- **1.** What is the main purpose of the SMOTE algorithm in machine learning?
- a) To reduce the number of samples in the majority class
- b) To generate synthetic samples for the minority class to balance imbalanced datasets
- c) To improve model performance by feature scaling
- d) To perform dimensionality reduction using principal components

**Correct answer:** b) To generate synthetic samples for the minority class to balance imbalanced datasets

**Explanation:** SMOTE (Synthetic Minority Over-sampling Technique) creates synthetic minority class samples by interpolating between existing minority samples to address class imbalance.

- 2. Given the code snippet: generateData = SMOTE(dataSet[, c(1,2)], dataSet[, c(3)], K=5), what does dataSet[, c(3)] represent?
- a) Features for training
- b) Target or class labels
- c) Indices for data partitioning
- d) Synthetic data generated by SMOTE

Correct answer: b) Target or class labels

**Explanation:** The third column represents the target variable (labels) used in the SMOTE process to generate synthetic minority samples.

- 3. Which method is a wrapper approach for feature selection?
- a) Pearson correlation
- b) Recursive Feature Elimination (RFE)
- c) Principal Component Analysis (PCA)
- d) Chi-square test

**Correct answer:** b) Recursive Feature Elimination (RFE)

**Explanation:** RFE uses the model to recursively remove least important features, evaluating subsets for best performance.

**4.** Refer to the following table comparing Pseudonymization and Anonymization:

| Aspect            | Pseudonymization                    | Anonymization                     |
|-------------------|-------------------------------------|-----------------------------------|
| Linkability       | Possible with additional info (key) | Not possible                      |
| Data Utility      | High                                | Lower due to irreversible masking |
| Regulatory Status | Still considered personal data      | Not considered personal data      |

| Reversibility | Yes (with key) | No |
|---------------|----------------|----|
|               |                |    |

Which statement correctly differentiates the two?

- a) Pseudonymization completely removes all identifiers irreversibly
- b) Anonymization allows re-identification with a key
- c) Pseudonymization retains high utility and is reversible with a key
- d) Both considered non-personal under GDPR

**Correct answer:** c) Pseudonymization retains high utility and is reversible with a key **Explanation:** Pseudonymization replaces identifiers but allows re-identification using a key; anonymization removes identifiers irreversibly.

- **5.** Which of the following is a potential downside of using open data in data science projects?
- a) Open data always provides complete and bias-free samples
- b) Open data can dominate research due to abundance and availability
- c) Open data requires paid subscriptions and strict licensing
- d) Open data is always formatted for ease of use

**Correct answer:** b) Open data can dominate research due to abundance and availability **Explanation:** The vast amount of open data can bias research focus toward popular datasets, potentially at the expense of other topics.

- **6.** What does algorithmic bias refer to in machine learning?
- a) Hardware errors in data
- b) Systematic unfair outputs due to biased data or design
- c) Intentional manipulation of results
- d) Random noise in predictions

**Correct answer:** b) Systematic unfair outputs due to biased data or design **Explanation:** Algorithmic bias arises when models produce discriminatory or unfair results due to skewed training data or design flaws.

- **7.** In hypothesis testing, what does a p-value less than 0.05 generally indicate?
- a) Over 5% probability that the null hypothesis is true
- b) Less than 5% probability that results are due to chance if null is true
- c) The alternative hypothesis is definitely true
- d) Sample size is too small

**Correct answer:** b) Less than 5% probability that results are due to chance if null is true **Explanation:** A p-value < 0.05 indicates the observed data are unlikely under the null hypothesis, leading to its rejection at 5% significance.

### **8.** Refer to the confusion matrix:

|                 | Predicted Positive  | Predicted Negative  |
|-----------------|---------------------|---------------------|
| Actual Positive | True Positive (TP)  | False Negative (FN) |
| Actual Negative | False Positive (FP) | True Negative (TN)  |

What does "False Negative" mean?

- a) Predicting positive when actually negative
- b) Predicting negative when actually positive
- c) Correct prediction of negative
- d) Correct prediction of positive

**Correct answer:** b) Predicting negative when actually positive

**Explanation:** A false negative is an instance where the model incorrectly predicts negative but the actual class is positive.

**9.** Calculate the entropy of a dataset S where 75% belong to class A and 25% to class B. Use Entropy(S) =  $-\sum p_i * \log 2(p_i)$ 

Liner opy (b)

- a) 0.81b) 0.5
- 0.5
- c) 1.0
- d) 0.0

Correct answer: a) 0.81

**Explanation:** Entropy =  $-(0.75log2(0.75) + 0.25log2(0.25)) \approx 0.811$  bits.

**10.** Refer to the ROC curve diagram showing True Positive Rate vs. False Positive Rate. What trade-off is observed when changing the classification threshold?



- a) Increasing sensitivity decreases false positives
- b) Increasing sensitivity increases false positives
- c) False positives remain constant as sensitivity increases
- d) Sensitivity does not depend on threshold

**Correct answer:** b) Increasing sensitivity increases false positives

**Explanation:** Lowering the threshold typically increases true positives but also raises false positives, showing a trade-off.

- **11.** What is the key difference between Bagging and Boosting methods?
- a) Bagging trains sequentially; Boosting trains in parallel
- b) Bagging trains in parallel; Boosting trains sequentially focusing on errors
- c) Both use random forests identically
- d) Boosting works only for regression

**Correct answer:** b) Bagging trains in parallel; Boosting trains sequentially focusing on errors **Explanation:** Bagging reduces variance by training independent models; boosting trains models sequentially focusing on earlier mistakes.

- **12.** Which feature selection approach does the Boruta algorithm use?
- a) Filter based on Pearson correlation
- b) Wrapper method with random forests and shadow features
- c) Dimensionality reduction with PCA
- d) Embedded method in logistic regression

**Correct answer:** b) Wrapper method with random forests and shadow features

**Explanation:** Boruta compares actual features against permuted shadow features using Random Forest importance to select relevant variables.

- 13. In R, what does cor.test(x, y, method = "pearson") do?
- a) Two-sample t-test
- b) Calculates Pearson correlation coefficient and tests significance
- c) Performs linear regression
- d) Computes covariance

**Correct answer:** b) Calculates Pearson correlation coefficient and tests significance

**Explanation:** cor.test computes the Pearson correlation and performs hypothesis testing whether correlation differs from zero.

- **14.** What is the purpose of Variance Inflation Factor (VIF) in regression modeling?
- a) Detect multicollinearity among predictors
- b) Test overall model fit
- c) Measure residual errors
- d) Predict dependent variable values

**Correct answer:** a) Detect multicollinearity among predictors

**Explanation:** VIF quantifies how much a predictor's variance is inflated by correlation with other predictors, warning of multicollinearity.

- 15. Why is Adjusted R-squared preferred over R-squared in multiple regression?
- a) R-squared always decreases with added variables
- b) Adjusted R-squared penalizes excess predictors to avoid overfitting
- c) Adjusted R-squared is easier to compute
- d) They are interchangeable

**Correct answer:** b) Adjusted R-squared penalizes excess predictors to avoid overfitting **Explanation:** Adjusted R-squared adjusts for the number of predictors, improving only if new variables improve model beyond chance.

