UNIVERSIDAD DON BOSCO-DEPARTAMENTO DE CIENCIAS BÁSICAS ÁLGEBRA VECTORIAL Y MATRICES- CICLO 02-2020

Semana 4- Unidad 2: Matrices y Determinantes.

Sesión 2: Definición de matriz. Tipos de Matrices.

Definición de matriz

Un arreglo rectangular de números que consiste en "m" filas y "n" columnas

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \dots a_{1n} \\ a_{21} & a_{22} & a_{23} \dots a_{2n} \\ \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & a_{m3} \dots a_{mn} \end{bmatrix}$$

es llamado matriz $m \times n$ o matriz de orden $m \times n$. Para el elemento a_{ij} , llamamos a "i", el subíndice de la fila y a "j" el subíndice de la columna.

El número de elementos de una matriz de orden $m \times n$ es mn. Brevemente una matriz A de $m \times n$ puede ser denotada por $A = \left[a_{ij}\right]_{m \times n}$, $i = 1,2,3,\ldots,m$;

$$j = 1,2,3,...,n$$
.

Las filas o renglones de una matriz están numerados de manera consecutiva de arriba hacia abajo, y las columnas están numeradas de manera consecutiva de izquierda a derecha. Para la siguiente matriz E tenemos,

columna 1 columna 2 columna 3
$$\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$$

$$E = \begin{bmatrix} 5 & 3 & 1 \\ 0 & 2 & 4 \end{bmatrix} \leftarrow fila 1$$

Como la matriz E tiene dos filas y tres columnas, decimos que E tiene orden, o tamaño 2x3 (se lee "2 por 3"), donde el número de filas se especifica primero. De igual manera, las matrices

$$B = \begin{bmatrix} 3 & 1 \\ 0 & 7 \\ -1 & 1 \end{bmatrix} \quad \mathbf{y} \quad C = \begin{bmatrix} 1 & 1 & 4 \\ 0 & -2 & 3 \\ 3 & 0 & 4 \end{bmatrix},$$

tienen órdenes 3×2 y 3×3 , respectivamente.

Recuerde, los números de una matriz son llamados entradas o elementos. Para denotar las entradas arbitrarias de una matriz digamos de una de orden 3×2 , existen dos formas de hacerlo. Una forma es hacer uso de letras diferentes:

$$\begin{bmatrix} a & b \\ c & d \\ e & f \end{bmatrix}$$

La otra es usando una sola letra, digamos "a" con doble subíndices (tal como se hizo en la primera matriz) que indican la posición que guarda el elemento en la matriz.

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix}$$

Para el elemento a_{32} , se lee "a sub dos tres", el primer subíndice, 3, especifica la fila y el segundo 2, la columna en la aparece el elemento en la matriz.

Generalizando, decimos que el símbolo a_{ij} denota la fila $i\,$ y la columna j.

Ejemplo 1. La siguiente matriz es una matriz $2 \times 3 : \begin{bmatrix} -1 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix}$ donde sus filas son

$$(1 \quad 2 \quad 4) \quad y \quad (0 \quad 1 \quad 2) \quad y \quad \text{sus columnas} \quad \begin{pmatrix} -1 \\ 0 \end{pmatrix}, \quad \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \quad \begin{pmatrix} 4 \\ 2 \end{pmatrix}.$$

El elemento $a_{22} = 1$ (elemento ubicado en la fila 2 y columna 2)

Tipos de matrices

Hay algunas matrices que aparecen con frecuencia y que según su forma o sus elementos reciben nombres diferentes.

Matriz fila: es la matriz que sólo tiene una fila, es decir m = 1. Su orden es de $1 \times n$.

Ejemplo 2. $A = (2 \ 3 \ -1 \ 0)$ es una matriz fila.

Matriz columna: es toda matriz con una sola columna. Orden $m \times 1$

Ejemplo 3.
$$B = \begin{pmatrix} 2 \\ 0 \\ 2 \end{pmatrix}$$
 es una matriz columna.

Matriz rectangular: es la matriz en la que el número de filas y el de columnas no son iguales, es decir $m \neq n$.

