Machine Learning is a Search Problem

Dr Varun Ojha

Department of Computer Science University of Reading

"No learner can ever beat random guessing over all possible functions to be learned"

- No free lunch theorem, D. Wolpert.

 \mathcal{Y}

•

•

•

inputs

outputs

input-space

concept-space

Search the unknown target function $f: \mathcal{X} \to \mathcal{Y}$

input-space

hypothesis-space concept-space

	x_1	x_2	y
1:	0	0	0
2:	0	1	0
3:	1	0	0
4:	1	1	1

$$y = f(\mathbf{x})$$
, where $\mathbf{x} = \langle x_1, \dots, x_d \rangle$

	x_1	x_2	y
1:	0	0	0
2:	0	1	0
3:	1	0	0
4:	1	1	1

number of inputs
$$d = 2$$

each x_i takes 2 options 0 or 1
input-space $\mathcal{X} = 2^d = 2^2 = 4$

number of outputs 1 output y takes 2 options in $\{0,1\}$ concept-space $\mathcal{C}=2^I=2^{2^2}=16$

	x_1	x_2	y
1:	0	0	0
2:	0	1	0
3:	1	0	0
4:	1	1	1

input-space: $\mathcal{X}=4$

concept-space: C = 16

hypothesis-space: H is a set of all possible functions such that $h_t \in H$ produces a function $g: \mathcal{X} \to \mathcal{Y}$ that approximates f i.e. $g \approx f$.

data-space (training data):

$$\mathcal{D} = \{(\mathbf{x}_1, f(\mathbf{x}_1)), \dots, (\mathbf{x}_N, f(\mathbf{x}_N))\}, \text{ where } \mathcal{D} \in C$$
 are N training examples.

What learning needs?

Learning needs the method(s) to

Represent

Evaluate

Optimize

a hypothesis h_t :

	x_1	x_2	y
1:	0	0	0
2:	0	1	0
3:	1	0	0
4:	1	1	1

How to represent a hypothesis $h_t \in H$

A hypothesis h_t as a perceptron. A simple linear combination of inputs.

$$h_t = g(\mathbf{x}) = \sum_{i=1}^d \mathbf{w}_i x_i \ge \mathbf{w}_0$$

where w_0 is a threshold.

The hypothesis h_t has the parameters inputs weights w_i and the threshold w_0 .

A hypothesis h_t as a perceptron.

$$\sum_{i=1}^{d} w_i x_i \ge w_0$$

$$\sum_{i=1}^d w_i x_i - w_0 = 0$$

For an artificial input $x_0 = 1$

$$\sum_{i=0}^{d} w_i x_i = 0$$

Which hypothesis to pick?

	x_1	x_2	y
1:	0	0	0
2:	0	1	0
3:	1	0	0
4:	1	1	1

Cost function such as the error rate:

$$E(h_t(\mathcal{D})) = \frac{1}{N} \sum_{j=1}^{N} (g(\mathbf{x}_j) \neq f(\mathbf{x}_j))$$

How to search optimum hypothesis?

Function g of the hypothesis has parameter \mathbf{w} :

$$g_{\mathbf{w}}(\mathbf{x}) = \sum_{i=0}^{d} w_i x_i = 0$$

Simple algorithm:

Repeat parameter **w** update for t = 2, 3, ..., M

$$\mathbf{w}_t = \mathbf{w}_{t-1} + y\mathbf{x}$$

Until error rate $E(h_t(\mathcal{D}))$ is acceptable.

