Linear vs. nonlinear modeling of black hole ringdowns

Speaker: Yi Qiu

Collaborators: Xisco Jiménez Forteza, Pierre Mourier

December 10, 2023

Why ringdown test?

- Collaborations. PRL.116.061102 (2016).
- Ringdown quasi-normal-mode (QNM) frequencies uniquely determined by the final BH's mass and spin as predicted by the no-hair theorem in general relativity (GR).
- Testing no-hair theorem:
 - Blackhole spectroscopy
 - Inspiral-merger-ringdown (IMR) consistency test

Linear vs. nonlinear

Nonlinearity in the merger phase.

Image credit: Swetha Bhagwat, APS/articles/v16/ 29 (2023).

- Linear
 - Linear perturbation applied from the peak strain onward.
 - Nonlinear effects observed at the merger regime become quickly irrelevant.
 - Includes a large number of tones, typically N=7 overtone model.

- Issues in "linear" models
 - Instability of the high overtone modelsoverfitting.
 - Mode mixing, prompt emission, late tail effects, etc.
 - Un-modelled nonlinearity on the dominant (l, m) = (2, 2) mode.

Linear models

- QNM overtone models
 - Teukolsky equation describes linear perturbations off a Kerr background spacetime.
 - Its solution is the countably infinite set of the complex QNMs of the final (Kerr) BH.

The complex strain at future null infinity:

$$h(t,\theta,\phi) = \sum_{l,m} h_{lm}(t) {}_{-2}\mathcal{Y}_{lm}(\theta,\phi;a_f),$$

 $_{-2}\mathcal{Y}_{lm}(\theta,\phi;a_f)$ are the spin-weighted spheroidal harmonics of spin weight s=-2. Thus, $h_{22}(t)$ for a given number $N\geq 0$ of overtones defines the linear overtone model:

$$OM_N(t) = \sum_{n=0}^{N} \mathcal{A}_n e^{-\iota(t-t_r)\omega_{22n}}.$$

where t_r is a reference time.

Nonlinear models & non-GR model

- IMR models
 - Calibrated to NR waveforms, which depend solely on the progenitors' parameters.
 - After calibration, required fewer input parameters than the overtone models
- We use non-precessing IMRPhenomD waveform model for this work.
- 4 real parameters: q, χ_1^z , χ_2^z , and phase.

- Toy models
 - Time coordinate transformation models (TCTMs).
 - Nonlinear modification at early times.
 - Asymptotically recovering the linear model at later times.

$$TCTM_N(t) \equiv OM_N(t + Ae^{-t/\tau})$$

- A and τ are two parameters to be determined.
- 2N + 6 real parameters: the final mass and spin, A, τ , and N + 1 complex tone amplitudes.

- Non-GR models
 - Highest-tone perturbation models (HTPMs).
 - Deviation to the QNM spectrum.
 - Popular in spectroscopic studies (N=1).

$$\begin{aligned} \text{HTPM}_N(t) &\equiv \text{OM}_{N-1}(t) + \\ \mathcal{A}_N e^{-\iota(t-t_r)w_{22N}(1+\alpha_N)} \\ e^{-(t-t_r)/\left(\tau_{22N}(1+\beta_N)\right)} \end{aligned}$$

- α_N and β_N are the oscillation frequency and damping time perturbation parameters
- 2N + 6 real parameters: final mass, spin, α_N , β_N , and N + 1 complex tone amplitudes.

Model comparison

• Mismatch (typically used in comparisons to NR data):

$$\mathcal{M} = 1 - \frac{\langle h_{\text{NR}} \mid h_m \rangle}{\sqrt{\langle h_{\text{NR}} \mid h_{\text{NR}} \rangle \langle h_m \mid h_m \rangle}},$$

