UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO

Matematika – 1. stopnja

Aljaž Ostrež **Matrične potence**

Delo diplomskega seminarja

Mentorica: izr. prof. dr. Marjeta Kramar Fijavž

Somentor: doc. dr. Pavle Boškoski

Kazalo

1. Uvod	4
1.1. Fibonaccijevo zaporedje	4
1.2. Markovske verige	6
1.3. Ponovitev iz linearne algebre	7
2. Spektralni razcep in matrične funkcije	11
2.1. Matrični polinomi	11
2.2. Gladke matrične funkcije	12
2.3. Spektralna teorija	15
3. Zaporedja matričnih potenc	16
3.1. Koordinatna zaporedja	16
3.2. Asimptotsko obnašanje	19
4. Primer uporabe	21
Slovar strokovnih izrazov	21
Literatura	22

Matrične potence

Povzetek

Powers of Matrices

Abstract

Math. Subj. Class. (2020): Ključne besede: Keywords:

1. Uvod

Matrike so matematični objekti, ki so zelo uporabni v različnih vejah matematike in ostalih znanostih. V teoriji grafov matrika sosednosti enolično določa graf, ki je lahko utežen ali pa neutežen. V linearni algebri jih uporabljamo na primer za zapis linearnih preslikav med vektorskimi prostori in za proučevanje koeficientov sistemov linearnih enačb. V nadaljevanju bodo vse matrike kompleksne. To pomeni, da so koordinate matrike $A = [a_{ij}]_{1 \le i,j \le n}$ kompleksna števila, tj. $a_{ij} \in \mathbb{C}$ za $i,j = 1,\ldots,n$.

V nekaterih primerih pa nam poleg matrik pridejo prav tudi matrične funkcije. Eden od primerov matričnih funkcij je funkcija

$$f: \mathbb{C}^{n \times n} \to \mathbb{C}^{n \times n}$$

s predpisom

$$f(A) = A^k$$

za $k \in \mathbb{N}$, kar je ravno k-ta potenca matrike $A \in \mathbb{C}^{n \times n}$. S pomočjo te funkcije lahko sestavimo zaporedje oblike $(A^k)_{k \in \mathbb{N}}$, ki je zelo uporabno v slučajnih procesih.

Večino predstavljenih rezultatov povzemamo iz [1, 2. poglavje, 3. poglavje, dodatek A].

Z naslednjimi zgledi bomo še dodatno motivirali uporabo matričnih potenc.

1.1. **Fibonaccijevo zaporedje.** Poglejmo si uporabo matričnih potenc na primeru Fibonaccijevega zaporedja.

Zgled 1.1 (Fibonaccijevo zaporedje). Poznamo rekurzivno formulo za Fibonaccijevo zaporedje:

$$f_0 = 0, f_1 = 1$$

 $f_{n+1} = f_n + f_{n-1}, n \ge 1.$

Z uvedbo zaporedja $g_n = f_{n-1}$ dobimo sistem:

$$f_{n+1} = f_n + g_n$$
$$g_{n+1} = f_n$$

ob začetnih pogojih $f_1=1$ in $g_1=0$. Ta sistem lahko zapišemo v matrični obliki:

$$\begin{bmatrix} f_{n+1} \\ g_{n+1} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} f_n \\ g_n \end{bmatrix}$$

za vsak $n \in \mathbb{N}$. Rekurzivno uporabljamo zgornji predpis, da dobimo

$$\begin{bmatrix} f_{n+1} \\ g_{n+1} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} f_n \\ g_n \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^2 \begin{bmatrix} f_{n-1} \\ g_{n-1} \end{bmatrix} = \dots = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^n \begin{bmatrix} f_1 \\ g_1 \end{bmatrix}$$

oziroma

$$\begin{bmatrix} f_{n+1} \\ g_{n+1} \end{bmatrix} = \begin{bmatrix} f_{n+1} \\ f_n \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^n \begin{bmatrix} 1 \\ 0 \end{bmatrix}.$$

Z uporabo matričnih potenc torej lahko dobimo ekplicitno formulo za splošni člen v Fibonaccijevemu zaporedju

$$f_n = a_{21},$$

kjer je a_{21} prvi element v drugi vrstici matrike:

$$A^n = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^n.$$

Tekom študija smo že spoznali en način za računanje matričnih potenc – potence matrik lahko računamo s prevedbo na Jordanovo formo.

Naj bo $A \in \mathbb{R}^{m \times m}$ matrika. Potem velja:

$$A^n = PJ^nP^{-1},$$

kjer je J Jordanova forma matrike $A,\ P$ pa pripadajoča prehodna matrika. Vemo, da je

$$J^n = \begin{bmatrix} J_1^n & & \\ & \ddots & \\ & & J_k^n \end{bmatrix},$$

kjer so $J_i, i = 1, \dots, k$, Jordanovi bloki. Za Jordanove bloke velja

$$J_i^n = \begin{bmatrix} \lambda_i^n & \binom{n}{1} \lambda_i^{n-1} & \cdots & \binom{n}{m_i} \lambda_i^{n-m_i} \\ & \lambda_i^n & \cdots & \binom{n}{m_i-1} \lambda_i^{n-(m_i-1)} \\ & & \ddots & \vdots \\ & & & \lambda_i^n \end{bmatrix},$$

pri čemer je λ_i lastna vrednost matrike $A, m_i \times m_i$ pa velikost Jordanovega bloka. V posebnem primeru, ko je J diagonalna matrika, velja:

$$J^n = \begin{bmatrix} \lambda_1^n & & \\ & \ddots & \\ & & \lambda_m^n \end{bmatrix}.$$

Zgled 1.2 (Fibonaccijevo zaporedje – nadaljevanje). Z izračunom lastnih vrednosti in lastnih vektorjev bi za matriko:

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$

dobili Jordanovo formo (oziroma v tem primeru kar diagonalizacijo) matrike A in prehodno matriko:

$$J = \begin{bmatrix} \frac{1+\sqrt{5}}{2} & 0\\ 0 & \frac{1-\sqrt{5}}{2} \end{bmatrix}, \qquad P = \begin{bmatrix} \frac{1-\sqrt{5}}{2} & \frac{1+\sqrt{5}}{2}\\ 1 & 1 \end{bmatrix}.$$

Naš sistem enačb lahko zapišemo kot:

$$\begin{bmatrix} f_{n+1} \\ f_n \end{bmatrix} = A^n \begin{bmatrix} 1 \\ 0 \end{bmatrix} = PJ^n P^{-1} \begin{bmatrix} 1 \\ 0 \end{bmatrix}.$$

Izračunamo, da je:

$$f_n = \frac{\sqrt{5}}{5} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right], \quad n \in \mathbb{N}_0.$$

S pomočjo matričnih potenc smo iz rekurzivnega predpisa dobili eksplicitno formulo zaporedja. $\ \diamondsuit$

Zakaj potrebujemo nove metode za računanje matričnih potenc, če jih že znamo računati s pomočjo Jordanove forme? Izkaže se, da je izračun Jordanove forme numerično zahteven, poleg tega pa nam Jordanova forma omogoča potenciranje matrik le v končnih dimenzijah. Velikokrat nam tudi ni potrebno izračunati celotne matrike A^n , ampak želimo le poznati nekatere njene lastnosti. Namesto Jordanove forme bomo uporabili spektralni razcep, ki ni odvisen od izbire baze matrike A.

Želeli bomo opisati asimptotsko obnašanje matričnih zaporedij s splošnim členom $A_n = A^n$, kjer je $A \in \mathbb{R}^{m \times m}$. To obnašanje se lahko razbere že iz spektra matrike, včasih pa celo le iz spektralnega radija.

1.2. **Markovske verige.** Uporabo matričnih potenc bomo prikazali na primeru markovskih verig. Navedimo definicijo markovske verige.

