PUBH 501 Biostatistics

STATA: LOGISTIC REGRESSION

Overview

- Logistic regression
- Confounding
- Interaction
- •2x2 tables

Data from web source

Today we're going to use a stata web file. Find available options here:

https://www.stata-press.com/data/r16/r.html

Need to be connected to the internet

Data from web source

Using Stata dataset: load data using the following code

```
webuse lbw.dta
save "path\...\lbw.dta", replace
```

- •We have used this dataset before. Data on birth weight & maternal factors.
- Outcome of interest is binary low birth weight (low)
- •What maternal factors are associated with low birth weight?

Logistic regression

Logistic regression

- Binary outcome
 - Must be coded 0 / 1 NOT 1 / 2 or any other combination of two numbers
- Control for multiple independent variables of varying types
- Examine association of multiple independent variables with a given outcome
- Output is in odds ratios

But first

- Summary statistics
- •Data editing (need to change any variables?)
- •Bivariable association between outcome and independent variables
- Consider confounding

Relabel

- •tab low
- •label def YNFMT 0 "no" 1 "yes"
- label val low YNFMT
- •tab low

Cum.	Percent	Freq.	Birthweight <2500g
68.78 100.00	68.78 31.22	130 59	0 1
	100.00	189	Total

Birthweight <2500g	Freq.	Percent	Cum.
no yes	130 59	68.78 31.22	68.78 100.00
Total	189	100.00	

Recode to binary

•tab ptl

recode ptl (2/3=1), gen(ptlYN)

• label var ptlYN "Any history of premature labor"

•label val ptlYN YNFMT

tab ptlYN

labor history (count)	Freq.	Percent	Cum.
0	159	84.13	84.13
1	24	12.70	96.83
2	5	2.65	99.47
3	1	0.53	100.00
Total	189	100.00	

Any history of premature			
labor	Freq.	Percent	Cum.
no yes	159 30	84.13 15.87	84.13
Total	189	100.00	

-logistic- command

- •Logistic regression is run using the —logistic- command
- •Logistic low smoke i.race
- •Where the first variable is the outcome, or the dependent variable
- •The next variables are the independent variables in any order

Factor notation

- •Can use continuous, categorical, and binary independent variables in regression
- •With categorical variables, you can tell Stata they are categorical, otherwise it treats them as continuous
- Do this with factor notation
 - Add "i." to the beginning of the variable name in the regression command
- Binary variables don't need to be factorized
- This way you don't have to make your own dummy variables

. logistic low smoke ptlYN i.race lwt

Logistic regre				Number of LR chi2(5 Prob > ch Pseudo R2	5) = ni2 =	189 27.62 0.0000 0.1177
low	Odds Ratio	Std. Err.	Z	P> z	[95% Conf.	Interval]
'	2.403979 3.398325	.9420098 1.484427	2.24 2.80	0.025 0.005	1.115279 1.443612	5.181765 7.999803
race black other	3.588652 2.45803	1.867187 1.041095	2.46 2.12	0.014	1.29434 1.071672	9.949799 5.637835
lwt _cons	.988053 .6814221	.006384 .6235199	-1.86 -0.42	0.063 0.675	.9756194 .1133818	1.000645 4.09533

Note: _cons estimates baseline odds.

Summary

- •Smoking, history of premature labor, and race are all significantly associated with low birth weight
- •Women who smoke during pregnancy have higher odds of having low birth weight babies than children who do not smoke, when controlling for other variables of interest (OR 2.40, 95% CI 1.12-5.18)
- •Compared to white women, black women have 3.6 times (95% CI 1.29-9.95) and women of another race have 2.5 times (95% CI 1.07-5.64) the odds of low birth weight babies, when controlling for smoking, history or premature labor, and maternal age.

Confounding

Confounding

- •Is there confounding between smoking status and race?
- Does race distort the relationship between smoking and low birth weight?

Suspected confounding

- Suspect race may be a confounder
 - Is race related to smoking status?
 - Is it related to low birth weight?
 - Does adding race to the logistic model change the smoking OR by >10%?

