

$$P_{w,b}(C_2|x) = 1 - P_{w,b}(C_1|x)$$

Step 1:
$$f_{w,b}(x) = \sigma(wx + b) = \frac{1}{1 + exp(-wx + b)}$$
 Output: between 0 and 1

Step 2: Cross entropy:
$$l(f(x^n), \hat{y}^n) = -[\hat{y}^n ln f(x^n) + (1 - \hat{y}^n) ln (1 - f(x^n))]$$

Step 3: Logistic regression:
$$w_i \leftarrow w_i - \eta \sum_n -(\hat{y}^n - f_{w,b}(x^n)) x_i^n$$

$$P_{w,b}(C_2|x) = 1 - P_{w,b}(C_1|x)$$

$$z_i = \sum_{j=1}^u x_j w_j^i + b_i$$

• 二分类

•
$$l = -\sum_{i=1}^{N} [y_i \ln f(x_i) + (1 - y_i) \ln(1 - f(x_i))]$$

• 多分类

•
$$l = -\sum_{i=1}^{N} \sum_{k=1}^{K} y_i^k ln f(x_i)^k$$

- 间隔 $wx_i + b = 1$ $y_i = 1$ $wx_i + b \ge 1$
- を記述 *** SOUTHON NOTICE NOTI

- 线性可分支持向量机
 - 决策函数 $f(x) = sign(w \cdot x + b)$
 - 目标: 提高模型的泛化能力
 - 基本思想: 寻找在特征空间上间隔最大的线性分类器

• 线性可分支持向量机

• 决策函数 $f(x) = sign(w \cdot x + b)$

• 目标: 提高模型的泛化能力

• 基本思想: 寻找在特征空间上间隔最大的线性分类器

• 目标函数

• $\min_{w,b} \frac{1}{2} ||w||^2$

• s.t. $y_i(wx_i + b) - 1 \ge 0$, $i = 1, 2, \dots, N$

- 线性可分支持向量机
 - 目标函数
 - $\min_{w,b} \frac{1}{2} ||w||^2$
 - s.t. $y_i(wx_i + b) 1 \ge 0$, $i = 1, 2, \dots, N$
 - 拉格朗日乘子法
 - 带有约束的优化问题
 - 约束条件函数与原函数联立
 - $L = \frac{1}{2}||w||^2 + \sum_{i=1}^{N} \alpha_i (1 y^i(w \cdot x^i + b))$
 - $\min_{b,w} (\max_{\alpha_i \geq 0} L(w, b, \alpha))$

• 线性可分支持向量机

•
$$L = \frac{1}{2}||w||^2 + \sum_{i=1}^{N} \alpha_i (1 - y^i (w \cdot x^i + b))$$

- $\min_{b,w} (\max_{\alpha_i \geq 0} L(w, b, \alpha))$
- 对偶算法
 - 增加模型可解释性
 - 自然引入核函数
 - $\max_{\alpha_i \geq 0} (\min_{b,w} L(w, b, \alpha))$

- 无论原始问题是否是凸的,拉 格朗日对偶可以转化为凸优化 问题;
- 对偶问题可以给出原始问题一个下界;

• 线性可分支持向量机

•
$$L = \frac{1}{2}||w||^2 + \sum_{i=1}^{N} \alpha_i (1 - y^i (w \cdot x^i + b))$$

- $\min_{b,w} (\max_{\alpha_i \geq 0} L(w, b, \alpha))$
- 对偶算法
 - 增加模型可解释性
 - 自然引入核函数
 - $\max_{\alpha_i \geq 0} (\min_{b,w} L(w, b, \alpha))$

