

Curso:

(C|EH) V12

CERTIFIED ETHICAL HACKER - SECURITY IMPLEMENTATION

Progresso do curso

Módulo 16. Hacking Wireless Networks

Módulo 17. Hacking Mobile Applications

Módulo 18. IoT & OT Hacking

Módulo 19. Cloud Computing

Módulo 20. Cryptography

Conceitos sobre IoT:

O loT é um tópico importante e emergente no campo da tecnologia, economia e sociedade em geral. É conhecida como a teia de dispositivos conectados, possibilitada pela interseção entre as comunicações máquina a máquina e a análise de big data. O loT é um desenvolvimento voltado para o futuro da Internet e das capacidades dos dispositivos físicos que estão gradualmente estreitando a lacuna entre o mundo virtual e físico.

CEHv12

18.IoT & OT Hacking

Objetivos

O principal objetivo deste módulo é explicar as potenciais ameaças para as plataformas loT e OT e fornecer orientações para proteger os dispositivos loT e a infraestrutura OT de ameaças e ataques em evolução.

No final deste módulo, você será capaz de

- ☐ Explicar os conceitos de loT e OT
- ☐ Compreender diferentes ameaças e ataques de loT e OT
- ☐ Descrever a metodologia de hacking loT e OT
- ☐ Aplicar contramedidas para proteger os dispositivos de ataques loT e OT

Introdução

A Internet das Coisas (IoT) evoluiu a partir da convergência da tecnologia sem fio, sistemas micro eletromecânicos, micros serviços e Internet. As soluções de IoT são aplicadas em diferentes setores da indústria, incluindo saúde, gerenciamento de edifícios, agricultura, energia e transporte. Muitas organizações estão conduzindo a transformação da IoT. Dispositivos IoT, como *wearables, aparelhos industriais, dispositivos eletrônicos conectados, redes inteligentes e veículos inteligentes, estão se tornando parte de redes interconectadas. Esses dispositivos geram uma grande quantidade de dados que são coletados, analisados, registrados e armazenados nas redes.

• "wearable technology" ou "tecnologias vestíveis". A tradução direta para o português pode até parecer um pouco limitada ou estranha, uma vez que a categoria ainda está expandindo os seus horizontes. Entretanto, no que depender da indústria, os investimentos nesse segmento só tendem a aumentar.

Fonte: https://www.tecmundo.com.br/tecnologia/49699-wearables-sera-que-esta-moda-pega-.htm

O que é loT

A Internet das Coisas (IoT), também conhecida como Internet de Todas as Coisas (IoE), refere-se a dispositivos de computação que são habilitados para a web e têm a capacidade de detectar, coletar e enviar dados usando sensores e o hardware de comunicação e processadores que estão embutidos no dispositivo. Na IoT, uma "coisa" refere-se a um dispositivo implantado em um objeto natural, feito pelo homem ou por uma máquina e tem a funcionalidade de se comunicar por meio de uma rede.

Como funciona o loT

- A tecnologia IoT inclui quatro sistemas principais:
- Dispositivos IoT
- 2. Sistemas de gateway
- 3. Sistemas de armazenamento de dados usando tecnologia de nuvem
- Controle remoto usando aplicativos móveis.
- Esses sistemas juntos tornam possível a comunicação entre dois terminais.

IoT – Protocolos e Tecnologias

A loT inclui uma ampla gama de novas tecnologias e habilidades. O desafio no espaço do loT é a imaturidade das tecnologias com serviços associados e dos fornecedores que os fornecem. Isso representa um desafio importante para as organizações que exploram o loT. Para uma comunicação bem-sucedida entre dois terminais, a loT implementa principalmente protocolos padrão e de rede.

IoT Technologies and Protocols

Modelos de Comunicação

- A tecnologia IoT usa vários modelos de comunicação, cada um com suas próprias características.
- Esses modelos destacam a flexibilidade com a qual os dispositivos IoT podem se comunicar entre si ou com o cliente.

Desafios de loT

A tecnologia loT está crescendo tão rapidamente que se tornou onipresente. Com vários aplicativos e recursos; mas faltam políticas básicas de segurança, os dispositivos loT são atualmente presas fáceis para os hackers. As atualizações para dispositivos loT introduziram novas falhas de segurança que podem ser facilmente exploradas por hackers.

Problemas de segurança de IoT

• Vulnerabilidades no sistema IoT podem resultar em grandes problemas para as organizações. A maioria dos dispositivos IoT vem com problemas de segurança, como a ausência de um mecanismo de autenticação adequado ou o uso de credenciais padrão, ausência de um mecanismo de bloqueio, ausência de um esquema de criptografia forte, ausência de sistemas de gerenciamento de chaves adequados e segurança física.

