IN THE CLAIMS

Please amend the claims to the following.

1	1.	(Currently Amended) An apparatus comprising:
2		a trigger-response mechanism that includes at least one bank of user-programmable
3		registers to identify a user-defined trigger event; and
4		a thread switch handler coupled to the trigger-response mechanism, the thread switch
5		handler to invoke a second instruction stream responsive to an indication from the
6		trigger-response mechanism that $\underline{\text{the}}~\underline{\text{a}}~\text{user-defined trigger}$ event has occurred
7		during execution of a first instruction stream.
1	2.	(Currently Amended) The apparatus of claim 1, wherein the user-defined trigger
2		event includes a synchronous user-defined trigger event, and wherein the thread
3		switch handler is further to invoke the second instruction stream responsive to an
4		indication from the trigger-response mechanism that $\underline{\text{the}}$ a synchronous user-
5		defined trigger event has occurred during execution of the first instruction stream.
1	3.	(Currently Amended) The apparatus of claim 1, wherein the user-defined trigger
2		event includes an asynchronous user-defined trigger event, and wherein the thread
3		switch handler is further to invoke the second instruction stream responsive to an
4		indication from the trigger-response mechanism that $\underline{\text{the}}$ $\alpha \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $
5		defined trigger event has occurred during execution of the first instruction stream.

1 4. (Original) The apparatus of claim 1, wherein the thread switch handler is to save an instruction pointer address for the first instruction stream before invoking the 2 3 second instruction stream 5. (Original) The apparatus of claim 4, further comprising: a task queue to receive 1 the instruction pointer address. 2 (Original) The apparatus of claim 5, wherein: the task queue further comprises a 3 6. 4 memory location. (Original) The apparatus of claim 5, wherein: the task queue further comprises a 5 7 register. 6 7 8. (Original) The apparatus of claim 1, further comprising: a plurality of event counters coupled to the trigger-response mechanism, wherein each event counter 8

is to detect an atomic processor event.

1	9.	(Currently Amended) The apparatus of claim 8, wherein the user-defined trigger
2		event includes an asynchronous trigger event based on one or more of the atomic
3		processor events, and wherein the thread switch handler is further to invoke the
4		second instruction stream responsive to an indication from the trigger-response
5		mechanism that $\underline{\text{the}}$ an asynchronous user-defined trigger event has occurred
6		during execution of the first instruction stream; wherein the asynchronous user-
7		defined trigger event is based on one or more of the atomic-processor events.
8	10.	(Original) The apparatus of claim 1, wherein the thread switch handler is to save
9		context information for the first instruction stream before invoking the second
10		instruction stream.
11	11.	(Original) The apparatus of claim 10, wherein: the thread switch handler is further
12		to save context for the first instruction stream in a memory location before
13		invoking the second instruction stream.
14	12.	(Original) The apparatus of claim 10, wherein: the thread switch handler is further
15		to save context for the first instruction stream in a register before invoking the

second instruction stream.

16

- 1 13. (Currently Amended) The apparatus of claim 1, further comprising:
 2 one or more user-programmable control registers coupled to the thread switch handler;
 3 the value of the one or more control registers to indicate a the weight of context
 4 information for the first instruction stream to be saved responsive to invoking the second
 5 instruction stream.
- 1 14. (Currently Amended) A system comprising:
- 2 a memory to hold store an instruction; and
- 3 a single-threaded processor coupled to the memory, wherein the processor including
- 4 provides a thread context; wherein the processor includes a trigger-response mechanism <u>raw</u>
- 5 event detection logic to detect at least one raw event, a user-addressable register to specify a
- 6 <u>user-defined trigger event based on the at least one raw event, and to detect a user-specified</u>
- 7 trigger event and also includes a switch handler to invoke a helper thread responsive to
- 8 occurrence of the <u>user-defined</u> trigger event.
- 1 (Currently Amended) The system of claim 14, wherein: the instruction includes a

 marking instruction, when executed, to specify the user-defined trigger event in
- 3 the user-addressable register, the memory is a DRAM.

