Содержание

1	Мат	Матрицы		
	1.1	Определения	1	
	1.2	Виды матриц	1	
	1.3	Краткая запись различных видов матриц	2	
	1.4	Свойства транспонирования матриц	2	

1 Матрицы

1.1 Определения

Определение 1.1. Матрица размером $m \times n$ — таблица выражений, состоящая из m строк и n столбцов:

$$A_{m \times n} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} = (a_{ij}).$$

Определение 1.2. След матрицы — это сумма диагональных элементов матрицы. Операция взятия следа обозначается tr:

$$A_{n \times n} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}; = (a_{ij}) \qquad \text{tr} A = \sum_{i=1}^{n} = a_{11} + a_{22} + \dots + a_{nn}$$

1.2 Виды матриц

В зависимости от размерности, матрицы имеют названия, приведенные в следующей таблице.

Размерность	Название	Размерность	Название
$m \times n$	прямоугольная	$1 \times n$	матрица-строка
$n \times n$	квадратная	$m \times 1$	матрица-столбец

Элементы квадратной матрицы, имеющие одинаковые индексы $(a_{11}, a_{22}, \ldots, a_{nn})$, образуют главную диагональ матрицы. Диагональ, соединяющая элементы $a_{1n}, a_{2n}, \ldots, a_{n1}$, называется побочной диагональю матрицы.

Квадратная матрица, у которой все элементы, расположенные выше (ниже) главной диагонали, равны нулю, называется нижней (верхней) треугольной матрицей:

нижняя:
$$\begin{pmatrix} a_{11} & 0 & \dots & 0 \\ a_{21} & a_{22} & \dots & 0 \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix};$$
 верхняя:
$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & a_{nn} \end{pmatrix}$$

Квадратная матрица, имеющая ненулевые элементы только на главной диагонали, называется ∂ иагональной:

$$\operatorname{diag}\{a_{11}, a_{22}, \dots, a_{nn}\} = \begin{pmatrix} a_{11} & 0 & \dots & 0 \\ 0 & a_{22} & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & a_{nn} \end{pmatrix}$$

Диагональная матрица, у которой все элементы главной диагонали равны единицам, называется единичной:

$$I_{n \times n} = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 \end{pmatrix}$$

Прямоугольная матрица, все элементы которой равны нулю, называется нулевой:

$$\Theta_{m \times n} = \begin{pmatrix} 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 0 \end{pmatrix}$$

Матрица A^T , у которой по отношению к матрице A элементы строк и столбцов поменялись местами, называется mранспонированной по отношению к A:

$$A_{m \times n} = \begin{pmatrix} a_{11} & a_{21} & \dots & a_{m1} \\ a_{12} & a_{22} & \dots & a_{m2} \\ \dots & \dots & \dots & \dots \\ a_{1n} & a_{2n} & \dots & a_{nm} \end{pmatrix} = A'_{m \times n}.$$

Матрица, для которой справедливо равенство $A = A^T$ называется *симметричной*.

1.3 Краткая запись различных видов матриц

Перечисленные выше основные виды матриц характеризуются определенными свойствами ее элементов. Введем *символ Кронекера*:

$$\delta_{ij} = egin{cases} 1, \ ext{если} \ i = j, \ 0, \ ext{если} \ i
eq j \end{cases}$$

В таблице ниже приведены условия, с помощью которых можно выразить ранее приведеные свойства для квадратных матриц $A=(a_{ij})$ $(i,j=\overline{1,n}).$

Условие	Название	Условие	Название	
$a_{ij}=0$ при $i>j$	верхняя треугольная	$a_{ij} = \delta_{ij}$	единичная	
$a_{ij} = 0$ при $i < j$	нижняя треугольная	$a_{ij} = 0$	нулевая	
$a_{ij} = a_i \delta_{ij}$	диагональная	$a_{ij} = a_{ji}$	симметричная	

1.4 Свойства транспонирования матриц

Свойство 1.1.

$$(A^T)^T = A$$

Доказательство.

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \Rightarrow A^{T} = \begin{pmatrix} a_{11} & a_{21} & \dots & a_{m1} \\ a_{12} & a_{22} & \dots & a_{m2} \\ \dots & \dots & \dots & \dots \\ a_{1n} & a_{2n} & \dots & a_{mn} \end{pmatrix} \Rightarrow$$

$$\Rightarrow (A^{T})^{T} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} = A$$

Что и требовалось доказать.

Свойство 1.2.

$$(A+B)^T = A^T + B^T$$

Доказательство.

