Chapitre 23. Géométrie plane : droites et cercles.

Dans la suite du cours, on se place dans un repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j})$ de \mathcal{P} .

Droites du plan 1

Soit A un point et \overrightarrow{u} un vecteur non nul.

On rappelle la définition de la droite passant par le point A et dirigée par \overrightarrow{u} : c'est $A + \text{Vect}(\overrightarrow{u})$, c'est-à-dire l'ensemble des points de la forme $A + \lambda \overrightarrow{u}$ avec $\lambda \in \mathbb{R}$, c'est-à-dire les points M tels que \overrightarrow{AM} est colinéaire à \overrightarrow{u} .

Représentations d'une droites

1.a.i Paramétrage

Remarque préliminaire :

Remarque premimane . Si f et g sont deux fonctions réelles définies sur une partie I de \mathbb{R} , la <u>courbe paramétrée</u> par $\left\{ \begin{array}{l} x = f(t) \\ y = g(t) \end{array} \right. , t \in I$

est l'ensemble \mathcal{C} des points du plan dont les coordonnées peuvent se mettre sous la forme (f(t), g(t))avec un $t \in I$. Ainsi $\mathcal{C} = \{(f(t), g(t)) \mid t \in I\}$ et, pour $(x, y) \in \mathbb{R}^2$:

$$M(x,y) \in \mathcal{C} \iff \exists t \in I, \begin{cases} x = f(t) \\ y = g(t) \end{cases}$$

On parle de paramétrage de la courbe \mathcal{C} .

Théorème:

Les droites D du plan sont les ensembles admettant un paramétrage de la forme :

$$\begin{cases} x = x_0 + \alpha t \\ y = y_0 + \beta t \end{cases}, t \in \mathbb{R} \quad \text{avec } (\alpha, \beta) \neq (0, 0)$$

Un point de la droite D est alors $A(x_0, y_0)$, et un vecteur directeur est alors $\overrightarrow{u} = (\alpha, \beta)$.

Démonstration 1

Avec les notations ci-dessus et en notant M le point de coordonnées (x,y), le paramétrage signifie exactement $M = A + t \overrightarrow{u}$ en passant aux coordonnées!

C'est donc une simple traduction de la définition : $D = A + \text{Vect}(\overrightarrow{u})$.

Par exemple, la droite passant par le point (3,2) et dirigée par (4,-1) a pour paramétrage :

 \triangle Il n'y a pas unicité du paramétrage d'une droite! Ne serait-ce que parce qu'il y a une infinité de choix possibles pour le point (x_0, y_0) et le vecteur directeur (α, β) .

Pire, il ne faut pas croire que tous les paramétrages d'une droite D sont nécessairement de cette forme.

Par exemple, voici un autre paramétrage de la droite précédente : $\begin{cases} x = 11 - 3 \operatorname{sh} t - e^t + \operatorname{ch} t \\ y = \operatorname{sh} t \end{cases}, t \in \mathbb{R}.$

⚠ Toujours bien préciser le paramètre.

Par exemple, si
$$E$$
:
$$\begin{cases} x = 3 + 4t \\ y = 2 - t \end{cases}, t \in [0, 1]$$

alors E n'est pas une droite, c'est

1.a.ii Équation cartésienne

Théorème:

Les droites du plan sont les ensembles admettant une équation cartésienne de la forme :

$$ax + by + c = 0$$
 avec $(a, b) \neq (0, 0)$

Un vecteur normal à la droite est alors $\overrightarrow{n} = (a, b)$

Un vecteur directeur de la droite est alors $\overrightarrow{u} = (-b, a)$

Démonstration 2

Représentons par exemple la droite d'équation x+2y+1=0 :

Remarque: Si D et D' ont pour équations respectives ax + by + c = 0 et ax + by + c' = 0, alors

2

 \bigwedge Se sortir de la tête que toute droite du plan a une équation de la forme y = mx + p: c'est faux!! Cela ne donne pas les droites verticales dont une équation est x = k.

Précisons : si D: ax + by + c = 0 avec $(a, b) \neq (0, 0)$, alors

- soit $b \neq 0$ et une équation est
- soit b = 0 et $a \neq 0$, une équation est

Mune équation cartésienne n'est pas unique! Ne serait-ce que parce qu'on peut la multiplier par une constante non nulle, voire par une fonction qui ne s'annule jamais; cela représentera toujours le même ensemble.

