[文章编号] 1007-3949(2002)10-01-0001-05

·实验研究·

Carriporide 对高脂饮食所致兔动脉粥样硬化的保护作用

刘立英',文继舫',涂江华',钟志莲3,吴晋湘

(中南大学湘雅医学院 1. 药理学教研室, 2. 病理学教研室, 3. 附属第一医院医学实验室;湖南省长沙市 410078)

[主题词] 纳-氢交换体; Cariporide/药理学; 动脉粥样硬化; 血脂; 疾病模型,动物; 兔 [摘 要] 为探讨纳-氢交换体是否介导动脉粥样硬化的发生,在高脂饮食诱导的兔动脉粥样硬化模型上观察了选择性例-氢交换抑制剂 Cariporide 的抗动脉粥样硬化作用。22 只雄性断西兰兔随机分为 3 组: 对照组给予普通饲料;模型组给予高脂饲料;治疗组给予高脂饲料的同时每天口服 Cariporide 0.1 mg/kg。在高脂饲养前、治疗第 5 和第 10 周分别称重和取血检测血清总胆固醇、低密度脂蛋白胆固醇和高密度脂蛋白胆固醇。10 周后处死动物,取出主动脉弓和心脏等,在光学显微镜和透射电子显微镜下行病理学检查。结果发现,对照组胸主动脉内膜表面光滑完整,光镜和电镜下内膜、内膜下层及中层未见异常改变。模型组动脉内膜增厚,内皮细胞损伤,管腔变窄,内膜下及中膜有大量泡沫细胞,平滑肌细胞排列紊乱;内弹力膜水肿,结构破坏。治疗组除一例发现主动脉管腔内膜有一隆起病灶外,其余兔主动脉内膜无明显损伤,内膜下层只有少量脂质侵入,内弹力膜完好,平滑肌细胞接近正常。此结果提示,Cariporide 能明显减轻高脂饲料诱发的动脉粥样硬化,此作用与血脂水平无关。[文献标识码] A

The Effects of HOE 642 Against Atherosclerosis Induced by High Lipid Diet in Rabbits

LIU Li-Ying1, WEN Ji-Fang2, TU Jiang-Hua1, ZHOUG Zhi-Lian3, and WU Jir-Xiang1

(1. Department of Pharmacology, 2. Department of Pathology, 3. Medical Laboratory of First Affiliated Hospital; Xiangya Medical College, South Central University; Changsha 410078, China)

[MeSH] Sodium-Hydrogen Antiporter; Cariporide/pharmacology; Atherosclerosis; Lipids/blood; Disease Models, Animal; Rabbits

Aim To explore whether Na*-H* exchanger (NHE) modulated atherogenesis, we investigated the effects [ABSTRACT] of cariporide, a selective inhibitor of Na* - H* exchanger, against atherogenesis in animal models induced by high fat plus high Methods 22 healthy New Zealand rabbits were randomly divided into 3 groups: one group was cholesterol (high lipid) diet. fed normal chow (n = 6), another group was fed high lipid diet chow served as atherogenesis control (n = 8), the third group fed high lipid diet chow plus orally cariporide (0.1 mg/kg everyday) served as drug treated group (n = 8). The blood was drawn from the central ear artery to assay serum lipoprotein at the prior experiment and animal sacrifice. Animals were killed in tenth Results The ultrastructures of aortic arweek; the samples of arteries, lives and hearts were taken for morphologic analysis. teries showas follows. In normal diet group, the vascular intima were smooth and intact. In high lipid diet model group, the intims were become rough and thicker. A lot of lipoid foam cells migrated to regions of intima and smooth muscle cells (SMC) which associated injuries of internal elastic lamina. In the cariporide treated group, above described vascular injuries were significantly ameliorated, but it also was found that a few of foam cells scattered under intima of artery in a few cases (one rabbit). TC and low density lipoprotein cholesterol (LDLC) was significantly increased in both groups. Cariporide did not black increases Conclusion Cariporide significantly decreased atherogenesis induced by hyperlipidemia. of serum TC and LDLC levels. The actions of cariporide against atherogenesis were independent decreasing lipemia and mainly located in blood vessels and tissue.

