Introduction: Problem Environments & Intelligent Agents

CS3243: Introduction to Artificial Intelligence - Lecture 1

Contents

- 1. Administrative Matters
 - a. Teaching Staff
 - b. Topics & Schedule
 - c. Assessments
 - d. Resources & Textbook
 - e. Copyrights & Plagiarism
 - f. Lecture Protocols

- 2. What is AI?
- 3. Intelligent Agents
- 4. Problem Environments
- 5. Taxonomy of Agents

Administrative Matters

Teaching Staff

- Lecturer
 - Daren Ler: <u>dler@comp.nus.edu.sg</u>
 - https://www.comp.nus.edu.sg/cs/bio/dler/
- Tutors
 - Bryan Wang: e0540007@u.nus.edu
 - Eric Han: dcshlwe@nus.edu.sg
 - Gidijala Rahul : <u>e0425591@u.nus.edu</u>
 - May Lim: dcslmlm@nus.edu.sg
 - Sagar Sureka : e0426366@u.nus.edu
 - Teo Jia Wei: e0415724@u.nus.edu

Topics

- 1. Introduction: Problem Environments and Intelligence Agents
- 2. Uninformed Search: Problem-solving Agents and Path Planning
- 3. Informed Search: Incorporating Domain Knowledge
- 4. Local Search: Goal Versus Path Search
- 5. Constraint Satisfaction Problems: Generalising Goal Search
- 6. Adversarial Search: Playing Games
- 7. Logical Agents: Knowledge Representation
- 8. Bayesian Networks: Representations within Uncertainty

Weekly Schedule

- Lectures
 - Mondays, 1000-1200 hrs
- Diagnostic Quizzes
 - Release: After lectures
 - Deadlines: Fridays, 2359 hrs
- Tutorials
 - Begin Week 3
 - Release: After lecture
 - Deadlines: Sunday 2359 hrs

Note: Week 1 deadlines pushed to Week 2

General Schedule

Projects

- Project 1: released Week 3; due Week 6
- Project 2: released Week 6; due Week 9
- Project 3: released Week 9; due Week 12
- Midterm Quiz
 - 28 February, 1010-1140 hrs (Week 7 Lecture Slot)
- Final Examination
 - 25 April, 1700-1900 hrs

Consultations & Other Academic Support

Consultations

- By appointment only
- Exhaust other channels first

LumiNUS forums

- Post questions in relevant forums
- Answer in reasonable time
- Do *not* post solutions

Telegram groups

- One Telegram group per tutorial class
- Managed by your tutor

Assessments

- Diagnostic Quizzes (12)
 - Total 10%
 - LumiNUS Quiz (1 Attempt)
 - 1.25% for Best 8
- Tutorial Assignments (10)
 - Total 10%
 - LumiNUS File Submission
 - 1% each
- Projects (3)
 - Total 30%
 - Individual
 - Each project 10% (2% competitive)

- Midterm Quiz (1)
 - Total 20%
 - Closed Book + Cheat Sheet
 - Online + LumiNUS Quiz
 - Zoom + Screen Recording
 - NO MAKEUP
- Final Examination (1)
 - Total 30%
 - Closed Book + Cheat Sheet
 - Online + LumiNUS Quiz
 - Zoom + Screen Recording

Resources & Textbook

- LumiNUS for all course material
 - https://luminus.nus.edu.sg/modules/e9958908-6911-453c-8e22-547be8653fc6
 - Includes link to library-archived Past Exam Papers (bottom of menu)
- Textbook
 - Artificial Intelligence: A Modern Approach (4th Edition)
 - IBSN 9780134610993
 - Library: https://linc.nus.edu.sg/search/i=9780134610993

Plagiarism & Copyright

- Plagiarism
 - F Grade in module if caught
 - New update this week?
- Copyrights

NUS Course Materials: Ethical Behaviour and Respecting Copyright

All course participants (including permitted guest students) who have access to the course materials on LumiNUS or any approved platforms by NUS for delivery of NUS modules are not allowed to re-distribute the contents in any forms to third parties without the explicit consent from the module instructors or authorized NUS officials

Examples of Disallowed Things

No Posting on any websites (except for the materials explicitly allowed by your lecturer in the respective module)

No selling of material

No sharing of questions/answers which could lead to cheating/plagiarism

Lecture Protocol

- Periodic pauses to take questions
 - Unmute and ask verbally
 - Type in Zoom chat
- Archipelago
 - Use Voting Board
 - Checked before Zoom chat
- Priority
 - Verbal > Archipelago > Zoom Chat
- Lecture recordings
 - LumiNUS > CS324 > Conferencing > Previous
 - LumiNUS > CS3243 > Multimedia

Questions on Administrative Matters?

- Was anything unclear?
- Do you need to clarify anything?

- Channels
 - Verbally on Zoom
 - On Archipelago
 - Via Zoom Chat

What is Artificial Intelligence (AI)?