Definicija 1.3. Naj bo S števna množica, ki jo poimenujemo množica stanj. Njene elemente $s \in S$ imenujemo stanja. Slučajni proces (z diskretnim časom) je vsako zaporedje diskretnih slučajnih spremenljivk $X_0, X_1, \ldots, X_n, \ldots$, katerih zaloga vrednosti leži v S. To zaporedje imenujemo markovska veriga, če ima markovsko lastnost:

$$P(X_n = s_n | X_0 = s_0, X_1 = s_1, \dots, X_{n-1} = s_{n-1}) = P(X_n = s_n | X_{n-1} = s_{n-1}),$$

tj. verjetnost stanja na n-tem koraku je odvisna le od stanja na (n-1)-tem koraku. Vpeljemo še pojma prehodne verjetnosti $p_{ij} = P(X_n = s_j | X_{n-1} = s_i)$ in prehodne matrike $P = [p_{ij}]_{1 \le i,j \le n}$.

Poglejmo si zgled markovske verige, ki bo hkrati tudi motiviral računanje limite zaporedja $A_n = A^n$, če ta obstaja.

Zgled 1.4. Izberimo si vozlišče v poljubnem neusmerjenem grafu. Izberemo si naključnega soseda izbranega vozlišča in se premaknemo v njega. Postopek ponavljamo. Kolikšen je delež obiskov določenega vozlišča v grafu po dolgem času? Ker soseda izbiramo naključno, začetnemu grafu priredimo utežen usmerjen graf, kjer so uteži verjetnosti, da se premaknemo v povezanega soseda. Tu privzamemo, da so izbire sosedov enako verjetne, za vozlišče stopnje k so vse verjetnosti enake $\frac{1}{k}$.

SLIKA 1. Začetni neusmerjen graf.

SLIKA 2. Prirejen utežen usmerjen graf.

Naša množica stanj je $S = \{A, B, C, D, E\}$, prehodna matrika pa bo kar matrika sosednosti prirejenega uteženega usmerjenega grafa

$$P = \begin{bmatrix} A & B & C & D & E \\ 0 & 1/3 & 1/3 & 1/3 & 0 \\ 1/2 & 0 & 1/2 & 0 & 0 \\ 1/4 & 1/4 & 0 & 1/4 & 1/4 \\ D & D & 1/2 & 0 & 0 \\ E & 0 & 0 & 1 & 0 & 0 \end{bmatrix}.$$

Ker je izbira naslednjega vozlišče v zaporedju odvisna le od trenutnega vozlišča, ima naše zaporedje markovsko lastnost, torej bo naša pot v grafu markovska veriga. Kaj nam pa pove prehodna matrika?

- Matrika P nam pove, kakšna je verjetnost, da bomo prišli v določeno vozlišče v naslednjem koraku, če smo trenutno v vozlišču, ki ga predstavlja vrstica.
- \bullet P^2 nam pove, kakšna je verjetnost, da bomo prišli v določeno vozlišče čez 2 koraka.
- ...
- \bullet P^n nam pove, kakšna je verjetnost, da bomo prišli v določeno vozlišče čezn korakov

Za naš primer se izkaže celo, da obstaja limita:

$$\lim_{n\to\infty}P^n=\begin{bmatrix} 0,25 & 0,17 & 0,33 & 0,17 & 0,08\\ 0,25 & 0,17 & 0,33 & 0,17 & 0,08\\ 0,25 & 0,17 & 0,33 & 0,17 & 0,08\\ 0,25 & 0,17 & 0,33 & 0,17 & 0,08\\ 0,25 & 0,17 & 0,33 & 0,17 & 0,08 \end{bmatrix}.$$

Ta limita nam pove delež obiskov za vsako vozlišče (če bi zelo dolgo potovali). Limita je tudi neodvisna od izbire začetnega vozlišča, če je le graf povezan [2, Theorem 5.1].

1.3. Ponovitev iz linearne algebre. Naj bo $A \in \mathbb{C}^{n \times n}$ matrika dimenzije $n \times n$. Definiramo *množico polinomov matrike* A s predpisom

$$\mathcal{P}_A := \left\{ \sum_{i=0}^m \alpha_i A^i \mid \alpha_i \in \mathbb{C}, m \in \mathbb{N}_0 \right\} \subset \mathbb{C}^{n \times n}.$$

Če je $p(x) = \sum_{i=0}^{m} \alpha_i x^i$ polinom, bomo pisali

$$p(A) := \sum_{i=0}^{m} \alpha_i A^i.$$

Definiramo preslikavo

(1)
$$\Phi_A: \mathbb{C}[x] \longrightarrow \mathcal{P}_{\mathcal{A}}$$
$$p \longmapsto p(A),$$

kjer je $\mathbb{C}[x]$ množica polinomov s koeficienti iz \mathbb{C} . Jedro preslikave Φ_A je

$$\ker(\Phi_A) = \Big\{ p \in \mathbb{C}[x] \mid p(A) = 0 \Big\},$$

torej $\ker(\Phi_A)$ je množica vseh polinomov, za katere je p(A) = 0.

Definicija 1.5. Minimalni polinom $m_A \in \mathbb{C}[x]$ je neničeln monični polinom najmanjše stopnje iz $\ker(\Phi_A)$, tj. monični polinom p najnižje stopnje, za katerega je p(A) = 0.

Opomba 1.6. *Monični polinom* je polinom z vodilnim koeficientom enakim 1.

Spomnimo se, da je minimalni polinom m_A enolično določen z matriko A. Potrebovali bomo še pojem $lastne \ vrednosti$ in $lastnega \ vektorja$ matrike A, osvežimo pa še definicijo $karakterističnega \ polinoma$ matrike A. Poleg tega navedimo še definicijo $lastnega \ podprostora$.

Definicija 1.7. Naj bo $A \in \mathbb{C}^{n \times n}$.

• Število $\lambda \in \mathbb{C}$ imenujemo lastna vrednost matrike A, če obstaja tak vektor $x \in \mathbb{C}^n, x \neq 0$, da velja

$$Ax = \lambda x$$
.

Vektorji x, za katere velja zgornja enačba, so pripadajoči lastni vektorji.

- Lastni podprostor matrike A, ki pripada lastni vrednosti λ , je definiran kot $\ker(A \lambda I)$.
- Polinom

$$\Delta_A(\lambda) = \det(A - \lambda I) \in \mathcal{P}_A$$

v spremenljivki λ imenujemo karakteristični polinom matrike A.

• Algebraična večkratnost lastne vrednosti λ je večkratnost λ kot ničle polinoma $\Delta_A(\lambda)$. Geometrična večkratnost lastne vrednosti λ pa je dimenzija pripadajočega lastnega podprostora $\ker(A - \lambda I)$.

Brez dokaza se spomnimo naslednje trditve, s pomočjo katere med drugim tudi na roke iščemo lastne vrednosti matrike A.

Trditev 1.8. Naj bo $A \in \mathbb{C}^{n \times n}$, m_A pripadajoči minimalni polinom, Δ_A pripadajoči karakteristični polinom in $\lambda \in \mathbb{C}$. Naslednje trditve so ekvivalentne:

- (1) λ je lastna vrednost matrike A,
- (2) $matrika A \lambda I \ ni \ obrnljiva,$
- (3) λ je ničla polinoma m_A ,
- (4) λ je ničla polinoma Δ_A .

Matrika $A - \lambda I$ je nilpotentna reda ν , kjer je ν geometrična večkratnost lastne vrednosti λ . To pomeni, da velja $(A - \lambda I)^k = 0$ za $k \geq \nu$.

Iz zgornje trditve sledi, da lahko minimalni polinom m_A matrike A zapišemo kot

$$m_A(z) = (z - \lambda_1)^{\nu_1} (z - \lambda_2)^{\nu_2} \cdots (z - \lambda_m)^{\nu_m},$$

kjer $\lambda_1,\ldots,\lambda_m$ lastne vrednosti matrike $A,\,\nu_1,\ldots,\nu_m$ pa pripadajoče geometrične večkratnosti.

V nadaljevanju bomo omenjali tudi *matrične* in *operatorske norme*, zato se spomnimo lastnosti norme.

