# 第13章 提升法

集成学习的思想"三个臭皮匠,顶个诸葛亮",此结论成立有前提条件。

如果这些臭皮匠的优缺点完全相同,则无论有多少臭皮匠,也顶不过诸葛亮。

上章介绍的随机森林,其组合策略为尽量使决策树之间不相关 (decorrelate)。

能否更主动地寻找不同(互补)的"臭皮匠"?比如,考虑一个臭皮匠的序列:皮匠 1,皮匠 2,皮匠 3, ……能否使得每个皮匠正好弥补之前所有皮匠的缺点?

这正是"提升法"(Boosting)的组合策略。

对于随机森林,每棵决策树的作用完全对称,可随便更换决策树的位置。

对于提升法,则每棵决策树的作用并不相同,这些依次而种(grown sequentially)的决策树之间的相对位置不能随意变动。

提升法是一种"序贯集成法"(sequential ensemble approach)。

随机森林使用自助样本(故可计算袋外误差),而提升法则基于原始样本(故一般无法计算袋外误差),但可使用不同的观测值权重(observation weights)。

### 13.1 自适应提升法

最早的提升法为 Freund and Schapire (1996, 1997)提出的**自适应提升法** (Adaptive Boosting, 简记 AdaBoost), 仅适用于分类问题。

对于分类问题,考虑依次种M 棵树 $G_1(\mathbf{x}),\cdots,G_M(\mathbf{x})$ 。

对于第m棵树中错误分类的观测值,则在之后的第(m+1)棵树加大其权重,以此类推。

可通过以下两种方法来加大错分观测值的权重:

- (1) 权重更新(reweighting)。在定义基尼指数或信息熵的不纯度函数,以及在计算终节点预测值时,均考虑不同观测值的权重。
- (2) 再抽样(resampling)。在种每棵决策树时,都使用从"加权的分布" (weighted distribution)中再抽样得到的数据。需要先将每轮的权重标准化,使得权重之和为 1。

假设训练数据为 $\left\{\mathbf{x}_i,y_i\right\}_{i=1}^n$ 。首先考虑二分类问题的 AdaBoost 算法,记响应变量 $y\in\left\{-1,1\right\}$ 。

"y = 1"表示正例(positive case),而"y = -1"表示反例(negative case)。

- 二分类问题的 AdaBoost 算法可分为以下 3 步; 而其中第 2 步又分为 5 小步, 针对所种决策树 $m = 1, \dots, M$  进行 for 循环:
- 1、初始化每个观测值的权重 $w_i = 1/n$ ,  $i = 1, \dots, n$ 。这意味着,刚开始所有观测值的权重均相同,等于1/n(n)为样本容量)。
  - 2、对于决策树 $m=1,\cdots,M$ ,进行以下操作:
    - (1) 使用观测值i的当前权重 $w_i$ ,估计第m棵决策树 $G_m(\mathbf{x})$ ;
    - (2) 根据当前权重 $w_i$ , 计算第m棵决策树的错分率 $err_m$ :

$$err_{m} \equiv \frac{\sum_{i=1}^{n} w_{i} I(y_{i} \neq G_{m}(\mathbf{x}_{i}))}{\sum_{i=1}^{n} w_{i}}$$
(13.1)

其中,分母为所有观测值的权重之和,而分子为错分观测值  $(y_i \neq G_m(\mathbf{x}_i))$ 的权重之和。

(3) 计算正确分类的对数几率( $\log \operatorname{odds}$ ) $\alpha_m$ ,即正确分类的概率  $(1-err_m)$ 除以错误分类的概率 $err_m$ ,再取对数:

$$\alpha_m \equiv \ln\left(\frac{1 - err_m}{err_m}\right) \tag{13.2}$$

(4) 更新观测值的权重:

$$w_i \leftarrow w_i \cdot \exp\left[\alpha_m \cdot I(y_i \neq G_m(\mathbf{x}_i))\right]$$
 (13.3)

(5) 将所有权重标准化,保证权重之和为1,即

$$W_i \leftarrow \frac{W_i}{\sum_{j=1}^n W_j} \tag{13.4}$$

3、将每棵决策树的预测结果 $G_m(\mathbf{X})$ ,以对数几率 $\alpha_m$ 为权重,通过加权多数票(weighted majority vote)的方式组合在一起,输出最终预测结果:

$$G(\mathbf{x}) = sign\left[\sum_{m=1}^{M} \alpha_m G_m(\mathbf{x})\right] \quad (13.5)$$

其中, $sign(\cdot)$ 为"符号函数"(sign function),即

$$sign(z) = \begin{cases} 1 & if \ z \ge 0 \\ -1 & if \ z < 0 \end{cases}$$
 (13.6)

在 AdaBoost 算法的第 2 步中,进一步考察第(4)步观测值权重的变化。假定"弱分类器"(weak classifier)的错分率至少比随机猜测更低,则几率

$$\left(\frac{1-err_m}{err_m}\right) > 1$$
,故对数几率 $\alpha_m = \ln\left(\frac{1-err_m}{err_m}\right) > 0$ 。权重更新公式 (13.3)可写为

$$w_{i} \leftarrow w_{i} \cdot \exp\left[\alpha_{m} \cdot I(y_{i} \neq G_{m}(\mathbf{x}_{i}))\right] = \begin{cases} w_{i} \cdot \left(\frac{1 - err_{m}}{err_{m}}\right) & \text{if } y_{i} \neq G_{m}(\mathbf{x}_{i}) \\ w_{i} & \text{if } y_{i} = G_{m}(\mathbf{x}_{i}) \end{cases}$$

$$(13.7)$$

分类错误的观测值权重增加 $\left(\frac{1-err_m}{err_m}\right)>1$ 倍,而分类正确的观测值权重不变。

为保持所有观测值的权重之和为1(参见方程(13.4)),分类正确的观测值权重其实相对地缩小。

如果某观测值一直分类错误,则其权重将不断增加,表明算法越来越希望能将此"顽固"或困难(hard)的观测值正确地分类。

AdaBoost 算法对于观测值权重的更新过程,参见图 13.1。



图 13.1 AdaBoost 算法对权重的更新

根据方程(13.5), 集成学习的最后结果以"加权多数票"决定, 而权重

为正确分类的对数几率
$$\alpha_m = \ln\left(\frac{1 - err_m}{err_m}\right) > 0$$
。

分类越正确的决策树, 在委员会中的投票权重越大。

将二分类问题的 AdaBoost 算法,推广到多分类问题。对于多分类问题,假设 $y \in \{1, 2, \dots, K\}$ 。

多分类问题的 AdaBoost 算法与二分类问题基本相同。

但最后进行加权多数投票的公式为

$$G(\mathbf{x}) = \underset{y \in \{1, 2, \dots, K\}}{\operatorname{argmax}} \left[ \sum_{m=1}^{M} \alpha_m I(y = G_m(\mathbf{x})) \right]$$
(13.8)