Ejemplo 4. $A = \begin{pmatrix} 0 & 1 & 2 \\ -1 & 3 & 0 \end{pmatrix}$ es una matriz rectangular con dos filas y tres columnas.

Matriz nula o matriz cero: en este tipo de matriz todos los elementos son ceros. Se representa por $0_{m\times n}$, o simplemente por 0.

Ejemplo 5. Las siguientes matrices son nulas
$$O_{2\times 2} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
, $O_{3\times 2} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$

Matriz transpuesta: la transpuesta de una matriz A consiste en cambiar las filas por las columnas y se denota por A^t . En otras palabras, si A es una matriz $m \times n$, entonces A^t es la matriz $n \times m$. La trasposición de una matriz cumple las siguientes propiedades:

P1.
$$(A^t)^t = A$$

P2.
$$(A + B)^t = A^t + B^t$$

P3.
$$(\alpha A)^t = \alpha A^t$$

P4.
$$(AB)^t = B^t A^t$$

Ejemplo 6. La transpuesta de
$$A = \begin{pmatrix} 1 & 9 \\ 0.5 & 4 \\ -2 & 3 \end{pmatrix}$$
 es $A^t = \begin{pmatrix} 1 & 0.5 & -2 \\ 9 & 4 & 3 \end{pmatrix}$

Matriz opuesta: la matriz opuesta de una matriz A es la que resulta de sustituir cada elemento por su opuesto o negativo. La opuesta de A es -A.

Ejemplo 7. La matriz opuesta de
$$A = \begin{pmatrix} 3 & 1 \\ -7 & 5 \\ 4 & -6 \end{pmatrix}$$
 es $-A = \begin{pmatrix} -3 & -1 \\ 7 & -5 \\ -4 & 6 \end{pmatrix}$

Matriz cuadrada: Si el número de filas es igual que el de columnas. Si el número de filas es n se dice que es de orden n.

En una matriz cuadrada la **diagonal principal** es la formada por los a_{ij} tales que i = j.

Ejemplo 8. $A = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 3 & 1 \\ 4 & 1 & 8 \end{pmatrix}$ es una matriz cuadrada de orden 3 y su diagonal principal está formada por los elementos 2, 3 y 8.

$$A = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 3 & 1 \\ 4 & 1 & 8 \end{bmatrix}$$

Matriz simétrica: Es la matriz cuadrada que coincide con su traspuesta.

$$(A = A^t) \rightarrow a_{ij} = a_{ji}$$

Ejemplo 9. La matriz

$$A = \begin{bmatrix} 1 & \textcircled{3} & \textcircled{2} \\ \textcircled{3} & 3 & \textcircled{0} \\ \textcircled{2} & \textcircled{0} & 4 \end{bmatrix}$$

es simétrica ya que

$$A^t = \begin{bmatrix} 1 & \textcircled{3} & \textcircled{2} \\ \textcircled{3} & \textcircled{3} & \textcircled{4} \end{bmatrix} = A$$

Matriz antisimétrica: es la matriz cuadrada que coincide con la opuesta de su traspuesta $A=-A^t \rightarrow a_{ij}=-a_{ji}$.

Ejemplo 10. La matriz $A = \begin{pmatrix} 0 & -1 & 2 \\ 1 & 0 & 4 \\ -2 & -4 & 0 \end{pmatrix}$ es antisimétrica pues se cumple que

$$A^{t} = \begin{pmatrix} 0 & 1 & -2 \\ -1 & 0 & -4 \\ 2 & 4 & 0 \end{pmatrix} = -A$$

La diagonal principal se conserva (todos ceros) y los otros números son cambiados de signo al opuesto. Nótese que <u>la matriz traspuesta</u> de la matriz antisimétrica *A* es -*A*, y que la antisimetría es respecto a la <u>diagonal principal</u>.