钠氢交换体(Na⁺-H⁺ exchanger, NHE)是真核细胞膜普遍存在的一类转运蛋白,现己克隆出 6型,心血管系统中以 NHE-1型为主^(1,2)。其主要生理功能是按 1:1 的电中性化学计量关系,将细胞内 1个 H⁺ 泵出,同时从细胞外泵人 1个 Na⁺ ^[3],以维持细胞内

正常 pH 值和容量。心肌缺血再灌注损伤、炎症或丝裂原、细胞刺激因子等可激活 NHE,使细胞内 H^{*}增多,继而引起细胞内 Na^{*}增多,通过 Na^{*}-Ca^{2*}交换机制引起细胞内 Ca^{2*}增多而致细胞损伤^[1]。NHE 过度活化可刺激 SMC 增殖和抑制内皮细胞(EC)合成与释放 NO^[4]。我们前期的研究结果已经证明, Cariporide (4-isopropyl-3-methylsulphonylbenzoy-guanidine methane sulphonate, HOE 642)对血小板源生长因子(PDGF)所刺激的血管平滑肌细胞(SMC)增殖有明显抑制作用^[5,6]。最近我们又发现 Cariporide 对溶血性磷脂酰胆碱(lysophosphatidylcholine, LysoPC)

[收稿日期] 2001-07-16 [修回日期] 2002-01-10

[基金项目] 国家自然科学基金(39770857)资助。 [作者简介] 刘立英,女,1945年7月出生,湖南省安化县人,药理学 数授,博士研究生导师,曾赴日本、瑞典等国留学访问,主要从事心血 管药理研究。联系方式:电话 0731-4805441, E-mail zn-znen @ yahoo. com.cn。文维舫,男,1945年11月出生,病理学教授,博士研究生导师,主要从事胃肠癌和癌前病变的研究。 引起的离体血管内皮依赖性舒张反应的损伤有明显保护作用。己知氧化型低密度脂蛋白(ox-LDL)是致动脉粥样硬化(atherosclerosis, As)的重要因素,而LysoPC是 ox-LDL 中致血管损伤的关键物质。血管SMC增殖是 As 斑块形成的重要环节。因此我们推测 NHE 抑制剂可能在多个环节上有抗 As 作用。本文主要报道 Cariporide 对高脂饮食引起的兔 As 损伤的保护作用。

1 材料和方法

1.1 药品与仪器

新西兰兔由中南大学湘雅医学院附属第二医院动物中心提供。Cariporide 由德国 Hochest 公司赠送,LKB-IV型超薄切片机和 H-600 型透射电镜分别由瑞典和日本制造。

1.2 动物分组与饲养

健康雄性新西兰兔 22 只,体重 2.1±0.7 kg,随机分为3组:①对照组 (n=6)用普通饲料喂养;②模型组(n=8)用高脂饲料喂养,高脂饲料是在普通饲料中加入1%胆固醇、7.5%蛋黄粉和8%猪油;③治疗组(n=8)的饲料同模型组,同时按体重每天口服 Cariporide 0.1 mg/kg。每兔每日总食量为120 g,单笼饲养,饮水不限,第10周处死。

1.3 血脂测定

高脂饲养前及饲养至第5和10周时,分别取禁食12h耳中央动脉血2mL,静置30min后离心取血

清,按文献[7]方法在日立7170型全自动生物化学分析仪上测血清总胆固醇(total cholesterol, TC)、低密度脂蛋白胆固醇(LDL cholesterol, LDLC)和高密度脂蛋白胆固醇(HDL cholesterol, HDLC)浓度。

1.4 病理形态学检查

动物饲养 10 周后,在戊巴比妥钠麻醉下打开胸腔和腹腔,取出主动脉弓、心脏和肝脏组织,按病理学常规方法处理标本,分别在光学显微镜和透射电子显微镜下观察上述组织的病理学改变。①将上述标本用 10% 的福尔马林溶液浸泡固定、常规取分主动脉弓组织,浸入 2.5% 戊二醛 PBS 缓闭下 24 h, 纯包埋剂包埋、修块定位后超薄切片,铅铀双重染色。置 H-600型透射电镜下观察与照片。

2 结果

2.1 血脂变化

高脂饮食后第五周,模型组和治疗组 TC、LDLC 和 HDLC 的浓度与对照组相比,无显著性差异(P>0.01)。第 10 周,模型组和治疗组动物血清 TC、LDLC 和 HDLC 浓度均显著高于对照组(P<0.01),但前两组间比较无显著性差异(表 1, Table 1)。模型组和治疗组在高脂饮食前和后,其 HDLC/LDLC 值无明显改变。

表 1. 三组兔第 10 周血清总胆固醇和高低密度脂蛋白水平(x±s).

Table 1. A levels of serum TC, LDLC and HDLC in difference diet rabbits in tenth week.