其中,给定特征向量 $\mathbf{x}$ ,示性函数 $I(y=G_m(\mathbf{x}))$ 用于判断第m棵树的预测结果 $G_m(\mathbf{x})$ 是否正确。然后再以正确分类的对数几率 $\alpha_m$ 作为权重,进行加权投票。

直观上,上式分别计算  $y = 1, 2, \dots, K$  所得的不同票数,然后以得票最多者胜出。

AdaBoost 算法的作用机制如何? 依然可从偏差(bias)与方差(variance)的角度来考察。

一方面,由于每棵树均纠正上一棵树的错误,迫使分类器更加重视特征空间(feature space)中错误分类的区域,故可降低偏差。

另一方面,由于 AdaBoost 的最终预测结果为很多决策树的加权平均, 故可达到降低方差的效果。

早期的 AdaBoost 算法经常使用"树桩"(stump)作为弱学习器,即只有一个根节点与两个终节点的决策树。

该决策树仅选择一个变量,做一次分裂,故一般为弱学习器。

例如,仅根据身高的信息判断性别,参见图 13.2。



图 13.2 根据身高判断性别的树桩(弱学习器)

由于树桩仅做一次分裂,故其偏差较大;而方差较小,故很难过拟合。

使用树桩作为基学习器是基于这样一种认识,即"慢学习"(learning slowly)通常效果较好。

但若使用树桩作为基学习器,则无法捕捉变量之间的"交互效应" (interaction effect,类似于线性回归的交互项),故未必总能达到最好的预测效果。

## 13.2 AdaBoost 的统计解释

自从 Freund and Schapire (1996)提出 AdaBoost 算法后,即取得很好的预测效果。Friedman et al. (2000)给出 AdaBoost 的统计解释。

AdaBoost 算法可等价地视为前向分段加法模型(forward stagewise additive modeling), 并使用指数损失函数(exponential loss function)。

对于二分类问题的 AdaBoost 算法, 可将最终表达式

$$G(\mathbf{x}) = sign\left[\sum_{m=1}^{M} \alpha_m G_m(\mathbf{x})\right]$$
中的每一项 $G_m(\mathbf{x}) \in \{-1, 1\}$ 视为

"基函数"(basis function), 类似于泰勒展开式(Taylor expansion)的每一项。

更一般地,考虑将希望学到的函数 $f(\mathbf{X})$ 做"基函数展开"(basis function expansion),由此得到加法模型(additive model)":

$$f(\mathbf{x}) = \sum_{m=1}^{M} \beta_m G(\mathbf{x}; \boldsymbol{\gamma}_m)$$
 (13.9)

其中, $eta_m$ 为 "展开系数" (expansion coefficients)。 $G(\mathbf{x}; \boldsymbol{\gamma}_m)$ 为基函数,而 $\boldsymbol{\gamma}_m$ 为参数向量。

如以决策树为基函数,则 $\gamma_m$ 表示分裂变量、在何处分裂以及终节点的预测值。

为估计展开系数 $\beta_m$ 与基函数参数 $\gamma_m$ ,可最小化以下目标函数:

$$\min_{\{\beta_m, \gamma_m\}} \sum_{i=1}^n L\left(y_i, \sum_{m=1}^M \beta_m G(\mathbf{x}_i; \gamma_m)\right)$$
 (13.10)

其中, $L(y_i, f(\mathbf{x}_i))$ 为损失函数,比如误差平方 $(y_i - f(\mathbf{x}_i))^2$ ,或 0-1 损失函数 $I(y_i \neq f(\mathbf{x}_i))$ 等。

直接求解此最小化问题很困难。例如,若基函数 $G(\mathbf{x}_i; \boldsymbol{\gamma}_m)$ 为决策树,则 $G(\mathbf{x}_i; \boldsymbol{\gamma}_m)$ 无解析表达式。

考虑分步计算,即所谓前向分段算法(forward stagewise algorithm):

- 1、初始化 $f(\mathbf{x})$ 为零(函数),即 $f_0(\mathbf{x}) = 0$ 。
- 2、对于基函数 $m=1,\cdots,M$ , 进行以下 for 循环:
  - (1) 求解最小化问题

$$(\beta_m, \boldsymbol{\gamma}_m) = \underset{\{\beta, \boldsymbol{\gamma}\}}{\operatorname{argmin}} \sum_{i=1}^n L(y_i, f_{m-1}(\mathbf{x}_i) + \beta \cdot G(\mathbf{x}_i; \boldsymbol{\gamma})) \quad (13.11)$$

其中,在已知 $f_{m-1}(\mathbf{X}_i)$ 情况下,选择下一轮的最优展开系数 $\boldsymbol{\beta}_m$ 与基函数 参数 $\boldsymbol{\gamma}_m$ 。

# (2) 更新加法模型(13.9):

$$f_m(\mathbf{x}) = f_{m-1}(\mathbf{x}) + \beta_m \cdot G(\mathbf{x}; \gamma_m) \quad (13.12)$$

须注意"分段"与"分步"的区别。对于"分段"(stagewise)算法,已经加入的项(基函数),在之后的优化中不再调整。

另一方面,对于"分步"(stepwise)算法,则已经加入的项依然可在后续优化中调整。

例如,在统计学的"前向分步回归"(forward stepwise regression),每次加入最显著的变量,并重新调整之前已在模型中的变量之回归系数。

命题 13.1 (Friedman et al., 2000) 二分类问题的 AdaBoost 算法,等价于使用指数损失函数的前向分段加法模型。其中,指数损失函数(exponential loss function)为

$$L(y, f(\mathbf{x})) = \exp(-yf(\mathbf{x}))$$
 (13.13)

证明 对于 AdaBoost 算法,基函数为 $G_m(\mathbf{x}_i) \in \{-1,1\}$ 。

考虑给定 $f_{m-1}(\mathbf{X})$ ,如何最优化 $f_m(\mathbf{X})$ 。

将指数损失函数(13.13)代入目标函数(13.10),并使用函数更新规则 (13.12)可得:

$$\min_{\{\beta,G\}} \sum_{i=1}^{n} L(y_i, f_m(\mathbf{x}_i))$$

$$= \sum_{i=1}^{n} \exp[-y_i f_m(\mathbf{x}_i)]$$

$$= \sum_{i=1}^{n} \exp[-y_i (f_{m-1}(\mathbf{x}_i) + \beta \cdot G(\mathbf{x}_i))]$$
(13.14)

进一步,目标函数可等价地写为

$$\sum_{i=1}^{n} \exp\left[-y_{i}\left(f_{m-1}(\mathbf{x}_{i}) + \beta \cdot G(\mathbf{x}_{i})\right)\right] \qquad (y_{i}$$

$$= \sum_{i=1}^{n} \exp\left[-y_{i}f_{m-1}(\mathbf{x}_{i}) - \beta \cdot y_{i}G(\mathbf{x}_{i})\right] \qquad (分成两项)$$

$$= \sum_{i=1}^{n} \exp\left[-y_{i}f_{m-1}(\mathbf{x}_{i})\right] \cdot \exp\left[-\beta \cdot y_{i}G(\mathbf{x}_{i})\right] \qquad (简化)$$

$$= \sum_{i=1}^{n} w_{i}^{(m)} \cdot \exp\left[-\beta \cdot y_{i}G(\mathbf{x}_{i})\right] \qquad (13.15)$$

