\sigma(\mathbf{W}_{L-1}\sigma(\cdots\sigma(\mathbf{W}_{1}\mathbf{x} + \mathbf{b}_{1})\cdots + \mathbf{b}_{L-1}) + \mathbf{b}_{L}$$

• Idea. View this as a composition of elementary operations

$$f_{\theta}(\mathbf{x}) = f_{\mathbf{b}_L} \circ f_{\mathbf{W}_L} \circ f_{\sigma_L} \circ \cdots \circ f_{\mathbf{W}_1}(\mathbf{x})$$

- Derivatives of elementary operations can be hard-coded
- Use chain rule to combine these
  - Let us see an example...

• Example. Consider a function

$$g(x, y, z) = (x + y) \cdot z$$

This can be viewed as a composition of two <u>elementary operations</u>

$$g(x, y, z) = g_2(g_1(x, y), z)$$

Addition:

$$g_1(a,b) = a + b$$

• Multiplication:

$$g_2(a,b) = a \cdot b$$



• Each elementary operation has <u>easy-to-write</u> gradients

$$\frac{\partial g_1}{\partial a} = 1, \frac{\partial g_1}{\partial b} = 1$$

$$\frac{\partial g_2}{\partial a} = b, \frac{\partial g_1}{\partial b} = a$$



• Each elementary operation has <u>easy-to-write</u> gradients

$$\frac{\partial g_1}{\partial a} = 1, \frac{\partial g_1}{\partial b} = 1$$

$$\frac{\partial g_2}{\partial a} = b, \frac{\partial g_1}{\partial b} = a$$

• Chain rule tells you that:

$$\frac{\partial g}{\partial x}(x, y, z) = \frac{\partial g_2}{\partial a}(g_1(x, y), z) \cdot \frac{\partial g_1}{\partial a}(x, y)$$

$$= z$$



• Each elementary operation has <u>easy-to-write</u> gradients

$$\frac{\partial g_1}{\partial a} = 1, \frac{\partial g_1}{\partial b} = 1$$

$$\frac{\partial g_2}{\partial a} = b, \frac{\partial g_1}{\partial b} = a$$

• Chain rule tells you that:

$$\frac{\partial g}{\partial x}(x, y, z) = \frac{\partial g_2}{\partial a}(g_1(x, y), z) \cdot \frac{\partial g_1}{\partial a}(x, y)$$

$$\frac{\partial g}{\partial y}(x, y, z) = \frac{\partial g_2}{\partial a}(g_1(x, y), z) \cdot \frac{\partial g_1}{\partial b}(x, y)$$

$$= z$$



• Each elementary operation has <u>easy-to-write</u> gradients

$$\frac{\partial g_1}{\partial a} = 1, \frac{\partial g_1}{\partial b} = 1$$

$$\frac{\partial g_2}{\partial a} = b, \frac{\partial g_1}{\partial b} = a$$

• Chain rule tells you that:

$$\frac{\partial g}{\partial x}(x,y,z) = \frac{\partial g_2}{\partial a}(g_1(x,y),z) \cdot \frac{\partial g_1}{\partial a}(x,y)$$

$$\frac{\partial g}{\partial y}(x, y, z) = \frac{\partial g_2}{\partial a}(g_1(x, y), z) \cdot \frac{\partial g_1}{\partial b}(x, y)$$



$$\frac{\partial g}{\partial z}(x, y, z) = \frac{\partial g_2}{\partial b}(g_1(x, y), z)$$
$$= g_1(x, y)$$

• Each elementary operation has <u>easy-to-write</u> gradients

$$\frac{\partial g_1}{\partial a} = 1, \frac{\partial g_1}{\partial b} = 1$$

$$\frac{\partial g_2}{\partial a} = b, \frac{\partial g_1}{\partial b} = a$$



Observation. Computing gradients requires intermediate values of the composite function.

Idea. We first compute all intermediate values, and then combine them to get gradients.

$$\frac{\partial g}{\partial z}(x, y, z) = \frac{\partial g_2}{\partial b}(g_1(x, y), z)$$
$$= g_1(x, y)$$

- Iteratively apply three steps:
  - 1. Forward Pass. Compute the function output, storing all intermediate values on memory
    - From input to output



- Iteratively apply three steps:
  - 1. Forward Pass. Compute the function output, storing all intermediate values on memory
    - From input to output



- Iteratively apply three steps:
  - 1. Forward Pass. Compute the function output, storing all intermediate values on memory
    - From input to output



- Iteratively apply three steps:
  - 2. Backward Pass. Compute the gradient, using stored values
    - From output to input



- Iteratively apply three steps:
  - 2. Backward Pass. Compute the gradient, using stored values
    - From output to input



## Neural network training

- Iteratively apply three steps:
  - 2. Backward Pass. Compute the gradient, using stored values
    - From output to input



## Neural network training

- Iteratively apply three steps:
  - 3. SGD. Update the parameters

$$x \leftarrow x - \eta \cdot 2$$
,  $y \leftarrow y - \eta \cdot 2$ ,  $z \leftarrow z - \eta \cdot 8$ 



$$f_{\mathbf{w}}(\mathbf{x}) = \frac{1}{1 + \exp(-(w_0 x_0 + w_1 x_1 + w_2))}$$



$$f_{\mathbf{w}}(\mathbf{x}) = \frac{1}{1 + \exp(-(w_0 x_0 + w_1 x_1 + w_2))}$$



$$f_{\mathbf{w}}(\mathbf{x}) = \frac{1}{1 + \exp(-(w_0 x_0 + w_1 x_1 + w_2))}$$



$$f_{\mathbf{w}}(\mathbf{x}) = \frac{1}{1 + \exp(-(w_0 x_0 + w_1 x_1 + w_2))}$$



$$f_{\mathbf{w}}(\mathbf{x}) = \frac{1}{1 + \exp(-(w_0 x_0 + w_1 x_1 + w_2))}$$



$$f_{\mathbf{w}}(\mathbf{x}) = \frac{1}{1 + \exp(-(w_0 x_0 + w_1 x_1 + w_2))}$$



$$f_{\mathbf{w}}(\mathbf{x}) = \frac{1}{1 + \exp(-(w_0 x_0 + w_1 x_1 + w_2))}$$



## Computational graphs of NNs

• For simple neural nets, the computation graph will be like:



## Computational graphs of NNs

- For simple neural nets, the computation graph will be like:
- For larger models, the computation graph will be like:
  - TensorFlow & PyTorch automatically constructs these for you.
  - Still, these will be DAGs (directed acyclic graphs)



# Concluding remarks

- This "backpropagation" requires a lot of memory!
  - Rule of thumb. Additional memory  $\approx 2$  Model size
  - Gradient Checkpointing. Re-compute activations when needed
- Gradients of some activations are cheaper to compute/store
  - e.g., ReLU
- If you are interested, check out the keyword "Automatic Differentiation"
  - https://arxiv.org/abs/1502.05767

## Next up

- More about optimization
  - Advanced optimizers
  - Training strategies
  - Network initialization

# Cheers