Groups	п	TC (mmol/L)		1.J)1.C (mmol/L)		HDLC (mmol/1.)	
		0 week	10 weeks	0 week	10 weeks	0 week	10 weeks
Control	6	0.89 ± 0.06	0.91 ± 0.01	0.18±0.01	0.23 ± 0.01	0.18 ± 0.01	0.23 ± 0.01
HLD	8	0.88 ± 0.07	29.1 ± 1.5°	0.23 ± 0.01	$22.4 \pm 1.4^{\circ}$	0.24 ± 0.02	22.4 ± 1.0°
HLD + CP	8	0.90 ± 0.05	29.4 ± 1.9°	0.23 ± 0.02	22.6 ± 1.2"	0.23 ± 0.06	23.6 ± 1.1°

a: P < 0.01, compared with control group. The date express $x \pm s$, CP: cariporide, HLD: high lipid diet. 0 week = before high lipid diet, 10 weeks = tenth week after high lipid diet.

2.2 病理形态学变化

2.2.1 血管内膜的变化 肉眼观察,对照组动物主动脉管腔光滑完整。模型组动物主动脉内膜可见针尖至绿豆大小的圆形或不规则形黄色斑块或脂质条纹,病灶主要位于动脉分枝开口及血管弯曲的凸面处;其表面尚光滑、色黄无破溃。治疗组90%动物主动脉内膜光滑无病理改变,只有一只动物可见

针尖大小脂质斑点或细短的脂质条纹,与模型组相 对比,其病理改变显著较前者轻。

光镜下对照组动物动脉管腔未见异常改变(图 1A, Figure 1A)。模型组动物动脉管壁呈弥漫性隆起,内膜明显增厚,内含大量泡沫细胞,几乎覆盖于整个管腔表现。管腔明显变窄而大小不规则,中膜平滑肌细胞排列紊乱(图 1B, Figure 1B)。高倍镜下

可见大小不规则的泡沫细胞,胞质内含有大量脂质,核呈圆形、卵圆形或长形,偶见1~2个核仁;有的病灶内泡沫细胞极度膨大,呈气球样变。其中一例升主动脉内有血栓形成。治疗组动物血管内膜光滑完

整,内膜无明显增厚(图 1C, Figure 1C)。少数病例 管腔有轻度局限性病灶隆起,内膜下可见少量散在 泡沫细胞,但其数目明显少于模型组。

图 1. 用 ITL 染色在光学显微镜下的兔主动脉内膜.

Figure 1. Photo of aortic intima viewed after stained with HE underling light microscopy. A: Cross section of aortic artery (magnification, × 120) in normal diet rabbit. B: Cross section of aortic artery (megnification, × 100) in high lipid diet rabbit. The intima become thicker and a lot of foam cells were accumulated under intima and intima bulged to vassal cavity. C: Cross section of aortic artery (magnification, × 120) in high lipid diet with carporide treatment rabbit. There was a small bulge in the vassal intima, but intima was not thickened.

2.2.2 冠状动脉改变 肉眼及光学显微镜下,对 照组和治疗组动物冠状动脉内膜和 SMC 未见异常 改变,模型组有一只动物光学显微镜下见冠状动脉 内有黄色斑块形成(图 2, Figure 2)。

图 2. 高脂饮食兔的冠状动脉横截面 (HE 染色 × 120). Figure 2. Cross section of coronary artery after stained with HE (× 120) in high lipid diet rabbits. There was a plague of atheresclerosis in surface of intima and a lot of foam cells were accumulated under intima.

2.2.3 胸主动脉超微结构改变 透射电镜下对

照组动物血管内皮细胞光滑完整,内膜无增厚,无水肿;SMC 排列整齐,无脂滴沉积(图 3A, Figure 3A)。模型组动物血管内膜呈撕裂状,内皮细胞排列不规则,细胞内有较多脂滴,细胞间隙明显增宽。内弹力膜层有脂质浸润,结构有损伤性改变,呈局部溶解状。中膜 SMC 内有大量脂滴,呈泡沫样改变,病产环炎中膜厚度的 2/3(图 3B, Figure 3B);个别标本可见血小板粘附于内皮细胞。治疗组动物血管内皮细胞光滑完整,内皮下层有少数散在脂滴浸润,但未见明显脂质层;少数线粒体有空泡样改变;内弹力度,则显脂质层;少数线粒体有空泡样改变;内弹力层,只有1000元,不1000元,1000

2.2.4 心脏与肝脏变化 对照组和治疗组在肉眼观察和光学显微镜下,肝脏和心脏均未见异常改变。模型组肉眼观察见7只兔肝脏呈淡黄色伴脂肪变性,光学显微镜下见轻至中度脂肪样改变。

3 讨论

本研究在高脂饮食动物模型上观察了选择性 Na⁺-H⁺交换抑制剂 Cariporide 的抗 As 作用。结果 发现,连续给予高脂饮食 10 周,血清 TC 和 LDLC 明

图 3. 兔胸主动脉的超微结构.

