CS M51A/EE M16 FINAL EXAM

closed books and notes –(8 problems, 180 minutes)

PLEASE BE SYSTEMATIC, ORGANIZED, and NEAT:

- this will be considered in the grading.

December 13, 2002

Name: SOLUTIONS

Problem	Points	Score
1	20	
2	10	
3	14	
4	12	
5	8	
6	13	
7	13	
8	10	
Total	100	

Problem 1. (20 points) Design a sequential system which recognizes the pattern 0101011.

a) [6 points] Complete the following state diagram. Each state is labeled with a sequence that it "recognizes".

The correspondence between the state assignment and sequence that it detects is shown in the next table.

State	Sequence	
S_0	start	
S_1	0	
S_2	01	
S_3	010	
S_4	0101	
S_5	01010	
S_6	010101	

b) [4 points] Encode these states using three state variables (y_2, y_1, y_0) so that the state assignment of state S_i is the radix-2 representation of i. Complete the state and transition table:

PS		Inp	out	${\rm Input}$	
	$y_2 y_1 y_0$	x = 0	x = 1	x = 0	x = 1
$\overline{S_0}$	000	000,0	0,000	000	000.
$\overline{S_1}$	001	001,0	010,0	000	011
S_2	010	011,0	000,0	001	010
S_3	OIL	001,0	100,0	010	181
S_4	100	101,0	000,0	001	100
S_5	101	001,0	110,0	100	011
S_6	1,1,0	101,0	1,000	011	110
		Y_2Y_1	Y_0, z	$T_2 T$	T_1T_0

50 51	53	S2
S. Se	- S7	Se
So 5	\S ₃	Sz

c) [6 points] Implement the network using NAND gates and T flip-flops. Indicate the T inputs in the state table. Give minimal sum of products expressions for T inputs. Show the logic diagram of the network.

d) [4 points] If the propagation delays are $t_p = 3.5ns$, $t_{su} = 0.9ns$, $t_{NAND} = 2ns$, $t_{in} = 1.5ns$, and $t_{out} = 2.5ns$, determine the maximum clock frequency.

Thin =
$$m \propto [ftin + t \propto (net)],$$

 $(tp(all) + t \approx (net)),$
 $(tr(net) + t \approx (net)),$
 $(tr(net) + t \approx (net)),$
 $t \approx net = 2.2 + 0.9 = 4.9 m$
 $t \approx net = 3.2 + 0.9 = 6.9 m$
 $tp(net) = 3.5 + 2 = 5.5 m$
 $tp(net) = 3.5 + 2 = 5.5 m$
 $(5.5 + 2.5)$
 $(5.5 + 2.5)$
 $= 10.4 m$
 $fm \propto = \frac{1}{10.4 \times 10^9} \approx 100 \text{ MHz}$

Problem 2. (10 points) Derive the state transition/output table for the implementation of the sequential system shown in the figure below. The next state and output functions are implemented by a PLA structure. The machine has one input I and one output Z. Show expressions for the flip-flop inputs. Show the state transition/output table.

$$J_{A} = I'Q_{B} + IQ_{B} = I \oplus Q_{B}$$

$$K_{A} = Q_{B}$$

$$T_{B} = I'(Q_{A} + Q_{B}')$$

$$z = I'Q_{A}'Q_{B}' + Q_{A}Q_{B}$$

$PS(Q_AQ_B)$	I	J_A	K_A	T_B	NS	Z
00	0	0	0	P	01	
60	1	١	0	0	10	0
61	0	and State		0	11	0
61	1	0	- (0	-01	0
(0	0	0	0		11	0
10	1	- Martine	0	0	10	0
L /	0	1			00	-
1 1	1	0		0	01	anima.

Problem 3. (14 points)

(a) [8 points] Design a cyclic counter with the output sequence $0, 1, 4, 7, 6, 3, 0, 1, \ldots$ (of period 6) using JK flip-flops and AND, OR, NOT gates as needed. Assume that the input x is always 1. Select a state assignment that is the same as the coding for the output, that is z(t) = s(t). Show the state/output table. Minimize all expressions. Show the logic diagram of the counter.