Descomposición en matriz simétrica y antisimétrica

Sea A una matriz cuadrada. La matriz A se puede descomponer en suma de parte simétrica y antisimétrica de la siguiente forma:

$$A = \frac{1}{2}(A + A^{t}) + \frac{1}{2}(A - A^{t})$$

Ejemplo 11.

$$\begin{pmatrix} 3 & 1 & 0 \\ -1 & 3 & 2 \\ 1 & 2 & 3 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} \begin{pmatrix} 3 & 1 & 0 \\ -1 & 3 & 2 \\ 1 & 2 & 3 \end{pmatrix} + \begin{pmatrix} 3 & -1 & 1 \\ 1 & 3 & 2 \\ 0 & 2 & 3 \end{pmatrix} \end{pmatrix} + \frac{1}{2} \begin{pmatrix} \begin{pmatrix} 3 & 1 & 0 \\ -1 & 3 & 2 \\ 1 & 2 & 3 \end{pmatrix} - \begin{pmatrix} 3 & -1 & 1 \\ 1 & 3 & 2 \\ 0 & 2 & 3 \end{pmatrix} \end{pmatrix}$$

$$A = \begin{pmatrix} 3 & 1 & 0 \\ -1 & 3 & 2 \\ 1 & 2 & 3 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 6 & 0 & 1 \\ 0 & 6 & 4 \\ 1 & 4 & 6 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 0 & 2 & -1 \\ -2 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

$$A = \begin{pmatrix} 3 & 0 & 0.5 \\ 0 & 3 & 2 \\ 0.5 & 2 & 3 \end{pmatrix} + \begin{pmatrix} 0 & 1 & -0.5 \\ -1 & 0 & 0 \\ 0.5 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 3 & 1 & 0 \\ -1 & 3 & 2 \\ 1 & 2 & 3 \end{pmatrix} = A$$

Matriz diagonal: es una matriz cuadrada que son igual a 0 todos sus elementos situados fuera de la diagonal principal. Es decir $a_{ij} = 0$ si $i \neq j$

Ejemplo 12.
$$\begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

Matriz escalar: es la matriz diagonal en la que todos sus términos no nulos toman el mismo valor.

Ejemplo 13.
$$\begin{pmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{pmatrix}$$

Matriz unidad o identidad: es la matriz escalar en la que todos sus términos no nulos toman el valor de 1.

Ejemplo 14. Las siguientes matrices son unitarias
$$I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 y $I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

Matriz triangular superior: Una matriz es triangular superior si los elementos que se encuentran por debajo de la diagonal principal son ceros.

Ejemplo 15.

$$A = \begin{bmatrix} 2 & 1 & 4 \\ 0 & 5 & 0 \\ 0 & 0 & -2 \end{bmatrix}$$

Matriz triangular inferior: una matriz es triangular inferior si los elementos que se encuentran por encima de la diagonal principal son nulos.

$$A = \begin{bmatrix} 2 & 0 & 0 \\ 5 & 7 & 0 \\ 3 & 9 & -2 \end{bmatrix}$$

Ejemplo 16.

Matriz triangular: es una matriz cuadrada que es a la vez triangular inferior y triangular superior.

Ejemplo 17.
$$\begin{pmatrix} 2 & 0 & 0 \\ 0 & 10 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$
 es una matriz triangular (matriz diagonal).

Observaciones:

- 1) Toda matriz diagonal es triangular, tanto superior como inferior, pues los elementos por encima y por debajo de la diagonal son nulos.
- 2) Toda matriz escalar es diagonal.

3) La matriz identidad es una matriz escalar

Matriz de coeficientes de un sistema de ecuaciones lineales (SEL)

Ejemplo 18. Dado el sistema de ecuaciones (α):

$$3x + 2y + z = 1$$

$$2x + y - z = 5$$

$$9x - 6y + z = 2$$

La matriz de los coeficientes del sistema es

$$\begin{pmatrix} 3 & 2 & 1 \\ 2 & 1 & -1 \\ 9 & -6 & 1 \end{pmatrix}$$

Matriz aumentada: es la matriz de coeficientes del sistema incluidos los términos independientes.

Ejemplo 19. Para el sistema anterior (α) la matriz aumentada es

$$\begin{pmatrix}
3 & 2 & 1 & 1 \\
2 & 1 & -1 & 5 \\
9 & -6 & 1 & 2
\end{pmatrix}$$

Matriz inversa: una matriz cuadrada A tiene inversa si existe una matriz X (cuadrada y del mismo orden que A) tal que

$$AX = I = XA = I$$
, siendo I la matriz identidad.

