Assignment-1

Name - Karishma Kansal

Uid-18bcs6103

In [1]:

```
# Supress Warnings
import warnings
warnings.filterwarnings('ignore')
```

Now we are inserting all libraries which are required in this program

In [2]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn import linear_model
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import Ridge
from sklearn.linear_model import Lasso
from sklearn.model_selection import GridSearchCV
import os
```

Now we are reading or extracting data which is required.

```
In [3]:
```

```
car= pd.read_csv('cars_trucks_and_buses_per_1000_persons.csv',encoding="latin-1")
```

In [4]:

```
car.head()
```

Out[4]:

	geo	2002	2003	2004	2005	2006	2007
0	Afghanistan	NaN	NaN	NaN	NaN	NaN	22.8
1	Albania	73.0	NaN	85.0	87.5	97.3	102.0
2	Algeria	NaN	88.0	89.0	91.0	NaN	NaN
3	Angola	NaN	NaN	NaN	NaN	NaN	39.6
4	Argentina	NaN	NaN	NaN	NaN	NaN	314.0

```
In [5]:
```

```
co2=pd.read_csv('co2_emissions_tonnes_per_person.csv',index_col='geo')
co2.head()
```

Out[5]:

1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 ... 2005 2006

geo

| Afghanistan | NaN |
0.0529 | 0.0637 |
|-------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------------|--------|
| Albania | NaN |
1.3800 | 1.2800 |
| Algeria | NaN |
3.2200 | 2.9900 |
| Andorra | NaN |
7.3000 | 6.7500 |
| Angola | NaN |
0.9800 | 1.1000 |

5 rows × 215 columns

In [6]:

```
co2.rename(columns = {'2014':'co2_emissions_tonnes_per_person'}, inplace = True)
```

In [7]:

```
d1=co2.pop('co2_emissions_tonnes_per_person')
d1.head()
```

Out[7]:

geo

Afghanistan 0.299 Albania 1.960 Algeria 3.720 Andorra 5.830 Angola 1.290

Name: co2_emissions_tonnes_per_person, dtype: float64

In [8]:

```
df1=pd.DataFrame(d1)
df1.head()
```

Out[8]:

co2_emissions_tonnes_per_person

geo

Afghanistan	0.299
Albania	1.960
Algeria	3.720
Andorra	5.830
Angola	1.290

```
In [9]:
coal=pd.read_csv('coal_consumption_per_cap.csv',index_col='geo')
In [10]:
coal.head()
Out[10]:
             1965
                     1966
                              1967
                                    1968
                                             1969
                                                    1970
                                                           1971
                                                                   1972
                                                                           1973
                                                                                   197
      geo
   Algeria
           0.00554 0.00524 0.00389
                                   0.0040 0.00495
                                                  0.0057
                                                         0.00154
                                                                 0.0013
                                                                        0.00146
                                                                                0.0011
 Argentina
          0.03570 0.03690
                           0.03560
                                   0.0282 0.03710
                                                  0.0409
                                                         0.03310
                                                                 0.0291
                                                                        0.03010
  Australia
          1.53000 1.55000
                           1.55000
                                   1.5500
                                          1.57000
                                                 1.5500
                                                         1.53000
                                                                1.5700 1.61000 1.6600
   Austria 0.69600 0.66000
                           0.62100
                                   0.6100
                                          0.59700
                                                  0.6390
                                                         0.58300
                                                                 0.5270
                                                                        0.52200
                                                                                0.5490
Azerbaijan
              NaN
                      NaN
                              NaN
                                     NaN
                                             NaN
                                                    NaN
                                                            NaN
                                                                   NaN
                                                                           NaN
                                                                                   Na
5 rows × 52 columns
In [11]:
coal.rename(columns = {'2014':'coal_consumption_per_cap'}, inplace = True)
In [12]:
d2=coal.pop('coal_consumption_per_cap')
d2.head()
Out[12]:
geo
Algeria
               0.00458
Argentina
               0.03460
               1.82000
Australia
Austria
               0.34700
Azerbaijan
               0.00017
Name: coal_consumption_per_cap, dtype: float64
In [13]:
df2=pd.DataFrame(d2)
In [14]:
df2.info()
<class 'pandas.core.frame.DataFrame'>
Index: 65 entries, Algeria to Vietnam
Data columns (total 1 columns):
coal consumption per cap
                             65 non-null float64
dtypes: float64(1)
memory usage: 1.0+ KB
```

In [15]:

