$$y = \frac{56}{8}$$

$$y = 7$$

$$y = 7 \text{ in (A)}$$

$$x - 7 = 4$$

$$x = 4 + 7 = 11$$

Integers are: 11 and 7

Find the dimensions of a rectangle, whose perimeter is 80cm and its area is 10. 375cm².

Solution:

Let x and y be the length and width respectively of the rectangle. According to the given conditions.

Length = 25cm, Breadth = 15 cm.

SOLVED MISCELLANEOUS EXERCISE - 2

Multiple Choice Questions: 1.

> Four possible answers are given for the following questions. Tick (✓) the correct answer.

- (i) If α , β are the roots of $3x^2 + 5x 2 = 0$, then $\alpha + \beta$ is
 - (a) $\frac{5}{3}$

- (b) $\frac{3}{5}$ (c) $\frac{-5}{3}$ (d) $\frac{-2}{3}$
- (ii) If α , β are the roots of $7x^2 x + 4 = 0$, then $\alpha\beta$ is

- (a) $\frac{-1}{7}$ (b) $\frac{4}{7}$ (c) $\frac{7}{4}$ (d) $\frac{-4}{7}$
- (iii) Roots of the equation $4x^2 5x + 2 = 0$ are

	(a) irrationa	al	(b) imaginary		(c) rat	(c) rational		(d) none of these	
(iv)	Cube roots of -1 are (a) -1 , $-\omega$, $-\omega^2$ (b) -1 , ω , $-\omega^2$		(c) - 1	(c) - 1, - ω , ω^2		ω , $-\omega^2$			
(v) Sum of the cube roots of unity is									
()	(a) 0		(b) 1		(c) - l	(c) -1			
(vi)	(vi) Product of cube roots of unity is								
(**)	(a) 0		(b) 1	3	(c) -1		(d) 3		
(e/ii)	vii) If $b^2 - 4ac < 0$, then the roots of $ax^2 + bx + c = 0$ are								
(411)	(a) irration		(b) ratio		(c) im	aginary	(d) none	of these	
(viii) If b ² - 4ac > 0, but not a perfect square then roots of ax ² + bx + c = 0 are (a) irrational (b) rational (c) imaginary (d) none of these								,	
$(ix)\frac{1}{\alpha}$	$1 + \frac{1}{\beta}$ is equa					0	0		
	(a) $\frac{1}{\alpha}$		(b) $\frac{1}{\alpha}$ -	$\frac{1}{\beta}$	(c) $\frac{\alpha}{\alpha \beta}$	ያ <u>R</u>	(d) $\frac{\alpha + \beta}{\alpha \beta}$		
(x)	$\alpha^2 + \beta^2$ is e	qual to				_			
	(a) $\alpha^2 - \beta^2$				(b) $\frac{1}{\alpha^2}$	F.			
	(c) $(\alpha + \beta)^2 - 2\alpha\beta$			(d) $\alpha + \beta$					
(xi) Two square roots of unity are (a) $1, -1$ (b) $1, \omega$ (c) $1, -\omega$ (d) ω, ω^2									
	(a) $1, -1$		(b) 1, ω	ı	(c) 1, -	- ω	(d) ω, ω	2	
(xii) Roots of the equation $4x^2 - 4x + 1 = 0$ are									
(a) real, equal (b) real, unequal			(c) ima	aginary	(d) irrati	ona!			
(xiii)	If α , β are	the roots	of $px^2 + c$	qx + r = 0,	then su	m of the r	oots 2a a	and 2β is	
	$(a) \frac{-q}{p}$				(c) $\frac{-2q}{p}$		$(d) \frac{q}{-2p}$		
(xiv) If α , β are the roots of $x^2 - x - 1 = 0$, then product of the roots 2α and 2β is									
(a) -2 (b) 2 (c) 4 (d) -4									
(xv)	(xv) The nature of the roots of equation $ax^2 + bx + c = 0$ is determined by								
` /	(a) sum of	the roots			(b) pro	duct of th		-	
	(c) synthetic division (d) discriminant								
(xvi)	(xvi) The discriminant of $ax^2 + bx + c = 0$ is								
A mar-	(a) $b^2 - 4ac$ (b) $b^2 + 4ac$ (c) $-b^2 + 4ac$ (d) $-b^2 - 4ac$								
Answ (i)	c c	(ii)	b	(iii)	ь	(iv)	a	(v)	a
(vi)	b	(vii)	c	(viii)	d	(ix)	d	(x)	c
(xi)	a	(xii)	а	(xiii)	С	(xiv)	d	(xv)	d

