

STRUKTURY DANYCH I ZŁOŻONOŚĆ OBLICZENIOWA Część 5 Rotacje, algorytm DSW, AVL-drzewa

ROTACJA WĘZŁÓW DRZEWA BST

Rotacja (w prawo albo w lewo) – lokalna operacja promowania rotowanego węzła na poziom o numerze o jeden mniejszym, zachowująca porządek właściwy dla BST.

Przykład: rotacja węzła k3 w prawo

ROTACJA WĘZŁÓW DRZEWA BST

Rotacja (w prawo albo w lewo) – lokalna operacja promowania rotowanego węzła na poziom o numerze o jeden mniejszym, zachowująca porządek właściwy dla BST.

Przykład: rotacja węzła k3 w prawo


```
rotate_right(grandfather, parent, child)
   if (grandfather \neq NULL)
    if (grandfather \rightarrow right = parent)
            grandfather\rightarrowright \leftarrow child;
     else grandfather\rightarrowleft \leftarrow child;
   else
        root ← child;//zmiana korzenia drzewa
   tmp \leftarrow child \rightarrow right;
   child\rightarrowright \leftarrow parent;
   parent \rightarrow left \leftarrow tmp;
   return;
```


ROTACJA WĘZŁÓW DRZEWA BST

Rotacja (w prawo albo w lewo) – lokalna operacja promowania rotowanego węzła na poziom o numerze o jeden mniejszym, zachowująca porządek właściwy dla BST.

Przykład: rotacja węzła k3 w prawo

```
k3
k2
                 k5
        k4
                          k6
```

```
rotate_right(grandfather, parent, child)
   if (grandfather \neq NULL)
    if (grandfather \rightarrow right = parent)
            grandfather\rightarrowright \leftarrow child;
     else grandfather\rightarrowleft \leftarrow child;
   else
       root ← child;//zmiana korzenia drzewa
   tmp \leftarrow child \rightarrow right;
   child\rightarrowright \leftarrow parent;
   parent \rightarrow left \leftarrow tmp;
   return;
```


Algorytm DSW dokładnego wyważania drzewa BST

(C.Day – 1976; Q.F.Stout & B.Warren – 1986)

Faza I

Przekształcenie dowolnego drzewa BST w listę liniową za pomocą rotacji w prawo kolejnych lewych potomków napotykanych w "wędrówce" od korzenia do skrajnego prawego węzła o największej wartości klucza.

```
make_intermediate_list(root)
  grandfather \leftarrow NULL;
  tmp \leftarrow root;
  while (tmp \neq NULL)
  { if ((tmp \rightarrow left) \neq NULL)//UWAGA: zmiana "root'a" obsłużona w rotacji!
        tmp2 \leftarrow tmp \rightarrow left;
        rotate_right(grandfather, tmp, tmp\rightarrowleft);
        tmp \leftarrow tmp2;
     else
     { grandfather \leftarrow tmp;
        tmp \leftarrow tmp \rightarrow right; 
  }//
                       Złożoność I fazy algorytmu DSW O(N)
           Liczba rotacji \leq N-1; liczba wykonań pętli "while" \leq 2N-1)
}//
```


Wyważanie za pomocą rotacji w lewo określonych węzłów (faza ma swoje podfazy, których liczba zależy od liczby węzłów w drzewie).

Pojedyncza podfaza fazy II polega na "wędrówce" w dół drzewa, przy czym rotowany jest co drugi węzeł, zaś wybiera się węzły należące do drogi wiodącej od korzenia do elementu o największej wartości klucza, czyli "przemieszczając się" w kierunku prawych potomków. Pierwszym rotowanym w podfazie węzłem jest prawy potomek korzenia.

W każdym cyklu długość drogi wiodącej do ostatniego elementu listy zmniejsza się "dwukrotnie". W przypadku, gdy końcowe dokładnie wyważone drzewo nie będzie miało "kompletu" węzłów na ostatnim poziomie (tzn. $h \neq log_2(N+1)$), należy w pierwszym cyklu zakończyć wędrówkę po wykonaniu N-m rotacji, gdzie:

$$m = 2^{(int)\log_2(N+1)} - 1$$

Dygresja

Parametr *m* można także obliczyć następująco:

