1 Уравнения Максвелла

- 1. Теорема Гаусса: $\oint \mathbf{E} \cdot d\mathbf{s} = 4\pi Q$.
- 2. Закон Фарадея: $\oint {m E}\cdot {
 m d}{m l}=-rac{1}{c}rac{\partial\Phi}{\partial t},$ $\Phi=\int {m B}\cdot {
 m d}{m s}$
- 3. Закон Био-Савара-Лапласа: $m{B} = \frac{1}{c} \, \frac{m{j} \times m{R}}{R^3}$
- $4. \oint \mathbf{B} \cdot \mathrm{d}\mathbf{s} = 0$
- 5. Закон Ампера: $\oint m{B} \cdot \mathrm{d} m{l} = rac{4\pi}{c} \int m{j} \cdot \mathrm{d} m{s}$
- 6. Уравнение неразрывности: $\frac{\partial \rho}{\partial t} + \operatorname{div} \boldsymbol{j} = 0$
- 7. Сами уравения Максвелла:

$$\operatorname{div} \boldsymbol{E} = 4\pi\rho$$

$$\operatorname{div} \boldsymbol{B} = 0$$

$$\operatorname{rot} \boldsymbol{E} = -\frac{1}{c} \frac{\partial \boldsymbol{B}}{\partial t}$$

$$\operatorname{rot} \boldsymbol{B} = \frac{1}{c} \frac{\partial \boldsymbol{E}}{\partial t} + \frac{4\pi}{c} \boldsymbol{j}$$

2 В среде

1. Поляризация и намагниченность

$$egin{align} oldsymbol{P} &:: oldsymbol{j}_{
m pol} = rac{\partial oldsymbol{P}}{\partial t}, \;
ho_{
m pol} = -\operatorname{div} oldsymbol{P}, \ oldsymbol{M} &:: oldsymbol{j}_{
m m} = c\operatorname{rot} oldsymbol{M} \ \{
ho, oldsymbol{j}\}_{
m int} = \{
ho, oldsymbol{j}\}_{
m pol} + \{
ho, oldsymbol{j}\}_{
m m} \ \end{aligned}$$

2. В сильнопеременных

$$ho_{
m int} = -\operatorname{div} oldsymbol{P}$$
 $oldsymbol{j}_{
m int} = rac{\partial oldsymbol{P}}{\partial t} + c\operatorname{rot} oldsymbol{M}$

- 3. $D = E + 4\pi P$, $H = B 4\pi M$
- 4. Уравнения Максвелла в среде:

$$\operatorname{div} \mathbf{D} = 4\pi \rho_{ex}$$
$$\operatorname{rot} \mathbf{H} = \frac{1}{c} \frac{\partial \mathbf{D}}{\partial t} + \frac{4\pi}{c} \left(\mathbf{j}_{ex} + \mathbf{j}_{c} \right)$$

5. Материальные уравнения (простейшие)

$$\boldsymbol{D} = \varepsilon \boldsymbol{E}, \; \boldsymbol{B} = \mu \boldsymbol{H}, \; \boldsymbol{j}_c = \sigma \boldsymbol{E}$$

6. Дисперсия, варианты

$$D(r,t) = \int_{-\infty}^{t} f(t'-t,r) E(r,t') dt$$
$$D(r,t) = \int_{\Delta V} g(r'-r,t) E(r,t') dV$$

f, g — функция отклика.

3 Энергетические соотношения

$$w = \frac{1}{8\pi} (\varepsilon E^2 + \mu H^2)$$
$$S = \frac{c}{4\pi} E \times H$$

$$\frac{\partial w}{\partial t} + \operatorname{div} \mathbf{S} = -\sigma E^2 - \mathbf{E} \cdot \mathbf{j}_{ex}$$

Так что если внешние силы не совершают работы, энергия лишь убывает (за счёт выделения тепла).