其中,权重 $w_i^{(m)} \equiv \exp(-y_i f_{m-1}(\mathbf{x}_i))$ ,仅与i与m有关,不依赖于 $\beta$ 或G。

实际观测值 $y_i \in \{-1,1\}$ ,而预测值 $G(\mathbf{x}_i) \in \{-1,1\}$ 。

如果预测正确,即 $y_i = G(\mathbf{x}_i)$ ,则有 $y_i G(\mathbf{x}_i) = 1$ 。

反之,如果预测错误,即 $y_i \neq G(\mathbf{x}_i)$ ,则有 $y_iG(\mathbf{x}_i) = -1$ 。

这正是约定 $y_i \in \{-1,1\}$ 的方便之处。

可把样本分为正确分类( $y_i = G(\mathbf{x}_i)$ )与错误分类( $y_i \neq G(\mathbf{x}_i)$ )的两部分,并将目标函数写为

$$\sum_{i=1}^{n} w_{i}^{(m)} \exp\left[-\beta y_{i} G(\mathbf{x}_{i})\right] \quad (将样本分为两类)$$

$$= \sum_{y_{i}=G(\mathbf{x}_{i})} w_{i}^{(m)} \exp\left[-\beta y_{i} G(\mathbf{x}_{i})\right] + \sum_{y_{i}\neq G(\mathbf{x}_{i})} w_{i}^{(m)} \exp\left[-\beta y_{i} G(\mathbf{x}_{i})\right] \quad (代入 y_{i} G(\mathbf{x}_{i}) = \pm 1)$$

$$= \sum_{y_{i}=G(\mathbf{x}_{i})} w_{i}^{(m)} \exp\left[-\beta \cdot 1\right] + \sum_{y_{i}\neq G(\mathbf{x}_{i})} w_{i}^{(m)} \exp\left[-\beta \cdot (-1)\right] \quad (简化)$$

$$= e^{-\beta} \sum_{y_{i}=G(\mathbf{x}_{i})} w_{i}^{(m)} + e^{\beta} \sum_{y_{i}\neq G(\mathbf{x}_{i})} w_{i}^{(m)}$$
(13.16)

接上式,继续将目标函数变为更适合最优化的形式:

$$e^{-\beta} \sum_{y_{i}=G(\mathbf{x}_{i})} w_{i}^{(m)} + e^{\beta} \sum_{y_{i}\neq G(\mathbf{x}_{i})} w_{i}^{(m)} \qquad (加減 e^{-\beta} \cdot \sum_{y_{i}\neq G(\mathbf{x}_{i})} w_{i}^{(m)})$$

$$= \left(e^{-\beta} \sum_{y_{i}=G(\mathbf{x}_{i})} w_{i}^{(m)} + e^{-\beta} \cdot \sum_{y_{i}\neq G(\mathbf{x}_{i})} w_{i}^{(m)}\right) + \left(e^{\beta} \sum_{y_{i}\neq G(\mathbf{x}_{i})} w_{i}^{(m)} - e^{-\beta} \cdot \sum_{y_{i}\neq G(\mathbf{x}_{i})} w_{i}^{(m)}\right)$$

$$= e^{-\beta} \sum_{i=1}^{n} w_{i}^{(m)} + (e^{\beta} - e^{-\beta}) \sum_{y_{i}\neq G(\mathbf{x}_{i})} w_{i}^{(m)} \qquad (合并同类项)$$

$$= e^{-\beta} \sum_{i=1}^{n} w_{i}^{(m)} + (e^{\beta} - e^{-\beta}) \sum_{i=1}^{n} w_{i}^{(m)} I(y_{i} \neq G(\mathbf{x}_{i})) \qquad (写回全样本的形式)$$
其中,
$$\sum_{i=1}^{n} w_{i}^{(m)} I(y_{i} \neq G(\mathbf{x}_{i})) = \sum_{i=1}^{n} w_{i}^{(m)} \circ$$

针对此目标函数,考虑在给定 $oldsymbol{eta}$ 的情况下, $G_m$ 的最优解:

$$\min_{G} e^{-\beta} \sum_{i=1}^{n} w_{i}^{(m)} + \underbrace{(e^{\beta} - e^{-\beta})}_{>0} \sum_{i=1}^{n} w_{i}^{(m)} I(y_{i} \neq G(\mathbf{x}_{i})) \quad (13.18)$$

其中,第一项 $e^{-\beta}\sum_{i=1}^n w_i^{(m)}$ 与G无关,而第二项的系数 $(e^{\beta}-e^{-\beta})>0$ 。

因此,该最小化问题等价于:

$$\min_{G} \sum_{i=1}^{n} w_i^{(m)} I(y_i \neq G(\mathbf{x}_i)) (13.19)$$

因此, $G_m$ 的最优解可写为

$$G_m = \underset{G}{\operatorname{argmin}} \sum_{i=1}^{n} w_i^{(m)} I(y_i \neq G(\mathbf{x}_i)) \quad (13.20)$$

这意味着,应最小化加权的训练误差。如果以决策树作为基学习器,则 此解正是加权的决策树。

最优解 $G_m$ 并不依赖于 $\beta$ 。后面将证明,上式中权重 $w_i^{(m)}$ 的更新规则与AdaBoost 的权重更新规则(13.3)等价。

将 $G_m$ 的最优解(13.20)代入目标函数(13.16),可得一元优化问题:

$$\min_{\beta} e^{-\beta} \sum_{y_i = G_m(\mathbf{x}_i)} w_i^{(m)} + e^{\beta} \sum_{y_i \neq G_m(\mathbf{x}_i)} w_i^{(m)}$$
(13.21)

在上式中,对 $\beta$ 求导,可得一阶条件:

$$e^{-\beta} \sum_{y_i = G_m(\mathbf{x}_i)} w_i^{(m)} = e^{\beta} \sum_{y_i \neq G_m(\mathbf{x}_i)} w_i^{(m)}$$
(13.22)

上式两边同除权重之和
$$\sum_{i=1}^n w_i^{(m)}$$
,可得:

$$e^{-\beta} \frac{\sum_{y_i = G_m(\mathbf{x}_i)}^{w_i^{(m)}} w_i^{(m)}}{\sum_{i=1}^{n} w_i^{(m)}} = e^{\beta} \frac{\sum_{y_i \neq G_m(\mathbf{x}_i)}^{w_i^{(m)}} w_i^{(m)}}{\sum_{i=1}^{n} w_i^{(m)}}$$
(13.23)

由此可得:

$$e^{-\beta}(1 - err_m) = e^{\beta}err_m$$
 (13.24)

移项整理可得:

$$e^{2\beta} = \frac{1 - err_m}{err_m} \tag{13.25}$$

在上式两边取对数,可得 $\beta_m$ 的最优解:

$$\beta_m = \frac{1}{2} \ln \left( \frac{1 - err_m}{err_m} \right) = \frac{1}{2} \alpha_m \qquad (13.26)$$

