

EBU6018 Advanced Transform Methods

Tutorial - KLT

Dr Yixuan Zou

• **Question:** Evaluate the normalised eigenvectors of the covariance matrix of the following 2D dataset.

Guidance:
Step 1: Compute the covariance
matrix between variable x and y
Step 2: Calculate the eigenvalues of
the covariance matrix
Step 3: Calculate the eigenvectors
Step 4: Normalise the eigenvectors

X	У
-3.01	-2.67
0.18	-2.12
-6.56	-4.24
1.60	1.92
2.78	-1.20
2.03	2.14

Assuming this is a sample of a larger population

Question: Evaluate the normalised eigenvectors of the covariance matrix of the following 2D dataset.

- **Step 1**: Compute the covariance matrix R_{xy}
 - To compute the covariance matrix, we need the following quantities

•
$$x_{ave} =$$

•
$$y_{ave} =$$

•
$$Var_{x} = \frac{\sum_{1}^{N}(x_{i}-x_{ave})^{2}}{N-1} =$$

•
$$Var_y = \frac{\sum_{1}^{N} (y_i - y_{ave})^2}{N-1} =$$

•
$$Var_y = \frac{\sum_{1}^{N} (y_i - y_{ave})^2}{N-1} =$$

• $Cov_{x,y} = \frac{\sum_{1}^{N} (x_i - x_{ave})(y_i - y_{ave})}{N-1} =$

•
$$Cov_{y,x} = \frac{\sum_{1}^{N}(x_i - x_{ave})(y_i - y_{ave})}{N-1} =$$

X	У
-3.01	-2.67
0.18	-2.12
-6.56	-4.24
1.60	1.92
2.78	-1.20
2.03	2.14

• Question: Evaluate the normalised eigenvectors of the covariance matrix of the following 2D dataset.

• Step 1: Compute the covariance matrix R_{xy}

- The covariance matrix =
$$\begin{bmatrix} Var_x & Covar_{x,y} \\ Covar_{y,x} & Var_y \end{bmatrix}$$

х	У
-3.01	-2.67
0.18	-2.12
-6.56	-4.24
1.60	1.92
2.78	-1.20
2.03	2.14

- **Question**: Evaluate the normalised eigenvectors of the covariance matrix of the following 2D dataset.
- I Step 2: Compute the eigenvalues of the covariance matrix R_{xy}

$$|R_{xy} - \lambda I| =$$

X	у
-3.01	-2.67
0.18	-2.12
-6.56	-4.24
1.60	1.92
2.78	-1.20
2.03	2.14

• **Question**: Evaluate the normalised eigenvectors of the covariance matrix of the following 2D dataset.

• Step 3: Compute the eigenvectors of the covariance matrix R_{xy}

X	У
-3.01	-2.67
0.18	-2.12
-6.56	-4.24
1.60	1.92
2.78	-1.20
2.03	2.14

• **Question**: Evaluate the normalised eigenvectors of the covariance matrix of the following 2D dataset.

• Step 3: Find the normalized eigenvectors

X	У
-3.01	-2.67
0.18	-2.12
-6.56	-4.24
1.60	1.92
2.78	-1.20
2.03	2.14

• **Question**: Evaluate the normalised eigenvectors of the covariance matrix of the following 2D dataset.

• Step 3: Find the normalized eigenvectors

x	У
-3.01	-2.67
0.18	-2.12
-6.56	-4.24
1.60	1.92
2.78	-1.20
2.03	2.14

• **Question**: Evaluate the normalised eigenvectors of the covariance matrix of the following 2D dataset.

Step 3: Find the normalized eigenvectors

X	у
-3.01	-2.67
0.18	-2.12
-6.56	-4.24
1.60	1.92
2.78	-1.20
2.03	2.14

Question: Find the normalized eigenvectors of the following matrix:

$$R_{xy} = \begin{bmatrix} 1 & -2 \\ -2 & 4 \end{bmatrix}$$

Hint:

The Eigenvalues, λ , of a square matrix R_{xy} are the solutions of:

$$\left|R_{xy} - \lambda I\right| = 0$$

The Eigenvectors, v, are the solutions of:

$$(R_{xy} - \lambda I) \mathbf{v} = \mathbf{0}$$

- **Question**: Find the normalized eigenvectors of the following matrix $R_{xy} = \begin{bmatrix} 1 & -2 \\ -2 & 4 \end{bmatrix}$
- Solution: Compute the eigenvalues