• We compare between our model for the strain 22 mode, $h_m(t)$, and the corresponding numerical data for the strain 22 mode, $h_{NR}(t)$, with

$$\langle f \mid g \rangle = \operatorname{Re} \int_{t_0}^{t_f} f^*(t)g(t)dt.$$

- lacktriangledown to and t_f mark the fit starting and ending time, respectively. $\mathcal M$ varies between 0 and 1.
- Bias of recovery of remnant BH's mass and spin (dimensionless):

$$\epsilon = \sqrt{\left(\frac{M_f^{\text{fit}} - M_f^{\text{true}}}{M}\right)^2 + \left(a_f^{\text{fit}} - a_f^{\text{true}}\right)^2}.$$

• Posterior probablity for model M with parameters $\vec{\theta}$, given the data d (here $d = h_{NR}$),

$$p(\vec{\theta} \mid d, M) = \frac{p(\vec{\theta} \mid M)p(d \mid \vec{\theta}, M)}{p(d \mid M)}.$$

Preliminary tests

• Grid method on mass and spin $(+A/\tau \text{ or } \alpha_N/\beta_N)$ --- linear fitting implemented at each grid point, then find minimum mismatch using bisection.

Parameter estimation

- Sampling using *dynesty* package.
- Likelihood function in time domain.
- Assuming constant noise spectrum in relevant frequency range. Consequently, an optimal $SNR \rho$ is set as well.

$$p(d \mid \vec{\theta}, M) = \exp\left[-\rho^2 \frac{\langle d(t) - m(\vec{\theta}, t) | d(t) - m(\vec{\theta}, t) \rangle}{2\langle d(t) | d(t) \rangle}\right].$$

where $m(\vec{\theta}, t)$ denotes the strain 22 mode from model M with particular parameters $\vec{\theta}$, evaluated at time t, and d(t) is the time-domain NR strain (zero noise realization) for the 22 mode.

Bayesian analysis

Setup:

- Data from SXS catalog.
- Assuming SNR=100.
- GW150914 like (SXS:BBH:0305).
- Truncate the waveform at $t_0 = 0$ (strain peak).
- Use 2000 n-live points and the stopping criterion of $\Delta(\ln z) = 0.1$ for the nested sampling.

Results:

- Bayes evidences favors IMRPhenomD the most.
- Overtone model performance reach a plateau at N = 2.
- Second best models are TCTMs (also nonlinear).
- Non-GR model has similar performance as OMs.

Model	Parameters	$\log_{10} \mathcal{Z}$
$\overline{\mathrm{OM}_0}$	4	-188.435
OM_1	6	-31.9132
OM_2	8	-17.0332
OM_3	10	-17.1311
OM_4	12	-17.7541
TCTM_0	6	-33.2123
TCTM_1	8	-14.4255
TCTM_2	10	-14.2678
HTPM_1	8	-17.1984
HTPM_2	10	-17.3353
IMRPhenomD	4	-9.57672

Posterior distribution

- Posterior distributions are similar for $OM_{n>=2}$.
- While it shows large offsets for the models $OM_{n=0,1}$.
- Tighter mass and spin contours in IMRPhenomD than all the OMs.
- TCTM₁ shows comparable performance as OM₂ (i.e. having the same number of parameters).
- HTPM₁ displaying a significant bias.

Bias vs. SNR

■ OM_1 and $HTPM_1$ start to be dominated by systematic bias at $SNR \geq 30$ -40.

Ringdown starting time dependence

- The two nonlinear models considered in this work, IMRPhenomD and TCTM₁ provide larger Bayes evidences over the linear models OM₂ and non-GR model HTPM₁ for low t₀ values.
- IMRPhenomD is supported over OMs at early starting time up to $t_0/M = 15$.
- All other models become comparable from $t_0/M = 5$ onward.

Higher tone amplitudes observability

For overtone models, confident observations of the N=2, 3 overtones require large SNRs in the ringdown O(30-100).