```
df2.head()
```

Out[15]:

coal_consumption_per_cap

geo	
Algeria	0.00458
Argentina	0.03460
Australia	1.82000
Austria	0.34700
Azerbaijan	0.00017

In [16]:

electricity_gen=pd.read_csv('electricity_generation_per_person.csv',index_col='geo')
electricity_gen.head()

Out[16]:

	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	 200
geo											
Algeria	544.0	559.0	532.0	568.0	607.0	621.0	653.0	673	699	701.0	 109
Argentina	1490.0	1590.0	1660.0	1670.0	1580.0	1560.0	1620.0	1680	1810	1890.0	 288
Australia	7860.0	8100.0	8360.0	8670.0	9020.0	9130.0	9150.0	9230	9350	9510.0	 1160
Austria	5850.0	5860.0	6610.0	6400.0	6530.0	6530.0	6620.0	6540	6670	6710.0	 780
Azerbaijan	3110.0	3180.0	3320.0	3360.0	3270.0	3200.0	3170.0	2630	2520	2290.0	 250

5 rows × 32 columns

In [17]:

electricity_gen.rename(columns = {'2014':'electricity_generation_per_person'}, inplace = Tr

In [18]:

d3=electricity_gen.pop('electricity_generation_per_person')

In [19]:

```
df3=pd.DataFrame(d3)
df3.head()
```

Out[19]:

electricity_generation_per_person

geo	
Algeria	1640
Argentina	3290
Australia	10500
Austria	7540
Azerbaijan	2600

In [20]:

electircity_use=pd.read_csv('electricity_use_per_person.csv',index_col='geo')
electircity_use.head()

2005

2006

Out[20]:

geo													
Albania	NaN	 1720.0	1220.0	12									
Algeria	NaN	 887.0	859.0	8									
Angola	NaN	 109.0	144.0	1									
Argentina	NaN	 2390.0	2360.0	24									
Armenia	NaN	 1520.0	1640.0	17									

1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 ...

5 rows × 55 columns

1

In [21]:

```
electircity_use.rename(columns = {'2014':'electricity_use_per_person'}, inplace = True)
```

In [22]:

```
d4=electircity_use.pop('electricity_use_per_person')
```

In [23]:

```
df4=pd.DataFrame(d4)
df4.head()
```

Out[23]:

electricity_use_per_person

geo	
Albania	2310.0
Algeria	1360.0
Angola	312.0
Argentina	3050.0
Armenia	1970.0

In [24]:

```
forest=pd.read_csv('forest_coverage_percent.csv',index_col='geo')
forest.head()
```

Out[24]:

	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	 2006	2(
geo												
Afghanistan	2.07	2.07	2.07	2.07	2.07	2.07	2.07	2.07	2.07	2.07	 2.07	2
Albania	28.80	28.70	28.60	28.60	28.50	28.40	28.40	28.30	28.20	28.10	 28.50	28
Algeria	0.70	0.70	0.69	0.69	0.69	0.68	0.68	0.67	0.67	0.67	 0.68	0
Andorra	34.00	34.00	34.00	34.00	34.00	34.00	34.00	34.00	34.00	34.00	 34.00	34
Angola	48.90	48.80	48.70	48.60	48.50	48.40	48.30	48.20	48.10	48.00	 47.30	47

5 rows × 26 columns

In [25]:

```
forest.rename(columns = {'2014':'forest_coverage_percent'}, inplace = True)
```

In [26]:

```
d5=forest.pop('forest_coverage_percent')
```

In [27]:

```
df5=pd.DataFrame(d5)
df5.head()
```

Out[27]:

forest_coverage_percent

geo	
Afghanistan	2.07
Albania	28.20
Algeria	0.82
Andorra	34.00
Angola	46.50

In [28]:

```
hydro=pd.read_csv('hydro_power_generation_per_person.csv',index_col='geo')
hydro.head()
```

Out[28]:

	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	 2002	2003	
geo													_
Albania	NaN	 0.09770	0.13500										
Algeria	NaN	 0.00016	0.00071										
Angola	NaN	 0.00660	0.00692										
Argentina	NaN	 0.08190	0.07650										
Armenia	NaN	 0.04660	0.05570										

5 rows × 52 columns

now as in this dataframe 2014 column is not presentand we have to work only for column 2014 so we dont required this dataframe

```
In [29]:
```

```
income=pd.read_csv('income_per_person_gdppercapita_ppp_inflation_adjusted.csv',index_col='g
income.head()
```

Out[29]:

	1800	1801	1802	1803	1804	1805	1806	1807	1808	1809	 2009	2010	
geo													
Afghanistan	603	603	603	603	603	603	603	603	603	603	 1530	1610	_
Albania	667	667	667	667	667	668	668	668	668	668	 9530	9930	1
Algeria	715	716	717	718	719	720	721	722	723	724	 12600	12900	1
Andorra	1200	1200	1200	1200	1210	1210	1210	1210	1220	1220	 41700	39000	4
Angola	618	620	623	626	628	631	634	637	640	642	 5910	5900	

5 rows × 219 columns

```
In [30]:
```

```
income.rename(columns = {'2014':'income_per_person_gdppercapita_ppp_inflation_adjusted'}, i
```

In [31]:

```
d6=income.pop('income_per_person_gdppercapita_ppp_inflation_adjusted')
```

In [32]:

```
df6=pd.DataFrame(d6);
df6.head();
```

In [33]:

```
indusrty=pd.read_csv('industry_percent_of_gdp.csv',index_col='geo')
```

```
In [34]:
```

```
indusrty.head()
```

Out[34]:

1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 ... 2008 2009 201

geo

Afghanistan	NaN	 26.7	21.8	21.									
Albania	NaN	 25.2	24.4	24.									
Algeria	29.4	29.5	31.7	40.8	42.7	42.2	46.5	47.8	47.7	47.8	 58.6	47.9	50.
Andorra	NaN	 15.5	14.4	13.									
Angola	NaN	 NaN	NaN	Na									

5 rows × 58 columns

←

In [35]:

```
indusrty.rename(columns = {'2014':'industry_percent_of_gdp'}, inplace = True)
```

In [36]:

```
d7=indusrty.pop('industry_percent_of_gdp')
```

In [37]:

df7=pd.DataFrame(d7)
df7.head()

Out[37]:

industry_percent_of_gdp

geo

Afghanistan	21.10
Albania	21.50
Algeria	42.30
Andorra	9.91
Angola	NaN

In [38]:

naturalgas=pd.read_csv('natural_gas_production_per_person.csv',index_col='geo')

In [39]:

naturalgas.head()

Out[39]:

	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	•••	2007	20
ge	90												
Alger	ia 0.157	0.161	0.198	0.256	0.288	0.344	0.422	0.392	0.591	0.940		2.23	2.2
Argentii	na 0.226	0.232	0.224	0.228	0.221	0.247	0.251	0.250	0.233	0.271		1.01	0.9
Austral	ia 0.122	0.179	0.252	0.316	0.356	0.377	0.440	0.497	0.530	0.603		1.77	1.7
Azerbaija	an NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN		1.01	1.5
Bahra	in 2.630	3.700	4.440	6.020	7.060	7.020	6.910	7.020	7.220	7.560		10.20	10.2

5 rows × 47 columns

In [40]:

naturalgas.rename(columns = {'2014':'natural_gas_production_per_person'}, inplace = True)

In [41]:

d8=naturalgas.pop('natural_gas_production_per_person')

In [42]:

df8=pd.DataFrame(d8)
df8.head()

Out[42]:

natural_gas_production_per_person

geo	
Algeria	1.920
Argentina	0.742
Australia	2.440
Azerbaijan	1.660
Bahrain	10.400

In [43]:

```
oilconsumption=pd.read_csv('oil_consumption_per_cap.csv',index_col='geo')
oilconsumption.head()
```

Out[43]:

	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	 2007	200
geo												
Algeria	0.102	0.130	0.118	0.122	0.125	0.140	0.153	0.163	0.173	0.187	 0.376	0.40
Argentina	0.990	1.010	1.020	1.020	1.050	0.923	0.969	0.954	0.939	0.930	 0.605	0.61
Australia	1.330	1.550	1.650	1.750	1.760	1.900	1.960	1.970	2.070	2.160	 2.030	2.02
Austria	0.761	0.832	0.880	1.010	1.110	1.210	1.350	1.450	1.560	1.390	 1.620	1.60
Azerbaijan	NaN	 0.519	0.40									

5 rows × 52 columns

In [44]:

oilconsumption.rename(columns = {'2014':'oil_consumption_per_cap'}, inplace = True)

In [45]:

d9=oilconsumption.pop('oil_consumption_per_cap')

In [46]:

```
df9=pd.DataFrame(d9)
df9.head()
```

Out[46]:

oil_consumption_per_cap

geo	
Algeria	0.452
Argentina	0.729
Australia	2.050
Austria	1.440
Azerbaijan	0.468

```
In [47]:
```

```
oilproduction=pd.read_csv('oil_production_per_person.csv',index_col='geo')
oilproduction.head()
```

Out[47]:

	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	 2007	
geo												
Algeria	2.1000	2.6100	2.9300	3.120	3.170	3.310	2.480	3.260	3.220	2.910	 2.520	2
Angola	0.1060	0.1000	0.0837	0.115	0.370	0.747	0.826	0.995	1.120	1.140	 3.930	4
Argentina	0.6180	0.6480	0.6960	0.752	0.767	0.834	0.885	0.896	0.857	0.825	 0.957	(
Australia	0.0305	0.0382	0.0869	0.158	0.177	0.678	1.170	1.220	1.510	1.480	 1.170	1
Azerbaijan	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	 4.880	Ę

5 rows × 52 columns

In [48]:

oilproduction.rename(columns = {'2014':'oil_production_per_person'}, inplace = True)

In [49]:

d10=oilproduction.pop('oil_production_per_person')

In [50]:

df10=pd.DataFrame(d10)
df10.head()

Out[50]:

 $oil_production_per_person$

geo	
Algeria	1.760
Angola	3.080
Argentina	0.695
Australia	0.813
Azerbaijan	4.430

In [51]:

```
yearlyCo2=pd.read_csv('yearly_co2_emissions_1000_tonnes.csv',index_col='geo')
yearlyCo2.head()
```

Out[51]:

	1751	1752	1753	1754	1755	1756	1757	1758	1759	1760	 2005	2(
geo												
Afghanistan	NaN	 1330.0	165									
Albania	NaN	 4250.0	390									
Algeria	NaN	 107000.0	10100									
Andorra	NaN	 576.0	54									
Angola	NaN	 19200.0	2230									

5 rows × 264 columns

In [52]:

```
yearlyCo2.rename(columns = {'2014':'yearly_co2_emissions_1000_tonnes'}, inplace = True)
```

In [53]:

```
d11=yearlyCo2.pop('yearly_co2_emissions_1000_tonnes')
```

In [54]:

```
df11=pd.DataFrame(d11)
df11.head()
```

Out[54]:

yearly_co2_emissions_1000_tonnes

geo	
Afghanistan	9810.0
Albania	5720.0
Algeria	145000.0
Andorra	462.0
Angola	34800.0

Now we are merging dataframes by taking two at a time.

In [55]:

```
dff1=pd.merge(df1, df2, left_index=True, right_index=True)
```

In [56]:

dff1.head()

Out[56]:

co2_emissions_tonnes_per_person coal_consumption_per_cap

geo		
Algeria	3.72	0.00458
Argentina	4.75	0.03460
Australia	15.40	1.82000
Austria	6.80	0.34700
Azerbaijan	3.94	0.00017

In [57]:

dff2=pd.merge(df3,df4,left_index=True,right_index=True)
dff2.head()

Out[57]:

electricity_generation_per_person electricity_use_per_person

geo		
Algeria	1640	1360.0
Argentina	3290	3050.0
Australia	10500	10100.0
Austria	7540	8360.0
Azerbaijan	2600	2200.0

In [58]:

dff3=pd.merge(df5, df6, left_index=True, right_index=True)
dff3.head()

Out[58]:

$forest_coverage_percent income_per_person_gdppercapita_ppp_inflation_adjusted$

geo		
Afghanistan	2.07	1780
Albania	28.20	10700
Algeria	0.82	13500
Andorra	34.00	44900
Angola	46.50	6260

In [59]:

dff4=pd.merge(df7, df8, left_index=True, right_index=True)

In [60]:

dff4.head()

Out[60]:

$industry_percent_of_gdp \quad natural_gas_production_per_person$

geo		
Algeria	42.3	1.920
Argentina	24.3	0.742
Australia	25.4	2.440
Azerbaijan	53.6	1.660
Bahrain	46.5	10.400

In [61]:

dff5=pd.merge(df9, df10, left_index=True, right_index=True)
dff5.head()

Out[61]:

apa

oil_consumption_per_cap oil_production_per_person

geo		
Algeria	0.452	1.760
Argentina	0.729	0.695
Australia	2.050	0.813
Azerbaijan	0.468	4.430
Brazil	0.737	0.600

In [62]:

dff6=pd.merge(dff5, df11, left_index=True, right_index=True)

In [63]:

dff6.head()

Out[63]:

oil_consumption_per_cap oil_production_per_person yearly_co2_emissions_1000_tonr

geo			
Algeria	0.452	1.760	14500
Argentina	0.729	0.695	20400
Australia	2.050	0.813	36100
Azerbaijan	0.468	4.430	3750
Brazil	0.737	0.600	53000
4			→

In [64]:

dff7=pd.merge(dff4, dff6, left_index=True, right_index=True)

In [65]:

dff7.head()

Out[65]:

 $industry_percent_of_gdp \quad natural_gas_production_per_person \quad oil_consumption_per_ca$

geo			
Algeria	42.3	1.920	0.45
Argentina	24.3	0.742	0.72
Australia	25.4	2.440	2.05
Azerbaijan	53.6	1.660	0.46
Brazil	20.5	0.100	0.73
4			•

In [66]:

dff8=pd.merge(dff7, dff3, left_index=True, right_index=True)

In [67]:

dff8.head()

Out[67]:

industry_percent_of_gdp natural_gas_production_per_person oil_consumption_per_ca

geo			
Algeria	42.3	1.920	0.45
Argentina	24.3	0.742	0.72
Australia	25.4	2.440	2.05
Azerbaijan	53.6	1.660	0.46
Brazil	20.5	0.100	0.73

•

In [68]:

dff9=pd.merge(dff8, dff2, left_index=True, right_index=True)

In [69]:

dff9.head()

Out[69]:

industry_percent_of_gdp natural_gas_production_per_person oil_consumption_per_ca

geo			
Algeria	42.3	1.920	0.45
Argentina	24.3	0.742	0.72
Australia	25.4	2.440	2.05
Azerbaijan	53.6	1.660	0.46
Brazil	20.5	0.100	0.73
4			>

In [70]:

df=pd.merge(dff1, dff9, left_index=True, right_index=True)

Finally we get dataframe by merging different dataframes and this dataframe is our required dataframe.

