Chapitre 4

Dérivabilité des fonctions

I. <u>Dérivabilité d'une fonction</u>

1) Taux de variation

Définition:

Soit I un intervalle contenant un nombre réel a et f une fonction définie sur I.

Le nombre $\tau(h) = \frac{f(a+h) - f(a)}{h}$ est appelé **taux de variation** de f entre a et a+h.

Remarque:

A(a; f(a)) et M(a+h; f(a+h)) appartiennent à \mathcal{C}_f . Le coefficient directeur de la droite (AM) est donc $\frac{f(a+h)-f(a)}{a+h-a}$, soit $\tau(h)$.

Le nombre $\tau(h)$ dépend de a.

2) Nombre dérivé

Définition:

Soit I un intervalle contenant un nombre réel a et f une fonction définie sur I.

On dit que la **fonction** f **est dérivable en** a si la limite du rapport $\frac{f(a+h)-f(a)}{h}$ lorsque h tend vers 0, avec a+h dans I, existe et est égale à un nombre réel ℓ .

Ce nombre ℓ est appelé **nombre dérivé de la fonction f en a**. On le note f'(a).

On a donc:

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \emptyset$$

Exemple:

Soit f la fonction définie sur \mathbb{R} par $f(x)=x^3$ et a=1.

Pour
$$h \neq 0$$
, on a $\frac{f(a+h)-f(a)}{h} = \frac{(1+h)^3-1^3}{h} = \frac{(1+3h+3h^2+h^3)-1}{h} = 3+3h+h^2$.

On a vu que $\lim_{h \to 0} h^2 + 3h + 3 = 3$.

Donc la fonction f est dérivable en 1 et le nombre dérivé de f en 1 vaut 3. Donc f'(1)=3 .

3) Interprétation graphique

Propriété:

Soit f une fonction définie sur un intervalle I, dérivable en a, nombre réel appartenant à I, et de nombre dérivé ℓ en a.

Soit \mathcal{C}_f la courbe représentative de la fonction f dans un repère $(O; \vec{i}, \vec{j})$ du plan, A le point de \mathcal{C}_f d'abscisse a et M le point de \mathcal{C}_f d'abscisse a+h avec a+h appartenant à I et $h\neq 0$.

Le nombre dérivé ℓ de f en a est la limite du coefficient directeur de la droite (AM) lorsque le point M se rapproche du point A, c'est-à-dire lorsque h tend vers 0.

4) Fonction dérivée f

Définition:

Une fonction f est **dérivable sur un intervalle I** lorsqu'elle est dérivable en tout nombre réel x appartenant à I.

Définition:

Soit *f* une fonction définie et dérivable sur un intervalle I.

La fonction définie sur I qui, à tout nombre réel x, fait correspondre le nombre dérivé de la fonction f en x est appelée **fonction dérivée** de f.

La fonction dérivée de f est notée f'.

Exemples:

• Pour la fonction f définie sur \mathbb{R} par f(x)=k (k fixé),

pour tout
$$x \in \mathbb{R}$$
 et $h \neq 0$: $\frac{f(x+h) - f(x)}{h} = \frac{k-k}{h} = 0$

Ainsi on a:

$$(k)': x \mapsto f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} 0 = 0$$

• Pour la fonction f définie sur \mathbb{R} par f(x)=x,

pour tout
$$x \in \mathbb{R}$$
 et $h \neq 0$: $\frac{(x+h)-x}{h} = \frac{h}{h} = 1$

Ainsi on a:

$$(x)': x \mapsto f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} 1 = 1$$

• Pour la fonction f définie sur \mathbb{R} par $f(x) = x^2$

pour tout
$$x \in \mathbb{R}$$
 et $h \neq 0$: $\frac{(x+h)^2 - x^2}{h} = \frac{x^2 + 2xh + h^2 - x^2}{h} = 2x + h$

Ainsi on a:

$$(x^2)': x \mapsto f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} 2x + h = 2x$$

• Pour la fonction f définie sur $[0;+\infty[$ par $f(x)=\sqrt{x}$,

pour tout $x \in [0; +\infty[$ et $h \neq 0$:

$$\frac{\sqrt{x+h} - \sqrt{x}}{h} = \frac{\sqrt{x+h} - \sqrt{x}}{h} \times \frac{\sqrt{x+h} + \sqrt{x}}{\sqrt{x+h} + \sqrt{x}} = \frac{x+h-x}{h(\sqrt{x+h} + \sqrt{x})}$$

$$\frac{f(x+h)-f(x)}{h} = \frac{1}{\sqrt{x+h}+\sqrt{x}} \text{ de plus } \lim_{h\to 0} \sqrt{x+h} = \sqrt{x}$$