Figure 3.— Ultrastructure of aortic artery in rabbits. A: Cross section of aortic artery (x6000) in normal diet rabbit. The endothelial cells were smooth and integrity. B: Cross section of aortic artery (x3500) in high lipid diet rabbit. The endothelial cells were badly injured and there were a lot of foam cells with many lipide granules under intima and in rich SMC media. Internal elastic membrane suffered some destroys. C: Cross section of aortic artery (x 6000) in high lipid diet with cariporide treatment rabbit. The intima appeared lightly swollen and there were a few lipid granules under endothelia, internal elastic membrane and SMC were normal.

显增高,但 HDL/LDL 的比值未见明显改变。光学显微镜和透射电镜检查发现动脉血管呈现以内膜下层泡沫细胞聚储集及脂肪沉着、内弹力膜水肿和弹力纤维排列紊乱为标志的 As 表现。并发现一只动物主动脉有血栓形成;另一只动物冠状动脉内有黄色斑块。肝脏有明显脂肪样变性。

Cariporide (每天 0.1 mg/kg)治疗组,与模型组相比,高脂血症所致的上述主动脉的早期 As 的形态学改变有明显减少和减轻,也未见明显脂肪肝出现,主动脉未发现有血栓形成,冠状动脉内未见 As 斑块。说明 Cariporide 对高脂血症所致的 As 损伤有明显预防和治疗作用,但 Cariporide 对高脂饮食所致的 TC 和 LDLC 的升高无明显影响,说明 Cariporide 的抗 As 作用不依赖其降血脂作用,其作用主要表现在血管以及其他组织的局部。

本研究对 Cariporide 抗 As 的机制尚不能作确切解释。因为 As 是一种极其复杂的由多种因素引起的慢性疾病,大量研究已证明 As 的急性和慢性表现都是慢性炎症过程的后果。其中引起 As 的关键因素之一是单核细胞与血管内皮细胞的粘附。而经常等引起的内皮细胞损伤,细胞与中皮细胞粘附的因素很多,包括致少,如此的大致,是自由基等引起的内皮细胞损伤,细胞趋力,整合素等诱导的单核细胞与内皮细胞的粘附,细胞刺激因子以及丝裂原引起的中皮细胞的粘附,细胞刺激因子以及丝裂原引起的平滑加细胞迁移与增殖。已知细胞浆的碱化可抑制和皮肉的自身等放,胞浆 pH 值的变化可改皮细胞内的信息传导[4.8]。在动脉粥样硬化形成过程

中,活化的血小板、巨噬细胞、内皮细胞等释放的PDGF等生长因子使 NHE1 的表达和活性增加 $^{[9]}$ 。而 NHE 的活化可导致细胞内 pH 值增加 $^{[9]}$ 。在平滑肌细胞,胞浆的碱化可促进增殖。 NHE 抑制剂 Amiloride 在抑制 PDGF 所刺激的肺主动脉 SMC 增殖的同时也降低了胞浆的 pH 值 $^{[6]}$ 。我们以前的研究已经证明 Cariporide 能抑制血清所刺激的血管 SMC的增殖 $^{[5]}$ 。H $_2O_2$ 可使 NHE 的活性增加 $^{[9]}$,Na $^+$ -H $^+$ 交换抑制剂能明显减轻 H $_2O_2$ 和其他氧自由基所致的心肌细胞和血管内皮功能的损伤 $^{[10-13]}$ 。 Cariporide 能明显抑制 LysoPC 所损伤的大鼠离体心脏的研究证明,在培养的小牛血管内皮细胞,Cariporide 能对抗 LysoPC 引起的单核细胞与内皮细胞的粘附。

综上所述, Cariporide 抗高脂血症所致 As 作用的可能机制是, Cariporide 能降低 NHE 的活性,维持细胞内的正常 pH。减少细胞内的 Na^{*}和细胞膜的 Na^{*}-Ca^{2*}交换,降低细胞内的 Ca^{2*}水平,从而减轻细胞损伤。此外, LysoPC 是 ox-LDL 的分解产物, ox-LDL介导的单核细胞与内皮细胞的粘附与 LysoPC密切相关, Cariporide 通过抗氧化作用,减少 ox-LDL和 LysoPC产生,减少内皮细胞的损伤和抑制单核细胞向内膜下层的浸润,从而减少动脉粥样硬化的形成。

[参考文献]

