Snake.

Adil Salim

Telecom ParisTech

June 28, 2017

Joint work with Pascal Bianchi and Walid Hachem

Table of Contents

Preliminary: Stochastic Proximal Gradient algorithm

Total Variation regularized Risk minimization

Application of Stochastic Proximal Gradient algorithm

Snake algorithm

Stochastic Gradient algorithm

General Problem:

$$\min_{x \in \mathcal{X}} F(x)$$

with F convex over \mathcal{X} , Euclidean space. If F differentiable, Gradient algorithm:

$$x_{n+1} = x_n - \gamma \nabla F(x_n)$$

In ML, ∇F often intractable. Stochastic Gradient algorithm:

$$x_{n+1} = x_n - \gamma_n \nabla_x f(x_n, \xi_{n+1})$$

with (ξ_n) iid, and

$$\mathbb{E}_{\xi}(f(x,\xi_1))=F(x).$$

Proximal Gradient algorithm

General Problem:

$$\min_{x \in \mathcal{X}} F(x) + R(x)$$

with F, R convex over \mathcal{X} , Euclidean space.

If F differentiable, Proximal Gradient algorithm:

$$x_{n+1} = \operatorname{prox}_{\gamma R}(x_n - \gamma \nabla F(x_n))$$

where the proximity operator

$$\operatorname{prox}_{\gamma R}(x) = \arg\min_{y \in \mathcal{X}} \frac{1}{2\gamma} ||x - y||^2 + R(y).$$

Stochastic Proximal Gradient algorithm

In ML, $prox_{\gamma R}$ often intractable.

Stochastic Proximal Gradient algorithm:

[Atchadé et al.'16],[BH'16]

$$x_{n+1} = \operatorname{prox}_{\gamma_n r(\cdot, \xi_{n+1})} (x_n - \gamma_n \nabla_x f(x_n, \xi_{n+1}))$$

with

- \blacktriangleright (ξ_n) iid
- $ightharpoonup \gamma_n > 0, \ \gamma_n \downarrow 0$
- $\mathbb{E}(f(x,\xi_1)) = F(x)$
- $\blacktriangleright \mathbb{E}(r(x,\xi_1)) = R(x).$

Theorem [BH'16]: Under mild assumptions, $x_n \longrightarrow_{n \to +\infty} x_*$ where $x_* \in \arg\min_{\mathcal{X}} F + R$ a.s.

Table of Contents

Preliminary: Stochastic Proximal Gradient algorithm

Total Variation regularized Risk minimization

Application of Stochastic Proximal Gradient algorithm

Snake algorithm

Problem Statement

Consider

- ▶ An undirected graph G = (V, E)
- A vector of parameters over the nodes $x \in \mathbb{R}^V$
- ▶ The **Total Variation** (TV) regularization over *G*

$$\mathrm{TV}(x,G) = \sum_{\{i,j\} \in E} |x(i) - x(j)|.$$

Our problem:

$$\min_{x \in \mathbb{R}^V} F(x) + \text{TV}(x, G) \tag{1}$$

with $F: \mathbb{R}^V \to \mathbb{R}$ convex, differentiable.

Example: Trend Filtering on Graphs [Wang et al.'16]

Figure 1: $\min_{x \in \mathbb{R}^V} \frac{1}{2} ||x - y||^2 + \text{TV}(x, G)$

Problem Statement

Proximal Gradient algorithm

$$x_{n+1} = \text{prox}_{\gamma \text{TV}(.,G)}(x_n - \gamma \nabla F(x_n))$$

The computation of $prox_{TV(.,G)}(y)$ is

► Fast when the graph *G* is a path graph : **Taut String algorithm** [Condat'13],[Johnson'13],[Barbero and Sra'14].

Difficult over general large graphs

Table of Contents

Preliminary: Stochastic Proximal Gradient algorithm

Total Variation regularized Risk minimization

Application of Stochastic Proximal Gradient algorithm

Snake algorithm

Sampling Random Walks

Let $L \geq 1$.

Let ξ is a stationary simple random walk over G with length L+1

$$\mathbb{E}(\mathrm{TV}(x,\xi)) = \frac{|E|}{I}\mathrm{TV}(x,G).$$

Our problem is equivalent to

$$\min_{x \in \mathbb{R}^V} LF(x) + |E|\mathbb{E}\left(\mathrm{TV}(x,\xi)\right).$$

Stochastic Proximal Gradient algorithm:

$$\left\{ \begin{array}{l} \text{Sample the Stationary Random Walk } \xi_{n+1} \text{ with length } L+1 \\ x_{n+1} = \mathrm{prox}_{\gamma_n \mid E \mid \mathrm{TV}(\cdot, \xi_{n+1})} (x_n - \gamma_n L \nabla F(x_n)) \end{array} \right.$$

- \triangleright (ξ_n) iid
- ho $\gamma_n > 0$, $\gamma_n \downarrow 0$.