Ainsi, pour $x \in]0;+\infty[$:

$$(\sqrt{x})': x \mapsto f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{1}{\sqrt{x+h} + \sqrt{x}} = \frac{1}{2\sqrt{x}}$$

• Pour la fonction f définie sur \mathbb{R}^* par $f(x) = \frac{1}{x}$,

pour tout
$$x \in \mathbb{R}^*$$
 et $h \neq 0$: $\frac{\frac{1}{(x+h)} - \frac{1}{x}}{h} = \frac{\frac{x - (x+h)}{x(x+h)}}{h} = \frac{-h}{x(x+h)} \times \frac{1}{h} = -\frac{1}{x(x+h)}$

Ainsi on a:

$$\left(\frac{1}{x}\right)': x \mapsto f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} -\frac{1}{x(x+h)} = -\frac{1}{x^2}$$

5) Continuité et dérivabilité

Propriété (admise):

Toute fonction **dérivable** sur un intervalle *I* est **continue** sur *I*.

Remarque:

La réciproque de ce théorème est fausse : les fonctions valeur absolue et racine carrée, par exemple, ne sont pas dérivables en 0, mais sont continues en 0.

Remarques:

Ne pas confondre continuité et dérivabilité.

- Une fonction f est **continue en** a si la courbe \mathcal{C}_f ne présente pas de saut en son point d'abscisse a.
 - Une fonction f est **dérivable en** a si la courbe \mathcal{C}_f admet une tangente non verticale en son point d'abscisse a.

II. Tangente à une courbe

1) Tangente en un point à une courbe

Définition:

Soit f une fonction définie sur un intervalle I, dérivable en a, nombre réel appartenant à I.

Soit \mathcal{C}_f la courbe représentative de la fonction f dans un repère $(O; \vec{i}, \vec{j})$ du plan et A le point de \mathcal{C}_f d'abscisse a.

La tangente à la courbe \mathcal{C}_f au point A est la droite passant par A et ayant comme coefficient directeur le nombre dérivé f'(a).

Exemple:

Soit f la fonction définie sur l'intervalle \mathbb{R} par :

$$f(x)=x^3$$

Le point A d'abscisse a=1 de la courbe \mathcal{C}_f a comme coordonnées (1;1). De plus, le nombre dérivé de f en a=1 est égal à f'(1)=3.

La tangente à la courbe \mathcal{C}_f au point A est la droite passant par A et ayant comme coefficient directeur 3.

Remarque:

Le point A(a; f(a)) est le point de contact de la tangente et de \mathcal{C}_f .

2) Équation d'une tangente à une courbe

Propriété:

Soit \mathcal{C}_f la courbe représentative d'une fonction f dans un repère $(O; \vec{i}, \vec{j})$ du plan, A un point de \mathcal{C}_f d'abscisse a et f'(a) le nombre dérivé de f en a.

Une **équation de la tangente** à \mathcal{C}_f en A est :

$$y=f'(a)(x-a)+f(a)$$

Exemple:

Soit f la fonction définie sur l'intervalle $\mathbb R$ par $f(x)=x^3$ et le point A d'abscisse a=1 de la courbe $\mathcal C_f$.

On a: a=1; $f(a)=1^3=1$; f'(a)=3.

D'où
$$y=f'(a)(x-a)+f(a)=3(x-1)+1=3x-2$$
.

Une équation de la tangente à la courbe \mathcal{C}_f au point A est donc y=3x-2.

III. Formules de dérivées

1) <u>Dérivées et opérations</u>

Dérivée d'une somme de fonctions

Propriété:

La somme u+v de deux fonctions dérivables sur un intervalle I est une fonction dérivable sur I et :

$$(u+v)'=u'+v'$$

Exemple:

La fonction f définie sur \mathbb{R} par $f(x)=x^2+x$ est la somme de deux fonctions u et v définies par $u(x)=x^2$ et v(x)=x

Or u et v sont dérivables sur \mathbb{R} et u'(x)=2x et v'(x)=1

Donc pour tout $x \in \mathbb{R}$, f'(x) = 2x + 1.

Dérivée d'un produit de fonctions

Propriété:

Le produit uv de deux fonctions dérivables sur un intervalle I est une fonction dérivable sur I et :

$$(uv)'=u'v+uv'$$

Exemple:

La fonction f définie sur $[0; +\infty[$ par $f(x)=x\sqrt{x}$ est le produit des deux fonctions u et v définies par u(x)=x et $v(x)=\sqrt{x}$.