[1] Kannazyn N, Sostaric JV, Gan XT. The myocardial Na*-H* ex-

- changer: a potential therapeutic target for the prevention of myocardial ischaemic and reperfusion injury and attenuation of postinfarction heart failure. Drugs. 2001, 61(3): 375-389
- [2] Theraux P. Myocardial cell protection: Achallenging time for action and a challenging time for clinical research. *Circulation*, 2000, 101 (25): 2 874-876
- [3] Karmazyn M. Therapeutic potential of Na*-H* exchange inhibitors for the treatment of heart failure. Exp Opin Invest Drug, 2001, 10 (5): 835-843
- [4] Foy RA, Shimizu S, Paul RJ. The effect of hypoxia on pH in porcine coronary artery endothelium and smooth muscle. A novel method for measurements in endothelial cells in situ. Circ Res., 1999, 80 (1): 21-27
- [5] 絵江华, 刘立英. 选择性钠/氢交换抑制剂 HOE642 抑制血管 平滑肌细胞增殖。 中国药理学与春理学杂志, 2001, 15(4): 260-264
- [6] Quinnn DA, Dahlberg CCW, Bonventre JP, et al. The role of Na*-H* exchange and growth factors in pulmonary artery smooth muscle cell proliferation. Am J Respir Cell Mol Biol. 1996, 14: 139-145
- [7] 中华心血管病杂志编辑部血脂异常对策研究组. 血脂侧定技术及其标准化建议. 中华心血管病杂志、1997,7(1):65-67
- [8] Shimizu S, Paul RJ. Hypoxia and alkalinization inhibit endothelium derived nitric oxide but not endothelium derived hyperpolarizing factor responses in porcine coronary artery. J Pharmacol Exp Ther, 1999.

- 291(1): 335-344
- [9] Sabri A, Byron KL, Samarel AM, et al. Hydrugen peroxide activates mitogen activated protein kinasses and Na*-H* exchange in neonatal rat cardiac myocytes. Circ Res., 1998, 82(10): 1 053-062
- [10] Hartman M, Decking UK. Blocking Na⁺-H⁺ exchange by cariporide reduces Na⁺ Overload in ischemia and is a cardisprotective effect. J Mol Cell Cardiol, 1999, 31(11): 1 985-995
- [11] Hoque AN, Haist JV, Karmazyn M. Na*-H* exchange inhibition protects against mechanical, ultrastructural, and biochemical impairment induced by low concentrations of lysophosphatidycholine in isolated rat hearts. Circ Res., 1997, 80(1): 195-202
- [12] Myers ML, Farhangkhoee P, Karmazyn M. Hydrogen peroxide induced impairment of post-ischemic ventricular function is prevented by the sodium-hydrogen exchange inhibitor HOF, 642 (cariporide). Cardiousse Res., 1998, 40 (2): 290-296
- [13] 刘立英,李年生,蔡朝民,陈 修. HOE 692 对外源性自由 基所致离体心脏与血管功能损伤的保护作用. 中国药理学 通报,1997,13(6):574-575
- [14] Hoque AN, Karmazyn M. Effect of sodium-hydrogen exchange inhibition on functional and metabolic impairment produced by oxideative stress in the isolated rat heart. Can J Physiol Phurmacol., 1997, 75 (4): 326-334

(此文编辑 胡必利)

·消 息·

中国病理生理学会 2002 年学术活动计划

会议名称	时间	地点	预期人数	联 系 人
1.第六次全国缺氧和呼吸 病理生理学术会议暨第二 次缺氧和呼吸病理生理国 际学术会议	10月15~17日	重庆	400 ~ 450	高钰珙教授,重庆市高滩 岩第三军医大学病理生理 学教研室,400038 电话: 023-68752336
2.第八届肿瘤暨第九届免 疫专业委员会学术会议	10 月	上海	150	殷莲华:复旦大学医学院 病生教研室(200032)(上 海医学院路 138 号)
3. 动脉粥样硬化斑块稳定 性和冠脉综合症学术研讨 会	10	湖南衡山	80 ~ 100	胡必利 湖南衡阳市南华 大学内,中国动脉硬化杂 志编辑部(421001)。电 话:0734-8281289
4.第十届心血管专业委员会暨第七届国际心脏研究会(ISHR)中国分会和第七届受体专业委员会学术会议	11月6~9日	广州	450	余细勇 广东省东川路 96号(510080)。广东省心 血管研究所 xiyong. yu@netease. com 张幼怡 北京大学第三医 院血管研究所 100083
5.第五届危重病医学专业 委员会学术会议	9月	济南	600	陈德昌 北京协和医院加强医疗科 100730