

Lecture 12:

Singular Value Decomposition 1

CS 111: Intro to Computational Science Spring 2023

Ziad Matni, Ph.D.

Dept. of Computer Science, UCSB

Administrative

New homework due Monday

Lab tomorrow

Quiz 3 grades now available on Canvas

RECALL: Eigendecomposition of a Matrix

• Consider the matrix Λ : n-by-n diagonal matrix with eigenvalues λ_j as elements

$$\Lambda = \begin{pmatrix} \lambda_0 & 0 & 0 & \dots \\ 0 & \lambda_1 & 0 & \dots \\ 0 & 0 & \lambda_2 & \dots \\ \dots & & & \end{pmatrix}$$

..and also consider the matrix X:

n-by-n set of corresponding eigenvectors $\mathbf{x_j}$ for each λ_i

$$X = \begin{pmatrix} \vdots & \vdots & \vdots & \vdots \\ X_0 & X_1 & X_2 & \dots \\ \vdots & \vdots & \vdots & \vdots \end{pmatrix}$$

Leads to:

Eigen decomposition of a matrix: $A = X \Lambda X^{-1}$

Note the following again:

- Since **X** is columns, **X**⁻¹ is "rotated-columns"
- Λ is a diagonal matrix

Matrix Rank

- Vector space dimension spanned by a matrix's columns
- The maximum number of *linearly independent columns* of a matrix.
 - In square matrices, that's also the max. number of linearly independent rows
- Examples what rank do these matrices have?

```
1 2 3
4 5 6
-7 8 9
```

has a rank of **3** because it can represent 3 independent linear equations

```
1 2 3
3 6 9
-2 -4 -6
```

has a rank of **1** because it can represent only 1 independent linear equation (note how row2 = 3xrow1 and row3 = -2xrow1)

Matrix Rank

- The rank of any mxn matrix, A, has to be ≤ the smaller dimension:
 rank(A) ≤ min(m, n)
 - Rank(A) is always a positive number (trivial exception: rank of a zero matrix is 0)

- If rank(A) = min(m,n), then A has a full rank (i.e. all columns are independent)
- Otherwise (i.e. rank < min size) A has a deficient rank

A square matrix (where m = n), is invertible ONLY if A has a full rank

From a Computer's Perspective...

- Lower rank matrices can be "less useful" for certain computations (example?!?!)
- Example: you won't have a unique solution to x (in Ax = b problem)
 if A is nxn matrix with rank < n, because then it's not invertible

 HOWEVER, lower rank matrices can be represented in a computer while taking up less storage space!

 Matrices of Rank 1 happen to have their mathematical and computation advantages, as we shall see...

Matrix Rank Equivalencies

Lower rank matrices can be represented with less storage space and can result in fewer calculations.

Rank 1

You can express a matrix of any rank as a sum of rank 1 matrices.

Example:

Norm of a Matrix

A matrix norm ||A|| is any *mapping* from \mathbb{R}^{nxn} to \mathbb{R} with the following 3 properties:

1.
$$||A|| > 0$$

assuming $\mathbf{A} \neq 0$

2.
$$|| \alpha A || = |\alpha| ||A||$$

for any $\alpha \in \mathbb{R}$

3.
$$||A + B|| \le ||A|| + ||B||$$

Norm of a **Matrix**

Common matrix norm types:

$$\|A\|_1 = \max_{1 \leq j \leq n} \sum_{i=1}^n |a_{ij}|, \quad l_1 ext{ norm}$$
 npla.norm(A,1)
$$\|A\|_2 = \max_{1 \leq j \leq n} \sigma_{max}, \quad l_2 ext{ norm}$$
 npla.norm(A,2)
$$\|A\|_{\infty} = \max_{1 \leq i \leq n} \sum_{j=1}^n |a_{ij}|, \quad l_{\infty} ext{ norm}$$
 npla.norm(A,np.inf)

$$||A||_F = [\sum_{i,j} abs(a_{i,j})^2]^{1/2}$$
 Frobenius norm npla.norm(A, 'fro')

npla.norm(A)

Singular Value Decomposition

 SVD is a factorization of a matrix that generalizes the eigendecomposition of a square matrix to any mxn matrix:

$$A = U \sum_{m \times n} V^{\mathsf{T}}$$

- U an mxm column orthogonal matrix
- V an nxn column orthogonal matrix (so V^T is row orthogonal)
- Σ an mxn diagonal matrix whose elements σ_i are ordered:

$$\sigma_0 > \sigma_1 > \dots \sigma_{min(m,n)-1} \ge 0$$

These σ_i are called the *singular values* of **A**

Singular Value Decomposition on Square Matrix

$$A = U \Sigma V^{T}$$

$$= \begin{bmatrix} u_{1} & u_{2} & \dots & u_{n} \\ u_{1} & u_{2} & \dots & u_{n} \end{bmatrix} \xrightarrow{\sigma_{1}} \begin{bmatrix} \sigma_{1} & 0 & 0 & 0 \\ 0 & \sigma_{2} & 0 & 0 \\ 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & \sigma_{n} \end{bmatrix} \xrightarrow{v_{1}} \begin{bmatrix} v_{1} & v_{2} & \dots & v_{n} \\ v_{2} & \dots & v_{n} \end{bmatrix}$$

$$= u_{1} \sigma_{1} v_{1}^{T} + u_{2} \sigma_{2} v_{2}^{T} + \dots + u_{n} \sigma_{n} v_{n}^{T}$$

 $u_n \sigma_n v_n^T$ can be computed as:

```
u, sigma, vt = npla.svd(A)
sigma[n] * np.outer(u[:, n], vt[n, :])
```

Video Demo!

https://bit.ly/3tdNNsY by: L. Serrano, 2020

About 7 minutes long

 Describes how singular value decomposition (SVD) also describes the linear transformation properties of a matrix

© 2023, Matni CS111 S23

Common Applications of SVD

- Principal Component Analysis (PCA)
 - Modelling data with minimal dimensions (similar to line-fitting)

- Discrete Optimization Problems
 - Dimension reduction

- Data File Compression
 - Image compression

SVD for Image Compression

 SVD is also a tool to help with image compression (think JPEGs...)

- More on this in the next lecture...
 - Along with a very cool demonstration...

Quick! To the Python-mobile!

Theorems Relating to SVD

- 1. The <u>rank</u> of **A** is the number of nonzero singular values (number of σ_i)
- 2. The <u>2-norm</u> $||A||_2$ is equal to the largest singular value, i.e. σ_0
- 3. The <u>2-norm condition number</u> $\kappa_2(A)$ is equal to the ratio of the largest and smallest singular values. That is, $\kappa_2(A) = \sigma_0/\sigma_{\min(m,n)-1}$
- 4. The <u>Frobenius norm</u> $||A||_F$ is equal to $(\Sigma_i \sigma_i^2)^{1/2}$
- 5. The <u>determinant of a square matrix</u> is the product of its singular values, $\Pi_i \sigma_i$
- 6. Matrix **A** is the sum of rank-1 matrices: $A_k = \sum_{i=0}^{\kappa-1} \sigma_i u_i v_i^T$

Your TO DOs!

- Finish new assignment by Monday
- Lab tomorrow!