Example : The Graph ${\it G}$

Example: Stochastic Proximal Gradient step

$$TV(x,\xi_{n+1}) = |x(3)-x(1)| + |x(1)-x(0)| + |x(0)-x(6)| + |x(6)-x(7)|$$
$$x_{n+1} = \operatorname{prox}_{\gamma_n|E|TV(\cdot,\xi_{n+1})}(x_n - \gamma_n L \nabla F(x_n))$$

Example: Loop

Example: Stochastic Proximal Gradient step

$$TV(x, \xi_{n+2}) = |x(8) - x(6)| + |x(6) - x(0)| + |x(0) - x(2)| + |x(2) - x(6)|$$
$$x_{n+2} = \text{prox}_{\gamma_{n+1}|E|TV(\cdot, \xi_{n+2})}(x_{n+1} - \gamma_{n+1}L\nabla F(x_{n+1}))$$

Problem : ξ_{n+2} is not a path graph

Table of Contents

Preliminary: Stochastic Proximal Gradient algorithm

Total Variation regularized Risk minimization

Application of Stochastic Proximal Gradient algorithm

Snake algorithm

Snake algorithm

Let ξ is a stationary simple random walk over G with length L+1

$$\mathbb{E}(\mathrm{TV}(x,\xi)) = \frac{|E|}{L}\mathrm{TV}(x,G).$$

Our problem is equivalent to

$$\min_{x \in \mathbb{R}^V} LF(x) + |E| \mathbb{E} \left(\mathrm{TV}(x, \xi) \right).$$

Snake algorithm:

While unhappy

$$\begin{cases} \text{ Sample the Stationary Random Walk } \xi_{n+1} \text{ until Loop} \\ x_{n+1} = \operatorname{prox}_{\gamma_n|E|\mathrm{TV}(\cdot,\xi_{n+1})}(x_n - \gamma_n L(\xi_{n+1})\nabla F(x_n)) \end{cases}$$

$$\begin{aligned} \mathrm{TV}(x,\xi_{n+1}) &= |x(3) - x(2)| + |x(2) - x(6)| \\ &+ |x(6) - x(7)| + |x(7) - x(5)| + |x(5) - x(0)| \\ x_{n+1} &= \mathrm{prox}_{\gamma_n \mid E \mid \mathrm{TV}(\cdot,\xi_{n+1})} (x_n - \gamma_n L(\xi_{n+1}) \nabla F(x_n)) \end{aligned}$$

$$TV(x,\xi_{n+2}) = |x(0) - x(7)| + |x(7) - x(6)| + |x(6) - x(9)|$$
$$x_{n+2} = \text{prox}_{\gamma_{n+1}|E|TV(\cdot,\xi_{n+2})}(x_{n+1} - \gamma_{n+1}L(\xi_{n+2})\nabla F(x_{n+1}))$$

Convergence of Snake algorithm

Snake algorithm:

While unhappy

$$\begin{cases} \text{ Sample the Stationary Random Walk } \xi_{n+1} \text{ until Loop} \\ x_{n+1} = \operatorname{prox}_{\gamma_n|E|\text{TV}(\cdot,\xi_{n+1})} (x_n - \gamma_n L(\xi_{n+1}) \nabla F(x_n)) \end{cases}$$

Theorem [SBH'17]: Under mild assumptions, $x_n \longrightarrow_{n \to +\infty} x_\star$ where $x_\star \in \arg\min_{x \in \mathbb{R}^V} F(x) + \mathrm{TV}(x)$ a.s.

Proof:

- $\mathbb{E}\left(\mathrm{TV}(x,\xi)\right) = \frac{|E|}{L}\mathrm{TV}(x,G)$
- ► A Generalized Stochastic Proximal Gradient Algorithm

Illustration: Online Regularization

Figure 2: Snake: Trend Filtering over Facebook Graph Leskovec et al.'16

Structured Regularizations over Graphs

Generalization

$$\min_{x \in \mathbb{R}^V} F(x) + \sum_{\{i,j\} \in E} \phi_{i,j}(x(i), x(j))$$

with $\phi_{i,i}$ symmetric convex.

Example

- Weighted TV regularization
- ► Laplacian regularization :

$$\sum_{\{i,j\}\in E} \phi_{i,j}(x(i),x(j)) = \sum_{\{i,j\}\in E} (x(i)-x(j))^2$$

Taut String ← **DCT**, **IDCT**

Weighted/Normalized Laplacian regularization

References

A. Salim, P. Bianchi, and W. Hachem.

Snake: a Stochastic Proximal Gradient Algorithm for Regularized Problems over Large Graphs. April 2017.

P. Bianchi and W. Hachem.

Dynamical behavior of a stochastic forward-backward algorithm using random monotone operators.

J. Optim. Theory Appl., 171(1):90–120, 2016.

P. Bianchi, W. Hachem and A. Salim.

A constant step Forward-Backward algorithm involving random maximal monotone operators.

ArXiv e-prints, 1702.04144, February 2017.