- **16.** Given a logistic regression coefficient of 0.2 for variable FirstRun, what does the odds ratio indicate?
- a) Odds increase by 22% per unit increase in FirstRun
- b) Odds decrease by 20%
- c) Variable is not significant
- d) Coefficient is a probability

**Correct answer:** a) Odds increase by 22% per unit increase in FirstRun

**Explanation:** Odds ratio =  $\exp(0.2) \approx 1.22$ , meaning each unit increase raises odds by  $\sim 22\%$ .

**17.** Refer to the time series correlogram where ACF shows slow decay and PACF cuts off after lag 1. Which model fits best?



- a) AR(1)
- b) MA(1)
- c) ARMA(1,1)
- d) White noise

**Correct answer:** a) AR(1)

**Explanation:** PACF cutoff after lag 1 with slow ACF decay typically indicates an autoregressive model of order 1.

- 18. What does the Augmented Dickey-Fuller (ADF) test assess?
- a) Stationarity of time series data
- b) Seasonality presence
- c) Best ARIMA model order
- d) Random noise level

Correct answer: a) Stationarity of time series data

**Explanation:** The ADF test assesses if a time series has a unit root (non-stationary); rejection implies stationarity.

- **19.** What is the purpose of first order differencing in time series?
- a) Smooth data by averaging
- b) Remove trends to achieve stationarity
- c) Remove seasonality entirely
- d) Increase data variance

Correct answer: b) Remove trends to achieve stationarity

**Explanation:** Differencing subtracts consecutive observations, stabilizing the mean and removing trends for modeling.

- **20.** Explain the difference between sensitivity and specificity.
- a) Sensitivity measures true negatives; specificity measures true positives
- b) Sensitivity: proportion of actual positives correctly identified; specificity: actual negatives correctly identified
- c) Both measure true positives under different thresholds
- d) They are inverses

**Correct answer:** b) Sensitivity: proportion of actual positives correctly identified; specificity: actual negatives correctly identified

**Explanation:** Sensitivity is also called recall and focuses on detecting positives; specificity measures correctly identified negatives.

**21.** Refer to the boxplot diagram of runner times with median closer to the lower quartile: What does this imply about skewness?

## **Runner Times**



- a) Symmetric distribution
- b) Left skew (negative skew)
- c) Right skew (positive skew)
- d) Insufficient information

**Correct answer:** c) Right skew (positive skew)

**Explanation:** Median near lower edge means a longer tail on the right, indicating positive skewness.

- **22.** In text mining, what is tokenization?
- a) Removing punctuation
- b) Splitting text into tokens or words
- c) Converting words to roots
- d) Removing stop words

**Correct answer:** b) Splitting text into tokens or words

**Explanation:** Tokenization breaks text into individual words or terms for analysis.

- **23.** What are stop words and why remove them in NLP?
- a) Rare words excluded due to insignificance
- b) Common words like 'the' and 'and' that add little meaning, removed to reduce noise
- c) Misspelled words
- d) Proper nouns

**Correct answer:** b) Common words like 'the' and 'and' that add little meaning, removed to reduce noise

**Explanation:** Stop words are frequently used but carry little discriminative value, so removing them improves text analysis efficiency.

- 24. What does the DocumentTermMatrix function in R do?
- a) Converts corpus to a matrix showing term frequencies
- b) Removes stop words
- c) Plots word clouds
- d) Performs stemming

**Correct answer:** a) Converts corpus to a matrix showing term frequencies

**Explanation:** It creates a sparse matrix with documents as rows and terms as columns indicating term counts.

- **25.** Explain TF-IDF in text analysis.
- a) Counts of terms across the corpus
- b) Weights terms by frequency in a document, reduced by commonness across corpus
- c) Selects only the most frequent terms
- d) Assigns equal weights to all terms

**Correct answer:** b) Weights terms by frequency in a document, reduced by commonness across corpus

**Explanation:** TF-IDF increases importance of terms frequent in a document but rare globally, highlighting distinctive words.

- 26. Which statement describes k-Nearest Neighbors (k-NN)?
- a) Eager learner building a model during training
- b) Lazy learner delaying classification until prediction time
- c) Performs dimensionality reduction before classification
- d) Only used for regression tasks

**Correct answer:** b) Lazy learner delaying classification until prediction time **Explanation:** k-NN stores all data and classifies new instances using the nearest neighbors at prediction time.

- **27.** Which method is NOT typically used to address class imbalance?
- a) Under-sampling majority class
- b) Over-sampling minority class
- c) Applying SMOTE
- d) Increasing the number of features

**Correct answer:** d) Increasing the number of features

**Explanation:** Increasing features doesn't solve imbalance and may worsen performance.

- **28.** What ethical principles should guide designing persuasive user interfaces?
- a) User benefit and transparency
- b) Deceptiveness and manipulation
- c) Maximizing data collection at all costs
- d) Avoiding user consent

**Correct answer:** a) User benefit and transparency

**Explanation:** Persuasive design should respect user autonomy and be transparent, avoiding manipulative dark patterns.

**29.** Refer to the K-fold cross-validation diagram. What is the primary advantage over a simple traintest split?

# K-Fold Cross-Validation

| Test | Training | Training | Training | Training | Training |
|------|----------|----------|----------|----------|----------|
|------|----------|----------|----------|----------|----------|

- a) Always uses more data for training
- b) Assesses model performance variability by multiple test folds
- c) Computationally inexpensive
- d) Ignores class imbalance

**Correct answer:** b) Assesses model performance variability by multiple test folds **Explanation:** K-fold CV tests on multiple folds, giving more reliable and stable performance estimates.

- **30.** Write R code to calculate Euclidean distance between vectors a = c(2,3,5) and b = c(1,1,1)?
- a)  $sqrt(sum((a b)^2))$
- b)  $sum((a b)^2)$
- c) cor(a, b)
- d) mean(abs(a b))

Correct answer: a) sqrt(sum((a - b)^2))

**Explanation:** Euclidean distance is the square root of sum of squared element-wise differences.

- **31.** Explain the meaning and cause of the 'file drawer effect' in scientific research.
- a) Publication bias where only positive or significant results are published, skewing available evidence
- b) Data imputation method for missing values
- c) The tendency to overfit models with too many features
- d) Error in randomness due to small sample sizes

**Correct answer:** a) Publication bias where only positive or significant results are published, skewing available evidence

**Explanation:** Studies with non-significant or negative results often remain unpublished ('filed away'), leading to a distorted evidence base.

- **32.** What does the term 'overfitting' mean in machine learning?
- a) When a model learns the training data too well, including noise, and performs poorly on new data
- b) When a model performs equally well on training and test data
- c) Only training on a large dataset
- d) Using a model too simple for the problem

**Correct answer:** a) When a model learns the training data too well, including noise, and performs poorly on new data

**Explanation:** Overfitting causes the model to memorize noise rather than learn the general pattern; this leads to poor generalization.

- **33.** What is the purpose of the Shapiro-Wilk test in statistics?
- a) To test normality of a data sample
- b) To test for homoscedasticity
- c) To test independence of variables
- d) To compare two proportions

**Correct answer:** a) To test normality of a data sample

**Explanation:** The Shapiro-Wilk test tests the null hypothesis that a sample comes from a normally distributed population.