前向分段加法模型的最优展开系数 $eta_m$ 为对数几率 $lpha_m$ 的一半。

下面证明,前向分段算法的权重 $w_i^{(m)} = \exp(-y_i f_{m-1}(\mathbf{x}_i))$ 之更新规则与 AdaBoost 相同。根据 $w_i^{m+1}$ 的定义:

其中,
$$-y_iG_m(\mathbf{x}_i) = \begin{cases} -1 & if \ y_i = G_m(\mathbf{x}_i) \\ 1 & if \ y_i \neq G_m(\mathbf{x}_i) \end{cases}$$
,而
$$2I(y_i \neq G(\mathbf{x}_i)) - 1 = \begin{cases} -1 & if \ y_i = G(\mathbf{x}_i) \\ 1 & if \ y_i \neq G(\mathbf{x}_i) \end{cases}$$
,故二者相等。

由于 $e^{-\beta_m} > 0$ 与观测值i无关,故上式与AdaBoost的权重更新规则(13.3) 在本质上等价。 根据方程(13.9),加法模型的最终估计结果为

$$f(\mathbf{x}) = \sum_{m=1}^{M} \beta_m \cdot G_m(\mathbf{x}) \qquad (13.28)$$

因此,前向分段加法模型的决策规则也与 AdaBoost 等价:

$$sign[f(\mathbf{x})] = sign\left[\sum_{m=1}^{M} \beta_m \cdot G_m(\mathbf{x})\right] \qquad (\text{H} \lambda \beta_m = \alpha_m / 2)$$

$$= sign\left[\sum_{m=1}^{M} \frac{1}{2} \alpha_m \cdot G_m(\mathbf{x})\right]$$

$$= sign\left[\sum_{m=1}^{M} \alpha_m \cdot G_m(\mathbf{x})\right] \qquad (13.29)$$

综上所述,对于二分类问题,带指数损失函数的前向分段加法模型,等价于 AdaBoost 算法。 ■

### 13.3 回归问题的提升法

发现 AdaBoost 算法的数学本质后,即开启了改进与推广 AdaBoost 之门。

AdaBoost 算法使用指数损失函数。在前向分段加法模型中,使用其他损失函数,即可得到不同的算法。

最初的 AdaBoost 算法仅适用于分类问题,因为它使用指数损失函数。

对于回归问题,自然地可考虑使用"误差平方"(squared loss)的损失函数:

$$L(y, f(\mathbf{x})) = [y - f(\mathbf{x})]^2$$
 (13.30)

将前向分段加法模型代入此损失函数可得:

$$\min_{\beta,G} L(y_i, f_{m-1}(\mathbf{x}_i) + \beta \cdot G(\mathbf{x}_i; \boldsymbol{\gamma}))$$

$$= [y_i - f_{m-1}(\mathbf{x}_i) - \beta \cdot G(\mathbf{x}_i; \boldsymbol{\gamma})]^2$$

$$= [r_i^{(m)} - \beta \cdot G(\mathbf{x}_i; \boldsymbol{\gamma})]^2$$
(13.31)

其中, $r_i^{(m)} \equiv y_i - f_{m-1}(\mathbf{X}_i)$ 为当前阶段模型的回归残差(residual)。这意味着,只要以当前残差 $r_i^{(m)}$ 为响应变量,对特征向量 $\mathbf{X}_i$ 进行回归即可。这种方法称为回归问题的提升法,或"2-范数提升法"( $L_2$ boosting)。

在以残差 $r_i^{(m)}$ 为响应变量对特征向量 $\mathbf{X}_i$ 进行"回归"时,既可进行线性回归,也可使用回归树。

如果使用回归树,则称为回归提升树(boosted regression tree)。在估计回归提升树时,有较多的调节参数需要考虑,有时也称为"超参数" (hyperparameters):

- (1) 决策树的数量 M。虽然提升法不容易过拟合,但也可能因M 太大而过拟合。这是提升法与随机森林的区别之一。
  - 一般可使用交叉验证选择M。

# (2) 决策树的分裂次数 d,称为交互深度(interaction depth)。

例如,d=1,则为仅分裂 1 次的树桩。此时无法考虑变量之间的交互效应(interaction effects),相当于没有交互项(interaction term)的线性回归。

如果d=2,决策树分裂两次,则可包含两个变量之间的交互效应;

如果d=3,决策树分裂三次,则可包含三个变量之间的交互效应,以此类推。

一般建议选择 $d=4\sim8$ ,以充分捕捉(多个)变量之间的交互效应。

(3) 学习率(learning rate)  $0 < \eta < 1$ 。通常选择 $\eta = 0.1$ 或0.01,以进

一步降低学习速度,并可使用更多决策树(M 更大)来拟合函数。

"学习率"也称为收缩参数(shrinkage parameter)。

设定较小的学习率,也是一种正则化方法(regularization),可避免过拟合。

上述调节参数之间,也会相互影响。

例如,如果所设的学习率 $\eta$ 很小,则通常需要更大的M。

针对训练数据 $\{\mathbf{x}_i, y_i\}_{i=1}^n$ ,想学得函数 $f(\mathbf{x})$ ,则回归提升树的具体算法如下:

- 1、初始化 $f(\mathbf{x})=0$ ,则残差就是响应变量 $r_i=y_i$   $(i=1,\cdots,n)$ 。
- 2、对于决策树 $m=1,\cdots,M$ , 进行以下 for 循环:
- (1) 使用数据 $\left\{\mathbf{x}_i, r_i\right\}_{i=1}^n$ ,估计拥有d个分裂(d+1个终节点)的决策树 $G_m(\mathbf{x})$ ;
  - (2) 函数更新:

$$f(\mathbf{x}) \leftarrow f(\mathbf{x}) + \eta G_m(\mathbf{x}) \tag{13.32}$$

其中, $0 < \eta < 1$ 为学习率。

(3) 残差更新:

$$r_i \leftarrow r_i - \eta G_m(\mathbf{x}) \tag{13.33}$$

在上式中,由于函数 $f(\mathbf{x})$ 增加 $\eta G_m(\mathbf{x})$ ,故残差 $r_i$ 减少 $\eta G_m(\mathbf{x})$ 。

3、输出结果:

$$f(\mathbf{x}) = \sum_{m=1}^{M} \eta G_m(\mathbf{x}) \qquad (13.34)$$

在上式中,将每次学习的增量 $\eta G_m(\mathbf{x})$ 进行加总,即为最终学得的函数  $f(\mathbf{x})$ 。

下面使用模拟数据,考察在提升法中加入更多决策树的作用。

## 首先,导入所需模块:

```
In [1]: import numpy as np
```

- ...: import pandas as pd
- ...: import matplotlib.pyplot as plt
- ...: import seaborn as sns
- ...: from sklearn.ensemble import

GradientBoostingRegressor

其次,假设特征变量x服从[0,1)区间的均匀分布,随机抽取 500 个观测值;而响应变量的数据生成过程为  $y = \sin(2\pi x) + \varepsilon$ ,其中  $\varepsilon \sim N(0,0.1^2)$ :

