# AlignFlow: Cycle Consistent Learning from Multiple Domains via Normalizing Flows [AAAI 2020]

Presentation for CS 594 with Prof. Sathya

Dec 3, 2020

Presented By: Krishna Garg

### Motivation

Learn shared structure from different domains



## The high-level idea

- Latent variable generative modelling to discover the shared structure
- Model the data from each domain via "invertible generative model" ("Normalizing flows method")
- Shared latent space across all domains

## Generative Modelling at a glance



AlignFlow, FlowGAN: BEST OF ALL WORLDS

 $\min_{\theta} \max_{\phi} V(G_{\theta}, D_{\phi}) - \lambda \mathbb{E}_{\mathbf{x} \sim P_{\text{data}}} \left[ \log p_{\theta}(\mathbf{x}) \right]$ 

# Flow-based Generative Modeling (FlowGAN)

Change-of-variables formula



#### Requirements:

- $G_{\theta}$  invertible. Let  $f_{\theta} = G_{\theta}^{-1}$
- $z = f_{\theta}(x)$



## Problem Setup

- Given: Unpaired datasets  $D_A$ ,  $D_B$  with unknown densities  $p_A^st$ ,  $p_B^st$
- Goals: Estimate
  - Marginal likelihoods  $p_A$ ,  $p_B$  that approximate  $p_A^*$ ,  $p_B^*$
  - Conditional distributions  $p_{A|B}$ ,  $p_{B|A}$

## Representation

Bayesian Network:

- $A \leftarrow Z \rightarrow B$
- Define Generator Mappings:  $G_{Z\to A}$ ,  $G_{Z\to B}$  s.t. their inverse exists
- Domain Translation
  - $G_{A \to B} = G_{Z \to B} \circ G_{A \to Z}$
  - $G_{B\to A}=G_{Z\to A}\circ G_{B\to Z}$
- Proving  $G_{B\to A}=G_{A\to B}^{-1}$



$$G_{A\to B}^{-1} = (G_{Z\to B} \circ G_{A\to Z})^{-1} = G_{A\to Z}^{-1} \circ G_{Z\to B}^{-1}$$
$$= G_{Z\to A} \circ G_{B\to Z} = G_{B\to A}.$$

## Learning Algorithms & Objectives

• Both flows  $G_{Z\to A}$ ,  $G_{Z\to B}$  can be trained independently via MLE, ADV, HYBRID

• ADV 
$$\min_{\theta} \max_{\phi} V(G_{\theta}, D_{\phi})$$
 MLE  $\max_{\theta \in \mathcal{M}} \mathbb{E}_{\mathbf{x} \sim P_{\text{data}}} \left[ \log p_{\theta}(\mathbf{x}) \right]$ 

• HYBRID 
$$\min_{\theta} \max_{\phi} V(G_{\theta}, D_{\phi}) - \lambda \mathbb{E}_{\mathbf{x} \sim P_{\text{data}}} [\log p_{\theta}(\mathbf{x})]$$

But how can we exploit data from the two domains??

## Learning Algorithms & Objectives

- Both flows  $G_{Z\to A}$ ,  $G_{Z\to B}$  can be trained independently via MLE, ADV, HYBRID
- But how can we exploit data from the two domains??
  - Directly perform ADV training of  $G_{B \rightarrow A}$



$$\mathcal{L}_{GAN}(C_{A}, G_{B \to A}) = \mathbb{E}_{a \sim p_{A}^{*}}[\log C_{A}(a)] + \mathbb{E}_{b \sim p_{B}^{*}}[\log(1 - C_{A}(G_{B \to A}(b)))].$$

