

What is texture?

- ☐ An essential concept in image analysis
- ☐ Texture consists of texture **primitives** or **elements** called **texels**
 - □ a contiguous set of pixels with some tonal and/or regional property
- ☐ A texture can be characterized by **tone** (intensity properties) and **structure** (spatial relationships)
- ☐ Textures are highly **scale dependent**, we may have **hierarchical** textures

No precise definition of texture exists

□ "An image region has a constant texture if a set of its local properties in that region is constant, slowly changing, or approximately periodic."

What texture analysis is used for

- ☐ To **segment** an image into regions with the same texture, i.e. as a complement to greylevel or color
- ☐ To recognize or **classify** objects based on their texture

- ☐ For texture analysis image transforms are usually quite useful:
 - ☐ Gradient image, magnitude of 3x3 gradient
 - □ Laplace image, laplace operator values
 - □ Flat texture image, image median image, parameter R, size of median window
 - ☐ Rice field image, based on topological gradients through watersheds

Examples of transforms, removing average graylevel (Gradient image, Laplacian image, Flat texture image)

Texture features from the transformed images

- □ All the histogram and moment features extracted from the transformed images express texture.
- ☐ Some features found particularly useful:
 - ☐ Skewness of gradient value distribution
 - ☐ Total integrated gradient intensity
 - ☐ Standard deviation of laplace image
 - □ Average of flat texture image show unbalance in light/dark particle distributions, std quantifies contrast, the moments of the flat texture image are often quite useful

Texture based on second order statistics

- □ Autocorrelation function
 - □ can evaluate for different distances in x and y or r
- □ Spatial frequencies
 - □ integrate over annular rings or wedges in Fourier space □ can be computed optically
 - ☐ Gabor filters combines orientation and frequency
- □ Edge frequency
- □ Co-occurrence matrices
 - □ by far the most frequently used texture descriptor

Texture measure: GLCM

	0	1	2	3	4	5
0	22	8	4	3	5	1
1	12	18	10	9	7	2
2	8	16	19	9	5	4
3	7	14	20	21	13	9
4	5	8	14	19	24	11
5	3	6	13	18	20	21

Gray Level Co-occurrence Matrix

Co-occurrence matrix considerations

- $\hfill\square$ Will have the size of the # of graylevels squared
 - □ Often reduces graylevels to 16, 32 or 64
- ☐ Depends on absolute graylevel☐ use normalization e.g. Histogram equalization
- ☐ Depends on texture orientation
 ☐ use average, min, max or max-min over all orientations
- ☐ Generates very many strongly correlated features ☐ needs large data sets for evaluation and validation

How to use co-occurrence matrices

- ☐ Gives a high-dimensional texture description
- ☐ Can use directly to measure statistical distances between different textures
- ☐ Usually used by extracting secondary features
 ☐ The Haralick features, the first and most popular
 ☐ Extended and modified by many others

Co-occurrence matrix features

- ☐ The classical way of expressing texture according to Haralick
 - □ 14 features defined
 - ☐ Based mainly on extinction and texture image
 - □ Normalized by
 - $\hfill\square$ Histogram equalization
 - ☐ Linear stretch
- ☐ Typically done with reduced orientation dependence by summing over different directions

Haralick texture features

1.angular 2nd moment 8.sum entropy 2.contrast 9.entropy

3.correlation 10.difference variance
4.variance 11.difference entropy
5 inverse 2nd difference 12 measure of correlations.

5.inverse 2nd diff. moment 12.measure of correlation 1 6.sum average 13.measure of correlation 2

7.sum variance 14.local mean

Some definitions of Haralick features

 \square Energy: $\Sigma\Sigma$ P²(a,b)

a b

 \square Entropy: $\Sigma P(a,b)\log_2 P(a,b)$

 \square Maximum probability: max P(a,b)

 \square Contrast: $\sum |a-b|^{\kappa} P^{\lambda}(a,b)$,

typically $\kappa=2$, $\lambda=1$, also $\kappa<0$ if a $\neq b$

□ Correlation: defined as usually

☐ Many other variants common

Texture based on higher order statistics

- □ Experiments have shown only 2nd order needed
- □ Run length codes
 - ☐ Histograms of greylevel run lengths in various directions
- □ Laws texture energy measures
 - ☐ five masks based on combined 0,1,2 derivatives
- ☐ Fractal texture descriptors
- ☐ Mathematical morphology based, openings
- ☐ Wavelet based new promising approaches

Run-length texture features

- □ Normalized as for co-occurrence features
- ☐ Five features calculated:
 - ☐ Short run emphasis (divided by run squared)
 - □Long run emphasis (multiplied by --"--)
 - ☐ Gray level nonuniformity (run length sum squared)
 - □Run length nonuniformity (gray levels sum squared)
 - □Run length percentage 1/A * double sum

Structure features also called contextual features

- ☐ Some transform, typically the flat field image or the rice field images are used to define small texture objects through segmentation
- ☐ From each of these objects various intensity measures are obtained from the original (extinction) image
- ☐ Statistics describing the distributions of these measures are often useful features

The rice field image

- ☐ Carry out a watershed transform
- ☐ All pixels in each watershed region is replaced by corresponding extreme value
- □ Can be generated for 255 image, resulting in upper rice field (vs lower rice field)
- \square Topological gradient = RU RL
- ☐ Second difference D2 = (RU+RL)/2-image ☐ Threshold at 0 defines HU and HL

Hybrid methods Primitives are defined based on statistical measures These are related to each other through syntactical methods