- **34.** In the context of machine learning, what is 'concept drift'?
- a) When the model forgets training data
- b) When the statistical properties of the target variable change over time, reducing model performance

- c) Scaling of data incorrectly
- d) Using improper loss function

**Correct answer:** b) When the statistical properties of the target variable change over time, reducing model performance

**Explanation:** Concept drift means data patterns change over time, requiring model adaptation to maintain accuracy.

- 35. Describe the difference between 'lazy learning' and 'eager learning' algorithms with examples.
- a) Lazy learning builds a model upfront; eager learning delays prediction until data arrives (e.g., KNN is eager, Decision Trees are lazy)
- b) Lazy learning waits until prediction time to model (e.g., KNN), while eager learning builds models during training (e.g., Decision Trees, SVM)
- c) They are synonyms.
- d) Lazy learning requires less computation during prediction.

**Correct answer:** b) Lazy learning waits until prediction time to model (e.g., KNN), while eager learning builds models during training (e.g., Decision Trees, SVM)

**Explanation:** Lazy learners store data and classify new instances on the fly, whereas eager learners build a model in the training phase.

- **36.** In survival analysis, what does a Kaplan-Meier plot represent?
- a) Probability of survival over time for one or more groups
- b) Rate of occurrence of an event
- c) Linear regression fitting over time
- d) Histogram of survival times

Correct answer: a) Probability of survival over time for one or more groups

**Explanation:** Kaplan-Meier estimator shows survival probabilities at different time points.

- **37.** When would you prefer a paired t-test over an unpaired t-test?
- a) When comparing means of two independent groups
- b) When comparing means of the same subjects measured twice
- c) When testing for correlation
- d) When comparing variances

**Correct answer:** b) When comparing means of the same subjects measured twice **Explanation:** Paired t-test accounts for the fact that observations are related/paired.

- **38.** Explain the difference between precision and recall in classification.
- a) Precision measures how many selected items are relevant; recall measures how many relevant

items are selected.

- b) Precision measures false negatives; recall measures false positives.
- c) They are identical metrics.
- d) Precision is always greater than recall.

**Correct answer:** a) Precision measures how many selected items are relevant; recall measures how many relevant items are selected.

**Explanation:** Precision quantifies accuracy of positive predictions, while recall measures coverage of actual positives.

**39.** Provide an example R code snippet to perform a 10-fold cross-validation using the caret package for decision tree training.

```
a) control <- trainControl(method = "cv", number = 10)
model <- train(target ~ ., data = trainingData, method = "rpart", trControl = control)
b) trainControl("cv", folds = 10)
train(model, data)
c) cv10 <- trainControl(nfold = 10)
c50(model, data = trainingData, control = cv10)
d) No built-in way in caret for cross-validation</pre>
```

```
Correct answer: a) control <- trainControl(method = "cv", number = 10)
model <- train(target ~ ., data = trainingData, method = "rpart", trControl =
control)</pre>
```

**Explanation:** caret uses trainControl for specifying cross-validation and train to build the model.

- **40.** Which of the following best describes the Law of Large Numbers in statistics?
- a) Sample mean converges to population mean as sample size increases
- b) Sample variance increases with sample size
- c) Probability decreases with more trials
- d) The larger the sample, the greater the expected error

**Correct answer:** a) Sample mean converges to population mean as sample size increases **Explanation:** The Law of Large Numbers states the sample average approaches the expected value with increasing sample size.

- **41.** Refer to the diagram showing a decision tree structure with root, branches, and leaves. What main criterion is used by decision trees for splitting nodes?
- a) Information Gain, based on entropy reduction
- b) Random selection of features

- c) Euclidean distance minimization
- d) Gradient descent

Correct answer: a) Information Gain, based on entropy reduction

**Explanation:** Decision trees choose splits that maximize information gain by reducing entropy.

- **42.** What is the meaning of 'pseudo-replication' in statistical analyses and why is it problematic?
- a) Treating non-independent data points as independent, inflating sample size and risking false significance
- b) Repeating analyses multiple times with different data
- c) Using bootstrapping to estimate statistics
- d) Pooling data from multiple studies

**Correct answer:** a) Treating non-independent data points as independent, inflating sample size and risking false significance

**Explanation:** Pseudo-replication falsely inflates sample size, increasing type I error risk.

- **43.** What kind of features are called 'independent' when using Pearson correlation for feature selection?
- a) Features highly correlated with each other
- b) Features uncorrelated with each other but correlated with the target variable
- c) Features not correlated with the target variable
- d) Features that are categorical

**Correct answer:** b) Features uncorrelated with each other but correlated with the target variable **Explanation:** Independent features are not mutually correlated but have a predictive relationship with the target.

- **44.** In the R code for standardizing numerical features: IrisData\$SepalLengthCm <-scale(IrisData\$SepalLengthCm), what does the scale function do?
- a) Normalizes data to range
- b) Subtracts mean and divides by standard deviation, producing standardized features
- c) Converts data to factors
- d) Performs Principal Component Analysis

**Correct answer:** b) Subtracts mean and divides by standard deviation, producing standardized features

**Explanation:** scale() centers and scales variables to mean zero and unit variance.

- **45.** Explain the term 'confounding' in the context of data analysis.
- a) A variable that distorts the apparent effect of an explanatory variable on the outcome

- b) Random noise in data
- c) Missing values that reduce power
- d) Interaction effects between variables

**Correct answer:** a) A variable that distorts the apparent effect of an explanatory variable on the outcome

**Explanation:** Confounders bias estimates if not controlled, making causal inferences misleading.

- **46.** Explain why the Balanced Accuracy metric is preferred over simple Accuracy in imbalanced classification problems.
- a) Balanced Accuracy averages sensitivity and specificity, giving fair evaluation even when classes are uneven
- b) Balanced Accuracy ignores true negatives
- c) Accuracy always overestimates model quality
- d) Balanced Accuracy is simpler to compute

**Correct answer:** a) Balanced Accuracy averages sensitivity and specificity, giving fair evaluation even when classes are uneven

**Explanation:** Balanced accuracy accounts for both classes, avoiding inflated scores due to majority class dominance.

- **47.** Which R package is commonly used for survival analysis including functions like survfit and Kaplan-Meier plots?
- a) survival
- b) caret
- c) tm
- d) randomForest

**Correct answer:** a) survival

**Explanation:** The 'survival' package provides tools for handling survival data, including Kaplan-Meier estimation.

- **48.** What is the ethical concern with 'dark patterns' in User Interface (UI) design?
- a) They improve user experience transparently
- b) They intentionally manipulate users for business gains at user's expense without consent
- c) They mandate accessibility standards
- d) They simplify user decisions

**Correct answer:** b) They intentionally manipulate users for business gains at user's expense without consent

**Explanation:** Dark patterns deceive users into unintended actions, violating ethical UI practices.

- **49.** What is the difference between 'discretization' and 'quantization' in data preprocessing?
- a) Discretization creates continuous variables from categorical; quantization does the opposite
- b) Both refer to dividing continuous variables into intervals or bins, often used interchangeably
- c) Discretization applies only to images, quantization only to time series
- d) Quantization increases variable range

**Correct answer:** b) Both refer to dividing continuous variables into intervals or bins, often used interchangeably

**Explanation:** Both terms describe the binning of continuous data into discrete buckets.

- **50.** Describe the function of AUC (Area Under the Curve) in ROC analysis.
- a) Quantifies aggregate model performance across classification thresholds
- b) Measures model training time
- c) Identifies optimal cutoff value directly
- d) Measures correlation between features

**Correct answer:** a) Quantifies aggregate model performance across classification thresholds **Explanation:** AUC summarizes the trade-off between sensitivity and specificity, indicating overall discriminative ability.