1.b Méthodes de base

1.b.i Obtenir un paramétrage d'une droite D

Il suffit, à l'aide de la partie précédente, de déterminer un point et un vecteur directeur de D. On peut aussi introduire artificiellement un paramètre bien choisi.

Exemple : passage d'une équation cartésienne à un paramétrage

Soit D: -x + 2y + 3 = 0. Déterminer un paramétrage de D.

Démonstration 3

1.b.iiObtentir une équation cartésienne à partir d'un point et d'un vecteur directeur

Soit D la droite passant par $A(x_0, y_0)$ et dirigée par $\overrightarrow{u} = (\alpha, \beta)$.

Soit $(x, y) \in \mathbb{R}^2$ et M le point de coordonnées (x, y).

Notre outil pour exprimer la colinéarité de deux vecteurs :

$$M \in D \iff$$

Exemple:

Déterminer une équation cartésienne de la droite passant par A(3,2) et dirigée par $\overrightarrow{u}=(4,-1)$.

Démonstration 4

Remarque : S'il s'agit du passage d'un paramétrage à une équation cartésienne, on peut aussi utiliser la méthode "élimination du paramètre" :

Soit $D: \left\{ \begin{array}{l} x=-1+t \\ y=2-3t \end{array} \right.$, $t \in \mathbb{R}$. Déterminer une équation cartésienne de D.

Démonstration 5

Une variante : si on cherche une équation cartésienne d'une droite D donnée par deux points distincts, on se ramène à ce cas en prenant $\overrightarrow{u} = \overrightarrow{AB}$.

Obtentir une équation cartésienne à partir d'un point et d'un vecteur normal

Soit D la droite passant par $A(x_0, y_0)$ et normale à $\overrightarrow{n} = (a, b)$.

Soit $(x, y) \in \mathbb{R}^2$ et M le point de coordonnées (x, y).

Notre outil pour exprimer l'orthogonalité de deux vecteurs :

$$M \in D \iff$$
 \iff
 \iff

Exemple:

Déterminer une équation cartésienne de la droite passant par A(3,2) et de vecteur normal $\overrightarrow{n} = (-1,2)$.

Démonstration 6

Lignes de niveau, régionnement du plan

Soient \overrightarrow{u} et \overrightarrow{n} des vecteurs non nuls et A un point du plan.

• Nous avons vu que l'ensemble des points M tels que $[\overrightarrow{AM}, \overrightarrow{u}] = 0$ est une droite D_0 , celle dirigée par \overrightarrow{u} et qui passe par A.

Plus généralement, pour tout $k \in \mathbb{R}$, l'ensemble D_k des points M tels que $[\overrightarrow{AM}, \overrightarrow{u}] = k$ est une droite également, qui sera parallèle à D_0 i.e. dirigée par \overrightarrow{u} .

En faisant varier k, on obtient toutes les droites dirigées par \overrightarrow{u} .

(En effet, en développant $\begin{vmatrix} x - x_A & \alpha \\ y - y_A & \beta \end{vmatrix} = k$, les coefficients devant x et y seront les mêmes que dans l'équation de D_0).

De même, l'ensemble des points M tels que $\overrightarrow{AM} \cdot \overrightarrow{n} = 0$ est une droite Δ_0 , celle normale à \overrightarrow{n} et qui passe par A.

Plus généralement, pour tout $k \in \mathbb{R}$, l'ensemble Δ_k des points M tels que $\overrightarrow{AM} \cdot \overrightarrow{n} = k$ est une droite également, qui sera parallèle à Δ_0 i.e. normale à \overrightarrow{n} .

