

Free-surface waves using extended shallow water models part 1

Julian Koellermeier University of Groningen and Ghent University

WAVES.NL Summer school, Nijmegen, 25 August 2025

1 Overview

Schedule

Time	Monday	Tuesday	Wednesday	Thursday	Friday
8:50-9:00	Opening	ES L REL			
9:00-10:30	L3	L5	L2	L4	L6
10:30-11:00	Coffee break	Coffee break	Coffee break	Coffee break	Coffee break
11:00-12:30	L1	L1	L2	L4	L6
12:30-13:30	Lunch	Lunch	Lunch	Lunch	Lunch
13:30-15:00	L3	L5	L3	L5	7
15:00-15:30	Coffee break	Coffee break			
15:30-17:00	Poster session	L1		I A G	THE STATE OF
17:45-19:00			Social event		The said

L1: Mon 11-12:30

- overview
- motivation
- derivation

L2: Tue 11-12:30

analysis

L3: Tue 15:30-17

- selected papers
- outlook

Slides at: https://github.com/scalaura/waves_summerschool

Free-surface waves using extended shallow water models

Content of this talk

- Overview
- 2 Motivation
- Operivation
- 4 Examples/Exercises

Progress in mathematical modeling and numerical simulation

Computing power increases (Moore's law)

Number of papers increases (mathscinet)

Status quo: diversity of complex models ⇒ repeated derivation, analysis, implementation

Question: How to use our resources efficiently?

Modeling and model reduction

Modeling and model reduction

Modeling and model reduction

Question: What are desirable model properties?

detail level coarse intermediate fine

a) rarefied gases

b) free-surface flows

a) rarefied gases

b) free-surface flows

Hierarchical mathematical modeling

Hierarchical moment models

Advantages

- 1. general derivation
- 2. structure preserving
- 3. accurate results
- \Rightarrow adaptive simulations

My research field

Model derivation Model analysis Numerics & Applications • rarefied gases • shallow flows • further analysis • numerical results

My research field

Model derivation Model analysis Numerics & Applications • rarefied gases • shallow flows • further analysis • numerical results

2 Motivation

Motivation: Rarefied gases and shallow flows

a) rarefied gases

Scale is the Knudsen number

$$Kn = \frac{\text{mean free path length}}{\text{reference length}} = \frac{I}{L}$$

b) shallow flows

Scale is the shallowness

$$S = \frac{\text{water height}}{\text{wave length}} = \frac{h}{\lambda}$$

Motivation: Rarefied gases and shallow flows

a) rarefied gases

b) shallow flows

Scale is the Knudsen number

$$Kn = \frac{\text{mean free path length}}{\text{reference length}} = \frac{I}{L}$$

Scale is the shallowness

$$S = \frac{\text{water height}}{\text{wave length}} = \frac{h}{\lambda}$$

a)

Motivation: Rarefied gases and shallow flows

a) rarefied gases

Scale is the Knudsen number

$$Kn = \frac{\text{mean free path length}}{\text{reference length}} = \frac{I}{L}$$

b) shallow flows

Scale is the shallowness

$$S = \frac{\text{water height}}{\text{wave length}} = \frac{h}{\lambda}$$

a) rarefied gases

Boltzmann Transport Equation

$$\frac{\partial}{\partial t}f(t, \mathbf{x}, \mathbf{c}) + c_i \frac{\partial}{\partial x_i}f(t, \mathbf{x}, \mathbf{c}) = S(f)$$

b) shallow flows

$$\frac{\partial}{\partial t}f(t, \mathbf{x}, \mathbf{c}) + c_i \frac{\partial}{\partial x_i}f(t, \mathbf{x}, \mathbf{c}) = \mathbf{S}(\mathbf{f}) \qquad \nabla \cdot \mathbf{u} = 0, \quad \partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} = -\frac{1}{\rho}\nabla \rho + \frac{1}{\rho}\nabla \cdot \boldsymbol{\sigma} + \mathbf{g}$$

a) rarefied gases

Boltzmann Transport Equation

$$\frac{\partial}{\partial t}f(t, \boldsymbol{x}, \boldsymbol{c}) + c_i \frac{\partial}{\partial x_i}f(t, \boldsymbol{x}, \boldsymbol{c}) = S(f)$$

