CAPSTONE PROJECT - 3

Cardiovascular Risk Prediction

Created By: Sakshi Dhyani

Project Details

In this project, the dataset is from an ongoing cardiovascular study on residents of the town of Framingham, Massachusetts. The target is to predict whether the patient has a 10-year risk of future coronary heart disease (CHD).

Steps performed

- Data cleaning
- Data visualizations
- Data preprocessing
- Model Implementation
- Evaluation metrics

Data Summary

Independent Features

Dependent Feature

Sex: Male or Female Age: Age of the patient

Is_smoking: whether patient smokes or not

Cigs Per Day: average no of cigarettes that person smoked on one day BP Meds: Whether patient is on blood pressure medication or not

Prevalent Stroke: Whether patient previously had a stroke Prevalent Hyp: Whether patient was hypertensive or not

Diabetes: Whether or not patient has diabetes

Tot Chol: Total Cholesterol level
Sys BP: Systolic Blood pressure
Dia BP: Diastolic Blood pressure

BMI: Body Mass Index

Heart Rate

Glucose: Glucose level

10- year risk of coronary heart disease (CHD)

Exploratory Data Analysis

Bar Plots

Exploratory Data Analysis

Bar Plots

Distribution plots for different independent variables as per target variable labels

Ten Year CHD Values for different age values

Ten Year CHD Values for different sysBP values

Ten Year CHD Values for different totChol values

Ten Year CHD Values for different diaBP

Distribution plots for different independent variables as per target variable labels

Ten Year CHD Values for different BMI values

Ten Year CHD Values for different glucose values

Ten Year CHD Values for different heart Rate values

Ten Year CHD Values for different cigsPerDay values

Outlier Detection using Box Plot

Outlier Detection using Box Plot

Data preparation

Initial Data Shape - 3390 Rows and 17 Columns (1 column is dependent)

After resampling dataset:

Training Data - 4606 Rows and 17 Columns (1 column dependent)

Test Data - 1152 Rows and 17 Columns (1 column dependent)

Dependent column will be predicted as that is the target variable named "Ten Year CHD.

Random Forest Classifier without resampling

Evaluation Metrics for test data

Accuracy score-> 0.8362831858407079

Precision score-> 0.1818181818181818

F1 Score-> 0.03478260869565218

Precision and F1 score are very less due to unbalanced dataset

Significant features ranking using boruta selector

	Feature	Ranking
0	age	1
9	totChol	1
10	sysBP	1
11	diaBP	1
14	glucose	1
12	BMI	2
7	prevalentHyp	3
4	cigsPerDay	4
13	heartRate	5
2	sex	6
8	diabetes	6
1	education	8
6	prevalentStroke	8
3	is_smoking	10
5	BPMeds	11

Random Forest Classifier after resampling

Evaluation Metrics for test data

Accuracy score-> 0.887152777777778

Precision score-> 0.8719211822660099

F1 Score-> 0.8909395973154361

ROC Curve


```
confusion matrix
[[491 78]
[ 52 531]]
```

K Neighbour Classifier after resampling

Evaluation Metric for test data

Accuracy Score : 0.925347222222222

Precision Score : 0.8736842105263158

F1 Score : 0.9310897435897436

ROC Curve

Confusion Matrix

SVM Classifier after resampling

Evaluation Metric for test data

Accuracy Score : 0.996527777777778

Precision Score: 1.0

F1 Score : 0.9965576592082617

ROC Curve

Confusion Matrix

Classification Report for different Models

Random Forest Classifier

	precision	recall	f1-score	support
0 1	0.90 0.87	0.86 0.91	0.88 0.89	569 583
accuracy macro avg weighted avg	0.89 0.89	0.89 0.89	0.89 0.89 0.89	1152 1152 1152

K Neighbour Classifier

Classification Report			precision	recall	f1-score	support
0	1.00	0.85	0.92	569		
1	0.87	1.00	0.93	583		
accuracy			0.93	1152		
macro avg	0.93	0.92	0.92	1152		
weighted avg	0.93	0.93	0.92	1152		
1						

SVM Classifier

Classification Report			precision	recall	f1-score	support
0 1	0.99 1.00	1.00 0.99	1.00 1.00	569 583		
accuracy macro avg weighted avg	1.00 1.00	1.00 1.00	1.00 1.00 1.00	1152 1152 1152		

Conclusion

All metrics were evaluated for each model like accuracy score, precision score, f1 score, roc curve and confusion matrix. Resampling of data was performed as the data was not balanced. Imbalance data can give high accuracy but precision and F1 score needs to be taken care of in such cases.

Support Vector Classifier predicting the target variable for testing data more correctly as per all evaluation metrics like roc-auc curve, precision, accuracy, f1 score. Other Models like K neighbour Classifier and Random Forest Classifier are working well too.

Since it is a medical diagnosis cases, we would want the false negative values to be less. In Svm classifier the False negative value comes out to be 4 as per confusion matrix. In K Neighbour Classifier, the False negative value is only 2. For random forest, false negative values comes out to be 52. So preferably, K Neighbour classifier and Support vector classifier seems to be more perfect for classification in this case.

THANK YOU