## Learning Algorithms & Objectives

- Both flows  $G_{Z\to A}$ ,  $G_{Z\to B}$  can be trained independently via MLE, ADV, HYBRID
- But how can we exploit data from the two domains??
  - Directly perform ADV training of  $G_{B\to A}$ ,  $G_{A\to B}$  but keep MLE separate
  - Hybrid Learning Objective
  - Combine the two generators

$$\mathcal{L}_{\text{AlignFlow}}(G_{\text{B}\rightarrow \text{A}}, C_{\text{A}}, C_{\text{B}}; \lambda_{\text{A}}, \lambda_{\text{B}}) \\ = \mathcal{L}_{\text{GAN}}(C_{\text{A}}, G_{\text{B}\rightarrow \text{A}}) + \mathcal{L}_{\text{GAN}}(C_{\text{B}}, G_{\text{A}\rightarrow \text{B}}) \\ - \lambda_{\text{A}} \mathcal{L}_{\text{MLE}}(G_{\text{Z}\rightarrow \text{A}}) - \lambda_{\text{B}} \mathcal{L}_{\text{MLE}}(G_{\text{Z}\rightarrow \text{B}}) \\ \end{pmatrix} \begin{array}{c} \lambda_{A} = \lambda_{B} = 0 \\ \text{Pure ADV training} \\ \lambda_{A} = \lambda_{B} \rightarrow \infty \\ \text{Pure MLE training} \end{array}$$

$$\lambda_A=\lambda_B=0$$
Pure ADV training
 $\lambda_A=\lambda_B o\infty$ 

## Recall Problem Setup -> Inference Stage

- Given: Unpaired datasets  $D_A$ ,  $D_B$  with unknown densities  $p_A^*$ ,  $p_B^*$
- Goals: Estimate
  - Marginal likelihoods  $p_A$ ,  $p_B$  that approximate  $p_A^*$ ,  $p_B^*$ 
    - Assume shared latent space  $z \sim p(z), \lambda_A \neq 0, \lambda_B \neq 0$
    - Paired Dataset becomes  $(G_{Z\to A}(z), G_{Z\to B}(z))$
  - Conditional distributions  $p_{A|B}$ ,  $p_{B|A}$ 
    - Given by  $G_{B\rightarrow A}$ ,  $G_{A\rightarrow B}$



## Theoretical Analysis – Optimal Generators

• Def. An invertible mapping  $G_{Y\to X}$  is marginally consistent(M.C.) w.r.t.

 $(p_X, p_Y)$ :

 $p_{\mathbf{X}}(x) = \begin{cases} p_{\mathbf{Y}}(y) \left| \det \frac{\partial G_{\mathbf{Y} \to \mathbf{X}}^{-1}}{\partial \mathbf{X}} \right|_{\mathbf{X} = x}, & \textit{if } x = G_{\mathbf{Y} \to \mathbf{X}}(y) \\ 0, & \textit{otherwise}. \end{cases}$ 

- Lemma. If there exist mappings  $G_{Z\to A}^*$ ,  $G_{Z\to B}^*$  that are M.C. w.r.t  $(p_A^*, p_Z)$  &  $(p_B^*, p_Z)$ , then  $G_{B\to A}^*$  is M.C. w.r.t.  $(p_A^*, p_B^*)$  [From def. & Change of Variables Theorem]
- Theorem. Given critics  $C_A$ ,  $C_B$ ,  $G_{B\to A}^*$  globally minimizes the AlignFlow objective

## Theoretical Analysis – Optimal Generators (Proof)

• Theorem. Given critics  $C_A$ ,  $C_B$ ,  $G_{B\to A}^*$  globally minimizes the AlignFlow objective

#### • Proof.

- 1.  $L_{MLE}(G_{Z\to X})$  minimized at marginally consistent mapping  $G_{Z\to X^*}$  (X=A,B)
- 2.  $L_{GAN}(C_A, G_{B \to A})$  minimized when  $p_A = p_A^*$  and critic is Bayes optimal [Goodfellow et al., Theorem 1].  $\Longrightarrow L_{GAN}(C_A, G_{B \to A})$  minimized by marginally consistent mapping  $G_{B \to A}^*$  w.r.t.  $(p_A^*, p_B^*)$ . Similar for  $L_{GAN}(C_B, G_{A \to B})$ .
- 3.  $G_{B\rightarrow A}^* = G_{Z\rightarrow A}^* \circ G_{Z\rightarrow B}^*$  [by design]

Thus,  $G_{B\to A}^*$  globally minimizes all the terms in the AlignFlow learning objective.