其中, np.sin()与 np.pi 分别为 Numpy 的正弦函数与圆周率 $\pi$ 。

更直观地, 画散点图与 $f(x) = \sin(2\pi x)$ 的函数曲线:

- ...: plt.plot(w, np.sin(2 \* np.pi \* w))
- ...: plt.title('Data Generating Process')

其中,第1个命令的参数"s=20"用于指定图标尺寸(marker size),结果参见图 13.3。



图 13.3 模拟数据的生成过程

下面,使用 sklearn 的 GradientBoostingRegressor 类,估计回归 提升树。

特别地,使用树桩(分裂次数d=1),通过 for 循环,让决策树数目M分别等于 1, 10, 100, 1000,画图展示函数拟合的效果:

其中, GradientBoostingRegressor()的参数 "max\_depth=1"表示仅分裂 1次(即树桩);

参数 "learning\_rate=1" 将学习率设为 1(默认学习率为 0.1), 结果 参见图 13.4。



图 13.4 回归提升树的拟合效果

## 13.4 回归问题的其他损失函数

对于回归问题的提升法,也可以使用其他损失函数。

比如,更为稳健的"绝对损失函数"(absolute loss), 也称为**拉普拉斯损失函数**(Laplace loss):

$$L(y, f(\mathbf{x})) = |y - f(\mathbf{x})| \qquad (13.35)$$

其中,由于损失函数为误差的绝对值( $L_1$ loss),故不易受到"极端值"(outliers)的影响。如果使用平方损失函数( $L_2$ loss),则较易受极端值影响。

对于回归问题,另一可供选择的损失函数为统计学中的**胡贝尔损失函数** (Huber loss):

$$L(y, f(\mathbf{x})) = \begin{cases} \frac{1}{2} (y - f(\mathbf{x}))^2 & \text{if } |y - f(\mathbf{x})| \le \delta \\ \delta(|y - f(\mathbf{x})| - \delta/2) & \text{if } |y - f(\mathbf{x})| > \delta \end{cases}$$
(13.36)

其中, $\delta > 0$ 为调节参数,可通过交叉验证确定。

胡贝尔损失函数综合了平方损失( $L_2$ loss)与绝对损失( $L_1$ loss)。

当误差的绝对值小于或等于 $\delta$ 时,使用平方损失函数 $\frac{1}{2}(y-f(\mathbf{x}))^2$ 。

当 误 差 的 绝 对 值 大 于  $\delta$  时 , 则 使 用 绝 对 损 失 函 数  $\delta(|y-f(\mathbf{x})|-\delta/2)$ ,以避免受到极端值的太大影响。

胡贝尔损失函数综合了平方损失与绝对损失函数的优点。

通过引入新的调节参数 $\delta$ ,使得算法更具灵活性。

## 13.5 梯度提升法

Friedman (2001)将 AdaBoost 推广到更一般的梯度提升法(Gradient Boosting Machine, 简记 GBM)。

GBM 的主要创新在于,提出以非参方法估计基函数,并在"函数空间" (function space)使用"梯度下降"(gradient descent)进行近似求解。

对于训练数据 $\{\mathbf{x}_i, y_i\}_{i=1}^n$ ,若以函数 $F(\mathbf{x})$ 来预测y,则在总体中的"期望损失函数" (expected loss function)为

$$\mathbf{E}_{\mathbf{y},\mathbf{x}} L(\mathbf{y}, F(\mathbf{x})) \tag{13.37}$$

其中, $L(y, F(\mathbf{x}))$ 为给定的损失函数,而期望算子 $\mathbf{E}_{y,\mathbf{x}}(\cdot)$ 同时对y与 $\mathbf{x}$ 求期望。

我们的问题是,在"函数空间"(function space),即由所有可能的函数  $F(\mathbf{x})$ 组成之集合,找到最优函数  $F^*(\mathbf{x})$ ,能使期望损失函数最小化:

$$F^*(\mathbf{x}) \equiv \underset{F}{\operatorname{argmin}} \ \mathcal{E}_{y,\mathbf{x}} L(y, F(\mathbf{x})) \tag{13.38}$$

其中,最优化针对函数空间的函数 $F(\cdot)$ 进行。

根据迭代期望定律,可将目标函数简化,即先给定 $\mathbf{X}$ ,针对 $\mathbf{y}$ 求条件期望 $\mathbf{E}_{\mathbf{v}}(\cdot|\mathbf{X})$ ,所得结果为 $\mathbf{X}$ 的函数,然后再对 $\mathbf{X}$ 求期望 $\mathbf{E}_{\mathbf{x}}(\cdot)$ :

$$F^{*}(\mathbf{x}) \equiv \underset{F}{\operatorname{argmin}} E_{y,\mathbf{x}} L(y, F(\mathbf{x}))$$

$$= \underset{F}{\operatorname{argmin}} E_{\mathbf{x}} \Big[ E_{y}(L(y, F(\mathbf{x})) | \mathbf{x}) \Big]$$
(13.39)

因此,对于任意给定X,此最小化问题可等价地写为

$$\min_{F} \; \mathbf{E}_{y}(L(y, F(\mathbf{x})) \,|\, \mathbf{x}) \tag{13.40}$$

使用非参数方法(nonparametric approach),将 $F(\mathbf{x})$ 在每个 $\mathbf{x}$ 的取值均视为"参数"(parameter)。

函数 $F(\mathbf{x})$ 可视为无穷维向量,故有无穷多"参数"。函数空间其实是一个无穷维的向量空间。

在理论上,可考虑在此无穷维的函数空间进行梯度下降,即所谓**函数梯 度下降**(functional gradient descent)。仍然假设前向分段加法模型:

$$F^*(\mathbf{x}) = \sum_{m=1}^{M} f_m(\mathbf{x}) \qquad (13.41)$$

其中,为保持与 Friedman (2001)的符号一致,用 $f_m(\mathbf{x})$ 表示加法模型的第m项,其作用类似于上文的 $\beta_m G_m(\mathbf{x})$ 。

如果给定X,则目标函数(13.40)的(无穷维)梯度向量事实上只是一维标量:

$$g_{m}(\mathbf{x}) = \left[\frac{\partial \mathbf{E}_{y}(L(y, F(\mathbf{x})) | \mathbf{x})}{\partial F(\mathbf{x})}\right]_{F(\mathbf{x}) = F_{m-1}(\mathbf{x})}$$
(13.42)

其中,偏导数的评估在 $F_{m-1}(\mathbf{x}) = \sum_{k=1}^{m-1} f_k(\mathbf{x})$ (上一阶段的函数估计)处进行。