Definicija 1.9. *Matrična norma* na $\mathbb{C}^{n\times n}$ je takšna preslikava $\|\cdot\|:\mathbb{C}^{n\times n}\to\mathbb{R}$, da za vsaki matriki $A,B\in\mathbb{C}^{n\times n}$ in vsak skalar $\alpha\in\mathbb{C}$ velja:

- (1) $||A|| \ge 0$ in ||A|| = 0 natanko tedaj, ko je A = 0 (pozitivnost),
- (2) $\|\alpha A\| = |\alpha| \|A\|$ (homogenost),
- (3) $||A + B|| \le ||A|| + ||B||$ (trikotniška neenakost),
- (4) $||AB|| \le ||A|| ||B||$ (submultiplikativnost).

Matrične norme, ki so porojene iz vektorskih norm s predpisom

$$||A|| = \max_{x \neq 0} \frac{||Ax||}{||x||}$$
 za $x \in \mathbb{C}^n$,

imenujemo operatorske norme.

Zgled 1.10. Matrične norme, ki so porojene iz vektorskih p-norm, imenujemo p-norme. To so operatorske norme in so definirane kot

$$||A||_p = \max_{x \neq 0} \frac{||Ax||_p}{||x||_p},$$

kjer je $A \in \mathbb{C}^{n \times n}$. Dva predstavnika p-norm, ki imata še posebej poenostavljen predpis, sta:

• 1-norma, ki je definirana kot

$$||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^n |a_{ij}|,$$

tj. največja od vsot absolutnih vrednosti elementov v isti vrstici,

• ∞ -norma, ki je definirana kot

$$||A||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|,$$

tj. največja od vsot absolutnih vrednosti elementov v istem stolpcu.

Operatorska norma je torej podrazdred matričnih norm in ima nekaj zanimivih lastnosti.

Trditev 1.11. Naj bo $A \in \mathbb{C}^{n \times n}$, $x \in \mathbb{C}^{n \times n}$ in $\|\cdot\|$ operatorska norma na $\mathbb{C}^{n \times n}$. Potem velja

$$||Ax|| \le ||A|| \cdot ||x||.$$

Dokaz. Za x=0 trditev očitno velja. Za $x\neq 0$ pa velja

$$\frac{\|Ax\|}{\|x\|} \le \max_{x \ne 0} \frac{\|Ax\|}{\|x\|} = \|A\|,$$

torej je $||Ax|| \le ||A|| \cdot ||x||$.

Posledica 1.12. Naj bo $A \in \mathbb{C}^{n \times n}$ in $\|\cdot\|$ neka operatorska norma na $\mathbb{C}^{n \times n}$. Potem velja neenakost

$$||A|| \ge \max\{|\lambda| \mid \lambda \text{ je lastna vrednost matrike } A\}.$$

Dokaz. Po definiciji lastne vrednosti velja $Ax = \lambda x$ za neki lastni vektor $x \in \mathbb{C}^{n \times n}$, $x \neq 0$. Zato velja tudi

$$||Ax|| = ||\lambda x|| = |\lambda| \cdot ||x||.$$

Ker je ||·|| operatorska norma, po trditvi 1.11 velja

$$||Ax|| \le ||A|| \cdot ||x||.$$

Sledi, da je

$$|\lambda| \cdot ||x|| < ||A|| \cdot ||x||$$
,

torej je $|\lambda| \leq ||A||$. To velja za vsako lastno vrednost λ . Posledica sledi.

Definicija 1.13. Matrika $P \in \mathbb{C}^{n \times n}$ je projektor, če velja $P^2 = P$.

Zgled 1.14. Poglejmo si primer pravokotnega projektorja v prostoru \mathbb{R}^3 . Za pravokotni projektor velja, da je ker $P \perp \operatorname{Im} P$. Projicirajmo vektor v = (1, 1, 0) pravokotno na ravnino Σ , ki je podana z enačbo x + y + z = 0. Naj bo n = (1, 1, 1) normalni vektor te ravnine, ki ni normiran. Vemo, da s formulo

(2)
$$\operatorname{proj}_{n}(v) = \frac{n \cdot v}{n \cdot n} \cdot n$$

projiciramo vektor v na vektor n. S tem lahko izračunamo tudi projekcijo vektorja v na ravnino Σ .

SLIKA 3. Projekcija vektorja v na vektor ravnino Σ .

Če vstavimo v in n v formulo (2), dobimo

$$\operatorname{proj}_n(v) = \frac{2}{3} \cdot (1, 1, 1).$$

Ker velja $x = v - \operatorname{proj}_n(v)$, je torej

$$x = \operatorname{proj}_{\Sigma}(v) = \frac{1}{3} \cdot (1, 1, -2).$$

Bolj zanimiv kot le izračun proj $_{\Sigma}(v)$ pa je izračun projektorja, ki vektor v projicira na vektor n. Če pišemo skalarni produkt kot množenje matrik, tj. $a \cdot b = a^T \cdot b$, iz asociativnosti matričnega množenja sledi

$$\operatorname{proj}_n(v) = \frac{n^T v}{n^T n} \cdot n = \frac{(n^T v)n}{n^T n} = \frac{n(n^T v)}{n^T n} = \frac{nn^T}{n^T n} \cdot v.$$

SPoznačimo matriko $\frac{nn^T}{n^Tn}.$ V našem primeru izračunamo, da je

$$P = \frac{1}{3} \cdot \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix},$$

velja pa tudi $P^2=P$, kar pomeni, da je P res projektor. Enačba $\operatorname{proj}_n(v)=Pv$ pa sledi direktno iz izpeljave. \diamondsuit

Definicija 1.15. Naj bosta X in Y vektorska prostora nad \mathbb{C} , za katera velja $X \cap Y = \emptyset$. Tedaj vsoti

$$X+Y=\{x+y\ |\ x\in X,y\in Y\}$$

pravimo direktna vsota in jo označimo z $X \oplus Y$.

Trditev 1.16. Matrika $P \in \mathbb{C}^{n \times n}$ je projektor natanko tedaj, ko je

$$\mathbb{C}^n = \ker P \oplus \operatorname{Im} P \quad in \quad P|_{\operatorname{Im} P} = I.$$

Dokaz. (\Leftarrow) $P|_{\operatorname{Im} P}=I$ implicira P(Px)=Px, tj. $P^2=P$, kar je ravno definicija projektorja.

 (\Rightarrow) Naj bo $x \in \mathbb{C}^n$ in $y \operatorname{Im} P$, tako da velja y = Px. Definirajmo z := x - y. Potem je x = z + y in

$$Pz = Px - Py = Px - P^2x = Px - Px = 0,$$

torej je $z \in \ker P$. Lahko sklepamo tudi, da iz $y \in \operatorname{Im} P$ sledi $Py = P^2y = Px = y$.

Dokažimo še, da je da je razcep na direktno vsoto enoličen. Naj bosta $y' \in \operatorname{Im} P$ in $z' \in \ker P$ takšna, da je x = y' + z'. Iz računa

$$y = Px = Py' + Pz' = y'$$

sledi, da je y = y' in z = z'.

2. Spektralni razcep in matrične funkcije

2.1. **Matrični polinomi.** V podpoglavju 1.3 smo že definirali množico matričnih polinomov \mathcal{P}_A in minimalni polinom m_A matrike $A \in \mathbb{C}^{n \times n}$, pa tudi preslikavo Φ_A iz množice polinomov $\mathbb{C}[x]$ v \mathcal{P}_A .

Trditev 2.1. Naj bo m_A minimalni polinom. Potem je

$$p \in \ker(\Phi_A) \Leftrightarrow p = m_A \cdot q \quad za \quad q \in \mathbb{C}[x],$$

tj. p(A) = 0 natanko tedaj, ko je p(A) večkratnik minimalnega polinoma m_A .

Dokaz. Najprej dokažimo implikacijo (\Leftarrow). Naj bo m_A minimalni polinom. Če je $p = m_A \cdot q$ za nek $q \in \mathbb{C}[x]$, potem je

$$p(A) = m_A(A) \cdot q(A) = 0 \cdot q(A) = 0,$$

torej je $p \in \ker(\Phi_A)$.

