7

1 1. (previously presented) A communications method, 2 comprising: 3 monitoring a SMDI communications link extending 4 between a telephone switch and a voice messaging system 5 to detect at least one of a SMDI history message and a 6 SMDI message waiting indicator message; 7 generating an IP message including at least one 8 IP packet, said IP packet including at least some 9 information obtained from a detected SMDI message; and 10 transmitting the IP message over a 11 communications channel which supports the transmission of 12 IP packets; and 13 in response to detecting said SMDI history 14 message, storing at least some information included in 15 the SMDI history message. 1 (previously presented) The communications method 2 of claim 1, wherein said SMDI communications link 3 includes an RS-232 cable, the method further comprising: 4 prior to performing said monitoring step, 5 inserting a tee connection into said SMDI communications 6 link to allow for monitoring of said link. 1 (previously presented) The communications method of claim 1, further comprising: 2 3 in response to detecting a said SMDI message 4 waiting indicator message, performing a database look-up operation to retrieve IP message routing information 5 6 associated with a directory number included in the

detected SMDI message waiting indicator message; and

- 8 wherein the step of generating an IP message
- 9 includes including at least some of the retrieved IP
- 10 message routing information in said IP message.
 - 1 4. (original) The communications method of claim 3,
 - wherein the IP message is an E-mail message and wherein
 - 3 the IP message routing information includes an E-mail
 - 4 address.
 - 1 5. (original) The communications method of claim 3,
 - 2 wherein said IP message routing information includes an
 - 3 IP address.
 - 1 6. (previously presented) The communications method
- of claim 1, further comprising:
- 3 operating an advanced intelligent network
- 4 service control point to store IP addresses in customer
- 5 records corresponding to voice mail service subscribers;
- 6 and
- 7 wherein said step of generating an Internet
- 8 Protocol message includes incorporating an IP address
- 9 corresponding to a voice mail service subscriber,
- 10 obtained from said service control point, into said at
- 11 least one IP packet.
 - 7. (previously presented) The method of claim 1,
 - 2 wherein the step of generating an IP message includes:
 - 3 incorporating at least some of the stored
 - 4 information obtained from the SMDI history message in
 - 5 said IP message.

- 8. (original) The communications method of claim 6,
- 2 further comprising:
- in response to detecting a SMDI message waiting
- 4 indicator control message,
- 5 using directory number information included in
- 6 the SMDI message waiting indicator control message to
- 7 retrieve stored SMDI history message information.
- 9. (original) The communications method of claim 8,
- wherein the step of generating an IP message includes
- incorporating at least some of the retrieved IP history
- 4 message information in said IP message.
- 1 10. (original) The communications method of claim 9,
- wherein at least some of the retrieved IP history message
- 3 information includes at least one of a calling party name
- 4 and a calling party telephone number.
- 1 11. (original) The communications method of claim 10,
- wherein said IP message is an E-mail message.
- 1 12. (original) The communications method of claim 9,
- 2 wherein the step of generating an IP message further
- 3 includes incorporating at least some information from the
- 4 detected SMDI message waiting indicator control message
- 5 in said IP message.
- 1 13. (previously presented) A method of operating an
- Internet Protocol messaging device the method comprising:

3

information; and

3	receiving Internet Protocol address information
4	and directory number information for each of a plurality
5	of voice mail service subscribers from an advanced
6	intelligent network service control point coupled to said
7	Internet Protocol messaging device;
8	receiving a SMDI message;
9	generating an IP message including at least one
10	IP packet and at least some information obtained from the
11	received SMDI message, said generating including
12	incorporating an Internet Protocol address included in
13	said received Internet Protocol address information in
14	said at least one IP packet; and
15	transmitting the IP message to an IP
16	communications network.
1	14. (original) The method of claim 13,
2	wherein the step of receiving a SMDI message
3	includes receiving one of a frequency shift keying and a
4	phase shift keying encoded signals; and
5	wherein the step of generating an IP message
6	includes the step of including a message waiting
7	indicator control signal obtained from the received SMDI
8	message in said IP message.
1	15. (original) The method of claim 13, further
2	comprising:

access a database including Internet Protocol address

using information in a received SMDI message to

- 6 using at least some of the retrieved Internet
- 7 Protocol address information in said IP message.
- 1 16. (original) The method of claim 15,
- 2 wherein the Internet Protocol address
- 3 information includes an E-mail address; and
- 4 wherein said IP message is an E-mail message.
- 1 17. (previously presented) The method of claim 16,
- 2 further comprising:
- 3 storing at said advanced intelligent network
- 4 service control point, in each of a plurality of
- 5 subscriber call processing records, each call processing
- f record corresponding to a voice mail service subscriber,
- 7 an Internet Protocol address and directory number
- 8 corresponding to the voice mail service subscriber to
- 9 which the call processing record corresponds.
- 1 18. (original) The method of claim 17, wherein using
- 2 information in a received SMDI message to access a
- 3 database including Internet Protocol address information,
- 4 includes comparing a directory number or message line
- 5 indicator received in said SMDI message to said directory
- 6 number information received from the service control
- 7 point.
- 1 19. (previously presented) A communications system,
- 2 comprising:
- 3 a telephone switch;
- 4 a voice messaging system;