OWASP Top 10 IoT

1 Weak, Guessable, or Hardcoded Passwords

2 Insecure Network Services

7 Insecure Data Transfer and Storage

8 Lack of Device Management

4 Lack of Secure Update Mechanisms

9 Insecure Default Settings

10 Lack of Physical Hardening

Vulnerabilidades do IoT

	Vulnerability	Description		Vulnerabilities	Obstacles
1.	Username Enumeration	Ability to collect a set of valid usernames by interacting with the authentication mechanism	10.	Removal of Storage Media	Ability to physically remove the storage media from the device
		Ability to set account passwords to '1234' or '123456'	11.	No Manual Update Mechanism	 No ability to manually force an update check for the device
2.	Weak Passwords	for example Usage of pre-programmed default passwords	12.	Missing Update Mechanism	9 No ability to update the device
3.	Account Lockout	Ability to continue sending authentication attempts after 3 - 5 failed login attempts	13.	Firmware Version Display and/or Last	Current firmware version is not displayed and/or the last update date is not displayed
4.	Unencrypted Services	Network services are not properly encrypted to		Update Date	10000-
		prevent eavesdropping or tampering by attackers	14.	Firmware and Storage Extraction	 Firmware contains a lot of useful information, like source code and binaries of running services, pre-set passwords, and ssh keys
5.	Two-factor Authentication	 Lack of two-factor authentication mechanisms such as a security token or fingerprint scanner 	15.	Manipulating the	With the help of a JTAG adapter and GNU debugger, we can modify the execution of firmware in the device and
6.	Poorly Implemented	 Encryption is implemented but is improperly configured or not being properly updated, e.g. using 	15.	Code Execution Flow of the Device	bypass almost all software-based security controls • Side channel attacks can modify the execution flow or
	Encryption	SSL v2			can be used to leak information from the device
7.	Update Sent Without Encryption	 Updates are transmitted over the network without using TLS or encrypting the update file itself 	16.	Obtaining Console Access	By connecting to a serial interface, we can obtain full console access to a device
8.	Update Location Writable	Storage location for update files is world writable, which can allow firmware to be modified and distributed to all users			 Usually security measures include custom bootloaders that prevent the attacker from entering single user mode, but that can also be bypassed.
9.	Denial of Service	 Service can be attacked in a way that denies service to that service or the entire device 	17.	Insecure Third-party Components	 Out of date versions of busybox, openssl, ssh, web servers, etc. https://www.awasp.org

Ameaças do IoT

Os dispositivos loT têm poucos mecanismos de proteção de segurança contra várias ameaças emergentes. Esses dispositivos podem ser infectados por malware ou código malicioso em uma taxa alarmante. Os invasores costumam explorar esses dispositivos mal protegidos na Internet para causar danos físicos à rede, grampear a comunicação e também lançar ataques disruptivos, como DDoS.

01 DDoS Attack	08 Sybil Attack	15 Client Impersonation
02 Attack on HVAC Systems	09 Exploit Kits	16 SQL Injection Attack
03 Rolling Code Attack	10 Man-in-the-Middle Attack	17 SDR-Based Attack
04 BlueBorne Attack	11 Replay Attack	18 Fault Injection Attack
05 Jamming Attack	12 Forged Malicious Device	19 Network Pivoting
06 Remote Access using Backdoor	13 Side Channel Attack	20 DNS Rebinding Attack
07 Remote Access using Telnet	14 Ransomware	(8)

Outros tipos de ataques ao loT

Metodologia de loT Hacking

Usando a metodologia de hacking da IoT, um invasor adquire informações por meio de técnicas como coleta de informações, identificação da área de superfície de ataque e varredura de vulnerabilidade e as usa para hackear o dispositivo e a rede alvo.

IoT Hacking Methodology

Information Gathering

The first step in IoT device hacking is to extract information such as IP address, protocols used, open ports, device type, geo location of a device, manufacturing number, and manufacturing company of a device

Vulnerability Scanning

Vulnerability scanning helps an attacker to identify the IoT devices with weak configurations such as hidden exploits, firmware bugs, weak settings and passwords, and poorly encrypted communications

Launch Attacks

The vulnerabilities found are exploited further to launch various attacks such as DoS attacks, rolling code attacks, jamming signal attacks, Sybil attacks, MITM attacks, data and identity theft attacks

Gain Remote Access

Based on the vulnerabilities in an IoT device, the attacker may turn the device into a backdoor to gain access to an organization's network without infecting any end system that is protected by IDS/IPS, firewall, antivirus software, etc.