- **51.** What is the Synthetic Minority Over-sampling Technique (SMOTE) primarily used for in machine learning?
- a) Reducing dimensionality of features
- b) Balancing class distribution by generating synthetic minority class samples
- c) Encoding categorical variables
- d) Improving model interpretability

**Correct answer:** b) Balancing class distribution by generating synthetic minority class samples **Explanation:** SMOTE creates synthetic minority samples by interpolating between existing minority instances to address class imbalance.

- **52.** Given the R code snippet: generateData = SMOTE(dataSet[, c(1, 2)], dataSet[, c(3)], K=5), what is the role of parameter K=5?
- a) Number of nearest neighbors to use for synthetic sample generation
- b) Number of features included
- c) Number of classes in the dataset
- d) Number of times SMOTE runs

**Correct answer:** a) Number of nearest neighbors to use for synthetic sample generation **Explanation:** K defines how many neighbors SMOTE uses to create synthetic examples in the minority class.

**53.** Refer to the following simplified decision tree split diagram on a continuous variable:

[Insert diagram showing root node splitting feature  $X \le 5$ ]

What criterion is commonly used to select the splitting point in decision trees?

- a) Correlation coefficient
- b) Information gain or reduction in entropy
- c) Euclidean distance
- d) Logistic regression coefficient

Correct answer: b) Information gain or reduction in entropy

**Explanation:** Decision trees select splits by maximizing information gain, measured by decrease in entropy.

- **54.** What does 'pseudo-replication' mean in statistical analyses and why is it problematic?
- a) Treating non-independent data points as independent, inflating sample size and risking false positives
- b) Repeated measures design
- c) Using bootstrap methods
- d) Pooling datasets from multiple studies

**Correct answer:** a) Treating non-independent data points as independent, inflating sample size and risking false positives

**Explanation:** Ignoring dependencies leads to false conclusions due to underestimating variability.

- **55.** Using the data comparison table for Pseudonymization and Anonymization (previously provided), which statement is correct?
- a) Anonymization allows reversible linking to original data
- b) Pseudonymization is irreversible
- c) Pseudonymization retains data utility and reversibility with a key
- d) Both are considered personal data under GDPR

**Correct answer:** c) Pseudonymization retains data utility and reversibility with a key **Explanation:** Pseudonymization maintains linkability with a key and higher utility; anonymization is irreversible.

#### **56.** Refer to this confusion matrix:

|                 | Predicted Positive  | Predicted Negative  |
|-----------------|---------------------|---------------------|
| Actual Positive | True Positive (TP)  | False Negative (FN) |
| Actual Negative | False Positive (FP) | True Negative (TN)  |

What type of error is False Positive?

- a) Correctly predicting positive cases
- b) Predicting negative when actual is positive
- c) Predicting positive when actual is negative
- d) Correctly predicting negative cases

**Correct answer:** c) Predicting positive when actual is negative

**Explanation:** False positives occur when negatives are incorrectly classified as positive.

**57.** Calculate the entropy of a dataset with two classes where 90% are class A and 10% are class B.

- a) 0.469
- b) 0.325
- c) 0.9
- d) 1.0

Correct answer: a) 0.469

**Explanation:** Entropy =  $-(0.9log2(0.9) + 0.1log2(0.1)) \approx 0.469$  bits.

**58.** What does the term 'reproducibility' mean in data science research?

- a) Ability to obtain consistent results using the same methods and data
- b) Using different data to confirm findings
- c) Sharing all data publicly
- d) Using multiple models

Correct answer: a) Ability to obtain consistent results using the same methods and data

**Explanation:** Reproducibility ensures scientific results can be validated and trusted.

- **59.** Which feature selection approach uses a model to recursively remove least important features?
- a) Filter method
- b) Wrapper method Recursive Feature Elimination (RFE)
- c) Embedded method Lasso regression
- d) Dimensionality reduction PCA

**Correct answer:** b) Wrapper method - Recursive Feature Elimination (RFE)

**Explanation:** RFE iteratively trains models and removes less important features.

- **60.** Refer to the time series PACF diagram where PACF cuts off sharply after lag 1 and ACF decays slowly. Which model is most appropriate?
- a) MA(1) model
- b) AR(1) model

- c) White noise
- d) Seasonal ARIMA

Correct answer: b) AR(1) model

**Explanation:** Sharp PACF cutoff at lag 1 with slow ACF decay indicates autoregressive model order

1.

- **61.** What is the purpose of the Variance Inflation Factor (VIF) in multiple regression analysis?
- a) To detect heteroscedasticity
- b) To identify predictors that are highly collinear
- c) To assess model fit
- d) To measure residual variance

Correct answer: b) To identify predictors that are highly collinear

**Explanation:** VIF measures the extent to which the variance of a coefficient is inflated due to multicollinearity among predictors.

- **62.** What does a Shapiro-Wilk test p-value > 0.05 imply about a dataset?
- a) Data significantly deviates from normality
- b) Data is consistent with normal distribution
- c) Test is invalid
- d) Data contains outliers

Correct answer: b) Data is consistent with normal distribution

**Explanation:** A high p-value indicates no evidence to reject the null hypothesis that data is normally distributed.

- **63.** Explain the difference between sensitivity and specificity in a binary classification problem.
- a) Sensitivity is the proportion of actual negatives correctly identified; specificity is actual positives
- b) Sensitivity measures how well positives are identified; specificity how well negatives are identified
- c) Both measure false positive rate
- d) They are unrelated metrics

**Correct answer:** b) Sensitivity measures how well positives are identified; specificity how well negatives are identified

**Explanation:** Sensitivity is also known as recall and specificity identifies how well the model detects true negatives.

- **64.** In R, what does the function call cor.test(x, y, method = "pearson") compute?
- a) Linear regression of y on x

- b) Correlation coefficient and significance test between x and y
- c) Mean difference between x and y
- d) Covariance matrix

Correct answer: b) Correlation coefficient and significance test between x and y

**Explanation:** This function computes Pearson's correlation and tests whether it's significantly different from zero.

- **65.** Describe the primary difference between bagging and boosting ensemble methods.
- a) Bagging trains models independently in parallel; boosting trains sequentially focusing on correcting errors
- b) Boosting models run in parallel; bagging uses sequential training
- c) Both reduce bias equally
- d) They are the same

**Correct answer:** a) Bagging trains models independently in parallel; boosting trains sequentially focusing on correcting errors

**Explanation:** Bagging reduces variance with multiple independent models; boosting reduces bias by learning from previous errors.

- **66.** What is tokenization in text mining?
- a) Combining several words into a phrase
- b) Splitting text into discrete tokens or words
- c) Removing stop words
- d) Converting text to uppercase

Correct answer: b) Splitting text into discrete tokens or words

**Explanation:** Tokenization breaks text into its tokens—usually words—for further processing.

- **67.** Explain what stop words are and why they are removed in natural language processing (NLP).
- a) Rare words removed for simplicity
- b) Common words that add little meaning, removed to reduce noise
- c) Misspelled words
- d) Proper nouns

**Correct answer:** b) Common words that add little meaning, removed to reduce noise **Explanation:** Stop words like "the" and "and" occur frequently but provide little semantic information.