b) shallow flows

$$\frac{\partial}{\partial t}f(t, \boldsymbol{x}, \boldsymbol{c}) + c_i \frac{\partial}{\partial x_i}f(t, \boldsymbol{x}, \boldsymbol{c}) = S(f) \qquad \left| \nabla \cdot \boldsymbol{u} = 0, \quad \partial_t \boldsymbol{u} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} = -\frac{1}{\rho} \nabla \rho + \frac{1}{\rho} \nabla \cdot \boldsymbol{\sigma} + g \right|$$

a) rarefied gases

Boltzmann Transport Equation

$$\frac{\partial}{\partial t}f(t, \boldsymbol{x}, \boldsymbol{c}) + c_i \frac{\partial}{\partial x_i}f(t, \boldsymbol{x}, \boldsymbol{c}) = S(f)$$

b) shallow flows

$$\frac{\partial}{\partial t}f(t, \boldsymbol{x}, \boldsymbol{c}) + c_i \frac{\partial}{\partial x_i}f(t, \boldsymbol{x}, \boldsymbol{c}) = S(f) \qquad \left| \nabla \cdot \boldsymbol{u} = 0, \quad \partial_t \boldsymbol{u} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} = -\frac{1}{\rho}\nabla \rho + \frac{1}{\rho}\nabla \cdot \boldsymbol{\sigma} + g \right|$$

a) rarefied gases

Boltzmann Transport Equation

$$\frac{\partial}{\partial t}f(t, \boldsymbol{x}, \boldsymbol{c}) + c_i \frac{\partial}{\partial x_i}f(t, \boldsymbol{x}, \boldsymbol{c}) = S(f)$$

Euler equations

0.4 0.2

b) shallow flows

$$\frac{\partial}{\partial t}f(t, \boldsymbol{x}, \boldsymbol{c}) + c_i \frac{\partial}{\partial x_i}f(t, \boldsymbol{x}, \boldsymbol{c}) = S(f) \qquad \left| \nabla \cdot \boldsymbol{u} = 0, \quad \partial_t \boldsymbol{u} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} = -\frac{1}{\rho}\nabla \rho + \frac{1}{\rho}\nabla \cdot \boldsymbol{\sigma} + g \right|$$

a) rarefied gases

Boltzmann Transport Equation

$$\frac{\partial}{\partial t}f(t, \boldsymbol{x}, \boldsymbol{c}) + c_i \frac{\partial}{\partial x_i}f(t, \boldsymbol{x}, \boldsymbol{c}) = S(f)$$

b) shallow flows

$$\frac{\partial}{\partial t}f(t, \boldsymbol{x}, \boldsymbol{c}) + c_i \frac{\partial}{\partial x_i}f(t, \boldsymbol{x}, \boldsymbol{c}) = S(f) \qquad \left| \nabla \cdot \boldsymbol{u} = 0, \quad \partial_t \boldsymbol{u} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} = -\frac{1}{\rho}\nabla \rho + \frac{1}{\rho}\nabla \cdot \boldsymbol{\sigma} + g \right|$$

Moment models

1. underlying model equation

$$\mathcal{D}\left(\boldsymbol{U}(t,\boldsymbol{x},\boldsymbol{y})\right)=0$$

2. expansion with ansatz

$$oldsymbol{U}_{\mathbb{M}}(t,oldsymbol{x},oldsymbol{y}) = \sum_{i\in\mathbb{M}} oldsymbol{U}_i(t,oldsymbol{x})\cdot\Phi_i^{oldsymbol{U}}(oldsymbol{y})$$

3. moment projection

$$\int_{\Omega} \mathcal{D}\left(\boldsymbol{U}_{\mathbb{M}}(t,\boldsymbol{x},\boldsymbol{y})\right) \cdot \Psi_{j}^{\boldsymbol{U}}(\boldsymbol{y}) \, \boldsymbol{d}\boldsymbol{y} \, \text{for} \, j \in \mathbb{M}$$

Moment model

Hierarchical system of lower-dimensional PDEs for $\boldsymbol{U}_i(t, \boldsymbol{x})$

General derivation of hierarchical moment models

Ansatz:

$$oldsymbol{U}_{\mathbb{M}}(t,oldsymbol{x},oldsymbol{y}) = \sum_{i\in\mathbb{M}} oldsymbol{U}_i(t,oldsymbol{x})\cdot\Phi_i^{oldsymbol{U}}(oldsymbol{y})$$