State/output table:	PS	NS	
PS NS	Q2 Q, Q0)	R2 Q1 Q0	JL
So SI SI SA SI SA SI SI SI SI SI SI SI SI SI SI SI SI SI SI SI SI S	000	001	PS 0 1 - 0
$ \begin{array}{c c} & Q0 \\ \hline & Q2 & - & - & - \\ \hline & Q1 \end{array} $	Q2 Q0 Q0 Q2	Q2 1	Q0 Q1
\mathcal{K}_{2} Q_{2} Q_{1} Q_{2} Q_{1}	Q2 - C	Q2 -	Q0
$J_{0} = \frac{1}{K_{0}}$ $K_{0} = \frac{1}{I_{1}}$ $J_{1} = \frac{Q_{2}}{K_{1}}$ $K_{1} = \frac{Q_{2}}{Q_{1}}$ $J_{2} = \frac{Q_{1}Q_{2}}{Q_{2}}$ $K_{2} = \frac{Q_{1}Q_{2}}{Q_{2}}$		R2 R2	R2 DasRi DasRi DasRi DasRi Z
	١	- Ek	LD BY Q'

(b) [6 points] Design the cyclic counter defined in part (a) using the "one flip-flop per state" approach with D flip-flops. To obtain the output, use a suitable standard combinational module - do not design a gate network! Show all connections. Show the initial state of this implementation.

Problem 4. (12 points) Design a hierarchical combinational network that finds the second largest of four nonnegative integers A, B, C, D. Each integer is represented by four bits. You may use only the following module types: 4×2 -input multiplexer and four-bit comparator. The single-bit output of the comparator is z. If the first integer is larger than the second, the output is z = 1. Otherwise, z = 0. Define first your basic module and then design the network using your module. Indicate all inputs and connections on the modules being used.

Problem 5. (8 points) Implement the following systems using standard combinational modules (no gate networks allowed):

Input: $x \in \{0, 1, 2, 3, 4, 5, 6, 7\}$, represented in binary by $\underline{x} = \{x_2, x_1, x_0\}, x_i \in \{0, 1\}$.

Output: $y \in \{0, 1, 2, 3, 4, 5, 6, 7\}$, represented in binary by $\underline{y} = \{y_2, y_1, y_0\}, y_i \in \{0, 1\}$

Function: $y = (3x + 2) \mod 8$

Problem 6. (13 points)

a) [8 points] Complete the following table. If an entry in the table cannot be filled properly, explain why and how to fix it. Representation values are given in the decimal number system.

Number	Number of	Signed	Representation	Digit-vector
system	digits n	integer x	value x_R	X
2's compl.	7	-35	93	1011101
1s' compl.	8	-86	169	10101001
2's compl.	9	-218	294	100100110
2's compl.	6	-33	Postpossapr-	фтоскообль
		^		Response contractions and the contractions are contracted and the contractions and the contractions are contracted and the contractions and the contractions are contracted and the contractions are contracted and the contractions and the contractions are contracted and the contractions are contracted and the contractions and the contractions are contracted and the contractions are co

1 requires N=7

b) [5 points] Compute z = a + 2b - c in 2's complement for a = -9, b = 17, and c = -77. Perform calculations on bit-vectors representing a, b and c and show every step of your work. How many bits should z have to represent the correct result? Check your work by showing, for each step, the corresponding values in decimal number system.

$$Z = -9 + 34 + 77 = 102$$

 $in 25 complet \Rightarrow 8 bits$

Problem 7. (13 points) Design a sequential system specified by the following state transition and output table using a modulo-8 counter with parallel load as the state register, a 8-to-1 multiplexer for the CNT input and NAND gates. Assume LD = CNT'. The design must take advantage of the count and parallel mode capabilities of the counter. Show a state diagram and all your work.

diagram and an your work.				
	PS	Input	Input	
	$Q_2Q_1Q_0$	x = 0	x = 1	
S_0	000	000,0	001,0	
S_1	001	000,0	010,0	
S_2	010	000,0	011,0	
S_3	011	100,0	011,0	
S_4	100	101,0	001,0	
S_5	101	000,1	001,0	
		NS, z	NS, z	

Q, Q, Qo

Problem 8. (10 points) Design a sequential system using combinational and sequential standard modules that detects when x(t-7,t-4) < x(t-3,t), where four-bit input sequences are interpreted as positive integers.

