

Spectra Processing, Compound Annotation, Functional Insight and Causal Analysis using MetaboAnalyst 6.0

Jianguo (Jeff) Xia, Associate Professor

Canada Research Chair in Bioinformatics & Big Data Analytics

jeff.xia@mcgill.ca | www.xialab.ca

McGill University, Canada

Schedule

Part I: 2:15 pm – 4:15 pm

- **2:15 2:30:** General introduction
- 2:30 3:00: Untargeted metabolomics
 - ✓ LC-MS & MS/MS spectral processing
 - √ From peaks to functions
- **3:05 3:25**: Live demo
- **3:25 4:15:** Hands on practice

Part II: 4:30 p.m. – 6:30 p.m.

- **4:30 5:15**: Background
 - ✓ Statistical analysis
 - √ Causal analysis
- 5:15 5:35: Live demo
- **5:40 6:20**: Hands on practice
- **6:20 6:30**: Summary & discussion

Github Repository

https://github.com/xia-lab/Metabolomics_2024

- Slides (in PDF format);
- Example data;
- Reference literatures;
- Contact information.

Functional Analysis

Conventional approaches is time consuming

Can we perform enrichment analysis direct from peaks?

Key concept

- Biological systems showing coordinated changes or group behaviors
- Leveraging this collective power inherent in biological systems can tolerate the random errors/inaccuracies based on individual genes/metabolites
 - Gene set enrichment analysis (GSEA)
- Can we apply this concept on MS peaks?
 - → The *mummichog* approach

A Subramanian et al., PNAS (2005).

S. Li et al., Plos Computational Biology (2013).

Critical: Input preparation

- LC high-resolution MS (LCHR-MS)
 - Orbitrap, Q-TOF
 - Reason: putative annotation needs to be approximately correct (better guess leads to more accurate functional analysis)
- Needs to be complete peak list or peak intensity table
 - Not just significant peaks
 - Reason: mummichog using permutation to estimate the null/background distribution
- In general, the algorithm works well for > 3000 peaks (assuming human plasma samples).

How does mummichog work?

Step 1: Match the peaks to tentative metabolites. Looked up all the significant metabolites in each pathway and calculate the p-value using Fisher's exact test

Step 2: Randomly pull features with the same length as the significant ones, and repeat Step 1 for 100 ~ 1000 times

Step3: Test if certain pathways are enriched in the significant peaks as compared to null models (Gamma distribution)

Mummichog is more sensitive, robust compared to GSEA

Y. Lu et al., Briefings in Bioinformatics (2023).

From ranked peak lists to functions

How to interpret result table (key parameters)

Pathway Name	Total ↑↓	Hits (all) ↑↓	Hits (sig.) ↑↓	Expected ↑↓	P(Fisher) ↑↓	P(Gamma) ↑↓	Details
Vitamin E metabolism	54	38	15	5.0563	0.030024	0.025523	View
Carnitine shuttle	72	25	10	6.7418	0.06554	0.028334	View

- **Total**: the total number of the given pathway
- Hits (all): all the peaks mapped to the pathway
- Hits (sig): all the significant peaks mapped to the pathway
- **Expected:** The expected number of metabolite hits in the pathway.
- **P(Fischer)**: The Fisher's exact p-value for the pathway
- **P(Gamma)**: P-values derived from Gamma distribution based on permutation tests for the pathway.

Not just significant peaks

Integrating LC-MS and MS/MS improves results

Recap: a unified workflow for global metabolomics