- **68.** In text analysis, what does the DocumentTermMatrix function in R do?
- a) Removes stop words from text

- b) Creates a matrix of term frequencies per document
- c) Generates word clouds
- d) Performs stemming

Correct answer: b) Creates a matrix of term frequencies per document

**Explanation:** This function transforms text into a sparse matrix indicating frequency of each term in each document.

- **69.** What does the TF-IDF weighting scheme in text mining represent?
- a) Raw count of word occurrences
- b) Term frequency scaled down by inverse document frequency to highlight important words
- c) Binary presence of words
- d) Normalization of word lengths

**Correct answer:** b) Term frequency scaled down by inverse document frequency to highlight important words

**Explanation:** TF-IDF gives higher weights to words common in a document but rare across the corpus.

- **70.** How does the k-Nearest Neighbors (k-NN) algorithm classify a new instance?
- a) Using a pre-built model fitted during training
- b) By majority vote of k nearest neighbors in feature space
- c) By calculating Euclidean distance to class centroids
- d) Using decision trees

**Correct answer:** b) By majority vote of k nearest neighbors in feature space

**Explanation:** k-NN classifies based on the classes of the closest training examples to the new data point.

- **71.** Which of these methods is NOT a typical way to handle class imbalance?
- a) Under-sampling the majority class
- b) Over-sampling the minority class
- c) Using SMOTE to generate synthetic samples
- d) Increasing the number of features

**Correct answer:** d) Increasing the number of features

**Explanation:** Simply adding more features doesn't address class imbalance and may worsen performance.

- **72.** What is 'algorithmic bias' in machine learning?
- a) Random errors caused by data noise

- b) Systematic unfair or discriminatory model predictions due to biased data or design
- c) Intentional algorithm manipulation
- d) Loss of model accuracy during training

**Correct answer:** b) Systematic unfair or discriminatory model predictions due to biased data or design

**Explanation:** Algorithmic bias results when models produce unfair outcomes against certain groups.

- **73.** What is the 'file drawer effect' in scientific research?
- a) Loss of experimental data during transfers
- b) Bias where negative or non-significant results remain unpublished
- c) Systematic error from mislabeling data
- d) Outdated methodologies discarded unfairly

**Correct answer:** b) Bias where negative or non-significant results remain unpublished **Explanation:** Positive results are published more often, skewing the apparent evidence.

**74.** Refer to this ROC curve plot with threshold points marked: What is the effect of lowering the classification threshold on metrics?



- a) Sensitivity decreases, false positive rate decreases
- b) Sensitivity increases, false positive rate increases
- c) Both sensitivity and specificity increase
- d) No effect on sensitivity

**Correct answer:** b) Sensitivity increases, false positive rate increases

**Explanation:** Lower thresholds classify more positives, catching more true positives but also more false positives.

- **75.** What is the main disadvantage of using a very high value of K in k-NN classifiers?
- a) Overfitting the training data
- b) Increased sensitivity to noise
- c) Underfitting by oversmoothing decision boundaries
- d) High computational cost during training

**Correct answer:** c) Underfitting by oversmoothing decision boundaries

**Explanation:** Large K values generalize too much, masking patterns and reducing accuracy.

- **76.** Explain the concept of 'concept drift' in machine learning.
- a) Model losing training data
- b) Changing statistical properties of the target variable over time causing degraded model performance
- c) Scaling data inconsistently
- d) Non-random missing data

**Correct answer:** b) Changing statistical properties of the target variable over time causing degraded model performance

**Explanation:** When the data distribution changes over time, static models may become inaccurate.

- **77.** Describe the key difference between bagging and boosting ensemble methods.
- a) Bagging uses sequential training focusing on misclassified samples; boosting trains models independently
- b) Bagging trains models independently in parallel; boosting trains sequentially focusing on correcting errors
- c) Both train models sequentially
- d) Boosting only applies to regression

**Correct answer:** b) Bagging trains models independently in parallel; boosting trains sequentially focusing on correcting errors

**Explanation:** Bagging reduces variance; boosting reduces bias by focusing on errors from previous models.

- **78.** How does the Boruta algorithm select important features?
- a) Uses Pearson correlation to remove correlated features
- b) Creates shadow features and compares their importance using Random Forests
- c) Applies PCA for dimensionality reduction
- d) Embedded selection during logistic regression

**Correct answer:** b) Creates shadow features and compares their importance using Random Forests **Explanation:** Boruta compares real features with random shadows to retain relevant features.

- **79.** Given a logistic regression coefficient of 0.405 for a variable, what is the interpretation of the odds ratio?
- a) Odds increase by 40.5% for one unit increase
- b) Odds decrease by 40.5%
- c) Coefficient has no meaningful interpretation
- d) Odds ratio is 0.405

Correct answer: a) Odds increase by 40.5% for one unit increase

**Explanation:** Odds ratio =  $\exp(0.405) \approx 1.5$ , so odds increase about 50% per unit increase.

- **80.** In time series analysis, what does differencing do?
- a) Adds seasonality
- b) Removes trend to make series stationary
- c) Normalizes data
- d) Increases variance

**Correct answer:** b) Removes trend to make series stationary

**Explanation:** Differencing subtracts consecutive values to remove underlying trends.

- **81.** What is the general purpose of hyperparameter tuning in machine learning?
- a) To find the best configuration of model parameters to optimize performance
- b) To clean the dataset
- c) To create features
- d) None of the above

**Correct answer:** a) To find the best configuration of model parameters to optimize performance **Explanation:** Tuning improves model accuracy by optimizing parameters like learning rate or tree depth.

- **82.** What is the Law of Large Numbers in statistics?
- a) Sample mean tends to population mean as sample size increases
- b) Variance grows with larger samples
- c) Probability decreases as trials increase
- d) Sample error grows with sample size

**Correct answer:** a) Sample mean tends to population mean as sample size increases **Explanation:** Larger samples improve the estimate stability of the population mean.

- **83.** Explain the difference between Adjusted R-squared and R-squared in regression analysis.
- a) R-squared decreases with more variables, Adjusted R-squared increases
- b) Adjusted R-squared accounts for number of predictors, penalizing overly complex models

- c) No difference
- d) Adjusted R-squared measures residuals only

**Correct answer:** b) Adjusted R-squared accounts for number of predictors, penalizing overly complex models

**Explanation:** Adjusted R-squared only increases if new variables improve the model beyond chance.

- 84. What ethical issue do 'dark patterns' in user interface design raise?
- a) Transparent design benefiting users
- b) Manipulative design tricking users into unintended actions
- c) Mandatory accessibility standards
- d) Open source software sharing

Correct answer: b) Manipulative design tricking users into unintended actions

**Explanation:** Dark patterns deceive users for business gains, violating ethical use principles.

- **85.** In text mining, explain the concept of stemming.
- a) Removing noise from data
- b) Reducing words to their root form by cutting suffixes
- c) Converting documents to matrices
- d) Removing stopwords

**Correct answer:** b) Reducing words to their root form by cutting suffixes

**Explanation:** Stemming simplifies words to their base for better grouping.

- 86. What is the key difference between lazy learning and eager learning algorithms?
- a) Lazy learning builds models ahead; eager learning waits to predict
- b) Lazy learning waits until prediction time to compute; eager learning builds model during training
- c) Both build models during training
- d) Lazy learning is only unsupervised methods

