TEXNEION STORY OF THE CONTROL OF THE

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΠΕΔΙΑ Β΄, ΤΜΗΜΑ Ρ $-\Omega$, ΑΚΑΔ. ΕΤΟΣ 2022–2023 ΔΙΔΑΣΚ Ω N: ΓΡΗΓΟΡΙΟΣ ΖΟΥΡΟΣ

4η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ

Μόνιμα ηλεκτοικά πεδία, Ηλεκτοική αντίσταση, Ηλεκτοικά φορτία στα μόνιμα ηλεκτοικά πεδία

Άσκηση 1

Η διάταξη του διπλανού σχήματος αποτελείται από δύο άπειρους κατά τον άξονα z τέλεια αγώγιμους κυλινδρικούς οπλισμούς, με ακτίνες a και b, αντίστοιχα, μεταξύ των οποίων εφαρμόζεται τάση U. Ο μισός χώρος ανάμεσά τους καλύπτεται από τέλειο διηλεκτρικό υλικό με επιτρεπτότητα $ε_1$, ενώ ο άλλος μισός από διηλεκτρικό υλικό με απώλειες το οποίο χαρακτηρίζεται από επιτρεπτότητα $ε_2$ και ειδική αγωγιμότητα $γ_2$. Στην περιοχή 1 δεν αναπτύσσεται χωρική πυκνότητα ελεύθερων φορτίων.

- (α') Να ελεγχθεί εάν αναπτύσσεται χωρική πυκνότητα ελεύθερων φορτίων στην περιοχή 2, και να υπολογιστούν όλες οι επιφανειακές πυκνότητες ελεύθερων φορτίων που ενδεχομένως αναπτύσσονται στη διάταξη.
- (β΄) Να ελεγχθεί εἀν ικανοποιείται η συνέχεια των εφαπτομενικών συνιστωσών του ηλεκτοικού πεδίου στις υφιστάμενες διεπιφάνειες των δύο υλικών.
- (γ') Να υπολογιστεί η αντίσταση μόνωσης ανά μονάδα μήκους της διάταξης.

Άσκηση 2

Η κυλινδοική διάταξη του διπλανού σχήματος έχει συνολικό μήκος L κατά τον άξονα z, και φέρει τρεις οπλισμούς (τέλεια αγώγιμους/ο χώρος r < a είναι τέλεια αγώγιμος) οι οποίοι καταλήγουν στους ακροδέκτες 1, 2 και 3. Σε μήκος L' του άξονα z τοποθετείται στο κάτω μισό κυλινδοικό κέλυφος ακτινικής απόστασης b-a, υλικό με ε_1 , γ_1 , ενώ στο άνω μισό, υλικό με ε_2 ,

- γ_2 (βλ. την εγκάφσια τομή στο δεξιό μέφος του σχήματος). Στον υπολοιπόμενο χώφο ακτινικής απόστασης c-b, με το ίδιο μήκος L', υπάφχει αέφας. Σε μήκος L-L', τοποθετείται σε όλο το κυλινδρικό κέλυφος ακτινικής απόστασης c-a, αγώγιμο υλικό με γ_3 . Τέλος, στους ακφοδέκτες 1 και 3, επιβάλλεται τάση U, όπως φαίνεται στο σχήμα.
- (α΄) Υπό τις συνθήκες $c \ll L', L-L'$ και $b-a \ll \pi a$, να υπολογιστούν οι χωρητικότητες και οι αγωγιμότητες που εμπλέκονται στη διάταξη.
- (β') Να σχεδιαστεί το ισοδύναμο ηλεκτρικό κύκλωμα της διάταξης μεταξύ των ακροδεκτών 1 και 3.

Eletim on outobrer le			
$P_{\epsilon\varphi_2} = \nabla(\epsilon, \vec{E_2}) + \nabla \vec{P_2} = 0$			
aba gen nuabker 2mbik	में नाएसकत्मन	Epergebra hobsim	семи Перххи 2
<u>Περιοχή</u> <u>1</u> :			
$\Gamma = \alpha : OO_1 = \hat{n} \cdot (\vec{D}_1 \Gamma = \alpha_1)$			
r=b:0b, = n.(D(26.)-D, (r=b_))=> 0	$b_{r} = -\frac{UE_{r}}{b \sqrt{b/a}}$	
Пергохи 2:			
$\Gamma = \alpha : \mathcal{O}_{\alpha_2} = \hat{n} \cdot (\vec{\mathcal{D}}_2 \mid \Gamma = \alpha_1)$	-D(r=a_1) => 0a2 =	U. Ez a ly(b/a)	
$r=b: Ob_2=\hat{n}.(D(zb_1))$	$(r_{=b_{-}})$ $\rightarrow \mathcal{O}_{\epsilon}$	$h_2 = -\frac{U\xi_2}{b v(b_m')}$	
(β) (Ia φ=0: nx(].	$ \begin{array}{c c} -\overline{c_1} \\ \hline -\overline{c_1} \\ \hline \end{array} = \begin{array}{c} \varphi_{=0} = 0 \end{array} $	=D φ× π (U - In(%) -	$-\frac{U}{r \ln(3\alpha)} = -2.0 = 0$
αφαι το φ διν επιρεώζε	·		
Apa Iranstrologyzan oj o	roviereres zum zu	DEWIZOLEVIKIN CONIO	<i>യ</i> ഡ്
$(x) \qquad \text{if } x = \int_{S_{1}} \vec{J}_{1} d\vec{S}_{1} = 0 (a)$	pa J,=0)=1	$=\frac{U}{P}$, apa , apa	Th=0 zòze Rh,→00
$ \underline{T}_{2} = \int_{S_{2}} \overline{J}_{2} dS_{1} = \int_{S_{1}} \frac{\varepsilon_{2} J_{2} U}{ \eta(b/a) } $	I rdy = UEzter	$\Rightarrow \mathcal{P}_{4z} = \frac{U}{I} = \frac{1}{8}$	n (b/a) =ztz77
Opow zo z prazi yaxvon Le ava porisa hires.			

