SECTION A-46 MARKS ATTEMPT ALL QUESTIONS IN THIS SECTION.

1.	(a) Compl (i) $^{239}_{94}$	ete the follog $Pu + \frac{4}{2}I$						
	(ii)			-	$^{234}_{90}Th$		+	α
	(iii)	²¹⁴ ₈₃ Bi		-	²⁰⁶ ₈₂ Pb	+	+ 2	⁴ Не
	(iv)	²⁵⁰ ₉₈ Cf	+			25 10	$^{7}_{3}Lw +$	$4\frac{1}{0}n$
	second.	m isotope The rate of	femissio	on decrea	ased by 6.	5 counts	per secor	nd in 80
	seconds	. Calculate	the half -	- life of th	e isotope.		(0	2 marks)

2.	Explain the following observations. a. Magnesium carbonate decomposes when strongly heated while sodium
	carbonate does not. (03 marks)
	b. 1-bromohexane undergoes nucleophilic substitution whereas bromobenzene does not. (04 marks)
	(0 1 marks)

3. (a).An organic compound X reacts with hot aqueous sodium solution to give compound W . complete the equation of	-
$Br \longrightarrow CH_2Br \longrightarrow NaOH \longrightarrow Heat$	·
(b). Name the type of reaction mechanism for the reaction o	of X with hot
aqueous sodium hydroxide solution.	(0½ mark)
(c).Explain why W still contains one bromine atom .	(02½ marks)
 Write equations for the reaction of the following oxides with hydroxide. (a) Aluminium (III) oxide. 	(@01½ marks)
(b) Beryllium oxide	

5. Draw the **structures** and name the **shapes** of the following molecules or ions. $(04\frac{1}{2} \text{ marks})$

Molecules/ions	Structure	shape
CO ₃ ² -		_
H ₂ S		
2-		
SO ₂		

6. Name a **reagent** that can be used to **distinguish** between the following pairs of compounds and in each case, **state what would be observed** if each member of the pair was treated with the named reagent.

$CH_3 - CH C \equiv C CH_3$	and	$CH_3CH_2 CH C \equiv CH$
CH ₃		CH ₃
Descent		(01

Reagent	(01 mark)
Observations	(02 marks)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	d	∕CH ₂ Br	
Reagent		(01 n	nark)
Observations		(02 m	arks)
(a). State: (i) Raoult's law.		(01 n	nark)
(ii) Two conditions under			nark)

(b) The vapour pressure of heptane and octane are 472.2Pa and 139.8Pa respectively at a temperature of 20°C.Calculate the: (i) The vapour pressure of the mixtures containing 0.50 moles of heptane and 0.25 moles of octane at a temperature of 20°C.[Assuming the two					
	solutions forms an ideal solution]	(02 marks)			
		•••••			
•••••					
	(ii) Vapour composition.	(01 mark)			
•••••					
•••••					
6		(01			
	3. (a) State what is meant by the term diagonal relationship?	` ,			
•••••		••••••			

	(b) S	tate three reaso	ns why lithium and magnesiu	ım resemble.
				(01½ marks)
•••••				
	(c) N	Mention three n i	roperties to show the diagona	al relationshin hetween
		ım and magnesi	=	(03 marks
		_		`
•••••				
•••••			•••••	
	_			
9.			ing reaction equations and w	rite the accepted
	mech	nanism.		
	- \		H₂O/H ⁺	
	a)	сн₃с≡сн	H ₂ O/H ⁺ Hg, ²⁺ 60°C	
		·	Hg ²⁺ 60°C	(03 marks
				(oo marib)
•••••				
• • • • • • • • • • • • • • • • • • • •				

b) CH ₃ CH = CH ₂ + HCI	(02 marks)
SECTION B-54	MARKS
ATTEMPT ANY SIX QUESTIC	ONS IN THIS SECTION.
10.(a) Define the term solvent extraction.	(01 mark)
(b) An aqueous solution contains 10.0g of hyd	droxybenzene per litre.When
100.0cm³ of this solution is shaken with 2	0.0cm³ of ether, the layer
extracts 0.8g of hydroxybenzene.Calculate	e the mass of hydroxybenzene
extracted when 500.0cm ³ of aqueous laye	r was shaken with 50.0cm³ of
ether.	(03 marks)

	••••													
								• • • • • • • • • • • • • • • • • • • •						
	••••													•••••
(c)		State	any tw	o oth	er ap	plicat	ion of	f the]	partit	ion la	W.	(0)	2 mar	ks)
	,												•••••	
(d))	State 1	three l	limita	tions	of dis	tribu	tion l	aw.			(0	3 mar	·ks)
11.		rite eq d in ea							_	_		n be	synth	esized
		CH ₃ Cl				to	mull		H ₃ CH ₂				(03 r	narks)

b)	ОН	to	\bigcirc^I		(02 marks)
	c) Br	to		(01)	½ marks)
	c) CH ₂ OH	То			(02½ marks)

	•••••					••
	•••••					••
						••
12.(a) Define the term Azeotrope .	(0	1 mar	k)			
b) (i) State three reasons why Azeotrope compound.	is a mi	xture a	and N C		½ mark	xs)
					••••	
(ii) Name two methods for separating components.	g Azeot	ropic r	nixture		pure)1 mar	
c) The total vapour pressures of a mixture		-				
trichloromethane.And the mole fraction	of tric	hloron	nethan	ie at co	onstan	t
temperature are given in the table belo	W.					
Mole fraction of HCCl ₃	0.0	0.2	0.4	0.6	8.0	1.0
Total vapour pressure of the mixture (mmHg)	347	305	267	244	256	293