2. Write short answers of the following questions.

(i) Discuss the nature of the roots of the following equations.

(a)
$$x^2 + 3x + 5 = 0$$

(b)
$$2x^2 - 7x + 3 = 0$$

$$. (c) x^2 + 6x - 1 = 0$$

(d)
$$16x^2 - 8x + 1 = 0$$

iolution:

(a)
$$x^2 + 3x + 5 = 0$$

Here,
$$a = 1$$
, $b = 3$, $c = 5$

Disc. =
$$b^2 - 4ac$$

= $(3)^2 - 4(1)(5)$
= $9 - 20$

=-11

Disc. = is negative, therefore, roots are imaginary.

(b) $2x^2 + 7x + 3 = 0$

Here,
$$a = 2$$
, $b = -7$, $c = 3$

Disc. =
$$b^2 - 4ac$$

= $(-7)^2 - 4(2)(3)$
= $49 - 24$
= 25

Disc. = is a perfect square, therefore, roots are real, rational and unequal.

(c) $x^2 + 6x - 1 = 0$

Here,
$$a = 1$$
, $b = 6$, $c = -1$

Disc. =
$$b^2 - 4ac$$

= $(6)^2 - 4(1)(-1)$
= $36 - 4$
= 40 (+ ve)

Roots are real, irrational, unequal.

(d) $16x^2 + 8x + 1 = 0$

Here,
$$a = 16$$
, $b = -8$, $c = 1$

Disc. =
$$b^2 - 4ac$$

= $(-8)^2 - 4(16)(1)$
= $64 - 64 = 0$

Disc. = is zero, therefore, roots are real, rational and equal.

(ii) Find
$$\omega^2$$
, if $\omega = \frac{-1 + \sqrt{-3}}{2}$

Solution:

$$\omega = \frac{-1 + \sqrt{-3}}{2}$$

$$\omega^2 = \left(\frac{-1 + \sqrt{-3}}{2}\right)^2$$

$$\omega^2 = \frac{1 + \left(\sqrt{-3}\right)^2 - 2\left(\sqrt{-3}\right)}{4}$$

$$\omega^2 = \frac{1 - 3 - 2\sqrt{-3}}{4}$$

$$\omega^2 = \frac{-2 - 2\sqrt{-3}}{4}$$

$$\omega^2 = \frac{2\left(-1 - \sqrt{-3}\right)}{4}$$

$$\omega^2 = \frac{-1 - \sqrt{-3}}{2}$$

(iii) Prove that the sum of the all cube roots of unity is zero.

ŧ

Solution:

We know that cube roots of unity are:

$$1, \frac{-1+\sqrt{-3}}{2}, \frac{-1-\sqrt{-3}}{2}$$
Now,
$$1+\frac{-1+\sqrt{-3}}{2}+\frac{-1-\sqrt{-3}}{2}$$

$$=\frac{2-1+\sqrt{-3}-1-\sqrt{-3}}{2}$$

$$=\frac{2-2}{2}$$

$$=\frac{0}{2}=0 \qquad \text{proved.}$$

(iv) Find the product of complex cube roots of unity.

