

ANÁLISE CRÍTICA DE REPOSITÓRIOS UTILIZADOS NO PROJETO DE DECIBELÍMETRO

GUILHERME SANTOS SILVA ARYELSON GONÇALVES MESSIAS

SISTEMAS EMBARCADOS CAMPINA GRANDE, 2025.

1. INTRODUÇÃO

Este documento tem como objetivo apresentar uma análise crítica sobre os repositórios utilizados no desenvolvimento de um **decibelímetro** baseado na placa **BitDogLab**. O projeto foi elaborado com base nas bibliotecas fornecidas por outro grupo, que contemplam o uso de **Buzzer**, **Matriz de LED** e **Microfone**. Além disso, o grupo adicionou um repositório próprio para integrar um **Display**, com o intuito de exibir em tempo real o valor de decibéis captado pelo sistema.

Durante o desenvolvimento do projeto, foram analisadas as facilidades e dificuldades encontradas na utilização das bibliotecas fornecidas, bem como a qualidade da documentação disponibilizada. Também foram realizadas algumas modificações para adaptar o comportamento das bibliotecas às necessidades específicas do sistema. Este documento detalha os pontos de eficiência, consistência, flexibilidade e desempenho das bibliotecas utilizadas, além de sugerir melhorias para futuras versões.

Por fim, foi atribuída uma avaliação para cada biblioteca utilizada, considerando critérios como eficiência, facilidade de uso, flexibilidade e documentação. A análise visa contribuir para o aprimoramento contínuo das bibliotecas e para o desenvolvimento de projetos futuros com base na placa BitDogLab.

2. DESENVOLVIMENTO

2.1 Eficiência e Uso de Recursos

A utilização de DMA (Direct Memory Access) para capturar os dados do microfone mostrou-se eficiente, pois permite que a leitura dos dados seja feita de forma assíncrona, sem sobrecarregar o processador. No entanto, o buffer de dados poderia ser mais flexível, permitindo maior controle sobre a quantidade de amostras armazenadas.

Outro ponto identificado foi a utilização de 12 bits de resolução no ADC (Conversor Analógico-Digital), o que proporciona uma boa precisão na leitura dos dados. Contudo, em situações de baixo sinal, seria interessante considerar um ajuste dinâmico na resolução para melhorar a sensibilidade em diferentes condições de captação.

2.2 Calibração do Microfone

O cálculo de intensidade e o nível de som em decibéis SPL (Sound Pressure Level) dependem de uma calibração inicial precisa do microfone. A fórmula utilizada para o cálculo de decibéis foi ajustada empiricamente, mas poderia ser melhorada para se adaptar a diferentes microfones e ambientes.

Uma possível melhoria seria a implementação de um processo de calibração automática no início do sistema, onde o ambiente e o microfone são analisados para ajustar os parâmetros de medição de maneira mais precisa. Isso tornaria o sistema mais adaptável e reduziria erros em diferentes condições ambientais.

2.3 Consistência na Leitura de Amostras

Embora o DMA tenha sido eficiente na captura das amostras, foram observadas algumas variações na consistência dos dados capturados, especialmente em ambientes com interferência elétrica.

Para solucionar esse problema, sugere-se a implementação de um filtro digital ou de um processo de média móvel, o que ajudaria a suavizar as leituras e melhorar a precisão dos valores obtidos. Esse ajuste reduziria ruídos indesejados e tornaria o sistema mais confiável.

2.4 Flexibilidade na Matriz de LEDs e Buzzer

A configuração da matriz de LED e do buzzer é funcional, mas a biblioteca carece de flexibilidade para adaptação a diferentes tamanhos de matrizes e tipos de buzzer.

Uma sugestão de melhoria seria a criação de funções genéricas para permitir a personalização do tamanho da matriz de LED e a implementação de um controle mais avançado de frequência para o buzzer, possibilitando diferentes tipos de feedback sonoro (como tons mais agudos ou graves para indicar diferentes estados).

2.5 Modularidade e Documentação

A biblioteca poderia ser mais modularizada, separando funções específicas (como controle do buzzer, da matriz de LED e do microfone) em módulos independentes. Essa abordagem facilitaria a manutenção, teste e reutilização das partes do código em outros projetos.

A documentação também apresentou algumas limitações. A inclusão de exemplos de uso, explicações detalhadas sobre cada função e seus parâmetros ajudaria novos desenvolvedores a compreenderem rapidamente como utilizar a biblioteca. A melhoria na documentação tornaria o código mais acessível e amigável para futuras adaptações.

2.6 Ajustes de Desempenho

Em cenários de alta demanda, como na leitura contínua de áudio ou no controle de várias matrizes de LED, a biblioteca pode apresentar perda de desempenho.

Sugere-se a implementação de interrupções para reduzir a carga sobre o processador e o uso de algoritmos mais eficientes para o processamento dos dados, o que pode resultar em respostas mais rápidas e maior estabilidade na execução do sistema.

2.7 Facilidades e Dificuldades de Uso

Facilidades:

 A configuração inicial das bibliotecas foi relativamente simples, especialmente devido ao uso de DMA, que facilitou a captura assíncrona dos dados.

- A integração entre as bibliotecas foi direta, sem a necessidade de grandes adaptações no código base.
- A biblioteca da matriz de LED apresentou uma interface clara e de fácil manipulação para exibir os valores de decibéis.