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \qquad B = \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1n} \\ b_{21} & b_{22} & \dots & b_{2n} \\ \dots & \dots & \dots & \dots \\ b_{m1} & b_{m2} & \dots & b_{mn} \end{pmatrix}$$

$$A^{T} = \begin{pmatrix} a_{11} & a_{21} & \dots & a_{m1} \\ a_{11} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{1n} & a_{2n} & \dots & a_{mn} \end{pmatrix} \qquad B^{T} = \begin{pmatrix} b_{11} & b_{21} & \dots & b_{m1} \\ b_{11} & b_{22} & \dots & b_{2n} \\ \dots & \dots & \dots & \dots \\ b_{1n} & b_{2n} & \dots & b_{mn} \end{pmatrix}$$

$$A + B = \begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \dots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & a_{22} + b_{22} & \dots & a_{2n} + b_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} + b_{m1} & a_{m2} + b_{m2} & \dots & a_{mn} + b_{mn} \end{pmatrix}$$

$$(A + B)^{T} = \begin{pmatrix} a_{11} + b_{11} & a_{21} + b_{21} & \dots & a_{m1} + b_{m1} \\ a_{12} + b_{12} & a_{22} + b_{22} & \dots & a_{m2} + b_{m2} \\ \dots & \dots & \dots & \dots \\ a_{1n} + b_{1n} & a_{2n} + b_{2n} & \dots & a_{mn} + b_{mn} \end{pmatrix}$$

$$A^{T} + B^{T} = \begin{pmatrix} a_{11} + b_{11} & a_{21} + b_{21} & \dots & a_{m1} + b_{m1} \\ a_{12} + b_{12} & a_{22} + b_{22} & \dots & a_{m2} + b_{m2} \\ \dots & \dots & \dots & \dots \\ a_{1n} + b_{1n} & a_{2n} + b_{2n} & \dots & a_{mn} + b_{mn} \end{pmatrix}$$

Что и требовалось доказать.

Свойство 1.3.

$$(\lambda A)^T = \lambda A^T$$

Доказательство.

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

$$\lambda A = \begin{pmatrix} \lambda a_{11} & \lambda a_{12} & \dots & \lambda a_{1n} \\ \lambda a_{21} & \lambda a_{22} & \dots & \lambda a_{2n} \\ \dots & \dots & \dots & \dots \\ \lambda a_{m1} & \lambda a_{m2} & \dots & \lambda a_{mn} \end{pmatrix} \qquad (\lambda A)^T = \begin{pmatrix} \lambda a_{11} & \lambda a_{21} & \dots & \lambda a_{m1} \\ \lambda a_{12} & \lambda a_{22} & \dots & \lambda a_{m2} \\ \dots & \dots & \dots & \dots \\ \lambda a_{1n} & \lambda a_{m2} & \dots & \lambda a_{mn} \end{pmatrix}$$

$$A^T = \begin{pmatrix} a_{11} & a_{21} & \dots & a_{m1} \\ a_{12} & a_{22} & \dots & a_{m2} \\ \dots & \dots & \dots & \dots \\ a_{1n} & a_{m2} & \dots & a_{mn} \end{pmatrix} \qquad \lambda A^T = \begin{pmatrix} \lambda a_{11} & \lambda a_{21} & \dots & \lambda a_{m1} \\ \lambda a_{12} & \lambda a_{22} & \dots & \lambda a_{m2} \\ \dots & \dots & \dots & \dots \\ \lambda a_{1n} & \lambda a_{m2} & \dots & \lambda a_{mn} \end{pmatrix}$$

Что и требовалось доказать.

Свойство 1.4.

$$(A \cdot B)^T = B^T \cdot A^T$$

Доказательство.

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \qquad B = \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1n} \\ b_{21} & b_{22} & \dots & b_{2n} \\ \dots & \dots & \dots & \dots \\ b_{m1} & b_{m2} & \dots & b_{mn} \end{pmatrix}$$

$$A^{T} = C = \begin{pmatrix} c_{11} & c_{21} & \dots & c_{m1} \\ c_{11} & c_{22} & \dots & c_{2n} \\ \dots & \dots & \dots & \dots \\ c_{1n} & c_{2n} & \dots & c_{mn} \end{pmatrix} \qquad B^{T} = D = \begin{pmatrix} d_{11} & d_{21} & \dots & d_{m1} \\ d_{11} & d_{22} & \dots & d_{2n} \\ \dots & \dots & \dots & \dots \\ d_{1n} & d_{2n} & \dots & d_{mn} \end{pmatrix} \qquad \begin{cases} a_{ij} = c_{ji} \\ b_{\alpha\beta} = d_{\beta\alpha} \end{cases}$$

$$A \cdot B = F = \begin{pmatrix} f_{11} & f_{21} & \dots & f_{m1} \\ f_{11} & f_{22} & \dots & f_{2n} \\ \dots & \dots & \dots & \dots \\ f_{1n} & f_{2n} & \dots & f_{mn} \end{pmatrix} \qquad B^{T} \cdot A^{T} = G = \begin{pmatrix} g_{11} & g_{21} & \dots & g_{m1} \\ g_{11} & g_{22} & \dots & g_{2n} \\ \dots & \dots & \dots & \dots \\ g_{1n} & g_{2n} & \dots & g_{mn} \end{pmatrix}$$

$$g_{ji} = \sum_{\alpha=1}^{k} d_{j\alpha} c_{\alpha i} = \sum_{\alpha=1}^{k} b_{\alpha j} a_{i\alpha} = \sum_{\alpha=1}^{k} a_{i\alpha} b_{\alpha j} = f_{ij}$$

$$G = F^{T} \Rightarrow (A \cdot B)^{T} = B^{T} \cdot A^{T}$$

Что и требовалось доказать.