## Theoretical Analysis – Optimal Critics

**Theorem 2.** Let  $p_A^*$  and  $p_B^*$  denote the true data densities for domains A and B respectively. Let  $C_A^*$  and  $C_B^*$  denote the optimal critics for the AlignFlow objective with the crossentropy GAN loss for any fixed choice of the invertible mapping  $G_{A\to B}$ . Letting  $b = G_{A\to B}(a)$  for any  $a \in A$ , we have:

$$C_{A}^{*}(a) = \frac{C_{B}^{*}(b)p_{A}^{*}(a)}{p_{A}^{*}(a) + p_{B}^{*}(b)(1 - C_{B}^{*}(b)) \left| \det \frac{\partial G_{B \to A}^{-1}}{\partial A} \right|_{A=a}}.$$

# Theoretical Analysis – Optimal Critics (Proof)

$$C_{\rm A}^{\star}(a) = \frac{p_{\rm A}^{\star}(a)}{p_{\rm A}^{\star}(a) + p_{\rm A}(a)} \qquad \text{[Proposition 1, Goodfellow et al.]}$$
 
$$p_{\rm A}(a) = p_{\rm B}(b) \left| \det \frac{\partial G_{\rm B \to A}^{-1}}{\partial {\rm A}} \right|_{\rm A=a} \qquad \text{[Using change of variables theorem]}$$
 
$$\text{where } b = G_{\rm A \to B}(a). \qquad \text{[Condition for optimal critic]}$$
 
$$C_{\rm A}^{\star}(a) = \frac{p_{\rm A}^{\star}(a)}{p_{\rm A}^{\star}(a) + p_{\rm B}(b)} \left| \det \frac{\partial G_{\rm B \to A}^{-1}}{\partial {\rm A}} \right|_{\rm A=a} \qquad \text{[Proposition 1, Goodfellow et al.]}$$
 
$$C_{\rm B}^{\star}(b) = \frac{p_{\rm B}^{\star}(b)}{p_{\rm B}^{\star}(b) + p_{\rm B}(b)}. \qquad \text{[Rearranging terms]}$$
 
$$C_{\rm A}^{\star}(a) = \frac{C_{\rm B}^{\star}(b)p_{\rm A}^{\star}(a)}{p_{\rm A}^{\star}(a) + p_{\rm B}^{\star}(b)(1 - C_{\rm B}^{\star}(b))} \left| \det \frac{\partial G_{\rm B \to A}^{-1}}{\partial {\rm A}} \right|_{\rm A=a}$$

## Theoretical Analysis - Exact Cycle Consistency

- (-) Two independent domain mappings
- (-) Only ADV training
- (-) Additional Cycle Loss required
- (-) Only Conditional sampling possible



(a) CycleGAN

$$\mathcal{L}_{Cycle}(G_{B\rightarrow A}, G_{A\rightarrow B}) = E_{a\sim p_A^*}[\|G_{B\rightarrow A}(G_{A\rightarrow B}(a)) - a\|_1].$$

- (+) Single invertible mapping
- (+) ADV / MLE / HYBRID
- (+) Additional Cycle Loss not required
- (+) Both Conditional and Unconditional sampling possible

$$G_{A \to Z} = G_{Z \to A}^{-1}$$
 $G_{B \to Z} = G_{Z \to B}^{-1}$ 
 $G_{A \to B} = G_{B \to A}^{-1}$ 
 $G_{B \to Z} = G_{Z \to B}^{-1}$ 
 $G_{A \to B} = G_{B \to A}^{-1}$ 
 $G_{B \to Z} = G_{Z \to B}^{-1}$ 

