LISTA DE EXERCÍCIOS

Disciplina de Física Experimental I

1) Quantos algarismos significativos existem em cada um dos seguintes valores?

- **4)** Façam as transformações de unidades abaixo, escrevendo em notação científica e apresentando o resultado respeitando o número correto de algarismos significativos.
 - a) 52,8 cm para m
 - b) 495,67 km² para mm²
 - c) 1,735 km/h para m/s
 - d) 0,099 g para kg
- 5) A constante universal dos gases ideais é uma constante física que relaciona a quantidade de um gás com a pressão e a temperatura. Em um gás ideal é assumido que o volume das moléculas que o compõem seja zero. No SI seu valor é 8,3144621 $\frac{J}{mol.K}$

Faça sua conversão para:

a)
$$\frac{cal}{mol.K}$$

- b) $\frac{atm.L}{mol.K}$
- **6)** O ferro possui densidade igual a 7.86×10^3 kg/m³. Você deseja fabricar cubos e esferas de ferro. Determine:
 - a) O comprimento da face de um cubo de ferro com massa igual a 200,0 g.
 - b) O raio de uma esfera de ferro com massa igual a 200,0 g.
- 7) Para obter os valores mais prováveis das grandezas do raio da base (R) e da altura (H) de um cilindro, foram efetuadas medições de R e H com uma régua milimetrada comprida. Os dados estão dispostos na Tabela abaixo:

Tabela – Valores de raio (R) e altura (H) de um cilindro

R (cm)	Н (ст)
1,90	13,80
2,10	13,92
2,05	14,00
2,00	13,95
2,00	14,05

Determine:

a) A média e o desvio padrão da média para o raio R e para a altura H.

- b) Considerando a incerteza da régua utilizada, represente os valores das grandezas físicas R e de H na forma $(r \pm \Delta r)$ e $(h \pm \Delta h)$, utilizando o número adequado de algarismos significativos.
- c) Determine o volume V e sua respectiva incerteza, com o número correto de algarismos significativos, e represente o resultado na forma ($v \pm \Delta v$).
- 8) Utilizando um cronômetro, foi realizado um experimento no qual mediu-se o tempo de queda de um corpo de uma altura $H = (73,70 \pm 0,05)$ cm. Os dados estão apresentados na tabela abaixo:

Tabela – Tempos de quedas de um corpo caindo da altura H.

t (s)	0.410	0.430	0.380	0.380	0.410	0.390	0.370	0.350
C (5)	0,110	0,100	0,000	0,000	0,110	0,000	0,070	0,000

- a) Calcule a média e o desvio padrão dos tempos de queda.
- b) Usando a expressão $g = \frac{2H}{t^2}$, determine o valor da gravidade e sua respectiva incerteza (Note que será necessário elevar ao quadrado o valor médio do tempo, calculado no item a. O valor da incerteza também será afetado com esta operação.).
- c) Através da seguinte expressão

erro relativo percentual =
$$\frac{|v_a - v_e|}{v_e} \times 100\%$$

Sendo $v_a=(979\pm1)$ $^{cm}/_{s^2}$ o valor adotado para g, e v_e e valor obtido experimentalmente na letra b, determine o valor do erro relativo percentual para o valor de g.

- d) Tente repetir o experimento em casa utilizando uma moeda e, soltando-a de uma certa altura *H*, responda novamente os itens a), b) e c).
- **9)** Supondo-se que certo grão ocupe o espaço equivalente a um paralelepípedo de arestas 0,5 cm, 0,5 cm e 1,0 cm, a ordem de grandeza do número de grãos contido no volume de um litro é:
 - A) 10^3
 - B) 10^4
 - C) 10^{0}
 - D) 2×10^{5}
 - E) 10^{1}

- 10) Todas as grandezas físicas podem ser expressas por meio de um pequeno número de unidades fundamentais, e o sistema mundialmente utilizado na comunidade científica é o Sistema Internacional (SI). Assim, uma grandeza cujo valor medido está em μW tem como dimensão:
 - A) $[M L^2 S^3]$
 - B) $[M L S^{3}]$
 - C) $[M L^3 S^2]$
 - D) $[M L^{3} S]$
 - E) $[M L^2 S^2]$
- 11) As medidas abaixo estão apresentadas de maneira incorreta, em termos do número de algarismos significativos, tendo em vista a sua respectiva incerteza. Reescreva os valores de acordo com a incerteza apresentada, com o número correto de algarismos significativos.

