Sistemas de Banco de Dados

Fundamentos em Bancos de Dados Relacionais

Wladmir Cardoso Brandão

www.wladmirbrandao.com

INDEXAÇÃO MULTINÍVEL

Indexação

Índice multinível \rightarrow diferentes níveis de índices são construídos, reduzindo o espaço de pesquisa

- ► ESTÁTICO → compacto, sem espaço extra em blocos de índice para acomodação de novos registros
 - Tipicamente implementado como arquivo de índice, em que se contrói índices sobre índices
- ► DINÂMICO → flexível, com espaço para alocação dinâmica de registros, tornando operações de alteração de dados mais eficientes
 - ► Tipicamente implementado como árvore B (B TREE) ou B+ (B+ TREE), estruturas baseadas em árvores de pesquisa de múltiplos caminhos, com restrições

www.wladmirbrandao.com 3 / 21

Nível Base \rightarrow índice com valores distintos no campo de ordenação Nível Subsequente \rightarrow índice primário sobre nível adjacente anterior

www.wladmirbrandao.com 4 / 21

Derivam-se níves até que o *n*-ésimo nível seja armazenado em apenas um bloco

www.wladmirbrandao.com 5 / 21

Pesquisa \rightarrow complexidade logarítmica com base > 2, apenas um bloco em cada nível precisa ser acessado

- Base logarítmica → fator de bloco do índice, ou fan-out (fo)
- ▶ Níveis $\rightarrow h \approx \lceil log_{fo}r_1 \rceil$, onde r_1 é o número de registros no nível base
- ▶ Acessos a blocos \rightarrow A = h

Alteração \rightarrow níveis ordenados, custo alto de operações de alteração do campo de indexação

Arquivo ISAM (Indexed Sequential Access Method) \to arquivo sequencial indexado com índice multinível na chave primária

www.wladmirbrandao.com 6 / 21

Para um arquivo indexado de Professor, com 200.000 registros de tamanho fixo de 185B, ordenado pela chave primária CPF e armazenado em um disco com blocos de 4KB, teremos:

► Fator de Bloco
$$\rightarrow$$
 $F = \left\lfloor \frac{4KB}{185B} \right\rfloor = \left\lfloor \frac{4 \times 1.024B}{185B} \right\rfloor \approx \lfloor 22, 14 \rfloor = 22$

▶ # Blocos
$$\rightarrow$$
 B = $\left\lceil \frac{200.000}{22} \right\rceil \approx \left\lceil 9.090, 91 \right\rceil = 9.091$

► Espaço
$$\rightarrow$$
 S = 9.091 \times 4KB = 36.364KB \approx 35,51MB

Pesquisas nesse arquivo demandarão acessos a blocos de disco:

- ▶ Pela chave primária $\rightarrow A = \lceil \log_2 9.091 \rceil \approx \lceil 13,15 \rceil = 14$
- ▶ Por outro campo \rightarrow A = 9.091

www.wladmirbrandao.com 7 / 21

Para Professor sendo arquivo ISAM, com CPF de 11B, e ponteiro de bloco ocupando 16B, teremos:

► Fator de Bloco
$$\rightarrow$$
 $F_M = \left\lfloor \frac{4KB}{11B+16B} \right\rfloor = \left\lfloor \frac{4 \times 1.024B}{27B} \right\rfloor \approx \lfloor 151,70 \rfloor = 151$

▶ # Blocos
$$\rightarrow B_{M1} = \left\lceil \frac{9.091}{151} \right\rceil \approx \lceil 60, 20 \rceil = 61, B_{M2} = \left\lceil \frac{61}{151} \right\rceil \approx \lceil 0, 40 \rceil = 1$$

► Espaço
$$\rightarrow$$
 $S_M = (61+1) \times 4KB = 248KB$

Pesquisas nesse arquivo só podem ser realizadas pelo campo de indexação e demandarão acessos a blocos de disco:

- $A_M = h \approx \lceil \log_{151} 9.091 \rceil \approx \lceil 1.81 \rceil = 2$
- ▶ +1 acesso para recuperar o registro no arquivo indexado

www.wladmirbrandao.com 8 / 21

ÁRVORE (*Tree*) → estrutura hierárquica de nós (elementos) conectados

- RAIZ → nó sem pai, de nível zero
- FOLHA → nó sem filhos
- ► INTERNO → nó não folha e não raiz
- O nível de um nó na árvore é o nível do seu pai mais um
- Subárvore → árvore formada por um nó e todos os seus descendentes

www.wladmirbrandao.com 9 / 21

ÁRVORE DE BUSCA (Search Tree) → nós com restrições para eficiência em busca

- ► BINÁRIA → nó tem no máximo dois filhos
 - Chave não pode ser menor que qualquer outra em subárvores da esquerda
 - Chave não pode ser maior que qualquer outra em subárvores da direita

www.wladmirbrandao.com 10 / 21

ÁRVORE DE BUSCA BINÁRIA (BST) → balanceamento fundamental para eficiência

- ▶ BALANCEAMENTO \rightarrow altura de árvore $\approx \lceil \log_2 n \rceil$, onde n = número de nós
 - ► Subárvores esquerda e direita com ≈ mesmo número de nós

www.wladmirbrandao.com 11 / 21

ÁRVORE DE BUSCA DE MÚLTIPLOS CAMINHOS $(m-way) \rightarrow generalização de BST$

- Cada nó tem m filhos
- ▶ Multiplicidade \rightarrow cada nó contém m-1 elementos
 - ▶ $h \le n \le m^h 1$, onde h = altura e n = número de nós
- ▶ BALANCEAMENTO $\rightarrow h \approx \lceil \log_m n \rceil$

12 / 21 www.wladmirbrandao.com

B Tree \rightarrow m-way com restrições que tornam busca e atualização muito eficientes

- Nó raiz, não folha, tem ao menos dois filhos
- ▶ Nó interno tem ao menos [m/2] filhos
- Nós folha estão no mesmo nível

www.wladmirbrandao.com 13 / 21

B Tree \rightarrow nós ao menos meio cheios, $\approx 69\%$ quando árvore estabiliza

- ► Pesquisa → eficiente, poucos níveis e perfeitamente balanceada
- ALTERAÇÃO → eficiente, espaço para acomodar novos registros
- Ideal para armazenamento em memória secundária
 - Tipicamente configurada para que um nó ocupe um bloco em disco
 - Elemento → campo de indexação + ponteiro de bloco (△)
 - Nó com m ponteiros de nó (●), um para cada filho

www.wladmirbrandao.com 14 / 21

Arquivo de Professor, com índice B Tree em Departamento de 8B, com um nó ocupando um bloco de disco, ponteiro de nó de 12B, ponteiro de bloco de 16B

- ► Tamanho do elemento \rightarrow (8B + 16B) = 24B
- Nó ocupa 1 bloco $\rightarrow 4KB \ge ((m-1) \times (24B + 12B)) + 12B$
 - ▶ # Elementos por nó \rightarrow $(m-1) = \left\lfloor \frac{4KB-12B}{24B+12B} \right\rfloor = \left\lfloor \frac{4.084B}{36B} \right\rfloor \approx \lfloor 113,44 \rfloor = 113$
 - ▶ Ordem da árvore $\rightarrow m = 113 + 1 = 114$
- ▶ Altura da árvore $\rightarrow h \approx \lceil \log_{114} 200.000 \rceil \approx \lceil 2,57 \rceil = 3$

Nível	# Nós	# Registros	# Ponteiros de Nó
0	1	113	114
1	114	12.882	12.996
2	12.996	1.468.584	-

www.wladmirbrandao.com 15 / 21

Considerando uma ocupação de nós em 69%:

- ► Fator de Bloco \rightarrow $F_B = [113 \times 0.69] \approx [77,97] = 78$
- ▶ # Blocos $\rightarrow B_B = \left\lceil \frac{200.000}{78} \right\rceil \approx \lceil 2.564, 10 \rceil = 2.565$
- ► Espaço \rightarrow $S_B = 2.565 \times 4KB = 10.260KB \approx 10,01MB$