4 Потенциал

- 1. Вид потенциала: $m{E} = -rac{1}{c}rac{\partial m{A}}{\partial t}
 abla arphi, \, m{B} = \mathrm{rot}\, m{A}$
- 2. Калибровочная инвариантность: $\begin{cases} \pmb{A}' = \pmb{A} \nabla \chi \\ \varphi' = \varphi + \frac{1}{c} \, \frac{\partial \chi}{\partial t} \end{cases}$
- 3. Калибровка Лоренца: $\frac{\varepsilon\mu}{c}\frac{\partial\varphi}{\partial t}+{\rm div}\,\pmb{A}=0^1$
- 4. Уравнения Максвелла примут вид:

$$\square \, \varphi = rac{4\pi}{arepsilon} \,
ho,$$
 $\square \, m{A} = rac{4\pi \mu}{c} \, m{j}, \; ext{где} \; \square = rac{1}{v^2} \, rac{\partial^2}{\partial t^2} -
abla, v = rac{c}{\sqrt{arepsilon \mu}}$

5 Волновые уравнения

$$\Box \mathbf{E} = 0, \ \Box \mathbf{B} = 0$$
$$\Box \mathbf{A} = 0, \ \Box \varphi = 0 \qquad (\Box \chi = 0)$$

Ещё можно φ занулить, выбрав нужную χ^2

6 Плоские и сферические волны

1. Одномерное волновое уравнение и его решение:

$$\frac{1}{v^2} \frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u}{\partial x^2} = 0$$

$$u = f(x - vt) + g(x + vt)$$

- 2. Плоская волна: $A = A(\boldsymbol{n} \cdot \boldsymbol{r} vt)^3$
- 3. Условие поперечности: $\operatorname{div} \mathbf{A} = 0 \Rightarrow \mathbf{B} = \frac{c}{v} \mathbf{n} \times \mathbf{E}$
- 4. S = v w n.
- 5. Уравнение сферической волны: $\frac{1}{v^2} \frac{\partial^2 u}{\partial t^2} \Delta_r u = 0$
- 6. Его решение: $u(r,t) = \frac{1}{r} \left(f(r-vt) + g(r+vt) \right)$ Если рассматривать монохроматические волны, произвольные функции станут выражаться через функции Бесселя.

7 Монохроматические волны

$$\Delta u + \frac{\omega^2}{v^2} u = 0, \ \mathbf{k} = \frac{\omega}{v} \mathbf{n} \ \Rightarrow \ u = \operatorname{Re} \left(\mathbf{E}_0 e^{i (\mathbf{k} \cdot \mathbf{r} - \omega t)} \right)$$

8 Поляризация монохроматической волны (общий случай)

1.
$$\alpha, \mathbf{b}$$

 $\alpha :: \mathbf{E}_0^2 = |E_0^2| e^{-2i\varphi_0}$
 $\mathbf{b} :: \mathbf{E}_0 = \mathbf{b} e^{-i\varphi_0}, \ \mathbf{b}^2 = |E_0^2|, \ \mathbf{b} = \mathbf{b}_1 + i \mathbf{b}_2$

$$2. \ b^2 \in \mathbb{R} \Rightarrow \boldsymbol{b}_1 \perp \boldsymbol{b}_2$$

3.
$$\frac{(\boldsymbol{E} \cdot \boldsymbol{b}_1)^2}{b_1^2} + \frac{(\boldsymbol{E} \cdot \boldsymbol{b}_2)^2}{b_2^2} = 1, (\boldsymbol{E} \in \mathbb{R}^3).$$

9 Почти монохроматические волны

$$\mathbf{E} = \mathbf{E}_0(t) e^{-i\omega t}, \langle ? \rangle$$

10 Поляризационная матрица, параметры Стокса

$$|\overline{S}| = \frac{\varepsilon v}{8\pi} \overline{E^{\dagger} E}$$

$$\rho = \frac{\varepsilon v}{8\pi} \overline{E E^{\dagger}} = \begin{pmatrix} \overline{|E_x|^2} & \overline{E_x E_y^*} \\ \overline{E_y E_x^*} & \overline{|E_y|^2} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} I + Q & U - iV \\ U + iV & I - Q \end{pmatrix}$$

1.
$$\det \rho = I^2 - Q^2 - U^2 - V^2$$

2.
$$\det \rho = 0 \Leftrightarrow E_x^0 \propto E_y^{0/4}$$

3.
$$I^2, V^2, U^2 + Q^2$$
 — инварианты ⁵

4.
$$I(\psi, \delta) = \overline{|S|} = \ell_{\delta}^{\dagger} \rho \ell_{\delta} = \frac{1}{2} (I + Q \cos 2\psi + U \sin 2\psi \cos \delta - V \sin 2\psi \sin \delta),$$
 $\ell_{\delta} = (\cos \psi, \sin \psi e^{-i\delta})^{\top}$, а вот выводится это неприятно.

