- Write a Python class that defines a 2D Ising model on a square $L\times L$ lattice with periodic boundary conditions, including methods to perform a Metropolis Monte Carlo simulation.
- Plot the average magnetisation $\langle M \rangle$, energy $\langle E \rangle$, magnetic susceptibility χ , and heat capacity C as a function of the magnetic field h for system size L=10 and two different temperatures: $k_BT/J=1.0$ and $k_BT/J=4.0$.
- Plot the same quantities as a function of temperature for h=0. Find the critical temperature T_c of the phase transition between ferromagnetic and paramagnetic phases.
- Plot the magnetic susceptibility and the heat capacity as a function of system size at $T=T_c$.
- Discuss the effect of:
 - system size
 - initial state
 - number of Metropolis samples
 - sweeping through lattice sites sequentially or randomly
- Feel free to explore other features of the phase transition!