Application Number: 10/728.649

1	16.	(Currently Amended) The system of claim 14, wherein: the instruction is a trigger
2		instruction; and $\underline{\text{raw event detection logic is}}$ to the trigger-response mechanism is
3		$\underline{\text{further}}$ to detect $\underline{\text{an}}$ the opcode of the trigger instruction when the trigger
4		instruction reaches an execution phase of an execution pipeline.
1	17.	(Currently Amended) The system of claim 14, wherein: the processor further
2		includes a user-addressable control register to specify a weight of a context to be
3		saved responsive to invoking the helper thread.
4	the ins	truction is a marking instruction that specifies the trigger event, the trigger event
5	being asyr	nehronous; and the trigger-response mechanism is further to detect the
6	asynchron	ous trigger event.
1	18.	(Original) The system of claim 14, wherein: the switch handler is further to
2		maintain minimal context information for a current thread before invoking the
3		helper thread, wherein the minimal context information excludes traditional
4		context information.
1	19.	(Original) The system of claim 18, wherein: the excluded traditional context
2		information further comprises general register values.
1	20.	(Original) The system of claim 18, wherein the minimal thread context
2		information comprises an instruction pointer address value.

- (Original) A method comprising:
- 2 detecting a user-specified trigger condition;
- 3 suspending execution of a first thread on a single-threaded processor;
- 4 utilizing hardware to save minimal context information for the current thread without
- 5 operating system intervention; and
- 6 invoking a second thread on the single-threaded processor without operating system
- 7 intervention.

1

- 1 22. (Original) The method of claim 21, wherein:
- 2 detecting a user-specified trigger condition further comprises determining that a trigger
- 3 instruction has been encountered.
- 1 23. (Original) The method of claim 21, wherein:
- 2 detecting a user-specified trigger condition further comprises determining that an
- 3 asynchronous condition specified in a marking instruction has been encountered.
- 1 24. (Original) The method of claim 21, wherein:
- 2 utilizing hardware to save minimal context information further comprises saving an
- 3 instruction pointer address value.

- 1 25. (Currently Amended) The method of claim 21, further comprising:
- 2 determining that the first thread should be resumed[[]];
- 3 restoring the minimal context information for the first thread; and
- 4 resuming execution of the first thread without operating system intervention.
- 1 26. (Original) The method of claim 21, wherein detecting a user-specified trigger
- 2 condition further comprises:
- 3 receiving a marker instruction that specifies the trigger condition; and
- 4 monitoring a plurality of atomic event indicators to detect the trigger condition.
- 1 27. (Original) The method of claim 21, wherein detecting a user-specified trigger
- 2 condition further comprises:
- 3 generating an asynchronous response to indicate that the second thread should be invoked.

Application Number: 10/728,649

1	28. (New) A processor comprising:
2	event detection logic to detect a raw event;
3	user-programmable event logic coupled to the event detection logic to indicate a user
4	defined trigger event, the user-defined trigger event to be based on at least the
5	raw event;
6	user-programmable context control logic to specify a weight of a context to be saved
7	and
8	thread switch logic coupled to the user-programmable event logic and context control
9	logic, the thread switch logic, in response the user-defined trigger event being
10	detected, to save a portion of a first context based on the weight of a context
11	be saved that is to be specified in the user-programmable context control logi
12	and to spawn a helper thread without operating system intervention.
1	29. (New) The system of claim 28, wherein the user-programmable event logic
2	includes at least a user-programmable event register, and wherein the user-
3	defined trigger event is to be programmed in the user-programmable event
4	register in response to execution of a user marking instruction.

	30.	(New) The system of claim 28, further comprising trigger response logic coupled
2		to the user-programmable event logic and the event detection logic to detect the
3		user-defined trigger event based on at least the raw event, wherein the trigger
ŀ		response logic is to monitor for the user-defined trigger event for a predetermined
;		timeout period after execution of the user-marking instruction.