物理实验五 风能电能转换研究

姓名	王博想	学号	2233316027	班级	2308	小组号	3
同组人员	薛宇恒 高玮泽	日期	2025.5.15	温度	$29.8^{\circ}C$	湿度	56%

1. 风机电压与风速及风能的关系研究

实验原理

风能大小与风速的立方成正比,电能到风能的转换效率可通过计算输入电功率和风洞风能功率得出。

使用仪器

稳压电源,风速仪,风洞实验台

实验步骤

- 1. 将风机正负极接至稳压电源正负极, 打开电源开关。
- 2. 调整电压,在风洞出口位置用风速仪测量不同电压时的风速。
- 3. 将风速值及稳压电源指示的电压电流值记录到表格中。

测量内容数据及处理

表1 风机电压与风速及风能的关系

输入电压 $U(V)$	10	12	14	16	18	20	22	24	26
输入电流 I(A)	0.065	0.081	0.099	0.117	0.137	0.156	0.177	0.200	0.220
风速 $V_1(\mathrm{m/s})$	2.795	3.582	4.286	4.648	5.133	6.056	6.587	7.180	7.803
输入电功率 $P_0(W)$	0.650	0.972	1.386	1.872	2.466	3.120	3.894	4.800	5.720
风洞风能功率 $P_1(W)$	0.110	0.231	0.395	0.504	0.679	1.114	1.434	1.857	2.384
转换效率 (%)	16.9	23.7	28.5	26.9	27.5	35.7	36.8	38.7	41.7

风洞直径 = $103.84 \, \text{mm}$

规律分析

- 1. 输入电压 U 与风速 V 的关系 随着输入电压从 10 V 增大到 26 V, 风速 V 从 2.795 m/s 升高到 7.803 m/s, 呈单调递增趋势。说明风洞风机的转速随供电电压增大而增大。
- 2. 风洞风能功率 P₁ 与风速的立方关系 风洞风能功率 P₁ 与风速 V 的关系近似符合 P1∝V3P_1\propto V^3 (如 V 从 2.795 m/s 增到 7.803 m/s 时, P₁ 从 0.110 W 增至 2.384 W,增幅约 21.7 倍,而 (7.803/2.795)3≈22.5 (7.803/2.795)^3\approx 22.5)。
- 3. 转换效率 η 随输入功率 P。 的变化
 转换效率 η=P¹/P。 ×100% 随 P。 增大整体呈上升趋势,从 16.9% (P。 = 0.65 W) 增至 41.7%
 (P。 = 5.72 W)。说明在较高风速(大功率输入)条件下,风机及发电机的耦合效率更高。
- 4. 效率拐点 在中低速区(U = 14–16 V,对应 V≈4.3–4.6 m/s)时,效率略有波动(28.5%→26.9%),可能是由于风机转子刚进入最优工作区时,气流不稳、摩擦损失占比较大。

2.风力发电机输出特性实验

实验原理

风力发电机的输出功率与负载电阻有关,存在最佳负载使输出功率最大化。

使用仪器

稳压电源,风洞实验台,风力发电机,电阻箱,万用表

实验步骤

1. 在风洞出口安装风力发电机,测量电压为 16V 和 24V 时风力发电机输出关系。

- 2. 将风力发电机输出接至电阻箱,并接万用表测量电阻箱电压。
- 3. 打开电源开关,调整风机电压至 16V 或 24V, 调整电阻箱负载电阻, 记录对应电压值。

测量内容数据及处理

表2 风力发电机输出功率与负载电阻的关系

负载电阻 $R(\Omega)$	400	600	800	1000	1200	1400	1600	1800	2000
电压 U ₁ (V)	2.40	3.20	3.85	4.10	4.42	4.67	4.88	5.02	5.25
输出功率 (16V) P ₁ (W)	0.0144	0.0171	0.0185	0.0168	0.0163	0.0156	0.0149	0.0140	0.0138
电压 U ₂ (V)	5.12	6.30	7.20	8.01	8.30	8.71	8.96	9.15	9.20
输出功率 (24V) P ₂ (W)	0.0655	0.0662	0.0648	0.0642	0.0574	0.0542	0.0502	0.0465	0.0423

规律分析

1. 负载电阻 R 与输出功率 P 的关系

- ・ 在输入 16 V 条件下,P¹ 随 R 从 400 Ω 增大至 800 Ω 时增大(0.0144 W → 0.0185 W),800 Ω 处 达到最大值,再继续增大 R 时功率下降。
- ・ 在输入 24 V 条件下,P² 在 R≈600–800 Ω 时达到最大(约0.066 W),随后也呈下降趋势。
- 2. 最大功率点接近发电机的等效内阻