**Correct answer:** b) Lazy learning waits until prediction time to compute; eager learning builds model during training

**Explanation:** Lazy learning defers generalization until needed; eager learning generalizes upfront.

- 87. What R package provides robust survival analysis including Kaplan-Meier plots?
- a) caret
- b) survival
- c) tm
- d) randomForest

Correct answer: b) survival

**Explanation:** The survival package offers functions for survival modeling and plotting.

**88.** Explain the difference between precision and recall with formulas.

- a) Precision = TP/(TP+FP), Recall = TP/(TP+FN)
- b) Precision = TP/(TP+FN), Recall = TP/(TP+FP)
- c) Precision and recall are the same
- d) Precision measures negatives, recall measures positives

**Correct answer:** a) Precision = TP/(TP+FP), Recall = TP/(TP+FN)

**Explanation:** Precision measures accuracy of positives predicted; recall measures coverage of actual positives.

**89.** Provide an R code snippet to perform a 10-fold cross-validation on a decision tree using the caret package.

```
a) control <- trainControl(method = "cv", number = 10)
model <- train(target ~ ., data = trainingData, method = "rpart", trControl = control)
b) trainControl("cv", folds = 10)
train(model, data)
c) cv10 <- trainControl(nfold = 10)
c50(model, data = trainingData, control = cv10)
d) crossval <- cv.tree(model, K=10)</pre>
```

```
Correct answer: a) control <- trainControl(method = "cv", number = 10)
model <- train(target ~ ., data = trainingData, method = "rpart", trControl =
control)</pre>
```

**Explanation:** caret supports cross-validation via trainControl and train functions.

- **90.** What is the main assumption behind the Central Limit Theorem (CLT)?
- a) Samples must be normally distributed
- b) Samples must be independent and identically distributed with finite variance
- c) Sample size is less than 30
- d) Population mean is unknown

**Correct answer:** b) Samples must be independent and identically distributed with finite variance **Explanation:** CLT states sample means approximate normal distribution as sample size grows, assuming i.i.d and finite variance.

- **91.** Describe the concept of 'multicollinearity' in regression analysis.
- a) Predictor variables are completely independent

- b) Predictors are highly correlated, causing unstable coefficient estimates
- c) Outcome variable is binary
- d) Residuals follow a normal distribution

**Correct answer:** b) Predictors are highly correlated, causing unstable coefficient estimates **Explanation:** Multicollinearity inflates variance of parameter estimates, making coefficients difficult to interpret reliably.

- **92.** Why should feature selection be performed only on training data?
- a) To prevent data leakage and ensure unbiased model evaluation
- b) Because test data features are irrelevant
- c) To simplify computation
- d) No reason; it can be done on entire dataset

**Correct answer:** a) To prevent data leakage and ensure unbiased model evaluation **Explanation:** Using test data during feature selection leaks information influencing training, leading to overoptimistic performance.

- 93. What is the primary advantage of ensemble learning methods like Random Forests?
- a) They reduce variance by averaging many decision trees trained on bootstrapped data
- b) They always perform worse than single decision trees
- c) Only useful for regression
- d) Require no parameter tuning

**Correct answer:** a) They reduce variance by averaging many decision trees trained on bootstrapped data

**Explanation:** Ensembles improve prediction stability and accuracy by combining multiple models.

- **94.** What is the impact of class imbalance on machine learning classifiers?
- a) Models perform equally well on all classes
- b) Models may bias predictions toward the majority class, ignoring minority
- c) Improves model precision
- d) Not a concern

**Correct answer:** b) Models may bias predictions toward the majority class, ignoring minority **Explanation:** Class imbalance often results in poor detection of minority class due to skewed training data.

- 95. In survival analysis, what is the primary information depicted in a Kaplan-Meier curve?
- a) Hazard rate over time
- b) Probability of survival as a function of time

- c) Regression coefficient estimates
- d) Cumulative incidence of an event

Correct answer: b) Probability of survival as a function of time

**Explanation:** Kaplan-Meier curves estimate the survival function showing probability individuals survive beyond certain time.

**96.** In hypothesis testing, what does a p-value less than 0.05 generally signify?

- a) Accept the null hypothesis
- b) Reject the null hypothesis; results are statistically significant
- c) Sample size is too small
- d) Data is normally distributed

Correct answer: b) Reject the null hypothesis; results are statistically significant

**Explanation:** A low p-value suggests observed results unlikely due to chance assuming null is true.

- **97.** What is the typical effect of outliers on correlation analysis?
- a) No effect
- b) May severely distort correlation coefficients
- c) Always increase correlation
- d) Always decrease correlation

**Correct answer:** b) May severely distort correlation coefficients

**Explanation:** Outliers can inflate or deflate correlations, misrepresenting true relationships.

- 98. What is the difference between supervised and unsupervised learning?
- a) Supervised learning uses labeled data; unsupervised uses unlabeled data to find structure
- b) Unsupervised uses labeled data; supervised uses unlabeled data
- c) Both always require labeled data
- d) No difference

**Correct answer:** a) Supervised learning uses labeled data; unsupervised uses unlabeled data to find structure

**Explanation:** Supervised learning predicts target labels; unsupervised discovers hidden patterns without labels.

- **99.** What does the R function lm() perform?
- a) Principal component analysis
- b) Linear regression modeling
- c) Logistic regression
- d) k-NN classification

**Correct answer:** b) Linear regression modeling

**Explanation:** The lm() function fits linear models predicting continuous outcomes.

- **100.** Explain the concept of the 'black box' problem in machine learning models.
- a) Models whose inner workings are transparent and easily interpretable
- b) Models difficult to interpret or explain despite making predictions
- c) Simple algorithms with few parameters
- d) Open source models

**Correct answer:** b) Models difficult to interpret or explain despite making predictions

**Explanation:** Complex models like deep neural networks often lack transparency, complicating trust and debugging.

- **101.** Which of the following best describes the main stages of the data science lifecycle?
- a) Data collection, data cleaning, model deployment
- b) Data collection, data cleaning, exploratory data analysis, model building, and deployment
- c) Only data cleaning and model building
- d) Data engineering, feature engineering, testing

**Correct answer:** b) Data collection, data cleaning, exploratory data analysis, model building, and deployment

**Explanation:** The full lifecycle includes data gathering, preparation, exploration, modeling, evaluation, and deployment.

- **102.** In R, which function is used to check the structure and data types of a dataset 'df'?
- a) summary(df)
- b) str(df)
- c) head(df)
- d) dim(df)

Correct answer: b) str(df)

**Explanation:** The str() function displays the structure and types of variables in the data frame.

- **103.** Which of the following is a continuous random variable?
- a) Number of students in a classroom
- b) Weight of a person
- c) Number of cars in a parking lot
- d) Number of heads in coin flips

Correct answer: b) Weight of a person

**Explanation:** Weight can take any value in a range (continuous), others are count/discrete variables.

**104.** What does the Shapiro-Wilk test evaluate in a given dataset?

- a) Whether the data follows a normal distribution
- b) Linearity between two variables
- c) Independence of observations
- d) Equality of variances

**Correct answer:** a) Whether the data follows a normal distribution

**Explanation:** Shapiro-Wilk tests the null hypothesis that data is drawn from a normal distribution.

**105.** What is 'concept drift' and why is it important in predictive modeling?

- a) When data distribution changes over time, causing models to degrade if not updated
- b) Loss of training data due to errors
- c) Feature scaling issue
- d) Overfitting due to large feature sets

**Correct answer:** a) When data distribution changes over time, causing models to degrade if not updated

**Explanation:** Recognizing and adapting to concept drift is critical to maintaining model accuracy in changing environments.