11 Частные случаи поляризации, параметры поляризации

$$I = \frac{\varepsilon v}{8\pi} (\overline{|E_x|^2} + \overline{|E_y|^2}) = \overline{|S|}$$

$$Q = \frac{\varepsilon v}{8\pi} (\overline{|E_x|^2} - \overline{|E_y|^2})$$

$$U = \frac{\varepsilon v}{8\pi} (\overline{E_x^* E_y} + \overline{E_x E_y^*}) = \frac{\varepsilon v}{8\pi} 2 \operatorname{Re} \overline{E_x^* E_y}$$

$$V = \frac{\varepsilon v}{8\pi} i (\overline{E_x^* E_y} - \overline{E_x E_y^*}) = \frac{\varepsilon v}{8\pi} 2 \operatorname{Im} \overline{E_x^* E_y}$$

1.
$$Q=U=V=0$$
—белый свет

2. $\det \rho = 0$ — эллиптическая поляризация

- (a) Q = U = 0 круговая поляризация
- (b) V = 0 линейная поляризация

Ещё всякие величины:

$$ho R_d^2 = Q^2 + U^2 + V^2, r_d^2 = Q^2 + U^2$$

 $\triangleright P = R_d/I$ — степень поляризации

 $\triangleright p = r_d/I$ — степень линейной поляризации

 $\triangleright p_s = V/I$ — степень круговой поляризации

ightharpoonup tg $2\alpha={\it U}/{\it D},~\alpha$ — угол между базисом и осями эллипса.

3. Частичная поляризация:

⊳ белый свет + эллитическая

⊳ сумма 2 ортогональных эллиптических

12 Геометрическая оптика

$$u=u_0e^{i\psi},\;\psi$$
— эйконал 6

$$\frac{1}{v^2} \left(\frac{\partial \psi}{\partial t} \right)^2 - (\nabla \psi)^2 = 0$$

$$\psi=-\omega t+rac{\omega}{c}\psi_1,\; (
abla\psi_1)^2=n^2(m{r})$$
— уравнение эйконала.

$$\frac{\omega}{c} \, \psi_1 - \omega t = \mathrm{const} - \mathrm{волновая}$$
 поверхность

Здесь торжественно забили на вторые прозводные эйконала.

13 Гадость в неоднородной среде

1.
$$\varepsilon = \varepsilon(r), \, \mu = 1$$

2. Волновые уравнения поменяются:

$$\Box \mathbf{E} - \nabla (\mathbf{E} \cdot \nabla (\ln \varepsilon)) = 0$$
$$\Box \mathbf{H} - \nabla (\ln \varepsilon) \times \operatorname{rot} H = 0$$

3. Монохроматический случай:

$$[\Delta + k^{2}(r)] \mathbf{E} + \nabla (\mathbf{E} \cdot \nabla (\ln \varepsilon)) = 0$$
$$[\Delta + k^{2}(r)] \mathbf{H} + \nabla (\ln \varepsilon) \times \operatorname{rot} H = 0$$

14 Е,Н-волны

$$\varepsilon = \varepsilon(z)$$

1. $\mathbf{E} \uparrow \uparrow \text{Oy}, E = (0, 1, 0) E(z) e^{i\varkappa x} - \text{Е-волны}$

2. $\mathbf{H} \uparrow \uparrow Oy$, $H = (0, 1, 0) H(z) e^{i \varkappa x}$ — H-волны

Если переписать волновое уравнение выше:

1.
$$E''(z) + f(z)E(z) = 0$$
, $f(z) = k^2 - \varkappa^2$

2.
$$w''(z) + f(z) w(z) = 0$$
, $H(z) = \sqrt{\varepsilon(z)} w(z)$, $f(z) = k^2 - \varkappa^2 + \frac{1}{2} \frac{\varepsilon''}{\varepsilon} - \frac{3}{4} \left(\frac{\varepsilon'}{\varepsilon}\right)$

15 Метод ВКБ

Метод решения таких уравнений: $\frac{1}{s^2}u'' + f u = 0$, $1/s^2$ — малый параметр.