Dokažimo še (\Rightarrow) . Naj bo $p \in \mathbb{C}[x]$, za katerega velja p(A) = 0. Če delimo p z m_A , dobimo:

$$p = m_A \cdot q + r$$

za $q, r \in \mathbb{C}[x]$, kjer je st(r) < st(q). Velja

$$0 = p(A) = \underbrace{m_A(A)}_{=0} \cdot q(A) + r(A) = r(A),$$

torej je $r \in \ker(\Phi_A)$. Ker ima m_A najmanjšo stopnjo v $\ker(\Phi_A)$, sklepamo, da je $r \equiv 0$.

Za polinome $p, q, r \in \mathbb{C}[x]$ bomo uporabljali zapis

$$p \equiv q \mod r \iff p - q = s \cdot r \text{ za nek } s \in \mathbb{C}[x].$$

Poglejmo si posledico trditve 2.1

Posledica 2.2. Naj bosta $p, q \in \mathbb{C}[x]$. Velja

$$p(A) = q(A) \iff p \equiv q \mod m_A$$
.

V posebnem primeru velja, da je p(A) projektor natanko tedaj, ko je

$$p^2 \equiv p \mod m_A$$
.

Opazimo torej, da je lahko p(A) = q(A) tudi, če polinoma $p, q \in \mathbb{C}[x]$ nista enaka. Naslednja trditev pa nam pove, da lahko enakost po mod m_A preverimo le s pomočjo lastnih vrednosti matrike A in njihovih večkratnosti.

Trditev 2.3. Naj bosta $p, q \in \mathbb{C}[x]$. Potem velja

$$p \equiv q \mod m_A \iff p^{(\nu)}(\lambda_i) = q^{(\nu)}(\lambda_i) \text{ za } vsak \ i = 1, \dots, m \text{ in } \nu = 0, \dots, \nu_i - 1.$$

Dokaz. Trditev sledi iz dejstva, da za nek $n \in \mathbb{N}$ in neničeln $s \in \mathbb{C}[x]$ ter fiksen $\lambda_i \in \mathbb{C}$ velja

$$(p-q)(x) = (x-\lambda_i)^n s(x) \iff (p-q)^{(\nu)}(\lambda_i) = 0 \text{ za } i = 0, 1, \dots, n-1,$$

kar smo že dokazali pri študiju algebre.

2.2. Gladke matrične funkcije. Naj bo $A \in \mathbb{C}^{n \times n}$ matrika z minimalnim polinomom m_A ter $\lambda_1, \ldots, \lambda_m$ ničle m_A z večkratnostimi ν_1, \ldots, ν_m . Množico funkcij, ki so definirane in neskončnokrat odvedljive na okolici $\{\lambda_1, \ldots, \lambda_m\}$, označimo kot

$$C_A^{\infty} := \{ f : D(f) \to \mathbb{C} \mid \exists U \subset D(f) \text{ odprta}, \{ \lambda_1, \dots, \lambda_m \} \subset U, f|_U \in C^{\infty} \},$$

kjer je $D(f) \subset \mathbb{C}$ definicijsko območje funkcije f.

Pri uporabi funkcije $f \in \mathbb{C}_A^{\infty}$ na matriki A si bomo pomagali z interpolacijskimi polinomi. Interpolacijski polinom je polinom stopnje največ n, ki se v n+1 točkah $(x_0, f(x_0)), (x_1, f(x_1)), \ldots, (x_n, f(x_n))$ ujema s funkcijo f. Če zahtevamo, da se za $i=0,\ldots,n$ v točkah $(x_i, f(x_i))$ ujemajo tudi vsi odvodi do k_i -tega, pa je stopnja interpolacijskega polinoma navzgor omejena z $\sum_{i=0}^{n} (k_i+1) - 1$.

Definicija 2.4. Za $f \in \mathbb{C}_A^{\infty}$ definiramo matriko f(A) s pomočjo interpolacijskega polinoma:

$$f(A) := \Phi_A(p_f) = p_f(A),$$

kjer je p_f polinomska interpolacija funkcije f, ki zadošča pogoju

$$f^{(\nu)}(\lambda_i) = p_f^{(\nu)}(\lambda_i)$$

za vsak $i = 1, ..., m \text{ in } \nu = 0, ..., \nu_i - 1.$

S to definicijo lahko matrične polinome razširimo na množico gladkih matričnih funkcij:

(3)
$$\widetilde{\Phi}: C_A^{\infty} \longrightarrow \mathcal{P}_{\mathcal{A}}$$

$$\widetilde{\Phi}_A(f) = \Phi_A(p_f) = p_f(A)$$

Iz definicije 2.4 in trditev 2.1, 2.3 sledi:

Trditev 2.5. Naj bodo oznake kot zgoraj. Velja:

- (1) Definicija $\widetilde{\Phi}_A(f)$ ni odvisna od izbire metode za polinomsko interpolacijo p_f .
- (2) Preslikava $\widetilde{\Phi}_A$ je razširitev funkcije Φ_A .
- (3) Φ je homomorfizem algeber, kar pomeni, da velja:

$$\widetilde{\Phi}_A(\lambda f + \mu g) = \lambda \widetilde{\Phi}_A(f) + \mu \widetilde{\Phi}_A(g),$$

$$\widetilde{\Phi}_A(f \cdot g) = \widetilde{\Phi}_A(f) \cdot \widetilde{\Phi}_A(g)$$

 $za \ \lambda, \nu \in \mathbb{C} \ in \ f, g \in C_A^{\infty}.$

Za odprto množico $U \subset \mathbb{C}$ definirajmo karakteristično funkcijo χ_U s predpisom

$$\chi_U(\lambda) = \begin{cases} 1, \lambda \in U, \\ 0, \lambda \notin U \end{cases}$$

Funkcija χ_U je idempotent, kar pomeni, da velja $\chi_U \cdot \chi_U = \chi_U$. Po posledici 2.2 sklepamo, da je $\chi_U(A) \in \mathcal{P}_A$ projektor, ki komutira z A. Vzemimo posebno množico takšnih projektorjev.

Definicija 2.6. Naj bodo $U_1, \ldots, U_m \subset \mathbb{C}$ odprte množice, ki zadostujejo pogojema:

- (1) $\lambda_i \in U_i$ za $i = 1, \ldots, m$ in
- (2) $U_i \cap U_j = \emptyset$ za $i \neq j$.

 $Z \chi_i$ označimo karakteristično funkcijo množice U_i . Matrike

(4)
$$P_i := \chi_i(A) \in \mathcal{P}_A \text{ za } i = 1, \dots, m,$$

so vse projektorji, ki jih imenujemo *spektralni projektorji*, njihovo zalogo vrednosti pa označimo kot

$$(5) X_i := \operatorname{Im} P_i = P_i \mathbb{C}^n$$

in jo imenujemo korenski podprostor za lastno vrednost λ_i .

Opomba 2.7.

- (1) Omenimo, da je P_i neodvisna od izbire U_i , poleg tega pa velja še $P_i \neq 0$ za vsak i.
- (2) Poznamo formulo za izračun spektralnih projektorjev diagonalizabilnih matrika. Če je A diagonalizabilna matrika z lastnimi vrednostmi $\lambda_1, \ldots, \lambda_m$, potem spektralni projektor za lastno vrednost λ_i izračunamo kot:

(6)
$$P_i = \prod_{\substack{j=1\\j\neq i}}^m \frac{A - \lambda_j I}{\lambda_i - \lambda_j}, \quad i = 1, \dots, m.$$

Za naslednji izrek moramo razumeti pojem invariantnosti.

Definicija 2.8. Podprostor X_i prostora A je invarianten za A oz. A-invarianten, kadar velja $Ax \in X_i$ za vsak $x \in X_i$, kar lahko zapišemo kot $AX_i \subseteq X_i$.

Projektorji P_i komutirajo z A, zato so podprostori X_i invariantni za A, in velja naslednje.

Izrek 2.9. Naj $A \in \mathbb{C}^{n \times n}$ matrika z lastnimi vrednostmi $\lambda_1, \ldots, \lambda_m$ in z geometrijskimi večkratnostmi ν_1, \ldots, ν_m . Če vzamemo P_i in X_i kot v (4) in (5), potem je

$$\mathbb{C}^n = X_1 \oplus \cdots \oplus X_m$$

direktni razcep na A-invariantne podprostore z lastnostjo, da je matrika $A - \lambda_i I$ na X_i nilpotentna reda ν_i , $i = 1, \ldots, m$.