**106.** In hypothesis testing, what does a p-value < 0.05 signify?

- a) The null hypothesis is accepted
- b) The null hypothesis can be rejected with 95% confidence
- c) The alternative hypothesis is false
- d) There is a 5% chance of observing the data

Correct answer: b) The null hypothesis can be rejected with 95% confidence

**Explanation:** p-value < 0.05 means the data provides strong evidence against the null hypothesis.

**107.** What is the main difference between paired and independent t-tests?

- a) Paired t-test compares related samples; independent t-test compares unrelated groups
- b) Paired t-test compares more than two groups; independent compares two
- c) Paired t-test for large samples; independent for small
- d) No difference

**Correct answer:** a) Paired t-test compares related samples; independent t-test compares unrelated groups

**Explanation:** Paired test controls for within-subject effects; independent tests compare separate groups.

- **108.** What does the Pearson correlation coefficient quantify?
- a) Strength of a linear relationship between two variables
- b) Difference between means
- c) Causation between variables
- d) Variance of one variable

**Correct answer:** a) Strength of a linear relationship between two variables

**Explanation:** Pearson correlation measures linear dependence ranging from -1 to 1.

- 109. What is the purpose of the Variance Inflation Factor (VIF) in regression?
- a) Detect multicollinearity among predictors
- b) Measure overall model accuracy
- c) Test normality of residuals
- d) Detect heteroscedasticity

**Correct answer:** a) Detect multicollinearity among predictors

**Explanation:** VIF identifies predictors highly correlated with others, which may affect coefficient reliability.

**110.** Refer to this plotted autocorrelation function (ACF) diagram:

If the ACF decays slowly and the Partial ACF (PACF) cuts off after lag 1, which time series model is appropriate?

- a) AR(1) model
- b) MA(1) model
- c) White noise
- d) Seasonal ARIMA

Correct answer: a) AR(1) model

**Explanation:** AR(1) models produce slow ACF decay and PACF cutoff at lag 1.

- **111.** In logistic regression, a coefficient of 0.4 corresponds approximately to an odds ratio of what?
- a) 1.5
- b) 0.4
- c) 2.5
- d) 0.9

Correct answer: a) 1.5

**Explanation:** Odds ratio =  $\exp(0.4) \approx 1.5$ , meaning a 50% increase in odds with a unit increase.

- **112.** In R, which function can be used to compute the Pearson correlation coefficient and perform a significance test?
- a) cor.test()
- b) lm()
- c) t.test()
- d) summary()

Correct answer: a) cor.test()

**Explanation:** cor.test() computes the correlation coefficient and its p-value.

- **113.** In R, which package is commonly used for survival analysis?
- a) survival
- b) caret
- c) tm
- d) randomForest

Correct answer: a) survival

**Explanation:** The survival package offers Kaplan-Meier and Cox model functions.

- **114.** Explain the difference between sensitivity and specificity in classification tasks.
- a) Sensitivity measures true positive rate; specificity measures true negative rate
- b) Both measure false positive rate
- c) Sensitivity measures precision; specificity measures recall
- d) They are the same

**Correct answer:** a) Sensitivity measures true positive rate; specificity measures true negative rate **Explanation:** Sensitivity measures ability to detect positives; specificity measures ability to detect negatives.

### **115.** Refer to the confusion matrix below:

| Actual \ Predicted | Positive | Negative |
|--------------------|----------|----------|
| Positive           | TP       | FN       |
| Negative           | FP       | TN       |

What does 'False Negative' mean in this context?

- a) Incorrectly predicting negative when true is positive
- b) Correctly predicting negative

- c) Incorrectly predicting positive when true is negative
- d) Correctly predicting positive

Correct answer: a) Incorrectly predicting negative when true is positive

**Explanation:** False negatives are missed positive cases predicted as negative.

- **116.** What is SMOTE primarily used for in supervised machine learning?
- a) Dimensionality reduction
- b) Balancing imbalanced datasets by generating synthetic minority samples
- c) Feature scaling
- d) Improving feature interpretability

**Correct answer:** b) Balancing imbalanced datasets by generating synthetic minority samples **Explanation:** SMOTE synthesizes new data points for minority classes to reduce imbalance.

- **117.** Which R function standardizes variables by subtracting the mean and dividing by standard deviation?
- a) scale()
- b) normalize()
- c) center()
- d) standardize()

Correct answer: a) scale()

**Explanation:** scale() centers and scales features to have zero mean and unit variance.

- **118.** In feature selection, what does the Boruta algorithm do?
- a) Filters features based on p-values only
- b) Uses Random Forest to compare actual features with shadow features to pick important ones
- c) Performs PCA to reduce dimensions
- d) Uses manual selection of variables

**Correct answer:** b) Uses Random Forest to compare actual features with shadow features to pick important ones

**Explanation:** Boruta iteratively tests whether features perform better than randomized shadows.

- **119.** Which of the following ethical issues arises from 'dark patterns' in user interface design?
- a) Improving user understanding
- b) Manipulation of users to take unintended actions
- c) Supporting data privacy
- d) Enhancing accessibility

**Correct answer:** b) Manipulation of users to take unintended actions

**Explanation:** Dark patterns intentionally deceive or coerce users for business advantage.

**120.** What does the General Data Protection Regulation (GDPR) principle of 'data minimization' refer to?

- a) Collecting and processing only necessary personal data
- b) Storing data indefinitely
- c) Sharing data without consent
- d) Deleting all data immediately

Correct answer: a) Collecting and processing only necessary personal data

**Explanation:** Data minimization limits personal data collected and retained to what is strictly needed.

- 121. In topic modeling, what does Latent Dirichlet Allocation (LDA) do?
- a) Clusters documents based on explicit labels
- b) Discovers hidden topics by analyzing word co-occurrences
- c) Removes stopwords from documents
- d) Performs sentiment analysis

Correct answer: b) Discovers hidden topics by analyzing word co-occurrences

**Explanation:** LDA is a probabilistic model that identifies latent topics in a text corpus by grouping words that frequently co-occur.

- 122. What does the term 'tokenization' mean in text mining?
- a) Splitting text into words or tokens
- b) Removing punctuation
- c) Converting text to lowercase
- d) Lemmatizing words

Correct answer: a) Splitting text into words or tokens

**Explanation:** Tokenization breaks text into meaningful units (tokens), typically words, for further natural language processing.

- **123.** What is the benefit of using term frequency-inverse document frequency (TF-IDF) in text analysis?
- a) Emphasizes common words in all documents
- b) Highlights terms important to individual documents relative to the corpus
- c) Ignores rare words
- d) Removes punctuation

**Correct answer:** b) Highlights terms important to individual documents relative to the corpus **Explanation:** TF-IDF weights terms higher when they appear frequently in a document but rarely in the corpus, thus emphasizing distinctive terms.

- **124.** What is the primary goal when tuning hyperparameters in machine learning models?
- a) Maximize model interpretability
- b) Improve predictive performance on unseen data
- c) Reduce dataset size
- d) Increase training time

Correct answer: b) Improve predictive performance on unseen data

**Explanation:** Optimizing hyperparameters helps better generalize the model to new data and avoid overfitting or underfitting.