Tabela: Medidas apresentadas de forma incorreta e sua forma corrigida.

Forma Incorreta	Forma Correta
(49,98 ± 4) V	
$(7,9 \pm 0,11) \text{ cm}^3$	
$(1,2 \pm 0,015)$ s	
(7912 mm ³ ± 0,11 cm ³)	
$(5,670 \times 10^{-7} \pm 3 \times 10^{-9}) \text{ kg}$	
(0,00176 ± 1,2 × 10 ⁻⁴) m	
$(0.133 \pm 4 \times 10^{-3})$ J	

- **12)** Foi solicitado a um estudante que ele determine o volume de uma esfera utilizando um paquímetro. É CORRETO afirmar que a incerteza relativa do volume
 - A) será a mesma da incerteza relativa do diâmetro.
 - B) será metade da incerteza relativa do diâmetro.
 - C) é o triplo da incerteza relativa do diâmetro.
 - D) é proporcional à incerteza relativa do diâmetro elevada ao cubo.
 - E) é proporcional à incerteza relativa do diâmetro elevada ao quadrado.

13) Um paquímetro analógico foi utilizado para medir o diâmetro de uma esfera. A figura abaixo mostra a medida obtida a partir do ajuste do paquímetro. A escala da régua está em milímetros. O valor desta medida é:

- a) 11,50 mm
- b) 12,50 mm
- c) 12,70 mm
- d) 11,70 mm
- e) 12,60 mm
- 14) Uma placa retangular de alumínio possui comprimento de $(5,60 \pm 0,01)$ cm e largura de $(1,90 \pm 0,01)$ cm. Ache a área do retângulo e sua incerteza.
- **15)** O comprimento de um retângulo é dado por $L \pm \Delta l$ e sua largura é $W \pm \Delta p$. Mostre que a incerteza da área é dada por $\Delta a = (L\Delta p + \Delta lW)$
- 16) Um biscoito fino de chocolate possui diâmetro igual a $(8,50 \pm 0,02)$ cm e espessura igual a $(0,050 \pm 0,005)$ cm.
 - a) Ache o volume do biscoito e sua respectiva incerteza.
 - b) Ache a razão entre o diâmetro e a espessura do biscoito e a incerteza dessa razão.
- **17)** Suponha a grandeza física **P** definida a partir de grandezas físicas diretas **A**, **B** e **C**, tal que:

$$P = \frac{AB - C^2}{B - A}$$

 $A = (2,23\pm0,4)$ m; $B = (124,2\pm0,05)$ cm e $C = (1234,2\pm0,1)$ mm. Pede-se

a) A expressão algébrica para o valor da grandeza \boldsymbol{P} e da sua incerteza

- b) Utilize os valores numéricos de **A**, **B** e **C** dados acima e calcule o valor numérico da grandeza P e da sua incerteza.
- **18)** Em um experimento foram feitas algumas medidas de uma placa metálica. Os dados apresentados na Tabela abaixo já são os de valores obtidos das médias das respectivas dimensões e as incertezas absolutas:

Tabela: Dados do comprimento L, Espessura E e Largura W de uma placa de plástico, cuja massa M = (250,5±0,8) g.

L (mm)	W (mm)	E (mm)
$(210,30 \pm 0,2)$	$(3,45 \pm 0,08)$	$(2,018 \pm 0,05)$

Pede-se:

- (a) Os valores estão corretos? Explique.
- (b) Qual valor da densidade mássica dessa placa e seu respectivo erro em g/cm^3 ?
- (c) Qual o valor em kg/m³?
- **19)** Num experimento sobre Movimento Retilíneo Uniformemente Variado (MRUV), utilizando um trilho de ar inclinado, foram obtidos os dados apresentados na Tabela abaixo para um carrinho partindo do repouso.

Tabela – Dados da posição (x) em função do tempo (t) do carrinho em MRUV em uma superfície sem atrito.

x (cm)	t (s)
24,55	0,00000
43,05	0,83400
60,35	1,27900
78,15	1,64830
94,25	1,92765

Utilizando, primeiramente, o método dos mínimos quarados e, em seguida, o Software SciDAVis:

- a) Faça um gráfico de $x \times t^2$.
- b) Determine a equação da melhor reta através do método dos mínimos quadrados e represente-a no gráfico.
- c) Quais os valores obtidos para os coeficientes angular e linear? Explique seus significados.
- d) Determine o ângulo de inclinação do trilho.