1.
$$z = s \tau, u = e^{is\psi}$$

2. В ряд его:
$$\psi = \psi_0 + \frac{i}{s} \psi_1 + \cdots$$

3. ВКБ-решения (первое приближение)

$$u_{1,2} = f^{-1/4} \exp\left(\pm is \int \sqrt{f} \,d\tau\right)$$
$$u = c_1 u_1 + c_2 u_2$$

4. Условия применимости (?):

$$\left| \frac{\mathrm{d}\psi_0}{\mathrm{d}\tau} \right|^2 \gg \frac{1}{s} \left| \frac{\mathrm{d}^2\psi_0}{\mathrm{d}\tau^2} \right| \Leftrightarrow |f| \gg \frac{1}{s} \left| \frac{f'}{2\sqrt{f}} \right| \Leftrightarrow \left| \frac{\mathrm{d}\sqrt{\frac{1}{f}}}{\mathrm{d}z} \right| \ll 1$$

Для предыдущего параграфа просто $\lambda = \frac{2\pi}{\sqrt{f}}$

16 Диспергирующая среда, частотная и пространственная дисперсия

Если пространство однородно (и по времени):

$$\boldsymbol{D}(\boldsymbol{r},t) = \int_{-\infty}^{t} f(t'-t,\boldsymbol{r}) \, \boldsymbol{E}(\boldsymbol{r},t') \, \mathrm{d}t$$

$$\boldsymbol{D}(\boldsymbol{r},t) = \int_{\Delta V} g(\boldsymbol{r}' - \boldsymbol{r},t) \, \boldsymbol{E}(\boldsymbol{r},t') \, dV$$

Для монохроматических можно сказать чуть больше:

$$\triangleright \mathbf{D}(\mathbf{r},t) = \varepsilon(\omega,\mathbf{k})E(\mathbf{r},t)$$

ho $\varepsilon = \varepsilon(\omega)$ — частотная дисперсия

 \triangleright $\varepsilon = \varepsilon(\mathbf{k})$ — пространственная дисперсия

$$\triangleright \ \varepsilon = \varepsilon_1 + i\varepsilon_2, \ \varepsilon_1(-\omega) = \varepsilon_1(\omega), \ \varepsilon_2(-\omega) = -\varepsilon_2(\omega), \\ \omega \to \infty \quad \varepsilon(\omega) \to 0$$

17 Что-то про преобразование Фурье

$$\triangleright \widetilde{f}(\omega) = \int_{-\infty}^{+\infty} u(t) e^{-i\omega t} dt$$

$$> 2\pi\delta(\omega) = \int_{-\infty}^{+\infty} e^{i\omega t} \, \mathrm{d}t$$

$$\triangleright \ \widetilde{f * g} = \widetilde{f} \cdot \widetilde{g}$$

18 Материальные уравнения для быстропеременных процессов

$$\triangleright \ \boldsymbol{D}(\omega) = \varepsilon(\omega) \, \boldsymbol{E}(\omega)$$

$$\triangleright \boldsymbol{B}(\omega) = \varepsilon(\omega) \boldsymbol{H}(\omega)$$

$$> \varepsilon(\omega) = 1 - \frac{4\pi N e^2}{m\omega^2}$$

$$\triangleright \mu \sim 1$$

(X)

19 Энергетические соотношения при дисперсии

$$\operatorname{div} \boldsymbol{S} = -\frac{1}{4\pi} \left(\boldsymbol{E} \cdot \frac{\partial \boldsymbol{D}}{\partial t} + \boldsymbol{H} \cdot \frac{\partial \boldsymbol{B}}{\partial t} \right)$$