2x2 tables

Calculate OR and RR from 2x2 tables

- •Use the cs and cc commands to get 2x2 tables
- •For cohort studies

 cs disease exposure
- •For case control and cross sectional cc case status exposure status
- •For either cs or cc, you can enter the numbers yourself without data (using the "i" suffix, for immediate)
 - Be careful in what order you enter the numbers, this matters

Calculate OR and RR from 2x2 tables

	Exposed	Unexposed	Total	
Cases Noncases	30 19	25 10	55 29	
Total	49	35	84	
Risk	.6122449	.7142857	.6547619	
	Point	estimate	[95% conf.	interval]
Risk difference Risk ratio Prev. frac. ex. Prev. frac. pop	.85 .14	20408 71429 28571 33333	3045519 .6312732 1638287	.1004703 1.163829 .3687268

. cci 30 25 19 10	Exposed (Inexposed	Total	Proportion exposed	
Cases Controls	30 19	25 10	55 29	0.5455 0.6552	
Total	49	35	84	0.5833	
	Point e	stimate	[95% conf	. interval]	
Odds ratio Prev. frac. ex. Prev. frac. pop	.631 .368 .241	4211	.2204534 7549649	1.754965 .7795466	
	(chi2(1) =	0.94 Pr>ch:	i2 = 0.3322	

Interaction

Including an interaction in Stata

- •Start by examining the relationship between two variables and the outcome
- •Use ## to include an interaction term logistic low ptlYN##ui
- •Output includes "main effects" of the original variable, plus the interaction term
- •A significance level of p<0.1 is generally considered a significant interaction term

logistic low ptlYN##ui

Logistic regre	ession			Number of	obs	=	189
				LR chi2(3))	=	17.60
				Prob > chi	i2	=	0.0005
Log likelihood	l = -108.53744	1		Pseudo R2		=	0.0750
low	Odds Ratio	Std. Err.	Z	P> z	[95%	Conf.	Interval]
+							
1.ptlYN	5.484375	2.700365	3.46	0.001	2.0	8938	14.39583
1.ui	3.0375	1.523664	2.21	0.027	1.13	6419	8.118842
ptlYN#ui							
1 1	.2532447	.2407215	-1.44	0.149	.039	3035	1.631733
cons	.2962963	.0596353	-6.04	0.000	.199	7127	.439589
_							

- •We're interested in the effect of previous premature labor (ptlYN) on low birth weight (low)
- •Can calculate by hand the OR of ptlYN at different levels of uterine irritability (ui)
 - OR for ptlYN at ui=0 is 5.48
 - OR for ptlYN at ui=1 is 5.48*0.25 = 1.37

- Can also get the same results using the margins command
- •margins, over(ptlYN ui) expression(exp(xb()))
- •Margins displays the predicted odds at given values. Here we will see odds at each level of our interaction

```
. margins, over(ptlYN ui) expression(exp(xb()))
Predictive margins
                                     Number of obs = 189
Model VCE : OIM
Expression : exp(xb())
over : ptlYN ui
                   Delta-method
            Margin Std. Err. z P>|z| [95% Conf. Interval]
  ptlYN#ui |
          .2962963 .0596353 4.97 0.000 .1794133 .4131793
      0 0
      0 1 | .9 .4135215 2.18 0.030 .0895128 1.710487
      1 0
         1.625 .7302076 2.23 0.026 .1938194 3.056181
      1 1
           1.25 .8385255 1.49 0.136 -.3934798 2.89348
```

- Can calculate the odds ratio from the predicted odds in the margins command
- •OR for ptlYN at ui=0 is 1.625 / 0.296 = 5.48
- •OR for ptlYN at ui=1 is 1.25 / 0.9 = 1.38
- •If we need to get a confidence interval, we could use the Stata command —lincom-
 - We won't do that now, but know you can use that in the future when you need a CI and p-value for your calculated ORs

Example conclusions

- there is a difference in the relationship of ptl with low based on ui
- •where there is UI absent, previous premature birth is associated with increased odds of low birth weight. OR 5.48
- •Where UI is present, there is no association between previous premature birth and low birth weight. OR 1.37