原函数:
$$f(\theta) = \max_{\alpha,\beta} L(\theta,\alpha,\beta)$$

对偶函数:
$$D(\alpha, \beta) = \min_{\theta} L(\theta, \alpha, \beta)$$

$$D(\alpha^*, \beta^*) = \min_{\theta} f(\theta) + \sum_{\theta} \alpha^* g(\theta) + \sum_{\theta} \beta^* h(\theta)$$

$$\leq f(\theta^*) + \sum_{\theta} \alpha^* g(\theta^*) + \sum_{\theta} \beta^* h(\theta^*)$$

$$\leq f(\theta^*)$$

• 线性可分支持向量机

•
$$L = \frac{1}{2}||w||^2 + \sum_{i=1}^{N} \alpha_i (1 - y^i (w \cdot x^i + b))$$

- $\min_{b,w} (\max_{\alpha_i \geq 0} L(w, b, \alpha))$
- 对偶算法
 - 增加模型可解释性

•
$$\max_{\alpha_i \geq 0} \left[\min_{b,w} L(w, b, \alpha) \right]$$

原函数:
$$f(\theta) = \max_{\alpha,\beta} L(\theta,\alpha,\beta)$$

对偶函数:
$$D(\alpha, \beta) = \min_{\theta} L(\theta, \alpha, \beta)$$

$$D(\alpha^*, \beta^*) = \min_{\theta} f(\theta) + \sum_{\theta} \alpha^* g(\theta) + \sum_{\theta} \beta^* h(\theta)$$

$$= f(\theta^*) + \sum \alpha^* g(\theta^*) + \sum \beta^* h(\theta^*)$$

$$\leq f(\theta^*)$$

 $\boldsymbol{\theta} = (\boldsymbol{w}, \boldsymbol{b})$

• 线性可分支持向量机

•
$$L = \frac{1}{2}||w||^2 + \sum_{i=1}^{N} \alpha_i (1 - y^i (w \cdot x^i + b))$$

- $\min_{b,w} (\max_{\alpha_i \geq 0} L(w, b, \alpha))$
- 对偶算法
 - 增加模型可解释性
 - 自然引入核函数
 - $\max_{\alpha_i \geq 0} (\min_{b,w} L(w, b, \alpha))$

原函数:
$$f(\theta) = \max_{\alpha,\beta} L(\theta,\alpha,\beta)$$

对偶函数:
$$D(\alpha, \beta) = \min_{\theta} L(\theta, \alpha, \beta)$$

$$D(\alpha^*, \beta^*) = \min_{\theta} f(\theta) + \sum_{\theta} \alpha^* g(\theta) + \sum_{\theta} \beta^* h(\theta)$$
$$= f(\theta^*) + \sum_{\theta} \alpha^* g(\theta^*) + \sum_{\theta} \beta^* h(\theta^*)$$

 $= f(\theta^*) \qquad \alpha^* g(x^*) = 0$

•
$$\min_{bw} L = \frac{1}{2}||w||^2 + \sum_{i=1}^{N} \alpha_i (1 - y^i (w \cdot x^i + b))$$

$$\frac{\partial L}{\partial w_i} = w_j - \sum_{i=1}^N \alpha_i y^i x_j^i = 0 \quad w_j = \sum_{i=1}^N \alpha_i y^i x_j^i$$

$$\frac{\partial L}{\partial b} = \sum_{i=1}^{N} \alpha_i y^i = 0$$

$$\max_{\alpha} L = -\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y^i y^j (x^i \cdot x^j) + \sum_{i=1}^{N} \alpha_i$$

$$\sum_{i=1}^{N} \alpha_i y^i = 0 \qquad \alpha_i \ge 0$$

SVM对偶问题解

·根据KKT条件:

$$\nabla_{w} L(w^{*}, b^{*}, \alpha^{*}) = w^{*} - \sum_{i=1}^{N} \alpha_{i}^{*} y_{i} x_{i} = 0$$

$$w^{*} = \sum_{i=1}^{N} \alpha_{i}^{*} y_{i} x_{i}$$

$$\nabla_{b} L(w^{*}, b^{*}, \alpha^{*}) = -\sum_{i=1}^{N} \alpha_{i}^{*} y_{i} = 0$$

