Prova 1 - Circuitos Digitais

Prof. Daniel Oliveira

Setembro de 2023

Nome:	

Exercício 1. [10 pontos] Faça as seguintes conversões de base mostrando as operações de divisão/multiplicação necessárias para atingir o resultado.

- a) $|1001110|_2 = |...|_8 = |...|_{10} = |...|_{16}$
- b) $|E4|_{16} = |...|_{10}$
- c) $|110, 1010|_2 = |\dots|_{10}$

Exercício 2. [20 pontos] Faça as seguintes equações convertendo de decimal para binário com 6 bits (tamanho da palavra) utilizando complemento de dois, mostrando os cálculos necessários para atingir o resultado. Indique também caso ocorra overflow:

- a) +25 18
- b) -20 19

Exercício 3. [5 pontos] Faça a extensão dos números abaixo passando de 6 para 12 bits considerando as representações.

- a) 110100 (sem sinal)
- b) 011101 (sinal magnitude)
- c) 111101 (sinal magnitude)
- d) 100111 (complemento de dois)
- e) 001010 (complemento de dois)

Exercício 4. [10 pontos] Considerando a Tabela 1, expresse a função S usando a Forma Normal Disjuntiva (FND), mintermos.

Exercício 5. [10 pontos] Considerando a Tabela 1, expresse a função P usando a Forma Normal Conjuntiva (FNC), maxtermos.

Exercício 6. [15 pontos] Considerando a Tabela 1, simplifique por mapa de Karnaugh a função S.

Exercício 7. [15 pontos] Desenhe o circuito lógico descrito pelas seguintes equações (não precisa simplificar).

a)
$$(\overline{A} + B) \cdot (\overline{B} + C)$$

b)
$$(\overline{A \cdot B} \cdot C) + (\overline{A} \cdot C)$$

Exercício 8. [15 pontos] Obtenha as equações que descrevem os seguintes circuitos, indicando o nome de cada saída:

A	В	С	D	S(A, B, C, D)	P(A, B, C, D)
0	0	0	0	0	1
0	0	0	1	1	1
0	0	1	0	1	1
0	0	1	1	0	1
0	1	0	0	0	0
0	1	0	1	1	0
0	1	1	0	0	0
0	1	1	1	1	0
1	0	0	0	0	1
1	0	0	1	0	1
1	0	1	0	0	1
1	0	1	1	1	1
1	1	0	0	1	0
1	1	0	1	0	0
1	1	1	0	1	0
1	1	1	1	1	1

Tabela 1: Tabela verdade para as funções S(A,B,C,D) e P(A,B,C,D), onde A, B, C e D são quatro sinais de entrada.