使用梯度下降法,则当前阶段的函数变化为负梯度方向:

$$f_m(\mathbf{x}) = -\rho_m g_m(\mathbf{x}) \quad (13.43)$$

其中, $-\rho_m$ 为"步长"(step size),也称为"学习率"(learning rate)。

在无穷维的函数空间进行梯度下降,其实是不可行的(infeasible),因为 我们并没有无穷多的数据。

根据观测数据 $\left\{\mathbf{X}_{i},y_{i}\right\}_{i=1}^{n}$ ,对应于方程(13.42)的样本负梯度为

$$-g_m(\mathbf{x}_i) = -\left[\frac{\partial L(y_i, F(\mathbf{x}_i))}{\partial F(\mathbf{x}_i)}\right]_{F(\mathbf{x}) = F_{m-1}(\mathbf{x})} (i = 1, \dots, n)$$
 (13.44)

其中, $-g_m(\mathbf{X}_i)$ 为在观测值 $\mathbf{X}_i$ 处的负梯度方向,称为**准残差**(pseudo residuals)。

同时考虑所有观测值( $i = 1, \dots, n$ ),则上式成为n维的负梯度向量,或准残差向量:

$$-\mathbf{g}_{m}(\mathbf{x}) \equiv \begin{pmatrix} -g_{m}(\mathbf{x}_{1}) \\ \vdots \\ -g_{m}(\mathbf{x}_{n}) \end{pmatrix}$$
 (13.45)

依然无法计算不在样本内的其他 $\mathbf{X}$ 处的梯度,因为没有相应的 $\mathbf{y}$ 观测值。

为了解决此问题,注意到负梯度方向 $-\mathbf{g}_m(\mathbf{x}_i)$ 还须是基函数的一员:

$$f_m(\mathbf{x}) \equiv \beta_m h(\mathbf{x}; \mathbf{a}_m) \tag{13.46}$$

其中, $h(\mathbf{x}; \mathbf{a}_m)$ 为基函数(由基学习器所决定),带有参数 $\mathbf{a}_m$ 。

基函数 $h(\mathbf{x}; \mathbf{a}_m)$ 类似于上文的 $G(\mathbf{x}; \boldsymbol{\gamma}_m)$ ,只是使用了不同的符号(与文献保持一致)。

具体来说,选择与负梯度向量 $-\mathbf{g}_m(\mathbf{x}) = \left(-g_m(\mathbf{x}_1), \cdots, -g_m(\mathbf{x}_n)\right)'$ 最为接近的基函数向量 $\left(h(\mathbf{x}_1; \mathbf{a}_m), \cdots, h(\mathbf{x}_n; \mathbf{a}_m)\right)'$ 。

这其实是最小二乘问题,即以准残差 $-g_m(\mathbf{x}_i)$ 为响应变量,对 $h(\mathbf{x}_i;\mathbf{a})$ 作线性投影(linear projection):

$$\mathbf{a}_{m} = \underset{\mathbf{a},\beta}{\operatorname{argmin}} \sum_{i=1}^{n} \left[ -g_{m}(\mathbf{x}_{i}) - \beta h(\mathbf{x}_{i}; \mathbf{a}) \right]^{2}$$
 (13.47)

求得最优的 $h(\mathbf{x}_i;\mathbf{a}_m)$ 之后,可使用下式进行函数更新:

$$F_m(\mathbf{x}) = F_{m-1}(\mathbf{x}) + \rho_m h(\mathbf{x}; \mathbf{a}_m)$$
 (13.48)

其中,步长 $\rho_m$ 可通过"直线搜索"(line search)来确定,即

$$\rho_{m} \equiv \underset{\rho}{\operatorname{argmin}} \sum_{i=1}^{n} L(y_{i}, F_{m-1}(\mathbf{x}_{i}) + \rho \cdot h(\mathbf{x}_{i}; \mathbf{a}_{m}))$$
(13.49)

综上所述, 梯度提升法的算法可总结如下:

1、初始化
$$F_0(x) = \operatorname*{argmin}_{c \in \mathbb{R}} \sum_{i=1}^n L(y_i, c)$$
,则 $F_0(x)$ 为最优的常值函

数(constant function)。

- 2、对于基函数 $m = 1, \dots, M$ , 进行以下 for 循环:
  - (1) 计算准残差:

$$r_i^{(m)} = -\left[\frac{\partial L(\mathbf{y}_i, F(\mathbf{x}_i))}{\partial F(\mathbf{x}_i)}\right]_{F(\mathbf{x}) = F_{m-1}(\mathbf{x})} (i = 1, \dots, n)$$
(13.50)

(2) 将准残差 $r_i^{(m)}$ 对**X**进行回归:

$$\mathbf{a}_{m} = \underset{\mathbf{a}, \beta}{\operatorname{argmin}} \sum_{i=1}^{n} \left[ r_{i}^{(m)} - \beta h(\mathbf{x}_{i}; \mathbf{a}) \right]^{2}$$
 (13.51)

(3) 计算最优步长:

$$\rho_m = \underset{\rho}{\operatorname{argmin}} \sum_{i=1}^n L(y_i, F_{m-1}(\mathbf{x}_i) + \rho \cdot h(\mathbf{x}_i; \mathbf{a}_m)) \quad (13.52)$$

(4) 更新函数:

$$F_m(\mathbf{x}) = F_{m-1}(\mathbf{x}) + \rho_m h(\mathbf{x}; \mathbf{a}_m) \qquad (13.53)$$

3、输出结果 $F_{M}(\mathbf{x})$ 。

例 作为一个简单的"现实检查"(reality check),下面将梯度提升法应用于回归问题。损失函数为误差平方函数 $L(y,F(\mathbf{x}))=\frac{1}{2}[y-F(\mathbf{x})]^2$ 。

将平方损失函数代入准残差的表达式(13.50)可得:

$$r_{i}^{(m)} = -\left[\frac{\partial L(y_{i}, F(\mathbf{x}_{i}))}{\partial F(\mathbf{x}_{i})}\right]_{F(\mathbf{x}) = F_{m-1}(\mathbf{x})} = -\left[\frac{\partial \frac{1}{2}[y_{i} - F(\mathbf{x}_{i})]^{2}}{\partial F(\mathbf{x}_{i})}\right]_{F(\mathbf{x}) = F_{m-1}(\mathbf{x})}$$

$$= -\frac{1}{2} \cdot 2[y_{i} - F(\mathbf{x}_{i})] \cdot (-1)\Big|_{F(\mathbf{x}) = F_{m-1}(\mathbf{x})} = [y_{i} - F(\mathbf{x}_{i})]\Big|_{F(\mathbf{x}) = F_{m-1}(\mathbf{x})}$$

$$= y_{i} - F_{m-1}(\mathbf{x}_{i})$$

$$(13.54)$$

对于回归问题,准残差 $r_i^{(m)}$ 就是真正的残差 $[y_i - F_{m-1}(\mathbf{x}_i)]$ 。

进一步, 计算最优步长:

$$\rho_{m} \equiv \underset{\rho}{\operatorname{argmin}} \sum_{i=1}^{n} \left[ y_{i} - F_{m-1}(\mathbf{x}_{i}) - \rho \cdot h(\mathbf{x}_{i}; \mathbf{a}_{m}) \right]^{2}$$

$$= \underset{\rho}{\operatorname{argmin}} \sum_{i=1}^{n} \left[ r_{i}^{(m)} - \rho \cdot h(\mathbf{x}_{i}; \mathbf{a}_{m}) \right]^{2} \equiv \beta_{m}$$
(13.55)