$$m \leftarrow 1;$$

while $(m \le N) m \leftarrow 2 * m + 1;$
 $m \leftarrow m / 2;$

Faza II (pseudokod)

```
make_perfect_tree(N)//N – rzeczywista liczba węzłów na liście
  grandfather \leftarrow NULL; tmp \leftarrow root;
  m \leftarrow 1:
  while (m \le N) m \leftarrow 2 * m + 1;
  m \leftarrow m / 2;
  for (i \leftarrow 0; i < (N-m); i++)
  { tmp2 \leftarrow tmp \rightarrow right;
     if (tmp2 \neq NULL)
      { rotate_left(grandfather, tmp, tmp→right);
        grandfather \leftarrow tmp2;
         tmp \leftarrow tmp2 \rightarrow right; \} 
  while (m>1)
   { m \leftarrow m/2; grandfather \leftarrow NULL; tmp \leftarrow root;
     for (i \leftarrow 0; i < m; i++)
      { tmp2 \leftarrow tmp \rightarrow right;
        rotate_left(grandfather, tmp, tmp→right);
        grandfather \leftarrow tmp2;
         tmp \leftarrow tmp2 \rightarrow right; 
                        Złożoność II fazy algorytmu DSW O(N)
```


Algorytm DSW – faza II (przykład)

4-ta podfaza m = 1

Algorytm DSW – faza II (przykład)

koniec wyważania

AVL - DRZEWA (WYWAŻONE DRZEWA BST)

W <u>AVL-drzewie</u> każdy węzeł (oprócz klucza, wskaźników na potomków oraz opcjonalnych danych nie wpływających na uporządkowanie drzewa AVL) powinien mieć również składową niosącą informację o <u>bieżącej wartości</u> współczynnika wyważenia (ang.:balance).

```
struct node_rec {
    eltype key;
    struct node_rec *left, *right;
    int balance;//współczynnik wyważenia węzła
    datatype Ti;
    };

typedef struct node_rec *tree_type;
```

Istotną zaletą AVL-drzew jest to, że operacje wyszukiwania, wstawiania i usuwania węzłów mają złożoność $O(\lg N)$.

$$log_2(N+1) \le h_{AVL}(N) \le 1,4404 log_2(N+2) - 0,328$$

Wstawianie nowego węzła do AVL-drzewa

Faza 1

Tak, jak w większości binarnych struktur drzewiastych BST, miejsca dla nowego węzła poszukuje się porównując klucze kolejnych węzłów w "wędrówce od korzenia w dół". Nowy węzeł staję się <u>nowym liściem</u>.

<u>Ważne</u> jest, by szukając miejsca dla nowego węzła pamiętać całą ścieżkę od korzenia do nowego węzła, ze współczynnikami wyważenia włącznie.

Faza 2

Po wstawieniu nowego węzła należy "wędrować wstecz do korzenia", korygując odpowiednio współczynniki wyważenia w odwiedzanych węzłach.

Jeżeli współczynnik wyważenia w którymkolwiek z odwiedzanych węzłów osiągnie wartość +2 lub -2, to <u>należy dokonać odpowiedniej rekonstrukcji drzewa</u>, pamiętając o tym, że drzewa AVL są wyważone lokalnie (tzn. <u>wyważone jest każde poddrzewo</u>).

Taka rekonstrukcja wymaga wykonania odpowiednio: jednej lub dwóch rotacji. Po wykonaniu lokalnych działań rekonstrukcyjnych AVL-drzewo staje się także wyważone globalnie i proces rekonstrukcji się kończy.

Wstawianie nowego węzła do AVL-drzewa

Faza 2 (cd.)

Uzasadnienie globalnej skuteczności lokalnej rekonstrukcji

Węzły rodzicielskie dla nowego węzła mogą zmienić swój współczynnik wyważenia wyłącznie o wartość ±1.

Zmiana $0 \rightarrow \pm 1$

Lokalnie drzewo jest nadal wyważone, jednak trzeba nadal sprawdzać kolejnych przodków (aż do korzenia); być może któryś z przodków przestanie być wyważony.

Zmiana $\pm 1 \rightarrow 0$

Po takiej zmianie wyważenia w którymkolwiek z przodków nowo wstawionego węzła można rekonstrukcję zakończyć (nie trzeba już analizować kolejnych przodków, gdyż wysokość tego poddrzewa, którego korzeniem jest ów przodek, pozostanie taka sama, jak przed wstawieniem nowego węzła).

Przykład

Wstawianie nowego węzła do AVL-drzewa

Faza 2 (cd.)

Zmiana $\pm 1 \rightarrow \pm 2$

Jeżeli prawy (lewy) potomek węzła, w którym nastąpiła zmiana współczynnika wyważenia $+1 \rightarrow +2$ ($-1 \rightarrow -2$), miał przed wstawieniem nowego węzła współczynnik wyważenia 0 (0), zaś po wstawieniu nowego węzła uległa zwiększeniu wysokość prawego (lewego) poddrzewa tego potomka i korzeń tego poddrzewa przed wstawieniem nowego węzła miał współczynnik wyważenia 0 lub "nie istniał" (tzw. *konfiguracja jednorodna*), to do przywrócenia lokalnego i globalnego wyważenia wystarczy pojedyncza rotacja tego prawego (lewego) potomka w lewo (prawo).

Jeżeli prawy (lewy) potomek węzła, w którym nastąpiła zmiana współczynnika wyważenia $+1 \rightarrow +2$ ($-1 \rightarrow -2$), miał przed wstawieniem nowego węzła współczynnik wyważenia 0 (0), zaś po wstawieniu nowego węzła uległa zwiększeniu wysokość lewego (prawego) poddrzewa tego potomka i korzeń tego poddrzewa przed wstawieniem nowego węzła miał współczynnik wyważenia 0 lub "nie istniał" (tzw. *konfiguracja niejednorodna*), to do przywrócenia lokalnego i globalnego wyważenia potrzebne są dwie rotacje tego korzenia (lub nowego wstawionego węzła w przypadku, gdy to poddrzewo było puste): pierwsza w prawo (lewo), zaś druga w lewo (prawo).

Dygresja

Inne sytuacje nie zaistnieją, gdyż wykluczone są przez mechanizmy rekonstrukcyjne (przywrócenie wyważenia nastąpi wcześniej dzięki działaniom rekonstrukcyjnym podjętym na poziomach analizowanych wcześniej).

Faza 2 (cd.)

Przykład (konfiguracja jednorodna)

Faza 2 (cd.)

Przykład (konfiguracja jednorodna)

Wstawianie nowego węzła do AVL-drzewa

Faza 2 (cd.)

Przykład (konfiguracja jednorodna – przypadek szczególny)

Wstawianie nowego węzła do AVL-drzewa

Faza 2 (cd.)

Przykład (konfiguracja jednorodna – przypadek szczególny)

Zmiana wyważenia +1→ +2 wystąpi w węźle P

Po rotacji węzła Q w lewo

Faza 2 (cd.)

Przykład (konfiguracja niejednorodna)

Faza 2 (cd.)

Przykład (konfiguracja niejednorodna)

Faza 2 (cd.)

Przykład (konfiguracja niejednorodna)

Wstawianie nowego węzła do AVL-drzewa

Faza 2 (cd.)

Przykład (konfiguracja niejednorodna – przypadek szczególny)

Wstawianie nowego węzła do AVL-drzewa

Faza 2 (cd.)

Przykład (konfiguracja niejednorodna – przypadek szczególny)

Zmiana wyważenia +1→ +2 wystąpi w węźle P

Po rotacji węzła R w prawo

Wstawianie nowego węzła do AVL-drzewa

Faza 2 (cd.)

Przykład (konfiguracja niejednorodna – przypadek szczególny)

Zmiana wyważenia +1→ +2 wystąpi w węźle P

Po rotacji węzła R w lewo

Usuwanie węzła z AVL-drzewa

Po odnalezieniu węzła, który ma być usunięty, sposób dalszego postępowania zależy od stopnia usuwanego węzła.

- Jeżeli usuwany węzeł jest liściem, to należy "cofać się" aż do korzenia drogą utworzoną przez jego przodków, sprawdzając współczynniki wyważenia tych przodków i odpowiednio reagując na ich zmianę.
- Jeżeli usuwany węzeł ma tylko jedno poddrzewo, to to poddrzewo jest liściem AVL-drzewa; liść ten zajmuje miejsce usuwanego węzła, po czym należy sprawdzić współczynniki wyważenia wszystkich jego przodków, postępując tak jak wyżej.
- Jeżeli usuwany węzeł ma oba poddrzewa, to w jego miejsce przenosi się węzeł będący jego <u>następnikiem</u> albo <u>poprzednikiem</u>; analizę zmian współczynników wyważenia (i procesy rekonstrukcyjne opisane powyżej) przenosi się do miejsca, z którego "usunięto" <u>następnika</u> albo <u>poprzednika</u> usuwanego węzła.