Solution:

Roots are:
$$1, \frac{-1 + \sqrt{-3}}{2}, \frac{-1 - \sqrt{-3}}{2}$$

Product = $1, \left(\frac{-1 + \sqrt{-3}}{2}\right), \left(\frac{-1 - \sqrt{-3}}{2}\right)$

$$= \frac{(-1)^2 - \left(\sqrt{-3}\right)^2}{4}$$

$$= \frac{1 - \left(-\frac{3}{3}\right)}{4}$$

$$= \frac{1 + 3}{4} = \frac{4}{4} = 1$$

(v) Show that $x^3 + y^3 = (x + y)(x + \omega y)(x + \omega^2 y)$

Solution:

R.H.S
=
$$(x + y)(x + \omega y)(x + \omega^2 y)$$

= $(x + y)[x^2 + \omega^2 xy + \omega xy + \omega^3 y^2]$
= $(x + y)[x^2 + (\omega^2 + \omega)xy + (1)y^2]$
= $(x + y)[x^2 + (-1)xy + y^2]$
= $(x + y)(x^2 - xy + y^2)$
= $x^3 - x^2y + xy^2 + x^2y - xy^2 + y^3$
= $x^3 + y^3 = L.H.S$

(vi) Evaluate: $\omega^{37} + \omega^{38} + 1$

Solution:

$$\omega^{37} + \omega^{38} + 1$$

$$= (\omega^3)^{12} \omega + (\omega^3)^{12} \omega^2 + 1$$

$$= (1)^{12} \omega + (1)^{12} \omega^2 + 1$$

$$= (1) \omega + (1) \omega^2 + 1$$

$$= \omega + \omega^2 + 1$$

$$= 1 + \omega + \omega^2 = 0$$

(vii) Evaluate: $(1 - \omega - \omega^2)^6$

Solution:

$$(1 - \omega - \omega^{2})^{6}$$

$$= [1 - (\omega + \omega^{2})]^{6}$$

$$= [1 - (-1)]^{6}$$

$$= (1 + 1)^{6}$$

$$= (2)^{6}$$

$$= 64$$

(viii) If ω is cube root of unity, form an equation whose roots are 3ω and $3\omega^2$.

Roots are 3ω , $3\omega^2$ $S = Sum of the roots = <math>3\omega + 3\omega^2 = 3 (\omega + \omega^2)$ $P = Product of the roots = <math>3\omega \times 3\omega^2 = 9\omega^3$ Required Eq $x^2 - Sx + P = 0$

$$x^{2} - 3(\omega + \omega^{2})x + 9\omega^{3} = 0$$

$$x^{2} - 3(-1)x + 9(1) = 0$$

$$x^{2} + 3x + 9 = 0$$

(ix) Using synthetic division, find the remainder and quotient when $(x^3 + 3x^2 + 2) + (x - 2)$

Solution:

Here,

$$P(x) = x^{3} + 3x^{2} + 2$$

$$= x^{3} + 3x^{2} + 0x + 2$$

$$x - a = x - 2$$

$$a = 2$$

Using synthetic division:

(x) Using synthetic division, show that x - 2 is the factor of $x^3 + x^2 - 7x + 2$ Solution:

$$P(x) = x^{3} + x^{2} - 7x + 2$$

$$x - a = x - 2$$

$$a = 2$$

Using synthetic division:

R = 0, therefore, x - 2 is a factor of P(x).

(xi) Find the sum and product of the roots of the equation $2px^2 + 3qx - 4r = 0$ Solution:

Equation:
$$2px^{2} + 3qx - 4r = 0$$

Here, $a = 2p$, $b = 3q$, $c = -4r$
 $S = -\frac{b}{a} = -\frac{3q}{2p}$
 $P = \frac{c}{a} = \frac{-4r}{2p} = -\frac{2r}{P}$

(xii) Find $\frac{1}{\alpha^2} + \frac{1}{\beta^2}$ of the roots of the equation $x^2 - 4x + 3 = 0$