$$b^{*} = y_{j} - \sum_{i=1}^{N} \alpha_{i}^{*} y_{i} (x_{i} \cdot x_{j})$$

$$\alpha_i^*(y_i(w^* \cdot x_i + b^*) - 1) = 0$$
, $i = 1, 2, \dots, N$

$$y_i(w^* \cdot x_i + b^*) - 1 \ge 0$$
, $i = 1, 2, \dots, N$

$$\alpha_i^* \ge 0$$
, $i = 1, 2, \dots, N$

对于正分量
$$\alpha_j > 0$$

 $y_j(w^*x_j + b^*) = 1$

• 线性可分支持向量机

•
$$L = \frac{1}{2}||w||^2 + \sum_{i=1}^{N} \alpha_i (1 - y^i (w \cdot x^i + b))$$

- $\min_{b,w} (\max_{\alpha_i \geq 0} L(w, b, \alpha))$
- 对偶算法
 - 增加模型可解释性
 - 自然引入核函数

• $\max_{\alpha_i \geq 0} (\min_{b,w} L(w, b, \alpha))$

$$lpha_i^* \left(1 - y^i (w \cdot x^i + b) \right) = 0, i = 1, 2, \dots, N$$

$$w_j = \sum_{i=1}^N \alpha_i y^i x_j^i$$

$$b = y^j - \sum_{i=1}^N \alpha_i y^i (x^i \cdot x^j)$$

$$\min_{\alpha} L = \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y^i y^j (x^i \cdot x^j) - \sum_{i=1}^{N} \alpha_i$$

$$\sum_{i=1}^{N} \alpha_i y^i = 0$$

$$\alpha_i \ge 0$$

SVM对偶问题

· SVM目标函数:

•
$$\max_{\alpha} L = -\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y^i y^j (x^i \cdot x^j) + \sum_{i=1}^{N} \alpha_i$$

•
$$\min_{\alpha} L = \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y^i y^j (\mathbf{x}^i \cdot \mathbf{x}^j) - \sum_{i=1}^{N} \alpha_i$$

•
$$\sum_{i=1}^{N} \alpha_i y^i = 0$$

•
$$\alpha_i \geq 0$$

例7.2

$$\min_{\alpha} L = \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y^i y^j (x^i \cdot x^j) - \sum_{i=1}^{N} \alpha_i$$

$$\sum_{i=1}^{N} \alpha_i y^i = 0$$

$$\alpha_i \ge 0$$

• 正实例 $x_1 = (3, 3)^T, x_2 = (4, 3)^T,$ 负实例 $x_3 = (1, 1)^T$

$$\min_{\alpha} \quad \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} (x_{i} \cdot x_{j}) - \sum_{i=1}^{N} \alpha_{i} \quad = \frac{\alpha_{1}^{2} y_{1}^{2} (3,3) \cdot (3,3) + 2\alpha_{1} \alpha_{2} y_{1} y_{2} (3,3) \cdot (4,3)}{+ 2\alpha_{1} \alpha_{3} y_{1} y_{3} (3,3) \cdot (1,1) + 2\alpha_{2} \alpha_{3} y_{2} y_{3} (4,3) \cdot (1,1)} \\ + \frac{1}{2} (18\alpha_{1}^{2} + 25\alpha_{2}^{2} + 2\alpha_{3}^{2} + 42\alpha_{1}\alpha_{2} - 12\alpha_{1}\alpha_{3} - 14\alpha_{2}\alpha_{3}) - \alpha_{1} - \alpha_{2} - \alpha_{3} \\ \text{s.t.} \quad \alpha_{1} + \alpha_{2} - \alpha_{3} = 0 \\ \alpha_{i} \geqslant 0, \quad i = 1, 2, 3$$

$$\alpha_3 = \alpha_1 + \alpha_2 \longrightarrow s(\alpha_1, \alpha_2) = 4\alpha_1^2 + \frac{13}{2}\alpha_2^2 + 10\alpha_1\alpha_2 - 2\alpha_1 - 2\alpha_2$$