Sposób reakcji na zmiany współczynników wyważenia przodków

Zmiana $0 \rightarrow +1$

Wysokość poddrzewa, dla którego korzeniem jest węzeł o takiej zmianie współczynnika wyważenia, pozostaje bez zmian (wysokość jednego z jego poddrzew zmniejszyła się o 1), a zatem można zakończyć rekonstrukcję drzewa.

Zmiana $\pm 1 \rightarrow 0$

Lokalnie drzewo jest nadal wyważone, jednak trzeba nadal sprawdzać kolejnych przodków (aż do korzenia), gdyż wysokość tego poddrzewa uległa zmniejszeniu.

Usuwanie węzła z AVL-drzewa

Sposób reakcji na zmiany współczynników wyważenia przodków (cd.)

Zmiana $\pm 1 \rightarrow \pm 2$

Zmiana taka jest efektem zmniejszenia wysokości lewego (prawego) poddrzewa analizowanego węzła.

- Jeżeli prawy (lewy) potomek węzła, w którym nastąpiła zmiana współczynnika wyważenia +1 → +2 (-1 → -2), miał przed usunięciem węzła współczynnik wyważenia +1 (-1), to w celu lokalnego wyważenia wystarczy pojedyncza rotacja tego prawego (lewego) potomka w lewo (prawo).
- Jeżeli prawy (lewy) potomek węzła, w którym nastąpiła zmiana współczynnika wyważenia $+1 \rightarrow +2$ ($-1 \rightarrow -2$), miał przed usunięciem węzła współczynnik wyważenia -1 (+1), to w celu <u>lokalnego wyważenia</u> potrzebne są dwie rotacje lewego (prawego) potomka tego potomka (czyli "wnuka" analizowanego węzła): pierwsza w prawo (lewo), zaś druga w lewo (prawo).

Po wykonaniu powyżej określonych rotacji nadal <u>należy sprawdzać kolejnych przodków</u>, gdyż uzyskane dzięki nim <u>wyważenie lokalne nie musi zapewniać wyważenia globalnego</u> (wysokość tego poddrzewa uległa zmniejszeniu).

Jeżeli prawy (lewy) potomek węzła, w którym nastąpiła zmiana współczynnika wyważenia +1 → +2 (-1 → -2), miał przed usunięciem węzła współczynnik wyważenia 0 (0), to w celu lokalnego i globalnego wyważenia wystarczy pojedyncza rotacja tego prawego (lewego) potomka w lewo (prawo).

Usuwanie węzła z AVL-drzewa

Przykład ("casus" +1)

Zmiana wyważenia +1→ +2 wystąpi w węźle P, którego prawy potomek Q ma współczynnik wyważenia +1.

Usuwanie węzła z AVL-drzewa

Przykład ("casus" +1)

Zmiana wyważenia +1→ +2 wystąpi w węźle P, którego prawy potomek Q ma współczynnik wyważenia +1.

Po rotacji węzła Q w lewo

Usuwanie węzła z AVL-drzewa

Przykład ("casus" -1)

Zmiana wyważenia +1→ +2 wystąpi w węźle P, którego prawy potomek Q ma współczynnik wyważenia -1.

h ≥ -1

Usuwanie węzła z AVL-drzewa

Przykład ("casus" -1)

Zmiana wyważenia +1→ +2 wystąpi w węźle P, którego prawy potomek Q ma współczynnik wyważenia -1.

Po rotacji węzła R w prawo

Usuwanie węzła z AVL-drzewa

Przykład ("casus" -1)

Zmiana wyważenia $+1 \rightarrow +2$ wystąpi w węźle P, którego prawy potomek Q ma współczynnik wyważenia -1.

Usuwanie węzła z AVL-drzewa

Przykład ("casus" 0)

Zmiana wyważenia $+1 \rightarrow +2$ wystąpi w węźle P, którego prawy potomek Q ma współczynnik wyważenia 0.

Usuwanie węzła z AVL-drzewa

Przykład ("casus" 0)

Zmiana wyważenia $+1 \rightarrow +2$ wystąpi w węźle P, którego prawy potomek Q ma współczynnik wyważenia 0.

Po rotacji węzła Q w lewo

Koniec części 5