```
In [71]:
```

df.head()

Out[71]:

co2_emissions_tonnes_per_person coal_consumption_per_cap industry_percent_of_g

geo			
Algeria	3.72	0.00458	42
Argentina	4.75	0.03460	24
Australia	15.40	1.82000	2!
Azerbaijan	3.94	0.00017	5(
Brazil	2.59	0.08580	2(

In [72]:

df.info()

<class 'pandas.core.frame.DataFrame'> Index: 33 entries, Algeria to Vietnam Data columns (total 11 columns): co2_emissions_tonnes_per_person 33 non-null float64 coal_consumption_per_cap 33 non-null float64 33 non-null float64 industry_percent_of_gdp natural_gas_production_per_person 33 non-null float64 33 non-null float64 oil_consumption_per_cap oil_production_per_person 33 non-null float64 33 non-null float64 yearly_co2_emissions_1000_tonnes 33 non-null float64 forest_coverage_percent income_per_person_gdppercapita_ppp_inflation_adjusted 33 non-null int64 electricity_generation_per_person 33 non-null int64 electricity_use_per_person 33 non-null float64 dtypes: float64(9), int64(2)

Checking for outliers

memory usage: 3.1+ KB

In [73]:

df.describe()

Out[73]:

	co2_emissions_tonnes_per_person	coal_consumption_per_cap	industry_percent_of_gdp
count	33.000000	33.000000	33.000000
mean	10.051515	0.357886	37.066667
std	10.074812	0.570206	13.844509
min	1.730000	0.000000	17.800000
25%	3.500000	0.006410	27.700000
50%	6.030000	0.161000	33.200000
75%	14.200000	0.457000	42.300000
max	45.400000	2.340000	70.500000
4			>

In [74]:

```
# data visualization
from sklearn.model_selection import train_test_split
```

In [75]:

```
import matplotlib.pyplot as plt
import seaborn as sns
```

In [76]:

sns.pairplot(df)
plt.show()

This is quite hard to read, and we can rather plot correlations between variables. Also, a heatmap is pretty useful to visualise multiple correlations in one plot.

In [77]:

```
# correlation matrix
cor = df.corr()
cor
```

Out[77]:

	co2_emissions_tonnes_per_person	coal_
co2_emissions_tonnes_per_person	1.000000	
coal_consumption_per_cap	0.072586	
industry_percent_of_gdp	0.585031	
natural_gas_production_per_person	0.789657	
oil_consumption_per_cap	0.758837	
oil_production_per_person	0.730895	
yearly_co2_emissions_1000_tonnes	-0.021843	
forest_coverage_percent	-0.303634	
income_per_person_gdppercapita_ppp_inflation_adjusted	0.819585	
electricity_generation_per_person	0.616939	
electricity_use_per_person	0.655008	
4		>

In [78]:

```
# plotting correlations on a heatmap

# figure size
plt.figure(figsize=(16,8))

# heatmap
sns.heatmap(cor, cmap="YlGnBu", annot=True)
plt.show()
```


In [79]:

now from this it is clear that forest_coverage_percent is negatively correlated so we sho
df.drop('forest_coverage_percent',axis=1,inplace=True)

In [80]:

```
#now again we see on correlation matrix
cor = df.corr()
cor
```

Out[80]:

	co2_emissions_tonnes_per_person	coal_
co2_emissions_tonnes_per_person	1.000000	
coal_consumption_per_cap	0.072586	
industry_percent_of_gdp	0.585031	
natural_gas_production_per_person	0.789657	
oil_consumption_per_cap	0.758837	
oil_production_per_person	0.730895	
yearly_co2_emissions_1000_tonnes	-0.021843	
income_per_person_gdppercapita_ppp_inflation_adjusted	0.819585	
electricity_generation_per_person	0.616939	
electricity_use_per_person	0.655008	

In [81]:

```
# plotting correlations on a heatmap

# figure size
plt.figure(figsize=(16,8))

# heatmap
sns.heatmap(cor, cmap="YlGnBu", annot=True)
plt.show()
```


In [82]:

```
#Applying IQR method

q1 = df.quantile(0.25)

q3 = df.quantile(0.75)

IQR = q3 - q1

df = df[~((df < (q1 - 1.5 * IQR)) | (df > (q3 + 1.5 * IQR))).any(axis=1)]
```

In [83]:

```
#Checking Shape
df.shape
```

Out[83]:

(19, 10)

```
In [84]:
```

```
df.info()
<class 'pandas.core.frame.DataFrame'>
Index: 19 entries, Algeria to Vietnam
Data columns (total 10 columns):
co2 _emissions_tonnes_per_person
                                                          19 non-null float64
                                                          19 non-null float64
coal_consumption_per_cap
                                                          19 non-null float64
industry_percent_of_gdp
natural_gas_production_per_person
                                                          19 non-null float64
                                                          19 non-null float64
oil_consumption_per_cap
                                                          19 non-null float64
oil_production_per_person
yearly_co2_emissions_1000_tonnes
                                                          19 non-null float64
income_per_person_gdppercapita_ppp_inflation_adjusted
                                                          19 non-null int64
electricity_generation_per_person
                                                          19 non-null int64
                                                          19 non-null float64
electricity_use_per_person
dtypes: float64(8), int64(2)
memory usage: 1.6+ KB
```

Data Preparation

Data Preparation Let's now prepare the data and build the model.

```
In [93]:
```

```
oil_production_per_person','yearly_co2_emissions_1000_tonnes','income_per_person_gdppercapit
In [94]:
X.head()
```

Out[94]:

coal_consumption_per_cap industry_percent_of_gdp natural_gas_production_per_pers

geo			
Algeria	0.00458	42.3	1.9
Argentina	0.03460	24.3	0.
Azerbaijan	0.00017	53.6	1.0
Brazil	0.08580	20.5	0.
Colombia	0.11000	32.7	0.1
4			>

```
In [95]:
```

```
y = df['co2_emissions_tonnes_per_person']
```

```
In [96]:
y.head()
Out[96]:
geo
              3.72
Algeria
              4.75
Argentina
              3.94
Azerbaijan
Brazil
              2.59
Colombia
              1.76
Name: co2_emissions_tonnes_per_person, dtype: float64
```

Model Building and Evaluation

```
In [97]:
```

```
# scaling the features
from sklearn.preprocessing import scale
# storing column names in cols, since column names are (annoyingly) lost after
# scaling (the df is converted to a numpy array)
cols = X.columns
X = pd.DataFrame(scale(X))
X.columns = cols
X.columns
C:\Users\dell\Anaconda3\lib\site-packages\ipykernel_launcher.py:7: DataConve
rsionWarning: Data with input dtype int64, float64 were all converted to flo
at64 by the scale function.
  import sys
Out[97]:
Index(['coal_consumption_per_cap', 'industry_percent_of_gdp',
       'natural_gas_production_per_person', 'oil_consumption_per_cap',
       'oil_production_per_person', 'yearly_co2_emissions_1000_tonnes',
       'income_per_person_gdppercapita_ppp_inflation_adjusted',
       'electricity_generation_per_person', 'electricity_use_per_person'],
      dtype='object')
In [98]:
from sklearn.model_selection import train_test_split
In [99]:
```

```
X_train, X_test, y_train, y_test = train_test_split(X,y,train_size=0.7,test_size = 0.3, rar
```

In [164]:

Fitting 7 folds for each of 8 candidates, totalling 56 fits

[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent work ers.

[Parallel(n_jobs=1)]: Done 56 out of 56 | elapsed: 0.2s finished C:\Users\dell\Anaconda3\lib\site-packages\sklearn\model_selection_search.p y:841: DeprecationWarning: The default of the `iid` parameter will change fr om True to False in version 0.22 and will be removed in 0.24. This will change numeric results when test-set sizes are unequal.

DeprecationWarning)

Out[164]:

In [165]:

```
cv_results = pd.DataFrame(model_cv.cv_results_)
cv_results.head()
```

Out[165]:

	mean_fit_time	std_fit_time	mean_score_time	std_score_time	param_alpha	params	split0_t
0	0.002447	0.000496	0.001106	0.000334	0.01	{'alpha': 0.01}	
1	0.002275	0.000453	0.000717	0.000453	0.05	{'alpha': 0.05}	
2	0.002442	0.001184	0.001117	0.000299	0.1	{'alpha': 0.1}	
3	0.002337	0.000436	0.001419	0.000499	0.2	{'alpha': 0.2}	
4	0.002435	0.000483	0.000984	0.000033	0.8	{'alpha': 0.8}	

5 rows × 25 columns

```
In [166]:
```

```
# plotting mean test and train scoes with alpha
cv_results['param_alpha'] = cv_results['param_alpha'].astype('float32')
# plotting
plt.plot(cv_results['param_alpha'], cv_results['mean_train_score'])
plt.plot(cv_results['param_alpha'], cv_results['mean_test_score'])
plt.xlabel('alpha')
plt.ylabel('Negative Mean Absolute Error')
plt.title("Negative Mean Absolute Error and alpha")
plt.legend(['train score', 'test score'], loc='upper left')
plt.show()
```



```
9/12/2020
                                                   Untitled
  In [180]:
  alpha = 0.01
  lasso = Lasso(alpha=alpha)
  lasso.fit(X_train, y_train)
 Out[180]:
  Lasso(alpha=0.01, copy_X=True, fit_intercept=True, max_iter=1000,
     normalize=False, positive=False, precompute=False, random_state=None,
     selection='cyclic', tol=0.0001, warm_start=False)
  In [181]:
  lasso.coef
 Out[181]:
  array([ 0.06687721, 0.25555553, 0.93478149, 0.17609756, -0.20150787,
          0.49535097, -0. , 1.34951223,
                                                            1)
 In [182]:
  from sklearn.metrics import mean_squared_error
  mean_squared_error(y_test, model_cv.predict(X_test))
 Out[182]:
  0.48751017821885156
  In [183]:
  #Importing Linear regression Libraries
  from sklearn import linear_model
  from sklearn.linear_model import LinearRegression
  Linear_model= LinearRegression()
  In [184]:
  #now we creating Linear Model
  Linear model.fit(X train,y train)
  pred = Linear_model.predict(X_test)
  pred[:10]
 Out[184]:
  array([6.38249686, 3.62003115, 4.29230985, 1.32588428, 3.78845719,
         3.99720296])
  In [185]:
```

0.8887442223615221

from sklearn.metrics import mean_squared_error print(mean_squared_error(y_test,pred)**(0.5))

#Importing mean_squared_error and calculating meansquare for linear

```
In [186]:
```

```
#Importing r2 score
from sklearn.metrics import r2_score
```

In [187]:

```
#Checking r2 score for linear r2_score(y_test,prediction)
```

Out[187]:

0.6499616968145859

In [188]:

```
#Creating Lasso model for prediction
lasso_model = Lasso(alpha=0.00001)
lasso_model.fit(X_train,y_train)
pred2 = lasso_model.predict(X_test)
```

C:\Users\dell\Anaconda3\lib\site-packages\sklearn\linear_model\coordinate_de scent.py:492: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Fitting data with very small alpha may cause precision problems.

ConvergenceWarning)

In [189]:

```
#Checking Mean squared error for Lasso
print(mean_squared_error(y_test,pred2)**(0.5))
```

0.8877982278062921

In [190]:

```
#Checking r2 score for Lasso
r2_score(y_test,pred2)
```

Out[190]:

0.6507064737438435

In []:

We can see that our lasso model's r2 and mean squared value are almost same as linear model

In []: