Penyelesaian Soal K-Means Clustering

Berikut adalah langkah-langkah penyelesaian soal K-Means Clustering dengan perhitungan manual.

Langkah 1: Menghitung Euclidean Distance

Rumus Euclidean Distance: $d = \sqrt{((x_2 - x_1)^2 + (y_2 - y_1)^2)}$

Berikut perhitungan jarak Euclidean:

Data	Centroid 1	Centroid 2	Jarak ke C1	Jarak ke C2
M1 (1, 4.5)	C1 (3, 4)	C2 (6, 4)	d_C1 ≈ 2.06	d_C2 ≈ 5.02
M2 (3, 6.5)	C1 (3, 4)	C2 (6, 4)	d_C1 = 2.5	d_C2 ≈ 3.91
M3 (4, 4.5)	C1 (3, 4)	C2 (6, 4)	d_C1 ≈ 1.12	d_C2 ≈ 2.06
M4 (7.5, 3.2)	C1 (3, 4)	C2 (6, 4)	d_C1 ≈ 4.57	d_C2 ≈ 1.7
M5 (6, 2.3)	C1 (3, 4)	C2 (6, 4)	d_C1 ≈ 3.45	d_C2 ≈ 1.7
M6 (2.5, 3.8)	C1 (3, 4)	C2 (6, 4)	d_C1 ≈ 0.54	d_C2 ≈ 3.51
M7 (5, 5.5)	C1 (3, 4)	C2 (6, 4)	d_C1 = 2.5	d_C2 ≈ 1.8

Langkah 2: Mengelompokkan Data

Berdasarkan jarak terdekat, data dikelompokkan sebagai berikut:

{M1, M2, M3, M6} anggota C1, {M4, M5, M7} anggota C2.

Langkah 3: Menghitung Centroid Baru

Centroid baru dihitung berdasarkan rata-rata koordinat setiap klaster:

C1:
$$\bar{x} = (1 + 3 + 4 + 2.5)/4 = 2.625$$
, $\bar{y} = (4.5 + 6.5 + 4.5 + 3.8)/4 = 4.825$.

C2:
$$\bar{x} = (7.5 + 6 + 5)/3 = 6.17$$
, $\bar{y} = (3.2 + 2.3 + 5.5)/3 = 3.67$.