Or u et v sont dérivables sur $]0;+\infty[$ et on a vu que : u'(x)=1 et $v'(x)=\frac{1}{2\sqrt{x}}$.

Donc, pour tout x > 0, $f'(x) = \sqrt{x} + x \times \frac{1}{2\sqrt{x}} = \frac{3}{2}\sqrt{x}$.

Propriété:

Soit *u* une fonction dérivable sur un intervalle *I* et *k* un nombre réel.

La dérivée de *ku* est *k* fois la dérivée de *u*.

Si k est une constante : $(ku)'(x) = k \times u'(x)$.

Exemple:

Soit la fonction trinôme définie par $f(x)=2x^2+8x+3$.

En utilisant les règles de calculs des dérivées on obtient :

$$f'(x) = 2 \times 2x + 8 \times 1 + 0 = 4x + 8$$

Dérivée d'un quotient de fonctions

Propriété:

u et *v* sont deux fonctions dérivables sur un intervalle *I*.

De plus, pour tout x de I, $v(x) \neq 0$.

Le quotient $\frac{u}{v}$ est une fonction dérivable sur *I*, et :

$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$

Exemple:

La fonction f définie sur $]-\infty;1[\,\cup\,]1;+\infty[$ par $f(x)=\frac{x}{x-1}$ est le quotient des fonctions u et v définies par : u(x)=x et v(x)=x-1

v ne s'annule pas sur chacun des intervalles $]-\infty;1[$ et $]1;+\infty[$ et u et v sont dérivables sur ces intervalles : u'(x)=1 et v'(x)=1 .

6

Donc f est dérivable sur $]-\infty;1[\,\cup\,]1;+\infty[$ et $f'(x)=\frac{1\times(x-1)-x\times1}{(x-1)^2}$

Ainsi pour tout $x \in]-\infty; 1[\cup]1; +\infty[, f'(x) = \frac{-1}{(x-1)^2}]$.

Propriété:

v est une fonction dérivable sur un intervalle I telle que, pour tout $x \in I$, $v(x) \neq 0$.

Alors la fonction
$$\frac{1}{v}$$
 est dérivable sur I et : $\left(\frac{1}{v}\right)' = \frac{-v'}{v^2}$.

Exemple:

La fonction f définie sur \mathbb{R} par $f(x) = \frac{1}{x^2 + 1}$ est l'inverse de la fonction v définie par $v(x) = x^2 + 1$ ($v(x) \neq 0$ pour tout réel x).

Or pour tout réel
$$x$$
, $v'(x)=2x$. Donc $f'(x)=\frac{-2x}{(x^2+1)^2}$.

2) <u>Dérivées usuelles</u>

À partir des règles de calcul sur les fonctions dérivées établies on peut dresser un tableau des dérivées usuelles à connaître.

fonction f	Ensemble de définition $\operatorname{de} f$	Ensemble de dérivabilité de f	fonction dérivée f'	
f(x) = k (k constante)	${\mathbb R}$	\mathbb{R}	f'(x)=0	
f(x)=x	\mathbb{R}	\mathbb{R}	f'(x)=1	
$f(x)=x^2$	\mathbb{R}	\mathbb{R}	f'(x)=2x	
$f(x) = x^n $ $(n \in \mathbb{N}^*)$	\mathbb{R}	\mathbb{R}	$f'(x) = n \times x^{n-1}$	
$f(x) = \frac{1}{x}$	\mathbb{R}^*	\mathbb{R}^*	$f'(x) = -\frac{1}{x^2}$	
$f(x) = \frac{1}{x^2}$	\mathbb{R}^*	\mathbb{R}^*	$f'(x) = -\frac{2}{x^3}$	
$f(x) = \frac{1}{x^n}$ $(n \in \mathbb{N}^*)$	\mathbb{R}^*	\mathbb{R}^*	$f'(x) = -\frac{n}{x^{n+1}}$	
$f(x) = \sqrt{x}$	[0;+∞[]0;+∞[$f'(x) = \frac{1}{2\sqrt{x}}$	

3) <u>Dérivée d'une fonction composée</u>

Fonction composée

Définition:

Soit u une fonction définie et dérivable sur un intervalle I, à valeurs dans un intervalle J, et g une fonction définie et dérivable sur J.

La fonction composée des fonctions u et g, notée $g \circ u$, est définie sur I par $g \circ u(x) = g(u(x))$.

