$$\begin{split} P(a \leq X \leq b) &= \int\limits_{a}^{b} f(x) dx, \\ F(x) &= P(X \leq x) = \int\limits_{-\infty}^{x} f(t) dt, \\ P(a \leq X \leq b) &= F(b) - F(a) \\ E(H(x)) &= \int\limits_{-\infty}^{\infty} H(x) f(x) dx \\ \text{Ако } Y &= g(X), \, f_{Y}(y) = f_{X}(g^{-1}(y)) \, \big| \frac{dg^{-1}(y)}{dy} \big|, \end{split}$$

Непрекъснато равномерно разпределение
$$U(a,b)$$
: $f(x)=\frac{1}{b-a},\ a< x< b;\ E(e^{tX})=\frac{e^{tb}-e^{ta}}{t(b-a)};\ EX=\frac{a+b}{2};\ VX=\frac{(b-a)^2}{12}$

Експоненциално разпределение $X \sim Exp(\lambda)$:

$$f(x)=\lambda e^{-\lambda x}, \ x,\lambda>0; \ E(e^{tX})=\frac{\lambda}{\lambda-t}, \ \mathrm{sa}\ |t|<\lambda; \ EX=1/\lambda; \ VX=\frac{1}{\lambda^2}$$
 $F_X(x)=1-e^{-\lambda x}$

Ако
$$\lambda = 1/\beta, Exp(1/\beta)$$
:
 $f(x) = \frac{1}{\beta}e^{-x/\beta}, \ x, \beta > 0; \ E(e^{tX}) = \frac{1}{1-\beta t}; \ EX = \beta; \ VX = \beta^2$

Нормално разпределение
$$N(\mu, \sigma^2)$$
:
$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}; \quad E(e^{tX}) = e^{\mu t + \frac{\sigma^2 t^2}{2}}; \quad EX = \mu; \quad VX = \sigma^2$$

Двумерно съвместно разпределение:

$$\int_{a}^{b} \int_{c}^{d} f_{XY}(x, y) dx dy = P(a \le X \le b, c \le Y \le d), \ f_{XY}(x, y) \ge 0,$$

 $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{XY}(x,y) dx dy = 1$

$$f_{XY}(x,y)$$
: $f_X(x) = \int_{-\infty}^{\infty} f_{XY}(x,y) dy$, $f_Y(y) = \int_{-\infty}^{\infty} f_{XY}(x,y) dx$

$$f_{XY}(x,y)$$
: $f_X(x) = \int_{-\infty}^{\infty} f_{XY}(x,y) dy$, $f_Y(y) = \int_{-\infty}^{\infty} f_{XY}(x,y) dx$ $E(H(X,Y)) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} H(x,y) f_{XY}(x,y) dx dy$, ако съществува

 $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |H(x,y)| f_{XY}(x,y) dx dy.$

$$J_{-\infty}$$
 $J_{-\infty}$ $|H(x,y)|J_{XY}(x,y)$ ахау.
Ковариация: $Cov(X,Y) = E((X-\mu_x)(Y-\mu_y)) = E(XY) - E(X)E(Y)$
Корелационен коефициент: $\rho_{XY} = \frac{Cov(X,Y)}{\sqrt{VarX}\sqrt{VarY}}$
Условна плътност: $f_{X|y}(x) = f_{X|Y=y}(x) = \frac{f_{XY}(x,y)}{f_Y(y)}$

Условна плътност:
$$f_{X|y}(x) = f_{X|Y=y}(x) = \frac{f_{XY}(x,y)}{f_Y(y)}$$

Условно математическо очакване: $E(X|Y=y)=\int_{-\infty}^{\infty}xf_{X|y}(x)dx$

Точкови оценки. Неизместеност: $E(\hat{\theta}) = \theta$

k-ти емпиричен момент: $M_k = \sum_{i=1}^{n} \frac{X_i^k}{n}$

Функция на правдоподобие: $L(\theta) = \prod_{i=1}^{n} f(x_i)$

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i, \ S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$$

Интервална оценка: $[L_1, L_2]$, такъв че $P(L_1 \le \theta \le L_2) = 1 - \alpha$ се нарича $100(1-\alpha)\%$ -ен доверителен интервал за параметъра θ .

Ако $X_1, \ldots X_n$ е случайна извадка от $N(\mu, \sigma^2)$:

$$\bar{X} \sim N(\mu, \sigma^2/n)$$
, $\bar{X} \pm z_{\alpha/2} \sigma / \sqrt{n}$;

$$\bar{X} \sim N(\mu, \sigma^2/n) , \bar{X} \pm z_{\alpha/2} \sigma/\sqrt{n};$$
 $(n-1)S^2/\sigma^2 \sim \chi^2_{n-1}, [(n-1)S^2/\chi^2_{\alpha/2}, (n-1)S^2/\chi^2_{1-\alpha/2}];$

$$rac{ar{X}-\mu}{S/\sqrt{n}}\sim T_{n-1},\ ar{X}\pm t_{lpha/2}S/\sqrt{n}$$

Хипотези:

 $\alpha=P$ (отхвърля се $H_0|H_0$ е вярна), $\beta=P$ (не се отхвърлия $H_0|H_1$ е вярна)

TS:
$$Z = \frac{\bar{X}_1 - \bar{X}_2 - d_o}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}; \bar{X}_1 - \bar{X}_2 \pm z_{1-\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$

TS:
$$T = \frac{\bar{X}_1 - \bar{X}_2}{s\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}, s = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$$