Projection:

$$\int_{\Omega} \mathcal{D}\left(\boldsymbol{U}_{\mathbb{M}}(t,\boldsymbol{x},\boldsymbol{y})\right) \cdot \Psi_{j}^{\boldsymbol{U}}(\boldsymbol{y}) \, \boldsymbol{dy} \, \text{for} \, j \in \mathbb{M}$$

Other models

- uncertainty quantification
- traffic flow

3 Derivation

Motivation: shallow flows

Scale is the shallowness

$$S = \frac{\text{water height}}{\text{wave length}} = \frac{h}{\lambda}$$

Model equation

$$abla \cdot oldsymbol{u} = 0, \quad \partial_t oldsymbol{u} + oldsymbol{u} \cdot
abla oldsymbol{u} = -rac{1}{
ho}
abla
ho + rac{1}{
ho}
abla \cdot oldsymbol{\sigma} + g$$

Shallow flows: Micro-, Macro- and Meso-scale

macroscopic

mesoscopic

microscopic

shallow water equations

 $\partial_t h + \partial_x (h u_m) = 0$ $\partial_t(hu_m) + \partial_x\left(hu_m^2 + \frac{1}{2}gh^2\right) = -hg\partial_x h_b$

moment equations

incompressible Navier–Stokes

$$\nabla \cdot \mathbf{u} = 0$$

$$\partial_t oldsymbol{u} + oldsymbol{u} \cdot
abla oldsymbol{u} = -rac{1}{
ho}
abla
ho + rac{1}{
ho}
abla \cdot oldsymbol{\sigma} + g$$

Model equation: shallow flows

Shallow Water Equations

$$\partial_{t} \begin{pmatrix} h \\ hu_{m} \end{pmatrix} + \partial_{x} \begin{pmatrix} hu_{m} \\ hu_{m}^{2} + \frac{1}{2}gh^{2} \end{pmatrix} = \begin{pmatrix} 0 \\ -gh\partial_{x}b \end{pmatrix} - \frac{\nu}{\lambda} \begin{pmatrix} 0 \\ u_{m} \end{pmatrix}$$

Model equation: shallow flows

Shallow Water Equations

$$\partial_t \begin{pmatrix} h \\ h u_m \end{pmatrix} + \partial_x \begin{pmatrix} h u_m \\ h u_m^2 + \frac{1}{2}gh^2 \end{pmatrix} = \begin{pmatrix} 0 \\ -gh\partial_x b \end{pmatrix} - \frac{\nu}{\lambda} \begin{pmatrix} 0 \\ u_m \end{pmatrix}$$

Transformation [TORRILHON, KOWALSKI, 2018]

$$z \mapsto \zeta = \frac{z - h_b}{h_s - h_b} = \frac{z - h_b}{h}$$

$$z \in [h_b(t,x), h_s(t,x)] \Rightarrow \zeta \in [0,1]$$

From NSE to transformed system

NSE

$$\begin{split} \partial_x u + \partial_z w &= 0, \\ \partial_t u + \partial_x (u^2) + \partial_z (uw) &= -\frac{1}{\rho} \partial_x p + \frac{1}{\rho} \partial_x \sigma_{xz} \end{split}$$

The pressure is assumed hydrostatic $p = (h_s - z)g$. transformed system

$$\begin{split} \partial_t h + \partial_x \left(h u_m \right) &= 0, \\ \partial_t \left(h u \right) + \partial_x \left(h u^2 + \frac{g}{2} h^2 \right) + \partial_\zeta \left(h u \omega - \frac{1}{\rho} \sigma_{xz} \right) &= -g h \partial_x h_b. \end{split}$$

The vertical coupling ω is defined as

$$\omega = rac{1}{h} \int_0^{\zeta} \left(\int_0^1 \partial_x (hu(\check{\zeta})) d\check{\zeta} - \partial_x (hu(\hat{\zeta})) \right) d\hat{\zeta}.$$

Boundary conditions example

- no slip boundary condition at the bottom
- zero Neumann boundary condition at the top

$$\partial_{\zeta} u \mid_{\zeta=1} = 0$$
$$u \mid_{\zeta=0} = 0$$

- slip boundary condition or friction at the bottom are possible
- for mud flows or land slides, Mohr-Coloumb friction law has to be used