例7.2

$$\frac{\partial s}{\partial \alpha_1} = 8\alpha_1 + 10\alpha_2 - 2 = 0$$

$$\frac{\partial s}{\partial \alpha_2} = 13\alpha_2 + 10\alpha_1 - 2 = 0$$

•
$$s(\alpha_1, \alpha_2) = 4\alpha_1^2 + \frac{13}{2}\alpha_2^2 + 10\alpha_1\alpha_2 - 2\alpha_1 - 2\alpha_2$$

• 1. 两个均不为0,可得:
$$\alpha_1 = \frac{3}{2}$$
, $\alpha_2 = -1$ X

• 2.
$$\alpha_1 = 0$$
, $\alpha_2 = 0$

$$\frac{\partial s}{\partial \alpha_2} = 13\alpha_2 - 2 = 0$$

• 3.
$$\alpha_1 = 0$$
, $\alpha_2 \neq 0$, 可得: $\alpha_2 = \frac{2}{13}$

• 4.
$$\alpha_2 = 0$$
, $\alpha_1 \neq 0$, 可得: $\alpha_1 = \frac{1}{4}$

$$\frac{\partial s}{\partial \alpha_1} = 8\alpha_1 - 2 = 0$$

$$\alpha_i(1-y_i(wx_i+b))=0$$

$$y_i(wx_i+b)=1$$

 α_1, α_3 为支持向量

$$\alpha_3 = \frac{1}{4}$$

02

线性支持 向量机

- 当数据存在噪声,数据往往线性不可分。
- ·对于这种偏离正常位置很远的噪声点,称为特异点(outlier)
- 在原来的SVM模型里,outlier的存在有可能造成很大的影响,因为超平面本身就只有少数几个支持向量组成,如果这里面再有几个特异点,那影响就很大

•
$$y_i(wx_i + b) \ge 1 - \xi_i$$

•引入变量,增加支付代价

$$\min_{w,b,\xi} \quad \frac{1}{2} ||w||^2 + C \sum_{i=1}^{N} \xi_i$$

s.t.
$$y_i(w \cdot x_i + b) \ge 1 - \xi_i$$
, $i = 1, 2, \dots, N$
 $\xi_i \ge 0$, $i = 1, 2, \dots, N$

• 构建拉格朗日函数

•
$$L(w,b,\xi,\alpha,\mu) \equiv \frac{1}{2} \|w\|^2 + C \sum_{i=1}^{N} \xi_i - \sum_{i=1}^{N} \alpha_i (y_i(w \cdot x_i + b) - 1 + \xi_i) - \sum_{i=1}^{N} \mu_i \xi_i$$

- 先求极小值
 - 对 w, b, ξ求导

$$\nabla_{w}L(w,b,\xi,\alpha,\mu) = w - \sum_{i=1}^{N} \alpha_{i} y_{i} x_{i} = 0$$

$$\nabla_b L(w, b, \xi, \alpha, \mu) = -\sum_{i=1}^N \alpha_i y_i = 0$$

$$\nabla_{\xi_i} L(w, b, \xi, \alpha, \mu) = C - \alpha_i - \mu_i = 0$$

•
$$\min_{w,b,\xi} L(w,b,\xi,\alpha,\mu) = -\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j (x_i \cdot x_j) + \sum_{i=1}^{N} \alpha_i$$

• 求极大值

$$\max_{\alpha} \quad -\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j (x_i \cdot x_j) + \sum_{i=1}^{N} \alpha_i$$

s.t.
$$\sum_{i=1}^{N} \alpha_i y_i = 0$$

$$C - \alpha_i - \mu_i = 0$$

$$\alpha_i \ge 0$$
s.t.
$$\sum_{i=1}^{N} \alpha_i y_i = 0$$

$$0 \le \alpha_i \le C, \quad i = 1, 2, \dots, N$$

$$\mu_i \geqslant 0$$
, $i = 1, 2, \dots, N$

$$L(w, b, \xi, \alpha, \mu) \equiv \frac{1}{2} ||w||^2 + C \sum_{i=1}^{N} \xi_i - \sum_{i=1}^{N} \alpha_i (y_i(w \cdot x_i + b) - 1 + \xi_i) - \sum_{i=1}^{N} \mu_i \xi_i$$