(i) Plot a graph of total vapour pressure of the mixture aga	inst the mole
fractions of trichloromethane.	(03 marks)
(ii) Use the graph you have drawn to determine the compos	sition of the
Azeotrope.	(01 mark)
d) State how the mixture in (c) deviates from Raoult's lav	v . Give a
reason for your answer.	(01½ marks)
13. In an experiment it was found that 35.0g of pure alkene reac 100.0g of bromine gas in presence of carbontetrachloride.	ted with
(a) (i) Calculate the molecular mass of the alkene.	(01½ marks)

(ii) Determine the molecular formula of the alkene.	(01½ marks)
	•••••
(b) Write the IUPAC names of all the possible isomers and	
formulae of the alkene.	(05 marks)
(c) Write the equation of reaction between any isomers of the	he alkene with
bromine gas in presence of carbontetrachloride.	(01 mark)
14. Beryllium and magnesium are some of the elements in grou	ıp (II) of the
periodic table.	
a) Write the equation for the reaction between water and t	the carbide of:
(i) Beryllium	(01½ marks)

	(ii)	Magnesium	(01½ marks)
b)	A samp	ole of nitrogen gas completel	y reacted with heated magnesium to
	-		with water and all the ammonia gas of 0.05M sulphuric acid. 12.5cm ³ of
	_		as required to completely neutralize
	the ren	naining acid. Write equation	for the reaction between:
	(i) Nit	crogen gas and Magnesium.	(01 mark)
	(ii) Pro	oduct Q and water.	(01 mark)
c)	Calcula	ate the volume of nitrogen ga	s at s.t.p that reacted with
	magne	sium.	(04 marks)

a) Write the general outer most electronic configule	ration of group (IV) (0½ mark)
(b)Explain why carbon show differences from the elements.	e rest of the group (01½ marks)
(c)State three differences between the chemistry group (IV) members.	of carbon and the rest of (03 marks)
(d)Explain why carbon tetrachloride does not und water whereas silicon (IV) chloride does.	dergo hydrolysis in (03 marks)

	(e)Write the equation for the reaction between silicon (IV) cl water.	nloride and (01 mark)
16	.(a) Define the term osmotic pressure .	(01 mark)
	(b) Explain why determination of molar mass of polymer, osr pressure is preferred than boiling point elevation method.	
	P. 00001 0 10 P. 01011 00 011111 0011119 P 01111 0111 1111	

(c) The Osmotic pressure of various concentrations of solute X in methylbenzene at 25°C are given in the table below.

Concentration	1.0	2.0	3.0	4.0	5.0	6.0
(g/dm^3)						
Osmotic	23	37	53	75	92	109
pressure						
(Nm ⁻²)						

(i)Plot a graph of osmotic pressure against concentration .	
· · · · · · · · · · · · · · · · · · ·	(03 marks)
(ii) Use the graph to determine the molecular mass of X.[Ur constant, $R = 8.314J/K/mol$]	niversal gas (03 marks)
17. Complete the following equations and outline the mechanism f	
reaction. [a $(03\frac{1}{2} \text{ marks})$, b $(02\frac{1}{2} \text{ marks})$, c	(03 marks)]
(a). $(CH_3)_2C=CH CH_3$ Heat	

(b) (CH ₂) ₂ CBr	KOH/CH ₃ CH ₂ O	Heat Heat Conc.H ₂ SO _{4(I)} nc.HNO _{3(aq)} Conc.H ₂ SO _{4(I)}						
(0). (0113/3021	Heat							
(c).	- Conc.HNO _{3(aq)} ■	Conc.H ₂ SO ₄₍₁₎	-					

===END===

WELCOME TO SENIOR SIX, YEAR 2022 This is the last page of the printed paper, Page 20

THE PERIODIC TABLE

1	2											3	4	5	6	7	8
1.0 H 1								***************************************								1.0 H 1	4.0 He 2
6.9 Li 3	9.0 Be											10.8 B 5	12.0 C 6	14.0 N 7	16.0 O 8	19.0 F 9	20.2 Ne 10
	24.3 Mg 12											27.0 Al 13	28.1 Si 14	31.0 P 15	32.1 S 16	35.4 Cl 17	40.0 Ar 18
39.1 K 19	40.1 Ca 20			50.9 V 23	52.0 Cr 24		1	1000			65.7 Zn 30		72.6 Ge 32	1		79.9 Br 35	83.8 Kr 36
85.5 Rb 37	87.6 Sr 38	88.9 Y 39	91.2 Zr 40	92.9 Nb 41			101 Ru 44	103 Rh 45	106 Pd 46	108 Ag 47	112 Cd 48	115 In 49	119 Sn 50	122 Sb 51	128 Te 52	127 I 53	131 Xe 54
Cs 55	137 Ba 56	139 La 57	178 Hf 72	181 Ta 73	184 W 74	186 Re 75	190 Os 76	192 Ir 77	195 Pt 78	197 Au 79	201 Hg 80	204 TI 81	207 Pb 82	209 Bi 83	209 Po 84	210 At 85	222 Rn 86
223 Fr 87	226 Ra 88	227 Ac 89		2.	1.5			9 82	Sec.								
-	23	8 17	139 La 57	140 Ce 58	141 Pr 59	144 Nd 60		150 Sm 62					165 Ho 67		169 Tm 69		175 Lu 71
			227 Ac 89	232 Th 90	231 Pa 91	238 U 92	237 Np 93		243 Am 95				254 Es 99	Fm	Md	No	260 Lw 103