Dokaz. Ker so množice U_i disjunktne, velja $\chi_i(\sum_{i\neq j}\chi_j)=0$, torej tudi $P_i(\sum_{i\neq j}P_j)=0$. Iz tega sledi, da je

$$X_i \cap \left(\bigoplus_{i \neq j} X_j\right) = \{0\}.$$

Ker je $\{\lambda_1,\ldots,\lambda_m\}\subset \bigcup_{i=1}^m U_i=:U,$ je

$$\sum_{i=1}^{m} P_i = \widetilde{\Phi}_A \left(\sum_{i=1}^{m} \chi_i \right) = \widetilde{\Phi}_A (\chi_U) = I,$$

torej $X_1 \oplus \cdots \oplus X_m = X$.

Spomnimo, da je matrika A nilpotentna reda k, če velja $A^k = 0$ in $A^{k-1} \neq 0$. Za vsak fiksen i je $g_i(\lambda) = (\lambda - \lambda_i)_i^{\nu} \chi_i(\lambda)$ funkcija v domeni preslikave $\widetilde{\Phi}_A$, ki se ujema v točkah $\lambda_1, \ldots, \lambda_m$ z ničelno funkcijo $\mathbb{O} \in C_A^{\infty}$, vključno z vsemi odvodi. Zaradi lastnosti $\widetilde{\Phi}_A$ iz trditve 2.5 mora veljati

$$(A - \lambda I)^{\nu_i} P_i = \left((\lambda - \lambda_i)^{\nu_i} \chi_i \right) (A) = \mathbb{O}(A) = 0$$

za i = 1, ..., m in $\lambda \in \mathbb{C}$. Definirajmo funkcijo

$$f_i(\lambda) = (\lambda - \lambda_i)^{\nu_i - 1} \chi_i(\lambda), \ \lambda \in \mathbb{C},$$

ne zadošča pogoju $f_i^{\nu_i-1}(\lambda_i)=0$. Ker je

$$f_i(A) = (A - \lambda_i I)^{\nu_i - 1} P_i$$

velja $(A - \lambda_i I)^{\nu_i - 1} P_i \neq 0$, torej je matrika $A - \lambda_i I$ nilpotentna reda ν_i na X_i . \square

Definicija 2.10. Razcepu \mathbb{C}^n na invariante podprostore iz formule (7) rečemo *spektralni razcep* prostora \mathbb{C}^n , ki pripada matriki A.

Spektralni razcep nam pove, da je matrika A podobna bločno diagonalni matriki,

$$A \sim \begin{bmatrix} A_1 & & \\ & \ddots & \\ & & A_m \end{bmatrix}$$

kjer ima A_i le eno samo lastno vrednost, in sicer λ_i . Iz tega dejstva bi lahko slutili, da bi za podprostore X_i vzeli kar korenske podprostore $\ker(A - \lambda_i I)^{\nu_i}$ za lastne vrednosti λ_i .

Trditev 2.11. Korenski podprostori matirke A za lastne vrednosti λ_i so

$$X_i = \ker(A - \lambda_i I)^{\nu_i},$$

kjer je ν_i geometrijska večkratnost lastne vrednosti λ_i .

Dokaz. Trditev 2.9 nam pove, da je $A - \lambda_i I$ nilpotentna reda ν_i na X_i , zato je

$$(8) X_i \subset \ker(A - \lambda_i I)^{\nu_i}.$$

Recimo, da je vsebovanost stroga, tj. obstaja neničeln vektor $x \in \ker(A - \lambda_i I)^{\nu_i} \backslash X_i$. Za neki $i \neq j$ obstaja $y := P_j x \in X_j \cap \ker(A - \lambda_i I)^{\nu_i}$. Vzamemo največji $p \in \mathbb{N}$, da velja

$$z := (A - \lambda_i I)^p y \neq 0.$$

Ker je X_j A-invarianten, je $z \in X_j$. Iz

$$(a - \lambda_i I)z = (a - \lambda_i I)^{p+1}y = 0$$

sledi, da je z lastni vektor za lastno vrednost λ_i , tj. $Az=\lambda_i z$, iz česar sledi, da

$$(A - \lambda_j I)^{\nu_j} z = (\underbrace{A - \lambda_i I}_{\text{zakaj je to 0????}} + \lambda_i I - \lambda_j I)^{\nu_j} z = (\lambda_i - \lambda_j)^{\nu_j} z \neq 0,$$

kar je protislovje z lastnostjo, da je $A-\lambda_j I$ na X_j nilpotentna reda ν_i .

S pomočjo spektralnega razcepa v izreku 2.9 lahko izračunamo f(A) brez iskanja interpolacijskih polinomov.

Izrek 2.12. Naj bo $A \in \mathbb{C}^{n \times n}$ z lastnimi vrednostmi $\lambda_1, \lambda_2, \ldots, \lambda_m$, ki imajo po vrsti večkratnosti $\nu_1, \nu_2, \ldots, \nu_m$. Definirajmo projektorje P_i kot v (4). Tedaj za vsako funkcijo $f \in C_A^{\infty}$ velja

$$f(A) = \sum_{i=1}^{m} \sum_{\nu=0}^{\nu_i - 1} \frac{f^{(\nu)}(\lambda_i)}{\nu!} (A - \lambda_i)^{\nu} P_i.$$

Dokaz. Funkcija

$$g(\lambda) = \sum_{i=1}^{m} \sum_{\nu=0}^{\nu_i - 1} \frac{f^{(\nu)}(\lambda_i)}{\nu!} (\lambda - \lambda_i)^{\nu} \chi_i(\lambda), \quad \lambda \in \mathbb{C},$$

sovpada z f, vključno z vsemi pomembnimi odvodi, na vseh točkah $\lambda_1, \ldots, \lambda_m$. Po trditvah 2.3, 2.5 in definiciji 2.4 sledi, da je f(A) = g(A).

Posledica 2.13. Naj bodo predpostavke enake kot v trditvi 2.12. Za $k \in \mathbb{N}$ velja

(9)
$$A^{k} = \sum_{i=1}^{m} \sum_{\nu=0}^{\min\{\nu_{i}-1,k\}} {k \choose \nu} \lambda_{i}^{k-\nu} (A - \lambda_{i})^{\nu} P_{i}.$$

Dokaz. V trditvi 2.12 za $k \in \mathbb{N}$ uporabimo funkcijo $f(\lambda) = \lambda^k$.

2.3. **Spektralna teorija.** Tu zberimo še nekaj rezultatov o spektru, ki jih bomo kasneje potrebovali.

Definicija 2.14. Naj bo $A \in \mathbb{C}^{n \times n}$. Množico

$$\sigma(A) := \{\lambda_1, \dots, \lambda_m\}$$

imenujemo spekter matrike A. Spektralni radij definiramo kot

$$r(A) := \max\{|\lambda|, \lambda \in \sigma(A)\},\$$

tj. po absolutni vrednosti največja lastna vrednost matrike A.

Naslednja trditev nam pove, kako se preslika spekter matrike za neko preslikavo iz C_A^∞ .

Izrek 2.15 (Izrek o preslikavi spektra). Naj bo $A \in \mathbb{C}^{n \times n}$ in $f \in C_A^{\infty}$. Potem velja $\sigma(f(A)) = f(\sigma(A)) := \{f(\lambda) | \lambda \in \sigma(A)\}.$

Dokaz. Naj bo λ poljubna lastna vrednost matrike A in $\mu \notin f(\sigma(A))$. Definiramo $u(\lambda) := \frac{1}{f(\lambda) - \mu} \in C_A^{\infty}$, torej je $u(\lambda) \cdot (f(\lambda) - \mu) = 1$ na okolici $\sigma(A)$. Če v to enačbo vstavimo matriko A, dobimo

$$u(A) \cdot (f(A) - \mu I) = (f(A) - \mu I) \cdot u(A) = I,$$

torej je matrika $f(A) - \mu I$ obrnljiva, zato $\mu \notin \sigma(f(A))$.