· 满足KKT

$$\nabla_{w}L(w^{*},b^{*},\xi^{*},\alpha^{*},\mu^{*}) = w^{*} - \sum_{i=1}^{N} \alpha_{i}^{*}y_{i}x_{i} = 0$$

$$\nabla_b L(w^*, b^*, \xi^*, \alpha^*, \mu^*) = -\sum_{i=1}^N \alpha_i^* y_i = 0$$

$$\nabla_{\xi}L(w^{^{\star}},b^{^{\star}},\xi^{^{\star}},\alpha^{^{\star}},\mu^{^{\star}})=C-\alpha^{^{\star}}-\mu^{^{\star}}=0$$

$$\alpha_i^*(y_i(w^* \cdot x_i + b^*) - 1 + \xi_i^*) = 0$$

$$\mu_i^* \xi_i^* = 0$$

$$w^* = \sum_{i=1}^N \alpha_i^* y_i x_i$$

对于分量
$$0 < \alpha_j < C$$

 $y_j(w^*x_j + b^*) = 1$

$$b^* = y_j - \sum_{i=1}^N y_i \alpha_i^* (x_i \cdot x_j)$$

支持向量

$$wx_i + b = 1$$

$$\alpha_i^* < C$$

$$C - \alpha_i - \mu_i = 0 \Rightarrow \mu_i \neq 0$$

$$\mu_i \xi_i = 0 \Rightarrow \xi_i = 0$$

$$\alpha_i (y_i (wx_i + b) - 1 + \xi_i) = 0$$

$$y_j (w^*x_j + b^*) = 1$$

$$\alpha_i^* = C$$

$$\alpha_i(y_i(wx_i + b) - 1 + \xi_i) = 0$$

$$y_i(wx_i + b) = 1 - \xi_i$$

$$\int_{1}^{\infty} wx_i + b = 0$$

$$0 < \xi_i < 1$$
 $y_i(wx_i + b)$ 是正数,分类正确 x_i 在间隔边界和超平面之间

$$\xi_i = 1$$
 $y_i(wx_i + b) = 0$
 x_i 在超平面上

 $\xi_i > 1$ $y_i(wx_i + b)$ 是负数,分类错误 x_i 在超平面另外一侧

03

非线性支 持向量机

异或 函数

如果原始空间是有限维,即属性有限那么一定存在一个高位特征空间使样本可分

• 定义:设 χ 是输入空间,又设H为特征空间(希尔伯特空间),如果存在一个 χ 到H的映射:

$$\phi(x): \chi \to \mathcal{H}$$

使得对所有 $x, z \in \chi$, 函数K(x, z)满足条件

$$K(x,z) = \phi(x) \cdot \phi(z)$$

则称K(x,z)为核函数, $\phi(x)$ 为映射函数,·为内积

• 例1: 假设输入空间是 \mathcal{R}^2 ,核函数是 $K(x,z)=(x\cdot z)^2$,试找出其相关的特征空间 \mathcal{H} 和映射 $\phi(x)$: $\mathcal{R}^2\to\mathcal{H}$

•
$$x = (x^1, x^2)$$
 $z = (z^1, z^2)$

•
$$K(x,z) = (x \cdot z)^2 = (x^1 z^1 + x^2 z^2)^2 = (x^1 z^1)^2 + 2x^1 z^1 x^2 z^2 + (x^2 z^2)^2$$

• 三维:
$$\phi(x) = \left(\left(x^1\right)^2, \sqrt{2}x^1x^2, \left(x^2\right)^2\right)^T$$
 $\phi(x) \cdot \phi(z)$

$$\phi(x) = \frac{1}{\sqrt{2}} \left((x^1)^2 - (x^2)^2, 2x^1x^2, (x^1)^2 + (x^2)^2 \right)^T \boxed{\phi(x) \cdot \phi(z)}$$