Solution:

$$x^{2} - 4x + 3 = 0$$

Here, $S = \alpha + \beta = -\frac{-4}{1} = 4$

$$P = \alpha \beta = \frac{3}{1} = +3$$

Now,
$$\frac{1}{\alpha^2} + \frac{1}{\beta^2}$$

$$= \frac{\beta^2 + \alpha^2}{\alpha^2 \beta^2}$$

$$= \frac{(\alpha + \beta)^2 - 2\alpha\beta}{(\alpha\beta)^2}$$

Putting values of $\alpha + \beta$ and $\alpha\beta$, we get

$$= \frac{(4)^2 - 2(3)}{(3)^2}$$
$$= \frac{16 - 6}{9} = \frac{10}{9}$$

(xiii) If α , β are the roots of $4x^2 - 3x + 6 = 0$ find

(a)
$$\alpha^2 + \beta^2$$

(b)
$$\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$$

(c)
$$\alpha - \beta$$

Solution:

Equation:
$$4x^2 - 3x + 6 = 0$$

Here, $S = \alpha + \beta = -\left(\frac{-3}{4}\right) = \frac{3}{4}$
 $P = \alpha\beta = \frac{6}{4} = \frac{3}{2}$

(a)
$$\alpha^2 + \beta^2$$

$$= (\alpha + \beta)^2 - 2$$

Putting values of $(\alpha + \beta)$ and $\alpha\beta$, we get

$$= \left(\frac{3}{4}\right)^2 - 2\left(\frac{3}{2}\right)$$

$$= \frac{9}{16} - 3$$

$$= \frac{9 - 48}{16} = \frac{-39}{16}$$

(b)
$$\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$$

$$= \frac{\alpha^2 + \beta^2}{\alpha \beta}$$
$$= \frac{(\alpha + \beta)^2 - 2\alpha \beta}{\alpha \beta}$$

Putting values of $(\alpha + \beta)$ and $\alpha\beta$, we get

$$= \frac{\left(\frac{3}{4}\right)^2 - 2\left(\frac{3}{2}\right)}{\frac{3}{2}}$$

$$= \left(\frac{9}{16} - 3\right) + \frac{3}{2}$$

$$= \left(\frac{9 - 48}{16}\right) \times \frac{2}{3}$$

$$= \frac{39}{16} \times \frac{2}{3}$$

$$= \frac{-13}{8}$$

(c)
$$\alpha - \beta$$

Now,

$$(\alpha - \beta)^2$$

$$= (\alpha + \beta)^2 - 4\alpha\beta$$

Putting values of $(\alpha + \beta)$ and $\alpha\beta$, we get

$$= \left(\frac{3}{4}\right)^2 - 4\left(\frac{3}{2}\right)$$

$$= \frac{9}{16} - 6$$

$$= \frac{9 - 96}{16}$$

$$(\alpha - \beta)^2 = \frac{-87}{16}$$
 (Taking sq. root)
$$\alpha - \beta = \sqrt{\frac{-87}{16}} = \frac{\sqrt{-87}}{4}$$

(xiv) If α , β are the roots of $x^2 - 5x + 7 = 0$, find an equation whose roots are (a) $-\alpha$, $-\beta$ (b) 2α , 2β

Solution:

•

Equation:
$$x^2 - 5x + 7 = 0$$

Here, $a = 1$, $b = -5$, $c = 7$

S = Sum of the roots =
$$\alpha + \beta = -\frac{b}{a} = -\left(\frac{-5}{1}\right) = 5$$
(A)

P = Product of the roots =
$$\alpha\beta = \frac{c}{a} = \frac{7}{1} = 7$$
(B)
Part (a) $S = -\alpha - \beta$

Part (a)
$$S = -\alpha - \beta$$
$$= (\alpha + \beta) = -(5) = -5 \qquad \text{from A}$$
$$P = (-\alpha)(-\beta) = \alpha\beta = 7 \qquad \text{from B}$$

Equation:
$$x^2 - Sx + P = 0$$

 $x^2 - (-5)x + 7 = 0$
 $x^2 + 5x + 7 = 0$
Part (b) $S = 2\alpha + 2\beta$
 $= 2(\alpha + \beta)$
 $= 2(5)$ from (A)
 $= 10$
 $P = (2\alpha)(2\beta)$
 $= 4\alpha\beta$
 $= 4(7)$ from (B)
 $= 28$
Equation: $x^2 - Sx + P = 0$
 $x^2 - 10x + 28 = 0$

Q3. Fill in the blanks:

(i)	The discriminant of $ax^2 + bx + c = 0$ is	
` ' •		

(ii) If
$$b^2 - 4ac = 0$$
, then roots of $ax^2 + bx + c = 0$ are ____.