Polynomial ansatz [KOWALSKI, TORRILHON, 2018]

Represent variations over depth with polynomials

$$u(t,x,z) = \underbrace{u_m(t,x)}_{\text{mean of }u} + \sum_{i=1}^{M} \alpha_i(t,x) \underbrace{\phi_i\left(\frac{z-h_b}{h_s-h_b}\right)}_{\phi_i(\zeta)}$$

Polynomial ansatz [KOWALSKI, TORRILHON, 2018]

Represent variations over depth with polynomials

$$u(t,x,z) = \underbrace{u_m(t,x)}_{\text{mean of } u} + \sum_{i=1}^{M} \alpha_i(t,x) \underbrace{\phi_i\left(\frac{z-h_b}{h_s-h_b}\right)}_{\phi_i(\zeta)}$$

Example/Exercise 1: Polynomial velocity expansions

We expand the velocity profile $u(t, x, \zeta)$ in Legendre polynomials as follows:

$$u(t,x,\zeta) = u_m(t,x) + \sum_{i=1}^{M} \alpha_i(t,x) \cdot \phi_i(\zeta),$$

where the first three Legendre polynomials are given by:

$$\phi_1(\zeta) = 1 - 2\zeta,$$
 $\phi_2(\zeta) = 1 - 6\zeta + 6\zeta^2,$ $\phi_3(\zeta) = 1 - 12\zeta + 30\zeta^2 - 20\zeta^3,$

with normalization $\phi_i(0) = 1$ and orthogonality on [0,1]

$$\int_0^1 \phi_i(\zeta)\phi_j(\zeta)d\zeta = \frac{\delta_{ij}}{2i+1}.$$

Compute the values of the variables $u_m, \alpha_1, \alpha_2, \alpha_3$ for the following velocity profiles:

- Constant profile: $u(t, x, \zeta) = 0.25$.
- 2 Linear profile: $u(t, x, \zeta) = 0.5\zeta$.
- **3** Quadratic profile: $u(t, x, \zeta) = 1.5\zeta(1 \zeta)$.

Moment models

1. underlying model equation

$$\mathcal{D}\left(\boldsymbol{U}(t,\boldsymbol{x},\boldsymbol{y})\right)=0$$

2. expansion with ansatz

$$oldsymbol{U}_{\mathbb{M}}(t,oldsymbol{x},oldsymbol{y}) = \sum_{i\in\mathbb{M}} oldsymbol{U}_i(t,oldsymbol{x})\cdot\Phi_i^{oldsymbol{U}}(oldsymbol{y})$$

3. moment projection

$$\int_{\Omega} \mathcal{D}\left(\boldsymbol{U}_{\mathbb{M}}(t,\boldsymbol{x},\boldsymbol{y})\right) \cdot \Psi_{j}^{\boldsymbol{U}}(\boldsymbol{y}) \, \boldsymbol{dy} \, \text{for} \, j \in \mathbb{M}$$

Moment models [Grad, 1949], [KOWALSKI, TORRILHON, 2018]

1a) rarefied gases: BTE

$$\frac{\partial}{\partial t}f(t,x,c) + c\frac{\partial}{\partial x}f(t,x,c) = S(f)$$

1b) shallow flows: NSE

$$abla \cdot \boldsymbol{u} = 0, \quad \partial_t \boldsymbol{u} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} = -\frac{1}{\rho} \nabla \rho + \frac{1}{\rho} \nabla \cdot \boldsymbol{\sigma} + g$$

2. expansion with ansatz

$$\boldsymbol{U}_{\mathbb{M}}(t,\boldsymbol{x},\boldsymbol{y}) = \sum_{i \in \mathbb{M}} \boldsymbol{U}_{i}(t,\boldsymbol{x}) \cdot \Phi_{i}^{\boldsymbol{U}}(\boldsymbol{y})$$

3. moment projection

$$\int_{\Omega} \mathcal{D}\left(m{U}_{\mathbb{M}}(t,m{x},m{y})
ight) \cdot \Psi_{j}^{m{U}}(m{y}) \, m{dy} \, \, ext{for} \, \, j \in \mathbb{M}$$

Moment models [Grad, 1949], [KOWALSKI, TORRILHON, 2018]

1a) rarefied gases: BTE

$$\frac{\partial}{\partial t}f(t,x,c) + c\frac{\partial}{\partial x}f(t,x,c) = S(f)$$

