REDUCTS AND NORMALISATION

- If M →_β N then we say that N is a *reduct* of M. If also M ≠_β N, we say that it is a *proper reduct*.
- A term M such that $M wightharpoonup_{\beta} N$ for some normal form N is said to have a normal form or be normalisable.
- A term M for which there is no infinite reduction sequence $M \to_{\beta} M_1 \to_{\beta} M_2 \to_{\beta} \cdots$ is said to be **strongly normalisable**.

STANDARD COMBINATORS

1	:=	$\lambda x.x$	$IM \twoheadrightarrow_{\beta} M$
K	:=	$\lambda xy.x$	$KMN \rightarrow_{\beta} M$
S	:=	$\lambda xyz.xz(yz)$	$SMNP \twoheadrightarrow_{\beta} MP(NP)$
ω	:=	$\lambda x.xx$	$\omega M \twoheadrightarrow_{\beta} MM$
Ω	:=	ωω	$\Omega \twoheadrightarrow_{\beta} \Omega$
Θ	:=	$(\lambda xy.y(xxy))(\lambda xy.y(xxy))$	$\Theta M \rightarrow_{\beta} M(\Theta M)$

CONFLUENCE

Theorem (Confluence of β)

If $M \twoheadrightarrow_{\beta} P$ and $M \twoheadrightarrow_{\beta} Q$ then there exists a term N (not necessarily a normal form) such that $P \twoheadrightarrow_{\beta} N$ and $Q \twoheadrightarrow_{\beta} N$.

β -CONVERSION

Let M and N be terms. If M and N have a common reduct P, i.e. there is a term P such that $M \twoheadrightarrow_{\beta} P$ and $N \twoheadrightarrow_{\beta} P$, then we say that M and N are β -convertible and write $M =_{\beta} N$.