(iii) If
$$b^2 - 4ac > 0$$
, then the roots of $ax^2 + bx + c = 0$ are _____.

(iv) If
$$b^2 - 4ac < 0$$
, then the roots of $ax^2 + bx + c = 0$ are _____.

(v) If
$$b^2 - 4ac > 0$$
 and perfect square, then the roots of $ax^2 + bx + c = 0$ are

(vi) If
$$b^2 - 4ac > 0$$
, and not a perfect square, then roots of $ax^2 + bx + c = 0$ are

(vii) If
$$\alpha$$
, β are the roots of $ax^2 + bx + c = 0$, then sum of the roots is _____.

(viii) If
$$\alpha$$
, β are the roots of $ax^2 + bx + c = 0$, then product of the roots is _____.

(ix) If
$$\alpha$$
, β are the roots of $7x^2 - 5x + 3 = 0$, then sum of the roots is _____.

(x) If
$$\alpha$$
, β are the roots of $5x^2 + 3x - 9 = 0$, then product of the roots is _____.

(xi) Far a quadratic equation
$$ax^2 + bx + c = 0$$
, $\frac{1}{\alpha \beta}$ is equal to _____.

(xii)	Cube roots	of unity are	
(AH)	Cube roots	OI UITILY AIC	

(xiv) If 1,
$$\omega$$
, ω^2 are the cube roots of unity, then ω^{-7} is equal to _____.

(xv) If
$$\alpha$$
, β are the roots of the quadratic equation, then the quadratic equation is written as

Answer:

(i)	$b^2 - 4ac$	(ii)	equal	(iii)	real
(iv)	imaginary	(v)	rational	(vi)	irrational
(vii)	- <u>b</u> a	(viii)	<u>c</u> a	(ix)	<u>5</u> 7
(x)	$-\frac{9}{5}$	(xi)	$\frac{1}{\alpha\beta}$	(xii)	Ι, ω, ω²

(xiii)	zero	(xiv)	ω^2	(xv)	$x^2 - (\alpha + \beta)x + \alpha\beta = 0$
(xvi)	$x^2 + 2x + 4 = 0$				

SUMMARY

- **Discriminant** of the quadratic expression $ax^2 + bx + c$ is "b² 4ac".
- The cube roots of unity are 1, $\frac{-1+\sqrt{-3}}{2}$ and $\frac{-1-\sqrt{-3}}{2}$.
- **Complex cube roots** of unity are ω and ω^2 .
- Properties of cube roots of unity.
 - (a) The product of three cube roots of unity is one. i.e., $(1)(\omega)(\omega^2) = \omega^3 = 1$
 - (b) Each of the complex cube roots of unity is reciprocal of the other.
 - (c) Each of the complex cube roots of unity is the square of the other.
 - (d) The sum of all the cube roots of unity is zero, i.e., $1 + \omega + \omega^2 = 0$
- The roots of the quadratic equation $ax^2 + bx + c = 0$, $a \ne 0$ are

$$\alpha = \frac{-b + \sqrt{b^2 - 4ac}}{2a} \text{ and } \beta = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

- The sum and the product of the roots of $ax^2 + bx + c = 0$, $a \ne 0$ are
 - $\alpha + \beta = -\frac{b}{a}$ and $\alpha\beta = \frac{c}{a}$ respectively.
- Symmetric functions of the roots of quadratic equation are those functions in which the roots involved are such that the values of the expressions remain unaltered, when roots are interchanged.
- Formation of a quadratic equation if its roots are given;

$$x^2$$
 – (sum of the roots) x + product of the roots = 0
 x^2 – (α + β) x + $\alpha\beta$ = 0.

- Synthetic division is the process of finding the quotient and remainder, when a polynomial is divided by a linear polynomial.
- A system of equations having a common solution is called a system of simultaneous equations.

0000000000000