Sexta Lista de Exercícios de Análise Real: Limites de funções.

- 1. Na definição do limite $\lim_{x\to a} f(x)$, retire a exigência de ser $x\neq a$. Mostre que esta nova definição coincide com a anterior no caso $a\notin X$ mas, para $a\in X$, o novo limite existe se, e somente se, o antigo existe e é igual a f(a).
- 2. Considere a seguinte sentença: $\forall \varepsilon > 0 \exists \delta > 0 (x \in X \land 0 < |x a| < \varepsilon \rightarrow |f(x) L| \leq \delta)$. Mostre que f cumpre esta condição se, e somente se, f é limitada em qualquer intervalo limitado de centro a. No caso afirmativo, L pode ser qualquer número real.
- 3. Seja $X = Y \cup Z$, com $a \in Y' \cap Z'$. Dada $f : X \to \mathbb{R}$, tomemos $g = f \upharpoonright Y$ e $h = f \upharpoonright Z$. Se $\lim_{x \to a} g(x) = L$ e $\lim_{x \to a} h(x) = L$, demonstre que $\lim_{x \to a} f(x) = L$.
- 4. Seja $f(x) = x+10\sin x$ para todo $x \in \mathbb{R}$. Demonstre que $\lim_{x\to +\infty} f(x) = +\infty$ e $\lim_{x\to -\infty} f(x) = -\infty$.
- 5. Seja $f: X \to \mathbb{R}$ monótona, com $f(X) \subset [a, b]$. Demonstre que se f(X) é denso no intervalo [a, b], então, para cada $c \in X'_+ \cap X'_-$, temse que $\lim_{x \to c^+} f(x) = \lim_{x \to c^-} f(x)$. Demonstre que se $c \in X$, então $\lim_{x \to c^+} f(x) = \lim_{x \to c^-} f(x) = f(c)$.
- 6. Sejam $f: X \to \mathbb{R}$ monótona e $a \in X'_+$. Demonstre que se existir uma sequência de pontos $x_n \in X$ com $x_n > a$, $\lim x_n = a$ e $\lim f(x_n) = L$, então $\lim_{x\to a^+} f(x) = L$.
- 7. Sejam $f, g : \mathbb{R} \to \mathbb{R}$ definidas por f(x) = 0 se x é irracional e f(x) = x se $x \in \mathbb{Q}$, g(0) = 1 e g(x) = 0 se $x \neq 0$. Mostre que $\lim_{x\to 0} f(x) = \lim_{y\to 0} g(y) = 0$, porém não existe $\lim_{x\to 0} g(f(x))$.
- 8. Seja $f: \mathbb{R} \to \mathbb{R}$ definida por f(0) = 0 e $f(x) = \sin(1/x)$ se $x \neq 0$. Mostre que para todo $c \in [-1, 1]$, existe uma sequência de pontos $x_n \neq 0$ tais que $\lim x_n = 0$ e $\lim f(x_n) = c$.

- 9. Dado a > 1, defina $f : \mathbb{Q} \to \mathbb{R}$ pondo, para cada $p/q \in \mathbb{Q}$, $f(p/q) = a^{p/q}$. Demonstre que $\lim_{x\to 0} f(x) = 1$. Conclua que para cada $b \in \mathbb{R}$, existe $\lim_{x\to b} f(x)$, sendo este limite igual a f(b) se $b \in \mathbb{Q}$. Chame este limite de a^b . Demonstre que $a^b \cdot a^{b'} = a^{b+b'}$ e que $b < b' \to a^b < a^{b'}$.
- 10. Dado a > 1, defina $g : \mathbb{R} \to \mathbb{R}$ pela lei $g(x) = a^x$. Demonstre que $\lim_{x \to +\infty} g(x) = +\infty$ e que $\lim_{x \to -\infty} g(x) = 0$.
- 11. Determine o conjunto dos valores de aderência da função $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$, $f(x) = \sin(1/x)/(1 + e^{1/x})$, no ponto x = 0.
- 12. Demonstre que $\lim_{x\to a} f(x) = L$, então $\lim_{x\to a} |f(x)| = |L|$, e que se $\lim_{x\to a} |f(x)| = |L|$, então o conjunto dos valores de aderência de f no ponto $a \in \{L\}$, ou $\{-L\}$, ou ainda $\{-L, L\}$.
- 13. Dadas $f, g: X \to \mathbb{R}$, defina $h = \max\{f, g\}: X \to \mathbb{R}$ pondo h(x) = f(x) se $f(x) \ge g(x)$ e h(x) = g(x) caso $g(x) \ge f(x)$. Seja $a \in X'$. Demonstre que se $\lim_{x\to a} f(x) = L$ e $\lim_{x\to a} g(x) = M$, então $\lim h(x) = N$, em que $N = \max\{L, M\}$.
- 14. Sejam $f,g:X\to\mathbb{R}$ limitadas numa vizinhança do ponto $a\in X'$. Mostre que $\limsup_{x\to a}(f+g)\leq \limsup_{x\to a}f+\limsup_{x\to a}g$ e que $\limsup_{x\to a}(-f)=-\liminf_{x\to a}f$.
- 15. Seja $f:[0,+\infty)\to\mathbb{R}$ limitada em cada intervalo limitado. Demonstre que se $\lim_{x\to\pm\infty}[f(x+1)-f(x)]=L$, então $\lim_{x\to\pm\infty}f(x)/x=L$.
- 16. Seja $f:[0,+\infty)\to\mathbb{R}$ limitada. Para cada $t\geq a$, indiquemos por M_t o supremo e m_t o ínfimo de f no intervalo $I=[t,+\infty)$. Com $\omega_t=M_t-m_t$ indicaremos a oscilação de f em I. Demonstre que existem $\lim_{t\to+\infty}M_t$ e $\lim_{t\to+\infty}m_t$. Demonstre que existe $\lim_{t\to+\infty}f(x)$ se, e somente se, $\lim_{t\to+\infty}\omega_t=0$.