Exemple:

Soit *u et g* les fonctions suivantes :

$$u: I = [0; +\infty[\rightarrow J = [0; +\infty[$$
 et $g: J = [0; +\infty[\rightarrow \mathbb{R}$
 $x \mapsto x^2 + x$ $x \mapsto \sqrt{x}$

La fonction composée est la fonction $g \circ u : I \to \mathbb{R}$

$$x \mapsto g(u(x)) = \sqrt{x^2 + x}$$

Remarques:

• Sur l'exemple précédent, $u \circ g$ est définie par : $u \circ g : [0; +\infty[\to [0; +\infty[$

$$x \mapsto x + \sqrt{x}$$

• Pour $f(x) = \sqrt{u(x)}$

$$u: E \to]0; +\infty[$$
 et $g:]0; +\infty[\to \mathbb{R}$
 $x \mapsto u(x)$ $x \mapsto \sqrt{x}$

La fonction f peut s'écrire $f = g \circ u : E \to \mathbb{R}$

$$x \mapsto \sqrt{u(x)}$$

• Pour $f(x)=(u(x))^n$

$$u: E \to \mathbb{R}$$
 et $g: \mathbb{R} \to \mathbb{R}$ $x \mapsto u(x)$ $x \mapsto x^n$

La fonction f peut s'écrire $f = g \circ u : E \to \mathbb{R}$

$$x \mapsto (u(x))^n$$

• Pour g(x) = f(ax+b)

$$u: E \to \mathbb{R}$$
 et $f: \mathbb{R} \to \mathbb{R}$ $x \mapsto ax + b$ $x \mapsto f(x)$

La fonction g peut s'écrire $g = f \circ u : E \to \mathbb{R}$

$$x \mapsto f(ax+b)$$

Propriété: non commutativité de la composition de fonctions

La composée de fonctions n'est pas commutative.

Exemple:

Soit trois fonctions u, v et w définies par $u: x \mapsto x^2 - 2$, $v: x \mapsto e^x$

- $u \circ v(x) = u(v(x)) = u(e^x) = (e^x)^2 2 = e^{2x} 2$
- $v \circ u(x) = v(u(x)) = v(x^2 2) = e^{x^2 2}$

Donc $u \circ v(x) \neq v \circ u(x)$.

Dérivation

Propriété:

Soit u une fonction définie et dérivable sur un intervalle E, à valeurs dans un intervalle F et g une fonction définie et dérivable sur F.

La fonction $f: x \mapsto g(u(x))$ est dérivable en tout nombre réel x de E et sa dérivée est la fonction :

$$(g \circ u)' : x \mapsto g'(u(x)) \times u'(x)$$
.

Exemple:

La fonction f définie sur $]0;+\infty[$ par $f(x)=\frac{1}{\sqrt{x}}$ est la composée de la fonction $u:x\mapsto \sqrt{x}$ définie et dérivable sur $]0;+\infty[$, à valeurs dans $]0;+\infty[$, et de la fonction $g:x\mapsto \frac{1}{x}$ définie et dérivable sur $]0;+\infty[$.

On sait que
$$u'(x) = \frac{1}{2\sqrt{x}}$$
 et $g'(x) = -\frac{1}{x^2}$.

La fonction f est dérivable et sa dérivée est donnée par :

$$u'(x) \times g'(u(x)) = \frac{1}{2\sqrt{x}} \times -\frac{1}{(\sqrt{x})^2} = \frac{-1}{2x\sqrt{x}}$$

Cas particuliers:

- La fonction f, définie sur I par $f(x) = e^{u(x)}$, est dérivable sur I et $f'(x) = u'(x)e^{u(x)}$.
- Si, pour tout x de I, u(x) > 0, alors la fonction f définie sur I par $f(x) = \sqrt{u(x)}$ est dérivable sur I et $f'(x) = \frac{u'(x)}{2\sqrt{u(x)}}$.
- Soit n, un entier relatif non nul, et f la fonction définie sur I par $f(x) = (u(x))^n$.
 - Si $n \ge 1$, alors f est dérivable sur I et $f'(x) = n u'(x) (u(x))^{n-1}$.
 - Si $n \le -1$ et si u ne s'annule pas sur I, alors f est dérivable sur I et

$$f'(x) = n u'(x) (u(x))^{n-1}$$
.

• Soit a et b deux nombres réels et f une fonction définie et dérivable sur \mathbb{R} .

