

High-Gain IGBT w/ Diode

IXGH24N60C4D1

High-Speed PT Trench IGBT

Symbol Test Conditions		Maximum Ratings		
V _{CES}	T _J = 25°C to 150°C	600	V	
V _{CGR}	$T_{_{\rm J}} = 25^{\circ}\text{C} \text{ to } 150^{\circ}\text{C}, R_{_{\rm GE}} = 1\text{M}\Omega$	600	V	
V _{GES}	Continuous	±20	V	
V _{GEM}	Transient	±30	V	
I _{C25}	T _c = 25°C	56	A	
I _{C110}	$T_{c} = 110^{\circ}C$	24	Α	
I _{F110}	$T_{c} = 110^{\circ}C$	18	Α	
I _{CM}	$T_c = 25$ °C, 1ms	130	Α	
SSOA	$V_{GE} = 15V, T_{VJ} = 125^{\circ}C, R_{G} = 10\Omega$	I _{CM} = 48	A	
(RBSOA)	Clamped Inductive Load	@ ≤ V _{CES}		
P _c	T _c =25°C	190	W	
T _J		-55 +150	∞	
T _{JM}		150	°C	
T _{stg}		-55 +150	°C	
T,	Maximum Lead Temperature for Soldering	300	∞	
T _{SOLD}	1.6 mm (0.062in.) from Case for 10s	260	°C	
M _d	Mounting Torque	1.13/10	Nm/lb.in.	
Weight		6	g	

Symbol $(T_J = 25^{\circ}C, U)$	Test Conditions Unless Otherwise Specified)	Chara Min.	acteristic Typ.	Values Max.	
V _{GE(th)}	$I_{\rm C} = 250 \mu A, V_{\rm CE} = V_{\rm GE}$	4.0		6.5	V
I _{CES}	$V_{CE} = V_{CES}, V_{GE} = 0V$			10	μΑ
	$T_J = 125^{\circ}C$			1.5	mΑ
I _{GES}	$V_{CE} = 0V, V_{GE} = \pm 20V$			±100	nA
V _{CE(sat)}	$I_{c} = I_{C110}, V_{GE} = 15V, \text{ Note 1}$ $T_{J} = 125^{\circ}\text{C}$		2.28 1.95	2.70	V

 $\begin{array}{lll} {\sf V}_{\sf CES} & = & 600 {\sf V} \\ {\sf I}_{\sf C110} & = & 24 {\sf A} \\ {\sf V}_{\sf CE(sat)} & \leq & 2.70 {\sf V} \\ {\sf t}_{\sf fi(typ)} & = & 68 {\sf ns} \end{array}$

G = Gate	C =	Collector
E = Emitter	Tab =	Collector

Features

- Optimized for Low Switching Losses
- Square RBSOA
- Anti-Parallel Ultra Fast Diode
- International Standard Package

Advantages

- High Power Density
- Low Gate Drive Requirement

Applications

- Power Inverters
- UPS
- Motor Drives
- SMPS
- PFC Circuits
- Battery Chargers
- Welding Machines
- Lamp Ballasts

IXGH24N60C4D1

		cteristic '		
$(1_J = 25)$	°C Unless Otherwise Specified)	Min.	Тур.	Max.
g _{fs}	$I_{c} = I_{c110}, V_{cE} = 10V, Note 1$	10	17	S
C _{ies}			875	pF
C_{oes}	$V_{CE} = 25V, V_{GE} = 0V, f = 1MHz$		86	pF
\mathbf{C}_{res}	J		28	pF
Qg			64	nC
\mathbf{Q}_{ge}	$I_{\rm C} = I_{\rm C110}, V_{\rm GE} = 15 \rm V, V_{\rm CE} = 0.5 \bullet \rm V_{\rm CES}$		7	nC
Q _{gc})		28	nC
t _{d(on)})		21	ns
t _{ri}	Inductive Load, T _J = 25°C		33	ns
E _{on}	$I_{\rm C} = I_{\rm C110}, V_{\rm GE} = 15V$		0.40	mJ
$\mathbf{t}_{d(off)}$	$V_{CE} = 360V, R_{G} = 10\Omega$		143	ns
t _{fi}	Note 2		68	ns
E _{off})		0.30	0.55 mJ
t _{d(on)}			20	ns
t _{ri}	Inductive Load, T _J = 125°C		32	ns
E _{on}	$I_{\rm C} = I_{\rm C110}, V_{\rm GE} = 15V$		0.63	mJ
$\mathbf{t}_{d(off)}$	$V_{CE} = 360V, R_{G} = 10\Omega$		130	ns
t _{ri}	Note 2		118	ns
Ë _{off}	<i>)</i>		0.50	mJ
R _{thJC}				0.65 °C/W
R _{thCS}			0.21	°C/W