Naj bo x_i lastni vektor matrike A, ki pripada lastni vrednosti λ_i za $i=1,\ldots,m$. Po izreku 2.9 za vse $i\neq j$ velja $P_ix_i=0$ in $P_ix_i=x_i$. Po trditvi 2.12 sledi

$$f(A)x_i = f(\lambda_i)x_i$$

torej je $f(\lambda_i) \in \sigma(f(A))$.

Lema 2.16. Naj bo $\|\cdot\|$ norma na $\mathbb{C}^{n\times n}$. Za $A\in\mathbb{C}^{n\times n}$ in $\mu>r(A)$ obstajata konstanti N>0 in M>1, da za vse $k\in\mathbb{N}$ velja

$$N \cdot r(A)^k \le ||A^k|| \le M \cdot \mu^k.$$

 $\check{C}e \ je \|\cdot\|$ operatorska norma, izberemo N=1.

Dokaz zgornje leme bo sledil v nadaljevanju. Ta lema pa implicira zanimivo formulo, s pomočjo katere lahko spektralni radij matrike izračunamo s pomočjo matričnih potenc.

Trditev 2.17 (Gelfandova formula). Za matriko $A \in \mathbb{C}^{n \times n}$ velja naslednje.

- (1) $r(A) = \lim_{k \to \infty} ||A^k||^{1/k}$ za vsako matrično normo $||\cdot||$ na $\mathbb{C}^{n \times n}$.
- (2) Če je $\|\cdot\|$ operatorska norma na $\mathbb{C}^{n\times n}$, potem je $r(A) = \inf_{k>0} \|A^k\|^{1/k}$.

Dokaz. Vzemimo k-ti koren enačbe (2.16):

$$N^{1/k}r(A) \le \left\|A^k\right\|^{1/k} \le M^{1/k}\mu.$$

Če je $\|\cdot\|$ operatorska norma, za dopustno izbiro N=1 dobimo

$$r(A) = \inf_{k>0} \left\| A^k \right\|^{1/k}.$$

3. Zaporedja matričnih potenc

V tem poglavju bomo opazovali asimptotsko obnašanje matričnih zaporedij oblike $(A^n)_{n\in\mathbb{N}}$. Izkazalo se bo, da nekatere lastnosti lahko karakteriziramo s spektralnim radijem matrike A. Da pridemo do tega rezultata, moramo najprej povedati nekaj o koordinatnih zaporedjih.

3.1. Koordinatna zaporedja.

Lema 3.1. Naj bo $A \in \mathbb{C}^{n \times n}$ z lastnimi vrednostmi $\lambda_1, \ldots, \lambda_m$ z večkratnostmi ν_1, \ldots, ν_m .

(1) $Za \ i = 1, \ldots, m \ in \ 0 \neq z \in X_i \ je \ množica$

$$\{(A - \lambda_i I)^{\nu} z \mid \nu = 0, \dots, \nu_i - 1\} \setminus \{0\}$$

linearno neodvisna v X_i .

(2) Množica

$$B_A = \{ (A - \lambda_i I)^{\nu} P_i \mid i = 1, \dots, m; \ \nu = 0, \dots, \nu_i - 1 \}$$

je linearno neodvisna v \mathbb{C}^n .

Dokaz. (1) Naj bo $i \in \{1, \ldots, m\}$ in $0 \neq z \in \mathbb{C}^n$. Preveriti moramo, da so vektorji $(A - \lambda_i I)^{\nu} z, \nu = 0, \ldots, \nu_i - 1$ neodvisni. Ker je matrika $A - \lambda_i I$ nilpotentna reda ν_i , je

$$(10) (A - \lambda_i I)^{\nu} = 0 \text{ za } \nu \ge \nu_i.$$

Po definiciji linearne neodvisnosti mora iz enačbe

(11)
$$\sum_{\nu=0}^{\nu_i - 1} \alpha_{\nu} (A - \lambda_i I)^{\nu} z = 0$$

slediti, da je $\alpha_{\nu}=0$ za $\nu=0,\ldots,\nu_i-1$. Če enačbo (11) pomnožimo z $(A-\lambda_i I)^{\nu_i-1}$ z leve, z upoštevanjem (10) dobimo

$$0 = \alpha_0 (A - \lambda_i I)^{\nu_i - 1} z.$$

Ker $(A-\lambda_i I)^{\nu_i-1}z \neq 0$, je $\alpha_0 = 0$. Če bi enačbo (11) pomnožili z $(A-\lambda_i I)^{\nu_i-2}$ in upoštevali, da je $\alpha_0 = 0$, bi dobili $\alpha_1 = 0$, itd. Sledi, da so $\alpha_0, \ldots, \alpha_{\nu_i-1} = 0$ in posledično vektorji $(A-\lambda_i I)^{\nu}z, \nu = 0, \ldots, \nu_i - 1$ neodvisni.

(2) Podobno kot v dokazu točke (1) bi dokazali, da je množica

$$B_A^{(i)} := \{ (A - \lambda_i I)^{\nu} P_i \mid \nu = 0, \dots, \nu_i - 1 \}$$

linearno neodvisna v $\mathbb{C}^{n\times n}$ za vsak $i=1,\ldots,m.$ Dokazati moramo, da so matrike $(A-\lambda_i I)^\nu P_i, i=1,\ldots,m, \nu=0,\ldots,\nu_i-1$ neodvisne. Denimo, da je:

$$\sum_{i=1}^{m} \sum_{\nu=0}^{\nu_i - 1} \alpha_{i,\nu} (A - \lambda_i I)^{\nu} P_i = 0.$$

Če to enačbo za fiksen i pomnožimo s P_i in upoštevamo, da je $P_i \cdot P_j = 0$ za $i \neq j$ in $P_i^2 = P_i$, dobimo

$$\sum_{\nu=0}^{\nu_i - 1} \alpha_{i,\nu} (A - \lambda_i I)^{\nu} P_i = 0.$$

Iz linearne neodvisnosti množice $B_A^{(i)}$ sledi, da je $\alpha_{i,\nu} = 0$ za $i = 1, \ldots, m$ in $\nu = 0, \ldots, \nu_i - 1$.

Opomba 3.2. Množica matrik $\{A_1, \ldots, A_k\}$ je neodvisna, če iz

$$\sum_{i=1}^{k} \alpha_i A_i = 0$$

sledi, da so $\alpha_1, \ldots, \alpha_k = 0$.

Zanima nas asimptotsko obnašanje zaporedij oblike $(A^k)_{k\in\mathbb{N}}$. Za razumevanje asimptotskega obnašanja bomo uporabili neodvisnost množice B_A iz leme 3.1. Če to množico razširimo do baze \mathbb{B}_A prostora $\mathbb{C}^{n\times n}$, potem iz formule (9) sledi, da so neničelne kooordinate zaporedja $(A^k)_{k\in\mathbb{N}}$ v bazi \mathbb{B}_A enake

$$\left\{ \binom{k}{\nu} \lambda_i^{k-\nu} \mid i = 1, \dots, m; \ \nu = 0, \dots, \nu_i - 1 \right\}$$

(ker nas zanima $k \to \infty$, lahko poenostavimo zgornjo mejo z min $\{\nu_i - 1, k\}$ na $\nu_i - 1$).

Opomba 3.3. Baza \mathbb{B} vektorskega prostora matrik $\mathbb{C}^{n\times n}$ je množica velikosti n^2 baznih matrik $B_i \in \mathbb{C}^{n\times n}$, tako da lahko vsako matriko $A \in \mathbb{C}^{n\times n}$ zapišemo kot linearno kombinacijo baznih matrik, tj. $A = \alpha_1 B_1 + \ldots + \alpha_{n^2} B_{n^2}$ za $\alpha_1, \ldots, \alpha_{n^2} \in \mathbb{C}$.