1b) shallow flows: NSE

$$abla \cdot \boldsymbol{u} = 0, \quad \partial_t \boldsymbol{u} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} = -\frac{1}{\rho} \nabla \rho + \frac{1}{\rho} \nabla \cdot \boldsymbol{\sigma} + g$$

2a) Hermite ansatz

$$f(t,x,c) = \sum_{i=0}^{M} f_i(t,x) \phi_i \left(\frac{c-v}{\sqrt{\theta}}\right)$$

2b) Legendre ansatz

$$u(t,x,z) = \underbrace{u_m(t,x)}_{\text{mean of } u} + \sum_{i=1}^{M} \alpha_i(t,x) \phi_i\left(\frac{z - h_b}{h}\right)$$

3. moment projection

$$\int_{\Omega} \mathcal{D}\left(oldsymbol{U}_{\mathbb{M}}(t,oldsymbol{x},oldsymbol{y})
ight) \cdot \Psi_{j}^{oldsymbol{U}}(oldsymbol{y}) \, oldsymbol{d}oldsymbol{y} \, ext{ for } j \in \mathbb{M}$$

Moment models [Grad, 1949], [KOWALSKI, TORRILHON, 2018]

1a) rarefied gases: BTE

$$\frac{\partial}{\partial t}f(t,x,c) + c\frac{\partial}{\partial x}f(t,x,c) = S(f)$$

1b) shallow flows: NSE

$$abla \cdot \mathbf{u} = 0, \quad \partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} = -\frac{1}{\rho} \nabla \rho + \frac{1}{\rho} \nabla \cdot \boldsymbol{\sigma} + \mathbf{g}$$

2a) Hermite ansatz

$$f(t,x,c) = \sum_{i=0}^{M} f_i(t,x) \phi_i \left(\frac{c-v}{\sqrt{\theta}}\right)$$

2b) Legendre ansatz

$$u(t,x,z) = \underbrace{u_m(t,x)}_{\text{mean of } u} + \sum_{i=1}^{M} \alpha_i(t,x) \phi_i\left(\frac{z-h_b}{h}\right)$$

3a) moment projection

$$\int_{\mathbb{T}} \cdot \psi_j(c) dc$$

3b) moment projection

$$\int_{h_b}^{h_s} \cdot \psi_j(z) \, dz$$

Moment models [Grad, 1949], [Kowalski, Torrilhon, 2018]

1a) rarefied gases: BTE

$$\frac{\partial}{\partial t}f(t,x,c) + c\frac{\partial}{\partial x}f(t,x,c) = S(f)$$

1b) shallow flows: NSE

$$abla \cdot \mathbf{u} = 0, \quad \partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} = -\frac{1}{\rho} \nabla \rho + \frac{1}{\rho} \nabla \cdot \boldsymbol{\sigma} + g$$

2a) Hermite ansatz

$$f(t,x,c) = \sum_{i=0}^{M} f_i(t,x) \phi_i\left(\frac{c-v}{\sqrt{\theta}}\right)$$

2b) Legendre ansatz

$$u(t,x,z) = \underbrace{u_m(t,x)}_{\text{mean of } u} + \sum_{i=1}^{M} \alpha_i(t,x) \phi_i\left(\frac{z-h_b}{h}\right)$$

3a) moment projection

$$\int_{\mathbb{T}} \cdot \psi_j(c) \, dc$$

3b) *moment* projection

$$\int_{h_b}^{h_s} \cdot \psi_j(z) \, dz$$

Moment model

Hierarchical system of lower-dimensional PDEs

Moment method for free-surface waves

1. transformed system:

$$\begin{split} \partial_t h + \partial_x \left(h u_m \right) &= 0, \\ \partial_t \left(h u \right) + \partial_x \left(h u^2 + \frac{g}{2} h^2 \right) + \partial_\zeta \left(h u \omega - \frac{1}{\rho} \sigma_{xz} \right) &= -g h \partial_x h_b. \end{split}$$

2. Legendre ansatz:

$$u(t,x,\zeta) = \underbrace{u_m(t,x)}_{\text{mean of } u} + \sum_{i=1}^{M} \alpha_i(t,x)\phi_i(\zeta)$$

