EE16A - Lecture 26 Notes

Name: Felix Su SID: 25794773

Spring 2016 GSI: Ena Hariyoshi

Review Eigenvalues/Eigenvectors

1. $A\vec{v}_n = \lambda_n \vec{v}_n$

• Scaling factor λ : **Eigenvalue**

• Vector \vec{v}_n : **Eigenvector**

2. For a matrix $M_{n\times n}$ you can have at most n eigenvalues

3. $(A - \lambda I)\vec{v} = 0, x \neq 0 \implies A - \lambda I$ has a non trivial null space and $\det(A - \lambda I) = 0$

 \bullet *M* is non-invertible

• M has a non-trivial null space

• $\det M = 0$

4. If matrix A is symmetric $(A^T = A)$, eigenvectors are independent and orthogonal

• Given \vec{v}_1 and λ_1 of matrix M_1 , find another eigenvalue/eigenvector pair

 $-\vec{v}_2$ is also an eigenvector of M_1 if $\vec{v}_2 = \alpha \vec{v}_1$

*
$$M_1\vec{v}_2 = M_1(\alpha\vec{v}_1) = \alpha(M\vec{v}_1) = \alpha(\lambda_1\vec{v}_1) = \lambda_1(\alpha\vec{v}_1) = \lambda_1(\vec{v}_2)$$

* So, $\lambda_2 = \lambda_1$

- Any eigenvalue ⇒ an eigenspace (linear combinations of any valid eigenvector works for that eigenvalue)

 $-(A-\lambda I)\vec{v}=0 \implies A-\lambda I$ has a non-trivial null space

* $A - \lambda I$ is non-invertible, so the transformation destroys some information (lose a dimension)

* Invertible matrix (trivial null space) performs a transformation (scale x value)

Linear Transformations

• Given a linear transformation y = ax + b = 3x, find eigenvectors and eigenvalues for this transformation

- Vector in the same direction (**colinear**) with the transformation vector, $\lambda_1 = 1, \vec{v}_1 = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$

– Vector **orthogonal** to the transformation vector $\lambda_2 = -1, \vec{v}_2 = \begin{bmatrix} -3\\1 \end{bmatrix}$

Determinant

1. The "oriented" volume of the polygon obtained by applying the matrix M onto a unit hypercube.

• Because $A - \lambda I$ is non-invertible, the transformation destroys some information (lose a dimension), so the volume is smaller

1

Inverse Formula

$$M^{-1} = \frac{1}{\det M} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$
 (1)

Solve for Eigenvalues/Eigenvectors

Solve for λ

$$\det(A - \lambda I) = 0 \tag{2}$$

Determinant of a 2×2 matrix

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - bc \tag{3}$$

Determinant of a $n \times n$ matrix

Mult. each elem. in the first row by the det. of the $n-1 \times n-1$ matrix not in that element's row or column Take an **alternating sum** of the products from the previous step

$$\det \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = a \times \det \begin{bmatrix} e & i \\ f & h \end{bmatrix} - b \times \det \begin{bmatrix} d & i \\ f & g \end{bmatrix} + c \times \det \begin{bmatrix} d & h \\ e & g \end{bmatrix}$$
(4)

Plug resulting Eigenvalues λ_i into $A - \lambda_i I$

$$B_{i} = A - \lambda_{i} I = \begin{bmatrix} a_{11} - \lambda_{i} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} - \lambda_{i} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} - \lambda_{i} \end{bmatrix}$$

$$(5)$$

Solve for Eigenvectors \vec{v}_i s.t.

This will be the linear combination of the columns of B_i that cause $B_i \vec{v}_i = 0$

$$(A - \lambda_i I)\vec{v_i} = B_i \vec{v_i} = 0 \tag{6}$$

Properties of Determinants

- 1. If you scale a row/col of a matrix by α , the determinant of the matrix is multiplied by α
- 2. If you add a scalar multiple of a row/col to any other row/col, the determinant doesn't change

2

- 3. If you swap rows, the determinant is multiplied by -1
- 4. Determinant of an upper triangular matrix is the product of its pivots
 - Take unit hypercube, multiply first dimension by a_1 , second dimension by a_2 ...
 - Volum of a hypercube is the product of all its dimensions
- 5. Generic determinant of $det(A \lambda I)$ is $\lambda^n + \alpha_1 \lambda^{n-1} + \cdots + \lambda_n = 0$
 - \bullet The max number of roots is n
- 6. If $\lambda_1 \neq \lambda_2$: eigenspace $(\lambda_1) \cap$ eigenspace $(\lambda_2) = \vec{0}$
- 7. If eigenvectors of A span $\mathbb{R}^n, \vec{x} \in \mathbb{R}^n$ can be expressed as $\vec{x} = \sum_{i=1}^n \alpha_i \vec{v}_i$
- 8. $A\vec{x} = \sum_{i=1}^{n} \alpha_i \lambda_i \vec{v}_i$
- 9. $A^n \vec{x} = \sum_{i=1}^n \alpha_i \lambda_i^n \vec{v}_i$ where $\vec{x} = \sum_{i=1}^n \alpha_i \vec{v}_i$

•
$$\vec{x} = \begin{bmatrix} \vec{v}_1 & \vec{v}_2 & \cdots & \vec{v}_n \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix}$$
• $\begin{bmatrix} \vec{v}_1 & \vec{v}_2 & \cdots & \vec{v}_n \end{bmatrix}^{-1} \vec{x} = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix}$

$$\bullet \begin{bmatrix} \vec{v}_1 & \vec{v}_2 & \cdots & \vec{v}_n \end{bmatrix}^{-1} \vec{x} = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix}$$