- **Question**: Find the normalized eigenvectors of the following matrix $R_{xy} = \begin{bmatrix} 1 & -2 \\ -2 & 4 \end{bmatrix}$
- **Solution:** Compute the **eigenvectors**

- **Question**: Find the normalized eigenvectors of the following matrix $R_{xy} = \begin{bmatrix} 1 & -2 \\ -2 & 4 \end{bmatrix}$
- Solution: Find the normalized eigenvectors

- **Question**: Find the normalized eigenvectors of the following matrix $R_{xy} = \begin{bmatrix} 1 & -2 \\ -2 & 4 \end{bmatrix}$
- Solution: Find the normalized eigenvectors

Question: Find the normalized eigenvectors of the following matrix:

$$A = \begin{bmatrix} 1 & -2 \\ -2 & 4 \end{bmatrix}$$

Solutions:

Question: Find the eigenvalues of the following 3x3 matrix:

$$A = \begin{bmatrix} 4 & 6 & 10 \\ 3 & 10 & 13 \\ -2 & -6 & -8 \end{bmatrix}$$

Hint:

The Eigenvalues, λ , of a square matrix A are the solutions of:

$$|A - \lambda I| = 0$$

Summary

- Covariance matrix
 - * Refers to the measure of the directional relationship between two random variables.
 - ❖ Always symmetrical, so the eigenvalues will be real and the eigenvectors will be orthogonal.
- Eigenvalues/Eigenvectors
 - Frequently used in matrix decomposition for dimension reduction
 - ❖ Equation of eigenvalue: $|A \lambda I| = 0$
 - \Leftrightarrow Equation of eigenvector: $(A \lambda I)v = 0$
- Calculating the Eigenvector Matrix is a relatively computation-intensive process.
 - This is a disadvantage of the Karhunen-Loeve Transform, which is based on multivariable statistics.

Karhunen Loève Transform (KLT) – Procedures

$$\mathbf{X} = [\vec{x}_0, \vec{x}_1, \dots \vec{x}_{N-1}]$$

$$E(\mathbf{X}) = \frac{1}{N} \sum_{i=0}^{N-1} \vec{x}_i$$

Find mean vector for input data
$$E(\mathbf{X}) = \frac{1}{N} \sum_{i=0}^{N-1} \vec{x}_i$$
Find covariance matrix
$$\mathbf{R}_{\mathbf{XX}} = \frac{1}{N-1} \sum_{i=0}^{N-1} (\vec{x}_i - E(\vec{x}))(\vec{x}_i - E(\vec{x}))^T$$

Find eigenvalues of the covariance matrix $|\mathbf{R}_{yy} - \lambda \mathbf{I}| = 0$ 3.

$$|\mathbf{R}_{\mathbf{X}\mathbf{X}} - \lambda \mathbf{I}| = 0$$

Find eigenvectors of the covariance matrix $(\mathbf{R}_{\mathbf{XX}} - \lambda_i \mathbf{I}) \vec{\varphi}_i = 0$

$$(\mathbf{R}_{\mathbf{X}\mathbf{X}} - \lambda_i \mathbf{I}) \vec{\varphi}_i = 0$$

Normalise the eigenvectors
$$\vec{\varphi}^*_i = \frac{\vec{\varphi}_i}{|\vec{\varphi}_i|}$$
 so that $\langle \vec{\varphi}_i, \vec{\varphi}_i \rangle = 1$

Transform the input
$$\mathbf{Y} = \boldsymbol{\varphi}^T \mathbf{X}$$
, where $\boldsymbol{\varphi}^T = [\vec{\varphi}^*_1, \vec{\varphi}^*_2, \dots]$

Karhunen Loève Transform (KLT) – Tutorial Question 1

Find the KLT of the given dataset (sampled from a population):

а	b
-1	0
-2	-1
0	2
0	-1
2	4

Karhunen Loève Transform (KLT) – Tutorial Question 2

• Find the covariance matrix of the given dataset (sampled from a population):

а	b	С
-1	0	2
-2	-1	4
0	2	0
0	-1	-2
2	4	0

Pop quiz

What is the dimension of this covariance matrix?

- a. 2 x 2
- b. 2 x 3
- c. 3 x 3
- d. 3 x 2
- e. 5 x 5

$$R_{ab} = \begin{bmatrix} 2.2 & 2.7 \\ 2.7 & 4.7 \end{bmatrix}$$

^{*} Same data a and b as in Question 1.

^{*} You can directly use the solutions of Question 1 to save some work.