3. projection:

$$\int_0^1 \cdot \phi_j(\zeta) \, d\zeta$$

SWME system

$$\begin{cases} \partial_{t}h + \partial_{x}(hu_{m}) = 0, \\ \partial_{t}(hu_{m}) + \partial_{x}\left(hu_{m}^{2} + h\sum_{j=1}^{N}\frac{\alpha_{j}^{2}}{2j+1}\right) + gh\partial_{x}(b+h) = -\frac{\nu}{\lambda}\left(u_{m} + \sum_{j=1}^{N}\alpha_{j}\right), \\ \partial_{t}(h\alpha_{i}) + \partial_{x}\left(h\left(2u_{m}\alpha_{i} + \sum_{j,k=1}^{N}A_{ijk}\alpha_{j}\alpha_{k}\right)\right) = u_{m}\partial_{x}(h\alpha_{i}) - \sum_{j,k=1}^{N}B_{ijk}\alpha_{k}\partial_{x}(h\alpha_{j}) \\ -(2i+1)\left(-\frac{\nu}{\lambda}\left(u_{m} + \sum_{j=1}^{N}\alpha_{j}\right) + \frac{\nu}{h}\sum_{j=1}^{N}C_{ij}\alpha_{j}\right) \end{cases}$$

 A_{ijk}, B_{ijk}, C_{ij} are constant coefficients:

$$\frac{A_{ijk}}{2i+1} = \int_0^1 \phi_i \phi_j \phi_k d\xi, \quad \frac{B_{ijk}}{2i+1} = \int_0^1 \phi_i' \left(\int_0^\xi \phi_j d\xi \right) \phi_k d\xi, \quad \text{and} \quad C_{ij} = \int_0^1 \phi_i' \phi_j' d\xi.$$

Example/Exercise 2: free-surface flow friction

The transformed equation includes a friction term $-\frac{1}{\rho}\partial_{\zeta}\tilde{\sigma}_{xz}$. Compute the final term in the moment equations obtained by projection with test function $\psi_j=\phi_j$ using

- Expansion $u(t, x, \zeta) = u_m(t, x) + \sum_{i=1}^{M} \alpha_i(t, x) \cdot \phi_i(\zeta)$.
- Orthogonal Legendre basis with normalization $\phi_i(\zeta)|_{\zeta=0}=1$.
- Newtonian friction law in the bulk: $\zeta \in [0,1]: \frac{1}{a}\tilde{\sigma}_{xz} = \frac{\nu}{h} \cdot \partial_{\zeta} u(\zeta)$ and:
 - **1** No slip boundary condition at the top: $\zeta = 1 \Rightarrow \tilde{\sigma}_{xz}(1) = 0$.
 - ② Slip boundary condition at the bottom: $\zeta=0\Rightarrow \frac{1}{\rho}\tilde{\sigma}_{xz}(0)=\frac{\nu}{\lambda}\cdot u(0)$ with slip length λ and viscosity coefficient ν

Shallow Water Equations [KOWALSKI, TORRILHON, 2019]

$$(M=0)$$

$$\partial_{t} \begin{pmatrix} h \\ h u_{m} \end{pmatrix} + \partial_{x} \begin{pmatrix} h u_{m} \\ h u_{m}^{2} + g \frac{h^{2}}{2} \end{pmatrix} = - \begin{pmatrix} 0 \\ g h \partial_{x} b \end{pmatrix} - \frac{\nu}{\lambda} \begin{pmatrix} 0 \\ u_{m} \end{pmatrix},$$

for slip friction law at bottom with slip length λ and viscosity ν .

Shallow Water Moment Equations [KOWALSKI, TORRILHON, 2019]

M = 1

First order model: $u(\zeta) = u_m + \alpha_1 \phi_1(\zeta)$, $\phi_1(\zeta) = 1 - 2\zeta$

$$\partial_{t} \begin{pmatrix} h \\ hu_{m} \\ h\alpha_{1} \end{pmatrix} + \partial_{x} \begin{pmatrix} hu_{m} \\ hu_{m}^{2} + g\frac{h^{2}}{2} + \frac{1}{3}h\alpha_{1}^{2} \\ 2hu_{m}\alpha_{1} \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & u_{m} \end{pmatrix} \partial_{x} \begin{pmatrix} h \\ hu_{m} \\ h\alpha_{1} \end{pmatrix} - \frac{\nu}{\lambda} P$$

with

$$P = \begin{pmatrix} 0 \\ u_m + \alpha_1 \\ 3(u_m + \alpha_1 + 4\frac{\lambda}{h}\alpha_1) \end{pmatrix}$$