Для монохроматических волн:

$$ho \ m{D} = arepsilon(\omega) \, m{E}, \, m{B} = \mu(\omega) \, m{H}$$

$$\triangleright \ \varepsilon(\omega) = \varepsilon_1 + i\varepsilon_2, \ \mu(\omega) = \mu_1 + i\mu_2$$

$$\triangleright \overline{\operatorname{div} \mathbf{S}} = \frac{-\omega}{8\pi} \left(\varepsilon_2 |\overline{\mathbf{E}}|^2 + \mu_2 |\overline{\mathbf{H}}|^2 \right) \Rightarrow \varepsilon_2 > 0, \mu_2 > 0 \ \langle ? \rangle^7$$

 $\{ \varepsilon, \mu \}_2 \ll \{ \varepsilon, \mu \}_1$ — прозрачная среда. Тогда можно ввести плотность энергии, как-то так:

- 1. припомнить $\operatorname{div} S$
- 2. первый член: $\frac{1}{16\pi}\left(m{E}\,\frac{\partialm{D}^*}{\partial t}+m{E}^*\,\frac{\partialm{D}}{\partial t}
 ight)$

3.
$$\frac{\partial \mathbf{D}}{\partial t} = -i\omega\varepsilon(\omega)\mathbf{E} + \frac{\mathrm{d}(\omega\varepsilon)}{\mathrm{d}\omega} \frac{\partial \mathbf{E}^0}{\partial t} e^{-i\omega t}$$

4. div
$$\mathbf{S} = -\frac{\partial w}{\partial t}$$

5.
$$\overline{w} = \frac{1}{8\pi} \left(\frac{d(\omega \varepsilon)}{d\omega} |\overline{\boldsymbol{E}}^0|^2 + \frac{d(\omega \mu)}{d\omega} |\overline{\boldsymbol{H}}^0|^2 \right)$$

20 Волны [монохроматические] в диспергирующей среде 8

Здесь
$$k:=\sqrt{arepsilon(\omega)\,\mu(\omega)}\,rac{\omega}{c}=m{k}_1+im{k}_2,\,\{arepsilon,\mu\}_2\ll\{arepsilon,\mu\}_1.$$

 $m{k}_1
mid m{k}_2$ Неоднородная плоская волна: $m{E} = m{E}_0 \, e^{-m{k}_2 \cdot m{r}} \, e^{i(m{k}_1 \cdot m{r} - \omega t)}$

 $k_1 \uparrow \uparrow k_2$ Однородная плоская волна:

- 1. $k = (n + i\varkappa) \omega/c$ показатель преломления и затухания,
- 2. $E(z,t) = E_0 e^{-\varkappa \omega^z/c} e^{-i\omega(t-n^z//c)}$
- 3. $\overline{S(z)} = S_0 e^{-2\varkappa\omega^{z/c}} = S_0 e^{-\alpha z}$, α к-т поглошения.

21 Групповая скорость

1.
$$v_{\rm gr} = \frac{\overline{|S|}}{\overline{w}} = \frac{c}{\frac{{\rm d}n\omega}{{\rm d}\omega}}$$

2.
$$v_{\rm gr} = \frac{1}{\frac{\mathrm{d}k}{\mathrm{d}\omega}} = \frac{c}{\frac{\mathrm{d}n\omega}{\mathrm{d}\omega}}$$

Отсюда
$$v_{\mathrm{gr}} = v_{\phi} \cdot \frac{1}{1 + \frac{\omega}{n} \frac{\mathrm{d}n}{\mathrm{d}\omega}}$$

- $ho \ rac{\mathrm{d}n}{\mathrm{d}\omega} > 0$ нормальная дисперсия, $v_{\mathrm{gr}} < v_{\phi}$
- $ightarrow rac{\mathrm{d}n}{\mathrm{d}\omega} < 0$ аномальная дисперсия, $v_{\mathrm{gr}} > v_{\phi}$

22 Дисперсия на атоме

1.
$$m\ddot{r} + m\omega_0^2 r + \gamma m\dot{r} = eE_0 e^{i\omega t} \Rightarrow r = \frac{e}{m} \frac{E}{\omega_0^2 - \omega^2 - i\omega\gamma}$$