Maintain Access

Attackers remain undetected by clearing the logs, update the firmware and use malicious programs such as backdoors and Trojans to maintain access

Proteção de IoT

- Este scanner varre uma rede em busca de tipos específicos de dispositivos IoT para detectar se eles estão usando as credenciais padrão de fábrica.
- A intenção dessa ferramenta é ajudar as organizações a fazer a varredura de suas redes para detectar esses tipos de dispositivos IoT e identificar se as credenciais foram alteradas ou se o dispositivo ainda está usando a configuração de fábrica.

```
/Users/rapid7/freetools>perl iotScanner.pl 1.23.123.431,
1.23.123.443,1.23.123.453,1.23.123.457,1.23.123.459,1.23.123.461,1.
23.123.462,1.23.123.463,1.23.123.465,1.23.123.466,1.23.123.467,1.23
.123.469,1.23.123.472,1.23.123.473,1.23.123.475,1.23.123.477,1.23.1
23.479,1.23.123.480,1.23.123.481
device 1.23.123.431 is of type Stardot still has default passwd
device 1.23.123.443 is of type Arecont has changed passwd
device 1.23.123.453 is of type American Dynamics has changed passwd
device 1.23.123.457 is of type W-Box has changed passwd
device 1.23.123.459 is of type Arecont has changed passwd
device 1.23.123.461 is of type American Dynamics has changed passwd
device 1.23.123.462 is of type W-Box has changed passwd
device 1.23.123.463 is of type Arecont has changed passwd
device 1.23.123.465 is of type American Dynamics has changed passwd
device 1.23.123.466 is of type W-Box has changed passwd
device 1.23.123.467 is of type Arecont has changed passwd
device 1.23.123.469 is of type American Dynamics has changed passwd
device 1.23.123.472 is of type W-Box has changed passwd
device 1.23.123.473 is of type W-Box has changed passwd
device 1.23.123.475 is of type W-Box has changed passwd
device 1.23.123.477 is of type W-Box still has default passwd
device 1.23.123.479 is of type Arecont has changed passwd
device 1.23.123.480 is of type American Dynamics has changed passwd
device 1.23.123.481 is of type American Dynamics has default passwd
```

Ferramentas de coleta de informações

Shodan

O Shodan fornece informações sobre todos os dispositivos conectados à Internet, como roteadores, semáforos, câmeras CCTV, servidores e dispositivos domésticos inteligentes. Os invasores podem utilizar esta ferramenta para coletar informações como endereço IP, nome do host, ISP, localização do dispositivo e o banner do dispositivo IoT alvo. Os invasores podem coletar informações em um dispositivo alvo usando os filtros.

Ferramentas de coleta de informações

Censys

- Fonte: https://censys.io
- Censys é um mecanismo de busca público de fácil processamento de dados apoiado por dados coletados de varreduras contínuas em toda a Internet. Censys suporta pesquisas de texto completo em banners de protocolo e consulta uma ampla gama de campos derivados. Ele identificar pode vulneráveis dispositivos redes е específicos e gerar relatórios estatísticos sobre padrões e tendências de uso amplo.

Ferramentas de coleta de informações

Thingful

- Thingful é um mecanismo de busca para encontrar e usar dados abertos de IoT de todo o mundo. Isto ajuda as organizações a tomar melhores decisões com dados de IoT externos. Ele coleta dados de IoT em tempo real em dezenas de setores, incluindo clima, meio ambiente, cidades inteligentes, energia e transporte. Os canais de dados do Thingful tornam rápido e fácil encontrar e usar os dados IoT.
- http://www.thingful.net

Ferramentas de sniffer IoT

Os administradores de sistema usam ferramentas automatizadas para monitorar sua rede e os dispositivos conectados à rede, mas os invasores usam essas ferramentas de forma inadequada para "snifar" os dados da rede.

- Suphacap https://www.suphammer.net
- CloudShark (https://cloudshark.io)
- Ubiqua Protocol Analyzer (https://www.ubiiogix.com)
- Perytons Protocol Analyzers (http://www.perytons.com)
- tcpdump (https://www.tcpdump.org)
- Open Sniffer (https://www.sewio.net)

Sniffing Tools

Ferramentas de hacking IoT

Listadas abaixo estão algumas das ferramentas de hacking de IoT utilizadas por invasores para explorar dispositivos e redes de IoT alvo para realizar vários ataques, como DDoS, jamming e ataques BlueBorne.

- Firmalyzer Enterprise https://firmalyzer.com
- Firmwalker (https://github.com)
- rfcat-rolljam (https://github.com)
- KillerBee (https://github.com)
- GATTack.io (http://www.gattack.io)
- JTAGULATOR®
 (http://www.grandideastudio.com)

IoT Hacking Tools

Firmalyzer Enterprise

Firmalyzer enables device vendors and security professionals to perform

https://firmalyzer.com

Como se defender contra hackers de IoT

IoT Framework Security Considerations

- EDGE

 Communications encryption
 Storage encryption
 Update components
 No default passwords
- CLOUD PLATFORM