Pesquisas nesse índice só podem ser realizadas pelo campo de indexação e demandarão acessos a blocos de disco:

- ► $A_B = h = 3$
- ▶ +1 acesso para recuperar o registro no arquivo indexado

www.wladmirbrandao.com 16 / 21

B+ Tree \to extensão B Tree com restrições que tornam ainda mais eficientes a busca e a remoção

- ► Nó ÍNDICE → raiz ou interno que armazena exclusivamente chave
- ► Nó Registro → folha que armazena registro de índice
- Nós folha em lista encadeada ordenada

www.wladmirbrandao.com 17 / 21

Arquivo de Professor, com índice B+ Tree em Departamento de 8B, com um nó ocupando um bloco de disco, ponteiro de nó de 12B, ponteiro de bloco de 16B

- ▶ Nó Índice
 - ▶ Tamanho do elemento $\rightarrow 8B$
 - ► Nó ocupa 1 bloco \rightarrow 4KB \geq ((m-1)×(8B+12B))+12B
 - ► Elementos por nó \rightarrow $(m-1) = \left\lfloor \frac{4KB-12B}{8B+12B} \right\rfloor = \left\lfloor \frac{4.084B}{20B} \right\rfloor \approx \lfloor 204, 2 \rfloor = 204$
 - ▶ Ordem da árvore $\rightarrow m = 204 + 1 = 205$
 - ▶ Altura da árvore $\rightarrow h \approx \lceil log_{205}200.000 \rceil \approx \lceil 2,29 \rceil = 3$
 - ▶ Altura de nós índice $\rightarrow h_i = h 1 = 2$

www.wladmirbrandao.com 18 / 21

Nível	# Nós	# Registros	# Ponteiros de Nó
0	1	204	205
1	205	41.820	42.025
2	42.025	8.573.100) 10-0

Nó Registro

- ▶ Tamanho do elemento \rightarrow (8B + 16B) = 24B
- Nó ocupa 1 bloco $\rightarrow 4KB \ge ((m-1) \times (24B)) + 12B$
 - ► Elementos por nó \rightarrow $(m-1) = \left\lfloor \frac{4KB-12B}{24B} \right\rfloor = \left\lfloor \frac{4.084B}{24B} \right\rfloor \approx \lfloor 170, 16 \rfloor = 170$

www.wladmirbrandao.com 19 / 21

Considerando uma ocupação de nós em 69%:

- ► Fator de Bloco \rightarrow $F_{B+} = \lceil 170 \times 0.69 \rceil \approx \lceil 117,30 \rceil = 118$
- ▶ # Blocos $\rightarrow B_{B+} = \left\lceil \frac{200.000}{118} \right\rceil \approx \left\lceil 1.694, 91 \right\rceil = 1.695$
- Nível 0 a $h_i 1 \rightarrow 1.695$ ponteiros

▶ # Nós = # Blocos =
$$\rightarrow$$
 $\left\lceil \frac{1.695}{\lceil (204 \times 0.69) \rceil + h_i} \right\rceil \approx \left\lceil \frac{1.695}{143} \right\rceil \approx \lceil 11,85 \rceil = 12$

► Espaço
$$\rightarrow S_{B+} = (1.695 + 12) \times 4KB = 6.828KB \approx 6,67MB$$

Pesquisas pelo campo de indexação demandam acessos a blocos:

- $A_{B+} = h = 3$
- ▶ +1 acesso para recuperar o registro no arquivo indexado

www.wladmirbrandao.com 20 / 21

Referências Bibliográficas

- [1] Elmasri, Ramez; Navathe, Sham. *Fundamentals of Database Systems*. 7ed. Pearson, 2016.
- [2] Silberschatz, Abraham; Korth, Henry F.; Sudarshan, S. *Database System Concepts*. 6ed. McGraw-Hill, 2011.
- [3] Date, Christopher J. An Introduction to Database Systems. 8ed. Pearson, 2004.

www.wladmirbrandao.com 21 / 21