2.
$$\mathbf{P} = ne \, \mathbf{r} \Rightarrow \varepsilon(\omega) = 1 + \frac{\omega_p^2}{\omega_0^2 - \omega^2 - i\omega\gamma}, \, \omega_p = \sqrt{\frac{4\pi ne^2}{m}},$$

$$\varepsilon_1(\omega) = 1 + \frac{\omega_p^2 \left(\omega_0^2 - \omega^2\right)}{\left(\omega_0^2 - \omega^2\right)^2 + \omega^2\gamma^2}$$

$$\varepsilon_2(\omega) = \frac{\omega_p^2 \gamma \omega}{\left(\omega_0^2 - \omega^2\right)^2 + \omega^2\gamma^2}.$$

- 3. $\omega \ll \omega_0$
- 4. $\omega \gg \omega_0$

23 СТО, событие и интервал

- 1. Все явления природы одинаковы во всех ИСО
- 2. c = const

Мировая :: (x, y, z, t)

точка

Событие :: что-то прозошедшее в мировой точке

Мировая :: траектория точки (в $\mathbb{R} \times \mathbb{R}^3$)

линия

Интервал :: $S_{12}^2 = c(t_2 - t_1)^2 - (\boldsymbol{r}_2 - \boldsymbol{r}_1)^2$

- $> S^2 > 0$ времениподобный интервал (причинная связь)
- $\triangleright S^2 < 0$ пространственноподобный интервал
- $> S^2 = 0$ светоподобный интервал

24 Преобразования Лоренца

- ⊳ Линейны
- ⊳ Сохраняют интервал

$$x' = \gamma(x - Vt)$$

ightharpoonup одномерные: $t' = \gamma (t - \frac{Vx}{c^2}x)$

$$r' = r - \gamma t V + (\gamma - 1) \frac{r \cdot V}{V^2} V$$

⊳ в общем случае:

of the chyace
$$t' = \gamma \left(t - \frac{\boldsymbol{V} \cdot \boldsymbol{r}}{c^2} x \right)$$

$$\boldsymbol{r}' = \gamma (\boldsymbol{r} - t\boldsymbol{V}) + (\gamma - 1) \frac{\boldsymbol{V} \times (\boldsymbol{V} \times \boldsymbol{r})}{V^2}$$

$$t' = \gamma \left(t - \frac{\boldsymbol{V} \cdot \boldsymbol{r}}{c^2} x \right)$$

$$\Delta \tau = \Delta t \cdot \frac{1}{\gamma(V)} \leqslant \Delta t$$

au — собственное время, в той CO, где тело неподвижно. Именно в ней $\Delta {m r} = 0$

25 Лоренцево сокращение и сложение скоростей

В собственной СО $\Delta t' = 0$

$$\left. \begin{array}{l} \Delta \boldsymbol{r}_{\parallel} = \gamma (\Delta \boldsymbol{r}_{\parallel}') \\ \Delta \boldsymbol{r}_{\perp} = \Delta \boldsymbol{r}_{\perp}' \end{array} \right\} \Rightarrow V_0 \mapsto V_0/\gamma$$

$$oldsymbol{v}' = rac{oldsymbol{v} - oldsymbol{V} + \left(1 - rac{1/\gamma}{\gamma}
ight)oldsymbol{V} imes \left(oldsymbol{V} imes oldsymbol{v}
ight)/V^2}{1 - rac{oldsymbol{V} \cdot oldsymbol{v}}{c^2}}$$

1.
$$\boldsymbol{v} \uparrow \uparrow \boldsymbol{V} \Rightarrow v' = \frac{v - V}{1 - vV/c^2}$$

2.
$$\boldsymbol{v} \perp \boldsymbol{V} \Rightarrow \boldsymbol{v}' = \boldsymbol{v} \sqrt{1 - V^2/c^2} - \boldsymbol{V}, \ \gamma(v) = \gamma(V) \, \gamma(v')$$