核函数应用

• 对偶形式

$$\max_{\boldsymbol{\alpha}} \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_i \alpha_j y_i y_j \boldsymbol{x}_i^{\mathrm{T}} \boldsymbol{x}_j$$

• 转换

$$\max_{\alpha} \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_i \alpha_j y_i y_j \phi(\boldsymbol{x}_i)^{\mathrm{T}} \phi(\boldsymbol{x}_j)$$

• 重写

$$\max_{\boldsymbol{\alpha}} \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_i \alpha_j y_i y_j \kappa(\boldsymbol{x}_i, \boldsymbol{x}_j)$$

核技巧: 不显示地定义映射函数, 只定义核函数

核函数应用

• 目标函数:
$$W(\alpha) = \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j K(x_i, x_j) - \sum_{i=1}^{N} \alpha_i$$

• 决策函数:
$$f(x) = sign(\sum_{i=1}^{N} \alpha_i^* y_i \phi(x_i) \cdot \phi(x) + b^*)$$

$$= sign(\sum_{i=1}^{N} \alpha_i^* y_i K(x_i, x) + b^*)$$

常用核函数

表 6.1 常用核函数

名称	表达式	参数
线性核	$\kappa(oldsymbol{x}_i, oldsymbol{x}_j) = oldsymbol{x}_i^{ ext{T}} oldsymbol{x}_j$	
多项式核	$\kappa(oldsymbol{x}_i,oldsymbol{x}_j)=(oldsymbol{x}_i^{\mathrm{T}}oldsymbol{x}_j)^d$	d ≥ 1 为多项式的次数
高斯核	$\kappa(oldsymbol{x}_i, oldsymbol{x}_j) = \expig(-rac{\ oldsymbol{x}_i - oldsymbol{x}_j\ ^2}{2\sigma^2}ig)$	$\sigma > 0$ 为高斯核的带宽(width)
拉普拉斯核	$\kappa(oldsymbol{x}_i,oldsymbol{x}_j) = \expig(-rac{\ oldsymbol{x}_i-oldsymbol{x}_j\ }{\sigma}ig)$	$\sigma > 0$
Sigmoid 核	$\kappa(\boldsymbol{x}_i, \boldsymbol{x}_j) = anh(eta \boldsymbol{x}_i^{\mathrm{T}} \boldsymbol{x}_j + heta)$	\tanh 为双曲正切函数, $\beta > 0$, $\theta < 0$

•
$$\min_{\alpha} \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j K(x_i, x_j) - \sum_{i=1}^{N} \alpha_i$$

• s.t.
$$\sum_{i=1}^{N} \alpha_i y_i = 0$$

•
$$0 \leq \alpha_i \leq C$$

$$w_i = \sum_{i=1}^N \alpha_i y_i \phi(x_i) \qquad b^* = y_j - \sum_{i=1}^N \alpha_i^* y_i K(x_i, x_j)$$

实验作业

- sklearn是一个Python第三方提供的非常强力的机器学习库
- · 基于数据集iris,构建逻辑回归模型和支持向量机

_	~	_	_	•
Sepal.Leng	Sepal.Widt	Petal.Lengt	Petal.Widtl	Species
5.1	3.5	1.4	0.2	setosa
4.9	3	1.4	0.2	setosa
4.7	3.2	1.3	0.2	setosa
4.6	3.1	1.5	0.2	setosa
5	3.6	1.4	0.2	setosa
	5.1 4.9 4.7	5.1 3.5 4.9 3 4.7 3.2 4.6 3.1	5.1 3.5 1.4 4.9 3 1.4 4.7 3.2 1.3 4.6 3.1 1.5	4.9 3 1.4 0.2 4.7 3.2 1.3 0.2 4.6 3.1 1.5 0.2

- 150个样本, 4个特征, 3个类别
- from sklearn.datasets import load_iris
- · 提交实验报告pdf即可,包含实验设置(数据、参数等)、实验分析、结果展示、必要设计模块解释 (提交截止时间3.30, pdf上传到学习通对应题目位置即可)