Let's see an example (house price):

	$x = area(m^2)$	$y = price(in \ \mathfrak{L})$
1:	1000	100K
2:	2000	200K
3:	3000	300K

Now, cost function is a squared error:

$$E(h_t(\mathbf{x}) = \frac{1}{2N} \sum_{i=1}^{N} (g(\mathbf{x}_i) - f(\mathbf{x}_i))^2$$

Hypothesis h_t for $w_0 = 0$ and $w_1 = 0.0$:

$$g(\mathbf{x}) = w_0 + w_1 x$$

Error $E(w_1)$ for $w_0 = 0$ and $w_1 = 0$:

$$E(g_{\mathbf{w}}(\mathbf{x})) = 2.33$$

Hypothesis h_t for $w_0 = 0$ and $w_1 = 0.5$:

$$g(\mathbf{x}) = w_0 + w_1 x$$

Error $E(w_1)$ for $w_0 = 0$ and $w_1 = 0.5$:

$$E(g_{\mathbf{w}}(\mathbf{x})) = 0.625$$

Dr Varun Ojha, UoR

Hypothesis h_t for $w_0 = 0$ and $w_1 = 1$:

$$g(\mathbf{x}) = w_0 + w_1 x$$

Error $E(w_1)$ for $w_0 = 0$ and $w_1 = 1$:

$$E(g_{\mathbf{w}}(\mathbf{x})) = 0.0$$

Gradient Descent

Function g of the hypothesis has parameter \mathbf{w} :

$$g_{\mathbf{w}}(\mathbf{x}) = \sum_{i=0}^{d} w_i x_i = 0$$

Repeat parameter \mathbf{w} update for $t = 2, 3, \dots, M$

$$\mathbf{w}_t = \mathbf{w}_{t-1} + \alpha \frac{\partial}{\partial \mathbf{w}} E(\mathbf{x})$$
 for a learning-rate α .

Until error rate $E(h_t(\mathcal{D}))$ is acceptable.

Gradient Descent

Function g of the hypothesis has parameter \mathbf{w} :

$$g_{\mathbf{w}}(\mathbf{x}) = \sum_{i=0}^{d} w_i x_i = 0$$

Repeat parameter w update for t = 2, 3, ..., M

$$\mathbf{w}_t = \mathbf{w}_{t-1} + \alpha \Delta \mathbf{w}$$
 where $\Delta \mathbf{w}$ is gradient and α learning-rate.

Until error rate $E(h_t(\mathcal{D}))$ is acceptable.

Gradient Descent: Versions

Stochastic Gradient Descent

$$\begin{split} t &= 0 \\ \mathbf{w} \text{ initial weights} \\ \textbf{for } t \text{ in epochs do} \\ \mathcal{D} &\leftarrow shuffle(\mathcal{D}) \\ \textbf{for } \mathbf{x}_j \text{ in } \mathcal{D} \textbf{ do} \\ \Delta \mathbf{w} &= g_{\mathbf{w}}(\mathbf{x}_j) \\ \mathbf{w}_j &= \mathbf{w}_{j-1} + \alpha \Delta \mathbf{w} \end{split}$$

Batch Gradient Descent

$$t=0$$
 w initial weights for t in epochs do for x_j in \mathcal{D} do $\Delta \mathbf{w} = \Delta \mathbf{w} + g_{\mathbf{w}}(\mathbf{x}_j)$ $\Delta \mathbf{w} = \frac{\Delta \mathbf{w}}{|\mathcal{D}|}$ $\mathbf{w}_t = \mathbf{w}_{t-1} + \alpha \Delta \mathbf{w}$

Gradient Descent: Versions

Stochastic Gradient Descent

Batch Gradient Descent

Gradient Descent: Versions

Stochastic Gradient Descent

Batch Gradient Descent

What is learning?

Is learning possible?

What is learning?

Box \mathcal{X} full of red and white marbles:

i.e., all possible data points $\mathbf{x} \in \mathbb{R}^2$ space.

Learning answers, the question:

What is the probability of picking a red marble from box \mathcal{X} by just seeing sample \mathcal{D} .

Q: Is learning possible?

What is learning?

Box \mathcal{X} full of red and white marbles:

i.e. all possible data points $\mathbf{x} \in \mathbb{R}^2$ space.

 $\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc$ Random sample $\mathcal D$

Learning answers the question:

What is the probability of picking a red marble from box \mathcal{X} by just seeing sample \mathcal{D} .