5	a communications link coupled to the telephone
6	switch and to the voice messaging system for carrying
7	voice message waiting information between voice messaging
8	system and the telephone switch;
9	an Internet Protocol message server coupled to
10	said communications link for detecting voice message
11	waiting information transmitted over said communications
12	link and for generating an Internet Protocol message
13	including at least some of said voice message waiting
14	information; and
15	a voice message retrieval device coupled to said
16	Internet Protocol message server by an Internet Protocol
17	communications channel, the voice message retrieval
18	device including means for retrieving a waiting message
19	from said voice messaging system in response to receiving
20	an IP message including at least some message waiting
21	indicator information.
1	20. (original) The communications system of claim 19,
2	wherein said voice messaging waiting information is a
3	message waiting indicator control signal.

- 1 21. (previously presented) The communications system
- of claim 20, wherein the Internet Protocol server
- 3 includes:
- 4 means for decoding at least one of a Frequency
- 5 Shift Keying signal and a Phase Shift Keying signal to
- 6 generate decoded simplified message desk interface
- 7 message information.

- 1 22. (previously presented) The communications system
- of claim 19, wherein said communications link is a
- 3 simplified message desk interface link.
- 1 23. (original) The communication system of claim 22,
- 2 wherein the Internet Protocol server includes:
- 3 means for decoding at least one of a Frequency
- 4 Shift Keying signal and a Phase Shift Keying signal to
- 5 generate decoded simplified message desk interface
- 6 message information; and
- 7 means for generating an IP message including at
- 8 least some of said decoded simplified message desk
- 9 interface message information.
- 1 24. (original) The communication system of claim 23,
- 2 wherein the Internet Protocol message server further
- 3 includes:
- 4 a database of voice message service subscriber
- 5 information including directory number and Internet
- 6 Protocol address information.
- 1 25. (original) The communication system of claim 19,
- 2 wherein the Internet Protocol message server further
- 3 includes:
- 4 a database of voice message service subscriber
- 5 information including directory number and Internet
- 6 Protocol address information.
- 1 26. (previously presented) A message server for
- 2 generating Internet Protocol (IP) messages from

- 3 simplified message desk interface messages, the message
- 4 server comprising:
- 5 means for receiving simplified message desk
- 6 interface messages from a simplified message desk
- 7 interface data link;
- 8 stored Internet address information; and
- 9 an Internet Protocol message generation module
- 10 for generating an Internet Protocol message including IP
- 11 address information and at least some information
- obtained from a received simplified message desk
- interface data said Internet Protocol message generation
- 14 module including at least a routine for accessing at
- least a portion of a stored history message to obtain a
- 16 calling party name.
- 1 27. (original) The message server of claim 26, wherein
- 2 the stored Internet address information includes E-mail
- 3 addresses of voice message service subscribers.
- 1 28. (original) The message server of claim 26, further
- 2 comprising:
- 3 a simplified message desk interface history
- 4 message store for storing received history messages.
- 1 29. (Canceled)
- 1 30. (previously presented) A system for providing
- 2 voice messaging service to a plurality of message service
- 3 subscribers, the system comprising:
- 4 a telephone switch;

5	a voice messaging system;
6	a simplified message desk interface
7	communications channel coupling the voice messaging
8	system to the telephone switch;
9	an Internet Protocol network for communicating
LO	messages using the Internet Protocol;
1	an Internet Protocol message server coupled to
L2	the simplified message desk interface communications
L3	channel and to the Internet Protocol network, the
L 4	Internet Protocol message server generating IP messages
15	from simplified message desk interface messages
16	transmitted over said simplified message desk interface
٦	communications channel; and
18	a voice message retrieval system coupled to the
19	Internet Protocol message server by said Internet
0.0	Protocol network, the voice message retrieval system
21	operating to retrieve voice messages from said voice
22	message system in response to Internet Protocol messages
23	received from the Internet Protocol message server.
	•
1	31. (original) The system of claim 30, further
2	comprising:
3	a service control point including subscriber
4	service information and subscriber Internet address
5	information; and
6	a data network coupling the service control
7	point to the telephone switch and to the Internet
8	Protocol message server.

- 1 32. (original) The system of claim 31, wherein the
- 2 Internet Protocol message server includes a database of
- 3 voice message service subscriber Internet address
- 4 information and directory number information downloaded
- 5 from the service control point.
- 1 33. (previously presented) The system of claim 30,
- 2 wherein the voice message retrieval system includes:
- 3 means for generating an E-mail message including a
- 4 retrieved voice message; and
- 5 means for transmitting said E-mail message including
- 6 the retrieved voice message of a voice mail service
- 7 subscriber.