(b) AlignFlow

$$\mathcal{L}_{\text{Cycle}}(G_{B\to A}, G_{A\to B}) = 0$$
  
$$\mathcal{L}_{\text{Cycle}}(G_{A\to B}, G_{B\to A}) = 0$$

- Unsupervised Image-To-Image Translation
  - Unsupervised during training
  - Supervised during validation

**Datasets: Facades, Maps, CityScape** 





| Dataset    | Model         | $MSE  (A \to B)$ | $MSE\left( B\rightarrow A\right)$ |
|------------|---------------|------------------|-----------------------------------|
| es         | CycleGAN      | 0.7129           | 0.3286                            |
| Facades    | AF (ADV only) | 0.6727           | 0.2679                            |
|            | AF (Hybrid)   | 0.5801           | 0.2512                            |
|            | AF (MLE only) | 0.9014           | 0.5960                            |
| s          | CycleGAN      | 0.0245           | 0.0953                            |
| Maps       | AF (ADV only) | 0.0385           | 0.1123                            |
|            | AF (Hybrid)   | 0.0209           | 0.0897                            |
|            | AF (MLE only) | 0.0452           | 0.1746                            |
| es         | CycleGAN      | 0.1252           | 0.1200                            |
| CityScapes | AF (ADV only) | 0.2569           | 0.2196                            |
|            | AF (Hybrid)   | 0.1130           | 0.1462                            |
|            | AF (MLE only) | 0.2526           | 0.2272                            |

- Unsupervised Domain Adaptation
  - Source Domain: Access to both inputs and labels
  - Target Domain: Access to only inputs
  - Goal: Learn a classifier for target domain



(a) MNIST→USPS

| Model                              | $MNIST \to USPS$                 | $USPS \rightarrow MNIST$         | $\text{SVHN} \rightarrow \text{MNIST}$ |
|------------------------------------|----------------------------------|----------------------------------|----------------------------------------|
| source only                        | $82.2 \pm 0.8$                   | $69.6 \pm 3.8$                   | $67.1 \pm 0.6$                         |
| ADDA (Tzeng et al. 2017)           | $89.4 \pm 0.2$                   | $90.1 \pm 0.8$                   | $76.0 \pm 1.8$                         |
| CyCADA (Hoffman et al. 2017)       | $95.6 \pm 0.2$                   | $96.5 \pm 0.1$                   | $90.4 \pm 0.4$                         |
| UNIT (Liu, Breuel, and Kautz 2017) | 95.97                            | 93.58                            | 90.53                                  |
| AlignFlow                          | $\textbf{96.2} \pm \textbf{0.2}$ | $\textbf{96.7} \pm \textbf{0.1}$ | $\textbf{91.0} \pm \textbf{0.3}$       |
| target only                        | $96.3 \pm 0.1$                   | $99.2 \pm 0.1$                   | $99.2 \pm 0.1$                         |

## Qualitative Results – Cross-domain translation

Failure cases for CyCADA model using CycleGAN (SVHN->MNIST)



## Qualitative Results – Latent Space Interpolations



(a) MNIST $\rightarrow$ USPS



(b) USPS→MNIST



## Summary

- A promising combination of FlowGAN and CycleGAN
- Theoretical Guarantees
  - Exact cycle consistency using shared latent space
- Empirical Results surpass the existing baselines on 2 different tasks
  - Code released
- Qualitative Results (Latent Space Interpolations)
- Interesting Future direction
  - Translation across more than two domains

## Thank You

## References

- <a href="https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html#types-of-generative-models">https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models</a>
- Wang, Mei, and Weihong Deng. "Deep visual domain adaptation: A survey." *Neurocomputing* 312 (2018): 135-153.
- Grover, Aditya, Manik Dhar, and Stefano Ermon. "Flow-gan: Combining maximum likelihood and adversarial learning in generative models." *arXiv preprint arXiv:1705.08868* (2017).