Robustness test

Catalog	Waveform	q	$\chi_{1,z}$	$\chi_{2,z}$	IMRPhenomD	OM_2	OM_3	$TCTM_1$	$HTPM_1$
Main	BBH:0150	1	0.2	0.2	(-8.215,	(-19.916,	(-22.449,	(-14.771,	(-19.314,
					0.0080)	0.0283)	0.0095)	0.0119)	0.2059)
	BBH:0305	1.221	0.33	-0.44	(-9.558,	(-17.032,	(-17.121,	(-14.447,	(-17.208,
					0.0150)	0.0270)	0.0115)	0.0246)	0.2367)
	BBH:1221	3	0	0	(-7.988,	(-16.652,	(-18.539,	(-15.071,	(-15.944,
					0.0074)	0.0494)	0.0456)	0.0503)	0.2531)
	BBH:0300	8.5	0	0	(-6.207,	(-17.000,	(-18.583,	(-15.456,	(-15.647,
					0.0092)	0.1209)	0.0851)	0.0323)	0.3011)
Ext-CCE	BBH:0002	1	0.2	0.2	(-44.57,	(-80.87,	(-81.44,	(-77.01,	(-79.67,
					0.0238)	0.0282)	0.0238)	0.0592)	0.1880)
	·	·						·	

- Testing other waveforms form SXS main catalog and ExtCCE catalog.
- Table showing log₁₀ Bayes evidence and bias in (,).
- Different waveform results are consistent.
- IMRPhenomD is preferred over OMs.
- Prior tests also imply robustness of our prior choices for different models.

Conclusions

- Nonlinear models provide comparable/better performance in both Bayes analysis and bias analysis when doing parameter estimation using numerical data.
- Overtone models OM_1 and $HTPM_1$ start to be dominated by systematic errors at $SNR \gtrsim 30\text{-}40$.
- IMR tests at the ringdown regime much less affected by systematic errors in final BH's parameter recoveries.
- Assuming overtone model, confident observation of the overtones N=2,3 requires large SNRs in the ringdown O(30-100).

Thank you

Backup slide: prior test

Model	Parameter	Prior
OM_0	Remnant mass	(0.5, 1.3)
	Remnant spin	(0, 0.99)
	${ m Amplitudes}$	(0,2)
	Phases	$(0,2\pi)$
$\mathrm{OM}_{1\sim2}$	Remnant mass	(0.5, 1.3)
	Remnant spin	(0, 0.99)
	${ m Amplitudes}$	(0, 10)
	Phases	$(0,2\pi)$
$\mathrm{OM}_{3\sim4}$	Remnant mass	(0.5, 1.1)
	Remnant spin	(0, 0.99)
	${f Amplitudes}$	(0, 10)
	Phases	$(0, 2\pi)$
TCTM_n	Remnant mass	(0.5, 1.3)
	Remnant spin	(0, 0.99)
	Amplitudes	(0, 2)
	Phases	$(0, 2\pi)$
	$\log_{10} A$	(-5, 5)
	au	(0, 100)
HTPM_n	Remnant mass	(0.5, 1.3)
	Remnant spin	(0, 0.99)
	Amplitudes	(0, 2)
	Phases	$(0, 2\pi)$
	lpha	(-0.5, 1)
	$oldsymbol{eta}$	(-0.5, 1)
IMRPhenomD	Mass ratio	(1,8)
	Initial spin 1	(-0.99, 0.99)
	Initial spin 2	(-0.99, 0.99)
	Phases	$(0,2\pi)$

Different prior ranges tests also prove the robustness of our choices in parameter estimation.

Backup slide: bias at max likelihood sample point

Model	Parameters	$\log_{10} \mathcal{Z}$	ϵ
$-$ OM $_0$	4	-188.435	0.311261
OM_1	6	-31.9132	0.087670
OM_2	8	-17.0332	0.027019
OM_3	10	-17.1311	0.011475
OM_4	12	-17.7541	0.032821
TCTM_0	6	-33.2123	0.216384
TCTM_1	8	-14.4255	0.024559
$TCTM_2$	10	-14.2678	0.004472
HTPM_1	8	-17.1984	0.236650
HTPM_2	10	-17.3353	0.096609
$\underline{\rm IMRPhenomD}$	4	-9.57672	0.014981

We append the column of bias of recovery of final BH's mass and spin for SXS:BBH:0305 test. Nonlinear models have lower epsilons than the OMs in most cases.