Podobne koordinate dobimo, če gledamo zaporedje $A^k x$, torej če gledamo množico

$$\{(A - \lambda_i I)^{\nu} P_i x \mid i = 1, \dots, m; \ \nu = 0, \dots, \nu_i - 1\} \setminus \{0\}.$$

Ker je konvergenca v končno dimenzionalnih vektorskih prostorih ekvivalentna konvergenci po koordinatah, se neodvisno od izbire baze obnašanje zaporedja $(A^k)_{k\in\mathbb{N}}$, ko gre $k\to\infty$, odraža z obnašanjem koordinatnih zaporedij

$$z_{\lambda,\nu}(k) := \binom{k}{\nu} \lambda^{k-\nu}$$

za $\lambda \in \sigma(A), \nu = 0, \ldots, n-1$ – tukaj upoštevamo, da je $\nu_i \leq n$ za vsak i. V primeru, da vsa koordinatna zaporedja konvergirajo, konvergira tudi zaporedje $(A^k)_{k \in \mathbb{N}}$ oziroma $(A^k x)_{k \in \mathbb{N}}$. Koordinate limite zaporedja $(A^k)_{k \in \mathbb{N}}$, ko gre $k \to \infty$, se izražajo s pripadajočimi limitami koordinatnih zaporedij.

Konvergenca koordinatnih zaporedij se lahko razbere iz velikosti lastne vrednosti λ in pripadajoče večkratnosti ν .

- Če je $|\lambda| < 1$, potem gre $z_{\lambda,\nu}(k) \to 0$, ko gre $k \to \infty$, za vse ν , ker je $\lim_{k \to \infty} k^{\nu} \lambda^k = 0$.
- Če je $|\lambda| > 1$, potem gre $|z_{\lambda,\nu}(k)| \to \infty$, ko gre $k \to \infty$, za vse ν .
- Če je $|\lambda| = 1$ in $\nu = 0$, potem je $z_{\lambda,0}(k) = \lambda^k$.
- Če je $|\lambda| = 1$ in $\nu \geq 1$, potem gre $|z_{\lambda,\nu}(k)| \to \infty$, ko gre $k \to \infty$.

Z zgornjimi dejstvi lahko opišemo asimptotsko obnašanje zaporedja $(A^k x)_{k \in \mathbb{N}}$ za $x \in X_i = \operatorname{Im} P_i$ za lastno vrednost λ_i z večkratnostjo ν_i .

Z uvedbo koordinatnih zaporedij lahko dokažemo lemo 2.16, iz katere sledi Gelfandova formula 2.17.

Dokaz. (Lema 2.16) Po izreku o preslikavi spektra 2.15 velja

$$(r(A))^k = r(A^k),$$

torej izbira N=1 za operatorske norme sledi iz posledice 1.12. Ocena

$$N \cdot r(A)^k \le ||A^k||$$

za neki N>0 sledi iz dejstva, da so vse norme na končno dimenzionalnih prostorih ekvivalentne.

Dokazati moramo še oceno navzgor. Koordinate zaporedja $(A^k)_{k\in\mathbb{N}}$ glede na bazo $\mathbb{C}^{n\times n}$, ki vsebuje množico

$$B_A := \{ (A - \lambda_i I)^{\nu} P_i \mid i = 1, \dots, m; \ \nu = 0, \dots, \nu_i - 1 \},$$

so enake

$$z_{\lambda,\nu}(k) := \binom{k}{\nu} \lambda^{k-\nu},$$

kjer je $i = 1, \ldots, m$ in $\nu = 0, \ldots, \nu_i - 1$. Ker velja ocena

$$\binom{k}{\nu} \le k^{\nu},$$

in ker za $|\lambda|<1$ velja $k^{\nu}\lambda^{k-\nu}\to\infty$, ko gre $k\to\infty$, za vse $\nu\in\mathbb{N}$, je zaporedje $\frac{1}{\mu^k}(A^k)_{k\in\mathbb{N}}$ omejeno, ko gre $k\to\infty$. Torej je

$$\frac{1}{\mu^k} \|A^k\|_{\infty} \le M$$
 oziroma $\|A^k\|_{\infty} \le M\mu^k$

za neko konstanto $M \in \mathbb{N}$ in vsak $n \in \mathbb{N}$. Ocena

$$\left\|A^k\right\| \le M\mu^k$$

spet sledi iz dejstva, da so vse norme ekvivalentne.

Opomba 3.4. To, da so vse matrične norme ekvivalentne, pomeni, da za poljubni normi $\|\cdot\|_a$ in $\|\cdot\|_b$ obstajata konstanti $C_1, C_2 > 0$, da za vsako matriko $A \in \mathbb{C}^{n \times n}$ velja

$$C_1 ||A||_a \leq ||A||_b \leq C_2 ||A||_a$$
.

3.2. Asimptotsko obnašanje.

Definicija 3.5. Naj bo $A \in \mathbb{C}^{n \times n}$ in $\|\cdot\|$ neka matrična norma. Zaporedje $(A^k)_{k \in \mathbb{N}}$ je:

- omejeno, če je $\sup_{k\in\mathbb{N}} ||A^k|| < \infty$, stabilno, če je $\lim_{k\to\infty} ||A^k|| = 0$,
- konvergentno, če je $\lim_{k\to\infty} A^k = P$ za neko matriko $P \in \mathbb{C}^{n\times n}$,
- periodično s periodo p, če je $A^p = I$,
- Cesàrovo konvergentno, če obstaja limita $\lim_{k\to\infty} \left(\frac{1}{k}\sum_{l=0}^{k-1}A^l\right)$.

Členom $A^{(k)} = \frac{1}{k} \sum_{l=0}^{k-1} A^l$ pravimo Cesàrova povprečja.

Pokazali bomo, da se asimptotsko obnašanje $(A^k)_{k\in\mathbb{N}}$ odraža z velikostjo r(A) v primerjavi z 1. Pred tem se dogovorimo za nekaj oznak.

Koreni enote v \mathbb{C} so rešitve enačbe $z^q=1$, torej

$$\Gamma_q := \{ e^{\frac{2k\pi i}{q}} \mid k = 0, \dots, q - 1 \}.$$

Z Γ bomo označili enotsko kronico v \mathbb{C} .

V izreku bomo uporabili tudi naslednjo definicijo.

Definicija 3.6. Lastna vrednost $\lambda_0 > 0$ matrike $A \in \mathbb{C}^{n \times n}$ je radialno dominantna lastna vrednost, če je $\lambda_0 \in \sigma(A)$ in velja $|\lambda| < \lambda_0$ za vse $\lambda \in \sigma(A) \setminus \{\lambda_0\}$.

Izrek 3.7. Naj bo $A \in \mathbb{C}^{n \times n}$. Naj bo $(A^k)_{k \in \mathbb{N}}$ matrično zaporedje. Veljajo naslednje trditve:

- (1) $(A^k)_{k\in\mathbb{N}}$ je stabilno natanko tedaj, ko je r(A) < 1.
- (2) $(A^k)_{k\in\mathbb{N}}$ je omejeno natanko tedaj, ko je $r(A)\leq 1$ in imajo vse lastne vrednosti λ_i , za katere velja $|\lambda_i| = 1$, večkratnost 1.
- (3) $(A^k)_{k\in\mathbb{N}}$ je periodično s periodo p natanko tedaj, ko je omejeno in je $\sigma(A)\subseteq$ Γ_p .
- (4) $\check{C}e$ je $\lambda_1 = 1 \in \sigma(A)$ in $\lim_{k \to \infty} A^k = P_1$ (P_1 je spektralni projektor A za lastno vrednost λ_1) natanko tedaj, ko je λ_1 radialno dominantna lastna vrednost z večkratnostjo 1.

Dokaz.