Terminals:	1 - Gate	2 - Collect
	3 - Emitter	

Dim.	Millimeter		Inc	Inches	
	Min.	Max.	Min.	Max.	
Α	4.7	5.3	.185	.209	
A ₁	2.2	2.54	.087	.102	
A ₂	2.2	2.6	.059	.098	
b	1.0	1.4	.040	.055	
b,	1.65	2.13	.065	.084	
b ₂	2.87	3.12	.113	.123	
С	.4	.8	.016	.031	
D	20.80	21.46	.819	.845	
E	15.75	16.26	.610	.640	
е	5.20	5.72	0.205	0.225	
L	19.81	20.32	.780	.800	
L1		4.50		.177	
ØP	3.55	3.65	.140	.144	
Q	5.89	6.40	0.232	0.252	
R	4.32	5.49	.170	.216	
S	6.15	BSC	242	BSC	

Reverse Diode (FRED)

Symbol Test Conditions

Characteristic Values

$(T_{J} = 25^{\circ}C \text{ Unless Otherwise Specified})$ Min.		Тур.	Max.		
٧_	$I_{\rm F} = 15A, V_{\rm GF} = 0V, \text{ Note } 1$			2.7	V
•	, GE	$T_J = 150^{\circ}C$	1.6		V
I _{RM}	$I_F = 15A$, $V_{GE} = 0V$, $-di_F/dt = 100A/\mu s$,	T _J = 100°C		2.6	Α
t _{rr}	$\dot{V}_{p} = 100V$	T _J = 100°C	100		ns
$I_F = 1A$, $V_{GE} = 0V$, $-di_F/dt = 100A/\mu s$, $V_R = 30V$			25		ns
$\mathbf{R}_{\mathrm{thJC}}$				1.6 °C	C/W

Notes:

- 1. Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.
- 2. Switching times & energy losses may increase for higher $V_{CE}(clamp)$, T_{J} or R_{G} .

IXGH24N60C4D1

Fig. 1. Output Characteristics @ T_J = 25°C

Fig. 2. Extended Output Characteristics @ T_J = 25°C

Fig. 3. Output Characteristics @ T_J = 125°C

Fig. 4. Dependence of $V_{CE(sat)}$ on Junction Temperature

Fig. 5. Collector-to-Emitter Voltage vs.
Gate-to-Emitter Voltage

Fig. 6. Input Admittance

0.1

Pulse Width - Second

0.01

0.001

Fig. 11. Maximum Transient Thermal Impedance

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

0.0001

0.00001

Fig. 12. Inductive Switching Energy Loss vs.

Gate Resistance

Fig. 13. Inductive Switching Energy Loss vs. Collector Current

Fig. 14. Inductive Switching Energy Loss vs.

Junction Temperature

Fig. 15. Inductive Turn-off Switching Times vs.

Gate Resistance

Fig. 16. Inductive Turn-off Switching Times vs.

Collector Current

Fig. 17. Inductive Turn-off Switching Times vs.

IXGH24N60C4D1

Fig. 18. Inductive Turn-on Switching Times vs.

Gate Resistance

Fig. 20. Inductive Turn-on Switching Times vs.
Junction Temperature

Fig. 19. Inductive Turn-on Switching Times vs.
Collector Current

Fig. 21. Forward Current I_F vs. V_F

Fig. 22. Reverse Recovery Change Q, vs. -di_E/dt

Fig. 23. Peak Reverse Current I_{RM} vs. -di_F/dt

Fig. 24. Dynamic Parameters $Q_{r.} I_{RM} vs. T_{vJ}$

Fig. 25. Recovery Time t_r vs. $-di_F/dt$

Fig. 26. Peak Forward Voltage V_{FR} , t_r vs. $-di_F/dt$

Fig. 27. Transient Thermal Resistance Junction to Case

Constants for Z_{tuc} calculation:

i	R _N (K/W)	t _i (s)
1	0.908	0.0052
2	0.35	0.0003
3	0.342	0.017

NOTE: Fig. 18 to Fig. 22 show typical values