MCST 1043 RESEARCH DESIGN AND ANALYSIS

SENTIMENT ANALYSIS ON HOTEL REVIEW USING MACHINE LEARNING

CANDIDATE : NURFATINI ATIQAH BINTI HAMIDI

LECTURER : ASSOC PROF DR MOHD SHAHIZAN OTHMAN

DATE : 17 JANUARY 2025

FACULTY OF COMPUTING,
UNIVERSITI TEKNOLOGI MALAYSIA
WWW.utm.my
innovative • entrepreneurial • global

Content

- **01** Introduction
- **02** Literature Review
- **03** Research Methodology
- **04** Initial Findings
- 05 Conclusion

INTRODUCTION

PROBLEM BACKGROUND AND STATEMENT

Problem Background:

- Online reviews significantly impact consumer decision-making, particularly in the hospitality industry
- Platforms like TripAdvisor, Agoda, and Booking.com receive thousands of reviews reflecting customer experiences and emotions
- Manual tracking and extracting information from extensive reviews is time-consuming and inefficient

Problem Statement:

- Inconsistencies between written reviews and star ratings lead to confusion and misinterpretation.
- Reviews are critical for shaping a hotel's online reputation and influencing customer decisions

INTRODUCTION

OBJECTIVES

01

To conduct exploratory data analysis to identify patterns of hotel reviews

02

To design and implement sentiment analysis that predict the review either positive or negative.

03

To conduct comprehensive evaluations on the develops predictive model and build an interactive dashboard.

INTRODUCTION

RESEARCH SCOPE

Open-source dataset from Kaggle

Two Sentiment Analysis (+ve and -ve)

Machine Learning: TF-IDF and K-Means

LITERATURE REVIEW

THEORETICAL FRAMEWORK

Type of approach	Advantages	Limitation	
Machine Learning	The capability to adjust and develop trained models for particular uses and situations.	• •	
Lexicon-based	•	A restricted set of words in the lexicons is assigned a particular sentiment orientation and score for each word	
Hybrid	Lexicon/learning symbiosis involves identifying and gauging sentiment at the conceptual level, along with reduced sensitivity to shifts in topic domain.	Noisy reviews	

LITERATURE REVIEW

MACHINE LEARNING APPROACH

The Term Frequency-Inverse Document Frequency (TF-IDF)

a prevalent technique used to assess the significance of a word within a document

Random Forest

Random forest is an ensemble technique that generates multiple decision trees, which are then combined into a forest. Each tree in the Random Forest makes a class prediction and the Random Forest determines the outcome based on tge majority of votes.

Support Vector Machine (SVM)

SVM finds the optimal hyperplane (a decision boundary) that separates data points into distinct classes with the maximum margin between them.

LITERATURE REVIEW

DATA AND METHODS COMPARISON

Author	Dataset	Features	Classifier	Accuracy (%)
(Rathi et al., 2018)	Sentiment140, Polarity Dataset, and University of Michigan dataset	TF-IDF	AdaBoost	67
(Makhmudah et al., 2019)	Tweets related to homosexuals	TF-IDF	Support Vector Machine (SVM)	99.5
(Gupta et al., 2019)	Sentiment140	TF-IDF	Neural Network	80
(Alsalman, 2020)	Arabic Tweets	TF-IDF	Multinomial Naïve Bayes	87.5
(Alzyout et al., 2021)	Self-collected dataset	TF-IDF	Support Vector Machine (SVM)	78.25

RESEARCH FRAMEWORK

DATA COLLECTION

Size:

1,100,001

Attribute:

- Id
- story

ston

- 0 We went here with our kids for Xmas holiday and we really liked it. Large options of food for breakfast and lunch, you can really taste the quality of the food in there. The surrounding area is nice and clean. Good experience. Hardly recommended.
- 1 We have spent in this hotel our summer holidays both in summer 2014 and 2015- I was with my husband and my child (4 years old at present). I do really recommend this place- Staff si high qualified, Kind and really helpful-Animation staff get You involved, but always with discrection Miniclub si super and activities offered are interesting and smart- Rooms clean, with AC and balcony- Restaurant offers a great selection of food always. The beach si extremly closed to the hotel Miniclub area offers some gazebos to have shade for kids- A lot of bicycles are available for free- I am completely satisfied of this hotel- Go in lime this!

