Exploring Weather Trends

Project 1

Carolina Negrelli

Extracting the data

SQL queries:

SELECT * FROM city_list WHERE country='United States' -> The biggest city near me is Buffalo but is not on the list. Then I had to choose New York City.

SELECT * FROM city_data WHERE city='New York'

SELECT * FROM global_data

Moving Average

Tool: Google sheets

Method: 10-year moving average (5-year moving average still has a lot of fluctuations) using =AVERAGE(D2:D11) and dragging the formula.

Line Chart

Tool: Jupyter Notebook. Python - Pandas - Matplotlib

Method: Read the csv files with Pandas, plot with Matplotlib inline.

Line Chart

Observations

The average temperature of New York City is higher than the global one in almost all years except in a little window around 1785.

The trend in both cases is really similar with some differences around 1785 and 1880 where there is a peak in the global temperature but a valley in the New York City's temperature.

The average temperature in both cases is growing since 1850. Before that, the temperature fluctuated a lot and there is no clear trend.

More insight

Pearson's correlation coefficient between the global 10-year moving average and the one for New York city is p=0.79 indicating that there is indeed a correlation between both temperatures.

Cities with similar latitude

Observations

The behaviour of New York and Chicago's temperature is remarkable similar.

The four cities have a very similar trend with a difference in the value of the temperature.

The only remarkable difference between the cities is the valley in the New York's line around 1785.