Ejemplo 20. La matriz inversa de
$$A = \begin{pmatrix} 2 & 1 \\ 0 & 3 \end{pmatrix}$$
 es $X = \begin{pmatrix} \frac{1}{2} & -\frac{1}{6} \\ 0 & \frac{1}{3} \end{pmatrix}$

Más adelante verificaremos que AX = I = XA = I

Submatriz: dada una matriz A, una submatriz de A es cualquier matriz obtenida de A suprimiendo filas y/o columnas de A.

Ejemplo 21. Dada la matriz
$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 0 & 1 & 2 \end{bmatrix}$$
.

La matriz $B = \begin{bmatrix} 6 & 7 & 8 \\ 0 & 1 & 2 \end{bmatrix}$ es una submatriz rectangular de A obtenida suprimiendo la primera fila y la primera columna de A.

También la matriz $C = \begin{bmatrix} 1 & 3 \\ 5 & 7 \end{bmatrix}$ es otra submatriz de A; submatriz cuadrada.

Matriz regular: es una matriz cuadrada que tiene inversa.

La matriz
$$A = \begin{pmatrix} -1 & 0 & 2 \\ -1 & 1 & 1 \\ 1 & 0 & -1 \end{pmatrix}$$
 es regular ya que su inversa es $A^{-1} = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$

Matriz singular: es una matriz cuadrada que no tiene inversa.

 $A = \begin{pmatrix} 1 & 2 \\ 3 & 6 \end{pmatrix}$. Esta matriz no posee inversa pues el determinante vale 0.

Matriz idempotente: una matriz A es idempotente si $A^2 = A$.

$$A = \begin{pmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{2}{3} & \frac{1}{3} \end{pmatrix}$$
, $A^2 = A$. Efectúe el producto $A^2 = AXA$, y compruebe que la matriz A es idempotente.

Matriz involutiva: una matriz A es involutiva si $A^2 = I$ (I matriz unitaria)

$$A = \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}, A^2 = I$$
. Compruebe que $A^2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

 $\textbf{Matriz ortogonal:} \ una \ matriz \ A \ es \ ortogonal \ si \ verifica \ que \ AA^t = I$

Verifique que la siguiente matriz es ortogonal:

$$A = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix}$$

Matriz normal: una matriz A es normal si conmuta con su transpuesta, esto es, si $AA^t = A^tA$. Se puede verificar que si la matriz A es simétrica, antisimétrica u ortogonal, es necesariamente normal.

¿Es normal la siguiente matriz?:

$$A = \begin{pmatrix} 2 & 5 \\ 5 & 3 \end{pmatrix}$$

Matriz nilpotente: es una matriz que verifica que $A^n = 0$.

La siguiente matriz de orden 2 es nil
potente, ya que $A^2={\bf 0}$

$$A = \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}$$
, $A^2 = 0$

Resumen de algunos tipos de matrices

Nombre de la matriz	Ejemplo [-2 1 0]
Matriz fila: Es una matriz formada por una sola fila	Matriz fila orden 1 × 3

Matriz columna: Es una matriz formada por una sola columna	Matriz columna orden 3 x 1
Matriz rectangular: Matriz con distinto número de filas y columnas.	$\begin{bmatrix} 5 & 0 \\ 0 & 1 \\ 2 & -3 \end{bmatrix}$ Matriz con 3 filas y 2 columnas
Matriz nula o matriz cero: En una matriz nula todos sus elementos son ceros.	$0 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, 0 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$
Matriz opuesta: Es la que resulta de sustituir cada elemento por su opuesto.	$A = \begin{pmatrix} -1 & 2 \\ 3 & -5 \end{pmatrix}, -A = \begin{pmatrix} 1 & -2 \\ -3 & 5 \end{pmatrix}$
Matriz cuadrada: Matriz con tantas filas como columnas.	$A = \begin{pmatrix} 3 & \pi & 0 \\ 1 & 0 & -1 \\ 2 & 0 & 1 \end{pmatrix}$
Matriz simétrica: Matriz que coincide con su transpuesta.	$A = \begin{pmatrix} 2 & 3 \\ 3 & 5 \end{pmatrix}$
Matriz antisimétrica: Es una matriz en la que se verifica $A = -A^t \rightarrow a_{ij} = -a_{ji}$ Por tanto su diagonal principal está formada	$B = \begin{pmatrix} 0 & 2 & -4 \\ -2 & 0 & 2 \\ 4 & -2 & 0 \end{pmatrix}$
Matriz diagonal: Todos los elementos que no pertenecen a la diagonal principal son todos nulos.	$A = \begin{pmatrix} 5 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