- (1) Sledi direktno iz leme 2.16.
- (2) (\Rightarrow) Recimo, da je zaporedje $(A^k)_{k\in\mathbb{N}}$ omejeno. Iz leme 2.16 sledi, da mora biti v tem primeru $r(A) \leq 1$. Če bi imela lastna vrednost $\lambda \in \sigma(A)$, za katero velja $|\lambda|=1$, imela večkratnost $\nu>1$, potem koordinatno zaporedje $z_{\lambda,\nu-1}(k)$ zaporedja $(A^k)_{k\in\mathbb{N}}$ glede na bazo \mathbb{B}_A ni omejeno, zato tudi matrično zaporedje ni omejeno. Prišli smo do protislovja.
 - (\Leftarrow) Ce je $r(A) \leq 1$ in imajo vse lastne vrednosti λ , za katere velja $|\lambda| = 1$, večkratnost 1, potem so koordinatna zaporedja zaporedja $(A^k)_{k\in\mathbb{N}}$ glede na bazo \mathbb{B}_A omejena.
- (3) (\Leftarrow) Naj bo $(A^k)_{k\in\mathbb{N}}$ omejeno in $\sigma(A)\subseteq\Gamma_p$. Iz (2) sledi, da imajo lastne vrednosti večkratnost 1, zato se formula iz (9) poenostavi v

$$A^k = \sum_{i=1}^m \lambda_i^k P_i \text{ za } k \in \mathbb{N}$$

Ker je $\lambda_i^p = 1$ za vse $i = 1, \dots, m$, sledi $A^p = I$.

 (\Rightarrow) Če je $(A^k)_{k\in\mathbb{N}}$ periodično, tj. $A^p=I$ za neki $p\in\mathbb{N}$, je zagotovo omejeno in za vsak $\lambda\in\sigma(A)$ velja $\lambda^p=1$, iz česar sledi, da je $\sigma(A)\subseteq\Gamma_p$.

(4) (\Rightarrow) Naj bo $\lim_{k\to\infty} A^k = P_1$. Ker limita ni enaka 0, nam (1) pove, da $r(A) \ge 1$. Ker limita obstaja, pomeni, da je zaporedje omejeno, torej iz (2) sledi, da je $r(A) \le 1$. Sklepamo, da je r(A) = 1.

Če obstaja lastna vrednost $\lambda \neq 1$, da velja $|\lambda| = 1$, potem obstaja koordinatno zaporedje zaporedja $(A^k)_{k \in \mathbb{N}}$ glede na bazo \mathbb{B}_A s predpisom $z_{\lambda,0}(k) = \lambda^k$, ki divergira. Lastna vrednost 1 je torej edini kandidat za radialno dominantno lastno vrednost. Če ima 1 večkratnost več kot 1, potem ima $(A^k)_{k \in \mathbb{N}}$ koordinato $z_{\lambda,1}(k) = k$, ki spet divergira. Lastna vrednost 1 ima torej večkratnost 1.

 (\Leftarrow) Če je 1 radialno dominantna lastna vrednost z večkratnostjo 1, potem koordinatno zaporedje $z_{\lambda,0}(k)$ glede na bazo \mathbb{B}_A konvergira. Iz (1) sledi, da koordinatna zaporedja za lastne vrednosti $|\lambda| < 1$ konvergirajo k 0, zato je $\lim_{k\to\infty} A^k = P_1$

Limita zaporedja $(A^k)_{k\in\mathbb{N}}$ torej obstaja samo v dveh primerih:

(1) Ko je r(A) < 1 oziroma je zaporedje stabilno. V tem primeru je

$$\lim_{k \to \infty} A^k = 0.$$

(2) Ko je $r(A)=1=\lambda_1$ in je λ_1 radialno dominantna lastna vrednost z večkratnostjo 1. Tedaj je

$$\lim_{k \to \infty} A^k = P_1.$$

Poglejmo si uporabo izreka na nekaj zgledih.

Zgled 3.8.

(1) Naj bo

$$A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}.$$

S pomočjo karakterističnega polinoma poiščimo lastne vrednosti matrike A.

$$\det(A - \lambda I) = \begin{vmatrix} 1 - \lambda & 0 \\ 1 & 1 - \lambda \end{vmatrix} = (1 - \lambda)^2,$$

torej ima A lastno vrednost $\lambda=1$. r(A)=1, lastna vrednost $\lambda=1$ pa ima večkratnost 2, zato zaporedje po točki (2) iz izreka ni omejeno. Izkaže se, da lahko člene zaporedja zapišemo kot

$$A^k = \begin{bmatrix} 1 & 0 \\ k & 1 \end{bmatrix}.$$

(2) Naj bo

$$B = \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}.$$

Poiščimo lastne vrednosti matrike B.

$$\det(B - \lambda I) = \begin{vmatrix} \frac{1}{2} - \lambda & 0 \\ \frac{1}{2} & \frac{1}{2} - \lambda \end{vmatrix} = (\frac{1}{2} - \lambda)^2.$$

B ima lastno vrednost $\lambda=1/2$ z večkratnostjo 2. Ker je r(A)=1/2<1, je zaporedje $(B^k)_{k\in\mathbb{N}}$ stabilno, torej je $\lim_{k\to\infty}B^k=0$.

(3) Naj bo

$$C = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}.$$

Poiščimo lastne vrednosti matrike C.

$$\det(C - \lambda I) = \begin{vmatrix} \frac{1}{2} - \lambda & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} - \lambda \end{vmatrix} = (\frac{1}{2} - \lambda)^2 - \frac{1}{4} = \lambda^2 - \lambda = \lambda(\lambda - 1).$$

Lastni vrednosti C sta $\lambda_1=0$ in $\lambda_2=1$. Ker je $\lambda_2=1$ radialno dominantna lastna vrednost, je $\lim_{k\to\infty}C^k=P_2$, kjer je P_2 spektralni projektor za lastno vrednost λ_2 . Ker je matrika C dimenzije 2 in ima dve različni lastni vrednosti, je C diagonalizabilna, torej lahko P_2 izračunamo s pomočjo formule za spektralne projektorje diagonalizabilnih matrik (6). Izkaže se, da je $P_2=C$.

(4) Naj bo

$$D = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}.$$

Poiščimo lastne vrednosti matrike D.

$$\det(D - \lambda I) = \begin{vmatrix} -\lambda & 1 & 0 \\ 0 & -\lambda & 1 \\ 1 & 0 & -\lambda \end{vmatrix} = (-\lambda)^3 + 1 =$$

$$= -(\lambda - 1)(\lambda^2 + \lambda + 1) =$$

$$= -(\lambda - 1)(\lambda + \frac{1}{2} - i\frac{\sqrt{3}}{2})(\lambda + \frac{1}{2} + i\frac{\sqrt{3}}{2}),$$

torej ima D lastne vrednosti

$$\lambda_1 = 1, \ \lambda_2 = -\frac{1}{2} + i\frac{\sqrt{3}}{2}, \ \lambda_3 = -\frac{1}{2} - i\frac{\sqrt{3}}{2}.$$

Absolutne vrednosti vseh lastnih vrednosti so 1, zato je r(D) = 1, velja pa še $\sigma(D) \subseteq \Gamma_3$. Po točki (3) iz izreka sledi, da je zaporedje $(D^k)_{k \in \mathbb{N}}$ periodično s periodo 3. Členi zaporedja so:

$$D^{1} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}, D^{2} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, D^{3} = I, D^{4} = D^{1}, \dots$$

To zaporedje je očitno tudi omejeno, saj zavzame le 3 vrednosti.

4. Primer uporabe

SLOVAR STROKOVNIH IZRAZOV

LITERATURA

- [1] A. Bátkai, M. Kramar Fijavž in A. Rhandi, Positive operator semigroups from finite to infinite dimensions, Birkhäuser/Springer, 2017.
- [2] V. Guruswami in R. Kannan, Computer science theory for the information age, Spring 2012, verzija 2. 2012, [ogled 17. 3. 2021], dostopno na https://www.cs.cmu.edu/~venkatg/teaching/CStheory-infoage/hopcroft-kannan-feb2012.pdf.
- [3] T. Košir, Lastne vrednosti in lastni vektorji (8. poglavje iz predavanj), [ogled 17. 3. 2021], dostopno na https://www.fmf.uni-lj.si/~kosir/poucevanje/skripta/lastne.pdf.
- [4] B. Lavrič, Algebra 1 (kratek pregled rezultatov in definicij), [ogled 17. 3. 2021], dostopno na https://www.fmf.uni-lj.si/~lavric/algebra%201%20-%20pregled.pdf.
- [5] C. Meyer, Matrix Analysis and Applied Linear Algebra, SIAM, 2000.