最大输出功率所对应的负载电阻约 $0.7-0.8 \text{ k}\Omega$,与发电机等效内阻相当,符合最大功率传输定理。

3. 输入电压对最大输出功率的影响

当输入由 16 V 提升到 24 V 时,最大输出功率由 0.0185 W 增至约 0.066 W,提示发电机在高风速(大电压驱动)下可获得更高功率,但同时系统损耗也会增加。

3.不同风速下的风力发电机输出特性实验

实验原理

输出功率受风速影响,存在最大功率点,风能到电能的转换效率可衡量性能。

使用仪器

稳压电源,风洞实验台,万用表,风力发电机,电阻箱

实验步骤

- 1. 测量不同风机电压下, 负载电压和输出功率。
- 2. 记录不同风机电压对应的风速。
- 3. 计算通过叶片风能功率和发电机转换效率。

测量内容数据及处理

表3 风速与风力发电机输出功率间关系(负载电荷1000欧)

风机电压 (V)	10	12	14	16	18	20	22	24	26
负载电压 (V)	1.50	2.61	3.56	4.15	5.20	6.12	7.05	7.51	8.72
输出功率 (W)	0.002	0.007	0.013	0.017	0.027	0.037	0.050	0.056	0.076
风速 V ₁ (m/s)	2.795	3.582	4.286	4.648	5.133	6.056	6.587	7.180	7.803
通过叶片风能功率 (W)	0.075	0.159	0.272	0.347	0.468	0.768	0.988	1.280	1.643
发电机转换效率 (%)	2.98	4.29	4.66	4.96	5.78	4.88	5.03	4.41	4.63

叶片直径 = $86.20\,\mathrm{mm}$

规律分析

1. 风速 V 与输出功率 P 的关系

在固定负载 1000 Ω 下,风机电压从 10 V 到 26 V(对应风速 2.795–7.803 m/s),输出功率 P 从 0.002 W 增至 0.076 W,整体呈加速上升趋势,近似符合 P \propto V2P\propto V 2 到 V3V 3 之间的关系。

2. 转换效率 η 的波动特性

实验中 η 从 2.98% (V=2.795 m/s) 上升至 5.78% (V=5.133 m/s) ,之后在更高风速下略有波动回落 (在 V \approx 6.587 m/s 时降至 4.41%),表明发电机与叶片的匹配在中等风速时最优。

3. 最优工作区间

结合三次实验可见,当风速约在 5-6 m/s 范围时,系统效率和输出功率均表现较好,是本发电机组的"黄金工况"区间。

误差分析改进方案及建议

1. 误差来源

- 风速测量误差: 风速仪响应时间及校准偏差; 气流在风洞截面内分布不均导致局部风速不同。
- 功率测量误差: 电压电流表精度有限, 读数抖动, 特别是小电流、小电压时, 定点误差占比大。
- 机械损耗: 轴承摩擦、齿轮啮合损失未计入, 导致实际风能-电能转换效率偏低。
- 环境因素: 室温、湿度波动对空气密度和电机特性有影响; 未充分考虑风洞内部温度分层。

2. 改进方案

- 提高测量精度:选用高速数据采集系统及电子风速传感器,减少手动读取带来的延迟和抖动。
- 。 优化风洞流场: 在入口端安装整流装置,保证截面内气流均匀;增加侧壁防漏板减少侧向泄漏。
- 校正仪器:实验前进行风速仪、电表等的标定,定期核查内阻和零点漂移。
- 减少机械损耗: 使用低摩擦轴承与高精度联轴器; 定期加注润滑油并检查轴承间隙。
- **多次重复测试与统计分析**:对同一工况进行 ≥5 次重复,取平均并给出标准偏差,以减小偶然误差影响。
- 温湿度控制: 在风洞室内设置恒温恒湿环境,或记录环境参数并进行必要的理论校正。

3. 建议

- 针对发现的"效率拐点"现象,可在中低速区做更细致的采样(每 $0.5~\rm V$ 或 $0.5~\rm m/s$ 取样),绘制更精细的效率–风速曲线。
- 若条件允许,可考虑更换不同叶片几何参数(叶型、迎角、桨距),比较不同叶片设计对系统效率的 影响。
- 引入仿真软件(如 ANSYS Fluent)对风洞内流场进行模拟,指导实验装置优化与流场改良。