Matriz unidad: Es una matriz diagonal en que todos los elementos de la diagonal principal son iguales a 1.	$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
Triangular superior: Todos los elementos bajo la diagonal principal son nulos.	$A = \begin{pmatrix} 1 & 2 \\ 0 & 5 \end{pmatrix}$
Triangular inferior: Todos los elementos sobre la diagonal principal son nulos.	$A = \begin{pmatrix} 2 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 2 & -3 \end{pmatrix}$
Regular o inversible: Matriz que tiene inversa.	$A = \begin{pmatrix} -1 & 0 & 2 \\ -1 & 1 & 1 \\ 1 & 0 & -1 \end{pmatrix},$
	$A^{-1} = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$

Inversa: Decimos que una matriz cuadrada A tiene inversa, A^{-1} , si se verifica que : $A \cdot A^{-1} = A^{-1} \cdot A = I$	$A = \begin{pmatrix} 1 & 2 \\ 3 & 7 \end{pmatrix}, A^{-1} = \begin{pmatrix} 7 & -2 \\ -3 & 1 \end{pmatrix}$
Singular: Matriz que no tiene inversa	$A = \begin{pmatrix} 1 & 2 \\ 3 & 6 \end{pmatrix}$
Idempotente: Es una matriz que verifica que A ² = A	$A = \begin{pmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{2}{3} & \frac{1}{3} \end{pmatrix}, A^2 = A$
Involutiva: Es una matriz que verifica que A ² = I	$A = \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}, A^2 = I$
Ortogonal: Es una matriz que verifica A · A ^t =I	$A = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix}$
Normal: Matriz que cumple que $AA^t = A^tA$	$A = \begin{pmatrix} 2 & 5 \\ 5 & 3 \end{pmatrix}$

Nilpotente: Matriz que cumple que $A^n = 0$

EJERCICIOS PARA PRACTICAR

1. Clasifique las matrices en simétrica, antisimétrica, diagonal, escalar, ortogonal, idempotente, normal, triangular, involutiva, nilpotente.

a)
$$\begin{bmatrix} 1 & 1 & 5 \\ 1 & 2 & 3 \\ 5 & 3 & 4 \end{bmatrix}$$
, b) $\begin{bmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix}$, c) $\begin{bmatrix} 4 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}$, d) $\begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 0 \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 \\ 0 & 0 & -1 \end{bmatrix}$, e) $\begin{bmatrix} 2 & 1 & 1 \\ -1 & 0 & -1 \\ -2 & -2 & -2 \end{bmatrix}$

$$f) \begin{bmatrix} 0 & 1 & -8 \\ -1 & 0 & 6 \\ 8 & -6 & 0 \end{bmatrix}, g) \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}, h) \begin{bmatrix} 1 & -2 & 1 \\ 3 & 0 & 3 \\ -1 & 2 & -1 \end{bmatrix}, i) \begin{bmatrix} -i & -i \\ -i & i \end{bmatrix}$$

2. Calcule las transpuestas de las siguientes matrices. ¿Cuáles de ellas son simétricas?

a)
$$\begin{bmatrix} 3 \\ -2 \\ 1 \end{bmatrix}$$
, b) $\begin{bmatrix} 3 & 2 & 1 \\ 6 & 5 & 6 \\ 9 & 8 & 7 \end{bmatrix}$, c) $\begin{bmatrix} 1 & 3 \\ 3 & 5 \end{bmatrix}$, d) $\begin{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \end{bmatrix} e$) $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix}$

3. Escribe la siguiente matriz como la suma de una matriz simétrica y una matriz antisimétrica.

$$A = \begin{bmatrix} 2 & 1 & 3 & -1 \\ 1 & 2 & 4 & 1 \\ 5 & 2 & 1 & 1 \\ 0 & -1 & 1 & 3 \end{bmatrix}$$