Breakdown Risk Analysis

Tamás Barczikay

December 1, 2024

Objectives of the Analysis

Objective 1: Understanding the sample

- What patterns can be seen from the data?
- ► What analytical and/or statistical statements can we make based on the data?

Objective 2: Estimating breakdown risk

- Which models would suit the task?
- Which attributes would be relevant for forecasting the risk of a breakdown?

Data Cleaning

- ► The raw data table consisted of 316 observations with 15 features on engine tests.
- ► Two observations didn't have any data in them except for the operating hours (oph).
- ► Entry error in oph deleted.
- No variation in op_set_1 and op_set_3 columns.
- op_set_2 column is empty.

Feature Selection I.

Variable	Correlation	P-value
oph	-0.219	0.000
bmep	-0.144	0.011
ng_imp	-0.093	0.102
rpm_max	0.416	0.000
number_up	-0.420	0.000
number_tc	0.335	0.000

Table: Correlation of Numeric Variables

Feature Selection II.

Phi Coefficients				
Variable	Phi Coefficient	P-value		
pist_m	0.293	0.000		
past_dmg	0.036	0.634		
full_load_issues	0.450	0.000		

Cramer V				
Variable	Correlation	P-value		
issue_type	0.534	0.00		
resting_analysis_results	0.164	0.01		
number_tc	0.382	0.00		

Table: Correlation metrics for categorical variables

Proportion of Breakdown Risk for each Issue Types

Proportion of Breakdown Risk Based on Resting Analysis

Proportion of Breakdown by Number of Turbo Charges

Dimensionality Reduction

Goal was to end up with a limited amount of features, that are statistically significant and easy to interpret.

- issue_type was recoded to the typical_issue_type
 variable
- resting_analysis_results was recoded to the critical_rest_result variable (Note: there were only 4 critical cases)
- number_tc was recoded to the number_tc_2 variable (148 cases consist around the half of the overall)

Modelling Breakdown Risk

- We used logistic regression and SVM models.
- ▶ Grid search with 10 fold cross-validation was performed.
- ▶ All numeric variables were standardized.

Metrics	LR	SVC
Accuracy	0.841	0.825
Recall	0.886	0.886
Precision	0.838	0.816
F1 score	0.861	0.849

Table: Metrics for best fitting models

Feature Importance of the Best Fitting LR Model

Conclusions

Objective 1: Understanding the sample (i.e. important patterns)

- 1. 47% of the engines had two turbo chargers.
- 2. 68% of the engines had better piston material.

Objective 2: Estimating breakdown risk

- Appropriate models: cross-validated LR (or similar classifiers)
- Attributes lead to breakdown:
 - 1. Having two turbo chargers compared to having less is associated with a 2.6 times increase in the odds of experiencing a high breakdown risk.
 - 2. A one st. dev. increase in RPM is associated with a 1.4 times increase in the odds of experiencing a high breakdown risk.
 - 3. Having an engine piston made out of a better material, is associated with an odds ratio of 0.2, which corresponds to a decrease in the probability of a breakdown by 16.67%
 - 4. Typical issue type, though has a low value, might be endogenous.