 Encrypted communications

 Secure web interface

 Authentication

 Encrypted storage

 Automatic updates

- 2 GATEWAY
- Multi-directional encrypted communications
- Strong authentication of all the components
- Automatic updates
- 4 MOBILE
- Local storage security
- Encrypted communications channels
- Multi-factor authentication
- Account lockout mechanism

Gerenciamento de dispositivos IoT

O gerenciamento de dispositivos loT ajuda os profissionais de segurança a rastrear, monitorar e gerenciar dispositivos loT físicos de um local remoto. podem usar soluções como Azure loT Central, Oracle IoT Asset Monitoring Cloud e Predix executar para gerenciamento de dispositivos loT. Essas soluções permitem atualizemos firmware 0 remotamente. Além disso, o gerenciamento de dispositivos loT ajuda a fornecer permissões e melhorar os recursos de segurança para garantir a proteção contra várias vulnerabilidades.

- IoT device management helps in supporting IoT solutions by using any software tools and processes and helps in onboarding latest devices securely and promptly
- It allows the users to track, monitor, and manage physical IoT devices and forces users to remotely update the firmware
- IoT device management helps in providing permissions and security capabilities for protection against vulnerabilities

IoT Device Management Solutions

- Oracle IoT Asset Monitoring Cloud (https://www.oracle.com)
- Predix (https://www.ge.com)
- Cloud IoT Core (https://cloud.google.com)
- IBM Watson IoT Platform (https://www.ibm.com)
- AT&T IoT Platform (https://iotplatform.att.com)

https://azure.microsoft.com

Ferramentas de segurança IoT

Para compreender e analisar vários fatores de risco, soluções de segurança adequadas devem ser incorporadas para proteger os dispositivos IoT. O uso de ferramentas de segurança IoT ajuda as organizações a limitar significativamente as vulnerabilidades de segurança, protegendo assim os dispositivos e redes IoT de diferentes tipos de ataques.

Ferramentas de segurança IoT

Conceitos sobre OT:

A tecnologia operacional (OT) desempenha um papel importante na sociedade moderna de hoje, pois impulsiona uma coleção de dispositivos projetados para trabalharem juntos como um sistema integrado ou homogêneo.

OT é uma combinação de hardware e software usado para monitorar, executar e controlar ativos de processos industriais. Antes de aprender como hackear OT, é importante entender seus conceitos básicos.

CEHv12

18.IoT & OT Hacking

O que é o OT

OT é uma combinação de software e hardware projetado para detectar ou causar mudanças nas operações industriais por meio do monitoramento direto e/ou controle de dispositivos físicos industriais.

Esses dispositivos incluem interruptores, bombas, luzes, sensores, câmeras de vigilância, elevadores, robôs, válvulas e sistemas de resfriamento e aquecimento. Qualquer sistema que analise e processe dados operacionais (como componentes técnicos, eletrônicos, telecomunicações e sistemas de computador) pode fazer parte da OT.

Componentes do OT

Esta tecnologia consiste em:

Sistemas de Controle Industrial (ICSs), que incluem Controle Supervisório e Aquisição de Dados (SCADA), Unidades Terminais Remotas (RTU), Controladores Lógicos Programáveis (PLC), Sistemas de Controle Distribuído (DCSs) e muitos outros sistemas de rede dedicados que auxiliam no monitoramento e controle de operações industriais.

Onde encontramos o OT

Os sistemas OT são utilizados nos setores de manufatura, mineração, saúde, construção, transporte, petróleo e gás, defesa e serviços públicos, bem como muitos outros setores, para garantir a segurança de dispositivos físicos e suas operações em redes.

Desafios do OT

Os sistemas OT empregam abordagens diferentes para projetar hardware e protocolos que não estão familiarizados com a TI. O suporte a versões mais antigas de software e hardware tornam os sistemas OT mais vulneráveis a ataques cibernéticos, pois o desenvolvimento de correções ou patches para eles é muito difícil.

Terminologia Essencial

Convergência IT/OT

É a integração de sistemas de computação de TI (tecnologia da informação) e sistemas de monitoramento de operação de OT. Preencher a lacuna entre TI e OT pode melhorar o negócio como um todo, produzindo resultados mais rápidos e eficientes. A convergência não envolve apenas a combinação de tecnologias, mas também equipes e operações. As equipes de TI e OT são tradicionalmente separadas e localizadas em seus respectivos domínios.

Integração Modelo PURDUE

IT Systems	Level 5	Enterprise Network		
Zone)	Level 4	Business Logistics Systems		
	Industrial [Demilitarized Zone (IDMZ)		
	Level 3	Operation Systems/Site Operations		
OT Systems	Level 2	Control Systems/Area Supervisory Controls		
Vanufacturing Zone)	Level 1	Basic Controls/Intelligent Devices		
	Level 0	Physical Process		

Obrigado!

"QUEM NÃO SABE O QUE PROCURA, NÃO PERCEBE QUANDO ENCONTRA".