26 Инвариантные объекты в СТО и махинации с ними $\langle \mathfrak{R} \rangle$

 Λ — преобразование Лоренца

2.
$$a^{\alpha} = \Lambda^{\alpha}_{u} a^{\mu}$$
 $/r, u, \nabla \dots /r$

3.
$$A^{\beta}_{\alpha} = \Lambda^{\mu}_{\alpha} \Lambda^{\beta}_{\nu} A^{\nu}_{\mu}$$
 $/F^{ik}, g_{ij}, \dots$

$$\triangleright a \cdot b = g_{\mu\nu}a^{\mu}b^{\nu}$$

27 Скорость и импульс в СТО

$$\triangleright u = \frac{\mathrm{d}r}{\mathrm{d}\tau} = \{\gamma c, \gamma v\}, \ \beta = v/c$$

$$p = m u = \{p_0, \mathbf{p}\}\$$

1.
$$\boldsymbol{p} = m \, \gamma \, \boldsymbol{v}, \, p_0 = m \, \gamma \, c$$

2.
$$p^2 = m c^2 \Rightarrow p_0^2 = m^2 c^2 + p^2$$
 (закон сохранения энергии-импульса)

3.
$$\frac{\mathrm{d}p_0c}{\mathrm{d}t} = m\gamma^3(\boldsymbol{v}\cdot\dot{\boldsymbol{v}}) = \boldsymbol{v}\cdot\underbrace{\frac{\mathrm{d}\boldsymbol{p}}{\mathrm{d}t}}_{\boldsymbol{E}} = \frac{\mathrm{d}\mathcal{E}}{\mathrm{d}t}$$

4.
$$p_0 = \mathcal{E}/c \ T(p) = p_0 c - m c^2$$

28 Сложение скоростей

$$w = \frac{\mathrm{d}u}{\mathrm{d}\tau}$$

$$\Rightarrow w = \gamma^2 \{ (\boldsymbol{\beta} \cdot \boldsymbol{w}) \gamma^2, \boldsymbol{w} + (\boldsymbol{\beta} \cdot \boldsymbol{w}) \boldsymbol{\beta} \gamma^2 \}$$

 $\triangleright w \cdot \beta = 0$ (этакая ортогональность)

$$> w^2 = \gamma^2 (-\boldsymbol{w}^2 + (\boldsymbol{\beta} \times \boldsymbol{w})^2)$$

$$u_1 = \{\gamma_1 c, \gamma_1 v_1\}, u_2 = \{\gamma_2 c, \gamma_2 v_2\}$$

1.
$$V = v_1$$

2.
$$u_1' = \{c, 0\}, u_2' = \{\gamma_r c, \gamma_r \boldsymbol{v}_r\}$$

3.
$$\gamma_r = \gamma_1 \gamma_2 \left(1 - \frac{(\mathbf{v}_1 \cdot \mathbf{v}_2)}{c^2} \right) = \frac{1}{c^2} u_1 \cdot u_2 = \text{inv}$$

4.
$$\boldsymbol{v}_r = \frac{\gamma_2}{\gamma_r} \left(\boldsymbol{v}_2 - \gamma_2 \boldsymbol{v}_2 + (\gamma - 1) \frac{\boldsymbol{v}_1 \left(\boldsymbol{v}_2 \cdot \boldsymbol{v}_1 \right)}{\boldsymbol{v}_1^2} \right)$$

5. тосковатт

Заметки

- 1 при этом подходят все χ :: $\square \chi = 0$
- 2 В предыдущем нельзя, может не оказаться решением
- 3 вторую волну выкинули, нам обычно хватает какого-то частного решения.
- 4 В поляризационной матрице все E можно позаменять на E^0 (фазы всё равно сокращаются), а в предпредыдущем пунке у нас как раз $E^0_x=b_1\,e^{-i\varphi_0},\,E^0_y=ib_2\,e^{-i\varphi_0}$
- 5 Отсюда, кстати, очевидно преобразование параметров Стокса при поворотах
- $6 \psi_1$ то, что названо эйконалом у Бутикова. Вроде у него правильнее, но $\langle ? \rangle$
- 7 Тут непонятно что с плотностью энергии. Но, вроде, если амплитуда сохраняется и колебания гармонические, то $\frac{\partial^2 \overline{w}}{\partial t^2} = 0$.
- 8 Бардак в конспекте, писал по Бутикову