La fonction $x \mapsto f(ax + b)$ est dérivable en tout nombre réel x et sa dérivée est la fonction :

$$x \mapsto a \times f'(ax + b)$$

Exemple:

La fonction g définie sur $\mathbb{R} \setminus \left\{ -\frac{5}{3} \right\}$ par $g(x) = \frac{1}{3x+5}$ est dérivable sur $\mathbb{R} \setminus \left\{ -\frac{5}{3} \right\}$.

Pour tout x de $\mathbb{R} \setminus \left\{ -\frac{5}{3} \right\}$, g(x) = f(3x+5) avec $f(x) = \frac{1}{x}$ or $f'(x) = -\frac{1}{x^2}$.

Par conséquent, pour tout x de $\mathbb{R}\setminus\left\{-\frac{5}{3}\right\}$, $g'(x)=\frac{-3}{(3x+5)^2}$.

IV. Fonction dérivée et étude de fonction

1) Interprétation graphique

Dire que f est dérivable sur I signifie que, pour tout réel x de I, la courbe \mathcal{C}_f , représentant la fonction f, admet une seule tangente, de coefficient directeur :

Il semble donc exister un lien entre les variations de f et le signe de f.

2) Sens de variation

Propriété:

Soit f une fonction dérivable sur un intervalle I.

- Si la fonction f est **croissante** sur I, alors la dérivée est **positive** sur I.
- Si la fonction f est **décroissante** sur I, alors la dérivée est **négative** sur I.
- Si la fonction f est **constante** sur I, alors la dérivée est **nulle** sur I.

Exemple:

f est croissante sur [-1; 1]:

Propriété:

Soit f une fonction dérivable sur un intervalle I.

- Si la dérivée est **positive** sur I, alors la fonction f est **croissante** sur I.
- Si la dérivée est **négative** sur I, alors la fonction f est **décroissante** sur I.
- Si la dérivée est **nulle** en toute valeur de I, alors la fonction f est **constante** sur I.

Remarque:

L'étude du signe de la dérivée permet donc de donner le sens de variation d'une fonction.

Exemple:

Pour la fonction f définie sur \mathbb{R} par $f(x)=x^2$, nous avons vu que f'(x)=2x, on a donc :

x			0		+∞
f'(x)=2x		_	0	+	
$f(x) = x^2$	+∞		0	1	+∞

Remarque:

Pour étudier les variations d'une fonction f, il n'est pas systématiquement nécessaire de déterminer la fonction dérivée f' et d'en étudier le signe.

Par exemple, soit g définie sur]2;+ ∞ [par $g(x) = \frac{1}{x^3 - 8}$.

On sait que la fonction $x \mapsto x^3$ est croissante sur $]2;+\infty[$ donc g est décroissante sur $]2;+\infty[$.

V. Extremum

1) Extremum local

Définitions:

Soit I une fonction f définie sur un intervalle I.

- On dit que f admet un **minimum local** en a, s'il existe un intervalle ouvert J inclus dans I, contenant a et tel que pour tout x de J, $f(x) \ge f(a)$.
- On dit que f admet un **maximum local** en a, s'il existe un intervalle ouvert J inclus dans I, contenant a et tel que pour tout x de J, $f(x) \le f(a)$.

Exemple:

Soit f une fonction définie sur l'intervalle [-8 ; 7] dont voici le tableau de variations :

D'après le tableau de variations, $f(x) \ge f(-1)$ pour tout x appartenant à l'intervalle]-8 ; 4[, donc la fonction f admet un minimum local en -1 qui vaut -2.

Ce n'est pas le minimum de la fonction car f(7) = -5.

2) Lien avec la dérivation

Propriété:

Soit f une fonction dérivable sur un intervalle ouvert I et a un nombre réel appartenant à I.

Si la fonction admet un **extremum** en a, alors f'(a) = 0.

Remarque:

Si f(a) est un extremum local, alors la tangente à la courbe représentative de f au point d'abscisse a est parallèle à l'axe des abscisses.

Propriété:

Soit f une fonction dérivable sur un intervalle ouvert I et a un nombre réel appartenant à I.

Si la dérivée s'annule en **changeant de signe** en a, la fonction admet un extremum en a.

Remarques:

• L'hypothèse du changement de signe est nécessaire.

La fonction $x \mapsto x^3$ n'admet pas d'extremum sur \mathbb{R} , pourtant elle a une dérivée qui s'annule en x=0 (mais la dérivée ne change pas de signe).

• Pour l'intervalle I, l'hypothèse qu'il soit ouvert permet d'éviter que le nombre réel *a* soit une de ses extrémités. Si tel est le cas, l'étude des variations permet de conclure.

Par exemple, dans la situation ci-contre où f admet un maximum en a.