- **125.** Which of the following R packages is commonly used for ML model training and parameter tuning?
- a) caret
- b) ggplot2
- c) tm
- d) survival

Correct answer: a) caret

**Explanation:** The caret package provides tools for building, tuning, and evaluating machine learning models.

- **126.** Explain the 'file drawer effect' in the context of scientific research.
- a) Publishing all studies regardless of outcome
- b) Non-significant results often remain unpublished, biasing literature
- c) Reproducibility of experiments
- d) Data sharing among researchers

**Correct answer:** b) Non-significant results often remain unpublished, biasing literature **Explanation:** This publication bias leads to an overrepresentation of positive findings in literature.

- **127.** What R function would you use to perform a one-sample t-test?
- a) t.test()
- b) lm()
- c) cor.test()
- d) anova()

Correct answer: a) t.test()

**Explanation:** t.test() can perform one-sample, two-sample, paired, and unpaired t-tests.

**128.** In R, how would you check for missing values in a vector x?

- a) <u>is.na(x)</u>
- b) is.nan(x)
- c) anyNA(x)
- d) allNA(x)

Correct answer: a) is.na(x)

**Explanation:** is.na() identifies elements that are NA or missing in R.

129. What does the term 'confounding' mean in statistical analyses?

- a) A factor that distorts the apparent association between predictor and outcome
- b) An outlier value
- c) A missing value in the dataset
- d) A variable with a linear relationship

**Correct answer:** a) A factor that distorts the apparent association between predictor and outcome **Explanation:** Confounders bias the relationship if they are associated with both the predictor and outcome.

**130.** Refer to the diagram of Receiver Operating Characteristic (ROC) curve: *What does the curve illustrate?* 



- a) Trade-off between sensitivity and specificity at different thresholds
- b) Time series trend

- c) Confusion matrix outputs
- d) Feature importance ranking

Correct answer: a) Trade-off between sensitivity and specificity at different thresholds

**Explanation:** ROC plots True Positive Rate vs. False Positive Rate as classification threshold varies.

- **131.** What is the primary purpose of Exploratory Data Analysis (EDA)?
- a) To build predictive models
- b) To summarize main characteristics of data often using visual methods
- c) To clean data automatically
- d) To conduct hypothesis testing

**Correct answer:** b) To summarize main characteristics of data often using visual methods **Explanation:** EDA helps detect patterns, anomalies, and insights before formal modeling.

- 132. What is a limitation of using R-squared as a sole metric for regression model fit?
- a) It always increases when predictors are added, regardless of usefulness
- b) It is difficult to compute
- c) It is only valid for logistic regression
- d) It measures residual errors poorly

**Correct answer:** a) It always increases when predictors are added, regardless of usefulness **Explanation:** R-squared can increase by adding variables without improving model quality, which may cause overfitting.

- **133.** What is the ethical concern behind algorithmic bias in AI and ML?
- a) It results in unfair or discriminatory outcomes for certain groups
- b) It increases computational cost
- c) It leads to faster model training
- d) It improves model interpretability

**Correct answer:** a) It results in unfair or discriminatory outcomes for certain groups **Explanation:** Bias in data or algorithm design can reinforce social inequalities.

- **134.** What type of learning is k-Nearest Neighbors (k-NN) considered?
- a) Lazy learning
- b) Eager learning
- c) Supervised deep learning
- d) Unsupervised clustering

Correct answer: a) Lazy learning

**Explanation:** k-NN defers modeling until query time, using stored data for classification.

135. In R, which function creates a Document-Term Matrix useful for text mining?

- a) DocumentTermMatrix()
- b) corpus()
- c) wordcloud()
- d) list.files()

Correct answer: a) DocumentTermMatrix()

**Explanation:** It converts a corpus to a matrix of term frequencies per document.

**136.** What is one key benefit of synthetic data like that generated by SMOTE in data science?

- a) Helps balance datasets to improve model training on minority classes
- b) Removes all personal data from datasets
- c) Reduces dataset size
- d) Guarantees no data bias

**Correct answer:** a) Helps balance datasets to improve model training on minority classes **Explanation:** Synthetic data supplements minority classes, enhancing classifier learning.

- **137.** Explain the Law of Large Numbers in statistics.
- a) As sample size increases, sample mean converges to true population mean
- b) Sample variance always increases with sample size
- c) Probability of errors increases with samples
- d) Population mean decreases with large samples

**Correct answer:** a) As sample size increases, sample mean converges to true population mean **Explanation:** Larger samples yield more accurate estimates of the population mean.

- **138.** What does a p-value represent in hypothesis testing?
- a) Probability of observing the data or more extreme, assuming null hypothesis is true
- b) Probability the null hypothesis is true
- c) Sample size required
- d) The alternative hypothesis

**Correct answer:** a) Probability of observing the data or more extreme, assuming null hypothesis is true

**Explanation:** p-value measures evidence against the null hypothesis.

- **139.** When performing feature selection, why is it important to only use the training data?
- a) To avoid information leakage and preserve unbiased evaluation
- b) Because test data contains missing values

- c) To reduce computation time
- d) It's not important

Correct answer: a) To avoid information leakage and preserve unbiased evaluation

**Explanation:** Using test data during selection leaks knowledge and falsely inflates performance.

**140.** In survival analysis, what does a Kaplan-Meier curve show?

- a) Estimated probability of survival over time
- b) Hazard function
- c) Regression coefficients
- d) Confusion matrix

**Correct answer:** a) Estimated probability of survival over time

**Explanation:** Kaplan-Meier plots the survival function as a step plot of survival probabilities.

- **141.** What is the main purpose of outlier detection in data analysis?
- a) To improve data quality and prevent skewed model results
- b) To find missing values
- c) To increase dataset size
- d) To remove all large values

**Correct answer:** a) To improve data quality and prevent skewed model results

**Explanation:** Outliers can distort statistical metrics and reduce model robustness.

**142.** Refer to this decision tree diagram:

What criterion is typically used by decision trees to decide on splits?

- a) Information Gain based on entropy reduction
- b) Random selection
- c) Euclidean distance minimization
- d) Manual feature engineering

**Correct answer:** a) Information Gain based on entropy reduction

**Explanation:** Splits that maximize the reduction in entropy or impurity are preferred.

- **143.** Which of the following is NOT a principle of GDPR?
- a) Purpose limitation
- b) Data minimization
- c) Indefinite data storage
- d) Integrity and confidentiality

**Correct answer:** c) Indefinite data storage

**Explanation:** GDPR mandates data retention only as long as necessary.

- **144.** What best describes the concept of 'data provenance'?
- a) History of the data lifecycle, including collection, processing, and transformations
- b) Data corruption
- c) Encryption
- d) User privacy settings

**Correct answer:** a) History of the data lifecycle, including collection, processing, and transformations

**Explanation:** Provenance ensures traceability and reproducibility of data.

- **145.** Which of these metrics is most appropriate for assessing model performance on imbalanced classes?
- a) Balanced accuracy
- b) Simple accuracy
- c) Sum of residuals
- d) Mean squared error

Correct answer: a) Balanced accuracy

**Explanation:** Balanced accuracy averages sensitivity and specificity, mitigating bias from class imbalance.