Shallow Water Moment Equations [KOWALSKI, TORRILHON, 2019]

$$M = 2$$

Second order model: $u(\zeta) = u_m + \alpha_1 \phi_1(\zeta) + \alpha_2 \phi_2(\zeta)$, $\phi_2(\zeta) = 1 - 6\zeta + 6\zeta^2$

with

$$P = \begin{pmatrix} 0 \\ u_m + \alpha_1 + \alpha_2 \\ 3 \left(u_m + \alpha_1 + \alpha_2 + 4 \frac{\lambda}{h} \alpha_1 \right) \\ 5 \left(u_m + \alpha_1 + \alpha_2 + 12 \frac{\lambda}{h} \alpha_2 \right) \end{pmatrix}.$$

General derivation of hierarchical moment models

Ansatz:

$$oldsymbol{U}_{\mathbb{M}}(t,oldsymbol{x},oldsymbol{y}) = \sum_{i\in\mathbb{M}} oldsymbol{U}_i(t,oldsymbol{x})\cdot\Phi_i^{oldsymbol{U}}(oldsymbol{y})$$

Projection:

$$\int_{\Omega} \mathcal{D}\left(\boldsymbol{U}_{\mathbb{M}}(t,\boldsymbol{x},\boldsymbol{y})\right) \cdot \Psi_{j}^{\boldsymbol{U}}(\boldsymbol{y}) \, \boldsymbol{dy} \, \text{for} \, j \in \mathbb{M}$$

Other models

- uncertainty quantification
- traffic flow

4 Exercises/Examples

Example/Exercise 3: kinetic equation 1

Derive a moment model for the following equation:

$$\frac{\partial}{\partial t}f(t,x,c)+c\partial_x f(t,x,c)=0,$$

with $c \in \mathbb{R}$ and the following ansatz:

$$f(t,x,c) = \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{c^2}{2}} \sum_{i=0}^{M} \alpha_i(t,x) \cdot He_i(c),$$

for orthonormal Hermite polynomials $He_i(c)$ following the recursions:

$$c extit{He}_i(c) = \sqrt{i+1} extit{He}_{i+1}(c) + \sqrt{i} extit{He}_{i-1}(c),$$

$$\int extit{He}_i(c) extit{He}_j(c)\cdot w(c) extit{d}c = \delta_{ij},$$

for weight function $w(c) = \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{c^2}{2}}$.

Example/Exercise 4: kinetic equation 2

Derive a moment model for the following equation:

$$\frac{\partial}{\partial t}f(t,x,c)+c\partial_x f(t,x,c)=0,$$

with $c \in \mathbb{R}$ and the following ansatz:

$$f(t,x,c) = \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{c^2}{2}} \sum_{i=0}^{M} f_i(t,x) \cdot He_i(c)$$

with orthogonal, but non-orthonormal Hermite basis polynomials $He_i(c)$:

$$\int_{\mathbb{R}} He_i(c) \cdot He_j(c) \cdot w(c) dc = j! \delta_{i,j},$$
 $cHe_i(c) = He_{i+1}(c) + i \cdot He_{i-1}(c),$

for weight function $w(c) = \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{c^2}{2}}$.

Example/Exercise 5: Uncertainty quantification and stochastic Galerkin

The hot shower model is given by the delay differential equation:

$$\dot{x}(t) = -(K+w) \cdot x(t-\tau),$$

with

x: target temperature difference

w: uniformly distributed uncertainty $w \sim U(-0.1, 0.1)$

K: reaction parameter

au: delay.

- **1** Rewrite the model with normalized uncertainty $w \sim U(-1,1)$.
- ② Use the polynomial chaos expansion (PCE) $x(t, w) = \sum_{i=0}^{\infty} x_i(t)\phi_i(w)$, with ϕ_i Legendre polynomials, orthonormal on [-1, 1], to derive a stochastic Galerkin model for the evolution of the coefficients x_i in matrix-vector form.

summary

Part 1 Summary

1 Overview

- efficient models
- model reduction
- model hierarchy

2 Motivation

- (rarefied gases)
- shallow flows
- moment models

3 Derivation

- transformation
- Legendre ansatz
- Shallow Water Moment Equations