T.D.1. Analyse1

Exercise 1

Etudier limites des suites:

$$(a)u_n = \sqrt{n+1} - \sqrt{n}$$
 $(b)u_n = \frac{n+(-1)^n}{n-(-1)^n}$

Exercise 2

Calculer la limite des suites suivantes:

$$a)u_n = \frac{\sqrt{n}\sin n}{n+1}$$
 $b)u_n = \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^n}$

Exercise 3

On se propose d'etudier la suite (u_n) ; $u_n = x^n$, $x \in \mathbb{R}$.

1- Cas x>1, poser x=1+a; a>0 et montrer que $(1+a)^n>1+na$, $\forall n\geq 2$. Déduire $\lim_{n\to\infty}u_n$.

2- Cas 0 < x < 1; Montrer que $\lim_{n \to \infty} u_n = 0$.

3-Etudier le cas x = 1 et $x \le 0$.

4- Soeint a, b > 0. Etudier la suite u_n ; $u_n = \frac{a^n - b^n}{a^n + b^n}$.

Exercise 4

On considére la suite $(u_n)_{n\in\mathbb{N}^*}$ définie par:

$$u_n = \sum_{k=1}^n \frac{1}{k^{\alpha}}, \quad \alpha > 0.$$

1-Montre que u_n est croissante.

2-On suppose dans cette question que $\alpha = 1$. Montrer que $\forall n \in \mathbb{N}^*, u_{2n} > u_n + \frac{1}{2}$.

3-En déduire, en utilisant le critére de Cauchy que la suite u_n diverge.

4-On suppose dans cette question que $\alpha = 2$. Montrer que $\forall k \geq 2$.

$$\frac{1}{k^2} \le \frac{1}{k-1} - \frac{1}{k}$$

5- En déduire que la suite $(u_n)_n$ est majorée par 2 (et donc convergente).

6- On suppose dans cette question que $\alpha \geq 3$ un entier. Montrer que $(u_n)_n$ converge.

Exercise 5 Soit $(u_n)_n$ définie pa la donnée de deux nombre réels u_0, u_1 et par la relation

$$u_{n+1} = \frac{1}{2}(u_n + u_{n-1})$$

a- Montrer que $|u_{n+2}-u_{n+1}|=|u_{n+1}-u_n|$ et par récurrence sur n en déduire $|u_{n+2}-u_{n+1}|=\frac{1}{2^{n+1}}|u_1-u_0|$

b- Montre que $(u_n)_n$ est une suite de Cauchy.