最优步长其实就是展开系数 $oldsymbol{eta}_m$ 。

当基学习器 $h(\mathbf{x}_i; \mathbf{a}_m)$ 为决策树时,梯度提升法就是上文的回归提升树 (boosted regression tree)。

## 13.6 二分类问题的逻辑损失函数

针对二分类问题, AdaBoost 使用如下指数损失函数(exponential loss):

$$L(y, f(\mathbf{x})) = \exp(-yf(\mathbf{x}))$$
 (13.56)

在预测时,以 $sign[f(\mathbf{x})]$ 预测 $y \in \{-1,1\}$ ,故" $yf(\mathbf{x}) > 0$ "意味着预测正确。

反之, " $yf(\mathbf{x}) < 0$ "则意味着预测错误。

推而广之,  $yf(\mathbf{x})$ 越大, 则预测越正确。

为此,称" $yf(\mathbf{x})$ "为裕度(余裕程度, margin)。

裕度越大,则预测越正确;反之,则预测越错误。

可使用**负裕度**(negative margin)  $-yf(\mathbf{x})$ 度量预测的错误程度。

指数损失函数为负裕度的指数函数,它对于负裕度的惩罚增长很快,为指数增长(exponential growth),参见图 13.5。

#### **Loss Functions**



图 13.5 三种损失函数的比较

这意味着,算法对于较大的预测错误极为挑剔。

如果数据中的噪音较大(比如, 贝叶斯错误率较高)或分类标签有误,则 AdaBoost 的稳健性较差。

在当代的提升法实践中,已不太常用 AdaBoost 的指数损失函数,而一般建议使用如下逻辑损失函数(logistic loss):

$$L(y, f(x)) = \ln(1 + e^{-yf(x)})$$
 (13.57)

事实上,上式就是逻辑模型(Logit)的对数似然函数之负数,故也称为"二项偏离度"(Binomial deviance);证明如下。

假定  $y_i \in \{-1, 1\}$ , 且服从 Logit 模型,则有:

$$P(y_i \mid \mathbf{x}_i) = \begin{cases} \frac{1}{1 + e^{-f(\mathbf{x}_i)}} & \text{if } y_i = 1\\ \frac{1}{1 + e^{f(\mathbf{x}_i)}} & \text{if } y_i = -1 \end{cases}$$
 (13.58)   
其中,两个条件概率之和为 
$$\frac{1}{1 + e^{-f(\mathbf{x}_i)}} + \frac{1}{1 + e^{f(\mathbf{x}_i)}} = 1.$$

考虑到 $y_i = 1$ 或-1,故上式可写为

$$P(y_i \mid \mathbf{x}_i) = \begin{cases} \frac{1}{1 + e^{-y_i f(\mathbf{x}_i)}} & \text{if } y_i = 1\\ \frac{1}{1 + e^{-y_i f(\mathbf{x}_i)}} & \text{if } y_i = -1 \end{cases}$$
(13.59)

此时,无论 $y_i = 1$ 或-1,条件概率的表达式都一样,故可统一写为

$$P(y_i \mid \mathbf{x}_i) = \frac{1}{1 + e^{-y_i f(\mathbf{x}_i)}} \qquad (i = 1, \dots, n) \quad (13.60)$$

对于样本数据 $\left\{\mathbf{X}_{i},y_{i}\right\}_{i=1}^{n}$ ,在独立同分布(iid)的假设下,整个样本的似然函数为

$$\prod_{i=1}^{n} P(y_i \mid \mathbf{x}_i) = \prod_{i=1}^{n} \frac{1}{1 + e^{-y_i f(\mathbf{x}_i)}} = \prod_{i=1}^{n} \left(1 + e^{-y_i f(\mathbf{x}_i)}\right)^{-1}$$
(13.61)

因此, 样本数据的对数似然函数之负数为

$$\sum_{i=1}^{n} \ln\left(1 + e^{-y_i f(\mathbf{x}_i)}\right)$$
 (13.62)

上式正是逻辑损失函数(13.57)。

逻辑损失函数对于负裕度 $(-yf(\mathbf{x}))$ 的惩罚比指数损失函数更为温和。

- "0-1 损失函数"也称为**错分损失函数**(misclassification loss),即如果分类正确(裕度为正),则损失为 0; 反之,如果分类错误(裕度为负),则损失为 1。
- 0-1 损失函数为阶梯函数,并不光滑。逻辑损失函数与指数损失函数均可视为对 0-1 损失函数的光滑近似,而逻辑损失函数的近似效果更优。

## 13.7 多分类问题的交叉熵损失函数

对于多分类问题,可使用多项逻辑(Multinomial Logit)的对数似然函数之负数作为损失函数。

假设响应变量y的取值可分为K类,即 $y \in \{1, 2, \dots, K\}$ 。

给定特征向量 $\mathbf{x}_i$ , 假设" $y_i = k$ "  $(k = 1, \dots, K)$ 的条件概率为

$$P(y_i = k \mid \mathbf{x}_i) = \frac{\exp\{f_k(\mathbf{x}_i)\}}{\sum_{l=1}^K \exp\{f_l(\mathbf{x}_i)\}} \qquad (k = 1, \dots, K)$$
 (13.63)

整个样本的对数似然函数之负数为:

$$-\sum_{i=1}^{n} \sum_{k=1}^{K} \left[ I(y_i = k) \cdot \ln P(y_i = k \mid \mathbf{x}_i) \right]$$
 (13.64)

其中, $I(\cdot)$ 为示性函数。给定 $\{f_1(\mathbf{x}),\cdots,f_K(\mathbf{x})\}$ ,则多分类问题的损失函数可写为

$$L(\{y_k, f_k(\mathbf{x})\}_{k=1}^K) = -\sum_{k=1}^K y_k \ln p_k(\mathbf{x})$$
 (13.65)

其中,  $y_k \equiv I(y=k)$ 为虚拟变量, 而  $p_k(\mathbf{x}) \equiv P(y=k \mid \mathbf{x})$ 为条件概率。

在计算机或机器学习领域,此损失函数也称为交叉熵损失函数 (cross-entropy loss function)。

"交叉熵"是信息熵概念的推广,它度量样本的实际分布与预测分布之间的距离,参见本章附录。

由于逻辑模型(Logit)是多项逻辑模型(Multinomial Logit)的特例,故逻辑 损失函数也称为**二值交叉熵损失函数**(binary cross-entropy loss function)。

### 13.8 随机梯度提升

在梯度提升法的基础上,Friedman (2002)进一步提出**随机梯度提升** (Stochastic Gradient Boosting)。

在进行随机梯度提升时,每次仅随机抽取部分子样本(比如,二分之一样本),称为**子抽样**(subsampling),然后计算准残差,拟合基学习器。

与有放回且保持样本容量不变的自助抽样不同,子抽样为"无放回" (without replacement)抽样,且仅抽取一部分样本。

从数据的二维表结构来看,子抽样相当于随机抽取数据框的某些行,故也称为**行子抽样**(row subsampling)。

相对而言,随机森林的"随机特征选择"(random feature selection),则为**列子抽样**(column subsampling),即随机抽取部分变量。

子抽样的好处在于,每次仅随机抽取部分样本数据,故可进一步降低算法的学习速度,以预防过拟合,而且计算更快(因为每次仅用部分样本)。

子抽样使得每次用于估计的子样本不尽相同,故可降低基学习器之间的相关性,从而减少方差,提高预测准确率。

子抽样给算法带来的随机性,也有助于算法跳出损失函数可能存在的局部最小值。

由于子抽样仅使用部分数据估计决策树,故存在"袋外观测值" (out-of-bag observations),可计算"袋外误差"(out-of-bag errors),作为对测试误差的便捷估计。

在使用随机梯度下降时,如何选择子抽样的比例?