Q: Is learning possible?

A: If we can tell the probability of picking red marble from the box $\mathcal X$ then yes!

Probability of picking a marble

The probability of picking red marble from the box \mathcal{X} is μ .

000000

The probability of picking red marble from the sample \mathcal{D} is ν .

We can confirm the probability μ iff the following holds:

$$P[|\nu - \mu| > \epsilon] \le 2e^{-2\epsilon^2 N}$$

This inequality is Hoeffding's Inequality. Or Probability approximate correct learning.

Probably approximately correct learning

Union bound:

$$P[|E(h_{\mathcal{D}}) - E(h_{\mathcal{X}})| > \epsilon] \le \sum_{i=1}^{M} P[|E(h_{\mathcal{D}}) - E(h_{\mathcal{X}})| > \epsilon] \le 2Me^{-2\epsilon^2 N}$$

How many training example required to learn?

Lets δ be the probability of error rate greater than ϵ , i.e. $P[|E(h_D) - E(h_X)| > \epsilon] \leq \delta$.

$$\delta \leq 2Me^{-2\epsilon^2N}$$

For $M \leq C$, and $C = 2^{2^d}$, and d is input-space dimension.

We can also summaries it for bound on N as:

$$N > \frac{1}{\epsilon} \left(\ln M + \ln \frac{1}{\delta} \right)$$

N grows exponentially in # input attributes d.

Conclusion: Larger N require for higher accuracy and for improving probability of finding correct hypothesis.

How do we choose a hypothesis class?

How do we choose a hypothesis class?

	x_1	x_2	y
1:	0	0	0
2:	0	1	1
3:	1	0	1
4:	_1_	1	0

Backpropagation: Forward pass

Backpropagation: Forward pass

Backpropagation: Error at the output layer

Backpropagation: Backward pass (output layer δ)

$$x_i \xrightarrow{w_{ij}} j \xrightarrow{h_j} k \xrightarrow{y_k} e = y_k - y_i$$

$$\delta_k = (y_k - y_i)y_k(1 - y_k)$$

Backpropagation: Backward pass (hidden layer δ)

$$x_{i} \xrightarrow{w_{ij}} \xrightarrow{j} \xrightarrow{w_{jk}} \xrightarrow{k} \xrightarrow{w_{i}} e = y_{k} - y_{i}$$

$$\delta_{k} = (y_{k} - y_{i})y_{k}(1 - y_{k})$$

$$\delta_{j} = h_{j}(1 - h_{j})\delta_{k}w_{jk}$$

Backpropagation: Backward pass (input layer δ)

$$x_{i} \xrightarrow{w_{ij}} \underbrace{j} \underbrace{\delta_{w_{jk}}}^{h_{j}} \underbrace{k} \underbrace{\delta_{k}}^{y_{k}} e = y_{k} - y_{i}$$

$$\delta_{k} = (y_{k} - y_{i})y_{k}(1 - y_{k})$$

$$\delta_{j} = h_{j}(1 - h_{j})\delta_{k}w_{jk}$$

$$\delta_{i} = \delta_{j}w_{ik}$$

Backpropagation: Backward pass (input layer δ)

$$x_{i} \xrightarrow{w_{ij}} \underbrace{j} \underbrace{\delta_{w_{jk}}^{h_{j}}}_{w_{jk}} \underbrace{k} \underbrace{\delta_{k}^{y_{k}}}_{\delta_{k}} e = y_{k} - y_{i}$$

$$\Delta w_{jk} = \delta_{j}h_{j}$$

$$\Delta w_{ij} = \delta_{i}x_{i}$$

Is the chosen hypothesis good?

Underfit

Overfit

Training: Cross Validation

Training set

Test set

Training

Training: Take another set

Training set

Test set

Training: Early Stopping

Among all generated hypothesis from H, chose the simplest one.

- Occam's Razor, William of Ockham.