DATA PRE-PROCESSING

Before Normalization	After Normalization
The Hotel is great. I give 4 stars and will	the hotel is great i give four stars and
come back again!!!!	will come back again
This hotel is AWESOME ♥	this hotel is awesome

Tokenization

Normalization	Tokenization
the hotel is great i give four stars and will come back again	['the', 'hotel', 'is', 'great', 'i', 'give',
will come back again	'four', 'stars', 'and', 'will', 'come',
	'back', 'again']
this hotel is awesome	['this', 'hotel', 'is', 'awesome']

FEATURE EXTRACTION

TERM FREQUENCY - INVERSE DOCUMENT FREQUENCY (TF-IDF)

• TF-IDF highlights words that are frequent in a specific document but rare across the entire corpus, making them more relevant for understanding the document's content.

$$W_{ij=tf_{ij}\log(\frac{D}{df_j})}$$

EXAMPLE:

consider a document that consists of 100 words, with the word "happy" occurring 10 times. In this case, the term frequency would be calculated as 10/100=0.1. Now, let's assume there are 50000 documents in total, and only 500 of those contain the word "happy." Therefore, the IDF (happy) can be expressed as 50000/500=100, resulting in log(100) = 2. Consequently, the TF-IDF (happy) would be 0.1*2=0.2

SENTIMENT ALGORITHM

K-MEANS CLUSTERING

 K-Means clustering is one of the machine learning algorithms used for grouping data points into clusters based on their similarity

INITIAL FINDINGS

EXPLORATORY DATA ANALYSIS (EDA) python

Check missing values

Implement stop words

	cleaned_story	AfterStopWord
0	we went here with our kids for xmas holiday an	went kids xmas holiday really liked large opti
1	we have spent in this hotel our summer holiday	spent hotel summer holidays summer husband chi
2	i visited hotel baltic with my husband for som	visited hotel baltic husband bike riding area
3	ive travelled quite a numbers of hotels but th	ive travelled quite numbers hotels best place \dots
4	we decided for this family holiday destination	decided family holiday destination saw ranking

Remove punctuation

	story	cleaned_story
0	We went here with our kids for Xmas holiday an	we went here with our kids for xmas holiday an
1	We have spent in this hotel our summer holiday	we have spent in this hotel our summer holiday
2	I visited Hotel Baltic with my husband for som	i visited hotel baltic with my husband for som
3	I've ravelled quite a numbers of hotels but t	ive travelled quite a numbers of hotels but th
4	We decided for this family holiday destination	we decided for this family holiday destination
5	Great customer service and good restaurant ser	great customer service and good restaurant ser
6	This pousada is not too close to the downtown \dots	this pousada is not too close to the downtown \dots
7	Great hotel surrounded by nature! It was reall	great hotel surrounded by nature it was really
8	The property is surrounded by trees, which are	the property is surrounded by trees which are
9	We really enjoyed our stay here, it was peacef	we really enjoyed our stay here it was peacefu

INITIAL FINDINGS

EXPLORATORY DATA ANALYSIS (EDA) python

The character count and word count strongly correlate positively. While character count and sentence count have a moderate correlation that depends on sentence length.

EXPLORATORY DATA ANALYSIS (EDA) python

Positive correlation between word count and character count

INITIAL FINDINGS

EXPLORATORY DATA ANALYSIS (EDA) python

The proportion of two distinct groups, represented by the blue and orange colors. The blue represents the cluster 0 while the orange represents the cluster 1. In this cluster, 0 represent positive and 1 represent negative.

This study has achieved the objective, to identify the patterns in hotel reviews:

 From the analysis, it can be found that word count and character count increase together. Word count links better with character count than sentence count (due to cleaning).

Used TF-IDF to find the 500 most important words.

• Used K-Means to sort reviews into positive and negative groups.

Sentiments form clear clusters, but some overlap and outliers exist.

CONCLUSION

FUTURE WORKS

Improve Preprocessing:

Use advanced techniques like stemming, lemmatization, and partof-speech tagging to clean noisy data better.

Expand Sentiment Categories:

Move beyond just positive and negative sentiments. Include neutral or mixed opinions for more detailed analysis.

Use Advanced Models:

Replace traditional methods like K-Means with deep learning models like LSTM or BERT.

Thank You

www.utm.my

innovative • entrepreneurial • global