这涉及偏差与方差的权衡。在一个极端,如果子抽样的比例很小,则每次仅用少部分数据估计决策树,导致偏差较大。另一方面,如果子抽样的比例很大(接近于1),则偏差较小,但无法达到降低方差的效果。

子抽样比例也是一个调节参数,可通过交叉验证来确定,这增加了算法的灵活性。

提升法起源于 AdaBoost 算法。

AdaBoost 通过加大错误分类样本点的权重(reweighting), 迫使以后的基学习器修正之前基学习器的错误。

梯度提升法(GBM)则通过拟合之前基学习器的(准)残差,使得以后的基学习器修正之前基学习器的错误。

AdaBoost 仅适用于分类问题,为 GBM 的特例。

GBM 为通用算法,适用于一般的损失函数,还引入学习率、随机梯度提升,故一般预测效果更好。

## 13.9 回归提升树的 Python 案例

使用波士顿房价数据 boston(参见第 4 章),演示回归提升树的 Python 操作。

# 13.10 二分类提升树的 Python 案例

使用 Hastie et al. (2009)的垃圾邮件数据 spam (参见第 8 章),演示二分类问题的梯度提升法。

# 13.11 多分类提升树的 Python 案例

使用玻璃种类数据 Glass (参见第 6 章), 演示多分类问题的梯度提升法。

## 13.12 XGBoost 算法

在使用梯度提升法时,若样本容量较大或为大数据,则推荐使用陈天奇团队开发的 Python 模块 xgboost(Chen and Guestrin, 2016)。

其中, xgboost 表示 Extreme Gradient Boosting(极端梯度提升)。

xgboost 模块依然使用梯度提升法,但在具体算法上作了许多改进,包括使用牛顿法计算下降方向,改进决策树的算法,使用稀疏矩阵(sparse matrix)等,使得运算速度大幅提升。

与随机森林类似, xgboost 也允许进行"列子抽样"(column subsampling),即"随机特征选择"(random feature selection)。

另外, xgboost 还可用线性回归作为基学习器。

分别以波士顿房价数据 boston(参见第 4 章)与 spam 数据(参见第 8 章) 为例进行演示。

#### 附录

### A 13.1 交叉熵损失函数

假设某随机变量共分K类,取值分别为 $1,\dots,K$ ,而其相应的概率为

$$(p_1,\dots,p_K)$$
,其中 $p_k \ge 0$ ,且 $\sum_{k=1}^K p_k = 1$ 。

信息熵(information entropy)或"熵"的定义为

Entropy
$$(p_1, \dots, p_K) \equiv -\sum_{k=1}^K p_k \log p_k$$
 (13.66)

特别地,如果K=2,则信息熵为

Entropy
$$(p, 1-p) \equiv -[p \log p + (1-p) \log(1-p)]$$
 (13.67)

根据信息理论(information theory),对于概率分布 $(p_1, \dots, p_K)$ ,信息 熵是在传送其状态信息时,平均所需的最少字节数。

但我们通常并不知道真实分布 $(p_1, \dots, p_K)$ ,而使用样本数据来估计 $(\hat{p}_1, \dots, \hat{p}_K)$ 。

根据估计的概率分布 $(\hat{p}_1,\dots,\hat{p}_K)$ 进行信息传输,平均所需要的字节数,即为**交叉熵**(cross-entropy):

$$cross-entropy \equiv -\sum_{k=1}^{K} p_k \log \hat{p}_k \qquad (13.68)$$

交叉熵一定大于或等于熵,因为前者使用"错误"的概率分布,故需要 更多的字节数来传递信息。

将交叉熵减去熵,即为估计的概率分布 $(\hat{p}_1, \cdots, \hat{p}_K)$ 离开真实分布 $(p_1, \cdots, p_K)$ 的所谓 KL 距离(Kullback–Leibler divergence):

$$KL(\mathbf{p}\|\hat{\mathbf{p}}) = -\sum_{k=1}^{K} p_k \log \hat{p}_k + \sum_{k=1}^{K} p_k \log p_k = \sum_{k=1}^{K} p_k \log \left(\frac{p_k}{\hat{p}_k}\right) \ge 0$$
(13.69)

其中, 
$$\mathbf{p} \equiv (p_1 \cdots p_K)'$$
, 而 $\hat{\mathbf{p}} \equiv (\hat{p}_1 \cdots \hat{p}_K)'$ 。

直观上,交叉熵与 KL 距离从信息的角度衡量两个概率分布之间的距离。

特别地,如果K=2,则交叉熵为

$$-[p\log \hat{p} + (1-p)\log(1-\hat{p})]$$
 (13.70)

对于样本数据 $i=1,\dots,n$ ,则整个样本的交叉熵为:

$$-\sum_{i=1}^{n} \left[ p_i \log \hat{p}_i + (1-p_i) \log (1-\hat{p}_i) \right]$$
 (13.71)

这正是二值交叉熵损失函数(binary cross-entropy loss function)。

最小化交叉熵损失函数,等价于最大化对数似然函数(即最大似然估计)。

不失一般性,考虑二分类问题,对于实际观测到的第i个观测值,则 $p_i$ 为0或1(两类中必居其一)。

### 第i个观测值的似然函数可写为

$$\begin{cases} \hat{p}_i & \text{if } p_i = 1\\ 1 - \hat{p}_i & \text{if } p_i = 0 \end{cases}$$
 (13.72)

写为更紧凑的形式:

$$\hat{p}_{i}^{p_{i}} (1 - \hat{p}_{i})^{1 - p_{i}} \tag{13.73}$$

对于相互独立的样本,整个样本的似然函数为

$$L = \prod_{i=1}^{n} \hat{p}_{i}^{p_{i}} (1 - \hat{p}_{i})^{1-p_{i}} \quad (13.74)$$

#### 故对数似然函数为

$$\max \ln L = \sum_{i=1}^{n} [p_i \log \hat{p}_i + (1 - p_i) \log(1 - \hat{p}_i)]$$
 (13.75)

最大化对数似然函数等价于最小化其负数:

$$\min -\ln L = -\sum_{i=1}^{n} \left[ p_i \log \hat{p}_i + (1 - p_i) \log(1 - \hat{p}_i) \right]$$
 (13.76)

上式正是整个样本的交叉熵。