- Write a Python program to compute following computation on matrix:
 - a) Addition of two matrices
 - B) Subtraction of two matrices
 - c) Multiplication of two matrices
 - d) Transpose of a matrix

```
def matrix_addition(A,B):
      if len(A)! = len(B) or len(A[0]) != len(B[0]):
             raise ValueError("Matrices must be of the same size to add
them.")
      rows = len (A)
      cols = len (A[0])
      result = [[0] * cols for _ in range (rows)]
      for i in range (rows):
             for j in range (cols):
                    result [i] [j] = A [i] [j] + B [i] [j]
      return result
def matrix subtraction (A,B):
      if len(A) != len(B) or len(A[0]) != len(B[0]):
             raise ValueError(" Matrices must be of the same size to subtract
them.")
      rows = Ien(A)
      cols = len (A[0])
      result = [[0] * cols for _ in range (rows)]
      for i in range(rows):
             for j in range (cols):
                    result [i] [j] = A [i] [j] - B [i] [j]
      return result
def matrix_multiplication(A,B):
      if len(A[0]) != len(B):
             raise ValueError ("Number of columns in A must be equal to
number of rows in B for multiplication")
```

```
rows_A = len(A)
      cols_A = len(A[0])
      cols_B = len(B[0])
      result = [[0] * cols_B for _ in range (rows_A)]
      for i in range (rows_A):
             for j in range (cols_B):
                   for k in range (cols_A):
                          result [i][j] += A [i][k] * B [k][i]
      return result
def matrix_transpose(A):
      rows = len (A)
      cols = len (A[0])
      transposed = [[0] * rows for _ in range (cols)]
      for i in range (rows):
             for j in range (cols):
                   transposed [j][i] = A[i][j]
      return transposed
def display_matrix (matrix):
      for row in matrix:
             print(row)
def read_matrix():
      rows = int(input("Enter the number of rows: "))
      cols=int(input("Enter the number of columns:"))
      matrix = []
      print("Enter the elements row-wise: ")
```

```
for i in range (rows):
            row = []
            for j in range (cols):
                   element = int(input(f"Enter element [{i+1}][{j+1}]:"))
                   row.append(element)
            matrix.append(row)
      return matrix
while True:
      print("\n Menu:")
      print("1.Addition of two matrices")
      print("2.Subtraction of two matrices")
      print("3.Multiplication of two matrices")
      print("4.Transpose of a matrix")
      print("5.Exit")
      choice = input("Enter your choice (1-5):")
      if choice == '1':
            print("\nEnter the first matrix:")
            matrix1 = read_matrix()
            print("\nEnter the second matrix:")
            matrix2 = read_matrix()
            try:
                   result = matrix_addition(matrix1, matrix2)
                   print("\nResult of addition:")
                   display_matrix(result)
            except ValueError as e:
                   print("Error.",e)
```

```
elif choice == '2':
      print("\nEnter the first matrix:")
      matrix1 = read_matrix()
      print("\nEnter the second matrix:")
      matrix2 = read_matrix()
      try:
             result = matrix_subtraction(matrix1, matrix2)
             print("\nResult of subtraction:")
             display_matrix(result)
      except ValueError as e:
             print("Error.",e)
elif choice == '3':
      print("\nEnter the first matrix:")
      matrix1 = read_matrix()
      print("\nEnter the second matrix:")
      matrix2 = read_matrix()
      try:
             result = matrix_multiplication(matrix1, matrix2)
             print("\nResult of multiplition:")
             display_matrix(result)
      except ValueError as e:
             print("Error.",e)
elif choice == '4':
      print("\nEnter the matrix to transpose:")
      matrix = read_matrix()
      result = matrix_transpose(matrix)
      print("\nTranspose of matrix:")
      display_matrix(result)
```

DSL Practical 3

else:

elif choice == '5': print("\nExiting the program. Goodbye!") break

print("Invalid choice. Please enter a number between 1 and 5.")

// OUTPUT

Menu:	Menu:	Menu:	Menu:
1.Addition of two matrices	1.Addition of two matrices	1.Addition of two matrices	1.Addition of two matrices
2.Subtraction of two matrices	2.Subtraction of two matrices	2.Subtraction of two matrices	2.Subtraction of two matrices
3.Multiplication of two matrice	3.Multiplication of two matrices	3.Multiplication of two matrices	3.Multiplication of two matrices
4.Transpose of a matrix	4.Transpose of a matrix	4.Transpose of a matrix	4.Transpose of a matrix
5.Exit	5.Exit	5.Exit	5.Exit
Enter your choice (1-5):1	Enter your choice (1-5):2	Enter your choice (1-5):3	Enter your choice (1-5):4
Enter the first matrix:	Enter the first matrix:	Enter the first matrix:	Enter the matrix to transpose:
Enter the number of rows: 2	Enter the number of rows: 2	Enter the number of rows: 2	Enter the number of rows: 2
Enter the number of columns:2	Enter the number of columns:2	Enter the number of columns:2	Enter the number of columns:2 Enter the elements row-wise:
Enter the elements row-wise:	Enter the elements row-wise:	Enter the elements row-wise:	Enter element [1][1]:65
Enter element [1][1]:1	Enter element [1][1]:2	Enter element [1][1]:1	Enter element [1][2]:66
Enter element [1][2]:1	Enter element [1][2]:2	Enter element [1][2]:2	Enter element [2][1]:67
Enter element [2][1]:1	Enter element [2][1]:2	Enter element [2][1]:3	Enter element [2][2]:68
Enter element [2][2]:1	Enter element [2][2]:2	Enter element [2][2]:4	
	[-][-]		Transpose of matrix:
Enter the second matrix:	Enter the second matrix:	Enter the second matrix:	[6, 67]
Enter the number of rows: 2	Enter the number of rows: 2	Enter the number of rows: 2	[66, 68]
Enter the number of columns:2	Enter the number of columns:2	Enter the number of columns:2	Menu:
Enter the elements row-wise:	Enter the elements row-wise:	Enter the elements row-wise:	1.Addition of two matrices
Enter element [1][1]:1	Enter element [1][1]:2	Enter element [1][1]:1	2.Subtraction of two matrices
Enter element [1][2]:1	Enter element [1][2]:2	Enter element [1][2]:2	3.Multiplication of two matrices
Enter element [2][1]:1	Enter element [2][1]:2	Enter element [2][1]:3	4.Transpose of a matrix
Enter element [2][2]:1	Enter element [2][2]:2	Enter element [2][2]:4	5.Exit
			Enter your choice (1-5):5
Result of addition:	Result of subtraction:	Result of multiplition:	Exiting the program. Goodbye!
[2, 2]	[0, 0]	[7, 7]	Externing the program. Goodbye:
[2, 2]	[0, 0]	[22, 22]	=== Code Execution Successful ===