Artificial Intelligence (in a Nutshell)

Solving problems to help humans

- Programs relating to human actions / thinking
- More dynamic solutions → able to deal with many cases
 - Example
 - Google DeepMind's AlphaGo, AlphaZero, and MuZero
 https://deepmind.com/research/case-studies/alphago-the-story-so-far (with movies)
- Generality of the solution is the key

Building intelligent mechanisms

- Perform at least as well as humans
- Not necessarily in the same way as humans (nature)
 - Need not follow the example we know of e.g., birds versus planes

Kinds of Al

Strong Al

- General problem-solver
- Very dynamic programs → solves many problems

Weak / Narrow Al

- Less dynamic programs → solves fewer problems (typically just 1)
- Corresponds to most Al work

Usually focused on Narrow Al

- Easier to formalise
- More on this later ...

Intelligent Agents

Agent Framework

Agent Components

Sensors and actuators

- Sensors: what can/should be captured about the environment?
 - Percept data at time step t, p,
 - Percept sequence, $P = \{p_1, ..., p_t\}$
- Actuators: how will the agent affect change in the environment?
 - Set of actions, A

Focus is on the agent function

- Specify a function f
- Such that $f: P \rightarrow a_t$
- Where $a_t \in A$ is the selected action given P

CS3243 focuses on

- Representations for P and A
- Algorithms that determine f

Rationality & Performance

- Desire a program that works well
 - At least better than humans; ideally optimal
 - Implies a quantifiable objective → performance measure

available data

- Are the objectives and performance measure aligned?
- Rational agent (function), $f: P \rightarrow a$
 - Given
 - Percept sequence
 - Prior knowledge
 - Set of actions
 - Performance measure
 - Rational agent optimises performance measure

Note: do *not* assume agent is omniscient

Why more Narrow Al?

Easier to define the performance measure and thus a rational agent to solve that problem

Al as Search: A First Look

- Goal in Al → determine agent function f
 - $f: P \rightarrow a$
 - $-a \in A$
- Key idea → Al as graph search
 - Each percept corresponds to a state in the problem (state → vertex)
 - Define the desired states → goals
 - After each action, we arrive at a new state (action → edge)
 - Construct a search space (graph)
 - Design and apply a graph search algorithm

Recall the agent framework

- Agent gets percepts
- Agent function determines action
- Agent enacts action
- Repeat
- (1) Define performance measure and search space
- (2) Design search algorithm

First problem we will look at in CS3243 (next week)

– other topics will expand on this idea

An Example Agent

Problem environment

- 2-dimensional maze navigation agent
- $-P_i$: (row, column)
- $-A: \{\leftarrow,\uparrow,\rightarrow,\downarrow\}$

Agent function f?

- Assume map always the same
 - Function: series of if statements
- Assume map is different each time but remains static during game
 - Function: determined by path planning algorithm (e.g., Dijkstra's)
- What other possible assumptions?
 - We review this in the next part of the lecture

Questions on Intelligent Agents?

- Was anything unclear?
- Do you need to clarify anything?

- Channels
 - Verbally on Zoom
 - On Archipelago
 - Via Zoom Chat

Problem Environments

- Fully observable versus partially observable
 - Agent cannot access all information as some cannot be sensed
 - Requires handling uncertainty
- Deterministic verses stochastic
 - Stochastic → intermediate state cannot be determined based on action taken at a given state
 - Handling uncertainty typically required
- Stochastic → partially observable?
 - May be fully observable (sense all) but still have randomness with action

- Episodic versus sequential
 - Episodic → actions only impact the current state (not those beyond)
 - Sequential → an action may impact all future decisions
 - Note that it is possible to model an episodic environment into a sequential search space (more on this next week)
- Discrete versus continuous
 - Refers to state information, time, percepts, actions

Single vs multi-agent

- Do other entities exist in within the environment that are themselves agents whose actions directly influence the performance of this agent?
 - Chess → opponent is a competitive agent
 - Automated vehicles → other vehicles are cooperating agents

Known versus unknown

- Refers to knowledge of the agent/designer (not environment itself)
- Includes performance measure

Static versus dynamic

- Will the environment change while the agent is deciding an action?

Property	CS3243	Notes
Fully / Partially Observable	Both	Latter in Rayasian Networks
Deterministic / Stochastic	Both	Latter in Bayesian Networks
Episodic / Sequential	Both	
Discrete / Continuous	Both	Mostly discrete
Single / Multi-agent	Both	Latter in Adversarial Search
Known / Unknown	Known	
Static / Dynamic	Static	

Taxonomy of Agents

Types of Agents

Reflex agent

- Uses rules in the form of if-statements to make decisions
- Direct mapping of percepts to actions
- Mostly domain specific
- Impractical with large search spaces

Model-based reflex agent

- Makes decisions based on an internalised model

Types of Agents

- Goal-based and utility-based agents
 - Given
 - State and action representations
 - Definition of goals or utility
 - Determines
 - Sequence of actions necessary to reach goals or maximise utility
 - Or state that satisfies goal conditions or maximises utility
- Learning agents
 - Agents that learn how to optimise performance

Property	CS3243	Notes
Reflex Agents	Yes	
Model-Based Reflex Agents	Yes	Logical AgentsBayesian Networks
Goal-Based and Utility- Based Agents	Yes	 Uninformed / Informed Search Local Search Constraint Satisfaction Problems Adversarial Search
Learning Agents	No	

Questions on the Lecture?

- Was anything unclear?
- Do you need to clarify anything?

- Channels
 - Verbally on Zoom
 - On Archipelago
 - Via Zoom Chat