En faisant varier k, on obtient toutes les droites normales à \overrightarrow{n}

Fixons $k \in \mathbb{R}^*$, et notons H le point de la droite $A + \operatorname{Vect}(\overrightarrow{n})$ tel que $\overrightarrow{AH} \cdot \overrightarrow{n} = k$. Le point H se situe dans l'un des demi-plans délimités par la droite Δ_0 : celui qui contient le vecteur \overrightarrow{n} (tracé à partir de A) si k > 0, ou bien l'autre si k < 0:

La condition $\overrightarrow{AM} \cdot \overrightarrow{n} = k$ se réécrit $\overrightarrow{AM} \cdot \overrightarrow{n} = \overrightarrow{AH} \cdot \overrightarrow{n}$, ce qui revient à dire que le projeté orthogonal de M sur la droite $A + \operatorname{Vect}(\overrightarrow{n})$ est H. Le point M se situe alors dans le même demi-plan que H!

Ainsi, les deux demi-plans sont donnés par des inéquations : $\overrightarrow{AM} \cdot \overrightarrow{n} > 0$ et $\overrightarrow{AM} \cdot \overrightarrow{n} < 0$.

Traçons par exemple le demi-plan d'inéquation $-x+2y-1\geq 0$:

1.d Exercice de base : détermination d'un projeté orthogonal

Définition:

Soit D une droite et A un point extérieur à D.

La droite orthogonale à D et passant par A coupe D en un unique point, appelé <u>projeté</u> orthogonal de A sur D.

La longueur AH (c'est-à-dire $||\overrightarrow{AH}||$) s'appelle alors la distance de A à D.

Soit D la droite d'équation x + 2y - 3 = 0 et A le point de coordonnées (1, -2).

Déterminer les coordonnées de H de deux façons. Quelle est la distance du point A à la droite D?

2 Cercles du plan

Définition :

On appelle cercle de centre Ω et de rayon R>0 l'ensemble :

$$\mathcal{C} = \{ M \in \mathcal{P} / \Omega M = R \}$$

2.a Équation cartésienne

Notons (x_0, y_0) les coordonnées de Ω . Soit M un point de \mathcal{P} , de coordonnées (x, y).

$$M \in D \Longleftrightarrow$$

 \iff

 \iff

Remarque : en développant, on obtient une équation de la forme $x^2 + y^2 - 2ax - 2by + c = 0$.

 \triangle Une équation de la forme $x^2+y^2-2ax-2by+c=0$ ne représente pas toujours un cercle. Cela peut aussi représenter

Pour le savoir, il faut faire apparaître des carrés à l'aide des termes en x^2 , x, y^2 , y et de constantes. Exemple : Déterminer l'ensemble $\mathcal C$ d'équation $x^2 - x + y^2 + 2y = 0$:

2.b Paramétrage

Le cercle trigonométrique (i.e. le cercle de centre O et de rayon 1), a un paramétrage bien connu :

Plus généralement :

Proposition:

Le cercle \mathcal{C} de centre $\Omega(a,b)$ et de rayon R>0 admet pour paramétrage :

Démonstration 8

Problèmes d'intersection 2.c

Lorsque c'est possible, pour étudier l'intersection d'un cercle et d'une autre courbe, on injectera un paramétrage de la courbe dans une équation du cercle.

Exemple: Soit \mathcal{C} le cercle de centre $\Omega(1,1)$ et de rayon 2, et D la droite passant par A(-2,0) et dirigée par $\overrightarrow{u} = (1,1)$. Déterminer l'intersection de \mathcal{C} et D.

Démonstration 9

Cercle de diamètre donné **2.d**

Proposition:

Soient A et B deux points distincts de E. L'ensemble des points M du plan tels que $\overrightarrow{MA} \cdot \overrightarrow{MB} = 0$ est

Démonstration 10

Plan du cours

1	\mathbf{Drc}	ites du plan	1
	1.a	Représentations d'une droites	1
		1.a.i Paramétrage	1
		1.a.ii Équation cartésienne	2
	1.b	Méthodes de base	3
		1.b.i Obtenir un paramétrage d'une droite D	3
		1.b.ii Obtentir une équation cartésienne à partir d'un point et d'un vecteur directeur	3
		1.b.iii Obtentir une équation cartésienne à partir d'un point et d'un vecteur normal .	4
	1.c	Lignes de niveau, régionnement du plan	4
	1.d	Exercice de base : détermination d'un projeté orthogonal	5
2	Cer	cles du plan	6
	2.a	Équation cartésienne	6
	2.b	Paramétrage	6
	2.c	Problèmes d'intersection	7
	2.d	Cercle de diamètre donné	7