

Available online at www.sciencedirect.com

Journal of Theoretical Biology 232 (2005) 71-81

Journal of
Theoretical
Biology

Network theory and SARS: predicting outbreak diversity

Lauren Ancel Meyers^{a,b,*,1}, Babak Pourbohloul^{c,1,2}, M.E.J. Newman^{b,d},
Danuta M. Skowronski^{c,2}, Robert C. Brunham^{c,2}

Answer in the form of a question: How correlated are the in- and out-degrees?

 $R_0 = \frac{\langle k_{\rm in} k_{\rm out} \rangle}{\langle k_{\rm in} \rangle}$ 2. Expected probability of an epidemic is mainly governed by the *forward* friendship paradox (out-degrees)

1. R_0 depends on the correlation between in-and out-degrees

3. Expected outbreak size is mainly governed by the *backward* friendship paradox (in-degrees)

Answer in the form of a question: How correlated are the in- and out-degrees?

1. R_0 depends on the correlation between in-and out-degrees

$$R_0 = \frac{\langle k_{\rm in} k_{\rm out} \rangle}{\langle k_{\rm in} \rangle}$$

- 2. Expected probability of an epidemic is mainly governed by the *forward* friendship paradox (out-degrees)
- 3. Expected outbreak size is mainly governed by the *backward* friendship paradox (in-degrees)

Message #1: distinction between "risk" and "spread"

- risk : contacts through which an individual can become infected (in-degree)
- spread : number of potential secondary infections if infected (out-degree)
- correlation between risk and spread greatly affects the likelihood of an epidemic as well as its size

