Name Date

5IT-OS-Internal Unit Test 2

1. A situation where several processes access and manipulate the same data		
con	currently and the outcome of the execution depends on the particular	
ord	er in which access takes place is called: points: 1	
0	data	
	consistency	
\circ	race condition	
0	aging	
0	starvation	
2. T	The segment of code in which the process may change common variables,	
upd	late tables, write into files is known as: points: 1	
0	program	
0	critical	
	section	
\circ	non – critical	
	section	
0	synchronizing	
	he following three conditions must be satisfied to solve the critical section	
pro	blem: points: 1	
0	Mutual	
	Exclusion	
0	Progress	
\circ	Bounded	
	Waiting	
0	All of the	
	mentioned	

4. When there is enough memory to fit a process in memory, but space is no
contiguous we need points: 1
○ Internal
Fragmentation
○ Virtual
Fragmentation
○ External
Fragmentation
O None of
them
5. Which memory allocation policy allocates the largest hole to the process? <i>points:</i> 1
O Best-Fit
O Worst-Fit
O First-Fit
O None of
them
6. Which of the following is not the approach to Handling Deadlocks points:
O Deadlock
Prevention
Deadlock Avoidance
O Detect &
Recover
O Virtual Memory
7. Paging is implemented in points: 1
Operating
System
○ Hardware
○ Software
○ All of
them

8. V	Which of the following is NOT a valid deadlock prevention scheme? $$ $points:$ 1
0	Release all resources before requesting a new resource
0	
	than the last one requested.
0	Never request a resource after releasing any
$\overline{}$	resource
O	Request and all required resources be allocated before execution
	Consider a machine with 64 MB physical memory and a 32-bit virtual
	Iress space. If the page size is 4KB, what is the approximate size of the je table? <i>points: 3</i>
0	16 MB
0	8 MB
0	2 MB
0	24 MB
10.	Using a larger block size in a fixed block size file system leads to $points: 1$
0	better disk throughput but poorer disk space utilization
0	better disk throughput and better disk space utilization
0	poorer disk throughput but better disk space utilization
0	poorer disk throughput and poorer disk space utilization
	Consider the virtual page reference string 1, 2, 3, 2, 4, 1, 3, 2, 4, 1 On a
	nand paged virtual memory system running on a computer system that in memory size of 3 pages frames which are initially empty. Let LRU, FIFO,
	In memory size of 5 pages frames which are initially empty. Let Lko, FIFO, I OPTIMAL denote the number of page faults under the corresponding page
	lacements policy. Then points: 3
_	OPTIMAL < LRU <
_	FIFO
\circ	OPTIMAL < FIFO <
\bigcirc	LRU OPTIMAL = LRU
0	OPTIMAL = LRU OPTIMAL =
O	FIFO
	··· -

tab	le for translating virtual address to physical address because: points: 1
0	it reduces the memory access time to read or write a memory location
0	it helps to reduce the size of page table needed to implement the virtual address space of a process
0	it is required by the translation look aside buffer
0	it helps to reduce the number of page faults in page replacement algorithms
13.	The is used as an index into the page table. points: 1
0	frame bit
0	page number
0	page offset
0	frame offset
14.	The table contains the base address of each page in physical memory
poi	ints: 1
0	process
0	memory
0	page
0	frame
	If deadlocks occur frequently, the detection algorithm must be invoked points: 1
0	rarely
0	frequently
0	rarely &
_	frequently
0	none of the
	mentioned

12. A multilevel page table is preferred in comparison to a single-level page

	. In paging the user provides o rdware into and		wnich is partitioned by the
	one address, page number, offse	•	
	one offset, page number,	CC	
	address		
0	page number, offset,		
	address		
0	none of the		
	mentioned		
17.	. Each entry in a segment table	e has a :	points: 1
0	segment		
	base		
0	segment		
_	peak		
O	segment		
\bigcirc	value		
0	none of the mentioned		
	mendoned		
18.	. What is the drawback of the l	banker's	algorithm? points: 1
0	in advance processes rarely kno need	w that hov	v much resource they will
0	the number of processes change	es as time	
	progresses		
0	resource once available can		
\circ	disappear		
O	all of the mentioned		
	mentioned		
19.	. To avoid deadlock points: 1		
0	there must be a fixed number of	f resources	s to
_	allocate		
\circ	resource allocation must be don	e only	
\bigcirc	Once		
\cup	 all deadlocked processes must b aborted 	JE	
0			
O	used		

20.	Deadlock prevention is a set of methods: points. 1
0	to ensure that at least one of the necessary conditions cannot hold
0	to ensure that all of the necessary conditions do not hold
0	to decide if the requested resources for a process have to be given or not
\cap	to recover from a
Ŭ	deadlock
21.	Physical memory is broken into fixed-sized blocks called points: 1
0	frames
0	pages
0	backing store
0	none of the
	mentioned
	Logical memory is broken into blocks of the same size called
-	ints: 1
_	frames
	pages
	backing store
O	none of the
	mentioned
23.	Paging increases the time. points: 1
0	waiting
0	execution
0	context - switch
0	all of the
	mentioned
24.	Smaller page tables are implemented as a set of points: 1
0	queues
0	stacks
0	counters
0	registers

25.	The page table registers should be built with points: 1
0	very low speed
	logic
0	very high speed
	logic
0	a large memory
	space
0	none of the
	mentioned
26.	For non-sharable resources like a printer, mutual exclusion: points: 1
0	must exist
0	must not exist
0	may exist
0	none of the
	mentioned