Dificuldades:

- A falta de flexibilidade na configuração do tamanho da matriz de LED e na modulação do buzzer tornou o sistema menos adaptável a diferentes cenários.
- O buffer de dados para o microfone apresentou limitações em relação ao tamanho e à manipulação dos dados capturados.
- As variações na consistência das leituras em ambientes com ruído elétrico dificultaram a precisão dos resultados, exigindo um tratamento adicional por meio de filtros.

2.8 Comentário sobre a Documentação das Bibliotecas

A documentação das bibliotecas fornecidas foi funcional, mas apresentou algumas limitações:

- A biblioteca da matriz de LED continha exemplos básicos de configuração, mas faltavam informações detalhadas sobre a personalização de efeitos e padrões de exibição.
- A biblioteca do microfone não especificava claramente o funcionamento do processo de captura com DMA, o que exigiu uma análise detalhada do código para compreender o comportamento esperado.
- A documentação da biblioteca do buzzer apresentou informações básicas sobre as frequências configuráveis, mas não oferecia exemplos práticos para diferentes tipos de modulação sonora.

Sugere-se a inclusão de exemplos práticos e comentários detalhados no código para facilitar a compreensão e a personalização das bibliotecas.

2.9 Modificações Realizadas na Biblioteca

Para adequar as bibliotecas às necessidades específicas do projeto de decibelímetro, foram realizadas algumas modificações:

- Microfone: Foi ajustada a fórmula para cálculo dos decibéis para melhorar a precisão das leituras em diferentes condições ambientais.
- Buzzer: Foi implementado um controle mais preciso de frequência para permitir uma resposta sonora mais adequada ao nível de decibéis captado.
- Matriz de LED: Foi ajustada a configuração dos LEDs para melhorar a exibição visual dos valores de decibéis, tornando o sistema mais intuitivo e responsivo.
- Display: Foi adicionada a funcionalidade de exibição em tempo real dos valores de decibéis captados, o que facilitou a análise imediata dos resultados.

3. SUGESTÕES DE MELHORIAS

- Implementação de calibração automática para o microfone –
 Automatizar o processo de calibração inicial para que o sistema ajuste dinamicamente os parâmetros de acordo com o ambiente e o microfone em uso, garantindo maior precisão na medição dos decibéis.
- Aprimoramento na qualidade dos dados capturados Introduzir filtros digitais ou um processo de média móvel para suavizar as variações nas leituras e reduzir o impacto de interferências elétricas, aumentando a consistência dos dados.
- Flexibilidade na configuração do buzzer e da matriz de LED Criar funções genéricas que permitam adaptar o tamanho da matriz de LED e personalizar os tipos e frequências de som emitidos pelo buzzer, tornando o sistema mais adaptável a diferentes contextos.
- Modularização da biblioteca Separar funcionalidades específicas (como controle de buzzer, matriz de LED e microfone) em módulos independentes para facilitar a manutenção, a reutilização de código e a

escalabilidade do projeto.

Otimização de desempenho em cenários de alta demanda –
 Implementar interrupções e algoritmos mais eficientes para reduzir a carga sobre o processador e melhorar o tempo de resposta em situações de leitura contínua e controle simultâneo de múltiplos componentes.

4. AVALIAÇÃO DOS REPOSITÓRIOS

Após a análise crítica das bibliotecas utilizadas, foram atribuídas notas com base na eficiência, facilidade de uso, documentação e flexibilidade de cada repositório:

- Buzzer Nota: 8,5
 - O repositório apresentou uma implementação funcional, mas com algumas limitações na configuração de diferentes tipos de buzzer. A sugestão de melhoria envolve a criação de funções genéricas para personalização do feedback sonoro, o que aumentaria a flexibilidade e a adaptabilidade em diferentes cenários.
- Microfone Nota: 9,0
 O repositório do microfone demonstrou uma captação precisa e eficiente de dados, principalmente pelo uso de DMA e 12 bits de resolução. Contudo, a implementação de um ajuste automático na resolução e de um processo de calibração automática poderia elevar ainda mais a precisão e a consistência das leituras.
- Matriz de LED Nota: 9,0
 A biblioteca para a matriz de LED apresentou um bom desempenho e facilidade de configuração. No entanto, a possibilidade de personalizar o tamanho da matriz e adicionar efeitos visuais mais avançados tornaria a biblioteca ainda mais robusta e adaptável a diferentes projetos.

5. CONCLUSÃO

A análise dos repositórios utilizados revelou que as bibliotecas fornecidas pelo grupo sorteado foram bem estruturadas e facilitaram a implementação do projeto. A integração com o repositório de Display ocorreu de forma

eficiente, permitindo que os valores de decibéis fossem exibidos de maneira clara e precisa.

Foram identificados pontos de melhoria relacionados à flexibilidade, consistência e desempenho, que, se implementados, podem tornar o sistema mais robusto e adaptável a diferentes cenários. Apesar dessas limitações, o projeto foi concluído com sucesso, demonstrando a funcionalidade esperada e proporcionando uma experiência prática de desenvolvimento com bibliotecas externas.

6. REFERÊNCIAS

Repositório do Projeto - Decibelímetro

Bibliotecas utilizadas:

- Buzzer;
- Microfone;
- Matriz de LED;

Nossa biblioteca utilizada:

• Display;