Principle Component

- solves over titting problem

(db) 1 +

It is a statistical technique used for simplifying and summanizing the complexity in high dimensional data whitle netaining its essential teature.

ROF

neducing it to a smaller set of vaniable called principle component

×	2.5	0.5	8.2	1.9	3.1	3.3	2	1	1.5	1.1
7	र.प	• 7	2.9	7.2	3.0	2.7	1.6	1-5	1.6	0.9

n=10

$$\bar{x} = \frac{\Sigma x}{n} = 1.81$$

$$\ddot{y} = \frac{\Sigma y}{N} = 1.91$$

$$co v(x,x) = \sum_{i=1}^{n} (x_i-\overline{x})(x_i-\overline{x})$$

i=1-10 ?·5

*	x-×	$(x-\overline{x})(x-\overline{x})$		
2.5	3.5-1.81=.69	.692 = 0.476		
0.5	x -131	1.7161		
	1			
1.1	71	.504]		

Sum = 5.5490

r = 10 n = 10 r = 10

$$\frac{\text{featunes}}{\text{if 3 feature}} = 2 \text{ dimmesion } (2 \times 2)$$

Covaniance Matrix
$$= \frac{\text{cov}(x,x)}{\text{cov}(x,y)} = \frac{\sum_{i=1}^{\infty} \frac{(x_i-\overline{x})(y_i-\overline{y})}{n-1}}{\sum_{i=1}^{\infty} \frac{(x_i-\overline{x})(y_i-\overline{y})}{n-1}}$$
Step-1:- Find Covaniance Matrix

Formula 1.2

step-1:- Find Covaniance Matrix COV(y,X) = COV(X,y)

 i
 x y</td

$$50m = 5.5393$$

 $n-1 = 9$
 $cov(x,y) = \frac{5.5393}{9} = .6159$

CS CamScanner

$$cov(y,y) = \sum_{i=1}^{n} (y_i-y_i) (y_i-y_i)$$

(=xx) noisements = Ex senotest

i	9.	9-5	(4-5)(3-5)
1	2.4	2.4-1.9 = .49	.492 = .2401
2	0.7	- C1. 21 - 1x)	=1(4691000.
:	:	1 - 1 - 1	
10	0.9	xidal	1.31881
	WALL OF	(FX) NOD =	(X.E) NOO

2 25 24 0.69 049 .338

$$SUM = 6.449$$

 $V(R-x)$ $V-V = 10-1=9$

$$conv(y,y) = \frac{6.449}{9}$$

$$= 0.7165$$

600(x)-2) = 22333 = (C-6x) nos

$$C = \begin{bmatrix} cov(x,x) & cov(x,y) \\ cov(y,x) & cov(y,y) \end{bmatrix}$$

$$= \begin{bmatrix} cov(y,x) & cov(y,y) \\ cov(y,x) & cov(y,y) \end{bmatrix}$$

$$= \begin{bmatrix} cov(y,x) & cov(y,y) \\ cov(y,x) & cov(y,y) \\ cov(y,x) & cov(y,y) \\ cov(y,y) & cov(y,y) \\ co$$

same boton How does per works xintal sonamence all statustes (E)

x2 = . 9219472

· eiganvector = $\begin{bmatrix} 0.6778 \\ 0.7351 \end{bmatrix}$

consesponding eigen values

PCA finds a new set of Dimmensions Con a set of views) such that all

dimmensions are onthogonal (linearly Independent) Goals :- Britissest at esular aspis

(2) calculate eigen vectors and

(1) Find linearly independent dimmension

(3) Tocastoner the original is dimmension

date points to a dimineration

How does PCA works

1 calculate the covaniance Matrix

$$cov = \begin{bmatrix} c(x,x) & c(x,y) \\ c(xy,x) & c(y,y) \end{bmatrix}$$

$$c(x,y) = \sum_{i=1}^{n} \frac{(x-\bar{x})(y-\bar{y})}{n-1}$$

(2) Calculate eigen vectors and conessponding eigen values

$$CV = \lambda U \Rightarrow 0$$

- (3) sont the eigen vectors according to eigen values in descending order
 - (4) choose firstk eigen vectors that will be new udimmension
 - (5) Transform the original n dimmension data points to u dimmension

come poton

solving a problem using sin's format

Reduce the dimmession from 2 to 1 using PCA

Feature

	4	8= (s	13000	7	
*2	ч	4	5	14	

step-1

$$\bar{x}_1 = \frac{1}{4} (4+8+13+7) = 8$$
 $\bar{x}_2 = \frac{1}{4} (11+4+5+14) = 8.5$

[5 11-]

$$S = \begin{bmatrix} cov(x_1, x_1) & cov(x_1, x_2) \\ cov(x_2, x_1) & cov(x_2, x_2) \end{bmatrix}$$

$$cov (x_1,x_1) = \sum_{i=1}^{n} \frac{(x_i-x_1)(x_i-x_1)}{n-1}$$

solving a problem

using per

step-1

step-2

$$5 = \begin{bmatrix} 14 & -11 \\ -11 & 33 \end{bmatrix}$$

$$\begin{bmatrix} 14 - 11 \\ -11 & 23 \end{bmatrix} - \lambda \begin{bmatrix} 10 \\ 01 \end{bmatrix} = 0$$

8 = (F+8+13+7) = 1X

$$=) \quad \chi^2 - 37 \, \lambda - 201 = 0$$

$$\lambda_1 = 30.3849$$

[Step-4] assume eigan vector
$$U = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$

$$(S-\lambda I) U = \begin{bmatrix} 0 \\ 0 \end{bmatrix} = [U]$$

$$= \begin{bmatrix} 14-x & -11 \\ -11 & 23-x \end{bmatrix} \begin{bmatrix} 01 \\ 02 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$=) \begin{bmatrix} (14 - \lambda) U_1 - 11U_2 \\ -11U_1 + (23 - \lambda) U_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

= 11,011

$$\frac{U_1}{11} = \frac{U_2}{14-\lambda} = +$$

$$\frac{1}{10} = \frac{11}{14-\lambda}$$

$$\frac{1}{10} = \frac{11}{112+(14-\lambda)}$$

3tep-5 | computing Principle component 1 4=1 $e_1 = \begin{bmatrix} \frac{11}{110_111} \\ \frac{14-\lambda_1}{1} \end{bmatrix} = \begin{bmatrix} 0.5574 \\ -.8303 \end{bmatrix}$ or this components No $PC = e_1^T \begin{bmatrix} x_{1k} - x_1 \\ x_{2k} - \overline{x}_2 \end{bmatrix}$ $= \begin{bmatrix} 0.5574 & -.8303 \end{bmatrix} \begin{bmatrix} 4 & -.8303 \end{bmatrix}$ = -4.30535 $PC_{1=1} = -4.3035$ $PC_{1=1} = -4.3035$ $PC_{1=1} = -4.3035$ $PC_{1=1} = -4.3035$ $PC_{1=1} = -4.3035$ XI 5 PC1 PC: =-4.3053 = 3-7361

